GP Series Precision Balance

MAINTENANCE MANUAL

GP-12K GP-40K GP-30KS

GP-20K GP-60K GP-100KS

GP-22K GP-100K

GP-30K GP-102K

Note This manual is subject to change without notice at any time to improve the product. No part of this manual may be photocopied, reproduced, or translated into another language without the prior written consent of the A&D Company.

Product specifications are subject to change without any obligation on the part of the manufacture.

©2001 A&D Company, Limited

Contents

1.	IN	ITRODUCTION	2
	1.1	EQUIPMENT AND TOOLS REQUIRED	
2.	P	RINCIPLES OF OPERATION	
	2.1		
J.		ERFORMANCE TEST	
	3.1		5
;	3.2	TEST DETAILS	6
4.	C	ORRECTIVE MAINTENANCE	8
	4.1	TROUBLESHOOTING TABLE	
	4.2	MAINTENANCE FLOWCHART	8
5.	F-1	ORCE MOTOR DISASSEMBLY AND REASSEMBLY	
	5.1	DISASSEMBLY	
	5.2	ASSEMBLY	. 22
		CLEANING THE MAGNET ASSEMBLY AND BOBBIN	
6.	A	DJUSTMENTS	30
	6.1	ADJUSTMENT FLOW CHART	. 30
	6.2	GENERAL PRECAUTIONS	. 31
	6.3	CHECK MODE	
	6.4	CHECK MODE MENUS	
	6.5	Initialization	
	6.6	MODEL TYPE SELECTION (ONLY FOR MAINTENANCE ELECTRIC BOARD)	
	6.7	COARSE OPERATION CHECK & ADJUSTMENT	
	6.8	COARSE ADJUSTMENT	
	6.9	TEMPERATURE ADJUSTMENT	
•	6.10		
	6.11		
	6.12		
	6.13	B METHOD OF IDENTIFYING DEFECT LOCATION (ELECTRICAL PART OR MECHANICAL PART)	51

Appendix : GP Technical Information

1. Introduction

For smooth maintenance, the products must be technically understood, and the required equipment and tools must be prepared. Since the GP series electronic balance is a precision instrument, proper operation cannot be guaranteed if the maintenance is performed under unsatisfactory conditions.

<CAUTION> Before turning the power off, the following precautions must be taken so that the internal mass is removed from the sensor unit. (Avoid to transport the balance with the internal mass being placed on the sensor unit, otherwise the sensor unit may be damaged.)

- 1. Do not power off (Do not unplug the power cable) without following steps
- 2. With the power on, press the ON/OFF key and make sure that the balance displays 0g
- 3. Press the ON/OFF key to turn the display off, and then unplug the power cable

1.1 Equipment and Tools Required

Description	Purpose
(1) A room or chamber controllable to 10℃ and 30℃	For the temperature adjustment of the balance
(2) A phillips screwdriver 3 mm	For disassembling and reassembling
(3) A precision posidrive screwdriver	For securing the motor holder
(4) An adhesive tape 8 mm	For cleaning the force motor unit
(5) A wrench (Spanner) 7 mm	For adjusting the counter weight
8 mm	For securing the pan support rubber
(6) An allen wrench 4 mm	For securing the mass roberval
5 mm (long)	For securing the fulcrum flexure
6 mm	For securing the roberval, frame, tension flexure(1), and pan support arm
1.5 mm	For securing the cam and cam shaft (motor unit)
(7) A box wrench (screwdriver)10mm	For securing the mass spacer
(8) A drill (shaft only) ϕ 3	For corner load adjustment
(9) A file (round shape) ϕ 2.5	For corner load adjustment
(10) A square level block	For assembling the Mass roberval
(11) A soldering iron (25-40 W) (12) Masses	For soldering the ribbon cable

F1 class-compliant

Model	Masses
GP-12K	5kgx2, 10kgx1
GP-20K/22K	5kgx4, 10kgx2
GP-30K/30KS	10kgx3
GP-40K	10kgx4
GP-60K	10kgx2, 20kgx3
GP-100K/100KS/102K	20kgx5

(Total 5kgx4,10kgx4, 20kgx5)

- (13) Multi-meter (Voltage measurement with 1mV resolution, Resistance measurement for insulation resistance of $20M\Omega$ or more.)
- (14) Oscilloscope
- (15) AC adapter (Use the AC adapter supplied with the balance)
- (16) The balance instruction manual

1. 2 One set of jig for disassembling or reassembling the Mechanical unit (7PA:GP-JIG)

- (1) A base jig (GP-1/8)
- (2) A plate for positioning the beam (1) (GP-2/8)
- (3) A spacer for positioning the beam (1) (GP-3/8)
- (4) A bolt for holding the beam (1) (GP-4/8)
- (5) A jig for positioning the fulcrum flexure (1) (GP-5/8)
- (6) A jig for positioning the fulcrum flexure (2) (GP-6/8)
- (7) A jig (A) for assembling the mass roberval (GP-7/8)
- (8) A jig (B) for assembling the mass roberval (GP-8/8)
- (9) Screws

Allen head screw M4x20: 4 pieces

M5x15: 8

M6x20: 4

M8x20: 1

Temperature Controlled Room

A room where the temperature can be maintained at 10 ±2°C and 30 ±2°C for 8 hours or more.

2. Principles of operation

The GP balances work on the principle of "Force Restoration". Any change in the load on the weighing pan causes a Position Beam Lever to pivot on two Fulcrum Flexures (refer to diagram below). Attached to this beam is a bobbin (wound with fine wire), called the "Force Coil", which floats in a permanent magnet, called the "Force Motor". At the end of the Position Beam Lever there is a small hole which allows light from a Light-Emitting Diode (LED) to pass through to two Photodiodes (light measuring diodes) as it moves up or down. At zero weight, the light detected by the upper Photodiode is equal to that detected by the lower Photodiode. These three diodes make up the Position Detector.

When the Force Coil is pulled up by the leverage exerted from a mass on the weighing pan, the Position Detector detects a change in the position of the Force Coil as the light reaching the upper Photodiode will be greater than that reaching the lower one. The balance then feeds the force coil with more voltage to pull it back until the light measured by the two Photodiodes is equal again. This is accomplished by the Analog Module receiving photocurrent from the Photodiodes, converting it to voltage, and boosting it back to the Force Coil. As the voltage increases, so does the magnetic power, pulling the Force Coil back until the Position Detector reads equilibrium.

The current flowing through the Force Coil generates a voltage proportional to the load weight on the pan. This is read back through the Analog Module, first being filtered - then the Analog-Digital (A/D) Converter digitalizes this measuring voltage, the resulting value is counted and then fed to the microprocessor (CPU).

Temperature affects the magnet and weight data. So temperature coefficient for weight is measured and saved beforehand. The balance eliminates the temperature effect by using the present temperature measured by the temperature sensor and the coefficient. The output from the temperature sensor is converted digitally and sent to the CPU by the analog module.

The CPU performs a mathematical operations in connection with each parameters, such as temperature, linearity coefficient, and calibration data. Also, the user can specify how the calculated information should be displayed by using the keyboard. For example: s/he can have the CPU perform special functions such as conversion into other measuring units, or counting of small parts. Finally, the results are displayed on the Fluorescent Display, or sent through the RS-232C interface.

2.1 Corrective Maintenance Outline

Performance test To perform the corrective maintenance, defects must

be located and their cause determined.

The easiest way to locate a defect is to perform an

operation check.

Corrective maintenance procedure

Corrective maintenance is described by using a

flowchart and a trouble-shooting table.

Adjustment details

An adjustment procedure is described for each item.

3. Performance Test

The following test procedures determine whether the balance (GP series) works properly. The internal temperature of the balance must be approached to the room (the air) temperature enough, allow half an hour warm-up prior to conducting the performance test.

3.1 Performance Test Procedure

Verify the following points:

External view

- 1. Adjust the leveling feet to level the balance. Confirm it using the bubble spirit level.
- 2. The weighing pan should be level. (Check for the correct pan assembly.)

Functions

1. Verify that each key functions correctly:

ON/OFF key

CAL key

MODE key

SAMPLE key

PRINT key

RE-ZERO key

2. Verify that the followings operate correctly:

The minus indicator

The decimal point indicator

A stable weighing data can be obtained

The motor functions properly without noise

External key inputs function in the RS-232C connector

The RS-232C communication function

Date and time accuracy (±Two minutes in error)

Selection of the weighing units

Identifies each of three TLs.

Evaluates the factor k using a 10kg weight (10000.0 g) on GP-12K for instance.

e.g. when "264.555 TL" is displayed,

k =g display / TL display = 10000.0 / 264.555 = 37.799

3. Verify that the TAEL values are within tolerance :

		Weight	Tolerance
Hong Kong (jewelry)	TN	1 TAEL = 37.4290 g	37.428-37.430 g
Hong Kong (general) Singapore	TG	1 TAEL = 37.7994 g	37.798-37.800 g
Taiwan	П	1 TAEL = 37.5000 g	37.499-37.501 g

3.2 Test Details

Repeatability

Place the specified mass at the center of the pan and remove. Record the displayed values with and without load. Repeat the test ten times (one set). Get 10 span data with subtracting the displayed value when no load is applied from the displayed value when load is applied. Obtain the standard deviation from the 10 data and verify that it is within the specifications. If not, perform another two sets of test and obtain the standard deviation for each set. Verify that the two standard deviations are within the specifications.

Model	Masses	Specifications
GP-12K	10kg	±0 d m/storodo - d - d - d - d - d - d
GP-20K	2-20K	\pm 0.1g(standard deviation)
GP-22K	20kg	\pm 0.25g(standard deviation)
GP-30K/30KS	30kg	±0.1g(standard deviation)
GP-40K	40kg	\pm 0.5g(standard deviation)
GP-60K	60kg	±0.7g(standard deviation)
GP-100K/100KS/102K	100kg	±1g(standard deviation)

Corner load error

Place the specified mass at the center of the pan (1) and record the displayed value. Then place the mass, at positions 2, 3, 4, 5 then 6. Verify that the difference between the values at the center and at each position (the cross marks 2, 3, 4, and 5 are half the distance from the center of the pan to the corner edge) is within the specifications.

Model	Masses	Specifications
GP-12K	5kg	±0.5g
GP-20K		±0.6g
GP-22K	10kg	±1.4g
GP-30K/30KS	3	±0.6g
GP-40K	001	±1.5g
GP-60K	20kg	±2g
GP-100K/100KS	401.0	±6g
GP102K	40kg	±7g

Linearity / Hysteresis

After calibration by using an external weight of almost weighing capacity, place the specified mass one by one on the pan, and check the difference between true value and display value (linearity). After reaching weighing capacity, remove the mass one by one, and check the difference between an increase and decrease (hysteresis).

