

Fakultät für Ingenieurwesen Facoltà di Ingegneria Faculty of Engineering

Bachelor Thesis

Knowledge Refinement in Expressive Description Logics

Candidate Roland Bernard

Supervisors Oliver Kutz

Nicolas Troquard

July 2023

Description Logics

- Family of logics used to represent knowledge
 - ightarrow aiming for favorable trade-offs between complexity and expressivity
- Individuals, e.g., roland oliver nicolas unibz blue
 Concepts, e.g., Student Professor Person University Color
 Roles, e.g., studiesAt supervisedBy hasColor

- ightharpoonup Complex concepts, e.g., $\neg Person \quad Person \quad \Box Student \quad \exists studies At. University$
- $\qquad \qquad \textbf{Axioms,} \quad \textbf{e.g.,} \quad \textit{Student} \sqsubseteq \textit{Person} \quad \textit{Student}(\textit{roland}) \quad \textit{studiesAt}(\textit{roland}, \textit{unibz}) \\$

Knowledge Refinement in Description Logics

- Process of iteratively modifying and improving the ontology
- Using two refinement operators
 - \rightarrow specialization operator, e.g., *Student* is a specialization of *Person*
 - ightarrow generalization operator, e.g., Person is a generalization of Student
- Using an axiom weakening operator
 - → uses the two refinement operators
 - → generates axioms that are less restrictive

Applications of Knowledge Refinement

- X Repairing ontologies, e.g.,
 - → making inconsistent ontologies consistent
 - → removing unintended consequences
- Combination of conflicting knowledge
 - → also for computational concept combination
- Machine learning
 - → learning axioms from data

Weakening in Expressive Description Logics

- \odot Extend axiom weakening to the description logic \mathcal{SROIQ}
- Only simple roles can be used in every context
 - ightarrow using a non-simple role in some places is forbidden
- I The graph formed by role inclusions must match some conditions
 - → adding new role inclusions can cause violations
- These problems have been prevented by ensuring that
 - → all simple roles remain simple after refinement
 - → only simple roles are used during the refinement

A Protégé Plugin supporting Axiom Weakening

Protégé plugin for axiom weakening

- → allow computing weakening for specific axioms
- → enable automatic ontology repair

Evaluating Axiom Weakening for Ontology Repair

Repaired once using axiom weakening and once using removal

→ the quality of the resulting repairs is compared

Deciding which repair is "better" is not well-defined

→ we want to retain as many consequences as possible

→ we focus only on subsumption between simple concepts

For comparing two repairs we define the IIC of \mathcal{O}_1 w.r.t \mathcal{O}_2

- \rightarrow value close to 1 for when \mathcal{O}_1 is "better"
- → 0.5 if both repairs are equally "good"
- \rightarrow value close to 0 for when \mathcal{O}_2 is "better"

Evaluation Results

- Comparison between using axiom weakening and using removal
 - → significantly better for some ontologies
 - → in many cases only minor or no improvement

Outcomes of the Thesis

- + Extended the axiom weakening operator to SROIQ
 - ightarrow and showed that the proposed approach maintains the necessary constraints
- Developed a Protégé plugin for applying these techniques
 - → allowing users to easily repair ontologies and weaken axioms
- Evaluated the proposed approach on real-world ontologies
 - → showing that axiom weakening can outperform removal

Expressive Description Logics

- Additional kinds of concept expressions and axioms, e.g.,
 - \rightarrow role inclusions, e.g., $motherOf \sqsubseteq parentOf$
 - ightarrow cardinality constraints, e.g., \leq 1 studiesAt.University \geq 2 supervisedBy. op
- Require additional rules to guarantee decidability
 - → separation into simple and non-simple roles
 - → limits on the graph formed by role inclusions
- \odot Focus on \mathcal{SROIQ} and the Web Ontology Language

Implementation of Axiom Weakening

- Implemented in Java using the OWL API
 - → a library providing a uniform way of interfacing with reasoners
- Using of-the-shelf reasoners for the Web Ontology Language
 - $\rightarrow~$ requires mapping between Web Ontology Language and \mathcal{SROIQ}
- Tests to ensure correct behavior of the implementation
 - → manual tests of expected operator results
 - $\,$ automatically generated tests asserting general properties and invariants

Future Outlook

- → refine with non-simple roles in some cases
- → more permissive weakening of role inclusions
- Study better ways of guiding the repair process
 - → using better heuristics, maybe domain specific
 - → using user input to guide the repairs

Find better measures for comparing the quality of repairs

Study other possible applications of axiom weakening