Development of Computer Vision and Image Processing at NSLS-II

William Watson

Purpose

- Development of image analysis software backed by OpenCV
- To provide an easy use python module to access computer vision functions
- Optimized results for fast computation, via C++, Intel IPP/TBB
- Automate processes from image input such as:
 - Position, spread, and intensity of X-Ray Beams
 - Isolating and computing data on multiple objects
 - Provide assistance to mounting samples and report any errors

OpenCV and CVLIB

- Small Programs call upon functions in CVLIB
- CVLIB calls upon OpenCV, which has a Python Wrapper for C++
- OpenCV 3.0 supports optimization via Intel's IPP Low Level Functions, Intel TBB
- Computation is done on a dedicated IBM Server

Sergey Sivolgin, 2014-08-11 11:25 am

BPM-1 X-Ray Analysis (IXS)

Purpose:

- Discover Position of Beam
- Discover Spread of Beam
- Discover Intensity of Beam
- Discover the Centroid of the Beam

Images Courtesy of: Yong Cai, Alessandro Cunsolo, Alexey Suvorov, and the IXS Beamline Staff

BPM-1 Image Results

Process:

- Threshold
- Find Contours
- Interpret Contour Data (Plot, Draw, and Print)

Images Courtesy of: Yong Cai, Alessandro Cunsolo, Alexey Suvorov, and the IXS Beamline Staff

BPM-1 Data Results

Console Output:

mean intensity: 227.842390577

```
Object Details:

perimeter: 2356.99022925

orientation: 179.838363647

max: (925, 198)

height: 372

extrema: {'B': (938, 568), 'R': (1054, 415), 'L': (813, 377), 'T': (914, 196)}

area: 65058.5

min: (1047, 564)

sum intensity: 20426526

width: 241

centroid: (933, 382)
```

BPM-1 Results

- Use Centroid and Extrema to adjust beam within image
- Sum of the Pixels displays the total intensity of the beam
- The Maximum point of intensity, and maximum intensity discovered
- Area and Perimeter of Beam
- Height and Width of the current Beam
- Average Intensity of the Beam

BPM-1 Time

BPM-1 (Single):

Real 0m0.350s

User 0m0.300s

Sys 0m0.068s

Merlin Analysis (IXS)

Data Retrieved from the Merlin Detector at IXS

Purpose:

- Isolate Individual Streaks
- Process each Streak to learn Position, Center,
 Spread, Intensity, Max Values, etc.
- Count the Number of Streaks Detected

Merlin Image Results

Process:

- Convert to Grayscale
- Threshold Image
- Find and filter contours by size
- For each object:
 - Print Object's Data
 - Plot Points of Interest
- Draw Contours
- Apply JET

Merlin Data Results for First Object (Largest)

Console Output:

```
Object 1:
perimeter: 125.840619564
orientation: 179.981033325
\max: (131, 78)
height: 55
extrema: {'B': (129, 122), 'R': (135, 98),
          'L': (126, 92), 'T': (132, 67)}
area: 270.5
min: (134, 83)
sum intensity: 62689
width: 9
centroid: (130, 95)
mean intensity: 126.64444444
```


Merlin - Time

Merlin:

Real 0m0.321s

User 0m0.284s

Sys 0m0.036s

Match Game – Template Images (AMX)

• Images are from AMX, Displays a Pin and a Gripper, in an attempt to grab the pin

Match Game - Purpose

Purpose:

- Analyze the position of the Gripper and Pin within the image
- Find the Region of Interest (ROI) for the Pin and Gripper
- Compare the Pin and Gripper to a 'Perfect' Image to determine if anomalies are present
- Advise the user to any potential problems

Match Game – 'Perfect' vs Test Cases

Match Game - Results

Console Output:

Template: 0.0 Disim

Image-1: 1.36311088973 Disim

Image-2: 0.0286209618648 Disim

Image-3: 0.0045508842333 Disim

Image-4: 0.190357587177 Disim

Images Courtesy of: Jean Jakoncic, AMX Beamline

$Match\ Game\ Time-1-19\ Images_{\tiny Total\ Computation\ Time}$

1 0.526 0.52	
2 0.746	6
2 0.716 0.35	8
3 0.886 0.29533	3333
4 1.066 0.266	55
5 1.256 0.251	.2
6 1.429 0.23816	6667
7 1.6 0.22857	143
8 1.783 0.2228	375
9 1.962 0.21	8
10 2.131 0.213	31
11 2.324 0.21127	273
12 2.493 0.207	75
13 2.692 0.20707	692
14 2.875 0.20535	5714
15 3.046 0.20306	6667
16 3.335 0.2084	375
17 3.42 0.20117	647
18 3.543 0.19683	3333
19 3.74 0.19684	211

