ASTR 210 HWZ

a) $tan tt'' = \frac{a}{d}$ $tan tt'' = \frac{a}{d$ $d = \alpha$, Small angles: $tan \pi'' \approx \pi'' [rad]$ d[pc] & a [pc] TT "[arcsec] = TT" [rad] x TT rad 180 x 3600 arcsec For observers on Earth, a = 1 Au $a \text{ [pc]} = 1 \text{ Au} \times 1.496 \times 10^8 \text{ km} \times \frac{P^c}{3.086 \times 10^{13} \text{ km}}$ = 4.847×10-6 le a= 4.8×10-6 pc d [pc] = 4.847×10⁻⁶ × 180×3600 1.0

TT " [arcsec] TT = TT" [arcsec] if you could defect parallax of 3 arcmin (180")

you could see the parallax of a star at $d = \frac{1.0}{180} pc = 0.0056 pc = 4.3 \times 10^{-3} of$ But the closest star is 1.3 pc away - we could Not see parallax!

c)	Now we can measure parallaxes of 0.1×10^{-3} arcsec. \Rightarrow distances $\frac{1}{0.1\times10^{-3}}$ pc = 10^4 pc.
	0.1×10-3
	=> we can go slightly beyond the Center of our Galaxy.
d	An Earth-centered cosmology has no annual parallax, and The fact that nobody (voitil recently) could defect any parallax seems like confirmation of the Ptaenaic model. But it's actually more like absence of evidence than evidence of absence.

a) ok, if sidereal orbital periods are P_A and P_B and orbits are circles, $\theta_A = const$ and $\theta_B = const$

=> OA(t) = 211 + BA

 $\theta_B(t) = \frac{2\pi}{P_0}t + \beta_B$

let's look at a conjunction born planets: Op(4)-OB(4)=0

A went around exactly one time more than B

So The next conjunction is at to where On (tr) - OB(tr) = ZIT

syndic period is Payn = t2 - t, Find Psyn.

oh: $\theta_{A}(t_{1}) - \theta_{B}(t_{1}) = 0 = \frac{2\pi}{P_{A}}t_{1} + \beta_{A} - \frac{2\pi}{P_{B}}t_{1} - \beta_{B}$ 2 eg $\theta_{A}(t_{1}) - \theta_{B}(t_{2}) = 2\pi = \frac{2\pi}{P_{A}}t_{2} + \beta_{A} - \frac{2\pi}{P_{B}}t_{2} - \beta_{B}$ $\beta_{A} - \beta_{B}$

subtract! linear system

	rewrite $O = \left(\frac{1}{P_A} - \frac{1}{P_B}\right) t_1 + BA - BB$
	$I = \left(\frac{1}{P_A} - \frac{1}{P_B}\right) t_2 + B_A - B_B$
	$I = \left(\frac{1}{P_A} - \frac{1}{P_B}\right)(t_2 - t_1) = \left(\frac{1}{P_A} - \frac{1}{P_B}\right) P_{Syn},$
	1- (PA PB/2 CI)- (PA PB/ Syn
c)	Earth is farther out: 13 B > 0
,	
10	Psym = Pp - Po So Pp = Psym Po
d)	Earth is closer in: $A \rightarrow \Phi$
3	$ \frac{1}{P_{syn}} = P_{\oplus} P_{P} \qquad P_{P} = P_{\oplus} P_{syp} $
	Toyn & TP TP TSyns
e)	Find Pom in terms of Pop and Pop for case of and let Pop a
	Find P_{sym} in terms of P_{p} and P_{Φ} for case d and let $P_{p} \to \infty$ $P_{sym} = \left(\frac{1}{P_{\Phi}} - \frac{1}{P_{p}}\right)^{-1} = \left(\frac{P_{p} - P_{\Phi}}{P_{p}}\right)^{-1} = \frac{P_{\Phi}P_{p}}{P_{p} - P_{\Phi}}$
	(Po Pp) (Bp) Pp-Pp
	lim of that as Po > 00 IS Pop
	which makes sense because outer planet gets V for away
	which makes sense because outer planet gets V fair away and is basically stationers so & motion is The only relevant but
^ \	
+)	Similarly for case c and let P P orom below
, ·	Similarly for case c and let $P_p \rightarrow P_p$ from below $P_{syn} = \begin{pmatrix} P_p - P_p \end{pmatrix}^{-1} = \begin{pmatrix} P_p - P_p \end{pmatrix}^{-1} = P_p P_p$
	as Pp approaches Postris blows up to 00 which I suppose makes sense for the same reason that
	which I suppose makes sense for the same reason that
	it's safest to match speeds on they
g)	Mars is P = 1,881 Po So Psyn, mars = 1,881 Po = 1,881 Po
U	which I suppose makes sense for the same reason that it's safest to match speeds on they Mans is $P = 1.881 P_{\oplus}$ So $P_{Suppmars} = 1.881 P_{\oplus}^2 = 1.861 P_{\oplus}$ (1.881-1) P_{\oplus} 0.881
	Nephine P= 164,79 Pp Psyn, Nep = 164,79 Pp de
	TIAS M

Q2.3) Hrv2 extra credit

 $A = C \cos \theta \quad \text{se fig } 2.1$ $C = A/\cos \theta$ let's treat A as const and just $O \quad \text{wolk out unc in } C \text{ due to}$ $C \quad \text{unc in } \theta.$

uncertainty $\nabla_C = \left| \frac{dC}{d\theta} \right| \nabla_{\theta}$ At least trat's the one component of ∇_C

but $C = A(\cos \theta) = A(\cos \theta)^{-1}$ $dC/d\theta = A(-1)(\cos \theta)^{-2}(-\sin \theta) = A\sin \theta$ $\cos^2 \theta$

eval: 0 sin9/cos²0 87° 364 88° 820 89° 3282 Wow, up by x10.