

K8s and Active Directory Can Be Friends! How to Use Dex to Bridge the Gap

Onkar Bhat
Engineering Manager
Kasten by Veeam

www.linkedin.com/in/onkarbhat/

@onkarbhat

Start setting up the lab pre-requisites for this workshop now! https://k10.fyi/DexLab

Agenda

- 1. Why attend this tutorial?
- 2. What are Active Directory and LDAP?
- 3. The Application
- 4. OpenLDAP
- 5. Dex
- 6. OAuth2 Proxy
- 7. Prerequisites
- 8. Setup OpenLDAP, Dex, OAuth2 Proxy and the App
- 9. Demo
- 10. Q&A
- 11. Thank you

Why Attend This Tutorial?

- Do you want to migrate an application to a Kubernetes cluster and secure access to it?
- Do you want to secure access to this application using your existing Active Directory server deployed outside a Kubernetes cluster?
- Do you want to secure access to new apps using the same Active Directory server?
- You are in the right tutorial!

Start setting up the lab pre-requisites for this workshop now! https://k10.fyi/DexLab

What is Active Directory?

 Active Directory (AD) is a directory service developed by Microsoft for Windows domain networks.

 Active Directory uses Lightweight Directory Access Protocol (LDAP) as well as other services (Kerberos & DNS) that won't be covered in this talk

What is LDAP?

 The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard protocol for accessing and maintaining distributed directory information services

 A common use of LDAP is to provide a central place to store usernames and passwords. This allows many different applications and services to connect to the LDAP server to validate users

What is OpenLDAP?

 OpenLDAP Software is an open-source implementation of the Lightweight Directory Access Protocol.

The Application

Deploy Pac-Man in a Kubernetes cluster

 Secure access to the application using the information stored in an OpenLDAP service

Pac-Man ←→ **OpenLDAP**

Pac-Man ←→ **OpenLDAP**

- Pro: OpenLDAP service is available for the app's authentication requirements.
- Con: To use the OpenLDAP service, you have to rewrite Pac-Man so that it authenticates against the OpenLDAP service each time someone accesses the Pac-Man app.

Pac-Man ←→ **Dex** ←→ **OpenLDAP**

Pac-Man ←→ **Dex** ←→ **OpenLDAP**

• Pro:

- Dex knows how to interact with the OpenLDAP service
- It serves as a proxy to the OpenLDAP service. Pac-Man can redirect requests to Dex. Dex will present a login screen.
- After the user enters creds, Dex will initiate authN against the OpenLDAP service.
- On successful authN, Dex will redirect back to the app.

Con:

You still have to rewrite the application, so that it can play the role
of an OAuth client.

What is OAuth?

OAuth 2.0 is the industry standard (RFC6749) protocol for authorization

Pac-Man ←→ **OAuth2-proxy** ←→ **Dex** ←→ **OpenLDAP**

Pac-Man ←→ OAuth2-proxy ←→ Dex ←→ OpenLDAP

- Pro: No modifications to the app! (well, almost)
- A Kubernetes service redirects HTTP traffic to the OAuth2 proxy.
- OAuth2 proxy is the OAuth client
- Dex is the OAuth server
- Dex can speak LDAP with the OpenLDAP service.
- On successful authN, the user is redirected from Dex to OAuth2 proxy, which in turn proxy the Pac-Man app to the user.

Prerequisites

- x86_64 or amd64 based machine
- ARM is unfortunately not supported by the app in this lab
- Packages Install guidance provided in tutorial instructions
 - Git
 - Docker
 - Kind
 - Kubectl
 - Helm
 - OpenLDAP Utils

Instructions
https://k10.fyi/DexLab

Download Kind

- Kind = Kubernetes in Docker
- Easy, fast & free way of running a Kubernetes cluster inside a set of docker containers
- macOS: \$ brew install kind
- Windows: \$ choco install kind
- Linux: use your distribution's package manager

Demo!

OpenLDAP

OpenLDAP

- Deploy OpenLDAP in our K8s cluster
- Add users and groups to this deployment
- Use LDAP utilities for querying the objects in the OpenLDAP directory

OpenLDAP Group

• \$ cat pacman-admin-group.ldif

dn: cn=pacmanAdmins,ou=users,dc=example,dc=org

cn: pacmanAdmins

objectClass: groupOfNames

member: cn=productionadmin, ou=users, dc=example, dc=org

member: cn=productionbasic, ou=users, dc=example, dc=org

What is LDIF?

