# 混合高斯分布相关问题的讨论

518021910677 朱展达

Dec. 10th, 2019

# 1 问题说明

**混合高斯分布**:  $X \sim N(\mu_1, \sigma_1^2)$ ,  $Y \sim N(\mu_2, \sigma_2^2)$ , 变量  $\eta$  满足二项分布。则称  $Z = X + \eta Y$  服从的分布为混合高斯分布。其中, $\eta$  服从的二项分布如下表:

表 1: η 分布列

| $\eta$ | 0   | 1 |
|--------|-----|---|
| P      | 1-p | p |

#### 问题 1:

- 自己设定参数,用计算机生成 10000 个混合高斯分布的随机数;
- 画出其频率分布直方图;
- 讨论不同参数对其分布"峰"的影响。

**问题 2:** 自己设定参数,用计算机生成 1000 组,每组 n 个混合高斯分布的随机数。第 i 组随机数记为: $Z_{i,1}, Z_{i,2}, ..., Z_{i,n}, i = 1, 2, ..., 1000。定义$ 

$$U_i = \frac{\sum_{j=1}^n Z_{i,j} - nEZ}{\sqrt{nDZ}} \tag{1}$$

- 画出  $U_1, U_2, ..., U_{1000}$  的频率分布直方图;
- 讨论不同 n = 10, 20, 50, 100, 1000 对频率直方图 "峰"的影响;
- 你能从中得到什么结论?

# 2 问题分析、求解思路与代码

## 2.1 问题分析

问题 1 主要是探索混合高斯分布,根据其形式,其应为两个正态分布的加权平均,需要考虑  $\mu_1,\sigma_1,\mu_2,\sigma_2,p$  对峰的影响;问题 2 主要是利用混合高斯分布来探索验证 Lindeberg-Lévy 中心极限定理。

### 2.2 问题 1 求解思路与代码

通过 matlab 生成相应混合高斯分布,利用 hist 和 bar 函数生成相应的频率分布直方图,通过固定其中四个参数,多次改变另一个参数,来分析其对峰的影响。代码如下:

```
1 clear;
n = 10000:
3 mu1 = Input_mu1, sigma1 = Input_sigma1;
4 \quad mu2 = Input\_mu2\,, \ sigma2 = Input\_sigma2\,;
   p = Input_p;
6 	 x1 = normrnd(mu1, sigma1, [n, 1]);
7 	 x2 = normrnd(mu2, sigma2, [n, 1]);
8 	ext{ x3} = unifrnd(0,1,[n,1]);
9 eta = zeros(n,1);
10 [counts_x1, centers_x1] = hist(x1, 100);
11 [counts_x^2, centers_x^2] = hist(x^2, 100);
12 % bar(centers_x1, counts_x1 / sum(counts_x1));
13 % bar(centers_x2, counts_x1 / sum(counts_x1));
14 eta(x3 \le p) = 1;
15 \quad Z = x1 + eta.* x2;
16 [counts_Z, centers_Z] = hist(Z, 80);
17 bar(centers_Z, counts_Z / sum(counts_Z))
```

#### 2.3 问题 2 求解思路与代码

由于式(1)中 EZ 和 DZ 为理论值, 先计算混合高斯分布 Z 的均值和方差:

$$EZ = E(X + \eta Y) = EX + E\eta \cdot EY = \mu_1 + p\mu_2 \tag{2}$$

$$EZ^{2} = E((X + \eta Y)^{2}) = E(X^{2} + 2\eta XY + \eta^{2}Y^{2})$$

$$= EX^{2} + 2(EX)(EY)(E\eta) + E(\eta^{2})E(Y^{2})$$

$$= \mu_{1}^{2} + \sigma_{1}^{2} + 2\mu_{1}\mu_{2}p + (\mu_{2}^{2} + \sigma_{2}^{2})p$$
(3)

$$DZ = EZ^{2} - (EZ)^{2} = \sigma_{1}^{2} + p\sigma_{2}^{2} + p(1-p)\mu_{2}^{2}$$
(4)

