Solution to Homework10

Name:Zijian Liu

1. (a) In this case, we know when $b \ge 0$, $t = \infty$. Otherwise by definition we know $\frac{1}{t}x + b \ge 0 \Rightarrow t \le 1/\max\{-\frac{b_i}{x_i}: 1 \le i \le n\}$. So the largest t is $1/\max\{-\frac{b_i}{x_i}: 1 \le i \le n\}$

vecSolver.m

(b) In this case, we know when $B \succeq 0$, $t = \infty$. Otherwise, Let $X = L^T L$, we will show the largest t is $1/\lambda_{\max}(-(L^{-1})^TBL^{-1})$. Firstly, we will show $\lambda_{\max}(-(L^{-1})^TBL^{-1}) > 0$, we know B is not positive semidefinite, which means $\exists x$ satisfying $-x^TBx > 0$. Now consider Lx, we have $(Lx)^T(-(L^{-1})^TBL^{-1})(Lx) = -x^TBx > 0$, which means $\lambda_{\max}(-(L^{-1})^TBL^{-1}) > 0$. Denote $1/\lambda_{\max}(-(L^{-1})^TBL^{-1})$ as t^* . Then we will show t^* satisfying $X + t^*B \succeq 0$:

$$X + t^*B \succeq 0$$

$$\Leftrightarrow \frac{1}{t^*}X + B \succeq 0$$

$$\Leftrightarrow \frac{1}{t^*}x^TXx + x^TBx \ge 0 \quad \forall x \ne 0$$

$$\Leftrightarrow \frac{1}{t^*} \ge -\frac{x^TBx}{x^TXx} \ge 0 \quad \forall x \ne 0$$

$$\Leftrightarrow \frac{1}{t^*} \ge -\frac{(Lx)^T((L^{-1})^TBL^{-1})(Lx)}{(Lx)^T(Lx)} \quad \forall x \ne 0$$

$$\Leftrightarrow \frac{1}{t^*} \ge \lambda_{\max}(-(L^{-1})^TBL^{-1})$$

$$\Leftrightarrow \frac{1}{\lambda_{\max}(-(L^{-1})^TBL^{-1})} \ge t^*$$

So we know t^* satisfying $X + t^*B \succeq 0$. By the proof, we can know if t > 0 and $X + tB \succeq 0$, then $t \leq 1/\lambda_{\max}(-(L^{-1})^TBL^{-1})$. So t^* is the largest.

matSolver.m

2. Suppose when $||z||_2 \le \epsilon$, $f(x+z) \ge f(x)$. By the definition of regular subdifferential, we know for any sequence $\{z_n\}$ satisfying $\lim_{n\to\infty} z_n = 0$, $z_n \ne 0$. $\exists N$, when $n \ge N$, $||z_n||_2 < \epsilon$. So we know:

$$\liminf_{n \to \infty} \frac{f(x+z_n) - f(x) - 0 \cdot z_n}{\|z_n\|_2} \ge \inf_{n \ge N} \left\{ \frac{f(x+z_n) - f(x)}{\|z_n\|_2} \right\} \ge \inf_{n \ge N} \{0\} = 0$$

This means $0 \in \hat{\partial} f(x)$.

- 3. Suppose sequence $\{z_n\}$ satisfying $\lim_{n\to\infty} z_n = 0$, $z_n \neq 0$.
 - (a) $f(x) = |x^3|$.

In the class, we know if f is convex and $f \in \mathcal{C}^1$, then we have $\hat{\partial} f(x) = \partial f(x) = \frac{\mathrm{d}f}{\mathrm{d}x}$, $\partial^{\infty} f(x) = \{0\}$. We know $f(x) = |x^3|$ is convex, and f'(x) = 3x|x| is continuous. So $f(x) \in \mathcal{C}^1$.

