

CONGRUENCIAS

Alan Reyes-Figueroa Teoría de Números

(AULA 09) 29.JULIO.2024

Congruencias

Hacen su aparición en la obra de GAUSS, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Ejemplo: $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Solución: $X \equiv 0, 2 \pmod{4} \Rightarrow X^2 \equiv 0 \pmod{4}$; $X \equiv \pm 1 \pmod{4} \Rightarrow X^2 \equiv 1 \pmod{4}$. Haciendo todas las combinaciones posibles, vemos que $X^2 + Y^2 \equiv 0 + 0$ ó 0 + 1 ó 1 + 1 (mod 4), esto es, $X^2 + Y^2 \equiv 0, 1, 2 \pmod{4}$.

Portanto $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Congruencias

Propiedades (Propiedades de las Congruencias)

Para cualesquiera enteros $a,b,c,d,k,n\in\mathbb{Z}$, n>1. se tiene.

- 1. (Reflexividad) $a \equiv a \pmod{n}$,
- **2.** (Simetría) si $a \equiv b \pmod{n}$, entonces $b \equiv a \pmod{n}$,
- 3. (Transitividad) Si $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, entonces $a \equiv c \pmod{n}$,
- 4. (Compatibilidad con suma y resta)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow \begin{cases} a+c \equiv b+d \pmod{n}, \\ a-c \equiv b-d \pmod{n}, \end{cases}$$

5. (Compatibilidad con producto)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow ac \equiv bd \pmod{n},$$

- **6.** Si $a \equiv b \pmod{n}$, entonces $ka \equiv kb \pmod{n}$, para todo $k \in \mathbb{Z}$,
- 7. Si $a \equiv b \pmod{n}$, entonces $a^k \equiv b^k \pmod{n}$, para $k \ge 0$.

Congruencias

8. (Cancelación) Si (n,c) = 1, entonces $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$.

<u>Prueba</u>: (1.) Para todo $a \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \mid o = a - a \Rightarrow a \equiv a \pmod{n}$.

(2.)
$$a \equiv b \pmod{n} \Rightarrow n \mid b - a \Rightarrow n \mid a - b \mid b \equiv a \pmod{n}$$
.

(3.)
$$n \mid b - a, n \mid c - b \Rightarrow n \mid (b - a) + (c - b) = c - a \Rightarrow a \equiv c \pmod{n}$$
.

(4.)
$$n \mid b-a, n \mid d-c \Rightarrow n \mid (b-a) \pm (d-c) = (b \pm d) - (a \pm c) \Rightarrow a \pm c \equiv b \pm d \pmod{n}$$
.

(5.)
$$n \mid b-a$$
, $n \mid d-c \Rightarrow n \mid (b-a)c$ y $n \mid a(d-c)$. Luego, $n \mid (b-a)c - a(d-c) = bc - ad \Rightarrow ad \equiv bc \pmod{n}$.

- (6.) Aplicando (4.) k-veces consecutivas, con c = a, d = b, se obtiene, $ka \equiv kb \pmod{n}$.
- (7.) Aplicando (5.) k-veces consecutivas, con c = a, d = b, se obtiene, $a^k \equiv b^k \pmod{n}$. Otra alternativa es ver que si $a \equiv b \pmod{n}$, entonces $n \mid b a$

$$\Rightarrow n \mid (b-a)(b^{k-1}+ab^{k-1}+\ldots+a^{k-2}b+a^{k-1})=b^k-a^k$$
. Así, $a^k\equiv b^k\pmod n$.

(8.) Suponga que $ac \equiv bc \pmod n$, con (n,c) = 1. Entonces $n \mid bc - ac = (b-a)c$. Por el lema de Eulices, como (n,c) = 1, entonces $n \mid b-a \Rightarrow a \equiv b \pmod n$.

Congruencias '

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid qn = a - r$ $\Rightarrow a \equiv r \pmod{n}$. Como hay n opciones de residuos para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$. En particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Definición

El conjunto de n enteros $0,1,2,\ldots,n-1$ se denomina el **conjunto de residuos mínimos** no negativos o residuos canónicos, módulo n.

