Matrix Factorization

CS 556

Outline

- Eigen Decomposition
- Singular Value Decomposition (SVD)
- SVD for Recommender Systems
- Pandas Library

Orthogonal Matrix

A square matrix $A \in \mathbb{R}^{nxn}$ is an orthogonal matrix if an only if its columns are orthonormal so that: $AA^T = I = A^TA$, which implies that $A^{-1} = A^T$.

Columns of A are orthonormal if for every two columns (i, j)

$$a_i b_j = 0$$
 if $i \neq j$

$$a_i b_i = 1$$
 if $i = j$

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = ?$$

What happens when we multiply a 2D matrix with a vector?

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$

The matrix will transform the vector by rotating and stretching/shortening it

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$4\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}4\\8\end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

Transformation matrix A is applied to a vector **v** and outputs a vector **w**. If **w** points in the same direction as **v** (a.k.a. lies on the same 1 dimensional subspace), then **v** is an eigenvector of matrix A.

$$A\mathbf{v} = \mathbf{w}$$

 $\lambda \mathbf{v} = \mathbf{w}$

 λ is an eigenvalue associated with eigenvector ${f v}$ of A

2 eigenvectors with values 1 and 2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$

Natural Basis

Shear Transformation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \theta = \frac{\pi}{4}$$

Natural Basis

Rotation

0 Eigenvectors

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \theta = \frac{\pi}{4}$$

Natural Basis

Rotation

0 Eigenvectors

Check the vectors that lie on the same span after transformation and measure how much their magnitudes change

Eigen Decomposition

Eigen-decomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors.

Finding Eigenvalues

$$A\mathbf{v} = \lambda \mathbf{v}$$

$$A\mathbf{v} - \lambda \mathbf{v} = 0$$

$$(A - \lambda)\mathbf{v} = 0$$

$$(A - \lambda I)\mathbf{v} = 0$$

It has nontrivial null space. $|A - \lambda I| = 0$ It must be singular

$$-(A - \lambda I)\mathbf{v} = 0$$

$$det(A - \lambda I) = 0$$

$$det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) = 0$$

$$\lambda^{2} - (a+d)\lambda + ad - bc = 0$$

$$\lambda^{2} - Tr(A)\lambda + det(A) = 0$$

Characteristic **Polynomial**

Finding Eigenvectors

- 1. Find all eigenvalues λ
- 2. For each λ , find $v \in N(A \lambda I)$
 - Find a vector v that is in the null space of the matrix $(A \lambda I)$

Example 1

$$\lambda = 1, \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ v_2 \end{bmatrix} = 0, \quad v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\lambda = 2, \quad \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -v_1 \\ 0 \end{bmatrix} = 0, \quad v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Find all Eigenvalues & Eigenvectors In Class Exercise

 $\begin{bmatrix} 3 & 1 \\ 4 & 6 \end{bmatrix}$

Diagonalization

$$Av_1 = \lambda_1 v_1$$

$$Av_2 = \lambda_2 v_2$$

$$\vdots$$

$$Av_m = \lambda_m v_m$$

$$AV = V\Lambda \longrightarrow \boxed{A = V\Lambda V^{-1}}$$

Finding a set of basis vectors V such that the original matrix A is diagonal in that basis space, assuming that the columns in V are linearly independent.

Diagonalization Example

$$A = \begin{bmatrix} -3 & -4 \\ 5 & 6 \end{bmatrix}$$

Singular Value Decomposition

SVD

The goal of SVD is to decompose a matrix A as the product of 3 other matrices $A = U\Sigma V^T$, where matrix V and U are orthogonal matrices and Σ is a diagonal matrix.

SVD Theorem

Theorem 4.22 (SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of A is a decomposition of the form

$$\varepsilon \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} = \varepsilon \begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix} \varepsilon \begin{bmatrix} \mathbf{\Sigma} \\ \mathbf{V}^{\top} \end{bmatrix} \varepsilon$$

$$(4.64)$$

with an orthogonal matrix $U \in \mathbb{R}^{m \times m}$ with column vectors u_i , $i = 1, \ldots, m$, and an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ with column vectors v_j , $j = 1, \ldots, n$. Moreover, Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geqslant 0$ and $\Sigma_{ij} = 0, i \neq j$.

How to compute SVD?

$$A = U\Sigma V^T$$
 $A^TA = (U\Sigma V^T)^T U\Sigma V^T$
 $A^TA = V\Sigma^T U^T U\Sigma V^T$
 $A^TA = V\Sigma^T I\Sigma V^T$
 $A^TA = V\Sigma^T \Sigma V^T$

To find V compute eigen-decomposition of A^TA where V will be the eigenvectors of A^TA and Σ^2 are the eigenvalues of A^TA

$$AA^T = U\Sigma^2 U^T$$

To find U compute eigen-decomposition of AA^T where U will be the eigenvectors of AA^T and Σ^2 are the eigenvalues of AA^T

Compute SVD Exercise

Compute SVD for matrix A:

$$A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$$

SVD in action

User-Movie Rating

User Movie Rating

Overfit representation of user tases

- Computational Complexity, potentially poor results
- Goal: A more compact representation of users tastes and items descriptions
 - Represent our tastes not in terms of the products we like and dislike, but in terms of higher level attributes

How to create these representations?

- Singular Value Decomposition (SVD)
- Intuitive Description: Reduce space to a smaller taste space that is compact and robust

The reconstructed matrix $R_k = U_k S_k V_k^T$ is the closest rank – k matrix to original matrix R.

Singular Value Decomposition

$$R = USV^T$$

- R is $m \times n$ rating matrix
- U is $m \times k$ user feature affinity matrix
- V is $n \times k$ item feature relevance matrix
- S is $k \times k$ diagonal feature weight matrix
- Exists for any real R

Rating Matrix

	The Notebook	Captain America	Seven	Forrest Gump
User 1	5	-	_	5
User 2	-	5	_	3
User m	1	5	5	_

User Feature Matrix

	Drama	Thriller	Action	Fantasy
User 1	0.7	0.5	0.1	0.1
User 2	0	0.05	0.75	0.2
User m	0.4	0.3	0.2	0.1

Feature Diagonal

	Drama	Thriller	Action	Fantasy
Drama	0.4	0	0	0
Thriller	0	0.3	0	0
Action	0	0	0.27	0
Fantasy	0	0	0	0.05

Movie Feature Matrix

	Drama	Thriller	Action	Fantasy
The notebook	0.9	0	0	0
Captain America	0	0.1	0.7	0.9
Seven	0.5	0.5	0.1	0
Forrest Gump	0.98	0	0	0.03

Rating Matrix

	The Notebook	Captain America	Seven	Forrest Gump
User 1	5	???	-	5
User 2	-	5	_	3
User m	1	5	5	_

User Feature Matrix

	Drama	Thriller	Action	Fantasy
User 1	0.7	0.2	0.1	0
User 2	0	0.05	0.75	0.2
User m	0.4	0.3	0.2	0.1

Feature Diagonal

	Drama	Thriller	Action	Fantasy
Drama	0.3	0	0	0
Thriller	0	0.27	0	0
Action	0	0	0.4	0
Fantasy	0	0	0	0.05

Movie Feature Matrix

	Drama	Thriller	Action	Fantasy
The notebook	1.0	0	0	0
Captain America	0	0.1	0.7	0.9
Seven	0.5	0.5	0.1	0
Forrest Gump	0.98	0	0	0.03

 $R(User_1, Captain America) = U_{User_1}SV_{Captain America}^T$ $R(User_1, Captain America) = 0.0344$ Questions???