Лабораторная работа №8. Рекуррентные нейронные сети для анализа временных рядов

Данные: Набор данных для прогнозирования временных рядов, который состоит из среднемесячного числа пятен на солнце, наблюдаемых с января 1749 по август 2017. Данные в виде csv-файла можно скачать на сайте Kaggle -> https://www.kaggle.com/robervalt/sunspots/ (https://www.kaggle.com/robervalt/sunspots/)

```
In [1]:
```

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
```

Загрузите данные. Изобразите ряд в виде графика. Вычислите основные характеристики временного ряда (сезонность, тренд, автокорреляцию).

```
In [2]:
```

```
data = pd.read_csv('/kaggle/input/sunspots/Sunspots.csv', usecols=[1,2], parse
_dates=[0], index_col=0, squeeze=True)
data.head()
```

Out[2]:

```
Date

1749-01-31 96.7

1749-02-28 104.3

1749-03-31 116.7

1749-04-30 92.8

1749-05-31 141.7
```

Name: Monthly Mean Total Sunspot Number, dtype: float64

In [3]:

In [4]:

```
data.plot(figsize=(16, 8))
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fc60d506860>

In [5]:

```
from pandas.plotting import autocorrelation_plot

plt.figure(figsize=(16, 8))
autocorrelation_plot(data[:200])
```

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fc60b11e518>

from statsmodels.tsa.arima_model import ARIMA

```
model = ARIMA(data, order=(25,1,0), freq=data.index.inferred_freq)
model_fit = model.fit(disp=0)
print(model_fit.summary())
```

	ARIMA Model Resu						
Dep. Variable: D.Monthly Mean T	otal Sunspot Number	No. Obser					
vations: 3251							
Model:	ARIMA(25, 1, 0)	Log Likel					
ihood -15038.442	_						
Method:	css-mle	S.D. of i					
nnovations 24.698							
Date:	Sun, 19 Apr 2020	AIC					
30130.883							
Time:	14:17:17	BIC					
30295.224							
Sample:	02-28-1749	HQIC					
30189.755							
	- 12-31-2019						
		========					
	coef	std err					
z P > z [0.025 0.975]	5]						
const	-0.0216	0.317					
-0.068 0.946 -0.643	0.600						
ar.L1.D.Monthly Mean Total Sunspot	Number -0.4363	0.018					
-24.880 0.000 -0.471	-0.402						
ar.L2.D.Monthly Mean Total Sunspot	Number -0.3287	0.019					
-17.208 0.000 -0.366	-0.291						
ar.L3.D.Monthly Mean Total Sunspot	Number -0.2404	0.020					
-12.049 0.000 -0.280 -0.201							
ar.L4.D.Monthly Mean Total Sunspot	Number -0.1337	0.020					
-6.556 0.000 -0.174	-0.094						
ar.L5.D.Monthly Mean Total Sunspot	Number -0.0963	0.021					
-4.697 0.000 -0.137 -0.056							
ar.L6.D.Monthly Mean Total Sunspot	Number -0.0275	0.021					
-1.336 0.181 -0.068	0.013						
ar.L7.D.Monthly Mean Total Sunspot	Number -0.0237	0.021					
-1.152 0.249 -0.064	0.017						
ar.L8.D.Monthly Mean Total Sunspot	Number -0.0003	0.021					
-0.014 0.989 -0.041	0.040						
ar.L9.D.Monthly Mean Total Sunspot	Number 0.0992	0.021					
4.832 0.000 0.059	0.139						
ar.L10.D.Monthly Mean Total Sunspot	Number 0.1121	0.021					
5.446 0.000 0.072	0.152						
ar.L11.D.Monthly Mean Total Sunspot		0.021					
6.028 0.000 0.084	0.164						
ar.L12.D.Monthly Mean Total Sunspot		0.021					
6.570 0.000 0.095	0.175						
ar.L13.D.Monthly Mean Total Sunspot	Number 0.1077	0.021					
-							

