

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 1 of 43

FCC TEST REPORT

Client Name : Anhui Ronds Science & Technology Incorporated

Company

Address #59, branch road of biomedical park, high-tech district,

Hefei, Anhui, China

Product Name : Wireless Vibration and temperature senser

Date : Aug. 28, 2019

Report No.: SZAWW190809002-01 ID: 2AKW5-RH605 2 of 43

Contents

1. General information			
1.1. Client Information	or Am	nok	Anbo
1.2. Description of Device (EUT)	Auporen Aup		Anbore C
1.2. Description of Device (EUT)	"Gotek	mbore Am	
1.4. Description of Test Modes		Wyoqe Vup.	θ
1.5. List of channels		botek	6
1.6. Description Of Test Setup	V. V	F	
1.7. Test Equipment List	orek popote	Anv Roll	8
1.8. Measurement Uncertainty		orek Wildon	9
1.9. Description of Test Facility	Wpp.	Hotek Popole.	9
1.9. Description of Test Facility	Pupor b		10
3. Conducted Emission Test	boter	A.1000	11
3.1. Test Standard and Limit	,	Aupore A	11
3.2. Test Setup			11
3.3. Test Procedure	ote. Anu	FR. Morek	11
3.3. Test Procedure 3.4. Test Data 4. Radiation Spurious Emission and Band Edge	"hotek" vupe	, , , , , , , , , , , , , , , , , , ,	11
4. Radiation Spurious Emission and Band Edge		bote, Aur	12
4.1. Test Standard and Limit	An	atek	12
4.2. Test Setup	Aribo		12
4.3. Test Procedure	kapore	Alli	13
4.4 lest Data			14
5. Output Power Test		isk kupore	22
5.1. Test Standard and Limit	dio K		22
5.2. Test Setup	A	10-100	22
5.3. Test Procedure		William Mr.	22
5.4. Test Data	Notok	Anbote An	22
6. 6DB Occupy Bandwidth Test	An	otek	25
6.1. Test Standard and Limit	tek Anbo	ak hotek	25
5.1. Test Standard and Limit		Ans New	25
6.3. Test Procedure	· · · · · · · · · · · · · · · · · · ·	pater Anbo	25
6.4. Test Data			25
7. Power Spectral Density Test	bopore		28
7.1. Test Standard and Limit	Ananten		28
7.2. Test Setup			28
7.3. Test Procedure	- Pr.	ek Anboter	28
7.4. Test Data	pore And	tek - nbotek	28
8. 100kHz Bandwidth of Frequency Band Edge Require	ment	oo, Vi.	31
6.3. Test Procedure	Votek	Anbore Anb	31
nzhen Anbotek Compliance Laboratory Limited		Code:A	B-RF-05-a

Report No.: SZAWW190809002-01	FCC II	D: 2AKW5-F	RH605	Page	3 of 43
8.2. Test Setup	h	gbote.	An	gotek	31
8.3. Test Procedure	Anb	- otek	Anbore	P.II.	31
8.4. Test Data	Anbors	br	ek sabote	Anbo	31
9. Antenna Requirement	k pho'	ren Aup.		otek Anb	35
9.1. Test Standard and Requirement		potek An	por Air		35
9.2. Antenna Connected Construction	n	wotek	anbote. P	Wp	35
PENDIX I TEST SETUP PHOTOGRAP	'H	Anv	botek	Aupor	36
APPENDIX II EXTERNAL PHOTOGRA	\PH	Anbo.	b.,	anboter	37
APPENDIX III INTERNAL PHOTOGRA	PH stek				Anbord

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 4 of 43

TEST REPORT

Applicant : Anhui Ronds Science & Technology Incorporated Company

Manufacturer : Anhui Ronds Science & Technology Incorporated Company

Product Name : Wireless Vibration and temperature senser

Model No. : RH605, RH505

Trade Mark : RONDS

Rating(s) : Input: DC 3.6V, 20mA (with DC 3.6V, 8500 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Aug. 09, 2019 Date of Test Aug. 09~20, 2019 ompliance Dolly Anbotek Prepared By (Engineer / Dolly Mo) Approved Drowy Meng Reviewer (Supervisor / Snowy Meng) Sally zhang Approved & Authorized Signer (Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 5 of 43

