Calculus 1 - Notes

Dom Hutchinson

February 20, 2018

Contents

1 Fundamental Theorem of Calculus

 $\mathbf{2}$

1 Fundamental Theorem of Calculus

Definition 1.01 - Fundamental Theorem of Calculus The Fundamental Theorem of Calculus states

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Definition 1.02 - Common Sets of Numbers

Natural Numbers, set of positive integers - $\mathbb{N} := \{1, 2, 3, ...\}$. Whole Numbers, set of all integers - $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$. Rational Numbers, set of fractions - $\mathbb{Q} := \left\{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\right\}$. Real Numbers, set of all rational & irrational numbers - \mathbb{R} .

Definition 1.03 - *Intervals*

Sets of real numbers that fulfil in given ranges. Notation

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

Example

In what interval does x lie such that:

$$|3x+4| < |2x-1|$$

Solution

Case 1:
$$x \ge \frac{1}{2}$$

=> $1 - 2x < 3x + 4 < 2x - 1$
=> $1 - 2x < 3x + 4$
=> $x > \frac{-3}{5}$
And, => $3x + 4 < 2x - 1$
=> $x < -5$

There are no real solutions in this range.

Case
$$2: x < \frac{1}{2}$$

$$=> 2x - 1 < 3x + 4 < 1 - 2x$$

$$=> 2x - 1 < 3x + 4$$

$$=> -5 < x$$
And, $=> 3x + 4 < 1 - 2x$

$$=> 5x < -3$$

$$=> x < \frac{-3}{5}$$

$$=> -5 < x < \frac{-3}{5}, x \in \left(-5, \frac{-3}{5}\right)$$