- $\bullet \ \hat{\partial}f(0) = \{0\}$
- $\bullet \ \partial f(0) = \{0\}$
- $\bullet \ \partial^{\infty} f(0) = \{0\}$
- By the definition of regular, we know $|x^3|$ is regular at 0 because $\partial f(0) = \hat{\partial} f(0) = \{0\}, \ \partial^{\infty} f(0) = (\hat{\partial} f(0))^{\infty} = \{0\}$
- (b) $f(x) = |x|^{\frac{1}{3}}$
 - $\bullet \ \hat{\partial}f(0) = \mathbb{R}.$

Proof: Firstly, we show $0 \in \hat{\partial} f(0)$. By the definition, we have:

$$\liminf_{n \to \infty} \frac{f(0+z_n) - f(0)}{\|z_n\|_2} = \liminf_{n \to \infty} |z_n|^{-\frac{2}{3}} \ge 0$$

So we have $0 \in \hat{\partial} f(0)$. Then consider $\forall \gamma \neq 0$. Because $\lim_{n \to \infty} z_n = 0$, we know $\exists N$, when $n \geq N$, $|z_n| < |\gamma|^{-\frac{3}{2}}$. By the definition we have:

$$\lim_{n \to \infty} \inf \frac{f(0+z_n) - f(0) - \gamma z_n}{\|z_n\|_2} = \lim_{n \to \infty} \inf |z_n|^{-\frac{2}{3}} - \operatorname{sign}(z_n) \gamma$$

$$\geq \inf_{n \geq N} |z_n|^{-\frac{2}{3}} - \operatorname{sign}(z_n) \gamma$$

$$\geq \inf_{n \geq N} |\gamma| (1 - \operatorname{sign}(\gamma z_n)) \geq 0$$

So we know $\hat{\partial} f(0) = \mathbb{R}$

 $\bullet \ \partial f(0) = \mathbb{R}.$

Proof: We know $\mathbb{R} = \hat{\partial} f(0) \subseteq \partial f(0)$, and $\partial f(0) \subseteq \mathbb{R}$. So $\partial f(0) = \mathbb{R}$

• $\partial^{\infty} f(0) = \mathbb{R}$ Proof: $\forall \gamma \in \mathbb{R}$, consider $\{x_n = 0\}$, $\{y_n = \frac{\gamma}{t_n}\}$, $\{t_n\} \in \mathbb{R}^+$, $\lim_{n \to \infty} t_n = 0$, we have:

$$\lim_{n \to \infty} t_n y_n = \gamma$$

$$y_n \in \hat{\partial} f(0) = \mathbb{R}$$

We have $\forall \gamma \in \mathbb{R}, \ \gamma \in \partial^{\infty} f(0)$. So $\partial^{\infty} f(0) = \mathbb{R}$.

- By the definition of regular, we know $|x|^{\frac{1}{3}}$ is regular at 0 because $\partial f(0) = \hat{\partial} f(0) = \mathbb{R}$, $\partial^{\infty} f(0) = (\hat{\partial} f(0))^{\infty} = \mathbb{R}$
- (c) f(x) = a|x| where $a \ge 0$
 - $\hat{\partial} f(0) = [-a, a]$

Proof: By the definition, $\gamma \in \hat{\partial} f(0)$ is equivalent to:

$$\liminf_{n \to \infty} \frac{f(0+z_n) - f(0) - \gamma z_n}{\|z_n\|_2} \ge 0$$

$$\Leftrightarrow \liminf_{n \to \infty} a - \operatorname{sign}(z_n) \gamma \ge 0$$

If $\gamma \in [-a, a]$, we know the inequality is always true for any sequence $\{z_n\}$ satisfying $\lim_{n\to\infty} z_n = 0$, $z_n \neq 0$.

If $|\gamma| > a$, we can find a sequence which has $\operatorname{sign}(z_n) = \operatorname{sign}(\gamma)$ satisfying $\lim_{n\to\infty} z_n = 0$, $z_n \neq 0$. In this time, the inequality is wrong.

So we know $\partial f(0) = [-a, a]$.

