WHAT IS CLAIMED IS:

1	1. A method for the preparation of a substantially pore-free article of		
2	rubber other than cis-1,4-polyisoprene, said method comprising:		
3	(a) dipping a forming member in a liquid medium comprising		
4	(i) a rubber-forming substance other than cis-1,4-polyisoprene and		
5	(ii) a vulcanizing agent,		
6	said forming member having an outer surface with a contour complementary to		
7	that of said article;		
8	(b) withdrawing said forming member from said liquid medium in such a		
9	manner as to leave a film of said liquid medium over said outer surface;		
10	(c) immersing said forming member with said liquid film thereon in a		
11	chemically inert liquid bath at a temperature and for a period of time sufficient to		
12	cause vulcanization of said rubber-forming substance by said vulcanizing agent;		
13	and		
14	(d) withdrawing said forming member from said liquid bath and		
15	separating said substantially pore-free rubber article from said forming member.		
1	2. A method in accordance with claim 1 in which said rubber-forming		
1	substance is a member selected from the group consisting of natural rubber,		
2	polychloroprene, nitrile rubber, polyurethane, styrene block polymer, and butyl rubber.		
3	polychloroprene, nitrile rubber, polytheniane, styrene block polymer, and butyl rubber.		
1	3. A method in accordance with claim 1 in which said rubber-forming		
2	substance is a polyurethane thermoplastic elastomer.		
	4 A (1 - 1 :		
1	4. A method in accordance with claim 1 in which said rubber-forming		
2	substance is a polyurethane thermoplastic elastomer and said liquid medium is an aqueous		
3	dispersion.		
1	5. A method in accordance with claim 1 in which said rubber-forming		
2	substance is a thermoplastic styrenic block copolymer.		
1	6. A method in accordance with claim 1 in which said rubber-forming		
2	substance is a thermoplastic styrenic block copolymer and said liquid medium is an		
3	aqueous dispersion.		

A method in accordance with claim 1 in which said liquid medium 1 7. 2 of step (a) is a latex. A method in accordance with claim 1 in which said liquid medium 1 8. 2 of step (a) is a solution. A method in accordance with claim 1 in which said rubber-forming 9. 1 substance is a member selected from the group consisting of natural rubber and 2 3 polychloroprene. A method in accordance with claim 1 in which said liquid bath of 10. 1 step (c) is a member selected from the group consisting of molten inorganic salts, oils, 2 glycols, liquified metals, water, and brine solutions. 3 A method in accordance with claim 1 in which said liquid bath of 1 11. step (c) is a member selected from the group consisting of molten inorganic salts, silicone 2 oils, and glycols. 3 A method in accordance with claim 1 in which said liquid bath of 1 **12**. step (c) is a member selected from the group consisting of molten inorganic salts and 2 mixtures thereof. 3 A method in accordance with claim 12 in which said molten 1 13. inorganic salts are members selected from the group consisting of nitrates, nitrites, 2 carbonates, sulfates, phosphates, and halides of potassium, sodium and lithium. 3 A method in accordance with claim 1 in which said temperature of 1 14. 2 step (c) is from about 100°C to about 350°C. A method in accordance with claim 1 in which said rubber-forming 1 **15**. substance is a member selected from the group consisting of polychloroprene and styrene-2 butadiene rubber, and said temperature of step (c) is from about 150°C to about 300°C. 3 A method in accordance with claim 1 in which said rubber-forming 16. 1 substance is natural rubber, and said temperature of step (c) is from about 150°C to about 2 235°C. 3

