CS685: Data Mining Hierarchical Clustering Methods

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2020-21 Mon 1030-1200 (online)

Hierarchical Clustering Methods

- Arranges the objects in a hierarchy (tree)
- Can be visualized as a dendogram or a nested cluster

Hierarchical Clustering Methods

- Arranges the objects in a hierarchy (tree)
- Can be visualized as a dendogram or a nested cluster

Can proceed bottom-up (agglomerative) or top-down (divisive)

Hierarchical Clustering Methods

- Arranges the objects in a hierarchy (tree)
- Can be visualized as a dendogram or a nested cluster

- Can proceed bottom-up (agglomerative) or top-down (divisive)
- Requires defining distance between clusters, i.e., sets of objects

$$min(A, B) = \min_{p \in A, q \in B} \{d(p, q)\}$$

$$max(A, B) = \max_{p \in A, q \in B} \{d(p, q)\}$$

$$avg(A, B) = \sum_{p \in A, q \in B} d(p, q)/(|A|.|B|)$$

$$mean(A, B) = d(\mu_A, \mu_B)$$

Agglomerative Hierarchical Method

• AGglomerative NESting (AGNES)

Agglomerative Hierarchical Method

- AGglomerative NESting (AGNES)
- Starts with each object as a cluster
- In each step, selects the two clusters with the least minimum distance and merges them

DIvisive ANAlysis (DIANA)

- DIvisive ANAlysis (DIANA)
- Starts with all the objects in one big cluster
- In each step, selects the cluster with the largest diameter and splits it
 - Diameter is the largest pairwise distance between two objects in the cluster

- DIvisive ANAlysis (DIANA)
- Starts with all the objects in one big cluster
- In each step, selects the cluster with the largest diameter and splits it
 - Diameter is the largest pairwise distance between two objects in the cluster
- Object that has the largest average distance to other members of the cluster is chosen
- This object initiates the splinter group
- For an object, average distance to the splinter group and non-splinter group is found
- If splinter group is closer, it is merged with the splinter group

- DIvisive ANAlysis (DIANA)
- Starts with all the objects in one big cluster
- In each step, selects the cluster with the largest diameter and splits it
 - Diameter is the largest pairwise distance between two objects in the cluster
- Object that has the largest average distance to other members of the cluster is chosen
- This object initiates the splinter group
- For an object, average distance to the splinter group and non-splinter group is found
- If splinter group is closer, it is merged with the splinter group
- The splinter group forms a new cluster out of the parent

- DIvisive ANAlysis (DIANA)
- Starts with all the objects in one big cluster
- In each step, selects the cluster with the largest diameter and splits it
 - Diameter is the largest pairwise distance between two objects in the cluster
- Object that has the largest average distance to other members of the cluster is chosen
- This object initiates the splinter group
- For an object, average distance to the splinter group and non-splinter group is found
- If splinter group is closer, it is merged with the splinter group
- The splinter group forms a new cluster out of the parent
- Order dependent

• For *n* objects, the number of merging or splitting is

- For *n* objects, the number of merging or splitting is n-1
- If there are m clusters in an agglomeration step, the number of possibilities of merging is

- ullet For n objects, the number of merging or splitting is n-1
- If there are m clusters in an agglomeration step, the number of possibilities of merging is m(m-1)/2
- If there are *m* clusters in a division step, the number of clusters that can be split is

- ullet For n objects, the number of merging or splitting is n-1
- If there are m clusters in an agglomeration step, the number of possibilities of merging is m(m-1)/2
- If there are *m* clusters in a division step, the number of clusters that can be split is *m*
- For a cluster with t objects, the number of ways it can be split is

- ullet For n objects, the number of merging or splitting is n-1
- If there are m clusters in an agglomeration step, the number of possibilities of merging is m(m-1)/2
- If there are m clusters in a division step, the number of clusters that can be split is m
- For a cluster with t objects, the number of ways it can be split is $2^{t-1}-1$
- In general, agglomerative methods are easier than divisive methods
- Hence, there are more agglomerative methods in practice

- Minimum pairwise distance methods are nearest-neighbor algorithms
 - Also called single linkage algorithms
 - If a distance threshold is chosen, a single link between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a spanning tree of objects
 - Can form non-elliptical clusters

