

Figure 53.1: The parametric surface $\varphi_1(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ where $-10 \le x_1 \le 10$ and $-10 \le x_2 \le 10$.

Example 53.3. Example 53.2 can be generalized as follows. Suppose we have a feature map $\varphi_1 \colon X \to \mathbb{R}^n$ and let $\kappa_1(x,y) = \langle \varphi_1(x), \varphi_1(y) \rangle$ be the corresponding kernel function (where $\langle -, - \rangle$ is the standard inner product on \mathbb{R}^n). Define the feature map $\varphi \colon X \to \mathbb{R}^n \times \mathbb{R}^n$ by its n^2 components

$$\varphi(x)_{(i,j)} = (\varphi_1(x))_i(\varphi_1(x))_j, \qquad 1 \le i, j \le n,$$

with the inner product on $\mathbb{R}^n \times \mathbb{R}^n$ given by

$$\langle u, v \rangle = \sum_{i,j=1}^{n} u_{(i,j)} v_{(i,j)}.$$

Then we have

$$\langle \varphi(x), \varphi(y) \rangle = \sum_{i,j=1}^{n} \varphi_{(i,j)}(x) \varphi_{(i,j)}(y)$$

$$= \sum_{i,j=1}^{n} (\varphi_1(x))_i (\varphi_1(x))_j (\varphi_1(y))_i (\varphi_1(y))_j$$

$$= \sum_{i=1}^{n} (\varphi_1(x))_i (\varphi_1(y))_i \sum_{j=1}^{n} (\varphi_1(x))_j (\varphi_1(y))_j$$

$$= (\kappa_1(x,y))^2.$$