Recap and Summary of Online Learning

Online learning

▲ Iterative game between teacher and learner

Design principles of online learning

▲ Trade-off amount of change (conservative) and reduction in loss (corrective)

Online learning algorithms

- Perceptron (fixed learning rate for all examples)
- Passive-Aggressive (fixed learning rate for each example)
- Confidence-weighted classifier (fixed learning for each feature and each example)

Lecture #4: Support Vector Machines

Janardhan Rao (Jana) Doppa

School of EECS, Washington State University

Online vs. Batch

- Local optima? Vs. Global optima
- Less Memory vs. High memory
- Higher time vs. Lower time??
- Error?

Perceptron Revisited: Linear Separator

 Binary classification can be viewed as the task of separating classes in a given feature space

Linear Separators

• Which of the linear separators is optimal?

Intuition of Margin

- Consider points A, B, and C
- We are quite confident in our prediction for A because it is far from the decision boundary
- In contrast, we are not so confident in our prediction for C because a slight change in the decision boundary may flip the decision

Given a training set, we would like to make all predictions correct and confident! This leads to the concept of margin.

Functional Margin

• Given a linear classifier parameterized by (w, b), we define its functional margin w.r.t training example (x_i, y_i) as:

$$\gamma_i = y_i(w \cdot x_i + b)$$

 $\gamma_i > 0$ if the example is classified correctly

- If we rescale (w, b) by a factor α , functional margin gets multiplied by α
 - we can make it arbitrarily large without changing anything meaningful

Geometric Margin

• The geometric margin of (w, b) w.r.t. example (x_i, y_i) is the distance from x_i to the decision surface, which can be computed as:

$$\gamma_i = \frac{y_i(w \cdot x_i + b)}{\|w\|}$$

• Given a training set $S = (x_i, y_i)$: i = 1, 2, ... N the geometric margin of the classifier w.r.t. S is

$$\gamma = min_{i=1,2...N} \quad \gamma_i$$

- Given a linearly separable training set (x_i, y_i) : i = 1,2,...N, we would like to find a linear classifier with maximum margin
- This can be represented as an optimization problem

$$\max_{\mathbf{w},b,\gamma} \gamma$$
subject to: $y^{(i)} \frac{(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|} \ge \gamma, \quad i = 1,\dots, N$

• Let $\gamma' = \gamma ||w||$, we can rewrite the optimization problem as follows:

$$\max_{\mathbf{w},b,\gamma} \gamma$$
subject to: $y^{(i)} \frac{(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|} \ge \gamma, \quad i = 1,\dots, N$

$$\max_{\mathbf{w},b,\gamma'} \frac{\gamma'}{\|\mathbf{w}\|}$$
subject to: $y^{i}(\mathbf{w} \cdot \mathbf{x}^{i} + b) \ge \gamma'$, $i = 1, \dots, N$

• Note that rescaling w and b by $1/\gamma'$ will not change the classifier -- we can thus further reformulate the optimization problem

$$\max_{\mathbf{w},b} \frac{\gamma'}{\|\mathbf{w}\|}$$

subject to: $y^{i}(\mathbf{w} \cdot \mathbf{x}^{i} + b) \ge \gamma'$, $i = 1, \dots, N$

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \text{ (or equivalently } \min_{\mathbf{w},b} \|\mathbf{w}\|^2 \text{)}$$

subject to: $y^i(\mathbf{w} \cdot \mathbf{x}^i + b) \ge 1, \quad i = 1, \dots, N$

 Maximizing the geometric margin is equivalent to minimizing the magnitude of w subject to maintaining a functional margin of at least 1

$$\max_{\mathbf{w},b} \frac{\gamma'}{\|\mathbf{w}\|}$$

subject to: $y^{i}(\mathbf{w} \cdot \mathbf{x}^{i} + b) \ge \gamma'$, $i = 1, \dots, N$

