Assignment 10

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 The enzyme-catalysed conversion of a substrate at 25°C has a Michaelis constant of 0.024 mol dm⁻³. The rate of the reaction is 1.15×10^{-4} mol dm⁻³ s⁻¹ when the substrate concentration is 0.890 mol dm⁻³. What is the maximum velocity of this enzymolysis?

Ques.2 The following results were obtained for the action of an ATPase on ATP at 20°C, when the concentration of the ATPase was 20 nmol dm⁻³:

$[ATP]/(\mu mol dm^{-3})$	0.60	0.80	1.4	2.0	3.0
$v/(\mu \text{mol dm}^{-3} \text{ s}^{-1})$	0.81	0.97	1.30	1.47	1.69

Determine the Michaelis constant, the maximum velocity of the reaction, the turnover number, and the catalytic efficiency of the enzyme.

Ques.3 The slope and intercept obtained from (1/Rate) against (1/substrate concentration) of an enzyme catalyzed reaction are 300 and 2 x 10^5 , respectively. Calculate the Michaelis-Menten constant of the enzyme in this reaction.

Ques.4 Consider an enzyme-catalysed reaction that follows Michaelis-Menten kinetics with $K_M = 0.75 \, \text{mmol dm}^{-3}$. What concentration of a competitive inhibitor characterized by $K_1 = 0.56 \, \text{mmol dm}^{-3}$ will reduce the rate of formation of product by 75 percent when the substrate concentration is held at $0.10 \, \text{mmol dm}^{-3}$?

Ques.5 Some enzymes are inhibited by high concentration of their own substrates. (a) Show that when substrate inhibition is important the reaction rate v is given by

$$v = \frac{v_{max}}{1 + \frac{[S]_0}{K_1} + \frac{K_M}{[S]_0}}$$

Where K_1 is the equilibrium constant for dissociation of the inhibited enzyme-substrate complex. (b) What effect does substrate inhibition have on a plot of $1/\nu$ against $1/[S]_0$?