Definition 1. For any partition \mathcal{R} of a space X and $x \in X$, let $\mathcal{R}[x]$ be such that $x \in \mathcal{R}[x] \in \mathcal{R}$.

For partitions $\mathcal{R}_0, \ldots, \mathcal{R}_n$, let $\mathcal{H}_n = \bigwedge_{m \leq n} \mathcal{R}_m$ be the coarsest partition which refines each \mathcal{R}_m .

For partitions \mathcal{R}, \mathcal{S} let $\mathcal{R} \otimes \mathcal{S} = \{r \times s : r \in R, s \in S\}.$

Proposition 2. $x \in \mathcal{R}[y] \Leftrightarrow y \in \mathcal{R}[x]$.

$$\mathcal{H}_n[x] = \left(\bigwedge_{m \le n} \mathcal{R}_m \right) [x] = \bigcap_{m \le n} \mathcal{R}_m[x].$$

Definition 3. For zero-dimensional X, the proximity game $Prox_{R,P}(X)$ proceeds as follows: in round n, \mathscr{R} chooses a clopen partition \mathcal{R}_n of X, followed by \mathscr{P} choosing a point $p_n \in X$.

Player \mathscr{R} wins if either $\bigcap_{n<\omega}\mathcal{H}_n[p_n]=\emptyset$ or p_n converges.

Proposition 4. This game is perfect-information equivalent to the analogous game studied by Bell, requiring \mathscr{P} 's play p_{n+1} to be in $\mathcal{H}_n[p_n]$ in rounds n+1, and requiring \mathscr{O} choose refinements.

Proof. Allowing \mathscr{P} to play $p_{n+1} \notin \mathcal{H}_n[p_n] \Rightarrow \mathcal{H}_n[p_{n+1}] \neq \mathcal{H}_n[p_n]$ does not introduce any new winning plays for \mathscr{P} as for any such move, $\bigcap_{m<\omega} \mathcal{H}_n[p_n] \subseteq \mathcal{H}_{n+1}[p_{n+1}] \cap \mathcal{H}_n[p_n] \subseteq \mathcal{H}_n[p_n] = \emptyset$.

Allowing \mathscr{R} to play non-refining clopen partitions does not introduce any new winning plays for \mathscr{R} as the winning condition relies on the refinement of all \mathcal{R}_n anyway.

Definition 5. A space X is **proximal** iff X is zero-dimensional and $\mathcal{R} \uparrow Prox_{R,P}(X)$.

Definition 6. A space X is Marköv proximal iff X is zero-dimensional and $\mathscr{R} \uparrow_{\text{mark}} Prox_{R,P}(X)$.

Definition 7. For any space X and a point $x \in X$, the W-convergence-game $Con_{O,P}(X,x)$ proceeds as follows: in round n, \mathscr{O} chooses a neighborhood U_n of x, followed by \mathscr{P} choosing a point $p_n \in X$.

For open sets U_0, \ldots, U_n , let $V_n = \bigcap_{m \leq n} U_m$. Player \mathscr{O} wins if either $p_n \notin V_n$ for some $n < \omega$, or if p_n converges.

Definition 8. A space X is a W-space iff $\mathcal{O} \uparrow Con_{O,P}(X,x)$ for all $x \in X$.

Definition 9. For each finite tuple (m_0, \ldots, m_{n-1}) , we define the k-tactical fog-of-war

$$T_k(m_0,\ldots,m_{n-1})=(m_{n-k},\ldots,m_{n-1})$$

and the k-Marköv fog-of-war

$$M_k(m_0,\ldots,m_{n-1})=(m_{n-k},\ldots,m_{n-1},n)$$

proximity.tex - Updated on December 4, 2013

So $P \uparrow_{k\text{-tact}} G$ if and only if there exists a winning strategy for P of the form $\sigma \circ T_k$, and $P \uparrow_{k\text{-mark}} G$ if and only if there exists a winning strategy of the form $\sigma \circ M_k$.

