AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OHIO COMPOSITE MATERIALS WORKBOOK.(U) MAR 78 S W TSAI, H T HAHN AFML-TR-78-33 AD-A058 534 F/6 11/4 UNCLASSIFIED NL OF 4 AD A058534

AFML-TR-78-33
This report supersedes AFML-TR-77-33 dated March 1977

3/

COMPOSITE MATERIALS WORKBOOK

DC FILE COPY

AIR FORCE MATERIALS LABORATORY

MARCH 1978

TECHNICAL REPORT AFML-TR-78-33

D D C SEP 12 1970

Approved for public release; distribution unlimited.

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

78 08 14 059

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (ASD/OIP) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

STEPHEN W. TSAI Project Scientist

FOR THE COMMANDER

JEROME M. KELBLE, Chief Nonmetallic Materials Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. PECIP'ENT'S CATALOG NUMBER AFML-TR-78-33 TITLE (and Subtitle) TYPE OF SEPE PERIOD COVERED Interim Report . COMPOSITE MATERIALS WORKBOOK 9/1/76 - 3/1/78 AUTHOR(s) Stephen W. Tsai H. Thomas Hahn PERFORMING ORGANIZATION NAME AND ADDRESS (AFML/MBM) Air Force Wright Aeronautical Laboratories 24190310 Wright-Patterson AFB, Ohio 45433 1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Materials Laboratory (AFML/MB) March 1978 NUMBER OF PAGES Air Force Wright Aeronautical Laboratories Wright-Patterson AFB, Ohio 373 (over) 15. SECURITY CLASS. (of this report) Unclassified Same 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same 18. SUPPLEMENTARY NOTES This report supersedes AFML-TR-77-33, dated March 1977 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composite materials; material properties; formulas for: stress, strain, stress/strain relations, micromechanics, laminated plate theory, curing and swelling stresses, fatigue, fracture, moisture effect, time dependent behavior, statistical methodology and test methods.

This workbook is intended to present to the users of composite materials a set of tools to solve most commonly encountered problems in design and testing. Attempts are made to simplify both the operational and conceptual aspects. Subjects are selected from the standpoint of practical application rather than elegance.

This workbook is unique in that it requires the student to work through many numerical problems immediately after the presentation of formulas. Program-

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

012320

LB

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (continued)

mable pocket calculators, preferably with magnetic card capability, are most suitable to perform the necessary calculations. In a separate volume, a number of the formulas in this workbook have been preprogrammed. The description, operating instruction, and program listing for these formulas have been compiled for Texas Instruments SR-52.

It is envisioned that this workbook is suitable for both a supervised educational program for the novice, and a refresher course for the experienced. It is believed that composite materials can be made conceptually simple. Operational aspects can also be made simple by the use of programmable calculators. The performance characteristics of composite materials can now be fully appreciated and utilized.

The combined workbook and mc² (magnetic card calculator) approach, can make speed teaching and speed learning possible. This approach can be extended into subjects beyond composite materials.

FOREWORD

This report was prepared in the Mechanics and Surface Interactions Branch (AFML/MBM), Nonmetallic Materials Division, Air Force Materials Laboratory. Wright-Patterson AFB, Ohio. The work was performed under the joint support of Project No. 2419 "Nonmetallic Structural Materials," Task No. 241903 "Composite Materials and Mechanics Technology," and Project No. 2307 "Aerospace Sciences," Task No. 2307P1 "Life Analysis and Failure Mechanics in Engine and Airframe Structural Metals and Composites." The time period covered by the effort was 1 September 1976 to 1 March 1977. Stephen W. Tsai (AFML/MBM) was the laboratory project engineer.

Contributions from Wolfgang S. Knauss, California Institute of Technology, George S. Springer, University of Michigan, Richard H. Toland, Lawrence Livermore Laboratory, and Edward M. Wu, Lawrence Livermore Laboratory, are gratefully acknowledged. Unpublished data furnished by Ran Y. Kim, University of Dayton Research Institute, are also gratefully acknowledged.

N'S	Ville Saction
ing.	Buil Section [
10:140	D 🗆
5 1 154 119	N
DISTRIBUTION	NAVALIABILITY CODES
	, SP, CIAL
0/	

TABLE OF CONTENTS

Section			Page
I	MA	TERIALS PROPERTIES S. W. Tsai	
	1.	DENSITY OF COMPOSITES	1
	2.	ONE-DIMENSIONAL ELASTICITY PROPERTIES	5
	3.	TWO-DIMENSIONAL ELASTICITY PROPERTIES	9
II	STR	ESS AND STRAIN S. W. Tsai	
	1.	STRESS AS COORDINATES ROTATE	13
	2.	MAXIMUM STRESS FAILURE CRITERION FOR UNIDIRECTIONAL COMPOSITES	19
	3.	STRENGTH ESTIMATE OF RANDOM FIBER COMPOSITES	21
	4.	STRAIN AS COORDINATES ROTATE	23
	5.	STRAIN ROSETTES	27
III	STR	ESS-STRAIN RELATIONS S. W. Tsai	
	1.	COMPLIANCE AND MODULUS MATRICES	29
	2.	MAXIMUM STRAIN CRITERION	37
	3.	PLANE ELASTICITY SOLUTIONS	41
	4.	TRANSFORMATION RELATIONS FOR COMPLIANCE	45
	5.	TRANSFORMATION RELATIONS FOR MODULUS MATRIX	49
	6.	MODULI FOR RANDOM COMPOSITES	53
IV	MIC	ROMECHANICS H. T. Hahn	
	1.	ELASTIC PROPERTIES	55
	2.	STRESSES IN CONSTITUENT PHASES	71
	3.	STRENGTH	75
	4.	SYNERGISTIC EFFECTS OF MATRIX AND FIBER STRENGTH SCATTER	85
v	IN-I	PLANE PROPERTIES OF SYMMETRIC LAMINATES S. W. Tsai	
	1.	STRESS-STRAIN RELATIONS	89
	2.	FORMULAS FOR IN-PLANE MODULUS	93
	3.	CALCULATION OF PLY STRESSES	99
	4.	PLANE ELASTICITY SOLUTIONS FOR SYMMETRIC LAMINATES	101

TABLE OF CONTENTS (Continued)

Section			Page
VI	FLE	XURAL PROPERTIES OF SYMMETRIC LAMINATES S. W. Tsai	
	1.	FLEXURE-CURVATURE RELATIONS	103
	2.	FORMULA FOR FLEXURAL RIGIDITY	105
	3.	FORMULA FOR RIGIDITY FOR SANDWICH PLATES	123
	4.	DETERMINATION OF STRESSES	127
VII	PRO	PERTIES OF UNSYMMETRICAL LAMINATES S. W. Tsai	
	1.	BACKGROUND	135
	2.	COUPLING MODULUS	137
	3.	COUPLED BENDING AND EXTENSION OF LAMINATES	149
VIII	STR	ESS AND DEFORMATION DUE TO CURING AND SWELLING H.	Γ. Hahn
	1.	UNIDIRECTIONAL LAMINAE	157
	2.	MULTIDIRECTIONAL LAMINATES	165
IX	FAII	LURE THEORIES E. M. Wu	
	1.	INTRODUCTION	173
	2.	GEOMETRIC INTERPRETATION OF EMPLOYING FAILURE CRITERION TO INTERROGATE POTENTIAL FAILURE	175
	3.	FAILURE CRITERIA FOR ONE GIVEN ORIENTATION	177
	4.	INTERACTING FAILURE CRITERION	185
	5.	TRANSFORMATION OF FAILURE CRITERION FROM ONE ORIENTATION TO ANOTHER ORIENTATION	191
	6.	LAMINATE STRENGTH	193
	7.	SIZING FOR STRENGTH	197
х	FRA	CTURE TOUGHNESS H. T. Hahn	
	1.	ELASTIC STRESS ANALYSIS	207
	2.	FRACTURE TOUGHNESS OF UNIDIRECTIONAL LAMINAE	211
	3.	FRACTURE TOUGHNESS OF MULTIDIRECTIONAL LAMINATES	215
XI	FAT	GIGUE AND LIFE PREDICTION H. T. Hahn	
	1.	UNNOTCHED FATIGUE BEHAVIOR	221
	2.	NOTCHED FATIGUE	225
	3.	APPROXIMATE PREDICTION FOR FATIGUE LIFE	227
	4	LIFE DEFLICTION AND ANALYSIS OF SCATTER	233

TABLE OF CONTENTS (Continued)

Section			Page
XII	EN	VIRONMENTAL EFFECTS ON COMPOSITES G. S. Springer	
	1.	HEAT CONDUCTION	247
	2.	MOISTURE DIFFUSION	249
	3.	TRANSIENT ANALYSIS	255
XIII	TIM	ME DEPENDENCE IN POLYMER DEFORMATION W. S. Knauss	
	1.	LINEARLY VISCOELASTIC CHARACTERIZATION	257
	2.	EFFECT OF TEMPERATURE ON TIME DEPENDENCE	263
	3.	PRACTICAL LIMITS ON TIME DOMAIN OF MATERIAL	267
XIV		PLICATION OF STATISTICAL THEORIES AND DATA ERAGING H. T. Hahn	
	1.	SAMPLE AND PARENT DISTRIBUTIONS	269
	2.	WEIBULL AND NORMAL DISTRIBUTIONS	273
	3.	RELIABILITY	279
	4.	DESIGN ALLOWABLES	281
	5.	STATISTICAL INTERPRETATION OF FAILURE PROCESS	285
	6.	SIZE EFFECT	289
	7.	DATA AVERAGING	295
xv	STR	RUCTURAL ELEMENTS R. H. Toland	
	1.	LAMINATED COMPOSITE BEAMS - STATIC BEHAVIOR	299
	2.	LONG CYLINDRICAL TUBES (AXIAL LOAD, TORSION, PRESSURE, BEAM BENDING)	305
	3.	COLUMNS (COMPRESSION LOADED 1-D MEMBERS)	307
	4.	COMPOSITES FOR SELECTIVE REINFORCEMENT OF STRUCTURAL ELEMENTS	311
	5.	THERMAL STRESSES	313
	6.	SIZING FOR STIFFNESS	315
	7.	DESIGN PROBLEM - STRINGER REINFORCED COMPRESSION PANEL	321
IVX	SPE	CCIMEN CONFIGURATIONS AND LOADINGS H. T. Hahn	
	1.	TESTS FOR LAMINA PROPERTIES	323
	2.	PROBLEMS RESULTING FROM ANISOTROPY AND NONHOMOGENEITY	329
	PFI	FFRENCES	221

TABLE OF CONTENTS (Concluded)

	PAGE
APPENDIX A - SYSTEME INTERNATIONALE	335
APPENDIX B - TRIGONOMETRIC FUNCTIONS	336
APPENDIX : - NORMAL DISTRIBUTION	337
APPENDIX D - CHI-SQUARE DISTRIBUTION - PERCENTAGE POINTS	339
APPENDIX E - GAMMA FUNCTION	340

LIST OF ILLUSTRATIONS

Figure		Page
1	Mass fractions must always add up in a composite with n phases.	1
2	Volume fractions need not always add up for many reasons; phase boundary not defined, phase interactions due to mixing and binding, voids, etc.	1
3	Rule-of-mixtures relations imply non-interacting phases, within each of which Equation 8 holds.	2
4	Linear plots are the easiest provided proper variables, ρ or $1/\rho$ is taken. Relationships between mass and volume contents are readily seen.	2
5	Mass and volume fraction curve.	4
6	Modulus and compliance are reciprocal of each other. Either one can be used but one is usually preferred for a given situation. This will be illustrated on several occasions later.	5
7	For a constant strain model with parallel phases, modulus E is the preferred property because simple rule of mixture equation applies: $E = \Sigma E_i v_i$.	5
8	For a constant stress model with in-series phases, compliance S is the preferred property because: $S = \sum_{i=1}^{N} v_i$.	5
9	Bounds for composite modulus. Note lower bound is the reciprocal of composite compliance.	6
10	Bounds for composite compliance. Note lower bound is the reciprocal of composite modulus.	6
11	Transformation of applied stress in coordinate x-y to material coordinate $x'-y'$ by a positive rotation of θ .	13
12	New coordinates $x'-y'$ in terms of old coordinates $x-y$, or given $x-y$ and θ , find $x'-y'$. Arrow of rotation is pointing up. If θ is negative, new coordinates are $x''-y''$.	14
13	Mohr's Circle is defined by invariants I and R. Phase angle δ is defined by a specific combination of stress components σ_X , σ_Y and σ_{XY} . As reference coordinates change by $+\theta$, the rotation in Mohr's Circle is 2θ .	14
14	Relevant trigonometric functions for stress transformations. Phase angle δ displaces the function to the right (vertical axis to the left).	15
15	Typical stress transformation. Note principal stresses and maximum shear.	15
16	Coordinates for off-axis uniaxial tests. Shear stress will be positive if fibers oriented along $-\theta$.	19

Figure		Page
17	Maximum stress criterion is typified by separate branches which may be related to fiber and matrix (transverse or shear) failures. There is no interaction.	19
18	Maximum stress criterion as applied to off-axis compressive tests. There is no interaction between tensile and compressive strength.	19
19	Off-axis shear strength based on maximum stress criterion. Six possible failure modes, including positive and negative shears are labeled. In this case, longitudinal tensile and compressive are never limiting cases. Matrix tensile, compressive and shear are the controlling modes.	20
20	The analytic estimate (based on high shear strength) falls below most available data by a factor of 1.5; but the trend appears to be in general agreement. The rule-of-mixtures equation, with correction factor β , is shown in dashed lines.	21
21	Positive and negative rotations for transformation.	23
22	Mohr's Circle representation of strain transformation. Only the one-half factor for the shear strain is the difference between the strain representation and that for stress. Special attention must be paid to starting point: $\delta = \delta_1$, if $\epsilon_x > \epsilon_y$; $\delta = \delta_1 + 90$, if $\epsilon_x < \epsilon_y$.	23
23	Relevant trigonometric functions and negative phase angle that would displace the functions to the left (or vertical axis to the right).	24
24	Typical strains transformations, note, principal strain and maximum shear strain.	24
25	Strain rosette orientation with positive angles. If an angle is negative, it shall be so entered into Equation (45) and (46).	27
26	Rosette for uniaxial test.	28
27	Coordinates for σ_i and S_{ij} are coincident.	34
28	For a given set of Imposed Stresses, shown are the resulting strains for T-300/5208 unidirectional composites for all orientations.	34
29	For a given set of Imposed Strains, shown are the resulting stresses for T-300/5208 unidirectional composites for all orientations.	35
30	Ultimate stress and strain determination.	37
31	Three views of maximum strain envelope in strain space.	38
32	Longitudinal and transverse strain in uniaxial axial tension and compression tests.	38
22	Strain criterion is limited to the meterial summetry avec shown have	20

Figure		Page
34	Three views of the maximum strain failure envelope in stress space.	39
35	Difference between the predicted max stress and max strain criteria of the off-axis strength.	40
36	Elliptical opening transverse to the fibers.	43
37	Stress concentration factor for various aspect ratio.	43
38	A composite body. Displacement continuity and equilibrium are maintained at the interface.	55
39	Unidirectional composite and the reference coordinate system.	61
40	Longitudinal modulus can be predicted by Equation (128) with η_1 = 1. Constituents are E-glass fibers (E _f =72.4 GPa, ν_f =0.20) and epoxy matrix (E _m =3.45 GPa, ν_m =0.35).	63
41	Prediction of transverse modulus by Equation (130) with η_2 = 0.5, η_1 = 1, is comparable to the more rigorous solutions. Constituents are E-glass fibers (E _f =73.1 GPa, ν_f =0.22) and epoxy matrix (E _m =3.45 GPa, ν_m =0.35).	63
42	Longitudinal shear modulus increases with decreasing η_2 when predicted by Equation (132). Good agreement is seen when η_2 = 0.4 - 0.5. [2,4]] 64
43	Longitudinal Poisson's ratio can be predicted by Equation η_1 =1. Constituent properties are the same as those in Figure 40. [2]	64
44	Transverse Poisson's ratio predicted by Equation $\eta_1^{=1}$, is higher than the upper bound from a more rigorous solution. [2]	64
45	Young's modulus of particulate composite can be predicted by Equation with $\eta=0.4$ - 0.5: (a) Al ₂ O ₃ /glass (E _f \approx 396 GPa, E \approx 79.3 GPa); (b) Sand/epoxy (E _f \approx 124 GPa) (E \approx 3.45 GPa). [5]	65
46	Thermal expansion coefficients predicted by Equations (162-163) with η_1 =1 are comparable to the more rigorous solutions. [2]	68
47	Hexagonal array of fibers and the coordinate system chosen.	71
48	Normalized stress components at the interface between the fiber and matrix under longitudinal loading ($\rm E_f$ =414 GPa, $\rm E_m$ =2.62 GPa). The radial stress becomes tensile at the resin-rich area (in the vicinity of θ =30°) even under longitudinal tension. [6]	71
49	Stress concentration under transverse tension. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7,8]	72
50	Stress concentration under longitudinal shear. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7,8]	72

Figure		Page
51	Residual stresses at the interface in a composite with hexagonal array of fibers. Constituent properties are the same as those in Figure and the stresses correspond to the unconstrained matrix shrinkage strain of 1 mm/m. [6]	73
52	Longitudinal tensile strengths of $B_4/Al-6061$ and BSC/Al-6061. [10]	75
53	Transverse strengths of B ₄ /Al-6061 and BSC/Al-6061. [10]	79
54	Effect on transverse strength of fiber diameter and matrix condition (B/Al). Failure of $B_4/Al-6061$ is due to fiber splitting. [10]	80
55	Effect of void content on transverse and shear strengths of Gl/Ep (X_m =82 MPa, S_m =134 MPa, v_f =0.56). [8]	80
56	Effect of fiber surface treatment on shear strengths of Gr/Ep. Note that K_{Si} increases more rapidly with v_f than does K_{Sm} . [13]	81
57	Failure mode in flexure test depends on the shear strength (Gr/Ep, $v_f^{=0.6}$). [14]	82
58	Fiber breakages in composite.	85
59	Normalized bundle strength vs. the inverse of shape parameter. [16]	86
60	Normalized composite strength vs. bundle strength. [16]	87
61	Ply orientations and modulus of symmetric laminates.	89
62	Assumed uniform in-plane strain across entire laminate.	89
63	Average stress across laminate thickness.	89
64	Linear strain variation. The slope is curvature.	103
65	Ply stress is piece-wise-linear and discontinuous.	103
66	Three-point bend test.	117
67	1-direction of [0/90].	117
68	2-direction of [0/90].	118
69	Load deflection curves of 0° and 90° beams of [016/9016]s.	118
70	Sandwich plate.	123
71	Specific rigidity as function of percentage of core. Note optimum combinations of density and stiffness ratios.	123
72	Transformation of D;; for a T-300/5208 sandwich plate.	125

Figure		Page
73	Flow diagram for ply stress calculation.	127
74	Stresses and strain across laminate thickness.	129
75	Stresses and strain across laminate thickness.	131
76	Bending of plate with a hole filled with rigid core.	132
77	Symmetric versus unsymmetric laminates. Symmetry is based on mid or $\delta=0$ plane.	135
78	Integration of unsymmetric laminates must be performed for the entire thickness from $-h/2$ to $h/2$. (For symmetric laminates, integration can be limited to from 0 to $h/2$).	138
79	Transformed B _{ij} for [08/908].	147
80	2-layer unsymmetric laminate.	149
81	Maximum deflection of $[\theta_4/-\theta_4]_T$ laminates after curing, a=b=6.35cm. [20]	170
82	Transverse swelling strain in [0] Gr/Ep (AS/3501) subjected to absorption and desorption tests.	171
83	Swelling strain in thickness direction of Gr/Ep laminates.	171
84	Maximum deflection of $\begin{bmatrix} 0_4/90_4 \end{bmatrix}_T$ Gr/Ep (AS/3501) laminate due to curing and moisture absorption, $a=7.58$ cm.	172
85	Definition of failure.	173
86	Failure surface.	175
87	Maximum stress criterion in stress space.	177
88	Maximum strain criterion in strain space.	181
89	Reference coordinate definition and 9 guiding experiments for measuring failure tensors in a quadratic polynominal failure criterion.	185
90	Polar coordinates.	187
91	Stress ratio (k)/3(k) versus the thickness h(k).	197
92	Method 1A.	199
93	Method 1B.	199
94	Maximum strain criterion applied to laminate.	203
95	Reference coordinates.	207
96	Difference between isotropic and orthotropic finite width correction factors. [21]	209

Figure		Page
97	Mode I loading, Scotchply. [22]	210
98	Mode II loading, Scotchply. [22]	210
99	Interaction between K_I and K_{II} , Scotchply (E _L =34.5 GPa, E _T =11.5 GPa). [23]	211
100	Comparison of crack tip stress ratios with strength and fracture toughness ratios for unidirectional Gr/Ep. Elastic moduli are E = 145 GPa, E $_{\rm T}$ =11.7 GPa, G $_{\rm LT}$ =4.48 GPa, $\nu_{\rm LT}$ =0.21. [24]	211
101	Crack opening displacement in [O] $_{8T}$ B/A\$\ell6061, E_L=245 GPa, $_{\gamma}$ = 5.2. [24]	212
102	Effect of interfacial bond on notch sensitivity of carbon/epoxy: (a) surface treated; (b) surface untreated. [26]	212
103	Typical fracture mode in unidirectional composite.	213
104	NDE of crack tip damage in [0/±45]2s Gr/Ep.	215
105	Typical subcracks in $[0/\pm\theta]$ and $[0/\pm45/90]$ laminates.	216
106	Compliance based on the displacement between two points 3.8 mm above and below crack surface. The material is Gr/Ep. [29]	216
107	Comparison between analysis and method of compliance match: (a) $[0/\pm 45]_s$ Gr/Ep; (b) $[0/90/\pm 45]_s$ Gr/Gp. [24,29]	217
108	Resistance curves for $[0/\pm45]$ Gr/Ep. Fracture stress is determined from K=K _R and $\partial K/\partial a \ge dK_R/da$. For the composite shown, the terminal point of K _R corresponds to the final fracture. [29]	218
109	Variation of c with crack half-length. [29]	219
110	Geometry of specimen with an angle crack.	220
111	Normalized fracture strength vs. normalized equivalent crack half-length, Gr/Ep.	220
112	Comparison between normal crack and angle crack, Gr/Ep.	220
113	Constant amplitude 0° fatigue of B/Ep at RTD. R=0.1, -1, 10, X=1331 MPa, X'=2206 MPa. [31]	221
114	Constant amplitude 90° fatigue of B/Ep at RTD. R=0.1, Y=61 MPa, Y'=276 MPa. [31]	222
115	Constant amplitude $\pm 45^{\circ}$ fatigue of B/Ep at RTD. R=0.1, X_{45} =133 MPa, $S=X_{45}/2$. [31]	222
116	S-N relationships of B/Ep laminates having various fraction of 0° plies, R=0.1. Maximum fatigue stress is normalized with respect to static strength. [31]	223

Figure		Page
117	Effect of compression in fatigue of Gr/Ep laminate. [32]	223
118	Constant life diagrams for B/Ep laminate and A1-7075-T6.	223
119	Typical failure mode observed along edge of [0/90] laminate.	224
120	Change of secant modulus in fatigue of $[0/\pm45/90]_S$ Gl/Ep, E _o =20.3 GPa. [33]	224
121	Equilibrium temperature increase in fatigue of Gl/Ep laminate. The increase is proportional to S_{maxf}^2 , where f is the frequency. [33]	224
122	Typical crack tip damage in $[0/\pm45]_S$ Gr/Ep: (a) static tension; (b) fatigue. Dotted lines represent the boundary of delamination.	225
123	Increase of residual strength and compliance in fatigue of composite laminate (schematic).	225
124	Notched fatigue strength normalized with respect to unnotched fatigue strength. [31]	226
125	S-N relationships in off-axis fatigue of [0] Gl/Ep. [34]	227
126	Comparison between data and prediction for off-axis S-N relationship of [0] $G1/Ep$. [34]	228
127	Experimental and predicted S-N curves of [±30] laminate. [35]	230
128	Experimental and predicted S-N curves of [±45] laminate. [35]	231
129	Experimental and predicted S-N curves of [±60] laminate. [35]	231
130	Fatigue strength of laminate is approximately equal to the longitudinal fatigue strength multiplied by the fraction of 0° plies. [31]	231
131	Typical representations of S-N relationship.	234
132	Life distribution of similar objects: (a) similar deterioration; (b) nonsimilar deterioration.	236
133	Life distribution of nonsimilar objects: (a) similar deterioration; (b) nonsimilar deterioration.	236
134	Plot of (t, x,) for [o] Gl/Ep subjected to constant stress. [39]	237
135	Effect of similarizing operation on life distribution.	237
136	Relation between static strength and fatigue life of [o] Gr/Ep: a =7.77, x =1.44 GPa, a =0.74, t =1.6x10 ⁶ cycles, S /x =0.61. Results of proof testing are also shown. [40]	238
137	Weibull plot of normalized life data. [32]	244
138	Experimental correlation of analytical models in terms of residual strength. [32]	244

Figure		Page
139	Distribution of N ₂ : theory and data. [31]	245
140	Change of diffusivity with temperature.	250
141	Effects of temperature and moisture on strengths of T300/1034 Gr/Ep (v_f =0.68).	253
142	Input to transient analysis.	255
143	Weight gain over 20 years for 1/2" hybrid.	255
144	Moisture distribution at boundary layer (1-4 plies) and inside 1/2" hybrid over 20 years - note flat top level at 0.42% after 10 years.	256
145	Time required to reach flat top moisture level under constant ambient (insensitive to relative humidity).	256
146	Moisture pickup rates of constant and transient ambients (a guide to accelerated testing).	256
147	Determination of glass transition temperature.	263
148	Relationship between stress and breaking time of the HMDA-crosslinked epoxy polymer.	264
149	Master curves of σ -log t_b plots of the HMDA polymer.	264
150	Creep compliance for Shell 58-68R epoxy as a function of temperature.	265
151	Net creep compliance, ΔD , for Shell 58-68R epoxy at different temperatures.	265
152	Temperature dependence of initial compliance, D_0 , for Shell 58-68R epoxy.	265
153	Master curve for net creep compliance, ΔD , for Shell 58-68R epoxy.	266
154	Temperature dependence of the shift factor, a_{T}° for Shell 58-68R epoxy.	266
155	Relation between shape parameter and coefficient of variation.	274
156	Weibull plot of the strength data. [32]	275
157	Strength data plotted on normal probability paper.	277
158	Relation between "A" or "B" allowable and shape parameter.	2 82
159	One-sided tolerance factors for normal distribution, K_A and K_B .	283
160	Typical failure rate vs. time.	285
161	Failure rate and probability density for Weibull distribution.	2.86

Figure		Page
162	Failure rate and probability density for normal distribution.	286
163	Comparison in probability of failure between single link and 20-link chain.	289
164	Comparison between F_0 and F . System reliability is improved over element reliability.	294
165	Unidirectional beam under pure bending. Fibers oriented θ to x axis. Twisting curvature 'lifts' beam at supports.	299
166	(EI)_A/(b/D11') as a function of $\theta;$ as a function of R for a 10° off axis unidirectional beam.	300
167	Ratio of bending stiffness computed by Eqs. (781) and (784-785).	301
168	First failure in a beam can be either shear or flexural stress depending on span-to-depth ratio, L/h.	302
169	A 'transformed section', all 0°, $b_t = (E_{22}/E_{11})b$.	308
170	Buckling parameter: (a) $[\pm \theta]$ laminate; (b) $[0/90]$ laminate.	309
171	Example calculations.	316
172	Examples of uniaxial strength allowables (compression).	319
173	Specimen configurations: (a) tension; (b) compression.	323
174	Specimen configurations: (a) longitudinal shear; (b) interlaminar shear.	324
175	Rail shear tests: (a) single; (b) double.	324
176	Flexure test configurations: (a) 3-pt.; (b) 4-pt.	325
177	Relation between maximum tensile stress and maximum shear stress in flexure tests.	325
178	Sandwich beam configuration.	325
179	Tube configuration.	326
180	Tensile properties: (a) longitudinal; (b) transverse. [43]	326
181	Shear stress-strain relations. [44]	326
182	Effect of shear coupling.	329
183	Stress concentration at free edge of [45/145] angle ply. [46]	329
184	Interlaminar normal stress concentration. [47]	330

LIST OF TABLES

T	able		Page
	1 .	Typical Constituent Densities	2
	2	Typical Constituent Stiffnesses	7
	3	Stress Transformation Relations	14
	4	Alternative Formula for Stress Transformation	14
	5	Transformed and Principal Stresses	16
	6	Transformed and Principal Stresses	17
	7	Strain Transformation Relations	23
	8	Transformed and Principal Strains	25
	9	Transformed and Principal Strains	26
	10	Compliance and Modulus in Terms of Elastic Symmetries	30
	11	Engineering Constants in Terms of Sij & Qij	31
	12	Engineering Constants for Unidirectional Composites	32
	13	Compliance S _{ij} in Terms of Engineering Constants (10 ¹² Pa) ⁻¹	33
	14	Modulus Q _{ij} in Terms of Engineering Constants (10 ⁶ Pa)	33
	15	Ultimate Strains of Unidirectional Composites (mm/m)	37
	16	Complex Parameters for Various Unidirectional Composites	41
	17	Transformation of Compliance	45
	18	Invariants for Compliance Matrix for Various Composites (TPa)-1	46
	19	Transformed Compliance & Engineering Constants for Various Composites (TPa)-1 and (GPa)	48
	20	Transformation of Modulus	49
	21	Invariants for Modulus Matrix for Various Composites (GPa)	50
	22	Transformed Modulus for Various Composites (GPa)	52
	23	Predicted Elastic Constants for Random Composites (GPa)	53
	24	Typical Composite Thermal Expansion Coefficients	69
	25	Total Stresses Under Longitudinal Tension (cf.[9])	74
	26	Typical Fiber Strengths	76

LIST OF TABLES (Continued)

Table		Page
27	Typical Matrix Strengths	77
28	Typical Composite Strengths [11,12]	78
29	Formulas for In-Plane Modulus for $\left[0_{p}/90_{q}/45_{r}/-45_{s}\right]$	95
30	In-Plane Properties of T-300/5208 Laminates	96
31	Sample Calculations of Ply Stresses for T-300/5208	99
32	Sample Calculation of Elliptic Hole Under Tension in a T-300/5208 Orthotropic Laminate	101
33	Formulas for Flexural Rigidity With Isotropic Substructure	106
34	Rigidity of Cross-Ply Laminates	107
35	Transformed Rigidity of Cross-Ply Laminates	107
36	Calculation of Reduction Factors (V's) for Flexural Rigidity	108
37	Calculation of Reduction Factors (V's) for Flexural Rigidity	109
38	Calculation of Reduction Factors (V's) for Flexural Rigidity	110
39	Calculation of Reduction Factors (V's) for Flexural Rigidity	111
40	Calculation of Reduction Factors (V's) for Flexural Rigidity	112
41	Calculation of Reduction Factors (V's) for Flexural Rigidity	113
42	Calculation of Reduction Factors (V's) for Flexural Rigidity	114
43	Stacking Sequence Effect of Cross-Ply Laminates	115
44	Flexural Rigidity of Cross-Ply Laminates	115
45	Rigidity of T-300/5208 Cross-Ply Laminates	116
46	Free Vibrations of Beams With Uniform Cross-Sections	119
47	Special Isotropic Homogeneous Plate	120
48	Rigidity of $[(-45/45/90/0)_2/(z_0)_8]_s$ (Non-Symmetrical Face Sheet)	124
49	Rigidity of $[-45/45/90/0_2/90/45/-45/(z_0)_8]_s$ (Symmetrical Face Sheet)	125
50	Flexure-Curvature Relations	127
51	Strain Variation from Ply to Ply	128
52	Ply Stress at Various Locations	129

LIST OF TABLES (Concluded)

Table		Page
53	Strain Variation from Ply to Ply	130
54	Ply Stresses at Various Locations	131
55	Formula for Coupling Modulus	139
56	Formula for Transformed Coupling Modulus	140
57	Calculation of Reduction Factors (V's) for Coupling Modulus	141
58	Calculation of Reduction Factors (V's) for Coupling Modulus	142
59	Calculation of Reduction Factors (V's) for Coupling Modulus	143
60	Calculation of Reduction Factors (V's) for Coupling Modulus	144
61	Calculation of Reduction Factors (V's) for Coupling Modulus	145
62	Calculation of Reduction Factors (V's) for Coupling Modulus	146
63	Lamina Curing Strains from Curing Temperature [12]	167
64	Lamina Mechanical Properties [12]	168
65	Curing Strains of $[0_2/\pm 45]$ Laminates and Corresponding Stresses Within 45° Ply $[12,19]$	168
66	Damage Zone Size (c) in [0/±45] _{2s} Gr/Ep	216
67	ECDZ Size as Determined by Equation (545) [24]	219
68	Parameters for Stress-Rupture Data [37]	235
69	Average Tensile Strength and Coefficient of Variation [37]	235
70	Summary of Experimental Data on the Effects of Moisture and Temperature on the Ultimate Tensile Strength of Composites	252
71	Comparison Among Characteristic Strengths Under Different Test Methods	291
72	Stability of 0°, 90°, and ± 45° Family of Plates	317
73	Effects of Orientation Sequences on Stability of Symmetrical (Balanced) Quasi-Isotropic Plates	318
74	Compression Properties [45]	327

LIST OF SYMBOLS

SECTION I

C _{ij}	3-dimensional modulus matrix
E	Young's modulus
G	shear modulus
М	total mass
M _i	mass of i-th constituent
m _i	mass fraction of i-th constituent
Q _{ij}	plane stress modulus matrix
R _{ij}	plane strain modulus matrix
$S(S_{ij})$	compliances (matrix)
v	total volume
$v_{\mathbf{i}}$	volume of i-th constituent
v _i	volume fraction of i-th constituent
e _i	strain
ν	Poisson's ratio
ρ	density of composite
$\rho_{\mathbf{i}}$	density of i-th constituent
$\sigma_{f i}$	stress
() _f	associated with fiber
() _m	associated with matrix

SECTION II

I, R	invariants of stress or strain
S	longitudinal shear strength
X(X')	longitudinal tensile (compressive) strength

SECTION II (Cont'd)

Y(Y') transverse tensile (compressive) strength
δ, δ₁ principal direction angles
θ angle of coordinate rotation
()' associated with primed (usually off-axis) coordinates

SECTION III

a, b major and miner axes of elliptical hole moment of inertia of cross-sectional area I_1, I_2, R_1, R_2 invariants of compliance matrix or modulus matrix real parameters of plane elasticity solutions M far field bending moment far field stress internal pressure β, δ, μ complex parameters angles of material symmetry directions δ_1, δ_2 specific gravity ()_L longitudinal (parallel to fiber direction) ()_T transverse (normal to fiber direction) ()_{LT} longitudinal-transverse Poisson's ratio or longitudinal shear

SECTION IV

 $c_{ijk\ell}$ stiffness tensor d_f fiber diameter $c_{sm}(K_{si})$ stress concentration factor in matrix (interface) under shear $c_{tm}(K_{tm}(K_{ti}))$ stress concentration factor in matrix (interface) under tension

SECTION IV (Cont'd)

L	gage length
n _i	normal vector of surface
$R_{\mathbf{f}}(\mathbf{x})$	probability of a random variable being greater than \mathbf{x}_{\bullet}
S	surface
s _i	interfacial strength in shear
S _{ijk!}	compliance tensor
T _i	surface traction vector
u _i	displacement vector
we,w	strain energy
x _B	failure stress of fiber bundle
x _{fo}	characteristic failure stress of fiber
x	interfacial strength in tension
*i	position vector
YB	failure strain of fiber bundle
Yf	failure strain of fiber
Y _{fo}	characteristic failure strain of fiber
~ i	thermal expansion coefficient
$\beta_{\mathbf{i}}$	thermal stress coefficient
L()	gamma function
δ	ineffective length
e	strain tensor
$\eta_{i}(i=2-6)$	stress partitioning constants
η1	strain partitioning constant
θ	temperature change
λ	buckling parameter
σ_{ij}	stress tensor

SECTION IV (Cont'd)

 $au(au_{_{\mbox{\scriptsize V}}})$ shear (yield) stress on interface

() volume average

()* composite property

() $_{
m TT}$ transverse-transverse coupling (in the plane normal to fibers)

SECTION V

A ii in-plane modulus matrix

a inverse of A ij

h thickness of composite laminate

h ply thickness

h_t distance to (i+1)-th ply (= th_o)

N total number of plies in laminate

N stress resultant

n_α number of α⁰ plies

 $\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{V}_4$ lamination reduction factors

Z thickness coordinate

e, mid-plane strain

 σ_{i} average stress (= N_{i}/h)

() o in-plane variables

()(t) associated with t-th ply

()^(α) associated with α ^o ply

SECTION VI

width of beam

D_{ij} flexural rigidity matrix

SECTION VI (Cont'd)

d _{ij}	inverse of D
k _i	curvature
M _i	moment
P	concentrated load
Qij	stiffness matrix of facing
Q_{ij}^{o}	stiffness matrix of core
z o	half depth of core
a _t	orientation angle of t-th ply
δ	deflection
$\lambda_{\mathbf{n}}$	modal parameter
μ	mass per unit length
ρ _c	density of core
$^{ ho}$ F	density of facing
$\omega_{\mathbf{n}}$	natural frequency

SECTION VII

B_{ij} coupling modulus matrix

SECTION VIII

С	moisture concentration by mass
Ci	initial equilibrium moisture content
Co	threshhold moisture concentration
C_{∞}	final equilibrium moisture content
e _i	nonmechanical strain
e _i H	swelling strain from the stress-free state

SECTION VIII (Cont'd)

e_i^T	thermal strain from the stress-free state
e o	nonmechanical in-plane strain of laminate
H()	Heaviside step function
M _{mw}	mass of water in matrix
M_{fw}	mass of water in fiber
M	mass of water in void
M¹	mass when wet
R _{iB}	transfer matrix from out-of-plane stress to in-plane moment
S	specific gravity
T _{iB}	transfer matrix from out-of-plane stress to in-plane stress resultant
To	stress-free reference temperature
Δ T	temperature change from To
u	displacement in x direction
v	displacement in x ₂ direction
v _v	volume fraction of voids
Δν	volume change
w	displacement in x ₃ direction (thickness)
σ_i^H	swelling coefficient
$oldsymbol{lpha_i^T}$	thermal expansion coefficient
ρ _{fo}	neat fiber density at the temperature of interest
Pmo	neat resin density at the temperature of interest
$^{ m ho}_{ m w}$	density of water
ρ'	density when wet
() _A	out-of-plane components
() ^H	swelling, associated with moisture
() ^N	nonmechanical, associated with temperature and moisture
() ^R	residual
() ^T	thermal, associated with temperature

SECTION IX

E, tensile failure strains $\mathbf{E}_{\mathbf{i}}^{!}$ compressive failure strains F_i, F_{ij} failure tensors failure function R,α,β polar coordinates in stress space R* distance from origin to failure surface X_{i} tensile failure stresses X; compressive failure stresses modified failure strains failure stress in combined loading strength vector stress vector

SECTION X

half crack length damage zone size С critical damage zone size Gq energy release rate Im imaginary part of complex variable KI(KII) mode I(II) stress intensity factor Kd stress intensity factor at damage initiation KR fracture resistance L maximum debond length r, e cylindrical coordinates at crack tip real part of complex variable Re W work of fracture for composite

SECTION X (Cont'd)

SECTION XI

a,b S-N curve fitting parameters C_1, C_2, C_3 material parameters initial elastic modulus Ftu static tensile strength (= X) stress transfer parameter loading rate = cos 0 m number of cycles to failure N number of cycles to failure at S $_{\max 2}$ after n_1 cycles at S $_{\max 1}$ N₂ = sin 0 R stress ratio (= Smin /Smax) probability of a random variable being equal to or greater than t R(t) $R_{\rho}(t)$ life reliability R (x) strength reliability R (xis) probability of strength being greater than x after having survived s fatigue strength

SECTION XI (Cont'd)

Smax	maximum fatigue stress
Smin	minimum fatigue stress
$(S_{\max})_n$	notched fatigue strength
S(t)	applied stress history
t	time
t _o	characteristic life
ŧ	normalization parameter for time
u ₁ , u ₂	modulus parameters for angle-ply laminates
x	strength
x _o	characteristic strength
x _{os}	characteristic static strength
x _r	residual strength
x _s	static strength
Ŷ	normalization parameter for strength
α	failure potential exponent
a _l	shape parameter of life distribution or time dependency exponent of breakdown rule
a _r	strength degradation exponent
r a _s	shape parameter of static strength distribution
β	breakdown exponent
θ	off-axis angle

SECTION XII

c*	normalized moisture concentration	
D _i	moisture diffusivity	
G	normalized moisture content	

SECTION XIV

Fo	probability of failure of link		
F(x)	parent distribution		
f(x)	parent probability density function		
F*(x)	sample distribution		
f*(x)	sample probability density function		
Н	width of beam		
L	span of beam		
n	number of specimens in a sample		
r	coefficient of correlation		
R _o	reliability of link		
R(x)	reliability function (=1- F(x))		
S	sample standard deviation		
X	random variable		
*A	"A" allowable		
*B	"B" allowable		
x _o	scale parameter		
x	sample mean		
W	width of beam		
a.	shape parameter		
Υ	confidence level		
Γ(x)	gamma function		
λ(t)	failure rate		
θ_1, θ_2	characterization parameters of distribution		
μ	parent mean		
σ	parent standard deviation or stress		
τ	material age		
Ψ	failure potential		
$\left[\sigma\right]^{\mathrm{T}}$	transpose of matrix [σ]		
(^)	estimate of ()		

SECTION XII (Cont'd)

K_i thermal conductivity
 q heat flux
 Γ moisture flux

SECTION XIII

time-temperature shift factor a_T $D_{c}(t)$ creep compliance in tension or compression Do initial compliance D_{∞} final compliance E (t) relaxation modulus in tension or compression E initial modulus E_{∞} final modulus e_{ij} deviatoric strain tensor $J_{c}(t)$ creep modulus in shear S_{ij} deviatoric stress tensor Tg glass transition temperature t_b time to failure ε₀ step strain $\epsilon_s(t)$ shear strain history $\mu_{\mathbf{r}}(t)$ relaxation modulus in shear σο step stress τ(t) shear stress history frequency

SECTION XV

Refer to Sections V - VII.

b	width of beam		
ık	moment of inertia	out the laminate mid-plane	
L	length of column		
•	span of beam		
R	depth to width ratio, or radius o	depth to width ratio, or radius of cylinder	
q(x)	distributed load on beam		

SECTION I

MATERIALS PROPERTIES

1. DENSITY OF COMPOSITES

a. Mass Fractions

Based on conservation of mass, the rule-of-mixtures mass-fraction relation always hold:

$$M_1 + M_2 + \cdots M_n = \sum M_i = M \tag{1}$$

$$\frac{\sum M_i}{M} = \sum m_i = 1 \tag{2}$$

Figure 1 Mass fractions must always add up in a composite with n phases.

m,

M

b. Volume Fractions

Based on existence of definable constituent volumes, the rule-of-mixtures volume-fraction relation is assumed to be valid:

$$v_1 + v_2 + \cdots v_n \doteq \sum v_i = v \tag{3}$$

$$\frac{\sum V_i}{V} = \sum V_i = 1 \tag{4}$$

 $V_1 V_2 \cdots V_n = V$

$$\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} = 1$$

Figure 2 Volume fractions need not always add up for many reasons; phase boundary not defined, phase interactions due to mixing and binding, voids, etc.

c. Mass and Volume Fractions for Density

$$\rho = \frac{M}{V} \left\{ \frac{\sum_{i=1}^{M_{i}} \sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{i}} \sum_{j=1}^{N$$

All equations are equally applicable and are limited by the basic assumption that

$$M_{i} = \rho_{i} V_{i}$$
 (8)

holds within each constituent phase.

Equation 7 can be rewritten as follows:

$$\frac{1}{\rho} = \sum \frac{m_i}{\rho_i} \tag{9}$$

Figure 3 Rule-of-mixtures relations imply non-interacting phases, within each of which Equation 8 holds.

d. Density of Two-phase Composites

From Equation 5

 $\rho = \rho_1 v_1 + \rho_2 v_2$

Fiber Fraction v₂ or m₂

From Equation 7

$$\frac{1}{\rho} = \frac{m_1}{\rho_1} + \frac{m_2}{\rho_2}$$

$$\frac{1}{\rho_1}$$

$$\frac{1}{\rho_2}$$

Figure 4 Linear plots are the easiest provided proper variables, ρ or 1/ρ is taken. Relationships between mass and volume contents are readily seen.

TABLE 1 TYPICAL CONSTITUENT DENSITIES

MATERIAL	SPECIFIC GRAVITY	DENSITY kg m ³
Kevlar	1.45	1450
Graphite	1.7	1700
Glass	2.6	2600
Boron	2.6	2600
Steel	7.8	7800
w	19.3	19300
Nylon	1.1	1100
Ероху	1.2	1200
Polyester	1.4	1400
Ве	1.8	1800
A1	2.8	2800
Ti	4.5	4500

e. Void Content

Void content in a two-phase composite can be defined by

$$v_{void} = 1 - (v_1 + v_2)$$

$$= 1 - \frac{\rho_{\text{measured}}}{\rho_{\text{calculated}}}$$

$$= 1 - \frac{M}{V} \left(\frac{m_1}{\rho_1} + \frac{m_2}{\rho_2} \right)$$

This relationship is not accurate because:

(1) The assumed non-interacting phases ignore curing stress which can induce up to 1 percent strain.

(10)

- (2) Absorbed moisture which can induce swelling of several percent.
- (3) Actual voids and cracks may be closed, thus, cannot influence the gross density beyond the detectable level.

Alternative methods for determination of voids will be covered later.

f. Relations between mass and volume fractions

$$v_{1} = \frac{V_{1}}{V} = \frac{M_{1}}{\rho_{1}} \frac{\rho}{M} = \frac{m_{1}}{\rho_{1}} \rho = \frac{m_{1}}{\rho_{1}} \frac{1}{\rho_{1}} + \frac{m_{2}}{\rho_{2}} = \frac{1}{1 + \left(\frac{1}{m_{1}} - 1\right)\frac{\rho_{1}}{\rho_{2}}}$$
(11)

Composites	Pm / Pf
Gr / Ep	.71
Gl / Ep	.46
B / Ep	.46
B'/ Al	1.08

2. ONE-DIMENSIONAL ELASTICITY PROPERTY

$$E = Modulus = \frac{\sigma}{\epsilon} = \frac{Stress}{Strain}$$

= Compliance = $\frac{\epsilon}{\sigma}$ = $\frac{Strain}{Stress}$

$$\mathbf{E} \cdot \mathbf{S} = 1$$

Figure 6 Modulus and compliance are reciprocal of each other. Either one can be used but one is usually preferred for a given situation.

This will be illustrated on several occasions later.

(12)

(13)

(14)

b. Elasticity Property of 2 - Phase Composites

 S_1 S_2 S_2

Figure 7 For a constant strain model with parallel phases, modulus E is the preferred property because simple rule of mixture equation applies:

Figure 8 For a constant stress model with in-series phases, compliance S is the preferred property because:

 $\mathbf{E} = \Sigma \mathbf{E_i} \mathbf{v_i} \tag{15}$

 $S = \sum S_i v_i$ (16)

ΣS_iv_i

v₂

Figure 9 Bounds for composite modulus.

Note lower bound is the reciprocal of composite compliance.

Figure 10 Bounds for composite compliance. Note lower bound is the reciprocal of composite modulus.

d. Parallel and Series Models

	Elasticity	Conductivity	Resistivity	Model
533	$E = \sum E_i v_i$	$k = \sum k_i v_i$		''Modulus''
}	$\frac{1}{S} = \sum_{i=1}^{N} \frac{i}{S_i}$		$\frac{1}{R} = \sum \frac{v_i}{R_i}$	"Compliance"
	$S = \sum S_i v_i$		$R = \Sigma R_i v_i$	''Modulus''
***	$\frac{1}{E} = \sum \frac{v_i}{E_i}$	$\frac{1}{k} = \sum \frac{v_i}{k_i}$		"Compliance"

TABLE 2 TYPICAL CONSTITUENT STIFFNESSES

	YOUNG'S MODULUS	ACOUSTIC	
MATERIAL	E(GPa)	VELOCITY	
		C(km sec ⁻¹)	
Kevlar	131	9.50	
Graphite	207	11.0	
Glass	87	5.78	
Boron	414	12.6	
Steel	207	5.15	
w	407	4.59	
Nylon	4.8	2.1	
Ероху	3.4	1.7	
Polyester	3.4	1.6	
Ве	241	11.6	
A1	69	5.0	
Ti	103	4.8	
	103	4.0	

3. TWO-DIMENSIONAL ELASTICITY PROPERTIES

- a. Strains in Terms of Stresses for Isotropic Bodies Under Plane Stress
 - (1) Compliance matrix in conventional form

(18)

$$\mathbf{e}_{\mathbf{x}} = \frac{1}{E} \sigma_{\mathbf{x}} - \frac{\nu}{E} \sigma_{\mathbf{y}}$$

$$\mathbf{e}_{\mathbf{y}} = -\frac{\nu}{E} \sigma_{\mathbf{x}} + \frac{1}{E} \sigma_{\mathbf{y}}$$

$$\mathbf{e}_{\mathbf{xy}} = \frac{1}{G} \sigma_{\mathbf{xy}} = \frac{2(1+\nu)}{E} \sigma_{\mathbf{xy}}$$
(17)

$$\begin{pmatrix}
\mathbf{e}_{\mathbf{x}} \\
\mathbf{e}_{\mathbf{y}}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{E} & -\frac{\nu}{E} & 0 \\
-\frac{\nu}{E} & \frac{1}{E} & 0 \\
0 & 0 & \frac{1}{G}
\end{pmatrix} \begin{pmatrix}
\sigma_{\mathbf{x}} \\
\sigma_{\mathbf{y}}
\end{pmatrix} (19)$$

(2) Compliance matrix in tabular form

	σ ×	σу	σ _{xy}
e x	1 E	- <u>v</u>	0
e y	- <u>v</u> E	<u>1</u> E	0
e xy	0	0	$\frac{1}{G} = \frac{2(1+\nu)}{E}$

(4) Compliance matrix in index form

(5) Contracted Notation:

$$\begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{bmatrix} = \begin{bmatrix} 1 & 6 - 5 \\ 2 & 4 \\ 3 \end{bmatrix}$$
 (21)

b. Stresses in Terms of Strains for Isotropic Bodies Under Plane Stresses

(23)

- (1) Modulus matrix in conventional form
- (3) Modulus matrix in matrix form

$$\sigma_{\mathbf{x}} = \frac{\mathbf{E}}{1 - \nu^{2}} \mathbf{e}_{\mathbf{x}} + \frac{\nu \mathbf{E}}{1 - \nu^{2}} \mathbf{e}_{\mathbf{y}}$$

$$\sigma_{\mathbf{y}} = \frac{\nu \mathbf{E}}{1 - \nu^{2}} \mathbf{e}_{\mathbf{x}} + \frac{\mathbf{E}}{1 - \nu^{2}} \mathbf{e}_{\mathbf{y}} \qquad (22)$$

$$\sigma_{\mathbf{x}y} = \mathbf{G} \mathbf{e}_{\mathbf{x}y} = \frac{\mathbf{E}}{2(1 + \nu)} \mathbf{e}_{\mathbf{x}y}$$

$\left[\begin{array}{c} \sigma \\ \mathbf{x} \end{array} \right]$		$\left[\frac{E}{1-\nu^2}\right]$	$\frac{vE}{1-v^2}$	0	e _x	
σу	=	$\frac{\nu E}{1-\nu^2}$	$\frac{E}{1-v^2}$	0	ξ _y	(24)
$\left[\sigma_{\mathbf{x}\mathbf{y}}^{}\right]$		Lo	0	G	e _{xy} .	

