Combo 5 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 Notación declaratoria para términos

Explique la notación declaratoria para términos con sus 3 convenciones notacionales (convenciones 1, 2, 5 de la guía 11)

Si t es un término de tipo τ , entonces escribiremos $t=_d t(v_1,\ldots,v_n)$ para declarar que v_1,\ldots,v_n son variables distintas (con $n\geq 1$) y tales que toda variable que ocurre en t pertenece a $\{v_1,\ldots,v_n\}$ (no necesariamente v_j debe ocurrir en t).

El uso de declaraciones de la forma $t =_d t(v_1, \dots, v_n)$ será muy útil cuando se lo combina con ciertas convenciones notacionales que describiremos a continuación:

- Convención 1: Cuando hayamos hecho la declaración $t =_d t(v_1, \ldots, v_n)$, si P_1, \ldots, P_n son palabras cualesquiera (no necesariamente términos), entonces $t(P_1, \ldots, P_n)$ denotará la palabra que resulta de reemplazar (simultáneamente) cada ocurrencia de v_1 en t por P_1 , cada ocurrencia de v_2 en t por P_2 , etc. Notar que cuando las palabras P_i son términos, $t(P_1, \ldots, P_n)$ es un término.
- Convención 2: Cuando hayamos declarado $t =_d t(v_1, \ldots, v_n)$, si **A** es un modelo de tipo τ y $a_1, \ldots, a_n \in A$, entonces con $t^{\mathbf{A}}[a_1, \ldots, a_n]$ denotaremos al elemento $t^{\mathbf{A}}[\vec{b}]$, donde \vec{b} es una asignación tal que a cada v_i le asigna el valor a_i .
- Convención 5: Cuando hayamos declarado $t =_d t(v_1, \ldots, v_n)$ y se de que $t = f(t_1, \ldots, t_m)$, con $f \in \mathcal{F}_m$ y $t_1, \ldots, t_m \in T^{\tau}$ únicos, supondremos tácitamente que también hemos hecho las declaraciones $t_1 =_d t_1(v_1, \ldots, v_n), \ldots, t_m =_d t_m(v_1, \ldots, v_n)$. Esto lo podemos hacer ya que obviamente las variables que ocurren en cada uno de los t_i están en $\{v_1, \ldots, v_n\}$.