北京航空航天大学 2003-2004 学年第一学期期末

考试统一用答题册(A)

Ą	含试课程	程 <u></u>	[变函	数				
马	妊级 _		学号			姓名_		
			•	_				
	题目		_	=	四	五	总分	
	得分						-34-	

2004年01月7日

一、填空 (毎题 4 分, 共 40 分)
$1.(rac{1+i}{\sqrt{3}-i})^6$ 的指数表示式为
2. 函数 $f(z)=z\mathrm{Re}z$ 在 $z_0=$
$f^{'}(z_0) = \underline{\hspace{1cm}}.$
$3.(1-i)^{1+i}$ 的实部为
4. 设 C 为从 0 到 $2+i$ 的直线段,则 $\int_C \operatorname{Re} z \mathrm{d} z = \underline{\hspace{1cm}}$.
5. $\oint_{ z =2} \frac{z}{z^2 - 1} dz = \underline{\qquad}$
6. 函数 $f(z) = \frac{e^z}{1-z}$ 在 域内可展开成含 z 的幂的泰
勒级数为(至少写到含 z^3 的
项).
7. $\int_C z \mathrm{d}z = $
周.
8. 函数 $f(z)=\mathrm{ctg}\pi z$ 有孤立奇点,此函数在它的孤立
奇点处的留数为
0 (二至 上工至工供收取) $(1-x^2+x^2-i)$ 供收定的

二、计算(每题8分,共32分)

1. 已知
$$f(z) = \oint_{|\zeta|=2} \frac{\zeta^4 + \zeta^2}{(\zeta - z)^3} d\zeta$$
, 求 $f(1), f'(1), f(3), f'(3)$.

2. 求积分
$$\oint_C \frac{\mathrm{d}z}{z^3(z+1)(z-1)}$$
, 其中 C 为圆 $|z-1|=\frac{3}{2}$ 的正向一

周。

3. 验证 $v=2x^2-2y^2+x$ 为调和函数, 并求解析函数 f(z)=u+iv 使得 f(0)=1.

4. 将函数 $f(z)=rac{z}{z-2}$ 在适当的圆环域内展开成含 z+1 的幂的洛朗级数。

三、(10分,三系、十五系不做此题)

计算积分
$$\int_0^{+\infty} \frac{x \sin x}{1 + x^2} dx$$
.

三、(10分,二系不做此题)

求矩形脉冲函数
$$f(z)=\left\{ egin{array}{ll} 1, & |t|\leq \delta; \\ 0, & |t|\geq \delta, \end{array}
ight. \ (\delta>0)$$
 的傅氏变换及傅氏

积分,并验证
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
.

四、(12分,三系、十五系不做此题)

求共形映射 $\omega=f(z)$,将带形域 $\pi<\mathrm{Im}z<2\pi$ 映射成单位圆域 $|\omega|<1$,且满足 $f(2\pi i)=i, f(\frac{3\pi}{2}i)=0$,并图示说明.

四、(12分,二系不做此题)

用拉氏变换及拉氏逆变换解微分方程组:

$$\begin{cases} 2x - y - y' = 4(1 - e^{-t}); \\ 2x' + y = 2(1 + 3e^{-2t}); \\ x(0) = y(0) = 0. \end{cases}$$

五、证明题(6分)

设 $f_1(z)$ 与 $f_2(z)$ 在 z_0 的邻域 K 内解析,且 K 内有收敛于 z_0 的 点列 $\{z_n\}(z_n\neq z_0)$ 使 $f_1(z_n)=f_2(z_n), (n=1,2,3,\ldots)$,证明 $f_1(z)$ 与 $f_2(z)$ 在 K 内恒等。

北京航空航天大学 2004 — 2005 **学年第一**学期

考试统一用答题册

(共6页)

考试课程	复变函数 <u>A</u>	
班级	学号	
姓名	成绩	

题号	_	=	=	四	五	六	总分
分数							

2005年1月16日

1. 一个向量逆时针旋转 $\frac{\pi}{3}$,向右平移 3 个单位,再向上平移 2 个单位后对应的复数为 2 ,
则原向量对应的复数是()
(A) $1 - \sqrt{3}i$ (B) $1 + \sqrt{3}i$ (C) $\sqrt{3} - i$ (D) $\sqrt{3} + i$
2. $\lim_{z \to z_0} \frac{\overline{z} - \overline{z}_0}{z - z_0} = ($
(A) 等于 1 (B) 等于- 1 (C) 等于- i (D) 不存在
3. 下列函数中, 在整个复平面上均为解析函数的是()
(A) $xy^2 + ix^2y$ (B) $x^3 - 3xy^2 + i(3x^2y - y^3)$
(C) $x^2 - y^2 - x + (2xy - y^2)i$ (D) $x^2 - y^2 - 2xyi$
4. 设 C 是从 0 到 πi 的直线段,则积分 $\int_{\mathcal{C}} z \cos z^2 dz = ($
(A) $\frac{1}{2}\sin \pi^2$ (B) $-\frac{1}{2}\sin \pi^2$ (C) $-\frac{1}{2}\cos \pi^2$ (D) $\frac{1}{2}\cos \pi^2$
5. 设 C 为曲线 C_1 : 左半平面中以原点为中心的负向单位半圆以及曲线 C_2 : 从 i 到 $-i$ 的
直线段所组成的复合曲线,则 $\int_{\mathcal{C}} z \mathrm{d}z = ($)
(A) i (B) $-i$ (C) 0 (D) 1
6. 设 C 为正向圆周 $ z = 1$,则 $\oint_C \frac{e^{\frac{1}{3-z}}\cos\frac{1}{z-3}}{(2-z)}dz = ($)
(A) $2\pi ie \cos 1$ (B) 0 (C) $6\pi ie \cos 1$ (D) $-2\pi ie \cos 1$
7. 若幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 收敛半径为 2,那么该级数在 $z = 1 + \sqrt{3}i$ 处的敛散性为()
(A) 绝对收敛 (B) 条件收敛
(C) 发散 (D) 不能确定
8. 设 $v(x,y)$ 在区域 D 内为 $u(x,y)$ 的共轭调和函数,则下列函数中为 D 内解析函数的是
()

选择题(每题3分,共33分)

- (A) v(x,y) + iu(x,y)
- (B) v(x,y) iu(x,y)
- (C) u(x,y) iv(x,y)
- (D) $\frac{\partial u}{\partial x} i \frac{\partial v}{\partial x}$

9. 设 z = 0 为函数 $\frac{1 - e^{z^2}}{z^4 \sin z}$ 的 m 级极点,那么 m = ()

