

Gestión de Proyectos Software

Tema 3. Tiempos

Carlos Blanco Bueno Félix Óscar García Rubio

Este tema se publica bajo Licencia:

<u>Creative Commons BY-NC-ND 4.0</u>

Objetivos

- Conocer las principales técnicas para gestionar el calendario de un proyecto.
- Estudiar los métodos más conocidos para representar gráficamente el calendario de un proyecto.

Indice

- 1. Introducción.
- 2. Definición de Actividades.
- 3. Secuenciación.
 - 3.1. Diagramas en Red de Proyectos.
- 4. Estimación de los recursos.
- 5. Estimación de la duración.
- 6. Desarrollo del calendario.
 - 6.1. Método PERT.
 - 6.2. Método CPM.
 - 6.3. CPM con compresión de la duración.
- 7. Representaciones del calendario.
- 8. Control del Calendario

Bibliografía básica:

- Piattini, M. et al, Análisis y diseño detallado de Aplicaciones Informáticas de Gestión. Ed. Ra-Ma, España 1996.
 - Caps. 5 y 6.
- Project Management Institute, A Guide to the Project Management Body of Knowledge.
 - Cap. 6
- Romero, C., Técnicas de Programación y Control de Proyectos.
 - Caps. 1, 2 y 4.
- University of South Carolina. Critical Path Method (CPM).
 http://hadm.sph.sc.edu/Courses/J716/CPM/CPM.html

Introducción. Mapa

PMBOK 2013		Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas		
Grupo	Proceso			
	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos		
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones		
Planificación	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas		
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos		
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo		
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)		
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación		

- Proceso: *Identificar y documentar las actividades específicas que deben realizarse* para producir los diversos entregables definidos en la Gestión del Alcance (WBS, WFD).
 - En ingeniería del software (estándares ISO, etc.) las actividades se consideran formadas por *tareas*.

- <u>Lista de Actividades</u>: entregable del proceso.
 - Debe incluir todas las actividades que deberán ser realizadas en el proyecto y sólo las del proyecto.
 - Deberá incluir descripciones de cada actividad para que el equipo comprenda el trabajo que debe realizarse.

Restricciones y Asunciones

- Para realizar la definición de las actividades es necesario *tener en cuenta las restricciones y asunciones* a que está sometido el proyecto.
- <u>Restricciones</u>: son factores que limitarán las opciones del equipo del proyecto. Existen dos categorías de restricciones que afectan a la definición del calendario:
 - Fechas impuestas: ciertos entregables deben estar completados en una fecha determinada por requerimientos del cliente u otros factores externos.
 - Eventos clave o hitos principales: puede ser necesario que ciertos entregables deban estar completados en una fecha determinada. Una vez planificada la fecha puede cambiarse, pero con mucha dificultad.
- Asunciones: son factores que, para propósitos de planificación, serán considerados como verdaderos, ciertos o reales. En general, las asunciones suponen un cierto grado de riesgo por lo que suelen ser determinadas como una de las salidas en el proceso de identificación de riesgos.

Técnicas

Descomposición

- Subdividir Paquetes de Trabajo en componentes más más fáciles de manejar
 → Actividades
 - La salida son actividades del cronograma en vez de productos entregables (EDT)
- La lista de actividades, la EDT y el diccionario EDT pueden elaborarse de manera secuencial o en paralelo, usando la EDT y el diccionario como base para el desarrollo de la lista actividades
 - Cada paquete de trabajo dentro de la EDT se descompone en las actividades necesarias para producir los entregables del paquete de trabajo.

Planificación Gradual

- El trabajo a corto plazo se planifica en detalle a un nivel inferior de la EDT
- El trabajo a largo plazo se planifica para los componentes de la EDT que se encuentran a un nivel relativamente alto de la EDT.

Plantillas

 Lista de actividades estándar o una parte de una lista de actividades de un proyecto anterior

Juicio de Expertos

Contexto del proceso Definición de las Actividades

Introducción. Mapa

PMBOK 2013		Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas		
Grupo	Proceso			
Planificación	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos		
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones		
	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas		
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos		
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo		
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)		
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación		

- Método de Diagramación por Precedencia (PDM)
 - Nodos → Actividades
 - Arcos → Dependencias
- Método de Diagramación por Flechas (ADM)
 - Nodos → Dependencias
 - Arcos → Actividades
- Plantillas del Cronograma
 - Redes Cronograma
- Determinación de Dependencias
 - Dependencias Obligatorias/ Discrecionales/ Externas
- Aplicación de Adelantos y Retrasos
 - Dependencias pueden requerir un adelanto o un retraso
 - El uso de adelantos y retrasos, y sus asunciones relacionadas están documentados.

- Determinación de dependencias (Tipos):
 - Obligatorias: son inherentes a la naturaleza del trabajo a realizar.
 - Por ejemplo, no puede probarse un módulo software si antes no se ha escrito.
 - Discrecionales: son definidas por el equipo del proyecto. Deben ser utilizadas con cuidado y bien documentadas ya que pueden suponer restricciones al calendario. Suelen definirse a partir del conocimiento sobre:
 - las mejores prácticas sobre cierto tema,
 - una secuencia específica es preferible por razones especiales.
 - Externas: vienen determinadas por relaciones entre actividades del proyecto y otras que no pertenecen al proyecto.

