

Lession 5: OPION MINING (cont.)

[4] Entity detection & assignment

- In product reviews, it is often known who is being reviewed
- However, on forums, it is necessary to identify the entity audience the comments are aimed at
 - Task 1: Detect the entity in the sentence
 - Task 2: Assign the entity to the sentence (do not specify the entity to be evaluated)

Assumption of emotional homogeneity

Eg.1:

(1) I bought <u>Camera-A</u> yesterday. (2) I took some pictures in the evening in my living room. (3) The images are very clear. (4) They are definitely better than those from my old <u>Camera-B</u>. (5) The battery is very good too.

Eg.2: (4) \rightarrow Camera-A > Camera-B

(1) I bought <u>Camera-A</u> yesterday. (2) I took a few pictures in the evening in my living room. (3) The images were very clear. (4) They were definitely better than those from my old <u>Camera-B</u>. (5) The pictures of <u>that camera</u> were blurring for night shots, but for day shots it was ok

Problem statement

- A thread t containsposts $\langle p_1, p_2, ..., p_n \rangle$
- A post p contains sentences $\langle s_1, s_2, ..., s_m \rangle$
- A sentences s contains an entity set reviews ε is a subset of set of all entities $E = \{e_1, e2,...\}$
- An entity *e* may be explicitly or implicitly in a sentence *s*

Problem statement (2)

- Ex: "Camera-A looks really pretty. The battery lasts very long"
- Most sentences refer to only one entity ($|\varepsilon|=1$)
- Sentences involving more than one entity are usually comparative sentences ($|\varepsilon|=2$)
 - "Camera-A is better than Camera-B"
- Assuming sentences in a post are all meant to evaluate the entity object (in fact, there are also unrelated sentences, e.g. greeting)

Problem statement (3)

- Given a set T threats in domain:
 - Task 1 Entity Detection: Detect set of entities E in T
 - Task 2 Entity Assignment: Assign each sentence in T with one or several entities in E

Task 1 - Entity Detection

- Unsupervised method based on sequential pattern mining using an original entity set $E^{(0)} = \{e_1, e_2, ..., e_n\}$
- Step 1. Prepare data
- Step 2. Sequential pattern mining
- Step 3. Extract candidate
- Step 4. Filter candidates

Step1. Prepare data

- Search for all sentences containing entities in original set; replace entity name (containing one or more words) with the generic name ENTITYXYZ
- Generate series by selecting window 5 from before and after entity; each element is a word/word of type

Hiiiiiiii/NNP SK/NNP -/: ,/, dont/NN be/VB mad/JJ everyone/NN doesnt/NN have/VBP a/DT n95/CD phone/NN fetish/NN ducky/JJ

mad/JJ everyone/NN doesnt/NN have/VBP a/DT ENTITYXYZ /CD phone/NN fetish/NN ducky/JJ

<{JJ, mad}{NN, everyone}{NN, doesnt}{VBP, have}{DT, a}{CD, ENTITYXYZ}{NN, phone}{NN, fetish} {JJ, ducky}>

Step 2. Sequential pattern mining

- Min support = 0.01
- Patterns must contain {POS, ENTITYXYZ}
- Patterns must have length >= 2
- E.g.: <{IN}, {DT}, {NNP, ENTITYXYZ}, {is}>

Step 3. Extract candidate

Search for entities match generated patterns

The/DT misses/VBZ has/VBZ currently/RB got/VBN a/DT Nokia/NNP 7390/CD at/IN the/DT end/NN of/IN the/DT day,/VBG all/DT she/PRP does/VBZ is/VBZ text/NN and/CCmake/VB calls,/NN but/CC the/DT reception/NN is/VBZ terrible,/VBG where/WRB my/PRP\$ 6233/CD would/MD get/VB full/JJ bars/NNS hers/PRP would/MD only/RB get/VB 1/CD or/CC 2./CD

<{DT}, {NNP, ENTITYXYZ}, {CD}> ~ a/DT Nokia/NNP 7390/CD

<{DT}, {NNP}, {CD, ENTITYXYZ}, {IN}> ~a/DT Nokia/NNP 7390/CD at/IN

Step 4. Filter candidates

- Eliminate entities whose POS is different from the POS most popular with this candidate
- For example, 'accessories' is usually labeled NNS so 'accessories/CD' will be excluded

You/PRP can/MD also/RB be/VB sure/JJ it/PRP will/MD work/VB with/IN all/PDT the/DT Sony/NNP Ericsson/NNP walkman/NN phone/NN accessories/CD

