Meteorology and Ozone, Temperature

J. Coates¹ and T. Butler¹

¹Institute for Advanced Sustainability Studies, Potsdam, Germany

September 1, 2015

5 Abstract

6

1

2

3

7 1 Introduction

$_{*}$ 2 Methodology

9 2.1 Model Setup

- MECCA box model as described in Coates and Butler (2015) to broadly simulate the
 Benelux (Belgium, Netherlands and Luxembourg) region. Solar zenith angle of 51°N was
 used to determine photolysis rates through a parameterisation and the SZA chosen is
 broadly representative of the central Benelux region.
- MECCA box model has been updated to include vertical mixing with the free troposphere
 and accordingly includes a diurnal cycle for the PBL height. These amendments are
 discussed further in Sect. 2.3.
- Simulations start at 06:00 using spring ecquinoctical conditions and the simulations ended after two days.
- All simulations performed using the Master Chemical Mechanism, MCM v3.2, (Rickard et al., 2015) and also repeated using MOZART-4 (Emmons et al., 2010). Coates and Butler (2015) describes the implementation of both MCM v3.2 and MOZART-4 for use with KPP within MECCA.

- NOx and other parameters were varied systematically to analyse the effects on ozone mixing ratios over different NOx gradients and hence different atmospheric conditions.
- VOC emissions constant until noon of first day, to simulate a plume of emitted VOC.

26 2.2 VOC Emissions

- Anthropogenic emissions from Benelux were obtained from the TNO-MACC_III emission inventory. TNO-MACC_III is the current version of the TNO-MACC_II inventory and was created using the same methodology as (Kuenen et al., 2014) and based upon improvements to the existing emission inventory during the AQMEII 2 exercises described in Pouliot et al. (2015).
- Temperature independent emissions of the biogenic VOC isoprene and monoterpenes, were calculated as a fraction of the total anthropogenic VOC emissions from each country in the Benelux region, this data was obtained from the supplementary data available from the EMEP (European Monitoring and Evaluation Programme) model (Simpson et al., 2012).
- AVOC and BVOC emissions are included as total emissions from SNAP (Selected Nomenclature for Air Pollution) source categories and these emissions were assigned to chemical groupings based on the country specific profiles for Belgium, the Netherlands and Luxembourg provided by TNO.
- The MCM v3.2 initial species were determined using the country specific profiles for each SNAP source category and where appropriate information of individual chemical species that can be represented by MCM v3.2 were determined using the speciations of Passant (2002).
- After calculating the MCM v3.2 initial VOC and respective emissions were assigned to
 the respective MOZART-4 species and the emissions in MOZART-4 were weighted by the
 carbon numbers of the MCM v3.2 species and the emitted MOZART-4 species.

Table 1: Anthropogenic NMVOC emissions in 2011 in tonnes from each SNAP category assigned from TNO-MACC_III emission inventory and biogenic VOC emission in tonnes from Benelux region assigned from EMEP. The allocation of these emissions to each MCM v3.2 and MOZART-4 species is found in the supplement.

	SNAP1	SNAP2	SNAP34	SNAP5	SNAP6	SNAP71
Belgium	4494	9034	22152	5549	42809	6592
Netherlands	9140	12173	29177	8723	53535	16589
Luxembourg	121	44	0	1372	4482	1740
Total	13755	21251	51329	15644	100826	24921
	SNAP72	SNAP73	SNAP74	SNAP8	SNAP9	BVOC
Belgium	2446	144	210	6449	821	6533
Netherlands	3230	1283	1793	10067	521	1356
Luxembourg	1051	6	324	643	0	2057
Total	6727	1433	2327	17159	1342	9946

Table 2: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, translated into MCM species.

Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
Ethane	C2H6	4.15E+08	1.11E+09	$2.98\mathrm{E}{+09}$			$1.74\mathrm{E}{+08}$	4.62E + 07	8.17E+06		8.30E + 07	8.22E+07		4.91E + 09
Propane	C3H8	$1.14\mathrm{E}{+09}$	4.72E + 08	$1.03E{+}08$	$3.12\mathrm{E}{+}10$	$3.18\mathrm{E}{+08}$	$8.49\mathrm{E}{+06}$	$3.15\mathrm{E}{+07}$	$8.17\mathrm{E}{+07}$	$2.71\mathrm{E}{+06}$	$7.53E{+}07$	$3.56\mathrm{E}{+07}$		3.35E + 10
	NC4H10	7.77E+08	2.42E + 08	$1.27\mathrm{E}{+06}$	$1.23\mathrm{E}{+111}$	1.18E+09	1.89E + 08	3.26E+07		4.48E+07	1.40E + 08	2.20E + 07		1.25E+11
Butanes	IC4H10	9.48E+07	8.49E + 07	3.11E+05	$2.98\mathrm{E}{+}10$	5.36E + 07	$8.81E{+07}$	$1.52\mathrm{E}{+07}$		$2.09E{\pm}07$	7.02E+07	2.20E+07		3.03E + 10
	NC5H12	6.21E+08	2.25E+08		8.78E+10		1.13E + 08	1.31E+07		2.25E+07	4.51E+07	1.11E+07		8.89E+10
Pentanes	IC5H12	$^{2.62\mathrm{E}+08}$	$1.21E{+08}$		$5.25\mathrm{E}{+}10$		$2.19E{+}08$	$2.54\mathrm{E}{+07}$		$4.37E{\pm}07$	$8.60\mathrm{E}{+07}$	1.11E+07		5.33E + 10
	NEOP											$1.11E{+07}$		1.11E+07
	NC6H14	3.89E + 08	2.39E+07	3.15E + 08	1.26E + 10	1.05E+09	$3.98E{+08}$	1.94E+08		8.35E + 06	1.04E + 08	3.84E+06		1.51E+10
	M2PE			$4.06\mathrm{E}{+07}$	$1.94\mathrm{E}{+09}$	$2.20\mathrm{E}{+08}$					$1.73E\!+\!08$	$^{1.65\mathrm{E}+06}$		2.37E + 09
	M3PE			$3.04\mathrm{E}{+07}$	$9.69\mathrm{E}{+08}$	$2.20\mathrm{E}{+08}$					$1.04E{\pm}08$			1.32E + 09
səu	NC7H16	$1.67\mathrm{E}{+08}$	4.11E+07	$1.48E{+08}$	$1.35\mathrm{E}{+}10$	$3.79E \pm 08$	$6.55E{+07}$	$3.20\mathrm{E}{+07}$		$1.38E{+}06$	$2.98E{\pm}07$	$1.94\mathrm{E}{+07}$		$1.44\mathrm{E}{+}10$
7]Ks	M2HEX					$1.42\mathrm{E}{+08}$	$5.10E{+}07$	$2.49\mathrm{E}{+07}$		$1.07\mathrm{E}{+06}$	$4.48E{\pm}07$			$2.64\mathrm{E}{+08}$
A 19	M3HEX					$1.42\mathrm{E}{+08}$	3.64E+07	$1.78E{+07}$		7.64E + 05	$2.98E{+07}$			$2.27\mathrm{E}{+08}$
dgil	M22C4										3.47E+07			3.47E+07
нР	M23C4										3.47E+07			3.47E+07
ure a	NC8H18			$6.13E{+}07$	$1.01\mathrm{E}{+}10$	$4.16E{+07}$	$5.75E{+}07$	$2.81E{+07}$		$1.21\mathrm{E}{+06}$	$1.70E{+08}$	$6.63E{+}06$		$1.04\mathrm{E}{+}10$
csuc	NC9H20			3.41E + 07		$1.00\mathrm{E}{+09}$						$2.21\mathrm{E}{+06}$		$1.04\mathrm{E}{+09}$
нез	NC10H22			$4.30\mathrm{E}{+07}$		$1.94\mathrm{E}{+09}$	$2.56\mathrm{E}{+07}$	$1.25\mathrm{E}{+07}$		$5.38E{+}05$		3.32E+06		$2.02\mathrm{E}{+09}$
	NC11H24			$1.68E{\pm}07$		7.90E+08	$9.33E{+}06$	$4.56\mathrm{E}{+06}$		$1.96E{+}05$	$1.91E{+}07$	$1.21\mathrm{E}{+06}$		$8.41\mathrm{E}{+08}$
	NC12H26					$5.58\mathrm{E}{+07}$	$1.52E{+}08$	7.44E+07		$3.20E \pm 06$	1.76E+07			$3.03E{+}08$
	CHEX		3.81E + 07	1.04E + 07		2.26E + 08						1.12E + 06		2.75E + 08
Ethene	C2H4	8.93E + 07	2.49E + 09	3.11E + 10			$9.61E{+}08$	5.94E + 08	4.38E+07		1.18E+09	1.43E + 08		3.66E + 10
Propene	C3H6	5.95E + 07	$5.21E{+08}$	5.33E + 08			$3.38E{+08}$	9.90E + 07	1.95E + 07		$2.06\mathrm{E}{+08}$	4.10E + 07		1.82E + 09
	HEXIENE	5.05E + 06	1.28E + 07									1.63E + 07		3.42E+07
	BUTIENE		1.80E + 07	$6.24\mathrm{E}{+07}$							1.96E+07			9.99E + 07
	MEPROPENE										$9.80E \pm 06$			9.80E + 06
sət	TBUTZENE										$^{9.80E\pm06}$			$9.80E \pm 06$
јкет	CBUTZENE										$9.80E \pm 06$			$9.80E \pm 06$
Αı	CPENT2ENE		$5.65\mathrm{E}{+}06$								$3.92E \pm 06$			$9.57\mathrm{E}{+06}$
эцЗі	TPENT2ENE		$5.65\mathrm{E}{+06}$								$3.92E \pm 06$			9.57E + 06
ŀΗ	PENTIENE		$5.14\mathrm{E}{+06}$	$5.93E{+}06$							$_{1.57\mathrm{E}+07}$			$2.68\mathrm{E}{+07}$
	ME2BUT2ENE		3.08E+06								7.84E + 06			1.09E+07
	ME3BUT1ENE		$^{3.08\mathrm{E}+06}$								$7.84\mathrm{E}{+}06$			$1.09E{+07}$
	ME2BUT1ENE		$2.05\mathrm{E}{+06}$											2.05E+06
Ethyne	C2H2	6.97E+05	7.84E+08	3.45E + 08			8.95E + 08	$2.80E{+08}$	1.73E + 07	1.09E+07	$3.95E \pm 08$	5.38E + 07		2.78E+09
Benzene	BENZENE	$6.91E{+07}$	4.64E+08	5.74E + 08	3.05E + 09		$2.16\mathrm{E}{+08}$	3.56E + 07		1.53E + 06	7.98E+07	2.75E + 07		4.52E + 09
Toluene	TOLUENE	8.49E + 07	$1.54E{+}08$	4.87E + 07	$2.59\mathrm{E}{+09}$	$2.16\mathrm{E}{+09}$	$4.88E{+08}$	$2.26E{\pm}07$		$1.30\mathrm{E}{+06}$	6.79E + 07	$1.81E{+07}$		5.63E + 09

Table 2: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, translated into MCM species.

						,			,		•			
Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
	MXYL	$^{4.20\mathrm{E}+07}$	$1.32E{+}07$	$1.60\mathrm{E}{+06}$	$3.74\mathrm{E}{+08}$	$1.25E{+09}$	$1.04\mathrm{E}{+08}$	$9.52\mathrm{E}{+06}$		2.05E + 05	$1.86E{+}07$	$3.66E \pm 06$		$1.81E{+09}$
Xylenes	OXYL	$9.33E{+}06$	$1.32E{+07}$	6.42E + 05	3.74E + 08	$3.12\mathrm{E}{+08}$	$1.04\mathrm{E}{+08}$	$9.52\mathrm{E}{+06}$		2.05E + 05	$1.51E{\pm}07$	$2.19\mathrm{E}{+06}$		$8.40\mathrm{E}{+08}$
	PXYL		$1.32E{+07}$	$6.42\mathrm{E}{+}05$	3.74E + 08	$3.12E{+08}$	$7.79E{+}07$	7.14E+06		1.53E+05	$1.86E{+07}$	$2.93\mathrm{E}{+06}$		$8.07\mathrm{E}{+08}$
	TM123B	$_{6.21\mathrm{E}+03}$	$1.06\mathrm{E}{+06}$			$2.09E{\pm}07$	$1.79E{+07}$				$3.33E{+}06$	$^{3.30\rm E+05}$		$4.35\mathrm{E}{+07}$
Trimethylbenzenes	TM124B	$_{6.21\mathrm{E}+03}$	$1.06E{+}06$	1.46E + 07		7.11E+07	7.50E+07				7.76E + 06	$4.40\mathrm{E}{+05}$		$1.70E{+08}$
	TM135B	$6.21E{\pm}03$	$1.06E{+}06$			$2.09E{\pm}07$	$2.86E{+07}$				$3.33E{+}06$	$4.40\mathrm{E}{+05}$		$5.43\mathrm{E}{+07}$
	EBENZ	1.36E + 07		1.65E + 07		5.68E + 07	7.76E + 07	5.32E+07	1.53E+04		1.74E + 08	3.93E+06		3.96E + 08
	PBENZ					$1.26E{\pm}07$	$6.86E{\pm}07$	4.70E+07	1.35E+04		$2.79\mathrm{E}{+07}$	$1.73E{+}06$		$1.58\mathrm{E}{+08}$
	IPBENZ					4.60E + 07					$2.79\mathrm{E}{+07}$	1.73E+06		$7.57\mathrm{E}{+07}$
sics	PETHTOL					$4.18E{+06}$					5.59E + 07			$6.00E{\pm}07$
tsm 1	METHTOL					$1.26E{\pm}07$					5.59E + 07			$6.84\mathrm{E}{+07}$
отА	OETHTOL										$4.19E{+}07$			$4.19E{+07}$
190	DIET35TOL						$1.45\mathrm{E}{+08}$	9.94E + 07	$2.86\mathrm{E}{+04}$					$2.45\mathrm{E}{+08}$
I³Ο	DIME35EB					$7.12E{+07}$	1.79E+07	1.23E + 07	3.53E + 03					$1.01E{+}08$
	STYRENE			$1.68E{\pm}07$		$1.45E{+07}$	$1.65E{+07}$	1.13E+07	3.25E + 03					$5.91\mathrm{E}{+07}$
	BENZAL						2.77E+07	$^{1.90\mathrm{E}+07}$	$5.46\mathrm{E}{+03}$					$4.68E{\pm}07$
	PHENOL			$1.86E{+07}$										$1.86E{+07}$
Formaldehyde	нсно	$2.74\mathrm{E}{+07}$	$5.76E{\pm}08$				$2.12\mathrm{E}{+08}$	2.78E + 08	$1.09E{\pm}07$		$1.23E{+09}$	$^{2.22\mathrm{E}+07}$		2.35E + 09
	СНЗСНО	$2.82\mathrm{E}{+06}$	$7.80E{+}07$	7.07E+07			$5.74\mathrm{E}{+07}$	$1.15E{+08}$	$2.09\mathrm{E}{+06}$		$2.22\mathrm{E}{+08}$	$5.17\mathrm{E}{+}06$		$5.53\mathrm{E}{+08}$
	С2Н5СНО	$1.61\mathrm{E}{+06}$	$5.91\mathrm{E}{+07}$				$9.67\mathrm{E}{+}06$	$1.94\mathrm{E}{+07}$	3.52E+05		$8.41E{\pm}07$	$^{3.92\mathrm{E}+06}$		$1.78\mathrm{E}{+08}$
səp	C3H7CHO	$1.29\mathrm{E}{+04}$	$4.76\mathrm{E}{+07}$								$6.78E{+07}$	$3.16E \pm 06$		$1.19E{+08}$
δψЭ	IPRCHO	$1.29\mathrm{E}{+04}$	$4.76\mathrm{E}{+07}$								$4.52\mathrm{E}{+07}$	$3.16\mathrm{E}{+06}$		9.60E+07
ΡΙΨ	C4H9CHO	$1.08E{\pm}04$	3.99E+07									$2.64\mathrm{E}{+}06$		$4.25\mathrm{E}{+07}$
төг	ACR	$1.67\mathrm{E}{+04}$	$6.13E{+}07$				$1.50\mathrm{E}{+07}$	3.02E + 07	$5.48\mathrm{E}{+05}$			$4.06E{\pm}06$		$1.11E{+08}$
ΙŦΟ	MACR	$1.33E{+04}$	$4.90E{+07}$									$3.25E \pm 06$		$5.23E{+}07$
	C4ALDB	$1.33E{+04}$	$4.90E{+07}$				$8.01E{\pm}06$	$1.61E{\pm}07$	$2.92\mathrm{E}{+05}$			$3.25\mathrm{E}{+}06$		$7.67\mathrm{E}{+07}$
	MGLYOX										$4.52\mathrm{E}{+07}$			$4.52\mathrm{E}{+07}$
Alkadienes and	C4H6	$1.32E{+07}$	$2.34\mathrm{E}{+08}$	$3.10\mathrm{E}{+08}$	$2.09\mathrm{E}{+}10$		$4.51\mathrm{E}{+08}$	$1.21\mathrm{E}{+08}$	3.14E+07	1.98E + 07	$2.84\mathrm{E}{+08}$	$1.98E{+07}$		$2.24\mathrm{E}{+}10$
Other Alkynes	C5H8	$1.05\mathrm{E}{+07}$	$1.86E{+}08$		$1.66\mathrm{E}{+}10$							$_{1.58\mathrm{E}+07}$	$3.11E{+09}$	$2.00\mathrm{E}{+}10$
	нсоон	$1.27\mathrm{E}{+06}$	$7.07E{+}08$								$1.67\mathrm{E}{+08}$	$5.23\mathrm{E}{+07}$		$^{9.28\mathrm{E}+08}$
Organic Acide	CH3CO2H	$^{9.72\mathrm{E}+05}$	$5.42\mathrm{E}{+08}$	4.37E + 07							$1.28E{+}08$	$4.01E{\pm}07$		$7.55\mathrm{E}{+08}$
Organic Acids	PROPACID	$7.88E{+05}$	$4.39E{+}08$								$1.04\mathrm{E}{+08}$	$3.25E \pm 07$		$5.77\mathrm{E}{+08}$
	ACO2H			3.64E + 07										3.64E+07

Table 2: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, translated into MCM species.

						,			,					
Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
	СНЗОН	5.18E+04		2.12E + 06		2.00E+09					4.03E+07	1.81E+07		2.07E + 09
	C2H5OH	$3.60E \pm 04$	9.73E+08	5.98E + 07		$2.05\mathrm{E}{+09}$					$2.80E{+07}$	4.77E+07		$3.16\mathrm{E}{+09}$
	NPROPOL	$2.76\mathrm{E}{+04}$				$1.67\mathrm{E}{+08}$					$2.15E{+07}$	$5.78\mathrm{E}{+06}$		$1.94\mathrm{E}{+08}$
	IPROPOL	$2.76\mathrm{E}{+04}$		7.52E + 05		$2.67\mathrm{E}{+08}$					$2.15E{+07}$			$2.89\mathrm{E}{+08}$
	NBUTOL	$2.24\mathrm{E}{+04}$				$1.62\mathrm{E}{+08}$					1.74E + 07			$1.80\mathrm{E}{+08}$
	BUT2OL	$2.24\mathrm{E}{+04}$				$1.08E{+08}$					1.74E+07	7.80E+06		$1.34\mathrm{E}{+08}$
	IBUTOL	$2.24\mathrm{E}{+04}$				6.77E + 07					1.74E+07			$8.51\mathrm{E}{+07}$
	TBUTOL	$2.24\mathrm{E}{+04}$									1.74E + 07			1.74E+07
slo	PECOH	$1.88E{+04}$									$1.46E{\pm}07$			$1.47\mathrm{E}{+07}$
оцоз	IPEAOH	$1.88E{+04}$									1.46E + 07			$1.47\mathrm{E}{+07}$
νī∀	ME3BUOL	$1.88E{+04}$									1.46E + 07			$1.47\mathrm{E}{+07}$
	IPECOH	$1.88E{+04}$									1.46E + 07			$1.47\mathrm{E}{+07}$
	IPEBOH	$1.88E{+04}$									1.46E + 07			$1.47\mathrm{E}{+07}$
	CYHEXOL	$1.66E{+04}$									$1.29E{+07}$			$1.29\mathrm{E}{+07}$
	MIBKAOH	$1.43E {\pm} 04$				3.46E+07					$1.11E{+07}$			$4.57\mathrm{E}{+07}$
	ETHGLY	$2.67\mathrm{E}{+04}$				4.85E+07					$2.08E{\pm}07$			$6.93E{+07}$
	PROPGLY	$2.18\mathrm{E}{+04}$				9.67E+07					$1.69E{\pm}07$			$1.14\mathrm{E}{+08}$
	С6Н5СН2ОН					$2.78\mathrm{E}{+07}$								$^{2.78\mathrm{E}+07}$
	MBO	$1.93E{+04}$									1.50E+07			$_{1.50\mathrm{E}+07}$
	СНЗСОСНЗ	1.29E+05	1.08E + 07	$1.66E{+08}$		2.13E + 09	6.45E + 06	3.59E + 07			1.73E + 08	1.06E + 06		2.53E + 09
	MEK		$^{8.73\mathrm{E}+06}$			$1.03E{+09}$						$8.54\mathrm{E}{+}05$		$1.04\mathrm{E}{+09}$
	MPRK		$7.31E{+}06$									$7.15E{+}05$		$8.03\mathrm{E}{+06}$
S	DIEK		$7.31E{+}06$									$7.15E{+}05$		$8.03\mathrm{E}{+06}$
səuc	MIPK		$7.31E{+}06$									$7.15E{+}05$		$8.03\mathrm{E}{+06}$
Хeto	HEX2ONE		$6.29E{+}06$									$6.15E{+}05$		$6.90E{\pm}06$
Į.	HEX3ONE		$_{6.29\mathrm{E}+06}$									$6.15E{+}05$		$6.90E{+}06$
	MIBK		$_{6.29\mathrm{E}+06}$			$6.18E{+08}$						$6.15E{+}05$		$6.25\mathrm{E}{+08}$
	MTBK		$_{6.29\mathrm{E}+06}$									$6.15E{+}05$		$6.90E{+}06$
	CYHEXONE		$6.42\mathrm{E}{+}06$	$8.91\mathrm{E}{+06}$		5.05E + 07						$6.28E{+05}$		$6.64\mathrm{E}{+07}$
	APINENE											$^{2.28\mathrm{E}+06}$	$3.89\mathrm{E}{+08}$	3.91E + 08
Terpenes	BPINENE											$2.28\mathrm{E}{+06}$	$3.89\mathrm{E}{+08}$	$3.91E{+08}$
	LIMONENE					$6.87E{+07}$						$3.42E \pm 06$	$3.89\mathrm{E}{+08}$	$4.61E{+08}$
	METHACET			6.18E + 07										6.18E + 07
	ETHACET			7.08E + 06		$1.38E{+09}$								$_{1.39\mathrm{E}+09}$
sies	NBUTACET					$9.65\mathrm{E}{+08}$								$9.65\mathrm{E}{+08}$
⊧s <u>⊣</u>	IPROACET					$3.40\mathrm{E}{+08}$								$3.40\mathrm{E}{+08}$
	СНЗОСНО			$6.93E{+}06$										$6.93E{+}06$

Table 2: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, translated into MCM species.

