

<u>Javaslatok a feladatok megoldásához és azok</u> <u>ellenőrzéséhez</u>

- A következő oldalak gyakorló feladatokat tartalmaznak, példamegoldásokkal kiegészítve. A bemutatott megoldások egyes esetekben - a feladatok specifikációjából fakadóan – iránymutató mintamegoldások, vagyis az adott feladatnak többféle helyes megoldása is létezik.
- Javasolt a megoldásokat az ajánlott szimulációs programmal is logikai kapukkal történő realizáción keresztül – megvalósítani, és a működésüket ellenőrizni.

Sorrendi hálózatok tervezése: aszinkron hálózatok

- 1. feladat -

Tervezzünk olyan egybemenetű (X), egykimenetű (Z) aszinkron sorrendi hálózatot, amely a bemenetére érkező impulzusok közül csak minden másodikat továbbítja a kimenetre! A tervezést végezzük el a következő állapotot előállító hálózat közvetlen visszacsatolásával (,kv'), és SR tárolókkal történő visszacsatolással is! (Kezdőhelyzetben X,Z=0.)

(Hf.: a feladat megoldása egy másik, szabadon választott szekunder változó kódolással!)

- 1. feladat -

Megoldás1(,kv'):

		köv.áll/Z	
	akt áll	X= 0	X = 1
	a	(a)/ 0	b / 0
>	b	c / 0	b / 0
	c	c /0	d / 1
	d	a / 0	d / 1

- 1. feladat -

Megoldás1(,kv'):

2)

	köv.áll/Z	
akt áll	X= 0	X = 1
a	a/ 0	b / 0
b	c / 0	b / 0
c	<u>c</u> / 0	d / 1
d	a / 0	d /1

Állapotkódolás

	Y1	Y2
a	0	0
b	0	1
c	1	1
d	1	0

⁻ Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás1(,kv'):

	Y1	Y2
a	0.	0
b	0	1
c	1	1
d	1	0

1	köv.áll/Z	
akt áll	X=0	X = 1
a	(a)/ 0	b / 0
b	c / 0	b / 0
c	c /0	d / 1
d	a / 0	d / 1

	The state of the s	áll/Z	
akt áll	X= 0	X = 1	
Y1 Y2	Y1 Y2 Z	Y1 Y2 Y Z	
0 0	00/0	0 1 / 0	
0 1	1 1/0	0 1 / 0	
1 1	10/0	1 0 / 1	
1 0	0 0/0	(0)/1	

⁻ Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás1(,kv'):

4)

$$Y_1 = Y_2^{V} \overline{X} + Y_1^{V} Y_2^{V} + Y_1^{V} X$$

$$\mathbf{Y_2} = \mathbf{Y_2^V} \, \overline{\mathbf{X}} + \overline{\mathbf{Y_1^V}} \mathbf{Y_2^V} + \overline{\mathbf{Y_1^V}} \mathbf{X}$$

$$Z = Y_1^{\mathbf{v}} X$$

5)

Kezdeti állapot vizsgálat: kell ,R' jel!!

⁻ Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás1(,kv'):

6) • NAND realizáció:

- Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

A feladat megoldásának DSCH sémája("AH_1_kv_dualishoz"):

http://www.sze.hu/~somi/Digit%e1lis%20h%e1l%f3zatok/DSCH%20s%e9m%e1k%20gyakorl%f3%20feladatokhoz/

- 1. feladat -

Megoldás2(,SR'):

		köv.áll/Z	
	akt áll	X= 0	X = 1
	a	(a)/ 0	b / 0
>	b	c / 0	b / 0
	c	©/ 0	d / 1
	d	a / 0	d / 1

- 1. feladat -

Megoldás2(,SR'):

2)

	köv.áll/Z	
akt áll	X=0	X = 1
a	(a)/ 0	b / 0
b	c / 0	b / 0
c	c / 0	d / 1
d	a / 0	d / 1

Állapotkódolás

	Y1	Y2
a	0	0
b	0	1
c	1	1
d	1	0

⁻ Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás2(,SR'):

	Y1	Y2
a	0.	0
b	0	1
c	1	1
d	1	0

ı	köv.áll/Z	
akt áll	X=0	X = 1
a	(a)/ 0	b / 0
b	c / 0	b / 0
c	c / 0	d / 1
d	a / 0	d / 1

	köv.	áll/Z	
akt áll	X= 0	X = 1	
Y1 Y2	Y1 Y2 Z	Y1 Y2 / Z	
0 0	0 / 0	0 1 / 0	
0 1	1 1/0	1 10	
1 1	1 / 0	1 0 / 1	
1 0	0 0/0	(0)/1	

⁻ Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás2(,SR'):

köv.áll/Z

4)	1			KOV	.2111/2									
4)	akt áll		X= 0		X	X = 1		X= 0			X = 1			
	Y1	Y2	Y1 ^v	Y2 ^v / Z	Y1 ^v	Y2 ^v / Z	S1	R1	S2	R2	S1	R1	S2	R2
	0	0	0	0 / 0	0	1 / 0	0	_	0	_	0	_	1	0
	0	1	1	1 / 0	0	1) / 0	1	0	_	0	0	_	-	0
	1	1	1	1) / 0	1	0 / 1	_	0	_	0	_	0	0	1
	1	0	0	0 / 0		0/1	0	1	0	_	_	0	0	_

Kezdeti állapot vizsgálat: kell ,R' jel!!