En general, una colección de n números enteros a_1, a_2, \ldots, a_n forman un **conjunto completo de residuos** (o un **sistema completo de residuos**) módulo n si cada a_i es congruente a alguno de los números $0, 1, 2, \ldots, n-1$, módulo n.

Ejemplo: -12, -4, 11, 13, 22, 82, 91 constituyen un sistema completo de residuos módulo 7.

Obs! $S = \{a_i\}_{i=1}^n \subset \mathbb{Z}$ es un sistema de residuos módulo $n \Leftrightarrow a_i \not\equiv a_j \pmod{n}$, para $i \neq j$.

El Anillo $\mathbb{Z}/n\mathbb{Z}$

Ya mencionamos que la congruencia módulo n, induce una relación de equivalencia sobre \mathbb{Z} . De hecho, mostramos que dos enteros $a,b\in\mathbb{Z}$ son congruentes módulo n si, y sólo si, dejan el mismo residuo r al dividirse dentro de n. Así, las clases de equivalencia módulo n son de la forma $n\mathbb{Z}+r$, con o $\leq r < n$.

Esto muestra que hay exactamente n clases de equivalencia, que podemos denotarlas como $n\mathbb{Z} + 0, n\mathbb{Z} + 1, n\mathbb{Z} + 2, \dots, n\mathbb{Z} + (n-1).$

Si \sim denota la relación de congruencia módulo n, entonces el cociente,

$$\mathbb{Z}/\sim = \{ \text{clases de equivalencia módulo } n \} = \{ n\mathbb{Z} + r, \ o \le r < n \},$$

posee una estructura de anillo, heredada a partir de \mathbb{Z} .

Denotamos este cociente por $\mathbb{Z}/n\mathbb{Z}$, (también se denota por $\mathbb{Z}/(n)$, \mathbb{Z}/n , \mathbb{Z}_n). $\mathbb{Z}/n\mathbb{Z}$ será llamado el **anillo de enteros módulo** n.

El Anillo $\mathbb{Z}/n\mathbb{Z}$

Como recordarán de sus cursos de álgebra, $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ posee una estructura de anillo, con las operaciones

$$(n\mathbb{Z}+a)+(n\mathbb{Z}+b)=n\mathbb{Z}+(a+b)\pmod{n}, \qquad (n\mathbb{Z}+a)\cdot(n\mathbb{Z}+b)=n\mathbb{Z}+(ab)\pmod{n}.$$

En ocasiones, es más simple representar la clase $n\mathbb{Z}+r$ por su residuo \bar{r} . Las operaciones anteriores resultan

$$\bar{a} + \bar{b} = \overline{a + b}, \qquad \bar{a} \cdot \bar{b} = \overline{ab}.$$

Ejemplo: $\mathbb{Z}/6\mathbb{Z}$.

+	ō	1	$\bar{2}$	3	4	5		ō	1	2	3	4	5
ō	ō	1	-	3	4	5	ō	ō	ō	ō	ō	ō	ō
1	1	2	3	4	5	ō	1	ō	1	2	3	4	5
2	2	3	4	5	ō	1	2	ō	2	4	ō	2	4
3	3	4	5	ō	1	2	3	ō	3	ō	3	ō	3
4	4	5	ō	1	2	3	4	ō	4	2	ō	4	2
5	5	ō	1	2	3	4	5	ō	5	4	3	2	1

El Anillo $\mathbb{Z}/n\mathbb{Z}$

Teorema (Caracterización de Clases)

Para enteros arbitrarios $a,b\in\mathbb{Z}$, $a\equiv b\pmod n$ $\Leftrightarrow a$ y b dejan el mismo residuo cuando se divide por n.

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$. Por lo tanto, b=a+kn=(qn+r)+kn=(q+k)n+r, por lo que b tiene el mismo residuo que a.

(\Leftarrow) Por otro lado, suponga que podemos escribir $b=q_1n+r$ y $b=q_2n+r$, con el mismo residuo o $\leq r < n$ Entonces,

$$b-a=(q_2n+r)-(q_1n+r)=(q_2-q_1)n,$$

de modo que $n \mid b - a$. Esto es $a \equiv b \pmod{n}$.