- Minimum pairwise distance methods are nearest-neighbor algorithms
 - Also called single linkage algorithms
 - If a distance threshold is chosen, a single link between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a spanning tree of objects
 - Can form non-elliptical clusters
- Maximum pairwise distance methods are farthest-neighbor algorithms
 - Also called complete linkage algorithms
 - If a distance threshold is chosen, all links between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a clique of objects
 - Favours forming elliptical clusters

- Minimum pairwise distance methods are nearest-neighbor algorithms
 - Also called single linkage algorithms
 - If a distance threshold is chosen, a single link between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a spanning tree of objects
 - Can form non-elliptical clusters
- Maximum pairwise distance methods are farthest-neighbor algorithms
 - Also called complete linkage algorithms
 - If a distance threshold is chosen, all links between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a clique of objects
 - Favours forming elliptical clusters
- Average pairwise distance is robust to noise and outliers

- Minimum pairwise distance methods are nearest-neighbor algorithms
 - Also called single linkage algorithms
 - If a distance threshold is chosen, a single link between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a spanning tree of objects
 - Can form non-elliptical clusters
- Maximum pairwise distance methods are farthest-neighbor algorithms
 - Also called complete linkage algorithms
 - If a distance threshold is chosen, all links between two clusters needs to be below the threshold for the clusters to be merged
 - Finally forms a clique of objects
 - Favours forming elliptical clusters
- Average pairwise distance is robust to noise and outliers
- Centroid-based distances (such as mean) may exhibit an undesirable property called inversion
 - Distance between clusters merged at a later step may be *less* than those merged earlier

Example

Point	X	У
1	0.40	0.53
2	0.22	0.38
3	0.35	0.32
4	0.26	0.19
5	0.08	0.41
6	0.45	0.30

0 (0.1 0.2 0.	3 0.4 0.5	0.6			
	1	2	3	4	5	6
1	0.00	0.24	0.22	0.37	0.34	0.23
2		0.00	0.15	0.20	0.14	0.25
3			0.00	0.15	0.28	0.11
4				0.00	0.29	0.22
5					0.00	0.39
6						0.00

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3,6	4	5
1	0	24	22	37	34
2		0	15	20	14
3,6			0	15	28
4				0	29
5					0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(3,	6)
	,

	1	2	3,6	4	5
1	0	24	22	37	34
2		0	15	20	14
3,6			0	15	28
4				0	29
5					0

		1	2,5	3,6	4
	1	0	24	22	37
(2,5)	2,5		0	15	20
\longrightarrow	2,5 3,6			0	15
	4				0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(0	6)	
$\frac{(3,}{}$	<u>6)</u>	

	1	2	3,6	4	5
1	0	24	22	37	34
2		0	15	20	14
3,6			0	15	28
4				0	29
5					0

		1	2,5	3,6	4	
	1	0	24	22	37	
(2,5)	2,5		0	15	20	
\longrightarrow	2,5 3,6			0	15	
	4				0	

((2,	5),	(3,	6))
			\longrightarrow

	1	2,5,3,6	4
1	0	22	37
2,5,3,6		0	15
4			0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1
0 (5)	2
$\xrightarrow{3,6}$	3,
	4

	1	2	3,0	4	5	
1	0	24	22	37	34	
2		0	15	20	14	
3,6			0	15	28	
4				0	29	
5					0	

2 6

		1	2,5	3,6	4
	1	0	24	22	37
(2,5)	2,5		0	15	20
\longrightarrow	2,5 3,6			0	15
	4				0

$$\xrightarrow{((2,5),(3,6))}$$

	1	2,5,3,6	4
1	0	22	37
2,5,3,6		0	15
4			0

$$\underbrace{(((2,5),(3,6)),4)}_{}$$

	1	2,5,3,6,4
1	0	22
2,5,3,6,4		0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
<u>(3,6)</u>	1	0	24	22	37	34
	2		0	15	20	14
	3,6			0	15	28
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	24	22	37
(2,5)	2,5		0	15	20
\longrightarrow	2,5 3,6			0	15
	4				0

$$\xrightarrow{((2,5),(3,6))}$$

	1	2,5,3,6	4
1	0	22	37
2,5,3,6		0	15
4			0

	1	2,5,3,6,4
1	0	22
2,5,3,6,4		0

$$\rightarrow ((((2,5),(3,6)),4),1)$$

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(0	٥)
(3,	6)

