Fibonicci Series

$$fib(n) = \frac{fib(n-1)}{lost} + \frac{fib(n-2)}{second lost}$$

PMI - Extended Form

1. Proof for base case FLO) F(1)

2. Assume for F(i) equal to true where your i can be from $0 \le i \le R$ F(R)

so that means we can assume for F(R) true f(R-1) true f(R-1) true for less than f(R-1)

 $F(3) \sim F(2) \sim R=1$ $F(0) \sim R=0$

lost F(n-1) to be true second last F(n-2) to be true

1. Print 1 to N. 2. Print N to 1

Print 1 to N:

Print N to 1

- 1. Bose Case
- 2. Recursive call
- 3. OUR WORR

Head

Tail

Assignment

1. Sum of Orgit of a number

2. Power of a number (bose, exp)

Head

Tail

we make recursive call at the beginning of our for implementation.

When we make recursive Call at the end of our implementation

head

tail