DIALOG(R)File 351:Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv.

010730441 **Image available**
WPI Acc No: 1996-227396/199623
XRAM Acc No: C96-071855
XRPX Acc No: N96-191160

Plasma etching method giving improved selection ratio between film and ground - includes applying magnetic field axially to reaction chamber and using the generated plasma to etch the workpiece

Patent Assignee: HORIKE Y (HORI-I); KOKUSAI DENKI KK (KOKZ)

Number of Countries: 001 Number of Patents: 001

Patent Family:

è

Patent No Kind Date Applicat No Kind Date Week

JP 8088218 A 19960402 JP 94248583 A 19940916 199623 B

Priority Applications (No Type Date): JP 94248583 A 19940916 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes JP 8088218 A 8 H01L-021/3065

Abstract (Basic): JP 8088218 A

A magnetic field is applied axially to a reaction chamber and by using plasma generated by applying a high frequency powder on a coil wound around the edge of a reaction chamber, a work is etched. In the plasma etching method, high frequency power applied on the coil is generated in a pulse-form manner.

ADVANTAGE - A selection ratio (an etching speed ratio) between a film and a ground is improved.

Dwg.0/12

Title Terms: PLASMA; ETCH; METHOD; IMPROVE; SELECT; RATIO; FILM; GROUND; APPLY; MAGNETIC; FIELD; AXIS; REACT; CHAMBER; GENERATE; PLASMA; ETCH; WORKPIECE

Derwent Class: L03; M14; U11; X14

International Patent Class (Main): H01L-021/3065

International Patent Class (Additional): C23F-004/00; H05H-001/46

File Segment: CPI; EPI

Manual Codes (CPI/A-N): L03-H04D; L04-C07D; M14-A

Manual Codes (EPI/S-X): U11-C; X14-F

?

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第2区分

【発行日】平成14年2月28日(2002.2.28)

【公開番号】特開平8-88218

【公開日】平成8年4月2日(1996.4.2)

【年诵号数】公開特許公報8-883

【出願番号】特願平6-248583

【国際特許分類第7版】

H01L 21/3065

C23F 4/00

H05H 1/46

[FI]

H01L 21/302 B

C23F 4/00 E

H05H 1/46

【手続補正書】

【提出日】平成13年9月14日(2001.9.1 4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 反応室の軸心方向に磁場を印加し、該反応室の周囲に巻設したコイルに高周波電力を印加して生成したプラズマを利用して被処理物のエッチングを行うプラズマエッチングに於いて、前記コイルに印加する高周波電力をパルス状としたことを特徴とするプラズマエッチング方法。

【請求項2】 パルス状高周波電力のON時間を固定し、OFF時間を変化させることにより、エッチング速度を変化させる請求項1のプラズマエッチング方法。

【請求項3】 パルス状高周波電力のOFF時間を固定し、ON時間を変化させることにより、エッチング速度を変化させる請求項1のプラズマエッチング方法。

【請求項4】 パルス状高周波電力のOFF時間を固定し、ON時間を変化させることにより、反応生成物の堆積速度を変化させ、エッチング対象膜と下地とのエッチング速度比を変化させる請求項1のドライエッチング方法。

【請求項5】 絶縁物で構成した反応室の周囲に巻設するコイルに印加するパルス状高周波電力のパルス変調周期と、半導体試料を載置する平面電極に印加するバイアス電圧発生用の交流電力の周期を同一とし、それらの周波数の位相差を0度或は180度として、エッチング条件、特にガスの混合比にマージンを持たせることを特徴とするプラズマエッチング方法。

【請求項6】 反応室の軸心方向に磁場を印加する磁場発生手段と、前記反応室の周囲に巻設したコイルと該コイルにパルス状の高周波電力を印加する高周波電力印加手段と、被処理物が載置される平板電極と、該平板電極にバイアス電力を印加するバイアス電源とを具備することを特徴とするプラズマエッチング装置。

