MATH 126 Calculus III Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 20 March 2021

Table of Contents

- MATH 126 Calculus III Equations
 - Warning
 - Table of Contents
 - Vectors and Geometry of Space
 - 3D Coordinate System
 - Dot product
 - Cross product
 - Equations of lines
 - Equations of planes
 - Cylinders and quadratic surfaces
 - Vectors Functions
 - Vector functions and space curves
 - Arc length and curvature
 - Velocity and acceleration
 - Partial Derivatives
 - Function of several variables
 - Partial derivatives
 - Tangent plane and linear approximations
 - Extreme values
 - Other topics
 - Double Integrals
 - Taylor Series
 - Linear and quadratic approximations
 - Taylor polynomial and series

Vectors and Geometry of Space

3D Coordinate System

Description	Equations
Distance formula	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
Equation of a sphere centered at (a,b,c)	$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$
Norm/length/magnitude of vectors	$ {f a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Vector addition and subtration	$\mathbf{a}\pm\mathbf{b}=\langle a_1\pm b_1,a_2\pm b_2,a_3\pm b_3\rangle$
Vector scalar multiplication	$c\mathbf{a}=\langle ca_1,ca_2,ca_3 angle$
Properties of vectors	a + b = b + a a + (b + c) = (a + b) + c a + 0 = a a + (-a) = 0 c(a + b) = ca + cb (c + d)a = ca + da (cd)a = c(da) 1a = a

Description	Equations
Standard basis vectors	$egin{aligned} \mathbf{i} &= \langle 1,0,0 angle \ \mathbf{j} &= \langle 0,1,0 angle \ \mathbf{k} &= \langle 0,0,1 angle \end{aligned}$

Dot product

Description	Equations
Dot product	$\mathbf{a}\cdot\mathbf{b}=a_1b_1+a_2b_2+a_3b_3$
Properties of dot product	$\mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2$ $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ $(c\mathbf{a})\mathbf{b} = c(a \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$ $0 \cdot \mathbf{a} = 0$
Dot product and angle between vectors	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$ $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$
Dot product to check orthogonal vectors	$\mathbf{a} \cdot \mathbf{b} = 0$
Direction angles and direction cosines	$egin{aligned} \cos lpha &= rac{\mathbf{a} \cdot \mathbf{i}}{ \mathbf{a} \mathbf{i} } = rac{a_1}{ \mathbf{a} } \ \cos eta &= rac{a_2}{ \mathbf{a} } \ \cos \gamma &= rac{a_3}{ \mathbf{a} } \end{aligned}$
Unit vector and direction cosines	$rac{\mathbf{a}}{ \mathbf{a} } = \langle \coslpha, \coseta, \cos\gamma angle$
Scalar projection of ${f b}$ onto ${f a}$	$\operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} }$
Vector projection of ${f b}$ onto ${f a}$	$\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} } \frac{\mathbf{a}}{ \mathbf{a} } = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} ^2} \mathbf{a}$

Cross product

Description	Equations
Cross product	$egin{aligned} \mathbf{a} imes \mathbf{b} = egin{array}{cc c} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \ \end{pmatrix} = \ \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 angle \end{aligned}$
Cross product to generate orthogonal vectors	${f a} imes {f b}$ is orthogonal to both ${f a}$ and ${f b}$
Cross product and angle between vectors	$ \mathbf{a} imes \mathbf{b} = \mathbf{a} \mathbf{b} \sin heta$
Cross product to check parallel vectors	$\mathbf{a} imes \mathbf{b} = 0$
Cross product as the area of parallelogram	$A= \mathbf{a} imes\mathbf{b} $
Cross products of standard basis vectors	$egin{aligned} \mathbf{i} imes \mathbf{j} &= \mathbf{k} \\ \mathbf{j} imes \mathbf{k} &= \mathbf{i} \\ \mathbf{k} imes \mathbf{i} &= \mathbf{j} \end{aligned}$
Properties of cross product	$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ $(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$ $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
Scalar triple product as volume of parallelepiped	$V = \mathbf{a}\cdot(\mathbf{b} imes\mathbf{c}) $
Scalar triple product to check three coplanar vectors	$V = \mathbf{a} \cdot (\mathbf{b} imes \mathbf{c}) = 0$

Equations of lines

Description	Equations
Vector equation of a line	$\mathbf{r}=\mathbf{r}_0+t\mathbf{v}$
Parametric equations of a line through (x_0,y_0,z_0) , in direction of $\langle a,b,c angle$	$egin{aligned} x &= x_0 + at \ y &= y_0 + bt \ z &= z_0 + ct \end{aligned}$
Symmetric equation of a line	$\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$

