Category Theory

maple, 菜鸡

2020年12月21日

1 Functoriality

函子 (functor)

Definition 1.1. 一个函子 $F: \mathcal{C} \to \mathcal{D}$ 由两个映射组成

- 每一个对象 $c \in \mathcal{C}$, 对应一个对象 $F_c \in \mathcal{D}$ 。
- 每一个态射 $f: c \to c' \in \mathcal{C}$, 对应一个态射 $Ff: Fc \to Fc' \in \mathcal{D}$, 所有 Ff 的 domain 和 codomain 分 别对应 f 的 domain 和 codomain。

同时还满足两个公理 (functoriality aximos)

- 对任意的可复合态射 $f,g \in \mathcal{C}, Fg \cdot Ff = F(g \cdot f)$
- 对任意的对象 $c \in \mathcal{C}, F(1_c) = 1_{F_c}$

通俗一点来说,函子由两个范畴之间对象的映射和态射的映射组成,同时保留了范畴所有的结构,包括 domains, codomain, 复合律, identity。

Lemma 1.2. 函子保留同构

定义态射 $f: x \rightarrow y$ 和 $g: y \rightarrow x, fg = 1_x, gf = 1_y$

$$F(fg) = F(f)F(g) = 1_{F(x)}, F(gf) = F(g)F(f) = 1_{F(y)}$$

但是反过来并不一定成立,即如果 F(f) 是一个同构,但是 f 不一定是一个同构,举个很简单的例子 $F: 2 \rightarrow 1,1$ 里面所有态射都是同构的,但是 2 并不是一个群胚 (groupoid)。

Example 1.3. 几种特殊的函子

• 对任意范畴 C, 存在一个单位函子 (identity functor) $id_C: C \rightarrow C$ 定义为

$$id_{\mathcal{C}}(c \xrightarrow{f} c') = c \xrightarrow{f} c'$$

• 对于任意的范畴 C 和 D, 和 D 中某个固定的对象 d, 存在一个**常量函子** (constant functor) $C_d \colon C \to D$ 定义为

$$C_d(\; c \overset{f}{\longrightarrow} c'\;) = \; d \overset{id_d}{\longrightarrow} d$$

- 遗忘函子 (forgetful functor) $U: C \rightarrow Set$, U(c) 指 c 的根本集合 (underlying set), 以代数为例, 一个代数结构是在某个集合上定义的运算才新建的,这个集合就是根本集合。
- 同变 hom-functor 和 逆变 hom-functor 后面有完整的介绍和证明。

Example 1.4. 如果把群 (Group) 看做一个对象的范畴,那么群范畴和群范畴的函子是什么?

首先回忆一下,群范畴只有单个对象 x,群里面的元素对应群范畴里面的态射,其 domain 和 codomain 都是对象 x,群里面的单位元对应群范畴里面的 1_x 单位态射,群元素之间的乘法运算对应态射之前的映射。

Example 1.5. 函子 $F: \mathcal{C} \to \mathcal{D}$ 并不一定定义了一个 \mathcal{D} 的子范畴

定义一个顺序范畴 $\mathcal{C}=2$, 即:

$$0 \xrightarrow{f} 1.$$

所以范畴 \mathcal{C} 里面有三个态射 $1_0, 1_1, f$,然后我们再构造一个范畴 \mathbb{D} ,里面存在一个满态射 (endomorphism)g:

$$x \xrightarrow{g} x$$
.

但是 gg 不等于 1_x 和 g, 这很容易办到,例如 x=1,2,3 在 Set 中,g 表示函数 $1\to 2,2\to 3,3\to 1$,那么 gg 表示 $1\to 3,2\to 1,3\to 2$,很显然 gg 不等于 1_x 和 g, 但是还是一个 endomorphism,这也说明 endomorphism 的复合还是 endomorphism。

接着我们来开始构造一个 F, F(0) = F(1) = x, 且 $F(0_1) = 1_x$, $F(1_1) = 1_x$, F(f) = g, mathcalC 中三个态射有四种复合方式,为了说明 F 是一个函子,还需要证明 F 保留了这四个复合结构, $F(1_11_1) = F(1_0)F(1_0) = 1_x$, $F(0_10_1) = F(0_1)F(0_1) = 1_x$, $F(f0_1) = F(f)F(0_1) = g1_x$, $F(1_1f) = 1_xg$, 很显然这是 F 的确保持了复合结构,F 的像里面只有 1_x , g, 根据范畴复合公理 gg 是可以复合的,但是 $gg \notin img_F$,所以函子 F 并没有定义一个子范畴。

同变函子和逆变函子 (covariant and contravariant)