• $\partial f(0) = [-a, a]$

Proof: we know $[-a, a] = \hat{\partial} f(0) \subseteq \partial f(0)$. Then we will show $\partial f(0) \subseteq [-a, a]$. Suppose $\gamma \in \partial f(0)$. By the definition, we know there exist $\{x_n\}, \{y_n\}$ satisfying:

$$\lim_{n \to \infty} x_n = 0$$
$$\lim_{n \to \infty} y_n = \gamma$$
$$y_n \in \hat{\partial} f(x_n)$$

It is easy to know if $x_n \neq 0$, $y_n = \text{sign}(x_n)a$. If $x_n = 0$, $y_n \in [-a, a]$. So we have $\forall n \in \mathbb{N}^+$, $y_n \in [-a, a]$. We know [-a, a] is closed, so any limit of a sequence in a closed set will be in that closed set, which means $\lim_{n\to\infty} y_n = \gamma \in [-a, a]$. We know $\partial f(0) \subseteq [-a, a]$. So we have $\partial f(0) = [-a, a]$

 $\bullet \ \partial^{\infty} f(0) = \{0\}$

Proof: Because $\hat{\partial} f(0) \neq \emptyset$, so it is easy to know $0 \in \partial^{\infty} f(0)$. We will show $\forall \gamma \neq 0, \gamma \notin \partial^{\infty} f(0)$. By the definition, we know if $\gamma \in \partial^{\infty} f(0)$. There exist $\{x_n\}, \{y_n\}, \{t_n > 0\}$ satisfying:

$$\lim_{n \to \infty} x_n = 0$$

$$\lim_{n \to \infty} t_n y_n = \gamma$$

$$\lim_{n \to \infty} t_n = 0$$

$$y_n \in \hat{\partial} f(x_n)$$

By the general subdifferential part, we know $\forall n, y_n \in [-a, a]$. So we have $-at_n \le t_n y_n \le at_n$. By the limitation, we know:

$$\lim_{n \to \infty} -at_n = 0 \le \lim_{n \to \infty} t_n y_n = \gamma \le \lim_{n \to \infty} at_n = 0$$

So we know $\gamma = 0$, which means $\partial^{\infty} f(0) = \{0\}$.

- By the definition of regular, we know a|x| where $a \ge 0$ is regular at 0 because $\partial f(0) = \hat{\partial} f(0) = [-a, a], \ \partial^{\infty} f(0) = (\hat{\partial} f(0))^{\infty} = \{0\}$
- (d) f(x) = a|x| where a < 0
 - $\bullet \ \hat{\partial}f(0) = \emptyset$

Proof: Suppose $\exists \gamma \in \mathbb{R}, \ \gamma \in \hat{\partial} f(0)$. By the defition, we know the following inequality is right for any sequence $\{z_n\}$ satisfying $\lim_{n\to\infty} z_n = 0, \ z_n \neq 0$.

$$\liminf_{n \to \infty} \frac{f(0+z_n) - f(0) - \gamma z_n}{\|z_n\|_2} \ge 0$$

$$\Leftrightarrow \liminf_{n \to \infty} a - \operatorname{sign}(z_n) \gamma \ge 0$$

If $\gamma \neq 0$, we can choose $\{z_n\}$ satisfying $\operatorname{sign}(z_n) = \operatorname{sign}(\gamma)$. Then we know $a - \operatorname{sign}(z_n)\gamma = a - |\gamma| < 0$. If $\gamma = 0$, we know $\liminf_{n \to \infty} a < 0$. So there doesn't exist $\gamma \in \mathbb{R}$ and $\gamma \in \hat{\partial} f(0)$. So we know $\hat{\partial} f(0) = \emptyset$.

 $\bullet \ \partial f(0) = \{\pm a\}$

Proof: consider $\{x_n = -\frac{1}{n}\}$, $\{y_n = -a\}$, we know this sequence satisfying the condition of general subdifferential. So $-a \in \partial f(0)$. Similarly, consider $\{x_n = \frac{1}{n}\}$, $\{y_n = a\}$, we know $a \in \partial f(0)$. Then we will show any other values are not in $\partial f(0)$. Consider $\gamma \neq \pm a$. If $\gamma \in \partial f(0)$, then we know $\exists \{x_n\}$, $\{y_n\}$ satisfying:

$$\lim_{n \to \infty} x_n = 0$$
$$\lim_{n \to \infty} y_n = \gamma$$
$$y_n \in \hat{\partial} f(x_n)$$

