

Razones y Proporciones

Matemáticas

Carlos Rojas Sánchez Licenciatura en Medicina Veterinaria y Zootecnia

Universidad del Mar

Contenido

- 1. Introducción
- 2. Razones en Medicina Veterinaria Zootecnista
- 3. Ejercicios
- 4. Soluciones

Introducción

Introducción

Las **razones** y **proporciones** son conceptos fundamentales en matemáticas. Se utilizan para comparar cantidades y resolver problemas en diversas áreas de las ciencias exactas, como álgebra, geometría, economía, etc.

¿Qué es una razón?

Una **razón** es una comparación entre dos cantidades, que se expresa como una fracción. Se representa generalmente como:

$$Raz\acute{o}n = \frac{a}{b}$$

Donde a y b son las cantidades que estamos comparando.

- Si a = 10 y b = 5, la razón es $\frac{10}{5} = 2$.
- Esto significa que por cada 1 unidad de *b*, hay 2 unidades de *a*.

¿Qué es una proporción?

Una **proporción** es una igualdad entre dos razones. Es decir, dos fracciones que son iguales:

$$\frac{a}{b} = \frac{c}{d}$$

Por ejemplo, si tienes la proporción:

$$\frac{2}{3} = \frac{4}{6}$$

Esto significa que la relación entre a y b es igual a la relación entre c y d.

Propiedad fundamental de las proporciones

La **propiedad fundamental de las proporciones** establece que en una proporción:

$$\frac{a}{b} = \frac{c}{d}$$

El producto cruzado es igual:

$$a \times d = b \times c$$

• Si sabemos que $\frac{3}{4} = \frac{6}{x}$, podemos resolver x usando la propiedad cruzada:

$$3 \times x = 4 \times 6 \quad \Rightarrow \quad x = \frac{24}{3} = 8$$

Aplicaciones de las razones y proporciones

Las razones y proporciones son herramientas poderosas en diversos campos, como:

- **Cálculos de escalas**: Mapas, planos, maquetas.
- **Problemas de porcentajes**: Descuentos, aumentos salariales.
- **Proporcionalidad en geometría**: Figuras semejantes.
- · **Cálculos de densidad**: Relación masa/volumen.

Ejemplo práctico

Imagina que tienes un mapa donde 1 cm representa 50 km en la realidad. Si la distancia en el mapa es de 3 cm, ¿cuál es la distancia real?

· La proporción sería:

$$\frac{1}{50} = \frac{3}{x}$$

· Aplicando la propiedad cruzada:

$$1 \times x = 50 \times 3 \implies x = 150 \text{ km}$$

Así que la distancia real es **150 km**.

Conclusión

Las razones y proporciones son herramientas esenciales para resolver problemas matemáticos y cotidianos. Nos permiten comparar cantidades de manera efectiva y encontrar relaciones en situaciones prácticas.

Zootecnista

Razones en Medicina Veterinaria

Introducción

Las razones matemáticas tienen un papel importante en la toma de decisiones en el campo de la medicina veterinaria y la zootecnia. Desde el análisis de proporciones de nutrientes en la alimentación animal hasta la determinación de dosis en tratamientos, las razones se aplican frecuentemente en el ámbito profesional.

Aplicaciones en la Medicina Veterinaria

En la medicina veterinaria zootecnista, las razones se utilizan para calcular:

- · Proporciones de nutrientes en dietas animales.
- Cálculos de dosis de medicamentos.
- Comparaciones de crecimiento de animales bajo diferentes condiciones.
- Proporciones de animales sanos vs. enfermos en un rebaño.
- Relaciones entre el tamaño de una población y su tasa de crecimiento.

Ejemplo 1: Proporción de Nutrientes en la Dieta

Si en la dieta de un ganado vacuno, la cantidad de proteína es de 25 kg y la cantidad de carbohidratos es de 100 kg, la razón de proteínas a carbohidratos es:

Razón de proteínas a carbohidratos =
$$\frac{25}{100}$$
 = 0.25

Esto significa que por cada kilogramo de carbohidrato, hay 0.25 kg de proteína.

Ejemplo 2: Cálculo de Dosis de Medicamentos

Si un medicamento requiere una dosis de 10 mg por cada kilogramo de peso corporal de un animal y el animal pesa 4 kg, la dosis total sería:

Dosis total =
$$10 \times 4 = 40 \text{ mg}$$

Ejemplo 3: Comparación de Crecimiento de Animales

Si en dos grupos de cerdos uno crece a una tasa de 0.5 kg/día y el otro a 0.6 kg/día, la razón de crecimiento entre los dos grupos es:

Razón de crecimiento
$$=\frac{0.5}{0.6}=0.83$$

El segundo grupo crece un 17% más rápido que el primero.

Ejemplo 4: Relación entre Animales Sanos y Enfermos

En una granja, se tiene un total de 150 animales, de los cuales 120 están sanos y 30 están enfermos. La razón de animales sanos a enfermos es:

Razón de sanos a enfermos
$$=$$
 $\frac{120}{30} = 4$

Esto significa que por cada animal enfermo, hay 4 animales sanos.

Ejemplo 5: Proporción de Leche en la Alimentación de Terneros

Si un ternero recibe 5 litros de leche al día y consume 15 kg de forraje, la razón de leche a forraje es:

Razón de leche a forraje
$$=\frac{5}{15}=0.33$$

Esto indica que por cada kilogramo de forraje, el ternero recibe 0.33 litros de leche.

