CNN Applications Visual Understanding Al

using vision cloud service API

AI - 영상 이해 서비스

- Google Vision API : <u>Cloud Vision API Demo</u>
- MicroSoft Vision API: <u>MS Azure Vision API Demo</u>
- Amazon Rekognition API : <u>AWS Rekognition API Demo</u> ← (requires to log-in)

- API (응용 프로그램 인터페이스: Application Program Interface) : 소프트웨어 응용 프로그램 구축을 위한 일련의 루틴, 프로토콜 및 도구 집합들을 지칭합니다. 기본적으로 API는 소프트웨어 구성 요소의 상호 작용 방식을 지정합니다. 좋은 API를 사용하면 프로그램을 쉽게 개발할 수 있습니다.

Google Vision AI (Link: https://cloud.google.com/vision/)

- 사이트를 방문하여 이미지 파일을 상자로 드래그하거나, 컴퓨터 파일을 업로드하십시오.
- 선행 학습된 Google 모델을 사용하여 이미지에 라벨을 할당하고 수백만 개의 사전 정의된 카테고리로 분류합니다. 객체 및 얼굴 감지, 인쇄 및 필기 텍스트 읽기 등이 가능합니다.

cample image

Google Vision AI (Link: https://cloud.google.com/vision/)

요청(request)과 응답(response)

형식: JSON (JavaScript Object Notation)

Sample JSON Parser

- https://jsonformatter.org/jsonparser
- https://jsonparser.org/

```
Request URL
 https://vision.googleapis.com/v1/images:annotate
Request
                                                Response
   "requests": [
                                                    "cropHintsAnnotation": {
                                                      "cropHints": [
        "features": [
                                                          "boundingPoly": {
            "maxResults": 50
                                                            "vertices":
            "type": "LANDMARK_DETECTION"
                                                                 "x": 67
            "maxResults": 50.
            "type": "FACE_DETECTION"
                                                                "x": 788
            "maxResults": 50
                                                                "x": 788.
            "type": "OBJECT_LOCALIZATIO
                                                                "v": 900
 N"
                                                                "x": 67,
            "maxResults": 50.
                                                                "v": 900
            "type": "LOGO_DETECTION"
```


지원 인식 기능

- **객체** 감지:
- 인쇄 및 필기 입력 **텍스트** 감지 :
- **얼굴** 감지 :
- **명소** 및 **제품 로고** 식별 :
- **일반 이미지 속성** 할당 :
- **웹 항목** 및 페이지 감지:
- **콘텐츠** 검토 :

MicroSoft Vision AI (Link: MS Vision API Demo)

 사이트를 방문하여 이미지 URL입력하거나, 찾아보기로 업로드합니다.

 시각적 데이터를 사용하여 콘텐츠(개체에서 개념까지)에 레이블을 지정하고, 인쇄된 텍스트와 필기 텍스트를 추출하고, 브랜드와 랜드마크 같은 친숙한 주제를 인식하고, 콘텐츠를 조정하는게 가능합니다.

지원 인식 기능

- 콘텐츠 태그
- 개체 감지
- 이미지 분류
- 이미지 설명
- 얼굴 감지
- 이미지 형식 감지
- 도메인 특성 콘텐츠
- 색 구성표 감지
- 스마트 썸네일
- 인쇄 및 필기 텍스트 인식
- 성인 콘텐츠 검색

개체 [{ "re

- 개체 [{ "rectangle": { "x": 34, "y": 283, "w": 73, "h": 62 }, "object": "Tableware", "confidence": 0.521), { "rectangle": { "x": 106, "y": 10, "w": 210, "h": 219), "object": "plant", "confidence":
- 태그 [{ "name": "table", "confidence": 0.994518042 }, { "name":

