In [3]: #import libraries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [18]: data=pd.read_csv(r"C:\Users\user\Desktop\Vicky\5_Instagram data.csv")

In [49]: data.head()

In [49]:	data.nead()											
Out[49]:		mpressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits	Fol
	0	3920	2586	1028	619	56	98	9	5	162	35	
	1	5394	2727	1838	1174	78	194	7	14	224	48	
	2	4021	2085	1188	0	533	41	11	1	131	62	
	3	4528	2700	621	932	73	172	10	7	213	23	
	4	2518	1704	255	279	37	96	5	4	123	8	

```
In [20]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object

dtypes: int64(11), object(2)

memory usage: 12.2+ KB

In [21]: data.describe()

Out[21]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comn
count	119.000000	119.000000	119.000000	119.000000	119.000000	119.000000	119.00
mean	5703.991597	2475.789916	1887.512605	1078.100840	171.092437	153.310924	6.66
std	4843.780105	1489.386348	1884.361443	2613.026132	289.431031	156.317731	3.5∠
min	1941.000000	1133.000000	116.000000	0.000000	9.000000	22.000000	0.00
25%	3467.000000	1945.000000	726.000000	157.500000	38.000000	65.000000	4.00
50%	4289.000000	2207.000000	1278.000000	326.000000	74.000000	109.000000	6.00
75%	6138.000000	2602.500000	2363.500000	689.500000	196.000000	169.000000	8.00
max	36919.000000	13473.000000	11817.000000	17414.000000	2547.000000	1095.000000	19.00

In [22]: data.columns

In [26]: sns.pairplot(data1)

Out[26]: <seaborn.axisgrid.PairGrid at 0x1e322fb9460>


```
In [27]: sns.heatmap(data1.corr())
```

Out[27]: <AxesSubplot:>


```
In [50]: x=data[['Follows','Likes']]
y=data1['Saves']
```

```
In [51]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.1)
```

Out[52]: LinearRegression()

```
In [53]: |lr.intercept_
```

Out[53]: -132.07670138242148

```
In [54]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
coeff
```

Out[54]:

Co-efficient

Follows -0.087813 Likes 1.647898

```
INSTAGRAM - Jupyter Notebook
In [55]: prediction = lr.predict(x_train)
         plt.scatter(y_train,prediction)
Out[55]: <matplotlib.collections.PathCollection at 0x1e325e95d90>
           700
          600
          500
          400
          300
          200
          100
            0
                      200
                              400
                                     600
                                             800
                                                    1000
In [56]: |lr.score(x_test,y_test)
Out[56]: 0.465928808365188
In [57]: lr.score(x_train,y_train)
Out[57]: 0.7178672143491022
In [58]: from sklearn.linear_model import Ridge,Lasso
In [59]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
Out[59]: 0.46595510504047044
In [60]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
         la.score(x_test,y_test)
Out[60]: 0.4703656188565337
In [61]: from sklearn.linear_model import ElasticNet
         en= ElasticNet()
         en.fit(x_train,y_train)
Out[61]: ElasticNet()
```

[-0.08649398 1.64722308]

In [62]: print(en.coef_)

```
In [65]:
         print(en.score(x test,y train))
         ValueError
                                                    Traceback (most recent call last)
         <ipython-input-65-48d1f0543252> in <module>
         ----> 1 print(en.score(x test,y train))
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py in score(self, X,
         y, sample_weight)
                          from .metrics import r2_score
             552
             553
                          y_pred = self.predict(X)
          --> 554
                          return r2_score(y, y_pred, sample_weight=sample_weight)
             555
             556
                      def _more_tags(self):
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in inn
         er_f(*args, **kwargs)
               61
                              extra_args = len(args) - len(all_args)
               62
                              if extra args <= 0:</pre>
                                  return f(*args, **kwargs)
          ---> 63
               64
               65
                              # extra_args > 0
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py in
         r2 score(y true, y pred, sample weight, multioutput)
             674
                      -3.0
             675
         --> 676
                     y type, y true, y pred, multioutput = check reg targets(
                          y true, y pred, multioutput)
             677
             678
                      check_consistent_length(y_true, y_pred, sample_weight)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py in
         _check_reg_targets(y_true, y_pred, multioutput, dtype)
               86
                          the dtype argument passed to check array.
               87
          ---> 88
                      check consistent length(y true, y pred)
                      y true = check array(y true, ensure 2d=False, dtype=dtype)
               89
                      y pred = check array(y pred, ensure 2d=False, dtype=dtype)
               90
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in che
         ck consistent length(*arrays)
             260
                      uniques = np.unique(lengths)
                      if len(uniques) > 1:
             261
         --> 262
                          raise ValueError("Found input variables with inconsistent num
         bers of"
                                           " samples: %r" % [int(1) for 1 in lengths])
             263
             264
         ValueError: Found input variables with inconsistent numbers of samples: [107,
         12]
In [66]: from sklearn import metrics
```

In	[67]:	<pre>print("Mean Absolute error:", metrics.mean_absolute_error(y_test, prediction))</pre>
		Mean Absolute error: 37.41752414066705
In	[68]:	<pre>print("Mean Absolute Square error:", metrics.mean_squared_error(y_test, predicti</pre>
		Mean Absolute Square error: 2219.8520976747755
In	[69]:	<pre>print("Root mean Square error:",np.sqrt(metrics.mean_squared_error(y_test,pred</pre>
		Root mean Square error: 47.115306405400524
Ir	n []:	
Ir	n []:	