(30) Priority data:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number:	WO 90/15157
C12Q 1/68	A1	(43) International Publication Date:	13 December 1990 (13.12.90)
	<u> </u>		

(21) International Application Number: PCT/US90/03004

(22) International Filing Date: 31 May 1990 (31.05.90)

359,158 31 May 1989 (31.05.89) US

(71) Applicant: GENE-TRAK SYSTEMS [US/US]; 31 New York Avenue, Framingham, MA 01701 (US).

(72) Inventors: LANE, David, J.; 9 Oriole Drive, Milford, MA 01757 (US). SHAH, Jyotsna; 13 Bates Drive, Nashua, NH 03060 (US). BUHARIN, Amelia; 7 Pond Street, Framingham, MA 01701 (US). WEISBURG, William, G.; 3 Jillson Circle, Milford, MA 01757 (US).

(74) Agent: JANIUK, Anthony, J.; Gene-Trak Systems, 31 New York Avenue, Framingham, MA 01701 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: UNIVERSAL EUBACTERIA NUCLEIC ACID PROBES AND METHODS

THE THREE KINGDOMS

EUKARYOTES

ARCHAEBACTERIA

(57) Abstract

Nucleic acid probes capable of hybridizing to rRNA of eubacteria and not to rRNA of non-eubacteria are described along with methods utilizing such probes for the detection of eubacteria in clinical and other samples. Preferred embodiments include probes capable of distinguishing between gram-positive and gram-negative bacteria.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CG	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
DE	Germany, Federal Republic of	LK	Sri Lanka	TG	Togo
DK	Denmark	LU	Luxembourg	US	United States of Americ

UNIVERSAL EUBACTERIA NUCLEIC ACID PROBES AND METHODS

5

30

Field of the Invention

This invention relates to detection of bacteria in clinical and other samples. Methods for the detection of bacteria in ordinarily aseptic bodily tissues or fluids such as blood, urine, and cerebrospinal fluid fluid – where the presence of any bacterium may be life threatening are of particular importance. The present invention provides nucleic acid probes and compositions along with methods for their use for the specific detection of any bacterium in such samples.

Background of the Invention

The term "eubacteria" as used herein, refers to the group of prokaryotic organisms (bacteria) as described in, for example, Bergey's Manual of Systematic Bacteriology (N.R. Krieg and J.G. Holt, ed., 1984, Williams & Wilkins, Baltimore). As a group, the eubacteria comprise all of the bacteria which are known to cause disease in humans or animals and are of most concern with respect to detection.

The only other described group of bacteria, the archaebacteria, are biologically and genetically distinct from the eubacteria (C.R. Woese, Scientific American, 1981, Volume 244, pages 98-102). Archaebacteria as a group occupy a variety of "extreme" environments such as hot springs, strongly oxygen-depleted muds, salt brines, etc., which generally do not support the growth of eubacteria. There are no known archaebacterial pathogens and, consequently, their detection is of little clinical significance.

2

Eukaryotic organisms comprise the third fundamental genetic lineage which, together with the eubacteria and archaebacteria, include all known life forms (Figure 1). Eukaryotes include humans, animals, plants and a host of organizationally less complex, free-living and parasitic "protists," including: protozoans, fungi, ciliates, etc. In a clinical context, it is particularly important that eubacteria be distinguished from eukaryotic, e.g. fungal and protozoan, infections which may present the same symptoms but require a significantly different regime of antimicrobial or chemo-therapy. These genetic distinctions thus are clinically significant from the point of view of diagnosis and antimicrobial chemotherapy.

5

10

20

It is an aspect of the present invention to provide nucleic acid probes which discriminate between eubacterial, human (including human mitochondrial) and fungal rRNA molecules.

It is another aspect of the present invention to provide probes and probe sets which provide a basis for discriminating between Gram positive and Gram negative eubacteria.

Methods for detecting, identifying and enumerating bacteria in normally sterile body fluids vary with the type of sample and the suspected pathogen. No currently available method is optimal for the detection of all pathogens. Often a combination of methods must be used to increase the likelihood that the pathogen will be detected. All commonly used methods for detection of, for example, bacteremia or bacterial septicemia rely on the in vitro cultivation of microbes from clinical samples. Generally, a blood sample is drawn from a patient and incubated in a rich artificial culture medium and monitored for 1 to 14 days. During this time, the medium is examined or blindly subcultured (plated), or assayed chemically or isotopically for evidence of bacterial growth or fermentative processes. Clinicians generally draw two or three samples of 10 milliliters of blood which may yield as

few as one to ten colony forming units of bacteria for a positive diagnosis. Following the isolation of individual colonies of bacteria on diagnostic solid media and/or by Gram-staining, presumptive identification of the bacteria (or fungus) is made.

5

All cultivation methods suffer a number of serious shortcomings, including the following:

- High material costs;

10

- Labor intensive;
- Technologists extensively handle dangerous bodily fluids;
- False positives due to handling;
 - False negatives due to low viable cell numbers;
- False negatives due to fastidious media requirements of many potential pathogens; and
 - Relatively long time to positive diagnosis and identification.
- Because of the relatively long time required by current methods to achieve a diagnosis and because of the potentially life threatening nature of such infections, antimicrobial therapy often is begun empirically before the results of such tests can be known.
- Therefore, it is another aspect of the present invention to provide nucleic acid probes which are broadly specific for all eubacteria and which preferably do not react with other eukaryotic pathogens, especially fungi, which may be present in sampled materials.

4

It is yet another aspect of the present invention to provide probes which may be used in a variety of assay systems which avoid many of the disadvantages associated with traditional, multi-day culturing techniques.

5

It is still another aspect of the present invention to provide probes that are capable of hybridizing to the ribosomal ribonucleic acid (rRNA) of the targeted eubacterial organisms under normal assay conditions.

10

30

While Kohne et al. (Biophysical Journal 8:1104-1118, 1968) discuss one method for preparing probes to rRNA sequences, they do not provide the teaching necessary to make broad-specificity eubacterial probes.

Pace and Campbell (Journal of Bacteriology 107:543-547, 1971) discuss the homology of ribosomal ribonucleic acids from diverse bacterial species and a hybridization method for quantitating such homology levels. They do not identify particular nucleic acid sequences shared by bacteria, but absent in eukaryotes. Woese (Microbiological Reviews 51:221-271, 1987) describes the breadth of the eubacteria, in terms of rRNA sequence, but does not indicate sequences of interest for complete bacterial inclusivity. These references, however, fail to relieve the deficiency of Kohne's teaching with respect to eubacterial probes and, in particular, do not provide eubacterial specific probes useful in assays for detecting eubacteria in clinical or other samples.

Giovannoni et al. (Journal of Bacteriology 170:720-726, 1988) describe a number of probes which are claimed to be useful for the identification of broad groups of eubacteria, archaebacteria and eukaryotes. However, Giovannoni et al. do not disclose the probes of the present invention. Nor do they provide the teaching necessary to design such probes.

Hogan et al. (European patent publication WO 88/03957) describe a number of probes which are claimed to hybridize to a broad representation of eubacteria. However, Hogan et al. do not teach the probes of the present invention and also fail to relieve the deficiency of Kohne's teaching with respect to these probes.

Ribosomes are of profound importance to all organisms because they serve as the only means of translating genetic information into cellular proteins. A clear manifestation of this importance is the observation that all cells have ribosomes. Actively growing bacteria may have 20,000 or more ribosomes per cell. This makes ribosomes one of the most abundant macromolecular entities in a cell, and an attractive diagnostic assay target.

Ribosomes contain three distinct RNA molecules which in Escherichia coli are referred to as 5S, 16S and 23S rRNAs. These names historically are related to the size of the RNA molecules, as determined by their sedimentation rate. In actuality, however, ribosomal RNA molecules vary in size between organisms. Nonetheless, 5S, 16S, and 23S rRNA are commonly used as generic names for the homologous RNA molecules in any bacteria, and this convention will be continued herein. Discussion will be confined to 16S and 23S rRNAs.

As used herein, probe(s) refer to synthetic or biologically produced
nucleic acids (DNA or RNA) which, by design or selection, contain
specific nucleotide sequences that allow them to hybridize under
defined predetermined stringencies, specifically (i.e., preferentially,
see below - Hybridization) to target nucleic acid sequences. In
addition to their hybridization properties, probes also may contain
certain constituents that pertain to their proper or optimal
functioning under particular assay conditions. For example, probes may
be modified to improve their resistance to nuclease degradation (e.g.
by end capping), to carry detection ligands (e.g. fluorescein, 32Phosphorous, biotin, etc.), or to facilitate their capture onto a solid

6

support (e.g., poly-deoxyadenosine "tails"). Such modifications are elaborations on the basic probe function which is its ability to usefully discriminate between target and non-target organisms in a hybridization assay.

5

10

15

25

30

Hybridization traditionally is understood as the process by which, under predetermined reaction conditions, two partially or completely complementary strands of nucleic acid are allowed to come together in an antiparallel fashion (one oriented 5' to 3', the other 3' to 5') to form a double-stranded nucleic acid with specific and stable hydrogen bonds. (Note that nucleic acids do have a polarity; that is, one end of a nucleic acid strand is chemically different from another. This is defined by the polarity of the chemical linkages through the asymmetric sugar moiety of the nucleotide components. The terms 5' and 3' specifically refer to the ribose sugar carbons which bear those names. Except in rare or unusual circumstances, nucleic acid strands do not associate through hydrogen bonding of the base moieties in a parallel fashion. This concept is well understood by those skilled in the art.)

The stringency of a particular set of hybridization conditions is defined by the base composition of the probe/target duplex, as well as by the level and geometry of mispairing between the two nucleic acids.

Stringency may also be governed by such reaction parameters as the concentration and type of ionic species present in the hybridization solution, the types and concentrations of denaturing agents present, and/or the temperature of hybridization. Generally, as hybridization conditions become more stringent, longer probes are preferred if stable hybrids are to be formed. As a corollary, the stringency of the conditions under which a hybridization is to take place (e.g., based on the type of assay to be performed) will dictate certain characteristics of the preferred probes to be employed. Such relationships are well understood and can be readily manipulated by those skilled in the art.

7

As a general matter, dependent upon probe length, such persons understand stringent conditions to mean approximately 35°C-65°C in a salt solution of approximately 0.9 molar.

5

Summary of the Invention

In accordance with the various principles and aspects of the present 10 invention, there are provided nucleic acid probes and probe sets comprising deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences which hybridize, under specific conditions, to the ribosomal RNA molecules (rRNA), rRNA genes (rDNA), and certain amplification and in vitro transcription products thereof of eubacteria but which do not 15 hybridize, under the same conditions, to the rRNA or rDNA of eukaryotic cells which may be present in test samples. In addition, certain of the probes and probe sets described herein may be used as primers for the specific amplification of eubacterial rRNA or rDNA sequences which may be present in a sample by such methods as the polymerase chain reaction (US 4,683,202) or transcriptional amplification systems (e.g. TAS, Kwoh 20 et al., 1989, Proceedings of the National Academy of Science 86:1173-1177).

for development of valuable nucleic acid hybridization assays for the specific detection of eubacteria in clinical samples such as blood, urine, cerebrospinal fluid, biopsy, synovial fluid, or other tissue or fluid samples from humans or animals. The probes also provide the basis for testing, for example in quality control, substances that are presumed sterile, e.g., pharmaceuticals. The probes described herein are specifically complimentary to certain highly conserved bacterial 23S or 16S rRNA sequences.

20

25

The detection of bacteria by nucleic acid hybridization constitutes enhanced performance capability compared to the available culture-dependent tests for several reasons including:

- a) increased sensitivity; i.e., the ability to detect said bacteria in a given sample more frequently;
 - b) potentially significant reductions in assay cost due to the use of inexpensive reagents and reduced labor;
 - accurate detection of even nutritionally fastidious strains of bacteria;
- d) faster results because such tests do not require the isolation of the target bacterium from the sample prior to testing;
 - e) the ability to screen, in a batch mode, a large number of samples, and only culture those identified as "hybridization positive";
 - f) potential detection of phagocytized organisms eliminating the need for multiple, punctuated blood samples in order to sample the cyclical "window" of viable organisms (which probably depends on host immunological cycles);
 - g) some reduction of technologist handling of potentially infectious body fluids;
- h) the ability to detect very low numbers of targets by amplifying either the bacterial signal or target using in vitro nucleic acid amplification.

WO 90/15157

5 ·

10

It has been discovered that other advantages incurred by directing the probes of the present invention against rRNA include the fact that the rRNAs detected constitute a significant component of cellular mass. Although estimates of cellular ribosome content vary, actively growing Escherichia coli, for example, may contain upwards of 50,000 ribosomes per cell, and therefore 50,000 copies of each of the rRNAs (present in a 1:1:1 stiochiometry in ribosomes). The abundance of ribosomes in other bacteria particularly under other, less favorable, metabolic conditions may be considerably lower. However, under any circumstances, rRNAs are among the most abundant cellular nucleic acids present in all cell types. In contrast, other potential cellular target molecules such as genes or RNA transcripts thereof, are less ideal since they are present in much lower abundance.

