

Filip Zieliński

2025

Spis Treści

- 1. Chińskie Twierdzenie o Resztach
- 2. Układy Kongruencji
- 3. Potęgowanie Modulo
- 4. Wyznacznik Macierzy Całkowitoliczbowej

Układ Kongruencji Chińskie Twierdzenie o Resztach

Problem

Rozważmy układ kongruencji

$$\begin{cases} a \equiv 1 \pmod{5} \\ a \equiv 6 \pmod{7} \\ a \equiv 5 \pmod{9} \end{cases}$$

pojawiają się naturalne pytania

- Czy układ ma rozwiązanie i czy da się je znaleźć?
- Jeśli tak, to ile jest tych rozwiązań?
- Jak znaleźć wszystkie rozwiązania?

CRT - Wersja Podstawowa Chińskie Twierdzenie o Resztach

Chińskie Twierdzenie o Resztach (CRT)

Niech R będzie pierścieniem Euklidesowym oraz $m_1,\ldots,m_k,a_1,\ldots a_k\in R$. Oznaczmy $M=\prod_{i=1}^k m_i$. Jeżeli m_1,\ldots,m_k są parami względnie pierwsze to układ

$$\begin{cases} a \equiv a_1 \pmod{m_1} \\ a \equiv a_2 \pmod{m_2} \end{cases}$$

$$\vdots$$

$$a \equiv a_k \pmod{m_k}$$

ma dokładnie jedno rozwiązanie $\in R/\langle M \rangle$ (dokładnie jedno rozwiązenie modulo M.)

CRT - Wersja Zaawansowana Chińskie Twierdzenie o Resztach

Chińskie Twierdzenie o Resztach (CRT)

Niech R będzie pierścieniem oraz $I_1, \dots I_k$ parami względnie pierwszymi ideałami w tym pierścienu. Wtedy

$$R/(I_1 \cap \ldots \cap I_k) \cong R/I_1 \times \ldots \times R/I_k$$
.

Zawężenie do Pierścieni Euklidesowy

Uwaga

Oba prezentowane algorytmy, bazują na możliwości wyznaczenia współczynników Bezouta z Rozszerzonego Algorytmu Euklidesa, zatem wprost odnoszą się tylko do pierścieni Euklidesowych (standardowo dla nas $\mathbb{Z}, k[x]$)

Algorytm Lagrange'a Układy Kongruencji

Założenia: pierścień euklidesowy R.

Wejście:

- $a_1, \ldots, a_k \in R$
- $m_1, \ldots, m_k \in R$

Wyjście:

• $a : a \equiv a_i \pmod{m_i}$ dla każdego $i = 1, \ldots, k$.

- 1. Dla każdego $i \in \{1, ..., k\}, j \in \{i+1, ..., k\}$ wyznacz α_{ij}, α_{ji} takie, że $\alpha_{ij}m_i + \alpha_{ji}m_j = 1$ (współczynniki Bezouta).
- **2.** Zdefiniuj $M := \prod_{i=1}^k m_i$.
- 3. Dla każdego $i \in \{1, \ldots, k\}$ wyznacz $A_i := \frac{M}{m} \prod_{j=1, j \neq i}^k \alpha_{ji}$.
- **4.** Zwróć $a := \sum_{i=1}^{k} a_i A_i \pmod{M}$.

Wady Algorytmu Lagrange'a

Uwaga

Współczynniki A_i z poprzedniego algorytmu bardzo szybko rosną oraz nie jest to algorytm "przyrostowy"

Układy dwóch kongruencji Układy Kongruencji

Wejście::

- $a_1, a_2 \in R$
- $m_1, m_2 \in R$

Wyjście:

• a taki, $\dot{z}e \ a \equiv a_1 \pmod{m_1} \wedge a \equiv a_2 \pmod{m_2}$

- 1. Wyznacz α, β takie, że $\alpha m_1 + \beta m_2 = 1$.
- **2.** Zdefiniuj $r := mod(a_1, m_1)$
- **3.** Wyznacz $b := (a_2 r)\alpha$
- **4.** Wyznacz $s := b \pmod{m_2}$
- **5.** Zwróć $r + sm_1$

Algorytm przyrostowy Newtona Układy Kongruencji

Wejście:

- $a_1, \ldots, a_k \in R$
- $m_1, \ldots, m_k \in R$

Wyjście:

• $a : a \equiv a_i \pmod{m_i}$ dla każdego $i = 1, \ldots, k$.

