[Synchronization + Constrained coding (inner code)]

 $\Sigma = \{0,1,2,3\} \quad \text{(A,T,G,C)}$ constraint length

 $\mathcal{Q} \subset \Sigma^{\ell}$: valid state set

(ex) $\mathcal{Q}_{\ell,k}^{\mathrm{R}}$: maximum run-length k

 $\mathcal{Q}^{\mathrm{B}}_{\ell,arepsilon}$: local arepsilon-balanced

 \mathcal{Q}_{ℓ}^{M} : motif (?)

 Q_{ℓ}^{S} : synchronization (?)

$$\mathcal{Q} = \mathcal{Q}_{\ell,k}^{\mathrm{R}} \cap \mathcal{Q}_{\ell,\varepsilon}^{\mathrm{B}} \cap \mathcal{Q}_{\ell}^{\mathrm{M}} \cap \mathcal{Q}_{\ell}^{\mathrm{S}} \cap \cdots$$
$$\mathbf{q} = q_0 q_1 \dots q_{\ell-2} q_{\ell-1} \in \mathcal{Q}$$

state:

 $\overleftarrow{\boldsymbol{q}} a = q_1 q_2 \dots q_{\ell-1} a \in \Sigma^{\ell}$ left-shift:

state transition: $t(\boldsymbol{q},a) = \left\{ \boldsymbol{q}' = \overleftarrow{\boldsymbol{q}} \, a \big| \boldsymbol{q}' \in \mathcal{Q} \right\} \\ |t(\boldsymbol{q},a)| \in \left\{ 0,1 \right\}$

edge label set: $\mathcal{L}(q) = \{a | t(q, a) \neq \phi\}$

encoding:

$$f_{\mathrm{e}}: \mathcal{Q} \times \mathbb{B}^2 \to \Sigma$$

Je · ~					
$\mathcal{L}(oldsymbol{q})$	00	01	10	11	
$\{0, 1, 2, 3\}$	0	1	2	3	
$\{0, 1, 2\}$	0	1	2	2	
$\{0, 1, 3\}$	0	1	3	3	
$\{0, 2, 3\}$	0	0	2	3	
$\{1, 2, 3\}$	1	1	2	3	
$\{q_0,q_1\}$	q_0	q_0	q_1	q_1	
$\{q\}$	q	q	\boldsymbol{q}	\boldsymbol{q}	
ϕ	(invalidate q)				

outer code: \mathcal{C}_0 : left-bit

 \mathcal{C}_1 : right-bit

(rate) $R(\mathcal{C}_0) > R(\mathcal{C}_1)$

evaluation: ?

constrained channel capacity

IDS channel SIR? (<=> finite length?)

FBA soft output: mutual info?

[Synchronization + Constrained coding (inner code)]

$$\Sigma = \{0,1,2,3\}$$
 (=A,T,G,C)

k: maximum run-length

 $w_{01}(\boldsymbol{x}_0^{i-1}) - w_{23}(\boldsymbol{x}_0^{i-1})$

 δ : balance margin $\left|w_{01}(oldsymbol{x}_0^{i-1}) - w_{23}(oldsymbol{x}_0^{i-1})
ight| \leq \delta$ \rightarrow local balance: $b = (2\delta + \ell')/\ell$

$$|2w_{01}(\boldsymbol{x}_0^{i-1}) - i| \le \delta \quad (\forall i \in [n])$$

$$\ell' = \begin{cases} (\ell - 2\delta)/2 & (\ell : \text{even}) \\ (\ell - 2\delta - 1)/2 & (\ell : \text{odd}) \end{cases}$$

$$-\delta$$
 \vdash ℓ

$$b = \begin{cases} \frac{1}{2} + \frac{\delta}{\ell} & (\ell : \text{even}) \\ \frac{1}{2} + \frac{\delta}{\ell} - \frac{1}{2\ell} & (\ell : \text{odd}) \end{cases}$$
$$\varepsilon = \begin{cases} \frac{\delta}{\ell} & (\ell : \text{even}) \\ \frac{\delta}{\ell} - \frac{1}{2\ell} & (\ell : \text{odd}) \end{cases}$$

[IDS channel]

insertion $p_{\rm i}$: deletion $p_{\rm d}$:

 $p_{\mathrm{s}}(y|x)$: asymmetric error

 $d_{\min} \! < \! 0$: drift min $d_{\rm max} \! > \! 0$: drift max

$$\mathcal{D} = \{ d \in \mathbb{Z} | d_{\min} \leq d \leq d_{\max} \}$$

[state transition]

run-length:
$$t_{R}(p, a) : \mathcal{P} \times \Sigma \to \mathcal{P} \cup \{\bot\}$$

balance:
$$t_{\mathrm{B}}(q,a): \mathcal{Q} \times \Sigma \to \mathcal{Q} \cup \{\bot\}$$

run-length + balance:

$$t(p,q,a): \mathcal{P} \times \mathcal{Q} \times \Sigma \to (\mathcal{P} \times \mathcal{Q}) \cup \{\bot\}$$

$$t(p, q, a) = \begin{cases} (p', q') & (t_{\mathcal{B}}(p, a) = p', t_{\mathcal{B}}(q, a) = q') \\ \bot & (\text{otherwise}) \end{cases}$$

[information mapping]

$$\mathcal{L}(p,q) = \{ a \, | \, t(p,q,a) \neq \bot \}$$
$$f_e : \mathcal{P} \times \mathcal{Q} \times \mathbb{B}^2 \to \Sigma$$

$\mathcal{L}(p,q)$	00	01	10	11		
$\{0, 1, 2, 3\}$	0	1	2	3		
$\{0, 1, 2\}$	0	1	2	2		
$\{0, 1, 3\}$	0	1	3	3		
$\{0, 2, 3\}$	0	0	2	3		
$\{1, 2, 3\}$	1	1	2	3		
$\{q_0,q_1\}$	q_0	q_0	q_1	q_1		
$\{q\}$	q	q	q	q		
ϕ	(delete (p,q))					
Orocuroc:						

erasures: corrected by outer code

[FBA]

$$s_i = (p_i, q_i, d_i) \in \mathcal{P} \times \mathcal{Q} \times \mathcal{D}$$
$$x_i = (x_i^0, x_i^1) \in \mathbb{B}^2$$

 $p(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{d})$

 $= p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{p},\boldsymbol{q},\boldsymbol{d})p(\boldsymbol{x},\boldsymbol{p},\boldsymbol{q},\boldsymbol{d})$

 $= p(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{d}) \prod_{i=0}^{n-1} p(\boldsymbol{y}_{i+d_i}^{i+d_{i+1}} | x_i, p_i, p_{i+1}, q_i, q_{i+1}, d_i, d_{i+1})$

 $=p(p_0)p(q_0)p(d_0)\prod_{i=0}^{n-1}p(\boldsymbol{y}_{i+d_i}^{i+d_{i+1}}|x_i,p_i,p_{i+1},q_i,q_{i+1},d_i,d_{i+1})p(p_{i+1}|p_i)p(q_{i+1}|q_i)p(d_{i+1}|d_i)$

[evaluation]

- * code rate
 - capacity of constrained channel
 - encoding rate (erasure prob.)
- * mutual information: I(channel input, FBA output)
- comparison to marker, watermark?