A further unexpected advantage is that the rRNAs (and the genes specifying them) appear not to be subject to lateral transfer between contemporary organisms. Thus, the rRNA primary structure provides an organism-specific molecular target, rather than a gene-specific target as would likely be the case, for example of a plasmid-borne gene or product thereof which may be subject to lateral transmission between contemporary organisms.

Additionally, the present invention provides probes to eubacterial rRNA target sequences which are sufficiently similar in most or all eubacteria tested that they can hybridize to the target region in such eubacteria. Advantageously, these same rRNA target sequences are sufficiently different in most non-eubacterial rRNAs that, under conditions where the probes hybridize to eubacterial rRNAs they do not hybridize to most non-eubacterial rRNAs. These probe characteristics are defined as inclusivity and exclusivity, respectively.

The discovery that probes could be generated with the extraordinary inclusivity and exclusivity characteristics of those of the present invention with respect to eubacteria was unpredictable and unexpected.

30

Brief Description of the Figures

Further understanding of the principles and aspects of the present invention may be made by reference to the tables wherein:

Figure 1 - Shows an evolutionary "tree" of the major genetic "kingdoms" of life (Woese, 1987, Microbiological Reviews 51:221- 271). The branching patterns represent the mutational distances between the 16S rRNA sequences of the represented organism. Such comparisons readily distinguish the eubacteria from the archaebacteria and eukaryotes.

kingdom (ibid.). So far about 10 major divisions/phyla have been defined based on 16S rRNA sequence comparisons. Certain discriminations among eubacterial divisions can be important in a clinical context and certain of the probes of the present invention do exhibit preferential hybridization to one or more or the eubacterial divisions. Therefore, the test organisms listed in Tables 3, 4 and 5 are grouped according to the divisions shown in Figure 2 so that significant patterns of hybridization may be most easily discerned.

25 Brief Description of the Tables

Table 1 - Shows alignment of the nucleotide sequences of the preferred 16S rRNA-targeted probes of the present invention with their target nucleotide sequences in <u>E. coli</u> 16S rRNA. Very extensive sequence comparison to some 350 aligned 16S and 18S rRNA sequences were performed during the development of the probes of the present invention. It simply is not practical to show this analysis in detail. However, a consensus sequence (CONS-90%) of highly conserved 16S rRNA nucleotide positions is provided as a summary of the patterns of

11

nucleotide sequence variation discovered among representative eubacteria. A nucleotide on the CONS-90% line indicates that that nucleotide is found at the homologous position in 90% or greater of the eubacterial sequences inspected. Note that the probe target regions all correspond to clusters of high sequence conservation among the eubacterial 16S and 23S rRNA molecules.

5

10

15

20

25

Since the <u>E. coli</u> 16S and 23S rRNA sequences were among the first full rRNA sequences obtained, the assigned position numbers have become a convenient and commonly accepted standard for explicitly identifying the homologous regions in other rRNA sequences under consideration. In Table 1, the <u>E. coli</u> RNA (target) sequence is written 5' to 3'. Probe sequences are DNA and written 3' to 5', except for probes 1638, 1642 and 1643 which are designed to hybridize to the rRNA-complementary sequence rather than the rRNA itself. These latter probes have the same "sense" (i. e. polarity) as the rRNA and are written 5' to 3'.

Table 2 - Shows alignment of the nucleotide sequences of the preferred 23S rRNA-targeted probes of the present invention with their target nucleotide sequences in <u>E. coli</u> 23S rRNA. As in Table 1 the <u>E. coli</u> sequence numbering is used as a standard in order to identify the homologous probe target sequences in all 23S rRNAs. CONS-90% has the same meaning as in TABLE 1. For the 23S rRNA analyses only about 30 sequences were available. However, these represent most of the major eubacterial divisions shown in Figure 2. In the probe 1730 sequence, "R" = a 1:1 mixture of A and G at that position.

Table 3 - Exemplifies the inclusivity and exclusivity behavior of a number of the preferred 16S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay.

Table 4 - Exemplifies the inclusivity and exclusivity behavior of a number of the preferred 23S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay.

5

Table 5 - Exemplifies the inclusivity and exclusivity behavior of a number of additional preferred 16S and 23S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay. These probes exhibit useful patterns of hybridization to specific subgroups of eubacteria - notably Gram positive and Gram negative bacteria.

15

25

10

Detailed Description of the Invention and Best Mode

Probe Development Strategy:

The first step taken in the development of the probes of the present invention involved identification of regions of 16S and 23S rRNA which potentially could serve as target sites for eubacteria specific nucleic acid probes. This entailed finding sites which are:

- 1) highly conserved (few nucleotide changes, deletions, or insertions) among eubacterial rRNA sequences, and
 - 2) substantially different in non-eubacterial rRNA sequences.

For this analysis, precise alignments of available 16S and 23S rRNA

sequences were developed. A number of 16S and 23S rRNA sequences were
determined as part of this effort. Such nucleotide sequences were
determined by standard laboratory protocols either by cloning (Maniatis
et al., 1982, Molecular Cloning; A Laboratory Manual, Cold Spring
Harbor Laboratory, New York, pp 545) and sequencing (Maxam and Gilbert,

10

15

20

30

1977, Proceedings of the National Academy of Science, USA 74:560-564: Sanger et al., 1977, Proceedings of the National Academy of Science, USA 74:5463-5467) the genes which specify the rRNAs, and/or by direct sequencing of the rRNAs themselves using reverse transcriptase (Lane et al., 1985, Proceedings of the National Academy of Science, USA 82:6955-6959; Lane, manuscript in preparation).

A computer algorithm, operating on the aligned set of 16S and 23S rRNA sequences, was used to identify regions of greatest similarity among eubacteria. Nucleic acid probes to such regions will hybridize most widely among diverse eubacteria.

Such regions of homology among eubacteria next were assessed for differences with non-eubacterial rRNA sequences. In particular, sequence differences between eubacterial and human, fungal, and mitochondrial sequences were sought.

Forty one probes were designed based on these analyses; 22 targeting 23S rRNA and 19 targeting 16S rRNA.

The hybridization behavior of these probes toward extensive panels of eubacteria was determined by hybridization analysis in a dot blot format.

25 Physical Description of the Probes:

The foregoing probe selection strategy yielded a number of probes useful for identifying eubacteria in samples and include the following preferred oligonucleotide probes:

16S rRNA-targeted probes:

Probe 1638: 5'-AGAGTTTGATCCTGGCTCAG-3'

Probe 1642: 5'-AGAGTTTGATCATGGCTCAG-3'

5

Probe 1643: 5'-AGAGTTTGATCCTGGCTTAG-3'

Probe 1738: 5'-CTGAGCCAGGATCAAACTCT-3'

Probe 1744: 5'-CAGCGTTCGTCCTGAGCCAGGATCAAACT-3'

Probe 1659: 5'-CTGCTGCCTCCCGTAGGAGT-3'

Probe 1660: 5'-CTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTTCCAGTGT-3'

15

Probe 1661: 5'-TATTACCGCGGCTGCTGGCACGGAGTTAGCCG-3'

Probe 1739: 5'-GCGTGGACTACCGGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCG-3'

Probe 1740: 5'-GGGTTGCGCTCGTTGCGGGACTTAACCCGACATCTCACGGCACGAGCT

GACGACAGCCATGCAT-3'

Probe 1741: 5'-CTCACGGCACGACGTGACGACAGCCATGCAT-3'

Probe 1742: 5'-GGGTTGCGCTCGTTGCGGGACTTAACCCGACAT-3'

Probe 1745: 5'-AGCTGACGACAACCATGCACCACCTGT-3'

Probe 1746: 5'TCATAAGGGGCATGATGATGTCAT-3'

30

Probe 1743: 5'-GTACAAGGCCCGGGAACGTATTCACCG-3'

Probe 1637: 5'-AAGGAGGTGATCCAGCC-3'

- Probe 1639: 5'-ACGGTTACCTTGTTACGACTT-3'
- Probe 1640: 5'-ACGGCTACCTTGTTACGACTT-3'
- Probe 1641: 5'-ACGGATACCTTGTTACGACTT-3'
 - 23S rRNA-targeted probes:
 - Probe 1730: 5'-CTTTTCTCCTTTCCCTCRCGGTACTGGTTCRCTATCGGTC'3
- 10
- Probe 1731: 5'-CTTTTCGCCTTTCCCTCGCGGTACTGGTTCGCTATCGGTC'3
- Probe 1658: 5'-TCTTTAAAGGGTGGCTGCTTCTAAGCCAACATCCTGGTTG-3'
- Probe 1656: 5'-CTACCTGTGTCGGTTTGCGGTACGGGC-3'
 - Probe 1657: 5'-GGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTACG-3'
 - Probe 1653: 5'-CCTTCTCCCGAAGTTACGGGGGCATTTTGCCTAGTTCCTT-3'
- 20
- Probe 1654: 5'-CCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTT-3'
- Probe 1655: 5'-CCTTCTCCCGAAGTTACGGCACCATTTTGCCGAGTTCCTT-3'
- Probe 1651: 5'-CTCCTCTTAACCTTCCAGCACCGGGCAGGC-3'
 - Probe 1652: 5'-TTCGATCAGGGGCTTCGCTTGCGCTGACCCCATCAATTAA-3'
 - Probe 1512: 5'-TTAGGACCGTTATAGTTACGGCCGCCGTTTACTGGGGCTT-3'
- 30
- Probe 1256: 5'-GGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAG-3'
- Probe 1398: 5'-GGTCGGTATTTAACCGACAAGGAATTTCGCTACCTTAG-3'

16

Probe 1511: 5'-CGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACC3'

Probe 1595: 5'-CGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGG-3'

5 Probe 1600: 5'-CAGCCCCAGGATGAGATGAGCCGACATCGAGGTGCCAAAC-3'

Probe 1601: 5'-CAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAAC-3'

Probe 1602: 5'-CAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAAC-3'

10

Probe 1598: 5'-CGTACCGCTTTAAATGGCGAACAGCCATACCCTTGGGACC-3'

Probe 1599: 5'-CGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACC-3'

Probe 1596: 5'-GATAGGGACCGAACTGTCTCACGACGTTTTGAACCCAGCT-3'

Probe 1597: 5'-GATAGGGACCGAACTGTCTCACGACGTTCTGAACCCAGCT-3'

The specific behaviors of the aforementioned probes are dependent to a 20 significant extent on the assay format in which they are employed. Conversely, the assay format will dictate certain of the optimal design features of particular probes. The "essence" of the probes of the invention is not to be construed as restricted to the specific string of nucleotides in the named probes. For example, the length of these 25 particular oligonucleotides was optimized for use in the dot blot assay (and certain other anticipated assays) described below. It is well known to those skilled in the art that optimal probe length will be a function of the stringency of the hybridization conditions chosen and hence the length of the instant probes may be altered in accordance therewith. Also, in considering sets comprised of more than one probe, 30 it is desirable that all probes behave in a compatible manner in any particular format in which they are employed. Thus, the exact length

17

of a particular probe will to a certain extent, reflect its specific intended use. Again, given the probes of the instant invention, these are familiar considerations to one of ordinary skill in the art.

The "essence" of the probes described herein resides in the discovery and utilization of the specific sequences described above and given in Table 1 and Table 2.

Hybridization Analysis of Probe Behavior:

10

The sequence comparisons which led to the discovery of the disclosed target sequences suggested that many of the probes should hybridize to a significant number of eubacteria. For the 16S rRNA analyses, some 350 sequences were considered in designing the probes; for the 23S rRNA 15 analyses only about 30 eubacterial sequences were available. Since it is impossible to test every eubacterial strain, greater sequence variation might exist in other eubacterial strains not inspected by sequence analysis which might reduce or eliminate hybridization by the prospective probes to such untested eubacteria. As can be seen in 20 Tables 3, 4 and 5, some probes of extremely broad inclusivity nevertheless fail to hybridize to certain bacteria. Therefore, carefully documenting the hybridization behavior to a large and representative number of eubacteria is an important element in documenting that such probes are capable of detecting all eubacteria 25 or, failing that, for documenting which eubacteria are not detected. "Such "failures" may not be clinically significant or alternatively, may be compensated for by appropriate inclusion of other probes of the instant inventions.

Equally as important as the inclusivity behavior of the probes, is their exclusivity behavior, i.e., their reactivity toward non-eubacteria. As mentioned, demonstrating a lack of hybridization to human and fungal rRNAs is of paramount importance in the types of clinical applications envisioned for such probes. Therefore, the

•

18

behavior of the probes toward representative eubacterial, human and fungal rRNAs was determined by hybridization analysis using a dot blot procedure.

