约束满足问题

- 1 何谓CSP: 求解n-qeens、CSP形式化、约束图 、约束类型
- 2 约束传播与局部相容性(结点相容、弧相容、 路径相容)
- 3 CSP形式化为一个搜索问题 (回溯法)
- 4 提高搜索效率(变量顺序、值的顺序、提前检查失败、利用树形结构)

求解n-qeens、CSP形式化、约束图、约束类型

何谓CSP?

Review: local search - hill climbing

 \Box h = number of pairs of queens that are attacking each other, either directly or indirectly

Figure 4.3 (a) An 8-queens state with heuristic cost estimate h = 17, showing the value of h for each possible successor obtained by moving a queen within its column. The best moves are marked. (b) A local minimum in the 8-queens state space; the state has h = 1 but every successor has a higher cost.

what is CSP?

□ 使用要素化表示来描述状态:一组变量,每个变量有自己的值。当每个变量都有自己的赋值 同时满足所有关于变量的约束时,问题就得到了解决。这类问题称为**约束满足问题**,简称 CSP

- ☐ Place a queen in a square
- □ Remove the attacked square from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- ☐ Place a queen in a row or column with minimum number
- ☐ Remove the attacked squares from future consideration

- Count the number of nonattacked squares in every row and column
- □ Place a queen in a row or column with minimum number
- □ Remove the attacked squares from future consideration

What's the difference with local search?

Constraint Propagation vs. Local Search

□ local search: full assignment

constraint propagation: partial assignment

how to formalize a CSP?

What are Constraint Satisfaction Problems ? {6.1}

- □ a CSP consists of
 - \blacksquare a set of variables, $X = \{X_1, ..., X_n \}$.
 - \blacksquare a set of domains, $D = \{D_1, ..., D_n \}$.
 - a set of constraints, C.
 Each constraint C_i consists of <scope, rel>.
 scope is a tuple of variables, and rel defines
 the relation between those variables.

Solutions are complete and consistent assignments

example: 8-queens{6.1}

- CSP formulation of 8-queens
- □ Variables: _____
- Domain: _____
- Constraints:

 \square a solution $\{5,2,4,6,8,3,1,7\}$

example: 8-queens{6.1}

- □ CSP formulation of 8-queens
 □ Variables: X={X1,X2,X3,...,X8}
 □ Domain: D={D1,D2,D3,...,D8}
 □ Di={1,2,3,4,5,6,7,8}
 □ Constraints:C={<{Xi,Xj}, Xi≠Xj & |Xi-Xj|≠|i-j|> | i ≠ j, 1 ≤ i ≤ 8,1 ≤ j ≤ 8}
- \square a solution $\{5,2,4,6,8,3,1,7\}$

Example: Minesweeper Game

- Each square contains either a zero (touching no bombs in its eight neighboring squares); a number n (touching exactly n bombs); or nothing (unknown).
- □ variables?
- □ domain?

- □ constraints?
- □ solution?

Example: Minesweeper Game

- □ Variables: $X = \{X_{ii} \mid i = 1, 2, ..., j = 1, 2, ...\}$
- □ Domain:
 - \blacksquare D={D_{ij}|i=1,2,..., j=1,2,...}
 - $D_{ij} = \{0,1,2,...,8,m\}$
- Constraints:

if Dij=0,1,...,8, then there are Dij mines in the neighboring blocks of block_{ii}.

Solutions are assignments satisfying all constraints

Example: Map-Coloring {6.1.1}

- color Australia regions using red, green and blue to make adjacent regions have different colors.
- □ variables?
- □ domain?
- constraints?
- □ solution?

Example: Map-Coloring {6.1.1}

- \square Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$
- \square Domain: $D = \{D_1, ..., D_7\}, D_i = \{red, green, blue\}$
- □ Constraints: adjacent regions must have different colors $C = \{WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, A \neq$

SA≠*NSW*, *SA*≠*V*, *Q*≠*NSW*, *NSW*≠*V*}

SA≠WA是<(SA, WA), SA≠WA>的简洁表示

Solutions are assignments satisfying all constraints

{WA=red, NT=green, Q=red, NSW=green, V= red, SA=blue, T= green}

Queensla

Northern

Territory

Western Australia

represent constraints as a graph!

