BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

Date:01-08-2016

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : MATH F311

Course Title : INTRODUCTION TO TOPOLOGY

Instructor-in-charge : SHARAN GOPAL

- 1 . **Course Description:** Metric Spaces; Topological Spaces subspaces; Continuity and homeomorphism; Quotient spaces and Product spaces; separation axioms; Urysohn's lemma and Tietze extension theorem; Connectedness; Compactness; Tychonoff's Theorem; Locally Compact Spaces; Homotopy and the fundamental group.
- 2. **Scope and Objective of the Course:** To introduce the students to concepts of logical thinking in abstract terms using formal and axiomatic methods and to lay the foundations for further studies in abstract mathematics.
- 3. **Text Book:** Munkres, J.R.: Topology, PHI (Second Edition), 2000

4. Reference Books:

- 1. John L. Kelley, General topology., van Nostrand. Reprinted (1976) by Springer Verlag
- 2. L. A. Steen and J. A. Seebach, Counterexamples in topology, Springer, 1978.

5. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Sec. No. of Text Book
1	To give the overview of the course and give the broad perspective of the course	Overview of the course	-
2 - 3	To make the students understand the definition of topological spaces and the how it generalizes the concept of metric spaces	Topological Spaces; Examples	12
4	To study the concept of basis and understand how it generates a topology	Basis and subbasis	13
5	To study the topology which is defined using an order relation on a set	The order Topology	14
6	To study the subspace topology	Subspaces & Subspace Topology	16

	T = 1		
7	To study the product topology	Finite Products	15
	for product of finitely many		
0 10	topological spaces		47
8 – 10	To study the topological	Closed sets, closure and Interior of a	17
	properties of subsets of a	set, limit points, Hausdorff spaces	
	topological space		
11 – 13	To study the continuous	Continuous functions;	18
	functions and homeomorphisms	homeomorphisms	
	on a topological space		
14 – 15	To study the two different	Product Topology and Box Topology	19
	concepts of product topology on		
	arbitrary product of topological		
	spaces and understand why do		
	we prefer product topology to		
	box topology		
16 – 19	To study the metrizable	Metric topology	20-
	topological spaces and their		21
	properties		
20 – 22	To study the quotient topology	Quotient topology	22
	and understand how this	. 97	
	concept is connected with		
	geometry		
23 – 25	To study the concept of	Connected Spaces, Components	23-
	connectedness for a topological	and Local connectedness	25
	spaces and understand how a		
	topological space can be broken		
	into pieces that are connected		
26 – 28	To study the various notions of	Compact Spaces	26-
	compactness in a topological		28
	spaces		
29 – 30	To study the notion of local	Locally Compact spaces	29
	compactness	, , , , , , , , , , , , , , , , , , , ,	
31 – 33	To study the countability axioms	Countability axioms	30
	and understand how hw		
	countability axioms are well		
	behaved with respect to the		
	operations of taking subspaces		
	or countable products		
34 – 36	To study the separations axioms	Separation axioms	31
	and their properties		
37 – 38	To study the normal topological	Normal spaces; Urysohn's lemma	32-33
	spaces		00
39 – 40	To study a theorem that gives	Urysohn Metrization Theorem	34
	us conditions under which a	Signal Modization intolion	0 1
	topological space is metrizable		
41 – 42	To study the arbitrary product	Tychonoff's Theorem	37
71 72	of compact spaces	Tyononon 3 moorem	01
	or compact spaces		

6. Evaluation Scheme:

EC No	Evaluation Component	Duratio n	Weightag e	Date, Time	Nature of Component
1.		1 Hr	20%	10/9, 10.0011 AM	
	Test I				Closed Book
2.	Test II	1 Hr	20%	22/10, 10.0011 AM	Closed Book
3.	Assignment		20%		Open Book
4.	Comprehensive	3 hrs	40%	09/12 AN	Closed Book
	Examination				

- 7. **Make-up Policy**: Make-up will be given only for very genuine cases and prior permission has to be obtained from I/C.
- 8. Chamber consultation hours: To be announced in the class.
- 9. **Notices:** The notices concerning this course will be displayed on the CMS site only.

Instructor-in-charge MATH F311