	1	2	3,6	4	5
1	0	24	23	37	34
2		0	25	20	14
3,6			0	22	39
4				0	29
5					0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(3,	<u>6)</u>

		1	2,5	3,6	4
	1	0	34	23	37
(2,5)	2,5		0	39	29
\longrightarrow	2,5 3,6			0	22
	4				0

	1	2	3,6	4	5
1	0	24	23	37	34
2		0	25	20	14
3,6			0	22	39
4				0	29
5					0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1
3,6)	2
$\xrightarrow{3,0)}$	3,6
	4
	1

	1	2	3,6	4	5
1	0	24	23	37	34
2		0	25	20	14
3,6			0	22	39
4				0	29
5					0
	•				

		1	2,5	3,6	4
	1	0	34	23	37
(2,5)	2,5		0	39	29
<u> </u>	2,5 3,6			0	22
	4				0

$$\xrightarrow{((3,6),4)}$$

	1	2,5	3,6,4
1	0	34	37
2,5		0	39
3,6,4			0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3,6	4	5
1	0	24	23	37	34
2		0	25	20	14
3,6			0	22	39
4				0	29
5					0

		1	2,5	3,6	4
	1	0	34	23	37
(2,5)	2,5		0	39	29
\longrightarrow	2,5 3,6			0	22
	4				0

((3,	6),	4)

(3,6)

		1,2,5	3,6,4
(1,(2,5))	1,2,5	0	39
\longrightarrow	3,6,4		0

	1	2,5	3,6,4
1	0	34	37
2,5		0	39
3,6,4			0

	1	2	3	4	5	6
1	0	24	22	37	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
	1	0	24	23	37	34
(2.6)	2		0	25	20	14
$\xrightarrow{(3,6)}$	3,6			0	22	39
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	34	23	37
(2,5)	2,5		0	39	29
 →	2,5 3,6			0	22
	4				0

$$\xrightarrow{((3,6),4)}$$

	1	2,5	3,6,4
1	0	34	37
2,5		0	39
3,6,4			0

$$\xrightarrow{(1,(2,5))}$$

	1,2,5	3,6,4
1,2,5	0	39
3,6,4		0

$$\rightarrow$$
 ((1,(2,5)),((3,6),4))

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3,6	4	5
1	0	24	23	33	34
2		0	20	20	14
3,6			0	19	35
4				0	29
5					0

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

<u>(3,</u>	<u>6)</u>

	1	2,5	3,6	4
1	0	29	23	33
2,5		0	27	25
3,6			0	19
4				0
	1 2,5 3,6 4	-	1 0 29	1 0 29 23

	1	2	3,6	4	5
1	0	24	23	33	34
2		0	20	20	14
3,6			0	19	35
4				0	29
5					0

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
	1	0	24	23	33	34
(3,6)	2		0	20	20	14
$\xrightarrow{(3,0)}$	3,6			0	19	35
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	29	23	33
(2,5)	2,5		0	27	25
\longrightarrow	2,5 3,6			0	19
	4				0

	1	2,5	3,6,4
1	0	29	26
2,5		0	26
3,6,4			0

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
Ì	1	0	24	23	33	34
	2		0	20	20	14
	3,6			0	19	35
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	29	23	33
(2,5)	2,5		0	27	25
\longrightarrow	2,5 3,6			0	19
	4				0

$$\xrightarrow{((3,6),4)}$$

(3,6)

	1	2,5	3,6,4
1	0	29	26
2,5		0	26
3,6,4			0

Average Pairwise Distance

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
ĺ	1	0	24	23	33	34
	2		0	20	20	14
İ	3,6			0	19	35
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	29	23	33
(2,5)	2,5		0	27	25
\longrightarrow	2,5 3,6			0	19
	4				0

$$\xrightarrow{((3,6),4)}$$

(3,6)

