Processamento Digital de Sinal Minitestel 2014/2015

1. Considere o sistema LTI discreto cuja resposta impulsional é:

$$h\left[n\right] = \left(\frac{1}{4}\right)^{n-2} u\left[n-1\right]$$

- a) Determine a transformada z da resposta impulsional do sistema especificando a respectiva ROC. Esboce ainda o diagrama de pólos e zeros do sistema identificando no diagrama a ROC.
- b) Determine a equação de diferenças do sistema.
- c) Codifique em Matlab um programa que calcule a saída do sistema assumindo que a entrada existe na variável x.
- d) Determine a resposta do sistema à entrada

$$x\left[n\right] = \left(\frac{1}{3}\right)^n u\left[n+1\right]$$

- 2. Na UC de projecto foi-lhe pedido que desenvolvesse um sistema de aquisição de ECG. O sinal de ECG é amostrado à frequência de 1 kHz. Após a aquisição o sinal é filtrado digitalmente, usando um filtro digital de Butterworth.
- a) Supondo que utiliza a transformação bilinear, determine a ordem mínima do filtro digital. No seu projecto deve garantir uma atenuação de 1dB à frequência de 35 Hz e de 40 dB à frequência de 130 Hz.
- b) Determine a frequência para a qual atenuação é superior a 10, sabendo que o filtro anterior foi projectado para optimizar a banda de rejeição.
- c) Determine os polos do filtro digital na forma polar.
- d) Realize o filtro em Matlab apresentando todas as linhas de código comentadas.
- 3. Considere um sinal contínuo de voz comercial filtrado passa-baixo a 4 kHz e amostrado a 8 kHz. Considere ainda que pretende filtrar o sinal discreto de modo a retirar as frequências entre 2kHz e 3 kHz permanecendo no sinal as restantes frequências.
 - a. Esboce a resposta em frequência do filtro digital desejado. Justifique.
 - b. Considere a realização de um filtro FIR com ganho na banda de rejeição de -40dB, ganho máximo e mínimo na banda passante respectivamente de 1.01 e 0.99 e diga quais as janelas que permitem a implementação do filtro. De todas qual a mais adequada à síntese do filtro. Justifique.
 - c. Deduza, justificando todos os passos que efectuar, a resposta impulsional do filtro FIR desejado que não causa distorção harmónica.

- d. Usando o método que achar mais adequado sintetize um filtro FIR que permita servir a corrente aplicação. Considere uma banda de transição de 10% da banda passante. Justifique todos os passos que efctuar.
- e. Qual a ordem do filtro de ordem mais baixa que permite efectuar o pretendido. Justifique.
- f. Sintetize o filtro em Matlab apresentando todas as linhas de código comentadas.

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Window Type	Peak Sidelobe Amplitude (Relative)	Approximate Width of Mainlobe	Peak Approximation Error 20 log ₁₀ δ (dB)	Equivalent Kaiser Window β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	- 41	$8\pi/M$	- 53	4.86	$6.27\pi/M$
Blackman	- 57	$12\pi/M$	- 74	7.04	$9.19\pi/M$

$$M = \frac{-10\log(\delta_1 \delta_2) - 13}{2.324\Delta\Omega}$$

$$M = \frac{A - 8}{2.285\Delta\Omega}$$

$$\left|H_c(w)\right|^2 = \frac{1}{1 + \left(\frac{jw}{jw_c}\right)^{2N}}$$

$$\beta = \begin{cases} 0.1102(A - 8.7); & A > 50\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21); & 21 \le A \le 50\\ 0.0; & A < 21 \end{cases}$$

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

$$w[n] = \begin{cases} I_0 \left[\beta \left(1 - \left[\frac{n - \alpha}{\alpha} \right]^2 \right)^{\frac{1}{2}} \right] \\ \frac{I_0(\beta)}{0; \quad outros \ casos}; \end{cases} \qquad 0 \le n \le M$$

$$w = \frac{2}{T} \tan(\Omega/2)$$

$$a^n u[n] \xrightarrow{Z} \frac{1}{1-az^{-1}}$$

$$ROC \equiv |z| > |a|$$

$$na^{n}u[n]$$
 \longrightarrow $-z\frac{d}{dz}\left(\frac{1}{1-az^{-1}}\right)=\frac{az^{-1}}{\left(1-az^{-1}\right)^{2}},$ $|z|>|a|$