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \text{ (or equivalently } \min_{\mathbf{w},b} \|\mathbf{w}\|^2 \text{)}$$

subject to: $y^i(\mathbf{w} \cdot \mathbf{x}^i + b) \ge 1, i = 1, \dots, N$

Interpretation for this Optimization Problem

- Regularization in Machine Learning
- I want to pick simple functions or hypotheses that best explain my data (Occam's Razor)
 - ◆ To achieve this goal, we have two competing objectives: how well are doing on the training data (empirical risk minimization) and how complex my model/function is (regularizer)
 - Magnitude of w (||w||) is kind of measuring the complexity
 - constraints (achieve a functional margin of at least 1)
 is measuring the training/empirical error

Maximum Margin Classifier: Formulation

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to: $y^i (\mathbf{w} \cdot \mathbf{x}^i + b) \ge 1, \quad i = 1, \dots, N$

- This results in a quadratic optimization (QP) problem with linear inequality constraints
- This is a well-known class of mathematical programming problems for which several (nontrivial) algorithms exist
 - One could solve for w using any of these methods

Maximum Margin Classifier: Formulation

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to: $y^i (\mathbf{w} \cdot \mathbf{x}^i + b) \ge 1, \quad i = 1, \dots, N$

- We will see that it is useful to first formulate an equivalent dual optimization problem and solve it instead
 - This requires a bit of machinery!

Aside: Constrained Optimization

- Suppose we want to: minimize f(x) subject to constraints $g_i(x) \le 0, i = 1, ..., m$
 - $ightharpoonup min_x f(x)$ subject to $g_i(x) \le 0, i = 1, ..., m$
- Consider the following function known as the lagrangian

$$\mathcal{L}(x,\alpha) = f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x})$$

• Under certain conditions it can be shown that for a solution x' to the above problem we have

$$f(x') = \min_{x} \max_{\alpha} \mathcal{L}(x, \alpha) = \max_{\alpha} \min_{x} \mathcal{L}(x, \alpha)$$
Primal form
Dual form
Subject to $\alpha > 0$

Back to the Original Problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $1-y_i(\mathbf{w}^T\mathbf{x}_i+b)\leq 0$ for $i=1,\ldots,N$

The lagrangian is

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

We want to solve

$$\max_{\alpha} \min_{w,b} \mathcal{L}(w,b,\alpha)$$
 s.t. $\alpha_i \geq 0$

Back to the Original Problem

We want to solve

$$\max_{\alpha} \min_{w,b} \mathcal{L}(w,b,\alpha)$$
 s.t. $\alpha_i \geq 0$

ullet Setting the gradient w.r.t $oldsymbol{w}$ and b to zero, we get

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\sum_{i=1}^{n} \alpha_i y_i = \mathbf{0}$$

Back to the Original Problem

Substitute w in lagrangian

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^T \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i \left(1 - y_i (\sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i + b) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \alpha_i y_i \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i - b \sum_{i=1}^{n} \alpha_i y_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

• This is a function of $\alpha's$ only!

Dual Problem

- The new objective function is a function of $\alpha's$ only
- It is known as the dual problem
 - \triangle If we know all the $\alpha's$, we know the weights w
- The original problem is known as the primal problem
- The objective function of the dual problem needs to be maximized!

Dual Problem

- The objective function of the dual problem needs to be maximized!
- Therefore, the dual problem is:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0$,
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Properties of α_i when we introduce the Lagrange multipliers

The result when we differentiate the original Lagrangian w.r.t. b

Dual Problem

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0$,
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- This is also a QP problem
 - \triangle A global maxima of $\alpha's$ can always be found
- Weights ${\bf w}$ can be recovered by ${\bf w}=\sum_{i=1}^n \alpha_i y_i {\bf x}_i$

b can also be recovered (we will skip the details)

Characteristics of Solution

- Many of the $\alpha's$ are zero
 - Weights w is a linear combination of small number of data points
- x_i with non-zero α_i are called support vectors (SVs)
 - The decision boundary is determined only by the SVs
 - ▲ Let $t_j (j = 1, 2, ..., s)$ be the indices of the s support vectors. We can write

