where we have defined

$$\mathbf{S} = \frac{N_1}{N} \mathbf{S}_1 + \frac{N_2}{N} \mathbf{S}_2 \tag{5.61}$$

$$\mathbf{S}_1 = \frac{1}{N_1} \sum_{n \in C_1} (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}}$$
 (5.62)

$$\mathbf{S}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}}.$$
 (5.63)

Using the standard result for the maximum likelihood solution for a Gaussian distribution, we see that $\Sigma = S$, which represents a weighted average of the covariance matrices associated with each of the two classes separately.

This result is easily extended to the K-class problem to obtain the corresponding maximum likelihood solutions for the parameters in which each class-conditional density is Gaussian with a shared covariance matrix. Note that the approach of fitting Gaussian distributions to the classes is not robust to outliers, because the maximum likelihood estimation of a Gaussian is not robust.

5.3.3 Discrete features

Let us now consider discrete feature values x_i . For simplicity, we begin by looking at binary feature values $x_i \in \{0,1\}$ and discuss the extension to more general discrete features shortly. If there are D inputs, then a general distribution would correspond to a table of 2^D numbers for each class and have $2^D - 1$ independent variables (due to the summation constraint). Because this grows exponentially with the number of features, we can seek a more restricted representation. Here we will make the *naive Bayes* assumption in which the feature values are treated as independent and conditioned on the class \mathcal{C}_k . Thus, we have class-conditional distributions of the form

$$p(\mathbf{x}|\mathcal{C}_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i},$$
(5.64)

which contain D independent parameters for each class. Substituting into (5.46) then gives

$$a_k(\mathbf{x}) = \sum_{i=1}^{D} \left\{ x_i \ln \mu_{ki} + (1 - x_i) \ln(1 - \mu_{ki}) \right\} + \ln p(\mathcal{C}_k), \tag{5.65}$$

which again are linear functions of the input values x_i . For K=2 classes, we can alternatively consider the logistic sigmoid formulation given by (5.40). Analogous results are obtained for discrete variables that take L>2 states.

5.3.4 Exponential family

As we have seen, for both Gaussian distributed and discrete inputs, the posterior class probabilities are given by generalized linear models with logistic sigmoid (K = 1)

Exercise 5.14

Section 5.1.4

Section 11.2.3

Exercise 5.16