EDA

- Target is heavily skewed, most of the values are zero. 0,20 range contain 99.9% of the data range.
- Category_target and shop_target shows strong decreasing trend and yearly seasonal pattern indicating the importances of these features and the need to incorporate lag 12 feature.

Feature Engineering:

Feature preprocessing and generation with respect to models

- Remove outlier from sales train data
- Calculate aggregation features for each month on shop_id and item_id, shop_id only, item_id only, category_id only. For each aggregation, calculate item_cnt_day sum, item_price median, and sales sum.
- Split the date column into month and year features
- Generate lag features for month 1,2,3,4,5,6,12
- For neural networks, numerical features are standardized before fitting into the model
- For tree based features, no scaling is performed since they do not affect the model performance.
- For linear regression, only numerical features are fed into the model.

Feature extraction from text

- Use TfidfVectorizer to transform item name and category name into vectors.
- Then use TruncatedSVD to reduce its dimensions to 10

Advanced Features I: mean encodings

- Generated mean encoding for all categorical features using expanding mean
- Features encoded: item_id,shop_id,item_category_id,month,year
- Target used for encoding: target, shop_target, item_target, category_target

Advanced Features II

- Generated sales data columns by calculating product of item_cnt_day and item price
- Reduced text features to dimension=10 using TruncatedSVD

Validation

Train test split is time based.

- Two ways to split for train and validation:
 - 1. use last two month as validation set
 - 2. Use date_block_num in {9,21,33} as validation set
- After comparing the validation RMSE score vs. leaderboard RMSE score, selected the second validation method.

Data leakages

Unable to find data leakage

Metrics optimization

 Regressors minimize mean squared error. Validation metric used RMSE, same as the evaluation metric of the project.

Hyperparameter tuning

• used early stopping to do parameter tuning for xgb and neural networks.

Ensembles

- Stacking five model: xgb, rfr, lr, simple nn, embedding nn
- Train meta-features are generated using scheme f) from the reading material of the course.
 T equal to month, M=28
- Add pairwise differences to the level2 meta features and fit using LinearRegression.

How to generate solutions

- 1. Generate the full dataframe and split it into training, validation, test Python run_all_data.py
- 2. Generate best xgboost regressor prediction, and generate feature importances Python model_xgboost.py
- 3. Generate best simple neural network model prediction, as well as a standardized features dictionary dumped to local for stacking.
 - Python model simple neural network.py
- 4. Generate best embedding neural network model prediction, as well as a processed feature dictionary dumped to local for stacking.
 - Python model embedding neural network.py
- Generate an ensemble using stacking for XGBRegressor, RandomForestRegressor, LinearRegression, simple NeuralNetwork and embedding Neural Network.
 Python run ensemble.py