Chapter 3.1

- (a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$.
- (b) The plane of vectors with $b_1 = 1$.
- (c) The vectors with $b_1b_2b_3 = 0$.
- (d) All linear combinations of v = (1, 4, 0) and w = (2, 2, 2).
- (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
- (f) All vectors with $b_1 < b_2 < b_3$.

20 For which right sides (find a condition on
$$b_1, b_2, b_3$$
) are these systems solvable?

(a)
$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

(b)
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Suppose
$$Ax = b$$
 and $Ay = b^*$ are both solvable. Then $Az = b + b^*$ is solvable. What is z ? This translates into: If b and b^* are in the column space $C(A)$ then $b + b^*$ is in $C(A)$.

harter 3.2

By row operations reduce each matrix to its echelon form U. Write down a 2 by 2 lower triangular L such that B = LU.

(a)
$$A = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 7 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 7 \end{bmatrix}$. $\begin{bmatrix} 1 & 3 & -1 & 2 \\ 1 & 6 & 2 & 6 \\ 3 & 4 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 2 & 7 & 0 & 3 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & -3 \end{bmatrix}$$

Prove that U and A = LU have the same nullspace when L is invertible:

If
$$Ux = 0$$
 then $LUx = 0$. If $LUx = 0$, how do you know $Ux = 0$?

* Construct a Hatrix A whose column space contains

* Construct A whose column space contains

32 If the special solutions to R = 0 are in the columns of these N, go backward to find the nonzero rows of the reduced matrices R:

the nonzero rows of the reduced matrices
$$R$$
:
$$N = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } N = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } N = \begin{bmatrix} \end{bmatrix} \text{ (empty 3 by 1)}.$$

: R=[1 -2 -3]

* Construct a Matrix A with
$$M(A) = \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{3}{4} \end{bmatrix} \begin{bmatrix} \frac{3$$

$$A = \begin{bmatrix} 1 & 1 & -4 & -4 \\ 0 & 1 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & -2 & -1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

- Transpose P in problem 13. Then find the r pivot columns of P^T. Transposing back, 12 If A has rank r, then it has an r by r submatrix S that is invertible. Remove m-r rows and n-r columns to find an invertible submatrix S inside A, B, and C. this produces an r by r invertible submatrix S inside P and A:
 - For $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 4 & 7 \end{bmatrix}$ find P (3 by 2) and then the invertible S (2 by 2).

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 9 & 0 & 9 \\ 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 6 & 1 \end{bmatrix}, \quad \text{pT} = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 6 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 13 \\ 2\eta \end{bmatrix} \qquad S^T = \begin{bmatrix} 12 \\ 3\eta \end{bmatrix}$$

- 17 (a) Suppose column j of B is a combination of previous columns of B. Show that column j of AB is the same combination of previous columns of AB. Then AB cannot have new pivot columns, so $rank(AB) \leq rank(B)$.
 - (b) Find A_1 and A_2 so that rank $(A_1B) = 1$ and rank $(A_2B) = 0$ for $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Chapter 3.4

4 Find the complete solution (also called the general solution) to

$$\begin{bmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}.$$

19 Find the rank of A and also of $A^{T}A$ and also of AA^{T} :

$$\mathcal{Q}_{A} = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -4 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -4 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{fank=2}$$