Theorem 10. For all $x \in X$:

- $\mathscr{R} \uparrow Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow Con_{Q,P}(X,x)$
- $\mathscr{R} \uparrow_{pre} Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow_{pre} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{2k\text{-}tact} Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{2k\text{-}mark} Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}mark} Con_{O,P}(X,x)$

Proof. Let σ witness $\mathscr{R} \uparrow_{2k\text{-tact}} Prox_{R,P}(X)$ (resp. $\mathscr{R} \uparrow_{2k\text{-mark}} Prox_{R,P}(X)$, $\mathscr{R} \uparrow Prox_{R,P}(X)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L_k(p_0, \dots, p_{n-1}) = \sigma \circ L_{2k}(x, p_0, \dots, x, p_{n-1})[x] \cap \sigma \circ L_{2k}(x, p_0, \dots, x, p_{n-1}, x)[x]$$

where L_{2k} is the 2k-tactical fog-of-war (resp. 2k-Marköv fog-of-war, identity) and L_k is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let p_0, p_1, \ldots attack τ such that $p_n \in V_n = \bigcap_{m \leq n} \tau \circ L_k(p_0, \ldots, p_{m-1})$ for all $n < \omega$. Consider the attack q_0, q_1, \ldots against the winning strategy σ such that $q_{2n} = x$ and $q_{2n+1} = p_n$.

Certainly, $x \in \mathcal{H}_{2n}[x] = \mathcal{H}_{2n}[q_{2n}]$ for any $n < \omega$. Note also for any $n < \omega$ that

$$p_n \in V_n = \bigcap_{m \le n} \tau \circ L_k(p_0, \dots, p_{m-1})$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(x, p_0, \dots, x, p_{m-1})[x] \cap \sigma \circ L_{2k}(x, p_0, \dots, x, p_{m-1}, x)[x])$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(q_0, q_1, \dots, q_{2m-2}, q_{2m-1})[x] \cap \sigma \circ L_{2k}(q_0, q_1, \dots, q_{2m-2}, q_{2m-1}, q_{2m})[x])$$

$$\bigcap_{m \le n} \mathcal{R}_{2m}[x] \cap R_{2m+1}[x] = \mathcal{H}_{2n+1}[x]$$

so $x \in \mathcal{H}_{2n+1}[p_n] = \mathcal{H}_{2n+1}[q_{2n+1}]$. Thus $x \in \bigcap_{n < \omega} \mathcal{H}_n[q_n]$, and since σ is a winning strategy, the attack q_0, q_1, \ldots converges, and must converge to x. Thus p_0, p_1, \ldots converges to x, and τ is also a winning strategy.

Corollary 11. For all $x \in X$:

- $\mathscr{R} \uparrow_{k\text{-}tact} Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{k\text{-mark}} Prox_{R,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x)$

Corollary 12. All proximal spaces are W-spaces.

Definition 13. In the one-point compactification $\kappa^* = \kappa \cup \{\infty\}$ of discrete κ , define the clopen partition $\mathcal{C}(F) = [F]^1 \cup \{\kappa^* \setminus F\}$.

Theorem 14. $\mathscr{R} \uparrow_{code} Prox_{R,P}(\kappa^*)$

Proof. Use the coding strategy $\sigma() = \mathcal{C}(\emptyset) = \{\kappa^*\}$, $\sigma(\mathcal{C}(F), \alpha) = \mathcal{C}(F \cup \{\alpha\})$ for $\alpha < \kappa$ and $\sigma(\mathcal{C}(F), \infty) = \mathcal{C}(F)$. Note $\mathcal{R}_n = \mathcal{H}_n$. For any attack p_0, p_1, \ldots against σ such that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, suppose

- $\infty \in \bigcap_{n < \omega} \mathcal{H}_n[p_n]$. Then $p_n \in \kappa^* \setminus \{p_m : m < n\}$ shows that the non- ∞ p_n are all distinct. If co-finite $p_n = \infty$, we have $p_n \to \infty$. Otherwise, there are infinite distinct p_n , and since neighborhoods of ∞ are co-finite, we have $p_n \to \infty$.
- $\infty \notin \mathcal{H}_N[p_N]$ for some $N < \omega$, so $\alpha \in \bigcap_{n < \omega} \mathcal{H}_n[p_n]$ for some $\alpha < \kappa$. Then $\mathcal{H}_n[p_n] = \{\alpha\}$ for all $n \geq N$, and thus $p_n \to \alpha$.

Thus σ is a winning coding strategy.