Average Time Per Photo

Pin/Gripper – 'Perfect' vs Test Cases

Pin/Gripper Detailed Analysis

Purpose:

- Find Pin and Gripper ROI's
- Compare Apparatus to 'Perfect' for anomalies
- Discover Possible Kinks within image
- Discover if Pin is not properly mounted
- Discover the Center of Mass
- Use Extreme Points as an assist for Alignment, along with Centroid

Console Output on Image 1:

Image 1:

mean intensity: 23.999971969

Error Results:

```
Image Dissimilarity: 1.36080901012
ERROR: Mount Centroid: Too High: 104
ERROR: Missing Component / Gripper Not Aligned
```


Console Output:

Image 2:

```
perimeter: 3512.21232665
max: (497, 66)
```

height: 664

```
extrema: {'B': (1206, 665), 'R': (1450, 31), 'L': (497, 1), 'T': (497, 1)}
```

aspect ratio: 1.43458646617

area: 532620.5

min: (515, 1)

sum intensity: 30095708

width: 953

centroid: (968, 310)

mean intensity: 47.5601903943

Error Results:

Image Dissimilarity: 0.0274253192917

ERROR: Possible Kinks Detected

ERROR: 41 Possible Kink Points Detected: Adjust Gripper

ERROR: Possible Kink Distance on R: 115.004347744 ERROR: Possible Kink Distance on L: 27.3130005675

ERROR: Pin Not Mounted Correctly: Distance: 329

Images Courtesy of: Jean Jakoncic, AMX Beamline

Console Output:

Image 3:

```
perimeter: 3272.13917053
max: (496, 1)
height: 677
extent: 0.902237973263
extrema: {'B': (593, 678), 'R': (1452, 189),
          'L': (496, 22), 'T': (503, 1)}
area: 585413.5
min: (525, 1)
sum intensity: 20199272
width: 956
centroid: (974, 323)
mean intensity: 31.2096685476
```

Error Results:

Image Dissimilarity: 0.00487836456791

Images Courtesy of: Jean Jakoncic, AMX Beamline

Console Output:

```
Image 4:
perimeter: 3790.45496655
\max: (1443, 1)
height: 821
extrema: {'B': (828, 822), 'R': (1447, 125),
           'L': (492, 1), 'T': (492, 1)}
aspect ratio: 1.16301703163
area: 664209.0
min: (503, 1)
sum intensity: 35452804
width: 955
centroid: (974, 387)
mean intensity: 45.2172411374
```

Error Results:

```
Image Dissimilarity: 0.190836638543
ERROR: Possible Kinks Detected
ERROR: 44 Possible Kink Points Detected: Adjust Gripper
ERROR: Possible Kink Distance on R: 125.015998976
ERROR: Possible Kink Distance on L: 157.003184681
ERROR: Pin Not Mounted Correctly: Distance: 411
```


Pin/Gripper Time – 1-19 Images

Number of Images	Total Time	Average Time
1	0.544	0.544
2	0.751	0.3755
3	0.945	0.315
4	1.162	0.2905
5	1.361	0.2722
6	1.565	0.26083333
7	1.802	0.25742857
8	1.999	0.249875
9	2.192	0.24355556
10	2.429	0.2429
11	2.621	0.23827273
12	2.803	0.23358333
13	3.064	0.23569231
14	3.264	0.23314286
15	3.482	0.23213333
16	3.637	0.2273125
17	3.824	0.22494118
18	4.1	0.22777778
19	4.302	0.22642105

Average Time Per Photo

Total Time

Conclusion

- Computer Vision can provide assistance and useful computational tools for users
- Computer Vision can help assist in alignments of samples, crystals, and beams
- Computer Vision can discover and report information about objects within an image
- Computer Vision can prevent potential problems by alerting users of anomalies
- With OpenCV 3.1.0 and the Intel IPP Library, all CV functions run at optimized speeds, providing the best computational results currently available.