1 Оглавление

- 2. <u>Задание</u>
- 3. Импорт библиотек
- 4. Загрузка и первичный анализ данных
- 5. Визуализация
- 6. Корреляционный анализ

2 Задание (к оглавлению)

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из Scikit-learn.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного Вами набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.

Сформировать отчет и разместить его в своем репозитории на github.

3 Импорт библиотек (к оглавлению)

```
Ввод [1]: import numpy as np import pandas as pd from sklearn.datasets import load_diabetes import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline
```

4 Загрузка и первичный анализ данных (к оглавлению)

Ввод [2]: X, y = load diabetes(return X y=True) print(load_diabetes()["DESCR"]) .. _diabetes_dataset: Diabetes dataset Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 1442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline. **Data Set Characteristics:** :Number of Instances: 442 :Number of Attributes: First 10 columns are numeric predictive values :Target: Column 11 is a quantitative measure of disease progression one year after baseline :Attribute Information: age in years - age - sex - bmi body mass index - bp average blood pressure - s1 tc, total serum cholesterol - s2 ldl, low-density lipoproteins - s3 hdl, high-density lipoproteins - s4 tch, total cholesterol / HDL - s5 ltg, possibly log of serum triglycerides level - s6 glu, blood sugar level Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times the square root of `n_samples` (i.e. the sum of squares of each column totals 1). https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html (https://www4.stat.ncsu.edu/~boos/var.select/diab etes.html) For more information see: Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499. (https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf) Ввод [3]: df1 = pd.DataFrame(X, columns=["age","sex","bmi","bp", "tc", "ldl", "hdl","tch", "ltg", "glu"]) df1 Out[3]:

	age	sex	bmi	bp	tc	ldi	hdl	tch	ltg	glu
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019907	-0.017646
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068332	-0.092204
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.002861	-0.025930
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022688	-0.009362
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031988	-0.046641
				***		•••				
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	0.031193	0.007207
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0.034309	-0.018114	0.044485
439	0.041708	0.050680	-0.015906	0.017293	-0.037344	-0.013840	-0.024993	-0.011080	-0.046883	0.015491
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0.026560	0.044529	-0.025930
441	-0.045472	-0.044642	-0.073030	-0.081413	0.083740	0.027809	0.173816	-0.039493	-0.004222	0.003064

442 rows × 10 columns

Bвод [4]: df2 = pd.DataFrame(y, columns=["disease_progression"]) df2

Out[4]:

disea	se_progression
0	151.0
1	75.0
2	141.0
3	206.0
4	135.0
437	178.0
438	104.0
439	132.0
440	220.0
441	57.0

442 rows × 1 columns

Bвод [5]: df = pd.merge(df1,df2, left_index=True, right_index=True)

Out[5]:

	age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	glu	disease_progression
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019907	-0.017646	151.0
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068332	-0.092204	75.0
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.002861	-0.025930	141.0
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022688	-0.009362	206.0
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031988	-0.046641	135.0
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	0.031193	0.007207	178.0
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0.034309	-0.018114	0.044485	104.0
439	0.041708	0.050680	-0.015906	0.017293	-0.037344	-0.013840	-0.024993	-0.011080	-0.046883	0.015491	132.0
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0.026560	0.044529	-0.025930	220.0
441	-0.045472	-0.044642	-0.073030	-0.081413	0.083740	0.027809	0.173816	-0.039493	-0.004222	0.003064	57.0

442 rows × 11 columns

Ввод [6]: df.describe()

Out[6]:

	age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	
count	4.420000e+02	4.420000								
mean	-1.444295e- 18	2.543215e-18	-2.255925e- 16	-4.854086e- 17	-1.428596e- 17	3.898811e-17	-6.028360e- 18	-1.788100e- 17	9.243486e-17	1.351770
std	4.761905e-02	4.76190								
min	-1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123988e- 01	-1.267807e- 01	-1.156131e- 01	-1.023071e- 01	-7.639450e- 02	-1.260971e- 01	-1.3770
25%	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665608e- 02	-3.424784e- 02	-3.035840e- 02	-3.511716e- 02	-3.949338e- 02	-3.324559e- 02	-3.317!
50%	5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670422e- 03	-4.320866e- 03	-3.819065e- 03	-6.584468e- 03	-2.592262e- 03	-1.947171e- 03	-1.0770
75%	3.807591e-02	5.068012e-02	3.124802e-02	3.564379e-02	2.835801e-02	2.984439e-02	2.931150e-02	3.430886e-02	3.243232e-02	2.79170
max	1.107267e-01	5.068012e-02	1.705552e-01	1.320436e-01	1.539137e-01	1.987880e-01	1.811791e-01	1.852344e-01	1.335973e-01	1.35611

