

ARTHUR DAMACENA SILVA, FERNANDO FURTADO PINHEIRO, JOÃO VITOR GOMES DE OLIVEIRA

BITDOGFACTORY:

separador industrial por cores

SUMÁRIO

1	INTRODUÇÃO E DESCRIÇÃO DO PROBLEMA	2
1.1	Problema	2
1.2	Objetivos do projeto	2
1.3	Requisitos	2
1.4	Lista de componentes	3
2	ARQUITETURA DO SISTEMA	4
2.1	Arquitetura do hardware	4
2.2	Fluxograma do software	5

1 INTRODUÇÃO E DESCRIÇÃO DO PROBLEMA

1.1 Problema

Na indústria da reciclagem, a separação manual de plásticos por cor é um processo lento, de alto custo operacional e propenso a erros que comprometem a qualidade do material final. A contaminação de lotes com cores indesejadas resulta em uma matéria-prima reciclada de baixo valor, criando gargalos que afetam toda a cadeia de valorização de resíduos. Este projeto aborda diretamente essa lacuna, propondo uma solução automatizada para a separação de plásticos por cor que garante alta acurácia e velocidade, mitigando os custos do processo manual e elevando significativamente o valor agregado e a pureza do material reciclado.

1.2 Objetivos do projeto

Desenvolver um protótipo funcional de uma esteira automatizada capaz de identificar e selecionar objetos com base em sua cor.

1.3 Requisitos

Funcionais

- RF01 O sistema deve ser capaz de identificar a cor do objeto a partir do sensor.
- RF02 O sistema deve decidir para qual canal de saída o objeto deve ser direcionado com base na cor do objeto.
- RF03 O sistema deve registrar cada evento de classificação e mostrar no display

Não funcionais

- RNF01 O sistema deve ser capaz de processar vários objetos por minuto.
- RNF02 A taxa de acerto na classificação deve ser alta.
- RNF03 O tempo total entre a detecção do objeto e o acionamento do atuador deve ser baixo.

1.4 Lista de componentes

Quadro 1 – Lista de componentes do separador por cores

Componente	Quantidade	Descrição
BitDogLab (RP 2040)	1	Microcontrolador principal, esta placa,
		baseada no chip RP2040 da Raspberry
		Pi, atuará como a unidade central de
		processamento.
Sensor de cor	1	Sensor eletrônico responsável por
		identificar a cor da superfície do objeto.
Servo motor	3	Motores de rotação controlada que
		permitem o movimento preciso para
		posições angulares específicas.
Display TFT	1	Pequena tela colorida que servirá como
		a interface visual do sistema,
		fornecendo feedback em tempo real
		para o operador.
Motor CC	1	Motor elétrico de corrente contínua e
		rotação constante. Sua função no
		projeto é acionar o mecanismo da
		esteira.

Fonte: elaborado pelos autores.

2 ARQUITETURA DO SISTEMA

A arquitetura do projeto foi concebida de forma modular para garantir clareza. Ela se divide em dois componentes principais: a arquitetura de hardware, que descreve a interconexão física dos componentes e o fluxograma do software, que ilustra a lógica de controle executada pelo microcontrolador.

2.1 Arquitetura do hardware

A interconexão dos componentes eletrônicos forma a base física do sistema de triagem. O microcontrolador RP2040 (BitDogLab) atua como a unidade central, orquestrando todos os periféricos de entrada (sensores) e saída (atuadores e display).

- Unidade Central de Processamento: O RP2040 é o cérebro do projeto. Ele recebe os dados do sensor de cor, executa o algoritmo de decisão e comanda os servos, o motor da esteira e o display.
- Entrada (Sensoriamento): O Sensor de Cor é posicionado estrategicamente sobre a esteira para ler a cor de cada objeto que passa sob ele. Ele se comunica com a BitDogLab, enviando os valores de cor detectados.
- Saída (Atuação e Interface):
 - Os três Servo Motores são posicionados ao final da esteira e atuam como desviadores. Com base no comando do microcontrolador, eles se movem para direcionar o objeto para o canal de coleta correto. Uma configuração comum é usar dois servos para desviar ativamente para canais específicos (ex: vermelho, azul) e uma posição de repouso que direciona para um terceiro canal (outras cores).
 - O Motor CC é responsável por acionar o mecanismo da esteira, garantindo um fluxo constante de objetos para a área de detecção. Ele é controlado pelo BitDogLab através de um módulo de driver de motor para gerenciar a corrente necessária.
 - O Display TFT serve como Interface Homem-Máquina (IHM), exibindo informações em tempo real, como a contagem de objetos classificados por cor e o status do sistema (RF03).

Abaixo a Figura 1 ilustra a interconexão do hardware.

Figura 1 – Circuito com os componentes utilizados e suas conexões

Fonte: elaborado pelos autores, adaptado de F. Alberti.

2.2 Fluxograma do software

A Figura 2 detalha a lógica de operação do software embarcado na microcontrolador RP2040, desde a inicialização até o loop contínuo de classificação de objetos.

Figura 2 – Fluxograma da lógica do software de controle

Fonte: elaborado pelos autores.