- **1.** Zdefiniuj M := 1, A := 1
- **2.** dla każdego $i \in \{1, \ldots, k\}$
 - Używając poprzedniego algorytmu, znajdź b takie, że b ≡ A (mod M) ∧ b ≡ a_i (mod m_i).
 - Zamień A := b oraz $M := M \cdot m[i]$.
- 3. Zwróć A.

Szybkie potęgowanie modulo Potęgowanie Modulo

Wejście:

• $a \in \mathbb{Z}, n, m \in \mathbb{N}$

Wyjście:

• *a*^{*n*} (mod *m*)

- 1. Zdefiniuj $(d_k \dots d_0)_2$ jako binarny zapis wykładnika n.
- **2.** Zainicjalizuj r := 1, $b := a \pmod{m}$
- **3.** Dla każdego $i \in \{1, \ldots, k\}$
- **4.** Jeżeli $d_i = 1$ to podstaw $r := r \cdot b \pmod{m}$
 - Podstaw $b := b^2 \pmod{m}$
- **5.** Zwróć *r*

Małe Twierdzenie Fermata Potęgowanie Modulo

Twierdzenie (Fermat, 1640)

Jeżeli p jest liczbą pierwszą, to dla każdego $a \in \mathbb{Z}$ zachodzi

$$a^{p-1} \equiv \begin{cases} 0 \pmod{p}, & p \mid a \\ 1 \pmod{p}, & p \nmid a \end{cases}$$

Małe Twierdzenie Fermata Potęgowanie Modulo

Twierdzenie (Fermat, 1640)

Jeżeli p jest liczbą pierwszą, to dla każdego $a \in \mathbb{Z}$ zachodzi

$$a^{p-1} \equiv \begin{cases} 0 \pmod{p}, & p \mid a \\ 1 \pmod{p}, & p \nmid a \end{cases}$$

Obserwacja

To twierdzenie, pozwala często przyspieszyć potęgowanie modularne (zmniejszyć błyskawicznie wykładnik). Niestety tylko i wyłącznie, gdy potęgujemy modulo liczba pierwsza.

Funkcja φ Eulera Potęgowanie Modulo

Definicja

Funkcją Eulera nazywamy funkcję $\varphi:\mathbb{N}\to\mathbb{N}$ zdefiniowaną jako

$$\varphi(n) = \#\{a \in \{0, \dots, n-1\} \mid NWD(a, n) = 1\}$$

Innymi słowami $\varphi(n)$ to liczba jedności w pierścieniu ilorazowym $\mathbb{Z}/\langle n \rangle$.

Funkcja φ Eulera Potegowanie Modulo

Definicja

Funkcją Eulera nazywamy funkcję $\varphi:\mathbb{N}\to\mathbb{N}$ zdefiniowaną jako

$$\varphi(n) = \#\{a \in \{0, \dots, n-1\} \mid NWD(a, n) = 1\}$$

Innymi słowami $\varphi(n)$ to liczba jedności w pierścieniu ilorazowym $\mathbb{Z}/\langle n \rangle$.

Obserwacja

Jeżeli p jest liczba pierwszą, to $\varphi(p) = p - 1$

Twierdzenie

- Jeżeli p jest liczbą pierwszą, to $\varphi(p^k) = p^k p^{k-1}$
- Jeżeli NWD(m, n) = 1 to $\varphi(mn) = \varphi(m) \cdot \varphi(n)$

Twierdzenie Eulera Potęgowanie Modulo

Twierdzenie (Euler, 1736)

Niech m>1 będzie liczbą całkowitą dodatnią. Jeżeli $a\in\mathbb{Z}$ jest względnie pierwsze z m to zachodzi

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

Twierdzenie Eulera Potęgowanie Modulo

Twierdzenie (Euler, 1736)

Niech m>1 będzie liczbą całkowitą dodatnią. Jeżeli $a\in\mathbb{Z}$ jest względnie pierwsze z m to zachodzi

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

Obserwacja

To twierdzenie również bardzo przyspiesza potęgowanie modularne.

