Partie cours

- 1. Voir lien envoyé: QCM en ligne.
- 2. Soit $z \in \mathbb{C}$. Comparer |z|, Im(z), et |Im(z)|. Démon- 2. Montrez l'existence de l'écriture d'un nombre comtrez et donnez un exemple.

Partie exercices

- 1. Soit $n \in \mathbb{N}^*$ et $(b_k)_{k \in [|1:n|]} \in \mathbb{R}^n$
 - (a) Montrez que $\sum_{k=1}^{n} |b_k| \ge \left| \sum_{k=1}^{n} b_k \right|$
 - (b) Déterminez une CNS pour que $\sum_{k=1}^{n} |b_k| = \left| \sum_{k=1}^{n} b_k \right|$
- 2. Montrez que $\forall n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{k} \leq 2\sqrt{n}$
- 3. On considère l'équation dans $\mathbb{C}: X^3 + pX + q = 0$ (*) où $(p;q) \in \mathbb{R}^2$.
 - (a) Soit x une racine de (*), on pose : $\begin{cases} u+v=x \\ uv = -\frac{p}{2} \end{cases}$ Justifier l'existence du couple (u, v)

Montrer que u^3 et v^3 sont racines de l'équation $X^2 + qX - \frac{p^3}{27} = 0.$

- (b) Réciproquement, soient X' etX'' les racines de $X^2 + qX - \frac{p^3}{27} = 0$. Montrer que l'on peut trouver une racine cubique u de X' et une racine cubique v de X'' telles que $uv = -\frac{p}{3}$. En déduire les racines de (*).
- (c) Discuter le nombre de racines réelles de (*).

 \mathcal{MR}

Partie cours

- 1. Voir lien envoyé: QCM en ligne.
- plexe $z \in \mathbb{U}$ de module 1 sous la forme $e^{i\theta}$. Donnez une CNS sur $\theta \in \mathbb{R}$ et $\phi \in \mathbb{R}$ pour que $e^{i\theta} = e^{i\phi}$.

Partie exercices

- 1. Soit $n \in \mathbb{N}^*$. Pour $x \in \mathbb{R}$, on souhaite calculer: 1. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. $S_n(x) := \sum_{k=1}^n kx^k$. Vous utiliserez les 2 méthodes.
 - (a) Méthode 1: Posez $\varphi_n : x \mapsto \sum_{k=1}^n x^k$. Pour $x \in \mathbb{R}$, calculez $\varphi_n'(x)$ puis exprimez $S_n(x)$ en fonction $\varphi'_n(x)$.
 - (b) Méthode 2: En décrochant le dernier terme de $S_{n+1}(x)$, exprimez $S_{n+1}(x)$ en fonction de $S_n(x)$. En décrochant le dernier terme de $S_{n+1}(x)$, exprimez, d'une autre façon, $S_{n+1}(x)$ en fonction de $S_n(x)$. Concluez.
- 2. On pose $\omega = \sqrt{3} + i$
 - (a) Déterminer les $n \in \mathbb{Z}$ tels que $\omega^n \in \mathbb{R}$.
 - (b) Déterminer les $n \in \mathbb{Z}$ tels que $\omega^n \in i\mathbb{R}$.
- (a) Soit $z \in \mathbb{C}$. Trouvez une CNS sur z pour que |z-i| = |z+i|
 - (b) Pour $z \in \mathbb{C} \setminus \{2i\}$, posons $f(z) = \frac{z+2+3i}{z-2i}$. Quel est l'ensemble des points dont l'affixe z vérifie:
 - i. $f(z) \in \mathbb{U}$
 - ii. $f(z) \in i\mathbb{R}$

Partie cours

- 1. Voir lien envoyé: QCM en ligne.
- 2. Démontrez que l'ensemble des solutions \mathcal{S} de l'équation $z^2 - sz + p$ vérifie: $S = \{u, v\} \Leftrightarrow (u + v = s)$ et uv = p).

Partie exercices

- - (a) Simplifiez la somme $D_n(\theta) = \sum_{k=-n}^n e^{ik\theta}$ (Noyau de Dirichlet)
 - (b) Simplifiez la somme $F_n(\theta) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(\theta)$ (Novau de Fejer)
- 2. Soit $n \in \mathbb{N}$. Calculez $T_n := \sum_{r=1}^n \frac{1}{2^k} cos\left(\frac{k\pi}{3}\right)$
- 3. On note j le nombre complexe $e^{i\frac{2\pi}{3}}$.
 - (a) Représentez graphiquement le point d'affixe j.
 - (b) Montrez que j est solution de $z^3 = 1$. En déduire que j puis \bar{j} sont solutions de $1+z+z^2=0$.
 - (c) Comparez: $j; \frac{1}{i}; \frac{1}{i^2}; \bar{j}; \bar{j}^2; j^2$
 - (d) Que vaut j^k pour que $k \in \mathbb{Z}$? En déduire la valeur de $1 + i^k + i^{2k}$.
 - (e) Soit n un entier naturel. Développez l'expression $(1+1)^n + (1+j)^n + (1+j^2)^n$
 - (f) En déduire la valeur de $\sum\limits_{0 \leq 3k \leq n} \binom{n}{3k}$

4.