Exercise 1: Abbott 7.2.5 (W) (Hand this one in to David.)

Suppose $\{f_n\}$ are a sequence of functions uniformly convergent on f, and suppose that $f_n \in R[a,b]$. Choose $\epsilon > 0$. Define $N \in \mathbb{N}$ such that for all $n \geq N$ and $x \in [a,b]$, $|f_n(x)-f(x)| < \alpha = \epsilon/(4(b-a))$. Define $P \in P[a,b]$ such that $U(f_N,P)-L(f_N,P) < \beta = \epsilon/2$. Define M_k and m_k to be the suppremum and infimum for f_N in the kth interval of P. Define n to be the number of partitions in P. Define Δx_k to be the width of the kth interval in P. Note that $U(f_N,P)-L(f_N,P)=\sum_{k=1}^n(M_k-m_k)\Delta x_k<\beta$. Note that $|f_N(x)-f(x)|<\alpha$ or $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)+\alpha|$. Consider a particular interval, $|f_N(x)-f(x)|<\alpha$ or $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)+\alpha|$. We can now see $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|$ and $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|$ thus $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|$ and $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|$ thus $|f_N(x)-\alpha|<|f_N(x)-\alpha|<|f_N(x)-\alpha|$ and $|f_N(x)-\alpha|<|f_N(x)-\alpha|$ be conclude $|f_N(x)-\alpha|<|f_N(x)-\alpha|$ by $|f_N(x)-\alpha|<|f_N(x)-\alpha|$ and $|f_N(x)-\alpha|$ by $|f_N(x)-\alpha|$ by $|f_N(x)-\alpha|$ and $|f_N(x)-\alpha|$ by $|f_N(x)-$

Exercise 2: Abbott 7.2.7

Suppose $f:[a,b]\to\mathbb{R}$ is a increasing function. Choose $\epsilon>0$. Define $n\in\mathbb{N}$ such that $1/n < \gamma = \epsilon/(f(b) - f(a))(b - a)$. Define $\Delta x = (b - a)/n$. Define $x_0 = a$, $x_k = x_{k-1} + \Delta x$ for all $k \in [1, n]$. Note that $x_n = x_0 + n\Delta x = b$. We can define $P \in P[a, b]$ as the partition using $\{x_k\}_{k=0}^n$. Note that $f(x_{k-1}) \leq f(x) \leq f(x_k)$ for $x \in I_k$ the kth interval in P. Thus $f(x_k) \geq f(x_k)$ $\sup(f(I_k))$ and $f(x_{k-1}) \le \inf(f(I_k))$ for all $k \in [1, n]$. Note that $\sum_{k=1}^n f(x_k) - f(x_{k-1}) =$ $f(x_n) - f(x_0) = f(b) - f(a)$. Note that $U(f, P) - L(f, P) = \sum_{k=1}^{n} (\sup(f(I_k)) - \inf(f(I_k))) \Delta x \le \Delta x \sum_{k=1}^{n} f(x_k) - f(x_{k-1}) = \Delta x (f(b) - f(a)) = (f(b) - f(a))(b - a)/n < (f(b) - a)/$ We conclude $f \in R[a, b]$.

Exercise 3: Abbott 7.3.4

Let f and g be functions defined on (possibly different) closed intervals, and assume the range of f is contained in the domain of g so that the composition $g \circ f$ is properly defined.

(a) Show, by example, that is not the case that if f and g are integrable, then $g \circ f$ is integrable.

Since a increasing bounded function is integrable see part c for a counterexample.

Now decide on the validity of each of the following conjectures, supplying a proof or counterexample as appropriate.

- (b) If f is increasing and g is integrable, then $g \circ f$ is integrable.
- (c) If f is integrable and g is increasing, then $g \circ f$ is integrable. Let $f:[0,1] \to [0,1]$ where f(x)=t(x), Thomae's function. Let $g:[0,1] \to [0,1]$ where $g(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$. Note that f is integrable by the proof in the following section, also note that g is increasing, $g(x) \geq g(y)$ if $x \geq y$. Note that $g \circ f = \begin{cases} 0 & x \notin \mathbb{Q} \\ 1 & x \in \mathbb{Q} \end{cases}$ witch

is non-integrable.

Exercise 4: Abbott 7.3.2

Recall that Thomae's function

$$t(x) = \begin{cases} 1 & \text{if } x = 0\\ 1/n & \text{if } x = m/n \in \mathbb{Q} - \{0\} \text{ is in the lowest terms with } n > 0\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

has a countable set of discontinuities occurring at precisely every rational number. Follow these steps to prove t(x) is integrable on [0, 1] with $\int_0^1 t = 0$

(a) First argue that L(t, P) = 0 for any partition P of [0, 1]. Suppose P is a partition on [0, 1]. Take I_k to be the kth interval in P. Note that in any interval I_k there exists a irrational number thus $\inf(t(I_k)) \le 0$. Note that $t(x) \ge 0$ for all $x \in [0, 1]$ thus $\inf(t(I_k)) \ge 0$. We conclude that $\inf(t(I_k)) = 0$. Note that if there are n intervals in P then $L(t, P) = \sum_{k=1}^{n} \inf(t(I_k)) \Delta x_k = \sum_{k=1}^{n} 0 = 0$.

