Calculus'un Temel Teoremi (The Fundamental Theorem of Calculus)

Ana teoriyi ispatlamadan once iki diger teoriden bahsetmemiz, ispatlamamiz lazim. Bu teorilerden biri Gecis Degeri Teorisi (Intermediate Value Theorem) digeri Tanimli Entegraller Icin Ortalama Deger Teoremi (Mean Value Theorem for Definite Integrals). Gecis Degeri Teorisi basitce sunu soyler

Teori

[a,b] araliginda surekli bir fonksiyon y=f(x), f(a) ve f(b) arasindaki her degeri muhakkak alir. Bir diger degisle, eger y_o , f(a) ve f(b) arasindaki bir deger ise [a,b] araligindaki bir c icin muhakkak $y_0=f(c)$ olmalidir.

Geometrik olarak bu teori y eksenini f(a) ve f(b) arasında kesen $y=y_0$ yatay cizgisinin y=f(x) fonksiyonunu muhakkak, en az bir kez kesecegidir. Grafik altta.

Sezgisel olarak bu anlamli degil mi? Eger surekli bir fonksiyon var ise, f(a)'dan f(b)'ye giderken o araliktaki her sayiya bir kez "ugramaya" mecburuz. Etraflarindan dolasmamiz mumkun degil, cunku kesintili bir fonksiyon degil, kesintisiz / surekli bir fonksiyonumuz var. Bu teorinin daha detayli ispati icin daha ileri matematiksel kitaplara bakabilirsiniz.

Maks-Min Esitsizligi

Eger [a, b] araliginda f, maksimum deger $max\ f$ 'e ve minimum deger $min\ f$ 'e sahipse,

$$min \ f \cdot (b-a) \le \int_a^b f(x) dx \le max \ f \cdot (b-a)$$

demektir.

Ortalama Deger Teoremi

Eger f fonksiyonu [a, b] arasinda surekli ise o zaman [a, b] araliginda olan bir c noktasinda

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

esitligi dogru olmalidir. Yani alttaki resimde sol grafikteki mavi alanin b-a ile bolunerek elde edilen ortalama degeri, [a,b] araligindaki bir c uzerinden f(c)'ye muhakkak esittir. Ya da bir kenari f(c), digeri b-a olan bir diktortgenin alani (alt sagdaki resim), mavi alanin tamamina esit olacaktir.

Maks-Min Esitsizliginin iki tarafini b-a'ya bolersek

$$min \ f \le \frac{1}{b-a} \int_a^b f(x) dx \le max \ f$$

elde ederiz. Eger Gecis Degeri Teorisi dogruysa, $min\ f$ ve $max\ f$ arasindaki tum noktalar ziyaret edilmelidir. O zaman boyle bir f(c) kesinlikle var demektir.

Calculus'un Temel Teoremi

Teori

Eger f fonksiyonu [a, b] arasında surekli ise o zaman

$$F(x) = \int_{a}^{x} f(t)dt$$

fonksiyonu da [a, b] arasında sureklidir, ve bu fonksiyonun turevi f(x)'in kendisidir.

Yani

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Ispat

Turevin tanimini direk F(x) uzerinde uygulayalim, [a,b] icinde olan x ve x+h araligini alalim, ve

$$\frac{F(x+h) - F(x)}{h}$$

bolumunun limitinin, $h \to 0$ iken, f(x)'e gittigini gostermeye calisalim. F(x+h) ve F(x) fonksiyonlarini entegralleri uzerinden tanımlayalım. O zaman ustteki formulun bolum kismi

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt$$

Entegrallerin toplam kuralina gore ustteki formulun sag tarafi

$$\int_{x}^{x+h} f(t)dt$$

ifadesidir. O zaman bolumun tamami

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

Ortalama Deger Teoremine gore, ustteki esitligin sagindaki ifadenin, x ve x+h araliginda f'in aldigi degerlerden birine aynen esit oldugunu biliyoruz. Yani o araliktaki bir c icin

$$\frac{1}{h} \int_{x}^{x+h} f(t)dt = f(c)$$

kesinlikle dogru olmali. Simdi, $h \to 0$ oldukca, x+h mecburen x'e yaklasmak zorunda kalacaktir, cunku c, x ile x+h arasinda sıkışıp kalmistir. f fonksiyonu x noktasinda surekli olduğuna göre, o zaman f(c), f(x)'e yaklasmalidir.

$$\lim_{h \to 0} f(c) = f(x)$$

Simdi elimizdeki bu bilgiyle basa donersek,

$$\frac{dF}{dx} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

$$= \lim_{h \to 0} f(c)$$

$$= f(x)$$

Kaynaklar

Thomas Calculus 11. Baski, sf. 358