

SEQUENCE LISTING

<110> Merck & Co., Inc.
Filocamo, Gessica
Steinkuhler, Christian

<120> INHIBITORS OF MAMMALIAN HDAC 11 USEFUL
FOR TREATING HDAC 11 MEDIATED DISORDERS

<130> ITR0064Y

<150> US 60/537,940
<151> 2004-01-21

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1755
<212> DNA
<213> Homo sapiens

<400> 1
agctttggga gggccggccc cgggatgcta cacacaaccc agctgtacca gcatgtgcc 60
gagacacccct ggccaaatcggt gtactcgccg cgctacaaca tcacattcat gggcctggag 120
aagctgcata ccttgatgc cggaaaatgg ggcaaaagtga tcaatttctt aaaaagaagag 180
aagcttctgt ctgacagcat gctgggtggag gcgcggggagg cctcggagga ggacctgctg 240
gtgggtgcaca cgaggcgcta tcttaatgag ctcaagtggg cctttgctgt tgctaccatc 300
acagaaaatcc cccccgttat cttccctcccc aacttccttgc tgcagaggaa ggtgtcgagg 360
cccccttcgga cccagacagg aggaaccata atggcgggga agctggctgt ggagcgaggc 420
tggggccatca acgtgggggg tggcttccac cactgctcca gcgaccgtgg cgggggcttc 480
tgtgcctatg cggacatcac gctcgccatc aagttctgt ttgagcgtgt ggagggcata 540
tccagggcata ccacattatca tcttgatgcc catcaggggca atgggcataa gcgagacttc 600
atggacgaca agcgtgtgtt catcatggat gtctacaacc gccacatcatc cccaggggac 660
cgctttgcca agcaggccat caggcggaaag gtggagctgg agtggggcactc agaggatgt 720
gagtacctgg ataaggtgga gaggaaacatc aagaatccc tccaggagca cctggccgac 780
gtgggtggat acaaatacgagg caccgacatc ctcgagggggg accgccttgg ggggctgtcc 840
atcagccccag cgggcatacgta gaagcggggat gagctgggtt tccggatggg ccgtggccgc 900
cgggtgccccatc tccttatggt gacctcaggc gggtaccaga agcgcacatc cccatcatcatt 960
gtcgactcca tactaatct gtttggctg gggctcatttgc ggcctgagtc acccagcgtc 1020
tccgcacaga actcagacac accgctgtttt cccctgcag tggccctgacc cttgctgccc 1080
tgcctgtcac gtggccctgc ctatccgccctt ctttagtgc tttgtttt aacccatgg 1140
ggtgggtggag gcagccctca gtgagcatgg agggcagggg ccatccctgg ctggggcctg 1200
gagctggccc ttccctact ttccctgtt ggaagccaga agggcttgag gcctctatgg 1260
gtggggcag aaggcagagc ctgtgtccca gggggaccca cacgaagtca ccagccccata 1320
ggtccagggaa ggcaggcagt taactgagaa ttggagagga caggctagggt cccagggcaca 1380
gcgagggccc tgggcttggg gtgttctgtt tttgagaacg gcagacccag gtggaggtga 1440
ggaagcttcc acctccatcc tgactaggcc tgcattctaa ctgggcctcc ctccctcccc 1500
ttggcatgg gattgtgtgc cctctttgcc ccagagctga agagctatag gcactgggtgt 1560
ggatggccca ggaggtgtgtt gagcttagtc tccagggtggg cctgggttccc aggccaggcagg 1620
tgggaacctt gggcctggat gtgagggggcg gtcaggaagg ggtacagggtt gggtccctca 1680
tctggagttt cccctcaata aagcaagggtc tggacactgca aaaaaaaaaaaaaaaa 1740

