ВЕКТОРИ

Означення. Вектор – це напрямлений відрізок.

Вектори характеризуються не тільки своїм числовим значенням, а й напрямом. Якщо початком вектора ϵ точка A, а кінцем — точка B, то вектор позначають \overrightarrow{AB} або \overrightarrow{a} .

Означення. *Нульовим вектором* називають вектор, початок і кінець якого збігаються. Такий вектор позначають $\vec{0}$, його довжина дорівнює нулю, напрям не визначений.

Означення. Вектор, довжина якого дорівнює одиниці, називається одиничним або нормованим.

Означення. Вектори, які лежать на одній або на пара-лельних прямих, називаються колінеарними.

Означення. Вектори, які є колінеарними, однаково напрямленими, які мають однакову довжину, називаються *рівними*. Позначаємо це так: $\vec{a} = \vec{b}$.

Означення. Вектори, які є колінеарними, протилежно напрямленими, які мають однакову довжину, називаються *протилежними*. Вектор, протилежний до вектора \vec{a} , позначається $(-\vec{a})$.

Означення. Вектори, які лежать в одній або в паралельних площинах, називаються компланарними.

Дії з векторами

Означення. Вектор \vec{c} , початок якого збігається з початком вектора \vec{a} , кінець — з кінцем вектора \vec{b} , за умови, що початок вектора \vec{b} збігається з кінцем вектора \vec{a} , називається *сумою векторів* \vec{a} та \vec{b} , $\vec{c} = \vec{a} + \vec{b}$.

Такий спосіб додавання векторів називають правилом трикутника.

Якщо вектори виходять з однієї точки, то їх додають за правилом паралелограма.

Твердження. Операція додавання векторів має такі властивості:

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
;

2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c});$$

3)
$$\vec{a} + \vec{0} = \vec{a}$$
;

4)
$$\vec{a} + (-\vec{a}) = \vec{0}$$
.

3 цього твердження випливає правило додавання довільної скінченної кількості векторів. Сумою n векторів є вектор, початок якого збігається з початком першого вектора, а кінець — з кінцем останнього вектора, за умови, що початок кожного наступного вектора збігається з кінцем попереднього. Геометрично цей спосіб називають правилом многокутника.

Означення. Вектор \vec{d} , який треба додати до вектора \vec{b} , щоб одержати вектор \vec{a} , називається різницею векторів \vec{a} та \vec{b} , $\vec{d} = \vec{a} - \vec{b}$.

Означення. Добутком вектора \vec{a} на число (скаляр) λ називається вектор $\vec{b} = \lambda \vec{a}$, який є колінеарним до вектора \vec{a} , $|\vec{b}| = |\lambda| \cdot |\vec{a}|$ і напрям вектора \vec{b} збігається з напрямом вектора \vec{a} , якщо $\lambda > 0$, або протилежний векторові \vec{a} , якщо $\lambda < 0$.

Твердження. Множення вектора на скаляр має такі властивості:

- 1) $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$;
- 2) $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- 3) $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$.

База. Координати вектора

Означення. Вектори $\vec{a}_1, \vec{a}_2, \vec{a}_3$ називають *лінійно залежними*, якщо існують такі числа $\lambda_1, \lambda_2, \lambda_3$, з яких хоча б одне не дорівнює нулю, за яких справджується рівність

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \lambda_3 \vec{a}_3 = \vec{0}.$$

Означення. Вектори $\vec{a}_1, \vec{a}_2, \vec{a}_3$ називають *лінійно незалежними*, якщо ця рівність можлива лише у випадку, коли всі числа $\lambda_1, \lambda_2, \lambda_3$ дорівнюють нулю.

Прикладом системи лінійно незалежних векторів ϵ три некомпланарні вектори у просторі. Будьякі чотири вектори простору — лінійно залежні. На площині будь-які два неколінеарні вектори лінійно незалежні, а довільні три вектори — лінійно залежні.

Означення. *Базою* множини векторів у просторі називається така впорядкована система векторів $\vec{e}_1, \vec{e}_2, \vec{e}_3$, що будь-який вектор \vec{a} виражається через ці вектори, тобто

$$\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3,$$

причому скаляри $\lambda_1,\lambda_2,\lambda_3$ визначаються однозначно.

Базою у просторі може бути будь-яка впорядкована трійка некомпланарних векторів, на площині — будь-яка впорядкована пара неколінеарних векторів, а на прямій довільний ненульовий вектор.

