STAT 4100 Lecture Note

Week Two (Sep 12, 14 & 16, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Univariate transformation (con'd)

Find pdf of Y = g(X) given the distribution of X

- 1. Figure out supp $(Y) = \{y : y = g(x), x \in \text{supp}(X)\}$
- 2. (Generically) If the cdf F_Y is known OR pdf f_X is easy to be integrated, then

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{\{x:g(x) \le y\}} f_X(x) \mathrm{d}x$$

• The integration of f_X is often avoidable by employing the Leibniz Rule (CB Thm. 2.4.1):

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_{a(y)}^{b(y)} f(x) \mathrm{d}x = f\{b(y)\} \frac{\mathrm{d}}{\mathrm{d}y} b(y) - f\{a(y)\} \frac{\mathrm{d}}{\mathrm{d}y} a(y)$$

with a(y) and b(y) both differentiable with respect to y.

2. (Alternatively) According to CB Ex. 2.7(b), i.e., an extension of CB Thm. 2.1.5 & 2.1.8 and HMC Thm 1.7.1.

$$f_Y(y) = \sum_{k=1}^K f_X\{g_k^{-1}(y)\} \left| J_{g_k^{-1}}(y) \right| \mathbf{1}_{B_k}(y)$$

- Partition supp(X) into K intervals A_1, \ldots, A_K such that $\bigcup_{k=1}^K A_k = \text{supp}(X)$ and $A_k \cap A_{k'} = \emptyset$
- g_k is strictly monotonic on A_k and $g(x)=g_k(x)$ for all $x\in A_k$ g_k^{-1} is continuously differentiable on $B_k=\{g_k(x):x\in A_k\}$ Jacobian of transformation g_k^{-1}

$$J_{g_k^{-1}} = \frac{\mathrm{d}}{\mathrm{d}y} g_k^{-1}(y)$$

Example Lec2.2

Let X have the uniform pdf $f_X(x) = \pi^{-1} \mathbf{1}_{(-\pi/2,\pi/2)}(x)$. Find the pdf of $Y = \tan X$.

Example Lec2.3

 $X \sim \text{Weibull}(\text{shape} = \alpha, \text{scale} = \beta), \text{ viz. } f_X(x) = (\alpha/\beta)(x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\}\mathbf{1}_{(0,\infty)}(x). \text{ Find the pdf of } f_X(x) = (\alpha/\beta)(x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\}\mathbf{1}_{(0,\infty)}(x).$ $Y = \ln(X)$.

1

Example Lec2.4

Let X have the pdf $f_X(x) = 2^{-1} \mathbf{1}_{(0,2)}(x)$. Find the pdf of $Y = X^2$.

Example Lec2.5

Let $f_X(x) = 3^{-1} \mathbf{1}_{(-1,2)}(x)$. Find the pdf of $Y = X^2$.

Bivariate Transformation

Bivariate distribution

- cdf of Random vector $\mathbf{X} = [X_1, X_2]$: $F_{\mathbf{X}}(x_1, x_2) = \Pr(X_1 \le x_1, X_2 \le x_2)$
- Discrete
 - Joint pmf

$$p_{\mathbf{X}}(x_1, x_2) = \Pr(X_1 = x_1, X_2 = x_2)$$

- $-\sup(\mathbf{X}) = \sup(p_{\mathbf{X}}) = \{(x_1, x_2) \in \mathbb{R}^2 : p_{\mathbf{X}}(x_1, x_2) > 0\}$
- Marginal pmf of X_1

$$p_{X_1}(x_1) = \sum_{x_2 \in \mathbb{R}} p_{\mathbf{X}}(x_1, x_2)$$

- Continuous
 - Joint pdf

$$f_{\mathbf{X}}(x_1, x_2) = (\partial^2/\partial x_1 x_2) F_{\mathbf{X}}(x_1, x_2)$$

- $\operatorname{supp}(\mathbf{X}) = \operatorname{supp}(f_{\mathbf{X}}) = \{(x_1, x_2) \in \mathbb{R}^2 : f_{\mathbf{X}}(x_1, x_2) > 0\}$
- Marginal pdf of X_1
 - $* f_{X_1}(x_1) = \int_{\mathbb{R}} f_{\mathbf{X}}(x_1, x_2) \mathrm{d}x_2$

