CCNA 200-301 Quick Reference

1 Layer 1 Standards

1.1 T568A/B Pinout Standards

Pin	T568A	T568B	MDI	MDI-X
1	Green-White	Orange-White	Tx	Rx
2	Green	Orange	Tx	Rx
3	Orange-White	Green-White	Rx	Tx
4	Blue	Blue		
5	Blue-White	Blue-White		
6	Orange	Green	Rx	Tx
7	Brown-White	Brown-White		
8	Brown	Brown		

Two standard T568 pinouts exist for the *Medium-Dependent Interface* (MDI) and *MDI Crossover* (MDI-X) port standards. Computers, routers, and Layer 3 devices use the MDI standard; switches, hubs, and other Layer 2 devices use the MDI-X standard. Connections between MDI and MDI-X ports use a *straight-through* cable, where the same T568 standard terminates each end of the cable. Connections between two MDI (or two MDI-X) ports use a *crossover* cable, where different T568 standards terminate each end of the cable. Most new equipment incorporates *Auto-MDIX* circuitry to allow either cable type.

Note: The T568B standard is more commonly used for straight-through cables in North America.

1.2 Cabling Standards

Table 1.1: IEEE 802.3 Copper Standards

802.3	10BASE-T	10 Mbps	CAT3
802.3u	100BASE-T	100 Mbps	CAT5
802.3ab	1000BASE-T	1 Gbps	CAT5e
802.3z	1000BASE-SX	1 Gbps	550m Fiber
	1000BASE-LX	1 Gbps	5km Fiber
802.3an	10GBASE-T	10 Gbps	CAT6a
802.3ba	40GBASE-T	40 Gbps	CAT8
802.3bz	2.5GBASE-T	2.5 Gbps	CAT5e
	5GBASE-T	5 Gbps	CAT5e

Table 1.2: Fiber Standards

OM1	orange	100 Mbps
OM2	orange	1 Gbps
OM3	aqua	10 Gbps
		40 Gbps
		$100 \; \mathrm{Gbps}$
OM4	aqua	10 Gbps
		40 Gbps
		$100 \; \mathrm{Gbps}$
OM5	lime	10 Gbps

Table 1.3: SFP Transceivers

SX	850 nm	black MMF	550 m
SR			$300 \mathrm{m}$
LX/LR	1310 nm	blue SMF	10-20 km
	1490 nm	purple SMF	
EX/ER	1550 nm	yellow SMF	40 km
ZX/ZR			80 km

Table 1.4: Power over Ethernet (PoE)

Cisco Inline Power	ILP	7.5W	2 wire pairs
IEEE 802.3af	Type 1 PoE	15W (44-57v)	2 wire pairs \geq CAT3
IEEE 802.3at	Type 2 PoE+	30W (50-57v)	2 wire pairs \geq CAT5
IEEE 802.3bt	Type 3 UPoE	60W (50-57v)	4 wire pairs \geq CAT5
	Type 4 UPoE+	100W (52-57v)	4 wire pairs \geq CAT5

Active PoE negotiates power delivery via LLDP and is standardized by IEEE. Passive PoE is **not** standardized and provides a constant voltage, which may cause damage. **Mode A** PoE sends voltage only on the 2 data wire pairs; **Mode B** PoE sends voltage only on the 2 unused wire pairs; **4Pair** PoE sends voltage on all wire pairs.

2 Layer 2 Protocols

Table 2.1: EtherType Values

0x0800	IPv4 Packet
0x0806	ARP
0x2000	Cisco CDP
0x8100	IEEE 802.1Q
0x86dd	IPv6 Packet
0x8809	Ethernet Slow Protocols
0x8847	MPLS Unicast
0x8848	MPLS Multicast
0x8863	PPPoE Discovery
0x8864	PPPoE Session
0x888e	IEEE 802.1x EAPOL
0x88cc	LLDP

Table 2.2: Layer 2 Multicast

0000.0c07.acXX	Cisco HSRPv1
0000.0c9f.fXXX	Cisco HSRPv2
0000.5e00.01XX	IETF VRRP
0007.b40X.XXYY	Cisco GLBP
0100.5eXX.XXXX	IPv4 Multicast
3333.XXXX.XXXX	IPv6 Multicast
0100.0ccc.ccc	Cisco CDP / VTP / UDLD
0180.c200.000e	IEEE 802.1AB LLDP
0100.0ccc.cccd	Cisco PVST+ / PVRST
0180.c200.0000	IEEE 802.1D STP
	IEEE 802.1w RSTP

Note: Each Layer 2 multicast address maps to a corresponding Layer 3 multicast address which may be used in the L3PDU. Some Layer 2 protocols do not support multicast.

2.1 Ethernet II / IEEE 802.3

/		
Preamble	7 Bytes	10101010
SFD	1 Byte	10101011
Destination MAC	6 Bytes	
Source MAC	6 Bytes	
Type (Ethernet II)	2 Bytes	EtherType (Table 2.1)
Length (802.3)		Payload Length in Bytes
Data	varies	46-1500 Bytes based on MTU
FCS	4 Bytes	

Table 2.3: IEEE 802.2 Logical Link Control (LLC)

Destination Service Access Point (DSAP)	1 Byte
Source Service Access Point (SSAP)	1 Byte
Control	1-2 Bytes

Table 2.4: IEEE SubNetwork Access Protocol (SNAP)

Organizationally Unique Identifier (OUI)	3 Bytes	
Type	2 Bytes	EtherType (Table 2.1)

2.2 VLAN Tagging

Table 2.5: IEEE 802.1Q Tagging

Tag Protocol Identifier (TPID)	16 bits	EtherType (0x8100, Table 2.1)
TCI: Priority Code Point (PCP)	3 bits	QoS Class-of-Service (CoS) Marking
		(Section 6)
TCI: Drop Eligible Indicator (DEI)	1 bit	QoS Drop Eligibility
VLAN ID	12 bits	

Table 2.6: DEPRECATED Cisco InterSwitch Link (ISL)

	1	
Destination Address	40 bits	Multicast (01.000c.0000 / 03.000c.0000)
Type	4 bits	Frame Type
User	4 bits	Priority Handling
Source Address	48 bits	Sending Switchport MAC
LEN	16 bits	Original Frame Length
AAAA03	24 bits	SNAP/LLC Field (0xaaaa03)
HSA	24 bits	Source Address OUI (0000.0c)
VLAN	15 bits	VLAN ID
BPDU Flag	1 bit	Flag BPDU / CDP / VTP frames
INDEX	16 bits	Diagnostics
RES	16 bits	Token Ring / FDDI Frames
Data	varies	8-196000 bit Unmodified original frame
FCS	32 bits	

Note: Industry-standard IEEE 802.1Q supports both normal-range VLANs (1-1005) and extended-range VLANs (1006-4094); Cisco ISL is deprecated.

2.3 Cisco VLAN Trunking Protocol (VTP)

Cisco VTP dynamically advertises a *VLAN Database* to participating switches over Cisco ISL and IEEE 802.1Q trunk links. Participating switches use either *VTP Server Mode* or *VTP Client Mode*, and default to VTP Server Mode with a Config Revision Number of 0. Each time a VTP Server's VLAN Database is locally updated, the Config Revision Number increments and *VTP Synchronization* occurs.

VTP Synchronization uses a VTP Summary Advertisement (Table 2.7) alongside 1 or more VTP Subset Advertisements (Table 2.8) to advertise the revised VLAN Database. VTP Servers also send out a Summary Advertisement (alongside 0 or more Subset Advertisements) every 5 minutes. To participate, newly-connected switches may send a VTP Advertisement Request (Table 2.10) over each trunk link that comes up. A switch only listens to VTP messages in its VTP Management Domain (default NONE). An MD5-encrypted VTP Password (default NONE) can be configured to prevent unauthorized switches from participating in the VTP Management Domain.

VTP Clients participate in VTP Synchronization but disallow local VLAN configurations. VTP Transparent Mode or VTP Off Mode switches use a local VLAN configuration instead of the VLAN

Database, although they may forward VTP messages.

