UNIVERSITY OF OSLO

Master's thesis

Localization and identification of Neural Sources from simulated EEG Signals

Kamilla Ida Julie Sulebakk

Biological and Medical Physics 60 ECTS study points

Department of Physics Faculty of Mathematics and Natural Sciences

Kamilla Ida Julie Sulebakk

Localization and identification of Neural Sources from simulated EEG Signals

Acknowledgements

Massive thank-yous to my supervisor Gaute Einevoll and my co-supervisor Torbjørn Ness.

Contents

A	ckno	wledgements	i
In	trod	uction	\mathbf{v}
	0.1	Motivation	1
	0.2	Goal and Objectives	1
	0.3	Structure of the Thesis	1
1	Inti	roduction to Neuroscience	3
	1.1	The Neuron	3
		1.1.1 Spike Trains and Action Potentials	5
		1.1.2 Anatomy of the Cortex	6
2	Ele	ctroencephalograpy	9
	2.1	The Physiological basis of the EEG	9
	2.2	The Inverse Problem and Source Localization	11
		2.2.1 The Current Dipole Approximation	12
	2.3	Simulating EEG Measurements	13
		2.3.1 The New York Head	15
		2.3.2 LFPy	16
		2.3.3 Method	16
3	Ma	chine Learning and Neural Networks	19
	3.1	Machine Learning and its Fundational Principles	19
		3.1.1 Fitting a Machine Learning Model	20
		3.1.2 Gradient Descent and Its Variants	20
	3.2	Neural Networks	22
		3.2.1 Activation functions	24
4	Dip	oole Source Localization using Neural Networks	31
	-	4.0.1 Neural Networks	32
	4.1	Feed-Forward Neural Network Approach for localizing single	
		dipole sources	32
		4.1.1 Validation accuracy	32
		4.1.2 Activation functions, Batchsize and Optimization	33

iv CONTENTS

		4.1.3	Training, testing and evaluation	33
5	DiL	oc - A	NN Apporach for Source Localization	35
	5.1	Archit	secture	35
	5.2	Simula	ation of EEG Signals	37
		5.2.1	The Effect of dipole location and orientation	37
		5.2.2	Noise	39
		5.2.3		40
	5.3	Traini	ng the DiLoc Network	42
	5.4		as Convolutional Neural Network	43
6	Loc	alizing	Single Dipole Sources	45
	6.1	Locali	zing Single Dipole Sources using DiLoc	45
		6.1.1	Performance Evaluation	45
		6.1.2	Detailed Analysis of Performance at Different Brain	
			Structures	49
	6.2	Convo	olutional Neural Network Approach for Localizing Single	
		Dipole	Sources	51
		6.2.1	Data Set	51
		6.2.2	Performance Evaluation	53
7	Ext	ending	g the DiLoc Network	57
	7.1	Predic	eting Single Dipole Sources with Amplitudes	57
		7.1.1	Adjustments in Data Set and Architecture	58
		7.1.2	Performance Evaluation	60
	7.2	Predic	eting Region of Active Correlated Current Dipoles with	
		Ampli	tudes	63
		7.2.1	Adjustments in Data Set and Architecture	63
		7.2.2	Performance Evaluation	65
	7.3	Locali	zing Multiple Dipole Sources	67
	7.4		ous work	67
		7.4.1	Adjustments in Data Set and Architecture	69

Introduction

Electroencephalography (EEG) is a method for recording electric potentials stemming from neural activity at the surface of the human head, and it has important scientific and clinical applications. An important issue in EEG signal analysis is so-called source localization where the goal is to localize the source generators, that is, the neural populations that are generating specific EEG signal components. An important example is the localization of the seizure onset zone in EEG recordings from patients with epilepsy. A drawback of EEG signals is however that they tend to be difficult to link to the exact neural activity that is generating the signals.

Source localization from EEG signals has been extensively investigated during the last decades, and a large variety of different methods have been developed. Source localization is very technically challenging: because the number of EEG electrodes is far lower than the number of neural populations that can potentially be contributing to the EEG signal, the problem is mathematically under-constrained, and additional constraints on the number of neural populations and their locations must therefore be introduced to obtain a unique solution.

For the purpose of analyzing EEG signals, the neural sources are treated as equivalent current dipoles. This is because the electric potentials stemming from the neural activity of a population of neurons will tend to look like the potential from a current dipole when recorded at a sufficiently large distance, as in EEG recordings. Source localization is therefore typically considered completed when the location of the current dipoles has been obtained. However, an exciting possibility is to try to go one step further and identify the type of neural activity that caused a localized current dipole. For example, the type of synaptic input (excitatory or inhibitory) to a population of neurons, and the location of the synaptic input (apical or basal) will result in different current dipoles (Ness et al., 2022). It has also been speculated that dendritic calcium spikes can be detected from EEG signals, which could lead to exciting new possibilities for studying learning mechanisms in the human brain (Suzuki & Larkum, 2017). Identifying different types of neural activity from EEG signals would however require knowledge of how different types of neural activity are reflected in EEG signals. Tools for calculating EEG signals from biophysically detailed neural simulations vi INTRODUCTION

have however recently been developed, and are available through the software LFPy 2.0 (Hagen et al., 2018; Næss et al., 2021). This allows for simulations of different types of neural activity and the resulting EEG signals, opening up for a more thorough investigation of the link between EEG signals and the underlying neural activity.

The past decade has seen a rapid increase in the availability and sophistication of machine learning techniques based on artificial neural networks, like Convolutional Neural Networks (CNNs). These methods have also been applied to EEG source localization with promising results. However, it has not been investigated if CNNs can also identify the neural origin of EEG signals, in addition to localizing neural sources. In this Master's thesis, the aim will be to investigate the possibility of using CNNs to not only localize current dipoles but also identify the neural origin of different types of neural activity, based on simulated data of different types of neural activity and the ensuing EEG signal.

1

0.1 Motivation

Neurobiology is the study of the nervous system, including the structure, function, and development of neurons and neural circuits. The physics of the neuron is an important component of neurobiology, as it involves understanding the mechanisms by which neurons generate and transmit electrical signals. The basic unit of the nervous system is the neuron, which is capable of producing and transmitting electrical signals, or action potentials, across its membrane. These electrical signals are generated by the flow of charged ions into and out of the neuron, and are essential for communication between neurons and the transmission of information throughout the nervous system.

One technique for studying the electrical activity of the brain is electroencephalography (EEG), which measures the voltage fluctuations resulting from the electrical activity of neurons. EEG is a non-invasive technique that involves placing electrodes on the scalp, and has been used to study a wide range of cognitive and neural processes, including perception, attention, and memory. One of the challenges of interpreting EEG signals is the "inverse problem," which involves determining the location and nature of the underlying sources of electrical activity in the brain.

One approach to solving the inverse problem is source localization, which involves estimating the location and strength of the electrical sources in the brain that are responsible for the measured EEG signals. Source localization is a challenging problem due to the complexity of the brain and the fact that EEG signals are affected by a range of factors, including the conductivity of the scalp and the position and orientation of the electrodes. However, there are a number of techniques and algorithms that have been developed to address these challenges, including dipole modeling, distributed source modeling, and beamforming (Hämäläinen et al., 1993; Grech et al., 2008).

Overall, the physics of the neuron, EEG, and source localization are all important components of neurobiology that have contributed to our understanding of the nervous system and its functioning. By combining knowledge of the physical principles of neural signaling with advanced analytical techniques, researchers are able to gain valuable insights into the underlying neural processes that give rise to behavior and cognition.

0.2 Goal and Objectives

0.3 Structure of the Thesis

Chapter 1

Introduction to Neuroscience

Neuroscience is a multidisciplinary field focused on understanding the complexities of the human brain and nervous system. At its core, neuronal communication forms the foundation for brain function, where billions of neurons interact through electrical signals called action potentials. Electroencephalography (EEG) plays a pivotal role in this area by recording and analyzing these electrical potentials in the brain. EEG serves as a non-invasive tool to detect abnormal brain activity and identify neurological disorders such as epilepsy. By exploring electrical brain activity, neuroscience endeavors to advance our comprehension of the human brain and improve diagnostic and therapeutic approaches for various neurological conditions.

In this introductory chapter, we will delve into the foundational aspects of neuronal communication and the underlying principles of EEG recordings. By familiarizing ourselves with these fundamental concepts, we can better appreciate the utility and potential applications of EEG in the dynamic field of neuroscience. Section 1, based on the books "Neuronal Dynamics" by Gerstner, Kistler, Naud, and Paninski [1] and "Principles of Computational Modelling in Neuroscience" by Sterratt, Graham, Gillies, and Willshaw [2], delves into the nature of neurons and their intricate communication networks.

1.1 The Neuron

Neurons are the fundamental units of the central nervous system, forming intricate networks with numerous interconnections. Similar to other cells, neurons have a voltage difference across their cell membrane known as the membrane potential. This membrane potential is a result of the selective permeability of the cell membrane to different ions, particularly sodium (Na+), calcium (Ca2+), and chloride (Cl-). At rest, the neuron maintains a relatively higher concentration of sodium ions outside the cell and a higher concentration of potassium ions inside the cell. This difference in ion concentrations, along with the presence of ion channels that regulate the flow

Figure 1.1: An illustration of a single neuron with dendrites, soma (cell body) and axon. The figure is taken from ...

of ions in and out of the cell, contributes to the resting membrane potential. Typically, the membrane potential of a neuron hovers around -65 mV, indicating that the interior of the cell is negatively charged compared to the external environment [2].

A neuron consists of three distinct parts: the dendrites, the soma (cell body), and the axon. Dendrites, with their branching structure, play an important role in collecting signals from other neurons. These signals are transmitted to the soma, which acts as the central processing unit, performing essential nonlinear processing. If the total input received by the soma reaches a specific threshold, an action potential is initiated. This signal generates an electrical current that travels along the axon, leading to the release of neurotransmitters. These neurotransmitters diffuse across the junction, or the synapse, between the sending and receiving neuron. If the receptors on the receiving neuron accept the neurotransmitters, a new electrical signal is generated. This transmission of signals between neurons at specialized junctions is called synaptic input [1].

In Figure 1.1, we have provided a basic illustration of a single neuron with dendrites, soma (cell body), and axon. [Add proper citation or indicate if it is a self-generated illustration].

Figure 1.2: An illustration of a single neuron with dendrites, soma (cell body) and axon. The figure is taken from ...

1.1.1 Spike Trains and Action Potentials

When the electrical signals transmitted towards the soma reach the so-called threshold value, usually around -55 mV, the neuron fires. This initiation of an action potential can be seen as a spike in electrical recordings, with an amplitude of about 100 mV and a duration of 1-2 ms [1]. Figure 1.2 we have provided an illustration of the typical action potential.

The action potential is characterised by a swift and steep rise in the electrical potential, resulting in a rapid upward, positive spike, followed by a quick decline in the potential vack to its resting state. This form of the action potentials remains relaticely constant throughout the propagation along the axon. When collecting information out of these spikes, it is therefor not the shape of the spikes that is studied. Instead, the information lies in the number and timing of chans of action potentials emmitted by the neuron, also reffered to as spike trais.

Spike trains observed during epileptic seizures exhibit distinguishable characteristics compared to "normal" spike trains in regular neural activity. Epileptic seizures, particularly those associated with spike-and-wave patterns in conditions like absence epilepsy, are characterized by regular, symmetrical, and generalized EEG patterns known as spike-and-wave discharges. These discharges result from bilateral synchronous firing of neurons involving the neocortex and thalamus within the thalamocortical network [Wikipedia]. The spike-and-wave discharges manifest as a repetitive and rhythmic pattern, typically around 2.5 Hz or higher, setting them apart from the more irregular and unpredictable firing of action potentials seen in "normal" spike trains [Neural Dynamics]. During epileptic events, the initiation of these discharges involves complex mechanisms, including the interplay of voltage-gated sodium and calcium channels and the role of inhibitory postsynaptic potentials [Wikipedia]. This stark contrast in the rhythmicity and temporal dynamics of epileptic spike trains highlights the distinct nature of epileptic activity when compared to the more variable and less periodic patterns observed in "normal" neuronal firing [Neural Dynamics].

1.1.2 Anatomy of the Cortex

Neurons in the brain are part of a vast network, interwoven with billions of other neurons and glial cells, creating the complex brain tissue. The brain is divided into various regions, and one essential area is the cortex, a thin but expansive sheet of neurons that folds over other brain structures. Different cortical areas have specific roles; some are specialized in processing sensory information, while others handle working memory or control motor functions [1].

