8. 断裂

Dongsheng Wen

断裂的'名场面'

• 英国 vs. 德国

• 德国的潜艇:U-boat

• 英国的补给船

英国:

• 1941-1945

• 英国设计:运输船1万吨

• 美国造: 2710 艘 (18个船坞)

• 断裂事故:几百上千次

• 裂开两半:12艘

• 组织研究

• 这事儿的结果:

玻璃=脆? 金属=韧?

几个问题

• 金属之间有韧性有脆性的区别来自什么?

• 为什么陶瓷/玻璃之间会有区别?

• 为什么船航行到低温海域的时候断了?

金属之间有韧性有脆性的区别来自什么?

断口的形态

发生大量塑性变形 (韧性) 的断口

vs. 发生少量塑性变形(脆性)的断口

韧性断裂 (Ductile Fracture)

韧性断口的微观

(b)

脆性断裂 (Brittle Fracture)

脆性断口-穿晶和沿晶

断口的形态

发生大量塑性变形(韧性)的断裂 vs.

vs. 发生少量塑性变形(脆性)的断裂。

FCC, BCC 和 HCP的滑移系有多少?

还记得密排面和密排方向吗?

• 密排面 (close-packed planes)

dswen94

原子堆叠

\$100% ■ 6:45

2.1. FCC, BCC 和HCP

原子堆叠

材料科学基础(易学版)-2.1. FCC/BCC/HCP 个

▶ 452 🖃 5 5-15 BV19z4y1R7KV 🚫 未经作者授权禁止转载 《材料科学基础》小型课堂2.1. 这一节主要讲述面心立方(FCC),

体心立方(BCC)和密排六方(HCP)三种结构的特征以及原子排列。

• 密排方向 (close-packed directions)

FCC, BCC 和 HCP的滑移系有多少?

算算FCC有几个滑移系?

FCC - $\{111\} < 1\overline{1}0 >$

密排面和密排方向只能告诉你一个理论大概!!!

Metals	Slip Plane	Slip Direction	Number of Slip Systems
	Face-Centered Cubic		
Cu, Al, Ni, Ag, Au	{111}	$\langle 1\overline{1}0 \rangle$	12
	Body-Centered Cubic		
α-Fe, W, Mo	{110}	$\langle \overline{1}11 \rangle$	12
α-Fe, W	{211}	$\langle \overline{1}11 \rangle$	12
α-Fe, K	{321}	$\langle \overline{1}11 \rangle$	24
	Hexagonal Close-Packed		
Cd, Zn, Mg, Ti, Be	{0001}	$\langle 11\overline{2}0 \rangle$	3
Ti, Mg, Zr	$\{10\overline{1}0\}$	$\langle 11\overline{2}0\rangle$	3
Ti, Mg	$\{10\overline{1}1\}$	$\langle 11\overline{2}0\rangle$	6

脆性断裂的另一个思考。。。

除开晶体结构,玻璃之间为什么会有区别?

断裂和裂纹的关系?

撕零食袋儿

裂纹的害处: 应力集中 (Stress concentration)

$$\sigma_m = 2\sigma_0 \left(\frac{a}{\rho_t}\right)^{1/2}$$

断裂强度和裂纹的关系

Failure stress

Alan Arnold Griffith FRS. (Reproduced with permission from the Royal Society.)

$$\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{\frac{1}{2}}$$

一块玻璃在受拉伸的状态,拉伸强度是40MPa,如果它的表面能是0.3J/m²,杨氏模量 E = 69 GPa,多大的裂缝会让它无屈服断裂?

断裂韧性 (Fracture Toughness)

$$\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{\frac{1}{2}}$$

$$K_c = Y \sigma_c \sqrt{\pi a}$$

$$K_{Ic} = Y \sigma_c \sqrt{\pi a}$$

一些材料的断裂韧性

	Yield Strength		K_{Ic}	
Material	MPa	ksi	$MPa\sqrt{m}$	ksi \sqrt{in} .
	Me	tals		
Aluminum Alloy ^a (7075-T651)	495	72	24	22
Aluminum Alloy ^a (2024-T3)	345	50	44	40
Titanium Alloy ^a (Ti-6Al-4V)	910	132	55	50
Alloy Steel ^a (4340 tempered @ 260°C)	1640	238	50.0	45.8
Alloy Steel ^a (4340 tempered @ 425°C)	1420	206	87.4	80.0
•	Cera	mics		
Concrete	_	1-	0.2 - 1.4	0.18 - 1.27
Soda-Lime Glass	_	-	0.7 – 0.8	0.64 - 0.73
Aluminum Oxide	_	_	2.7 - 5.0	2.5-4.6
	Poly	mers		
Polystyrene (PS)	_	_	0.7–1.1	0.64–1.0
Poly(methyl methacrylate) (PMMA)	53.8–73.1	7.8–10.6	0.7–1.6	0.64–1.5
Polycarbonate (PC)	62.1	9.0	2.2	2.0

By Peter Dazeley

^a Source: Reprinted with permission, Advanced Materials and Processes, ASM International, © 1990.

利用断裂强度来设计材料 (1)

Failure stress

利用断裂强度来设计材料 (2)

几个问题

• 金属之间有韧性有脆性的区别来自什么?

• 为什么陶瓷/玻璃之间会有区别?

课后思考:

金属和陶瓷之间的韧性塑性巨大差别是为什么?

- 化学键
- 结构
- 致密度

几个问题

• 金属之间有韧性有脆性的区别来自什么?

• 为什么陶瓷/玻璃之间会有区别?

• 为什么船航行到低温海域的时候断了?

8.1 材料的硬脆转变