

Luis Orellana Altamirano

¿Qué es?

\$Magia?

Aplicabilidad

if x 100...

"si tiene más de 100 ifs, es inteligencia artificial, era"...

Modelos

Regresión Logística

Salary	Sex	Age	Buy widget		
15000	male	19	No		
25000	male	33	Yes	Estructura [
23000	female	50	No		
16000	male	40	No		\ F B.
200	male	10	No		Estructura Datase
30000	female	30	No		
25000	male	23	Yes		
18000	female	55	No		
50000	male	57	Yes		
51000	female	57	No		

Probabilidad

Funcion de Costo (Error)

$$Cost(h_{\theta}(x), y) = -y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

Gradiente Descendente

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

Separación de Clases

Onessis

Espacio de Hilbert

$$T([x_1, x_2]) = [x_1, x_2, x_1^2 + x_2^2]$$

¿Para que Sirve?

Predecir con antelación si un cliente que solicita un préstamo a un banco va a ser un cliente moroso.

> Predecir si una empresa va a entrar en bancarrota.

Predecir de antemano que un paciente corra riesgo de un infarto.

Hands On

Recuento

Neurona Biológica

Modelo Neuronal - Santiago Ramon y Cajal (1906)

Deep Learning

https://github.com/luisorellana777/DataScience.git