Theorem 15. $\mathscr{O} \uparrow Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow Prox_{R,P}(\kappa^*)$

$$\mathscr{O} \uparrow_{pre} Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{pre} Prox_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(\kappa^*,\infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-}tact} Prox_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-mark}} Prox_{R,P}(\kappa^*)$$

Proof. Let $\sigma \circ L$ be a winning strategy where L is the identify (resp. a k-tactical fog-of-war, a k-Marköv fog-of-war).

Define $\tau \circ L$ such that

$$\tau \circ L(p_0, \dots, p_{n-1}) = \mathcal{R}(\kappa^* \setminus (\sigma \circ L(p_0, \dots, p_{n-1})))$$

For any attack p_0, p_1, \ldots against τ such that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, suppose

- $\mathcal{H}_n[p_n] = \mathcal{H}_n[\infty] = \bigcap_{m \leq n} \sigma \circ L(p_0, \dots, p_{m-1}) = \bigcap_{m \leq n} U_m = V_n$ for all $n < \omega$. Since σ is a winning strategy, the p_n converge at ∞ .
- $\mathcal{H}_N[p_N] \neq \mathcal{H}_N[\infty]$ for some $N < \omega$. Then $\mathcal{H}_N[p_N] = \{p_N\}$, and since $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, we have $\mathcal{H}_n[p_n] = \mathcal{H}_N[p_N] = \{p_N\} \Rightarrow p_n = p_N$ for all $n \geq N$, and the p_n converge at p_N .

Corollary 16. $\mathcal{O} \uparrow Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathcal{R} \uparrow Prox_{R,P}(\kappa^*)$

$$\mathscr{O} \uparrow_{pre} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{pre} Prox_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-tact}} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{k\text{-tact}} Prox_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{k\text{-mark}} Prox_{R,P}(\kappa^*)$$

Corollary 17. $O \uparrow_{pre} Prox_{R,P}(\omega^*)$.

$$O \uparrow_{tact} Prox_{R,P}(\omega^*).$$

$$O \not\uparrow_{k\text{-mark}} Prox_{R,P}(\kappa^*) \text{ for } \kappa \geq \omega_1.$$

Proof. Results hold for \mathscr{O} and $Con_{O,P}(\kappa^*,\infty)$.

Definition 18. The almost-proximal game $aProx_{R,P}(X)$ is analogous to $Prox_{R,P}(X)$ except that the points p_n need only cluster for \mathcal{R} to win the game.

Definition 19. The W-clustering game $Clus_{O,P}(X,x)$ is analogous to $Con_{O,P}(X,x)$ except that the points p_n need only cluster at x for \mathcal{O} to win the game.

Proposition 20. $\mathscr{O} \uparrow Clus_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow aProx_{R,P}(\kappa^*)$

$$\mathscr{O} \uparrow_{pre} Clus_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{pre} aProx_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-tact}} Clus_{O,P}(\kappa^*,\infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-tact}} aProx_{R,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-mark}} Clus_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-mark}} aProx_{R,P}(\kappa^*)$$

Proof. Same proof as before, replacing "converge" with "cluster".

Corollary 21. $\mathscr{R} \uparrow_{mark} aProx_{R,P}(\omega_1^*)$.

Proof. Holds for \mathscr{O} and $Clus_{O,P}(\omega_1^*,\infty)$.

Proposition 22. If $\sigma \circ L$ is a winning strategy for \mathscr{R} in $Prox_{R,P}(X)$ (resp. $aProx_{R,P}(X)$) where L is the identity (or a k-tactical fog-of-war or a k-Marköv fog-of-war), and C is a closed subspace of X, then

$$\tau \circ L(p_0, \dots, p_{n-1}) = C \cap \sigma \circ L(p_0, \dots, p_{n-1})$$

defines a winning strategy $\tau \circ L$ for \mathscr{R} in $Prox_{R,P}(X)$ (resp. $aProx_{R,P}(X)$).

Proof. For any attack p_0, p_1, \ldots against $\tau \circ L$ in $Prox_{R,P}(C)$ (resp. $aProx_{R,P}(C)$), note p_0, p_1, \ldots is also an attack against $\sigma \circ L$ in $Prox_{R,P}(X)$ (resp. $aProx_{R,P}(X)$).