【請求項7】 パルス状高周波電力のON/OFF時間のON時間、OFF時間をそれぞれ独立して変更する手段を設けた請求項6のプラズマエッチング装置。

【請求項8】 コイルに印加する高周波電力のパルス変調周波数と平板電極に印加するバイアス電力の周波数を同一とし、且両電力の周波数の位相を任意に設定するフェイズシフタとを具備する請求項6又は請求項7のプラズマエッチング装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0002

【補正方法】変更

【補正内容】

[0002]

【従来の技術】従来、プラズマを生成させる方法としては、1対の平板電極を対峙させ設け、減圧雰囲気下で反応ガスを供給し、両電極間に高周波電力を印加させ、プラズマを生成させる方法と、マイクロ波と磁場によりプラズマを生成させるECR(Electron Cyclotron Resonance)法と、磁場が印加された空間に高周波電力を印加することで生成するヘリコン波を利用してプラズマを生成させる有磁場誘導方法等があり、このヘリコン波を利用してプラズマを生成させる有磁場誘導方法では、前掲した2者よりも高密度のプラズマを生成させることができる。グ装置。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0021

【補正方法】変更

【補正内容】

【0021】前記高周波電源12、前記バイアス電源1 <u>0</u>にフェイズシフタ13を接続し、前記高周波電源12 が出力するパルス変調波と前記バイアス電源10が出力 するバイアス電力の周波数を同一とした場合は、パルス 変調波とバイアス電力の位相差を任意に設定できる様に なっている。

【手続補正4】

【補正対象書類名】図面

【補正対象項目名】図1

【補正方法】変更

【補正内容】

【図1】

【手続補正5】

【補正対象書類名】図面

【補正対象項目名】図2

【補正方法】変更

【補正内容】

【図2】

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-88218

(43)公開日 平成8年(1996)4月2日

(51) Int.Cl. ⁶		識別記号	庁内整理番号)	FI			4	技術表示	示箇所
H01L	21/3065									
C 2 3 F	4/00	D	9352-4K							
H 0 5 H	1/46	L	9216-2G							
					H01L	21/ 302	}	В		
					審査請求	未請求	請求項の数8	FD	(全 8	3 頁)
(21)出願番号	}	特願平6-248583		C	71)出願人	000001122				
					•	国際電	気株式会社			
(22)出願日		平成6年(1994)9月16日				東京都	中野区東中野三	丁目14種	第20号	
				(71)出願人	5941693	385			
						堀池 3	靖浩			
					東京都	保谷市東伏見3	- 2 -1	2		
				(72)発明者	堀池	靖浩			
						東京都	保谷市東伏見3	- 2 -1	2	
				(72)発明者	豊田 -	一行			
						東京都	中野区東中野三	丁目14種	\$20号	国際
						電気株:	式会社内			
				(74)代理人	弁理士	三好 祥二			

(54) 【発明の名称】 プラズマエッチング方法及びその装置 (57) 【要約】

【目的】ヘリコン波を利用して高密度のプラズマを生成 してエッチングを行う場合に、エッチング速度比を増大 させ、エッチング特性を向上させ更に、プロセス条件の

マージンを広げる。

【構成】反応室の軸心方向に磁場を印加し、該反応室の周囲に巻設したコイルに高周波電力を印加して生成したプラズマを利用して被処理物のエッチングを行うプラズマエッチングに於いて、前記コイルに印加する高周波電力をパルス状とし、又プラズマを発生させる高周波電力とバイアス電力との周波数を同一にし、両電力の周波数の位相差を変更させる様にし、高周波電力をパルス状とし、断続的に印加することでエッチング特性を向上させ、又高周波電力とバイアス電力との周波数を同一にし、両電力の周波数の位相差を変更させることで、プロセス条件のマージンを広げる。

【特許請求の範囲】

【請求項1】 反応室の軸心方向に磁場を印加し、該反応室の周囲に巻設したコイルに高周披電力を印加して生成したプラズマを利用して被処理物のエッチングを行うプラズマエッチングに於いて、前記コイルに印加する高周披電力をパルス状としたことを特徴とするプラズマエッチング方法。

