Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{lpha}~\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
	$\sigma_1^{\#1} + \sigma^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

1							
$f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_3$	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	1 to 2 3	$\left -\frac{1}{3} \overline{i} k t_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + \tau^{\alpha\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

$\omega_0^{\#1}$ $f_0^{\#1}$ $f_0^{\#2}$ $\omega_0^{\#1}$							
$\omega_{0^+}^{\#1}\dagger$	$6 k^2 r_3$	0	0	0			
$f_{0}^{#1}\dagger$	0	0	0	0			
$f_{0}^{#2}$ †	0	0	0	0			
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$			

Source constraints/gauge generators SO(3) irreps Multiplicities $\tau_{0^{+}}^{\#2} == 0$ $\tau_{0^{+}}^{\#1} == 0$ $\tau_1^{\#2\,\alpha} == 0$ $\tau_1^{\#1\,\alpha}\,==\,0$ $\sigma_1^{\#2\alpha} == 0$ $\tau_{1+}^{\#1\,\alpha\beta} + ik \sigma_{1+}^{\#2\,\alpha\beta} == 0$ 3 $\sigma_2^{\#_1\alpha\beta\chi}=0$ $\tau_{2^{+}}^{\#1\,\alpha\beta}\,==0$ $\sigma_{2^+}^{\#1\,\alpha\beta} == 0$ 5 Total constraints: 29

$\tau_2^{++} \uparrow^{\alpha \rho}$	0	0	0					
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0					
$\omega_{2^{+}\alpha\beta}^{\#1}f_{2^{+}\alpha\beta}^{\#1}\omega_{2^{-}\alpha\beta\chi}^{\#1}$								
$\omega_{2^+}^{\#1}\dagger^{\alpha\beta}$	0	0	0					
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0					

 $\omega_{2}^{\#1}\dagger^{lphaeta\chi}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}~\tau_{2^{+}\alpha\beta}^{\#1}~\sigma_{2^{-}\alpha\beta\chi}^{\#1}$

Massive and massless spectra

(No massless particles)

Unitarity conditions