UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: STK2400 — Elementær innføring i

risiko- og pålitelighetsanalyse.

Eksamensdag: Onsdag 6. desember 2006.

Tid for eksamen: 15.30 - 18.30.

Oppgavesettet er på 3 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1.

I denne oppgaven skal vi se på en type system som kalles et terskelsystem. Et binært monotont system, (C, ϕ) , med komponentmengde $C = \{1, \ldots, n\}$ og strukturfunksjon ϕ , sies å være et terskelsystem dersom strukturfunksjonen kan skrives på følgende form:

(1)
$$\phi(\mathbf{X}) = I(\sum_{i=1}^{n} a_i X_i \ge b),$$

der a_1, \ldots, a_n og b er ikke-negative konstanter, og $\mathbf{X} = (X_1, \ldots, X_n)$ betegner vektoren av komponent-tilstandsvariable. Funksjonen $\mathbf{I}(\cdot)$ betegner indikatorfunksjonen, dvs. $\mathbf{I}(A) = 1$ dersom kriteriet A er oppfylt, og 0 ellers. Konstantene a_1, \ldots, a_n kalles for systemets komponentvekter, mens konstanten b kalles systemets terskelverdi.

(a) La (C, ϕ) være et terskelsystem der alle komponentvektene er lik 1 og der terskelverdien er lik k, der k er et heltall slik at $1 \le k \le n$. Hva slags system er dette?

(Fortsettes side 2.)

(b) La (C, ϕ_1) og (C, ϕ_2) være to terskelsystemer med felles komponentvekter a_1, \ldots, a_n som alle er positive, og med terskelverdier henholdsvis b_1 og b_2 gitt ved:

$$(2) b_1 = \sum_{i=1}^n a_i$$

$$b_2 = \min_{1 \le i \le n} a_i$$

Hva slags systemer er (C, ϕ_1) og (C, ϕ_2) ?

(c) La (C, ϕ) være et terskelsystem og la (C, ϕ^D) betegne det duale systemet. Vis at (C, ϕ^D) også er et terskelsystem.

I resten av denne oppgaven lar vi (C, ϕ_b) betegne et terskelsystem der $C = \{1, \ldots, 5\}, b \in \{1, \ldots, 8\},$ og der:

(4)
$$\phi_b(\mathbf{X}) = I(3X_1 + 2X_2 + X_3 + X_4 + X_5 \ge b).$$

Videre betegner vi påliteligheten til (C, ϕ_b) med h_b .

- (d) Finn de minimale sti- og kuttmengdene til (C, ϕ_3) .
- (e) Vis at:

(5)
$$\phi_3(1_1, \mathbf{X}) = 1,$$

(6)
$$\phi_3(0_1, \mathbf{X}) = X_2(X_3 \coprod X_4 \coprod X_5) + (1 - X_2)(X_3 X_4 X_5).$$

- (f) Anta at $X_1, ... X_5$ er stokastisk uavhengige og at $\Pr(X_i = 1) = p_i$, i = 1, ..., 5. La videre $\mathbf{p} = (p_1, ..., p_n)$. Finn påliteligheten $h_3 = h_3(\mathbf{p})$ til systemet (C, ϕ_3) .
- (g) Birnbaum-målet for den pålitelighetsmessige betydning av *i*-te komponent i systemet (C, ϕ_b) er definert som:

(7)
$$I_B^i(\phi_b) = \frac{\partial h_b(\mathbf{p})}{\partial p_i}, \ i = 1, \dots, 5.$$

Beregn $I_B^1(\phi_3)$.

- (h) Anta at $p_1 < \cdots < p_5$. Hvilken komponent har høyest pålitelighetsmessig betydning i (C, ϕ_1) ? Hva er den tilsvarende konklusjonen dersom vi istedet ser på (C, ϕ_8) ? Kommenter svaret.
 - (i) I resten av oppgaven antar vi at $p_1 = \cdots = p_5 = p$, og innfører:

(8)
$$S = 3X_1 + 2X_2 + X_3 + X_4 + X_5.$$

Forklar kort hvorfor $S \in \{0, 1, ..., 8\}$. Finn sannsynlighetsfordelingen til S uttrykt ved p.

(Fortsettes side 3.)

(j) Forklar hvorfor:

(9)
$$h_b = h_b(p) = \Pr(S \ge b), b = 1, \dots, 8,$$

og benytt dette til å finne h_5 .

(k) For hvilke verdier av b vil $h_b(p) \ge p$ for alle $p \in [0,1]$? For hvilke verdier av b vil $h_b(p) \le p$ for alle $p \in [0,1]$? Begrunn svaret.

Oppgave 2.

Definer hva det vil si at stokastiske variable $T_1, \dots T_n$ er assosierte. Gi en kort beskrivelse av hvordan dette begrepet kan brukes i pålitelighetsanalyse.

SLUTT