The human cerebral cortex consists of up to six layers of neurons. The oldest part of the cortex, known as the archipallium, has a more straightforward structure with three distinct neuronal layers. Within the archipallium, the hippocampus plays a major role in learning and memory functions. It is a crucial cortical structure implicated in the development of some common epilepsy syndromes [3].

Neurons communicate through synapses, where one neuron sends information (presynaptic cell), and another receives it (postsynaptic cell). In the animal brain, a single presynaptic neuron can connect to over 10,000 postsynaptic neurons. While many axonal branches end close to the neuron itself, some axons extend several centimeters to reach neurons in other brain regions [1].

Within the cortex, there are two primary classes of neurons. Pyramidal neurons send information to distant areas of the brain, and they play a crucial role in long-distance communication. On the other hand, basket cells are considered local-circuit neurons, exerting their influence on nearby neurons. Most principal neurons form excitatory synapses, meaning they

7

stimulate post-synaptic neurons, while most basket neurons form inhibitory synapses, meaning they suppress the activity of principal cells or other inhibitory neurons [3].

Chapter 2

Electroencephalograpy

Electroencephalography (EEG) is a recording of the electrical activity of the cerebral cortex, representing a vital tool that has significantly contributed to our understanding of neuron interactions and the brain's organizational complexity. As one of the most widely used non-invasive techniques in neuroscience and clinical practice, EEG has played a pivotal role in studying brain activity during various cognitive processes, as well as in diagnosing diseases and estimating functional connectivity.

The roots of EEG trace back to the groundbreaking work of Hans Berger, who recorded the first human brainwave in 1924, marking the beginning of a new era in neuroscience research [4]. Since then, EEG has become an indispensable method, providing valuable insights into brain dynamics and functioning. EEG is a valuable tool that can be used to detect abnormalities in specific areas of the brain, aiding in the diagnosis of various brain disorders, including epilepsy, Alzheimer's disease, and brain tumors. By identifying distinct patterns of brain activity associated with these conditions, EEG has become an essential tool for early detection, differential diagnosis, and treatment planning.

In this chapter, our primary objectives are to explore the physiological basis of the EEG technique, shed light on the concept of the inverse problem in EEG, and introduce the use of head models to simulate realistic EEG measurements. Understanding the foundations of EEG and its methodologies will lay the groundwork when we further in this thesis will investigate the possibilities of using simulated EEG measurements to train a neural network for the purpose of localizing the sources generating these signals.

2.1 The Physiological basis of the EEG

Electroencephalography (EEG) is a technique that utilizes small metal disks known as electrodes, placed on the scalp, to detect the electrical charges resulting from the activity of brain cells. The EEG recording electrodes are

typically connected to individual wires, which in turn are linked to channel connectors leading to a differential amplifier bank. An illustration of the typical EEG measurement setup is depicted in Figure 2.1. By measuring the electrical potentials of cortical neuronal dendrites near the brain's surface, EEG provides valuable insights into brain function.

Figure 2.1: Illustration of the EEG method.

When a single pyramidal cell is stimulated and reaches its threshold, it generates an action potential. During this process, the synapse receives an excitatory signal, leading to a post-synaptic potential where positively charged ions enter the cell. As a result, a relatively negative charge is induced in the nearby extracellular space, which refers to the fluid-filled space surrounding the neuron. As the action potential travels down the dendrite, it eventually exits the cell membrane at locations further away from the synapse, and these locations are referred to as the "source." Consequently, an outward flow of positive charge prevails, leading to a relatively positive charge in the extracellular space. This spatial configuration creates an external dipole, with a relatively negative charge at the distant part of the dendrite and a positive charge closer to the cell body [3].

Since the electrical potential generated by an individual neuron is far too small to be picked up by the recording electrodes, the EEG measurements primarily reflect the summation of synchronous activity from thousands of pyramidal neurons with similar spatial orientation. Neurons with different geometric alignments cannot be measured as their ions do not align in a way that creates detectable waves. Due to the voltage field gradients decreasing with the square of the distance, detecting activity from deep sources in the

brain is more challenging compared to currents closer to the skull [3].

The EEG is typically described in terms of rhythmic activity and transients, which are divided into frequency bands. Frequency bands are often extracted using spectral methods, and most of the cerebral signals observed in the scalp EEG fall within the range of 1–20 Hz. Abnormal activity can broadly be classified into epileptiform and non-epileptiform activity. Epileptiform activity is characteristic of people with epilepsy and includes spikes, sharp waves, and spike-wave complexes. In this context, spikes refer to hypersynchronized bursts from a sufficient number of neurons, arising from high-frequency bursts of action potentials. Generalized epileptiform discharges often exhibit an anterior maximum, seen synchronously throughout the entire brain, strongly suggestive of a generalized epilepsy [3].

Detecting and localizing abnormal electrical patterns in EEG represents a captivating research pursuit. One of the fundamental aspects in this field is the "EEG inverse problem," which aims to ascertain the spatial distribution of brain activity using potential measures acquired from scalp EEG recordings. In the upcoming section, we will explore the concept of the EEG inverse problem in greater detail and examine its implications for source localization.

2.2 The Inverse Problem and Source Localization

In the field of neuroscience, the inverse problem involves inferring the underlying parameters that caused a set of eeg measured data. Unlike the forward problem, where known parameters are used to predict the resulting eeg potential, the inverse problem lacks a unique solution. This means that more than one configuration of neural sources can ecoke one and the same distribution of EEG activity on the scalp [5].

The forward problem in EEG refers to the mathematical modeling of the relationship between neural current sources in the brain ant the resulting EEG measurements on the scalp, and can mathematically be described as:

$$\Phi(t) = L \cdot J(t) \tag{2.1}$$

where Φ is the vector of measured EEG signals at time t, J(t) is the vector of unknown neural current sources at time t, and L is the lead field matric representing the relationship between recording electrodes and the neural sources. We will come back to the meaning of the lead field matrix later on in this chapter. But for now, we think of it as a ...

The inverse problem on the other hand, is concerned with estimation the neural current sources in the brain based on the measured EEG data, i.e the inverse operation of the forward problem, and thus the name. This relationship can be expressed as:

$$J(t) = L^{-1} \cdot \Phi(t) \tag{2.2}$$

where L^{-1} is the inverse of the lead field matrix.

Unlike the forward problem, the inverse problem lacks a unique solution due to the ill-posed nature of the challenge, wherein multiple sets of neural current sources can give rise to the same EEG measurements. Consequently, localizing the specific neural sources responsible for generating the EEG signals becomes a challenging and statistically driven task. In order to address the complexity associated with numerous unknowns, one commonly introduces assumptions and constraints to help mitigate the issue. These assumptions can aid in narrowing down the possible solutions and facilitate a more robust and meaningful estimation of the neural sources underlying the measured EEG data.

2.2.1 The Current Dipole Approximation

To address the challanges of the inverse problem, one is typically befefitted with using the current dipole-approximation. This approximation is based on the observation that the neurons's contribution to the extracellular potential V_e becomes increasingly dipoler with an increasing distance.

We know that electrical charges can create current multipoles, depending on coordinates and symmetry of the charge distribution [6]. Similarly, the combination of current sinks and sources sets up such charge multipoles. When the distance R from the center of the volume to the recording point is larger that the distance from the volume center to the most peripheral source, multipole expansion can be used [7].

The extracellular potential $V_e(R)$ can be expressed using the multipole expansion theorem as follows:

$$\phi(R) = \frac{C_{\text{monopole}}}{R} + \frac{C_{\text{dipole}}}{R^2} + \frac{C_{\text{quadrupole}}}{R^3} + \frac{C_{\text{octopole}}}{R^4} + \dots$$
 (2.3)

where the numerators represents the contributions to the extracellular potential. The terms denoted $C_{\rm monopole}$, $C_{\rm dipole}$ and $C_{\rm quadrupole}$ represents contributions to the extracellular potential, V_e , and can in general be extremely complicated as they depend on the relationship between radial coordinates and symmetry of the current source and measurement electrode. However, multiple expansions are often beneficial as usually only the first few terms are needed in order to provide an accurate approximation of the original funtion. This also hold in our case, as the quadrupole, octople and higher-order contributions to V_e decay more rapidly with distance R than the dipole contribution. Assuming that we are sufficiently far away from the source distribution, all terms above the dipole contribution vanish.

Furthermore, the monopole contribution vanishes as the net sum of currents over a neuronal membrane is always zero. This means that the monopole term also vanishes, and the expression for the extracellular potential, V_e is approximated by the dipole contribution alone:

$$_{e}(\mathbf{r}) \approx \frac{C_{\text{dipole}}}{R^{2}} = \frac{1}{4\pi\sigma} \frac{|\mathbf{p}|cos\theta}{|\mathbf{r} - \mathbf{r}_{p}|^{2}}.$$
 (2.4)

where we have substituded for C_{dipole} in terms of other properties. Here, \mathbf{p} denotes the current dipole moment in a medium with conductivity σ . $R = |\mathbf{R}| = |\mathbf{r} - \mathbf{r}_p|$ is the distance between the current dipole moment at \mathbf{r}_p and the electrode location \mathbf{r} . Finally θ represents the angle between \mathbf{p} and \mathbf{R} . This equation is known as the dipole approximation and is a precise approximation for calculating extracellular potential, given that R is much larger than the dipole length $d = |\mathbf{d}|$, which is most often the case in EEG studies [8].

The relationship between the current dipole moment \mathbf{p} and a *set* of neural current sources can be expressed as follows:

$$\mathbf{p} = \sum_{n=1}^{N} I_n \mathbf{r}_n \tag{2.5}$$

where I_n is the axial current inside the n-th neuron, and r_n is the position vector of the n-th neural current source.

In Figure 2.2, we have provided a simulation of the extracellular potential generated by a neuron in response to a single synaptic input, where the spatial distribution of membrane current was explicitly taken into consideration. Based on the figure, it is apparent that the distribution of electric charge in the extracellular potential of the neurons surroundings exhibits distinct dipole patterns when observed from a greater distance.

Solving the inverse problem can be done by the use of machine learning and neural network, which is the aim of this thesis. By the use of complicated Head model for the purpose of simulate biophysical realistic EEG measurement, we hope to train a neural network to localize the current dipoles geen the EEG signals.

2.3 Simulating EEG Measurements

In order to accurately simulate EEG data and perform source localization, it is essential to utialize head models that accurately represents the conductivity distribution within the head. Head models are computational representations of the anatomical structure of the human head, including the brain, skull, cerebrospinal fluid and scalp. Head models plays an integral part in simulating how electrical current dipoles propagate through the different tissue compartments and affect the recording values at the eeg electrodes.

-10

-1

Figure 2.2: Simulation of extracellular potential showing distinct dipole pattern. The figure has been provided from my supervisiors Torbjørn Ness and Gaute Einevoll.

nV

10

1

EEG signals are in general significantly affected by the biophysically details of the head. The conductivity of the cerebrosipinal fluid exhibits a conductivity of approximately 1.7 S/m, while the conductivity of the scull and scalp is approximately 0.01 S/m and 0.5 S/m, respectively. These conductivity variations highlight the need for more comprehensive and realistic models of the head that takes into account such conductivity variations. In addition to acount for the variations in conductivity across different regions of the head, head models also takes into account that the EEG signal from a neuronal population will depend on whether the population is located in a sulcus or a gyrus [8]. Said with other words, by utializing biophysical detailed head models, it gets taken into account the impact of various tissues on the distribution of extracellular potential, meaning one can provide more accurate simulation of EEG signal, which in turn will give more accurate solutions when solving the EEG inverse problem.

2.3.1 The New York Head

The New York Head (NYH) model is a highly detailed computer model of the human head, specifically designed for simulating the electrical activity of the brain, with a primary focus on EEG source localization. Developed by the Biomedical Engineering Department in New York, this model is based on high-resolution anatomical MRI data from 152 adult heads, enabling the segmentation of six distinct tissue types in the head: scalp, skull, cerebrospinal fluid, gray matter, white matter, and air cavities. Its high level of detail and accuracy makes it an excellent tool for simulating and comprehending brain activity in a realistic manner.

By providing a three-dimensional representation of the head and brain, along with precise information on the geometry and electrical properties of the different tissues and structures, the New York Head serves as a valuable resource for investigating brain functions, particularly in the context of EEG measurements and source localization.

For EEG simulations, the NYH model is solved for 231 specific positions representing recording electrodes on the scalp. To predict the EEG signals recorded at different scalp locations, the model utilizes a mathematical representation called the "lead field matrix." This matrix captures the relationship between the electrical activity in the brain and the electrical potentials recorded on the scalp.

