Structured Programming Language

Gourab Saha Lecturer CSE, UIU

Ajwad Akil Lecturer CSE, UIU

Identifiers and Keywords

- 1. What is an identifier?
 - a. Used to identify variable, function etc.
 - b. Case sensitive

2. Keyword

- a. Cannot be used as identifier
- b. e.g int, float, printf, return etc.

Variables

- 1. Declaration
 - a. Type Name;
 - b. Eg: int a;
 - c. Multiple variables of same type: int a,b,c;
- 2. Initialization
 - a. int a = 10;
- 3. All Variables Must be defined with a name and a type before they are use
- 4. Variables are case sensitive: a1 and A1 are not the same
- 5. Long Names: totalMarks or total_marks
- 6. Memory for variables

Data Types

Туре	Size (bytes)	Format Specifier	Range
int	4 sometimes 2	%d	-2 ¹⁵ to 2 ¹⁵ -1 or -2 ³¹ to 2 ³¹ -1
char	1	%c	-128 to 127 or 0 to 255
float	4	%f	3.4-38 to 3.4E+38
double	8	%lf	1.7E-308 to 1.7E+308
short int	2	%hd	
unsigned int	4 sometimes 2	%u	

Data Types(continued)

Туре	Size (bytes)	Format Specifier	Range
long int	4 sometimes 2	%ld, %li	
long long int	At least 8	%lld, %lli	
unsigned long int	At least 4	%lu	
unsigned long long int	At least 8	%llu	
signed char	1	%с	
unsigned char	1	%c	

Data Types (continued)

For further reading

- 1. <u>C Data Types</u>
- 2. C Data Types
- 3. Size of Data Types in C | GATE Notes

Type Conversion

Implicit Type Conversion
 Convert from smaller type to larger type

Type Conversion

Explicit Type Conversion - Done by Us
 Convert from Larger type to Smaller type

Type Conversion

- Implicit Type Conversion int a = 10;
 char c = 'a';
 int result = a + c;
- 2. Explicit Type Conversiontype variable = (type) valueint a = (int) 3.1416

Input and Output - Format Specifiers

- scanf
 e.g. scanf("%d", &age); scanf("%f", &length); scanf("%c", &a);
- 2. printf e.g. printf("%d\n", age); scanf("%f\n", length); scanf("%c\n", a);

ASCII Values

- What is the output for the following?
 char c = "a";
 printf("%c", c);
 Ans: a
- 2. What is the output for the following?

 char c = "a";

 printf("%d", c);

 Ans: 97

ASCII Values

- 1. Most Common Character Encoding Format for **Text Data** for Computer and the internet
- 2. 128 alphabetic, numeric, special additional characters and control codes eg:

$$A = 65$$

$$a = 97$$

$$0 = 48$$

$$9 = 57$$

For Further Reading:

https://www.rapidtables.com/code/text/ascii-table.html?viewsel=on

Operations in C

Classification based on type of operation:

- 1. Arithmetic
- 2. Relational
- 3. Assignment
- 4. Bitwise
- 5. Logical

Classification of number of operands:

- 1. Binary
- 2. Unary

Please check the link below:

C - Operators

Arithmetic in C

- 1. Add +
- 2. Subtract -
- 3. Multiply *
- 4. Divide /
- 5. Mod %
- 6. Increment ++
- 7. Decrement -
- 1-5 are binary and 6-7 are unary

Increment and Decrement Operator

```
int main(void) {
  int a=0,b=0;
  a++;
  ++b;
  printf("a = %d, b = %d\n\n", a, b);
  int res = a++;
  printf("res = %d\n", res);
  printf("a = %d\n\n", a);
  res = ++b;
  printf("res = %d\n", res);
  printf("b = %d\n", b);
  return 0;
```

```
a = 1, b = 1
res = 1
a = 2
res = 2
b = 2
```

Relational

1. Used for comparison

e.g.
$$==$$
, $<$, $<=$, $>=$, $!=$ etc.

Assignment

1. Used for assignment with or without additional operation =, +=, -=, *= etc.

Logical

1. Used to perform logical AND, OR, NOT etc. e.g. &&, ||, ! etc.

Bitwise

1. Used to perform bitwise operation i.e manipulate data in bit level e.g. &, $|, ^{,} >>$, << etc.

Bitwise Program

```
#include <stdio.h>
int main()
  int a = 12, b = 25;
  printf("Output a|b = %d n", a|b);
  printf("Output a&b = %d\n", a&b);
  printf("Output a^b = %d\n", a^b);
  printf("Output \sim a = %d n", \sim a); // \sim N = -(N+1)
  int num=212;
  printf("Right shift by %d: %d\n", 2, num>>1);
  printf("Right shift by %d: %d\n", 4, num>>2);
  printf("Left shift by %d: %d\n", 2, num<<1);</pre>
  printf("Left shift by %d: %d\n", 4, num<<2);</pre>
```

```
Output a|b = 29
Output a&b = 8
Output a^b = 21
Output ~a = -13
Right shift by 2: 106
Right shift by 4: 53
Left shift by 2: 424
Left shift by 4: 848
```

Other Operators

- * operator, associated with pointers
- ? Ternary Operator, helps us to branch
 - Expression 1 ? Expression 2 : Expression 3
 - o x>y ? printf("Yes") : printf("No");

Precedence and Associativity of Operators

- 1. Expressions are evaluated from left to right
- 2. Operators have precedence
- 3. Associativity determines order of evaluation of an expression

Please read the following link:

C Operator Precedence - cppreference.com

C Operator Precedence Table

Precedence and order of evaluation | Microsoft Docs

Operator Precedence and Associativity in C - GeeksforGeeks

math.h header function

- ceil(2.5) = 3
- floor(2.5) = 2
- abs(-2) = 2
- sqrt(16) = 4
- pow(2,4) = 16
- sin(), cos(), tan() takes radian as input, returns double

Branching Statements

- if statements
- if else if else statement
- Lets us branch off to different decisions

Problem Solving Session

- 1. Quadratic Formula Implementation with math header files
- 2. Odd-Even Integers
- 3. Vowel or Consonant

• Check LMS for assignment