Электротехника

Курсовая работа

Часть 2

Цель работы

Исследование сложной цепи синусоидального тока посредством комплексных чисел и векторных диаграмм.

Теоретические сведения

Описание двухполюсников комплексными числами

Расчёт разветвлённых цепей синусоидального тока в установившихся режимах работы ведут с помощью комплексных чисел и представляют в виде векторных диаграмм в комплексной плоскости.

Методы расчёта цепей постоянного тока (посредством законов Кирхгофа, методами узловых напряжений, контурных токов, наложения, преобразования схем) справедливы и для расчёта цепей синусоидального тока. При этом синусоидально изменяющиеся величины (ЭДС, напряжение и ток) представляют в виде комплексных чисел: комплекс ЭДС $\underline{E} = E \, e^{j\,\psi_e}$ комплекс напряжения $\underline{U} = E \, e^{j\,\psi_e}$ и комплекс тока $\underline{I} = I \, e^{j\,\psi_e}$.

В свою очередь комплексные числа изображают в виде векторов в комплексной плоскости Im-Re. При этом алгебраические действия над синусоидальными величинами заменяют действиями над комплексными числами или над векторами.

В данной работе исследуется цепь с последовательно-параллельным соединением ветвей - пассивных двухполюсников S1, P2 и P3 (рисунок 1, a).

Рисунок 1

Двухполюсник S1 типа S состоит из трёх последовательно соединенных элементов R, L и C (рисунок 1, б), а каждый из двухполюсников P2 и P3 типа P состоит из трёх параллельно соединенных элементов R, L и C (рисунок 1, в).

Согласно варианту (таблица 1) в двухполюсниках нужно оставить указанный набор элементов и установить значения их параметров.

Полное комплексное сопротивление <u>Z</u> двухполюсника типа S с последовательным соединением элементов (рисунок 1, б) записывают в алгебраической или в показательной форме:

$$Z = R + jX_L - jX_c = Ze^{j\varphi} ,$$

где $Z = \sqrt{R^2 + (X_L - X_C)^2}$ и $\phi = arctg[(X_L - X_C)/R]$ - модуль и аргумент комплекса полного сопротивления двухполюсника; R, $X_L = \omega L$ и $X_C = 1/\omega C$ – активное, индуктивное и ёмкостное сопротивления двухполюсника.

Полную комплексную проводимость \underline{Y} (в сименсах) двухполюсника типа P с параллельным соединением элементов (рисунок 1, в) также записывают в алгебраической или в показательной форме:

$$Y=1/Z=g-jb_L+jb_C=Ye^{-j\varphi}$$
,

где $\underline{Y}=1/Z=\sqrt{g^2+(b_L-b_C)^2}$ и $\phi=\arctan[(b_L-b_C)/g]$ - модуль и аргумент комплекса полной проводимости двухполюсника; g=1/R, $b_L=1/X_L$ и $b_C=1/X_C$ - активная, индуктивная и ёмкостная проводимости двухполюсника.

Двухполюсник типа P может быть преобразован в двухполюсник типа S и наоборот посредством формул преобразования. Двухполюсник типа P с элементами R и X_L преобразовывают в двухполюсник типа S по формулам:

$$Z'=R'+jX'_L=g/Y^2+j(b/Y^2)$$
 , где $R'=g/Y^2; X'_L=b/Y^2; Y=\sqrt{1/R^2+1/X_L^2}$.

Рисунок 2

Для наглядности комплексы \underline{Z} и \underline{Y} представляют в виде треугольников (рисунок 2). При этом комплексный ток двухполюсника типа S обычно записывают в виде $\underline{I} = \underline{U}/\underline{Z}$, а двухполюсника типа P - в виде $\underline{I} = \underline{Y}\underline{U}$, где \underline{U} - комплекс напряжения на зажимах двухполюсника.

