模拟赛

中文题目名称	随机数	街道	NOI	树
英文题目名称	random	street	noi	tree
题目文件名	random.cpp	street.cpp	noi.cpp	tree.cpp
输入文件名	random.in	street.in	noi.in	tree.in
输出文件名	random.out	street.out	noi.out	tree.out
时间限制	1s	1s	1s	1s
空间限制	512M	512M	512M	512M
结果比较方式	全文比较	实数比较	全文比较	实数比较

编译选项:

C++	-std=c++14 -O2 -WI,stack=204800000
-----	------------------------------------

评测环境为 Windows 64 位, 处理器: Intel(R) Core(TM) i7-9750 CPU @ 2.60GHz。

内存 16GB, 速度 2667MHz, 编译器为 g++ 9.1.0。

随机数 (random/1s/512M)

题目描述

星野瞳想要生成随机数,她觉得现在的随机数生成方式不够优秀,所以设计了一种新的随机数生成方式。

假设需要生成一个 [0,m-1] 的随机整数,她会先用现有的随机数生成器生成 n 个 [0,m-1] 的整数,构成一个整数序列 a ,a 的下标从 1 开始。

然后,她对这个整数序列做 n-1 次操作,每次操作她都会计算一个新的整数序列 b,b 的长度为 n-1,满足 $b_i=a_i+a_{i+1}$ 。最后令 a=b。

容易发现,最后一定只会剩下一个整数,星野瞳将这个整数对 m 取余数之后,作为生成的随机数。

星野瞳把这个生成方式分享给了真姬,但真姬指出,对于某些 n,m ,最后得到的随机数与 a 中的某些数无关。

星野瞳现在想知道,对于一组给定的 n, m,最终的随机数与 a 中的哪些位置无关。

输入格式

第一行包含两个正整数 n, m。

输出格式

第一行一个正整数 cnt,表示 a 中与最终随机数无关的数的个数。

第二行 cnt 个正整数,从小到大依次输出,表示每个与最终随机数无关的数的下标。

样例输入#1

3 2

样例输出#1

1

2

数据范围与约定

本题采用 捆绑测试, 无子任务依赖。

对于全部数据, $n \leq 10^5, m \leq 10^9$ 。

- 子任务 $1(30 \, \text{分})$: $n < 10^3$
- 子任务 2 (30 分): m 为质数。
- 子任务 3 (40 分): 无其它限制。

街道 (street/1s/512M)

题目描述

渡边家兴的女朋友秋子和他闹了矛盾,去了新宿区的某个地方,渡边家兴想要尽快找到他的女朋友。

新宿区是星野组的地盘,可以描述为一棵n个节点的树,入口为1号节点,每条树边表示一条双向街道,通过每一条街道的时间都相等。在街道的交汇处,也就是节点,可能有星野组的小弟把守。

渡边家兴已经知道,秋子一定沿着一条**简单路径**跑到了树的一个叶子,但他不知道具体在哪个叶子,所以他只好挨个寻找。渡边家兴在节点处可以询问小弟,秋子是否经过了这个节点,询问小弟不需要花费时间。

作为星野组的地区负责人,渡边家兴随时面临着被暗杀的风险,所以寻找女朋友的过程中,渡边家兴最 多只能经过一条街道两次。

渡边家兴想知道,如果秋子在每个叶子处的概率相等的情况下,他找到秋子的期望时间最小是多少。

输入格式

第一行一个正整数 n,表示节点个数。

接下来 n-1 行,每行一个正整数和一个字母,由空格分开,第 i 行的正整数表示第 i 号点的父节点,字母为 Y 或者 N ,表示该点是否有星野组的小弟把守。

输出格式

一行一个浮点数,表示渡边家兴找到女朋友的期望时间的最小值

你的答案被认为正确,当且仅当和标准答案的绝对或相对误差不超过 10^{-6}

样例输入#1

样例输出#1

3.0000

样例解释#1

渡边家兴有两种方案,他可以先到 2 号节点,再到 3 号节点,然后依次去 4,5 号节点,期望时间为 $\frac{1+4+6}{3}=3.6667$

他也可以先到 3 号节点询问小弟,如果秋子经过了 3 号节点,那么他可以依次去 4,5 号节点,否则他直接去 2 号节点,期望时间为 $\frac{2+3+4}{3}=3$

样例输入#2

样例输出#2

5.0000

数据范围与约定

本题采用 捆绑测试, 无子任务依赖。

对于全部数据, $n \leq 10^5$ 。

• 子任务 1 (20 分): $n \leq 10$ 。

• 子任务 2(20 分): i 号点的父亲在 $[\max(i-5,1),i-1]$ 中随机选择。

• 子任务 2 (30 分): 任何节点都没有小弟把守。

• 子任务 3 (30 分): 无其它限制。

NOI (noi/1s/512M)

题目描述

星野瞳卸任首相后回到天朝后学习了信息竞赛,她成功进入了省队,即将去参加 NOI2024。

作为星野组的元老,也是共义党的高级干部大岛成悟打算为星野瞳写一副 NOI 的书法字。

大岛成悟找来了一张书法纸,可以描述为一个 $n \times m$ 的矩阵,每个格子都有一个幸运值 $a_{i,j}$ 。

NOI 三个字母分别由若干个矩形构成, 定义如下:

- N 由若干 (≥ 3) 个边平行于坐标轴的矩形组成,设由 K 个矩形组成(标号 $1\ldots K$),第 i 个矩形的左下角方格坐标设为 (L_i,B_i) ,右上角坐标设为 (R_i,T_i) ,要求满足:
 - 1. $L_i \le R_i, B_i \le T_i$;
 - 2. 对任意 $1 < i \le K$,有 $L_i = R_{i-1} + 1$;
 - 3. 对任意 3 < i < K,有 $B_{i-1} 1 < T_i < T_{i-1}$, $B_i < B_{i-1}$;
 - 4. $B_2 > B_1$, $T_2 = T_1$, $B_{K-1} = B_K$, $T_{K-1} < T_K$;
- 0 由一个大矩形 A,挖去一个小矩形 B 得到,这两个矩形的边都平行于坐标轴。设大矩形 A 左下角的方格坐标为 (u,v),长为 W,宽为 H,则小矩形 B 满足左下角方格坐标为 (u+1,v+1),长 W-2,宽 H-2。要求满足:
 - 1. $W \ge 3$, $H \ge 3$;
 - 2. $u > R_K + 1$;
- I 为 3 个边平行于坐标轴的从下到上的实心矩形组成,从下到上依次标号为 1,2,3,第 i 个矩形的左下角格子坐标设为 (P_i,Q_i) ,右上角格子坐标设为 (G_i,H_i) ,要求满足:
 - 1. $P_i \leq G_i, Q_i \leq H_i$;
 - 2. $P_1 = P_3 > u + W$, $G_1 = G_3$;
 - 3. $Q_1 = H_1 = Q_2 1, H_2 + 1 = Q_3 = H_3;$
 - 4. $P_1 < P_2 \le G_2 < G_1$

下图是一个 NOI 的例子。

大岛成悟当然希望,所有矩阵覆盖的格子的幸运值最大。

他希望你告诉他幸运值的最大值。

输入格式

第一行两个正整数 n, m ,表示矩阵大小接下来 n 行每行 m 个正整数,表示 $a_{i,j}$

输出格式

输出一行一个正整数,表示最大的幸运值。

样例输入1

样例输出1

24

样例输入2

样例输出2

-20

样例解释

从上到下分别是样例一,二的一种方案。

数据范围与约定

对于所有的测试数据,保证 $n \geq 3, m \geq 12, |a_i| \leq 10^3$ 。

本题采用 捆绑测试, 子任务 4 依赖所有子任务。

- 子任务 $1(20 \, \text{分})$: n=3, m=12.
- 子任务 2 (30 分): n, m ≤ 80
- 子任务 3(10 分): $a_{i,j} = 1$
- 子任务 4 (40 分): 无其它限制。

树 (tree/1s/512M)

题目描述

星野瞳在 NOI2024 的赛场上坐牢,她并不会 T2,T3,做完 T1,打完暴力后她就开始发呆。

她在下发的草稿纸上开始画树,并开始遍历画出来的树。

她惊讶的发现,对于某些树,其 DFS 序和 BFS 序都是相同的。

星野瞳很快提出了一个问题,如果给定两个序列,分别表示某棵树的 DFS 序和 BFS 序,那么,所有拥有这个 DFS 序和 BFS 序的树的平均高度是多少。

虽然星野瞳不会做 NOI2024 的后两题,但这么简单的问题她还是会的,她决定把这个题目拿去考考星野组的小弟,你能回答星野瞳的问题吗?

我们令所有拥有这个 DFS 序和 BFS 序的树的个数为 K , 高度为 H_i 。星野瞳希望你求出

$$rac{H_1+H_2+\ldots,+H_K}{K}$$

为了避免一些问题,星野瞳保证给出的 DFS 序和 BFS 序一定有对应的树。她还规定,在每个节点处,**DFS 和 BFS 遍历边的顺序完全相同。**

输入格式

第一行包含 1 个正整数 n, 表示树的节点个数。

第二行包含 n 个正整数,是一个 $1 \dots n$ 的排列,表示树的 DFS 序。

第三行包含 n 个正整数,是一个 $1 \dots n$ 的排列,表示树的 BFS 序。

输出格式

输出1个浮点数,表示树高的平均值。

你的答案被认为正确,当且仅当和标准答案的绝对或相对误差不超过 10^{-6}

样例输入1

5 2 1 5 4 3 2 1 3 5 4

样例输出1

3.500

样例解释1

合法的树一共有两棵。

数据范围与约定

对于所有的测试数据,保证 $n \leq 2 \times 10^5$ 。

本题采用 捆绑测试,子任务 5 依赖所有子任务。

• 子任务 1 (10 分): $n \le 10$ 。

• 子任务 $2(20 \, \text{分})$: $n, m \leq 100$ • 子任务 $3(20 \, \text{分})$: $n, m \leq 2000$

• 子任务 4 (10 分): BFS 序和 DFS 序完全相同。

• 子任务 5 (40 分): 无其它限制。