【請求項2】 パルス状高周波電力のON時間を固定 し、OFF時間を変化させることにより、エッチング速 度を変化させる請求項1のプラズマエッチング方法。

【請求項3】 パルス状高周波電力のOFF時間を固定 し、ON時間を変化させることにより、エッチング速度 を変化させる請求項1のプラズマエッチング方法。

【請求項4】 パルス状高周波電力のOFF時間を固定し、ON時間を変化させることにより、反応生成物の堆積速度を変化させ、エッチング対象膜と下地とのエッチング速度比を変化させる請求項1のドライエッチング方法

【請求項5】 絶縁物で構成した反応室の周囲に巻設するコイルに印加するパルス状高周波電力の周期と、半導体試料を載置する平面電極に印加するバイアス電圧発生用の交流電力の周期を同一とし、それらの周波数の位相差を0度或は180度として、エッチング条件、特にガスの混合比にマージンを持たせることを特徴とするプラズマエッチング方法。

【請求項6】 反応室の軸心方向に磁場を印加する磁場 発生手段と、前記反応室の周囲に巻設したコイルと該コ イルにパルス状の高周波電力を印加する高周波電力印加 手段と、被処理物が載置される平板電極と、該平板電極 にバイアス電力を印加するバイアス電源とを具備するこ とを特徴とするプラズマエッチング装置。

【請求項7】 パルス状高周波電力のON/OFF時間のON時間、OFF時間をそれぞれ独立して変更する手段を設けた請求項6のプラズマエッチング装置。

【請求項8】 コイルに印加する高周波電力のパルス変調周波数と平板電極に印加するバイアス電力の周波数を同一とし、且両電力の周波数の位相を任意に設定するフェイズシフタとを具備する請求項6又は請求項7のプラズマエッチング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体製造工程の1つであるエッチング、特にプラズマを利用してドライエッチングを行う為のプラズマエッチング方法及びその装置に関するものである。

[0002]

【従来の技術】従来、プラズマを生成させる方法としては、1対の平板電極を対峙させ設け、減圧雰囲気下で反応ガスを供給し、両電極間に高周波電力を印加させ、プラズマを生成させる方法と、マイクロ波と磁場によりプ

ラズマを生成させるECR(Electoron Cyclotoron Resonance)法と、磁場が印加された空間に高周波電力を印加することで生成するヘリコン波を利用してプラズマを生成させる有磁場誘導方法等があり、このヘリコン波を利用してプラズマを生成させる有磁場誘導方法では、前掲した2者よりも高密度のプラズマを生成させることができる。

【0003】図12に於いて、従来のヘリコン波を利用してプラズマを生成する有磁場誘導方法のプラズマエッチング装置を説明する。

【0004】導電材料で構成された気密な処理室1の上側に、絶縁物で構成された円筒状の反応室2が気密に連設され、該反応室2の外側に2巻のコイル3が巻き設けられ、更に該コイル3の外側に前記反応室2の軸心方向に磁場を発生する為の磁場発生コイル4が配設されている。又、前記反応室2の底面には半導体試料等の被処理物の載置台を兼ねる平板電極5が絶縁物で構成された台座6を介して設けられている。

【0005】前記コイル3には整合器7と高周波電源8が直列に接続され、該高周波電源8の出力を前記整合器7を通して前記コイル3に印加できる様になっている。又、前記平板電極5には整合器9、バイアス電源10が直列に接続され、該バイアス電源10の出力を前記整合器9を通して前記平板電極5に印加できる様になっている。

【0006】上記した従来例に於いて、前記処理室1、 反応室2内を図示しない真空ポンプにより排気し、排気 後反応室2内に反応ガスを供給し、反応室2内の圧力を 一定に保持する。前記磁場発生コイル4により反応室2 内に磁場が発生された状態で、前記高周波電源8の出力 を前記整合器7を通して前記コイル3に印加し、反応室 2内にヘリコン波を発生させ、高密度のプラズマを生成 する

