

Practical Data Science for Biologists

Paul Sochacki, MS Bio Lab Analytics, LLC 03/01/2019

Overview

Introduction – What is Data Science?

Introduction – Aspects of Data Science

Data Analytics

- Statistics/Biostatistics
- Data Visualization
- Dashboards & Reporting
- Bioinformatics

Storage & Automation

- "Big Data"
- Databases, Pipelines, and Interfaces
- Machine Learning (ML)
- Artificial Intelligence (AI)

Domain Expertise

- Terminology & conventions
- Software requirements/preferences
- Subject matter knowledge
- Organizational requirements

Introduction – Aspects of Data Science

Harvard Business Review, 10/23/2018 (unedited "plot" of data skills)

Introduction – Database Basics

Data Storage Hierarchy

Flat Files (i.e., CSV, Text, Excel)

Databases (Relational, Non-Relational)

Database Management System (DBMS)

Servers (Local, Dedicated, Cloud, Virtual, etc.)

Database Basics – Database Types

- Relational (SQL) databases
 - T-SQL : PostgreSQL, MySQL (MariaDB), MSSS, SQLite
 - PL-SQL : Oracle
 - 90-95% similar syntax

- MongoDB, NoSQL, Cassandra
- REDCap at Universities
- Highly customizable
- Not as common as relational Db

Database Basics – SQL Language Types

SQL

- SQL = Structured Query Language
- Build Relational Databases
- Analyze & Manipulate Data

DML

- Data Modification Language
- ALTER, CREATE database level
- DELETE, INSERT, UPDATE table level

DDL

- Data Definition Language
- SELECT, FROM, ORDER BY, GROUP BY
- Reporting (SUM, AVERAGE, COUNT, etc.)

Database Basics – Relational Db Terminology

Table (Entity)

 Collection of records defining an person, place, thing, or event

Column (Attribute)

• Variable of a fixed data type (text, numeric, image file, etc.) that contains information about an entity

Primary Key (PK)

- Uniquely identifies a single record within a table
- Each table should have one

Foreign Key (FK)

- Lives in one table, references a PK from another table
- Can have multiple FK within a table, depends on relationships

Referential Integrity

- Establishes FK/PK relationships among tables
- Defined through specification of constraints/references in SQL syntax.

Database Basics – PostgreSQL

- PostgreSQL is a popular, open-source database
- pgAdmin4 is a management tool for PostgreSQL databases
- Interface drivers available for both R
 & Python

Database Basics – Walkthrough

Software Requirements

- PostgresSQL 11.x
- pgAdmin 4.x

PostgresSQL Walkthrough

Data Munging

- Knowing Your Data
- Cleaning Your Data
- Transforming Your Data

Data Processing & Validation

- Missing Data
 - Dealing with it
- Numeric Data Types
 - Quantitative
 - Ranked (Ordinal)
 - Binomial
 - Counts
- Date/Time Data Manipulation
 - 'lubridate' package

Missing Data

There are a few different ways to handle this...

- Complete Cases
- Randomly Generate
- Impute Average
- Multiple Imputation

Numeric Data Types

- Quantitative Data
 - Drugs, Hormones, Dates, Times
- Binomial Data
 - Critical Value, Condition (yes/no)
- Ranked (Ordinal)
 - Semi-quantitative ELISA, Age Groups
- Counts
 - Frequency of an event or trait
- Calculated
 - Rates, Ratios, Aggregate Functions

View() generates a spreadsheet view of data frame. Allows sorting but not manipulation of data.

DT::DataTable() allows some convenient and efficient table-level manipulations; however, for some operations must convert data back to Data Frame object for analysis

R Data Objects (very limited list)

- Lists, Arrays, Matrices
- Data Frames, Data Tables, Tibbles
- Use str() to return object structure
- 'Tidyverse' objects share a common API

Data Munging— Cleaning Your Data

Date/Time Data

A workshop topic in itself

- Date vs DateTime
- Date & Time Formats

- Clock (AM/PM vs 24h)
- Time Zones

Data
Munging—
Transforming
Your Data

R/tidyverse ('dplyr') –
official documentation
R/dplyr Tutorial – diagrams,
more examples

