

UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE) Course Syllabus

1	Course Title	Algorithms						
2	Course Code	CSI 227						
3	Trimester and Year	Spring 2018	Spring 2018					
4	Pre-requisites	CSI 217: Dat	a Structures, CSI 219: Discrete Mathematics					
5	Credit Hours	3.00						
6	Section	В						
7	Class Hours	•	00 AM – 10:20 AM 09:00 AM – 10:20 AM					
8	Class Room	R# 332						
9	Instructor's Name	Arif Arman						
10	Email	arman@cse.	uiu.ac.bd					
11	Office	####						
12	Counselling Hours	Monday Wednesday	10:20 AM - 11:50 AM 10:20 AM - 11:50 AM					
13	Text Book	Introduction to Algorithms (3 rd edition) by Cormen, Leiserson, Rivest and Stein						
14	Reference	http://www.shafaetsplanet.com/ [For Bengali resources] https://www.geeksforgeeks.org/ [Implementation resources]						
15	Course Contents (approved by UGC)	Techniques for analysis of algorithms, Methods for the design of efficient algorithms: divide and conquer, greedy method, dynamic programming, back tracking, branch and bound, Basic search and traversal techniques, graph algorithms, Algebraic simplification and transformations, lower bound theory, NP-hard and NP-complete problems.						
16	Course							
	Outcomes (COs)	CO1 Anal	yze worst-case running times of algorithms using asymptotic					
		analysis. CO2 Describe different algorithm paradigms and explain when algorithmic design situations call for them. Recite algorithms that employ these paradigms. Synthesize such algorithms. Derive and solve problems describing the performance of the algorithms.						
		CO3 Compare between different data structures. Pick an appropriate data structure for a design situation.						
		CO4 Explain what complexity classes are. Be familiar with the complexity classes and conversion, relation and reduction between them.						

17	Teaching Methods	Lecture, Case Studies.					
18	CO with				_		
	Assessment	CO	Assessment Method	(%)			
	Methods	-	Attendance	5			
		-	Assignments	5			
		-	Class Tests	20			
		CO1, CO2	Midterm exam	30			
		CO1, CO2,	Final exam	40			
		CO3, CO4					

19 Mapping of COs and Program outcomes

COs	Program Outcomes(POs)											
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1		С										
CO2			С									
CO3	С											
CO4	С											

20 Lecture Outline

Class	Topics/Assignments	COs	Reading Reference	Lecture Outcomes/Activities
1	Analyzing Algorithms: Worst-Case and Best-Case Analysis	1, 2	Lecture	Lecture, Assignment
2	Analyzing Algorithms: Worst-Case and Best-Case Analysis	1, 2	Lecture	Lecture, Assignment
3	Asymptotic Notation	2	3.1	Lecture, Assignment
4	Class Test; The Divide-and-Conquer Approach; Analyzing Divide-and- Conquer Algorithms	2, 3	2.3.1, 2.3.2	Lecture, Test
5	The Maximum-Subarray Problem; The Recursion-Tree Method for Solving Recurrences	2, 3	4.1, 4.4	Lecture, Assignment
6	The Recursion-Tree Method for Solving Recurrences	2	4.1, 4.4	Lecture, Assignment
7	An Activity-Selection Problem; Elements of the Greedy Strategy	2, 3, 4	16.1, 16.2	Lecture, Assignment
8	Class Test; Some Legacy Greedy Problems	2, 3, 4	Lecture	Lecture, Test
9	Fractional Knapsack Problem, Coin Change Problem	2, 3	Lecture	Lecture, Assignment
10	Dynamic Programming Basics, The Rod Cutting Problem	2, 3	15.1	Lecture, Assignment

11	Coin Change Problem, Elements of Dynamic Programming	3, 4	15.3	Lecture, Assignment
12	0/1 Knapsack Problem, Review	3	Lecture	Lecture, Assignment
	MIDTERM EXAM			
13	Applications of BFS, DFS	2, 3, 4	Lecture	Lecture, Assignment
14	Disjoint-Set Operations; Disjoint-Set Forests	2, 4	21.1, 21.3	Lecture, Assignment
15	Growing a Minimum Spanning Tree	3	23.1	Lecture, Assignment
16	Class Test; Kruskal's Algorithm	2, 3	23.2	Lecture, Test
17	Single-Source Shortest Path Variants, Optimal Substructure of a Shortest Path, Negative-weight Edges, Cycles, Relaxation	3	24	Lecture, Assignment
18	The Bellman-Ford Algorithm	2, 3	24.1	Lecture, Assignment
19	Dijkstra's Algorithm	2, 3, 4	24.3	Lecture, Assignment
20	Class Test; Direct-Address Tables, Hash Tables	4	11.1, 11.2	Lecture, Test
21	Hash Functions; Open Addressing	4	11.3, 11.4	Lecture, Assignment
22	The Nave String-Matching Algorithm; The Rabin-Karp Algorithm	2, 3	32.1, 32.2	Lecture, Assignment
23	Class Test; Polynomial Time; Polynomial-Time Verification; NP- Completeness	5	34.1, 34.2, 34.3	Lecture, Test
24	NP-Hard, Reducibility, Review	5	34.3	Lecture

Appendix 1: Assessment Methods

Assessment Types	Marks
Attendance	5%
Assignments	5%
Class Tests	20%
Mid Term	30%
Final Exam	40%

Appendix 2: Grading Policy

Letter Grade	Marks %	Grade Point	Letter Grade	Marks%	Grade Point
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

POs	Program Outcomes
PO1	An ability to apply knowledge of mathematics, science, and engineering
PO2	An ability to identify, formulate, and solve engineering problems
PO3	An ability to design a system, component, or process to meet desired needs within realistic
	constraints such as economic, environmental, social, political, ethical, health and safety,
	manufacturability, and sustainability
PO4	An ability to design and conduct experiments, as well as to analyze and interpret data
PO5	An ability to use the techniques, skills, and modern engineering tools necessary for
	engineering practice
PO6	The broad education necessary to understand the impact of engineering solutions in a
	global, economic, environmental, and societal context
PO7	A knowledge of contemporary issues
PO8	An understanding of professional and ethical responsibility
PO9	An ability to function on multidisciplinary teams
PO10	An ability to communicate effectively
PO11	Project Management and Finance
PO12	A recognition of the need for, and an ability to engage in life-long learning