Artificial Intelligence 19. Critical Path Heuristics Honing In On the Most Critical Subgoals

Prof Sara Bernardini bernardini@diag.uniroma1.it www.sara-bernardini.com

Autumn Term

Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

Agenda

- Introduction
- Critical Path Heuristics
- 3 Dynamic Programming Computation
- Graphplan Representation [for Reference]
- 5 What about FDR Planning?
- 6 Conclusion

Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

We Need Heuristic Functions!

ightarrow Critical path heuristics are a family of methods to relax planning tasks, and thus automatically compute heuristic functions h.

There are four different methods currently known:

- Critical path heuristics → This Chapter
- Delete relaxation → Chapter 20
- Abstractions
- Landmarks
- LP Heuristics
- \rightarrow Each of these have advantages and disadvantages.

Critical Path Heuristics: Basic Idea

"Approximate the cost of a goal set by the most costly subgoal."

Assume unit costs. Then h(I) is? 2 (Perth or Darwin).

But: In "the most costly subgoal", we may use size > 1!

ightarrow It is easiest to understand this approximation in terms of approximate versions of an equation characterizing h^* by regression.

Sara Bernardini

Our Agenda for This Chapter

- Critical Path Heuristics: Introduces and illustrates the formal definition.
- **Operation:** The straightforward method to compute critical path heuristics.
- **Graphplan Representation:** A slightly less straigtforward method to compute critical path heuristics. I mention this here only because, historically, it was there first, and its terminology is all over the planning literature.
- What about FDR Planning? The above uses STRIPS as this is a little easier to discuss in the examples. In this section, we point out that (almost) everything remains exactly the same for FDR.

A Regression-Based Characterization of h^*

Definition (r^*). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The perfect regression heuristic r^* for Π is the function $r^*(s) := r^*(s, G)$ where $r^*(s, g)$ is the function that satisfies

$$r^*(s,g) = \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \min_{a \in A, regr(g,a) \neq \bot} c(a) + r^*(s, regr(g,a)) & \textit{otherwise} \end{array} \right.$$

(Reminder Chapter 17:
$$regr(g, a) \neq \bot$$
 if $add_a \cap g \neq \emptyset$ and $del_a \cap g = \emptyset$; then, $regr(g, a) = (g \setminus add_a) \cup pre_a$.)

 \rightarrow The cost of achieving a subgoal g is 0 if it is true in s; else, it is the minimum of using any action a to achieve g.

Proposition. Let $\Pi=(P,A,c,I,G)$ be a STRIPS planning task. Then $r^*=h^*$. (Proof omitted.)

Sara Bernardini

Critical Path Heuristics: h^1

Definition (h^1). Let $\Pi=(P,A,c,I,G)$ be a STRIPS planning task. The critical path heuristic h^1 for Π is the function $h^1(s):=h^1(s,G)$ where $h^1(s,g)$ is the function that satisfies

$$h^{1}(s,g) = \begin{cases} 0 & g \subseteq s \\ \min_{a \in A, regr(g,a) \neq \bot} c(a) + h^{1}(s, regr(g,a)) & |g| = 1 \\ \max_{g' \in g} h^{1}(s, \{g'\}) & |g| > 1 \end{cases}$$

 \rightarrow For singleton subgoals g, use regression as in r^* . For subgoal sets g, use the cost of the most costly singleton subgoal $g' \in g$.

$$\rightarrow$$
 "Path" $= g_1 \xrightarrow{a_1} g_2 \dots g_{n-1} \xrightarrow{a_{n-1}} g_n$ where $g_1 \subseteq s$, $g_n \subseteq G$, $g_i \neq g_j$, and $g_i \subseteq regr(g_{i+1}, a_i)$. $|g_i| = 1$ here, $|g_i| \leq m$ for h^m (up next).

ightarrow "Critical path" = Cheapest path through the most costly subgoals g_i .

Sara Bernardini

The h^1 Heuristic in "TSP" in Australia

- P: at(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}$; v(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}$.
- A: drive(x, y) where x, y have a road.