Definition 1.6. 前面定义的函子也叫同变函子,那么一个逆变函子从 C 到 D 为 $F: \mathcal{C}^{op} \to \mathcal{D}$,也是由两个映射组成

- 每一个对象 $c \in \mathcal{C}$, 对应一个对象 $F_c \in \mathcal{D}$ 。
- 每一个态射 $f: c \to c' \in \mathcal{C}$, 对应一个态射 $Ff: Fc' \to Fc \in \mathcal{D}$, 所有 Ff 的 domain 和 codomian 分 别对应 f 的 codomain 和 domain

同时也满足两个公理 (functoriality aximos)

- 对任意的可复合的 $f,g \in \mathcal{C}, Ff \cdot Fg = F(g \cdot f)$
- 对任意的对象 $c \in \mathcal{C}, F(1_c) = 1_{F_c}$

相对于同变函子来说,f 对应的像 Ff 的箭头反过来了,下面这个图可以很形象的描述

$$\begin{array}{ccc}
C^{op} & \xrightarrow{F} \mathcal{D} \\
c & \longmapsto F_c \\
\downarrow^f & Ff \uparrow \\
c' & \longmapsto F_{c'}
\end{array}$$

Definition 1.7. 如果范畴 \mathcal{C} 是局部小的,可以用任意一个对象 $c \in \mathcal{C}$ 来表示一对同变函子和逆变函子:

首先需要给函子 C(c,-) 和 C(-,c) 的定义,函子 C(c,-) 表示把 $x \in C$ 映射到包含 c 到 x 箭头集合 C(c,x),对偶地,函子 -,c 表示把 $x \in C$ 映射到包含到 x 到 c 箭头集合 C(x,c). 对于态射而言,C(c,-) 把 态射 $f\colon x\to y$ 映射到 $f_*\colon C(c,x)\to C(c,y)$,对偶形式这里就不累述了,现在要证明他们确实是一个函子

我们来检验他们是否满足函子的公理,从两个方面出发是否保留了复合结构和单位态射:

定义 C 中两个可复合的态射 $f: x \to y, g: w \to x$, 我们需要证明 C(c, -)(fg) = C(c, -)(f)C(c, -)(g). 因为 $fg: w \to y$, 所以

$$\mathsf{C}(c,-)(fg) \colon \mathsf{C}(c,-)(w) {\rightarrow} \mathsf{C}(c,-)(y)$$

,而 dom $C(c,-)(f) = \operatorname{cod} C(c,-)(g) = C(c,x)$,所以

$$\mathsf{C}(c,-)(f)\mathsf{C}(c,-)(g)\colon \mathsf{C}(c,-)(w)\to \mathsf{C}(c,-)(y)$$

, 完成我们的证明目标。

对于单位态射而言,我们证明目标是 $C(c,-)(1_x) = 1_{C(c,-)(x)}$, 首先对任意的对象 $x \in C, 1_x : x \to x$, 有

$$\mathsf{C}(c,-)(1_x) \colon \mathsf{C}(c,-)(x) \to \mathsf{C}(c,-)(x)$$

,对应的 post composition with 1_x 1_x^* : $C(c,x) \to C(c,x)$,对任意 $a \in (c,x), 1_x^*$ 把 $a \mapsto 1_x a$,即 $a \mapsto a$,所以 $1_{C(c,x)} = 1_{C(c,x)}$,因为 $1_{C(c,x)}$ 就是把 $a \mapsto a$,证明目标完成,

最后还需要证明 C(-,c) 是一个逆变函子,利用对偶性质, $C^{op}(c,-): C^{op} \to Set$ 也是一个函子,同时它也是一个逆变函子,自然地 $C^{op}(c,-) = C(-,c)$,证闭。

Example 1.8. 函子 $C^{op} \to D$ 和函子 $C \to D^{op}$ 有什么区别?函子 $C \to D$ 和函子 $C^{op} \to D^{op}$ 又有什么区别?