- 기능 값
- 개체 [{ "rectangle": { "x": 238, "y": 299, "w": 177, "h": 117 }, "object": "Skateboard", "confidence": 0.903 }, { "rectangle": { "x": 118, "y": 63, "w": 305, "h": 321 }, "object": "person", "confidence": 0.955 }]
- 태그 [{ "name": "skating", "confidence": 0.999951541 }, { "name": "snowboarding", "confidence": 0.990067363 }, { "name": "sports equipment", "confidence": 0.9774853), { "name": "person", "confidence": 0.9605776 }, { "name": "roller skating", "confidence": 0.945730746 }, { "name": "boardsport", "confidence": 0.9242261), { "name": "man", "confidence": 0.9188208 }, { "name": "outdoor", "confidence": 0.9107821 }, { "name": "riding", "confidence": 0.900007248 }, { "name": "skiing", "confidence": 0.894337356 }, { "name": "footwear",

104, "w . 121, 11 . 323 J, object . person , confidence . 0.763 }, { "rectangle": { "x": 174, "y": 236, "w": 113, "h": 74 }, "object": "Laptop", "parent": { "object": "computer", "confidence": 0.56 }, "confidence": 0.553 }, { "rectangle": { "x": 351, "y": 331, "w": 154, "h": 99 }, "object": "seating", "confidence": 0.525 }, { "rectangle": { "x": 0, "y": 101, "w": 174, "h": 329 }, "object": "person", "confidence": 0.855 }, { "rectangle": { "x": 223, "y": 99, "w": 199, "h": 322 }, "object": "person", "confidence": 0.725 }, { "rectangle": { "x": 154, "y": 191, "w": 387, "h": 218 }, "object": "seating", "confidence": 0.679 }, { "rectangle": { "x": 111, "y": 275, "w": 264, "h": 151 }, "object": "table", "confidence": 0.601 }]

- 기능 값 이름:
- 개체 [{ "rectangle": { "x": 86, "y": 56, "w": 467, "h": 343 }, "object": "Office supplies", "confidence": 0.577 }]
- 태그 [{ "name": "text", "confidence": 0.9999335 }, { "name": "handwriting", "confidence": 0.9937743 }]
- 설명 { "tags": ["text"], "captions": [{ "text": "a close up of text on a white background", "confidence": 0.8143099 }] }
- 0|0| "Jpeg"
- 형식
- 이미 430 x 558

Amazon Rekognition (Link: AWS Rekognition Demo)

- 사이트를 방문하여 이미지 URL입력하거나, "업로드" 버튼으로 또는 끌어서 놓기로 업로드합니다.
- Rekognition은 이미지에 있는 피사체, 개념, 장면에 자동으로 레이블을 지정하고 신뢰도 점수를 제공합니다.

요청(request)과 응답(response)

Format: JSON

```
▼ 요청

{
    "Image": {
        "S3Object": {
            "Bucket": "console-sample-images-icn",
            "Name": "skateboard.jpg"
        }
    }
}
```

```
▼ 응답
   "Labels": [
        "Name": "Transportation",
        "Confidence": 98.87621307373047,
        "Instances": [],
        "Parents": []
        "Name": "Automobile",
        "Confidence": 98.87621307373047,
        "Instances": [].
        "Parents": [
              "Name": "Vehicle"
              "Name": "Transportation"
        "Name": "Car",
        "Confidence": 98.87621307373047,
        "Instances": [
              "BoundingBox": {
                 "Width": 0.10527367144823074,
                 "Height": 0.18472492694854736,
                 "Left": 0.0042892382480204105.
                 "Top": 0.5051581859588623
              "Confidence": 98.87621307373047
```

지원 인식 기능

- 객체 및 장면 감지
- 이미지 조절
- 얼굴분석
- 유명 인사 인식
- 얼굴비교
- 이미지내 텍스트

JSON

JSON (JavaScript Object Notation)은 간단한 데이터 교환 형식입니다.

- 읽고 쓰기가 쉽습니다.
- 기계가 구문 분석하고 생성하기 쉽습니다.
- JSON은 완전히 언어에 독립적인 텍스트 형식입니다.
- C++, C#, Java, JavaScript, Perl, Python 및 기타 프로그램 언어들에서 이상적인 데이터 교환 언어로 사용됩니다.

