

A Level · Edexcel · Maths

7.1 Differentiation

7.1.1 Definition of Gradient / 7.1.2 First Principles Differentiation / 7.1.3 Differentiating Powers of x

Total Marks	/166
Very Hard (10 questions)	/48
Hard (10 questions)	/42
Medium (10 questions)	/40
Easy (11 questions)	/36

Scan here to return to the course or visit savemyexams.com

Easy Questions

- 1 Differentiate
 - 5x, (i)
 - (ii) $2x^3$
 - (iii)

(3 marks)

2 Write down the formula that should be used as a starting point when explaining differentiation from first principles.

3 (a) Write down the gradient of the line with equation y = k, where k is a constant.

(1 mark)

- **(b)** Find the gradient at the point where x = 8 for the following functions
 - $(i) \qquad f(x) = 3x^2,$
 - (ii) $f(x) = 4x^3 2x$,
 - (iii) $f(x) = 3x^{\frac{1}{3}}$.

(3 marks)

4 A student is trying to show that the derivative of $7x^2$ is 14x using first principles. Their working is shown below. Find and explain their error.

STEP 1

$$f(x) = 7x^2$$

STEP 2

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

STEP 3

$$f'(x) = \lim_{h \to 0} \frac{7(x+h)^2 - 7x^2}{h}$$

STEP 4

$$f'(x) = \lim_{h \to 0} \frac{7x^2 + 14hx + 7h^2 - 7x^2}{h}$$

STEP 5

$$f'(x) = \lim_{h \to 0} \frac{h(14x + 7h)}{h}$$

STEP 6

$$f'(x) = 14x + 7h$$

When $h=0$, $14x + 7h = 14x$
 $\therefore f'(x) = 14x$

(3 marks)

- **5** (i) Expand (x+3)(x-2).
 - Hence differentiate (x+3)(x-2).

(3 marks)

6 Given that $y = 2x^{\frac{1}{2}} + 3x^{-1}$, find $\frac{dy}{dx}$.

(2 marks)

7 Find the *x*-coordinate of the point on the curve $y = 5x^2 - 16x$ where the gradient is 4.

(3 marks)

8 Find the coordinates of the points on the curve $y = 2x^3 - 9x^2 + 12x$ where the gradient is 0.

(4 marks)

9 Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $y = (\sqrt{x})^3 + \frac{2}{\sqrt{x}}$.

(3 marks)

10 (a) The function f(x) is given by

$$f(x) = \frac{2x^{\frac{1}{3}} + 3x^{\frac{2}{3}}}{x}.$$

Show that f(x) can be written in the form $f(x) = ax^b + cx^d$, where a,b,c and d are constants to be found.

(3 marks)

(b) Find f'(x).

(3 marks)

11 Prove, from first principles, that the derivative of 4x is 4.

(3 marks)

Medium Questions

1 Prove, from first principles, that the derivative of -3x is -3.

(3 marks)

2 Prove, from first principles, that the derivative of $2x^2$ is 4x.

(4 marks)

$$y = 4x^2 - 3x + 19$$

(1 mark)

(b)
$$y = x^3 - 5x^2 + 14x - 1$$

(2 marks)

(c)
$$y = 4x^{\frac{3}{2}} - 3x^{-1}$$

(2 marks)

4 Given that
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, $x > 0$, find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(3 marks)

$$y = (2x + 3)(3x - 1)$$

(2 marks)

(b)
$$y = x^3 \left(\frac{1}{x^3} - \frac{2}{x^2} + \frac{3}{x} \right)$$

6 (a) The function f is defined by $f(x) = 2x^3 - x^2 - 4x + 3$. Find f'(x).

(2 marks)

(b) Solve the equation f'(x) = 0.

7 (a) A curve has the equation $y = 3x - 4x^{-2}$, $x \ne 0$.

Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

(2 marks)

(b) Find the coordinates of the point on the curve where the gradient is 2.

8 (a) The function f is defined by $f(x) = x^3 - 6x^2 - cx + 12$. Find f'(x).

(2 marks)

(b) Given that the equation f'(x) = 0 has exactly one real solution, find the value of c.

9 (a) A curve is described by the equation $\frac{y}{x-3} = x^2 + 1$.

Make *y* the subject of the equation.

(1 mark)

(b) Hence find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(1 mark)

(c) Find the coordinates of the point on the curve where the gradient is -2.

