Information Retrieval Topic- The complete search system Lecture-26

Prepared By

Dr. Rasmita Rautray & Dr. Rasmita Dash Associate Professor Dept. of CSE

Content

- Vector space model
- Similarity measure
- Cosine similarity

- Term frequency weight
- Inverse document frequency weight
- Tf-idf weight
- Cosine similarity

Why is ranking so important?

- •Last lecture: Problems with unranked retrieval
 - •Users want to look at a few results not thousands.
 - •It's very hard to write queries that produce a few results.
 - •Even for expert searchers
 - Ranking is important because it effectively reduces a large set of results to a very small one.
- •Next: More data on "users only look at a few results"

Importance of ranking: Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
 - Getting the ranking right is very important.
 - Getting the top-ranked page right is most important.

Complete search system

Tiered indexes

- •Basic idea:
 - •Create several tiers of indexes, corresponding to importance of indexing terms
 - •During query processing, start with highest-tier index
 - •If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - •If we've only found < k hits: repeat for next index in tier cascade
- •Example: two-tier system
 - •Tier 1: Index of all titles
 - •Tier 2: Index of the rest of documents
 - •Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.

Tiered index

Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring

Components we haven't covered yet

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- Machine-learned ranking functions
- Proximity ranking (e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other)
- Query parser

Thank You