

Quiz 2

1: The beam search technique discussed in J&M, when deciding which sentences to		
expand at each step, compares scores between candidate translation sentences that		
	rent numbers of words by:	
	Normalizing the score by the length of the sentence	
	Comparing scores on sub-sections of the sentences that have equal length	
	Comparing only scores between sentences with the same number of words	
	None of those above	
	All of those above	
	of the following is true about EM?	
	If you run it long enough, it eventually reaches a global optimum.	
	Different initial condition may lead to different results.	
	You have to have completely observed data to do EM.	
	The data likelihood sometimes goes down after an iteration.	
	None of those above	
3: Which o	of the following is FALSE about IBM Models?	
•	Adding the fertility model makes it hard to train IBM Model 3 efficiently	
	IBM Model 1, even though simple, takes a long time because it has to sum r all possible alignment structures of a sentence pair.	
dist	IBM Model 2 can be efficiently computed even though it makes use of a ortion model	
goo	With IBM Model 3, you need to initialize the model parameters with some d estimates instead of just random or uniform ones.	
	None of the above	
4: Which o	of the following is FALSE?	
	The MT automatic evaluation metric BLEU is a weighted average of the observed of N-gram overlaps with the human translations.	
	Having multiple human reference translation makes BLEU more reliable	
sco	Since BLEU is computing n-gram overlaps, a system can get a high BLEU re by translating every foreign sentence to one very common word (e.g., e"), obtaining a high unigram precision.	

None of those above			
All of those above			
5: We will examine P _{continuation} (w) for the given, incomplete sentence:			
"How much wood would a woodchuck chuck if a woodchuck could chuck"			
What is $ \{\mathbf{w}_{i-1}: \mathbf{C}(\mathbf{w}_{i-1} \ \mathbf{w}_i)>0\} $ for $\mathbf{w}_i=$ "woodchuck"?			
6: Which word is more likely to complete the sentence (follow the last "chuck")			
pased on P _{continuation} ? How			
□ wood			
would			
chuck			
': Now we will use the modified sentence below where all instances of "woodchuck" have been misspelled as "wood chuck":			
iave been misspenea as wood ender .			
'How much wood would a wood chuck chuck if a wood chuck could chuck'			
'How much wood would a wood chuck chuck if a wood chuck could chuck''			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}:C(w_{i-1}\;w_i)>0\} $ for $w_i=$ "chuck"?			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}: C(w_{i-1}\ w_i)>0\} $ for $w_i=$ 'chuck''?			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}: C(w_{i-1} w_i)>0\} $ for w_i ="chuck"? 0 0 1			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}: C(w_{i-1} \ w_i)>0\} $ for $w_i=$ 'chuck''? 0 0 1 0 2			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}: C(w_{i-1} w_i)>0\} $ for w_i ="chuck"? 0 1 2 3 3: Now which word is more likely to extend this sentence based on $P_{continuation}$?			
"How much wood would a wood chuck chuck if a wood chuck could chuck" Now what is $ \{w_{i-1}: C(w_{i-1} w_i)>0\} $ for $w_i=$ "chuck"? 0 1 2 3 3: Now which word is more likely to extend this sentence based on $P_{continuation}$? How			
"How much wood would a wood chuck chuck if a wood chuck could chuck" Now what is $ \{w_{i-1}: C(w_{i-1} w_i)>0\} $ for $w_i=$ "chuck"? 0 1 2 3 3: Now which word is more likely to extend this sentence based on $P_{continuation}$? How $wood$			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is {w _{i-1} : C(w _{i-1} w _i)>0} for w _i ="chuck"? 0 0 1 2 3 3: Now which word is more likely to extend this sentence based on P _{continuation} ? How wood wood would			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is {w _{i-1} : C(w _{i-1} w _i)>0} for w _i ="chuck"? 0 0 1 0 2 0 3 3: Now which word is more likely to extend this sentence based on P _{continuation} ? How wood wood would			
'How much wood would a wood chuck chuck if a wood chuck could chuck'' Now what is $ \{w_{i-1}: C(w_{i-1} w_i)>0\} $ for w_i ="chuck"? 0 1 2 3 3: Now which word is more likely to extend this sentence based on $P_{continuation}$? How wood would chuck b: We will explore a simple example for using EM to train alignment models. Say we have the following vocabularies for the two languages: {A,B,C} and {w,x,y,z}; and			

We use a simplified version of Model 1 in which we ignore the NULL word and alignments where there are spurious or zero-fertility words. We initialize with

uniform weights for all translation probabilities, e.g., $t(w A) = t(x A) = t(y A)$, etc.,		
and $t(w A) = t(w B) = t(w C)$. Thus every alignment is equiprobable, and there are 2		
distinct alignments for each of the first two sentence pairs and 6 distinct alignments		
for the third sentence pair. In the first iteration of EM, we collect fractional counts		
for each alignment. What fractional count do we collect for (A w) (what is		
tcount(A w)))?	
o 1	1/4	
o 1	1/3	
• 1	1/2	
o 1		
	None of the above	
10: What fractional count do we collect for $(w B)$ (what is $tcount(w B)$)?		
o 1	1/2+1/6	
• ₁	1/2+1/3	
o 1	1/2+1/2	
	1/2+2/3	