§ 2.3 联结词的扩充与归约

由于一个n元逻辑联结词就是一个从 $\{T,F\}^n$ 到 $\{T,F\}$ 的映射,因此相应的真值函数表就有 2^{2^n} 种。下面以n=1和n=2为例来说明。

1. 联结词的扩充

1) n = 1就有4个不同的从 $\{T, F\}$ 到 $\{T, F\}$ 的映射:

P	f_1	f_2	f_3	f_4
$\mid T \mid$	F	F	T	T
F	F	T	F	T

对应的真值函数为:

$$f_1(P) = F$$
 ,为常联结词

$$f_2(P) = \neg P$$
 ,为否定词 \neg

$$f_3(P) = P$$
 ,为恒等联结词

$$f_4(P) = T$$
 ,为常联结词

2) n = 2有16个不同的从 $\{T, F\}^2$ 到 $\{T, F\}$ 的映射,即有16个不同的二元联结词,相应的真值函数表就有16个.下面仅列出几个:

		C	C	\mathcal{C}		C	Γ	ſ
P	Q	$ \mathcal{J}_2 $	$ f_7 $	${\mathcal J}_8$	f_9	$ J_{10} $	J_{14}	$ f_{15} $
F	F	F	F	F	T	T	T	$\mid T \mid$
\overline{F}	\overline{T}	F	T	\overline{T}	F	F	T	T
T	\overline{F}	F	T	\overline{T}	F	F	\overline{F}	T
T	T	T	F	T	F	T	T	F

 f_9 即为或非词 \downarrow :

$$f_9(P,Q) = \neg (P \lor Q) = P \downarrow Q$$

 f_1 即为与非词 个:

$$f_{15}(P,Q) = \neg (P \land Q) = P \uparrow Q$$

 f_7 即为异或词 \forall :

$$f_7(P,Q) = \neg (P \leftrightarrow Q) = P \lor Q$$

2. 联结词的归约

1)可表示:设h为一n元联结词,A为由m个联结词 g_1,g_2,\cdots,g_m 构成的命题公式,若有 $h(P_1,P_2,\cdots,P_n) \Leftrightarrow A$ 则称联结词h可由联结词 g_1,g_2,\cdots,g_m 来表示。

例 $P \downarrow Q \Leftrightarrow \neg (P \lor Q)$ $P \uparrow Q \Leftrightarrow \neg (P \land Q)$ $P \lor Q \Leftrightarrow \neg (P \land Q)$

3. 联结词的完备集:设 C 为联结词的集合若对任一命题公式都可由 C 中的联结词表示出来的公式与之等值,则称 C 是联结词的完备集,或称 C 是完备的联结词集合

定理1 {¬,∧,∨} 是完备的联结词集合.

类似的联结词完备集还有:

$$\{\neg, \land\}, \{\neg, \lor\}, \{\neg, \to\}, \{\uparrow\}, \{\downarrow\}\}$$

$$P \lor Q \Leftrightarrow \neg(\neg P \land \neg Q)$$

$$P \land Q \Leftrightarrow \neg(\neg P \lor \neg Q)$$

$$P \lor Q \Leftrightarrow \neg P \to Q$$

$$\neg P \Leftrightarrow \neg (P \land P) \Leftrightarrow P \uparrow P$$

$$P \land Q \Leftrightarrow \neg (\neg (P \land Q)) \Leftrightarrow \neg (P \uparrow Q)$$

$$\Leftrightarrow (P \uparrow Q) \uparrow (P \uparrow Q)$$

$$\neg P \Leftrightarrow \neg (P \lor P) \Leftrightarrow P \downarrow P$$

$$P \lor Q \Leftrightarrow \neg (\neg (P \lor Q)) \Leftrightarrow \neg (P \downarrow Q)$$

$$\Leftrightarrow (P \downarrow Q) \downarrow (P \downarrow Q)$$

例 用{↑}表示公式(
$$A \to \neg B$$
) $\to \neg C$
 $(A \to \neg B) \to \neg C \Leftrightarrow (\neg A \lor \neg B) \to \neg C$
 $\Leftrightarrow \neg (\neg A \lor \neg B) \lor \neg C \Leftrightarrow \neg [(\neg A \lor \neg B) \land C]$
 $\Leftrightarrow (\neg A \lor \neg B) \uparrow C$
 $\Leftrightarrow (\neg (A \land B)) \uparrow C \Leftrightarrow (A \uparrow B) \uparrow C$