Άλγεβρα Β΄ Λυκείου

Επαναληπτικό διαγώνισμα - Τριγωνομετρία 29 Δεκεμβρίου 2023

ΘΕΜΑ Α

- Α.1 Να απαντήσετε στις παρακάτω ερωτήσεις.
 - α. Τι ονομάζεται τριγωνομετρική ταυτότητα;
 - β. Τι σχέση έχουν μεταξύ τους τα ημίτονα δύο αντίθετων γωνιών;
 - γ. Από ποιόν τύπο δίνονται οι λύσεις της εξίσωσης εφ $x = εφ\theta$;
 - δ. Ποια είναι η περίοδος και το πεδίο ορισμού της συνάρτησης $f(x) = \varepsilon \varphi x$;
 - ε. Για ποιες τιμές του αριθμού $a \in \mathbb{R}$ η εξίσωση ημx = a είναι αδύνατη;
 - στ. Τι ονομάζεται τριγωνομετρική εξίσωση;
- Α.2 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λάθος.
 - α. Ισχύει η σχέση ημ $40^{\circ} = -\eta \mu 140^{\circ}$.
 - β. Υπάρχει γωνία x για την οποία ισχύει συγχρόνως ημx=0 και συνx=0.
 - γ. Η γωνία $\theta = \frac{\pi}{4}$ είναι μια λύση της εξίσωσης 2συν $x \sqrt{2} = 0$.
 - δ. Η εξίσωση ημ $\overset{\cdot}{x}=\eta\mu\frac{\pi}{2}$ έχει λύσεις $x=2\kappa\pi+\frac{\pi}{2}$ όπου $\kappa\in\mathbb{Z}.$
 - ε. Η εξίσωση ημ $x=\frac{3}{2}$ έχει λύσεις τις γωνίες $x=2\kappa\pi+\frac{\pi}{3}$ όπου $\kappa\in\mathbb{Z}$.

ΘΕΜΑ Β

Β.1 Να υπολογίσετε τους τριγωνομετρικούς αριθμούς της γωνίας

- **B.2** Να αποδείξετε την τριγωνομετρική ταυτότητα $\frac{\eta\mu x}{1-\sigma\text{un} x}+\frac{\eta\mu x}{1+\sigma\text{un} x}=\frac{2}{\eta\mu x}.$
- **B.3** Δίνεται γωνία ω για την οποία ισχύει $\omega \in \left(0, \frac{\pi}{2}\right)$ και ημ $x = \frac{3}{5}$. Να βρεθούν οι υπόλοιποι τριγωνομετρικοί αριθμοί της γωνίας.

ΘΕΜΑ Γ

- Γ .1 Να λυθεί η τριγωνομετρική εξίσωση $2\eta\mu^2x + 3\sigma vvx 3 = 0$.
- **Γ.2** Να βρεθούν οι λύσεις της εξίσωσης συν $(2x \frac{\pi}{3}) = \frac{\sqrt{2}}{2}$ που ανήκουν στο διάστημα $[0, \pi]$.
- Γ.3 Να υπολογίσετε την τιμή της παράστασης

$$A = \eta \mu^2 x_1 - 3\varepsilon \varphi(\pi - x_1) \cdot \operatorname{sun}(\pi + x_1)$$

όπου $x_1 = \frac{2\pi}{3}$ η μικρότερη από τις λύσεις της προηγούμενης εξίσωσης.

ΘΕΜΑ Δ

Η θερμοκρασία μιας περιοχής σε βαθμούς κελσίου (°C) κατά τη διάρκεια ενός εικοσιτετράωρου δίνεται κατά προσέγγιση από τη συνάρτηση:

$$f(t) = -8\sigma v \frac{\pi}{12} + 4, \ 0 \le t \le 24$$

όπου t ο χρόνος σε ώρες.

- **Δ.1** Να βρείτε τη μέγιστη και την ελάχιστη θερμοκρασία κατά τη διάρκεια του εικοσιτετράωρου, καθώς και την περίοδο της συνάρτησης.
- **Δ.2** Να παραστήσετε γραφικά την f για $t \in [0, 24]$
- **Δ.3** Να βρείτε με τη βοήθεια της γραφικής παράστασης, σε ποια διαστήματα μέσα στη μέρα η θερμοκρασία αυξάνεται και σε ποια μειώνεται.

1

Δ.4 Να βρείτε τις ώρες στις οποίες η θερμοκρασία ισούται με $8^{\circ}C$.