- Diagramas en Red del Proyecto:
 - Visión esquemática de las actividades del proyecto y las dependencias entre ellas.
 - Existen dos tipos básicos de técnicas para construir el diagrama de red:
 - PDM (Precedence diagramming method)
 - ADM (Arrow diagramming method)
 - Otro tipo de técnica es: CDM Conditional Diagramming Method

- Diagramación por Precedencias:
 - Consiste en construir un diagrama de red utilizando nodos para representar las actividades y conectándolas con flechas que representan las dependencias
 - Es el método más utilizado (**DFTs**).

una actividad A precede a otra B, existen 4 <u>tipos de relaciones de</u> <u>precedencia</u>:

Acabar-para-empezar: la actividad A debe concluir antes de poder comenzar la B.

Acabar-para-acabar: la actividad A debe haber concluido antes de poder concluir también la B.

Empezar-para-empezar: la actividad A debe comenzar antes que la B.

Empezar-para-acabar: la actividad A debe haber comenzado antes de poder concluir la B (no usada en software).

 Los DFT se pueden considerar una extensión del método de diagramación por precedencias (PDM) al combinar con la descomposición de trabajos (WBD).

• <u>ADM</u>: Método de Diagramación por Flechas:

 Construir un diagrama de red utilizando flechas para representar las actividades y nodos para indicar las dependencias entre

actividades.

- CDM: Métodos de Diagramación Condicional:
 - Permiten estructuras de control diferentes a la secuencia: bucles y bifurcaciones.
 - Los más conocidos son:
 - GERT (graphical evaluation and review technique)
 - Modelos de Sistemas Dinámicos

Introducción. Mapa

PMBOK 2013		Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas		
Grupo	Proceso			
	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos		
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones		
Planificación	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas		
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos		
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo		
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)		
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación		

Estimación de Recursos

Cuáles son los recursos (personas, equipos, o material)

Coordinado con

Qué cantidad de cada recurso se utilizará

Cuándo estará disponible cada recurso

Estimación de Recursos Herramientas y Técnicas

- Juicio de Expertos
- Análisis de Alternativas. Muchas actividades tienen métodos alternativos de realización
 - Uso de distintos niveles de capacidad o habilidades de los recursos,
 - Diferente tamaño o tipo de máquinas, diferentes herramientas
 - Fabricación propia o compra a terceros de recursos, etc. (adquisiciones)

Datos de Estimación

- Costes unitarios recursos, índices producción, etc...
- Publicados por empresas periódicamente

Estimación Ascendente

- Se estiman las necesidades de recursos de niveles inferiores de paquetes de trabajo y se suman luego en una cantidad total para cada uno de los recursos de la actividad del cronograma.
- Software de Gestión de Proyectos
 - Planificar, organizar y gestionar los recursos, estimaciones, etc

Estimación de Recursos Salidas

Requisitos de Recursos de las Actividades

- Identificación y descripción de los tipos y las cantidades de recursos necesarios para cada actividad del cronograma de un paquete de trabajo.
- Estos requisitos pueden sumarse para determinar los recursos estimados para cada paquete de trabajo.

Estructura de Desglose de Recursos

- Estructura jerárquica de los recursos identificados por categoría y tipo de recurso.
- Calendario de Recursos (Actualizaciones)
 - Calendarios generales y específicos

Estimación de Recursos Salidas

Estructura de Desglose de Recursos

Introducción. Mapa

PMBOK 2013		Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas	
Grupo	Proceso		
	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos	
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones	
Planificación	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas	
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos	
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo	
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)	
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación	

Estimación de la Duración Duración de una Actividad

- La duración de una actividad está determinada por cuatro factores:
 - El **volumen** de trabajo a realizar,
 - La *cantidad* de recursos necesarios,
 - La *disponibilidad* de dichos recursos, y
 - La *productividad* en la utilización de los recursos.
- En el caso de <u>proyectos software</u> el recurso fundamental es la <u>mano de obra</u> de ingenieros software, analistas, programadores u otros miembros del equipo.
 - En la mayoría de los proyectos software, los demás recursos tienen una influencia despreciable en los costes.

-La duración dependerá de:

- -El *tamaño/complejidad* del producto software,
- -El *número de personas* disponibles,
- -La *disponibilidad* de dichas personas (% de jornada dedicado a la actividad)
- -La *productividad* de las personas.

Ejemplo:

Software 2000 líneas de código Productividad programador = 200 LOC x persona y día

```
Esfuerzo = Tamaño / Productividad =
= 2000 LOC / 200 LOC / persona x día =
= 10 persona x día, 1 persona 10 días,..
```

Estimación de la Duración Duración de una Actividad

- Referencias para ampliar el estudio sobre la estimación de los costes y tiempos en proyectos software:
 - Gaffney, J.E., How to Estimate Software Project Schedules. En Software Management, 5th edition. IEEE Computer Society, 1997.
 - Pgs. 257/266
 - Piattini, M.G. et al, *Análisis y Diseño Detallado de Aplicaciones Informáticas de Gestión*. Ed Ra-Ma
 - Cap. 5
 - Roetzheim, W.H. & Beasley, R.A., Software Project Cost & Schedule Estimating. Best Practices. Ed. Prentice-Hall, USA 1998. (incluye CD)
 - Cap. 6

