4/11/24, 11:55 PM RK1.ipynb - Colab

У Рубежный контроль №1 по курсу «Методы машинного обучения»

ИУ5-23М Бондаренко И. Г.

Вариант

- 3, 23 задание
- для произвольной колонки данных построить boxplot

Описание датасета

Stroke Prediction Dataset

Этот набор данных используется для прогнозирования вероятности инсульта у пациента на основе входных параметров, таких как пол, возраст, различные заболевания и статус курения. Каждая строка данных предоставляет соответствующую информацию о пациенте.

Информация об атрибутах 1) id: уникальный идентификатор

- 2) gender: "Мужской", "Женский" или "Другой"
- 3) age: возраст пациента
- 4) hypertension: 0, если у пациента нет гипертонии, 1, если у пациента есть гипертония
- 5) heart_disease: 0, если у пациента нет заболеваний сердца, 1, если у пациента есть заболевание сердца
- 6) ever_married: "Heт" или "Да"
- 7) work_type: "дети", "Государственный служащий", "Никогда не работал", "Частный" или "Самозанятый"
- 8) Residence_type: "Сельская местность" или "Город"
- 9) avg_glucose_level: средний уровень глюкозы в крови
- 10) bmi: индекс массы тела
- 11) smoking_status: "ранее курил", "никогда не курил", "курит" или "Неизвестно"*
- 12) stroke: 1, если у пациента был инсульт, или 0, если нет

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Подгрузим датасет и продемонстрируем его содержимое
data_loaded = pd.read_csv('dataset.csv', sep=",")
data loaded.head()
```

'n	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	strol
0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	
0	0	Yes	Self- employed	Rural	202.21	NaN	never smoked	
0	1	Yes	Private	Rural	105.92	32.5	never smoked	
0	0	Yes	Private	Urban	171.23	34.4	smokes	
1	0	Yes	Self- employed	Rural	174.12	24.0	never smoked	

Next steps: View recommended plots

4/11/24, 11:55 PM RK1.ipynb - Colab

Задача 1. Для набора данных проведите кодирование одного

 (произвольного) категориального признака с использованием метода "weight of evidence (WoE) encoding".

```
# Функция для вычисления WoE для каждой категории
def calculate_woe(df, feature, target):
   total_good = df[target].sum()
   total bad = len(df) - total good
   category_woe = {}
   for category in df[feature].unique():
       good = df[(df[feature] == category) & (df[target] == 1)].shape[0]
       bad = df[(df[feature] == category) & (df[target] == 0)].shape[0]
       if good == 0:
           good = 0.5
       if bad == 0:
           bad = 0.5
       woe = (good / total good) / (bad / total bad)
       category woe[category] = woe
    return category_woe
woe encoding = calculate woe(data loaded, 'gender', 'stroke')
data loaded['gender WOE'] = data loaded['gender'].map(woe encoding)
data loaded[['gender', 'gender WOE']]
```

	gender	gender_WOE					
0	Male	1.050516	ıl.				
1	Female	0.964814					
2	Male	1.050516					
3	Female	0.964814					
4	Female	0.964814					
5105	Female	0.964814					
5106	Female	0.964814					
5107	Female	0.964814					
5108	Male	1.050516					
5109	Female	0.964814					
5110 rows × 2 columns							

5110 rows × 2 columns

Задача 2. Для набора данных для одного (произвольного) числового признака проведите обнаружение и удаление выбросов на основе правила трех сигм.

```
def detect_outliers(data, threshold=3):
    mean = data.mean()
    std = data.std()
    lower_bound = mean - threshold * std
    upper_bound = mean + threshold * std
    return lower_bound, upper_bound

lower_bound, upper_bound = detect_outliers(data_loaded['avg_glucose_level'])

data_without_outliers = data_loaded[(data_loaded['avg_glucose_level'] >= lower_bound) & (data_loaded['avg_data_without_outliers)
```

	id	gender	age	hypertension	heart_disease	ever_married	work_type	
0	9046	Male	67.0	0	1	Yes	Private	
1	51676	Female	61.0	0	0	Yes	Self- employed	
2	31112	Male	80.0	0	1	Yes	Private	
3	60182	Female	49.0	0	0	Yes	Private	
4	1665	Female	79.0	1	0	Yes	Self- employed	
5105	18234	Female	80.0	1	0	Yes	Private	
5106	44873	Female	81.0	0	0	Yes	Self- employed	
5107	19723	Female	35.0	0	0	Yes	Self- employed	
5108	37544	Male	51.0	0	0	Yes	Private	
5109	44679	Female	44.0	0	0	Yes	Govt_job	
5061 rows × 13 columns								

Next steps:

View recommended plots

Boxplot

import seaborn as sns
sns.boxplot(data=data_loaded,x='age')
plt.title('ages\n')
plt.show()

4/11/24, 11:55 PM RK1.ipynb - Colab

ages

