Graph Isomorphism Problem

with programming project focused on Tree Isomorphism Problem

Kamil Szymon Jadeszko

HS Mittweida Network Algorithms Course

January 11th, 2016

Definition (Graph Isomorphism)

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs.

A mapping $\phi: V_1 \to V_2$ is called graph isomorphism iff

$$\forall u, v \in V_1 \quad (u, v) \in E_1 \iff (\phi(u), \phi(v)) \in E_2.$$

Remark

If this mapping exists we say that G_1 and G_2 are isomorphic.

Examples

[on the board]

• GIP is NP problem.

- GIP is NP problem.
- There is still open question if GIP is NP-complete problem.

- GIP is NP problem.
- There is still open question if GIP is NP-complete problem.
- Brute force algorithm has complexity O(n!)

- GIP is NP problem.
- There is still open question if GIP is NP-complete problem.
- Brute force algorithm has complexity O(n!)
- Best known algorithm runs in $2^{O(\log^c(n))}$ time very new boundary, work of László Babai, published last year. Previous $2^{O(\sqrt{n\log(n)})}$

- GIP is NP problem.
- There is still open question if GIP is NP-complete problem.
- Brute force algorithm has complexity O(n!)
- Best known algorithm runs in $2^{O(\log^c(n))}$ time very new boundary, work of László Babai, published last year. Previous $2^{O(\sqrt{n\log(n)})}$
- GIP has practical applications biology, cryptography,

It's not so easy to live with computer scientists

Figure 1: source: XKCD.com

Definition (Tree)

Tree is simple, connected, acyclic graph.

Definition (Rooted tree)

Rooted tree T(V, E, r) is a tree with one selected vertex $r \in V$ called root.

Did I told you, that computer scientists are weird?

Figure 2: source: weather.gov

Basic terms:

- Root
- 2 Leaf
- Child

Python project

- Rooted Ordered Trees
- 2 Rooted Trees
- Ordinary Trees

Specific case - ordered (planted) trees

Definition (first() and next() operator)

[on the board]

Definition (Rooted Ordered Tree Isomorphism)

Let $T_1 = (V_1, E_1, r_1)$ and $T_2 = (V_2, E_2, r_2)$ be two ordered trees. Mapping $\phi: V_1 \to V_2$ is called ordered tree isomorphism iff:

- $\phi(r_1) = r_2$
- $\phi(first(v)) = first(\phi(v))$ for all $v \in V_1$ where v isn't a leaf
- \bullet $\phi(next(v)) = next(\phi(v))$ for all $v \in V_1$ where v is nonlast child

Algorithm (ROTI)

- Compare trees sizes if are different trees aren't isomorphic.
- ② Assign to every vertex of T_1 his index in pre-order traversal.
- **3** Assign to every vertex of T_2 his index in pre-order traversal.
- Make bijection $\phi: V_1 \to V_2$ s.t

$$\phi(v_1) = v_2 \iff index(v_1) = index(v_2)$$

6 Check previous mentioned conditions of r.o.t. isomorphism for ϕ

Algorithm

Complexity

This algorithm runs in O(n) time, where n is size of tree.

Rooted trees

Definition (Rooted Tree Isomorphism)

Let $T_1 = (V_1, E_1, r_1)$ and $T_2 = (V_2, E_2, r_2)$ be rooted trees A mapping $\phi: V_1 \to V_2$ is called rooted tree isomorphism iff

$$\phi$$
 is graph isomorphism and $\phi(r_1) = r_2$

Examples

[on the board]

Algorithm (Rooted tree labeling)

[explanation using interactive python shell]

Algorithm (RTI)

- Compare trees sizes if they are different trees aren't isomorphic.
- 2 Compare labels of trees if they are different trees aren't isomorphic, otherwise - they are.

Algorithm

Complexity

This algorithm runs in $O(n^2 \cdot \log(n))$ time, where n is size of tree and can be easy optimized to $O(n^2)$

Remark

There exist rooted tree isomorphism algorithms which run in O(n) and can be found in positions 1. and 2. from references.

Ordinary trees

- Naive way.
- 2 Better way.

Ordinary trees

Lemma

Existence of O(n)-complexity algorithm for rooted tree implies existence of O(n)-complexity algorithm for ordinary trees.

Proof: [on the board]

Definition (Tree center)

A center of tree is a vertex v such that the longest path from v to a leaf is minimal over all vertices.

Thank you for your attention.

References

- A. Aho, J. Hopcrot, J. Ullman The Design and Analysis of Computer Algorithms
- G. Valiente Algorithms on Trees and Graphs
- M. Bonamy
 A Small Report on Graph and Tree Isomorphism
- A. Smal

 Tree Isomorphism Talk