- LDAP Data Interchange Format
- Plain text format
- Directory content and update requests

LDAP Fields in a Record

- dn: cn=pacmanAdmins,ou=users,dc=example,dc=org
- dn: This refers to the name that uniquely identifies an entry in the directory.
- cn: This refers to the individual object (person's name; group's name; meeting room; job title; etc.) for whom/which you are querying.
- ou: This refers to the organizational unit that the user is part of. If the user is part of more than one group, you may specify as such, e.g.,
 OU= Lawyer,OU= Judge.
- dc: This refers to each component of the domain. For example, www.example.org would be written as dc=www,dc=example,dc=org

Dex

Dex Values File

- LDAP connector config
- Dex OIDC issuer config
- OAuth Client config

```
config:
 connectors:
 - config:
     bindDN: cn=admin,dc=example,dc=org
     bindPW: <Enter the bind password here>
     groupSearch:
       baseDN: dc=example,dc=org
       filter: (objectClass=groupOfNames)
       nameAttr: cn
       userMatchers:
       - groupAttr: member
         userAttr: DN
     host: openldap.openldap:1389
     insecureNoSSL: true
     insecureSkipVerify: true
     startTLS: false
     userSearch:
       baseDN: ou=users,dc=example,dc=org
       emailAttr: uid
       filter: (objectClass=inetOrgPerson)
       idAttr: uid
       nameAttr: uid
       preferredUsernameAttr: uid
       username: uid
   id: ldap
   name: LDAP
   type: ldap
 issuer: http://dex.dex:5556/dex
 logger:
   format: text
   level: info
 oauth2:
   skipApprovalScreen: true
 storage:
   type: memory
   http: 0.0.0.0:8080
 staticClients:
 - id: kasten
   name: OAuth2Proxy
   redirectURIs:
   - http://oauth2-proxy.pacman:4180/oauth2/callback
   secret: kastensecret
```


KASTEN

Dex – LDAP Connector Config

```
config:
 connectors:
  - config:
     bindDN: cn=admin,dc=example,dc=org
     bindPW: adminpassword
     groupSearch:
        baseDN: dc=example,dc=org
       filter: (objectClass=groupOfNames)
       nameAttr: cn
       userMatchers:
       - groupAttr: member
          userAttr: DN
     host: openldap.openldap:1389
     insecureNoSSL: true
     insecureSkipVerify: true
     startTLS: false
     userSearch:
       baseDN: ou=users,dc=example,dc=org
        emailAttr: uid
       filter: (objectClass=inetOrgPerson)
       idAttr: uid
        nameAttr: uid
        preferredUsernameAttr: uid
       username: uid
    id: ldap
   name: LDAP
    type: ldap
```


Dex – OIDC Issuer Config

```
issuer: http://dex.dex:5556/dex
logger:
   format: text
   level: info
oauth2:
   skipApprovalScreen: true
storage:
   type: memory
web:
   http: 0.0.0.0:8080
```


Dex - OAuth Client Config

```
staticClients:
- id: kasten
  name: OAuth2Proxy
  redirectURIs:
  - http://oauth2-proxy.pacman:4180/oauth2/callback
  secret: kastensecret
```


OAuth2 Proxy

Edit the system's hosts file

- macOS & Linux: sudo vi /etc/hosts
- Windows: c:\windows\system32\drivers\etc\hosts
- Add those lines:

127.0.0.1 dex.dex

127.0.0.1 oauth2-proxy.pacman

Pac-Man

Deploy Pac-Man

• \$ helm repo add pacman https://shuguet.github.io/pacman/

• \$ helm repo update pacman

• \$ helm install pacman pacman/pacman -n pacman

Verify Pac-Man is Installed

• \$ helm status pacman -n pacman

• \$ watch kubectl get pod -n pacman

Check Default Pac-Man Service Config

• \$ kubectl get svc pacman -n pacman -o yaml

Pac-Man - Port-Forward

- \$ kubectl port-forward service/pacman -n pacman 9090:80
- Open your web browser to http://127.0.0.1:9090

Update the pacman service

```
• $ kubectl patch svc pacman -n pacman --type='json' -
p='[{"op": "replace", "path": "/spec/ports/0/targetPort",
"value":4180}]'
```

```
$ kubectl patch svc pacman -n pacman --type='json' -
p='[{"op": "replace", "path": "/spec/selector",
"value":{"k8s-app": "oauth2-proxy"}}]'
```