Total	$1.33E{+08}$	3.54E + 08	$1.11E{+08}$	$1.76E{+07}$	9.56E + 07	$1.52\mathrm{E}{+07}$	$1.14\mathrm{E}{+08}$	9.66E+07	$1.76E{\pm}08$	7.75E+08	$1.17E{+07}$	$7.92E{\pm}08$	$1.36E{+08}$	$4.31E{+08}$	1.04E + 09	4.58E+07	4.56E+07	$1.39E{+}08$	$4.51E{+}07$	$5.35\mathrm{E}{+}05$	$4.20\mathrm{E}{+07}$	$2.48\mathrm{E}{+08}$	$2.93E{+}07$	5.09E + 11
BVOC																								4.28E + 09
SNAP.9	$5.94\mathrm{E}{+}06$				1.47E + 07							$1.09\mathrm{E}{+06}$		3.47E + 05	$3.52E \pm 05$	$7.11E{+05}$	4.74E + 05			$5.35\mathrm{E}{+}05$		$6.93E{+}05$		8.82E+08
SNAP.8																								6.61E + 09
SNAP.74																								1.85E+08
SNAP.73																								2.16E + 08
SNAP.72																								2.47E + 09
SNAP.71																								6.00E+09
SNAP.6	$1.27\mathrm{E}{+08}$	7.77E+07					$9.40E{\pm}07$	$7.94\mathrm{E}{+07}$	$1.59\mathrm{E}{+08}$	$7.62\mathrm{E}{+08}$		$6.16E{\pm}08$		$4.31E{+08}$	$^{9.75\mathrm{E}+08}$							$2.36\mathrm{E}{+08}$		2.73E + 10
SNAP.5																								4.07E + 11
SNAP.34		2.43E + 08	9.06E+07		6.57E + 07							$1.75E{+}08$	$1.36\mathrm{E}{+08}$		$6.66E{\pm}07$	4.51E+07	4.51E+07	1.39E + 08	$4.51\mathrm{E}{+07}$		$4.20\mathrm{E}{+07}$	$1.05\mathrm{E}{+07}$	$2.93\mathrm{E}{+07}$	3.85E + 10
SNAP.2		3.36E + 07	$2.09\mathrm{E}{+07}$	$1.76E{+}07$	$1.52\mathrm{E}{+07}$	$^{1.52\mathrm{E}+07}$	$2.04\mathrm{E}{+07}$	$1.72E{+}07$	$1.72E{+}07$	$1.31E{+}07$	$1.17E{+}07$													1.12E + 10
SNAP.1																								4.30E+09
MCM.species	NPROACET	СНЗОСНЗ	DIETETHER	MTBE	DIIPRETHER	ETBE	MO2EOL	EOX2EOL	PR2OHMOX	BUOX2ETOH	BOX2PROL	CH2CL2	CH3CH2CL	CH3CCL3	TRICLETH	CDICLETH	TDICLETH	CH3CL	CCL2CH2	CHCL2CH3	VINCL	TCE	CHCL3	Total
Type						SIƏI	E +P							suc	прс	3001	ŀλq	I þa	əten	irol	СР			To

Table 3: Netherlands AVOC and BVOC emissions, in molecules ${\rm cm}^{-2}~{\rm s}^{-1}$, translated into MCM species.

						(2					
Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
Ethane	С2Н6	5.70E+08	5.15E + 08	6.20E + 09			3.15E + 08	4.38E+07	5.22E+07		1.36E+08	1.28E+08		7.96E+09
Propane	СЗН8	1.60E + 09	6.01E + 08	2.47E + 09	3.38E+10	2.93E + 08	1.53E+07	2.99E+07	5.22E + 08	1.66E + 07	8.83E+07	3.96E+07		3.94E+10
	NC4H10	$1.13E{+09}$	$6.33E{+}08$	$^{9.48\mathrm{E}+08}$	$1.42\mathrm{E}{+}11$	$1.09\mathrm{E}{+09}$	$3.41\mathrm{E}{+08}$	$3.09\mathrm{E}{+07}$		$2.74\mathrm{E}{+08}$	$8.82E{+07}$	$2.02\mathrm{E}{+07}$		1.47E + 11
Duranes	IC4H10	1.37E + 08	$2.22\mathrm{E}{+08}$	$2.32\mathrm{E}{+08}$	$3.46\mathrm{E}{+}10$	$4.93E{+07}$	$^{1.59\mathrm{E}+08}$	$1.44\mathrm{E}{+07}$		$1.28E{+08}$	$4.41E{+}07$	$2.02\mathrm{E}{+07}$		$3.56\mathrm{E}{+}10$
	NC5H12	9.18E + 08	7.80E + 08		1.03E + 11		$2.04\mathrm{E}{+08}$	1.24E+07		$1.38E{+08}$	3.69E + 07	3.79E + 06		1.05E + 11
Pentanes	IC5H12	3.87E + 08	$4.18E{+08}$		$6.13E{+}10$		$^{3.96\mathrm{E}+08}$	$2.41\mathrm{E}{+07}$		$2.67\mathrm{E}{+08}$	7.05E+07	$3.79E \pm 06$		$6.29\mathrm{E}{+}10$
	NEOP											$3.79E \pm 06$		3.79E + 06
	NC6H14	5.43E + 08	3.23E + 07	8.96E+08	1.47E + 10	9.22E + 08	7.19E+08	1.84E+08		5.11E+07	1.63E + 08	$^{1.32\mathrm{E}+06}$		1.82E + 10
	M2PE			$1.16E{+08}$	$2.26\mathrm{E}{+09}$	$1.94\mathrm{E}{+08}$					$2.71\mathrm{E}{+08}$	$5.65\mathrm{E}{+}05$		$2.84\mathrm{E}{+09}$
	M3PE			8.67E+07	1.13E + 09	$1.94E{\pm}08$					$1.63\mathrm{E}{+08}$			1.57E + 09
səu	NC7H16	$2.33E{+}08$	5.56E + 07	$4.23E{+08}$	$1.58\mathrm{E}{+}10$	$3.34\mathrm{E}{+}08$	$1.18E{+08}$	3.03E+07		$8.41\mathrm{E}{+06}$	$4.66E{\pm}07$	$6.64\mathrm{E}{+}06$		$1.71\mathrm{E}{+}10$
ı ıksı	M2HEX					$1.25E{+}08$	$^{9.20\mathrm{E}+07}$	$2.36\mathrm{E}{+07}$		6.54E + 06	$6.99E{\pm}07$			$3.17\mathrm{E}{+08}$
7 19	M3HEX					$^{1.25\mathrm{E}+08}$	$6.57\mathrm{E}{+07}$	$1.68E{+07}$		$4.67\mathrm{E}{+06}$	$4.66\mathrm{E}{+07}$			$2.59\mathrm{E}{+08}$
បុន្ធព	M22C4										$5.42\mathrm{E}{+07}$			5.42E + 07
н Р	M23C4										$5.42\mathrm{E}{+07}$			$5.42E{+07}$
ure a	NC8H18			1.74E + 08	$1.17E{+}10$	$3.66E{\pm}07$	$1.04E{\pm}08$	$2.66\mathrm{E}{+07}$		$7.38E{+06}$	$2.66\mathrm{E}{+08}$	$2.27\mathrm{E}{+}06$		$^{1.23\mathrm{E}+10}$
csne	NC9H20			9.71E+07		$8.80 \pm +08$						7.59E + 05		$9.78E{\pm}08$
те	NC10H22			$1.23E{+08}$		1.70E+09	$4.63E{+}07$	$1.19E{+07}$		$3.29E{+}06$		1.14E + 06		$^{1.89\mathrm{E}+09}$
	NC11H24			4.78E+07		$6.95E{+}08$	$1.69\mathrm{E}{+07}$	$^{4.32\mathrm{E}+06}$		$1.20\mathrm{E}{+06}$	$2.99\mathrm{E}{+07}$	4.15E + 05		$7.96E \pm 08$
	NC12H26					$4.91E{+}07$	$2.75\mathrm{E}{+}08$	$7.05E{+}07$		$1.96\mathrm{E}{+07}$	$2.74\mathrm{E}{+07}$			$4.42\mathrm{E}{+08}$
	CHEX		5.15E + 07	2.96E + 07		1.99E + 08						3.86E + 05		2.80E + 08
Ethene	C2H4	1.23E + 08	1.11E+09	$2.58\mathrm{E}{+09}$			$1.74E{+09}$	$5.63\mathrm{E}{+08}$	2.80E + 08		$1.82E{+09}$	4.70E+07		8.25E + 09
Propene	С3Н6	$^{8.22E+07}$	$3.19E{+08}$	$1.26\mathrm{E}{+08}$			$6.10E{+}08$	$^{9.38\mathrm{E}+07}$	$1.24\mathrm{E}{+08}$		$3.09\mathrm{E}{+08}$	1.35E + 07		$^{1.68\mathrm{E}+09}$
	HEXIENE	1.60E + 07	2.47E + 06									$5.51\mathrm{E}{+}06$		2.40E+07
	BUT1ENE		3.45E + 06	$1.78\mathrm{E}{+08}$							$4.91E{+06}$			$1.86E{+08}$
	MEPROPENE										$2.46\mathrm{E}{+06}$			$2.46\mathrm{E}{+}06$
sət	TBUTZENE										$2.46\mathrm{E}{+}06$			$^{2.46\mathrm{E}+06}$
ікет	CBUTZENE										$2.46\mathrm{E}{+06}$			$2.46\mathrm{E}{+06}$
A 1	CPENT2ENE		1.09E + 06								$9.82E{+}05$			$2.07\mathrm{E}{+06}$
Зys	TPENT2ENE		1.09E + 06								$9.82E{+}05$			$2.07\mathrm{E}{+06}$
н	PENTIENE		9.87E + 05	$2.56\mathrm{E}{+05}$							3.93E+06			5.17E + 06
	ME2BUT2ENE		5.92E + 05								$1.96E{+}06$			$2.56\mathrm{E}{+}06$
	ME3BUT1ENE		$5.92\mathrm{E}{+}05$								$1.96\mathrm{E}{+06}$			$2.56\mathrm{E}{+06}$
	ME2BUT1ENE		3.95E + 05											3.95E + 05
Ethyne	C2H2	2.00E + 06	4.29E + 08	8.16E + 07			1.62E+09	$2.65\mathrm{E}{+08}$	1.10E + 08	6.66E + 07	6.36E + 08	1.77E + 07		3.22E + 09
Benzene	BENZENE	1.18E + 08	5.17E + 08	2.56E + 08	3.58E + 09		3.89E + 08	3.37E + 07		9.35E + 06	$1.06E{+08}$	9.04E + 06		5.02E + 09
Toluene	TOLUENE	$^{1.29\mathrm{E}+08}$	$2.10\mathrm{E}{+08}$	3.57E+07	$3.04\mathrm{E}{+09}$	$1.97E{+09}$	$8.80{\pm}+08$	$2.14E{+}07$		7.93E+06	$6.42E{+}07$	$6.00E{+}06$		6.37E + 09

Table 3: Netherlands AVOC and BVOC emissions, in molecules ${\rm cm}^{-2}~{\rm s}^{-1}$, translated into MCM species.