	1	2,5	3,6,4
1	0	29	26
2,5		0	26
3,6,4			0

	1,3,6,4	2,5
1,3,6,4	0	27
2,5		0

$$\rightarrow$$
 ((1,((3,6),4)),(2,5))

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

	1	2	3,6	4	5
1	0	24	22	33	34
2		0	19	20	14
3,6			0	18	33
4				0	29
5					0

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(3,	<u>6)</u>
	,

		1	2,5	3,6	4
	1	0	28	22	33
(2,5)	2,5		0	26	23
\longrightarrow	2,5 3,6			0	18
	4				0

	1	2	3,6	4	5
1	0	24	22	33	34
2		0	19	20	14
3,6			0	18	33
4				0	29
5					0

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

(3,	<u>6)</u>	

	1	2	3,6	4	5
1	0	24	22	33	34
2		0	19	20	14
3,6			0	18	33
4				0	29
5					0

		1	2,5	3,6	4
	1	0	28	22	33
(2,5)	2,5		0	26	23
\longrightarrow	2,5 3,6			0	18
	4				0

	1	2,5	3,6,4
1	0	28	26
2,5		0	23
3,6,4			0

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
Ì	1	0	24	22	33	34
	2		0	19	20	14
	3,6			0	18	33
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	28	22	33
(2,5)	2,5		0	26	23
\longrightarrow	2,5 3,6			0	18
	4				0

$$\xrightarrow{((3,6),4)}$$

(3,6)

		1	2,5,3,6,4
(((2,5),(3,6)),4)	1	0	25
	2,5,3,6,4		0

	1	2,5	3,6,4
1	0	28	26
2,5		0	23
3,6,4			0

	1	2	3	4	5	6
1	0	24	22	33	34	23
2		0	15	20	14	25
3			0	15	28	11
4				0	29	22
5					0	39
6						0

		1	2	3,6	4	5
	1	0	24	22	33	34
(3,6)	2		0	19	20	14
$\xrightarrow{(3,0)}$	3,6			0	18	33
	4				0	29
	5					0

		1	2,5	3,6	4
	1	0	28	22	33
(2,5)	2,5		0	26	23
\longrightarrow	2,5 3,6			0	18
	4				0

$$\xrightarrow{((3,6),4)}$$

	1	2,5,3,6,4
1	0	25
2,5,3,6,4		0

	1	2,5	3,6,4
1	0	28	26
2,5		0	23
3,6,4			0

$$\rightarrow$$
 ((((2,5),(3,6)),4),1)

(((2,5),(3,6)),4)

- Assume *n* objects
- Initial distance matrix requires $O(n^2)$ time and space

- Assume *n* objects
- Initial distance matrix requires $O(n^2)$ time and space
- In each step, minimum distance is found out
- This requires $O(n^2)$ time
- Can be reduced to $O(n \log n)$ by using a heap

- Assume n objects
- Initial distance matrix requires $O(n^2)$ time and space
- In each step, minimum distance is found out
- This requires $O(n^2)$ time
- Can be reduced to $O(n \log n)$ by using a heap
- Updating the matrix requires O(n) time
- Only a row or a column is updated

- Assume *n* objects
- Initial distance matrix requires $O(n^2)$ time and space
- In each step, minimum distance is found out
- This requires $O(n^2)$ time
- Can be reduced to $O(n \log n)$ by using a heap
- Updating the matrix requires O(n) time
- Only a row or a column is updated
- There are O(n) steps

- Assume *n* objects
- Initial distance matrix requires $O(n^2)$ time and space
- In each step, minimum distance is found out
- This requires $O(n^2)$ time
- Can be reduced to $O(n \log n)$ by using a heap
- Updating the matrix requires O(n) time
- Only a row or a column is updated
- There are O(n) steps
- So, total time complexity is $O(n^3)$ or $O(n^2 \log n)$

- Assume *n* objects
- Initial distance matrix requires $O(n^2)$ time and space
- In each step, minimum distance is found out
- This requires $O(n^2)$ time
- Can be reduced to $O(n \log n)$ by using a heap
- Updating the matrix requires O(n) time
- Only a row or a column is updated
- There are O(n) steps
- So, total time complexity is $O(n^3)$ or $O(n^2 \log n)$
- Space complexity remains $O(n^2)$

