FVOCA

Módulo 1 (Aula Teórica)

Modelação e Análise Verificação e Validação de Sistemas Computacionais - RdP Eduardo Tovar <emt@isep.ipp.pt>

Índice

1. Introdução

- 2. Noções Básicas de Redes de Petri (RdP)
- 3. Regras de Evolução das RdP
- 4. RdP Generalizadas
- 5. Componentes de Modelação em RdP
- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM

Introdução (1)

modernos sistemas computacionais têm:

- crescente complexidade (e distribuição)
- crescente exigência de confiança no funcionamento e de qualidade de serviço

daí a necessidade de:

- utilizar ferramentas e métodos rigorosos nas fases de especificação, teste e análise de desempenho do sistema
- assegurar, logo na fase de concepção e especificação, elevada probabilidade de o sistema estar isento de erros de concepção

Introdução (2)

- ferramentas <u>formais</u> de modelação de sistemas de eventos discretos que permitam
 - especificação formal e não ambígua do sistema
 - grande capacidade de modelação
 - mecanismos de concorrência e sincronização
 - paralelismo
 - fluxo condicional e repetitivo
 - temporização
 - etc.
 - facilidade de validação do modelo e, mais importante, de validação, análise e teste do sistema modelado
 - ergonomia de utilização (também gráfica), e facilidade de exploração computacional do modelo

Introdução (3)

- estamos a falar de Redes de Petri (RdP)
 - introduzidas em 1962 por Carl Adam Petri (Alemanha)
 Petri C A "Fundamentals of a Theory of Asynchropous Information Flow" Pro

- Petri, C. A., "Kommunikation mit Automaten", Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition:, New York: Griffiss Air Force Base, Technical Report RADC-TR-65--377, Vol.1, 1966, Pages: Suppl. 1, English translation
- na web (página de repositório de RdPs):
 - http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Índice

- 1. Introdução √
- 2. Noções Básicas de Redes de Petri (RdP)
- 3. Regras de Evolução das RdP
- 4. RdP Generalizadas
- 5. Componentes de Modelação em RdP
- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM

Noções Básicas de RdP (1)

- elementos de definição de uma RdP
 - posição, representada pelo símbolo:
 - <u>transição</u>, representada pelo símbolo:
 - marca (ou testemunho), representada pelo símbolo:
 - arco (orientado), representado por:

Noções Básicas de RdP (2)

- uma <u>posição</u> (P_x)pode ser interpretada como:
 - uma condição; um estado de espera; um estado provisório, um recurso; uma posição geográfica; etc.
- uma <u>transição</u> (t_x) corresponde a uma ocorrência ou acontecimento (evento)
- uma <u>marca</u> pode representar:
 - uma condição satisfeita; um objecto está presente; um recurso disponível; etc.

Noções Básicas de RdP (3)

- as posições e as transições são interligadas por arcos:
 - que são orientados
 - ligam uma posição a uma transição ou uma transição a uma posição
 - têm obrigatoriamente de ter uma posição ou uma transição nas extremidades

Noções Básicas de RdP (4)

- neste exemplo de RdP, que modela um sistema, existem:
 - 5 posições:

$$P = \{P_1, P_2, P_3, P_4, P_5\}$$

4 transições:

$$t = \left\{ t_1, t_2, t_3, t_4 \right\}$$

e uma marcação inicial (o vector de marcação): [1]

O):
$$M_{0} = \begin{bmatrix} 1 \\ 0 \\ P_{2} \\ 0 \\ P_{3} \\ 0 \\ P_{4} \\ P_{5} \end{bmatrix}$$

 a marcação (número de marcas em cada posição) define, para um determinado instante, o estado do sistema

Noções Básicas de RdP (5)

- relativamente às interligações entre as posições e transições:
 - matriz de incidência anterior (W¹) às transições (arcos P → t):

$$W^{-} = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{matrix} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ \end{matrix}$$

 matriz de incidência posterior (W⁺) às transições (arcos t → P):

$$W^+ = \begin{bmatrix} 1 & t_2 & t_3 & t_4 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{matrix} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \end{matrix}$$

Noções Básicas de RdP (6)

- as matrizes de incidência W- e W+ e o vector de marcação inicial M_0 definem uma RdP, e constituem uma alternativa à representação gráfica
 - considere a sequinte RdP:

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

– qual o modelo gráfico?

