Lecture 1: PGM DAG

Probabilistic Graphical Models, Koller and Friedman:

Chap 3

 Generative vs. Discriminative models, Bayes Nets (BN), Imap, D-separation, Markov Blankets.

Minimize Decision Error

$$P(\text{error}) = P(x \in R_2, C_1) + P(x \in R_1, C_2)$$

$$= P(x \in R_2 \mid C_1) P(C_1) + P(x \in R_1, C_2) P(C_2)$$

$$= \int_{\mathbb{R}^2} p(x \mid C_1) P(C_1) dx + \int_{\mathbb{R}^2} p(x \mid C_2) P(C_2) dx$$

3 Ways to Solve Decision Problems

1. Generative models:

```
model (learn): p(X|C), P(C);
```

Use Bayes Theorem: P(C|X) = p(X|C)P(C)/p(X)

2. Discriminative models:

infer posterior probabilities directly P(C|X)

3. Directly estimate a discriminating function that will minimize some loss.

```
f(X)=C (so no probability, ie SVM...)
```

Generative Models

Pros:

- The name generative is because we can generate samples from the learned distribution
- Perhaps p(X|C) is easier to estimate

Cons:

- With high dimensionality of X we need a large training set to determine the class-conditionals
- We may not be interested in all quantities

Discriminative Models

Pros:

No need to model p(x|C)
 which is not technically
 needed.

Cons:

No access to model
 p(x|C) which might be
 needed.

[From (4)]

PGMs: Core concepts

Key idea: PGMs effectively encode the information in a joint distribution:

E.g.,
$$P(X_1, X_2, X_3, ..., X_N)$$

- Conditional Prob: $P(X_1 | X_2) = P(X_1, X_2)/P(X_2)$
- Independence: $P(X_1 \mid X_2) = P(X_1)$
- Marginal: $P(X_1) = \sum_{x} P(X_1, X_2 = x)$
- Conditional Indep: $P(X_1 | X_2, Z) = P(X_1 | Z)$

- Directed acyclic graph
 - DAG for short
- Encodes conditional (in)dependance:
- $P(L) = \sum_{G} P(L \mid G) P(G)$
- $P(L \mid G, S, D, I) = P(L \mid G)$

• G is the 'parent' of L and D and I are 'parents' of G.

• $P(G \mid L,D,I) \neq P(G \mid D,I)$

- $P(G \mid L,D,I) \neq P(G \mid D,I)$
- A node and its descendants are conditionally independent of the non-descendants given the node's parents.

- Chain rule for Bayes Nets:
- $P(I,D,G,L,S) = P(I,D,G,L) P(S \mid I,D,G,L)$; any joint can be factored so
- $P(I,D,G,L,S) = P(I) P(D \mid I) P(G \mid I,D) P(L \mid I,D,G) P(S \mid I,D,G,L)$; repeat $= P(I) P(D) P(G \mid I,D) P(L \mid G) P(S \mid I)$; use the net $= \Pi_i P(X_i \mid Pa_{X_i})$; general BN factorization

Did you pay attention?

That last slide is the essence of why we use BN

**** Bayes Net Factorization ****

•
$$P(I,D,G,L,S) = P(I) P(D) P(G | I, D) P(L | G) P(S | I);$$

= $\Pi_i P(X_i | Pa_{X_i});$

Independence Relations

- A DAG, call it G, tells us the 'local independencies'
 - $X_i \perp Non descendants of X_i \mid Pa(X_i)$
 - $\mathcal{I}_{\ell}(G)$ is the set of all such 'local independencies' given G
- This then get connected to a similar concept for P, a probability distribution:
 - The set of all independence statements $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$ is called $\mathcal{I}(\mathsf{P})$
- $\mathcal{I}_{\ell}(G) \subseteq \mathcal{I}(P)$ means G is an **I-map** for P
- Point is now we can use G to factor P iff G is an I-map for P

Naive Bayes Net

$$P(X_1, X_2, X_3, ..., X_N, C) = \prod_{i=0..N} P(X_i | Pax_i)$$

= $P(C) \prod_{i=1..N} P(X_i | C)$

$$P(X_1, X_2, X_3..., X_N)$$

$$= \sum_{c=1...M} P(C=c) \prod_{i=1..N} P(X_i \mid C=c)$$

$$P(C=c|X_1, X_2, X_3..., X_N)$$

$$=P(X_1, X_2, X_3..., X_N, C=c)/P(X_1, X_2, X_3..., X_N)$$

Figure: Koller and Freidman – PGM Principles and Techniques

Hidden Markov Models

- Left is a Dynamic Bayes Net that is the model for each link in the right PGM (Stationary)
- $P(S \mid S')$ called Transition
- P(O'|S') called Emission
- S's are the 'hidden' states

- A ⊥ C | B, D ? yes
- D ⊥ B | A ? yes
- D ⊥ B | C, A ? no!
 C is a 'collider'
- A ⊥ C | B ? no

why? Because

P(A,B,C,D)= P(A)P(B | A)P(D | A) P(C | B, D)
 huh?

- A ⊥ C | B, D ? yes
- Lets use a shorthand:
- Small letter will mean 'that random variable takes on that value'
- P(A | B=b) = P(A | b)
 So then we reason:
- P(A,B,C,D) = P(A)P(B | A)P(D | A) P(C | B, D)
- $P(A,C,b,d) = \{P(A)P(b \mid A)P(d \mid A)\} \times \{P(C \mid b,d)\}$
- And P(A,C | b, d)=P(A,C ,b, d)/ P(b,d)

- D ⊥ B | A ? yes
- When we are missing a variable it must be marginalized.

