Классификация

Виды классификации

Мультикласс, мультилейбл, мультиаутпут

Напоминание из прошлой лекции:

Картинка: www.mathworks.com

Мультикласс, мультилейбл, мультиаутпут

Источник: https://scikit-learn.org/stable/modules/multiclass.html

Мультикласс, мультилейбл, мультиаутпут

- Multiclass: выберите один из n>2 лейблов классов. Например: определите, какое животное из трех возможных изображено на картинке, исходя из того, что на каждой картинке изображено только одно животное.
- Multilabel: присвойте каждому вхождению m лейблов из n возможных классов, где m <= n (предскажите названия всех животных, которые есть на картинке);
- Multiclass-multioutput*: присвойте каждому вхождению п лейблов, каждый из которых может разделяться на m возможных классов (предскажите породу и цвет кошки).

Кошка: https://dzen.ru/a/Y1pBrTB4xh glcWS

Перед началом работы

Подготовка: стратификация

- Стратификация в машинном обучении это разделение набора данных на выборки (тренировочную, валидационную, тестовую) таким образом, что во всех выборках **соотношение** классов остается одинаковым.
- В sklearn производится с помощью встроенных классов и параметров (например, параметр stratify функции train test split).

Подготовка: баланс классов

 Если классы не сбалансированы, модель может склоняться к превалирующему классу при предсказании. Этого можно избежать, либо выкинув лишние примеры из большего класса, либо присвоив классам веса:

```
lr_binary = LogisticRegression(class_weight={0:0.72, 1:0.28})
```

На картинке класс "1" составляет большую часть данных, поэтому ему присвоен меньший вес.

 В sklearn веса можно вычислить, например, с помощью функции compute_class_weight, а потом передать в параметр class_weight классификатора; либо использовать параметр class_weight, встроенный во многие модели.

Примеры классификаторов

Логистическая регрессия

B sklearn это линейная модель для классификации, которая возвращает вероятности каждого класса.

$$P(Y = 1|x_1, x_2, [...]x_n) = \frac{e^{(w_0 + w_1 x_1 + w_2 x_2 + [...] + w_n x_n)}}{1 + e^{(w_0 + w_1 x_1 + w_2 x_2 + [...] + w_n x_n)}}$$

Здесь w - коэффициенты/веса (внимание: на картинке они обозначены буквой b), w_0 - константа, $x_1...x_n$ - наши признаки, е - экспонента.

Почему экспонента? Потому что экспонента - это основание натурального логарифма.

Картинка:

 $\underline{\text{https://towardsdatascience.com/logistic-regression-explained-and-implemented-in-python-880955306060}}$

Нам необходимо разделить точки в пространстве гиперплоскостью.

Уравнение плоскости будет иметь вид:

$$w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n = 0$$

Здесь w - параметры (веса), а x - наши признаки. По значению весов (коэффициентов) можно понять важность того или иного признака.

Картинка: https://habr.com/ru/companies/io/articles/265007/

Нам нужно найти вероятность положительного класса, т.е. число от 0 до 1. Но наше выражение с предыдущего слайда имеет пределы [-∞;∞]. Нам нужно, чтобы обе части выражения имели одинаковые пределы. Для этого нам понадобится формула отношения шансов и натуральный логарифм.

$$\ln(\frac{p}{1-p}) = w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n$$

Это формула отношения шансов. Сама по себе она имеет пределы от 0 до бесконечности ([0;∞]). Мы применили логарифм к отношению шансов, и теперь оно имеет пределы [-∞;∞].

Теперь перепишем это выражение и найдем вероятность р:

$$\ln\left(\frac{p}{1-p}\right) = w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n$$

$$\frac{p}{p-1} = e^{w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n}$$

Зависимость вероятности от отношения шансов OR рассчитывается по следующей формуле:

$$P = \frac{OR}{1 + OR}$$

Таким образом:

$$p = \frac{e^{(w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n)}}{1 + e^{(w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n)}} \longrightarrow$$

Похоже на эту формулу с первого слайда?

$$P(Y = 1|x_1, [...]) = \frac{e^{(w_0 + w_1 x_1 + [...])}}{1 + e^{(w_0 + w_1 x_1 + [...])}}$$

$$p = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2 + [\dots] + w_n x_n)}} \longrightarrow$$

А это похоже на сигмоидную функцию

В итоге мы получили формулу, очень похожую на сигмоидную функцию:

$$F(x) = \frac{1}{1 + e^{-x}}$$

Сигмоида принимает значения от 0 до 1 и часто применяется в алгоритмах классификации, в том числе в нейронных сетях.

Картинка:

https://commons.wikimedia.org/wiki/File:Logistic-curve.svg#/media/File:Logistic-curve.svg

К ближайших соседей

- В многомерном пространстве существует множество векторов признаков Х_{1...і}. Каждый из них относится к одному из N классов. Предполагается, что вектора одного класса будут располагаться рядом. Когда нам нужно определить, к какому классу относится каждый новый вектор, мы проецируем его в то же пространство и смотрим, кто его соседи.
- k nearest neighbors (kNN) может предсказывать как непрерывные, так и категориальные переменные, т.е. может использоваться как для регрессии, так и для классификации.

К ближайших соседей

Простое решение: каждый новый вектор сравниваете со всем набором тренировочных векторов, каждый раз вычисляя расстояние между векторами. Затем сортируем вектора по расстоянию от нового и берем k ближайших.

- При регрессии: значением функции будет среднее от ближайших векторов;
- При классификации: модель выдаст тот класс, который преобладает среди k ближайших векторов.