Noções Básicas de RdP (7)

- as matrizes de incidência W- e W+ e o vector de marcação inicial M_0 definem uma RdP
 - passos para o modelo gráfico:

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

solução:

existem 4 posições e 4 transições:

Noções Básicas de RdP (8)

- as matrizes de incidência W- e W+ e o vector de marcação inicial M_0 definem uma RdP
 - passos para o modelo gráfico:

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

solução:

a partir da marcação inicial M_0 :

Noções Básicas de RdP (9)

- as matrizes de incidência W- e W+ e o vector de marcação inicial M_0 definem uma RdP
 - passos para o modelo gráfico:

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

solução:

utilizando a informação de W:

Noções Básicas de RdP (10)

- as matrizes de incidência W- e W+ e o vector de marcação inicial M_0 definem uma RdP
 - passos para o modelo gráfico:

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$W^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W^{+} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

solução:

mais a informação de W:

Índice

- 1. Introdução √
- 2. Noções Básicas de Redes de Petri (RdP) √
- 3. Regras de Evolução das RdP
- 4. RdP Generalizadas
- 5. Componentes de Modelação em RdP
- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM

Regras de Evolução das RdP (1)

- numa RdP, a marcação (n.º de marcas em cada posição) define o estado do sistema modelado num determinado instante
- a evolução de estado do sistema corresponde, no modelo, à evolução da marcação da RdP
- a evolução dá-se por "disparo" de uma transição

Regras de Evolução das RdP (2)

- REGRA 1 (condição para o disparo de uma transição):
 - uma transição está habilitada (pode disparar) por uma determinada marcação se, e só se, todas as posições anteriores à transição têm pelo menos uma marca
 - exemplos:

Regras de Evolução das RdP (3)

- REGRA 2 (evolução da marcação após disparo):
 - após o disparo de uma transição:
 - o número de marcas de cada posição anterior à transição diminui em uma unidade
 - e o número de marcas de cada posição posterior à transição aumenta em uma unidade
 - exemplos:

Regras de Evolução das RdP (4)

- REGRA (3) (eventos discretos):
 - num determinado instante só pode disparar uma transição (o disparo de uma transição – e a correspondente evolução da rede – corresponde a tempo nulo)

Regras de Evolução das RdP (5)

- voltando a este exemplo de RdP
 - a marcação inicial é:

$$\boldsymbol{M}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 t_1 é a única transição
 habilitada, pelo que só t_1 pode
 disparar

Regras de Evolução das RdP (6)

 após o disparo de t₁ a marcação resultante é a seguinte:

$$M_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_1} M_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

t₂ e t₃ passam a estar habilitadas

Regras de Evolução das RdP (7)

 se para M₁ for t₂ a disparar, a marcação resultante é a seguinte:

$$M_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_{1}} M_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

 só t_3 passa a estar habilitada a partir de M_2

Regras de Evolução das RdP (8)

 se para M₁ for t₂ a disparar, a marcação resultante é a seguinte:

$$M_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_{1}} M_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_{3}} M_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

só t_2 passa a estar habilitada
 a partir de M_3

Regras de Evolução das RdP (9)

- a partir de M_3 só t_2 pode disparar, e a partir de M_2 só t_3 pode disparar, e a marcação resultante é igual:

$$M_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_{1}} M_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{t_{2}} M_{2} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{t_{3}} M_{4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$M_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

só t_4 passa a estar habilitada
 a partir de M_4

Regras de Evolução das RdP (10)

- a partir de M_4 só t_4 pode disparar, e obtém-se uma marcação igual à marcação inicial (M_0) :

 o que obtivemos foi um <u>gráfico</u> <u>de marcações acessíveis</u>

Regras de Evolução das RdP (11)

- Modelo RdP de um Sistema: <u>EXEMPLO A</u>
 - a refeição dos filósofos (Dijkstra's Dining Philosophers):
 - filósofos foram a um congresso
 - parte (mais) importante do congresso: jantar de gala
 - » comida chinesa
 - » mesas de quatro
 - » utilização de pauzinhos chineses (hashis) para comer
 - » só quatro pauzinhos por mesa, um entre cada filósofo
 - » os filósofos ou meditam, ou comem (se o pauzinho de cada lado partilhado com o vizinho de mesa – estiver disponível)

