Overheads: - Outline, NMR Bruice

Recap Monday:

Mass Spectrometry:

M⁺ = Molecular weight (⇒ formula) = highest mass peak Fragments: most stable cations biggest (most abundant)

- Characteristic of functional groups
- Best used to confirm structure

Infrared (IR) Spectroscopy

- Vibration of bonds

$$H = hv$$

$$= hv$$

$$absorbs light with exact $v = IR$ light$$

Downward peaks in spectrum mean less light passing through

<u>Hooke's law</u>: (for spring)

$$\overline{v} = 4.12 \sqrt{\frac{f}{\mu}}$$
 $f = \text{force constant relates to bond strength } (\equiv > = > -)$

$$\mu = \text{reduced mass} = \frac{M_1 M_2}{M_1 + M_2}$$
 $\mu \uparrow \text{ if } M \uparrow \therefore \overline{\nu} \downarrow \text{ for heavier atoms}$

Characteristic Functional Groups:

Table 14.4/13.4 gives IR frequencies

NMR Spectroscopy

Nuclei of some atoms (including ¹H) have "spin"

<u>Key Point:</u> electrons also tiny magnets (moving – charge)

- \rightarrow line up opposite to B_o
- \rightarrow come between nucleus and BIG B_o

: electrons "shield" nucleus from B_o, so actual B lower if more e⁻ around atom

$$E = h\nu \ \thicksim B_{(actual)} \quad \Rightarrow \mathsf{more} \ \mathsf{e}^{\scriptscriptstyle{-}} \,, \, \mathsf{B} \downarrow \,, \, \mathsf{v} \downarrow$$

Figure 15.5 (14.5): (CH₃)₃C-CH₂-Br

closer to Br \therefore higher ν (deshielded)