JSON Syntax

- 데이터는 **이름:값** 쌍으로 넣습니다. ex) { "name": "Jun" }
- 데이터는 **쉼표로 구분**됩니다. ex) { "name": "Jun", "age":55 }
- 객체(object)는 **중괄호 { }** 에 넣습니다. ex) { "employee": { "name":"John", "age":30, "city":"New York" } }
- **배열(array)은 대괄호[]**에 넣습니다. ex) { "employees": ["John", "Anna", "Peter"] }
- 값으로는 **문자열, 숫자, JSON 객체, 배열, 불리안(boolean)**, null 이 올 수 있다. ex) { "item": "shirt", "sale": true, "brand":null }
- JSON Parser example

Using the Google Vision API with Python (Link)

1. Google 계정이 필요 (e.g. ****@gmail.com**)

2. Sign-in to Google Cloud Platform console (console.cloud.google.com) and

create a new project (or 기존의 것 사용):

새 프로	로 <mark>젝</mark> 트	
A	projects 활당량이 22개 남았습니다. 활당량 중가를 요청 삭제하세요. <u>자세히 알아보기</u> MANAGE QUOTAS	성하거나 프로젝트를
프로젝트	트 이름 *	
VISION	N-API-JUN	•
프로젝트	트 ID: vision-api-jun입니다. 나중에 변경할 수 없습니다. 수정	
프로젝트 조직 —	트 ID: vision-api-jun입니다. 나중에 변경할 수 없습니다. 수성	
조직 —	트 ID: vision-api-jun 입니다. 나중에 변경할 수 없습니다. 수정 ng.ac.kr	
조직 hansun		•
조직 hansun 이 프로	ng.ac.kr	•
조직 hansun 이 프로	ng.ac.kr 젝트를 hansung.ac.kr에 연결합니다.	찾아보기

Using the Google Vision API with Python

3. Enable Vision API: API 탐색 및 설정 => 라이브러리 => "vision" 입력 => 클릭

4. 서비스계정 Key 만들기: 사용자 인증정보 만들기 => 서비스계정 이름입력 => 권한 "프로젝트 소유자" => 클릭 "키 만들기" => "JSON" => 다운로드 파일 저장

5. 환경변수에 다운 받은 key 설정: 제어판 => 시스템 및 보안 => 시스템 (또는 내컴퓨터 오른쪽 마우스 클릭 후 설정)=> 고급 시스템 설정 => 환경변수 => 사용자변수: 새로 만들기 ⇒ 변수이름: GOOGLE_APPLICATION_CREDENTIALS 변수 값: C:\...\key-파일명.json

- 6. Cloud Vision client python library 설치 : 명령창(command)에 다음처럼 실행
- >> pip install google-cloud-vision
- 7. label_detect.py 를 다음과 같이 작성

```
from google.cloud import vision
import io, os
# os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "my_key_name.json" # 직접 사용도 가능
image uri = 'gs://cloud-samples-data/vision/using curl/shanghai.jpeg' #URL로 이미지 지정
client = vision.lmageAnnotatorClient()
image = vision.lmage()
                                       # the new vison object doesn't have types
image.source.image uri = image uri
response = client.label detection(image=image)
print('Labels (and confidence score):')
print('=' * 79)
for label in response.label annotations:
  print(f'{label.description} ({label.score*100...2f}%)')
```

8. label_detect.py 실행하면, 그 아래와 같은 파일 출력.

>> python label_detect.py

Labels (and confidence score):

People (95.05%)

Street (89.12%)

Mode of transport (89.09%)

Transport (85.13%)

Vehicle (84.69%)

Snapshot (84.11%)

Urban area (80.29%)

Infrastructure (73.14%)

Road (72.74%)

Pedestrian (68.90%)

8. (local image 활용) label_detect2.py 를 다음과 같이 작성

```
import io, os
# os.environ['GOOGLE APPLICATION CREDENTIALS'] = "my key name.json"
                                                                                  #직접 사용
from google.cloud import vision
from google.cloud.vision import types
client = vision.lmageAnnotatorClient()
                                          # Instantiates a client
file name = os.path.abspath('cat.ipg')
                                          # The name of the image file to annotate
with io.open(file name, 'rb') as image file:
                                             # Loads the image into memory
  content = image file.read()
image = types.Image(content=content)
response = client.label detection(image=image)
                                                   # Performs label detection on the image file
labels = response.label annotations
print('Labels:')
for label in labels:
  print(f'{label.description} ({label.score*100...2f}%)')
```