If \mathscr{R} wins in $Prox_{R,P}(X)$ (resp. $aProx_{R,P}(X)$) by $\mathcal{H}_n^{\sigma}[p_n] = \emptyset$, then note that $\mathcal{H}_n^{\tau}[p_n] \subseteq \mathcal{H}_n^{\sigma}[p_n] = \emptyset$.

proximity.tex - Updated on December 4, 2013

If If \mathscr{R} wins in $Prox_{R,P}(X)$ (resp. $aProx_{R,P}(X)$) because the p_n converge (resp. cluster), then they converge (resp. cluster) in the closed set C.

Either way, $\tau \circ L$ defeats the arbitrary attack and is thus a winning strategy.

Proposition 23. If for any $i < m < \omega$, $\sigma_i \circ L$ is a winning strategy for \mathscr{R} in $Prox_{R,P}(X_i)$ (resp. $aProx_{R,P}(X_i)$) where L is the identity (or a k-tactical fog-of-war or a k-Marköv fog-of-war), then

$$\tau \circ L(p_0, \dots, p_{n-1}) = \bigotimes_{i < m} \sigma_i \circ L(p_0(i), \dots, p_{n-1}(i))$$

defines a winning strategy $\tau \circ L$ for \mathscr{R} in $Prox_{R,P}(\prod_{i < m} X_i)$ (resp. $aProx_{R,P}(\prod_{i < m} X_i)$).

Proof. For any attack p_0, p_1, \ldots against $\tau \circ L$ in $Prox_{R,P}(\prod_{i < m} X_i)$ (resp. $aProx_{R,P}(\prod_{i < m} X_i)$), note that for any $i < m, p_0(i), p_1(i), \ldots$ is an attack against $\sigma_i \circ L$ in $Prox_{R,P}(X_i)$ (resp. $aProx_{R,P}(X)$).

If for some i < m, \mathscr{R} defeats the attack $p_0(i), p_1(i), \ldots$ because $\bigcap_{n < \omega} \mathcal{H}_n^i[p_n(i)] = \emptyset$, then we see immediately that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] = \emptyset$ and τ defeats the attack p_0, p_1, \ldots

Otherwise for all i < m, we have $p_n(i)$ converging (resp. clustering) at some $x_i \in X$. It follows then that p_0, p_1, \ldots converges (resp. clusters) at $x = \langle x_i : i < m \rangle$ and τ defeats the attack p_0, p_1, \ldots

Definition 24. For $H \subseteq X$, the W-subset-convergence-game $Con_{O,P}(X,H)$ is analogous to $Con_{O,P}(X,x)$: \mathscr{O} chooses open neighborhoods of H and tries to force $p_n \to H$.

Theorem 25. For all compact $H \subseteq X$, $\mathscr{R} \uparrow Prox_{R,P}(X)$ implies $\mathscr{O} \uparrow Con_{O,P}(X,H)$.

Proof. Adapted from G's proof.

Let σ witness $\mathscr{R} \uparrow Prox_{R,P}(X)$, assuming $\sigma(p)$ refines $\sigma(q)$ whenever $q \subseteq p$.

For certain finite sequences of points $p \in X^{<\omega}$, we define a tree of finite sequences $\langle T(p), \subseteq \rangle$ as follows:

• $T(\emptyset)$ contains the empty sequence, and for each of the finite nonempty

$$V \in \{U \cap H : U \in \sigma(\emptyset)\}$$

choose a unique $h_V \in V$ and include $\langle h_V \rangle$ in $T(\emptyset)$.

- Assume that whenever T(p) is defined, it satisfies the following:
 - -T(p) is finite

$$-p' \subseteq p \Rightarrow T(p') \subseteq T(p)$$

- If $\langle h_0, q_0, \dots, h_n \rangle \in T(p)$ then $\langle q_0, \dots, q_{n-1} \rangle$ is a subsequence of p and $q_i \in \sigma(h_0, q_0, \dots, h_{i-1}, q_{i-1})[h_i]$ for all i < n
- For each sequence $t^{\smallfrown}(h,q) \in T(p)$ and for each of the finite nonempty

$$V \in \{U \cap H \cap \sigma(t)[h] : U \in \sigma(t \cap \langle h, q \rangle)\}$$

there is a unique $h_V \in V$ such that $t \cap \langle h, q, h_V \rangle \in T(p)$.