Означення. Якщо $\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3$, то коефіцієнти $\lambda_1, \lambda_2, \lambda_3$ цього розкладення називаються координатами вектора \vec{a} в базі $\vec{e}_1, \vec{e}_2, \vec{e}_3$ і записуватимемо це так:

$$\vec{a} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$$
 and $\vec{a} = (\lambda_1, \lambda_2, \lambda_3)$.

Координати вектора визначають однозначно у цій базі, тому два вектори будуть рівними тоді і тільки тоді, коли рівні їхні відповідні координати у фіксованій базі.

При додаванні (відніманні) векторів їхні відповідні координати додаються (віднімаються), а при множенні вектора на скаляр множаться на цей скаляр.

Система координат

Виберемо в просторі базу $\vec{e}_1, \vec{e}_2, \vec{e}_3$ і точку O (початку координат).

Означення. Декартовою системою координат називається сукупність точки O (початку координат) і бази $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

Кожній точці M простору поставимо у відповідність її радіус-вектор \overrightarrow{OM} .

Означення. Координати радіуса-вектора \overrightarrow{OM} в базі $\vec{e}_1, \vec{e}_2, \vec{e}_3$ називають координатами точки M у системі координат $O_{\vec{e}_1, \vec{e}_2, \vec{e}_3}$.

Якщо $\overrightarrow{OM} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$, то M(x,y,z), причому перша координата x називається абсцисою точки M, друга y – ординатою, третя z – аплікатою.

Означення. Декартова система координат $O_{\vec{e}_1,\vec{e}_2,\vec{e}_3}$ називається *прямокутною*, якщо $|\vec{e}_1| = |\vec{e}_2| = |\vec{e}_3| = 1$ і кути між базовими векторами прямі. Тоді базові вектори позначають через \vec{i} , \vec{j} , \vec{k} .

Якщо розглядати декартову систему координат на площині, то база буде складатися тільки з двох векторів, тому кожна точка теж матиме тільки дві координати M(x, y).

Нехай у прямокутній декартовій системі координат в просторі задано дві точки $A(x_1,y_1,z_1)$ і $B(x_2,y_2,z_2)$. Знайдемо координати вектора \overrightarrow{AB} . За означенням $\overrightarrow{OA}(x_1,y_1,z_1)$ і $\overrightarrow{OB}(x_2,y_2,z_2)$. Оскільки $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, то

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

Отже, щоб знайти координати вектора \overrightarrow{AB} , треба від координат кінця вектора відняти координати його початку.

Полярна система координат

Якщо на площині вибрати точку O (полюс) і промінь OP (полярну вісь), то утвориться полярна $cucmema\ координат$. Нехай r – відстань від деякої точки M до полюса O, а φ – кут між полярною віссю і променем OM. Тоді числа $r \ge 0$ і φ $(0 \le \varphi < 2\pi)$ називаються полярними координатами точки М (рис. 3.8).

Між полярними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi \end{cases} \qquad i \qquad r = \sqrt{x^2 + y^2}, tg\varphi = \frac{y}{x}.$$

Циліндрична система координат

Координати точки $M(\rho, \varphi, z)$ в циліндричній системі визначають так:

 ρ – відстань від осі Oz до точки M; $\rho \ge 0$.

 φ – кут між проекцією радіус-вектора точки M на площину xOy з додатним напрямом осі Ox; $0 \le \varphi < 2\pi$.

z – відстань від точки M до площини xOy; $-\infty < z < \infty$.

Між циліндричними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ z = z \end{cases}$$

Сферична система координат

Координати точки $M(r, \varphi, \theta)$ в циліндричній системі визначають так:

r – відстань від початку координат до точки M ; $r \ge 0$.

 φ – кут між проекцією радіус-вектора точки M на площину xOy з додатним напрямом осі Ox; $0 \le \varphi < 2\pi$.

 θ – кут між радіус-вектором точки M з додатним напрямом осі Oz; $0 \le \theta \le \pi$.

Між сферичними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta \end{cases}$$

Проекція вектора на вісь

Розглянемо поняття проекції вектора на вісь. Нехай заданий вектор \overline{AB} і вісь l. З точок A і B опустимо перпендикуляри на вісь l. Одержимо точки A_1 та B_1 — проекції точок A і B на вісь l.

Означення. Проекцією вектора $\vec{a} = \overrightarrow{AB}$ на вісь називається довжина вектора $\overrightarrow{A_1B_1}$, яку взяли зі знаком "+", якщо напрям $\overrightarrow{A_1B_1}$ збігається з напрямом осі та зі знаком "-", якщо напрями протилежні. Позначають $pr_i\vec{a}$.

