AND FORMITLATENG T'e OD Pro ova

FORMULATING ABM

- First think about the problem, data, ideas, and hypotheses, to the first formal and rigorous representation of the model.
- Helps the Models author
 - Think Clearly
 - Identify design decisions and assumptions
 - Plan for Model Implementation
- Helps others to understand the research output
 - Most importantly replicate the results

FORMULATING ABM - Objective

- Communication
- Replication
- Comparison
- Cross-Discipline Uniformity

FORMULATING ABM

- The ABM Community has thought about this
- They support universal standard for guided-documentation of the model
- OpenABM (Comses) Standard
 - https://www.comses.net/resources/standards/
- Introducing the ODD protocol!

ODD PROTOCOL

- Developed by Grimm et al in 2006
 - Along with several senior ABM researchers
- interestingly named based on the parts they contain
 - Overview
 - Design
 - Detail
 - ODD protocol
- Simple and easy
- Provides a way to think about and also describe Agent based models

ODD PROTOCOL ELEMENTS

- Overview
 - What the model is about
 - What patterns does it capture
- Design
 - How is the model designed
 - Essential Characteristics
- Details
 - Initialization
 - Inputs
 - Behavior (Submodels)

+

	Elements of the ODD protocol
Overview	1. Purpose and patterns
	2. Entities, state variables, and scales
	3. Process overview and scheduling
Design concepts	4. Design concepts
	Basic principles
	Emergence
	Adaptation
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	 Collectives
	Observation
Details	5. Initialization
	6. Input data
	7. Submodels

OVERVIEW – PURPOSE (1A)

- What system are we modeling and what are we trying to learn from it
 - The right level of abstraction for the model
 - The right assumptions (or acceptable assumptions)
 - Things that are safe to ignore
- Remember the designing an ABM is an iterative process
 - When we are stuck at making a design decision, we always comeback to ponder and redefine the Purpose of the model
 - This in turn will refine
 - Abstraction and assumptions

OVERVIEW – PATTERNS (1B)

- Criteria to decide the coverage (realism) of the model
 - What set of patterns would the model account for
 - The following analogy helps a software engineer to understand
 - Interface design
 - Exception handling & Unit Testing
 - TDD Test driven development
 - Example: Agent based model to study tiger population in Chitwan national park (Carter et al 2015)
 - The model will reproduce and account for the following patterns (driven by the same processes)
 - Ranges in birth rates and Juvenile survival
 - Overlap between female and male territories
 - Negative relation between territory size and prey abundance

OVERVIEW – ENTITIES, STATE VARIABLES AND SCALES (2)

- The kind of things represented in the model
 - The variables and attributes used to characterize them.
 - Agent Entities
 - Environment Entities
- The state variables of the entities
 - Properties (ex: age, size, opinion, etc)Think turtles or breeds own or patches-own
 - Global variables that affect all agents Temperature etc.
- Temporal scale Ticks <-> seconds/hours
- Spatial Scale Patch <-> m/km/cm

OVERVIEW – PROCESS AND SCHEDULING(3)

- Processes represent the behavior of the agents in model
 - What does the agents do
 - What changes happen to the environment
 - Either due to time or interaction
- Not just agent processes we need to describe observer processes which collects data
- Processes can be simple 'move randomly'
- Processes can be complex 'adjust speed based on preceding-car' in which case we describe this as a submodel and explain in later sections
- Scheduling: when does these process happens
 - At every tick (or some constant frequency)
 - At night times only (i.e. based on some environment condition)

DESIGN CONCEPTS – BASIC PRINCIPLES

- What general concepts, theories, hypotheses, or modeling approaches underlie the model's design?
- How is the model related to previous thinking about the problem it addresses?
- How were these principles incorporated in the model's design?
- Does the model implement the principles in its design, or address them as a study topic,
 - e.g., by evaluating and proposing alternatives to them?

DESIGN CONCEPTS - EMERGENCE

- What are the model's important results and outputs?
- Which of them emerge from mechanistic representation of the adaptive behavior of individuals
- (Vs) which are imposed by rules that force the model to produce certain results?

