Teoretická informatika

Obor C, 3. ročník

David Weber

SPŠE JEČNÁ

Poslední aktualizace: 23. července 2023

Obsah

Pì	Předmluva		
1	Grafové algoritmy		3
	1.1	Grafy a jejich reprezentace	3
	1.2	Stromy	3
	1.3	Prohledávání do šířky	3
	1.4	Prohledávání do hloubky	5
	1.5	Dijkstrův algoritmus	5
	1.6	Algoritmus A*	5
2	Dyr	namické programování	6

Předmluva

Kapitola 1

Grafové algoritmy

1.1 Grafy a jejich reprezentace

Definice 1.1.1 (Graf). Grafem G nazveme uspořádanou dvojici (V, E), kde V je množina vrcholů (nebo také uzlů) a E množina hran, přičemž pokud

- $E \subseteq \{\{u,v\} \mid u,v \in V\}$, pak G nazýváme neorientovaným grafem (tj. po hraně lze pohybovat v obou směrech).
- $E \subseteq \{(u,v) | u,v \in V\}$, pak G nazýváme orientovaným grafem (tj. po hranách se lze pohybovat pouze v jednom směru).

1.2 Stromy

1.3 Prohledávání do šířky

Jednou ze základních úloh je procházení grafu z určitého vrcholu a zjištění dosažitelnosti ostatních vrcholů. Nejednodušším algoritmem v tomto ohledu je tzv. prohledávání do šířky (angl. breadth-first search, zkráceně BFS). Jeho základní princip spočívá v postupném objevování následníků již nalezených vrcholů. Na počátku dostaneme graf G = (V, E) a nějaký počáteční vrchol $v_0 \in V$. Postupně objevíme všechny sousedy vrcholu v_0 , poté všechny sousedy těchto nalezených sousedů, atd. Na BFS lze nahlížet tak, že do počátečního vrcholu nalijeme vodu a sledujeme, jak postupuje vzniklá vlna.

Pro každý vrchol si budeme uchovávat jeho stav.

- Nenalezený vrchol jsme ještě během výpočtu neviděli.
- Otevřený vrchol jsme viděli, ale ještě nejsme neprozkoumali všechny jeho sousedy.
- *Uzavřený* vrchol jsme prozkoumali společně se všemi jeho sousedy a dál se jím již netřeba zabývat.

Na počátku začneme s jedním otevřeným vrcholem a to v_0 (zde začínáme). Po prozkoumání všech sousedních vrcholů se jejich stav změní na otevřený a počáteční vrchol v_0 se uzavře. Obdobně pokračujeme pro nově otevřené vrcholy. Pokud by náhodou mezi dvojicí otevřených vrcholů existovala hrana, pak si sousedního vrcholu všímat nebudeme, neboť byl již otevřen. Pro každý vrchol se ještě dodatečně můžeme uchovávat informaci, jak daleko se nachází od v_0 , co do počtu hran ležících na cestě.

```
Algoritmus 1.3.1 (BFS)
Vstup: Graf G = (V, E) a počáteční vrchol v_0 \in V.
     // Inicializace
     Pro každý vrchol v \in V opakuj:
          stav(v) \leftarrow nenalezen\acute{y}
          D(v) \leftarrow \infty
     stav(v_0) \leftarrow otev \check{r}en \acute{y}
     D(v_0) \leftarrow 0
     Založ frontu Q a přidej do ní vrchol v_0
     Dokud je fronta Q neprázdná, opakuj:
          v \leftarrow \text{první vrchol ve frontě } Q, který z ní odebereme
          // Prozkomáváme všechny dosud neobjevené sousedy
          Pro každý sousední vrchol w vrcholu v opakuj:
                Pokud stav(w) = nenalezený, proveď:
                     stav(w) \leftarrow otev\check{r}en\acute{y}
                     D(w) \leftarrow D(v) + 1
                     Přidej w do fronty Q
          stav(v) \leftarrow uzav \check{r}en \acute{y}
```

Výstup: Seznam vzdáleností D.

BFS rozděluje vrcholy do vrstev podle toho, v jaké vzdálenosti od počátečního vrcholu se nachází (viz obrázek 1.1). Nejdříve jsou prozkoumány vrcholy ve vzdálenosti 0 (tj. pouze v_0), poté ve vzdálenostech 1, 2, ... Z toho vyplývá, že kdykoliv při otevírání libovolného vrcholu v nastavujeme hodnotu D(v), bude tato hodnota vždy odpovídat délce nejkratší cesty z v_0 do v. Tato hodnota bude však nastavena pouze u těch vrcholů, které jsou z v_0 dosažitelné (ostatní vrcholy zůstanou ve stavu nenalezený).

Obrázek 1.1: Vrcholy rozdělené do vrstev podle průběhu BFS.

Zbývá prozkoumat časovou a pamětovou složitost BFS. Označme si počet vrcholů grafu G na vstupu n

a počet jeho hran m.

Věta 1.3.2 (Složitost BFS). Algoritmus BFS doběhne v čase $\mathcal{O}(n+m)$ a spotřebuje paměť $\mathcal{O}(n+m)$.

 $D\mathring{u}kaz$. Inicializace potrvá $\mathcal{O}(n)$, neboť cyklus iteruje přes všechny vrcholy. Vnější cyklus provede maximálně n iterací, protože každý z vrcholů uzavřeme nejvýše jednou, tj. $\mathcal{O}(n)$.

S vnitřním cyklem je to trochu složitější, protože jeho počet iterací závisí na tom, který z vrcholů otevíráme (resp. na počtu jeho sousedů). To znamená, že pokud si označíme d_i počet sousedů vrcholu i, pak celkový počet iterací vnitřního cyklu přes všechny vrcholy bude $\sum_i d_i$. Lze si ovšem všimnout jedné užitečné věci. Pokaždé, když prozkoumáváme sousední vrchol w nějakého vrcholu v, mohou nastat dva případy podle toho, jestli je G orientovaný graf, nebo neorientovaný.

- (i) Graf G je neorientovaný. Pak hranu, která spojuje v a w prozkoumáme právě dvakrát (jednou z vrcholu v a podruhé z vrcholu w). Každá hrana se tak započítá dvakrát, tzn. vnitřní cyklus se celkově provede max 2m-krát (po všech iteracích vnějšího cyklu).
- (ii) Graf G je orientovaný. Pak se hrana započítá pouze jednou, a to z vrcholu, z něhož vede. Celkově se vnitřní cyklus provede m-krát.

V prvním případě tak pro časovou složitost bude platit

$$\mathcal{O}\left(n+\sum_{i}d_{i}\right)=\mathcal{O}\left(n+2m\right)=\mathcal{O}\left(n+m\right).$$

V druhém případě dojdeme ke stejnému výsledku, akorát zmíněná suma bude, kvůli orientaci hran, rovna přesně počtu hran, tj.

$$\mathcal{O}\left(n+\sum_{i}d_{i}\right)=\mathcal{O}\left(n+m\right).$$

1.4 Prohledávání do hloubky

- 1.5 Dijkstrův algoritmus
- 1.6 Algoritmus A*

Kapitola 2

Dynamické programování