Constraint Graph {6.1.1}

- Binary CSP: each constraint relates (at most) two variables
- ☐ Constraint graph: nodes are variables, arcs show constraints

Varieties of Constraints {6.1.3}

- ☐ Unary constraints involve a single variable: $SA \neq green$
- ☐ Binary constraints involve pairs of variables: $SA \neq WA$
- ☐ Higher-order constraints involve 3 or more variables (How to represent them using graph?)
- □ Preferences (soft constraints)
 - red is better than green
 - Gives constrained optimization problems
 - Representable by a cost for each variable assignment

What is the reasoning in CSP?

结点相容(1-相容)、弧相容(2-相容)、路径相容(3-相容)、K-相容

约束传播与局部相容性

- □ CSP中的推理:约束传播。约束传播使用约束 减小一个变量的合法取值范围,从而影响到跟 此变量有约束关系的另一变量的取值。
 - 给一个变量赋值后,则通过约束传播可缩小与其有 约束关系的其他变量的值域。

口 若WA赋值R,则通过约束传播,NT和SA的值域中删除R

□ 在CSP中,算法可以进行约束传播,也可以搜索 (从几种可能性中选择新的变量赋值)。约束 传播与搜索可以交替进行,或者也可以将约束 传播作为搜索前的预处理步骤。

- □ 约束传播的核心思想是局部相容性。
- □ 增强约束图中各部分局部相容性会导致不相容的结点取值被删除。

Node consistency {6.2.1}

口 如果单个变量(对应于CSP网络中的结点)值 域中的所有取值满足它的一元约束,就称此变 量是结点相容的。例如,如果地图着色问题中 南澳洲人不喜欢绿色,变量SA原来值域为 {red, green, blue}, 删除green此结点即为 结点相容的,此时SA的值域为 $\{red, blue\}$ 。 如果网络中每个变量都是结点相容的,则此网 络是结点相容的。

arc consistency {6.2.2}

口对于变量 X_i 、 X_j ,若对 X_i 的每个赋值在 X_j 都存在某个取值满足弧(X_i , X_j)的二元约束,则称 X_i 对于 X_i 是弧相容的。

哪些是弧相容的?

- (1)WA对于SA
- (2) WA对于NT
- (3) SA对于Q
- (4) SA对于NSW

arc consistency {6.2.2}

口对于变量 X_i 、 X_j ,若对 X_i 的每个赋值在 X_j 都存在某个取值满足弧(X_i , X_j)的二元约束,则称 X_i 对于 X_i 是弧相容的。

哪些是弧相容的?

(1)WA对于SA yes

(2)WA对于NT yes

(3)SA对于Q no

(4) SA对于NSW no

arc consistency {6.2.2}

口对于变量 X_i 、 X_j ,若对 X_i 的每个赋值在 X_j 都存在某个取值满足弧(X_i , X_j)的二元约束,则称 X_i 对于 X_j 是弧相容的。如果每个变量对于其它变量都是弧相容的,则称该网络是弧相容的

是否是网络相容的?是 否有解?

arc consistency {6.2.2}

口对于变量 X_i 、 X_j ,若对 X_i 的每个赋值在 X_j 都存在某个取值满足弧(X_i , X_j)的二元约束,则称 X_i 相对 X_j 是弧相容的。如果每个变量相对其它变量都是弧相容的,则称该网络是弧相容的

是网络相容的,但显然此题无解。路径相容可以检测出无解。

path consistency {6.2.3}*

口 对 $\{X_i, X_j\}$ 的每一个相容赋值 $\{X_i=a, X_j=b\}$, X_m 都有合适的取值同时使得 $\{X_i, X_m\}$ 和 $\{X_m, X_j\}$ 是相容的,则称集合 $\{X_i, X_j\}$ 对于 X_m 是(路径)相容的。被称为**路径相容**,是因为这很像是一条从 X_i 途经 X_m 到 X_i 的路径。

path consistency {6.2.3}*

口 对 $\{X_i, X_j\}$ 的每一个相容赋值 $\{X_i=a, X_j=b\}$, X_m 都有合适的取值同时使得 $\{X_i, X_m\}$ 和 $\{X_m, X_j\}$ 是相容的,则称集合 $\{X_i, X_j\}$ 对于 X_m 是(路径)相容的。被称为**路径相容**,是因为这很像是一条从 X_i 途经 X_m 到 X_i 的路径。

哪些是路径相容的?