Find the joint pdf of random vector $\mathbf{Y} = g(\mathbf{X})$ by bivariate transformation (CB Sec. 4.3 & 4.6)

- Conditions
 - **X** and **Y** both two-dimensional
 - $g(\cdot) = (g_1(\cdot), g_2(\cdot)) : \text{supp}(\mathbf{X}) \to \text{supp}(\mathbf{Y}) \text{ is one-to-one, i.e.,}$
 - * $\mathbf{y} = (y_1, y_2) = (g_1(x_1, x_2), g_2(x_1, x_2)) = \mathbf{g}(x_1, x_2)$
 - * $\mathbf{x} = (x_1, x_2) = \mathbf{g}^{-1}(y_1, y_2) = (h_1(y_1, y_2), h_2(y_1, y_2))$
 - $-\mathbf{g}$ is continuously differentiable
- Jacobian matrices
 - Jacobian matrix of transformation g^{-1}

$$\mathbf{J}_{\boldsymbol{g}^{-1}} = \mathbf{J}_{\boldsymbol{g}^{-1}}(y_1, y_2) = \begin{bmatrix} \frac{\partial h_i(y_1, y_2)}{\partial y_j} \end{bmatrix}_{2 \times 2} = \begin{bmatrix} \frac{\partial h_1(y_1, y_2)}{\partial y_1} & \frac{\partial h_1(y_1, y_2)}{\partial y_2} \\ \frac{\partial h_2(y_1, y_2)}{\partial y_1} & \frac{\partial h_2(y_1, y_2)}{\partial y_2} \end{bmatrix}$$

- Jacobian matrix of transformation \boldsymbol{g}

$$\mathbf{J}_{\boldsymbol{g}} = \mathbf{J}_{\boldsymbol{g}}(x_1, x_2) = \begin{bmatrix} \frac{\partial g_i(x_1, x_2)}{\partial x_j} \end{bmatrix}_{2 \times 2} = \begin{bmatrix} \frac{\partial g_1(x_1, x_2)}{\partial x_1} & \frac{\partial g_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial g_2(x_1, x_2)}{\partial x_1} & \frac{\partial g_2(x_1, x_2)}{\partial x_2} \end{bmatrix}$$

- Alternative way to reach $\mathbf{J}_{g^{-1}}(y_1, y_2)$: $\mathbf{J}_{g^{-1}}(y_1, y_2) = {\mathbf{J}_{g}(g^{-1}(y_1, y_2))}^{-1}$ * Hence $\det \mathbf{J}_{g^{-1}}(y_1, y_2) = {\det \mathbf{J}_{g}(g^{-1}(y_1, y_2))}^{-1}$
- Then

$$f_{\mathbf{Y}}(y_1, y_2) = f_{\mathbf{X}} \{ g^{-1}(y_1, y_2) \} | \det \{ \mathbf{J}_{g^{-1}}(y_1, y_2) \} | \mathbf{1}_{\text{supp}(\mathbf{Y})}(y_1, y_2).$$

- Never miss $\mathbf{1}_{\operatorname{supp}(\mathbf{Y})}(y)$
- If g is NOT one-to-one, one may figure out the cdf of Y and then differentiate it.

Example Lec3.1

 X_1 and X_2 are iid from $\mathcal{N}(0,1)$. Find the joint pdf of $Y_1=(X_1+X_2)/\sqrt{2}$ and $Y_2=(X_1-X_2)/\sqrt{2}$ and show their independence.

Note: the sample mean and standard deviation are respectively $\bar{X} = (X_1 + X_2)/2 = Y_1/\sqrt{2}$ and S = $\sqrt{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2} = |Y_2|.$

Find the marginal pdf

- 1. Figure out the joint pdf first
- 2. Taking the Integral

Example Lec3.2

 X_1 and X_2 are iid from $\mathcal{N}(0,1)$. Find the pdf of $U=\sqrt{X_1^2+X_2^2}$.

