Proposição 1. Seja G um grafo conexo. Seja T uma árvore de Busca em Largura de G a partir de um vértice v qualquer. Se existem vértices $s,t \in V(G)$ tais que $st \in E(G)$, $st \notin E(T)$ e $dist_T(v,s) = dist_T(v,t) + 1$, então G possui ciclo par.

Proposição 2. Seja G um grafo conexo livre de ciclos pares. Seja T uma Árvore de Busca em Largura de G a partir de $v \in V(G)$. Seja $V \subsetneq V(G)$ o conjunto de vértices com distância p > 0 de v. Temos que o conjunto E(G[V]) é um emparelhamento.

Lema 1. Seja G um grafo. Se existe uma k-partição V_1, V_2, \ldots, V_k dos vértices de G tal que, para todo vértice $v \in V(G)$, temos que $|N(v) \cap V_i| = 1$, para algum $1 \le i \le k$, então $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(G[V_i])$.

Demonstração. Seja $H_i=G[V_i]$, para todo $1\leq i\leq k$. Iremos colorir cada subgrafo H_i com $\chi(H_i)$ cores distintas. Para isso, cada cor será representada por um par ordenado. Seja $c_i:V(H_i)\to \{i\}\times \chi(H_i)$ uma coloração própria de H_i . Para todo par distinto de colorações c_i e c_j , temos que $c_i(v)\neq c_j(u)$, para todo $v\in V(H_i)$ e $u\in V(H_j)$, pois $(i,x)\neq (j,y)$ para $i\neq j$.

Seja c uma coloração de G tal que $c(v)=c_i(v)$ se e somente se $v\in V(H_i)$. Em outras palavras, c é a união das colorações usadas em cada subgrafo H_i . Como c_i é uma coloração própria de H_i e todo par distinto de subgrafos H_i e H_j são coloridos com cores distintas, temos que c é uma coloração própria de G.

Como, para todo vértice $v \in V(G)$, vale que $|N(v) \cap V(H_i)| = 1$, para algum subgrafo H_i , e como as cores usadas em H_i são distintas das cores usadas em $V(G) \setminus V(H_i)$, temos que existe uma cor (i,x) que aparece uma única vez na vizinhança de v, para $x \in [\chi(H_i)]$. Sendo assim, c descreve uma coloração própria livre de conflitos de G.

Como
$$c_i$$
 utiliza $\chi(H_i)$ cores, para todo $1 \le i \le k$, temos que $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(H_i)$.

Teorema 1. Seja G um grafo conexo. Se G é livre de ciclos pares, então $\chi_{pcf}(G) \leq 7$.

Demonstração. Seja T uma Árvore de Busca em Largura de G a partir de um vértice r qualquer. Sabemos que T é uma árvore geradora, pois G é conexo. Seja V_0, V_1, V_2 uma partição de G tal que $x \in V_i$ se e somente se $i = dist_T(r,x) \pmod 3$. Seja s um vértice de G, tal que $s \neq r$. Seja p o pai de s em T e seja s um filho de s em s. Note que s e f pertencem a partições distintas, pois:

$$dist_T(r,p) \pmod{3} \neq dist_T(r,p) + 2 \pmod{3} = dist_T(r,f) \pmod{3}$$
 (1)

Seja $t \in V(G)$ um vértice tal que $dist_T(r,s) > dist_T(r,t) + 1$. Sabemos que $st \notin E(G)$, pois T é uma árvore de Busca em Largura. Sendo assim, se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t) + 1$ ou $dist_T(r,s) = dist_T(r,t)$. Pela Proposição 1, sabemos que se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t)$, pois G é livre de ciclos pares. Note que isto implica que s é adjacente a precisamente um

vértice u em G tal que $dist_T(r,s) = dist_T(r,u) + 1$, e, sendo assim, u é o pai de s em T, i.e., u = p. Note que $|N(s) \cap V_i| = 1$, onde $f \in V_i$, para todo $s \in V(G) \setminus \{r\}$.

Resta agora a partição do vértice raiz r. Iremos remover um vértice $v \in N(r)$ da partição V_1 e iremos construir uma nova partição V_0, V_1', V_2, V_3 de G, de modo que $V_1' = V_1 \setminus \{v\}$ e $V_3 = \{v\}$. Seja s um vértice onde $|N(s) \cap V_1| = 1$, i.e., o pai p de s pertence a V_1 . Queremos argumentar que a propriedade é satisfeita para s na nova partição V_0, V_1', V_2, V_3 . Se $p \neq v$, então $|N(s) \cap V_1'| = 1$ e a propriedade continua valendo. Se p = v, então $N(s) \cap V_3 = \{v\}$, i.e., $|N(s) \cap V_3| = 1$ e a propriedade vale.