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{Sy,Br\} \\ 1.5 & \{x,y\} = \{Sy,Ad\} \\ 3.5 & \{x,y\} = \{Ad,Pe\} \\ 4 & \{x,y\} = \{Ad,Da\} \end{cases}$$

- I: at(Sy), v(Sy); G: at(Sy), v(x) for all x.
- $h^1(I) = h^1(I, G) = h^1(I, \{at(Sy), v(Sy), v(Ad), v(Br), v(Pe), v(Da)\}) = \max(h^1(I, \{at(Sy)\}), \dots, h^1(I, \{v(Da)\})).$
- $h^1(I, \{at(Sy)\}) = h^1(I, \{v(Sy)\}) = 0.$
- $h^1(I, \{v(Da)\}) = 4 + h^1(I, regr(\{v(Da)\}, drive(Ad, Da))) = 4 + h^1(I, \{at(Ad)\}).$
- $h^1(I, \{at(Ad)\}) = \min(3.5 + h^1(I, \{at(Pe)\}), 4 + h^1(I, \{at(Da)\}), 1.5 + h^1(I, \{at(Sy)\})) = 1.5.$
- So $h^1(I, \{v(Da)\}) = 5.5$. Further, $h^1(I, \{v(Pe)\}) = 5$ and $h^1(I, \{v(Br)\}) = 1$, hence $h^1(I) = 5.5$.
- The critical path is? $at(Sy) \xrightarrow{drive(Sy,Ad)} at(Ad) \xrightarrow{drive(Ad,Da)} at(Da)$.

Critical Path Heuristics: The General Case

Definition (h^m) . Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let $m \in \mathbb{N}$. The critical path heuristic h^m for Π is the function $h^m(s) := h^m(s,G)$ where $h^m(s,g)$ is the function that satisfies

$$h^{m}(s,g) = \begin{cases} 0 & g \subseteq s \\ \min_{a \in A, regr(g,a) \neq \bot} c(a) + h^{m}(s, regr(g,a)) & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} h^{m}(s, g') & |g| > m \end{cases}$$

- \rightarrow For subgoal sets $|g| \leq m$, use regression as in r^* . For subgoal sets |g| > m, use the cost of the most costly m-subset g'.
- \rightarrow Like h^1 , basically just replace "1" with "m".
- \rightarrow For fixed m, $h^m(s,g)$ can be computed in time polynomial in the size of Π . (See next section.)

Critical Path Heuristics: Properties

Proposition (h^m is Admissible). h^m is consistent and goal-aware, and thus also admissible and safe.

Proof Sketch. Goal-awareness is obvious. We need to prove that $h^m(s) \leq h^m(s') + c(a)$ for all transitions $s \xrightarrow{a} s'$. Since $s \supseteq regr(s',a)$, a critical path \vec{p} for $h^m(s')$ can be pre-fixed by a to obtain an upper bound on $h^m(s)$: all subgoals at the start of \vec{p} are contained in s', and are achieved by a in s.

 \rightarrow Intuition: h^m is admissible because it is always more difficult to achieve larger subgoals (so m-subsets can only be cheaper).

 \rightarrow Any ideas about what happens when we compare h^{m+1} to h^m ?

Proposition (h^m gets more accurate as m grows). h^{m+1} dominates h^m .

Proof Intuition: "It is always more difficult to achieve larger subgoals."

 \rightarrow Any ideas about what happens when we let m go to ∞ ?

Proposition (h^m is perfect in the limit). There exists m s.t. $h^m = h^*$.

Proof. Setting m := |P|, the case |q| > m will never be used, so $h^m = r^*$.

Questionnaire

- Initial state I: t(A), p(C).
- Goal G: t(A), p(D).
- Actions A: drXY, loX, ulX.

Question!

Introduction

In this planning task, what is the value of $h^1(I)$?

(A): 2

(B): 3 (D): 5

(C): 4

 \to A critical path is $t(A) \to t(B) \to t(C) \to p(T) \to p(D)$. (C) is correct.

Question!

In this planning task, what is the value of $h^2(I)$?