The lead field matrix is essential for linking brain current density to the EEG signals recorded on the scalp. It relies on the reciprocity theorem, which connects brain current caused by an injected current between stimulating electrodes to the potentials picked up by recording electrodes. Specifically, for a fixed pair of stimulating electrodes, the lead field vectors are calculated throughout the head to determine the orientation of the dipole source that generates the largest potential difference between the electrodes. Represen-

ted by the symbol \boldsymbol{L} , the lead field matrix then establishes the relationship between the brain's current dipole moment and the resulting EEG signals. Mathematically, the lead field matrix \boldsymbol{L} is given by:

$$L = \frac{E}{I},\tag{2.6}$$

where I represents the injected current at the electrode locations, and E corresponds to the resulting electric field in the brain [8]. This leads to the precise connection between a current dipole moment p in the brain and the resulting EEG signals Φ :

$$\Phi = L \cdot p, \tag{2.7}$$

In practical terms, when an injected current of 1 mA flows through the brain, it generates an electric potential E measured in V/m. Thus, a current dipole moment \mathbf{p} in the unit of mAm results in EEG signals measured in the unit of V.

For further comprehensive details about the New York Head model, we refer readers to the article: https://www.parralab.org/nyhead/HauHuaParembc-2015.pdf.

2.3.2 LFPy

The New York Head model has been incorporated in the Python module LFPy, which provides classes for calculation of extracellular potentials from multicomparment neuron models. These tools will be utialized in this thesis. For more information read: https://lfpy.readthedocs.io/en/latest/readme.html#summary

The model utilizes the software tool LFPy, which is a Python module for calculation of extracellular potentials from multicompartment neuron models. This model takes into account that electrical potentials are effected by the geometries and conductivities of various parts of the head.

2.3.3 Method

For the purpose of ... we utialize the LFPy module and the incorporated Ney York Head.

In order to understand the underlaying mechanims of the brain and corresponding EEG recordings, biophysically detailed tools are essential. By accurately simulating EEG data, non-linear optimization algorithms such as machine learning algorithms and neural networks can be utialized for solving the EEG inverse problem.

In order to understand the underlaying mechanims of the brain and corresponding EEG recordings, biophysically detailed tools are essential. By accurately simulating EEG data, non-linear optimization algorithms such as

machine learning algortihms and neural networks can be utialized for solving the EEG inverse problem.

Chapter 3

Machine Learning and Neural Networks

Machine learning is a field concerned with constructing computer programs that learn from experience, where the utialization of data improves computer performance across various tasks. Within this broad scope, one notable application lies in the identification of sources generating abnormal electrical brain signals. By employing specific machine learning algorithms, EEG data can be processed and analyzed to accurately localize the sources responsible for the recorded signals. These algorithms learn from the data and uncover patterns that associate the signals with their corresponding sources, effectively solving the EEG inverse problem. In this chapter, we introduce the field of machine learning and provide an overview of relevant tequniqes for solving our specific EEG inverse problem and its wider implications.

3.1 Machine Learning and its Fundational Principles

"Machine Learning is a subfield of artificial intelligence with the goal of developing algorithms capable of learning from data automatically" [9]. The typical machine learning (ML) problems are addressed using the same three elements. The first element is the dataset $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ where \mathbf{X} commonly is referred to as the design matrix, and consists of independent variables, and \mathbf{y} is a vector consisting of dependent variables. Next, we have the model itself, $f(\mathbf{x}; \boldsymbol{\theta})$. The ML model can be seen as a function used to predict an output from a vector of input variables, i.e. $f: \mathbf{x} \to y$ of the parameters $\boldsymbol{\theta}$. Finally, the third element, allows us to evaluate how well the model performs on the obervations \mathbf{y} . This element is known as the cost funtion $\mathcal{C}(\mathbf{y}, f(\mathbf{X}); \boldsymbol{\theta})$.

3.1.1 Fitting a Machine Learning Model

The first step in "fitting" a machine learning model, is to randomly split the dataset \mathcal{D} into train and test sets. This is done in order to make a model compatible with multiple data sets. The size of each set commonly depend on the size of the data set avaible, however a rule of thumb is that the majority of the data are partitioned into the training set (e.g., 80%) with the remainder going into the test set [9].

When using the expression "fitting a model" one commonly refer to finding the value of θ that minimizes a chosen cost function, employing data from the training set. One commonly used cost funtion is the squared error, in which can be written as follows:

$$MSE(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2,$$
 (3.1)

where $\theta = \theta_0, \theta_1, ..., \theta_n$ denotes the model parametes, \tilde{y}_i represents the predicted value and y_i is the corresponding true value.

A general expression for any type of cost function can be formulated as follows:

$$C(\theta) = \sum_{i=0}^{n} c_i(\mathbf{x}_i, \theta)$$
 (3.2)

In this expression, $c_i(\mathbf{x}_i, \theta)$ represents the cost associated with the *i*-th data point, where \mathbf{x}_i represents the input data and θ denotes the parameter vector. This notation emphasizes the summation over all data points from 1 to n, where each data point contributes its own cost to the overall cost function.

In order to minimize the cost function and find the optimal values for the model parameters, θ , an optimization alorithm is typically employed. One widely used optimization algorithm is gradient descent, which iteratively updates the parameters based on the negative gradient of the cost function.

3.1.2 Gradient Descent and Its Variants

Gradient Descent (GD) is an iterative optimization algorithm used to locate a local minima of a differentiable function. The core concept of the algorithm is based on the observation that a function $F(\mathbf{x})$ will decrease most rapidly if we repeatedly move in one direction opposite to the negative gradient of the function at a given point \mathbf{w} , $-\nabla F(\mathbf{a})$. This means that if

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \eta \nabla F(\mathbf{w}_n) \tag{3.3}$$

for a sufficiently small learning rate η , we are always moving towars a minimum, since $F((w)_n) \geq F((w)_{n+1})$ [10]. After each update, the gradient is recalculated for the updated weight vector \mathbf{w} , and the process is repeated

[11]. Based on this observation, the iterative process begins with an initial guess x_0 for a local minimum of the function F. It then generates a sequence $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ such that each element in the sequence is upated according to the rule:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \eta_n \nabla F(\mathbf{x}_n), n \ge 0, \tag{3.4}$$

where $\eta_n \geq 0$. The sequence forms what we call a monotonically decreasing sequence:

$$F(\mathbf{x}_0) \ge F(\mathbf{x}_1) \ge F(\mathbf{x}_2) \ge \dots \ge F(\mathbf{x}_n) \tag{3.5}$$

Hence, with this iterative process, it is hoped that the sequence (\mathbf{x}_n) converges to the desired local minimum [10].

However, it is important to note that the error function in gradient descent is computed based on the training set, so that each step requires that the entire training set, reffered to as the batch, is processed in order to evaluate the new gradient. In that sense, gradient descent is generally considered a suboptimal algorithm. This perception aligns with the algorithms sensitivity to the initial condition, \mathbf{w}_0 , and the choice of the learning rate η . The sensitivity to initial conditions can be explained by the fact that we to a large extent most often deal with high-dimensional, non-convex cost functions with numerous local minima - where the risk of getting stuck in local minimums if the initial guess is not accurate. Additionally, guessing on a too large learning rate may result in overshooting the global minimum, leading to unpredictable behavior, while a too small learning rate increases the number of iterations required to reach a minimum point, thereby increasing computational time. Stochastic gradient descent, however, is a version of gradient descent that has provided useful in practise for training machine learning algorithms on large data sets [11].

Stochastic Gradient Descent

The method of Stochastic Gradient Descent (SGD) allows us to compute the gradient by randomly selecting subsets of the data at each iteration, rather than using the entire dataset [11]. The update can be written as:

$$\mathbf{w}_{\tau+1} = \mathbf{w}_{\tau} - \eta \nabla F_n(\mathbf{w}_{\tau}) \tag{3.6}$$

These smaller subsets taken from the entire dataset are commonly reffered to as mini-batches. In other words, SGD is just like regular GD, except it only looks at one mini-batch for each step. Introducing fluctuation by only taking the gradient on a subset of the data, is beneficial as it enables the algorithm to jump to a new and potentially better local minima, rather that getting stuck in a local minimum point.

Stochastic Gradient Descent with Momentum

Splitting the dataset into mini-batches, as done with SGD, naturally reduces the calculation time. However, adding momentum, to the algorithm, not only leads to faster converging, due to stronger acceleration of the gradient vectors in the relevant directions, but also improves the algorithms sensitivity to initial guess of the learning rate η . The momentum can be understood as a memory of the direction of the movement in parameter space, which is done by adding a fraction γ of the weight vector of the past time step to the current weight vector:

$$\mathbf{v}_{\tau} = \gamma \mathbf{v}_{\tau-1} - \eta \nabla F_n(\mathbf{w}_{\tau}) \tag{3.7}$$

$$\mathbf{w}_{\tau} = \mathbf{w}_{\tau - 1} + \mathbf{v}_{\tau} \tag{3.8}$$

Here, $\mathbf{w}\tau$ represents the updated weight vector at iteration τ , $\mathbf{w}_{\tau-1}$ is the previous weight vector, \mathbf{v}_{τ} is the updated momentum vector at iteration τ , γ is the momentum coefficient, η is the learning rate, and $\nabla F_n(\mathbf{w}_{\tau})$ is the gradient of the cost function F_n computed on the mini-batch.

3.2 Neural Networks

Neural networks are a distinct class of nonlinear machine learning models capable of learning tasks by observing examples, without requiring explicit task-specific rules [12]. The models mimics the way bilogical neurons trasmit signals, with interconnected nodes known as neurons that communicate through mathematical functions across layers. The layers in neural networks contain an arbitrary number of neurons, where each connection is represented by a weight variable.

The network gathers knowledge by detecting relationships and patterns in data using past experiences known as training examples. These patterns are further updated by the usage of appropriate activation functions and finally presented as the output [13]. A neural network consits of many such neurons stacked into layers, with the output of one layer serving as the input for the next. Typically, the neural networks are built up of an input layer, an output layer and layers in between, called hidden layers. In figure 3.1 we have provided the basic architecture of neural networks. Here nodes are depiced as circular shapes, while arrows indicate connections between the nodes.

The behaviour of the human brain has inspired the following simple mathematical model for an artificial neuron:

$$a = f\left(\sum_{i=1}^{n} w_i x_i\right) = f(z) \tag{3.9}$$

Figure 3.1: **(A)** The fundamental structure of neural networks comprises simplified neuron units that perform a linear operation to assign different weights to inputs, followed by a non-linear activation function.**(B)** These neuron units are organized into layers, where the output of one layer serves as the input to the subsequent layer, forming a hierarchical arrangement.

where a is the output of the neuron, and is the value of the neurons activation function f which has as input a weighted sum of signals $x_i, x_{i+1}, ..., x_n$ recieved by n other neurons, multiplied with the weights $w_i, w_{i+1}, ..., w_n$ and added with bieases $b_i, b_{i+1}, ..., b_n$. The exact function a varies depending on the type of non-linearity that exists in the activation function applied to the input of each neuron. However, in almost all cases a can be decomposed into a linear operation that weights the relative importance of the various inputs, and a non-linear transformation f(z). As seen in equation 3.9, the linear transformation commonly takes the form of a dot product with a set of neuron-specific weights followed by re-centering with a neuron-specific bias. A more convenient notation for the linear transformation z^i then goes as follows:

$$z^{i} = \boldsymbol{w}^{(i)} \cdot \boldsymbol{x} + b^{(i)} = \mathbf{x}^{T} \cdot \mathbf{w}^{(i)}, \tag{3.10}$$

where $\mathbf{x} = (1, \boldsymbol{x})$ and $\mathbf{w}^i = (b^{(i)}), \boldsymbol{w}^{(i)}$). The full input-output function can be expressed by incorporating this into the non-linear activation function f_i , as expressed below.

$$a_i(\mathbf{x}) = f_i(z^{(i)}). \tag{3.11}$$

3.2.1 Activation functions

Without activation functions, a neural network would essentially be a linear model, capable only of representing linear relationships between inputs and outputs. While the linear transformations occurs within individual neurons through the weighted sum of inputs, the introduction of non-linear activation functions allows the networks to capture complex relationships and patterns. With other words, activitation functions are important components of neural networks, that help the network learn by making sense of non-linear and complex mappings between input- and corresponding output values. The functions are applied at every node in the hidden layers and the output layer [14].