Estimación de la Duración Herramientas y Técnicas

- Juicio de Expertos (Delphi)
- Estimación por Analogía
 - Utiliza la duración real de una actividad de un proyecto similar anterior como base para una estimación futura
 - Utiliza información histórica y el juicio de expertos.
 - Es más fiable cuando las actividades previas son similares de hecho y no sólo en apariencia, y los miembros del equipo tienen la experiencia necesaria.
- Estimación Paramétrica
 - Estimación de la base de duración actividades multiplicando la cantidad de trabajo a realizar por el ratio de productividad
- Estimación de tres Valores
 - Más probable / Optimista / Pesimista
- Análisis de Reserva
 - Tiempo adicional (reservas para contingencias) para gestión de riesgos del cronograma
- Simulación (Montecarlo)

Juicio de Expertos

(Técnica Delphi)

- Técnica para recoger la opinión de los expertos intentando evitar el riesgo de que el resultado final esté determinado por las personas más influyentes.

- Pasos:

- 1) El Director del proyecto (DP) proporciona a cada experto una especificación del proyecto y un impreso a rellenar.
- 2) El DP reúne a los expertos para que intercambien puntos de vista.
- 3) Los expertos rellenan el impreso de forma anónima.
- 4) El DP ofrece a cada experto un resumen con su estimación y la media de todos los expertos. Se les pide que hagan otra estimación anónima sin decirles la razón.
- 5) El DP convoca una reunión para que los expertos discutan las razones de las diferencias entre sus estimaciones.
- 6) Los expertos rellenan de nuevo los impresos.
- 7) Si existe suficiente consenso entre las estimaciones, se acaba. En caso contrario se vuelve al punto 4).

Método de Montecarlo

- Ejemplo:
 - Estimar el área de una superficie irregular

Área Rectángulo = 20

Lanzo al azar 23 puntos

Dentro Figura: 13

Fuera: 10

Área Estimada Figura

20 * 13 / (10 + 13) = 11,30

Introducción. Mapa

PMBOK 2013		Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas		
Grupo	Proceso			
	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos		
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones		
Planificación	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas		
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos		
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo		
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)		
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación		

Desarrollo del Calendario

- Determinar las *fechas* (reales) *de comienzo y fin de cada actividad* del proyecto.
- Las entradas (inputs) necesarias para este proceso son:
 - Diagrama en red (lista de actividades y sus dependencias),
 - Estimaciones de duración de las actividades, y
 - Requisitos de recursos en cada actividad.

Técnicas para desarrollar el calendario

Análisis de la Red del Cronograma

• Emplea un modelo de cronograma y técnicas analíticas (ruta crítica, que pasa si, etc..) para calcular las fechas de inicio y finalización tempranas y tardías, y las fechas de inicio y finalización de las actividades del cronograma del proyecto.

Método del camino crítico

- Se realiza utilizando el modelo de cronograma.
- Calcula las fechas de inicio y finalización tempranas y tardías teóricas para todas las actividades del cronograma, sin considerar las limitaciones de recursos.

Compresión del cronograma

- Acorta el cronograma del proyecto (sin modificar alcance) para cumplir con las restricciones, fechas impuestas u otros objetivos del cronograma.
 - Compresión. Cómo obtener la mayor compresión con el mínimo incremento de coste.
 - Ejecución Rápida. Una técnica de compresión del cronograma en la cual las fases o actividades que normalmente se realizarían de forma secuencial, se realizan en paralelo

Técnicas para desarrollar el calendario

Análisis "¿Qué pasa si…?"

- Cálculo de diferentes escenarios (demora en la entrega, ampliación de la duración, huelgas, ..).
- Los resultados permiten evaluar la viabilidad del cronograma del proyecto en condiciones adversas, preparar planes de contingencia y respuesta para superar o mitigar el impacto.
- Se aplica simulación (Monte Carlo).

Nivelación de Recursos

- Se aplica sobre cronogramas con análisis de camino crítico.
- Gestión de las actividades para cumplir con fechas de entrega en situaciones como: recursos compartidos; críticos; limitados; o para mantener el uso de recursos seleccionados a un nivel constante durante períodos específicos.
- Puede hacer que cambie el camino crítico original.

Método de Cadena Crítica

- Otra técnica de análisis para contemplar los recursos limitados.
- El cronograma resultante, en general, tiene un camino crítico alterado.

Técnicas para desarrollar el calendario Análisis Matemático

- **PERT** (*Program Evaluation and Review Technique*): permite realizar una estimación de la duración total de un proyecto a partir de la secuencia de actividades y de una estimación ponderada de la duración media de cada una.
- **CPM** (*Critical Path Method*): basado en calcular la lista de actividades que tienen menor flexibilidad en su calendario, es decir, sus fechas de comienzo y fin son más rígidas (camino crítico) ya que un retraso en una de dichas actividades implica obligatoriamente un retraso en la duración total del proyecto.
- **GERT** (*Graphical Evaluation and Review Technique*): permite el tratamiento probabilístico de la lógica de la red del proyecto (bifurcaciones, bucles) y de la estimación de la duración de las actividades (actividades que se pueden realizar parcialmente, actividades que se realizan varias veces, etc.).