- (b) Let $\epsilon > 0$ and consider the set of points $D_{\epsilon/2} = \{x \in [0,1] : t(x) \ge \epsilon/2\}$. How big is $D_{\epsilon/2}$?
 - This is a very challenging problem since there is a multiplicity problem ie 1/2 = 2/4 = 3/6, for the next step all I will need is that there are finitely many points, so I will try to bound the number of elements in $D_{\epsilon/2}$. Note that there exists $N \in \mathbb{N}$ such that $1/N < \epsilon/2$. Note that if $x \in [0,1]$ and $t(x) \ge \epsilon/2$ then x = 1 or x = m/n where $m < n \in \mathbb{N} \cap [1,N]$. Note that in the previous representation we will have N possibilities for n and fewer than N possibilities for m thus I can say that there are fewer than N^2 possible m/n values and so there are fewer than $N^2 + 1$ elements in $D_{\epsilon/2}$.
- (c) To complete the argument, explain how to construct a partition P_{ϵ} of [0,1] so that $U(t, P_{\epsilon}) < \epsilon$.

Define $N \in \mathbb{N}$ such that $1/N < \epsilon$. Define $\gamma = \epsilon/(8N^2)$ Let P be the partition defined by $\{x \in [0,1]: x-\gamma \in D_{\epsilon/2} \text{ or } x+\gamma \in D_{\epsilon/2}\} + \{0,1\}$, witch we note has finitely many elements. Define n to be the number of intervals in P. Define Δx_k to be the width of the kth interval. Note that $U(t,P)-L(t,P)=U(t,P)=\sum_{k=1}^n \sup(t(I_k))\Delta x_k$. Define I^a to be the set of intervals in P that contain a element of $D_{\epsilon/2}$ and I^b to be the rest of the intervals of P. Define the shorthand $\sum_{I_k \in I}$ to mean sum over all of the I_k in I, defined only if I has finitely many elements. Note that $U(t,P)-L(t,P)=\sum_{I_k \in I^a} \sup(t(I_k))\Delta x_k + \sum_{I_k \in I^b} \sup(t(I_k))\Delta x_k$. Note that there are fewer than N^2 elements in $D_{\epsilon/2}$ and so there are fewer than N^2 elements in I^a . Note that if $I_k \in I^a$ then $\Delta x_k \leq 2\gamma$. Note that $\sup(t(I_k)) \leq 1$. Note that $\sum_{I_k \in I^a} \sup(t(I_k))\Delta x_k \leq \sum_{I_k \in I^a} 2\gamma \leq 2N^2\gamma < \epsilon/2$. Note that if $I_k \in I^b$ then $\sup(t(I_k)) \leq \epsilon/2$ since I_k contains no points in $D_{\epsilon/2}$. Note that $\sum_{I_k \in I^b} \sup(t(I_k))\Delta x_k \leq \sum_{I_k \in I^b} \epsilon/2\Delta x_k = \epsilon/2\sum_{I_k \in I^b} \Delta x_k \leq \epsilon/2\sum_{I_k \in I} \Delta x_k = \epsilon/2$. Conclude that $U(t,P)-L(t,P)=\sum_{I_k \in I^b} \exp(t(I_k))\Delta x_k + \sum_{I_k \in I^b} \sup(t(I_k))\Delta x_k < \epsilon/2+\epsilon/2=\epsilon$, and thus that t(x) is integrable.

Exercise 5: Abbott 7.4.1

Let f be a bounded function on a set A, and set

$$M(A) = \sup\{f(x) : x \in A\}, m(A) = \inf\{f(x) : x \in A\}$$

$$M'(A) = \sup\{|f(x)| : x \in A\}, \text{ and } m'(A) = \inf\{|f(x)| : x \in A\}$$

- (a) Show that $M(A) m(A) \ge M'(A) m'(A)$. Let's consider three cases.
 - (1) Suppose $M(A) \ge m(A) \ge 0$. Note that f = |f| on all of A, thus M(A) = M'(A) and m(A) = m'(A), therefore M(A) m(A) = M'(A) m'(A).
 - (2) Suppose $0 \ge M(A) \ge m(A)$. Note that -f = |f| on all of A, thus -M(A) = m'(A) and -m(A) = M'(A), therefore M(A) m(A) = M'(A) m'(A).

(3) Suppose $M(A) \ge 0 \ge m(A)$. Note that $\max(M(A), -m(A)) = M'(A)$ and $M'(A) \ge m'(A) \ge 0$, therefore $M'(A) - m'(A) \le M'(A) = \max(M(A), -m(A)) \le M(A) - m(A)$.

Note that in all three cases $M(A) - m(A) \ge M'(A) - m'(A)$.