Model	Masses	Linearity	Hysteresis	
GP-12K	5kg×2			
GP-20K	Flow V 4	±0.2g	±0.5g	
GP-22K	5kg×4	±0.4g	±0.5g ±0.5g ±0.5g ±2.5g	
GP-30K/30KS	10kg×3	±0.2g		
GP-40K	10kg×4	±1.0g		
<u>GP-60K</u>	20kg×3	±1g		
GP-100K/100KS	201ca V F		±5g	
GP-102K	- 20kg×5	±2g	±8g	

Internal mass repeatability

First, warm up the balance at room temperature for at least 12 hours after power on. After auto calibration by pressing CAL key, place the specified mass on the pan and read the displayed value. Repeat this procedure three times. Verify that the difference between the maximum value and the minimum value is within the specifications.

Model	Masses	Specifications
GP-12K	10kg	±4 m
GP-20K/22K	20kg	±1g
GP-30K/30KS	30kg	4.4.5
GP-40K	40kg	±1.5g
GP-60K	60kg	±5g
GP-100K/100KS/102K	100kg	±10g

4. Corrective Maintenance

Perform corrective maintenance for the GP series by referring to the maintenance flowchart and the troubleshooting table. The troubleshooting table describes the possible cause and solution to facilitate corrective maintenance.

Perform corrective maintenance according to the error (the letters refer to nodes on the maintenance flow chart):

Type A: Replacing, disassembling, or assembling the force motor unit

Type B: Replacing or adjusting electrical parts

Type C: Initializing a electric board and inputting specific data Type D: Adjusting the characteristics of the force motor unit

Type E: Inputting temperature data

Type F: Performance test

Type G: Performing drift check

4.1 Troubleshooting Table

The following troubleshooting table describes the possible cause of, and the solution to problems.

Problem	Cause	Check	Solution	Туре
No display, beam is not	AC adapter	Is it the correct AC adapter for the power source used.	Replace with the correct AC adapter.	F
balanced		Is the output voltage correct? Measure the output voltage of the AC adapter with it connected to the balance. The DC output should be at least 14 volts, but no greater than 22 volts.	If the output voltage is not correct, replace the AC adapter.	F
	Fuse	Disconnect the AC adapter and measure the fuse with an ohm meter.	Replace with the correct fuse.	F
	Power supplies of main board	Is the output of the each power supplies correct? (Refer to Table-1 of page 12)	Check (replace) the main board with substitute items.	Н
	maii Dodia	Check the Vdd, Vee, Vcc, Vfh, Vfl, Vm, Vp.	Check (replace) a defective power supply part with a substitute item.	F
	Force motor	Check that the connectors are installed correctly. (J2, J2A, J3, J3A)	substitute item. (Refer to "5. Force Motor	Α
	Main board assembly (CPU, Gate array is contained)	Check the performance using the standard main board that works properly.		Н

Problem	Cause	Check	Solution	Туре
Unstable	Force	Check the operation of weight /	Replace the AMZ51	7,-3,-3
weighing	motor,	temperature offset A/D.		
data,	AMZ51	(Refer to "6-13 Method of		Ε
repeatability		identifying defect location")		_
error		If it is [H no], the cause will be the		
		AMZ51.		
		Then if it is OK, the cause will be	Check the force motor	
		the force motor.		Α
		• ''		^
	Pan	Check that the pan assembly is	Install the pan assembly	
	assembly	correctly installed	correctly.	F
	, ,	Check for foreign matter between	Clean the area around the pan	
		the pan and breeze break frame.	assembly and the breeze break	F
		and pair and brooze break marrie.	frame.	Г
		Check that the breeze break		
		frame does not touch the pan	Install the breeze break frame	_
	-	assembly.	correctly so that it does not	F
	Damage in	Check the condition of tension	touch the pan.	
	flexures	and fulcrum flexures.	Replace the parts and	Α
			reassemble the force motor.	
	Magnet	Check for dust particles between	Clean the force motor assembly.	Α
	assembly	the magnet and the force coil.	(Refer to "5. Force Motor	
	F		Disassembly and Reassembly")	
	Force	Check that the flexures are in	Repair the force motor assembly.	
	motor	good conditions and are correctly	(Refer to "5. Force Motor	Α
	assembly	installed.	Disassembly and Reassembly")	
Corner load	Force	Check that the flexures are in	Perform corner load adjustment.	
error	motor	good conditions and are correctly	If it does not work well,	Α
	assembly	installed.	disassemble and reassemble	
			the balance.	
			(Refer to "5. Force Motor	
			Disassembly and Reassembly")	
Hysteresis	Tension or	The second of teneral	Replace with substitute items.	
error	Fulcrum	and fulcrum flexures for distortion.	disassemble and reassemble	Α
	flexures		the balance.	
			(Refer to "5. Force Motor	
			Disassembly and Reassembly")	
Linearity	Force	Follow the linearity check	Input the linearity data.	
error	motor	procedure.	Refer to page 37.	F
	assembly			
After	Force	After auto calibration using the	Fine adjustment of the linearity.	
calibrated	motor	internal mass, check the value		
using the	assembly	using the specified mass.	,	F
internal				,
mass, the				
weighing				
data is not				-
correct	1			
-				

Problem	Location	Check	Solution	Туре
Error () Temperature data error	Temperature sensor, AMZ51, Cables, connectors	Check the operation of weight / temperature offset A/D. (Refer to "6-13, 2 Method of identifying in the internal offset mode")	In the T1 display of check mode menu, check the absolute value and dispersion (Refer to 6-7). If it is NG further, replace and reassemble temperature sensor.	В
		Then if it is NG, the cause will be the AMZ51.	Replace the AMZ51.	E
Errar I Unstable weighing data	Force motor, AMZ51	Check the operation of weight / temperature offset A/D. (Refer to "6-13 Method of identifying defect location") If it is OK, the cause is the force motor.	Check the force motor.	Α
5.4 5		Then if it is NG, the cause will be the AMZ51.	Replace the AMZ51.	E
EH nG Result of automatic	Pan assembly	Check that the pan assembly is correctly installed.	Install the pan assembly correctly.	F
environment setting		Check for foreign matter between the pan and breeze break frame.	Clean the area around the pan assembly and the breeze break frame.	F
		Check that the breeze break frame does not touch the pan assembly.	Install the breeze break frame correctly so that it does not touch the pan.	F
	Damaged flexures	Check the condition of tension and fulcrum flexures.	Replace the parts and reassemble the force motor unit.	А
	Magnet assembly	Check for dust particles between the magnet and the force coil.	Clean the force motor assembly. (Refer to "5. Force Motor Disassembly and Reassembly")	A
	Weighing error relating to calibration	Check if Eccor I appears due to underloading (-E) during automatic zero adjustment after the balance is turned on.	Calibrate.	F
Error 3	Defective	Bad connection between CPU	Re-solder	F
ן נייטי ב	EEPROM	(U1) and EEROM (U3, U4, U5)	Replace the CPU (U1)	F
Defective EEPROM	on the Main board	Check the soldering around each IC.	Replace the EEPROM (U3, U4, U5)	Н
LL. NOW			Note After replacing the CPU or EEPROM, Error 8, Error 9 or Error 8 may be displayed. To correct the error, see the solution for each error described in this table.	
Eccac 4 RAM error	Defective CPU on the Main board	Defective RAM in CPU.	Replace the CPU (U1).	F

Problem	Cause	Check	Solution	Туре
Error &	Pan	Check that the pan assembly is	install the pan assembly	F
Internal	assembly	correctly installed.	correctly.	·
mass	Weighing	Check that nothing is placed on	Make sure that nothing is placed	
operation	pan	the pan when the internal mass	on the pan.	F
error,		moves during the display on and		
D0 value	Internal	off or power-on. Check that the internal mass is in	Charletha internal	
error	mass	place and that it can be raised or	Check the internal mass.	_
	assembly	lowered.	Apply grease to the movable parts (five places) of the internal	F
	assonisty	ioworou.	mass assembly.	
		Chook that the flavors have !		
		Check that the flexure beam is not broken.	Replace the flexure beam.	
	Defective	Remove the motor and check if it	Donlers the section	
Error 7	motor	rotates correctly.	Replace the motor.	F
Cam	Cam	Re-position the cam.	Install the cam in the correct	
detection	position	(Check if the motor is overloaded)	position.	F
error	Relative	Check that the motor rotation	Install correctly.	
	position of	stops correctly.		
	the slit and	•		F
	photo			·
	interrupter			
Error 8	CPU (U1)	The EEPROM version is not	Press the PRINT key to change	
217818	and	correct for the newer CPU	the EEPROM version.	
EEPROM	EEPROM	version.		F
error	(U3,U4,U5)			
	on the main board			
	CPU (U1)	EEPROM has not been initialized.	While holding down the	
Error 9	and	LEI FIOM Has not been initialized.	While holding down the RE-ZERO and MODE keys,	С
·	EEPROM		press the PRINT key to initialize	
EEPROM	(U3,U4,U5)		the EEPROM.	
format error	on the main			
	board			
Error A	CPU (U1)	The EEPROM version is not	While holding down the	
ן נייםרית	and	correct for the older CPU version.	RE-ZERO and MODE keys,	
EEPROM	EEPROM		press the PRINT key to initialize	С
version	(U3,U4,U5)		the EEPROM.	
error	on the main			
-	board The mass	Chook that the correct many in	Lie the same of	
CAL E	exceeds	Check that the correct mass is used for calibration.	Use the correct mass.	
co, c	the	acca for campianon.		
-CAL E	calibration			F
Calibration	range			
	AMZ51,coil,	Check the D0 value.	If the D0 value is not within the	
range error	zero or		specifications, replace parts and	
	span		reassemble. (When the D0	Α
			value is correct, perform	- •
			calibration in check mode)	

Problem	Cause	Check	Solution	Туре
E Overload	Weighing error relating to	Check the D0 value	When the D0 value is correct, perform calibration in check mode, then perform calibration	F
	calibration Stopper position, Damage in flexures	Check the D0 value	in the weighing mode If the D0 value is not within the specifications, adjust the stoppers, replace flexures and reassemble	Α
-E	Weighing pan	Check if the correct pan is used and that the pan is installed correctly	Use the correct pan and install it correctly	Ш
Underload	Weighing error relating to calibration	Check the D0 value	When the D0 value is correct, perform calibration in check mode, then perform calibration in the weighing mode	F
	Stopper position, Damage in flexures	Check the D0 value	If the D0 value is not within the specifications, adjust the stoppers, replace flexures and reassemble	A
or gap at date and time	Defective battery for clock	Check if the voltage at both ends of R20 is 3.3mV or less. Check if the voltage between the minus side of lithium-battery and the cathode side the diode (D3) is 2.5V or more	If the voltage is lower, replace the lithium-battery and set the clock data. (After setting the clock data, do not touch the lead leg of X2 by tool or hand)	F
[H no	AMZ51	In case of EH no is displayed by the self check function	Replace the AMZ51	Е

Table-1 Specifications of each power-supply voltages on the main board

Circuit symbol	Specifications	Check point	Voltage generation
			element
Vdd-LG	5.3V – 4.7V	At both ends of C16	U11
Vg-LG	5.3V – 4.7V	At both ends of C11	U9, U10
Vcc-LG	10.4V – 9.6V	Between the plus side of C10 and the minus side of C11	U9, U10
Vfh-LG	8.0V – 8.9V	Between the plus side of C104 and the minus side of C113	U101
V√fd-LG	24.8V - 27.5V	At both ends of C112	U104
Vb-LG	2.8V – 3.2V	Between the plus side of C108 and the minus side of C113	D104 – D107
VfI-LG	0.8V – 1.2V	Between the minus side of C108 and the minus side of C113	U102
Vth-Vp	5.2V - 5.8V	Between the plus side of C104 and the plus side of C108	U101,102

4.2 Maintenance Flowchart

5. Force Motor Disassembly and Reassembly

This chapter describes the procedures and notes for the flexure assembly replacement, bobbin cleaning, and adjustment after reassembling the force motor.

