Computational Linguistics Project

Abhilasha Kumar

Reading the File

```
rpp = read.csv("rpp_data.csv", header = TRUE, sep = ",")
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.4
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
rpp = rpp %>% filter(TextNumber != "" & Abstract != "No Abstract" & Replicate..R. != "")
## Warning: package 'bindrcpp' was built under R version 3.4.4
rpp = rpp[,c(138, 139,76,24, 30, 36,37,72)]
colnames(rpp) = c("TextNumber", "Abstract", "Replicated", "Citation Count",
                  "Discipline", "SurprisingResult", "ExcitingResult",
                  "Direction of Replication")
rpp$Replicated = ifelse(rpp$Replicated == "yes", "Yes", "No")
```

Plotting Studies

Abstracts, Suprisingness and Replication

Classifier Decisions

Nearest Neighbors

```
c3 = read.csv("classify_knn.csv", header = TRUE, sep = ",")
c3 %>%
ggplot(aes(x =factor(Actual), y = Decision)) +
    geom_jitter( width = 0.15, height = 0.5, aes(color = Match), size = 4)+
    theme_few()+
    scale_color_wsj()+
    xlab("Actual Replication Status") + ylab("Classifier Decision") +
    ggtitle("K-nearest neighbors Classifier Accuracy") +
    theme(axis.text = element_text( face = "bold", size = rel(0.8)),
        axis.title = element_text(face = "bold", size = rel(1.2)),
        legend.title = element_text(face = "bold", size = rel(1.2)),
        axis.text.x = element_text(face = "bold", size = rel(1.2)),
        plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
```

K-nearest neighbors Classifier Accuracy

Classifier Performance

```
clf_compare = read.csv("classifier_compare.csv", header = TRUE, sep = ",")
clf_compare = clf_compare %>% arrange(desc(test_score))
clf_compare = clf_compare %>% filter(!classifier %in% c("Logistic Regression",
                                                        "Linear SVM",
                                                        "Neural Net"))
clf compare %>%
  ggplot(aes(x =train_score, y = test_score)) +
    geom_point(aes(color = classifier), size = 4)+
  theme_few()+
  xlim(0,1)+
  ylim(0,1)+
  scale_color_wsj()+
  xlab("Training Score") + ylab("Testing Score") +
    ggtitle("Comparison of Classifiers") +
  theme(axis.text = element_text( face = "bold", size = rel(0.8)),
          axis.title = element_text(face = "bold", size = rel(1.2)),
          legend.title = element_text(face = "bold", size = rel(1.2)),
        axis.text.x = element_text(face = "bold", size = rel(1.2)),
  plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
```

Comparison of Classifiers

Lexical Diversity and Length

```
ld = read.csv("lexical_diversity.csv", header = TRUE, sep = ",")
ld$R = ifelse(ld$Replicated == "yes", 1,0)
ld$ld_c = scale(ld$Lexical.Diversity, center = TRUE, scale = FALSE)
ld_lm = glm (data = ld, R ~ Ldnew + Length,
             family = "binomial")
summary(ld_lm)
##
## Call:
## glm(formula = R ~ Ldnew + Length, family = "binomial", data = ld)
##
## Deviance Residuals:
      Min
##
                1Q
                     Median
                                  3Q
                                          Max
## -1.3629 -0.9831 -0.7739
                              1.2071
                                       1.8834
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.820672
                          3.104206 -0.587
              -1.640713
                          3.339191 -0.491
                                             0.6232
## Ldnew
## Length
               0.015536
                          0.007623
                                    2.038 0.0415 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 122.16 on 90 degrees of freedom
##
## Residual deviance: 115.76 on 88 degrees of freedom
## AIC: 121.76
## Number of Fisher Scoring iterations: 4
ld_lm2 = glm (data = ld, R ~ Length,
              family = "binomial")
summary(ld_lm2)
##
## Call:
## glm(formula = R ~ Length, family = "binomial", data = ld)
## Deviance Residuals:
                     Median
       Min
                1Q
                                   3Q
                                          Max
## -1.3662 -0.9786 -0.7906
                             1.2452
                                        1.8789
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.23329 1.21859 -2.653 0.00797 **
## Length
               0.01690
                          0.00716
                                   2.360 0.01828 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 122.16 on 90 degrees of freedom
## Residual deviance: 116.00 on 89 degrees of freedom
## AIC: 120
## Number of Fisher Scoring iterations: 4
anova(ld_lm, ld_lm2)
## Analysis of Deviance Table
## Model 1: R ~ Ldnew + Length
## Model 2: R ~ Length
    Resid. Df Resid. Dev Df Deviance
## 1
                  115.76
           88
## 2
           89
                   116.00 -1 -0.24222
## need to plot length figure
x = sjPlot::plot_model(ld_lm, type = "pred", terms = "Length")
x + theme_few()+
  scale color wsj()+
  xlab("Length of Abstract") + ylab("Predicted probability of Replication") +
    ggtitle("Length of Abstract Predicting Replication") +
  theme(axis.text = element_text( face = "bold", size = rel(0.8)),
          axis.title = element_text(face = "bold", size = rel(1.2)),
```

```
legend.title = element_text(face = "bold", size = rel(1.2)),
axis.text.x = element_text(face = "bold", size = rel(1.2)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
```

Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.