<{IN}{DT}{CD, ENTITYXYZ}> → accessories (sai)

Step 4. Filter candidates (2)

- Use the <Brand Model> ("Moto Razr V3") to search for brand and model pair
- Use syntax patterns to find competing brands: A and B; A or B; A vs B; A more than B

As/RB far/RB as/IN I/PRP heard/VBD **Nokia**/NNP **N95**/CD seems/VBZ to/TO be/VB the/DT leader/NN in/IN this/DT sense./CD

Task 2 - Entity assignment

- Comparison sentence
 - Comparative: "Camera-X's battery life is longer than that of Camera-Y"
 - Equal: "Camera-X and Camera-Y are of the same size"
 - Non-comparable: "Camera-X and Camera-Y have different shapes"
 - Superlatives: "Camera-X's battery life is the longest"

Unify emotion

- Suppose entity e first appears in sentence s0 and next sentence is s1.
- (1) If s0 is a normal sentence
 - If s1 is a normal sentence then it is assigned to e
 - If s1 is a comparison sentence, e will be compared with a new entity (needs to be introduced).
- (2) If s0 is a comparative sentence
 - If s0 is a comparative sentence; s1 represents positive/negative emotion and contains no entity then it is assigned to better/worse entity

Unify emotion (2)

- If s0 is an equal or non-comparable sentence, because we are not sure which entity s1 refers to, we assign it to the entity that came before s0.
- If s1 is a comparative, s1 is assigned to the entity in s1
- (3) If s0 is the superlative sentence
 - If s1 is a normal sentence, we assign it to the best entity mentioned in s0.
 - If s1 is a comparative, s1 is assigned to the entity in s1

Algorithm

- s_i .entity: Entity mentioned in s_i
- s_i .superiorEntity: Better entity in comparative sentence
- s_i.inferiorEntity: worse entity in comparative sentence
- opinion(): Function to determine emotions in normal sentences
- *compOpinion*(): Function to determine emotions in comparison sentences

```
for each sentence s_i in sequence in a post do
    If s_i is not a comparative sentence then
       if s_i contains an explicit entity then
3
            s_i.Entity \leftarrow the explicit entity of the sentence s_i
4
       else // s_i does not contain an explicit entity
5
            if s_{i-1} is not a comparative sentence then
               s_i.Entity \leftarrow s_{i-1}.Entity
            elseif a superior entity and an inferior entity were
                      discovered in s_{i-1} then
                  opinion(s_i); // opinion mining
                  if s_i's first clause is a positive clause then
10
                     s_i.Entity \leftarrow s_{i-1}.superiorEntity
11
                  elseif s_i's first clause is a negative clause then
                      s_i.Entity \leftarrow s_{i-1}.inferiorEntity
13
                  else s_i.Entity \leftarrow s_{i-1}.superiorEntity
14
            else s_i. Entity \leftarrow s_f. Entity, entities of the last sentence
                                that is not a comparative sentence
15 else
                // s_i is a comparative sentence
         if no entity is mentioned in s_i then
16
17
            s_i.Entity \leftarrow s_{i-1}.Entity
18
         else s_i.Entity \leftarrow \{s_{i-1}.Entity\} \cup \{\text{entities in } s_i\};
19
            \langle s_i inferior Entity, s_i superior Entity \rangle \leftarrow compOpinion(s_i)
```


Sentiment Analysis

- Analyze sentiment of a sentence towards an entity assigned to sentence based on the evidence::
 - Opinion words: great, good, bad, poor; "the battery of this camera lasts long"/ "This program takes a long time to run"
 - Opinion phrases: "cost someone an arm and a leg", "a good deal of"
 - Negative: not, "not only ... but also"
 - Clause 'but': "The picture quality is great, but not the battery life"

