Implementation of Micro-blogging User Intention Modeling

Based on Behavior Analysis

Purpose: Determine who the real users are, versus the fake ones.

Data Source: The data came from Sina Weibo.

Method for Analysis: Classification.

What I did in this project:

- 1. Labeled the users according to these categories:
 - (1) Users who like to share stories, mottos.
 - (2) Users who use twitter to do marketing.
 - (3) Users created to influence the public opinion.
 - (4) Users created as fake fans.
 - (5) Users who like to post their own ideas.
 - (6) Users who are lazy at posting own ideas. Instead, they love to retweet or make comments.
 - (7) Silent users.
 - (8) Users own the merits of (5) (6).

I labeled 506 users in total.

- 2. Gather statistical data by keyword matching and other calculation.
 - (1) Total number of posts.
 - (2) Percentage of original posts.
 - (3) Percentage of retweets.
 - (4) Number of comments / Number of posts.
 - (5) Percentage of posts that shares stories, mottos, etc.
 - (6) Percentage of marketing posts.

- (7) Number of followers.
- (8) Number of followings.
- (9) How often the user retweet same content.
- 3. Divide the labeled user into training set (323) and testing set (183).

Training Set

label	Number of users	Percentage
1	25	7.740%
2	17	5.263%
3	21	6.502%
4	40	12.384%
5	33	10.217%
6	22	6.811%
7	136	42.105%
8	29	8.978%

Testing Set

label	Number of users	Percentage
1	8	4.372%
2	16	8.743%
3	9	4.918%
4	20	10.929%
5	16	8.743%
6	11	6.011%
7	83	45.355%
8	20	10.929%

4. SVM: Overall precision is 78.69%.

label	True positive rate(TP/P)	Precision (TP/(TP+FP))
1	4/8=50.00%	4/15=26.67%
2	7/16=43.75%	7/7=100.00%
3	8/9=88.89%	8/14=57.14%
4	18/20=90.00%	18/20=90.00%
5	12/16=75.00%	12/18=66.67%
6	5/11=45.45%	5/11=45.45%
7	82/83=98.80%	82/83=98.80%
8	8/20=40.00%	8/15=53.33%

5. C5.0 Decision Tree: Overall precision is 78.69%.

label	True positive rate(TP/P)	Precision (TP/(TP+FP))
1	3/8=37.50%	3/14=21.43%
2	11/16=68.75%	11/15=73.33%
3	9/9=100.00%	9/10=90.00%
4	20/20=100.00%	20/25=80.00%
5	13/16=81.25%	13/20=65.00%
6	7/11=63.64%	7/8=87.50%
7	79/83=95.18%	6/13=46.15%
8	6/20=30.00%	82/83=98.80%

6. I also develop a Java demo, which is responsible for transforming the data into the input data and analyze those data by Libsvm.