(2) Modulus matrix in tabular form

	e x	e y	€ xy
σ x	E 1-v ²	νΕ 1-ν	0
σy	νΕ 1-ν ²	E 1-v ²	0
σ _{xy}	0	0	G

(4) Modulus matrix in index form

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_6 \end{pmatrix} (25)$$

Summation convention

$$\sigma_{\mathbf{i}} = \Sigma Q_{\mathbf{i}\mathbf{j}} \epsilon_{\mathbf{j}} = Q_{\mathbf{i}\mathbf{j}} \epsilon_{\mathbf{j}}$$
 (26)

c. Components of S and Q ij.

			y	0]]			E_	νE		٥٦		•
Stress	$\frac{1}{E}$		E	U		1		$\frac{\mathrm{E}}{1-\nu^2}$	$\frac{vE}{1-v^2}$				
2D / Plane Stress	- ½		1 E	0	=	s _{ij}		$\frac{vE}{1-v^2}$	$\frac{E}{1-\nu^2}$		0	=	Q _{ij}
/ 07	Lo		0	1 G.				0	0		G J		
raın	1-v	2 -	ν(1+ν Ε	0 0				(1-v)mE	νmE		٥		
2D / Flane Strain	- <u>u</u>	(<u>1+v)</u> E	$\frac{1-v^2}{E}$	0	=	R _{ij}		νmE	(1-v)n	nΕ	0	=	c _i
1 7			0	$\frac{1}{G}$				0	0		G		
	$\frac{1}{E}$	$-\frac{v}{E}$ $-\frac{v}{I}$, o	0	0]		(1-v)mE	vmE	νmE	0	0	٥٦	
	$-\frac{\nu}{E}$	$\frac{1}{E}$ - $\frac{e}{E}$	<u>.</u> 0	0	0		+ vmE	(1-v)mE	νmE	0	0	0	
BD	- <u>v</u> E	$-\frac{\nu}{E}$ $\frac{1}{E}$	<u>.</u> 0	0	0	= S _{ij}	νmE	νmE	(1-v)mE	0	0	0	:: C
	0	0 0	$\frac{1}{G}$	0	0	1)	0	0	0	G	0	0	
	0	0 (0 0	$\frac{1}{G}$	0		0	0	0	0	G	0	
	Lo	0 (0 0	0	1 G -		0	0	0	0	0	G	
							A	m = (1	-v) / (1+	ν)(1	-2v)	_	

	Ana	alogo	us	to E	Equ	ati	on	14.		E •	S	=	1	-				+					-					
								,				F	•				-											
	We	can	sho	w t	hat							ł		+														+
								Q.	. s			-		δ.						,	27)							
			T					1	j	jk				i	k					,	,							
		wh	ere		δ			K,	on	a ch		40	140	T.		1	whe	. ,	1									
					δ	k		171		CCF	CEI	ue	ILA			0 7	whe	n i n k	= #	k				r				
																									1			
																			T									
																												Ī
									-																			
									-		-			1														
			-							1					-													
			-												H	H												
						٠	2								-													
				- 3					-	-	10	H		H	-	-												
			Н						-			+																
			1					-		H	H	-	+															
												H										-						
	1		-									-					H										-	
1													-	-	-													
1														Н												H		
												T																
													П														+	
											7		10															
																						T						Ī
1																												
-																												
-	-	-			1																							
-	-		2																									
-															_													
-	-	-			-	-																						
-			-	-	-						-1																	
															land.													

SECTION II

STRESS AND STRAIN

1. STRESS AS COORDINATES ROTATE

a. Introduction

Stress is NOT defined as P (You've flunked)

It is defined by how it changes as its reference coordinates change. That's why we need to know the ground rules. Rigid rules are particularly important for composites because composite properties also change with coordinates, by a different set of rules. All of these rules are called the transformation relations. In this section, we will discuss only those related to stress and strain.

When we apply a stress to an isotropic material, we can analyze the response of the material in the same coordinate system. There is no reason to look into any other coordinates with the possible exception of the plane where shear stress is maximum.

For composites, the response is highly dependent on the orientation of the material. It is therefore important to know how an applied stress can be transformed to the material axes.

(See Figure 11)

We use stress transformation relations to do this job.

Conversely, if we know the stresses in the material system x-y, we want to know what apply stresses must be for any coordinate system, we simply rotate the θ backward, or apply inverse transformation. The same rule applies except now we use negative θ in the formula.

It is therefore an important rule of transformation to know the positive from the negative. We are all aware of the difference between tension and comy y'

Figure 11 Transformation of applied stress in coordinate x-y to material coordinate x'-y' by a positive rotation of 0.

pression, but we rarely pay attention to positive from negative shears because they are not important for isotropic materials. For composites, we must make sure the proper signs for all angles of rotation, stresses, etc., are used. For rotation, we will use the right handed system.

b. Formula for Stress Transformation

TABLE 3 STRESS TRANSFORMATION RELATIONS

	I	R
σ' _x	1	cos 2(θ-δ)
σ',	1	-cos 2(θ+δ)
σ'xy	0	-sin 2(θ≕δ)

$$I = \frac{\sigma_x + \sigma_y}{2}$$

$$R = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \sigma_{xy}^{2}}$$
 (29)

$$\tan 2 \delta_i = \frac{2 \sigma_{xy}}{\sigma_{x} - \sigma_{y}}$$
 (30)

$$\delta = \delta_1 + 90 \text{ if } \sigma_x < \sigma_y; \ \delta = \delta_1 \text{ if } \sigma_x > \sigma_y$$

 $\delta = \delta_1 + 90$ if $\sigma_x < \sigma_y$; $\delta = \delta_1$ if $\sigma_x > \sigma_y$ Both I and R are invariants, as shown in the Mohr's Circle.

(28)

Special orientations:

- (1) When $\theta = \delta$, i.e., Principal Directions $\sigma_{\mathbf{x}}^{\dagger}, \sigma_{\mathbf{v}}^{\dagger} = \text{maximum or minimum}$
- (2) When $\theta \delta = \pm \pi/4$, i.e., max. shear orientation

TABLE 4 ALTERNATIVE FORMULA FOR STRESS TRANSFORMATION

	σx	σy	σху
σ' ×	m ²	n ²	2mn
σ' y	n ²	m ²	-2mn
o' xy	-mn	mn	m ² - n ²

Figure 13 Mohr's Circle is defined by invariants I and R. Phase angle δ is defined by a specific combination of stress components σ_{x} , σ_{y} and σ_{xy} . As reference coordinates change by +0, the rotation in Mohr's Circle is 20. Special attention should be given to value of δ :

$$\delta = \begin{cases} \delta_1 & \text{if } \sigma_x > \sigma_y \\ \delta_1 + 90 & \text{if } \sigma_x < \sigma_y \end{cases}$$

c. Graphical Illustrations of Trigonometric Relations

Figure 14 Relevant trigonometric functions for stress transformations. Phase angle δ displaces the function to the right (vertical axis to the left).

Figure 15 Typical stress transformation. Note principal stresses and maximum shear.

(1) Given
$$\sigma_i = \left\{ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} \right\}$$
 (MPa)

$$R = -5.099$$

$$\delta = 50.655$$

TABLE 5 TRANSFORMED AND PRINCIPAL STRESSES (MPA)

-	δ - 45	δ - 30	δ - 15	δ	δ + 15	δ + 30	δ + 45	0
'x	2.000	4.550	6.416	7.099	6.416	4.550	2.000	1
v	2.000	550	-2.416	-3.099	-2.416	550	2.000	3-
xy	5.099	4.416	2.550	0	-2.550	-4.416	-5.099	5

2. MAXIMUM STRESS FAILURE CRITERION FOR UNIDIRECTIONAL COMPOSITES

Off-Axis Tensile Failure Stresses Under Uniaxial Stress $\sigma_{\mathbf{x}}(\sigma_{\mathbf{y}} = \sigma_{\mathbf{x}\mathbf{y}} = 0)$. The stresses in the material symmetry axis \mathbf{x}' (along the fibers) can be obtained directly from

$$\sigma_{\mathbf{x}}^{l} = \sigma_{\mathbf{L}}^{l} = \text{Longitudinal stress} = m^{2} \sigma_{\mathbf{x}}^{l}$$

$$\sigma_{\mathbf{y}}^{l} = \sigma_{\mathbf{T}}^{l} = \text{Transverse stress} = n^{2} \sigma_{\mathbf{x}}^{l}$$

$$\sigma_{\mathbf{x}}^{l} = \sigma_{\mathbf{L}}^{l} = \text{Shear stress LT} = -mn\sigma_{\mathbf{x}}^{l}$$
(31)

Maximum stress criterion assumes that failure will occur when lowest of the following 3 o 's is reached.

Figure 16 Coordinates for off-axis uniaxial tests. Shear stress will be positive if fibers oriented along - 0.

Where $m = \cos \theta$ $n = \sin \theta$

Figure 17 Maximum stress criterion is typified by separate branches which may be related to fiber and matrix (transverse or shear) failures. There is no interaction.

Where m = cos 0

= sin 0

Figure 18 Maximum stress criterion as applied to off-axis compressive tests. There is no interaction between tensile and compressive strength.

c. Off-Axis Shear Strength
Substituting
$$\sigma_{x} = \sigma_{y} = 0$$
 into Table
4 (for + 0),

$$\begin{pmatrix}
\sigma_{\mathbf{x}}^{\dagger} = 2mn \, \sigma_{\mathbf{xy}} = (\sin 2\theta)\sigma_{\mathbf{xy}} \\
\sigma_{\mathbf{y}}^{\dagger} = -2mn \, \sigma_{\mathbf{xy}} = -(\sin 2\theta)\sigma_{\mathbf{xy}} \\
\sigma_{\mathbf{xy}}^{\dagger} = (m^2 - n^2)\sigma_{\mathbf{xy}} = (\cos 2\theta)\sigma_{\mathbf{xy}}
\end{pmatrix} (34)$$

Depending on the signs of the stress components $\sigma'_{\mathbf{X}}$, $\sigma'_{\mathbf{Y}}$, $\sigma'_{\mathbf{X}\mathbf{Y}}$, which are functions of the signs of θ and $\sigma_{\mathbf{X}\mathbf{Y}}$, the following strength criteria shall be used. Note: Each quadrant in the table has distinct combinations.

	- 0	+ θ
⁺ σxy	X'/sin 20	X/sin 20
	Y/sin 20	Y'/sin 20
- ^σ ху	X/sin 20	X'/sin 20
	Y'/sin 20	Y/sin 20

	$-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$	$-\frac{3}{4}\pi \leq 0 \leq -\frac{1}{4}\pi$ $\frac{1}{4}\pi \leq 0 \leq \frac{3}{4}\pi$
+ σ xy	S/cos 20	S'/cos 20
- σ _{xy}	S'/cos 29	S/cos 20

Numerous failure criteria other than the maximum stress will be discussed later.

d. The intersection of any 2-failure curves in Figure 17 are as follows:

$$\theta_{1} = \cot^{-1} \frac{X}{S_{1}}$$

$$\theta_{2} = \tan^{-1} \frac{Y}{S_{1}}$$

$$\theta_{3} = \cot^{-1} \sqrt{\frac{X}{Y}}$$

$$(35)$$

$$(36)$$

Figure 19 Off-axis shear strength based on maximum stress criterion. Six possible failure modes, including positive and negative shears are labeled. In this case, longitudinal tensile and compressive are never limiting cases. Matrix tensile, compressive and shear are the controlling modes.

3. STRENGTH ESTIMATE OF RANDOM FIBER COMPOSITES

a. Tensile Strength

It may be assumed that the strength of a random fiber composite is equal to the average strength of the area under the off-axis tensile strength of the area under the off-axis tensile strength of a unidirectional composite with the same constituents, (Figure 17).

$$\overline{X} = \frac{2}{\pi} \int_{0}^{\pi/2} X_{\theta} d\theta$$

$$= \frac{2}{\pi} \left[X \int_{0}^{\theta} \frac{1 d\theta}{\cos^{2}\theta} + S \int_{\theta_{1}}^{\theta} \frac{d\theta}{\sin \theta \cos \theta} + Y \int_{\theta_{2}}^{\pi/2} \frac{d\theta}{\sin^{2}\theta} \right]$$
(39)

After integration -

$$\frac{\overline{X}}{Y} = \begin{cases} \frac{4}{\pi} & \alpha \left[1 + \frac{1}{2} \sqrt{\frac{X}{\alpha^2 Y}} \right], \alpha \leq \sqrt{\frac{X}{Y}} \\ \frac{4}{\pi} & \sqrt{\frac{X}{Y}}, \alpha > \sqrt{\frac{X}{Y}} \end{cases}$$
(40)

Where
$$\alpha = \frac{S}{Y}$$

Figure 20 The analytic estimate (based on high shear strength) falls below most available data by a factor of 1.5; but the trend appears to be in general agreement. The rule-of-mixtures equation, with correction factor β, is shown in dashed lines. [1]

ъ.	Compressive Strength
c.	Shear Strength
-	
d.	Standard of Particular Committee
a.	Strengths of Particulate Composites
-	
	[2] 흥혈 수 있는 [2] 역 이 교통의 이 회사의 의 등 등 교육 양의 환경 등 이 경우 마다

4. STRAIN AS COORDINATES ROTATE

a. Formula for Strain Transformation

Only the shear component is the difference between the strain and stress transformation relations, i.e.,

TABLE 7 STRAIN TRANSFORMATION RELATIONS

	I	R
e' x	1	cos 2(θ- δ)
e' y	1	-cos 2(θ- δ)
e' xy	0	-2sin 2(θ- δ)

$$I = \frac{x}{2}$$

$$R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\varepsilon_{xy}}{2}\right)^{2}}$$

$$(42)$$

$$\tan 2\delta_1 = \frac{\epsilon_{xy}}{\epsilon - \epsilon_{y}}$$

(44)

Figure 21 Positive and negative rotations for transformation.

 $\delta = \delta_1 \quad \text{if } \epsilon_x > \epsilon_y$ $\delta = \delta_1 + 90 \quad \text{if } \epsilon_x < \epsilon_y$

Figure 22 Mohr's Circle representation of strain transformation. Only the one-half factor for the shear strain is the difference between the strain representation and that for stress. Special attention must be paid to starting point: $\delta = \delta_1, \text{ if } \epsilon_x > \epsilon_y; \quad \delta = \delta_1 + 90, \quad f \in \mathcal{C}_y.$

Figure 23 Relevant trigonometric functions and negative phase angle that would displace the functions to the left (or vertical axis to the right).

Figure 24 Typical strains transformations, note, principal strain and maximum shear strain.

TABLE 8 TRANSFORMED AND PRINCIPAL STRAINS

	δ-45	δ-30	δ-15	δ	δ+15	δ+30	δ+45	0
e'x	2.000	3.346	4.332	4.693	4.332	3.346	2.000	1
e'	2.000	.654	332	693	332	.654	2.000	3
e'xy	5.385	4.664	2.693	0	-2.693	-4.664	-5.385	5

5. STRAIN ROSETTES

a. Three-Element Rosettes

Since there are 3 strain components at each point, 3-element rosettes are in general needed to solve for 3 unknowns. Assuming 3 elements are mounted at 3 different angles from some reference coordinates, each rosette must satisfy

$$\epsilon_{A} = (\cos^{2} A) \epsilon_{x} + (\sin^{2} A) \epsilon_{y} + (\sin A \cos A) \epsilon_{xy}$$

 $\epsilon_{B} = (\cos^{2} B) \epsilon_{x} + (\sin^{2} A) \epsilon_{y} + (\sin B \cos B) \epsilon_{xy}$ (45)

Figure 25 Strain rosette orientation with positive angles. If an angle is negative, it shall be so entered into Equations (45) and (46).

$$\epsilon_{C} = (\cos^{2}C)\epsilon_{x} + (\sin^{2}C)\epsilon_{y} + (\sin C \cos C)\epsilon_{xy}$$

In matrix form

$$\begin{bmatrix} \cos^2 A & \sin^2 A & \sin A \cos A \\ \cos^2 B & \sin^2 B & \sin B \cos B \\ \cos^2 C & \sin^2 C & \sin C \cos C \end{bmatrix}$$

$$\begin{pmatrix}
\mathbf{e}_{\mathbf{x}} \\
\mathbf{e}_{\mathbf{y}} \\
\mathbf{e}_{\mathbf{x}\mathbf{y}}
\end{pmatrix} = \begin{pmatrix}
\mathbf{e}_{\mathbf{A}} \\
\mathbf{e}_{\mathbf{B}} \\
\mathbf{e}_{\mathbf{C}}
\end{pmatrix} (46)$$

b. Other Rosettes

Four-element rosette is an over-determined system when a 4th equation is added:

$$e_{D} = (\cos^{2}D)e_{x} + (\sin^{2}D)e_{y} + (\sin D \cos D)e_{xy}$$
 (47)

Methods of solution for an over-determined (4 or more equations for 3 unknowns) are available. The additional strain gage also serves as a redundant gage, in case of a defective gage.

Two-element rosette is adequate if additional information on the strain components is given. For example, if from symmetry considerations, e is known to be zero, or e = e, two-element rosette can be used. The angle between the elements (i.e., A-B) can be any value, although normally it is 90°.

One-element rosette is adequate if it is known that $e_{\mathbf{x}} = e_{\mathbf{y}} = 0$, $e_{\mathbf{x}} \neq 0$; or only uniaxial strain is needed.

- c. Sample Problems.
 - (1) From a uniaxial test,

A = 0, B =
$$60^{\circ}$$
, C = -60° , and e_A , e_B , e_C = 10, -3, -3 mm/m, find Poisson's ratio along a-axis.

(2) Find off-axis mounted 2-element orthogonal rosette in order to achieve full 15 mm/m range. Assume ultimate longitudinal strain of 3 percent and Poisson's ratio of 0.3. Is there an optimum orientation?

SECTION III

STRESS - STRAIN RELATIONS

(48)

1. COMPLIANCE AND MODULUS MATRICES

a. Stress-Strain Relations in Longhand Form (Plane Stress)

$$\mathbf{e}_{i} = \mathbf{S}_{ij}^{\sigma_{j}}$$
, $i,j = 1, 2, 6$

$$\mathbf{e}_1 = \mathbf{S}_{1j}^{\sigma}_{j} = \mathbf{S}_{11}^{\sigma}_{1} + \mathbf{S}_{12}^{\sigma}_{2} + \mathbf{S}_{16}^{\sigma}_{6}$$

$$e_2 = S_{2j}^{\sigma}_{j} = S_{21}^{\sigma}_{1} + S_{21}^{\sigma}_{2} + S_{26}^{\sigma}_{6}$$
 (49)

$$e_6 = S_{6j}^{\sigma}_{j} = S_{61}^{\sigma}_{1} + S_{62}^{\sigma}_{2} + S_{66}^{\sigma}_{6}$$

$$\sigma_{\mathbf{i}} = Q_{\mathbf{i}\mathbf{j}} \mathbf{e}_{\mathbf{j}} \tag{50}$$

$$\sigma_1 = Q_{1i}e_i = Q_{11}e_1 + Q_{12}e_2 + Q_{16}e_6$$

$$\sigma_2 = Q_{2i}e_i = Q_{21}e_1 + Q_{22}e_2 + Q_{26}e_6$$
 (51)

$$\sigma_6 = Q_{6i} \epsilon_i = Q_{61} \epsilon_1 + Q_{62} \epsilon_2 + Q_{66} \epsilon_6$$

b. In Matrix Form

$$\begin{cases}
\mathbf{e}_{1} \\
\mathbf{e}_{2}
\end{cases} = \begin{bmatrix}
\mathbf{S}_{11} & \mathbf{S}_{12} & \mathbf{S}_{16} \\
\mathbf{S}_{21} & \mathbf{S}_{22} & \mathbf{S}_{26} \\
\mathbf{S}_{61} & \mathbf{S}_{62} & \mathbf{S}_{66}
\end{bmatrix} \quad \begin{pmatrix}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{6}
\end{pmatrix} \tag{52}$$

$$S_{ij}$$
 is symmetric, i.e., $S_{ij} = S_{ji}$, or $S_{12} = S_{21}$, $S_{16} = S_{61}$, $S_{26} = S_{62}$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{62} & Q_{66} \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_6 \end{pmatrix} (53)$$

 Q_{ij} is also symmetric, i.e., $Q_{ij} = Q_{ji}$, or $Q_{12} = Q_{21}$, $Q_{16} = Q_{61}$, $Q_{26} = Q_{62}$

c. Elastic Symmetries

TABLE 10 COMPLIANCE AND MODULUS IN TERMS OF ELASTIC SYMMETRIES

Symmetry (No Indep. Const)	Comp	liance Matr (TPa) ⁻¹	rix S _{ij}		etrix (Q _{ij}
Anisotropic (6) or	$\begin{bmatrix} \frac{1}{E} \\ 11 \end{bmatrix}$	- \frac{\nu_{12}}{\text{E}_{11}}	s ₁₆	Q ₁₁	Q ₁₂	Q ₁₆
Generally Orthotropic (4)	$-\frac{v_{21}}{E_{22}}$	1 E ₂₂	S ₂₆	Q ₂₁	Q ₂₂	Q ₂₆
	s ₆₁	s ₆₂	$\frac{1}{G_{12}}$	Q ₆₁	Q ₆₂	Q ₆₆
	$\left\{\frac{1}{E}\right\}$	$-\frac{v_{LT}}{E_L}$	0	ME _L	v _{TL} mE _L	0
Specially Orthotropic (4)	$-\frac{v_{TL}}{E_{T}}$	1 E _T	0	V _{LT} mE _T	mE _T	0
	Lo	0	1 G _{LT}	l l o	0	G _{LT}
	∫ ½ E	- <u>v</u>	•]	[mE	vmE	٥٦
Isotropic (2)	- v E	1 E	0	vmE	mE	0
	Lo	0	$\frac{1}{G}$	lo	0	G

For orthotropic material: $m = \frac{1}{1-\nu_{LT}\nu_{TL}} = \frac{1}{1-\nu_{LT}^2} \frac{E_T}{E_L}$ (54) $\nu_{LT}E_T = \nu_{TL}E_L$ For isotropic material: $m = \frac{1}{1-\nu}$ (55) $G = \frac{E}{2(1+\nu)}$

Note: Q. can be expressed in terms of engineering constants only for orthotropic and isotropic materials, not for anisotropic materials. S. does not have such limitations.

Table 11 engineering constants in terms of $s_{ij} \ \& \ Q_{ij}$

d. Elastic Constants

TABLE 12 ENGINEERING CONSTANTS FOR UNIDIRECTIONAL COMPOSITES

Туре	Material	Fiber Vol.	Specific Gravity	EL	E _T	$\nu_{\rm LT}$	GLT
		^v f	y	GPa	GPa		GPa
B(4) 5505	B/Ep	0.5	2.0	204	18.5	0.23	5.79
Mod II 5206	Gr/Ep	0.55	1.5	55	8.83	0.30	5.24
HMS 3002M	Gr/Ep	0.48	1.58	185	6.76	0.20	5.86
Г300 5208	Gr/Ep	0.70	1.60	181	10.3	0.28	7.17
Mod I ERLA 4289	Gr/Ep	0.51	1.56	188	4.14	0.20	4.83
Mod I ERLA 4617	Gr/Ep	0.45	1.54	190	7.10	0.10	6.2
AS 3501	Gr/Ep	0.66	1.60	138	8.96	0.30	7.1
B(4) WRD 9371	в/рі	0.49	2.0	222	14.5	0.16	7.7
Mod I WRD 9371	Gr/PI	0.45	1.54	216	4.97	0.25	4.5
S Glass 1009-26-5901	Gl/Ep	0.72	2.13	60.7	24.8	0.23	12.0
Scotchply 1002	Gl/Ep	0.45	1.8	38.6	8.27	0.26	4.14
T300 SP 313	Gr/Ep	0.65	1.55	140	9.7	0.32	
Kevlar 49 Epoxy	Kev/Ep	0.60	1.38	76	5.5	0.34	2.3

Table 13 compliance s_{ij} in terms of engineering constants $(10^{12} Pa)^{-1}$

Composites	$S_{11} = \frac{1}{E_L}$	$S_{22} = \frac{1}{E_T}$	$S_{12} = -v_{LT}S_{11}$	$S_{66} = \overline{G}$
	(TPa) l	(TPa)-1	= -v _{TL} S ₂₂	(TPa)-1
T-300/5208	5.525	97.087	-1.547	139.476
B/5505	4.902	54.054	-1.128	172.712
Scotchply 1002	25.907	120.919	-6.744	241.546
Kevlar 49	13.158	181.818	-4.474	434.783
S Glass 1009-26-5901	16.474	40.323	-3.789	83.333
HMS 300277	5.4054	147.929	-1.081	170.649
Mod I WRD 9371	4.630	201.207	-1.157	222.222

Table 14 modulus $Q_{{f ij}}$ in terms of engineering constants (10 $^6{
m Pa}$)

Composites	m	$Q_{11} = mE_L$ (GPa)	Q ₂₂ = mE _T (GPa)	$Q_{12} = \nu_{LT} Q_{22}$ $= \nu_{TL} Q_{11}$	Q ₆₆ = G _{LT} (GPa)	S _{ij} Q _{jk} = δ _{ik}
T-300/5208	1.0045	181.811	10.346	2.897	7.170	
B/5505	1.0048	204.985	18.589	4.275	5.790	
Scotchply						
1002	1.0147	39.167	8.392	2.182	4.140	
Kevlar 49	1.0084	76.641	5.546	1.886	2.300	
S Glass						
1009-26-5901	1.0221	62.041	25.348	5.830	12.000	
нмѕ 3002м	1.0015	185.271	6.770	1.354	5.860	
		m =	1 1-v _{LT} v _{TL}	$\frac{1}{1-\nu_{LT}^2 E_T/E_I}$		

e.	in mm/m		$\int_{e}^{\epsilon_1}$	= \begin{cases} 2.1 \\ 5.20 \\ 2.00 \end{cases}	17	
1			$\binom{2}{e_6}$	2.0	92	
			f 181.81	1 2.897	۰٦	
Q _{ij}	for Gr/Ep in	GPa =	2.89	1 2.897 7 10.346 0	0	
			L	0	7.170 J	
	$\left\{ \sigma_{1}\right\}$	[Q11	Q ₁₂	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 66 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_6 \end{bmatrix}$	1 40	00
σ in MPa =	$\{\sigma_2\}$	Q ₂₁	Q ₂₂	0 { • 2) = {	60
	(6)	[0	0	Q ₆₆ \ (e ₆)		15
	al					
	e'x			e'y		e' _{xy} -
	1					
	σ' _x			1 °y		σ¹
				У		l xy
Figure 29				ns, shown are		

Figure 30 Ultimate stress and strain determination.

b. Typical Ultimate Strains of Unidirectional Composites

TABLE 15. ULTIMATE STRAINS OF UNIDIRECTIONAL COMPOSITES (mm/m)

Material	e L	ε'L	e _T	e' _T	€S	LT	ν _{TL}
T-300/5208	8.30	8.30	3.91	23.8	9.42	.28	.0159
B/5505	6.18	12.2	3.30	10.9	11.6	.23	.0208
Scotchply 1002	27.5	15.8	3.80	14.2	17.4	.26	.0557

Figure 31. Three views of maximum strain envelope in strain space.

6

62

ET

d. Limitation Imposed by Poisson Strain

Figure 32 Longitudinal and transverse strain in uniaxial axial tension and compression tests.

If $v_{LT}e_{L}^{t} > e_{T}$, strains envelope may not include all failure points. Point A, for example, could be outside failure surface as shown in Figure 31. This can be an inconsistency of this failure criterion.

- f. Off-axis Uniaxial Tests
 - (1) Maximum Strain Criterion

Substitute

$$\sigma_1^i = n^2 \sigma_1^i$$
, $\sigma_2^i = m^2 \sigma_1^i$, $\sigma_6^i = mn\sigma_1^i$ into SSR

$$e_{L} \ge (n^2 - \nu_{LT}^2) \sigma_1 / E_{L}$$
 (61)

$$\epsilon_{\mathrm{T}} \ge (\mathrm{m}^2 - \nu_{\mathrm{TL}}^2) \sigma_1 / \mathrm{E}_{\mathrm{T}}$$
 (62)

$$\epsilon_{LT} \ge -mn\sigma_1/G_{LT}$$
 (63)

$$\sigma_{1} \leq \begin{cases} \frac{X}{n^{2} - \nu_{LT} m^{2}} \\ \frac{Y}{m^{2} - \nu_{TL} n^{2}} \end{cases}$$

$$(64) \quad -\sigma_{1} \leq \begin{cases} \frac{X^{1}}{n^{2} - \nu_{LT} m^{2}} \\ \frac{Y^{1}}{m^{2} - \nu_{TL} n^{2}} \end{cases}$$

$$(65) \quad \frac{S}{mn}$$

(2) Maximum Stress Criterion

A special case of (1) when $v_{LT} = v_{TL} = 0$.

Figure 35 Difference between the predicted max stress and max strain criteria of the offaxis strength.

3. PLANE ELASTICITY SOLUTIONS

a. Complex Parameters

Stress distribution in a plane problem is a function of the characteristic equation for an orthotropic material:

$$S_{11}^{4} + (2S_{12} + S_{66})^{2} + S_{22} = 0$$
 (66)

In terms of engineering constants with 0° oriented along the reference coordinate:

$$\mu^{4} + \left(\frac{E_{L}}{G_{LT}} - 2\nu_{LT}\right)\mu^{2} + \frac{E_{L}}{E_{T}} = 0$$
 (67)

Roots of this equation are called complex parameters which constitute another measure of the elastic constants:

$$\mu = \beta i , \delta i$$
 (68)

Numerical example for B/Ep unidirectional composites:

$$\mu^4 + \left(\frac{206.5}{6.9} - 2 \times 0.21\right) \qquad \mu^2 + \left(\frac{206.5}{18.6}\right) = 0$$
 (69)

$$\mu^{4} + 29.1\mu^{2} + 11.1 = 0 \tag{70}$$

$$\mu^2 = -14.6 \pm \sqrt{214-11.1} = -14.6 \pm 14.2 = -28.8, -.4$$

$$\therefore \beta = 5.35 , \delta = .63 \tag{71}$$

For isotropic material, $\beta = \delta = 1$

TABLE 16 COMPLEX PARAMETERS FOR VARIOUS UNIDIRECTIONAL COMPOSITES

Composites	β	δ	$n = \beta + \delta$	$k = \beta \delta$
В/Ер	5.35	.63	5.98	3.37
T-300/5208 (Gr/Ep)	4.89	.86	5.75	4.21
Scotchply/1002	2.87	.75	3.62	2.16
S-Glass 1009-26-5901	2.00	.78	2.78	1.56
			1 1 1 1 1	

(72)

(1) Elliptic Hole Under Tension

$$\sigma_{\mathbf{r}} = -\frac{a}{g} \left[k - \nu_{12} + n(\cos^2 \theta + \sin \theta) \right]$$

$$\tau_{\mathbf{r}\theta} = -\frac{a}{g} \left[k - \nu_{12} + n(\cos^2 \theta + n\sin^2 \theta) \right]$$

 $g = \frac{1}{Q_{22}} + \frac{k}{G_{12}}$

(6) Rigid Reinforcement Under Tension

(3) Circular Hole Under Internal Pressure

$$\sigma_{\mathbf{r}} = \frac{p}{g\sqrt{E_{11}}E_{22}} \left(k + n - v_{12} + \frac{E_{11}}{G_{12}}\right)$$

$$\sigma_{\theta} = v_{21}\sigma_{r}$$
 , $\sigma_{r\theta} = 0$ (77)

At Point B

$$\sigma_{\mathbf{r}} = \frac{\mathbf{p}}{\mathbf{gE}_{11}} \left[\mathbf{k} - \nu_{12} (1+\mathbf{n}) \right]$$

$$\sigma_{\theta} = v_{12}\sigma_{r}$$
 , $\sigma_{r\theta} = 0$ (78)

General Reference:

S. G. LEKHNITSKII, Anisotropic Plates, English translation by Gordon & Breach.

4. TRANSFORMATION RELATIONS FOR COMPLIANCE

a. Formulas

TABLE 17 TRANSFORMATION OF COMPLIANCE

	I ₁	I ₂	R ₁	R ₂
5'11	1	1	-cos 2(θ-δ ₁)	-cos 4(θ- δ ₂)
5'22	1	1	cos 2(θ- δ ₁)	-cos 4(θ- δ ₂)
S'12	1	-1	0	cos 4 (θ- δ ₂)
S'66	0	4	0	4 cos 4(θ-δ ₂)
S'16	0	0	sin 2(θ- δ ₁)	$2 \sin 4(\theta - \delta_2)$
S'26	0	0	sin 2(θ- δ ₁)	-2 sin 4(θ-δ ₂)

$$I_{1} = \frac{1}{4}(S_{11} + S_{22} + 2S_{12}) \tag{82}$$

$$I_2 = \frac{1}{8} (S_{11} + S_{22} - 2S_{12} + S_{66})$$
 (83)

$$R_{1} = \frac{1}{2} \sqrt{(-S_{11} + S_{22})^{2} + (S_{16} + S_{26})^{2}}$$
 (84)

$$R_2 = \frac{1}{8} \sqrt{(S_{11} + S_{22} - 2S_{12} - S_{66})^2 + 4(S_{26} - S_{16})^2}$$
 (85)

$$\tan 2\delta_1 = \frac{s_{16} + s_{26}}{s_{11} - s_{22}} \tag{86}$$

$$\tan 4\delta_2 = \frac{2(S_{16} - S_{26})}{S_{11} + S_{22} - 2S_{12} - S_{66}}$$
(87)

For orthotropic material

$$\delta_1 = \delta_2 \tag{88}$$

For anisotropic material

$$\delta_1 \neq \delta_2 \tag{89}$$

b. Typed Numerical Data

TABLE 18 INVARIANTS FOR COMPLIANCE MATRIX FOR VARIOUS COMPOSITES (TPa)-1

Material I S I S R S R S R S S S S						
B/5505 14.18 29.24 24.55 13.94 Scotchply 1002 33.3 50.2 47.5 10.2 Kevlar 49 46.51 79.84 84.33 28.86 S-Glass 1009-26-5901 12.30 18.41 11.92 2.37		Material	I _{1S}	I _{2S}	R _{1S}	R _{2S}
Scotchply 1002 33.3 50.2 47.5 10.2 Kevlar 49 46.51 79.84 84.33 28.86 S-Glass 1009-26-5901 12.30 18.41 11.92 2.37		T-300/5208	24.88	30.65	45.78	4,22
Kevlar 49 46.51 79.84 84.33 28.86 S-Glass 1009-26-5901 12.30 18.41 11.92 2.37		B/5505	14.18	29.24	24.55	13.94
Kevlar 49 46.51 79.84 84.33 28.86 S-Glass 1009-26-5901 12.30 18.41 11.92 2.37		Scotchply 1002	33.3	50.2	47.5	10.2
S-Glass 1009-26-5901 12.30 18.41 11.92 2.37			46.51	79.84	84.33	28.86
1009-26-5901 12.30 18.41 11.92 2.37						
HMS-3002M 37.79 40.77 71.26 1.89			12.30	18.41	11.92	2.37
		HMS-3002M	37.79	40.77	71.26	1.89
	-					
				1		
	-					

▲ Sin 40

(3) Variation in Engineering Constants as Coordinates Rotate (GPa)

$$\mathbf{E_{11}'} = \frac{1}{\mathbf{S_{11}'}} , \quad \mathbf{E_{22}'} = \frac{1}{\mathbf{S_{22}'}} , \quad \mathbf{v_{12}'} = -\frac{\mathbf{S_{12}'}}{\mathbf{S_{11}'}} , \quad \mathbf{v_{21}'} = \mathbf{1} \frac{\mathbf{S_{12}'}}{\mathbf{S_{22}'}} , \quad \mathbf{G_{12}'} = \frac{1}{\mathbf{S_{66}'}}$$

TABLE 19 TRANSFORMED COMPLIANCE & ENGINEERING CONSTANTS FOR VARIOUS COMPOSITES (TPa) -1 AND (GPa)

		Г	7-300 / 52	808				B(4)	5505			
		S _{ij} '		Engi	neer	_		Sij				ring tants
	5.52	-1.55	0	E 11	=	181	4.90	-1.13	0	E11	=	204
							-1.13	54.05	0	E22'		18.5
00	-1.55	97.09	0	ν ₁₂	=	.28				v ₁₂ '	=	.23
				ν ₂₁	=	.016	0	0	172.71	v21'	=	.02
	0	0	139.47	G ₁₂	=	7.2				G ₁₂ '	=	5.79
	13.77	-3.66	30.20	E ₁₁	=	72.63	15.16	-8.10	36.43	E,,'	=	65.9
						10.75				E22	=	17.3
15°	-3.66	93.06	15.58	ν ₁₂	=	.27	-8.10	57.73	-11.85	ν ₁₂ '	=	.53
				v ₂₁		.04				v21'		.14
	30.20	15.58	131.03	G ₁₂	=	7.63	36.43	-11.85	144.84	G ₁₂ '	=	6.90
	34.75	-7.88	46.96	E ₁₁	=	28.78	38.10	-22.03	45,42			
				E22	=	12.42						
30°	-7.88	80.53	32.34	v ₁₂	=	.23	-22.03	62.67	-2.86			
				ν ₂₂	=	.10						
	46.96	32.34	114.15	G ₁₂ '	=	8.76	45,42	-2.86	98.06			
	59.75	-9.99	45.78	111		16.74						
				E22		16.74						
45°	-9.99	59.75	45.78	12	=	.17						
				v21	=	.17						
	45.78	45.78	105.71	G ₁₂	=	9.46						

5. TRANSFORMATION RELATIONS FOR MODULUS MATRIX

a. Formulas

TABLE 20 TRANSFORMATION OF MODULUS

	¹ 1	I ₂	R		R ₂
Ω'11	1	1	cos 2(θ- δ ₁)		cos 4(θ- δ ₂)
Q'22	1	1	-cos 2(0- 8 ₁)		cos 4(θ- δ ₂)
Q' ₁₂	1	-1	0	-	$\cos 4(\theta - \delta_2)$
Q'66	0	1	o	-	cos 4(θ- δ ₂)
Q ₁₆	0	0	$-\frac{1}{2}\sin 2(\theta - \delta_1)$	1.	$\sin 4(\theta - \delta_2)$
Q ₂₆	0	0	$-\frac{1}{2}\sin 2(\theta - \delta_1)$		sin 4(9- δ ₂)

$$I_1 = \frac{1}{4} (Q_{11} + Q_{22} + 2Q_{12})$$
 (90)

$$I_2 = \frac{1}{8}(Q_{11} + Q_{22} - 2Q_{12} + 4Q_{66})$$
 (91)

$$R_1 = \frac{1}{2} \sqrt{(-Q_{11} + Q_{22})^2 + 4(Q_{16} + Q_{26})^2}$$
 (92)

$$R_2 = \frac{1}{8} \sqrt{(Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66})^2 + 16(Q_{16} - Q_{26})^2}$$
 (93)

$$\tan 2\delta_1 = \frac{2(Q_{16} + Q_{26})}{Q_{11} - Q_{22}} \tag{94}$$

$$\tan 4\delta_2 = + \frac{4(Q_{16} - Q_{26})}{Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66}}$$
(95)

 $\delta_1 = \delta_2$ for orthotropic materials

 $\delta_1 \neq \delta_2$ for anisotropic materials

b. Typical Numerical Data

TABLE 21 INVARIANTS FOR MODULUS MATRIX FOR VARIOUS COMPOSITES (GPa)

Material	I _{1Q}	I _{2Q}	R _{1Q}	R _{2Q}
T-300/5208	49.49	26.88	85.73	19.71
B/5505	58.03	29.77	93.20	23.98
Scotchply				
1002	13.0	7.47	15.4	3.33
Kevlar 49	21.49	10.95	35.55	8.65
S-Glass 1009-23-5901	24.76	15.47	18.35	3.47
HMS 3002M	48.69	26.60	89.25	20.74
			1.	

c. Graphical Illustration

(1) Trigonometric Relations

d. Typical Data for Transformed Modulus for Various Composites

TABLE 22 TRANSFORMED MODULUS FOR VARIOUS COMPOSITES (GPa)

	T-3	00 / 5208	3	В	/ 3502		
	181.81	2.90	0	204.98	4.28	0	
Q _{ij} ⁽⁰⁾	2.90	10.35	- 0	4.28	19.59	0	
	0	0	7.17	0	0	5.79	
	160.47	12.75	- 38 • 50	180.51	16.27	-44.07	
Q _{ij} (15)	12.75	11.98	-4.36	10.27	19.08	-2.53	
	-38.50	-4.36	-17.05	-44.07	-2.53	17.78	
	109.38	32.46	-54.19	122.41	40.25	-61.13	
Q _{ij} (30)	32.46	23.65	-20.05	40.25	29.21	-19.59	
	-54.19	-20.05	36.78	-61.13	-19.59	41.78	
	56.66	-42.32	-42.87	63.82	52.24	-46.60	
Q(45)	-42.32	56.66	-42.87	52.24	63.82	-46.60	
	42.87	-42.87	46.59	-46.60	-46.60	53.76	
					-		
					-		

6. MODULI FOR RANDOM COMPOSITES

a. Constant Stress or Series Model

$$\bar{\mathbf{e}}_{1} = \sigma_{j} \int_{-\pi/2}^{\pi/2} S_{1j} d\theta = \begin{bmatrix} I_{1} + I_{2} & I_{1} - I_{2} & 0 \\ & I_{1} + I_{2} & 0 \\ & & 4I_{2} \end{bmatrix} \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{6} \end{bmatrix}$$
(96)

The invariants are those for Sij in Table 18.

$$E_{s} = \frac{1}{I_{1} + I_{2}}$$

$$v_{s} = \frac{I_{1} - I_{2}}{I_{1} + I_{2}}$$

$$G_{s} = \frac{1}{4I_{2}}$$
(97)
(98)

b. Constant Strain or Parallel Model

Constant Strain or Parallel Model
$$\frac{\pi}{\sigma_1} = e_j \int_{-\pi/2}^{\pi/2} O_{1j} d\theta = \begin{bmatrix} I_1 + I_2 & I_1 - I_2 & 0 \\ & & & \\ & & & I_1 + I_2 & 0 \end{bmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_6 \end{pmatrix}$$
(100)

The invariants are those for
$$Q_{ij}$$
 in Table 21.

 $v_p = \frac{I_1^{-1} I_2}{I_1 + I_2}$ (101)

 $E_p = (1 - \overline{\nu}^2) (I_1 + I_2)$ (102)

 $G_p = I_2$ (103)

c. Isotropic Constants for Various Random Composites

TABLE 23 PREDICTED ELASTIC CONSTANTS FOR RANDOM COMPOSITES (GPa)

Material	Es	Gs	ν _s	Ep	G _p	νp
T-300/5208	18.	8.17	.101	69.7	26.9	.295
B/5505	23.0	8.56	. 343	78.7	29.8	. 320
Scotchply 1002	12.0	4.98	.205	19.0	15.4	.270

SECTION IV

MICROMECHANICS

1. ELASTIC PROPERTIES

a. Definitions

Average strains depend on the boundary displacement only.

$$\bar{e}_{ij} = \frac{1}{V} \int_{V} e_{ij} dV = \frac{1}{2V} \int_{V} (u_{i,j} + u_{j,i}) dV$$
$$= \frac{1}{2V} \int_{S} (u_{i}n_{j} + u_{j}n_{i}) dS \qquad (104)$$

 $S = S_1 + S_2$

Average stresses depend on the boundary tractions only.

$$\overline{\sigma}_{ij} = \frac{1}{V} \int_{V} \sigma_{ij} dV = \frac{1}{V} \int_{V} (\sigma_{ik} \mathbf{x}_{j}),_{k} dV$$

$$= \frac{1}{2V} \int_{S} (T_{i} \mathbf{x}_{j} + T_{j} \mathbf{x}_{i}) dS \qquad (105)$$

Figure 38 A composite

A composite body. Displacement continuity and equilibrium are maintained at the interface.

Virtual work

$$\overline{\sigma_{ij}e_{ij}} = \frac{1}{V} \int_{V} \sigma_{ij}e_{ij}dV = \frac{1}{V} \int_{S} T_{i}u_{i}dS \qquad (106)$$

 σ_{ij} : statically admissible, ϵ_{ij} : kinematically admissible

Divergence theorem

$$\int_{S} f_{i} n_{j} dS = \int_{V} f_{i,j} dV$$
(107)

(a) A composite bar of length ℓ is given a displacement $\delta\ell$ at one end while the other end is held fixed. What is the average strain $\overline{\epsilon}_{11}$?

$$\begin{array}{lll} \mathbf{u}_1 &=& \delta \ell & \mathbf{x}_2 &=& 0 \\ & \overline{\mathbf{e}}_{11} &=& \frac{1}{2V} \int_{\mathbf{S}} -2\mathbf{u}_1 \mathbf{n}_1 d\mathbf{S} \\ & \overline{\mathbf{e}}_{11} &=& \frac{1}{V} \int_{\mathbf{S}} (\mathbf{u}_1 \mathbf{n}_1) d\mathbf{S} &=& \frac{1}{\ell \mathbf{A}} \delta \ell \mathbf{A} &=& \frac{\delta \ell}{\ell} &=& \delta \end{array}$$

(b) A composite bar is subjected to the pressure p at both ends. What is the average stress $\overline{\sigma}_{11}$?

$$\overline{\sigma}_{11} = \frac{1}{V} \cdot \int_{S} T_{1} x_{1} dS = p$$

b. Homogeneous Boundary Conditions

If
$$u_i = e_{ij}^0 x_j$$
 on S, then $\overline{e}_{ij} = e_{ij}^0$. (108)

If
$$T_i = \sigma_{ij}^0 n_j$$
 on S, then $\overline{\sigma}_{ij} = \sigma_{ij}^0$. (109)

If either of the above, then
$$\overline{\sigma_{ij}}^{e}_{ij} = \overline{\sigma_{ij}}^{e}_{ij}$$
. (110)

The above reductions follow from the definitions and the divergence theorem.

$$\widetilde{e}_{ij} = \frac{1}{2V} \int_{S} (u_{i}^{n}_{j} + u_{j}^{n}_{i}) dS$$

$$= \frac{1}{2V} \int_{S} (e_{\ell k}^{o} x_{k}^{n}_{j} + e_{jk}^{o} x_{k}^{n}_{i}) dS$$

$$= \frac{1}{2V} \left[e_{ik}^{o} \int_{S} x_{k}^{n}_{j} dS + e_{jk}^{o} \int_{S} x_{k}^{n}_{i} dS \right]$$

$$\frac{\sigma_{ij}e_{ij}}{\sigma_{ij}} = \frac{1}{V} \int_{S} T_{i}u_{i}dS = \frac{1}{V} \int_{S} \sigma_{ij}^{o}n_{j}u_{i}dS$$

$$= \frac{\sigma_{ij}^{o}}{V} \int_{S} n_{j}u_{i}dS$$

(I) Sample Problem

(a) Prescribe the homogeneous boundary conditions on a two-dimensional, rectangular body.

$$u_{i} = e_{ij}^{o} x_{j}$$

$$T_{i} = \sigma_{ij}^{o} n_{j}$$

$$s_1 m_2 = -1 x_2 = 0$$

$$u_i = \epsilon_{i1}^0 x_1$$

$$u_i = e_{i1}^0 x_1$$
 $T_i = -\sigma_{i2}^0 n_2 = -\sigma_{i2}^0$

$$S_2$$
 $n_1 = 1$, $x_1 = a$

$$u_i = e_{i1}^0 a + e_{i2}^0 x_2$$
 $T_i = \sigma_{i1}^0 n_1 = \sigma_{i1}^0$

$$\Gamma_{i} = \sigma_{i1}^{o} n_{1} = \sigma_{i1}^{o}$$

$$S_3$$
 $n_2 = 1$, $x_2 = b$

$$u_i = \epsilon_{i1}^0 x_1 + \epsilon_{i2}^0 b$$

$$u_i = e_{i1}^0 x_1 + e_{i2}^0 b$$
 $T_i = \sigma_{i2}^0 n_2 = \sigma_{i2}^0$

$$S_4 n_1 = -1, x_1 = 0$$

$$u_i = \epsilon_{i2}^o x_3$$
,

$$T_i = -\sigma_{i1}^0$$

c. Effective Elastic Constants	
Displacement B.C. $u_i = e_{ij}^O x_j$ on S.	
$u_i(x) = u_{ik\ell}(x) \epsilon_{k\ell}^0$ in V	(11
$e_{ij}(x) = e_{ijk\ell} e_{k\ell}^{o}, e_{ijk\ell} = \frac{1}{2} (u_{ik\ell,j} + u_{jk\ell,i})$	(11
$\sigma_{ij}(x) = G_{ijkl}(x)e_{kl}(x)$	(11
$\therefore \overline{\sigma}_{ij} = C_{ijk\ell}^* \overline{e}_{k\ell} , C_{ijk\ell}^* = \frac{1}{V} \int_{V} C_{ijmn}(x) e_{mnk\ell}(x) dV$	(11
Traction B.C. T _i = $\sigma_{ij}^{o}n_{j}$	
$\overline{e}_{ij} = S_{ijk\ell}^* \overline{\sigma}_{k\ell}$, $S_{ijk\ell}^* = \frac{1}{V} \int_{V} S_{ijmn}(x) \sigma_{mnk\ell}(x) dV$	(11
$\sigma_{ij}(x) = \sigma_{ijk\ell}(x)\sigma_{k\ell}^{0}$	(11
Strain energy	
$\overline{W}^{e} = \frac{1}{2} C^{*}_{ijk\ell} e^{\circ}_{ij} e^{\circ}_{k\ell} = \frac{1}{2} C^{*}_{ijk\ell} \overline{e}_{ij} \overline{e}_{k\ell}$: Displacement B.C.	(11
$\overline{W}^{\sigma} = \frac{1}{2} S_{ijk\ell}^* \sigma_{ij}^{o} \sigma_{k\ell}^{o} = \frac{1}{2} S_{ijk\ell}^* \overline{\sigma}_{ij} \overline{\sigma}_{k\ell} : \text{Traction B.C.}$	(11)
Statistically homogeneous body	
$C_{ijk\ell}^* S_{k\ell mn}^* = I_{ijmn}, I_{ijmn} = \frac{1}{2} (\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm})$	(110

e. Approximation for Unidirectional Laminae

For equilibrium

$$\overline{\sigma}_{mi} = \eta_{\underline{i}} \overline{\sigma}_{fi}$$
, $i = 2-6$.

