Math 104 HW2

Neo Lee

09/08/2023

Exercise 4.1

For each set below that is bounded above, list three upper bounds for the set. Otherwise write "NOT BOUNDED ABOVE".

(a) [0,1]Solution. $\{2, 3, 4\}$ (c) $\{2,7\}$ Solution. {8, 9, 10} (e) $\{\frac{1}{n}: n \in \mathbb{N}\}$ Solution. {8, 9, 10} (g) $[0,1] \cup [2,3]$ Solution. $\{8, 9, 10\}$ (i) $\bigcap_{n=1}^{\infty} \left[\frac{-1}{n}, 1 + \frac{1}{n} \right]$ Solution. $\{8,9,10\}$ **(k)** $\{n + \frac{(-1)^n}{n} : n \in \mathbb{N}\}$

Solution. NOT BOUNDED ABOVE

(m) $\{r \in \mathbb{Q} : r^2 < 4\}$

Solution. $\{8,9,10\}$

(o) $\{x \in \mathbb{R} : x < 0\}$

Solution. $\{8,9,10\}$

(q) {0, 1, 2, 4, 8, 16}

Solution. $\{20, 30, 40\}$

(s) $\{\frac{1}{n}: n \in \mathbb{N} \text{ and } n \text{ is prime}\}$

Solution. $\{20, 30, 40\}$

(u) $\{x^2:x\in\mathbb{R}\}$

Solution. NOT BOUNDED ABOVE

(w)
$$\{sin\left(\frac{n\pi}{3}\right):n\in\mathbb{N}\}$$

Exercise 4.2

Repeat Exercise 4.1 for lower bounds.

(a) [0,1]

Solution. $\{-2, -3, -4\}$

(c) {2,7}

Solution. {-8, -9, -10}

(e) $\{\frac{1}{n}: n \in \mathbb{N}\}$

Solution. {-8, -9, -10}

(g) $[0,1] \cup [2,3]$

Solution. {-8, -9, -10}

(i) $\bigcap_{n=1}^{\infty} \left[\frac{-1}{n}, 1 + \frac{1}{n} \right]$

Solution. {-8,-9,-10}

(k) $\{n + \frac{(-1)^n}{n} : n \in \mathbb{N}\}$

Solution. {-8,-9,-10}

(m) $\{r \in \mathbb{Q} : r^2 < 4\}$

Solution. $\{-8, -9, -10\}$

(o) $\{x \in \mathbb{R} : x < 0\}$

Solution. NOT BOUNDED BELOW

(q) {0, 1, 2, 4, 8, 16}

Solution. {-20, -30, -40}

(s) $\{\frac{1}{n} : n \in \mathbb{N} \text{ and } n \text{ is prime}\}$

Solution. {-20, -30, -40}

(u) $\{x^2 : x \in \mathbb{R}\}$

Solution. {-20, -30, -40}

(w) $\{ sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \}$

Solution. {-20, -30, -40}

Exercise 4.8

Let S and T be nonempty subsets of R with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.

(a) Oberserve that S is bounded above and T is bounded below.

Proof.
$$T \subseteq U(S), S \subseteq L(T)$$
.

(b)

Proposition 1. Sup $S \leq \inf T$.

Proof. Assume for the sake of contradiction that $\sup S > \inf T$. Then $\inf T$ can be written as $\inf T = \sup S - \epsilon$ for some $\epsilon > 0$. Notice that there exists $s \in S$ such that $s > \sup S - \epsilon$ [otherwise $\sup S - \epsilon$ would be a smaller upper bound]. This implies that there exists $s \in S$ such that $s > \inf T$. That means $\inf T$ is not the largest lower bound of T [s is a larger lower bound], which is a contradiction. Hence, $\sup S \leq \inf T$.

(c) Give an example of such sets S and T where $S \cap T$ is nonempty.

Solution.
$$S = \{s \le 0 : s \in \mathbb{R}\}, T = \{t \ge 0 : t \in \mathbb{R}\}, S \cap T = \{0\}.$$

(d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T$ is an empty set.

Solution.
$$S = \{s < 0 : s \in \mathbb{R}\}, T = \{t > 0 : t \in \mathbb{R}\}, S \cap T = \emptyset.$$

Exercise 4.14

Let A and B be nonempty bounded subsets of \mathbb{R} , and let A+B be the set of all sums a+b where $a \in A$ and $b \in B$.