【0007】同時に前記バイアス電源10の出力を前記整合器9を通して前記平板電極5に印加し、平板電極5上に生じたセルフバイアス電圧或は交流電界を利用して、平板電極5に載置した被処理物11をエッチングする。

[0008]

【発明が解決しようとする課題】上記した様に、ヘリコン波を利用してプラズマを生成する場合、高密度のプラズマが得られるという利点があるが、反応室に導入した反応ガスの解離、及びエッチングで生じた反応生成物の解離が進むという現象がある。

【0009】半導体試料であるシリコン(Si)ウェーハ上のシリコン酸化膜(SiO_2 膜)をエッチングする場合、反応ガスとして C_X F_Y 系を用いるが、本従来例の様な高密度のプラズマを生成しエッチングを行う装置では、反応ガスの解離が進む為、フッ素(F)の生成比率が大きくなり、この為フッ素によるシリコン酸化膜の

下地のシリコンのエッチングが進行し、選択比(エッチング速度比)が低下するという問題がある。

【0010】 FによるSiのエッチングを押さえる為に、添加ガスとして H_2 を用いる方法があり、例えばエッチングガスとして C_4 F₈と H_2 を用いてエッチングする場合、SiO₂膜とSiの選択比を向上させる為に H_2 の割合を増やすと、SiO₂のエッチング速度も低下し、結果として選択比は向上しない。

【0011】本発明は斯かる実情に鑑み、ヘリコン波を利用して高密度のプラズマを生成してエッチングを行う場合に、エッチング速度比を増大させ、エッチング特性を向上させ、更にプロセス条件のマージンを広げようとするものである。

[0012]

【課題を解決するための手段】本発明は、反応室の軸心方向に磁場を印加し、該反応室の周囲に巻設したコイルに高周波電力を印加して生成したプラズマを利用して被処理物のエッチングを行うプラズマエッチングに於いて、前記コイルに印加する高周波電力をパルス状とし、又プラズマを発生させる高周波電力とバイアス電力との周波数を同一にし、両電力の周波数の位相差を変更させる様にしたものである。

[0013]

【作用】高周波電力をパルス状とし、断続的に印加することでエッチング特性を向上させ、又高周波電力とバイアス電力との周波数を同一にし、両電力の周波数の位相差を変更さることで、プロセス条件のマージンを広げる.

[0014]

【実施例】以下、図面を参照しつつ本発明の一実施例を 説明する。

【0015】図1中に於いて、図12中で示したものと 同様の構成要素には同符号を付してある。

【0016】導電材料で構成された気密な処理室1の上側に、絶縁物で構成された円筒状の反応室2が気密に連設され、該反応室2の外側に2巻のコイル3が巻き設けられ、更に該コイル3の外側に前記反応室2の軸心方向に磁場を発生する為の磁場発生コイル4が配設されている。又、前記反応室2の底面には半導体試料等の被処理物の載置台を兼ねる平板電極5が絶縁物で構成された台座6を介して設けられている。

【0017】尚、前記コイル3は、生成されたプラズマの均一性を考慮すると、1巻でも充分であり、装置の簡略化を考えると1巻のコイル3の方が好ましい。図2はコイル3を1巻とした実施例を図示している。又、前記磁場発生コイル4は反応室2の軸心方向に磁場を発生させる手段であればよく永久磁石であってもよいことは勿論である。

【0018】前記コイル3には整合器7とパルス変調可能な高周波電源12が直列に接続され、該高周波電源1

2の出力を前記整合器 7を通して前記コイル 3 に印加できる様になっている。又、前記平板電極 5 には整合器 9、バイアス電源 1 0 が直列に接続され、該バイアス電源 1 0 の出力を前記整合器 9を通して前記平板電極 5 に印加できる様になっている。