(126)

$$\overline{\epsilon}_{fl} = \eta_1 \overline{\epsilon}_{ml}$$

(127)

$$E_1^* = \frac{1}{\eta_1 v_f^+ v_m} (\eta_1 v_f^E_f^+ v_m^E_m)$$

(128) Figure 39 Unidirectional composite and the reference coordinate sys-

$$v_{12}^* = \frac{1}{\eta_1 v_f^+ v_m} (\eta_1 v_f^+ v_m^- v_m)$$

(129)

$$\frac{1}{E_{n}^{*}} = \left(\frac{v_{f}}{E_{f}} + \frac{\eta_{a}v_{m}}{E_{m}}\right) - \frac{1}{v_{f}^{+\eta_{a}v_{m}}} - v_{f}v_{m} - \frac{(\eta_{1}\eta_{a}E_{f}v_{m}^{-}E_{m}v_{f}^{\prime})(v_{m}^{\prime}/E_{m}^{-}v_{f}^{\prime}/E_{f}^{\prime})}{(\eta_{1}v_{f}E_{f}^{+}v_{m}E_{m}^{\prime})(v_{f}^{+\eta_{a}v_{m}^{\prime}})}$$
(130)

$$v_{a1}^* = v_{1a}^* E_a^* / E_1^*$$
 (131)

$$\frac{1}{G_{\mathbf{f}}^{*}} = \left(\frac{\mathbf{v_f}}{G_{\mathbf{f}}} + \frac{\eta_{\mathbf{c}}\mathbf{v_m}}{G_{\mathbf{m}}}\right) \frac{1}{\mathbf{v_f}^{+\eta_{\mathbf{c}}\mathbf{v_m}}}$$
(132)

$$v_{ab}^{*} = \frac{E_{a}^{*}}{v_{f}^{+} \eta_{a} v_{m}} \left(v_{f} \frac{1 + v_{f}}{E_{f}} + \eta_{a} v_{m} \frac{1 + v_{m}}{E_{m}} \right) - 1$$
 (133)

Note that

$$\frac{\nu_{23}^*}{E_2^*} \neq \frac{\nu_{32}^*}{E_3^*} \quad \text{unless } \eta_2 = \eta_3.$$
 (134)

f. Transverse Isotropy	
$\mathbf{E}_2^* = \mathbf{E}_3^* \longrightarrow \eta_2 = \eta_3$	(12
$\frac{\pi}{2}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{\pi}{3}$	(13
$-\frac{v_{23}^*}{E_2^*} = \frac{1}{E_2^*} - \frac{1}{2G_{44}^*} \longrightarrow \eta_2 = \eta_4$	
$-\frac{1}{1}$ = $\frac{1}{1}$ $-\frac{1}{1}$ η_2 = η_4	(13
E ₂ E ₂ 2G ₄₄	
$G_{44}^* = G_{55}^* \longrightarrow \eta_4 = \eta_5$	(13
44 55 4 5	(13
Independent n's : n ₁ , n ₂ , n ₆	
1 2 6	
Independent elastic moduli :	
$\mathbf{E}_{\mathbf{L}} = \mathbf{E}_{\mathbf{L}}^*$	(13
$E_{T} = E_{2}^{*} = E_{3}^{*}$	(13
T 2 3	
*	
$\nu_{\rm LT} = \nu_{\rm TL} E_{\rm L} / E_{\rm T} = \nu_{12}^*$	(14
at.	
$G_{LT} = G_{66}^*$	(14
$v_{TT} = v_{23}^* = v_{32}^*$	(14
$G_{TT}(=G_{44}^*=G_{55}^*)$ is determined from	(14
$G_{TT} = \frac{E_{T}}{2(1 + \nu_{TT})}$	(14-
$G_{TT} = 2(1 + \nu_{TT})$	1

Figur	e 40	Longitudinal modulus can be
	-	predicted by Eq. (128) with
		η ₁ = 1. Constituents are
		E-glass fibers (E _f = 72.4 GPa,
		$v_{\rm f}$ = 0.20) and epoxy matrix
		$(E_{m} = 3.45 \text{ GPa}, \nu_{m} = 0.35).$
Ef	=	10.5msi
$G_{\mathbf{f}}$	=	4.34
νf	=	.2
Em	=	0.185msi
v _m	=	. 35
Gm	=	0.185msi
n,	=	1
Vf	=	0.6

		by Eq. (130) with $\eta_2 = 0.5$, $\eta_1 = 1$,
		is comparable to the more rigorous
		solutions. Constituents are
		E-glass fibers (E _f = 73.1 GPa,
		$v_{\rm f}$ = 0.22) and epoxy matrix
		$(E_{m} = 3.45 \text{ GPa}, \nu_{m} = 0.35).$ [2,3]
E,	=	10.5msi
G,	=	4.38
vf	-	0.2
Em	=	0.5msi
G _m	=	0.185msi
ν _m	=	0.35
n,	=	1
n2	=	.05
v.	+	0.6

Figure 41 Prediction of transverse modulus

AD-A058 534 AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OHIO COMPOSITE MATERIALS WORKBOOK.(U) MAR 78 S W TSAI, H T HAHN AFML-TR-78-33 F/6 11/4 UNCLASSIFIED NL 2 OF 4 AD AO 58534

e 40	Longitudinal modulus can be	Figure 41	Prediction of transverse modulus	
	predicted by Eq. (128) with		by Eq. (130) with $\eta_2 = 0.5$, $\eta_1 = 1$,	
	η ₁ = 1. Constituents are		is comparable to the more rigorous solutions. Constituents are E-glass fibers (E _f = 73.1 GPa, ν_f = 0.22) and epoxy matrix	
	E-glass fibers (E _f = 72.4 GPa,			
	$\nu_{\rm f}$ = 0.20) and epoxy matrix			
	$(E_{m} = 3.45 \text{ GPa}, \nu_{m} = 0.35).$			
<u> </u>			$(E_{m} = 3.45 \text{ GPa}, \nu = 0.35).$	
=	10.5msi		[2, 3]	
=	4.34			
=	.2		10.5msi	
=	0.185msi	1	4.38	
=	. 35		0.2	
=	0.185msi	Em =	0.5msi	
=	1	m ‡	0.185msi	
=	0.6	m ‡	0.35	
		n ₁ +	1	
-		n ₂ ‡	.05	
		V _t +	0.6	
	= = = = = = = = = = = = = = = = = = = =	η ₁ = 1. Constituents are E-glass fibers (E _f = 72.4 GPa, ν _f = 0.20) and epoxy matrix (E _m = 3.45 GPa, ν _m = 0.35). = 10.5msi = 4.34 = .2 = 0.185msi = .35 = 0.185msi = 1	predicted by Eq. (128) with \[\eta_1 = 1\]. Constituents are E-glass fibers (E_f = 72.4 GPa, \[\nu_f = 0.20\) and epoxy matrix (E_m = 3.45 GPa, \(\nu_m = 0.35\)). = 10.5msi = 4.34 = .2 = 0.185msi = .35 = 0.185msi = 1 = 0.6 \[\nu_f = 0.6 \] \[\nu_m = 0.35 \] \[\nu_f = 0.35 \] \[\n_f = 0.35 \] \[\nu_f = 0.35 \] \[\nu_f = 0.35 \] \[\nu_f = 0.3	

Figure 42 Longitudinal shear modulus increases with decreasing η_2 when predicted by Eq. (132). Good agreement is seen when $\eta_2 = 0.4 - 0.5.[2,4]$

g. Approximations for Particulate Composite Assume $\overline{\sigma}_{mi} = \eta_1 \overline{\sigma}_{fi}, \quad i = 1 - 3; \quad \overline{\sigma}_{mi} = \eta_2 \overline{\sigma}_{fi}, \quad i = 4 - 6. \quad (145)$ $\frac{1}{E^*} = \left(\frac{\overline{V}_f}{E_f} + \frac{\eta \overline{V}_m}{E_m}\right) \frac{1}{\overline{V}_f + \eta \overline{V}_m} \qquad (146)$ $v^* = \frac{\overline{V}_f v E_m + \eta \overline{V}_m v E_f}{\overline{V}_f E_m + \eta \overline{V}_m E_f} \qquad (147)$ Isotropy requires that $\eta_1 = \eta_2 = \eta$ Isotropy requi

Figure 45 Young's modulus of particulate composite can be predicted by Eq. (146) with η = 0.4
0.5: (a) Al₂0₃/glass (E_f ≈ 396 GPa, E_m ≈ 79.3 GPa); (b) Sand/epoxy

(E_f ≈ 124 GPa, E_m ≈ 3.45 GPa). [5]

a) E_f = 57.4 msi b) E_f = 18 msi

E_m = 11.5 msi E_m = 0.5 msi

h. Thermal Expansion and Swelling Coefficients

Hygro-thermo-elastic relations for homogeneous constituent materials

$$e_i = S_{ij}\sigma_j + a_i\theta$$
 or (148)

$$\sigma_{i} = C_{ij} \epsilon_{j} + \beta_{i} \theta$$
,

where θ is the temperature difference (T) or the moisture concentration c. If both, $a_i\theta$ should be replaced by $(a_i^T T + a_i^H c)$.

Let e_i^{σ} and e_i^{θ} be the strains resulting respectively from the homogeneous stress B.C. with $\theta = 0$ and the stress free B.C. with $\theta = 0$.

Then

$$\overline{\mathbf{e}}_{\mathbf{i}}^{\sigma} = \mathbf{S}_{\mathbf{i}\mathbf{j}}^{*} \sigma_{\mathbf{j}}^{o} = \mathbf{S}_{\mathbf{i}\mathbf{j}}^{*} \overline{\sigma}_{\mathbf{j}}^{*}, \quad \overline{\mathbf{e}}_{\mathbf{i}}^{\theta} = \mathbf{a}_{\mathbf{i}}^{*} \theta^{o} = \mathbf{a}_{\mathbf{i}}^{*} \overline{\theta}$$
(149)

Therefore

$$\overline{\epsilon}_{i} = S_{ij}^{*} \overline{\sigma}_{j} + a_{i}^{*} \overline{\theta} . \qquad (150)$$

Similarly

$$\overline{\sigma}_{i} = C_{ij}^{*} \overline{\epsilon}_{j} + \beta_{i}^{*} \overline{\theta} . \qquad (151)$$

(a) Show that	
$a_{i}^{*} = a_{mi} + (a_{fj} - a_{mj}) S_{fmjk}^{-1} (S_{ki}^{*} - S_{mki})$	(15
where	
S _{fmij} = S _{fij} -S _{mij}	(15
mij mij	(15
Proof	
From the virtual work theorem	
$\sigma_{i}^{\sigma} e_{i}^{\Theta} = \overline{\sigma}_{i} \overline{e_{i}^{\Theta}} = \overline{\sigma}_{i} \alpha_{i}^{*} \overline{\Theta}$	(15
But	
$\sigma_{i}^{\sigma} e_{i}^{\theta} = S_{ij} \sigma_{i}^{\sigma} \sigma_{i}^{\theta} + \overline{\sigma_{i}^{\sigma} \sigma_{i}^{\theta}} \theta$	(155
ı ı ıjı j i i	
$= \mathbf{e}_{i}^{\sigma} \mathbf{\sigma}_{i}^{\theta} + \mathbf{\sigma}_{i}^{\sigma} \mathbf{a}_{i}^{\theta} \mathbf{\theta} = \mathbf{\sigma}_{i}^{\sigma} \mathbf{a}_{i}^{\theta} \mathbf{\theta}$	
$= \begin{array}{cccccccccccccccccccccccccccccccccccc$	(156
The same of the sa	
Therefore	
$\overline{\sigma}_{i} a_{i}^{*} = v_{ma_{mi}} \overline{\sigma}_{mi} + v_{fa_{fi}} \overline{\sigma}_{fi}$	(157
Let	
$\overline{\sigma}_{fi}^{\sigma} = B_{fij}\overline{\sigma}_{j} . \text{ Then },$	(158
$S_{ik}^* = S_{mik} + v_f(S_{fij} - S_{mij})B_{fjk}$ or	(159
$v_f B_{fij} = S_{fmik}^{-1} (S_{kj}^* - S_{mkj})$	11/0
I lij imik 'kj mkj'	(160)
Noting that $v \stackrel{\sigma}{m} = \stackrel{\sigma}{q} - v_f \stackrel{\sigma}{q}_{fi}$, we obtain	
$\overline{\sigma}_{i}a_{i}^{*} = a_{mi}\overline{\sigma}_{i} + (a_{fi} - a_{mi})S_{fmik}^{-1} (S_{kj}^{*} - S_{mkj})\overline{\sigma}_{j}$	(161)
Since $\overline{\sigma}_i$ is arbitrary, the proof follows.	

Following the same procedure as in Section e, we obtain

$$a_L = a_1^* = (v_f E_f a_f + v_m E_m a_m) / (\eta_1 v_f E_f + v_m E_m)$$
 (162)

$$a_{T} = a_{2}^{*} = v_{f} a_{f}^{+} v_{m} a_{m}^{+} (v_{f} a_{f}^{+} v_{f}^{+} v_{m} a_{m}^{-} v_{m}^{-}) - (\eta_{1} v_{f}^{+} v_{f}^{+} v_{m}^{-} v_{m}^{-}) a_{1}^{*}$$
(163)

Figure 46 Thermal expansion coefficients

predicted by Eqs. (162-163) with

\$\eta_1 = 1\$ are comparable to the more rigorous solutions. [2]

TABLE 24 TYPICAL COMPOSITE THERMAL EXPANSION COEFFICIENTS

COMPOSITE	CONSTITUENTS	v _f	LONG EXP. µm/m/°K	TRANS. EXP. µm/m/°K
В/Ер	B ₄ /5505	0.5	4. 32	22.1
в/РІ	B ₄ /WRD 9371	0.49	4.90	28.4
Gr/Ep	Mod II/5206	0.55	-0.23	34.0
Gr/Ep	HMS/3002M	0.48	-0.23	33.5
Gr/Ep	T300/5208	0.70	0.01	12.5
Gr/Ep	Mod I/ERLA 4289	0.51	-1.10	31.5
Gr/Ep	Mod I/ERLA 4617	0.45	-0.90	33.3
Gr/PI	Mod I/WRD 9371	0.45	0.	25.3
G1/Ep	S-Glass/1009	0.72	3.8	16.7
Gl/Ep	Scotchply 1002	0.45	4.16	15.5

2. STRESSES IN CONSTITUENT PHASES

a. Microstresses Under Longitudinal Tension

Figure 47 Hexagonal array of fibers and the coordinate system chosen.

Figure 48 Normalized stress components at the interface between the fiber and matrix under longitudinal loading (E_f=414 GPa, E_m=2.62 GPa). The radial stress becomes tensile at the resin-rich area (in the vicinity of 0=30°) even under longitudinal tension. [6]

Figure 49 Stress concentration under transverse tension. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7,8]

c. Stress Concentration Under Longitudinal Shear

Figure 50 Stress concentration under longitudinal shear. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively.

[7,8]

Figure 51 Residual stresses at the interface in a composite with hexagonal array of fibers.

Constituent properties are the same as those in Figure 48, and the stresses correspond to the unconstrained matrix shrinkage strain of 1 cm/m. [6]

30 0 ORIENTATION, θ, DEG

(6)

20

(c)

10

TABLE 25 TOTAL STRESSES UNDER LONGITUDINAL TENSION (cf. [9])

Fiber Volume Content V _f	Modulus Ratio E _f / E _m	Radial S	tress, σ_{r}	Hoop Stress, σ_0 (ksi) $\theta = 30^{\circ}$	Maximum Shear Stress, 7 (ksi)
	Curing		esin shrinkage	= 0.6%	
0.64	150	-1.2	0.3	3.0	0.6
0.70	150	-1.2	0.6	3.6	0.6
0.64	26	-1.5	0.3	3.0	0.6
0.70	26	-1.8	0.6	3.6	0.6
	Stresses	l Due to Longi	tudinal Tensio	n of 100 ksi	
0.64	150	-0.7	0.4	7.5	1.5
0.70	150	-1.2	1.0	9.0	2.5
0.64	26	-1.0	1.0	7.5	2.0
0.70	26	-1.3	1.3	9.0	2.5
		Combine	d Stresses		
0.64	150	-1.7	0.7	10.5	2.1
0.70	150	-2.4	1.6	12.6	3.1
0.64	26	-2.5	1.3	10.5	2.6
0.70	26	-3.1	1.9	12.6	3.1

3. STRENGTH

a. Longitudinal Tensile Strength
Brittle matrix

$$X = [v_f + (1 - v_f)E_m/E_f]X_f$$

(164) σ

Ductile matrix (tough)

$$X = v_f X_f + v_m X_m$$

(165)

Influencing factors

Fiber damage - fiber surface treatment (Gr fibers), heat treatment (B/Al)

Strength of $B_4/Al-6061 (v_f = 0.25)$

Heat treatment

No treatment

98 MPa

104 MPa

Figure 52 Longitudinal tensile strengths of B4/A1-6061 and BSC/A1-6061. [10]

MATERIAL	DIAMETER µm	TENSILE STRENGTH MPa
Kevlar	11.7	2760
Graphite (Gr)	7.6	
MODMOR II		
HTS		2760
MODMOR I		
нмѕ		1850
Т300		
AS		2240
Glass (Gl)		
E-Glass	5-10	3450
S-Glass	2.5	4480
Boron (B)	100, 140	3450
Borsic (BSC)	140	3010
Steel	13	4140
Tungsten (W)	13	4000
Beryllium (Be)	127	1280

TADIE	27	TVDICAT	MATDIY	STRENGTHS
LADLE	41	IFICAL	MAILIA	SIKENGIHS

MATERIAL	TENSILE	COMPRESSIVE	SHEAR
	STRENGTH	STRENGTH	STRENGTH
	MPa	MPa	MPa
Ероху (Ер)			
Narmco 2387 Narmco 5505	29 59	159 128	10
Epon 828	72	150	83
1004	82	207	134
ERLA 4289	34	93	
ERLA 4617	1 32	226	
Polyester	72		
Aluminum (Al)			
2024 - T3	427	221	255
6061 - T6	290	241	186
6061 - 0	131	-	83
Titanium (T _i)			
6A1-4V	958	951	558
Pure	552	483	290

TABLE 28 TYPICAL COMPOSITE STRENGTHS [11,12]

COMPOSITE	CONSTITUENTS	v _f	LONG. TENS. MPa	LONG. COMP. MPa	TRANS. TENS. MPa	TRANS. COMP. MPa	SHEAR MPa
в/Ер	B ₄ /5505	0.5	1260	2500	61	202	67
в/рі	B ₄ /WRD 9371	0.49	1040	1090	. 11	63	26
Gr/Ep	Mod II/5206	0.55	1110	970	36	170	63
Gr/Ep	HMS/3002M	0.48	680	690	16	186	72
Gr/Ep	T300/5208	0.70	1500	1500	40	246	68
Gr/Ep	Mod I/ERLA 4617	0.45	840	880	42	197	62
Gr/PI	Mod I/WRD 9371	0.45	807	652	15	71	22
G1/Ep	S-Glass/1009	0.72	1290	822	46	174	45
B/A1	B ₄ /Al-6061-F	0.5	1110	1480	103	159	103
BSC/Ti	BSC/Ti-6A1-4V	0.5	1310	-	441	-	483
Gr/Ep	Mod I/4289	0.5	1120	990	4. 2		34
Gl/Ep	Scotchply 1002	0.45	1062	610	31.4	118	72

b. Transverse Tensile Strength

Failure occurs when

$$K_{\overline{T}} \overline{\sigma}_{m} = X_{m}$$
, $K_{\overline{T}}$: effective stress concentration factor

$$\therefore Y = \frac{1}{K_{Tm}} (v_m + v_f/\eta_2) X_m \leq X_m : \text{ matrix failure}$$
 (166)

$$= \frac{1}{K_{Ti}} (v_{m} + v_{f}/\eta_{2}) X_{i} \leq X_{i} : interface failure$$
 (167)

Figure 53 Transverse strengths of B₄/Al-6061 and BSC/Al-6061 [10]

Influencing factors

Fiber splitting decreases Y - B₄/Al

Heat treatment increases $\mathbf{X}_{\mathbf{m}}$ and in turn \mathbf{Y} .

Voids increase K_T and in turn decrease Y .

Fiber surface treatment increases interface strength and in turn Y .

Figure 54 Effect on transverse strength of fiber diameter and matrix condition (B/Al).

Failure of B₄/Al-6061 is due to fiber splitting. [10]

Figure 55 Effect of void content on transverse and shear strengths of Gl/Ep (X = 82 MPa, S = 134 MPa, v_f = 0.56). [8]

c. Longitudinal Shear Strength

$$S = \frac{1}{K_{Sm}} (v_m + v_f/n_6) S_m \le S_m : \text{matrix failure}$$

$$= \frac{1}{K_{Sm}} (v_m + v_f/n_6) S_m \le S_m : \text{interface failure}$$
(168)

$$= \frac{1}{K_{Si}} (v_m + v_f/\eta_6) S_i \le S_i : interface failure$$
 (169)

Influencing factors

Same as those for transverse strength.

Figure 56 Effect of fiber surface treatment on shear strengths of Gr/Ep. Note that K Si increases more rapidly with v_f than does K Sm. [13]

Figure 57 Failure mode in flexure test depends on the shear strength

(Gr/Ep, v_f = 0.6): U - fiber surface untreated; T - fiber surface treated. [14]

(1) Buckling in Shear Mode 2 $X' = \frac{G_{\text{m}}}{1 - v_{\text{f}}} + \lambda \frac{\pi^{2} v_{\text{f}}}{16} + \sum_{\text{f}} \left(\frac{d_{\text{f}}}{L}\right)^{2} \text{from [15]}$	
$x_1 = \frac{G_m}{m} + \lambda = \frac{\pi v_f}{m} = \left(\frac{d_f}{d_f}\right)$ from [15]	(17
1- v _f 16 f (L)	
L: gage length	
(1 for simply supported ends	
$\lambda = \begin{cases} 1 \text{ for simply supported ends} \\ 4 \text{ for fixed ends} \end{cases}$	
(2) Actual Composites	
G _m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
$\frac{G_{\rm m}}{1-v_{\rm f}} \approx \frac{3}{1-v_{\rm f}} \text{GPa} : \text{too high !}$	(17
$X' \leq v_f X_f'$	(17:
For Gr fibers $X_f^! \approx X_f^!$	
$\frac{X'}{v_f X_f^!} \approx 0.36 - 0.84 \text{for some Gr/Ep. [15]}$	(17:
Vf^f	
For T300/5208	
X'≈ X .	
Influencing factors	
Debond	
Bowed fibers	
Misaligned fibers	
Voids	
e. Transverse Compressive Strength	
Y' ≤ X' _m	(174
m l	
Compare the transverse strengths in Table 28.	

4. SYNERGISTIC EFFECTS OF MATRIX AND FIBER STRENGTH SCATTER

Minimizes interaction among fiber breakages - beneficial.

Induces stress concentration and hence possible fracture - deleterious.

Figure 58 Fiber breakages in composite.

b. Bundle Strength

Fiber strength in stress

$$R_{f}(X_{f}) = \exp\left[-L(X_{f}/X_{f_{0}})^{\alpha}\right], \overline{X}_{f} = X_{f_{0}}L^{-1/\alpha}\Gamma(1+1/\alpha)$$
(175)

Linear stress-strain relation

$$\sigma = \mathbf{E}_{\mathbf{f}}^{\epsilon} \tag{176}$$

Fiber strength in strain

$$R_f(Y_f) = \exp[-L(Y_f/Y_{fo})^{\alpha}], Y_{fo} = X_{fo}/E_f$$
 (177)

Fraction of remaining fibers at $\epsilon = R_f(\epsilon)$.

Gross stress of bundle

$$\sigma = \mathbf{E}_{\mathbf{f}} \epsilon \mathbf{R}_{\mathbf{f}}(\epsilon) \tag{178}$$

Failure occurs when $\frac{d\sigma}{d\epsilon}\Big|_{\epsilon=Y_{\mathbf{R}}} = 0$.

$$Y_{B} = Y_{fo}(L\alpha)^{-1/\alpha} \tag{179}$$

Bundle strength

$$X_{B} = E_{f}Y_{B}R_{f}(Y_{B}) = X_{fo}(L\alpha e)^{-1/\alpha} = \overline{X}_{f}(\alpha e)^{-1/\alpha}/\Gamma(1+1/\alpha)$$
 (180)

Bundle secant modulus

$$E_{B} = \frac{\alpha}{\epsilon} = E_{f}R_{f}(\epsilon) = E_{f} \exp[-L(\epsilon/Y_{fo})^{\alpha}]$$
 (181)

Figure 59 Normalized bundle strength vs. the inverse of shape parameter. [16]

c. Composite Strength [17]

$$X = v_f$$
(strength of bundle of length δ)

$$= v_f X_B (L/\delta)^{-1/\alpha}$$
 (182)

$$= v_f X_{fo} (\delta \alpha e)^{-1/\alpha}$$
 (183)

d. Determination of §

Elastic shear lag analysis [17]

$$\frac{\sigma_{f}}{\sigma} = \frac{E_{f}}{E} \left[1 - \frac{\cosh \eta(\overline{\ell} - \overline{x})}{\cosh \eta \overline{\ell}} \right]$$
(184)

$$\frac{\tau}{\sigma} = \frac{\eta}{4} \frac{E_f}{E} \frac{\sinh \eta(\overline{t} - \overline{x})}{\cosh \eta \overline{t}}$$
 (185)

$$\eta = \frac{2\sqrt{2}}{(1/\sqrt{\nu_f}-1)^{1/2}} \left(\frac{G_m}{E_f}\right)^{1/2}, \ \overline{x} = x/d_f, \ \overline{\ell} = \ell/d_f$$
 (186)

$$\int_{0}^{\overline{\ell}} \sigma_{f} d\overline{x} = \sigma_{f} \Big|_{\overline{x} = \overline{\ell}}^{(\overline{\ell} - \overline{\delta}/2)} \longrightarrow \overline{\delta}/2 = 1/\eta \text{ as } \overline{\ell} \to \infty.$$
(187)

Perfectly plastic shear lag analysis

$$\overline{X}_{\mathbf{f}}^{\mathbf{T}} d_{\mathbf{f}}^{2} / 4 = \tau_{\mathbf{y}}^{\mathbf{T}} d_{\mathbf{f}}^{5} / 2 \qquad \tau_{\mathbf{y}} : \text{ matrix yield stress}$$

$$\vdots \quad \overline{\delta} = \overline{X}_{\mathbf{f}} / (2\tau_{\mathbf{y}})$$
(189)

		d _f X _{fo}	Xfo	Ef	Gm		6(elastic)	X, MPa		
Composite	α	mm	MPa	GPa	GPa	v f	mm	Theory	Ехр	R.M.*
E-glass	6.20	0.127	3323	79.3						
Epon 815					0.024	0.095	7.73	144	71.7	150
Epon 815						0.442	3.67	755	145	681
S-glass	7.68	0.127	4413	86.2						
Epon 815					0.024	0.095	8.06	215	265	230
Epon 828					0.187	0.565	1.11	1656	1207	1365
Boron	11.11	0.102	3994	372						
Epon 815					0.024	0.061	15.68	140	132	161

*Rule of Mixtures: $X = \overline{X}_f[v_f + (1-v_f)E_m/E_f]$. Data from [18].

e. Remarks

- (1) Stress concentration due to fiber breakage
- (2) Dispersion of failure sites

Figure 60 Normalized composite strength vs. bundle strength. [16]

SECTION V

IN-PLANE PROPERTIES OF SYMMETRIC LAMINATES

1. STRESS-STRAIN RELATIONS

- a. Definition and Assumptions
 - (1) Symmetric Laminates

$$\theta(z) = \theta(-z)$$

$$Q_{ij}(z) = Q_{ij}(-z)$$
(191)

(2) Constant In-Plane Strain

$$e_1^o = e_1^{(1)} = \cdots e_1^{(n/2)}$$

$$e_2^o = e_2^{(1)} = \cdots e_2^{(n/2)}$$
 (192)

$$e_6^0 = e_6^{(1)} = \cdots e_6^{(n/2)}$$

(3) Average Stress

$$\overline{\sigma}_{i} = \frac{2}{h} \int_{0}^{h/2} \sigma_{i} dZ \qquad (193)$$

$$= \frac{2}{h} \sum_{t=1}^{n/2} \sigma_i^{(t)} (h_t - h_{t-1}) \quad (194)$$

$$= \frac{2}{N} \sum_{t=1}^{n/2} \sigma_i^{(t)} t$$
 (195)

where N = total number of plies

or
$$\frac{\frac{h}{n}}{n} = \text{ply thickness} = \frac{h}{0}$$

Figure 63 Average stress across laminate thickness.

(4) Stress Resultant
$$N_{1} = h \overline{\sigma}_{1}$$

$$N_{2} = h \overline{\sigma}_{2}$$
or $N_{i} = h \overline{\sigma}_{i}$

$$N_{6} = h \overline{\sigma}_{6}$$
(196)

where N = Distributed load per unit width of a plate with thickness h; in Nm or Pam

(5) In-Plane Modulus A ij (same as Ni, or Nm or Pam)

Substitute

$$\sigma_{i}^{(t)} = Q_{ij}^{(t)} \epsilon_{j}^{(t)} = Q_{ij}^{(t)} \epsilon_{j}^{o}$$

$$(197)$$

$$N_{i} = 2h_{o} \sum_{t=1}^{n/2} Q_{ij}^{(t)} e_{j}^{o} t$$
 (198)

$$= 2h_{o} e_{j}^{o} \sum_{t=1}^{n/2} Q_{ij}^{(t)} t$$
 (199)

$$=A_{ij} \epsilon_{j}^{O} \tag{200}$$

where
$$A_{ij} = 2h_0 \sum_{t=1}^{n/2} Q_{ij}^{(t)} t$$
 (201)

Since most practical laminates have up to 4 ply orientations,

$$A_{ij} = h_o \sum_{\alpha_1, \alpha_2, \dots} Q^{(\alpha)} n_{\alpha}$$
 (202)

na = total number of plies with a orientation.

$$Q_{ij}^{(\alpha)}$$
 = Modulus of α orientation.

A is governed by simple rule of mixtures; stacking sequence is of no consequence.

Stacking sequence is critical for other laminate properties, such as flexural rigidity.

b. In-Plane Modulus and Compliance
$$\begin{pmatrix} N_1 \\ N_2 \\ N_6 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{pmatrix} = \begin{pmatrix} e_1^0 \\ e_2^0 \\ e_6^0 \end{pmatrix} \text{ or } N_1 = A_{ij} e_j^0 \qquad (203)$$

$$\text{Let Compliance} = a_{ij} = [A_{ij}]^{-1} \text{ or } a_{ij}A_{jk} = b_{ik} \qquad (204)$$

$$\begin{pmatrix} e_1^0 \\ e_2^0 \\ e_6^0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{16} \\ a_{21} & a_{22} & a_{26} \\ a_{61} & a_{62} & a_{66} \end{pmatrix} = \begin{pmatrix} N_1 \\ N_2 \\ N_6 \end{pmatrix} \text{ or } e_1^0 = a_{ij}N_j \qquad (205)$$

$$\text{where}$$

$$a_{11} = \frac{1}{\Delta}(A_{22}A_{66}A_{26}^2) \quad , \quad a_{22} = \frac{1}{\Delta}(A_{11}A_{66}A_{16}^2)$$

$$a_{12} = \frac{1}{\Delta}(A_{16}A_{26}A_{12}A_{66}), \quad a_{66} = \frac{1}{\Delta}(A_{11}A_{22}A_{12}^2) \qquad (206)$$

$$a_{16} = \frac{1}{\Delta}(A_{12}A_{26}A_{26}A_{22}A_{16}), \quad a_{26} = \frac{1}{\Delta}(A_{12}A_{16}A_{11}A_{26})$$

$$A_{16} = \frac{1}{\Delta}(A_{12}A_{26}A_{26}A_{22}A_{16}), \quad a_{26} = \frac{1}{\Delta}(A_{12}A_{16}A_{11}A_{26})$$

$$In-Plane Engineering Constants;$$

$$E_{11}^0 = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \cdot E_{22}^0 = \frac{1}{1} \frac{1}{1} \frac{1}{1} \cdot E_{22}^0 = \frac{1}{1} \frac{1}{1} \cdot P_{12}^0 = \frac$$

2. FORMULAS FOR IN-PLANE MODULUS

a. General Multi-directional Laminates

$$A_{ij}/h = \frac{1}{n} \sum_{\alpha_1, \alpha_2, \dots} Q_{ij}^{(\alpha)} n_{\alpha}$$
 (208)

$$A_{11}/h = I_1 + I_2 + V_1 R_1 + V_2 R_2$$
 (209)

$$A_{22}/h = I_1 + I_2 - V_1 R_1 + V_2 R_2$$
 (210)

$$A_{12}/h = I_1 - I_2 - V_2R_2$$
 (211)

$$A_{66}/h = I_2 - V_2R_2$$
 (212)

$$A_{16}/h = -\frac{1}{2} V_3 R_1 - V_4 R_2$$
 (213)

$$A_{26}/h = -\frac{1}{2} V_3 R_1 + V_4 R_2$$
 (214)

where
$$V_1 = \frac{1}{n} \sum_{\alpha} n_{\alpha} \cos 2\alpha$$

$$V_2 = \frac{1}{n} \sum n_{\alpha} \cos 4\alpha$$

$$V_3 = -\frac{1}{n} \sum n_{\alpha} \sin 2\alpha$$

$$V_4 = -\frac{1}{n} \sum_{\alpha} n_{\alpha} \sin 4\alpha$$

Ply orientation a is opposite to angle of rotation for transformation (used in Table 20).

Since A transforms the same way as Q ;; some invariants must exist:

$$I_{1A} = \frac{1}{4} (A_{11} + A_{22} + 2A_{12}) = hI_1$$
 (219)

$$I_{2A} \approx \frac{1}{8} (A_{11} + A_{22} - 2A_{12} - 4A_{66}) = hI_2$$
 (220)

$$R_{1A} = \frac{1}{2} \sqrt{(-A_{11} + A_{22})^2 + 4(A_{16} + A_{26})^2}$$

$$= h V_1^2 + V_3^2 R_1$$

$$R_{2A} = \frac{1}{2} \sqrt{(A_{11} + A_{22} - 2A_{12} - 4A_{66})^2 + 16(A_{16} - A_{26})^2}$$

$$= h \sqrt{v_2^2 + v_4^2} R_2$$

b. In-Plane Modulus for $[0_p/90_q/45_r/-45_s]$

Simplification of ply composite's factors because

α	cos 2α	cos 4a	sin 2a	sin 4α
0	1	1	0	0
90	-1	1	0	0
45	0	-1	1	0
-45	0	-1	-1	0

$$V_1 = \frac{1}{n} (n_0 - n_{90})$$
 (223)

$$V_2 = \frac{1}{n} (n_0 + n_{90} - n_{45} - n_{-45})$$
 (224)

$$V_3 = \frac{1}{n} (n_{45} - n_{-45})$$
 (225)

$$V_4 = 0 \tag{226}$$

$$\tan 2\delta_1 = \frac{2(A_{16} + A_{26})}{A_{11} - A_{22}} = \frac{n_{45} - n_{-45}}{n_0 - n_{90}} = -\frac{v_3}{v_1}$$
 (227)

$$\tan 4\delta_2 = \frac{4(A_{16}-A_{26})}{A_{11}+A_{22}-2A_{12}-4A_{66}} = -\frac{V_4}{V_2} = 0$$
 or $\delta_2 = 0, \pm \pi$, $\pm 2\pi$ (228)

						İ
		I ₁	I ₂	$\sqrt{V_1^2 + V_3^2} R_1$	$V_2^2 + V_4^2$ R ₂	
	A' ₁₁ /h	1	1	cos 2(θ- δ ₁)	cos 49	
	A' ₂₂ /h	1	1	-cos 2(θ- δ ₁)	cos 40	
	A' ₁₂ /h	1	-1	0	-cos 40	
	A' ₆₆ /h	О	1	0	-cos 49	
	A'16/h	0	0	$-\frac{1}{2}\sin 2(\theta-\delta_1)$	-sin 40	
	A' ₂₆ /b	0 0	0	$-\frac{1}{2}\sin 2(\theta-\delta_1)$	sin 40	
	$v_1^2 + v_3^2 =$	1 (no	-n ₉₀) ² + (n ₄	45 ^{- n} -45 ⁾²		(22
	$v_2^2 + v_4^2 =$	1 (no+ng	0 ^{- n} 45 ^{- n} -	45)		(230
		- n ₄₅ - n ₋₄₅				(23)
		0 70				
	Lamina	te is orthotr	opic ii ii45	# " +45°		
Note:	0 ≤	$v_i \leq 1$,	0 ≤	V ₂ ≤ 1		(23
	o At lowe	r bound (equa	1 to zero)	the laminate is is	otronic	
				the laminate is ho		
	+-+		-+	ys less anisotropic		ent ply.
				+		

c. Numerical Example of In-Plane Properties of T-300/5208 Laminates. For this material, the ply properties in GPa are: I₁ = 49.5, I₂ = 26.9, R₁ = 85.7, and R₂ = 19.7

TABLE 30 IN-PLANE PROPERTIES OF T-300/5208 LAMINATES

Laminates	[0/90]	[45/-45]	[0/90/45/-45]	
N	2	2	4	
$v_1^2 + v_3^2$	0	0	0	
$v_1^2 + v_3^2$ $v_1^2 + v_4^2$	1	-1	0	
δ ₁	0	o	0	
A ₁₁ /h (MPa)	91.1	96.1	76.4	
A ₂₂ /h "	91.1	96.1	76.4	
A ₁₂ /h " A ₆₆ /h "	2.9 7.2	2.9	22.6 26.9	
A ₆₆ /h '' A ₁₆ h	0	0	0	
A ₂₆	0	0	0	
a _{ll} h (MPa)	.0104	.0104	.0144	
a ₂₂ h "	.0104	.0104	.0144	
a ₁₂ h "	0003	0003	0042	
a ₆₆ h "	. 1 389	.1389	.0372	
a ₁₆ h	0	0	0	
a ₂₆ h	96.01	96.01	69.71	
E ₁₁ (MPa)			07.71	
E ₂₂ "	96.01	96.01	69.71	
v o 12	.03	.03	. 30	
G ₁₂ (MPa)	7.20	7.20	26.90	

Laminates	[0/90]	[45/-45]	[0/90/45/-45]
β ⁹ (for A ₁₆ =0)	-13.199	-13.199	
δ° (")	076	076	
$n^{\circ} = \beta^{\circ} + \delta^{\circ}$	-13.215	-13.275	
$k^{\circ} = \beta^{\circ} \delta^{\circ}$			

d. Difference Between Beams and Plates Theory.

. Other Examples						
Laminate	N _i	e _i o	σ(o)	σ(90)	σ(45)	σ(-45)
						10-10-10-1
					Jell I	
			68.4 1			
				976		
						1 2 2

4. PLANE ELASTICITY SOLUTIONS FOR SYMMETRIC LAMINATES

a. Complex Parameters

Formulation and solution for laminates are identical to those for microscopically homogeneous material such as unidirectional composites. Only the complex parameters need to be exchanged:

$$\beta^{\circ}$$
 for β , δ° for δ , $n^{\circ} = n$, k° for k .

b. Stress Concentrations

These are applied to the average stresses in a laminate; i.e.,

The actual stress concentration within each ply can be calculated by the same ply stress methodology, i.e.

$$SCF = \frac{\overline{\sigma}_{\theta}}{p} = \frac{N_{\theta}}{hp} , \quad or \quad \frac{\overline{\sigma}_{r}}{p} = \frac{N_{r}}{hp}$$
 (236)

The in-plane strains can be calculated from, as before,

$$\epsilon_i^o = a_{ij}^N_j$$

Then the ply stress are

$$\sigma_{i}^{(t)} = Q_{ij}^{(t)} e_{j}^{o}$$
 or $\sigma_{i}^{(\alpha)} = Q_{ij}^{(\alpha)} e_{j}^{o}$

c. TABLE 32 SAMPLE CALCULATION OF ELLIPTIC HOLE UNDER TENSION IN A T-300/5208 ORTHOTROPIC LAMINATE

<u>a</u> 6	_	1 +	nb		n	_	ß	+	δ
p			a	•	**		P		٠

[0/90/45/-45]	[45/-45] n = -13.275 [0/90/45/-45]	Laminate	e°i	σ(ο) i	σ(90) i	σ(45) i	σ(-45) i
[45/-45] n = -13.275 [0/90/45/-45]	[45/-45] n = -13.275 [0/90/45/-45]	[0/90]					
[0/90/45/-45]	[0/90/45/-45]	n = -13.275					
[0/90/45/-45]	[0/90/45/-45]	[45/-45]					
[0/90/45/-45]	[0/90/45/-45] n =	n = -13.275					
		[0/90/45/-45]					

								1			1				1										
١.	Other	Examples																						1	
••	Other	Examples		-	+	-	-			-			+	-										+	-
						-	-					-				-								+	
			-	+	-	-	-		-	-	-		-	-	-										
						+-	-			-	-		-												
						1							1												
	1			+ +	-			-	-		-	-	-		-										
	-					-	-		-		1		-											-	
						-			1	-	1														
				-		-			-	-		-											-		
				+-+					-		-			-		-				-				-	
				-																					
				1		+				7	1			7	-						-		-		
						-					-			1											
	-		-	+		-			-				-	-	-			-						-	
				1	-	1		-	7	1		-	1					-		-	-	-			-
-						-	-				-			-								-			
-	-				-	-	-		-+	-	-		+	-	-	-			-			-	-	-	
														1											
						1				-				+	+						-	-			
				-	-	-			-	-	-	-	-		-	-		-4		-					
																							T		
					-	-			-		-		-	-	-	+		-		-		-	-		
																					16				
-			1		-	-	-	-	-		1		-		T		1		1	7		-	-		
			-	-		-		-	-		-		-	-	-		-			-		-	-	1	
														1			-	-				1			
			-	-	-	-			-		-	-		-	-	-			-				-	-	
				1																					
-					-	-				-	1	-	-	-		-	-	-	-	-		-	-	-	
													-												
				18.1																					
								-		-	-	-	-			-	-	-	-		1		-		
				-	-	-	-	-	-	-	-	-	1			-		-	-		-	-			
				-	-	10000	-	-	-	-	1	-	-	-		-		-		-	-	-		-	-

SECTION VI

FLEXURAL PROPERTIES OF SYMMETRIC LAMINATES

1. FLEXURE - CURVATURE RELATIONS

- a. Definitions and Assumptions
 - Symmetric laminates, as before is assumed.

$$\begin{array}{cccc}
\theta(z) & = & \theta(-z) \\
Q_{ij}(z) & = & Q_{ij}(-z)
\end{array}$$
(237)

(2) Instead
varying strain across laminate
thickness is assumed

Figure 64 Linear strain variation. The slope is curvature.

5/21

b. Flexural Rigidity and Compliance

In- plane modulus or rigidity

$$A_{ij} = \sum Q_{ij}^{(t)} (h_{t}^{-} h_{t-1})$$
 (244)

Flexural rigidity

$$D_{ij} = \frac{1}{3} \sum Q_{ij}^{(t)} (h_t^3 - h_{t-1}^3)$$
 (245)

A ij follows a linear rule of mixtures, and independent of stacking sequence.

D ij follows a weighted or cubic mixtures relation, and is highly dependent on stacking sequence.

Inverse of rigidity D is compliance d such that

Unit of dij is (Nm)

c. Engineering Constants

Similar to those for in-plane properties, engineering constants for flexural properties must also be derived from the compliance d_{ij} , not the rigidity D_{ij} because the latter can be related to engineering constants only when D_{ij} is orthotropic

Therefore	E ^f ₁₁ =	$\frac{1}{\mathrm{Id}_{11}} =$	12 h ³ d	(EI) ₁	= 1 d ₁₁	
	E ₂₂ =	12 h ³ d ₂₂		(EI) ₂	= 1 d ₂₂	(247)
	r t =	- d ₁₂				
	G ₁₂ =	12 h ³ d ₆₆				(248)
				111		

2. FORMULA FOR FLEXURAL RIGIDITY a. Derivation For a general symmetric structure consisting of (1) A substructure of modulus Q and half depth z_0 , or equivalent plies $n_0 = z_0/h_0$. (2) Two symmetric facing sheets (with respect to the mid-plane of the total structure) with composite laminates of (n/2)- n plies each. Rearrange of formula for rigidity $\frac{12}{h^3} D_{ij} = \left(\frac{2z_0}{h}\right)^3 Q_{ij}^0 + \left(\frac{2}{N}\right)^3 \sum_{t=n_0+1}^{n/2} Q_{ij}^t F_t$ (249)where $F_t = t^3 - (t-1)^3 = 3t^2 - 3t + 1$ (250)Express in terms of invariant-form transformation $\frac{12}{3} D_{11} - \left(\frac{2 z}{h}\right)^{3} Q_{11}^{0} = (I_{1} + I_{2}) + V_{1}R_{1} + V_{2}R_{2}$ (251) $\frac{12}{3} D_{22} - \left(\frac{2z_0}{h}\right)^3 Q_{22}^0 = (I_1 + I_2) - V_1 R_1 + V_2 R_2$ (252) $\frac{12}{3} D_{12} - \left(\frac{2z}{h}\right)^3 Q_{12}^0 = (I_1 - I_2) - V_2 R_2$ (253) $\frac{12}{3} D_{66} - \left(\frac{2z}{h}\right)^{3} Q_{66}^{o} = I_{2} \qquad V_{2}R_{2}$ (254) $\frac{12}{3} D_{16} - \left(\frac{2z_0}{h}\right)^3 Q_{16}^0 = -\frac{1}{2} V_3 R_1 - V_4 R_2$ (255) $\frac{12}{3} D_{26} - \left(\frac{2 z_0}{h}\right)^3 Q_{26}^0 = -\frac{1}{2} V_3 R_1 + V_4 R_2$ (256)where $V_1 = \left(\frac{2}{n}\right)^3 \sum_{F_t \cos 2\alpha_t}, \quad V_2 = \left(\frac{2}{n}\right)^3 \sum_{F_t \cos 4\alpha_t}$ $V_3 = \left(\frac{2}{n}\right)^3 \sum_{F_t \sin 2\alpha_t}, \quad V_4 = -\left(\frac{2}{n}\right)^3 \sum_{F_t \sin 4\alpha_t}$ (257)(258)

	$\left[1-\left(\frac{2Z_0}{h}\right)^3\right]I_1$	$\left[1-\left(\frac{2Z_0}{h}\right)^3\right]I_2$	$\sqrt{v_1^2+v_3^2}$ R	V ₂ +V ₄ R ₂
$\frac{\frac{12}{h^3}}{h^3} D_{11}^{i} - \left(\frac{2z_0}{h}\right)^3 Q_{11}^{o}$	1	1	cos2(θ-δ ₁)	cos4(θ-δ ₂)
$\frac{12}{h^3} D_{22}^{1} - \left(\frac{2 e}{h}\right)^{3} Q_{11}^{0}$	1	1	-cos2(θ-δ ₁)	cos4(θ-δ ₂)
$\frac{12}{h^3} D_{12}^{i} - \left(\frac{2 z_{o}}{h}\right)^3 Q_{12}^{o}$	1	-1	o	-cos4(θ-δ ₂)
$\frac{12}{h^3} D_{66}^{1} - \frac{1}{2} \left(\frac{2 z}{h}\right)^{3} (Q_{11}^{0} - Q_{12}^{0})$	0	1	0	-cos4(θ-δ ₂)
12 D' h 3 16	0	0	$-\frac{1}{2}\sin^2(\theta-\delta_1)$	-sin4(0-8 ₂)
12 D'26	0	0	$-\frac{1}{2}\sin 2(\theta - \delta_1)$	sin4(θ-δ ₂)
$\boxed{V_1^2 + V_3^2 = \left(\frac{2}{n}\right)^3}$	$\sum F_t \cos^2 \alpha_t^2$	+ (∑F _t sin2ø	t) ²	(259
$\boxed{v_2^2 + v_4^2} = \left(\frac{2}{n}\right)^3$	$\sum F_t \cos 4\alpha_t$	+ (ΣF _t sin4α	t)2	(260
$\tan 2\delta_1 = \frac{2(D_{16} + D_{26})}{D_{11} - D_{22}}$	$= - \frac{v_3}{v_1}$			(261
tan 46 = 4(D ₁₆ -	+	$= -\frac{v_4}{v_2}$		(262
$F_{t} = 3\left(t + \frac{z}{h}\right)^{2}$	$-3\left(t+\frac{z}{h}\right)$	<u>○</u>) + 1		(263

		,,2	v ₃ R ₁		D ₁₁ D ₂₂ as n = 0
	I ₁ + 1	1 ₂	^V 3 ^R 1	R ₂	
$\frac{12}{h^3}$ D ₁₁	1		1	1 1	D ₁₂ . D ₆₆ not affected by stace ing sequence
	1				$D_{16} = D_{26} = 0$
12 D ₂₂	1		-1	1	10 20
$2) \theta = \pi/4$	(This is th	ne same as	the ±45 lami	nate)	
TABLE 35 T	RANSFORM	MED RIGID	TY OF CRO	SS-PLY LAM	MINATES
	I	I ₂	$v_1^2 + v_3^2 R_1$	R ₂	
12 D'	1		0	1	D' ₁₁ = D' ₂₂
12 D'11					(no stacking sequence effect
12 D'22	1	1	0	-1-1	D'16 = D'26
h					(has stacking sequence effe
12 D'12	1	-1	0	1	D'16 = D'26 = 0 as n w
12 D'66	0	1	0	1	
12			ı		
12 h 216	0	0	$\frac{1}{2}$	0	
12 D'	0	0	1/2		
h ³ 26			- 2		
	+ + +				

TABLE 36 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		α _t	cos 2at		sin ² a _t		cos 4at		sin 4ct	exex b
			74							
t	Ft		100	F _t cos 2a _t		F _t sin ² a _t		F _t cos 4a _t		F _t sin 4a _t
1	1									
2	7			0						
3	19									
4	37									524117
5	61									
6	91									
7 8	127 169									8
9	217 271									
11 12	331 397									
13 14	469 547									
15 16	631 721									
h =				ΣFc2 =		ΣFs2 =		ΣFc4 =	ΣFs4	
h _o =				$\sqrt{v_1^2 + v_1^2}$	2 =			$v_2^2 + v_4^2$	=	
N =				- V ₃ / V ₁	-			- V4 / V2	= -	
z ₀ =				δ	-			δ2	-	

TABLE 37 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		αt	cos 2at		sin 2at		cos 4at		sin 4at	
t	Ft			F _t cos 2a _t		F _t sin 2a _t		F _t cos 4a _t		F _t sin 4a _t
1 2	7									
3	19									
4	37									
5	61									
6	91									
7	127									
8	169									
9	217									
10	271									
11	331									
12	397									100
13	469									
14	547									
15	631									
16	721									
h =		-		ΣFc2 =		ΣFs2 =		ΣFc4 =	ΣFs4	
h _o =				$V_1^2 + V_1$	v ² ₃ =			$v_2^2 + v_4^2$	=	
N =				- V ₃ / V	1 -			- v4 / v2	-	
z ₀ =				δ,	-			δ2		

TABLE 38 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY cas 4at sin 4at sin 2a, at cos 2at Ftcos 4at Fisin 2at Ftsin 4at Fcos 2at Ft 19 3 37 61 5 91 127 169 9 217 10 271 11 331 12 397 13 469 547 15 631 ΣFc2 = ΣFc4 = ΣFs4 = ΣFs2 = $V_1^2 + V_3^2 =$ $V_2^2 + V_4^2 =$ - V4 / V2 = - V₃ / V₁ =

TABLE 39 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		at	cos 2at		sin 2at		cos 4at		sin 4ct	
-t	Ft			F _t cos 2a _t		F _t sin 2a _t		F _t cos 4a _t		F _t sin 4a
1-	1									
2	7									
3	19									
4	37									
5	61									
6	91									
7	127									
8	169									
9	217									
10	271									
1-1	331									
12	397									
13	469									
14	547									
15	631									
16	721									
h =				ΣFc2 =		ΣFs2 =		ΣFc4 =	ΣFs4 =	
h =				$\sqrt{v_1^2 + v}$	2 =			$v_2^2 + v_4^2$	=	
N =				- V ₃ / V ₁				- V4 / V2	=	
z ₀ =				.δ,	#			δ2		

TABLE 40 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		α _t	cos 2at	1,32	sin 2at		cos 4at		sin 4a t	
									1	
t	Ft			F _t cos 2a _t	25.	F _t sin 2a _t		F _t cos 4a _t		F _t sin 4a _t
1	1									
2	7									
3	19									
4	37									
5	61									
6	91									
7	127									
8	169									
9 10	217 271									
11	331									
12	397									
13	469									
14	547									
15	631									
16	721									
h =				ΣFc2 =		ΣFe2 =		ΣFc4 =	ΣFs4	
h _o =				$\sqrt{v_1^2 + v_1^2}$	2 =			$V_2^2 + V_4^2$.= .	
N =				- v ₃ / v	-			- V4 / V2	-	
z ₀ =				δ1				δ2	=	

TABLE 41 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		a _t	os 2a _t		sin 2at		cos 4c t		sin 4a _t	
t	Ft			F _t cos 2α _t		F _t sin ² a _t		F _t cos 4a _t		F _t sin 4a _t
1	1									
2	7									
3	19									
4	37									
5	61									
6	91									
7	127									
8	169									
9 10	217									
11	331									
12	397									
13	469									
14	547									
15	631									
16	721									
h =				ΣFc2 =		ΣFs2 =		ΣFc4 =	ΣFs4	
h _o =		++		$v_1^2 + v_2$	72 =			$V_2^2 + V_4^2$	=	
N =				- v ₃ / v	i - F			V4 / V2	-	
z ₀ =				δ,				δ2	=	

TABLE 42 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

		α _t	cos 2at		sin 2at		cos 4at		sin 4at	
t	Ft		Ş	F _t cos 2a _t		F _t sin 2a _t		F _t cos 4α _t		F _t sin 4α _t
1 2	7									
3	19 37									
5	61 91									
7 8	127 169									
9	217 271		3							
11 12	331 397									
13 14	469 547									
15 16	631 721									
h =				ΣFc2 =		Σ Fs2 =		Σ Fc4 =	ΣFs4	
h _o =				$v_1^2 + v_2^2$	12 =			$v_2^2 + v_4^2$	=	
N =				- v ₃ / v	1 =			- V ₄ / V ₂	-	
z ₀ =				δ ₁	-			δ2	=	

b. Stacking Sequence Effect on Symmetric Cross-ply Composites

Assume no substructure; i.e., $z_0 = 0$.