Extensions

- Combines hierarchical methods with partition-based clustering ideas to achieve better results
- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Clustering using Representatives (CURE)
- Robust Clustering using Links (ROCK)
- Hierarchical Clustering using Dynamic Modeling (CHAMELEON)

- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Each cluster has a clustering feature (CF) consisting of
 - *n*: *number* of points in the cluster, i.e., $\sum_{i=1}^{n} 1$ *LS*: *linear sum* of the *n* points, i.e., $\sum_{i=1}^{n} x_i$

 - SS: squared sum of the n points, i.e., $\sum_{i=1}^{n} x_i^2$
- Essentially, the 0th, 1st and 2nd moments

- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Each cluster has a clustering feature (CF) consisting of
 - n: number of points in the cluster, i.e., $\sum_{i=1}^{n} 1$
 - LS: linear sum of the n points, i.e., $\sum_{i=1}^{n} x_i$
 - SS: squared sum of the n points, i.e., $\sum_{i=1}^{n} x_i^2$
- \bullet Essentially, the $0^{th},\ 1^{st}$ and 2^{nd} moments
- Example: Three 2D points in a cluster (2,5), (3,2), (4,3)
- CF =

- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Each cluster has a clustering feature (CF) consisting of
 - n: number of points in the cluster, i.e., $\sum_{i=1}^{n} 1$
 - LS: linear sum of the n points, i.e., $\sum_{i=1}^{n} x_i$
 - SS: squared sum of the n points, i.e., $\sum_{i=1}^{n} x_i^2$
- \bullet Essentially, the $0^{th},\ 1^{st}$ and 2^{nd} moments
- Example: Three 2D points in a cluster (2,5), (3,2), (4,3)
- $CF = \langle 3, (9, 10), (29, 38) \rangle$

- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Each cluster has a clustering feature (CF) consisting of
 - n: number of points in the cluster, i.e., $\sum_{i=1}^{n} 1$
 - LS: linear sum of the n points, i.e., $\sum_{i=1}^{n} x_i$
 - SS: squared sum of the n points, i.e., $\sum_{i=1}^{n} x_i^2$
- \bullet Essentially, the $0^{th},\ 1^{st}$ and 2^{nd} moments
- Example: Three 2D points in a cluster (2,5), (3,2), (4,3)
- $CF = \langle 3, (9, 10), (29, 38) \rangle$
- CF is additive, i.e., CF of a cluster formed by merging two clusters is simply the element-wise sum of their CFs

- CF is a summary of many useful statistics about the cluster
 - Centroid x_0

- CF is a summary of many useful statistics about the cluster
 - Centroid x_0

$$x_0 = \sum_{i=1}^n x_i/n = LS/n$$

• Radius R (average distance from the centroid)

- CF is a summary of many useful statistics about the cluster
 - Centroid x₀

$$x_0 = \sum_{i=1}^n x_i/n = LS/n$$

Radius R (average distance from the centroid)

$$R = \sqrt{\sum_{i=1}^{n} (x_i - x_0)^2 / n} = \sqrt{(n.SS - LS^2) / n^2}$$

• Diameter D (average distance from each other)

- CF is a summary of many useful statistics about the cluster
 - Centroid x₀

$$x_0 = \sum_{i=1}^n x_i/n = LS/n$$

Radius R (average distance from the centroid)

$$R = \sqrt{\sum_{i=1}^{n} (x_i - x_0)^2 / n} = \sqrt{(n.SS - LS^2) / n^2}$$

• Diameter D (average distance from each other)

$$D = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2 / n(n-1)} = \sqrt{(2n.SS - 2LS^2) / n(n-1)}$$

- CF-tree is a height-balanced tree that stores CFs of clusters hierarchically
- Each leaf node represents a CF of a cluster
- Each non-leaf node stores the sum CF of its children

- CF-tree is a height-balanced tree that stores CFs of clusters hierarchically
- Each leaf node represents a CF of a cluster
- Each non-leaf node stores the sum CF of its children
- A CF-tree has two parameters
 - Branching factor B: Maximum number of children a node can have
 - Threshold T: Maximum diameter of clusters stored at the leaf nodes
- These two factors control the size of a CF-tree