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

Characteristics of Solution

For classifying a new input example z, compute

$$\mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^s \alpha_{t_j} y_{t_j} (\mathbf{x}_{t_j}^T \mathbf{z}) + b$$

- Classify z as positive if the sum is positive, and negative otherwise
- Note: w need not be formed explicitly, rather we can classify z by taking inner products with the support vectors (useful when we generalize the notion of inner product later)

Some Observations

- #1. Weights are linear combination of your training examples
- #2. Dual weights (alpha variables) determine which training examples count towards the decision boundary and by how much
- Sign (
 - \Sum_i \alpha_i * X_i *X // all positive training examples
 - \Sum_j \alpha_j*X_j*X) // all negative training examples

The Quadratic Programming Problem

- Many approaches have been proposed
 - Logo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)
- Most are "interior-point" methods
 - Start with an initial solution that can violate the constraints
 - ♠ Improve this solution by optimizing the objective function and/or reducing the amount of constraint violation
- For SVM, sequential minimal optimization (SMO) seems to be the most popular

The Quadratic Programming Problem

SMO algorithm

- ▲ A QP with two variables is trivial to solve
- ► Each iteration of SMO picks a pair of (α_i, α_j) and solve the QP with these two variables
- repeat until convergence

 In practice, we can just regard the QP solver as a "black-box" without bothering how it works

A Geometric Interpretation

Summary so far

- We demonstrated that we prefer to have linear classifiers with large margin
- We formulated the problem of finding the maximum margin linear classifier as a quadratic optimization problem
- This problem can be solved by solving its dual problem, and efficient QP algorithms are available
- Problem Solved?

Non-Separable data and Noise

- What if the data is not linearly separable?
- We may have noise in data, and maximum margin classifier is not robust to noise!

Hard Margin → Soft Margin

- Allow functional margins to be less than 1
 - But we will charge a penalty

Soft Margin Maximization

• Introduce slack variables ξ_i to allow functional margins to be smaller than 1

C Parameter

- Trades-off two objectives
 - Maximize margin (generalization behavior of the classifier on unseen data)
 - Minimize the total amount of slack penalty (empirical error or fit to the data)
- How do I pick the best C value in practice?
 - Select models or hyper-parameters is called "cross-validation"
 - ◆ You divide your training data into two parts: subtrain (70%) and validation (30%)
 - ▲ Infinite choices for C? => AutoML (BO)

Soft Margin Maximization

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + c \sum_{i=1}^{N} \xi_i$$
subject to: $y^i (\mathbf{w} \cdot \mathbf{x}^i + b) \ge 1 - \xi_i$, $i = 1, \dots, N$

$$\xi_i \ge 0, \quad i = 1, \dots, N$$

 Parameter C controls the tradeoff between maximizing the margin (generalization error) and fitting the training examples (training error)

Dual Formulation of Soft Margin

$$\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y^i y^j < \mathbf{x}^i \cdot \mathbf{x}^j >$$
 Subject to:
$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

$$0 \le \alpha_i \leqslant \mathbf{c} \qquad i=1,...,N$$

- The dual problem is almost identical to the separable case, except for that α_i 's are now bounded by C (tradeoff parameter)
- C puts a box constraint on α_i 's, the weights of the support vectors
- Limits the influence of outliers

Dual Formulation of Soft Margin

support vectors ($\alpha_i > 0$)

$$c > \alpha_i > 0$$
: $y^i(w \cdot x^i + b) = 1$, i.e., $\xi_i = 0$

$$c > \alpha_i > 0$$
: $y^i(w \cdot x^i + b) = 1$, i.e., $\xi_i = 0$
 $\alpha_i = c$: $y^i(w \cdot x^i + b) \le 1$, i.e., $\xi_i \ge 0$

- We now also have support vectors for data that have functional margin less than one (in addition to those that equal 1), but their α_i 's will only equal C
- Optimal weights can be computed as:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Linear SVMs: Overview

- So far our classifier is a separating hyperplane
- Most "important" training points are support vectors; they define the hyperplane
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrange multipliers α_i