TABLE 43 STACKING SEQUENCE EFFECT OF CROSS-PLY LAMINATES

Laminates	$\sqrt{v_1^2 + v_3^2}$	δ1	$\sqrt{v_2^2 + v_4^2}$	δ ₂
[0 _m /90 _m] _s	0.75	0	1	0
[0 _m /90 _m] _{2s}	$0.375 \left(=\frac{.75}{2}\right)$	0	1	0
[0 _m /90 _m] _{4s}	$0.1875(=\frac{.75}{4})$	0	1	0
[0 ₂ /90 ₄ /0 ₂] _s	0.1875	0	1	0
[0/90 ₂ /0 ₂ /90 ₂ /0] _s	0.0468	0	1	0
[0/90] _∞	$0 \left(=\frac{.75}{\infty}\right)$	0	1	0

^{*} m = any positive integer, and has no effect on stacking sequence, but strong effect on D_{ij} values.

TABLE 44 FLEXURAL RIGIDITY OF CROSS-PLY LAMINATES

	I ₁	I ₂	$\sqrt{v_1^2 + v_3^2} R_1$	R ₂
12 h ³ D ₁₁	1	1	cos 20	cos 49
12 h ³ D' ₂₂	1	1	-cos 20	cos 40
12 h ³ D' 12	1	-1	0	-cos 49
12 h ³ D' ₆₆	0	1	0	-cos 40
12 h ³ D' ₁₆	0	0	$-\frac{1}{2}\sin 2\theta$	-sin 40
12 h ³ D ₂₆	0	0	$-\frac{1}{2}\sin 2\theta$	sin 49

$$I_1 = 49.5$$
 $I_2 = 26.9$ $R_1 = 85.8$ $R_2 = 19.7$ (GPa)
 $h_0 = .005 \times 25.4 = .125 \text{ mm}$.

TABLE 45 RIGIDITY OF T-300/5208 CROSS-PLY LAMINATES

Laminates		D _{ij} (Nm)		d _{ij} (kNm) ⁻¹	Eng'g Constants (GPa)
	107.0	1.93	0		E ₁₁ =
[0 ₄ /90 ₄] _s		21.2	0		E ₂₂ =
h = 2mm			4.8		$ \begin{array}{c} \mathbf{r}_{12}^{\mathbf{f}} = \\ \mathbf{G}_{12}^{\mathbf{f}} = \\ \end{array} $
	6848	124	0		E ₁₁ =
[0 ₁₆ /90 ₁₆] _s		1357	0		$\mathbf{E}_{22}^{\mathbf{f}} = \mathbf{v}_{12}^{\mathbf{f}} = \mathbf{v}_{12}^{$
h= 8mm			307		$ \nu_{12}^{\mathbf{f}} = \mathbf{G}_{12}^{\mathbf{f}} = \mathbf{G}_{12}^{$
	74.8	1.93	0		
[0/90] _{4s}		53.3	0		
h = 2mm			4.8		
	66.7	1.93	0	\$	
[0/90 ₂ /0 ₂ /90 ₂ /0] _s		61.4	0		
h = 2mm			4.8		
	64.0	1.93	0		
[0/90]		64.0	0		
h = 2mm			4.8		
	37.8	28.2	-21.4		$\mathbf{E_{11}^f} = \mathbf{E_{22}^f} =$
[45 ₄ /-45 ₄] _B		37.8	-21.4		
h = 2mm			31.1		v f =

(1) Three Point Bend Test of T-300/5208: [0,4/90,4], h = 8mm, L = 10cm, b = 2cm

				- 1	0 10-8			
6848	186	0			.146	020	0	
D _{ij} =	1357	0	(Nm)	d _{ij} =		.740	0	(kNm) ⁻¹
T L		307			t		3.26	

(a) Beam along 0° on outside

$$(EI)_1 = \frac{b}{d_{11}} = .137 (kNm^2)$$
 (264)

(i) Load at First-Ply Failure (FPF)

$$e_T = 3.9 \text{ mm/m}$$
 (266)

$$z = 2mm \tag{267}$$

$$\therefore k = \frac{e_T}{z} = 1.95 \text{ m}^{-1}$$
 (268)

$$M = D_{11}k_1 = 6848 \times 1.95 = 13.4kN/unit width$$

$$\therefore P_{FPF} = \frac{2Mb}{L} = \frac{2 \times 13.4 \times .02}{.05} = 10.72 \text{ kN}$$

$$\delta_{\text{FPF}} = \frac{10.72}{6576} = 1.63 \text{ mm}$$
 (269)

Figure 67 1-direction of [0/90].

(ii) Load at Ultimate, assuming X = 1503 MPa or $\epsilon_{\text{Ult}} = 8.3 \text{ mm/m}$

$$k_{\text{Ult}} = \frac{\epsilon_{\text{Ult}}}{4} = 2.08 \text{ m}^{-1}$$
 (270)

$$M_{Ult} = 6848 \times 2.08 = 14.2kN$$
 (271)

$$P_{Ult} = 11.36 \text{ kN}, \delta_{Ult} = 1.73 \text{ mm}.$$
 (272)

$$(EI)_2 = \frac{b}{d_{22}}$$

(273)

δ

(i) Load at First-Ply Failure (FPF)

Figure 68 2-direction of [0/90].

(ii) Load at Ultimate

Figure 69 Load deflection curves of 0° and 90° beams of [016/9016]s.

e. Natural Frequencies of Transverse Vibrations of Beams

$$\omega_{n} = \frac{\chi_{n}^{2}}{L^{2}} \frac{1}{\sqrt{d_{11}^{\mu}}}$$
 (273)

TABLE 46 FREE VIBRATIONS OF BEAMS WITH UNIFORM CROSS-SECTIONS

End Conditions	^{\lambda} 1	^{\lambda} 2	λ ₃	λ for large n
Clamped-Free	1.875	4.694	7.855	(2n-1) /2
Hinged-Hinged	3.142	6.283	9.425	пл
Clamped-Hinged	3.927	7.068	10.210	(4n+1) /4
Free-Hinged	"	"	"	"
Clamped-Clamped	4.730	7.853	10.996	(2n+1) /2
Free-Free	"	"	"	"

Example: T-300/5208 beams from $[0_{16}/90_{16}]_s$ plate

$$L = 10cm$$
, $b = 2cm$, $h = .8cm$, density = 1600 kgm^{-3}

$$\mu = \text{mass/unit length} = 0.256 \text{ kg/m}$$

$$d_{11} = .146 \text{ (kNm)}^{-1}, \frac{b}{d_{11}} = 137 \text{ Nm}^2$$

$$\omega_{n} = \lambda_{n}^{2} \frac{\sqrt{137}}{1^{2}\sqrt{.256}} = 2313\lambda_{n}^{2} \quad s^{-1}$$
 (274)

For hinged-hinged,
$$\omega_1 = \lambda^2 \times 2313 = 22832 \text{ s}^{-1}$$
 (275)

By treating 3-point bend test as a 1-degree of freedom approximation

$$\omega_1 = \sqrt{\frac{P}{\delta M}} = \sqrt{\frac{6576000}{.025612}} = 22666 \text{ s}^{-1}$$
 (276)

The difference by the 2 methods is negligible as expected.

The effective mass M is one half of total mass of beam for a beam under 3-point bending.

f. Special Isotropic Homogeneous Plates Consisting of Orthotropic Plies

TABLE 47 SPECIAL ISOTROPIC HOMOGENEOUS PLATE

[-60/0/60₂/0/-60/60/0/-60/0/60]_s

For T-300/5208 material,
$$I_1 = 49.5$$
, $I_2 = 26.9$, $R_1 = 85.8$, $R_2 = 19.7$

(GPa)

$$V_1 = V_2 = \frac{1}{144}, V_3 = V_4 = 0, \delta_1 = \delta_2 = 0$$

	1,	12	$\frac{1}{144}$ R ₁	$\frac{1}{144}$	R ₂
$\frac{12}{h^3}$ D ₁₁	1	1	cos 20	cos 49	
$\frac{12}{h^3}$ D ₁₂	1	-1		-cos 49	
$\frac{12}{h^3} D_{16}$	0	0	$\frac{1}{2}\sin 2\theta$	- sin 40	

	0	15	30	45	69	75	90	Theory
$\frac{12}{h^3}$ D ₁₁	77.1	77.0	76.6	76.3	76.0	75.9	75.9	76.4
12 D ₁₂	22.5	22.5	22.7	22.7				22.6
12 D ₆₆	26.8	26.8	27.0	27.0				26.9
$\frac{12}{h^3}$ D ₁₆	0	.03	.14	. 30	. 38	.27	0	o

Since stacking sequence is not important for in-plane modulus A_{ij} , this special laminate is equivalent to $\left[0/60/-60\right]_{4s}$, from which

$$\sum \cos 2\alpha_{t} = \sum \sin 2\alpha_{t} = \sum \cos 4\alpha_{t} = \sum \sin 4\alpha_{t} = 0$$
 (277)

 $A_{11}/h = A_{22}/h = I_1 + I_2$ $A_{12}/h = I_1 - I_2, A_{66}/h = I_2$ $A_{16} = A_{26} = 0$ (278)Then A_{ij} is isotropic

Since $A_{ij} = \frac{12}{h^2} D_{ij}$ for this plate, the laminate is also homogeneous.

3. FORMULA FOR RIGIDITY FOR SANDWICH PLATES

a. General Considerations

Assuming: Core stiffness Q_{ij} = 0

Facing material = homogeneous (not laminated)

$$D_{ij} = \frac{2}{3} Q_{ij}^{F} \left[\left(\frac{h}{2} \right)^{3} - z_{o}^{3} \right] , \text{ or }$$
 (279)

$$\frac{12}{h^3} \frac{D_{ij}}{Q_{ij}^F} = 1 - \left(\frac{2z_0}{h}\right)^3 \tag{280}$$

Density of sandwich:

$$\frac{\rho}{\rho_{F}} = 1 - \frac{2z_{o}}{h} \left(1 - \frac{\rho_{c}}{\rho_{F}}\right)$$

$$\rho_c \leq 500 \text{ kg m}^{-2}$$

$$\frac{\rho_{\rm c}}{\rho_{\rm F}}$$
 < .2

Figure 70 Sandwich Plate.

Figure 71 Specific rigidity as function of percentage of core. Note optimum combinations of density and stiffness ratios.

$I_1 = 49.5$,	$I_2 = 26.9$,	$R_1 = 85.8$	R ₂ = 19.7 MPa
z _o = 1 mm (or 8			
$Q_{ij}^{o} = 0$.	$1 - \left(\frac{2z_0}{h}\right)^3 =$	7/8	$\frac{h^3}{12} = 5.33 \text{ (mm)}^3$
ABLE 48 RIGIDITY	OF [(- 4 5/ 4 5/90	0/0) ₂ /(z _o) ₈] _s	(NON-SYMMETRICAL FACE SHEET
	7/8 I ₁	7/8 I ₂	.050 R ₁ .14 R ₂
12	= 43.3	= 23.5	= 4.29 = 2.76
12 h D'11	1	1	cos2(θ- 25) cos 4θ
12 h ³ D ₂₂	1	1	-cos2(0- 25) cos 40
12 h ³ D' ₁₂	1	-1	0 -cos 40
12 h D'66	0	1	0 -cos 40
12 h ³ D' ₁₆	0	0	$-\frac{1}{2}\sin 2(\theta-25) \qquad -\sin 4\theta$
12 D'26	0	0	$-\frac{1}{2}\sin 2(\theta-25) \qquad \sin 4\theta$
	5 90.8	8.6	
D_{ij}	356		(10 ⁻³ Nm) d _{ij} =
9=0		110	
376	5 108	-14.5	
D _{ij}	331	14.5	(10 ⁻³ Nm) d _{ij} =
		128	

		$\frac{\frac{7}{8}}{= 43}.$	3	$\frac{7}{8} = I_2$ $= 23.5$.00926 R ₁ = 0.794	.0234 R = 0.461	2
$\frac{12}{h^3}$	D' ₁₁	1		1	cos 2(0-36)	cos 49	
12 h ³	D' 22	1		1	-cos2(9-36)	cos 40	
$\frac{12}{h^3}$	D'12	1		-1	0	-cos 40	
$\frac{12}{h^3}$	D' ₆₆	0		1	0	-cos 40	
$\frac{12}{h^3}$	D;6	o		0	$-\frac{1}{2}\sin^2(\theta-36)$	-sin 49	
12 h ³	D' ₂₆	0		0	$-\frac{1}{2}\sin 2(\theta-36)$	sin 49	
		360	103	2.0			
D _{ij}] _{e = 0}	-		357	2.0	(10 ⁻³ Nm)	d _{ij} =	
30-0				123			
		358	108	-1.4			
D _{ij}	=		350	1.4	(10 ⁻³ Nm)	i _j =	
D _{ij}] _{0 = 36}				127			
		A Di			D ₁₂		D16
			θ		θ	-	

4. DETERMINATION OF STRESSES

a. Basic Relations

TABLE 50 FLEXURE-CURVATURE RELATIONS

	k ₁	k ₂	^k 6
м ₁	D ₁₁	D ₁₂	D ₁₆
М2	D ₂₁	D ₂₂	D ₂₆
М ₆	D ₆₁	D ₆₂	D ₆₆

	M ₁	M ₂	M ₆
k ₁	d ₁₁	d ₁₂	d ₁₆
k ₂	^d 21	d ₂₂	^d 26
k ₆	^d 61	^d 62	d ₆₆

Since
$$e_1 = zk_1$$
, $e_2 = zk_2$, $e_6 = zk_6$

Finally, from stress-strain relation of the t-th layer.

$$\sigma_{1} = Q_{11}e_{1} + Q_{12}e_{2} + Q_{16}e_{6}
\sigma_{2} = Q_{21}e_{1} + Q_{22}e_{2} + Q_{26}e_{6}
\sigma_{6} = Q_{61}e_{1} + Q_{62}e_{2} + Q_{66}e_{6}$$

(281)

b. Numerical Example for Ply Stress Calculation

For T-300/5208 sandwich plate, [-45/45/90/02/90/45/-45/(zo)8]s

$$D_{ij} = \begin{bmatrix} 360 & 103 & 2 \\ & 357 & 2 \\ & & 123 \end{bmatrix}$$
 (10³Nm) (282)

Determination of ply stresses under M_i = (1) Inverse of D_{ij}:

$$\mathbf{d_{ij}} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 (284)

(2) Curvature
$$k_i = d_{ij}M_j =$$

$$(285)$$

(3) Strain
$$\epsilon_i = zk_i$$
 (286)

TABLE 51 STRAIN VARIATION FROM PLY TO PLY

t	t-1	z(mm)	•1	€ 2	e 6	
8	9	1.				
9	10	1.125				
10	11	1.25				
11	12	1.375				
12	13	1.5				
13	14	1.625				
14	15	1.750				
15	16	1.875				

(4) Stress
$$\sigma_{\mathbf{i}}^{(t)} = Q_{\mathbf{i}\mathbf{j}}^{(t)} e_{\mathbf{j}}^{(t)}$$

TABLE 52 PLY STRESS AT VARIOUS LOCATIONS

	7 (mm)	Str	esses at z	-1	Stre	esses at z	
t	z _t (mm)	σ ₁	σ2	σ6	σ ₁	σ ₂	σ ₆
9	1.125						
10	1.25						
11	1.375						
12	1.5						
13	1.625						
14	1.75						
15	1.875						
16	2.						

$$D_{ij} =$$
 (10³Nm) (287)

Determination of ply stresses under
$$M_i = \left\{ \right\}$$
 (288)

(1) Inverse of D_{ij}:

$$\mathbf{d}_{ij} = \begin{bmatrix} \\ \\ \end{bmatrix} \tag{289}$$

(2) Curvature
$$k_i = d_{ij}M_j =$$
 (290)

(3) Strain $e_i = zk_i$

TABLE 53 STRAIN VARIATION FROM PLY TO PLY

t t-	1 z(mm)	e ₁	€ ₂	e ₆
+++-			++++	

(4) Stress $\sigma_i^{(t)} = Q_{ij}^{(t)} e_j^{(t)}$

TABLE 54 PLY STRESSES AT VARIOUS LOCATIONS

t z _i (mm)	Stre	esses at z		Stre	sses at z	
t z _t (mm)	σ ₁	σ2	σ6	σ ₁	σ2	σ6

Figure 75 Stresses and Strain across laminate thickness.

d. Stress Concentration of Orthotropic Plates with a Filled Hole Assume a cross-ply T-300/5208 laminate [016/9016]

(293)

(294)

(1) Elastic Constants

From	previous	calcula	tions
_			3
100		/	

		6848	186	[0	
D _{ij}	=		1357	0	(Nm)
		L		307	

$$E_{11}^{f} = 160, E_{22}^{f} = 31.6, \nu_{12}^{f} = .136, G_{12}^{f} = 7.2 \text{ (MPa)}$$
 (291)

Complex parameters are roots of equations

$$D_{22}^{\mu} + 2(D_{12} + 2D_{66})^{\mu} + D_{11} = 0$$
 (292)

$$\mu^2 = -.590 \pm 2.167$$
 = 2.246 $\cos(\pm 1.30) + i \sin(\pm 1.30)$

$$\mu = \pm 1.50 \left[\cos(\pm .65) + i \sin(\pm .65) \right]$$

$$= \pm 1.50 [.80 \pm .60i] = \pm (1.2 \pm .09i)$$

$$n = i(\mu_1 + \mu_2) = \pm 2.4i, \pm 1.8$$

$$k = -\mu_1 \mu_2 = 1.2^2 + .9^2 = 2.25$$
 (295)

(2) Bending Moments

$$M_{\mathbf{r}} = \frac{M}{1 - \nu_{12} \nu_{21}} \left(1 + \frac{\nu_{12} + n}{k} \right) = 1.86 \text{ M}$$

$$M_{\mathbf{\theta}} = \nu_{21} M_{\mathbf{r}} = .050 M, M_{\mathbf{r}\mathbf{\theta}} = 0$$
(296)

(b) At point B

$$M_{r} = -\frac{M}{1 - \nu_{12} \nu_{21}} \frac{D_{2}}{D_{1}} (\nu_{12} + \nu_{12} n + k) = -.523M$$

$$M_{\theta} = \nu_{12} M_{r} = -.0712M, M_{r\theta} = 0$$
(297)

(298)(a) At Point A $M_{1} = \left\{ \begin{array}{c} 1.86 \\ .50 \\ 0 \end{array} \right\} M, \text{ then } k_{1} = \left\{ \begin{array}{c} \end{array} \right\} M$ (299) At z = 4mm (outer most ply) $\epsilon_{i} = 4k_{i} = \left\{ \right\} M, \qquad \sigma_{i} = Q_{ij}^{(0)} \epsilon_{j} = \left\{ \right\} M$ (300) At z = 2mm (Outermost 90°ply) $e_i = 2k_i = \left\{ \right\} M, \qquad \sigma_i = Q_{ij}^{(90)} e_j = \left\{ \right\} M \quad (301)$ M_{FPF} = M_{Ult} = (302)(b) At Point B $M_{i} = \begin{cases} -.523 \\ -.071 \end{cases} M, \quad \text{then } k_{i} = \begin{cases} \end{cases} M$ At z = 4mm, $e_i = 4k_i = \begin{cases} \\ \\ \end{cases} M$, $\sigma_i = Q_{ij}^{(0)} e_j = \begin{cases} \\ \\ \end{cases} M$ (304) At z = 2mm, $\epsilon_i = 2k_i = \begin{cases} \\ \\ \end{cases} M$, $\sigma_i = Q_{ij}^{(90)} \epsilon_j = \begin{cases} \\ \end{cases} M$ (305)

SECTION VII

PROPERTIES OF UNSYMMETRICAL LAMINATES

1. BACKGROUND

An unsymmetrical laminate is one that does not have midplane symmetry in the layup of plies. This type of laminate
has not been used extensively in actual structures, but may
be considered if special constraints or effects, such as
minimum gage, aeroelastic tailoring, and bimetallic setup are desired. Unsymmetric laminates will warp after curing and cooling. The degree of
warpage will change by temperature and moisture absorption, in addition to applied loads.

The properties of unsymmetric laminates are a little more complicated than the symmetric ones. Because of the lack of symmetry, the laminate will bend or twist when an in-plane load is applied, or it will stretch when a moment is applied. This coupled response is unique and has no counterpart in symmetric laminates. Unsymmetrical structures, however, are not uncommon in real life. Floor slabs, fuselage, and many other built-up structures are usually unsymmetrical. Thus, the theory of unsymmetrical laminates will be discussed. They may uniquely fulfill requirements not possible with symmetric laminates.

Figure 77 Symmetric versus unsymmetric laminates. Symmetry is based on mid or $\delta = 0$ plane.

2. COUPLING MODULUS

a. Definition: In symmetric laminates, in-plane and flexural behavior are independent of each other; i.e., they are not coupled. But for unsymmetric laminates, they are coupled; i.e., in-plane extension requires both in-plane stresses as well as moments (to keep the laminate from warping), and conversely, the bending of a laminate induces both in-plane stresses and moments. The coupling modulus can be defined as follows

$$N_{i} = \int_{-h/2}^{h/2} \sigma_{i} dz \qquad (307)$$

$$= \int Q_{ij} e_{j} dz \qquad (308)$$
If $e_{i} = e_{i}^{0} + zk_{i} \qquad (309)$

$$N_{i} = \int Q_{i,i}(e_{i}^{0} + 2k_{i}) dz = e_{i} \int Q_{i,i} dz + k_{i} \int Q_{i,j} z dz \qquad (338)$$

$$N_{i} = \int Q_{ij} (e_{j}^{o} + 2k_{j}) dz = e_{j} \int Q_{ij} dz + k_{j} \int Q_{ij} z dz$$

$$= A_{ij} N_{j} + B_{ij} k_{j}$$
(310)

Alternatively,

$$M_{i} = \int_{-h/2}^{h/2} \sigma_{i}zdz = \int Q_{ij}e_{j}zdz \qquad (311)$$

If
$$e_i = e_i^o + zk_i$$

$$M_i = \int Q_{ij}(e_j^o + zk_j)dz = e_j^o \int Q_{ij}zdz + k_j \int Q_{ij}z^2dz \qquad (312)$$

$$= B_{ij}e_j^o + D_{ij}M_i$$

Thus, the coupling modulus is the same between N and k as that between M and e° . Needless to say, B_{ij} is identically zero for symmetric laminates.

• For
$$[0/90]_T$$
, $-B_{11} = B_{22}$, $B_{12} = B_{66} = B_{16} = B_{26} = 0$.

• For
$$[\theta/-\theta]_T$$
, B_{16} , $B_{26} \neq 0$, $B_{11} = B_{22} = B_{12} = B_{66} = 0$.

b. Formulas for Coupling Modulus

$$B_{ij} = \int_{-h/2}^{h/2} \sigma_{ij} z dz$$

$$= \frac{1}{2} \sum_{t=1-h/2}^{n/2} Q_{ij}^{(t)} (h_t^2 - h_{t-1}^2)$$
 (313)

For N plies with uniform thickness h, (N even)

$$B_{ij} = \frac{h_o^2}{2} \sum_{1-(n/2)}^{n/2} Q_{ij}^{(t)} \left[t^2 - (t-1)^2 \right]$$

$$= \frac{h_o^2}{2} \sum_{ij} Q_{ij}^{(t)} (2t-1)$$
(314)

$$\frac{2}{h^{2}} B_{ij} = \left(\frac{1}{n}\right)^{2} \sum_{ij} Q_{ij}^{(t)} F_{t}$$

$$F_{t} = 2t-1$$
(315)

Unlike A and D 11, B 11 can be positive or negative depending on the shifting of the neutral plane up or down.

Substituting transformation of Q_{ij}, B_{ij} can be defined.

Figure 78 Integration of unsymmetric laminates must be performed for the entire thickness from -h/2 to h/2. (For symmetric laminates, integration can be limited to from 0 to h/2).

TARLE	55	FOR MILLA	FOR	COUPLING	MODILLUS
TUDLE	22	FURNIULA	L OIL	COULTING	MODULOD

	$\frac{1}{n^2}$ R ₁	$\frac{1}{n^2} R_2$
$\frac{2}{h^2}$ B ₁₁	$\sum F_{\mathbf{t}}^{\cos 2n} \mathbf{t}$	$\sum F_t^{\cos 4\alpha}$
$\frac{2}{h^2}$ B ₂₂	-∑F _t cos2a _t	$\sum F_t^{\cos 4a_t}$
$\frac{2}{h^2}$ B ₁₂		-∑F _t cos4n _t
2 B66		$-\sum F_t^{\cos 4a_t}$
$\frac{2}{h^2}$ B ₁₆	$-\frac{1}{2}\sum_{\mathbf{f}}\mathbf{f}_{\mathbf{t}}\sin 2\alpha_{\mathbf{t}}$	$-\sum_{t} F_{t}^{\sin 4\alpha} $
$\frac{2}{h^2}$ B ₂₆	$-\frac{1}{2}\sum_{\mathbf{f}_{\mathbf{t}}\sin 2\alpha_{\mathbf{t}}}$	$\sum F_t^{\sin 4\alpha}$

 r_t = orientation of t-ply, - n/2 $\le t \le n/2$

$$I_{2B} = \frac{1}{4} (B_{11} + B_{22} + 2B_{12}) = 0$$

$$I_{2B} = \frac{1}{8} (B_{11} + B_{22} - 2B_{12} + 4B_{66}) = 0$$

$$R_{1B} = \frac{1}{2} \sqrt{(-B_{11} + B_{22})^2 + 4(B_{16} + B_{26})^2}$$

$$= \frac{R_1}{N^2} \sqrt{(\sum F_t \cos 2\alpha)^2 + (\sum F_t \sin 2\alpha)^2} = R_1 \sqrt{V_1^2 + V_3^2}$$

$$= \frac{1}{8} \sqrt{(B_{11} + B_{22} - 2B_{16} - 4B_{66})^2 + 16(B_{16} - B_{26})^2}$$

$$= \frac{R_2}{N^2} \sqrt{(\sum F_t \cos 4\alpha)^2 + (\sum F_t \sin 4\alpha)^2} = R_2 \sqrt{V_2^2 + V_4^2}$$

$$(319)$$

$$\tan 2\delta_1 = -\frac{2(B_{16} + B_{26})}{B_{11} - B_{22}} = -\frac{v_3}{v_1}$$

$$\tan 4\delta_1 = -\frac{4(B_{16} - B_{26})}{B_{11} + B_{22} - 2B_{12} - 4B_{66}} = -\frac{v_4}{v_2}$$
(320)

TABLE 56 FORMULA FOR TRANSFORMED COUPLING MODULUS

	$\sqrt{v_1^2 + v_3^2}$ R ₁	$\sqrt{v_2^2 + v_4^2}$ R ₂
h ² B'11	cos2(θ-δ ₁)	cos4(θ-δ ₂)
$\frac{h^2}{2}$ B ₂₂	-cos2(θ-δ ₁)	cos4(θ-δ ₂)
h ² B' ₁₂	0	-cos4(θ-δ ₂)
$\frac{h^2}{2}$ B' ₆₆	0	-cos4(θ-δ ₂)
h ² B ₁₆	$-\frac{1}{2}\sin 2(\theta - \delta_1)$	-sin4(θ-δ ₂)
h ² / ₂ B' ₂₆	$-\frac{1}{2}\sin^2(\theta-\delta_1)$	sin4(θ-δ ₂)

$$V_{1} = \frac{1}{n^{2}} \sum F_{t} \cos 2\alpha, \qquad V_{2} = \frac{1}{n^{2}} \sum F_{t} \cos 4\alpha \qquad (322)$$

$$V_{3} = -\frac{1}{n^{2}} \sum F_{t} \sin 2\alpha \qquad V_{4} = \frac{1}{n^{2}} \sum F_{t} \sin 4\alpha \qquad (323)$$

		αt	cos 2	^α t			sin	² at			cos 4at			sin 4a _t	
+	F _t				F _t co	2a _t			Fisin	2α _t		F _t cos	4a _t		F _t sin 4a
-7	-15		-												
-6	-13														
-5 -4	-11 - 9							+							
-3 -2	- 7 - 5														
1	- 3														
1	1							r							
3	5 7														
5	9														
6	11	-				-									111
7 8	13 15														
=					\$F	2 =			ΣFs			ΣFc4	-	ΣFs4 =	
o =					V	2 + 1	3 =					v ₂	+ v ₄ ²		
=		-				V,	v ₁ =			-			4/1	,= ·	

TABLE 58 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

		αt	cos 20	t l	sin 2at		cos 4at		sin 4a _t	
+	Ft			Fteos 2at		Frsin 2at		F cos 4a		F _t sin 4a _t
-7	-15									
-6	-13									
-5	-11									
-4	- 9									
-3	- 7									
-2	- 5									
-1	- 3									
0	- 1									
1	1									
2	3									
3	5									
4	7									
5	9									
6	11									
7	13									
8	15									
h =				YFc2 =		YFe2		ΣFc4=	ΣFs4	
h _o =					2 = 3			v2 + v2	=	
N =				- v ₃ /				- V4 / N		
1	+	-								+++
0					1			8	2 7	

TABLE 59 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

		αt	cos 2at		sin 2at		cos 4at		sin 4a _t	
t	Ft			Fteos 2at		F _t sin 2a _t		F _t cos 4a _t		F _t sin 4a _t
-7	-15									
-6	-13									
-5	-11									
-4	- 9									
-3	- 7									
-2	- 5									
-1	- 3									
0	- i									
1	1									
2	3									
3	5			-, -						
4	7									
-5	9									
6	11									
7	13									
8	15									
h =				ΣFc2 =		ΣF62 =		ΣFc4=	ΣF:4 =	
h _o =				v ² + v	2 =			v2 + v2		
N =				- v ₃ /				- 4/1	2=	
20	11				1				1	

TABLE 60 CALCULATION OF REDUCTION FACTORS (V'a) FOR COUPLING MODULUS

		αt	cos 2at		sin 2at		cos 40 t		sin 4a _t	
	F			F _t cos 2a _t		F _t sin 2a _t		F _t cos 4a _t		F _t sin 4a _t
-7 -6	-15 -13									
-5 -4	- 1 1									
-3 -2	- 7 - 5									
-1 0	- 3 - 1									
1 2	1 3									
3	5									
5	9									
7 8	13 15									
h =				ΣFc2 =		ΣFe2 =		ΣFc4=	ΣFs4	
h _o =				v ² + v				$\sqrt{v_2^2 + v_4^2}$		
•				- V ₃ /	1 -			- V ₄ / V		

TABLE 61 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS sin 2at cos 4at sin 4a_t cos 2at qt t Ftcos 2at F sin 2a Frcos 4at Ftsin 4at -15 -13 - 9 - 7 - 5 - 3 0 1 3 3 5 7 11 13 SFs2 = ΣFc4= ΣFs4 = EFc2 = - V₄ / V₂=

		[t	col	s 2 ₍	ı,					si	n 2	a t					COE	4α,	=				si	n 4	t t			
	Ft						F _t	:08	2α	t				Ft	sin	2α	t			F	tcc	s 4	a _t				Ft	sin	40
7	-15																			I	I								
-6	-13	+	-					-	-	-	-	-		-			-	+	+	+	+	+	-					+	
5	-11																1			1									
4	- 9							-		-	-	-	-	-			-	-	-	+	-								
3	- 7	\pm										T																	
2	- 5										-	-						-	+	+	-	+	-					-	
-1	- 3	+																	I	1									
0	- 1	1							-		-	-	-	_			-	+	+	+	-	-	-					-	
	1	+				-		-					-					1	+	+								1	
2	3											-	-					+		-		-							
	+	+	-								-	-					+	+	+	+		-				1	-		+
3	7	1																-		1		-							1
	+	+	-									-				-	+	+		+	+	+				+	+	+	+
6	9																1	1		I									1
	-	+				-					-	-				+	+	+	+	+	+	-				+	+	+	+
8	13	1																	1								1		
		+			-	-		_	_		-	-	-	-		+	+	+	+	+		-		-		-	+	+	+
=							1	Fc	_					,	Fs	1		1	1	1,	Fc	=		,	Fs	1		1	
0 =		-				-	-	V	+	v	2	=	-		+	-	+	+	+	-	V	+	v4	=		-	-	+	+
=											1							1	+			-						士	
		-	_			_		_	V3	_	1	=	-		_	-	-	+	+	-	F	V ₄	/ \	2=		-	-	+	+

c. Computation of Reduction Factors, V's

$$h = 2mm$$

$$V_1 = -1/2$$

$$V_1 = -1/2$$
, $V_2 = V_3 = V_4 = 0$

(324)

$$\delta_1 = 90$$
 (do not use 0 because B_{11} is negative)

For T-300/5208
$$R_1 = 85.85$$
, $R_2 = 19.7$ GPa

$$B_{11} = -B_{22} = \frac{h^2}{2} V_1 R_1 = -85.85 \text{ kN}$$

(325)

$$B_{12} = B_{66} = 0, B_{16} = B_{26} = 0$$

(326)

Figure 79 Transformed Bij for [08/908].

(2) [45₈/-45₈]_T

This is the same as $\theta = 45$ for $[0_8/90_8]_T$

For this laminate (angle-ply), $B_{11} = B_{22} = 0$, $B_{16} = -B_{26} = 42.9$ kN.

(3) $[0_4/90_4/0_4/90_4]_T$. B_{ij} for this laminate is exactly one half that of $[0_8/90_8]_T$. So for N - even, B_{ij}/N = constant,

3. COUPLED BENDING AND EXTENSION OF LAMINATES

a. Constitutive Relations

Between 2 generalized stresses (N_i & M_i), and 2 generalized deformations (e_i^0 & k_i), there are 6 possible relations, all of which are listed below in terms of the original modulus matrices: Inplane A_{ii} , Coupling B_{ij} and Flexural D_{ij} .

$$\begin{cases}
N \\
e^{\circ}
\end{cases} = \begin{bmatrix}
B-AbD & Ab \\
-bD & b
\end{bmatrix}
\begin{cases}
k \\
M
\end{cases}
\begin{cases}
k \\
M
\end{cases} = \begin{bmatrix}
b & -bA \\
Db & B-DbA
\end{bmatrix}
\begin{cases}
N \\
e^{\circ}
\end{cases} (329)$$

$$\begin{cases} e^{\circ} \\ k \end{cases} = \begin{bmatrix} (A-BdB)^{-1} & -(A-BdB)^{-1}Bd \\ -(D-BaB)^{-1}Ba & (D-BaB)^{-1} \end{bmatrix} \begin{cases} N \\ M \end{cases}$$
(330)

All submatrices are 3 x 3, which are numerically simple to calculate. The unpartitioned, original matrices are 6 x 6, which normally require bigger computer to evaluate. A sample problem will be solved in the next section using the 3 x 3 submatrices only.

b. Numerical Example

T-300/5208

$$\begin{bmatrix} 0_g/90_g \end{bmatrix}_T$$
, h = 2mm

 $Q_{ij} = \begin{bmatrix} 182 & 2.9 & 0 \\ 10.3 & 0 & 0 \\ 7.2 \end{bmatrix}$

GPa (331)

Figure 80 2-layer unsymmetr

2-layer unsymmetric laminate.

A _{ij} =		192 3								
1.5		176.3	0	MNn	n^{-1} (332)					
	L		14.4							
	[-85.85	0 85.85 0	0]				64.1	1.93	0	
B _{ii} =		85.85	0	kN	(333)	Dii =		64.1	0	Nm
	Lo	0	0			,	L		4.8	(334
				_			7			
				5.20	157	7 0				
A =	532017		a ij	=	157 5.20	0 69.	(GNm	-1)-1		(33
B =	0,	B _{ij} is si	ngular	, therefor	re, there	is no inv	verse.			
D =	19740		d	= 15.5	8469 15.58	0	(kNm)	- 1		(330
			ij			208				
	[-446	13.48 446 0	٥٦							
Ba =	-13.48	446	0	(Mm	1,-1					(337
	[0	0	٥							
	-446	-13.48	0							
aB =	13.48	-13.48 446 0	0	(Mm	-1)-1					(338
	Lo	0	0							
				1				+++		
	S8.3	1.16	6				Γ25.8	.77	0	. 1
BaB=		38.3	0	Nm (339)	D-BaB	_	25.8	0	Nr
		1.16	0		337,		= 25.8		4	.8]
										- (34
11	۲.,,,,	40.26	1							
Bd =	-1337	40.26	0	m-1					++-	-
Ba =	-40.26	1337	0	m				+++	+-	(34
	Lo	0	٥٦							

	-1337	-40.26	0		
dB =	40.26	1337	0	m ⁻¹	
	Lo	-40.26 1337 0	0		(342
	۲		-		
DAD	114	3.46	0		
pap =		3.46 114	0	MNm 1	(343
			0)		
	r				
	78.3	2.34	0		
A-BdB =		78.3	0	MNm 1	(344)
	L		14.4		
	S8.8	-1.16	۰٦		
(D-BaB)-1=		38.8	0	(kNm)-1	10.15
(D-BaB) ⁻¹ =	L		208	, , , , , , , , , , , , , , , , , , ,	(345)
	12.8	382	0]		
$(A-BdB)^{-1}=$		12.8	0	(GNm ⁻¹) ⁻¹	(246)
	L		69.4		(346)
	- 17. 30				
)- Ba B) - 1 Ba -	-17.29	17.30	0	(1,0)-1	
D-BaB) - 1 Ba =	0	0	٥	(MN)	(347)
-BdB) -1 Bd=	-17.13	0	٥٦		
- BdB) Bd=	0	17.13	0	(MN) ⁻¹	(348)
L	0	0	له		

		65.6 MPa plies were e [0 ₄ /90 ₄] = 0. 0. MNm ⁻¹	the same 08 T, use but B _{ij} k ₁ = = .305	= N _{1(F} l(FPF) if l of [0 ₈ /9 r laminate ins same,	or the latter	(2) Dete
(2) Determine N _{1(FPF)} if the same plies were symmetrical; e.g., instead of [0 ₈ /90 ₈] _T , use [0 ₄ /90 ₄] _s . For the latter laminate, A _{ij} remains same, but B _{ij} = 0. e ₁ = 12.8N ₁ , k ₁ = 0. N _{1(FPF)} = 3.91/12.8 = .305 MNm ⁻¹		plies were [0 ₄ /90 ₄] = 0. = 0. MNm ⁻¹	the same 08]T, use 2, but Bij k1 = = .305	l(FPF) if l of [0 ₈ /9 r laminate ins same,	etermine N _l g., instead or the latter A _{ij} remai	(2) Dete
e.g., instead of $[0_8/90_8]_T$, use $[0_4/90_4]_s$. For the latter laminate, A_{ij} remains same, but $B_{ij} = 0$. $e_1 = 12.8N_1$, $k_1 = 0$. $N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\sigma_{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		e [0 ₄ /90 ₄] = 0. = 0. MNm ⁻¹	08] _T , use but B _{ij} k ₁ = -305	of [0 ₈ /9 r laminate ins same,	g., instead or the latter A	e.g. For
e.g., instead of $[0_8/90_8]_T$, use $[0_4/90_4]_s$. For the latter laminate, A_{ij} remains same, but $B_{ij} = 0$. $e_1 = 12.8N_1$, $k_1 = 0$. $N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\sigma_{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		e [0 ₄ /90 ₄] = 0. = 0. MNm ⁻¹	08] _T , use but B _{ij} k ₁ = -305	of [0 ₈ /9 r laminate ins same,	g., instead or the latter A	e.g. For
For the latter laminate, $A_{ij} \text{ remains same, but } B_{ij} = 0.$ $\epsilon_1 = 12.8N_1 \text{ , } k_1 = 0.$ $N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\overline{\sigma}_{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		= 0. = 0. MNm ⁻¹	but B _{ij} = k ₁ = .305	r laminate ins same,	or the latter A remai	For
$\mathbf{e}_1 = 12.8N_1, \mathbf{k}_1 = 0.$ $N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\sigma_{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		0. MNm ⁻¹	* ₁ =	2.8N ₁ ,		
$\mathbf{e}_1 = 12.8N_1, \mathbf{k}_1 = 0.$ $N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\sigma_{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		0. MNm ⁻¹	k ₁ =	2.8N ₁ ,		
$N_{1(FPF)} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1}$ $\frac{\sigma}{1(FPF)} = 153 \text{ MPa}$ (About 2.3 times higher than the unsymmetric laminate)		MNm ⁻¹	= .305		e ₁ = 12	•
σ _{1(FPF)} = 153 MPa (About 2.3 times higher than the unsymmetric laminate)				$=\frac{3.91}{12.8}$		
σ _{1(FPF)} = 153 MPa (About 2.3 times higher than the unsymmetric laminate)				$=\frac{3.91}{12.8}$		
(About 2.3 times higher than the unsymmetric laminate)				12.0	N _{1(FPF)}	ı
(About 2.3 times higher than the unsymmetric laminate)			//Pa	= 153 N	<u>-</u>	-
	ate)				I(FPF)	
		the unsyn	gher than	3 times hi	(About 2.3	(.
					**	
	The state of the s					

(1) Determine ply stresses in uniaxial extension (N only) of a tubular specimen of [0₈/90₈] ply orientation. $k_1 = k_2 = k_6 = 0$ For long cylindrical tubes: (364) $\epsilon_1^{\circ} = 5.20N_1$ (365) $\epsilon_2^{\circ} = -.157N_1$ (366) $M_1 = 446N_1$ (367) $M_2 = 13.48N_1$ (368)Moments are induced because curvature is prevented. $N_{1(FPF)} = \frac{3.91}{5.20} = .752 \text{ MNm}^{-1}$ (369) $\frac{1}{\sigma_{1(\text{FPF})}} = 375 \text{ MPa}$ (370)The tube has higher FPF-stress than both unsymmetric (65.6) and symmetric (153) laminates. The induced moments have beneficial effects. (2) Are they still beneficial if the tube is under axial compression? (3) What is the difference between shear response of flat laminates and tubes?

(1) Sample Problem

Maximum water absorption in a typical epoxy is 6%.

What is the maximum amount of water which can be absorbed in a $Gr/Ep(v_f = 0.65)$? Specific gravities for the epoxy and composite are 1.25 and 1.6, respectively, and the void content is 0.4%.

Solution

Since $c_f = 0$, $c = (c_m v_m s_m + v_v) / s = 1.87\%$

6% epoxy

 $v_f = .65$

 $S_{\mathbf{m}} = 1.25$ $S_{\mathbf{f}} = 1.6$

 $V_{\mathbf{v}} = 0.4\%$

SECTION VIII STRESS AND DEFORMATION DUE TO CURING AND SWELLING 1. UNIDIRECTIONAL LAMINAE a. Moisture Concentration Dry State $M = M_m + M_f$ $V = V_{m} + V_{f} + V_{v} ,$ (372)Wet State $M' = M + M_{mw} + M_{fw} + M_{vw}$ (373)Moisture concentration $c = \frac{M' - M}{M} = c_m m_m + c_f m_f + M_{vw} / M$ = $(c_m v_m \rho_m + c_f v_f \rho_f + v_v \rho_w) / \rho$ (374) $= (c_m v_m s_m + c_f v_f s_f + v_i) / s$ V : volume of voids Mmw: mass of water in matrix M_{fw}: " " " fiber M " " voids $c_{[f,m]} = M_{[f,m]w} / M_{[f,m]}$ (375)s : specific gravity In many cases $c_f \approx 0$ $c = (c_m v_m s_m + v_v) / s$ (376)

AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OHIO COMPOSITE MATERIALS WORKBOOK.(U) MAR 78 S W TSAI, H T HAHN AFML-TR-78-33 AD-A058 534 F/6 11/4 UNCLASSIFIED NL 3 OF 4 AD AO58534

b. Approximations for Curing and Swelling Strains $e_{L} = \frac{v_{f}^{E} f_{f}^{e} f_{f}^{+} v_{m}^{E} m_{m}^{e}}{v_{1} v_{f}^{E} f_{f}^{+} v_{m}^{E}} : longitudinal strain$ (377) $e_T = v_f^e f^+ v_m^e m^+ v_f^{\nu} f^e f^+ v_m^{\nu} m^e m$ - $(\eta_1 v_f^{+} v_m^{+} v_m^{-}) e_L$: transverse strain (378)N = T (curing), or H (swelling), or T + H (both) e[f, m] = e[f, m] + e[f, m] : strains resulting from a change of temperature and moisture concentration, measured from the initial, stress-free state to a final state. Initial E[f,m], [f,m] Elastic constants at the final state of interest. Curing strains $e_{[f,m]}^{T} \approx \alpha_{[f,m]}^{T} \Delta T$ (379)∆T : (temperature of interest) - (curing temperature) Swelling strains $e_f^H \approx 0$, (380)c_f ≈ 0 (381)(382)

(383) $\begin{array}{l} {}^{H}_{L} \approx 0 \\ \\ {}^{H}_{T} \approx \frac{1+\nu_{m}}{3} v_{m}^{s} {}^{c}_{m} \end{array}$ (384) $= \frac{1+\nu_{\rm m}}{3} s (c-c_{\rm o})$ (385)In general e^{H}_{T} $e_{T}^{H} = \alpha_{T}^{H} (c - c_{o}) H (c_{o})$ (386)ηH : Swelling coefficient H (): Heaviside step function c_0 : = v_v/s ; in general, threshold value of c_0 below which no appreciable swelling occurs. (1) Sample Problem What is the expected swelling coefficient of the Gr/Ep in sample problem 1.a.(1)? Poisson's ratio of a typical epoxy is 0.35. $c_0 = v_v/s = 0.25\%$ $\alpha_{\mathrm{T}}^{\mathrm{H}} = \frac{1 + \nu_{\mathrm{m}}}{3} \quad \mathrm{s} = 0.72$

Matrix

$$\overline{\sigma}_{\mathbf{mL}}^{\mathbf{R}} = \frac{\mathbf{v}_{\mathbf{f}}^{\mathbf{E}} \mathbf{f}^{\mathbf{E}} \mathbf{m}^{(\mathbf{e}_{\mathbf{f}} - \mathbf{\eta}_{1} \mathbf{e}_{\mathbf{m}})}}{\mathbf{\eta}_{1} \mathbf{v}_{\mathbf{f}}^{\mathbf{E}} \mathbf{f}^{+} \mathbf{v}_{\mathbf{m}}^{\mathbf{E}} \mathbf{m}}$$
(387)

$$\overline{\sigma}_{\mathbf{mT}}^{\mathbf{R}} = 0 \tag{388}$$

Fiber

$$\frac{-R}{\sigma_{fL}} = -\frac{v_{m}}{v_{f}} \frac{-R}{\sigma_{mL}} = \frac{v_{m}^{E} m^{E} f^{(\eta_{1} e_{m} - e_{f})}}{\eta_{1} v_{f}^{E} f^{+} v_{m}^{E}}$$
(389)

$$\frac{-R}{\sigma_{fT}} = 0 \tag{390}$$

Residual stresses manifest themselves in the residual fringes in photoelastic composites.

d. Change of Densities Due to Curing

Volume changes

$$\frac{\Delta V_{m}}{V_{m}} = \frac{e_{L}}{\eta_{1} v_{f}^{+} v_{m}} + 2 \left[e_{m}^{+} + \frac{\eta_{1} v_{f}^{E} v_{m} (e_{m}^{-} e_{f}^{/} \eta_{1})}{\eta_{1} v_{f}^{E} f^{+} v_{m}^{E} m} \right]$$
(391)

$$\frac{\Delta v_f}{v_f} = \frac{\eta_1^e_L}{\eta_1^{v_f^+ v_m}} + 2 \left[e_f^+ + \frac{\eta_1^{v_m^E_m v_f^{(e_f/\eta_1^- e_m)}}}{\eta_1^{v_f^E_f^+ v_m^E_m}} \right]$$
(392)

In-situ densities (dry) after curing

$$\eta_1 = 1$$

$$\rho_m = \rho_{mo} \frac{1 + 3e_m^T}{1 + 2e_m^T (1 + \nu_m) + (1 - 2\nu_m)e_L^T} \approx \rho_{mo}$$
(393)

For Gr/Ep,
$$\nu_{m} = 0.35$$
, $e_{L}^{T} = 0. -e_{m}^{T} \approx 0.77\%$.
$$\rho_{m} = \rho_{mo} \frac{1 + 3e_{m}^{T}}{1 + 2.7e_{m}^{T}} = 0.9976 \rho_{mo} \approx \rho_{mo}$$

