

Eur päisches Patentamt
Eur pean Pat nt Offic
Office européen des brevets

(1) Publication number:

0 516 069 A1

12

EUROPEAN PATENT APPLICATION

- 21 Application number: 92108916.5
- 2 Date of filing: 27.05.92

(a) Int. CI.5. **C07D 213/81**, C07D 277/46, C07D 401/06, C07D 401/12, C07D 401/14, C07D 417/12, C07D 417/14, C07D 241/24, C07C 233/82, A61K 31/44, A61K 31/425

- ® Priority: 31.05.91 JP 157725/91
- 43 Date of publication of application: 02.12.92 Bulletin 92/49
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI NL PT SE
- 7) Applicant: SUMITOMO PHARMACEUTICALS COMPANY, LIMITED 2-8, Doshomachi 2-chome, Chuo-ku Osaka-shi Osaka 541(JP)
- Inventor: Nagata, Hideo 2-29-7, Ooike Ibaraki-shi, Osaka 567(JP) Inventor: Kawakami, Hajime 6-32-702,Fukazu-cho Nishinomiya-shi, Hyogo 663(JP)
- Representative: von Krelsler, Alek, Dipl.-Chem. et al Patentanwälte Von Krelsler-Selting-Werner, Delchmannhaus am Hauptbahnhof W-5000 Köln 1(DE)

- (S) Leukotriene B4 antagonist.
- Deukotriene B4 antagonists of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
 & N-R^6 \\
R^5 & R^5
\end{array}$$

wherein each symbol is as defined in the specification, processes for producing them, and pharmaceutical compositions containing them. The compounds of the present invention are very useful as the drugs for the treatment of allergic and inflammatory diseases.

المراد

EP 0 516 069 A1

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

The present invention relates to compounds effective as leukotriene B₄ antagonists.

More particularly, this invention relates to leukotriene B₄ antagonists, to processes for producing them and to pharmaceutical compositions containing at least one of those leukotriene B₄ antagonists, which have excellent anti-leukotriene B₄ activity and are useful as an anti-allergic agent or an anti-inflammatory agent.

PRIOR ART

25

30

35

45

50

55

In 1979 B. Sammuelsson reported the isolation and biological effects of leukotrienes (B. Sammuelsson et al. (1980): Advances in Prostaglandin and Thromboxane Research, Vol. 6, edited by B. Sammuelsson, R. Ramwell, and R. Paaletti, P. I. Raven Press, New York).

Since then, a tremendous amount of research in the synthetic organic chemistry and pharmacology of leukotriene A₄, B₄, C₄, D₄, etc. has been performed.

Leukotrienes induce an increase in capillary permeability and cause smooth muscle contraction. Leukotriene B₄, one of leukotrienes which is shown below, has different pharmacological properties from the others. It is chemotactic for macrophages and neutrophils at concentrations of ~ 1 ng/ml (greater than any other known lipid chemotactic factor). It is detected in the synovia of patients with rheumatoid arthritis or gouty arthritis, and in the sputum of obstructive airways diseases which suggest that it is a primary mediator of inflammatory and allergic states.

In recent research some compounds having an antagonism on LTB₄ have been reported. For example, 1) EP-A-0183177 (SUMITOMO PHARMACEUTICALS CO.)

2) EP-A-276065 (ELI LILLY & CO)

$$\begin{array}{c}
R^{2 d} \\
R^{1 d} - Zd - C \\
\parallel \\
0
\end{array}$$

$$\begin{array}{c}
R^{3 d} \\
R^{3 d}$$

3) EP-A-276064 (ELI LILLY & CO)

4) EP-A-0405116 (ONO PHARMACEUTICAL CO)

75 A-W-R¹
Y-COOH

5) EP-A-292977 (SEARLE G D & CO)

6) WO-A-8805045 (UPJOHN CO)

 $\begin{array}{ll} \text{35} & \text{B-C-C} \cong \text{CH}_2\text{C}(M_2)\text{-C} \cong \text{C-Y-C}(M_1)\text{-A} \\ & \text{B-C-C} \cong \text{CH}_2\text{C}(M_2)\text{-C} \cong \text{C-P-R}_5\text{-A} \end{array}$

SUMMARY OF THE INVENTION

In accordance with the present invention, leukotriene B₄ antagonists of the following general formula [I] and their non-toxic pharmaceutically acceptable salts are provided, which have potent anti-leukotriene B₄ activity which include suppression of chemotaxis, degranulation and O₂-production of leukocytes, and modulation of lymphocytes activity, etc. This action may render these compounds very useful as the drugs for the treatment of inflammatory states or immunological disorders such as allergy, rheumatoid arthritis, inflammatory bowel disease.

DISCLOSURE OF THE INVENTION

The novel leukotriene B₄ antagonists provided by the present invention are those represented by the 50 formula [I]:

55

10

$$\begin{array}{c|c}
R^4 & 0-A-B & 0 \\
\hline
 & 0-A-B & R^5 \\
\hline
 & R^5
\end{array}$$

10 wherein

5

A is a C₁-C₅ alkylene chain;

B is a phenylene or 6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms, and B may be, optionally substituted with one or two substituents selected from the group, consisting of a C₁-C₅ alkyl group, a C₁-C₅ alkoxy group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

R1 is a C1-C5 alkyl group;

R² is a hydroxyl group or a C₁-C₅ alkoxy group;

 R^3 and R^4 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, a C_2 - C_5 alkenyl group or a C_2 - C_5 alkynyl group;

R⁵ is a hydrogen atom, a C₁-C₅ alkyl group or a hydroxy C₁-C₅ alkyl group;

R6 is a group of the formula:

-X-Y-Z-R6'

25

30

35

wherein X is a phenylene group or a monocyclic 5– 6 membered hetero aromatic group, and X is optionally substituted with one or two substituents selected from the group consisting of a C_1 - C_5 alkyl group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

Y is a single bond or an oxygen atom;

Z is a single bond or a C₁-C₅ alkylene chain;

provided that when Y is an oxygen atom,

X is a phenylene group and Z is a C_1 - C_5 alkylene chain;

R6' is a COOR7 group,

a CONR8 R9 group,

a CONHCHR20 (CH2), COOR7 group,

a CONHCHR20 (CH2)n CONR8 R9 group,

a CONHCHR²⁰ CONHCHR²² CO₂ R⁷ group or

a sulfamoyl group,

wherein R⁷ is a hydrogen atom, a benzyl group, a C₁-C₅ alkyl group or an C₁-C₅ alkyl group substituted with an aminoheteroaromatic group wherein the heteroaromatic group is a monocyclic 5~6 membered heteroaromatic group;

 R^8 and R^9 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, hydroxy C_1 - C_5 alkyl group, a hydroxyethylpyridyl group or a hydroxyethylthiazolyl group, or the group of the formula:

45 -NR8 R9

55

represents a pyrrolidino, a piperidino or a morpholino group;

 R^{20} is a hydrogen atom, a hydroxyl group, a C_1 - C_5 alkyl group, a phenyl group, a hydroxyphenyl group, a benzyl group, a hydroxy benzyl group or a substituted C_1 - C_5 alkyl group wherein the substituent is selected from the group consisting of a hydroxyl group, a C_1 - C_5 alkoxy group, a mercapto group, a methylthio group, an amino group, an indolyl group, an imidazolyl group, a carboxyl group, a C_1 - C_5 alkoxycarbonyl group, a carbamoyl group and a guanidino group;

n is 0, 1, 2, 3, 4 or 5; and

R²² is a hydrogen atom, a C₁-C₅ alkyl group or a C₁-C₅ hydroxyalkyl group;

or R6 is a CHR20 (CH2), COOR7 group,

a CH2CHR20COOR7 group,

a CHR20 (CH2), CONR8 R9 group,

a CH2CHR20CONR8R9 group,

- a CHR20 (CH2), OH group,
- a CR20 R22(CH2)nOH group,
- a CH2 CHR20 OH group, or
- a CHR20 CONHCHR22 CO2 R7 group,
- 5 wherein R⁷, R⁸, R⁹, R²⁰, R²² and n are as defined above, or the group of the formula:

$$N < \frac{R^5}{R^6}$$

10

20

30

35

represents an azetidino group, pyrrolidino group, a piperidino group or a homopiperidino group, which is optionally substituted with one to two substituents selected from the group consisting of a hydroxyl group, a C₁-C₅ hydroxyalkyl group, carboxyl group, C₁-C₅ alkoxycarbonyl group and benzyloxycarbonyl group; or pharmaceutically acceptable salts thereof.

In the definitions as used above, the term " C_1 - C_5 alkylene" means a straight or branched chain C_1 - C_5 alkylene (e.g. methylene, ethylene, trimethylene, tetramethylene, pentamethylene, 1-methylethylene, 2-ethyltrimethylene, etc.).

The term " C_1 - C_5 alkyl" means a straight or branched chain C_1 - C_5 alkyl (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl, etc.).

The term ${}^{\circ}C_2 - C_5$ alkenyl ${}^{\circ}$ means a straight or branched chain $C_2 - C_5$ alkenyl (e.g. 1-methylethenyl, 1-ethylethenyl, 1-propenyl, 2-propenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-1-propenyl, 2-methyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1-n-butenyl, 2-n-butenyl, 3-n-butenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, etc.).

The term ${}^{\circ}C_2 - C_5$ alkynyl ${}^{\circ}$ means a straight or branched chain $C_2 - C_5$ alkynyl (e.g. ethynyl, 1-propynyl, 2-propynyl, 1-methyl-2-propynyl, 1-methyl-2-butynyl, 3-n-butynyl, 3-methyl-1-butynyl, 1-pentynyl, 2-pentynyl, 4-pentynyl, etc.).

The term " C_1 - C_5 alkoxy" means alkoxy having C_1 - C_5 alkyl moiety (e.g. methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, sec-pentoxy, neo-pentoxy, etc.).

The term "6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms" includes pyridinediyl, pyrazinediyl, pyrimidinediyl, etc.

The term "monocyclic 5~6 membered heteroaromatic group" contains, for example, 1-3 hetero atoms which can be a nitrogen, oxygen or sulfur atom, or an oxydized nitrogen atom (N \rightarrow O), and examples of the monocyclic 5-6 membered heteroaromatic group are a pyridinediyl group and any one of the group of the formula (i)-(viii):

40

45

$$(vii) \qquad \qquad (viii) \qquad \qquad S \qquad \qquad$$

The term "hydroxyphenyl group" may be a 2-hydroxyphenyl, a 3-hydroxyphenyl or a 4-hydroxyphenyl group.

The term "hydroxybenzyl group" may be a 2-hydroxybenzyl, a 3-hydroxybenzyl or a 4-hydroxybenzyl group.

The term "halogen" may be a chlorine, a bromine or a fluorine atom.

The term "indolyl group" may be a 2-indolyl or 3-indolyl group.

The term "imidazolyl group" may be a 4-imidazolyl group.

5

15

20

25

30

35

40

45

55

A basic object of the present invention is to provide novel compounds effective as leukotriene B₄ antagonists [I] having excellent pharmacological activities.

Another object of the present invention is to provide processes for producing those compounds [I]. A further object of the present invention is to provide a pharmaceutical composition containing a compound of the formula [I]. These and other objects will be apparent to those skilled in the art to which the present invention pertains from the foregoing and subsequent descriptions.

The novel leukotriene B4 antagonists [I] of the invention can be prepared by the following methods:

Method A
$$H_2N-C-R^{14}$$
Method B H_2N-C-R^{14}
[VIII]

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
R^3 & R^5 & XII
\end{array}$$
Method D
$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
R^3 & R^5 & XIII
\end{array}$$

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
R^3 & R^5 & XIII
\end{array}$$

(wherein A, B, R¹, R², R³, R⁴, R⁵, R⁶¹, X, Y, Z and R²⁰ are as defined above, and R¹¹ is the same as R⁶¹, but it does not mean free carboxylic group; R¹² is a group of the formula:

Ř²

50 X-Y-Z-COOR⁷', X-Y-Z-CONHCHR²⁰(CH₂)_n COOR⁷', X-Y-Z-CONHCHR²⁰ CONHCHR²²CO₂R⁷', CHR²⁰(CH₂)_nCOOR⁷', CH₂CHR²⁰COOR⁷', or 55 CHR²⁰CONHCHR²²COOR⁷',

5

10

15

20

25

30

35

40

45

wherein X, Y, Z, R^{20} , R^{22} and n are as defined above, and R^7 is the same as R^7 but it does not mean a hydrogen atom,

[XIV]

R¹³ is a group of the formula:

X-Y-Z-COOH,
X-Y-Z-CONHCHR²⁰(CH₂)_n COOH,
X-Y-Z-CONHCHR²⁰CONHCHR²²CO₂H,
CHR²⁰(CH₂)_nCOOH,
CH₂CHR²⁰COOH, or
CHR²⁰CONHCHR²²COOH,

wherein X, Y, Z, R²⁰, R²² and n are as defined above. R¹⁴ is a group of the formula:

(CH₂)_nCOOR⁷', or CONHCHR²²COOR⁷',

wherein R⁷, R²² and n are as defined above. R¹⁵ is a group of the formula:

COOR⁷', CONHCHR²⁰ (CH₂),COOR⁷', or CONHCHR²⁰ CONHCHR²²CO₂R⁷',

wherein R^7 ', R^{20} , R^{22} and n are as defined above. R^{16} is a group of the formula:

COOH, CONHCHR²⁰ (CH₂)_nCOOH, or CONHCHR²⁰ CONHCHR²²CO₂H,

30 wherein R²⁰, R²² and n are as defined above. R²⁶ is a group of the formula:

(CH₂)_nCOOH, or CONHCHR²²COOH,

wherein R22 and n are as defined above.

Method A

25

35

The amide compound [IV] or [IX] can be prepared from an acid compound [II] or [VII] by reacting an amine compound [III] or [VIII] in the presence of a condensing agent (e.g. dicyclohexylcarbodiimide, ethyldimethylaminopropylcarbodiimide hydrochloride, etc.), hydroxybenzotriazole and a tertiary amine (e.g. triethylamine, 4-dimethylaminopyridine, etc.) in an inert solvent (e.g. dichloromethane, mixed solvent of dichloromethane and N,N-dimethylformamide, etc.) at a temperature in the range from 0 ° C to the boiling temperature of the solvent.

If a substituent of R²⁰ of compound [VIII] is an impediment group (e.g. mercapto, carboxyl, amino group, etc.), the compound is previously protected by a protecting group (e.g. benzyl, benzyloxycarbonyl, t-butoxycarbonyl group, etc.), and after the reaction is carried out, the protecting group is eliminated. The protection and deprotection of R²⁰ can be carried out by the conventional procedure. [Protective Group in Organic Chemistry, Edited by J. F. W. McOmic (1973) 95 - 143].

Method B

The amide compound [IV] or [IX] can be obtained from an acid chloride or an acid anhydride of an acid compound [II] or [VII] by reacting with an amine compound [III] or [VIII] in the presence of a tertiary amine (e.g. triethylamine, etc.), or by reacting with a salt of an amine compound [III] or [VIII] (e.g. sodium salt, potassium salt, etc.) in the absence of amine in an inert solvent (e.g. tetrahydrofuran, etc.) at a temperature in the range from 0 °C to a boiling temperature of the solvent.

The transformation of an acid group to an acid chloride group can be carried out by treating the acid compound with phosphorous oxychloride or thionyl chloride in an inert solvent (e.g. chloroform, etc.) or in the absence of solvent at a temperature in the range of from -40°C to the boiling temperature of the reaction mixture.

The transformation of an acid group to an acid anhydride group can be carried out by treating the acid compound with chloroformate ester (e.g. ethyl chloroformate, etc.) in the presence of a tertiary amine (e.g. triethylamine, etc.) in an inert solvent (e.g. chloroform, etc.) at a temperature in the range of from -40 °C to the boiling temperature of the solvent.

If a substituent of R²⁰ of compound [VIII] is a impediment group (e.g. mercapto, carboxyl, amino group, etc.), the compound is previously protected by a protecting group (e.g. benzyl group, benzyloxycarbonyl group, t-butoxycarbonyl group, etc.), and after the reaction is carried out, the protecting group is eliminated.

The protection and deprotection of R20 can be carried out by the conventional procedure [Protective Group in Organic Chemistry, Edited by J. F. W. McOmic (1973) 95 - 143].

Method C

The acid compound [VI], [X] or [XIV] can be prepared by hydrolysis of the ester compound [V], [IX) or [XIII] by treating with an aqueous alkali (e.g. sodium hydroxide, lithium hydroxide) in an inert solvent (e.g. tetrahydrofuran, methanol, ethanol, etc.).

Method D

20

30

35

40

45

55

The N-oxide compound [XII] can be prepared from pyridine compound [XII] by treating with an oxidizing agent (e.g. m-chloroperbenzoic acid, etc.) in an inert solvent (e.g. methylene chloride, etc.).

The amine compounds [III] and [VIII] are known compounds or easily obtained as described in e.g. J. Goto, K. Sakane, Y. Nakai, T. Teraji, The journal of antibiotics, 37, 532 (1984), I. Csendes, B. W. Müller, W. Tosch, The journal of antibiotics, 36, 1020 (1983), M. Ohta, Yakugaku zassi, 72, 1536 (1983), JP-A-58-23697. And, the starting compounds [II], [II-1] and [II-2] can be obtained by the following method.

(wherein A, B, R¹, R², R³ and R⁴ are as defined above, R¹⁷ is a C_1 - C_5 alkyl group, R¹⁸ is a C_1 - C_5 alkyl group, Hal is a chlorine or bromine atom)

Alkylation of the compound [XVI] into the compound [XVII] can be accomplished by treating the former with the compound [XVII] in an inert solvent (e.g. N,N-dimethylformamide, etc.) in the presence of a base (e.g. anhydrous potassium carbonate, etc.). Optionally, the compound [XVIII] can be alkylated to produce the compound [XVIII] by the same procedure as used in the synthesis of the compound [XVIII] from the compound [XVI]. And, the compound (II-1) and (II-2), respectively, can be prepared from the compound [XVIII] and [XVIIII] by hydrolysis (Method C).

The compound [XV] is a known compound or easily obtained as described in e.g. J. Hurst, J. Wibberley, Journal of Chemical Society, 1962, 119.

The compound [XVI] is obtained by;

- (1) In the case where both Hal and B of compound [XVI] are jointed to the same carbon atom: the compound [XVI] is a known compound or easily obtained as described in e.g. J. Hurst, J. Wibberley,
- Journal of Chemical Society, 1962, 119, etc,
 - (2) In the case that there are two carbon atoms between Hal and B in compound [XVI]:

55

(wherein A, B and Hal are as defined above, R^{19} is a C_1 - C_5 alkyl group (but, there is at least one hydrogen atom at the α carbon bonded to B), R^{21} , R^{23} are each independently a hydrogen atom or a C_1 - C_5 alkyl group, R^{24} is a C_1 - C_5 alkyl group, and R^{25} is a C_1 - C_5 alkyl group or phenyl group) the compound [XVI] is prepared in the following way:

[XVI]

first step: the carboxylic acid group of a compound [XX] is protected to yield a 4,4-dimethyl-2-oxazoline compound,

45

50

55

second step: the 4,4-dimethyl-2-oxazoline compound is treated with a base to deprotonate a hydrogen atom attached to a carbon atom adjacent to B group (e.g. sodium amide, n-butyl lithium, etc.),

third step: the deprotected compound is reacted with the compound of the formula [XXI] (aldehyde or ketone) to yield a hydroxy compound,

fourth step: the hydroxyl compound is alkylated by reacting with a compound of the formula R^{24} -Hal, fifth step: the alkylated compound is treated with halogenated hydrogen (e.g. hydrogen chloride, hydrogen bromide, etc.) in the alcohol represented by R^{17} OH.

(3) In the case that there are 3 or more carbon atoms between Hal and B in the compound [XVI]: the compound [XVI] is prepared in the same way, except modifying the alkylation reaction, as described in above (2), i.e., the compound [XX] is protected and deprotonated, and then alkylated by alkylhalide [XXII]. The alkylated product is treated with halogenated hydrogen (e.g. hydrogen chloride, hydrogen bromide, etc.) in the alcohol represented by R¹⁷OH.

Specific examples of the leukotriene B4 antagonists are as follows:

Table 1

5

10

15

20

25

30

35

40

45

50

55

R³ n-Pr н н Н н н н н Н R⁴ Me n-Pr n-Pr н Εt E١ Ξ١ E١ Εt R⁵ н Н н E١ n-Pr I-Pr н CH3 CONH2 CONHMe R CONH₂ CONH₂ CONH₂ CONH₂ CONH₂ CONH₂ CONH₂

O-A N N S Re

A	-CH ₂ -	-CH₂-	-CH ₂ -	-CH ₂ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂) ₅ -
R [€]	CONMe ₂	CONHIP	Ç-v	من م	0°-7°-0°	CONH ₂	CONH₂	CONH₂	CONH ₂

Table 3

O-A-B N S Z-CONH

5

10

15

20

25

30

35

45

50

55

-CH₂--CH₂--CH₂--CH₂--CHMe--CH₂--CH₂--CH₂--CH2-Α В single single Z -CH2--CH2--(CH₂)₂- -(CH₂)₃- -(CH₂)₄- -(CH₂)₅--CH2bond bond

Table 4

O OH S Z-CONH2

Table 5

Table 6

Table 7

X single single -(CH₂)₂-Z -CH₂--(CH₂)₂- -(CH₂)₃- -(CH₂)₄--CH2--CH₂bond bond

Table 8

X single Z -(CH₂)₃--(CH₂)₂- -(CH₂)₃- -(CH₂)₄--(CH₂)₂--(CH₂)₄--CMe2--CH2bond

16

5

10

15

20

25

30

35

40

45

50

Table 9

O N N -X-Z-Re'

X single single single single z -(CH₂)₂--CH₂--(CH₂)₂--CH2--CH2bond bond bond bond CONH3 CONH₂ CONH2 503NH3 SO2NH2 SO2NH2 502NH2 502NH2

Table 10

0 N-x-y-z-Re^o

R²	о́н	он	он	он	OMe	он	он	он	он
R ⁵	н	н	н	н	н	н	Me	Et	n-Pr
x	◁	D	Ø	a	Z,	\s\ N2	×°Z	\$ <u>\</u>	Ü
Υ	-0-	ó	-0-	-0-	single bond	single bond	single bond	single bond	single bond
z	-CH ₂ -	-(CH ₂) ₂ -	-CH₂-	-(CH ₂) ₂ -	-СН ₂ -	-СН ₂ -	-CH ₂ -	-CH ₂ -	-CH₂-
R⁵	CONH ₂	CONH ₂	CONH2	CONH ₂	CONH2	CO₂Et	CO ₂ Et	CO ₂ Et	CO ₂ Et

55

5

10

15

20

25

30

35

40

45

Table 11

5

-(CH₂)₄- -(CH₂)₅-

н

-CH2-

н

-CH₂-

-CHMe-

н

-CH2-

-CH₂-

-CH2-

-CH₂-

-CH₂-

н

-(CH₂)₂- -(CH₂)₃-

10

15

Α

В

R⁵

z

l-Pr

-CH2-

-CH₂- -(CH₂)₂- -(CH₂)₃-

Н

-CH₂-

н

-CH2-

20

25

30

35

45

В	N N	N,	N N	I'N.	Ĺ,Ñ,	I'N.	II.	IN.	
x	12 × 2	~S N-L	~ST	\s\	YS N.Z	YS_	YNZ.	Ž,	42
1							-CH ₂ -		l

50

Table 13

5

10

15

20

Z

-CH2-

-CH₂-

25

Table 14

-(CH₂)₂-

-(CH₂)₃-

-CH2-

-CH2-

30

35

40

45

9	В	NN	NN.	Zz.	L NX	T'N'				$\mathcal{L}_{\mathbf{x}}$
	x	T		~~	T	Y	V	D	Q	\Diamond
•	z	-(CH ₂) ₂ -	·(CH ₂)₃-	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	·CH ₂ ·	-CH ₂ -	-(CH ₂) ₂ -	-{CH ₂ } ₂ -

