XIAO ZHANG

Email: xiao.zhang@cispa.de Homepage: https://xiao-zhang.net

Google Scholar: https://scholar.google.com/citations?user=L-lz7CUAAAAJ&hl=en

RESEARCH INTERESTS

Machine Learning: trustworthy machine learning, adversarial machine learning, statistical machine learning Optimization: convex/non-convex optimization, low-rank matrix recovery

EDUCATION

University of Virginia, Charlottesville, VA, USA Ph.D. in Computer Science Advisor: David Evans Thesis: From Characterizing Intrinsic Robustness to Adversarially Robust Machine Learning University of Virginia, Charlottesville, VA, USA Master of Science in Statistics Tsinghua University, Beijing, China Bachelor of Science in Mathematics

PROFESSIONAL EXPERIENCES

CISPA Helmholtz Center for Information Security, Saarbruecken, Germany	Oct 2022 - Present
Tenure-Track Faculty	

Robert Bosch LLC, Pittsburgh, PA, USA

Jun 2020 - Oct 2020

Machine Learning Research Intern Mentor: Anit Kumar Sahu

CONFERENCE PUBLICATIONS

- * denotes equal contribution.
- Xiao Zhang and David Evans
 Understanding Intrinsic Robustness using Label Uncertainty
 In the Tenth International Conference on Learning Representations (ICLR 2022)
 [PDF] [Link] [ArXiv]
- 2. Jack Prescott, Xiao Zhang, and David Evans

Improved Estimation of Concentration under ℓ_p -norm Distance Metrics using Half Spaces In the Ninth International Conference on Learning Representations (ICLR 2021) [Acceptance rate: 28.7%] [PDF] [Link] [ArXiv]

3. Sicheng Zhu*, Xiao Zhang*, and David Evans

Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization. In the Thirty-seventh International Conference on Machine Learning (ICML 2020) [Acceptance rate: 21.8%] [PDF] [Link] [ArXiv]

4. Xiao Zhang*, Jinghui Chen*, Quanquan Gu and David Evans
Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models.

In the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)

[PDF] [Link] [ArXiv]

5. Saeed Mahloujifar*, Xiao Zhang*, Mohammad Mahmoody and David Evans Empirically Measuring Concentration: Fundamental Limits to Intrinsic Robustness. *In the Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019)* [Spotlight, 164/6743 (2.97%)] [PDF] [Link] [ArXiv]

6. Xiao Zhang and David Evans

Cost-Sensitive Robustness against Adversarial Examples.

In the Seventh International Conference on Learning Representations (ICLR 2019)

[Acceptance rate: 31.4%] [PDF] [Link] [ArXiv]

7. Xiao Zhang*, Yaodong Yu*, Lingxiao Wang* and Quanquan Gu Learning One-hidden-layer ReLU Networks via Gradient Descent. In the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019) [Acceptance rate: 32.4%] [PDF] [Link] [ArXiv]

8. Xiao Zhang*, Simon S. Du* and Quanquan Gu

Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow. *In the Thirty-fifth International Conference on Machine Learning (ICML 2018)*[Acceptance rate: 25.1%] [PDF] [Link] [ArXiv]

9. Xiao Zhang*, Lingxiao Wang*, Yaodong Yu and Quanquan Gu A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery In the Thirty-fifth International Conference on Machine Learning (ICML 2018) [Acceptance rate: 25.1%] [PDF] [Link]

10. Xiao Zhang*, Lingxiao Wang* and Quanquan Gu

A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery In the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018) [Acceptance rate: 33.2%] [PDF] [Link] [ArXiv]

11. Lingxiao Wang*, Xiao Zhang* and Quanquan Gu

A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery. In the Thirty-fourth International Conference on Machine Learning (ICML 2017)

[Acceptance rate: 25.9%] [PDF] [Link] [ArXiv]

12. Lingxiao Wang*, Xiao Zhang* and Quanquan Gu

A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation. In the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017) [Acceptance rate: 31.7%] [PDF] [Link] [ArXiv]

WORKSHOP PAPERS AND PREPRINTS

1. Xiao Zhang and David Evans

Incorporating Label Uncertainty in Intrinsic Robustness Measures. ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

2. Saeed Mahloujifar*, Xiao Zhang*, Mohammad Mahmoody and David Evans Empirically Measuring Concentration: Fundamental Limits to Intrinsic Robustness. ICML 2019 Workshops on Uncertainty & Robustness in Deep Learning Workshop and ICLR 2019 Workshops on Safe Machine Learning and Debugging Machine Learning Models

3. Jinghui Chen, Lingxiao Wang, **Xiao Zhang** and Quanquan Gu Robust Wirtinger Flow for Phase Retrieval with Arbitrary Corruption. *ArXiv:1704.06256*, 2017

TALKS AND PRESENTATIONS

- Incorporating Label Uncertainty in Intrinsic Robustness Measures
 Workshop on Security and Safety in Machine Learning Systems at ICLR, Online, May 2021
 [Poster]
- Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models
 Artificial Intelligence and Statistics (AISTATS), Online, Aug 2020
 [Slides] [Video]
- 3. Empirically Measuring Concentration: Fundamental Limits to Intrinsic Robustness Neural Information Processing Systems (NeurIPS), Vancouver, Canada, Dec 2019
 [Poster] [Slides] [Video]
- Cost-Sensitive Robustness against Adversarial Examples
 International Conference on Learning Representations (ICLR), New Orleans, USA, May 2019
 [Poster]
- Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow International Conference on Machine Learning (ICML), Stockholm, Sweden, Jul 2018 [Poster] [Slides] [Video]
- 6. A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery Artificial Intelligence and Statistics (AISTATS), Lanzarote, Canary Islands, Apr 2018 [Poster]
- 7. A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery International Conference on Machine Learning (ICML), Sydney, Australia, Aug 2017 [Poster] [Slides] [Video]
- 8. A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale, Florida, Apr 2017
 [Poster]

PROFESSIONAL SERVICES

Program Committee Member: SaTML 2023, Euro S&P 2023

Journal Reviewer: Machine Learning (MLJ), Advances in Computational Mathematics (ACOM), Journal of Intelligent Information Systems (JIIS), Transactions on Machine Learning Research (TMLR)

Conference Reviewer: NeurIPS 2020, Neurips 2021, NeurIPS 2022, ICML 2022, AISTATS 2021, ICLR 2021, ICLR 2022

MENTORING EXPERIENCES

Sicheng Zhu (Visiting scholar at UVA, paper in ICML 2020, now a CS PhD student at UMD)

Jack Prescott (Undergraduate student at UVA, paper in ICLR 2021)

TEACHING EXPERIENCES

Teaching Assistant, Department of Computer Science, University of Virginia

CS3102: Theory of Computation 2019 fall
CS6501: Optimization for Machine Learning 2017 fall

CS2102: Discrete Math

Teaching Assistant, Department of Statistics, University of Virginia

STAT2120: Introduction to Statistical Science 2016 fall, 2017 spring