Mathematical Foundation of Computer Sciences II

Algorithms on Finite Automata

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Automata as Models

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program. Thus regarded it as a model \mathcal{M} .

A finite automaton can also be used to describe regulations of a system or an (intra-procedure) program. Thus regarded it as a specification φ .

Usually, we should guarantee

$$\mathcal{M} \models \varphi$$

In the automata terminology, we should guarantee

$$L(\mathcal{M})\subseteq L(\varphi)$$

An Algorithmic Problem of FA

Given two automata M and N,

$$L(M) \subseteq L(N)$$

Two approaches:

$$L(M) \cap L(N^c) = \emptyset$$

and,

$$L(M^c) \cup L(N) = \Sigma^*$$

New Algorithmic Operations

New Operations

intersection

complement

emptiness

universality

Intersection of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cap L(B)$

$$(S \times S', \Sigma, \delta \times \delta', (q_0, q'_0), F \times F')$$

Complement of Automata

$$A = (S, \Sigma, \delta, q_0, F)$$

- if A is deterministic, $A^c = (S, \Sigma, \delta, q_0, S F)$.
- if A is non-deterministic, make A deterministic first

Assume that A is without ε -transition. Then

$$(P(S), \Sigma, \{(X, a, \{y \mid x \xrightarrow{a} y \text{ for } x \in X\})\}, \{q_0\}, \{X \mid X \cap F = \emptyset\})$$

Example of Complement

Pumping Lemma

Pumping Lemma

Pumping Lemma

Let $A=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton. For each $z\in L(A)$ with $|z|\geq |Q|,\;\exists u,v,w$ such that

- 1. z = uvw,
- 2. $|uv| \le |Q|$,
- 3. $|v| \ge 1$, and
- 4. $uv^iw \in L(A)$.

Idea of Pumping Lemma

Pumping Lemma

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton. For each $z \in L(A)$ with $|z| \ge |Q|$, $\exists u, v, w$ such that

- 1. z = uvw,
- 2. $|uv| \le |Q|$,
- 3. $|v| \ge 1$, and
- 4. $uv^iw \in L(A)$.

Pigeon hole principle!

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing L. Let $s = s_1 s_2 \dots s_n$ be a string in L with $n \ge |Q|$. Let r_1, \dots, r_{n+1} be the sequence of states that A enters while processing s, i.e.,

$$r_{i+1} = \delta(r_i, s_i)$$

for $i \in [n]$.

Among the first |Q|+1 states in the sequence, two must be the same, say r_j and r_l with $j < l \le |Q|+1$. We define

$$u = s_1 \dots s_{j-1}, v = s_j \dots s_{l-1}, \text{ and } w = s_l \dots s_n$$

Generalization of Pumping Lemma

Pumping Lemma

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton. There exist a number p, named the pumping length, For each $z \in L(A)$ with $|z| \ge p$, $\exists u, v, w$ such that

- 1. z = uvw,
- 2. $|uv| \le p$,
- 3. $|v| \ge 1$, and
- 4. $uv^iw \in L(A)$.

Example

The language $L = |\{0^n 1^n \mid n \ge 0\}|$ is not regular.

Proof.

If it is regular, consider $s = 0^p 1^p$. By the Pumping lemma, s = uvw with $uv^i w \in L$ for all $i \ge 0$.

As $|uv| \le p$ and |v| > 0, $v = 0^i$ for some i > 0. But then $uw = 0^{n-i}1^n \notin L$. Contradicting the lemma.

Quiz

The language $L = \{ w \mid w \text{ has an equal number of 0s and 1s } \}$ is not regular.

The language $L = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

The language $L = \{0^m 1^n \mid m \neq n\}$ is not regular.

Emptiness

Theorem

 $\overline{L(A) \neq \emptyset}$ iff $\exists z \text{ with } |z| < |Q| \text{ and } z \in L$.

Complexity of Subset

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

Ask $L(A) \subseteq L(B)$?

$$L(A) \subseteq L(B) \Leftrightarrow L(A) \cap L(B^c) = \emptyset$$

What is the complexity of the subset?