We know if $x_n = 0$, there isn't a $y_n \in \hat{\partial} f(x_n)$ due to $\hat{\partial} f(x_n) = \emptyset$. However, if $x_n \neq 0$, we know $\gamma = \pm a$. But $\gamma \neq \pm a$. This is a contradiction. So we know if $\gamma \in \partial f(0)$, $\gamma = \pm a$, which means $\partial f(0) = \{\pm a\}$

- $\partial^{\infty} f(0) = \{0\}$. Proof: consider the similar proof when f(x) = a|x| where $a \geq 0$. We know in this time, if $\gamma \in \partial^{\infty} f(0)$, γ must be 0. Consider $\{x_n = -\frac{1}{n}\}$, $\{y_n = -a\}$, $\{t_n = \frac{1}{n}\}$. We know in this time $\lim_{n\to\infty} t_n y_n = 0$. So $\partial^{\infty} f(0) = \{0\}$
- By the definition of regular, we know a|x| where a<0 is not regular at 0 because $\hat{\partial} f(0)=\emptyset$

(e)
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

In this case, we know $f'(x) = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x})$ when $x \neq 0$. When x = 0, $f'(0) = \lim_{x\to 0} \frac{x^2\sin(\frac{1}{x})-0}{x-0} = \lim_{x\to 0} x\sin(\frac{1}{x}) = 0$. However, we know $\lim_{x\to 0} f'(x)$ doesn't exist. So $f(x) \notin \mathcal{C}^1$.

$$\bullet \ \hat{\partial}f(0) = \{0\}$$

Proof: If there exists $\gamma \in \mathbb{R}$, $\gamma \in \hat{\partial} f(0)$. By the defition, we know the following inequality is right for any sequence $\{z_n\}$ satisfying $\lim_{n\to\infty} z_n = 0$, $z_n \neq 0$.

$$\liminf_{n \to \infty} \frac{f(0+z_n) - f(0) - \gamma z_n}{\|z_n\|_2} \ge 0$$

$$\Leftrightarrow \liminf_{n \to \infty} |z_n| \sin(\frac{1}{z_n}) - \operatorname{sign}(z_n) \gamma \ge 0$$

If $\gamma \neq 0$, let $z_n = \{\frac{\operatorname{sign}(\gamma)}{2\pi n}\}$, we know:

$$\liminf_{n \to \infty} |z_n| \sin(\frac{1}{z_n}) - \operatorname{sign}(z_n)\gamma = \liminf_{n \to \infty} -|\gamma| = -|\gamma| < 0$$

Then we will show $\gamma = 0$ is right. We know $\lim_{n \to \infty} z_n = 0$, so $\forall \epsilon > 0$, $\exists N$ when $n \ge N$, $|z_n| < \epsilon$. For such ϵ , we know:

$$\inf_{n \ge N} |z_n| \sin(\frac{1}{z_n}) \ge \inf_{n \ge N} -\epsilon = -\epsilon.$$

which means we can know:

$$\liminf_{n \to \infty} |z_n| \sin(\frac{1}{z_n}) \ge 0$$

So $\hat{\partial} f(0) = \{0\}.$

• $\partial f(0) = [-1, 1]$

Proof: We know $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$ when $x \neq 0$. So $f''(x) = 2\sin(\frac{1}{x}) - 2\cos(\frac{1}{x})/x - \sin(\frac{1}{x})/x^2$ when $x \neq 0$. For $\gamma \in [-1,1]$, we consider a sequence $\{\gamma_n \in (-1,1)\}$, and $\lim_{n\to\infty} \gamma_n = \gamma$. For $\gamma_i \in (-1,1)$, consider $\theta(i) \in (-\pi,0)$ and $\cos(\theta(i)) = \gamma_i$. Let $\{p_n^i = \frac{1}{2\pi n + \theta(i)}\}$, we know $f''(p_n^i) = \sqrt{1 - \gamma_i^2}[(2\pi n + \theta(i))^2 - 2] - 2\gamma_i(2\pi n + \theta(i)) > 0$ when n is greater than some N denoted such N as N(i) and we can always make N(i+1) > N(i). So we know $\hat{\partial} f(p_{N(i)}^i) = f'(p_{N(i)}^i) = \frac{2\sqrt{1-\gamma_n^2}}{2\sqrt{1-\gamma_n^2}}$

