10. Sea $f:[0,1]\to\mathbb{R}$ una función medible, no negativa e integrable. Probar que si $E\subseteq[0,1]$ es medible, entonces

$$\int_{E} f(x+y) d\mu(x) = \int_{E+y} f(x) d\mu(x)$$

para todo $y \in [0,1]$ tal que $E+y \subseteq [0,1].$

11. Sean $f,g:[0,1]\to\mathbb{R}$ funciones medibles e integrables tales que para todo $E\subseteq[0,1]$ medible, se tiene que $\int_E f\,d\mu=\int_E g\,d\mu$. Probar que f=g en casi todo punto.

12. Sean $g_n: [0,1] \to \mathbb{R}$ funciones medibles y no negativas tales que la serie $\sum_{n=1}^{\infty} g_n(x)$ converge a una función g(x). Probar que g es medible y que

$$\int_{[0,1]} g \ d\mu = \sum_{n=1}^{\infty} \int_{[0,1]} g_n \ d\mu.$$

13. Sea $f_n: [0, +\infty) \to \mathbb{R}$ dada por $f_n = (-1/n)\chi_{[0,n]}$. Probar que la sucesión $(f_n)_n$ converge uniformemente a 0 en $[0, \infty)$. Probar que sin embargo $\int f_n d\mu = -1$, de manera que

$$\underline{\lim} \int_{[0,+\infty)} f_n \ d\mu = -1 < 0 = \int_{[0,+\infty)} \underline{\lim} f_n \ d\mu.$$

Deducir que el Lema de Fatou no vale si las funciones f_n no son no negativas, aún cuando converjan uniformemente.

- **14.** Sean $f:[0,1]\to\mathbb{R}$ una función integrable, $\{E_n\}_{n\in\mathbb{N}}$ una sucesión de subconjuntos medibles del [0,1] y $E=\cup_{n\in\mathbb{N}}E_n$. Probar que:
 - (a) Si los E_n son disjuntos dos a dos entonces

$$\int_{E} f \ d\mu = \sum_{n=1}^{\infty} \int_{E_n} f \ d\mu.$$

(b) Si $\{E_n\}_{n\in\mathbb{N}}$ es una sucesión creciente entonces

$$\lim_{n\to\infty}\int_{E_n}f\ d\mu=\int_E f\ d\mu\quad {\rm y}\quad \lim_{n\to\infty}\int_{E\backslash E_n} f\ d\mu=0.$$