Técnicas para desarrollar el calendario PERT vs CPM

- PERT y CPM tuvieron un origen completamente diferente pero son muy similares en sus aspectos esenciales. Diferencias:
 - Al calcular la duración de cada actividad, PERT utiliza una media ponderada de tres valores y CPM sólo el valor más probable

Distinta notación utilizada:

Notación PERT	Notación CPM		
Suceso	Nudo		
Actividad	Trabajo		
Holguras	Flotantes		
Tiempo 'early'	Tiempo más bajo de iniciación		
Tiempo 'late'	Tiempo más alto de iniciación		

Técnicas para desarrollar el calendario Cuando utilizar PERT / CPM

- 1. La red debe tener al menos 20 actividades. En casos más pequeños es aconsejable utilizar otras técnicas de desarrollo del calendario más sencillas (Gantt, Hitos, ...).
- 2. Si la red incluye más de 100 sucesos (o nodos) es necesario utilizar alguna herramienta de gestión de proyectos.
- 3. Los proyectos es los que es más recomendable utilizar las técnicas PERT/CPM son los que tienen las siguientes características:
 - Muy críticos,
 - De alto riesgo o incertidumbre,
 - Que participan muchas personas u organizaciones,
 - Técnicamente complejos, o
 - Con actividades dispersas geográficamente.

Técnicas para desarrollar el calendario Cuando utilizar PERT / CPM

- Etapas de la técnica PERT:
 - 1. Elaboración del Grafo (diagrama de flechas tipo ADM).
 - 2. Ordenación del grafo por niveles (opcional)
 - 3. Cálculo de los Tiempos PERT.
 - 4. Cálculo de los Tiempos más tempranos posibles ('Early').
 - 5. Cálculo de los Tiempos más tardíos posibles ('Late').
 - 6. Cálculo de las Holguras (total, libre e independiente).
 - 7. Determinación del Camino Crítico.
 - 8. Definición de Fechas.

Método PERT Elaboración del Grafo

- En PERT los proyectos se consideran descompuestos en <u>actividades</u>.
- Las actividades ocurren entre dos <u>sucesos</u> (inicial y final).
- Un <u>suceso</u> es un acontecimiento temporal (una fecha) que no consume ni tiempo ni recursos.
- Grafo: Actividades = arcos (flechas); Sucesos = nodos (círculos).
- La longitud del arco no tiene relación con la duración de la actividad.
- Relaciones de precedencia entre las actividades: Fin-Comienzo.

 Los sucesos deben estar numerados siempre de forma creciente a lo largo de cualquiera de los caminos.

Método PERT Elaboración del Grafo

- Las relaciones de precedencia pueden venir expresadas en:
 - un diagrama tipo PDM (por ejemplo, un DFT),
 - una matriz de encadenamientos o
 - un cuadro de relaciones de precedencia

	Α	В	С	D	Е	F	G	Ι
Α								
В	X							
С	X							
D	X							
Е		X						
F			X					
G				X				
Н					X	X		

Actividades	Actividades Precedentes	
А	-	
В	А	
С	A	
D	A	
Е	В	
F	С	
G	D	
Н	E, F	

Método PERT Elaboración del Grafo: Tipos de Relaciones de Precedencia

Método PERT Elaboración del Grafo

- <u>Conflictos</u>: determinadas combinaciones de precedencias no se pueden representar directamente y es necesario incluir en el grafo <u>actividades ficticias</u> (duración 0 y costes 0)
 - · Las actividades A y B preceden a la actividad D
 - · Las actividades A, B y C preceden a la actividad E

Método PERT Elaboración del Grafo

- **PERT**. Ejemplo:
 - Proyecto con actividades: A, B, C, D, E, F y G.
 - Relaciones Precedencia

Actividades	Duración	Actividades Precedentes
A	8	-
В	5	A
С	6	A
D	5	A
Е	6	В
F	7	С
G	9	D
Н	3	E, F

Método PERT Ordenación del grafo por niveles. Algoritmo de Demoucron

Pasos:

- 1. Construir la matriz M (de orden nxn) asociada al grafo de n sucesos, asignando un '1' al elemento a_{ij} si existe una actividad (un arco) del suceso i al suceso j y un '0' en caso contrario.
- 2. Construir un vector columna V1, cuyos elementos son $V1(i) = \sum_{i=1}^{j=n} a_{ij}$
- 3. Los elementos de V1 que sean cero, indican los sucesos que constituyen el último nivel del grafo (nivel k).
- 4. Construir otro vector columna V2, cuyos elementos se obtienen restando a los de V1 los elementos homólogos de la(s) columna(s) que corresponde(n) a los sucesos que en V1 toman el valor 0. Si minuendo y sustraendo son 0, entonces se escribe una 'X' en vez de 0.
- 5. Los elementos de V2 que sean cero, indican los sucesos que constituyen el penúltimo nivel del grafo (nivel k-1).
- 6. Se repiten iterativamente los pasos 4 y 5 con vectores columnas V3, V4, etc. que determinan los sucesos de los niveles k-2, k-3, etc. hasta llegar al suceso inicial que estará en el nivel 1.