5 Example 1: Dot-blot analysis of probe hybridization behavior.

Dot-blot analysis, in accordance with well known procedures, involves immobilizing a nucleic acid or a population of nucleic acids on a filter such as nitrocellulose, nylon, or other derivatized membranes 10 which readily can be obtained commercially, specifically for this purpose. Either DNA or RNA can be easily immobilized on such a filter and subsequently can be probed or tested for hybridization under any of a variety of conditions (i.e., stringencies) with nucleotide sequences or probes of interest. Under stringent conditions, probes whose 15 nucleotide sequences have greater complementarity to the target sequence will exhibit a higher level of hybridization than probes containing less complementarity. For most of the oligonucleotide probes described herein, hybridization to rRNA targets at 60°C for 14-16 hours (in a hybridization solution containing 0.9 M NaCl, 0.12 M 20 Tris-HCl, pH 7.8, 6 mM EDTA, 0.1 M KP04, 0.1% SDS, 0.1% pyrophosphate, 0. 002% ficoll, 0.02% BSA, and 0.002% polyvinylpyrrolidine), followed by standard post-hybridization washes to remove unbound and nonspecifically hybridized probe (at 60°C in 0.03 M NaCl, 0. 004 M Tris-HCl, pH 7.8, 0.2 mM EDTA, and 0.1% SDS), would be sufficiently 25 stringent to produce the levels of specificity demonstrated in Tables 3, 4 and 5. The exceptions to these conditions are probe 1738 (which was hybridized at 37°C), and probe 1746 (which was hybridized at 37°C and washed at 50°C).

Techniques also are available in which DNA or RNA present in crude (unpurified) cell lysates can be immobilized without first having to purify the nucleic acid in question (e.g. Maniatis, T., Fritsch, E. F. and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual).

The dot-blot hybridization data shown in Tables 3, 4 and 5 were generated by hybridization of the indicated probes to purified RNA preparations from the indicated eubacterial, fungal and human specimens. Bacterial and fungal RNAs were purified from pure cultures of the indicated organisms. Mouse RNA was purified from L cells (a tissue culture cell line). Wheat germ RNA was purified from a commercial preparation of that cereal product. Human blood and stool RNAs were purified from appropriate specimens obtained from normal, healthy individuals.

10

15

20

25

5

Purified RNA was used, rather than cell lysates for a number of simple technical reasons. The most important of these relate to proper interpretation of the relative signal arising from the hybridization of any particular probe to individual organisms. RNA content per cell is known to vary widely among different bacteria and varies even more between bacteria and eukaryotic cells. In addition, the specific metabolic status of cells at the time of harvest can have a profound influence on the amount and integrity of the RNA recovered. Some bacteria, for example, begin to degrade their RNA very rapidly upon reaching the stationary growth phase. The organisms represented in Tables 3, 4 and 5 comprise an extremely diverse collection in every respect. Represented are Gram positive and Gram negative bacteria, photosynthetic and chemosynthetic, heterotrophic and lithotrophic, and anaerobic and aerobic metabolisms. By using known, equivalent amounts of purified RNA in the individual "dots," relative levels of hybridization of each probe to each organism can be meaningfully compared without regard to the idiosyncracies of nucleic acid preparation from individual types of bacteria represented.

RNA was prepared by a variation on standard published methods which has been developed in our laboratory (W. Weisburg, unpublished). The method rapidly yields bulk high molecular weight RNA in a highly purified but relatively unfractionated form. Little or no DNA, or low molecular weight RNA species are found in RNA prepared in this fashion.

10

A large proportion of the RNA is 16S and 23S rRNA (18S and 28S rRNA in eukaryotes) as is true of the RNA in the intact cells. The method is rapid and convenient, but otherwise is not relevant to interpretation of the dot-blot results presented in Tables 3, 4 and 5. Most other currently accepted methods available in the literature which yield RNA of reasonable intactness will yield equivalent hybridization results.

For the hybridization experiments reported in Tables 3, 4 and 5, probes were end-labeled with radioactive 32-phosphorous, using standard procedures. Following hybridization and washing as described above, the hybridization filters were exposed to X-ray film and the intensity of the signal evaluated with respect to that of control RNA spots containing known amount of target RNA of known sequence.

15 A scale of hybridization intensity ranging from ++++ (hybridization signal equivalent to that of control spots) to + (barely detectable even after long exposure of the x-ray film) has been used to compare hybridization signals between organisms and probes. +++ signal indicates a very strong signal only slightly less intense than control spots. ++ indicates a clearly discernible hybridization signal, but 20 one that is noticeably weaker than the control spots. Note that while more "quantitative" ways to record hybridization signal are available, they are much more cumbersome to employ and, in our experience, not really any more useful for probe evaluation than the method employed in 25 Tables 3, 4 and 5. In fact, because of certain uncontrollable variables in spotting exactly equivalent amounts of target RNA (of equivalent intactness) from such disparate organisms, numerically more precise counting methods are only deceptively more quantitative. In our experience, an organism generating a ++ or greater signal to a 30 particular probe is easily distinguished from one generating a "-" signal. This is true of a variety of assay formats that have been tested.

10

15

30

As is evident in Tables 3 and 4, 23S rRNA-targeted probes 1600, 1602, 1596, 1256 and 1512 and 16S rRNA-targeted probes, 1738, 1660, 1639, 1739, 1740, 1741 and 1743 hybridize most extensively among the eubacteria and are thus the most preferred. Other probes hybridize in a variety of patterns to subgroups of eubacteria and would be preferred for the detection of those subgroups or as components of more broadly inclusive probe sets. For example, probes 1599, 1656, 1744, 1745 and 1746 hybridize preferentially to Gram positive bacteria. Probes 1657, 1598 and 1595 hybridize preferentially to gram-negative bacteria, particularly to members of the so-called "purple bacterial" division (Figure 2 and Table 5).

Other probes exhibit other useful patterns of hybridization as is evident upon inspection of the data in Tables 3, 4 and 5. These probes can be combined in a variety of ways to create probe sets which exhibit the combined hybridization properties of the component probes. An example of one such hybridization format is given below (Example 2).

Alternatively, the probes could be used in a variety of subtractive hybridization schemes in which specific rRNA molecules are removed from the pool present in a mixed population of organisms prior to or simultaneous with the target organism-specific probes (e.g. Collins, European Patent Application 87309308.2).

25 Example 2: Dual Probe, Sandwich Hybridization Assay

The probes of the present invention or derivatives thereof can be advantageously employed in a variety of other hybridization formats. One such format is a dual probe, sandwich-type hybridization assay such as that described, for example, in USSN 277,579; USSN 169,646, or USSN 233,683. In such a dual probe application, one probe (for example, probe 1602 or a derivative) would be ideally modified at its 3' terminus to contain a tract of about 20 - 200 deoxyadenosine (dA) residues. This would be used to "capture" the target rRNA (following

10

30

liquid hybridization) from the test sample onto a solid support (e.g., beads, plastic surface, filter, etc.) which had been suitably derivatized with poly-deoxythymidine (dT) for this purpose. A second probe (for example, probe 1596 or derivative) would then be advantageously used as the detection probe and would be suitably derivatized with some detectable ligand (e.g. 32-P, fluorescein, biotin, etc.). Detection of the presence of the target nucleic acid in a test sample then would be indicated by capture of the detection ligand onto the solid surface through the series of hybridization interactions:

- This could occur only if the target nucleic acid is present in the test sample. In principle, the above scheme could be employed with multiple capture and detection probes (probe sets) for the purpose of, for example, improving inclusivity or enhancing sensitivity of the assay.
- Example 3: PCR Amplification of 16S rRNAs.

The polymerase chain reaction (PCR) is a well known method for amplifying target nucleic acid by "copying" the nucleic acid sequences located between two target sequences (US 4,683,202). The PCR process could be useful in an assay for the diagnosis of, for example, a non-viral pathogen by amplifying the genes encoding the pathogen's rRNA or rRNA genes and subsequently detecting that product. Implementation of this diagnostic strategy requires the invention of primers capable of

20

25

amplifying the rRNA of the targeted organism(s). A second important application of such primers is in cloning amplified rRNA genes, and a third application is the direct sequencing of amplified rRNA genes.

- Probes 1638, 1642, 1643, 1637, 1639, 1640 and 1641 may be ideally used as primers for enzymatically copying and/or amplifying eubacterial 168 rRNAs or the genes encoding them. Details of the PCR procedure vary slightly depending on whether the target nucleic acid is single or double stranded, and whether it is DNA or RNA. However, the principle is the same in either case. Briefly, the steps are as follows:
 - 1) Double-stranded DNA is denatured,
 - 2) Oligonucleotide primers complimentary to each of the sister DNA strands are annealed, and
 - 3) deoxynucleotide triphosphate precursors are incorporated into newly synthesized sister DNA strands by extension of the primers from their 3' termini using DNA polymerase and/or reverse transcriptase.

Thus, a pair of oligonucleotide primers are required for the PCR reaction, one complementary to each strand within the target gene. They are positioned such that the newly synthesized product of one primer is also a target/template for the other primer. Thus the target nucleotide sequence located between the two primer annealing sites may be amplified many fold by repeating the steps listed above 20 to 30 times.

Probes 1638, 1642, 1643, 1637, 1639, 1640 and 1641 are suitable for use as primers for enzymatically copying and/or amplifying eubacterial 165 rRNAs or the genes encoding them. That is, as a set, they will anneal very broadly among eubacterial rRNAs and rRNA genes and so will amplify any eubacterial rRNA sequences present in a sample.

10

24

Probes 1637, 1639, 1640 and 1641 hybridize to the 16S rRNA (or rRNA-like strand of the ribosomal RNA gene) near its 3' end (Table 1). The template strand is read in the 3' to 5' direction producing an rRNA-complementary strand with the primer itself incorporated at its 5' terminus.

Probes 1638, 1642, and 1643 hybridize near the 5' end of the rRNA-complementary strand of the rRNA gene or to such a complement produced as described immediately above.

Individually, the above-described 16S rRNA amplification primers have approximately the following specificities:

15 5' primers:

Probe 1638: most eubacteria

Probe 1642: enterics and relatives

20

Probe 1643: Borrelia spirochetes

3' primers:

25 Probe 1637: most eubacteria

Probe 1639: enterics, Deinococcus, Campylobacter

Probe 1640: most eubacteria

30

Probe 1641: fusobacteria, some Bacillus species

In test samples where the target bacterium is known, specific primers can be used. Where the target organism is not specifically known (for example, any eubacterium) all of the above mentioned primers can be used as a set.

5

The above described primers have been designed to amplify nearly the entire 16S rRNA sequence. Any of the other probes of the present invention or derivatives thereof can be used to amplify sub-segments of the 16S and 23S rRNAs or genes in a fashion similar to that just described.

Any such primers can be modified in a great number of ways to, for example, incorporate RNA polymerase promoters, cloning sites, etc. into the amplified transcripts.

15

20

10

While the description of the invention has been made with reference to detecting rRNA, it will be readily understood that the probes described herein and probes complementary to those described herein also will be useful for the detection of the genes (DNA) which specify the rRNA and, accordingly, such probes are to be deemed equivalents to the described probes and encompassed within the spirit and scope to the present invention and the appended claims.

TABLE 1: 16S rRNA-TARGETED PROBES AND TARGET SEQUENCES

SAACGCUGGCG GAACGCUGGCG CTTGCGAC-5'	357 CACACUCCUACGGAGGCAGCAGU CACACUCCUACGGAGGCAGCAGUGG GTTTGAGGATGCCCTCCGTCGTC-5'		810 1 GGUAGUCCACGC U GGUAGUCCACGCCGU
B AGAGUUUGAUC UGGCUCAG CAACGCUGCG 3'-TCTCAAACTAGGACCGAGTC-5' 3'-TCAAACTAGGACCGAGTCCTGCTTGCGAC-5' 5'-AGAGTTTGATCCTGGCTCAG-3' 5'-AGAGTTTGATCGTGGCTCAG-3' 5'-AGAGTTTGATCCTGGCTTAG-3' 5'-AGAGTTTGATCCTGGCTTAG-3'	313	504 	164
E. colf E. colf Probe 1738 Probe 1744 Probe 1638 Probe 1642 Probe 1642	E. coli#8 CONS-90% E. coli Probe 1660 Probe 1659	E. coli#s CONS-90% E. coli Probe 1661	E. coli#s CONS-90% E. coli Probe 1739

RNA-TARGETED PROBES AND TARGET SEQUENCES 165 TABLE 1 (cont'd):

1044 ACAGGUG UGCAUGG UGUCGUCAGCUCGUG CGUGAG UGUUGGGUUAAGUCCCGCAACGAGCGCAACCC GAGACAGGUGCUGCAUGGUGUGUGAAAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCUUA GAGACAGGUGCUGCAUGGCUGUCGUGUUGUGAAAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUUA 3'-TGTCCACCACGAACAGGAGCACGGCACTCTACAGGCCCAATTCAGGGCGTTGCTCGCGTTGGG-5' 3'-TACGTACCGACAGCAGTCGAGCACGCCACTC-5' 3'-TACGTACCGACAGCAGTCGAGCACGCCACTC-5' 3'-TACGTACCGACAGCAGTCGAGCACGCCACTC-5'	1188 CGA GACGUCAA UC UCAUG CCCUUA G GGGAUGACGUCAAGUCAUGCCCCUUACGACCA 6 3'-TACTGCAGTTTAGTAGTACT-5'	1369	1492 AAGUCGUAACAAGGUA CC UA GAA UG GG UGGAU ACCUCCUUU GUGAAGUCGUAACAAGGUAACCGUAGGGAACCUGCGGUUGGAUCACCUCCUUU 3'-TTCAGCATTGTTCCATTGGCA-5' 3'-TTCAGCATTGTTCCATGGCA-5' 3'-TTCAGCATTGTTCCATGGCA-5' 3'-TTCAGCATTGTTCCATGGCA-5'
E. colf CONS-90% E. colf Probe 1745 Probe 1741 Probe 1741	E. coli#s E. coli Probe 1746	E. coli E. coli Probe 1743	E. coli#s CONS-90% E. coli Probe 1637 Probe 1639 Probe 1640 Probe 1641

