# BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/~bbm205

Lecture 9a: Introduction to Discrete
Probability
Lecturer: Lale Özkahya

Resources:

Kenneth Rosen, "Discrete Mathematics and App." http://www.eecs70.org/

#### **Key Points**

- Uncertainty does not mean "nothing is known"
- Most real-world problems involve uncertainty
  - Predictions:
    - Will you get an A in CS70? Will the Raiders win the Super Bowl?
  - Strategy/Decision-making under uncertainty
    - Drop CS 70? How much to bet on blackjack? Buy a specific stock?
  - Engineering
    - Build a spam filter Improve wifi coverage. Control systems (Internet, airplane, robots, self-driving cars)
- How to best use 'artificial' uncertainty?
  - Play games of chance
  - Design randomized algorithms.
- Probability
  - Models knowledge about uncertainty: Mathematical discipline that allows you to reason about uncertainty.
  - Discovers best way to use that knowledge in making decisions

## The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.



Uncertainty = Fear



Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice, practice, practice.

#### Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)



- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- ▶ Likelihoods: *H*: 50% and *T*: 50%

## Random Experiment: Flip one Fair Coin Flip a fair coin:



What do we mean by the likelihood of tails is 50%? Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]
   Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
   Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

#### Random Experiment: Flip one Fair Coin

Flip a fair coin: model



Physical Experiment



- ► The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
  - A set  $\Omega$  of outcomes:  $\Omega = \{H, T\}$ .
  - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

#### Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:



- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods:  $H: p \in (0,1)$  and T: 1-p
- Frequentist Interpretation:

Flip many times  $\Rightarrow$  Fraction 1 - p of tails

- Question: How can one figure out p? Flip many times
- Tautology? No: Statistical regularity!

## Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model



Physical Experiment



## Flip Two Fair Coins

- ▶ Possible outcomes:  $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$ .
- Note:  $A \times B := \{(a,b) \mid a \in A, b \in B\}$  and  $A^2 := A \times A$ .
- ► Likelihoods: 1/4 each.



#### Flip Glued Coins

Flips two coins glued together side by side:



- ▶ Possible outcomes: {HH, TT}.
- ► Likelihoods: *HH* : 0.5, *TT* : 0.5.
- Note: Coins are glued so that they show the same face.

#### Flip Glued Coins

Flips two coins glued together side by side:



- ▶ Possible outcomes: {HT, TH}.
- ► Likelihoods: *HT* : 0.5, *TH* : 0.5.
- Note: Coins are glued so that they show different faces.

#### Flip two Attached Coins

Flips two coins attached by a spring:



- Possible outcomes: {HH, HT, TH, TT}.
- ► Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.

#### Flipping Two Coins

Here is a way to summarize the four random experiments:



- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4]; Spring-attached coins: [2];

#### Flipping Two Coins

Here is a way to summarize the four random experiments:



#### Important remarks:

- Each outcome describes the two coins.
- ► E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- ▶ Each  $\omega \in \Omega$  describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

#### Flipping *n* times

Flip a fair coin n times (some  $n \ge 1$ ):

- ▶ Possible outcomes:  $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$ . Thus,  $2^n$  possible outcomes.
- ► Note:  $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$ .  $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$ .  $|A^n| = |A|^n$ .
- ▶ Likelihoods: 1/2<sup>n</sup> each.



#### Roll two Dice

#### Roll a balanced 6-sided die twice:

- ► Possible outcomes:  $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- Likelihoods: 1/36 for each.



## Probability Space.

- 1. A "random experiment":
  - (a) Flip a biased coin;
  - (b) Flip two fair coins;
  - (c) Deal a poker hand.
- 2. A set of possible outcomes:  $\Omega$ .
  - (a)  $\Omega = \{H, T\};$
  - (b)  $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome:  $Pr : \Omega \rightarrow [0,1]$ .
  - (a) Pr[H] = p, Pr[T] = 1 p for some  $p \in [0, 1]$
  - (b)  $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
  - (c)  $Pr[\underline{A \spadesuit A \lozenge A \clubsuit A \heartsuit K \spadesuit}] = \cdots = 1/\binom{52}{5}$

## Probability Space: formalism.

 $\Omega$  is the **sample space.**  $\omega \in \Omega$  is a **sample point**. (Also called an **outcome**.) Sample point  $\omega$  has a probability  $Pr[\omega]$  where

- $0 \le Pr[\omega] \le 1$ ;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1.$



#### Probability Space: Formalism.

In a **uniform probability space** each outcome  $\omega$  is equally probable:  $Pr[\omega] = \frac{1}{|\Omega|}$  for all  $\omega \in \Omega$ .

#### Uniform Probability Space



#### Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- ► Flipping a biased coin is not a uniform probability space.

#### Probability Space: Formalism

Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$$
 
$$Pr[\text{blue}] = \frac{1}{8}.$$

#### Probability Space: Formalism

Simplest physical model of a non-uniform probability space:



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

Note: Probabilities are restricted to rational numbers:  $\frac{N_k}{N}$ .

#### Probability Space: Formalism

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector  $\omega$  with probability  $p_{\omega}$ .

$$\Omega = \{1, 2, 3, \dots, N\}, Pr[\omega] = p_{\omega}.$$

#### An important remark

- ▶ The random experiment selects one and only one outcome in  $\Omega$ .
- For instance, when we flip a fair coin twice

  - The experiment selects *one* of the elements of Ω.
- In this case, its wrong to think that  $\Omega = \{H, T\}$  and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

## Example: Monty Hall Problem

:

one of the other

•



#### Controversy

```
( )
```

#### Monty Hall problem

```
\Omega = \{(
                                ) (
                                                             ) (
                                                                                         )}
```

#### Summary

#### Modeling Uncertainty: Probability Space

- 1. Random Experiment
- 2. Probability Space:  $\Omega$ ;  $Pr[\omega] \in [0,1]$ ;  $\sum_{\omega} Pr[\omega] = 1$ .
- 3. Uniform Probability Space:  $Pr[\omega] = 1/|\Omega|$  for all  $\omega \in \Omega$ .

#### Probability problems can be fun

n ( )