К ближайших соседей

Картинка: kNN-классификация на датасете с ирисами с разными весами. https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

Внимание: неоднозначная терминология

LDA != LDA

 Linear Discriminant Analysis - supervised алгоритм, который можно использовать для снижения размерности и классификации. Latent Dirichlet Allocation - unsupervised алгоритм, может использоваться для выделения тем в неаннотированных данных.

kNN != k-means

 В отличие от К ближайших соседей, К средних - unsupervised алгоритм, часто использующийся для кластеризации.

Decision trees != Random Forest

Деревья принятия решений - это семейство алгоритмов классификации и регрессии.
 Рандомный лес тоже основан на древесном алгоритме, но используется для ансамблевого обучения.

Методы оценки качества

Оценка качества классификации

Confusion matrix		True labels	
		Positive	Negative
Predicted labels	Positive	True positive	False positive
	Negative	False negative	True negative

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Картинка: Seol, Da & Choi, Jeong & Kim, Chan & Hong, Sang. (2023). Alleviating Class-Imbalance Data of Semiconductor Equipment Anomaly Detection Study. Electronics. 12. 585. 10.3390/electronics12030585.

Почему F-мера, а не accuracy?

Ассигасу не очень хорошо работает для несбалансированных классов. Например, имеется 100 тестовых образцов, 90 из которых принадлежат классу 1, а 10 - классу 0. Модель предсказывает, что все 100 образцов принадлежат классу 1. Таким образом, ассигасу = 90/100 = 0.9, что на самом деле неприемлемо.

F-мера, как гармоническое среднее, будет близка к нулю, когда хотя бы один из аргументов (точность или полнота) близок к нулю. Рассмотрим, например, случай, когда в у_true 50 нулей и 50 единиц, а в у_pred - 20 единиц и 80 нулей, но все 20 единиц предсказаны верно. Это даст нам precision = 1, но recall всего лишь 0.4. F-мера при этом будет равна 0.57, а ассигасу = 0.7.

Ноутбук про значения ассигасу и f1-score на несбалансированных данных: https://colab.research.google.com/drive/1uVGI2mOAyIkalQK9QV2bC-tRN3lmylfn?usp=sharing

Микро-, макро-, взвешенное усреднение

	precision	recall	f1-score	support
0	0.67	0.67	0.67	6
1	1.00	0.33	0.50	9
2	0.45	1.00	0.62	5
??accuracy			0.60	20
macro avg	0.71	0.67	0.60	20
weighted avg	0.76	0.60	0.58	20

Микро-, макро-, взвешенное усреднение

На примере точности:

Precision = true_positive / (true_positive + false_positive)

- Микроусреднение: считаем среднее количество ТР и FP по всем классам. Эти числа подставляем в формулу precision;
- Макроусреднение: считаем точность по всем классам, усредняем;
- Взвешенное усреднение: макроусреднение, но каждое значение точности домножается на вес класса (отношение числа примеров для этого класса к числу всех примеров в выборке).

Тетрадка с примером:

https://colab.research.google.com/drive/1QN Kgcg4wSxgq8vmZ5cMxA3mWJiQIdDS4?usp =sharing

ROC curve

• ROC = receiver operating curve или кривая ошибок. Отражает отношение между чувствительностью алгоритма классификации (true positive rate) и его специфичностью (false positive rate).

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

 Классификаторы выдают вероятности принадлежности элемента к какому-либо классу. Чувствительность и специфичность будут отличаться в зависимости от того, какой порог вероятности мы возьмем. Обычно берется порог >= 0.5. Идеальный классификатор, который всегда прав, при любом пороге будет выдавать TPR = 1. Кривая ошибок отражает зависимость TPR и FPR от выбранного порога вероятности.

ROC curve

ROC curve - вычисление

В таблице 1 представлены оценки вероятности, выданные классификатором ("оценка"), и истинные значения классов ("класс"). В таблице 2 все столбцы упорядочены по убыванию оценок. В таблице 3 представлены округленные значения вероятностей с порогом > 0.25.

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

id	> 0.25	класс
4	1	1
1	1	0
6	1	1
3	0	0
5	0	1
2	0	0
7	0	0

Табл. 1

Табл. 2

Табл. 3

ROC curve - вычисление

Для построения кривой ошибок необходимо посчитать FPR и TPR для таблицы 3, а также для еще нескольких подобных таблиц для разных пороговых значений вероятности. В идеале, каждое уникальное значение оценки может быть порогом.

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

id	> 0.25	класс
4	1	1
1	1	0
6	1	1
3	0	0
5	0	1
2	0	0
7	0	0

TPR = 2/3FPR = 1/4

Табл. 1 Табл. 2 Табл. 3

ROC curve

TPR	FPR	Threshold
1	1	0
1	0.75	0.1
1	0.5	0.2
1	0.5	0.3
0.(6)	0.25	0.4
0.(6)	0.25	0.5
0.(3)	0	0.6
0	0	1.1

 Добавим придуманное большое значение, чтобы кривая дошла до нуля

AUC

AUC = area under the curve, площадь пространства между кривой и осью false positive rate. AUC идеальной модели должна приближаться к 1.
 AUC=0.5 означает, что модель не умеет разделять классы. (вопрос: а что значит AUC < 0.5?)

Дополнительно

Линейность и нелинейность*

Нелинейность модели != нелинейность функции

Источник: http://www.statistics4u.info/fundstat-eng/cc-linvsnonlin.html

Линейность и нелинейность*

В моделях линейность определяется относительно параметров, а не предиктора:

$$E[Y] = \beta_0 + \beta_1 + \beta_2 log(X)$$
 - линейна относительно β ;

$$E[Y] = \beta_0 + \beta_1 + \log(\beta_2 X)$$
 - НЕлинейна относительно β .

Практика

https://colab.research.google.com/drive/1aF7fXCwE8AzWEnUcrMTcmIREAf8its Hc?usp=sharing