Total No. of Questions: 8]	290	SEAT No.:
P3502		[Total No. of Pages :

[5560]-151 T.E. (E & TC) DIGITAL COMMUNICATION (Semester - I) (2012 Pattern)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- Q1) a) Explain need of companding with mathematical expressions and characteristics, explain A Law and μ Law companding. [8]
 - b) What is bit synchronization? Explain closed loop bit synchronizer. [6]
 - c) A voltage v (t) which is a Gaussion Ergodic Random process with a zero mean and a variance of 4 volt², is measured by a dc meter, True RMS meter and a meter which First squares v(t) and then reads its dc component. Find the output of each meter. [6]

OR

- **Q2)** a) State limitations of Delta Modulator. Explain ADM transmitter and receiver with neat block schematic. [8]
 - b) Explain T1 carrier system and AT & T multiplexing hierarchy. [6]
 - c) Determine autocorrelation Funcation and power spectral density of output process when random process x(t) is applied to a LTI system. [6]
- Q3) a) Find decision threshold if conditional probability density functions after addition of noise are of Gaussion distribution and voltage v_1 represents symbols S_1 and v_2 symbol S_2 for noise case. Show the threshold when apriori probabilities are equal and unipolar signal $V_1 = +v$ and $V_2 = 0$

[8]

	b)	Derive the expression for the probability of error of integrate and dump filter. [8]
Q4)	a)	Explain following decision rules. [8]
		i) Likelihood Ratio Test
	b)	ii) Minimum error Test Explain Geometric Representation of signal with neat diagram of synthesizer and Analyzer for generating the set of signal vectors. [8]
Q5)	a)	In a digital communication system the bit rate of NRZ data stream is LMbps and carrier frequency is 100 MHZ
	V	Find i) The symbol rate of transmission.
		ii) Bandwidth requirement of the channel and
		iii) Mathematical Expression in the following cases
		1) BPSk 2) QPSK 3) 16 - ary PSK [9]
	b)	What is coherent detection? Draw the block diagram of QPSK receiver and explain its operation with proper mathematical expression. [9]
		OR
Q6)	a)	Derive error probability expression of BPSK modulation system [9]
	b)	Compare ASK, PSK and FSK modulation techniques. [9]
Q7)	a)	A pseudo-noise (PM) sequence is generated using a feedback shift register of length $m = 4$. The chip rate is 10^7 chips per second. Find the following
		Parameter: i) PM sequence length.
		ii) Chip duration of the PN sequence.
		iii) PM sequence period [8]
[556	50]-1	51 2

Give the difference between

[8]

- Slow FHSS and Fast FHSS i)
- TDMA and CDMA ii)

A DSSS system has the following properties: **Q8)** a)

Information bit duration $T_b = 5 \text{ ms}$

PM chip duration $T_C = 0.5 \mu s$ and $\frac{Eb}{N0} = 10$.

Find processing gain, what is the jamming margin? What is the number of shift registers required? [8]

Write a short note on **Q8)** b)

[8]

- Wireless telephone Systems. i)
- Personal communication Systems. ii)

And the state of t