One Bit At A Time

- We can combine bits, like with base-10 numbers, to represent more data. 8 bits = 1 byte.
- Computer memory is just a large array of bytes! It is *byte-addressable*; you can't address (store location of) a bit; only a byte.
- Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
 - Images
 - Audio
 - Video
 - Text
 - And more...

Base 2

$$= 1*8 + 0*4 + 1*2 + 1*1 = 11_{10}$$

Byte Values

What is the minimum and maximum base-10 value a single byte (8 bits)
 can store? minimum = 0 maximum = 255

- Strategy 1: $1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 255$
- Strategy 2: $2^8 1 = 255$

Multiplying by Base

$$1450 \times 10 = 14500$$

 $1100_2 \times 2 = 11000$

Key Idea: inserting 0 at the end multiplies by the base!

Dividing by Base

$$1450 / 10 = 145$$
 $1100_2 / 2 = 110$

Key Idea: removing 0 at the end divides by the base!

Hexadecimal

• Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f

Hexadecimal

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	Α	В	С	D	Е	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with 0x, and binary numbers with 0b.
- E.g. **0xf5** is **0b11110101**

Number Representations

C Declaration	Size (Bytes)
int	4
double	8
float	4
char	1
char *	8
short	2
long	8

Transitioning To Larger Datatypes

- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to 2³²-1, equaling 2³² bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to **64-bit**. This means that datatypes were enlarged; pointers in programs were now **64 bits**.
- 64-bit pointers store a memory address from 0 to 2⁶⁴-1, equaling 2⁶⁴ bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most 1024*1024*1024 GB of memory (RAM)!

Unsigned Integers

- An unsigned integer is 0 or a positive integer (no negatives).
- We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

```
0b0001 = 1
0b0101 = 5
0b1011 = 11
0b1111 = 15
```

• The range of an unsigned number is $0 \rightarrow 2^w$ - 1, where w is the number of bits. E.g. a 32-bit integer can represent 0 to 2^{32} – 1 (4,294,967,295).

Unsigned Integers

Sign Magnitude Representation

```
1\ 000 = -0 0\ 000 = 0

1\ 001 = -1 0\ 001 = 1

1\ 010 = -2 0\ 010 = 2

1\ 011 = -3 0\ 011 = 3

1\ 100 = -4 0\ 100 = 4

1\ 101 = -5 0\ 101 = 5

1\ 110 = -6 0\ 110 = 6

1\ 111 = -7 0\ 111 = 7
```

• We've only represented 15 of our 16 available numbers!

Sign Magnitude Representation

- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- Con: arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.

Can we do better?

A Better Idea

Decimal	Positive	Negative	Decimal	Positive	Negative
0	0000	0000	8	1000	1000
1	0001	1111	9	1001 (same as -7!)	NA
2	0010	1110	10	1010 (same as -6!)	NA
3	0011	1101	11	1011 (same as -5!)	NA
4	0100	1100	12	1100 (same as -4!)	NA
5	0101	1011	13	1101 (same as -3!)	NA
6	0110	1010	14	1110 (same as -2!)	NA
7	0111	1001	15	1111 (same as -1!)	NA

There Seems Like a Pattern Here...

• The negative number is the positive number inverted, plus one!

Another Trick

 To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1. Then, invert the rest of the digits.

Two's Complement

- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The two's complement of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!

Two's Complement

- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- Pro: only 1 representation for 0!
- Pro: all bits are used to represent as many numbers as possible
- Pro: the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!

Overflow

• If you exceed the **maximum** value of your bit representation, you *wrap* around or overflow back to the **smallest** bit representation.

$$0b1111 + 0b1 = 0b0000$$

• If you go below the **minimum** value of your bit representation, you *wrap* around or overflow back to the **largest** bit representation.

$$0b0000 - 0b1 = 0b1111$$

Min and Max Integer Values

Туре	Size (Bytes)	Minimum	Maximum
char	1	-128	127
unsigned char	1	0	255
short	2	-32768	32767
unsigned short	2	0	65535
int	4	-2147483648	2147483647
unsigned int	4	0	4294967295
long	8	-9223372036854775808	9223372036854775807
unsigned long	8	0	18446744073709551615

Min and Max Integer Values

INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX,
ULONG_MAX, ...

Overflow

Unsigned Integers

≈+4billion 0

Increasing <u>positive</u> <u>numbers</u>

Signed Numbers

Increasing positive numbers

printf and Integers

- There are 3 placeholders for 32-bit integers that we can use:
 - %d: signed 32-bit int
 - %u: unsigned 32-bit int
 - %x: hex 32-bit int
- The placeholder—not the expression filling in the placeholder—dictates what gets printed!

Casting

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Туре	Evaluation	Correct?
0 == 0U	Unsigned	1	yes
-1 < 0	Signed	1	yes
-1 < OU	Unsigned	0	No!
2147483647 > -2147483647 - 1	Signed	1	yes
2147483647U > -2147483647 - 1	Unsigned	0	No!
2147483647 > (int)2147483648U	Signed	1	No!
-1 > -2	Signed	1	yes
(unsigned) -1 > -2	Unsigned	1	yes

Туре	Size (Bytes)	Minimum	Maximum
int	4	-2147483648	2147483647
unsigned int	4	0	4294967295

Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true
```


Expanding Bit Representations

- Sometimes, we want to convert between two integers of different sizes (e.g. **short** to **int**, or **int** to **long**).
- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.
- For unsigned values, we can add leading zeros to the representation ("zero extension")
- For **signed** values, we can *repeat the sign of the value* for new digits ("sign extension")
- Note: when doing <, >, <=, >= comparison between different size types, it will *promote to the larger type*.

Truncating Bit Representation

If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

0000 0000 0000 0000 1100 1111 1100 0111

When we cast **x** to a **short**, it only has 16-bits, and C *truncates* the number:

1100 1111 1100 0111

This is -12345! And when we cast **sx** back an **int**, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345
```

The sizeof Operator

```
long sizeof(type);
```

```
// Example
long int_size_bytes = sizeof(int);  // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char);  // 1
```

sizeof takes a variable type as a parameter and returns the size of that type, in bytes.

Summary: Basic Rules of Expanding, Truncating

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

- Conventions
 - -Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
 - Least significant byte has highest address
 - -Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address

Byte Ordering Example

- Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address
- Example:
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

Increasing addresses

int B = -15213;

Two's complement representation

long int C = 15213;