- CF-tree is a height-balanced tree that stores CFs of clusters hierarchically
- Each leaf node represents a CF of a cluster
- Each non-leaf node stores the sum CF of its children
- A CF-tree has two parameters
 - Branching factor B: Maximum number of children a node can have
 - Threshold T: Maximum diameter of clusters stored at the leaf nodes
- These two factors control the size of a CF-tree
- If T is more, less number of leaves are required, and size is less
- If B is more, more number of clusters are combined in each level, and height is less

- CF-tree is a height-balanced tree that stores CFs of clusters hierarchically
- Each leaf node represents a CF of a cluster
- Each non-leaf node stores the sum CF of its children
- A CF-tree has two parameters
 - Branching factor B: Maximum number of children a node can have
 - Threshold T: Maximum diameter of clusters stored at the leaf nodes
- These two factors control the size of a CF-tree
- ullet If T is more, less number of leaves are required, and size is less
- If B is more, more number of clusters are combined in each level, and height is less
- CF-tree is a compact representation of the dataset

• BIRCH algorithm proceeds in two main phases

- BIRCH algorithm proceeds in two main phases
- Phase 1: CF-tree is built
- CF-tree is built incrementally, i.e., the data points are inserted in the tree one after another
- Thus, order-dependent

- BIRCH algorithm proceeds in two main phases
- Phase 1: CF-tree is built
- CF-tree is built incrementally, i.e., the data points are inserted in the tree one after another
- Thus, order-dependent
- Phase 2: A global clustering algorithm is applied on the leaf nodes of the CF-tree
- Uses the centroids of the leaf clusters for clustering

- BIRCH algorithm proceeds in two main phases
- Phase 1: CF-tree is built
- CF-tree is built incrementally, i.e., the data points are inserted in the tree one after another
- Thus, order-dependent
- Phase 2: A global clustering algorithm is applied on the leaf nodes of the CF-tree
- Uses the centroids of the leaf clusters for clustering
- Data is read once while building the tree
- Therefore, only O(n) time and is fast

- BIRCH algorithm proceeds in two main phases
- Phase 1: CF-tree is built
- CF-tree is built incrementally, i.e., the data points are inserted in the tree one after another
- Thus, order-dependent
- Phase 2: A global clustering algorithm is applied on the leaf nodes of the CF-tree
- Uses the centroids of the leaf clusters for clustering
- Data is read once while building the tree
- Therefore, only O(n) time and is fast
- Identifies spherical clusters

CURE

- Clustering Using REpresentatives (CURE)
- Hierarchical algorithm
- When merging two clusters, it avoids the extremes of looking only at the centroid or at all the points
- It tries to dampen the effect of outliers in a cluster

CURE

- Clustering Using REpresentatives (CURE)
- Hierarchical algorithm
- When merging two clusters, it avoids the extremes of looking only at the centroid or at all the points
- It tries to dampen the effect of outliers in a cluster
- For each cluster, it chooses c well-scattered representatives
- The representatives are then *shrunk* towards the centroid by a function of α
- Distance between two clusters is measured by minimum pairwise distance between these representative sets

Details

• Choosing c well-scattered representatives

- Choosing c well-scattered representatives
 - First representative is the one at maximum distance from centroid
 - Second one is at maximum distance from first
 - And so on
- Representatives should capture the size and shape of the cluster well

- Choosing c well-scattered representatives
 - First representative is the one at maximum distance from centroid
 - Second one is at maximum distance from first
 - And so on
- Representatives should capture the size and shape of the cluster well
- How to choose *c*?
 - If c is low, the representation is not complete
 - If c is high, noise may be captured

- Choosing c well-scattered representatives
 - First representative is the one at maximum distance from centroid
 - Second one is at maximum distance from first
 - And so on
- Representatives should capture the size and shape of the cluster well
- How to choose *c*?
 - If c is low, the representation is not complete
 - If c is high, noise may be captured
- Shrinking representatives towards centroid x_0 : $p' = p + \alpha(x_0 p)$
 - α is the damping factor, $0 \le \alpha \le 1$
 - For outliers, the distance is reduced more
 - If $\alpha = 0$, no damping
 - If $\alpha = 1$, points shrink to the centroid

