[CSP-J 2022] 乘方

题目描述

小文同学刚刚接触了信息学竞赛,有一天她遇到了这样一个题:给定正整数 a 和 b,求 a^b 的 值是多少。

 a^b 即 $b \land a$ 相乘的值,例如 2^3 即为 $3 \land 2$ 相乘,结果为 $2 \times 2 \times 2 = 8$ 。

"简单!"小文心想,同时很快就写出了一份程序,可是测试时却出现了错误。

小文很快意识到,她的程序里的变量都是 int 类型的。在大多数机器上,int 类型能表示的最大数为 $2^{31}-1$,因此只要计算结果超过这个数,她的程序就会出现错误。

由于小文刚刚学会编程,她担心使用 int 计算会出现问题。因此她希望你在 a^b 的值超过 10^9 时,输出一个 -1 进行警示,否则就输出正确的 a^b 的值。

然而小文还是不知道怎么实现这份程序,因此她想请你帮忙。

输入格式

输入共一行,两个正整数a,b。

输出格式

输出共一行,如果 a^b 的值不超过 10^9 ,则输出 a^b 的值,否则输出 -1。

样例#1

样例输入#1

10 9

样例输出#1

1000000000

样例#2

样例输入#2

23333 66666

样例输出#2

-1

提示

对于 10% 的数据,保证 b=1。

对于 30% 的数据, 保证 b < 2。

对于 60% 的数据,保证 $b \le 30$, $a^b \le 10^{18}$ 。

对于 100% 的数据,保证 $1 \le a, b \le 10^9$ 。

upd 2022.11.14:新增加一组 Hack 数据。

[CSP-J 2022] 解密

题目描述

给定一个正整数 k,有 k 次询问,每次给定三个正整数 n_i , e_i , d_i ,求两个正整数 p_i , q_i ,使 $n_i = p_i \times q_i$ 、 $e_i \times d_i = (p_i - 1)(q_i - 1) + 1$ 。

输入格式

第一行一个正整数 k, 表示有 k 次询问。

接下来k行, 第i行三个正整数 n_i, d_i, e_i 。

输出格式

输出k行,每行两个正整数 p_i, q_i 表示答案。

为使输出统一, 你应当保证 $p_i \leq q_i$ 。

如果无解,请输出 NO。

样例#1

样例输入#1

```
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
```

样例输出#1

2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
NO

提示

【样例 #2】

见附件中的 decode/decode2.in与 decode/decode2.ans。

【样例 #3】

见附件中的 decode/decode3.in与 decode/decode3.ans。

【样例 #4】

见附件中的 decode/decode4.in与 decode/decode4.ans。

【数据范围】

以下记 $m = n - e \times d + 2$ 。

保证对于 100% 的数据, $1 \le k \le 10^5$,对于任意的 $1 \le i \le k$, $1 \le n_i \le 10^{18}$, $1 \le e_i \times d_i \le 10^{18}$, $1 \le m \le 10^9$ 。

测试点编号	$k \leq$	$n \le$	$m \leq$	特殊性质
1	10^3	10^{3}	10^3	保证有解
2	10^3	10^{3}	10^3	无
3	10^3	10^{9}	$6 imes 10^4$	保证有解
4	10^3	10^{9}	$6 imes 10^4$	无
5	10^3	10^{9}	10^9	保证有解
6	10^{3}	10^{9}	10 ⁹	无

测试点编号	$k \le$	$n \leq$	$m \leq$	特殊性质
7	10^5	10^{18}	10^{9}	保证若有解则 $p=q$
8	10^5	10^{18}	10^{9}	保证有解
9	10^5	10^{18}	10^{9}	无
10	10^5	10^{18}	10^9	无

[CSP-J 2022] 逻辑表达式

题目描述

逻辑表达式是计算机科学中的重要概念和工具,包含逻辑值、逻辑运算、逻辑运算优先级等内容。

在一个逻辑表达式中,元素的值只有两种可能: 0 (表示假) 和 1 (表示真)。元素之间有多种可能的逻辑运算,本题中只需考虑如下两种: "与"(符号为 α) 和"或"(符号为 α) 。其运算规则如下:

$$0 \& 0 = 0 \& 1 = 1 \& 0 = 0, \ 1 \& 1 = 1;$$

 $0 | 0 = 0, \ 0 | 1 = 1 | 0 = 1 | 1 = 1.$

在一个逻辑表达式中还可能有括号。规定在运算时,括号内的部分先运算;两种运算并列时, &运算优先于 |运算;同种运算并列时,从左向右运算。

比如,表达式 0|1&0 的运算顺序等同于 0|(1&0); 表达式 0&1&0|1 的运算顺序等同于 ((0&1)&0)|1。

此外,在C++等语言的有些编译器中,对逻辑表达式的计算会采用一种"短路"的策略:在形如 a & b 的逻辑表达式中,会先计算 a 部分的值,如果a=0,那么整个逻辑表达式的值就一定为0,故无需再计算 b 部分的值;同理,在形如 a | b 的逻辑表达式中,会先计算 a 部分的值,如果a=1,那么整个逻辑表达式的值就一定为1,无需再计算 b 部分的值。