-CH2- -(CH2)2- -(CH2)3-

50

Table 15

O N N -X-Y-Z-R

5

10

15

20

25

30

35

45

50

55

X single single single single single Y -0--0--0bond bond bond bond bond single -CH₂-Z -CH2--CH₂-(CH₂)₂-(CH₂)₂. -(CH₂)₂--(CH₂)₃--(CH₂)4bond R⁶ CO₂Et CO₂Et CO₂Et CO₂Et CO₂H CO₂H СО₂Н CO2H CO₂H

Table 16

0 N N - X-2-00.H

Table 17

5

10

15

x	Z Z X	24 24 24	_,_	\n\	Q	Q	Y	4	B
z	-CH ₂ -	-(CH ₂) ₂ -	single bond	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂)5-	single bond

20

25

Table 18

30

-CH₂-

n-Pr

-CH₂-

n-Bu

I-Pr

-CH₂-

I-Bu

-CH2-

35

40	x	5	5	C	~SZ
45	z	-сн <u>:</u> -	(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH ₂ -

Table 19

	В		I,I		\[\big _{N} \]	T,	L N)	\[\big _{N} \]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- 1				1.		1	\s_\		
		1		I			-(CH ₂₎₃ -		

Table 20

В	L"J	L"	I'N I	L")	I'N)	_ LNJ	L ")	NN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x	T	N. I.	YS .	~S	Ç	N		Z.Z	×°Z
		7					-(CH ₂) ₃ -		

5

10

15

20

25

30

35

40

45

50

55

Table 21

0 B N - X-Z-002H

Table 22

0-A-B N -X-Z-002H

A -CH₂--CH2--CH₂--CH₂--CH2--CH₂--CH₂--(CH₂)₂--(CH₂)3-В X Z -(CH₂)₃--CH2-·(CH₂)₂. -{CH₂}₃-·CH2· (CH₂)₂--(CH₂)₃--CH2--CH2-

Table 23

R⁴ O-A N N N S CO₂H

-CH₂ CH=CH₂ CH₂C=CH R⁴ Εt Et Eŧ Et n-Bu Me n-Pr A -CH₂--(CH₂)4- -(CH₂)5--CH2--CH₂--CH2--CH2--CH₂-

Table 24

5

10

15

20

25

35

40

45

55

30 RM N S CO 2 H

R³ -CH2 CH=CH2 CH2C≡CH n-Pr n-Bu n-Pentyl Εt Me R^4 Εt н Εt Εt Εt Εt E١ Εt н

Table 25

n-Pr

ОН

Н

Et

Et

ОН

н

Et

R² O N N N S CO₂ F

Me

OMe

н

Εt

Me

OEt

H

Et::

Me

O-n-Pr

н

Et

Me

ОН

n-Pentyl

10

R1

R²

R.3

R⁴

Me

ОН

I-Pr

н

Мe

ОН

i-Bu

н

Me

ОН

n-Bu

5

15

20

25

30

Table 26

35

40

45

R1	n-Bu	n-Pentyl	Me	Me	Me
R ⁶	со₂н	CO₂H	O CN-CH₂CO₂Me H	О СИ-(СН ²)2CO ² We	о См-сн₂со₂н

50

Table 27

> > Table 28

40 OH N N - X ~ R⁰

Table 29

R ⁶	CH2 CO2 H	(CH₂)₂CO₂H	(CH ₂) ₃ CO ₂ H	(CH ₂) ₄ CO ₂ H	CH₂CO₂Me	
----------------	-----------	------------	---	---	----------	--

Table 30

R ^e	CH₂CO₂Et	CH*CO*CH*-{	ÇH? C3400⁵ H	сноо≥н Т	Ç. CHCO5°H	
----------------	----------	-------------	-----------------	-------------	---------------	--

Table 31

O OH R⁶

R⁶ CHCO₂H CHCO₂H CHCO₂H CHCO₂H CHCO₂H

Table 32

O OH Re

R6 CH2 CO2 H CH2 CO2 H CH2 CO2 H CHCO2 H CHCO2 H CHCO2 H CH2 CO3 NH2

Table 33

O OH R

R° CHCO₂ H CHCO₂ H CHCO₂ H CHCO₂ H CHCO₂ H CH₂ CO₂ CO₂ H CH₂ CO₂ CO₂ H CH₂ CO₂ CO₂ H CH₂ CO₂ C

Table 34

35 H

R⁶ CHCO₂ H (CH₂)₄ NHCNH₂ CH₂ CONH₂ CH₂ CONHCH₃ CH₂ CONMe₂

50

5

15

20

25

30

40

45

Table 35

<u> </u>		H N
) Y	R ⁶

R ^e	(CH ₂) ₂ CONH ₂	(CH ₂) ₃ CONMe ₂	CH2 CON	CH* COV_O	CH3 COM
			i		

Table 36

...

	R ^s	CHCONH2 CH3	CHCONH ₂	CHOONMe ₂	CHCONMez Unit	CHCONHMe -OH
i			1	🍑		

Table 37

O OH R°

 N_{R^0} $N \longrightarrow CO_2H$ $N \longrightarrow CH$ $N \longrightarrow CH$ $N \longrightarrow CH$ $N \longrightarrow CO_2H$

Table 38

R1. Et n-Pr Me Me Me R2 OH OH OH OMe Œt R3 Н n-Pr H H H R4 Et Et Et Εt Н

55

5

10

15

20

25

30

35

40

45

50

Table 39

0-A N N R⁵

OH

OH

			-			
]	R³	n-Pr	n-Pr	n-Pr	н	н
]	R⁴	н	н	н	Et	Et
	Α _	-CH₂ -	-CH₂ -	-CH₂ -	-(CH2)2-	-CH₂ -
]	R ⁵	н	н	н	н	Me
]	R ⁶	CHCO⁵H	ÇH2 CHCO2⁵H	(CH ₂) ₂ CO ₂ H	(CH₂)₂CO₂H	(CH ₂) ₂ 00 ₂ H

Table 40

15	R ⁵	Et	n-Pr	i soBu	sec-Bu	(CH₂)₂OH
		1	l	•		1

Table 41

R³	н	Н	н	н	n-Pr
R4	Et	Et	Et	Et	н
R*	(CH ₂) ₂ CO ₂ H	CHCO⁵ H	_ OH CHCO₹H	ÇH2OOΣH CHOOΣH	çн⁵ со⁵ н снсо⁵ н

Table 42

0-CH₂-B-N-R⁶

20

5

10

15

25

30

40

35

 \mathbb{R}^2 OH OH OH OH 0Me R³ n-Pr H H Н H \mathbb{R}^4 Н Εt Et Et Et В CHCO₂ H R^e $(CH_2)_2 CO_2 H$ CHCO₂ H CHCO₂ H CHCO₂ H CH₃ ĊH₂CO₂H ĊH₂OO₂H

50

45

Table 43

0-CH₂-B N - R⁶

OH

H

Et

 $(CH_2)_2CO_2H$

OH

Н

Et

CHCO₂ H

ĊНз

OH

H

Et

_OH CHCO⁵H

10

R²

R³

R4

В

 $R^{\text{\tiny B}}$

OH

n-Pr

H

CHCO₂ H

άн∞н

0Me

n-Pr

H

CHCO₂ H

QH*CO*H

5

15

20

25

30

35

40

45

50

Table 44

OH

n-Pr

H

CHOO⁵ H

qн•∞•н

5

0Me

n-Pr

H

CHCO₂ H

QH*OO™H

OH

H

Et

CHCO₂ H

OH

OH

H

Εt

CHCO₂ H

ĊНъ

10

15

Rz

R3

R⁴

R⁶

OH

Н

Et

CHCO₂H

QH2002H

20

25

30

35

Table 45

40

45

R ⁶	Снсо⁵н	HO_CH	¬N OH	CHCO⁵ H	ÇH? CHCS:7 CO™H
		37		G.	G/3

50

Table 46

R ¹	Me	Et	Me	Me	Me
R ⁶	(CH₂)₂OH	(CH ₂) ₃ OH	(CH₂)₄OH	ÇH²OH CHCH⁵OH	CHCH2 OH

Table 47

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
0 & R^2 & R^3
\end{array}$$

40	
45	

		,			
R²	OH	0- ₁ -Pr	OH	OH	OH
R3	Me	н	н	н	Н
R ⁴	Me	Н	Et	Et	Et
R ⁵	н	Н	Н	Me	Н
R⁵	(CH ₂) ₂ CO ₂ H	(CH ₂) ₂ CO ₂ H	CH(CH ₂ OH) ₂	CH(CH ₂ OH) ₂	CH2 CONHCH2 CO2 H

Among the leukotriene B₄ antagonists thus obtained, the compound [I] can be converted to a pharmaceutically acceptable salt form. The pharmaceutically acceptable salts of these leukotriene B₄ antagonists can be formed with pharmaceutically acceptable metal cation such as sodium, potassium, magnesium and calcium, ammonium or amine cations.

The preparations of pharmaceutical compositions can be carried out by conventional methods. For

example, leukotriene B₄ antagonists [I] may be mixed with carriers, diluents, lubricants, fillers and/or binders such as lactose, sucrose, calcium phosphate, starch, talcum, casein, magnesium stearate, methyl cellulose, polyglycols, tragacanth and the like, sometimes together with stabilizers and emulsifying agents. The resulting mixture may be processed in a usual manner to tablets, capsules, pills, injections, ointment, suppositories and the like. In a clinical practice, the leukotriene B₄ antagonists [I] can be administered orally, intranasally, intradermally or the like.

The daily dosage may vary depending upon the administration route, symptom, age or weight of the patient, and the usual oral dosage of the active ingredient is between about 1 mg and about 1000 mg daily for human beings.

10

15

DESCRIPTION OF THE PREFERED EMBODIMENTS

Practical and prefered embodiments of the present invention are illusturated in the following examples, which are not intended to limit the scope of the invention.

Reference Example 1

5-Ethyl-2,4-dihydroxyacetophenone (0.97 g, 5.0 mmol) and methyl 6-bromomethylpyridine-2-carboxylate (1.38 g, 5.8 mmol) were dissolved in an N,N-dimethylformamide solution (50 ml), and anhydrous potassium carbonate (480 mg) was added to the above solution, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was poured into water and extracted with ethyl acetate (100 ml x 3).

The extract was dried, concentrated and chromatographed on silica gel to give methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylate.

25 Reference Example 2

Methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy) methyl]pyridine-2-carboxylate (38 mg, 12 mmol) was dissolved in a methanol solution (2 ml), and one normal sodium hydroxide (1 ml) was added to the above solution at 0 °C, and the mixture was stirred at room temperature for 1 hour. One-tenth normal potassium bisulfate was titrated to the above solution until it became pH2. Then, precipitated white crystals were filtered off, and washed with water, and dried to give 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylic acid.

Reference Example 3

35

3-n-Propyl-2,4-dihydroxyacetophenone (816 mg, 4.2 mmol) was added to a methanol solution (10 ml), sodium metal was added to the solution at 0 °C, and the mixture was stirred for 30 min, and evaporated under reduced pressure, and dried to give a sodium salt of 3-n-propyl-2.4-dihydroxyacetophenone. The salt was dissolved in N,N-dimethylformamide (10 ml), and it was added to a N,N-dimethylformamide solution (10 ml) of methyl-6-bromo-methylpyridine-2-carboxylate (920 mg, 4.0 mmol) at room temperature, and the mixture was stirred for 1 hour.

The reaction mixture was poured into water, and normal potassium bisulfate was titrated until it became pH3, and extracted with ethyl acetate (100 ml \times 3). The extract was dried, concentrated and chromatographed on silica gel to give methyl 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]pyridine-2-carboxylate.

45

Reference Example 4

According to the procedure of Reference Example 2, 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]-pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 5

Anhydrous potassium carbonate (1.0 g) was added to a N,N-dimethylformamide solution (10 ml) of methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylate (500 mg, 1.4 mmol) and methyliodide (5 ml),and the mixture was stirrered at 70°C for 2 hours.

The reaction mixture was poured into water and extracted with ethylacetate and washed with saturated aqueous sodium chloride. Then, the extract was dried, concentrated and chromatographed on silica gel to

give methyl 6-[(4-acetyl-2-ethyl-5-methoxyphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 6

According to the procedure of Reference Example 2, 6-[(4-acetyl-2-ethyl-5-methoxyphenoxy)methyl]-5 pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-{(4-acetyl-2-ethyl-5-methoxy-phenoxy)methyl]pyridine-2-carboxylate.

Reference Example 7

10

20

40

45

50

55

According to the procedure of Reference Example 5, methyl 6-[(4-acetyl-2-n-propyl-3-methoxyphenoxy)methyl]pyridine-2-carboxylate was obtained from methyl 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 8

According to the procedure of Reference Example 2, 6-[(4-acetyl-2-n-propyl-3-methoxyphenoxy)methyl]pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-[(4-acetyl-2-n-propyl-3-methoxyphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 9 (a compound included in formula [XVI])

A mixture of 6-methylpyridine-2-carboxylic acid (13.7 g, 100 mmol) and thionyl chloride (40 ml) was stirred at 70 °C for 1 hour. The mixture was dried, and dichloromethane (40 ml) was added to the residue. The solution was added to a dichloromethane solution of 2-amino-2-methyl-propanol (36.0 g, 400 mmol), and stirred. The mixture was washed with water, and dried over anhydrous magnesium sulfate. The extract was concentrated and chromatographed on silica gel to give an amide compound. 4,4-Dimethyl-2-oxazoline compound was obtained by reacting the amide compound and thionyl chloride in dichloromethane. 4,4-Dimethyl-2-oxazoline compound was reacted with n-butyl lithium at 78°C in anhydrous tetrahydrofuran, and chlorophenyl ether (782 mg, 5 mmol) was added. Purified alkylated compound was treated with ethanol saturated with HCI to give ethyl 6-(3-chloropropyl)-pyridine-2-carboxylate.

Reference Example 10 (a compound included in formula [II])

According to the procedure of Reference Examples 1,2, 6-[3-(4-acetyl-2-ethyl-5-hydroxyphenoxy)-35 propyl]pyridine-2-carboxylic acid was obtained from ethyl 6-(3-chloropropyl)pyridine-2-carboxylate and 5ethyl-2,4-dihydroxyacetophenone.

Table 48

		14016 40
5		·
10	1	O OH OME
15		
20	2	он о
25		
30	3	OH OH
35	4	O OH OH
40		-
45		
50		

Table 49

1	¹H-NMR	δppm	
1	(solvent:CDCL ₃) 0.99(3H,t,J = 7.4Hz), 1.62(2H,tq,J = 7.4Hz), 5.39(2H,s), 6.46(1H,d,J = 8.9Hz), 7.59(1H, 7.92(1H,dd,J = 6.6Hz,J = 7.9Hz), 8.10(1H,d,J = 7.9Hz)	$d_y = 8.9$ Hz), $7.79(1$ H, $d_y = 6.6$ Hz),	
2	(solvent:CDCL ₃) 1.26(3H,t,J = 7.6Hz), 2.59(3H,S), 2.6 7.51(1H,s), 7.78(1H,d,J = 6.9Hz), 8.04(1H,dd,J = 6.9H		
3	(solvent:CDCL ₂) $0.99(3H,t,J=7.4Hz)$, $1.62(2H,tq,J=7.4Hz,J=7.4Hz)$, $2.57(3H,s)$, $2.76(2H,t,J=7.4Hz)$, $4.04(3H,s)$, $5.39(2H,s)$, $6.46(1H,d,J=8.9Hz)$, $7.59(1H,d,J=8.9Hz)$, $7.79(1H,d,J=6.6Hz)$, $7.92(1H,dd,J=6.6Hz,J=7.9Hz)$, $8.10(1H,d,J=7.9Hz)$		
4	(solvent:CDCL ₃) 0.99(3H,t,J = 7.4Hz), 1.62(2H,tq,J = 7.34(2H,s), 6.45(1H,d,J = 8.9 Hz), 7.60(1H,d,J = 8.9Hz), J = 6.9Hz,J = 7.4Hz), 8.21(1H,dd J = 1.0Hz, J = 7.4Hz), 8.21(1H,dd J = 1.0Hz,J = 7.4Hz), 8.21(1H,dd J = 7.4Hz), 8.21(1H,	e), 7.79(1H,dd,J = 1.0Hz,J = 6.9Hz), 8.04(1H,	

Table 50

5		
10	5	O OMe
15		
20	6	OM.
25		
	7	O OMe
30	·	
35	8	O OMe
40		
45		
		· · · · · · · · · · · · · · · · · · ·

50

Table 51

- 1	¹H-NMR	δppm
5	(solvent:CDCL ₃) 1.24(3H,t,J = 7.6Hz), 2.58(3H,s) 5.40(2H,s), 7.72(1H,s), 7.79(1H,d,J = 7.9Hz), 7.94 8.11(1H,d,J = 7.6Hz)	
6	(solvent:CDCL ₃) 1.24(3H,t,J = 7.4Hz),2.57(3H,s), 6.64(1H,s), 7.65(1H,s), 7.80(1H,d,J = 7.3Hz), 8.0 8.13(1H,d,J = 7.9Hz)	
7	(solvent:CDCL ₃) 1.02(3H,t,J = 7.5Hz), 1.66(2H,q, 3.78(3H,s), 5.31(2H,s), 6.70(1H,d,J = 8.6Hz), 7.56 8.04(1H,dd,J = 7.6Hz,J = 7.9Hz), 8.21(1H,d,J = 7.9Hz)	6(1H,d,J=8.9Hz), 7.90(1H,d,J=7.9Hz),
8	(solvent:CDCL ₃) 1.02(3H,t,J = 7.6Hz), 1.65(2H,q, 3.78(3H,s), 5.31(2H,s), 6.70(1H,d,J = 8.6Hz), 7.56 8.04(1H,dd,J = 7.6Hz,J = 7.9Hz), 8.21(1H,d,J = 7.9Hz)	6(1H,d,J=8.9Hz), 7.90(1H,d,J=7.9Hz),

Example 1

A mixture of 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylic acid (63 mg, 0.20 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (40 mg, 0.20 mmol), 1-hydroxyben-zotriazole (30 ml, 0.22 mmol), 2-aminothiazole-4-carboxamide (35 mg, 0.24 mg) and triethylamine (20 mg), 0.20 mmol) in a mixed solution of dichloromethane (2 ml) and N,N-dimethylformamide (2 ml) was stirred at room temperature for 44 hours. The reaction mixture was poured into water and extracted with ethyl acetate (80 ml×3). The extract was dried over anhydrous magnesium sulfate, concentrated under reduced pressure and chromatographed on silica gel to give 2[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)-methyl]pyridine-2-carboxamide]thiazol-4-ylcarboxamide.

Example 2~35,62,88,90,92

According to the procedure of Example 1, the compounds (Example 2~ 35,62,88,90,92) were obtained.

Example 36

35

45

55

Ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyride-2-carboxamide]thiazole-4-ylcarboxylate (24 mg, 0.05 mmol) was suspended in methanol (1.5 ml), followed by addition of one-second normal sodium hydroxide (1.0 ml).

After the solution was stirred for 2 hr, it was made acidic with one-second normal potassium bisulfate. Precipitated crystals were separated by filtration, and washed with water, and dried to give 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxamide]thizaol-4-ylcarboxylic acid.

Example 37~52,61,87,89,91

According to the procedure of Example 36, the compounds (Example 37 ~52, 61, 87, 89, 91) were obtained.

Example 54~56,64,67,68,70,72,74,76,78,80,82,84,86,94,96,100, 102,104,106,108,112,114,115,116-121,123,126,127,138,141

According to the procedure of Example 1, the title compounds were obtained.

Example 53,57~60,63,65,69,71,73,75,77,79,81,83,85,93,95,99, 101,105,107,111,113,122,130

According to the procedure of Example 36, the title compounds were obtained.

Example 98

15

20

25

30

35

45

50

Ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxamide]pyridine-6-ylcarboxylate (280 mg, 0.60 mM) was dissolved in dichloromethane (5 ml), followed by addition of m-chloroperbenzoic acid (124 mg, 0.72 mM). After being stirred at room temperature for 16 hours, the reaction mixture was washed with aqueous sodium sulfite-sodium bicarbonate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]-pyridine-2-carboxamide]pyridine-N-oxide-6-ylcarboxylate.

Example 110,125,129,131,134,136,139,142

According to the procedure of Example 98, the title compounds were obtained.

Example 97,109,124,128,132,133,135,137,140

According to the procedure of Example 36, the title compounds were obtained.

Example 143~178, 212,214,216,218,222,225,226

According to the procedure of Example 1, the title compounds were obtained.

Example 179-211,213,215,223,224

According to the procedure of Example 36, the title compounds were obtained.

Table 52

f	Ex. No.	Structural formula
5	1.	Structural Tormula
20	2	H NH2
25	3	Me NH ₂
35	4	NH2
45	5	IBU NH3

50

• •

Table 53

	¹H-NMR	δppm
1	(solvent:CDCL ₃) 1.28(3H,t,J = 7.6Hz, 2.60(3H,s), 2 6.48(1H,s), 7.05(1H,bs), 7.52(1H,s), 7.77(1H,d,J = J = 7.3Hz), 8.28(1H,d,J = 7.3Hz), 10.98(1H,bs), 12.	7.3Hz, 9.90(1H,s), 8.04 (1H,dd,J=6.6Hz,
2	(solvent:CDCL ₃) 1.27(3H,J = 7.6Hz), 2.59(3H,s), 2.5.43(1H,bs), 6.45(1H,s), 6.60(1H,bs), 6.86(1H,s), 7.8.02(1H,t,J = 6.9Hz), 8.27(1H,d,J = 6.9Hz), 12.68(1	7.51(1H,s), 7.74(1H,d,J= 6.9Hz),
3	(solvent:CDCL ₃) 1.26(3H,t,J=7.6Hz), 2.58(3H,s), 2 5.39(1H,s), 5.43(1H,bs), 6.46(1H,s), 6.70(1H,bs), 6 7.64(1H,dd,J=1.0Hz,J=7.9Hz), 7.79(1H,dd,J=7.6 7.95(1H,dd,J=1.0Hz,J=7.6Hz), 12.65(1H,s)	3.88(1H,s), 7.49(1H,s),
4	(solvent:CDCL ₃) 1.26(3H,t,J=7.6Hz, 1.44(3H,t,J=3.69(2H,S), 4.36(2H,q,J=6.9Hz) 5.25(1H,s), 5.44(7.49(1H,s), 7.64(1H,d,J=7.9Hz), 7.74(1H,d,J=6.912.66(1H,s)	IH,bs), 6.43(1H,s), 6.67(1H,bs), 6.89(1H,s),
5	(solvent:CDCL ₃) 0.78(6H,d,J = 6.6Hz), 1.26(3H,t,J = 2.68(2H,q,J = 7.6Hz), 3.66(2H,s), 4.33(2H,d,J = 7.66(01H,bs), 6.88(1H,s), 7.49(1H,s), 7.62(1H,d,J = 7.93(1H,dd,J = 6Hz,J = 7.9Hz), 12.66(1H,s)	Hz), 5.21(2H,s), 5.84(1H,bs), 6.42(1H,s),

Table 54

5	Ex. No.	Structural formula
10	6	NHMe S OH
15		
20	7	H N N N N N N N N N N N N N N N N N N N
25	8	H N NHIPT
35	9	H N NH2
45	1 0	OH NH2

50

Table 55

		¹H-NMR	δppm
5	6		H,s), 2.70(2H,q,J=7.6Hz), 2.84(3H,d,J=5.0Hz), s), 6.85(1H,s), 7.51(1H,s), 7.74(1H,d,J=6.6Hz), l.06(1H,bs), 12.70(1H,s)
10	7		H,s), 2.70(2H,q,J=7.6Hz), 3.01(3H,s), 3.11(1H,s),), 7.51(1H,s), 7.72(1H,dd,J=1.0Hz,J=7.9Hz), =7.9Hz), 11.08(1H,bs), 12.70(1H,s)
	8	3.63(2H,s), 4.0-4.2(1H,m), 5.32(1H,s), 6.06(1	3H,t,J=7.6Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), H,bs), 6.45(1H,s), 6.85(1H,s), 7.51(1H,s), 27(1H,d,J=7.9Hz), 11.06(1H,bs), 12.70(1H,s)
15	9	(solvent:CDCL ₃) 1.27(3H,t,J = 7.6Hz), 1.31(3l 3.1-3.2(1H,m), 5.30(2H, s), 6.44(1H,s), 6.62(1 7.99(1H,dd,J = 6.6Hz,J = 7.9Hz), 8.26(1H,d,J	
20	10	(solvent:CDCL ₃) 1.23(3H,t,J = 7.6Hz), 2.60(3l 7.35-7.55(2H,m), 7.6-7.8(3H,m), 8.0-8.3(5H,n	H,s), 2.65(2H,q,J=7.6Hz), 5.49(2H,s), 6.64(1H,s), n), 10.59(1H,bs), 12.60(1H,s)