TABLE 2: 235 rRNA-TARGETED PROBES AND TARGET SEQUENCES

E. coli #s	442	481
CONS-90% E.coli 23S Probe 1730 Probe 1731	GACCGAUAG G AC AGUACCGUGAGGGAAAGG GAAA ACUGACCGAUAGUGAACCAGUACCGUGAGGGAAAGGCGAAA 3'-CTGGCTATCRCTTGGTCATGGCRCTCCCTTTCCRCTTT 3'-CTGGCTATCGCTTGGTCATGGCGCTCCCTTTCCGCTTT	AGAAC
E. coli #s	1049	1088
CONS-90% E.coli 23S Probe 1658	A ACA C AGGA GUUGGCUUAGAAGCAGCCA C UU AAA AGACAGCCAGGAUGUUGGCUUAGAAGCAGCCAUCAUUUAAA 3'-GITGGTCCTACAACCGAATCTTCGTCGGTGGGAAATTI	CAAAC
E. coli #s	1597	1639
CONS-90% E.coli 23S Probe 1656 Probe 1657	CGUACC AAACCGACACAGGU G G A UCAAAUCGUACCCCAAACCGACACAGGUGGUCAGGUAGAGA 3'-CGGGCATGGCGTTTGGCTGTCCATC-5' 3'-GCATGGGGTTTGGCTGTCCACCAGTCCATCTCT	
E. coli #s	1664	1703
CONS-90% E.coli 235 Probe 1653 Probe 1654 Probe 1655	AAGGAACU GCAAA U CCGUAACUUCGG A AAGUGAAGGAACUAGGCAAAAAUGGUGCCGUAACUUCGGGAGAAAAUGGUGCCGUAACUUCGGGAGAAAAUGGUGCCGUAACUUCGGGAGAAAAUGGUGCCGATTGAAGCCCTCTTTACTTGGGGGCATTGAAGCCCTCTTTTACTTGGGGCATTGAAGCCCTCTTTTTTACCACGGCATTGAAGCCCTCTTTTTTTT	AGGCAC CC-5'
E. coli #s	1831	
CONS-90% E.coli 23S Probe 1651	GAC CCUGCCC GUGC GGAAGGUUAA G GACGCCUGCCCGGUGCCGGAAGGUUAAUUGAUGGGG 3'-CGGACGGCCACGACCTTCCAATTCTCCTC-5'	
E. coli #s CONS-90%	1851 AGGUUAA G U G AAG A C	1890 GAAGCC
E.coli 235 Probe 1652	AGGUUAAUUGAUGGGGUUAGCGCAAGCGAAGCUCUUGAUCC 3'-AATTAACTACCCCAGTCGCGTTCGCTTCGGGGACTAGC	בא ארכיכי

TABLE 2 (cont'd): 235 rRNA-TARGETED PROBES AND TARGET SEQUENCES

E. coli #s	1889	1928
CONS-90% E.coli 23S Probe 1512	GAAGCCCC GU AACGGCGGCCGUAACUAUAACGGUCCU UCGAAGCCCCGGUAAACGGCGGCCGUAACUAUAACGGUCCU 3'-TTCGGGGTCATTTGCCGCCGCCATTGATATTGCCAGGA	TR なのです
E. coli #s CONS-90% E.coli 23S Probe 1256 Probe 1511 Probe 1398	1925 GUCCUAAGGUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACG GUCCUAAGGUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACG 3'-GATTCCATCGCTTTAAGGAACAGCCCATTCAAGGCTGG 3'-CCATCGCTTTAAGGAACAGCCCATTCAAGGCTGG	UGCACGAAU
E. coli #s	2442	2481
CONS-90% E.coli 23S Probe 1595	AC C GGGGAUAACAGGCU AU C CC AG GU CA AU ACUCCGGGGAUAACAGGCUGAUACCGCCCAAGAGUUCAUAU 3'-GGCCCCTATTGTCCGACTATGGCGGGTTCTCAAGTATA	CG CG
E. coli #s	2490	2529
CONS-90%	GUUUGGCACCUCGAUGUCGGCUC UC CAUCCUGGGGC	
E.coli 235 Probe 1600	GGUGUUUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCC 3'-CAAACCGTGGAGCTACAGCCGAGTAGAGTAGGACCCCC	7T T C R SA C T
Probe 1601 Probe 1602	3'-CAAACCGTGGAGCTACAGCCGAGTAGTAGGACCCCCGGGAGCCCCCGGAGCCCCCCGAGTAGCGTAGGACCCCCCGAGTAGCGTAGGACCCCCCCC	730 E/
E. coli #s	2535	2574
CONS-90%	G GGUCCCAAGGGU GGCUGUUCGCC UUAAAG GG A	
E.coli 23S Probe 1598	GUAGGUCCCAAGGGUAUGGCUGUUCGCCAUUUAAAGUGGUA 3'-CCAGGGTTCCCATACCGACAAGCGGTAAATTTCGCCAT	
Probe 1599	3'-CCAGGGTTCCCAACCCGACAAGCGGTAATTTCGCCGT	rgc-5'
E. coli #s	2577	2616
CONS-90% E.coli 23S	G GAGCUGGGUU A AACGUCGUGAGACAGUU GGUC CUA	AUC
Probe 1596	3'-TCGACCCAAGTTTTGCAGCACTCTCTCAACCCACCCAC	AUCUGC
Probe 1597	3'-TCGACCCAAGTCTTGCAGCACTCTGTCAAGCCAGGGAT	rag-5

TABLE 3: DOT BLOT HYBRIDIZATION of 16S FRNA-TARGETED PROBES

	1740 1740 1741	
		+ + + + + + + + + + + + + + + + + + + +
		######################################
		######################################
	* * * * * * * *	##### ######
***	* * * * * * * * * * * * * * * * * * *	
*** ***	* * * * * * * * * * * *	### ###
++++ ++++	* + + + + + + + + + + + + + + + + + + +	‡ ‡ ‡ ‡ ‡
	++++	++ ++++
**** ++++		
++++ ++++	++++	++ ++++
++++ ++++	++++	++ ++++
++++	++++	++ +++
++++ ++++	++++	++++
++++ ++++	++++	+ +++
++++ ++++	++++	++ +++
++++ ++++	++++	++ ++++
++++ ++++	+++	++ +++
++++ ++++	++++	+++++
++++ ++++	++++	++ +++
++++ ++++	+++1	++ +++
++++ ++++	+++	++ +++
++++ +++-	+++	++ +++
++++ +++	+++	++ +++
++++ +++	+++	++ +++
++++ ++++	+++	+++++
7777 TTT	+++-	++++
	T T T T T T T T T T T T T T T T T T T	

rRNA-TARGETED PROBES 165 HYBRIDIZATION of TABLE 3 (cont'd): DOT BLOT

				PRO	E FA	BRIDI	ZATIOI			
strain	div	1738	1739	1659	1660	1661	1740	741	1742	1743
	Spiro	++++	++++	++++	‡ ‡	++++	++++	1	++++	++++
	*	***	++++	++++	++++	++++	++++	Ŧ	++++	++++
	*	++++	+++	++++	++++	++++	++++	‡	++++	++
	=	++++	‡	++++	++++	++++	++++	‡	++++	+
	E	++++	+++	++++	++++	++++	++++	‡	++++	‡
	E	++++	++++	++++	++++	++++	++++	‡	++++	‡ ‡ ‡
ហ	Bact	++++	+++	++++	++++	++++	++++	+	ŧ	++++
977	*	+++	+ + +	++++	++++	++++	++++	+	ı	++++
57	=	++++	++	++++	++++	***	++++	‡	1	++++
0	=	++++	++	++++	++++	++++	++++	‡	•	++++
0237	#	++++	++++	++++	++++	++++	++++	‡	++++	++++
	Chlam	1	++++	4	+++	++++	++++	‡	++++	++++
		•	++++	1	+++	++++	++++	‡	++++	++++
	Misc	++++	++++	++++	++++	++++	+++	‡	++++	+
¥400	*	++++	++++	++++	++++	. ++++	++++	++	++++	++++
2608	=	++++	++++	++++	++++	++++	++++	++	++++	++++
. 2577	2	++++	++++	•	++++	++++	++++	‡	•	•
		++++	++++	. +++	++++	++++	* ++++	#	++++	++++
		ŧ	+	1	t	+	1		ı	
	-	•	1	1	1	‡	•		t	•
		ŧ	, 1	•	1	+	•		1	
403-87		ŧ	ı	:		++++	ı		ı	1
ŧ			1	1	1	++++	1		ŧ	1
1		i	ŧ	ı	1	+++	1		•	1
		t	•	1	1	++++	1		1	•
23-		1	1	ı	1	+++	1		1	t
		• .	ı	1	1	‡			1	•
·	2528 2977 057 057 023 240 240 224-87 223-87 819-88	25285 Bac 29771 0572 0011 0237 Chl 2608 2508 224-87 224-87 223-87 819-88	25285 Bact 29771 " 0572 " 0011 " Chlam 2508 " 2577 " + 224-87 008-88 223-87 819-88	25285 Bact ++++ ++ 25285 Bact ++++ ++ 0572 " ++++ ++ 0237 " ++++ ++ 0237 " ++++ ++ 2608 " ++++ ++ 2608 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 403-87 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " 223-87 " 223-87 " 819-88	25285 Bact ++++ ++ 25285 Bact ++++ ++ 0572 " ++++ ++ 0237 " ++++ ++ 0237 " ++++ ++ 2608 " ++++ ++ 2608 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 403-87 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " 223-87 " 223-87 " 819-88	25285 Bact ++++ ++ 25285 Bact ++++ ++ 0572 " ++++ ++ 0237 " ++++ ++ 0237 " ++++ ++ 2608 " ++++ +++ 2608 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 253-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 224-87 " 223-87 " 223-87 " 223-87 "	25285 Bact ++++ ++ 25285 Bact ++++ ++ 0572 " ++++ ++ 0237 " ++++ ++ 0237 " ++++ ++ 2608 " ++++ ++ 2608 " ++++ +++ 2577 " ++++ +++ 2577 " ++++ +++ 403-87 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " 223-87 " 223-87 " 819-88	25285 Bact	25285 Bact	25285 Bact ++++ ++ 29771 " ++++ ++ 0572 " ++++ ++ 0237 " ++++ ++ 2508 " ++++ ++ 2608 " ++++ ++ 2608 " ++++ ++ 2577 " ++++ +++ 403-87 " ++++ +++ 224-87 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " ++++ +++ 224-87 " ++++ +++ 224-87 " ++++ +++ 882-88 " ++++ +++ 224-87 " 223-87 " 223-87 "

exposures. determined after overnight, of CaTFA purified RNA. Inclusivity and Exclusivity data was Each organism is represented by 100ng Probe 1738 - hybridizations and washe control level of hybridization, + = **

not done. positive = not Ann zero, ND Ħ ບ່ and carried out detectable a barely

TABLE 3 (cont'd): DOT BLOT HYBRIDIZATION of 16S rRNA-TARGETED PROBES

Genus species	fain div	1738	1739	PROJ	OBE HYI	RIDI	IZATION	1741	174	177.
lasma pneumoniae ATCC1	5531 "		**	**	1	*	777	7 7 7	777	C#/T 3
Distractors are	1									
	1 7				+++	+++	++	T + + +	÷ + +	1
TOTAL STORACTOR WILLS	サウ	++++	++++	‡	* + + +	+++	+++	T+++	+++ :	++++
Flanococcus citreus AlCC14		++++ +	++++	+++	++++	++++	+++	I	+++	++++
Staphlyococcus aureus	. 66E	+++	##	###	++++	++++	+++	*+++	‡	++++
	.711 "	+++	++++	++++	++++	++++	1		1	****
Staphylococcus epidermidis GT040	401 "	++++	++++	###	++++	++++		• •	- +	444
8 13	026	++++	++++	++++	##	***	*++		- + +	1111
	405 "	‡	++++	++++	++++	++++		• •		1111
	н 899	++++	###	#	##	++++		- +	- +	
Streptococcus faecalis GT040	# 904	++++	++++	##	++++	* + + +	• • •		- + +	1 1 2 2 2
morbillorum	194 "	‡	++++	++++	++++	****	· • • • • • • • • • • • • • • • • • • •	• +	****	1111
mutans	412 "	+++	++++	++++	++++	+++	++++	• +	- + + +	- 4
pneumonfae	408 **	+++	++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	• ‡	- +	• • • • • • • • • • • • • • • • • • •
Streptococcus salivarius GT04	410 "	. ++++	++++	++++	++++	++++	· + + + + + + + + + + + + + + + + + + +	• +	• + +	- +
Streptococcus sanguis GT04	# TIT	++++	++++	++++	++++	+++	· + + · + · +	• •	7777	E
Bifidobacterium dentium CT00	~	1	++++	++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	- + +	} + + +
	045 Gm +	++++	++++	##	+++	++++	+++	+++++++++++++++++++++++++++++++++++++++	• + + +	- + +
Corynebacterium glutamicum GT2	" 021	++++	+++	++++	+++	++++	+++	· +	• • •	- + - + - +
60	611	++++	+++	* ++++	+++	+++	+++	+	• + + +	· +
pseudotuberculosis	122 "	++++	+++	+++	+++	+++	##	+++	++++	+++
Corynebacterium pyogenes		++++	++++	++++	+++4	++++	+++	+++++++++++++++++++++++++++++++++++++++	* + + +	• + + + +
m xerosis GT0	サ	+ ++	+++	++++	+++	+++	+++	+++	++++	++++
	BCG .	+++	+++	++++	++++	+++	+++	+++	++++	++++
: F		+ ++++	++++	++++	T +++-	. +++	‡	+++	++++	++++
Nocardia asteroides GT21	. I6:	+ ++++	. ++++	++++	+++-	. +++	+++	+++	++++	++++
	Misc	+ ++++	• ++++	T ++++	+ +++	+++	+++	+++	++++	++++
	16 Gm +	+ ++++	. +++	+ +++	+ +++	+++	+++	++	++++	
necrophorum GTO	38 "	+ ++++	+++	+ +++	+ +++	+++	+++	++	++++	++++
terium prausnitzii ATC	89	+ ++++	++++	+ +++	+ +++	T +++	+++	++	+++	· + + + + + + + + + + + + + + + + + + +
lysans	18 "	+ ++++	* +++	+ +++	+ +++	+++	+++	++	* + + +	- + - +
┌~(2	+ ++++	T + + +	+ +++	+ +++	T +++	+++	++	++++	• + + • +
	Cyano	++++	++	+ + + + + + + + + + + + + + + + + + + +	+ +++	+++	+++	++	++++	++++
Plectonema boryanum	*	++++	++	+ +++	+ +++	+ ++++	+++	++	+ ++++	++++

