Determinantes

Guia Rápido

- Entenda o conceito
- Domine os métodos de cálculo
- Pratique propriedades

1. Conceitos Básicos

Definição:

- Determinante: Número associado a uma matriz quadrada
- Notação: det(A) ou |A|
- Aplicações: Sistemas lineares, matriz inversa

Ordem:

- $1^{\underline{a}}$ ordem: |a| = a
- $2^{\underline{\mathbf{a}}}$ ordem: |A| = ad bc
- 3ª ordem: Regra de Sarrus

2. Cálculo de Determinantes

$2^{\underline{a}}$ Ordem:

```
|a b|
|c d| = ad - bc
```

3ª Ordem (Sarrus):

- Diagonal principal: + (aei + bfg + cdh)
- Diagonal secundária: -(ceg + bdi + afh)
- Regra prática: Diagonais para direita (+) e esquerda (-)

Ordem Superior:

- Teorema de Laplace
- Cofatores
- Expansão em linha/coluna

3. Propriedades

Básicas:

- det(A) = det(A)
- det(kA) = k det(A)
- det(AB) = det(A)det(B)

Operações:

• Troca de linhas: Muda o sinal

• Multiplicação por k: Multiplica por k

• Linha nula: det = 0

• Soma de linha: det não muda

4. Teorema de Laplace

Conceito:

• Expansão por linha/coluna

• Usa cofatores

• Escolha linha/coluna com mais zeros

Fórmula:

• $det(A) = \Sigma a \times C$

• $C = (-1) \times M$

5. Cofatores e Adjunta

Cofator:

• $C = (-1) \times M$

 \bullet M = menor complementar

Matriz Adjunta:

• adj(A) = (C)

• $A \times adj(A) = det(A) \times I$

6. Aplicações

Matriz Inversa:

• $A^1 = adj(A)/det(A)$

• Existe se det(A) 0

Sistemas Lineares:

• Regra de Cramer

• det(A) 0 \rightarrow Sistema possível e determinado

Área e Volume:

• Área do paralelogramo

• Volume do paralelepípedo

7. Regra de Cramer

Quando usar:

- Sistema possível e determinado
- det(A) 0
- Matriz quadrada

Fórmula:

- x = det(A)/det(A)
- A : Substitui coluna i por termos independentes

Dicas de Estudo

- 1. Pratique cálculos básicos
- 2. Memorize propriedades
- 3. Use regra de Sarrus
- 4. Faça expansão por zeros
- 5. Resolva sistemas por Cramer