Note que a partição V_0, V_1', V_2 e V_3 satisfaz a condição do Lema 1. Note que pela Proposição 2, $E(G[V_i])$ é um emparelhamento. Sendo assim, temos que $\chi(G[V_i])=2$, para $0\leq i\leq 2$. Note que $\chi(G[V_3])=1$, pois $V_3=\{v\}$. Sendo assim, pelo Lema 1, temos que $\chi_{pcf}(G)\leq 7$.

Definição 1. Seja $\mathcal{P} = \{P_1, P_2, \dots P_k\}$ uma k-partição de d elementos distintos. Dizemos que \mathcal{P} é uma k-partição par se $|P_i|$ é par, para todo $P_i \in \mathcal{P}$.

Definição 2. Denotamos por $\mu(d,k)$ a quantidade de k-partições pares distintas de d elementos distintos.

Definição 3. Denotamos por $\Phi(d,k)$ a quantidade de k-partições não pares distintas de d elementos distintos. Denotamos por $\Phi_{\ell}(d,k)$ a quantidade de k-partições não pares de d elementos, com exatamente ℓ partes de cardinalidade ímpar. Também denotamos por $\Phi_{\geq \ell}(d,k)$ a quantidade de k-partições não pares de d elementos com pelo menos ℓ partes de cardinalidade ímpar, i.e., $\Phi_{\geq \ell}(d,k) = \sum_{i=\ell}^k \Phi_i(d,k)$.

Definição 4. Denotamos por $\varphi_\ell(d,k)$ a quantidade de k-partições não pares de d elementos onde somente as primeiras ℓ partes tenham cardinalidade ímpar. Claramente temos que $\varphi_\ell(d,k) \leq \Phi_\ell(d,k)$, pois $\varphi_\ell(d,k)$ conta apenas as k-partições com as primeiras ℓ partes de cardinalidade ímpar, já $\Phi_\ell(d,k)$ conta qualquer subconjunto pertencente a $\binom{[k]}{\ell}$ com cardinalidade ímpar.

Definição 5. Denotamos por $\chi_{io}(G)$ o menor inteiro k tal que G possui uma k-coloração ímpar não própria.

Proposição 3. Seja 2n!! o fatorial dos impares. Temos que $2n!! \le n^n$.

Lema 2. *Seja a recorrência a seguir:*

$$T(2d,k) = \begin{cases} 1 & k = 1\\ \sum_{i=0}^{d} {2d \choose 2i} \cdot T(2i,k-1) & c.c. \end{cases}$$
 (2)

Temos que $T(2d, k) = \mu(2d, k)$, para $k \ge 1$.

Demonstração. A demonstração segue por indução em k.

Base (k=1): Para k=1, temos que $T(2d,k)=\mu(2d,1)=1$, pois há uma única partição $\mathcal{P}=\{P_1\}$ de 2d elementos, de modo que $|P_1|$ seja par. Sendo assim, o resultado segue.

Passo (k>1): Suponha que $T(2d,\ell)=\mu(2d,\ell)$, para todo $1\leq \ell < k$. Iremos provar que $T(2d,k)=\mu(2d,k)$. Seja $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ uma k-partição par. Como P_k tem tamanho par, temos que existe um i tal que $|P_k|=2i$, onde $0\leq i\leq d$. Sabemos que há $\binom{2d}{2i}$ maneiras de escolher 2i elementos de 2d elementos para a parte P_k . Note que ao escolher 2i elementos para a parte P_k temos que particionar os 2d-2i elementos restantes em (k-1) partes, de modo que cada parte tenha tamanho par. Sendo assim, precisamos escolher uma (k-1)-partição par \mathcal{P}' de 2d-2i elementos. Note que há $\mu(2d-2i,k-1)$ maneiras de escolher \mathcal{P}' . Sendo assim:

$$\mu(2d,k) = \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2d-2i,k-1)$$
(3)

