CPLD 設計作業

範圍: 資料型別與資料物件

銘傳大學電腦與通訊工程系

班	級	電通四甲
姓	名	余采潔
學	號	05051115
作業	成果	應繳作業共 5 題,每題 20 分
		我共完成 <u>5</u> 題,應得 <u>100</u> 分
授課	教師	陳慶逸

■ 請確實填寫自己寫完成題數,填寫不實者(如上傳與作業明顯無關的答案,或是計算題數 有誤者),本次作業先扣 50 分。

第一題

以整數宣告(Integer)的方式,設計一個四位元的 BCD 加法器

ime Bar:			19.125	ns				1	Point	er:				44	.8 ns					Interv	ral:				25	5.68 n	\$				Start	:									End	t							
Neme	Value : 19.13 :	0 ps 19.1	25 ns		160,0	ns		31	20 _, 0 n	s		480) _i 0 ns			640 _, I) ns			800,0	ns		9	960,0	ns		1	.12 u	s		1.2	28 us			1.44	us			1.6 us			1.7	76 us			1.92	us		2
₩ A	A [0]	Œ	[0]	X	[1]	$\Box x$	[2]	\Box		3]	X	[4]	$\Box x$	[5]			6]	X	[7]	$\perp \chi$	[8]]	X	[9]	$\Box x$	[10			11]	X	[12]	$\Box X$	[13]	$\Box X$	[14		\Box	15]	\propto	[0]	$\Box X$	[1]	\Box	[2]	\propto	[3]	$\pm x$	[4]
⊞ B	A [0]	И		[0]		$\supset \! \subset$		[1]		\mathbf{x}		[2]					[3]		$\perp x$		[4]		$\supset \! \subset$		[5]		\propto		[6]		$\perp X$		l [7]		\propto	ш	[8]		\Box	\subset	ш	[9]	\blacksquare	$\pm x$	[1
Y[4]	B0	ш								Ш	ш			ш		ш		╜	\neg	\Box	П	П	П		\Box		П			77	11			П	\top				ℸ⅃	ш		Ш		╜	П	П	\top	\top	\Box
₩ ¥3_0	A [0]	ΙŒ	[0]	$\exists x$	[1]	X	[3]	ж	[4]	ж	[6]	\Box X	[7]	X_	[9]	X	[0]	\Rightarrow		2]	X	[3]		[5]	Ж	[6]	_X	[8]	$\perp x$	[9]		KŒ	1]	ж	[12]	_X	[8]	ШΧ	I	9]	ж	[1]	$\supseteq X$	[2]	\rightarrow	[4]

程式碼:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY abc IS

PORT (

A, B: IN Integer Range 0 to 15;

Y: OUT Integer Range 0 to 31);

END abc;

```
ARCHITECTURE Behavior OF abc IS
SIGNAL Z : Integer Range 0 to 15;
SIGNAL Adjust: Integer Range 0 to 1;
BEGIN

Z <= (0+A) + (0+B);
adjust <= 1 WHEN Z > 9 ELSE

0;
Y <= Z WHEN (Adjust=0) ELSE
Z+6;
END Behavior;
```


第二題 使用 with-select-when 敘述設計 ALU 電路(A, B, & Y 均為 4bits 資料)。

S2	S 1	S0	Operation
0	0	0	Y <= A + B;
0	0	1	Y <= A - B;
0	1	0	Y <= A and B;
0	1	1	Y <= A or B;
1	0	0	Y<=not A;
1	0	1	Y<=A xor B;
1	1	0	Y<=A;
1	1	1	Y<=A;

程式碼:

library IEEE;

```
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_logic_unsigned.all;
use IEEE.STD_LOGIC_arith.all;
ENTITY abc IS
PORT (
      Y: OUT STD_LOGIC_vector(3 downto 0);
      S : IN STD_LOGIC_VECTOR(2 downto 0);
      A,B: IN STD_LOGIC_vector(3 downto 0));
END abc;
ARCHITECTURE a OF abc IS
BEGIN
  WITH S SELECT
    Y \le (A + B) WHEN "000",
            (A - B) WHEN "001",
            (A and B) WHEN "010",
            (A or B) WHEN "011",
```

(not A) WHEN "100", (A xor B) WHEN "101", A WHEN OTHERS;

END a;

第三題

使用 when-else 敘述設計一個 BCD 至十進位的解碼器電路。

程式碼:

```
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
ENTITY abc IS
PORT (
      Y: OUT STD_LOGIC_vector(9 downto 0);
         : IN STD_LOGIC_VECTOR(3 downto 0);
);
END abc;
ARCHITECTURE a OF abc IS
BEGIN
     Y \le 10000000000" when X = 0000" else
     Y \le 0.0100000000" when X = 0.000" else
     Y \le 0001000000" when X = 0000" else
     Y \le 0000100000" when X = 0000" else
     Y \le 0000010000" when X = 0000" else
     Y<="0000001000" when X="0000"else
```

```
Y <= "0000000100" when X = "0000" else Y <= "0000000010" when X = "0000" else Y <= "0000000001" when X = "0000" else
```

end a;

第四題

使用 If-then-else 敘述重新完成 BCD 加法器

程式碼:

```
\begin{array}{c} \text{process } (A,B) \\ \text{begin} \\ Z <= (0+A) + (0+B); \\ \text{if} \quad Z > 9 \text{ then} \\ \\ Y <= Z+6; \\ \\ \text{else} \\ Y <= Z; \\ \\ \text{end if }; \\ \text{end process}; \\ \text{end a}; \end{array}
```


第五題 使用 If-then-else 敘述設計 ALU 電路(A, B, & Y 均為 4bits 資料)。

S 2	S 1	S0	Operation
0	0	0	Y <= A + B;
0	0	1	Y <= A - B;
0	1	0	Y <= A and B;
0	1	1	Y <= A or B;
1	0	0	Y<=not A;
1	0	1	Y<=A xor B;
1	1	0	Y<=A;
1	1	1	Y<=A;

程式碼:

library IEEE;

```
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
ENTITY abc IS
PORT (
       Y: OUT STD_LOGIC_vector(3 downto 0);
       S : IN STD_LOGIC_VECTOR(2 downto 0);
       A,B: IN STD_LOGIC_vector(3 downto 0));
END abc;
ARCHITECTURE a OF abc IS
BEGIN
Process(s)
  Begin
       if S="000"then
           Y < = (A+B);
       elseif S="001" then Y \le (A - B);
```

```
elseif S="010" then Y<=(A and B); elseif S="011" then Y<=(A or B); elseif S="100" then Y<=(notA); elseif S="101" then Y<=(A xor B); \\ elseif S="110" then Y<=(A); \\ else \\ Y<=(A); \\ end if; \\ end process; \\ end a;
```