9. (local image 활용) label_detect2.py 실행하면, 그 아래와 같은 파일 출력. >> python label_detect2.py

Labels:

Mammal (98.90%)

Vertebrate (98.51%)

Canidae (94.74%)

Cat (94.34%)

Dog breed (94.22%)

Dog (94.09%)

Carnivore (93.42%)

Whiskers (89.37%)

Companion dog (86.17%)

Felidae (83.34%)

- 1. Amazon AWS 계정생성 (e-mail & password): 1 year free
- 2. 로그인 AWS Management Console
- 3. IAM(Identity and Access Management) 에서 credential.csv 다운로드
 - a. Click "user(사용자:0)"

Click "add user(사용자 추가)" => Type in "user_name" => Check "프로그래밍 방식액세스"=> Click Next:Tags (다음:권한)

- Click "기존 정책 직접 연결"
- 검색: Rekognition => Check: □ AmazonRekognitionFullAccess
- 검색: S3 => Click: AmazonS3FullAccess
- 다음:태그 => Click:
- 다음:검토 => Click: 사용자만들기

- Click: csv 다운로드 => credential.csv
- 관리자 권한으로 명령 프롬프트 실행
- >> pip install boto3

▲ .csv 다운로드 사용자 ▶ ♥ junji5 # install boto3 module

다음 처럼 test.py 생성 후, 이미지(e.g. hot.jpg)와 함께 실행 >> phthon test.py

```
(주의: 실행 전에 boto3 설치 필요: >> pip install boto3)
import csv, boto3
with open('credentials.csv', 'r') as input:
     next(input)
                                            # skip the first line
     reader = csv.reader(input)
     for line in reader:
           access key id = line[2]
           secret access key = line[3]
```

```
client = boto3.client('rekognition', aws access key id = access key id,
                   aws_secret_access_key = secret_access_key, region_name = 'us-west-1')
```

```
photo = 'hot.jpg'
with open(photo, 'rb') as source image:
     source bytes = source image.read()
```

response = client.detect_labels(Image={'Bytes': source_bytes}, MaxLabels=10)

print(response)

>> python test.py

{'Labels': [{'Name': 'Balloon', 'Confidence': 99.81890869140625, 'Instances': [{'BoundingBox': {'Width': 0.506658673286438, 'Height': 0.8700017333030701, 'Left': 0.11146698147058487, 'Top':

0.06764169782400131}, 'Confidence': 99.81890869140625}], 'Parents': [{'Name': 'Ball'}]}, {'Name': 'Ball', 'Confidence': 99.81890869140625}], 'Parents': [{'Name': 'Ball'}]}, ('Name': 'Ball', 'Confidence': 'Confidence': 'Confidence': 'Confidence': 'Confidence': 'Confidence': 'Confidence': 'Confidence': 'Confi

'Confidence': 99.81890869140625, 'Instances': [], 'Parents': []}, {'Name': 'Aircraft', 'Confidence':

94.19926452636719, 'Instances': [], 'Parents': [{'Name': 'Vehicle'}, {'Name': 'Transportation'}]}, {'Name':

'Vehicle', 'Confidence': 94.19926452636719, 'Instances': [], 'Parents': [{'Name': 'Transportation'}]}, {'Name': 'Hot Air Balloon', 'Confidence': 94.19926452636719, 'Instances': [], 'Parents': [{'Name': 'Aircraft'}, {'Name': 'Parents': [], 'Parent

'Vehicle'}, {'Name': 'Transportation'}]}, {'Name': 'Transportate' Instances': [], 'Parents': []}], 'LabelModelVersion': '2.0', 'Res' 'd8fc766e-52f9-47c6-8f6c-9a1b150a2173', 'HTTPStatusCc' 'application/x-amz-json-1.1', 'date': 'Wed, 22 Apr 2020 08:0' 'd8fc766e-52f9-47c6-8f6c-9a1b150a2173', 'content-length'

'RetryAttempts': 0}}

