

Universidade do Minho Escola de Engenharia

Trabalho Prático

Introdução aos Algoritmos, à Programação e às Bases de Dados

Mestrado em Bioinformática 2022/2023

Ana Lisboa PG49831 Bruna Almeida PG51187 Luciana Martins PG49839

Índice

Introdução	3
1.1 Contextualização, motivação e objetivos	
Implementação	
2.1 Identificação das identidades, atributos e relacionamentos	
2.2 Modelo conceptual	4
2.3 Modelo lógico	5
2.4 Modelo físico	5
2.4.1 Povoação do modelo físico	5
Análise crítica e perspectivas futuras	8

1. Introdução

1.1 Contextualização, motivação e objetivos

Os bancos de dados biológicos acarretam um papel central na bioinformática, uma vez que proporcionam aos cientistas o acesso a uma ampla e vasta variedade de dados biologicamente relevantes, incluindo sequências genómicas de uma gama cada vez mais abrangente de organismos e as suas informações biológicas associadas. Este armazenamento de dados torna-se necessário, uma vez que, é notável um aumento de volume gerado nos últimos anos e, sobretudo, da necessidade de tratamento de informações através de pesquisas, processamentos e análises de resultados. Assim, os bancos de dados biológicos utilizam aplicações e diversos sistemas de armazenamento de forma a ser mais acessível e funcional as informações relativas às sequências e respectivas anotações.

O principal objetivo deste projeto foi selecionar organismos da nossa preferência, sem qualquer critério definido e retirar os respectivos ficheiros do GenBank para realizar a nossa base de dados.

Recolhemos ficheiros Genbank de cinco organismos, sendo estes o peixe balão (*Tetraodontidae*), um ácaro (*Tetranychus urticae*), uma bactéria de urso (*Mycoplasma sp. Bear*), o chimpanzé (*Pan troglodytes*) e a planta floco-de-neve (*Trevesia palmata*), para possibilitar posteriormente a busca por artigos relacionados e o armazenamento da informação nestes contida. Optamos por escolher organismos com características distintas, desde bactérias, plantas, mamíferos e peixes, aumentando a diversidade da nossa amostra.

2. Implementação

Para permitir a implementação da base de dados desejada, é necessário primeiro definir as entidades e seus atributos, bem como os relacionamentos entre as diferentes entidades. É importante destacar que cada entidade está representada por uma tabela com atributos em colunas e as linhas contém dados para cada item que corresponde ao referente atributo.

2.1 Identificação das identidades, atributos e relacionamentos

Como entidades temos "Genbank informations", "PubMed Informations" e "Protein Informations". Como o próprio nome indica, "Genbank informations" representa a informação contida nos ficheiros Genbank como a sequência de DNA "dna sequence", o tamanho da sequência "length", o organismo "dnasource", a definição "definition" e o código do PubMed correspondente "pubmedcod". Neste caso, como chave primária não nula temos o acession number do locus "locusid", possibilitando o estabelecimento de relações com outras entidades. A identidade "PubMed Informations" tem como chave primária, não nula o código do PubMed "pubmedcod", tendo outros atributos como data de publicação "publication_date",

nome dos autores "authors", título "title", afiliação "affiliation", abstract "abstract", o link da publicação "publication_link" e acession number "locusid", sendo este último chave estrangeira não nula e única. Por fim a entidade "**Protein Informations**" tem como chave primária, não nula e única o acession number da proteina "locus_protein", como chave estranegira, não nula e única o acession number do locus "locus_dna", o organismo "source", definição "definition", a sequência da proteína "protein_sequence" e o seu respectivo tamanho "length". Criamos dois relacionamentos "included" e "related to" que associam as nossas entidades numa proporção de 1 para N.

2.2 Modelo conceptual

Através do software TerraER foi possível criar o modelo conceptual da nossa base de dados (Figura 1). No esquema estão representadas as entidades, os atributos e as suas respectivas relações, que ligam as nossas entidades numa proporção de 1 para N. Este esquema irá servir de base para os passos seguintes.

Figura 1- Esquema conceptual de uma base de dados aplicada às sequência dos 5 organismos e respetivas informações, realizado através do software TerraER.

2.3 Modelo lógico

Após a execução do modelo conceptual, e tendo este por base, utilizamos o MySQL Workbench para o desenvolvimento do modelo lógico (Figura 2).

Figura 2- Esquema lógica da base de dados aplicada às sequências dos 5 organismos e respetivas informações, realizado através do MySQL Workbench.