Redirect Traffic to OAuth2 Proxy

Result of the patches: kubectl get svc pacman -n pacman -o yaml

```
spec:
spec:
                                                        clusterIP: 10.96.42.18
 clusterIP: 10.96.42.18
                                                        clusterIPs:
 clusterIPs:
                                                        - 10.96.42.18
 - 10.96.42.18
                                                        internalTrafficPolicy: Cluster
  internalTrafficPolicy: Cluster
                                                        ipFamilies:
  ipFamilies:
                                                        - IPv4
 - IPv4
                                                        ipFamilyPolicy: SingleStack
  ipFamilyPolicy: SingleStack
                                                        ports:
 ports:
                                                        - name: http
 - name: http
                                                          port: 80
   port: 80
                                                          protocol: TCP
   protocol: TCP
                                                          targetPort: 4180
    targetPort: 8080
                                                        selector:
  selector:
                                                          k8s-app: oauth2-proxy
    app.kubernetes.io/instance: pacman
                                                        sessionAffinity: None
   app.kubernetes.io/name: pacman
                                                        type: ClusterIP
 sessionAffinity: None
                                                      status:
  type: ClusterIP
                                                        loadBalancer: {}
status:
 loadBalancer: {}
```

Pac-Man – Look at the End Result

- \$ kubectl port-forward service/pacman -n pacman 9090:80
- Open your web browser to http://127.0.0.1:9090

Oops...

Pac-Man

Pac-Man – Deploy pacman-actual Service

• \$ cd pacman

• \$ kubectl create -f pacman-actual-service.yaml -n pacman

Pac-Man – Look at the End Result

- \$ kubectl port-forward service/pacman -n pacman 9090:80
- Open your web browser to http://127.0.0.1:9090

Hurray!

Demo – Dex Logs

```
time="2022-05-05T22:36:16Z" level=info msg="performing Idap search ou=users,dc=example,dc=org sub (&(objectClass=inetOrgPerson)(uid=productionadmin))"
```

time="2022-05-05T22:36:16Z" level=info msg="username \"productionadmin\" mapped to entry cn=productionadmin,ou=users,dc=example,dc=org"

```
time="2022-05-05T22:36:16Z" level=info msg="performing ldap search dc=example,dc=org sub (&(objectClass=groupOfNames)(member=cn=productionadmin,ou=users,dc=example, dc=org))"
```

time="2022-05-05T22:36:16Z" level=info msg="login successful: connector \"ldap\", username=\"productionadmin\", preferred_username=\"productionadmin\", email=\"productionadmin\", groups=[\"readers\" \"pacmanAdmins\"]"

Demo – Dex Logs

```
time="2022-05-05T22:36:35Z" level=info msg="performing Idap search ou=users,dc=example,dc=org sub (&(objectClass=inetOrgPerson)(uid=productionconfig))"
```

time="2022-05-05T22:36:35Z" level=info msg="username \"productionconfig\" mapped to entry cn=productionconfig,ou=users,dc=example,dc=org"

time="2022-05-05T22:36:35Z" level=info msg="performing ldap search dc=example,dc=org sub (&(objectClass=groupOfNames)(member=cn=productionconfig,ou=users,dc=example,dc=org))"

time="2022-05-05T22:36:35Z" level=info msg="login successful: connector \"ldap\", username=\"productionconfig\", preferred_username=\"productionconfig\", email=\"productionconfig\", groups=[\"readers\"]"

Switch to Production Active Directory Server

```
config:
 connectors:
  - config:
     bindDN: cn=admin,dc=example,dc=org
     bindPW: adminpassword
     groupSearch:
       baseDN: dc=example,dc=org
       filter: (objectClass=groupOfNames)
       nameAttr: cn
       userMatchers:
       - groupAttr: member
         userAttr: DN
     host: openldap.openldap:1389
     insecureNoSSL: true
     insecureSkipVerify: true
     startTLS: false
     userSearch:
       baseDN: ou=users,dc=example,dc=org
       emailAttr: uid
       filter: (objectClass=inetOrgPerson)
       idAttr: uid
       nameAttr: uid
       preferredUsernameAttr: uid
       username: uid
   id: ldap
   name: LDAP
    type: ldap
```


Further Reading

- Dex:
 - https://dexidp.io/
 - Slack: #dexidp at http://cloud-native.slack.com/
- OAuth2 proxy:
 - https://oauth2-proxy.github.io/oauth2-proxy/
- OpenLDAP:
 - https://www.openldap.org/
- Secure Pac-Man:
 - https://github.com/onkarbhat/secure-pacman

Thank You

We're hiring!

kasten.io/careers/

KASTEN by Veeam

Extra Slide

Extra Slide

Common Errors:

- The bindPW field in the dex-values.yaml file should be updated before installing Dex using helm. If you skip this, you will see an error about invalid credentials after logging in using the Dex login page.
- Did you update the /etc/hosts file with an entry for dex.dex ? If you skip this, you will get an error after clicking on the "Sign in with OpenID connect" button on the OAuth2 proxy login screen.
- Did you update the /etc/hosts file with an entry for oauth2-proxy.pacman? If
 you skip this, you will get an error when Dex tries to redirect back to OAuth2
 proxy after you enter the username and password on the Dex login screen.

