OPTIMIZACIÓN POR ENJAMBRE DE PARTÍCULAS (PSO)

RESOLUCIÓN: PROBLEMA DEL VIAJANTE DE COMERCIO (ATSP)

LABAYEN, FRANCO
WALS OCHOA, LUCAS

ÍNDICE DE TEMAS A TRATAR

- 1. Principios básicos del Algoritmo PSO
- 2. Representación del problema ATSP
- 3. Adaptación del Algoritmo PSO al problema ATSP: Optimización por enjambre de partículas para permutación de enteros (PSOP)
- 4. Resultados obtenidos
- 5. Conclusiones

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.1 ANALOGÍA CON LA NATURALEZA

- **Clienjambre** / Conjunto de Partículas
- Posición de una partícula / abeja
- † Velocidad / Rapidez y dirección

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.2 OBJETIVO Y LIMITACIONES

Objetivo

- Optimizar (minimizar) una función objetivo de tipo $f: \mathbb{R}^n \to \mathbb{R}$.
- ¿Cómo? Haciendo que el enjambre converja a una solución rápidamente.

Limitaciones

- No garantiza encontrar la mejor solución
- No fue diseñado originalmente para dominios discretos

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.3 ESTRUCTURAS

<u>Partícula</u>

- Una posición $x \in \mathbb{R}^n$.
- Una mejor posición local $pBest \in \mathbb{R}^n$.
 - Una velocidad $v \in \mathbb{R}^n$.
 - Un valor $fitness_x \in R$.
 - Un valor $fitness_pBest \in R$.

Enjambre

- Un conjunto de partículas.
- Una mejor posición global $gBest \in \mathbb{R}^n$.
 - Un valor $fitness_gBest \in R$.

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.4 FUNCIONAMIENTO

Generación aleatoria de posiciones y velocidades

Iteración

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.4 FUNCIONAMIENTO

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.5 SISTEMA MATEMÁTICO: ECUACIONES

Operador Actualización de velocidad

$$\mathbf{v_i^t} = \omega \cdot v_i^{t-1} + \varphi_1 \cdot r_1 \cdot \left(pBest_i - x_i^{t-1} \right) + \varphi_2 \cdot r_2 \cdot \left(gBest - x_i^{t-1} \right)$$

Factor de inercia

Factor cognitivo

Factor social

Operador Movimiento

$$\mathbf{x}_i^t = \mathbf{x}_i^{t-1} + \mathbf{v}_i^t$$

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.5 CLASIFICACIÓN

PSO Global

- La búsqueda es guiada por un único punto global.
- Es en el cual basamos la implementación.

PSO Local

- Añade el concepto de vecindarios.
- La búsqueda es guida por varios puntos globales, uno por cada vecindario.

1. PRINCIPIOS BÁSICOS DEL ALGORITMO PSO 1.6 PSEUDOCÓDIGO

Para cada partícula i = 1, ..., hasta el total de partículas:

- Inicializar la posición x_i ∈ Rⁿ aleatoriamente.
- Inicializar la velocidad v_i ∈ Rⁿ aleatoriamente.
- Inicializar la posición pBest_i ∈ Rⁿ con el valor de x_i: pBest_i ← x_i
- Inicializar fitness_x_i ∈ R de la siguiente forma: fitness_x_i ← f(x_i)
- Inicializar $fitness_pBest_i \in R$ de la siguiente forma: $fitness_pBest_i \leftarrow fitness_x_i$
- Si (fitness_pBest_i < fitness_gBest) entonces:
 - Actualizar el mejor resultado global: fitness_gBest ← fitness_pBest_i
 - O Actualizar la mejor posición global: gBest ← pBest_i

Mientras no se alcance el límite máximo de iteraciones, o no se cumpla el criterio de parada:

- Para cada partícula i = 1, ..., hasta el total de partículas:

 - O Trasladar la posición x_i : $x_i \leftarrow x_i + v_i$
- Para cada partícula i = 1, ..., hasta el total de partículas:
 - \circ Reevaluar $fitness_x_i: fitness_x_i \leftarrow f(x_i)$
 - O Si $(fitness_x_i < fitness_pBest_i)$ entonces:
 - Actualizar el mejor resultado local: $fitness_pBest_i \leftarrow fitness_x_i$
 - Actualizar la mejor posición local: pBest_i: pBest_i ← x_i
 - Si (fitness_pBest_i < fitness_gBest) entonces:</p>
 - Actualizar el mejor resultado global: fitness_gBest ← fitness_pBest_i
 - Actualizar la mejor posición global: gBest ← pBest_i

Devolver *aBest* como la mejor solución.

2. REPRESENTACIÓN DEL PROBLEMA ATSP 2.1 INSTANCIA

ullet Un problema en particular será representado por una matriz cuadrada asimétrica que llamaremos \mathcal{C} .

Consideraciones

- Dimensión = Cantidad de Ciudades.
- El costo de ir de una ciudad i a otra j, está dado por el coeficiente C_{ij} .