Summary of Last Lecture

- Hard-Margin SVMs for linearly separable data
 - Characteristics of the dual solution
 - Weight vector is determined by a small no. of training examples called Support Vectors
- Soft-Margin SVMs
 - To deal with non-separable and noisy data
 - Relax the margin requirement by introducing slack variables
 - C parameter trades-off the training error (sum of slacks) and the generalization error (margin)

Linear SVMs: Overview

 For both training and classification, we see training data appear only inside inner products

Find $\alpha_1 ... \alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y^i y^i \langle \mathbf{x}^i \cdot \mathbf{x}^j \rangle$ is maximized and

(1)
$$\sum \alpha_i y^i = 0$$

(2)
$$0 \le \alpha_i \le c$$
 for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y^i < \mathbf{x}^i \cdot \mathbf{x} > + b$$

Non-Linear SVMs

 Datasets that are linearly separable with some noise work out great

• But what are we going to do if the dataset is just too hard?

Non-Linear SVMs

• How about mapping the data to a higher dimensional space?

Non-Linear SVMs: Feature Spaces

General idea

◆ For <u>any</u> data set, the original feature space can always be mapped to some higher-dimensional feature space such that the data is linearly separable

Example: Quadratic Space

Assume m input dimensions

$$^{\blacktriangle}x = (x_1, x_2, ..., x_m)$$

- The number of dimensions increase rapidly
 - Expensive to compute!

- You may be wondering about the $\sqrt{2}'s$
 - You will find out soon!

Non-Linear Mappings

- How will you do training and testing of the classifier?
 - ◆ Transform the entire training data into PHI space
 - Train the classifier F(PHI(x))
 - ◆ Testing: first get PHI(x) and then pass it to classifier
- 1. Computation
 - ◆ PHI(x) for every training example
- 2. Memory
 - ^ X vs. PHI(x) the size is much larger
 - ^ M*N vs. M^2 * N (M is the number of features and N is the number of training examples)

Non-Linear Mappings

- How will you do training and testing of the classifier?
 - ◆ Transform the entire training data into PHI space
 - Train the classifier F(PHI(x))
 - ◆ Testing: first get PHI(x) and then pass it to classifier
- Testing
 - You get X, then you compute F(X) = O(M)
 - → PHI(X) => O(M^2) --- Feature computation
 - \sim W.PHI(x) => O(M^2) classifier decision computation
 - ^ O(M) vs. O(2*M^2)

Kernel Functions

- The linear classifier relies on inner product between vectors: $K(x_i, x_i) = \langle x_i, x_i \rangle$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \phi(x)$, the inner product becomes $K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- A *kernel function* is a function that is equivalent to an inner product in some feature space
 - Example: $K(x_i, x_j) = (x_i, x_j + 1)^2$
 - This is equivalent to mapping to the quadratic space!

Quadratic Kernel

Consider a 2-d input space (generalizes to n-d)

$$K(\mathbf{x}^{i}, \mathbf{x}^{j}) = (\mathbf{x}^{i} \cdot \mathbf{x}^{j} + 1)^{2}$$

$$= (x_{1}^{i} x_{1}^{j} + x_{2}^{i} x_{2}^{j} + 1)^{2}$$

$$= x_{1}^{i^{2}} x_{1}^{j^{2}} + 2x_{1}^{i} x_{2}^{i} x_{1}^{j} x_{2}^{j} + x_{2}^{i^{2}} x_{2}^{j^{2}} + 2x_{1}^{i} x_{1}^{j} + 2x_{2}^{i} x_{2}^{j} + 1$$

$$= (x_{1}^{i^{2}}, \sqrt{2} x_{1}^{i} x_{2}^{i}, x_{2}^{i^{2}}, \sqrt{2} x_{1}^{i}, \sqrt{2} x_{2}^{i}, 1) \cdot \cdot \cdot \cdot$$

$$(x_{1}^{j^{2}}, \sqrt{2} x_{1}^{j} x_{2}^{j}, x_{2}^{j^{2}}, \sqrt{2} x_{1}^{j}, \sqrt{2} x_{2}^{j}, 1) \cdot \cdot \cdot \cdot$$

$$= \Phi(\mathbf{x}^{i}) \cdot \Phi(\mathbf{x}^{j})$$

nonlinear mapping of \mathbf{x}^i and \mathbf{x}^j to quadratic space

• A kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly)