1. General Information

1.1. Client Information

Applicant	:	Anhui Ronds Science & Technology Incorporated Company
Address	:	#59, branch road of biomedical park, high-tech district, Hefei, Anhui, China
Manufacturer	:	Anhui Ronds Science & Technology Incorporated Company
Address	:	#59, branch road of biomedical park, high-tech district, Hefei, Anhui, China
Factory	:	Anhui Ronds Science & Technology Incorporated Company
Address	:	#59, branch road of biomedical park, high-tech district, Hefei, Anhui, China

1.2. Description of Device (EUT)

Product Name	:	Wireless Vibration and te	mperature senser
Model No.	:	RH605, RH505 (Note: All samples are prepare "RH605" for testi	identical except for the appearance, so we only ng.)
Trade Mark	:	RONDS	Anbotek Anbotek Anbotek
Test Power Supply	:	DC 3.6V Battery inside	Anbotek Anbotek Anbotek
Test Sample No.	:	1-2-1(Normal Sample), 1-	-2-2(Engineering Sample)
		Operation Frequency:	2405-2480MHz
		Number of Channel:	16 Channels
Product Description	:	Modulation Type:	OQPSK
Везоприоп		Antenna Type:	Mica 2.4 GHz SMD Antenna
		Antenna Gain(Peak):	1.2 dBi

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for ZigBee module.

1.3. Auxiliary Equipment Used During Test

N/A		atek	A. Anbotek	Anbote.	And	Anbotek	Anbor	br.
-----	--	------	------------	---------	-----	---------	-------	-----

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 6 of 43

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	hotek AnCH11 Anbotek Anbotek Anbotek Anbotek
Mode 2	CH18 Keeping TX+ Charging Mode/
Mode 3	CH26

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Channel Freq. (MHz)		Freq. (MHz)		
Anbotek 11 Anbotek	2405	Ambotel 21 Ambo	2455		
12 Anbote	2410	Anboa22 Anboa	2460		
13	2415	23	2465		
14	2420	24 Date N	2470		
Anbour 15 potek	2425	Anbotek 25 Anbote	2475		
Anbotek 16 Anbotek	2430	Anbotek 26 Anbote	2480		
And 17 nbotel	2435	ek Anbotek Anbot	ek Anbotek Anbote		
18	2440	otek Anbotek Anbo	otek anbotek Anb		
19	2445	nbotek Anbotek Ar	notek anbotek		
20	2450	Anbotek Anbotes	Anbotek Anbotek		

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 7 of 43

1.6. Description Of Test Setup

RE

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 8 of 43

1.7. Test Equipment List

b.i.	, otek	vupo h.	100-10	Anu	-48K	- "po"
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
nbatek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 26, 2018	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.0	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	Anbo LW,	TPR-6420D	374470	Oct. 31, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year
V. 13. 17.	76.	Ma. by	101	- 439	Vi.	137

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 9 of 43

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	botek	Anbotek	Anbo otek Anb
		Ur = 3.8 dB (Vertical)	abotek	Aupolen	Anbo
		Anbotek Anbo	A abotek	Anbote	K And wotek
Conduction Uncertainty	:	Uc = 3.4 dB	r Vupo,	tek Anbo	And hotek

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 30, 2018.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, March 07, 2019.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 10 of 43

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Maximum Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 11 of 43

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.	207				
Test Limit	F	Maximum RF Line Voltage (dBuV)				
	Frequency	Quasi-peak Level	Average Level			
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
	500kHz~5MHz	56	46			
	5MHz~30MHz	Anbotek 60 Anbot	50, 100 100			

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

The EUT is powered by DC 3.6V battery inside, so there is no need to conduct this test.

