Formula Sheet (taken principally from D. J. Griffiths: Introduction to Electrodynamics, Prentice Hall)

VECTOR DERIVATIVES

 $d\mathbf{I} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}}, \quad d\tau = dx\,dy\,dz$

Gradient: $\nabla t = \frac{\partial t}{\partial x} \hat{x} + \frac{\partial t}{\partial y} \hat{y} + \frac{\partial t}{\partial z} \hat{z} \qquad \overrightarrow{=} \times \hat{x} + \gamma \hat{y} + 2\hat{z}$ Divergence: $\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \qquad \hat{f} = \frac{\hat{f}}{\hat{f}}$

Curl: $\nabla \times \mathbf{v} = \begin{pmatrix} \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \end{pmatrix} \hat{\mathbf{x}} + \begin{pmatrix} \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \end{pmatrix} \hat{\mathbf{y}} + \begin{pmatrix} \frac{\partial v_y}{\partial x} - \frac{\partial v_z}{\partial y} \end{pmatrix} \hat{\mathbf{z}}$

Laplacian: $\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$

Spherical. $dI = dr \hat{\mathbf{r}} + r d\theta \hat{\theta} + r \sin\theta d\phi \hat{\phi}$; $d\tau = r^2 \sin\theta dr d\theta d\phi$

 $\nabla t = \frac{\partial t}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\phi}$

Divergence: $\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\theta}{\partial \phi}$

Curl: $\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}}$ $+\frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial v_r}{\partial \phi}-\frac{\partial}{\partial r}(rv_\phi)\right]\hat{\theta}+\frac{1}{r}\left[\frac{\partial}{\partial r}(rv_\theta)-\frac{\partial v_r}{\partial \theta}\right]\hat{\phi}$

Laplacian: $\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$

Cylindrical. $d\mathbf{l} = ds \,\hat{\mathbf{s}} + s \, d\phi \,\hat{\phi} + dz \,\hat{\mathbf{z}}; \quad d\tau = s \, ds \, d\phi \, dz$

Gradient: $\nabla t = \frac{\partial t}{\partial s} \hat{s} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\phi} + \frac{\partial t}{\partial z} \hat{z}$

Divergence: $\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_\phi}{\partial \phi} + \frac{\partial v_z}{\partial z}$

 $Curi: \hspace{1cm} \nabla \times \mathbf{v} \hspace{2mm} = \hspace{2mm} \left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (s v_\phi) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$

Laplacian: $\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$

Triple Products

- (1) $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$
- (2) $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$

Product Rules

- (3) $\nabla (fg) = f(\nabla g) + g(\nabla f)$
- (4) $\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$
- (5) $\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$
- (6) $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) \mathbf{A} \cdot (\nabla \times \mathbf{B})$
- (7) $\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) \mathbf{A} \times (\nabla f)$
- (8) $\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) \mathbf{B}(\nabla \cdot \mathbf{A})$

Second Derivatives

- (9) $\nabla \cdot (\nabla \times \mathbf{A}) = 0$
- (10) $\nabla \times (\nabla f) = 0$
- (11) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$

FUNDAMENTAL THEOREMS

Gradient Theorem : $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$

Divergence Theorem: $\int (\nabla \cdot \mathbf{A}) d\tau = \int \mathbf{A} \cdot d\mathbf{a}$ Curl Theorem: $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \int \mathbf{A} \cdot d\mathbf{a}$

Stokes theoren