

## **MATHEMATICS EXTENSION 2**

## **4 UNIT MATHEMATICS**

## **DIFFERENTIATION**

## **Essential Background Topic**

Differentiation is concerned with the rates of change of physical quantities. It is a fundamental topic in mathematics, physics, chemistry, engineering etc.

Consider a continuous and single value function y = f(x). The the rate of change of y with respect to x at the point  $x_1$  is called the **derivative** and equals the slope of the tangent to the curve y = f(x) at the point  $x_1$ . The process of finding the derivative of a function is called **differentiation**.

Take two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  on the curve y = f(x). We require the slope of the tangent at the point  $P(x_1, y_1)$ . The slope of the straight line (chord) joining the points P and Q is

(1) slope PQ = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Let  $x_2 = x_1 + \Delta x$ ,  $\Delta x = x_2 - x_1$  and  $f(x_2) = f(x_1 + \Delta x)$ . The point Q approaches the point P as  $\Delta x \to 0$  and the slope of the chord approaches the slope of the tangent at the point  $x_1$ . Intuitively, we can say that the slope of the tangent at P will be given by the limit of the slope of the chord as  $\Delta x \to 0$ 

(2) slope at 
$$P = \lim_{x \to 0} \left( \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} \right)$$

Given a curve y = f(x) and a point P on the curve, the slope of the curve at P is the limit of the slope of lines between P and Q on the curve as Q approaches P. The slope of a curve y = f(x) is the rate at which y is changing as x changes or it is the rate of change of y with respect to x. This slope is known as the derivative of the function y with respect to x. It is given by the special symbols

$$\frac{dy}{dx}$$
  $\frac{df(x)}{dx}$   $f'(x)$   $\dot{y}$ 

(3) 
$$\frac{dy}{dx} = \lim_{x \to 0} \left( \frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$$



slope chord PQ = 
$$\frac{f(x_1 + \Delta x) - f(x_1)}{x_2 - x_1}$$

