1. The nature of light

Dual nature of light

Light behaves both as particles and wave

Figure 35-5 A primary rainbow and the faint supernumeraries below it are due to optical interference.

$$E = hf$$
 (photon energy).

h is the Planck constant

$$h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s} = 4.14 \times 10^{-15} \,\text{eV} \cdot \text{s}.$$

Photoelectric effect (particle nature)

First experiment

 K_{max} does not depend on the intensity of the light source!?

The incident light shines on target T, ejecting electrons, collected by collector cup C → an electric current through circuit

- Adjusting the potential difference
 V to slow down the ejected
 electron.
- We then vary V until it reaches a certain value, called the stopping potential V_{stop}, at which point the reading of meter A has just dropped to zero
 - The kinetic energy of these most energetic electrons

$$K_{max} = eV_{stop}$$

The photoelectric equation

$$hf = K_{\rm max} + \Phi$$
 (photoelectric equation).

- Energy equal to the photon's energy *hf* is **transferred** to a single electron in the material of the target.
- If the electron is to escape from the target, it must pick up energy at least equal to the work function Φ (materials property).
- Any additional energy $(hf \Phi)$ acquired from the photon is **kinetic** energy K of the electron.
- In the most favorable circumstance, the electron can escape through the surface **without losing** any of this kinetic energy in the process \rightarrow outside the target, electrons have the maximum possible kinetic energy K_{max} .
- We can also get

$$V_{\text{stop}} = \left(\frac{h}{e}\right) f - \frac{\Phi}{e}.$$

Second experiment

Electrons can escape only if the light frequency exceeds a certain value.

The escaping electron's kinetic energy is greater for a greater light frequency.

The photoelectric effect does not occur if the frequency is below a certain cutoff frequency f₀, no matter how intense the incident light is.

cutoff wavelength $\lambda_0 = c/f_0$