Quadratic Kernel

• A kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly)

• Computing inner product of quadratic features is $O(m^2)$ time vs. O(m) time for kernel

Non-Linear SVMs

Dual problem formulation

Find
$$\alpha_1...\alpha_N$$
 such that $\Sigma \alpha_i - \frac{1}{2}\Sigma \Sigma \alpha_i \alpha_j y^i y^i \langle \mathbf{x}^i \cdot \mathbf{x}^j \rangle$ is maximized and (1) $\Sigma \alpha_i y^i = 0$ (2) $0 \le \alpha_i \le c$ for all α_i $K(\mathbf{x}^i, \mathbf{x}^j)$

To classify a new point, we compute

$$f(\mathbf{x}) = \sum \alpha_i \mathbf{y}^i \langle \mathbf{x}^i, \mathbf{x}^j \rangle + b$$

$$K(\mathbf{x}^i, \mathbf{x}^j)$$

- ullet Optimization techniques to find $lpha_i{}'$ s remain the same
- This shows the utility of the dual formulation

Kernel Functions

- In practice, the user specifies the kernel function K, without explicitly stating the transformation $\phi(\cdot)$
- Given a kernel function, finding its corresponding transformation can be very cumbersome
 - ↑ This is why people only specify the kernel function without worrying about the exact transformation
- Another view: a kernel function computes some kind of measure of similarity between objects
- If you have a reasonable measure of similarity for your application, can we use it as the kernel in an SVM?

What functions are Kernels?

 Consider some finite set of m points, let matrix K be defined as follows

$$K(\mathbf{x}^{1},\mathbf{x}^{1}) \quad K(\mathbf{x}^{1},\mathbf{x}^{2}) \quad K(\mathbf{x}^{1},\mathbf{x}^{3}) \quad \dots \quad K(\mathbf{x}^{1},\mathbf{x}^{m})$$

$$K(\mathbf{x}^{2},\mathbf{x}^{1}) \quad K(\mathbf{x}^{2},\mathbf{x}^{2}) \quad K(\mathbf{x}^{2},\mathbf{x}^{3}) \quad K(\mathbf{x}^{2},\mathbf{x}^{m})$$

$$\dots \quad \dots \quad \dots \quad \dots \quad \dots$$

$$K(\mathbf{x}^{m},\mathbf{x}^{1}) \quad K(\mathbf{x}^{m},\mathbf{x}^{2}) \quad K(\mathbf{x}^{m},\mathbf{x}^{3}) \quad \dots \quad K(\mathbf{x}^{m},\mathbf{x}^{m})$$

- This is called Kernel Matrix
- Mercer's Theorem:
 - ▲ A function K is a kernel function if and only if its corresponding kernel matrix is symmetric and positive semi-definite

Examples of Kernel Functions

- Linear: $K(x_i, x_j) = \langle x_i, x_j \rangle$
 - Mapping: $\Phi: x \to \phi(x)$, such that $\phi(x) = x$
- Polynomial of power $p: K(x_i, x_j) = (1 + x_i, x_j)^p$
 - ↑ Mapping: Φ: x → φ(x), where φ(x) corresponds to polynomial (p) mapping
- Gaussian (Radial Basis Function): $K(x_i, x_j) = e^{-\frac{\|x_i x_j\|^2}{2\sigma^2}}$
 - ↑ Mapping: Φ: x → φ(x), where φ(x) has infinite dimensions; every point is mapped to a function (Gaussian)