Por HI, $T(2d-2i,k-1)=\mu(2d-2i,k-1)$. Note que $\binom{2d}{2i}=\binom{2d}{2d-2i}$. Logo:

$$\mu(2d,k) = \sum_{i=0}^{d} {2d \choose 2d-2i} \cdot T(2d-2i,k-1)$$

$$= \sum_{i=0}^{d} {2d \choose 2i} \cdot T(2i,k-1) = T(2d,k)$$
(4)

Lema 3. Seja a recorrência a seguir:

$$R(2d,k) = \begin{cases} 0 & \text{se } k \le 1\\ 2^{2d-1} & \text{se } k = 2\\ \sum_{i=1}^{d} {2d \choose 2i} \cdot R(2i,k-1) & \text{se } k > 2 \end{cases}$$
 (5)

Temos que $R(2d, k) = \varphi_2(2d, k)$.

Demonstração. A demonstração segue por indução em k.

Base (k=2): Note que $\varphi_2(2d,2)=\Phi(2d,2)$, pois seja uma k-partição não par $\mathcal{P}=\{P_1,P_2\}$, como 2d é par, temos que $|P_1|$ e $|P_2|$ são pares ou $|P_1|$ e $|P_2|$ são impares. Note que $\Phi(2d,2)=2^{2d}-\mu(2d,2)$, pois há exatamente 2^{2d} formas de particionar 2d elementos em duas partes P_1 e P_2 e dessas 2^{2d} maneiras há $\mu(2d,2)$ maneiras de particionar 2d termos tal que $|P_1|$ e $|P_2|$ sejam pares. Note que:

$$\mu(2d,2) = \sum_{i=0}^{d} {2d \choose 2i} \cdot T(2i,1) = \sum_{i=0}^{d} {2d \choose 2i} = 2^{2d-1}$$
 (6)

Logo, temos que $\varphi_2(2d,2)=\Phi(2d,2)=2^{2d}-2^{2d-1}=2^{2d-1}=R(2d,2)$ e o resultado segue.

Passo (k>1): Suponha que $R(2d,\ell)=\varphi_2(2d,\ell)$, para todo $2\leq \ell < k$. Iremos provar que $R(2d,k)=\varphi_2(2d,k)$. Seja $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ uma k-partição contada em $\varphi_2(2d,k)$. Como somente as partes P_1 e P_2 tem tamanho ímpar, temos que a parte P_k tem

tamanho par, pois k>2. Sendo assim, existe um i tal que $|P_k|=2i$, onde $0\leq i\leq d-1$. Note que $|P_k|\leq 2d-2$, pois como P_1 e P_2 possuem tamanho ímpar, temos que há ao menos um elemento em P_1 e P_2 . Sabemos que há $\binom{2d}{2i}$ maneiras de escolher 2i elementos de 2d elementos para a parte P_k . Note que ao escolher 2i elementos para a parte P_k temos que particionar os 2d-2i elementos restantes em (k-1) partes, de modo que apenas as partes P_1 e P_2 tenham tamanho par. Sendo assim, temos que escolher uma (k-1)-partição não par \mathcal{P}' de 2d-2i elementos, onde apenas P_1 e P_2 tem cardinalidade ímpar. Note que há $\varphi_2(2d-2i,k-1)$ maneiras de escolher \mathcal{P}' . Sendo assim:

$$\varphi_2(2d,k) = \sum_{i=0}^{d-1} {2d \choose 2i} \cdot \varphi_2(2d-2i,k-1)$$
 (7)

Por HI, $R(2d-2i,k-1)=\varphi_2(2d-2i,k-1)$. Note que $\binom{2d}{2i}=\binom{2d}{2d-2i}$. Logo:

$$\varphi_2(2d, k) = \sum_{i=0}^{d-1} {2d \choose 2d - 2i} \cdot R(2d - 2i, k - 1)$$

$$= \sum_{i=1}^{d} {2d \choose 2i} \cdot R(2i, k - 1) = R(2d, k)$$
(8)

Lema 4. $\varphi_2(2n,k) \leq \mu(2n,k)$.

Demonstração. □

Lema 5.
$$\Phi_2(2d,k) = \binom{k}{2} \cdot \varphi_2(2d,k)$$
.