Activation functions in neural networks draw inspiration from the behavior of neurons in the brain. Similar to how neurons respond to incoming electrical signals, activation functions determine whether a neuron in a neural network should be activated or not based on the strength of the input. If the input exceeds a certain threshold, the neuron "fires" or becomes activated, otherwise it remains inactive [15]. By introducing nonlinearity, activation functions enable neural networks to model complex, nonlinear relationships in data.

Figure 3.2: Sigmoid activation function.

Sigmoid

The sigmoid activation function is one of the more biologically plausible as the output of inactivated neurons returns zero [Jensen2022]. More precised it is a logistic mathematic function meaning that it maps its input to a value between 0 and 1:

$$f(x) = \frac{1}{1 + e^{-x}} \tag{3.12}$$

The function is continuous, ensuring that it is differentiable at every point. This differentiability property plays a crucial role in effective computation of the derivative during the process of backpropagation, as we will explore in more detail in the subsequent sections of this chapter.

The sigmoid activation function maps large negative values towards 0 and large positive values towards 1. Thus, the activation function is commonly utilized in the output layers of neural networks, particularly in classification problems where the desired output can be interpreted as a class label. As we can see from figure 3.2, the function return 0.5 for an input eqal to 0. Due to this, the value 0.5 can be seen as a therhold value which decides wether the input value belongs to what type of two classes.

Figure 3.3: Hyperbolig tangent activation function.

Hyperbolic Tengent

The hyperbolic tangent (Tanh) is similar to the Sigmoid function, as it is continuos and differentiable at all points:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \tag{3.13}$$

However, compared to the Sigmoid function, the gradient of Tanh is steeper. Moreover this activation function maps its input to a value ranging between -1 and 1 as seen in Figure 3.3

Even though Sigmoid has its advantages, it has been shown that the Hyperbolic tangent performs better than the Sigmoid when approaching complex machine learning problems. The reasons for this will be discussed in later in this chapter.

Rectified Linear Unit

The Rectified Linear Unit (ReLU) activation function is widely recognized for its speed, high performance, and generalization capabilities [16]. Compared to the Sigmoid and Hyperbolic Tangent functions, ReLU may seem relatively simple, which contributes to its computational efficiency. The function can be mathematically defined as:

Figure 3.4: ReLU tangent activation function.

$$f(x) = \begin{cases} x, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}$$
 (3.14)

From Figure 3.4, it is evident that ReLU retains the input value when the input is greater than zero, and outputs zero for negative inputs. This sparse nature of the activation function enhances computational efficiency as only a few neurons are activated at any given time.

Back propagation algorithm

The back propagation algorithm is a fundamental tequnique used in nenural networks in order to adjust the weights for the purpose of minimizing the cost function. To explain the implementation details of this technique, we follow the guidance provided in the book 'A high-bias, low-variance introduction to machine learning for physicists' (Pankaj Mehta, et al., 2019) as it offers a comprehensive treatment of the topic. The back propagation tequnique leverages the chain rule from calculus to compute gradients for weight adjustments and can be summarized using four equations.

Before Introducing the equations, Mehta et al. establish some useful notation. They start by concidering a total of L layers within the neural network, with each layer identified by an idea l ranging from 1 to L. For each layer, they further assign weights denoted as \mathbf{w}_{ik}^l , which represent the

connections between the k-th neuron in the previous layer, l-1, and the i-th neuron in the current layer, l. Additionally, they assign a bias value b_i^l to each neuron in the current layer.

The first eqation setting up the algorithm is the definition of the error δ_i^l of the *i*-th neuron in the *l*-th layer:

$$\delta_i^l = \frac{\partial C}{\partial (z_i^l)},\tag{3.15}$$

where (z) denotes the weighted input. This equation can be thought of as the change to the cost function by increasing z_i^L infinitesimally. The cost function quantifies the discrepancy between the network's output and the target data. If the error δ_i^L is large, it indicates that the cost function has not yet reached its minimum.

The error δ_i^l can also be interpreted as the partial derivative of the cost function with respect to the bias b_i^l . This gives us the analogously defined error:

$$\delta_i^l = \frac{\partial C}{\partial (z_i^l)} = \frac{\partial C}{\partial (b_i^l)} \frac{\partial C}{\partial (z_i^l)} = \frac{\partial C}{\partial (b_i^l)}$$
(3.16)

where it in the last line has been used that the derivative of the activation function with respect to its input evaluates to 1, $\partial b_i^l/\partial z_i^l = 1$, meaning that the rate of change of the activation function does not depend on the specific value of the weighted input z_i^l .

By applying the chain rule, we can express the error δ_i^l in Equation 3.15 in terms of the equations for layer l+1. This forms the basis of the third equation used in the backpropagation algorithm:

$$\delta_{i}^{l} = \frac{\partial C}{\partial z_{i}^{l}} = \sum_{j} \frac{\partial C}{\partial z_{j}^{l+1}} \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}}$$

$$= \sum_{j} \delta_{j}^{l+1} \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}}$$

$$= \sum_{j} \delta_{j}^{l+1} w_{ij}^{l+1} f'(z_{i}^{l})$$
(3.17)

Finally the last equation of the four back propagation equations the derivative of the cost function in terms of the weights:

$$\frac{\partial C}{\partial w_{ij}^l} = \delta_i^l a_j^{l-1} \tag{3.18}$$

With these four equations in hand we can now calculate the gradient of the cost function, starting from the output layer, and calculating the error of each layer backwards. We then have a way of adjusting all the weights and biases to better fit the target data. The back propagation algorithm then goes as follows:

- 1. Activation at input layer: calculate the activations a_i^1 of all the neurons in the input layer.
- 2. **Feed forward:** starting with the first layer, utilize the feed-forward algorithm through ?? to compute z^l and a^l for each subsequent layer.
- 3. Error at top layer: calculate the error of the top layer using equation 3.15. This requires to know the expression for the derivative of both the cost function $C(\mathbf{W}) = C(\mathbf{a}^L)$ and the activation function f(z).
- 4. "Backpropagate" the error: use equation 3.17 to propagate the error backwards and calculate δ^l_j for all layers.
- 5. Calculate gradient: use equation 3.16 and 3.18 to calculate $\frac{\partial C}{\partial z_i^l}$ and $\frac{\partial C}{\partial w_{ij}^l} = \delta_i^l a_j^{l-1}$.
- 6. Update weights and biases:

$$\begin{aligned} w_{jk}^l &= w_{jk}^l - \eta \delta_j^l a_k^{l-1} \\ b_j^l &= b_j^l - \eta \delta_j^l \end{aligned}$$

Initialization of weights and biases

Sigmoid is usually not utilized in the hidden layers of networks due to vanishing or exploding gradient problems. This term is used in scenarios where the gradient becomes very small, making the optimization process slower and less effective. Such a problem hinders the convergence of the network and makes it challenging, if not impossible, for the network to learn meaningful representations from the data. Looking at the derivative of the function shown in Figure 3.2, we see that we encounter such scenarios when the input value is considerably small or large.

An important advantage of using the hyperbolic tangent function over the sigmoid function is that the tanh function is centered around zero. This makes the optimization process much easier as it ensures that the gradients calculated during backpropagation have both positive and negative values, resulting in more balanced weight updates. This, in turn, might lead to faster convergence and more efficient optimization.

The Inverse Problem

Computational neuroscience is a field that aims to understand the principles underlying information processing in the brain using mathematical

and computational tools. The inverse problem in EEG, which involves estimating the location and strength of electrical sources in the brain based on measurements of electrical activity on the scalp, is a key challenge in computational neuroscience. Machine learning techniques, including feedforward neural networks, have been used to address this problem by learning to map the measured EEG signals to estimates of the underlying electrical sources in the brain.

Source localization using machine learning techniques has shown promise for improving the accuracy and efficiency of EEG analysis, and has been applied to a variety of cognitive and clinical applications. For example, machine learning-based source localization has been used to study the neural mechanisms underlying attention, memory, and perception (Wu et al., 2018; Lopes da Silva et al., 2019), as well as to diagnose and monitor neurological disorders such as epilepsy (Safieddine et al., 2019; Shah et al., 2020). These applications demonstrate the potential of machine learning and computational neuroscience to enhance our understanding of the brain and improve clinical outcomes.

Machine learning is a field of computer science that involves using algorithms and statistical models to enable computers to learn from data without being explicitly programmed. One popular type of machine learning algorithm is the feedforward neural network, which is a type of artificial neural network that is often used for tasks such as linear regression. In a feedforward neural network, data is passed through a series of layers of interconnected nodes, or "neurons," which perform mathematical operations to transform the data.

Linear regression is a common machine learning task that involves predicting a continuous quantity, such as the price of a house or the temperature of a city, based on a set of input features. In a feedforward neural network, linear regression can be accomplished by using a single neuron in the output layer of the network that computes a weighted sum of the input features and applies an activation function to produce the predicted output value. The weights on the input features are learned by the network during the training process, which involves adjusting the weights to minimize the difference between the predicted output values and the actual output values in the training data.

Overall, feedforward neural networks are a powerful machine learning tool that can be used to solve a wide range of problems, including linear regression. By adjusting the weights and biases of the neurons in the network during the training process, neural networks can learn to make accurate predictions based on input data, making them a valuable tool for a variety of applications.

Chapter 4

Dipole Source Localization using Neural Networks

In this chapther we will be presenting the neural networks used for the localization of current dipole sources in the human cortex.

Feed Forward Neural Networks

The feedforward neural network (FFNN) was one of the first artificial neural network to be adopted and is yet today an important algorithm used in machine learning. The feed forward neural network is the simplest form of neural network, as information is only processed forward, from the input nodes, through the hidden nodes and to the output nodes [12].

Convolutional Neural Networks

Convolutional neural networks (CNNs) is an other variant of FFNNs that have drawen inspiration from the functioning of the visual cortex of the brain. In the visual cortex, individual neurons exhibit selective responses to stimuli within small sub-regions of the visual field, known as receptive fields. This property allows the neurons to effectively exploit the spatially local correlations present in natural images. Mathematically, the response of each neuron can be approximated using a convolution operation [12].

CNNs mimic the behavior of visual cortex neurons by utializing a specific connectivity pattern between nodes in adjacent layers. Unlike fully contected FFNNs, where each node connects to all nodes in the preceding layer, CNNs local connectivity. In other words, each node in a convolutional layer is only connected to a subset of nodes in the previous layer. Typically, CNNs consist of multiple convolutional layers that learn local features from the input data. These layers are followed by a fully connected layer that combines the learned local information to produce the final outputs. CNNs find wide applications in image and video recognition tasks [12].

4.0.1 Neural Networks

Artificial Neural Networks are computational systems that can learn to perform tasks by considering examples, generally without being programmed with any task-specific rules [101].

The biological neural networks of animal brains, wherein neurons interact by sending signals in the form of mathematical functions between layers, has inspired a simple model for an artificial neuron:

$$a = f(\sum_{i=1}^{n} w_i x_i + b_i) = f(z)$$
(4.1)

where the output a of the neuron is the value of its activation function f, which as input has the sum of signals $x_i, x_{i+1}, ..., x_n$ received by n other neurons, multiplied with the weights $w_i, w_{i+1}, ..., w_n$ and added with biases.

Most artificial neural networks consists of an input layer, an output layer and layers in between, called hidden layers. The layers consists of an arbitrary number of neurons, also referred to as nodes. The connection between two nodes is associated with a weight variable w, that weights the importance of various inputs. A more convenient notation for the activation function is:

$$a_i(\mathbf{x}) = f_i(z^{(i)}) = f_i(\mathbf{w}^i \cdot \mathbf{x} + b^i)$$
(4.2)

where $\mathbf{w}^{(i)} = (w_1^{(i)}, w_2^{(i)}, ..., w_n^{(i)})$ and $b^{(i)}$ are the neuron-specific weights and biases respectively. The bias is normally needed in case of zero activation weights or inputs [101].

4.1 Feed-Forward Neural Network Approach for localizing single dipole sources

The feedforward neural network (FFNN) was one of the first artificial neural network to be adopted and is yet today an important algorithm used in machine learning. The feed forward neural network is the simplest form of neural network, as information is only processed forward, from the input nodes, through the hidden nodes and to the output nodes.

4.1.1 Validation accuracy

In Figure 6.1 we have provided the validation accuray, using mean squared error (MSE) and the coefficient of determination (R2-score).