	ρ _f	=	^p fo	1+2	T ef	(1+4	(f) + (1- :	² ν _f) e _L	*	^ρ fo						(39
	^p mo	o' ^P f	: •	dens	sitie	s of	con	stit	uents	thems	elves	at th	ne ter	npera	ture	of inter	est
Com	posit	e de	nsity	у				t					-				
	М	= 1	M _m	+ M	f												(39
	v	=	Mm	η/ρ _m	+ M	/ρ _f +	v v										(39
	ρ	=	ρ _m	v _m +	Pf \	'f											(39
e. Chai	nge of	Der	nsiti	es D	ue t	о Мо	oistu	re	Absor	ption							
Dry	State				-		-		-								
	М	-	M _m	+ M _f	,	V	1	Vn	n ^{+ V} f ⁺	v							(39
Wet	State				+		+						+	+			
	M'	= :	M+ 1	M _{mw}	+ M	w + 1	M _{vw}										(39
								-									
	V'	=	V + 2	ΔV _m	+ Δ <i>V</i>	f	-	-		-	-						(40
117 .4								-									
Wet	densi	ty	M'		M'	М	v		ρ	(1+c)							
	Ь,		V'	=	M	V	V'	-	1+ΔV	m/V+	$\Delta v_{\mathbf{f}}$	V					
					1.			-			1						
		~	ρ	1+2	. (1 1/	H	ī									
	++			1 7 2	m'	,	m n	n					-				
					1.	- c		1			11	11					
		*	ρ	1 + 2v	m(1	+ v	n)s	cm	/3								(40
	or																
	V V'	- 7	1 l + c	ρ'	-			-									(40
	•	+	1 + 6	P	-		+	-	-		-	+-+	-		-		
	2e ^H T	=	v'v	- 1	=	(1 -	+ c) f	-	1								
	н	-	1	1		0	1	-			1	+			+++	++-	
-	e _T	=	2	(1 +	(c)	ρ' -	1	1				++	-	-	-	1-1-1	-

f. Remarks on Thermal Expansion Coefficients of Composites $e_{[f,m]}^{T} = \alpha_{[f,m]}^{T} (T-T_{o})$ (403) $a_{[f, m]}^T$: independent of T T : initial reference temperature From Eq. (377) $\alpha_{L}^{T}(T) = \frac{\mathbf{v}_{\mathbf{f}}^{\mathbf{E}} \mathbf{f}(T) \alpha_{\mathbf{f}}^{T} + \mathbf{v}_{\mathbf{m}}^{\mathbf{E}} \mathbf{m}(T) \alpha_{\mathbf{m}}^{T}}{\eta_{1} \mathbf{v}_{\mathbf{f}}^{\mathbf{E}} \mathbf{f}(T) + \mathbf{v}_{\mathbf{m}}^{\mathbf{E}} \mathbf{m}(T)}$ (404)where $\alpha_{L}^{T}(T) = \frac{e_{L}^{T}(T)}{T - T_{o}}$ (405)Comments 1. T_0 is not arbitrary and e_L^T must be measured from T_0 . 2. α_L^T depends on T while α_f^T and α_m^T do not. Define $\alpha_{\mathbf{L}}^{\mathbf{T}}(\mathbf{T}_{2},\mathbf{T}_{1}) = \frac{\mathbf{e}_{\mathbf{L}}^{\mathbf{T}}(\mathbf{T}_{2}) - \mathbf{e}_{\mathbf{L}}^{\mathbf{T}}(\mathbf{T}_{1})}{\mathbf{T}_{2} - \mathbf{T}_{1}}$ (406)From Eq. (377) $\alpha_{L}^{T}(T_{2},T_{1}) = \frac{v_{f}^{E}(T_{2})\alpha_{f}^{T} + v_{m}E_{m}(T_{2})\alpha_{m}^{T}}{\eta_{1}v_{f}^{E}(T_{2}) + v_{m}^{E}(T_{2})} + \left(\frac{v_{f}^{E}(T_{2})\alpha_{f}^{T} + v_{m}^{E}(T_{2})\alpha_{m}^{T}}{\eta_{1}v_{f}^{E}(T_{2}) + v_{m}^{E}(T_{2})}\right)$ $\frac{\mathbf{v}_{\mathbf{f}}^{\mathbf{E}}(\mathbf{T}_{1})\mathbf{\alpha}_{\mathbf{f}}^{\mathbf{T}} + \mathbf{v}_{\mathbf{m}}^{\mathbf{E}}(\mathbf{T}_{1})\mathbf{\alpha}_{\mathbf{m}}^{\mathbf{T}}}{\mathbf{n}_{1}\mathbf{v}_{\mathbf{f}}^{\mathbf{E}}(\mathbf{T}_{1}) + \mathbf{v}_{\mathbf{m}}^{\mathbf{E}}(\mathbf{T}_{1})} \qquad \frac{\mathbf{T}_{1} - \mathbf{T}_{0}}{\mathbf{T}_{2} - \mathbf{T}_{1}}$ (407) $\alpha_L^T(T_2, T_1)$ becomes independent of temperature if so are the moduli.

a. Curing and Swelling Strains	11111
Constitutive relations of a constituent ply	
$\sigma_i = C_{ij}(e_j - e_j) + C_{iA}(e_A - e_A)$: in-plane stresses	(40
$\sigma_{A} = C_{Aj}(\varepsilon_{j} - \varepsilon_{j}) + C_{AB}(\varepsilon_{B} - \varepsilon_{B})$: out-of-plane stresses	(409
Reduced stiffnesses Q _{ij}	
$Q_{ij} = C_{ij} - C_{iA}C_{AB}^{-1}C_{Bj}$	(410
$\sigma_{i} = Q_{ij}(\varepsilon_{j} - \varepsilon_{j}) + C_{iA}C_{AB}^{-1}\sigma_{B}$	(411
In-plane strains and curvatures	
$\epsilon_i = \epsilon_j^0 + zk_j$	(412)
Classical laminated plate theory	
σ _B , ε _j , k, independent of z	
$\int \sigma_i dz = N_i = A_{ij} e_j^0 + B_{ij} k_j - N_i^N + T_{iB} \sigma_B$	(413)
$\int \sigma_{i} z dz = M_{i} = B_{ij} \varepsilon_{j}^{0} + D_{ij} k_{j} - M_{i}^{N} + R_{iB} \sigma_{B}$	(414)
$\frac{1}{h} \int \epsilon_{\mathbf{A}} d\mathbf{z} = \overline{\epsilon}_{\mathbf{A}} = \overline{G_{\mathbf{A}\mathbf{B}}^{-1}} \ \sigma_{\mathbf{B}} - \overline{G_{\mathbf{A}\mathbf{B}}^{-1}} G_{\mathbf{B}j} \ \epsilon_{j}^{0} - \overline{G_{\mathbf{A}\mathbf{B}}^{-1}} G_{\mathbf{B}j}^{z} k_{j} + \overline{G_{\mathbf{A}\mathbf{B}}^{-1}} G_{\mathbf{B}j}^{z} \epsilon_{j} + \overline{G_{\mathbf{A}\mathbf{B}}^{-1}} G_{\mathbf{B}\mathbf{B}}^{z} \epsilon_{j} + \overline{G_{\mathbf{A}$	e _A (415)
where	
$[N_i^N, M_i^N] = \int_{-h/2}^{h/2} Q_{ij}^e [1, z] dz$	(416)
$[N_{i}^{N}, M_{i}^{N}] = \int_{-h/2}^{h/2} Q_{ij} e_{j} [1, z] dz$ $[T_{iB}, R_{iB}] = \int_{-h/2}^{h/2} C_{iA} C_{AB}^{-1} [1, z] dz$	(417)
$\frac{1}{()} = \frac{1}{h} \int_{-h/2}^{h/2} () dz$	

$N_i = M_i =$	$\sigma_{\Lambda} = 0$			(
$e_i^o = F_{ii}^{-1}$ (N	$I_j^N - B_{jk}D_{kn}^{-1}M_n^N$			(
$k_{i}^{N} = D_{ij}^{-1} (N$	$(i_j^N - B_{jk}e_k^0)$			(
e = e + e	C^{-1} C e - C	-1 C e C -1 C AB C Bi	z k	(
A	AB Bj j	AB Bj j AB Bj	j	1
where				
F _{ij} = A _{ij} -	B _{ik} D _{kn} B _n ;			(
2) 1	IX XII IIJ			
Strain-displacemen	nt relations			
$e_1^0 = \partial u/\partial x$	$\epsilon_1, \epsilon_2^0 = \frac{\partial v}{\partial x_2}$	$e_6^0 = \frac{\partial u}{\partial x_2} + \frac{\partial v}{\partial x_3}$		(
$k_1 = -\frac{1}{2}w$	$/\partial x_1^2$, $k_2 = -\partial^2 x_1$	$w/\partial x_2^2$, $k_6 = -2\partial^2 w/\partial x$	19x ²	(
All the elastic cons	stants are taken a	t the final state (T, H).		
In the material syn	nmetry axes of tra	ansversely isotropic lam	inae	
C _E	/17	E & /II	0 7	
	r _{\L} 1	E _T L _T /U ₁		
Q _{ij} =		E _T /U ₁	0	(
19				
++++ <u>+</u>			G _{LT}	
	/E _T	0	0]	
	1			100
C _{AB} =		2(1+\nu_{TT})/E_T	0	+++(
			1/G _{LT}	
L L	many and the second second			
$\sigma_{i}^{R} = Q_{ij}(e_{j}^{O})$	- e)			

$C_{iA} = C_{Ai}^{T} = \begin{bmatrix} \nu_{LT} \end{bmatrix}$	+VTT)ET/U2	0		0	
$C_{iA} = C_{Ai}^{T} = \begin{bmatrix} \nu_{LT}(1) \\ (\nu_{TT}^{T}) \end{bmatrix}$	LT TL)ET/U	2 0		0	
	0	0		٥	
$U_1 = 1 - \nu_{LT} \nu_{T}$	L				
$U_2 = (1 + \nu_{TT})($	1- 1 _{TT} - 2 _{LT} v	TL)			
Curing Strains and Resi	dual Stresses o	of Symmeti	ric Laminates		
$B_{ij} = 0$, M	$\mathbf{i}^{\mathbf{N}} = 0$,	k	N = 0		
TABLE 63 LAMINA C	URING STRAIN	S FROM C	URING TEME	PERATURE (12]
TABLE 63 LAMINA C	URING STRAIN	S FROM C	URING TEME	PERATURE () eT T %	Too
TABLE 63 LAMINA C	v _f		e _L ^T	e _T	To
	V _f	8	e T L %	e ^T T	T _o
Boron/Epoxy (B/Ep) Boron/Polyimide	V _f	s 2.03	e_L % 0.118	e ^T T %	T o o K
Boron/Epoxy (B/Ep) Boron/Polyimide (B/PI) Graphite/Epoxy	V _f 0.50 0.49	s 2.03 2.00	e_L	e ^T T %	T _o o _K 450

TABLE 64 LAMINA MECHANICAL PROPERTIES [12]

01	E _L	E _T	G _{LT}	LT	X MNm ⁻²	Y MNm ⁻²	S MNm ⁻²
B/Ep	201	21.7	5.4	0.17	1375	56.0	62.3
B/PI	222	14.5	7.7	0.16	1040	10.8	25.9
Gr/Ep	190	7.10	6.2	0.10	1115	41.9	61.5
Gr/PI	216	4.97	4.5	0.25	841	14.9	21.7
Gl/Ep	60.7	24.8	12.0	0.23	807	46.0	45.0

TABLE 65 CURING STRAINS OF [0₂/±45] LAMINATES AND CORRESPONDING STRESSES WITHIN 45° PLY [12,19]

	-e ₀	T , %	-e T	, %	-e ^T ₄₅	. %	σRT	σ_{LT}^{R}	
	EXP.	CAL.	EXP.	CAL.	EXP.	CAL.	Y	S	
B/Ep	0.123	0.109	0.234	0.259	0.171	0.184	0.99	0.13	
B/PI	0.100	0.075	0.214	0.186	0.163	0.131	4.09	0.33	
Gr/Ep	-9.018 (-0.009)	-0.019	0.104 (0.068)	0.122	0.036	0.052	1.09	0.11	
Gr/PI	0.002	-0.004	0.031	0.051	0.017	0.028	1.20	0.11	
Gl/Ep	0.105	0.117	0.260	0.361	0.182	0.239	1.39	0.65	

Remarks: Numbers inside the parentheses for Gr/Ep are measured during the cooling stage of curing and the heating stage of postcuring.

c. Warping of Asymmetric Laminates After Curing

Input mechanical properties at room temperature

Material	EL	ET	GLT	LT 0.22		
Gr/Ep	GPa 153	GPa	GPa			
		11.2	7.10	0.33		
Gl/Ep	39.1	13.1	4.70	0.30		

Input curing strains for lamina

Material	$T_{o} = 4$	50°K	T _o = 394°K			
	e _L , mm/m	e _T , mm/m	$e_{\mathrm{L}}^{\mathrm{T}}$, mm/m	e _T , mm/m		
Gr/Ep	0.304	- 3.503	0.267	- 2.167		
Gl/Ep	- 1.345	- 4.077	-0.743	- 2.235		

Amount of warping

$$\mathbf{w}^{T} = -\frac{1}{2} (\mathbf{k}_{1}^{T} \mathbf{x}^{2} + \mathbf{k}_{2}^{T} \mathbf{y}^{2} + \mathbf{k}_{6}^{T} \mathbf{x} \mathbf{y}) + \mathbf{c}_{1} \mathbf{x} + \mathbf{c}_{2} \mathbf{y} + \mathbf{c}_{3}$$

$$\mathbf{w}^{T} = 0 \text{ at } (0,0) , (a,0) , (0,b)$$

$$(432)$$

For [+0/-0] laminates

$$k_{1}^{T} = k_{2}^{T} = 0 , \quad w_{\text{max}}^{T}(a, b) = -\frac{k_{6}^{T}}{2} ab$$

$$c_{1} a - \frac{1}{2} k_{1}^{T} a^{2} = 0$$

$$c_{1} = \frac{1}{2} k_{1}^{T} a$$

$$c_{2} b - \frac{1}{2} k_{2}^{T} b^{2} = 0$$

$$\therefore c_{2} = \frac{1}{2} k_{2}^{T} b$$
(434)

Figure 81 Maximum deflection of $[\theta_4/-\theta_4]_T$ laminates after curing, a = b = 6.35cm.

d. Swelling Strains of Symmetric Laminates

$$k_{i}^{H} = 0$$

$$e_{T}^{H} = \alpha_{T}^{H} (c-c_{o})H(c_{o}), e_{L}^{H} = 0$$

$$\frac{c-c_{i}}{c_{\infty}-c_{i}} = 1 - \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2j+1)} \cos \frac{(2j+1)\pi z}{h} \exp - \frac{(2j+1)^{2}\pi^{2}Dt}{h^{2}}$$

$$\frac{\overline{c}-c_{i}}{c_{\infty}-c_{i}} = 1 - \frac{8}{\pi^{2}} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^{2}} \exp - \frac{(2j+1)^{2}\pi^{2}Dt}{h^{2}}$$

$$Absorption$$

$$c_{i} = 0$$

$$C_{\infty} = 0$$

$$(436)$$

e. Warping of Asymmetric Laminates Due to Swelling

$$Total w^{N} = w^{T} + w^{H}$$
 (441)

For square [0/90] laminate of side a, $k_6^N = 0$, $k_1^N = k_2^N$.

$$w_{max}^{N} = -\frac{1}{2} \left(\frac{a}{2}\right)^{2} (k_{1}^{T} + k_{1}^{H})$$
, $w^{N} = 0$ at $(0, 0)$ (442)

Figure 84 Maximum deflection of $[0_4/90_4]_{\mathrm{T}}$ Gr/Ep (AS/3501) laminate due to curing and moisture absorption, a = 7.58cm.

SECTION IX FAILURE THEORIES Stress Reversal 1. INTRODUCTION YIELD POINT Definition of failure: Any consistently definable point on the stress-strain relation Simplifying Hypothesis: on set of nonlinearity Only one point of failure associated Figure 85 Definition of failure. with one state of stress Geometric interpretation of failure (in stress space) Dimension of Dimension of Failure Contour Stress Space Physical Space One (x₁) One (0,) -01 X1' O X1 01 3-D Surface Two (x 1, x2) Three $(\sigma_1, \sigma_2, \sigma_6)$ Three (x1, x2, x3) $Six (\sigma_1, \sigma_2, \dots, \sigma_6)$ 6-D hypersurface Definition of the loci (or contour) of failure surface. Failure Criterion: Material is safe for any state of stress within the failure surface. Representation: Application: Predictive design. Strength Anisotropy - Failure surface dependent on material orientation

Tension Strength

1-D example

2. GEOMETRIC INTERPRETATION OF EMPLOYING FAILURE CRITERION TO INTERROGATE POTENTIAL FAILURE

A given state of stress σ_1 , σ_2 , σ_6 (in 2-D) can be represented as a vector d in stress space:

$$\bar{I} = \sigma_1 e_1 + \sigma_2 e_2 + \sigma_6 e_6 \tag{443}$$

the magnitude of this stress vector is

$$|\mathcal{A}| = \left[\sigma_1^2 + \sigma_2^2 + \sigma_6^2\right]^{1/2} \tag{444}$$

The potential of this stress vector which can lead to failure depends on its proximity to the failure surface along the

same direction as the stress vector. The strength in this direction can be characterized by a strength vector F

Figure 86 Failure surface.

$$|\mathcal{F}| = [\sigma_1^{*2} + \sigma_2^{*2} + \sigma_6^{*2}]^{1/2}$$
 (445)

where σ_1^* , σ_2^* , σ_6^* is the point on the failure surface.

Safety factor can be considered as

$$\frac{\mathcal{A}}{\mathcal{F}} = \frac{1}{\text{Safety factor}} \begin{cases} = 1 & \text{imminent failure} \\ < 1 & \text{no failure} \end{cases}$$
 (446)

Utility of Failure Criterion

- For a given state of stress σ_i , interrogate whether failure is imminent
- B, For a given state of strain e_1 , interrogate whether failure is imminent C, For a given stress ratio $\frac{\sigma_1}{\sigma_2}$, $\frac{\sigma_1}{\sigma_6}$ etc., what are the failure stresses?
- For a given state of stress, what is the margin of safety?

Applications for different failure criteria will be illustrated by examples. All examples will use the following mechanical properties of a 0° graphite/epoxy lamina

		0.057	-0.02	7 0							
							1				
	S _{ij} =	-0.027	0.838	3 0	x 10	3 in/in/ks	3i				(44
		0	0	1. 32							
		L		1. 32							
	X ₁ = 1	49 ksi		X ₂ = (6.3 ksi		x ₆ =	10.5	ksi	+	
	x' = 1	03 ksi Strength		X1 =	18.2 ksi		X'				(44
				2			X' =	10.5	ksi		
		Strength	(0, =	177 ksi							
	Biaxial	Strength	1~								(45
			σ ₂ =	-12.8 k	si						
									+		
							-				
-										-	
-			-				1		11		
-											
									I		
										11	
										1	
11										++	
					-			+	-	-	
			1						-	+++	
							++-		-	+	
++										-	 -
-				-						1	

3. FAILURE CRITERIA FOR ONE GIVEN ORIENTATION

NON - Interacting Failure Criteria: biaxial stress does not change uniaxial strength

a. Maximum Stress Criterion

$$-X'_{1} \leq \sigma_{1} \leq X_{1} \qquad a$$

$$-X'_{2} \leq \sigma_{2} \leq X_{2} \qquad b$$

$$-X'_{6} \leq \sigma_{6} \leq X_{6} \qquad c$$

$$(451)$$

Figure 87 Maximum stress criterion in stress space.

Maximum Stress Criterion in Strain Space

For linearity $\sigma_i = C_{ij} \epsilon_j$ Combine with Eq. (451)

The strain allowables are

For plane stress condition, plot maximum stress failure criterion in stress space and in strain space using properties given in Section 2.

(2) Example

Given stress σ_i interrogate failure by maximum stress criterion

$$\sigma_1 = 100 \text{ ksi}$$

$$\sigma_2 = 8 \text{ ksi}$$

$$\sigma_6 = 9 \text{ ksi}$$

Substitute into Eq. (451), if any one equation not satisfied, failure occurs

Failure for lamina

$$8 > X_2 = 6.3$$
 failure

 $8 > X_2 = 6.3$ failure $9 < X_6 = 10.3$ no failure

(3) Example

Given strain e interrogate failure

$$e_1 = -5.5 \times 10^{-3}$$
 $e_2 = 6 \times 10^{-3}$
 $e_6 = 2 \times 10^{-3}$

(4) Example

For the following state of stress (ratios), using maximum stress criterion, find the failure stresses.

$$\sigma_1 = 70$$

$$\sigma_2 = 3$$

$$\sigma_6 = 5.5$$

We need to find, along the stress ratios $\frac{\sigma_2}{\sigma_1}$, $\frac{\sigma_6}{\sigma_1}$ what is the intercept of the failure surface.

Since the maximum stress failure criterion (a rectangular parallelpiped) is a surface bounded 6 sides, the stress vector so may penetrate any one of the sides. Accounting for the signs, we may interrogate the positive surfaces only.

(5) Example

For the state of stress given in example 4, what is the stress vector, strength vector and the factor of safety predicted by the maximum stress criterion.

b. Maximum Strain Criterion

$$\mathbf{E}_1 = \mathbf{S}_{11} \mathbf{X}_1 \geq \mathbf{e}_1$$

$$\mathbf{E}_{1}' = \mathbf{S}_{11} \mathbf{X}_{1}' \geq - \mathbf{e}_{1}$$

$$E_2 = S_{22}X_2 \ge e_2$$

$$E_2' = S_{22}X_2' \ge - \epsilon_2$$
 (453)

$$E_6' = S_{66}X_6' \ge - e_6$$

E.' Negative Uniaxial Maximum Strain in i component

Geometry: Rectangular Parallelepiped in Strain Space

Figure 88 Maximum strain criterion in strain space.

Maximum Strain Criterion in Stress Space For linearity $e_i = S_{ij}\sigma_j$, combine with Eq. (453). The allowable stresses are:

$$\sigma_{1} = -\frac{S_{12}}{S_{11}} \sigma_{2} - \frac{S_{16}}{S_{11}} \sigma_{6} + X_{1} \qquad a$$

$$\sigma_{1} = -\frac{S_{12}}{S_{11}} \sigma_{2} - \frac{S_{16}}{S_{11}} \sigma_{6} - X_{1}' \qquad b$$

$$\sigma_{2} = -\frac{S_{12}}{S_{22}} \sigma_{1} - \frac{S_{26}}{S_{22}} \sigma_{6} + X_{2} \qquad c$$

$$\sigma_{2} = -\frac{S_{12}}{S_{22}} \sigma_{1} - \frac{S_{26}}{S_{22}} \sigma_{6} - X_{2}' \qquad d$$

$$\sigma_{6} = -\frac{S_{16}}{S_{66}} \sigma_{1} - \frac{S_{26}}{S_{66}} \sigma_{2} + X_{6} \qquad e$$

$$\sigma_{6} = -\frac{S_{16}}{S_{66}} \sigma_{1} - \frac{S_{26}}{S_{66}} \sigma_{2} - X_{6}' \qquad f$$

maximum strain
criterion in
stress space

(454)

(1) Example

For graphite epoxy lamia, find the maximum strain failure criterion using the given data.

(2) Example

Given stress σ_i , interrogate failure by maximum strain criterion.

$$\sigma_1 = 100 \text{ ksi}$$

$$\sigma_2 = 8 \text{ ksi}$$

$$\sigma_6 = 9 \text{ ksi}$$

(3) Example

Given strain e, interrogate failure by maximum strain criterion.

$$e_1 = -5.5 \times 10^{-3}$$

$$e_2 = 6 \times 10^{-3}$$

$$e_6 = 2 \times 10^{-3}$$

4. INTERACTING FAILURE CRITERION

Formulation

Formulation
$$f(\sigma_i) = F_i \sigma_i + F_{ij} \sigma_i \sigma_j + F_{ijk} \sigma_i \sigma_j \sigma_k + \dots = 1 \quad (455)$$
Important features
(1) Each term Scalar product; independent of

- (1) Each term Scalar product; independent of material coordinate.
- (2) Can be expanded to include sufficient (but not excessive) number of terms to describe a given composite

For a 2nd order polynominal i.e.,

$$F_i \sigma_i + F_{ij} \sigma_i \sigma_j = 1$$
 expanded for two dimension, i.e., i, j = 1, 2, 6. (456)
The failure tensors F_i , F_{ij} are determined by 9 experiments

Figure 89 Reference coordinate definition and 9 guiding experiments for measuring failure tensors in a quadratic polynominal failure criterion.

For tests 1 through 6

$$F_{i} = (\frac{1}{X_{i}}) - (\frac{1}{X_{i}'}) \quad \text{(no sum)}$$

$$F_{ii} = \frac{1}{X_{i}X_{i}'} \quad \text{(no sum)}$$

$$For tests 7 through 9 (or any multiaxial experiments):} \qquad \widetilde{\sigma_{i}} \qquad \widetilde{\sigma_{i}$$

$$B = \widetilde{\sigma}_{i} / \widetilde{\sigma}_{j}, \qquad i, j = 1, 2, 6 \tag{459}$$

The optimal biaxial ratios can be solved from

$$\widetilde{\sigma}_{j} = \frac{-(F_{i}B + F_{j}) \pm [(F_{i}B + F_{j})^{2} + 4(F_{ii}B^{2} + 2F_{ij}B + F_{jj})]^{1/2}}{2(F_{ii}B^{2} + 2F_{ij}B + F_{jj})}$$
(460)

$$\frac{\left[2\sigma_{j}(F_{ii}B + F_{ij}) + F_{i}\right]}{\left[2\sigma_{j}(F_{ii}B^{2} - F_{jj}) - F_{j}\right]} = -\frac{\left[2\sigma_{j}(F_{ii}B^{2} + 2F_{ij}B + F_{jj}) + F_{i}B + F_{j}\right]}{B(BF_{i} + F_{j})}$$
(461)

or approximated by

Test 7

$$B = \frac{x_1}{x_2'} \quad \text{or} \quad \frac{x_1'}{x_2'} \quad \text{or} \quad \frac{x_1'}{x_2} \quad \text{or} \quad \frac{x_1}{x_2}$$
 (462)

Geometrically these ratios correspond to the four corners of the failure surface. $\frac{x_i}{x_2'}$

Similarly the approximate optional ratios for Tests 8. 9 are shown geometrically

Geometric meanings of the failure tensors (individual effects)

Computation using the TENSOR POLYNOMIAL CRITERION (of 2nd order) $F_{ij}\sigma_i\sigma_j + F_i\sigma_i < 1 \Rightarrow \text{ no failure}$ i, j = 1, 2, 6(463) $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1 \implies failure occurs$ Plotting the equation $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ in the σ_1 , σ_2 , σ_6 space, one will obtain a failure envelope in the stress space. $\sigma_1 = R \cos \alpha \cos \beta$ $\sigma_2 = R \sin \alpha \cos \beta$ (464)b $\sigma_6 = R \sin \beta$ where: $R = [\sigma_1^2 + \sigma_2^2 + \sigma_6^2]^{1/2}$ $\alpha = \tan^{-1} \left(\frac{\sigma_2}{\sigma_1} \right)$ (465) $\beta = \tan^{-1} \frac{\sigma_6}{\sqrt{\sigma_1^2 + \sigma_2^2}}$ 9 -180° ≤ α ≤ 180° -180° ≤ β ≤ 180° Figure 90 Polar coordinates.

Thus, we can rewrite $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ as follows:

$$AR^2 + BR = 1$$
 (466)

where:

$$A = (F_{11} \cos^2 \alpha + F_{12} \sin^2 \alpha + F_{22} \sin^2 \alpha) \cos^2 \beta + F_{66} \sin^2 \beta + (F_{16} \cos \alpha + F_{26} \sin \alpha) \sin^2 \beta$$
 (467)

$$B = (F_1 \cos \alpha + F_2 \sin \alpha) \cos \beta + F_6 \sin \beta$$
 (468)

Solving Eq. (466) for R, taking positive root, we obtain

$$R* = \frac{-B + \sqrt{B^2 + 4A}}{2A} \tag{469}$$

For an applied stress σ_i , the stress and strength vectors can be computed from Eqs. (465a) and (469), respectively, i.e.:

8 = R (from Eq. (465))

 $\mathcal{F} = R* (from Eq. (469) where <math>\alpha$ and β are from Eqs. (465 b, c))

If: & < F ⇒ no failure

If: \$ ≥ F ⇒ failure occurs

To compute the \mathcal{F} vector for a given stress ratios, e.g. $\frac{\sigma_2}{\sigma_1}$, $\frac{\sigma_6}{\sigma_1}$, α and β are computed

from Eqs. (465b,c)by setting $\sigma_1 = 1$, and \mathcal{F} can be obtained from Eq. (469).

Caution: The signs of the angles & and & should be set according to Figure 90.

b. Computation of the Failure Tensors

Using the strength given in Section IX. 2 and Eqs. (457-458),

$$F_1 = \frac{1}{X_1} - \frac{1}{X_1} = \frac{1}{149} - \frac{1}{103} = -0.003 \frac{1}{ksi}$$

$$F_2 = \frac{1}{X_2} - \frac{1}{X_2'} = \frac{1}{6.3} - \frac{1}{18.3} = 0.105 \frac{1}{ksi}$$

$$F_6 = \frac{1}{X_6} - \frac{1}{X_6} = \frac{1}{10.} - \frac{1}{10.5} = 0$$

$$F_{11} = \frac{1}{XX'_1} = \frac{1}{(149)(103)} = 0.065 \times 10^3 \frac{1}{(ksi)^2}$$

$$F_{22} = \frac{1}{X_2 X_2} = \frac{1}{(6.3)(18.3)} = 8.72 \times 10^{-3} \frac{1}{(ksi)^2}$$

$$F_{66} = \frac{1}{X_6 X_6}, = \frac{1}{(10.5)(10.5)} = 9.07 \times 10^{-3} \frac{1}{(ksi)^2}$$

From Eq. (459)

$$B = \frac{\tilde{\sigma}_1}{\tilde{\sigma}_2} = \frac{177}{-12.8} = -13.82$$

$$(B^2F_{11} + 2BF_{12} + F_{22})\widetilde{\sigma}_2^2 + (BF_1 + F_2)\widetilde{\sigma}_2 = 1$$

$$((-13.82)^2(0.065 \times 10^{-3}) + (2)(-13.82)F_{12} + (8.72 \times 10^{-3}))(-12.8)$$

+ $(13.82(-0.003) + 0.105) - 12.8 = 1$

Solve for F₁₂

$$F_{12} = 0.20 \times 10^{-3} \frac{1}{(ksi)^2}$$

- c. Application Examples
 - (1) Given stress σ_i , interrogate failure condition by tensor polynominal

$$\sigma_1 = 50 \text{ ksi}$$

$$\sigma_6 = 5 \text{ ksi}$$

$$e_1 = -5.5 \times 10^{-3}$$
 $e_2 = 6 \times 10^{-3}$
 $e_6 = 2 \times 10^{-3}$

(3) Given stress ratios
$$\frac{\sigma_2}{\sigma_1} = 0.5$$
, $\frac{\sigma_6}{\sigma_1} = -0.2$, $\sigma_1 > 0$ compute the strength in this direction of loading

(4) Given
$$\sigma_1 = 10$$
, $\sigma_2 = 5$, $\sigma_6 = -2$ ksi, what is the safety

5. TRANSFORMATION OF FAILURE CRITERION FROM ONE ORIENTATION TO ANOTHER ORIENTATION.

Method 1

For maximum stress or maximum strain criterion, transform stress (or strain) to reference direction where failure criterion is known.

Apply failure criterion Eq. (451) or (455).

Only one state of stress can be evaluated per operation.

Method 2

For tensor polynominal failure criterion, either use method 1 or transform failure tensors from reference direction to desired direction.

6. LAMINATE STRENGTH

a. First Ply Failure

To assess laminate strength two approaches can be used

- (1) Assume laminate as homogeneous, following method outline in Sections 3 and 4, but replace the lamina failure criterion by a laminate failure criterion; i.e., by appropriate numerical value for F_i, F_{ij} and higher order terms when appropriate
- (2) Use laminate analysis as discussed in Section V to obtain stress in each layer and interrogate layer by layer using procedure outlined in Section IX. 5.
 In this case stress vector and strength vector for the k th layer are respectively

$$\mathbf{z}_{k}^{(k)} = \left[(\sigma_{1}^{(k)})^{2} + (\sigma_{2}^{(k)})^{2} + (\sigma_{6}^{(k)})^{2} \right]^{1/2}$$
(471)

$$\mathcal{F}^{(k)} = [(\sigma_1^{*(k)})^2 + (\sigma_2^{*(k)})^2 + (\sigma_6^{*(k)})^2]^{1/2}$$
(472)

where $\sigma_i^{*(k)}$ are the failure stresses of the k^{th} layer from the roots of

$$F_{i}^{(k)}\sigma_{i}^{*(k)} + F_{ij}^{(k)}\sigma_{i}^{*(k)}\sigma_{j}^{*(k)} = 1$$
 (473)

and $F_i^{(k)}$, $F_{ij}^{(k)}$ are the failure tensors for the direction of the k layer determined by transformation as described in Section III. 4.

Repeating this for all the layers in the laminate, the potential failure layer can be seen graphically in representation such as in Figure 91.

In Figure 91a, the layer $\theta^{(2)}$ is closest to failure and layer $\theta^{(4)}$ has the greatest margin of safety. Further loading would lead to first-ply failure in $\theta^{(2)}$.

Note that margins of safety are in general not equal for all laminates. The layer thickness and/or orientation may be varied to achieve a uniform failure condition as shown in Figure 91b which is the optimal design. The methods for varying these parameters are sizing and mathematical optimization.

The procedure of determining the strength of a laminate configuration, i.e., $\theta^{(k)}$, $h^{(k)}$, undergoing applied loads N_1 , N_2 , and N_6 is following:

(i) Compute
$$Q_{ij}^{(k)}$$
, $F_{ij}^{(k)}$, and $F_i^{(k)}$

(ii) Compute
$$A_{ij} = \sum_{ij} {(k)_h}^{(k)}$$

(iv) Compute
$$e_i^o = A_{ij}^{-1} N_j$$

- b. Behavior After First Ply Failure
 - "Failure" of a ply (any mode) in a laminate "degrades" the laminate but may not produce ultimate failure. Several schemes have been proposed to account for this degradation including:
 - (a) Total ply discount assign zero stiffness and strength to the failed ply, all modes.
 - (b) Mode limited discount assign zero stiffness and strength to transverse and shear modes if ply failure is in the matrix phase; if fiber phase, discount all modes as (a) above.
 - (c) Assign residual properties.
 - (1) Example

Consider a laminate [90, 0₂, +45, -45]_s subject to N_i = {3380, 1320, 0} lbs/in. with Q_{ij} =
$$\begin{bmatrix} 20 & 0.3 & 0 \\ 0.3 & 1 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$
 and t = 0.005 in. all layers.

Assume a membrane state of stress exists such that

$$\{\epsilon\}_{x,y} = \{\epsilon\}_{x,y}^{o} = [A]^{-1} \{N\}_{x,y}$$
 all layers

Use a maximum strain failure criterion with

$$\begin{cases} E_1 = 0.010, -0.010 \\ E_2 = 0.005, -0.007 \\ E_6 = 0.015, -0.015 \end{cases}$$

LAYER	e ₁	€ ₂	e ₁₂	M.S.(1)	M. S. (2)	M. S. (1-2)
0	0.006	0.002	0	0.67	1.5	
90	0.002	0.006	0	4.0	-0.17	
+45	0.004	0.004	-0.004	1.5	0.25	2.75
-45	0.004	0.004	0.004	1.5	0.25	2.75

A transverse tension failure is predicted in the 90° ply.

Following degradation scheme (b)

$$Q_{22}^{90} = Q_{12}^{90} = Q_{66}^{90} = 0$$
; $e_2^{90} = e_6^{90} = 0$

Recalculate [A] and { e } k evaluate M.S.

Problems Confirm and complete the above analysis

Repeat using the first scheme

Notes

1. Bending

$$\begin{cases} e^{O} \\ k \end{cases} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{Bmatrix} \overline{N} \\ \overline{M} \end{cases}$$
 (bar denotes inclusion of thermal term)

 $\{e\}^{k} = \{e^{0}\} + z^{k}\{k\}$

- 2. Composite laminates are 'statically indeterminate' systems in one or both of two senses:
 - (a) structural a structural member has boundary conditions or geometry such that the constitutive equations are necessary in determining stress resultants at any location.
 - (b) lamination the determination of stresses in any given layer requires a knowledge of the laminate constitutive equations and each layer stiffness.
 ex. homogeneous materials N's, M's ⇒ σ's
 layered materials N's, M's ⇒ e's ⇒ σ's
- 3. Each cycle of a stress-strength analysis involving degraded laminate properties will, in general, require a new stress analysis for {N, M}.

7. SIZING FOR STRENGTH

In Section 6, we outlined the procedure for checking the strengths when the lamination configuration is given. In this section, we discuss the methods for determining the lamination configuration. The lamination configuration consists of the orientation and thickness of each lamina.

Using $\frac{1}{3}$ to represent the failure condition of the κ^{th} layer lamina, i.e., $\frac{1}{3} \frac{(k)}{(k)} = 1$ is the state of imminent failure, whereas $\frac{\kappa^{tk}}{3} < 1$ is a no-failure condition. When the lamination configuration is not optimized, as in Figure 91a, each layer would be at different degree from failure. For example layer $\theta^{(2)}$ is close to failure and $\theta^{(4)}$ has the greater margin of safety. It can be seen that the orientation of the individual layers or their thickness or both can be varied such that they will have the same factor of safety. This is illustrated in Figure 91b and is the optimum configuration. This optimum configuration cannot be obtained explicitly for the reasons to be explored; it can, however, be determined by formal optimization and nonlinear programing. We present several direct sizing methods for estimating the optimal configurations.

Figure 91 Stress Ratio $\mathcal{J}^{(k)}/\mathcal{J}^{(k)}$ versus the Thickness $h^{(k)}$.

Computation for Laminate Strength

In applications where loading configuration N and lamination configuration h, θ_i

I-1 Obtain laminate average strain by:

$$Q_{ij}^{(k)} = Q_{ij}^{(k)}(Q_{ij}^{o}, \theta_{k}) \qquad (474) \qquad (II) \qquad \text{or} \qquad (III)$$

$$A_{ij} = A_{ij}(Q_{ij}^{(k)}, h^{(k)}) \qquad (475) \qquad \text{Apply failure} \qquad \text{or} \qquad \text{Apply failure}$$

$$\text{criterion in} \qquad \text{criterion in}$$

$$(476) \qquad \text{strain} \qquad \text{stress}$$

$$e_{i}^{o} = a_{ij}^{o} N_{j} \qquad (477) \qquad g^{(k)}(e_{i}^{o}) < 1 \qquad f(\sigma_{i}^{k}) < 1$$

• In order to compute a ; h^(k), θ ^(k) must be known

• However, in design where only load carrying capacity N_i is given, $a_{ij} = A_{ij}(h^{(k)}, \theta^{(k)})$ $Q_{ij}^{(6)}$) is generally not explicit, the determination of thickness requires either mathematical optimization or direct sizing.

Sizing: Strength at Minimum Weight (no pre existing flaws)

Given a generalized loading configuration, determine directly the composite lamination configuration for minimum weight.

Definition of Problem

Given: N_1 , N_2 , N_6 , find $h^{(k)}$ and $\theta^{(k)}$ (thickness and orientation of k layer)

(1) Method 1: Assume total decoupling of layers and fiber direction carry the load completely.

Limitation for E fiber >> E matrix (example, fiber reinforced elastomer).

Method 1A: Use 0° and 90° layers exclusively.

Applicability useful for complex but homogeneous state of stress

Figure 92 Method 1A.

$$h^{(0)} = \frac{\overline{N}_1}{X_1} \text{ if } \overline{N}_1 > 0 \qquad h^{(90)} = \frac{\overline{N}_2}{X_1} \text{ if } \overline{N}_2 > 0$$

$$= \frac{\overline{N}_1}{X_1} \text{ if } \overline{N}_1 < 0 \qquad = \frac{\overline{N}_2}{X_1} \text{ if } \overline{N}_2 < 0$$
(478)

• For E₂ ≥ E₁

X₁, X₁ are longitudinal tension and compression strength of 0° lamina

• For $E_1 > E_2$ $X_1 = E_2 Q_{11} , X_1 = E_2 Q_{11}$

Method 1B: Same assumptions and limitations as method 1A.
use 0°, 90°, ± 45 layers

Applicability useful for complex and nonhomogeneous state of stress.

$h^0 = \frac{N_1}{X_1} \text{ if } N_1 > 0$	$h^{90} = \frac{N_2}{N_1} \text{ if } N_2 > 0$
	N ₋ (479)
$=\frac{N_1}{X_1}, \text{ if } N_1 < 0$	$=\frac{N_2}{N_1}, \text{ if } N_2 < 0$
$h^{(+45)} = \frac{N_6}{X_1}$ if $N_6 > 0$	$h^{(-45)} = \frac{N_6}{X_1}$ if $N_6 > 0$
XI 6	X ₁ (480)
$= \frac{N_6}{X_1} \text{ if } N_6 < 0$	$=\frac{N_6}{X_1'} \text{ if } N_6 < 0$

For E₂ ≥ E

X1, X1 are longitudinal tension and compression strength of 0° lamina

• For E₁ > E₂

$$X_1 = E_2 Q_{11}$$
 , $X_1' = E_2' Q_{11}$

Discussions

- Equivalent to netting analysis, matrix contribution in stiffness and strength are ignored.
- . Geometric interpretation.

For composite which does not satisfy criterion for being conservative,
 the actual tensile and compressive strength must be replaced by

$$X_{1} = e^{T}_{ult}Q_{11}$$

$$X_{1}' = -e^{T}_{ult}Q_{11}$$

- c. Explicit Sizing Method (no pre-existing flaws)
 - (1) Method 2

This method accounts for the interaction between layers by using linear laminated plate analysis. Explicit relationship are presented if lamination orientation are pre-

selected.

	h(1)			
	h(2)			
	h ⁽³⁾			
[H] =	: h(k)	n x 1 matrix	Thickness of each layer	(486)
	h ^(k)			
	$\begin{bmatrix} \vdots \\ \mathbf{h}^{(n)} \end{bmatrix}$			
To solve for	r [H], 1	et [K] = [E] [Q], cor	nbining	
then [H] = [[1	et [K] = [E] [Q], cor K] ^T [K]] ⁻¹ [K] ^T [N		(487

• Eq (487) can be used to determine the necessary thickness for any preselected balanced lamination geometries.

- · Explicit solution possible only when non-interactive failure criteria are employed i.e., in Eq. 484
- Simplification of Eq. 487 is possible for certain laminate configurations given
- (2) Method 3: Use 0° and 90° layers only for Eq. (487)

Applicability: Homogeneous state of stress, 0° and 90° referred to principal direction. Compute principal stress \overline{N}_1 and \overline{N}_2 from given N_i .

Eq. (483) becomes	$[N] = \begin{bmatrix} N_1 \\ \overline{N}_2 \end{bmatrix}$	(488)
Eq. (484) becomes	$[E] = \begin{bmatrix} e_1^* & e_2^* & 0 \\ 0 & e_1^* & e_2^* \end{bmatrix}$	(488)
Eq. (485) becomes	$[Q] = Q_{12} Q_{12}$	(489)
	$ \begin{bmatrix} Q_{11} & Q_{22} \\ Q_{12} & Q_{12} \\ Q_{22} & Q_{11} \end{bmatrix} $	
Eq. (486) becomes	$[H] = \begin{bmatrix} h^{(0)} \\ h^{(90)} \end{bmatrix}$	(490)

Example	Scotch-ply	1002 1							
711	$\begin{array}{c} 0.500 \times 10^{4} \\ 0.823 \times 10^{2} \\ 0.167 \times 10^{4} \end{array}$	kai							
212	0.623 2 10	(Kai							
22	0. 187 x 10								
	1000 11 /:								
FOR N = 1	1000 lb/in 1.8 x 10 ⁻³ 12 x 10 ⁻³	N ₂ = 5	00 lb/ii	n - 3					
E ₂ =	1.8 x 10	E ₁ =	31 x 10	-3					
E2 =	12 x 10	El=	20.2 x	10					
Metho	d 1A	Meth	od 3						
Eq. 47	78	Eq.			e ₁ * = 1. e ₂ * = 1.	8 x 10			
h ⁽⁰⁾	0.111	0.1			e ₂ * = 1.	8 x 10			
	0.111	0.1		1					
h ⁽⁹⁰⁾	0.056	0.0	20						
Total	0.167	0.1	20						
	ity: For non	homogene n does no	ous st	tate of st	ress wh	ere a s	ingle pr	incipal	
Applicabil	ity: For non	homogene n does no	ous st	tate of st	ress wh	ere a s	ingle pr	incipal	
Applicabil	ity: For non	homogene n does no	ous st	tate of st	ress wh	ere a s	ingle pr	incipal	(49
Applicabil	ity: For non	homogene n does no	ous st	tate of st	ress wh	ere a s	ingle pr	incipal	(49
Applicabil	ity: For non	homogene n does no	ous st	tate of st	ress wh	ere a s	ingle pr	incipal	(49
Applicabil	ity: For non	homogene n does no [N] =	t exist N1 N2 N6		ress wh	ere a s	ingle pr	incipal	(49
Applicabil	ity: For non directio	homogene n does no [N] =	t exist N1 N2 N6		0 1	ere a s	ingle pr	incipal	
Applicabil	ity: For non directio	homogene n does no [N] =	ous st		0 (e ₂ *		ingle pr	incipal	
Applicabil	ity: For non directio	homogene n does no [N] =	eous st t exist N1 N2 N6	e ₂ * e ₁ * 0	0 e ₂ * 0		ingle pr	incipal	(49
Applicabil	ity: For non directio	homogenent does no	eous st t exist N1 N2 N6 0 Q1(0)	e ₂ * e ₁ * 0	0 e ₂ * 0		ingle pr	incipal	
Eq. (484)	ity: For non directio	homogenent does no	eous st t exist N1 N2 N6 P1 O (0)	e ₂ * e ₁ * 0 Q ₂ (0) Q ₂ (0)	0 e ₂ * 0 Q ₁₁ Q ₁₂	0] 0] 6*] 45)]	ingle pr	incipal	(49
Applicabil	ity: For non directio	homogenent does no	eous st t exist N1 N2 N6 P1 O (0)	e ₂ * e ₁ * 0 Q ₂ (0) Q ₂ (0)	0 e ₂ * 0 Q ₁₁ Q ₁₂	0] 0] 6*] 45)]	ingle pr	incipal	
Eq. (484)	ity: For non directio	homogene n does no [N] =	eous st t exist N1 N2 N6 0 Q1(0)	e ₂ * e ₁ * 0 Q ₂₂ (0) Q ₁₂ (0) Q ₁₂ (0)	0 e ₂ * 0 Q ₁₁ Q ₁₂ Q ₂₂	0] 0] 6*] 45)]	ingle pr	incipal	(49

Eq. (486) becomes [H] =
$$\begin{bmatrix} h^{(0)} \\ h^{(90)} \\ h^{(45)} + h^{(-45)} \end{bmatrix}$$
 or $\begin{bmatrix} h^{(0)} \\ h^{(90)} \\ 2h^{(45)} \end{bmatrix}$ (496)

Eq. (487) becomes [H] = $[K^{-1}][N]$ (497)

Expanding [K]

$$\begin{bmatrix} (Q_{11}^{(0)} e_1^* + Q_{12}^{(0)} e_2^*) & (Q_{22}^{(0)} e_1^* + Q_{12}^{(0)} e_2^*) & (Q_{11}^{(45)} e_1^* + Q_{22}^{(45)} e_2^*) \\ (Q_{12}^{(0)} e_1^* + Q_{22}^{(0)} e_2^*) & (Q_{12}^{(0)} e_1^* + Q_{11}^{(0)} e_2^*) & (Q_{12}^{(45)} e_1^* + Q_{22}^{(45)} e_2^*) \\ Q_{66}^{(0)} e_6^* & Q_{66}^{(0)} e_6^* & Q_{66}^{(45)} e_6^* \end{bmatrix}$$

$$(498)$$

Selection of e₁*, e₂*, e₆* can be obtained from Figure 94 using same rules as presented in Method 3.

SECTION X

FRACTURE TOUGHNESS

1. ELASTIC STRESS ANALYSIS

a. Stress Intensity Factors

$$K_{I} = \sigma \sqrt{\pi a}$$
, (499)
 $K_{II} = r \sqrt{\pi a}$. (500)

b. Crack Tip Stresses

Figure 95 Reference coordinates.

$$\sigma_{\mathbf{x}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \text{Re} \left[\frac{\mu_{1}\mu_{2}}{\mu_{1}^{-}\mu_{2}} \left(\frac{\mu_{2}}{\sqrt{\psi_{2}}} - \frac{\mu_{1}}{\sqrt{\psi_{1}}} \right) \right] + \frac{K_{\mathbf{II}}}{\sqrt{2\pi r}} \quad \text{Re} \left[\frac{1}{\mu_{1}^{-}\mu_{2}} \left(\frac{\mu_{2}^{2}}{\sqrt{\psi_{2}}} - \frac{\mu_{1}^{2}}{\sqrt{\psi_{1}}} \right) \right] \quad (501)$$

$$\sigma_{\mathbf{y}} = \frac{\kappa_{\mathbf{I}}}{\sqrt{2\pi r}} \operatorname{Re} \left[\frac{1}{\mu_{1} - \mu_{2}} \left(\frac{\mu_{1}}{\sqrt{\psi_{2}}} - \frac{\mu_{2}}{\sqrt{\psi_{1}}} \right) \right] + \frac{\kappa_{\mathbf{II}}}{\sqrt{2\pi r}} \operatorname{Re} \left[\frac{1}{\mu_{1} - \mu_{2}} \left(\frac{1}{\sqrt{\psi_{2}}} - \frac{1}{\sqrt{\psi_{1}}} \right) \right]$$
(502)

$$r_{xy} = \frac{K_{I}}{\sqrt{2\pi r}} \operatorname{Re} \left[\frac{\mu_{1}\mu_{2}}{\mu_{1}^{-}\mu_{2}} \left(\frac{1}{\sqrt{\psi_{1}}} - \frac{1}{\sqrt{\psi_{2}}} \right) \right] + \frac{K_{II}}{\sqrt{2\pi r}} \operatorname{Re} \left[\frac{1}{\mu_{1}^{-}\mu_{2}} \left(\frac{\mu_{1}}{\sqrt{\psi_{1}}} - \frac{\mu_{2}}{\sqrt{\psi_{2}}} \right) \right] (503)$$

$$\psi_1 = \cos \theta + \mu_1 \sin \theta$$
, $\psi_2 = \cos \theta + \mu_2 \sin \theta$ (504)

 μ_1 and μ_2 are the roots of the characteristic equation

$$S_{11}^{4} - 2S_{16}^{3} + (2S_{12} + S_{66})^{2} - 2S_{26}^{\mu} + S_{22} = 0.$$
 (505)

Note that
$$\mu_3 = \overline{\mu}_1$$
, $\mu_4 = \overline{\mu}_2$.

$u/a = \sigma \operatorname{Re} \left\{ \left[S_{11}^{\mu} \mu_{1}^{\mu} - S_{12}^{\mu} \right] \phi \right\} + r \operatorname{Re} \left\{ \left[S_{11}^{\mu} (\mu_{1}^{\mu} + \mu_{2}^{\mu}) - S_{16}^{\mu} \right] \phi \right\}$	(50
$v/a = \sigma \operatorname{Re} \left\{ \left[-S_{22} \frac{\mu_1 + \mu_2}{\mu_1 \mu_2} + S_{26} \right] \phi \right\} + r \operatorname{Re} \left\{ \left[S_{12} - \frac{S_{22}}{\mu_1 \mu_2} \right] \phi \right\}$	(50
$\phi = \frac{1}{a} \left[x - i \left(a^2 - x^2 \right)^{1/2} \right]$	(50
d. Energy Release Rate	
$G = \frac{1}{2} \frac{d}{da} \left(\sigma \int_{-a}^{a} v dx + r \int_{-a}^{a} u dx \right)$	
$= \frac{1}{2} \left\{ K_{I}^{2} \operatorname{Im} \left[-S_{22} \frac{\mu_{1} + \mu_{2}}{\mu_{1} \mu_{2}} + S_{26} \right] + K_{I} K_{II} \operatorname{Im} \left[S_{11} \mu_{1} \mu_{2} - \frac{S_{22}}{\mu_{1} \mu_{2}} \right] \right\}$	(50
+ $\kappa_{II}^2 Im \left[s_{11}(\mu_1 + \mu_2) - s_{16} \right]$	(51
. Reductions for Orthotropic Materials	
$\mu_1 = \frac{1}{2} \left[n + (n^2 - 4k)^{1/2} \right] i , \mu_2 = \frac{1}{2} \left[n - (n^2 - 4k)^{1/2} \right] i$	(51
$n = \left[2 \left(\sqrt{\frac{S_{22}}{S_{11}}} + \frac{S_{12}}{S_{11}} \right) + \frac{S_{66}}{S_{11}} \right]^{1/2}, k = \left(\frac{S_{22}}{S_{11}} \right)^{1/2}$	
$\begin{bmatrix} \begin{bmatrix} \mathbf{s}_{11} & \mathbf{s}_{11} \end{bmatrix} & \mathbf{s}_{11} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{11} \end{bmatrix}$	(512
$u = -\sigma (S_{11}^{k+} S_{12})^{x} + rS_{11}^{n(a^2-x^2)^{1/2}}$	(513
$v = \sigma S_{22} (n/k)(a^2-x^2)^{1/2} + r(S_{12} + S_{22}/k)x$	(514
$G = n \left[(S_{22}/k)K_{I}^{2} + S_{11}K_{II}^{2} \right] / 2$	(515

$$Y = 1 + 0.1282 (a/w) - 0.2881 (a/w)^2 + 1.5254 (a/w)^3$$

(516)

Orthotropic plates

$$Y (ortho.) \approx Y (iso.)$$
 for $L/w > 3$.