Table 2.7: VTP Summary Advertisement

Version	1 Byte	VTP Version (1-3)
Code	1 Byte	Summary Advertisement (0x01)
Followers	1 Byte	Indicates a Subset Advertisement
MgmtD Len	1 Byte	
Management Domain	32 Bytes	VTP Domain Name
Config Revision Number	4 Bytes	
Updater Identity	4 Bytes	Originating VTP Server (IP Address)
Update Timestamp	12 Bytes	Datetime of revision
MD5 Digest	16 Bytes	VTP Password hash (if configured)

Table 2.8: VTP Subset Advertisement

Version	1 Byte	VTP Version (1-3)
Code	1 Byte	Subset Advertisement (0x02)
Sequence Number	1 Byte	Sequence in packet stream
		following Summary Advertisement
MgmtD Len	1 Byte	
Management Domain	32 Bytes	VTP Domain Name
Config Revision Number	4 Bytes	
VLAN-Info Field(s)	4 Bytes	Advertised VLAN(s) (Table 2.9)

Table 2.9: The VLAN-Info Field

V-Info-Len	1 Byte
Status	1 Byte
VLAN-Type	1 Byte
VLAN-Name Len	1 Byte
ISL VLAN-ID	2 Bytes
MTU Size	2 Bytes
802.10 Index	4 Bytes
VLAN-Name	4 Bytes

Table 2.10: Advertisement Requests

		1
Version	1 Byte	VTP Version (1-3)
Code	1 Byte	Advertisement Request (0x03)
Reserved	1 Byte	
MgmtD Len	1 Byte	
Management Domain	32 Bytes	VTP Domain Name
Start-Value	32 Bytes	Identifies the requested Subset Advertisement

2.4 IEEE 802.1D Spanning-Tree Protocol / IEEE 802.1w Rapid STP (RSTP)

Protocol Identifier	2 Bytes	0 for STP / PVST+	
Version	1 Byte	0 for STP / PVST+	
		2 for RSTP / PVRST	
Message Type	1 Byte	Identify Configuration / TCN BPDUs	
		(0x02 for RSTP/MSTP)	
Flags	1 Byte	Signals TC / TCA bits	
Root ID	8 Bytes	The sender's Root BID (Table 2.11)	
Root Path Cost	4 Bytes	The sender's cost to Root	
Bridge ID	8 Bytes	The sender's BID (Table 2.11)	
Port ID	2 Bytes	The sender's Port Prio.Nbr	
Message Age	2 Bytes	Time since Root sent this BPDU	
Max Age	2 Bytes	Time until BPDU expires	
Hello Time	2 Bytes	How often Root sends BPDUs	
Forward Delay	2 Bytes	Time spent in each transition state	

Table 2.11: Spanning Tree Bridge ID (BID) Format

Base Priority	4 bits	Configured bridge priority		
		(multiple of 4096)		
System ID Extension	12 bits	The VLAN ID of this STP instance		
System ID	48 bits	The bridge Burned-In Address (BIA)		

Table 2.12: Spanning Tree Port Costs

Port Speed	STP IEEE Cost	Revised IEEE Cost	RSTP IEEE Cost
10 Mbps	100	100	2,000,000
100 Mbps	10	19	200,000
1 Gbps	1	4	20,000
$10 \; \mathrm{Gbps}$	1	2	2,000
$100 \; \mathrm{Gbps}$	-	-	200
1 Tbps	-	-	20
10 Tbps	_	-	2

Table 2.13: Spanning Tree Port States

STP State	RSTP State	Send/Receive BPDUs	Forward Data	Learn MACs
Disabled	Discarding	No	No	No
Blocking	Discarding	Receive	No	No
Listening		Yes	No	No
Learning	Learning	Yes	No	Yes
Forwarding	Forwarding	Yes	Yes	Yes

The STP Convergence Process:

1. Elect Root Bridge:

- (a) Lowest received BPDU Root ID: Priority
- (b) Tiebreaker: lowest received BPDU Root ID: System ID

2. Elect *Root Ports* (RPs):

- (a) Lowest received BPDU Root Path Cost + local Port Cost (Table 2.12)
- (b) Tiebreaker: lowest received BPDU BID
- (c) Tiebreaker: lowest received BPDU Port ID: Prio.Nbr
- (d) Other RSTP link-type point-to-point ports become Alternate Ports (APs)

3. Elect Designated Ports (DPs):

- (a) Lowest advertised BPDU Root Path Cost
- (b) Tiebreaker: lowest advertised BPDU BID
- (c) Tiebreaker: lowest advertised BPDU Port ID: Prio.Nbr
- (d) Other RSTP link-type shared ports on the same bridge become Backup Ports (BPs)

4. Other Ports:

- (a) Working ports become STP Nondesignated Ports (NDs)
- (b) Nonworking and disabled ports become STP disabled ports

Optional STP Features:

- PortFast: immediately transitions configured ports to Forwarding state when connected. It can be enabled on access or trunk ports, and continues to send BPDUs. Received BPDUs cause the port to revert to STP behavior.
- BPDU Guard: err-disables configured ports which receive a BPDU, preventing unauthorized devices from altering the STP topology. It can be globally enabled on all PortFast ports, and continues to send BPDUs.
- BPDU Filter: stops configured ports from sending BPDUs when configured globally; locally configured ports also ignore received BPDUs (effectively disabling STP). It can be globally enabled on all PortFast ports alongside BPDU Guard without issue; local configuration effectively disables BPDU Guard.
- Root Guard: protects the STP topology by disabling configured ports which receive a superior BPDU. This prevents DPs from becoming RPs. Affected ports enter the Broken (Root Inconsistent) state and are disabled by STP; they are automatically enabled when the issue is resolved. Incompatible with Loop Guard.
- Loop Guard: protects against undetected *Unidirectional Links* by disabling configured ports whose Max Age timer reaches 0. This prevents RPs and NDs from becoming DPs. Affected ports enter the Broken (Loop Inconsistent) state and are disabled by STP; they are automatically enabled when the issue is resolved. Incompatible with Root Guard.

2.5 RFC 826 Address Resolution Protocol (ARP)

Table 2.14: ARP Request/Reply Format

HTYPE	16 bits	L2 Protocol (1 for Ethernet)
PTYPE	16 bits	L3 Protocol (EtherType Table 2.1)
HLEN	8 bits	L2 Address Length in Bytes
PLEN	8 bits	L3 Address Length in Bytes
Operation	16 bits	Message Type (1 for Request, 2 for Reply)
Origin HW	48 bits	Source MAC
Origin IP	32 bits	Source IP
Target HW	48 bits	Destination MAC
Target IP	32 bits	Destination IP

Note: As a Layer 2 protocol, all ARP messages are encapsulated directly within an Ethernet frame.

Dynamic ARP Inspection (DAI) is an optional switch security feature to prevent ARP poisoning and ARP DoS. It uses the DHCP Snooping Binding Table to filter incoming ARP messages based on their Origin IP and Origin HW fields; an ARP ACL can also be configured for hosts using static IP addresses. Optional verification checks compare the ARP Origin/Target HW fields against the frame Source/Destination MAC and ensure the ARP Origin/Target IP fields contain unicast values. This behavior is disabled on DAI trusted ports. DAI uses optional per-interface rate limits to prevent DoS attacks against the switch CPU and ARP table.

2.6 IEEE 802.11 Wireless LANs (WLANs)

		,
Frame Control	2 Bytes	Message Type / Subtype
Duration / ID	2 Bytes	Frame Transmission Time / Client Association
Address 1	6 Bytes	Dst / Src / Rx / Tx Address
Address 2	6 Bytes	Dst / Src / Rx / Tx Address
Address 3	6 Bytes	Dst / Src / Rx / Tx Address
Sequence Control	2 Bytes	Fragmentation / Duplication Management
Address 4	6 Bytes	Dst / Src / Rx / Tx Address
QoS Control	2 Bytes	Section 6
HT Control	4 Bytes	HT Operations (802.11n and later)
Data	varies	
FCS	4 Bytes	

In America, the 2.4-GHz ISM band has 11 overlapping channels (1/6/11 nonoverlapping) and the 5-GHz U-NII band has 23 nonoverlapping channels. WLANs operate at half duplex with *Carrier Sense Multiple Access / Collision Avoidance* (CSMA/CA) to minimize collisions.

The original IEEE 802.11-1997 standard uses Frequency Hopping Spread Spectrum (FHSS) encoding in the 2.4-GHz band without channels; each consecutive transmission uses a slightly different frequency to minimize collision risk. Modern IEEE 802.11 standards use either Direct Sequence Spread Spectrum (DSSS) or Orthogonal Frequency Division Multiplexing (OFDM) encoding. DSSS uses the 2.4-GHz band with a 22 MHz channel width; OFDM uses either band with a 20 MHz channel width.

Table 2.15: IEEE 802.11 Standards

Standard	Frequency Range	Bandwidth	Encoding	Name
-1997	2.4 GHz	2 Mbps	FHSS/DSSS	
b	2.4 GHz	11 Mbps	DSSS	
a	$5~\mathrm{GHz}$	54 Mbps	OFDM	
g	$2.4~\mathrm{GHz}$	54 Mbps	OFDM	
n	$2.4 / 5 \mathrm{~GHz}$	600 Mbps	OFDM	Wi-Fi 4 (HT)
ac	$5~\mathrm{GHz}$	$6.93~\mathrm{Gbps}$	OFDM	Wi-Fi 5 (VHT)
ax	2.4 / 5 GHz	9.6 Gbps	OFDM	Wi-Fi 6 (HE)
	$6~\mathrm{GHz}$			Wi-Fi 6e
be	2.4/5/6 GHz	46 Gbps	OFDM	Wi-Fi 7 (EHT)

Table 2.16: WLC Deployment

Deployment	WLC Location	Clients	APs
Unified	Central	64,000	6,000
Cloud	Data Center	32,000	3,000
Embedded	Access Switch	4,000	200
Mobility Express	LAP	2,000	100

Table 2.17: WLC Ports and Interfaces

WLC Port	WLC Interface	VLAN	Usage
Console			Initial config
Service Port	Service Port	OOB-MGMT	Out-Of-Band mgmt (access port)
			bootup / system recovery
Redundancy	Redundancy	MGMT	In-Band mgmt (standby WLC)
	Management		HA redundancy
DS	Management	MGMT	In-Band mgmt (active WLC)
			Form CAPWAP tunnels
DS	Virtual	Mobility Group	DHCP Relay, WebAuth
DS	Dynamic	USERS	Bind WLANs to VLANs (tunnel LAG)

Note: Only Lightweight APs require a Wireless LAN Controller (WLC) deployment to support WLANs. Each Autonomous AP can support multiple independent WLANs.