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 12 of 43

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 1	5.209 and 15.205	Ann	Anbotek	Vupor Vek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	anbotek Ani	Jose Wur	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek	Aupolo - Ar	30 An
	1.705MHz-30MHz	30 notes	anbotek	Anboro Lok	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5 AND OLE	Quasi-peak	3 abotek
	216MHz~960MHz	200	46.0	Quasi-peak	atek 3 abot
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Above 1000MU=	500	54.0	Average	3
	Above 1000MHz	Anbotek - Anbot	74.0	Peak	Anb 3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 13 of 43

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 14 of 43

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz and above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

During the test, pre-scan the OQPSK modulation, and found the OQPSK modulation Low channel which is the worst case, only the worst case is recorded in the report.

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 15 of 43

Test Results (30~1000MHz)

Job No.: SZAWW190809002-01 Temp.(°C)/Hum.(%RH): 22.6°C/ 57%RH

Standard: FCC PART 15C Power Source: DC 3.6V Battery inside

Test Mode: CH11 Polarization: Horizontal

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 16 of 43

Test Results (30~1000MHz)

Job No.: SZAWW190809002-01 Temp.(℃)/Hum.(%RH): 22.6℃/ 57%RH

Standard: FCC PART 15C Power Source: DC 3.6V Battery inside

Test Mode: CH11 Polarization: Vertical

	No.	Freq. (MHz)	Reading (dBuV)	Factor ()	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
	1	40.4172	31.92	-11.11	20.81	40.00	-19.19	QP	300	360	
3	2	59.9639	32.87	-15.93	16.94	40.00	-23.06	QP	300	242	
	3	119.8556	30.88	-19.02	11.86	43.50	-31.64	QP	300	197	
¢	4	160.0648	34.22	-20.45	13.77	43.50	-29.73	QP	300	114	
	5	368.1116	32.09	-15.20	16.89	46.00	-29.11	QP	300	279	
	6	438.6554	31.89	-16.06	15.83	46.00	-30.17	QP	300	203	

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 17 of 43

Test Results (Above 1000MHz)

Test Mode:	CH11			Test	channel: Lov	vest			
			F	Peak Value	ak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4810.00	39.49	34.04	6.58	34.09	46.02	74.00	-27.98	V	
7215.00	33.28	37.11	7.73	34.50	43.62	74.00	-30.38	V	
9620.00	32.76	39.31	9.23	34.79	46.51	74.00	-27.49	V	
12025.00	* And	dek	Anbotek	Anbore	Pun notek	74.00	Aupor	V	
14430.00	boter * A	ip, stek	Motek	Anbote	k Pur	74.00	Aupos	V	
4810.00	44.22	34.04	6.58	34.09	50.75	74.00	-23.25	H	
7215.00	35.22	37.11	7.73	34.50	45.56	74.00	-28.44	YUPO!	
9620.00	32.39	39.31	9.23	34.79	46.14	74.00	-27.86	MADO	
12025.00	ek * Anbo	Er. Ar	Do. b.	abotek	Anbore	74.00	Anbotek	Н	
14430.00	hotek * Ar	potek	Yupo.	nbotek.	Anboton	74.00	Anbote	Н	
			A۱	/erage Valu	е				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol	
4810.00	27.89	34.04	6.58	34.09	34.42	54.00	-19.58	V	
7215.00	21.72	37.11	7.73	34.50	32.06	54.00	-21.94	V	
9620.00	20.66	39.31	9.23	34.79	34.41	54.00	-19.59	V	
12025.00	Aupote*	Aupo	hotek	Anbore	K Ant	54.00	OK AND	V	
14430.00	Anb *tek	Aupo	Yoda X	Anbe	ice. Vun	54.00	botek P	V	
4810.00	32.36	34.04	6.58	34.09	38.89	54.00	-15.11	Vupo,	
7215.00	24.03	37.11	7.73	34.50	34.37	54.00	-19.63	H	
9620.00	20.57	39.31	9.23	34.79	34.32	54.00	-19.68	Н	
12025.00	"otel*	Anbotek	Mupor	A. botek	Anbotek	54.00	ek vupo	tek H	
14430.00	Kup *ek	anbotek	Aupor	K NO	lek Aupo	54.00	rek	botok.	

