book

Exercises 65

Compensation Doping

- **2-11.** If $N_D = 10^{18} \text{cm}^{-3}$ and $N_A = 10^{16} \text{ cm}^3$, calculate the minority carrier dopant concentration at T = 300 K.
- 2-12. Repeat Problem 2.11 if the temperature is elevated 50°C.
- **2-13.** In a compensated semiconductor, $p_o = 4 \times$ $10^6 \text{ cm}^{-3} \text{ and } N_D - N_A = 4.99 \times 10^{18} \text{ cm}^{-3}.$ What is the temperature for this condition?
- **2-14.** If T = 390 K, $N_D = 5 \times 10^{18}$, and minority carrier concentration is 1.1×10^6 cm⁻³, what is the minority carrier doping concentration in a compensated semiconductor?

Carrier Transport—Drift Current

- **2-15.** A p-silicon material has $p_o = N_A = 10^{18}$ cm³ at 280 K. $\mu_n = 1500 \text{ (cm}^2/\text{V} \cdot \text{s)}$, and $\mu_p = 500 \, (\text{cm}^2/\text{V} \cdot \text{s})$. The semiconductor has 1 V across a 20 μ m dimension.
 - (a) What is the electric field in V/cm?
 - **(b)** What is the electron carrier density n_o ?
 - (c) What is the current density J (A/cm²)?
 - (d) What is the current density J (A/ μ m²)?
- 2-16. (a) Neglect minority carrier current density in an *n*-doped semiconductor. If $\mu_n = 1200$ cm²/V·s at T = 325 K, $N_D = 10^{18} \text{ and}$ current density is $J_n = 10 \text{ kA/cm}^2$, what is the electric field?
 - (b) If 2 V causes this E-field across the material, what is the material dimension in microns?
- 2-17. What are the conductivity and resistivity in Problem 2.16?
- **2-18.** The current density is $J = 300 \text{ A/cm}^2$, conductivity $\sigma = 0.5 \text{ A/V} \cdot \text{cm}$, and $\mu_n = 1350$ $cm^2/V \cdot s$. What is the donor doping concentration?

Carrier Transpor—Diffusion Current

- **2-19.** If an electron concentration gradient is 4×10^{18} electrons/cm³ and $D_n = 25 \text{ cm}^2/\text{s}$, what is the diffusion current?
- **2-20.** $D_n = 35 \text{ cm}^2/\text{s}, D_p = 12 \text{ cm}^2/\text{s}, J = 15 \text{ mA/}$ cm², the free electron concentration gradient

- is three times that of the free hole concentration. What are the free carrier concentration gradients?
- **2-21.** At room temperature, $D_n = 35 \text{ cm}^2/\text{s}$ and $D_p = 10 \text{ cm}^2/\text{s}$. What are μ_n and μ_p ?
- **2-22.** At room temperature $\mu_n = 1300 \text{ (cm}^2/\text{V} \cdot \text{s)}$ and $\mu_p = 400 \text{ (cm}^2/\text{V} \cdot \text{s)}$. If electron and hole concentration gradients are 1020 cm-1 and 10¹⁷ cm⁻¹, what is total current density?

pn Junction Diodes

- **2-23.** A pn junction has $N_A = 10^{15} \text{cm}^{-3}$, $N_D =$ 10^{16} cm⁻³, and T = 300 K. Calculate V_{bi} .
- **2-24.** A pn junction has $N_D = 10^{18} \text{ cm}^{-3}$ and $N_A = 10^{16} \text{ cm}^{-3}$.
 - (a) Calculate V_{bi} at T = 300 K.
 - **(b)** Calculate V_{bi} at T = 400 K.
- **2-25.** Calculate the built-in potential of a pn junction if T = 345 K, acceptor doping is 10^{18} cm⁻³, and donor doping is 10¹⁵ cm⁻³.
- **2-26.** If $N_D = 10^{17}$, T = 300 K, and $V_{bi} = 0.725$ V, what must N_A be set at?
- **2-27.** If $N_D = 10^{17}$, T = 420 K, and $V_{bi} = 0.725$ V, what must N_A be set at?
- **2-28.** A diode has $I_s = 10$ pA, T = 300 K, and $V_D = 0.625$ V. What is the diode current I_D ?
- **2-29.** The diode equation is $I_D = I_S \left(e^{V_D/V_T} 1 \right)$. The -1 term becomes negligible with respect to the exponential in most forward bias situations and can be neglected. At what value of V_D does the exponential become ten times greater than the one term? Assume room temperature.
- **2-30.** A silicon *pn* junction is operating in the forward bias region. Determine the increase in forward bias voltage that will cause a factor of 100 increase in the diode current. Assume room temperature.

pn Junction Capacitance

2-31. A pn junction diode has $C_{j0} = 2$ pF and $V_{bi} =$ 0.65 V. Calculate the reverse bias depletion capacitance for reverse bias voltages of 1 V, 2 V, and 3 V.

- **2-32.** Given a *pn* junction diode with a reverse bias of 4 V. $C_{j0} = 50$ fF, T = 350 K, $N_A = 10^{15}$ cm⁻³, and $N_D = 10^{16}$ cm⁻³. Calculate C_j .
- 2-33. A pn junction diode has a reverse bias capacitance $C_j = 80$ fF, $C_{jo} = 150$ fF, and a reverse bias voltage of 2 V. What is V_{bi} ?
- **2-34.** A diode has $N_A = 10^{15} \text{ cm}^{-3}$, $N_D = 10^{18} \text{ cm}^{-3}$, T = 390 K, $C_{j0} = 100 \text{ pF}$, and
- $V_R = 2$ V. Calculate C_j the depletion capaci-
- 2-35. Calculate the junction capacitance of a reverse biased pn junction when given T =400 K, $C_{j0} = 50$ fF, $N_A = 10^{14}$ cm⁻³, $N_D = 10^{18}$ cm⁻³, and reverse bias voltage is $V_R = 2$ V.