CM1103: Solutions 2 – Sets

- (l) Depends on the choice of U e.g. taking U as all lower case letters gives the answer 23
- 2. (a) Explicitly: {Bread, Apples, Brie} Set builder notation: {*x* : *x* is a food I like}
 - (b) Explicitly: $\{51, 53, 55, 57, 59, 61, 63, 65, 67, 69\}$ Set builder notation: $\{x: 50 < x < 70 \text{ and } x \text{ is odd}\}$

In general, set builder notation is much easier to use and frequently involves no work at all to specify a set. Sometimes, it would be impossible to express a set explicitly. For example, how long would it take you to express the set \mathbb{Z} explicitly?!

- 3. $A \cup B \neq A \cap B$. This is proven by a counterexample (n.b. always chose a simple counterexample). E.g. let $A = \{1\}$ and $B = \{2,3\}$. Then $A \cup B = \{1,2,3\}$ and $A \cap B = \emptyset$. Hence it is not true in general than $A \cup B = A \cap B$.
- 4. $\{a,b\}$, $\{a,c\}$, $\{b,c\}$
- 5. $-1, -2, -3, \ldots$
- 6. Four: $\{1, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 4\}, \{2, 4\},$ and four: $\{1, 2, 3\}, \{2, 3\}, \{1, 2\}, \{2\}.$
- 7. Which of the following statements are true:
 - (a) True order of elements doesn't matter in sets (b) False each element can only appear once in a set (c) True (d) False not true if $A=\emptyset$ (remember the difference between \subset and \subseteq)
- 8. Highlight the set $(A \cup B) C$ in a Venn diagram. Solution given in tutorial.
- 9. (a) True. Illustrate this by constructing the Venn diagrams of the expressions on either side of the equals sign and observing that they are the same.
 - (b) False. Use a counterexample: one possibility is to let $A=B=\{1\}$ and $C=\{2\}$. Note that there are many possible counterexamples. For example, any choice of A, B and C in which A=B and $A\cap C=\emptyset$ will do the job.
 - (c) False. Counterexample: Let $A=\{1,2\}$ and $B=\{2,3\}$. Then $A-B=\{1\}$ but $B-A=\{3\}$.
- 10. Decide whether the following is true:

$$A - (B \cup C) = (A - B) \cup (A - C)$$

by drawing Venn diagrams to illustrate the sets $B \cup C$, A - B, A - C and each side of the statement. *Solution given in tutorial.*

11. Given that $A = \{1\}$, $B = \{1, 2\}$ and $C = \{\{1\}, \{1, 2\}\}$.

$$\begin{array}{ll} \text{(a)}\, \mathcal{P}(A) = \{\emptyset, \{1\}\} & \text{(b)}\, \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \\ \text{(c)}\, \mathcal{P}(A \cup B) = \mathcal{P}(B) & \text{(d)}\, \mathcal{P}(A \cap B) = \mathcal{P}(A) \\ \text{(e)}\, \mathcal{P}(C) = \{\emptyset, \{\{1\}\}, \{\{1,2\}\}, \{\{1\}, \{1,2\}\}\} \\ \text{(f)}\, \mathcal{P}(A \cup C) = \mathcal{P}\left(\{1, \{1\}, \{1,2\}\}\right) \\ = \{\emptyset, \{1, \{1\}, \{1,2\}\}, \{1\}, \{\{1\}\}, \{\{1,2\}\}, \{1, \{1\}\}, \{1, 2\}\}, \{\{1\}, \{1,2\}\}\} \\ \text{(g)}\, \mathcal{P}(\emptyset) = \{\emptyset\} & \text{(h)}\, \mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\} \\ \end{array}$$

- 12. All partitions of the set $\{1, 2, 3\}$ are $\{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{1, 3\}, \{2\}\}, \{\{1, 2\}, \{3\}\}, \{\{1, 2, 3\}\}\}$
- 13. Stages of the proof can be constructed as follows:
 - i. As $A \subseteq B$, all elements of A are elements of B ($x \in A \Rightarrow x \in B$)
 - ii. As $B \subseteq C$, all elements of B are elements of C ($x \in B \Rightarrow x \in C$)
 - iii. Hence every element of A is an element of C i.e. $A \subseteq C$.