Parameter estimation from partial observations with neural networks

Manu Kalia

SIAM MDS 2020

June 25, 2020

Collaborators

- Hil Meijer, Christoph Brune (University of Twente)
- J. Nathan Kutz, Steven Brunton (University of Washington)

Time-evolution models from data

Physical modeling

- Biophysics
- Neuroscience
- Fluid dynamics
- etc.

Model optimisation

- Parameter estimation
- UDEs [Rackauckas et al, 2020]

Model discovery

- SINDy [Brunton et al., 2016]
- DMD
- Koopman
- HAVOK [Brunton et al., 2017]

Time-evolution models from data

Physical modeling

- Biophysics
- Neuroscience
- Fluid dynamics
- etc.

Model optimisation

- Parameter estimation
- UDEs [Rackauckas et al, 2020]

Model discovery

- SINDy [Brunton et al., 2016]
- DMD
- Koopman
- HAVOK [Brunton et al., 2017]

The problem

Consider an ODE,

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R}^p.$$
 (Model)

We observe the state **partially** via some H(x)

$$y = H(x), y \in \mathbb{R}^m, m < n.$$

 $({\bf Observation})$

The problem

Consider an ODE,

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R}^p.$$
 (Model)

We observe the state **partially** via some H(x)

$$y = H(x), \ y \in \mathbb{R}^m, \ m < n.$$
 (Observation)

Problem: Given noisy y, f and H also, estimate α .

The problem

Consider an ODE,

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R}^p.$$
 (Model)

We observe the state **partially** via some H(x)

$$y = H(x), \ y \in \mathbb{R}^m, \ m < n.$$
 (Observation)

Problem: Given noisy y, f and H also, estimate α .

Example

Malkus-waterwheel equations:

$$\dot{\mathbf{x}} = \begin{cases} \dot{x} = \mathbf{\sigma}(y - x) \\ \dot{y} = -y + ax + zx \\ \dot{z} = -bz + xy. \end{cases}$$

$$H(\mathbf{x}) = x.$$

$$C(\sigma) = \|x^{data} - x\|_2^2.$$

Compute
$$\sigma_{opt} = \arg \min C(\sigma)$$
.

Example

Malkus-waterwheel equations:

$$\dot{\mathbf{x}} = \begin{cases} \dot{x} = \mathbf{\sigma}(y - x) \\ \dot{y} = -y + ax + zx \\ \dot{z} = -bz + xy. \end{cases}$$

$$C(\sigma) = \|x^{data} - x\|_2^2.$$

Compute
$$\sigma_{opt} = \arg \min C(\sigma)$$
.

 $H(\mathbf{x}) = x.$

(Optimization)

From H. Abarbanel, Predicting the Future - Completing models of observed complex systems, Springer (2013)

Synchronization

We now consider the following problem,

$$\dot{\mathbf{x}} = \begin{cases} \dot{x} = \sigma(y - x) + K(x^{data} - x) \\ \dot{y} = -y + ax + zx \\ \dot{z} = -bz + xy. \end{cases}$$
 (Model)

$$H(\mathbf{x}) = x.$$

(Observation)

$$C(K, \sigma) = ||x^{data} - x||_2^2.$$

(Loss)

Fix
$$K$$
. Compute $\sigma_{opt} = \arg \min C(\sigma)$.

(Optimization)

From H. Abarbanel, Predicting the Future - Completing models of observed complex systems, Springer (2013)

From H. Abarbanel, Predicting the Future - Completing models of observed complex systems, Springer (2013)

Problems in neuroscience

Highly nonlinear

UNIVERSITY OF TWENTE.

• Measurements of *few* ions and voltages available.

Gerkau et al. (2018), Kalia et al. (In prep.)

Augmented Ensemble Kalman filter (AEnKF)

- Augmented filtering \rightarrow Append parameter α to state x.
- α updated by propagating cross-covariances.

