Towards Predictable Datacenter Networks

Hitesh Ballani, Paolo Costa, Thomas Karagiannis and Ant Rowstron

Microsoft Research, Cambridge

This talk is about ...

Guaranteeing network performance for tenants in multi-tenant datacenters

Multi-tenant datacenters

- ▶ Datacenters with multiple (possibly competing) tenants
- Private datacenters
 - Run by organizations like Facebook, Intel, etc.
 - ► **Tenants**: Product groups and applications
- Cloud datacenters
 - Amazon EC2, Microsoft Azure, Rackspace, etc.
 - ► **Tenants**: Users renting virtual machines

Cloud datacenters 101

Simple interface: Tenants ask for a set of VMs

- Charging is per-VM, per-hour
 - ► Amazon EC2 small instances: \$0.085/hour
 - No (intra-cloud) network cost

Network performance is not guaranteed

Bandwidth between a tenant's VMs depends on their placement, network load, protocols used, etc.

Performance variability I

Up to 5x variability

Study	Study	Provider	Duration
Α	[Giurgui'10]	Amazon EC2	n/a
В	[Schad'10]	Amazon EC2	31 days
C/D/E	[Li'10]	(Azure, EC2, Rackspace)	1 day
F/G	[Yu'10]	Amazon EC2	1 day
Н	[Mangot'09]	Amazon EC2	1 day

Network performance can vary ... so what?

Data analytics on an isolated cluster

Variable tenant costs

Expected cost (based on 4 hour completion time) = \$100 Actual cost = \$250-400

Predictable datacenter networks

Extend the tenant-provider interface to account for the network

Contributions-

Virtual network abstractions

▶ To capture tenant network demands

Oktopus: Proof of concept system

performance from provider infrastructure

offered a virtual network

with bandwidth guarantees

This decouples tenant

- ► Implements virtual networks in multi-tenant datacenters
- Can be incrementally deployed today!

Talk Outline

- ► Introduction
- ► Virtual network abstractions
- Oktopus
 - ► Allocating virtual networks
 - ► Enforcing virtual networks
- Evaluation

Abstraction 1: Virtual Cluster (*VC*)

Motivation: In enterprises, tenants run applications on dedicated Ethernet clusters

Tenants get a network with no oversubscription

✓ Suitable for data-intensive apps. (MapReduce, BLAST)
✗ Moderate provider flexibility

Abstraction 2: Virtual Oversubscribed Cluster (VOC)

Motivation: Many Request SN. B. S. O. to the cloud have

VOC capitalizes on tenant communication patterns

✓ Suitable for typical applications (though not all)
✓ Improved provider flexibility

Talk Outline

- ► Introduction
- ► Virtual network abstractions
- ▶ Oktopus
 - ► Allocating virtual networks
 - ► Enforcing virtual networks
- Evaluation

Oktopus

Offers virtual networks to tenants in datacenters

Two main components

- ► Management plane: *Allocation of tenant requests*
 - ► Allocates tenant requests to physical infrastructure
 - Accounts for tenant network bandwidth requirements
- ▶ Data plane: *Enforcement of virtual networks*
 - ► Enforces tenant bandwidth requirements
 - Achieved through rate limiting at end hosts

Allocating Virtual Clusters

Talk Outline

- ► Introduction
- ▶ Virtual network abstractions
- ▶ Oktopus
 - ► Allocating virtual networks
 - ► Enforcing virtual networks
- Evaluation

Enforcement in Oktopus: Key highlights

Oktopus enforces virtual networks at end hosts

- Use egress rate limiters at end hosts
 - Implement on hypervisor/VMM

Oktopus can be deployed *today*

- No changes to tenant applications
- No network support
- Tenants without virtual networks can be supported
 - Good for incremental roll out

Talk Outline

- ► Introduction
- ▶ Virtual network abstractions
- Oktopus
 - ► Allocating virtual networks
 - ► Enforcing virtual networks
- **▶** Evaluation

Datacenter Simulator

Flow-based simulator

- ▶ 16,000 servers and 4 VMs/server ⇒ 64,000 VMs
- Three-tier network topology (10:1 oversubscription)

Tenants submit requests for VMs and execute jobs

▶ Job: VMs process and shuffle data between each other

Baseline: representative of today's setup

- Tenants simply ask for VMs
- VMs are allocated in a locality-aware fashion

Virtual network request

 Tenants ask for Virtual Cluster (VC) or Virtual Oversubscribed Cluster (VOC)

Private datacenters

Cloud Datacenters

Amazon EC2's reported target utilization

Tenant Costs

What should tenants pay to ensure *provider revenue neutrality*, i.e. provider revenue remains the same with all approaches

Based on today's EC2 prices, i.e. \$0.085/hour for each VM

Provider revenue increases while tenants pay less

At 70% target utilization, provider revenue increases by 20% and median tenant cost reduces by 42%

Oktopus Deployment

Implementation scales well and imposes low overhead

- Allocation of virtual networks is fast
 - ► In a datacenter with 10⁵ machines, median allocation time is 0.35ms
- Enforcement of virtual networks is cheap
 - ▶ Use Traffic Control API to enforce rate limits at end hosts

Deployment on testbed with 25 end hosts

End hosts arranged in five racks

Oktopus Deployment

Cross-validation of simulation results

Completion time for jobs in the simulator matches that on the testbed

Summary

Proposal: Offer virtual networks to tenants

- Virtual network abstractions
 - Resemble physical networks in enterprises
 - Make transition easier for tenants

Proof of concept: Oktopus

- ▶ Tenants get guaranteed network performance
- Sufficient multiplexing for providers
- Win-win: tenants pay less, providers earn more!

How to determine tenant network demands?

Ongoing work: Map high-level goals (like desired completion time) to Oktopus abstractions

Thank you