Experimental studies of the $\Lambda(1405)$ physics654 – Seminar on exotic multi-quark states

Jakob Krause

➤ krause@hiskp.uni-bonn.de | • krausejm

Tutor: Georg Scheluchin

✓ scheluchin@physik.uni-bonn.de

18.06.2021

Motivation

What is special about the $\Lambda(1405)$?

- ▶ its mass does not fit well into constituent quark models which do predict baryon masses well for other baryons
- ▶ invariant mass distribution (line shape) differs significantly from usual BREIT-WIGNER shapes
- ightharpoonup candidate for an exotic multiquark state (bound system of $\overline{K}N$) since its mass lies just below threshold

There are (very) many different theoretical approaches to explain this behavior

 \rightarrow There is need for more experimental data!

some plots/pictures?

Table of contents

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Continuous Electron Beam Accelerator Facility (CEBAF)

Figure 1: CEBAF layout at Jefferson Lab, [Mecking et al. 2003]

CEBAF Large Acceptance Spectrometer (CLAS)

Figure 2: CLAS layout at Jefferson Lab, [Mecking et al. 2003]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Reaction kinematics

Reaction	Strong Final State		Particles X
		$K^+ p \pi^-(X)$	$K^+\pi^+\pi^-(X)$
$\gamma + p \rightarrow K^+ +$	{Λ(1405) {Λ(1520)		
	\sim 33% $\Sigma^+ \pi^-$	π^{0} (52%) π^{0} γ (64%)	n (48%)
	$\sim 33\%$ $\Sigma^0 \pi^0$	$\pi^0 \gamma$ (64%)	
	$\sim 33\%$ $\Sigma^- \pi^+$		n (100%)
	6%/ 6%		
$\gamma + p \rightarrow K^+ + \Sigma^0(1385) \xrightarrow{87\%} K^+ \Lambda \pi^0$		π^0 (64%)	
$\gamma + p \to K^{*+} + \Sigma^0$		π^0 γ (64%)	
$\gamma + p \to K^{*0} + \Sigma^+$		π^{0} (52%)	n (48%)

Figure 3: Possible and studied reactions in the analysis of the lineshapes of $\Lambda(1405)$, taken from [Moriya, Schumacher, Adhikari et al. 2013]

Event selection

Inhalt...

Interpretation of the results

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Theoretical basics

The $\Lambda(1405)$ is so far (mostly) assumed to have $J^P = \frac{1}{2}^-$, but this has not been determined experimentally

Measuring spin

- \blacktriangleright consider the strong decay $Y^* \to Y\pi$, with J^P the spin and parity of Y^*
- \blacktriangleright the $Y\pi$ angular distribution will only depend on J

$$I(\theta_Y) = \text{const.}$$
 $J = 1/2$
 $I(\theta_Y) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^2 \theta_Y$ $J = 3/2$,

where θ_Y is the polar angle of the decay direction of Y in the Y* rest frame, p describes the fraction of spin projections along the z axis

 \blacktriangleright uniform decay pattern is best evidence for spin J=1/2

[Moriya, Schumacher, Aghasyan et al. 2014]

Theoretical basics

Measuring parity

- ightharpoonup the key to accessing the parity lies in determining the Polarization transfer to the decay product Y which we will denote \mathbf{Q}
- ► the angular distribution of **Q** will only depend on **P**

$$\mathbf{Q}(\theta_Y) = \text{const.} \qquad J^P = 1/2^-$$
$$\mathbf{Q}(\theta_Y) = -\mathbf{P} + 2(\mathbf{P} \cdot \mathbf{q})\mathbf{q} \quad J^P = 1/2^+$$

 $ightharpoonup \mathbf{Q}$ can be measured from weak decay angular distribution of Y

Figure 4: Polarization transfer in the strong decay $Y^* \to Y\pi$, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

[Moriya, Schumacher, Aghasyan et al. 2014 and Ref. therein]

Event selection

- ► select kinematic region where the $\Sigma \pi$ invariant mass is dominated by the $\Lambda(1405) \to M_{\Sigma \pi} \in$ $1.30 \,\text{GeV}$ to $1.45 \,\text{GeV}$
- ▶ inspect nine bins in energy and angle, namely with CM energy at 2.6, 2.7 and 2.8 GeV and the three forwardmost kaon angle bins each

Figure 5: $\Sigma \pi$ and $K\pi$ invariant mass in the vicinity of the $\Lambda(1405)$, taken from [Moriya, Schumacher, Aghasyan et al.

Analysis procedure

- ▶ plot the angular distribution of the projections $\cos \theta_{\Sigma}$ and $\cos \theta_p$ for each bin
- ▶ test each spin hypothesis using Monte-Carlo maximum likelihood fits, which employ angular decay probability distributions according to each hypothesis for $\Sigma \pi$ and $p\pi$. From the fit Q_z will be determined
- ▶ test parity hypotheses by determining $Q_z(\cos\theta_{\Sigma})$
- \blacktriangleright compare each hypothesis by calculating a χ^2 probability

Result: data is consistent with $J^P = 1/2^-$ but does in principle not rule out $J^P = 3/2^+$. $1/2^+$ and $3/2^-$ can be discarded.

Figure 6: Distributions of the projections of (a)cos θ_{Σ} and (b) cos θ_p @ 2.65 < W < 2.75 GeV and 0.70 < cos θ < 0.80, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

Figure 7: angular distribution of the polarization Q_z @ $2.65 < W < 2.75 \,\text{GeV}$ and $0.70 < \cos \theta < 0.80$. Red: average, blue: expectation for P-wave decay. Taken from [Moriya, Schumacher, Aghasyan et al. 2014]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

References

Mecking, B.A. et al. (2003). 'The CEBAF large acceptance spectrometer (CLAS)'. In: Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 503.3,
pp. 513–553. ISSN: 0168-9002. DOI:
https://doi.org/10.1016/S0168-9002(03)01001-5. URL: https:

//www.sciencedirect.com/science/article/pii/S0168900203010015.

Moriya, K., R. A. Schumacher, K. P. Adhikari et al. (Mar. 2013). 'Measurement of the Σπ photoproduction line shapes near the Λ(1405)'. In: *Phys. Rev. C* 87 (3), p. 035206. DOI: 10.1103/PhysRevC.87.035206. URL: https://link.aps.org/doi/10.1103/PhysRevC.87.035206.

Moriya, K., R. A. Schumacher, M. Aghasyan et al. (Feb. 2014). 'Spin and parity measurement of the $\Lambda(1405)$ baryon'. In: *Phys. Rev. Lett.* 112 (8), p. 082004.

DOI: 10.1103/PhysRevLett.112.082004. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.112.082004.