2.4 Modelo físico

2.4.1 Povoação do modelo físico

Primeiramente, fizemos download dos ficheiros GenBank dos nossos organismos escolhidos. Utilizando o MySQL Workbench criamos uma conexão denominada "TrabalhoIAP" e de seguida criamos um novo esquema denominado da mesma forma, para conseguirmos através do módulo *mysql.connector* do Python, ligarmo-nos à base de dados. Com esta etapa concluída, conseguimos criar as nossas entidades enquanto tabelas através do Python ("GenBank_Informations", "PubMed_Informations" e "Protein_Informations"). Antes de iniciarmos a povoação das nossas tabelas, recorremos também ao *Entrez* do BioPython para conseguirmos retirar informações igualmente relevantes como o abstrato, a afiliação e a data de publicação apenas através do *acession number* de cada ficheiro GenBank. Posto isto, utilizando o módulo de expressões regulares, foi-nos possível aceder aos restantes dados

necessários, tais como, o *locus* e *locus da proteína, source, definition, pubmedcod, authors, title, dnasequence* e *protein_sequence, length* (de ambas). Para finalizar, povoamos as tabelas usando as funções *cursor*, *execute* e *commit.* Todo o código referente a esta explicação, encontra-se no GitHub partilhado.

locusid	dnasource	definition	pubmedcod	dnasequence	length
AB725596	Mycoplasma sp. Bear	Mycoplasma sp. Bear genes for 16S rRNA, 16S	23313325	$gaccttggcttcggccttggttagtggcaaacgggtgagtaat\dots\\$	2057 bp
AL954205	Pan troglodytes (chimpanzee)	Pan troglodytes chromosome 22 done RP43-04	15164055	$gaattctcaaacctttcaagaagcacactttcttttttcattattt\dots\\$	174216 bp
KF591508	chloroplast Trevesia palmata	Trevesia palmata voucher US:Jun Wen 5669 NA	24184542	$\tt gttcctatgttaataggagtgggacttcttcttttttccgacggca$	1891 bp
KY675904	mitochondrion Tetraodontidae sp. 1 JP-2017	Tetraodontidae sp. 1 JP-2017 isolate RSFL561 c	28771590	$ccttctcattcgggctgaactcagccaaccaggcgccctcctag\dots\\$	561 bp
NC_010526	mitochondrion Tetranychus urticae (two-spotte	Tetranychus urticae mitochondrion, complete g	18408150	$ataaaatgaattatatcaacaaatcataaaaatattggaacta\dots\\$	13103 bp
NULL	NULL	NULL	NULL	NULL	NULL

Tabela 1 - Tabela obtida no MySQL através das funções do Python referente às informações do GenBank.

pubmedcod	locusid	publication_link	authors	title		affiliation
15164055	AL954205	https://pubmed.ncbi.nlm.nih.gov/15164055/	Watanabe, H., Fujiyama, A., Hattori, M., Taylor,	DNA sequence and con	parative analysis of chi	RIKEN, Genomic Sciences Center, Yokohama 23
18408150	NC_010526	https://pubmed.ncbi.nlm.nih.gov/18408150/	Van Leeuwen, T., Vanholme, B., Van Pottelberge	Mitochondrial heteropla	asmy and the evolution o	Faculty of Bioscience Engineering, Ghent Univer
23313325	AB725596	https://pubmed.ncbi.nlm.nih.gov/23313325/	Iso,T., Suzuki,J., Sasaoka,F., Sashida,H., Wat	Hemotropic mycoplasm	a infection in wild black b	Department of Veterinary Microbiology, School
24184542	KF591508	https://pubmed.ncbi.nlm.nih.gov/24184542/	Valcarcel, V., Fiz-Palacios, O. and Wen, J.	The origin of the early	differentiation of Ivies (H	Universidad Autonoma de Madrid, Campus Cant
28771590	KY675904	https://pubmed.ncbi.nlm.nih.gov/28771590/	Isari,S., Pearman,J.K., Casas,L., Michell,C.T.,	Exploring the larval fish	community of the centr	Red Sea Research Center, Biological and Enviro
HULL	NULL	NULL	NULL	NULL		NULL
			abstract	publication_date		
			Human-chimpanzee comparative genome resea	ar 2004 May 27		
			Genes encoded by mitochondrial DNA (mtDNA)	2008 Apr 22		
			This is the first report on Mycoplasma infection	i 2013 Apr 12		
			The Asian Palmate group is one of the four maj	j 2014 Jan		
			An important aspect of population dynamics for	r 2017		
			NULL	NULL		

Tabela 2 - Tabela obtida no MySQL através das funções do Python referente às informações do PubMed.

