Numerične metode 2 2022/23: 2.domača naloga

Rešitve stisnite v ZIP datoteko z imenom ime-priimek-vpisna-dn2.zip in jih oddajte preko učilnice najkasneje dan pred kvizom.

1. Sestavljeno Simpsonovo pravilo in sestavljeno 3/8 pravilo.

Implementirajte metodi:

- simpson(f,a,b,m), ki izračuna približek za integral funkcije f na intervalu [a,b] z uporabo sestavljenega Simpsonovega pravila, določenega iz m osnovnih pravil z ekvidistantnimi vozli z razmikom $h=\frac{b-a}{2m}$ in
- triosminsko(f,a,b,m), ki izračuna približek za integral funkcije f na intervalu [a,b] z uporabo sestavljenega 3/8 pravila, določenega iz m osnovnih pravil z ekvidistantnimi vozli z razmikom $h = \frac{b-a}{3m}$.

Z metodama integrirajte funkcijo $f(x) = e^{-x^2}$ na intervalu [0,1] ter si oglejte napake pravil za $m \in \{1,2,\ldots,10\}$. Za izračun natančnejšega približka uporabite vgrajeno metodo integral. Natančnost izračuna kontroliramo z nastavitvama relativne in absolutne tolerance; nastavite 'RelTol'=1e-10 in 'AbsTol'=1e-10.

2. Richardsonova ekstrapolacija.

Implementirajte metodo richardson(f,a,b,m), ki za dano funkcijo f, interval [a,b] in število osnovnih pravil m vrne:

- približek $S_{\frac{h}{2}}$ za integral funkcije f na intervalu [a,b] z uporabo sestavljenega Simpsonovega pravila pri razmiku $\frac{h}{2}$,
- oceno za napako približka $S_{\frac{h}{2}}$ iz prejšnje točke, ki je enaka $\frac{S_{\frac{h}{2}}-S_h}{2^p-1}, p=4,$
- natančnejši približek I za integral funkcije f, dobljen z uporabo Richardsonove ekstrapolacije:

$$I = \frac{2^p S_{\frac{h}{2}} - S_h}{2^p - 1}.$$

Velja $h = \frac{b-a}{2m}$ in $\frac{h}{2} = \frac{1}{2} \frac{b-a}{2m}$.

Metodo testirajte s pomočjo funkcije $f(x) = \sin x$ na intervalu $[0, \pi]$ za $m = 2^k, k = 0, 1, \ldots$, in določite najmanjši h, za katerega velja, da je ocena napake približka $S_{\frac{h}{2}}$ manjša od 10^{-5} .

3. Reševanje navadnih diferencialnih enačb.

Implementirajte spodnji dve metodi za reševanje navadnih diferencialnih enačb oblike

$$y' = f(x, y), \quad x > x_0,$$

pri začetnem pogoju $y(x_0) = y_0$.

a) Trapezna metoda: trapezna(x,f,y0,to1), kjer seznam x določa diskretizacijo domene (prvi element seznama je točka x_0), f ustreza funkciji f dveh spremenljivk, y0 pa predstavlja vrednost y_0 . Poleg tega metoda sprejeme tudi parameter to1, ki določa zaustavitveni pogoj za navadno iteracijo pri določanju približka na posameznem koraku metode. Natančneje, naj bosta x_n in x_{n+1} zaporedni točki iz seznama x, vrednost y_n že izračunani približek za $y(x_n)$, vrednost y_{n+1} pa iskani približek, določen z implicitno enačbo $y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$. Rešitev te enačbe poiščemo z iteracijo

$$y_{n+1}^{(k)} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k-1)}) \right), \quad k = 1, 2, \dots,$$

kjer je $y_{n+1}^{(0)}=y_n$. Iteracijski postopek končamo pri najmanjšem številu k, za katerega velja

$$|y_{n+1}^{(k)} - y_{n+1}^{(k-1)}| < \text{tol} \cdot |y_{n+1}^{(k)}|$$

in vzamemo $y_{n+1} = y_{n+1}^{(k)}$

Izhodni podatek metode naj bo seznam y, enake dolžine kot x, ki se začne z vrednostjo y_0 , sledijo pa ji vrednosti izračunanih približkov v ostalih točkah iz seznama x.

b) Metoda RK4, ki je podana s spodnjo Butcherjevo shemo:

Metoda naj bo oblike $\mathtt{rk4(x,f,y0)}$, kjer seznam x določa diskretizacijo domene (prvi element seznama je točka x_0), \mathtt{f} ustreza funkciji f dveh spremenljivk, $\mathtt{y0}$ pa predstavlja vrednost y_0 .

Metodo implementirajte tako, da bo delovala tudi za sisteme enačb.

Metodi preizkusite na funkciji

$$f(x,y) = y + 15e^x \cos(15x)$$

na intervalu [0,1] z začetnim pogojem $y_0=0$ v točki $x_0=0$ pri razmikih

$$h = 0.1 \cdot 2^{-r}, \quad r \in \{0, 1, \dots, 4\}.$$

Pri trapezni metodi uporabite tol $=10^{-3}.$

Dobljene približke primerjajte s točnimi vrednostmi, ki jih dobite s pomočjo vgrajene metode ode45; z odeset('RelTol',1e-10,'AbsTol',1e-10) nastavite natančnost izračuna.