- (A) 5
- (B) 4
- (C)3
- (D) 2

10. 设 $\mathsf{F}[f(t)] = F(\omega)$,假 如 当 $t \to +\infty$ 时 , $g(t) = \int_{\infty}^{\infty} f(t) \mathrm{d}t \to 0$, 则 $\mathsf{F}[\int_{-\infty}^{2t} f(t) \mathrm{d}t] = ($

- (A) $\frac{1}{2i\omega}F(\frac{\omega}{2})$
- (B) $\frac{1}{i\omega}F(\frac{\omega}{2})$
- (C) $\frac{1}{2i\omega}F(\omega)$
- (D) $\frac{1}{i\omega}F(\omega)$

11. 设 $f(t) = \sin(t - \frac{\pi}{3})$,则 L[f(t)] = (

- (A) $\frac{1-\sqrt{3}s}{2(1+s^2)}$
- (B) $\frac{s-\sqrt{3}}{2(1+s^2)}$

- (C) $\frac{1}{1+s^2}e^{-\frac{\pi}{3}s}$
- (D) $\frac{s}{1+s^2}e^{-\frac{\pi}{3}s}$

二、填空题(每题3分,共33分)

3. $f(z) = 2(x-1)y + i(y^2 - x^2 + 2x)$, \emptyset $f'(1+i) = \underline{\hspace{1cm}}$

4. 解析函数 f(z) = u + iv 的实部 $u = x^2 - y^2$, 则 $f(z) = _____$

5. 复数 (1 + i)ⁱ 的主值为 ______

f'''(2) =_______

7. 设函数 $\frac{z^2+z}{\sin z}$ 的泰勒展开式为 $\sum_{n=0}^{\infty} c_n (z-\frac{\pi}{2})^n$,那么幂级数 $\sum_{n=0}^{\infty} c_n (z-\frac{\pi}{2})^n$ 的收敛半径

(至少写到含 z^3 的项)。

为_____.

- 三、(9 分)设f(z)在|z|<R(R>1)内解析,且f(0)=1,f'(0)=2,试计算积分

四、(9 分) 将函数 $f(z) = \frac{1}{(z+2)(z^2-1)}$ 在适当的圆环域内展开成含 z 的幂的洛朗级数.

五、(8分) 计算函数 $f(t) = e^{-|t|} \cos t$ 的 Fourier 变换,并证明 $\int_0^{+\infty} \frac{\omega^2 + 2}{\omega^2 + 4} \cos \omega t d\omega = \frac{\pi}{2} e^{-|t|} \cos t.$

六、(8分)用 Laplace 变换及其逆变换求变系数微分方程 ty''(t)-2y'(t)+ty(t)=0 满足条件 y(0)=0 的解.

一. 选择题(每题 3 分, 共 33 分)						
1. 一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 3 个单位,再向下平移 1 个单位后对应的复数为						
$1-\sqrt{3}i$,则原向量对应的复数是()						
(A) 2 (B) $1+\sqrt{3}i$ (C) $\sqrt{3}-i$ (D) $\sqrt{3}+i$						
2. 设 $f(z) = u + iv$ 在区域 D 内解析,则下列函数中在 D 内解析的是()						
(A) $f(z)$ (B) $\overline{f(z)}$ (C) $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ (D) $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$						
3. 幂级数 $\sum_{n=0}^{\infty} (\cos(in)) z^n$ 的收敛半径是()						
(A) 0 (B) 1 (C) e (D) e^{-1}						
4. 积分 $\int_{ z =1} \frac{dz}{z^2 + 2z + 4} = ($)						
(A) $2\pi i$ (B) $-2\pi i$ (C) 1 (D) 0						
5. 设 c 是 $z=(1+i)t$, $1 \le t \le 2$ 的线段,则 $\int_c \arg z dz = ($)						
(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{4}i$ (C) $\frac{\pi}{4}(1+i)$ (D) $1+i$						
6. $\lim_{z \to z_0} \frac{\text{Im}(z) - \text{Im}(z_0)}{z - z_0}$ ()						
(A) 等于 <i>i</i> (B) 等于- <i>i</i> (C) 等于 0 (D) 不存在						
7. 设 c 为任意常数,那么由调和函数 $u=x^2-y^2$ 确定的解析函数 $f(z)=u+iv$ 是 ()						
(A) $iz^2 + c$ (B) $i\overline{z}^2 + c$ (C) $z^2 + c$ (D) $\overline{z}^2 + c$						
8. 下列级数中,绝对收敛的是() (A) $\sum_{n=1}^{\infty} \frac{1}{n} (1 + \frac{i}{n})$ (B) $\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$ (C) $\sum_{n=2}^{\infty} \frac{i^n}{\ln n}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^n i^n}{2^n}$						

9. $z=1$ 是函数 $(z-1) \sin \frac{1}{z-1}$ 的()
(A)可去奇点 (B)一级	极点 (C) 一级零点 (D) 本性奇点
10. 设F[$f(t)$]= $F(\omega)$,则 F[$(t-2)$]	f(t)] = (
(A) $F'(\omega) - 2F(\omega)$	(B) $-F'(\omega)-2F(\omega)$
(C) $iF'(\omega) - 2F(\omega)$	(D) $-iF'(\omega)-2F(\omega)$
11. 设 $f(t) = e^{-t}u(t-1)$,则 $Z[f(t)]$	= ()
(A) $\frac{e^{-(s-1)}}{s-1}$ (B) $\frac{e^{-(s+1)}}{s+1}$	(C) $\frac{e^{-s}}{s-1}$ (D) $\frac{e^{-s}}{s+1}$
二. 填空题(每空3分,共33分)	
1. 设 $F(z) = \frac{1}{4}z^4 - (1-i)z$,则 F	"(z) =0 的所有根为
2. $\forall z = \frac{1+i}{1-i}$, $z^{100} + z^{75} + z^{50}$ is	り <u>信等于</u> _
3. ln(1- <i>i</i>)的主值为	.
4. 设 $f(z) = x^2 + iy^2$, 则 $f'(1 + iy^2)$	<i>i</i>) =
5. 设 <i>f(z) = u + iv</i> 在区域 <i>D</i> 内是	是解析的,如果 $u+\nu$ 是实常数,那么 $f(z)$ 在 D
是	<u>.</u>
6. 设 $f(z) = \int_{ \xi =2} \frac{\sin(\frac{\pi}{2}\xi)}{\xi-z} d\xi$,其中	中 z ≠ 2 ,则 <i>f</i> ′(3) =
7. 函数 $\frac{1}{1+\cos z}$ 在 $z=0$ 处的泰勒)	展开式中, <i>z</i> ³ 项的系数为
8. 已知 <i>tgz</i> 在 z = 0 处的泰勒	」展开式为 $\sum_{n=0}^{\infty} c_n z^n$, 则 此 幂 级 数 的 收 敛 半 2

为______.

