ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

На правах рукописи

Кулагин Владимир Владимирович

Моделирование процессов захвата и десорбции дейтерия в вольфраме при импульсном плазменном и лазерном воздействии

Специальность 1.3.9— «Физика плазмы»

ДИССЕРТАЦИЯ

на соискание учёной степени

кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук, доцент Гаспарян Юрий Микаэлович

Оглавление

			Стр.
Введени	ıe		5
Глава 1.	Обзо	р современного состояния исследований накопления	
	изот	опов водорода в материалах ОПЭ	11
1.1	Взаим	одействие плазмы с поверхностью ОПЭ	11
1.2	Механ	низмы накопления изотопов водорода в ТЯУ	11
1.3	Влиян	ие импульсных нагрузок на удержание изотопов водорода в	
	вольф	раме	11
1.4	Подхо	ды к моделированию накопления изотопов водорода	11
1.5	Вывод	цы к Главе <mark>1</mark>	11
Глава 2.	Мет	одика анализа динамики транспорта дейтерия в	
	воль		12
2.1	Модел	 пь транспорта изотопов водорода в материалах	12
		Объемные процессы	
	2.1.2		
2.2	Прогр	аммный пакет FESTIM	13
2.3	Реали	зация нульмерной модели, учитывающей поверхностные	
	проце	ссы, в программном пакете FESTIM	13
	2.3.1	Верификация модели	13
	2.3.2	Валидация модели	13
2.4	Вывод	цы к Главе 2	13
Глава 3.	Захв	ат дейтерия в вольфраме под действием	
	импу	ульсно-периодических плазменных нагрузок	15
3.1	Валид	ация	15
	3.1.1	Детали эксперимента	15
	3.1.2	Расчетная модель	15
	3.1.3	Сравнение результатов моделирования и эксперимента	15
3.2	Модел	пирование накопления дейтерия в вольфраме под действием	
	импул	ъсно-периодических плазменных нагрузок	15

			CI	μ.
	3.2.1	Постановка задачи	. 1	.5
	3.2.2	Эволюция температуры	. 1	.5
	3.2.3	Коэффициент рециклинга	. 1	.5
	3.2.4	Влияние параметров плазменных нагрузок	. 1	.5
	3.2.5	Влияние параметров центров захвата и скорости		
		рекомбинации на поверхности	. 1	.5
3.3	Анали	ттический анализ	. 1	.5
	3.3.1	Квазистационарное приближение	. 1	.5
	3.3.2	Распределение концентрации дейтерия при насыщении	. 1	.5
	3.3.3	Сравнение аналитического решения с результатами		
		численного расчета	. 1	.5
3.4	Вывод	цы к Главе <mark>3</mark>	. 1	.5
Глава 4	. Десо	рбция дейтерия из вольфрама при импульсном		
	• •	рном нагреве	. 1	7
4.1	_	ация		
	4.1.1			
	4.1.2	Расчетная модель		
	4.1.3	Сравнение результатов моделирования и эксперимента		
4.2	Анали	з состава потока десорбированных частиц	. 1	7
	4.2.1	Постановка задачи	. 1	7
	4.2.2			
	4.2.3	Результаты численного моделирования	. 1	7
4.3	Анали	из влияния параметров материала на выход дейтерия	. 1	.7
	4.3.1	Постановка задачи	. 1	.7
	4.3.2	Влияние теплопроводности материала	. 1	.7
	4.3.3	Влияние параметров дефектов в вольфраме	. 1	7
	4.3.4	Влияние градиента температур	. 1	.7
	4.3.5	Режимы десорбции во время лазерно-индуцированной		
		десорбции	. 1	.7
4.4	Вывод	цы к Главе <mark>4</mark>	. 1	.7
Заключ	ение		1	8

	Стр.
Список сокращений и условных обозначений	. 19
Публикации автора по теме диссертации	20
Список литературы	. 21
Список рисунков	. 23
Список таблиц	. 24

