VERIFICATION OF FLEXIBLE STRUCTURES BY GROUND TEST

BEN K. WADA

C. P. KUO

Jet Propulsion Laboratory
California Institute of Technology

Presented at
Workshop on Structural Dynamics and Control
Interaction of Flexible Structures

Sponsor NASA OAST/MSFC

April 22-24, 1986

Marshall Space Flight Center, Alabama

JG

OBJECTIVE

Validate Math Models of Large Space Structures by Ground Tests.

Present Concepts for Two Types

- Continuous Type

- Linded Subsystems

7

CONTINUOUS TYPE STRUCTURE

B.C. = -

	L							
	P ₁₇	P27	P37	P47	P57	P67	P77	1
	P16	P26	P36	P46	P56	P66	P76	
	P ₁₅	P25	P35	P45	P55	P65	P75	
	P ₁₄	P24	P34	P44	P54	P64	P74	
	P ₁₃	P23	P33	P43	P53	P63	P73	
	P12	P22	P32	P42	P52	P62	P ₇₂	
	P11	P21	P31	P41	P51	P61	P71	
•	ļ							

SIMULATED TEST CONFIGURATION

CURRENT APPROACH

MBCT TEST CONFIGURATIONS

RESULTS OF ESTIMATED PARAMETERS, ITERATIONS 1 AND 2 ΔI_4 AND ΔI_{10} (THEORETICAL VALUES, $\Delta I_4 = 0.00834, \Delta I_{10} = 0.01667$)

CASE	I TERATION 1	N 1	I TERNATION 2	2 NC	CONFIGURATION
a∆I4	0.005884	%02	0.008121	97.38%	CONVENTIONAL MODAL TEST,
۵۱ اگ	0.015499	93%	0.016722	100.31%	10 FREQUENCIES TOTAL
6∆14	0.007084	85%	0.008330	99.88%	MBCT CONFIGURATION 1-2,
01 10	0.015291	%26	0.016640	%28.66	10 FREQUENCIES TOTAL
c ∆ l 4	0.007849	94%	0.008339	%66.66	MBCT CONFIGURATION 1-2,
10 ما	0.014891	% 68	0.016636	%08.66	8 FREQUENCIES TOTAL
d∆l ₄	0.007716	93%	0.008338	%86.66	MBCT CONFIGURATION 1-2
01 اگ	0.014683	%	0.016630	%91.66	6 FREQUENCIES TOTAL
e Δ1 ₄	0.007544	91%	0.008336	99.95%	MBCT CONFIGURATION 1-2,
ΔI 10	0.014360	%98	0.016625	99.73%	4 FREQUENCIES TOTAL

JPL THE MOMENT OF INERTIA OF EVERY ELEMENT OF THE SIMPLY SUPPORTED BEAM

EEMENT	USED IN THEORETICAL	RFAI	<u> </u>		iDEN (CO	TIFIED I BY	IDENTIFIED I BY MBCT METHOD (CONFIGURATIONS x MODES)	HOD ES)	
NO.	_	-	*	12 x 3	12 x 2	12×6	12 x 10	5×4	6 x 3
-	.08333	.08333	0	98280	.08300	68280	68833	.08328	.08302
8	.08333	.08750	മ	.08767	.08741	.08729	99280	.08753	.08757
ო	.08333	.09166	2	.09162	.09187	.09149	.09128	.09163	.09167
4	.08333	.08750	ស	.08747	.08736	.08743	62280.	.08747	.08744
ഹ	.08333	.08333	•	.08329	.08336	.08342	.08320	.08333	.08330
9	.08333	.07916	ក	.07915	.07910	.07911	1.07971	.07916	71670.
_	.08333	.04167	-20	.04168	.04169	.04162	.04149	.04167	.04167
&	.08333	.08750	ယ	.08747	.08737	.08767	.08731	.08751	.08760
63	.08333	.12500	20	.12505	.12530	.12495	.12595	.12501	.12483
9	.08333	.07916	សុ	01620.	.07911	.07933	.07900	.07913	.07919
-	.08333	.08750	മ	.08755	.08752	.08754	96980	.08751	.08745
12	.08333	.07916	က	01620.	.07912	.07840	.08084	71670.	.07916
13	.08333	.08750	ശ	.08719	.08738	.08831	69080	.08753	.08761
14	.08333	.15000	80	.14861	.14973	.15237	.16862	.15009	.15006
15	.08333	91620.	က်	.08132	.08058	.08058	.08225	00620	66220.
16	.08333	.08333	0	.07608	.07626	60620.	.07331	.08369	69680

LINKED SUBSYSTEMS

MODAL SYNTHESIS

$$\{u\}^{i} = q_{R}^{i} \{\phi\}_{R}^{i} + q_{C}^{i} \{\phi\}_{C}^{i} + q_{N}^{i} \{\phi\}_{N}^{i} + q_{A}^{i} \{\phi\}_{A}^{i}$$

$$+ q_{Q}^{i} \{\phi\}_{Q}^{i} + q_{I} \{\phi\}_{I}^{i} + q_{RE} \{\phi\}_{RE}^{i} + \dots + q_{U}^{i} \{\phi\}_{U}^{i}$$

FIGURE 3. SAMPLE PROBLEM TOTAL SYSTEM

FIGURE 4. SUBSYSTEM 1

LOADS CONDITION

- MODAL TEST "TEST MASS" AT (15)
- MODAL TEST "TEST MASS" AT (16)
- FORCE AT (15), X & Y-DIR.
- FORCE AT (16), X & Y-DIR.
- FORCE AT (10), X & Y-DIR.

LOAD CONDITION vs SE IN MEMBERS >10% SE

MEMBERS / LOAD / COND

21, 22, 23

×

5

×

9, 10

×

×

×

23

22

O

MODE NO.

COMPARISON

ESTIMATED (Hz)	4.041	15.015	26.814	30.097	36. 222
CORRECT (Hz)	4.044	15. 209	27.054	30, 077	35.832

MEMBER 25 & 27 - ERROR BY 100%

SUMMARY

Not Rely on Ground Test Which Simulates Space Conditions.

Integrated - Test/Analysis

Developing Concepts

Validate on Laboratory and Flight Experiments.

April 22, 1986 (Concurrent Sessions on Structures and Control)

Control Session 2A - Leonard Meirovitch, Chairman

Optimum Mix of Passive and Active Control for Space Structures	L. Rogers, W-P AFB
1-CAT: A MIMO Design Methodology	J. R. Mitchell, J. C. Lucas, Control Dynamics

Inter-Stable C	Control	Systems	G	. von	Pragenau,	MSFC

Status	Report	and	Preli	iminary	Results	of	·	J.	Р.	Williams,	LaRC
the Spa	acecraft	Cor	itrol	Laborat	torv					•	

Control Session 2B - J. L. Junkins, Chairman

Interaction (Payload Pointing and Micro-G)

Flexible Spacecraft Control Simulation	J. Bossi, Boeing
Improving Stability Margins in Discrete-Time LQG Controllers	B. T. Oranc and C. L. Phillips, Auburn
An Overview of Research Conducted by the Spacecraft Control Branch on the NASA LaRC Grid	R. C. Montgomery, LaRC
Space Station Structural/Control	C. R. Larson

Rockwell/SD