Integer Programming ISE 418

Lecture 12

Dr. Ted Ralphs

Reading for This Lecture

- Nemhauser and Wolsey Sections II.2.1
- Wolsey Chapter 9
- CCZ Chapter 7

Generating Stronger Valid Inequalities

- We have now seen some "generic" methods of generating valid inequalities.
- In general, these methods are not capable of generating strong inequalities (facets).
- To generate such inequalities, we must use our knowledge of the problem structure.

The Strength of a Valid Inequality

- Roughly speaking, for an inequality to be strong, the face it defines should have as high a dimension as possible.
- The facet-defining inequalities are those of maximal dimension, i.e., dimension one less than the dimension of the polyhedron.
- The facet-defining inequalities dominate all others and are the only ones necessary in a complete description of a polyhedron.
- To know which inequalities are facets, we use the following result based on methods for determining the dimension of polyhedra.

Proposition 1. If (π, π_0) defines a face of dimension k-1 of $\operatorname{conv}(S)$, then there are k affinely independent points $x^1, \ldots, x^k \in S$ such that $\pi x^i = \pi_0$ for $i = 1, \ldots, k$.

Facet Proofs

- How do we prove an inequality is facet-defining?
- Straightforward approach: use the definition.
- \bullet First, we need to find the dimension d of the polyhedron.
- Then, we need to exhibit a set of d affinely independent points in S satisfying the given inequality at equality.

• Example:

- Set $S = \{(x, y) \in \mathbb{R}^m \times \mathbb{B} \mid \sum_{i=1}^m x_i \le my, 0 \le x \le 1\}.$
- We want to show that the valid inequality $x_i \leq y$ is facet-defining for $\operatorname{conv}(S)$.
- First, we show that dim(conv(S)) = m + 1 (how?).
- For a chosen i, we exhibit m+1 affinely independent points in X that satisfy $x_i = y$ (how?).

Example: Valid Inequalities for Node Packing

• Recall the node packing problem. The set of node packings of a graph G=(V,E) is given by

$$S = \{x \in \mathbb{B}^n \mid x_i + x_j \le 1 \text{ for all } \{i, j\} \in E\}.$$

- We are interested in the polytope $\mathcal{P} = \text{conv}(S)$.
- This polytope is easily shown to be full-dimensional (how?).
- What are some valid inequalities?

The Clique Inequalities

• When C is a clique in G, the clique constraint

$$\sum_{j \in C} x_j \le 1$$

is valid for conv(S).

- In fact, when C is maximal, this constraint is facet-defining for conv(S).
- How do we prove this?

Back to Separation and Optimization

- We have just seen an example of a class of inequalities of which we have explicit knowledge of an inequality that is facet-defining.
- Yet, we know that this problem is a difficult one to solve.
- Question: Can we efficiently generate such inequalities?
- Answer: Yes and no.
 - It is easy to generate <u>some</u> maximal cliques in a graph.
 - It may be difficult to generate one that corresponds to an inequality violated by a given (fractional) solution to the LP relaxation.
 - In general, there are no efficient exact separation algorithms for the convex hull of feasible solutions to a "difficult" MILP.
- Why is it difficult to generate facets of conv(S) in general?

More Valid Inequalities for Node Packing

 The clique constraints are not enough to completely describe the convex hull for all instances.

- What other inequalities can we find?
- An odd hole is a set of nodes that lie on a chordless cycle of the graph
 G.
- If $H \subseteq V$ is an odd hole, then the inequality

$$\sum_{j \in H} x_j \le \frac{|H| - 1}{2}$$

is valid for conv(S).

- This new inequality is easily shown to be facet-defining for the subgraph induced by H.
- But it is not facet-defining in general.
- Can we strengthen it?

Strengthening Valid Inequalities

• The problem seems to be that we are not taking into account the interaction with other nodes in the graph.

Let's try to generate a valid inequality of the form

$$\alpha x_i + \sum_{j \in H} x_j \le \frac{|H| - 1}{2}$$

where $i \notin H$.

• We want to make α as big as possible. How big can it be?

The Lifting Principle

- Suppose we have an inequality $\sum_{i=2}^{n} \pi_i x_i \leq \pi_0$ that is facet-defining for $\mathcal{P}_0 = \{x \in \mathcal{P} \mid x_1 = 0\}$ where $\mathcal{P} = \operatorname{conv}(S)$ and $\mathcal{S} \subseteq \mathbb{B}^n$.
- We want to generate π_1 so that $\sum_{i=1}^n \pi_i x_i \leq \pi_0$ will be a facet of \mathcal{P} .
- This means making the new inequality as strong as possible.
- Hence, we set $\pi_1 := \pi_0 \xi$, where $\xi = \max\{\sum_{i=2}^n \pi_i x_i \mid x \in \mathcal{P}, x_1 = 1\}$.
- If there are no feasible solutions with $x_1 = 1$, then we can simply fix x_1 to zero.
- ullet For BIPs, this guarantees that the new inequality will be valid for \mathcal{P} and will define a face of dimension one higher than the original inequality.
- Note that the new inequality will be valid as long $\pi_1 \leq \pi_0 \xi$

Projections and Restrictions

• We will define a *restriction* of \mathcal{P} to be any polyhedron \mathcal{Q} strictly contained in \mathcal{P} . \mathcal{P} is also called a relaxation of \mathcal{Q} .