现在给你一个逻辑表达式,你需要计算出它的值,并且统计出在计算过程中,两种类型的"短路"各出现了多少次。需要注意的是,如果某处"短路"包含在更外层被"短路"的部分内则不被统计,如表达式 1 | (0&1) 中,尽管 0&1 是一处"短路",但由于外层的 1 | (0&1) 本身就是一处"短路",无需再计算 0&1 部分的值,因此不应当把这里的 0&1 计入一处"短路"。

输入格式

输入共一行,一个非空字符串s表示待计算的逻辑表达式。

输出格式

输出共两行,第一行输出一个字符 0 或 1,表示这个逻辑表达式的值;第二行输出两个非负整数,分别表示计算上述逻辑表达式的过程中,形如 a & b 和 a | b 的"短路"各出现了多少次。

样例#1

样例输入#1

```
0&(1|0)|(1|1|1&0)
```

样例输出#1

```
1
1 2
```

样例#2

样例输入#2

```
(0|1&0|1|1|(1|1))&(0&1&(1|0)|0|1|0)&0
```

样例输出#2

```
0 2 3
```

提示

【样例解释 #1】

该逻辑表达式的计算过程如下,每一行的注释表示上一行计算的过程:

```
0&(1|0)|(1|1|1&0)
= (0&(1|0))|((1|1)|(1&0)) //用括号标明计算顺序
= 0|((1|1)|(1&0)) //先计算最左侧的 &,是一次形如 a&b 的"短路"
= 0|(1|(1&0)) //再计算中间的 |,是一次形如 a|b 的"短路"
= 0|1 //再计算中间的 |,是一次形如 a|b 的"短路"
```

【样例#3】

见附件中的 expr/expr3.in 与 expr/expr3.ans。

【样例#4】

见附件中的 expr/expr4.in 与 expr/expr4.ans。

【数据范围】

设|s|为字符串s的长度。

对于所有数据, $1 \le |s| \le 10^6$ 。保证 s 中仅含有字符 0、1、6、1、6、1、60、10 且是一个符合规范的逻辑表达式。保证输入字符串的开头、中间和结尾均无额外的空格。保证 s0 中没有重复的括号嵌套(即没有形如(s0)形式的子串,其中 s0 是符合规范的逻辑表达式)。

测试点编号	$ s \leq$	特殊条件
$1\sim 2$	3	无
$3\sim 4$	5	无
5	2000	1
6	2000	2
7	2000	3
$8\sim 10$	2000	无
$11\sim12$	10^6	1
$13\sim14$	10^6	2
$15\sim17$	10^6	3
$18\sim 20$	10^6	无

其中:

特殊性质 1 为:保证 s 中没有字符 &。 特殊性质 2 为:保证 s 中没有字符 |。

特殊性质3为:保证s中没有字符(和)。

【提示】

以下给出一个"符合规范的逻辑表达式"的形式化定义:

- 字符串 0 和 1 是符合规范的;
- 如果字符串 s 是符合规范的,且 s 不是形如(t)的字符串(其中 t 是符合规范的),那么字符串(s)也是符合规范的;
- 如果字符串 a 和 b 均是符合规范的,那么字符串 a & b、a | b 均是符合规范的;
- 所有符合规范的逻辑表达式均可由以上方法生成。

[CSP-J 2022] 上升点列

题目描述

在一个二维平面内,给定n个整数点 (x_i,y_i) ,此外你还可以自由添加k个整数点。

你在自由添加 k 个点后,还需要从 n+k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 1 而且横坐标、纵坐标值均单调不减,即 $x_{i+1}-x_i=1,y_{i+1}=y_i$ 或 $y_{i+1}-y_i=1,x_{i+1}=x_i$ 。请给出满足条件的序列的最大长度。

输入格式

第一行两个正整数n,k分别表示给定的整点个数、可自由添加的整点个数。

接下来n行,第i行两个正整数 x_i,y_i 表示给定的第i个点的横纵坐标。

输出格式

输出一个整数表示满足要求的序列的最大长度。

样例#1

样例输入#1

8	2				
3	1				
3	2				
3	3				
3	6				
1	2				
2	2				
5	5				
5	3				

样例输出#1

8

样例#2

样例输入#2

4 100			
10 10			
15 25			
20 20			
30 30			

样例输出#2

103

提示

【样例 #3】

见附件中的 point/point3.in 与 point/point3.ans。

第三个样例满足k=0。

【样例#4】

见附件中的 point/point4.in 与 point/point4.ans。

【数据范围】

保证对于所有数据满足: $1 \le n \le 500$, $0 \le k \le 100$ 。对于所有给定的整点,其横纵坐标 $1 \le x_i, y_i \le 10^9$,且保证所有给定的点互不重合。对于自由添加的整点,其横纵坐标不受限制。

测试点编号	$n \le$	$k \leq$	$x_i,y_i \leq$
$1\sim 2$	10	0	10
$3\sim 4$	10	100	100
$5\sim7$	500	0	100
$8\sim 10$	500	0	10^9
$11 \sim 15$	500	100	100
$16\sim20$	500	100	10^9