Relatório de Análise de Algoritmos de Ordenação

Este relatório apresenta uma análise de desempenho dos algoritmos de ordenação Bubble Sort, Insertion Sort e Quick Sort aplicados a três tipos de conjuntos de dados: aleatório, ordenado crescente e ordenado decrescente (cada um com arquivos de 100, 1000 e 10000 itens). Os tempos de execução são valores em milissegundos (ms) para mostrar o comportamento comparativo entre os algoritmos.

Resultados de Tempo de Execução:

Conjunto de Dados	Bubble Sort	Insertion Sort	Quick Sort
Aleatório 100	1ms	< 0ms	< 0ms
Crescente 100	< 0ms	< 0ms	< 0ms
Decrescente 100	< 0ms	< 0ms	< 0ms
Aleatório 1000	20ms	10ms	1ms
Crescente 1000	1ms	< 0ms	< 0ms
Decrescente 1000	5ms	1ms	< 0ms
Aleatório 10000	376ms	109ms	4ms
Crescente 10000	124ms	<0ms	1ms
Decrescente 10000	354ms	142ms	1ms

Conclusão:

Como ilustrado, o Quick Sort, geralmente, apresenta o menor tempo de execução, independentemente do tipo de conjunto de dados, isso considerando que o mesmo esta utilizando um pivô randômico. Caso estivesse com um pivô fixo no ultimo elemento, não teria um desempenho tão bom em listas já ordenadas.

O Insertion Sort e o Bubble Sort tendem a aumentar o tempo de execução em conjuntos de dados não ordenados. Porém em listas ordenadas em ordem crescente o Insertion Sort se sobressai.