Table 56

5	Ex. No.	Structural formula
10	1 1	NH2
15		
20	1 2	H N N N N N N N N N N N N N N N N N N N
25	1 3	OH S NHJ
35	1 4	O OH S OE1
40 45	1 5	OH N N N OE

50

Table 57

		¹H-NMR	δppm
5	11	(solvent:CDCL ₃) 1.22(3H,t,J = 7.6Hz), 2.58(3H, 7.53(1H,bs), 7.71(1H,s), 7.80-7.85(1H,m), 8.1-8	s), 2.67(2H,q,J = 7.6Hz), 5.49(1H,s), 6.64(1H,s), 3.4(5H,m), 8.85-8.90(1H,m), 10.63(1H,bs), 12.56(1H,s)
	12	(solvent:CDCL ₃) 1.20(3H,t,J = 7.6Hz), 2.58(2H,t, 7.30(2H,s), 7.71(1H,s), 7.75-7.90(3H,m), 8.0-8.	
10	13	(solvent:CDCL ₃) 1.00(3H,t,J = 7.4Hz), 1.63(2H,t) 2.77(2H,t,J = 7.4Hz), 3.69(2H,s), 5.36(2H,s), 5.4 6.87(1H,s), 7.62(1H,d, J = 9.2Hz), 7.76(1H,d,J = 8.26(1H,d,J = 7.9Hz)	0(1H,bs), 6.47(1H,d,J=9.2Hz), 6.50(1H,bs),
15	14	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.43(3H,t 4.45(2H,q,J=7.1Hz), 5.28(1H,s) 6.43(1H,s), 7.5 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 11.3	2(1H,s), 7.73(1H,d,J=7.9Hz), 7.94(1H,d,J=0.7Hz)
20	15		,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3(1H,s), 6.43(1H,s), 6.90(1H,d,J=0.7 Hz), 7.51(1H,s), 7.9Hz), 8.25(1H,d,J=7.6Hz), 11.11(1H,bs), 12.67(1H,s)

Table 58

	Ex. No.	Structural formula
	1 6	OH SHOE!
)	1 7	Me N S OE:
5	1 8	OH S OEL
;	1 9	O OH OEL
;	2 0	OH N N N OEI

Table 59

		¹H-NMR	δppm
5	16	(solvent:CDCL ₃) 1.25(3H,t,J = 7.3Hz), 1.27(3H,t,J 3.05(2H,t,J = 7.3Hz), 4.15(2H,q,J = 7.3Hz), 5.30(27.71(1H,d,J = 7.7Hz), 7.97(1H,t,J = 7.7Hz), 8.24(1	H,s), 6.44(1H,s), 6.69(1H,s), 7.51 (1H,s),
10	17	(solvent:CDCL ₃) 1.27(3H,t,J = 7.6Hz), 1.43(3H,t,J 4.45(2H,q,J = 7.1Hz), 5.28(1H,s) 6.43(1H,s), 7.52(7.94(1H,d,J = 0,7Hz), 8.01(1H,t,J = 7.9Hz), 8.25(1	1H,s), 7.73(1H,d,J=7.9Hz),
15	18	(solvent:CDCL ₃) 1.26(3H,t,J = 7.6Hz), 1.28(3H,t,J 2.58(3H,s),2.69(2H,q,J = 7.6Hz), 3.76(2H,d,J = 0.7 4.32(2H,q,J = 6.9Hz), 5.25(1H,s), 6.44(1H,s), 6.92 7.70(1H,d,J = 6.9Hz), 7.92(1H,dd,J = 6.9Hz,J = 7.6	Hz), 4.20(2H,q,J = 7.1Hz), (1H,s), 7.49(1H,s), 7.62(1H,d,J = 7.6Hz),
20	19	(solvent:CDCL ₃) 0.76(6H,d,J=6.6Hz), 1.26(3H,t,c 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.74(2H,s), 4.18 5.21(2H,s), 6.43(1H,s), 6.91(1H,s), 7.49(1H,s), 7.5 7.90(1H,t,J=7.9Hz), 12.63(1H,s)	(2H,d,J=7.1Hz), 4.28(2H,d,J=6.9Hz),
	20	(solvent:CDCL ₃) 1.27(3H,t,J=7.4Hz), 1.29(3H,t,J 2.69(2H,q,J=7.4Hz), 3.73(2H,s), 4.20(2H,q,J=7.7.71(1H,d,J=7.9Hz), 7.99(1H,t,J=7.9Hz), 8.24(1Hz), 1.20(2H,q,J=7.9Hz), 8.24(1Hz), 1.20(2Hz), 1.20(2	3Hz), 5.27(2H,s), 6.43(1H,s), 7.51(1H,s),

Table 60

5	Ex. No.	Structural formula
10	2 1	OH OH OH
15		
20	2 2	H S OMO
25	2 3	OH N N OE'
35	24	O OH OEI
40		
45	2 5	O OH N N N OE!

50

Table 61

		¹H-NMR	δppm
5	21	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz). 1.32(3H,t,J=4.16(2H,s), 4.27(2H,q,J=7.6Hz) 5.32(2H,s), 6.44(18.02(1H,t,J=7.6Hz), 8.26(1H,d,J=7.6Hz), 11.21(1	H,s), $7.52(1H,s)$, $7.75(1H,d,J=7.6Hz)$,
10	22	(solvent:CDCL₃) 1.27(3H,t,J=7.4Hz), 2.58(3H,s), 2 3.40(2H,t,J=7.3Hz), 3.73(3H,s), 5.32(2H,s), 6.43(1 8.01(1H,t,J=7.9Hz), 8.24(1H,d,J=7.9Hz), 11.18(1	H,s), 7.51(1H,s), 7.75(1H,d,J=7.9Hz),
	23	(solvent:CDCL₃) 1.27(3H,t,J=7.3Hz), 1.27(3H,t,J=3.66(2H,s), 4.17(2H,q,J=7.3Hz) 5.32(2H,s), 6.52(17.65-7.7(2H,m), 7.97(1H,t,J=7.7Hz), 8.26(1H,dd,J	H,s), 7.0-7.1(1H,m), 7.3-7.4(1H,m), 7.51(1H,s),
15	24	(solvent:CDCL ₃) 1.26(3H,t,J=7.1Hz), 1.27(3H,t,J=3.62(2H,s), 4.16(2H,q,J=7.1Hz) 5.32(2H,s), 6.51(17.67(1H,d,J=7.3Hz), 7.75(1H,d,J=8.6Hz), 7.98(1H9.90(1H,bs), 12.68(1H,s)	H,s), 7.32(1H,d,J=8.6Hz), 7.51(1H,s),
20	25	(solvent:CDCL ₃) 1.28(3H,t,J=7.6Hz), 1.29(3H,t,J=3.80(2H,s), 4.21(2H,q,J=7.3Hz) 5.34(2H,s), 6.47(17.65-7.85(2H,m), 7.97(1H,t,J=7.6Hz), 8.26(1H,t,J=12.66(1H,s)	H,s), 7.09(1H,d,J = 6.9Hz), 7.51(1H,s),

Table 62

		12016 02
5	Ex. No.	Structural formula
10	2 6	O OMe
15		
20	2 7	OE:
25	28	OH N N N OE!
		
35	2 9	OH N N N OE!
40		
45	30	O OMe

	Table 63	
	'H-NMR	mddð
58	(solvent:CDCL ₃) 1.25(3H,t,J=7.3Hz), 1.30(3H,t,J=7.3Hz), 2.59(3H,s), 2.71(2H,q,J=7.5Hz), 3.77(2H,s), 3.92(2H,s), 4.22(2H,q,J=7.5Hz), 5.32(2H,s), 6.50(1H,s), 6.91(1H,s), 7.73(1H,s), 7.80(1H,d,J=7.6Hz), 8.34(1H,d,J=7.6Hz), 8.24(1H,d,J=7.6Hz), 11.18(1H,s)	.59(3H,s), 2.71(2H,q,J=7.5Hz), 3.77(2H,s), 3.92(2H,s), 3(1H,s), 7.80(1H,d,J=7.6Hz), (1H,s)
27	(solvent:CDCL ₃) 1.26(3H,t,J=7.6Hz), 1.28(3H,t,J=7.4Hz), 2.59(3H,s), 2.72(2H,q,J=7.5Hz), 3.80(2H,s), 3.92(3H,s), 4.21(2H,q,J=7.5Hz), 5.38(2H,s), 6.57(1H,s), 7.10(1H,dd,J=7.0Hz,J=0.7Hz), 7.73(1H,s), 7.76(1H,dd,J=8.3Hz,J=7.9Hz), 7.77(1H,dd,J=7.9Hz,J=1.0Hz), 8.00(1H,dd,J=7.6Hz,J=7.9Hz), 8.27(1H,dd,J=7.9Hz,J=1.0Hz), 8.37(1H,d,J=8.3Hz), 10.40(1H,s)	.59(3H,s), 2.72(2H,q,J=7.5Hz), 3.80(2H,s), 3.92(3H,s), 7.0Hz, J=0.7Hz), 7.73(1H,s), 7.76(1H,dd,J=8.3Hz, 7.6Hz,J=7.9Hz), 8.27(1H,dd, J=7.9Hz,J=1.0Hz),
28	(solvent:CDCL ₂) 1.00(3H,t,J = 7.4Hz), 1.30(3H,t,J = 7.1Hz), 1.63 (2H,tq, J = 7.9Hz, J = 7.3Hz), 2.58(3H,s), 2.77(2H,t,J = 7.6Hz), 3.77(2H,s), 4.22(2H,q,J = 7.0Hz), 5.32(1H,s), 6.46(1H,d,J = 8.9Hz) 6.91(1H,s), 7.62(1H,d,J = 8.9Hz), 7.74(1H,d,J = 7.9Hz), 8.00(1H,dd,J = 7.6Hz) 3 = 7.6Hz)	.63 (2H,tq, J=7.9Hz, J=7.3Hz), 2.58(3H,s), H,s), 6.46(1H,d,J=8.9Hz) 6.91(1H,s), 6Hz,J=7.9Hz), 8.24(1H,dd,J=7.6Hz, J=0.6Hz)
59	(solvent:CDCL ₂) 1.00(3H,t,J=7.4Hz), 1.29(3H,t,J=7.2Hz), 1.64 (2H,tq,J=7.6Hz,J=7.2Hz), 2.58(3H,s), 2.78(2H,t,J=7.2Hz), 3.81 (2H,s), 4.21(2H,q,J=7.0Hz), 5.38(2H,s), 6.50(1H,d,J=8.9Hz), 7.10(1H,dd,J=7.3Hz,J=0.7Hz), 7.62(1H,d,J=8.9Hz), 7.70(1H,d,J=7.9Hz), 7.76(1H,dd,J=8.0Hz,J=7.9Hz), 7.30(1H,dd,J=7.9Hz), 7.76(1H,dd,J=7.9Hz), 7.87(1H,dd,J=7.9Hz), 7.87(1H,dd,J=7.9Hz), 8.36(1H,d,J=7.6Hz)	.64 (2H,tq,J=7.6Hz,J=7.2Hz), 2.58(3H,s), 2H,s), 6.50(1H,d,J=8.9Hz), 1H,d,J=7.9Hz), 7.76(1H,dd,J=8.0Hz,J=7.9Hz), (1H,d,J=7.6Hz)
೫	(solvent:CDCL ₃) 1.03(3H,t,J=7.3Hz), 1.64(2H,tq,J=7.6Hz,J=7.8Hz), 2.59(3H,s), 2.74(2H,t,J=8.0Hz), 3.78(3H,s), 3.82(2H,s), 5.31(2H,s), 6.71(1H,d,J=8.9Hz), 6.83(1H,s), 7.53(1H,d,J=8.9Hz), 7.70(1H,d,J=7.6Hz), 7.97(1H,d,J=7.6Hz), 7.97(1H,d,J=7.6Hz), 7.97(1H,d,J=7.6Hz), 8.19(1H,d,J=7.6Hz)	= 7.8Hz), 2.59(3H,s), 2.74(2H,t,J=8.0Hz), 3.78(3H,s), 3(1H,d,J=8.9Hz), 7.70(1H,d,J=7.6Hz),

Table 64

	•		

Ex. No.	Structural formula
3 1	O OME
3 2	O OH
3 3	OH OH
3 4	H O N O Et
3 5	H N N N N N N N N N N N N N N N N N N N

	CANIN LI	Tanana T
	בואואו-נו	uidde
31	(solvent:CDCL ₃) 1.03(3H,t,J=7.3Hz), 1.65(2H,tq,J=7.6Hz,J=7.9Hz), 2.63(3H,s), 2.76(2H,t,J=7.6Hz), 3.79(3H,s), 3.90(2H,s), 5.3 7(2H,s), 6.81(1H,d,J=8.6Hz), 7.06(1H,d,J=7.6Hz), 7.59(1H,d,J=8.9Hz), 7.75(1H,d,J=6.9Hz), 7.83(1H,dd,J=7.9Hz,J=7.9Hz), 8.01(1 H,dd,J=7.9Hz,J=7.9Hz), 8.28(1H,d,J=6.9Hz), 8.37(1H,d,J=7.9Hz)	,J=7.9Hz), 2.63(3H,s), 2.76(2H,t,J=7.6Hz), .06(1H,d,J=7.6Hz), 7.59(1H,d,J=8.9Hz), (1 H,dd,J=7.9Hz,J=7.9Hz), 8.28(1H,d,J=6.9Hz),
32	(solvent:CDCL ₂) 1.27(3H,t,J=7.6Hz), 1.28(3H,t,J=7.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.72(2H,s), 4.17(2H,q,J=7.3Hz) 5.32(2H,s), 6.43(1H,s), 6.89(1H,s), 7.51(1H,s), 7.67(1H,dd,J=0.7Hz,J=8.2Hz), 8.29(1H,dd,J=2.3Hz,J=8.2Hz), 9.14(1H,dd,J=0.7Hz,J=2.3Hz), 9.58(1H,bs), 12.66(1H,s)	2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.72(2H,s), 51(1H,s), 7.67(1H,dd,J=0.7Hz,J=8.2Hz), 2.3Hz), 9.58(1H,bs), 12.66(1H,s)
33	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.32(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 4.30(2H,q,J=7.3Hz), 4.68(2H,s) 5.32(2H,s), 6.51(1H,s), 6.70-6.80(1H,m), 7.25-7.35(2H,m) 7.51(1H,s), 7.55-7.65(1H,m), 7.68(1H,d,J=7.6Hz), 7.98(1H,dd,J=6.6Hz,J=7.6Hz), 8.26(1H,d,J=6.6Hz), 9.90(1H,bs), 12.67(1H,s)	2.59(3H,s), 2.70(2H,q,J=7.6Hz), 70-6.80(1H,m), 7.25-7.35(2H,m) 7.51(1H,s), 12,J=7.6Hz), 8.26(1H,d,J=6.6Hz), 9.90(1H,bs),
34	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.31(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 4.26(2H,q,J=7.3Hz), 4.63(2H,s) 5.31(2H,s), 6.51(1H,s), 6.96(2H,d,J=9.1Hz), 7.51(1H,s), 7.51(1H,s), 7.66(1H,d,J=8.6Hz), 7.71(2H,d,J=9.1Hz), 7.97(1H,dd,J=7.6Hz,J=8.6Hz), 8.26(1H,d,J=7.6Hz), 9.82(1H,s), 12.67(1H,s)	2.59(3H,s), 2.70(2H,q,J = 7.6Hz), 36(2H,d,J = 9.1Hz), 7.51(1H,s), 7.6Hz,J = 8.6Hz), 8.26(1H,d,J = 7.6Hz), 9.82(1H,s),
35	(solvent:CDCL ₃) 1.27(3H,t,J=7.3Hz), 1.27(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.73(2H,s), 4.07(2H,d,J=5.3Hz) 4.20(2H,q,J=7.3Hz), 5.32(2H,s), 6.45(1H,s), 6.88(1H,s), 7.03(1H,b), 7.51(1H,s), 7.74(1H,dd,J=1.0Hz, J=7.6Hz), 8.01(1H,dd,J=7.9Hz), 8.25(1H,dd,J=1.0Hz,J=7.9Hz), 11.08(1H,bs), 12.67(1H,s)	2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.73(2H,s), (1H,s), 6.88(1H,s), 7.03(1H,b), 7.51(1H,s), 7.9Hz), 8.25(1H,dd,J=1.0Hz,J=7.9Hz),

Table 66

٠	,	

Ex. No.	Structural formula
3 6	O C N C S C S C S C S C S C S C S C S C S
3 7	OH SHOW SHOW
38	OH STORY OH
3 9	OH N N N OH
4 0	H S OH

Table 67

		¹H-NMR	δppm
5	36	(solvent:DMSO-d ₆) 1.20(3H,t,J = 7.6Hz), 2. 7.45(1H,s), 7.66,(1H,s), 7.7-7.8(1H,m), 8.10	59(3H,s), 2.63(2H,q,J=7.6Hz), 5.44(2H,s), 6.71(1H,s), 0-8.20(2H,m), 12.60(1H,bs)
	37		3(3H,s), 2.65(2H,q,J=7.6Hz), 3.67(2H,s), 5.46(2H,s), ,dd,J=1.3Hz,J=7.3Hz), 12.04(1H,bs), 12.55(1H,s)
10	38		59(3H,s), 2.55-2.75(4H,m), 2.89(2H,t,J=7.6Hz), 5.47(2H,s), H,d,J=7.3Hz), 8.10-8.20(2H,m), 11.94(1H,bs), 12.57(1H,s)
	39		58(3H,s), 2.65(2H,q,J=7.4Hz), 4.15(2H,s), 5.47(2H,s),), 8.10-8.20(2H,m), 12.50(1H,bs), 12.56(1H,s)
15	40	(solvent:DMSO-d₅) 1.21(3H,t,J=7.4Hz), 2. 6.63(1H,s), 6.95(1H,s), 7.70(1H,s), 7.78(1H	59(3H,s), 2.55-2.75(4H,m), 2.89(2H,t,J = 7.6Hz), 5.47(2H,s), ,d,J = 7.3Hz), 8.10-8.20 (2H,m), 11.94(1H,bs), 12.57(1H,s)

Table 68

5	Ex. No.	Structura i form ula
10	4 1	OH OH OH
15		
20	4 2	OH OH OH
25		
30	43	OH N N OH
35	44	The state of the s
40		Ö S- Ö OMe
45	4 5	O NO
50		

Table 69

		¹H-NMR	δppm
5	41	· · · · · · · · · · · · · · · · · · ·	2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.58(1H,s), 5.47(2H,s), m), 7.7-7.8(4H,m), 8.1-8.2(2H,m), 10.41(1H,s),
10	42	, , , , , , , , , , , , , , , , , , , ,	2.58(3H,s), 2.65(2H,q,J = 7.6Hz), 5.46(2H,s), 6.62(1H,s), 5-8.20(2H,m), 8.10-8.20(2H,m), 10.40(1h,s)
	43	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.71(2H,s), 5.49(2H,s), s), 7.75-7.95(2H,m), 8.10-8.20 (3H,m), 10.33(1H,s),
15	44	(solvent:CDCL ₃) 1.25(3H,t,J=7.4Hz), 2.5.5.35(2H,s), 6.52(1H,s), 6.88(1H,s), 7.70(1H,8.03(1H,dd,J=7.9Hz,J=7.6Hz), 8.24(1H,s)	
20	45	5.39(2H,s), 6.55(1H,s), 7.07(1H,d,J=7.3H	9(3H,s), 2.72(2H,q,J = 6.9Hz), 3.91(2H,s), 3.93(3H,s), z), 7.74(1H,s), 7.83(1H,d,J = 6.6Hz) dd,J = 7.9Hz,J = 7.9Hz), 8.29(1H,d,J = 6.6Hz),

Table 70

5	Ex. No.	Structural formula
10	46	H S OH
15		
20	4 7	OH N N OH
25	4 8	N N N N OH
30		OMe S T
35	4 9	N N N OH
40 45	5 0	N N N OH
		Ö ÓН

55

Table 71

		¹H-NMR	δppm
i	46	(solvent:DMSO-d ₆) 0.92(3H,t,J = 7.3Hz), 1.55(2H,tq, 2.67(2H,t,J = 7.6Hz), 3.67(2H,s), 5.50(2H,s), 6.77(1H 7.81(1H,d,J = 8.9Hz), 8.11(1H,dd,J = 7.6Hz,J = 7.6Hz	,d,J = 9.2Hz), 7.11(1H,s), 7.76(1H,d,J = 7.2Hz)
,	47	(solvent:CDCL ₃) 1.00(3H,t,J = 7.4Hz), 1.64(2H,tq,J = 2.78(2H,t,J = 7.6Hz), 3.91(2H,s), 5.40(2H,s), 6.55(1H 7.63(1H,d,J = 8.2Hz), 7.77(1H,d,J = 6.9Hz), 7.85(1H, 8.02(1H,dd,J = 7.6Hz,J = 7.9Hz), 8.27(H,d,J = 6.9Hz)	,d,J = 8.9Hz), 7.07(1H,d,J = 6.6Hz), dd,J = 7.9Hz,J = 7.9Hz),
	48	(solvent:CDCL ₃) 1.03(3H,t,J = 7.3 Hz), 1.64(2H,tq,J = $2.74(2$ H,t,J = 8.0 Hz), 3.78(3H,s), 3.82(2H,s) 5.31(2H, $7.53(1$ H,d,J = 8.9 Hz), $7.70(1$ H,d,J = 7.6 Hz), $7.97(1$ H,d	s), 6.71(1H,d,J=8.9Hz), 6.83(1H,s),
	49	(solvent:CDCL ₃) 1.03(3H,t,J = 7.3Hz), 1.65(2H,tq,J = 2.76(2H,t,J = 7.6Hz), 3.79(3H,s), 3.90(2H,s), 5.37(2H 7.59(1H,d,J = 8.9Hz), 7.75(1H,d,J = 6.9Hz), 7.83(1H 8.01(1H,dd,J = 7.9Hz,J = 7.9Hz), 8.28(1H,d,J = 6.9Hz)	,s), 6.81(1H,d,J = 8.6Hz), 7.06(1H,d,J = 7.6Hz), ,dd,J = 7.9Hz, J = 7.9Hz),
	50	(solvent:DMSO-d ₆) 1.20(3H,t,J = 7.6Hz), 2.58(3H,s), 6.57(1H,s), 7.06(1H,s), 7.66(1H,d,J = 8.6Hz), 7.69(1H,d,J = 2.0Hz), 12.54(1H,s)	

Table 72

5	Ex. No.	Structural formula
10	5 1	OH OH OH
15		
20	5 2	Som Som Som
25		
30	5 3	OH S S S S S S S S S S S S S S S S S S S
35	5 4	OH OH OH
40		·
TU		
45	5 5	OH N N N N N N N N N N N N N N N N N N N
	L	