先给结论都是没有区别的,现证函子 C \rightarrow D 和函子 C^{op} \rightarrow D^{op} 没有区别,定义 F 为 C \rightarrow D 的函子,即 F 满足对 $f\colon x\rightarrow y$ 和 $g\colon w\rightarrow x$ 有 F(fg)=F(f)F(g), C^{op} 和 C 里面的对象是相同的,态射的箭头转向,即 $f\colon y\rightarrow x$ 和 $g\colon x\rightarrow w$, 把 F 作用在它们上 F(gf)=F(g)F(f) 也是成立的,其中 $F(g)\in \mathsf{D}^{op}$,所以两个函子没有区别。

下面再用一个小 trick $(C^{op})^{op} = C$, 再用一下上面已经证明的结论 $C^{op} \to D$ 等价为 $(C^{op})^{op} \to D^{op}$, 即 $C \to D^{op}$ 。

函子的复合

设 $F: A \to B, G: B \to C$ 是函子, 定义 $GF: A \to C$ 使得对 A 中的任意一个对象 A,

$$A \mapsto G(F(A))$$

对 \mathcal{A} 中的任意一个态射 $f: A \to B$,

$$(f \colon A \to B) \mapsto (G(F(f)) \colon G(F(A)) \to G(F(b)))$$

则 GF 是一个函子。

很自然地,因为函子可以进行复合运算,那么是否存在一个以所有范畴为对象,函子为态射的范畴?但是遗憾的是两个范畴之间的函子的全体未必是一个集合。但是我们把目光限制在所有小范畴上时,我们的确可以得到一个以所有小范畴为对象,以小范畴之间函子为态射的范畴(Cat)

Definition 1.9. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个函子。如果存在函子 $G: \mathcal{D} \to \mathcal{C}$ 使得 $GF = 1_{\mathcal{C}}, FG = 1_{\mathcal{D}}$,则称 F 是范畴 \mathcal{C} 到范畴 \mathcal{D} 的一个 **同构** (isomorphism)。换一句话来说如果存在范畴 \mathcal{C} 到 \mathcal{D} 的同构 $F: \mathcal{C} \to \mathcal{D}$,则称范畴 \mathcal{C} 与 \mathcal{D} 是同构的。

这说明 F 是一个满射两个范畴对象和态射是一个双射。

c-Functor

$$\begin{array}{c} \mathcal{C} \xrightarrow{C(c,-)} \mathcal{S}et \\ \mathcal{C}^{op} \xrightarrow{C(-,c)} \mathcal{S}et \end{array}$$

Product

Definition 1.10. 对任意的两个范畴 \mathcal{C} 和 \mathcal{D} , 他们的积是一个新范畴 $\mathcal{C} \times \mathcal{D}$

- 对象是有序对 (c,d), 其中 $c \in \mathcal{C}$ 中的一个对象, $d \in \mathcal{D}$ 的一个对象
- 态射也是有序对 $(f,g): (c,d) \to (c',d'), f: c \to c' \in \mathcal{C}, g: d \to d' \in \mathcal{D}$

双函子的形式化定义 (bifunctor)

Definition 1.11. 它叫双函子,不如叫二元函子,因为 *bifunctor* 是 *binary functor* 的缩写,对范畴 $\mathcal{C}_1, \mathcal{C}_2, \mathcal{D}$,二元函子表示为:

$$F \colon \mathcal{C}_1 \times \mathcal{C}_2 \to \mathcal{D}$$

这个函子的 domain 是两个范畴的积,例如 Abel 群看做一个范畴 G,其中加法运算 $+: G \times G \to G$ 是一个双函子 (证明过程证明 functor 满足的两个公理即可,保持 identity 和复合律)。

自然双函子, 好吧它的真正名字叫 射影函子

$$P_{\mathcal{C}} \colon \mathcal{C} \times \mathcal{D} \to \mathcal{C}, (A,B) \mapsto A, (f,g) \mapsto f$$

$$P_{\mathcal{D}} \colon \mathcal{C} \times \mathcal{D} \to \mathcal{D}, (A, B) \mapsto B, (f, g) \mapsto g$$

射影函子的万有性质

对任意的范畴 ε 及函子 $R: \varepsilon \to \mathcal{C}$ 和 $T: \varepsilon \to \mathcal{D}$,存在唯一的函子 $F: \varepsilon \to \mathcal{C} \times \mathcal{D}$ 使得 $P_{\mathcal{C}}F = R, P_{\mathcal{D}}F = T$,即下面交换图表示

Example 1.12. 给定两个函子 $F: D \to C$ 和 $G: E \to C$, 可以构造一个逗号范畴 (comma category) $F \downarrow G$:

- 1. 对象为三元组 $(d \in D, e \in E, f: F(d) \rightarrow G(e) \in C)$
- 2. 态射 $(d,e,f) \rightarrow (d',e',f')$, 用一个序对表示 $(h:d\rightarrow d',k:e\rightarrow e')$, 即下面正方形交换

$$F(d) \xrightarrow{f} G(e)$$

$$F(h) \downarrow \qquad \qquad \downarrow G(k)$$

$$F(d') \xrightarrow{f'} G(e)'$$

$$f'F(h) = G(k)f$$

同时定义了一对射影函子 dom: $F \downarrow G \rightarrow D$ 和 cod: $F \downarrow G \rightarrow E$