(a)

Proposition 2. Sup $(A + B) = \sup A + \sup B$. Hint: To show $\sup A + \sup B \le \sup (A + B)$, show that for each $b \in B$, $\sup (A + B) - b$ is an upper bound for A, hence $\sup A \le \sup (A + B) - b$. Then show $\sup (A + B) - \sup A$ is an upper bound for B.

Proof. We proceed by first showing $sup(A+B) \leq supA + supB$, then showing $sup(A+B) \geq supA + supB$. $\underline{sup(A+B) \leq supA + supB}.$ For all $x \in A+B, \ x=a+b \text{ for } a \in A, b \in B.$ Hence, $x=a+b \leq supA + supB \Rightarrow supA + supB \subseteq U(A+B) \Rightarrow sup(A+B) \leq supA + supB.$

 $\sup(A+B) \ge \sup A + \sup B$. Assume for the sake of contradiction that $\sup(A+B) < \sup A + \sup B$. Then $\sup(A+B) = \sup A + \sup B - \epsilon$ for some $\epsilon > 0$. Notice $\exists b \in B$ and $\exists a \in A$ such that $\sup A - \epsilon/2 < a$ and $\sup B - \epsilon/2 < b$. Then $\sup A + \sup B - \epsilon = \sup(A+B) < a+b$, which is a contradiction. Hence, $\sup(A+B) \ge \sup A + \sup B$.

(b)

Proposition 3. Inf $(A + B) = \inf A + \inf B$.

Proof. We proceed by first showing $\inf(A+B) \ge \inf A + \inf B$, then showing $\inf(A+B) \le \inf A + \inf B$. $\inf(A+B) \ge \inf A + \inf B$. For all $x \in A+B$, x=a+b for $a \in A, b \in B$. Hence, $x=a+b \ge \inf A + \inf B \Rightarrow \inf A + \inf B \subseteq L(A+B) \Rightarrow \inf A + \inf B$.

 $\underline{inf(A+B)} \leq \underline{infA} + \underline{infB}$. Assume for the sake of contradiction that $\underline{inf(A+B)} > \underline{infA} + \underline{infB}$. Then $\underline{inf(A+B)} = \underline{infA} + \underline{infB} + \epsilon$ for some $\epsilon > 0$. Notice $\exists b \in B$ and $\exists a \in A$ such that $\underline{infA} + \epsilon/2 > a$ and $\underline{infB} + \epsilon/2 > b$. Then $\underline{infA} + \underline{infB} + \epsilon = \underline{inf(A+B)} > a+b$, which is a contradiction. Hence, $\underline{inf(A+B)} \leq \underline{infA} + \underline{infB}$.

Exercise 4.16

Proposition 4. Sup $\{r \in \mathbb{Q} : r < a\} = a$ for each $a \in \mathbb{R}$.

Proof. Denote $A = \{r \in \mathbb{Q} : r < a\}$. We proceed by first showing a is an upper bound of A, then showing a is the least upper bound of A.

a is an upper bound of A. For all $r \in A$, $r < a \Rightarrow r \leq a$. Hence, a is an upper bound of A. Trivial.

<u>a</u> is the least upper bound of <u>A</u>. Assume for the sake of contradiction that supA < a, then $supA = a - \epsilon$ for some $\epsilon > 0$. Now by the Archimedean Property, there exists $n \in \mathbb{N}$ such that $1/n < \epsilon$. Then, we can take $r = supA + 1/n = a - \epsilon + 1/n < a$. This implies that $r \in A$ and r > supA, which is a contradiction. Hence, a is the least upper bound of A.

Exercise 5.5

Proposition 5. Inf $S \leq \sup S$ for every nonempty subset of \mathbb{R} . Consider both bounded and unbounded sets. Proof.

- Case 1: S is bounded above and below. Then $infS \leq s \in S$ and $supS \geq s \in S$ for $infS, supS \in \mathbb{R}$. Hence, $infS \leq s \leq supS$.
- Case 2: S is bounded above and unbounded below. Then $infS = -\infty \le s \in S$ and $supS \in \mathbb{R} \ge s \in S$. Obviously, $-\infty \le supS$.
- Case 3: S is unbounded above and bounded below. Then $infS \in \mathbb{R} \leq s \in S$ and $supS = \infty \geq s \in S$. Obviously, $infS \leq \infty$.
- Case 4: S is unbounded above and below. Then $infS = -\infty$ and $supS = \infty$. Obviously, $-\infty \le \infty$.