• If $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ and \mathcal{Q} is a restriction of \mathcal{P} , then

$$\mathcal{Q} = \{ x \in \mathcal{P} \mid Dx \le d \}.$$

- It's important to understand the difference between a projection and a restriction.
 - $-\mathcal{Q}_1 = \{(x,0) \mid (x,y) \in \mathcal{P}\}$ is a projection of \mathcal{P} .
 - $-\mathcal{Q}_2 = \{(x,y) \in \mathcal{P} \mid y=0\}$ is a restriction of \mathcal{P} .
- ullet Q_1 and Q_2 may or may not be the same polyhedron.

Lifting Inequalities Valid for a Restriction

- For our discussion here, we will only consider integer polytopes of the form $\mathcal{P}^I = \operatorname{conv}(S)$, where $\mathcal{S} = \{x \in \mathbb{B}^n \mid Ax \leq b\}$.
- We will only consider restrictions of the form $\{x \in \mathcal{P}^I \mid x_j = 0 \text{ for } j \in N_0, x_j = 1 \text{ for } j \in N_1\}$ where $N_0, N_1 \subseteq \{1, \dots, n\}$.
- The lifting principle allows us to do two things:
 - Transform inequalities that are valid for a restriction into inequalities that are valid for the original problem.
 - Transform inequalities that are strong for a restriction into inequalities that are strong for the original problem.
- In our example, the inequality was already valid for the original polyhedron and we wanted to strengthen it.
- It is not always the case that inequalities valid for a restriction are valid for the original polyhedron.

Determining Lifting Coefficients

• Suppose we have an inequality valid for a restriction defined by sets $N_0, N_1 \subseteq \{1, \dots, n\}$.

- In the case where $N_0 = \{1\}$ and $N_1 = \emptyset$, we already have a procedure.
 - We choose π_1 such that $\pi_1 \leq \pi_0 \xi$, where $\xi = \max\{\sum_{i=2}^n \pi_i x_i \mid x \in \mathcal{P}, x_1 = 1\}$.
 - If there are no feasible solutions with $x_1=1$, then we can simply fix x_1 to zero.
- How about the case where $N_0 = \emptyset$ and $N_1 = \{1\}$?
 - We chose π_1 such that $\pi_1 \geq \xi \pi_0$, where $\xi = \max\{\sum_{i=2}^n \pi_i x_i \mid x \in \mathcal{P}, x_1 = 0\}$.
 - In this case, we must also add π_1 to the right hand side to obtain the inequality

$$\pi_1 x_1 + \sum_{i=2}^n \pi_i x_i \le \pi_0 + \pi_1.$$

- If there is no feasible solution with $x_1 = 0$, then we can fix x_1 to one.

Determining Multiple Lifting Coefficients (Sequentially)

- The same procedure can be used in cases where multiple variables are restricted.
- We simply determine one lifting coefficient at a time, as before.
- Note that the order matters.
- The earlier a variable is lifted in the sequence, the larger its coefficient will be.

Approximating Lifting Coefficients

• It is not always necessary or even possible to determine the best possible lifting coefficient.

- In general the problem of determining the best possible lifting coefficient is an optimization problem over a restricted polytope (usually NP-hard).
- In practice, lifting coefficients are often determined using heuristic algorithms that guarantee validity, but not strength.
- Note that generating approximate lifting coefficients destroys the property that the face defined by the inequality increase in dimension as it is lifted.

Determining Multiple Lifting Coefficients (Simultaneously)

- We can also determine multiple lifting coefficients simultaneously.
- Suppose the inequality $\sum_{j \in N \setminus (N_0 \cup N_1)} \pi_j x_j$ is valid for the restriction $\{x \in \mathcal{P} \mid x_j = 0 \text{ for } j \in N_0, x_j = 1 \text{ for } j \in N_1\}.$
- We want to determining lifting coefficients π_i for $i \in N_0 \cup N_1 \subseteq \{1, \ldots, n\}$.
 - Choose M such that $M \leq \pi_0 \xi$, where

$$\xi = \max \left\{ \sum_{i \in N \setminus (N_0 \cup N_1)} \pi_i x_i \mid x \in \mathcal{P} \right\}.$$

Then the inequality

$$M \sum_{j \in N_0} x_j - M \sum_{j \in N_1} x_j + \sum_{j \in N \setminus (N_0 \cup N_1)} \pi_j x_j \le \pi_0 - M|N_1|$$

is valid for \mathcal{P} .