Table 73

	¹H-NMR	δppm		
51	$ (\text{solvent:DMSO-d}_6) \ 1.19(3\text{H,t,J} = 7.6\text{Hz}), \ 2.58(3\text{H,s}), \ 2.64(2\text{H,q,J} = 7.6\text{Hz}), \ 4.64(2\text{H,s}), \ 5.45(2\text{H,s}), \\ 6.62(1\text{H,s}), \ 6.93(2\text{H,d,J} = 8.2\text{Hz}), \ 7.65-7.85(4\text{H,m}), \ 8.05-8.20(2\text{H,m}), \ 10.35(1\text{H,s}), \ 12.55(1\text{H,s}) \\ $			
52	(solvent:DMSO-d ₆) 1.20(3H,t,J = 7.6Hz), 2.58(3H,s), 6.62(1H,s), 6.65-6.75(1H,m), 7.20-7.80(5H,m), 8.05-8			
58	(solvent:DMSO- d_6) 1.21(3H,t,J = 7.3Hz), 2.58(3H,s), 3.79(2H,d,J = 5.6Hz), 5.46(2H,s) 6.63(1H,s), 7.09(1H, 12.04(1H,bs), 12.56(1H,s)	, , , , , , , ,		
54	(solvent:CDCL ₃) 1.31(3H,t,J = 7.6Hz), 1.52(2H,d,J = 6 3.71(2H,s), 4.60(1H,dq,J = 7.6Hz,J = 7.9Hz), 5.49(2H, 7.63(1H,d,J = 7.6Hz), 7.75(1H,dd,J = 7.6Hz,J = 8.2Hz) 8.22(1H,d,J = 7.9Hz), 8.33(1H,d,J = 8.3Hz)	s), 6.84(1H,s), 7.01(1H,d,J=7.3Hz), 7.51(1H,s)		
55	(solvent:CDCL ₃) 1.27(3H,t,J = 7.6Hz), 1.43(2H,d,J = 7.3.72(3H,s), 3.74(2H,s), 4.61(2H,dq,J = 6.9Hz,J = 7.2H 7.51(1H,s), 7.72(1H,d,J = 7.6Hz), 7.76(1H,dd,J = 7.2H 8.27(1H,d,J = 7.9Hz), 8.34(1H,d,J = 8.6Hz)	z), 5.39(2H,s), 6.49(1H,s), 7.06(1H,d,J=7.6Hz)		

0

Table 74

5	Ex. No.	Structural formula
10	5 6	OH N N N N N N N N N N N N N N N N N N N
15		
20	5 7	N N N N N N N N N N N N N N N N N N N
25		
30	5 8	OH OH OH
35	5 9	
40		
45	60	OH OH OH OH
	L	<u> </u>

50

Table 75

	H-NMR	mdd§
56	(solvent:CDCL ₂) 1.28(3H,t,J=7.4Hz), 2.59(3H,s), 2.54(2H,t, J=6.1Hz), 2.70(2H,t,J=7.4Hz), 3.55(3H,s), 3.56(2H,dd,J=5.9Hz, J=6.3Hz), 3.69(2H,s), 5.39(2H,s), 6.50(1H,s), 7.06(1H,d, J=7.6Hz), 7.51(1H,s), 7.73(1H,dd,J=7.9Hz,J=1.0Hz), 7.75(1H,dd,J=7.9Hz,J=7.9Hz), 7.36(1H,dd,J=7.9Hz,J=7.9Hz), 8.30(1H,d,J=7.9Hz), 8.30(1H,d,J=8.3Hz)	J=6.1Hz), 2.70(2H,t,J=7.4Hz), 3.55(3H,s), 0(1H,s), 7.06(1H,d, J=7.6Hz), 7.51(1H,s), .9Hz), 7.99(1H,dd,J=7.6Hz,J=7.9Hz), 8.30(1H,d,
57	(solvent:CDCL ₃) 1.28(3H,t,J=7.6Hz), 2.60(3H,s), 2.72(2H,q, J=7.5Hz), 3.76(2H,s), 5.40(2H,s), 6.55(1H,s), 7.13(1H,d,J=7.3Hz), 7.54(1H,s), 7.76(1H,dd,J=7.3Hz, J=7.6Hz), 7.81(1H,d,J=7.6Hz), 8.02(1H,dd,J=7.9Hz, J=7.9Hz), 8.25(1H,d,J=7.3Hz), 8.31(1H,d,J=8.2Hz)	, J=7.5Hz), 3.76(2H,s), 5.40(2H,s), 6.55(1H,s), .6Hz), 7.81(1H,d,J=7.6Hz), 8.02(1H,dd,J=7.9Hz,
28	(solvent:CDCL ₃) 1.31(3H,t,J=7.6Hz), 1.52(2H,d,J=6.9Hz), 2.57(3H,s), 2.74(2H,q,J=7.6Hz), 3.71(2H,s), 4.60(1H,dq,J=7.6Hz,J=7.9Hz), 5.49(2H,s), 6.84(1H,s), 7.01(1H,d,J=7.3Hz), 7.51(1H,s), 7.63(1H,d,J=7.6Hz), 7.55(1H,dd,J=7.6Hz,J=8.3Hz), 7.75(1H,dd,J=7.6Hz,J=8.2Hz), 7.93(1H,d,J=8.3Hz)	2.57(3H,s), 2.74(2H,q,J=7.6Hz), 3.71(2H,s), ((1H,d,J=7.3Hz), 7.51(1H,s), 7.63(1H,d,J=7.6Hz), 6Hz), 8.22(1H,d,J=7.9Hz), 8.33(1H,d,J=8.3Hz)
65	(solvent:CDCL ₃) 1.28(3H,t,J = 7.6Hz), 2.58(3H,s), 2.60(2H,q,J = 5.9Hz), 2.71(2H,q,J = 7.9Hz), 3.70(2H,s), 3.60(2H,q,J = 5.7Hz), 5.44(1H,s), 6.74(1H,s), 7.03(1H,d,J = 7.6Hz) 7.50(1H,s), 7.73(1H,d,J = 7.3Hz), 7.74(1H,dd,J = 8.5Hz,J = 7.3Hz), 8.00(1H,dd,J = 7.9Hz), 8.25(1H,d,J = 8.2Hz)	,J=5.9Hz), 2.71(2H,q,J=7.9Hz), 3.70(2H,s), .6Hz) 7.50(1H,s), 7.73(1H,d,J=7.3Hz), 6Hz), 8.25(1H,d,J=7.6Hz), 8.31(1H,d,J=8.2Hz)
09	(solvent:CDCL ₃) 1.29(3H,t,J=7.6Hz), 2.60(3H,s), 2.73(2H,q, J=7.5Hz), 2.85(1H,dd,J=17.2Hz,J=5.3Hz), 3.00(1H,dd,J=14.2Hz,J= 4.6Hz), 3.76(2H,s), 4.78(1H,t,J=5.0Hz), 5.41(2H,s), 6.55(1H,s), 7.13(1H,d,J=7.6Hz), 7.55(1H,s), 7.74(1H,d,J=7.8Hz), 7.79(1H,dd,J=7.6Hz,J=8.2Hz), 8.02(1H,dd,J=7.6Hz,J=7.9Hz), 8.23(1H,d,J=6.9Hz), 8.30(1H,d,J=8.6Hz)	, J=7.5Hz), 2.85(1H,dd,J=17.2Hz,J=5.3Hz), 5.0Hz), 5.41(2H,s), 6.55(1H,s) , 7.13(1H,d,J=7.6Hz), 2Hz), 8.02(1H,dd,J=7.6Hz,J=7.9Hz),

Table 76

5	Ex. No.	Structural formula
10	6 1	O OH O OH O OH
-		
20	6 2	O OH O OH O OE t
25		.W. H
30	63	CO ₂ H O OH
35	6 4	O OH O S O E N
40		H HOO
45	6 5	O OH CO2H

69

50

Table 77

	¹H-NMR	δррт	
61	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.59(6.69(1H,s), 7,12(1H,s), 7,71 (1H,s), 9,04(1H,s)	3H,s), 2.64(2H,q,J = 7,6Hz), 3.67(2H,s), 5.49(2H,s), , 9.27(1H,s), 10.06(1H,s), 12.58(1H,br)	
62	(solvent:CDCL ₃) 1.26(3H,t,J=7.6Hz), 1.30(3H 3.76(2H,d,J=0.7Hz), 4.22(2H,q,J=7.3Hz), 5. 9.48(1H,s), 10.90(1H, br), 12.70(1H,s)	,t,J = 7.3Hz), 2.60 (3H,s), 2.69(2H,q,J = 7,6Hz), 33(2H,s), 6.47(1H,s), 6.94(1H,s), 7.53(1H,s), 9.08 (1H,s),	
63	(solvent:DMSO-d ₆) 1.19(3H,t,J=7,6Hz), 2.59(3H,s), 2.66(2H,q,J=7,6Hz), 2.89(1H,dd,J=8.3Hz,15.0Hz), 3.00(1H,dd,J=5.3Hz,15.0 Hz), 3.58(2H,s), 4.4-4.5(1H,m), 5.49(2H,s), 6.68(1H,s), 6.94 (1H,s), 7.00(1H,s), 7.71(1H,s), 7.87(1H,s), 8.33(1H,d,J=7.6 Hz), 9.05(1H,s), 9.27(1H,s), 12.60(1H,br)		
64 (solvent:CDCl ₃) 1.20(3H,t,J=7.3Hz), 2.60(3H,s), 2.70(2H,q,J=7.3Hz), 3.1-3.2(2H,m), 3.75(2H,s), 4.8-4.9(1H,m), 5.36(2H,s), 6.48(1H,s), 6.79(1H,s), 6.91(1H,s), 7.53(1H,s), 9.10(1H,s), 9.48(1H,s), 12.78(1H,br)			
65	(solvent:DMSO-d ₆) 1.19(3H,t,J = 7.6Hz), 2.59(5.49(2H,s), 6.69(1H,s), 7.08(1H, s), 8.35(1H,d,	3H,s), 2.6-2.7(4H, m),3.61(2H,s), 4.5-4.6(1H,m), J = 7.6Hz), 9.05(1H,s), 9.27(1H,s), 12.60(1H,s),	

Table 78

Ex. No.	Structural formula
6 6	O OH CO2Et
6 7	H CONH CONH₂ O OH
6 8	O OH CONH2
6 9	O OH OH OH
7 0	O OH OH OH

Table 79

		¹H-NMR	δppm
5	66	(solvent:CDCl ₃) 1.16(3H,t,J=7.6Hz), 1.25(3H,t,J=7.6Hz), 1.26 (3H,t,J=7.6Hz), 2.59(3H,s), 2.69(2H,q,J=7.6Hz), 2.8-3.1(2H,m), 3.71(2H,s), 4.11(2H,q,J=7.6Hz), 4.21(2H,q,J=7.6Hz), 4.8-4.9 1H,m), 5.37(2H,s), 6.47(1H,s), 6.91(1H,s), 7.52(1H,s), 8.03 (1H,s), 9.08(1H,s), 9.49(1H,s), 12.68(1H,s),	
10	67	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.59(3H,t), 2.70(2H,q,J=7.6Hz), 3.76(2H,s), 3.78(2H,d,J=0.7Hz), 5.28(2H,s), 6.43(1H, s), 7.51(1H,s), 6.90(1H,s), 7.72(1H,dd,J=7.9, 1.0Hz), 8.00(1H, dd,J=7.9, 7.6Hz), 8.25(1H,d,J=7.9Hz)	
15	68 (solvent:CDCl ₃) 1.28(3H,t,J = 7.4Hz), 2.58(3H,s), 2.72(2H,q,J = 7.5Hz), 3.77(2H,s), 4.05(2H,d,J = 5.0Hz), 5.46(2H,s), 6.89(1H, s), 7.03(1H,d,J = 6.6Hz), 7.5(1H,s), 7.72(1H,d,J = 7.9Hz), 7.76 (1H,dd,J = 7.6, 7.9Hz), 7.99(1H,dd,J = 7.6, 7.9Hz), 8.24(1H,c), 7.6Hz), 8.30(1H,d,J = 8.3Hz)		03(1H,d,J=6.6Hz), 7.5(1H,s),
20	69	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.59(3H,s), 2.70(2H,q,J=7.3Hz), 3.72(2H,s), 3.8-4.0(2H,m), 4.58(3H,t,J=3.8Hz), 5.33 (2H,s), 6.48(1H,s), 6.94(1H,s), 7.52(1H,s), 7.76(1H,d,J=7.6 Hz), 8.03(1H,dd,J=7.9, 7.9Hz), 8.25(1H,d,J=7.9Hz)	
-	70	(solvent:CDCl ₃) 1.27(3H,t,J = 7.4Hz), 2.60(3H,s), 3.73(3H,s), 3.87(1H,dd,J = 11.5, 3,3Hz), 3.97 (1H,6.48(1H, s), 6.96(1H,s), 7.54(1H,s), 7.77(1H,d,J = 8.25(1H,d,J = 7.6Hz)	H,dd,11.5, 3,3Hz), 4.6-4.7(1H,m), 5.34(2H,s),

Table 80

5	Ex. No.	Structural formula	
10	7 1	O OH CO2H	
15		A 11	
20	7 2	O OH CO2 CH2	
25	7 3	O OH CONH CONH CO2H	
30			
35	7 4	O OH CO2Et	
40			
45	7 5	O OH CONH CO2H	

55

81	pbbm spb m	9(3H,s), 2.70(2H,q,J=7.6Hz), 3.5-3.7(2H,m), H,s), 6.92(1H,s), 7.51(1H,s), 7.73 (1H,d,J=7.9Hz),	(solvent:CDCl ₃) 1.26(3H,t,J = 7.6Hz), 1.9-2.3(4H,m), 2.59(3H,s), 2.70(2H,q,J = 7.5Hz), 3.6-3.8(2H,m), 3.82(2H,s), 4.12(2H,q,J = 7.2Hz), 4.63(1H,dd,J = 8.3, 3.6Hz), 5.18(2H,d,J = 7.9Hz), 5.27(2H, s), 6.44(1H,s), 6.94(1H,s), 7.35(5H,m), 7.51(1H,s), 7.72(1H,d,J = 6.9Hz), 8.00(1H,dd,J = 7.9, 7.94tz), 8.25(1H,d,J = 7.9Hz)	H.q.J = 7.3Hz), 2.8-3.1(2H,m), 3.37(2H,d,J = 5.0Hz), , 6.93(1H,s), 7.54(1H, s), 7.76(1H,d,J = 7.9Hz),	(solvent:CDCl ₃) 1.19(3H,t,J = 7.1Hz), 1.24(3H,t,J = 7.4Hz), 1.27 (3H,t,J = 7.8Hz), 2.59(3H,s), 2.70(2H,q,J = 7.2Hz), 2.85(1H,dd,J = 17.2. 4.6Hz), 3.02(1H,dd,J = 16.8, 4.6Hz), 3.72(2H,s), 4.10(2H, q,J = 7.2Hz), 4.20(2H,q,J = 7.1Hz), 4.85(1H,td, J = 4.9, 7.6Hz), 5.31(2H,s), 6.44(1H,s), 6.89(1H,s), 7.51(1H,s), 7.74(1H,d,J = 7.6Hz), 8.26(1H,d,J = 7.6Hz)	H,q,J= 7.3Hz), 3.26(2H,d,J=5.0Hz), 3.70(2H,s), 7.05(1H,s), 7.50(1H,s), 7.76(1H,d,J=8.0Hz),
Table 81	H-NMR	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.5-2.2(4H,m), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.5-3.7(2H,m), 3.85(2H,d,J=2.3Hz), 4.6-4.7 (1H,m), 5.32(2H,s), 6.49(1H,s), 6.92(1H,s), 7.51(1H,s), 7.73 (1H,d,J=7.9Hz), 7.99(1H,dd,J=7.9, 7.9Hz), 8.23(1H,d,J=7.9Hz)	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2.59(3H,s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.82(3+1.2(2H,q,J=7.2Hz), 4.63(1H,dd,J=8.3, 3.6Hz), 5.18(2H,d,J=7.9Hz), 5.27(2H, s), 6.44(1H,s), 6.94(1H,s), 7.35(5H,m), 7.51(1H,s), 7.72(1H,d,J=6.9Hz), 8.00(1H,dd,J=7.9, 7.9Hz), 8.25(1H,d,J=7.9Hz)	(solvent:CDCl ₃) 1.27(3H,t,J = 7.6Hz), 2.60(3H,s), 2.71(2H,q,J = 7.3Hz), 2.8-3.1(2H,m), 3.37(2H,d,J = 5.0Hz), 3.71(2H,s), 4.80 (1H,t,J = 4.8Hz), 5.35(2H,s), 6.49(1H,s), 6.93(1H,s), 7.54(1H, s), 7.76(1H,d,J = 7.9Hz), 8.03(1H,dd,J = 7.9, 7.9Hz), 8.23(1H,d,J = 7.9Hz)	(solvent:CDCl ₃) 1.19(3H,t,J=7.1Hz), 1.24(3H,t,J=7.4Hz), 1.27 (3H,t,J=7.8Hz), 2.59(3H,s), 2.70 2.85(1H,dd,J= 17.2. 4.6Hz), 3.02(1H,dd,J=16.8, 4.6Hz), 3.72(2H,s), 4.10(2H, q,J=7.2Hz), 4.20 4.85(1H,td, J=4.9, 7.6Hz), 5.31(2H,s), 6.44(1H,s), 6.89(1H,s), 7.51(1H,s), 7.74(1H,d,J=7.6Hz), 8.01(1H,dd,J=7.6, 7.9Hz), 8.26(1H,d,J=7.6Hz)	(solvent:CDCl ₃) 1.27(3H,t,J = 7.5Hz), 2.59(3H,s), 2.69(2H,q,J = 7.3Hz), 3.26(2H,d,J = 5.0Hz), 3.70(2H,s), 4.70(1H,t,J = 5.0Hz), 5.33(2H,s), 6.48(1H,s), 7.05(1H,s), 7.50(1H,s), 7.76(1H,d,J = 8.0Hz), 8.00(1H,dd,J = 8.0, 8.0Hz), 8.22(1H,d,J = 8.0 Hz)
		7	72	73	74	75

Table 82

5	
·	

٠.

1 2016 82

Ex. No.	Structural formula
7 6	O OH CONH CONH CO2 Me
7 7	O OH CONH CO2H
78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 9	O OH CONH CO2H
8 0	O OH CONH CO2Me

Table 83

		¹H-NMR	δppm	
7	6	(solvent:CDCl ₃) 1.26(3H,t,J=7.5Hz), 2.59(3H,s), 2.69(2H,q,J=7.5Hz), 3.15(2H,t,J=4.2Hz), 3.71(3H,s), 3.73(2H,s), 4.84(1H, dt, J=7.3, 4.2Hz), 5.31(2H,s), 6.45(1H,s), 6.78(1H,s), 6.88(1H, s), 7.50(1H,s), 7.59(1H,s), 7.72(1H,d,J=7.6Hz), 8.01(1H,dd,J=7.9, 7.9Hz), 8.26(1H,d,J=7.6Hz),		
7	7	(solvent:CDCl ₃) 1.27(3H,t,J=7.5Hz), 1.9-2.5(4H,m), 2 3.70(2H,s), 4.56(1H,t,J= 4.0Hz), 5.35(2H,s), 6.49(1H 8.04(1H,dd,J=7.6, 7.9Hz), 8.24(1H,d,J=7.6Hz)		
5	8	(solvent:CDCl ₃) 1.21(3H,t,J=7.1Hz), 1.26(3H,t,J=7.4Hz), 1.29 (3H,t,J=7.6Hz), 1.9-2.4(4H,m), 2.59(3H,s), 2.70(2H,q,J=7.4Hz), 3.70(2H,s), 4.09(2H,q,J=7.2Hz), 4.19(2H,q,J=6.9Hz), 4.63(1H,td,J=3.7, 7.6Hz), 5.33(2H,s), 6.47(1H,s), 6.88(1H,s), 7.51(1H, s), 7.75(1H,d,J=6.9Hz), 8.02(1H,dd,J=6.9, 7.6Hz), 8.26(1H,d,J=6.9Hz)		
7	9	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
8	ю.	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.59(3H,s), 2.70(2H,q,J=7.4Hz), 3.17(2H,d,J=5.0Hz), 3.67(3H,s), 3.77(2H,s), 4.82(1H, dt,J=6.9, 5.0 Hz), 5.22(2H,s), 6.35(1H,s), 6.71(1H,s), 7.07 (1H,d,J=7.3Hz), 7.45(1H,s), 7.51(1H,s), 7.67(1H,d,J=7.3Hz), 7.76(1H,dd,J=7.9, 7.9Hz), 7.98(1H,dd,J=7.9, 7.9Hz), 8.26(1H,d,J=6.9Hz), 8.32(1H,d,J=7.9Hz)		

Table 84

5	Ex. No.	Structural formula
10	8 1	O OH CONH CONH CO2H
15		♠ n
20	8 2	O OH CONH CO2E1
25	8 3	O OH CO2H
35	8 4	H CON CO 2 CH 2 CO
45	8 5	O OH CONH CONH OH

50

ſ						
	δppm	H.s), 2.72(2H.q.J=7.4Hz), 3.84(2H.s), 4.5-4.6(1H,m), 76(1H.d.J=8.3 Hz, 7.94(1H,dd,J=7.9, 7.9Hz), 1.J=8.6Hz)	1.27 (3H,t,J = 7.4Hz), 2.59(3H,s), J=7.1Hz), 4.1-4.3(2H,m), 4.65(1H,t,d,J = 7.6, 5.3Hz), 71(1H,d,J = 7.3Hz), 7.73(1H,dd,J = 7.9, 7.9Hz), 7.99(1H	H,s), 2.71(2H,q,J=7.4Hz), 3.67(2H,m), 6(2H,s), 7.10(1H,d,J=7.6Hz), 7.50 (1H,s), dd, J=7.9, 7.6Hz), 8.24(1H,d,J=7.6Hz),	H.s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.88(2H,s), J,J=7.9Hz), 5.31(2H,s), 6.47(1H,s), =7.6Hz), 7.68(1H,dd,J=7.9, 7.6Hz), 7.97(1H,dd,J=7.9,	(solvent:CDCl ₃) 1.28(3H,t,J = 7.4Hz), 2.60(3H,s), 2.72(2H,q,J = 7.4Hz), 3.79(2H,s), 3.8-4.1(2H,m), 4.59(1H,t,J = 3.5Hz), 5.39 (2H,s), 6.52(1H,s), 7.54(1H,d,J = 7.9Hz), 7.80(1H, dd,J = 7.64, 8.3Hz),
נמחום ו	'H-NMR	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 1.9-2.5(4H,m), 2.60(3H,s), 2.72(2H,q,J=7.4Hz), 3.84(2H,s), 4.5-4.6(1H,m), 5.42(2H,s), 6.56(2H,s), 7.26(1H,d,J=7.9Hz), 7.54(1H,s), 7.76(1H,d,J=8.3 Hz, 7.94(1H,dd,J=7.9, 7.9Hz), 8.03(1H,dd,J=7.9, 7.6Hz), 8.24 (1H,d,J=7.9Hz), 8.39(1H,d,J=8.6Hz)	(solvent:CDCl ₃) 1.16(3H,t,J=7.3Hz), 1.20(3H,t,J=7.1Hz), 1.27 (3H,t,J=7.4Hz), 2.59(3H,s), 2.54(4H,m), 3.74(2H,s), 4.03(2H,q,J=7.1Hz), 4.1-4.3(2H,m), 4.65(1H,t,d,J=7.6, 5.3Hz), 5.39(2H,s), 6.49(1H,s), 7.06(1H,d,J=6.6Hz), 7.51 (1H,s), 7.71(1H,d,J=7.3Hz), 7.73(1H,dd,J=7.9, 7.9Hz), 7.99(1H,d,J=7.9Hz), 8.34(1H,d,J=7.9Hz)	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.0-2.1(4H,m), 2.58(3H,s), 2.71(2H,q,J=7.4Hz), 3.67(2H,m), 3.94(2H,d,J=4.3Hz), 4.75(1H, d,J=5.9Hz), 5.39(2H,s), 6.56(2H,s), 7.10(1H,d,J=7.6Hz), 7.50 (1H,s), 7.71(1H,d,J=7.9Hz), 7.78(1H,dd,J=7.9, 7.3Hz), 7.38(1H,dd,J=7.9, 7.6Hz), 8.24(1H,d,J=7.6Hz), 8.37(1H,d,J=8.3Hz)	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2.58(3H,s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.88(2H,s), 4.12(2H,q,J=7.2 Hz), 4.63(1H,dd,J=8.3, 3.6Hz), 5.17(2H,d,J=7.9Hz), 5.31(2H,s), 6.47(1H,s), 7.50(1H,s), 7.50(1H,d,J=7.6Hz), 7.68(1H,dd,J=7.9, 7.6Hz), 7.97(1H,dd,J=7.9, 7.6Hz), 7.97(1H,dd,J=6.9Hz), 8.30(1H,d,J=8.3Hz)	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.60(3H,s), 2.72(2H,q,J= 7.4Hz), 3.79(2H,s), 3.8-4.1(2H,m), 4.59(1H,t,J=3.5Hz), 5.39 (2H,s), 6.52(1H,s), 7.54(1H,s), 7.74(1H,d,J=7.9Hz), 7.80(1H, dd,J=7.6, 8.3Hz),
		81	82	83	84	82