首先我们要证明逗号范畴它确实是一个范畴,但这个范畴的出现就看起来非常突兀,但是它似乎非常有作用,能把不同的两个范畴弄到一个范畴里面。逗号范畴里面的态射统一用 $(h: d \rightarrow d', k: e \rightarrow e')$ (f, f') 表示,后面的括号内容特殊标识态射的 domain 和 codomain。

要说明它是一个范畴,首先我们定义它每个对象的单位态射和态射复合:

对于任意一个对象 (d, e, f) 简写为 c, 那对应的单位态射, 我们定义为

$$\mathbf{1}_{c}=\left(\mathbf{1}_{d},\mathbf{1}_{e}\right)\left(f,f\right)$$

其中 1_d 和 1_e 分别为 d 和 e 的单位态射,很自然的下面正方形交换

$$\begin{array}{c|c} Fd \xrightarrow{f} Ge \\ F1_d \downarrow & \downarrow G1_e \\ Fd \xrightarrow{f} Ge \end{array}$$

 1_c 的 domain 和 codomain 都是 (d, e, f)

再定义态射复合,对于两个形如

$$\left(h\colon d{\to}d_1, k\colon e{\to}e_1\right)\left(f, f_1\right) \text{ and } \left(h\colon d_1{\to}d_2, k\colon e_1{\to}e_2\right)\left(f_1, f_2\right)$$

表示为

$$\alpha : (d, e, f) \rightarrow (d_1, e_1, f_1) \text{ and } \beta : (d_1, e_1, f_1) \rightarrow (d_2, e_2, f_2).$$

 α 和 β 的复合表示为

$$\beta\alpha = \left(h'h\colon d{\to}d_2, k'k\colon e{\to}e_2\right)\left(f, f_2\right)$$

用交换图表示为

$$\begin{array}{c|c} Fd \overset{f}{\longrightarrow} Ge \\ \downarrow^{Gk} & \downarrow^{Gk} \\ Fd_1 \overset{f_1}{\longrightarrow} Ge_1 \\ \downarrow^{Fh'} & \downarrow^{Gk'} \\ Fd_2 \overset{f_2}{\longrightarrow} Ge_2 \end{array}$$

两个正方形交换图拼成了一个长方形交换图,也可以简化为一个正方形

$$\begin{array}{c|c} Fd \overset{f}{\longrightarrow} Ge \\ \downarrow Fh'Fh & \downarrow Gk'Gk \\ Fd_2 \overset{f_2}{\longrightarrow} Ge_2 \end{array}$$

完成了单位态射和态射复合的定义,现在需要证明单位态射左右消去律(其实就是证明我们构造的单位态射确实是单位态射)和态射复合的结合性。

用 α 表示态射 $(h: d \rightarrow d', k: e \rightarrow e')$ (f, f') 其中的 domain 和 codomain 分别表示 c 和 c', 先证明 $\alpha 1_x$:

$$\begin{split} \alpha \mathbf{1}_c &= \left(h \mathbf{1}_d, k \mathbf{1}_e\right) (f, f') \\ &= \left(h, k\right) (f, f') \\ &= \alpha. \end{split}$$

接着证明 $1_{c'}\alpha$:

$$\begin{split} \mathbf{1}_{c'}\alpha &= \left(\mathbf{1}_{d'}h,\mathbf{1}_{e'}k\right)(f,f') \\ &= \left(h,k\right)(f,f') \\ &= \alpha. \end{split}$$

最后证明态射的结合性,这里定义三个态射 α,β 和 γ 分别表示 $(h: d \rightarrow d_1, k: e \rightarrow e_1)$, $(h_1: d_1 \rightarrow d_2, k_1: e_1 \rightarrow e_2)$ 和 $(h_2: d_2 \rightarrow d_3, k_2: e_2 \rightarrow e_3)$:

$$\begin{split} (\gamma\beta)\alpha &= ((h_2h_1),(k_2k_1))(f_1,f_3)\alpha \\ &= ((h_2h_1)h,(k_2k_1)k)(f,f_3) \\ &= (h_2(h_1h),k_2(k_1k))(f,f_3) \\ &= \gamma((h_1h),(k_1k))(f,f_2) \\ &= \gamma(\beta\alpha). \end{split}$$

我们已经证明了逗号范畴确实是一个范畴,接下来我们定义两个函子 dom: $F \downarrow G \to D$ 和 cod: $F \downarrow G \to E$, 还是从 $F \downarrow G$ 中的对象和态射出发:

$$dom (d, e, f) = d, dom (h, k) (f, f') = h$$
$$cod (d, e, f) = e, cod (h, k) (f, f') = k.$$

