Query Optimization for Dynamic Imputation

José Cambronero¹ John K. Feser¹ Micah J. Smith¹ Samuel Madden {jcamsan,feser,madden}@csail.mit.edu micahs@mit.edu

August 2017

¹Author contributed equally

 Imagine a Center for Disease Control (CDC) analyst collecting data for study

- Imagine a Center for Disease Control (CDC) analyst collecting data for study
 - Database integration

- Imagine a Center for Disease Control (CDC) analyst collecting data for study
 - Denormalized DBs

- Imagine a Center for Disease Control (CDC) analyst collecting data for study
 - Survey non-response

CDC Tables Missing Value Distributions

(a) Demographics (demo). 10175 rows.

(b) Laboratory Results (labs). 9813 rows. (c) Physical Results (exams). 9813 rows.

Attribute	Missing
age_months	93.39%
age yrs	0.00%
gender	0.00%
id	0.00%
income	1.31%
is citizen	0.04%
marital status	43.30%
num people household	0.00%
time in us	81.25%
years_edu_children	72.45%

Attribute	Missing
albumin	17.95 %
blood lead	46.86%
blood selenium	46.86%
cholesterol	22.31%
creatine	72.59%
hematocrit	12.93%
id	0.00 %
triglyceride	67.94%
vitamin b12	45.83%
white blood cell ct	12.93%

Attribute	Missing
arm_circumference	5.22%
blood pressure secs	3.11%
blood pressure systolic	26.91%
body mass index	7.72%
cuff size	23.14%
head circumference	97.67%
height	7.60%
id	0.00%
waist circumference	11.74%
weight	0.92%

Diseases Stop for No Missing Value

CDC analyst still needs to execute their queries

```
SELECT
  income,
  AVG(white_blood_cell_ct)
FROM demo, exams, labs
WHERE
  gender = 2 AND
  weight >= 120 AND
  demo.id = exams.id AND
  exams.id = labs.id
```

GROUP BY demo.income

white_blood_cell_ct	blood_selenium	triglyceride	
520	19562	64	
?	?	?	
630	17438	?	
600	?	24	
***		•••	

• Change query to remove tuples with missing values in relevant fields

- Change query to remove tuples with missing values in relevant fields
- Lost almost 15% of tuples

```
SELECT
  income.
  AVG(white_blood_cell_ct)
FROM demo, exams, labs
WHERE
  gender = 2 AND
  weight >= 120 AND
  demo.id = exams.id AND
  exams.id = labs.id AND
  // extra predicates to filter nulls
  income IS NOT NULL AND
  white_blood_cell_ct IS NOT NULL
GROUP BY demo.income
```

- Change query to remove tuples with missing values in relevant fields
- Lost almost 15% of tuples
- If not missing uniformly at random, AVG can produce skewed estimate

```
SELECT
  income.
  AVG(white blood cell ct)
FROM demo, exams, labs
WHERE
  gender = 2 AND
  weight >= 120 AND
  demo.id = exams.id AND
  exams.id = labs.id AND
  // extra predicates to filter nulls
  income IS NOT NULL AND
  white_blood_cell_ct IS NOT NULL
GROUP BY demo.income
```

In general:

- SELECT * FROM data_dirty WHERE critical IS NOT NULL
- Fast and simple strategy
- X Lose (hard earned) data in non-null covariates dropped
- X Biased results

• Imputation: fill in missing values with model, alternative to drop

white_blood_cell_ct	blood_selenium	triglyceride	
520	19562	64	
?	?	?	
630	17438	?	
600	?	24	

white_blood_cell_ct	blood_selenium	triglyceride	
520	19562	64	
#	#	#	
630	17438	#	
600	#	24	
	***	***	4 (77)

In general:

- data_cleaned <- fancy_statistical_model(data_dirty)</pre>
- Robust and can address domain specific requirements
- Slow (development and training/application time) and complex
- Amortization doesn't help: can't pay cost once when unfamiliar with the data and exploring multiple models

Best of Both Worlds

Explore data quickly without committing to strategy

Best of Both Worlds

- Explore data quickly without committing to strategy
- Dynamically pick speed/simplicity versus quality/complexity

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

Key insight: only need to impute data relevant to query

Query plan optimization

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

- Query plan optimization
 - impute only what is needed

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

- Query plan optimization
 - impute only what is needed
 - choose the plans that best balance tradeoffs along speed and quality

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

- Query plan optimization
 - impute only what is needed
 - choose the plans that best balance tradeoffs along speed and quality
- Implemented as part of experimental DB used at MIT

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

- Query plan optimization
 - impute only what is needed
 - choose the plans that best balance tradeoffs along speed and quality
- Implemented as part of experimental DB used at MIT
- 10x 140x speedup w.r.t. standard practice

ImputeDB: enable data exploration by optimizing placement of imputation and dropping operations

