FORMULÁRIO DE GEOMETRIA

Prof. Hermes Jardim CAP – 2013

GEOMETRIA PLANA						
FIGURA	PERIMETRO ÁREA					
Quadrado	4a	$A = a^2$				
Retângulo	P = 2.(b + h)	A = b.h				
Paralelogramo	P = 2.(b + a)	A = b.h				
Triângulo	P = a + b + c	$A = \frac{b.h}{2}$				
Trapézio	P = a + b + c + B	$A = \frac{(B+b).h}{2}$				
Losango	$P = 4a A = \frac{D.4}{2}$					
Círculo	$C = 2\pi r$ $A = \pi r^2$					

TRIÂNGULO EQUILÁTERO				
Altura	Área			
$h = \frac{a_b \sqrt{3}}{2}$	$A = \frac{a_b^2 \sqrt{3}}{4}$			

Relação de Euler				
V + F = A + 2	2A = número de faces × número de arestas de cada face			

GEOMETRIA ESPACIAL							
DDICMA	Área lateral:		Área total:	Volume:			
PRISMA	$A \ell = n \cdot a_b h$		$A_t = 2.A_b + A\ell$	$V = A_b \cdot h$			
	Diagonal:		Área total:	Volume:			
PARALELEPÍPEDO	$D_P = \sqrt{a^2 + b^2 + c^2}$		$A_t = 2.(ab + ac + bc)$	V = abc			
CUBO	Diagonal face	Diagonal cubo	Área total:	Volume:			
CUDU	$D = a\sqrt{2}$	$D = a\sqrt{3}$	$A_t = 6a^2$	$V = a^3$			
CILINDRO	Área da base:	Área lateral:	Área total:	Volume:			
	$A_b = \pi r^2$	$A \ell = 2\pi rh$	$A_t = 2\pi r.(h+r)$	$V = \pi r^2 h$			
	A relação:	Área lateral:	Área total:	Volume:			
CONE	$g^2 = h^2 + r^2$	$A\ell=\pi rg$	$A_t = \pi r.(g+r)$	$V = \frac{1}{3} \pi r^2 h$			
TRONCO	Área lateral	Área total: Volume:		e:			
TRONCO DE CONE	$A \ell = \pi g.(R + r)$	$St = A \ell + A_B + A_b$	$V_{\rm T} = \frac{\pi h}{3} . (R^2 + Rr + r^2)$				
TETRAEDRO REGULAR	Apótema lateral	Área da base:	Área total:	Volume:			
	$A_{\rm B} = \frac{a\sqrt{3}}{2}$	$A_{\rm B} = \frac{a^2 \sqrt{3}}{4}$	$A_t = a^2 . \sqrt{3}$	$V = \frac{a^3 \sqrt{2}}{12}$			
PIRÂMIDE		Área lateral:	Área total:	Volume:			
		A= n . A _{triângulo}	$A_t = A_b + A\ell$	$V = \frac{1}{3} A_b.h$			
TDONGO	Relações:		Volume:				
TRONCO DE PIRÂMIDE	$\frac{a_{\rm B}}{a_{\rm b}} = \frac{H}{h} \qquad \frac{A_{\rm B}}{A_{\rm b}}$	$=\frac{H^2}{h^2} \qquad \frac{V}{v} = \frac{H^3}{h^3}$	$V_{\rm T} = \frac{1}{3} \text{h.} (A_{\rm B} + \sqrt{A})$	$\overline{A_{\rm B}.A_{\rm b}} + A_{\rm b}$			
		Área superfície esférica		Volume:			
ESFERA		$A_{se}=4\pi r^2$		$V = \frac{4}{3}\pi r^3$			

