Control Systems

G V V Sharma*

1

1

1

1

1

CONTENTS

1	гееараск	voitage	Ampliner:	Series-
Shunt	t			

- **2** Feedback Current Amplifier: Shunt-Series
- **3** Feedback Current Amplifier: Example
- 4 Feedback Transconductance Amplifier: Series-Series
- 5 Feedback Problem

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/feedback/codes

- 1 FEEDBACK VOLTAGE AMPLIFIER: SERIES-SHUNT
- 2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES
- 2.1 Ideal Case
- 2.2 Practical Case
 - 3 FEEDBACK CURRENT AMPLIFIER: EXAMPLE
 - 4 FEEDBACK TRANSCONDUCTANCE AMPLIFIER: SERIES-SERIES
 - 5 FEEDBACK PROBLEM
- 5.1. A two-pole amplifier for which $G_o = 10^3$ and having poles at 1 MHz and 10 MHz is to be connected as a differentiator. On the basis of the rate-of-closure rule, what is the smallest differentiator time constant for which operation

is stable? What are the corresponding gain and phase margins?

Solution: The differentiator circuit is as shown in Fig. 5.1.1.Here $\tau = RC$

For the above circuit using supersposition theorem we can write,

$$V_f = \left(\frac{R}{R + \frac{1}{SC}}\right) V_i + \left(\frac{\frac{1}{SC}}{R + \frac{1}{SC}}\right) V_o \qquad (5.1.1)$$

5.2. Draw the equivalent control system. **Solution:**

Fig. 5.2

5.3. Find feedback factor H and open loop gain G. **Solution:** From the above table,

$$H(s) = \frac{1}{1 + sRC}$$
 (5.3.1)

$$\implies \frac{1}{H(s)} = 1 + sRC \approx sRC$$
 (5.3.2)

$$G(s) = \frac{10^3}{\left(1 + \frac{s}{2\pi \cdot 10^6}\right)\left(1 + \frac{s}{2\pi \cdot 10^7}\right)}$$
(5.3.3)

5.4. Rate of Closure rule

Solution: The rule states that at intersection of

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Parame- ters	Definition	For given circuit
Open loop gain	G	G
Feedback factor	Н	$\frac{1}{1+sRC}$
Loop gain	GH	$\frac{G}{1+sRC}$
Gain Factor	K	$\frac{-sRC}{1+sRC}$
Closed loop gain	$K\frac{G}{1+GH}$	$\frac{G(-sRC)}{1+G+sRC}$

TABLE 5.2

 $20 \log \left| \frac{1}{H(j\omega)} \right|$ and $20 \log |G(j\omega)|$ the difference of the slopes (called the rate of closure) should not exceed 20dB/decade.

The Bode plot for $\frac{1}{|H(j\omega)|}$ has a slope of $+20 \mathrm{dB/decade}$. Therefore, the closed-loop amplifier will be stable if $20 \log \left(\frac{1}{H}\right)$ line intersects the $20 \log |G|$ curve at a point on the $0 \mathrm{dB/decade}$ segment.

The 0dB/decade segment of the $20 \log |G|$ curve is $G_o = 10^3$. We should test the stability at the pole frequency $\omega_{P1} = 2\pi \cdot 10^6$ which seperate the 0dB/decade segment and the - 20 dB/decade. Thus we can write that as,

$$20 \log |G_o| - 20 \log \left(\frac{1}{H(J\omega_{P1})}\right) \le 20dB$$

$$\implies \left|G_o H(J\omega_{P1})\right| \le 1 \quad (5.4.2)$$

Substituting,

$$G_o \frac{1}{\omega_{P1} \tau} \le 1 \qquad (5.4.3)$$

$$\therefore \tau \ge \frac{G_o}{\omega_{P1}} = \frac{10^3}{2\pi \cdot 10^6} = 159.15 \mu s \quad (5.4.4)$$

$$\implies \tau_{min} = 159.15 \mu s \quad (5.4.5)$$

5.5. Find Phase Margin and Gain Margin for $\tau = \tau_{min}$.

Solution: From the Equation (5.4.5)

At,
$$\tau = \tau_{min}$$
 (5.5.1)

$$\left| G_o H(j\omega_{P1}) \right| = 1 \quad (5.5.2)$$

$$\implies P.M = \angle G(\jmath\omega_{P1})H(\jmath\omega_{P1}) + 180^{\circ} \quad (5.5.3)$$

So,

$$\angle G(j\omega_{P1}) = -tan^{-1} \left(\frac{\omega_{P1}}{2\pi \cdot 10^6} \right) - tan^{-1} \left(\frac{\omega_{P1}}{2\pi \cdot 10^7} \right)$$
(5.5.4)

$$=-50.71^{\circ}$$
 (5.5.5)

$$\angle H(\omega_{P1}) = -90^{\circ} \tag{5.5.6}$$

$$\implies P.M = 180^{\circ} - 50.71^{\circ} - 90^{\circ} = 39.29^{\circ}$$

$$P.M = 39.29^{\circ}$$
 (5.5.8)

For Gain Margin we need to find ω_{180} such that

$$\angle G(j\omega_{180})H(j\omega_{180}) = -180^{\circ}$$

(5.5.9)

$$\implies -tan^{-1} \left(\frac{\omega_{180}}{2\pi \cdot 10^6} \right) - tan^{-1} \left(\frac{\omega_{180}}{2\pi \cdot 10^7} \right) - 90^\circ = -180^\circ$$
(5.5.10)

Solving we get,

$$\omega_{180} = 19.98 Mrad/s \tag{5.5.11}$$

The Gain Margin is as follows,

$$GM = -20 \log |G(j\omega_{180}) H(j\omega_{180})|$$

$$= -20 \log |G(j\omega_{180})| + 20 \log \left| \frac{1}{H(j\omega_{180})} \right|$$

$$= -49.12 + 70.05$$
(5.5.12)
$$(5.5.13)$$

$$G.M = 20.93dB$$
 (5.5.15)