FOUNDATIONS OF REPRESENTATION THEORY

4. Exercise sheet

Jendrik Stelzner

November 7, 2013

Exercise 13:

Exercise 14:

Exercise 15:

$$\neg(ii) \Rightarrow \neg(i)$$

Assume that $V=U\oplus C$ is a direct sum decomposition with U simple.

Claim. C is maximal in V.

With this we find that

$$U \subseteq \operatorname{soc}(V)$$
 and $\operatorname{rad}(V) \subseteq C$

because U is simple and C is maximal in V. Because U nonzero with $U \cap C = 0$, this implies that $soc(V) \not\subseteq rad(V)$.

Proof of the claim. Let $C' \subseteq V$ be a submodule with $C \subseteq C' \subseteq V$. Let $C'' := C' \cap U$. Because V is simple we know that C'' = 0 or C'' = U. If C'' = 0 then

$$C = C + C'' = C + (U \cap C') = (C + U) \cap C' = V \cap C' = C'.$$

If C'' = U we get

$$U = C'' = C' \cap U$$
, so $V = U \cap C \subseteq C'$, so $C' = V$.

$$(ii) \Rightarrow (i)$$

Assume that V does not have a simple direct summand. If V has no maximal submodule, then $\mathrm{soc}(V)\subseteq\mathrm{rad}(V)=V$ is trivial. If V does have at least one maximal submodule it is easy to see that

$$\operatorname{soc}(V) \subseteq \operatorname{rad}(V) \Leftrightarrow S \subseteq U$$
 for all $S \subseteq V$ simple and all $U \subseteq V$ maximal.

Assume that $S\subseteq V$ is simple and $U\subseteq W$ is maximal with $S\nsubseteq U$. Then $S\cap U\neq S$ and $S\subsetneq S+U$. Because S is simple this implies $S\cap U=0$, and because U is maximal it implies S+U=V. So $V=S\oplus U$. This is a contradiction to the assumption that V does not have a simple direct summand. So $S\subseteq U$ for all for all $S\subseteq V$ simple and all $U\subseteq V$ maximal.

Exercise 16: