ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5.04

"Определение постоянной Ридберга для атомного водорода"

Группа: ОФ-3 ФПИ 1.1.1

Студенты: Стафеев И.А., Голованов Д.И.

Преподаватель: Середин А.А.

К работе допущен:

Работа выполнена:

Отчет принят:

1 Цель работы

- 1. Получение численного значения постоянной Ридберга для атомного водорода из экспериментальных данных.
- 2. Оценка экспериментального значения постоянной Ридберга и её сравнение с теоретическим значением.

2 Задачи

Для достижения цели были поставлены следующие задачи:

- 1. Произвести градуировку монохроматора по известному спектру ртути;
- 2. Экспериментально определить длины волн водорода и определить энергию ионизация атома водорода.

3 Объект исследования

Атом водорода и его линейчатый спектр в видимой области.

4 Методы экспериментального исследования

Для исследования используются следующие методы:

- Спектроскопия регистрация линий спектра водорода с помощью монохроматора УМ-2.
- Калибровка градуировка шкалы углов поворота призмы по известным длинам волн спектра ртути.
- Графоаналитический метод построение зависимости волнового числа от $1/n^2$ и нахождение постоянной Ридберга из углового коэффициента.

5 Рабочие формулы и исходные данные

1. Волновое число:

$$\tilde{\nu} = \frac{1}{\lambda},\tag{1}$$

где $\tilde{\nu}$ — волновое число, λ — длина волны излучения.

2. Обобщённая формула Бальмера:

$$\tilde{\nu} = R \cdot Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \tag{2}$$

где R — постоянная Ридберга, Z — заряд ядра (для водорода Z=1), n_1 — номер серии (для Бальмера $n_1=2$), $n_2>n_1$.

3. Энергия фотона:

$$E = h\nu = \frac{hc}{\lambda},\tag{3}$$

где E — энергия, h — постоянная Планка, c — скорость света.

4. Энергетические уровни атома водорода:

$$E_n = -\frac{hcR}{n^2},\tag{4}$$

где n — главное квантовое число.

5. Закон Бора (частота испускаемого излучения при переходе между уровнями):

$$h\nu = E_{n_2} - E_{n_1}. (5)$$

6. Постоянная Ридберга через фундаментальные константы:

$$R = \frac{me^4}{8\varepsilon_0^2 ch^3},\tag{6}$$

где m — масса электрона, e — заряд электрона, ε_0 — электрическая постоянная.

6 Измерительные приборы:

Таблица 1 — Перечень измерительных приборов

№	Наименование	Шкала измерения	Используемый диапазон	$\Delta_{\mathbf{u}}$
1	Шкала барабана УМ-2	Относительные единицы	$0^{\circ} - 3500^{\circ}$	1°

7 Схема установки

Схема лабораторной установки представлена на рисунке 1.

Рисунок 1 — Схема монохроматора УМ-2

Свет от источника 1 проходит через входную щель 2, установленную в фокусе ахроматического объектива коллиматора 3 и далее параллельным пучком падает на диспергирующий элемент — призму Аббе 4. Ахроматический объектив камеры 5 собирает все параллельные лучи различных длин волн в своей фокальной плоскости. Окуляр 7 служит для визуального отсчета положений спектральных линий. Для индикации луча, идущего вдоль оптической оси прибора, в фокальной плоскости объектива камеры устанавливается игла 6, силуэт которой виден через окуляр вместе с изображениями спектральных линий.

8 Прямые измерения

Результаты градуировки монохроматора по спектру ртути представлены в таблице 2.

Таблица 2 — Спектральные линии ртути

Цвет линии в спектре ртути	λ , HM	α , делений
Красный	690.7	2970
Красный	671.1	2944
Оранжевый	623.4	2672
Жёлтый	579.0	2496
Жёлтый	576.9	2484
Зелёный	546.0	2302
Голубой	491.6	1862
Сине-фиолетовый	435.8	1454
Фиолетовый	407.8	1338
Фиолетовый	404.7	1228

9 Расчёт результатов косвенных измерений

На основе таблицы градуировки была построена градуировочная кривая (см. график в 11). Для аппроксимации кривой квадратичной функцией была использована библиотека scipy.optimize. По графику были найдены длины волн для спектра водорода, затем посчитаны волновые числа (см. таблицу 3). Уравнение полинома: $y = -0.008x^2 + 15x - 3504$.

