Big data science Day 4

F. Legger - INFN Torino https://github.com/Course-bigDataAndML/MLCourse-2223

We learned

- Big data
- Analytics
- ML

Today

- Deep learning
 - Neural networks: brief history, main architectures and how to train them

Deep Learning is a subfield of ML concerned with algorithms inspired by the structure and function of the brain called artificial neural networks [Jason Brownlee]

Machine translation Real-time translation into Mandarin Chinese (2012)

Visual recognition, CNN better than humans (2012)

Self driving cars, Tesla autopilot (2014)

Chatbots, CHAT GPT (2022)

Creativity NST (2015), GAN (2014)

Strategy games DeepMind beats Go world champion (2017)

Short recap: Neuron

$$x_1 \rightarrow x_1 * w_1$$

$$x_2
ightarrow x_2 * w_2$$

 all the weighted inputs are added together with a bias b

$$(x_1*w_1)+(x_2*w_2)+b$$

• the sum is passed through an activation function f

$$y = f(x_1 * w_1 + x_2 * w_2 + b)$$

Neural network

- Combining more neurons
- A hidden layer is any layer between the input (first) layer and output (last) layer
 - There can be multiple hidden layers
- Feedforward: process of passing inputs forward to get an output

Input Layer

Hidden Layer

Output Layer

This network has:

- one **input** layer with 2 inputs
- one hidden layer with 2 neurons
- one output layer with 1 neuron

Deep Learning

- Neural network with several layers
 - Deep vs shallow
- A family of parametric models which learn non-linear hierarchical representations:

Brief history of neural networks

1943 - McCulloch & Pitts Model

- Early model of artificial neuron
- Generates a binary output
- The weights values are fixed

Dendrites

Nucleus

Axon

Synapses

1958 - Perceptron by Rosemblatt

- Perceptron as a machine for linear classification
- Main idea: Learn the weights and consider bias.
 - · One weight per input
 - · Multiply weights with respective inputs and add bias
 - · If result larger than threshold return 1, otherwise O

First NN winter

 1970- Minsky. The XOR cannot be solved by perceptrons.

 Neural models cannot be applied to complex tasks.

Multi-layer Feed Forward Neural Network

 1980s. Multi-layer Perceptrons (MLP) can solve XOR.

ML Feed Forward Neural Networks:

- Densely connect artificial neurons to realize compositions of non-linear functions
- The information is propagated from the inputs to the outputs
- The input data are usually n-dimensional feature vectors
- Tasks: Classification, Regression

How to train it?

- Rosenblatt algorithm* not applicable, as it expects to know the desired target
 - For hidden layers we cannot know the desired target
- Learning MLP for complicated functions can be solved with Back propagation** (1980)
 - efficient algorithm for complex NN which processes large training sets

^{*} Remember? Rosenblatt developed a method to train a single neuron

^{**} later today

1990s - CNN and LSTM

- Important advances in the field:
 - Backpropagation
 - Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)
 - Convolutional Neural Networks LeNet: OCR solved before 2000s (LeCun, 1998).

Second NN Winter

- NN cannot exploit many layers
 - Overfitting
 - Vanishing gradient (with NN training you need to multiply several small numbers → they become smaller and smaller)
- Lack of processing power (no GPUs)
- Lack of data (no large annotated datasets)
- Kernel Machines (e.g. SVMs) suddenly become very popular^o

ImageNet

A Large-Scale Hierarchical Image Database (2009)

2012 - AlexNet

- Hinton's group implemented a CNN similar to LeNet [LeCun1998] but...
 - Trained on ImageNet (1.4M images, 1K categories)
 - With 2 GPUs
 - Other technical improvements (ReLU, dropout, data augmentation)

Convolutional Neural Networks (CNN)

- Convolutional layer: two functions produce a third that describes how the shape of one is changed by the other
- pooling layer: reduce dimensionality

4	1	5	0	2
7	8	9	8	Max pooling
3	5	6	5	
2	4	1	0	

AlexNet

- 60M parameters
- Limited information exchange between GPUs

Why Deep Learning now?

- Three main factors:
 - Better hardware
 - Big data
 - Technical advances:
 - · Layer-wise pretraining
 - Optimization (e.g. Adam, batch normalization)
 - Regularization (e.g. dropout)

...

Rectified Linear Units - Activation function (2010)

$$f(x) = \max(0, x)$$

 More efficient gradient propagation: (derivative is O or constant)

- More efficient computation: (only comparison, addition and multiplication).
- Sparse activation: e.g. in a randomly initialized networks, only about 50% of hidden units are activated (having a non-zero output)

Activation functions

- Classification: sigmoid functions
 - sigmoids and tanh functions are sometimes avoided due to the vanishing gradient problem
- ReLU function is a general activation function
- dead neurons in our networks -> the leaky ReLU
- ReLU function should only be used in the hidden layers
- As a rule of thumb, start with ReLU

