Asymptotic Stability at Infinity for Differentiable Vector Fields of the Plane

Carlos Gutierrez¹, Benito Pires^{2,*}, Roland Rabanal³

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos SP, Brazil.

Abstract

Let $X: \mathbb{R}^2 \setminus \overline{D}_{\sigma} \to \mathbb{R}^2$ be a differentiable (but not necessarily C^1) vector field, where $\sigma > 0$ and $\overline{D}_{\sigma} = \{z \in \mathbb{R}^2 : ||z|| \leq \sigma\}$. Denote by $\mathcal{R}(z)$ the real part of $z \in \mathbb{C}$. If for some $\epsilon > 0$ and for all $p \in \mathbb{R}^2 \setminus \overline{D}_{\sigma}$, no eigenvalue of $D_p X$ belongs to $(-\epsilon, 0] \cup \{z \in \mathbb{C} : \mathcal{R}(z) \geq 0\}$, then:

a) For all $p \in \mathbb{R}^2 \setminus \overline{D}_{\sigma}$, there is a unique positive semi-trajectory of X starting at p; b) It is associated to X, a well defined number $\mathcal{I}(X)$ of the extended real line $[-\infty,\infty)$ (called the index of X at infinity) such that for some constant vector $v \in \mathbb{R}^2$ the following is satisfied: if $\mathcal{I}(X)$ is less than zero (resp. greater or equal to zero), then the point at infinity ∞ of the Riemann sphere $\mathbb{R}^2 \cup \{\infty\}$ is a repellor (resp. an attractor) of the vector field X + v.

Key words: Planar vector fields; Asymptotic stability; Markus-Yamabe conjecture; Injectivity.

Submitted to the Journal of Differential Equations on 11 January 2006.

^{*} Corresponding author. Fax: +55-16-33739650.

Email addresses: gutp@icmc.usp.br (Carlos Gutierrez), bpires@icmc.usp.br (Benito Pires), roland@mat.uab.es (Roland Rabanal).

¹ Partially supported by FAPESP Grant Temático # 03/03107-9, and by CNPq Grant # 306992/2003-5.

² Supported by FAPESP Grant # 03/03622-0.

³ Supported by CNPq Grant # 141853/2001-8.