R/tidyverse ('stringr') – for working with strings/text

R/tidyverse ('lubridate') – for working with dates/times

R/tidyverse ('tidyr') – for manipulating table structure

lubridate

Data Munging— Transforming Your Data

R/tidyverse

Data Munging Walkthrough

Introduction – Descriptive Statistics

Common Descriptive Statistics

- Mean (Average), Median, Mode
- Counts or Frequencies
- Minimum, Maximum
- IQR 25% to 75% percentiles
- Standard Deviation from Mean ("noise in data")
- Standard Error of Mean ("noise around mean")

Descriptive Statistics — Summary

Base R functions

```
sum() - column total
mean() – column average
sd() – column standard deviation
length() - number of records
levels() – number of levels within a variable
'psych' package
```

```
describe() - basic descriptive stats
describeBy() – grouped descriptive statistics
```

'dplyr' package

```
group_by() - group data
summarize() - describe grouped data
```

Descriptive Statistics – Visualization

Base R plotting functions

plot(), fit() - scatterplot with fitted line
hist() - histogram frequency plot
boxplot() - box and whiskers plot
barchart() - bar chart plot

Specialty & add-on packages

'PCA3D', 'survival', 'randomForest', 'gganimate', etc. R packages for specialized graphics, animation

Descriptive Statistics – Visualization

R/Tidyverse ('ggplot2')

Standardized plotting functions for R

Pros: produces high-quality, customizable graphics

Cons: time required to learn specialized syntax

'ggplot2' walkthrough

Descriptive Statistics – Visualization

Add-on library ('ggmap')

Extension of 'ggplot2' library functions for overlaying data on geographic maps

Required Components

- * Geographic Info: Lattitude, Longitude
 - Manually input from file
 - GoogleMaps API (subscription)
- * Density Data: Population, Infections, Frequency
- * Plot Customization: Shared API with 'ggplot2'

Statistical Programming Resources

Data Carpentry

Data Analysis and Visualization in R for Ecologists

Biological Statistics Handbook and R Companion

The Handbook
Its Companion

MOOC Learning

<u>Udemy</u>

Coursera

Introduction – Inferential Statistics

Model Building and Hypothesis Testing

- Models often rely on assumptions about underlying the data
- Lots of very specific terminology... Wikipedia can be helpful, but also has a (deserved?) nickname of "Wickedpedia"...
- KNOW YOUR USE CASE

Inferential Statistics – t-tests

Testing for differences in means between two samples

- Welch's t-tests (replaces ye olde Student's t-tests)
 - Compare means between two groups
 - Both groups assumed to have a normal distribution in response
 - By default, test assumes unequal variance

Testing for before/after mean differences in one group

- Paired T-tests
 - Compare means between two timepoints or treatments for group of individuals
 - Subjects must have measures for both times/treats
 - Same assumptions as for regular t-test
 - More power than two-sample t-test

Inferential Statistics — t-test Assumptions

T-test Assumptions - Diagnostics

Normal (Gaussian) distribution among residuals of response variable... however, often very similar to distribution of response variable, in practice.

shapiro.test()

- conventional cut-off = 0.90
- marginally acceptable = 0.80
- square-root and log transformations can help

qqnorm()

- generates Q-Q plot of residuals
- "eyeballing" the data is a common practice

Inferential Statistics – Statistical Power

Power and Sample Size Calculations

Power Analysis

• Given means, standard deviation, number of experimental units (N), & alpha, calculate power

Sample Size Analysis

• Given means, standard deviation, power, and alpha, calculate sample size required

Base R has functions for power calculations, including for t-tests and ANOVA models

Generally speaking, a paired t-test (or repeated measures ANOVA) will have greater power because it accounts for intra-individual variability among measurements

Inferential Statistics – Statistical Power

Statistical Power and Significance

Table 1. Types of Statistical Errors

	H ₀ is actually:	
	True	False
Reject H ₀	Type I error	Correct
Accept H ₀	Correct	Type II error

A **Type I error** is often represented by the Greek letter alpha (α) and a Type II error by the Greek letter beta (β). In choosing a level of probability

Alpha (α) - % chance of getting a false positive Beta (β) - % chance of getting a false negative

