Code: 221201

2013 akubihar.com

PHYSICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Answer any seven questions : $2 \times 7 = 14$
 - you understand by electromagnetic waves?
 - What is Ampere's circuital law?
 - Can two electric bulbs (each 50 W) with point-like filament of the same material and lying close to each other produce interference?
 - Why can optical diffraction grating not be employed to study the diffraction of X-rays?
 - Why can light waves be polarized, while sound waves cannot be polarized?

- What is the phenomenon of double refraction?
- What is the physical significance of $E^2 = p^2c^2 + m_0^2c^4$?
- Why do we not observe the effect of time-dilation in everyday phenomenon?
- What do you mean by matter waves? What is the aim of Davisson-Germer experiment?
- A nucleon is to a nucleus of diameter 5×10^{-4} m. Calculate the minimum uncertainty in the momentum of the nucleon.

akubihar.com

- Prove that normal component of \vec{D} and tangential component of \vec{E} are continuous across the boundary of three dielectrics having no charge at the boundary. Establish the relation between \vec{D} and \vec{E} , where terms have their usual meanings.
- 3. Give the theory of Fraunhofer diffraction pattern produced by a single slit. When the grating element is less than the twice of the wavelength of light used, the first-order spectrum will be visible in a grating. Prove it. 14

14

4./	Discuss Brewster's	law and Malus law of
V	polarization of light.	Explain the phenomena
	of double refraction	of light in crystals.

14

- (a) Derive the standard Lorentz transformation equations on the basis of postulates of special theory of relativity.
 - (b) If photons have no mass, then how do photons have momentum?

14

14

- 6 (a) Why is a metastable level between stable energy levels necessary for laser emission?
 - (b) Why is a system with four allowed energy levels more suitable than a three-level system for laser action?
 - (c) Why is optical feedback necessary in a laser device? How is it achieved?

7. (a) What is Compton effect?

- (b) Calculate the Compton wavelength for an electron.
- (c) Why does the unmodified line appear in Compton scattering?
- (d) Prove that Compton shift is independent on the nature of the scatter.

8 (a) Deduce the time-dependent Schrödinger wave equation for a free particle and a particle under an external force field.

- (b) Write down Schrödinger equation for one-dimensional motion of a free particle in a one-dimensional potential box. Find its eigenfunction and eigenvalue.
- 9. Write short notes on any *two* of the following: 7×2=14

14

- (a) Optical resonator
- (b) Probability density
- (c) Magnetooptic effect
- (d) Failure of Galilean transformation

* * *

akubihar.com