- 9 . 设 $f(z) = \frac{2z}{1+z^2}$,则 f(z) 在扩充复平面上的孤立奇点为______,在其孤立奇点处的留数为______.
 - 10. 已知 $F(s) = \frac{2e^{-s} e^{-2s}}{s}$,则 $L^{-1}[F(s)] = _____$
- 三. (8分) 求积分 $\oint_{|z|=3} \frac{e^z}{(z-1)^2(z+2)} dz$.

四. (9分). 将 $f(z) = \frac{1}{(z+i)(z-2)}$ 在 z=0 的适当圆环域内展开成洛朗级数

五. (8分) 求函数 $f(t)=e^{-\beta|t|}(\beta>0)$ 的 Fourier 变换,并推证 $\int_0^{+\infty} \frac{\cos\omega t}{\beta^2+\omega^2} dw = \frac{\pi}{2\beta} e^{-\beta|t|}.$

六. (8分) 用 Laplace 变换及其逆变换求微分方程

$$ty'' + (1-2t)y' - 2y = 0$$

满足条件 y(0)=1, y'(0)=2的解。

一、选择题

	$1. \stackrel{\textstyle \text{\perp}}{} = \frac{1+i}{1-i}$ 时	$, z^{100} + z^{75} + z^{50}$	的值等于()		
	(A) <i>i</i>	(B) $-i$	(C) 1	(D) -1	
2.	设 x, y 为实数,	$z_1 = x + \sqrt{11} + y$	$i, z_2 = x - \sqrt{11} + yi$	且有 $ z_1 + z_2 =12$,则对	边点
	(<i>x</i> , <i>y</i>)的轨迹是	; ()			
	(A) 圆	(B) 椭圆	(C) 双曲线	(D) 抛物线	
3.	$ \lim_{x\to x_0}\frac{\operatorname{Im}(z)-\operatorname{Im}}{z-z_0} $	$\frac{d(z_0)}{dz_0}$ ()			
	(A) 等于 <i>i</i>	(B) 等于- <i>i</i>	(C) 等于 0	(D) 不存在	
4.	函数 ƒ(z)在点 z	可导是 $f(z)$ 在点。	z解析的()		
			(B) 必要不充分条件		
5.	(C) 充分必要统 下列函数中,为解	^{条件} 解析函数的是()	(D) 既非充分条件也	非必要条件	
	$(A) x^2 - y^2 -$	- 2 <i>xyi</i>	(B) $x^2 +$	xyi	
	(C) $2(x-1)y$	$y + i(y^2 - x^2 + 2x$	$(D) x^3 +$	iy³	
6.	若函数 $f(z) = x$	$x^2 + 2xy - y^2 + i(y)$	y ² + axy - x ²)在复 ⁵	严面内处处解析,那么实 常	常数
	a = ($)$	(n) 1	(0) 3	(n) 2	
	(A) 0		(C) 2	(D) -2	
7.	设 c 为正向圆周 z	$=\frac{1}{2}, \emptyset \oint_{c} \frac{z^{3} \cos \left(1-\frac{1}{2}\right)}{\left(1-\frac{1}{2}\right)}$	$\frac{1}{z-2}dz = ()$		
				$\cos 1 \qquad (D) -2\pi i \sin 1$	
8.	设 <i>f(z</i>) 在单连通	迫域 B 内处处解析且	且不为零, <i>c</i> 为 <i>B</i> 内住	E何一条简单闭曲线,则和	
∮	$\frac{f''(z)+2f'(z)+f'(z)}{f(z)}$	f(z)dz ()			
	(A) 于 2π i	(B) 等于 -2 7	πi (C)等于 0	(D) 不能确定	
9.	若幂级数 $\sum_{n=0}^{\infty} c_n z^n$	"在z=1+2 <i>i</i> 处收	(敛,那么该级数在 <i>z</i>	= 2处的敛散性为()	
	(A)绝对收敛	汝	(B) 条件收敛		

(D) 不能确定

10. 设f(z)在圆环域 $H: R_1 < |z-z_0| < R_2$ 内的洛朗展开式为 $\sum_{n=0}^{\infty} c_n (z-z_0)^n$,c为

H内绕 z_0 的任一条正向简单闭曲线,那么 $\oint_{c(z-z_0)^2} dz = ($

- (A) $2\pi ic_{-1}$

- (B) $2\pi i c_1$ (C) $2\pi i c_2$ (D) $2\pi i f'(z_0)$

11. z = 1 \pm $\sum_{z=1}^{\infty} \log(z-1)\sin(z-1)$

(A) 可去奇点

(B) 一级极点

(C) 一级零点

(D) 本性奇点

12. $z = \infty$ 是函数 $\frac{3 + 2z + z^3}{z^2}$ 的()

(A) 可去奇点

(B) 一级极点

(C) 二级极点

(D) 本性奇点

二. 填空题

1.
$$\forall z = (2-3i)(-2+i)$$
, $\forall z = 2$

2. 以方程 $z^6 = 7 - \sqrt{15}i$ 的根的对应点为顶点的多边形的面积为

4. 复数 *i* 的模为

5. 解析函数在圆心处的值等于它在圆周上的_

6. 设 c 为沿原点 z=0 到点 z=1+i 的直线段,则 $\int_{c}2\overline{z}dz=$ ______

7. 设 $f(z) = \frac{1 - \cos z}{z^5}$,则 Re $s[f(z), 0] = _____.$

8. 设函数 $f(z) = \frac{z^2}{z^2 + 1}$, 则 Re s[f(z), 0] =______

9. 设 a > 0, $f(t) = \begin{cases} e^{at}, t < 0 \\ e^{-at}, t > 0 \end{cases}$, 则函数 f(t)的 Fourier 变换为_____

10. 设L[
$$f(t)$$
] = $F(s)$, $a > 0$,则 L[$e^{-\frac{t}{a}}f(\frac{t}{a})$] = _______。

11. 函数
$$\frac{s^2}{s^2+1}$$
 的 Laplace 逆变换 $\mathbf{L}^{-1}[\frac{s^2}{s^2+1}] = ($)。

三. 求积分
$$\oint_{|z|=1} \frac{e^z}{z} dz$$
,并证明 $\int_0^{\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = \pi$

四. 在
$$0 < |z| < \infty$$
 内将 $f(z) = \frac{e^z}{z^2}$ 展开成洛朗级数。

五. 求方程
$$y'' + 2y' - 3y = e^{-t}$$
 满足初始条件 $y|_{t=0} = 0$, $y'|_{t=0} = 1$ 的解。

1.
$$\frac{2i}{-1+i}$$
的三角形式为()