有了定义之后还是和上面一样证明这两个函子确实是函子,这里我就不累述了,直接给出单位态射和态 射复合结构的保持:

$$dom(1_d, 1_e)(f, f) = 1_d, cod(1_d, 1_e)(f, f) = 1_e$$

和

$$\begin{split} \operatorname{dom}(\beta\alpha) &= \operatorname{dom}\left(h'h, k'k\right)(f, f_2) = h'h = \operatorname{dom}\beta\operatorname{dom}\alpha \\ &\operatorname{cod}(\beta\alpha) = \operatorname{cod}\left(h'h, k'k\right)(f, f_2) = k'k = \operatorname{cod}\beta\operatorname{cod}\alpha. \end{split}$$

Example 1.13. 见识了逗号范畴的不可思议,它可以把两个不同的范畴弄到一起,也可以把两个范畴弄出来,现在来构造一个特殊逗号范畴,把逗号范畴特殊化为切片范畴 c/C 和 C/c。

这个构造过程、当你把两张相关交互图放在一起比较的时候、你就会发现其实很容易。

$$x \xrightarrow{f} C \qquad g$$

$$x \xrightarrow{h} y$$

$$F(d) \xrightarrow{f} G(e)$$

$$F(h) \downarrow \qquad \downarrow G(k)$$

$$F(d') \xrightarrow{f'} G(e)'$$

上面第一张是 c/C 中描述态射的交换图,首先我们需要逗号范畴交换图里面四个箭头变成三个箭头并且固定 c, 所以逗号范畴中的函子 F 只能是一个顺序范畴 1 的单位函子, 让我们看看现在变成了什么

$$\begin{array}{ccc} F(0) & \stackrel{f}{\longrightarrow} G(e) \\ \downarrow^{1_c} & & \downarrow^{G(k)} \\ F(0) & \stackrel{f'}{\longrightarrow} G(e)' \end{array}$$

然后我们再让 $F(0) = c \in C$

$$\begin{array}{ccc}
c & \xrightarrow{f} G(e) \\
\downarrow^{1_c} & \downarrow^{G(k)} \\
c & \xrightarrow{f'} G(e)'
\end{array}$$

看起来已经很接近了,这张图还是交换的,现在逗号范畴的对象变成了 $(0, e \in E, f)$, 而态射变成了 $(h: 0 \to 0, k: e \to e')$ (其中 0 和 1_0 可以省略代表固定了 c。但是这里还是有两个范畴,而切片范畴只是由一个范畴构造而成,所以这里最好的选择就是把 G 当成 C 的一个单位态射 1_C ,我们已经可以画一条对角线了

$$\begin{array}{c}
c \xrightarrow{f} x \\
\downarrow^{1_c} \downarrow & \downarrow^{f'1} \downarrow^{k} \\
c \xrightarrow{f'} y
\end{array}$$

,这个特殊的逗号范畴已经很显然是一个切片范畴了。

函子的作用无疑是非常强大的,下面记录一下 trivial 函子的扩展

Example 1.14. Conj: $Group \rightarrow Set$ 是一个函子,Conj 作用在单个群上表示群共轭等价类的集合,在群里面两个元素如果是共轭的,表示为存在一个 n 使得 $a=nbn^{-1}$ 成立,则称 a 和 b 共轭,很容易证明这个共轭关系是一个等价关系。当把 Conj 作用在 the category of groups 上时:

- 对任意的群 s, Conj $s = \hat{s}$
- 对任意的群同态 $f: s \to t$, $Conj f: \hat{s} \to \hat{t}$ 对任意的 $[x] \in \hat{s}$, Conj f([x]) = [f(x)]

为了证明 Conj 确实可以扩展到一个函子,得说明几个东西,如果存在一个群同态 $f: s \to t, a, b \in s$,且 a 和 b 共轭,那么存在一个 n,使得 $a = nbn^{-1}$

$$f(a) = f(nbn^{-1}) = f(n)f(b)f(n^{-1}) = f(n)f(b)f(n)^{-1}$$

所以群同态是保留元素共轭结构的,这说明如果 [a] = [b],则 [f(a)] = [f(b)],上面 Conj f 是 well-defined。 还是老步骤,需要说明 indentity 和 composition 的保留

2 NATURALITY 10

• 对应单位态射对任意的群 s, 对象 $x \in s$

$$\operatorname{Conj} 1_s([x]) = [1_s(x)] = [x] = 1_{\hat{s}}([x]) = 1_{\operatorname{Conj} s}([x]).$$

这个证明感觉很迷,感觉还是要从消去律出发,但是取的是任意的 x 似乎也能说明问题 Conj $1_s=1_{\text{Conj}\,s}$.