DESIGN CONCEPTS - ADAPTATION

- What adaptive behaviors do agents have, and why?
 - In what ways can they respond to changes in their environment and themselves?
- What decisions do they make?
- How are these behaviors modeled?
 - Do submodels of adaptive behavior assume agents choose among alternatives by explicitly considering which is most likely to increase some specific objective (direct objective-seeking),
 - (Or) do they simply force agents to reproduce behavior patterns observed in real systems (indirect objective-seeking)?

DESIGN CONCEPTS - OBJECTIVES

- For direct objective-seeking
 - what measure of agent objectives (for example, "fitness" in ecology, "utility" in economics) is used to rate decision alternatives?
 - This objective measure is the agent's internal model of how it would benefit from each choice it might make.
 - What elements of future success are in the objective measure (e.g., survival to a future reproductive period; probability of staying in business for some period; profits at the next reporting period)?
 - How does the objective measure represent processes that link adaptive behaviors to important variables of the agents and their environment?

DESIGN CONCEPTS – OBJECTIVES (CONTD)

- How were the variables and mechanisms in the objective measure chosen, considering the model's purpose and the real system it represents?
 - e.g., risks of mortality or going out of business, the conditions necessary for reproduction or profitability
- How is the agent's current internal state considered in modeling decisions?
- Does the objective measure change as the agent changes?

DESIGN CONCEPTS - LEARNING

• Do individuals change how they make adaptive decisions over time as a consequence of their experience? If so, how?

DESIGN CONCEPTS - PREDICTION

- How do agents predict future conditions (environmental and internal) in their submodels for adaptive behavior?
- What assumptions about, or mechanisms of, the real individuals being modeled were the basis for how prediction is modeled?
- How does simulated prediction make use of mechanisms such as memory, learning, or environmental cues?
 - Or is it "tacit," i.e., only implied in simple rules for adaptive behavior?

DESIGN CONCEPTS - SENSING

- What variables of their environment and themselves are agents assumed to sense and therefore be able to consider in their behavior?
- What is the basis for these assumptions?
- What sensing mechanisms are modeled explicitly, and which sensed variables are agents instead assumed simply to "know"?
- With what accuracy or uncertainty are agents assumed to "know" or sense which variables?
 - Over what distances (in geographic, network, or other space)?

DESIGN CONCEPTS - INTERACTION

- How do the model's agents interact?
- Do they interact directly with each other (e.g., does one agent directly change the state of others)?
- Or is interaction mediated, such as via competition for a resource?
- With which other agents does an agent interact?
- What real interaction mechanisms were the model's representation of interaction based on?
 - At what temporal and spatial scales they occur?

DESIGN CONCEPTS - STOCHASTICITY

- How are stochastic processes (based on pseudorandom numbers) used in the model and why? Are stochastic processes used:
 - To initialize the model?
 - Because it is believed important for some processes to be variable but unimportant to represent the causes of variability?
 - To reproduce observed behaviors using empirically determined probabilities?

DESIGN CONCEPTS - COLLECTIVES

- Are collectives—aggregations of agents that affect the state or behavior of member agents and are affected by their members—represented in the model?
- If so, how are collectives represented?
- Do they emerge from the behaviors of agents, or are agents given behavior submodels that impose the formation of collectives
- Or are the collectives modeled as another type of agent with its own behaviors and state variables?

DESIGN CONCEPTS - OBSERVATION

- What outputs from the model are needed to observe its internal dynamics as well as its system-level behavior?
- What tools (graphics, file output, data on individuals, etc.) are needed to obtain these outputs?
- What outputs and analyses are needed to test the model against the criteria for usefulness—usually, a set of patterns—defined in the "Purpose and patterns" element?
- What outputs are needed to solve the problem the model was designed for?

EXAMPLES & TEMPLATES

- https://www.sciencedirect.com/science/article/pii/S0304380015002574
- http://www.railsback-grimm-abm-book.com/E2-Downloads/Chapter03/ODD GuidanceChecklists 2020.pdf