Ejemplo: -56 y -11 pueden escribirse como -56 = (-7)9 + 7, -11 = (-2)9 + 7. Esto muestra que $-56 \equiv -11 \pmod{9}$.

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$.

Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$.

Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Hallar el residuo de 1! + 2! + 3! + 4! + ... + 99! + 100! al dividir por 12.

Comenzamos observando que $4! \equiv 24 \equiv 0 \pmod{12}$; así, para $k \geq 4$, se tiene que

$$k! = 4! \cdot 5 \cdot 6 \cdots k \equiv 0 \cdot 5 \cdot 6 \cdots k \equiv 0 \pmod{12}.$$

De esta manera,

$$1! + 2! + 3! + 4! + \dots + 100! \equiv 1! + 2! + 3! + 0 + \dots + 0 \equiv 9 \pmod{12}$$
.

Cancelación Modular

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema (Cancelación Modular)

Si $ca \equiv cb \pmod{n}$, entonces $a \equiv b \pmod{\frac{n}{d}}$, donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c,n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds. Sustituyendo en la ecuación anterior,

$$dr(b-a) = kds$$
 \Rightarrow $r(b-a) = ks$,

de modo que $s \mid r(b-a)$. Como (r,s)=1, el Lema de Euclides garantiza que $s \mid b-a$. Portanto, $a \equiv b \pmod{\frac{n}{d}}$. \square

Cancelación Modular

Corolario

Si $ca \equiv cb \pmod{n}$, y(c,n) = 1, entonces $a \equiv b \pmod{n}$. \Box

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{27}$. Como (3,27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia. Así $14 \equiv 5 \pmod{9}$. Una ilustración adicional es la congruencia $-35 \equiv 45 \pmod{8}$. Aquí, 5 y 8 son primos relativos, y podemos cancelar el factor 5 para obtener $-7 \equiv 9 \pmod{8}$.

Obs! En el teorema, no es necesario que $c \not\equiv 0 \pmod{n}$, pues en ese caso tendrías $c \equiv 0 \pmod{n} \Rightarrow (c,n) = n$, y la conclusión sería $a \equiv b \pmod{1}$, se mantiene automáticamente para todos entero a y b.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$. Esto es, 3^{20} deja residuo 1 al dividirse por 4. Así, $5^{3^{20}} \equiv 5^1 \equiv 5 \pmod{13}$.

Ejercicio: Hallar el residuo de la división de 3¹⁰⁰⁰ entre 101.

Ejemplo: Muestre que la ecuación diofantina $x^3 - 117y^3 = 5$ no admite soluciones enteras.

Solución:

117 es múltiplo de 9, y tenemos

$$x^3 - 117y^3 = 5 \qquad \Leftrightarrow \qquad x^3 \equiv 5 \pmod{9}.$$

Si analizamos los residuos cúbicos módulo 9, cuando x recorre cualquier sistema de residuos, tenemos

O sea, x^3 sólo puede dejar residuos o, 1 u 8 módulo 9. Así, si (x,y) fuese una solución de la ecuación, tendríamos $x^3 \equiv 5 \pmod{9}$, algo imposible. Portanto, dicha ecuación no posee soluciones enteras.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n. Para cualquier primo p dividiendo $2^{2^n} + a^{2^n}$, y $a^{2^n} \equiv -2^{2^n} \pmod{p}$.

Elevamos al cuadrado ambos lados de la ecuación m-n veces para obtener

$$a^{2^m} = (a^{2^n})^{2^{m-n}} \equiv (-2^{2^n})^{2^{m-n}} \equiv 2^{2^m} \pmod{p}.$$

Como a es impar, tenemos $p \neq 2$, luego $2^{2^m} + 2^{2^m} = 2^{2^m+1} \not\equiv 0 \pmod{p}$, de modo que $a^{2^m} \equiv 2^{2^m} \not\equiv -2^{2^m} \pmod{p}$.

Por tanto, $p \nmid a^{2^m} + 2^{2^m}$, lo que muestra el resultado deseado.

Obs! Cuando a = 1, esto conduce a una propiedad de los números de Fermat $2^{2^n} + 1$.