С	0	1	2	3	4
0	∞	42	11	22	34
1	29	∞	95	19	15
2	23	43	∞	11	51
3	80	28	10	∞	45
4	10	17	74	89	∞

2. REPRESENTACIÓN DEL PROBLEMA ATSP 2.2 TOUR

• Camino: $0 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 0$

- Representación: [0,3,1,4,2]
- Condiciones
 - Longitud de lista (n) = Dimensión de la matriz C.
 - Números enteros comprendidos [0, n-1].
 - Números no repetidos.

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.1 FUNDAMENTOS

- PSO original no nos permite trabajar con entornos discretos:
 - No es viable con la representación planteada.

- Surge la necesidad de formular:
 - Nuevas estructuras.
 - Un <u>nuevo sistema matemático</u>.

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.2 CAMBIOS ESTRUCTURALES

Posición

Las posiciones de una partícula estarán formadas por una lista de N posibles valores enteros sin que existan repeticiones u omisiones.

$$x = [4, 3, 2, 0, 5, 1]$$

Una posición representará un tour

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.2 CAMBIOS ESTRUCTURALES

Velocidad

Las velocidades estarán representadas por una lista de listas, donde cada sublista representará un par de enteros $[i \to j]$.

$$v = [[9 \rightarrow 1], [4 \rightarrow 6], [1 \rightarrow 5]]$$

Una velocidad simbolizará un conjunto de intercambios o permutaciones a realizar sobre los elementos de una posición

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.3 CAMBIOS EN LAS ECUACIONES

Operador Actualización de Velocidad

$$v_i^t = \omega \otimes v_i^{t-1} \circ \varphi_1 \otimes (pBest_i \theta x_i^{t-1}) \circ \varphi_2 \otimes (gBest \theta x_i^{t-1})$$

Nuevos Operadores

Operador Movimiento

$$x_i^t = x_i^{t-1} \oplus v_i^t$$

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.3 CAMBIOS EN LAS ECUACIONES: OPERADOR θ

Resta de posiciones

 $[[5 \rightarrow 1], [2 \rightarrow 2], [4 \rightarrow 3], [6 \rightarrow 4], [3 \rightarrow 5], [1 \rightarrow 6]]$

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.3 CAMBIOS EN LAS ECUACIONES: OPERADOR •

Suma de velocidades

$$[[5 \to 1], [2 \to 2]] \circ [[1 \to 1], [5 \to 1], [2 \to 4]]$$

$$=$$

$$[[5 \to 1], [2 \to 4]]$$

Producto Coeficiente φ Velocidad v

- Si φ se encuentra entre [0,1] , se obtiene $\varphi'=rand(0,1)$ y se compara:
 - $\varphi' < \varphi \Rightarrow [i \rightarrow j] = [i \rightarrow i]$
 - $\varphi' \geq \varphi \Rightarrow [i \rightarrow j] = [i \rightarrow j]$
- Si $\varphi > 1$, tal que $\varphi = k + \varphi'$, con k entero y $\varphi' < 1$:

$$v \circ v \circ \dots \circ v \circ \varphi' \otimes v$$
 $k \text{ veces}$

Producto Coeficiente φ Velocidad v

$$0.5 \otimes [[1 \rightarrow 3], [2 \rightarrow 5], [4 \rightarrow 4], [3 \rightarrow 2]]$$

$$=$$

$$[[1 \rightarrow 1], [2 \rightarrow 5], [4 \rightarrow 4], [3 \rightarrow 3]]$$

Para valores de
$$\varphi'=0.2-0.8-0.5-0.3$$

$$\varphi'<\varphi\Rightarrow [i\rightarrow j]=[i\rightarrow i]$$

$$\varphi'\geq\varphi\Rightarrow [i\rightarrow j]=[i\rightarrow j]$$

3. ADAPTACIÓN DEL ALGORITMO PSO (PSOP) 3.3 CAMBIOS EN LAS ECUACIONES: OPERADOR (**)

Suma de Posición con Velocidad

$$[2,4,3,6,1,5] \oplus [[3 \to 1], [6 \to 6], [1 \to 5]]$$

$$=$$

$$[2,4,1,6,3,5] \qquad [2,4,1,6,3,5] \qquad [2,4,5,6,3,1]$$

$$[3 \to 1] \qquad [6 \to 6] \qquad [1 \to 5]$$

3. ADAPTACIÓN DEL ALGORITMO PSO 3.4 OPTIMIZACIÓN DE ECUACIONES: $\varphi_1=\varphi_2$

Posición Intermedia:

$$\mathbf{pInt}_i = pBest_i \oplus \frac{1}{2} \otimes (gBest \theta \ pBest_i)$$

Operador Actualización de Velocidad

$$\mathbf{v}_{i}^{t} = c1 \otimes v_{i}^{t-1} \circ c2 \otimes \left(\mathbf{pInt}_{i} \theta x_{i}^{t-1}\right)$$

Operador Movimiento

$$\mathbf{x}_i^t = x_i^{t-1} \oplus \mathbf{v}_i^t$$

3. ADAPTACIÓN DEL ALGORITMO PSO 3.5 PSEUDOCÓDIGO

Para cada partícula i = 1, ..., hasta el total de partículas:

- \diamond Inicializar la posición x_i con un tour generado aleatoriamente.
- \diamond Inicializar la velocidad de la partícula v_i mediante la resta de dos posiciones aleatorias.
- ❖ Inicializar la posición $pBest_i$ con el valor de x_i : $pBest_i \leftarrow x_i$
- \bullet Inicializar $fitness_x_i$ de la siguiente forma: $fitness_x_i \leftarrow f(x_i)$
- Inicializar $fitness_pBest_i$ de la siguiente forma: $fitness_pBest_i \leftarrow fitness_x_i$
- \Leftrightarrow Si ($fitness_pBest_i < fitness_gBest$) entonces:
 - O Actualizar el mejor resultado global: $fitness_gBest \leftarrow fitness_pBest_i$
 - O Actualizar la mejor posición global: $gBest \leftarrow pBest_i$

Mientras no se alcance el límite máximo de iteraciones, o no se cumpla el criterio de parada:

- ❖ Para cada partícula i = 1, ..., hasta el total de partículas:
 - o Actualizar la velocidad: $v_i^t = c1 \otimes v_i^{t-1} \circ c2 \otimes (pInt_i \theta x_i^{t-1})$
 - o Actualizar la posición: $x_i^t = x_i^{t-1} \oplus v_i^t$
- ❖ Para cada partícula i = 1, ..., hasta el total de partículas:
 - \circ Reevaluar $fitness_x_i$: $fitness_x_i \leftarrow f(x_i)$
 - Si (fitness_x_i < fitness_pBest_i) entonces:
 - Actualizar el mejor resultado local: $fitness_pBest_i \leftarrow fitness_x_i$
 - Actualizar la mejor posición local: $pBest_i$: $pBest_i \leftarrow x_i$
 - Si (fitness_pBest_i < fitness_gBest) entonces:</p>
 - Actualizar el mejor resultado global: fitness_{gBest} ← fitness_pBest_i
 - Actualizar la mejor posición global: gBest ← pBest_i

Devolver gBest como la mejor solución.

4. RESULTADOS 4.1 CONFIGURACIÓN BASADA EN BR17

• Cantidad de Partículas: 200.

• Cantidad Máxima de Iteraciones: 10000.

• *c*1: 0,4.

• *c*2: 0,1.

	PI	PTS	PE	PTT	PC	MS
Br17	569,47	0,63	881732,5	9,93	39,03	39
Ftv33	4831,73	15,11	12257107,5	30,58	1798,03	1 <i>574</i>
Ft53	7132,77	46,77	17314307,5	64,93	11209,40	10219
Ft70	7935,83	85,08	14271325	106,54	48830,47	46952

4. RESULTADOS 4.1 CONFIGURACIÓN BASADA EN FTV33

• Cantidad de Partículas: 250.

• Cantidad Máxima de Iteraciones: 75000.

• *c*1: 0,1.

• *c*2: 0,4.

	PI	PTS	PE	PTT	PC	MS
Br17	3526,93	4,53	113893,33	98,88	39	39
Ftv33	49028,43	199,38	966346,67	298,99	1665,43	1491
Ft53	69257,23	593,33	1426553,33	642,72	10898,37	9425
Ft70	<i>57</i> 085,30	<i>7</i> 81,36	1587166,67	1020,04	54075,47	47468

4. RESULTADOS 4.1 CONFIGURACIÓN BASADA EN FT53

• Cantidad de Partículas: 100.

• Cantidad Máxima de Iteraciones: 150000.

• *c*1: 0,2.

• *c*2: 1,8.

	PI	PTS	PE	PTT	PC	MS
Br17	3442,00	2,24	344200	94,91	39,17	39
Ftv33	80401,53	153,58	8040153	281,71	1733,73	1521
Ft53	118616,13	470,82	11861613	594,16	108 <i>57</i> ,33	9934
Ft70	132425,47	863,76	13242547	976,93	50525,20	46968

4. RESULTADOS 4.1 CONFIGURACIÓN BASADA EN FT70

• Cantidad de Partículas: 300.

• Cantidad Máxima de Iteraciones: 50000.

• *c*1: 0,25.

• *c*2: 0,25.

	PI	PTS	PE	PTT	PC	MS
Br17	<i>57</i> 8,1 <i>7</i>	0,90	173451	78,10	39,00	39
Ftv33	1 <i>77</i> 67,6	85,15	5330280	231,85	1692,67	1464
Ft53	35092,17	351,80	10527651	497,08	10490,00	9274
Ft70	42237,03	<i>7</i> 00,53	12671109	826,27	47210,47	45108

5. CONCLUSIONES

- Para lograr mejores aproximaciones, generalmente es mejor aumentar el números de partículas, en lugar al de iteraciones.
- \bullet Recomendamos valores de c1 y c2 chicos.
- La configuración basada en ft70 es relativamente buena para las cuatro instancias.
- La selección de la configuración es un problema en sí mismo.