- $\{ \sigma(t)[h] : t^{\frown}\langle h \rangle \text{ is maximal in } T(p) \} \text{ partitions } st \left(\bigwedge_{s \in T(p)} \sigma(s), H \right).$
- Then when T(p) is defined, we define $T(p^{\frown}\langle q\rangle)$ for each $q \in st\left(\bigwedge_{s \in T(p)} \sigma(s), H\right)$ as follows:
 - Assume $T(p) \subseteq T(p \cap \langle q \rangle)$.
 - Find the maximal $t_q^{\widehat{}}\langle h_q \rangle$ in T(p) such that $q \in \sigma(t_q)[h_q]$. Include $t_q^{\widehat{}}\langle h_q, q \rangle$ in $T(p^{\widehat{}}\langle q \rangle)$.
 - For each of the finite nonempty

$$V \in \mathcal{V}(t_q, h_q, q) = \{ U \cap H \cap \sigma(t_q^{\frown} \langle h_q, q \rangle)[h] : U \in \sigma(t_q^{\frown} \langle h_q, q \rangle) \}$$

choose a unique $h_V \in V$ and include $t_q^{\smallfrown} \langle h_q, q, h_V \rangle$ in $T(p^{\smallfrown} \langle q \rangle)$.

- Note that

$$\{\sigma(t)[h]: t^{\frown}\langle h \rangle \text{ is maximal in } T(p), h \neq h_q\}$$

partitions

$$st\left(\bigwedge_{s\in T(p)}\sigma(s),H\right)\setminus\sigma(t_q)[h_q]=st\left(\bigwedge_{s\in T(p^{\frown}\langle q\rangle)}\sigma(s),H\right)\setminus\sigma(t_q)[h_q]$$

and that

$$\{\sigma(t_q^{\frown}\langle h_q, q\rangle)[h_V]: \mathcal{V} \in V(t_q, h_q, q)\}$$

partitions

$$st\left(\bigwedge_{V\in\mathcal{V}(t_q,h_q,q)}\sigma(t_q^\smallfrown\langle h_q,q,h_V\rangle),H\right)\cap\sigma(t_q)[h_q]=st\left(\bigwedge_{s\in T(p^\smallfrown\langle q\rangle)}\sigma(s),H\right)\cap\sigma(t_q)[h_q]$$

so our definition satisfies the recursion hypotheses.

We may define a strategy τ for $\mathscr O$ in $Con_{O,P}(X,H,)$ as follows. Let $\tau(\emptyset)=st\left(\bigwedge_{s\in T(\emptyset)}\sigma(s),H\right)$. If T(p) is defined and $q\in st\left(\bigwedge_{s\in T(p)}\sigma(s),H\right)$, then let $\tau(p^\frown\langle q\rangle)=st\left(\bigwedge_{s\in T(p^\frown\langle q\rangle)}\sigma(s),H\right)$ (and $\tau(p^\frown\langle q\rangle)=X$ otherwise).

Let $p \in X^{\omega}$ attack τ such that $p(n) \in \tau(p \upharpoonright n)$ always. It follows that $T(p \upharpoonright n)$ is defined for all $n < \omega$, so let $T_p = \bigcup_{n < \omega} T(p \upharpoonright n)$. By definition, it is evident that T_p is an infinite tree with finite levels, so choose an infinite branch $p' = \langle h_0, q_0, \ldots \rangle$.

Since p' is an attack on σ , and $p'(n+1) \in \sigma(p \upharpoonright n+1)[p(n)]$ always, it follows that p' converges. Since $p(2n) = h_n \in H$, p' converges in H, and so does its subsequence $p'' = \langle q_0, q_1, \ldots \rangle$, which is also a subsequence of p.

We've shown p clusters in H, and since $\tau(p \upharpoonright n+1) \subseteq \tau(p)$, it follows analogously to a result of G that p converges in H.

Corollary 26. If X is compact and $\mathcal{R} \uparrow Prox_{R,P}(X)$, then $\mathcal{O} \uparrow Con_{O,P}(X^2, \Delta)$, and thus X is Corson compact.

Proof. Note $\mathcal{R} \uparrow Prox_{R,P}(X^2)$ and Δ is a compact subset of X^2 , so $\mathcal{O} \uparrow Con_{O,P}(X^2, \Delta)$. By a result of G, X is Corson compact.