Álgebra Linear e Geometria Analítica

Espaços Vetoriais

Departamento de Matemática Universidade de Aveiro

Definição de espaço vetorial

Ao longo deste capítulo considera-se um conjunto não vazio \mathcal{V} , com uma operação \oplus definida para cada $X \in \mathcal{V}$ e para cada $Y \in \mathcal{V}$,

e uma operação \odot definida para cada $\alpha \in \mathbb{R}$ e para cada $X \in \mathcal{V}$,

$$\alpha \odot X$$
.

Diz-se que o conjunto $\mathcal V$ está munido com as operações \oplus e \odot .

As operações ⊕ e ⊙ são usualmente designadas por

adição e multiplicação por escalar,

(respectivamente) porque, como se verá a seguir, estas operações têm muitas propriedades em comum com outras operações de adição e multiplicação por escalar conhecidas, tais como a adição e a multiplicação por escalar de vetores de \mathbb{R}^n e de matrizes $m \times n$.

Espacos Vetoriais ALGA 🖽 2/42

Definição de espaço vetorial

O conjunto \mathcal{V} , munido das operações \oplus e \odot , é um espaço vetorial (e.v.) real se, $\forall X, Y, Z \in \mathcal{V}$ e $\forall \alpha, \beta \in \mathbb{R}$,

1. \mathcal{V} é fechado relativamente a \oplus

$$X \oplus Y \in \mathcal{V}$$

2. ⊕ é comutativa

$$X \oplus Y = Y \oplus X$$

3. ⊕ é associativa

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$$

4. existe (único) o el. neutro $0_{\mathcal{V}} \in \mathcal{V}$ (zero de \mathcal{V}) para \oplus

$$0_{\mathcal{V}} \oplus X = X$$

5. existe (único) o simétrico $\ominus X \in \mathcal{V}$ de X em relação a \oplus

$$\ominus X \oplus X = 0_{\mathcal{V}}$$
$$\alpha \odot X \in \mathcal{V}$$

6. \mathcal{V} é fechado relativamente a \odot

7. \odot é distributiva em relação a \oplus

$$\alpha\odot(X\oplus Y)=\alpha\odot X\oplus\alpha\odot Y$$

8. ⊙ é "distributiva" em relação a +

$$(\alpha+\beta)\odot X = \alpha\odot X \oplus \beta\odot X$$

9. os produtos (o de $\mathbb R$ e \odot) são "associativos"

$$(\alpha\beta)\odot X=\alpha\odot(\beta\odot X)$$

10. o escalar 1 é o "elemento neutro" para ⊙

$$1 \odot X = X$$

Daqui em diante, designaremos os espaços vetoriais reais apenas por espaços vetoriais (e.v.)

Exemplos de espaços vetoriais

- 1. \mathbb{R}^n munido das operações adição e multiplicação por escalar usuais.
- 2. R⁺ munido das operações:

$$V \triangle V = VV$$

$$e \qquad \alpha \odot x = x$$

$$x \oplus y = xy$$
 e $\alpha \odot x = x^{\alpha}$, $\forall x, y \in \mathbb{R}^+$, $\forall \alpha \in \mathbb{R}$.

- 3. O conjunto $\mathbb{R}^{m \times n}$ das matrizes $m \times n$ munido das operações adição de matrizes e multiplicação de uma matriz por um escalar real.
- 4. O conjunto de todas as funções reais de variável real, com o mesmo domínio, munido da adição de funções e multiplicação de uma função por um escalar real.
- 5. O conjuntos \mathcal{P} de todos os polinómios (de qualquer grau) e o conjunto \mathcal{P}_n dos polinómios de grau menor ou igual a n (incluindo o polinómio nulo), com as operações usuais.

O conjunto dos polinómios de grau n, com as operações usuais, não é e.v.

Mais algumas propriedades dos espaços vetoriais

Proposição: Seja $\mathcal V$ um e.v. Então

- (a) $0 \odot X = 0_{\mathcal{V}}, \forall X \in \mathcal{V};$
- **(b)** $\alpha \odot 0_{\mathcal{V}} = 0_{\mathcal{V}}, \forall \alpha \in \mathbb{R};$
- (c) $\alpha \odot X = 0_{\mathcal{V}} \Rightarrow \alpha = 0$ ou $X = 0_{\mathcal{V}}$;
- (d) $(-1) \odot X = \ominus X$ é o simétrico de X em relação a \oplus , $\forall X \in \mathcal{V}$.