 $-\gamma_i - \frac{2\sqrt{1-\gamma_n^2}}{2\pi N(i)+\theta(i)}$. So we can take $\{x_n = p_{N(n)}^n\}$, $\{y_n = -\gamma_n - \frac{2\sqrt{1-\gamma_n^2}}{2\pi N(n)+\theta(n)}\}$. We know in this case:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{2\pi N(n) + \theta(n)} = 0$$

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} -\gamma_n - \frac{2\sqrt{1 - \gamma_n^2}}{2\pi N(n) + \theta(n)} = -\gamma$$

$$y_n \in \hat{\partial} f(x_n)$$

Because $-\gamma \in [-1,1]$, we know $[-1,1] \subseteq \partial f(0)$. Consider $\gamma \notin [-1,1]$, by the definition of general subdifferential. We know when $x_n = 0$, $y_n = 0 \in [-1,1]$. When $x_n \neq 0$, $\hat{\partial} f(x_n) = \{f'(x_n)\}$ or \emptyset due to f'(x) is continuous when $x \neq 0$, which means if y_n exists, $y_n = f'(x_n)$. So once y_n converges, we have $\lim_{n \to \infty} y_n = \lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} x_n \sin(\frac{1}{x_n}) - \cos(\frac{1}{x_n}) = \lim_{n \to \infty} -\cos(\frac{1}{x_n}) \in [-1,1]$ or $\lim_{n \to \infty} y_n = 0$. So we know $\partial f(0) \subseteq [-1,1]$. Finally we have $\partial f(0) = [-1,1]$

- $\partial^{\infty} f(0) = \{0\}$ Proof: By the similar reason in general subdifferential, we know $y_n = f'(x_n) = 2x_n \sin(\frac{1}{x_n}) - \cos(\frac{1}{x_n})$ or 0, which means when $|x_n| < \epsilon$, y_n is bounded. So we know for any $\lim_{n\to\infty} t_n = 0$, $\lim_{n\to\infty} t_n y_n = 0$. So $\partial^{\infty} f(0) = \{0\}$.
- By the definition of regular, we know $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is not regular at 0 because $\partial f(0) \neq \hat{\partial} f(0)$

We can see the first three functions are regular at 0.

- 4. $x_{[k]}$ means the k-th largest entry of x. e^i $(1 \le i \le n)$ means the i-th standard unit vector in \mathbb{R}^n .
 - (a) $f(x) = x_{[3]}$
 - $\hat{\partial} f(0) = \emptyset$ Proof: We know $f(0) = 0_{[3]} = 0 = 0_{[2]}$, in class we know if $x_{[2]} = x_{[3]}$, then $\hat{\partial} x_{[3]} = \emptyset$. So $\hat{\partial} f(0) = \emptyset$
 - $\partial f(0) = \{y : y \in \text{conv}\{e^i : 1 \le i \le n\} \text{ and } \#\{y_i > 0\} \le n 2\}$ Proof: By the theorem from class, we know $\partial f(x) = \{y : y \in \text{conv}\{e^i : x_i = f(x)\} \text{ and } \#\{y_i > 0\} \le \#\{x_i \ge f(x)\} - 3 + 1\}.$ So $\partial f(0) = \{y : y \in \text{conv}\{e^i : 1 \le i \le n\} \text{ and } \#\{y_i > 0\} \le n - 2\}.$
 - $\partial^{\infty} f(0) = \{0\}$ Proof: we know whether $\{x_n\}$ takes what values, $\hat{\partial} f(x_n)$ is bounded. So if exists horizon subdifferential at 0, it must be 0. Consider $\{x_n = (\frac{1}{n}, \frac{1}{n}, 0, \cdots)\}$, in this time $\hat{\partial} f(x_n) \neq \emptyset$, so we can choose $\{y_n \in \hat{\partial} f(x_n)\}$. In this case, we know $\lim_{n \to \infty} t_n y_n = 0$. So we have $\partial^{\infty} f(0) = \{0\}$.
 - By the definition of regular, we know f(x) is not regular at 0 because $\hat{\partial} f(0) = \emptyset$.
 - (b) $f(x) = (Ax)_{[1]}$