									,					
Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
	MXYL	$6.30E{+07}$	$7.31E{+}06$	6.93E + 04	$4.40E{+08}$	1.14E + 09	1.88E + 08	9.02E+06		1.25E + 06	$2.62\mathrm{E}{+07}$	$^{1.22\mathrm{E}+06}$		1.88E + 09
Xylenes	OXYL	$_{1.40\mathrm{E}+07}$	$7.31E{+}06$	$2.77\mathrm{E}{+04}$	$4.40\mathrm{E}{+08}$	$2.85E{+08}$	$1.88E{+08}$	$^{9.02\mathrm{E}+06}$		$1.25\mathrm{E}{+06}$	$2.13E{+07}$	$7.34E{+}05$		$9.66E \pm 08$
	PXYL		$7.31E{+}06$	$2.77\mathrm{E}{+04}$	$4.40\mathrm{E}{+08}$	$2.85E{+08}$	$1.41E{+08}$	$6.76E{+}06$		$9.38E{+05}$	$2.62\mathrm{E}{+07}$	$^{9.79\mathrm{E}+05}$		$9.08E \pm 08$
	TM123B	1.06E+04	$2.03\mathrm{E}{+}05$			$1.91E{+07}$	3.23E+07				$0.00E{\pm}00$	$1.11E{+}05$		5.17E+07
Trimethylbenzenes	TM124B	$1.06\mathrm{E}{+04}$	$2.03\mathrm{E}{+05}$	$4.15E{+07}$		$6.51E{\pm}07$	1.35E+08				0.00E+00	$1.49E{+}05$		$2.42\mathrm{E}{+08}$
	TM135B	$1.06\mathrm{E}{+04}$	$2.03\mathrm{E}{+05}$			$1.91E{+07}$	$5.16E{+07}$				$0.00E{+}00$	$1.49\mathrm{E}{+05}$		$7.11E{\pm}07$
	EBENZ	2.15E+07		4.69E + 07		$5.20E{\pm}07$	1.40E + 08	5.04E + 07	9.77E + 04		3.16E + 08	$_{1.32\mathrm{E}+06}$		$6.29E{+08}$
	PBENZ					1.15E+07	$1.24\mathrm{E}{+08}$	$4.45\mathrm{E}{+07}$	$8.63\mathrm{E}{+04}$		$5.08E{\pm}07$	$5.81E{+05}$		$2.31E{+08}$
	IPBENZ					$4.21E{+07}$					$5.08E{\pm}07$	$5.81E{+05}$		$9.35E{+07}$
sois	PETHTOL					$3.83E{+}06$					$1.02E{+08}$			$1.05\mathrm{E}{+08}$
tsm.	METHTOL					1.15E+07					$1.02E{\pm}08$			$1.13E{+}08$
отА	OETHTOL										$7.62E{+07}$			$7.62\mathrm{E}{+07}$
ner	DIET35TOL						$2.62\mathrm{E}{+08}$	$^{9.42\mathrm{E}+07}$	$1.83E{+}05$					$3.56\mathrm{E}{+08}$
I³Ο	DIME35EB					$6.51\mathrm{E}{+07}$	3.23E+07	$1.16E{+}07$	$2.25\mathrm{E}{+04}$					$1.09E{+}08$
	STYRENE			4.78E + 07		$1.32E{+07}$	$2.98E{+07}$	$1.07E{+}07$	$2.08\mathrm{E}{+04}$					$_{1.02\mathrm{E}+08}$
	BENZAL						$5.01\mathrm{E}{+07}$	$1.80E{+07}$	$3.49\mathrm{E}{+04}$					$6.81E{+07}$
	PHENOL			$5.29\mathrm{E}{+07}$										$5.29E{+07}$
Formaldehyde	нсно	$_{1.55\mathrm{E}+08}$	$1.59\mathrm{E}{+09}$				$3.83E \pm 08$	$2.63\mathrm{E}{+}08$	$6.97E{+07}$		$9.11E{+08}$	$7.29\mathrm{E}{+06}$		3.38E+09
	СНЗСНО	$8.96\mathrm{E}{+06}$	4.73E + 07	$3.05\mathrm{E}{+06}$			1.04E+08	$1.09\mathrm{E}{+08}$	$1.34E{+07}$		$2.48\mathrm{E}{+08}$	$1.69E{+}06$		$5.35E{+}08$
	С2Н5СНО	$5.10\mathrm{E}{+06}$	$3.59\mathrm{E}{+07}$				1.75E + 07	$1.84\mathrm{E}{+07}$	$2.25\mathrm{E}{+}06$		$9.39E{+}07$	$1.28E{+06}$		$1.74\mathrm{E}{+08}$
səp	СЗН7СНО	$2.21\mathrm{E}{+04}$	$2.89\mathrm{E}{+07}$								$7.56E{\pm}07$	$1.03E{+}06$		$1.06E{+}08$
бруу	IPRCHO	$2.21\mathrm{E}{+04}$	$2.89\mathrm{E}{+07}$								$5.04\mathrm{E}{+07}$	$1.03E{+}06$		$8.04\mathrm{E}{+07}$
ΡΙΨ	C4H9CHO	$1.85\mathrm{E}{+04}$	$2.42\mathrm{E}{+07}$									$8.64\mathrm{E}{+05}$		$2.51\mathrm{E}{+07}$
уег	ACR	$2.84\mathrm{E}{+04}$	$3.72\mathrm{E}{+07}$				2.71E+07	$2.86\mathrm{E}{+07}$	$3.50\mathrm{E}{+06}$			$1.33E{+}06$		$9.78E \pm 07$
ijΟ	MACR	$2.27\mathrm{E}{+04}$	$2.97\mathrm{E}{+07}$									$1.06\mathrm{E}{+06}$		$3.08E{\pm}07$
	C4ALDB	$2.27\mathrm{E}{+04}$	$2.97\mathrm{E}{+07}$				$1.45\mathrm{E}{+07}$	$1.53E{+}07$	$1.87E{+}06$			$1.06\mathrm{E}{+06}$		$6.24\mathrm{E}{+07}$
	MGLYOX										$5.05E{+07}$			$5.05E{+}07$
Alkadienes and	C4H6	$2.06\mathrm{E}{+07}$	$1.38E{+08}$	4.43E + 09	$2.46\mathrm{E}{+}10$		$8.14\mathrm{E}{+08}$	$1.15E{+}08$	$2.01\mathrm{E}{+08}$	$1.21E{+08}$	$3.98\mathrm{E}{+08}$	$6.54\mathrm{E}{+}06$		$3.08E{+}10$
Other Alkynes	C5H8	1.64E + 07	$1.10E{+08}$		1.95E + 10							$5.19E{+}06$		1.97E + 10
	нсоон	$3.39E \pm 06$	$4.54\mathrm{E}{+08}$								0.00E+00	$1.71E{\pm}07$		$4.74\mathrm{E}{+08}$
Organia A cida	СНЗСО2Н	$2.60\mathrm{E}{+06}$	$3.48\mathrm{E}{+08}$	$1.24\mathrm{E}{+08}$							0.00E+00	$1.31E{+}07$		$4.88E{+08}$
Cigamic Acids	PROPACID	$2.11\mathrm{E}{+06}$	$2.82\mathrm{E}{+08}$								0.00E+00	$1.06E{\pm}07$		$2.95\mathrm{E}{+}08$
	ACO2H			1.04E + 08										1.04E + 08

Table 3: Netherlands AVOC and BVOC emissions, in molecules ${\rm cm}^{-2}~{\rm s}^{-1}$, translated into MCM species.

Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
	СНЗОН	$8.82E{+04}$		$1.08\mathrm{E}{+06}$		$1.84\mathrm{E}{+09}$					1.19E + 05	$^{5.92\mathrm{E}+06}$		$1.85\mathrm{E}{+09}$
	С2Н5ОН	$6.14\mathrm{E}{+04}$	$6.51E{\pm}08$	3.05E + 07		$1.88E{+09}$					8.29E + 04	1.56E+07		$^{2.58\mathrm{E}+09}$
	NPROPOL	$4.70\mathrm{E}{+04}$				$1.53E{+}08$					6.35E + 04	$1.89E{+}06$		$^{1.55\mathrm{E}+08}$
	IPROPOL	4.70E + 04		3.83E + 05		$2.45\mathrm{E}{+08}$					6.35E + 04			$2.46\mathrm{E}{+08}$
	NBUTOL	$3.81E{+04}$				$1.49E{+}08$					5.15E + 04			$1.49\mathrm{E}{+08}$
	BUT2OL	3.81E + 04				9.94E + 07					5.15E + 04	$^{2.56\mathrm{E}+06}$		$1.02\mathrm{E}{+08}$
	IBUTOL	$3.81E{+04}$				$6.21E{+07}$					5.15E + 04			$_{6.22E+07}$
	TBUTOL	$3.81E{+04}$									5.15E + 04			$8.97\mathrm{E}{+04}$
slo	PECOH	$3.21E{+04}$									4.33E+04			$7.54\mathrm{E}{+04}$
оцоз	IPEAOH	3.21E+04									4.33E+04			7.54E + 04
ΝV	ME3BUOL	3.21E+04									4.33E+04			7.54E + 04
	IPECOH	3.21E+04									4.33E+04			7.54E + 04
	IPEBOH	3.21E+04									4.33E+04			7.54E + 04
	CYHEXOL	$2.82\mathrm{E}{+04}$									$3.81E{+04}$			$6.64\mathrm{E}{+04}$
	MIBKAOH	$2.43\mathrm{E}{+04}$				3.17E+07					3.29E + 04			3.18E+07
	ETHGLY	4.56E + 04				4.45E + 07					6.15E + 04			$4.46\mathrm{E}{+07}$
	PROPGLY	$3.72E \pm 04$				8.88E + 07					5.02E + 04			$8.88E{\pm}07$
	С6Н5СН2ОН					2.55E+07								$^{2.55\mathrm{E}+07}$
	MBO	$3.28E{+04}$									4.43E + 04			7.72E + 04
	СНЗСОСНЗ	$^{2.19\mathrm{E}+05}$	$4.54\mathrm{E}{+06}$	4.72E + 08		$1.91E{+09}$	1.16E+07	3.40E+07			$1.11E{+08}$	$3.54\mathrm{E}{+05}$		2.54E + 09
	MEK		$3.65\mathrm{E}{+}06$			$9.22E{+08}$						$2.85\mathrm{E}{+}05$		$^{9.26\mathrm{E}+08}$
	MPRK		$3.06\mathrm{E}{+06}$									$2.39\mathrm{E}{+}05$		3.30E+06
s	DIEK		$3.06\mathrm{E}{+06}$									$2.39\mathrm{E}{+}05$		3.30E+06
səuc	MIPK		$3.06\mathrm{E}{+06}$									$2.39\mathrm{E}{+}05$		3.30E+06
угер	HEX2ONE		$2.63\mathrm{E}{+}06$									$2.05\mathrm{E}{+}05$		$2.84\mathrm{E}{+06}$
I	HEX3ONE		$2.63\mathrm{E}{+06}$									$2.05\mathrm{E}{+}05$		$2.84\mathrm{E}{+06}$
	MIBK		$2.63\mathrm{E}{+06}$			5.53E + 08						$2.05\mathrm{E}{+}05$		$5.56\mathrm{E}{+08}$
	MTBK		$2.63\mathrm{E}{+06}$									$2.05\mathrm{E}{+}05$		$2.84\mathrm{E}{+06}$
	CYHEXONE		$2.69\mathrm{E}{+}06$	$2.54\mathrm{E}{+07}$		$4.51\mathrm{E}{+07}$						$2.09\mathrm{E}{+05}$		7.34E+07
	APINENE											7.70E + 05	1.35E + 08	1.36E + 08
Terpenes	BPINENE											7.70E + 05	$1.35E{+08}$	$1.36E{+08}$
	LIMONENE					6.31E+07						$1.16\mathrm{E}{+06}$	1.35E + 08	$2.00\mathrm{E}{+08}$
	METHACET			2.67E + 06										2.67E + 06
	ETHACET			$3.06\mathrm{E}{+05}$		$1.29E{+09}$								$1.29\mathrm{E}{+09}$
SIÐ	NBUTACET					9.03E + 08								$9.03E{+}08$
ısı	IPROACET					$3.18E \pm 08$								$3.18\mathrm{E}{+08}$
	СНЗОСНО			$2.99\mathrm{E}{+05}$										$2.99\mathrm{E}{+05}$

Table 3: Netherlands AVOC and BVOC emissions, in molecules ${\rm cm}^{-2}~{\rm s}^{-1}$, translated into MCM species.

Total	$1.21E{+08}$	$1.07E{+08}$	$1.99E{+07}$	$1.35E{+}07$	$1.93E{+07}$	$1.16E{+07}$	$1.01E{+}08$	$8.56E{\pm}07$	$1.58E{+08}$	7.05E + 08	$8.99E{+}06$	$1.02\mathrm{E}{+09}$	$3.86E{+08}$	$3.67\mathrm{E}{+08}$	$1.02\mathrm{E}{+09}$	$1.29E{+08}$	$1.29E{+08}$	$3.95\mathrm{E}{+08}$	$1.28E{+08}$	$1.80E{+05}$	$1.20E{+08}$	$2.32E{+08}$	$8.35E{+07}$	5.59E + 11
Snap.11																								4.06E + 08
Snap.9	$2.01\mathrm{E}{+06}$				$_{4.82\mathrm{E}+06}$							$^{3.68\mathrm{E}+05}$		$1.17E{+05}$	$1.19E{+05}$	$2.40\mathrm{E}{+05}$	$1.60\mathrm{E}{+05}$			$_{1.80E+05}$		$2.34\mathrm{E}{+05}$		4.46E + 08
Snap.8																								7.33E+09
Snap.74																								1.13E + 09
Snap.73																								1.38E + 09
Snap.72																								2.34E+09
Snap.71																								1.08E + 10
Snap.6	$1.19E{+}08$	7.08E+07					8.57E + 07	7.24E+07	$1.45\mathrm{E}{+}08$	$6.95E{+}08$		$5.24\mathrm{E}{+}08$		3.67E+08	$8.30E{+}08$							$2.01\mathrm{E}{+08}$		2.46E + 10
Snap.5																								4.72E+11
Snap.34		1.05E+07	$3.91\mathrm{E}{+06}$		$2.84\mathrm{E}{+06}$							4.99E + 08	$3.86\mathrm{E}{+08}$		$1.90E{+08}$	$1.28E{+08}$	$1.28E{+08}$	$3.95E{+08}$	$1.28E{+08}$		$1.20\mathrm{E}{+08}$	3.00E+07	$8.35E{+}07$	2.26E + 10
Snap.2		2.58E + 07	1.60E+07	$1.35E{+}07$	$1.16E{+07}$	$1.16E{+07}$	$1.56\mathrm{E}{+07}$	$1.32E{+}07$	$1.32E{+}07$	$1.01E{+}07$	$8.99E{\pm}06$													9.93E+09
Snap.1																								6.30E+09
MCM.species	NPROACET	СНЗОСНЗ	DIETETHER	MTBE	DIIPRETHER	ETBE	MO2EOL	EOX2EOL	PR2OHMOX	BUOX2ETOH	BOX2PROL	CH2CL2	CH3CH2CL	CH3CCL3	TRICLETH	CDICLETH	TDICLETH	CH3CL	CCL2CH2	CHCL2CH3	VINCL	TCE	CHCL3	Total
Туре						SIS	Е÷Р							suc	n.pc	301	ŀyd	I Þ∈	oten	irol	СР			

Table 4: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, translated into MCM species.

Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
Ethane	C2H6		4.33E + 07				4.78E + 08	$2.06\mathrm{E}{+08}$	3.49E+06		$1.26\mathrm{E}{+08}$			8.58E+08
Propane	C3H8	$1.46\mathrm{E}{+08}$	$1.36\mathrm{E}{+07}$		$3.91\mathrm{E}{+}10$	3.39E + 08	2.33E + 07	$1.41E{+08}$	$3.49\mathrm{E}{+07}$	$4.34\mathrm{E}{+07}$	$8.61\mathrm{E}{+07}$			$4.00\mathrm{E}{+}10$
ţ	NC4H10	2.20E+08	7.87E+06		3.46E + 11	1.26E + 09	5.18E+08	1.46E + 08		7.19E+08	8.71E+07			3.49E+11
Butanes	IC4H10	$2.68\mathrm{E}{+07}$	$2.76\mathrm{E}{+06}$		$8.42\mathrm{E}{+}10$	$5.71E{\pm}07$	$2.42\mathrm{E}{+08}$	6.79E + 07		$3.35\mathrm{E}{+08}$	$4.36E{+07}$			$8.50\mathrm{E}{+}10$
	NC5H12	2.44E + 08	9.96E+06		2.64E+11		3.10E+08	5.85E+07		3.61E+08	3.62E + 07			2.65E+11
Pentanes	IC5H12	$1.03E{+}08$	$5.34\mathrm{E}{+}06$		$1.58\mathrm{E}{+}11$		$6.01E{\pm}08$	$1.14E{+08}$		$7.01E{\pm}08$	$6.91E{\pm}07$			$^{1.60\mathrm{E}+11}$
	NEOP													0.00E+00
	NC6H14	2.21E+07	1.19E+06		3.76E+10	1.12E+09	1.09E+09	8.68E+08		1.34E+08	1.59E + 08			4.10E+10
	M2PE				$5.78\mathrm{E}{+09}$	$2.37\mathrm{E}{+}08$					$2.64\mathrm{E}{+08}$			$6.28E{\pm}09$
	M3PE				$2.89\mathrm{E}{+09}$	2.37E + 08					$1.59\mathrm{E}{+08}$			$^{3.29\mathrm{E}+09}$
səu	NC7H16	$^{9.52\mathrm{E}+06}$	$2.04\mathrm{E}{+06}$		$4.04\mathrm{E}{+}10$	4.07E + 08	$1.80E{+08}$	1.43E + 08		$2.20\mathrm{E}{+07}$	4.55E + 07			4.12E + 10
יואַפּי	M2HEX					1.53E + 08	1.40E + 08	1.11E+08		$1.71E{\pm}07$	$6.82E{+07}$			$4.89E{+}08$
A 1e	M3HEX					1.53E + 08	9.99E + 07	7.94E + 07		$1.22\mathrm{E}{+07}$	4.55E + 07			$3.90E \pm 08$
odgi	M22C4										5.29E + 07			$5.29\mathrm{E}{+07}$
ΗР	M23C4										$5.29\mathrm{E}{+07}$			$5.29\mathrm{E}{+07}$
ure s	NC8H18				$3.00\mathrm{E}{+}10$	4.46E + 07	$1.58E{+08}$	$^{1.25\mathrm{E}+08}$		$1.93E{+}07$	$2.59\mathrm{E}{+08}$			$3.06\mathrm{E}{+}10$
эпь	NC9H20					$1.07\mathrm{E}{+09}$								1.07E+09
сәН	NC10H22					$2.08E{+09}$	7.03E+07	5.59E + 07		$8.63\mathrm{E}{+06}$				$2.21\mathrm{E}{+09}$
	NC11H24					$8.48E{+08}$	$2.56\mathrm{E}{+07}$	$2.04\mathrm{E}{+07}$		$3.14\mathrm{E}{+06}$	$2.91\mathrm{E}{+07}$			$9.26\mathrm{E}{+08}$
	NC12H26					$5.98E{+07}$	$4.18E{+08}$	$3.32\mathrm{E}{+}08$		$5.13E{+}07$	$2.67\mathrm{E}{+07}$			$8.88E{+08}$
	CHEX		$1.89\mathrm{E}{+06}$			$2.42\mathrm{E}{+08}$								$2.44\mathrm{E}{+}08$
Ethene	C2H4		9.57E+07				2.64E+09	$2.65\mathrm{E}{+09}$	$1.87E{+07}$		$1.62\mathrm{E}{+09}$			7.03E+09
Propene	C3H6		$2.82\mathrm{E}{+07}$				9.28E + 08	$_{4.42\mathrm{E}+08}$	$8.31E{\pm}06$		$2.71\mathrm{E}{+08}$			1.68E + 09
	HEXIENE		5.03E + 05											5.03E + 05
	BUTIENE		7.04E+05											7.04E + 05
	MEPROPENE													0.00E+00
SƏI	TBUTZENE													0.00E+00
јкец	CBUTZENE													0.00E+00
A 1	CPENT2ENE		$2.21\mathrm{E}{+}05$											$2.21\mathrm{E}{+}05$
гр	TPENT2ENE		$2.21\mathrm{E}{+}05$											$2.21\mathrm{E}{+05}$
ŀН	PENTIENE		$2.01\mathrm{E}{+}05$											$2.01\mathrm{E}{+05}$
	ME2BUT2ENE		$1.21E{+}05$											$1.21E{+05}$
	ME3BUT1ENE		$1.21\mathrm{E}{+05}$											$1.21\mathrm{E}{+05}$
	ME2BUT1ENE		$8.05\mathrm{E}{+04}$											$8.05\mathrm{E}{+04}$
Ethyne	C2H2		$3.92E \pm 07$				$2.46\mathrm{E}{+09}$	$^{1.25\mathrm{E}+09}$	7.39E+06	$1.75E{+08}$	$5.83E{+08}$			4.51E+09
Benzene	BENZENE	$8.25E{+07}$	$2.50\mathrm{E}{+07}$		$9.58\mathrm{E}{+09}$		$5.92E{+}08$	$1.59E{+}08$		$2.45\mathrm{E}{+07}$	$^{9.72\mathrm{E}+07}$			$1.06E{+}10$
Toluene	TOLUENE	$3.88E{+07}$	$8.76\mathrm{E}{+06}$		$8.12\mathrm{E}{+09}$	$2.53\mathrm{E}{+09}$	1.34E+09	$1.01E{+08}$		$2.08\mathrm{E}{+07}$	$6.18E{+07}$			1.22E + 10

Table 4: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, translated into MCM species.

Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
	MXYL		$6.69\mathrm{E}{+05}$		$1.18E{+09}$	$1.46\mathrm{E}{+09}$	$2.85\mathrm{E}{+08}$	4.25E + 07		$3.28\mathrm{E}{+06}$	$2.54\mathrm{E}{+07}$			3.00E+09
Xylenes	OXYL		$6.69\mathrm{E}{+05}$		$1.18E{+09}$	$3.66E \pm 08$	$2.85\mathrm{E}{+08}$	4.25E + 07		$3.28\mathrm{E}{+06}$	2.07E+07			$^{1.89\mathrm{E}+09}$
	PXYL		$6.69\mathrm{E}{+05}$		$1.18E{+09}$	$3.66E \pm 08$	$2.14\mathrm{E}{+08}$	3.19E + 07		$2.46\mathrm{E}{+06}$	2.54E + 07			$^{1.82\mathrm{E}+09}$
	TM123B	$1.74\mathrm{E}{+03}$	$4.15\mathrm{E}{+04}$			$2.46\mathrm{E}{+07}$	$4.90E{\pm}07$							7.36E + 07
Trimethylbenzenes	TM124B	$1.74\mathrm{E}{+03}$	4.15E + 04			8.35E + 07	$2.06\mathrm{E}{+08}$							$2.89\mathrm{E}{+08}$
	TM135B	$1.74\mathrm{E}{+03}$	4.15E + 04			$2.46\mathrm{E}{+07}$	7.84E + 07							$1.03E{+}08$
	EBENZ					6.67E + 07	2.13E + 08	2.38E + 08	6.53E + 03		3.10E + 08			8.28E+08
	PBENZ					1.47E + 07	$1.88E{+08}$	$2.10\mathrm{E}{+08}$	5.77E + 03		4.98E + 07			4.63E + 08
	IPBENZ					5.40E + 07					4.98E + 07			1.04E + 08
sics	PETHTOL					4.91E+06					9.96E + 07			1.05E + 08
mat	METHTOL					1.47E + 07					9.96E + 07			1.14E + 08
отА	OETHTOL										7.47E+07			7.47E+07
тег	DIET35TOL						$^{3.98\mathrm{E}+08}$	4.44E + 08	$1.22\mathrm{E}{+04}$					$8.42\mathrm{E}{+08}$
I [‡] O	DIME35EB					$8.36E{+07}$	$4.91E{+07}$	5.48E + 07	$1.51\mathrm{E}{+03}$					$1.88E{+08}$
	STYRENE					1.70E + 07	$4.52E{+07}$	5.05E + 07	$1.39E{+}03$					$1.13E{+}08$
	BENZAL						$7.61E{\pm}07$	8.49E + 07	$2.33E{+}03$					$1.61\mathrm{E}{+08}$
	PHENOL													0.00E+00
Formaldehyde	нсно	$^{4.29\mathrm{E}+08}$	$2.93E{+07}$				$^{5.82\mathrm{E}+08}$	1.24E + 09	$4.66\mathrm{E}{+06}$		7.59E+08			3.04E + 09
	СНЗСНО		$4.79\mathrm{E}{+06}$				$1.57\mathrm{E}{+08}$	$5.15\mathrm{E}{+08}$	8.93E + 05		$2.10E{+08}$			$8.88E{+08}$
	C2H5CHO		$3.63\mathrm{E}{+06}$				$2.65\mathrm{E}{+07}$	$8.68E{+07}$	$1.50\mathrm{E}{+}05$		7.97E+07			$1.97\mathrm{E}{+08}$
səp	СЗН7СНО	3.63E+03	$2.92\mathrm{E}{+06}$								$6.42E{\pm}07$			$6.71E{\pm}07$
бүд	IPRCHO	3.63E+03	$2.92\mathrm{E}{+06}$								$4.28\mathrm{E}{+07}$			$4.57\mathrm{E}{+07}$
ΡΙ ∀	С4Н9СНО	3.04E+03	$2.45\mathrm{E}{+06}$											$2.45\mathrm{E}{+}06$
рег	ACR	$^{4.67\mathrm{E}+03}$	$^{3.76\mathrm{E}+06}$				4.12E+07	1.35E + 08	$2.34\mathrm{E}{+}05$					$1.80E{+}08$
ΉO	MACR	$3.73E \pm 03$	$3.01\mathrm{E}{+06}$											$3.01\mathrm{E}{+06}$
	C4ALDB	3.73E+03	$3.01\mathrm{E}{+06}$				$2.20\mathrm{E}{+07}$	7.19E+07	$1.25\mathrm{E}{+05}$					$9.70E \pm 07$
	MGLYOX										$4.28\mathrm{E}{+07}$			$4.28E{+07}$
Alkadienes and	C4H6		$1.26E{+07}$		$6.57E{+}10$		$1.24\mathrm{E}{+09}$	$5.42\mathrm{E}{+08}$	1.34E + 07	$3.18E{+08}$	$3.51\mathrm{E}{+08}$			$_{6.82\mathrm{E}+10}$
Other Alkynes	C5H8		1.00E + 07		5.22E + 10								1.03E + 10	6.25E + 10
	нсоон		4.04E + 07											4.04E + 07
Organic Acids	CH3CO2H		$3.10\mathrm{E}{+07}$											$3.10E \pm 07$
	PROPACID		$2.51\mathrm{E}{+07}$											$2.51\mathrm{E}{+07}$
	ACO2H													0.00E + 00

Table 4: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, translated into MCM species.

	Table 4:	ruxemo	Table 4: Luxellibourg Av OC and			SIOIIS, III	DVOC emissions, in molecules cm	1	s -, trails	, translated into MCM species	O IVI CIVI	species.		
Type	MCM.species	Snap.1	Snap.2	Snap.34 S	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	Snap.11	Total
	СНЗОН					2.40E+09								2.40E + 09
	С2Н5ОН		$6.30\mathrm{E}{+07}$			2.45E + 09								$2.51\mathrm{E}{+09}$
	NPROPOL					2.00E+08								$2.00\mathrm{E}{+08}$
	IPROPOL					3.19E + 08								$3.19\mathrm{E}{+08}$
	NBUTOL					1.94E + 08								$1.94\mathrm{E}{+08}$
	BUT2OL					1.30E + 08								$^{1.30\mathrm{E}+08}$
	IBUTOL					8.09E+07								$8.09E{\pm}07$
	TBUTOL													0.00E+00
slo	PECOH													0.00E+00
оцоэ	IPEAOH													0.00E+00
·Ι∀	ME3BUOL													0.00E+00
	IPECOH													0.00E+00
	ІРЕВОН													0.00E+00
	CYHEXOL													0.00E+00
	MIBKAOH					4.13E + 07								$4.13E{+}07$
	ETHGLY					5.80E + 07								$5.80\mathrm{E}{+07}$
	PROPGLY					1.16E + 08								$1.16E{+08}$
	С6Н5СН2ОН					3.33E + 07								3.33E+07
	MBO										$0.00E{\pm}00$			0.00E+00
	СНЗСОСНЗ	3.61E + 04	$5.56\mathrm{E}{+}05$			2.47E+09	1.77E+07	$^{1.60\mathrm{E}+08}$			$9.81E{+07}$			$^{2.75\mathrm{E}+09}$
	MEK		4.48E + 05			1.19E + 09								$1.20\mathrm{E}{+09}$
	MPRK		$3.75\mathrm{E}{+}05$											3.75E + 05
s	DIEK		3.75E + 05											3.75E + 05
səuo	MIPK		$3.75E \pm 05$											$3.75E \pm 05$
Ket	HEX2ONE		$3.22\mathrm{E}{+05}$											$3.22E{+05}$
	HEX3ONE		$3.22\mathrm{E}{+05}$											3.22E + 05
	MIBK		$^{3.22E+05}$			7.17E+08								7.17E + 08
	MTBK		$3.22\mathrm{E}{+05}$											3.22E + 05
	CYHEXONE		$3.29\mathrm{E}{+}05$			5.85E + 07								$5.89\mathrm{E}{+07}$
	APINENE												1.19E+09	1.19E + 09
Terpenes	BPINENE												$1.19E{+09}$	$1.19E{+09}$
	LIMONENE					7.31E+07							1.19E + 09	1.26E + 09
	METHACET													0.00E+00
	ETHACET					1.68E + 09								$1.68\mathrm{E}{+09}$
pers	NBUTACET					1.18E + 09								$1.18\mathrm{E}{+09}$
ısя	IPROACET					4.14E + 08								4.14E + 08
	СНЗОСНО													0.00E+00

Table 4: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, translated into MCM species.

