Linear Algebra Midterm 2 Review Questions

- **1.** Give an example of a rank 3 matrix A such that a basis for the nullspace of A is the single vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- **2.** Diagonalize $\begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & -1 \\ -1 & 0 & 0 \end{bmatrix}$ if possible. (That is, find P and a diagonal D for which $A = PDP^{-1}$.)
- **3.** Let S be the subspace of polynomials p(x) of degree A or less with p'(0) = 0. Find a basis and the dimension of S.
- **4.** Let S be the set of 2×2 matrices A with $A + A^{\top} = I$. Either show S is a subspace or show that S is not a subspace of $M_{2,2}$.
- **5.** True or False:
- _____a. The nullspace and the column space of a matrix can be equal.
- ______b. The number of linearly independent rows of a matrix is always equal to the number of linearly independent columns.
- **_____ c.** If A is diagonalizable, then the determinant of A is the product of the eigenvalues of A.
- **6.** Why did we only discuss eigenvalues and eigenvectors for square matrices?
- **7.** What is the dimension of the span of the vectors $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}$?
- **8.** Suppose that λ is an eigenvalue of A with eigenvector \mathbf{x} and suppose that A^{-1} exists. Explain why λ^{-1} is an eigenvalue of A^{-1} .
- **9.** Give an example of a matrix A with eigenvalue/eigenvector pairs 2, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and -1, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- **10.** Let S be the set of all $n \times n$ matrices with rank 0 or 1. Is S a subspace?