Para simplificar as notações, daqui em diante, escreve-se

- i. X + Y em vez de $X \oplus Y$, para $X, Y \in \mathcal{V}$;
- ii. αX em vez de $\alpha \odot X$, para $\alpha \in \mathbb{R}$ e $X \in \mathcal{V}$;
- iii. -X em vez de $\ominus X$, para $X \in \mathcal{V}$.

Definição de subespaço

O subconjunto não vazio $\mathcal{S}\subseteq\mathcal{V}$ é um subespaço (vetorial) do e.v. \mathcal{V} se, munido das mesmas operações de \mathcal{V} , for ele próprio um e.v.

Teorema: $S \subseteq V$ é um subespaço do e.v. V se e só se

- 1. $0_{\mathcal{V}} \in \mathcal{S}$, onde $0_{\mathcal{V}}$ representa o elemento neutro de \mathcal{V} em relação à adição;
- **2.** \mathcal{S} é fechado em relação à adição em \mathcal{V} :

$$X + Y \in \mathcal{S}$$
, para $X, Y \in \mathcal{S}$;

3. $\mathcal S$ é fechado em relação à multiplicação por escalar em $\mathcal V$:

$$\alpha X \in \mathcal{S}$$
, para $\alpha \in \mathbb{R}, X \in \mathcal{S}$.

Espacos Vetoriais ALGA 🛱 6/42

Exemplo:

- 1. $V \in \{0_V\}$ são os subespaços triviais de V;
- **2.** $\{(0, y, z) : y, z \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^3 ;
- **3.** $\{(1,y): y \in \mathbb{R}\}$ <u>não</u> é um subespaço de \mathbb{R}^2 ;
- **4.** o espaço nulo da matriz $A m \times n$,

$$\mathcal{N}(A) = \{ X \in \mathbb{R}^n : AX = 0 \},$$

é um subespaço de \mathbb{R}^n .

Subespaço gerado por um conjunto

Dados os elementos X_1, \ldots, X_k de \mathcal{V} e os escalares $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, o elemento $X \in \mathcal{V}$ tal que

$$X = \alpha_1 X_1 + \dots + \alpha_k X_k$$

é uma combinação linear dos elementos X_1, \ldots, X_k .

Teorema:

Seja $\mathcal V$ um e.v., $K = \{X_1, \dots, X_k\} \subset \mathcal V$ e S o conjunto das combinações lineares de elementos de K, ou seja, $S = \{\alpha_1 X_1 + \dots + \alpha_k X_k : \alpha_1, \dots, \alpha_k \in \mathbb R\}$. O conjunto S é um subespaço de $\mathcal V$.

O subespaço S designa-se por subespaço gerado por K, e escreve-se

$$S = \langle K \rangle$$
 ou $S = \langle X_1, \dots, X_k \rangle$.

Diz-se, também, que K gera o subespaço S ou é um conjunto gerador do subespaço S.

Espaços Vetoriais ALGA 🖽 8/42

Subespaço gerado por um conjunto

Exercício: Confirme que se $X_1, \cdots, X_k \in \mathcal{V}$, então $S = \langle X_1, \dots, X_k \rangle$ é um subespaço de \mathcal{V} .

Exemplo: Dados os vetores não colineares $X_1, X_2 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$,

- 1. $\langle X_1 \rangle$ é a reta que passa pela origem e tem vetor director X_1 ;
- **2.** $\langle X_1, X_2 \rangle$ é o plano que passa pela origem e que contém X_1 e X_2 .

Espaços Vetoriais ALGA 🖽 9/42

Espaço das linhas e espaço das colunas de uma matriz

Seja A uma matriz $m \times n$ com linhas $L_1, \ldots, L_m \in \mathbb{R}^n$ e colunas $C_1, \ldots, C_n \in \mathbb{R}^m$

$$A = \begin{bmatrix} L_1^T \\ \vdots \\ L_m^T \end{bmatrix} = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix}$$

ightharpoonup O espaço das linhas de A é o subespaço de \mathbb{R}^n

$$\mathcal{L}(A) = \langle L_1, \ldots, L_m \rangle \subseteq \mathbb{R}^n.$$

ightharpoonup O espaço das colunas de A é o subespaço de \mathbb{R}^m

$$C(A) = \langle C_1, \ldots, C_n \rangle \subseteq \mathbb{R}^m.$$

Espaços Vetoriais ALGA 💾 10/42

Espaço das linhas e espaço das colunas de uma matriz

Lema: Dados
$$X_1, \ldots, X_k \in \mathcal{V}$$
 e $i, j \in \{1, \ldots, k\}$, com $i \neq j$,

