

WHAT IS CLAIMS IS:

*Sub
10027604-10010654*

1. A method of displaying an input signal, the method comprising:
sampling the input signal;
searching for a zero space pattern in the sampled signal;
locating a first zero space;
locating a second zero space, following the first zero space;
calculating bit period of the input signal; and
displaying the input signal using the calculated bit period as the basis for a scale.
2. The method recited in claim 1 further comprising initializing offset and time scale.
3. The method recited in claim 1 further comprising determining whether NRZ autoscale is applicable.
4. The method recited in claim 1 wherein the step of locating the first zero space comprises:
locating a first transition, X_1 , where value of the input signal is more than a threshold value, V_{THRES} , before the first transition, X_1 , but less than the threshold value, V_{THRES} , after the first transition, X_1 , the first transition, X_1 , being the first such transition following the offset; and
locating a second transition, X_2 , where value of the input signal is less than the threshold value, V_{THRES} , before the second transition, X_2 , but more than the threshold value, V_{THRES} , after the second transition, X_2 , the second transition, X_2 , being the first such

10010654-1
TOEATPOTETEADT

transition following the first transition, X_1 .

5. The method recited in claim 4 wherein the step of locating the second zero space comprises:
locating a third transition, X_3 , where value of the input signal is more than a threshold value, V_{THRES} , before the third transition, X_3 , but less than the threshold value, V_{THRES} , after the third transition, X_3 , the third transition, X_3 , being the first such transition following the second transition, X_2 ; and
locating a fourth transition, X_4 , where value of the input signal is less than the threshold value, V_{THRES} , before the fourth transition, X_4 , but more than the threshold value, V_{THRES} , after the fourth transition, X_4 , the fourth transition, X_4 , being the first such transition following the third transition, X_3 .

6. The method recited in claim 5 wherein the step of calculating the bit period comprises determining temporal difference between the third transition, X_3 , and the first transition, X_1 .

7. The method recited in claim 1 further comprising displaying the input signal using a multiple of the calculated bit period as the scale.

8. An apparatus for displaying an input signal, the apparatus comprising:
a processor;
storage connected to the processor, the storage including instructions for the processor to sample the input signal;
search for a zero space pattern in the sampled

signal;
locate a first zero space;
locate a second zero space, following the first
zero space;
calculate bit period of the input signal; and
display the input signal using the calculated
bit period as the basis for a scale.

9. The apparatus recited in claim 8 wherein the storage further comprises instructions for the processor to initialize offset and time scale.

10. The apparatus recited in claim 8 wherein the storage further comprises instructions for the processor to determine whether NRZ autoscale is applicable.

11. The apparatus recited in claim 8 wherein the storage further comprises instructions for the processor to:
locate a first transition, X_1 , where value of the input signal is more than a threshold value, V_{THRES} , before the first transition, X_1 , but less than the threshold value, V_{THRES} , after the first transition, X_1 , the first transition, X_1 , being the first such transition following the offset; and
locate a second transition, X_2 , where value of the input signal is less than the threshold value, V_{THRES} , before the second transition, X_2 , but more than the threshold value, V_{THRES} , after the second transition, X_2 , the second transition, X_2 , being the first such transition following the first transition, X_1 .

12. The apparatus recited in claim 11 wherein the storage further comprises instructions for the processor to:

PATENT

ATTORNEY DOCKET NUMBER 10010654-1
Express Mail Label: EK 916850132 US

locate a third transition, X_3 , where value of the input signal is more than a threshold value, V_{THRES} , before the third transition, X_3 , but less than the threshold value, V_{THRES} , after the third transition, X_3 , the third transition, X_3 , being the first such transition following the second transition, X_2 ; and

locate a fourth transition, X_4 , where value of the input signal is less than the threshold value, V_{THRES} , before the fourth transition, X_4 , but more than the threshold value, V_{THRES} , after the fourth transition, X_4 , the fourth transition, X_4 , being the first such transition following the third transition, X_3 .

13. The apparatus recited in claim 5 wherein the storage further comprises instructions for the processor to determine temporal difference between the third transition, X_3 , and the first transition, X_1 .
14. The apparatus recited in claim 13 wherein the storage further comprises instructions for the processor to display the input signal using a multiple of the calculated bit period as the scale.
15. A machine readable medium comprising program for the machine to display an input signal, the program comprising instructions for the machine to:
 - sample the input signal;
 - search for a zero space pattern in the sampled signal;
 - locate a first zero space;
 - locate a second zero space, following the first zero space;
 - calculate bit period of the input signal; and

40027354-101001

PATENT

ATTORNEY DOCKET NUMBER 10010654-1
Express Mail Label: EK 916850132 US

display the input signal using the calculated bit period as the basis for a scale.

16. The medium recited in claim 15 wherein the medium is selected from a group consisting of magnetic disc, optical disc, read only memory (ROM), random access memory (RAM), harddrive, compact disc (CD), flash memory, and solid state memory.

10010654-101901