1	17.	A method in accordance with claim 1 in which said vulcanizing
2	agent is a member s	elected from the group consisting of organic peroxides, sulfur-
3	containing compour	nds, selenium-containing compounds, and tellurium-containing
4	compounds.	
1	18.	A method in accordance with claim 1 in which said vulcanizing
2	agent is a member s	elected from the group consisting of diacyl peroxides, peroxyketals,
3	dialkyl peroxides, n	nercaptothiazoles, thiuram sulfides, thiuram disulfides, guanidines,
4	zinc dialkyl dithioca	arbamates, selecium dialkyl dithiocarbamates, sodium
5	diethyldithiocarbam	ate, potassium diethyldithiocarbamate, alkyl phenol sulfides, sulfur-
6	containing polymers	s, and benzothiazyl disulfide.
1	19.	A method in accordance with claim 1 in which said vulcanizing
2	agent is an organic	peroxide.
1	20.	A method in accordance with claim 1 in which said vulcanizing
2	agent is a combinati	on of an organic peroxide and a member selected from the group
3	consisting of multif	unctional salts of acrylic and methacrylic acids.
1	21.	A method in accordance with claim 1 in which said vulcanizing
2	agent is a dicumyl p	peroxide.
1	22.	A method in accordance with claim 1 in which said vulcanizing
2	agent is a combinati	on of dicumyl peroxide and zinc dimethacrylate.
1	23.	A method in accordance with claim 1 in which said rubber-forming
2	substance of step (a) is not vulcanized prior to step (a).
1	24.	A method in accordance with claim 1 further comprising partially
2	vulcanizing said rub	ober-forming substance prior to step (a).
1	25 .	A method in accordance with claim 24 in which said partial
2	vulcanizing is achie	ved by high energy irradiation.
1	26.	A method for increasing the tensile strength of an article of

vulcanized rubber, said method comprising:

3	(a) immersing said article in a solution of a vulcanizing agent to cause		
4	said article to absorb said second vulcanizing agent from said solution;		
5	(b) immersing said article containing said absorbed vulcanizing agent in a		
6	chemically inert liquid bath at a temperature and for a period of time sufficient to		
7	cause further vulcanization said vulcanized rubber by said vulcanizing agent; and		
8	(c) withdrawing said article from said liquid bath.		
1	27. A method in accordance with claim 26 in which said vulcanized		
2	rubber is vulcanized cis-1,4-polyisoprene.		
1	28. A method in accordance with claim 26 in which said liquid bath is		
2	a member selected from the group consisting of molten inorganic salts and mixtures		
3	thereof.		
1	29. A method for the preparation of a substantially pore-free article of		
2	rubber, said method comprising:		
3	(a) dipping a forming member in a liquid medium comprising		
4	(i) a rubber-forming substance and		
5	(ii) a first vulcanizing agent,		
6	said forming member having an outer surface with a contour complementary to		
7	that of said article;		
8	(b) withdrawing said forming member from said liquid medium in such a		
9	manner as to leave a film of said liquid medium over said outer surface;		
10	(c) immersing said forming member with said liquid film thereon in a first		
11	chemically inert liquid bath at a temperature and for a period of time sufficient to		
12	cause vulcanization of said rubber-forming substance by said first vulcanizing		
13	agent;		
14	(d) withdrawing said forming member with a film of vulcanized rubber		
15	thereon from said liquid bath;		
16	(e) immersing said film of vulcanized rubber formed in step (d) in a		
17	solution of a second vulcanizing agent to cause said film to absorb said second		
18	vulcanizing agent from said solution;		
19	(f) immersing said film containing said absorbed second vulcanizing agent		
20	in a second chemically inert liquid bath at a temperature and for a period of time		

21	sufficient to cause further vulcanization of said rubber-forming substance by said		
22	second vulcanizing agent; and		
23	(g) withdrawing said film from said second liquid bath to achieve said		
24	substantially pore-free rubber article.		
1	30. A method in accordance with claim 29 in which said rubber is		
2	cis-1,4-polyisoprene.		
1	31. A method in accordance with claim 29 in which said liquid bath is		
2	a member selected from the group consisting of molten inorganic salts and mixtures		
3	thereof.		
1	32. A dip-molded article of a rubber other than cis-1,4-polyisoprene		
2	that is substantially pore-free, formed by a process comprising:		
3	(a) dipping a forming member in a liquid medium comprising		
4	(i) a rubber-forming substance other than cis-1,4-polyisoprene and		
5	(ii) a vulcanizing agent,		
6	said forming member having an outer surface with a contour complementary to		
7	that of said article;		
8	(b) withdrawing said forming member from said liquid medium in such a		
9	manner as to leave a film of said liquid medium over said outer surface;		
10	(c) immersing said forming member with said liquid film thereon in a		
11	chemically inert liquid bath at a temperature and for a period of time sufficient to		
12	cause vulcanization of said rubber-forming substance by said vulcanizing agent;		
13	and		
14	(d) withdrawing said forming member from said liquid bath and		
15	separating said substantially pore-free article of rubber article from said forming		
16	member.		
1	33. A dip-molded article in accordance with claim 32 in which said		
2	rubber-forming substance is a member selected from the group consisting of natural		
3	rubber, polychloroprene, nitrile rubber, polyurethane, styrene block polymer, and butyl		
4	rubber.		
1	34. A dip-molded article in accordance with claim 32 in which said		
2	rubbar forming substance is a polyurathone thermonlestic electomer		