Problemy Eliminacji Gaussa Wyznacznik Macierzy Całkowitoliczbowej

Obserwacja

Rozważmy macierz kwadratową $M \in \mathcal{M}_n(\mathbb{Z})$. W oczywisty sposób det $M \in \mathbb{Z}$.

Mimo tego, wykorzystując klasyczne algorytmy liczenia wyznacznika (eliminacja Gaussa) na komputerze z powodu dzielenia możemy natrafić na liczby zmiennoprzecinkowe i końcowy wynik może nie być dokładny.

Pomysł: W ciałach skończonych \mathbb{Z}_p operację są dokładne - można policzyć wyznacznik modulo wiele liczb pierwszych, a później z Chińskiego Twierdzenia o Resztach złożyć wiele wyników w jeden ostateczny. Dodatkowa zaleta: Operacje modulo są stosunkowo szybkie!

Wyznacznik Macierzy Modulo Wyznacznik Macierzy Całkowitoliczbowej

Twierdzenie

Niech $M=(m_{ij})\in \mathcal{M}_n(\mathbb{Z})$ będzie macierza kwadratową $n\times n$, a p dowolną liczbą pierwszą. Niech $\overline{m}_{ij}=(m_{ij}\pmod{p})$ oraz $\overline{M}=(\overline{m}_{ij})$. Zachodzi

$$\det \overline{M} \equiv \det M \pmod{p}$$

Nierówność Hadamarda

Wyznacznik Macierzy Całkowitoliczbowej

Twierdzenie (Hadamard, 1893)

Niech $M=(m_{ij})\in\mathcal{M}_n(\mathbb{R})$ będzie rzeczywistą macierzą kwadratową. Zachodzi

$$|\det M|\leqslant \prod_{j=1}^n \sqrt{\sum_{i=1}^n m_{ij}^2}$$

Nierówność Hadamarda

Wyznacznik Macierzy Całkowitoliczbowej

Twierdzenie (Hadamard, 1893)

Niech $M=(m_{ij})\in\mathcal{M}_n(\mathbb{R})$ będzie rzeczywistą macierzą kwadratową. Zachodzi

$$|\det M| \leqslant \prod_{j=1}^n \sqrt{\sum_{i=1}^n m_{ij}^2}$$

Wniosek

Jeżeli rozważymy B>0 takie, że $|m_{ij}|\leqslant B$ dla wszystkich $i,j\leqslant n,$ to zachodzi

$$|\det M| \leqslant B^n \sqrt{n^n}$$

Algorytm Modularny Gaussa Wyznacznik Macierzy Całkowitoliczbowej

Wejście:

• $M = (m_{ij})$ macierz całkowitoliczbowa wymiaru $n \times n$.

Wyjście:

• det *M*.

- 1. Wyznacz $B \geqslant |m_{ij}|$ dla każdego $i, j \leqslant n$.
- **2.** Znajdź liczby pierwsze $p_1, \dots p_k \geqslant 3$ takie, że $m := p_1 \cdots p_k > 2B^n \sqrt{n^n}$.
- **3.** Dla każdego $i \in \{1, \ldots, k\}$ oblicz $d_i := det(M \pmod{p_i}) \in \mathbb{Z}_p$.
- **4.** Rozwiąż układ kongruencji $d \equiv d_i \pmod{p_i}$ dla $i \in \{1, ..., k\}$.
- **5.** Jeśli d > m/2 to podstaw d := d m.
- 6. Zwróć d.

Wyznacznik Macierzy Całkowitoliczbowej

Prezentacja jest mocno oparta o wykład autorstwa *Przemysława Koprowskiego*, który można obejrzeć pod tym linkiem

- [1] Joachim Von Zur Gathen and Jurgen Gerhard. *Modern Computer Algebra*. Cambridge University Press, 1999.
- [2] Przemysław Koprowski. Lectures on Computational Mathematics. 2022.

Pytania, wątpliwości, uwagi?