Введение

В условиях растущего мирового населения и активной глобальной индустриализации, сопровождаемых повышением объемов потребления электроэнергии, все более актуальной становится необходимость в источниках энергии, способных обеспечить устойчивое и надежное энергоснабжение. Этот вызов требует поиска инновационных решений, которые могли бы существенно изменить существующую парадигму энергетического производства и потребления. Одним из наиболее перспективных направлений формирования новых источников энергии является управляемый термоядерный синтез (УТС), который рассматривается как «чистая» и безопасная альтернатива подходам, основанным на использовании ископаемых ресурсов. Таким образом, прогресс в области УТС может стать ключевым фактором в развитии энергетических технологий следующего поколения.

За последние десятилетия наибольшие успехи на пути к практической реализации контролируемой реакции УТС были достигнуты в установках с магнитным удержанием горячей плазмы типа токамак. Возможность генерации энергии за счет дейтерий-тритиевой (DT) реакции термоядерного синтеза была продемонстрирована на токамаках ТБТК [1] и ЈЕТ [2] еще в конце XX века. Последующая модернизация токамака ЈЕТ и оптимизация методики эксперимента позволила повысить мощность генерируемой энергии и длительность плазменного импульса [3; 4]. На токамаках WEST и EAST были получены рекордные результаты по длительности удержания горячей плазмы (без генерации термоядерной энергии) продолжительностью в 364 с [5] и 1056 с [6], соответственно. Наблюдаемые достижения свидетельствует о перспективности и потенциальной реализуемости УТС за счет удержания термоядерной плазмы в магнитной конфигурации токамака.

В настоящее время идет активная фаза строительства международного экспериментального термоядерного реактора (ИТЭР), спроектированного для практической демонстрации возможности квазистационарного удержания термоядерной DT-плазмы и решения сопутствующих инженерных задач. Введены в эксплуатацию наибольший в России токамак Т15-МД [7] и наибольший в мире токамак JT60-SA [8], расположенный в Японии. Во множестве стран разрабатываются проекты установок следующего поколения для отработки реакторных технологий, в том числе в России ведется активное проектирование токамака с реакторными технологиями (ТРТ). Помимо этого, растет число частных компаний, раз-

вивающих уникальные подходы и технологии УТС для коммерческих целей. По данным Ассоциации термоядерной промышленности (FIA) [9], более 50% компаний разрабатывают подходы к реализации УТС на основе магнитного удержания плазмы, что дополнительно усиливает актуальность направления.

Реализация термоядерной реакции планируется на основе дейтерийтритиевой смеси. Использование радиоактивного трития накладывает определенные ограничения на эксплуатацию установки с точки зрения радиационной безопасности. В связи с этим, одной из важнейших задач будущих термоядерных установок является систематический контроль за накоплением трития в обращенных к плазме элементах (ОПЭ).

В качестве основного материала ОПЭ рассматривается вольфрам.

Согласно оценкам [10], захват трития в вольфрамовые элементы не будет определяющим процессом глобального удержания во время нормальных режимов работы установки. Однако в режимах с улучшенным удержанием горячей плазмы (H-мода) протекают переходные процессы, например ELM-неустойчивости (Edge Localised Modes), приводящие к периодическим импульсным потокам высокой мощности на поверхность ОПЭ. Результаты экспериментов по имитации воздействия мощных плазменных потоков в линейной плазменной установке КСПУ-Т [11] показывают, что скорость накопления изотопов водорода может оказаться выше, чем в случае стационарного облучения, характерного для нормальных плазменных разрядов. Однако параметры облучения в установках такого типа не могут в полной мере воспроизвести условия, соответствующие крупным токамакам. Ввиду этого, исследование закономерностей накопления и удержания изотопов водорода под действием мощных импульсно-периодических плазменных нагрузок представляет повышенный интерес.

Схожей задачей является дистанционная диагностика содержания изотопов водорода в ОПЭ при помощи лазерно-индуцированной десорбции (ЛИД). Метод ЛИД заключается в нагреве участка исследуемой поверхности лазерным импульсом с последующим анализом состава вышедшего газа. Данная диагностика была апробирована на сферическом токамаке Глобус-М2. Помимо этого, возможность применения ЛИД является одной из приоритетных задач исследований ИТ-ЭР [12], а также рассматривается для российского проекта ТРТ [13].