Notes: It should be a dust free environment for disassembly and reassembly.

Adjustments and confirmations are needed after reassembly for linearity, repeatability, creep, hysteresis and corner load error.

Temperature adjustment is also needed since the balance is affected by tightening torque or stress. If you do not have the proper facilities to do the temperature adjustment, do not attempt to adjust the temperature feature.

A set of jig (7PA:GP-JIG) for GP Mechanical unit disassembly and reassembly

Plate for positioning the beam(1) (GP-2/8)

Spacer for positioning the beam(1)(GP-3/8)

Bolt for holding the beam(1) (GP-4/8)

Jig for positioning the fulcrum flexure(1)(GP-5/8)

Jig for positioning the fulcrum flexure(2)(GP-6/8)

Jig(A) for assembling the mass roberval (GP-7/8)

Jig(B) for assembling the mass roberval (GP-8/8)

Other tools required:

A level block

A square

A screwdriver, 3mm

An allen wrench, 4mm, 5mm, 6mm

A soldering iron

A wrench (spanner), 7mm, 8mm

A box wrench (screwdriver), 10mm

Allen head screw

M4x20 (4pcs)

M5x15 (8pcs)

M6x20 (4pcs)

M8x20 (1pce)

5.1 Disassembly

1. Removing the upper case

- ① Remove the weighing pan.
- ② Remove the screws (pan head screw M3×6 with nylon washer,8pcs) from the diaphragm, and the diaphragm plate.
- 3 Remove the pan support rubber.
- ④ Pull and push up to remove the diaphragm from the case top.
- S Remove the case top. (pan head screw M4×12 with nylon washer, 8 pcs)

2. Removing the mechanical unit

- ① Remove the pan support arm from the roberval. (allen head screw M6 × 20 with coned disk washer (small) steel, 3pcs)
- ② Remove the internal mass limiter and the internal mass. (pan head screw M4 ×8 with spring and plain washer, 2 pcs)
- 3 Disconnect the cable from the relay board.
- Remove the mechanical unit. (allen head screw M6 × 18 with coned disk washer (small) steel, 4 pcs)

Pan suppor arm

3. Disassembling the mass roberval

① Remove the tension flexure connecting the internal mass floating frame and the mass beam spacer. (pan head screw M4×6 with coned disk washer and the fulcrum flexure holder)

② Remove the mass roberval unit from the frame. (pan head screw M4×18 with spring and plain washer, 4 pcs)

4.Disassembling the frame

- ① Remove the counter weight. (nut M4)
- ② Remove the roberval from the frame. (allen head screw M6×25 with spring and plain washer (small), 4 pcs)

5.Disassembling the mechanical unit

- ① Remove the wires from the beam (2) using a soldering iron.
- ② Remove the relay board on the magnetic support. (pan head screw M3 x 6 with spring and plain washer, 2 pcs)

③ Remove the shield plate. (pan head screw M3 × 8 with spring and plain washer, steel, chromated, 2 pcs) The shield plate can be removed with the position sensor board.

4 Remove the yoke (pan head screw M4 x 8 with spring and plain washer ϕ 6.5, 2 pcs)

⑤ Remove the relay board.(pan head screw M3 × 6 with spring and plain washer, 2 pcs)

⑦ Secure the roberval and the beam (2) on the base jig.(M4 x 20: 2pcs, M6 x 20: 4pcs, M8 x 20:1pce)

- ® Remove the tension flexure(2) from the beam (1). (pan head screw M4 × 8, coned disk washer, the flexure holder) With the tension flexure being bended remove the screw (the mass beam spacer, coned disk washer, the tension flexure holder)
- Remove the fulcrum flexure.(2) (pan head screw M4×6 with the distance ring, coned disk washer, 4pcs)

Tension flexure (2)

Remove the bolt for holding the beam from the tension flexure (1). (cap head screw M6×12 with coned disk washer (small), steel, the tension flexure holder (upper).

① Loosen the screw securing the tension flexure (1) and the roberval. (cap head screw M6×18 with coned disk washer (small), steel).

1 Remove the fulcrum flexure (1). (allen head M5x15 with coned disk spring, the flexure holder ϕ 12, 2pcs, allen head M5 x 18 with coned disk washer, the flexure holder, 2pcs)

(3) Remove the beam (2) from the base jig.

(4) Remove the spacer for positioning the beam (1) and the bolt for holding the beam, and the beam (1).

6.Disassembling the roberval Unit

 Remove the internal mass hook. (pan head screw M4×6 with spring washer, 2 pcs)

Secure the frame of the mass roberval unit on the jig (A) for assembling the mass roberval (M4: 4pcs) Use the screws disassembled.

③ Place the jig (B) for assembling the mass roberval into the jigs assembled in step No. ② above. (M5 x 15: 4 pcs, M4 x 20: 2 pcs)

④ Remove the Tension flexure (3). (pan head screw M4 x 6 with teflon coated disk washer)

⑤ Remove the flexure beams. (pan head screw M4×6 with teflon coated disk washer, 6 pcs)

7. Disassembling the Beam (2)

- Remove the tension flexure (2). (the mass beam spacer)
- ② Remove the wires from the bobbin with a soldering iron.
- ③ Remove the bobbin. (pan head screw M3×4, brass, no plating, 2 pcs)

5.2 Assembly

1.Assembling the beam (2) unit

- ② Secure the bobbin from the beam. (pan head screw M3 × 4, brass, no plating, 2 pcs)
- Solder the wires to the bobbin. The wire must be glued to the bobbin.
- Insert the tension flexure (2) into the guide of the beam (2) and secure the tension flexure (2) with the mass beam spacer.
 Tightening torque...30kgf cm

2. Assembling the mass roberval unit

① Place the internal mass frame on the jig (A) for assembling the mass roberval, and the jig (B) for assembling the mass roberval on the internal mass frame.

② Place the jigs with the internal mass frame on the level block horizontally.

③ Secure the flexure beam. (pan head screw M4 × 6 with Teflon coated coned disk washer, 6 pcs) Tightning torque...14kgf • cm

- ④ Secure the tension flexure (3) to the mass roberval. (pan head screw M4 X 6 with teflon coated coned disk washer)
- ⑤ Remove the mass roberval from the jigs.

- 3. Assembling the mechanical unit
- ① Place the tension flexure (1) and then the tension flexure holder on the roberval, and tighten the screw temporarily. (allen head screw M6× 18 with coned disk washer (small), steel)

- ② Assemble the beam (1) temporarily using the spacer for positioning the beam (1) and the bolt for holding the beam (1). Adjust the position of the tension flexure so that the hole of the tension flexure (upper side) drilled hole of the tension flexure meets the hole of the beam (1).
- (3) Hold the roberval to the surface, for installing the fulcrum flexure (1), of the beam (1) using the plate positioning the beam (1). Adjust the position of the tension flexure (1) so that the screw hole of the tension flexure (1) meets one of the beam (1).
- Tighten the bolt for holding the beam (1).
- (5) Install the beam (2) to the roberval with care not to bend the tension flexure (2).
 Make sure that the force coil should

not touch the magnetic support while installing.

- 6 Place the roberval and the beam (2) to the base jig.
 Make sure that the screw hole of the tension flexure (2) overlaps one of the beam (1).
- Pemove the plate for positioning the beam (1). Secure the fulcrum flexure (1) using the jig for positioning the fulcrum flexure (1). Install the fulcrum flexure (1) perpendicularly. (allen head screw M5×15 with coned disk washer and the flexure holder, allen head screw M5×18 with the coned disk washer and the flexure holder, 2 pcs each)

Tightening torque...80kgf • cm

Tighten the screw on the lower side of the tension flexure (1). (allen head screw M6 x 18 with coned disk washer (small), steel) Tightening torque...120kgf · cm

Secure the screw on the upper side of the tension flexure (1). (allen head screw M6 × 12 with coned disk washer (small) steel and the tension flexure holder (upper). Tightening torgue...120kgf · cm

- Secure the the fulcrum flexure (2) using the jig for positioning the fulcrum flexure (2). Install the fulcrum flexure (2) perpendicularly. (pan head screw M4×6 with coned disk washer, 4 pcs)
 - Tightening torque...15kgf · cm
- Secure the the tension flexure (2) to the beam (1). (pan head screw M4×8 with coned disk screw and the flexure holder)
 - Tightening torque...15kgf · cm
- Remove the mechanical unit from the base jig.
- Remove the bolt for positioning the beam (1) and the spacer positioning the beam (1)

- Secure the shield plate. (pan head screw M3x8 with plain and spring washer, steel, chromated,2 pcs)
 Tightening torque...10kgf · cm
- (II) Secure the relay board on the magnetic support, (pan head screw M3x6 with spring washer and plain washer, 2 pcs)

① Solder the wires from the relay board to the beam (2).

4. Installing the mechanical unit

① Hold the upper side of the roberval, and place and secure the roberval to the frame installing the sensor cable through the hole of the frame. (allen head screw M6x25 with spring washer and plain washer (small), 2 pcs)
Tightening torque...120kgf·cm

② Secure the counter weight. The distance between the surface of the frame and the top of the counter weight is 56.5mm.

5. Installing the mass roberval unit

- Install the mass roberval unit. Make sure that the hole, for the tension flexure, of the internal mass floating frame overlaps the tapping hole of the beam (2). (pan head screw M4x18 with spring washer and plain washer, 4 pcs)
 - Tightening torque...15kgf cm
- Place the frame on the level block. Insert the jig for positioning the fulcrum flexure (1) using the width of 13.0mm under the internal mass floating frame, and secure the tension flexure (3) to the mass beam spacer. (pan head screw M4x6 with teflon coated coned disk washer and the tension flexure holder)
- Secure the mass hook to the internal mass floating frame. (pan head screw M4x6 with spring washer and plain washer, 2 pcs)

Tightening torque...15kgf · cm

6. Installing the mechnical unit to the lower case

- ① Secure the mechnical unit to the lower case. (Position the mechanical unit side by side with the lower case)
 (allen head screw M6x18 with coned disk washer(small), steel, 4 pcs)
 Tightening torque...140kgf cm
- Install the 380g internal mass and the internal mass holder. (Position the internal mass holder side by side) (pan head screw M4x6 with spring and plain washer, 2 pcs)
- Adjust the motor unit back and forth so that the intenal mass pushes down the internal mass holder.

