

project: POVM Bergambacht voorbeeldenboek: damwand

projectcode: 103638

onderdeel: Toetsing ankersysteem

adviseur: T. Naves datum opgesteld: 31-5-2018

TITEL

Berekening van groutinjectieankers conform BEEM - TR langsconstructies

UITGANGSPUNTEN schematiseringsfactor

ankerstang

groutlichaam

belasting per strekkende meter richting ingevoerde belasting		= (1,08 onder hoek -
F_ank_rep	$P_{\text{max (EEM)}}$	=	542 kN/anker
F-ank_d	P_{rep}	=	874 kN/anker

algemeen

1,08

874 kN/anker

916 kN/anker

=

taal	=	NL
refentieniveau	=	NAP
maatgevende sondering	=	DKM001

geometrie algemeen

maaiveldniveau actieve zijde	=	5,00 m+NAP
maaiveldniveau passieve zijde	=	1,67 m+NAP
bovenkant damwand	=	5,00 m+NAP
onderkant damwand	=	-21,00 m+NAP

geometrie verankering

anker zijde		=	links -
hoek ankers met horizontaal	α	=	40 °
hart-op-hart afstand	а	=	2,80 m
overlengte ankerstang	L_{over}	=	0,50 m
verankeringsniveau		=	3,00 m+NAP
bovenkant groutlichaam		=	-13,00 m+NAP
onderkant groutlichaam		=	-18,14 m+NAP
lengte groutlichaam	L_A	=	8,00 m
lengte ankerstang	L_{staaf}	=	33,39 m

damwand ——ankerstaaf ——groutlichaam → richting ingevoerde belasting

veiligheidsfactoren en benodigde controles

rekenwaarde belasting constructieve onderdelen

veiligheidsklasse		=	RC3
tijdelijke of permanente constructie?		=	permanent
controle op ankeruitval benodigd?		=	ja
controleproef op ieder anker benodigd?		=	ja
reductiefactor	$\xi_{\rm a}$	=	1,00 -
partiële materiaalfactor	γa	=	1,20 -

partiële factoren stalen gording

partiele ractoren stalen gording			
partiële materiaalfactor	γмо	=	1,00 -
partiële materiaalfactor CAL	γмо;cal	=	1,00 -
partiële factor permanente belasting	γg	=	1,32 -
partiële factor variabele belasting	γQ	=	1,65 -
partiële factor belasting calamiteit	γcal	=	1,65 -

corrosie

berekening corrosie = per jaar

		ankerstaaf	gording	
corrosie per jaar	=	0,065	0,024 mm/jaar rondom	
levensduur	=	100	100 jaar	
corrosie tijdens levensduur	=	6,50	2,40 mm rondom	

BEREKENING VAN ANKERSTAAF, GROUTLICHAAM EN GORDING

ankerstaaf

type ankerstaaf	Le	Leeuwanker 76,1x17,5		
buitendiameter	D_o	=	76,1 mm	
binnendiameter	D _i	=	41,1 mm	
wanddikte	t	=	17,5 mm	
		=		
		=		
oppervlakte doorsnede	A_{mtg}	=	3222 mm ²	
oppervlakte doorsnede met corrosie	$A_{mtg;corr}$	=	1801 mm ²	
staalkwaliteit		=	E470	
vloeispanning	$f_{y;d}$	=	550 N/mm ²	
breukspanning	$\mathbf{f}_{t;d}$	=	720 N/mm ²	
$MIN(f_{y;d}; f_{t;d} / 1,4)$	$f_{\text{max;d}}$	=	514 N/mm ²	
groutlichaam				
standaard diameter schroefblad	D_{stand} .	=	200 mm	
toegepaste diameter schroefblad	D_{keuze}	=	200 mm	
overpersing diameter	D_{extra}	=	20 mm	
diameter groutlichaam	D _{totaal}	=	220 mm	
omtrek groutlichaam	Ο	=	691 mm	
bovenkant groutlichaam		=	-13,00 m+NAP	
onderkant groutlichaam		=	-18,14 m+NAP	
lengte groutlichaam	L_A	=	8,00 m	
schachtwrijvingsfactor	α_{t}	=	0,015 -	
gemiddelde conusweerstand	q _{c;gem}	=	15,0 MPa	
-	,		4==== 1.51/	

 $f_{k;\text{rep}}$

155,5 kN/m

controle ankerstaaf

controle houdkracht groutlichaam (unity check ≤ 1)

$R_{t;d}$	=	926 kN
P_d	=	874 kN
	<u></u>	
		0,94 -
		_
$R_{a;min}$	=	1244 kN
$R_{a;k}$	=	1244 kN
$R_{a;d}$	=	1037 kN
$P_{gr;d}$	=	916 kN
	P _d R _{a;min} R _{a;k} R _{a;d}	P_d = $\begin{bmatrix} R_{a;min} & = \\ R_{a;k} & = \\ R_{a;d} & = \end{bmatrix}$

representatieve houdkracht per meter

0,88

spreadsheet GROUTINJECTIEANKERS versie 2.20

project: POVM Bergambacht voorbeeldenboek: damwand

projectcode: 103638

onderdeel: Toetsing ankersysteem

adviseur: T. Naves datum opgesteld: 31-5-2018

CONTROLE CAPACITEIT BIJ ANKERUITVAL

veiligheidsklasse: RC3

voor veiligheidsklasse RC3 dient de uitval van een anker voor alle damwandconstructies gecontroleerd worden. de resultaten hieronder dienen gebruikt te worden voor zowel tijdelijke als permanente damwandconstructies.

ankerstaaf bij ankeruitval

belasting ankerstang (BGT x 1,5) P_{rep} x 1,5 = 812 kN rekenwaarde sterkte ankerstang $R_{t;d}$ = 926 kN controle ankerstaaf bij ankeruitval (unity check \leq 1) 0,88

groutlichaam bij ankeruitval

belasting groutlichaam (BGT x 1,5) P_{rep} x 1,5 = 812 kN

representatieve houdkracht groutlichaam R_{a;rep} = 1244 kN controle groutlichaam bij ankeruitval (unity check ≤ 1) 0,65