(A): 5

(B): 8

 \rightarrow For all subgoals g generated, either $|g| \leq 2$, or g must request more than one position for either the truck or the package, which in this domain will be recognized i.e. $h^2(I,g) = \infty$. Thus $h^2(I) = r^*(I)$ and (B) is correct.

Overview

Introduction

Basic idea:

Consider all subgoals g with size $\leq m$. Initialize $h^m(s,g)$ to 0 if $g \subseteq s$, and to ∞ otherwise.

Then, keep updating the value of each g based on actions applied to the values computed so far, until the values converge.

- We start with an iterative definition of h^m that makes this approach explicit.
- We define a dynamic programming algorithm that corresponds to this iterative definition.

Iterative Definition of h^m

Definition (Iterative h^m). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let $m \in \mathbb{N}$. The iterative h^m heuristic h^m_i is defined by

$$h_0^m(s,g) := \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \infty & \textit{otherwise} \end{array} \right.$$

and
$$h_{i+1}^m(s,g) :=$$

Introduction

$$\left\{\begin{array}{ll} \min[h_i^m(s,g), \min_{a \in A, regr(g,a) \neq \bot} c(a) + h_i^m(s, regr(g,a))] & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} h_{i+1}^m(s,g') & |g| > m \end{array}\right.$$

Proposition. Let $\Pi=(P,A,c,I,G)$ be a STRIPS planning task. Then the series $\{h_i^m\}_{i=0,\dots}$ converges to h^m .

Proof Sketch: (i) Convergence: If $h^m_{i+1}(s,g) \neq h^m_i(s,g)$, then $h^m_{i+1}(s,g) < h^m_i(s,g)$; that can happen only finitely often because each decrease is due to a new path for g. (ii) If $h^m_{i+1} = h^m_i$ then h^m_i satisfies the h^m equation (direct from definition). (iii) No function greater than h^m_i at any point can satisfy the h^m equation (easy by induction over i).

Dynamic Programming

Introduction

Dynamic Programming Algorithm

```
new table T_0^m(g), for all g \subseteq P with |g| \le m
For all g \subseteq P with |g| \le m: T_0^m(g) := \begin{cases} 0 & g \subseteq s \\ \infty & \text{otherwise} \end{cases}
\mathbf{fn} \ Cost_i(g) := \left\{ \begin{array}{ll} T_i^m(g) & |g| \le m \\ \max_{g' \subset g, |g'| = m} T_i^m(g') & |g| > m \end{array} \right.
fn Next_i(g) := \min[Cost_i(g), \min_{a \in A, regr(g,a) \neq \bot} c(a) + Cost_i(regr(g,a))]
i := 0
do forever:
     new table T_{i+1}^m(g), for all g \subseteq P with |g| \leq m
     For all q \subseteq P with |q| < m: T_{i+1}^m(q) := Next_i(q)
     if T_{i+1}^m = T_i^m then stop endif
     i := i + 1
enddo
```

Proposition. $h_i^m(s,q) = Cost_i(q)$ for all i and q. (Proof is easy.)

→ This is very inefficient! (Optimized for readability.) We can use "Generalized Dijkstra" instead, maintaining the frontier of cheapest m-tuples reached so far.

Example: m = 1 in "Logistics"

• Facts
$$P: t(x) x \in \{A, B, C, D\};$$

 $p(x) x \in \{A, B, C, D, T\}.$

- Initial state I: $\{t(A), p(C)\}$.
- Goal G: $\{t(A), p(D)\}.$
- Actions A (unit costs): drive(x, y), load(x), unload(x).

 $\mathsf{E.g.:} \ load(x) \mathsf{:} \ \mathsf{pre} \ t(x), p(x) \mathsf{;} \ \mathsf{add} \ p(T) \mathsf{;} \ \mathsf{del} \ p(x).$

$h^1(I) = ?$

Introduction

Content of Tables T_i^1 :

i	t(A)	t(B)	t(C)	t(D)	p(T)	p(A)	p(B)	p(C)	p(D)
0	0	∞	∞	∞	∞	∞	∞	0	∞
1	0	1	∞	∞	∞	∞	∞	0	∞
2	0	1	2	∞	∞	∞	∞	0	∞
3	0	1	2	3	3	∞	∞	0	∞
4	0	1	2	3	3	4	4	0	4
5	0	1	2	3	3	4	4	0	4

$$\rightarrow$$
 So $h^1(I) = 4$. (Cf. slide 13)

Note: This table computation always first finds the *shortest* path to achieve a subgoal g. Hence, with unit action costs, the value of g is fixed once it becomes $<\infty$, and equals the i where that happens. With non-unit action costs, neither is true.

