General Physics Midterm Exam 2024.10.24

- 1. (25%) A soccer player kicks a soccer ball of mass $0.25\,kg$ that is initially at rest. The foot of the player is in contact with the ball for $10^{-3}s$, and the force of the kick is given by $F(t) = (3 \times 10^6 t 3 \times 10^9 t^2) N$ for $0 \le t \le 10^{-3}s$, where t is in seconds. Find the magnitudes of the following quantities.
- a. (5%) The impulse on the ball due to the kick.
- b. (5%) The average force on the ball from the player's foot during the period of contact.
- c. (5%) The maximum force on the ball from the player's foot during the period of contact.
- d. (5%) The ball's velocity at $t = 10^{-3} s$.
- e. (5%) The ball's displacement during $0 \le t \le 10^{-3} s$.

- 2. (25%). In the above figure, a block of mass $3 \, kg$ slides along a path that is without friction until the block reaches the rough region of length $L=0.3 \, m$, which begins at height $h=0.45 \, m$ on a ramp of angle $\theta=30^\circ$. In that rough region, the coefficient of kinetic friction is $\sqrt{3}$. The block passes through point A with a speed of $5 \, m/s$. Assume the gravitational acceleration $g=10 \, m/s^2$.
- a. (5%) What is the velocity of the block when it just touches the rough region?
- b. (5%) What is the velocity of the block when it reaches point B?
- c. (5%) What is the greatest height the block can reach?
- d. (5%) Assuming that the block mass increases from 3 kg to 5 kg, what is the greatest height the block can reach?
- e. (5%) Assuming that the coefficient of kinetic friction increases from $\sqrt{3}$ to $3\sqrt{3}$, what is the greatest height the block can reach?

3. (25%) Consider two point masses, m_1 and m_2 , located at position vectors $\vec{r_1}$ and $\vec{r_2}$, respectively.

b. (5%) Express the position vectors $\vec{r_1}$ and $\vec{r_2}$ in terms of the center-of-mass position \vec{R} and the relative position $\vec{r} \equiv \vec{r_1} - \vec{r_2}$.

c. (5%) Demonstrate that the total kinetic energy can be written as $\frac{1}{2}MV^2+\frac{1}{2}\mu v^2$, where $M\equiv m_1+m_2$ is the total mass, $\mu\equiv m_1m_2/(m_1+m_2)$ is the reduced mass, $\vec{V}\equiv d\vec{R}/dt$ is the center-of-mass velocity, and $\vec{v}=d\vec{r}/dt$ is the relative velocity.

d. (5%) What is the criterion for the two point masses to escape from each other (i.e., the escape velocity)? [Hint: Assume m_1 and m_2 are comparable in magnitude.]

e. (5%) When the two point masses are in circular orbits around their common center of mass (see the figure on the right), what is their common orbital period?

4. (25%) Consider the simple pendulum shown in the figure on the right, where a ball of mass m is attached to a string of length L.

a. (5%) What is the potential energy U of this system as a function of θ ?

b. (7%) For small-angle oscillations, show that $U \propto x^2$ (like a spring), where x is the horizontal displacement. What is the effective spring constant k? [Hint: $\sin(\theta) \sim \theta$ and $\cos(\theta) \sim 1 - \theta^2/2$ when $\theta \ll 1$.]

c. (7%) Show that for $\theta \ll 1$, the horizontal force on the ball satisfies Hooke's law, $F_x = -kx$, where k is the spring constant in part (b).

d. (6%) From part (c) and assuming x=0 and $dx/dt=v_0$ at t=0, find the analytical expression for x(t) (i.e., the horizontal displacement as a function of time).