Autonomous AP Modes:

- Infrastructure: Offer BSS' on an RF Channel
- Repeater: Extend a BSA via retransmission
- WorkGroup Bridge (WGB): Bridge wired device(s) to a WLAN
- Bridge: Form a Point-to-Point (P2P) / Point-to-Multipoint (P2MP) link between LANs
- Mesh: Bridge traffic across APs in a large service area

Lightweight AP (LAP) Modes:

- Local: Offer BSS' on an RF Channel
- Monitor: Monitor for IDS events / rogue APs, determine STA positions
- FlexConnect: Locally switch traffic if CAPWAP fails
- Rogue Detector: Detect rogue devices (correlate wired and wireless MACs)

• Sniffer: Capture WLAN traffic for analysis

• Bridge: Form a Point-to-Point (P2P) / Point-to-Multipoint (P2MP) link or a mesh

• Flex+Bridge: FlexConnect on a mesh LAP

• **SE-Connect:** Detect interference sources (RF spectrum analysis)

2.7 ITU High-Level Data-Link Control (HDLC)

Flag	1 Byte	Synchronization
Address	1 Byte	Destination Node
Control	1 Byte	
Data	varies	
FCS	4 Bytes	

2.8 IETF RFC 1661 Point-to-Point Protocol (PPP) / Cisco HDLC (cHDLC)

Flag	1 Byte	Synchronization
Address	1 Byte	Destination Node
Control	1 Byte	
Type	2 Bytes	EtherType (Table 2.1)
Data	varies	
FCS	4 Bytes	

3 Layer 3 Protocols

Table 3.1: IPv4 Protocol / IPv6 Next Header Values

и пе	ader values
1	ICMP
2	IGMP
4	IPv4
6	TCP
17	UDP
41	IPv6
47	GRE
58	ICMPv6
88	EIGRP
89	OSPF
103	PIM
112	VRRP
137	MPLS-in-IP
	1 2 4 6 17 41 47 58 88 89 103 112

Table 3.2: Layer 3 Multicast

	able 9.2. Layer 9 main	
224.0.0.1	All-IPv4-Nodes	
ff02::1	All-IPv6-Nodes	
224.0.0.2	All-IPv4-Routers	Cisco HSRPv1
ff02::2	All-IPv6-Routers	
224.0.0.5	All-SPF-Routers	OSPFv2
ff02::5		OSPFv3
224.0.0.6	All-SPF-DRs	OSPFv2
ff02::6		OSPFv3
224.0.0.9	All-RIP-Routers	RIPv2
ff02::9		RIPng
224.0.0.10	All-EIGRP-Routers	EIGRP
ff02::a	All-EIGRPv6-Routers	EIGRPv6
224.0.0.18	IETF VRRP	
224.0.0.102	Cisco HSRPv2 / GLBP	

Note: Each Layer 3 multicast address maps to a corresponding Layer 2 multicast address which may be used in the L2PDU.

The routing table is populated based on each route's AD value; the route metric is a tiebreaker only for two routes to the same destination learned via the same routing protocol. A route's metric is calculated by the routing protocol. Some routing protocols are capable of multi-path load-balancing, resulting in multiple routes to the same destination under certain conditions.

Table 3.3: Route Types

Route Type	Administrative Distance	IGP Type
Connected	0	
Static	1	
BGP	20	EGP
EIGRP	90	Advanced Distance Vector
IGRP	100	Distance Vector
OSPF	110	Link-State
IS-IS	115	Link-State
RIP	120	Distance Vector
EIGRP External	170	Advanced Distance Vector
iBGP	200	EGP
DHCP	254	
Invalid	255	

3.1 RFC 791 IP Version 4

Version	4 bits	IP Version (4)
IP Header Length (IHL)	4 bits	Header Length (Bytes ÷ 5)
DS Field	8 bits	QoS Type-of-Service (ToS) Marking
		(Section 6)
Packet Length	16 bits	Total Packet Length
Identification	16 bits	Fragmentation
Flags	3 bits	Fragmentation
Fragment Offset	13 bits	Fragmentation
Time-to-Live (TTL)	8 bits	Loop Prevention
Protocol	8 bits	Protocol Type (Table 3.1)
Header Checksum	16 bits	
Source IP	32 bits	
Destination IP	32 bits	
Options	varies	Optional Header Fields
Data	varies	

Table 3.4: RFC 791 / RFC 1918 Addressing

RFC 791	First Octet	Address Block	RFC 1918 Block
Class A	O1XX XXXX	0.0.0.0 - 127.0.0.0 /8	10.0.0.0 /8
Class B	10XX XXXX	128.0.0.0 - 191.255.0.0 /16	172.16.0.0 / 12
Class C	110X XXXX	192.0.0.0 - 223.255.255.0 /24	192.168.0.0 / 16
Class D	1110 XXXX	224.0.0.0 - 239.255.255.255	
Class E	1111 XXXX	240.0.0.0 - 255.255.255.255	

Table 3.5: IPv4 Subnetting Magic Numbers

Bit Position	1	2	3	4	5	6	7	8
Octet Mask	128	192	224	240	248	252	254	255
Addresses	128	64	32	16	8	4	2	1
Octet Wildcard	127	63	31	15	7	3	1	0

3.2 RFC 2460 IP Version 6

Version	4 bits	IP Version (6)
Traffic Class	8 bits	QoS Marking (Section 6)
Flow Label	20 bits	Experimental
Payload Length	16 bits	Data + Extension Headers Length
Next Header	8 bits	Protocol Type (Table 3.1)
Hop Limit	8 bits	Loop Prevention
Source Address	128 bits	
Destination Address	128 bits	
Data	varies	

Note: IPv6 uses a fixed 40-Byte header; IPv6 Options headers are sent separately.

Table 3.6: RFC 2460 Addressing

Address Class	Block	Format
Global	Any	Prefix (P bits) + Subnet ID (64 - P bits) + INT ID (64 bits)
Unicast		
Unique Local	fd00::/8	fd + Global ID (40 bits) + Subnet ID (16 bits) + INT ID (64 bits)
Unicast		
Link-Local	fe80::/64	fe80:0:0:0 (64 bits) + INT ID (64 bits)
Unicast		
Multicast	ff00::/12	ff02:0:0:0:1:ffXX:XXXX/104 Solicited-Node Multicast
	ff01::/16	Interface/Node-Local
	ff02::/16	Link-Local
	ff05::/16	Site-Local
	ff08::/16	Org-Local
	ff0e::/16	Global

Note: IPv6 does not support broadcasts, only scoped multicasts.

Modified EUI-64 Process for Unique Address Generation:

- 1. Split the interface MAC into two 24-bit parts.
- 2. Insert Oxfffe between the two parts, creating a 48-bit address.
- 3. Invert the 7th bit (the *Universal/Local bit*) of the resulting address.

3.3 RFC 792 Internet Control Message Protocol (ICMP) / RFC 4443 ICMPv6

Type	8 bits	Message Type
		(Tables $3.7 + 3.8$)
Code	8 bits	Message Subtype / Status Code
		(Tables $3.7 + 3.8$)
Checksum	16 bits	
Header Data	32 bits	Message-specific fields
Payload	varies	

Table 3.8: ICMPv6 Type.Code Values

Table 3.7: ICMP Type.Code Values

	JI
0.0	Echo Reply
3.X	Destination Unreachable
8.0	Echo Request
9.0	Router Advertisement
10.0	Router Solicitation
11.X	Time Exceeded

	v_
1.X	Destination Unreachable
2.0	Packet Too Big
3.X	Time Exceeded
128.0	Echo Request
129.0	Echo Reply
133.0	NDP RS
134.0	NDP RA
135.0	NDP NS
136.0	NDP NA
137.0	NDP Redirect

3.4 RFC 4861 ICMPv6 Neighbor Discovery Protocol (NDP)

ICMPv6 NDP offers core functionality for IPv6 networks, including Neighbor Discovery, Router Discovery, Stateless Address Autoconfiguration (SLAAC), and Duplicate Address Detection (DAD).

Router Solicitation (RS) and Router Advertisement (RA) messages (Tables 3.9 and 3.11) replace DHCP/DHCPv6 default gateway discovery. RS messages are sent to All-IPv6-Routers multicast; RA messages are sent either to a unicast target address or to All-IPv6-Hosts multicast.

Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages (Tables 3.10 and 3.12) replace ARP. NS messages are sent to a solicited-node multicast target address; NA messages are sent either to a unicast target address or to All-IPv6-Hosts multicast.

The SLAAC Process:

- 1. The IPv6 host learns the IPv6 prefix used on the link, from any router, using NDP RS/RA messages.
- 2. The IPv6 host builds an IPv6 unicast address using the learned prefix and a (random / EUI-64) generated interface ID.
- 3. Before using the address, the IPv6 host uses DAD to ensure that no other IPv6 host is already using the same address.

The DAD Process:

- 1. The IPv6 host sends an NDP NS message, listing its own IPv6 unicast address as the Target Address.
- 2. If no other IPv6 host uses that address, then no host should reply with an NDP NA message; the host is safe to use that address on the IPv6 network.
- 3. If another IPv6 host uses that address, they reply with an NA message. The local host receives an NDP NA message and avoids using that address until the issue is resolved.

Table 3.9: NDP RS

Type	8 bits	Message Type (133)
Code	8 bits	Message Subtype (0)
Checksum	16 bits	
Reserved	32 bits	Unused (0)
Options	varies	

Table 3.10: NDP NS

Type	8 bits	Message Type (135)
Code	8 bits	Message Subtype (0)
Checksum	16 bits	
Reserved	32 bits	Unused (0)
Target Address	128 bits	
Options	varies	

Table 3.11: NDP RA

Type	8 bits	Message Type (134)
Code	8 bits	Message Subtype (0)
Checksum	16 bits	
Current Hop Limit	8 bits	Default IPv6 Hop Count Value
Managed Address Flag	1 bit	Indicates DHCPv6 Address Services
Other Config Flag	1 bit	Indicates DHCPv6 Other Services
Reserved	6 bits	Unused (0)
Router Lifetime	16 bits	Default Router Lifetime
Reachable Time	32 bits	Neighbor Unreachability Detection
Retransmit Time	32 bits	Time between NS message retransmissions (ms)
Options	varies	

Table 3.12: NDP NA

Type	8 bits	Message Type (136)
Code	8 bits	Message Subtype (0)
Checksum	16 bits	
From Router Flag	1 bit	Identifies sender as router
Solicited Flag	1 bit	Indicates solicitation by NDP NS
Override Flag	1 bit	Overrides existing cache entry
Reserved	29 bits	Unused (0)
Target Address	128 bits	
Options	varies	

Note: Unlike IPv4 ARP, ICMPv6 NDP messages are encapsulated within an IPv6 packet.

3.5 RFC 2328 Open Shortest Path First (OSPFv2)

OSPFv2 is a link-state IGP for dynamic routing which maintains a *Link-State Database* (LSDB) representing the internetwork of connected OSPF routers within an *OSPF area*. Each OSPF router forms OSPF neighbor relationships with connected OSPF routers using a series of OSPF messages and *OSPF neighbor states*, which synchronize their LSDBs.

Table 3.13: OSPF LSA Types

LSA Type	Source	Conditions
Type 1 Router LSA	SPF-Routers	1 per intra-area router
Type 2 Network LSA	SPF-DRs	1 per DR/BDR subnet
Type 3 Summary LSA	ABRs	1 per inter-area subnet
Type 5 AS-External LSA	ASBRs	1 per AS-External network

Table 3.14: OSPF Link-State Advertisement (LSA) Header

LS Age	2 Bytes	Seconds since LSA originated
Options	1 Byte	
LS Type	1 Byte	LSA Type (Table 3.13)
Link-State ID	4 Bytes	Determined by LS Type
Advertising Router	4 Bytes	Advertising Router RID
LS Sequence Number	4 Bytes	Used by routers to judge LSAs
LS Checksum	2 Bytes	Checksum of LSA (excluding LS Age)
Length	2 Bytes	Length of LSA + header (Bytes)

Each LSDB is a collection of *OSPF Link-State Advertisements* (LSAs) whose contents describe the internetwork according to their LSA type (Table 3.13). Note that the number of OSPF routers, OSPF areas, and other variables determine the number and type of LSAs within the LSDB.

Table 3.15: OSPF Hello

Version	1 Byte	OSPF Version Number (2)
Type	1 Byte	OSPF Packet Type (1)
Packet Length	2 Bytes	Header + Packet Length in Bytes
Router ID	4 Bytes	Advertising Router RID
Area ID	4 Bytes	Advertising Router's Area ID
Checksum	2 Bytes	
AuType	2 Bytes	OSPF Authentication Type (0-2)
Authentication	8 Bytes	Determined by AuType
Network Mask	4 Bytes	Sending interface's netmask
Hello Interval	2 Bytes	OSPF Hello Interval
Options	1 Byte	
Rtr Pri	1 Byte	Interface OSPF Priority
Router Dead Interval	4 Bytes	OSPF Dead Interval
Designated Router	4 Bytes	OSPF DR IP Address
Backup Designated Router	4 Bytes	OSPF BDR IP Address
Neighbor	varies	Known Neighbor RID(s)

OSPF Hello packets are used for neighbor discovery and maintenance. OSPF routers use it to learn each other's RID in neighbor state **INIT** and determine whether they are OSPF-compatible.

OSPF routers are compatible if their RIDs are unique and if their Version, Area ID, Network Mask, Hello Interval, and Router Dead Interval match. If OSPF authentication is configured, the AuType and Authentication must also match. Two OSPF-compatible routers move on to neighbor state 2WAY, are considered OSPF neighbors, and are ready to begin the 2-way LSDB exchange process.

DR/BDR elections may take place among OSPF routers connected to the same subnet. One OSPF router is elected the *Designated Router* (DR) and another is elected the *Backup Designated Router* (BDR), with the remaining routers becoming *DROthers*. The router with the highest Rtr Pri value becomes the DR, with the highest RID serving as tiebreaker; the runner-up becomes the BDR and there is no preemption. The DR/BDR routers become fully-adjacent neighbors with all OSPF routers in the subnet; DROther routers remain in 2WAY state with each other.

Table 3.16: OSPF Database Description (DD)

Version	1 Byte	OSPF version number (2)
Type	1 Byte	OSPF Packet Type (2)
Packet Length	2 Bytes	Header + Packet Length in Bytes
Router ID	4 Bytes	Advertising Router RID
Area ID	4 Bytes	Advertising Router's Area ID
Checksum	2 Bytes	
AuType	2 Bytes	OSPF Authentication Type (0-2)
Authentication	8 Bytes	Determined by AuType
Interface MTU	2 Bytes	IP MTU in Bytes
Options	1 Byte	
Reserved	5 bits	0
Initial	1 bit	1 indicates first DD packet
More	1 bit	1 indicates more DD packets follow
Master/Slave	1 bit	1 indicates master, 0 indicates slave
DD Sequence Number	4 Bytes	sequence number of DD packets
LSA Headers	varies	LSA header(s) (Table 3.14)

OSPF DD packets are used by both routers to summarize and compare their local LSDBs. The master router (higher RID) enters neighbor state **EXSTART** by sending an OSPF DD packet, which initializes the LSDB exchange process. The slave router (lower RID) enters neighbor state **EXCHANGE** by responding with its own OSPF DD packet.

Table 3.17: OSPF Link-State Request (LSR)

Version	1 Byte	OSPF Version Number (2)
Type	1 Byte	OSPF Packet Type (3)
Packet Length	2 Bytes	Header + Packet Length in Bytes
Router ID	4 Bytes	Advertising Router RID
Area ID	4 Bytes	Advertising Router's Area ID
Checksum	2 Bytes	
AuType	2 Bytes	OSPF Authentication Type (0-2)
Authentication	8 Bytes	Determined by AuType
LS Type	4 Bytes	Requested LSA Type (Table 3.13)
Link-State ID	4 Bytes	Determined by LS Type
Advertising Router	4 Bytes	Sending Router's RID

Table 3.18: OSPF Link-State Update (LSU)

Version	1 Byte	OSPF Version Number (2)
Type	1 Byte	OSPF Packet Type (4)
Packet Length	2 Bytes	Header + Packet Length in Bytes
Router ID	4 Bytes	Advertising Router RID
Area ID	4 Bytes	Advertising Router's Area ID
Checksum	2 Bytes	
AuType	2 Bytes	OSPF Authentication Type (0-2)
Authentication	8 Bytes	Determined by AuType
Number of LSAs	4 Bytes	
LSAs	varies	LSA(s)

Table 3.19: OSPF Link-State Acknowledgment (LSAck)

Version	1 Byte	OSPF Version Number (2)	
Type	1 Byte	OSPF Packet Type (5)	
Packet Length	2 Bytes	Header + Packet Length in Bytes	
Router ID	4 Bytes	Advertising Router RID	
Area ID	4 Bytes	Advertising Router's Area ID	
Checksum	2 Bytes		
AuType	2 Bytes	OSPF Authentication Type (0-2)	
Authentication	8 Bytes	Determined by AuType	
LSA Headers	varies	Acknowledged LSA header(s) (Table 3.14)	

Both routers enter the neighbor state **LOADING** after the LSDB exchange process has been initiated. The master router requests certain LSAs using OSPF LSR packets (Table 3.17). The slave router responds with OSPF LSU packets (Table 3.18) containing the requested LSAs, which the master router acknowledges using OSPF LSAck packets (Table 3.19). This process then reverses, with the slave router requesting LSAs that the master router supplies. Once the LSDB exchange process has been completed, both routers enter neighbor state **FULL**, indicating they are *fully-adjacent OSPF neighbors*.