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 18 of 43

Test Results (Above 1000MHz)

Test Mode:	CH18			Test	Test channel: Middle					
			F	Peak Value	lue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
4880.00	37.97	34.38	6.69	34.09	44.95	74.00	-29.05	Noda V		
7320.00	32.27	37.22	7.78	34.53	42.74	74.00	-31.26	V		
9760.00	31.86	39.46	9.35	34.80	45.87	74.00	-28.13	V		
12200.00	* And	stek	Anbotek	Anbore	An notek	74.00	Aupo	V		
14640.00	poter * A	tek	Anbotek	Anboten	k Pur	74.00	Pupo.	*eKV		
4880.00	42.39	34.38	6.69	34.09	49.37	74.00	-24.63	H		
7320.00	34.08	37.22	7.78	34.53	44.55	74.00	-29.45	H du		
9760.00	31.35	39.46	9.35	34.80	45.36	74.00	-28.64	Anbo		
12200.00	ek * Anbo	ek Ar	Dor by	abotek	Anboten	74.00	Napotek	H		
14640.00	otek * Ar	botek	Vupor.	A. botek	Anboren	74.00	Anbote	Н		
*10.			Av	verage Valu	e	. , , , , , , , , , , , , , , , , , , ,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol		
4880.00	26.67	34.38	6.69	34.09	33.65	54.00	-20.35	V		
7320.00	20.89	37.22	7.78	34.53	31.36	54.00	-22.64	V		
9760.00	19.93	39.46	9.35	34.80	33.94	54.00	-20.06	V		
12200.00	Aupotek	Aupo.	A abotek	Aupore	K Anti-	54.00	Sk Aup.	V		
14640.00	Anbatek	Aupor	ot abote	K Anbe	No. Yup.	54.00	potek by	V		
4880.00	30.98	34.38	6.69	34.09	37.96	54.00	-16.04	Pupo,		
7320.00	23.11	37.22	7.78	34.53	33.58	54.00	-20.42	H		
9760.00	19.71	39.46	9.35	34.80	33.72	54.00	-20.28	Н		
12200.00	wotel*	Anbotek	Aupor	All botek	Anbotek	54.00	ek anbo	tek H		
14640.00	*ek	anbotek	Aupore	K NO	lek Anbo	54.00	*GK	Hotod,		

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 19 of 43

Test Results (Above 1000MHz)

Test Mode:	CH26			Test	channel: Hig	hest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	36.52	34.72	6.79	34.09	43.94	74.00	-30.06	Noda
7440.00	31.31	37.34	7.82	34.57	41.90	74.00	-32.10	V
9920.00	31.00	39.62	9.46	34.81	45.27	74.00	-28.73	V
12400.00	* And	stek h	anbotek.	Anbore	Notek Notek	74.00	Aupor	V
14880.00	poter * A	Lon Clok	Anbotek	Anbote	k Pur	74.00	Aupor	, okV
4960.00	40.64	34.72	6.79	34.09	48.06	74.00	-25.94	H
7440.00	32.99	37.34	7.82	34.57	43.58	74.00	-30.42	'upor
9920.00	30.35	39.62	9.46	34.81	44.62	74.00	-29.38	PUPC
12400.00	ek * Anbo	ek An	Dor by	abotek	Aupoten	74.00	Anbotek	Н
14880.00	hotek * An	potek	Vupor.	abotek.	Anboten	74.00	nbote	Н
			Av	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	25.54	34.72	6.79	34.09	32.96	54.00	-21.04	V
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	V
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	V
12400.00	Aupore*	Vupos Kek	Motek	Aupore	K NUM	54.00	SK WUD.	V
14880.00	Anb *tek	Aupor	ot abote	K Anbe	ice. Vun	54.00	potek A	V
4960.00	29.69	34.72	6.79	34.09	37.11	54.00	-16.89	Aupo
7440.00	22.25	37.34	7.82	34.57	32.84	54.00	-21.16	H
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	Н
12400.00	*otel*	Anbotek	Aupor	All botek	Anbotek	54.00	ek anbo	iek H
14880.00	***	401	-100	Pri	v	54.00	100	hotek