Suppose $g(x) = x_{[1]}$, we know f(x) = g(Ax). By the theorem from class, we know $\hat{\partial}g(0) = \partial g(0) = \text{conv}\{e^i : 1 \le i \le n\}, \ \partial^{\infty}g(0) = \{0\}$. So g(x) is regular at 0. Moreover, we have $\ker(A^T) \cap \partial^{\infty}g(0) = \{0\}$. So we can use the chain rule to get the following results.

- $\hat{\partial} f(0) = A^T \partial g(0) = \text{conv}\{A_i^T : 1 \le i \le n, \text{ where } A_i^T \text{ is the i-th column vector of } A^T\}$
- $\partial f(0) = \hat{\partial} f(0) = \text{conv}\{A_i^T : 1 \leq i \leq n, \text{where } A_i^T \text{ is the i-th column vector of } A^T\}$
- $\partial^{\infty} f(0) = A^T \partial^{\infty} g(0) = \{0\}$
- By the definition of regular, we know f(x) is regular at 0 because $\partial f(0) = \hat{\partial} f(0)$, $\partial^{\infty} f(0) = (\hat{\partial} f(0))^{\infty}$

5. We know:

$$F'(0) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(a) In this time we know $F(\bar{x}) = (0,0)^T$. It is easy to know $\hat{\partial}g(0) = \partial g(0) = \{(a,b)^T : a,b \in [-1,1]\}, \, \partial^{\infty}g(0) = \{0\}$. So the assumption I is right. Whether what the values of the null space of $F'(0)^T$ are, we always have $\ker(F'(0)^T) \cap \partial^{\infty}g(0) = \{0\}$. So the assumption II is right.

The RHS $F'(0)^T \partial g(0) = \{(a,0)^T : a \in [-1,1]\}.$

The LHS $\partial f(0) = \{(a,0)^T : a \in [-1,1]\}$. Use the definition to calculate it. Firstly, it is easy to know:

$$\hat{\partial}f(x) = \begin{cases} \{(\text{sign}(x_1), 2x_2)^T\} & x_1 \neq 0\\ \{(\alpha, 2x_2)^T : \alpha \in [-1, 1]\} & x_1 = 0 \end{cases}$$

Suppose $\{x_n = (x_{n1}, x_{n2})^T\}$, $\{y_n = (y_{n1}, y_{n2})^T\}$ satisfying:

$$\lim_{n \to \infty} x_n = 0$$

$$\lim_{n \to \infty} y_n = \gamma = (\gamma_1, \gamma_2)^T$$

$$y_n \in \hat{\partial} f(x_n)$$

We know $\gamma_2 = \lim_{n \to \infty} y_{n2} = \lim_{n \to \infty} 2x_{n2} = 0$, $\gamma_1 = \lim_{n \to \infty} y_{n1} \in [-1, 1]$, which means $\partial f(0) \subseteq \{(a, 0)^T : a \in [-1, 1]\}$. If we choose $\{x_n = 0\}$, $\{y_n = (a, 0)^T\}$ where $a \in [-1, 1]$, we know $\gamma \in \{(a, 0)^T : a \in [-1, 1]\}$, which means $\{(a, 0)^T : a \in [-1, 1]\} \subseteq \partial f(0)$. So we know the LHS $\partial f(0) = \{(a, 0)^T : a \in [-1, 1]\}$

(b) In this time we know $F(\bar{x}) = (0,0)^T$. It is easy to know $\hat{\partial}g(0) = \partial g(0) = \mathbb{R}^2$, $\partial^{\infty}g(0) = \mathbb{R}^2$. So the assumption I is right. However, we know $\ker(F'(0)^T) = \{(0,b)^T : b \in \mathbb{R}\}$, this makes $\ker(F'(0)^T) \cap \partial^{\infty}g(0) \neq \{0\}$. So the assumption II is wrong.

