Rappels:

- La mutiplication matricielle se note %*%. La transposée d'une matrice est calculée par la fonction t().
- La fonction crossprod transpose son premier argument et le multiplie par le second : crossprod(A,B) est équivalent à t(A) %*% B. Si on a un seul argument crossprod(A) == t(A)%*%A. Le produit extérieur est noté %o%.
- Le déterminant est calculé par det().
- Pour ajouter une colonne à un matrice **cbind**().
- Pour ajouter une ligne à une matrice **rbind**().
- La fonction **diag**() permet de construire des matrices diagonales.
- solve(A) inverse la matrice A. chol(A) retourne la décomposition de Cholesky d'une matrice symétrique A.

Manipulations

Les exercices renvoient aux feuilles de TD 5 et 6 du cours MA3

Exercice 1 Feuille 5

On part de la matrice

$$A = \begin{pmatrix} 5 & -7 & 3 \\ 2 & -3 & 2 \\ 2 & -5 & 4 \end{pmatrix}$$

qui représente un endomorphisme u dans la base canonique, et des vecteurs

$$f_1^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, f_2^T = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}, f_3^T = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$$

- 1. Comment vérifier en R que f_1, f_2, f_3 forment une base (une famille libre)?
- 2. Calculer en R la matrice P de passage de la base canonique vers la base f_1, f_2, f_3 et calculer son inverse.
- 3. Calculer en R la matrice de l'endomorphisme u dans la base f_1, f_2, f_3 .
- 4. Calculer directement $u(f_1), u(f_2), u(f_3)$.

Exercice 1 Feuille 6

On pose

$$4A = \begin{pmatrix} -3 & 4 & 3 \\ 1 & 0 & 3 \\ -1 & 4 & 1 \end{pmatrix}$$

- 1. Déterminer en R les vecteurs propres et valeurs propres de A (fonctions eigen et svd).
- 2. Ecrire une fonction qui calcule rapidement A^n (en prenant A et n en arguments)
- 3. Déterminer les vecteurs $x \in \mathbb{R}^3$ tels que la suite $(A^n x)_{n \geq 1}$ converge dans \mathbb{R}^3 .

Projections orthogonales

Dans cet exercice, on veut construire la matrice de la projection P sur le sous-espace engendré par les vecteurs $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ de \mathbb{R}^p . On note Z la matrice dont les colonne sont les vecteurs \vec{u}_i . On note E le sous-espace de \mathbb{R}^p engendré par les vecteurs $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ et E^{\perp} le sous-espace orthogonal à E.

- 1. Vérifier que tout vecteur \vec{w} de \mathbb{R}^p se décompose de manière unique en une somme $\vec{w}_1 + \vec{w}_2$ avec $\vec{w}_1 \in E$ et $\vec{w}_2 \in E^{\perp}$.
- 2. On note P_E la fonction qui a \vec{w} fait correspondre \vec{w}_1 vérifier que cette fonction est bien linéaire. Quel est son noyau? Quelle est son image?

3. Soit $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_r$ une base orthornormée du sous-espace engendré par $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$. Vérifiez que

$$P_E = \sum_{i=1}^r \vec{a}_i \vec{a}_i^T.$$

Attention : $\vec{a}_i \vec{a}_i^T$ désigne l'endomorphisme qui à \vec{v} fait correspondre $(\vec{v} \cdot \vec{a}_i) \vec{a}_i$ où $(\vec{v} \cdot \vec{a}_i)$ est le produit scalaire de \vec{v} et \vec{a}_i $(\vec{a}_i^T \vec{v})$ est une autre manière d'écrire le produit scalaire).

4. Calculer P_E^n pour $n \in \mathbb{N}$.

Régression simple, orthogonalisation de Gram-Schmidt

Charger encore les données whiteside de la librairie MASS. library (MASS);data(whiteside)

Rappels: le procédé d'orthogonolisation de Gram-Schmidt consiste à construire une famille orthonormée $\vec{v}_1, \ldots, \vec{v}_r$ à partir d'une famille de vecteurs $\mathcal{Q} = (\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ de \mathbb{R}^p , avec la garantie que le sous-espace engendré par $\vec{v}_1, \ldots, \vec{v}_r$ est identique au sous-espace engendré par $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$. La procédure est initialisée par $\mathcal{L} \leftarrow ((1/\|\vec{u}_1\|)\vec{u}_1)$, et $\mathcal{Q} \leftarrow \mathcal{Q} \setminus \{\vec{u}_1\}$.

A l'étape $i, \mathcal{Q} \leftarrow \mathcal{Q} \setminus \{\vec{u}_i\}$. Si \vec{u}_i appartient au sous-espace engéndré par les vecteurs de la collection courrante \mathcal{L} , on passe à l'étape suivante. Sinon, on note \vec{w}_i la projection orthogonale de \vec{u}_i sur le sous-espace engendré par les vecteurs de \mathcal{L} . On met à jour \mathcal{L} :

$$\mathcal{L} \leftarrow \mathcal{L} \cup \{(1/\|\vec{u}_i - \vec{w}\|)(\vec{u}_i - \vec{w})\}.$$

- 1. Vérifier qu'à chaque étape, \mathcal{L} est formée par une famille orthonormée.
- 2. Vérifier qu'à chaque étape, \mathcal{L} engendre le sous-espace engendré par les vecteurs extraits de \mathcal{Q} .
- 3. Conclusion

La régression linéaire, ou plutôt la technique des moindres carrés peut-être analysée comme une mise en oeuvre du procédé de Gram-Schmidt. On note $\vec{1}$ un vecteur colonne formé de n coordonnées égales à $1, \vec{x}$ le vecteur colonne à n lignes formé par les valeurs de la mesure X sur les individus de l'échantillon, et \vec{y} le vecteur colonne à n lignes formé par les valeurs de la mesure Y sur les individus de l'échantillon. Appliquez la procédure d'orthogonalisation de Gram-Schmidt à la famille $\vec{1}, \vec{x}, \vec{y}$.

- 1. Décrire la suite des vecteurs produit par le procédé de Gram-Schmidt.
- 2. Relier les étapes de la procédure aux résultats de la régression simple de Y par rapport) X.

Régression multiple

Dans un problème de régression mutilple on note Z le design (que l'on suppose de plein rang), Y la variable à expliquer et θ le vecteur colonne des coefficients à déterminer. On cherche $\hat{\theta} \in \mathbb{R}^p$ qui minimise $\|Y - Z\theta\|^2$ lorsque $\theta \in \mathbb{R}^p$. On note \hat{Y} la projection orthogonale sur le sous-espace de \mathbb{R}^n engendré par les colonnes de Z

- 1. Que vaut $(Y \widehat{Y})^T Z$?
- 2. Justifiez $||Y Z\theta||^2 = ||Y \hat{Y}||^2 + ||\hat{Y} Z\theta||^2$.
- 3. Justifier $\hat{Y} = Z\hat{\theta}$
- 4. Montrer que $Z(Z^TZ)^{-1}Z^T$ est bien définie.
- 5. Montrer que $Z(Z^TZ)^{-1}Z^T\vec{\alpha}$ est la projection orthogonale de $\vec{\alpha}$ sur le sous-espace engendré par les colonnes de Z.
- 6. Si on recentre les colonnes de Z sauf la première, change-t-on le sous-espace engendré par les colonnes ?
- 7. Si les colonnes de Z (sauf la première) sont centrées, comment peut-on interpréter la matrice Z^TZ ?