Nonlinear PDEs

3rd lecture

Vector space

▶ Is a set V satisfying

linearity (α is a real number)

$$v, w \in V \implies v + w \in V \text{ and } \alpha v \in V$$

conditions on operations

$$v + w = w + v$$

$$v + (w + z) = (v + w) + z$$

$$\alpha(v + w) = \alpha v + \alpha w$$

$$(\alpha + \beta)v = \alpha v + \beta v$$

$$\alpha(\beta v) = (\alpha \beta)v$$

$$1 \cdot v = v$$

$$v + w = v + z \implies w = z$$

Norm

Norm on V is a non-negative real function $\|\cdot\|_V$ fulfilling the conditions:

$$||v + w||_V \le ||v||_V + ||w||_V \qquad \text{(triangle inequality)}$$

$$||\alpha v||_V = |\alpha| ||v||_V$$

$$||v||_V \ne 0 \text{ for } v \ne 0$$

Normed linear vector space is a linear vector space equipped with a norm.

Banach space

▶ A sequence $\{v_k\}_{k=1}^{\infty} \subset V$ is called a **Cauchy sequence** provided for each $\epsilon > 0$ there exists N > 0 such that

$$||v_k - v_l||_V < \epsilon$$
 for all $k, l \ge N$

- ▶ V is **complete** if each Cauchy sequence in V converges. That is, whenever $\{v_k\}_{k=1}^{\infty}$ is a Cauchy sequence, there exists $v \in V$ such that $\{v_k\}_{k=1}^{\infty}$ converges to v.
- ▶ A **Banach space** V is a complete, normed linear space.

L^p spaces

For $1 \leq p \leq \infty$, open subset $\Omega \subset \mathbb{R}^n$ and a measurable function $f: \Omega \to \mathbb{R}$ we define

$$||f||_{L^p(\Omega)} = \begin{cases} \left(\int_{\Omega} |f|^p \, dx \right)^{1/p} & \text{if } 1 \le p < \infty \\ \text{ess } \sup_{\Omega} |f| & \text{if } p = \infty \end{cases}$$

Then $L^p(\Omega)$ is the linear space:

$$L^p(\Omega) = \{ f : \Omega \to \mathbb{R} \mid \|f\|_{L^p(\Omega)} < \infty \}$$

 $L^p(\Omega)$ is a Banach space, provided we identify functions which agree almost everywhere.

Lemma. (Hölder's inequality)

Let $1 \leq p, q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then if $u \in L^p(\Omega), v \in L^q(\Omega)$, we have

$$\int_{\Omega} |uv| \, dx \le ||u||_{L^p(\Omega)} ||v||_{L^q(\Omega)}$$

Hilbert spaces

Let H be a real linear space. A mapping $(,) : H \times H \to \mathbb{R}$ is called an **inner product** if

- (i) $(u, v) = (v, u) \ \forall u, v \in H$
- (ii) the mapping $u \mapsto (u, v)$ is linear for each $v \in H$
- (iii) $(u, u) \ge 0$ for all $u \in H$
- (iv) (u, u) = 0 if and only if u = 0

If (,) is an inner product, the associated norm is

$$||u||_H = (u, u)^{1/2}, \qquad u \in H.$$

The Cauchy-Schwarz inequality states

$$|(u,v)| \le ||u||_H ||v||_H, \quad u,v \in H.$$

Hilbert space is a Banach space endowed with an inner product.

Bounded linear operators

A mapping $A: X \to Y$ (X, Y are normed spaces) is a **linear operator** provided

$$A(\lambda u + \mu v) = \lambda A(u) + \mu A(v) \qquad \forall u, v \in X, \ \forall \lambda, \mu \in \mathbb{R}$$

A linear operator $A: X \to Y$ is **bounded** if

$$||A|| = \sup_{\|u\|_X \le 1} ||A(u)||_Y = \sup_{u \in X} \frac{||A(u)||_Y}{\|u\|_X} < \infty$$

If $Y = \mathbb{R}$, then we call the operator $A: X \to \mathbb{R}$ a functional.

 X^* = collection of all bounded linear functionals on X = **dual space** of X

Theorem (Riesz representation theorem) Let H be a real Hilbert space. Then for each $F \in H^*$ there exists a unique element $f \in H$ such that

$$F(v) = (f, v) \qquad \forall v \in H$$

The mapping $F \mapsto f$ is a linear isomorphism of H^* onto H.