Specification language

```
<rul>

        <rule>
        := <item> "=>" <action>

        <item>
        := <word> | <word> "[" <type> "]"

        <word>
        := [a-z]+

        <type>
        := JJ | RB | NN | VB | ...

        <action>
        := Po | Ne | Neu | Ng | But
```

```
like[VB] => Po
```

```
<rule>
            := <pattern> "=>" <action>
            := <exp>"+" <target> "+" <exp>
<pattern>
             | <exp> "+" <target> | <target> "+" <exp>
           := <element> | <exp> "+" <element>
<exp>
              <exp>"+" <distance> "+" <exp>
              <exp>"+" <distance>
              <distance> "+" <exp>
              !<num> "+" !<item> "+" <exp>
              <exp> "+" !<num> "+" !<item>
             |<exp> "+" !<num> "+" !<item> "+" <exp>
<element>
            := <item> | item "/" element
            := <indicator> | <word>
<item>
            := <indicatorSym>
<indicator>
              <indicatorSym> "[" <type> "]"
            := <indicator> "[T]" | <word> "[T]"
<target>
<indicatorSym> := Po | Ne | Neu | Ng | But
<word>
            = [a-z]+|[a-z]+"["<type>"]"
<distance>
            := <num> | <num> - <num>
            = 0 | [1-9][0-9]*
<num>
            := <outcome> !<outcome>
<action>
<outcome> := PO | NE | NEU | NG | BUT
            := JJ | RB | NN | VB | \dots
<type>
```

Example

The picture quality of this camera is not good, reaction is too slow, but the battery life is long.

The picture quality is not[Ng] good[Po], reaction is too slow[Neu], but[But] the battery life is long[Neu].

too + Neu[JJ][T] => NE

The picture quality is not[Ng] good[Po], reaction is too slow[NE], but[But] the battery life is long[Neu].

The picture quality is not[Ng] good[Negative], reaction is too slow[NE], but[But] the battery life is long[Neu].

Analyze comparative sentences

- Comparative sentence matches one of patterns:
 - a). pronoun + compkey + prodname,
 - b). prodname + compkey + pronoun,
 - c). prodname + compkey + prodname
 - d). pronoun + superkey
 - e). prodname + superkey
 - f). as + JJ + as (ngoại trừ "as long as" và "as far as")
- Where compkey is comparison word, produce is product name, superkey is comparative word

Analyze comparative sentences (2)

- Short adjectives/adjectives are changed to more/most by adding -er/-est (higher/highest)
- Some irregular cases: good/better/best
- Longer adjectives/adverbs add more/most
- Apply rules:
 - $more/most + Pos \rightarrow Positive$
 - $more/most + Neg \rightarrow Negative$
 - $less/least + Pos \rightarrow Negative$
 - $less/least + Neg \rightarrow Positive$
- Other words like win, prefer, superior, inferior
 - "In term of battery life, <u>Camera-X</u> is **superior** to <u>Camera-Y</u>"

Result evaluation

Dataset:

HowardForums: Movie reviews

AVSforums: Plasma/LCD TVs, Projectors and DVD players

Data	sets

Howard

AVS

Total

No. of threads	No. of posts	No. of No. of Product comparatives		Total no. of sentences
31	446	171	664	2589
33	307	180	408	1796
64	753	351	1072	4385

Result evaluation (2)

- CRF: Entity Detection by CRF
- NET: Entity Detector
- Baseline1: Get the last entity of previous sentence if the current sentence does not contain the entity.
- Baseline2: Gets the first entity of previous sentence if the current sentence does not contain an entity.
- ED (k-com): Given comparative sentences
- ED (unk-com): Need to detect comparative sentences

Result evaluation (3)

Table 2: Results of entity discovery

Datasets

Howard

AVS

CR	F	NE	ET	EI	(1-3)	EI (1-4)		EI (1-5)	
Rec.	Prec.								
0.40	0.91	0.48	0.35	0.87	0.48	0.86	0.58	0.81	0.83
F = 0	.56	F = 0.40		F = 0.62		F =	0.69	F = 0.82	
0.37	0.89	0.42	0.29	0.84	0.47	0.84	0.59	0.77	0.80
F = 0.52		F =	0.34	F = 0.60		F = 0.69		F = 0.78	

Table 3: Experimental results for entity assignment

Data sets
HowardForums
AVSforrum
Average
Col#

Next Sentences (Accuracy)			All Sentences (Accuracy)					Comp Ident.		
Baseline1	Baseline2	ED (k-com)	ED (unk-com)	Baseline1	Baseline2	ED (k-com)	ED (unk-com)	Prec.	Recall	F
82.4%	83.3%	93.4%	90.3%	80.3%	82.1%	88.2%	86.7%	85.2%	84.2%	84.7%
79.6%	80.9%	91.2%	89.6%	76.7%	77.9%	87.2%	85.0%	82.2%	84.9%	83.5%
81.0%	82.1%	92.3%	89.9%	78.5%	80.0%	87.7%	85.9%	83.7%	84.6%	84.1%
1	2	3	4	5	6	7	8	9	10	11