aaaaaaaaaaaa aaaaaa

1755

<210> 2
<211> 347
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu His Thr Thr Gln Leu Tyr Gln His Val Pro Glu Thr Pro Trp
1 5 10 15
Pro Ile Val Tyr Ser Pro Arg Tyr Asn Ile Thr Phe Met Gly Leu Glu
20 25 30
Lys Leu His Pro Phe Asp Ala Gly Lys Trp Gly Lys Val Ile Asn Phe
35 40 45
Leu Lys Glu Glu Lys Leu Leu Ser Asp Ser Met Leu Val Glu Ala Arg
50 55 60
Glu Ala Ser Glu Glu Asp Leu Leu Val Val His Thr Arg Arg Tyr Leu
65 70 75 80
Asn Glu Leu Lys Trp Ser Phe Ala Val Ala Thr Ile Thr Glu Ile Pro
85 90 95
Pro Val Ile Phe Leu Pro Asn Phe Leu Val Gln Arg Lys Val Leu Arg
100 105 110
Pro Leu Arg Thr Gln Thr Gly Gly Thr Ile Met Ala Gly Lys Leu Ala
115 120 125
Val Glu Arg Gly Trp Ala Ile Asn Val Gly Gly Phe His His Cys
130 135 140
Ser Ser Asp Arg Gly Gly Phe Cys Ala Tyr Ala Asp Ile Thr Leu
145 150 155 160
Ala Ile Lys Phe Leu Phe Glu Arg Val Glu Gly Ile Ser Arg Ala Thr
165 170 175
Ile Ile Asp Leu Asp Ala His Gln Gly Asn Gly His Glu Arg Asp Phe
180 185 190
Met Asp Asp Lys Arg Val Tyr Ile Met Asp Val Tyr Asn Arg His Ile
195 200 205
Tyr Pro Gly Asp Arg Phe Ala Lys Gln Ala Ile Arg Arg Lys Val Glu
210 215 220
Leu Glu Trp Gly Thr Glu Asp Asp Glu Tyr Leu Asp Lys Val Glu Arg
225 230 235 240
Asn Ile Lys Lys Ser Leu Gln Glu His Leu Pro Asp Val Val Tyr
245 250 255
Asn Ala Gly Thr Asp Ile Leu Glu Gly Asp Arg Leu Gly Leu Ser
260 265 270
Ile Ser Pro Ala Gly Ile Val Lys Arg Asp Glu Leu Val Phe Arg Met
275 280 285
Val Arg Gly Arg Arg Val Pro Ile Leu Met Val Thr Ser Gly Gly Tyr
290 295 300
Gln Lys Arg Thr Ala Arg Ile Ile Ala Asp Ser Ile Leu Asn Leu Phe
305 310 315 320
Gly Leu Gly Leu Ile Gly Pro Glu Ser Pro Ser Val Ser Ala Gln Asn
325 330 335
Ser Asp Thr Pro Leu Leu Pro Pro Ala Val Pro
340 345

<210> 3

<211> 21
<212> RNA
<213> Artificial Sequence

<400> 3
aaguuucugu uugagcgugu g 21

<210> 4
<211> 23
<212> RNA
<213> Artificial Sequence

<400> 4
aaugggcuaug agcgagacuu aac 23

<210> 5
<211> 21
<212> RNA
<213> Artificial Sequence

<400> 5
aacucagaca caccgcugcu u 21

<210> 6
<211> 21
<212> RNA
<213> Artificial Sequence

<400> 6
aacugagaau uggagaggac a 21

<210> 7
<211> 21
<212> RNA
<213> Artificial Sequence

<400> 7
caaagacaaa cucgcacaca a 21

<210> 8
<211> 23
<212> RNA
<213> Artificial Sequence

<400> 8
acccguacuc gcucugaaau gaa 23

<210> 9
<211> 21
<212> RNA
<213> Artificial Sequence

<400> 9
gagucugugu ggcgacgaaa a 21

<210> 10
<211> 21
<212> RNA
<213> Artificial Sequence

<400> 10
gacucuuuaac cucuccugua a

21

<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence

<400> 11
cctcaggcggttaccagaa

19

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<400> 12
caggccaaac agattaagta tgga

24

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<400> 13
cgcacagccc gcatcattgc t

21

<210> 14
<211> 15
<212> PRT
<213> Amino acid

<400> 14
Met Leu His Thr Thr Gln Leu Tyr Gln His Val Pro Glu Thr Arg
1 5 10 15

<210> 15
<211> 12
<212> PRT
<213> Homo sapien

<400> 15
Ala Ala Gly Gly Cys Cys Gly Cys Gly Cys
1 5 10

<210> 16
<211> 10
<212> PRT

<213> Homo sapien

<400> 16
Gly Cys Gly Gly Ala Gly Cys Gly Gly
1 5 10

<210> 17
<211> 15
<212> PRT
<213> Homo sapien

<400> 17
Gly Gly Gly Cys Ala Gly Ala Gly Cys Gly Ala Gly Ala Cys Cys
1 5 10 15

<210> 18
<211> 15
<212> PRT
<213> Homo sapien

<400> 18
Cys Cys Ala Gly Ala Cys Ala Cys Cys Gly Cys Gly Cys
1 5 10 15

<210> 19
<211> 16
<212> PRT
<213> Homo sapien

<400> 19
Cys Gly Ala Gly Ala Ala Gly Gly Ala Gly Ala Gly Gly Ala Cys Ala
1 5 10 15