Rice's Theorem

- If:
 - $L = \{ \langle M \rangle \mid \text{ where } L(M) \text{ has property P} \}$, and
 - L is not \varnothing or the set of all TMs
- Then L is undecidable (and possibly unrecognizable)
- Proof Sketch: We can show that if we had a decider for L, then we could build a decider for A_{TM} or for \overline{A}_{TM} out of it

Proof – Two Cases

- Since, L is not everything or nothing, we know that there are TMs K and J such that:
 - $\langle K \rangle \in L$, and $\langle J \rangle \in \overline{L}$
- Assume D_L is a decider for L
 - We will then show D₁ can't exist
- Case I: The language Ø has property P
- Case 2: The language Ø does not have property P

Proof – Case I

- Case I: The language Ø has property P
- We can create a TTM code converter that transforms a <M, w> pair into a single TM M':

M': On input x:

- I. Run M on w:
 - a) If it rejects, then reject
 - b) If it accepts, then run J on x, and output the same result for M'

Proof – Case I

- Case I: The language ∅ has property P
- Using the converter and D_L , we now create the following decider for $\overline{A_{TM}}$:

- If <M, w> in $\overline{A_{TM}}$, then M' accepts nothing and is thus in L
- Otherwise, M' behaves just like J, which isn't in L

Proof – Case 2

- Case I: The language Ø doesn't have property P
- We can create a TTM code converter that transforms a <M, w> pair into a single TM M':

M': On input x:

- I. Run M on w:
 - a) If it rejects, then reject
 - b) If it accepts, then run K on x, and output the same result for M'

Proof – Case 2

- Case I: The language Ø doesn't have property P
- Using the converter and D_L , we now create the following decider for A_{TM} :

- If <M, w> in A_{TM}, then M' behaves just like K, which is in L
- Otherwise, M' accepts nothing, and thus not in L

Rice's Theorem Uses

- Now, we automatically know that non-trivial languages of the form {<M> | L(M) has prop. P} are in one of the following categories:
 - Decidable
 - Recognizable, but not decidable
 - Unrecognizable
- Common strategy: See if you can find a recognizer for the given language or its complement

Common Examples

Languages of the form:

```
{ <M> | M accepts at least n strings }
{ <M> | M accepts everything in F (maybe more) }
where F is finite, are recognizable
```

Proofs: Exercise

Common Examples

Languages of the form

```
{ <M> | M accepts at most n strings }
{ <M> | M accepts exactly those strings in S }
{ <M> | M accepts an infinite number of strings }
where S is some decidable set, are unrecognizable
```

 Proofs: First one is easy (given previous proofs); Other two are challenging!

