Combining generic judgments with recursive definitions

Andrew Gacek¹ Dale Miller² Gopalan Nadathur¹

¹Department of Computer Science and Engineering University of Minnesota

> ²INRIA Saclay - Île-de-France & LIX/École polytechnique

> > LICS'08 June 24, 2008

Preview

Context

We want to specify and reason over syntactic objects with binding

Useful logical features in this context

- higher-order abstract syntax representation of objects
- ightharpoonup
 abla-quantifier for generic judgments
- recursive definitions for inductive specifications
- natural number induction

Contribution

We combine generic judgments with recursive definitions to obtain a mechanism for internalizing properties related to the treatment of binding

Running example: type assignment

$$\frac{x: a \in \Gamma}{\Gamma \vdash x: a}$$

$$\frac{\Gamma \vdash t_1: a \to b \quad \Gamma \vdash t_2: a}{\Gamma \vdash (t_1 \ t_2): b}$$

$$\frac{\Gamma, x: a \vdash t: b}{\Gamma \vdash (\lambda x: a. \ t): a \to b} \ x \notin dom(\Gamma)$$

$$\nabla$$
 quantifier: generic judgments

Miller & Tiu "Generic Judgments" [LICS03, ToCL05] Tiu " LG^{ω} " [LFMTP06]

 $\nabla x.F$ means F has a generic proof—one which depends on the freshness, but not the form of x

$$\forall x.F \supset \nabla x.F \qquad \nabla x.F \not\supset \forall x.F$$

$$\nabla x.\nabla y.F \equiv \nabla y.\nabla x.F$$

$$\nabla x.F \equiv F \qquad \text{if } x \text{ does not appear in } F$$

These structural rules allow a treatment of ∇ based on *nominal* constants which make quantification implicit

Logical rules for ∇

$$\frac{\Gamma, B[a/x] \vdash C}{\Gamma, \nabla x.B \vdash C} \nabla \mathcal{L} \qquad \frac{\Gamma \vdash B[a/x]}{\Gamma \vdash \nabla x.B} \nabla \mathcal{R}$$

a is a nominal constant not appearing in B

Nominal constants have (implicit) formula level binding Nominal constants are equivariant (always permutable)

$$\frac{\pi.B = \pi'.B'}{\Gamma, B \vdash B'} id_{\pi}$$

Role of definitions

Definitions for atomic judgments encode specifications

member
$$A (A :: L) \triangleq \top$$

member $A (B :: L) \triangleq$ member $A L$

For an atomic judgment,

- right introduction corresponds to backchaining on the predicate definition
- left introduction corresponds to case-analysis over the predicate definition

Typing example with abla

of
$$\Gamma X A \triangleq member(X : A) \Gamma$$

of
$$\Gamma$$
 (app T_1 T_2) $B \triangleq \exists A$. of Γ T_1 (arr A B) \land of Γ T_2 A

of
$$\Gamma$$
 (abs A T) (arr A B) $\triangleq \nabla x$. of $((x : A) :: \Gamma) (T x) B$

Example property:

```
\forall L, a, b, t_1, t_2. \nabla x.
of ((x:a)::L) (t_1 x) b \land of L t_2 a \supset of L (t_1 t_2) b
```

Reasoning about type uniqueness

$$orall t, a_1, a_2. (of \ nil \ t \ a_1 \wedge of \ nil \ t \ a_2) \supset a_1 = a_2$$
 $orall \Gamma, t, a_1, a_2. (of \ \Gamma \ t \ a_1 \wedge of \ \Gamma \ t \ a_2) \supset a_1 = a_2$ $orall \Gamma, t, a_1, a_2. (cntx \ \Gamma \wedge of \ \Gamma \ t \ a_1 \wedge of \ \Gamma \ t \ a_2) \supset a_1 = a_2$

cntx \Gamma should enforce

- $ightharpoonup \Gamma = (x_1 : a_1) :: (x_2 : a_2) :: \ldots :: (x_n : a_n) :: nil$
- ightharpoonup Each x_i is atomic
- ightharpoonup Each x_i is unique

We want a mechanism for defining well-formed contexts so that these kinds of (generic) properties are satisfied

Extended form of definitions

Definitional clauses take the form

$$\forall \vec{x}.(\nabla \vec{z}.H) \triangleq B$$

where

- no nominal constants appear in H or B (equivariance)
- clauses are stratified (consistency)

Meaning of such a clause

An instance of ${\cal H}$ is true if the corresponding instance of ${\cal B}$ is true, provided

- $ightharpoonup \vec{z}$ is instantiated with unique nominal constants \vec{a}
- $ightharpoonup \vec{x}$ is instantiated with terms not containing \vec{a}