- 1 35. A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance is a polyurethane thermoplastic elastomer and said liquid 3 medium is an aqueous dispersion. 1 36. A dip-molded article in accordance with claim 32 in which said
- 37. A dip-molded article in accordance with claim 32 in which said rubber-forming substance is a thermoplastic styrenic block copolymer and said liquid medium is an aqueous dispersion.

rubber-forming substance is a thermoplastic styrenic block copolymer.

2

- 1 38. A dip-molded article in accordance with claim 32 in which said 2 liquid medium of step (a) is a latex.
- 1 39. A dip-molded article in accordance with claim 32 in which said 2 liquid medium of step (a) is a solution.
- 1 40. A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance is a member selected from the group consisting of natural 3 rubber and polychloroprene.
- 1 41. A dip-molded article in accordance with claim 32 in which said 2 liquid bath of step (c) is a member selected from the group consisting of molten inorganic 3 salts, oils, glycols, liquified metals, and brine solutions.
- 1 42. A dip-molded article in accordance with claim 32 in which said 2 liquid bath of step (c) is a member selected from the group consisting of molten inorganic 3 salts, silicone oils, and glycols.
- 1 43. A dip-molded article in accordance with claim 32 in which said 2 liquid bath of step (c) is a member selected from the group consisting of molten inorganic 3 salts and mixtures thereof.
- 1 44. A dip-molded article in accordance with claim 43 in which said 2 molten inorganic salts are members selected from the group consisting of nitrates, nitrites, 3 carbonates, sulfates, phosphates, and halides of potassium, sodium and lithium.

- 1 45. A dip-molded article in accordance with claim 32 in which said 2 temperature of step (c) is from about 100°C to about 350°C. 46. 1 A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance is a member selected from the group consisting of 3 polychloroprene and styrene-butadiene rubber, and said temperature of step (c) is from 4 about 150°C to about 300°C. 1 47. A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance is natural rubber, and said temperature of step (c) is from about 3 150°C to about 235°C. 1 48. A dip-molded article in accordance with claim 32 in which said 2 vulcanizing agent is a member selected from the group consisting of organic peroxides, 3 sulfur-containing compounds, selenium-containing compounds, and tellurium-containing 4 compounds. A dip-molded article in accordance with claim 32 in which said 1 49. 2 vulcanizing agent is a member selected from the group consisting of diacyl peroxides, 3 peroxyketals,, dialkyl peroxides, mercaptothiazoles, thiuram sulfides, thiuram disulfides, 4 guanidines, zinc dialkyl dithiocarbamates, selecium dialkyl dithiocarbamates, sodium 5 diethyldithiocarbamate, potassium diethyldithiocarbamate, alkyl phenol sulfides, sulfur-
- 1 50. A dip-molded article in accordance with claim 32 in which said vulcanizing agent is an organic peroxide.

containing polymers, and benzothiazyl disulfide.

6

- 1 51. A dip-molded article in accordance with claim 32 in which said vulcanizing agent is dicumyl peroxide.
- 1 52. A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance of step (a) is not vulcanized prior to step (a)
- 1 53. A dip-molded article in accordance with claim 32 in which said 2 rubber-forming substance is partially vulcanized prior to step (a).

- 1 54. A dip-molded article in accordance with claim 53 in which said
- 2 rubber-forming substance is partially vulcanized prior to step (a) by high energy
- 3 irradiation.