Método PERT Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7
1	0	1	0	0	0	0	0
2	0	0	1	1	1	0	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	1
7	0	0	0	0	0	0	0

Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7	V1
1	0	1	0	0	0	0	0	1
2	0	0	1	1	1	0	0	3
3	0	0	0	0	0	1	0	1
4	0	0	0	0	0	1	0	1
5	0	0	0	0	0	0	1	1
6	0	0	0	0	0	0	1	1
7	0	0	0	0	0	0	0	0
	a nagana					•		7

V

Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7	V1	V2
1	0	1	0	0	0	0	0	1	1
2	0	0	1	1	1	0	0	3	3
3	0	0	0	0	0	1	0	1	. 1
4	0	0	0	0	0	1	0	1	1
5	0	0	0	0	0	0	1	1	0
6	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	X
	F 04.780							7	5
								-	6

Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7	V1	V2	V3
1	0	1	0	0	0	0	0	1	1	1
2	0	0	1	1	1	0	0	3	3	2
3	0	0	0	0	0	1	0	1	. 1	0
4	0	0	0	0	0	1	0	1	1	0
5	0	0	0	0	0	0	1	1	0	X
6	0	0	0	0	0	0	1	1	0	X
7	0	0	0	0	0	0	0	0	X	X
						•		7	5	3
									6	4

Niveles

Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7	V1	V2	V3	V4
1	0	1	0	0	0	0	0	1	1	1	1
2	0	0	1	1	1	0	0	3	3	2	0
3	0	0	0	0	0	1	0	1	. 1	0	X
4	0	0	0	0	0	1	0	1	1	0	X
5	0	0	0	0	0	0	1	1	0	X	X
6	0	0	0	0	0	0	1	1	0	X	X
7	0	0	0	0	0	0	0	0	X	X	X
								7	5	3	2
								*	6	4	

V IV III II

Niveles

Método PERT Ordenación del grafo por niveles. Algoritmo de Demoucron

• Ejemplo:

	1	2	3	4	5	6	7	V1	V2	V3	V4
1	0	1	0	0	0	0	0	1	1	1	1
2	0	0	1	1	1	0	0	3	3	2	0
3	0	0	0	0	0	1	0	1	. 1	0	X
4	0	0	0	0	0	1	0	1	1	0	X
5	0	0	0	0	0	0	1	1	0	X	X
6	0	0	0	0	0	0	1	1	0	X	X
7	0	0	0	0	0	0	0	0	X	X	X
!	ŗ		Ĺ		· [-		· -!	7	5	3	2

3	2
4	
	4

		T .	
V	IV	III	II

Niveles

Método PERT Cálculo de los tiempos PERT

- Para cada actividad se consideran tres tiempos (estimados previamente):
 - Estimación de <u>tiempo pesimista</u> (Tp): tiempo máximo en el que podría finalizarse la actividad si aparecen todas las circunstancias negativas posibles.
 - Estimación de <u>tiempo optimista</u> (To): tiempo mínimo si no surge ningún problema durante la ejecución de la actividad.
 - Estimación de <u>tiempo más probable</u> (Tn): tiempo normal de duración de la actividad.
- Para cada actividad se calcula el tiempo PERT (Td) y la varianza (V):

$$T_d = \frac{T_p + 4T_n + T_o}{6}$$
 $V = \frac{T_p - T_o}{6}$

Método PERT Cálculo de los tiempos EARLY y LATE

- El tiempo *early* del suceso j (TEj) es:
 - TEj = máx[TEi + Tij], ∀i
 - El tiempo early del primer suceso es siempre 0: TE1=0.
 - Los demás tiempos early se calculan en orden ascendente de sucesos.
- El tiempo *late* del suceso i es:
 - TLi = min[TLj Tij], ∀j
 - El tiempo late del último suceso coincide con su tiempo early.
 - Los demás tiempos late se calculan en orden descendente de sucesos.

Método PERT Cálculo de los tiempos EARLY y LATE

• Ejemplo: grafo anterior con los siguientes tiempos PERT:

Actividad: A B C D E F G H

Duración: 8 5 6 5 6 7 9 3

Cálculo de los Tiempos Early

TEj = Para todo j: máx [TEi + Tij]

TE6 = máx [14+7, 13+6] = 21

Método PERT Cálculo de los tiempos EARLY y LATE

- Cálculo de los Tiempos Late:
 - TLi = Para todo j: min [TLj Tij]

Método PERT Cálculo de las holguras

- Holgura de un suceso i : Hi = TLi TEi
 - Número de unidades de tiempo en las que se puede retrasar la realización sin que aumente la duración total del proyecto.
 - Ejemplo: H3 = 15 13 = 2
- Holgura total de una actividad que une el suceso i con el j: HTij = TLj TEi Tij
 - Unidades de tiempo que puede retrasarse la realización de la actividad con respecto al tiempo PERT previsto sin que aumente la duración del proyecto.
 - Ejemplo: HT36 = 21 13 6 = 2
- Holgura libre de una actividad ij: HLij = TEj TEi Tij
 - Parte de la holgura total que puede consumirse sin que afecte a las siguientes actividades.
 - Ejemplo: HL36 = 21 13 6 = 2
- Holgura independiente de una actividad ij: HIij = TEj TLi Tij
 - Cantidad de holgura disponible si todas las actividades han comenzado en sus tiempos 'late'.
 - Ejemplo: HI36 = 21 15 6 = 0

Método PERT Determinación del camino crítico

- Suceso crítico: aquel que tiene una holgura de 0.
 - Ejemplo: 1, 2, 4, 6 y 7.
- Actividad crítica: su holgura total es 0.
 - Ejemplo: A, C, F, H
 - Las actividades críticas tienen sucesos inicial y final críticos.
- <u>Camino crítico</u>: está formado por todas las actividades críticas.
 - Pueden existir varios caminos críticos.
 - Cualquier retraso en una actividad crítica afecta a todo el proyecto.
 - Si una actividad no crítica consume entera su holgura total se convierte en crítica y se crea un nuevo camino crítico.