Secure the pan support arm side by side with the lower case. (allen head screw M6x20 with coned disk washer (small), steel, 3 pcs)
Tightening torque...140kgf • cm

7. Installing the case top

- Make sure that the packing is not swelled. If being swelled, glue the packing on the lower case with silicon adhesive agent.
- ② Secure the case top to the lower case. Adjust the position of the pan support axis to meet the hole of the case top. (pan head screw M4x12 with plastic washer, 8 pcs)
 - Tightening torque...5kgf · cm
- ③ Hold the convex part of the diaphragm with hands, and insert the diaphragm into the guide of the pan support axis. Make sure that the diaphragm is not swelled.
- Install the pan support rubber and tighten temporarily with a spanner wrench. Adjust the tightening rotation of the pan support axis so that the holes of the diaphragm meet the hole of the tapping hole of the case top.
- 5 Hold and secure the diaphragm. (pan head screw M3x6 with plastic washer, 8 pcs)
 Tightening torque...3kgf cm

5.3 Cleaning the Magnet Assembly and Bobbin

The magnet assembly and the bobbin will require cleaning if the balance has a repeatability problem. Particles of metal, dust or other foreign material can collect around the bobbin. If such material touches the bobbin, the bobbin will not move correctly. Metal particles are attracted to the magnet and tend to stand straight out. The gap for the bobbin is very narrow, so be very cautious while removing particles.

Note: Do not use compressed air to blow out the magnet well. There may be particles of magnetic material stuck to the bottom of the magnet. The tools that you use near the magnet should be free of plating and non-magnetic. A flake of plating or a metal particles will be attracted to the magnet.

The screws used in this balance are non-magnetic. Do not substitute screws made of magnetic material.

- ① Prepare a 5 cm-long adhesive tape for cleaning. Use a paper backed or cloth tape (do not use a tape that can be torn easily, such as cellophane tape, it may stick to the magnet and be very difficult to remove).
- ② Clean around the inner and outer surfaces of the magnet well using the adhesive tape.
- ③ Clean the inner and outer surfaces of the bobbin using the adhesive tape.
- ④ Inspect the magnet well and bobbin using a very strong light. Look for any particles stuck to the surfaces. Metal particles may be shinny or dark. Look for anything stuck out from the sides of the magnet.
- ⑤ Reassemble the force motor and test it for repeatability. Corner load error can often be traced to a repeatability problem.

If there is still a problem, disassemble the force motor and check closely for particles in the magnet gap.

6. Adjustments

6.1 Adjustment Flow Chart

6.2 General Precautions

The data structure is shown below. Functions listed nearer to the bottom are more basic. If the specific data is adjusted, all data listed above the adjusted data must also be adjusted.

GP Series

6.3 Check Mode

Check mode consists of three modes: Data adjustment mode, function setting mode and basic setting mode.

1. Entering the check mode

- Step 1. Verify that the display is OFF.
- Step 2. Press and hold the RE-ZERO and PRINT keys and press the ON/OFF key. Release the PRINT and ON/OFF keys while still holding the RE-ZERO key. Immediately press the PRINT key twice. Perform this procedure within 2 seconds.
- Step 3. The software version will be displayed for about 1 second P-X.XX
- Step 4. The balance model type will be displayed light in the model type displayed depends on each actual model.)
- Step 5. All of the display segments will turn on.

2. Check mode menu

Note: In the above content, the way of displaying may differ depending on the each software version.

6.4 Check Mode Menus

Internal count display

While in the d-d5P display, press the PRINT key to display the internal count. Use the SAMPLE key to go to the next data.

Digital offset

While in the D0, D1 display, or T0, T1 display, while holding down the RE-ZERO key and MODE key, the balance enters the digital offset input mode.

(In this input mode, the load sensor or the temperature sensor is disconnected internally. And certain electric signals are input in each A to D converter. Refer to "6-13 Method of identifying defect location")

6.5 Initialization

<CAUTION>

 Do not proceed to this initialization if you can not prepare a room controlled with temperature. (Because it is necessary to adjust temperature data after this initialization)

Note that the following data is initialized by this operation.

- Temperature compensation data for each unit (Then some fixed data is input compulsorily)
- Linearity compensation data (The data is cleared), serial number, weighing units
- Internal parameter settings (Certain values are input compulsorily)

Initialization procedure

Follow the procedure below to completely initialize the data stored in the non-volatile memory.

- Step 1. See the check mode menu flowchart on page 26 to display basic setting mode <u>FYPE</u> or <u>FIPE</u>.
- Step 2. Press the SAMPLE key several times. In it will be displayed.
- Step 3. Press the PRINT key. RLL no will be displayed. To cancel the operation, press the CAL or PRINT key. The next item will be displayed.
- Step 4. Press the RE-ZERO key. RLL Lo will be displayed. To cancel the operation, press the CAL key. The next item will be displayed
- Step 5. Press the PRINT key. < RLL Lo , then End will be displayed. The next item will be displayed. Change the other items as necessary.
- Step 6. To quit the operation, press the ON/OFF key. The display will be turned OFF.

6.6 Model type Selection (Only for maintenance electric board)

Model type selection is available for the maintenance board only.

Model selection procedure

Follow the procedure below to select the balance model type.

- Step 1. Verify the following item of the 7PZ-3633A/B (Main board for the maintenance).
 - \square Verify the type of the board
 - To the each type (A/B), verify the value of R11/R12 and the jumper setting are correct. (Refer to the Technical information "4. Parts Layout of Circuit Diagrams")
 - ☐ For the main board unit, verify if it is adjusted completely
 - Connect the AC adapter to the main board unit. If Error 9 is displayed, the main board is not adjusted yet and it should be adjusted for a maintenance board.
- Step 2. See the check mode menu flowchart on page 32 to display basic setting mode $\[\[\] \] \]$
- Step 3. Press the PRINT key. Confirm the type on the display as follows.

Type of board	Model type which can be set	Type displayed initially
7PZ-3633A	GP12K/20K/22K/30K/40K/30KS	30 GP
7PZ-3633B	GP60K/100K/102K/100KS	100 K

Use the following keys to select the model type

RE-ZERO key: changes the model type. (Change the model type according to

the kinds of PZ)

PRINT key:

saves the final model type.

CAL key:

cancels the data.

When the model after change is the same as that before change, the stabilization indicator illuminates.

Step 4. Press the PRINT key. End appears. Then, the next item appears.

6.7 Coarse Operation Check & Adjustment

1. A/D count check

The A/D count can be checked in the check mode.

Follow the procedure below to verify the A/D values for weight data (D0) and temperature data (T1).

- Step 1. Display the data adjustment mode d-d5P after getting into check mode shown on page 26.
- Step 2. Press the PRINT key to display XXXX . (D0 data, weight A/D count)
- Step 3. Check that the pan and pan support receptor is installed properly. Verify that the count without load (zero point) is within 2000 4000 counts.
 - Note: If the zero point is not within the specification, adjust it by cutting jumpers (on the main board).

Cut JP2...Zero point +1500(D0), cut JPA...Zero point +3000(D0)

Step 4. Place the mass in the table below on the pan. Read the count with load. Subtract the count without load from the count with load to obtain the span value. Verify that the span value is within the range shown in the table below.

In the D0 data mode (Weight A/D count), press the SAMPLE key twice to display X.XX (D2 data). Verify that the dispersion is within the specifications as below when the mass is placed on the pan.

Model	Masses	Span (D0 data)	Dispersion (D2 data)
GP-12K/20K/22K/30K/	30kg	4000~5000	MAX-MIN: 0.2g/5 seconds
30KS/40K			
GP-60K/100K/100KS/	100kg	8000~10000	MAX-MIN: 2g/5 seconds
102K			_

Step 5. In the D2 data mode, press the SAMPLE key three times to display XXXXXX (T1 data)

Step 6. Verify that the count at room temperature (15-25°C) is within the range shown in the table below.

Model	Absolute value (T1 data)	Dispersion (T1 data)	
GP-12K/20K/22K/30K/ 30KS/40K	4500000 4700000	MAY MINL OO	
GP-60K/100K/100KS/ 102K	1500000-1700000	MAX-MIN: 20 counts/5 seconds	

2. Motor operation check

Step 1. In the D0 data mode (weight A/D count), press the SAMPLE key twice.

X.XXX will be displayed. (D2 data)

Step 2. Each time the PRINT key is pressed, the motor rotates and displayed. Verify the following:

Applying and releasing the internal mass is performed smoothly.

No strange noises are generated during the movement of the internal mass.

Step 3. In the D2 data mode, press the PRINT key five times, and check the repeatability of internal mass.

Model	Times	Repeatability specifications (02 data mode)	
		Repeatability		Absolute value	
		Zero	Span	Span	
GP-12K/20K/22K/30K/ 30KS		±0.2 g	±0.2 g		
GP-40K	5	±1.0g	±1.0 g	☐ 40kg~60kg	
GP-60K/100K/100KS/ 102K		±2g	±2 g		

3. Insulation check of force coil

By using a multimeter which can measure 20M Ω or more, measure the resistance between the force coil (pin 1 or pin 2 of J3) and the frame.

Verify that the measurement result is the same as when the terminal of multimeter is opened.

6.8 Coarse Adjustment

1. Calibration

Internal mass calibration

With nothing placed on the pan, warm up the balance for at least half an hour. Calibration is performed in the check mode $\boxed{ERL_{ID}}$ display.

Follow the procedure below to calibrate.

Step 1. Display the data adjustment mode d-d5P after getting into check mode shown on page 32.

Step 2. Press the SAMPLE key several times. [FIL in is displayed.

Step 3. Press the PRINT key. The motor starts to operate.

Step 4. The display changes in turn as follows:

$$\boxed{\texttt{ERL.}} \rightarrow \boxed{\texttt{ERL.}} \rightarrow \boxed{\texttt{ERL.}} \rightarrow \boxed{\texttt{End}}$$

Step 5. The operation is completed. Proceed to the next step.

2. Corner load adjustment

Corner load is adjusted in the check mode D2 display.

If the corner load error is greater, insert a spacer between the mass roberval and the mass frame and adjust the corner load within +/- 2.0kg.

For the adjustment method, save the adjustment hole of the roberval using a file.

(By the corner load adjustment, particles are likely to be generated. Be careful that the particles do not affect the force motor unit or the circuit board. Remove the particles by using adhesive tape.)

Coarse adjustment

Step 1. Display the data adjustment mode d-d5P after getting into check mode referring to Check mode procedure.

Step 2. Press the PRINT key to display XXXX . (D0 data-weight A/D count)

Step 3. In the D0 data mode (weight A/D count), press the SAMPLE key twice to display X.XXX . (D2 data as gram weight display).