- (1) {WA, NT} 对于SA
- (2) {SA, Q} 对于NSW
- (3) {SA, NSW} 对于V

k-consistency {6.2.4}*

口 如果对于任何k - 1个变量的任何相容赋值,任何第k个变量总能被赋予一个和前k - 1个变量相容的值,那么这个CSP是k相容的。

□ 1-相容是节点相容。2-相容即为弧相容。对二元约束网络,3-相容是路径相容。

Global Constraints {6.2.5}

- □ 全局约束可涉及任意个约束变量(不一定是所有变量)。例如,Alldiff约束表示所有相关变量必须取不同的值。Alldiff约束的不相容检测的一种简单形式:如果约束涉及m个变量,可能的不同取值有n个,且m>n,那么约束不可能满足。
- 口 另一个重要的高阶约束是**资源约束**,有时称为 atmost约束。例如在调度问题中,用 P_1 ,…, P_4 表示执行四项任务的人数。总人数不超过10人的约束记为 $atmost(10, P_1, P_2, P_3, P_4)$ 。

□ 在CSP中,算法可以进行约束传播, 也可以搜索(从几种可能性中选择 新的变量赋值)。

CSP形式化为搜索问题:回溯搜索

Standard Search Formulation {6.3}

- States are ______
- Initial state:
- Transition model
- ☐ Goal test: the current assignment is complete and satisfies all constraints

Standard Search Formulation {6.3}

- States are defined by the values assigned so far
- □ Initial state: the empty assignment, {}
- □ Transition model
 - assign a value to an unassigned variable
 - fail if no legal assignment
- ☐ Goal test: the current assignment is complete and satisfies all constraints

Backtracking Search {6.3}

suppose there are 3 variables, and each has 2 values.

Backtracking Search {6.3}

suppose there are 3 variables, and each has 2 values.

Backtracking Search {6.3}

- ☐ Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- □ Idea 2: Only allow legal assignments at each point
 - consider only values which do not conflict previous assignments, might have to do some computation
- Depth-first search for CSPs with these two improvements is called backtracking search

Backtracking Example {+}

从哪些方面入手 可提高搜索效率?

变量顺序(最少剩余值、最大度)、值的顺序(最少约束值)、提前检查失败(前向检验、维护弧相容)、利用树形结构

提高搜索效率

Improving Backtracking {6.3}

- ☐ General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

which variable first?

Which variable should be assigned next?{6.3.1}

Which variable should be assigned next?{6.3.1}

- □ Minimum remaining values (最少剩余值)
 - Choose the variable with the fewest legal values

□ also called "Fail-first" ordering (失败优先)

if the variables have the same number of remaining values, which variable first?

if the remaining variables have the same number of values {6.3.1}

if the remaining variables have the same number of values {6.3.1}

□ Degree heuristic

Choose the variable with the most constraints on remaining variables

which value first, once a variable is chosen?

in what order should the variable's values be tried? {6.3.1}

which value?

in what order should the variable's values be tried? {6.3.1}

NT

SA

NSW

☐ Given a variable, choose the least constraining value

WA

the one that rules out the fewest values for the neighboring variables

How to detect failure early?

How to detect inevitable failure early? {6.3.2}

☐ Will it inevitably fail?

How to detect inevitable failure early? {6.3.2}

Forward Checking: Keep track of remaining legal values for unassigned variables. Terminate when any variable has no legal values.

How to detect failure earlier than forward checking?

maintaining Arc Consistency {6.3.2}

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff for every value x there is some allowed y

- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Problem Structure

How to take advantage of problem structure? {6.5}

- □ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time. HOW TO DO?
- □ Compare to general CSPs, where worst-case time is O(dⁿ)

Tree-Structured CSPs {6.5}

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For i = n : 2, Make-Arc-Consistent(Parent(X_i), X_i)
- 3. For i = 1 : n, assign X_i consistently with Parent(X_i)
- \square Runtime: O(n d²)
- □ Make_Arc_Consistent(X,Y)的功能是:通过最少地删除X的值域中的值,使得X对于Y是弧相容的。

If the graph is not a tree:

Nearly Tree-Structured CSPs {6.5}

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate a set of variables such that the remaining constraint graph is a tree

(Finding the minimum cutset is NP-complete.)

Summary: backtracking {}

- □ Basic solution: DFS / backtracking / heuristic
- Forward checking:
 - Pre-filter unassigned domains after every assignment
 - Only remove values which conflict with current assignments
- Arc consistency
 - We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables, prune them
 - Run (or not) after each assignment
 - A pre-filter, not search!