Расчёт цепи со смешанным соединением двухполюсников

Запишем первый и второй законы Кирхгофа для схемы (рисунок 1, а):

$$\underline{\mathbf{I}}_1 = \underline{\mathbf{I}}_2 + \underline{\mathbf{I}}_3; \underline{\mathbf{E}} = \underline{\mathbf{U}} = \underline{\mathbf{U}}_1 + \underline{\mathbf{U}}_2,$$

где
$$\underline{I}_2 = \underline{Y}_2\underline{U}_2$$
; $\underline{I}_3 = \underline{Y}_3\underline{U}_2$; $\underline{I}_1 = (\underline{Y}_2 + \underline{Y}_3)\underline{U}_2$, или

$$\underline{\mathbf{I}}_1 = \underline{\mathbf{U}}/\underline{\mathbf{Z}} = \underline{\mathbf{U}}/[\underline{\mathbf{Z}}_1 + (\underline{\mathbf{Z}}_2\underline{\mathbf{Z}}_3)/(\underline{\mathbf{Z}}_2 + \underline{\mathbf{Z}}_3)]; \underline{\mathbf{Z}}_2 = 1/\underline{\mathbf{Y}}_2; \underline{\mathbf{Z}}_3 = 1/\underline{\mathbf{Y}}_3.$$

Пусть
$$\underline{E} = Ee^{j30^{\circ}} = \underline{U} = 10e^{j30^{\circ}}B$$
; $\underline{Z}_1 = R - jX_C = 5 - j5$ Ом = 7,07 $e^{-j45^{\circ}}$ Ом; $\underline{Z}_2 = R + jX_L = 4 + j3 = 5e^{j37^{\circ}}$ Ом; $\underline{Z}_3 = -jX_C = 5e^{-j90^{\circ}}$ Ом.

Тогда комплексные проводимости второй и третьей ветвей:

$$\underline{Y}_2 = 1/\underline{Z}_2 = 1/(5e^{j37^\circ}) = 0.2e^{-j37^\circ}C_M; \underline{Y}_3 = 1/\underline{Z}_3 = 1/(5e^{-j90^\circ}) = 0.2e^{j90^\circ}C_M,$$

а эквивалентная комплексная проводимость разветвления

$$\underline{Y}_{23} = \underline{Y}_2 + \underline{Y}_3 = 0,2e^{-j37^{\circ}} + 0,2e^{j90^{\circ}} = 0,2\cos 37^{\circ} - j0,2\sin 37^{\circ} + j0,2 = 0,16 - j0,12 + j0,2 = 0,16 + j0,08 = 0,179e^{j26,5^{\circ}}$$
CM.

Комплекс входного сопротивления

$$\underline{Z} = \underline{Z}_1 + \underline{Z}_{23} = \underline{Z}_1 + 1/\underline{Y}_{23} = 7,07e^{-j45^{\circ}} + 5,59e^{-j26,5^{\circ}} = 5 - j5 + 5 - j2,5 = 10 - j7,5 = 12,5e^{-j37^{\circ}}Om.$$

Комплекс тока $\underline{I}_1 = \underline{E}/\underline{Z} = 100e^{j30^\circ}/12,5e^{-j37^\circ} = 0,8e^{j67^\circ}A$.

Комплексы напряжений и токов ветвей:

$$\underline{U}_1 = \underline{Z}_1 \underline{I}_1 = 7,07 e^{-j45^\circ} \cdot 0,8 e^{j67^\circ} = 5,66 e^{j18^\circ} B;$$

$$\underline{\mathbf{U}}_2 = \underline{\mathbf{Z}}_{23}\underline{\mathbf{I}}_1 = 5,59e^{-j26,5^{\circ}} \cdot 0,8e^{j67^{\circ}} = 4,47e^{j40,5^{\circ}}\mathbf{B};$$

$$\underline{I}_2 = \underline{U}_2 / \underline{Z}_2 = 4,47 e^{j40,5^{\circ}} / 5 e^{j37^{\circ}} = 0,89 e^{j3,5^{\circ}} A;$$

$$\underline{I}_3 = \underline{U}_2 / \underline{Z}_3 = 4,47 e^{j40.5^{\circ}} / 5 e^{-j90^{\circ}} = 0,89 e^{j130,5^{\circ}} A.$$

Векторная диаграмма напряжений и токов ветвей представлена на рисунке 3.

Рисунок 3

Задание

Рассчитать схему цепи (рисунок 1, а) с параметрами, приведенными в таблице 1 Результаты расчета занести в таблицу 2. Используя данные расчёта, построить в комплексной плоскости векторную диаграмму напряжений и токов схемы цепи с указанием направлений фазовых углов φ_k ветвей и угла φ на зажимах цепи.