Definition examples

$$(\nabla x.name\ x) \triangleq \top$$

$$\forall E. (\nabla x. fresh \ x \ E) \triangleq \top$$

$$cntx \ nil \triangleq \top$$

$$\forall L, A. (\nabla x.cntx ((x : A) :: L)) \triangleq cntx L$$

Raising and the encoding of dependencies

Many proof rules require abla-bound variables to have minimal scope

In the general sequent $\Sigma : \Gamma \vdash C$

- ▶ eigenvariables in ∑ have sequent-level scope
- nominal constants have formula-level scope

Principles which allow abla to be moved inwards over quantifiers

$$\nabla x. \forall y. F \times y \equiv \forall y'. \nabla x. F \times (y' \times x)$$
$$\nabla x. \exists y. F \times y \equiv \exists y'. \nabla x. F \times (y' \times x)$$

This device is called raising

Right rule for definitions

The right introduction rule for atomic judgments corresponds to backchaining on a definitional clause

Clause:
$$\forall \vec{x}.(\nabla \vec{z}.H) \triangleq B$$

Sequent: $\Sigma : \Gamma \vdash A$

- 1. Raise \vec{x} over the nominal constants in A, and instantiate \vec{z} with unique nominal constants: $\forall \vec{x}'.H' \triangleq B'$
- 2. Raise Σ over the nominal constants instantiating \vec{z} : $\Sigma' : \Gamma', A' \vdash C'$
- 3. Match $A'=(\pi.H')\theta$ where π is a permutation of the nominal constants in H'

$$\frac{\Sigma': \Gamma' \vdash (\pi.B')\theta}{\Sigma: \Gamma \vdash A} \ def \mathcal{R}$$

Left rule for definitions

The left introduction rule for atomic judgments is the natural counterpart to $def\mathcal{R}$: it considers all possible ways an atomic judgment may have been derived

Clause:
$$\forall \vec{x}.(\nabla \vec{z}.H) \triangleq B$$

Sequent: $\Sigma : \Gamma, A \vdash C$

- 1. Raise \vec{x} over the nominal constants in A, and instantiate \vec{z} with unique nominal constants: $\forall \vec{x}'.H' \triangleq B'$
- 2. Raise Σ over the nominal constants instantiating \vec{z} : $\Sigma' : \Gamma', A' \vdash C'$
- 3. Unify $A'\theta=(\pi.H')\theta$ where π is a permutation of the nominal constants in H'

$$\frac{\{\Sigma'\theta:\Gamma'\theta,(\pi.B')\theta\vdash C'\theta\}}{\Sigma:\Gamma,A\vdash C} \ \textit{def}\mathcal{L}$$

Consistency of ${\cal G}$

Consistency is shown by establishing the eliminability of cut

$$\frac{ \prod_{1} }{ \frac{\Sigma' : \Gamma' \vdash (\pi.B')\theta}{\Sigma : \Gamma \vdash A} \operatorname{defR}} \, \frac{ \left\{ \frac{ \prod_{2}^{\rho,\pi',B''} }{ \Sigma'' \rho : (\pi'.B'')\rho, \Delta'' \rho \vdash C'' \rho} \right\} }{ \sum : A, \Delta \vdash C} \operatorname{def\mathcal{L}} \\ \frac{ \Sigma : \Gamma, \Delta \vdash C}{ \operatorname{cut}}$$

$$\frac{\Pi_1}{\Sigma':\Gamma'\vdash(\pi.B')\theta'}\frac{\Pi_2^{\theta',\pi,B'}}{\Sigma':(\pi.B')\theta',\Delta'\vdash C'}$$
 cut

Raising (in $def\mathcal{L}$ and $def\mathcal{R}$) preserves provability and proof height

Application: ${\cal G}$ as meta-logic

Goal: specify and reason over syntactic objects with binding

- Decide on a suitable specification logic
- Use the specification logic to encode an object language
- ightharpoonup Encode that specification logic in ${\cal G}$
- lacktriangle Reason in ${\cal G}$ via this specification about the object language

This is approach is implemented in Abella (Gacek 2008) and has been used to give proofs of

- determinacy and type preservation of various evaluation strategies
- cut admissibility for a sequent calculus
- \triangleright Church-Rosser property for λ -calculus
- ► Tait-style weak normalizability proof

Related Work

Locally nameless representation

A first-order representation with de Bruijn indices for bound variables and names for free variables [Aydemir et. al. PoPL08]

Nominal logic approach

A formalization of bound and free variable names in an existing theorem prover (Isabelle/HOL) [Urban and Tasson CADE04]

Twelf

An expressive specification logic (LF) with a relatively weak meta-logic (\mathcal{M}_2^+) [Schürmann and Pfenning CADE98]

Conclusions

Focus has been on a particular approach to specifying and reasoning over syntactic objects with binding

- $ightharpoonup \lambda$ -terms and generic judgments for encoding binding
- recursive definitions for encoding specifications
- support for inductive arguments

Contribution

Combining definitions with generic judgments enables expressive and declarative reasoning over implicit properties of those specifications, such as the structure of contexts

Future work

- induction and coinduction on definitions
- continued work Abella and its applications
 - experimenting with different specification logics
 - automating proof search
 - applications to practical software systems