Table 86

10	
15	
20	
25	
30	
35	
40	
4 5	

Ex. No.	Structural formula
8 6	O OH CONH CONH CO2Me
8 7	O OH O OH OH
88	O OH O S O OE1
8 9	O OH O OH OH OH
9 0	O OH O O O O O O

55

Table 87

		¹H-NMR	δppm
5	86	(solvent:CDCl ₃) 1.27(3H,t,J = 7.4Hz), 2.58(3H,s), 2,69(2H,q,J = 7.4Hz), 3.74(3H,s), 3.79(2H,s), 4.00(2H,d,J = 3.3Hz), 4.71(1H, dt,J = 7.3, 3.6Hz), 5.38(2H,s), 6.50(1H,s), 7.05(1H,d,J = 6.6Hz), 7.49(1H,s), 7.70(1H,d,J = 7.9Hz), 7.75(1H,dd,J = 7.6, 8.2Hz), 7.98 (1H,dd,J = 7.9, 6.7Hz), 8.25(1H,d,J = 6.6Hz), 8.27(1H,d,J = 8.2Hz)	
10	87	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.60(3l 5.49(2H,s), 6.55(1H,s), 6.89(1H,s), 7.64 (1H,s),	
	88	(solvent:CDCl ₂) 1.27(3H,t,J=7.6Hz), 1.29(3H,t,3.76(2H,s), 4.21(2H,q,J=7.3Hz), 5.43(2H,s), 6.4 8.13(1H,d,J=5.0Hz), 9.09(1H,d,J=5.0Hz), 10.9	11(1H,s), 6.94(1H,s), 7.51(1H,s),
15	89	(solvent:DMSO- d_6) 1.22(3H,t,J=7.6Hz), 2.59(2l 5.56(2H,s), 6.71(1H,s), 7.20(1H,d,J=7.6 Hz), 7.8.16(1H,d,J=7.9 Hz), 9.08(1H,s), 9.32(1H,s), 10	71(1H,s), 7.89(1H,dd,J=7.6Hz,7.9Hz),
20	90	(solvent:CDCl ₂) 1.27(3H,t,J=7.6Hz), 1.28(3H,t, 3.80(2H,s), 4.21(2H,q,J=7.3Hz), 5.38(2H,s), 6.5 7.52(1H,s), 7.78(1H,t,J=7.9Hz), 8.34(1H,d,J=8	50(1H,s), 7.12(1H,dd,J=0.7Hz,7.6Hz),

Table 88

		18516 00
5	Ex. No.	Structural formula
10	9 1	O OH ON S CO2H
15		
20	9 2	H CO.Et
25	93	
30		О ОН О ОН О ОН О ОН О ОН ОН ОН ОН ОН ОН
35	94	O OH O OH O OH
40		
45	95	H O N CO.H
	·	

55

Table 89

		¹H-NMR	δppm
5	91	(solvent:CDCl ₃) 1.22(3H,t,J=7.6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.72(2H,s), 5.20(2H,s), 6.47(1H,s), 6.87(1H,s), 7.50 (1H,s), 7.58(1H,dd,J=7.6, 7.6Hz), 7.69(1H,d,J=7.6Hz), 7.98(1H,d,J=7.6Hz), 8.09(1H,s)	
0	92	(solvent:CDCl ₃) 1.22(3H,t,J = 7.4Hz), 1.28(3H,t,J = 3.69(2H,s), 4.19(2H,q,J = 7.1Hz), 5.18(2H,s), 6.45(1 7.6, 7.6Hz), 7.68(1H,d,J = 7.6Hz), 7.88(1H,d,J = 7.6	H,s), 6.86(1H,s), 7.47(1H,s), 7.57(1H,dd,J=
5	93	(solvent:CDCl ₃) 1.28(3H,t,J=7.6Hz), 1.47(3H,d,J=3.89(2H,s), 4.50(1H,dt,J=7.2, 7.3 Hz), 5.45(2H,s), 7.78(1H,d,J=7.9Hz), 8.02(1H,dd,J=7.6, 7.9Hz), 8.45(1H,d,J=8.2Hz),	6.57(1H,s), 7.34(1H,d,J=7.6Hz), 7.53(1H,s),
0	94	(solvent:CDCl ₃) 1.27(3H,t,J = 7.6Hz), 1.43(3H,d,J = 3.72(3H,s), 3.74(2H,s), 4.61(1H, qd,J = 7.1Hz), 5.39 (1H,s), 7.72(1H,d,J = 7.3Hz), 7.76(1H,dd,J = 7.9, 7.6 8.27(1H,d,J = 8.6Hz), 8.34(1H,d,J = 8.3Hz)	0(2H,s), 6.49(1H,s), 7.06(1H,d,J = 7.3Hz), 7.51
•	95	(solvent:CDCl ₃ /MeoD(4/1)) 1.28(3H,t,J=7.6Hz), 2.6 3.97(2H,s), 3.99(2H,s), 5.38 (2H,s), 6.53(1H,s), 7.14 J=7.9Hz), 7.79(1H,dd,J=7.6, 8.2Hz), 8.02(1H,dd,s	4(1H,d,J=7.6Hz), 7.37(1H,s), 7.75(1H,d,

Table 90

5	Ex. No.	Structural formula
10	96	O OH O OH O OH O OH
15		
20	9 7	0 OH O O O O O O O O O O O O O O O O O O
25		
30	98	O OH CO2Et
35	9 9	H H CO ₂ H
40		O OH CO₂H
45	100	O OH O OH CO2Et
50		

	Table 91	
	'H-NMR	ψddg
96	(solvent:CDCl ₃) 1.21(3H,t,J=7.1Hz), 1.27(3H,t,J=7.4Hz), 2.58 (3H,s), 2.71(2H,q,J=7.4Hz), 3.78(2H,s), 4.0-4.1(4H,m), 4.12 (2H,q,J=7.1Hz), 5.40(2H,s), 6.52(1H,s), 7.07(1H,d,J=7.3Hz), 7.50((1H,s), 7.72(1H,d,J=7.9Hz), 7.76(1H,t,J=8.3, 7.6Hz), 7.99 (1H,dd,J=7.9, 7.9Hz), 8.27(1H,d,J=8.6Hz), 8.30(1H,d,J=8.9Hz)	3H,s), 2.71(2H,q,J=7.4Hz), 3.78(2H,s), 4.0-4.1(4H,m), 4.12 50((1H,s), 7.72(1H,d,J=7.9Hz), 7.76(1H,t,J=8.3, 7.6Hz), 3.9Hz)
97	(solvent:DMSO-d ₆) 1.30(3H _{1,1} J=7.6Hz), 2.59(3H,s), 2.72(2H,q,J=7.6Hz), 3.49(1H,s), 4.13(2H,s), 5.40(2H,s), 6.48(1H,s), 7.17 (1H,dd,J=1.8Hz,7.9Hz), 7.51(1H,dd,J=7.9Hz,8.3Hz), 7.76(1H,d,J=7.9Hz), 8.02(1H,dd,J=7.9Hz, 7.9Hz), 8.26(1H,d,J=8.6 Hz), 8.76(1H,dd,J=1.8Hz,8.3Hz), 12.18(1H,br), 12.63(1H,s),	= 7.6Hz), 3.49(1H,s), 4.13(2H,s), 5.40(2H,s), 6.48(1H,s), 1.3Hz), 7.76(1H,d,J=7.9Hz), 8.02(1H,dd,J=7.9Hz, 7.9Hz), 12.63(1H,s),
86	(solvent:CDCi ₃) 1.27(3H,t,J=7.6Hz), 1.31(1H,t,J=7.1Hz), 2.58 (3H,s), 2.70(2H,q,J=7.6Hz), 3.99(2H,s), 4.26(2H,q,J=7.1Hz), 5.35(2H,s), 6.46(1H,s), 7.71(1H,dd,J=1.7Hz,7.9Hz), 7.36(1H,dd,J=7.9Hz,7.9Hz), 7.49(1H,s), 7.72(1H,dd,J=1.0Hz,7.9Hz), 7.98 (1H,dd,J=7.9Hz,7.9Hz), 8.23(1H,dd,J=1.0Hz,7.9Hz), 8.63(1H,dd,J=7.9Hz,8.6Hz), 12.29(1H,br), 12.62(1H,s)	3H,s), 2.70(2H,q,J=7.6Hz), 3.99(2H,s), 4.26(2H,q,J=7.1Hz), J=7.9Hz,7.9Hz), 7.49(1H,s), 7.72(1H,dd,J=1.0Hz,7.9Hz), 1H,dd, J=2.0Hz,8.6Hz), 12.29(1H,br), 12.62(1H,s)
66	(solvent:CDCl ₃) 1.29(3H,t ₃ J = 7.4Hz), 2.57(3H,t ₃ J = 7.24Hz), 2.96(1H,dd ₃ J = 17.0, 4.5Hz), 3.09(1H,dd ₃ J = 17.0, 4.5Hz), 3.77(2H,s), 4.85(1H,br), 5.49(2H,d ₃ J = 3.3Hz), 6.72(1H,s), 7.02 (1H,d ₃ J = 8.3Hz), 7.49(1H,s), 7.65(1H,d ₃ J = 7.9Hz), 7.75(1H,dd ₃ J = 7.6, 8.3Hz), 7.94(1H,dd ₃ J = 7.6, 8.3Hz), 7.94(1H,dd ₃ J = 7.9, 7.6, Hz), 8.19(1H,d ₃ J = 7.6Hz), 8.32(1H,d ₃ J = 8.3Hz)	.4Hz), 2.96(1H,dd,J=17.0, 4.5Hz), 3.09(1H,dd,J=17.0, 7.02 (1H,d,J=8.3Hz), 7.49(1H,s), 7.65(1H,d,J=7.9Hz), dd,J=7.9, 7.6 Hz), 8.19(1H,d,J=7.6Hz),
9	(solvent:CDCl ₃) 1.10(3H,t,J=7.0Hz), 1.17(3H,t,J=7.1Hz), 1.28 (3H,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), 2.85(1H,dd,J= 17.0, 4.6Hz), 3.02(1H,dd,J=17.0, 4.6Hz), 3.75(2H,s), 4.00(2H, q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 4.85(1H,qt,J=7.6, 4.6Hz), 5.39 (2H,s), 6.49(1H,s), 7.05(1H,d,J=7.3Hs), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), 7.73(1H,dd,J=7.3, 7.6Hz), 7.99(1H,dd,J=7.6, 7.9Hz), 8.27(1H,d,J=7.3Hz), 8.34(1H,d,J=8.3Hz)	3H,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), H,s), 4.00(2H, q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 7.3Hs), 7.51(1H,s), 7.72(1H,d, J=7.6Hz), 7.73(1H,dd,J=7.3, 1.d,J=8.3Hz)

Table 92

5	Ex. No.	Structural formula
10	101	0 OH CO2H
73		·
20	102	O OH CO2Et
25		_
30	103	O OH O OH CO2H
35	104	0 OH O OH
45	1 0 5	O OH OH OH OH
	L	

50

	, ଅଧାର ୬୬	
	'H-NMR	βppm
101	(solvent:DMSO-d $_{6}$) 1.17(3H,t,J=7.6Hz), 2.56(3H,s), 2.59(1H,m), 2.69(1H,m), 3.59(2H,s), 3.6-4.3(2H,br), 4.56(1H,m), 5.29(2H, s), 6.60(1H,s), 6.96(1H,s), 7.56(1H,t,J=7.9Hz), 7.64(1H,s), 7.68(1H,d,J=7.9Hz), 8.07(1H,d,J=7.9Hz), 8.19(1H,s), 8.23(1H,d,J=7.6Hz), 12.6(1H,s)	, 2.69(1H,m), 3.59(2H,s), 3.6-4.3(2H,br), 4.56(1H,m), 1,s), 7. 68(1H,d,J=7.9Hz), 8.07(1H,d,J=7.9Hz),
102	(solvent:CDCl ₃ /DMSO-d ₆ (10/1)) 1.15-1.31(9H,m), 2.57(3H,s), 2.64(2Hq,J=7.3Hz), 2.84(1H,dd,J=17.2, 4.6Hz), 3.03(1H,dd,J= 17.2, 4.3Hz), 3.67(2H,s), 4.15-4.27(4H,m), 4.85(1H,dd,J=7.9, 4.6, 4.3Hz), 5.19(1H,s), 6.46(1H,s), 6.78(1H,s), 7.48(1H,s), 7.57(1H,t,J=7.9Hz), 7.69(1H,d,J=7.9Hz), 7.94(1H,brd,J=8.3Hz), 7.97(1H,d,J=7.9Hz), 8.10(1H,s), 12.68(1H,s)	64(2H,q,J=7.3Hz), 2.84(1H,dd,J=17.2, 4.6Hz), 1H,ddd,J=7.9, 4.6, 4.3Hz), 5.19(1H,s), 6.46(1H,s), ?), 7.94(1H,brd,J=8.3Hz), 7.97(1H,d,J=7.9Hz),
103	(solvent:DMSOO-de) 1.21(3H,t,J=7.3Hz), 2.58(H,s), 2.6-2.7(4H, m), 4.08(1H,s), 4.60(1H,m), 5.46(2H,s), 5.6-6.4(2H,br), 6.62 (1H,s), 7.68(1H,s), 7.80(2H,d), 8.15(2H,m), 8.78(1H,d,J=7.9 Hz), 12.55(1H,s)	m), 4.08(1H,s), 4.60(1H,m), 5.46(2H,s), 5.6-6.4(2H,br), 9.4z), 12.55(1H,s)
104	(solvent:CDCl ₃) 1.23-1.65(9H,m), 2.59(3H,s), 2.70(2H,q,J=7.3 Hz), 2.85(1H,dd,J=17.2, 4.6Hz), 3.05(1H,dd,J=17.2, 4.6Hz), 4.15(2H,q,J=7.3Hz), 4.22(2H,q,J=7.3Hz), 4.87(1H,dt,J=7.9, 4.6Hz), 5.32(1H,s), 6.45(1H,s), 7.24(1H,brd), 7.52 (1H,s), 7.75(1H,d,J=7.3Hz), 8.01(1H,t,J=7.9Hz), 8.26(1H,d,J=7.9Hz), 12.67 (1H,s)	H2), 2.85(1H,dd,J=17.2, 4.6H2), 3.05(1H,dd,J=17.2, 1.87(1H, dt,J=7.9, 4.6Hz), 5.32(1H,s), 6.45(1H,s), 9H2), 8.26(1H,d,J= 7.9Hz), 12.67 (1H,s)
105	(solvent:DMSO-ds) 0.96(6H,m), 1.30(3H,t,J=7.6Hz), 2.17(1H,m), 2.58(3H,s), 2.73(2H,q,J=7.6Hz), 3.75(2H,m), 4.67(1H,m), 5.42 (2H,s), 6.83(1H,s), 7.02(1H,d,J=7.9Hz), 7.51(1H,s), 7.65(1H,d,J=7.9Hz), 7.55(1H,t,J=7.9Hz), 7.55(1H,t,J=7.9Hz), 8.32(1H,t,J=7.9Hz), 10.87(1H,s)), 2.58(3H,s), 2.73(2H,q,J=7.6Hz), 3.75(2H,m), 1H,s), 7.65(1H,d, J=7.9Hz), 7.75(1H,t,J=7.9Hz), 8.91(1H brd), 10.87(1H,s)

Table 94

5	
10	
15	
20	
25	
30	
35	
40	
45	

Ex. No.	Structural formula
106	H CO2Me
107	O OH O OH SMe
108	H H CO2Et
1 0 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 0	O OH CO2Et CO2Et

50

	Se alue 1	
	'H-NMR	mddé
106	(solvent:CDCl ₃) 0.91(3H,m), 1.27(3H,t,J=7.3Hz), 2.18(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.3Hz), 3.71(3H,s), 3.76(2H,s), 4.60 (1H,s), 5.34(2H,s), 6.46(1H,s), 7.05(1H,d,J=7.9Hz), 7.51(1H,d,J=7.9Hz), 7.73(1H,t,J=7.9Hz), 7.78(1H,d,J=7.9Hz), 7.97(1H,br), 8.00 (1H,t,J=7.9Hz), 8.27(1H,d,J=7.9Hz), 8.35(1H,d,J=7.9Hz), 10.54 (1H,s), 12.62(1H,s)	2H.q.J=7.3Hz), 3.71(3H.s), 3.76(2H.s), 4.60 (1H.s), 5.34(2H.s), =7.9Hz), 7.97(1H,br), 8.00 (1H,t.J=7.9Hz), 8.27(1H,d.J=7.9Hz),
107	(solvent:DMSO-d ₅) 1.31(3H,t,J = 7.6Hz), 2.01(3H,s), 2.15(1H,m), 2.35(1H,m), 2.55(2H,m), 2.58(3H,s), 2.74(2H,q,J = 7.6Hz), 3.80 (1H,d,J = 15.8Hz), 3.68(1H,d,J = 15.8Hz), 4.73(1H,m), 5.48(2H,s), 6.83(1H,s), 7.02(1H,d,J = 7.6Hz), 7.51(1H,s), 7.63(1H,d,J = 7.6 Hz), 7.75(1H,t,J = 7.6Hz), 7.94(1H,t,J = 7.6Hz), 8.22(1H,d,J = 7.6 Hz), 8.33(1H,d,J = 7.6Hz), 9.08(1H,brd), 10.87(1H,s)	55(2H,m), 2.58(3H,s), 2.74(2H,q,J=7.6Hz), 3.80 (1H,d,J=15.8Hz), , 7.51(1H,s), 7.63(1H,d,J=7.6 Hz), 7.75(1H,t,J=7.6Hz), 10.87(1H,s)
108	(solvent-CDCl ₃) 5.40(2H,s), 6.50 8.27(1H,d,J=7.3	1.1-1.3(6H,m), 2.00(3H,s), 2.05-2.2(2H,m), 2.47(2H,m), 2.59(3H,s), 2.70(2H,q,J=7.3Hz), 3.74(2H,s), 4.16 (2H,m), 4.71(1H,m), (1H,s), 7.06(1H,d,J=7.6 Hz), 7.51(1H,s), 7.75(1H,t,J=7.6Hz), 7.77(1H,d,J=7.9Hz), 7.96 (1H,br), 8.00(1H,t,J=7.6Hz), 10.53(1H,s), 12.63(1H,s)
109		99(1H,m), 5.42(2H,s), 6.63(1H,s), 7.29(1H,d,J = 8.3Hz), 3(1H,brd), 8.47(1H,d,J=8.3Hz), 8.59(1H, d,J=7.3Hz), 12.16(1H,s),
110	(solvent:CDCl ₃) 1.15(3H _{11,} J=7.3H ₂), 1.17(3H _{11,} J=7.3H ₂), 1.27 (3H _{11,} J=7.3H ₂), 2.59(3H ₁ s), 2.71(1H ₁ d ₁ J=7.3H ₂), 2.83(1H ₁ d ₂ J=16.8H ₂ 5.3H ₂), 2.94(1H ₁ dd ₂ J=16.8H ₂ 5.3H ₂), 3.96(1H ₁ d ₂ J=13.5 H ₂), 4.07(1H ₁ d ₂ J=13.5H ₂), 4.11(2H ₁ q ₂ J=7.3H ₂), 4.12(2H ₁ q ₂ J=7.3H ₂), 2.81(1H ₁ d ₁ J=8.2H ₂ 5.3H ₂), 5.39(2H ₁ s), 6.48(1H ₁ s), 7.18(1H ₁ d ₂ J=7.9H ₂ 1, 7.7H ₂ 1), 7.41(1H ₁ t ₁ J=7.9H ₂ 1), 7.50(1H ₁ s), 7.76(1H ₁ d ₁ J=7.9H ₂ 1), 8.01(1H _{11,} J=7.9H ₂ 1), 8.25(1H ₁ d ₁ J=7.9H ₂ 1), 12.32(1H ₁ s), 12.61(1H ₁ s)	2.59(3H,s), 2.71(1H,q,J=7.3Hz), 2.83(1H,dd,J= 16.8Hz,5.3Hz), 11(2H,q,J=7.3Hz), 4.12(2H,q,J=7.3H z),4.81(1H,dt,J=8.2Hz,5.3Hz), (1H,s), 7.76(1H,d, J=7.9Hz), 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz),

Table 96

5			
10			
15			
20			
25			
30			
35			
40			
45			

50

55

	1 4 0 1 6 3 0
Ex. No.	Structural formula
1 1 1	O OH OH OH OH
1 1 2	O OH CO2Me
113	O OH CO2H
1 1 4	O OH CO2Me
1 1 5	O OH O OH O OH

Table 98

		Table 98
5	Ex. No.	Structural formula
10	116	O OH OH
20	117	O OH OH
30	118	O OH OH
35	119	O OH O OH OH
4 5	120	O OH NH2

50

Table 99

	¹H-NMR	δppm		
1	6 (solvent:CDCl ₃ /MeODC(1/4))1.28(3H,t,J = 7.6Hz), 2 2.88(2H,t,J = 6.3Hz), 3.86(2H,t,J = 6.3Hz), 3.97(2H, 7.19(1H,d,J = 7.6Hz), 7.55(1H,s), 7.76(1H,d,J = 7.9 8.05(1H,dd,J = 7.6,J = 7.9Hz), 8.25(1H,d,J = 7.6Hz)	s), 5.39(2H,s), 6.52(1H,s), 6.68(1H,s), Hz), 7.83(1H,dd,J=8.2,7.6Hz),		
, 1	7 (solvent:CDCl ₃) 1.0-1.3(5H,m), 2.59(2H,s), 2.71(2H,q,J=7.5Hz), 3.4-3.9(6H,m), 3.4-3.9(6H,m), 3.93(2H,s), 5.35(2H,s), 6.49(1H,s), 7.0-7.2(1H,m), 7.51(1H,s), 7.6-8.4(5H,m)			
1	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.58(3H,s), 2.70(2H,q,J=7.4Hz), 3.6-4.0(8H,m), 4.00(2H,s), 5.35(2H,s), 6.51(1H,s), 7.11(1H,d,J=7.6Hz), 7.50(1H,s), 7.70(1H,d,J=7.6Hz), 7.76(1H,dd,J=7.6,7.6Hz), 7.97(1H,dd,J=7.6,7.9Hz), 8.24(1H,d,J=7.9Hz), 8.32(1H,d,J=7.6Hz)			
1	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.60(3H,s), 2.71(2H,q,J=7.4Hz), 3.42(2H,t,J=6.6Hz), 3.68(2H,t,J=6.6Hz), 3.71(2H,s), 5.37(2H,s), 6.50(1H,s), 7.13(1H,d,J=7.6Hz), 7.53(1H,s), 7.74(1H,d,J=7.6Hz), 7.76(1H,dd,J=8.2,7.6Hz), 8.02(1H,dd,J=7.6,7.6Hz), 8.25(1H,d,J=7.6Hz), 8.27(1H,d,J=8.2Hz)			
12				

Table 100

5	Ex. No.	Structural formula
10	121	O OH S OH
15		_
20	122	OH H H CO2H
25	123	O OH O ON O
35	124	O OH O OH
45	1 2 5	O OH O CO. Et

