GPIO Documentation

Minh-Triet Diep Lars Jaeqx

Research

First test the joystick inputs. To enable the GPIO on Port 2 we have to set the MUX. We write the third bit (value = 8) in the P2_MUX_SET. Then read P2_MUX_STATE to check this. We write 63 in P2_DIR_CLR to set GPIO0-5 as input. Then read P2_DIR_STATE to check if it's correctly set. Now we read P2_INP_STATE to see the values from the joystick.

We're reading the following values for the joystick input:

Joystick	Register value	Bit	LPC	J3	Pins
Nothing	1023				
Press	1022	0	P2.22	J3.47	(9th pin from bottom/left)
Down	1007	4	P2.27	J3.49	(8th pin from bottom/left)
Right	1015	3	P2.26	J3.57	(4th pin from bottom/left)
Left	1021	1	P2.23	J3.56	(5th pin from bottom/right)
Up	1019	2	P2.25	J3.48	(9th pin from bottom/right)

We found the correct Joystick ports using the following image:

5-key Joystick Switch

The registers were found in the documentation:

Table 617. Summary of GPIO Data and Configuration registers

Address	Name	Description	Reset state	Access
Port 2				
0x4002 801C	P2_INP_STATE	Port 2 Input pin state register. Reads the state of Port 2 GPIO pins.	-	RO
0x4002 8020	P2_OUTP_SET	Port 2 Output pin set register. Sets Port 2 GPIO output value.	1.5	WO
0x4002 8024	P2_OUTP_CLR	Port 2 Output pin clear register. Clears Port 2 GPIO output value.	2	WO
0x4002 8010	P2_DIR_SET	Port 2 and Port 3 GPIO direction set register. configures direction of I/O pins P2.[23:0] and GPIO_[5:0].	-	WO
0x4002 8014	P2_DIR_CLR	Port 2 and Port 3 GPIO direction clear register. configures direction of I/O pins P2.[23:0] and GPIO_[5:0].	-	WO
0x4002 8018	P2_DIR_STATE	Port 2 and Port 3 GPIO direction state register. Reads pin direction status for I/O pins P2.[23:0] and GPIO_[5:0].	0	RO
Port 3				
0x4002 8000	P3_INP_STATE	Port 3 Input pin state register. Reads the state of GPIO[5:0] and GPI input pins.	-	RO
0x4002 8004	P3_OUTP_SET	Port 3 output pin set register. Sets GPIO[5:0] output and GPO_[23:0] pin(s).	-	WO
0x4002 8008	P3_OUTP_CLR	Port 3 output pin clear register. Clears GPIO_[5:0] output and GPO_[23:0] pin(s).	Б	WO
0x4002 800C	P3_OUTP_STATE	Port 3 output pin state register. Reads the state of GPIO [5:0] output and GPO [23:0] pin(s).	-	RO

Port mappings:

To set a port, we traced the LPC pins to the J headers (see tables below), and we connected a LED to check if our peek/poke command worked. Also we tested the input by connecting 3.3V to the pins.

We traced this using the following documentation:

LPC to SODIMM:

SODIMM to OEMBOARD:

OEM to J Header:

PORT 0

Because the LCD screen uses P0.2 - P0.7 we must disable it. This can be done by writing 0 to the LCD_CFG (0x40004054) register. No MUX is needed because the default configuration means you can use the pins for GPIO.

Bit	LPC	SODIMM	OEM	J
0	P0.0	X1-106	P1.8	J3.40
1	P0.1	X1-107	P1.9	J2.24
2	P0.2	X1-31	P2.6	J2.11
3	P0.3	X1-32	P2.7	J2.12
4	P0.4	X1-33	P2.8	J2.13
5	P0.5	X1-34	P2.9	J2.14

6	P0.6	X1-90	P1.22	J3.33
7	P0.7	X1-91	P1.23	J1.27

Operation	Set	Clear	State
Mux	0x 4002 8120 P0_MUX_SET	0x 4002 8124 P0_MUX_CLR	0x 4002 8128 P0_MUX_STATE
Direction	0x 4002 8050 P0_DIR_SET	0x 4002 8054 P0_DIR_CLR	0x 4002 8058 P0_DIR_STATE
Output	0x 4002 8044 P0_OUTP_SET	0x 4002 8048 P0_OUTP_CLR	0x 4002 804C P0_OUTP_STATE
Input	-	-	0x 4002 8040 P0_INP_STATE

PORT 1

The Port 1 GPIO isn't available because these ports are used as address bus of the Static RAM, SDR SDRAM or DDR SDRAM. If we set this MUX the system will crash (obvious :p). Yes we tested it...