Таблица 3 — Спектральные линии водорода

Цвет линии в спектре водорода	λ , HM	$\tilde{\nu}, \mathrm{HM}^{-1}$	α , делений
λ_1 (Красная)	648.9	0.0015	2822
λ_2 (Голубая)	479.4	0.0021	1830
λ_3 (Фиолетовая)	404.7	0.0025	1200

График зависимости ν от обратного квадрата главного квантового числа $\frac{1}{n^2}$ аналогичным образом был аппроксимирован, но линейной функцией (11). Уравнение функции: y=-0.0128x+0.0029. Теоретически эта зависмость выражается формулой $\tilde{\nu}(\frac{1}{n^2})=R(\frac{1}{4}-\frac{1}{n^2})$ ($n\in[3,4,5]$), откуда $R=4\tilde{\nu}(0)$ или R=-a, где a-коэффициент аппроксимирующей прямой, посчитанный по МНК. Сравнение значений постоянной Ридберга привдеено в таблице 4.

Таблица 4 — Расчет значения постоянной Ридберга по эксперименальным данным

Метод определения постоянной Ридберга	$R_{ m эксп}, { m m}^{-1}$
Из уравнения $\tilde{\nu}(0) = \frac{R}{4}$	11768389
По коэффициенту наклона прямой $\tilde{\nu}(\frac{1}{n^2})$	12777327
Из уравнения 6	10968968

При использовании постоянной Ридберга, посчитанной по формуле 6, были найдены значения длин волн для спектральных линий водорода. Сравнение с длинами волн, найденными по графику, представлено в таблице 5.

Таблица 5 — Сравнение длин волн спектральных линий водорода

Цвет линии в спектре водорода	λ, нм (по графику)	λ, нм (по формуле Бальмера)	$\Delta\lambda$, HM
λ_1 (Красная)	648.9	656.8	7.5
λ_2 (Голубая)	479.4	486.5	6.8
λ_3 (Фиолетовая)	404.7	434.4	29.4

По формуле Бора $E_n = -\frac{Rhc}{n^2}$ Энергия ионизации атома водорода: $E = E_\infty - E_1 = 0 - (-\frac{Rhc}{1^2}) = Rch = \frac{10968968 \cdot 2.998 \cdot 10^8 \cdot 6.626 \cdot 10^{-34}}{1.6 \cdot 10^{-19}}$ эВ ≈ 13.63 эВ.

10 Расчет погрешностей

Для R = -a - коэффициента наклона прямой:

$$\Delta R = 2 \sqrt{\frac{1}{\sum_{i=1}^{N} (\frac{1}{n_i^2} - \langle \frac{1}{n^2} \rangle)^2} \cdot \frac{\sum_{i=1}^{N} (y_i - (R \cdot \frac{1}{n_i^2} + \frac{R}{4}))^2}{N - 2}} = 2824749 \text{ m}^{-1}$$

Для $R=4\tilde{\nu}(0)$ - свободного члена:

$$\Delta R = 4 \cdot 2 \sqrt{\left(\frac{1}{N} + \frac{\left(\left\langle\frac{1}{n^2}\right\rangle\right)^2}{\sum_{i=1}^{N} \left(\frac{1}{n_i^2} - \left\langle\frac{1}{n^2}\right\rangle\right)^2}\right) \cdot \frac{\sum_{i=1}^{N} (y_i - (R \cdot \frac{1}{n_i^2} + \frac{R}{4}))^2}{N - 2}}}{N - 2} = 871609 \text{ m}^{-1}$$

11 Графики

Рисунок 2 — Градуировочная кривая монохроматора УМ-2

Рисунок 3 — График зависимости $\tilde{\nu}$ от $\frac{1}{n^2}$

12 Окончательные результаты

```
Для R=-a - коэффициента наклона прямой: R=(12777327\pm2824749)~\mathrm{m}^{-1};~\varepsilon_R=22\%;~\alpha=0.95 Для R=4\tilde{\nu}(0) - свободного члена: R=(11768389\pm871609)~\mathrm{m}^{-1};~\varepsilon_R=7\%;~\alpha=0.95 Энергия ионизации атома водорода в основном состоянии: E=13.63~\mathrm{pB}
```

13 Выводы и анализ результатов работы

В ходе лабораторной работы было получено экспериментальное значение постоянной Ридберга. Из-за небольшого числа наблюдений применение модели аппроксимации приходит к значительным погрешностям. Экспериментальные данные характеризуются высокой дисперсией, что вызывает большое среднеквадратическое отклонение и, как следствие, высокую относительную погрешность результата.

Из двух вариантов экспериментальных значений постоянной Ридберга R - отрицательного коэффициента наклона прямой и значения $4\tilde{\nu}(0)$ - в качестве максимально правдоподобного результата принято значение $4\tilde{\nu}(0)$, так как оно имеет меньшую относительную ошибку и ближе по значению к постоянной, вычисленной по формуле $6: R = (11768389 \pm 871609) \text{ м}^{-1}; \, \varepsilon_R = 7\%.$

Было получено значение энергии ионизации атома водорода в основном состоянии: E = 13.63 эВ. Значение отличается от теоретического E = 13.86 эВ (на 1.65%) в силу округления используемых в формуле постоянных.