Unbiased Transformation of Censored Survival Data

Eunju Lee

Department of Statistics Pusan National University

09 December, 2022

Table of contents

- 1 Survival Analysis
- The proposed method
- 3 Numerical Analysis
- 4 Conclusion

Survival Analysis

- ► What is survival analysis?
 - Survival analysis is an analysis of the time to event.

- ▶ Limitation of censoring
 - First, some information is lost due to censoring.
 - Secondly, statistical tools for analyzing censored data are restrictive.

Basic Functions

- Notation
 - T_1, \dots, T_n : iid true survival times with cdf $F(\cdot)$ and pdf $f(\cdot)$
 - C_1, \dots, C_n : iid censored times with cdf $G(\cdot)$ and pdf $g(\cdot)$
- ▶ We observe ordered data (Y_i, δ_i) , $i = 1, \dots, n$, where $\delta_i = I(T_i \leq C_i)$ is censoring indicator and (T_i, C_i) are independent.
- Probability density function of Y

$$P(Y_i, \delta_i) = \begin{cases} P(Y_i = T_i, C_i > Y_i) = f_{\theta}(Y_i)(1 - G_{\gamma}(Y_i)) & \text{if } \delta_i = 1\\ P(Y_i = C_i, T_i > Y_i) = g_{\gamma}(Y_i)(1 - F_{\theta}(Y_i)) & \text{if } \delta_i = 0 \end{cases}$$

Kaplan-Meier Estimator

- Notation
 - n_i : number of subjects at risk at y_i^- , which is n-i+1
 - p_i : $P(T>y_i|T>y_{i-1})$ is estimated $n_{i+1}/n_i=1-1/(n-i+1)$ when $\delta_i=1$

Kaplan-Meier Estimator

$$\hat{S}(t) = \prod_{i:y_i \leq t} (1 - \frac{1}{n-i+1})^{\delta_i}$$

Kernel Estimator

Kernel density estimate and Kernel distribution function estimate

$$\hat{f}(t) = \frac{1}{h} \sum_{i=1}^{n} s_i K(\frac{t - y_i}{h}), \ \hat{F}(t) = \frac{1}{h} \sum_{i=1}^{n} s_i W(\frac{t - y_i}{h})$$

where K: kerenel function, W: cumulative kernel function

 s_i : jump size at y_i in Kaplan-Meier estimator

h: smoothing parameter, bandwidth

- Kernel Function Type
 - Uniform : $K(t) = \frac{1}{2} \cdot I(|t| \le 1)$
 - Gaussian : $K(t) = \frac{1}{\sqrt{2\pi}} \cdot \exp^{-t^2/2}$
 - Epanechnikov : $K(t) = \frac{3}{4} \cdot (1 t^2) I(|t| < 1)$

- ▶ The Method of Choosing h
 - Generalized cross validation
 - Likelihood cross validation

Buckley-James type Transformation

$$\hat{y}_{i}^{(1)} = \delta_{i} y_{i} + (1 - \delta_{i}) \frac{\hat{f}(y_{i})}{\hat{g}(y_{i})(1 - \hat{f}(y_{i}))} y_{i}$$

- Motivation : $E(Y^{(1)}) = E(T)$, $Y^{(1)} = \delta Y + (1 \delta) \frac{f(Y)}{g(Y)(1 F(Y))} Y$
- Estimate $\hat{f}(y)$, $\hat{F}(y)$, and $\hat{g}(y)$ by kernel estimator using Epanechnikov kernel function.
- Calculate bandwidth h using likelihood cross validation.

Koul-Susarla-van Ryzin type Transformation

$$\hat{y}_{i}^{(2)} = \delta_{i} y_{i} + (1 - \delta_{i}) \sum_{k: y_{k} > y_{i}} s_{k} y_{k} / \{1 - \hat{F}(y_{i})\}$$

- Motivation : $E(Y^{(2)}) = E(T)$, $Y^{(2)} = \delta Y + (1 \delta) E(T|T > Y)$
- Estimate $\hat{\mathcal{E}}(T|T>y)$ as $\sum\limits_{k:y_k>y_i}s_ky_k/\{1-\hat{\mathcal{F}}(y_i)\}.$
- Estimate F(y) by kernel estimator like Method 1.

Mean Imputation Method

$$\hat{\mathbf{y}}_{i}^{(3)} = \delta_{i} \mathbf{y}_{i} + (1 - \delta_{i}) \sum_{j=i+1}^{n} \delta_{j} \mathbf{y}_{j} / \sum_{j=i+1}^{n} \delta_{j}$$

- Motivation : $E(Y^{(3)}) = E(T)$, $Y^{(3)} = \delta Y + (1 \delta) E(T|T > Y)$
- Estimate $\hat{E}(T|T>y)$ as $\sum\limits_{j=i+1}^n \delta_j y_j/\sum\limits_{j=i+1}^n \delta_j.$
- Assume that y_n is uncensored data.