Regras de Evolução das RdP (12)

exemplo da refeição dos filósofos:

- modelo RdP

F₁ medita

Regras de Evolução das RdP (13)

F₁ medita exemplo da refeição dos filósofos: transições habilitadas Pauzinho P₁ F₁ come F_4 P_3 Eduardo Tovar CISTER-ISEP, 2020 30

Regras de Evolução das RdP (14)

exemplo da refeição dos filósofos:

- filósofo 2 decide comer

só o F4 pode tb. comer

F₁ medita

Regras de Evolução das RdP (15)

 NOTA: para além de uma transição ter de estar habilitada, existe uma condição lógica (verdadeira ou falsa) a ela associada:

a transição t_x está
 habilitada, mas o
 filósofo F2 continua a
 comer (condição
 boleana *farto* é falsa)

a transição t_y está _ _ habilitada, mas o filósofo F4 continua a meditar (condição boleana **fome** é falsa)

Regras de Evolução das RdP (16)

- por simplificação, essas condições lógicas às vezes não aparecem explicitamente nos modelos
- pode acontecer que a condição lógica associada a uma transição seja sempre verdadeira
- para explicitar isso vamos utilizar a seguinte notação
 - transição sempre verdadeira (disparo imediato):

transição condicionada por um valor lógico (por exemplo tempo):

Regras de Evolução das RdP (17)

- modelo RdP de um Sistema: EXEMPLO B
 - Numa plataforma computacional existe um processo (Proc. 1) que executa continuamente.
 O Proc. 1 corresponde à execução sequencial de 4 procedimentos (A, B, C, D), cada um dos quais demora algum tempo a executar.
 - Existe na mesma plataforma um outro processo (**Proc. 2**). Proc. 2 tem dois estados (WAIT e MONITOR). Sempre que Proc. 1 começa a executar o procedimento B ou o D, e enquanto de mantiver a executar um desses procedimentos, Proc. 2 deve executar MONITOR (procedimento que demora algum tempo).

Regras de Evolução das RdP (18)

modelo RdP de um Sistema: <u>EXEMPLO B</u>

Regras de Evolução das RdP (19)

modelo RdP de um Sistema: <u>EXEMPLO B</u>

Regras de Evolução das RdP (20)

modelo RdP de um Sistema: <u>EXEMPLO B</u>

Assim estamos a condicionar o disparo da transição à existência de uma marca em B e uma marca em D (coisa que nunca pode acontecer no Proc. 1). É um **AND** lógico.

Queremos um OR lógico...

Regras de Evolução das RdP (21)

modelo RdP de um Sistema: <u>EXEMPLO B</u>

A evolução em Proc. 2 de WAIT para MONITOR pode fazer-se ou por ... ou por ... Ora aí está um **OR** lógico...

CISTER-ISEP, 2020

Regras de Evolução das RdP (22)

modelo RdP de um Sistema: <u>EXEMPLO B</u>

Regras de Evolução das RdP (23)

- modelo RdP de um Sistema: <u>EXEMPLO B</u>
 - (utilizando Labeled Petri Nets LPN)
 - associado a uma transição existe uma etiqueta
 - par (operadores, condição lógica)
 - a ferramenta que vamos utilizar não permite etiquetas
 - por outro lado, perde-se (com operadores mais complexos) a objectividade e clareza do modelo gráfico e regras

Índice

- 1. Introdução √
- 2. Noções Básicas de Redes de Petri (RdP) √
- Regras de Evolução das RdP √

4. RdP Generalizadas

- 5. Componentes de Modelação em RdP
- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM

RdP Generalizadas (1)

- modelo RdP de um Sistema:
 - Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

RdP Generalizadas (2)

modelo RdP de um Sistema:

 Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

RdP Generalizadas (3)

- modelo RdP de um Sistema:
 - Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

RdP Generalizadas (4)

modelo RdP de um Sistema:

 Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

RdP Generalizadas (5)

modelo RdP de um Sistema:

 Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

Situação em que há 5 processos a ler em simultâneo e 1 à espera (capacidade esgotada)...

RdP Generalizadas (6)

- modelo RdP de um Sistema:
 - Numa plataforma computacional podem ser lançados processos que vão ler uma estrutura de dados. Por uma questão de performance do sistema, não são autorizados mais do que 5 leitores em simultâneo.