2D GEOMETRY FORMULAS

SQUARE

s = sideArea: $A = s^2$ Perimeter: P = 4s

CIRCLE

r = radius, d = diameterDiameter: d = 2rArea: $A = \pi r^2$

Circumference: $C = 2\pi r = \pi d$

RECTANGLE

l = length, w = widthArea: A = lw

Perimeter: P = 2l + 2w

SECTOR OF CIRCLE

r= radius, $\theta=$ angle in radians

Area: $A = \frac{1}{2}\theta r^2$ Arc Length: $s = \theta r$

TRIANGLE

b = base, h = heightArea: $A = \frac{1}{2}bh$

Perimeter: P = a + b + c

ELLIPSE

a = semimajor axisb = semiminor axisArea: $A = \pi ab$

s = sideHeight: $h = \frac{\sqrt{3}}{2}s$ Area: $A = \frac{\sqrt{3}}{4}s^2$

ANNULUS

r = inner radius,R = outer radiusAverage Radius: $\rho = \frac{1}{2}(r + R)$ Width: w = R - r

Area: $A = \pi (R^2 - r^2)$ or $A = 2\pi \rho w$

PARALLELOGRAM

b = base, h = height, a = sideArea: A = bh

Perimeter: P = 2a + 2b

TRAPEZOID

a, b = bases; h = height;c, d = sides

Area: $A = \frac{1}{2}(a + b)h$

Perimeter:

P = a + b + c + d

REGULAR POLYGON

s = side length,n = number of sidesCircumradius: $R = \frac{1}{2} s \csc(\frac{\pi}{n})$ Area: $A = \frac{1}{4}ns^2 \cot(\frac{\pi}{n})$

or $A = \frac{1}{2}nR^2\sin(\frac{2\pi}{n})$

3D GEOMETRY FORMULAS

CUBE

s = sideVolume: $V = s^3$ Surface Area: $S = 6s^2$

GENERAL CONE OR PYRAMID

A = area of base, h = heightVolume: $V = \frac{1}{3}Ah$

RECTANGULAR SOLID

l = length, w = width,h = heightVolume: V = lwhSurface Area: S = 2lw + 2lh + 2wh

RIGHT CIRCULAR CONE

r = radius, h = heightVolume: $V = \frac{1}{3}\pi r^2 h$ Surface Area: $S = \pi r \sqrt{r^2 + h^2} + \pi r^2$

SPHERE

r = radiusVolume: $V = \frac{4}{3}\pi r^3$ Surface Area: $S = 4\pi r^2$

FRUSTUM OF A CONE

r = top radius, R = base radius,h = height, s = slant heightVolume: $V = \frac{\pi}{3}(r^2 + rR + R^2)h$ Surface Area: $S = \pi s(R+r) + \pi r^2 + \pi R^2$

RIGHT CIRCULAR CYLINDER

r = radius, h = heightVolume: $V = \pi r^2 h$

Surface Area: $S = 2\pi rh + 2\pi r^2$

SQUARE PYRAMID

s = side, h = heightVolume: $V = \frac{1}{3}s^2h$ Surface Area: $S = s(s + \sqrt{s^2 + 4h^2})$

TORUS

r = tube radius,R = torus radiusVolume: $V = 2\pi^2 r^2 R$ Surface Area: $S = 4\pi^2 rR$

REGULAR TETRAHEDRON

s = side

Volume: $V = \frac{1}{12}\sqrt{2}s^3$ Surface Area: $\tilde{S} = \sqrt{3}s^2$

$$V_{\rm cap} = \frac{1}{6} \pi h \left(3 a^2 + h^2 \right).$$

Using the Pythagorean theorem gives

$$(R-h)^2+a^2=R^2,$$

which can be solved for a^2 as

$$a^2 = 2Rh - h^2$$

so the radius of the base circle is

$$a = \sqrt{h(2R-h)}$$
,

and plugging this in gives the equivalent formula

$$V_{\rm cap} = \frac{1}{3} \pi h^2 (3 R - h).$$

The surface area of the spherical cap is given by the same equation as for a general zone:

$$S_{\text{cap}} = 2 \pi R h$$
$$= \pi (a^2 + h^2).$$

h: altura do corte

VOLUME:

```
a = sqrt(h * (2 * R - h));
V = (1.0/6.0) * PI * h * (3 * a * a - h * h)
V = 1/3 * PI * h * h * (3 * R - h)
```

