1. A glass composition intended for the manufacture of thermally stable substrates or plates characterized in that it comprises the constituents below, in the following proportions by weight:

	SiO ₂	67 - 75 %
	Al_2O_3	0.5 - 1 %
	ZrO_2	2 - 7 %
	Na ₂ O	2 - 9 %
10	K_2O	4 - 11 %
	MgO	0 - 5 %
	CaO	5 - 10 %
	SrO	5 - 12 %
	BaO	0 - 3 %
15	B_2O_3	0 - 3 %
	Li ₂ O	0 - 2 %

5

20

with the relationships:

$$Na_2O + K_2O > 10 \%$$

 $MgO + CaO + SrO + BaO > 12 \%$

- and said composition having a thermal expansion coefficient between 80 and 90 \times 10^{-7} /°C, especially less than 85×10^{-7} /°C, and preferably between 81 and 84×10^{-7} /°C.
- 2. The composition as claimed in claim 1, characterized in that the sum of the MgO, CaO, SrO and BaO contents is greater than or equal to 15 %.
- 3. The composition as claimed in either of claims 1 and 2, characterized in that the sum of the Na₂O and K₂O contents is between 10 and 15 %.
 - 4. The composition as claimed in one of claims 1 to 3, characterized in that the weight ratio of the Na₂O content to the K₂O content is less than or equal to 0.7.
 - 5. The composition as claimed in one of claims 1 to 4, characterized in that the SiO₂ content is less than 71 %.
- The composition as claimed in one of claims 1 to 5, characterized in that the sum of the Al₂O₃ and ZrO₂ contents is less than or equal to 6 %.

7. The composition as claimed in one of claims 1 to 6, characterized in that it comprises the constituents below in the following proportions by weight:

	SiO_2	67 - 75 %
	Al_2O_3	0.5 - 1 %
5	ZrO_2	2 - 5 %
	Na ₂ O	2 - 4 %
	K_2O	7 - 11 %
	MgO	0 - 2 %
	CaO	6 - 10 %
10	SrO	6 - 12 %
	BaO	0 – 2 %
	B_2O_3	0 - 3 %
	Li ₂ O	0 - 2 %.

20

- 8. The composition as claimed in one of claims 1 to 7, characterized in that it has a strain point of greater than 570°C, preferably greater than 580°C.
 - 9. The composition as claimed in one of claims 1 to 8, characterized in that it has a liquidus temperature T_{liq} of at most 1180°C, preferably between 1130 and 1170°C.
 - 10. The composition as claimed in one of claims 1 to 9, characterized in that it has a viscosity corresponding to $10g\eta = 3.5$ at a temperature at least equal to 1160°C, preferably between 1160 and 1200°C.
 - 11. The composition as claimed in one of claims 1 to 10, characterized in that it has a viscosity corresponding to $log \eta = 2$ at a temperature not exceeding 1560°C, preferably 1550°C.
- 12. The composition as claimed in one of claims 1 to 11, characterized in that it has a density at 25°C of less than 3, preferably around 2.7.
 - 13. The use of the composition as claimed in one of claims 1 to 12 for the manufacture of a substrate for a plasma-type emissive display, a luminescent display or a field-emission display, especially starting from a glass sheet cut from a glass ribbon obtained by floating the glass on a bath of molten metal.
- The use of the composition as claimed in one of claims 1 to 12 for the manufacture of fire-resistant glazing, especially produced from a sheet of glass cut from a ribbon of glass obtained by floating the glass on a bath of molten metal.