i.
$$\langle X_1, \ldots, X_i, \ldots, X_j, \ldots, X_k \rangle = \langle X_1, \ldots, X_j, \ldots, X_i, \ldots, X_k \rangle;$$

ii.
$$\langle X_1, \ldots, X_i, \ldots, X_k \rangle = \langle X_1, \ldots, \alpha X_i, \ldots, X_k \rangle$$
, $\alpha \in \mathbb{R} \setminus \{0\}$;

iii.
$$\langle X_1, \ldots, X_i, \ldots, X_k \rangle = \langle X_1, \ldots, X_i + \beta X_j, \ldots, X_k \rangle, \ \beta \in \mathbb{R}.$$

Como consequência deste resultado, conclui-se o seguinte:

Teorema: Se as matrizes A e B são equivalentes por linhas, $\mathcal{L}(A) = \mathcal{L}(B)$.

Espaços Vetoriais ALGA 🖽 11/42

Independência linear

Um subconjunto não vazio $\mathcal{K} = \{X_1, \dots, X_k\}$ de um e.v. \mathcal{V} diz-se linearmente independente (l.i.) se

$$\alpha_1 X_1 + \dots + \alpha_k X_k \, = \, 0_{\mathcal{V}} \qquad \Rightarrow \quad \alpha_1 = \dots = \alpha_k = 0,$$

caso contrário, \mathcal{K} é linearmente dependente (l.d.) em \mathcal{V} .

Nota: $0_{\mathcal{V}} \in \mathcal{K} \Rightarrow \mathcal{K}$ é linearmente dependente.

Exemplos:

- ightharpoonup Dois vetores não nulos de \mathbb{R}^2 ou \mathbb{R}^3 são colineares se e só se são l.d.
- ightharpoonup Três vetores não colineares de \mathbb{R}^3 definem um plano se e só se são l.d.

ALGA 12/42

Independência linear

Seja $\mathcal{K} = \{X_1, \dots, X_k\}$ um subconjunto de um e.v. \mathcal{V} .

 ${\cal K}$ é linearmente dependente se e só se o sistema que se obtém da equação

$$\alpha_1 X_1 + \cdots + \alpha_k X_k = 0_{\mathcal{V}}$$

é possível e indeterminado, isto é, se tem uma solução com os escalares $\alpha_1,\ldots,\alpha_k\!\in\!\mathbb{R}$ não todos nulos.

Se existe $1 \le j \le k$ tal que $\alpha_i \ne 0$, então

$$X_{j} = \frac{\alpha_{1}}{\alpha_{j}} X_{1} + \dots + \frac{\alpha_{j-1}}{\alpha_{j}} X_{j-1} + \frac{\alpha_{j+1}}{\alpha_{j}} X_{j+1} + \dots + \frac{\alpha_{k}}{\alpha_{j}} X_{k}$$

concluindo-se que X_j pertence ao subespaço gerado por $K \setminus \{X_j\}$.

Espaços Vetoriais ALGA 💾 13/42

Geradores e independência linear

Sejam \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

Lema: Seja $X \in \mathcal{K}$. Então X é combinação linear dos elementos de $\mathcal{K} \setminus \{X\}$ se e só se $\langle \mathcal{K} \setminus \{X\} \rangle = \langle \mathcal{K} \rangle$.

Teorema: K é um conjunto linearmente

- ▶ dependente \iff existe $X \in \mathcal{K}$ tal que $X \in \langle \mathcal{K} \setminus \{X\} \rangle$, ou seja, $\langle \mathcal{K} \setminus \{X\} \rangle = \langle \mathcal{K} \rangle$;
- ▶ independente \iff para cada $X \in \mathcal{V} \setminus \langle \mathcal{K} \rangle$, o conjunto $\mathcal{K} \cup \{X\}$ é l.i.

Espaços Vetoriais ALGA 💆 14/42

Geradores e independência linear

Corolário:

Seja \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

- ▶ Se \mathcal{K} gera \mathcal{V} mas não é l.i., é possível retirar um elemento de \mathcal{K} , obtendo-se ainda um conjunto gerador de \mathcal{V} .
- ▶ Se \mathcal{K} é l.i. mas não gera \mathcal{V} , é possível acrescentar um elemento de \mathcal{V} a \mathcal{K} , obtendo-se ainda um conjunto l.i.

Corolário:

Se $\mathcal V$ é um e.v. gerado por um número finito de elementos ($\mathcal V$ é finitamente gerado), então $\mathcal V$ tem um conjunto gerador que é linearmente independente.