Example: m=2 in "Animal Taming"

Introduction

- $\begin{array}{l} \bullet \ \ P = \{alive, have Tiger, tamed Tiger, have Jump\}. \\ \text{Short: } P = \{A, hT, tT, J\}. \end{array}$
- Initial state *I*: alive.
- Goal G: alive, haveJump.
- lacktriangle Actions A:

getTiger: pre alive; add haveTiger tameTiger: pre alive, haveTiger; add tamedTiger jumpTamedTiger: pre alive, tamedTiger; add haveJump jumpTiger: pre alive, haveTiger; add haveJump; del alive

Content of Tables T_i^2 :

_		_								
i	A	hT	tT	J	A	A	A,	hT,	hT,	tT
					hT	tT	J	tT	J	J
0	0	∞								
1	0	1	∞	∞	1	∞	∞	∞	∞	∞
2	0	1	2	2	1	2	∞	2	2	∞
3	0	1	2	2	1	2	3	2	2	3

 \rightarrow So $h^2(I)=3$, in contrast to $h^1(I)=2$.

Note reg A, J **in step** 2: Each of A and J is reached, but not both together: jumpTiger deletes A so we can't regress this subgoal over that action; jumpTamedTiger yields the regressed subgoal $\{A, tT\}$ whose value at 1 is ∞ .

Introduction

Example: m = 1 in "TSP" in Australia

- P: at(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}$; v(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}$.
- A: drive(x, y) where x, y have a road.

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{Sy,Br\} \\ 1.5 & \{x,y\} = \{Sy,Ad\} \\ 3.5 & \{x,y\} = \{Ad,Pe\} \\ 4 & \{x,y\} = \{Ad,Da\} \end{cases}$$

 $\bullet \ I \colon \ at(Sy), v(Sy); \ G \colon \ at(Sy), v(x) \ \text{for all} \ x.$

Content of Tables T_i^1 :

i	at(Sy)	at(Ad)	at(Br)	at(Pe)	at(Da)	v(Sy)	v(Ad)	v(Br)	v(Pe)	v(Da)
0	0	∞	∞	∞	∞	0	∞	∞	∞	∞
1	0	1.5	1	∞	∞	0	1.5	1	∞	∞
2	0	1.5	1	5	5.5	0	1.5	1	5	5.5
3	0	1.5	1	5	5.5	0	1.5	1	5	5.5

 \rightarrow So what is $h^1(I)$? 5.5.

Introduction

Example: m=2 in Very Simple "TSP" in Australia

- Facts P: at(Sy), at(Br), v(Sy), v(Br).
- Initial state I: at(Sy), v(Sy).
- Goal G: at(Sy), v(Sy), v(Br).
- Actions A: drive(Sy, Br), drive(Br, Sy); both cost 1. drive(Sy, Br):

```
pre at(Sy); add at(Br), v(Br); del at(Sy).

drive(Br, Sy):

pre at(Br); add at(Sy), v(Sy); del at(Br).
```

Content of Tables T_i^2 :

i	at(Sy)	at(Br)	v(Sy)	v(Br)	at(Sy),	at(Sy),	at(Sy),	at(Br),	at(Br),	v(Sy),
					at(Br)	v(Sy)	v(Br)	v(Sy)	v(Br)	v(Br)
0	0	∞	0	∞	∞	0	∞	∞	∞	∞
1	0	1	0	1	∞	0	∞	1	1	1
2	0	1	0	1	∞	0	2	1	1	1
3	0	1	0	1	∞	0	2	1	1	1

 \rightarrow So $h^2(I) = 2$, in contrast to $h^1(I) = 1$.

