CS6375: Machine Learning Gautam Kunapuli

Decision Trees

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering and Computer Science

Example: Restaurant Recommendation

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness** rating of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = 0)$ or not $(y_i = 1)$.

A data set is **linearly separable** if there exists a hyperplane that separates positive examples from negative examples.

- Relatively easy to learn (using standard techniques)
- Easy to visualize and interpret

Many data sets in real world are <u>not linearly separable!</u> Two options:

- Use non-linear features, and learn a linear classifier in the transformed non-linear feature space
- Use non-linear classifiers

Decision Trees can handle nonlinear separable data sets and are one of the **most popular classifiers**

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness** rating of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = 0)$ or not $(y_i = 1)$.

Decision Trees represent decision-making as a **checklist of questions**, and visualize it using a tree-structure

Decision Tree representation:

- Each non-leaf node tests an attribute/feature
- Each branch corresponds to attribute/feature value, a decision (to choose a path) as a result of the test
- Each leaf node assigns a classification

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are $\mathbf{cost}(x_1)$ and the user's **spiciness** rating of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = \mathbf{O})$ or not $(y_i = \mathbf{D})$.

- Decision trees divide the feature space into axisparallel rectangles
- Decision Trees can handle arbitrarily non-linear representations, given sufficient tree complexity
- Worst-case scenario: the decision tree has an exponential number of nodes! (why?)

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are $cost(x_1)$ and the user's **spiciness** rating of the food at the restaurant (x_2) and the label is if they liked the food (y = +1) or not (y = +1).

- Decision trees divide the feature space into axisparallel rectangles
- Decision Trees can handle arbitrarily non-linear representations, given sufficient tree complexity
- Worst-case scenario: the decision tree has an exponential number of nodes!
 - o If the target function has n Boolean features, there are 2^n possible inputs
 - In the worst case, there is one leaf node for each input (for example: XOR)

Decision trees are <u>not</u> unique, and many decision trees can represent the same hypothesis!

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness** rating of the food at the restaurant (x_2) and the label is if they liked the food (y = +1) or not (y = +1).

When do you want Decision Trees?

When instances are **describable by attribute-value pairs**:

- target function is discrete-valued
- disjunctive hypothesis may be required
- need for **interpretable** model

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

- Solution Approach 1 (Naïve solution): Create a decision tree with one path from root to leaf for each training example. Such a tree would just memorize the training data, and will not generalize well to new points.
- Solution Approach 2 (Exact solution): Find the smallest tree that minimizes the classification error. Finding this solution is NP-Hard!
- Solution Approach 3 (Heuristic solution): Top-down greedy search

```
Initialize: Choose the best feature f^* for the root of the tree Function GrowTree(data, f^*)

1Separate data into subsets \{S_1, S_2, ..., S_k\}, where each subset S_i contains examples that have the same value for f^*

2 for S_i \in \{S_1, S_2, ..., S_k\}

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i, f_i^*) until all examples have the
```

same class label

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

- Solution Approach 1 (Naïve solution): Create a decision tree with one path from root to leaf for each training example. Such a tree would just memorize the training data, and will not generalize well to new points.
- Solution Approach 2 (Exact solution): Find the smallest tree that minimizes the classification error. Finding this solution is NP-Hard!
- Solution Approach 3 (Heuristic solution): Top-down greedy search

Initialize: Choose the best feature f^* for the root of the tree Function GrowTree(data, f^*)

1Separate data into subsets $\{S_1, S_2, ..., S_k\}$, where each subset S_i contains examples that have the same value for f^* 2 for $S_i \in \{S_1, S_2, ..., S_k\}$ Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

How do we pick the best feature?

How do we decide when to stop?