• 让 f 和 g 表示两个可复合的态射 $fg[x] \in dom(f)$

$$\operatorname{Conj} g \operatorname{Conj} f([x]) = \operatorname{Conj} g([f(x)]) = [g(f(x))] = [gf(x)] = \operatorname{Conj} (gf([x])).$$

2 Naturality

Definition 2.1. 自然变换 (natural transformation) 设 \mathcal{C} 与 \mathcal{D} 是两个范畴, $F: \mathcal{C} \to \mathcal{D}$ 与 $G: \mathcal{C} \to \mathcal{D}$, 一个自然变换由下面箭头组成

• 一个箭头 $\alpha_c: F_c \to G_c$ 表示对于每一个对象 $c \in \mathcal{C}$, 这些箭头的 "collection" (注意没有用集合的概念) 定义了自然变换的组成部分。

所有任意的态射 $f: c \to c' \in \mathcal{C}$, 下面图交换 $(G(f)\alpha_c = \alpha_{c'}F(f))$:

$$F_{c} \xrightarrow{\alpha_{c}} G_{c}$$

$$\downarrow^{Gf}$$

$$F_{c'} \xrightarrow{q_{c'}} G_{c'}$$

注意交换图里面的所有态射都属于 \mathcal{D} , 如果自然变换 $\alpha\colon F\to G$ 满足对任意的 $c\in ob\mathcal{C}, \alpha_c\colon F(A)\to G(A)$ 是一个同构,则称 α 是 **自然同构**(natural isomorphism)

这个自然变换的定义看起来还是有一些抽象,如果在一个自然变换中,把对象 c 看成一个变量, α 的 domain 和 codomain 都可以用 c 来表示,而这些箭头是"collection" 都是目标范畴的态射,所以定义可以形象的表示为

$$\alpha \colon ob\mathcal{C} \to Mor\mathcal{D}$$

总体来说函子是研究范畴之间的对应关系,自然变换就是用来描述函子之间的对应关系,如何刻画自然 变换的最小限制,就是一个有趣的问题,函子建立两个范畴之前的关系是通过范畴间对象和态射的映射来完 成的,那么描述两个函子的之间关系也要从这两个方向出发,所以最小的限制条件就是上面的交换图,那么 自然体现在什么方面呢?

有一个比较优雅的说法是这些箭头 X 是自然的, 前面也说过这些箭头都是自然变换中目标范畴 (target) 的态射, 如果这些态射的 domain 和 codomain 是两个函子由一个相同的源范畴里面的同一个对象 A 映射

而来,就可以说这些箭头在 A 是自然的,如果源范畴里面存在以 A 为 domain 的态射,自然地,这个态射的 codomain 是否也存在这样一个自然的箭头呢? 对于每一个 object 都有这样的箭头存在,就有了上面交换图的存在。说实在的自然的本质我觉得就是这些箭头都是目标范畴存在的态射,并不需要再去额外构造。

Lemma 2.2. 设 $F, G, H: \mathcal{C} \to \mathcal{D}$ 和 $T: \mathcal{D} \to \mathcal{C}$ 是函子, $\alpha: F \to G, \beta: G \to H$ 是自然变换, 则

• $\beta\alpha\colon F\to H\colon c\mapsto (F(c)\xrightarrow{\beta_c\alpha_c}H(c))$ 是一个自然变换

$$F_{c} \xrightarrow{\alpha_{c}} G_{c} \xrightarrow{\beta_{c}} H_{c}$$

$$\downarrow^{Ff} \qquad \downarrow^{Gf} \qquad \downarrow^{Hf}$$

$$F_{c'} \xrightarrow{\alpha_{c'}} G_{c'} \xrightarrow{\beta_{c'}} H_{c'}$$

- $\alpha T \colon FT \to GT \colon c' \mapsto (FT(c') \xrightarrow{\alpha_{T(c')}} GT(c'))$ 是一个自然变换
- $T\alpha\colon TF\to TG\colon c\mapsto (TF(c)\xrightarrow{T(\alpha_c)}TG(c))$ 是一个自然变换

上面这个第一个结论是一个很显然的结论,两个交换图拼在一起还是一张交换图,所以自然变换之间是可以进行复合运算的,特殊地,每个函子 F 都存在一个自身到自身单位自然变换 $1_F\colon F\to F$,其实除了上面第一个结论之外还有两个 αT 和 $T\alpha$ 函子和自然变换的复合我没有看懂,似乎 domain 和 codamin 都是函子复合。