SURFACE AREA:

S = 2 * PI * R * h

```
S = PI * (a * a - h * h)

1d volSphericalCap(esfera E, ld h) {
   return 1.0/3.0 * PI * h * h * (3 * E.r - h);
}

1d surfaceArea(esfera E, ld h) {
   return 2 * PI * E.r * h;
}
```


Lei dos Cossenos

Considere um triângulo ABC qualquer de lados a, b e c:

Para esses triângulos podemos escrever:

$$a^2 = b^2 + c^2 - 2 \cdot b.c.cos \hat{A}$$

Em qualquer triângulo, o quadrado de um lado é igual à soma dos quadrados dos outros dois, menos duas vezes o produto desses dois lados pelo <u>cosseno</u> do ângulo formado por eles.

Lei dos Senos

A lei dos senos estabelece a relação entra a medida de um lado e o seno do ângulo oposto a esse lado. Para um triângulo ABC de lados a, b, c, podemos escrever.

A **lei dos senos** determina que a razão entre a medida de um lado e o seno do ângulo oposto é constante em um mesmo triângulo.

Fórmulas da Elipse

Equações paramétricas:

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t \end{cases}$$

Equação cartesiana:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Equação polar:

$$r(\theta) = \frac{ab}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$$

Área:

$$A = ab\pi$$

Comprimento do arco:

$$s = 4a \cdot E\left(1 - \frac{a^2}{b^2}\right)$$

O parâmetro focal da elipse é:

$$p = \frac{b^2}{\sqrt{a^2 - b^2}} = \frac{a^2 - c^2}{c} = \frac{a(1 - e^2)}{e}$$

Pick Theorem

Só serve para polígonos com coordenadas inteiras: $A = i + \frac{b}{2} - 1$, onde:

- A =Área do polígono
- $\bullet \ i =$ Número de pontos com coordenadas inteiras dentro do polígono
- \bullet b=número de pontos com coordenadas inteiras no perímetro do polígono

Probabilidade

Fórumulas de probabilidade condicional:

$$P(A|B) = P(A \cap B)/P(B)$$

$$P(A \cap B) = P(A|B) \cdot P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Fórmula de Stirling

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Ternos Pitagóricos

Para quaisquer $a, b \in \mathbb{N}$, são ternos pitagóricos:

$$\begin{cases} x = a^2 - b^2 \\ y = 2ab \\ z = a^2 + b^2 \end{cases}$$

Equações diofantinas

A equação diofantina linear ax + by = n tem solução inteira, se e somente se, n|mdc(a,b).

A solução da equação pode ser obtida pelo algoritmo de euclides extendido, obtendo os coeficientes X e Y tal que:

$$aX + bY = 1 \Rightarrow aXn + bYn = n$$

Daí, derivam-se as soluções gerais:

$$\begin{cases} x = Xn + bt \\ y = Yn - at \end{cases}$$

Critérios de divisibilidade bizarros

- Divisibilidade geral: Pra saber se um número n é divísível por k, verificar se n é divisível pelas maiores potências da decomposição de k em fatores primos.
- Divisibilidade por 2^k : Um número é divisível por 2^k se o número formado pelos últimos k algarismos for divisível 2^k .
- Dvisibilidade por 7: Um número é divisível por 7 se o dobro do último algarismo, subtraído do número sem o último algarismo, for divisível por 7.
- Divisibilidade por 11: Um número é divisível por 11 se a soma dos algarismos de ordem par S_p menos a soma dos algarismos de ordem ímpar S_i for um número divisível por 11. Obs: o algarismo de maior significância tem ordem ímpar.
- Divisibilidade por 13: Um número é divisível por 13 se o quádruplo do último algarismo, somado ao número sem o último algarismo, for divisível por 13.
- Divisibilidade por 17: Um número é divisível por 17 quando o quíntuplo do último algarismo, subtraído do número que não contém este último algarismo, for divisível por 17.
- Divisibilidade por 19: Um número é divisível por 19 quando o dobro do último algarismo, somado ao número que não contém este último algarismo, for divisível por 19.
- Divisibilidade por 23: Um número é divisível por 23 quando o héptuplo do último algarismo, somado ao número que não contém este último algarismo, for divisível por 23.
- Divisibilidade por 29: Um número é divisível por 29 quando o triplo do último algarismo, subtraído do número que não contém este último algarismo, for divisível por 29.
- Divisibilidade por 31: Um número é divisível por 31 quando o triplo do último algarismo, somado ao número que não contém este último algarismo, for divisível por 31.