Знайдемо $pr_l\vec{a}$. Якщо φ – кут між вектором \overrightarrow{AB} і віссю l, то в першому випадку

$$pr_l\vec{a} = \overrightarrow{A_lB_l} = \vec{a} |\cos \varphi|,$$

у другому випадку

$$pr_{l}\vec{a} = -|\overrightarrow{A_{1}B_{1}}| = -|\overrightarrow{a}|\cos(180^{\circ} - \varphi) = |\overrightarrow{a}|\cos\varphi.$$

Отже, проекція вектора на вісь дорівнює добутку довжини вектора на косинус кута між вектором і віссю.

Координатами вектора в прямокутній системі координат будуть проекції вектора на осі координат.

Нехай вектор \vec{a} має координати a_x, a_y, a_z , тобто $\vec{a} = (a_x, a_y, a_z)$ і утворює з осями координат кути α, β, γ , відповідно. Тоді $a_x = |\vec{a}| \cos \alpha$, $a_y = |\vec{a}| \cos \beta$, $a_z = |\vec{a}| \cos \gamma$.

Числа $\cos \alpha, \cos \beta, \cos \gamma$ називають *напрямними косинусами вектора \vec{a}*. З попередніх формул одержуємо

$$\cos \alpha = \frac{a_x}{|\vec{a}|}, \cos \beta = \frac{a_y}{|\vec{a}|}, \cos \gamma = \frac{a_z}{|\vec{a}|}.$$

Поділ відрізка у заданому відношенні

Нехай задано дві точки: $A(x_1,y_1,z_1)$ і $B(x_2,y_2,z_2)$. Знайдемо точку M(x,y,z), яка ділить відрізок AB у відношенні λ , тобто $\frac{|\overrightarrow{AM}|}{|\overrightarrow{MB}|} = \lambda$. Цю умову можна записати у вигляді $\overrightarrow{AM} = \lambda \cdot \overrightarrow{MB}$. Оскільки

$$\overrightarrow{AM} = (x - x_1, y - y_1, z - z_1), \quad \overrightarrow{MB} = (x_2 - x, y_2 - y, z_2 - z),$$

$$x - x_1 = \lambda(x_2 - x);$$

$$y - y_1 = \lambda(y_2 - y);$$

$$z - z_1 = \lambda(z_2 - z).$$

Розв'яжемо кожне з цих рівнянь стосовно x, y, z і одержимо формули для визначення координат точки M

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \ y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \ z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Зокрема, якщо точка M ділить відрізок AB навпіл, то $\lambda=1$ і координати точки M можна знайти за формулами

$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$.

Скалярний добуток векторів

Означення. *Скалярним добутком* векторів \vec{a} та \vec{b} називається добуток довжин цих векторів на косинус кута між ними, тобто $(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a} \cdot \vec{b})$.

Зокрема, скалярний квадрат вектора дорівнює квадратові його довжини, тобто $(\vec{a})^2 = (\vec{a}, \vec{a}) = |\vec{a}| \cdot |\vec{a}| \cdot \cos(\vec{a} \wedge \vec{a}) = |\vec{a}|^2$.

Властивості скалярного добутку такі:

- 1) $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a});$
- 2) $(\lambda \vec{a}, \vec{b}) = \lambda(\vec{a}, \vec{b});$
- 3) $(\vec{a} + \vec{b}, \vec{c}) = (\vec{a}, \vec{c}) + (\vec{b}, \vec{c});$
- 4) $(\vec{a}, \vec{a}) \ge 0$ i $(\vec{a}, \vec{a}) = 0 \Leftrightarrow \vec{a} = \vec{0}$;
- 5) $(\vec{a}, \vec{b}) = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3)$, тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$.

Тоді

$$(\vec{a}, \vec{b}) = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k})(b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) =$$

$$= a_1 b_1 \vec{i} \cdot \vec{i} + a_1 b_2 \vec{i} \cdot \vec{j} + a_1 b_3 \vec{i} \cdot \vec{k} + a_2 b_1 \vec{j} \cdot \vec{i} + a_2 b_2 \vec{j} \cdot \vec{j} + a_2 b_3 \vec{j} \cdot \vec{k} + a_3 b_1 \vec{k} \cdot \vec{i} + a_3 b_2 \vec{k} \cdot \vec{j} + a_3 b_3 \vec{k} \cdot \vec{k}.$$

Оскільки $|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$ і вектори $\vec{i}, \vec{j}, \vec{k}$ взаємно перпендикулярні, то

$$\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0, \qquad \vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1,$$

тобто

$$(\vec{a}, \vec{b}) = a_1b_1 + a_2b_2 + a_3b_3.$$

Отже, $(\vec{a}, \vec{b}) = a_1b_1 + a_2b_2 + a_3b_3$ — формула скалярного добутку векторів, заданих координатами. Очевидно, що довжина вектора

$$|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$
.