Figure 96 Difference between isotropic and orthotropic finite width correction factors.
[21]

g. Particular Cases

$$\sigma_{\mathbf{x}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad k \quad , \quad \sigma_{\mathbf{y}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}}$$

$$\sigma_{\mathbf{x}} = 0$$

$$\sigma_{\mathbf{x}} = 0$$

$$\sigma_{\mathbf{x}} = 0$$

$$\sigma_{\mathbf{x}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \frac{1}{\sqrt{2\pi r}}$$

$$\sigma_{\mathbf{x}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \frac{1}{\sqrt{2\pi r}} \quad (\sqrt{\mu_{\mathbf{I}}} - \sqrt{\mu_{\mathbf{I}}}) \quad , \quad \sigma_{\mathbf{y}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \frac{1}{\sqrt{2\pi r}} \quad (\frac{\mu_{\mathbf{I}}}{\sqrt{2\pi r}} - \frac{\mu_{\mathbf{I}}}{\sqrt{2\pi r}})$$

$$\sigma_{\mathbf{x}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \frac{1}{\sqrt{2\pi r}} \quad (\sqrt{\mu_{\mathbf{I}}} - \sqrt{\mu_{\mathbf{I}}}) \quad , \quad \sigma_{\mathbf{y}} = \frac{K_{\mathbf{I}}}{\sqrt{2\pi r}} \quad \frac{1}{\sqrt{2\pi r}} \quad (\frac{\mu_{\mathbf{I}}}{\sqrt{2\pi r}} - \frac{\mu_{\mathbf{I}}}{\sqrt{2\pi r}})$$
(518)

2. FRACTURE TOUGHNESS OF UNIDIRECTIONAL LAMINAE

- a. Crack Parallel to Fibers
 - (1) Mode I and II Loadings

 $\sigma \sqrt{\pi a} = K_{IC}$

 $\tau \sqrt{\pi a} = K_{IIC}$

Figure 97 Mode I loading, Scotchply. [22]

Crack Half Length, in.

Figure 98 Mode

Mode II loading, Scotchply.
[22]

(2) Mixed-Mode Loading

Energy criterion

$$G_c = n[(S_{22}/k) K_I^2 + S_{11} K_{II}^2]$$

(519)

$$\frac{K_{IIc}}{K_{Ic}} = (\frac{S_{22}}{S_{11}})^{1/4}$$

Circumferential stress criterion

$$\sqrt{r} \sigma_{\theta} |_{\theta=0} = \text{const.}$$

Failure strength criterion [23]

$$\mathbf{f}(\sigma_{\mathbf{i}}) = \mathbf{F}_{\mathbf{i}}\sigma_{\mathbf{i}} + \mathbf{F}_{\mathbf{i}\mathbf{j}}\sigma_{\mathbf{i}}\sigma_{\mathbf{j}} = 1 \quad , \quad \sigma_{\mathbf{i}} = \sigma_{\mathbf{i}} \; (\mathbf{r}_{\mathbf{o}}, \; \boldsymbol{\theta} \;)$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{\theta}} \Big|_{\mathbf{\theta} = \mathbf{\theta}} \mathbf{r}_{\mathbf{0}} = 0.077 | \mathbf{f}(\mathbf{r}_{\mathbf{0}}, \mathbf{\theta}_{\mathbf{0}}) = 1$$

Figure 99 Interaction between K_{II} and K_{II} , Scotchply (E_{L} = 34.5 GPa, E_{T} = 11.5 GPa), [23]

- b. Crack Normal to Fibers
 - (1) Crack Tip Damage

Composites with brittle matrix - longitudinal cracking

Figure 100 Comparison of crack tip stress ratios with strength and fracture toughness ratios for unidirectional Gr/Ep. Elastic moduli are E_L=145 GPa, E_T=11.7 GPa, G_{LT}=4.48 GPa, ν_{LT} =0.21. [24]

Composites with ductile matrix - longitudinal plastic deformation Elastic crack opening displacement (COD) at the center of crack

elastic COD =
$$\frac{\gamma_{Ya}}{E_L} \sigma$$
, $\gamma = 2 \left[2 \left(\sqrt{\frac{E_L}{E_T}} - \nu_{LT} \right) + \frac{E_L}{G_{LT}} \right]^{1/2}$ (524)

Plastic crack tip opening displacement (CTOD) [25]

plastic CTOD =
$$\frac{\pi}{2} = \frac{y^2 a}{E_L \tau_y} \sigma^2$$
, τ_y yield stress of matrix (525)
Total COD

COD = elastic COD + plastic CTOD

$$= \frac{Y a \sigma}{E_L} \left(\gamma + \frac{\pi}{2} \frac{Y}{\tau} \sigma \right) \tag{526}$$

For isotropic materials

$$\gamma = 4$$
, 2τ = σ

Figure 101 Crack opening displacement in $[O]_{8T}$ B/A1 -6061, E_L = 245 GPa, γ = 5.2. [24]

(2) Notch Sensitivity

Longitudinal cracking reduces the notch sensitivity.

Figure 102 Effect of interfacial bond on notch sensitivity of carbon/epoxy:

(a) surface treated; (b) surface untreated. [26]

	is much less effective in reducing the notch	sensitivity
than is the longitudinal cracking.		
For B/A! the notched strength i	e civen by	
ror by ar the notined strength i	is given by	
$x_n = 1 / c_0^{1/2}$		
$\frac{X_n}{X} = \frac{1}{Y} \left(\frac{c}{a+c}\right)^{1/2} ,$	c _o = 0.908 mm.	(52
(3) Work of Fracture		
	fraction / unit areal automaian	
Matrix fracture	fracture / unit crack extension	
	(528)	11.11
$\mathbf{W}_1 = \mathbf{W}_{\mathbf{m}}(1-\mathbf{v}_{\mathbf{f}})$	(528)	
711		
Fiber fracture	(530)	
$\mathbf{W_2} = \mathbf{W_f^v_f}$	(529)	141
Fiber / matrix debond		
$W_3 = 2W_d (L/d_f) v_f$	(530)	
	Figure 103 Typical fractur	
Work after debond [27]	unidirectional	
$W_4 = \frac{\pi}{3} (r_y/E_f) (L/d_f) I$	y; bond strength or friction	(5
or		
$W_4 = \frac{1}{4} (x_f^2 / E_f) Lv_f$		(5
Fiber pull-out [28]		
Fiber pull-out [28] $W_5 = \frac{2}{3} r_{\mathbf{y}} d_{\mathbf{f}} (\mathbf{L}/d_{\mathbf{f}})^2 v_{\mathbf{f}}$		(5:
Plastic work in matrix		
(1- v ₂) ²		
Plastic work in matrix $W_6 = \frac{(1-v_f)^2}{v_f} \sigma_{my} \epsilon_{my}$		(5:
$W_6 = \frac{(1-v_f)^2}{v_f} \sigma_{my} \epsilon_{my}$		(5
$W_{6} = \frac{(1 - v_{f})^{2}}{v_{f}} \sigma_{my} e_{my}$ L: maximum debond length	$L/d_f = X_f/(4\tau_y)$	(5
$W_6 = \frac{(1-v_f)^2}{v_f} \sigma_{my} \epsilon_{my}$	$L/d_f = X_f/(4\tau_y)$	(5
$W_{6} = \frac{(1 - v_{f})^{2}}{v_{f}} \sigma_{my} e_{my}$ L: maximum debond length	$L/d_f = X_f/(4\tau_y)$	(53

3. FRACTURE TOUGHNESS OF MULTIDIRECTIONAL LAMINATES

- a. Crack Tip Damage
 - (1) Nondestructive Examinations (NDE)

Transmitted light - translucent composites (Gl/Ep)
Radiograph with tetrabromoethane - Gr/Ep, B/Ep
Dye penetrant: regular, fluorescent
Ultrasonic C-scan

Reflected light - smooth surface

Ffgure 104 NDE of crack tip damage in [0/±45]2s Gr/Ep.

(2) Typical Crack Tip Damage
Subcracks along fiber directions
Delamination between subcracks

Material	Laminate	x MN/m ²	c mm	K _{c/x}	N	Range of 2s
Gr/Ep T300/5208	$[0/\pm 45]_{s}$ $[0/\pm 45]_{2s}$	541	1.372	2.076	27	5-25
	[0/90/±45] _s [0/±45/90] _s [0/90] _{4s}	454 494 637	2.540 4.419 3.175	2.825 3.726 3.158	10 12 12	5-25 2-25 2-25
Gr/Ep T300/934	[±45/0/90] _s [90/0/±45] _s	451 499	3.422	3.279 2.643	52 53	2-15 2-15
В/Ер	[0 ₂ /±45] _s [0/+45/0/-45] _s [±45/0 ₂] _s [0/+45/0/-45] _{3s}	802	2.859	2.997	13	1-13
	[0/±45/90]s [0/±45/90]4s [0/90/±45]4s	418	3.176	3.159	9	1-13
G1/Ep Scotchply	[0/±45/90] _{2s} [0/90] _{4s}	320 423	1.930 1.290	2.462 2.013	12 12	2-25 2-25
B/A1 6061-F	[0] _{8T}	2004	0.991	1.764	11	1.3-13
BSiC/Ti	[0] _{6m}	837	2.206	2.633	12	1.3-13

SECTION XI

FATIGUE AND LIFE PREDICTION

1. UNNOTCHED FATIGUE BEHAVIOR

- a. Unidirectional Laminae
 - (1) Longitudinal Fatigue

Figure 113 Constant amplitude 0° fatigue of B/Ep at RTD. R=0.1, -1, 10, X=1331 MPa, X'=2206 MPa. [31]

Failure mode

Extensive longitudinal cracking

Frequent tab debond

Failure initiation in the form of longitudinal cracking

Residual strength degradation minimal until immediately before final failure

No change of modulus in B/Ep, Gr/Ep, Gl/Ep.

Flat S-N curve and hence, large scatter.

Figure 114 Constant amplitude 90° fatigue of B/Ep at RTD. R=0.1, Y=61 MPa, Y'=276 MPa. [31]

104

105

Cycles to Failure

(3) Shear Fatigue

Figure 115 Constant amplitude ±45° fatigue of B/Ep at RTD.
R=0.1, X₄₅=133 MPa, S=X₄₅/2. [31]

b. Multidirectional Laminates

Fiber controlled laminates

Characteristics of longitudinal fatigue

Matrix controlled laminates

Characteristics of transverse or shear fatigue

Figure 116 S-N relationships of B/Ep laminates having various fraction of 0° plies, R=0.1. Maximum fatigue stress is normalized with respect to static strength. [31]

Strength,	MD-	1221	622	752	779	072	427	220
Strength,	MIPA	1331	023	154	119	972	44 (338

Figure 117 Effect of compression in fatigue of Gr/Ep laminate. [32]

Figure 119 Typical failure mode observed along edge of [0/90] laminate.

Figure 120 Change of secant modulus in fatigue of [0/±45/90]_S
Gl/Ep, E₀ = 20.3 GPa. [33]

2. NOTCHED FATIGUE

a. Failure Mode

Longitudinal cracking at notch tip more extensive than in static tension

More effective relief of stress concentration at crack tip

Figure 122 Typical crack tip damage in [0/±45]_S Gr/Ep: (a) static tension; (b) fatigue. Dotted lines represent the boundary of delamination.

Notch Sensitivity
 Residual Strength increases.

Compliance based on notch opening displacement increases. No penalty for notch.

Figure 123 Increase of residual strength and compliance in fatigue of composite laminate (schematic).

Figure 124 Notched fatigue strength normalized with respect to unnotched fatigue strength. [31]

3. APPROXIMATE PREDICTION FOR FATIGUE LIFE

a. Off-Axis Fatigue Strength

 S_L , S_T , S_S , : longitudinal, transverse, shear fatigue strength, respectively.

 $S_{\mathbf{A}}$ can be determined by applying any static failure criterion.

For example, the maximum stress criterion of Section II. 2. a. yields

$$S_{\theta}=\min \left\{ S_{L}/m^{2}, S_{T}/n^{2}, S_{S}/(mn) \right\}$$
(547)

Figure 125 S-N relationships in off-axis fatigue of [o] Gl/Ep. [34]

Assume 30° off-axis fatigue is controlled by shear failure and 60° off-axis fatigue by transverse failure. The data can be fit by

θ MPa MPa MPa MPa MPa MPa 30 7.14 67.97 3.09 29.43 60 2.29 35.85 1.72 26.89

For 0=30°, m=cos 30°, n=sin 30°,

$$S_S = mn S_{30} = -a_S log N + b_S$$

as = mn a 30, bs = mn b 30

(549)

(548)

The first Eq. gives lower fatigue strength and hence represents the S-N relation.

S-N equations based on shear failure

θ°	a ₆ , MPa	b _θ , MPa
5	35.59	338.96
10	18.07	172.10
15	12.36	117.72

Figure 126 Comparison between data and prediction for off-axis

S-N relationship of [0] Gl/Ep. [34]

Assume elastic moduli do not change in fatigue.	
Application of the maximum stress criterion to fatigue strengths lead	s to
$S_{\theta} = \min \left\{ S_{L}/k_{L}, S_{T}/k_{T}, S_{S}/k_{S} \right\}$	
$\theta = \min \left\{ S_L/k_L, S_T/k_T, S_S/k_S \right\}$	(553
where	+++++
$k_{L} = \frac{1}{2} \left[1 + \sec 2\theta - \frac{(u_{1} + \sec 2\theta) \tan^{2} 2\theta}{u_{2} + \tan^{2} 2\theta} \right]$	(554
$u_2 + tan^2 2\theta$	
$\int_{1}^{\infty} \left(u_{1} + \sec 2\theta \right) \tan^{2} 2\theta$	
$k_{T} = \frac{1}{2} \left[1 - \sec 2\theta + \frac{(u_{1} + \sec 2\theta) \tan^{2} 2\theta}{u_{2} + \tan^{2} 2\theta} \right]$	(555
$k_{S} = -\frac{1}{2} \frac{(u_{1} + \sec 2\theta) \tan 2\theta}{u_{2} + \tan^{2} 2\theta}$	
$u_2 + \tan^2 2\theta$	(556
1 - E, /E,	
$\mathbf{u}_{1} = \frac{1 - \mathbf{E}_{L} / \mathbf{E}_{T}}{1 + 2^{\nu}_{L,T} + \mathbf{E}_{T} / \mathbf{E}_{T}}$	(557
LT LT LT L'ET	
$E_{L}/G_{I,T}$	
$\ddot{\mathbf{u}}_{2} = \frac{\mathbf{E}_{\mathbf{L}}/\mathbf{G}_{\mathbf{L}\mathbf{T}}}{1 + 2^{\nu}_{\mathbf{L}\mathbf{T}} + \mathbf{E}_{\mathbf{L}}/\mathbf{E}_{\mathbf{T}}}$	(558
LT LT L'ET	
$S_{\theta} = -a_{\theta} \log N + b_{\theta}$	(559
	(33)
$a_{\theta} = a_i/k_i$ $i = L$, T , or S	(560
$b_{\theta} = b_i/k_i$	(561

Figure 128 Experimental and predicted S-N curves of [±45] laminate. [35]

Figure 129 Experimental and predicted S-N curves of [±60] laminate. [35]

Figure 130 Fatigue strength of laminate is approximately equal to the longitudinal fatigue strength multiplied by the fraction of 0° plies. [31]

a. Application of Failure Potential	
(1) General Formulation	
Probability of surviving time t under a loading history	
s(t):	
$R(t) = \exp \left[-\psi(\tau)\right]$	(563
$\tau = \frac{1}{\hat{t}} \int_{\hat{t}}^{\hat{t}} K(s(\xi)) d\xi, \hat{t} \text{ has the dimension of } t.$	
$T = \frac{1}{2} \int K(s(\xi)) d\xi$, that the dimension of t.	(564)
Failure notorial	
Failure potential $\psi(\tau) = \tau^{\alpha}$	
	(565)
Breakdown rules [36]	1544
Power law: $K(s) = (s/C_1)^{\beta}$	(566)
Exponential law: $K(s) = \frac{1}{C_2} \exp(s/C_3)$	(567)
(2) Stress Rupture	
$s(\xi) = s$ const.	
Power law breakdown rule	
$\tau = \frac{1}{\hat{t}} \int_{0}^{\hat{t}} (s/C_1)^{\beta} d\xi = (s/C_1)^{\beta} t/\hat{t}$	(568)
$\therefore R(t) = \exp \left[-(s/C_1)^{\beta\alpha}(t/\hat{t})^{\alpha} \right] = \exp \left[-(t/t_0)^{\alpha} \right]$	(569)
$(t_0/t) (s/C_1)^{\beta} = 1$	
	(570)
or $\log (t_0/\hat{t}) + \beta \log s = \beta \log C_1$: Power law (log stress - log time tion of S-N relationship)	e) representa-
ton of B-IV relationship	
Exponential breakdown rule	
$\tau = \frac{1}{2} \int_{0}^{t} \frac{1}{C_{2}} \exp(s/C_{3}) d\xi = \frac{1}{C_{2}} \exp(s/C_{3}) t/\hat{t}$	(571)
$\therefore R(t) = \exp \left\{ -\left[\frac{1}{C_2} \exp(s/C_3) \right] \frac{\alpha}{(t/t)} \right\} = \exp \left[-(t/t_0) \frac{\alpha}{t} \right]$	(572)
$(t_0/\hat{t}) \exp (s/C_3) = C_2$: Exponential (log time - log stress) re	epresentation
$\log(t_0/t) + \left(\frac{\log e}{C_0}\right) s = \log C_2$ of S-N relationship	(573)
3, 0, 7	(3.3)

In the failure range
$$\exp(x/C_3) \ll 1$$
.

$$\stackrel{\bullet}{\bullet} R(x) = \exp \left\{ -\left(\frac{C_3}{\hat{t}LC_2} \right)^{\alpha} \exp(\alpha x/C_3) \right\}$$
(584)

$$\overline{x} = \frac{C_3}{\alpha} \left[\alpha \ln(\hat{t} L C_2/C_3) - \gamma \right] \qquad \gamma: \text{ Euler constant (=0.5772)}$$
 (585)

TABLE 68 PARAMETERS FOR STRESS-RUPTURE DATA [37]

			Power Lav	w	Expon	ential Law
Strand Type	v f %	β	C ₁ MN/m ²	α	C ₃ MN/m ²	C ₂
Kevlar 49/Ep	71.5	42	2239	0.87	50.5	1.86 x 10 ¹⁹
Gr/Ep	62	78	922	0.30	10.8	8.32×10^{36}
S-Gl/Ep	65	30	2109	0.75	62.9	1.91 x 10 ¹⁴
Be/Ep	66	26	733	3.75	25.1	3.06×10^{12}

f = 1 hr

TABLE 69 AVERAGE TENSILE STRENGTH AND COEFFICIENT OF VARIATION [37]

Character d. Thomas	L		Average Stre	ength	Coefficient of Variation	
Strand Type	MN/m ² /h	Power	Exponential	Experiment	Power	Experiment
Kevlar 49/Ep	2.96 x 10 ⁵	3222	2645	2940	.08	0.025
Gr/Ep	6.32×10^{5}	947	866	915	.05	0.05
S-G1/Ep	1.34×10^{5}	3374	2502	2560	.044	0.036
Be/Ep	5.46 x 10.5	1343	968	769	.012	0.005

(1) Definitions [38]

Objects that follow the same law of behavior are similar.

Objects that follow different laws of behavior are nonsimilar.

Two objects are identical if there is an exact duplication of the atoms of the first one in the second.

Figure 132 Life distribution of similar objects: (a) similar deterioration; (b) nonsimilar deterioration.

Figure 133 Life distribution of nonsimilar objects: (a) similar deterioration;
(b) nonsimilar deterioration.

(2) Relationship Between Static Strength and Life of Similar Objects With Similar Deterioration

fatigue stress

(a) Pairing of static strength and life

Static Strength Data

$$s \leq x_1 \leq x_2 \leq \dots \leq x_n$$
, s :

Life Data

$$t_1 \le t_2 \le --- \le t_n$$

Strength and life of jth object : (x_j, t_j)

Figure 134 Plot of (t, x) for [4] Gl/Ep subjected to constant stress.[39]

(b) Similarizing operation (proof testing)

Proof load to x_i . Then the minimum guaranteed life corresponding to x_i is t_i

Figure 135 Effect of similarizing operation on life distribution.

(c) Mathematical formulation Determine strength and life reliability functions $R_s(x)$ and $R_t(t)$ Relationship between x and t is obtained from $\overline{R}_{s}(x|s) = R_{l}(t)$ (586)where $R_s(x|s) = R_s(x) / R_s(s)$ (587)In particular, if $R_s(x) = \exp\left[-(x/x_0)^{\alpha_s}\right]$ (588) $R_{\ell}(t) = \exp \left[-(t/t_0)^{\alpha} \ell\right]$ (589)then $t = t_0 \left[(x/x_0)^{\alpha_s} - (s/x_0)^{\alpha_s} \right]^{1/\alpha_{\ell}}$ (590)In terms of residual strength at t $\overline{R}_s(x|s) = R_r(x_r)$ (591)where $R_{r}(s) = R_{\ell}(t)$ (592)(11) (16) (18) NO. OF CYCLES Figure 136 Relation between static strength and fatigue life of [o] Gr/Ep: $\alpha_s = 7.77$, $x_o = 1.44$ GPa, $\alpha_t = 0.74$, $t_o = 1.6 \times 10^6$ cycles, $S_{\text{max}}/x_0 = 0.61$. Results of proof testing are also shown. [40]

- c. Strength Degradation Model [39,41]
 - (1) General Formulation

x: ideal static strength

 x_r : residual strength at time t under a loading history s(t)

7: material age

Introduce normalized variables (nondimensional)

$$\overline{x}_{r} = x_{r}/\hat{x}$$
, $\overline{t} = t/\hat{t}$, $\overline{x}_{s} = x_{s}/\hat{x}$ (593)

$$\frac{dx}{r} = -x \frac{1-\alpha_r}{r}, \quad \alpha_r \ge 1$$
(594)

$$\frac{\overline{x}}{s} \frac{\alpha_{r}}{r} - \frac{\overline{x}}{r} \frac{\alpha_{r}}{r} = \alpha_{r} \tau$$
 (595)

$$d\tau = K(s, \overline{t}) d\overline{t}$$
 (596)

Assume

$$K(s, \overline{t}) = \left(\frac{s}{C_1}\right)^{\beta} \overline{t}^{\alpha} \ell^{-1}$$
(597)

Assume a Weibull distribution for static strength

$$R_{s}(\overline{x}_{s}) = \exp \left[-\left(\frac{\overline{x}_{s}}{x_{os}}\right)^{\alpha_{s}} \right]$$
 (598)

$$\therefore R_{\mathbf{r}}(\overline{\mathbf{x}}) = R_{\mathbf{s}}(\overline{\mathbf{x}}) = \exp \left[-\left(\frac{\overline{\mathbf{x}}_{\mathbf{r}}^{\alpha_{\mathbf{r}}} + \alpha_{\mathbf{r}}\tau}{\overline{\mathbf{x}}_{\mathbf{o}\mathbf{s}}^{\alpha_{\mathbf{r}}}} \right)^{\alpha_{\mathbf{s}}/\alpha_{\mathbf{r}}} \right]$$
 (599)

Failure occurs when $x_r(t) = s(t)$.

(2) Tension With Constant Loading Rate

$$s(t) = Lt = (L\hat{t}) \overline{t}$$
 (600)

$$\tau = \int_{0}^{\overline{t}} \left(\frac{\underline{L}\hat{t}}{C_{1}}\right)^{\beta} \xi^{\beta + \alpha_{k} - 1} d\xi = \frac{(\underline{L}\hat{t}/C_{1})^{\beta}}{\beta + \alpha_{k}} \overline{t}^{\beta + \alpha_{k}}$$
(601)

$$\therefore \overline{x}_{r}^{\alpha} = \overline{x}_{s}^{\alpha} - \frac{\alpha_{r} (L\hat{t}/C_{1})^{\beta}}{\beta + \alpha_{\ell}} = \frac{\pi_{r} (L\hat{t}/C_{1})^{\beta}}{\beta + \alpha_{\ell}}$$
(602)

At failure,
$$\bar{x}_r = s(t)/\hat{x} = (L\hat{t}/\hat{x})\bar{t}$$
 (603)

$$\frac{1}{x} = \frac{\alpha_r}{x} = \frac{\alpha_r}{x} - \frac{\alpha_r \hat{x} \beta + \alpha_\ell}{(\beta + \alpha_\ell) (L \hat{x})^{\alpha_\ell} C_1^{\beta}} = \frac{\beta + \alpha_\ell}{x} \tag{604}$$

 $x \xrightarrow{r} x_s$ as L $\xrightarrow{} \infty$: x_s is the strength under a very high loading rate.

$$R_{r}(\overline{x}_{r}) = \exp \left[-\frac{1}{\overline{x}_{os}} \left(\frac{1}{\overline{x}_{r}} + \frac{\alpha_{r} \hat{x}^{\beta} + \alpha_{\ell}}{(\beta + \alpha_{\ell}) C_{1}^{\beta} (L \hat{t})^{\alpha_{\ell}}} \overline{x}_{r}^{\beta + \alpha_{\ell}} \right)^{\alpha_{s}/\alpha_{r}} \right]$$
(605)

If the second term is negligible compared with the first term, which can happen when, e.g., L is large (fast loading rate), then

$$\overrightarrow{x}_{\mathbf{r}} \approx \overrightarrow{x}_{\mathbf{s}} \tag{606}$$

$$\therefore R_{\mathbf{r}}(\overrightarrow{x}_{\mathbf{r}}) = \exp \left[-\left(\frac{\overrightarrow{x}_{\mathbf{r}}}{\overrightarrow{x}_{\mathbf{o}s}} \right)^{\alpha_{\mathbf{s}}} \right]$$

If the first term is negligible, which can happen when, e.g., L is small (slow loading rate), then

$$\therefore R_{\mathbf{r}}(\mathbf{x}_{\mathbf{r}}) = \exp \left[-\left(\frac{\mathbf{x}_{\mathbf{r}}}{\mathbf{x}_{\mathbf{or}}}\right)^{(\boldsymbol{\beta} + \boldsymbol{\alpha}_{\mathbf{i}})\boldsymbol{\alpha}_{\mathbf{s}}/\boldsymbol{\alpha}_{\mathbf{r}}} \right]$$
(608)

$$x_{or} = \left[\frac{\widehat{(t L)}^{\alpha_{\ell}} (\beta + \alpha_{\ell}) C_{1}^{\beta_{\overline{X}}} \alpha_{r}}{\alpha_{r}} \right]^{1/(\beta + \alpha_{\ell})}$$
(609)

Note that, if $\alpha_r = \alpha_r = 1$, then Eq. (608) is equivalent to Eq. (579).

(3) Stress Rupture

$$s(t) = s \quad const. \tag{610}$$

$$\tau = (s/C_1)^{\beta} \bar{t} \alpha_{\ell}/\alpha_{\ell} \tag{611}$$

$$R_{r}(\overline{x}_{r}) = \exp \left[-\left(\frac{\overline{x}_{r}^{\alpha_{r}} + (\alpha_{r}/\alpha_{\ell}) (s/C_{1})^{\beta} \overline{t}^{\alpha_{\ell}}}{\overline{x}_{cs}^{\alpha_{r}}} \right)^{\alpha_{s}/\alpha_{r}} \right]$$
(612)

$$R_{\ell}(\overline{t}) = R_{r}(s/x)^{\hat{}} = \exp \left[-\left(\frac{(s/x)^{\hat{}})^{\alpha_{r}} + (\alpha_{r}/\alpha_{\ell}) (s/C_{1})^{\beta_{r}} - \alpha_{\ell}}{-\alpha_{r}} \right)^{\alpha_{s}/\alpha_{r}} \right]$$
(613)

In the fatigue failure region, the first term can be neglected.

$$R_{L}(\overline{t}) = \exp \left[-\left(\frac{\overline{t}}{T_{o}}\right) \frac{\alpha_{L} \alpha_{S} / \alpha_{L}}{T_{o}} \right]$$

$$= \frac{\overline{t}_{o}}{t_{o}} (s/C_{1})^{\beta / \alpha_{L}} = \left(\frac{\alpha_{L}^{r}}{c_{o}^{R}} \alpha_{L} / \alpha_{L}^{r}\right)^{1/\alpha_{L}}$$
(614)

Note that, if $\alpha_{L} = \alpha_{L}^{r} = 1$, then Eq. (614) is equivalent to Eq. (559).

(4) Constant Amplitude Fatigue
$$x : \text{realistic static strength}$$

$$s(n) = t(S_{\max}, R, n)$$

$$K(s, n) = \left(\frac{S_{\max}}{C_{1}}\right)^{\beta_{n}} \alpha_{L}^{-1}$$
(616)
$$K(s, n) = \left(\frac{S_{\max}}{C_{1}}\right)^{\beta_{n}} \alpha_{L}^{-1}$$
(617)
$$x^{\alpha_{L}} - x^{\alpha_{L}} - \frac{\alpha_{L}}{\alpha_{L}} \left(\frac{S_{\max}}{C_{1}}\right)^{\beta_{n}} \alpha_{L}$$
(618)
$$R_{L}(\overline{x}) \Rightarrow \overline{R}_{S}(\overline{x}_{S})^{\frac{1}{2}} \overline{S}_{\max} \Rightarrow \exp \left[-\frac{(\overline{x}_{L}^{\alpha_{L}} + (\alpha_{L} / \alpha_{L}))(S_{\max} / C_{1})^{\beta_{n}} \alpha_{L}}{\overline{x}_{o}} \right]$$
(619)
$$R_{L}(N) \approx \exp \left[-\left(\frac{N}{N_{O}}\right) \frac{\alpha_{L} \alpha_{S} / \alpha_{L}}{\overline{x}_{o}} \right]$$
(620)
$$N_{O}(S_{\max} / C_{1})^{\beta / \alpha_{L}} = (\overline{x}_{O}^{\alpha_{L}} \alpha_{L} / \alpha_{L}^{\gamma_{L}})^{1/\alpha_{L}}$$
(621)
$$R_{L}(\overline{x}) \Rightarrow \exp \left[-\left(\frac{\overline{x}_{L}}{\overline{x}_{O}}\right)^{\beta_{L}} \frac{\alpha_{L}}{\overline{x}_{O}} \right]$$
(622)
$$= \exp \left[-\left(\frac{\overline{x}_{L}}{\overline{x}_{O}}\right)^{\alpha_{L}} - \left(\frac{\overline{x}_{L}}{\overline{x}_{O}}\right)^{\alpha_{L}} + \left(\frac{\overline{x}_{\max}}{\overline{x}_{O}}\right)^{\alpha_{L}} \right]$$
(622)

$S_{\max}) = \exp\left[-\frac{\left(\frac{x_{r}}{x}\right)^{\alpha_{s}}}{\left(\frac{x_{r}}{x}\right)^{\alpha_{s}}} + \frac{\left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}}{\left(\frac{x_{r}}{x}\right)^{\alpha_{s}}}\right] $ (6) hat $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}} + \alpha_{r}\left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{r}}\right)^{\alpha_{s}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{s}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (6) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (7) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (8) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (9) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (10) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (11) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (12) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (13) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (14) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (15) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (16) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (17) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (18) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (19) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (19) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (19) $I = \exp\left[-\frac{\left(\frac{x_{r}}{x_{r}}\right)^{\alpha_{r}}}{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}} + \left(\frac{S_{\max}}{x_{o}}\right)^{\alpha_{s}}} + \left(\frac{S_{\max}}{x_{o}}$		$R_{\ell}(N) = \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha \ell} \right]$	(623)
hat $ \frac{1}{(ax)} = R_{k}(N) \qquad (6) $ $ \frac{1}{(ax)} = \exp \left[-\frac{\left(\frac{\alpha}{x_{r}} + \alpha_{r}(S_{max}/C_{1})^{\beta}_{n}\right)^{\alpha_{s}}/\alpha_{r}}{x^{\alpha_{s}}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}} \right] \qquad (6) $ $ = \exp \left[-\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}}}{x^{\alpha_{s}}} + \left(\frac{n}{N_{o}}\right)^{\alpha_{s}}\right]^{\alpha_{s}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}} \right] \qquad (6) $ $ = \exp \left[-\frac{\left(\frac{N}{N_{o}}\right)^{\alpha_{s}}/\alpha_{r}}{x^{\alpha_{s}}} \right] \qquad (6) $ $ = \exp \left[-\frac{\left(\frac{N}{N_{o}}\right)^{\alpha_{s}}/\alpha_{r}}{x^{\alpha_{s}}} \right] \qquad (6) $ $ = \exp \left[-\frac{\left(\frac{N}{N_{o}}\right)^{\alpha_{s}}/\alpha_{r}}{x^{\alpha_{s}}} \right] \qquad (6) $ $ = \exp \left[-\frac{\alpha_{s}}{N_{o}}\right]^{\alpha_{s}}/\alpha_{r} \qquad (6) $ $ = \exp \left[-\frac{\alpha_{s}}{N_{o}}\right]^{\alpha_{s}}/\alpha_{s} \qquad $		$N_{o}(S_{max}/C_{1}) = (x_{o} \alpha_{\ell}/\alpha_{s})^{1/\alpha_{\ell}}$	(624
$\begin{array}{l} (1) & = & \exp \left[-\frac{\left(\frac{\alpha}{x_{r}} + \alpha_{r} (S_{max}/C_{1})^{\beta}_{n}\right)^{\alpha_{s}/\alpha_{r}}}{\frac{\alpha}{x_{o}}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}} + \left(\frac{n}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}}}{\frac{\alpha}{x_{o}}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}}\right] \\ & = & \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_$		$\overline{R}_{r}(x_{r} S_{max}) = \exp \left[-\left(\frac{x_{r}}{x_{o}}\right)^{\alpha}s + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha}s\right]$	(625
$ \frac{1}{1} = \exp \left[-\frac{\left(\frac{\alpha}{x_{r}} + \alpha_{r} (S_{max}/C_{1})^{\beta}_{n}\right)^{\alpha_{s}/\alpha_{r}}}{\frac{\alpha}{x_{o}}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}} \right] \\ = \exp \left\{ -\left(\frac{\left(\frac{x_{r}}{x_{o}}\right)^{\alpha_{r}} + \left(\frac{n}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}}}{\frac{x_{o}}{x_{o}}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}}\right\} \right\} (6) $ $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}}\right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{x_{o}}\right)^{\alpha_{s}/\alpha_{s}} \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right) \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right] $ (6) $ = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} + \left(\frac{S_{max}}{N_{o}}\right)^{\alpha_{s}/\alpha_{s}} $		Note that	
$0 = \exp \left[-\frac{(\frac{\alpha}{x_r} + \alpha_r (S_{max}/C_1)^{\beta}_n)^{\alpha} s'^{\alpha}_r}{\frac{\alpha}{x_o}} + (\frac{S_{max}}{x_o})^{\alpha} \right]$ $= \exp \left[-\left(\frac{(\frac{\pi}{x_r})^{\alpha}}{\frac{\pi}{x_o}}\right)^{\alpha} + (\frac{n}{N_o})^{\alpha} s'^{\alpha}_r + (\frac{S_{max}}{x_o})^{\alpha} \right]$ $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (6) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (6) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (7) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (8) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (9) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (10) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (11) $= \frac{\alpha}{N_o} s'^{\alpha}_r s'^{\alpha}_r \right]$ (12) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (13) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (14) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (15) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (16) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (17) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (18) $= \exp \left[-\left(\frac{N}{N_o}\right)^{\alpha} s'^{\alpha}_r \right]$ (19) $= \exp \left[-$		$R_r(\vec{S}_{max}) = R_\ell(N)$	(626
$= \exp \left\{ -\left(\frac{x}{r}\right)^{\alpha} + \left(\frac{n}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{max}\right)^{\alpha} \right\} \right\} $ $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}$	(1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$= \exp \left\{ -\left(\frac{x}{r}\right)^{\alpha} + \left(\frac{n}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{max}\right)^{\alpha} \right\} \right\} $ $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}\right)^{\alpha} + \left(\frac{s}{N_{o}}$		$R_{r}(\bar{x}_{r}) = \exp \left[-\frac{\left(\bar{x}_{r} + \alpha_{r}(S_{max}/C_{1})^{\beta_{n}}\right)^{s} + \left(\frac{S_{max}}{x_{o}}\right)^{s}}{-\frac{\alpha_{s}}{x_{o}}} + \left(\frac{S_{max}}{x_{o}}\right)^{s} \right]$	
$= \exp \left[-\left(\frac{N}{N_0} \right)^{\alpha_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6) $= \exp \left[-\left(\frac{N}{N_0} \right)^{\beta_s / \alpha_r} \right] $ (6)			
th and fatigue properties of $\begin{bmatrix} 0/45/90/-45_2/90/45/0 \end{bmatrix}_s$ Gr/Ep. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$= \exp \left\{ -\left[\left(\frac{\mathbf{r}}{\mathbf{x}} \right)^{1} + \left(\frac{\mathbf{n}}{\mathbf{N}_{0}} \right) \right] + \left(\frac{\mathbf{max}}{\mathbf{x}_{0}} \right)^{2} \right\}$	(627
th and fatigue properties of $[0/45/90/-45_2/90/45/0]_s$ Gr/Ep. $\begin{array}{c c c c c c c c c c c c c c c c c c c $		$R_{\ell}(N) = \exp \left[-\left(\frac{N}{N_{o}}\right)^{\alpha_{s}/\alpha_{r}} \right]$	(628
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$N_o(S_{max}/C_1)^{\beta} = x_o^{\alpha}/\alpha_r$	(629
(a) 24.12 487 24.12 1.089 21.68 6.153 6.8948 (b) 24.12 487 22.16 1 19.92 6.231 e Damage Model at S_{max1} followed by n_2 cycles at S_{max2} .		Strength and fatigue properties of [0/45/90/-452/90/45/0] Gr/Ep.	
(b) 24.12 487 22.16 1 19.92 6.231 e Damage Model at S_{max1} followed by n_2 cycles at S_{max2} . $\frac{\alpha_r}{\alpha_\ell} \left(\frac{S_{max1}}{C_1} \right)^{\beta} \frac{\alpha_\ell}{n_1}$ $\alpha_r \left(\frac{S_{max1}}{C_1} \right)^{\beta} \alpha_\ell$ (6)		α_{s} α_{r} , MPa α_{r} α_{t} β α_{1} , MPa	Ŷ, MPa
e Damage Model at S_{max1} followed by n_2 cycles at S_{max2} . $= \frac{\alpha_r}{\alpha_\ell} \left(\frac{S_{\text{max1}}}{C_1} \right)^{\beta} \frac{\alpha_\ell}{n_1}$ $= \frac{\alpha_r}{\alpha_\ell} \left(\frac{S_{\text{max1}}}{C_1} \right)^{\beta} \frac{\alpha_\ell}{n_2}$ (6)			6.8948
$= \frac{\alpha_{r}}{\alpha_{\ell}}$	(5) C	Strength and Model (a) Model (b)	1 fatigue properties of [0/45/90/-45 ₂ /90/45/0] _s Gr/Ep. α _s χ _o , MPa α _r α _k β C ₁ , MPa 24.12 487 24.12 1.089 21.68 6.153 24.12 487 22.16 1 19.92 6.231
$= \frac{\alpha_{r}}{\alpha_{\ell}} \left(\frac{S_{m}}{C} \right)$	Mod	el (b) 24.1	2 487 22.16 1 19.92 6.231 Model
	cycles a	at S _{max1} follow	wed by n ₂ cycles at S _{max2} .
a Smare B a	r - x	$r = \frac{\alpha_r}{\alpha_\ell} \left(\frac{S_{\max l}}{C_1} \right)^{\beta} n_l$	
= I maxe n		α	

Figure 137 Weibull plot of normalized life data. [32]

Figure 138 Experimental correlation of analytical models in terms of residual strength.

[32]

n = 364,000 for 290 MPa = 31,400 for 345 MPa

$$\begin{array}{c}
\vdots \quad \underset{x}{\alpha_{T}} = \frac{\alpha}{x_{T}} + \frac{\alpha}{\alpha_{L}} \left\{ \left(\frac{S_{\max}}{S_{1}} \right)^{\beta} \alpha_{L} + \left(\frac{S_{\max}}{S_{1}} \right)^{\beta} \alpha_{L} \right\} \\
\vdots \quad \underset{R_{T}(\overline{X}_{T}^{2})}{R_{T}^{2}} = \exp \left\{ \frac{\left(\frac{\alpha}{x_{T}^{2}} + (\alpha_{T}/\alpha_{L}^{2}) \left[S_{\max} \right] / C_{1} \right)^{\beta} \alpha_{L}^{1} + (S_{\max} 2 / C_{1})^{\beta} \alpha_{L}^{2}}{\alpha_{S}} \right\}^{\alpha_{S}} \\
\vdots \quad \underset{R_{L}}{R_{T}(\overline{X}_{T}^{2})} = \exp \left\{ -\left(\frac{\alpha}{N_{O}} \right)^{\alpha} - \left(\frac{N_{O}^{2}}{N_{O}^{2}} \right)^{\alpha} \right\} \right\} \\
\vdots \quad \underset{N_{O}}{R_{S}} = \alpha_{S} \\
\vdots \quad \underset{N_{O}}{R_{L}(N_{O}^{2})} = \exp \left[-\left(\frac{n_{1}}{N_{O}} \right)^{\alpha} - \left(\frac{N_{2}^{2}}{N_{O}^{2}} \right)^{\alpha} \right] \\
\vdots \quad \underset{N_{O}}{R_{S}} = \alpha_{S} \\
\vdots \quad \underset{N_{O}}{R_{L}(N_{O}^{2})} = \exp \left[-\left(\frac{n_{1}}{N_{O}} \right)^{\alpha} + \left(\frac{N_{2}^{2}}{N_{O}^{2}} \right)^{\alpha} \right] \\
\vdots \quad \underset{N_{O}}{R_{S}} = 1 \\
\vdots \quad \underset{N_{O}}{R_{L}(N_{O}^{2})} = \exp \left[-\left(\frac{n_{1}}{N_{O}} + \frac{N_{2}^{2}}{N_{O}^{2}} \right)^{\alpha} \right] \\
\vdots \quad \underset{N_{O}}{R_{S}} = 1 \\
\vdots \quad \underset{N_{O}}{R_{L}(N_{O}^{2})} $

Figure 139 Distribution of N₂: theory and data.[31]

SECTION XII

ENVIRONMENTAL EFFECTS ON COMPOSITES

1. HEAT CONDUCTION

a. Formulation

Heat Transfer (temperature effects)

$$q = - K \nabla T$$

(638)

One-dimensional steady

$$q_x = + K_x \frac{T_1 - T_2}{L}$$

(639)

Fiber

Composite Materials

$$K_{x} = K_{11} \cos^{2} \alpha + K_{22} \sin^{2} \alpha$$
 (640)

l l v x

Approximations $(v_f < 0.785)$

$$K_{11} = (1-v_f)K_m + v_fK_f$$
 (641)

(642)

$$K_{22} = K_{\text{m}} \left((1 - 2\sqrt{v_{\text{f}}/\pi}) + \frac{1}{B_{\text{K}}} \right) = \sqrt{1 - B_{\text{K}}^2 v_{\text{f}}/\pi} \quad \tan^{-1} \frac{\sqrt{1 - (B_{\text{K}}^2 v_{\text{f}}/\pi)}}{1 + \sqrt{B_{\text{K}}^2 v_{\text{f}}/\pi}} \right)$$

$$B_{K} = 2\left(\frac{K_{m}}{K_{\epsilon}} - 1\right) \tag{643}$$

Input: K, K, v, a

Output: K₁₁, K₂₂, K_x

Thermal conductivities of selected materials

K - BTU/hr/ft²/°F/in; room temperature

Resins		Filaments	
	<u>K</u>		K
Phenolic	1.4	Carbon fabric	40.0
Phenolic, SC1008	1.5	Glass fabric	7.5
Polyethylene	1.7	Graphite fabric	1000.0
		Quartz fabric	7.5
		Silica fabric	7.5

$$D_{22} = D \left\{ \left(1 - 2 \sqrt{\frac{v_f}{\pi}} \right) D_m + \frac{1}{B_D} \left[\pi - \frac{4}{\sqrt{1 - \frac{B_D v_f}{\pi}}} \tan^{-1} \frac{\sqrt{1 - B_D v_f / \pi}}{1 + B_D \sqrt{v_f / \pi}} \right] \right\}$$
(652)

$$B_{D} = 2\left(\frac{D_{m}}{D_{f}} - 1\right) \tag{653}$$

For $D_f \ll D_m$

$$D_{x} = D_{x} \left[(1 - v_{f}) \cos^{2} a + (1 - 2\sqrt{v_{f}/\pi}) \sin^{2} a \right]$$
 (654)

Input: D, D, v, a

Output: D₁₁, D₂₂, D_x

b. Examples

- (1) Both sides of a 12.5 mm thick Graphite T-300 Fiberite plate are exposed to air at 350° K and 90 percent humidity. The initial moisture concentration is uniform inside the plate. The initial moisture content of the plate is 0.5 percent. The diffusivities: D_{11} and D_{22} are given in the accompanying figure (v_f =0.68). The constants a and b are 0.0014 and 2, respectively.
 - a) Estimate the time required to reach one percent moisture content
 - b) Estimate the time required to reach at least 99.9% of the maximum possible moisture content
 - c) Estimate the maximum possible moisture content inside the material
 - d) Estimate the moisture content in 5 years
 - e) Draw the moisture distribution inside the material after 5 years

Perform the calculations for fiber orientations $\alpha = 0$, 30, 60, and 90 degrees.

Figure 140 Change of diffusivity with temperature

- (2) The plate described in the previous example is exposed to air on one side only. The other side of the plate is insulated. Repeat the calculations for this plate.
- (3) The initial moisture distribution is uniform inside a 12.5 mm thick Graphite T-300-Fiberite 1034 plate. The initial moisture content of the plate is one percent. The plate is then exposed on both sides to humid air at 333°K and 10% relative humidity. Estimate the

moisture content of the plate after 10 days. The fiber volume fraction is $v_f = 0.68$, the constants a and b are 0.0014 and 2, respectively. The diffusivity of the resin is $D_m = 1.6 \times 10^{-6}$ mm² s⁻¹. Perform the calculations for fiber orientations a = 0, 30, 60, and 90 degrees.

 $D_{x} = \pi \left(\frac{h}{4c_{\infty}}\right)^{2} \left(\frac{\overline{c}_{2} - \overline{c}_{1}}{\sqrt{t_{2}} - \sqrt{t_{1}}}\right)^{2}$

Edge effects negligible [42]

for a) accelerated test procedures

b) edge effects corrections

Observations (approximations)

$$D \cong f(T)$$
 (but not M?)
 $c_{\infty} \cong f(H)$ (but not T?)

$$c_{\infty} = aH^b$$

(656)

Present information b = 1~2

d. Multilayered-Unsteady Problem

One Dimensional

Temp same on both sides, or

One side insulated

Numerical Solution ("W8GAIN")

Input: T(t), $H_L(t)$, $H_R(t)$

Initial moisture distribution

D(T), c_{∞} (H), K(T), ρ , h (for each layer)

Output:

Total Weight Gain

(As a Weight Gain of Each Layer

Fn of Time) Moisture Distribution in Each Layer

TABLE 70 SUMMARY OF EXPERIMENTAL DATA ON THE EFFECTS OF MOISTURE AND TEMPERATURE ON THE ULTIMATE TENSILE STRENGTH OF COMPOSITES

		-		te Lay-	UP OF			
Composite	Reference	0	0	π	/4		00	Remarks
		Moist	Temp	Moist	Temp	Moist	Temp	
					-			
Thornel 300/	Shen &	L	N	L	N	S	S	
Fiberite 1034	Springer 1976							
Hercules AS-5/ 3501	Browning et al 1976	N	N	N	N	S	S	
3301								
	Verette 1975	N	N	N		S	S	Limited data (2-3 points)
	Kerr et al	1	N		N	-	S	Two data points
	1975							for 900 laminates
	Kim &		-	N	N	-	-	
	Whitney							
	1976							
Thornel 300/	Hofer	L	L	N	L	S	S	
Narmco 5208	et al 1975							
	Husman	-	-	-		S	L	
	1976							
Modmor II/	Hofer	N	L	N	L	S	S	
Narmco 5206	et al 1974							
Courtaulds HMS/	Hofer	N	N	N	N	S	S	Very scattered
Hercules 3002M	et al 1974			-				data for 900
		-		-				laminates
HT-S/ERLA-	Browning	1		L	s	-	-	Only two data
4617	1972							points for
								temperature
HT-S/	Browning	-		N	N		-	
Fiberite X-911	1972							
HT-S/U.C.C.X-	Browning		1-1	L	N			
2546	1972							
PRD 49/	Hanson		L	11-1	111			
ERLB-4617	1972	1		1	1		1	
HT-S/(8183/137-	Hertz		-	11.	+-1-1	S	S	
NDA-BF3:MEA)	1973			11-	+		++-	
HT-S/Hysol	Browning	1		N	S		-	Only two data
ADX-516	1972			11.	-			points for
								temperature
Hercules HT-S/	Kerr et al		N		N		N	Only two data
710 Polyimide	1975							points for 700
								laminates

		1	amina	te Lay-	Up Ori	entation	1	
Composite	Reference	C	0	π	/4	9	00	Remarks
		Moist	Temp	Moist	Temp	Moist	Temp	
HT-\$/P13N	Browning	-		-	L	-	-	
Polyimide	1972							
Boron/AVCO	Hofer	L	N	L	L	S	S	
5505	et al 1974							
Boron/Narmco 5505	Kaminski 1973	-	L	-	1	-	S	
	Browning 1972	1 -	-	N	N	-	- 1	

(b) L = Little effect (<30%)

(c) S = Strong effect (>30%)

= Negligible effect

Figure 141 Effects of temperature and moisture on strengths of T300/1034 Gr/Ep (v_f = 0.68).

3. TRANSIENT ANALYSIS

Figure 142 Input to transient analysis.

TIME, HOURS

Figure 143 Weight gain over 20 years for 1/2" hybrid.

