Electrodynamics and Optics Notes

Xinyu Zhong Wolfson College

November 14, 2022

Contents

1	Revision	2
2	Optics	2
	2.1 Jones's Notation	2
	2.2 Birefringent Material	2
	2.2.1 Discussion 1	2
3	Coherence	2
	3.1 Coherence and Interference	2
	3.2 Temporal Coherence	2
	3.2.1 Power Specturm of Temporal Coherence	2
	3.3 Spatial Coherence	3
4	Electrodynamics	3
	4.1 Gauge in EM	3
	4.2 A in simple cases	3
	4.3 A in quantum mechanics	3
	4.3.1 Hamiltonian	3
	4.3.2 Aharanov-Bohm Effect	3
	4.4 Maxwell Equation in terms of A and ϕ	3
	4.4.1 Lorenz condition	3
	4.5 Solution for A and ϕ	3
5	Dipole Radiation	3
	5.1 The Hertzian Dipole	3

Abstract

Abstract of this course

1 Revision

2 Optics

2.1 Jones's Notation

2.2 Birefringent Material

For isotropic medium : $\mathbf{P} = \epsilon_0 \chi \mathbf{E} \ \mathbf{D} = \epsilon \epsilon_0 \mathbf{E}$

2.2.1 Discussion 1

Q: How an uniaxial birefringent material can be used to make a quarter wave plate.?

Uniaxial birefringent material have principle refractive indices n_o , n_o and n_e . We can consider a plane-polarised EM wave $e^{i(kz-wt)}$ travels along O_z at a different speeds c/n_f or c/n_s depending on whether **E** is parallel to O_x or O_y As the wave trasverse the plate, the phase will shift: $e^{ik(z=0)} \to e^{ik_f(z=d)}$, where $k_f = \frac{\omega n_f}{c}$.

So the phase shift will depend on the optical thickness,d and also the refractive index:

Along fast axis, the change is $e^{i\omega n_f d/c}$.

Along slow axis, the change is $e^{i\omega n_s d/cs}$.

The Jones matrix for the plate can be written as

A quarter-wave plate is on with difference in phase shift corresponding to $\lambda/4$

3 Coherence

3.1 Coherence and Interference

Interference ideas provide a useful quantified description for the degree of correlation, or degree of coherence.

3.2 Temporal Coherence

3.2.1 Power Specturm of Temporal Coherence

Wiener Khinchine Theroem: The FT of the auto correlation function of a function is the quare modulus of the FT of the function itself

3.3 Spatial Coherence

4 Electrodynamics

- 4.1 Gauge in EM
- 4.2 A in simple cases
- 4.3 A in quantum mechanics
- 4.3.1 Hamiltonian
- 4.3.2 Aharanov-Bohm Effect
- 4.4 Maxwell Equation in terms of A and ϕ

$$\frac{\epsilon \mu}{c^2} \ddot{\phi} - \nabla^2 \phi = \frac{\rho}{\epsilon \epsilon_0}$$
$$\frac{\epsilon \mu}{c^2} \ddot{\mathbf{A}} - \nabla^2 \mathbf{A} = \mu \mu_0 \mathbf{J}$$

4.4.1 Lorenz condition

A suitable gauge that simplifies maxwell equation, by choosing the gauge: $\nabla \cdot \mathbf{A} + \epsilon \mu \frac{\phi}{c^2} = 0$ Note: for static filed the Lorenz condition is chosen to be Coulomb gauge.

4.5 Solution for A and ϕ

Square bracket mean "evaluated at the retarded time" $t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}$

5 Dipole Radiation

Accelerating charges are of the interest of radiating.

5.1 The Hertzian Dipole