Ввод [7]: df.shape

Out[7]: (442, 11)

```
Ввод [8]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 442 entries, 0 to 441
          Data columns (total 11 columns):
                                   Non-Null Count Dtype
          # Column
          ___
               ----
          0
              age
                                   442 non-null
                                                     float64
           1
               sex
                                   442 non-null
                                                     float64
           2
                                    442 non-null
              bp
                                   442 non-null
                                                     float64
           4
                                   442 non-null
                                                     float64
              tc
              ldl
           5
                                    442 non-null
                                                     float64
           6
              hdl
                                    442 non-null
                                                     float64
           7
               tch
                                    442 non-null
                                                     float64
                                    442 non-null
              ltg
                                                     float64
                                    442 non-null
                                                     float64
               qlu
           10 disease_progression 442 non-null
                                                    float64
          dtypes: float64(11)
          memory usage: 38.1 KB
Ввод [9]: # Количество пустых значений
          total_count = df.shape[0]
          for col in df.columns:
             temp_null_count = df[df[col].isnull()].shape[0]
              temp_perc = round((temp_null_count / total_count) * 100.0, 2)
              print('Колонка {} - {}, {}%'.format(col, temp_null_count, temp_perc))
          Колонка age - 0, 0.0%
          Колонка sex — 0, 0.0%
          Колонка bmi — 0, 0.0%
          Колонка bp - 0, 0.0%
          Колонка tc - 0, 0.0%
          Колонка ldl - 0, 0.0%
          Колонка hdl - 0, 0.0%
          Колонка tch — 0, 0.0%
Колонка ltg — 0, 0.0%
Колонка glu — 0, 0.0%
          Колонка disease_progression - 0, 0.0%
```

5 Визуализация (к оглавлению)

Out[10]: <seaborn.axisgrid.PairGrid at 0x7f8891a25af0>


```
Bвод [11]: fig, ax = plt.subplots(2, 1, figsize=(8,8))
sns.violinplot(ax=ax[0], x=df['disease_progression'])
sns.histplot(df['disease_progression'], ax=ax[1])
```

Out[11]: <AxesSubplot:xlabel='disease_progression', ylabel='Count'>

Ввод [12]: # Распределение параметра disease_progression сгруппированные по sex. sns.violinplot(x='sex', y='disease_progression', data=df)

Out[12]: <AxesSubplot:xlabel='sex', ylabel='disease_progression'>


```
Ввод [13]: height = 4
              width = 3
              fig, ax = plt.subplots(height, width, figsize=(20,20))
              for i in range(height):
                   for j in range(width):
                        if i * width+j != 11:
                              sns.boxplot(x=df[df.columns[i * width+j]], ax=ax[i, j])
                          -0.05
                                   0.00
age
                                                    0.10
                                                                                    0.00
sex
                                                                                                                                                      0.15
                  -0.10
                                            0.05
                                                                    -0.04
                                                                            -0.02
                                                                                            0.02
                                                                                                   0.04
                                                                                                                  -0.10
                                                                                                                         -0.05
                                                                                                                                      0.05
bmi
                                                                                                                                               0.10
                                                                                                                                0.00
                          -0.05
                                                                                                       0.15
                                                                                                                                       0.05
Idl
                   -0.10
                                          0.05
                                                 0.10
                                                                     -0.10
                                                                            -0.05
                                                                                          0.05
                                                                                                0.10
                                                                                                                          -0.05
                                                                                                                                 0.00
                                                                                                                                             0.10
                                                                                                                                                   0.15
                 -0.10
                       -0.05 0.00
                                    0.05
hdl
                                                  0.15
                                                                      -0.05
                                                                             0.00
                                                                                    0.05
tch
                                                                                           0.10
                                                                                                  0.15
                                                                                                                       -0.10
                                                                                                                             -0.05
                                                                                                                                             0.05
                                                                                                                                                    0.10
                                                                                                                0.2
```

250

disease_progression

-0.10

-0.05

```
Ввод [14]: df.corr()
```

Out[14]:

	age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	glu	disease_progression
age	1.000000	0.173737	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841	0.270774	0.301731	0.1878
sex	0.173737	1.000000	0.088161	0.241010	0.035277	0.142637	-0.379090	0.332115	0.149916	0.208133	0.0430
bmi	0.185085	0.088161	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807	0.446157	0.388680	0.5864
bp	0.335428	0.241010	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650	0.393480	0.390430	0.4414
tc	0.260061	0.035277	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207	0.515503	0.325717	0.2120
ldi	0.219243	0.142637	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817	0.318357	0.290600	0.1740
hdl	-0.075181	-0.379090	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493	-0.398577	-0.273697	-0.3947
tch	0.203841	0.332115	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000	0.617859	0.417212	0.4304
Itg	0.270774	0.149916	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859	1.000000	0.464669	0.5658
glu	0.301731	0.208133	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212	0.464669	1.000000	0.3824
disease_progression	0.187889	0.043062	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453	0.565883	0.382483	1.0000

Bвод [15]: df.corr()['disease_progression']

Out[15]: age

0.187889 0.043062 sex bmi 0.586450 0.441482 bp 0.212022 tc ldl 0.174054 hdl -0.394789 tch 0.430453 ltg 0.565883 0.382483 glu disease_progression 1.000000

Name: disease_progression, dtype: float64

```
Ввод [16]: fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(13,10)) fig.suptitle('Корреляционная матрица') sns.heatmap(df.corr(), ax=ax, annot=True, fmt='.3f', cmap='YlGnBu')
```

Out[16]: <AxesSubplot:>

Корреляционная матрица

На основе корреляционной матрицы можно сделать следующие выводы.

Лучше всего с целевым признаком disease_progression коррелируют следующие признаки:

Признак	Корреляция
bmi	0.586
bp	0.441
tch	0.430
ltg	0.566

При этом признак sex вообще не коррелирует с целевым признаком. Признаки 1dl и tc сильно коррелируют между собой (0.897), следовательно, необходимо избавиться от одного из них (от 1dl , т.к он меньше коррелирует с целевым признаком).