确定合适的参数,生成 1000 组混合高斯分布的随机数,分别计算  $U_i$ , i=1,2,...,1000。做 n=10,20,50,100,1000 的图进行比较讨论。

由于 EZ 和 DZ 在  $(\mu_1, \sigma_1, \mu_2, \sigma_2, p)$  确定时是常量,由 Lindeberg-Lévy 中心极限定理知,当 n 足够大时, $U_i$  服从标准正态分布。为了使图像随着 n 的改变变化明显,要尽量破坏原分布的正态分布性,因为对于 Z 分布得到的频率直方图的两个 "峰",当  $\sigma$  较小时,取值分布在 "峰" 两 边。因此令  $|\mu_2|$  很大时,x 取值在两峰之间的概率很小,可以破坏原有的正态分布性。

代码如下:

```
1  clear;
2  n = 1000;
3  mu1 = 0, sigma1 = 2, mu2 = 15, sigma2 = 3;
4  p = 0.7;
5  x1 = normrnd(mu1, sigma1, [1000, n]);
6  x2 = normrnd(mu2, sigma2, [1000, n]);
7  x3 = unifrnd(0,1,[1000,n]);
```

```
eta = zeros(1000,n);
   eta(x3 \le p) = 1;
   Z = x1 + eta.* x2;
11
12
   EZ = mu1 + p * mu2;
   DZ = sigma1^2 + p * sigma2^2 + p * (1-p) * mu2^2;
13
14
    for i = 1 : 1000
15
        temp = 0;
16
        for j = 1 : n
17
            temp \,=\, Z(\,i\,\,,j\,) \,\,+\, temp\,;
18
19
20
        U(i) = (temp - n * EZ) / sqrt(n * DZ);
^{21}
   end
22
    [counts\_U, centers\_U] = hist(U, 80);
23
    bar(centers_U, counts_U / sum(counts_U))
```

# 3 问题 1 求解

## 3.1 讨论 $\mu_1$ 对分布 "峰"的影响

固定参数  $\sigma_1=2,\mu_2=15,\sigma_2=3,p=0.7,$  改变  $\mu$  取值,令  $\mu_1$  分别为 0,4,8 12,16,20, 观察得到的频率分布直方图。



图 1:  $\sigma_1 = 2, \mu_2 = 15, \sigma_2 = 3, p = 0.7$  下, $\mu_1$  变化时生成的随机数的频率分布直方图

**结论:** 从上述六图中我们可以发现,在  $\mu_1$  改变时,随机数的频率分布直方图的形态基本保持不变,整体图像仅随  $\mu_1$  的变化而平移。其中,第一个峰对应的 x 坐标为  $\mu_1$ ,第二个峰对应的 x 坐标为  $\mu_1 + \mu_2$ 。

## 3.2 讨论 $\sigma_1$ 对分布 "峰" 的影响

固定参数  $\mu_1 = 0, \mu_2 = 15, \sigma_2 = 3, p = 0.7$ , 改变  $\sigma_1$  取值,令  $\sigma_1$  分别为 1, 2, 4, 6, 10, 20,观 察得到的频率分布直方图。



图 2:  $\mu_1 = 0, \mu_2 = 15, \sigma_2 = 3, p = 0.7$  下, $\sigma_1$  变化时生成的随机数的频率分布直方图

**结论:** 从上述六图中我们可以发现,在  $\sigma_1$  变化时,"峰"的分布、数量、高度和峰两侧对应的斜率都会产生变化。当  $\mu_2$  不为 0 时, $\sigma_1$  较小时会出两个"峰", $\sigma_1$  较大时两个"峰"会合并成一个"峰"。随着  $\sigma_1$  的增大, $\mu_1$  对应的"峰"高度下降并且变得逐渐趋于平缓, $\mu_1 + \mu_2$  对应的"峰"高度有所升高,最终会产生两峰合并,只留下  $\mu_1 + \mu_2$  对应的峰的情况。