locus_dna	locus_protein	source	definition	proteinsequence	length
KF591508	AHB62690	chloroplast Trevesia palmata	NADH dehydrogenase subunit F, partial (chloro	$vpmligvglllfptatknirrmwafqsilll sivmif sinl siqqinss siy\dots\\$	630 aa
AL954205	CAH18579	Pan troglodytes (chimpanzee)	human mRNA for KIAA0539 protein, partial [Pa	$fryqdhtflktlltavqllyspessvrtkliqlpvvyvmlmqhslflptl\dots$	832 aa
AB725596	CDN41090	Paenibacillus sp. P22	hypothetical protein BN871_AB_00880 [Paeniba	$mray spggmlivlt saprvsk pltpsihrlrrg lpgylil fapha fap\dots\\$	217 aa
KY675904	KAB0391140	Balaenoptera physalus (Fin whale)	hypothetical protein E2I00_017264, partial [Bal	$vgysnvwyggghpfnhsk fvvvsstvntspldvntsqimk tis\dots\\$	249 aa
NC_010526	YP_001795371	mitochondrion Tetranychus urticae (two-spotte	cytochrome c oxidase subunit I (mitochondrion) \dots	$mkwimstnhknigt myflfslfsglmgtsmsiiirlelmtpgsliqnd\dots\\$	
NULL	NULL	NULL	NULL	NULL	NULL

Tabela 3- Tabela obtida no MySQL através das funções do Python referente às informações das proteínas associadas.

Posteriormente, dispondo da ferramenta *forward engineering*, foi possível exportar o modelo lógico para uma script. A script cria a base de dados, as tabela com as respectivas colunas e relações.


```
CREATE SCHEMA IF NOT EXISTS 'TrabalhoIAP' DEFAULT CHARACTER SET utf8
   USE `TrabalhoIAP`;
     -- Table `TrabalhoIAP`.`GenBank_Informations`
 ● ○ CREATE TABLE IF NOT EXISTS `TrabalhoIAP`.`GenBank_Informations` (
      `locusid` VARCHAR(255) NOT NULL,
      `dnasource` TEXT NULL,
      `definition` TEXT NULL,
      `pubmedcod` VARCHAR(255) NULL,
      `dnasequence` LONGTEXT NOT NULL,
     `length` VARCHAR(25) NULL,
PRIMARY KEY ('locusid'),
UNIQUE INDEX 'locusid_UNIQUE' ('locusid' ASC) VISIBLE)
    ENGINE = InnoDB:
   -- Table `TrabalhoIAP`.`PubMed Informations`
⊖ CREATE TABLE IF NOT EXISTS `TrabalhoIAP`.`PubMed_Informations` (
     'pubmedcod' VARCHAR(255) NOT NULL,
    `locusid` VARCHAR(255) NOT NULL,
     `publication_link` TEXT NULL,
     `authors` TEXT NULL,
    'title' TEXT NULL,
    `affiliation` TEXT NULL,
    `abstract` TEXT NULL,
    `publication_date` TEXT NULL,
    PRIMARY KEY (`pubmedcod`),
   INDEX `FK1_idx` (`locusid` ASC) VISIBLE,
    UNIQUE INDEX `locusid_UNIQUE` (`locusid` ASC) VISIBLE,
    UNIQUE INDEX `pubmedcod_UNIQUE` (`pubmedcod` ASC) VISIBLE,
    CONSTRAINT `FK1`
     FOREIGN KEY (`locusid`)
      REFERENCES `TrabalhoIAP`.`GenBank_Informations` (`locusid`)
      ON DELETE NO ACTION
     ON UPDATE NO ACTION)
   ENGINE = InnoDB;
   -- Table `TrabalhoIAP`.`Protein_Informations`
○ CREATE TABLE IF NOT EXISTS `TrabalhoIAP`.`Protein_Informations` (
     `locus_protein` VARCHAR(255) NOT NULL,
     `locus_dna` VARCHAR(45) NOT NULL,
     `source` TEXT NULL,
     `definition` TEXT NULL,
     `proteinsequence` LONGTEXT NOT NULL,
     `length` VARCHAR(25) NULL,
    UNIQUE INDEX `locus_dna_UNIQUE` (`locus_protein` ASC) VISIBLE,
     PRIMARY KEY (`locus_protein`),
     UNIQUE INDEX `locus_dna_UNIQUE` (`locus_dna` ASC) VISIBLE,
     CONSTRAINT 'FK2'
       FOREIGN KEY (`locus_dna`)
       REFERENCES `TrabalhoIAP`.`GenBank_Informations` (`locusid`)
       ON DELETE NO ACTION
       ON UPDATE NO ACTION)
   ENGINE = InnoDB;
 SET SQL MODE=@OLD SQL MODE;
 SET FOREIGN KEY CHECKS=@OLD FOREIGN KEY CHECKS;
 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
```


3. Análise crítica e perspectivas futuras

Ao longo do desenvolvimento da base de dados tivemos mais dificuldades em estabelecer a ligação da base de dados com o código Python, uma vez que era uma situação completamente nova para nós, foi um desafio, no entanto, foi realizado com sucesso.

Uma ação que futuramente poderia ser realizada seria a adição de mais atributos que fossem considerados igualmente relevantes. Ao introduzir mais informação, a base de dados teria melhor qualidade e funções variadas, desta forma com uma melhor funcionalidade. De notar que, a nossa base de dados e respetivo código podia estar mais otimizado, mais complexo e podíamos ter explorado a criação de funções para trabalhar com o SQL.