

Prof. Érika Fialho

Monitora Isabella

ESTATÍSTICA PARAMÉTRICA E NÃO-PARAMÉTRICA COM USO DO SOFTWARE R

Testes Não Paramétricos para dois grupos: Mann-Whitney e Wilcoxon

Conceitos estatísticos importantes

- Conceitos estatísticos importantes
- Testes n\u00e3o param\u00e9tricos

- Conceitos estatísticos importantes
- Testes não paramétricos
- Teste Mann-Whitney

- Conceitos estatísticos importantes
- Testes não paramétricos
- Teste Mann-Whitney
- Teste Wilcoxon

- Conceitos estatísticos importantes
- Testes não paramétricos
- Teste Mann-Whitney
- Teste Wilcoxon
- Exemplos práticos com uso do R:
 Monitora Isabella Cavalcanti

Estatística é a ciência que trata da coleta, da organização, da análise, da interpretação e da apresentação de dados.

Etapas de uma análise estatística

Estimativa, estimador e parâmetro

Classificação das variáveis

- Qualitativas (atribuições, características)
 - Nominais
 - Ordinais
- Quantitativas (numéricas).
 - Contínuas
 - Discretas

Testes não paramétricos

Testes paramétricos: assumem que a distribuição de probabilidade seja conhecida. Ex.: Teste para média, teste para proporção, Teste para razão de verossimilhanças, etc.

Testes não paramétricos: assumem poucas suposições sobre as distribuições probabilísticas. Ex.: Testes de aderência, testes de independência, etc.

- Formulam-se as hipóteses a serem testadas
- Calcula-se o valor da estatística do teste
- Decide-se pela rejeição (não aceitação) ou aceitação da hipótese nula

Teste Wilcoxon

Teste Wilcoxon

Este teste foi desenvolvido por F. Wilcoxon em 1945 para comparar tendências centrais de duas amostras independentes de tamanhos iguais.

 $\begin{cases} H_0: & \text{não existe diferença entre os tratamentos (mesma mediana)} \\ H_1: & \text{caso contrário.} \end{cases}$

 $\left\{ \begin{array}{l} H_0: \quad \text{n\~ao existe diferença entre os tratamentos (mesma mediana)} \\ H_1: \quad \text{caso contr\'ario.} \end{array} \right.$

$$\begin{cases} H_0: & \sum p_i(+) = \sum p_i(-) \\ H_1: & c.c. \end{cases}$$

Calcular as diferenças entre os valores das amostras:

$$d_i = X_i - Y_i$$
.

- Calcular as diferenças entre os valores das amostras: $d_i = X_i Y_i$.
- Excluir as diferenças iguais a zero.

- Calcular as diferenças entre os valores das amostras: $d_i = X_i Y_i$.
- 2 Excluir as diferenças iguais a zero.
- 3 Atribuir os postos a $|d_i|$ em ordem crescente.

- Calcular as diferenças entre os valores das amostras: $d_i = X_i - Y_i$.
- Excluir as diferenças iguais a zero.
- Atribuir os postos a $|d_i|$ em ordem crescente.
- 🕚 Uma vez obtidos os postos, colocam-se os sinais das diferenças d_i .

- Calcular as diferenças entre os valores das amostras: $d_i = X_i Y_i$.
- Excluir as diferenças iguais a zero.
- 3 Atribuir os postos a $|d_i|$ em ordem crescente.
- Uma vez obtidos os postos, colocam-se os sinais das diferenças d_i.
- lacktriangledown Obter o valor da menor das somas de postos de mesmo sinal (T).

Observação:

Observação:

• Quando houver empate em |d_i|, atribuem-se às diferenças a média dos postos que elas receberiam se não fossem empatadas. Por exemplo, suponha d₁ = 1, d₂ = -1 e d₃ = -1, o posto 2 seria atribuído à cada uma das três diferenças, pois a média de 1, 2 e 3 é 2. Assim, os postos com os sinais das diferenças são: 2, -2 e -2. A próxima diferença na ordem receberia o posto 4 e assim por diante.

Estatística de teste

- Para N < 25, utiliza-se a Tabela do Teste de Wilcoxon.</p>
- 2 Para $N \ge 25$, a estatística é definida por:

$$\begin{split} Z_{calculado} &= \frac{T - \mu_T}{\sigma_t} \sim \textit{N}(0,1), \\ \mu_T &= \frac{\textit{N}(\textit{N}+1)}{4} \qquad \text{e} \qquad \sigma_T = \sqrt{\frac{\textit{N}(\textit{N}+1)(2\textit{N}+1)}{24}} \end{split}$$

Rejeita-se H_0 se $Z_{1-\frac{\alpha}{2}} < Z_{calculado}$ ou $Z_{calculado} < Z_{\frac{\alpha}{2}}$.

Exemplo no R

Teste Mann-Whitney

Teste Mann-Whitney

Este teste é uma generalização do anterior desenvolvida por H.B. Mann e D.R. Whitney em 1947. Com ele é possível comparar amostras de tamanhos diferentes.

A construção das hipóteses é a mesma:

```
 \left\{ \begin{array}{l} \textit{H}_0: & \text{n\~ao existe diferença entre os tratamentos (mesma mediana)} \\ \textit{H}_1: & \text{caso contr\'ario.} \end{array} \right.
```


Organizar os valores das duas amostras em um só grupo (W)

- Organizar os valores das duas amostras em um só grupo (W)
- Ordenar o conjunto W de forma crescente e atribuir postos a cada elemento

- Organizar os valores das duas amostras em um só grupo (W)
- Ordenar o conjunto W de forma crescente e atribuir postos a cada elemento
- Separam-se novamente as amostras, observando-se o número de casos e a soma dos postos em cada amostra

Teste Mann-Whitney

A estatística *U* é a base para a decisão sobre as hipóteses e pode ser calculada da seguinte maneira:

- Organizar os valores das duas amostras em um só grupo (W)
- Ordenar o conjunto W de forma crescente e atribuir postos a cada elemento
- Separam-se novamente as amostras, observando-se o número de casos e a soma dos postos em cada amostra

Calcula-se

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$
 e $U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2$

Teste Mann-Whitney

Estatística de teste

- Para N < 25, utiliza-se a Tabela do Teste U de Mann-Whitney.
- 2 Para $N \ge 25$, a estatística é definida por:

$$\begin{split} Z_{\text{calculado}} &= \frac{U - \mu_U}{\sigma_U} \sim \textit{N}(0,1), \\ \mu_U &= \frac{\textit{n}_1 \textit{n}_2}{2} \qquad \text{e} \qquad \sigma_U = \sqrt{\frac{\textit{n}_1 \textit{n}_2 (\textit{n}_1 + \textit{n}_2 + 1)}{12}} \end{split}$$

Rejeita-se H_0 se $Z_{1-\frac{\alpha}{2}} < Z_{calculado}$ ou $Z_{calculado} < Z_{\frac{\alpha}{2}}$.

Exemplo no R