## 3.3 讨论 $\mu_2$ 对分布 "峰" 的影响

固定参数  $\mu_1=0,\sigma_1=2,\sigma_2=3,p=0.7,$  改变  $\mu_2$  取值,令  $\mu_2$  分别为 -10,-5,0,5,10,20, 观察得到的频率分布直方图。



图 3:  $\mu_1 = 0, \sigma_1 = 2, \sigma_2 = 3, p = 0.7$  下, $\mu_2$  变化时生成的随机数的频率分布直方图

**结论:** 从上述六图中我们可以发现,在  $\mu_2$  变化时,"峰"的数量和分布会发生变化。其中一个"峰"对应的 x 坐标一直为  $\mu_1$ ,另一个"峰"对应的 x 坐标  $\mu_1 + \mu_2$  会发生改变。当  $|\mu_2|$  较大时,有明显的两个"峰",当  $|\mu_2|$  较小时,两座峰逐渐融合,当  $\mu_2 = 0$  时,完全只剩下一个"峰"。同时显然的, $\mu_2$  的正负会影响两座峰的左右排布。

## 3.4 讨论 $\sigma_2$ 对分布"峰"的影响

固定参数  $\mu_1=0,\sigma_1=2,\mu_2=15,p=0.7,$  改变  $\sigma_2$  取值,令  $\sigma_1$  分别为 1,2,4,6,10,20, 观察得到的频率分布直方图。



图 4:  $\mu_1=0, \sigma_1=2, \mu_2=15, p=0.7$  下, $\sigma_2$  变化时生成的随机数的频率分布直方图

**结论:** 从上述六图中我们可以发现, 在  $\sigma_2$  变化时, "峰"的相对高度会发生变化。随着  $\sigma_2$  的

增大, $\mu_1$  对应的峰的高度升高, $\mu_1 + \mu_2$  对应的峰的高度下降, $\mu_1$  对应的峰与  $\mu_1 + \mu_2$  对应的峰的相对高度的代数值增大。且特别地,当  $\sigma_2$  特别大时, $\mu_1 + \mu_2$  所对应的峰会趋于消失,只剩下  $\mu_1$  所对应的峰。

## 3.5 讨论 p 对分布 "峰" 的影响

固定参数  $\mu_1=0,\sigma_1=2,\mu_2=15,\sigma_2=3$ ,改变 p 取值,令 p 分别为 0,0.2,0.4,0.6,0.8,1.0,观察得到的频率分布直方图。



图 5:  $\mu_1 = 0, \sigma_1 = 2, \mu_2 = 15, \sigma_2 = 3$  下, p 变化时生成的随机数的频率分布直方图

**结论:** 从上述六图中我们可以发现,在 p 变化时,"峰"的数量、分布和高度会发生变化。p=0 时,只有一个对应 x 坐标为  $\mu_1$  的 "峰";随着 p 的增大, $\mu_1$  对应的 "峰"的高度下降, $\mu_1+\mu_2$  对应的 "峰"的高度升高, $\mu_1$  对应的 "峰"与  $\mu_1+\mu_2$  对应的 "峰"的相对高度的代数值降低;当 p=1 时,只剩下一个对应 x 坐标为  $\mu_1+\mu_2$  的峰。

#### 3.6 问题一结论总结与概括

- 混合高斯分布是两个正态分布的加权平均,每个正态分布单独存在时的频率分布直方图存在一个"峰"。故混合高斯分布得到的频率分布直方图存在两个"峰",他们对应的 x 坐标分别为  $\mu_1$ ,  $\mu_1 + \mu_2$ ,但这两个"峰"的位置、高度、平缓程度会受五个参数 ( $\mu_1$ ,  $\sigma_1$ ,  $\mu_2$ ,  $\sigma_2$ , p) 的影响,有时两个峰变成只有一个峰。
- 1. μ<sub>1</sub> 会影响 "峰"分布的 x 坐标,"峰"随 μ<sub>1</sub> 的变化而发生平移。
  - 2.  $\sigma_1$  会影响"峰"的数量、高度、平缓程度。随着  $\sigma_1$  的增大, $\mu_1$  对应的"峰"高度下降并且变得逐渐趋于平缓, $\mu_1 + \mu_2$  对应的"峰"的高度升高;当  $\sigma_1$  极大时,只剩下  $\mu_1 + \mu_2$  对应的"峰"。
  - 3.  $\mu_2$  会影响 "峰"的数量和分布。 $|\mu_2|$  较大时,有明显的两个 "峰", $|\mu_2|$  逐渐变小时,两座峰逐渐融合,当  $\mu_2=0$  时,只剩下一个 "峰"。