Método PERT Determinación del camino crítico

- Duración total del proyecto: se puede calcular de dos maneras:
 - a) tiempo early (o late) del último suceso; o
 - DTP = TE7 = TL7 = 24
 - b) suma de las duraciones de las actividades críticas.
 - DTP = T(A)+T(C)+T(F)+T(H) = 8+6+7+3 = 24

Método PERT Definición de las fechas

- Para cada actividad ij se establecen cuatro fechas relativas:
 - Fecha de comienzo más temprana:
 - FCEij = TEi
 - Fecha de comienzo más tardía:
 - FCLij = TEi + HTij = TLj Tij
 - Fecha de finalización más temprana:
 - FFEij = TEi + Tij
 - Fecha de finalización más tardía:
 - FFLij = TLj
- Ejemplo:
 - para la actividad E de [T34] con inicio del proyecto el 7-enero,
 - FCE36 = FIP + TE3 = 13 (20-enero)
 - FCL36 = TL6 T(E) = 21 6 = 15 (22-enero)
 - FFE36 = TE3 + T(E) = 13 + 6 = 19 (26-enero)
 - FFL36 = TL6 = 21 (28-enero)
- En una actividad crítica, las fechas de comienzo más temprana y más tardía coinciden.

Método CPM

- Las etapas de la técnica CPM son:
 - 1. Elaborar el grafo (diagrama de flechas tipo ADM).
 - 2. Construir la matriz de caminos posibles.
 - 3. Calcular los tiempos totales de cada camino.
 - 4. Identificar el camino crítico.
 - 5. Definir las fechas.

Variantes:

Compresión de la duración.

CPM: Elaborar el grafo

- Es igual que en PERT:
 - Los nodos se identifican por un numero.
 - Si i<j significa que el nodo i precede al j.
 - Las actividades sin predecesor tienen su origen en el nodo 1.
 - Las actividades sin sucesor tienen su final en el último nodo (el de mayor número).

Actividad	Pred	Dur
A. Diseño	-	5
B. Investigación de Mercado	-	1
C. Análisis de Producción	Α	2
D. Modelado Producto	Α	3
E. Gestión de Ventas	Α	2
F. Análisis de Coste	С	3
G. Pruebas	D	4
H. Formación Ventas	B, E	2
I. Gestión Precios	Н	1
J. Realizar Informe	F,G, I	1

CPM: Construir matriz de caminos posibles

- Tantas columnas como actividades.
- Una fila por cada camino posible.
- Los elementos a_{ij} valen '1' si la actividad j forma parte del camino posible i, y '0' en caso contrario.

Actividad:	Α	В	С	D	Е	F	G	Н	I	J
Nodo inicial:	1	1	2	2	2	4	5	3	6	7
Nodo final:	2	3	4	5	3	7	7	6	7	8
Tiempo:	5	1	2	3	2	3	4	2	1	1
Camino 1:	1	0	1	0	0	1	0	0	0	1
Camino 1: Camino 2:	1	0	1 0	0	0	1 0	0	0	0	1
	1 1 0	0 0 1	1 0 0	0 1 0	0 0 0	1 0 0	0 1 0	0 0 1	0 0 1	1 1 1

CPM: Calcular los tiempos totales de los caminos

Duración Total del Camino i :

$$DTC_i = \sum_{j=1}^{j=n} a_{ij} * T_j$$

siendo n el número de actividades, a_{ij} el elemento de la matriz (camino i, actividad j), y Tj la duración de la actividad j.

- Ejemplo:
 - DTC1 = 5+2+2+1 = 10
 - DTC2 = 5+3+4+1 = 13
 - DTC3 = 1+2+1+1=5
 - DTC4 = 5+2+2+1+1 = 11
- El Camino Crítico co es el camino de duración mayor: $DTC_{cc} \ge DTC_i, \forall i$
 - Pueden existir varios caminos críticos (todos ellos con igual duración).
 - La duración total del proyecto es la del camino crítico:

$$DTP = DTC_{cc}$$

CPM con compresión de la duración

- Variante del método CPM.
- Objetivo: reducir la duración total del proyecto reduciendo la duración de algunas actividades (a cambio de aumentar los costes).
- Para comenzar, para cada actividad se necesitan dos duraciones y dos costes:
 - Tij: tiempo normal de ejecución de la actividad ij (coincide con la utilizada antes).
 - Cij : coste normal de realizar la actividad ij en el tiempo normal.
 - TMij: tiempo mínimo (crash time) de ejecución de la actividad ij. Es el tiempo imprescindible necesario utilizando los recursos al máximo posible.
 - CMij: coste máximo (crash cost) para realizar la actividad ij en el tiempo TMij.