	0.000				
	onthly Mean			0.1213	0.021
5.909	0.000	0.081	0.162		
ar.L15.D.M	onthly Mean		oot Number	0.1379	0.021
6.721	0.000	0.098	0.178		
ar.L16.D.M	onthly Mean	Total Suns	oot Number	0.0898	0.021
4.366	0.000	0.049	0.130		
ar.L17.D.M	onthly Mean	Total Suns	oot Number	0.0864	0.021
4.205	0.000	0.046	0.127		
ar.L18.D.M	onthly Mean	Total Suns	oot Number	0.0256	0.021
1.242	0.214	-0.015	0.066		
ar.L19.D.M	onthly Mean	Total Suns	oot Number	0.0207	0.021
1.004	0.316	-0.020	0.061		
ar.L20.D.M	onthly Mean	Total Suns	oot Number	0.0073	0.021
0.356	0.722	-0.033	0.048		
ar.L21.D.M	onthly Mean	Total Suns	oot Number	-0.0441	0.021
-2.143	0.032	-0.084	-0.004		
ar.L22.D.M	onthly Mean	Total Suns	oot Number	-0.0378	0.020
-1.851	_	-0.078	=		
ar.L23.D.M	onthlv Mean	Total Suns	oot Number	-0.0007	0.020
-0.035	_	-0.040	0.039		
	onthly Mean			-0.0652	0.019
-3.400	_	-0.103	-0.028	0.000	0.025
			oot Number	0.0050	0.018
0.282	0.778		0.040	0.0030	0.010
01202	00,70		Roots		
========	==				
Ewo eu on eu	Rea	al	Imaginary	Mod	ulus
Frequency					
		_		_	
AR.1	-1.08	. 7	-0.1497j	1.	0920
-0.4781		_		_	
AR.2	-1.08	.7	+0.1497j	1.	0920
0.4781					
AR.3	-1.02	32	-0.4175j	1.	1098
-0.4386					
AR.4	-1.02	32	+0.4175j	1.	1098
0.4386					
AR.5	-0.88	37	-0 . 6480j	1.	0999
-0.3997					
AR.6	-0.88	37	+0.6480j	1.	0999
0.3997					
AR.7	-0.64	39	-0.8646j	1.	0810
-0.3525			-		
AR.8	0 64	20	10 06465	1	0810
0.3525	-0.64))	+0.8646j	⊥ •	
	-0.64	5.9	+0.8646]	1.	
AR.9			-		
	-0.41		-1.0145j		0973
-0.3122	-0.41	32	-1.0145j	1.	0973
-0.3122 AR.10		32	-	1.	
-0.3122 AR.10 0.3122	-0.418	32	-1.0145j +1.0145j	1.	0973 0973
-0.3122 AR.10 0.3122 AR.11	-0.41	32	-1.0145j	1.	0973
-0.3122 AR.10 0.3122 AR.11 -0.2685	-0.418 -0.418 -0.129	32 32 97	-1.0145j +1.0145j -1.1120j	1. 1.	0973 0973 1195
-0.3122 AR.10 0.3122 AR.11 -0.2685 AR.12	-0.418	32 32 97	-1.0145j +1.0145j	1. 1.	0973 0973
-0.3122 AR.10 0.3122 AR.11 -0.2685 AR.12 0.2685	-0.418 -0.418 -0.129	32 32 97	-1.0145j +1.0145j -1.1120j +1.1120j	1. 1. 1.	0973 0973 1195 1195
AR.9 -0.3122 AR.10 0.3122 AR.11 -0.2685 AR.12 0.2685 AR.13	-0.418 -0.418 -0.129	32 32 97	-1.0145j +1.0145j -1.1120j	1. 1. 1.	0973 0973 1195

-0.0000			
AR.14 -0.0000	1.2350	-0.0000j	1.2350
AR.15	0.9693	-0.4965j	1.0890
-0.0753 AR.16	0.9693	+0.4965j	1.0890
0.0753			
AR.17 -0.2279	0.1610	-1 . 1519j	1.1631
AR.18	0.1610	+1 . 1519j	1.1631
0.2279 AR.19	0.8338	-0 . 7568j	1.1260
-0.1173	0.0330	-0.75003	1.1200
AR.20	0.8338	+0.7568j	1.1260
0.1173 AR.21	0.3766	-1.0714j	1.1357
-0.1962	0.2766	.1 0714	1 1257
AR.22 0.1962	0.3766	+1.0714j	1.1357
AR.23	0.6582	-0.9669j	1.1696
-0.1549 AR.24	0.6582	+0.9669j	1.1696
0.1549	0.000		
AR.25 -0.0000	13.1733	-0.0000j	13.1733

In [7]:

```
# plot residual errors
residuals = pd.DataFrame(model_fit.resid)
residuals.plot()
residuals.plot(kind='kde')
print(residuals.describe())
```

144.989273

max


```
from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal decompose(data[2000:2500])
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.figure(figsize=(16, 8))
plt.subplot(411)
plt.plot(data[2000:2500], label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.show()
plt.tight_layout()
```


<Figure size 432x288 with 0 Axes>

In [12]:

```
data_diff = data - data.shift()
plt.plot(data_diff)
plt.show()
```


In [14]:

```
plt.figure(figsize=(16, 8))
plt.plot(data_diff)
plt.plot(model_fit.fittedvalues, color='red')
plt.show()
```


Примените модель ARIMA для прогнозирования значений данного временного ряда.

```
In [126]:
```

```
from tqdm import tqdm
from sklearn.metrics import mean squared error
def evaluate arima model(X, order):
    # prepare training dataset
   train size = int(len(X) * 0.8)
    train, test = X[0:train_size], X[train_size:]
   history = [x for x in train]
    # make predictions
   predictions = list()
    for t in tqdm(range(len(test))):
        model = ARIMA(history, order=order)
        model fit = model.fit(disp=0)
       yhat = model fit.forecast()[0]
       predictions.append(yhat)
        history.append(test[t])
    # calculate out of sample error
    error = mean squared error(test, predictions)
    return error, test, predictions
```