Step 4. In the D2 data mode, place an external mass as shown on the table below on the center of the pan and at four positions half the distance from the center of the pan to the edge. See the figure on next page.

If the error is greater than 2.0kg comparing the corner load between right and left side, insert a spacer between the mass roberval and the mass frame for the adjustment.

Adjust the corner load error at the back of weighing pan to be within about +10digits, shaving the center hole of the corner load adjustment holes of the rolerval with a shaft of drill ϕ 3. Turn the shaft of the drill gently by hand.

In the initial state, If the corner load error at the back of weighing pan is minus counts, shave the bottom side of thin part at a level using a file (ϕ 2.5).

Step 5. Adjust to be within the about +4 digits as the specifications, by shaving the corner load adjustment hole of the plus side (right or left) on the weighing pan. When adjusting the corner load by shaving, a drift of the zero point may be generated. After shaving, load the mass listed in table below on the front, back, left and right of the weighing pan, and work again after the drift of the center zero point is confirmed to be within ±3digits.

Model	Masses	Different with center (front-back)	Different with center (right-left)	Drift value of Zero point
GP-12K/20K/22K/ 30K/30KS/40K	10kg	+/-0.4g	+/-0.4g	+/-0.3g
GP-60K/100K/100KS/ 102K	40kg	+/-4g	+/-4g	+/-3g

Step 6. Install the diaphragm after adjusting as per the table below.

Model	Masses	Different with center (front-side of display)
GP-12K/20K/22K/ 30K/30KS/40K	10kg	+0.2g
GP-60K/100K/100KS/ 102K	40kg	+3g

Use the spacer that been cut in half

If the corner load error at the front of the weighing pan is minus counts, shave the bottom side of thin part at a level using a file.

If the corner load error at the front of the weighing pan is plus counts, shave the top side of thin part at a level using a file.

3. Hysteresis check

Apply a preliminary load by placing and removing a load with the same weight value as the full scale value. Perform this pre-load three times.

Note: Be careful, the corner load error has a bad effect on the linearity adjustment or linearity and hysteresis check.

In the D2 data mode, place the specified check mass in the table below one by one on the pan. After reaching the weighing capacity, remove each mass one by one, and check that the difference between increasing points and decreasing points are within the specifications (hysteresis).

Model	Masses	Hysterisis (D2 mode)	
GP-12K	5kg x 2		
GP-20K			
GP-22K	GP-22K 5kg x 4	±0.5g	
GP-30K/30KS	10kg x 3		
GP-40K	10kg x 4	±2.5g	

GP-60K	20kg x 3	
GP-100K/100KS	001	±5g
GP-102K	20kg x 5	±8g

6.9 Temperature Adjustment

A room or chamber that can be set at 10°C and 30°C is required for this adjustment. The balance must stabilize at each temperature for more than 8 hours before the data is taken.

Input high temperature data initially, then input low temperature data. Finally go back to high temperature state, and check the zero drift and the span drift.

Use the same mass when inputting data for both high temperature and low temperature.

	temperature.		
1. Inputi	ting the temperature data		
Step 1.	Display the data adjustment mode d-d on page 26.	5P after getting into check mode sho	own
Step 2.	Press the SAMPLE key six times. LH more times. Then LL appears. Inpulow temperature data in the LL display.	appears. Press the SAMPLE key at high temperature data in the $\mathcal{L}\mathcal{H}$ disp	
Step 3.	In the $\[\underline{\mathit{EH}} \]$ or $\[\underline{\mathit{EL}} \]$ display, press the $\[\underline{PRINT} \]$ key. The motor starts and adjusts the internal mass position correctly. Then $\[\underline{\mathit{EH}} \]$ or $\[\underline{\mathit{EL}} \]$ is displayed respectively.		
Step 4.	With nothing placed on the weighing pan, press the PRINT key as zero point data. To cancel the operation, press the CAL key.		
Step 5.	After it stabilized, F or EL F	is displayed respectively.	
Step 6.	Place the mass in table below on the weig	hing pan and press the PRINT key.	
	Model	Masses	
	GP-12K/20K/22K/30K/40K/30KS	20kg	
	GP-60K/100K/102K/100KS	60kg	
Step 7.	After it stabilized, <i>End</i> is displayed.		
Step 8.	Remove the mass and proceed to the nex Removing the mass, EH in or EL data is automatically read in. Proceed to the next that is automatically read in.	is displayed and the internal m	

2. Temperature adjustment check

Step 1. After inputting the low temperature data, keep the temperature. In the RL in mode, carry out the calibration with the internal mass, and select D2 or D3 data mode (as described below) in the internal count display.

- Step 2. Press the RE-ZERO key to show zero. Note the zero point reading. Place a mass in table below on the pan and note the span reading. The span data is calculated after subtracting the zero point reading from the full point reading. Remove the mass.
- Step 3. Set the temperature to 30°C again. Leave the balance at that temperature for at least 8 hours. (Leave the balance with D2 or D3 data mode.)
- Step 4. Note the zero point reading.
- Step 5. Press the RE-ZERO key to display zero.
- Step 6. Place a mass in table below on the pan and note the span reading. The span data is calculated after subtracting the zero point reading from the full point reading. Remove the mass.
- Step 7. Verify that the changes in the zero point and span are within the specifications.

Model	Masses	Data mode	Zero	Span
GP-12K/20K/22K/30K/ 40K/30KS	20kg	D2	±6.0g	±1.2 g
GP-60K/100K/102K/ 100KS	60kg	D3	±20.0g	±7.2g

- Step 8. In the [RL in] mode, carry out the calibration with the internal mass.
- Step 9. Place the mass on the weighing pan and read the display.
- Sep 10. Verify that the changes in the span and span are within the specifications

Model	Masses	Data mode	Span
GP-12K/20K/22K/30K/40K/30KS	20kg	D2	±0.4g
GP-60K/100K/102K/100KS	60kg	D3	±1.5g

6.10 Fine Adjustment

1. Corner load adjustment

In the D2 data mode, place an external mass on the center of the pan and at four positions half the distance from the center of the pan to the corner edge shown in a figure below. Verify that the difference between the values at the center and at each position is within the specifications.

About the adjustment method, refer to the "2.Corner load adjustment" of "6.8 Coarse Adjustment".

When adjusting the corner load error by shaving, zero point drift may be generated. After shaving, load the mass listed in table below on the front, back, left and right of the weighing pan, and work after the drift of the center zero point is confirmed to be within the ± 2 digits.

Model	Masses	Difference with center (D2 data mode)	Drift value (D2 data mode)
GP-12K	5kg	±0.3g	÷0.0-
GP-20K	101	±0.4g	±0.2g
GP-22K	10kg	±1.0g	±0.4g
GP-30K/30KS	10kg	±0.4g	±0.2g
GP-40K	20kg	±1.0g	±0.4g
GP-60K	ZUNG	±1g	±1g
GP-100K/100KS	40ka	±4g	+20
GP-102K	- 40kg	±5g	±2g

2.Linearity adjustment (Lnr-2, ∃) / Linearity and Hysteresis check

First, warm up the balance at room temperature for at least 12 hours before carrying out the adjustment.

Apply a preliminary load by placing and removing a load with the same weight value as the full scale value. Perform this pre-load three times. Follow the procedure below to input linearity data.

Note: Be careful, the corner load error has a bad effect on the linearity adjustment or linearity and hysteresis check.

Step 1. Display the data adjustment mode d-d5P after getting into check mode shown on page 26.

Step 2. In case of GP-12K/20K/22K/40K/60K, press the SAMPLE key one time. Lar 2 is displayed. In case of GP-30K/30KS/100K/100KS/102K, press the SAMPLE key two times, Lar 3 is displayed.

Step 3. Press the PRINT key. The motor starts and adjusts the internal mass position correctly. Then Lor U is displayed. (Press the CAL key to cancel this procedure.)

Step 4. With nothing placed on the pan, press the PRINT key.

Step 5.	After stabilization, Lnc I is displayed (Press the CAL key to cancel the operation.).
Step 6.	Place mass A shown on the table below on the weighing pan and press the PRINT key.
Step 7.	After it stabilized, Lnr 2 is displayed. (Press the CAL key to cancel the operation.)
Step 8.	Remove mass A, place mass B and press the PRINT key.
Step 9.	After it stabilized, Lnr 3 is displayed. (Press the CAL key to cancel the operation.)
Step 10.	Add mass A (confirm to place mass B and mass A on the weighing pan) and press the PRINT key. In case of GP-12K/20K/22K/40K/60K, go to the Step 15. In case of GP-30K/30KS/100K/100KS/102K, go to the Step 11, and input the Lnr 4 and Lnr 5 data.
Step 11.	After it stabilized, \overline{Lnr} is displayed. (Press the CAL key to cancel the operation.)
Step 12.	Remove mass A, place mass C (confirm to place mass B and mass C on the weighing pan) and press the PRINT key.
Step 13.	After it stabilized, Lnc 5 is displayed. (Press the CAL key to cancel the operation.)
Step 14.	Add mass A (confirm to place mass B, mass C and mass A on the weighing pan) and press the PRINT key.
Step 15.	After it stabilized, END is displayed.
Step16.	The linearity adjustment is completed. Remove the mass from the pan.

Model	Input grade		Weights			Input method and actual load on the pa					e pan
iviouei	grade					Lnr0	Lnr1	Lnr2	Lnr3	Lnr4	Lnr5
			Α	B	С	No load	A	В	B+A	B+C	B+C+A
GP-12K	2		_5kg	5kg		0	5kg	5kg	10kg		
GP-20K/22K			10kg	10kg		0	10kg	10kg	20kg		_
GP-30K/30KS	3		10kg	10kg	10kg	0	10kg	10kg	20kg	20kg	30kg
GP-40K			20kg	20kg		0	20kg	20kg	40kg		_
GP-60K	2	(a)	20kg	40kg		0	20kg	40kg	60kg		
GF-00K		(b)	30kg	30kg	_	0	30kg	30kg	60kg		
GP-100K/100 KS/102K	3		20kg	40kg	40kg	0	20kg	40kg	60kg	80kg	100kg

Either of (a) or (b) can be selected with GP-60K.

Linearity and Hysteresis check

Calibrate by using the calibration mass in table below.

After calibration, in the D2 data mode, place the specified check mass in the table below one by one on the pan, and check that the difference between the true value and the displayed value is within the specifications (linerarity). After reaching the weighing capacity, remove each mass one by one, and check that the difference between increasing points and decreasing points are within the specifications (hysteresis).

Model	Calibration masses	Check masses	Linearity (D2 mode)	Hysteresis (D2 mode)	
GP-12K	10kg	5kg×2	100		
GP-20K	001	Flor V A	±0.2g	±0.5g	
GP-22K	20kg	5kg×4	±0.4g	±0.5g	
GP-30K/30KS	30kg	10kg×3	±0.2g	±0.5g	
GP-40K	40kg	10kg×4	±1.0g	±2.5g	
GP-60K	60kg	20kg×3	±1g		
GP-100K/100KS	1001	001		±5g	
GP-102K	100kg	20kg×5	±2g	±8g	

3. Internal mass value correction (EAL SEL)

The following explains about how the internal mass value is adjusted precisely.