Equations of planes

Description	Equations
Vector equation of a line segment	$egin{aligned} \mathbf{r}(t) &= (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \ t &\in [0,1] \end{aligned}$
Vector equation of a plane	$egin{aligned} \mathbf{n}\cdot(\mathbf{r}-\mathbf{r}_0) &= 0 \ \mathbf{n}\cdot\mathbf{r} &= \mathbf{n}\cdot\mathbf{r}_0 \end{aligned}$
Scalar equation of a plane through (x_0,y_0,z_0) , normal vector $\langle a,b,c angle$	$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$
Linear equation of a plane	ax + by + cz + d = 0
Distance from a point to a plane	$D = rac{ ax_1 + by_1 + cz_1 + d }{\sqrt{a^2 + b^2 + c^2}}$

Cylinders and quadratic surfaces

Equations
$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$
$rac{z^2}{c^2} = rac{x^2}{a^2} + rac{y^2}{b^2}$
$rac{z}{c}=rac{x^2}{a^2}+rac{y^2}{b^2}$
$rac{z}{c}=rac{x^2}{a^2}-rac{y^2}{b^2}$
$rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 1$
$-rac{x^2}{a^2}-rac{y^2}{b^2}+rac{z^2}{c^2}=1$

Vectors Functions

Vector functions and space curves

Description	Equations
Vector-valued function	$\mathbf{r}(t) = \langle f(t), g(t), h(t) angle$
Limit of a vector function	$\lim_{t o a} \mathbf{r}(t) = \langle \lim_{t o a} f(t), \lim_{t o a} g(t), \lim_{t o a} h(t) angle$
Continuity of vector function	$\lim_{t o a} {f r}(t) = {f r}(t)$
Parametric equation of space curves	$egin{aligned} x &= f(t) \ y &= g(t) \ z &= h(t) \end{aligned}$
Derivative of vector function	$\mathbf{r}'(t) = \lim_{h o 0} rac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$
Derivative of vector function	$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) angle$
Differentiation rules	$egin{aligned} [\mathbf{u}(t)+\mathbf{v}(t)]' &= \mathbf{u}'(t)+\mathbf{v}'(t) \ [c\mathbf{u}(t)]' &= c\mathbf{u}'(t) \end{aligned}$

Description	Equations
	$[f(t)\mathbf{u}(t)]' = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$ $[\mathbf{u}(t)\cdot\mathbf{v}(t)]' = \mathbf{u}'(t)\cdot\mathbf{v}(t) + \mathbf{u}(t)\cdot\mathbf{v}'(t)$ $[\mathbf{u}(t)\times\mathbf{v}(t)]' = \mathbf{u}'(t)\times\mathbf{v}(t) + \mathbf{u}(t)\times\mathbf{v}'(t)$ $[\mathbf{u}(f(t))]' = f'(t)\mathbf{u}'(f(t))$
Definite integral of vector function	$\int_a^b \mathbf{r}(t) \ dt = \langle \int_a^b f(t) \ dt, \int_a^b g(t) \ dt, \int_a^b h(t) \ dt angle$
Position vector	${f r}(t)$
Tangent (velocity) vector	${f r}'(t)$
Unit tangent vector	$\mathbf{T}(t) = rac{\mathbf{r}'(t)}{ \mathbf{r}'(t) }$

Arc length and curvature

Description	Equations
Length of a curve	$L = \int_a^b \! { m r}'(t) \; dt \ = \int_a^b \sqrt{[f(t)]^2 + [g(t)]^2 + [h(t)]^2} \; dt$
Arc length function	$egin{aligned} s(t) &= \int_a^t & ext{r}'(u) \; du \ &= \int_a^t \sqrt{[f(u)]^2 + [g(u)]^2 + [h(u)]^2} \; du \end{aligned}$
Rate of change in arc length and the tangent vector	$rac{ds}{dt} = \mathbf{r}'(t) $
Curvature	$\kappa(t) = \left rac{d\mathbf{T}}{ds} ight = rac{ \mathbf{T}'(t) }{ \mathbf{r}'(t) } = rac{ \mathbf{r}'(t) imes\mathbf{r}''(t) }{ \mathbf{r}'(t) ^3}$
Curvature in terms of function	$\kappa(x) = rac{ f''(x) }{[1+(f'(x))^2]^{3/2}}$
Unit normal vector	$\mathbf{N}(t) = rac{\mathbf{T}'(t)}{ \mathbf{T}'(t) }$
Binormal vector	$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$
Radius of osculating circle	$r=rac{1}{\kappa}$

Velocity and acceleration

Description	Equations
Position vector	${f r}(t)$
Tangent (velocity) vector	$\mathbf{v}(t) = \mathbf{r}'(t)$
Acceleration vector	$\mathbf{a}(t) = \mathbf{v}'(t)$
Tangential and normal components of acceleration	$\mathbf{a}(t) = v'\mathbf{T} + \kappa v^2\mathbf{N}$

Partial Derivatives

Function of several variables

Description	Equations
Functions of two variables	$\{f(x,y) (x,y)\in D\} \ z=f(x,y)$
Level curves	f(x,y)=k
Function of three variables	$\{f(x,y,z) (x,y,z)\in E\}$
Level surfaces	f(x,y,z)=k
Function of n variables	$f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$