- Choosing c well-scattered representatives
 - First representative is the one at maximum distance from centroid
 - Second one is at maximum distance from first
 - And so on
- Representatives should capture the size and shape of the cluster well
- How to choose *c*?
 - If *c* is low, the representation is not complete
 - If c is high, noise may be captured
- Shrinking representatives towards centroid x_0 : $p' = p + \alpha(x_0 p)$
 - α is the damping factor, $0 \le \alpha \le 1$
 - For outliers, the distance is reduced more
 - If $\alpha = 0$, no damping
 - If $\alpha = 1$, points shrink to the centroid
- Identifies non-spherical (such as elliptical) but still only convex shapes

Sampling

- Sampling
- Choosing c representatives from a large cluster can be time consuming
- Representatives of a bigger cluster can be approximated as an union of representatives of smaller clusters
- Hence, representative is chosen from 2c points only

- Sampling
- Choosing c representatives from a large cluster can be time consuming
- Representatives of a bigger cluster can be approximated as an union of representatives of smaller clusters
- Hence, representative is chosen from 2c points only
- Partitions n points into initial p partitions, each having n/p points
- Partially cluster these partitions into q clusters each to produce n/(p,q) clusters

- Sampling
- Choosing c representatives from a large cluster can be time consuming
- Representatives of a bigger cluster can be approximated as an union of representatives of smaller clusters
- Hence, representative is chosen from 2c points only
- Partitions n points into initial p partitions, each having n/p points
- Partially cluster these partitions into q clusters each to produce n/(p,q) clusters
- These initial clusters are then clustered

ROCK

- RObust Clustering using linKs (ROCK)
- Does not need vector distances
- Instead, can use links between clusters
- Quite applicable for categorical data

ROCK

- RObust Clustering using linKs (ROCK)
- Does not need vector distances
- Instead, can use links between clusters
- Quite applicable for categorical data
- Two points are considered neighbors if their similarity exceeds a certain threshold
 - Similarity can be defined in many ways using domain knowledge
- Number of links between a pair of points is the number of common neighbors
- Points inside a cluster should have large number of common neighbors, and therefore, large number of links
- Hence, merge points that have more number of links

- Example: documents represented as set of keywords
- Neighbor if at least two keywords is shared
- {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}
 - Number of common neighbors of {1,2,3} and {1,2,4} is

- Example: documents represented as set of keywords
- Neighbor if at least two keywords is shared
- {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}
 - Number of common neighbors of {1,2,3} and {1,2,4} is 3
 - {1,2,5}, {1,3,4} and {2,3,4}

- Example: documents represented as set of keywords
- Neighbor if at least two keywords is shared
- {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}
 - Number of common neighbors of $\{1,2,3\}$ and $\{1,2,4\}$ is 3
 - {1,2,5}, {1,3,4} and {2,3,4}
- {1, 2, 3, 5}, {2, 3, 4, 5}, {1, 4}, {6}
 - Vector representations (111010, 011110, 100100, 000001)
 - Euclidean distance over vectors

- Example: documents represented as set of keywords
- Neighbor if at least two keywords is shared
- {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}
 - Number of common neighbors of $\{1,2,3\}$ and $\{1,2,4\}$ is 3
 - {1,2,5}, {1,3,4} and {2,3,4}
- {1, 2, 3, 5}, {2, 3, 4, 5}, {1, 4}, {6}
 - Vector representations (111010, 011110, 100100, 000001)
 - Euclidean distance over vectors
 - \bullet {1, 4} and {6} are quite close, although they have nothing in common

CHAMELEON

- Hierarchical Clustering using Dynamic Modeling (CHAMELEON)
- Clustering is based on both
 - Interconnectivity: How well-connected points within a cluster are
 - Closeness or proximity: How close two clusters are
- Thus, tries to incorporate the good features of both CURE and ROCK

CHAMELEON

- Hierarchical Clustering using Dynamic Modeling (CHAMELEON)
- Clustering is based on both
 - Interconnectivity: How well-connected points within a cluster are
 - Closeness or proximity: How close two clusters are
- Thus, tries to incorporate the good features of both CURE and ROCK
- Good in finding arbitrary shaped clusters