Целью диссертационной работы является выявление закономерностей удержания и выхода изотопов водорода в вольфраме под действием импульсного плазменного и лазерного воздействия.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Разработать и валидировать численную модель, описывающую транспорт изотопов водорода в металлах под действием импульсных тепловых и плазменных нагрузок.
- 2. Исследовать влияние быстрых переходных процессов, соответствующих ELM-неустойчивости в токамаках, на интегральное накопление изотопов водорода в вольфрамовых ОПЭ.
- 3. Проанализировать динамику изменения коэффициента рециклинга изотопов водорода во время быстрых переходных процессов, соответствующих ELM-неустойчивости в токамаках.
- 4. Исследовать влияние поверхностных процессов на выход изотопов водорода из вольфрама при лазерном нагреве.
- 5. Определить зависимость доли вышедших атомов изотопов водорода из поверхностных слоев вольфрама от параметров лазерного нагрева и теплофизических свойств материала.

Методология и методы исследования. Достижение поставленной цели и решение сопутствующих задач осуществлялось путем проведения численного моделирования, позволяющего исследовать влияние импульсных нагрузок в широком диапазоне параметров, обычно недоступном в рамках действующих экспериментальных и лабораторных установок. В качестве основного численного метода для решения задачи транспорта изотопов водорода в вольфраме применялся метод конечных элементов, реализованный в свободно распространяемом программном пакете **FESTIM**, разработанном в международном коллективе при участии автора. Для демонстрации надежности и корректности использованных моделей проводилась их верификация и валидация путем сравнения с экспериментальными результатами, представленными в литературе или полученными в рамках данной диссертационной работы. Построение аналитической модели, описывающей распределение изотопов водорода в вольфраме при наличии градиента температур (эффект Соре) и ловушек водорода, проводилось путем решения системы дифференциальных уравнений в частных производных методом функции Грина.

Научная новизна:

- 1. Впервые исследовано влияние длительных (1000 c) импульснопериодических плазменных нагрузок, соответствующих ELM-событиям в токамаках, на накопление дейтерия в вольфрамовых ОПЭ.
- 2. Предложена оригинальная аналитическая модель, описывающее распределение содержания водорода в ОПЭ при наличии градиента температур и ловушек водорода.
- 3. Впервые оценено влияние поверхностных процессов, теплофизических свойств и параметров лазерного импульса на выход изотопов водорода из поверхностных слоев вольфрама при лазерном нагреве.
- 4. Впервые проведен анализ состава потока водорода, десорбированного с поверхности вольфрама при лазерном нагреве.

Научная и практическая значимость заключаются в следующем:

- 1. Результаты численного и теоретического анализа, разработанная аналитическая модель, описывающая содержание водорода в материала при наличии градиента температур, могут быть использованы при прогнозировании содержания изотопов водорода, накопленных в ОПЭ ТЯУ.
- 2. Результаты численного и теоретического анализа влияния параметров лазерного нагрева и материала на выход изотопов водорода из поверхностных слоев могут быть использованы при разработке и выборе оптимальных параметров диагностического метода контроля содержания изотопов водорода в ОПЭ, основанном на лазерно-индуцированной десорбции. Результаты экспериментов по ЛИД дейтерия из слоев вольфрама, со-осажденных с дейтерием, могут быть использованы для валидации численных моделей.
- 3. Имплементированная в коде FESTIM модель, учитывающая поверхностные процессы, доступна всем пользователям кода и существенно расширяет его область применения.