【0019】前記高周波電源12の基本波の周波数は通常13.56MHzであるが、これ以外の周波数を用いることも勿論可能である。又、パルス変調を行う手段は、前記高周波電源12に内蔵させてもよく、或は別途増幅器と市販の任意信号発生器を組合わせたものでもよく、前記コイルにパルス状の高周波電力を印加する高周波電力印加手段であればよい。

【0020】図3はパルス変調の態様を示し、(a)はコイル3に印加する高周波電力の基本波を示し、(b)はパルス変調を示し、(c)は(b)で示すパルス変調によって(a)の基本波を変調した状態を示す。

【0021】前記整合器7、前記整合器9にフェイズシフタ13を接続し、前記高周波電源12が出力するパルス変調波と前記バイアス電源10が出力するバイアス電力の周波数を同一とした場合は、パルス変調波とバイアス電力の位相差を任意に設定できる様になっている。

【0022】以下、作動を説明する。

【0023】前記処理室1、反応室2内を図示しない真空ポンプにより排気し、排気後反応室2内に反応ガスを供給し、反応室2内の圧力を一定に保持する。前記磁場発生コイル4により反応室2内に磁場が発生された状態で、前記高周波電源12の出力を前記整合器7を通して前記コイル3に印加し、反応室2内にヘリコン波を発生させ、高密度のプラズマを生成する。

【0024】同時に前記バイアス電源10の出力を前記整合器9を通して前記平板電極5に印加し、平板電極5上に生じたセルフバイアス電圧或は交流電界を利用して、平板電極5に載置した被処理物11をエッチングする。

【0025】又、必要に応じてパルス変調の周波数と平 板電極5に印加するバイアス電力の周波数を同一とした 場合は、相互の位相差を前記フェイズシフタ13によ り、適宜設定する。

【0026】次に、前記コイル3に印加する高周波電力 をパルス変調した場合について説明する。

【0027】図4は反応性ガスの混合比と、SiO₂及びSiのエッチング速度並びにSiO₂とSiの選択比(エッチング速度比)との関係を示した線図で、上の図はパルス変調した高周波電力をコイル3に印加したもので、下の図は連続して高周波電力をコイル3に印加した場合の線図である。図中、実線はエッチング速度、破線は選択比を示している。エッチングの条件は下記の通りである。

【0028】・エッチングガス: $C_4F_8+H_2$

・圧力 : 5 mTorr

・髙周波出力電力:13.56MHz、1.0KW

・パルス変調仕様: ON 時間 5 μ

OFF時間 120 µ sec

・バイアス電圧 :-200V

【0029】エッチング条件中に記述したバイアス電圧 とは、反応室2にプラズマが生成された状態で平板電極 5にバイアス電力を印加した時に平板電極5に発生する 直流電圧を示す。

【0030】図4の下半図に示す様に、高周波電力を連続してコイル3に印加した場合は H_2 の混合比率を高くしていくと、 SiO_2 及びSiOエッチング速度並びにそれらの選択比は徐々に減少し、 H_2 の混合比が40%付近で急激に減少する。 H_2 の混合比が50%になると、エッチング速度並びにそれらの選択比の値は、KOになる。

【0031】図4の上半図に示す様に、印加する高周波電力をパルス変調した場合は、図4の下半図に示す連続波と比較して SiO_2 のエッチング速度が大きくなる。又、高周波電力をパルス変調し、 H_2 の混合比を大きくしていくと選択比は増加し、 H_2 の混合比率が38%付近で SiO_2 のエッチング速度が $O(\mu/\min)$ になり、選択比、 $(SiO_2$ のエッチング速度)/ $(SiO_2$ のエッチング速度)

【0032】パルス変調することによって選択比が増大するのは、パルス変調のON/OFF時間を適切にすることにより、反応生成物の中で特にHFの解離が押さえられ、解離によって生じるFによるSiのエッチング速度の増大が押さえられる為と考えられる。