Length of Abstract Predicting Replication

Lexical Diversity Predicting Replication

Length Predicting Replication

POS Tagging

```
pos_data = read.csv("pos_python.csv", header = TRUE, sep = ",")
library(dplyr)
## This data is in wide format: need to convert to long format
pos_long = tidyr::gather(pos_data, PartOfSpeech, Count,
                         Adjective, Noun, Verb, Other, factor_key=TRUE)
pos_long = pos_long %>% arrange(TextNumber)
pos_long$Percent = pos_long$Count/pos_long$Length
pos_long$Percent = round(pos_long$Percent, digits = 2)
pos_long$R = ifelse(pos_long$Replicated == "yes", 1,0)
contrasts(pos_long$PartOfSpeech) = contr.treatment(4, base = 1)
library(lme4)
## Warning: package 'lme4' was built under R version 3.4.4
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.4.4
cl3 <- glmerControl(optimizer="optimx",</pre>
                    optCtrl=list(method="nlminb", maxiter=10000))
```

```
library(optimx)
pos_lm = glmer (data = pos_long, R ~ PartOfSpeech*Percent
                  (1 | TextNumber),
             family = "binomial", control = cl3)
summary(pos_lm)
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: R ~ PartOfSpeech * Percent + (1 | TextNumber)
     Data: pos_long
## Control: cl3
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
     132.7
              167.8
                     -57.3
                               114.7
##
## Scaled residuals:
                         Median
        Min
                   1Q
                                       3Q
## -0.002221 -0.001736 -0.001580 0.036242 0.042923
## Random effects:
## Groups
              Name
                          Variance Std.Dev.
## TextNumber (Intercept) 3457
                                   58.8
## Number of obs: 364, groups: TextNumber, 91
## Fixed effects:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                       -12.5772
                                   6.1014 -2.061
                                                     0.0393 *
## PartOfSpeech2
                         0.9861
                                    14.0685
                                            0.070 0.9441
## PartOfSpeech3
                                  6.8714 0.068 0.9455
                         0.4694
## PartOfSpeech4
                        -1.1406
                                   9.6022 -0.119 0.9054
## Percent
                         -0.4872
                                   29.6337 -0.016 0.9869
                                 42.2061 -0.049
## PartOfSpeech2:Percent -2.0591
                                                    0.9611
## PartOfSpeech3:Percent -6.2600
                                   49.8876 -0.125 0.9001
## PartOfSpeech4:Percent
                        4.0429
                                   39.6274
                                            0.102 0.9187
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
              (Intr) Prt0S2 Prt0S3 Prt0S4 Percnt P0S2:P P0S3:P
## PartOfSpch2 -0.409
## PartOfSpch3 -0.826 0.373
## PartOfSpch4 -0.695 0.246 0.580
             -0.945 0.412 0.828 0.697
## Percent
## PrtOfSpc2:P 0.664 -0.929 -0.593 -0.447 -0.705
## PrtOfSpc3:P 0.544 -0.260 -0.872 -0.356 -0.579 0.425
## PrtOfSpc4:P 0.783 -0.296 -0.663 -0.963 -0.826 0.547 0.440
car::Anova(pos_lm)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: R
```

Chisq Df Pr(>Chisq)

##

```
## PartOfSpeech
                        0.0001 3
                                      1.0000
                        0.0000 1
                                      0.9964
## Percent
## PartOfSpeech:Percent 0.0530 3
                                      0.9968
pos_long$Replicated = ifelse(pos_long$Replicated == "yes", "Yes", "No")
library(ggplot2)
library(ggthemes)
pos_long %>%
  ggplot(aes(x =Replicated, y = Percent, color = Replicated)) +
   geom_point()+
   geom_text(aes(label=TextNumber), hjust = 1.5, vjust = .5)+
  geom_smooth(method = "glm", se = FALSE)+
   theme_light()+
  scale_color_wsj()+
  facet_wrap(~PartOfSpeech)+
  xlab("Replication Status") + ylab("Percentage of POS") +
    ggtitle("Parts of Speech Predicting Replication?") +
  theme(axis.text = element_text( face = "bold", size = rel(0.8)),
          axis.title = element_text(face = "bold", size = rel(1.2)),
          legend.title = element_text(face = "bold", size = rel(1.2)),
        axis.text.x = element_text(face = "bold", size = rel(1.4)),
        strip.text.x = element_text(face = "bold", size = rel(1.2)),
   plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
```

Parts of Speech Predicting Replication?