Espaços Vetoriais ALGA 🖽 15/42

Base de um espaço vetorial

Uma base de um e.v. $\mathcal{V} \neq \{0_{\mathcal{V}}\}$ é um

- conjunto linearmente independente,
- conjunto gerador de \mathcal{V} .

Nota:

- Por convenção, o e.v. trivial $\{0_{\mathcal{V}}\}$ tem como base o conjunto vazio.
- Um conjunto l.i. é base do subespaço por ele gerado.

Espaços Vetoriais ALGA 🛗 16/42

Exemplos:

- **1.** Sejam $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$ Então $\mathcal{C}_n = \{e_1, e_2, \dots, e_n\}$ é a base canónica de \mathbb{R}^n .
- **2.** Seja E_{ii} a matriz $m \times n$ que tem a entrada (i,j) igual a 1 e todas as outras iguais a 0. Então $\mathcal{C}_{m \times n} = \{E_{ii} : i = 1, \dots, m, j = 1, \dots, n\}$ é a base canónica de $\mathbb{R}^{m \times n}$.
- **3.** A base canónica do e.v. \mathcal{P}_n dos polinómios na variável x de grau menor ou igual a n (incluindo o polinómio nulo) é $\mathcal{P}_n = \{1, x, \dots, x^n\}$.
- **4.** O e.v. \mathcal{P} de todos os polinómios não admite uma base com um número finito de elementos. O conjunto $\{1, x, x^2, \dots\}$ é uma base de \mathcal{P} .

ALGA 🖽 Espaços Vetoriais 17/42

Base de um espaço vetorial

Sejam \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

Proposição:

- \triangleright Se \mathcal{K} gera \mathcal{V} , então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de \mathcal{K} , de pelo menos uma maneira.
- \triangleright Se \mathcal{K} é l.i., então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de K, de no máximo uma maneira.

Proposição:

Se \mathcal{K} é uma base de \mathcal{V} , então

cada elemento de $\mathcal V$ escreve-se de forma única como combinação linear dos elementos de $\mathcal K$.

ALGA Ħ 18/42

Dimensão de um espaço vetorial

Teorema: Seja $\mathcal V$ um e.v. com uma base que contém n elementos e $\mathcal K\subset \mathcal V$ um subconjunto com r elementos.

- i. $\mathcal{K} \notin I.i. \Rightarrow r \leq n$ Neste caso, existe uma base de \mathcal{V} que contém \mathcal{K} .
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow r \geq n$ Neste caso, existe uma base de \mathcal{V} que é um subconjunto de \mathcal{K} .

Corolário:

Todas as bases de ${\cal V}$ possuem o mesmo número de elementos.

A dimensão de um e.v. \mathcal{V} é o número de elementos de uma base de \mathcal{V} e denota-se por dim \mathcal{V} .

Espaços Vetoriais ALGA 🛗 19/42

Dimensão de um espaço vetorial

Consequência do teorema anterior:

Seja $\mathcal V$ um espaço vetorial com dimensão n e $\mathcal K$ um subconjunto de $\mathcal V$ com r elementos.

- i. $r > n \Rightarrow \mathcal{K} \in I.d.$
- ii. $r < n \Rightarrow \mathcal{K}$ não gera \mathcal{V}
- iii. $r = n \Rightarrow \mathcal{K}$ é uma base de \mathcal{V} se e só se \mathcal{K} é l.i., se e só se \mathcal{K} gera \mathcal{V} .

Se \mathcal{B} é um e.v. com dimensão n e \mathcal{K} é um subconjunto de \mathcal{V} com n elementos, para verificar se \mathcal{B} é uma base de \mathcal{V} é suficiente verificar uma das condições:

- (i) \mathcal{B} é linearmente independente, ou,
- (ii) \mathcal{B} gera \mathcal{V} .

Espaços Vetoriais ALGA 💆 20/42

Exemplos

Exemplos:

- 1. $\dim\{0_{\mathcal{V}}\}=0$,
- 2. dim $\mathbb{R}^n = n$,
- 3. dim $\mathbb{R}^{m \times n} = mn$,
- **4.** dim $P_n = n + 1$.

Teorema:

Se $\mathcal{K} = \{X_1, \dots, X_n\} \subset \mathcal{V}$ e dim $\mathcal{V} = n$, então

- i. \mathcal{K} l.i. $\Rightarrow \mathcal{K}$ é base de \mathcal{V} ;
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow \mathcal{K}$ é base de \mathcal{V} .