Numerical Analysis

- Data
 - $T \sim \varepsilon(1), C \sim \varepsilon(\lambda)$
 - λ : 1, 3/7, and 1/9 for 50%, 30% and 10% censoring percentage
 - n = 30, 50, and 100
- ► Comparison
 - MISE to compare between estimators of distribution function
 - · MSE to compare between estimators of the median survival time
 - c-index to compare the concordance

Numerical Analysis

c-index

•
$$c = \frac{\sum\limits_{i=1}^{\sum}\sum\limits_{j\neq i}I(y_i>y_j)I(\hat{y_i}>\hat{y_j})\delta_j}{\sum\limits_{i=1}^{\sum}\sum\limits_{j\neq i}I(y_i>y_j)\delta_j}$$

- · The ratio of concordant pairs pairs among all possible pairs
 - A pair of observations i and j is called concordant if $I(y_i > y_j) = I(\hat{y}_i > \hat{y}_j)$
 - A pair of observations i and j is called discordant if $I(y_i > y_j) = I(\hat{y}_i < \hat{y}_j)$

Comparison of Distribution Function

Table 1. The MISE of four estimators of the distribution function with three censoring percentages (10%, 30%, and 50%) when n=30, 50, and 100.

Estimator	n	10%	MISE 30%	50%
Kaplan-Meier	30	0.013	0.032	0.083
	50	0.009	0.029	0.085
	100	0.007	0.029	0.084
Method 1	30	0.014	0.031	0.102
	50	0.010	0.027	0.100
	100	0.006	0.023	0.094
Method 2	30	0.015	0.033	0.079
	50	0.011	0.031	0.077
	100	0.008	0.031	0.072
Method 3	30	0.015	0.021	0.042
	50	0.010	0.014	0.035
	100	0.006	0.009	0.029

Comparison of Distribution Function

Figure 1. The MISE of four estimators of the distribution function with three censoring percentages (10%, 30%, and 50%) when n=30, 50, and 100. The above and the below of each historgram denote IV and ISB, respectively.

Comparison of the Median Survival Time

Table 2. The MSE (V + SB) of four estimators of the median survival time with three censoring percentages (10%, 30%, and 50%) when n=30, 50, and 100.

Estimator	n	10%	MSE 30%	50%
Kaplan-Meier	30	0.023	0.041	0.105
	50	0.014	0.041	0.122
	100	0.010	0.044	0.117
Method 1	30	0.029	0.034	0.122
	50	0.018	0.027	0.125
	100	0.009	0.024	0.124
Method 2	30	0.024	0.031	0.065
	50	0.015	0.020	0.046
	100	0.008	0.012	0.029
Method 3	30	0.036	0.037	0.028
	50	0.025	0.026	0.015
	100	0.012	0.015	0.009

Comparison of the Median Survival Time

Figure 2. The MSE (V + SB) of four estimators of the median survival time with three censoring percentages (10%, 30%, and 50%) when n=30, 50, and 100. The above and the below of each histogram denote V and SB, respectively.

Comparison of the Concordance

 Table 3. The c-index of the censored data and the three transformed data with three censoring percentages (10%, 30%, and 50%) when n=30, 50, and 100.

Estimator	n	10%	<i>c</i> -index 30%	50%
Censoring	30	0.951	0.851	0.750
	50	0.949	0.849	0.748
	100	0.950	0.850	0.749
Method 1	30	0.954	0.855	0.724
	50	0.955	0.860	0.729
	100	0.957	0.868	0.736
Method 2	30	0.943	0.836	0.732
	50	0.941	0.835	0.731
	100	0.938	0.831	0.728
Method 3	30	0.973	0.916	0.844
	50	0.974	0.918	0.846
	100	0.973	0.917	0.849

Comparison of the Concordance

Figure 3. The c-index of the censored data and the three data transformed by the proposed methods with three censoring percentages (10%, 30%, and 50%) when n=30, 50, 100.

Conclusion

- ▶ In the case of small censoring percentage, the Buckley-James type method and the Koul-Susarla- Van Ryzin type method have good performance because the estimation of the kernel density estimate is well estimated.
- In the case of large censoring percentage, the mean imputation method has good performance and shows especially better performance than the Kaplan-Meier estimator.
- As future research, we might extend the method of transforming censored data proposed in this paper to the multivariate regression problem in censored survival data.

Thank you