Теория конечных графов

Транзитивное замыкание

Лектор: к.ф.-м.н., доцент кафедры прикладной информатики и теории вероятностей РУДН Маркова Екатерина Викторовна markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Транзитивность. Примеры. Бинарное отношение *R* на множестве *X* нази

транзитивным, если для любых трех элементов множества $a, b, c \in X$ выполнение отношений aRb и bRc следует выполнение отношения aRc. Отношение R транзитивно, если $\forall a, b, c \in X$ $aRb \land bRc \Rightarrow aRc$.

Приведем примеры транзитивных отношений:

- 1) Равенство: a = b, b = c, отсюда следует, что a = c.
- 2) Отношения порядка: a > b, b > c, а значит a > c.
- 3) Параллельность прямых: $a \parallel b$, $b \parallel c$, а значит $a \parallel c$ по теореме о параллельности трех прямых в пространстве.
- 4) Делимость: если a делится на b, а b делится на c, то a делится на с.
- 5) Включение подмножества: если a является подмножеством b, а b является подмножеством c, то a является подмножеством c.
- 6) Достижимость вершин ориентированного графа: если вершина bдостижима из вершины a, а вершина c достижима из вершины b , то вершина c достижима из вершины a . Маркова Екатерина Викторовна. Лк. 10 по ТКГ. Транзитивное замыкание.

Отсутствие транзитивности

Приведем пример отстутствия транзитивности, при котором логические высказывания не связаны строгими арифметическими отношениями.

Все знакомы с игрой «Камень, ножницы, бумага», в которой камень выигрывает у ножниц, ножницы выигрывают у бумаги, но бумага не проигрывает камню, а, наоборот, выигрывает, т.к. может его покрыть.

Такого рода примеры возникают из смысловых отношений, которые не поддаются арифметическим отношениям.

Транзитивное бинарное отношение в орграфе

Рассмотрим орграф G = < V, E >, где |V| = n. Под **бинарным отношением** на множестве V будем понимать произвольное подмножество $E \subseteq V \times V$ (множество дуг графа G = < V, E >). Бинарное отношение E можно однозначно представить графом G = < V, E >.

Бинарное отношение на графе $G = \langle \mathbf{V}, \mathbf{E} \rangle$ является **транзитивным** при выполнении условия: если $\langle x, y \rangle \in \mathbf{E}$ и $\langle y, z \rangle \in \mathbf{E}$, то $\langle x, z \rangle \in \mathbf{E}$ для произвольных вершин $x, y, z \in \mathbf{V}$.

E $^* = \{ \langle x, y \rangle : B G = \langle V, E \rangle \mid \exists \text{ путь ненулевой длины из } x B y \}, \quad$ **E** $^* -$ **транзитивное замыкание** на множестве \mathbf{V} и $\mathbf{E} \subset \mathbf{E}^*$.

Алгоритм построения транзитивного замыкания в орграфе

<u>Начало.</u> Граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$, $|\mathbf{V}| = n$.

<u>Шаг 1.</u> Построение начальной матрицы $D^{\scriptscriptstyle (0)}$.

$$D^{\scriptscriptstyle (0)} = [d_{\scriptscriptstyle i,j}^{\scriptscriptstyle (0)}], \;\; i,j = \overline{1,n} \;, \; d_{\scriptscriptstyle i,j}^{\scriptscriptstyle (0)} \coloneqq egin{cases} 1, \;\; ext{если} \;\; <\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}> \in \mathbf{E} \ 0, \;\; ext{если} \;\; <\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}>
ot\in \mathbf{E} \end{cases}.$$

<u>Шаг 2.</u> m := m+1. Построение матрицы $D^{(m)}$, $m = \overline{1,n}$.

$$D^{\scriptscriptstyle (m)} = [d_{\scriptscriptstyle i,j}^{\scriptscriptstyle (m)}], \ i,j = \overline{1,n},$$

$$d_{i,j}^{(m)} = \max(d_{i,j}^{(m-1)}; d_{i,m}^{(m-1)} \times d_{m,j}^{(m-1)}).$$

- A) если $m < n \Rightarrow$ возврат к началу шага 2,
- Б) если m = n, то $D^{(n)}$ является матрицей связности (достижимости) графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$. Переходим к шагу 3.

Алгоритм построения транзитивного замыкания в орграфе

<u>Шаг 3.</u> Определяем транзитивное замыкание по матрице связности следующим образом:

$$D^{\scriptscriptstyle(n)} = [d_{\scriptscriptstyle i,j}^{\scriptscriptstyle n}], \ d_{\scriptscriptstyle i,j}^{\scriptscriptstyle n} = egin{cases} 1, \ \mathrm{если} \ <\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}> \in \mathbf{E}^{\scriptscriptstyle *}, \ 0, \ \mathrm{если} \ <\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}>
ot\in \mathbf{E}^{\scriptscriptstyle *}. \end{cases}$$

<u>Конец алгоритма.</u> По матрице связности строится транзитивное замыкание.

Пример построения транзитивного замыкания в орграфе

Пример 1. Построить транзитивное замыкание для графа. Найти матрицу связности (достижимости).

$D^{\scriptscriptstyle(0)}$	$V_{_1}$	$V_{_2}$		$V_{_4}$	$V_{\underline{t}}$
$\overline{V_{_1}}$	0	1	0	0	
$oldsymbol{V}_{2}$	0	0	1	1	
$egin{array}{c} V_{_2} \ V_{_3} \end{array}$	1	0	0	0	
$oldsymbol{V}_4$	0	0	0	0	

В следующей матрице $D^{\scriptscriptstyle (1)}$ сразу проставим единицы, так как это максимум, а нули могут как поменяться, так и остаться.

