

Exam IV

1. (25 points) A survey is conducted of 100 freshmen at public universities. It is found that these students work 11.5 hours a week for pay, on average. The SD of the data is 5.
a) Find a 95% confidence interval on the hours a week worked by freshmen at public universities.
b) True or false and explain: There is a 95% chance that if a second sample of 100 freshmen were taken the average of the sample would be in the range you found in a).
c) True or false and explain: There is a 95% chance that the average hours a week worked for pay among all freshmen at public universities is in the range you found in a).
d) True or false and explain: There is a 95% chance that the average hours a week worked for pay among all 18–20 year olds is in the range you found in a).

2. (15 points) Based on the survey data in $\#1$, a news organization reports that the freshmen at public universities work 12 hours a week for pay, on average. Use a z-test to comment on this assertion. State the null and alternative hypotheses. Calculate the test statistic and estimate the P value.
3. (10 points) Would taking the average of 100 measurements decrease the likely size of the chance error by a factor of 5, 10 or 25? Justify your answer.
4. (10 points) A surveyor is measuring the distances between five points V , W , X , Y , and Z along a straight line. She finds that each of the four distances measures one mile, give or take two inches or so. The distance from V to Z is about four miles; but the estimate is likely to be off by around: 4 inches, 2 inches, 1 inch, $1/2$ inch or $1/4$ inch. Justify your answer.
$V - \!$

5.	(20.1)	points	Five	hundred	draws	are	made	at	random	from	the	box
υ.	(40)	DOMES,) I I V C	nunuicu	uraws	arc	maac	αu	random	11 0111	UIIC	DOV

Note that $\sqrt{0.25 \times 0.75} / \sqrt{500} \approx 0.02$. True or false? Explain your conclusions.

i. The expected value for the percentage of 1s among the draws is around 25%, give or take 2% or so.

ii. The expected value for the percentage of 1s among the draws is exactly 25%.

iii. The percentage of 1s among the draws will be around 25%, give or take 2% or so.

iv. The percentage of 1s in the box is exactly 25%.

v. The percentage of 1s among the draws will be exactly 25%.

vi. The percentage of 1s in the box is around 25%, give or take 2% or so.

6. (10 points) Find the specified area under the normal curve. Write down the R command that you use.

a)
$$z > -1.15$$

b)
$$z < -1.75$$

c)
$$-0.5 < z < 2.3$$

7. (10 points) Fill in the blanks:

The _____ hypothesis says that the difference is due to chance but the _____ says that the difference is real.

Formula Sheet

$$\operatorname{mean} = \frac{1}{n} (x_1 + \dots + x_n)$$

$$\operatorname{SD} = \sqrt{\frac{1}{n} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{sd} = \sqrt{\frac{1}{n-1} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{EV}_{\operatorname{sum}} = n \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{sum}} = \sqrt{n} \operatorname{SD}_{\operatorname{box}}$$

$$\operatorname{EV}_{\operatorname{av}} = \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{av}} = \operatorname{SD}_{\operatorname{box}} / \sqrt{n}$$

Shortcut formula (if there are only two different kinds of numbers in the box):

$$SD_{box} = (big \# - small \#) \sqrt{\begin{pmatrix} fraction of \\ tickets with the \\ big number \end{pmatrix} \begin{pmatrix} fraction of \\ tickets with the \\ small number \end{pmatrix}}$$

95% confidence interval = observed $\,\pm\,\,2\,\mathrm{SE}$

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$