Description	Equations
Interpretation of input of functions of several variables	1. n real variables $x_1,x_2,,x_n$ 2. a single point variable $(x_1,x_2,,x_n)$ 3. a single vector variable $\mathbf{x}=\langle x_1,x_2,,x_n\rangle$
Limit of function of two variables	$\lim_{(x,y) o (a,b)}f(x,y)=L$
Continuity of function of two variables	$\lim_{(x,y) o (a,b)}f(x,y)=f(a,b)$
Limit of function of several variables	$\lim_{\mathbf{x} o \mathbf{a}} f(\mathbf{x}) = L$
Continuity of function of several variables	$\lim_{\mathbf{x} o \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$

Partial derivatives

Description	Equations
Partial derivative with respect to $oldsymbol{x}$	$f_x(x,y) = \lim_{h o 0} rac{f(x+h,y)-f(x,y)}{h}$
Partial derivative with respect to $oldsymbol{y}$	$f_y(x,y) = \lim_{h o 0} rac{f(x,y+h) - f(x,y)}{h}$
Partial derivative rule	1. To find f_x , regard y as a constant and differentiate $f(x,y)$ with respect to x 2. To find f_y , regard x as a constant and differentiate $f(x,y)$ with respect to y
Clairaut's theorem	$f_{xy}(a,b)=f_{yx}(a,b)$

Tangent plane and linear approximations

Description	Equations
Tangent plane to a surface $z=f(x,y)$ at (x_0,y_0,z_0)	$z-z_0=f_x(x_0,y_0)+f_y(x_0,y_0)(y-y_0)$
Linear approximation	$f(x,y)pprox f(a,b)+f_x(a,b)(x-a)+\ f_y(a,b)(y-b)$
Total differential	$dz=f_x(x,y)dx+f_y(x,y)dy$

Extreme values

Description	Equations
Critical point	a point with $f_x(a,b)=0$ and $f_y(a,b)=0$, $(abla f=0)$, or one of the partial derivatives does not exist
Local max/min and critical point	If f has a local max/min at (a,b) , then (a,b) is a critical point
Second derivative test $((a,b)$ is a critical point)	$\begin{array}{l} D(a,b)=f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(ab)]^2\\ =\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}\\ \text{(a) If } D>0 \text{ and } f_{xx}(a,b)>0,\\ \text{then } f(a,b) \text{ is a local max}\\ \text{(b) If } D>0 \text{ and } f_{xx}(a,b)<0,\\ \text{then } f(a,b) \text{ is a local min}\\ \text{(c) If } D<0,\\ \text{then } f(a,b) \text{ is a saddle point} \end{array}$
Extreme value theorem for functions of two variables	If f is continuous on a closed, bounded set $D \in \mathbb{R}^2$, then f attains a absolute max and min at some points in D

Description	Equations
Closed boundary method (Finding absolute max/min)	1. Find the values of f at the critical points of f in D 2. Find the extreme values of f on the boundary of D 3. The largest value is the abs max; the smallest value is the abs min

Other topics

Chain rule, directional derivative, and gradient vector are not covered in MATH 126 but covered in MATH 324.

Double Integrals

MATH 126 covers double integrals in Cartesian coordinates and polar coordinates with applications. They are reviewed in MATH 324.

Taylor Series

Linear and quadratic approximations

Equations
$T_1(x)pprox f(b)+f'(b)(x-b)$
$ E_1 =\left f(x)-[f(b)+f'(b)(x-b)] ight $
$ f''(t) \leq M \ E_1 \leq rac{M}{2} x-b ^2$
$T_2(x) = f(b) + f'(b)(x-b) + rac{1}{2}f''(b)(x-b)^2$
$ E_2 = f(x)-T_2(x) $
$ E_2 \leq \frac{M}{6} x-b ^3$

Taylor polynomial and series

Description	Equations
nth Taylor polynomial	$T_n(x) = \sum_{k=0}^n rac{f^{(k)}(b)}{k!} (x-b)^k \ = f(b) + f'(b)(x-a) + rac{f''(b)}{2!} (x-a)^2 + + rac{f^{(n)}(b)}{n!} (x-b)^n$
Taylor inequality $(f^{(n+1)}(t) \leq M)$	$ f(x) - T_n(x) \leq \frac{M}{(n+1)!} x-b ^{n+1}$
Taylor series	$egin{aligned} & \lim_{n o \infty} T_n(x) \ & = \lim_{n o \infty} \sum_{k=0}^n rac{f^{(k)}(b)}{k!} (x-b)^k \ & = \sum_{k=0}^\infty rac{f^{(k)}(b)}{k!} (x-b)^k \end{aligned}$
Taylor series of exponential function	$e^x = \sum_{k=0}^\infty rac{x^k}{k!}$
Taylor series of sine	$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$
Taylor series of cosine	$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Geometric series as Taylor series $x \in (-1,1) \quad \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$