CHAMELEON

- Hierarchical Clustering using Dynamic Modeling (CHAMELEON)
- Clustering is based on both
 - Interconnectivity: How well-connected points within a cluster are
 - Closeness or proximity: How close two clusters are
- Thus, tries to incorporate the good features of both CURE and ROCK
- Good in finding arbitrary shaped clusters
- Many parameters
- Can be slow

- First builds a k-nearest-neighbor graph
- Sparse graph where a node (representing a point) is connected to its k most similar (i.e., nearest neighbor) points
- Edge is weighted by some (inverse) function of distance

- First builds a k-nearest-neighbor graph
- Sparse graph where a node (representing a point) is connected to its k most similar (i.e., nearest neighbor) points
- Edge is weighted by some (inverse) function of distance
- Then partitions the graph into many small subclusters
- Minimizes the edge cut
- Therefore, two clusters are apart if the weights of their interconnections is low

- First builds a k-nearest-neighbor graph
- Sparse graph where a node (representing a point) is connected to its k most similar (i.e., nearest neighbor) points
- Edge is weighted by some (inverse) function of distance
- Then partitions the graph into many small subclusters
- Minimizes the edge cut
- Therefore, two clusters are apart if the weights of their interconnections is low
- Finally, uses a hierarchical algorithm to merge clusters
- Utilizes both interconnectivity and closeness measures

- First builds a k-nearest-neighbor graph
- Sparse graph where a node (representing a point) is connected to its k most similar (i.e., nearest neighbor) points
- Edge is weighted by some (inverse) function of distance
- Then partitions the graph into many small subclusters
- Minimizes the edge cut
- Therefore, two clusters are apart if the weights of their interconnections is low
- Finally, uses a hierarchical algorithm to merge clusters
- Utilizes both interconnectivity and closeness measures

• Two clusters C_i and C_j

- Two clusters C_i and C_j
- Relative interconnectivity $RI(C_i, C_j)$ is the absolute interconnectivity with respect to internal interconnectivities

$$RI(C_i, C_j) = \frac{|EC|_{\{C_i, C_j\}}}{\frac{1}{2}(|EC|_{C_i} + |EC|_{C_j})}$$

• EC is the cost of edge cut, i.e., sum of edges in the cut

- Two clusters C_i and C_j
- Relative interconnectivity $RI(C_i, C_j)$ is the absolute interconnectivity with respect to internal interconnectivities

$$RI(C_i, C_j) = \frac{|EC|_{\{C_i, C_j\}}}{\frac{1}{2}(|EC|_{C_i} + |EC|_{C_j})}$$

- EC is the cost of edge cut, i.e., sum of edges in the cut
- Relative closeness $RC(C_i, C_j)$ is the absolute closeness with respect to internal closenesses

$$RC(C_{i}, C_{j}) = \frac{\overline{S}_{EC_{\{C_{i}, C_{j}\}}}}{\frac{|C_{i}|}{|C_{i}| + |C_{j}|} \overline{S}_{EC_{C_{i}}} + \frac{|C_{j}|}{|C_{i}| + |C_{j}|} \overline{S}_{EC_{C_{j}}}}$$

 \bullet \overline{S}_{EC} is the average weight of edges that connect pairs of vertices

- Two clusters C_i and C_j
- Relative interconnectivity $RI(C_i, C_j)$ is the absolute interconnectivity with respect to internal interconnectivities

$$RI(C_i, C_j) = \frac{|EC|_{\{C_i, C_j\}}}{\frac{1}{2}(|EC|_{C_i} + |EC|_{C_j})}$$

- EC is the cost of edge cut, i.e., sum of edges in the cut
- Relative closeness $RC(C_i, C_j)$ is the absolute closeness with respect to internal closenesses

$$RC(C_{i}, C_{j}) = \frac{\overline{S}_{EC_{\{C_{i}, C_{j}\}}}}{\frac{|C_{i}|}{|C_{i}| + |C_{j}|} \overline{S}_{EC_{C_{i}}} + \frac{|C_{j}|}{|C_{i}| + |C_{j}|} \overline{S}_{EC_{C_{j}}}}$$

- \bullet \overline{S}_{EC} is the average weight of edges that connect pairs of vertices
- May use a combined measure or two different thresholds