RDFS Entailment

G. FalquetSemantic web technologies2014

• RDF is intended for use as a base notation for a variety of extended notations such as RDFS, OWL, RIF, ... whose expressions can be encoded as RDF graphs which use a particular vocabulary with a specially defined meaning. [1]

```
# OWL

:VegPizza rdf:type owl:Class;

owl:equivalentClass [ rdf:type

owl:Restriction;

:VegPizza rdfs:subClassOf:Pizza

owl:onProperty:hasTopping;

owl:allValuesFrom:VegTopping

]
```

1. https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative

Semantics

- For each notation there is a notion of interpretation
 - associates IRIs and blank nodes to domain objects
 - associates literals to values in a datatype domain
 - associates the interpretation of properties to binary relations over domain objects (extensions)
- An interpretation a graph is true if it satisfies
 - some semantic conditions
 - e.g. the extension of the interpretation of rdfs:subClassOf is a transitive relation
 - some axiomatic triples

RDF Interpretations

Entailment

A graph E N-entails a graph F iff

Each true N-interpretation of E is also a true N-interpretation of F.

(N is a notation such as RDF, RDFS, OWL, ...)

= The usual notion of logical consequence

RDFS-Entailments

Computing RDFS-Entailment

RDFS entailment can be computed by

- 1. adding the axiomatic triples to the graph
- 2. applying inference patterns

Some axiomatic triples

```
rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .
rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .
rdf:type rdfs:range rdfs:Class .
```

Inference patterns (rules)

	If S contains:	then S RDFS entails recognizing D:
rdfs1	any IRI t in D	t rdf:type rdfs:Datatype .
rdfs2	p rdfs:domain x . y p z .	y rdf:type x .
rdfs3	p rdfs:range x . y p z .	z rdf:type x .
rdfs4a	хру.	x rdf:type rdfs:Resource .
rdfs4b	хру.	y rdf:type rdfs:Resource .
rdfs5	x rdfs:subPropertyOf y . y rdfs:subPropertyOf z .	x rdfs:subPropertyOf z . (transitivity)
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)

(cont)

	If S contains:	then S RDFS entails recognizing D:
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)
rdfs7	p rdfs:subPropertyOf q . x p y .	xqy.
rdfs8	x rdf:type rdfs:Class .	x rdfs:subClassOf rdfs:Resource .
rdfs9	x rdfs:subClassOf y . z rdf:type x .	z rdf:type y .
rdfs10	x rdf:type rdfs:Class .	x rdfs:subClassOf x . (reflexivity)
rdfs11	x rdfs:subClassOf y . y rdfs:subClassOf z .	x rdfs:subClassOf z . (transitivity)
rdfs12	x rdf:type rdfs:ContainerMembershipProperty .	x rdfs:subPropertyOf rdfs:member .
rdfs13	x rdf:type rdfs:Datatype .	x rdfs:subClassOf rdfs:Literal .

Example

```
:q rdfs:range :d .:p rdfs:subPropertyOf :q .:d rdfs:subClassOf e .:a :p :b
```

RDFS Entails

:a :q :b

:b rdf:type :d

:b rdf:type :e

The rules are not complete

```
:p rdfs:subPropertyOf _:b .
  _:b rdfs:domain :c .
:d :p :e .
entails
:d rdf:type :c .
```

But cannot be obtained by applying the rules

rdfs7 would produces

:d _:b :e

which is not legal in RDF (blanks not allowed as predicates)

The rules become complete on generalized RDF graphs with

- blanks allowed as predicates
- literals allowed as subjects

Entailment and tools

- Triple stores
 - may automatically generate the entailed triples when new triples are added
 - and retract them when triples are removed
 - the entailment regime is usually selected at repository creation
- Reasoners
 - tools that perform entailment (or other reasoning tasks) on existing graphs
- SPARQL engines
 - either make use of the entailed triples
 - or have call a reasoner before (or while) executing queries

Entailment and Other Vocabularies

- The shared vocabularies may contain rdf triples that can be used in entailments
- A vocabulary must be physically imported into the working graph (there is no "import" statement in RDF)

```
My Graph

Oprefix time: ...
...
:worldCup19 time:hasBeginning :t1
...
...
```