[5] Exploiting comparative sentences

- User reviews on the Internet for products:
 - 90% din the form of direct reviews ("the picture quality of Camera X is great")
 - 10% as comparison ("the picture quality of Camera X is better than that of Camera Y")

Problem statement

- Many comparative sentences don't have a direct comparison word, the emotion of the same word depends on the context
- "the battery life of Camera X is <u>longer</u> than Camera Y"
- "Program X's execution time is <u>longer</u> than <u>Program</u>
 Y"
- Choosing sentences as context leads to including a lot of irrelevant information

Problem statement (2)

- Context: evaluated entity + comparison word
- How to identify emotions expressed by context?
- Using external knowledge (epinions.com) to identify opinion orientation from context
 - Epinions.com clearly separates positive and negative comments
 - what context often appears in positive or negative comments?

Problem statement (3)

- Given a relation corresponding to the comparative sentence
 - <C (comparison word), F (feature), e1 (entity 1), e2 (entity 2), type (comparison type)>
- "Camera X has longer battery life than Camera Y"
 - <longer, battery life, Camera X, Camera Y, comparative>
- Determine which entity is 'better'

Pros và Cons

Pros:

great photos <photo>

good manual <manual>

many options <option>

takes videos<video>

My SLR is on the shelf

by shortstop24, Aug 09 '03

Pros: Great photos, easy to use, good manual, many options, takes videos **Cons**: Battery usage; included software could be improved; included 16MB is

stingy.

I had never used a digital camera prior to purchasing the Canon A70. I have always used a SLR (Minol ...

Read the full review

Type 1 -er/-est

- Short adjectives/adverbs add -er/est
- C express emotion (better/best): If positive, choose e1, if negative, choose e2
- C no emotion, F express emotion
 - "Car X generates more noise than Car Y"
 - C comparative + F positive \rightarrow e1
 - C comparative (reduction) + F positive \rightarrow e2
 - C comparative + F negative \rightarrow e2
 - C comparative (reduction) + F negative \rightarrow e1

Type 1 -er/-est (2)

Both C and F no sentiment

$$OSA(F,C) = log \frac{Pr(F,C)Pr(C|F)}{Pr(F)Pr(C)}$$

■ Nếu $OSA_P(F,C) > OSA_N(F,C) \rightarrow e1$; otherwise choose e2

Type 1 - er/-est(3)

- Calculate OSAP(F,C):
 - Count number times C (and synonyms) and F (and synonyms) appear together in Pros
 - Count number times antonyms of C and F appear in Cons
 - Count the number of times C and antonyms of F appear together in Cons
- Use Wordnet to get synonyms and antonyms
- Do the same with OSAN(F,C)

Type 1 -er/-est (4)

- If C exhibits a feature
 - "Camera X is <u>smaller</u> than Camera Y"
 - Count number times C occurs in Pros and Cons and choose the larger value

Type 2 more/less + adj/adv

- Adjectives/adverbs express emotions
 - "Car X has more <u>beautiful</u> interior than Car Y"
- Adjectives/adverbs don't express emotions
 - Adjectives/adverbs describe features
 - Adjectives/adverbs don't describe features
- Negative:
 - "Camera X's battery life is <u>not longer</u> than that of Camera Y'

Evaluation of results

■ The data includes camera ratings, DVD players, MP3 players, Intel vs AMD, Coke vs Pepsi, Microsoft vs Google; laptop, mobile phone

Data Sources	No. of Comparative Sentences
(Jindal and Liu 2006)	418
Reviews and forum posts	419
Total	837

Evaluation of results (2)

■ Baseline-84%: Always take the first entity

	Entity	S1 Pref	erred	EntityS2 Preferred			
	Prec.	Rec.	F	Prec.	Rec.	F	
PCS (OSA)	0.967	0.966	0.966	0.822	0.828	0.825	
PCS: No Pros & Cons	0.925	0.980	0.952	0.848	0.582	0.690	
PCS (PMI)	0.967	0.961	0.964	0.804	0.828	0.816	

	Entity	S1 Pref	erred	EntityS2 Preferred		
	Prec.	Rec.	F	Prec.	Rec.	F
PCS (OSA)	0.896	0.877	0.886	0.696	0.736	0.716
PCS: No Pros & Cons	0.722	1.000	0.839	0.000	0.000	0.000
PCS (PMI)	0.894	0.855	0.874	0.661	0.736	0.696

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