	Table 101	
	H-NMR	νddg
121	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), 2.96(2H,t,J=5.5Hz) 3.96(2H,t,J=5.5Hz), 5.33(2H,s), 6.45(1H,s), 6.73(1H,s), 7.51(1H,s), 7.72(1H,d,J=6.9Hz), 8.00(1H,dd,J=7.9,7,6Hz), 8.25(1H,dd,J=7.6Hz)	,J=7.4Hz), 2.96(2H,t,J=5.5Hz), 51(1H,s), 7.72(1H,d,J=6.9Hz),
122	(solvent:DMSO-d ₆) 0.41(3H,t,J=7.6Hz), 1.30(3H,t,J=7.6Hz), 1.7-1.9(2H,m), 2.57(3H,s), 3.74(2H,ABq,J=15.4Hz,5.5Hz), 4.66(1H,m), 5.46(2H,s), 6.83(1H,s), 7.02(1H,d,J=7.6Hz), 7.51(1H,s), 7.63(1H,d,J=7.6Hz), 7.75(1H,t,J=7.6Hz), 7.94(1H,t,J=7.6Hz), 8.22(1H,d,J=7.6Hz), 8.32(1H,d,J=7.6Hz), 8.94(1H,m), 10.86(1H,s)	lz), 1.7-1.9(2H,m), 2.57(3H,s), 83(1H,s), 7.02(1H,d,J=7.6Hz), 7.51(1H,s), 3Hz), 8.22(1H,d,J=7.6Hz), 8.32(1H,d,J=7.6Hz),
123	(solvent:CDCi ₃) 0.88(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 1.7-1.9(2H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.71(3H,s), 3.74(2H,s), 4.63(1H,m), 5.37(2H,s), 6.47(1H,s), 7.06(1H,d,J=7.6Hz), 7.71(1H,d,J=7.6Hz), 7.75(1H,t,J=7.6Hz), 7.86(1H,m), 8.00(1H,t,J=7.6Hz), 8.27(1H,d,J=7.6Hz), 8.35(1H,m,J=7.6Hz), 10.53(1H,s), 12.63(1H,s)	1.7-1.9(2H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 7.06(1H,d,J=7.6Hz), 7.71(1H,d,J=7.6Hz), (1H,d,J=7.6Hz), 8.35(1H,m,J=7.6Hz), 10.53(1H,s),
124	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.59(3H,s), 2.65(2H,q,J=7.6Hz), 3.89(2H,s), 5.53(2H,s), 6.73(1H,s), 7.37(1H,d,J=7.9Hz), 9.13(1H,s), 9.37(1H,s), 12.50(1H,s), 12.50(1H,s)	?H,q,J=7.6Hz), 3.89(2H,s), 5.53(2H,s), 6.73(1H,s), (1H,d,J=7.9Hz), 9.13(1H,s), 9.37(1H,s),
125	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.31(3H,t,J=7.3Hz), 2.60(3H,s), 2.69(2H,q,J=7.6Hz), 3.98(3H,s), 4.25(2H,q,J=7.3Hz), 5.39(2H,s), 6.47(1H,s), 7.15(1H,dd,J=8.3Hz, 2.0Hz), 7.39(1H,t,J=8.3Hz), 7.52(1H,s), 8.61(1H,dd,J=8.3Hz,2.0Hz), 9.07(1H,s), 9.46(1H,s), 12.12(1H,s), 12.65(1H,s)	2.60(3H,s), 2.69(2H,q,J=7.6Hz), 3.98(3H,s), =8.3Hz, 2.0Hz), 7.39(1H,t,J=8.3Hz), 7.52(1H,s), (1H,s), 12.65(1H,s)

Table 102

		12016 102
5	Ex. No.	Structural formula
10	126	HO N N HO
20	127	O OH H H COLET
25		
30	128	OH OH OH OH OH
35 40	129	O OH O H O H OO ME
45	130	HOW!
		l

95

50

126	Table 103 H-NMR Solvent;CDC 1,28(3H.t.J=7,4Hz), 2,58(3H.s), 2,71(2H.g.J=7,4Hz), 3,02(2H.t.J=5,5Hz), 4,05(2H.t.J=5,5Hz), 5,34(2H.s)	8ppm 8ppm 8ppm 8ppm 8ppm 8ppm 8ppm 8ppm
	6.49(1H,s), 6.98(1H,d,J = 7.6Hz), 7.50(1H,s), 7.70(1H,d,J = 7.9Hz), 7.72(1H,dd,J = 7.9,7.9Hz), 7.98(1H,d,J = 7.9,7.6Hz), 8.30(1H,d,J = 8.2Hz)	, 7.72(1H,dd,J=7.9,7.9Hz), 7.98(1H,d,J=7.9,7.6Hz),
127	(solvent:CDCl ₃) 1.10(3H,t,J=7.1Hz), 1.17(3H,t,J=7.3Hz), 1.27(3H,t,J=8.1Hz), 2.59(3H;s), 2.71(2H,q,J=7.2Hz), 2.84(1H,dd,J=16.8,4.6Hz), 3.02(1H,dd,J=16.8,4.3Hz), 3.75(2H,s), 4.00(2H,q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 4.85(1H,dt,J=7.9,4.6Hz), 5.39(2H,s), 6.49(1H,s), 7.05(1H,dd,J=7.6,0.6Hz), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), 7.75(1H,dd,J=7.9,7.9Hz), 7.99(1H,dd,J=7.6,7.9Hz), 8.26(1H,dd,J=8.6,1.0Hz), 8.34(1H,dd,J=8.2,0.7Hz)	1,t,J=8.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.2Hz),), 4.00(2H,q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), .6.0.6Hz), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), J=8.6,1.0Hz), 8.34(1H,dd,J=8.2,0.7Hz)
128	(solvent:DMSO-d ₆) 0.90(3H,d ₁ J = 7.6Hz), 0.91(3H,d ₁ J = 7.6Hz), 1.19(3H,t ₁ J = 7.3Hz), 2.07(1H,m), 2.58(3H,s), 2.65(2H,q ₁ J = 7.3Hz) 3.92(2H,ABq,J = 21.8,15.5Hz), 4.18(1H,dd ₁ J = 8.3.5.6Hz), 5.42(2H,s), 6.62(1H,s), 7.28(1H,dd ₁ J = 8.3.2.0Hz), 7.48(1H,t ₁ J = 8.3Hz), 7.68(1H,s), 7.85(1H,m), 8.20(2H,m), 8.45(1H,dd ₁ J = 8.3,2.0Hz), 8.45(1H,d ₁ J = 8.3,2.0Hz), 12.51(1H,s), 12.60(1H,s)	19(3H,t,J=7.3Hz), 2.07(1H,m), 2.58(3H,s), =8.3,5.6Hz), 5.42(2H,s), 6.62(1H,s), H,m), 8.20(2H,m), 8.45(1H,dd,J=8.3,2.0Hz),
129	(solvent:CDCl ₃) 0.88(3H,t,J=7.3Hz), 0.89(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 2.18(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz) 3.65(3H,s), 4.04(2H,ABq,J=17.5,13.2Hz), 4.40(1H,m), 5.36(2H,s) 6.45(1H,s), 7.18(1H,dd,J=8.3,2.0Hz), 7.51(1H,t,J=8.3Hz), 7.51(1H,t,J=7.9Hz), 8.00(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 8.63(1H,dd,J=8.3,2.0Hz), 8.75(1H,d,J=8.6Hz), 12.38(1H,s), 12.62(1H,s)	,1,J=7.6Hz), 2.18(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.6F 6.45(1H,s), 7.18(1H,dd,J=8.3,2.0Hz), =7.9Hz), 8.25(1H,d,J=7.9Hz), 8.63(1H,dd,J=8.3,2.0Hz
130	(solvent:DMSO-d ₆) 1.10(3H,d,J=7.3Hz), 1.22(3H,t,J=7.6Hz), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.76(2H,ABq,J=20.5,14.9Hz), 4.17(1H,br), 4.26(1H,m), 4.95(1H,m), 5.47(2H,s), 6.63(1H,s), 7.20(1H,d,J=7.6Hz), 7.69(1H,s), 7.82(2H,m), 8.18(4H,m), 10.36(1H,s), 12.50(1H,br), 12.55(1H,s)	8(3H,s), 2.67(2H,q,J=7.6Hz), n), 5.47(2H,s), 6.63(1H,s), 7.20(1H,d,J=7.6Hz), 5.51(H,s)

Table 104

		1 a b 1 e 1 U 4
5	Ex. No.	Structural formula
10	131	O OH O H O H ONO ME
20	132	O OH O H O H OO2H
30	133	O OH O H O H O H
35	134	O OH OH OH OH ODE ME
45	135	0 OH 0 H 002H

Table 106

5		lable 106
	Ex. No.	Structural formula
10	136	O OH O H OOLET
20	137	O OH N N N N N N N N N N N N N N N N N N
30	138	O OH H H H WOOME
40	139	H O H O Me
45	1 4 0	H Q N N N N N N N N N N N N N N N N N N N

٠,

4.34(4H,m), 4.61(1H,m), 5.37(2H,s), 6.49(1H,s), 7.06(1H,d,J=7.9Hz), 7.49(1H,s), 7.70(1H,d,J=7.9Hz), 7.76(1H,t,J=7.9Hz), 7.51(1H,s), 7.76(1H,d,J=7.9Hz), 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 8.62(1H,dd,J=8.3,1.7Hz), 8.69(1H,d,J=7.9Hz), 7.50(1H,s), 7.75(1H,d,J=7.9Hz), 8.00(1H,t,J=7.9Hz), 8.26(1H,d,J=7.9Hz), 8.52(1H,d,J=7.6Hz), 8.64(1H,dd,J=8.3,2.0Hz), 3.96(2H,ABq,J=20.8,15.8Hz), 4.10(1H,br), 4.24(1H,m), 4.90(1H,m), 5.42(2H,s), 6.63(1H,s), 7.31(1H,dd,J=7.9,2.0Hz), 4.01(2H,ABq,J=29.7Hz,13.2Hz), 4.51(1H,m), 5.40(2H,s), 6.50(1H,s), 7.18(1H,dd,J=8.3,2.0Hz), 7.41(1H,t,J=8.3Hz), (solvent:CDCl₃) 1.18(2H,d,J=6.6Hz), 1.27(3H,t,J=7.6Hz), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.72(3H,s), 3.80(2H,s), 3.99(2H,ABq,J=29.7,16.2Hz), 4.29(1H,m), 5.24(2H,s), 6.63(1H,s), 7.33(1H,dd,J=7.6,2.0Hz), 7.47(1H,t,J=8.3Hz), 7.97(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 8.29(1H,d,J=7.9Hz), 8.46(1H,brd,J=8.3Hz), 10.57(1H,s), 12.70(1H,s)2.80-2.95(2H,m), 3.93-4.16(6H,m), 4.81(1H,m), 5.39(2H,s), 6.47(1H,s), 7.18(1H,d,J=8.3Hz), 7.41(1H,t,J=8.3Hz), (solvent:CDCl₃) 1.15(3H,t,J=7.3Hz), 1.17(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), (solvent:DMSO-ds) 1.20(3H,t,J=7.6Hz), 1.90-2.52(4H,m), 2.58(3H,s), 2.66(2H,q,J=7.6Hz), 3.70(2H,m), (solvent:CDCl₃) 1.27(3H,t,J=7.6Hz), 1.41(3H,d,J=7.3Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.66(3H,s), 7.48(1H,t,J=7.9Hz), 7.68(1H,s), 7.85(1H,m), 8.17-8.30(3H,m), 12.16(1H,s), 12.50(1H,s), 12.55(1H,br)7.68(1H,s), $7.85(1H,dd_J=5.6,3.3Hz)$, 8.20(2H,s), $8.46(1H,dd_J=8.3,2.0Hz)$, 12.14(1H,s), 12.51(1H,s)(solvent:DMSO-ds) 1.09(3H,d,J=7.6Hz), 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.66(2H,q,J=7.6Hz), Table 107 12.31(1H,s), 12.61(1H,s) 12.31(1H,s), 12.63(1H,s) 138 136 137 33 5

5		Table 108
	Ex. No.	Structural formula
10	141	O OH N N N N N N N N N N N N N N N N N N
20	1 4 2	H O N N N N N N N N N N N N N N N N N N
25		
30		
35		
40		
45		
50		1

Table 109

	¹H-NMR	δppm
141	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2 3.6-3.9(2H,m), 3.87(2H,m), 4.55(1H,m), 5.33(2H,s), 6 7.69(1H,d,J=7.9Hz), 7.74(1H,t,J=7.9Hz), 7.98(1H,t,S), 11.67(1H,d,J=7.9Hz), 10.34(1H,s), 12.67(1H,s)	.47(1H,s), $7.18(1H,d,J=7.9Hz)$, $7.51(1H,s)$,
142	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2 3.7-3.9(2H,m), 3.90(1H,d,J=15.8Hz), 4.26(1H,d,J=1 7.25(1H,brd), 7.37(1H,t,J=7.9Hz), 7.50(1H,s), 7.73(1 8.24(1H,d,J=7.9Hz), 8.59(1H,d,J=7.9Hz), 12.29(1H,	5.8Hz), 4.61(1H,m), 5.35(2H,s), 6.46(1H,s), H,d,J = 7.9Hz), 7.98(1H,t,J = 7.9Hz),

Table 110

Ex. No.	Structural formula
143	H — CHCO ₂ Et O OH O OH CH200 ₂ Et
144	H O COEt
1 4 5	O OH O OEt
1 4 6	H O OME
1 4 7	O OH OH

5.06(1H,td,J=8.3,5.0Hz), 5.27(1H,s), 6.46(1H,s), 7.49(1H,s), 7.64(1H,dd,J=7.6,1.0Hz), 7.91(1H,dd,J=7.6,7.6Hz), (solvent:CDCl₃) 1.25(3H,t,J=7.6Hz), 1.28(3H,t,J=7.3Hz), 2.6-2.7(4H,m), 3.7-3.8(2H,m), 4.1-4.2(2H,q,J=7.3Hz), (solvent:CDCl₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.85(3H,s), 4.0-4.2(2H,m), 4.8-4.9(1H,m), (solvent:CDCi₃) 1.26(3H,t,J=7.4Hz), 1.27(3H,t,J=7.4Hz), 1.30(3H,t,J=7.0Hz), 2.58(3H,t), 2.69(2H,q,J=7.4Hz), 2.97(1H,dd,J=16.8,4.6Hz), 3.13(1H,dd,J=16.8,4.0Hz), 4.19(2H,qd,J=7.3,3.0Hz), 4.27(2H,q,J=7.3, 3.0Hz) (solvent:CDCl₃) 1.26(3H,t,J=7.6Hz), 1.32(3H,t,J=7.3Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 4.2-4.3(4H,m), 5.24(2H,s), 6.45(1H,s), 7.49(1H,s), 7.61(1H,d,J=7.9Hz), 7.90(1H,dd,J=6.6,7.9Hz), 8.14(1H,d,J=6.6Hz), 5.26(2H,s), 6.45(1H,s), 7.49(1H,s), 7.64(1H,d,J=7.6Hz), 7.92(1H,dd,J=6.9,7.6Hz), 8.15(1H,d,J=6.9Hz) 5.29(2H,s), 6.51(1H,s), 7.49(1H,s), 7.65(1H,d,J=7.6Hz), 7.92(1H,dd,J=7.6,7.9Hz), 8.15(1H,d,J=7.9Hz), 7.64(1H,d,J=7.9Hz), 7.91(1H,dd,J=7.9,7.9Hz), 8.15(1H,d,J=7.9Hz), 8.44(1H,d,J=9.2Hz), 12.66(1H,s) 2.69(2H,q,J=7.6Hz), 3.78(3H,s), 4.75(1H,dd,J=5.3,9.2Hz), 5.29(2H,s), 6.49(1H,s), 7.50(1H,s), (solvent:CDCl₁) 1.02(6H,dd,J=4.0Hz,6.9Hz), 1.26(3H,t,J=7.6Hz) , 2.2-2.4(1H,m), 2.58(3H,s), Table 111 8.80(1H,d,J=7.9Hz), 12.70(1H,s) H-NMR 8.14(1H,dd,J=7.6,1.0Hz)8.42(1H,br), 12.66(1H,s) 12.66(1H,s)

145

146

147

143

Table 112

5	Ex. No.	Structural formula
10	148	OCH SMe
20	1 4 9	OH OH
30	150	H O OME
35	151	O OH O OME
45	1 5 2	O OH OME
50		

Table 113

		¹H-NMR	δррт		
5	148	(solvent:CDCl ₂) 1.26(3H,t,J = 7.6Hz), 1.32(3H,t,J = 7.3Hz), 2.0-2.2(1H,m), 2.12(3H,s), 2.3-2.4(1H,m), 2.5-2.7(4H,m), 2.58(3H,s), 4.26(2H,q,J = 7.3Hz), 4.8-5.0(1H,m), 5.29(2H,s), 6.47(1H,s), 7.50(1H,s), 7.64(1H,dd,J = 1.0,7.6Hz), 7.91,(1H,dd,J = 7.6,7.6Hz), 8.14(1H,dd,J = 1.0Hz,7.6Hz), 8.52(1H,d,J = 8.6Hz), 12.66(1H,s)			
10	149	(solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 2.58(3H,s), 2.6 3.75(3H,s), 5.07(1H,dt,J = 8.3,6.3Hz), 5.22(2H,s), 6.4 7.62(1H,d,J = 7.3Hz), 7.89(1H,dd,J = 6.9Hz,7.3Hz), 8 12.67(1H,s)	45(1H,s), 7.1-7.4(5H,m), 7.50(1H,s),		
15	150	(solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 2.58(3H,s), 2.6 5.02(1H,dt,J = 8.6Hz,5.9Hz), 5.21(2H,d,J = 2.0Hz), 6 6.76(1H,dd,J = 2.3Hz,8.9Hz), 7.02(1H,d,J = 8.9Hz), 7 7.88(1H,dd,J = 7.5Hz,7.6Hz), 8.10(1H,d,J = 7.5Hz), 8	.09(1H,s), 6.42(1H,s), 7.50(1H,s), 7.61(1H,d,J=7.6Hz),		
20	151	(solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 2.58(3H,s), 2.6 3.79(3H,s), 5.0-5.1(1H,m), 5.27(2H,d,J = 4.62Hz), 6.7 7.6-7.7(2H,m), 7.89(1H,dd,J = 7.6Hz,7.6Hz), 8.12(1H	42(1H,s), 6.86(1H,d,J=1.3Hz), 7.49(1H,s),		
25	152	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.57(3H,d,J=6.80(3H,s), 4.82(1H,dq,J=6.9Hz,8.3Hz), 5.28(2H,s), 7.63(1H,dd,J=1.0Hz,7.9Hz), 7.91(1H,dd,J=7.9Hz,7.8.43(1H,d,J=8.3Hz), 12.66(1H,s)	6.47(1H,s), 7.50(1H,s),		

Table 114

5	Ex. No.	Structural formula	
10	153	O OH O OME	
15			
20	154	O OH OME	
25	155	H O N N OEt	
30			
35	1 5 6	O OH O Ph O OMe	
40			
45	157	O OH O OME	
		· · · · · · · · · · · · · · · · · · ·	

55

Table 115

	¹H-NMR	δppm		
153	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.57(3H,d,J=7.3Hz), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.80(3H,s), 4.82(1H,dq,J=7.3Hz,7.9Hz), 5.28(2H,s), 6.45(1H,s), 7.50(1H,s), 7.63(1H,d,J=7.6Hz), 7.91(1H,dd,J=7.6,7.6Hz), 8.14(1H,d,J=7.6Hz), 8.43(1H,d,J=7.9Hz), 12.66(1H,s)			
154	(solvent:CDCl ₃) 1.26(3H,t,J = 7.6Hz), 2.1-2.5(4H,m), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.66(3H,s), 3.70(3H,s), 4.8-4.9(1H,m), 5.29(2H,s), 6.48(1H,s), 7.50(1H,s), 7.64(1H,dd,J=1.0Hz,7.6Hz), 7.91(1H,dd,J=7.6Hz,7.6Hz), 8.13(1H,dd,J=1.0,7.6Hz), 8.47(1H,d J=8.6Hz), 12.65(1H,s)			
155	$ \begin{array}{l} \text{(solvent:CDCl}_3\text{) } 1.25(3\text{H,t,J}=7.3\text{Hz}), \ 1.26(3\text{H,t,J}=7.6\text{Hz}), \ 2.58(3\text{H,s}), \ 2.69(2\text{H,q,J}=7.6\text{Hz}), \\ 3.68(2\text{H,d,J}=1.0\text{Hz}), \ 4.17(2\text{H,q,J}=7.3\text{Hz}), \ 4.42(2\text{H,d,J}=6.3\text{Hz}), \ 5.26(2\text{H,s}), \ 6.45(1\text{H,s}), \\ 6.82(1\text{H,t,J}=1.0\text{Hz}), \ 7.50(1\text{H,s}), \ 7.69(1\text{H,d,J}=7.9\text{Hz}), \ 7.96(1\text{H,dd,J}=7.9\text{Hz},8.9\text{Hz}), \ 8.63(1\text{H,br}), \\ 9.80(1\text{H,br}), \ 12.67(1\text{H,s}) \end{array} $			
156	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 2.97(1H,dd,J=6.3Hz,15.8Hz), 3.09(1H,dd,J=6.6,15.8Hz), 3.64(3H,s), 5.27(2H,s), 5.64(1H,ddd,J=6.3Hz,6.6Hz,8.9Hz), 6.49(1H,5.7.2-7.5(5H,m), 7.49(1H,s), 7.63(1H,d,J=7.3Hz), 7.90(1H,dd,J=7.3Hz,7.3Hz), 8.15(1H,d,J=7.3Hz,8.80(1H,d,J=8.9Hz), 12.66(1H,s)			
157	7 (solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 1.9-2.1(2H,m), 2.45(2H,t,J = 7.6Hz), 2.58(3H,s), 2.68(2H,q,J = 7.6Hz), 3.54(2H,m), 3.68(3H,s), 5.25(2H,s), 6.47(1H,s), 7.50(1H,s), 7.61(1H, 7.90(1H,dd,J = 7.6Hz,7.9Hz), 8.10(1H,br), 8.15(1H,d,J = 7.9Hz)			

Tab.le 116

5	Ex. No.	Structural formula
10	158	H O OME
15		ער ע
20	159	O OH OH OH
25	160	O OH O OH OH
35	161	O CH OH OH
45	1 6 2	O CH O N O OH

5**0**

Table 117

		¹H-NMR	δppm	
5	158	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 1.3-1.5(2H,m), 1.6-1.8(4H,m), 2.34(2H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.4-3.5(2H,m), 3.67(3H,s), 5.25(2H,s), 6.47(1H,s), 7.49(1H,s), 7.51(1H,d,J=7.9Hz), 7.90(1H,dd,J=7.9Hz,7.9Hz), 8.02(1H,br), 8.16(1H,d,J=7.9Hz), 12.67(1H,s)		
10	159	(solvent:DMSO-d ₅) 1.19(3H,t,J=7.6Hz), 2.52(3H,s), 2.60(2H,q,J=7.6Hz), 3.5-3.7(2H,m), 4.6-4.8(1H,m), 5.36(2H,s), 5.57(1H,d,J=4.3Hz), 6.58(1H,s), 6.6-6.7(1H,m), 6.8-6.9(2H,m), 7.1-7.2(1H,m), 7.7-7.8(2H,m), 7.9-8.2(2H,m), 8.5-8.6(1H,m), 9.34(1H,s), 12.56(1H,s)		
	160	60 (solvent:DMSO-d ₅) 1.25(3H,t,J = 7.6Hz), 2.59(3H,s), 2.67(2H,q,J = 7.6Hz), 2.73(1H,t,J = 5.4Hz), 3.6-3.7(2H,m), 3.8-3.9(2H,m), 5.25(2H,m), 6.49(1H,s), 7.49(1H,s), 7.62(1H,d,J = 7.6Hz), 7.91(1H,dd,J = 7.6Hz,7.6Hz), 8.16(1H,d,J = 7.6Hz), 8.40(1H,br), 12.69(1H,s)		
15	161	(solvent:DMSO-d ₆) 1.24(3H,t,J=7.6Hz), 2.59(3H,s), 2.68(2H,q,J=7.6Hz), 3.6-4.0(9H,m), 5.25(2H,s), 5.84(1H,t,J=4.6Hz), 6.43(1H,s), 7.49(1H,s), 7.62(1H,d,J=7.6Hz), 7.81(1H,d,J=7.6Hz), 7.95(1H,dd,J=7.6Hz,7.6Hz), 12.62(1H,s)		
20	162	2 (solvent:DMSO-d ₆) 1.25(3H,t,J=7.6Hz), 1.8-1.9(2H,m), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.30(1H,t,J=6.4Hz), 5.25(2H,s), 6.50(1H,s), 7.63(1H,d,J=7.6Hz), 7.91(1H,dd,J=7.6Hz,7.6Hz), 8.16(1H,d,J=7.6Hz), 8.30(1H,br), 12.71(1H,s)		