1)
$$D^{(1)} = [d_{i,j}^{(1)}], i, j = \overline{1,4}; d_{i,j}^{(1)} = \max(d_{i,j}^{(0)}; d_{i,1}^{(0)} \times d_{1,j}^{(0)}).$$

1)
$$D^{(1)} = [d_{i,j}^{(1)}], i, j = \overline{1,4}; d_{i,j}^{(1)} = \max(d_{i,j}^{(0)}; d_{i,1}^{(0)} \times d_{1,j}^{(0)}).$$

$D^{\scriptscriptstyle (0)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$	$V_{_4}$
$\overline{V_{_1}}$	0	1	0	0
$V_{_2}$	0	0	1	1
$V_{_3}$	1	0	0	0
$V_{_4}$	0	0	0	0

$D^{(1)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$	$V_{_4}$
$\overline{V_{_1}}$	0	1	0	0
$V_{_2}$	0	0	1	1
$V_{_3}$	1	1	0	0
$V_{_4}$	0	0	0	0

$D^{(2)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$	$V_{_4}$
$\overline{V_{_1}}$	0	1	1	1
$V_{_2}$	0	0	1	1
$V_{_3}$	1	1	1	1
$V_{_{4}}$	0	0	0	0

\boldsymbol{v}_2	U	U	1	1
$V_{_3}$	1	1	0	0
$egin{array}{c} V^{}_2 \ V^{}_3 \ V^{}_4 \end{array}$	0	0	0	0

3)
$$D^{(3)} = [d_{i,j}^{(3)}], i, j = \overline{1,4}; d_{i,j}^{(3)} = \max(d_{i,j}^{(2)}; d_{i,3}^{(2)} \times d_{3,j}^{(2)}).$$
 $\frac{D^{(2)}}{V_1} \begin{vmatrix} V_1 & V_2 & V_3 & V_4 \\ \hline V_1 & 0 & 1 & 1 & 1 \\ \hline V_1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline V_2 & 1 & 1 & 1 & 1 & 1 \\ \hline V_2 & 1 & 1 & 1 & 1 & 1 \\ \hline V_3 & 1 & 1 & 1 & 1 & 1 \\ \hline V_4 & 0 & 0 & 0 & 0 \\ \hline V_4 & 0 & 0 & 0 & 0 \\ \hline \end{array}$

4)
$$D^{(4)} = [d_{i,j}^{(4)}], i, j = \overline{1,4}; d_{i,j}^{(4)} = \max(d_{i,j}^{(3)}; d_{i,4}^{(3)} \times d_{4,j}^{(3)}). \frac{D^{(3)}}{V_1} \begin{vmatrix} V_1 & V_2 & V_3 & V_4 \\ \hline V_1 & 1 & 1 & 1 \end{vmatrix}$$

т сшение примера т									
4) $D^{(4)} = [d_{i,j}^{(4)}], i, j = \overline{1,4}; d_{i,j}^{(4)} = \max(d_{i,j}^{(3)}; d_{i,4}^{(3)} \times d_{4,j}^{(3)}). \frac{D^{(3)}}{V_1} \begin{vmatrix} V_1 & V_2 & V_3 & V_4 \\ \hline V_1 & 1 & 1 & 1 \end{vmatrix}$									
, ,,,	ı	ι, ,	(',,	·,,, /	$V_{_1}$	1	1	1	1
$D^{\scriptscriptstyle (4)}$	$V_{\scriptscriptstyle 1}$	$V_{_2}$	V_{2}	$V_{_4}$	$V_{_2}$	1		1	
	1		3	4	V	1		1	
$V_{_1}$	1	1	1	1	$V_{_4}$	0	0	0	0
V	1	1	1	1					
v 2	1	.	1	1					
$V_{_3}$	1	1	1	1					
$V_{_{A}}$	0	0	0	0					

Построим транзитивное замыкание по матрице связности:

$D^{\scriptscriptstyle (4)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$	$V_{_4}$
$V_{_1}$	1	1	1	1
$V_{_2}$	1	1	1	1
$V_{_3}$	1	1	1	1
$V_{_4}$	0	0	0	0

$$\mathbf{E}^{*} = \begin{cases} < V_{1}, V_{1} >, < V_{1}, V_{2} >, < V_{1}, V_{3} >, < V_{1}, V_{4} >, \\ < V_{2}, V_{1} >, < V_{2}, V_{2} >, < V_{2}, V_{3} >, < V_{2}, V_{4} >, \\ < V_{3}, V_{1} >, < V_{3}, V_{2} >, < V_{3}, V_{3} >, < V_{3}, V_{4} > \end{cases}$$

$$\mathbf{E}^{*} = \begin{cases} < V_{1}, V_{1} >, < V_{1}, V_{2} >, < V_{1}, V_{3} >, < V_{1}, V_{4} >, \\ < V_{2}, V_{1} >, < V_{2}, V_{2} >, < V_{2}, V_{3} >, < V_{2}, V_{4} >, \\ < V_{3}, V_{1} >, < V_{3}, V_{2} >, < V_{3}, V_{3} >, < V_{3}, V_{4} > \end{cases}$$

Ответ для примера 1

Исходный граф и его транзитивное замыкание.

Тема следующей лекции:

«Увеличение потока в графе»