Espaço $\mathcal{L}(A)$

Teorema: Seja A uma matriz $m \times n$ e A_e uma matriz escalonada por linhas equivalente a A. Então

- 1. as linhas não nulas de A_e formam uma base de $\mathcal{L}(A)$;
- 2. dim $\mathcal{L}(A) = car(A)$.

Exemplo

Seja
$$A = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 2 & -4 & -7 & 5 \\ 1 & -2 & -3 & 2 \end{bmatrix} \sim A_e = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Da matriz A_e obtém-se a seguinte base de $\mathcal{L}(A)$:

$$\mathcal{B} = \{(1, -2, -4, 3), (0, 0, 1, -1)\}.$$

Observe-se que $\dim \mathcal{L}(A) = 2 = car(A)$.

Espaços Vetoriais ALGA 🛗 22/42

Teorema:

Seja A uma matriz $m \times n$. Então

$$\dim \mathcal{N}(A) = \operatorname{nul}(A) = \operatorname{n}^{o} \operatorname{de} \operatorname{inc.}$$
 livres do sistema $AX = 0$,

onde
$$\mathcal{N}(A) = \{X \in \mathbb{R}^n : AX = 0\}$$
 é o espaço nulo de A .

Exemplo

Considerando a matriz A do exemplo anterior,

$$X \in \mathcal{N}(A) \iff AX = 0 \iff A_eX = 0 \iff$$

$$\begin{cases} x_1 = 2x_2 + x_4 \\ x_3 = x_4 \end{cases} \iff X = \begin{bmatrix} 2x_2 + x_4 \\ x_2 \\ x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = x_2 N_2 + x_4 N_4,$$

$$x_2, x_4 \in \mathbb{R} \text{ var. livres.}$$

Uma base de $\mathcal{N}(A)$ é $\{N_2, N_4\}$ e dim $\mathcal{N}(A) = 2 = nul(A)$.

Espaços Vetoriais ALGA 🛗 23/42

Espaço C(A)

Observe-se que

$$B \in \mathcal{C}(A) \iff$$
 o sistema $AX = B$ é possível.

Teorema: Seja A uma matriz $m \times n$ e A_e uma matriz escalonada por linhas equivalente a A. Então

- uma base de $\mathcal{C}(A)$ é formada pelas colunas de A que correspondem às colunas dos pivôs de A_e ;
- $\dim \mathcal{C}(A) = \dim \mathcal{L}(A)$.

Exemplo:

Para a matriz A do exemplo anterior,

- uma base de C(A) é $\{(1,2,1),(-4,-7,-3)\}$,
- $\dim \mathcal{C}(A) = 2 = car(A)$.

Espaços Vetoriais ALGA 💆 24/42

Característica de uma matriz

Corolário:

- A caraterística de uma matriz é o número máximo de linhas (colunas) l.i.
- Uma matriz quadrada é invertível se e só se o conjunto das suas linhas (colunas) é l.i.

Coordenadas de um elemento numa base ordenada

Seja $\mathcal{B} = (X_1, \dots, X_n)$ uma base ordenada de um e.v. \mathcal{V} .

Teorema: Cada elemento $X \in \mathcal{V}$ escreve-se de forma única como combinação linear dos elementos de \mathcal{B} , ou seja, existem $a_1, \ldots, a_n \in \mathbb{R}$, tais que

$$X = a_1 X_1 + \cdots + a_n X_n.$$

Estes coeficientes a_1, \ldots, a_n dizem-se as coordenadas de X na base \mathfrak{B} .

O vetor das coordenadas de
$$X$$
 na base \mathfrak{B} é $[X]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$.

Espaços Vetoriais ALGA 💆 26/42

Coordenadas - Propriedades

Propriedades:

Seja \mathcal{V} um espaço vetorial com dimensão n e $\mathcal{S} = (X_1, \dots, X_n)$ uma base ordenada de \mathcal{V} .