CPM con CD (Duración vs Costes) Relación entre Duración y Costes de Actividad

 Se considera que existe una <u>relación lineal</u> entre la reducción en la duración de una actividad y el incremento en los costes:

$$CA_{ij} = C_{ij} + \frac{(T_{ij} - TA_{ij})}{(T_{ij} - TM_{ij})} * (CM_{ij} - C_{ij})$$

CPM con CD Etapas

- 1. Elaborar el grafo (diagrama de flechas tipo ADM).
- 2. Construir la matriz de caminos posibles.
- 3. Calcular los tiempos totales de cada camino.
- 4. Identificar del camino crítico.
- 5. Calcular costes y duraciones 'actuales' en primera aproximación.
- 6. Calcular coste total actual en primera aproximación.
- 7. Optimizar el coste total actual.

Comentarios:

- Las etapas 1-4 son idénticas al CPM puro. Si ya se realizaron los cálculos CPM se puede ir directamente a la etapa 5.
- Las etapas 5-6 sirven para calcular unos valores iniciales de costes y tiempos que son optimizados mediante técnicas de programación lineal en la etapa 7.

CPM con CD Ejemplo $\frac{1}{Acti}$

Actividad:	A	В	С	D	Е	F	Dum
Nodo inicial:	1	1	1	2	3	4	2
Nodo final:	2	3	4	5	5	5	3
Tiempo normal:	3	4	5	8	3	5	0
Tiempo mínimo:	2	2	3	6	2	3	0
Coste normal:	3000	4000	5000	5000	3000	4000	0
Coste máximo:	5000	6000	8000	6000	4000	8000	0
Camino 1:	1	0	0	1	0	0	0
Camino 2:	0	1	0	0	1	0	0
Camino 3:	0	0	1	0	0	1	0
Camino 4:	1	0	0	0	1	0	1

CPM con CD Ejemplo

- Los caminos posibles son:
 - C1: A D
 - C2: B E
 - C3: CF
 - C4: A Dummy E
- *Tiempos totales* 'normales' de cada camino:
 - DTNC1 = 3+8 = 11
 - DTNC2 = 4+3=7
 - DTNC3 = 5+5 = 10
 - DTNC4 = 3+0+3=6
- Camino crítico: el de duración mayor:
 - CC = C1
- La duración total normal del proyecto es la del camino crítico:
 - DTNP = DTNC1 = 11
- El **coste total normal** del proyecto es:

- En el ejemplo es:
 - CTNP = 3000+4000+5000+5000+3000+4000+0 = 24000

$$CTNP = \sum_{i=1}^{i=n} C_i$$

CPM con CD Primera Aproximación

- Duraciones actuales en primera aproximación:
 - Son iguales a las duraciones normales:
 - TAk(1) = Tk
- Costes actuales en primera aproximación:
 - Aplicando lo anterior a la fórmula en [T50] resulta:
 - CAk(1) = Ck
- Coste total actual del proyecto:

$$CTAP = \sum_{k=1}^{k=n} CA_k$$

- siendo n=número de actividades y CAk=coste actual de la actividad k=ij.
- En el ejemplo, el coste total actual en primera aproximación es: CTAP = 3000+4000+5000+5000+3000+4000+0 = 24000 (coincide con el CTNP)

CPM con CD Optimización

- Optimizar el coste total actual:
- **Objetivo**: Buscar la manera de <u>reducir la duración total del proyecto</u> desde un tiempo DTNP a un tiempo DTAP con un <u>incremento de costes mínimo</u>:
 - DTAP <= DTNP
- Método: Minimizar el valor de CTAP cambiando las duraciones actuales.
- **Solución**: Problema de programación lineal típico (método simplex):
 - ¿qué valores de las duraciones actuales TAk hacen mínimo el valor de CTAP?

Restricciones:

- La duración de una actividad debe ser mayor o igual que la duración mínima:
 - TMk <= TAk
- La duración de una actividad debe ser menor o igual que la duración normal (queremos minimizar):
 - TAk <= Tk
- Todos los caminos tienen un tiempo máximo igual a la nueva duración total del proyecto:
 - DTACk <= DTAP

CPM con CD Ejemplo

• **Optimización**: con DTAP=10, utilizando el Solver de Excel se obtiene:

Actividad:	A	В	C	D	Е	F	Dum
Tiempo normal:	3	4	5	8	3	5	0
Tiempo mínimo:	2	2	3	6	2	3	0
Coste normal:	3000	4000	5000	5000	3000	4000	0
Coste máximo:	5000	6000	8000	6000	4000	8000	0
Tiempo actual:	3	4	5	7	3	5	0
Coste actual:	3000	4000	5000	5500	3000	4000	0

Explicación: la forma más económica de reducir la duración del proyecto de 11 a 10 unidades de tiempo, es reduciendo la duración de la actividad D de 8 a 7 unidades de tiempo, lo que supone un incremento de los costes de dicha actividad, y por tanto, del proyecto en su conjunto, de 500 unidades de coste.

CPM con CD Ejemplo

- Nuevos resultados:
 - DTAC1=10, DTAC2=7, DTAC3=10, DTAC4=6
 - Caminos críticos: C1 y C3.
 - Duración total del proyecto: DTAP = 10
 - Coste total del proyecto: CTAP = 24500
- Resumen de las posibles optimizaciones:
 - No es posible reducir el tiempo total por debajo de 8, debido a los tiempos mínimos de las actividades:
 - DTP(mínima) = 8 (el C1 no puede durar menos de 6+2=8).