Perform the linearity adjustment before internal mass value correction. In the case of performing the internal mass value correction only, the internal temperature of the balance must be approached to the room (the air) temperature enough.

(1) Preliminary load

Apply a preliminary load by placing a load with the full scale value and remove it. Perform this pre-load three times.

(2) External mass calibration (ERL out)

- Step 1. Display the data adjustment mode d-d5P after getting into check mode shown on page 26.
- Step 2. Press the SAMPLE key three times. [[RLout]] is displayed.
- Step 3. Press the PRINT key. The motor starts and adjust the internal mass position correctly.

Step 4. [[RL II]] is displayed. Check the standard mass for calibration in table below.

Model	Standard masses
GP-12K	10kg
GP-20K/22K	20kg
GP-30K/30KS	30kg
GP-40K	40kg
GP-60K	60kg
GP-100K/100KS/102K	100kg

To change the calibration mass value, press the SAMPLE key and change the value as necessary using the following keys.

SAMPLE key: changes the blinking digit position.

RE-ZERO key: changes the value of the blinking digit.

PRINT key: saves the data.

- Step 5. With nothing placed on the pan, press the \boxed{PRINT} key. $\boxed{\ ^{<}\mathcal{L}RL\ \mathcal{U}\ }$ is displayed.
- Step 6. After it stabilized, IÜk is displayed. (Example of the GP-12K)
- Step 8. After it stabilized, \boxed{End} is displayed.
- Step 9. Remove the mass.

Step 1.	In the data adjustment [RL5EE] is displayed.		, press the SAMPLE key five times.
Step 2.	Press the PRINT key. To correctly.	The motor star	ts and adjusts the internal mass position
Step 3.	The display changes in tu $\begin{bmatrix} \mathcal{L} \end{bmatrix} \rightarrow \begin{bmatrix} < \mathcal{L} \end{bmatrix}$	rn as follows: → [[[_	> <[[.] → [End] → [EH]
Step 4.	Proceed to the next step.		
(4) Intern Step 1.	al mass calibration (ERL In the data adjustment ERL in is displayed.	· /	7 , press the SAMPLE key four times.
Step 2.	Press the PRINT key. Torrectly.	The motor star	ts and adjusts the internal mass position
Step 3.	The display changes in tu		RL . → <eal .="" end<="" td="" →=""></eal>
Step 4.	Proceed to the next step.	·	
(E) In D2	data mada varifu tha arr	ou of the fire a	adli ratur a mt
Step 1.	data mode, verify the err In the data adjustment displayed. (D0 data-weigl	mode <u>ਰ-ਰ5</u> 2	, press the PRINT key. XXXX is
Step 2.	Press the SAMPLE key display)	twice. XXXX	X.X is displayed. (D2 data-gram weigh
Step 3.			n "(2) External mass calibration". Verify that splayed weight value and the mass value) is
			the fine adjustment again (operation of (2)
	(3)), or perform the digita		explained later.
	Model	Standard	Specifications (D2 data mode)
	CD 10K	masses	
	GP-12K	10kg	
	GP-20K/22K	20kg	±0.4g
	GP-30K/30KS	30kg	
	GP-40K	40kg	+20
	GP-60K	60kg	±2g
	GP-100K/100KS/102K	100kg	±4g

(6) Calibrate using the internal mass and verify the fine adjustment error (operation (4)-(5)). Perform this three times, verify that the all data be within the specifications.

Digital correction of the fine adjustment

If the error is not within the specifications, it can be corrected digitally. After correcting the value digitally, calibrate again using the internal mass and verify the error.

- Step 1. In the data adjustment mode d-d5P, press the PRINT key. XXXX is displayed. (D0 data-weight A/D count)
- Step 2. Press the SAMPLE key seven times. XXXXX.X is displayed. (CW display-fine adjustment parameter of linearity regarding internal mass)
- Step 3. To change the internal mass value, press the PRINT key and change the value as necessary using the following keys.

RE-ZERO key:

increases the value by one.

SAMPLE key:

decreases the value by one.

PRINT key:

saves the final data.

CAL key:

cancels the data.

Step 4. Press the PRINT key. Then, the balance returns to the CW display with corrected data.

6.11 Parameter Settings

1. Unit setting

The weighing units can be saved in the check mode. Follow the procedure below to save the units.

- Step 2. Press the PRINT key. Lin it g is displayed.
- Step 3. Save the units using the following keys if it is needed.

RE-ZERO key: select

selects the displayed unit.

SAMPLE key:

changes the unit to be displayed.

CAL key:

cancels the operation.

- Step 4. When every units you need are saved, press the PRINT key.
- Step 5. $\lfloor \frac{\mathcal{E} \cap d}{2} \rfloor$ is displayed to indicate that the operation is completed.

2. Serial number setting

Follow the procedure below to set the serial number.

- Step 2. Press the SAMPLE key. 5n is displayed.
- Step 3. Press the PRINT key. Then the display starts to blink.
- Step 4. Using the following keys, input the serial number on the label attached to the each balances.

RE-ZERO key: changes the value of the blinking digit.

SAMPLE key:

changes the blinking digit position.

CAL key:

cancels the operation

- Step 5. When the serial number is set, press the PRINT key.
- Step 6. *End* is displayed to indicate that the operation is completed.

6.12 Half-initialization

Half-initialization changes all the user settings(*1) to the default values. Follow the procedure below.

- Step 1. Display the function setting mode <u>lin it</u>, after getting into check mode shown on page 26.
- Step 2. Press the SAMPLE key several times. In Italian is displayed.
- Step 3. Press the PRINT key. HF no is displayed. (To cancel the operation, press the CAL key or PRINT key.)
- Step 4. Press the RE-ZERO key. HF La is displayed. (To cancel the operation, press the CAL key.)
- Step 5. Press the PRINT key. PRINT key. AF Lo and then End is displayed. The Half-initialization is completed.
 - (*1) The user settings
 - Function setting
 - · Value of the external mass for calibration
 - Content of data memory function
 - Density data of liquid for density measurement

6.13 Method of identifying defect location (Electrical part or Mechanical part)

In this chapter it explains about how easily you can check the cause of malfunction in the mechanical parts or in the electrical part, without disassembling the balance. It is advantageous if the defect is "unstable data" or "repeatability error".

1. Simple method (Self Check Function)

Self-checks the balance performance using the internal mass.

If the balance displays [H no] after this operation, the electrical part (especially AMZ51) is clearly defective. It is necessary to check or replace the AMZ51.

Step 1. Press and hold the MODE key until RESPONSE is displayed.

In case of GX series, the balance automatically starts to check the balance performance and sets the response feature.

Do not allow vibration or drafts to affect the balance during this adjustment.

In case of GF series, the balance automatically starts to check the balance performance.

Step 2. After automatic adjustment, the balance displays the updated response indicator and returns to the weighing mode. The response indicator remains displayed for a while.

e.g. "MID. OK "

The example above indicates that the result of the self check is good and MID. is selected as the response rate.

2. Method of identifying in the internal offset mode

* If both i) and ii) below are OK, the electrical part is not defective. In this case, it is likely that the cause is in the mechanical part.

* If both of i) and ii) are NG, or one of two is NG, the electrical part is defective. It is necessary to check or replace the electrical part especially AMZ51.

i) Operation confirmation for the electrical portion of the weight A/D part by itself

Step 1. Display the data adjustment mode d-d5P after getting into check mode shown on page 26.

Step 2. Press the PRINT key. XXXX is displayed. (D0 data mode-weight A/D count)

Step 3. Press and hold RE-ZERO key and press MODE key. "- /-" is diplayed on the upper left display in offset mode (seven segments). See the example on next page. With a same key operation, the mode can be moved to "-2-", "-3-" and "-4-".

(1) Verify that the offset 1 (- /-) shows within 2940-3060.

(2) In the offset 2 ($-c^{3}$ -), verify that the data is within 4400-4600.

(3) In the offset 3 ($-\frac{3}{3}$ -), verify that the data is within 5900-6100.

(4) In the offset 4 (-4-), verify that the data is within 7350-7650.

Step 4. Press the SAMPLE key. XXXXXX is displayed. (D1 display-Internal weight data)

- Step 5. Press and hold RE-ZERO key and press MODE key. "- /-" is diplayed on the upper left display in offset mode (seven segments). See the example. With a same key operation, the mode can be moved to "-2-", "-3-" and "-4-".
 - (1) In the offset 3 (-3-), verify that the data is within 2020000-1930000, and the data of dispersion is within 3 counts (MAX-MIN) in 5 seconds.

Offset mode (Weight A/D)

Weight A/D input	ght A/D input Seven segments on the upper left		D1 data
Offset 1 only	- -	Approx.3000	Approx.1000000
Offset 2 only	-5-	Approx.4500	Approx.1500000
Offset 3 only	-3-	Approx.6000	Approx.2000000
Offset 4 only	-4-	Approx.7500	Approx.2500000
Offset 5 only	-5-	Approx.7500	Approx.2500000
Offset 6 only	-6-	Approx.12000	Approx.4000000
Ordinary state	No display	Weight A/D	Internal weight
(Connecting to the		count	data D1
mechanical part)			

Example) In the D0 data mode, to display "- /-".

- -		
	3005	
-	7005	

- ii) Operation confirmation for the electrical portion of the temperature A/D part by itself
 Step 1. In the D1 data mode, press the SAMPLE key four times. XXXXXX is
 displayed. (T1 data mode-Temperature A/D count after average filter)
 - Step 2. Press and hold RE-ZERO key and press MODE key. "- /-" is displayed on the upper left display in offset mode (seven segments).
 - (1) In the offset 1 ($^ l^-$), verify that the data is within 170000-210000, and the data of dispersion is within 10 counts (MAX-MIN) in 5 seconds.

Offset mode (Temperature A/D)

Temperature A/D input	Seven segments on the upper left	T0 data	T1 data
Offset 1 only	- -	Approx.670	Approx.200000
Ordinary state (Connecting to the temperature sensor)	No display	Temperature A/D count	Temperature data T1 after average filter

1.	Introduction	
1-1	About this Manual	2
1-2	Models and types	2
1-3	Block Diagram	3
	GP-12K/20K/22K/30 K/40K/60K/100K/102K	3
	GP-30 KS/100KS	4
2.	Exploded views and part lists	6
2-1	Display	
2-2	Sensor	
2-3	Pan/ Lower case	13
3.	Circuit Diagram	
	7PZ-3633A/3633 - 3640 (1/2)	
	7PZ-3633A/3633 - 3640 (2/2)	
	7PZ-3658 18	
4.	Part Layout	19
	7PZ-3633A/3633 - 3640	19
	7PZ-3658 20	
5.	Part List for PCBs	21
	7PZ3633-3640	
	7PZ3658	

1. Introduction

1-1 About this Manual

This manual contains technical information on ten (10) models from the A&D GP series of balances: GP-12K/ 20K/ 22K/ 30K/ 40K/ 60K /100K/102K (Standard type)
GP-30KS/ 100KS (Wall-mount type)

Before starting any work on this product, read through the entire owner's instruction manual.