【0033】図5は、パルス変調のON時間を 5μ sec に固定した状態に於ける、OFF時間と SiO_2 及び SiO_2 がまったものであり、エッチング条件は下記の通りである。

【0034】・エッチングガス: C_4F_8 に H_2 を50%添加→ H_2 流量÷(H_2 流量+ C_4F_8 流量)×100=50%

・圧力 : 5mTorr

・高周波電力出力: 13.56 MHz 、1.0 KW ・パルス変調仕様: O N 時間 5 μ sec 固定

・バイアス電圧 : 200 V

【0035】上記エッチング条件の下では、パルス変調のOFF時間が $5\sim20~\mu$ sec の範囲に於いては、Siのエッチング速度は $0~\mu$ /min である。

【0036】OFF時間が 10μ sec 以上になると、 SiO_2 のエッチング速度は減少し、 20μ sec 時点で 0μ /min になることから、 SiO_2 のエッチング速度を維持するには一般的傾向として、OFF時間を短くすることが必要と考えられる。

【0037】図6は、パルス変調のOFF時間を 5μ se c に固定した状態での、ON時間とSiO $_2$ 及びSiのエッチング速度との関係を示したものであり、エッチン

グ条件は下記の通りである。

【0038】・エッチングガス: C_4 F_8 に H_2 を50%添加→ H_2 流量÷ (H_2 流量+ C_4 F_8 流量) × 100=50%

・圧力 : 5 mTorr

・高周波電力出力: 13.56MHz 、1.0KW ・パルス変調仕様: OFF時間 5 μ sec 固定

・バイアス電圧 :200V

【0039】 O N時間が 20μ sec 時点で、 SiO_2 の エッチング速度は $0/\min$ になるが、この様にO N時間を 長くすると SiO_2 のエッチング速度が低下するので、一般的傾向としてO N時間を短くすることが必要と考えられる

【0040】図7は、パルス変調のOFF時間を5μsecに固定した状態に於ける、ON時間と、反応生成物の堆積速度との関係を示したものであり、エッチング条件は下記の通りである。

【0041】・エッチングガス: C₄ F₈ にH₂ を50 %添加→H₂ 流量÷ (H₂ 流量+C₄ F₈ 流量) ×10 0=50%

・圧力 : 5 mTorr

・高周波電力出力:13.56MHz、1.0KW

・パルス変調仕様:ON時間 5 µ sec 固定

・バイアス電圧 : 200 V

【0042】ON時間が短い程反応生成物の堆積速度は 大きくなる。堆積速度を大きくすることにより、選択比 の向上が期待できるので、選択比を向上するには一般的 にON時間を短くすることが必要と考えられる。

【0043】図6と図7に示した結果から、ON時間を短くすると SiO_2 のエッチング速度が向上し、又反応生成物の堆積速度も向上する傾向が見られることから、選択比を増大する条件と放電条件の方向付けができる。

【0044】図8は、パルス変調のOFF時間を、それ ぞれ 5μ sec と 20μ sec に固定した状態に於ける、パルス変調のON時間と、電子密度との関係を示したもの であり、放電条件は下記の通りである。

【0045】・エッチングガス:Ar

・圧力 : 2 mTorr

・高周波電力出力:13.56MHz、1.0KW

【0046】ON時間を変化させても電子密度は大きな変化を示さないが、この現象がパルス変調した場合に、SiO₂のエッチング速度が低下しない原因の一つと考えられる。

【0047】図9は、パルス変調のOFF時間を、それ ぞれ 5μ sec と 20μ sec に固定した状態に於ける、パルス変調のON時間と、電子温度との関係を示したもの であり、放電条件は下記の通りである。

【0048】・エッチングガス:Ar

• 圧力 : 2 mTorr

・高周波電力出力:13.56MHz、1.0KW

【0049】OFF時間が 20μ sec の場合、ON時間を変化させると電子温度は大きな変化を示すが、この現象によってガスの解離状態が変化する。OFF時間が 5μ sec の場合は電子温度に大きな変化は無い為、ガスの解離状態を変化させる場合は、OFF時間を適切な長さに設定することが必要になる。

