Network Resilience Under Epidemic Attacks: Deep Reinforcement Learning Network Topology Adaptations

Qisheng Zhang (presenter) ¹ Jin-Hee Cho ² Terrence J. Moore ³

^{1,2}Department of Computer Science, Virginia Tech

³US Army Research Laboratory

IEEE GLOBECOM 2021, December 2021

Outline

- Introduction
- Related Work
- Problem Statement
- System Model
 - Network Model
 - Node Model
 - Attack Model
- Proposed Framework
 - Vulnerability Ranking of Edges and Nodes (VREN)
 - Fractal-based Solution Search (FSS)
 - DRL-based Budget Adaptation
- Experimental Setup
- Numerical Results and Analyses
- Conclusions

Motivation

Achieving network security and network resilience by network topology adaptation under software polyculture environment.

Key Contributions

- Proposed a network topology adaptation technique to achieve network resilience in terms of maximizing system security, network connectivity, and system service availability.
- Presented two algorithms to support the DRL agent to efficiently identify an optimal adaptation budget strategy to meet the two system goals.
 - VREN: <u>Vulnerability Ranking algorithm of Edges and Nodes</u>
 - FSS: <u>Fractal-based Solution Search algorithm</u>
- Conducted extensive experiments to investigate the impact of three different types of objective functions to our proposed DRL scheme.
- Found that a larger size of the giant component is not necessarily aligned with higher service availability.
- Observed that a higher fraction of compromised nodes can increase actual service availability due to the existence of more paths available between nodes.

Related Work

Deployment of diversity-based network adaptations

- Metric-based: graph coloring based software allocation/assignment ¹
- Metric-free: software assignment ²; network topology shuffling ³

DRL-based network topology shuffling

- Addition: adding edges to networks ⁴
- Removal: removing edges from networks ⁵
- Shuffling: redirecting edges in networks ^{6 7}

Limitations

- Lack of work studying optimal edge adaptations for resilient networks
- Limited topology operations and objective functions
- Slow convergence for DRL agents to identify optimal solutions

```
Borbor et al., 2019
```

Yang et al., 2016

3 Hong et al., 2016

Darvariu et al., 2020

5 Dai et al., 2018

6 Chai et al., 2020

7 Zhang et al., 2020

Problem Statement

- **Main idea**: optimize network security (\mathcal{F}_C) + connectivity (\mathcal{S}_G) + service availability (\mathcal{P}_{MD})
- Objective function :

$$\arg \max_{b_A, b_R} f(G') - f(G), \quad s.t. \quad 0 \le b_A + b_R \le B, \tag{1}$$

G: original network

G': adapted network

 b_A : addition budget

 b_R : removal budget

O-SG:
$$f: G \mapsto \mathcal{S}_G(G) - \mathcal{F}_C(G)$$

O-MD:
$$f: G \mapsto \mathcal{P}_{MD}(G) - \mathcal{F}_{C}(G)$$

O-SG-MD:
$$f: G \mapsto \mathcal{S}_G(G) + \mathcal{P}_{MD}(G) - \mathcal{F}_C(G)$$

System Model

- Network Model: A centralized system with one centralized controller
- Node Model
 - Activity indicator(IDS): $na_i = 1(alive)/0(failed)$
 - Compromise indicator: $nc_i = 1(\text{compromised})/0(\text{not compromised})$
 - Software version: $s_i \in [1, N_s]$, N_s : # of available software packages
 - Software vulnerability: $sv_i \in [0,1]$ 8

Attack Model

- Epidemic attacks: P_a
 - Perform two attack trials to infect its direct neighbors
 - Learn software versions along attacks
- Packet drop attack
- Packet modification attack

The extent of a Common Vulnerabilities Vulnerability Scoring System (CVSS) and Exposures (CVE) based on a Common

Vulnerability Ranking of Edges and Nodes (VREN)

- Precision control by # of attack simulations
- Edge vulnerability level V_E : # of times it is used by attackers to compromise other nodes
- Node vulnerability level V_V : # of times it becomes an attacker (being compromised)
- Ranking system
 - \blacksquare R_E : edge ranking based on V_E in descending order
 - lacksquare R_V : node ranking based on V_V in ascending order
- Adaptation based on budget constraints $[b_R, b_A]$
 - $lackbox{b}_R$: edge removal budget
 - $lackbox{b}_A$: edge addition budget

Fractal-based Solution Search (FSS)

- Reduce solution search space in edge addition and removal budgets
- Self-similar fractals
 - Centroid representation for each division
 - Logarithm complexity: \[\log B \] \((B)\) the upper bound of the total adaptation budget)
- Discrete evaluation
 - Nearest integer points: (b_R, b_A) (b_R: edge removal budget, b_A: edge addition budget)

Proposed DeepNETAR Framework

DRL-based Budget Adaptation

- States
 - $s_t = (b_A^t, b_R^t, G_t')$
 - b^t_R: removal budget at time t; b^t_A: addition budget at time t; G'_t: the network at time t
- Actions
 - FSS: $a_t = \{A, B, C, D\}$, where $1 \le t \le \lceil \log_2 B \rceil$
- Rewards
 - $\mathcal{R}(s_t, a_t, s_{t+1}) = f(G'_{t+1}) f(G'_t)$, where f = O-SG/O-MD/O-SG-MD

Figure 1: The overall architecture of the proposed DeepNETAR: The color of each node refers to a different software package installed in it.

