

Problems / Languages

The Problem View	The Language View
Does TM M halt on w?	$H = \{ \langle M, w \rangle : M \text{ halts on } w \}$
Does TM M not halt on w?	$\neg H = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : M \text{ halts on } \varepsilon \}$
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$
Does TM M accept all strings?	$H_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$
Do TMs $M_{\rm a}$ and $M_{\rm b}$ accept the same languages?	EqTMs = $\{ < M_a, M_b > : L(M_a) = L(M_b) \}$
Is the language that TM M accepts regular?	$TMreg = \{ :L(M) \text{ is regular} \}$

Reduction

• Example: Computing a function

multiply(x, y) =

- 1. answer := 0.
- 2. For i := 1 to y do: answer = sum(answer + x).
- 3. Return answer.
- Computing multiply reduces to computing sum.
 or
- If we can do **sum** then we can do **multiply**.

Using Reduction for Undecidability

Theorem: There exists no general procedure to solve the following problem:

Given an angle A, divide A into sixths using only a straightedge and a compass.

Proof: Suppose that there were such a procedure, which we'll call *sixth*. Then we could trisect an arbitrary angle:

trisect(a: angle) =

- 1. Divide a into six equal parts by invoking sixth(a).
- 2. Ignore every other line, thus dividing *a* into thirds.

sixth exists → trisect exists.

But we know that trisect does not exist. So, sixth cannot exist either.

Turing Reduction

A **reduction** R from L_1 to L_2 is one or more Turing machines such that:

If there exists a Turing machine *Oracle* that decides (or semidecides) L_2 , then the Turing machines in R can be composed with *Oracle* to build a deciding (or a semideciding) Turing machine for L_1 .

 $L_1 \le L_2$ means that L_1 is **reducible** to L_2 .

Using Reduction for Undecidability

Assume:

$$(L_1 \le L_2) \land (L_2 \text{ is in D}) \rightarrow (L_1 \text{ is in D})$$

If $(L_1 \text{ is in D})$ is false, then at least one of the two antecedents of that implication must be false. So:

If
$$(L_1 \le L_2)$$
 is true,

then $(L_2 \text{ is in D})$ must be false.

Using Reduction for Undecidability

Showing that L_2 is not in D:

$$L_1$$
 (known not to be in D) L_1 in D But L_1 not in D

 L_2 (a new language whose if L_2 in D So L_2 not in D decidability we are trying to determine)

To Use Reduction for Undecidability

- 0. Assume *Oracle* that decides L_2 exists
- 1. Choose a language L₁:
 - that is already known not to be in D, and
 - that can be reduced to L_2 .
- 2. Define the reduction R.
- 3. Describe the composition *C* of *R* with *Oracle*:

C(x) = Oracle(R(x))

- 4. Show that C does correctly decide L_1 if *Oracle* exists. We do this by showing:
 - R can be implemented by Turing machines,
 - C is correct:
 - If $x \in L_1$, then C(x) accepts, and
 - If $x \notin L_1$, then C(x) rejects.

Mapping Reductions

 L_1 is **mapping reducible** to L_2 ($L_1 \leq_M L_2$) iff there exists some computable function f such that:

$$\forall x \in \Sigma^* \ (x \in L_1 \Leftrightarrow f(x) \in L_2).$$

To decide whether x is in L_1 , we transform it, using f, into a new object and ask whether that object is in L_2 .

Note: mapping reduction is a particular case of Turing reduction.

$H_{\varepsilon} = \{ \langle M \rangle : TM \ M \text{ halts on } \epsilon \}$

Theorem: $H_{\varepsilon} = \{ < M > : TM M \text{ halts on } \varepsilon \} \text{ is not in D.}$

Proof: by reduction from H:

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

R

(?Oracle)

 $H_{\epsilon} \{ < M > : TM M halts on \epsilon \}$

R is a mapping reduction from H to H_s:

R(< M, w>) =

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape (ignore its input)
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < M#>.

$H_{\varepsilon} = \{ \langle M \rangle : TM \ M \text{ halts on } \varepsilon \}$

H_s is in SD. T semidecides it:

T(< M>) =

- 1. Run M on ε .
- 2. Accept.

T accepts <M> iff M halts on ε , so T semidecides H $_{\varepsilon}$.

Proof, Continued

R(< M, w>) =

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < M#>.

If Oracle exists, C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - < M, $w> \in H$: M halts on w, so M# halts on everything. In particular, it halts on ε . Oracle accepts.
 - <M, w> ∉ H: M does not halt on w, so M# halts on nothing and thus not on ε. Oracle rejects.

A Block Diagram of C

R Can Be Implemented as a Turing Machine

R must construct < M#> from < M, w>. Suppose w = aba.