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search **Initialize**: Choose the best feature f^* for the root of the tree **Function** GrowTree(data, f^*)

¹Separate data into subsets $\{S_1, S_2, ..., S_k\}$, where each subset S_i contains examples that have the **same value for** f^* ² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

Training examples

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search **Initialize**: Choose the best feature f^* for the root of the tree **Function** GrowTree(data, f^*)

¹Separate data into subsets $\{S_1, S_2, ..., S_k\}$, where each subset S_i contains examples that have the **same value for** f^* ² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

Training examples

CS6375: Machine Learning

Decision Trees

Learning Decision Trees

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search **Initialize:** Choose the best feature f^* for the root of the tree **Function** GrowTree(data, f^*)

¹Separate data into subsets $\{S_1, S_2, ..., S_k\}$, where each subset S_i contains examples that have the **same value for** f^* ² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

split on x_1 split on x_2 $x_1 = 0$ $x_1 = 1$ y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

The selected attribute is a **good split** if we are **more "certain"** about the classification after the split (compare with the perceptron)

• If each partition with respect to the chosen attribute has a **distinct class label**, we are **completely certain** about the classification

$$y = 0$$
 $y = 1$

• If class labels are evenly divided between partitions, we are very uncertain about the classification y = 0 y = 1

Problem Formulation: Find a decision tree **h** that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search **Initialize:** Choose the best feature f^* for the root of the tree **Function** GrowTree(data, f^*)

¹Separate data into subsets $\{S_1, S_2, ..., S_k\}$, where each subset S_i contains examples that have the **same value for** f^* ² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

We need a better way to resolve the uncertainty!

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

The selected attribute is a **good split** if we are **more "certain"** about the classification after the split (compare with the perceptron)

• If each partition with respect to the chosen attribute has a **distinct class label**, we are **completely certain** about the classification

$$y = 0$$
 $y = 1$ 0.0 1.0

• If class labels are evenly divided between partitions, we are very uncertain about the classification y = 0 y = 1

0.5 0.5

Discrete Probability and Information Theory

A **discrete probability distribution** describes the probability of occurrence of each value of a discrete random variable.

The **surprise** or **self-information** of each event of *X* is defined to be

$$S(X = x) = -\log_2 \text{Prob}(X = x)$$

- An event with probability 1 has zero surprise; this is because when the content of a message is known beforehand with certainty, there is no actual information conveyed
- The smaller the probability of event, the larger the quantity of self-information associated with the message that the event occurred
- An event with probability 0 has infinite surprise
- The surprise is the **asymptotic number of bits of information** that need to be transmitted to a recipient
 who knows the probabilities of the results. This is also
 called the **description length** of X.

Random Variable: Number of heads when tossing a coin 3 times

X	0	1	2	3
Prob(X)	1/8	3/8	3/8	1/8
$-\log_2 P(X)$	3	1.415	1.415	3
$-\log_{\mathrm{e}} P(X)$	2.079	0.980	0.980	2.079
$-\log_{10} P(X)$	0.903	0.426	0.426	0.903

If the logarithm is base 2, the unit of information is bits, base e is nats and base 10 hartleys

Entropy

A standard way to measure uncertainty of a random variable is to use entropy

$$H(X) = -\sum_{x} P(X = x) \log_2 P(X = x)$$

- Note that the entropy is computed by **summing over all the events**/outcomes/states of the random variable.
- Entropy is maximized for uniform distributions, where the probability of all outcomes is equal (is this what we want?)
- Entropy is minimized for distributions that place all their probability on a single outcome (or is this what we want?)

The entropy of label distributions can be computed as:

$$H(y) = -P(y = 0)\log_2 P(y = 0) - P(y = 1)\log_2 P(y = 1)$$

Conditional Entropy and Mutual Information

Entropy can also be computed when conditioned on another variable:

$$H(Y|X) = -\sum_{x} P(X = x) \sum_{y} P(Y = y \mid X = x) \log_{2} (Y = y \mid X = x)$$

This is called **conditional entropy** and is the amount of information needed to quantify the random variable Y given the random variable X.

The mutual information or information gain between two random variables is defined as

$$I(X,Y) = H(Y) - H(Y|X)$$

This is the amount of information we learn about Y by knowing the value of X and vice-

versa (it is symmetric).

In our case, larger information gain corresponds to less uncertainty about *Y* (labels) given *X* (data).