Demonstração. Pela definição, $\varphi_2(2d,k)$ conta a quantidade de k-partições $\mathcal{P}=\{P_1,P_2,\dots P_k\}$, onde apenas P_1 e P_2 têm tamanho ímpar. Pela definição, $\Phi_2(2d,k)$ conta a quantidade de k-partições $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ onde exatamente duas partes quaisquer P_i e P_j têm tamanho ímpar, para algum $1\leq i,j\leq k$. Note que $\varphi_2(2d,k)$ não conta as k-partições onde $|P_i|$ ou $|P_j|$ são ímpares, para $i,j\geq 3$.

Note que $\varphi_2(2d,k)$ também conta as k-partições onde apenas as partes $|P_x|$ e $|P_y|$ são ímpares, para algum $1 \leq x,y \leq k$, tal que $x \neq y$, pois podemos considerar P_x e P_y como sendo as partes P_1 e P_2 . Como há exatamente $\binom{k}{2}$ formas de escolher duas partes P_x e P_y entre as k partes, de modo que $|P_x|$ e $|P_y|$ sejam ímpares, temos que $\Phi_2(2d,k) = \binom{k}{2} \cdot \varphi_2(2d,k)$.

Lema 6. Seja a recorrência a seguir:

$$X(2d) = \begin{cases} 1 & \text{se } d = 0\\ (2d - 1) \cdot k \cdot X(2d - 2) & \text{c. c.} \end{cases}$$
 (9)

Temos que $\mu(2d,k) \leq X(2d)$.

Demonstração. A demonstração segue por indução em d.

Base (d=0): Se d=0, então $T(0,k)=1 \le X(0)$ e o resultado segue.

Passo (d>0): Suponha que $\mu(2\ell,k)\leq X(2\ell)$, para todo $0\leq \ell < d$. Seja $\mathcal{P}=\{P_1,P_2\dots P_k\}$ uma k-partição par de 2d elementos. Considere que o elemento 2d pertença à P_x . Como $|P_x|$ é par, temos que existe um elemento $y\in P_x$, tal que $y\neq 2d$. Seja \mathcal{P}' a k-partição resultante da remoção dos elementos 2d e y da parte P_x de \mathcal{P} . Note que \mathcal{P}' é uma k-partição par de 2d-2 elementos. Portanto, \mathcal{P}' é contada em $\mu(2d-2,k)$. Sendo assim, $\mu(2d-2,k)$ conta as k-partições pares de 2d elementos onde $y,2d\in P_x$.

Note que $k\cdot \mu(2d-2,k)$ conta as k-partições pares de 2d elementos, onde o elemento y e o elemento 2d pertencem a mesma parte, pois há k partes em \mathcal{P} e $\mu(2d-2,k)$ conta as k-partições pares de 2d elementos onde $y,2d\in P_x$. Observe que y pode ser qualquer um dos 2d-1 elementos restantes. Sendo assim, $(2d-1)\cdot k\cdot \mu(2d-2,k)$ conta as k-partições pares de 2d elementos, onde y e 2d pertencem à mesma parte e y é um elemento distinto de 2d. Portanto, $\mu(2d,k) \leq (2d-1)\cdot k\cdot \mu(2d-2,k)$. Por HI, $\mu(2d-2,k) \leq X(2d-2)$, logo:

$$\mu(2d,k) \le (2d-1) \cdot k \cdot \mu(2d-2,k) \le (2d-1) \cdot k \cdot X(2d-2) = X(2d) \tag{10}$$

Lema 7. $X(2d) \le (d \cdot k)^d$

 \square

Lema 8. $\Phi(2d+2,k) \ge \Phi(2d,k) \cdot k^2$

Demonstração. Note que podemos formar uma k-partição \mathcal{P}' (não necessariamente não par) de 2d+2 elementos a partir de uma k-partição \mathcal{P} qualquer de 2d elementos, combinando os elementos 2d+1 e 2d+2 entre as k partes de \mathcal{P} . Observe que temos k^2 maneiras de combinar os elementos 2d+1 e 2d+2 entre as k partes, sendo assim, há k^2 partições \mathcal{P}'_1 distintas. Portanto, para demonstrar este lema, iremos contar as k-partições não pares possíveis de 2d+2 elementos geradas a partir das k-partições contadas em $\Phi_2(2d,k)$, $\Phi_{>4}(2d,k)$ e em $\mu(2d,k)$.