AEnKF: examples

FitzHugh Nagumo

$$\begin{cases} \dot{v} = v - v^3/3 - r + \underline{I_{in}} \\ \dot{r} = 1/\tau (v + a - br) \end{cases}$$

$$H(\mathbf{x}) = (v, w)$$

Lorenz63

$$\begin{cases} \dot{x} = \sigma(y-x) \\ \dot{y} = x(\rho-z) - y \\ \dot{z} = xy - \beta z \end{cases}$$
 (Model)

$$H(\mathbf{x}) = (x, y, z)$$
 (Observation)

Augmented Ensemble Kalman filter (AEnKF)

Efficient and robust over higher dimensions, but

- (1) Requires explicit numerical method, linear observation operator
- (2) State estimation \implies parameter estimation.

Augmented Ensemble Kalman filter (AEnKF)

Efficient and robust over higher dimensions, but

- (1) Requires explicit numerical method, linear observation operator
- (2) State estimation \implies parameter estimation.

Goal: Better parameter estimation by adapting above approaches with neural networks.

Neural networks and Kalman filters

(Original AKF)

(Novel approach)

Neural networks and Kalman filters

(Novel approach)

Neural networks and Kalman filters

$$\begin{split} \min_{\theta_1,\theta_2} & \sum_t \left\| H(\hat{x}_t) - y_t^{obs} \right\|_2^2 + R(\hat{x}, y^{obs}, \theta_1, \theta_2) \\ \text{subject to} & \qquad \qquad & (\textbf{Optimisation}) \\ & \dot{\hat{x}} = f(\hat{x}, \alpha_t, t). \end{split}$$

Numerical implementation

- (1) Choose random initial θ and solve ODE.
- (2) Compute loss.
- (3) Collect gradients w.r.t. θ : adjoint sensitivity or automatic differentiation
- (4) Update weights. Repeat (1-3) till parameters stabilize.

Numerical implementation

- (1) Choose random initial θ and solve ODE.
- (2) Compute loss.
- (3) Collect gradients w.r.t. θ : adjoint sensitivity or automatic differentiation
- (4) Update weights. Repeat (1-3) till parameters stabilize.

Efficiently implemented in **DiffEqFlux.jl** (adjoint sensitivity) and **Zygote.jl** (automatic differentiation) in Julia.

Example: FitzHugh-Nagumo

$$\dot{v} = \frac{c}{c} \left(v - \frac{v^3}{3} + cr \right)$$
$$\dot{r} = \frac{-1}{c} \left(v - a + br \right)$$

$$\Gamma_{\theta_1} \longrightarrow \fbox{\scriptsize \begin{bmatrix} 1\times10\\ \text{ReLU} \end{bmatrix}} - \fbox{\scriptsize \begin{bmatrix} 10\times10\\ \text{ReLU} \end{bmatrix}} - \fbox{\scriptsize \begin{bmatrix} 10\times2\end{bmatrix}}$$

$$\Lambda_{\theta_2} {\longrightarrow} {\tiny \begin{bmatrix} 1\times10 \\ \text{ReLU} \end{bmatrix}} {\tiny \begin{bmatrix} 10\times10 \\ \text{ReLU} \end{bmatrix}} {\tiny \begin{bmatrix} 10\times2 \end{bmatrix}}$$

$$H(v,r) = v + r.$$

(Observation)

$$R(\hat{x},\alpha) = \left\|\dot{\hat{x}} - f(\hat{x},\bar{\alpha})\right\|_2^2 \quad \text{(Regularization)}$$

Example: Lorenz63

$$\dot{x} = \sigma(y - x),$$

$$\dot{y} = x(\rho - z) - y,$$

$$\dot{z} = xy - \beta z.$$

$$H(x, y, z) = (x, y).$$
 (Observation)

Avoid using large NN to cover state space by adding synchronisation,

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) \mapsto \left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) + \Pi_{\theta_3}^{sync} (\mathbf{x} - \mathbf{x}_{\rm obs}).$$

Summary

Results:

- A neural-network based parameter estimation scheme in continuous models
- Generalizable and computationally efficient
- Extends well to partial observations and nonlinear systems

Limitations

- Existence and stability
- Observability of states and parameters
- Model tuning

Thanks! Open to questions.