In []:

```
mse, test, preds = evaluate_arima_model(data, order=(5,1,0))
```

In [144]:

```
print(f'ARIMA MSE={mse:.3f}')
```

ARIMA MSE=538.131

In [145]:

```
preds = [x[0] for x in preds]
preds = pd.Series(preds, index=test.index)

plt.figure(figsize=(16, 8))

plt.plot(test)
plt.plot(preds)
plt.suptitle('Time-Series Prediction')
plt.show()
```

Time-Series Prediction

Повторите эксперимент по прогнозированию, реализовав рекуррентную нейронную сеть (с как минимум 2 рекуррентными слоями).

```
In [26]:
```

```
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
```

In [25]:

```
def sliding_windows(data, seq_length):
    x = []
    y = []

for i in range(len(data)-seq_length-1):
        _x = data[i:(i+seq_length)]
        _y = data[i+seq_length]
        x.append(_x)
        y.append(_y)

return np.array(x),np.array(y)
```

```
In [49]:
sc = MinMaxScaler()
training_data = sc.fit_transform(data.values.reshape(-1, 1) )
In [51]:
seq_length = 30
x, y = sliding_windows(training_data, seq_length)
```

```
In [53]:
```

```
train_size = int(len(y) * 0.67)
test_size = len(y) - train_size
train_size, test_size
```

Out[53]:

(2158, 1063)

In [54]:

```
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))

trainX = Variable(torch.Tensor(np.array(x[0:train_size])))
trainY = Variable(torch.Tensor(np.array(y[0:train_size])))

testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
```

```
class LSTM(nn.Module):
    def __init__(self, num_classes, input_size, hidden_size, num_layers):
        super(LSTM, self). init ()
        self.num classes = num classes
        self.num layers = num layers
        self.input size = input size
        self.hidden_size = hidden_size
        self.seq_length = seq_length
        self.lstm1 = nn.LSTM(input size=input size, hidden size=hidden size,
                            num layers=num layers, batch first=True)
        self.fc1 = nn.Linear(hidden size, 10)
        self.lstm2 = nn.LSTM(input size=input size, hidden size=hidden size,
                            num layers=num layers, batch first=True)
        self.fc2 = nn.Linear(hidden size, num classes)
    def forward(self, x):
        h_0 = Variable(torch.zeros(
            self.num_layers, x.size(0), self.hidden_size))
        c 0 = Variable(torch.zeros(
            self.num layers, x.size(0), self.hidden size))
        # Propagate input through LSTM
        _, (h_out1, _) = self.lstm1(x, (h_0, c_0))
        h_out1 = h_out1.view(-1, self.hidden size)
        out1 = self.fcl(h out1)
        out1 = out1.reshape((out1.shape[0], out1.shape[1], 1))
        h 1 = Variable(torch.zeros(
            self.num layers, out1.size(0), self.hidden size))
        c 1 = Variable(torch.zeros(
            self.num layers, out1.size(0), self.hidden size))
        _, (h_out2, _) = self.lstm2(out1, (h_1, c_1))
        h \text{ out2} = h \text{ out2.view(-1, self.hidden size)}
        out2 = self.fc2(h out2)
        return out2
```

In [146]:

```
num_epochs = 100
learning_rate = 0.01
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
```

```
In [147]:
```

```
model = LSTM(num_classes, input_size, hidden_size, num_layers)
```

In [150]:

```
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    outputs = model(trainX)
    optimizer.zero_grad()

    loss = criterion(outputs, trainY)
    loss.backward()

    optimizer.step()

if (epoch+1) % 10 == 0:
    print(f'Epoch: {epoch+1}, loss: {loss.item():.5f}')
```

```
Epoch: 10, loss: 0.00481
Epoch: 20, loss: 0.00447
Epoch: 30, loss: 0.00424
Epoch: 40, loss: 0.00415
Epoch: 50, loss: 0.00409
Epoch: 60, loss: 0.00405
Epoch: 70, loss: 0.00403
Epoch: 80, loss: 0.00401
Epoch: 90, loss: 0.00401
Epoch: 100, loss: 0.00401
```

In [151]:

```
model.eval()
train_predict = model(dataX)

data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()

data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)

plt.figure(figsize=(16, 8))
plt.axvline(x=train_size, c='r', linestyle='--')

plt.plot(dataY_plot)
plt.plot(data_predict)
plt.suptitle('Time-Series Prediction')
plt.show()
```

Time-Series Prediction

Вывод:

В данной лабораторной работе были построенны модели для прогнозированния временных рядов, использовались модель ARIMA и рекуррентная сеть с двумя рекуррентными слоями.