MULTI-LAYERED PHISHING URL DETECTION BY USING MACHINE LEARNING

Understanding the Problem Statement

Advanced Phishing Detection System.

Description: Create an advanced tool that detects phishing attempts in emails, websites, and messages by analyzing patterns, domain names, and content for suspicious links or requests.

Challenge: Develop a machine learning model that classifies phishing and legitimate communications accurately.

Everity and Daily Life Impact

Phishing is not just a technical issue, it's a **human problem** that affects **everyone** from **students to senior citizens**.

If unaddressed:

People lose money, data, and privacy.

Organizations face data breaches, reputation damage, and legal consequences. Governments and institutions become vulnerable to cyber espionage.

Research Landscape, Existing Solutions & Our Uniqueness

Current Landscape

Global: 1.2 billion+ phishing emails daily (*Forbes*, 2024)

India: 175% increase in phishing attacks in H1 2024 (*The Hindu*)

Bihar: Among top 10 most-affected states due to low cyber awareness (India Today, 2023)

Existing Solutions

Google Safe Browsing, Microsoft Defender, antivirus tools (Norton, Kaspersky)

Mostly rely on **blacklists or static detection**

Often fail against new/zero-day phishing URLs

What Makes Our Solution

Unique Multi-layer Detection

Combines whitelist + blacklist + VirusTotal API + ML model (Random Forest)

Real-time Protection

Works instantly when a suspicious link is clicked

User-friendly for Common People

Minimal UI, no technical background needed

Low-resource compatible – perfect for mobile and rural users

Our Solution: Multi-Layered Phishing Detection System

- We have developed an **AI-powered phishing detection module** that:
- Performs real-time URL analysis
- Uses **multiple layers** of verification for accuracy
- Is designed for mobile and web-based integration

Pre-processing: Masked URL Detection & Unmasking

- Many phishing attacks use shortened or masked URLs to mislead users.
- In our system, the **pre-processing step** identifies if a URL is shortened or obfuscated.
- If detected, it is unmasked to reveal the actual destination before analysis.
- This ensures the entire detection process operates on the true URL, not a disguised one.

Layer 1: Whitelist & Blacklist Check

The unmasked or original URL is checked against a:

Whitelist of trusted domains

Blacklist of known phishing domains

Decision:

If found in the blacklist \rightarrow Blocked

If found in the whitelist \rightarrow Allowed

Otherwise → Forwarded to next layer

Layer 2: External Threat Intelligence (Virus Total API)

The URL is verified using a **global threat intelligence platform**. If classified as phishing → Blocked and updated in the blacklist If marked safe → Proceed to ML layer (for extra precaution)

Layer 3: Machine Learning-Based Detection

Features such as domain length, use of HTTPS, symbol count, etc., are analyzed.

Trained ML model **Random Forest** which is suitable algorithm.

Decision: Block or allow based on prediction and update the blacklist and whitelist corresponding to the URL prediction

Architecture

Future Potential

If extended support is provided, we plan to **enhance and scale the project further** through the following:

Convert the solution into a deployable Web App and Android App

This would allow users to scan URLs in real-time directly from their browser or smartphone, making phishing detection easily accessible to non-technical users.

Integrate advanced threat intelligence APIs

We aim to include more APIs like Google Safe Browsing, AbuseIPDB, and WHOIS to strengthen domain intelligence and detection accuracy.

Improve ML model with real-time learning

Implementing **online learning or model retraining** using newly identified phishing and legitimate URLs will keep the system adaptive to evolving threats.