NOTE reg at(Sy), v(Br)) in step 1: Each of at(Sy) and v(Br) is reached, but not both together: drive(Sy, Br) deletes at(Sy) so we can't regress this subgoal over that action; drive(Br, Sy) yields the regressed subgoal $\{at(Br), v(Br)\}$ whose value at iteration 0 is ∞ .

Critical Path HeuristicsDynamic ProgrammingGraphplanFDRConclusionReferences0000000000000000000000

Runtime

Introduction

Proposition. Let $\Pi=(P,A,c,I,G)$ be a STRIPS planning task, and let $m\in\mathbb{N}$ be fixed. Then the dynamic programming algorithm runs in time polynomial in the size of Π .

Proof Sketch. With fixed m, the number of size-m fact sets is polynomial in the size of Π , so obviously each iteration of the algorithm runs in time polynomial in that size. The fixed point is reached at the latest at $i+1=|P|^m+1$, as each path has length at most $|P|^m$.

 \rightarrow For any fixed m, h^m can be computed in polynomial time.

Remarks:

- ullet In practice, only m=1,2 are used; higher values of m are infeasible.
- ullet However! Instead of considering all "atomic subgoals" of size $\leq m$, one can select an arbitrary set C of atomic subgoals!
 - $\rightarrow h^C$, currently investigated, great results in learning to recognize dead-ends [Steinmetz and Hoffmann (2016)].

1-Planning Graphs

Introduction

```
\begin{split} F_0 &:= s; \ i := 0 \\ \text{while} \ G \not\subseteq F_i \ \text{do} \\ A_i &:= \{a \in A \mid pre_a \subseteq F_i\} \\ F_{i+1} &:= F_i \cup \bigcup_{a \in A_i} add_a \\ \text{if} \ F_{i+1} &= F_i \ \text{then stop endif} \\ i &:= i+1 \end{split}
```

This is called "relaxed planning graph". Slide 32 explains why.

1-Planning Graph for "Logistics"

- Initial state I: t(A), p(C).
- Goal G: t(A), p(D).
- Actions A: dr(X,Y), lo(X), ul(X).

Conclusion

References

Content of Fact Sets F_i :

i	t(A)	t(B)	t(C)	t(D)	p(T)	p(A)	p(B)	p(C)	p(D)
0	yes	no	no	no	no	no	no	yes	no
1	yes	yes	no	no	no	no	no	yes	no
2	yes	yes	yes	no	no	no	no	yes	no
3	yes	yes	yes	yes	yes	no	no	yes	no
4	yes								
5	yes								

 \rightarrow Rings a bell? We got a "yes" for i, g if and only if $T_i^1(g) \neq \infty$, cf. slide 18.

Sara Bernardini

1-Planning Graphs vs. h^1

Introduction

Definition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The 1-planning graph heuristic h_{PC}^1 for Π is the function $h_{PC}^1(s) := \min\{i \mid s \subseteq F_i\}$, where F_i are the fact sets computed by a 1-planning graph (and the minimum over an empty set is ∞ .)

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task with unit costs. Then $h_{\rm DC}^1 = h^1$.

Proof Sketch: Induction over the value i of $h^1(s)$. Trivial for base case i = 0. For the step case, assume that $h_{PG}^1(s) = h^1(s)$ for all s where $h^1(s) \leq i$, and show the same property for all s with $h^1(s) \le i+1$. $h^1_{PC}(s) < i+1$ directly contradicts the assumption. To show $h_{PG}^1(s) \leq i+1$, it suffices to observe that $h^1(pre_a) < i$ implies $h^1_{PC}(pre_a) < i$ by assumption.