(A)
$$\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$$

(B)
$$\sqrt{2}(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4})$$

(C)
$$\sqrt{2}\left[\sin\left(-\frac{\pi}{4}\right) + i\cos\left(-\frac{\pi}{4}\right)\right]$$

(D)
$$\sqrt{2}[\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})]$$

2. 下列函数中在整个复平面上都解析的是(

(A)
$$x^3 + 3x^2yi - 3xy^2 - y^3i$$

(B)
$$\frac{1}{3x-3iy}$$

(C)
$$x - iy$$

(D)
$$2x + ixy^2$$

3. 设 c是 z=(1+i)t, $1 \le t \le 2$ 的线段,则 $\int_{C} \arg z dz = (1+i)t$

$$(A) \frac{\pi}{4}$$

$$(B) \quad \frac{\pi}{4}$$

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{4}i$ (C) $\frac{\pi}{4}(1+i)$ (D) $1+i$

(D)
$$1+i$$

4. 设函数 e^z ctgz 的泰勒展开式为 $\sum_{n=0}^{\infty} c_n (z - \frac{\pi}{2})^n$, 那么幂级数 $\sum_{n=0}^{\infty} c_n (z - \frac{\pi}{2})^n$ 的收敛半径

$$R=($$
)

(C)
$$\frac{\pi}{2}$$

5. 若幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 2, 那么该级数在 $z=1+\sqrt{3}i$ 处的敛散性为(

- (A) 绝对收敛
- (B) 条件收敛
- (C) 发散
- (D) 不能确定

6。下列命题中,正确的是(

(A) 设
$$f(z) = (z - z_0)^{-m} \varphi(z), \varphi(z)$$
 在 z_0 处解析, m 为自然数,则 z_0 为 $f(z)$ 的 m 级 极点。

(B) 如果无穷远点 ∞ 是函数 f(z) 的可去奇点,那么 Re $s[f(z), \infty] = 0$ 。

(C) 若 z = 0 为偶函数 f(z) 的一个孤立奇点,则 Re s[f(z),0] = 0。

(D) 若 $\int f(z)dz = 0$,则 f(z)在 c内无孤立奇点。

7. 利用 Laplace 变换的性质可知,实积分 $\int_0^{+\infty} te^{-t} \sin 2t dt$ 的值为()
(A) $\frac{3}{25}$ (B) $-\frac{3}{25}$ (C) $\frac{4}{25}$ (D) $-\frac{4}{25}$
8. 积分 $\int_{-\infty}^{+\infty} e^{-t(\omega-\omega_0)t} dt = ($)
(A) $2\pi\delta(\omega-\omega_0)$ (B) $2\pi\delta(\omega+\omega_0)$ (C) $+\infty$ (D) $-\infty$
9. 设 $f(t)$ 的 Laplace 变换 $L[f(t)] = F(s)$,则 $L[\int_0^t (t-2)e^{2t} f(t)dt] = ($)
(A) $-\frac{1}{s}[F'(s-2)+2F(s-2)]$ (B) $-\frac{1}{s}[F'(s+2)+2F(s+2)]$
(C) $\frac{1}{s}[F'(s-2)-2F(s-2)]$ (D) $\frac{1}{s}[F'(s+2)-2F(s+2)]$
二、填空(2,8题分别为4分,6分,其余每空3分,共40分)
1. 映射 $\omega = \frac{1}{z}$ 将 z 平面上的曲线 $(x-1)^2 + y^2 = 1$ 映射 成 ω 平面上的曲
线
2. 已知 $f(z) = z^3 - 3(1 - \sqrt{3}i)z$,则 $f'(z) = 0$ 的所有根为
3. 函数 $f(z) = \frac{x^2 + y^2}{3x - 3iy}$ 在 $z = 1$ 处的导数为
4. (-1+ <i>i</i>) ^{<i>i</i>} 的主值
5. 设 $f(z) = \oint_{ \zeta =1} \frac{e^{\zeta} \cos \zeta}{\zeta - z} d\zeta$,则 $f'(0) =$
6. 已知 $u(x,y) = 2x - x^3 + 3xy^2$,则由 u 及其共轭调和函数构成的解析函数 $f(z) = u + iv$ =
7. $\int_C (y-x-3ix^2) dz =$
8. 在扩充复平面上,函数 $f(z) = \frac{\sin z - z}{z^3}$ 的孤立奇点有,奇点类
型。
2

- 11. 已知某函数的傅立叶逆变换为 $F(\omega) = \frac{1}{9+\omega^2}$,则该函数 $f(t) = \underline{\qquad}$ 。
- 三、(8分) 计算积分 $\int_{|z|=4} \frac{\cos z}{z (z-\pi)^2} dz.$

四、(8分) 将函数 $f(z) = \frac{z^2 - 2z + 3}{z - 2}$ 在 z = 1 的适当圆环域(包括圆域)内展成洛朗级数.

五、(12分)用 Laplace 变换解微分方程组:

$$\begin{cases} x + x' - y' = u(t-1), & x(0) = x'(0) = 0 \\ y' + x'' - y'' = \delta(t-1), & y(0) = y'(0) = 0 \end{cases}$$

六、(5分) 若函数 f(z)在|z|<1内解析,并且

$$|f(z)| \leq \frac{1}{1-|z|}$$

证明

$$|f^{(n)}(0)| \le (n+1)!(1+\frac{1}{n})^n < e(n+1)!, \quad n=1,2,\cdots$$

2007年复变函数试题

- 一、 解答下列各小题 (每小题 5 分)
- 1. 求方程 $z^6 + 1 = 0$ 的所有根
- 2. 求 $Ln(-1-\sqrt{3}i)$ 的实部与虚部
- 3. 计算 $(\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{\sqrt{5}}$,并写出主值
- 4. 什么叫做复变函数 f(z) 在 $z=z_0$ 处解析? (回答)
- 5. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{z-1}{n}\right)^n$ 的收敛半径
- 6. 求 $\frac{e^{2iz}}{(z^2+9)^2}$ 在3*i*点的留数
- 二、 求函数 $f(z) = \frac{2(z+1)}{z^2 + 2z 3}$ 在以 z = 0 为中心,由它的奇点相互隔开的不同圆环域内的洛朗展开级数(15 分)
- 三、 己知 $u = \frac{1}{2}\ln(x^2 + y^2)$, 求v(x, y), 使f(z) = u + iv为解析函数,且 $f(1+i) = \frac{1}{2}\ln 2$ (15分)
- 四、计算以下积分
- 1. 计算 $\int_{|z|=1}^{\infty} \frac{e^{z}}{z^{n}} dz$ (n为正整数或负整数) (10 分)
- 2. 计算积分 $I = \int_{0}^{\infty} \frac{x^4}{x^6 + 1} dx$ (15 分)
- 3. 计算积分 $\int_{0}^{\infty} \frac{x \sin ax}{(x^2 + b^2)} dx$ (a, b 为实数且 a > 0, b > 0) (15 分)