Examples of Kernel Functions

- Gaussian (Radial Basis Function): $K(x_i, x_j) = e^{-\frac{\|x_i x_j\|^2}{2\sigma^2}}$
 - ↑ Mapping: Φ: x → φ(x), where φ(x) has infinite dimensions; every point is mapped to a function (Gaussian)
 - ↑ RBF kernel values decreases with distance and ranges between zero (in the limit) and one $(x_i = x_i)$
- String Kernels
 - ◆ No. of common substrings of length k
- Graph Kernels
- Time-Series Kernels

Properties of Kernels

- Not all functions $K(x_i, x_j)$ are kernels!
- Conditions for a function to be a kernel
 - Symmetry: $\forall x_i, x_j; K(x_i, x_j) = K(x_j, x_i)$
 - ▶ **Positivity:** for a set of m points $x_1, x_2, ..., x_m$; define the kernel matrix as $K_{ij} = K(x_i, x_j)$. For all m data points and all $m \times 1$ vectors $t, t^T K t \ge 0$
- These are <u>necessary</u> and <u>sufficient</u> conditions

Properties of Kernels

- How to show that a function $K(x_i, x_j)$ is a kernel?
 - Either find the feature map $\Phi: x \to \phi(x)$ such that $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$ OR
 - Show that symmetry and positivity conditions hold
- How to show that a function $K(x_i, x_j)$ is not a kernel?
 - Show a counter-example for symmetry or positivity conditions

Summary and Recap of Last Lecture

- Hard-Margin SVMs for linearly separable data
 - Characteristics of the dual solution
 - Weight vector is determined by a small no. of training examples called Support Vectors

Soft-Margin SVMs

- To deal with non-separable and noisy data
- Relax the margin requirement by introducing slack variables
- C parameter trades-off the training error (sum of slacks) and the generalization error (margin)

Summary and Recap of Last Lecture

Non-linear SVMs via Kernel Trick

- lacktriangle Map data from low-dimensional space to high-dimensional space $\phi(x)$ to make the learning problem easier via linear SVMs
- A Kernel functions *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly)
- Kernels and Mercer's theorem
- Multi-class classification
 - One vs. one reduction
 - One vs. all reduction

Multi-Class SVMs

One-vs-One Reduction

- Learn $\frac{k(k-1)}{2}$ binary classifiers
- Classify a new example via majority vote

One-vs-All Reduction

- K weight vectors (Rep-I)
- Single weight vector (Rep-II)

Reducing Multi-Class to Binary

- One vs. One
- Three classes: red, blue, green
- 1. Red vs. Blue
- 2. Blue vs. Green
- 3. Red vs. Green
- Given a new example x, we get decisions from all three:
 - Red, Green, Red => Red is our prediction

Drawback of One vs. One

- Training time-complexity
 - K choose 2 number of classifiers, where K is the number of classes
 - ◆ O(K^2) number of binary classifiers
- Testing time-complexity
 - ^ O(K^2)

One vs. All

- Four classes: red, blue, green, yellow
- One vs. One: 4 choose 2 => 6
- One vs. All:
 - ↑ Red vs. Rest
 - ▲ Blue vs. Rest
 - ♠ Green vs. Rest
 - ◆ Yellow vs. Rest
 - ▲ 4 Classifiers
 - Given a new example: pick the class that gets the highest score

One vs. All

- One weight vector for each class
 - ^ W_1 ("d" weights of class 1)
 - ^ W_2 ("d" weights of class 2)
 - •
- Single weight vector for all classes
 - → W ("k*d" number of weights)
 - ^ W = [W_1, W_2,...,W_K]
- Score of class "r"
 - → W_r.X => in the first representation
 - ightharpoonup W.F(X, r) => in the second representation

Multi-class Classification

Single prototype

$$w_1$$
 w_2 w_3 w_K
 $W = \begin{bmatrix} & & \end{bmatrix}\begin{bmatrix} & & \end{bmatrix}\begin{bmatrix} & & \end{bmatrix}$... $\begin{bmatrix} & & \end{bmatrix}$

