Machine Learning

Machine Learning Review

Can you provide examples of each one of the following areas?

Supervised Learning

- Classification
- Regression
- Active Learning
- Time-series forecasting
- ...

Semi-supervised Learning

- Generative models
- When labels are limited (includes use cases from supervised and unsupervised learning)

Unsupervised Learning

- Clustering
- Dimensionality reduction
- Anomaly Detection
- Generative models
- ...

Reinforcement Learning

- Game playing
- Robotics
- Recommendation systems
- ...

One simple clustering algorithms is k-means, can you describe it?

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

One simple classification algorithm is SVM, can you describe it?

What if the data is not linearly separable?

Kernel trick

What if the problem is a multiclass problem?

One vs. all

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

What classifiers are you familiar with?

- K-nearest neighbour
- Naïve Bayes
- Bayesian network
- Logistic regression
- Random Forests
- Boosted Decision Trees
- Restricted Boltzmann Machines
- Neural Networks
- Convolutional Neural Networks
- Transformers
- ..

Which one is the best?

Designing an experiment

What are examples of image features?

- Raw pixels
- Histograms
- Local descriptors
 - SIFT
 - ORB
 - SURF
 - HOG...

What are examples of training labels?

Images in the training set must be annotated with the "correct answer" that the model is expected to produce.

Contains a motorbike

Assuming we have the data... What is one of the first tasks to ensure model generalisation?

- Train classifier

- Measure error
- Tune model hyperparameters

- Secret labels
- Measure error

Random training/validation splits = cross validation

Generalisation

How well does the trained model generalise to unseen data (test data)?

Training set (labels known)

Test set (labels unknown)

Generalisation error

Bias

- Difference between the expected prediction of our model and the correct value
- Error due to inaccurate assumptions/simplifications

Variance

 How much the target estimates change if different training data is used

Source: https://medium.com/@rsehrawat75/bias-variance-tradeoff-f0e3afb78879

What effects can the generalisation error create?

Underfitting (in blue)

Model is too 'simple' to represent all the relevant class characteristics

- High bias (few degrees of freedom) and low variance
- High training error and high test error

Overfitting (in blue)

Model is too 'complex' and fits irrelevant characteristics (noise) in the data

- Low bias (many degrees of freedom) and high variance
- Low training error and high test error

Bias variance trade-off

- Not enough flexibility
- Too many assumptions

- Too much sensibility to the sample data
- Slightly different data very different function

How can we evaluate the performance of a classification model?

Confusion Matrix

- For a binary classifier

		predicted class	
		positive	negative
actual class	positive	true positives	false negatives type II error
	negative	false positives type I error	true negatives

How can we evaluate the performance of a classification model?

Precision and Recall

- TP (true positive) correct attribution
- TN (true negative) correct rejection
- FP (false positive) incorrect attribution
- FN (false negative) incorrect rejection

$$ext{Precision} = rac{tp}{tp+fp}$$

Precision = #relevant / #returned

$$ext{Recall} = rac{tp}{tp+fn}$$

Recall = #relevant / #total relevant

How many selected items are relevant?

Precision =

How many relevant items are selected?

By Walber - Own work, CC BY-SA 4.0,

Curves

Plotting metric values for different threshold values

Receiver operating characteristics (ROC)

- Sensitivity (TPR (true positive rate) or Recall)
- Specificity (TNR (true negative rate))

Area Under the Curve (AUC)

Also used as a metric

False positive rate

Image source:

https://www.researchgate.net/figure/Representation-of-a-ROC-curve-Ideal-model -marked-by-an-arrow-hypothetical-curve fig5 324923635

