- 1. Prove that $a \mod b = (a \mod bc) \mod b$ for all positive integers a, b, and c.
- 2. Prove the following properties of divisibility.
 - (a) $a \mid b$ and $b \mid c \Rightarrow a \mid c$
 - (b) $a \mid b$ and $a \mid c \Rightarrow a \mid (b+c)$
 - (c) $a \mid b \Rightarrow a \mid bc$
 - (d) $ab \mid c \Rightarrow a \mid c \text{ and } b \mid c$
- 3. Prove that the test for divisibility by 3 is correct. First prove that $10^i \mod 3 = 1$ for any integer $i \ge 0$; then prove the stated claim. Recall that a number is said to be divisible by 3 if the sum of all digits of that number is divisible by 3.
- 4. [4 marks] The divisibility test for 9 is to add up the digits of the given number, and test whether that sum is divisible by 9. State and prove the condition that ensures that this test is correct.
- 5. Show that, for all $n \geq 3$, we have $f_n \mod f_{n-1} = f_{n-2}$, where f_i is the i^{th} Fibonacci number.
- 6. Let p be an arbitrary prime number and let a be an arbitrary nonnegative integer. Prove the following facts.
 - (a) If $p \nmid a$, then gcd(p, a) = 1.
 - (b) For any positive integer k, we have $p \mid a^k$ if and only if $p \mid a$.
 - (c) For any integers $n, m \in \{1, \dots, p-1\}$, we have that $p \nmid nm$.
 - (d) For any integer m and any prime number q distinct from p (that is, $p \neq q$), we have $m \equiv_p a$ and $m \equiv_q a$ if and only if $m \equiv_{pq} a$.
 - (e) If $0 \le a < p$, then $a^2 \equiv_p 1$ if and only if $a \in \{1, p-1\}$. (You may use the fact that if f(x) is a polynomial of degree k, and q is a prime, then either $f(a) \mod q = 0$ for every $a \in \mathbb{Z}_q$, or the equation f(x) = 0 has at most k solutions for $x \in \mathbb{Z}_q$. Note that for any integer $n \ge 2$, \mathbb{Z}_n denotes the set $\{0, 1, \ldots, n-1\}$.)