• Para $i = 1, \dots, n$, o vetor X_i tem o seguinte vetor de coordenadas em S:

$$[X_i]_{\mathcal{S}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \leftarrow i \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

- $[0_{\mathcal{V}}]_{S} = 0_{\mathbb{R}^{n}};$
- Para $Y_1, \ldots, Y_r \in \mathcal{V}$, e $a_1, \ldots, a_r \in \mathbb{R}$, $[a_1 Y_1 + \cdots + a_r Y_r]_{\mathcal{S}} = a_1 [Y_1]_{\mathcal{S}} + \cdots + a_r [Y_r]_{\mathcal{S}}.$

Espaços Vetoriais ALGA 💆 27/42

Coordenadas - Exemplo

Exemplo: Considere-se a base ordenada $\mathcal{B}_1 = ((1,1),(1,2))$ e os vetores u = (0,1) e v = (1,-1) de \mathbb{R}^2 . Sabemos que existem escalares únicos $\alpha,\beta\in\mathbb{R}$ tais que

$$(0,1) = \alpha(1,1) + \beta(1,2).$$

Resolvendo o sistema que se obtém desta equação matricial (sistema possível e determinado) obtém-se $\alpha=-1$ e $\beta=1$. Logo,

$$[(0,1)]_{\mathcal{B}_1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

De forma análoga conclui-se que

$$[(1,-1)]_{\mathcal{B}_1} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

Espaços Vetoriais ALGA 💆 28/42

Coordenadas - Exemplo

Exemplo (cont.):

Considere-se, agora, a base ordenada $\mathcal{B}_2 = ((3,2),(0,1))$ e vamos determinar o vetor das coordenadas de u na base \mathcal{B}_2 .

$$(0,1) = \alpha(3,2) + \beta(0,1) \Leftrightarrow (\alpha = 0) \wedge (\beta = 1).$$

Assim,

$$[(0,1)]_{\mathcal{B}_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

e, procedendo de forma análoga, obtemos

$$[(1,-1)]_{\mathcal{B}_2} = \begin{bmatrix} 1/3 \\ -5/3 \end{bmatrix}.$$

Mudança de base

Sejam S, $T = (Y_1, \dots, Y_n)$ duas bases ordenadas de V e $X \in V$.

Qual a relação entre os vetores de coordenadas $[X]_S$ e $[X]_T$?

$$[X]_{\mathfrak{T}} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \quad \Rightarrow \qquad \qquad X = a_{1}Y_{1} + \dots + a_{n}Y_{n}$$

$$\Rightarrow \qquad [X]_{\mathfrak{S}} = a_{1}[Y_{1}]_{\mathfrak{S}} + \dots + a_{n}[Y_{n}]_{\mathfrak{S}}$$

$$= \underbrace{[Y_{1}]_{\mathfrak{S}} \quad \dots \quad [Y_{n}]_{\mathfrak{S}}}_{M(\mathfrak{T},\mathfrak{S})} \underbrace{\begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}}_{[X]_{\mathfrak{T}}}$$

A matriz $M(\mathfrak{T}, \mathcal{S})$, cujas colunas são os vetores de coordenadas na base \mathcal{S} dos elementos da base \mathcal{T} designa-se por matriz de mudança de base \mathcal{T} para \mathcal{S} .

Espaços Vetoriais ALGA 🛗 30/42

Mudança de base – Exemplo

Sejam
$$\mathbb{S}=\big((1,1),(1,2)\big)$$
 e $\mathbb{T}=\big((0,1),(1,-1)\big)$ bases ordenadas de $\mathbb{R}^2.$

Dado
$$X \in \mathbb{R}^2$$
 tal que $[X]_{\mathfrak{T}} = \begin{bmatrix} a \\ b \end{bmatrix}$, tem-se que

$$X = a(0,1) + b(1,-1).$$

Logo, $[X]_{\mathbb{S}} = a[(0,1)]_{\mathbb{S}} + b[(1,-1)]_{\mathbb{S}}$. Pelo exemplo anterior,

$$[(0,1)]_{\mathbb{S}} = \begin{bmatrix} -1\\1 \end{bmatrix}$$
 e $[(1,-1)]_{\mathbb{S}} = \begin{bmatrix} 3\\-2 \end{bmatrix}$.

então

$$[X]_{\mathbb{S}} = a \begin{bmatrix} -1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \underbrace{\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}}_{M(\mathfrak{T}, \mathbb{S})} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{[X]_{\mathfrak{T}}}.$$

Espaços Vetoriais ALGA 🛗 31/42

Invertibilidade de uma matriz de mudança de base

Teorema: Sejam S e T duas bases de um espaço vetorial V. Então M(T,S) é invertível e

$$M(\mathfrak{T},\mathfrak{S})^{-1}=M(\mathfrak{S},\mathfrak{T}).$$

Consequentemente, se $X \in \mathcal{V}$,

$$[X]_{\mathfrak{T}} = M(\mathfrak{T}, \mathfrak{S})^{-1}[X]_{\mathfrak{S}}.$$

Espaços Vetoriais ALGA 🛗 32/42

Mudança de base em \mathbb{R}^n

 \mathcal{S} , \mathcal{T} : bases de \mathbb{R}^n

 \mathbb{C} : base canónica de \mathbb{R}^n

 $M(S, \mathcal{C})$: matriz cujas colunas são os vetores da base S $M(\mathcal{T}, \mathcal{C})$: matriz cujas colunas são os vetores da base \mathcal{T}

$$M(\mathfrak{T}, \mathfrak{S}) = M(\mathfrak{C}, \mathfrak{S}) M(\mathfrak{T}, \mathfrak{C}) = M(\mathfrak{S}, \mathfrak{C})^{-1} M(\mathfrak{T}, \mathfrak{C})$$