SECTION XIII

TIME DEPENDENCE IN POLYMER DEFORMATION

1. LINEARLY VISCOELASTIC CHARACTERIZATION

- a. Uniaxial, Homogeneous Deformation; Isotropic Solid
 - (1) Relaxation behavior (prescribe step strain)

 $\frac{\sigma(t)}{\varepsilon} = E_r(t)$; Relaxation Modulus

material (657)

(2) Creep behavior (prescribe step stress)

(3) Non-simple histories

sum
of
small (infinitesimal)
steps

(659)

$$\sigma(t) = \varepsilon_0 H(t) + \int_0^t E_r(t-\xi) \frac{d\varepsilon(\xi)}{d\xi} d\xi$$

 $\varepsilon(t) = \sigma_0 D(t) + \int_0^t D_c(t-\xi) \frac{d\sigma(\xi)}{d\xi} d\xi$ (660)

$$\int_{0+}^{t} E_{\mathbf{r}}(t-\xi) \frac{dD(\xi)}{d\xi} d\xi = 1 \quad \text{or} \quad \int_{0+}^{t} E_{\mathbf{r}}(t-\xi) D_{\mathbf{c}}(\xi) d\xi = t$$
 (661)

(4) Example

Find the stress response in a uniaxial constant strain rate test

$$\varepsilon(t) = R \cdot t$$

Approximate graphical construction or analytical $E_r(t) = 4 + 50 e^{-t/3}$ plot answer

(5) Homogeneous shear deformation (totally analogous)	
Relaxation modulus in shear µ _r (t)	
Creep compliance in shear J _C (t)	
Shear stress $\tau(t) = 2\varepsilon_s \mu_r(t) + 2\int_0^t \mu_r(t-\xi) \frac{d\varepsilon_s}{d\xi} d\xi$	(662
Shear strain $2\varepsilon_{s}(t) = \tau_{o_{c}}J_{c}(t) + \int_{0}^{t} J_{c}(t-\xi) \frac{d\tau}{d\xi} d\xi$	(663)
(6) Cyclic deformation	
$\varepsilon_{s}(t) = \varepsilon_{os} \cos \omega t (+ i \varepsilon_{os} \sin \omega t = \varepsilon_{os} e^{i\omega t})$	(664)
simple example	
$\mu(t) = \mu_{\infty} + \mu_{1} e^{+t/t} 1$	(665)
$\tau(t) = 2\varepsilon_{os} \left[\mu(t) - \mu_{\infty} \right] - 2\varepsilon_{os} \qquad \frac{\omega^{2} t_{1}^{2} \mu_{1}}{1 + \omega^{2} t_{1}^{2}} e^{-t/t_{1}} - 2i\varepsilon_{os} \qquad \frac{\omega t_{1}}{1 + \omega}$	-t/t ₁
os $1+\omega t_1$ os $1+\omega t_1$ os $1+\omega t_2$	2 _{t1} e
$+ 2\epsilon(t) \left\{ \mu_{\infty} + \mu_{1} \frac{\omega^{2} t_{1}^{2}}{1 + \omega^{2} t_{1}^{2}} + i \mu_{1} \frac{\omega t_{1}}{1 + \omega^{2} t_{1}^{2}} \right\}$	
$1+\omega^2 \mathbf{t}_1^2$	(666)
Complex modulus	
$\mu^{*}(\omega) = \mu'(\omega) + i \mu''(\omega)$ $\mu'(\omega) = \mu_{\infty} + \mu_{1} \frac{\omega^{2} t_{1}^{2}}{1 + \omega^{2} t_{1}^{2}}$	(667)
$\mu'(\omega) = \mu + \frac{\omega^2 t_1^2}{1}$	(00.7)
$1 + \omega^2 t_1^2$	(668)
$\mu''(\omega) = \mu_1 \frac{\omega t_1}{1 + \omega^2 t_1^2}$	
$1+\omega^2 t_1^2$	(669)
$\mu(\omega) = \left \mu^*(\omega) \right = \sqrt{\left(\mu'\right)^2 + \left(\mu''\right)^2} \tan \Delta(\omega) = \frac{\mu''(\omega)}{2}$	
$\mu(\omega) = \left \mu^*(\omega)\right = \sqrt{(\mu')^2 + (\mu'')^2} \qquad \tan \Delta(\omega) = \frac{\mu''(\omega)}{\mu'(\omega)}$	(670)
Energy loss per cycle (steady state)	
$\mu^*(\omega) \cdot J^*(\omega) = 1 ; J^* = \frac{\mu^2}{2} - i \frac{\mu^{1}}{2}$	
$\mu^*(\omega) \cdot J^*(\omega) = 1 ; J^* = \frac{\mu^2}{2} - i \frac{\mu''}{2}$ μ μ J^*	(671)
J ¹ J ¹	
$\tau(t) = \sum_{n=1}^{\infty} \tau_n \sin \frac{2n\pi}{T} t$	
n=1 n T	(672)

	(-11)	fc (4)	C (4)	0 7	(c (n))	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$C_{12}^{(t)}$	C ₂₂ (t)	0 *	$\left\{ \begin{array}{l} \varepsilon_{\mathbf{x}}(t) \\ \varepsilon_{\mathbf{y}}(t) \\ \varepsilon_{\mathbf{xy}}(t) \end{array} \right\} \text{plane str}$	ess (682
	T _{xy} (t)	-L o	0	C ₄₄ (t)	$\left[\epsilon_{xy}^{(t)}\right]$	
				++++		
			4444			
-						-
						+

2. EFFECT OF TEMPERATURE ON TIME DEPENDENCE

a. WLF Equation

 $\text{Log } \textbf{E}_{\mathbf{r}}(t) \sim \text{Absolute temperature towards rubbery domain}$ Short time not well known

 $\text{Log E}_{\mathbf{r}}(t)$

window

log a_T

To

(683)

WLF Equation Log $\alpha_{T} = \frac{-C_{1}(T-T_{R})}{C_{2} + (T-T_{R})}$

 $C_{1} \stackrel{!}{=} 8.86$ $C_{2} \stackrel{!}{=} 102$ $T_{R} \stackrel{!}{=} T_{g} + 50$

b. Glass Transition Temperature

Figure 147 Determination of glass transition temperature.

Figure 153 Master curve for net creep compliance, ΔD , for Shell 58-68R epoxy.

Figure 154 Temperature dependence of the shift factor, a_T, for Shell 58-68R epoxy.

b. Time Scale of Material that Needs to be Known c. Principle of Recent Memory	а.	T	ime	S	cal	e c	of S	tru	ıct	ura	al :	Pro	bl	en	n D	ete	ern	nine	ed									
	ь.	Т	ime	S	cal	e c	of N	Лat	er	ial	th	at :	Ne	ed	s t	o b	e F	۲no	wn									
	с.	P	rin	cip	le	of	Re	cei	at 1	Me	mo	ry																
			4	1																								
					-					-																		
			+																									
						-			-	+		+										H						
		-																										
				-																								
																						-						
				1								Ť						T										
		Ť		Ħ	1																	1		-				
				Ť	Ť					T		Ť																
		T	T	T	T																	T						
		T								T																		
			T	T																		Г						
					T	П							T															
																					1							
														1														
			1	1										1														
												-		1								-						
	-	L									-			-													-	
				-										1														
		1										1																

	SECTION XIV	
APPLICATION OF STATIST	CAL THEORIES AND DATA AVERAGING	
AFFLIGATION OF STATISTI	CAL THEORIES AND DATA AVERAGING	
SAMPLE AND PARENT DISTRIBUTION	NS	
		14 14
a. Sample Distribution		
Results of n random experiments		
$\mathbf{x}_1 \leq \mathbf{x}_2 \leq \mathbf{x}_3 \leq \mathbf{x}_n ,$		
Sample mean x		
$\bar{\mathbf{x}} = \frac{1}{n} \sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$		(684
Sample variance s ²	unbiased sample variance	
2 1 5. =2		
$s^2 = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2$	$s^{12} = s^{2} n/(n-1)$	(685
Sample distribution function F*(x)		
$P[X \leq x] = F^*(x) = \frac{j-1}{n},$	x _{i-1}	(686
or		
$F^*(x_j) = j/n$ upper boun		
(j-1)/n lower boun	d.	
(j-1/2)/n midpoint		
j/(n+1) mean rank	in wash	
(j-0.3)(n+0.4) med	IGH I WHI	
Sample probability density function	*(ж)	
$f^*(x) = \frac{dF^*}{dx}$		//07
1 (x) - dx	+++++++++++++++++++++++++++++++++++++++	(687)
b. Parent Distribution		
Parent distribution function : F(x)		
Parent probability density function :	f(x)	
Mean of the parent population:		
$\mu = \int_{-\infty}^{\infty} xf(x) dx$		(688)
9		

Variance of the parent population	
Variance of the parent population : σ ²	
$Var(x) = \sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$	(68
Let Y = g(X). Then	
$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$	(69
$Var\left[Y\right] = E\left[\left(Y - E\left[Y\right]\right)^{2}\right] = \int_{-\infty}^{\infty} \left(g(x) - E\left[Y\right]\right)^{2} f(x) dx$	(69
We can show that	
$\mathbf{E}(\mathbf{x}) = \mathbf{\mu}$	(69
$Var(\vec{x}) = \sigma^2/n$	(69
$E(s^2) = \sigma^2(n-1)/n$	(69
$Var(s^{2}) = \frac{\mu_{4} - \sigma^{4}}{n} - \frac{2(\mu_{4} - 2\sigma^{4})}{n^{2}} + \frac{\mu_{4} - 3\sigma^{4}}{n^{3}}$	(69
$\mu_4 = \int_{-\infty}^{\infty} (x - \mu)^4 f(x) dx$	(69
. Method of Maximum Likelihood	
Problem	
Given: A random sample x1, x2,, x from the parent distri	bution whose
p · d · f is f(x; 0), where 0 is a parameter.	
Find: $\hat{\theta}(x_1, x_2, \dots, x_n)$ which is a good estimator for θ .	
Solution	
Consider the function	
$L(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n, \theta) = f(\mathbf{x}_1; \theta) \cdots f(\mathbf{x}_n; \theta) :$	(69
L represents the probability of obtaining the results x1,, xn.	
Find value of 8 which maximizes L.	
Define	
Define $\mathcal{L} = \log L = \log f(x_1; \phi) + \cdots + \log f(x_n; \theta)$	(69

1. S	rength and Life Distributions		
×	: strength		
F	x) = P[strength≤x]	(7	70
	: life		
	$x) = P[life \le x]$		
-	a) + F [IIIe=A]	(7	70
	[생물등] - [생물] - [4]		
	so		
F	x) : probability of failure		
-			
-			
-			
-			
-			
+			4
-			
+			1
			1
-			
-			1

2. WEIBULL AND NORMAL DISTRIBUTIONS a. Weibull Distribution (Two-Parameter) (1) Properties $F = 1 - \exp \left[- \left(x/x_0 \right)^{\alpha} \right]$ (702)a: shape parameter, x : scale parameter Probability density function $f = \frac{\alpha}{x_o^{\alpha}} \cdot \frac{\alpha - 1}{x} \exp \left[-\left(\frac{x}{x_o}\right)^{\alpha} \right]$ (703) $\mu = *_{o} \Gamma(\frac{1}{\alpha} + 1)$ (704)Standard deviation $\sigma = x_0 \left[\Gamma(\frac{2}{\alpha} + 1) - \Gamma^2(\frac{1}{\alpha} + 1) \right]^{1/2}$ (705)C.V. (Coefficient of variation) = σ/μ c.v. = $\left[\frac{\Gamma\left(\frac{2}{\alpha}+1\right)}{\Gamma^2\left(\frac{1}{\alpha}+1\right)}-1\right]^{1/2}$ (706) $\approx \frac{1.2}{\alpha}$ or $\left(\frac{1}{\alpha}\right)^{0.94}$

Figure 155 Relation between shape parameter and coefficient of variation.

- (2) Estimation of and X
 - (a) $\hat{\alpha}$ from C.V.
 - (b) Maximum tikelihood estimate

$$\hat{\mathbf{x}}_{o} = \left(\frac{1}{n} \sum \mathbf{x}_{i}^{\hat{\alpha}}\right)^{1/\hat{\alpha}}$$

$$\hat{\mathbf{x}}_{o} = \left(\frac{1}{n} \sum \mathbf{x}_{i}^{\hat{\alpha}}\right)^{1/\hat{\alpha}}$$

$$\hat{\mathbf{x}}_{o}^{-\hat{\alpha}} \sum \mathbf{x}_{i}^{\hat{\alpha}} \log \mathbf{x}_{i} - \sum \log \mathbf{x}_{i}$$
(708)

If α is known, then
$$\hat{\mathbf{x}}_{o} = \left(\frac{1}{n} \sum \mathbf{x}_{i}^{\hat{\alpha}}\right)^{1/\hat{\alpha}}$$
(709)

(c) Linear least squares method (Graphical method)
$$f = \left[-f(\mathbf{1} - \mathbf{F})\right] = \hat{\alpha} f \mathbf{x} - \hat{\alpha} f \hat{\mathbf{x}} \hat{\mathbf{x}}_{o}$$
(710)
$$\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$$

(d) Sample problem

Static strength data for $[0/45/90/-45_2/90/45/0]_s$ T300/934 laminate are as follows:

i	1	2	3	4	5	6	7	8	9	10	11	12
X(MPa)	427	444	445	445	450	455	455	466	469	478	478	481
F(x,)	.028	.067	.106	.146	.185	.224	.264	.303	.343	.382	.421	.46

i	13	14	15	16	17	18	19	20	21	22	23	24	25
x(MPa)	482	482	482	487	487	492	492	495	496	501	503	512	520
F(x _i)	.500	.539	.579	.618	.657	.697	.736	.776	.815	.854	.894	.933	.972

Find \bar{x} , s, C.V., $\hat{\alpha}$, and \hat{x} . Use the median rank for F.

$$\bar{x} = 477 \text{ MPa}, s = 23 \text{ MPa}, C.V. = 4.82\%$$

From method (a), $\hat{\alpha} = 24.9$, $\hat{x} = 488$.

From method (c), $\hat{\alpha} = 23.4$, $\hat{x}_0 = 488$ (r = 0.983)

Figure 156 Weibull plot of the strength data. [32]

		pert	ies		-			1	-	-	1		-	-	+++	
		-								1			-			
	F		1		Cx		p [- :	1/t	- m	27					1	
	F	1	· V	2π	J	ex	P [-	2	σ /	الا						(
+								H	-							
	Pro	bab:	ility	den	sity	fun	ction				-				+++	
		1	1			T	1/		12						H	
	f =		1/2	=	exp	1-	$\frac{1}{2}\left(\frac{x}{2}\right)$	σ	-)							(
		σ	V Z	П												
	Mea	ın :	и													
	Star	ndar	d de	eviat	ion	: σ										
(2)	Esti				-											
	(a)	û	= 3	x ,	ô	=	s									(
									,							
	(b)	Max	kim	um l	ikel	ihoo	d est	imat	e /							
		San	ne a	sab	ove											
-				-					-							
	(c)	Lin														
			ear	leas	it sq	uar	es me	thoo	d (gr	aphic	al m	ethod	1)			
-												ethod	1)			
							y y					ethod	1)			C
		Def	ine	* (<u>- ц</u>	=	у		<u>t -</u> σ			ethod	1)			('
		Def	ine	* (<u>- ц</u>	=	у		<u>t -</u> σ			ethod)			
		Def	ine	* (<u>- ц</u>	=			<u>t -</u> σ			ethod)			('
		Def	ine	* (<u>- ц</u>	=	у		<u>t -</u> σ			ethod)			
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ			ethod				(1
		Dei	fine =	* (T L	=	у		<u>t -</u> σ			ethod				
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ			ethod				(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1
		Dei	fine =	$\frac{x}{\sqrt{2\pi}}$	T L	=	у		<u>t -</u> σ							(1

(d) Sample problem

For the data of the previous sample problem 2.a.(2).(d), determine $\hat{\mu}$ and $\hat{\sigma}$.

From method (a), $\hat{\mu} = \overline{x} = 478$ MPa, $\hat{\sigma} = s = 23$ MPa.

For method (b), first determine

i	1 ,	2	3	4	5	6	7	8	9	10	11	12	13
у	-1.91	-1.50	-1.25	-1.05	-0.90	-0.76	-0.63	-0.52	-0.40	-0.30	-0.20	-0.10	0

i	14	15	16	17	18	19	20	21	22	23	24	25
у	0.10	0.20	0.30	0.40	0.52	0.63	0.76	0.90	1.05	1.25	1.50	1.91

The linear least squares method yields

 $\hat{\mu} = 477 \text{ MPa}, \hat{\sigma} = 24.3 \text{ MPa}.$

Figure 157 Strength data plotted on normal probability paper.

3. RELIABILITY

a. Definition

The probability of a successful operation of the device in the manner and under the conditions of intended use.

 $F(x; \theta_1, \theta_2, \cdots)$: distribution function with parameters $\theta_1, \theta_2, \cdots$.

 $x_1 \le x_2$: limits defining the event : Success.

Reliability function R

$$R = P(x_{1} \le X \le x_{2}) = F(x_{2}; \theta_{1}, \theta_{2}, \dots) - F(x_{1}; \theta_{1}, \theta_{2}, \dots)$$

$$= R(\theta_{1}, \theta_{2}, \dots; x_{1}, x_{2})$$
(718)

b. Reliability for Strength and Life

X: strength

$$R(x) = P[strength \ge x] = 1 - F(x)$$
 (719)

X: life

$$R(\mathbf{x}) = P[life \ge \mathbf{x}] = 1 - F(\mathbf{x}) \tag{720}$$

c. Estimation of R

$$\hat{R} = R(\hat{\theta}_1, \hat{\theta}_2, \cdots; x_1, x_2)$$
(721)

An estimator $\hat{\theta}$ is unbiased if

The unbiased estimator of σ^2 is

$$s'^2 = s^2 n/(n-1)$$

An estimator $\hat{\theta}$ is consistent if

line
$$P[|\hat{\theta} - \theta| > \epsilon] = 0$$
 for arbitrary ϵ .

An estimator should have as small a variance as possible for any sample size n.

4. DESIGN ALLOWABLES

- a. Definition
 - "A" allowable x_{A} . Probability is 95% that at least 99% of the distribution will be contained within the interval (x_A, ∞) .
 - "B" allowable x_B : Probability is 95% that at least 90% of the distribution will be contained within the interval (x_B, ∞) .
- b. Weibull Distribution

Suppose & is known.

$$\frac{2n \hat{x}^{\alpha}}{\sum_{0}^{\infty}}$$
 has the χ^{2} distribution with 2n degrees of freedom:

$$P\left[\begin{array}{c} \frac{2n\hat{x}^{\alpha}}{\circ} \\ \frac{\alpha}{x} \leq y \end{array}\right] = \frac{1}{2^{n} \Gamma(n)} \int_{0}^{y} t^{n-1} e^{-t/2} dt$$
 (722)

Given the confidence level γ , let $\chi^2_{2n;\gamma}$ be defined by

$$P[\chi_{2n}^2 \le \chi_{2n;y}^2] = y$$
 (723)

$$\therefore P\left[\frac{2n\hat{x}_{o}^{\alpha}}{x_{o}^{\alpha}} \leq X_{2n;\gamma}^{2}\right] = \gamma \tag{724}$$

$$= P \left[\frac{2n\hat{x}_{0}^{\alpha}}{x_{2n; y}^{2}} \le x_{0}^{\alpha} \right]$$
 (725)

Lower confidence limit of \hat{x} with confidence level γ : \hat{x}_{γ}

$$\hat{x}_{\gamma} = \left(\frac{2n}{x_{2n;\gamma}^2}\right)^{1/\alpha} \hat{x}_{0} \tag{726}$$

Since $x_{01} < x_{02}$ implies $R_1 < R_2$, the lower confidence limit for R, \hat{R}_y , is

$$\hat{R}_{y} = \exp\left[-\left(\frac{x}{\hat{x}_{y}}\right)^{\alpha}\right] \tag{727}$$

For "A" allowable x	Ây	=	0.99	y =	0.95
For "B" allowable x	Â	=	0.90	y =	0.95

$$x_{A,B} = [-2n\ell n\hat{R}_{y}/x_{2n;y}^{2}]^{1/\alpha}\hat{x}_{0}$$
 (728)

$$\hat{\mathbf{x}}_{0} = \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\alpha}\right]^{1/\alpha} \tag{729}$$

Figure 158 Relation between "A" or "B" allowable and shape parameter.

c. Normal Distribution

$$\overline{x} - Ks'$$
, $s' = s[n/(n-1)]^{1/2}$, $\overline{x} = \frac{1}{n} \sum_{i} x_{i}$, $s = [\frac{1}{n} \sum_{i} (x_{i} - \overline{x})^{2}]^{1/2}$ (730)

K is chosen in such a way that the probability is γ that at least a fraction R of the distribution will be contained within the interval between \overline{x} - Ks' and ∞ .

For "A" allowable	R = 0.99	Y = 9.95
For "B" allowable	R = 0.90	Y = 0.95
$x_A = \overline{x} - K_A s^i$,	x _B = x - K _B s'	(731

Figure 159 One-sided tolerance factors for normal distribution, K_A and K_B .

d. Sample problem

For the data of sample problem 2.a(2)(d), determine the "A" and "B" allowables.

For the Weibull distribution assume d = 23.4

Solution

For the Weibull distribution

$$\hat{x}_{o} = \left[\frac{1}{25} \sum_{i=1}^{25} x_{i}^{23.4}\right]^{1/23.4} = 488$$

From X² distribution table

$$\chi^2_{50;0.95} = 67.5$$

$$\therefore x_{A} = [-50 \ln 0.99/67.5]^{1/23.4}$$
 488 = 396 MPa

For the normal distribution

$$\bar{x} = 478$$
, $s^1 = 23.5$

From the figure

$$K_{A} = 3.15$$
 $K_{B} = 1.85$

$$\therefore x_A = 478-3.15 \times 23.5 = 404 \text{ MPa}$$

$$K_B = 478 - 1.85 \times 23.5 = 435 \text{ MPa}$$

5. STATISTICAL INTERPRETATION OF FAILURE PROCESS

a. Typical Failure Process

Failure rate at time t: the probability of failure per unit time after having survived to time t.

Time

Figure 160 Typical failure rate vs. time.

Initial failure period: Break-in period

Failure due to initial defect or weakness.

Chance failure period: Failure due to unusually severe, unpredictable, and/or unavoidable environmental conditions.

Wear-out failure period: Failure due to fatigue, aging.

b. Mathematical Representation of Failure Rate

λ(t): failure rate, hazard function, risk function

f(t)dt: proportion of the initial population, which will fail in the time interval (t, t+dt)

R(t)=1-F(t): proportion of the initial population, which have survived to time t.

$$\lambda(t) = \frac{f(t)}{R(t)} = \frac{1}{1-F} \frac{dF}{dt} = -\frac{1}{R} \frac{dR}{dt}$$
 (732)

$$\frac{dR}{R} = -\lambda(t)dt \qquad lnR = -\int \lambda dt \qquad (733)$$

$$\frac{R(t)}{R(0)} = \exp\left[-\int_0^t \lambda(\xi)d\xi\right] \tag{734}$$

6. SIZE EFFECT

a. Simple Chain or Series Model

Consider a chain consisting of N identical links

 $R_{o}(\sigma)$: reliability of link, i.e., probability of strength exceeding σ .

R(o): reliability of chain

σ is the same in all the links.

The chain fails if at least one link fails.

$$R = R_0^N$$

$$F = 1 - R = 1 - R^{N} = 1 - (1 - F_{0})^{N}$$
(743)

If
$$R_0 = \exp\left[-(\sigma/\sigma_0)^{\alpha}\right]$$
, then

$$R(\sigma) = \exp \left[-N(\sigma/\sigma_0)^{\alpha}\right] = \exp \left[-(\sigma/\sigma_{0N})^{\alpha}\right] , \qquad (745)$$

(744)

$$\sigma_{\text{oN}} = \sigma_{\text{o}} N^{-1/\alpha} \tag{746}$$

Figure 163 Comparison in probability of failure between single link and 20 - link chain.

TABLE 71 COMPARISON AMONG CHARACTERISTIC STRENGTHS UNDER DIFFERENT TEST METHODS

3-pt. flexure (center point loading)	4-pt. flexure (quarter point loading)
Volume $\frac{(X_0)_f}{(X_0)_t} = \left[2(\alpha+1)^2 \frac{V_t}{V_f}\right]^{\frac{1}{\alpha}}$	$\frac{(\mathbf{X}_{\mathbf{o}})_{\mathbf{f}}}{(\mathbf{X}_{\mathbf{o}})_{\mathbf{t}}} = \left[\frac{4(\alpha+1)^{2}}{\alpha+2} \frac{\mathbf{V}_{\mathbf{t}}}{\mathbf{V}_{\mathbf{f}}}\right]^{\frac{1}{\alpha}}$
Surface $\frac{(X_0)_f}{(X_0)_t} = \left[\frac{(a+1)A_t}{A_f + B_f/(a+1)}\right]^{\frac{1}{a}}$	$\frac{(X_o)_f}{(X_o)_t} = \left[\frac{(\alpha+1)^2 A_t}{B_f/2 + (\alpha+1)(A_f + B_f)/2 + (\alpha+1)^2 A_f/2} \right]^{\frac{1}{\alpha}}$
Edge $\frac{(X_0)_f}{(X_0)_t} = \left[(a+1) \frac{\ell_t}{\ell_f} \right]^{\frac{1}{a}}$	$\frac{(X_0)_f}{(X_0)_t} = \left[\frac{\alpha+1}{\alpha+2}, \frac{t_t}{t_f/2} \right]^{\frac{1}{\alpha}}$
$V_t = WLH$, $V_f = WLH$ $A_t = 2L(W+H)$, $A_f = WL$, $B_f = 1$ $t_t = 4L$, $t_f = 2L$	LH WI TH

(1)	Sample	Problem
-----	--------	---------

From tensile coupon tests X_0 and α are found to be

$$X = 134 \text{ MPa}$$
, $\alpha = 4.126$.

What are the expected values of X_o and R in 3-pt and 4-pt flexure tests?

Specimen dimensions are:

w	L	Н
mm	mm	mm
13	50	4
25	54	4
25	54	4
	mm 13 25	mm mm 13 50 25 54

Use the volume model in Table 71 .

Solution

$$V_{t} = 2600 \text{ mm}^{2}$$
, $V_{f3} = 5400 \text{ mm}^{2}$

$$V_{f4} = 5400 \text{ mm}^2$$

$$(X_0)_{f3} = 293 \text{ MPa}$$
, $(X_0)_{f4} = 224 \text{ MPa}$

c. Size Effect in Fatigue

For the representative element

 $R_o(t \mid \sigma_i)$: Probability of surviving t when subjected to a loading characterized by σ_i .

For the entire body

$$R(t \mid \sigma) = \exp \left[\int_{V} \ln \left[R_{o}(t \mid \sigma) \right] dV \right]$$
 (758)

If o is uniform throughout the body, and

$$R_{o}(t|\sigma) = R_{o}(t) = \exp\left[-(t/t_{o})^{\beta}\right], \tag{759}$$

then

$$R(t) = \exp \left[-V \left(t/t_{o}\right)^{\beta}\right] \tag{760}$$

(1) Sample Problem

The life distribution of a tensile coupon of unit volume subjected to a constant stress σ is given by

$$R_{o}(t \mid \sigma) = \exp \left[-\left(\frac{t}{t_{o}}\right)^{\beta} \left(\frac{\sigma}{\sigma_{o}}\right)^{\alpha} \right],$$

Determine the life distribution under a three-point bend stress rupture. Use the volume model in Table 71.

Solution

$$\ln \left[R_{o}(t \mid \sigma)\right] = -\left(\frac{t}{t_{o}}\right)^{\alpha} \left(\frac{\sigma}{\sigma_{o}}\right)^{\beta}$$

$$R(t \mid s) = \exp \left[-\left(\frac{t}{t_o}\right)^{\alpha} \int_{V} \left(\frac{\sigma}{\sigma_o}\right)^{\beta} dV \right]$$

From Table 71,

$$\int_{V} \left(\frac{\sigma}{\sigma_{o}} \right)^{\beta} dV = \left(\frac{s}{s_{o}} \right)^{\beta} . s_{o} = \sigma_{o} \left[2(\beta + 1)^{2} / V_{f} \right]^{1/\beta}$$

$$\therefore R(t \mid s) = \exp \left[-\left(\frac{t}{t}\right)^{\alpha} \left(\frac{s}{s}\right)^{\beta} \right]$$

d. Parallel Model

Definition

The system fails when and only when all subsystems fail.

Probability of failure of the system

$$F = F_o^N$$

(761)

System reliability

$$R = 1-F = 1-F_0^N$$

(762)

(1) Sample Problem

Determine the reliability of a parallel system of 10 bars under a strain controlled test. Assume that the probability of failure of each element is

$$F_0 = 1 - \exp - (e/0.6)^3$$
, where e is in %.

Solution

Since e is the same in all bars, and since e is controlled, failure of one bar does not affect the strain in the other bars. Therefore,

$$F = F_0^N = \left[1 - \exp[-(\epsilon/0.6)]^3\right]^{10}$$

Figure 164 Comparison between F_0 and F. System reliability is improved over element reliability. $\epsilon_0 = 0.6\%$

7. DATA AVERAGING

a. Compliances

Invariants: independent of fiber orientation

Measure: S'11, S'22, S'12, S'66, S'16, S'26

Calculate: I₁, I₂, R₁, R₂

$$I_1 = (S_{11} + S_{22} + 2S_{12}) / 4$$

$$I_2 = (S_{11} + S_{22} - 2S_{12} + S_{66}) / 8$$

 $R_1 = [(-S_{11}^{'} + S_{22}^{'})^2 + (S_{16}^{'} + S_{26}^{'})^2]^{1/2} / 2$

$$R_2 = [(s_{11}' + s_{22}' - 2s_{12}' - s_{66}')^2 + 4(s_{26}' - s_{16}')^2]^{1/2} / 8$$

(763)

(764)

Calculate average values : \overline{I}_1 , \overline{I}_2 , \overline{R}_1 , \overline{R}_2

Average compliances:

$$\overline{S}_{11} = \overline{I}_1 + \overline{I}_2 - \overline{R}_1 - \overline{R}_2$$

$$\overline{S}_{22} = \overline{I}_1 + \overline{I}_2 + \overline{R}_1 - \overline{R}_2$$

$$\overline{S}_{12} = \overline{I}_1 - \overline{I}_2 + \overline{R}_2$$

$$\overline{S}_{66} = 4\overline{I}_2 + 4\overline{R}_2$$

(1) Sample Problem

Test data for compliance of unidirectional composite

Off-axis Angle	s' ₁₁	s' ₁₂	s' ₁₆	s' ₂₂	s' ₂₆	s' ₆₆
0°	.059	028	.0	.892	.0	1.380
15°	.115	097	.318	.864	.078	1.292
30° 45°	.308	085 126	.381	.661	.206	1.055

Determine S₁₁, S₁₂, S₂₂, S₆₆.

Off-axis Angle	1,		I ₂			R		R ₂	
0°	.2238		.298			4165		.0466	
15°	.1963		.308			4236		.0618	
30°	.1998		.274			3425		.0450	
45°	.1850		.207			3640		.0454	
Ave.	.2012		.287	1		. 3867		.0497	
s ₁₁ = .0	519		=0362	s ₂ ;	2 = .825	2	5 66 =	1.3472	
. Strength U	J nder Co	ombined	Loading						
Failure fu	nction	f							
f(o _i)	$= \mathbf{F}_1 \mathbf{\sigma}_1$	+ F ₂ σ ₂ +	$F_{11}^{\sigma_{1}^{2}+F_{12}^{\sigma}}$	1°2+ F22	σ ₂ + F ₆₆ σ	2 = 1			(76
Determine	. F	FF	ı, F ₁₂ , F ₂₂ ,	F			111		
	1'	2, 1	1, 12, 22,	66					
Measure	σ,, σ	. o, at f	ailure.						
	1 4	6							
				(1)2	(1)2			(,)	
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$			(F ₁)	[1]	
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$					1	
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²				F ₁			
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$			F ₂			
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$						(76
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$			F ₂) }=:		(76
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$			F ₂ F ₁₁ F ₁₂) }=·		(76
σ(1) σ(2) σ(1)	σ ₂ (1)	σ(1) ² σ(2) ² σ(1) σ(2) σ(2) σ(3)	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$	g(2) ²	(2) ²	F ₂ F ₁₁ F ₁₂) }=·		(76
σ(1) σ(2) σ(1)	(1) (2) (2) -	σ(1) ² σ(2) ² σ(1) σ(2) σ(2) σ(3)	$\sigma_1^{(1)} \sigma_2^{(1)}$ $\sigma_1^{(2)} \sigma_2^{(2)}$	g(2) ²	(2) ²	F ₂) 		(76
$\sigma_1^{(1)}$	σ ₂ (1)	σ(1) ²	$\sigma_1^{(1)}$ $\sigma_2^{(1)}$			F ₂ F ₁₁ F ₁₂) }=·		(76
σ(1) σ(2) σ(1)	(1) (2) (2) -	σ(1) ² σ(2) ² σ(1) σ(2) σ(2) σ(3)	$\sigma_1^{(1)} \sigma_2^{(1)}$ $\sigma_1^{(2)} \sigma_2^{(2)}$	g(2) ²	(2) ²	F ₂ F ₁₁ F ₁₂ F ₂₂) }=		(76
σ(1) σ(2) σ(1)	(1) (2) (2) -	σ(1) ² σ(2) ² σ(1) σ(2) σ(2) σ(3)	$\sigma_1^{(1)} \sigma_2^{(1)}$ $\sigma_1^{(2)} \sigma_2^{(2)}$	g(2) ²	(2) ²	F ₂ F ₁₁ F ₁₂ F ₂₂) }=:		(76
σ(1) σ(2) σ(1)	(1) (2) (2) -	σ(1) ² σ(2) ² σ(1) σ(2) σ(2) σ(3)	$\sigma_1^{(1)} \sigma_2^{(1)}$ $\sigma_1^{(2)} \sigma_2^{(2)}$	g(2) ²	(2) ²	F ₂ F ₁₁ F ₁₂ F ₂₂) }=		(76

	76, MPa 37.30 -45	.26 5.62	51.34 69.50	0	
	72, MPa 9.99 12	.78 25.03	11.05 -18.62	12.82	
(1)	ample problem Failure occurred at the Determine F ₂ , F ₂₂ , F		nes of σ_2 and σ_6 .		
	$f_{m}(\sigma_{2}, \sigma_{6}) = F_{2}\sigma_{2} + \frac{1}{2}$	$F_{22}^{\sigma_{2}^{2}} + F_{66}^{\sigma_{6}^{2}}$			(7
	$\mathbf{f}(\sigma_1) = \mathbf{F}_1 \sigma_1 + \mathbf{F}_{11} \sigma_1^2$,			(7
If no	coupling is assumed be	etween σ_1 and (σ_2 , σ_6), then one	can define	
	$F(f) = 1 - \exp \left[-(f/f_0) \right]$	a]			(7
	$s = \left[\frac{1}{n-1}\sum_{i} \left(f_{i} - \overline{f}\right)^{2}\right]^{1}$	/2			(7
	$= \frac{1}{n} \sum_{i} f_{i}$				(7
	$F_{\mathbf{i}}(\sigma_{\mathbf{i}}) = F_{\mathbf{i}}\sigma_{\mathbf{i}}^{(\mathbf{i})} + F_{2}\sigma_{2}^{(\mathbf{i})}$	i) + F ₁₁ $\sigma_1^{(i)}^2$ + F	$F_{12}\sigma_{1}^{(i)}\sigma_{2}^{(i)} + F_{22}\sigma_{2}^{(i)}$	+ F ₆₆ σ ₆ (i) ²	(7
	ibution of f			2 2	
	Minimum no. of tests r	equired = no.	of components o	f F	
	{ F } = ([σ] ^T [σ]) [σ] {1}			(7
	$[\sigma]^T[\sigma] \{F\} = [\sigma]^T$				(7
	{1} : 1 x n matrix				
	[σ] : 6 x n matrix {F} : 1 x 6 matrix	n:	no. of tests		

TO SERVICE THE SERVICE

SECTION XV

STRUCTURAL ELEMENTS

LAMINATED COMPOSITE BEAMS - STATIC BEHAVIOR

a. Formulation

The classical beam bending equation is derived by combining the appropriate momentcurvature relationship and equilibrium equation.

$$k_{\mathbf{x}} = \frac{-d^2 \mathbf{w}}{d\mathbf{x}^2} = \frac{\mathbf{M}}{\mathbf{E}\mathbf{I}} \tag{776}$$

$$\frac{\mathrm{d}^2 M}{\mathrm{d} \mathbf{x}^2} + \mathbf{q}(\mathbf{x}) = 0 \tag{777}$$

Then EI
$$\frac{d^4w}{dx} = q(x)$$
 (778)

For laminated beams it is convenient to replace EI by an "effective bending stiffness". The suitability of this approach has been investigated by deriving a beam theory from classical plate theory. The plate constitutive equations - inverted form

$$\begin{cases}
e^{\circ} \\
\\
\\
k
\end{cases} = \begin{bmatrix}
A' & B' \\
\\
C' & D'
\end{bmatrix} \begin{pmatrix}
N \\
M
\end{pmatrix} (779)$$

A solution for the deflection of a wide beam, simply supported, loaded by a uniform moment is available. The apparent bending stiffness is

$$(EI)_{A} = \frac{bR^{2}}{[D_{11}' R^{2} + D_{16}' R + D_{12}']}$$
(780)

where R-depth to width ratio.

The effect of bending anisotropy can be significant.

Figure 165 Unidirectional beam under pure bending. Fibers oriented θ to x axis.

Twisting curvature "lifts" beam at supports.

Figure 166 (EI) A/(b/D11) as a function of θ ; as a function of R for a 10° off axis unidirectional beam.

The D' matrix is defined as [D-BA B] and involves the B-coupling matrix for unsymmetrical laminates.

Effects of bending anisotropy on (EI) depend on E_{11}/E_{22} , h, R, and stacking sequence. Effects of B-coupling on (EI) depend on E_{11}/E_{22} , h and stacking sequence.

R large or D₁₆'/D₁₁' small

$$(EI)_{A}) \simeq \frac{b}{D_{1}!} \tag{781}$$

D₁₆' = 0

$$(EI)_{A} = \frac{b}{D_{11}} \sim (D_{11} - B_{11}^{2}/A_{11})b$$
 (782)

(D₁₁ -B₁₁/A₁₁)b is a "reduced bending stiffness" and is comparable to the transformed area method of computing EI.

Mid-plane symmetry and no bending anisotropy, B_{ij} *D₁₆=0

$$(EI)_{A} \sim D_{11}^{b}$$
 (783)

occasionally, one finds

$$(EI)_{A} = \sum_{k} E_{k}^{k} I^{k}$$

$$(784)$$

where Ik is computed about the beam mid-surface

and
$$\frac{1}{E_x} = \frac{\cos^4 \theta}{E_{11}} + (\frac{1}{G_{12}} + \frac{2\nu_{12}}{E_{22}}) \sin^2 \theta \cos^2 \theta + \frac{\sin^4 \theta}{E_{22}}$$
 (785)

Significant error can result if Eq. (784) is used when B coupling and bending anisotropy are present.

Figure 167 Ratio of bending stiffness computed by Eqs. (781) and (784-785)

The assumed linear strain in a beam results from considering bending deformation only. Shearing deformation can be significant in composite beams.

Example. Simply supported beam, point loaded at center, deflection computed for the center (by virtual work).

$$\delta_{c} = \frac{P_{\ell}}{4EI} \left[\frac{\ell^{2}}{12} + \lambda n_{\Gamma}^{2} \right] = \frac{P_{\ell}}{4EI} \left[\delta_{b} + \delta_{s} \right]$$

$$\uparrow \qquad \qquad \uparrow_{\text{shear term}}$$

$$\downarrow \qquad \qquad \downarrow_{\text{bending term}}$$
(786)

where

$$\ell = \text{beam length}$$
 $\Gamma^2 = I/A$
 $n = E_x/G_{xz}$ $\lambda = \text{form factor}$

consider a unidirectional composite, fibers oriented to x-axis

$$\ell = 8, 4, 2 \text{ in}$$
 $E_{11} = E_{x} = 25 \times 10^{6} \text{ psi}, \quad G_{13} = G_{xz} = 0.5 \times 10^{6} \text{ psi}$
 $b = 1 \text{ in, } t = 0.25 \text{ in.}$
 $d = 1.2 \text{ (rectangular beam)}$
 $A = 0.25 \text{ in}^{2}$
 $\Gamma^{2} = 0.0052 \text{ in}^{2}$

igur (e 168	either shear	e in a beam car or flexural s n span-to-dept	tress	7 * *** *** *** *** *** *** *** *** ***	<i>y</i>
				z (max) = 3/2		(793
				y _k - distance	e from mid-surface to b	interface
		(rect. cros	s-section) τ_{x}			(792
		shear		V , h 2	y _k] (str. of mat'ls)	,,,,,,
			k = D ₁₁ ' N	∕I M=b	M.	(791
			e o = B 1			(790
		x				(789
Be a m	stre		E k (e o +	, k		1790
		as in class	ical beam the	ory		
		and (EI)	W(x) = \	q(x) dx		(788
			11 11	11		
		(EI)	= (D ₁₁ - B ₁₁	² /A,,)b		(78
3eam	defle	ections (negli	gible or zero	bending anisot	ropy)	
£ =	2	0.333	0.312	0.516	0.484	
L =	4	1, 333	0.312	0.810	0.190	
£ =	8	5, 333	0.312	0.945	0.055	
		$\delta_{\rm b} = \ell^2/12$	δ _s = n _T ²	δ _b /(δ _s +δ _b)	δ _s /(δ _s +δ _b)	

(1) Assess the effect of B-coupling on (EI) $_{
m A}$ for

where
$$E_{11} = 20 \times 10^6 \text{ psi}$$

$$G_{12} = 0.5 \times 10^6 \text{ psi}$$

$$E_{22} = 1 \times 10^6 \text{ psi}$$

$$v_{12} = 0.3$$

$$t = 0.005 in.$$

(2) Use the equilibrium equations given below and Eq. (779) to derive a governing equation for the beam-column.

$$\frac{dN}{dx} = 0$$

$$\frac{dN_{x}}{dx} = 0 \qquad , \quad \frac{d^{2}M_{x}}{dx} + N_{x} \frac{d^{2}W}{dx^{2}} + q(x) = 0$$

2. LONG CYLINDRICAL TUBES (AXIAL LOAD, TORSION, PRESSURE, BEAM BENDING)

a. Formulation

Membrane theory with anisotropy and B-coupling included.

Stress fields more than one diameter from ends.

Define
$$a_{ij} = \frac{1}{h}$$
 $\begin{bmatrix} A_{11} & A_{12} - B_{12}/R & A_{16} + B_{16}/R \\ A_{12} & A_{22} - B_{22}/R & A_{26} + B_{26}/R \\ A_{16} & A_{26} - B_{26}/R & A_{66} + B_{66}/R \end{bmatrix}$ (794)

and

$$b_{ij} = a_{ij}$$
 (795)

 $e_{i}^{o} = \frac{b_{ij}}{h} N_{j}$

(796)

and stress in a layer

$$\sigma_{i} = \vec{Q}_{ij} + \frac{b_{jk}}{h} N_{k} = \frac{Z}{Rh} [\vec{Q}_{i6} b_{6j} - \vec{Q}_{i2} b_{2j}] N_{j}$$
 (797)

N - axial load

Na = pR - pressure load

Nx0 - torsion load

Axial compliance

$$e_{\mathbf{x}}^{0} = \frac{b_{11}}{h} N_{\mathbf{x}} \quad ; \quad S_{\mathbf{x}} = b_{11}/h$$
 (798)

Effective axial modulus

$$E_{x} = 1/S_{x} = h/b_{11}$$
 (799)

Cylindrical tube in beam bending (approx.)

$$\mathbf{E}_{\mathbf{x}}\mathbf{I} \frac{\mathbf{d}^{4}\mathbf{w}}{\mathbf{dx}^{4}} = \mathbf{q}(\mathbf{x}) \tag{800}$$

Tubes with low A_{66} terms (all 0°, 0/90), include effect of shear deformation. Form factor, $\lambda = 2$

b. Problem

Design a laminated tube, $0^{\circ}_{i}/\pm45^{\circ}_{j}$ ply configuration, and calculate the stress in the innermost and outermost 45° and 0° layers.

$$R_i = 2 \text{ in.}$$
 $E_{11} = 20 \times 10^6 \text{ psi}$
 $E_{22} = 1 \times 10^6 \text{ psi}$
 $E_{22} = 0.5 \times 10^6 \text{ psi}$
 $e_1^{\ell} = +0.066, -0.005$
 $e_2^{\ell} = +0.003, -0.006$
 $e_6^{\ell} = \pm 0.015$
 $v_{12} = 0.3$

 $N_{x} = 2300 \, lbs/in.$

$$G_{10} = 0.5 \times 10^6 \text{ p}$$

 $N_{x \theta} = 500 \text{ lbs/in.}$

t = 0.005 in.

3. COLUMNS (COMPRESSION LOADED 1-D MEMBERS)

a. Formulation

Laminated column $D_{16} = 0$ or D_{16}/D_{11} very small

Bending stiffness

$$(EI)_{A} = (D_{11} - B_{11}^{2}/A_{11})b$$
 (801)

Column equation

$$(EI)_{A} \frac{d^{4}w}{dx^{4}} + P \frac{d^{2}w}{dx^{2}} = 0$$
(802)

Euler buckling load, simply supported columns

$$P_{e} = \frac{\pi^{2} (EI)_{A}}{I^{2}}$$
(803)

For general end restraints $\frac{dw}{dx} = M_1/\alpha_1$ @ x = o

$$\frac{\mathrm{d}\mathbf{w}}{\mathrm{d}\mathbf{x}} = M_2/\alpha_2 @ \mathbf{x} = L \tag{804}$$

defining
$$\lambda_1 = \frac{(EI)_A}{\alpha_1 L}$$
 , $\lambda_2 = \frac{(EI)_A}{\alpha_2 L}$

 $\phi = kL \qquad , \quad k^2 = p/(EI)_A \tag{805}$

the characteristic equation is

$$(1-\lambda_1-\lambda_2-\lambda_1\lambda_2\phi^2)\phi\sin\phi+(2+\lambda_2\phi^2)\cos\phi-2=0$$
(806)

For special boundary conditions, the effective length approach can be used with

L _{eff} = KL	Buckled shape of column is shown by dashed line						1
	Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0
$P_{cr} = \frac{\pi^{2}(EI)_{A}}{2}$	Recommended design value when ideal con- ditions are approxi- mated	0.65	0.80	1, 2	1.0	2. 10	2.0
Leff	End condition code	4	Rotation Rotation	fixed and trans free and trans fixed and trans free and trans	lation fixed slation free		

Role of B11 coupling

- (1) Reduced bending stiffness lower P cr
- (2) The reduced bending stiffness can also be calculated by the transformed area method. This illustrates the additional effect of shifting the columns effective centroid (neutral axis for bending)

Figure 169 A 'transformed section', all 0°, b = (E22/E11)b.

Therefore, axial loads applied coincident to the mid surface produce bending deformations with possible failure due to excessive deformation with $P < P_{cr}$ (reduced)

Role of low interlaminar shear modulus G

Reduces resistance (total effective stiffness) to out-of-plane deformation (buckling)

$$\overline{P}_{cr} = k P_{cr}$$
 (807)

where

$$k = \frac{1}{1 + \lambda P_{cr}} - \text{form factor}$$

$$AG$$
(808)

Laminated circular tube - compression

no anisotropy

$$(EI)_{\mathbf{A}} = \mathbf{E}_{\mathbf{X}}$$
 (809)

E defined by

Secondary column failure modes

For cylindrical tubes, high R/h, high compressive load, there can be cylindrical buckling - many analytical tools available.

Anisotropy and heterogeneous - Cheng and Hoheterogeneous - Tsai

orthotropic - NASA and Air Force Design Guides, Handbooks

Homogeneous, orthotropic approximation $\sigma_{cr} = KE_1 (h/D)$ (810)K is evaluated for various laminates and materials BUCKLING PARAMETER (KE), 106 psi Boron Epoxy U. H. M. Graphite/Epoxy H. M. Graphite/Epoxy H.S. Graphite/Epoxy Fiberglas (a) BUCKLING PARAMETER (KE), 106 psi Boron/Epoxy U. H. M. Graphite/Epoxy H. M. Graphite/Epoxy H.S. Graphite/Epoxy Figure 170 Buckling parameter: (a) [± 0] laminate; (b) [0/90] laminate. 30 20 ATE TYPE (b) Problems (1) Develop an expression for the layer stresses in a laminated beam-column. (2) Size a laminated tube for the given compressive load and geometry P = 20,000 lbs R = 2 in. L = 15 ft. $E_{11} = 40 \times 10^6 \text{ psi}$ $E_{22} = 1 \times 10^6 \text{ psi}$ $G_{12} = 0.5 \times 10^6 \text{ psi}$ $v_{12} = 0.3$ t = 0.005 in.(3) Assess the effect of low shear stiffness on P

(4) Re-evaluate the design of (2) for local instability.

4. COMPOSITES FOR SELECTIVE REINFORCEMENT OF STRUCTURAL ELEMENTS

a. Formulation

Standard structural forms can be reinforced by unidirectional (0°) composites for enhanced specific stiffness and strength.

Examples

Beams

Panel Stringers

Mid plane symmetric

no symmetry

$$(EI)_A = \Sigma (EI)$$
 (811)

$$(EI)_A = D_x - B_x^2/A_x$$

(812)

or transformed area method

Specific stiffness

$$(EI)_{A}/\rho_{T} = \frac{\Sigma(EI)}{\Sigma(\rho V)} = \Sigma(\frac{EI}{\rho V})$$
 (813)

Shear stress in adhesive

$$\tau = \frac{VQ}{\overline{Ib}}$$

(814)

- I moment of inertia, transformed area, all material 1
- b width
- V shear force at x
- Q first moment of area, composite reinforcement
 about centroid axis

Secondary failure mode

local buckling - compare to sandwich beam face sheet.

5. THERMAL STRESSES Tubes $\sigma_{\mathbf{i}} = \overline{Q}_{\mathbf{i}j} \begin{bmatrix} \frac{\mathbf{b}_{jk}}{h} \ \overline{N}_{\mathbf{k}} - \overline{\epsilon}_{\mathbf{j}} \end{bmatrix} + \frac{Z}{Rh} \begin{bmatrix} \overline{Q}_{\mathbf{i}6} \mathbf{b}_{6j} - \overline{Q}_{\mathbf{i}2} \mathbf{b}_{2j} \end{bmatrix} \overline{N}_{\mathbf{j}}$ (815)where $\overline{N}_{i} = \int_{-h/2}^{h/2} \overline{e}_{ij} dz$ $\overline{e}_{i} = \overline{e}_{i} \Delta T$ (816)(817) α_i = lamina coef. of thermal expansion in x, θ coord. $(\overset{-}{\alpha}_{x},\overset{-}{\alpha}_{\theta},\overset{-}{\alpha}_{x\,\theta} \text{ from } \alpha_{1}, \alpha_{2})$

6. SIZING FOR STIFFNESS

a. Formulation

Stiffness critical designs: bending - deflection

compression - stability

dynamic - frequency control

In 1-D structures (beams, columns), unidirectional laminates will predominate in designs.

In 2-D structures (plates, shells), angle-plied laminates become more efficient.

