Algebra 2R

Problem List 2

Weronika Jakimowicz

EXERCISE 4.

Assume that K is a finite field, characteristic p.

(a) Prove that every irreducible polynomial $f \in K[x]$ divides the polynomial $w_n(x) = x^n - 1$ for some n not divisible by p. (hint: prove that the splitting field of f is finite.)

Let f be an irreducible polynomial $f \in K[x]$ and n = deg(f) > 0 and let $a_1, ..., a_r \in L \supseteq K$ be its roots, where L is the splitting field of f over K. Because K is finite, i can say that |K| = q.

For my convenience, I will consider $g = b_n^{-1}f$, where b_n is the leading coefficient in f. So now g is a monic polynomial and considering the splitting field of f is the same as considering the splitting field of g - I just multiplied a polynomial by a nonzero constant.

Lemacik: The splitting field of g (equivalently, of f) is finite.

We will construct the splitting field of K as such:

$$L_1 = K(a_1)$$

$$L_2 = L_1(a_2)$$

$$L_i = L_{i-1}(a_i)$$

and then $L = L_r$.

Let

$$f(x) = \prod_{i=1}^{r} (x - a_i)^{k_i}$$

and notice that $\sum k_i = n$.

I will show that $[L_r : K] = \prod_{i=1}^r k_i < \infty$ using finite induction.

1. $[L_1 : K]$. We know that g in L_1 can be written as

$$g = (x - a_1)^{k_1} u_1,$$

where $u_1 \in L_1[x]$ is an irreducible polynomial such that $u_1(a) \neq 0$. Then, the ideal

$$I(a_1/K) = \{w \in K[x] : w(a_1) = 0\} = ((x - a_1)^{k_1})$$

because even though I write $(x - a_1)^{k_1}$, I know that a polynomial of this form is irreducible in K[x] if $a_1 \notin K$. Which must be the case because we started from a polynomial that is not a product of linear polynomials.

From Remark 4.4. (below) I know that $[L_1 : K] = deg((x - a_1)^{k_1}) = k_1$.

2.
$$[L_{i+1} : L_i] = q^{k_{i+1}}$$

Right now we have that

$$g = (x - a_{i+1})^{k_{i+1}} u_{i+1}(x) \prod_{j=1}^{i} (x - a_j)^{k_j}$$

which looks horrific but I am trying to be formal and so on. I want $u_{i+1}(a_{i+1}) \neq 0$. The product part is a linear combination of polynomials from L_i and $(x - a_{i+1})^{k_{i+1}}$ is a linear combination of polynomials from L_{i+1} but not from L_i . And so is irreducible over L_i . So now we have that

$$I(a_{i+1}/K) = ((x - a_{i+1}))^{k_{i+1}}$$

by the same argument as above. Thus, from remark 4.4. (still there) we have that $[L_{i+1} : L_i] = k_{i+1}$.

Now that we are done, we will use Fact 4.5. (even belower). We see, from condition, that

$$K\subseteq L_1\subseteq L_2\subseteq ...\subseteq L_r=L$$

and now:

$$[L_r : K] = [L_r : L_{r-1}][L]$$

Remark 4.4. Suppose that I(a/K) = (f) and f is monic. Then:

- 1. f is the minimal monic polynomial such that f(a) = 0
- 2. deg(f) = [K(a) : K], thus the degree of the minimal polynomial is equal to the dimension of the linear space K(a) over K.

Fact 4.5 Let $K \subseteq L \subseteq M$ be extensions of fields. Then

$$[M : K] = [M : L][L : K]$$