4 问题 2 求解 7

4.  $\sigma_2$  会影响"峰"的数量、高度、平缓程度。随着  $\sigma_2$  的增大, $\mu_1$  对应的"峰"高度升高, $\mu_1 + \mu_2$  对应的"峰"高度下降并逐渐趋于平缓;当  $\sigma_2$  极大时,只剩下  $\mu_1$  对应的"峰"。

5. p 会影响 "峰" 的数量、分布和高度。p=0 时,只有一个对应 x 坐标为  $\mu_1$  的 "峰";随着 p 的增大, $\mu_1$  对应的 "峰" 的高度下降, $\mu_1+\mu_2$  对应的 "峰" 的高度升高, $\mu_1$  对应的 "峰" 与  $\mu_1+\mu_2$  对应的 "峰" 的相对高度的代数值降低;当 p=1 时,只剩下一个对应 x 坐标为  $\mu_1+\mu_2$  的峰。

## 4 问题 2 求解

### 4.1 参数选择

根据 **2.3** 的分析,需要让  $|\mu_2|$  值较大,取  $\mu_1 = 0$ ,  $\sigma_1 = 2$ ,  $\mu_2 = 100$ ,  $\sigma_2 = 3$ , p = 0.7。

## 4.2 频率直方图

分别选择 n = 10, 20, 50, 100, 1000,得到相应的关系图。



图 6:  $\mu_1 = 0, \sigma_1 = 2, \mu_2 = 100, \sigma_2 = 3, p = 0.7$  下, n 变化时生成的  $U_i$  的频率分布直方图

## 4.3 结论和讨论

**结论:** 当 n 比较小时,频率直方图的"峰"数量较多,且"峰"与"峰"之间间隔较大,随着 n 的增大,"峰"与"峰"之间的间距逐渐变小。同时随着 n 的增大, $U_i$  的分布逐渐趋向于标准正态分布。

**讨论:** 当  $|\mu_2|$  较小时,频率直方图的峰之间距离较小,使得原本便近似于正态分布,因此改变 n 的取值并不能得到很好的效果。但是当  $|\mu_2|$  很大的情况下时,若 n 很小,频率直方图峰间距较大,使其与正态分布存在偏差,若 n 很大,根据 Lindeberg-Lévy 中心极限定理,其分布应近似于标准正态分布。而结果恰恰与标准正态分布相符合。成功验证了 Lindeberg-Lévy 中心极限定理。

5 总结与体悟 8

# 5 总结与体悟

通过这次对混合高斯分布相关问题的讨论和实践,我对混合高斯分布中各参数的地位、作用和影响有了更深层次的理解,对其图像和性质有了较好的把我;通过 matlab 生成对应的分布分布,让我具体理解了 Monte-Carlo method 和计算机仿真模拟在概率统计中的重要作用;通过对混合高斯分布的讨论,还进而验证了 Lindeberg-Lévy 中心极限定理,让我明白了其实际体现。总之,此次探索和讨论让我对概率统计问题的研究方法有所涉猎,更加理解概率密度函数在现实中的表现,还提高了我的计算机编程能力和论文撰写能力。

# 6 致谢

感谢熊德文老师的认真授课和点拨启发。 感谢助教对本次大作业付出的辛劳。 感谢方泓杰同学在 Latex 版式上提供的帮助。

# 参考文献

[1] 上海交通大学数学系.《概率论与数理统计》. 上海交通大学出版社.2011