Таблица 1

			Двухполюсник									
Вариант	Ε,	f,	S1				P2		Р3			
	В	Гц	<i>R</i> ₁ , Ом	L_1 , м Γ н	<i>C</i> ₁ , мкФ	<i>R</i> ₂ , Ом	<i>L</i> ₂ , мГн	<i>C</i> ₂ , мкФ	<i>R</i> 3, Ом	<i>L</i> ₃ , мГн	<i>С</i> ₃ , мкФ	
110	2 + N*	3000	-	0,6	5	6	0,2	-	10	-	5	
1120	1 + N	4000	4	0,4	-	4	-	8	8	0,4	-	
2130	N	5000	4	0,2	-	8	0,3	-	4	-	10	
N^* - номер варианта												

Собрать схему (рисунок 4) согласно варианту задания (таблица 1) в Multisim, установить параметры элементов двухполюсников S1, P2, P3, источника синусоидального напряжения $e=\sqrt{2}\sin(2\pi f\,t)$, выбрать режим работы измерительных приборов AC.

Изменяя масштаб горизонтальной развертки лучей 0,05...0,1 мс/дел при частотах ЭДС f = 3...5 кГц, получить удобные для наблюдения и измерения фазового угла осциллограммы напряжения и тока (2...3 периода изменения ЭДС e) на экране осциллографа.

Напряжение $u_R = R_{A(\text{мперметра})}$ і, пропорциональное току і, снимается с внутреннего активного сопротивления $R_A = 1$ мОм амперметра A1 (выступает в роли датчика тока), поэтому масштаб по вертикали канала A осциллографа задавать в интервале 0,1...0,5 мВ/дел (mV/div), а канала B, на вход которого подаётся напряжение источника e, в интервале 5...20 B/дел (V/div).

Рисунок 4

	F, Гц	E, B	φ, град	U ₁ ,	I ₁ ,	φ ₁ , град	U ₂ , B	I ₂ ,	φ ₂ , град	U ₃ ,	I ₃ ,	φ ₃ , град
Рассчитано	f											
Измерено	f											
	2f											
Рассчитано	Полные сопротивления двухполюсников											
по данным эксперимент		$Z_1 = U_1/I_1$, Om				$Z_2 = U_2/I_2$, Om			$Z_3 = U_3/I_3$, Ом			
ОВ	f											
	2f											

Запустить моделирование. Показания приборов и значения вычисленных фазовых углов $\varphi_k = \psi_{uk} - \psi_{ik}$, где k – номер ветви, и угла $\varphi = \psi_e - \psi_{i1} = -\psi_{i1}$ на входе цепи, занести в таблицу 2. Найти углы сдвига фаз φ_1 , φ_2 и φ_3 ветвей, воспользовавшись показаниями ваттметров, т. е. $|\varphi_k| = \arccos(P_k/U_k I_k)$, где P_k – показание k-го ваттметра; U_k – напряжение k-й ветви; I_k – ток k-ой ветви; k = 1, 2 и 3. Угол сдвига фаз на входе цепи определить по формуле: $\varphi = 360^\circ \Delta t/T$, град, где Δt – временной интервал между напряжением и током в секундах, определяемый по осциллограммам напряжения и и тока i_1 ; T = 1/f — период изменения питающего цепь напряжения в секундах; f — частота ЭДС источника е в герцах.

Сравнить результаты измерений электрических величин со значениями, полученными в результате расчёта.

Повторить действия, удвоив частоту f синусоидальной ЭДС e. Результаты измерений занести в таблицу 2.

По результатам измерений рассчитать полные сопротивления двухполюсников и занести их значения в таблицу 2. Построить (в масштабе) шесть треугольников сопротивлений двухполюсников, отметив на них фазовые углы.

Содержание отчета

- 1. Наименование и цель работы.
- 2. Электрические расчётные схемы и копия схемы цепи, собранной в Multisim.

- 3. Расчётные формулы, треугольники сопротивлений ветвей, векторные и временные диаграммы напряжений и токов схемы цепи.
- 4. Таблица с расчётными и экспериментальными данными.
- 5. Выводы по работе.