Singular Value Decomposition

8 questions

1 point

1 point
1. If $U\Sigma V^T$ is an SVD for a given matrix A then which if the following statements are true?
$oxedsymbol{U}$ and $oldsymbol{V}$ are orthogonal matrices
$oxedsymbol{U}$ and S are orthogonal matrices
$oxedsymbol{U}$ is orthogonal and V is diagonal
$oxedsymbol{U}$ is orthogonal and S is diagonal
1 point
2. A symmetric real matrix has real eigenvalues and real singular values. Which of the following is true?
All eigenvalues are nonnegative.
Singular values are equal to the eigenvalues.
All singular values are nonnegative.

3.

The largest singular value of $\begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is

2Enter answer here

1 point

4.

Which of the following are valid SVD's of the form $U\Sigma V^T$ for the matrix

$$A = \begin{bmatrix} 0 & 0 & 3 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^T$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^T$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^T$$

1 point

Find the rank of the matrix

$$5. A = \begin{bmatrix} 3 & 4 & 5 & 7 \\ 2 & 3 & 8 & 4 \\ 3 & 7 & 3 & 5 \\ 5 & 5 & 7 & 1 \end{bmatrix}$$

Preview

4Enter math expression here

1 point

6.

Which of the following is true?

- The rank of matrix is equal to its largest singular value.
- The rank of a matrix is equal to the number of nonzero singular values.
- The rank of matrix has nothing to do with its singular values.

7.

The minimizer of the fitting cost $||Ax||_2^2$ with $A \in \mathbb{R}^{m \times n}$, $\mathrm{rank}(A) > n$ subject to $||x||_2 = 1$ is

- The eigenvector of A^TA corresponding to the smallest eigenvalue.
- igcup The eigenvector of A^TA corresponding to the largest eigenvalue.
- \bigcirc $\mathbf{1}_n$

1 point

8.

Consider the points (0, -0.8), (1, 0), (2.2, 0.9), (2.9, 2.1). Which of the following lines best fits the given points?

- 0.59x 0.57y = 0.58
- 0.58x 0.59y = 0.57
- x y = 1

5 questions unanswered

Submit Quiz