Векторний добуток векторів

Означення. Лінійно незалежні вектори \vec{a} , \vec{b} і \vec{c} утворюють *праву трійку векторів*, якщо з кінця вектора \vec{c} найкоротший поворот від вектора \vec{a} до вектора \vec{b} видно проти годинникової стрілки, в іншому випадку говорять про ліву трійку векторів.

Означення. Векторним добутком векторів \vec{a} і \vec{b} називається такий вектор $\vec{c} = \vec{a} \times \vec{b}$, який має довжину $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a} \hat{b})$, є перпендикулярним до площини, утвореної векторами \vec{a} і \vec{b} і вектори \vec{a} , \vec{b} і \vec{c} утворюють праву трійку векторів.

Властивості векторного добутку:

- 1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$;
- 2) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$
- 3) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$;
- 4) $\vec{a} \times \vec{a} = \vec{0}$;
- 5) $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow$ вектори \vec{a} і \vec{b} колінеарні.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3),$ тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$.

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) =$$

$$=a_1b_1\vec{i}\times\vec{i}+a_1b_2\vec{i}\times\vec{j}+a_1b_2\vec{i}\times\vec{k}+a_2b_1\vec{j}\times\vec{i}+a_2b_2\vec{j}\times\vec{j}+a_2b_3\vec{j}\times\vec{k}+a_3b_1\vec{k}\times\vec{i}+a_3b_2\vec{k}\times\vec{j}+a_3b_3\vec{k}\times\vec{k}.$$

Оскільки

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}, \qquad \vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i}, \ \vec{k} \times \vec{i} = \vec{j},$$

то

$$\vec{a} \times \vec{b} = a_1 b_2 \vec{k} - a_1 b_3 \vec{j} - a_2 b_1 \vec{k} + a_2 b_3 \vec{i} + a_3 b_1 \vec{j} - a_3 b_2 \vec{i} = (a_2 b_3 - a_3 b_2) \vec{i} - (a_1 b_3 - a_3 b_1) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Отже,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 — формула векторного добутку векторів, заданих координатами.

Геометричний зміст векторного добутку полягає в тому, що площа паралелограма, побудованого на векторах \vec{a} і \vec{b} як на сторонах, дорівнює модулю векторного добутку цих векторів. Це випливає з означення векторного добутку.

Мішаний добуток векторів

Означення. *Мішаним добутком* трьох упорядкованих векторів \vec{a} , \vec{b} і \vec{c} називається число

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} .$$

Властивості мішаного добутку:

- 1) $\vec{a} \cdot \vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{c} \cdot \vec{a} = \vec{c} \cdot \vec{a} \cdot \vec{b}$;
- 2) $\vec{a} \cdot \vec{b} \cdot \vec{c} = -\vec{b} \cdot \vec{a} \cdot \vec{c} = -\vec{c} \cdot \vec{b} \cdot \vec{a}$;
- 3) $\vec{a} \cdot \vec{b} \cdot \vec{c} = 0 \iff$ вектори \vec{a} , \vec{b} і \vec{c} компланарні.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3),\ \vec{c}=(c_1,c_2,c_3),$ тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$.

Тоді

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{pmatrix} |a_2 & a_3| \\ b_2 & b_3| \vec{i} + |a_3 & a_1| \\ b_3 & b_1| \vec{j} + |a_1 & a_2| \\ b_1 & b_2| \vec{k} \end{pmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{bmatrix} |a_2 & a_3| \\ b_2 & b_3| \vec{i} + |a_3 & a_1| \\ b_3 & b_1| \vec{j} + |a_1 & a_2| \\ b_1 & b_2| \vec{k} \end{pmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{bmatrix} |a_1 & a_2 & a_3| \\ b_1 & b_2 & b_3| \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Отже,
$$\vec{a} \cdot \vec{b} \cdot \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 — формула мішаного добутку векторів, заданих координатами. Об'єм паралелепіпеда, побудованого на трьох некомпланарних векторах, дорівнює

Об'єм паралелепіпеда, побудованого на трьох некомпланарних векторах, дорівнює модулю мішаного добутку цих векторів.