CLAIMS

What is claimed is:

1	1.	A method of forming an embedded read element, comprising:
2		performing a photolithographic patterning step for defining a designed height of
3		an embedded read element on a wafer, wherein the definition of the height
4		of the embedded read element also results in formation of an in-line
5		lapping guide with a spacing formed between the embedded read element
6		and the in-line lapping guide;
7		performing a further photolithographic patterning step for defining a designed
8		width of the embedded read element;
9		performing a further photolithographic patterning step for connecting the
10		embedded read element and the in-line lapping guide with conducting
11		layers;
12		performing a first mechanical lapping step on the wafer, wherein the first
13		mechanical lapping step is monitored by measuring the resistance of a
14		parallel circuit of the embedded read element and the in-line lapping
15		guide; and
16		performing a second mechanical lapping step on the wafer, wherein the second
17		mechanical lapping step is monitored by measuring the GMR response of
18		the embedded read element.

A method as recited in claim 1, wherein the read element is an embedded giant 1 2. 2 magnetoresistance (GMR) sensor used in a current-in-plane (CIP) mode. A method as recited in claim 2, wherein the embedded giant magnetoresistance 1 3. 2 (GMR) sensor comprises: 3 a nonmagnetic seed layer; 4 ferromagnetic sense layers; 5 a nonmagnetic spacer layer; 6 a ferromagnetic reference layer; 7 a nonmagnetic antiparallel (AP) exchange-coupling layer; 8 a ferromagnetic keeper layer; and 9 a nonmagnetic cap layer. 1 4. A method as recited in claim 3, wherein the embedded giant magnetoresistance 2 (GMR) sensor further comprises an antiferromagnetic pinning layer sandwiched 3 into the keeper and cap layers. 5. 1 A method as recited in claim 3, wherein the embedded giant magnetoresistance 2 (GMR) sensor comprises: 3 a nonmagnetic Ni-Cr-Fe seed layer; ferromagnetic Ni-Fe/Co-Fe sense layers; 4 5 a nonmagnetic Cu-O spacer layer;

HIT1P024/HSJ9-2003-0079US1

a ferromagnetic Co-Fe reference layer;

6

7		a nonmagnetic Ru antiparallel (AP) exchange-coupling layer;
8		a ferromagnetic Co-Fe keeper layer; and
9		nonmagnetic Cu and Ta cap layers.
1	6.	An embedded GMR sensor as recited in claim 5, further comprising an
2		antiferromagnetic Pt-Mn pinning layer sandwiched into the Co-Fe keeper and Cu
3		cap layers.
1	7.	A method as recited in claim 1, wherein the read element is an embedded giant
2		magnetoresistance (GMR) sensor used in a current-perpendicular-to-plane (CPP)
3		mode.
1	8.	A method as recited in claim 7, wherein the embedded giant magnetoresistance
2		(GMR) sensor comprises:
3		a nonmagnetic seed layer;
4		ferromagnetic sense layers;
5		a nonmagnetic spacer layer;
6		a ferromagnetic reference layer;
7		a nonmagnetic antiparallel (AP) exchange-coupling layer;
8		a ferromagnetic keeper layer; and
9		a nonmagnetic cap layer.

1 9. A method as recited in claim 8, wherein the embedded GMR sensor further 2 comprises an antiferromagnetic pinning layer sandwiched into the keeper and cap 3 layers. 1 10. A method as recited in claim 7, wherein the embedded GMR sensor comprises: 2 a nonmagnetic seed layer; 3 ferromagnetic sense layers; 4 a nonmagnetic spacer layer; 5 a ferromagnetic reference layer; 6 a nonmagnetic antiparallel (AP) exchange-coupling layer; 7 a ferromagnetic keeper layer; and 8 a nonmagnetic cap layer. 1 11. A method as recited in claim 10, wherein the embedded GMR sensor further 2 comprises an antiferromagnetic pinning layer sandwiched into the keeper and cap 3 layers. 1 12. A method as recited in claim 1, wherein the read element is an embedded 2 tunneling magnetoresistance (TMR) sensor used in a current-perpendicular-to-3 plane (CPP) mode. 1 13. A method as recited in claim 12, wherein the embedded TMR sensor comprises:

HIT1P024/HSJ9-2003-0079US1

a nonmagnetic seed layer;

2

3		ferromagnetic sense layers;
4		a nonmagnetic barrier layer;
5		a ferromagnetic reference layer;
6		a nonmagnetic antiparallel (AP) exchange-coupling layer;
7		a ferromagnetic keeper layer; and
8		a nonmagnetic cap layer.
1	14.	A method as recited in claim 13, wherein the embedded TMR sensor further
2		comprises an antiferromagnetic pinning layer sandwiched into the keeper and cap
3		layers.
1	15.	An embedded read element as recited in claim 12, which is an embedded
2		tunneling magnetoresistance (TMR) sensor used in a current-perpendicular-to-
3		plane (CPP) mode, comprising:
4		a nonmagnetic Ta seed layer;
5		ferromagnetic Ni-Fe/Co-Fe sense layers;
6		a nonmagnetic Al-O barrier layer;
7		a ferromagnetic Co-Fe reference layer;
8		a nonmagnetic Ru antiparallel (AP) exchange-coupling layer;
9		a ferromagnetic Co-Fe keeper layer; and
10		nonmagnetic Cu and Ta cap layers.

A method of forming an embedded read element, comprising:

HIT1P024/HSJ9-2003-0079US1

1

16.

2		performing a photolithographic patterning step for defining a designed height of
3		an embedded read element on a wafer, wherein the definition of the height
4		of the embedded read element also results in formation of an in-line
5		lapping guide with a spacing formed between the embedded read element
6		and the in-line lapping guide;
7		performing a further photolithographic patterning step for defining a designed
8		width of the embedded read element;
9		performing a first mechanical lapping step on the wafer; and
10		performing a second mechanical lapping step on the wafer.
1	17.	A method as recited in claim 16, further comprising performing a further
2		photolithographic patterning step for connecting the embedded read element and
3		the in-line lapping guide with conducting layers;
1	18.	A method as recited in claim 16, wherein the first mechanical lapping step is
2		monitored by measuring the resistance of a parallel circuit of the embedded read
3		element and the in-line lapping guide.
1	19.	A method as recited in claim 16, wherein the second mechanical lapping step is
2		monitored by measuring the GMR response of the embedded read element.

a read element having been formed according to the following method:

HIT1P024/HSJ9-2003-0079US1

An embedded read element, comprising:

1

2

20.

3		performing a photonthographic patterning step for defining a designed neight of
4		an embedded read element on a wafer, wherein the definition of the height
5		of the embedded read element also results in formation of an in-line
6		lapping guide with a spacing formed between the embedded read element
7		and the in-line lapping guide;
8		performing a photolithographic patterning step for defining a designed width of
9		the embedded read element;
10		performing a further photolithographic patterning step for connecting the
11		embedded read element with conducting layers;
12		performing a first mechanical lapping step on the wafer, wherein the mechanical
13		lapping step is monitored by measuring the resistance of a parallel circuit
14		of the embedded read element and the in-line lapping guide;
15		performing a second mechanical lapping step on the wafer, wherein the second
16		mechanical lapping step is monitored by measuring the GMR response of
17		the embedded read element.
1	21.	A magnetic disk drive, comprising:
2		a magnetic disk;
3		a slider having a magnetic head assembly including write and read heads for
4		writing to and reading data from the magnetic disk is mounted, wherein
5		the read head includes an embedded read element formed by the process
6		recited in claim 1;
7		a suspension arm supporting the slider; and

8 an actuator arm coupled to the suspension arm.