RdP Generalizadas (7)

- modelo RdP de um Sistema (com processos que escrevem):
 - ... Podem também ser lançados processos que v\u00e3o escrever a estrutura de dados (nenhum outro poder\u00e1 estar a ler)...

RdP Generalizadas (8)

- modelo RdP de um Sistema (com processos que escrevem):
 - ... Podem também ser lançados processos que vão escrever a estrutura de dados (nenhum outro poderá estar a ler)...

RdP Generalizadas (9)

- generalização das regras das RdP
 - os <u>arcos têm pesos associados</u> (até aqui o seu peso era sempre "1")
 - generalização da <u>REGRA 1</u> (condição para o disparo de uma transição):
 - uma transição está habilitada (pode disparar) por uma determinada marcação se, e só se, todas as posições anteriores à transição têm um número de marcas igual ou superior ao peso do arco que as liga à transição

RdP Generalizadas (10)

- generalização das regras das RdP
 - os <u>arcos têm pesos associados</u> (até aqui o seu peso era sempre "1")
 - generalização da <u>REGRA 2</u> (evolução da marcação após disparo):
 - o número de marcas de cada <u>posição anterior</u> à transição <u>diminui em número</u> igual ao peso do arco que liga a posição à transição
 - e o número de marcas de cada <u>posição posterior</u> à transição <u>aumenta em</u> <u>número igual ao peso do arco que liga a posição à transição</u>

CISTER-ISEP, 2020

Eduardo Tovar

RdP Generalizadas (11)

- modelo RdP de um Sistema (com processos que escrevem):
 - ... Podem também ser lançados processos que v\u00e3o escrever a estrutura de dados (nenhum outro poder\u00e1 estar a ler)...

RdP Generalizadas (12)

- modelo RdP de um Sistema (com processos que escrevem):
 - ... Podem também ser lançados processos que v\u00e3o escrever a estrutura de dados (nenhum outro poder\u00e1
 estar a ler)...

RdP Generalizadas (13)

- as RdP generalizadas têm sempre um equivalente RdP ordinária (pesos dos arcos sempre "1"), mas é difícil, como se pode deduzir do exemplo do controlo de acessos a uma estrutura de dados, obter o equivalente
 - vejamos um exemplo mais simples:

Índice

- 1. Introdução √
- 2. Noções Básicas de Redes de Petri (RdP) √
- 3. Regras de Evolução das RdP √
- 4. RdP Generalizadas √

5. Componentes de Modelação em RdP

- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM

Componentes de Modelação (1)

- nos modelos RdP, existem algumas "figuras de modelação" (componentes de modelação) muito comuns
 - incluem-se (já vimos alguns):
 - paralelismo
 - sincronização
 - partilha de recursos
 - memorização
 - leitura
 - limitação de capacidade
 - alternância
 - alternância com exclusão
 - contador
 - leitura de zero marcas
 - etc.

Componentes de Modelação (2)

paralelismo

- após o disparo de t_1 e até ao disparo t_z , existem duas evoluções em paralelo:
 - de P_1 e a P_x , e de de P_2 e a P_y
 - cada uma tem a sua dinâmica temporal própria
- no exemplo, as duas sequências independentes
 vão sincronizar em t_z

Componentes de Modelação (3)

sincronização

- à semelhança do exemplo anterior, em a) é representada um sincronização recíproca
- em b), a sequência do lado esquerdo é independente da sequência do lado direito (o inverso não é verdade)
 - t_2 só pode disparar após o disparo de t_1
 - este acontecimento é memorizado em P_m

Componentes de Modelação (4)

partilha de recursos

no exemplo ao lado, as operações A, B, C e D partilham o recurso Rec

CISTER-ISEP, 2020

Eduardo 10vai

Componentes de Modelação (5)

- partilha de recursos (2)
 - e se houvesse 2 recursos Rec disponíveis (mas A, B, C e D só podem utilizar 1 de cada vez)?
 - notar a utilização de <u>limitadores de capacidade</u> para as operações A, B, C e D

