Variante ale circuitelor TTL

- se accentuează anumite performanțe în funcție de aplicațiile cărora le sunt destinate.

Poarta TTL standard cu $t_p = 10 ns$ și $P_d = 10 mW$; structura este cea prezentată anterior cu valorile rezistențelor precizate;

Poarta TTL de mică putere (LPTTL) pentru reducerea consumului:

- aceeași structură ca și poarta standard, dar cu rezistențe de $4 \div 10$ ori mai mari; rezultă:
 - consum redus: 2mW;
 - timp de propagare mediu mai mare: > 20ns;
 - curenți de intrare mai mici;
 - curenții disponibili la ieșire mai mici;
 - curenți de alimentare mai mici:
 - zgomote proprii mai mici;
 - crește densitatea posibilă a componentelor și a circuitelor;
 - proiectarea termică mai comodă;
 - sursă de alimentare mai puțin solicitată;
 - crește fiabilitatea schemei;
 - mai puţin sensibilă la zgomote în impulsuri;
 - compatibilitate pin la pin cu poarta standard.

Poarta TTL de viteză mare (HTTL):

- timpul de propagare scade la 6ns;
- puterea medie disipată crește la 22mW;

Reducerea timpului de propagare se face prin 3 metode:

- a) reducerea rezistențelor cu efect asupra consumului și asupra încărcării provocate de circuit;
- b) înlocuirea diodei de transpoziție cu un tranzistor (amplificator de curent care asigură curent mai mare în trecerea spre starea logică UNU la ieșire); sunt mai multe variante prezentate în figură;
- c) înlocuirea rezistenței R_4 cu o sarcină dinamică (formată din trazistorul T_6 și rezistențele $R_4^{'}$, $R_4^{''}$) pentru mărirea curentului de bază la comutarea inversă a tranzistorului T_4 ; are influență și asupra caracteristicii de transfer.

Poarta TTL Schottky (STTL):

- aceeași structură ca HTTL;
- folosește diode Schottky pentru evitarea intrării în saturație;
- timpul de propagare se reduce: $t_p = 3ns$;
- puterea medie disipată este la fel ca la HTTL;

Elecronică Digitala

- puterea disipată creste mai încet cu frecvența decât la TTL;
- diodele de evitare a oscilațiilor sunt mai eficiente (se deschid la tensiuni mai mici, de circa 0.4V);
- marginea de zgomot statică în starea ZERO scade la valoarea MZL=0.3V deoarece crește $V_{oL}=-V_{DS}+V_{BE}< V_{oL\, \rm max}=0.5V$;
- viteze de variație a semnalului la ieșire devine circa 1V/1ns (mare) cu consecințe în proiectarea circuitelor linii lungi de la circa 15 cm;

Poarta TTL de mică putere Schottky (LPSTTL):

- structura ca LPTTL;
- timp de propagare ca la TTL standard;
- putere disipată ca la LPTTL; curenți de intrare mici recomandată pentru interfața cu circuite MOS;

TTL cu colectorul în gol

- realizare magistrale hard pentru funcții SAU (\S I) cablat;
- nu se pot pune în paralel porți TTL cu ieșire pe stâlp totemic;
- o variantă circuitele cu colectorul în gol:

- rezistența de colector se poate cupla și la alte tensiuni de alimentare (se poate realiza interfată cu circuite alimentate la diferite tensiuni de alimentare)
 - tranzitoriu dezavantajele inversorului clasic;
 - se pot realiza circuite de întârziere cu o capacitate ca sarcină;
 - calculul rezistenței de colector (valori tipice $1 \div 5k\Omega$) dacă:
 - *M* este numărul de circuite care comandă în paralel;
 - *N* este numărul de circuite comandate în paralel:

$$R_{\min} < R < R_{\max}$$

- R_{\min} rezultă din condiția de a nu se depăși $I_{oL\max}$ în starea ZERO:

$$\begin{split} I_{oL} &= \frac{V_{cc} - V_{0L\,\text{max}}}{R} + NI_{iL\,\text{max}} < I_{oL\,\text{max}} \\ R &> R_{\text{min}} = \frac{V_{cc} - V_{oL\,\text{max}}}{I_{oL\,\text{max}} - NI_{iL\,\text{max}}} \end{split}$$

- $R_{
m max}$ rezultă din condiția ca tensiunea de ieșire să nu scadă sub $V_{oH\,{
m min}}$ în starea UNU:

$$\begin{split} V_{oH} &= V_{cc} - R \big(N I_{iH \max} + M I_{o1 \max} \big) \\ R &< R_{\max} = \frac{V_{cc} - V_{oH \min}}{N I_{iH \max} + M I_{o1 \max}} \,. \end{split}$$

Elecronică Digitala

- $I_{01\text{max}}$ este curentul rezidual al tranzistorului T_4 blocat;
- comentarii pentru N > 7.

TTL cu trei stări – pentru funcții SAU (ŞI) cablat:

- intrare CS:
- dacă CS=UNU, T_s și D_s sunt blocate și ieșirea ia valoarea ZERO sau valoarea UNU în funcție de intrările A și B;
- dacă CS=ZERO, T_s și D_s sunt deschise, tranzistorul T_2 este blocat (prin T_1) și blochează și pe T_4 iar tranzistorul T_3 este blocat (prin dioda suplimentară); rezultă că la ieșire este o impedanță mare (a treia stare) și potențialul să poate fi stabilit de către un alt circuit conectat aici;
 - sunt mai multe variante electrice de blocare a celor două tranzistoare.