Espaços Vetoriais ALGA 🖽 33/42

Cálculo de uma matriz de mudança de base em \mathbb{R}^n

Dadas as bases $\mathcal{S} = (X_1, ..., X_n)$, $\mathcal{T} = (Y_1, ..., Y_n)$ de \mathbb{R}^n e \mathcal{C} a base canónica do mesmo espaço vetorial, a matriz $M(\mathcal{T}, \mathcal{S})$ pode obter-se por aplicação do método de eliminação de Gauss-Jordan:

$$[M(S,C) \mid M(T,C)] = [X_1 \cdots X_n \mid Y_1 \cdots Y_n] \sim [I_n \mid M(T,S)]$$

Exemplo: Para obtermos a matriz $M(\mathfrak{T}, \mathcal{S})$ de mudança da base $\mathfrak{T} = ((0, 1), (1, -1))$ para a base $\mathcal{S} = ((1, 1), (1, 2))$, temos de calcular os seguintes vetores de coordenadas

$$[(0,1)]_{\mathbb{S}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \qquad \Rightarrow \qquad (0,1) = \alpha_1 (1,1) + \alpha_2 (1,2),$$

$$[(1,-1)]_{\mathbb{S}} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \qquad \Rightarrow \qquad (1,-1) = \beta_1 (1,1) + \beta_2 (1,2).$$

Espaços Vetoriais ALGA 🖽 34/42

Mudança de base em \mathbb{R}^n - Exemplo

Tal conduz a dois sistemas

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad e \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

com a mesma matriz dos coeficientes (cujas colunas são os vetores de δ).

Os sistemas anteriores podem-se resolver em simultâneo, formando a matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & -2 \end{bmatrix},$$

$$M(\mathfrak{T}, \mathcal{S}) = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}.$$

Espaços Vetoriais ALGA 🛗 35/42

Conjunto ortogonal e ortonormado em \mathbb{R}^n

Um conjunto $\{X_1, \dots, X_k\}$ de vetores de \mathbb{R}^n diz-se

- ortogonal se $X_i \cdot X_j = 0$, para $i, j = 1, \dots, k$, com $i \neq j$;
- ortonormado (o.n.) se é um conjunto ortogonal de vetores unitários $(||X_i|| = 1, i = 1, ..., k)$.

Exemplo:

- 1. $\{(1,1,0),(2,-2,1)\}$ é ortogonal;
- 2. $\left\{ \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right), \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right) \right\}$ é o.n.

Teorema: Todo o conjunto ortogonal de vetores não nulos é l.i.

Corolário:

Todo o conjunto ortogonal de n vetores (não nulos) de \mathbb{R}^n é uma base de \mathbb{R}^n .

Espaços Vetoriais ALGA 💆 36/42

Coordenadas de um vetor de \mathbb{R}^n numa base o.n.

Teorema: Seja $X \in \mathbb{R}^n$ e $\mathfrak{B} = (X_1, \dots, X_n)$ uma base o.n. de \mathbb{R}^n . Então

$$[X]_{\mathcal{B}} = \begin{bmatrix} X \cdot X_1 \\ \vdots \\ X \cdot X_n \end{bmatrix},$$

isto é,

$$X = a_1 X_1 + \cdots + a_n X_n,$$

 $com a_i = X \cdot X_i, i = 1, \dots, n.$

Exemplo:

Determinar as coordenadas do vetor (1,5) na base o.n. de \mathbb{R}^2

$$\left(\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\right).$$

Espaços Vetoriais ALGA 💆 37/42

Projeção ortogonal em \mathbb{R}^n

Seja \mathcal{W} um subespaço de \mathbb{R}^n , \mathcal{B} uma base de \mathcal{W} e $Y \in \mathbb{R}^n$. O vetor Y é ortogonal ao subespaço \mathcal{W} se

$$Y \cdot Z = 0$$
, para $Z \in \mathcal{W}$.

