Problemas de independencia

1. Se seleccionó una muestra de 3000 naranjas de València. Cada naranja se clasificó según su color (claro, medio y oscuro) y se determinó su contenido de azúcar (dulce o no dulce). Los resultados fueron:

Color	Muy Dulce	No Dulce	Totales
Claro	1300	200	1500
Medio	500	500	1000
Oscuro	200	300	500
Totales	2000	1000	3000

Probar la hipótesis de que la dulzura y el color son independientes.

2. Nos dan las notas de cierta asignatura de 3 grupos de alumnos A, B i C:

A	4.6	5.	5.1	5.6	4.6	5.	5.7	5.4	4.4	8.
B	4.6 7.2	3.4	5.3	4.	3.5	4.	5.	4.7	3.6	4.1
C	7.2	7.3	5.7	4.1	5.7	6.1	6.	7.8	7.	3.8

Los clasificamos según 2 criterios: por grupo y por nota teniendo en cuenta que: **Suspenso** significa una nota más pequeña que 5 (nota < 5) y **Aprobado** significa una nota entre 5 y 6 ($5 \le 6$), **Notable** significa una nota mayor que 6 (nota > 6).

Hallar a partir del test χ^2 el p-valor para aceptar que los dos criterios son independientes

3. Clasificamos N individuos según dos criterios. Cada criterio tiene dos niveles. La tabla de contingencia es la siguiente:

$C_2 \backslash C_1$	A_1	A_2	
B_1	10	5	
B_2	5	10	

Hallar el p-valor para poder aceptar que los dos criterios son independientes usando el test χ^2 .