LECTURE 21

• Readings: Sections 8.1-8.2

"It is the mark of truly educated people to be deeply moved by **statistics**." (Oscar Wilde)

- Design & interpretation of experiments
- polling, medical/pharmaceutical trials...
- Netflix competition
- Finance

- Signal processing
- Tracking, detection, speaker identification,...

Types of Inference models/approaches

- Model building versus inferring unknown variables. E.g., assume X = aS + W
- Model building:
 - know "signal" S, observe X, infer a
- Estimation in the presence of noise: know a, observe X, estimate S.
- Hypothesis testing: unknown takes one of few possible values; aim at small probability of incorrect decision
- Estimation: aim at a small estimation error
- Classical statistics:

 θ : unknown parameter (not a r.v.)

- \circ E.g., θ = mass of electron
- Bayesian: Use priors & Bayes rule

Bayesian inference: Use Bayes rule

Hypothesis testing

discrete data

$$p_{\Theta|X}(\theta \mid x) = \frac{p_{\Theta}(\theta) p_{X|\Theta}(x \mid \theta)}{p_{X}(x)}$$

- continuous data

$$p_{\Theta|X}(\theta \mid x) = \frac{p_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$

• Estimation; continuous data

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$

$$Z_t = \Theta_0 + t\Theta_1 + t^2\Theta_2$$

$$X_t = Z_t + W_t, \qquad t = 1, 2, \dots, n$$

Bayes rule gives:

$$f_{\Theta_0,\Theta_1,\Theta_2\mid X_1,\dots,X_n}(\theta_0,\theta_1,\theta_2\mid x_1,\dots,x_n)$$

Estimation with discrete data

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) p_{X|\Theta}(x \mid \theta)}{p_{X}(x)}$$
$$p_{X}(x) = \int f_{\Theta}(\theta) p_{X|\Theta}(x \mid \theta) d\theta$$

Example:

- Coin with unknown parameter θ
- Observe X heads in n tosses
- What is the Bayesian approach?
- Want to find $f_{\Theta|X}(\theta \mid x)$
- Assume a prior on Θ (e.g., uniform)

Output of Bayesian Inference

- Posterior distribution:
- pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

- If interested in a single answer:
- Maximum a posteriori probability (MAP):
- $o p_{\Theta|X}(\theta^* \mid x) = \max_{\theta} p_{\Theta|X}(\theta \mid x)$ minimizes probability of error; often used in hypothesis testing
- $\circ \ f_{\Theta \mid X}(\theta^* \mid x) = \max_{\theta} f_{\Theta \mid X}(\theta \mid x)$
- Conditional expectation:

$$E[\Theta \mid X = y] = \int \theta f_{\Theta \mid X}(\theta \mid x) d\theta$$

Single answers can be misleading!

Least Mean Squares Estimation

• Estimation in the absence of information

find estimate c, to:

minimize
$$\mathbf{E}\left[(\Theta-c)^2\right]$$

- Optimal estimate: $c = E[\Theta]$
- Optimal mean squared error:

$$\mathrm{E}\left[(\Theta - \mathrm{E}[\Theta])^2\right] = \mathsf{Var}(\Theta)$$

LMS Estimation of Θ based on X

- Two r.v.'s Θ , X
- we observe that X = x
- new universe: condition on X = x
- $\mathbf{E}\left[(\Theta-c)^2 \mid X=x\right]$ is minimized by c=
- $\mathbf{E}\left[(\Theta \mathbf{E}[\Theta \mid X = x])^2 \mid X = x\right]$ $< \mathbf{E}[(\Theta - g(x))^2 \mid X = x]$

$$\circ \mathbf{E} \left[(\Theta - \mathbf{E}[\Theta \mid X])^2 \mid X \right] \le \mathbf{E} \left[(\Theta - g(X))^2 \mid X \right]$$

$$\circ \ \mathbf{E}\left[(\Theta - \mathbf{E}[\Theta \mid X])^2\right] \le \mathbf{E}\left[(\Theta - g(X))^2\right]$$

 $E[\Theta \mid X]$ minimizes $E\left[(\Theta - g(X))^2\right]$ over all estimators $g(\cdot)$

LMS Estimation w. several measurements

- Unknown r.v. ⊖
- Observe values of r.v.'s X_1, \ldots, X_n
- Best estimator: $\mathbf{E}[\Theta \mid X_1, \dots, X_n]$
- Can be hard to compute/implement
- involves multi-dimensional integrals, etc.