Teorema: O vetor Y é ortogonal a \mathcal{W} se e só se Y é ortogonal a cada vetor de \mathcal{B} .

A projeção ortogonal de $X \in \mathbb{R}^n$ sobre o subespaço \mathcal{W} de \mathbb{R}^n é o vetor $Z \in \mathcal{W}$ tal que

$$X = Y + Z$$
, onde Y é ortogonal a W .

O vetor Z denota-se por $\operatorname{proj}_{\mathcal{W}} X$.

Projeção ortogonal sobre uma reta

Exemplo: Seja $W = \langle X_1 \rangle$ uma reta, onde $\{X_1\}$ é uma base o.n. de W.

Seja
$$X = \overrightarrow{OP}$$
, com $X = \mathbf{Y} + Z$, onde \mathbf{Y} é ortogonal a \mathcal{W} ($\mathbf{Y} \cdot \mathbf{X_1} = \mathbf{0}$) e

$$Z = \operatorname{proj}_{\mathcal{W}} X = \alpha X_1.$$

Note-se que

$$X \cdot X_1 = Y \cdot X_1 + \alpha X_1 \cdot X_1 = \alpha,$$

concluindo-se que

$$\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1) X_1.$$

Observação: $\|Y\| = \text{dist}(P, W)$

Projeção ortogonal sobre um plano em \mathbb{R}^3

Exemplo: Seja $\mathcal{W}=\langle X_1,X_2\rangle$ um plano e $\{X_1,X_2\}$ uma base o.n. de \mathcal{W}

Verifica-se que
$$X = \overrightarrow{OP} = Z + Y$$
, com

$$Z = \operatorname{proj}_{\mathcal{W}} \mathbf{X} = \alpha_1 \mathbf{X_1} + \alpha_2 \mathbf{X_2} \quad \text{e} \quad \mathbf{Y} \cdot \mathbf{X_1} = \mathbf{Y} \cdot \mathbf{X_2} = \mathbf{0}.$$

Então, sendo

$$X = Y + Z = Y + \alpha_1 X_1 + \alpha_2 X_2$$

vem

$$X \cdot X_1 = \alpha_1$$
 e $X \cdot X_2 = \alpha_2$.

Logo,

$$\mathsf{proj}_{\mathcal{W}} \overset{\boldsymbol{X}}{=} (\overset{\boldsymbol{X}}{\times} \overset{\boldsymbol{X}_1}{\times}) \overset{\boldsymbol{X}_1}{\times} + (\overset{\boldsymbol{X}}{\times} \overset{\boldsymbol{X}_2}{\times}) \overset{\boldsymbol{X}_2}{\times}.$$

Observação:
$$\|Y\| = dist(P, W)$$

Projeção ortogonal em \mathbb{R}^n

Teorema: A projeção ortogonal de $X \in \mathbb{R}^n$ sobre o subespaço \mathcal{W} de \mathbb{R}^n é dada por

$$\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1)X_1 + \cdots + (X \cdot X_k)X_k \in \mathcal{W},$$

onde $\{X_1, \ldots, X_k\}$ é uma base o.n. de \mathcal{W} .

Nota:

O vetor $\mathbf{Y} = \mathbf{X} - \operatorname{proj}_{\mathcal{W}} \mathbf{X}$ é ortogonal a todos os vetores de \mathcal{W} .

Método de ortogonalização de Gram-Schmidt

Teorema: Todo o subespaço $\mathcal{W} \neq \{0\}$ de \mathbb{R}^n possui uma base o.n.

Demonstração:

Suponha-se que $\dim(\mathcal{W}) = m$ e $\{X_1, \dots, X_m\}$ é uma base de \mathcal{W} . Seja

- $Y_1 = \frac{X_1}{\|X_1\|}$,
- $\mathcal{Z}_1 = \langle Y_1 \rangle$,
- $X'_k = X_k \operatorname{proj}_{\mathcal{Z}_{k-1}} X_k$,
- $\bullet \ \ \mathbf{Y_k} = \frac{X_k'}{\|X_k'\|},$
- $\mathcal{Z}_k = \langle Y_1, \dots, Y_k \rangle$, para $k = 2, \dots, m$.

O conjunto $\mathcal{B} = \{Y_1, \dots, Y_m\} \subset \mathcal{W}$ é o.n., logo l.i. e, consequentemente, é uma base o.n. de \mathcal{W} .

Exemplo:

Determinar uma base o.n. de ((1,1,1,1),(1,2,-1,3),(2,1,-2,2)).

Espaços Vetoriais ALGA 🛗 42/42