Problem Statement (Recall)

- Main idea: optimize network security($\mathcal{F}_{\mathcal{C}}$) + connectivity($\mathcal{S}_{\mathcal{G}}$) + service availability(\mathcal{P}_{MD})
- Objective function :

$$\arg \max_{b_A, b_R} f(G') - f(G), \quad s.t. \quad 0 \le b_A + b_R \le B, \tag{2}$$

G: original network

G': adapted network

 b_A : addition budget

 b_R : removal budget

O-SG:
$$f: G \mapsto \mathcal{S}_G(G) - \mathcal{F}_C(G)$$

O-MD:
$$f: G \mapsto \mathcal{P}_{MD}(G) - \mathcal{F}_{C}(G)$$

O-SG-MD:
$$f: G \mapsto \mathcal{S}_G(G) + \mathcal{P}_{MD}(G) - \mathcal{F}_C(G)$$

Experimental Setup

- Random Graph
 - ER: Erdős-Rényi random graph model
 - Number of nodes N = 200
 - Connection probability p = 0.05
- Attack Types Considered
 - Epidemic Attacks
 - Fraction of initial attackers in a network $P_a = 0.3$
 - Packet drop attack
 - Packet drop probability $P_d = 0.5$
 - Packet modification attack
 - Packet modification probability $P_m = 0.5$

Experimental Setup

Table 1: Key Design Parameters, Meanings, and Default Values

Param.	Meaning	Value
na	Number of attack simulations	500
n _r	Number of simulation runs	200
n _e	Training episodes of DRL-based schemes	1000
N	Total number of nodes in a network	200
k	Upper hop bound for edge addition	3
γ	Intrusion detection probability	0.9
P_{fn}, P_{fp}	False negative or positive probability	0.1, 0.05
P_d	Packet drop probability	0.5
P _m	Packet modification probability	0.5
λ	Constant used in packet forward failure rate	0.1
×	Degree of software vulnerability	0.5
р	Connection probability between pairs of nodes in an ER network	0.05
1	Number of software packages available	5
Pa	Fraction of initial attackers in a network	0.3
В	Upper bound of the total adaptation budget	500

Effect of Varying the Number of Software Packages Available (/) under an ER Network

- (a) Delivery of correct mes- (b) Size of the giant com- (c) Fraction of comprosages (\mathcal{P}_{MD}) ponent (\mathcal{S}_G) mised nodes (\mathcal{F}_C)
 - As I increases, \mathcal{F}_C drops, \mathcal{S}_G and \mathcal{P}_{MD} increase.
 - DQN-DeepNETAR-SG has the lowest \mathcal{F}_C and \mathcal{P}_{MD} .
 - DQN-DeepNETAR-MD has the highest \mathcal{F}_C and the highest \mathcal{P}_{MD} .
- DQN-DeepNETAR-SG-MD achieves a relatively high security level with the fairly good service availability.

Effect of Varying the Upper Bound of the Total Adaptation Budget (B) under an ER Network

- (a) Delivery of correct mes- (b) Size of the giant com- (c) Fraction of comprosages (\mathcal{P}_{MD}) ponent (\mathcal{S}_G) mised nodes (\mathcal{F}_C)
 - Higher B decreases \mathcal{P}_{MD} and \mathcal{F}_{C} , but maximal \mathcal{S}_{G} is obtained with different B under different schemes.
 - Once the optimal budget is identified, higher *B* would slightly degrade the performance since higher *B* corresponds to a larger search space.

Conclusions & Future Work

Conclusions:

- Proposed a DRL-based framework, DeepNETAR, to handle multiple, competing objectives regarding system vulnerability, connectivity, and service availability.
- Propposed DQN-DeepNETAR-SG-MD can better ensure security, connectivity, and service availability simultaneously with an appropriate evaluation function.
- Found that the size of the giant component, as a network connectivity metric, is more related to security rather than actual service availability under epidemic attacks.

Future Work Directions:

- Extend our single agent DRL-based approach to a multi-agent DRL-based approach for a large-scale network.
- Explore our work to a network shuffling-based moving target defense (MTD).

Any Questions?

Thank you!

Qisheng Zhang at qishengz19@vt.edu

National Capital Region Campus 7054 Haycock Rd., Office 314 Falls Church, VA 22043