~

rRNA-TARGETED PROBES 165 TABLE 3 (cont'd): DOT BLOT HYBRIDIZATION of

					PRO	BE HY	RIDI	ZATI(
Genus species	strain	div	1738	1739	1659	1660	1661	174(1741	1742	1743
Neisseria gonorrhoeae	031	=	###	++++	+++	++++	++++	T+++	+++	++++	++++
Neisseria meningitidis	せ	#	‡	++++	++++	##	++++	T+++	##	++++	+++
Pseudomonas acidovorans	37	*	++++	++++	##	++++	###	T+++	+++	++++	++++
Pseudomonas cepacia	GT2015	=	++++	+++	++++	++++	++++	T+++	+++	++++	++++
Rhodocyclus gelatinosa	ATCC17013	=	###	++++	++++	##	++++	##	##	++++	++++
Vitreoscilla stercoraria		2	+++	++++	+++	###	++++	++++	##	++++	++++
Achromobacter xerosis	CT0810	Purple	+++	++++	++++	++++	++++	+++	+++	++++	++++
Acidiphilium cryptum	ATCC33463	alpha	++++	++++	++++	++++	++++	++++	###	++++	++++
Agrobacterium tumefaciens	GT2021	:	##	‡	++++	++++	++++	##	+++	++++	++++
Brucella abortus	ATCC23448	=	++++	++++	++++	+++	+++	++++	+++	++++	++++
Flavobacterium capsulatum	GT2025	E	‡ ‡ ‡	++++	++++	++++	++++	##	+++	+++	+
Mycoplana bullata	GT2023	=	++++	++++	++++	++++	++++	***	+++	++++	++++
Pseudomonas diminuta	GT2020	E	++++	++++	++++	++++	++++	++++	+++	++++	++++
Rhodobacter sphaeroides	ATCC17023	z ·	++++	++++	++++	++++	***	++++	+++	++++	+++
_	ATCC25903	=	++++	++++	++++	++++	++++	++++	+++	++++	++++
Thiobacillus versutus	ATCC25364	*	++++	++++	++++	++++	++++	++++	+++	++++	++++
Desulfovibrio desulfuricans		delta	++++	++++	++++	+++ +	++++	++++	+++	++++	++++
Cardiobacterium hominis		GH I	++++	++++	++++	++++	++++	++++	+++	+ + + + + + + + + + + + + + + + + + +	++++
Francisella tularensis	17	년 1	++++	++++	++++	++++	++++	++++	ŧ	++++	++++
Campylobacter jejuni	3	Campy	++++	++++	++++	++++	++++	++++	+++	++++	++++
	3	I	++++	++++	++++	++++	++++	++++	+++	++++	++++
Campylobacter sputorum	GT0027	=	++++	++++	++++	++++	++++	++++	+++	++++	++++
**	80	lowG+C	++++	++++	++++	++++	++++	++++	+++	++++	++++
Bacillus subtilis		CH +	++++	++++	++++	++++	+++	++++	+++	++++	++++
ium	S	2	++++	++++	++++	++++	++++	++++	+++	++++	++++
Clostridium sordellii	GIOS	ŧ	++++	++++	++++	++++	+++	++++	+++	++++	++++
	ATCC 3587	2	++++	++++	++++	++++	+++	++++	+++	++++	++++
Clostridium histolyticum	ATCC19401	2	++++	++++	++++	++++	+++	++++	+++	++++	++++
	ATCC13124	2	. ++++	++++	++++	++++	+++	++++	+++	++++	++++
	ATCC25582	=	• ++++	++++	++++	++++	+++	++++	+++	++++	++++
Kurthia zopfii		=	. ++++	+++	++++	++++	+++	+++	++	++++	++++
Lactobacillus acidophilus	25	=	• ++++	. +++4	++++	++++	+++-	+++	+++	++++	++++
Lactobacillus plantarum		=	++++	• ++++	++++	++++	+++	+++	+++	++++	++++
Listeria monocytogenes	IG3299	=	++++	. +++	+++	+++	+++	+++	+	++++	++++

TABLE 4: DOT BLOT HYBRIDIZATION OF 23S FRNA-TARGETED PROBES

Genus avected	strain	div	1730	PROE	HYE 1658	RIDIZA 1653	ATION 1654		1651
cinetobacter	GT0002	Purple	‡++	‡	Ŧ	++++	++++	++++	+++
Aeromonas sobria	CI0007	gamma	++++	#	I	‡	++++		•
	CT1945	*	+++	‡	###	+++	++++		‡
Citrobacter amalonaticus	CT0690	2	+++	‡	1 1	+++	++++		+++
Citrobacter diversus	CT0030	t	###	‡	‡	##	++++		‡
4	CT0687	E	++++	+++	##	+ + +	+++		‡
	CT0569	2 '	++++	###	#	++++	‡		++++
Enterobacter agglomerans	CT0683	=	‡	+++	**	++++	++++		‡
_	CT0686	2	‡ ‡	+++	##	++++	++++		‡
Enterobacter sakazakii	GT0062		++ +	‡	###	++++	‡		‡
coli	GI1665	*	++++	+++	+ + + +	++++	‡		+++
	GT1592	=	++++	++++	##	++++	++++		++++
	GT1659	2	‡	++	‡	++++	+ + +		++++
	GT0244	*	+++	+	‡	‡	‡		++++
inf	ATCC33391	z	Ø	2	2	B	Ş		R
duc	GT0243	*	++++	++++	+++	++++	++++		++++
	GT0241	=	++++	++++	+++	++++	++++		‡
Morganella morganii	GT0303	2	++++	++++	+++	++++	+++		‡
Klebsiella pneumoniae	GT1500	2	++++	‡ ‡ ‡	+++	++++	++++		+ + +
- 54	GT1496	ŧ	++++	++++	+++	++++	++++		++++
Providencia alcalifaciens	GT0371	3	+++	++++	+++	++++	++++	-	++++
4	CI1909	=	++++	++++	++	++++	++++	_	+++
ari	CT0799	=	++++	+++	+++	++++	+++	-	+++
tyr	GT0389	2	+++	+ + +	+++	++++	+++	•	+++
	GT0392	3	++++	++++	+++	++++	+++	•	++++
	GT0798	*	++++	++++	+++	+++	+++	•	++++
ď	CT0568	=	++++	+++	+++	+++	+ + +		++
	GT0417	=	++++	++++	+++	‡	+ + +		+++
Versinia enterocolitica	GT0419	=	++++	++++	+++	++++	+++	•	+++
	GT0610	Purple	+++	+++	+	ŧ	+++	-	+
Branhamella catarrhalis	GT0014	beta	+++	+++	+++	++++	+++		++++
Chromobacterium violaceum	GT2022	2	++++	++++	+++	ŧ	+++	•	+ + +
Kingella indologenes	0	2	++++	+++	+	++	+ +		+
Moraxella osloensis	GT0301	=	++++	+++	++++	++++	+ +	4	+ +

23S rRNA-TARGETED PROBES HYBRIDIZATION OF TABLE 4 (cont'd): DOT BLOT

				D.	ROBE	IYBR.)IZAT	ION	
Spe	strain	div	1730	1731	1658	165	1654	1655	
Morexella phenylpyruvica	GT0302	=	+++	+++	+	+++	+++	++++	
ia	GT0315	=	+++	+++	++++	1	++++	++++	
	GT0349	x	++++	++++	++++	t	+++	++++	
Pseudomonas acidovorans	GT0376	*	++++	++++	++++	ŧ	+++	++++	
Pseudomonas cepacia	GT2015	*	++++	+++	+++	ŧ	1	‡	
Rhodocyclus gelatinosa	-	:	+++	+++	+ + +	ı	‡	i	
~		2	+++	++++	+++	1	‡	+++	+++
	GT0810	Purple	‡	+++	+++	t	1	+	
U	ATCC33463	alpha	+	ľ	‡	•	i	1	
日日	GT2021	=	‡	‡	++++	ŧ	1	ŧ	
ىد	ATCC23448	*	++++	++++	++++	i	ł	1	
_	GT2025	±	+ +	+++	† † † †	1		ı	
ಥ	GT2023	T	++++	+++	+	t	ı	ŧ	
- 60	GT2020	*	+++	+++	+	t	1	1	
82	ATCC17023	z	++++	++++	++++	1	1	1	
lum rubrum	ATCC25903		++++	++++	++++	###	++++	1	
U	ATCC25364	2	++++	++++	+++	1	•	ŧ	
0	ATCC 7757	delta	+++	+	++	+	+++	1	
コ	GT2095	G E E	+++	+++	1	i	++	ı	
đ	GT2172	년 5	+++	++++	++++	1	•	1	
a	GT0022	Campy	+++	+	‡ ‡ ‡	ı	1	1	
Campylobacter pylori	GT0026	=	+	‡	++++	t	ı	•	
Campylobacter sputorum	GT0027	Ŧ	+++	+ +	++++	ŧ	ı	ı	
Bacillus brevis	GT0803	10WG+C	+++	+++	++++	++++	++++	++++	
Bacillus subtilis	CT0804	CH +	+++	+++	++++	++++	++++	++++	
Clostridium clostridioforme	ATCC25537	=	1	1	+	++++	++++	++++	
lostridium so	GT0567	*	++++	++++	++++	++++	++++	++++	
38	ATCC 3587	=	+++	+++	++++	++++	++++	++++	
Clostridium histolyticum	ATCC19401	£	++++	‡	+++	+++	++++	++	
pe	ATCC13124	=	++++	+++	+++	1	++++	1	
rai	ATCC25582	=	++++	+++	1	ŧ		i	
Kurthia zopfii	ATCC33403	2	++++	++++	+++	+++	+++	+++	
Lactobacillus acidophilus	GT0256	2	+++	+++	i	+	+++	1	
Lactobacillus plantarum	CT0258	2	++++	+++	+++++	+++	+++	+++	