2007年度复变函数补考题(满分100)

一、 计算或求解下列各小题: (每小题 5 分)

(1) 计算:
$$(-1+\sqrt{3}i)^6$$

(2) 解方程:
$$z^4 - 1 + + i = 0$$

- (3) 求(1-i)2i的值
- (4) 求函数 $f(z) = \frac{z^{2n}}{(z-1)^n}$ 在 z=I 处的留数

二、 把
$$f(z) = \frac{1}{z(z+1)(z+4)}$$
 在环域 $1 < |z| < 4$ 内展成罗仑级数,并求出 C_{-1} (15 分)

三、 求解析函数 f(z), 使 f(z)的虚部为:

$$\nu(x, y) = 2x^2 - 2y^2 + x$$
,且满足: $f(1) = 3i$ 。 (15 分)

四、 计算下列积分

(1)
$$I = \int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$
 (10 $\%$)

(2)
$$I = \int_{-\infty}^{+\infty} \frac{\cos ax}{1 + x^2} dx$$
 (a>0) (10 $\%$)

(3)
$$I = \int_0^{+2\pi} \frac{1}{2 + \cos\theta} d\theta$$
 (10 $\%$)

五、 试用柯西-黎曼方程证明:

$$W(z) = \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

在整个复平面上解析(20分)

学号			姓名。			分数	t	
题号	_	=	三	四	五	六	七	总分
得分								
一、(套	事小题 3	分,共	15分)	判断下	列各题〕	正误。		
1,	如果函	数 <i>f(z</i>)石	生点 z ₀ 处	可导, 」	则 <i>ƒ(z</i>) 在	Ez _o 解析。	。 ()
2,	如果函	数 f(z)	在点 z ₀ 渍		—黎曼	方程,那	『么它在	z_0 处一
定有导	数。()						
3、	如果函	数 f(z)	在区域 Z	內内解析	,那么'	它沿着 L	內任一	条简单
闭曲线	的积分之	为0。()				
4、	如果函	数 f(z)?	生区域 <i>D</i>	内解析	且不为常	的数,那	么 f(z)	不可能
在10内	达到最/	小值。()				
5、	设函数	女 f(z) 在	区域 D	内解析,	点列	$\{z_n\}\subset D$, $f(z_i)$	$_{i})=0$,
n=1, 2	2, 3,	,则 f(2	z)在 <i>D</i> 内	恒为零。	, ()		
二、(名	事空3分	,共15	分)填	空题。				
1,	$w=z^2$	z=i处f	的伸缩率	区是(),	旋转角	是()。
2,	函数 i	的值是	是 ()。		
3、	设 f(z	$z) = \int_{ z =3} \frac{3\xi}{}$	$\frac{x^2+7\xi+1}{\xi-z}$	<i>dξ</i> ,则 ₎	f'(1+i) =	()。
4、	设 f(z)	$=\frac{1}{\sin z - \sin z}$,其	中a为一	一常数,	f(z)的孙	瓜立奇点	及它的
类型和	阶数分别	別是()	和 ()。
5、	方程 <i>z</i> 4	-5z+1=	0在单位	边圆内的	零点个数	数是()。

三、(20分)计算题

1、 积分
$$\int_{|z|=1} \frac{e^z dz}{z^2(z^2-9)}$$
;

$$2 \cdot \qquad \forall \zeta \quad g(z) = \int_{|\zeta|=2} \frac{2\zeta^2 - \zeta + 1}{\zeta - z} d\zeta.$$

- (1) 计算*g*(1);
- (2) $\Re g(z_0), |z_0| > 2$;
- (3) 能否求出 g(2)。

四、(10分) 写出函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在圆环1 < |z| < 2 内的洛朗级数展式。

五、(15分) 计算实积分

$$\int_0^{+\infty} \frac{x \sin mx}{x^4 + a^4} dx \quad (m > 0, \ a > 0)$$

六、(15分) 求作一单叶函数 f(z), 将|z|<1 保形映射成|w|<1, 使 $f(0) = \frac{1}{2}, f'(0) > 0$ 。

七、(10分) 设 f(z)是一个整函数,如果存在着正数 ρ 、 R和 M ,使得当 $|z| \ge R$ 时,

$$|f(z)| < M|z|^{\rho}$$
,

证明 ƒ(z)至多是一个多项式。

北京航空航天大学

2007 — 2008 学年第二学期

考试统一用答题册

课程	复变函数与积分变换				
班级	学号				
姓名	成绩				

题号	_	=	=	四	五	六	セ	总分
分数								
评阅人								

2008年2月23日

1

一、填空题(每题4分,共40分)

2. 函数 $\omega = 1/z$ 将 z 平面上的曲线 x = 2 变成 ω 平面上的曲线

3. 设
$$f(z) = z + \frac{1}{2}z^2 + \frac{1}{2}z^3$$
,则方程 $f'(z) = 0$ 的所有根为_____

4.
$$f(z) = (x^2 - y^2 - x) + i(2xy - y^2), \ \emptyset \ f'(\frac{1}{2}i) = \underline{\hspace{1cm}}$$

7. 设函数
$$\frac{e^z}{\sin z}$$
 的泰勒展开式为 $\sum_{n=0}^{\infty} c_n (z - \frac{\pi}{2})^n$, 那么幂级数

分别为_____.

9. 函数
$$e^z \cos z$$
 在 $z = 0$ 处的泰勒展开式为 . .

二、(10 分)已知解析函数 f(z) = u + iv的实部 $u = x^2 - y^2 + xy$, 求 f(z).

三、(10分) 求积分 $\int_C (\bar{z}-1)dz$, 其中曲线C为 C_1 : 从 -1 到 1 的下半 单位圆周和 C_2 : 从 1到-1 的直线构成的封闭曲线。

四、 $(14 \, f)$ 计算 $\int_{C} \frac{e^{z}}{z(1-z)^{3}} dz$, 其中 C是包含 0与1在内的闭光滑曲线.

五、(16 分) 将函数 $f(z) = \frac{1}{(z+i)(z-2)}$ 在下列圆环域内展开成含 z 的

幂的洛朗级数.

(1)
$$1 < |z| < 2$$
, (2) $2 < |z| < \infty$.