Tome uma k-partição não par \mathcal{P}_1 de 2d elementos contada em $\Phi_{\geq 4}(2d,k)$, *i.e.*, \mathcal{P}_1 é uma k-partição com ao menos 4 partes de tamanho ímpar. Seja \mathcal{P}'_1 uma k-partição resultante das k^2 combinações dos termos 2d+1 e 2d+2 nas k partes de \mathcal{P}_1 . Como \mathcal{P}_1 tem ao menos 4 partes de tamanho ímpar, temos que \mathcal{P}'_1 é uma k-partição não par, para qualquer k-partição \mathcal{P}'_1 . Sendo assim, $\Phi(2d+2,k) \geq \Phi_{\geq 4}(2d,k) \cdot k^2$.

Tome uma k-partição não par \mathcal{P}_2 contada em $\Phi_2(2d,k)$, i.e., \mathcal{P}_2 é uma k-partição com exatamente duas partes de tamanho ímpar. Considere que as partes P_i e P_j tenham tamanho ímpar em \mathcal{P}_2 . Seja \mathcal{P}'_2 uma k-partição de 2d+2 termos resultante das k^2 combinações dos termos 2d+1 e 2d+2 nas k partes de \mathcal{P}_2 . Observe que \mathcal{P}'_2 é uma k-partição par se e somente se os elementos 2d+1 e 2d+2 foram combinados nas partes P_i e P_j . Como há exatamente duas formas de combiná-los de tal maneira, temos que há k^2-2 partições distintas \mathcal{P}'_2 não pares. Note que a partição \mathcal{P}'_2 é distinta da partição \mathcal{P}'_1 , pois ao retirarmos os elementos 2d+1 e 2d+2 de \mathcal{P}'_1 e \mathcal{P}'_2 obtemos k-partições de 2d elementos distintas. Sendo assim, podemos somar as k-partições \mathcal{P}'_2 e \mathcal{P}'_1 :

$$\Phi(2d+2,k) \ge \Phi_{\ge 4}(2d,k) \cdot k^2 + \Phi_2(2d,k) \cdot k^2 - 2 \cdot \Phi_2(2d,k)
\ge (\Phi_2(2d,k) + \Phi_{\ge 4}(2d,k)) \cdot k^2 - 2 \cdot \Phi_2(2d,k)$$
(11)

Tome uma k-partição \mathcal{P}_3 de 2d elementos contada em $\mu(2d,k)$, i.e., \mathcal{P}_3 é uma k-partição par. Seja \mathcal{P}_3' uma k-partição de 2d+2 elementos resultante das k^2 combinações possíveis dos elementos 2d+1 e 2d+2 nas k partes de \mathcal{P}_3 . Note que se os elementos 2d+1 e 2d+2 pertencem a mesma parte, então \mathcal{P}_3' é uma k-partição par. Do contrário, \mathcal{P}_3' é uma k-partição não par. Sendo assim, temos exatamente k partições \mathcal{P}_3' pares, das k^2 partições possíveis, pois há k maneiras dos elementos 2d+1 e 2d+2 pertencerem a mesma parte de \mathcal{P}_3 . Logo, temos k^2-k partições não pares \mathcal{P}_3' . Note que \mathcal{P}_3' é distinto de \mathcal{P}_2' e \mathcal{P}_1' pelo mesmo argumento dado anteriormente. Sendo assim:

$$\Phi(2d+2,k) \ge (\Phi_2(2d,k) + \Phi_{>4}(2d,k)) \cdot k^2 - 2 \cdot \Phi_2(2d,k) + \mu(2d,k) \cdot k \cdot (k-1)$$
 (12)

Note que $\Phi(2d,k) = \Phi_2(2d,k) + \Phi_{\geq 4}(2d,k)$, pois, como temos um número par de elementos, não há como ter uma k-partição com ímpar partes de tamanho ímpar, sendo assim, $\Phi_i(2d,k) = 0$, para todo i ímpar. Logo:

$$\Phi(2d+2,k) \ge (\Phi_2(2d,k) + \Phi_{\ge 4}(2d,k)) \cdot k^2 - 2 \cdot \Phi_2(2d,k) + \mu(2n,k) \cdot k \cdot (k-1)
\ge \Phi(2d,k) \cdot k^2 - 2 \cdot \Phi_2(2d,k) + \mu(2d,k) \cdot k \cdot (k-1)$$
(13)