OSPF routers apply *Dijkstra's Shortest-Path First* (SPF) algorithm to their LSDB to calculate the best routes to each network, which are dynamically added to the routing table. This calculation depends on the size of the LSDB and is performed independently for each OSPF area. Each OSPF area must connect to *backbone area* 0 via an OSPF *Area Border Router* (ABR). An OSPF *Autonomous System Border Router* (ASBR) within backbone area 0 connects the local *Autonomous System* to one or more external AS.

4 Layer 4 Protocols

Table 4.1: Well-Known Ports

TCP	20	FTP Data
TCP	21	FTP Control
TCP	22	SSH / SFTP
TCP	23	Telnet
TCP	25	SMTP
TCP	49	Cisco TACACS+
	53	DNS
UDP	67	DHCP Server
UDP	68	DHCP Client
UDP	69	TFTP
TCP	80	HTTP
TCP	110	POP3
UDP	123	NTP
UDP	161	SNMP Agent
UDP	162	SNMP Manager
TCP	443	HTTPS
UDP	514	Syslog
TCP	989	FTPS Data
TCP	990	FTPS Control

Table 4.2: Registered Ports

UDP	1812	RADIUS Auth
UDP	1813	RADIUS Accounting
TCP	1985	Cisco HSRP
UDP	5246	CAPWAP Control
UDP	5247	CAPWAP Data

Note: Well-Known Ports range from 0-1023, Registered Ports range from 1024-49151, and Ephemeral Ports range from 49152-65535.

4.1 RFC 768 User Datagram Protocol (UDP)

Source Port	2 Bytes	Tables $4.1 + 4.2$
Destination Port	2 Bytes	Tables $4.1 + 4.2$
Length	2 Bytes	Header + Data Length in Bytes
Checksum	2 Bytes	
Data	varies	

UDP is a *connectionless* protocol offering port-based multiplexing without any delivery guarantee. This is optimal for latency-sensitive applications which are fault-tolerant or implement their own error recovery mechanisms, such as VoIP, DNS, DHCP, TFTP, SNMP, Syslog, QUIC, and others.

4.2 RFC 793 Transmission Control Protocol (TCP)

100 Transmission Common Trouscon (TCT)				
Source Port	2 Bytes	Tables $4.1 + 4.2$		
Destination Port	2 Bytes	Tables $4.1 + 4.2$		
SEQ Number	4 Bytes	Windowing / Flow Control (SEQ flag)		
ACK Number	4 Bytes	Windowing / Flow Control (ACK flag)		
Data Offset	4 bits			
Reserved	6 bits	Future Use (0)		
Flags	6 bits	Connection Management		
Window	2 Bytes	Connection Window Size		
Checksum	2 Bytes			
Urgent	2 Bytes	Last urgent data byte (URG flag)		
Data	varies			

TCP is a connection-oriented protocol offering error recovery, flow control, connection establishment/termination, and ordered data transfer / segmentation features at the cost of additional overhead.

The TCP 3-way handshake (SYN SYN-ACK ACK) sets up the connection SEQ Number and ACK Number for ordered data transfer. The Window determines how much data can be sent before requiring an acknowledgement. It increases when no errors occur and decreases for each missed acknowledgement, providing flow control and error recovery. Data is assumed lost/errored if not acknowledged within a certain time interval. The TCP 4-way termination process (FIN-ACK ACK FIN-ACK ACK) closes the connection after data transfer is complete.

5 Layer 5 Applications

5.1 RFC 959 File Transfer Protocol

FTP manages file transfers between FTP clients and FTP servers in clear-text over TCP. A persistent FTP Control Connection over port 21 defines the available FTP client functions for remotely managing/transferring files. An FTP Data Connection is established only when a file is transferred and often uses a nonstandard port. It is established by the server in FTP Active Mode, or by the client in FTP Passive Mode; passive mode is required when the client sits behind a firewall or NAT.

Note: The client issues the FTP PORT command for FTP Active mode and the FTP PASV command for FTP Passive mode. The client issues the FTP AUTH command for FTPS Explicit mode.

FTP Secure (FTPS) implements TLS to provide secure authentication and data encryption. FTPS clients using FTPS Explicit Mode must explicitly initialize a TLS tunnel after establishing each FTP connection. FTPS clients using FTPS Implicit Mode begin each FTP connection with a TLS connection automatically.

SSH FTP (SFTP) encrypts file transfers over an SSH connection instead of using TLS. Trivial FTP (TFTP) uses UDP with built-in error detection and offers minimal functionality.

5.2 RFC 2131 Dynamic Host Configuration Protocol (DHCP)

•		(
Message Type	1 Byte	Message Type (request/reply)	
HTYPE	1 Byte	L2 Protocol (1 for Ethernet)	
HLEN	1 Byte	L2 Address Length in Bytes	
Hops	1 Byte	Optionally boot via relay agent	
Transaction ID	4 Bytes	Identifies client-server exchange (random)	
Seconds	2 Bytes	Time since client began request	
Broadcast Flag	1 bit	broadcast/unicast replies	
Reserved	15 bits	Future Use (0)	
Client IP	4 Bytes	Current Client IP	
Your IP	4 Bytes	Your Client IP	
Next Server IP	4 Bytes	Next server in bootstrap process	
Relay Agent IP	4 Bytes	Boot via relay agent	
CHADDR	16 Bytes	Client Hardware Address	
Server Name	64 Bytes	Optional Server Hostname	
File Name	128 Bytes	Optional Boot File	
Magic Cookie	4 Bytes	Identifies DHCP over Bootp	
		(0x63.82.53.63)	
Options	varies	One or more option headers (Table 5.1)	

Table 5.1: DHCP Options

	rasio str. Brior options		
Option	Value		
1	Subnet Mask		
3	Default Router		
6	DNS Server		
28	Broadcast Address		
43	WLC IP Address		
50	Requested IP Address		
51	Address Lease Time		
53	DHCP Message Type		
54	DHCP Server ID		
55	Parameter Requests		
58	Renewal Time Value		
59	Rebinding Time Value		
66	TFTP Server IP Address		
82	Relay Agent Information		
150	TFTP Server List		
255	End		

The DHCP Lease Process:

- 1. The DHCP client broadcasts a DHCP Discover message to any local DHCP servers.
- 2. The DHCP server replies with a DHCP Offer message containing configuration information.
- 3. The client broadcasts a DHCP Request message to accept or a DHCP Decline message deny an offer.
- 4. The server replies to a successful request with a DHCP Acknowledge message.
- 5. The client can send a DHCP Release message any time to release its current DHCP lease.

DHCP Relay can be configured on the default gateway LAN interface when the DHCP server

exists in another subnet. This causes the default gateway to insert DHCP Option 82 into received DHCP client messages and forward them to the DHCP server as unicast packets. *DHCP Snooping* automatically enables this feature as the *DHCP Snooping Information Option*.

DHCP Snooping is an optional switch security feature to prevent DHCP Poisoning and DHCP DoS attacks. It generates the DHCP Snooping Binding Table by observing DHCP flows and mapping observed DHCP CHADDR to the corresponding packet Source IP, frame Source MAC, VLAN, and local incoming switchport. It ensures consistency between table entries and subsequent DHCP client messages, additionally filtering all DHCP server messages by default. This behavior is disabled on DHCP Snooping trusted ports. DHCP Snooping uses optional per-interface rate limits to prevent DoS attacks against the switch CPU and DHCP Servers.

5.3 RFC 7230 HyperText Transport Protocol (HTTP)

Note: See RFCs 9110/9111 plus the IANA Field Name Registry and IANA Message Headers for HTTP header fields and their names.

HTTP manages file transfers between web clients (browsers) and web servers over TCP. Client requests specify a *Uniform Resource Identifier* (URI, RFC 7595) adhering to the SCHEME://AUTHORITY/PATH format (typically PROTOCOL://SERVER_NAME/OBJECT for web pages). Requests also specify an *HTTP Verb*, typically corresponding to a *CRUD* action. Web servers respond to client requests with an *HTTP Return Code* and any relevant data.