如果 \mathcal{C} 和 \mathcal{D} 都是小范畴,则以范畴 \mathcal{C} 到范畴 \mathcal{D} 的所有函子为对象,以自然变换为态射可以形成一个 范畴 $[\mathcal{C},\mathcal{D}]$, 称为 **函子范畴**。

Example 2.3. 设 $P: Set \rightarrow Set$ 是幂集函子,它和单位函子 1_{Set} 构成一个自然变换,因为下图交换

$$A \xrightarrow{\beta_A} P(A)$$

$$\downarrow f \qquad \qquad \downarrow P(f)$$

$$B \xrightarrow{\beta_B} P(B)$$

我在想这和函子 P 的定义有什么区别? 注意这里 β_A 是集合元素之间的映射对任意的 $x \in A$ 有 $x \mapsto \{x\} \in P(A)$,而不是函子定义的对象映射,这里存在的自然变换是 $\alpha \colon 1_{Set} \to P$,其中 1_{Set} 是范畴 Set 的单位函子。

3 Equivalence of categories

Definition 3.1. 设 $F: C \rightarrow D$ 是一个函子,如果存在函子 $G: D \rightarrow C$ 及自然同构 $\alpha: 1_C \rightarrow GF$ 和 $\beta: 1_D \rightarrow FG$,则称函子 F 是一个等价(equivalence)

$$\begin{array}{ccc} c & \xrightarrow{\alpha_c} GF(c) & & d & \xrightarrow{\beta_d} FG(d) \\ f \downarrow & & \downarrow_{GF(f)} & & g \downarrow & & \downarrow_{FG(g)} \\ c' & \xrightarrow{\alpha_{c'}} GF(c') & & d' & \xrightarrow{\beta_{d'}} FG(d) \end{array}$$

如果存在等价函子 $F: C \rightarrow D$, 则称范畴 C 与范畴 D 是等价的范畴 (equivalent categories)。 如果范畴 C 和范畴 D^{op} 等价,则称 C 与 D 是对偶等价的范畴 (dual equivalent categories)。

由于函子保持对象的同构,很容易证明范畴的等价构成了范畴之间的一个等价关系。回忆两个范畴同构的概念是指两个范畴具有完全相同的结构,但是实际应用中我们并不需要如此强的条件,等价范畴是利用自然变换给出范畴之间一种较弱的相同性。

Definition 3.2. 定义一个函子 $F: C \rightarrow D$

- 如果对任意的 $x,y \in C$, 给定的 $C(x,y) \to D(F(x),F(y))$ 映射是一个满射,则这个函子是**局部满,完全的,完满的** (full)
- 如果对任意的 $x,y \in C$, 给定的 $C(x,y) \to D(F(x),F(y))$ 映射是一个单射,则这个函子是**局部单,忠实的** (faithful)
- 如果对任意的对象 $d \in D$, 都有一个对象 $c \in C$, 使得 F(c) 与 d 同构,则这个函子是**稠密的** (essentially surjective on objects)

注意 full 和 faithful 都是相对两个范畴的 hom-set 来说的,所以它们都是局部条件(local condition)。在局部条件上再增强一下,如果一个函子是**嵌人**(embedding)是指如果一个 faithful funtor 函子,且对对象的作用也是单射,这种情况下,函子的 domain 范畴其实就是 codomain 范畴的一个子范畴,就把局部条件上升为了全局条件作用在所有箭头上。

Theorem 3.3. 如果一个函子是等价的,当且仅当这个函子是 faithful, full, essentially surjective on objects(dense)。

在证明这个定理之前,需要提出一个小 lemma

Lemma 3.4. 对于态射 $f: a \rightarrow b$ 和同构 $a \cong a', b \cong b'$,可以唯一确定态射 $f': a' \rightarrow b'$,等价地下面四个交换图

从这几个交换图上我们已经很容易构造出 f' 了,简单描述一下,定义 α : $a \rightarrow a'$ 和 β : $b \rightarrow b'$,反之它们的 逆用 α^{-1} 和 β^{-1} 表示。第一个最为直观 $f = \beta f \alpha^{-1}$

