Skript Mathe 2

18. Juni 2018

Beweis: $1. \Rightarrow 2$. Sei f in x_0 differenzierbar.

Setze
$$R(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) & x \neq x_0 \\ 0 & x = x_0 \end{cases}$$

$$\Rightarrow \lim_{n \to 0} R(x_0 + h) = \lim_{n \to 0} \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)$$
$$= R(x_0) = 0$$

 $\Rightarrow R$ stetig in $x_0, R(x_0) = 0$ und (*) ist erfüllt für $m = f'(x_0)$.

 $\boxed{2.\Rightarrow 1.}$ Gelte (*) für ein $m\in\mathbb{R}$ und eine in x_0 stetige Funktion

 $R: I \to \mathbb{R}, R(x_0) = 0.$

$$f(x_0 + h) = f(x_0) + m \cdot h + R(x_0 + h) \cdot h$$

$$\underset{h\neq 0}{\Leftrightarrow} \frac{f(x_0+h) - f(x_0)}{h} = m + R(x_0+h)$$

$$\xrightarrow[h\to 0]{} \lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h} = m + \underbrace{R(x_0)}_{=0}$$

da $R(x_0) = 0$ und stetig in x_0

0.1 Satz

Wenn f differenzierbar in $x_0 \in I \Rightarrow f$ stetig.

Beweis: Folge aus 6.5/2 (*), da f Summe in x_0 stetiger Funktionen.

0.2 Bemerkung

Die Umkehrung von 6.6 gilt nicht. In $x_0 = 0$ hat $f'(x_0) = |x|$ einen Knick:

•
$$\lim_{n \to 0^-} \frac{|0+h| - h}{h} = \lim_{h \to 0} \frac{-h}{h} = -1$$

•
$$\lim_{n \to 0^+} \frac{|0+h| - h}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

 $\Rightarrow_{5.12}$ In $x_0 = 0$ existiert keine Ableitung.

Rechenregeln

0.3 Satz: Ableitungsregeln

 $f, g: I \to \mathbb{R}$ differenzierbar in $x \in I$.

Dann sind auch $c \cdot f$ (für $c \in \mathbb{R}$), $f \pm g$, $f \cdot g$ und $\frac{f}{g}$ (für $g(x) \neq 0$) differenzierbar in x mit:

a)
$$(c \cdot f)'(x) = c \cdot f'(x)$$

b)
$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

c) Produktregel:

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

d) Quotientenregel:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Beweis:

a, b) Übung

c)

$$\frac{(fg)(x+h) - (fg)(x)}{h}$$

$$= \underbrace{\frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}}_{h}$$

$$= \underbrace{\frac{(f(x+h) - f(x)) \cdot g(x+h)}{h} + \frac{f(x) \cdot (g(x+h) - g(x))}{h}}_{h}$$

$$\xrightarrow[h \to 0]{} f'(x) \cdot g(x) + f'(x) \cdot g'(x) \quad \text{(da g stetig)}$$

d)

$$\frac{\left(\frac{f}{g}\right)(x+h) - \left(\frac{f}{g}\right)(x)}{h} = \frac{f(x+h)g(x) - f(x) - g(x+h)}{h \cdot g(x+h) \cdot g(x)}$$

Schiebe wie in c) im Zähler -f(x+h)g(x+h)+f(x+h)g(x+h) ein und erhalte mit $h\to 0$ die Behauptung. \square

0.4 Beispiele

a) Wegen 6.8a,d) ist jedes Polynom und jede rationale Funktion differenzierbar.

b)
$$(4x^3 + 7x + 5)' = 12x^2 + 7$$

c)
$$\left(\frac{\sin x}{x}\right)' = \frac{\cos x \cdot x - \sin x}{x^2} \quad (x \neq 0)$$

d)
$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

0.5 Satz: Kettenregel

Die Verknüpfung $f \circ g$ zweier differenzierbarer Funktionen f,g ist differenzierbar und es gibt $(f \circ g)' = (f' \circ g) \cdot g'$ bzw $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$.

Beweis: Mit Substitution:

$$\tilde{x} = g(x), \ \tilde{h} = g(x+h) - g(x)$$

Es gilt: $h \to 0 \Rightarrow \tilde{h} \to 0$ da g stetig. Damit ist

$$\frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \frac{f(g(x+h) - g(x) + g(x)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h}$$

$$= \frac{f(\tilde{x} + \tilde{h}) - f(\tilde{x})}{\tilde{h}} \cdot \frac{g(x+h) - g(x)}{h}$$

$$\xrightarrow{h \to 0} f'(\tilde{x}) \cdot g'(x) = f'(g(x)) \cdot g'(x) \quad \Box$$

0.6 Beispiel

$$(\overbrace{\sin(\underbrace{5x^2}_g)})' = \underbrace{10x}_{g'} \underbrace{\cos(5x^2)}_{f' \circ g}$$

0.7 Veranschaulichung zur Ableitung der Umkehrfunktion

$$m = f'(x_0) \neq 0 \Rightarrow (f^{-1}(y_0))' = m' = \frac{1}{m}$$

= $\frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

0.8 Satz: Ableitung der Umkehrfunktion

I,J offene Intervalle, $f:I\to J$ differenzierbar in $x_0\in I$ mit $f'(x_0)\neq 0.$ Dann:

$$f^{-1}: y \to I$$
 differenzierbar in $y_0 = f(x_0)$ mit $(f^{-1}(y_0))' = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(x_0))}$

Beweis: Sei $t = f(x_0 + h) - f(x_0)$ (*)

Es gilt:
$$h \to 0 \Leftrightarrow t \to 0$$

$$\frac{1}{\frac{f(x_0+h)-f(x_0)}{h}} \stackrel{(*)}{=} \frac{x_0+h-x_0}{t}$$

$$= \frac{f^{-1}(f(x_0+h))-f^{-1}(f(x_0))}{t} \stackrel{(*)}{=} \frac{f^{-1}(f(x)+t)-f^{-1}(f(x))}{t}$$

$$\xrightarrow[h\to 0]{} \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))} \quad \Box$$