PORT 2

The EMC data pins can be used as general purpose GPIO when 16 bit SDRAM or DDRAM is used. Writing a one to bit 3 in the P2_MUX_SET register results in all of the corresponding EMC_D[31:19] pins being configured as GPIO pins P2[12:0].

Bit	LPC	SODIMM	OEM	J
0	P2.0	X1-120	P2.22	J3.47
1	P2.1	X1-121	P2.23	J3.56
2	P2.2	X1-122	P2.25	J3.48
3	P2.3	X1-123	P2.26	J3.57
4	P2.4	X1-124	P2.27	J3.49
5	P2.5	X1-125	P2.30	J3.58
6	P2.6	X1-126	P2.31	J3.50
7	P2.7	X1-116	P2.14	J3.45
8	P2.8	X1-176	P3.27	J1.49
9	P2.9	X1-178	P3.26	J1.50
10	P2.10	X1-180	P3.25	J1.51
11	P2.11	X1-182	P3.24	J1.52
12	P2.12	X1-184	P3.23	J1.53

Operation	Set	Clear	State
			0x 4002 8030
Mux	0x 4002 8028 P2_MUX_SET	0x 4002 802C P2_MUX_CLR	P2_MUX_STATE

Direction	0x 4002 8010 P2_DIR_SET	0x 4002 8014 P2_DIR_CLR	0x 4002 8018 P2_DIR_STATE
Output	0x 4002 8020 P2_OUTP_SET	0x 4002 8024 P2_OUTP_CLR	-
Input	-	-	0x 4002 801C P2_INP_STATE

PORT 3

No MUX is needed because the default configuration means you can use the pins for GPIO. We can't use GPIO_02 and GPIO_03 because they are used by the ethernet controller.

Bit	LPC	SODIMM	OEM	J
25	GPIO_00	X1-117	P2.15	J3.54
26	GPIO_01	X1-118	P2.19	J3.46
27	GPIO_02	-	-	-
28	GPIO_03	-	-	-
29	GPIO_04	X1-96	P1.28	J3.36
30	GPIO_05	X1-85	P1.13	J1.24

Operation	Set	Clear	State
Mux	0x 4002 8028 P3_MUX_SET	0x 4002 8114 P3_MUX_CLR	0x 4002 8118 P3_MUX_STATE
Direction	0x 4002 8010 P2_DIR_SET	0x 4002 8014 P2_DIR_CLR	0x 4002 8018 P2_DIR_STATE
Output	0x 4002 8004 P3_OUTP_SET	0x 4002 8008 P3_OUTP_CLR	0x 4002 800C P3_OUTP_STATE
Input	-	-	0x 4002 8000 P3_INP_STATE

To read the input state from Port 3 you have to use different bits. See table below.

Bit	LPC	SODIMM	OEM	J
10	GPIO_00	X1-117	P2.15	J3.54
11	GPIO_01	X1-118	P2.19	J3.46
12	GPIO_02	-	-	-
13	GPIO_03	-	-	-
14	GPIO_04	X1-96	P1.28	J3.36
24	GPIO_05	X1-85	P1.13	J1.24

Code explanation

The kernel module contains both sysfs and devfs parts. The point is to use devfs for controlling the hardware and sysfs for configuring the hardware. Our chosen protocol is as following:

sysfs:

echo [i, o] J[jumper].[pin] to /sys/kernel/es6_gpio/gpiofs

Where i configures the pin on the jumper to input, and o sets it to output.

devfs:

- echo [r, h, l] J[jumper].[pin] to /dev/gpio
- cat /dev/gpio

Where r sets the selected jumper, pin combination for reading with cat, and h and I will set the pin to high and low respectively. When the pin is not set as output, these values will still be written to the registers, but nothing will happen. The assumption is that a userspace program will handle these situations.

When an invalid pin is chosen, the kernel will give an error indicating this.

Proof of Concept

Sources

LPC3250_OEM_Board_Users_Guide_Rev_B
DataSheet-UM10326
LPC32x0_OEM_Board_v1.4
QVGA_Base_Board_v1.2