Myhill-Nerode Theorem

Equivalence Relation

A binary relation R on a set S is a subset of $S \times S$. An equivalence relation on a set satisfies

- Reflexivity: For all x in S, xRx
- Symmetry: For $x, y \in S$, $xRy \Leftrightarrow yRx$
- Transitivity: For $x, y, z \in S$, $xRy \land yRz \Rightarrow xRz$

Every equivalence relation on S partitions S into equivalence classes. The number of equivalence classes is called the index of the relation.

Let $S = \Sigma^+$ where $\Sigma = \{a, b\}$.

Define R as xRy whenever x and y both end in the same symbol of Σ .

How many equivalence classes does R partition S into?

Right Invariance

An equivalence relation on Σ^* is said to be right invariant with respect to concatenation if $\forall x, y \in \Sigma^*$ and $a \in \Sigma$, xRy implies that xaRya.

Let $S = \Sigma^*$ where $\Sigma = \{a, b\}$ and R be defined as follows:

xRy if x and y have the same number of a's.

- How many equivalence classes does R partition S into?
- Is R right invariant?

Equivalence Relations Induced by DFA's

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

Define a relation R_M as follows: For $x, y \in \Sigma^*$, $xR_M y \Leftrightarrow \delta^*(q_0, x) = \delta^*(q_0, y)$

- Is this an equivalence relation?
- If so, how many equivalence classes does it have? iow., what is its index?

An Example

C1: All strings not containing more than 2 consecutive a's and which end in a or b.

C2: All strings not containing more than 2 consecutive a's and which end in a.

C3: All strings not containing more than 2 consecutive a's and which end in aa.

C4: All strings containing at least three consecutive a's.

Congruence

 $u\,R\,v$ is a congruence iff R is an equivalence and preserved under concatenation

$$u R v \Rightarrow wuw' R wvw'$$
 for each $w, w' \in \Sigma^*$

.

Myhill-Nerode Theorem

Myhill-Nerode Theorem

The following three statements are equivalent.

- 1. L is regular.
- 2. L is a union of congruence classes of finite index.
- 3. R_L is a congruence of finite index, where

 $u R_L v \text{ iff } uw \in L \Leftrightarrow vw \in L \text{ for each } w \in \Sigma^*$

Let R_L be a congruence of finite index, where

$$u R_L v$$
 iff $uw \in L \Leftrightarrow vw \in L$ for each $w \in \Sigma^*$

Let an automaton $A = (Q, \Sigma, \delta, q_0, F)$ be

- $Q = \Sigma^*/R_L$ (finite congruence classes of R_L)
- $\delta = \{([u], a, [ua]) \mid u \in \Sigma^*, a \in \Sigma\}$
- $q_0 = [\varepsilon]$
- $\bullet \ \ F = \{[u] \mid u \in L\}$

L = L(A) and L is regular.

Proof: $1 \Rightarrow 2$

Let
$$L = L(A)$$
 with $A = (Q, \Sigma, \delta, q_0, F)$

$$u R_A v \text{ iff } q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q' \text{ for } q, q' \in Q$$

 R_A is a congruence of finite index, (at most $2^{|Q| \times |Q|}$).

Proof: $2 \Rightarrow 3$

Let R be a congruence of finite index and let L be a union of congruence classes.

Let $u R_L v$ iff $uw \in L \Leftrightarrow vw \in L$ for each $w \in \Sigma^*$.

 $u R v \Rightarrow u R_L v$; thus, R_L is of finite index.

Another Technique for Complement

Myhill-Nerode Theorem says that L is regular $\Leftrightarrow L$ is a union of congruence classes of finite index.

$$L=\bigcup_{U_i\cap L\neq\emptyset}U_i$$

Note that each U_i is regular! Thus,

$$L^c = \bigcup_{U_i \cap L = \emptyset} U_i$$

Other Computations

Other Computations

minimization

equivalence

bisimulation

reversal

homomorphism

inverse homomorphism

. . .

Assignment 1

Assignment 1

Exercises 1.5 (b, d); 1.6 (e, i); 1.11; 1.14 (b); 1.29; 1.38; 1.47; 1.48 deadline Mar. 18