→ Intuition: A 1-planning graph is like our dynamic programming algorithm for m=1, except that it represents not all facts but only those that have been reached (value $\neq \infty$), and instead of a fact-value table it only remembers that set.

m-Planning Graphs

Introduction

```
\begin{split} F_0 &:= s; \ M_0 := \emptyset; \ i := 0 \\ \text{fn } Reached_i(g) := \left\{ \begin{array}{ll} True & g \subseteq F_i, \not\exists g' \in M_i : g' \subseteq g \\ False & \text{otherwise} \end{array} \right. \\ \text{while not } Reached_i(G) \ \text{do} \\ A_i &:= \left\{ a \in A \mid Reached_i(pre_a) \right\} \\ F_{i+1} &:= F_i \cup \bigcup_{a \in A_i} add_a \\ M_{i+1} &:= \left\{ g \subseteq P \mid |g| \leq m, \forall a \in A_i : \text{not } Reached_i(regr(g,a)) \right\} \\ \text{if } F_{i+1} &= F_i \text{ and } M_{i+1} = M_i \text{ then stop endif} \\ i &:= i+1 \end{split}
```

 \rightarrow Intuition: All m-subsets g of F_i are reachable within i steps, except for those g listed in M_i (the "mutexes").

 \rightarrow Instead of listing the reached m-subsets, represent those that are not reached (and hope that there are fewer of those).

Critical Path Heuristics in FDR

... are exactly the same!

- ightarrow All definitions, results, and proofs apply, exactly as stated, also to FDR planning tasks. (See the single exception below.)
- \rightarrow Remember (cf. \rightarrow Chapter 14): We refer to pairs (v,d) of variable and value as facts. We identify partial variable assignments with sets of facts.

The single non-verbatim-applicable statement, adapted to FDR:

Proposition (h^m is Perfect in the Limit). There exists m s.t. $h^m = h^*$.

Proof. Given the definition of regr(g,a) for FDR (\rightarrow Chapter 17), it is easy to see by induction that every subgoal g contains at most one fact for each variable $v \in V$. Thus, if we set m := |V|, then the case |g| > m will never be used, so $h^m = r^*$.

 \rightarrow In FDR, it suffices to set m to the number of *variables*, as opposed to the number of *variable values* i.e. STRIPS facts (compare slide 12)!

Sara Bernardini

Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

Summary

- The critical path heuristics h^m estimate the cost of reaching a subgoal g by the most costly m-subset of g.
- This is admissible because it is always more difficult to achieve larger subgoals.
- h^m can be computed using dynamic programming, i.e., initializing true m-subsets g to 0 and false ones to ∞ , then applying value updates until convergence.
- This computation is polynomial in the size of the planning task, given fixed m. In practice, m=1,2 are used; m>2 is typically infeasible.
- Planning graphs correspond to dynamic programming with unit costs, using a particular representation of reached/unreached m-subsets q.

Historical Remarks

- The first critical path heuristic was introduced in the Graphplan system [Blum and Furst (1997)], which uses h^2 computed by a 2-planning graph.¹
- 1-planning graphs are commonly referred to as relaxed planning graphs.
 This is because they're identical to Graphplan's 2-planning graphs when ignoring the delete lists [Hoffmann and Nebel (2001)].
- Graphplan spawned a huge amount of follow-up work [e.g., Kambhampati et al. (1997); Koehler et al. (1997); Koehler (1998); Kambhampati (2000)].
- ullet Nowadays, h^m is not in wide use anymore; its most prominent application right now is in modified forms that allow to use arbitrary sets of atomic subgoals (see slide 35), or to compute improved delete-relaxation heuristics.

¹Actually, Graphplan does parallel planning (a simplistic form of temporal planning), and uses a version of 2-planning graphs reflecting this. I omit the details since parallel planning is not relevant in practice.

A Technical Remark

Reminder: Search Space for Progression

• start() = I

Introduction

- $\operatorname{succ}(s) = \{(a, s') \mid \Theta_{\Pi} \text{ has the transition } s \xrightarrow{a} s'\}$
- \to Need to compute $h^m(s)=h^m(s,G)\Rightarrow$ one call of dynamic programming for every different search state s!

Reminder: Search Space for Regression

- start() = G
- $\bullet \ \operatorname{succ}(g) = \{(a, g') \mid g' = \operatorname{regr}(g, a)\}$
- \to Need to compute $h^m(I,g) = \max_{g' \subseteq g, |g'| = m} h^m(I,g') \Rightarrow$ a single call of dynamic programming, for s = I before search begins!
- \rightarrow For m=1, it is feasible to use progression and recompute the cost of the (singleton) subgoals in every search state s. For m=2 already, this is completely infeasible; all systems using h^2 do regression search, where all subgoals can be evaluated relative to the dynamic programming outcome for I.