Основные положения, выносимые на защиту:

1. Одномерная аналитическая модель, описывающая стационарное распределение водорода при учете наличия градиента температур (эффект Соре) и центров захвата водорода в приближении мгновенной рекомбинации атомов водорода на обращенной к плазме поверхности и мгновенной рекомбинации или нулевого потока атомов водорода на обратной поверхности и мгноверхности и мгноверх

- ности и позволяющая прогнозировать предельное накопление изотопов водорода в обращенных к плазме материалах.
- 2. Возникновение импульсно-периодических плазменных нагрузок, соответствующих ELM-событиям в токамаках (частота: 10-100 Гц, длительность: ~ 1 мс, плотность энергии: 0.45-0.14 МДж · м $^{-2}$), наряду со стационарными плазменными потоками (плотность мощности: 1-10 МВт · м $^{-2}$) ведет к снижению скорости накопления дейтерия в вольфраме при длительности облучения более 10 с за счет дополнительного нагрева материала относительно случая облучения стационарными потоками плазмы.

3. Коэффициент рециклинга

- 4. Атомарная фракции в потоке водорода, десорбированного с поверхности вольфрама, растет с увеличением температуры поверхности и уменьшением потока частиц, выходящих на поверхность. Величина атомарной фракции в потоке десорбированного водорода может достигать $\sim \! \! 1 \, \%$ и $\sim \! \! 10 \, \%$ при импульсном лазерном нагреве с наносекундной и миллисекундной длительностью до температуры плавления вольфрама.
- 5. Поверхностные процессы снижают долю десорбированного водорода с чистой поверхности вольфрама при импульсном лазерном нагреве с длительностью менее 10 мкс.

Достоверность полученных результатов обеспечивается применением общепризнанного численного метода решения систем дифференциальных уравнений в частных производных, имплементированного в верифицированном и валидированном программном пакете FESTIM. Разработанные модели основаны на теории Макнабба и Фостера, надежность которой была продемонстрирована путем воспроизведения результатов множества лабораторных экспериментов, а также были валидированы путем сравнения результатов численных расчетов с экспериментальными данными, приведенными в литературе и полученными в рамках данной диссертационной работы. Полученные результаты демонстрируют качественное и количественное согласие с литературными данными, полученными независимыми авторами на основе моделирования или экспериментального анализа.

Апробация работы. Основные результаты работы докладывались и обсуждались на российских и международных конференциях:

- XXV, XXVI, XXVII, XXVIII конференции «Взаимодействие плазмы с поверхностью» (Москва, 2022—2025 гг.)
- Пятнадцатая международная школа молодых ученых и специалистов им.
 А. А. Курдюмова (Окуловка, 2022 г.)
- 26th International Conference on Plasma Surface Interaction in Controlled Fusion Devices (PSI-26, Marseille, France, 2024 r.)
- 1st Open Source Software for Fusion Energy Conference (OSSFE, 2025 г.)

Полученные результаты также представлялись и обсуждались на собраниях разработчиков программного пакета FESTIM.

Личный вклад. Все результаты, выносимые на защиту, были получены автором или при его непосредственном участии. Лично автором были разработаны численные и аналитические модели, использованные для исследования закономерностей накопления и выхода изотопов водорода из вольфрама под действием импульсных плазменных и лазерных нагрузок, проведены моделирование и обработка полученных результатов. Постановка задач, выбор входных параметров для моделирования и анализ полученных результатов обсуждались с непосредственным научным руководителем д.ф.-м.н. Ю.М. Гаспаряном. Имплементация модели, учитывающей поверхностные процессы, в коде FESTIM проводилась совместно с главным разработчиком кода Р. Делапорте-Матюран (Массачусетский технологический институт, США) при определяющем участии автора, реализовавшим модель и проведшим ее верификацию и валидацию. Эксперименты по ЛИД дейтерия из пленок вольфрама, со-осажденных вместе с дейтерием, были проведены коллективом ФТИ им. А.Ф. Иоффе в лице ... при непосредственном участии автора в постановке экспериментов, обработке результатов измерений и проведении сравнения с модельными данными.

Публикации. Основные результаты по теме диссертации изложены в 6 печатных изданиях, 1 из которых издано в журналах, рекомендованных ВАК, 5—в периодических научных журналах, индексируемых Web of Science и Scopus.