Total	1.55E+08	1.46E+06	1.23E+06	$1.06\mathrm{E}{+06}$	$1.06\mathrm{E}{+06}$	$1.11E{+08}$	$9.39E \pm 07$	$1.87\mathrm{E}{+08}$	$8.90\mathrm{E}{+08}$	$8.20\mathrm{E}{+05}$	$4.08E{\pm}08$	$0.00E{\pm}00$	$2.86\mathrm{E}{+08}$	$6.46\mathrm{E}{+08}$	0.00E+00	$0.00E{\pm}00$	$0.00E{\pm}00$	$0.00E{\pm}00$	$0.00E{\pm}00$	$0.00E{\pm}00$	$1.57\mathrm{E}{+08}$	$0.00E{\pm}00$	1.23E + 12
Snap.11																							1.39E+10
Snap.9																							0.00E+00
Snap.8																							6.65E + 09
Snap.74																							$2.97\mathrm{E}{+09}$
Snap.73																							9.23E + 07
Snap.72																							1.10E + 10
Snap.71																							1.65E + 10
Snap.6	1.55E+08 9.06E+07	1				$1.10E{+08}$	$9.27\mathrm{E}{+07}$	$1.85E{+}08$	$8.89E{+}08$		$4.08E{+}08$		$2.86\mathrm{E}{+08}$	$6.46E{\pm}08$							$1.57\mathrm{E}{+08}$		$3.02E{+}10$
Snap.5																							1.15E + 12
Snap.34																							0.00E+00
Snap.2	9.35E±06	1.46E + 06	1.23E + 06	$1.06E{+06}$	$1.06E{+}06$	$1.42\mathrm{E}{+06}$	$1.20\mathrm{E}{+06}$	$1.20\mathrm{E}{+06}$	$9.17\mathrm{E}{+05}$	$8.20\mathrm{E}{+05}$													5.43E + 08
Snap.1																							1.32E + 09
MCM.species	CH3OCH3	DIETETHER	MTBE	DIIPRETHER	ETBE	MO2EOL	EOX2EOL	PR2OHMOX	BUOX2ETOH	BOX2PROL	CH2CL2	CH3CH2CL	CH3CCL3	TRICLETH	CDICLETH	TDICLETH	CH3CL	CCL2CH2	CHCL2CH3	VINCL	TCE	CHCL3	.1
Туре					(ers	पुरुख							suc	rr b c	2002	ıλq:	1 pa	12 00	1301	чΩ			Total

Table 5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCM v3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCM Species	Belgium	Netherlands	Luxembourg	Total
Ethane	C2H6	4.91E + 09	8.58E + 08	7.96E + 09	$1.37E{+}10$
Propane	С3Н8	$3.35E{+}10$	$4.00E{+}10$	$3.94E{+}10$	$1.13E{+}11$
D. A	NC4H10	1.00E+11	2.79E+11	1.17E+11	4.96E+11
Butanes	IC4H10	$2.42E{+}10$	$6.80\mathrm{E}{+10}$	$2.85\mathrm{E}{+10}$	$1.21E{+}11$
	NC5H12	8.89E + 10	$2.65E{+}11$	$1.05E{+}11$	4.59E+11
Pentanes	IC5H12	$5.33E{+}10$	$1.60E{+}11$	$6.29 E{+}10$	$2.76E{+}11$
	NEOP	1.11E + 07	$0.00\mathrm{E}{+00}$	$3.79E{+06}$	1.49E + 07
	NC6H14	1.81E+10	4.92E+10	2.18E+10	8.91E+10
	M2PE	$2.85E{+09}$	7.54E + 09	$3.41E{+09}$	$1.38E{+}10$
	M3PE	1.59E + 09	3.94E + 09	$1.89E{+}09$	7.42E + 09
10	NC7H16	$2.02 {\rm E}{+}10$	$5.77E{+}10$	$2.39E{+}10$	$1.02E{+}11$
kanes	M2HEX	3.69E + 08	6.84E + 08	4.44E + 08	1.50E + 09
r All	M3HEX	$3.18\mathrm{E}{+08}$	5.45E + 08	$3.63E{+}08$	1.23E + 09
ighe	M22C4	4.16E + 07	$6.34\mathrm{E}{+07}$	$6.51\mathrm{E}{+07}$	1.70E + 08
Hexane and Higher Alkanes	M23C4	4.16E + 07	$6.34\mathrm{E}{+07}$	$6.51\mathrm{E}{+07}$	1.70E + 08
ne aı	NC8H18	$1.67\mathrm{E}{+10}$	$4.89E{+}10$	$1.97E{+}10$	$8.53E{+}10$
· Fexa.	NC9H20	$1.87\mathrm{E}{+09}$	1.93E + 09	1.76E + 09	5.56E + 09
Η	NC10H22	4.04E + 09	4.42E + 09	3.78E + 09	$1.22E{+}10$
	NC11H24	1.85E + 09	2.04E + 09	$1.75\mathrm{E}{+09}$	$5.64\mathrm{E}{+09}$
	NC12H26	7.28E + 08	2.13E + 09	$1.06\mathrm{E}{+09}$	3.92E + 09
	CHEX	$3.30E{+08}$	2.93E + 08	$3.36E{+}08$	9.59E + 08
Ethene	C2H4	$3.66E{+}10$	7.03E+09	$8.25E{+}09$	$5.19E{+}10$
Propene	С3Н6	1.82E + 09	1.68E + 09	1.68E + 09	5.18E + 09
	HEX1ENE	5.13E+07	7.55E + 05	3.60E + 07	8.81E+07
	BUT1ENE	9.99E + 07	7.04E + 05	$1.86\mathrm{E}{+08}$	$2.87\mathrm{E}{+08}$
	MEPROPENE	9.80E + 06	0.00E + 00	2.46E + 06	1.23E + 07
ω	TBUT2ENE	9.80E + 06	0.00E + 00	2.46E + 06	1.23E + 07
Higher Alkenes	CBUT2ENE	9.80E + 06	0.00E + 00	2.46E + 06	1.23E + 07
r Ali	CPENT2ENE	1.20E + 07	2.77E + 05	$2.58\mathrm{E}{+06}$	$1.49\mathrm{E}{+07}$
lighe	TPENT2ENE	1.20E + 07	2.77E + 05	$2.58\mathrm{E}{+06}$	$1.49\mathrm{E}{+07}$
i Li	PENT1ENE	3.34E + 07	2.52E + 05	$6.47\mathrm{E}{+06}$	4.01E+07
	ME2BUT2ENE	$1.37\mathrm{E}{+07}$	1.51E + 05	3.20E + 06	1.71E + 07
	ME3BUT1ENE	$1.37\mathrm{E}{+07}$	1.51E + 05	3.20E + 06	1.71E + 07
		0.555	1.015 + 05	4.02E + 05	2.16E+06
	ME2BUT1ENE	$2.57\mathrm{E}{+06}$	$1.01\mathrm{E}{+05}$	4.93E + 05	$3.16\mathrm{E}{+06}$

Table 5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCM v3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCM Species	Belgium	Netherlands	Luxembourg	Total
Benzene	BENZENE	3.87E + 09	9.05E + 09	4.30E + 09	$1.72E{+}10$
Toluene	TOLUENE	5.63E + 09	$1.22E{+}10$	6.37E + 09	$2.42E{+}10$
	MXYL	2.07E + 09	3.43E + 09	2.14E + 09	7.64E + 09
Xylenes	OXYL	$9.60E{+08}$	2.16E + 09	$1.10E{+}09$	$4.22E{+09}$
	PXYL	$9.22E{+08}$	2.08E + 09	1.04E + 09	4.04E + 09
	TM123B	$5.59E{+07}$	9.47E + 07	$6.65\mathrm{E}{+07}$	2.17E + 08
Trimethylbenzenes	TM124B	$2.19E{+08}$	$3.72\mathrm{E}{+08}$	$3.12E{+08}$	9.03E + 08
	TM135B	6.99E + 07	1.32E + 08	9.14E + 07	2.93E + 08
	EBENZ	$4.52E{+08}$	9.46E + 08	7.19E + 08	2.12E + 09
	PBENZ	2.03E + 08	5.95E + 08	2.97E + 08	$1.10E{+09}$
	IPBENZ	9.73E + 07	1.34E + 08	$1.20E{+}08$	$3.51\mathrm{E}{+08}$
S	PETHTOL	7.72E + 07	$1.34\mathrm{E}{+08}$	$1.36\mathrm{E}{+08}$	$3.47\mathrm{E}{+08}$
mati	METHTOL	8.79E + 07	1.47E + 08	$1.45\mathrm{E}{+08}$	3.80E + 08
Aro	OETHTOL	$5.39E{+07}$	9.61E + 07	$9.80E{+07}$	2.48E + 08
Other Aromatics	DIET35TOL	3.84E + 08	1.32E + 09	$5.60\mathrm{E}{+08}$	2.26E + 09
0	DIME35EB	1.45E + 08	$2.68\mathrm{E}{+08}$	$1.56\mathrm{E}{+08}$	$5.69\mathrm{E}{+08}$
	STYRENE	7.59E + 07	1.45E + 08	$1.31\mathrm{E}{+08}$	$3.52\mathrm{E}{+08}$
	BENZAL	$6.01\mathrm{E}{+07}$	2.07E + 08	8.76E + 07	$3.55\mathrm{E}{+08}$
	PHENOL	$1.59\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$4.54\mathrm{E}{+07}$	6.13E + 07
Formaldehyde	НСНО	$2.35E{+09}$	3.04E + 09	3.38E + 09	8.77E + 09
	СНЗСНО	$5.53E{+08}$	8.88E + 08	$5.35E{+}08$	1.98E + 09
	С2Н5СНО	$2.67\mathrm{E}{+08}$	2.95E + 08	$2.61\mathrm{E}{+08}$	8.23E + 08
GS GS	СЗН7СНО	$2.37\mathrm{E}{+08}$	$1.34\mathrm{E}{+08}$	$2.11\mathrm{E}{+08}$	5.82E + 08
ehy d	IPRCHO	1.92E + 08	9.14E + 07	$1.61\mathrm{E}{+08}$	4.44E + 08
Other Aldehydes	С4Н9СНО	$1.06\mathrm{E}{+08}$	6.13E + 06	$6.27\mathrm{E}{+07}$	$1.75\mathrm{E}{+08}$
ther	ACR	$8.33 {\rm E}{+}07$	$1.35\mathrm{E}{+08}$	$7.33\mathrm{E}{+07}$	2.92E + 08
0	MACR	$5.23E{+07}$	$3.01\mathrm{E}{+06}$	$3.08\mathrm{E}{+07}$	8.61E + 07
	C4ALDB	$7.67\mathrm{E}{+07}$	9.70E + 07	$6.24\mathrm{E}{+07}$	2.36E + 08
	MGLYOX	$4.52 {\rm E}{+07}$	4.28E + 07	$5.05E{+}07$	1.39E + 08
Alkadienes and	C4H6	$1.79E{+}10$	$5.46E{+}10$	2.47E + 10	$9.72E{+}10$
Other Alkynes	C5H8	$2.00E{+}10$	$6.25E{+}10$	1.97E + 10	1.02E + 11
	НСООН	9.28E+08	4.04E+07	4.74E + 08	1.44E+09
Ommonio A-i-l-	CH3CO2H	$7.55\mathrm{E}{+08}$	3.10E + 07	4.88E + 08	1.27E + 09
Organic Acids	PROPACID	8.65E + 08	3.77E + 07	$4.42E{+08}$	1.34E+09
	ACO2H	$5.46\mathrm{E}{+07}$	0.00E + 00	$1.56\mathrm{E}{+08}$	2.11E + 08