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 20 of 43

Radiated Band Edge:

FCC ID: 2AKW5-RH605 Page 21 of 43 Report No.: SZAWW190809002-01

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 22 of 43

5. Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.	247 (b)(3)	Anbe	Anbotek	Ambore	VI.
Test Limit	30dBm	A. abotek	Aupole	Anb	Anbotek	Anbore	1

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Data

Test Item : Output power Test Mode : CH Low ~ CH High

Test Voltage : DC 3.6V Battery inside Temperature : 24° C Test Result : PASS Humidity : 55%RH

Channel Frequency (MHz)	Maximum Power output(AV) (dBm)	Limit (dBm)	Results
2405	-4.626	30,,,,,,,,	PASS
2440	-2.742	30 Model	PASS
2480	-4.184	30	PASS

For power test the duty cycle is 100% in continous transmitting mode

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 23 of 43

Test Mode: Low

Test Mode: Middle

Code: AB-RF-05-a

Anboten (

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 24 of 43

Test Mode: High

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 25 of 43

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (a)(2)	hotek	Anbotek	Anbot Lek An
Test Limit	>500kHz	Anbotek	Anboro	Anshotek	Anbotek	Anbo

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW≥3*RBW =300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High

Test Voltage : DC 3.6V Battery inside Temperature : 24° C Test Result : PASS Humidity : 55%RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results	
Low	2405	1415	poten Anbo	PASS	
Middle	2440	1540	>500	PASS	
High	2480	1577	Anboter And	PASS	

Page 26 of 43 Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605

CH: Low

CH: Middle

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 27 of 43

CH: High

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 28 of 43

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (e)	Andhotek	Anbotek	Anbot A
Test Limit	8dBm	anbotek	Anbolo	Ans	Anbotek	Aupor

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low \sim CH High Test Voltage : DC 3.6V Battery inside Temperature : 24° C

Test Voltage : DC 3.6V Battery inside Temperature : 24° C Test Result : PASS Humidity : 55° RH

Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
poten Low	2405	-16.388	potek 8 nbot	PASS
Middle	2440	-15.599	Anbotek 8 Anbo	PASS
High And	2480	-16.620	Anbotek 8 Anbo	PASS

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 29 of 43

CH: Low

CH: Middle

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 30 of 43

CH: High

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 31 of 43

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted
	bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : DC 3.6V Battery inside Temperature : 24°C
Test Result : PASS Humidity : 55%RH

Frequency Band	Delta Peak toBand Emission	Limit	Results	
(MHz)	(dBc)	(dBc)		
2405	41.057	×upotek>30 ×upote	PASS	
2483.5	43.063	>30	PASS	

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 32 of 43

CH: Low

CH: High

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 33 of 43

Conducted Emission Method

CH: Low

CH: Middle

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 34 of 43

CH: High

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 35 of 43

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a Mica 2.4 GHz SMD antenna which permanently attached, and the best case gain of the antenna is 1.2 dBi. It complies with the standard requirement.

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 36 of 43

PENDIX I -- TEST SETUP PHOTOGRAPH

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 37 of 43

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 38 of 43

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 39 of 43

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 40 of 43

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 41 of 43

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 42 of 43

Report No.: SZAWW190809002-01 FCC ID: 2AKW5-RH605 Page 43 of 43

----- End of Report ---