The expression for MSE when predicting the x-, y- and z-coordinate, goes as follows:

$$MSE(\hat{y}, \hat{\tilde{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2 = \frac{1}{3} \sum_{i=1}^{3} ((x - \tilde{x})^2 + (y - \tilde{y})^2 + (z - \tilde{z})^2)$$
(4.3)

The coefficient of determination is given as follows:

$$R^{2}(\hat{y}, \tilde{\hat{y}}) = 1 - \frac{\sum_{i=0}^{n-1} (y_{i} - \tilde{y}_{i})^{2}}{\sum_{i=0}^{n-1} (y_{i} - \bar{y})^{2}},$$
(4.4)

Where the mean value of y_i is defined by \bar{y} :

$$\bar{y} = \frac{1}{n} \sum_{i=0}^{n-1} y_i.$$

4.1.2 Activation functions, Batchsize and Optimization

For the neurons of the input layers we use the linear activation function ReLu, while for the neurons of the hidden and output layers, we chose the much used hyperbolic tangent activation function.

Cost function In order to train the network faster, one commonly split the data set into mini-batches, which is also done here. When splitting the data such a way, the weights of connection between neurons are updated after each propagation, making the network converge considerable faster.

Scaling Every potential distribution presented to the network is first average referenced by subtracting the average of all potential values. Subsequently, the average referenced potentials are normalized by dividing them by the magnitude of the largest. The dipole location parameters are normalized to 1 with respect to the radius of the outer head boundary in the spherical head model (9.2 cm). In the case of a realistically shaped head model, the location parameters are normalized with respect to the radius of the best-fitting sphere for the scalp—air interface.

As was pointed out in the previous section, the optimal dipole orientation (in the leastsquares sense) for a given location can be calculated in a straightforward manner. Therefore, we will use neural networks to estimate only the dipole location parameters.

4.1.3 Training, testing and evaluation

The estimation is found by the network through optimizing the parameters β minimizing the cost function, or said in other words, through finding parameters for the function that produces the smallest outcomes, meaning the smallest errors. The result provided by the network is then compared with the target, for each input vector in the training data. Adjustment of parameters...

When the network is fully trained, we have a final model fit on the training data set. Feeding the network with the test data set, we can assess the performance of the network. The predictions of the fully trained network can now be compared to the holdout data's true values to determine the model's accuracy.

34CHAPTER 4. DIPOLE SOURCE LOCALIZATION USING NEURAL NETWORKS

In figure ?? we have provided the bias-variance trade-off for when using Tanh as activation function. We notice that error of the model is approaching 0 and that the variance between the two curves decreases for an increasing number of epochs.

Chapter 5

DiLoc - A NN Apporach for Source Localization

As mentioned in Chapter 1, an important topic in EEG signal analysis is the inverse problem, which aims to map measured EEG signals to localized equivalent current dipoles. This process is commonly referred to as source localization. In this chapter, we will introduce our feedforward neural network, named "DiLoc", created to solve such prosesses. We will provide a comprehensive overview of its parameters, architecture and training process. Moreover we will go through the simulation of the EEG signals for the the final dataset used for training. Additionally, we will present an alternative approach using a convolutional neural network for the same source localization.

5.1 Architecture

The development of DiLoc commenced with a deliberate and cautious approach, focusing on simplicity without compromising on accuracy in tackling diverse versions of the inverse problem. As a natural starting point, we adopted a fully connected, feed-forward neural network architecture, which eventually proved to be the most suitable framework for our purposes.

The input layer of DiLoc incorporates Rectified Linear Units (ReLU) as the activation function. This activation function introduces non-linearity into the model, enabling it to capture complex relationships and patterns within the data effectively. For the hidden layers, we employed the hyperbolic tangent (tanh) activation function. This decision was driven by its ability to squash input values into a range between -1 and 1, ensuring a smooth and differentiable transition during backpropagation. Conversely, in the output layer, we opted for a linear transformation without the use of any activation function. This setup allows the neural network to provide direct and unconstrained predictions for the x-, y-, and z-positions of the desired

dipole source, as required in our application.

The determination of the number of hidden layers and neurons was carried out through a meticulous trial-and-error process. By experimenting with networks of varying complexities, i.e., small, medium, and large, we ultimately settled on the medium-sized network configuration. This choice, in conjunction with the selected activation functions, yielded the most promising results in terms of prediction accuracies.

The input layer is designed with 231 neurons, corresponding to the number of features in our dataset, i.e. the number of recording electrodes for each sample. Subsequently, the network consists of five hidden layers, comprising 512, 256, 128, 62, and 32 neurons, respectively. Finally, the output layer encompasses the three-dimensional coordinates (x, y, and z) representing the predicted position of the desired dipole source. Figure 5.1 visualizes the construction of the fully connected neural network.

Figure 5.1: Architecture.

5.2 Simulation of EEG Signals

The cortex matrix of the New York Head Model (NYHM) consists of 74,382 points, representing possible positions for localizing dipole sources. For training the neural networks, we utilize a dataset of self-simulated EEG measurements that correspond to the electromagnetic fields generated by these dipole sources. The dipole sources are randomly positioned within the cortex matrix. To simplify our problem, the amplitude of each dipole is fixed at 10^7 nA μ m. Additionally, in the case of single dipole source localization, the direction of the dipole moment is always rotated so that it is normal to the cerebral cortex. In some cases this will result in a dipole moment pointing perpendicular to the skull (directed towards an EEG electorde), while in other cases, due to the structure of the cortex, the dipole moment will point back into the cortex (but eventually towards an EEG electorde). The reason for this is that the human cortex is strongly folded, and the contribution to the EEG signal from a neural population (dipole moment) will depend on whether a dipole is located in a sulcus or a gyrus [8]. It is important to note that the EEG recordings capture a time series; however, for our analysis, we focus solely on the signal at t=1, corresponding to the first time step. This allows us to examine the initial snapshot of the EEG signal's spatial distribution and its relationship to the dipole source locations within the cortex.

5.2.1 The Effect of dipole location and orientation

According to Naess et al. (2021) [8], EEG signals are not particularly sensitive to small variations in the precise location of neural current dipoles. Despite the common belief that neurons in the upper cortical layers would dominate the EEG due to their proximity to the electrode compared to neurons in deeper layers, such location differences do not significantly affect the EEG signals. This phenomenon can be explained by the fact that the low conductivity of the skull introduces a spatial low-pass filtering effect, which mitigates the impact of location discrepancies.

However, when considering the orientation of the dipoles relative to the EEG electrodes, the effect becomes noteworthy. To illustrate this, we present in Figure 5.3 the EEG signals obtained from two manually selected dipole locations within the New York head model. These dipoles are situated in a gyrus and a sulcus, respectively, resulting in distinct EEG outcomes. In general, the contribution of an individual current dipole to the EEG signal is maximized when the dipole is located perpendicularly within a gyrus, as depicted in Figure 5.3B. On the other hand, if a dipole is placed in a sulcus with a perpendicular orientation, a significant EEG contribution can still be observed, but unlike the dipole in the gyrus, it exhibits a more dipolar pattern, as shown in Figure 5.3C.

Figure 5.2: EEG signal for neighbouring dipoles.

Figure 5.3: A: Two selected dipole locations in the New York head model: one in a gyrus (red) and one in a sulcus (blue). The head model is viewed from the side (x, z-plane). Close to the chosen cross-section plane, EEG electrode locations are marked in light blue. Available dipole locations near the cortical cross-section form an outline of the cortical sheet and are marked in pink. The current dipole moment for all cases was 10^7 nA μ m. B: Interpolated color plot of EEG signal from the gyrus dipole, viewed from the top (x, y-plane). The plotted EEG signal is normalized, with a maximum value of 1.1 μ V. C: Interpolated color plot of EEG signal from the sulcus dipole. The plotted EEG signal is normalized, with a maximum value of 0.7 μ V. [8]

With other words, the EEG outcome is genuinely influenced by the orientation of the current dipole moment generating the signal, as variations

in dipole orientation can impact both the direction and distribution of electrical potentials. In Figure 5.4, we present the EEG signals obtained from four identical current dipoles with different orientations, situated in distinct hypothetical folding patterns of the cortical surface. Firstly, Figure 5.4A and 5.4C provide an expanded illustration of the aforementioned scenarios, incorporating additional dipole moments located in a gyrus and a sulcus, respectively. In Figure 5.4B, where a collection of dipoles points randomly upwards and downwards, the EEG signal contribution appears to diminish significantly. Conversely, when the dipoles align in the depth direction of the cortex and are distributed across both gyrus and sulcus, we can expect an EEG contribution in between what we saw from Figure 5.4A and 5.4B, as depicted in Figure 5.4D. Lastly, Figure 5.4E demonstrates the minimal EEG contribution observed when the dipoles are divided between two opposing sulci.

Figure 5.4: Different folding patterns of the cortical surface are represented by white dashed lines. EEG signals are calculated from four identical current dipoles with varying orientations. A: Dipoles aligned in the same direction within a gyrus. B: Dipoles pointing in opposite directions within a gyrus. C: Dipoles aligned in the same direction within a sulcus. D: Dipoles distributed between a gyrus and a sulcus, pointing towards the cortical surface. E: Dipoles divided between opposing sulci, pointing towards the cortical surface. All panels have a dipole moment magnitude of 10 nAm, and the dipoles are positioned at the centers of the arrows in the top row.

5.2.2 Noise

Experimental EEG recordings inevitably contain noise, which can interfere with the accurate analysis of brain activity. Artifacts, which are signals recorded by EEG but originating from sources other than the human brain, pose a particular challenge. Some artifacts can mimic genuine epileptiform

abnormalities or seizures, underscoring the importance of identifying and distinguishing them from true brain waves [17].

Artifacts can be classified into two categories based on their origin. Physiological artifacts arise from the patient's own physiological processes, including ocular activity, muscle activity, cardiac activity, perspiration, and respiration. Technical artifacts, on the other hand, originate from external factors such as cable and body movements or electromagnetic interferences [18].

Filtering techniques are commonly employed to remove artifacts from EEG recordings prior to analysis. However, in the case of simulated EEG data, the need for artifact removal is eliminated as the data inherently lacks noise. Simulated EEG data can be considered as pre-filtered and preprocessed, ensuring a high signal-to-noise ratio (SNR) [19]. Nevertheless, to avoid overfitting and account for technical considerations, it is necessary to introduce noise to the data before feeding it into the neural network. This introduction of the noise is vital in order to make the trained neural network more likely to accurately handle real EEG recordings.

In our approach, we recognize that the introduction of noise to the simulated EEG data is an essential step to enhance the robustness of the trained neural network and ensure its ability to handle real EEG recordings effectively. Although the specific characteristics and quantity of noise have not been the primary focus of our study, we have opted for a straightforward approach. Our final dataset incorporates normally distributed noise with a mean of 0 and a standard deviation equal to 10% of the standard deviation observed in the simulated EEG recordings. By introducing this noise, we introduce random variations around each data point while preserving the overall normalization properties of the dataset.

5.2.3 Final Dataset

The final dataset comprises 70 000 rows, where each row corresponds to a single sample or patient. Within the dataset, there are 231 columns representing the features, which denote the EEG measurements recorded at each electrode. Consequently, the design matrix has a size of 70 000 x 231. In practice, the design matrix consists of pairs of input vectors with EEG signals and corresponding output vectors, where the answer key is the x-, y- and z coordinate of different dipole sources.

Figure 5.5 presents an example of the input EEG data for a single sample, with 10% noise added. The illustration showcases the EEG results obtained from a sample containing a solitary current dipole source positioned randomly within the cerebral cortex. The dipolar pattern in the figure indicates that the dipole is located within a sulcus. The EEG measure is visualized from multiple perspectives, including the x-z plane, y-z plane, and the x-y plane. The electrode locations are represented by filled circles, with the color

Figure 5.5: EEG for a sample containing one single current dipole source at a random position within the celebral cortex. As for all samples, 10 percent of normally distributed noise has been added to the original signal. The EEG measure is seen from both sides (x-, z-plane and y-, z-plane) and above (the x-, y-plane). EEG electrode locations are presented as filled circles, where the color of the fill represents the amplitude of the measured signal for the given electrode. The position of the current dipole moment is marked with a yellow star.

of the fill indicating the amplitude of the measured signal at each electrode. The position of the current dipole moment is denoted by a yellow star. As observed from the figure, the EEG signal for this specific sample ranges from -1 to 1 μ V.

