PSALTer results panel

$$S == \iiint (\rho \varphi + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \frac{1}{2} \alpha_{2} \partial_{\alpha} \varphi \partial^{\alpha} \varphi + \frac{1}{8} \alpha_{1} (24 (1 + \varphi) \partial_{\alpha} \partial^{\alpha} \varphi - 8 \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi + 8 \partial^{\alpha} \varphi \partial_{\beta} h^{\beta}_{\alpha} - 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \partial_{\beta} \partial^{\alpha} \varphi - 8 \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi + 8 \partial^{\alpha} \varphi \partial_{\beta} h^{\alpha}_{\alpha} - 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \partial_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi + 4 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\alpha}_{\alpha} - 4 \partial_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\alpha}_{\alpha} \partial_{\alpha} \partial_{\beta} h^{\beta}_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\alpha}_{\alpha} \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\beta}_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\beta}_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\beta}_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\beta} h^{\alpha}_{\alpha} \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial_{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} \partial^$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0. ⁺ T ⁻ == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$\frac{1}{2}\mathcal{T}^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

Massive spectrum

(No particles)

Massless spectrum

Unitarity conditions

$$\alpha_{1} > 0 \&\& \alpha_{2} > -6 \alpha_{1}$$