Basics on matrices (optional)

Eigen-decomposition

- **A** is a real $n \times n$ matrix
- Eigenvalues of **A**, say $\lambda_1 \geq \cdots \geq \lambda_n$: n roots of characteristic equation $\det(\lambda \mathbf{I}_n \mathbf{A}) = 0$
- The *i*th (Right) eigenvector v_i : $\mathbf{A}v_i = \lambda_i v_i$
- Eigen-decomposition: $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$
 - $-\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ both $n \times n$ matrices Specifically $\mathbf{V}^{-1} = \mathbf{V}^{\top}$ for symmetric \mathbf{A} ; called the spectral decomposition
- Numerical implementation in R: eigen()
- Connection to determinant and trace
 - Determinant

 - $\begin{array}{l} * \det \mathbf{A} = \prod_{i=1}^n \lambda_i \\ * \det(\mathbf{A}^\top) = \det \mathbf{A} \\ * \det(\mathbf{A}^{-1}) = (\det \mathbf{A})^{-1} \end{array}$
 - * $\det(c\mathbf{A}) = c^n \det \mathbf{A}$ for $n \times n$ matrix \mathbf{A} and scalar c
 - * $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$ for squared \mathbf{A} and \mathbf{B}
 - Trace
 - * $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$
 - * $tr(c\mathbf{A}) = ctr(\mathbf{A})$ for scalar c
 - * $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$ for squared **A** and **B**
 - $* \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$

Square root of matrices

- $\mathbf{A}^{1/2} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^{\top}$ if for semi-positive definite \mathbf{A}
 - Semi-positive/non-negative definite: symmetric **A** with eigenvalues all non-negative, say $\mathbf{A} \geq 0$ * Equivalently, $\boldsymbol{u}^{\top} \mathbf{A} \boldsymbol{u} \geq 0$ for all $\boldsymbol{u} \in \mathbb{R}^{n \times 1}$ - $\Lambda^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$
- $-\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$ $\mathbf{A}^{-1/2} = \mathbf{V}\Lambda^{-1/2}\mathbf{V}^{\top}$ for positive definite \mathbf{A}
 - Positive definite: symmetric **A** with eigenvalues all positive, say $\mathbf{A} > 0$
 - * Equivalently, $\mathbf{u}^{\top} \mathbf{A} \mathbf{u} > 0$ for all $\mathbf{u} \in \mathbb{R}^{n \times 1}$

$$\begin{array}{l} - \ \Lambda^{-1/2} = \mathrm{diag}(\lambda_1^{-1/2}, \dots, \lambda_n^{-1/2}) \\ - \ \mathbf{A}^{-1/2} \mathbf{A}^{-1/2} = \mathbf{A}^{-1} \ \mathrm{and} \ \mathbf{A}^{1/2} \mathbf{A}^{-1/2} = \mathbf{I}_n \end{array}$$

Singular value decomposition (SVD)

- Consider $\mathbf{B} \in \mathbb{R}^{n \times p}$
- $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ and $\mathbf{B}\mathbf{B}^{\mathsf{T}}$ are both symmetric
 - $-\mathbf{B}^{\mathsf{T}}\mathbf{B} > 0$ and $\mathbf{B}\mathbf{B}^{\mathsf{T}} > 0$
 - Identical non-zero eigenvalues
- Then eigen-decomposition $\mathbf{B}\mathbf{B}^{\top} = \mathbf{U}_{n\times n}\Gamma_{n\times n}\mathbf{U}_{n\times n}^{\top}$ and $\mathbf{B}^{\top}\mathbf{B} = \mathbf{W}_{p\times p}\Delta_{p\times p}\mathbf{W}_{n\times n}^{\top}$
 - **U** and **W** are both orthogonal
- SVD:

$$\mathbf{B} = \mathbf{U}_{n \times n} \mathbf{S}_{n \times p} \mathbf{W}_{p \times p}^{\top} = s_{11} \mathbf{u}_1 \mathbf{w}_1^{\top} + \dots + s_{rr} \mathbf{u}_r \mathbf{w}_r^{\top}$$