Iremos demonstrar que $\mu(2d,k)\cdot k\cdot (k-1)-2\cdot \Phi_2(2d,k)\geq 0.$ Pelo Lema 5, temos que:

$$2 \cdot \Phi_2(2d, k) = 2 \cdot {k \choose 2} \cdot \varphi_2(2d, k)$$

$$= k \cdot (k - 1) \cdot \varphi_2(2d, k)$$
(14)

Pelo Lema 4, temos que:

$$k \cdot (k-1) \cdot \varphi_2(2d,k) \le k \cdot (k-1) \cdot \mu(2d,k) \tag{15}$$

Por (14) e (15), temos que:

$$2 \cdot \Phi_2(2d, k) = k \cdot (k-1) \cdot \varphi_2(2d, k) \le k \cdot (k-1) \cdot \mu(2d, k)$$
$$\therefore \mu(2d, k) \cdot k \cdot (k-1) - 2 \cdot \Phi_2(2d, k) \ge 0$$
(16)

Sendo assim, temos que $\Phi(2d+2,k) \ge \Phi(2d,k) \cdot k^2$, como desejado.

Lema 9. Seja X_{2d} o evento de uma k-partição de 2d elementos \mathcal{P} ser par. Seja X_{2d+2} o evento de uma k-partição de 2d+2 elementos \mathcal{P}' ser par. Temos que $\mathbb{P}[X_{2d+2}] \leq \mathbb{P}[X_{2d}]$.

 $\begin{array}{l} \textit{Demonstração}. \ \ \text{Sejam} \ \Omega \ \text{e} \ \Omega' \ \text{os conjuntos das} \ k-\text{partições} \ \text{de} \ 2d \ \text{e} \ 2d + 2 \ \text{elementos}, \\ \text{respectivamente. Note que} \ \mathbb{P}[\overline{X_{2d}}] = \frac{\Phi(2d,k)}{|\Omega|} \ \text{e} \ \mathbb{P}[\overline{X_{2d+2}}] = \frac{\Phi(2d+2,k)}{|\Omega'|}. \ \text{Observe que} \\ |\Omega| = k^{2d}, \ \text{pois cada um dos} \ 2d \ \text{elementos pode pertencer a qualquer uma das} \ k \ \text{partes} \\ \text{independentemente. Da mesma forma, } |\Omega'| = k^{2d+2}. \ \text{Pelo Lema 8:} \end{array}$

$$\Phi(2d+2,k) \ge \Phi(2d,k) \cdot k^{2}$$

$$(\to) \frac{\Phi(2d+2,k)}{k^{2d+2}} \ge \frac{\Phi(2d,k)}{k^{2d+2}} \cdot k^{2}$$

$$(\to) \frac{\Phi(2d+2,k)}{k^{2d+2}} \ge \frac{\Phi(2d,k)}{k^{2d}}$$

$$(\to) \mathbb{P}[\overline{X_{2d+2}}] \ge \mathbb{P}[\overline{X_{2d}}]$$
(17)

 \Box

Portanto, temos que
$$\mathbb{P}[X_{2d+2}] = 1 - \mathbb{P}[\overline{X_{2d+2}}] \le 1 - \mathbb{P}[\overline{X_{2d}}] = \mathbb{P}[X_{2d}].$$

Lema 10. Seja G um grafo de ordem n colorido com k cores uniforme e aleatoriamente. Seja Y_v o evento de v não ter testemunha ímpar, para $v \in V(G)$. Considere que d(v) = 2d. Seja X_{2d} o evento de uma k-partição de 2d elementos $\mathcal P$ ser par. Temos que $\mathbb P[X_{2d}] = \mathbb P[Y_v]$.

Demonstração. Sabemos que há $\mu(2d,k)$ maneiras de k-colorir os vértices pertencentes a N(v), de modo que v não possua testemunha ímpar. Note que temos exatamente $\mu(2d,k)\cdot k^{n-2d}$ maneiras de colorir G com k cores de modo que v não possua testemunha ímpar, pois ao colorir N(v) com uma das k-colorações contadas em $\mu(2d,k)$, podemos colorir os vértices de $V(G)\setminus N(s)$ com qualquer uma das k cores disponíveis. Note que há k^n formas de colorir G com k cores. Sendo assim:

$$\mathbb{P}[Y_v] = \frac{\mu(2d, k) \cdot k^{n-2d}}{k^n} = \frac{\mu(2d, k)}{k^{2d}} = \mathbb{P}[X_{2d}]$$
 (18)

Lema 11. Seja G um grafo. Sejam δ e Δ os graus mínimo e máximo de G, respectivamente. Temos que $\chi_{io}(G) \leq \ell \cdot \sqrt[\ell]{e \cdot \Delta^2}$, para $1 \leq \ell \leq \frac{\delta}{2}$.

