QUANTIFIERS, METHODS OF PROOF

COMPUTER SCIENCE MENTORS 70

Independent review

1 Quantifiers

1. Let P(x, y) denote some proposition involving x and y. For each statement below, either prove that the statement is correct or provide a counterexample if it is false.

$$a \, \forall \, x \, \forall \, y \, P(x, y) \implies \forall \, y \, \forall \, x \, P(x, y).$$

Solution: hi

$$b \exists x \exists y P(x, y) \implies \exists y \exists x P(x, y).$$

$$c \ \forall \ x \ \exists \ y \ P(x,y) \implies \exists \ y \ \forall \ x \ P(x,y).$$

$$d \ \exists \ x \ \forall \ y \ P(x,y) \rightarrow \forall \ y \ \exists \ x \ P(x,y).$$

2 Methods of Proof

2.1 Contradiction and Contraposition

- 1. Write the contrapositive of the following statements and, if applicable, the statement in mathematical notation. (Using quantifiers, etc.)
 - a If a quadrilateral is not a rectangle, then it does not have two pairs of parallel sides. (Skip mathematical notation for this problem, just write the contrapositive)
 - b For all natural numbers a where a^2 is even, a is even.
 - c Negate this statement: For all integers x, there exists an integer y such that $x^2+y=16$.
- 2. Prove or disprove: If $P \implies Q$ and $R \implies \neg Q$, then $P \implies \neg R$.

3. For any integer x, x^2 has remainder 1 or 0 when divided by 3.

Induction

3.1 Questions

1. What are the three simple steps of induction?

1. _____

2. _____

3. _____

2. Prove that $\sum_{i=0}^{n} i! * i = (n+1)! - 1$ for $n \ge 1$ where $n \in N$.

4 More Practice

Use any method of proof to answer the following questions.

1. Let x be a positive real number. Prove that if x is irrational (i.e., not a rational number), then \sqrt{x} is also irrational.

2. McDonalds sells chicken McNuggets only in 6, 9, and 20 piece packages. This means that you cannot purchase exactly 8 pieces, but can purchase 15. The Chicken McNugget Theorem states that the largest number of pieces you cannot purchase is 43. Formally state the Chicken McNugget Theorem using quantifiers.