Table 118

5	Ex. No.	Structural formula
10	163	O OH O OH
15		
20	164	O OH OO, Et
25		
30	165	0 if 0 if
35	166	H N O =
40		Ö E CO2Et
45	167	0 OH OH
50		

Table 119

	¹H-NMR	δρρт	
163	(solvent:DMSO-d ₆) 1.25(3H,t,J = 7.6Hz), 1.32(3H,t,J = 3.4-4.0(6H,m), 5.25(2H,s), 6.45(1H,s), 7.49(1H,s), 7.5		
164	(solvent:CDCl ₃) 1.22(3H,t,J= 7.4 Hz), 1.32(3H,t,J= 7.1 Hz), 2.57(3H,s), 2.63(2H,q,J= 7.4 Hz), 4.26(2H,s), 4.27(2H,q,J= 7.1 Hz), 5.13(2H,s), 6.44(1H,s), 7.46(1H,s), 7.49(1H,dd,J= 7.6 Hz), 7.59(1H,d,J= 7.6 Hz), 7.77(1H,d,J= 7.6 Hz), 7.90(1H,s)		
165	(solvent:CDCl₃) 1.22(3H,t,J=7.4Hz), 1.54(2H,d,J=7.0Hz), 2.57(3H,s), 2.63(2H,q,J=7.4Hz), 3.80(3H,s), 4.82(1H,q,J=7.0Hz), 5.14(2H,s), 6.44(1H,s), 7.46(1H,s), 7.48(1H,dd,J=7.6,7.6Hz), 7.58(1H,q,J=7.6Hz), 7.76(1H,d,J=7.6Hz), 7.88(1H,s)		
166	6 (solvent:CDCl ₃) 1.22(3H,t,J=7.6Hz), 1.26(3H,t,J=7.1Hz), 1.29(3H,t,J=7.1Hz), 2.57(3H,s), 2.64(2H,q,J=7.4Hz), 2.97(1H,dd,J=17.2,4.3Hz), 3.14(1H,dd,J=17.2,4.3Hz), 4.16(2H,q,J=7.1Hz), 4.27(2H,q,J=7.1Hz), 5.04(1H,td,J=4.3,7.9Hz), 5.15(1H,s), 6.45(1H,s), 7.46(1H,s), 7.49(1H,dd,J=7.6Hz), 7.59(1H,d J=7.6Hz), 7.77(1H,d,J=7.6Hz), 7.90(1H,s)		
167	(solvent:CDCl ₃) 1.22(3H,t,J = 7.4Hz), 2.57(3H,s), 2.63(2H,q,J = 7.4Hz), 3.83(3H,s), 4.1-4.2(2H,br), 4.89(1H,dt,J = 7.3,3.6Hz), 5.14(2H,s), 6.44(1H,s), 7.47(1H,s), 7.49(1H dd,J = 7.6,7.6Hz), 7.60(1H,d,J = 7.6Hz), 7.80(1H,d,J = 7.6Hz), 7.91(1H,s)		

Table 120

5	Ex. No.	Structural formula
10	168	O OH O OH O DE ET
15		(H
20	169	O OME O Et
25	170	O OME COAET
30		
35	171	O ONE Et
40		
45	172	O OH OH OH

55

	Table 121
	mdde H-NMR
168	(solvent:CDCl ₈) 0.98(3H,t,J=7.3Hz), 1.27(3H,t,J=7.3Hz), 1.30(3H,t,J=7.1Hz), 1.5-1.7(2H,m), 2.58(3H,s), 2.76(2H,t,J=7.6Hz), 2.98(1H,dd,J=16.8,4.9Hz), 3.14(1H,dd,J=16.8,4.9Hz), 4.1-4.4(4H,m), 5.06(1H,dt,J=8.6,4.9Hz), 5.32(2H,s), 6.50(1H,d,J=8.9Hz), 7.61(1H,d,J=8.9Hz), 7.66(1H,d,J=8.9Hz), 7.66(1H,d,J=7.9Hz), 7.66(1H,d,J=7.9Hz), 7.61(1H,d,J=7.6Hz)
169	(solvent:CDCl ₈) 1.02(3H,t,J=7.4Hz), 1.27(3H,t,J=7.1Hz), 1.30(3H,t,J=7.1Hz), 1.6-1.7(2H,m), 2.62(3H,t), 2.74(2H,t,J=7.9Hz), 2.97(1H,dd,J=17.0,4.9Hz), 3.13(1H,dd,J=17.0,4.9Hz), 4.1-4.4(4H,m), 5.06(1H,dt,J=8.3,4.9Hz), 5.29(2H,s), 6.74(1H,d,J=8.8Hz), 7.57(1H,d,J=8.8Hz), 7.66(1H,d,J=7.9Hz), 7.91(1H,dd,J=7.6,7.9Hz), 8.14(1H,d,J=7.6Hz)
170	(solvent:CDCl ₈) 1.02(3H,t,J=7.3Hz), 1.32(3H,t,J=7.3Hz), 1.56(3H,d,J=7.3Hz), 1.6-1.7(2H,m), 2.62(3H,s), 2.75(2H,t,J=7.9Hz), 3.78(3H,s), 4.26(2H,q,J=7.2Hz), 4.79(1H,qd,J=7.8Hz), 5.29(2H,s), 5.29(2H,s), 6.73(1H,d,J=7.6Hz), 7.64(1H,d,J=7.9Hz), 7.91(1H,dd,J=7.6Hz), 8.14(1H,d,J=7.6Hz)
171	(solvent:CDCls) 1.24(3H,t,J=7.2Hz), 11.32(3H,t,J=7.1Hz), 1.56(3H,d,J=1.0Hz), 2.58(3H,s), 2.68(3H,s), 2.69(2H,q,J=7.5Hz), 3.88(3H,s), 4.26(2H,q,J=7.2Hz), 4.81(1H,qd,J=7.7,7.7Hz), 5.32(2H,s), 6.51(1H,s), 7.72(1H,s), 7.70(1H,d,J=8.3Hz), 7.93(1H,d,J=9.7,7.6Hz), 8.15(1H,d,J=7.9Hz)
172	(solvent:CDCl ₃) 1.24(3H,t,J=7.5Hz), 1.6-2.2(4H,m), 2.57(3H,s), 2.67(2H,q,J=7.5Hz), 3.5-5.4(7H,m), 6.44-6.46(2H m), 7.5-8.0(4H m)

Table 122

	Table 122	
5	Ex. No.	Structural formula .
10	173	O OH OD₂ Me
20	174	O OH OO2 Me
25		
30	175	O OH O OH
35	1 7 6	O OH O OH
40		
45	177	O OH H WOOME
50		

Table 123

		¹H-NMR	δppm		
5	173		(solvent:CDCl ₃) 1.25(3H,t,J=7.5Hz), 1.7-2.1(5H,m), 2.57(3H,s), 2.67(2H,q,J=7.5Hz), 3.0-3.3(2H,m), 3.72(3H,s), 3.8-4.0(2H,m), 4.5-4.7(2H,m), 5.24(2H,s), 6.44(1H,s), 7.48(1H,s), 7.53(1H,d,J=7.6Hz), 7.56(1H,d,J=7.6Hz), 7.84(1H,dd,J=7.9,7.9Hz)		
10	174	(solvent:CDCl₃) 1.25(3H,td,J=7.6,2.0Hz), 1.5-2.0(4H 3.61(1.5H,s), 3.73(1.5H,s), 2.5-5.0(5H,m), 5.24(2H,s)			
	175 (solvent:CDCl₃) 1.26(3H,t,J=7.4Hz), 1.38(2H,d,J=6.9Hz), 2.58(3H,s), 2.5-2.7(4H,m), 3.72(3H,s), 4.5-4.6(1H,m), 5.27(2H,s), 6.48(1H,s), 7.49(1H,s), 7.61(1H,d,J=7.9Hz), 7.89(1H,dd,J=7.9,7.6Hz), 8.15(1H,d,J=7.6Hz)				
15	176	(solvent:CDCl ₃) 1.22(3H,t,J = 6.9Hz), 1.25(3H,t,J = 7.1Hz), 1.29(3H,t,J = 7.1Hz), 2.57(3H,s), 2.68(2H,q,J = 7.4Hz), 2.78(1H,t,J = 7.1Hz), 3.44(1H,q,J = 7.1Hz), 3.58(1H,q,J = 7.1Hz), 3.70(1H,t,J = 7.4Hz), 3.79(1H,t,J = 7.4Hz), 4.10(1H,q,J = 7.1Hz), 4.18(1H,q,J = 7.1Hz), 5.21(1H,s), 5.23(1H,s), 6.43(1H,s), 7.48(1H,s), 7.5-7.9(3H,m), 2.84(1H,t,J = 7.1Hz)			
(solvent:CDCl ₃) 1.25(3H,t,J=7.4Hz), 1.29(3H,d,J=6.3Hz), 2.58(3H,s), 2.69(2H,q,J=7.4Hz) 4.4-4.6(1H,m), 4.7-4.9(1H,m), 5.30(2H,s), 6.50(1H,s), 7.50(1H,s), 7.66(1H,d,J=7.6Hz), 7.93(1H,dd,J=7.6,7.6Hz), 8.13(1H,d,J=7.6Hz)					

Table 124

5	Ex. No.	Structural formula
10	178	OH O OH
15		
20		
25		·
30		
35		
40		
45		

55

Table 125

	¹H-NMR	δρρm
178	(solvent:CDCl ₃) 1.23(1.2H,t,J = 7.6Hz), 1.26(1.8H,t,J = 2.8-3.0(2H,m), 3.8-4.8(3H,m), 5.3-5.4(3H,m), 6.44(0.6	= 7.6Hz), 2.1-2.6(2H,m), 2.59(3H,s), 6H,s), 6.48(0.4H,s), 7.5-8.1(3H,s)

Table 126

	12016 120		
5		¹ H-NMR	S ppm
10	179	0 OH 0 CH2002H	
15		. A H O	
20	180	H O OH	·
25		, A	
30	181	OH OH OH	
35	182	H O H OH	
	_		
40			
45	183	O OH OH OH OH	

50

Table 127

		¹H-NMR	δppm
5	179	(solvent: CD ₃ OD/CDCl ₃ (1/4)) 1.26(3H,t,J=7.4Hz), 2.97(1H,dd,J=17.5,4.8Hz), 3.15(1H,dd,J=17.5,4. 6.47(1H,s), 7.53(1H,s), 7.68(1H,d,J=7.9Hz), 7.95(8Hz), 5.00(1H,t,J=8.9Hz), 5.29(2H,s),
10	180	(solvent:d ₆ -DMSO) 1.18(3H,t,J = 7.6Hz), 2.58(3H,5 5.36(2H,s), 6.57(1H,s), 7.69(1H,s), 7.73(1H,d,J = 6 8.10(1H,dd,J = 6.3Hz,6.3Hz), 8.88(1H,t,J = 5.9Hz),	3.3Hz), 8.01(1H,d,J=6.3Hz),
	181	(solvent: d_6 -DMSO) 1.18(3H,s,J=7.6Hz), 2.58(3H, 3.4-3.5(2H,m), 5.35(2H,s), 6.57(1H,s) 7.69(1H,s), 7.99(1H,dd,J=1.0Hz,7.6Hz), 8.07(1H,dd,J=7.6Hz)	7.70(1H,dd,J = 1.0Hz,7.6Hz),
15	182	(solvent: d_6 -DMSO) 0.91(6H,t,J=6.4Hz), 1.18(3H,t 2.63(1H,q,J=7.6Hz), 4.41(1H,dd,J=5.1Hz,8.9Hz), 7.76(1H,d,J=6.6Hz), 8.01(1H,d,J=6.9Hz), 8.11(1112.55(1H,s)	, 5.42(2H,s), 6.63(1H,s), 7.68(1H,s),
20	183	(solvent: d_6 -DMSO) 1.19(3H,t,J=7.6Hz), 2.58(3H,s 3.77(1H,dd,J=3.6Hz,10.9Hz), 3.91(1H,dd,J=3.6Hz,169(1H,s), 7.75(1H,d,J=7.6Hz), 8.03(1H,dd,J=1.8.63(1H,d,J=8.3Hz), 12.55(1H,s)	Hz,10.9Hz), 4.4-4.5(1H,s) 5.39(2H,s) 6.61(1H,s),

Table 128

5	Ex. No.	Structural formula
10	184	O OH SMe
15		
20	185	O OH O OH
25	186	H O OH OH
35	187	O OH O OH
45	188	O CH O CH O CH

50

Table 129

		¹H-NMR	δppm
5	184	(solvent:d ₆ -DMSO) 1.18(3H,t,J=7.6Hz), 2.04(3H,: 2.62(2H,q,J=7.6Hz), 4.5-4.6(1H,m), 5.40(2H,s), 6 7.99(1H,d,J=6.6Hz), 8.09(1H,dd,J=6.6Hz,7.6Hz)	.60(1H,s), 7.69(1H,s), 7.74(1H,d,J=7.6Hz),
10	185	(solvent: d_6 -DMSO) 1.16(3H,t,J=7.6Hz), 2.59(3H,: 4.6-4.7(1H,m), 5.34(2H,s), 6.60(1H,s), 7.1-7.3(5H, 7.97(1H,dd,J=1.0Hz,7.6Hz), 8.07(1H,dd,J=7.6Hz)	m), 7.68(1H,s), 7.71(1H,d,J=7.6Hz),
15	186	(solvent:d ₆ -DMSO) 1.17(3H,t,J=7.6Hz), 2.58(3H,: 4.6-4.7(1H,m), 5.36(1H,s), 6.62(2H,d,J=8.5Hz),6. 7.73(1H,dd,J=1.0Hz,7.6Hz), 7.96(1H,dd,J=1.0Hz 8.52(1H,d,J=8.3Hz), 9.21(1H,br), 12.56(1H,s)	99(2H,d,J=8.5Hz), 7.69(1H,s),
20	187	(solvent:d ₆ -DMSO) 1.17(3H,t,J=7.6Hz), 2.58(3H,: 4.7-4.8(1H,m), 5.37(2H,s), 6.60(1H,s), 7.12(1H,s), 7.72(1H,d,J=7.6Hz),7.98(1H,dd,J=0.7Hz,7.6Hz) 8.99(1H,d,J=8.3Hz), 12.54(1H,br),	7.69(1H,s),
	188	(solvent:d ₆ -DMSO) 1.89(3H,t,J=7.6Hz), 1.43(3H, 4.4-4.5(1H,m), 5.39(2H,s), 6.59(1H,s), 7.69(1H,s), 8.09(1H,dd,J=7.6Hz,7.6Hz), 8.67(1H,d,J=7.9Hz)	7.73(1H,d,J=7.6Hz), 8.00(1H,d,J=7.6Hz),

Table 130

5	Ex. No.	Structural formula
10	189	O OH OH
15		
20	190	OH OH OH
25	191	H O H OH
35	192	O OH O Ph O
40		
45	193	O OH O OH
50		

Table 131

		¹H-NMR	δppm
5	189	(solvent:d₅-DMSO) 1.89(3H,t,J=7.6Hz), 1.43(3H, 4.4-4.5(1H,m), 5.39(2H,s), 6.59(1H,s), 7.69(1H,s), 8.09(1H,dd,J=7.6Hz,7.6Hz), 8.67(1H,d,J=7.9Hz	7.73(1H,d,J = 7.6Hz), 8.00(1H,d,J = 7.6Hz),
10	190	(solvent:d₅-DMSO) 1.86(3H,t,J=7.6Hz), 1.9-2.3(4 4.4-4.5(1H,m), 5.40(2H,s), 6.60(1H,s), 7.69(1H,s), 8.10(1H,dd,J=7.6Hz,7.6Hz), 8.70(1H,d,J=8.6Hz)	7.73(1H,d,J=7.6Hz), $8.00(1H,d,J=7.6Hz)$,
15	191	(solvent:d₅-DMSO) 1.19(3H,t,J=7.6Hz), 2.58(3H, 4.24(2H,d,J=5.9Hz), 5.38(2H,s), 6.58(1H,s), 6.96 8.02(1H,d,J=7.6Hz), 8.10(1H,dd,J=7.6Hz,7.6Hz) 12.55(1H,s)	(1H,s), 7.70(1H,s), 7.75(1H,d,J=7.6Hz),
20	192	(solvent:d₅-DMSO) 1.17(3H,t,J=7.6Hz), 2.58(3H, 2.88(1H,dd,J=6.3Hz,16.2Hz), 4.0-4.2(1H,m), 5.39 7.2-7.7(5H,m), 7.69(1H,s), 7.72(1H,d,J=7.6Hz), 7 8.07(1H,dd,J=7.3Hz,7.6Hz), 9.13(1H,d,J=8.9Hz)	9(2H,s), 5.4-5.5(1H,m), 6.60(1H,s), .98(1H,d,J=7.3Hz),
	193	(solvent:d₅-DMSO) 1.18(3H,t,J=7.6Hz), 1.7-1.8(2 2.62(2H,q,J=7.6Hz), 3.3-3.5(2H,m), 5.36(2H,s), 6 7.98(1H,d,J=7.6Hz), 8.06(1H,dd,J=7.6Hz,7.6Hz) 12.55(1H,br)	.57(1H,s), 7.69(1H,s), 7.70(1H,d,J=7.6Hz),

Table 132

5	Ex. No.	Structural formula
10	194	O OH
15		_
20	195	O OH OD2H
25	196	H CO2H
30		Ö ÜH
35	197	O OH CO2H
70		
4 5	198	OH OH
50		

Table 133

		¹H-NMR	δppm
5	194	(solvent:DMSO-d ₆) 1.18(3H,t,J = 7.6Hz), 1.2-1 2.58(3H,s), 2.62(2H,q,J = 7.6Hz), 5.36(2H,s), 6 7.98(1H,d,J = 7.6Hz), 8.06(1H,dd,J = 7.6Hz,7.6	.57(1H,s), 7.68(1H,d,J=7.6Hz), 7.69(1H,s),
10	195	(solvent:CD₃ OD/CDCl₃ (1/4)) 1.21(3H,t,J = 7.6H 4.18(2H,d,J = 1.7Hz), 5.16(2H,s), 6.46(1H,s), 7 7.61(1H,d,J = 7.6Hz), 7.81(1H,d,J = 7.6Hz), 7.9	.49(1H,s), 7.50(1H,dd,J=7.6,7.6Hz),
	196	(solvent:CD₃ OD:CDCl₃ = 1:4) 1.22(3H,t,J = 7.4 2.64(2H,q,J = 7.4Hz), 4.72(1H,td,J = 5.9,7.3Hz) 7.61(1H,d,J = 7.9Hz), 7.80(1H,d,J = 7.6Hz), 7.9	, 5.17(2H,s), 6.46(1H,s), 7.50(1H,dd,J=7.9,7.6Hz),
15	197	(solvent:CD ₃ OD:CDCl ₃ = 1:4) 1.22(3H,td,J = 7. 2.98(1H,dd,J = 17.2,5.0Hz), 3.11(1H,dd,J = 17.6.47(1H,s), 7.51(1H,dd,J = 7.6,8.3Hz), 7.63(1H 2.59(3H,s), 7.51(1H,s)	5,5.0Hz), 4.99(1H,dt,J=4.3,8.6Hz), 5.18(2H,s),
20	198	(solvent:CD₃ OD:CDCl₃ = 1:4) 1.22(3H,t,J = 7.4) 3.97(1H,dd,J = 11.6,3.5Hz), 4.10(1H,dd,J = 11.7.50(1H,s), 7.51(1H,dd,J = 7.6,7.6Hz), 7,62(1H	2,3.9Hz), $4.67(1$ H,t,J= 3.6 Hz), $5.17(1$ H,s), $6.46(1$ H,s),

Table 134

Ex. No.	Structural formula
199	0 OH 0 = 00 ₂ H
200	0 0Me 002H
201	H + OZH
202	H O OME
203	O OH OO2 H

Table 135

1	¹H-NMR	δррт
199	(solvent:CD ₃ OD/CDCl ₃ (1/4)) 0.99(3H,t,J = 7 3.0-3.3(2H,m), 5.1-5.2(1H,m), 5.27(2H,s) 6.7 7.64(1H,d,J = 7.9Hz), 7.90(1H,dd,J = 7.9,7.6	• • • • • • • • • • • • • • • • • • • •
200	1	.3Hz), 1.5-1.7(2H,m), 2.57(3H,s), 2.75(2H,t,J = 7.6Hz), 31(2H,s), 6.50(1H,d,J = 8.9Hz), 7.60(1H,d,J = 8.9Hz), Hz), 8.14(1H,d,J = 7.3Hz)
201	2.74(2H,t,J=7.6Hz), 3.78(3H,s), 4.80(1H,t,J	.3Hz), 1.63(3H,d,J = 7.3Hz), 1.5-1.7(2H,m), 2.62(3H,s), = 7.3Hz), 5.29(2H,s), 6.73(1H,d,J = 8.9Hz), 7.93(1H,dd,J = 7.6,7.6Hz), 8.15(1H,d,J = 7.6Hz)
202	(solvent:CD ₃ OD/CDCl ₃ (1/4)) 1.23(3H,t,J = 7. 2.69(2H,q,J = 7.4Hz), 3.87(3H,s), 4.82(1H,q, 7.71(1H,d,J = 7.9Hz), 7.71(1H,s), 7.94(1H,dc	J=7.3,7.3Hz), 5.31(2H,s), 6.49(1H,s),
203	1	7.6Hz), 1.7-2.2(4H,m), 2.57(3H,s), 2.6-2.8(1H,m), (1H,m), 4.4-4.6(1H,m), 5.25(2H,s), 6.44(1H,s), J = 7.0Hz), 7.85(1H,dd,J = 7.6,7.9Hz)

٠.