【0050】又図9は、OFF時間が20μsecの方が、電子温度の変化が大きく、従って反応ガスの解離状態を変化させる効果が大きいことを示している。

【0051】図10は反応性ガスの混合比と、 SiO_2 及び SiO_2 及び SiO_2 及び SiO_2 及び SiO_2 及び SiO_2 及び SiO_2 表に (エッチング速度比) との関係を示した線図である。

【0052】(A)(B)は共に100KHzでパルス変調した高周波電力をコイル3に印加したものであるが、半導体試料を載置する平板電極5に印加するバイアス電力の周波数を100KHzとし、相互の位相差を0度及び180度とした場合の特性である。エッチングの条件は下記の通りである。

・圧力

: 5 mTorr

・高周波出力電力

: 13. 56MHz \ 1. OKW

・パルス変調仕様

: ON 時間 5 μ sec

OFF時間 5μsec

・バイアス電力周波数:100KHz

・バイアス電圧

: -200V

【0054】コイル3に印加するパルス変調した高周波電力と、半導体試料を載置する平板電極5に印加するバイアス電力との位相の関係を図11に示す。図中 (a) はパルス変調波形で、(b) ではバイアス電力がパルス変調波がONの時「一」になり、OFFの時「+」になる状態を示している。(c)は(b)の状態と「+」「一」が逆になっている。位相差が0度の場合、選択比が無限大になるのは、 H_2 の混合比率が50%であるが、位相差が180度の場合は、 H_2 の混合比率が40%である。

【0055】コイル3に印加するパルス変調する高周波電力の位相と、半導体試料を載置する平板電極5に印加するバイアス電力との位相差を制御することによって、同一の選択比(エッチング速度比)が得られるガス混合比等のエッチング条件を変えることができることから、位相を制御する方法を用いることにより、エッチング条件にマージンを持たせることができる。

[0056]

【発明の効果】以上述べた如く本発明によれば、プラズマ生成用の高周波電力をパルス変調することにより、エッチング速度を下げることなく膜と下地との選択比(エッチング速度比)を向上させることができ、又、パルス変調の周波数とバイアス電力の周波数を同一にし、それら高周波電力の位相差を制御することによって、エッチング条件のマージンを広げることが可能である。

【図面の簡単な説明】

【図1】本発明の一実施例の概略を示す構成図である。

【図2】本発明の他の実施例の概略を示す構成図である。

【図3】パルス変調波を説明する説明図である。

【図4】ガスの混合比とエッチング速度と選択比の関係 を示す図である。

【図5】パルス変調のOFF時間と SiO_2 及び SiO_2 エッチング速度の関係を示す図である。

【図 6 】パルス変調のON時間とS i O_2 及びS i のエッチング速度の関係を示す図である。

【図7】パルス変調のON時間と反応生成物の堆積速度の関係を示す図である。

【図8】パルス変調のON時間と電子密度との関係を示す図である。

【図9】パルス変調のON時間と電子温度との関係を示す図である。

【図10】(A)(B)は、ガスの混合比とエッチング 速度と選択比の関係を示す図である。

【図11】パルス変調した高周波電力の位相と、バイアス電力との位相の関係を示す図である。

【図12】従来例の概略を示す構成図である。

【符号の説明】

- 1 処理室
- 2 反応室
- 3 コイル
- 4 磁場発生コイル
- 5 平板電極
- 6 台座
- 7 整合器
- 8 高周波電源
- 9 整合器
- 10 バイアス電源
- 11 被処理物
- 12 高周波電源
- 13 フェイズシフタ

[図1] [図2]

【図4】

【図3】

(c) パルス 変調 された高周波 **過**力波形

【図9】

【図5】

【図7】

【図8】

【図11】

【図12】

【図10】

₹4.