Reading

Introduction

• Admissible Heuristics for Optimal Planning [Haslum and Geffner (2000)].

Available at:

http://www.dtic.upf.edu/~hgeffner/html/reports/admissible.ps Content: The original paper defining the h^m heuristic function, and comparing it to the techniques previously used in Graphplan.

• $h^m(P) = h^1(P^m)$: Alternative Characterisations of the Generalisation from h^{\max} to h^m [Haslum (2009)].

Available at: http://users.cecs.anu.edu.au/~patrik/publik/pm4p2.pdf Content: Shows how to characterize h^m in terms of h^1 in a compiled planning task that explicitly represents size-m conjunctions.

Relevance here: this contains the only published account of the iterative h_i^m characterization of h^m . Relevance more generally: yields an alternative computation of h^m . This is not per se useful, but variants thereof have been shown to allow the computation of powerful partial-delete-relaxation heuristics (\rightarrow Chapter 20).

Reading, ctd.

Introduction

• Explicit Conjunctions w/o Compilation: Computing $h^{FF}(\Pi^C)$ in Polynomial Time [Hoffmann and Fickert (2015)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15b.pdf

Content: Introduces the h^C heuristic (cf. slide 22), which allows to select an arbitrary set C of atomic subgoals, and thus strictly generalizes h^m .

This is only a side note in the paper though, the actual concern is with defining and computing partial-delete-relaxation heuristics on top of $h^{\cal C}$.

Reading, ctd.

Introduction

• Towards Clause-Learning State Space Search: Learning to Recognize Dead-Ends [Steinmetz and Hoffmann (2016)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/aaai16.pdf

Content: Specifies how to "learn" the atomic subgoals C based on states s where the search already knows that $h^*(s)=\infty$, yet where $h^C(s)\neq\infty$. The learning process adds new conjunctions into C, in a manner guaranteeing that $h^C(s)=\infty$ afterwards.

Doing this systematically in a depth-first search, we obtain a framework that approaches the elegance of clause learning in SAT, finding and analyzing conflicts to learn knowledge that generalizes to other search branches.

References I

- Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. *Artificial Intelligence*, 90(1–2):279–298, 1997.
- Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In S. Chien, R. Kambhampati, and C. Knoblock, editors, *Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS'00)*, pages 140–149, Breckenridge, CO, 2000. AAAI Press, Menlo Park.
- Patrik Haslum. $h^m(P) = h^1(P^m)$: Alternative characterisations of the generalisation from h^{\max} to h^m . In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, *Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS'09)*, pages 354–357. AAAI Press, 2009.
- Jörg Hoffmann and Maximilian Fickert. Explicit conjunctions w/o compilation: Computing $h^{\rm FF}(\Pi^C)$ in polynomial time. In Ronen Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein, editors, *Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS'15)*. AAAI Press, 2015.

References II

- Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search. *Journal of Artificial Intelligence Research*, 14:253–302, 2001.
- Subbarao Kambhampati, Eric Parker, and Eric Lambrecht. Understanding and extending Graphplan. In Steel and Alami Steel and Alami (1997), pages 260–272.
- Subbarao Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSP search techniques in graphplan. *Journal of Artificial Intelligence Research*, 12:1–34, 2000.
- Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopoulos. Extending planning graphs to an ADL subset. In Steel and Alami Steel and Alami (1997), pages 273–285.
- Jana Koehler. Planning under resource constraints. In H. Prade, editor, Proceedings of the 13th European Conference on Artificial Intelligence (ECAI'98), pages 489–493, Brighton, UK, August 1998. Wiley.
- S. Steel and R. Alami, editors. *Proceedings of the 4th European Conference on Planning (ECP'97)*. Springer-Verlag, 1997.

Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

References III

Introduction

Marcel Steinmetz and Jörg Hoffmann. Towards clause-learning state space search: Learning to recognize dead-ends. In Dale Schuurmans and Michael Wellman, editors, *Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16)*. AAAI Press, February 2016.