Sigmoid

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

Regularization

- One of the major aspects of training the model is overfitting -> the ML model captures the noise in your training dataset
- The **regularization** term is an addition to the loss function which helps generalize the model
 - **L1** or Lasso regularization adds a penalty which is the sum of the absolute values of the weights $Min(\sum_{i=1}^{n}(y_i-w_ix_i)^2+p\sum_{i=1}^{n}|w_i|)$
 - L2 or Ridge regularization adds a penalty which is the sum of the squared values of weights
 - $Min(\sum_{i=1}^{n} (y_i w_i x_i)^2 + p \sum_{i=1}^{n} (w_i)^2)$ L2+MSE
- Early Stopping is a time regularization technique which stops training based on given criteria

Regularization - Dropout

- For each instance drop a node (hidden or input) and its connections with probability p and train
- Final net just has all averaged weights (actually scaled by 1-p)
- As if ensembling 2ⁿ different network substructures

Data augmentation

- Techniques to significantly increase the diversity of data available for training models, without actually collecting new data
- Data augmentation techniques such as cropping, padding, and horizontal flipping are commonly used to train large neural networks

Horizontal Flip

Pad & Crop

Rotate

Now What ?!!

Training a neural network

- **Problem:** Predict gender from weight and height
- Input Dataset:

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F

Features

Labels

1. Feature engineering

17

-15

Charlie

Diana

- Symmetrize numeric values
- Category -> numbers

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F
Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1
Bob	25	6	0
			•

4

-6

Ingredients

- **n**: 4, number of samples (Alice, Bob, Charlie, Diana)
- Inputs: X, dimension = 2
 - weights (X₁) and heights (X₂)
- Features: $x = (x_1, x_2)$, transformed inputs
- y : variable being predicted (Gender)
- \mathbf{y}_{true} : true value of y

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1
Bob	25	6	0
Charlie	17	4	0
Diana	-15	-6	1

2. Model

- \mathbf{y}_{pred} : predicted value of $y = \mathbf{o}$
- Neural network: with 1 hidden layer with 2 neurons
- Outputs of the hidden layer: h
- Unknown parameters: weights w and biases b

Some math

- For each neuron: $y_j = b_j + f \sum_i x_i w_{ij}$, **f** is the activation function
- For the net:
 - $h_1 = f(w_1x_1 + w_2x_2) + b_1$
 - $h_2 = f(w_3x_1 + w_4x_2) + b_2$
 - \circ $o_1 = f(w_5h_1 + w_6h_2) + b_3$

3. Model training

- Training the network == Find weights w and biases b that minimize the loss
- Loss function L: MSE

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_{true} - y_{pred})^2$$

Find weights w and biases b to minimise

$$L(w_1, w_2, w_3, w_4, w_5, w_6, b_1, b_2, b_3)$$

Typically, this is already implemented in ML software packages

Back propagation

- Minimization taking partial derivatives
- For very simple case: with only Alice in the dataset, n=1

Stochastic Gradient Descent (SGD)

- Start with randomly initialised weights
- update equation:

$$w_1 \leftarrow w_1 - \eta \frac{\partial L}{\partial w_1}$$

 η is a constant called the learning rate that controls how fast we train

- If $\frac{\partial L}{\partial w_1}$ is positive, w_1 will decrease, which makes L decrease.
- If $\frac{\partial L}{\partial w_1}$ is negative, w_1 will increase, which makes L decrease.
- Stochastic vs Batch (BGD)-> the parameters are updated using only one single training instance (usually randomly selected) in each iteration vs the whole training set (== batch)

Mini-batch gradient descent

- Use mini-batch sampled in the dataset for gradient estimate.
- Sometimes helps to escape from local minima
- · Noisy gradients act as regularization
- · Variance of gradients increases when batch size decreases
- Not clear how many sample per batch

What happens in **one epoch** for SGD:

- 1. Take a random sample
- Feed it to Neural Network
- 3. Calculate its gradient
- 4. Use the gradient we calculated in step 3 to update the weights
- 5. Repeat steps 1–4 for all the examples in training dataset

What happens in one epoch for Mini-BGD:

- 1. Pick a mini-batch
- Feed it to Neural Network
- Calculate the mean gradient of the mini-batch
- 4. Use the mean gradient we calculated in step 3 to update the weights
- 5. Repeat steps 1–4 for the mini-batches we created

Batch gradient descent
 Mini-batch gradient Descent

Stockastic and int descent

Stochastic gradient descent

Take home messages

- **Gradient descent** is an iterative learning algorithm that uses a training dataset to update a model.
 - **BGD**: Batch Size = Size of Training Set
 - **SGD**: Batch Size = 1
 - Mini-BGD. 1 < Batch Size < Size of Training Set
- The **batch size** is a hyperparameter of gradient descent that controls the number of training samples to work through before the model's internal parameters are updated.

The number of **epochs** is a hyperparameter of gradient descent that controls the number of complete passes through the training dataset

Loss functions

- https://heartbeat.fritz.ai/5-regression-los s-functions-all-machine-learners-should -know-4fb140e9d4b0
- https://www.wikiwand.com/en/Loss_func tions_for_classification

Hands-on today

- 1. Point your browser to: https://yoga.to.infn.it
- 2. Open a terminal:
 - o cd MLCourse-2223
 - o git pull
 - cp Notebooks/Day3/* ../
- 3. From JupyterHub Home tab:
 - start and run ML_MCP.ipynb
- Apache ML Library <u>MLLib</u>
 - Multilayer Perceptron Classifier (MPC)
- Keras
 - Sequential model