• Divisibilidade por 49: Um número é divisível por 49 quando o quíntuplo do último algarismo, somado ao número que não contém este último algarismo, for divisível por 49.

Coisas Aleatórias

• Um número inteiro n pode ser escrito como a diferença de dois quadrados perfeitos $n=x^2-y^2$ se, e somente se, n é impar ou múltiplo de 4.

Se n é multiplo de 4: $n = 4k = (k+1)^2 - (k-1)^2$.

Se n é impar: $n = 2k + 1 = (k+1)^2 - k^2$.

- Um número inteiro n pode ser escrito como soma de 3 quadrados se, e somente se, NÃO é da forma $n=4^k*(8m+7)$.
- O produto dos divisores positivos de n é $\sqrt{n^{qtddDivisores}}$.

Rotating coordinates

Some problems are easier to solve if Manhattan distances are used instead of Euclidean distances. As an example, consider a problem where we are given n points in the two-dimensional plane and our task is to calculate the maximum Manhattan distance between any two points.

For example, consider the following set of points:

The maximum Manhattan distance is 5 between points B and C:

A useful technique related to Manhattan distances is to rotate all coordinates 45 degrees so that a point (x,y) becomes (x+y,y-x). For example, after rotating the above points, the result is:

And the maximum distance is as follows:

Consider two points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ whose rotated coordinates are $p'_1 = (x'_1, y'_1)$ and $p'_2 = (x'_2, y'_2)$. Now there are two ways to express the Manhattan distance between p_1 and p_2 :

$$|x_1 - x_2| + |y_1 - y_2| = \max(|x_1' - x_2'|, |y_1' - y_2'|)$$

For example, if $p_1=(1,0)$ and $p_2=(3,3)$, the rotated coordinates are $p_1'=(1,-1)$ and $p_2'=(6,0)$ and the Manhattan distance is

$$|1-3|+|0-3|=\max(|1-6|,|-1-0|)=5.$$

The rotated coordinates provide a simple way to operate with Manhattan distances, because we can consider x and y coordinates separately. To maximize the Manhattan distance between two points, we should find two points whose rotated coordinates maximize the value of

$$\max(|x_1'-x_2'|,|y_1'-y_2'|).$$

This is easy, because either the horizontal or vertical difference of the rotated coordinates has to be maximum.

COORDENADAS PARA OS CENTROS DO TRIÂNGULO

Augusto C. Morgado Rio de Janeiro, RJ

Introdução

Escolhido um sistema de coordenadas e dados os pontos não alinhados,

$$A = (x_1, y_1), \quad B = (x_2, y_2), \quad C = (x_3, y_3),$$

é bastante conhecido que o baricentro G (ponto de encontro das medianas) do triângulo ABC pode ser determinado por

$$G = \frac{A+B+C}{3}$$
, notação que significa:

$$G = (x, y)$$
 com $x = \frac{x_1 + x_2 + x_3}{3}$ e $y = \frac{y_1 + y_2 + y_3}{3}$.

Na RPM 03, pág. 33, já se mostrou que o *incentro I* (ponto de encontro das bissetrizes internas) do triângulo ABC pode ser determinado por $I = \frac{aA + bB + cC}{a + b + c}$, sendo a, b e c as medidas dos lados opostos aos vértices A, B e C, respectivamente. A notação utilizada tem o mesmo significado estabelecido anteriormente, isto é,

$$I = (x, y)$$
 com $x = \frac{ax_1 + bx_2 + cx_3}{a + b + c}$ e $y = \frac{ay_1 + by_2 + cy_3}{a + b + c}$.