Choosing the Best Feature

Step 1: Count the various combinations of features and labels

Step 2: Convert to probabilities

split on
$$x_1$$

5/8 3/8

 $x_1 = 0$ (4/8)

 $x_1 = 1$ (4/8)

1/4 3/4

 $y = 0$ $y = 1$ $y = 0$ $y = 1$

split on
$$x_2$$

5/8 3/8

 $x_2 = 0 (4/8)$
 $x_2 = 1 (4/8)$

2/4 2/4
 $y = 0 \ y = 1$
 $y = 0 \ y = 1$

x_1	x_2	у
1	1	0 (+)
1	0	0 (+)
1	1	0 (+)
1	0	0 (+)
0	1	0 (+)
0	0	1 (-)
0	1	1 (-)
0	0	1 (-)

Choosing the Best Feature

Step 3: Compute information gain for both splits and pick the variable with the biggest gain

Where are all the entropies?

	x_1	x_2	у
	1	1	0 (+)
	1	0	0 (+)
	1	1	0 (+)
	1	0	0 (+)
.)	0	1	0 (+)
	0	0	1 (-)
	0	1	1 (-)
	0	0	1 (-)

The ID3 Algorithm

The ID3 (Iterative Dichotomizer) and its successor, C4.5 were developed by Ross Quinlan in the early to mid 1980s and are widely considered to be a landmark machine learning algorithms, and until at least 2008, were the #1 data mining tool.

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - $A \leftarrow$ the attribute from Attributes that best* classifies Examples
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below Root, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If $Examples_{v_i}$ is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree $ID3(Examples_{v_i}, Target_attribute, Attributes \{A\}))$

- End
- Return Root

Some Final Details

When do we terminate?

- If the current set is "pure" (i.e., has a single label in the output), stop
- If you **run out of attributes to recurse on**, even if the current data set isn't pure, stop and use a majority vote
- If a partition contains no data points, use the majority vote at its parent in the tree
- If a partition contains no data items, nothing to recurse on
- For fixed depth decision trees, the final label is determined by majority vote

How do we handle real-valued features?

- For continuous attributes, use threshold splits
- Split the tree into $x_k < t$ and $x_k \ge t$
- Can split on the same attribute multiple times on the same path down the tree

How do we select the splitting threshold?

Overfitting in Decision Trees

Hypothesis space is complete! Target function is surely in there

No back tracking; Greedy thus local minima

Statistics-based search choices; Robust to noisy data

Inductive bias: heuristically prefer shortest tree

Decision trees will always overfit!

It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)

Possibly just noise, but the tree is grown larger to capture these examples

Overfitting in Decision Trees

Hypothesis space is complete! Target function is surely in there

No back tracking; Greedy thus local minima

Statistics-based search choices; Robust to noisy data

Inductive bias: heuristically prefer shortest tree

Decision trees will always overfit!

It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)

Possibly just noise, but the tree is grown larger to capture these examples

Avoiding Overfitting in Decision Trees

Pre-pruning/early stopping

- Typical stopping criterion
 - No error (if all instances belong to same class)
 - IF all the attribute values are same
- More restrictive conditions
 - Stop growing when data split is not statistically significant (example using chisquare test)
 - Stop if the number of instances is less than a predefined threshold
 - Stop if expanding does not significantly improve the measures (information gain)

Post-pruning after growing a full tree

- Separate data into training and validation sets
- Evaluate impact on validation set when a node is "pruned"
- Greedily remove node that improves performance the most
- Produces smallest version of most accurate subtree
- Typically use minimum description length (MDL) for post-pruning

Some Post-pruning Methods

Reduced-Error Pruning

- Use a validation set (tuning) to identify errors at every node
- Prune node with highest reduction error
- Repeat until error no longer reduces

Pessimistic Pruning

- No necessity of a validation set
- The error estimate at every node is conservative based on the training examples

Rule-post Pruning

- Convert tree to equivalent set of rules (how)?
- Prune each rule independently of others
- Sort final rules into desired sequence

Decision Trees

- Decision Trees popular and a very efficient hypothesis space
 - Variable size: Any Boolean function can be represented
 - Handles discrete and continuous features
 - Handles classification and regression
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Constructive heuristic search: built top-down by adding nodes
- Decision trees will overfit!
 - zero bias classifier (no mistakes) = large variance
 - must use tricks to find simpler trees
 - early stopping, pruning etc.