- Query plan optimization
 - impute only what is needed
 - choose the plans that best balance tradeoffs along speed and quality
- Implemented as part of experimental DB used at MIT
- 10x 140x speedup w.r.t. standard practice
- 0% 8% error w.r.t. standard practice

Express Quality and Performance Trade-off

- Planning extended to incorporate: Impute (μ_C) and $Drop(\delta_C)$
- ullet New operators output tuples without missing values for cols $\in \mathcal{C}$

Express Quality and Performance Trade-off

- Planning extended to incorporate: Impute (μ_C) and Drop (δ_C)
- New operators output tuples without missing values for cols $\in C$

Express Quality and Performance Trade-off

- Planning extended to incorporate: Impute (μ_C) and $Drop(\delta_C)$
- New operators output tuples without missing values for cols ∈ C

Operation Placement Trade-offs

Op.	Early placement	Late placement
Impute	↑ data, ↓ speed	\downarrow data, \uparrow speed, \uparrow potential relevance of data
Drop	↓ cardinality for later stages, may lose more than necessary	\downarrow speed, \downarrow early drops of potentially relevant data

Optimization Problem

Optimization Problem

Definition

Produce a Pareto frontier over key dimensions of imputation quality and execution time for query plans subject to:

- No standard relational operator sees missing values
- Attributes imputed restricted to local requirements or all missing needed later in plan

Optimizer Pipeline

- Cost-based, builds on seminal Selinger join optimization
- Each stage maintains collection of Pareto frontiers

Characterizing Imputation Operations

• Plan q cost: $\langle \text{Penalty}(q), \text{Time}(q) \rangle$

Characterizing Imputation Operations

• Plan q cost: $\langle Penalty(q), Time(q) \rangle$

Cost	Higher	Lower
Imputation Penalty Time Estimate	More columns imputed More tuples/attributes, complex model	More data Less data, simple model

Optimizer Search Space

- Filters pushed down
- Left-deep joins
- Aggregations/projections last
- $Impute(\mu)$ and $Drop(\delta)$ placed before standard operations

Example plan:

$$\begin{array}{c|c} \pi \\ & g \\ & | \\ & \boxtimes \\ & \overbrace{ \sigma \\ \sigma \\ \sigma \\ i_1 \\ i_1 \\ i_2 \end{array}$$

¹ Join order can change based on operation optimization

Optimizer Search Space

- Filters pushed down
- Left-deep joins
- Aggregations/projections last
- $Impute(\mu)$ and $Drop(\delta)$ placed before standard operations

Example plan¹:

¹Join order can change based on operation optimization

Optimizer Complexity

- Still exponential, $\mathcal{O}(2^{4J})$ where J is number of joins
- In practice not an issue for up to 5 joins (sub-second planning)
- Mean planning time for experiments up to 2.8ms

```
select avg(weight)
  from exams, demo
where
  demo.years_edu > 10 and
  exams.height >= 155.88 and
  exams.id = demo.id
```

 Determine imputation needs: exams.weight, exams.height, demo.years_edu

Push down filters and generate possible plans for selections

Jointly optimize join order and add imputation operators

- Pick set of plans that have all requisite tables and form current frontier
- Add imputations necessary to aggregate and prune

Extract final frontier

- Extract final frontier
- $\alpha = 0.0$: quality optimized

- Extract final frontier
- $\alpha = 0.0$: quality optimized
- $oldsymbol{\circ}$ $\alpha=$ 1.0: performance optimized

Experimental Results

$freeCodeCamp(\underline{\textbf{\textit{b}}})$

- Imputation models: chained-equation decision trees, non-blocking approximate mean, hot deck
- Varying amounts of missing data
- Queries with interesting joins and aggregations
- Evaluate COUNT, AVG
 - MAX, MIN not expected to perform well
 - Extremal value imputation outside the scope

	low	er bet	ter	closer to 1.0 better				
		SMAPE1		Count Fraction ²				
Query	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$		
1	0.39	1.19	1.24	1.00	0.89	0.88		
2	1.49	1.65	2.41	1.00	0.99	0.33		
3	1.05	1.05	2.14	1.00	1.00	0.57		
4	0.22	0.30	0.30	0.96	0.89	0.80		
5	0.02	0.19	0.20	1.01	0.94	0.94		
6	1.04	0.88	4.43	0.79	0.80	0.64		
7	0.03	0.43	0.40	1.00	0.66	0.65		
8	7.97	7.97	19.99	1.00	1.00	0.22		
9	2.03	2.17	2.49	1.00	0.85	0.84		

¹Symmetric Mean Absolute Percentage Error: symmetric for over/under imputation

 $^{^2}$ Fraction of tuples used to compute aggregate relative to base table strategy 4 $^{\Box}$ $^{\downarrow}$ $^{\downarrow}$

