# Organic Chemistry Concepts LOKT.09.051

 $\pi$ -bond reactivity

## $\pi$ – bonds

$$c = c$$
  $-c = c$ 

- C C
- C = C
- C ≡ C
- C O
- C = O
- C − N
- C = N
- C = N

- 83 85 kcal/mol
- 146 151 kcal/mol
- 199 200 kcal/mol
  - 85 91 kcal/mol
- 173 181
  - 69 75 kcal/mol
  - 143 kcal/mol
  - 204 kcal/mol

#### Radical reaction mechanism

Radical stability determines the reaction center

#### Ethene polymerization

$$H_2C = CH_2$$

Polyethene or polyethylene







RÖ:
$$H_2C - CH_2$$

$$H_2C - CH_2$$

RO:
$$H_2C - CH_2$$

$$H_2C - CH_2$$

$$H_2C - CH_2$$

RÖ:
$$H_{2}C - CH_{2}$$

$$H_{2}C - CH_{2}$$

$$H_{2}C - CH_{2}$$

$$H_{2}C - CH_{2}$$

#### Ionic reaction mechanism



$$C = C$$

# $\pi$ - bond as base



# $\pi$ - bond as nucleophile



### H-Hal addition



#### Markovnikov Rule

#### Markovnikov Rule

Main product Side product



#### Conjugated double bonds

#### **Triple bonds**

$$RC \stackrel{\longleftarrow}{=} CH \xrightarrow{\stackrel{\longleftarrow}{H} \stackrel{\frown}{=} Br} \begin{bmatrix} R - \overset{\longleftarrow}{C} = C \\ H \end{bmatrix} \xrightarrow{\stackrel{:Br:}{:Br:}} R = C = C \\ H$$

#### Water addition in acidic medium

$$CH_3 \longrightarrow CH_2 + \mathbf{HOH} \xrightarrow{\mathbf{H}_3\mathbf{O}^+} CH_3 \longrightarrow CH_2 - \mathbf{H}$$

$$CH_3 \longrightarrow CH_2 \longrightarrow CH_2 - \mathbf{H}$$

$$H_{3}C$$
 $C = C$ 
 $H_{2}SO_{4}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{2}CH_{3}$ 
 $CH_{3}$ 
 $CH_{2}CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{2}CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{2}CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{2}CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{4}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}CH_{5}CH_{5}$ 
 $CH_{5}CH_{5}CH_{5}$ 

# **Polymerization**

#### Halogen addition

$$C = C + X_2 \longrightarrow X - C - C - X$$

$$CH_{3}CH = CHCH(CH_{3})_{2} \xrightarrow{Br_{2}} CH_{3}CHCHCH(CH_{3})_{2}$$

$$CHCI_{3} \qquad | \qquad |$$

$$0^{\circ} C \qquad Br Br$$

$$(100\%)$$











#### **Bromonium ion**



$$(CH_3)_2C=CH_2$$
  $\xrightarrow{Br_2}$   $(CH_3)_2CCH_2Br$  OH

#### Diels-Alderi reaktsioon

- Otto Diels, Kurt Alder; Nobel prize, 1950
- Dieen + alkeen (alküün)



#### Otto Paul Hermann Diels 1876-1954



**Kurt Alder** 1902-1958





Dien Alkene, Dienophile

Cyclohexene



Cyclic reaction