Demonstração. Pinte os vértices de G com k cores aleatoriamente e independentemente, onde $k=\ell\cdot\sqrt[\ell]{e\cdot\Delta^2}$, para $1\leq\ell\leq\frac{\delta}{2}$. Seja Y_v o evento de v não ter testemunha ímpar, para $v\in V(G)$. Se v tem grau ímpar, sabemos que $\mathbb{P}[Y_v]=0$. Suponha que v tem grau par, i.e., d(v)=2d, para $d\geq0$. Pelo Lema 10, temos que $\mathbb{P}[Y_v]=\mathbb{P}[X_{2d}]$, onde X_{2d} é o evento de uma k-partição de 2d elementos \mathcal{P} ser par. Pelo Lema 9, temos que $\mathbb{P}[Y_v]=\mathbb{P}[X_{2d}]\leq\mathbb{P}[X_{2\ell}]$, para $\ell\leq d$. Note que $\mathbb{P}[X_{2\ell}]=\frac{\mu(2\ell,k)}{k^{2\ell}}$. Pelos Lemas 6 e 7, temos que $\mu(2\ell,k)\leq(\ell\cdot k)^\ell$. Sendo assim:

$$\mathbb{P}[Y_v] \le \mathbb{P}[X_{2\ell}] = \frac{\mu(2\ell, k)}{k^{2\ell}} \le \frac{(l \cdot k)^{\ell}}{k^{2\ell}} = \left(\frac{\ell}{k}\right)^{\ell} = \left(\frac{\ell}{\ell \cdot \sqrt[\ell]{e \cdot \Delta^2}}\right)^{\ell} = \frac{1}{e \cdot \Delta^2}$$
(19)

Note que o evento Y_v é dependente a no máximo Δ^2 eventos, para todo $v \in V(G)$. Sendo assim, pelo Lema Local de Lovász, temos que $\mathbb{P}[\bigcap_{v \in V(G)} \overline{Y_v}] > 0$. Logo $\chi_{io}(G) \leq$

$$k = \ell \cdot \sqrt[\ell]{e \cdot \Delta^2}$$
, para $1 \le \ell \le \frac{\delta}{2}$.

Definição 6. Seja G um grafo. Denotamos por $\tau(e)$ a quantidade de ciclos que a aresta $e \in E(G)$ pertence. Denotamos por $\tau(G) = max(\tau(e) : \forall e \in E(G))$.

Proposição 4. Se G um grafo k-crítico, então G é (k-1)-aresta-conexo.

Teorema 2. $\chi(G) \leq \tau(G) + 2$.

Demonstração. Suponha que o enunciado não vale e seja G um contraexemplo com o menor número de arestas possível. Pela minimalidade de G, temos que H não é um contraexemplo, para qualquer $H \subsetneq G$, i.e., $\chi(H) \leq \tau(H) + 2$. Como $\chi(G) \geq \tau(G) + 3$ e $\tau(G) \geq \tau(H)$, temos que:

$$\chi(G) \ge \tau(G) + 3 \ge \tau(H) + 3 \ge \chi(H) + 1$$

$$\therefore \chi(G) > \chi(H)$$
(20)

Portanto, temos que G é χ -crítico, onde $\chi=\chi(G)$. Pela Proposição 4, temos que G é $(\chi-1)$ -aresta-conexo. Como G é $(\chi-1)$ -aresta-conexo, sabemos que G possui pelo menos $\chi-1$ uv-caminhos disjuntos nas arestas, para todo par distinto $u,v\in V(G)$. Sejam $P_1,P_2,\ldots P_{\chi-1}$ caminhos disjuntos nas arestas de G. Seja e a aresta que incide em u em P_1 . Note que $P_1\cup P_j$ contém um ciclo C, tal que $e\in E(C)$, para $1< j\leq \chi-1$, pois P_1 e P_j são uv-caminhos distintos. Logo $\tau(G)\geq \tau(e)\geq \chi(G)-2$. Portanto, $\chi(G)\geq \tau(G)+3\geq \chi(G)-2+3=\chi(G)+1$, uma contradição.