- Singular value s_{ii} is the *i*th diagonal entry of $\mathbf{S}_{n \times p}$
- $-s_{11} \geq \cdots \geq s_{rr}$ are square roots of non-zero eigenvalues of $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ and $\mathbf{B}\mathbf{B}^{\mathsf{T}}$
- $-\mathbf{u}_i$ (resp. \mathbf{w}_i) is the *i*th column of $\mathbf{U}_{n\times n}$ (resp. $\mathbf{W}_{p\times p}$)
- r is the rank of diagonal $\mathbf{S}_{n\times p}$

Bivariate normal (BVN) distribution

 $BVN(\mathbf{0}, \mathbf{I}_2)$

- Random vector $\mathbf{Z} = [Z_1, Z_2]^{\top} \sim \text{BVN}(\mathbf{0}, \mathbf{I}_2) \Leftrightarrow \text{iid } Z_1, Z_2 \sim \mathcal{N}(0, 1).$
- pdf of BVN $(0, \mathbf{I}_2)$:

$$f_{\mathbf{Z}}(z) = \prod_{i=1}^{2} (2\pi)^{-1/2} \exp(-z_i^2/2) = (2\pi)^{-1} \exp(-z^{\top} z/2), \quad z \in \mathbb{R}^2$$

$BVN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} > 0$

- Random *p*-vector $\mathbf{X} \sim \text{BVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{X} = \mathbf{A}\mathbf{Z} + \boldsymbol{\mu} \text{ with } \mathbf{Z} \sim \text{BVN}(\mathbf{0}, \mathbf{I}_2) \text{ for } \boldsymbol{\mu} \in \mathbb{R}^{2 \times 1} \text{ and full-row-rank } \mathbf{A} \in \mathbb{R}^{q \times 2} \text{ such that } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$
 - Full-row-rank: $rank(\mathbf{A}) = q$
- pdf of BVN(μ, Σ):

$$f_{\mathbf{X}}(\boldsymbol{x}) = (2\pi)^{-1} (\det \boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\} \mathbf{1}_{\mathbb{R}^2}(\boldsymbol{x})$$

• Random 2-vector $\mathbf{X} \sim \text{BVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{X} = \boldsymbol{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu} \text{ with } \mathbf{Z} = \boldsymbol{\Sigma}^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) \sim \text{BVN}(0, \mathbf{I}_2) \Rightarrow$

$$\mathrm{E}(\mathbf{X}) = [\mathrm{E}(X_1), \mathrm{E}(X_2)]^{\top} = \boldsymbol{\mu} \quad \mathrm{and} \quad \mathrm{cov}(\mathbf{X}) = [\mathrm{cov}(X_i, X_j)]_{2 \times 2} = \boldsymbol{\Sigma}$$

• Random 2-vector $\mathbf{X} \sim \mathrm{BVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \mathbf{B}\mathbf{X} + \boldsymbol{b} \sim \mathrm{BVN}(\mathbf{B}\boldsymbol{\mu} + \boldsymbol{b}, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^{\top})$

Marginals of BVN

- Suppose X_1 and X_2 are jointly normally distributed. Then, X_1 and X_2 are independent $\Leftrightarrow \text{cov}(X_1, X_2) = 0$.
- If $[X_1, X_2]$ is of BVN, then the marginal distributions of X_1 and X_2 are both normal. The inverse proposition does NOT hold.

– Cautionary example: Let Y = XZ, where $X \sim \mathcal{N}(0,1)$; Z is independent of X with $\Pr(Z = 1) = \Pr(Z = -1) = .5$. X and Y both turn out to be of standard normal, but they are not jointly normal. (Why?)

```
if (!("plot3D" %in% rownames(installed.packages())))
  install.packages("plot3D")
set.seed(1)
xsize = 1e4L
X = rnorm(xsize)
Z = rbinom(n = xsize, 1, .5)
Y = (2 * Z - 1) * X
# 3d histogram of (X, Y)
plot3D::hist3D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
# plot the support of joint pdf of (X, Y)
plot3D::image2D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
```