10 (a)	The curve with equation $y = ax^2 + bx$	+ c has a gradient of -7 at the point $(-1,1)$	3), and
	a gradient of -3 at the point (1, 3).		

By considering
$$\frac{dy}{dx}$$
 show that $2a + b = -3$ and $-2a + b = -7$.

(2 marks)

(b) Hence find the values of *a* and *b*.

(1 mark)

(c) By considering a point that you know to be on the curve, find the value of c.

Hard Questions

1 Prove, from first principles, that the derivative of ax^2 is $2ax$, where a is a constant.	
	(4 marks)
2 Prove, from first principles, that the derivative of $2x^3$ is $6x^2$.	
	(5 marks)

$$y = -3x^3 + 5x^2 - 3x + \sqrt{13}$$

(2 marks)

(b)
$$y = 9x^{\frac{1}{3}} - 6x^{-\frac{1}{3}}$$

(2 marks)

4 Given that
$$y = \frac{1}{\sqrt{x}} \left(1 + \frac{1}{x} \right)$$
, $x > 0$, find $\frac{dy}{dx}$.

(3 marks)

$$y = (2x-1)^2(x+1)$$

(3 marks)

(b)
$$y = \frac{1}{x^5} (x^2 + \sqrt{x} - 1)$$

(3 marks)

6 The function f is defined by $f(x) = x^3 - 4x^2 + 6x - 9$. Show that there are no solutions to the equation f'(x) = 0.

(4 marks)

7 (a) A curve has the equation $y = \frac{3}{8}x^{\frac{4}{3}} - 12x^{\frac{1}{3}}$.

Show that $\frac{dx}{dv} = ax^{-\frac{2}{3}}(x+b)$, where a and b are rational numbers to be found.

(3 marks)

(b) Hence find the coordinates of the point on the curve where the gradient is 0.

(2 marks)

8 A curve has the equation $y = 4x^3 + bx^2 + 3x - 17$, where b is a constant. Given that there is only one point on the curve where the gradient is zero, determine the possible values of b.

(4 marks)

9 A curve is described by the equation $4y^2 - 3x^5 = 0$, y > 0.

By rearranging the equation to make y the subject, find $\frac{dy}{dx}$.

10 The curve with equation $y = ax^2 + bx + c$ has a gradient of 8 at the point (-2, 0), and a gradient of -10 at the point (1, -3). Find the values of a, b and c.

(5 marks)

Very Hard Questions

1 Prove, from first principles, that the derivative of $\frac{1}{x}$ is $-\frac{1}{x^2}$.

(5 marks)

2 (a) Show that $(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x}) = h$.

(2 marks)

(b) Prove, from first principles, that the derivative of \sqrt{x} is $\frac{1}{2\sqrt{x}}$.

(4 marks)

$$y = -\frac{5}{4}x^3 + \frac{3}{5}x^2 - x\sqrt{2} + \pi$$

(2 marks)

(b)
$$y = \frac{3}{2}x^{\frac{4}{5}} - \frac{10}{3}x^{-\frac{4}{5}}$$

(2 marks)

4 Given that
$$y = \left(\frac{1}{x} - \frac{1}{x\sqrt{x}}\right)^2$$
, $x > 0$, find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(4 marks)

$$y = \frac{2x^3 - 5x^2 - 3x}{2x + 1}$$

(3 marks)

(b)
$$y = \left(\sqrt{x} + 3 - \frac{4}{\sqrt{x}}\right)^2$$

(4 marks)

6 The function f is defined by $f(x) = 2x^3 + px^2 + 3x - 16$. Determine the range of values for p for which the equation f'(x) = 0 has at least one real solution.

(5 marks)

(5 marks)

8 The function f is defined by $f(x) = x^n - x$, $n \in \mathbb{N}$, $n \ge 2$. Determine the relationship between the value of n and the number of real solutions to the equation f'(x) = 0.

(4 marks)

9 A curve is described by the equation
$$\frac{\sqrt{y}}{-1+\sqrt{x}} = \frac{1}{x}$$
, $x > 1$. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(3 marks)

10 The curve with equation $y = ax^2 + bx + c$ passes through the point (-1, 4). At the point (2, 7) the gradient of the curve is 7. Find the values of a, b and c.

(5 marks)