Table 5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCM v3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCM Species	Belgium	Netherlands	Luxembourg	Total
	СНЗОН	2.07E + 09	2.40E + 09	$1.85\mathrm{E}{+09}$	6.32E + 09
	C2H5OH	$3.16E{+09}$	$2.51\mathrm{E}{+09}$	$2.58\mathrm{E}{+09}$	8.25E + 09
	NPROPOL	2.91E + 08	3.00E + 08	2.33E + 08	8.24E + 08
	IPROPOL	$4.34E{+08}$	4.79E + 08	$3.69E{+}08$	1.28E + 09
	NBUTOL	$3.60\mathrm{E}{+08}$	3.89E + 08	$2.98\mathrm{E}{+08}$	1.05E + 09
	BUT2OL	$2.67\mathrm{E}{+08}$	$2.59E{+}08$	$2.04E{+}08$	7.30E + 08
	IBUTOL	1.70E + 08	1.62E + 08	$1.24E{+}08$	4.56E + 08
	TBUTOL	3.48E + 07	$0.00\mathrm{E}{+00}$	$1.79E{+}05$	3.50E + 07
sla	PECOH	$3.66\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$1.88\mathrm{E}{+05}$	3.68E + 07
Alcohols	IPEAOH	$3.66\mathrm{E}{+07}$	0.00E + 00	$1.88\mathrm{E}{+05}$	3.68E + 07
Al	ME3BUOL	$3.66\mathrm{E}{+07}$	0.00E + 00	$1.88\mathrm{E}{+05}$	3.68E + 07
	IPECOH	$3.66\mathrm{E}{+07}$	0.00E + 00	$1.88\mathrm{E}{+05}$	3.68E + 07
	IPEBOH	$3.66\mathrm{E}{+07}$	0.00E + 00	$1.88\mathrm{E}{+05}$	3.68E + 07
	CYHEXOL	$3.87\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$1.99E{+}05$	3.89E + 07
	MIBKAOH	$1.37\mathrm{E}{+08}$	1.24E + 08	$9.53E{+07}$	3.56E + 08
	ETHGLY	6.93E + 07	5.80E + 07	$4.46E{+}07$	1.72E + 08
	PROPGLY	$1.71\mathrm{E}{+08}$	1.73E + 08	$1.33E{+}08$	4.77E + 08
	С6Н5СН2ОН	9.75E + 07	1.17E + 08	8.94E + 07	3.04E + 08
	MBO	3.75E + 07	0.00E + 00	$1.93E{+}05$	3.77E + 07
	СН3СОСН3	2.53E+09	2.75E + 09	2.54E + 09	7.82E+09
	MEK	1.04E + 09	1.20E + 09	$9.26E{+}08$	3.17E + 09
	MPRK	$1.00\mathrm{E}{+07}$	4.69E + 05	$4.12E{+06}$	1.46E + 07
	DIEK	$1.00\mathrm{E}{+07}$	4.69E + 05	$4.12E{+06}$	1.46E + 07
ones	MIPK	$1.00\mathrm{E}{+07}$	4.69E + 05	$4.12E{+06}$	1.46E + 07
Ketc	HEX2ONE	$1.04\mathrm{E}{+07}$	4.84E + 05	$4.25E{+}06$	$1.51\mathrm{E}{+07}$
	HEX3ONE	$1.04\mathrm{E}{+07}$	4.84E + 05	$4.25E{+}06$	$1.51\mathrm{E}{+07}$
	MIBK	9.38E + 08	1.08E + 09	8.34E + 08	2.85E + 09
	MTBK	$1.04\mathrm{E}{+07}$	4.84E + 05	$4.25E{+06}$	$1.51\mathrm{E}{+07}$
		0.055.05	8.83E + 07	$1.10E{+08}$	2.98E + 08
	CYHEXONE	$9.97\mathrm{E}{+07}$	6.65E±01	1.10L 00	2.50L 00
	CYHEXONE APINENE	9.97E+07 3.91E+08	1.19E+09	1.36E+08	1.72E+09
Terpenes					

Table 5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCM v3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCM Species	Belgium	Netherlands	Luxembourg	Total
	METHACET	3.71E + 07	0.00E + 00	$1.60E{+06}$	3.87E + 07
	ETHACET	1.11E + 09	$1.35\mathrm{E}{+09}$	$1.03E{+}09$	3.49E + 09
Esters	NBUTACET	$1.16\mathrm{E}{+09}$	1.41E + 09	1.08E + 09	3.65E + 09
Est	IPROACET	3.40E + 08	4.14E + 08	$3.18E{+08}$	$1.07\mathrm{E}{+09}$
	СНЗОСНО	6.93E + 06	$0.00\mathrm{E}{+00}$	$2.99E{+}05$	7.23E + 06
	NPROACET	1.33E + 08	$1.55\mathrm{E}{+08}$	$1.21E{+08}$	4.09E + 08
	СНЗОСНЗ	1.42E + 08	3.72E + 07	$4.28E{+07}$	2.22E + 08
	DIETETHER	8.92E + 07	$1.17\mathrm{E}{+06}$	$1.60\mathrm{E}{+07}$	1.06E + 08
	MTBE	$1.76\mathrm{E}{+07}$	1.23E + 06	$1.35\mathrm{E}{+07}$	3.23E + 07
	DIIPRETHER	1.15E + 08	$1.27\mathrm{E}{+06}$	$2.32E{+07}$	1.39E + 08
Ethers	ETBE	1.82E + 07	$1.27\mathrm{E}{+06}$	$1.40E{+}07$	3.35E + 07
Eth	MO2EOL	$6.86\mathrm{E}{+07}$	6.67E + 07	6.08E + 07	1.96E + 08
	EOX2EOL	7.73E + 07	$7.51\mathrm{E}{+07}$	$6.85\mathrm{E}{+07}$	2.21E + 08
	PR2OHMOX	$1.41\mathrm{E}{+08}$	1.49E + 08	$1.26E{+}08$	$4.16E{+08}$
	BUOX2ETOH	$9.30E{+08}$	1.07E + 09	$8.46E{+}08$	$2.85\mathrm{E}{+09}$
	BOX2PROL	$1.64\mathrm{E}{+07}$	$1.15\mathrm{E}{+06}$	$1.26E{+}07$	$3.02E{+07}$
	CH2CL2	$1.58\mathrm{E}{+08}$	8.16E + 07	$2.05E{+}08$	4.45E + 08
	CH3CH2CL	$5.42\mathrm{E}{+07}$	0.00E + 00	$1.54\mathrm{E}{+08}$	$2.08\mathrm{E}{+08}$
	CH3CCL3	1.73E + 08	1.14E + 08	1.47E + 08	4.34E + 08
inated Hydrocarbons	TRICLETH	4.17E + 08	$2.58\mathrm{E}{+08}$	$4.08E{+}08$	1.08E + 09
ocar	CDICLETH	$1.83\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$5.15\mathrm{E}{+07}$	6.98E + 07
Iydr	TDICLETH	1.82E + 07	$0.00\mathrm{E}{+00}$	$5.15\mathrm{E}{+07}$	$6.97\mathrm{E}{+07}$
ted I	CH3CL	2.77E + 07	$0.00\mathrm{E}{+00}$	7.90E + 07	1.07E + 08
rina	CCL2CH2	$1.80\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$5.14\mathrm{E}{+07}$	$6.94\mathrm{E}{+07}$
Chlor	CHCL2CH3	2.14E + 05	$0.00\mathrm{E}{+00}$	7.22E + 04	$2.86\mathrm{E}{+05}$
	VINCL	$1.68\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	4.78E + 07	6.46E + 07
	TCE	9.91E + 07	6.27E + 07	$9.26E{+}07$	2.54E + 08
	CHCL3	$5.86\mathrm{E}{+06}$	0.00E + 00	$1.67\mathrm{E}{+07}$	2.26E + 07
Г	Cotal	4.94E + 11	1.18E+12	5.39E+11	2.21E+12

The total MCM v3.2 emissions for each initial species in Tables 2, 3 and 4 were translated to emissions of MOZART-4 species by weighting with the carbon numbers. The final emissions of

the MOZART-4 species representing each MCM v3.2 species are presented in Table 5 for each

⁵⁰ country in the Benelux region.

51 2.3 Vertical Mixing with Diurnal Boundary Layer Height

59

60

61

62

63

64

72

- The base boxmodel (Sect. 2.1) includes a constant boundary layer height of 1 km and no interactions (mixing) with the free troposphere.
- A parameterisation of the diurnal profile of the planetary boundary layer (PBL) height over
 Los Angeles was provided by Boris Bonn based on data from the CARES field campaign
 (CARB, 2008).

• The PBL height was calculated at every time point for the model run and then read into the boxmodel at each time point .

• The concentrations of the chemical species within the PBL are diluted due to the larger mixing volume when the PBL height increases at the beginning of the day, also the increasing PBL height induces mixing of chemical species from the free troposphere with those chemical species within the PBL i.e. vertical mixing. When the PBL height collapses during night giving the stable nocturnal boundary layer, this traps the chemical species into a smaller

• This vertical mixing scheme was implemented into the boxmodel using the same approach of Lourens (2012).

volume thus increasing the concentrations of the chemical species.

• The mixing ratios of O3, CO and CH4 in the free troposphere were respectively set to
50 ppbv, 116 ppbv and 1.8 ppmv. These condions were taken from the MATCH-MPIC
chemical weather forecast model on the 27th March (the start date of the simulations). The
model results (http://cwf.iass-potsdam.de/) at the 700 hPa height were chosen and the
daily average was used as input into the boxmodel.

• Tagged free troposphere species were also included in the boxmodel to determine effect of free troposphere species on surface ozone levels.

check if reference

correctly

include

plot

check reference

74 3 Results

75 4 Conclusions

76 References

- 77 CARB. 2010 CalNex White Paper: Research at the Nexus of Air Quality and Climate Change.
- ⁷⁸ Technical report, California Air Resources Board, 2008.
- J. Coates and T. M. Butler. A comparison of chemical mechanisms using tagged ozone production
- potential (TOPP) analysis. Atmospheric Chemistry and Physics, 15(15):8795–8808, 2015.
- L. K. Emmons, S. Walters, P. G. Hess, J.-F. Lamarque, G. G. Pfister, D. Fillmore, C. Granier,
- A. Guenther, D. Kinnison, T. Laepple, J. Orlando, X. Tie, G. Tyndall, C. Wiedinmyer, S. L.
- Baughcum, and S. Kloster. Description and evaluation of the Model for Ozone and Related
- chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3:43-67, 2010.
- 85 J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon.
- 86 TNO-MACC II emission inventory; a multi-year (2003–2009) consistent high-resolution european
- emission inventory for air quality modelling. Atmospheric Chemistry and Physics, 14(20):
- 88 10963-10976, 2014.
- 89 AsM Lourens. Air quality in the Johannesburg-Pretoria megacity: its regional influence and
- o identification of parameters that could mitigate pollution. PhD thesis, North-West University,
- 91 Potchefstroom Campus, 2012.
- 92 N. Passant. Speciation of UK emissions of non-methane volatile organic compounds. Technical
- 93 report, DEFRA, Oxon, UK., 2002.
- George Pouliot, Hugo A.C. Denier van der Gon, Jeroen Kuenen, Junhua Zhang, Michael D. Moran,
- and Paul A. Makar. Analysis of the emission inventories and model-ready emission datasets of
- ⁹⁶ Europe and North America for phase 2 of the AQMEII project. Atmospheric Environment, 115:
- 97 345-360, 2015.
- 98 Andrew Rickard, Jenny Young, M. J. Pilling, M. E. Jenkin, Stephen Pascoe, and S. M. Saunders.
- The Master Chemical Mechanism Version MCM v3.2. http://mcm.leeds.ac.uk/MCMv3.2/, 2015.
- 100 [Online; accessed 25-March-2015].

- D. Simpson, A. Benedictow, H. Berge, R. Bergström, L. D. Emberson, H. Fagerli, C. R. Flechard,
- 102 G. D. Hayman, M. Gauss, J. E. Jonson, M. E. Jenkin, A. Nyíri, C. Richter, V. S. Semeena,
- S. Tsyro, J.-P. Tuovinen, Á. Valdebenito, and P. Wind. The EMEP MSC-W chemical transport
- model technical description. Atmospheric Chemistry and Physics, 12(16):7825–7865, 2012.