(b) Show that if f is integrable on the interval [a, b], then |f| is also integrable on this interval.

Choose $\epsilon > 0$. There exists a partition $P \in P[a,b]$ such that $U(f,P) - L(f,P) = \sum_{I_k \in P} (M(I_k) - m(I_k)) \Delta x_k < \epsilon$ where Δx_k is defined in the same manner as the previous problems. Note that $U(|f|,P) - L(|f|,P) = \sum_{I_k \in P} (M'(I_k) - m'(I_k)) \Delta x_k \le \sum_{I_k \in P} (M(I_k) - m(I_k)) \Delta x_k < \epsilon$, thus |f| is integrable.

(c) Provide the details for the argument that in this case we have $|\int_a^b f| \le \int_a^b |f|$. Choose a partition $P \in P[a, b]$. Note that since $-|f| \le f \le |f|$, $-M'(A) \le M(A) \le M'(A)$. Note that $U(f, P) = \sum_{I_k \in P} M(I_k) \Delta x_k \le \sum_{I_k \in P} M'(I_k) \Delta x_k = U(|f|, P)$ and that $-U(|f|, P) \le U(f, P)$ in the same fashion. Note that $U(f) \le U(f, P) \le U(|f|, P)$ for all partitions P, thus U(f) is a lower bound on U(|f|, P) and so $U(f) \le U(|f|)$. Note that $U(f) \le U(f, P) \le U(|f|, P)$ for all partitions P, thus U(f) is a lower bound on U(|f|, P) and so $U(f) \le U(|f|)$. In the same fashion $-U(|f|) \le U(f)$. Now we can say $|\int_a^b f| = |U(f)| \le U(|f|) \int_a^b |f|$.

Exercise 6: Abbott 7.4.5

Let f and g be integrable functions on [a, b].

(a) Show that if P is any partition of [a, b], then

$$U(f+g,P) \le U(f,P) + U(g,P)$$

Provide a specific example where the inequality is strict. What does the corresponding inequality for the lower sums look like?

Define $M(h,A) = \sup\{h(x) : x \in A\}$ and $m(h,A) = \inf\{h(x) : x \in A\}$ for some function h defined on a interval A. Consider I some closed interval in [a,b]. Note that $M(f+g,I) = \sup\{f(x) + g(x) : x \in I\}$. Noting that $f(x) \leq M(f,I)$ and $g(x) \leq M(g,I)$ we can say that $f(x)+g(x) \leq M(f,I)+M(g,I)$, for all $x \in I$. Note now that $M(f+g,I) \leq M(f,I)+M(g,I)$. Note that $U(f+g,P) = \sum_{I_k \in P} M(f+g,I_k) \Delta x_k \leq \sum_{I_k \in P} M(f,I_k) + M(g,I_k) \Delta x_k = \sum_{I_k \in P} M(f,I_k) \Delta x_k + \sum_{I_k \in P} M(g,I_k) \Delta x_k = U(f,P) + U(g,P)$.

(b) Review the proof of Theorem 7.4.2 (ii), and provide an argument for part (i) of this theorem.

Note that for any partition P and function h, where U(h,P) and L(h,P) exist, L(h,P) = -U(-h,P). Note that since $U(f+g,P) \leq U(f,P) + U(g,P)$ for all $f,g \in R[a,b]$ then $U(-f-g,P) \leq U(-f,P) + U(-g,P)$, since $f,g \in R[a,b]$ implies $-f,-g \in R[a,b]$, note $L(f+g,P) = -U(-f-g,P) \geq -U(-f,P) - U(-g,P) = L(f,P) + L(g,P)$. Define a sequence of partitions P_n^1 such that $U(f,P_n^1) - L(f,P_n^1) \to 0$ and P_n^2 such that $U(g,P_n^2) - L(g,P_n^2) \to 0$. Define P_n to be the refinement of P_n^1 and P_n^2 . Note that $L(f,P_n) + L(g,P_n) \leq L(f+g,P_n)$ and $U(f+g,P_n) \leq U(f,P_n) + U(g,P_n)$ thus

 $0 \le U(f+g,P_n) - L(f+g,P_n) \le U(f,P_n) - L(f,P_n) + U(g,P_n) - L(g,P_n)$. Note now that $U(f+g,P_n) - L(f+g,P_n) \to 0$ by the squeeze theorem and thus f+g is integrable. Note that $L(f,P) + L(g,P) \le L(f+g,P) \le L(f+g) \le U(f+g) \le U(f+g,P) \le U(f,P) + U(g,P)$ for all partitions P. Note that U(f+g) is a lower bound for U(f,P) + U(g,P) and a upper bound for L(f,P) + L(g,P) thus $\int_a^b f + \int_a^b g = L(f) + L(g) \le U(f+g) = \int_a^b f + g \le U(f) + U(g) = \int_a^b f + \int_a^b g$. We conclude that $\int_a^b f + \int_a^b g = \int_a^b f + g$.