The RHS $F'(0)^T \partial g(0) = \{(a,0)^T : a \in \mathbb{R}\}.$

The LHS $\partial f(0) = \mathbb{R}^2$. Use the definition to calculate it. We know $f(x) = |x_1|^{\frac{1}{3}} + |x_2|^{\frac{2}{3}}$. We firstly show $\hat{\partial} f(0) = \mathbb{R}^2$. By the definition, $\forall \gamma \in \mathbb{R}^2$, let $\{z_n = (a_n, b_n)^T\}$ we just need to show:

$$\liminf_{n \to \infty} \frac{|a_n|^{\frac{1}{3}} + |b_n|^{\frac{2}{3}} - \gamma^T z_n}{\|z_n\|_2} \ge 0$$

We know $-\gamma^T z_n \ge -\|z_n\|_2 \|\gamma\|_2$. So we just need to show:

$$\liminf_{n \to \infty} \frac{|a_n|^{\frac{1}{3}} + |b_n|^{\frac{2}{3}}}{\|z_n\|_2} - \|\gamma\|_2 \ge 0$$

When $\|\gamma\|_2 = 0$, this inequality is true obviously. When $\|\gamma\|_2 \neq 0$ We know $\exists N$ when $n \geq N$, we have $|a_n| < \min(1, \|\gamma\|_2^{-3}), |b_n| < \min(1, \|\gamma\|_2^{-3})$ so:

$$\lim_{n \to \infty} \inf \frac{|a_n|^{\frac{1}{3}} + |b_n|^{\frac{2}{3}}}{\|z_n\|_2} - \|\gamma\|_2 \ge \inf_{n \ge N} \frac{|a_n|^{\frac{1}{3}} + |b_n|^{\frac{2}{3}}}{\|z_n\|_2} - \|\gamma\|_2$$

$$\ge \inf_{n \ge N} \frac{|a_n|^{\frac{2}{3}} + |b_n|^{\frac{2}{3}}}{|a_n| + |b_n|} - \|\gamma\|_2$$

$$= \inf_{n \ge N} \frac{|a_n|}{|a_n| + |b_n|} |a_n|^{-\frac{1}{3}} + \frac{|b_n|}{|a_n| + |b_n|} |b_n|^{-\frac{1}{3}} - \|\gamma\|_2$$

$$\ge \inf_{n \ge N} \min(|a_n|^{-\frac{1}{3}}, |b_n|^{-\frac{1}{3}}) - \|\gamma\|_2$$

$$\ge 0$$

So we know $\mathbb{R}^2 \subseteq \hat{\partial} f(0)$, which means $\hat{\partial} f(0) = \mathbb{R}^2$. We also have $\mathbb{R}^2 = \hat{\partial} f(0) \subseteq \partial f(0)$. So we have $\partial f(0) = \mathbb{R}^2$

- 6. The following functions are locally Lipschitz at 0:
 - $f(x) = |x|^3$, $\partial^C f(0) = \{0\}$ Proof: when $x, y \in [-\epsilon, \epsilon]$

$$\frac{|f(x) - f(y)|}{|x - y|} = \frac{||x| - |y||}{|x - y|} (|x|^2 + |x||y| + |y|^2) \le 3\epsilon^2$$

$$\partial^{C} f(0) = \operatorname{conv}(\partial f(0))$$
$$= \operatorname{conv}(\{0\})$$
$$= \{0\}$$

• f(x) = a|x| where $a \ge 0$, $\partial^C f(0) = [-a, a]$ Proof: when $x, y \in [-\epsilon, \epsilon]$

$$\frac{|f(x) - f(y)|}{|x - y|} = a \frac{||x| - |y||}{|x - y|} \le a$$

$$\partial^{C} f(0) = \operatorname{conv}(\partial f(0))$$
$$= \operatorname{conv}([-a, a])$$
$$= [-a, a]$$

• f(x) = a|x| where a < 0, $\partial^C f(0) = [a, -a]$ Proof: when $x, y \in [-\epsilon, \epsilon]$

$$\frac{|f(x) - f(y)|}{|x - y|} = |a| \frac{||x| - |y||}{|x - y|} \le |a|$$

$$\partial^{C} f(0) = \operatorname{conv}(\partial f(0))$$
$$= \operatorname{conv}(\{\pm a\})$$
$$= [a, -a]$$

