Phose Transition, Logarithmic Subuler Inequalities (LSZ)
Unform-in-time Propagation of Chaos
Consider IPS:
$dx^{i} = -\nabla V(x^{i}) dt - \frac{1}{N} \sum_{j=1}^{N} \nabla_{j} W(x^{i}, x^{j}) dt$ $+ \int_{B} dB_{i}^{i} dB_{i}^{i}$
+ 5/B d B+
$(Low(X_0, -\cdot, X_0^N) = \rho_{in}^{\otimes N} + \rho_{2, iym}^{\otimes N}((IR^d)^N)$
Law(X_0^1 , X_0^N) = $P_0^N + P_1^N$ (P_0^N) On Enclider space ($X_0^1 \in P_0^N$)
Classical Results: POG
as N-100, tends to McKean-Vlasor PDE
(ME) (DO N-> & Just)
J+P +AP+ TO(P(DV+TW*P))

$$P(0) = P_{in} \quad (Le-Yang) \quad \text{infinite volume}$$
where $W + P(x) := \int_{\mathbb{R}^d} W(x, y) \, dp(y)$

$$M_N = \frac{1}{7n} e^{-\beta H_N}$$

Check: He uniqueess of the steady state
of N-particle Fokker-Planck.

Take
$$P^{N}(t) = Law(X_{t}, --, X_{t}^{N})$$

$$F P_{sym}(IR^{dN})$$

$$\begin{cases} \rho^{N}(u) = \frac{1}{\beta} \delta \rho^{N} + \nabla \cdot (\rho^{N} \nabla H_{N}) \\ \rho^{N}(u) = \rho^{\mathcal{D}_{N}} \end{cases}$$

where
$$H_{N}(x) = \sum_{i=1}^{N} V(x_i) + \sum_{i=1}^{N} \sum_{i,j=1}^{N} W(x_i, x_j)$$

$$X = (x_i - x_m)$$

$$V, \beta - \text{fixed.}$$

$$M_{N} = \frac{1}{Z_{N}} e^{-\beta H_{N}}$$

$$\frac{1}{Z_{N}} e^{-\beta H_{N}} = \frac{1}{N} \int_{\mathbb{R}^{d_{N}}} e^{-\beta H_{N}} \int_{\mathbb{R}^{d_{N}}} e^{$$

(if Pin = another steady state P # 14 pu = Free Enersy)

$$\frac{2}{8}(\rho^{N}(r)|M_{N})^{2} = \frac{1}{8}(\rho^{N}|M_{N})^{2} - \frac{1}{8}(\rho^{N}|M_{N})^{2} = \frac{1}{8}(\rho^{N}|M_{N})^{2} - \frac{1}{8}(\rho^{N}|M_{N})^{2} = \frac{1}{8}(\rho^{N}|M$$

Longevin:
$$dX_{+} = -VV(R) + \int_{\beta}^{2} dux^{2}$$

Gobbs = $7e^{-\beta V(R)}$

$$\begin{pmatrix} \beta^{1} \Delta \rho^{N} + \nabla \cdot (\rho^{N} \nabla H_{N}) = 0 \\
\nabla \cdot (\rho^{N} (\frac{1}{\beta} \nabla \log \rho^{N} + \nabla H_{N})) = 0 \\
\nabla \cdot (\rho^{N} (\frac{1}{\beta} \nabla \log \rho^{N} + \nabla H_{N})) = 0
\end{pmatrix}$$

Fix B, Fix N.

uniqueness of N-partite spren V almost trivial.

Mean-Field PDE: V, W.

BCRC B=BC B>BC

uniqueness

high demperators

Thealy startes

Pigression:

Burgers
$$\begin{cases}
d_1 u + \frac{1}{2} d_x (u^2) = 0 \\
u_0 = a \delta_{x=0}
\end{cases}$$
Hime any appropriate of the properties of the properties

L u0 = a dx=0 u ~ Heat Kernel (for fixed, discuss the time interval
con limit 2-0 inviscent limit -scale??) N-wave: 11 of meta-stable (智友) Literature: dX+ = - DV(X+) + Jadwr Estimate exit time Shock Waves | Lin Taiping Uniform-in-time POC

= Uniform approximation of Man-field PDES

by N-particle system

which is possible when the PDE admits unique stationary state.

Study the time scale of validity of mean-field approximation.

Question:

Random Matrices

Dyson Brownian Mutions. (linem Fother Plant)
Wishart: ??

3 uniform-in-time

Time length of Mean-field approximation
Validing

Maybe luck at derivation of Landon type Kinetic eq. from physical point of view.

def + u. Dxf + E. Dxf = 2Q(dx)

Kerne Ls

Potentials

W=0

V, W - K-cent-convex

KER $D^2V > K_W U^2$ V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > - C

W = 0

V > -

$$\begin{cases} N(x, \lambda) = (x-\lambda)_{5} \\ N(x, \lambda) = (x-\lambda)_{5} \end{cases}$$

Phase Transition by Analysis

$$dx(t) = \begin{bmatrix} -x^3 + x_5 \end{bmatrix} dt + \sigma du(t)$$
System: $(\phi_d^y = \cdots)$

$$dx_5 = (-x_5^3 + x_5) dt + \sigma du(t) - \Theta(x_5 - x_5) dt$$

Gibbs 5 \$2 pt - Endiden lartie sield on 2d.