

Introduzione e modellistica dei sistemi

Modellistica dei sistemi dinamici termici

Modellistica dei sistemi dinamici termici

- Elementi fondamentali
- Scrittura delle equazioni dinamiche
- Rappresentazione in variabili di stato
- Esempio di rappresentazione in variabili di stato

Modellistica dei sistemi dinamici termici

Elementi fondamentali

Corpo omogeneo ideale

➤ Corpo omogeneo ideale di capacità termica C

L'equazione dinamica della sua temperatura è:

$$C\frac{d\theta(t)}{dt}=p(t)$$

- C: capacità termica, proporzionale al calore specifico
- \bullet θ : temperatura assoluta del corpo omogeneo
- p: portata di calore (potenza termica) applicata
- Unità di misura: [p] = W, $[\theta] = K$, [C] = J/K

Conduttore termico ideale

ightharpoonup Conduttore termico ideale di conduttanza term. K_{ij}

La portata di calore che fluisce dal corpo omogeneo con temperatura assoluta θ_i al corpo omogeneo con temperatura assoluta θ_i in contatto termico è pari a:

$$p_{ij}(t) = K_{ij} \left[\theta_i(t) - \theta_j(t) \right]$$

 \Rightarrow è proporzionale alla temperatura relativa dei due diversi corpi omogenei ideali in contatto termico Unità di misura: $[p_{ij}] = W$, $[\theta_i] = [\theta_j] = K$, $[K_{ij}] = W/K$

Modellistica dei sistemi dinamici termici

Scrittura delle equazioni dinamiche