Prior to being fed into the DiLoc network for training, the dataset was splittied into distinct segments: the train, validation, and test sets. This partitioning is vital for assessing and optimizing the network's performance. Among the 70 000 samples in the final dataset, 50 000 samples are designated for the train and validation data. To ensure a representative and unbiased allocation, 80 percent of these 50 000 samples are randomly assigned to the training set. This training set serves as the core data that the network utilizes during the training process. The remaining 20 percent of the 50 000 samples form the validation set. This set plays the role in preventing overfitting, the phenomenon where the network becomes excessively attuned to the training data and consequently performs poorly on new data. By independently evaluating the model's performance on the validation set throughout training, we can fine-tune the network's parameters to achieve better generalization to unseen data. Once the network completes its training process, the test set comes into play. Comprising 20 000 samples, the test set serves as the benchmark for assessing the model's ability to generalize and make accurate predictions on new data instances. By adhering to this rigorous train-validation-test data partitioning, we ensure a robust evaluation of the DiLoc model's performance and its capacity to effectively handle real-world scenarios with previously unseen data.

5.3 Training the DiLoc Network

To train the DiLoc network efficiently, several key techniques are employed, including stochastic gradient descent (SGD), mean squared error (MSE) as the cost function, learning rate scheduling, and L1 and L2 regularization. Detailed explanations of these techniques can be found in the Chapter 3.

The objective during training is to find the optimal parameters β that minimize the cost function. The cost function represents the discrepancy between the network's predictions and the actual target values. By iteratively updating the parameters to minimize the cost function, the network fine-tunes its internal representations to make more accurate predictions. MSE is chosen as the cost function for the DiLoc network, as it provides a smooth and continuous measure of the model's performance during training, penalizing larger errors more heavily.

Optimizers play a crucial role in reducing the network's loss and providing accurate results. In this case, SGD with momentum is utilized as the network's optimizer. SGD with momentum enhances the sensitivity of the network to initialized weights and provides fast convergence. The algorithm uses mini-batches of size 32, introducing fluctuation to the data and preventing the network from getting stuck in local minima or saddle points. The momentum hyperparameter, set to 0.35 in this context, helps reduce high variances in the optimization process and accelerates convergence towards the right direction, leading to faster training.

To improve the training process further, learning rate scheduling is employed. This technique adjusts the learning rate over time, allowing the network to take larger steps in the early stages and gradually decrease the learning rate as it approaches convergence. The initial learning rate is set to 0.001, and is further decreased, which provides balance between rapid convergence in the initial phases and fine-tuning towards the end.

Additionally, L1 and L2 regularization techniques are incorporated as optional parameters into the DiLoc network. These regularization methods help prevent overfitting and improve generalization to unseen data. By adding penalty terms to the cost function, L1 and L2 regularization encourage the model to favor simpler and more generalizable solutions.

After the DiLoc network is fully trained on the training dataset, it has learned the optimal parameters to make accurate predictions. The model's performance is evaluated using a separate test dataset, which the network has not seen during training. This test data provides an unbiased assessment of the model's accuracy and its generalization capabilities to unseen data.

In the upcoming chapters, we will present different approaches to the inverse problem and showcase the performance of the DiLoc network across these approaches. The evaluation results will demonstrate the effectiveness and utility of the trained model in solving the localization task for various scenarios.

5.4 Diloc as Convolutional Neural Network

44CHAPTER 5. DILOC - A NN APPORACH FOR SOURCE LOCALIZATION

Chapter 6

Localizing Single Dipole Sources

In this chapter we will present the results from training and performance of the neural networks presented in chapter 4. Section 1 deal with the results and discussion of the simple feed forward neural network, while section 2 will discuss how the alternative convolution neural network performs some of the same results.

6.1 Localizing Single Dipole Sources using DiLoc

We begin by introducing the standard inverse problem for our neural network, DiLoc. In this context, the standard inverse problem refers to the task of predicting the x-, y-, and z-coordinates of dipole current sources responsible for generating measured EEG signals. The goal is to feed the network with EEG data corresponding to the electrical activity from randomly distributed dipoles in the cerebral cortex and have the network accurately output the locations of these current dipoles.

6.1.1 Performance Evaluation

For this specific problem, the network demonstrates remarkable performance even without the use of L1 regularization. However, we include L2 penalty with a value of 0.5 to promote more generalizable solutions. The network is trained for 500 epochs, with each epoch completing in approximately 11.5 seconds. It is worth noting that the validation loss does not decrease significantly after approximately 350 epochs. As a result, fully training the network (for 350 epochs) would not require more than 4025 seconds, or roughly 1 hour and 7 minutes. Despite the validation loss stabilizing, we continued training for the full 500 epochs to ensure that there would be no further improvements in the validation data's performance. By training for a few

more epochs beyond the point of loss stabilization, we could confirm that the network had reached its convergence and had effectively learned to generalize well on the given task.

Figure 6.1 illustrates the network's loss as a function of training epochs. A clear trend of decreasing loss can be observed, indicating the network effectively learns the patterns in the data. The validation loss stabilizes around 350 epochs, while the training loss continues to decrease until a point between 400 and 500 epochs. Additionally, Figure 6.2 provides insight into the development of the validation loss for separate target coordinates plotted against training epochs. The figure most of all confirms that all separate target coordinates have been equally weighted, resulting in similar loss values for each of them. Moreover, it showcases that the small fluctuations in the loss, noticeable before 350 epochs, disappear beyond this threshold, indicating a stabilization of the loss for all three target coordinates. This observation aligns with the trend of the validation loss stabilizing at approximately 350 epochs as seen in the previously mentioned figure.

Figure 6.1: Training- and validation loss for DiLoc with 50 000 samples and tanh as activation function.

The DiLoc network's performance is evaluated using a variety of error metrics for the x-, y-, and z-coordinates. The x-coordinate ranges from -72 to 72 mm, the y-coordinate from -106 to 73 mm, and the z-coordinate from -52.66 to 81.15 mm.

Table 7.1 presents the results for the mean absolute error (MAE) in

Figure 6.2: Validation loss for the separate target values; the x-, y-, z-coordinate.

the DiLoc network's predictions. The MAE values for the x-, y-, and z-coordinates range from 0.645 mm to 0.678 mm. These findings indicate that, on average, the network's predictions exhibit an error smaller than 1 mm in each coordinate, showcasing a high level of accuracy. The MAE metric is robust and resilient to outliers, making it a suitable measure for assessing the network's general performance.

The mean squared error (MSE) values, ranging from 0.747 mm² to 0.824 mm², provide a measure of the average squared difference between the predicted and true values. Due to its squared nature, MSE penalizes outliers more significantly compared to MAE. Smaller MSE values signify improved performance, and all MSE values in our evaluation are below 1 mm². This observation highlights the network's remarkable precision, particularly when considering the broad range of coordinates involved. The small MSE values indicate the network's ability to provide accurate predictions even for data points that might be considered as "outliers," further demonstrating its robustness.

The root mean squared error (RMSE) values, ranging from 0.864 mm to 0.908 mm, represent the average magnitude of errors in the original units (mm). RMSE is the square root of MSE and is slightly higher than the corresponding MSE values, as taking the square root of numbers smaller than 1 results in slightly higher values. Nevertheless, all RMSE values are

below 1 mm, further attesting to the network's exceptional accuracy. RMSE provides a measure of the standard deviation of errors around the mean and complements the MSE by assessing the spread of errors in the original units.

The error metrics for the Euclidean distance, derived from the three-dimensional space coordinates, are also calculated and presented in Table 7.1. The values for MAE, MSE, and RMSE are smaller than 1 mm, indicating accurate predictions by the DiLoc network for the inverse problem. The performance metrics for the Euclidean distance corroborate the network's ability to predict the dipole location with a high level of precision and accuracy. To showcase the networks performance, we can look at one specific prediction of the network. For a dipole located at (x, y, z) coordinates of (66.9 mm, -26.1 mm, 41.7 mm) the network predicted the coordinates to be (66.5 mm, -26.4 mm, 41.9 mm). The predicted values were very close to the true values, with an error of only 0.4 mm in the x-coordinate, 0.3 mm in the y-coordinate, and 0.2 mm in the z-coordinate.

It is worth mentioning that among the three coordinates, the z-coordinate exhibits the highest error values. This observation suggests that the DiLoc network encounters more challenges in accurately predicting the z-coordinate of the dipole source. One plausible explanation for this discrepancy could be attributed to the nature of the inverse problem, where EEG patterns for dipole sources do not produce significant changes in the pattern of electrical potential recording, but rather in magnitude. Additionally, the smaller representation of z-values compared to x- and y-coordinates could contribute to the consistent larger errors in the z-direction. However, despite these challenges, the overall error metrics indicate that the DiLoc network is capable of predicting the dipole location with a reasonable level of accuracy, signifying its practical viability for real-world applications.

	Error for different target values						
	x-coordinate	y-coordinate	z-coordinate	Euclidean			
	[mm]	[mm]	[mm]	Distance [mm]			
MAE	0.645	0.665	0.678	0.662			
MSE	0.747	0.775	0.824	0.782			
RMSE	0.864	0.880	0.908	0.884			

Table 6.1: Evaluation of the DiLoc performance utializing different Error Metrics.

Network performance on test dataset consisting of 20000 samples. The errors are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

6.1.2 Detailed Analysis of Performance at Different Brain Structures

In order to conduct a detailed analysis of the network's performance, Figure 6.3 presents the Mean Squared Error (MSE) for various dipole locations within the New York head model cortex matrix. The figure provides valuable insights into the distribution of errors across different regions of the cortex, with three cross-sections—front, top, and side—depicted for examination. It is important to note that these cross-sections include data points from the training, validation, and test datasets, making these results indicative of the network's overall performance rather than real-world scenarios. However, the analysis aims to examine the distribution of errors and identify potential areas where the network's performance may be weaker, helping to gain valuable insights into its predictive capabilities.

The MSE values presented in the panels are consistently below 1 mm, which indicates a high level of accuracy in the network's predictions. These results are promising and demonstrate the network's ability to estimate dipole locations with a high level of precision. The panels also offer an opportunity to assess whether the network performs differently for dipoles located in the gyrus compared to the sulcus.

Initially, it might be assumed that EEG signals originating from dipoles in the sulcus present greater challenges for the network's analysis and prediction. This assumption is based on the deeper placement of dipoles within the sulcus compared to those in the gyrus, as well as the potential complexities introduced by the dipole's orientation within the cortex. However, upon closer examination of Figure 6.3, it becomes evident that the distribution of MSE values does not exhibit a clear correlation with the brain's structural characteristics. The MSE values appear to vary randomly across different regions, indicating that the network's performance is not significantly influenced by the distinction between the gyrus and sulcus.

Surprisingly, the Mean Squared Error (MSE) for all data points where dipoles are located in sulci is reported to be 1.283 mm, which is even smaller than for dipoles in the gyrus, where the MSE measures 1.349 mm. This observation challenges the initial assumption and indicates that the network demonstrates exceptional accuracy in predicting dipole locations, irrespective of their placement within the cortex. The small Mean Absolute Error (MAE) values further underscore the network's remarkable capacity to effectively capture the intricate features and variations associated with deeper cortical placements. These findings not only attest to the network's robustness but also reinforce its potential for precise dipole localization within the human brain across different cortical structures.

Furthermore, the figures reveal a noticeable concentration of data points with red and yellow marks, indicating higher Mean Squared Error (MSE) values, in the deeper locations within the cortex. This observation partially

aligns with the slightly higher error values for the z-coordinate, as presented in Table 7.1, and is consistent with the theory related to the nature of the inverse problem. According to this theory, EEG patterns for dipole sources do not cause substantial changes in the pattern of electrical potential recording; instead, they primarily influence the magnitude of the signals. The presence of higher MSE values in deeper regions might be attributed to the decreasing signal-to-noise ratio of EEG signals originating from these cortical areas.

In conclusion, the detailed analysis of the network's performance through cross-sectional representations provides valuable insights into its predictive capabilities. The consistently low MSE values across different cortical regions demonstrate the network's remarkable accuracy in estimating dipole locations. Moreover, the absence of a clear correlation between MSE values and brain structural characteristics suggests that the network performs robustly across diverse cortical structures. These results have significant implications for the network's potential clinical and research applications, as it showcases its ability to accurately predict dipole locations within the human brain, regardless of their depth and orientation within the cortex.

6.2 Convolutional Neural Network Approach for Localizing Single Dipole Sources

In this section, we explore the utilization of a Convolutional Neural Network (CNN) for the task of localizing simple current dipoles from EEG recordings. The CNN is a sophisticated type of feed-forward neural network that excels at learning spatial features from images. The objective of this investigation is to assess whether leveraging spatial information in EEG recordings as images can enhance Dilocs's ability to analyze the data and yield more accurate predictions for localizing the sources generating the neural signals.

