

Определить ближайший дилерский центр для каждого клиента. Маркетологи пытаются повысить вовлеченность клиентов, помогая им найти ближайший к ним дилерский центр. Команда разработчиков также заинтересована в том, чтобы узнать, каково среднее расстояние между каждым покупателем и его ближайшим дилерским центром.

Шаги для выполнения запроса PostgreSQL

1. Во-первых, создадим таблицу с точками долготы и широты для каждого клиента:

TEMP TABLE

Как работает временная таблица в PostgreSQL?

- •Временные таблицы невидимы для других транзакций и сеансов базы данных.
- •Временные таблицы видны для текущей транзакции или сеанса базы данных, в котором мы создаем таблицу.
- •Мы можем создать временную таблицу с тем же именем, что и постоянная таблица в базе данных, что на самом деле не рекомендуется. Временная таблица скрывает постоянную таблицу, определенную с тем же именем, пока она не будет удалена для соответствующего сеанса базы данных или транзакции.
- •Мы не можем получить доступ к постоянной таблице, если у нас есть временная таблица с тем же именем, что и постоянная таблица.

МОСКОВСКИЙ ГОРОДСКОЙ УНИВЕРСИТЕТ МГПУ

Шаги для выполнения запроса PostgreSQL

2. Проверить данные во временной таблице

SELECT * FROM customer_points;

Шаги для выполнения запроса PostgreSQL

3. Создать аналогичную таблицу для каждого дилерского центра:

```
SELECT * FROM customer_points;
                                                                            dealership_id|lng_lat_point
CREATE TEMP TABLE dealership points AS (
                                                                                     1 (-74.323291,40.7928460000000004)
                                                                                     2 (-118.305423,34.057753999999996)
SELECT
                                                                                     3 (-95.30702,29.963501)
                                                                                     4 | (-80.23645400000001,25.801748)
dealership id,
                                                                                     5 (-122.34360900000001,37.524487)
                                                                                     6 (-122.38729,47.537959)
                                                                                     7 | (-77.07974,38.83918099999999)
point(longitude, latitude) AS lng lat point
                                                                                     8 (-122.602984, 45.575702)
                                                                                     9 (-119.775709,39.527681)
FROM dealerships
                                                                                    10 (-87.813599,41.963474)
                                                                                    11 (-84.439297,33.789649)
);
                                                                                    12 | (-81.372232, 28.520723999999998)
                                                                                    13 (-81.410156,30.316027000000002)
                                                                                    14 (-97.681912,30.515476)
                                                                                    15 | (-112.36994299999999,33.623799)
SELECT * FROM dealership points;
```


Шаги для выполнения запроса PostgreSQL

3. Объединить эти таблицы, чтобы рассчитать расстояние от каждого клиента до каждого дилерского центра (в милях):

Шаги для выполнения запроса PostgreSQL

3. Объединить эти таблицы, чтобы рассчитать расстояние от каждого клиента до каждого дилерского центра (в милях):

customer_id deale	rship_id distance
	+
2	1 859.8940793201315
2	2 1585.647794965087
2	3 661.1449933095291
2	4 1058.283498390192
2	5 1738.0755753840901
2	6 1720.7866866604265
2	7 710.3506330216096
2	8 1714 . 4120709491135
2	9 1577.7526240301158
2	10 266.93721034903587
2	11 463.5443671619498
2	12 862.282848174378
2	13 761.117994881253
2	14 698.6164270950409

Шаги для выполнения запроса PostgreSQL

4. Выбрать ближайший дилерский центр для каждого клиента, используя следующий запрос:

```
CREATE TEMP TABLE closest_dealerships AS (
SELECT DISTINCT ON (customer_id)
        customer_id,
        dealership_id,
        distance
FROM customer_dealership_distance
ORDER BY customer_id, distance
);
SELECT * FROM closest_dealerships;
```


Шаги для выполнения запроса PostgreSQL

4. Выбрать ближайший дилерский центр для каждого клиента, используя следующий запрос:

customer_id dealershi	p_id	distance
	+	+
2	18	231.80698588435425
3	11	274.9885104949864
4	11	208.93337510454796
5	4	21.75674247468588
6	4	12.51912084529485
7	12	7.4605341973673704
8	1	81.00919920405966
9	18	21.56261227624718
10	15	377.32135494582764
11	18	208.45090235163937
13	2	110.6149374875428
14	19	291.6134662380013
15	2	25.707699223220462
		- -0

Самостоятельное задание

- Провести выгрузку полученного результата из временной таблицы в CSV.
- Построить карту клиентов и сервисных центров в облачной визуализации Yandex DataLence.
- Удалить временные таблицы. customer_id|dealership_id|distance

2	18	231.80698588435425
3	11	274.9885104949864
4	11	208.93337510454796
5	4	21.75674247468588
6	4	12.51912084529485
7	12	7.4605341973673704
8	1	81.00919920405966
9	18	21.56261227624718
10	15	377.32135494582764
11	18	208.45090235163937
13	2	110.6149374875428
14	19	291.6134662380013
15	2	25.707699223220462