HTTP VERBCRUD ActionDescriptionHTTP POSTCreateCreate/initialize new data structures/variablesHTTP GETReadRead variable names/structures/valuesHTTP PATCH/PUTUpdateUpdate/replace some variable valuesHTTP DELETEDeleteDelete some data structures/variables

Table 5.2: Common HTTP Verbs

				<u> </u>
Table	5.3.	H'I''I'P	Return	Codes

Code	Type	Meaning	
1XX	Informational	Request was received and is being processed	
2XX	Successful	Request was received, understood, and accepted	
ЗХХ	Redirection	Further action required to complete request	
4XX	Client Error	Request contains bad syntax or cannot be fulfilled	
5XX	Server Error	Server failed to fulfill an (apparently) valid request	

Modern web browsers support *HTTP Secure* (HTTPS) using TLS (RFC 5246) to dynamically secure a connection between the client and server. Initializing a TLS session creates a client VPN tunnel which authenticates the user and encrypts the data transfer between that client and server only.

5.4 RFC 5424 System Logging (Syslog)

Cisco IOS generates system event logs categorized based on *severity level* (Table 5.4). Log messages use the TIMESTAMP SEQ_NUM %FACILITY-SEVERITY-MNEMONIC: DESCRIPTION format and may be stored locally for review. Logging can be configured to use Syslog, enabling centralized logging to a Syslog server over UDP based on severity level. This frees local device RAM for other tasks and simplifies event correlation among devices.

Table 5.4: Logging Keywords

Keyword	Severity	Description
Emergency	0	System Unusable
Alert	1	Immediate Action Required
Critical	2	Critical Conditions
Error	3	Error Conditions
Warning	4	Warning Conditions
Notification	5	Significant Conditions
Informational	6	Information
Debug	7	debug Messages

6 RFC 2475 Quality of Service (QoS)

PCP7	CS7	`	•	
Network Control	56 0x38			
PCP6	CS6			
Internetwork Control	48 0x30			
PCP5	CS5			\mathbf{EF}
Voice	40 Ox 28			46 0x2e
PCP4	CS4	AF41	AF42	AF43
Video	32 Ox20	34 Ox22	36 0x24	38 0x26
PCP3	CS3	AF31	AF32	AF33
$Critical\ Apps$	24 Ox 18	$26 {\tt 0x1a}$	$28~\mathrm{0x1c}$	30 0x1e
PCP2	$\mathbf{CS2}$	AF21	AF22	AF23
Excellent Effort	16 Ox 10	18 Ox 12	20 Ox 14	22 0x16
PCP1	CS1	$\mathbf{AF11}$	AF12	AF13
Background	80x08	$10 {\tt 0x0a}$	$12 \mathrm{0x0c}$	14 0x0e
PCP0	CS0			
$Best\ Effort$	$0 \cos 0$			

Note: CS values use bit-pattern XXX000, resulting in an 8X DSCP value. AF values use bit-pattern XXXYY0, resulting in an 8X + 2Y DSCP value.

Table 6.1: QoS Fields

QoS Standard	${ m Protocol\ Field(s)}$	Notes
IEEE 802.1p (CoS)	IEEE 802.1Q PCP/DEI	Table 2.5
	IEEE 802.11 QoS Control	Subsection 2.6
RFC 791 IPP (CS)	IPv4 ToS Byte (OLD)	Subsection 3.1
RFC 2474/3168 (DSCP)	$\mathrm{IPv4}\;\mathtt{DS}\;\mathtt{Field}\;(\mathrm{NEW})$	Subsection 3.1
RFC 2460 (DSCP)	IPv6 Traffic Class	Subsection 3.2
	MPLS EXP	

Quality of Service (QoS) is defined across several standards to provide preferential treatment for certain traffic. They define groups of QoS markings (shown above) as well as header fields used to mark QoS traffic. QoS-configured devices employ Classification to identify QoS traffic and apply specifically configured actions, including Marking, Queuing, Policing, Shaping, and/or Congestion Avoidance features. Marking is typically done by an initial device, simplifying Classification for downstream devices. QoS characterizes network traffic according to the following metrics:

- Bandwidth: The speed of a link in *bits-per-second* (bps), or the capacity of the link to send a number of bits per-second.
- One-Way Delay: The time between sending one packet and that same packet arriving at the destination host.
- Round-Trip Delay: One-way delay plus the time for the receiver to send a packet back; the time to send one packet between two hosts and receive one back.
- **Jitter:** The variation in one-way delay between any consecutive packets sent by the same application.
- Loss: The number of lost messages expressed as a percentage of sent packets.

Certain types of traffic have strict requirements for these metrics, which must be met in order to ensure a good end-user experience. Technical limitations may also require much higher bandwidth per-flow for certain traffic (e.g. video).

Table 6.2: Traffic QoS Requirements

Traffic	One-Way Delay	Jitter	Loss
Voice Over IP (VoIP)	< 150 ms	< 30 ms	< 1%
Video	200-400 ms	$30\text{-}50~\mathrm{ms}$	0.1 1%

Note: A majority of loss occurs due to normal network operations, but may involve faulty hardware or network congestion.

7 Appendix

Table 7.1: Protocol Timers

Protocol	Timer	Default Value			
MAC Table	Aging-Time	300 s			
STP	Hello	2 s			
	Forward Delay	15 s			
	Max Age	$20 \mathrm{~s~(10*~Hello)}$	Table 7.2:	Protocol F	Priority Values
RSTP	Hello	2 s	Protocol	Priority	Default Value
	Max Age	$6~\mathrm{s}~(3*~\mathtt{Hello})$	STP/RSTP	0 - 61,440	32,768
CDP	Update	60 s	OSPF	0 - 255	1
	Hold	$180~\mathrm{s}~(3*$ Update)	HSRP	1 - 255	100
LLDP	Send	30 s	VRRP	1 - 254	100
	Hold	$120~\mathrm{s}~(4*~\mathrm{Send})$	NTP	1 - 15	8
Errdisable	Recovery	300 s			
Port Security	Aging	300 s			
OSPF	Hello	10 s			
	Dead	$40~\mathrm{s}~(4*~\mathrm{Hello})$			
	LSA Age	30 mins per-LSA			

Note: The MAC Table is also referred to as the Forwarding Information Base (FIB) or Content Addressable Memory (CAM) table.

Table 7.3: Cisco Encryption Algorithms

Type	Algorithm	Salt	Secure?
0	cleartext		NO
4	PBKDF2-SHA-256		NO
5	MD5	32 bits	WEAK
6	AES-128		YES
7	Vigenere		NO
8	PBKDF2-SHA-256	80 bits	YES
9	Scrypt	80 bits	YES

Table 7.4: ASCII Values

		1a	DIE 1.4	i. Asc	ıı vai	ues		
32	64	96	0x20	0x40	0x60	SP	@	(
33	65	97	0x21	0x41	0x61	!	A	a
34	66	98	0x22	0x42	0x62	"	В	b
35	67	99	0x23	0x43	0x63	#	\mathbf{C}	\mathbf{c}
36	68	100	0x24	0x44	0x64	\$	D	d
37	69	101	0x25	0x45	0x65	%	\mathbf{E}	e
38	70	102	0x26	0x46	0x66	&	F	\mathbf{f}
39	71	103	0x27	0x47	0x67	٤	G	g
40	72	104	0x28	0x48	0x68	(Η	h
41	73	105	0x29	0x49	0x69)	Ι	i
42	74	106	0x2a	0x4a	0x6a	*	J	j
43	75	107	0x2b	0x4b	0x6b	+	K	k
44	76	108	0x2c	0x4c	0x6c	,	L	1
45	77	109	0x2d	0x4d	0x6d	-	Μ	\mathbf{m}
46	78	110	0x2e	0x4e	0x6e		N	n
47	79	111	0x2f	0x4f	0x6f	/	Ο	O
48	80	112	0x30	0x50	0x70	0	Р	p
49	81	113	0x31	0x51	0x71	1	Q	\mathbf{q}
50	82	114	0x32	0x52	0x72	2	R	\mathbf{r}
51	83	115	0x33	0x53	0x73	3	\mathbf{S}	\mathbf{S}
52	84	116	0x34	0x54	0x74	4	Τ	\mathbf{t}
53	85	117	0x35	0x55	0x75	5	U	u
54	86	118	0x36	0x56	0x76	6	V	V
55	87	119	0x37	0x57	0x77	7	W	W
56	88	120	0x38	0x58	0x78	8	Χ	X
57	89	121	0x39	0x59	0x79	9	Y	У
58	90	122	0x3a	0x5a	0x7a	:	\mathbf{Z}	${f z}$
59	91	123	0x3b	0x5b	0x7b	;		{
60	92	124	0x3c	0x5c	0x7c	<	\	
61	93	125	0x3d	0x5d	0x7d	=]	}
62	94	126	0x3e	0x5e	0x7e	>	^	
63	95	127	0x3f	0x5f	0x7f	?	_	DEL

Table 7.5: SI Prefixes

\overline{z}	Zetta	10^{21}	sextillion
Е	Exa	10^{18}	quintillion
P	Peta	10^{15}	quadrillion
Т	Tera	10^{12}	trillion
G	Giga	10^{9}	billion
M	Mega	10^{6}	million
k	Kilo	10^{3}	thousand
h	Hecto	10^{2}	hundred
da	Deka	10^{1}	ten
d	deci	10^{-1}	tenth
c	centi	10^{-2}	hundredth
m	milli	10^{-3}	thousandth
$\overline{\mu}$	micro	10^{-6}	millionth
n	nano	10^{-9}	billionth
р	pico	10^{-12}	trillionth

