# 目录

| 第一章 | 演示    | 2 |
|-----|-------|---|
| 1.1 | 导数的概念 | 2 |
| 第二章 | 理论部分  | 3 |
| 2.1 | 微分方程  | 3 |
| 2.2 | 多元函数  | 3 |

## 第一章 演示

### 1.1 导数的概念

随便引用的一个东西 [?], 我爱同济我爱同济我爱同济



## 第二章 理论部分

### 2.1 微分方程

Example 2.1.1. 求微分方程 y'' - 2y' - 3y = 3x + 1 的一个特解.

Solution. 这是二阶常系数非齐次线性微分方程,且函数 f(x) 是  $e^{\lambda x}P_m(x)$  型,其中

$$\lambda = 0, \ P_m(x) = 3x + 1$$

与所给方程对应的齐次方程为

$$y'' - 2y' - 3y = 0$$

其特征方程为

$$r^2 - 2r - 3 = 0$$

由于  $\lambda = 0$  不是特征方程的根,所以设特解

$$y* = b_0 x + b_1$$

带入所给方程,得

$$-3b_0x - 2b_0 - 3b_1 = 3x + 1$$

比较等式两端 x 同次幂的系数,易得  $b_0=-1,\ b_1=\frac{1}{3}$ ,于是求得一个特解为

$$y* = -x + \frac{1}{3}$$

2.2 多元函数

2.2 多元函数 4

**Definition 2.2.1.** 设二元函数 f(P) = f(x, y) 的定义域为 D, 点  $P_0(x_0, y_0)$  是 D 的聚点,如果存在常数 A,对于任意给定正数  $\varepsilon$ ,总存在正整数  $\delta$ ,使得当点  $P(x, y) \in D \cap \mathring{U}(P_0, \delta)$  时,都有

$$|f(P) - A| = |f(x, y) - A| < \varepsilon$$

成立,那么就称常数 A 为函数 f(x,y) 当  $(x,y) \rightarrow (x_0,y_0)$  时的极限 (二重极限),记作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \quad \lor \quad \lim_{P\to P_0} f(P) = A$$

任意一点  $P \in \mathbb{R}^2$  与任意一个点集  $E \subset \mathbb{R}^2$  之间有以下三种关系的一种:

- 内点: 如果存在点 P 的某个邻域 U(P),使得  $U(P) \subset E$ ,那么称 P 为 E 的内点.
- **外点**: 如果存在点 P 的某个邻域 U(P),使得  $U(P) \cap E = \emptyset$ ,那么称 P 为 E 的外点.
- 边界点: 如果点 P 在任意邻域内既含有属于 E 的点,又含有不属于 E 的点,那么称 P 为 E 的边界点.

#### 题目 2.1 这是一道简单的题目

#### 题目 2.2 这是一道简单的题目 2

解答 这是一个解答