

B.TECH SECOND YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO: 33 (THIRTY THREE)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. VIVEK SINGH

EMAIL-ID : vivek.singh@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: 19 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,
Team Work Execution with Passion, Humane Touch

SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF ODE AND THEIR APPLICATIONS AND SOLVE THE PROBLEM"

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Subgroups

Algebraic systems

- N = $\{1,2,3,4,....\infty\}$ = Set of all-natural numbers. Z = $\{0, \pm 1, \pm 2, \pm 3, \pm 4,\infty\}$ = Set of all integers. Q = Set of all rational numbers. R = Set of all real numbers.
- Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a nonempty set A, if

 $a * b \in A$ for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.

 Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: (N, +), (Z, +, -), (R, +, ., -) are algebraic systems.

Properties

Commutative: Let * be a binary operation on a set A. The operation * is said to be commutative in A if

Associativity: Let * be a binary operation on a set A. The operation * is said to be associative in A if

$$(a * b) * c = a * (b * c)$$
 for all a, b, c in A

Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if

a * e = e * a = a for all $a \in A$.

Properties

- Note: For an algebraic system (A, *), the identity element, if exists, is unique.
- Inverse: Let (A, *) be an algebraic system with identity 'e'.
 Let a be an element in A. An element b is said to be inverse of A if

$$a * b = b * a = e$$

DR. VIVEK SINGH

Semi group

- Semi Group: An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- **Ex.** (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- Ex. (N,) is not a semi group.

Monoid

- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- **Ex.** Show that the set 'N' is a monoid with respect to multiplication.
- Solution: Here, N = {1,2,3,4,.....}
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.

i.e., a.b = b.a for all $a,b \in N$

: Multiplication is a closed operation.

Monoid

Associativity: Multiplication of natural numbers is associative.
 i.e., (a.b).c = a.(b.c) for all a,b,c ∈ N

3. <u>Identity</u>: We have, 1 ∈ N such that
a.1 = 1.a = a for all a ∈ N.
∴ Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid

Sub semigroup: Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation *, then (T, *) is called a sub semigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Sub monoid: Let (S, *) be a monoid with identity e, and let T be a nonempty subset of S. If T is closed under the operation * and e \in T, then (T, *) is called a sub monoid of (S, *).

THANK YOU

18

MUJ | DR. VIVEK SINGH 14-Aug-20

18

MUJ | DR. VIVEK SINGH 14-Aug-20