- P(A,B,C,D) = P(A)P(B | A)P(D | A) P(C | B, D)
- $P(D, B, a) = P(a) P(B | a) P(D|a) \Sigma_C P(C | B, D)$
- $P(D, B, a) = \{P(a) \ P(B | a)\} \times \{P(D|a)\}$
- Why?

D ⊥ B | C, A ? no!
 C is a 'collider'

Sometimes what is true for the sum is not true for the individual values.

- P(A,B,C,D) = P(A)P(B | A)P(D | A) P(C | B, D)
- $P(a,B,c,D) = P(a)P(B \mid a)P(D \mid a) P(c \mid B, D)$
- Since we can not sum over the c we get B and D all mixed up in that table and so it will not factor into a B part and a D part.

D-separation a \perp b | filled node ?

Yes, Blocked:

No, d-Connected

**** D separation ****

For every $x \in X$, $y \in Y$ and a set of nodes Z, check every path U between x and y.

A path is blocked if there is a node w on U such that either

- 1. w is a collider and neither w nor any descendant is in Z, or
- 2. w is not a collider on U and w is in Z

If all such paths are blocked then X and Y are dseparated by Z. (Otherwise they are dconnected)

D-separated → X ⊥ Y | Z

d-separation

D ⊥ B | C ? no! C is

 a 'collider' and in Z

 So {C} d-connects {D,B}

D ⊥ B | A? yes
 A is not a collider in Z
 and C is a collider not in Z
 So {A} d-separates {D,B}

Markov Blanket e.g. $p(x_1, | x_{2...M}) = p(x_1, x_2, x_3, x_4) / p(x_2, x_3, x_4)$

Factors independent of X_i cancel between numerator and denominator.

That is not in some node's table along with x_i .

Markov Blanket

- We have now shown there are more independencies in the graph.
- Not just between x and its non-descendants.

Skeleton and V-Structures

- Skeleton is the graph with no arrowheads
- V-Structures are where two arrows point into a node (a collider).
- They define the D-separation and all independancies.

Local vs Global Independencies

- The set of edges in a BN define, $\mathcal{I}_{\ell}(G)$, local independences over a set of random variables.
- ie. between X and it's non-descendants given it's parents.
- A given probability distribution, P, algebraically has a set of, $\mathcal{I}(P)$ independences: $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$.
- $\mathcal{I}_{p}(G) \subseteq \mathcal{I}(P)$ means G is an **I-map** for P.

Local vs Global Independencies

- D-separation in the graph defines a new set $\mathcal{I}(G)$.
- If P factorizes according to G then $\mathcal{I}(G) \subseteq \mathcal{I}(P)$ (Theorem 3.3)
- Lots of theorems about this in the book but one interesting one is 3.5:
- If P factorizes according to G then $\mathcal{I}(G) = \mathcal{I}(P)$
 - Except for a set of 'measure zero' (ie weird cases with 'accidental' independencies)

Minimal I-map

- Less edges 'increases' $\mathcal{I}(G)$.
 - ie. less dependencies is more independencies.
- Two graphs are I-Equivalent if independences are the same → same skeleton and v-structures.
- Minimial I-map says remove any edge and it is no longer an I-map, (i.e. NOT $\mathcal{I}_{\ell}(G) \subseteq \mathcal{I}(P)$).
- If \(\mathcal{I}(G) = \mathcal{I}(P) \) we say G is a P-map (perfect map). We can read off all independence from G.
- Minimal I-map does not imply a perfect map.

An Example: Bayes nets for Driver Intention

Fig. 1: Merge scenario. The host car (green) is an autonomous vehicle, running on the main road; the merge car (red) is a human-driven car, running on the ramp.

From: Intention Estimation For Ramp Merging Control In Autonomous Driving, Chiyu Dong, John M. Dolan, and Bakhtiar Litkouhi

Bayes Nets for Driver Intention

Fig. 2: Probabilistic Graphical Model of the social behavior of an autonomous vehicle.; V_n is the current speed, V_i is the speed at the previous time step; T_m, T_h are the current time-to-arrival for merging and host car respectively; I is the latent intention which needs to be estimated.

From: Intention Estimation For Ramp Merging Control In Autonomous Driving, Chiyu Dong, John M. Dolan, and Bakhtiar Litkouhi

Bayes Nets for Driver Intention

$$P(I | V, Tm, Th) = P(I, V, Tm, Th) / P(V, Tm, Th)$$
 $\propto P(V, Tm, Th | I) P(I)$
 $P(V, Tm, Th | I) = P(V | I)P(Tm, Th | I)$
 $P(V | I) = P(V1, V2, ..., Vn | I)$
 $= P(V1)P(V2|V1, I)...P(Vn | Vn-1, I)$

Who will find the error after this step in the paper?

Bayes Nets for Driver Intention

Fig. 4: Example of speed transition probability $P(V_t|V_{t-1},I)$, which is learned from training data. The vertical dashed line is the previous speed; the x-axis indicates the current speed; Two colors indicate different intentions.

From: Intention Estimation For Ramp Merging Control In Autonomous Driving, Chiyu Dong, John M. Dolan, and Bakhtiar Litkouhi

Bayes nets for Driver Intention

Fig. 5: $P(T_m, T_h|I = \text{Yield})$. Time-to-arrival transition probability distribution when the merge car yields the host.

From: Intention Estimation For Ramp Merging Control In Autonomous Driving, Chiyu Dong, John M. Dolan, and Bakhtiar Litkouhi