^ K * D parameters

•
$$\varphi(x,y) = ([[y=1]]x, [[y=2]]x, \dots, [[y=k]]x)$$

$$\Phi \varphi(x,2)$$

Multi-Class SVM

Multi-class SVM [Crammer and Singer 2001]

$$\begin{aligned} \min_{w} \quad & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \delta_i \\ s.t: \quad & w \cdot \varphi(x_i, y_i) - w \cdot \varphi(x_i, y) \geq 1 - \delta_i \\ & \forall y \in Y \backslash \{y_i\} \,, \forall i = 1, \cdots, n \end{aligned}$$

Critical Steps for using SVM

- Select the kernel function to use (important but often trickiest part of SVM).
- In practice, try the following in the same order
 - linear kernel
 - low degree polynomial kernel
 - ightharpoonup RBF kernel with a reasonable width σ
 - Supported by off-the-shelf software (e.g., LibSVM or SVM-Light)

66

Critical Steps for using SVM

- ullet Select the value of tradeoff parameter \emph{C} and the parameter of the kernel function
 - Try the values suggested by the SVM software

 - You can set apart a validation set to determine the values of the parameter
- SVM Software
 - ^ LibSVM -- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - ► SVM-Light -http://www.cs.cornell.edu/people/tj/svm_light/svm multiclass.html

AutoML

- Sub-area of ML that studies methods for automated machine learning
- Automate hyper-parameter tuning
- Bayesian Optimization (This class)
- Bandits

SVMs Summary

- Advantages of SVMs
 - Polynomial time exact optimization
 - Kernels allow very flexible hypotheses (decision boundaries)
 - ◆ Can be applied to very complex data types, e.g., sequences, graphs
- Disadvantages of SVMs
 - Must choose a good kernel and kernel parameters
 - Scalability issues with very-large data sets
 - Recent work has made this much less an issue
 - Stream SVM: http://www.ibis.t.u-tokyo.ac.jp/masin/streamsvm.html
 - SVM-Perf: http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html

PEGASOS

Primal Efficient sub-GrAdient SOlver for

Shai Shalev-Shwartz

The Hebrew University Jerusalem, Israel

Yoram Singer

Google

Nati Srebro

Support Vector Machines

QP form:

argmin
$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i$$

s.t. $\forall i, y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 - \xi_i$

More "natural" form:

 $argmin f(\mathbf{w})$

where:

$$f(\mathbf{w}) \stackrel{\text{def}}{=} \frac{\lambda}{2} ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Regularization term

Empirical loss

Previous Work

- Dual-based methods
 - ▲ Interior Point methods
 - Memory: m^2 , time: $m^3 \log(\log(1/\epsilon))$
 - Decomposition methods
 - Memory: m, Time: super-linear in m
- Online learning & Stochastic Gradient
 - Memory: O(1), Time: $1/\epsilon^2$ (linear kernel)
 - ↑ Memory: $1/ε^2$, Time: $1/ε^4$ (non-linear kernel)

Typically, online learning algorithms do not converge to the optimal solution of SVM

PEGASOS

$$A_t = S$$

t S =

$$|A_t| = 1$$

Subgradient method

ation

Stochastic gradient

Number of iterations T Initialize. Choose \mathbf{w}_1 s.t. $\|\mathbf{w}_1\| \leq 1/\sqrt{\lambda}$ For $t=1,2,\ldots,\mathcal{T}$

For
$$t=1,2,\ldots$$

$$A_t^+ = \{(\mathbf{x}, y) \in A_t : y \langle \mathbf{w}_t, \mathbf{x} \rangle < 1\}$$

Subgradient Choose $A_t \subseteq S$ $A_t^+ = \{(\mathbf{x}, y) \in A_t : y \langle \mathbf{w}_t, \mathbf{x} \rangle < 1\}$ $\nabla_t = \lambda \mathbf{w}_t - \frac{\eta_t}{|A_t|} \sum_{(\mathbf{x}, y) \in A_t^+} y \mathbf{x}$ $\eta_t = \frac{1}{t\lambda}$ $\mathbf{w}_t' = \mathbf{w}_t - \eta_t \nabla_t$

$$\eta_t = \frac{1}{t\lambda}$$

$$\mathbf{w}_t' = \mathbf{w}_t - \eta_t \nabla_t$$

Projection $\mathbf{w}_{t+1} = \min\left\{1, \frac{1/\sqrt{\lambda}}{\|\mathbf{w}_t'\|}\right\} \mathbf{w}_t'$