HYBRIDIZATION OF 23S PRINA-TARGETED PROBES TABLE 4 (cont'd): DOT BLOT

			•	<u>a</u>	ROBE	HYBRII	DIZAT	_	
Genus species	strain	div	1730	30 1731 1	1658	1653	1654	1655	1651
Listeria monocytogenes	IG3299	=	++++	+++	++++	++++	###		‡
Mycoplasma pneumoniae	ATCC15531	=	‡	‡	+++	1	1		1
putrefaciens	ATCC15718	E	+++	‡	++	•	•		1
tococcus productus	ATCC27340	=	1	1	‡	++++	++++		+++
itreus	ATCC14404	I	+++	+++	++++	++++	++++		+++
ט	GT0399	=	++++	++++	###	++++	++++		++++
10	GT1711	=	++++	++++	++++	++++	‡		‡
Staphylococcus epidermidis	GT0401	I	+++	++++	++++	‡+	++++		++++
s haemolyticus	ATCC29970	2	++++	++++	++++	‡ ‡ ‡	++++		++++
Streptococcus agalactiae	GT0405	=	+++	+++	1	++++	++++		++++
д	GT0668	*	++++	‡	ı.	‡	++++		++++
Streptococcus faecalis	GT0406	*	++++	+++	+++	###	++++		+ ++
Streptococcus morbillorum	GT2194	2.	+ + +	‡	‡	++++	++++		• ‡ ‡
•	GT0412	*	+++	‡	1	++++	++++		+++
Streptococcus pneumoniae	GT0408	£	++++	++++	ı	+++	++++		++++
•	GT0410	=	+++	++	1	++++	++++		++++
	GT0411	3	+++	+++	1	++++	+++		++++
Bifidobacterium dentium	GT0012	hig+c	‡	‡	ŧ	1	ŧ		++++
Corvnebacterium genitalium	GT0045	GH +	+ +	+++	+ + +	++++	++++		++++
O	GT2120	*	++++	‡	‡	++++	++++		++++
H	ım GT2119	=	‡ ‡ ‡ ‡	++++	+++	++++	++++		++++
H	GT2122	2	+++ +	+++	t	‡	++++		++++
	GT2121	z.	+	1	‡	++++	++++		+++
	GT0046	T	1	ı	+	++++	++++		+++
Mycobacterium bovis	BCG	2	1	ı	‡	++++	++++		+++
Mycobacterium kansasii		2	+	i	+++	++++	++++		++++
Nocardia asteroides	GT2191	*	++++	++++	+++	1	1		++++
Rhadococcus rhodochrous		E	+++	+++	+++	++++	+ ++		++++
>	-4	Misc	++++	++++	+++	+++	+++		++++
Fusobacterium necrophorum	023	년 +	++++	++++	i	+ ++	+ + +		
Fusobacterium prausnitzii A	TCC27768	I	+++	•	‡	† †	+ + +		++++
-	GT2118	=	++++	++++	++++	++	++++		++++
Heliobacillus mobilis		3	+++	++	++++	+++	++++		++++
Phormidium ectocarpi		Cyano	+	++	1	+ + +	+ + + +	•	•

rRNA-TARGETED PROBES 235 HYBRIDIZATION OF TABLE 4 (cont'd): DOT BLOT

				D.	OBE 1	TYBRI	DIZAT	NOI	
Genus species	strain	div	1730	1731	1658	1653	1654	1655	1651
Plectonema boryanum		=	‡	‡	ŧ	‡	++++	+++	ı
Borrelia burgdorferi		Spiro	+++	+	‡	ŧ	•	1	+++
Borrelia turicatae			++++	+++	++++	1	1	t	+++
Leptospira interrogans-pomona		æ	+++	++	++++	1	•	1	+
biflexa (Pat		=	+++	‡	++++	i	ı	i	++++
biflexa	-	I	+ + +	‡	++++	•		ı	++++
ø		2	++++	+	++++	1	1	1	++++
	25285	Bact	‡	‡	+	ŧ	ŧ.	t	++++
Bacteroides fragilis	29771		‡	‡	+	1	ı	ł	++++
	0572	=	+	+	+	t	ŧ	t	++++
Bacteroides melaninogenicus	0011	±	1	ŧ	+	+	‡	t	++++
icm	0237	2	+	ı	·+	ı	t	ı	+++
Chlamvdia psittaci		Chlam	ì	ı	ı	1		1	•
Chlamydia trachomatis	LGV	=	+++	+++	•		ŧ	1	t
g	-	Misc.	++++	+++	+	++++	++++	+++	+++
15 A	¥400	2	+	ŧ	‡	ı	+	1	+
Deinococcus radiodurans	2608	=	++++	+++	++	1	1	ı	+
503	2577	=	1	i	‡		1	1	1
Normal Stool RNA			+++	+ +	++	‡	+++	++	+++
Mouse L-Cell			•	ı	1	ı	i	1	i
Wheat Germ			+	+	1	1	1	t	•
Normal Human Blood			1	1	1	i	ı	1	1
Candida lusitaniae	403-87		1	•	ı	1	1	i	t
Candida parapsilosis	882-88		1	1	1	1	1	1	ı
Candida tropicalis	224-87		•	1	t	1	ı	1	ı
Candida albicans	-80		1	ı	ı	ı	ı	ı	
Candida albicans	23-8		ŧ	•		1	t	i	1
Candida albicans	819-88		•	i	ı	1	:		•

positive done. exposures. - not was determined after overnight 100ng of CsTFA purified RNA. ++ zero, and A Inclusivity and Exclusivity data was determine ** Each organism is represented by 100ng of CsTFA level of hybridization, + = barely detectable

23S rRNA-TARGETED PROBES TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF

						E HYBI	ZIDIZI	ATION		
Genus species	strain	div	1512	1256	1398	1600	1601	1602	1596	1597
12	GT0002	Purple	++++	++++		++++	++++	++++	++++	‡
ria	CT0007	gamma	++++	++++		++++	++++	++++	++++	‡
- 61	GT1945	=	++++	++++		++++	###	++++	++++	+++
amalonati	GT0690	2	‡	+++		++++	+++	++++	+ + +	+++
terobacter diversus	GT0030	8	‡	++++		++++	+++	++++	+++	‡
terobactor froundi	GT0687	=	++++	++++		++++	+++	++++	+ + +	###
- 40	GT0569	=	++++	++++		+++ +++	+++	++++	+++	+++
	CT0683	2	+++ +	+ ++		+ + +	* ++	++++	+++	‡
cloacae	GT0686	E	++++	++++		++++	+ + +	++++	+++	‡
SAKAZB	GT0062	=	++++	++++		+ + +	‡	+++ +	+++	++
Ū	GT1665	=	++++	++++		+ + +	‡	++++	‡	++++
artotret artotre	GT1592	=	++++	++++		++++	++++	++++	++++	++++
	GT1659	*	++++	+++		+++	‡	++++	+++	+
mont lus	GT0244	#	++	+++		+++	‡	++++	+++	‡
influen	ATCC33391	2	2	ON		+++	+++	‡	+++	+++
	GT0243	=	++++	++++		S	+	++++	++++	++
- 10	GT0241	2	++++	+++		++++	+++	++++	++++	+++
	GT0303	3	++++	++++		++++	++++	++++	+++	+++
Klehsfella pneumoniae	GT1500	#	++++	++++		‡	‡	+++	+++	+++
Protein mirabilis	GT1496		++++	++++		++++	++++	++++	+ + +	+ + +
_	GT0371	*	++++	++++		++++	++++	++++	+ + +	+ + +
	CT1909	=	++++	++++		++++	++++	++++	+++	+ +
- 60	CT0799	*	++++	++++		++++	‡	++ ++ +	+++	+
Salmonella tvphimurium	CT0389	£	++++	++++		++++	+ + +	+ + + +	+++	+++
	GT0392	E	++++	++++		++++	+ + +	++++	+++	+
Shidella flexmeri	GT0798	*	++++	++++		++++	++++	++++	++++	+ · + ·
- 65	GT0568	=	++++	+++		+++	+++	++++	+++	+ +
Xanthomonas maltophilia	GT0417	2	++++	+++		++++	‡	++++	++++	‡
Versinia enterocolitica	GT0419	=	++++	++++		++++	++++	++++	++++	+++
Alralidenes faecalis	GT0610	Purple	++++	+++		+++	+	+++	+ + +	+ +
	GT0014	beta	++++	+++		++++	‡	+++	+++	+++
rium viol	GT2022	3	++++	++++		++++	++++	+++	+ + +	+++
Kingella indologenes	0246	×	++++	++		+++	+++	+++	+ + +	+
	CT0301	2	++++	+++		+ + + +	+ + +	++++	+ + +	+ + +

23S rRNA-TARGETED PROBES DOT BLOT HYBRIDIZATION OF TABLE 4 (cont'd):

				•	PROB	E HYB		ATION		
Canua apportes	strain	div	1512	1256	1398	1600	1601	1602	1596	1597
a	10	=	***	*+++	+	++++		‡		+++
a gonorrhoeae		#	+++	++++	+	++++		+++		+
	34	Ŧ	++++	++++	+	++++		++++		+
as acidov	37	=	++++	++++	+	++++		++++		+ +
	0	=	++++	+++	+	++++		++++		+
gelati	ATCC17013	2	++++	+++	+	+++		++++		‡
a sterc	† !	2	++++	++	+	++++		++++		++++
rxero	GT0810	Purple	++++	‡	+	‡		++++		+++
U	ATCC33463	alpha	++++	‡	+	++++		++++		++++
Agrobacterium tumefaciens	GT2021	=	++++	+	+	‡		++++		+++
	ATCC23448	±	++++	++++	+	+++		++++		‡
	GT2025	=	++++	+++	+	++++		++++		+ + +
Mycoplana bullata	GT2023	=	++++	+++	+	++++		++++		++++
	GT2020	= .	++++	+++	+	++++		++++		+ + +
sphaer	ATCC17023	E	++++	+++	‡	++++		++++		+++
lum rubrum	2590	£	++++	++++	+	++++		++++		+++
Thiobacillus versutus	ATCC25364	=	++++	+++	+	++++		++++		++++
_	ATCC 7757	delta	++++	+++	+	++++	_	++++		+
Cardiobacterium hominis	GT2095	ا ق	++++	+++	+	++++	-	++++		+ + +
- 0	GT2172	ا و	+++ +	+++	+	++++	•	++++		++++
er fefuni	GT0022	Campy	++++	ı	++++	+++	-	++++		+ + +
	GT0026	! ! =	++++	ı	+ + +	++++	_	++++		+++
	GT0027	=	++++	ł	+++	++++	•	+ + + + +		+ + +
Bacillus brevis	GT0803	lowG+C	++++	+++	+	+++	•	++++		+ + +
Bacillus subtilis	GT0804	GH +	++++	+++	+	+ + + +		+ + + +		+++
44	ATCC25537	=	++++	+++	+	+ + +		++++		+ · + ·
	GT0567	3	++++	+++	+	+ + +		+++		+ · + ·
	ATCC 3587	=	++++	+++	+	+++		++++		+ ++
histolv	ATCC19401	=	++++	+++	+	1		++++		‡
	ATCC13124	=	++++	ŧ	+	+ ++		++++		+ +
ramosum	ATCC25582	2	++++	ı	+	‡		++++		+
Kurthia zopfil	ATCC33403	=	++++	++++	+	++++		++++		+ +
Lactobacillus acidophilus	GT0256	=	++++	+++	+	++++	4	+++		++
plant	GT0258	8	++++	+++	+	++++	T	+ + + +		+

23S FRNA-TARGETED PROBES DOT BLOT HYBRIDIZATION OF TABLE 4 (cont'd):

						E HYBI	O.	Æ		
Genus species	strain	div	1512	1256	1398		1601	1602	1596	1597
T	IG3299	=	++++	+++			_		‡	++++
na pneumoniae	ATCC15531	=	###	i	+	‡			ı	•
putrefaciens	ATCC15718	=	++++	i	ı	+++		++++	‡	+++
tococcus productus	ATCC27340	E	++++	+++	1	‡		++++	+++	‡
	ATCC14404	3	+++	+++	+	++++		++++	++++	‡
U	GT0399	=	++++	++++	+	++++		++++	++++	+++
aure	GT1711	#	***	+++	+	++++		++++	+++	+++
epid	GT0401	=	+++	+++	+	++++		++++	+++	‡
haemolyticus	ATCC29970	=	++++	+++	+	++++		++++	+++	+ + + +
agala	GT0405	2	++++	+++	+	++++		++++	+ + +	++++
	GT0668	2	++++	+	+	++++		++++	‡	++++
ptococcus	GT0406	=	++++	+	+	++++		++++	+ + +	† † †
morb11	GT2194	E	++++	‡	+	‡		++++	‡	++++
mutans	GT0412	=	++++	+++	+	+++		+++	+++	+ + +
	GT0408	E	++++	+++	+	++++		++++	+++	+++
saliv	GT0410	T	++++	+++	+	++++		++++	+++	‡
•	GT0411	z	S	R	+	++++	-	++++	+++	+++
	GT0012	h1G+C	ı	+++	+	++++		++++	+ + +	+++
Corynebacterium genitalium	CT0045	+ E	‡	+ + +	+	++++	-	++++	++++	+++
- 5	GT2120	=	‡	+ + +	+	++++	-	++++	++++	+++
, 8	m GT2119	2	++++	+++	+	++++	-	++++	++++	+++
	GT2122	*	++++	+++	+	++++		++++	++++	++++
pyogenes	GT2121	=	‡	+	+	++++		++++	++++	++++
	GT0046	=	+	+	+	+++		++++	‡	+++
Mycobacterium bovis	BCG	=	+	++	+	+++		++++	+ +	+++
Mycobacterium kansasii		=	+++	+++	+	++++	•	++++	+++	+++
Nocardia asteroides	GT2191	2	++++	+++	+	++++		++++	++++	+++
Rhodoccus rhodochrous		=	‡	+++	+	++++		++++	++++	+++
Aerococcus viridans	-4	Misc	++++	+++	+	++++	‡	++++	++++	++++
4	GT0238	Ca +	‡	+++	+	+++		++++	++++	++++
	PCC27768	=	++++	+++	+	++++	-	++++	++++	++++
	GT2118	\$	++++	+	+	++++	7	++++	++++	++++
1 toba		=	++++	+++	+	ı		++++	‡	++++
ormidium ect		Cyano	++++	+++	+	+		++++	+	+

rRNA-TARGETED PROBES 238 OF DOT BLOT HYBRIDIZATION TABLE 4 (cont'd):