6.2.1 Data Set

Convolutional Neural Networks (CNNs) are well-known for their effectiveness in processing image data. To harness the potential of CNNs for EEG data analysis, we convert the original dataset presented in Chapter 4 into image-like data through interpolation. Interpolation, a widely-used mathematical technique, estimates values between known data points. This transformation results in a regular 2D grid representation of the original one-dimensional EEG data, effectively creating EEG data with image-like characteristics and preserving spatial structures.

The resulting data is represented as a 20x20 matrix, where each element holds the intensity value of the EEG potential recorded at the corresponding electrode location. We construct this matrix to resemble the shape of a grayscale image, with a single channel added to represent the spatial distribution of the measured EEG signals. However, unlike typical grayscale images where each pixel represents color intensity, in this context, each pixel's value denotes the intensity of the recorded EEG signal at that specific electrode location. This unique representation enables the CNN to leverage the spatial arrangement of the EEG data and learn relevant patterns and local relationships, much like how CNNs process traditional image data.

The preserved spatial structures enable the network to exploit local relationships between neighboring recording electrodes. For instance, when neighboring electrodes record high EEG values, it suggests that the specific electrode should also record a relatively high EEG value due to their close spatial proximity. These spatial relationships may contribute to faster training times for the network, as it can efficiently learn meaningful representations by leveraging these patterns.

Figure ?? illustrates the process of interpolation. The right panel shows the original data, representing the cortex seen from above (x-y-plane). Each measuring electrode is depicted as a circle holding the EEG recording at that specific electrode. The middle and left panels display the contour plots of the original EEG data and the interpolated data, respectively. The contour plot of the interpolated data illustrates how the input data for the convolutional

neural network appears in an image-like manner.

Architecture, Hyperparameters and Training

As explained in Chapter 3, Convolutional Neural Networks (CNNs) are structured as a sequence of interconnected layers designed to process and extract meaningful features from the input data. In the case of EEG input data, we adopt a specialized CNN architecture tailored to handle image-like data representations. The data transformation involves constructing a 20x20 matrix, akin to the shape of a grayscale image, with a single channel added to represent the spatial distribution of the measured EEG signals.

The first layer in the network, is a 2D convolutional layer. It takes the input image with one channel and applies six distinct filters, each of size 5x5. These filters are responsible for learning specific spatial patterns and detecting relevant features within the input image. As a result of this convolutional operation, the output tensor's spatial dimensions reduce to 16x16, and the depth becomes six, signifying the extraction of six distinct feature maps. Following the convolution layer, a Max Pooling layer, with kernal size 2x2 and stride 1 is employed. This pooling layer aims to downsample the spatial dimensions of the feature maps while preserving the most salient features. The pooling operation reduces the spatial resolution to 15x15, and the depth remains unchanged at six. Next, a second 2D convolutional layer, takes the six-channel output from the previous pooling layer. This layer employs 16 filters of size 5x5, extracting a more complex hierarchy of features from the input data. The output tensor from this layer has spatial dimensions of 11x11 and a depth of 16, signifying the presence of 16 distinct feature maps. Following another Max Pooling layer is employed. Similar to the previous pooling operation, this layer further downsamples the spatial dimensions while preserving the depth, resulting in a feature map size of 10x10 with 16 channels. Further, the output from the last pooling layer is flattened into a one-dimensional vector. This process collapses the spatial dimensions of the feature maps, resulting in a 1D tensor of size 1600 (10x10x16). After flattening, the network proceeds with three fully connected, dense, layers. These layers are responsible for incorporating global context and making high-level abstractions from the learned features. The first fully connected layer, consists of 120 neurons, followed by 64 neurons. Lastly, we have the output layer with three neurons, corresponding to the three coordinates of the source generating the eeg signal. In Figure 6.5, we have provided an illustration of the architecture of the Convolutional Neural Network.

The activation function ReLU is applied after each convolutional and pooling layer, introducing non-linearity to the network and enabling it to learn complex relationships within the data. The fully connected layers use the hyperbolic tangent activation function, which introduces non-linearity and scales the output between -1 and 1. Finally, in the output layer, we

opted for a linear transformation without the use of any activation function. This setup allows the neural network to provide direct and unconstrained predictions for the x-, y-, and z-positions of the desired dipole source, as required in our application. Throughout the network, the weights of the fully connected layers are initialized using the Xavier normal distribution, a widely used technique to set initial weights in deep neural networks, promoting better convergence during training.

The training process for the specialized convolutional neural network (CNN) followed similar techniques to the original DiLoc network, as described in detail in Chapter 5. To ensure effective learning and accurate predictions, stochastic gradient descent (SGD) with momentum was utilized as the optimizer, and mean squared error (MSE) served as the chosen cost function. Additionally, L1 and L2 regularization techniques were incorporated to mitigate overfitting and enhance the network's ability to generalize to new data. During training, mini-batches of size 32 were employed to introduce variability in the data and prevent the network from becoming stuck in local minima. Notably, the CNN employed specific hyperparameters, setting the learning rate to 0.001 and the momentum to 0.009, which were tailored to accommodate the processing requirements of image-like EEG data. To facilitate convergence, a learning rate scheduling approach was adopted, gradually reducing the learning rate during training, striking a balance between rapid initial convergence and fine-tuning towards the later stages. Subsequently, the CNN's performance was rigorously evaluated on an independent test dataset to provide an unbiased assessment of its predictive accuracy and generalization capabilities to novel data.

6.2.2 Performance Evaluation

Figure 6.3: Different cross-sections of the cortex from the New York head model, seen from front, top and side. Each point represents a possible position in the cortex matrix. The color of the each point indicates the mean absolute error (MAE) of the neural network when predicting that specific dipole location.

Figure 6.4: **Right Panel:** EEG measures for three different samples, expressed in microvolts (μV). Each sample represents an EEG recording at specific electrode positions.

Middle and Left Panels: Illustration of the interpolation of the EEG data into a two-dimensional matrix. The interpolated data represents the transformation of original electrode recordings into a regular 2D grid, effectively converting the one-dimensional EEG data into an image-like format. The contour plots visualize the spatial distribution of EEG potential intensities, with each point in the matrix corresponding to a specific electrode location.

Figure 6.5: The architecture of the Convolutional Neural Network.

Figure 6.6: The validation accuracy for Convolutional Neural Network with 10 000 samples (20x20 matrix) with ReLU activation function.

Chapter 7

Extending the DiLoc Network

In this chapter, we explore how various extensions and small modifications of the DiLoc network enhance its capability to address intricate and demanding inverse problems. We delve into three challenging scenarios, each designed to push the boundaries of DiLoc's predictive performance. The first extension involves assigning individual amplitudes to each dipole source, presenting the network with the task of predicting both the source locations and their corresponding amplitudes. Subsequently, the second scenario transitions from predicting the location of a single dipole source to estimating the center and radius of a population of dipoles, alongside the amplitude of the electrical signals generated. This extension introduces additional complexities to the localization process. Lastly, we investigate DiLoc's ability to predict the locations and amplitudes of two individual dipole sources that jointly contribute to the EEG signals recorded by the electrodes. These extensions aim to comprehensively evaluate the network's adaptability and generalization to increasingly intricate real-world situations. Throughout the chapter, we systematically evaluate the network's performance, providing insights into its strengths and limitations when confronted with these novel challenges.

7.1 Predicting Single Dipole Sources with Amplitudes

In this section, we introduce the concept of various amplitudes for single current dipole sources, which adds an additional dimension to our network's output. Besides predicting the coordinates of the dipoles for each sample, the network now also estimates the magnitude of the dipole signals. In real-world scenarios, it might be of interest to not only pinpoint the source of the abnormal activity but also comprehend the extent of abnormality. By incorporating amplitude prediction into our network, we gain valuable insights into the problem at hand and achieve a deeper understanding of the underlying brain activity.

7.1.1 Adjustments in Data Set and Architecture

We assign amplitudes to each dipole ranging between 1 and 10 nA μ m. By now the dataset still has the same number of features, however as a the number of target values increases by 1. Figure 7.1 provides two examples from the dataset, where the dipole location remains constant while the amplitude of the dipole signal varies. In such cases, the shape of the EEG signal will remain consistent, but the magnitude of the EEG signal will be highest for the dipole with the largest amplitude. It should therefor not be a problem for the network to separate such cases and shold be able to provide accurate predictions for the amplitude in both cases.

Figure 7.1: EEG data for two samples with current dipole amplitude equal to 5 and 10.

In figure 7.2 we have depiced the construction of the extended DiLoc network, that now also provides for the amplitude. We see that DiLoc still takes an input of 231 data points corresponding to the number of recoring electrodes, however, the number of output nodes is increased by 1; x-coordinate, y-coordinate, z-coordinate and amplitude corresponding to the strength of the signal for the current dipole moment in the cortex.

As was done for the previous problem, the input data is scaled by subtracting the mean and dividing on the variance. However, as DiLoc deals with multipole output units, specifically millimeters (mm) and nanoamperemicrometers (nA μ m), a scaling process is implemented also on the output targets to effectively minimize the mean squared cost function. The mean squared cost function calculates the average of the squared differences between the predicted output and the actual target values. When output values have different ranges and units, there is a risk that certain dimensions of the target values may dominate the overall error calculation, while others

7.1. PREDICTING SINGLE DIPOLE SOURCES WITH AMPLITUDES 59

Figure 7.2: Architecture dipole with amplitude.

with smaller ranges might be neglected. Consequently, the neural network might overly prioritize reducing errors in the larger range values, hindering its ability to accurately learn patterns and generalize well for the smaller range values.

To address this issue, the output values are normalized to a common range of 0 to 1 using the following normalization formula:

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)} \tag{7.1}$$

Here, z_i represents the ith normalized value in the dataset for a specific target category, x_i is the ith value in the corresponding target dataset, and $\min(x)$ and $\max(x)$ are the minimum and maximum values in that specific target dataset.

It is important to perform this normalization separately for each target category. Doing so allows the neural network to effectively train and discern patterns using only one cost function. Without this normalization, employing a single cost function for a set of different target values with distinct units would not be feasible.

DiLoc for localizing current dipoles with amplitude				
Hyperparameters	Value			
Hidden layers	6			
Optimizer	SGD			
Learning rate (initial)	0.001			
Momentum	0.35			
Weight decay	0.1			
Minibatch size	64			
Epochs	5000			
Dropout	0.5			
Last layer act.func	Sigmoid			

By applying this normalization, we aim to provide a more balanced cost function where all target values contribute equally to the overall error calculation. Consequently, the network can learn effectively from the data and achieve better results in its tasks.

In the extension of the DiLoc network, we maintain the use of ReLU as the activation function in the first layer, and hyperbolic tangent for the hidden layers. However, considering that the output data has been normalized to a range from 0 to 1, we deem it appropriate to employ the Sigmoid activation function in the output layer. The Sigmoid function maps the output values to a range between 0 and 1, which aligns with our desired output range. This choice may potentially facilitate the training process, as it enables the network to converge more effectively towards the desired outputs.

As for the simple DiLoc model, we continue to utilize the technique of adaptive learning rate, which can be advantageous for optimizing the network's parameters more efficiently. For an overview of the overall parameters employed in the model, please refer to Table ??, which provides a summary of these essential elements.

7.1.2 Performance Evaluation

To assess the network's performance, we analyze the accuracy in relation to training epochs, as depicted in Figure 7.3. It is important to note that the target values have been normalized, resulting in a unitless loss measurement. Therefore, the figure provides a qualitative representation of the network's training progress rather than precise loss values. The plot clearly demonstrates a consistent pattern of decreasing loss as the number of epochs increases, indicating that the network effectively captures the underlying data patterns. Moreover, both the training and validation loss stabilize after approximately 2000 epochs, suggesting that the network may have reached its optimal performance level. In Figure 7.4, we present the loss development

7.1. PREDICTING SINGLE DIPOLE SOURCES WITH AMPLITUDES61

for different target values. Once again, we observe that the loss stabilizes at around 2000 epochs. Notably, for the x-, z-, and y-coordinates, the stabilized loss corresponds to the minimum value reached during the training period. However, for the amplitude target value, this is not the case. From the provided figure, it is apparent that the smallest loss value occurs in a sharp dip just before reaching 500 epochs. This observation implies that if we solely aimed to minimize the loss function with respect to the amplitude value, the most optimal model would have emerged by terminating the training process at that epoch. However, since our objective is to develop a model that accurately predicts both the location and amplitude of the current dipole, we strive to train the model until the total loss is minimized, encompassing both aspects.

Figure 7.3: The loss for the extended DiLoc network with 50 000 samples and hyperbolic tangent activation function.