Table 136

Ex. No.	Structural formula
204	O OH OO2H
205	O OH O OH
206	Et N N N N N N N N N N N N N N N N N N N
207	O OH O NOVH
208	OH OU2 H

Table 137

	¹H-NMR	δppm
204	(solvent:CD ₃ OD/CDCl ₃ (1/4)) 1.25(3H,t,J = 7.4Hz), 1.5 2.7-2.9(1H,m), 3.1-4.8(4H,m), 5.25(2H,s), 6.44(1H,s), 7.85(1H,dd,J = 7.6,7.9Hz)	
205	(solvent: CD ₃ OD/CDCl ₃ (1/4)) 1.24(3H,t,J = 7.6Hz), 1.2.67(2H,q,J = 7.4Hz), 2.74(2H,dd,J = 5.6,3.0Hz), 4.5-47.61(1H,d,J = 7.9Hz), 7.89(1H,dd,J = 7.6,7.9Hz), 8.144	4.6(1H,m), 5.25(2H,s), 6.51(1H,s), 7.48(1H,s),
206	(solvent:CD ₃ OD/CDCl ₃ (1/4)) 1.2-1.3(6H,m), 2.57(1H,: 3.4-3.8(4H,m), 5.24(2H,s), 6.4-6.5(1H,m), 7.48(1H,s),	
207	(solvent:CD ₃ OD/CDCl ₃ (1/9)) 1.25(3H,t,J = 7.4Hz), 1.2 2.69(2H,q,J = 7.4Hz), 4.4-4.6(1H,m), 4.7-4.9(1H,m), 5 7.66(1H,d,J = 7.6Hz), 7.93(1H,dd,J = 7.6,7.6Hz), 8.13	.30(2H,s), 6.50(1H,s), 7.50(1H,s),
208	(solvent: CD ₃ OD/CDCl ₃ (1/9)) 1.23(1.2H,t,J = 7.6Hz), 2.8-3.0(2H.m), 3.8-4.8(3H,m), 5.3-5.4(3H,m), 6.44(0.6	, , , , , , , , , , , , , , , , , , , ,

-14

Table 138

Ex. No.	Structural formula
209	O OH OO ₂ H
210	O OH O H O W CO2H
2 1 1	0 OH H O H OO2 OH
212	O OH OH OH
2 1 3	0 OH OH OH

	HNN-H:	бррт
209	(solvent:CDCl ₃ /MeOD(9/1)) 1.26(3H,t,J=7.4Hz), 1.9-2.1(1H,m), 2.2-2.4(1H,m), 2.59(3H,s), 2.70(1H,q,J=7.4Hz), 3.6-3.9(1H,m), 4.84(1H,dt,J=4,3,4.6Hz), 5.30(2H,s), 7.53(1H,s), 7.53(1H,s), 7.69(1H,d,J=7.6Hz), 7.96(1H,dd,J=7.6,7.6Hz), 8.11(1H,d,J=7.6Hz)	m), 2.2-2.4(1H,m), 2.59(3H,s), 2.70(1H,q,J=7.4Hz), 1,s), 7.53(1H,s), 7.69(1H,d,J=7.6Hz),
210	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.57(3H,s), 2.63(2H,q,J=7.6Hz), 3.78(2H,s), 4.02(2H,s), 5.36(2H.s), 6.56(1H,s), 7.67(1H,s), 7.71(1H,q,J=7.3Hz), 8.03(1H,dq,J=6.6,5.9Hz), 8.09(1H,d,J=6.6Hz),	I.q.J=7.6Hz), 3.78(2H,s), 4.02(2H,s), 5.36(2H.s), 6.6,5.9Hz), 8.09(1H,d,J=6.6Hz),
211	(solvent:CDCl ₃ /MeOD(4/1)) 1.26(3H,t,J=7.6Hz), 1.29(3H,t,J=7.3Hz), 2.59(3H,s), 2.69(2H,q,J=7.5Hz), 3.68(2H,s), 4.05(2H,s), 4.20(2H,q,J=7.3Hz), 5.29(2H,s), 6.46(1H,s), 7.52(1H,s), 7.67(1H,d,J=7.9Hz), 7.95(1H,dd,J=7.6,7.9Hz), 8.11(1H,d,J=7.6Hz)	= 7.3Hz), 2.59(3H,s), 2.69(2H,q,J = 7.5Hz), 5(1H,s), 7.52(1H,s), 7.67(1H,d,J = 7.9Hz),
212	(solvent:DMSO-d ₆) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.50(1H,m), 3.78(1H,m), 4.74(1H,m), 5.30(2H,s), 5.46(1H,d,J=2.0Hz), 6.49(1H,s), 6.69(1H,m), 6.85(1H,d,J=7.9Hz), 6.91(1H,s), 7.13(1H,t,J=7.9Hz), 7.56(1H,s), 7.67(1H,d,J=7.6Hz), 7.98(1H,t,J=7.6Hz), 8.08(1H,d,J=7.6Hz), 8.51(1H,m), 9.08(1H,s), 12.61(1H,s)	l,q,J=7.6Hz), 3.50(1H,m), 3.78(1H,m), 4.74(1H,m), 35(1H,d,J=7.9Hz), 6.91(1H,s), 7.13(1H,t,J=7.9Hz), 1H,d,J=7.6Hz), 8.51(1H,m), 9.08(1H,s), 12.61(1H,s)
213	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.58(3H,s), 2.64(2H,q,J=7.6Hz), 3.85(2H,m), 4.55(1H,m), 5.34(1H,br), 5.39(2H,s), 6.60(1H,s), 7.68(1H,s), 7.74(1H,d,J=7.6Hz), 8.05(1H,t,J=7.6Hz), 8.12(1H,d,J=7.6Hz), 8.63(1H,d,J=8.3Hz), 12.55(1H,s), 12.90(1H,br)	l,q,J=7.6Hz), 3.85(2H,m), 4.55(1H,m), 5.34(1H,br), 5(1H,t,J=7.6Hz), 8.12(1H,d,J=7.6Hz),

Table 139

Table 140

	18016 140			
5	Ex. No.	Structural formula		
10	214	O OH OH		
20	2 1 5	H OO H OO H		
30	216	O OH OH		
35	217	OH OH OO2 Me		
4 5	218	Et OO; Me		

Table 141

		¹H-NMR	δррт	
5	214	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.85(3H,s), 4.11(2H,m), 4.88(1H,m), 5.29(2H,s), 6.52(1H,s), 7.49(1H,s), 7.65(1H,d,J=8.3Hz), 7.91(1H,t,J=8.3Hz), 8.15(1H,d,J=8.3Hz), 8.80(1H,d,J=8.3Hz) 12.69(1H,s)		
10	215	(solvent:DMSO- d_6) 1.18(3H,t,J = 7.3Hz), 2.51(3H,s 3.79(1H,dd,J = 11.2Hz,3.9Hz), 3.91(1H,dd,J = 11.2Hz,7.70(1H,s), 8.58(1H,d,J = 7.9Hz), 9.05(1H,s), 9.21(Hz,3.9Hz), 4.55(1H,m), 5.48(2H,s), 6.68(1H,s),	
	216	(solvent:CDCl ₃) 1.27(3H,t,J=7.3Hz), 2.59(3H,br), 3 4.06(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz,3.6Hz), 4.18(1H,dd,J=11.2Hz), 4.18(1H,d	Hz,3.6Hz), 4.90(1H,m), 5.34(2H,s), 6.52(1H,s),	
15 2	217	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.60(3H,s), 2.71(2H,q,J=7.6Hz), 3.79(2H,s), 3.85-4.10(4H,m), 4.64-4.80(2H,m), 5.33(2H,s), 6.49(1H,s), 7.57(1H,s), 7.72(1H,d,J=7.6Hz), 8.00(1H,t,J=7.6Hz), 8.10(1H,d,J=7.6Hz)		
20	218	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.57(3H,s), 2 3.70(s,1.2H), 3.81(s,1.8H), 4.0-4.3(2H,m), 4.37(0.6 7.48(1H,s), 7.5-7.9(3H,m), 12.63(1H,s)	• • • • • • • • • • • • • • • • • • • •	

Table 142

5	Ex. No.	Structural formula	
10	2 1 9	OH OH OH	
15			
20	220	O OH OH	
25	221	O OH OH OH	
	·		
35	2 2 2	OH OH OH	
40			
45	223	0 OH O H O H OO2 H	
50	L		

Table 143

	¹H-NMR	δppm	
219	(solvent:CDCl ₃) 1.00(3H,t,J=7.6Hz), 1.24(3H,t,J=7.6Hz), 1.81(2H,q,J=7.6Hz), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.72(2H,m), 3.94-4.06(4H,m), 5.27(2H,s), 6.56(1H,s), 7.48(1H,s), 7.63(1H,d,J=7.6Hz), 7.93(1H,t,J=7.6Hz), 8.15(1H,d,J=7.6Hz), 8.52(1H,brs), 12.73(1H,s),		
220	(solvent:CDCl ₃) 1.24(3H,t,J = 7.3Hz), 1.38(3H,s), 2.58(3H,s), 2.67(2H,q,J = 7.3Hz), 3.7-4.1(6H,m), 5.27(2H,s), 6.56(1H,s), 7.48(1H,s), 7.64(1H,d,J = 7.6Hz), 7.92(1H,t,J = 7.6Hz), 8.14(1H,d,J = 7.6Hz), 8.49(1H,s), 12.73(1H,s) (solvent:CDCl ₃) 1.22(3H,t,J = 7.6Hz), 2.57(3H,s), 2.65(2H,q,J = 7.6Hz), 3.83(8H,s), 5.29(2H,s), 6.66(1H,s), 7.46(1H,s), 7.65(1H,d,J = 6.6Hz), 7.93(1H,t,J = 7.6Hz), 8.14(1H,d,J = 7.9Hz), 9.12(1H,s), 12.82(1H,s)		
221			
222	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 2.58(3H,s), 2.67-2.72(2H,m), 3.75-3.82(2H,m), 3.83-3.95(2H,r 4.14-4.20(1H,m), 4.20-4.26(2H,m), 5.27(2H,s), 6.45(1H,s), 7.50(1H,s), 7.62(1H,d,J=6.9Hz), 7.92(1H,t,J=6.9Hz), 8.13(1H,d,J=6.9Hz), 8.53(1H,d,J=7.9Hz), 12.66(1H,s)		
223	223 (solvent:DMSO-d ₆) 1.21(3H,t,J=7.6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.7-3.9(4H,m), 4.6 5.05(1H,br), 5.37(2H,s), 6.58(1H,s), 7.65(1H,s), 7.71(1H,dd,J=6.8Hz,2.1Hz), 8.02-8.25(2H,m 8.39(1H,t,J=5.8Hz), 8.62(1H,d,J=8.3Hz), 12.54(1H,s),		

Table 144

Ex. No.	Structural formula
224	O OH OH OH
2 2 5	O OH OH OH
2 2 6	H OH OD Me

Table 145

		¹H-NMR	δppm	
5	224	$(solvent:DMSO-d_6)\ 1.21(3H,t,J=7.6Hz),\ 2.57(3H,s),\ 2.64(2H,q,J=7.6Hz),\ 3.54(1H,m),\ 3.72(1H,m),\ 4.19(1H,m),\ 5.34(2H,s),\ 5.59(1H,br),\ 6.55(1H,s),\ 7.63(1H,s),\ 7.69(1H,dd,J=6.1Hz,2.8Hz),\ 8.05(2H,m),\ 8.51(1H,t,J=6.1Hz),\ 12.55(1H,s),\ 12.65(1H,br)$		
10	225	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 1.26(3H,t,J=7.3Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.10(1H,dd,J=8.9Hz,5.6Hz), 3.80-3.88(1H,m), 4.06(2H,d,J=5.6Hz), 4.20(2H,qJ=7.3Hz), 4.25.4.35(1H,m), 4.70(1H,m), 5.28(2H,s), 6.45(1H,s), 7.15(1H,br), 7.49(1H,s), 7.63(1H,d,J=6.9Hz), 7.92(1H,t,J=6.9Hz), 8.15(1H.d,J=6.9Hz), 8.85(1H,d,J=7.6Hz), 12.66(1H,s)		
15	226	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68 3.83(3H,s), 3.88(2H,m), 4.44(1H,m), 5.25(2H,s), 6.47(7.91(1H,t,J=7.6Hz), 8.14(1H,d,J=7.6Hz), 8.36(1H,br	(1H,s), 7.49(1H,s), 7.63(1H,d,J=7.6Hz),	

Claims

25

30

35

40

45

50

55

1. A compound represented by the formula:

R⁴ 0-A-B 0 N-R⁶

wherein

A is a C₁-C₅ alkylene chain;

B is a phenylene or 6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms, and B may be, optionally substituted with one or two substituents selected from the group, consisting of a C_1 - C_5 alkyl group, a C_1 - C_5 alkoxy group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

R1 is a C1-C5 alkyl group;

R2 is a hydroxyl group or a C1-C5 alkoxy group;

 R^3 and R^4 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, a C_2 - C_5 alkenyl group or a C_2 - C_5 alkynyl group;

R⁵ is a hydrogen atom, a C₁-C₅ alkyl group or a hydroxy C₁-C₅ alkyl group;

R6 is a group of the formula:

-X-Y-Z-R⁶'

wherein X is a phenylene group or a monocyclic 5 \sim 6 membered hetero aromatic group, and X is optionally substituted with one or two substituents selected from the group consisting of a C_1 - C_5 alkyl group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

Y is a single bond or an oxygen atom;

Z is a single bond or a C₁-C₅ alkylene chain;

provided that when Y is an oxygen atom,

X is a phenylene group and Z is a $C_1\text{-}C_5$ alkylene chain;

R6' is a COOR7 group,

a CONR⁸ R⁹ group,

a CONHCHR20 (CH2)nCOOR7 group,

a CONHCHR20 (CH2), CONR8 R9 group,

a CONHCHR20 CONHCHR22 CO2 R7 group or

a sulfamoyl group,

wherein R⁷ is a hydrogen atom, a benzyl group, a C₁-C₅ alkyl group or an C₁-C₅ alkyl group substituted with an aminoheteroaromatic group wherein the heteroaromatic group is a monocyclic 5-6 membered heteroaromatic group;

 R^8 and R^9 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, hydroxy C_1 - C_5 alkyl group, a hydroxyethylpyridyl group or a hydroxyethylthiazolyl group, or the group of the formula:

-NR8R9

5

10

15

20

30

35

45

50

represents a pyrrolidino, a piperidino or a morpholino group;

 R^{20} is a hydrogen atom, a hydroxyl group, a C_1 - C_5 alkyl group, a phenyl group, a hydroxyphenyl group, a benzyl group, a hydroxy benzyl group or a substituted C_1 - C_5 alkyl group wherein the substituent is selected from the group consisting of a hydroxyl group, a C_1 - C_5 alkoxy group, a mercapto group, a methylthio group, an amino group, an inidolyl group, an imidazolyl group, a carboxyl group, a C_1 - C_5 alkoxycarbonyl group, a carbamoyl group and a guanidino group;

n is 0, 1, 2, 3, 4 or 5; and

R²² is a hydrogen atom, a C₁-C₅ alkyl group or a C₁-C₅ hydroxyalkyl group;

or R6 is a CHR20 (CH2), COOR7 group,

a CH2CHR20COOR7 group,

a CHR20 (CH2), CONR8 R9 group,

a CH2CHR20CONR8R9 group,

a CHR20 (CH2), OH group,

a CR²⁰R²²(CH₂)_nOH group,

a CH₂CHR²⁰OH group, or

a CHR20 CONHCHR22 CO2 R7 group,

wherein R7, R8, R9, R20, R22 and n are as defined above, or the group of the formula:

represents an azetidino group, pyrrolidino group, a piperidino group or a homopiperidino group, which is optionally substituted with one to two substituents selected from the group consisting of a hydroxyl group, a C₁-C₅ hydroxyalkyl group, carboxyl group, C₁-C₅ alkoxycarbonyl group and benzyloxycarbonyl group; or pharmaceutically acceptable salts thereof.

- 2. The compound according to claim 1, wherein R¹ is a methyl group and R² is a hydroxyl group.
- 3. The compound according to claim 1, wherein R3 is a hydrogen atom and A is a methylene group.
- 4. The compound according to claim 1, wherein R¹ is a methyl group, R² is a hydroxyl group, R³ is a hydrogen atom and A is a methylene group.
- The compound according to claim 4, wherein B is a 2,6-pyridinediyl, a 2,4-pyrimidinediyl or a 2,6-pyridinediyl N-oxide group.
- 6. The compound according to claim 4, wherein R⁶ is a group of the formula:

X-Y-Z-R6'

(wherein X, Y, Z and R6' are as defined in claim 1).

7. The compound according to claim 4, wherein R⁶ is a group of the formula:

CHR²⁰(CH₂)_nCOOR⁷

(wherein R20, R7 and n are as defined in claim 1).

8. The compound according to claim 4, wherein R⁶ is a group of the formula:

5 CHR²⁰ (CH₂)_nCONR⁸ R⁹

(wherein R20, R8, R9 and n are as defined in claim 1).

9. The compound according to claim 4, wherein R⁶ is a group of the formula:

CHR20 CONHCHR22 CO2 R7

(wherein R^{20} , R^{22} , R^7 and n are as defined in claim 1).

- 15 10. The compound according to claim 4, wherein R4 is an ethyl group.
 - 11. The compound according to claim 5, wherein X is a 2,6-pyridinediyl group.
 - 12. The compound according to claim 10, wherein R6' is a group of the formula:

COOR7

(wherein R7 is as defined in claim 1).

- 25 13. The compound according to claim 13, wherein R⁵' is a carboxyl group.
 - 14. The compound according to claim 10, wherein R6' is a group of the formula:

CONHCHR²⁰ (CH₂)_nCOOR⁷

(wherein R20, R7 and n are as defined in claim 1).

15. A compound of the formula:

35

30

10

20

16. A compound of the formula:

50

17. A compound of the formula:

5

10

15

25

55

18. A compound of the formula:

19. A compound of the formula:

40 20. A compound of the formula:

21. A process for producing a compound as claimed in claim 1 which comprises: (a) to produce a compound of the formula:

reacting a compound of the formula:

with a compound of the formula:

$$H \sim N-R^{2}$$

(b) hydrolyzing a compound of the formula:

to produce a compound of the formula:

(c) reacting a compound of the formula:

with a compound of the formula:

to produce a compound of the formula:

(d) hydrolyzing a compound of the formula:

to produce a compound of the formula:

(e) oxidizing a compound of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
 & N & N & Y-Z-R^6 \\
\hline
 & R^3 & R^5 & O
\end{array}$$

to produce a compound of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O & O \\
& \uparrow & \\
& \downarrow & \\
& R^3 & R^3
\end{array}$$

or

5

10

15

20

25

30

35

40

45

50

55

(f) hydrolyzing a compound of the formula.

$$\begin{array}{c|c}
R^4 & 0-A-B & 0 & 0 \\
& \uparrow & \\
& \downarrow & \\
& \downarrow & \\
& R^5 & 0
\end{array}$$

$$\begin{array}{c}
X-Y-Z-R^{1.5} \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& R^5
\end{array}$$

to produce a compound of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O & O \\
& \uparrow & \\
& \downarrow & \\
& R^5 & N \\
& & \downarrow & \\
& & X-Y-Z-R^{16}
\end{array}$$

wherein R¹, R², R³, R⁴, R⁵, R⁶¹, R²o, A, B, X, Y and Z are as defined in claim 1, R¹¹ is the same as R⁶¹, but it does not mean free carboxylic group;

R¹² is a group of the formula:

X-Y-Z-COOR⁷',
X-Y-Z-CONHCHR²⁰(CH₂)_n COOR⁷',
X-Y-Z-CONHCHR²⁰CONHCHR²²CO₂R⁷',
CHR²⁰(CH₂)_nCOOR⁷',
CH₂CHR²⁰COOR⁷', or
CHR²⁰CONHCHR²²COOR⁷',

wherein X, Y, Z, R²⁰, R²² and n are as defined above, and R⁷ is the same as R⁷ but it does not mean a hydrogen atom,

R¹³ is a group of the formula:

5 X-Y-Z-COOH, X-Y-Z-COOH, X-Y-Z-CONHCHR 20 (CH $_2$) $_n$ COOH, X-Y-Z-CONHCHR 20 CONHCHR 22 CO $_2$ H, CHR 20 (CH $_2$) $_n$ COOH, CH $_2$ CHR 20 COOH, or CHR 20 CONHCHR 22 COOH,

wherein X, Y, Z, R²⁰, R²² and n are as defined above. R¹⁴ is a group of the formula:

15 (CH₂)_nCOOR⁷', or CONHCHR²²COOR⁷',

wherein R⁷, R²² and n are as defined above. R¹⁵ is a group of the formula:

COOR⁷', CONHCHR²⁰(CH₂)_nCOOR⁷', or CONHCHR²⁰CONHCHR²²CO₂R⁷',

wherein R^7 ', R^{20} , R^{22} and n are as defined above. R^{16} is a group of the formula:

> COOH, CONHCHR²⁰(CH₂)_nCOOH, or CONHCHR²⁰CONHCHR²²CO₂H,

wherein R²⁰, R²² and n are as defined above. R²⁶ is a group of the formula:

35 (CH₂)_nCOOH, or CONHCHR²²COOH,

wherein R²² and n are as defined above.

- 40 22. A pharmaceutical composition useful as an antiinflammatory agent or an antiallergic agent, which comprises an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient and a pharmaceutiacally acceptable carrier or diluent.
- 23. A method of treating inflammatory or allergic states which comprises administering a pharmaceutically effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof to a patient.
 - 24. A compound of claim 1 for use as a medicament as an active therapeutic substance.

50

20

30

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention shall be considered, for the purposes of subsequent proceedings, as the European search report

EP 92 10 8916

	DOCUMENTS CONSI			
Category	Citation of document with it of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
Y	US-A-4 672 066 (M. * Claims 1-4,6,15,1 *	CARSON et al.) 6,30; examples 31-38	1-5,22,	C 07 D 213/81 C 07 D 277/46 C 07 D 401/06
Y	CHEMICAL ABSTRACTS, 11th September 1989 no. 97094e, Columbu JP-A-01 29 363 (YOS PHARMACEUTICAL INDU 31-01-1989 * Abstract *	, page 729, abstract s, Ohio, US; & HITOMI	1-5,22,	C 07 D 401/12 C 07 D 401/14 C 07 D 417/12 C 07 D 417/14 C 07 D 241/24 C 07 C 233/82 A 61 K 31/44 A 61 K 31/425
х	* CAS RN 122151-73-	9 *	1-5,22, 24	
A	CHEMICAL ABSTRACTS, 15th January 1990, no. 20906j, Columbu JP-A-01 104 052 (YO PHARMACEUTICAL INDU	page 494, abstract s, Ohio, US; & SHITOMI	1-22,24	
	21-04-1989 * Abstract *			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
		-/-		C 07 D C 07 C
ı				A 61 K
	MPLETE SEARCH			
the provision a meet not claims so Claims so Claims so Reason for Rema. methodox prac 52 (4 and	ions of the European Patent Conventinguis search into the state of the available of the search into the state of the available of the search incompletely: or the limitation of the search: rk: Although cla: od of treatment ctised on) the hur) EPC) the search	im 23 is directed of (diagnostic met nan/animal body (A n has been carried eged effects of th	to a hod rt.	
7111	Place of search	Date of completion of the search O1 = OO = 1 OO 2	BOSMA	Exeminer A D
	E HAGUE	01-09-1992		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure A: member of the same patent family, corresponding			nvention hed on, or	

EPO FORM 1503 03.62 (P0407)

Page 2

PARTIAL EUROPEAN SEARCH REPORT Application Number

EP 92 10 8916

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A,D	EP-A-O 276 065 (ELI LILLY AND CO.) * Claims 1-7; examples *	1-20,22 ,24	
A	EP-A-O 174 770 (MERCK FROSST CANADA INC.) * Whole document *	1-22,24	
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)

11) Publication number:

0 516 069 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92108916.5

2 Date of filing: 27.05.92

(a) Int. Cl.⁵: **C07D 213/81**, C07D 277/46, C07D 401/06, C07D 401/12, C07D 401/14, C07D 417/12, C07D 417/14, C07D 241/24, C07C 233/82, A61K 31/44, A61K 31/425

(30) Priority: 31.05.91 JP 157725/91

(43) Date of publication of application: 02.12.92 Bulletin 92/49

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI NL PT SE

 Applicant: SUMITOMO PHARMACEUTICALS COMPANY, LIMITED
 2-8, Doshomachi 2-chome, Chuo-ku
 Osaka-shi Osaka 541(JP)

Inventor: Nagata, Hideo 2-29-7, Ooike Ibaraki-shi, Osaka 567(JP) Inventor: Kawakami, Hajime 6-32-702, Fukazu-cho Nishinomiya-shi, Hyogo 663(JP)

Representative: von Kreisler, Alek, Dipl.-Chem. et al Patentanwälte Von Kreisler-Selting-Werner, Delchmannhaus am Hauptbahnhof W-5000 Köln 1(DE)

- (See Leukotriene B4 antagonist.
- ⑤ Leukotriene B₄ antagonists of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
\hline
 & & & & \\
R^5 & & & \\
R^5 & & & \\
\end{array}$$

wherein each symbol is as defined in the specification, processes for producing them, and pharmaceutical compositions containing them. The compounds of the present invention are very useful as the drugs for the treatment of allergic and inflammatory diseases.

pfs no=91157725 cc=JP ls

NO: 91 157725 CC: JP

FAMILY MEMBERS

CC PUBDAT KD DOC.NO. CC PR.DAT YY PR.NO.

JP 1991/05/31 91 157725

AT 1996/05/15 E 137223

AU 1993/03/11 A1 1719392

AU 1993/11/04 B2 643140

CA 1992/12/01 AA 2069667

DE 1996/05/30 C0 69210091

DE 1996/10/02 T2 69210091

DK 1996/05/13 T3 516069

EP 1992/12/02 A1 516069

DC: AT BE CH DE DK ES FR GB GR IT LI NL PT SE

EP 1996/04/24 B1 516069

DC: AT BE CH DE DK ES FR GB GR IT LI NL PT SE

ES 1996/07/01 T3 2086579

GR 1996/08/31 T3 3020050

JP 1993/09/17 A2 5239004

MX 1993/01/20 A1 9202612

US 1993/07/06 A 5225422