End-Sem: Analog Electronic Circuits (S25.EC2.103)

Max. Marks: 80 Time: 3:00 PM-6:00 PM Date: 29/04/2025

NOTE: No query allowed during the exam. Write your assumptions (if any) for each question.

Q1. A curious student like you decides to try a new circuit topology wherein the input is applied to the drain and the output is sensed at the source (**Fig.1**). Assume $\lambda \neq 0$, determine the voltage gain of the circuit and discuss the result. [10 Marks]

- **Q2(a).** Discuss Miller theorem/effect in the context of amplifiers. How it impacts the amplifier performances? Prove that Miller effect results in an increase in the input capacitance (Just for reference; **Fig.2** and **Fig.3**). [5 Marks]
- **(b).** What is open-circuit time constant approach technique? Estimate the upper 3dB cut-off frequency of the given amplifiers (in **Fig.4** and **Fig.5**) using open-circuit time constant approach. **[10 Marks]** Assume Cgsn=4fF, Cgdn=0.4fF, Cdbn= 4fF, Cgdp=0.4fF, Cdbp= 4fF. Also, take the voltage gain of amplifiers equal to -8. What we call amplifier configurations in the given circuits (Fig.4 and Fig.5)? **[Hint:** You may need to estimate the voltage gain at V_{01} (Fig.5). Gain at this node will suffer from Miller effect. Just need to show gain at V_{01} is ≤ 1]

Q 3(a). Consider the circuit shown in **Fig.6**. Calculate the maximum transconductance that M_1 can provide (without going into the triode region). Consider V_{TH} = 0.4 V for NMOS. **[5 Marks]**

- **(b).** Consider the circuit depicted in **Fig.7**, where W/L = 20/0.18. Assuming the current flowing through R_2 is one-tenth of ID₁, calculate the values of R_1 and R_2 so that I_{D1} = 0.5 mA. Consider V_{TH} = 0.4V, $\mu_n C_{ox}$ = 200 μ A/V² for NMOS. **[5 Marks]**
- (c). The self-biased stage of Fig.8 must be designed for a drain current of 1 mA. If M_1 is to provide a transconductance of $1/(100\Omega)$, calculate the required value of R_D . Consider V_{TH} = 0.4 V for NMOS. [5 Marks]
- **Q4.** The CS stage of **Fig. 9** must provide a voltage gain of 10 with a bias current of 0.5 mA. Assume λ_1 = 0.1 V⁻¹, and λ_2 = 0.15 V⁻¹. Consider V_{TH}= 0.4V, $\mu_n C_{ox}$ = 200 μ A/V² for the NMOS; V_{TH}= -0.4V, $\mu_p C_{ox}$ = 100 μ A/V² for the PMOS. [Hint: r_0 = 1/ λI_D] [2.5+2.5+5+5= 15 Marks]
- (a). Compute the required value of $(W/L)_1$.
- **(b).** if $(W/L)_2 = 20/0.18$, calculate the required value of V_B .
- (c). if in the stage of Fig.9, M_2 has a long length so that $\lambda_2 \ll \lambda_1$. Calculate the voltage gain if $\lambda_1 = 0.1 \text{ V}^{-1}$, $(W/L)_1 = 20/0.18$, and $I_D = 1 \text{ mA}$.
- (d). if the circuit of Fig.9 is designed for a bias current of I_1 with certain dimensions for M_1 and M_2 . If the width and the length of both transistors are doubled, how does the voltage gain change? Consider two cases: (i) the bias current remains constant, or (ii) the bias current is doubled.

Q5(a). The CG stage depicted in **Fig.10** must provide an input impedance of 50 Ω and an output impedance of 500 Ω . Assume λ = 0. Consider V_{TH} = 0.4V, $\mu_n C_{ox}$ = 200 μ A/V² for the NMOS.

[2+2+2=6Marks]

- i. What is the maximum allowable value of I_D?
- ii. With the value obtained in (a), calculate the required value of W/L.
- iii. Compute the voltage gain.
- **(b).** The source follower (CD amplifier) shown in **Fig.11** is biased through R_G . Calculate the voltage gain if W/L = 20/0.18 and λ = 0.1 V⁻¹. Consider V_{TH} = 0.4V, $\mu_n C_{ox}$ = 200 μ A/V² for the NMOS. [4 Marks]

- **Q6(a).** Is there any trade-off between voltage gain and output voltage swing in MOS amplifier? Explain your answer through gain and voltage swing equations. You may consider resistive load common-source amplifier for your explanations. **[5 Marks]**
- **(b).** Compare the common-source (CS), common-gate (CG), and common-drain (CD) amplifier configurations in terms of voltage gain, input impedance, output impedance, voltage swing, and frequency response in general. **[5 Marks]**
- **Q7.** Draw a small-signal model of a common-source amplifier with **NMOS** active load, estimate voltage gain of this amplifier. Discuss the pros and cons of this amplifier. **[5 Marks]**

OR

Q7. Find the output signal if the input is

- V_{IN} =1V DC
- V_{IN} =1V AC (very high frequency)

Assume the op-amp to be ideal. R=100 Ω , C=1nF and R'=500 Ω

Note: Keep your answers to the point.

*****Best of luck****