M# will be:

So the procedure for constructing *M*# is:

1. Write:

- 2. For each character x in w do:
 - 2.1. Write x.
 - 2.2. If x is not the last character in w, write R.
- 3. Write $L_{\square} M$.

Conclusion

R can be implemented as a Turing machine.

C is correct.

So, if *Oracle* exists:

 $C = Oracle(R(\langle M, w \rangle))$ decides H.

But no machine to decide H can exist.

So neither does Oracle.

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string ε , we could solve the more general problem of deciding whether M halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we could decide whether *M* halts on any one particular string.

But doing a reduction in that direction would tell us nothing about whether H_{ϵ} was decidable.

The significant thing that we just saw in this proof is that there also exists a reduction in the direction that does tell us that H_ϵ is not decidable.

Important Elements in a Reduction Proof

- A clear declaration of the reduction "from" and "to" languages.
- A clear description of R.
- If R is doing anything nontrivial, argue that it can be implemented as a TM.
- Run through the logic that demonstrates how the "from" language is being decided by the composition of R and Oracle. You must do both accepting and rejecting cases.
- Declare that the reduction proves that your "to" language is not in D.

The Most Common Mistake: Doing the Reduction Backwards

- Right way: to show that L₂ is not in D:
- 1. Reduce a known hard one, L_1 to L_2 : $L_1 \longrightarrow L_2$
- 2. Given that L_1 is not in D,
- 3. Reduce L_1 to L_2 , i.e., show how to solve L_1 (the known one) in terms of L_2 (the unknown one)
- Wrong way: reduce L_2 (the unknown one) to L_1 (the known hard):

Example (wrong):

If there exists a machine $M_{\rm H}$ that solves H, then we could build a machine that solves $H_{\rm s}$ as follows:

1. Return $(M_{H}(\langle M, \varepsilon \rangle))$.

This proves nothing. It's an argument of the form: If *False* then ...

H_{ANY} = {<*M*> : there exists at least one string on which TM *M* halts}

Theorem: H_{ANY} is in SD.

Proof: by exhibiting a TM T that semidecides it.

What about simply trying all the strings in Σ^* one at a time until one halts?

H_{ANY} is in SD

T(< M>) =

1. Use dovetailing to try M on all of the elements of Σ^* :

```
\epsilon [1] \epsilon [2] a [1] \epsilon [3] a [2] b [1] \epsilon [4] a [3] b [2] aa [1] \epsilon [5] a [4] <u>b [3]</u> aa [2] ab [1]
```

2. If any instance of *M* halts, halt and accept.

T will accept iff M halts on at least one string. So T semidecides H_{ANY} .

$H_{\Delta NY}$ is not in D

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

R

(?Oracle) $H_{ANY} = {\langle M \rangle}$: there exists at least one string on which TM M halts} $R(\langle M, w \rangle) =$

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Examine *x*.
 - 1.2. If x = w, run M on w, else loop.
- 2. Return < M#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- R can be implemented as a Turing machine.
- C is correct: The only string on which M# can halt is w. So:
- <M, w> ∈ H: M halts on w. So M# halts on w. There exists at least one string on which M# halts. Oracle accepts.
- <M, w> ∉ H: M does not halt on w, so neither does M#. So there exists no string on which M# halts. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

The Steps in a Reduction Proof

- 1. Assume Oracle exists.
- 2. Choose an undecidable language to reduce from.
- 3. Define the reduction R.
- 4. Show that *C* (the composition of *R* with *Oracle*) is correct.

H_{ANY} is not in D: another reduction

Proof: We show that H_{ANY} is not in D by reduction from H:

$$H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$$

$$R$$

(?Oracle) $H_{ANY} = {< M> : there exists at least one string on which TM M halts}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < M#>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - <M, w> ∈ H: M halts on w, so M# halts on everything. So it halts on at least one string. Oracle accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*, so *M*# halts on nothing. So it does not halt on at least one string. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

$H_{ALL} = {< M> : TM M halts on all inputs}$

We show that H_{ALL} is not in D by reduction from H_{\circ} .

$$H_{\varepsilon} = \{ < M > : TM \ M \text{ halts on } \varepsilon \}$$
 $R \downarrow$

(?Oracle)

 $H_{ALL} = {< M> : TM M halts on all inputs }$

R(< M>) =

- 1. Construct the description $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Run *M*.
- 2. Return < M#>.