Ejercicios

Ejercicios Parte 1/3

- 1. En un establo hay 200 vacas, de las cuales 50 están enfermas. ¿Cuál es la razón de vacas sanas a vacas enfermas?
- 2. Un ganado recibe una mezcla de 40 kg de heno y 30 kg de silo. ¿Cuál es la razón de heno a silo?
- 3. Si un perro requiere una dosis de 15 mg de un medicamento por cada 10 kg de peso corporal, ¿cuál será la dosis para un perro que pesa 25 kg?
- 4. Un veterinario tiene 120 dosis de vacuna para 300 animales. ¿Cuál es la razón de dosis de vacuna a animales?

Ejercicios Parte 2/3

- 5. En una granja avícola, el ratio de huevos producidos por gallina es 2.5. Si hay 100 gallinas, ¿cuántos huevos se producen al día?
- 6. Un ganadero alimenta a sus cerdos con 120 kg de maíz y 60 kg de avena. ¿Cuál es la razón de maíz a avena?
- 7. En un experimento de crecimiento animal, se miden dos grupos de ovejas, el Grupo A aumenta de peso 0.4 kg/día y el Grupo B 0.5 kg/día. ¿Cuál es la razón de crecimiento entre los dos grupos?

Ejercicios Parte 3/3

- 8. Si un veterinario debe administrar un medicamento en base al peso del animal, y el medicamento se dosifica a razón de 5 mg por kg de peso corporal, ¿cuál sería la dosis para un perro de 12 kg?
- 9. Un grupo de vacas consume una mezcla de 150 kg de pasto y 50 kg de concentrado. ¿Cuál es la razón de concentrado a pasto?
- 10. En un rebaño de caballos, el número de caballos con problemas de salud es de 10, mientras que el número de caballos sanos es 50. ¿Cuál es la razón de caballos enfermos a caballos sanos?

Soluciones

Solución 1/10

1. En un establo hay 200 vacas, de las cuales 50 están enfermas. ¿Cuál es la razón de vacas sanas a vacas enfermas?

Solución:

La cantidad de vacas sanas es 200 - 50 = 150. La razón de vacas sanas a vacas enfermas es:

$$\frac{150 \text{ vacas sanas}}{50 \text{ vacas enfermas}} = 3$$

Por lo tanto, la razón es 3:1.

Solución 2/10

2. Un ganado recibe una mezcla de 40 kg de heno y 30 kg de silo. ¿Cuál es la razón de heno a silo?

Solución:

La razón de heno a silo es:

$$\frac{40 \text{ kg de heno}}{30 \text{ kg de silo}} = \frac{4}{3} \approx 1.33$$

Por lo tanto, la razón es aproximadamente 1.33:1.

Solución 3/10

3. Si un perro requiere una dosis de 15 mg de un medicamento por cada 10 kg de peso corporal, ¿cuál será la dosis para un perro que pesa 25 kg?

Solución:

La dosis por kg es $\frac{15 \text{ mg}}{10 \text{ kg}} = 1.5 \text{ mg/kg}$. Para un perro de 25 kg, la dosis será:

$$25 \text{ kg} \times 1.5 \text{ mg/kg} = 37.5 \text{ mg}.$$

Solución 4/10

4. Un veterinario tiene 120 dosis de vacuna para 300 animales. ¿Cuál es la razón de dosis de vacuna a animales?

Solución:

La razón de dosis a animales es:

$$\frac{120 \text{ dosis}}{300 \text{ animales}} = 0.4 \text{ dosis/animal}.$$

Solución 5/10

5. En una granja avícola, el ratio de huevos producidos por gallina es 2.5. Si hay 100 gallinas, ¿cuántos huevos se producen al día?

Solución:

Si cada gallina produce 2.5 huevos, entonces:

 $100 \text{ gallinas} \times 2.5 \text{ huevos/gallina} = 250 \text{ huevos.}$

Se producen 250 huevos al día.

Solución 6/10

6. Un ganadero alimenta a sus cerdos con 120 kg de maíz y 60 kg de avena. ¿Cuál es la razón de maíz a avena?

Solución:

La razón de maíz a avena es:

$$\frac{120 \text{ kg de maı́z}}{60 \text{ kg de avena}} = 2.$$

Por lo tanto, la razón es 2:1.

Solución 7/10

7. En un experimento de crecimiento animal, se miden dos grupos de ovejas, el Grupo A aumenta de peso 0.4 kg/día y el Grupo B 0.5 kg/día. ¿Cuál es la razón de crecimiento entre los dos grupos?

Solución:

La razón de crecimiento entre los dos grupos es:

$$\frac{0.5 \text{ kg/día}}{0.4 \text{ kg/día}} = 1.25.$$

El Grupo B crece 1.25 veces más rápido que el Grupo A.

Solución 8/10

8. Si un veterinario debe administrar un medicamento en base al peso del animal, y el medicamento se dosifica a razón de 5 mg por kg de peso corporal, ¿cuál sería la dosis para un perro de 12 kg?

Solución:

La dosis para el perro de 12 kg sería:

$$12 \text{ kg} \times 5 \text{ mg/kg} = 60 \text{ mg}.$$

Solución 9/10

9. Un grupo de vacas consume una mezcla de 150 kg de pasto y 50 kg de concentrado. ¿Cuál es la razón de concentrado a pasto?

Solución:

La razón de concentrado a pasto es:

$$\frac{50 \text{ kg de concentrado}}{150 \text{ kg de pasto}} = \frac{1}{3} \approx 0.33.$$

La razón es aproximadamente 0.33:1.

Solución 10/10

10. En un rebaño de caballos, el número de caballos con problemas de salud es de 10, mientras que el número de caballos sanos es 50. ¿Cuál es la razón de caballos enfermos a caballos sanos?

Solución:

La razón de caballos enfermos a caballos sanos es:

$$\frac{10 \text{ caballos enfermos}}{50 \text{ caballos sanos}} = 0.2.$$

La razón es 0.2:1.