Plate stability (assume quasi-homogeneous, orthotropic: B_{ij} = 0, D₁₆, D₂₆ - negligible) simply supported, compression loaded on X edges

$$N_{xcr} = \frac{2\pi^2}{b^2} \left\{ (D_{11}D_{22})^{1/2} + D_{12}D_{66} \right\}$$
 (818)

or

$$\sigma_{\mathbf{x}_{\mathbf{C}\mathbf{r}}} = K(h/b)^2 \tag{819}$$

Numerous sources exist which give K for different materials and laminate configurations. Examples are given.

exa	imple		Loading	o cr	$= K_{cr}(\frac{t}{b})^2$	t - Laminate Thickness
	ness Fr	action o	f Ply		K _{cr} x 10 ⁻⁶ psi	
Orien	tation,	70	+++	Quasi-Homogeneous	Symmetric	Unbalanced
45°	0°	90°	135°	Plying Order	Plying Order	Plying Order
50	0	0	50	54.5	45.8	27.1
40	20	0	40	50.0	42.7	25.2
30	40	0	30	45.5	40.7	25.8
20	60	0	20	41.1	39.1	29.0
10	80	0	10	36.5	36.8	33.5
0	100	0	0	32.0	32.0	.0
40	0	20	40	50.0	42.8	45.2
30	20	20	30	45.5	40.8	27.7
20	40	20	20	41.1	39.1	29.6
10	60	20	10	36.5	36.8	30.4
0	80	20	0	32.0	32.0	24.3
30	0	40	30	45.5	40.5	25.8
20	20	40	20	41.1	39.2	29.6
10	40	40	10	36.5	36.8	28.2
0	60	40	0	32.0	32.0	18.5
20	0	60	20	41.1	38.9	29.0
10	20	60.	10	36.5	36.8	30.4
0	40	60	0	32.0	32.0	18.5
10	0	80	10	31.2	32.6	33.2
0	20	80	0	32.0	32.0	24.3
0	0	100	0	20.8	20.8	20.8
		otropic	20	40.0	40.0	20 (
25	25	25	25	43.3	40.0	28.6

- 1. Quasi-homogeneous plying orders contain a sufficient number of consistently repeated sequences of lamina to make negligible the effects of resulting bending couples. The basis for these sequences is 45°, 0°, 90°, and 135°.
- 2. Symmetric plying orders contain balanced ply orientations where the sequence of lamina directions are exactly mirror image about the laminate midplane. The bases for these are 45°, 0°, 90°, 135°, 90°, 0°, and 45°.
- 3. Unbalanced plying orders contain only one sequence of orientations based on 45°, 0°, 90°, and 135°.

It is evident that for Nx loading the $\pm 45^{\circ}$ plate gives the maximum resistance to buckling. This results from the dominant $2D_{66}$ term in Eq. (818). Since strength must also be adequate, 0° plies may be added or $\pm \theta$ laminates at lower angles may be considered.

Hole of stacking sequence - example ± 45° plies on the outer surfaces produces the maximum D₆₆.

TABLE 73 EFFECTS OF ORIENTATION SEQUENCES ON STABILITY OF SYMMETRICAL (BALANCED) QUASI-ISOTROPIC PLATES

	$K_{cr} \times 10^{-6} ps$							
45°	135°	0°	90°	90°	00	135°	45°	50.6
135°	00.	45°	90°	90°	45°	00	135°	44.0
00	135°	45°	90°	90°	45°	1350	00	40.6
45°	00	900	1350	135°	90°	00	450	40.0
00	135°	900	45°	450	900	1350	00	37.7
00	900	450	1350	1350	450	900	00	34.7

- 1. All plates are equal in thickness.
- 2. Loading and laminate plane coordinates are the same as in Table 72

Consider compression strength

$$\sigma_{\mathbf{x}} = N_{\mathbf{x}}/h$$
(820)

Requiring $\sigma_{\mathbf{x}} = \sigma_{\mathbf{x}cr}$ and defining as $\sigma_{\mathbf{optimum}}$

$$\sigma_{\mathbf{OPT}}^{3} = \sigma_{\mathbf{x}cr} \cdot \sigma_{\mathbf{x}}^{2} = K(h/b)^{2} (N_{\mathbf{x}}/h)^{2}$$
(821)

eliminates h as
$$\sigma_{\mathbf{OPT}} = K^{1/3} \left(\frac{N_{\mathbf{x}}}{b}\right)^{2/3}$$
(822)
$$\left(\frac{N_{\mathbf{x}}}{b}\right)^{2/3} - \text{structural index}$$

Combining with a laminate failure criterion, the optimum laminate can be designed for the specific class being considered $(\pm \theta, \pm \theta_m / 0_n^0, 0^0 / 90^0 / \pm 45^0)$

Figure 172 Examples of Uniaxial strength allowables (compression).

b. Problems

(1) Calculate the individual bending stiffnesses (D's) of Eq. (818) for the following laminates and material

$$[+45, -45, +45, -45]_{s}$$

$$[0, 90, 0, 90]_{s}$$

$$[+45, -45, 0, 90]_{s}$$

$$E_{11} = 30 \times 10^{6} \text{psi} \qquad G_{12} = 0.5 \times 10^{6} \text{psi} \qquad t = 0.005$$

$$E_{22} = 1.5 \times 10^{6} \text{psi} \qquad v_{12} = 0.3$$

(2) Using the charts and tables available for strength and K for (0°/±45°/90°) laminate class, determine a minimum weight design for a compression panel where

$$N_{x} = 5,000 \text{ lbs/in.}$$
 $N_{y} = N_{xy} = 0$
 $A_{x} = A_{y} = 0$

Plot WT/b vs N_x/b for stability controlled and strength controlled designs Plot $\sigma_{\rm OPT}$ vs $({\rm N_x/b})^{2/3}$

D	ESI	GN	P	RO	BLE	M	- S	TR	IN	GEI	R	EI	NF	ORC	ED	CC	M	PRI	ESS	510	N	PA	NEL								
	Dis	CIL	ssi	on	and	not	tes																								
		-				110																									
														-																	
	-	-					-					-		-											-1	-					
	1					-							-	H																	
		-																													
														-																	
	-													-	-																
													-											-			-	4			
	-													-										+			-				
-	-	-				-				-			-			-	-						-	-							
	-																									1					
						-	-																-	-							
										-			-				-						-			-					
																									4						
																									1			7			
													-						-				-		+		-	-	-		
	-					-							-	-		-			-	-	_		-		4	-	-		4		
														1																	
						-	-						-		-							-	-	+					-		
-	-			-														-	-	-			+		-						
																							1								
																		1									1				
-	-	-	-		-	-	-	-									-	-	-	-	-		-				-		-	1	

SECTION XVI

SPECIMEN CONFIGURATIONS AND LOADINGS

1. TESTS FOR LAMINA PROPERTIES

- a. Properties to Be Measured
 - I. TENSION EL, ET, VLT, FL, FT COUPON, SANDWICH BEAM, TUBE
 - 2. COMPRESSION E_ , E_ , V_ , F_ , F_ , F_ ^C , F_ ^C COUPON, SANDWICH BEAM, TUBE, SHORT BAR
 - 3. INPLANE SHEAR G_{LT}, F^{\$}_{LT} [±45] COUPON, CROSS SANDWICH BEAM, TUBE
 - 4. FLEXURE Ef, Ff BEAM
 - 5. INTERLAMINAR SHEAR GIS, FIS SHORT BEAM
 - GENERAL STATE OF STRESS
 OFF-AXIS COUPON, TUBE, CROSS SANDWICH BEAM

b. Tension and Compression

Figure 173 Specimen configurations: (a) tension; (b) compression.

TABLE 74 COMPRESSION PROPERTIES [45]

ORIENTATION	TYPE OF SPECIMEN	TEST TEMP. (°F)	E (MSI)	v	ult (KSI)	ult (%)
	COUPON	RT	23	. 34	218	.95
	S. BEAM	R1	23	. 39	247	1.42
0°	COUPON	350	22.5	. 31	206	1.16
	S. BEAM	350	21.4	. 50	218 247 206 214 36.3 35.7	1.30
	COUPON	RT	1.64	.01	36.3	2.50
90°	S. BEAM	RT	1.76	.02	35.7	2.36
70	COUPON	350	1.60	.01	30.4	2.29
	S. BEAM	350	1.76	.03	28.6	2.17

T300/5208

IG . 0.5" FOR COUPON

a. Coupling Effects

Shear coupling - S_{16} , $S_{26} \neq 0$

Extension - twisting coupling - B₁₆, B₂₆ ≠ 2

SHEAR COUPLING (S', S')

CONVERSELY

Figure 182 Effect of shear coupling.

b. Free Edge Effects

Figure 183 Stress concentration at free edge of [45/-45] angle ply. [46]

Figure 184 Interlaminar normal stress concentration. [47]

REFERENCES

- 1. Hahn, H. T., "On Approximations for Strength of Random Fiber Composites", <u>J. Composite Materials</u>, Vol. 9 (1975), pp 316-326.
- Hashin, Z., <u>Theory of Fiber Reinforced Materials</u>, NASA Contract NAS1-8818, Nov. 1970.
- 3. Tsai, S. W., Structural Behavior of Composite Materials, NASA CR-71, 1964.
- 4. Noyes, J. V. and Jones, B. H., "Analytical Design Procedures for the Strength and Elastic Properties of Multilayer Fiber Composites", Proc. AIAA/ASME 9th SDM Conf., paper No. 68-336, 1968.
- Lange, F. F., "Fracture of Brittle Matrix, Particulate Composites", in <u>Composite Materials</u>, Vol. 5, L. J. Broutman, Ed., Academic Press, 1974.
- 6. Haener, J., Ashbough, N., Chia, C. Y., and Feng, M. Y., <u>Investigation of Micro-mechanical Behavior of Fiber Reinforced Plastics</u>, USAAVLABS-TR-67-66, AD667901.
- Adams, D. F., Doner, D. R., and Thomas, R. L., <u>Mechanical Behavior of Fiber-Reinforced Composite Materials</u>, AFML-TR-67-96, Air Force Materials Laboratory, 1967.
- 8. Greszczuk, L. B., Micromechanics Failure Criteria for Composites, Naval Air Systems Command Contract No. N00019-72-0211, 1973.
- Chamis, C. C., "Mechanics of Load Transfer at the Interface", in <u>Composite Materials</u>, Vol. 6, E. P. Plueddemann, Ed., Academic Press, 1974.
- Toth, I. J., Brentnall, W. D., and Menke, G. D., "Mechanical Properties of Aluminum Matrix Composites", <u>J. Metals</u>, Vol. 24 (1972), pp 72-78.
- Hofer, K. E., Rao, N., and Larsen, D., <u>Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials</u>, AFML-TR-72-205, Parts I and II, Air Force Materials Laboratory, 1972 and 1974.
- Daniel, I. M. and Liber, T., <u>Lamination Residual Stresses in Fiber Composites</u>, NASA CR-134828, March 1975.
- Novak, R. C., "Fracture in Graphite Filament Reinforced Epoxy Loaded in Shear", in <u>Composite Materials</u>: <u>Testing and Design</u> (1st Conf.), ASTM STP 460, 1969, pp 540-549.
- 14. Hanna, G. L. and Steingiser, S., "Defining the Adhesion Characteristics in Advanced Composites", in <u>Composite Materials: Testing and Design</u> (1st Conf.), ASTM STP 460, 1969, pp 182-191.
- Greszczuk, L. B., Failure Mechanics of Composites Subjected to Compressive Loading, AFML-TR-72-107, Air Force Materials Laboratory, 1972.
- 16. Tsai, S. W., Adams, D. F., and Doner, D. R., Effect of Constituent Material Properties on the Strength of Fiber-Reinforced Composite Materials, AFML-TR-66-190, Air Force Materials Laboratory, 1966.
- 17. Rosen, B. W., Dow, N. F., and Hashin, Z., Mechanical Properties of Fibrous Composites, NASA CR-31, 1964.

REFERENCES (Continued)

- Grinius, V. G., <u>Micromechanics-Failure Mechanism Studies</u>, AFML-TR-66-177, Air Force Materials Laboratory, 1966.
- 19. Hahn, H. T., "Residual Stresses in Polymer Matrix Composite Laminates", J. Composite Materials, Vol. 10 (1976), pp 266-278.
- Pagano, N. J. and Hahn, H. T., "Evaluation of Composite Curing Stresses", to appear in ASTM STP 617, 1977.
- Mar, J., in Mechanics of Composites Review, Air Force Materials Laboratory, 1976, pp 117-122.
- Wu, E. M., "Fracture Mechanics of Anisotropic Plates", in <u>Composite Materials</u> Workshop, Technomic Pub., 1968, pp 20-43.
- Wu, E. M., "Strength and Fracture of Composites", in Composite Materials, Vol. 5,
 L. J. Broutman, Ed., Academic Press, 1974.
- 24. Hahn, H. T., "Fracture Behavior of Composite Laminates", to be presented at the International Conference on Fracture Mechanics and Technology, Hong Kong, 1977.
- McClintock, F. A., "Problems in the Fracture of Composites with Plastic Matrices", presented at the Fourth Symposium on High Performance Composites at St. Louis, Mo., 1969.
- Beaumont, P. W. R. and Phillips, D. C., "Tensile Strengths of Notched Composites", <u>J. Composite Materials</u>, Vol. 6 (1972), pp 32-46.
- Outwater, J. O. and Murphy, M. C., "The Fracture Energy of Unidirectional Laminates", 24th Annual Tech. Conf., SPI Inc., 1969.
- 28. Kelly, A., "Interface Effects and the Work of Fracture of a Fibrous Composite", Proc. Roy Soc., Series A, Vol. 319 (1970), pp 95-116.
- 29. Morris, D. H. and Hahn, H. T., "Fracture Resistance Characterization of Gr/Ep Composite Laminates", to appear in ASTM STP 617, 1977.
- Whitney, J. M. and Nuismer, R. J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations", <u>J. Composite Materials</u>, Vol. 8 (1974), pp 253-265.
- 31. Shockey, P. D., Anderson, J. D., and Hofer, K. E., Structural Airframe Application of Advanced Composite Materials, AFML-TR-69-101, Vol. V, Air Force Materials Laboratory, 1970.
- 32. Ryder, J. T. and Walker, E. K., <u>Ascertainment of the Effect of Compressive Loading</u> on the Fatigue Lifetime of Graphite/Epoxy Laminates for Structural Applications, to be published as an AFML Technical Report.
- 33. Hahn, H. T. and Kim, R. Y., "Fatigue Behavior of Composite Laminates", J. Composite Materials, Vol. 10 (1976), pp 156-180.
- 34. Hashin, Z. and Rotem, A., "A Fatigue Failure Criterion for Fiber Reinforced Materials", J. Composite Materials, Vol. 7 (1973), pp 448-464.

REFERENCES (Concluded)

- 35. Rotem, A. and Hashin, Z., "Fatigue Failure of Angle Ply Laminates", AIAA Journal, Vol. 14 (1976), pp 868-872.
- Coleman, B. D., "Statistics and Time Dependence of Mechanical Breakdown in Fibers",
 J. Appl. Phys., Vol. 29 (1958), pp 968-983.
- 37. Phoenix, S. L., "The Tensile Strength and Time to Failure in Fatigue of Mechanical Parallel Member Systems", AIAA Journal.
- 38. Haviland, R. P., Engineering Reliability and Long Life Design, D. Van Nostrand Co., 1964.
- 39. Hahn, H. T. and Kim, R. Y., "Proof Testing of Composite Materials", J. Composite Materials, Vol. 9 (1975), pp 297-311.
- 40. Awerbuch, J. and Hahn, H. T., "Fatigue and Proof Testing of Unidirectional Gr/Ep Composite", presented at the Symposium on Fatigue of Filamentary Composites, Denver, 1976.
- 41. Halpin, J. C., Jerina, K. L., and Johnson, T. A., "Characterization of Composites for the Purpose of Reliability Prediction", Analysis of Test Methods for High Modulus Fibers and Composites, ASTM STP 521, 1973, pp 5-64.
- 42. Shen, C. H. and Springer, G. S., "Moisture Absorption and Desorption of Composite Materials", J. Composite Materials, Vol. 10(1976), pp 2-20.
- 43. Kaminsky, B. E., Lemon, G. H., and McKague, E. L., <u>Development of Engineering Data for Advanced Composite Materials</u>, AFML-TR-70-108, Air Force Materials Laboratory, Vol. 1, 1972.
- 44. Sims, D. F., "In-Plane Shear Stress-Strain Response of Unidirectional Composite Materials", <u>J. Composite Materials</u>, Vol. 7 (1973), pp 124-126.
- 45. Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials, AFML-TR-74-266, Air Force Materials Laboratory, 1975.
- Pipes, R. B. and Pagano, N. J., "Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension", J. Composite Materials, Vol. 4 (1970), pp 538-548.
- 47. Pagano, N. J., "On the Calculation of Interlaminar Normal Stress in Composite Laminate", J. Composite Materials, Vol. 8 (1974), pp 65-81.

APPENDIX A

SYSTEME INTERNATIONALE

1. METRIC PREFIXES

Prefix	Abbreviation	Multiplier
tera-	Т	1012
giga-	G	109
mega-	M	106
kilo-	k	103
hecto-	h	102
deca-	da	10
deci-	d	10-1
centi-	c	10-2
milli-	m	10 ⁻³
micro-	μ	10 ⁻⁶
nano-	n	10-9
pico-	p	10-12
femto-	f	10-15
atto-	a	10-18
	tera- giga- mega- kilo- hecto- deca- deci- centi- milli- micro- nano- pico- femto-	tera- T giga- G mega- M kilo- k hecto- h deca- da deci- centi- c milli- m micro- nano- n pico- p femto- f

2. CONVERSION EQUATIONS

1 kg = 2,20 lb	l lb = .454 kg
$1 \text{ kgm}^{-3} = 3.61 \times 10^{-5} \text{ lb/in}^{3}$	$1 \text{ lb/in}^3 = 2.77 \times 10^4 \text{ kgm}^{-3}$
1 N = .225 lb-f	l lb-f = 4.45 N
1 N = .102 kg-f	1 kg-f = 9.81 N
1 Pa = 1.45 x 10 ⁻⁴ psi	l psi = 6.895 Pa
1 MPa = .145 ksi	l ksi = 6.895 MPa
1 GPa = .145 10 ⁶ psi	10 ⁶ psi = 6,895 GPa
1 Pa = .102 kg-f m ⁻²	l kgf m ⁻² = 9.81 Pa
1 MPa = .102 kg-f mm ⁻²	1 kg-f mm ⁻² = 9.81 MPa
1 Nm ⁻¹ = .00571 lbf/in	1 lbf/in = 175 Nm ¹
1 Nm ⁻¹ = ,102 kgf/m	1 kgf/m = 9.81 Nm ⁻¹
I Nm = 8.98 in-lbf	1 inlbf = $\frac{1}{8.98}$ Nm

APPENDIX B
TRIGONOMETRIC FUNCTIONS

THETA (DEG)	C 05 20	CØS 40	SIN 20	SIN 40	THET
-90	-1.00000	1.00000	00000	.00000	-90
-85	98481	.93969	17365	.34202	-85
-80	93969	.76604	34202	.64279	-80
-75	86603	.50000	50000	.86603	-75
-70 -65	76604 64279	.17365 17365	64279	.98481	-70 -65
-60	50000	50000	86603	.86603	-60
-55	34202	76604	93969	.64279	-55
-50	-,17365	93969	98481	.34202	-50
-45	.00000	-1.00000	-1.00000	00000	-45
-40	.17365	93969	98481	34202	-40
-35	.3 4202	76604	93969	64279	-35
-30	.50000	50000	86603	86603	-30
-25 -20	.64279	17365 .17365	76604	98481	-25
-20	. 10004	.17307	64219	98481	-20
-15	.86603	.50000	50000	86603	-15
-10	.93969	.76604	34202 17365	64279	-10
-,	.30451	.93969	1/365	34202	-5
0	1.00000	1.00000	.00000	.00000	0
10	.98481	.76604	.17365	.34202	5
10	.93969	. 10004	.34202	.64279	10
15	.86603	.50000	.50000	.86603	15
20	.76604	.17365	.64279	.98481	20
25	.64279	17365	.76604	.98481	25
30	.50000	50000	.86603	.86603	30
35	.34202	76604 93969	.93969	.64279	35
40	.17567	93969	.98481	.34202	40
45	.00000	-1.00000	1.00000	.00000	45
50	17365 34202	93969 76604	.98481	34202	50
55	34202	10004	.93969	64279	55
60	50000	50000	.86603	86603	60
65	64279	17365	.76604	98481	65
70	76604	.17365	.64279	98481	70
75	86603	.50000	.50000	86603	75
80	93969	.76604	.34202	64279	80
85	93481	.93969	.17365	34202	85
90	-1.00000	1.00000	.00000	00000	90

APPENDIX C

NORMAL DISTRIBUTION

-			1								1 - F
.00	.5000	5000	50	6915	3085	1.00	8413	1587	1.50	9332	0668
.01	5040	4960	.51	6950	3050	1.01	8438	1562	1 51	9345	
.02	5080	4920	52	6985	3015	1.02	8461	1539	1 52		-0653
.03	5120		53							9357	9643
.04	5160	4880	.54	7019 7054	2981 2946	1 03	8485 8508	1515	1 53	9370 9382	0630
											0016
05	.5199 5239	4801 4761	-55	7088	2912	1.05	8531	1469	1 55	9394	0606
07	5279		56	7123	2877	1.06	8554	1446	1.56	9406	0594
08		.4721	.57	7157	2843	1.07	8577	1423	1.57	9418	0583
.09	.5319 .5359	.4681	58	7190 7224	2810 2776	1.08	8599 8621	1401	1.58	9429 9441	0555
.00	5003				2,,,0	1.05	8021	13.8	. 55		0533
10	5398	4602	60	7257	2743	1.10	8643	1357	1 60	9452	0548
11	5438	4562	.61	7291	2709	1.11	8665	1335	1 61	9463	053
.12	.5478	4522	62	7324	2676	1.12	.8686	1314	1.62	9474	0526
13	5517	4483	63	7357	2643	1 13	8708	1292	1 63	9484	0516
14	5557	.4443	.64	7389	2611	1.14	8729	1271	1 64	9495	0503
15	5596	4404	-65	7422	2578	1 15	8749	1251	1.65	9505	0495
.16	5636	4364	66	7454	2546	1.16	8770	1230	1 66	9515	0483
17	.5675	4325	67	7486	2514	1.17	8790	1210	1 67	9525	047
.18	.5714	4286	68	7517	2483	1.18	8810	1190	1.68	9535	0463
19	5753	.4247	69	7549	2451	1.19	8830	1170	1.69	.9545	043
.20	5793	4207	.70	7580	2420	1.20	8849	1151	1.70	9554	
21	5832	4168	71	7611	2389	1.21	8869	1131	1.71	9564	0446
22	5871	4129	72	7642	2358	1.22	8888	1112	1.72	9573	043
23	5910	4090	73	7673	2527	1.23	8907	1093	1.73	9582	042
.24	.5948	4052	.74	7704	.2296	1.24	8925	1075	1.74	9591	040
25	5987 6026	3974	75 76	7734	2266	1.25	8944	1056	1.75	9599	0401
27	6064	3936	77	7764 7794	2236	1.26	8962	1038	1 77	9608	039
28	6103	3897	78		2206	1.27	8980	.1020	1.78	9616	035
29	6141	3859	79	7823 7852	2177 2148	1.28	8997 9015	1003	1.79	9625 9633	037.
	.0141	.0000		100-	2140	1.20	9013	0983		9033	036
.30	.6179	3821	80	.7881	2119	1.30	9032	.0968	1.80	.9641	0359
.31	6217	3783	.81	7910	2090	1.31	9049	.0951	1.81	9649	035
.32	6255	3745	82	7939	2061	1.32	9066	0934	1.82	9656	034
33	.6293	3707	83	7967	2033	1.33	9082	.0918	1.83	9664	033
.34	. 6331	3669	.8'	7995	2005	1.34	9099	.0901	1 84	9671	0329
100	. 6368	.3532	. 65	8023	1977	1.35	9115	0885	1.85	9678	0322
.36	6406	. 3594	86	8051	1949	1.36	9131	. 0869	1.86	9686	031
.37	.6443	.3557	.87	8079	1921	1.37	9147	.0853	1.87	9693	030
.38	.6480	3520	.88	8106	1894	1.38	9162	0838	1.88	9699	630
.39	.6517	.3483	. 89	8133	1867	1.39	.9177	.0823	1.89	9706	0294
40	. 6554	.3446	.90	.8159	1841	1.40	9192	.0808	1.90	.9713	0287
.41	6591	.3409	.91	8186	1814	1.41	9207	0793	1.91	9719	028
.42	. 6628	3372	92	8212	1788	1.42	.9222	0778	1 92	9726	0274
.43	.6664	.3336	.93	8238	1762	1.43	9236	0764	1.93	9732	026
.44	6700	.3300	.94	8264	1736	1.44	9251	0749	1.94	9738	026
.45	6736	3264	.95	8289	1711	1.45	.9265	.0735	1.95	9744	0256
.46	.6772	3228	.96	8315	.1685	1.46	9279	0721	1.96	9750	0250
47	6808	3192	.97	8340	1660	1.47	9292	0708	1.97	9756	0244
.48	6844	3156	.98	8365	1635	1.48	9306	0694	1.98	9761	0239
49	6879	3121	.99	.8389	1611	1.49	.9319	0681	1.99	9767	0233
50	6915	3085	1.00	.8413	.1587	1.50	.9332	.0668	2.00	9773	022

197

2 00 9773 0227 2 50 9938 0062 3 00 9987 0013 3 50 9998 0 020 9788 0227 2 213 9940 0050 3 01 9987 0013 3 3 51 9998 0 020 9788 0217 2 2 53 9941 0050 3 03 9888 0012 3 53 9998 0 020 9788 0217 2 54 9943 0055 3 03 9888 0012 3 53 9998 0 020 9789 0017 2 54 9945 0055 3 04 9988 0012 3 54 9998 0 020 9789 0017 2 55 9946 0055 3 04 9988 0011 3 55 9998 0 020 9788 0
2 01
2 03 9788 0212 2 53 9943 0057 3 03 9988 0012 3 54 9998 0 2 04 9793 0207 2 54 9945 0055 3 04 9988 0012 3 54 9998 0 2 05 9798 0202 2 55 9946 0054 3 05 9989 0011 3 55 9998 0 2 06 9803 0197 2 56 9948 0052 3 06 9989 0011 3 55 9998 0 2 07 9808 0192 2 57 9949 0051 3 07 9989 0011 3 57 9998 0 2 08 9812 0188 2 58 9951 0049 3 08 9990 0010 3 59 9998 0 2 09 9817 0183 2 59 9942 0048 3 00 9990 0010 3 59 9998 0 2 10 9821 0179 2 60 9953 0047 3 10 9990 0010 3 59 9998 0 2 11 9826 0174 2 61 9955 0045 3 11 9991 0009 3 61 9998 0 2 11 9826 0174 2 61 9955 0045 3 11 9991 0009 3 61 9999 0 2 11 9830 0170 2 62 9956 0044 3 12 9991 0009 3 62 9999 0 2 14 9838 0166 2 63 9957 0043 3 13 9991 0009 3 63 9999 0 2 14 9838 0162 2 64 9959 0041 3 14 9992 0008 3 64 9999 0 2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 64 9999 0 2 16 9842 0158 2 65 9960 0040 3 15 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9962 0038 3 17 9992 0008 3 66 9999 0 2 18 9854 0166 2 68 9963 0037 3 18 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0039 3 16 9993 0007 3 69 9999 0 2 19 9857 0143 2 69 9964 0035 3 18 9993 0007 3 68 9999 0 2 2 2 3 9864 0136 2 71 9966 0034 3 21 9993 0007 3 69 9999 0 2 2 3 9864 0136 2 71 9966 0034 3 21 9993 0007 3 69 9999 0 2 2 3 9868 0122 2 75 9967 0033 3 2 3 994 0008 3 74 9099 0 2 2 3 9868 0122 2 77 9967 0033 3 2 3 994 0006 3 72 9999 0 2 2 3 9868 0122 2 77 9967 0033 3 2 3 994 0006 3 74 9099 0 2 2 3 9868 0122 2 77 9967 0033 3 2 3 994 0006 3 77 9999 0 2 2 3 9868 0122 2 77 9967 0033 3 2 3 9994 0006 3 77 9999 0 2 2 3 9889 0100 2 79 9974 0026 3 29 9995 0005 3 80 9999 0 2 2 3 9890 0110 2 79 9974 0026 3 29 9995 0005 3 80 9999 0 2 3 9890 0100 2 8 9975 0023 3 34 9995 0005 3 8 9999 0 2 3 9890 0100 2 8 9975 0024 3 32 9995 0005 3 8 9999 0 2 3 9990 0000 2 8 9977 0023 3 34 9996 0004 3 84 9999 0 2 3 9990 0000 3 3 3 3 4 9996 0004 3 84 9999 0 2 3 9900 0000 3 3 3 3 3 9996 0004 3 84 9999 0 2 3 9900 0000 3 3 3 3 3 9996 0004 3 84 9999 0 2 3 9900 0000 3 3 3 3 3 9996 0004 3 84 9999 0 2 3 9900 0000 3 3 3 3 3 9996 0004 3 84 9999 0 2 3 9900 0000 3 3 3 3 3 9999 0000 3 3 3 3
2 05 9798 0202 2 55 9946 0054 3 05 9989 0011 3 55 9998 0 2 06 9803 0197 2 56 9948 0052 3 06 9989 0011 3 56 9998 0 2 07 9808 0192 2 57 9949 0051 3 07 9989 0011 3 56 9998 0 2 0 9817 0183 2 59 9952 0048 3 08 9990 0010 3 58 9998 0 2 0 9817 0183 2 59 9955 0048 3 08 9990 0010 3 58 9998 0 2 0 9817 0183 2 59 9955 0048 3 11 9990 0010 3 59 9995 0 2 11 9826 0174 2 61 9955 0048 3 11 9991 0009 3 61 9998 0 2 12 9830 0170 2 62 9956 0044 3 11 9991 0009 3 61 9998 0 2 12 12 9830 0170 2 62 9956 0044 3 12 9991 0009 3 63 9999 0 2 14 9838 0162 2 64 9957 0043 3 13 9991 0009 3 64 9999 0 2 14 9838 0162 2 66 9961 0039 3 16 9992 0008 3 64 9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 06 9803 0197 2 56 9948 0032 3 06 9989 0011 3 56 9998 02 07 9808 0192 2 57 9949 0051 3 07 9989 0011 3 57 9998 02 08 9812 0186 2 58 9531 0049 3 08 9990 0010 3 58 9998 02 09 9817 0183 2 59 9955 0048 3 08 9990 0010 3 58 9998 02 09 9817 0183 2 59 9955 0048 3 08 9990 0010 3 58 9998 02 09 09 09 09 09 09 09 09 09 09 09 09 09
2 07 9808 0192 2 57 9949 0051 3 07 9989 0011 3 55 9998 0 2 08 9817 0183 2 58 9951 0048 3 08 9990 0010 3 58 9998 0 2 09 9817 0183 2 59 9945 0048 3 09 9990 0010 3 58 9998 0 2 10 9821 0179 2 60 9953 6047 3 10 9990 0010 3 60 4998 0 2 11 9826 0174 2 61 9955 6044 3 11 9991 0009 3 61 9998 0 2 13 9834 0162 2 64 9959 0041 3 13 9991 0009 3 63 9999 0 2 14 9838 0162 2 65 9960 0041 3 15 9992 0008 3 65 9999 0 2 15 9846 0154 <
2 09 9817 0183 2 59 9962 0048 3 09 9990 0010 3 59 9995 2 10 9821 0179 2 60 9953 6047 3 10 9990 0010 3 60 4998 6 2 11 9826 0174 2 61 9955 6045 3 11 9991 0009 3 61 9998 6 2 12 9830 0170 2 62 9956 0044 3 12 9991 0009 3 63 9999 6 2 13 9834 0166 2 63 9959 0041 3 13 9991 0009 3 63 9999 6 2 14 9838 0162 2 64 9959 0041 3 14 9992 0008 3 64 9999 6 2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 65 9999 6 2 16 9846 0154 2 66
2 11 9826 0174 2 61 9955 0045 3 11 9991 0009 3 61 9998 0 2 12 9830 0170 2 62 9956 0044 3 12 9991 0009 3 62 9999 0 2 13 9834 0166 2 63 9957 0043 3 13 9991 0009 3 63 9999 0 2 14 9838 0162 2 64 9959 0041 3 14 9992 0008 3 64 9999 0 2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 64 9999 0 2 16 9846 0154 2 66 9961 0039 3 16 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9962 0038 3 17 9992 0008 3 66 9999 0 2 18 9854 0146 2 68 9963 0037 3 18 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 69 9999 0 2 2 1 9864 0136 2 71 9966 0034 3 21 9993 0007 3 69 9999 0 2 2 2 9868 0132 2 72 9967 0034 3 22 9994 0006 3 72 9999 0 2 2 2 9868 0132 2 72 9967 0034 3 22 9994 0006 3 72 9999 0 2 2 2 9868 0132 2 72 9967 0034 3 22 9994 0006 3 73 9999 0 2 2 2 9868 0132 2 77 9969 0031 3 24 9994 0006 3 73 9999 0 2 2 2 9868 0132 2 77 9969 0031 3 24 9994 0006 3 75 9999 0 2 2 2 9868 0132 2 77 9969 0031 3 24 9994 0006 3 75 9999 0 2 2 2 9868 0122 2 75 9967 0030 3 25 9994 0006 3 75 9999 0 2 2 2 9868 0122 2 75 9970 0030 3 25 9994 0006 3 76 9999 0 2 2 2 9888 0119 2 76 9971 0029 3 26 9995 0005 3 76 9999 0 2 2 2 9888 0116 2 77 9972 0028 3 27 9995 0005 3 77 9999 0 2 2 2 8 8887 0116 2 77 9972 0028 3 27 9995 0005 3 77 9999 0 2 2 2 8 8887 0113 2 78 9973 0027 3 28 9995 0005 3 78 9999 0 2 30 9893 0107 2 80 9974 0026 3 29 9995 0005 3 78 9999 0 2 30 9893 0107 2 80 9974 0026 3 29 9995 0005 3 78 9999 0 2 31 9896 0104 2 81 9973 0027 3 28 9995 0005 3 78 9999 0 2 33 9898 0102 2 82 9976 0024 3 32 9995 0005 3 81 9999 0 2 34 9904 0009 2 83 9977 0023 3 33 9996 0004 3 84 9999 0 2 35 9906 0004 2 85 9979 0021 3 37 9996 0004 3 86 9999 0 2 36 9909 0091 2 86 9979 0021 3 37 9996 0004 3 86 9999 0 2 36 9909 0091 2 88 9989 0021 3 37 9996 0004 3 87 9999 0 2 38 9901 0009 2 88 9989 0021 3 37 9996 0004 3 86 9999 0 2 38 9991 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999 0004 3 88 9999
2 12 9830 0170 2 62 9956 0044 3 12 9991 0009 3 62 9999 0 2 14 9838 0166 2 64 9959 0041 3 14 9992 0008 3 64 9999 0 2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 64 9999 0 2 15 9846 0154 2 65 9960 0040 3 15 9992 0008 3 65 9999 0 2 16 9846 0154 2 66 9960 0039 3 16 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9962 0038 3 17 9992 0008 3 67 9999 0 2 19 9851 0143 2 69 9964 0036 3 19 9993 0007 3 68 9999 0 2 20 9861 0139 2 70 9963
2 14 9838 0162 2 64 9959 0041 3 14 9992 0008 3 64 9999 0 2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 65 9999 0 2 16 9846 0154 2 66 9961 0039 3 16 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9962 0038 3 17 9992 0008 3 67 9999 0 2 18 9854 0146 2 68 9963 0037 3 18 9993 0007 3 68 9999 0 2 19 9851 0133 2 69 9964 0036 3 19 9993 0007 3 69 9999 0 2 20 9861 0139 2 70 9965 0033 3 20 9993 0007 3 70 9999 0 2 21 9864 0136 2 71
2 15 9842 0158 2 65 9960 0040 3 15 9992 0008 3 65 9999 0 2 16 9846 0154 2 66 9961 0039 3 16 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9662 0038 3 17 9992 0008 3 66 9999 0 2 18 9854 0146 2 68 9663 0031 3 18 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 69 9999 0 2 2 19 9864 0136 2 71 9966 0034 3 21 9993 0007 3 71 9999 0 2 2 19 9864 0136 2 71 9966 0034 3 21 9993 0007 3 71 9999 0 2 2 22 9868 0132 2 72 9967 0034 3 21 9994 0006 3 72 9999 0 2 2 22 9871 0129 2 73 9968 0032 3 23 9994 0006 3 72 9999 0 2 2 2 2 9875 0125 2 74 9968 0031 3 24 9994 0006 3 74 9999 0 2 2 2 2 9858 0122 2 75 9967 0031 3 24 9994 0006 3 74 9999 0 2 2 2 2 9858 0122 2 75 9967 0031 3 2 4 9994 0006 3 74 9999 0 2 2 2 2 9858 0122 2 75 9970 0031 3 2 4 9994 0006 3 74 9999 0 2 2 2 9 9858 0110 2 2 75 9970 0031 3 2 5 9994 0006 3 75 9999 0 2 2 2 9 9858 0110 2 2 75 9971 0029 3 2 6 9994 0006 3 75 9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 16 9846 0154 2 66 9961 0039 3 16 9992 0008 3 66 9999 0 2 17 9850 0150 2 67 9662 6038 3 17 9992 0008 3 66 9999 0 2 18 9854 0146 2 68 9663 0037 3 18 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 68 9999 0 2 21 9861 0139 2 71 9966 0034 3 21 9993 0007 3 70 9999 0 2 21 9868 0132 2 72 9967 0034 3 21 9994 0006 3 72 9999 0 2 22 9871 0129 2 73 9908 0032 3 23 9994 0006 3 73 9999 0 2 23 9878 0122 <
2 18 9854 0146 2 68 9963 0032 3 18 9993 0007 3 68 9999 0 2 19 9857 0143 2 69 9964 0036 3 19 9993 0007 3 68 9999 0 2 2 1 9864 0136 2 71 9966 0034 3 21 9993 0007 3 71 9999 0 2 21 9864 0136 2 71 9966 0034 3 21 9993 0007 3 71 9999 0 2 23 9871 0129 2 73 9908 0032 3 23 9994 0006 3 72 9999 0 2 24 9875 0125 2 74 9969 0031 3 24 9994 0006 3 73 9999 0 2 25 9878 0122 2 75 9970 0031 3 25 9994 0006 3 75 9999 0 2 20 9881 0119
2 20 9861 0139 2 70 9965 6035 3 20 9993 0007 3 70 9999 02 21 9864 0136 2 71 9966 0034 3 21 9993 0007 3 71 9999 02 22 9868 0132 2 72 9967 0033 3 22 9994 0006 3 72 9999 02 23 9871 0129 2 73 9908 0032 3 23 9994 0006 3 73 9999 02 2 24 9875 0125 2 74 9969 0031 3 24 9994 0006 3 74 9999 002 2 24 9875 0125 2 74 9969 0031 3 24 9994 0006 3 74 9999 0031 3 25 9994 0006 3 74 9999 0031 3 25 9994 0006 3 75 9999 0031 3 27 9995 0006 3 75 9999 0032 3 26 9994 0006
2 21 9864 0136 2 71 9968 0034 3 21 9993 0007 3 71 9999 0 2 22 9868 0132 2 72 9967 0033 3 22 9994 0006 3 72 9999 0 2 23 9871 0129 2 73 9908 6032 3 23 9994 0006 3 74 9999 0 2 24 9875 0125 2 74 9969 0031 3 24 9994 0006 3 74 9999 0 2 20 9881 0119 2 76 9611 0029 3 26 9994 0006 3 75 9999 0 2 27 9884 0116 2 77 9972 0028 3 27 9995 0005 3 78 9999 0 2 29 9880 0110 2 79 9974 0026 3 28 9995 0005 3 78 9999 0 2 30 9893 0107 <
2 23 9871 0129 2 73 9908 0032 3 23 9994 0006 3 73 9999 0 2 24 9875 0125 2 74 9969 0031 3 24 9994 0006 3 74 9999 0 2 25 9878 0122 2 75 9970 0030 3 25 9994 0006 3 75 9999 0 2 26 9881 0119 2 76 9971 0028 3 26 9994 0006 3 75 9999 0 2 27 9884 0116 2 77 9972 0028 3 27 9995 0005 3 77 9999 0 2 28 9887 0113 2 78 9973 0027 3 28 9995 0005 3 78 9999 0 2 30 9893 0107 2 80 9974 0026 3 30 9995 0005 3 79 9999 0 2 31 9896 0104 <
2 24 9875 0125 2 74 9896 0031 3 24 9994 0006 3 74 9999 0 2 25 9878 0122 2 75 9970 0030 3 25 9994 0006 3 75 9999 0 2 26 9881 0119 2 76 9971 0029 3 26 9994 0006 3 75 9999 0 2 27 9884 0116 2 77 9972 0028 3 27 9995 0005 3 78 9999 0 2 28 9887 0113 2 78 9973 0027 3 28 9995 0005 3 78 9999 0 2 30 9890 0110 2 79 9974 0026 3 29 9995 0005 3 78 9999 0 2 30 9893 0107 2 80 9974 0026 3 30 9995 0005 3 80 9999 0 2 31 9986 0100 <td< td=""></td<>
2 26 9881 0119 2 76 9971 0029 3 26 9994 0006 3 76 9999 028 3 27 9995 0005 3 77 9999 0005 3 77 9999 0005 3 77 9999 0005 3 78 9999 0005 3 78 9999 0005 3 78 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 79 9999 0005 3 80 9999 0005 3 80 9999 0005 3 80 9999 0005 3 80 9999 0005 3 81 9999 0005 3 81 9999 0005 3 81 9999 0005 3 81 9999 0004 3 82 9969
2 27 9884 0116 2 77 9972 0028 3 27 9995 0005 3 77 9999 027 3 28 9995 0005 3 78 9999 027 3 28 9995 0005 3 78 9999 027 3 28 9995 0005 3 78 9999 028 027 3 28 9995 0005 3 79 9999 028 028 997 0026 3 30 9995 0005 3 79 9999 028 028 997 0021 3 31 9995 0005 3 80 9999 028 028 997 0023 3 31 9995 0005 3 81 9999 028 0006 2 81 997 0023 3 31 9996 0004 3 82 9999 023 3 33 9996 0004 3 83 9999 023 3 34 9996 0004 3 83 9999 023 3 34 9996 0004 3 84 9999 023 3 34 <
2 29 9890 0110 2 79 9974 0026 3.29 9995 0005 3 79 9999 0 2 30 9893 0107 2 80 9974 0026 3 30 9995 0005 3 80 9999 0 2 31 9896 0104 2 81 9975 0027 3 31 9995 0005 3 81 9999 0 2 32 9898 0102 2 82 9976 0024 3 32 9996 0004 3 82 9999 0 2 33 9901 0099 2 83 9977 0023 3 33 9996 0004 3 83 9999 0 2 34 9904 0096 2 84 9977 0023 3 34 9996 0004 3 84 9999 0 2 35 9906 0094 2 85 9978 0022 3 35 9996 0004 3 85 9999 0 2 36 9909 0091 <
2 31 9896 0104 2 81 9975 0023 3 31 9996 0004 3 81 9999 0 2 32 9898 0102 2 82 9976 0024 3 32 9996 0004 3 82 9999 0 2 33 9901 0099 2 83 9977 0023 3 33 9996 0004 3 83 9999 0 2 34 9904 0096 2 84 9977 0023 3 35 9996 0004 3 84 9999 0 2 35 9906 0094 2 85 9978 0022 3 35 9996 0004 2 85 9999 0 2 36 9909 0091 2 86 9979 0021 3 36 9996 0004 3 85 9999 0 2 37 9911 0089 2 87 9979 0021 3 37 9996 0004 3 87 9999 0 2 9999 0 0 2 </td
2 32 9898 0102 2 82 9976 0024 3 32 9996 0004 3 82 9999 023 2 34 9904 0099 2 83 9977 0023 3 33 9996 0004 3 83 9999 023 2 34 9904 0096 2 84 9977 0023 3 34 9996 0004 3 84 9999 023 2 35 9906 0094 2 85 9978 0022 3 35 9996 0004 2 85 9999 021 2 36 9909 0091 2 86 9979 0021 3 36 9996 0004 3 86 9999 022 2 37 9911 0089 2 87 9979 0021 3 37 9996 0004 3 86 9999 022 2 38 9913 0087 2 88 9980 0020 3 38 9996 0004 3 88 9999 0004
2 33 9901 0099 2 83 9977 0023 3 33 9996 0004 3 83 9999 0 2 34 9904 0096 2 84 9977 0023 3 34 9996 0004 3 84 9999 0 2 35 9996 0004 3 84 9999 0 2 35 9996 0004 3 84 9999 0 2 36 9999 0091 2 86 9979 0021 3 36 9996 0004 3 86 9999 0 2 37 9911 0089 2 87 9979 0021 3 37 9996 0004 3 86 9999 0 2 37 9913 0087 2 88 9980 0020 3 38 9996 0004 3 88 9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 35 9906 0094 2 85 8978 0022 3 35 9996 0004 2 85 9999 0 2 36 9909 0091 2 86 9979 0021 3 36 9996 0004 3 86 9999 0 2 37 9911 0089 2 87 9979 0021 3 37 9996 0004 3 87 9999 0 2 38 9913 0087 2 88 9980 0020 3 38 9996 0004 3 87 9999 0
2 36 9909 0091 2 86 9979 0021 3 36 9996 0004 3 86 9999 0 2 37 9911 0089 2 87 9979 0021 3 37 9996 0004 3 87 9999 0 2 38 9913 0087 2 88 9980 0020 3 38 9999 0 0004 3 88 9999 0
2 38 9913 0087 2 88 9980 0020 3 38 9996 0004 3 88 9999 0
2.00 3000 2.00 3001 0019
2.40 .9918 .0082 2.90 .9981 0019 3.40 .9997 .0003 3.90 1.0000 0
2 41 9920 0080 2 91 9982 0018 3 41 9997 0003 3 91 1 0000 0
2 43 9925 0075 2 93 9983 0017 3 43 9997 0003 3 93 1 0000 0
2.46 9931 0069 2.96 9985 0015 3.46 9997 0003 3.96 1.0000 0
2 48 9934 0066 2 98 9986 0014 3.48 9997 0003 3 98 1 0000 0
2.50 .9938 .0062 3.00 .9987 .0013 3.50 .9998 .0002 4.00 1.0000 0

APPENDIX D

CHI-SQUARE DISTRIBUTION PERCENTAGE POINTS

$$F(x^{1}) = \int_{0}^{x^{1}} \frac{1}{2^{n/2} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n-2}{2}} e^{-\frac{x}{2}} dx$$

							(2)						
17	.005	.010	.025	.050	.100	.250	.500	.750	.900	.950	.975	.990	.995
1	0000393	000157	.0009-82	.00393	0158	102	455	1 32	2 71	3 84	5 02	6 63	7.8
2	0100	.0201	.0506	.103	211	575	1 39	2 77	4 61	5 99	7 38	9 21	10.6
3	0717	.115	.216	.352	584	1 21	2 37	4 f1	6 25	7 81	9 35	11 3	12.8
4	207	.297	.484	.711	1.06	1 92	3 36	5 39	7 78	9 49	11 1	13 3	14.9
5	412	.554	.831	1.15	1.61	2 67	4 35	6 63	9 24	11.1	12 8	15 1	16.7
6 8 9	676 989 1 34 1 73 2 16	872 1 24 1 65 2 09 2 56	1 24 1 69 2 18 2 70 3 25	1 64 2 17 2 73 3 33 3 94	2 20 2 83 3 49 4 17 4 87	3 45 4 25 5 07 5 90 6 74	5.35 6.35 7.34 8.34 9.34	7.84 9.04 10.2 11.4 12.5	10 6 12 0 13 4 14 7 16 0	12.6 14.1 15.5 16.9 18.3	14 4 16 0 17 5 19 0 20 5	16 8 18 5 20 1 21 7 23 2	18 5 20 3 22 0 23 6 25 2
11	2 60	3 05	3 82	4 57	5.58	7 58	10 3	13.7	17.3	19.7	21 9	24 7	26 8
12	3 07	3 57	4 40	5 23	6.30	8 44	11 3	14.8	18.5	21.0	23 3	26 2	28 3
13	3 57	4 11	5 01	5 89	7.04	9 30	12 3	16.0	19.8	22.4	24 7	27 7	29 8
14	4 07	4 66	5 63	6 57	7.79	10 2	13 3	17.1	21.1	23.7	26 1	29 1	31 3
15	4 60	5 23	6 26	7 26	8.55	11 6	14 3	18.2	22.3	25.0	27 5	30 6	32 8
16	5 14	5 81	6.91	7.96	9 31	11 9	15.3	19 4	23 5	26.3	28.8	32 0	34 3
17	5 70	6 41	7.56	8.67	10 1	12 8	16.3	20 5	24 8	27.6	30.2	33 4	35 7
18	6 26	7 01	8.23	9.39	10 9	13 7	17.3	21 6	26 0	28.9	31.5	34 8	37 2
19	6 84	7 63	8.91	10.1	11 7	14 6	18.3	22 7	27 2	30.1	32.9	36 2	38 6
20	7 43	8 26	9.59	10.9	12 4	15 5	19.3	23 8	28 4	31.4	34.2	37 6	40 0
21	8 03	8 90	10 3	11 6	13.2	16 3	20 3	24 9	29 6	32 7	35.5	38 9	41 .4
22	8 64	9 54	11 0	12 3	14.0	17 2	21 3	26 0	30 8	33 9	36.8	40 3	42 .8
23	9 26	10 2	11 7	13 1	14.8	18 1	22 3	27 1	32 0	35 2	38.1	41 6	44 .2
24	9 89	10 9	12 4	13 8	15.7	19 0	23 3	28 2	33 2	36 4	39.4	43 0	45 .6
25	10 5	11 5	13 1	14 6	16.5	19 9	24 3	29 3	34 4	37 7	40.6	44 3	46 .9
26	11 2	12 2	13 8	15 4	17.3	20.8	25.3	30 4	35.6	38.9	41.9	45.6	48 3
27	11 8	12 9	44 6	16 2	18.1	21.7	26.3	31 5	36.7	40.1	43.2	47.0	49 6
28	12 5	13 6	15 3	16 9	18.9	22.7	27.3	32 6	37.9	41.3	44.5	48.3	51 0
29	13 1	14 3	16 0	17 7	19.8	23.6	28.3	33 7	39.1	42.6	45.7	49.6	52 3
30	13 8	15 0	16 8	18 5	20.6	24.5	29.3	34 8	40.3	43.8	47.0	50.9	53 7

APPENDIX E

GAMMA FUNCTION

Values of
$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$$
; $(n+1) = n\Gamma(n)$

n	Γ (n) .	n	$\Gamma(n)$	n	r (n)	n	Γ (n)
1.00	1 00000	1.25	90640	1.50	88623	1.75	91906
1 01	99433	1.26	90440	1.51	88659	1.76	92137
1 02	98884	1 27	90250	1 52	88701	1.77	92376
1.03	.98355	1 28	.90072	1 53	88757	1.78	92623
1.04	97841	1.29	89901	1.54	.88818	1.79	92877
1.05	.97350	1.30	89747	1.55	88887	1.80	93138
1.06	.96874	1 31	89600	1.56	88964	1.81	93408
1 07	96415	1.32	89464	1.57	89049	1.82	93683
1.08	.95973	1.33	89338	1 58	89142	1.83	93969
1.09	.95546	1.34	89222	1.59	89243	1.84	94261
1 10	95135	1.35	89115	1.60	89352	1.85	94561
1.11	.94739	1 36	89018	1.61	89468	1 86	94869
1.12	94359	1.37	88931	1.62	89592	1 87	.95184
1.13	.93993	1.38	88854	1 63	89724	1.88	.95507
1.14	.93642	1.39	88785	1.64	89864	1.89	.95838
1.15	.93304	1.40	.88726	1.65	90012	1.90	.9617
1.16	92980	1.41	.88676	1.66	90167	1.91	96523
1.17	92670	1.42	88636	1 67	.90330	1.92	9687
1 18	92373	1.43	88604	1.68	90500	1.93	.97240
1.19	.92088	1.44	88580	1.69	90678	1.94	97610
1.20	91817	1.45	88565	1.70	.90864	1.95	97988
1.21	91558	1.46	88560	1 71	91057	1.96	9837
1 22	.91311	1.47	. 88563	1.72	91258	1.97	98768
1 23	.91075	1.48	88575	1.73	91466	1.98	.99171
24	.90852	1.49	88595	1.74	91683	1.99	1 00000

[•] For large positive values of x, $\Gamma(x)$ approximates the asymptotic series x^xe^{-x} $\sqrt{\frac{2x}{x}}\left[1+\frac{1}{12x}\right]$