In Table 7.1 we have provided the performance of the network by concidering different error metrics. The mean absolute error (MAE) values for the x-, y-, and z- coordinates rnage from 0.8300 mm to 0.8998 mm. This means that, on average, the network's predictions have an error smaller than 1 mm in each coordinate. Considering the range of the coordinates, the MAE values represent a reasonable level of accuracy. The mean squared error penalizes larger errors/outliers more severely than MAE since it involves squaring the differences. In our case the MSE values for the different coordinates range from 1.2134 mm to 1.4110 mm. The hugher MSE values

Figure 7.4: The loss development for the different target values as function of epochs.

suggest that the predictions of the network may have larger errors in some cases, resulting in a higher average squared difference. However, the magnitude of the mean squared errors is still whithin a reasonable range when analyzing them in the context of the coordinates ranges. Finally the root mean squared error provides a measure of the standard deviation of the errors and helps to understand the spread of errors around the mean. The RMSE values of ours are slighly lower than the corresponding MSE values with a range from 1.1016 mm to 1.1878 mm. The table also presents the error metrics calculated for the euclidean distance. For both MAE, MSE and RMSE the value is higher than the individual coordinate errors, indicating that the errors in the x, y, and z coordinates are not perfectly aligned and contribute to the overall distance. It is worth mentioning that specific points in the cortex matrix may potentially contribute more to the errors. Further investigation could be performed to identify any specific patterns or regions in the cortex that exhibit higher error rates. However, overall the results indicate that the network is able to predict the dipole location with reasonable accuracy. While there are some errors in the predictions, the errors are generally within an acceptable range.

	Error for different target values						
	x-coordinate y-coordinate		z-coordinate	Euclidean	Amplitude		
	[mm]	[mm]	[mm]	Distance [mm]	$[nA\mu m]$		
MAE	3.627	4.006	3.476	2.949	0.687		
MSE	22.595	28.128	22.006	18.410	0.687		
RMSE	4.753	5.306	4.691	4.291	0.938		

Table 7.1: Evaluation of the network performance utializing different Error Metrics.

Performance for the extended DiLoc network on test dataset consisting of 1000 samples. The errors are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

7.2 Predicting Region of Active Correlated Current Dipoles with Amplitudes

In order to further enhance the complexity of our problem, we extend the DiLoc neural network to incorporate varying radii and amplitudes for the origins generating the electrical activity detected by the recording electrodes. This transformation alters the objective of the DiLoc network from predicting the location of individual current dipole moments to estimating the centers of larger spherical populations. This extension is valuable for real-life scenarios where understanding the extent of brain damage causing abnormal activity in damaged areas may be of interest. By training the DiLoc network on such complex data, we aim to enhance its ability to generalize and perform effectively in real-world clinical cases.

7.2.1 Adjustments in Data Set and Architecture

For the purpose of enabling the network to predict the areas of dipole populations, we make adjustments to the dataset. The dipole populations are represented as spherical volumes in the NY head cortex, with the radius for each population ranging from 1 mm to 15 mm. To ensure realism, we maintain the maximum amplitude strength of the total populations at 10 mAm. Consequently, we calculate the maximum number of points within a volume sphere with a radius of 15 mm and reduce this number by 10 to determine the strength of each dipole within the given area. This leaves us with a strength of 10/899 for each dipole. The strength of a dipole population is thus directly proportional to the size of the dipole population. While this may not perfectly represent real-world scenarios, it provides a reasonable approximation for our model.

In Figure 7.5, we present an example of a dipole population and the corresponding EEG signal. The yellow filled circles in the plots in the upper panel represents the diple populations, i.e. positions within the cortex

where dipoles have been placed. The lower panel shows the EEG signals for the specific sample, with EEG electrode locations presented as filled circles, where the color of the fill represents the amplitude of the measured signal for the given electrode. The plots within the figure are seen from both the x-z plane, x-y plane, and the y-z plane.

Figure 7.5: EEG for a sample containing a spherical population of current dipole sources with a random center within the cerebral cortex. The EEG measure is seen from both sides (x-z plane and y-z plane) and above (the x-y plane). EEG electrode locations are presented as filled circles, where the color of the fill represents the amplitude of the measured signal for the given electrode.

As for the dataset, the number of target values is now 5: x, y, z-coordinates of the center of the dipole population, amplitude, and radius. The number of features is not modified and still holds the number of 231, representing the recording electrodes. The new architecture of the DiLoc network is presented in Figure ??.

Similar to the previous problem, we normalize the target values to ensure they all range from 0 to 1. Moreover, in this extension of the DiLoc network, we use the same activation functions as in the previous problem with ReLU as the activation function in the first layer, hyperbolic tangent for the hidden layers, and the Sigmoid activation function in the output layer. As with the previous problems, we have explored various network architectures and activation functions, but the current configuration has shown the best performance in terms of accurate predictions for this problem. It is important

Figure 7.6: Architecture of the dipole area prediction network.

to emphasize that our primary goal is to find a network that can effectively solve the problem and provide accurate predictions, rather than necessarily seeking the best possible configuration.

7.2.2 Performance Evaluation

In Figure ??, we present the training and validation Mean Squared Error (MSE) loss for the ConvDip network as a function of epochs. The network was trained for 5000 epochs, but the validation loss appears to converge at around 3000 epochs, while the training loss stabilizes at approximately 4000 epochs. Notably, there are no signs of overfitting, which is a positive outcome. Each epoch took approximately 7 seconds, resulting in a total training period of approximately 9 hours.

Figure 7.8 displays the validation loss for each target value as a function of epochs. The losses for all coordinate target values (x, y, and z) are minimized almost identically, with the y-coordinate loss slightly smaller. The amplitude target value is minimized most effectively by ConvDip, while the radius target value has the highest loss. We keep in mind that the amplitude and radius taget value correlates to some extent, as the amplitude is proportional

to the radius. Although the exact MSE values for the target values cannot be directly read from the figure due to normalization, the overall pattern indicates that ConvDip successfully captures data patterns and minimizes the cost function.

Figure 7.7: The validation accuracy for the simple Feed Forward Neural Network, predicting both center and radius for 50 000 samples, for 5000 epochs, with a learning rate equal to 0.001.

To assess the extent to which the network can predict the center of the dipole populations, in addition to amplitude and radius, we utilize the same evaluation metrics as described in chapter 6. Table 7.2 presents the Mean Absolute Error (MAE), Normalized MEan Absolute Error (NMAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for the different sets of target parameters.

The MAEs for all coordinates and the Euclidean distance lie between 4 and 5 millimeters. Looking at the NMAE, we observe that the loss for the z-coordinate is somewhat larger than for the other coordinates, with 3 %, similar to our observations when testing DiLoc's ability to predict amplitude in addition to location. However, this slightly larger error is not significant and may as well be attributed to randomness. What is worth mentioning is that all cordinates

As for the amplitude and radius targets, the MAEs are remarkably small. For amplitude, ranging from 1 to 10 mA μ m, the absolute error is approximately 4.33% of the range of the actual amplitude values, indicating that

Figure 7.8: The validation accuracy as function of epoch for each target value: x, y, z-coordinates of the center of the dipole population, amplitude, and radius.

the model's amplitude predictions are reasonably close to the true amplitude values. Similarly, the MAE for the radius, with a range from 1 to 15 mm, is approximately 6.07%, suggesting that the model's predictions are relatively accurate for radius.

Regarding the MSE, we observe relatively small errors for the amplitude and radius, with values of 0.364 and 1.291 (mm²) respectively. However, as for the coordinate target values, we encounter relatively larger MSE values. This difference in scale between the MAE and MSE suggests the presence of outliers.

```
\max_{t} argets = np.array([72.02555727958679, 73.47751750051975, 81.150386095047, 10, 15])
\min_{t} argets = np.array([-72.02555727958679, -106.12010800838469, -52.66008937358856, 1, 0])
```

7.3 Localizing Multiple Dipole Sources

In this final extension of the DiLoc neural network we want to train the model in predictinf the positions of not just one but two individual dipole sources, which collabraticely generate the recored EEG signal. This novel extension pushes the boundaries of the network's capabilities, requiring it to grapple with the complex task of identifying and localizing multiple distinct dipole sources within the brain.

	Error for different target values					
	X	y	Z	Center	Amplitude	Radius
	[mm]	[mm]	[mm]	[mm]	$[nA\mu m]$	[mm]
MAE	4.257	4.868	4.126	4.417	0.390	0.850
NMAE	2.955	2.711	3.083	2.916	4.333	6.071
MSE	47.141	68.776	46.192	54.036	0.364	1.291
RMSE	6.866	8.293	6.796	7.351	0.604	1.136

Table 7.2: Evaluation of DiLoc utilizing different Error Metrics. Performance of the extended DiLoc network on a test dataset consisting of 20000 samples. The errors are measured using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for various target values.

7.4 Previous work

We acknowledge that similar research has been conducted by other groups, including the developers of the ConvDip convolutional neural network. The ConvDip network was designed to produce inverse solutions for EEG data, specifically focusing on predicting the positions of varying numbers of sources from a single time point of EEG data.

The researchers behind ConvDip explored the feasibility of utilizing CNNs to solve the EEG inverse problem for multiple sources using training data that adheres to biologically plausible constraints. Similar to DiLoc, ConvDip was trained to operate on single time instances of EEG data and predict the positions of sources based on potentials measured with scalp electrodes. However, it is worth noting that unlike our approach, the ConvDip group considered dipole clusters rather than single dipoles. This approach aligns more closely with the previous problem in which we focused on dipole populations.

For generating the simulated data, the researchers created a source model consisting of 5124 dipoles distributed along the cortical surface (also referred to as the cortex). They selected 31 recording electrodes and computed the leadfield matrix using a head model with dipole orientations fixed orthogonally to the cortical surface, similar to our methodology. To enhance the realism of the training data, real noise from pre-existing EEG recordings conducted with the same set of electrodes was added. Additionally, the group created separate test data using an alternative head model to avoid potential overoptimistic results, a phenomenon they referred to as the "inverse crime." The training dataset consisted of 100,000 samples, while the test dataset comprised 1000 samples.

In order to prepare the EEG input data for spatial convolutions, it was interpolated onto a 2D image of size 7×11 . As expected with interpolation, this procedure does not introduce new information to the EEG data. The

output of ConvDip is a vector of size 5,124, corresponding to the dipoles in the source model. For a comprehensive description of the ConvDip network, we refer readers to the paper: https://www.frontiersin.org/articles/10.3389/fnins.2021.569918/full.

Although the complexity of our original DiLoc network (FFNN) is significantly smaller compared to ConvDip, we still desired to investigate its performance in this more challenging task.

INCLUDE THIS We will now evaluate the ability of ConvDip to estimate the correct size of sources and to correctly localize sources with varying depth.

7.4.1 Adjustments in Data Set and Architecture

To begin with, we simulate EEG data corresponding to the electrical signals originating from multiple individual dipoles located in the brain. Initially, we allow unrestricted distances between the dipole sources. However, to avoid overcomplicating the problem, we assign each dipole within a sample with the same magnitude of amplitude. Consequently, for the dipole population problem, the total amplitude for a set of dipoles is fixed at 10 mAm. Figure 7.9 displays two plots of randomly selected samples, illustrating the simulated EEG data when multiple dipoles generate the signal. In the first sample, two dipoles generate the EEG signal, each having an amplitude of 2.4 mA μ m. In the second sample, three dipoles generate the EEG signal, and each dipole has an amplitude of 1.13 mA μ m.

The total number of target values for this problem has increased to 8, encompassing the x, y, and z-coordinates for the location, as well as the amplitude, of each dipole. Since we constrained each dipole within a sample to have the same amplitude, it is not necessary to have separate output values for the amplitudes of each dipole. Nevertheless, we modified the architecture of the network, considering the possibility of outputting amplitude target values with varying values for each dipole. Apart from this adjustment, the network still comprises 231 input nodes, and the target values have been normalized to range from 0 to 1. The logic and choice of activation functions, as well as hyperparameters, remain consistent with those used in previous problems. Figure 7.10 illustrates the updated network architecture.

Figure 7.9: EEG for two samples containing two and three current dipole sources, respectively, at random positions within the cerebral cortex. The EEG measures are seen from both sides (x-z plane and y-z plane) and from above the skull (x-y plane). EEG electrode locations are presented as filled circles, where the color of the fill represents the amplitude of the measured signal for the given electrode. The positions of the current dipole moments are marked with yellow stars.

Figure 7.10: Architecture of the multiple dipoles network.

Figure 7.11: The validation accuracy for the simple Feed Forward Neural Network, predicting two current dipole sources.