6)

- Digitális hálózatok: gyakorló feladatok -

- 1. feladat -

Megoldás2(,SR'):

7) • NAND realizáció:

- 1. feladat -

A feladat megoldásának DSCH sémája("AH_1_SR_dualishoz"):

http://www.sze.hu/~somi/Digit%e1lis%20h%e1l%f3zatok/DSCH%20s%e9m%e1k%20gyakorl%f3%20feladatokhoz/

Sorrendi hálózatok tervezése: aszinkron hálózatok

- 2. feladat -

Tervezzünk olyan közvetlen visszacsatolású, kétbemenetű (X1;X2), egykimenetű (Z) aszinkron sorrendi hálózatot, amely az alábbi szimbolikus állapottábla szerint működik! A kezdeti stabil állapot: X1X2=00 → a, valamint Z=0.

(Hf.: a feladat megoldása SR tárolós visszacsatolással)

- 2. feladat -

X1 X2	szimb.köv.áll. / kim.					
bem. akt. áll	00	01	10	11		
а	a/0	b/0	c/0	-/-		
Ъ	a/0	b /0	-/-	d/0		
С	e/1	-/-	c /0	d/0		
d	-/-	b/0	c/0	<u>d</u>)/0		
е	<u>e</u> /1	<i>b</i> /0	c/0	-/-		

⁻ Digitális hálózatok: gyakorló feladatok -

- 2. feladat -

Megoldás:

X1 X2	szimb.köv.áll. / kim.					
bem. akt. áll	00	01	10	11		
а	a/0	<i>b/0</i>	c/0	-/-		
Ъ	a/0	b /0	-/-	d/0		
С	e/1	-/-	©/0	d/0		
d	-/-	b/0	c/0	$\frac{d}{d}$ /0		
е	<u>e</u> /1	<i>b/0</i>	c/0	-/-		

$$(a\ b\ d)$$
, $(c\ e) \rightarrow s1$: $(a\ b\ d)$, $s2$: $(c\ e)$

- 2. feladat -

<u>Megoldás:</u>

2)

X1 X2 bem.	szimb.köv.áll. / kim.					
akt. áll	0 0	0 1	10	11		
s1	<u>\$1</u>)/0	sl/0	s2/0	<u>s1</u>)/0		
s2	<u>\$2</u> /1	s1/0	<u>s2</u> /0	s1/0		

3)	X1 X2				
•	akt. áll	00	0 1	10	1 1
	0	0/0	0/0	1 10	0)/0
	- 1	1)/1	51/ 0	1/0	0/0

$$\begin{array}{c}
4) \\
Y = X_1 \overline{X_2} + \overline{X_2} Y^{v} \\
\Rightarrow Z = \overline{X_1} \overline{X_2} Y^{v}
\end{array}$$

5) Kezdeti állapot: ?

⁻ Digitális hálózatok: gyakorló feladatok -

- 2. feladat -

Megoldás:

- Digitális hálózatok: gyakorló feladatok -

- 2. feladat -

A feladat megoldásának DSCH sémája("AH_2_dualishoz"):

http://www.sze.hu/~somi/Digit%e1lis%20h%e1l%f3zatok/DSCH%20s%e9m%e1k%20gyakorl%f3%20feladatokhoz/

Sorrendi hálózatok tervezése: aszinkron hálózatok

- 3. feladat -

 Tervezzünk olyan kétbemenetű (A;B) és egykimenetű (Z) közvetlen visszacsatolásos aszinkron sorrendi hálózatot, amely az alábbi szimbolikus állapottábla szerint működik!

(Kezdőhelyzetben a hálózat **AB**=00 értéknél stabil **a** állapotban van.)

(Vizsgáljuk meg a kapott függvényalakokat, és keressünk hasonlóságot a korábbi (aszinkron sorrendi hálózati) tanulmányokban megismertek alapján!) ©

(Hf.: realizáció és szimuláció DSCH3.5 programmal)

- 3. feladat -

		köv.áll.	/ Z	
	AB —			
akt. áll.	0 0	0 1	1 0	1 1
а	a/ 0	b / 0	c/1	-1-
b	a / 0	b / 0	-1-	-/-
С	d / 1	-1-	c/1	-/-
d	d / 1	b / 0	c/1	-1-

⁻ Digitális hálózatok: gyakorló feladatok -

Megola	lác [.]		- 3.	feladat	-	
<u>ricgora</u>	A	R	köv.á	II./Z		2)
	akt.áll	0.0	0 1	10	11	$\stackrel{2)}{\rightarrow} (a b), (c d)$
	a	a / 0	b / 0	c /1	-/-	s1 = 0 $s2 = 1$
	b	a / 0	ⓑ / 0	-/-	-/-	
1)	c	d / 1	-/-	©/1	-/-	A
	d	@ /1	b / 0	c / 1	-/-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		A B		köv.áll./Z		0 1 1 - 1 5)
3)	akt.áll	0 0	0 1	10	11	A 0 0 1 1
3)	s1	§1)/ 0	(1) / 0	s2/1	-/-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	s2	©2/1	s1 / 0	©2 /1	-/-	Y_0 -1
\downarrow	Δ	B	köv.á	II./Z		
	akt.áll	00	0 1	10	11	$Y = Z = A + \overline{B} Y^{V} $ 6)
4)	0	① / 0	① / 0	1/1	-/-	(= ? ☺)
	1	1 / 1	0 / 0	1/1	-/-	RESET? 7)

⁻ Digitális hálózatok: gyakorló feladatok -

- 3. feladat -

A feladat megoldásának DSCH sémája("AH_3_dualishoz"):

http://www.sze.hu/~somi/Digit%e1lis%20h%e1l%f3zatok/DSCH%20s%e9m%e1k%20gyakorl%f3%20feladatokhoz/