DTP:	11	10	9	8
CTP:	24000	24500	26500	30000

Representaciones del Calendario

Cronograma de Hitos

Identificador de la	Descripción de la Actividad		Periodo de Tiempo del Cronograma del Proyecto					
Actividad			Periodo 1	Periodo 2	Periodo 3		Periodo 4	Periodo 5
1.1.MB	Proporcionar el Entregable Z del Nuevo Producto - Iniciado	0						
1.1.1.M1	Componente 1 - Completado	0				\Diamond		
1.1.2.M1	Componente 2 - Completado	0	4 6 8 8		\Diamond	' !		
1.1.MF	Proporcionar el Entregable Z del Nuevo Producto – Terminado	0						\Diamond

Cronograma Resumen

Identificador	de la Descripción de la Actividad		Periodo de Tiempo del Cronograma del Proyecto					
Actividad			Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	
1.1	Proporcionar el Entregable Z del Nuevo Producto	120						
1.1.1	Paquete de Trabajo 1 - Desarrollar Componente 1	67						
1.1.2	Paquete de Trabajo 2 - Desarrollar Componente 2	53						
1.1.3	Paquete de Trabajo 3 - Integrar Componentes	53						

Representaciones del Calendario

Cronograma detallado con Relaciones Lógicas

	rama detanado con riciaciones Eogicas	Unidades					
ldentificador de la	la Descripción de la Actividad		Per	iodo de Tiem	oo del Cronog	rama del Proy	ecto
Actividad			Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5
1.1.MB	Proporcionar el Entregable Z del Nuevo Producto – Iniciado	0	== 				
1.1.1	Paquete de Trabajo 1 - Desarrollar Componente 1	67					
1.1.1.D	Diseñar Componente 1	20			i		
1.1.1.B	Construir Componente 1	33		•			
1.1.1.T	Probar Componente 1	14			L		
1.1.1.M1	Componente 1 - Completado	0			1		
1.1.2	Paquete de Trabajo 2 - Desarrollar Componente 2	53					
1.1.2.D	Diseñar Componente 2	14		Ь			
1.1.2.B	Construir Componente 2	28	-				
1.1.2.T	Probar Componente 2	11		- ►[
1.1.2.M1	Componente 2 - Completado	0		l	+		
1.1.3	Paquete de Trabajo 3 - Desarrollar Componentes	53			│	<u> </u>	
1.1.3.G	Integrar Componentes 1 y 2	14					
1.1.3.T	Probar el Producto Integrado Z	32				>	
1.1.3.P	Entregar Producto Z	7					
1.1.MF	Proporcionar el Entregable Z del Nuevo Producto – Terminado	0					└

Introducción. Mapa

PM	1BOK 2013	Contenidos del Módulo C=conceptos, T=técnicas y herramientas, S=salidas, N =normas				
Grupo Proceso						
	Planificar la Gestión de Tiempos	S: Plan de Gestión de Tiempos				
	Definir las Actividades	S: Lista de Actividades C: Restricciones y Asunciones				
Planificación	Establecer la Secuencia de Actividades	C: Tipos de Dependencias entre Actividades C: Tipos de Precedencia entre Actividades T: Diagramas de Precedencias T: Diagramas de Flechas				
	Estimar los Recursos de las Actividades	S: Requisitos de Recursos de las Actividades S: Estructura de Desglose de Recursos T: Juicio de Expertos T: Software de Gestión de Proyectos				
	Estimar la Duración de las Actividades	T: Juicio de Expertos T: Estimación por Analogía T: Simulación Montecarlo				
	Desarrollar el Cronograma	T: Método del Camino Crítico (PERT; CPM) T: Compresión del Cronograma O: Representación del Calendario (Gantt, Hitos,)				
Seguimiento y Control	Controlar el Cronograma	T: Análisis de Variación				

- Determinar el estado actual del cronograma del proyecto
- · Influir sobre los factores que crean cambios en el cronograma
- Determinar que el cronograma del proyecto ha cambiado
- Gestionar los cambios reales a medida que suceden

Es una parte del proceso Control Integrado de Cambios

Técnicas Relevantes:

- Análisis de Variación
 - Se hace durante el Seguimiento del cronograma. Se comparan las fechas del cronograma objetivo con las fechas de inicio y finalización reales
 - Proporciona información útil para la detección de desviaciones y para la implementación de acciones correctivas en caso de retrasos.
- Diagramas de Barras Comparativos del Cronograma
 - Muestra gráficamente con dos barras (estado real y estado línea base) dónde el cronograma ha avanzado según lo previsto o dónde se ha producido un retraso.
 - Ver Diagrama de Gantt de Seguimiento

- Técnicas Relevantes:
 - Diagramas de Barras Comparativos del Cronograma
 - Ej Gantt Seguimiento

- Otras técnicas:
 - Revisiones del Rendimiento
 - Producen la Variación del Cronograma (SV) y el Índice de Rendimiento del Cronograma (SPI) que sirven para evaluar la magnitud de todas las variaciones
 - Software de Gestión de Proyectos
 - Seguimiento
 - Análisis que pasa si ...
 - Ajuste de Adelantos y Retrasos
 - Para ajustar el plan y alinearlo de nuevo
 - Compresión del Cronograma
 - Nivelación de Recursos