Queen Attack

Alexis

January 13, 2024

1 Problem Statement

Consider a 2D square grid of size N. N queens are assigned a color in 1, ..., C. W Walls are also placed on static cells.

Walls (-1), empty cells (0) and queens (1,...,C) are identified using a 2D integer array color[N][N]. The values range from -1 to C.

Figure 1: The number of pairs under attack is 0(1) + 3(2) + 1(3) = 4

Consider all the pairs of same-color queens under attack of each others. One can move a queen to avoid being under attack. The goal is to minimize the overall cost

$$min\{attackCost + moveCost\}$$

2 Attack cost

The attack cost is the sum of attack pairs weighted by a factor N

$$attackCost = N * attackPairs$$

The number of pairs of queens under attack with the same color

$$attackPairs = \sum_{(x_1, y_1)|color[x_1, y_1] > 0} attackPairs(x_1, y_1)$$

For a queen at position (x_1, y_1) with color c, the number of other queens under attack without double counting is

$$attackPairs(x_1, y_1) = attackDown(x_1, y_1)$$

$$+ attackRight(x_1, y_1)$$

$$+ attackDownLeft(x_1, y_1)$$

$$+ attackDownRight(x_1, y_1)$$

 $attackDown, attackRight, attackDownLeft \ {\rm or} \ attackDownRight \ {\rm is} \ {\rm a} \ {\rm boolean}.$ With

$$c = color[x_1, y_1]$$

It is true if the closest non-empty cell in associated direction is also a queen with color c.

$$attackDown(x_1, y_1) \Leftarrow color[x_1 + k_d, y_1] = c$$

$$attackRight(x_1, y_1) \Leftarrow color[x_1, y_1 + k_r] = c$$

$$attackDownLeft(x_1, y_1) \Leftarrow color[x_1 + k_{dl}, y_1 - k_{dl}] = c$$

$$attackDownRight(x_1, y_1) \Leftarrow color[x_1 + k_{dr}, y_1 + k_{dr}] = c$$

2.1 Neighbors

Where is the closest non-empty cell from (x_1, y_1) in every direction? It is the min offset to a non-empty cell. By inserting walls all around the grid we ensure such neighbors always exist.

Figure 2: Positions under attack by the queen at $(x_1, y_1) = (4, 5)$

$$\begin{aligned} k_d &= \min\{k \in \mathbb{N} | k > 0 \\ & x_2 = x_1 + k < N \\ & y_2 = y_1 & color[x_2, y_2] \neq 0\} \end{aligned}$$

$$k_r &= \min\{k \in \mathbb{N} | k > 0 \\ & x_2 = x_1 & y_2 = y_1 + k < N \\ & color[x_2, y_2] \neq 0\} \end{aligned}$$

$$k_{dl} &= \min\{k \in \mathbb{N} | k > 0 \\ & x_2 = x_1 + k < N \\ & y_2 = y_1 - k > = 0 \\ & color[x_2, y_2] \neq 0\}$$

Direction	(x_2,y_2)
Down	$(x_1 + k_d, y_1)$
Right	$(x_1, y_1 + k_r)$
Down-Left	$(x_1 + k_{dl}, y_1 - k_{dl})$
Down-Right	$(x_1 + k_{dr}, y_1 + k_{dr})$
Up	$(x_1 - k_u, y_1)$
Left	$(x_1, y_1 - k_l)$
Up-Left	$(x_1 - k_{ul}, y_1 - k_{ul})$
Up-Right	$(x_1 - k_{ur}, y_1 + k_{ur})$

Table 1: Position (x_2,y_2) for the 2nd queen under attack by the 1st queen at position (x_1,y_1)

$$k_{dr} = min\{k \in \mathbb{N} | k > 0$$

 $x_2 = x_1 + k < N$
 $y_2 = y_1 + k < N$
 $color[x_2, y_2] \neq 0\}$

$$k_u = \min\{k \in \mathbb{N} | k > 0$$

 $x_2 = x_1 - k > = 0$
 $y_2 = y_1$
 $\operatorname{color}[x_2, y_2] \neq 0\}$

$$k_l = min\{k \in \mathbb{N} | k > 0$$

 $x_2 = x_1$
 $y_2 = y_1 - k >= 0$
 $color[x_2, y_2] \neq 0\}$

$$k_{ul} = \min\{k \in \mathbb{N} | k > 0$$

$$x_2 = x_1 - k > = 0$$

$$y_2 - y_1 - k > = 0$$

$$color[x_2, y_2] \neq 0\}$$

Direction	x_2	y_2
Down	$x_1 + k < x_1 + k_d$	y_1
Right	x_1	$y_1 + k < y_1 + k_r$
Down-Left	$x_1 + k < x_1 + k_{dl}$	$y_1 - k > y_1 - k_{dl}$
Down-Right	$x_1 + k < x_1 + k_{dr}$	$y_1 + k < y_1 + k_{dr}$
Up	$x_1 - k > x_1 - k_u$	y_1
Left	x_1	$y_1 - k > y_1 - k_l$
Up-Left	$x_1 - k > x_1 - k_{ul}$	$y_1 - k > y_1 - k_{ul}$
Up-Right	$x_1 - k > x_1 - k_{ur}$	$y_1 + k < y_1 + k_{ur}$

Table 2: Offset k and position (x_2, y_2) for the queen move from position (x_1, y_1)

$$k_{ur} = min\{k \in \mathbb{N} | k > 0$$

$$x_2 = x_1 - k > 0$$

$$y_2 = y_1 + k < N$$

$$color[x_2, y_2] \neq 0\}$$

3 Move cost

One generates a sequence of moves to reduce the attack cost.

A queen can move horizontally, vertically or diagonally as long as the move is valid: no other queens or walls are blocking the move.

At each time $t \in 1, ..., T$, one chooses 1. a queen on the chess board located at position (x_1, y_1) and 2. an empty cell at position (x_2, y_2) to move it to.

$$color[x_2, y_2] = 0$$
$$color[x_1, y_1] > 0$$

Given (x_1, y_1) , consider $k_d, k_r, k_{dl}, k_{dr}, k_u, k_l, k_{ul}, k_{ur}$ the offsets to the neighbor positions. The new position (x_2, y_2) and the *move* offset k > 0 verify one of the constraints in Table 2. This incurs into a *move* cost of

$$moveCost_t = \sqrt{max\{|x_2 - x_1|, |y_2 - y_1|\}} = \sqrt{k}$$

The sequence move cost is the sum of the cost of each moves

$$moveCost = \sum_{t=1}^{T} moveCost_t$$

If one decides to make a move, the state is updated to

$$\begin{aligned} color[x_2,y_2] &= color[x_1,y_1] \\ color[x_1,y_1] &= 0 \end{aligned}$$