					PROBE		72IOI	ATION		
Genus species	strain	div	1512	1256	1398	1600	1601	1602	1596	1597
0		=	++++	+++	+	+	+	++++	‡	+
Rorrella huradorferi		Spiro	++++	+++	+	+++	+++	++++	‡	‡
4 5		=	++++	++++	+	++++	++++	++++	++++	‡
		ŧ	++++	+++	+	+++	+++	++++	+++	+++
hiflora		2	++++	+++	+	‡	‡	++++	‡	++
		=	++++	+++	+	+++	‡	++++	+	+
a airantí		ŧ	·+++	++++	+	+++	++++	++++	++	‡
	25285	Bact	++++	+++	+	‡	‡	++++	+	+
		Z	++++	+++	+	+++	++	++++	+ + +	‡
thetaio	0572	=	+ + +	++	+	+	+	+++++	‡	++
melanin	0011	=	++++	+++	+	+	+	++++	+++	+
ium meni	0237	*	##	++++	+	++++	++++	++++	++++	+
Chlamvdia osittaci	,	Chlam	1	+++	1	++++	++++	+++	‡	+
Chlamydia trachomatis	TGV	=	ı	+++	ı	++++	‡	++++	+ +	+
m limicola	٠	Misc.	++++	++++	+	++++	+++	++++	+	++
	¥400	=	++	+++	+	‡	‡	++++	‡	‡
Defineeus radiodurans	2608	2	++++	++++	+	++++	++++	++++	+	+
133	2577	2	++++	+++	+	++++	‡	++++	+++	t .
Normal Stool RNA			+++ +	+++	1	+++	+++	++++	‡	++
L-Ce11			1	•	1	1	1	ı	1	1
Wheat Germ		-		1	ı		ŧ	ŧ	ŧ	i
-			ı	•	ı	•	:	ı	•	•
a lusit	403-87		+	ı	1	ı	•	ı	1	1
	882-88		+	•	ŧ	i	•		ı	
	224-87		+	1	ı	1	•	t	•	1
Candida albīcans	1008-88		+	•	ı	1	•		1	1
	223-87		+	ı	ı	ı		ŧ	1.	ı
Candida albicans	819-88		+	ı	1	•	ı	1		ı
					1					

++++ = positive ND - not done. exposures. was determined after overnight 100ng of CsTFA purified RNA. ++ = barely Inclusivity and Exclusivity data Each organism is represented by level of hybridization, + = bare * *

GRAM POSITIVE & GRAM NEGATIVE PROBES TABLE 5: DOT BLOT HYBRIDIZATION

					PROBE	HYBRI		ATION		
			168	RNA-T	ARGET		238	RNA-1	'ARGI	E:
2	strain	div	1744	1745	1746	1657	1656	5 1598	15	99 159
Acinetobacter calcoaceticus	GT0002	Purple	1	1	1	++++		‡	1	‡
Aeromonas sobria	CT0007	gamma	1	ı	ı	++++	•	‡	÷	+++
Alteromonas putrefaciens	GT1945	=	ŧ	•	1	++++	ı	++++	• 1	+++++++++++++++++++++++++++++++++++++++
Citrobacter amalonaticus	GT0690	=	1	1	•	++++	1	+++	•	+++++++++++++++++++++++++++++++++++++++
	CT0030	*		•	i	++++	•	+++	1	++
Citrobacter freundii	GT0687	•	ŧ	1	ŧ	++++	i	++++	•	+++
Edwardsiella tarda	CT0569	Ŧ	1	ŧ	1	++++	ı	++++	i	+++
Enterobacter agglomerans	GT0683	#	•	ł	1	++++	1	++	1	+++
Enterobacter cloacae	GT0686	:	+	+	ı	++++	ı	++	+	+++
Enterobacter sakazakii	CT0062	=	1	1	ı	++++	1	++++	•	+++
Escherichia coli	GT1665	z.	ı	ı	1	++++	1	++++	1	++
Escherichia coli	GT1592	=	ı	1		++++	ı	++++	ì	‡
Echerichia coli	GT1659	2	ŧ	1	ı	++++	+	‡	+	+++
Haemophilus influenza		=	1	1	1	++++	++++	++++	•	++++
Haemophilus ducreyi	N	=	i	ŀ	•	++++		++++	ı	++++
Hafnia alvei	24	3	1	1	1	++++	•	++++	+	+++
Morganella morganii	30	=	ŧ	•	•	++++	ı	++++	•	+++
Klebsiella pneumoniae		*	1	1	ı	++++	t	++++	i	‡
Proteus mirabilis	CT1496	E	1	1	ı	++++	1	++++	+	+++
Providencia alcalifaciens	37	2	1	ŧ	ŧ	++++	ı	+	+	+++
Pseudomonas aeruginosa	0	=	ı	1	ı	++++	1	++	+	++++
Salmonella arizona	1	3	ŧ	1	ı	++++	ı	++	+	++++
Salmonella typhimurium	ຕ	Œ	1		•	++++	ŧ	++++	ı	++++
Serratia marcescens	GT0392	2	•	t	•	++++	ŧ	++++	ŧ	+++
Shigella flexneri		=	ı	f	1	++++	ŧ	++++	ŧ	+++
Vibrio parahaemolyticus	GT0568	=	ŧ	1		++++	ı	++++	+	+++
Xanthomonas maltophilia	GT0417	=	ŧ	ı	1	+	+	++++	+	++++
Yersinia enterocolitica	GT0419	2	1	1	1	++++	ŧ	++++	+	++++
Alcaligines faecalis	910	Purple	t	1	•	i	++++	++++	ŧ	+++
Branhamella catarrhalis	CT0014	beta	•	ı		++++	1	++++	•	+++
Chromobacterium violaceum	GT2022	#	ı	•	•	++++	+++	++++	+	+++
Kingella indologenes	0246	=	ı	1	1	++++	1	+++	1	+++
	0	E	1	ŧ	•	+++	ı	++++	+	+
Morexella phenylpyruvica	CT0302	3	ı	ł	1	+++	•	++++	ı	++++

& GRAM NEGATIVE PROBES GRAM POSITIVE (cont'd) DOT BLOT HYBRIDIZATION TABLE 5:

				PNA-T	PROBE	HYBR	IDIZAT	TON NA-TZ	PCET	
Genus species	strain		1744	1745	1746	1657	1656	1598	1599	1595
Borrella burgdorferi		03	1	+	+++	1	++++	++	ı	
Borrella turicatae		=	1	‡	++++	1	++++	++++	1	+
interrog		=	ı	+		ŧ	++++	++++	‡	+
Leptospira biflexa (Patoc-Patoc)		E	ŧ	ŧ	•	1	++++	++++	+	+
biflexa		=	,	ŧ	•		+++	+++	‡	+
Spirochaeta aurantia		Z	++++	1	ı	•	‡	‡	++++	+
	25285	Bact	++++	ŧ	1	ŧ		ı	++++	+
	29771	=	++++	ı	1	•	ŧ	1	+++	+
Bacteroides thetaiotaomicron	0572	=	+	ı	•	t	t		++++	+
Bacteroides melaninogenícus	01	=	++++	ı	i	ŧ	ŧ	1	++++	+
Flavobacterium meningosepticum.	0237	=	++++	1	•		+	i	+++	ŧ
Chlamydia psittaci		Chlamy	ı		- 1		t	+	+	+
Chlamydia trachomatis	TGV	=	1	1	ŧ		ŧ	+	++	++
Chlorobium limicola		Misc	++++	1	t	·	+++	1	•	1
Chloroflexus aurantiacus	$\Lambda400$	2	++++	ŧ	i	•	+++	1	++++	+++
Deinococcus radiodurans	2608	z	+++	1	1	•	+ + +	1	++++	+
Planctomyces maris	2577	2	•	1	1	ŧ	•	ı	ŧ	ı
Normal Stool RNA			+++	++++	‡	•	+++	+	+++	++
Mouse L-Cell			1	1	1	ı	1	1		ŧ
Wheat Germ			1	ı	•	1	•	1		
Normal Human Blood			1	ı	ı	1	1	•	ŧ	1
៧	403-87			1	1	•	1	•	1	t
	1		1	ŧ	ŧ	ŧ	ı	•	t	1
	224-87		1	•	1	ı	•	1	ŧ	1
	4		ı	1	1		1	ł	ı	1
Candida albicans	23-		ı	•	1	ı	t		ı	ŧ
Candida albicans	819-88	•		1	ŧ	1	ŧ	1	1	ı

Probe zero. exposures and was determined after overnight 100ng of CSTFA purified RNA. detectable barely ။ ပ<u>ံ</u> 20 Inclusivity and Exclusivity data was def Each organism is represented by 100ng of ++++ = positive level of hybridization, was hybridized at 37 C and washes at 5 * * *

GRAM POSITIVE & GRAM NECATIVE PROBES TABLE 5: (cont'd) DOT BLOT HYBRIDIZATION

			168	RNA-T	PROB	E HYBRID	ZA	rion RNA-I	RGEL	
Genus species	strain	div	1744	1745	174	1657	556	1598	1599	1595
la la	ATCC15531	2	1	++++	‡	1	•	•	t	++++
	ATCC15718	=	1	++++	‡	ı		1	++++	1
ىد	ATCC27340	=	++++	++++	+++	1		ł	++++	1
n	ATCC14404	=	++++	++++	† † †	i .	+	+	+ + + +	f
Staphylococcus aureus	GT0399	:	++++	++++	+++	1	‡	+	++++	ŧ
aureu	GT1711	3	++++	++++	+++	ı	++	+	++++	ı
	GT0401	:	++++	++++	+++	1	++	+	++++	1
taphylococcus haemo.	ATCC29970	2	++++	++++	+++	ı	‡	+	++++	1
agalactiae	GT0405	3	++++	++++	+++	ı	‡	1	++++	1
bovis	GT0668	æ	++++	++++	+++	1	‡	ı	+++ +	
	GT0406	*	++++	++++	‡	•	‡	1	++++	1
morbil	GT2194	2	++++	++++	+ ++	•	‡	+	‡	1
mutans	GT0412	E	++++	++++	++ +	1	‡	ŧ	***	ı
•	CT0408	æ	++++	++++	+++	•	+	•	++++	ı
_	GT0410	E	++++	++++	1 +++	ı	‡	i	++++	1
	GT0411	2	++++	+++	+++	1	‡	1	++++	•
5	GT0012	hiG+C	•	++++	+++	++++		1	++++	+
geni	GT0045	Ca +	++++	++++	+	++++		1	+++	+
,년	GT2120	8	++++	+++	T+++	++++		1	###	+
` =	cum GT2119	*	++++	++++	++++	1	‡	+	++++	ı
Ω		\$	++++	++++	++++	•	+	ŧ	++++	1
	GT2121	3	++++	++++	++++	t		+	++++	+++
	CT0046	E	++++	‡ ‡	‡	++++		1	++++	+
8	BCG	Z	++++	++++	i	++++		ı	++++	+
Mycobacterium kansasii		=	++++	++++	++	++++		ı	++++	+
Nocardia asteroides	GT2191	3	++++	ŧ	ŧ	ı		++++	+ + +	‡
Rhodococcus rhodochrous		=	++++	++++	+	++++		1	++++	+
Aerococcus viridans	GT2116	Misc	++++	++++	++++		+	++	++++	1
-	2	+ E5	++++	++++	+	+++		‡	++++	f
prausni	~	2	++++	++++	‡	+		+	++++	1
Lysans	GT2118	2	++++	++++	++++	1	‡	++++	++++	t
Heliobacillus mobilis		2	++++	++++	+++	i	‡	•	++++	:
		Cyano	++++	++++	+	1		1	++++	ı
		:	++++	++++	1	ı		1	++++	1

- GRAM POSITIVE & GRAM NEGATIVE PROBES TABLE 5: (cont'd) DOT BLOT HYBRIDIZATION

•			168	RNA-	PROBE FARGET	HYBR	IDIZA 23S	TION RNA-T	ARGET	
Genus species	strain	div	1744	174	5 1746	1657	1656	1598	1599	1595
16	GT0315		1	1	1	++++	++++	++++	•	‡ ‡‡
	arti.	*	ı	ı	ŧ	++++	++++	++++		+++
- 65		2	ı	i	1	++++	++++	###	ŧ	+++
Pseudomonas cepacia	GT2015	*	ı	1	ı	++	++++	++++	•	+++
Rhodocyclus gelatinosa		2	•	ŧ	ı	ı	•	++++	1	+++
-		E	t	ı	1	•	++++	+++	1	‡
	CT0810	Purple	1	1	ŧ	++++	+++	+ + +	ı	‡
Acidiphilium cryptum	ATCC33463	alpha	ŧ	ŧ	1	+++	1	1	ı	1
Agrobacterium tumefaciens	GT2021	,=	‡	1	ì	++++	ſ	++++	‡	‡
Brucella abortus	ATCC23448	=	+ +	1	•	++++	ı	+ + + +	‡	+++
Flavobacterium capsulatum	GT2025	=	+	1	ŧ	++++	•	‡	‡	•
Mycoplana bullata	GT2023	2	1	1		++++	•	++	1	ı
Pseudomonas diminuta	0	*	ı	1	-	++++	1	+++	•	+
Rhodobacter sphaeroides	ATCC17023	=	•	ŧ		++++	١.	+++	ı	+
Rhodospirillum rubrum	2590	2	++++	ı		++++	ŧ	+	+	+++
Thiobacillus versutus	2536	Ŧ	‡	ŧ	í	++++	•	‡	1	‡
	ATCC 7757	delta	1	ŧ		1	1	+ + +	ı	‡
*Cardiobacterium hominis	CI2095	Misc	1	ı		++++		+++	1	+
Francisella tularensis	GT2172	CH H	t	1		++++	1	+ + + +	1	++++
	GT0022	Campy	ı	i		1	++++	+++	+	ı
	GT0026	=	•	ı		ı	++++	‡ ‡	+	+
	GT0027	2	ı	ı		ı	+	++++	‡	•
Bacillus brevis	CI0803	10WG+C	++++	++++	++++	t	++++	+	++++	1
Bacillus subtilis	CT0804	C E +	++++	++++	++++	1	++++	+	++++	1
*	ATCC25537	=	++++	++++	++++	•	++++	•	++++	ı
	GT0567	=	++++	++++	++++	•	++++	1	++++	•
	ATCC 3587	2	++++	++++	++++		++++	į	++++	ı
Clostridium histolyticum	ATCC19401	£	++++	++++	++++	•	++++	ı	++++	1
	31	=	++++	++++	++++	•	+++	i	++++	1
	ATCC25582	3	++++	++++	++++	1	1	•	++++	+
Kurthia zopfii	4	2	++++	++++	++++	•	+++	i	++++	1
	25	1	++++	++++	++++	1	++		++++	ı
Lactobacillus plantarum	T025	*	++++	++++	++++	1	+++	+	++++	ŧ
F %	N	=	++++	++++	++++	1	+ +	1	+++	1