Table 7.6: Binary Prefixes

Yi	Yobi	2^{80}
Zi	Zebi	2^{70}
Ei	Exbi	2^{60}
Pi	Pebi	2^{50}
Ti	Tebi	2^{40}
Gi	Gibi	2^{30}
Mi	Mebi	2^{20}
Ki	Kibi	2^{10}

Figure 7.1: IEEE 802.1x/IEEE 802.11i Extensible Authentication Protocol (EAP)

	Open Auth	None (other than 802.11 conformity)	
Authentication Methods	Wired Equiva	Static WEP keys	
		Lightweight EAP (LEAP)	Dynamic WEP keys (deprecated)
	802.1x / 802.11i Extensible Authentication Protocol (EAP)	EAP Flexible Authentication by Secure Tunneling (EAP-FAST)	Protected Access Credential (PAC)
		Protected EAP (PEAP)	AS authenticated by digital certificate
		EAP Transport Layer Security (EAP-TLS)	Client and AS authenticated by digital certificate
	Temporal Key Integrity Protocol (TKIP)		WPA-PSK / WPA Enterprise
Privacy and Integrity Methods	AES Counter/CBC-MAC Protocol (CCMP)		WPA2-PSK / WPA2 Enterprise
	AES Galois/Count	WPA3-PSK / WPA3 Enterprise	

7.1 Official Standards

OFFICIAL STANDARD	ALTERNATIVE	REFERENCE
RFC 1661 PPP	ITU HDLC / Cisco HDLC	Subsections $2.7 + 2.8$
IEEE 802.3 Ethernet		Subsection 2.1
IEEE 802.2 LLC/SNAP		Tables $2.3 + 2.4$
IEEE 802.3u FastEthernet		Subsection 1.2
IEEE 802.3af/at/bt PoE/UPoE	Cisco ILP	Table 1.4
IEEE 802.1Q VLAN Trunking	Cisco ISL/DTP/VTP	Subsections $2.2 + 2.3$
IEEE 802.1AB LLDP	Cisco CDP	
IEEE $802.1D/w$ STP/RSTP	Cisco PVST/PVRST	Subsection 2.4
IEEE 802.1s MSTP		
IEEE 802.3AD LACP	Cisco PAgP	
IEEE 802.11 WLAN	Wi-Fi Alliance	Subsection 2.6
IEEE 802.11i EAP		Figure 7.1
IEEE 802.1x Access Control		Figure 7.1
RFC 791/1918 IPv4	RFC 2460 IPv6	Subsections $3.1 + 3.2$
RFC 792 ICMP	RFC 4443 ICMPv6	Subsection 3.3
RFC 826 ARP	RFC 4861 NDP	Subsections $2.5 + 3.4$
RFC $1631/3022$ NAT		
RFC 2328 OSPF	EIGRP / RIP /	Subsection 3.5
RFC 5798 VRRP	Cisco HSRP/GLBP	
RFC 2475 QoS		Section 6
RFC 768 UDP	RFC 793 TCP	Subsections $4.1 + 4.2$
RFC 959 FTP	TFTP / SFTP / FTPS /	Subsection 5.1
RFC $1305/5905 \text{ NTP}$		
RFC 1065 SNMP		
RFC 5424 Syslog		Subsection 5.4
RFC 2131 DHCP		Subsection 5.2
RFC 3046 DHCP Relay		Subsection 5.2
RFC 7230 HTTP		Subsection 5.3
RFC 4301 IPSec	RFC 5246 TLS	

7.2 Cisco IOS Configuration Examples

Layer 2 Interface Configuration:

```
configure terminal
  int F0/1
  mac-address MAC
  bandwidth KBPS
  duplex {half | full | auto}
  speed {MBPS | auto}
  description TEXT

show interface [INT] [status | switchport]
```

VLAN Configuration:

```
configure terminal
 vlan VLAN_ID
    name TEXT
    [no] shutdown
  [no] shutdown vlan VLAN_ID
  int F0/1
    switchport trunk encapsulation {ISL | dot1Q}
    switchport mode {trunk | dynamic {desirable | auto}}
    switchport nonegotiate
    switchport trunk allowed vlan VLAN_LIST
    switchport trunk native vlan VLAN_ID
    [no] shutdown
  int range F0/2 - 12
    switchport mode access
    switchport {access | voice} vlan VLAN_ID
    [no] shutdown
  vtp mode {server | client | transparent | off}
 vtp domain TEXT
  vtp password PASSWORD
  [no] vtp pruning
 vtp version 2
show int [INT] status
show int [INT] switchport
show int [INT] trunk
show vlan brief
show vlan id VLAN_ID
show vtp {status | password}
```

Link Aggregation Configuration:

Port Security Configuration:

```
configure terminal
  errdisable recovery cause psecure-violation
  errdisable recovery interval SECS
  int range F0/2 - 12
    switchport mode {access | trunk}
    switchport port-security violation {protect | restrict | shutdown}
    switchport port-security maximum MAX
    switchport port-security mac-address {MAC | sticky}
    switchport port-security aging type {absolute | inactivity}
    switchport port-security aging time MINS
    switchport port-security aging static
    switchport port-security
 mac address-table aging-time SECS [vlan VLAN_ID]
show int [INT] [status]
show port-security [interface INT]
show mac address-table [static | secure] [vlan VLAN_ID | interface INT]
clear mac address-table dynamic [vlan VLAN_ID | interface INT | address MAC]
show mac address-table aging-time
show errdisable recovery
```

CDP / LLDP Configuration:

```
configure terminal
  [no] {cdp | 1ldp} run
  {cdp | 1ldp} timer SECS
  {cdp | 1ldp} holdtime SECS
  int range F0/2 - 12
      [no] cdp enable
      [no] lldp {transmit | receive}

show {cdp | 1ldp}
show {cdp | 1ldp} traffic
show {cdp | 1ldp} interface [INT]
show {cdp | 1ldp} neighbors [detail] [INT]
show {cdp | 1ldp} entry NEIGHBOR
```

Spanning Tree Configuration:

```
configure terminal
errdisable recovery cause bpduguard
spanning-tree mode {pvst | rapid-pvst | mst}
spanning-tree pathcost method {long | short}
spanning-tree [vlan VLAN_ID] root {primary | secondary}
spanning-tree [vlan VLAN_ID] priority {32768 | 28672 | 24576 | ...}
spanning-tree portfast [edge | network] [bpduguard | bpdufilter] default
spanning-tree loopguard default
int Po1
spanning-tree [vlan VLAN_ID] cost PORT_COST
spanning-tree [vlan VLAN_ID] port-priority PORT_PRIO
spanning-tree [vlan VLAN_ID] link-type {point-to-point | shared}
spanning-tree portfast [disable | [edge | network] [default | trunk]]
spanning-tree {bpduguard | bpdufilter} {enable | disable}
spanning-tree guard {root | loop | none}
```

```
show spanning-tree [bridge | summary]
show spanning-tree [vlan VLAN_LIST | interface INT]
```

Authenticated NTP Configuration:

```
configure terminal
  clock timezone CST -6 0
  clock summer-time CDT recurring 2 SUNDAY MAR 02:00 1 SUNDAY NOV 02:00
clock set HH: MM: SS DATE MONTH YEAR
clock {update-calendar | read-calendar}
configure terminal
 ntp authenticate
 ntp authentication-key 1 md5 PASSWORD
 ntp trusted-key 1
 ntp master STRATUM
 ntp {peer | server} {A.B.C.D | HOSTNAME} key 1
 ntp update-calendar
 ntp source loopback 0
show ntp status
show ntp associations [detail]
show {clock | calendar} [detail]
```

Logging and SNMP Configuration:

```
terminal monitor
configure terminal
  logging console {0-7 | emergency | alert | critical | error | warning |
     > notification | informational | debug}
  logging monitor {0-7 | emergency | alert | critical | error | warning |
     > notification | informational | debug}
  logging buffered [MEMSIZE] {0-7 | emergency | alert | critical | error |
     > warning | notification | informational | debug}
  logging [host] {A.B.C.D | HOSTNAME}
  logging trap {0-7 | emergency | alert | critical | error | warning |
     > notification | informational | debug}
  [no] service {timestamps | sequence-numbers}
  snmp-server community PASSWORD {ro | rw}
  snmp-server contact TEXT
 snmp-server location TEXT
  snmp-server host {A.B.C.D | HOSTNAME} [trap | inform] version 2c PASSWORD
  snmp-server enable traps TRAPS_LIST
{show | clear} logging
show snmp {community | contact | location | host}
```