Componentes de Modelação (6)

memorização

- em a), P₁ memoriza o facto
 de t₁ ter disparado, e
 autoriza o disparo posterior
 de t₂
 - de notar que t₂ poderia ficar habilitada por via de marcas provenientes de outro subsistema
- em b), P₁ vai memorizando um número, por exemplo de pedidos pendentes de serviço (no fundo trata-se de um <u>contador</u>)

Componentes de Modelação (7)

<u>leitura</u>

o disparo da transição t₁ é condicionado pela existência de pelo menos uma (ou pelo menos duas – b)) marca em P₁, sem, no entanto, alterar, por via desse disparo, a marcação de P₁

Componentes de Modelação (8)

- limitação de capacidade
 - vários exemplos de limitação de capacidade de P₁ a 3 marcas

Componentes de Modelação (9)

alternância

 os processos A e B, utilizam, em exclusão mútua, o recurso *Rec*, e em alternância

Componentes de Modelação (10)

- alternância (2)
 - o que está na página anterior, é alternância com exclusão mútua:
 - pode ser simplificado...

Componentes de Modelação (11)

- contador
 - em b) com overload em 10

Componentes de Modelação (12)

leitura de zero marcas

- leitura de P₂: se P₂ tiver
 uma marca, é disparada t₂;
 se tem zero é disparada t₃
 - P₃ funciona não como limitador mas como o "valor máximo" de P₂
 - se P₃ tiver 100 marcas, P₂ terá 0 marcas

Componentes de Modelação (13)

- vamos agora ilustrar alguns destes conceitos com um exemplo
 - admita a análise e especificação de um software de controlo de um sistema industrial computorizado
 - as peças a processar entram no sistema num buffer de entrada (IN) e podem ser processadas ou na máquina 1 (M1) ou na máquina 2 (M2), ambas com capacidade 1; as peças maquinadas são colocadas num buffer de saída (OUT); as 4 operações de transporte e manipulação são executadas por um robô

Componentes de Modelação (14)

modelo RdP

 o fluxo das operações, o "OU" máquina 1 "OU" 2, permitem facilmente esboçar o esqueleto da rede

Componentes de Modelação (15)

modelo RdP

- o fluxo das operações, o "OU" máquina 1 "OU" 2, permitem facilmente esboçar o esqueleto da rede
- acrescentar a noção de capacidade limitada das máquinas

Componentes de Modelação (16)

modelo RdP

- o fluxo das operações, o "OU" máquina 1 "OU" 2, permitem facilmente esboçar o esqueleto da rede
- acrescentar a noção de capacidade limitada das máquinas
- acrescentar recurso partilhado (robô) pelas operações de movimento

Componentes de Modelação (17)

- modelo RdP (análise)
 - o raciocínio parece correcto, mas a análise permite verificar que a especificação está errada:
 - admitindo que chega um componente ao *buffer* de entrada (IN)

Componentes de Modelação (18)

- modelo RdP (análise)
 - esse componente pode ser processado na M1, pelo que é feita a operação de transporte MV1 (o recurso robô está disponível)

Componentes de Modelação (19)

- modelo RdP (análise)
 - finda a operação de transporte, o recurso robô é libertado e começa o processamento do componente em M1; e admita que entretanto chega um novo componente a IN

Componentes de Modelação (20)

- modelo RdP (análise)
 - esse novo componente poderá ser processado em M2, mas a especificação do modelo não impede que seja processado em M1, pelo que começa a ser feita a operação de transporte MV1
 - resulta uma situação <u>de</u> <u>bloqueio!!!</u>
 - a partir deste estado,
 só pode disparar a
 transição de entrada
 em IN

Componentes de Modelação (21)

- modelo RdP (correcão do modelo)
 - a condição para iniciar o transporte para M1 (ou M2) deve ser ter robô disponível e máquinas vazias
 - esta RdP simples pôde ser facilmente analisada (e o problema identificado) por "trace" manual das evoluções possíveis
 - não exequível em modelos mais complexos, dai:
 - ferramentas computacionais que utilizam modelos de RdP para analisar um sistema

Índice

- 1. Introdução √
- 2. Noções Básicas de Redes de Petri (RdP) √
- 3. Regras de Evolução das RdP √
- 4. RdP Generalizadas √
- 5. Componentes de Modelação em RdP √
- 6. Análise Computacional de Modelos RdP
- 7. Verfificação de Propriedades dos Sistemas Modelados
- 8. Utilização da Ferramenta HP-SIM