A Method for Simultaneous Measurement of Moments Using Quantum Circuits

Ziang Yang 2024.4.3

The quantum circuit is shown in the following figure:

Figure 1: Quantum Circuit

For convenience of expression, let $|\psi\rangle |0\rangle = |\phi\rangle$, and let $\langle \phi|U_k|\phi\rangle = E_k$ (where $1 \le k \le m$), $|\psi\rangle$ contains s qubits.

Where the form of U_k is as follows:

$$U_{k} = \begin{bmatrix} x_{1k} & 0 & \cdots & 0 & y_{1k} & 0 & \cdots & 0 \\ 0 & x_{2k} & \cdots & 0 & 0 & y_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_{nk} & 0 & 0 & \cdots & y_{nk} \\ \hline y_{1k} & 0 & \cdots & 0 & -x_{1k} & 0 & \cdots & 0 \\ 0 & y_{2k} & \cdots & 0 & 0 & -x_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & y_{nk} & 0 & 0 & \cdots & -x_{nk} \end{bmatrix}$$

Where $x_{ik} = \left(\frac{i-1}{n-1}\right)^k$, $y_{ik} = \sqrt{1-x_{ik}^2}$ $(1 \le i \le n = 2^s, 1 \le k \le m)$, it is easy to verify that U_k is a unitary matrix. Note that $E_k = \langle \phi | U_k | \phi \rangle = \sum_{i=1}^n x_{ik} \psi_i^2$, which is the k-th moment (ψ_i) is the component of $|\psi\rangle$ on each basis vector).

M transforms
$$|00\cdots0\rangle$$
 into $\frac{1}{\sqrt{m+1}}(|00\cdots0\rangle+|10\cdots0\rangle+|01\cdots0\rangle+\cdots+|00\cdots1\rangle)$
Then the state before U becomes $\frac{1}{\sqrt{m+1}}(|00\cdots0\rangle|\phi\rangle+|10\cdots0\rangle|U_1|\phi\rangle+|01\cdots0\rangle|U_2|\phi\rangle+\cdots+|00\cdots1\rangle|U_m|\phi\rangle)$

 $\begin{array}{l} \text{U transforms } |00\cdots0\rangle \text{ into } \frac{1}{\sqrt{2m}}(|10\cdots0\rangle+|01\cdots0\rangle+\cdots+|00\cdots1\rangle) + \frac{1}{\sqrt{2m}}(|01\cdots1\rangle+|10\cdots1\rangle+\cdots+|11\cdots0\rangle) \\ \text{transforms } |10\cdots0\rangle \text{ into } \frac{1}{\sqrt{2}}(|10\cdots0\rangle-|01\cdots1\rangle), \text{ transforms } |01\cdots0\rangle \text{ into } \frac{1}{\sqrt{2}}(|01\cdots0\rangle-|10\cdots1\rangle), \cdots, \text{ transforms } |00\cdots1\rangle \text{ into } \frac{1}{\sqrt{2}}(|00\cdots1\rangle-|11\cdots0\rangle) \end{array}$

The state after U is
$$\frac{1}{\sqrt{m+1}} |10\cdots0\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_1|\phi\rangle}{\sqrt{2}}\right) + \frac{1}{\sqrt{m+1}} |01\cdots0\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_2|\phi\rangle}{\sqrt{2}}\right) + \cdots + \frac{1}{\sqrt{m+1}} |00\cdots1\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_m|\phi\rangle}{\sqrt{2}}\right) + \cdots + \frac{1}{\sqrt{m+1}} |10\cdots0\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_1|\phi\rangle}{\sqrt{2}}\right) + \frac{1}{\sqrt{m+1}} |01\cdots0\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_2|\phi\rangle}{\sqrt{2}}\right) + \cdots + \frac{1}{\sqrt{m+1}} |00\cdots1\rangle \left(\frac{|\phi\rangle}{\sqrt{2m}} + \frac{U_m|\phi\rangle}{\sqrt{2}}\right)$$

The probability of measuring 0 in the *i*-th bit can be calculated as $prob(k) = \frac{1}{2} + \frac{(E_1 + \cdots + E_m) - 2E_k}{(m+1)\sqrt{m}}$ From $\sum_{k=1}^m prob(k) = \frac{m}{2} + \frac{(m-2)(E_1 + \cdots + E_m)}{(m+1)\sqrt{m}}$, we can obtain $\sum_{k=1}^m E_k$. Substituting the result into the expression of prob(k) can estimate E_k . It is also possible to calculate E_1 using the probability of $|10 \cdots 0\rangle$ minus the probability of $|01 \cdots 1\rangle$, which is $\frac{4E_1}{(m+1)\sqrt{m}}$, and similarly for E_k .

Verification is performed on qiskit, and the quantum circuit diagram is as follows:

Figure 2: Experimental Circuit

Taking $m=3,\ s=3,\ \psi=[\sqrt{\frac{3}{8}},0,0,0,0,0,\sqrt{\frac{3}{8}},\sqrt{\frac{1}{8}}]$, the values of the corresponding first, second, and third moments are $0.5714,\ 0.5255,\ 0.4862$ respectively. The estimated values of the first, second, and third moments are $2\sqrt{3}(prob(2)+prob(3)-1),\ 2\sqrt{3}(prob(1)+prob(3)-1),\ 2\sqrt{3}(prob(1)+prob(2)-1)$. Experiment results on qiskit are as follows:

Figure 3: Experimental Results

prob(1) = 0.5620, prob(2) = 0.5755, prob(3) = 0.5892. From this, we estimate $E_1 = 0.5705$, $E_2 = 0.5238$, $E_3 = 0.4763$. Using the second method, we estimate $E_1 = 0.5706$, $E_2 = 0.5238$, $E_3 = 0.4765$. Except for E_3 , the errors are relatively small. Another experiment is conducted, estimating $E_3 = 0.4898$, which confirms the correctness of the calculation method.

Figure 4: Experimental Results 2

,,