开始证明定理 3.3。(\Longrightarrow) 给定 $F: C \to D$, $G: D \to C$, $\eta: 1_C \cong GF$, $\mu: 1_D \cong FG$ 定义了一个范畴间的等价关系。对于任意的 $d \in D$,有 $\mu_d: FG(d) \cong d$,取 c = G(d),显然 F 是稠密的。再考虑两个并行的态射 $f,g: c \rightrightarrows c'$,如果 F(f) = F(g),则 f 和 g 同时满足下面交换图

$$c \xrightarrow{\eta_c} GF(c)$$

$$f \text{ or } g \downarrow \qquad \qquad \downarrow GF(f) = GF(g)$$

$$c' \xrightarrow{\cong} GF(c')$$

根据 lemma3.4, $c \to c'$ 是唯一确定的,所有 f = g, 因此 F 是一个单射. 对称地,考虑 $f: d \to d$ 和同构 μ_d , $\mu_{d'}$, 可以唯一确定 $k: G(d) \to G(d') \in \operatorname{Hom}_{\mathbf{C}}(X,Y)$

$$d \xrightarrow{\mu_d} FG(d)$$

$$f \downarrow \qquad \qquad \downarrow^{Fk}$$

$$d' \xrightarrow{\cong} FG(d')$$

, 所以 F 是满射。

(⇐) 这个方向证明, 我在怎么用 dense 这个性质的时候想了很久, 最后突然发现一句"由选择公理"就完了, 就完了, 是的, 你没有听错...

任取 $d\in \mathbb{D}$, 由 dense 性质和选择公理, 是可以构造一个 $\mu_d\colon FG(d)\cong d$, 在 dense 下选一个 c, 让 G(d)=c. 对象映射处理好了,就可以来构造一个交换图了

$$\begin{array}{c|c} FG(d) & \stackrel{\mu_d}{----} & d \\ \downarrow & & \downarrow^g \\ \downarrow & & \downarrow^g \\ FG(d') & \stackrel{\mu_{d'}}{----} & d' \end{array}$$

任取范畴 D 中一个态射 $g\colon d\to d',\mu_d$ 和 μ'_d 都是同构,所以可以上面的 lemma 可以唯一确定一个 FGg。因为 F 是 faithful,所以换个角度看 $G(d)\to G(d')$ 也是唯一的,现在 $\mu\colon FG\to 1_D$ 里面所有的 component 都是可以确定一个交换图的,且都是同构的,但是这里有一个问题,我们用选择公理弄了上面这样一个 G 出来,我们并没有证明它确实是一个函子,还少一步验证它对态射作用,首先是单位态射,我们有下面这个交换图

还是由前面的 lemma 和 F 上对态射的单射性质,这里有 $G(1_d) = 1_{G(d)}$,相似地,再给一个态射 $f': d' \rightarrow d''$,我们有下面的交换图

$$FG(d') \xrightarrow{\mu_d} d$$

$$FG(g'g) \text{ or } F(G(g') \cdot G(g)) \downarrow \qquad \qquad \downarrow g'g$$

$$FG(d'') \xrightarrow{u_{d''}} d''$$

这里有 $G(g'g) = G(g') \cdot G(g)$.

现在已经完成了前一半的证明,接下来想一下如何构造 $\eta\colon GF\Rightarrow 1_c$. 并不能直接来构造,尝试构造下面的交换图

$$F(c) \xrightarrow{F\eta_c} FGF(c) \xrightarrow{\mu_{F(c)}} F(c)$$

$$\downarrow^{Ff} \qquad \qquad \downarrow^{Ff}$$

$$F(c') \xrightarrow{F\eta_{c'}} FGF(c') \xrightarrow{\mu_{F(c')}} F(c')$$

声明一下其中的几个定义,态射 $f\colon c\to c'$,两个 component $\eta_c\colon c\to GF(c)$, $\eta_c'\colon GF(c)\to c$,把 $F\eta_c$ 定义为 $\mu_{F(c)}^{-1}$,这样做的目的是使得 $F\eta_c\cdot F\eta_c'=F(\eta_c\eta_c')=\mu_{F(c)}\mu_{F(c)}^{-1}=1_{F(c)}=F(1_c)$,再反过来做一次就得到了同构 u.

再看这个大长方形和两个小正方形的交换性,大长方形由上述定义交换,右边这个小正方形因为 μ 是个自然同构,所以也是交换的,言下之意左边这个小正方形也是交换的。这两个小正方形带来的作用是什么? 左边这个交换可以得到

$$FGFf \cdot F\eta_c = F(GFf \cdot \eta_c) = F(\eta_{c'} \cdot f) = F\eta_{c'} \cdot Ff$$

再由 F 的 faithful 性质,即有 $GFf \cdot \eta_C = \eta_{c'} \cdot f$, 这个等式就表示下面的图交换

$$c \xrightarrow{\eta_c} GF(c)$$

$$\downarrow f \qquad \qquad \downarrow_{GFf}$$

$$c' \xrightarrow{\eta'_c} GF(c')$$

将近拖了半个月的证明,终于证完了,选择公理的应用和间接构造自然同构,还是得在细细想想...