DHCP Snooping and DAI Configuration:

```
configure terminal
  errdisable recovery cause dhcp-rate-limit
  errdisable recovery cause arp-inspection
  ip dhcp snooping
  ip dhcp snooping vlan VLAN_LIST
  [no] ip dhcp snooping information option
  ip arp inspection vlan VLAN_LIST
  ip arp inspection validate {[src-mac] [dst-mac] [ip]}
  int Po1
   ip dhcp snooping trust
  ip arp inspection trust
```

```
int F0/1
  ip arp inspection trust
int range F0/2 - 12
  ip dhcp snooping limit rate MAX
  ip arp inspection limit rate MAX [burst-interval SECS]
show ip dhcp snooping [binding]
show ip arp inspection [statistics | interfaces]
```

Layer 3 Interface Configuration:

```
configure terminal
  sdm prefer lanbase-routing
  ip routing
  ipv6 unicast-routing
  int FO/O.SUBINT
    encapsulation dot1q VLAN_ID [native]
    ip address {A.B.C.D M.M.M.M | dhcp}
    {ipv6 enable | ipv6 address {ADDRESS/PREFIX_LENGTH [link-local | anycast] |
       > PREFIX/64 eui-64 | dhcp | autoconfig}}
    [no] shutdown
  int vlan VLAN_ID
    ip address {A.B.C.D M.M.M.M | dhcp}
    {ipv6 enable | ipv6 address {ADDRESS/PREFIX_LENGTH [link-local | anycast] |
       > PREFIX/64 eui-64 | dhcp | autoconfig}}
    [no] shutdown
  int F0/1
    [no] switchport
    ip address {A.B.C.D M.M.M.M | dhcp}
    {ipv6 enable | ipv6 address {ADDRESS/PREFIX_LENGTH [link-local | anycast] |
       > PREFIX/64 eui-64 | dhcp | autoconfig}}
    [no] shutdown
    ip helper-address DHCP_SERVER
show sdm prefer
show {ip | ipv6} interface [brief | INT]
show interfaces [INT] [status | switchport]
show protocols [INT]
show dhcp lease
show ip default-gateway
show vlans
```

IP Routing Configuration:

```
configure terminal
  router ospf 1
    router-id {A.B.C.D | VALUE}
    auto-cost reference-bandwidth MBPS
    maximum-paths 4
    distance 110
    default-information originate [always]
    [no] passive-interface {INT | default}
    [no] network A.B.C.D W.W.W.W area AREA
    [no] shutdown
int SO/O/O
    ip ospf 1 area AREA
    ip ospf network {point-to-point | broadcast}
    ip ospf cost PORT_COST
    ip ospf priority O-255
```

```
ip ospf hello-interval SECS
    ip ospf dead-interval SECS
    ip ospf authentication message-digest
    ip ospf message-digest-key 1 md5 PASSWORD
    ip ospf authentication-key 1
  router rip
    version 2
    no auto-summary
    [no] network NETWORK_ID
    [no] passive-interface INT
    default-information originate
    maximum-paths VALUE
    distance AD
    [no] shutdown
 router eigrp AS_VALUE
    eigrp router-id A.B.C.D
    no auto-summary
    [no] network A.B.C.D [W.W.W.W]
    [no] passive-interface INT
    default-information originate
    maximum-paths VALUE
    variance VALUE
    distance INTERNAL_AD EXTERNAL_AD
    [no] shutdown
  ip route A.B.C.D M.M.M.M {[EXIT_INT] [NEXT_HOP]} [AD] [permanent]
  ipv6 route PREFIX/LENGTH {[EXIT_INT] [NEXT_HOP]} [AD] [permanent]
show {ip | ipv6} protocols
show ip ospf
show ip ospf interface [INT | brief]
show ip ospf neighbor
show ip ospf database
clear ip ospf [PROCESS_ID] process
show {ip | ipv6} route [connected | local | static | ospf | ...] [ADDR]
show ip arp
show ipv6 neighbors
```

VRF Configuration:

```
configure terminal
  ip vrf VRF_NAME
  int FO/0
    ip vrf forwarding VRF_NAME
    ip address {A.B.C.D M.M.M.M | dhcp}
    [no] shutdown
show ip vrf
show ip route vrf VRF_NAME
ping vrf VRF_NAME [ADDRESS]
```

FHRP Configuration:

```
configure terminal
int F0/0
standby version 1-2
standby GROUP_ID ip A.B.C.D
standby GROUP_ID priority 1-255
standby GROUP_ID preempt
standby GROUP_ID description TEXT
vrrp GROUP_ID ip A.B.C.D [secondary]
```

```
vrrp GROUP_ID priority 1-254
vrrp GROUP_ID preempt [delay minimum SECS]
vrrp GROUP_ID description TEXT

show standby [brief]
show standby neighbors [INT]
show vrrp [brief | GROUP_ID]
show vrrp interface INT [brief]
```

DHCP Services Configuration:

```
configure terminal
  service dhcp
ip dhcp excluded-address FIRST_IP [LAST_IP]
ip dhcp pool POOL_NAME
  network A.B.C.D {M.M.M.M.M | /CIDR}
  domain-name TEXT
  default-router A.B.C.D
  dns-server A.B.C.D
  lease {DAYS HRS MINS | infinite}
  option 43 ip WLC_IP
  option 66 ip TFTP_IP
show ip dhcp pool POOL_NAME
show ip dhcp binding
```

ACL Configuration:

```
configure terminal
  access-list {1-99 | 1300-1999} {permit | deny} {[host] SRC_IP | SRC_IP SRC_WC
     > | any} [log]
 access-list {100-199 | 2000-2699} {permit | deny} {ip | icmp} {host SRC_IP |
     > SRC_IP SRC_WC | any} {host DST_IP | DST_IP DST_WC | any} [log]
  \verb|access-list| \{100-199 \mid 2000-2699\} \{ \texttt{permit} \mid \texttt{deny} \} \{ \texttt{tcp} \mid \texttt{udp} \} \{ \texttt{host} \ \texttt{SRC\_IP} \mid \texttt{supple} \} 
     > SRC_IP SRC_WC | any} [{eq | neq | lt | gt | range} SRC_PORT] {host
     > DST_IP | DST_IP DST_WC | any} [{eq | neq | 1t | gt | range} DST_PORT]
     > [log]
  access-list {1-199 | 1300-2699} remark TEXT
  ip access-list standard {ACL_NAME | ACL_ID}
    [no] [SEQ] {permit | deny} {[host] SRC_IP | SRC_IP SRC_WC | any} [log]
    [no] [SEQ] remark TEXT
    no SEQ
  ip access-list extended {ACL_NAME | ACL_ID}
    [no] [SEQ] {permit | deny} {ip | icmp} {host SRC_IP | SRC_IP SRC_WC | any}
       > {host DST_IP | DST_IP DST_WC | any} [log]
    [no] [SEQ] {permit | deny} {tcp | udp} {host SRC_IP | SRC_IP SRC_WC | any}
       > [{eq | neq | lt | gt | range} SRC_PORT] {host DST_IP | DST_IP DST_WC |
       > any} [{eq | neq | lt | gt | range} DST_PORT] [log]
    [no] [SEQ] remark TEXT
    no SEQ
  int S0/0/0
    ip access-group {ACL_ID | ACL_NAME} {in | out}
 line vty 0 15
    access-class {ACL_ID | ACL_NAME} {in | out}
show access-lists
show ip access-lists
```

NAT Services Configuration:

```
configure terminal
  int F0/0
    ip nat inside
int S0/0/0
    ip nat outside
  ip nat inside source static INSIDE_LOCAL INSIDE_GLOBAL
  ip nat pool POOL_NAME FIRST_IP LAST_IP netmask M.M.M.M.
  access-list 1 permit A.B.C.D [W.W.W.W]
  ip nat inside source list 1 pool POOL_NAME [overload]
  ip nat inside source list 1 interface S0/0/0 overload
  show ip nat translations
  show ip nat statistics
```

QoS Configuration:

```
configure terminal
  class-map [match-all | match-any] CMAP_NAME
   match protocol PROTOCOL
policy-map PMAP_NAME
  class CMAP_NAME
   set ip dscp {EF | AFXY | CSX | BINARY}
   priority percent BANDWIDTH
   bandwidth percent BANDWIDTH
int F0/0
   service-policy {input | output} PMAP_NAME
```

WLC WLAN Configuration:

- 1. Create a new WLC Dynamic Interface:
 - Name (31 or fewer ASCII characters)
 - VLAN ID (Integer value 1-1001, 1007-4094 inclusive)
- 2. Create a new WLC WLAN:
 - Profile Name (32 or fewer ASCII characters)
 - SSID (32 or fewer ASCII characters)
 - WLAN ID (Integer value 1-512 inclusive)
- 3. Configure the new WLAN:
 - Bind the Dynamic Interface to the WLAN.
 - Enable the WLAN on the WLC.
 - Enable broadcasting of the WLAN SSID by APs.
- 4. Secure the new WLAN:
 - Set Layer 2 Security to WPA+WPA2, enabling the WPA2 checkbox.
 - Set WPA2 Encryption to AES/TKIP/CCMP/GCMP.
 - Enable the PSK checkbox.
 - Set the PSK Format to ASCII and enter the PSK value.