OUTPUT: \mathbf{w}_{T+1}

Machine Learning Theory

- Probably Approximately Correct (PAC)
- Infinite bag of training examples (joint distr.)
- Experiment
 - ◆ You draw a sample of size (m) as training data
 - ◆ You learn a model/classifier from it
 - You measure its accuracy on the infinite bag
- To achieve an accuracy of "epsilon" with a confidence "delta", how big should be my sample size "m"? Run in polynomial time.

Run-Time of Pegasos

- Choosing |A_t|=1 and a linear kernel over Rⁿ
 - \rightarrow Run-time required for Pegasos to find ϵ accurate solution w.p. , 1- δ

$$\tilde{O}(\frac{d}{\lambda \epsilon \delta})$$
 , where d is the sparsity bound

- Run-time does not depend on #examples
- Depends on "difficulty" of problem (λ and ϵ)

Training Time (in seconds)

	Pegasos	SVM-Perf	SVM-Light
Reuters	2	77	20,075
Covertype	6	85	25,514
Astro- Physics	2	5	80

Compare to Norma (on Physics)

Effect of $k=|A_t|$ when T is fixed

Effect of $k=|A_t|$ when kT is fixed

Discussion

- Pegasos: Simple & Efficient solver for SVM
- Sample vs. computational complexity
 - ↑ Sample complexity: How many examples do we need as a function of VC-dim (λ), accuracy (ϵ), and confidence (δ)
 - In Pegasos, we aim at analyzing computational complexity based on λ , ϵ , and δ (also in Bottou & Bousquet)

Kernelizing Online Learning Algorithms

```
initialize f = 0 Functional Form repeat Pick (x_i, y_i) from data if y_i f(x_i) \le 0 then f(\cdot) \leftarrow f(\cdot) + y_i k(x_i, \cdot) + y_i until y_i f(x_i) > 0 for all i
```

- Nothing happens if classified correctly
- Weight vector is a linear combination $w = \sum_{i \in I} \alpha_i \phi(x_i)$
- Classifier is a linear combination of inner products

$$f(x) = \sum_{i \in I} \alpha_i \langle \phi(x_i), \phi(x) \rangle = \sum_{i \in I} \alpha_i k(x_i, x)$$

Kernelized Perceptron

Primal Form update weights

$$w \leftarrow w + y_i \phi(x_i)$$

classify
 $f(k) = w \cdot \phi(x)$

Dual Form update linear coefficients

implicitly equivalent to:

$$w = \sum_{i \in I} \alpha_i \phi(x_i)$$

 $\alpha_i \leftarrow \alpha_i + y_i$

- Nothing happens if classified correctly
- Weight vector is a linear combination $w = \sum_{i \in I} \alpha_i \phi(x_i)$
- Classifier is a linear combination of inner products

$$f(x) = \sum_{i \in I} \alpha_i \langle \phi(x_i), \phi(x) \rangle = \sum_{i \in I} \alpha_i k(x_i, x)$$

Kernelized Perceptron: Example

- (x1, +1); (x2, -1); (x3, -1); (x4, +1)
- First iteration
 - ↑ Make prediction: $F(x1) = \sum_{i=1}^{\infty} F(x1) = 1$ \alpha_i*y_i* $F(x_i, x_i) = 1$.5
 - **-**1
 - ◆ Update weights: Alpha1 = Alpha1 + 1 = 1
- Second iteration
 - ↑ Make prediction: $F(x2) = \sum_{i=1}^{\infty} f(x_i) = \sum_{i=1}^{\infty} f(x_i) = 1$ \alpha_i*y_i* $f(x_i) = 1$
 - **+**1
 - ◆ Update weights: Alpha2 = Alpha2 -1 = -1

Questions?