46

What is claimed is:

1. A nucleic acid fragment capable of hybridizing to rRNA or rDNA of eubacteria.

5

- 2. The nucleic acid fragment of claim 1 wherein said fragment is not capable of hybridizing to rRNA or rDNA of Mouse L cells, wheat germ, human blood or Candida albicans.
- 3. The nucleic acid fragment of claim 2, wherein said fragment is complementary to at least 90% of a sequence comprising any ten consecutive nucleotides within probes selected from the group consisting of 1638, 1642, 1643, 1738, 1744, 1659, 1660, 1661, 1739, 1740, 1741, 1742, 1745, 1746, 1743, 1637, 1639, 1640, 1641, 1730, 1731, 1658, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1512, 1256, 1398, 1511, 1595, 1600, 1601, 1602, 1598, 1599, 1596, 1597.
- The nucleic acid fragment of claim 2, wherein said fragment is homologous to at least 90% of a sequence comprising any ten consecutive nucleotides within probes selected from the group consisting of 1638, 1642, 1643, 1738, 1744, 1659, 1660, 1661, 1739, 1740, 1741, 1742, 1745, 1746, 1743, 1637, 1639, 1640, 1641, 1730, 1731, 1658, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1512, 1256, 1398, 1511, 1595, 1600, 1601, 1602, 1598, 1599, 1596, 1597.

25

30

5. A set of probes comprising at least two nucleic acids fragments, at least one of which is selected from the group consisting of 1638, 1642, 1643, 1738, 1744, 1659, 1660, 1661, 1739, 1740, 1741, 1742, 1745, 1746, 1743, 1637, 1639, 1640, 1641, 1730, 1731, 1658, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1512, 1256, 1398, 1511, 1595, 1600, 1601, 1602, 1598, 1599, 1596, 1597 and their complementary sequences.

47

- 6. The nucleic acid fragment of claim 1 which is probe 1638 or its complementary sequence.
- 7. The nucleic acid fragment of claim 1 which is probe 1642 or its complementary sequence.
 - 8. The nucleic acid fragment of claim 1 which is probe 1643 or its complementary sequence.
- 9. The nucleic acid fragment of claim 1 which is probe 1738 or its complementary sequence.

15

- 10. The nucleic acid fragment of claim 1 which is probe 1744 or its complementary sequence.
- 11. The nucleic acid fragment of claim 1 which is probe 1659 or its complementary sequence.
- 12. The nucleic acid fragment of claim 1 which is probe 1660 or its complementary sequence.
 - 13. The nucleic acid fragment of claim 1 which is probe 1661 or its complementary sequence.
- 25 14. The nucleic acid fragment of claim 1 which is probe 1739 or its complementary sequence.
 - 15. The nucleic acid fragment of claim 1 which is probe 1740 or its complementary sequence.
 - 16. The nucleic acid fragment of claim 1 which is probe 1741 or its complementary sequence.
- 17. The nucleic acid fragment of claim 1 which is probe 1742 or its complementary sequence.

48

18. The nucleic acid fragment of claim 1 which is probe 1745 or its complementary sequence.

1

₹

- 5 19. The nucleic acid fragment of claim 1 which is probe 1746 or its complementary sequence.
 - 20. The nucleic acid fragment of claim 1 which is probe 1743 or its complementary sequence.
 - 21. The nucleic acid fragment of claim 1 which is probe 1637 or its complementary sequence.
- 22. The nucleic acid fragment of claim 1 which is probe 1639 or its complementary sequence.

10

- 23. The nucleic acid fragment of claim 1 which is probe 1640 or its complementary sequence.
- 24. The nucleic acid fragment of claim 1 which is probe 1641 or its complementary sequence.
 - 25. The nucleic acid fragment of claim 1 which is probe 1730 or its complementary sequence.
 - 26. The nucleic acid fragment of claim 1 which is probe 1731 or its complementary sequence.
- 27. The nucleic acid fragment of claim 1 which is probe 1658 or its complementary sequence.
 - 28. The nucleic acid fragment of claim 1 which is probe 1656 or its complementary sequence.

15

- 29. The nucleic acid fragment of claim 1 which is probe 1657 or its complementary sequence.
- 30. The nucleic acid fragment of claim 1 which is probe 1653 or its complementary sequence.
 - 31. The nucleic acid fragment of claim 1 which is probe 1654 or its complementary sequence.
- 10 32. The nucleic acid fragment of claim 1 which is probe 1655 or its complementary sequence.
 - 33. The nucleic acid fragment of claim 1 which is probe 1651 or its complementary sequence.
 - 34. The nucleic acid fragment of claim 1 which is probe 1652 or its complementary sequence.
- 35. The nucleic acid fragment of claim 1 which is probe 1512 or its complementary sequence.
 - 36. The nucleic acid fragment of claim 1 which is probe 1256 or its complementary sequence.
- 25 37. The nucleic acid fragment of claim 1 which is probe 1398 or its complementary sequence.
 - 38. The nucleic acid fragment of claim 1 which is probe 1511 or its complementary sequence.
 - 39. The nucleic acid fragment of claim 1 which is probe 1595 or its complementary sequence.
- 40. The nucleic acid fragment of claim 1 which is probe 1600 or its complementary sequence.

50

41. The nucleic acid fragment of claim 1 which is probe 1601 or its complementary sequence.

- 42. The nucleic acid fragment of claim 1 which is probe 1602 or its complementary sequence.
 - 43. The nucleic acid fragment of claim 1 which is probe 1598 or its complementary sequence.
- 10 44. The nucleic acid fragment of claim 1 which is probe 1599 or its complementary sequence.
 - 45. The nucleic acid fragment of claim 1 which is probe 1596 or its complementary sequence.
 - 46. The nucleic acid fragment of claim 1 which is probe 1597 or its complementary sequence.
- 47. A method of detecting the presence of eubacteria in a sample comprising:

15

25

30

- a) contacting said sample with at least one nucleic acid fragment under conditions that allow said fragment to hybridize to rRNA or rDNA of said eubacteria, if present in said sample, to form hybrid nucleic acid complexes not to rRNA or rDNA of non-eubacteria; and
 - b) detecting said hybrid nucleic acid complexes as an indication of the presence of said eubacteria in said sample.
- 48. The method of claim 47 wherein said nucleic acid fragment of said contacting step is selected from the group of probes consisting of 1638, 1642, 1643, 1738, 1744, 1659, 1660, 1661, 1739, 1740, 1741, 1742, 1745, 1746, 1743, 1637, 1639, 1640, 1641, 1730, 1731, 1658, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1512, 1256, 1398, 1511, 1595, 1600, 1601, 1602, 1598, 1599, 1596, 1597.

WO 90/15157

- 49. The method of claim 47 wherein said eubacteria are gram-positive and said nucleic acid fragment is selected from the group of probes consisting of 1599, 1656, 1744, 1745 and 1746.
- 50. The method of claim 47 wherein said eubacteria are gram-negative and said nucleic acid fragment is selected from the group of probes consisting of 1599, 1656, 1744, 1745 and 1746.
- The method of claim 47 wherein said contacting step involves a nucleic acid fragment selected from the group consisting of probe 1638, probe 1642 and probe 1643 and said detecting step involves further contacting said sample with a second nucleic acid fragment selected from the group of probes consisting of 1637, 1639, 1640 and 1641 and amplifying eubacterial 16S rRNA or 16S rRNA gene sequences by the polymerase chain reaction.

ARCHAEBACTERIA

SUBSTITUTE SHEET

EUBACTERIAL KINGDOM FIGURE2: THE

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 90/03004

I. CLAS	SIFICAT	ION OF SUBJECT MATTER (if several classif	ication symbols apply, indicate all) 6				
Accordin	g to Inter	national Patent Classification (IPC) or to both N	lational Classification and IPC				
IPC5: (C 12 (1/68					
II. FIELD	e eend	71167					
H. FILLU	3 SEMRI	Minimum Docume					
Classificati	ion Svste						
			Classification Symbols				
IPC5		C 12 Q; C 07 H					
·-			r than Minimum Documentation s are included in Fields Searched ⁸				
III. DOCU	MENTS	CONSIDERED TO BE RELEVANT9					
Category *	4	ation of Document, ¹¹ with indication, where app	reneriate of the relevant naccanae 12	Relevant to Claim No. 13			
X	1						
^	L.,	A1, 0245129 (INSTITUT PASTE 11 November 1987,	UR)	1-5,21,			
		see especially the abstract		47,48,			
Υ		see especially one absorace		51, 2-E 21			
		-		3-5,21, 51			
51							
Х	EP,	1, 0250662 (THE REGENTS OF	THE UNIVERSITY OF	1,2,			
	1	CALIFURNIA) 7 January 1988.		47			
<u>_</u> _	:	see the whole document					
Υ				3-5,21,			
				48,51			
		City Spain					
A	<u></u>	41 - 0077007 /TODAY THOUGTOT					
A	EP, /	A1, 0277237 (TORAY INDUSTRI	ES, INC.)	1-51			
		10 August 1988, see the whole document					
	<u> </u>	see the whole document					
* Speci:	ot catego						
		ories of cited documents: 10 effining the general state of the art which is not	"T" later document published after or priority date and not in conflicted to understand the priority	the international filing date lict with the application but			
		efining the general state of the art which is not to be of particular relevance	invention	e or theory underlying the			
••••	ig date	ment but published on or after the international	"X" document of particular relevant cannot be considered novel or o	ce, the claimed invention			
"L" dọc Whi	ument w	hich may throw doubts on priority claim(s) or ed to establish the publication date of another	maniae au magunae steb				
		mer special reason (as specified)	"Y" document of particular relevant cannot be considered to involve document in combined with one	e, the claimed invention an inventive step when the			
"O" doc	ument re er means	ferring to an oral disclosure, use, exhibition or	ments, such combination being	or more other such ancu-			
"P" doc	ument pu	iblished prior to the international filing date but	in the art.	·			
IV. CERTI			"&" document member of the same	patent ramily			
Date of the	Actual C	completion of the International Search	Date of Mailing of this International S	earch Report			
			1 7. 10. 90	CBION REPORT			
20 111 36	Shreim	per 1990					
Internation	al Searci	ning Authority	Signature of Authorized Officer				
	FIR	PEAN PATENT OFFICE	AMCID	400			
	LUIX	ALTVIA LYIEMI OLITTE	H. Ballesteros				

Form PCT/ISA/210 (second sheet) (January 1985)

	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)					
ategory *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No				
(SCIENCE, Vol. 243, March 1989, Edward F. DeLong et al.: "Phylogenetic Stains: Ribosomal RNA-Based Probes for the Identification of Single Cells", see page 1360	1,2, 47				
•		3-5,21, 48,51				
(Dialog Informational Service, file 154: Medline 83-90, accession no. 06930668, Medline accession no. 89232668, Chen K. et al: "Broad range DNA probes for detecting and amplifying eubacterial nucleic acids", & FEMS Microbiol Lett Jan 1 1989, 48(1) p19-24	1,2				
•		3-5,21, 48,51				
-	Dialog Information Service, file 154: Medline 83-90, accession no. 06470172, Medline accession no. 88115172, Giovannoni S.J. et al: "Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells", & J Bacteriol (UNITED STATES) Feb 1988, 170 (2) p720-6	1				
	μ/2υ-0	3-5,21, 48,51				
	etta edo					
	##===##=					
		I				

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/US 90/03004

SA 38253

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 28/08/90

The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A1- 0245129	11/11/87	AU-D- FR-A-B- JP-T- WO-A-	7232587 2596774 1500001 87/05907	20/10/87 09/10/87 12/01/89 08/10/87
EP-A1- 0250662	07/01/88	NONE		
EP-A1- 0277237	10/08/88	WO-A-	88/00618	28/01/88

For more details about this annex: see Official Journal of the European patent Office, No. 12/82