1-2 Models and types

* See {2. Exploded view} for a board location

**See {3. circuit diagram} and {4. Part layout} for more information.

						М	odels: (G	P-)			·
*Loc.	Name	12K	20K	22K	30K	40K	60K	100K	102K	30KS	100KS
(109)	Main board		· <u>-</u> ·	7PZ-3633	A			7PZ-3633I		7PZ-3633A	7PZ-3633B
(107)	Display board						7PZ-3634				
(217)	Position sensor board						7PZ-3635	-			
	Motor board						7PZ-3636				
(313)	Lower case relay board						7PZ-3637				
(108)	Switch board		7PZ-3638								
(119)	RS-232C board						7PZ-3639)		, <u>, , , , , , , , , , , , , , , , , , </u>	
(204)	Relay board				·		7PZ-3640)			
Roberval (Force motor cell)							Same				
	M version						Same				
Display	relay board					V/A		•		7PZ-	3658

1-3 Block Diagram

GP-12K/20K/22K/30 K/40K/60K/100K/102K

GP-30 KS/100KS

Cables

GP-12K/20K/22K/30K/40K/60K/100K/102K

Part number	Description	QTY
KO:1981C	Cable for Display board	1
KO:1984B	Cable for RS-232C board	1
KO:1982C	Cable for Lower case relay board	1
KO:2027A	Cable for Mech relay board	1
KO:964-04W007-S	Cable for Positioning sensor board	1
KO:1985-07	Cable for Temperature sensor board	1
KO:964-05W012	Cable for Motor board cable	. 1
KO:1986B-06	Bias earth	2
KO:618-04-030	PC joiner	1

GP-30KS/100KS

Part number	Description	QTY
KO:1981C	Cable for Display board	1
KO:1984B	Cable for Interface board	1
KO:2027A	Cable for Mech relay board	1
KO:964-04W007-S	Cable for Positioning sensor	1
KO:1985-07	Cable for Temperature sensor	1
KO:964-05W012	Cable for Motor board	1
KO:618-04-030	PC joiner	1
KO:964-13W023-S	Cable for Relay board of separate type	1
KO:1935F-300	Cable for Relay of separate type	1

2. Exploded views and part lists

2-1 Display

No.	Part number	Description	QTY
100	07-3004753	Protection cover	1
101	08-3004447A-1	Model label for GP-12K	1
101	08-3004447A-2	Model label for GP-20K	1
101	08-3004447A-3	Model label for GP-22K	1
101	08-3004447A-4	Model label for GP-30K	1
101	08-3004447A-5	Model label for GP-40K	1
101	08-3004447A-6	Model label for GP-60K	1
101	08-3004447A-7	Model label for GP-100K	1
101	08-3004447A-8	Model label for GP-102K	1
101	08-3004447A-9	Model label for GP-30KS	1
101	08-3004447A-10	Model label for GP-100KS	1
102	08-2000570	Key sheet	1
103	07-4009515	Display filter	1
104	03-1000143	Display upper case	1
105	06-4009516	Rubber key cap	2
106	06-4010936	Packing	1
107	7PZ-3634	Display board	1
108	7PZ-3638	Switch board	1
109	7PZ-3633A	Main board	1
110	04-4010710	Stopper plate	1
111	15-4010603	Latch spring (top)	2
112	04-4010711A	Stopper spring holder	1
113	05-4009675	Roller	1
113A	06-C43406B	Pipe holder	1
114	07-C43603A	Spacer	1
115	10-NK-4N	Nylon cramp	1
116	06-4009518	Rubber cover	1
117	03-1000144A	Display lower case	1
440	08-4010604A	Step sheet (Japanese)	1
118	08-4010605A	Step sheet (English)	1
119	7PZ-3639	RS-232C board	1
120	06-3004216	Rubber blank cover	1
121	04-4009600	Blank plate	1
	04-4009597	O-ring holder	1
122	05-4009598	Separate panel for GP-30KS/100KS	1
	10-P22-NBR	O ring	1
123	06-4009685	Separate panel packing for GP-30KS/100KS	1
124	10-NO-7521	Urethane roll stock (808-10)	
125	07-3004214	Step card plate	2
126	04-3004279	Step card guide	1
127	04-3004454B	Wall mount fitting (U) for GP-30KS/100KS	1
128	10-SK-38-W	Knob bolt (white) for GP-30KS/100KS	1
129	04-2000571C		1 1
130	10-NO-647-POM	Wall mount fixture (L) for GP-30KS/100KS	1
.00	110 110 041-1 010	Wire clip for GP-30KS/100KS	1

GP Maintenance manual

Appendix-GP Technical Information

132	7PZ-3658	Display relay board for GP-30KS/100KS	1
133	10-NK-4N	Nylon cramp for GP-30KS/100KS	1
134	10-P6	O ring	1

No.		Description	on	QTY
A01	Pan head screw	4x6	with spring and plain washer	2
A02	Pan head screw	4x6	with spring and plain washer	3
A03	Pan head screw	4x6	with spring and plain washer	2
A04	Pan head screw	4x6	with spring washer	2
A05	Pan head screw	4x8	with spring and plain washer	1
A06	Pan head screw	4x25	with star washer	1
A07	Allen head screw	4x10	with plain washer、(M5)	2
A08	Allen head screw	5x10		2
A09	Pan head screw	3x6		1
A10	Pan head screw	4x8	with plastic washer	6
A11	Pan head screw	4x6	with spring and plain washer	2
A12	Pan head screw	4x8	with spring and plain washer	2
	Pan head screw	4x6	with spring and plain washer	2
A13	Pan head screw	4x12	With spring and plain washer for GP-30KS/100KS	2
A14	Flat head screw	4x10		1
A15	Pan head screw	4x6	with spring and plain washer	2
A16	Pan head screw	4x8	with spring and plain washer	2
A17	Plastic washer	φ18	07-4010800	2
A18	Pan head screw	4x6	with spring and plain washer	2
A19	Pan head screw	4x8	with spring and plain washer	1
A20	Hex-head bolt	8x20		1
A21	M8 nut			1
A22	Pan head screw	4x8	with spring and plain washer	1
A23	Binding head screw	4x5	with star washer	1

2-2 Sensor

о.	Part number	Description	QTY
200	05-4010410	Yoke	1
201	00-4007995	Magnet	1
202	05-4007994	Pole piece GX	1
203	03-3004636	Magnet support	1
204	7PZ-3640	Relay board	1
205	08-4008510	Wire	2
206	05-4011114	Tension flexure holder (upper)	1
207	04-4011023B	Tension flexure (1)	1
208	03-4010014A	Tension flexure holder (lower)	1
208A	17-16SX-S4X8	Spring pin ¢4x8	2
210	03-3004472E	Beam (1)	1
211	04-B47108	Tension flexure holder (2) HX	1
212	10-P1.5×6	Corrugated spring pin φ1.5×6	2
213	04-4011022C	Fulcrum flexure (1)	2
214	05-4010829	Flexure holder	4
215	03-4010013A	Attachment	1
216	04-4010409	Shield plate	1
217	7PZ-3635	Position sensor board	1
218	PC-3741	F.P.C(GP)	1
219	09-4008009	Force coil bobbin	1
220	05-4010408	Trimming mass (30K)	1
221	03-2000572B	Roberval (cast) for GP-12K/20K/22K	1
221	05-2000681	Roberval (2024) for GP-30K/40K/60K/100K/102K/30KS/100KS	1
222	03-3004473D	Beam (2)	1
223	04-4008758	Fulcrum flexure (2)	2
225	04-4011025B	Tension flexure (2)	1
227	05-4010650C	Mass beam spacer	1
228	03-2000573A	Frame	1
229	04-4008310-1	Tension flexure (3)	1
230	04-4010648C	Flexure beam	2
231	03-4010398A	Internal mass frame	1
232	03-3004642B	Internal mass floating frame	1
233	05-B49476	Tension flexure holder	1

No.		Descripti	on	QTY
B01	Allen head screw	5x15	with spring and plain washer	4
B02	Pan head screw	4X16	with spring washer, brass, no plating	1
B03	Allen head screw	6X12	with coned disk washer(small), steel	1
B04	Pan head screw	3x6	with spring and plain washer	1
B05	Pan head screw	4x8	with spring and plain washer (φ6.5)	2
B06	Allen head screw	5x15	with coned disk washer	2
B06A	Allen head screw	5x18	with coned disk washer	2
B07	Pan head screw	3x10	with spring and plain washer	2
B08	Pan head screw	3x8	with spring and plain washer, steel, chromated	2
B09	Pan head screw	4x50	with spring washer	1
B10	Allen head screw	6x18	with coned disk washer(small), steel	1
B11	Nut	M4		1
B12	Pan head screw	3x4	Brass, no plating	2
B13	Pan head screw	4x8	with coned disk washer	1
B14	Allen head screw	6x25	with spring and plain washer(small)	4
B15	Pan head screw	4x6	with teflon coated coned disk washer	7
B16	Pan head screw	4x6	with distanced ring and coned disk washer	5
B17	Pan head screw	4x18	with spring and plain washer	4

2-3 Pan/ Lower case

		Appendix-dr rechtical into	mation
No.	Part number	Description	QTY
300	04-3001383A	Weighing pan for GP-100K/102K/100KS	1
300	04-B31752E	Weighing pan for GP-30K/40K/30KS/12K/20K/22K/60K	1
301	06-4010656	Pan support rubber	4
302	04-C43408A	Diaphragm stopper	4
303	06-C43390D	Diaphragm	4
304	04-B31751D	Case top	1
305	03-1000196B	Pan support arm	<u>·</u>
	15-4010830	Coil spring (30K) for GP-12K/20K/22K/30K/40K/30KS	4
306	15-4010646A	Coil spring (100K) for GP-60K/100K/102K/100KS	4
307	05-4010678	Axis stopper ring	4
308	05-4010677	Pan support axis	4
309	04-4010643	Spring holder plate	4
311	17-16SX-S4x10	Parallel pin with internal thread Φ4×10	 8
312	06-C43671	Packing	1
313	7PZ-3637	Lower case relay board	<u>·</u> 1
314	10-NK-4N	Nylon cramp	1
315	06-C43393	Cable cover	i
316	00-4010937	Bubble spirit level	1
317	09-4000910	Knob bolt with plastic washer	1
318	10-NO-4A43-N6	Bush clip1 for GP-30KS/100KS	<u>·</u>
319	04-4010647	Stopper plate (bottom)	<u>·</u>
320	05-4009675	Roller	<u>·</u>
321	04-4010711A	Stopper spring holder	1
322	05-4010676A	Spring guide collar	2
323	15-4010603	Latch spring (top)	2
324	04-C43406B	Pipe holder A	2
325	04-C43407B	Pipe holder B	1
000	04-4009597	O-ring holder	1
326	05-4009598	Separate panel for GP-30KS/100KS	1
327	04-3004328	Display pod arm	1
328	07-4001231	Cable cramper	2
329	KO-1935E-300	Cable for GP-30KS/100KS	1
330	04-3004739	Case bottom plate	1
331	06-4010649	Leveling foot	4
332	06-C43392	Floor base rubber	1
333	04-C43409	Floor base panel	1
334	03-1000181A	Lower case	1
335	10-4007979	Geared motor	1
336	05-4007984B	Cam shaft	1
337	07-4007978A	Cam	1
338	10-80F-0503	Flange bush	1
339	04-4007983	Internal mass limiter	1
340	05-4010660	380g internal mass	1
341	7PZ-3636	Motor board	1
342	04-3003600	Motor holder	1
343	04-4007982	Internal mass hook	1