六、(10 分) 用 Laplace 变换及其逆变换求解微分方程 $y''(t)+2y'(t)-3y(t)=e^{-t}$ 满足条件y(0)=0,y'(0)=1的解.

2008 —2009 学年第一学期

考试统一用答题册

题号	_	 \equiv	四	五	六	总分
成绩						
阅卷人签字						
校对人签字						

考试课程		复变函数与积分变换 A				
班	级	学号				
姓	名	成 绩				

2009 年 1 月 4 日

(试题共5页)

一、 选择题(每题 3 分, 共 27 分)				
1. 下列函数中,在有限复平面上解析的函数是()				
(A) $x^2 - y^2 + (2xy)$	$(y-y^2)i$	(B) $x^2 + y^2 i$		
$(C) 2xy + i(y^2 - x)$	x^2+2x)	(D) $x^3 - 3xy^2 + 3x^2$	$yi - y^3i$	
2. 设 <i>C</i> 是从 <i>i</i> 到	J直线段,则积分 ∫ e^{π z} c	I z = ()		
(A) $\frac{1}{\pi}$	(B) $-\frac{1}{\pi}$	$(C) -\frac{1}{\pi}(1+i)$	$(D) \frac{1}{\pi}(1+i)$	
3. 设 <i>C</i> 为曲线 <i>C</i> ₁ : /	从 - 1 到 1 的下半单位	位圆周和曲线 C_2 :从 1 到] – 1 的直线构成的封	
闭曲线,则 $\int_{\mathcal{C}}(\bar{z}-1)$	dz = ()			
(A) <i>iπ</i>	(B) $-i\pi$	(C) 0	(D) π	
4. 设函数 <i>zctgz</i> 的泰	影勒展开式为 $\sum_{n=0}^{\infty} c_n(z-$	$(\frac{\pi}{2})^n$,那么幂级数 $\sum_{n=0}^{\infty} c_n$	$_{n}(z-\frac{\pi}{2})^{n}$ 的收敛半径	
R = (
(A) +∞	(B) 1	(C) $\frac{\pi}{2}$	(D) π	
5. 设 $f(z) = x^2 - y^2$	$(2xy - y^2)$,	则 $f'(1+\frac{i}{2})=$ ()	
(A) $1-i$	(B) 1+ <i>i</i>	(C) $1 - \frac{1}{2}i$	(D) $1+\frac{1}{2}i$	
6. 下列命题中,正确	的是()			
(A) 设 ν_1, ν_2 在区域 D 内均为 u 的共轭调和函数,则必有 $\nu_1 = \nu_2$				
(B)解析函数的实部是虚部的共轭调和函数				
(C) 若 f(z) = u + i	v在区域 D 内解析,则	$rac{\partial oldsymbol{u}}{\partial x}$ 为 $oldsymbol{D}$ 内的调和函数		

(D) 以调和函数为实部与虚部的函数是解析函数

7. 设z=0为函数 $\frac{1-e^z}{z-\sin z}$ 的 m 级极点,那么 m=((B) 4 (A) 5 (C)38.设函数f(t)的拉普拉斯变换L[f(t)] = F(s),则 $L[\int_0^{3t} f(t) dt] = ($ (A) $\frac{1}{3s}F(\frac{s}{3})$ (B) $\frac{1}{s}F(\frac{s}{3})$ (C) $\frac{1}{3c}F(s)$ (D) $\frac{1}{s}F(s)$ 9. 设函数/(1)的傅立叶变换为 $\mathcal{F}\left[f(t)\right]=F(\omega)$,则函数 (t-2)f(-2t) 的傅立叶变换为 $(A) - \frac{i}{4}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$ $(B)\frac{i}{4}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$ $(C) - \frac{i}{2}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2}) \qquad (D)\frac{i}{2}F'(-\frac{\omega}{2}) - F(-\frac{\omega}{2})$ 二、填空题(每题4分,共40分) 2. 复数 i¹⁺ⁱ 的主值为 _______ 解析函数 f(z) = u + iv 的实部 $u = x^3 - 3xy^2$,则 f(z)4. 积分 $\int_{|z|=1}^{\infty} \frac{1}{z+2} dz =$ _________,由此计算 $\int_{0}^{2\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta = \underline{\hspace{1cm}}$

- 6. $\int_{|z|=3} \frac{1}{z^2(z+1)} dz =$
- 8. 在扩充复平面上函数 $f(z) = \frac{\sin z}{z^4}$ 的孤立奇点为_______(写出类

型), 在孤立奇点处留数为_____

- 三、 $(10 \, \text{分})$ 将函数 $f(z) = \frac{1}{(z-i)z^2}$ 在适当的圆环域内展开成含 z-i的幂的洛朗级数.

四、
$$(9\, \%)$$
、计算函数 $f(t) = \begin{cases} 0, & -\infty < t < -1 \\ -1, & -1 < t < 0 \\ 1, & 0 < t < 1 \\ 0, & 1 < t < +\infty \end{cases}$ 的傅立叶变换,并计算广义积分

$$\int_0^{+\infty} \frac{2(1-\cos\omega)}{\omega} \sin\omega t d\omega \text{ in } \omega.$$

五、(8分)用拉普拉斯变换及其逆变换求解微分方程组 $\begin{cases} x'(t) + y''(t) = \delta(t-1) \\ 2x(t) + y'''(t) = 2u(t-1) \end{cases}$ 满足初始

条件
$$\begin{cases} x(0) = y(0) = 0 \\ y'(0) = y''(0) = 0 \end{cases}$$
的解.

六、(6分) 如果
$$|z| < 1$$
内 $f(z)$ 解析且 $|f(z)| \le \frac{1}{1-|z|}$,证明 $|f'''(0)| \le 2''^{+1} n!$ $(n = 1, 2, \cdots)$

2009 - 2010 学年第一学期

考试统一用答题册

题号	 	四	五.	六	七	八	总分
成绩							
阅卷人							

考试证	课程	复变函数与积分变换 A
班	级	学号
姓	名	成 绩

2010年1月13日

1

(试题共5页)

