Goal: basis and dimension for linear subspaces of \mathbb{R}^2 and \mathbb{R}^3 , Fourier formula, Dimension Criterion

A basis for a nonzero linear subspace V in \mathbb{R}^n is a spanning set for V consisting of exactly dim(V) vectors.

Dimension Criterion. For two nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have $\dim(\operatorname{span}(\mathbf{v}, \mathbf{w})) = 2$ except for precisely when the vectors are scalar multiples of each other, in which case the dimension is 1. For three nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^n$ with span V, we have $\dim(V) = 3$ except for precisely the following

- 1. all three vectors are scalar multiples of each other, in which case $\dim(V) = 1$;
- 2. exactly two of the vectors are scalar multiples of each other, in which case $\dim(V) = 2$;
- 3. no \mathbf{v}_i is a scalar multiple of another \mathbf{v}_j but some \mathbf{v}_i is a linear combination of the other two, in which case $\dim(V) = 2$ and every \mathbf{v}_i is a linear combination of the other two.

Example 1. Consider the following pairs of nonzero vectors. What is the dimension of the span of each pair?

(a)
$$\mathbf{v} = \begin{bmatrix} 3/2 \\ -2 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} -2 \\ 8/3 \end{bmatrix}$ $\overrightarrow{\mathbf{w}} = -\frac{4}{3} \overrightarrow{\mathbf{v}} \Rightarrow \mathbf{dim} = \mathbf{1}$.

(b)
$$\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ 5 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} 3 \\ -6 \\ 15 \end{bmatrix}$ $\vec{\mathbf{w}}$ and $\vec{\mathbf{v}}$ are not scalar multiples of each other \Rightarrow dim = 2.

(c)
$$\mathbf{v} = \begin{bmatrix} 3 \\ 6 \\ -15 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} 2 \\ 4 \\ -10 \end{bmatrix}$ $\overrightarrow{\mathbf{w}} = \frac{2}{3} \overrightarrow{\mathbf{v}} \Rightarrow \mathbf{dim} = \mathbf{1}$.

Example 2. Recall Example 3 from Lecture 4, where we showed that the set U of 4-vectors perpendicular

to
$$\begin{bmatrix} 2\\1\\5\\1 \end{bmatrix}$$
 can be spanned by $\begin{bmatrix} 1\\-2\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\-5\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}$. What is the dimension of U ?

The three vectors are not scalar multiples of each other. Also, $\begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$ cannot be ex-

pressed as a linear combination of $\begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -5 \\ 1 \\ 0 \end{bmatrix}$ because any linear combination of

the two would have 0 as its fourth component. Thus, dim u = 3

Example 3. Consider the linear subspace V of \mathbb{R}^3 that is spanned by $\mathbf{v}_1 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$, and

 $\mathbf{v}_3 = \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix}$. In Example 9 from Lecture 4, we showed that $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is not \mathbb{R}^3 . Show that $\dim(V) < 3$ by using the Dimension Criterion.

 $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$ are not scalar multiples of each other. Thus, dim $V \ge 2$. Now we check if one of them can be written as a linear combination of the other two.

$$\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = a \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix} = \begin{bmatrix} 2b \\ 2a - 4b \\ -a + 3b \end{bmatrix} \Rightarrow \begin{cases} 2b = 3 \\ 2a - 4b = -1 \\ -a + 3b = 2 \end{cases}$$

Solving the system, we get $a = \frac{5}{2}$ and $b = \frac{3}{2}$, and thus, $\vec{V_1} = \frac{5}{2}\vec{V_2} + \frac{3}{2}\vec{V_3}$. Hence, by dimension criterion, dim V = 2.

A collection of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ is said to be **orthogonal** if all the vectors are perpendicular to others. In other words, for any different i and j, $\mathbf{v}_i \cdot \mathbf{v}_j = 0$.

Theorem 5.2.2. If $\mathbf{v}_1, \dots, \mathbf{v}_k$ is an orthogonal collection of *nonzero* vectors in \mathbb{R}^n , then it is a basis for span $(\mathbf{v}_1, \dots, \mathbf{v}_k)$. In particular, the span has dimension k, and we call $\mathbf{v}_1, \dots, \mathbf{v}_k$ an **orthogonal basis** for the span. Note that a single nonzero vector is always an orthogonal basis for its span.