If Oracle exists, then $C = Oracle(R(\langle M \rangle))$ decides H_s:

- R can be implemented as a Turing machine.
- C is correct: M# halts on everything or nothing, depending on whether M halts on ε. So:
 - <*M* $> \in H_c$: *M* halts on ε , so *M*# halts on all inputs. *Oracle* accepts.
 - <*M* $> \notin H_s$: *M* does not halt on ε , so *M*# halts on nothing. *Oracle* rejects.

But no machine to decide H_s can exist, so neither does Oracle.

The **Membership** Question for TMs

We next define a new language:

$$A = {< M, w> : M \text{ accepts } w}.$$

Note that A is different from H since it is possible that *M* halts but does not accept. An alternative definition of A is:

$$A = {< M, w> : w \in L(M)}.$$

A_{ϵ} , A_{ANY} , and A_{ALL}

Theorem: $A_{\varepsilon} = \{ < M > : TM \ M \text{ accepts } \varepsilon \} \text{ is not in D.}$

Proof: Analogous to that for H_ε.

Theorem:

 $A_{ANY} = \{ < M > : TM M \text{ accepts at least one string} \}$ is not in D.

Proof: Analogous to that for H_{ANY}.

Theorem: $A_{ALL} = \{ <M> : = L(M) = \Sigma^* \}$ is not in D.

Proof: Analogous to that for H_{ALL} .

$A = \{ < M, w > : w \in L(M) \}$

We show that A is not in D by reduction from H.

H = {<M, w> : TM M halts on input string w} $R \downarrow$ $A = {<math><M$, w> : $w \in L(M)$ }

R(< M, w>) =

(?Oracle)

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept
- 2. Return < M#, w>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- R can be implemented as a Turing machine.
- C is correct: M# accepts everything or nothing. So:
- <M, w> ∈ H: M halts on w, so M# accepts everything. In particular, it accepts w. Oracle accepts.
- <M, w > ∉ H: M does not halt on w. M# gets stuck in step 1.3 and so accepts nothing. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

EqTMs= $\{\langle M_a, M_b \rangle: L(M_a) = L(M_b)\}$

$$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$$

$$R \downarrow$$

(Oracle)

EqTMs = $\{ < M_a, M_b >: L(M_a) = L(M_b) \}$

R(< M>) =

- 1. Construct the description of M#(x):
 - 1.1. Accept. (M# accepts everything)
- 2. Return <*M*, *M*#>.

If Oracle exists, then C = Oracle(R(< M>)) decides A_{ALL} :

- C is correct: M# accepts everything. So if L(M) = L(M#), M must also accept everything. So:
- <*M* $> \in A_{ALL}$: L(M) = L(M#). Oracle accepts.
- <*M* $> \notin A_{ALL}$: $L(M) \neq L(M\#)$. Oracle rejects.

But no machine to decide A_{ALL} can exist, so neither does *Oracle*.

Sometimes Mapping Reducibility Isn't Right

Recall that a mapping reduction from L_1 to L_2 is a computable function f where:

$$\forall x \in \Sigma^* \ (x \in L_1 \Leftrightarrow f(x) \in L_2).$$

When we use a mapping reduction, we return:

Oracle(f(x))

Sometimes we need a more general ability to use *Oracle* as a subroutine and then to do other computations after it returns.

{<M> : M accepts no even length strings}

 $H = \{ < M, w > : TM M \text{ halts on input string } w \}$

(?Oracle)

 $L_2 = \{ < M > : M \text{ accepts no even length strings} \}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return < M#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It accepts everything or nothing, depending on whether it makes it to step 1.4. So:
 - < M, $w > \in H$: M halts on w. Oracle:
 - < M, $w > \notin H$: M does not halt on w. Oracle:

Problem:

{<M> : M accepts no even length strings}

 $H = \{ < M, w > : TM M \text{ halts on input string } w \}$ $\int R$

(?Oracle)

 $L_2 = {< M> : M \text{ accepts no even length strings}}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return < M#>.

If Oracle exists, then $C = \neg Oracle(R(< M, w>))$ decides H:

- R and ¬ can be implemented as Turing machines.
- C is correct:
 - <M, w> ∈ H: M halts on w. M# accepts everything, including some even length strings. Oracle rejects so C accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*. *M*# gets stuck. So it accepts nothing, so no even length strings. *Oracle* accepts. So *C* rejects.

But no machine to decide H can exist, so neither does Oracle.

Are All Questions about TMs Undecidable?

Let $L = \{ < M > : TM M contains an even number of states \}$

Are All Questions about TMs Undecidable?

Let $L = \{ \langle M, w \rangle : M \text{ halts on } w \text{ within 3 steps} \}.$

Another One

Let L_q = {<M, q> : there is some configuration

 $(p, u\underline{av})$ of M, with $p \neq q$,

that yields a configuration whose state is q}.

Is L_q decidable?