		SMAPE ¹		Count Fraction ²			
Query	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	
1	0.39	1.19	1.24	1.00	0.89	0.88	
2	1.49	1.65	2.41	1.00	0.99	0.33	
3	1.05	1.05	2.14	1.00	1.00	0.57	
4	0.22	0.30	0.30	0.96	0.89	0.80	
5	0.02	0.19	0.20	1.01	0.94	0.94	
6	1.04	0.88	4.43	0.79	0.80	0.64	
7	0.03	0.43	0.40	1.00	0.66	0.65	
8	7.97	7.97	19.99	1.00	1.00	0.22	
9	2.03	2.17	2.49	1.00	0.85	0.84	

• Quality optimized: low errors correlate with α

¹Symmetric Mean Absolute Percentage Error: symmetric for over/under imputation

 $^{^2}$ Fraction of tuples used to compute aggregate relative to base table strategy $\langle \Box \rangle \langle \Box \rangle$

		SMAPE ¹		Count Fraction ²			
Query	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	
1	0.39	1.19	1.24	1.00	0.89	0.88	
2	1.49	1.65	2.41	1.00	0.99	0.33	
3	1.05	1.05	2.14	1.00	1.00	0.57	
4	0.22	0.30	0.30	0.96	0.89	0.80	
5	0.02	0.19	0.20	1.01	0.94	0.94	
6	1.04	0.88	4.43	0.79	0.80	0.64	
7	0.03	0.43	0.40	1.00	0.66	0.65	
8	7.97	7.97	19.99	1.00	1.00	0.22	
9	2.03	2.17	2.49	1.00	0.85	0.84	

- Quality optimized: low errors correlate with α
- Cost model makes small errors occasionally

¹Symmetric Mean Absolute Percentage Error: symmetric for over/under imputation

²Fraction of tuples used to compute aggregate relative to base table strategy $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle$

	SMAPE ¹			Count Fraction ²			
Query	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	
1	0.39	1.19	1.24	1.00	0.89	0.88	
2	1.49	1.65	2.41	1.00	0.99	0.33	
3	1.05	1.05	2.14	1.00	1.00	0.57	
4	0.22	0.30	0.30	0.96	0.89	0.80	
5	0.02	0.19	0.20	1.01	0.94	0.94	
6	1.04	0.88	4.43	0.79	0.80	0.64	
7	0.03	0.43	0.40	1.00	0.66	0.65	
8	7.97	7.97	19.99	1.00	1.00	0.22	
9	2.03	2.17	2.49	1.00	0.85	0.84	

- Quality optimized: low errors correlate with α
- Cost model makes small errors occasionally
- Skewed tuple distribution + performance optimized: can drop a lot of relevant tuples

¹Symmetric Mean Absolute Percentage Error: symmetric for over/under imputation

²Fraction of tuples used to compute aggregate relative to base table strategy $\langle \Box \rangle \times \langle \varnothing \rangle \times \langle \varnothing \rangle \times \langle \varnothing \rangle = \langle \odot \rangle$

	SMAPE ¹			Count Fraction ²			
Query	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	
1	0.39	1.19	1.24	1.00	0.89	0.88	
2	1.49	1.65	2.41	1.00	0.99	0.33	
3	1.05	1.05	2.14	1.00	1.00	0.57	
4	0.22	0.30	0.30	0.96	0.89	0.80	
5	0.02	0.19	0.20	1.01	0.94	0.94	
6	1.04	0.88	4.43	0.79	0.80	0.64	
7	0.03	0.43	0.40	1.00	0.66	0.65	
8	7.97	7.97	19.99	1.00	1.00	0.22	
9	2.03	2.17	2.49	1.00	0.85	0.84	

- Quality optimized: low errors correlate with α
- Cost model makes small errors occasionally
- Skewed tuple distribution + performance optimized: can drop a lot of relevant tuples
- Plan selected depends on distribution of frontier

 $^{^{1}\}mathrm{Symmetric}$ Mean Absolute Percentage Error: symmetric for over/under imputation

²Fraction of tuples used to compute aggregate relative to base table strategy $\langle \Box \rangle \times \langle \varnothing \rangle \times \langle \varnothing \rangle \times \langle \varnothing \rangle = \langle \odot \rangle$

Running Times: 10-140x faster for quality optimized

- Quality optimized: 75ms-1s (versus 6.5s-27s)
- Performance optimized: 12-19ms

ImputeDB: Takeaways

- Extended relational algebra for imputation
- Joint optimization of standard operations and impute results in order-of-magnitude speedups
- Plans produced express underlying tradeoffs in quality and execution

Future Work Directions

- Imputation confidence through resampling
- Imputation operators: expand beyond Drop and Impute
- Adaptive query planning: shared across queries, beyond caching

Acknowledgements

- Thanks to Akande, Li, and Reiter for giving us a cleaned copy of the 2012 ACS PUMS
- This work was supported in part by the Qatar Research Computing Institute and the Center for Resilient Software at MIT