- **5.1.** Напомним (см. лекцию), что если $1 < p, q < +\infty$ и 1/p + 1/q = 1, то существует изометрический изоморфизм $\ell^q \xrightarrow{\sim} (\ell^p)^*$. Следуя той же схеме, постройте изометрические изоморфизмы 1) $\ell^\infty \xrightarrow{\sim} (\ell^1)^*$; 2) $\ell^1 \xrightarrow{\sim} (c_0)^*$.
- **5.2.** Обозначим любой из трех изоморфизмов, упомянутых в предыдущей задаче, через α . Когда функционал $F_a=\alpha(a)$ достигает нормы?
- **5.3.** Можно ли тем же способом, что и в задаче 5.1, построить изометрический изоморфизм $\ell^1 \cong (\ell^\infty)^*$?
- 5.4. Опишите сопряженные к следующим операторам:
- 1) диагональный оператор в ℓ^p (где $1 \leq p < \infty$) или в c_0 ;
- **2)** оператор правого сдвига в ℓ^p (где $1 \leq p < \infty$) или в c_0 ;
- **3)** оператор двустороннего сдвига в $\ell^p(\mathbb{Z})$ (где $1 \leq p < \infty$) или в $c_0(\mathbb{Z})$;
- 4) оператор неопределенного интегрирования в $L^2[0,1]$ (см. задачу 2.5);
- **5)** интегральный оператор Гильберта–Шмидта в $L^2(X,\mu)$ (см. задачу 2.7).
- **5.5. 1)** Докажите, что линейный функционал на нормированном пространстве ограничен тогда и только тогда, когда его ядро замкнуто. **2)** Верно ли аналогичное утверждение для линейных операторов?
- **5.6.** Докажите, что на любом бесконечномерном нормированном пространстве существует разрывный линейный функционал.

Указание: воспользуйтесь тем, что в любом векторном пространстве есть алгебраический базис (т.е. максимальное линейно независимое подмножество).

- **5.7.** Пусть $X = \mathbb{R}_p^2$ плоскость, снабженная нормой $\|\cdot\|_p$, и пусть $X_0 = \{(x,0) : x \in \mathbb{R}\} \subset X$ «ось абсцисс». Зададим функционал $f_0 \colon X_0 \to \mathbb{R}$ формулой $f_0(x,0) = x$. Ясно, что $\|f_0\| = 1$. Сколько существует линейных функционалов на X, продолжающих f_0 и имеющих норму 1? (Рассмотрите всевозможные $p \in [1, +\infty]$.)
- **5.8.** Пусть X нормированное пространство.
- 1) Докажите, что если X^* сепарабельно, то и X сепарабельно.
- 2) Верно ли обратное?
- 3) Покажите, что не существует топологического изоморфизма между $(\ell^{\infty})^*$ и ℓ^1 .
- **5.9-b.** Докажите, что c_0 не изоморфно сопряженному ни к какому нормированному пространству.
- **5.10-b.** Пусть (X, μ) пространство с мерой и $1 < p, q < \infty, 1/p + 1/q = 1$.
- 1) Постройте изометрический изоморфизм $L^p(X,\mu)^* \cong L^q(X,\mu)$.
- **2)** В предположении, что μ σ -конечна, постройте изометрический изоморфизм $L^1(X,\mu)^* \cong L^\infty(X,\mu)$.

Указание. Отображение $L^q(X,\mu) \to L^p(X,\mu)^*$ строится так же, как в случае $X = \mathbb{N}$ (см. лекцию). Для доказательства его сюръективности воспользуйтесь теоремой Радона–Никодима.