O leitor, provavelmente, já notou que há algo comum a essas fórmulas: em ambas, o centro é uma média ponderada dos vértices – com pesos iguais a 1, no caso do baricentro, e iguais aos lados, no caso do incentro.

Vamos determinar expressões análogas para o *ortocentro* (ponto de encontro das alturas) e para o *circuncentro* (ponto de encontro das mediatrizes dos lados) do triângulo *ABC*.

Ortocentro

Vamos considerar um triângulo não retângulo, pois não há nenhuma dificuldade na determinação do ortocentro de um triângulo retângulo – é o vértice do ângulo reto.

No triângulo ABC representamos os pés das alturas relativas aos vértices A, B e C por A_1 , B_1 e C_1 respectivamente.

Como
$$BB_1 = AB_1 tg \alpha = B_1 C tg \gamma$$
, temos $\frac{AB_1}{B_1 C} = \frac{tg \gamma}{tg \alpha}$. Logo, o

ponto B_1 divide o lado AC em segmentos proporcionais a $\tan \gamma$ e $\tan \alpha$.

Portanto, o vetor
$$\overrightarrow{AB_1} = \frac{\operatorname{tg} \gamma}{\operatorname{tg} \alpha + \operatorname{tg} \gamma} \overrightarrow{AC}$$
, ou, em coordenadas:

$$B_1 = (x, y) \quad \text{com} \ (x - x_1, y - y_1) = \frac{tg \, \gamma}{tg \, \alpha + tg \, \gamma} (x_3 - x_1, y_3 - y_1).$$

Daí,
$$B_1 = \frac{A tg \alpha + C tg \gamma}{tg \alpha + tg \gamma}$$
, com a notação definida anteriormente.

De modo análogo,
$$C_1 = \frac{Atg \alpha + Btg \beta}{tg \alpha + tg \beta}$$
.

Como o vetor \overrightarrow{BH} é um múltiplo do vetor $\overrightarrow{BB_1}$ e o vetor \overrightarrow{CH} é um múltiplo do vetor $\overrightarrow{CC_1}$, temos: $\overrightarrow{BH} = \lambda \overrightarrow{BB_1}$ e $\overrightarrow{CH} = \mu \overrightarrow{CC_1}$.

Como
$$\overrightarrow{CH} - \overrightarrow{BH} = \overrightarrow{CB}$$
, temos $\mu \overrightarrow{CC_1} - \lambda \overrightarrow{BB_1} = \overrightarrow{CB}$, isto é, $\mu(C_1 - C) - \lambda(B_1 - B) = B - C$.

Vamos determinar o valor de λ . Essas fórmulas acima valem qualquer que seja a origem do sistema, O, adotada. Podemos simplificar os cálculos adotando a origem no ponto C, isto é, $C = (x_3, y_3) = (0, 0)$.

Substituindo os valores anteriormente encontrados para B_1 e C_1 , obtemos:

$$\mu \frac{A tg \alpha + B tg \beta}{tg \alpha + tg \beta} - \lambda \frac{A tg \alpha}{tg \alpha + tg \gamma} + \lambda B = B$$

$$\left(\frac{\mu tg \alpha}{tg \alpha + tg \beta} - \frac{\lambda tg \alpha}{tg \alpha + tg \gamma}\right) A + \left(\frac{\mu tg \beta}{tg \alpha + tg \beta} + \lambda - 1\right) B = 0.$$

Como $A-C=A=\overrightarrow{CA}$ $B-C=B=\overrightarrow{CB}$ não são paralelos, devemos ter

$$\left(\frac{\mu tg \alpha}{tg \alpha + tg \beta} - \frac{\lambda tg \alpha}{tg \alpha + tg \gamma}\right) = 0 e \left(\frac{\mu tg \beta}{tg \alpha + tg \beta} + \lambda - 1\right) = 0.$$

Resolvendo o sistema, encontramos $\lambda = \frac{tg \alpha + tg \gamma}{tg \alpha + tg \beta + tg \gamma}$.

