

Présentation générale

L'objet de cette étude est un robot appelé MC²E utilisé en chirurgie endoscopique. Ce type de robots médico-chirurgicaux est équipé de capteurs (caméra, capteur d'efforts. . .) permettant de maîtriser les interactions avec des environnements souvent déformables et difficilement modélisables comme le corps humain.

La figure 1 décrit les exigences auxquelles est soumis l'asservissement du MC²E.

Validation des performances de l'asservissement d'effort

Modèle de connaissance de l'asservissement

Objectif

Modéliser l'asservissement en effort.

L'équation de mouvement est définie par l'équation différentielle suivante : $J\frac{\mathrm{d}^2\theta_m(t)}{\mathrm{d}t^2}=C_m(t)-C_e(t)$.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta}\theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Mines Ponts 2016.

B2-04

Figure 1 – Performances de l'asservissement.

On note:

- J, inertie équivalente à l'ensemble en mouvement, ramenée sur l'arbre moteur;
- C_e(t), couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

FIGURE 2 – Modèle simplifié du montage du capteur d'effort.

Avec:

- C_e(p), couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $ightharpoonup C_c(p)$, couple de consigne;
- $ightharpoonup C_m(p)$, couple moteur;
- ► $H_{cor}(p)$, fonction de transfert du correcteur.

Question 3 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain *B*. On s'intéresse ici à la définition analytique de *B*. Le schéma-blocs modifié est donné figure suivante.

FIGURE 3 – Régulation avec retour tachymétrique.

On règle B de telle façon que, pour $H_{\rm cor}(p)=1$, la fonction de transfert en boucle ouverte, notée $H_{\rm BO}(p)$, puisse être mise sous la forme suivante : $H_{\rm BO}(p)=\frac{1}{(1+\tau p)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Les exigences du cahier des charges sont données plus haut (exigences 1.2.2.1, 1.2.2.3 et 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure 4.

FIGURE 4 - Régulation avec correcteur PI.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{1+\frac{2\xi_{\rm BF}}{\omega_{\rm 0BF}}p+\frac{p^2}{\omega_{\rm 0BF}^2}}.$

Question 6 Proposer une expression simple pour la constante de temps T_i .

Question 7 À partir des courbes ci-contre, proposer une valeur de coefficient d'amortissement et de pulsation propre.

On donne $K_i = 1$.

Question 8 Les critères de performance du cahier des chartes sont-ils respectés? Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Diagrammes de Bode

On prend $K_i = 0, 4, T_i = 0.01 \text{ s et } \tau = 0.5 \text{ s.}$

13,88
10,87
7,97
5,52
4,74
2,66
0,18 0,30 0,43 0,49 1 coefficient matricipant of

Question 9 Tracer le diagrame de Bode de la fonction de transfert $G(p) = \frac{K_i (1 + T_i p)}{T_i p (1 + \tau p)^2}$