一、判断对邻	措(每题2分	, 共10分)	•	
1. 如果 z 不	是实数,则a	$rg\bar{z} = -argz$ ()	
2. 设 f(z)	和 g(z) 均为雪	隆函数,则 $5f(z)+i$	g(z)也是整函数。()
3. 微积分中	的求导公式、	洛必达法则、积分	中值定理等均可推广到	到复变函数。()
4. 存在在原	原点解析,在-	$\frac{1}{n}$ 处取值为 $1,0,\frac{1}{3},0$	$\frac{1}{5}$,…的函数。()
5. 若∞是8	函数 f(z) 的 🗖	可去奇点,则 $f(z)$ 在	[∞ 处的留数为 0。()
	(每题 3 分,与 程所表示的平	÷ 24 分) 面点集中,为有界区	域的是()	
(A)	$\left \frac{z-1}{z+1}\right >2$		(B) $ z+3 - z-3 >$	• 4
(C) 1	$< \operatorname{Re} z < 2,$	$\operatorname{Im} z = 0 \tag{D}$	$z\bar{z} + a\bar{z} + \bar{a}z + a\bar{a} -$	$-c>0\ (c>0)$
2. 假设点 2	z_0 是函数 $f(z)$)的奇点,则函数 f ((z)在点 z ₀ 处()
	不可导 不连续	(B) 不解析 (D) 以上答		
3. 设 C 为	椭圆 x² + 4y	$c^2 = 1$,则积分 $\int_C \frac{1}{z} dz$	1z = ()	
(A) 2	2 <i>π</i> i	(B) π	(C) 0	(D) $-2\pi i$
4. 设 <i>c</i> 为ī	E向圆周 z =	$1 , \int_C \left \frac{dz}{z} \right = ($)	
(A) 2	$2\pi i$	(B) 2π	(C) −2 π i	(D) -2 π
5. 如果 z ₀	为 f (z) 的 n s	级极点,则 z ₀ 为 f'(z)的()级 ^z	极点
(A) n		(B) $-n$	(C) $n-1$	(D) $n+1$
6. Res[-	$\frac{1}{z\sin z}, z=0$]= ()		
(A)	2πi	(B) 2 π	(C) 0	(D) $-2\pi i$
7. 设 f(t)的傅立叶变	换为 $F(ω)$,则 $f($	at + b)(a,b为实数且	Aa > 0) 的傅立叶变换为
()			

(A)
$$\frac{1}{a}e^{i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (B) $\frac{1}{a}e^{i\frac{b}{a}\omega}F(\frac{\omega}{a})$

(B)
$$\frac{1}{a}e^{i\frac{b}{a}\omega}F(\frac{\omega}{a})$$

(C)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$

(C)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (D) $\frac{1}{a}e^{-i\frac{b}{a}\omega}F(\frac{\omega}{a})$

8. 函数 $\frac{s^2}{(s+1)^2+1}$ 的拉普拉斯逆变换为 (

(A)
$$\delta(t) - 2e^{-t} \cos t$$

(A)
$$\delta(t) - 2e^{-t}\cos t$$
 (B) $\delta(t) - 2\cos t - 2\sin t$

(C)
$$\delta(t) - 2e^{-t} \sin t$$
 (D) $\frac{i-1}{2}e^{it}$

$$(\mathbf{D})\frac{i-1}{2}e^{it}$$

1.
$$\exists z = \frac{\cos(\frac{5}{6}\pi) + i\sin(\frac{5}{6}\pi)}{\cos(\frac{1}{3}\pi) + i\sin(\frac{1}{3}\pi)}$$
 时, $z^{-2009} + z^{2357} + z^{-256} + z^{74}$ 的值等于______.

$$\lim_{z \to 2+3i} \oint_{C} \frac{e^{\xi}}{\xi - z} d\xi = _____,$$
 当 z 从曲线 C 外部趋向 2+3 i 时,

$$\lim_{z\to 2+3i} \oint_{c} \frac{e^{\zeta}}{\xi-z} d\xi = \underline{\qquad}$$

四、 $(8\, \mathcal{G})$ 计算积分 $\int_C \frac{1}{(z^2+a^2)^2} dz$,其中C 为不经过 $z=\pm ai$ 的简单正向闭曲线.

五、
$$(8 分)$$
 将 $f(z) = \frac{1}{(z+i)(z-2)}$ 在适当的圆环域内展成以 2 为心的幂级数。

六、(10 分)计算函数 $f(t) = \begin{cases} t, & |t| \le 1 \\ 0, & 其他 \end{cases}$ 的傅立叶变换,并求积分

$$\int_{0}^{+\infty} \left(\frac{\sin \omega}{\omega^2} - \frac{\cos \omega}{\omega}\right) \sin \omega t d\omega \text{ in } dt$$

(试题共5页)

一、选择题(每题3分,共24分)	
1. 一个复数乘以- i, 则()	
(A) 复数的模不变,辐角减少π/2	(B) 复数的模不变,辐角增加π/2。
(C) 复数的模增加,辐角减少π/2。	(D) 复数的模减少,辐角增加n/2。
2. 设 $f(z)$ 和 $g(z)$ 均为整函数,下列命题铭	诗误的是 ()
(A) $f^3(z)$ 是整函数	(B) $f(z)g(z)$ 是整函数
(C) $\frac{f(z)}{g(z)}$ 是整函数	(D) g(z ² + 2) 是整函数
3. 设 C 为正向圆周 $ z = \frac{1}{2}$,则 $\int_{C} \frac{(z-2)^3}{z^2-6}$	$\frac{\sin\frac{1}{z-2}}{5z+10}dz = ($
(A) $2\pi i(3\cos 1 - \sin 1)$ (B) 0	(C) $6\pi i \cos 1$ (D) $-2\pi i \sin 1$
4. 若 $z=z_0$ 是函数 $f(z)$ 的 m 级零点,则 z	z _e 是f ² (z)的()
(A) m 级零点 (B) m ² 级零点	(C) 2m级零点 (D) - m级零点
5. $ \dot{\pi} c_n = \begin{cases} 2^n, & n = 0, 1, 2, \dots \\ 3^n, & n = -1, -2, \dots \end{cases} $, $ \mu \times \lambda = 0 $	级数 $\sum_{n=-\infty}^{+\infty} c_n (z-2)^n$ 的收敛域为(
(A) $\frac{1}{3} < z < \frac{1}{2}$ (B) $\frac{1}{3} < z-2 < \frac{1}{2}$	(C) $2 < z < 3$ (D) $2 < z-2 < 3$
6. $z=\infty$ 是函数 $\frac{z^3+2z^2+i}{z}$ 的 ()
(A) 可去奇点 (B) 一级极点	(C) 二级极点 (D) 本性奇点
7. 设 $z = 0$ 为函数 $\frac{1 - e^z}{z - \sin z}$ 的 m 级极点.	那么 m = ()
(A) 5 (B) 4	(C)3 (D) 2
8. 积分 🖟 te ^{-3t} sin 2tdt 的值为 ()
(A) $\frac{12}{169}$ (B) $-\frac{12}{169}$	(C) 0 (D) 2 <i>ni</i>

二、填空题	(每题3分,	共24分)
-------	--------	-------

1. 假设 z_1, z_2 非零,则 $|z_1|+|z_2|=|z_1|+|z_2|$ 的充分必要条件是 z_1, z_2 具有相同

的

4. 设C 为椭圆 $\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1$,则积分 $\int_C \frac{1}{z} dz =$ _______.