Example 4. Let us revisit Example 3, where we showed that $\dim(V) = 2$. Find an orthogonal basis for V.

We need to find $\vec{w} \in V$ that is perpendicular to $\vec{V_2}$, say $\vec{w} = a\vec{V_2} + b\vec{V_3}$. Then, $0 = \vec{V_2} \cdot \vec{w} = a\vec{V_2} \cdot \vec{V_3} + b\vec{V_2} \cdot \vec{V_3} = 5a - 11b$,

and so, $b = \frac{5}{11} a \cdot S_0$,

$$\vec{w} = a\vec{v_1} + \frac{5}{11}a\vec{v_2} = \frac{a}{11}(11\vec{v_2} + 5\vec{v_3}) = \frac{a}{11}\begin{bmatrix} 10\\2\\4 \end{bmatrix} = \frac{20}{11}\begin{bmatrix} 5\\2\\1 \end{bmatrix}.$$

We found $\begin{bmatrix} 5\\1\\2 \end{bmatrix} \in V$ and $\begin{bmatrix} 5\\1\\2 \end{bmatrix} \perp \begin{bmatrix} 0\\2\\-1 \end{bmatrix}$, and so, $\left\{ \begin{bmatrix} 5\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1 \end{bmatrix} \right\}$ is an orthogonal basis for V.

Note Try to find an orthogonal basis containing Vs.

Theorem 5.2.5. Every nonzero linear subspace of \mathbb{R}^n has an orthogonal basis.

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

A collection of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ is called **orthonormal** if they are orthogonal and they are all unit vectors. Note that Theorem 5.2.2 implies that any orthonormal collection of vectors is a basis of its span.

Example 5. The standard basis for \mathbb{R}^n

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \mathbf{e}_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

is an orthonormal basis.

Example 6. Which of the following are orthogonal/orthonormal bases of \mathbb{R}^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 orthogonal basis of \mathbb{R}^3

(b)
$$\left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \right\}$$
 orthogonal, but not a basis of \mathbb{R}^3

(c)
$$\left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 non-orthogonal basis of \mathbb{R}^3

Fourier formula. (Theorem 5.3.6) For any orthogonal collection of nonzero vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $\mathbf{v} \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$,

$$\mathbf{v} = \sum_{i=1}^k \left(\frac{\mathbf{v} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i} \right) \mathbf{v}_i.$$

In particular, if the \mathbf{v}_i 's are all unit vectors, then $\mathbf{v} = \sum (\mathbf{v} \cdot \mathbf{v}_i) \mathbf{v}_i$.

Example 7. Let $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$. Apply the Fourier formula with the standard basis.

Setting
$$\vec{\nabla} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, we get

$$\left(\frac{\vec{\nabla} \cdot \vec{e_1}}{\vec{e_1} \cdot \vec{e_1}}\right) \vec{e_1} = \chi \vec{e_1}, \quad \left(\frac{\vec{\nabla} \cdot \vec{e_2}}{\vec{e_2} \cdot \vec{e_2}}\right) \vec{e_2} = \chi \vec{e_2}, \quad \left(\frac{\vec{\nabla} \cdot \vec{e_2}}{\vec{e_2} \cdot \vec{e_2}}\right) \vec{e_3} = \vec{e_3}$$

So, by Fourier formula, V=xe,+yez+ze3

Example 8. Consider the orthogonal basis $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ from Example 6. Express $\begin{bmatrix} 3\\-1\\5 \end{bmatrix}$ and $\begin{bmatrix} 5\\1\\3 \end{bmatrix}$ as linear combinations of the basis vectors by using Fourier formula.

We see that
$$(\frac{\vec{\mathcal{U}} \cdot \vec{V_1}}{\vec{\mathcal{V}}_1 \cdot \vec{V_1}}) \vec{V_1} = \frac{2}{2} \vec{V_1} = \vec{V_1}, (\frac{\vec{\mathcal{U}} \cdot \vec{V_2}}{\vec{V_2} \cdot \vec{V_2}}) \vec{V_2} = \frac{4}{2} \vec{V_2} = 2 \vec{V_2}, (\frac{\vec{\mathcal{U}} \cdot \vec{V_3}}{\vec{V_2} \cdot \vec{V_2}}) \vec{V_3} = \frac{5}{1} \vec{V_3} = 5 \vec{V_3}.$$
By Fourier formula, $\vec{\mathcal{U}} = \vec{V_1} + 2 \vec{V_2} + 5 \vec{V_3}$