CSP AS A LOCAL SEARCH

local search for CSP

□ 局部搜索算法(见第4.1节)对求解许多CSP都是很有效的。它们使用完整状态的形式化:初始状态是给每个变量都赋一个值,搜索过程是一次改变一个变量的取值。

CSP Summary {6.6}

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- problem structure
- local search can solve CSP

summary

- 1 何谓CSP: 求解n-qeens、CSP形式化、约束图、变量与约束类型
- 2 约束传播与局部相容性(结点相容、弧相容、 路径相容)
- 3 CSP形式化为一个搜索问题(回溯法)
- 4 提高搜索效率(变量顺序、值的顺序、提前检查失败、利用树形结构)
- 5 局部搜索可求解CSP

Exercise1: Varieties of Constraints

[5.11] Show how a single ternary constraint such as "A+B=C" can be turned into three binary constraints by using an auxiliary variable. You may assume finite domains. Next, show how constraints with more than 3 variables can be treated similarly. Finally, show how unary constraint can be eliminated. This completes the demonstration that any CSP can be transformed into a CSP with only binary constraint.

Exercise2: Street Puzzle

- 6.7 考虑下述的逻辑问题:有5所不同颜色的房子,住着5个来自不同国家的人,每个人都喜欢一种不同牌子的糖果、不同牌子的饮料和不同的宠物。给定下列已知事实,请回答问题"斑马住在哪儿?哪所房子里的人喜欢喝水?
 - 1. 英国人(Englishman)住在红色(red)的房子里。
 - 2. 西班牙人(Spaniard)养狗(dog)。
 - 3. 挪威人(Norwegian)住在最左边的第一所房子里。
 - 4. 绿(green)房子是象牙色(ivory)房子的右边邻居。
 - 5. 喜欢抽Hershey牌巧克力的人住在养狐狸(fox)的人的旁边。
 - 6. 住在黄色(yellow)房子里的人喜欢Kit Kats糖果。
 - 7. 挪威人(Norwegian)住在蓝色(blue)房子旁边。
 - 8. 喜欢Smarties糖果的人养了一只蜗牛(snail)。
 - 9. 喜欢Snickers糖果的人喝桔汁(orange juice)。
 - 10. 乌克兰人(Ukrainian)喝茶(tea)。
 - 11. 日本人(Japanese)喜欢Milky Ways糖果。
 - 12. 喜欢Kit Kats糖果的人住在养马(horse)人的隔壁。
 - 13. 住在绿色(green)房子的人喜欢喝咖啡(Coffee)
 - 14. 住在中间房子里的人喜欢喝牛奶(milk)。
- J 讨论把这个问题表示成CSP的不同方法。你认为哪种比较好,为什么?

4-Queens as a local search

- □ States: 4 queens in 4 columns $(4^4 = 256 \text{ states})$
- Operators: move queen in column
- ☐ Goal test: no attacks
- \square Evaluation: h(n) = number of attacks

N-Queens as a CSP

- Chessboard puzzle
 - e.g. when n = 8...
 - place 8 queens on a 8x8 chessboard so that no two attack each other
- □ Variable x_i for each column i of the board
- \square Domain = $\{1, 2, 3 \dots, n\}$ for position in row
- Constraints are:
 - $X_i \neq X_j$
 - $X_i X_j \neq i-j$
 - $\mathbf{x}_{i} \mathbf{x}_{i} \neq i j$

queens not in same row queens not in same SE diagonal queens not in SW diagonal

假设考虑变量的次序是**X1,X2,X3,X4**,考虑值的次序是从小到大考虑,采用前向检验。画出回溯搜索树,搜索过程发生几次回溯?

(From B.J. Dorr, U of Md, CMSC 421)

Boolean satisfiability problem (SAT)*

- ☐ Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science

$$p_1 \land (p_2 \rightarrow p_3) \land ((\neg p_1 \land \neg p_3) \rightarrow \neg p_2) \land (p_1 \lor p_3)$$

□ Turns out you can always express in 3-CNF

$$(p_1) \land (\neg p_2 \lor p_3) \land (p_1 \lor p_3 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_3)$$

☐ 3-SAT: find a satisfying truth assignment

Example: 3-SAT*

- \square Variables: $p_1, p_2, \dots p_n$
- Domains: {true, false}
- Constraints:

$$egin{array}{c} p_i ee p_j ee p_k \
eg p_{i'} ee p_{j'} ee p_{k'} \ ee p_{i''} ee
eg p_{i''} ee
eg$$

Implicitly conjoined (all clauses must be satisfied)

next chapter 7 logical agent

Thanks!