6. $\operatorname{Re} s[z^3 \cos \frac{2i}{z}, 0] = \underline{\hspace{1cm}}$

8. 函数 $f(t) = \pi \delta(t) + \cos t$ 的傅立叶变换为_____

三、(10分) 计算积分 $\int_{C} \frac{\cos z}{(1-z)^2 z} dz$, 其中 C 为不经过 0,1 的简单正向闭曲线.

四、(8分) 设 $v=e^{\rho x}\sin y$, 求 p 的值使v 是调和函数,并求解析函数 f(z)=u+iv.

五、(10分)将 $f(z) = \frac{1}{(z+i)(z-2)^2}$ 在适当的圆环域内展成以-i为心的幂级数。

六、(6 分) 已知函数 f(t) 的傅立叶变换为 $F(\omega)$,求函数 tf(2t-4) 的傅立叶变换,

七、(12分)利用拉普拉斯变换求解微分方程

$$f''-2f'+f=\begin{cases} 1, & 1\leq t\leq 2\\ 0, & \neq 0 \end{cases}, \quad f(0)=0, f'(0)=0.$$

八、 $(6\, \mathcal{H})$ 设 f(z) 为非常数的整函数,又设 R,M 为任意正数,试证:存在 z 满足如下条件: |z|>R,且 |f(z)|>M 。

复变函数试题及答案

- 一、填空题
- 2. $f(z) = x^3 + 3x^2yi 3xy^2 y^3i$, $\iint f'(z) =$
- 3. $\oint_{|z|=\frac{3}{2}} \frac{dz}{(z^2+1)(z^2+4)} = \underline{\qquad}$
- 4. Re $s[\frac{1}{z \sin z}, 0] =$
- 5. 函数 $w = \sin z$ 在 $z = \frac{\pi}{4}$ 处的转动角<u>为</u>
- 6. 幂级数 $\sum_{n=0}^{\infty} (\cos in) z^n$ 的收敛半径为 R =_______
- $7. \quad \int_0^1 z \sin z dz = \underline{\hspace{1cm}}$
- 8. 设 C 为包围原点在内的任一条简单正向封闭曲线,则

$$\oint_C \frac{e^{\frac{1}{z}}}{z^2} dz = \underline{\qquad}$$

- 9. 函数 $f(z) = \frac{z}{z^4 1}$ 在复平面上的所有有限奇点处留数的和为
- 三. $v = e^{px} \sin y$ 为调和函数, 求 p 的值, 并求出解析函数 f(z) = u + iv。
- 四. 求 $f(z) = \frac{z}{(z-1)(z-2)}$ 在圆环域1 < |z| < 2和 $1 < |z-2| < +\infty$ 内的洛朗展开式。
- 五. 计算积分 $\int_{-\infty}^{+\infty} \frac{2\cos x}{x^2 + 4x + 5} dx$ 。

六. 设 $f(z) = \oint_C \frac{3\xi^2 + 7\xi + 1}{\xi - z} d\xi$, 其中 C 为圆周|z|=3的正向,求 f'(1+i)。

七. 求将带形区域 $\{z \mid 0 < \text{Im}(z) < a\}$ 映射成单位圆的共形映射。

复变函数答案

1. 三级极点; 2.
$$3z^2$$
; 3. $\frac{1}{2}\left[\frac{1}{j(\omega-2)} + \frac{1}{j(\omega+2)} + \pi\delta(\omega-2) + \pi\delta(\omega+2)\right]$;

4. 0; 5. 0; 6.
$$\frac{1}{e}$$
; 7. $\frac{6s^2-2}{(s^2+1)^3}$; 8. 0;

9. 0;

三.解:1)在1<|z|<2

$$f(z) = z\left(\frac{1}{z-2} - \frac{1}{z-1}\right) = z\left(-\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n - \frac{1}{z}\sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n\right) = -\sum_{n=0}^{\infty} \left(\frac{z^{n+1}}{2^{n+1}} + \frac{1}{z^n}\right) - \cdots - 4 \text{ }$$

$$f(z) = \frac{1}{z-2} \left(1 + \frac{1}{z-2+1}\right) = \frac{1}{z-2} \left(1 + \frac{1}{(z-2)(1+\frac{1}{z-2})}\right) = \frac{1}{z-2} + \sum_{n=0}^{\infty} (-1)^n \frac{1}{(z-2)^{n+2}}$$

四.解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一级极点 -2+i, 故

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + 4x + 5} dx = 2\pi i \operatorname{Re} s \left[\frac{e^{iz}}{z^2 + 4z + 5}, -2 + i \right]$$

$$=2\pi i \lim_{z \to -2+i} (z - (-2+i)) \frac{e^{iz}}{z^2 + 4z + 5} = \frac{\pi}{e} (\cos 2 - i \sin 2)$$

五. 解:
$$f'(z) = \iint_C \frac{3\xi^2 + 7\xi + 1}{(\xi - z)^2} d\xi$$

由于 1+i 在|z|=3所围的圆域内, 故

$$f'(1+i) = \oint_C \frac{3\xi^2 + 7\xi + 1}{(\xi - (1+i))^2} d\xi = 2\pi i (3\xi^2 + 7\xi + 1)' \big|_{\xi = 1+i} = 2\pi (-6 + 13i)$$

六. 解:利用指数函数映射的特点以及上半平面到单位圆的分式线性映射,可以得到

$$f(z) = e^{i\theta} \frac{e^{\frac{\pi}{a}z} - \lambda}{e^{\frac{\pi}{a}z} - \overline{\lambda}}$$
 (映射不唯一, 写出任何一个都算对)

七. 解:对方程两端做拉氏变换:

$$s^{2}Y(s) - sy(0) - y'(0) + (sY(s) - y(0)) - 3Y(s) = \frac{3}{s+1}$$

代入初始条件, 得
$$Y(s) = \frac{\frac{3}{s+1} + 1}{s^2 + 2s - 3}$$
 -----4 分

$$= \frac{3}{(s+1)(s+3)(s-1)} + \frac{1}{(s+3)(s-1)} = \frac{-\frac{3}{4}}{s+1} + \frac{\frac{5}{8}}{s-1} + \frac{\frac{1}{8}}{s+3}$$

故有
$$y(t) = -\frac{3}{4}e^{-t} + \frac{5}{8}e^{t} + \frac{1}{8}e^{-3t}$$
 (用留数做也可以)