• $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$, $\partial^C f(0) = \operatorname{conv}(\partial f(0)) = \operatorname{conv}([-1, 1]) = [-1, 1]$

Proof: when $x, y \in [-\epsilon, \epsilon]$, we know f(x) is differentiable on this interval, so by mean value theorem

$$\frac{|f(x) - f(y)|}{|x - y|} = |f'(z)| = 2z\sin(\frac{1}{z}) - \cos(\frac{1}{z})| \le |2z\sin(\frac{1}{z})| + |\cos(\frac{1}{z})| \le 2\epsilon + 1$$

$$\partial^{C} f(0) = \operatorname{conv}(\partial f(0))$$
$$= \operatorname{conv}([-1, 1])$$
$$= [-1, 1]$$

• $f(x) = x_{[3]}$, $\partial^C f(0) = \text{conv}\{e^i : 1 \le i \le n\}$ where e^i $(1 \le i \le n)$ means the *i*-th standard unit vector in \mathbb{R}^n .

Proof: we will show f(x) is Lipschitz everywhere with Lipschitz constant L = 1. For x and y, suppose $\{x_i : 1 \le i \le n\} = \{a_i : 1 \le i \le n, a_i \ge a_{i+1}\}, \{y_i : 1 \le i \le n\} = \{b_i : 1 \le i \le n, b_i \ge b_{i+1}\}$. We firstly show the following result:

$$||x - y|| \ge \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

$$\Leftrightarrow \sum_{i=1}^{n} (x_i - y_i)^2 \ge \sum_{i=1}^{n} (a_i - b_i)^2$$

$$\Leftrightarrow \sum_{i=1}^{n} a_i b_i \ge \sum_{i=1}^{n} x_i y_i$$

The last inequality is true due to the rearrangement inequality. So we know:

$$\frac{|f(x) - f(y)|}{\|x - y\|} = \frac{|a_3 - b_3|}{\|x - y\|}$$

$$\leq \frac{|a_3 - b_3|}{\sqrt{\sum_{i=1}^n (a_i - b_i)^2}}$$

$$\leq 1$$

So we know $x_{[3]}$ is 1-Lipschitz everywhere.

$$\partial^{C} f(0) = \operatorname{conv}(\partial f(0))$$

$$= \operatorname{conv}(\{y : y \in \operatorname{conv}\{e^{i} : 1 \le i \le n\} \text{ and } \#\{y_{i} > 0\} \le n - 2\})$$

$$= \operatorname{conv}\{e^{i} : 1 \le i \le n\}$$

where e^i $(1 \le i \le n)$ means the *i*-th standard unit vector in \mathbb{R}^n .

• $f(x) = (Ax)_{[1]}$, $\partial^C f(0) = \text{conv}\{A_i^T : 1 \le i \le n \text{, where } A_i^T \text{ is the i-th column vector of } A^T\}$ Proof: By the proof of $x_{[3]}$, we know $x_{[1]}$ is also 1-Lipschitz everywhere. So we have:

$$\frac{|f(x) - f(y)|}{\|x - y\|} = \frac{|(Ax)_{[1]} - (Ay)_{[1]}|}{\|x - y\|}$$

$$= \frac{|(Ax)_{[1]} - (Ay)_{[1]}|}{\|Ax - Ay\|} \times \frac{\|Ax - Ay\|}{\|x - y\|}$$

$$\leq 1 \times \frac{\|A(x - y)\|}{\|x - y\|}$$

$$\leq \sigma_{\max}(A)$$

where $\sigma_{\max}(A)$ is the largest singular value of A.

$$\begin{split} \partial^C f(0) &= \operatorname{conv}(\partial f(0)) \\ &= \operatorname{conv}(\operatorname{conv}\{A_i^T : 1 \leq i \leq n, \text{where } A_i^T \text{ is the i-th column vector of } A^T\}) \\ &= \operatorname{conv}\{A_i^T : 1 \leq i \leq n, \text{where } A_i^T \text{ is the i-th column vector of } A^T\} \end{split}$$