Indeed,
$$\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Similarly, $\frac{\vec{W} \cdot \vec{V_1}}{\vec{V_1} \cdot \vec{V_1}} = 3$, $\frac{\vec{W} \cdot \vec{V_2}}{\vec{V_2} \cdot \vec{V_2}} = 2$, and $\frac{\vec{W} \cdot \vec{V_3}}{\vec{V_3} \cdot \vec{V_3}} = 3$, and so, by Fourier formula, we have $\vec{W} = 3\vec{V_1} + 2\vec{V_2} + 3\vec{V_3}$.

Indeed,
$$\begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example 9. Find an orthogonal basis for the plane in \mathbb{R}^3 defined by the equation 2x - 3y - z = 0. (There are many possible answers.)

One vector on the plane is $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ (obtained by picking x=1 and y=0). To round out an orthogonal basis, we need a vector on the plane that is orthogonal to $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$, say

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
. This needs to be perpendicular to $\begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ as well. Hence,

$$\begin{cases} \alpha + 2c = 0 \\ 2\alpha - 3b - c = 0 \end{cases} \Rightarrow \alpha = -2c, b = -\frac{5}{3}c \Rightarrow \begin{bmatrix} -2c \\ -\frac{5}{3}c \\ c \end{bmatrix} = \frac{c}{3}\begin{bmatrix} -6 \\ -5 \\ 3 \end{bmatrix}.$$

Thus,
$$\left\{\begin{bmatrix}1\\0\\2\end{bmatrix},\begin{bmatrix}-6\\-5\\3\end{bmatrix}\right\}$$
 is an orthogonal basis for the plane.

Example 10. This exercise illustrates the important general fact (to be discussed in detail in Chapter 19) that every nonzero subspace of \mathbb{R}^n has an orthogonal basis. Consider the collection W of vectors in \mathbb{R}^4

orthogonal to
$$\mathbf{v} = \begin{bmatrix} 1\\1\\2\\0 \end{bmatrix}$$
 and $\mathbf{v}' = \begin{bmatrix} 0\\2\\1\\-1 \end{bmatrix}$; that is,

$$W = \left\{ \mathbf{x} \in \mathbb{R}^4 : x_1 + x_2 + 2x_3 = 0, 2x_2 + x_3 - x_4 = 0 \right\}.$$

(a) Show that W is a linear subspace of \mathbb{R}^4 by expressing it as the span of two vectors.

If
$$\vec{w} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in W$$
, then $x_1 = -x_2 - 2x_3$ and $x_4 = 2x_2 + x_3$. So,
$$\vec{w} = \begin{bmatrix} -x_2 + 2x_3 \\ x_2 \\ x_3 \\ 2x_2 + x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Thus,
$$W = span \begin{pmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$$
.

(b) Find an orthogonal pair of nonzero vectors $\{\mathbf{w}_1, \mathbf{w}_2\}$ in W. (Hint: take \mathbf{w}_1 to be one of the vectors that you found in (a), and then \mathbf{w}_2 must be orthogonal to that and satisfy the two equations defining W).

Take
$$\vec{W}_1 = \begin{bmatrix} -1\\1\\0\\2 \end{bmatrix}$$
. We need \vec{W}_2 to satisfy

①
$$\vec{W}_2 \in W$$
, i.e., $\vec{W}_2 = \alpha \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ for some α and β .

Then,
$$\overrightarrow{W}_1 \cdot \overrightarrow{W}_2 = 6\alpha + 4\beta = 0$$
, and so, $\alpha = -\frac{2}{3}\beta$. Thus,

$$\overrightarrow{W_2} = -\frac{2}{3}\beta \begin{bmatrix} -1\\1\\0\\2 \end{bmatrix} + \beta \begin{bmatrix} -2\\0\\1\\1 \end{bmatrix} = \frac{\beta}{3}\begin{bmatrix} -4\\-2\\3\\-1 \end{bmatrix}.$$

Hence,
$$\left\{\begin{bmatrix} -1\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} -4\\-2\\3\\-1 \end{bmatrix}\right\}$$
 is an orthogonal basis for W .