Babeş-Bolyai University, Fakultät für Mathematik und Informatik Numerik, SS2019/20

2. und 3. Labor Interpolation

1. Berechnung des Interpolationspolynoms I: Newton-Darstellung.

Man schreibe ein Programm, welches anhand der Newton-Darstellung¹ das Lagrange Interpolationspolynom berechnet.

Wende dann das Programm auf $f: [-1,1] \to \mathbb{R}$, $f(x) = e^x$, mit 11, 21, 31 äquidistante Stützstellen (d.h. n = 10, 20, 30). Man erzeuge 3 Bilder dazu.

(Hinweis: Dividierte Differenzen müssen im Voraus berechnet werden, s. [Trîmbiţaş].)

2. Runges Phänomen I: was schief gehen kann.

Wir untersuchen Runges Funktion $f: [-1,1] \to \mathbb{R}, f(x) = \frac{1}{1+25x^2}$.

Man wende das Newton-Programm an, um das entsprechende Interpolationspolynom für 11, 21, 31 äquidistante Stützstellen (wieder n = 10, 20, 30) zu berechnen. Man erzeuge 3 Bilder dazu.

3. Runges Phänomen I: Tschebyscheff² Knoten (eine Lösung).

Äquidistante Knoten habe sich als schlecht erwiesen, deshalb wollen wir jetz sogennante Tschebyscheff Interpolationsknoten³ verwenden. Diese werden, für $i=0,\ldots n$, durch folgende Beziehungen definiert

$$x_i = \cos \frac{(2i+1)\pi}{2n+1}$$
, (Tscheb. Knoten 1. Art)
 $x_i = \cos \frac{i\pi}{n}$, (Tscheb. Knoten 2. Art)

Man wende das Newton-Programm an, um das entsprechende Interpolationspolynom für 11, 21, 31 Tschbyscheff Stützstellen 1. und 2. Art (wieder n = 10, 20, 30) zu berechnen. Man erzeuge 6 Bilder dazu.

4. Numerische Instabilität.

Tschbyscheff Stützstellen sind nur teilweise eine Lösung, denn das Newton-Verfahren ist bei $n \gg 1$ numerisch instabil.

Man wende das Newton-Programm an, um das entsprechende Interpolationspolynom für 69 bzw. 71 Tschbyscheff Stützstellen 1. Art zu berechnen. Man erzeuge 2 Bilder dazu.

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$, $k \ge 2$

rekursiv berechnet.

¹[Trîmbiţaş] ist eine gute Referenz sowohl für Matlab/Ocrave als auch für Python Nutzer.

²Cebyshev (Engl.) oder Cebîşev (Rum.).

³Tschebyscheff Knoten sind Nullstellen entsprechender Tschebyscheff-Polynome. Z. B. die Tschebyscheff-Polynome erster Art werden durch

5. Berechnung des Interpolationspolynoms II: Die baryzentrische Darstellung.

Man schreibe ein Programm, welches anhand der baryzentrischen Darstellung⁴

$$L(x) = \begin{cases} \frac{\sum_{i=0}^{n} \frac{\omega_{i} f(x_{i})}{x - x_{i}}}{\sum_{i=0}^{n} \frac{\omega_{i} f(x_{i})}{x - x_{i}}} & \text{if } x \neq x_{i} \\ f(x_{i}) & \text{otherwise} \end{cases}$$

mit $\omega_i = \prod_{k \neq i}^n \frac{1}{x_i - x_k}$ das Lagrange Interpolationspolynom berechnet.

Man wende das baryzentrische Programm an, um das entsprechende Interpolationspolynom für 69 bzw. 71 Tschbyscheff Stützstellen 1. Art zu berechnen. Man erzeuge 2 Bilder dazu. Was lässt sich zur numerischen (In)stabilität festestellen?

6. Lineare Splines.

Man schreibe ein Programm, welches eine gegebene Funktion mit stückweise linearen Splines interpoliert. Wende dieses Progamm an um Runges Funktion an 11,21,31 äquidistante Stützstellen (d.h. n=10,20,30) zu interpolieren (3 Bilder).

(Hinweis: die Dachfunktion nicht vergessen!)

7. Natürliche kubische Splines.

Man schreibe ein Programm, welches eine gegebene Funktion mit natürliche kubische Splines interpoliert. Wende dieses Progamm an, um Runges Funktion an 11, 21, 31 äquidistante Stützstellen (d.h. n = 10, 20, 30) zu interpolieren (3 Bilder).

(Hinweis: s. [Trîmbiţaş] oder [Beu].)

⁴s. [Trefethen] oder [Helzel].