Объем и структура работы. Диссертация состоит из введения, 4 глав, заключения и 0 приложен. Полный объём диссертации составляет 24 страницы, включая 0 рисунков и 0 таблиц. Список литературы содержит 13 наименований.

Глава 1. Обзор современного состояния исследований накопления изотопов водорода в материалах ОПЭ

- 1.1 Взаимодействие плазмы с поверхностью ОПЭ
- 1.2 Механизмы накопления изотопов водорода в ТЯУ
- 1.3 Влияние импульсных нагрузок на удержание изотопов водорода в вольфраме
 - 1.4 Подходы к моделированию накопления изотопов водорода
 - 1.5 Выводы к Главе 1

Для теста [А1]

Глава 2. Методика анализа динамики транспорта дейтерия в вольфраме

2.1 Модель транспорта изотопов водорода в материалах

2.1.1 Объемные процессы

Транспорт водорода

$$\frac{\partial c_{\rm m}}{\partial t} = \nabla \cdot (D \nabla c_{\rm m}) - \sum_{i} \frac{\partial c_{{\rm t},i}}{\partial t} + \sum_{j} S_{j}, \tag{2.1a}$$

$$\frac{\partial c_{t,i}}{\partial t} = k_i c_m (n_i - c_{t,i}) - p_i c_{t,i}, \tag{2.16}$$

Уравнения (2.1a) и (2.1б) в системе (2.1)

Перенос тепла

$$C\rho \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + \sum_{i} Q_{i}$$
 (2.2)

2.1.2 Поверхностные процессы

2.2 Программный пакет FESTIM

- 2.3 Реализация нульмерной модели, учитывающей поверхностные процессы, в программном пакете FESTIM
 - 2.3.1 Верификация модели
 - 2.3.2 Валидация модели

Эксперимент по абсорбция протия в титане

Эксперимент по адсорбция дейтерия на поверхности оксидированного вольфрама

Эксперимент по облучению вольфрама низкоэнергетичными атомами дейтерия

Эксперимент по облучению стали EUROFER ионами дейтерия

2.4 Выводы к Главе 2

Глава 3. Захват дейтерия в вольфраме под действием импульсно-периодических плазменных нагрузок

3.1	Валидация
U. I	

э.т. детали эксперимент	3.1.1	Детали эксперимента
-------------------------	-------	---------------------

3.1.2 Расчетная модель

- 3.1.3 Сравнение результатов моделирования и эксперимента
- 3.2 Моделирование накопления дейтерия в вольфраме под действием импульсно-периодических плазменных нагрузок
 - 3.2.1 Постановка задачи
 - 3.2.2 Эволюция температуры
 - 3.2.3 Коэффициент рециклинга
 - 3.2.4 Влияние параметров плазменных нагрузок
- 3.2.5 Влияние параметров центров захвата и скорости рекомбинации на поверхности

3.3 Аналитический анализ

Глава 4. Десорбция дейтерия из вольфрама при импульсном лазерном нагреве

4.1	Валидация

4.1.1 Детали эксперимента

4.1.2 Расчетная модель

4.1.3 Сравнение результатов моделирования и эксперимента

4.2 Анализ состава потока десорбированных частиц

4.2.1 Постановка задачи

4.2.2 Аналитический анализ

4.2.3 Результаты численного моделирования

4.3 Анализ влияния параметров материала на выход дейтерия

4.3.1 Постановка задачи

4.3.2 Влияние теплопроводности материала

4.3.3 Влияние параметров дефектов в вольфраме

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Последний параграф может включать благодарности. В заключение автор выражает благодарность и большую признательность научному руководителю Иванову И. И. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит Сидорова А. А. и Петрова Б. Б. за помощь в работе с образцами, Рабиновича В. В. за предоставленные образцы и обсуждение результатов, Занудятину Г. Г. и авторов шаблона *Russian-Phd-LaTeX-Dissertation-Тетрlate* за помощь в оформлении диссертации. Автор также благодарит много разных людей и всех, кто сделал настоящую работу автора возможной.