Como $\overrightarrow{BH} = \lambda \overrightarrow{BB_1}$, temos $H = B + \lambda (B_1 - B)$. Substituindo o valor de B_1 , obtemos

$$H = \frac{A tg \alpha + B tg \beta + C tg \gamma}{tg \alpha + tg \beta + tg \gamma}.$$

Logo, o ortocentro de um triângulo não retângulo é a média ponderada dos vértices tendo como pesos as tangentes dos ângulos do triângulo.

O leitor pode verificar que a expressão anterior é válida também quando um dos ângulos do triângulo for obtuso; nesse caso, a respectiva tangente entra com seu sinal negativo.

Circuncentro e reta de Euler

Considerando ainda um triângulo não retângulo ABC, se tomarmos os pontos P, Q e R, médios dos lados BC, AC e AB, respectivamente, verifica-se que:

$$P = \frac{B+C}{2}$$
, $Q = \frac{A+C}{2}$, $R = \frac{A+B}{2}$, com a notação já definida;

os ângulos do triângulo PQR são iguais aos ângulos do triângulo ABC e também PR//AC, QR//BC e QP//AB.

Logo, as mediatrizes dos lados do triângulo ABC contêm as alturas do triângulo PQR.

Portanto, o circuncentro N do triângulo ABC é o ortocentro do triângulo PQR.

Logo,

$$N = \frac{P tg \alpha + Q tg \beta + R tg \gamma}{tg \alpha + tg \beta + tg \gamma} = \frac{\frac{B+C}{2} tg \alpha + \frac{A+C}{2} tg \beta + \frac{A+B}{2} tg \gamma}{tg \alpha + tg \beta + tg \gamma}$$
$$= \frac{A(tg \beta + tg \gamma) + B(tg \alpha + tg \gamma) + C(tg \alpha + tg \beta)}{2(tg \alpha + tg \beta + tg \gamma)} = \frac{A+B+C}{2} - \frac{A tg \alpha + B tg \beta + C tg \gamma}{2(tg \alpha + tg \beta + tg \gamma)} = \frac{3}{2} G - \frac{1}{2} H,$$

sendo G o baricentro e H o ortocentro do triângulo ABC.

Esse resultado pode ser escrito como 2N = 3G - H ou, ainda, 2(N-G) = G - H. Portanto, $2\overrightarrow{GN} = \overrightarrow{HG}$.

É fácil ver que, se o triângulo for retângulo, o resultado $2\overrightarrow{GN} = \overrightarrow{HG}$ continua válido (basta observar que N é o ponto médio da hipotenusa e que H é o vértice do ângulo reto; portanto, HN é a mediana relativa à hipotenusa).

Acabamos de provar um teorema atribuído a Euler. Em todo triângulo, o ortocentro, o baricentro e o circuncentro são colineares. Além disso, o baricentro é sempre interno ao segmento que une o ortocentro ao circuncentro, sendo, dos pontos que o dividem em três partes iguais, o situado mais próximo do circuncentro. A reta que contém esses três centros do triângulo (é claro que, se o triângulo for equilátero, esses centros coincidem e a reta não fica determinada) é conhecida como reta de Euler.

Finalmente, propomos ao leitor que use a fórmula $2\overrightarrow{GN} = \overrightarrow{HG}$ para mostrar que, se o triângulo não é retângulo, então

$$N = \frac{A \sin 2\alpha + B \sin 2\beta + C \sin 2\gamma}{\sin 2\alpha + \sin 2\beta + \sin 2\gamma}.$$

VOCÊ SABIA?

Que 2000 é o Ano Internacional da Matemática? Segundo um dos membros do IMU – *International Mathematical Union*, um dos objetivos dessa campanha seria divulgar mundialmente que a Matemática é a pedra fundamental para o desenvolvimento econômico e cultural de uma nação.