Inferential Statistics – ANOVA

Testing for differences in means among 2+ groups

- Analysis of Variance (ANOVA)
 - Compare means among multiple groups
 - Response assumed to have a normal distribution
 - For two groups, essentially same as a t-test but has an F-value instead of a t-value

Testing for differences in means, adjusting for multiple measurements on the same subject

- Repeated Measures ANOVA
 - Compare means across timepoints or treatments for group of individuals
 - Each individual has data for each interval
 - Same assumptions as for ANOVA
 - Analogous to paired t-test but for >2 groups

Inferential Statistics – ANOVA Assumptions

ANOVA Modeling Assumptions

Multicollinearity

- Correlation among predictors, can skew estimates
- 'ols_corr' package
- Verify VIF < 4.0 for all predictors
- If VIF > 4.0 then should drop from the model, but this can still be problematic sometimes...

Balanced design

- Ideally similar sample size for all treatments
- Generic rule of thumb is 10 replicates/treatment
- Unequal cell-sizes will not necessarily "ruin" an analysis; however, estimates of effect size (i.e., coefficients) may be skewed

Inferential Statistics – Correlation Analysis

Simple Correlation

- Describes general relationship between two continuous variables
- Can be positive or negative $(-1.0 \le r \le 1.0)$
- Has a p-value, interpreted as consistency
- Correlation \neq Causation

Correlation Matrix

- Describes general relationships between many continuous (sometimes ranked) variables
- Can be positive or negative $(-1.0 \le r \le 1.0)$
- Has a p-value, interpreted as consistency
- Often displayed graphically with heatmaps

Inferential Statistics – Regression Analysis

Simple Regression

- Defines quantitative relationship between two continuous variables
- Positive or negative slope $(-\infty \le \beta \le +\infty)$
- P-value : interpreted as consistency
- R²: interpreted as strength of relationship
- Requires SME input to validate model

Multiple Regression

- Defines quantitative relationships among 2+ continuous predictors and an outcome
- All the same statistics as simple regression
- Model selection can benefit from comparison of Akaike's Information Criterion (AIC) scores
- AIC applies penalty as more predictors are added

Inferential Statistics – Resources

Biological Statistics Handbook and R Companion (also SAS)

The Handbook
Its Companion

Statistical Consulting, Resources, and Workshops

The Analysis Factor

Statistical Theories, Approaches, and Discussions

Stack Exchange

Machine Learning – Introduction

"Statistics" for Automation & Big Data

- Machines are not that smart, really
- For smaller data sets, ML methods often provide same answer as statistics
- Often few (if any) assumptions about underlying data
- Instead, assumptions are made at system level

Machine Learning General Concepts

How does it work?

- Some data is collected about a system of interest
- Assumption made that the system is very well characterized
- System may include elaborate data pipeline with numerous inputs (sources)
- Clouds, servers, devices, sensors, etc., can all be sources of data
- A model type fitting the use case is selected
 - ML Linear Regression
 - ML Logistic Regression
 - SVM (basically Chi-square)
 - Cluster Analysis
 - Naïve Bayes

Machine Learning General Concepts

Training & Validation

- Collected data is split into "Training" and "Validation" data sets
- Specialized ML libraries such as R 'caret' and Python 'scikit-learn' are used to split the data into training & validation sets
 - 80% vs 20% split (Training vs Validation)
- Validation set is tested against model built using the Training set data
- Software reports metrics for precision, recall, sensitivity, and/or specificity
- Check metrics, possibly repeat process

Machine Learning— General Concepts

Production

- If metrics are acceptable, move the ML model into Production and use it to predict/identify patterns based on the Training set. Ideally, refresh the training set every once in a while.
- ML models in Production vary widely in performance – context matters
- *Feature selection* (also known as variable or attribute selection) selection is active area of computer science & math research
- Commonly found in retail & web analytics, some recent applications in life science (monitoring & diagnostic devices)

Thank you ORTWS!

Dr. Meghan Martin-Wintle for (ORTWS) President!

Follow us on Twitter!
#rstats #datascience #dataviz

SQL script, data sets, & R script from this workshop available on GitHub https://github.com/Cyberskout99/DSBworkshop

