CSC236 - Week 2

Cristyn Howard

Thursday, January 11, 2018

Ex. Prove that $\forall n \in \{\mathbb{N} \setminus \{0, 1, 2, 3, 4\}\}, n > 4, 2^n > n^2$

- Notation: Let $\mathbb{N}_{n>4} \equiv \{\mathbb{N} \setminus \{0,1,2,3,4\}\}$
- Let $P(n): 2^n > n^2$.
- Base case n = 5: $2^5 = 32 > 25 = 5^2$: P(5) = true.

Note: $\mathbb{N}_{n>4}$ is an infinite countable set. We can use a non-zero base case (e.g. 5) and use induction to prove that our predicate is true over an infinite countable subset of \mathbb{N} .

- Assume p(k) holds for some arbitrary $k \in \mathbb{N}_{n>4}$: $2^k > k^2$.
 - * We have $2^k > k^2$: $2 \cdot 2^k > 2k^2 \equiv \boxed{2^{k+1} > 2k^2}$
 - * Note that $[[2^{k+1} > 2k^2] \land [2k^2 > (k+1)^2] \rightarrow [P(k+1) : 2^{k+1} > (k+1)^2]]$. So if we can show that $2k^2 > (k+1)^2$, we can conclude $P(k) \to P(k+1)$.
 - $* 2k^2 > (k+1)^2 \equiv 2k^2 > k^2 + 2k + 1 \equiv k^2 > 2k + 1$ $k^2 > 2k + 1 \equiv k^2 - 2k - 1 > 0 \equiv k^2 - 2k + 1 > 2 \equiv (k - 1)^2 > 2$
 - * $k \in \mathbb{N}_{n>4} \to k > 4$:: $(k-1)^2 > (4-1)^2 = 3^2 = 9 > 2$:: $(k-1)^2 > 2 = true$
 - * $(k-1)^2 > 2 = true$ $\rightarrow [2k^2 > (k+1)^2 = true] \rightarrow [P(k) \rightarrow P(k+1)] = true$

1

So we have shown that $P(k) \to P(k+1)$.

 $-P(5) \wedge [\forall k \in \mathbb{N}_{n>4}, P(k) \rightarrow P(k+1)], \therefore$ by principle of simple induction, we can conclude that $\forall n \in \mathbb{N}_{n>4}, P(n)$.

Ex. Suppose that h_0, h_1, h_2 ... is a sequence defined as follows:

$$h_0 = 1;$$
 $h_1 = 2;$ $h_2 = 3;$ $h_k = h_{k-1} + h_{k-2} + h_{k-3} \ \forall k \in \mathbb{Z}, \ k \ge 3.$
Prove that $\forall n \in \mathbb{N}, h_n \le 3^n.$

- Let $P(n): h_n < 3^n$.
- Base case n = 0: $h_n = 1 \le 1 = 3^0 = 3^n$.

Base case n = 1: $h_n = 2 \le 3 = 3^1 = 3^n$. Base case n = 2: $h_n = 3 \le 9 = 3^3 = 3^n$.

- Let k be some arbitrary $k \in \mathbb{N}$. Assume