Список сокращений и условных обозначений

Аббревиатуры

УТС Управляемый термоядерный синтез

ЛИД Лазерно-инудуцированная десорбция

Публикации автора по теме диссертации

А1. *Кулагин*, *В. В.* Аналитическая оценка соотношения потоков атомарного и молекулярного водорода с поверхности вольфрама / В. В. Кулагин, А. Ю. Хомяков, Ю. М. Гаспарян // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. — 2022. — Окт. — Т. 16, вып. 5. — С. 909—913. — DOI: 10.31857/S1028096022100090.

Список литературы

- Plasma wall interaction and tritium retention in TFTR / C. Skinner [et al.] // Journal of Nuclear Materials. 1997. Feb. Vol. 241—243. P. 214—226. DOI: 10.1016/S0022-3115(97)80041-4.
- 2. *Keilhacker*, *M*. D–T experiments in the JET tokamak / M. Keilhacker, M. L. Watkins // Journal of Nuclear Materials. 1999. Mar. Vol. 266—269. P. 1—13. DOI: 10.1016/S0022-3115(98)00811-3.
- 3. Overview of T and D–T results in JET with ITER-like wall / C. Maggi [et al.] // Nuclear Fusion. 2024. Aug. Vol. 64, issue 11. P. 112012. DOI: 10. 1088/1741-4326/AD3E16.
- 4. Overview of the third JET deuterium-tritium campaign / A. Kappatou [et al.] // Plasma Physics and Controlled Fusion. 2025. Apr. Vol. 67, issue 4. P. 045039. DOI: 10.1088/1361-6587/ADBD75.
- 5. WEST L-mode record long pulses guided by predictions using Integrated Modeling / B. Shi [et al.] // Nuclear Fusion. 2025. Apr. Vol. 65, issue 5. P. 056018. DOI: 10.1088/1741-4326/ADC7C7.
- 6. Overview of recent experimental results on the EAST Tokamak / Y. Song [et al.] // Nuclear Fusion. 2024. Aug. Vol. 64, issue 11. P. 112013. DOI: 10. 1088/1741-4326/AD4270.
- 7. First Experimental Results on the T-15MD Tokamak / E. P. Velikhov [et al.] // Physics of Atomic Nuclei. 2024. Dec. Vol. 87, Suppl 1. S1—S9. DOI: 10.1134/S1063778824130283/FIGURES/12.
- 8. Recent progress of JT-60SA project toward plasma operation / H. Shirai [et al.] // Nuclear Fusion. 2024. Sept. Vol. 64, issue 11. P. 112008. DOI: 10. 1088/1741-4326/AD34E4.
- 9. The global fusion industry in 2024: tech. rep. / Fusion Industry Association. 2024. URL: https://www.fusionindustryassociation.org/wp-content/uploads/ 2024/07/2024-annual-global-fusion-industry-report.pdf.
- 10. Recent analysis of key plasma wall interactions issues for ITER / J. Roth [et al.] // J. Nucl. Mater. 2009. Jan. Vol. 390/391. P. 1—9. DOI: 10.1016/j. jnucmat.2009.01.037.

- 11. Deuterium and helium retention in W with and without He-induced W 'fuzz' exposed to pulsed high-temperature deuterium plasma / O. Ogorodnikova [et al.] // J. Nucl. Mater. 2019. Mar. Vol. 515. P. 150—159. DOI: 10.1016/j. jnucmat.2018.12.023.
- 12. Required R&D in existing fusion facilities to support the ITER research plan : tech. rep. / A. Loarte [et al.]. 2020.
- 13. Diagnostics Complex of the First Wall and Divertor of Tokamak with Reactor Technologies: Control of Erosion and Temperature and Monitoring of Fusion Fuel Build-up / A. G. Razdobarin [et al.] // Plasma Phys. Reports. 2022. Dec. Vol. 48, no. 12. P. 1389—1403. DOI: 10.1134/S1063780X22700283.

Список рисунков

Список таблиц