Internal mass guide
Internal mass frame
Seesaw
Seesaw spring
Internal mass base
_
-
3X10
6X18
_
-
4x10
_

3. Circuit Diagram

7PZ-3633A/3633 - 3640 (1/2)

7PZ-3633A/3633 - 3640 (2/2)

₩

4- PartiLayout

7PZ-3633A/3633 - 3640

Appendix-GP Technical Information

5. Part List for PCBs

7PZ3633-3640

Symbol	Location	Part number	English	QTY
Jumi i		MF-AMZ51	Analog module	1
		ED-CM1985G	VFD	1
		EB-CR2032-VHOLD	Holder	1
В		EB-CR2032	Lithium battery	1
С	21,27,28,29,37,3 8,39,40,30,401,4 02,403	CC-330PT	Ceramic capacitor	12
C	1,6,7,8,9,12,13,1 4,15,17,24,26,31 ,32,33,34,102,10 3,107,109,111,11 4,301,505 - 508,201 - 204,601	CC-FK26Y5V104T	Ceramic capacitor	32
С	10,11,16,104,10 8,113	CK-ECA1CM101-T	Chemical Capacitor 100u/16V	6
С	101,106,110	CC-220PT	Ceramic capacitor	3
С	112	CK-ECA1VM470-T	Chemical Capacitor 47u/35V	1
C	2,3	CC-0.01U500V	Ceramic capacitor	2
С	205,206	CT-1V010T	Tantalum capacitor	2
C	207	CC-0.01UT	Ceramic capacitor	1
С	208	CC-10PT	Ceramic capacitor	1
С	209	CC-68PT	Ceramic capacitor	1
C	22,25	CC-0.1U25V-C	Chip Ceramic capacitor	2
С	23	CC-0.022UT	Ceramic capacitor	1
С	35	CC-4PT	Ceramic capacitor	1
С	4,41	CK-ECA1VM471-T	Chemical Capacitor 470u/35V	
С	501 - 504,509	CK-SRA16VB-10T	Chemical Capacitor 10u/16V	5
С	105,116,117	CM-ECQB1H332JF	Film capacitor	3
D	1,602	DI-1SS270T	Diode	2
D	101,102,103	DI-SB10-03A2-T	Shottky diode	3
D	104 - 107	DI-F14AT	Diode	4
_D	201	DL-SLR-935A	LED	1
D	202	DI-MI-33H-2D	Photo diode	1
D	3	DI-MA700AT	Shottky diode	1
D	4	DI-1SS53T	Switching diode	1
D	601	DF-TLP864	Photo interrupter	1
F		FH-85PN0819	Fuse holder	2
J	1	EJ-0470-01-230	Power jack	
J	10	KO-618-04-030	Cable	1
J	11	JI-15P-S2T2-EF	IL-S Pin header	1
J	11A	JI-B5B-XH-A	IL-S Pin header	· <u>·</u>
J	11B	JI-B10B-XH-A	IL-S Pin header	1
J	12	JA-XM3B2542-502	25P-Dsub Connector	1

Symbol	Location	Part number	English	QTY
J	12	JA-XM4Z-0021	Screw, M4.8 mm	2
J	13	JI-2P-S2T2-EF	IL-S Pin header	1
J	2,2A	JI-13P-S2L2-EF	IL-S Pin header	2
J	3,3A	JI-08P-S2L2-EF	IL-S Pin header	2
J	4	JI-4P-S2L2-EF	IL-S Pin header	1
J	4A	JI-4P-ST2-EF	IL-S Pin header	
J	5	JI-2P-S2L2-EF	IL-S Pin header	1
J	7,7A	JI-05P-S2L2-EF	IL-S Pin header	1 2
J	9	JI-14P-S2T2-EF	IL-S Pin header	
J	9A	JI-14P-S2L2-EF	IL-S Pin header	1
L	1,2	LL-LHL06TB470K	Radial lead inductor	1 1
L	101,102,103	LL-LHL08TB680K	Radial lead inductor	2
NF	1 - 7	NF-EXCEMT101BT	EMI filter	3 -
NF	501~505	NF-D-42C	Common choke coil	7
NF	701~708	NF-D-58C	Common choke coil	1
Q	1,5	QT-A1015YT	Transistor	1
Q	101	QT-A965	Transistor	2
Q	102	QT-C2235	Transistor	1
Q	104,106	QT-A1015Y	Transistor	1
	2	QF-K701	FET	2
Q	201,4,103	QT-C1815YT	· · · · · · · · · · · · · · · · · · ·	1
Q	105	QT-C1815Y	Transistor	3
R	1	RC-NAT100RJT	Transistor Carbon resistor	11
R	10,27 - 31,35,36,37,38,4 5,46,50,57,121 - 124,201,206,209	HC-NATIOUKJI	Carbon resistor	21
R	101,102,103,106 ,113,114,119,120 ,210,133,134		Carbon resistor	11
R	104	RM-RNM29.4KFT	Metal foiled resistor	1
R	105	RM-RNM8.66KFT	Metal foiled resistor	1
<u>R</u> _	107,117	RM-RNM9.1KFT	Metal foiled resistor	2
<u>R</u>	108	RM-RNM15KFT	Metal foiled resistor	1
R	11,12	RL-MP76R00	Metal foiled resistor for 7PZ-3633A	2
R	11,12	RL-MP45R00	Metal foiled resistor for 7PZ-3633B	2
R	115	RC-NAT180RJT	Carbon resistor	 -
R	116	RM-RNM180KFT	Metal foiled resistor	1
R	127,132	RC-NAT6.8KJT	Carbon resistor	2
R	14,15,32,33,51	RC-NAT4.7KJT	Carbon resistor	
R	18,19,22,126	RC-NAT470RJT	Carbon resistor	5
R	2	RC-NAT33KJT	Carbon resistor	4
R	20,203,128	RC-NAT680RJT	Carbon resistor	1
R	204	RM-RNM240KFT	Metal foiled resistor	3
R	205,207	RF-180KSF	Metal foiled resistor	1
R	21	RC-NAT1MJT	Carbon resistor	2
R	23,24,25,47,48	RC-NAT22KJT	Carbon resistor	1
	-,,,,,,,,		Carbon resistor	5

Symbol	Location	Part number	English	QTY
R	3,13,16,17,52 - 56,59,62,64,401, 402,403	RC-NAT10KJT	Carbon resistor	15
R	34	RC-NAT2.2KJT	Carbon resistor	1
R	39	RN-IHR-8-104JA	Resistor networks	1
R	4,5,61,109,111,2 08,112,129,130	RC-NAT47KJT	Carbon resistor	9
R	404,405,406,110, 131,125	RC-NAT5.6KJT	Carbon resistor	6
R	501,202	RC-NAT3.3KJT	Carbon resistor	2
R	502,503	RC-NAT820RJT	Carbon resistor	2
R	601	RC-NAT1.2KJT	Carbon resistor	1
R	63	RC-NAT82KJT	Carbon resistor	1
S_	1	SS-MM-1202N	Slide switch	1
S	401 - 405	SK-EVQ21307K	Tact switch	5
S	406	SK-EVQ-QS307K	Tact switch	1
U	1	UC-78F0058-GX1	CPU	1
U	10,11	UR-7805AHF	Voltage regulator	2
U	101,102,104	UR-IR3M03A	DC/DC converter	3
υ	103	UC-HCU04	NOT	1
U	105	UC-D16310GF	VFD driver	1
U	2	UC-TC140G02AU12	Gate Array	1
IJ	201,202	UA-C4062C	OP Amp.	2
U	3,4,5	UC-93LC66B/P	EEPROM	3
U	501	UC-MAX232CPE	RS-232C Driver	1
U	6	UC-HC04	NOT	1
U.	7	UA-S-8054ALR-Z	Voltage comparator	1
U	8	UC-S-3511AEFS	RTC	1
U	9	UR-24M05HF	Voltage regulator	1
X	1	XT-C4SB12M-K02U	Ceramic clock generator	1
Х	2	XT-DS-VT-200	Crystal generator	1
		FS-218.800	Fuse	1
		07-4009517	VFD holder	2
		07-C43674	Insulation sheet	
		03-4010723	Position sensor holder	1
		07-4010682A-1	Receptor bush	1
		10-NO-1E20-N6	PC support	1
		PC-3633D	Board set	1

7PZ-3658

Symbol	Location	Part number	Description	QTY
		LR-DF-R-25A-M-A	Ferrite core	2
		KO-964-13W020-S	Relay board cable to main board, 20cm	1
		KO-1935E-300	Relay board cable to platform, 3m	1
J	2B, 2C	JI-13P-S2T2-EF	IL-S Pin header	2
NF	1 - 8	NF-EXCEMT101BT	EMI filter	8

[Blank page]

MEMORANDA

	•	
	-	
	·	
·		
	<u>.</u>	
 	-	
 -		
·		
		-0.

A&D Company, Limited

3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-6148

A&D ENGINEERING, INC.

1555, McCandless Drive, Milpitas, CA. 95035 U.S.A. Telephone: [1] (408) 263-5333 Fax: [1] (408)263-0119

A&D INSTRUMENTS LTD.

Unit 24/26 Blacklands Way, Abingdon Business Park, Abingdon, Oxon OX14 1DY United Kingdom Telephone: [44] (1235) 550420 Fax: [44] (1235) 550485

<German Scales Office>

Berner Strabe 64, 60437 Frankfurt/Main 50 GERMANY Telephone: [49] (69) 507-1017 Fax: [49] (69) 507-2054

A&D MERCURY PTY. LTD.

32 Dew Street, Thebarton, South Australia 5031 AUSTRALIA Telephone: [61] (8) 8352-3033 Fax: [61] (8) 8352-7409

A&D KOREA Limited

8th Floor, Manhattan Bldg. 36-2 Yoido-dong, Youngdeungpo-ku, Seoul, KOREA Telephone: [82] (2) 780-4101 Fax: [82] (2) 782-4280