### Cours de Statistique Inférentielle

Jean Christophe Meunier

# Rappel 1 Étude des séries statistiques : Tendance centrale et dispersion

2<sup>ème</sup> Bac, Commerce Extérieur Année académique 2015-2016





## A. Tendance centrale

## I. Tendance centrale

- 1. Mode  $(x_0)$ 
  - Valeur ou classe (x<sub>i</sub>) de la série statistique dont l'effectif (n<sub>i</sub>) est le plus élevé
  - Déterminé via table/graphe des effectifs
    - Repérer x<sub>i</sub> dont n<sub>i</sub> est le plus élevé
    - Données groupées : on parle de 'classe modale'
  - Un vs. Plusieurs modes
    - Unimodale : un seul 'pic' d'effectifs
    - Bimodale : deux 'pics' d'effectifs
      - Peut-être un indice que 2 populations ≠ sont considérées sur le même graphe (ex. taille homme et femme)



## I. Tendance centrale

#### 2. Médiane ( $\tilde{x}$ )

- Valeur ou classe (x<sub>i</sub>) qui 'coupe' l'échantillon en deux parties égales
  - Les effectifs des valeurs > et < à la valeur médiane sont égaux (à N/2 : 50%< et 50%>)
  - Si N est impair (2p + 1)
    - Une seule valeur se situe exactement à la moitié de l'échantillon : Médiane =  $(p+1)^{em}$  valeur
    - Ex série statistique impaire (N=9):
      - » 1122 $\frac{2}{2}$ 3455 → Médiane = 2 ((p+1)ème valeur))
  - Si N est pair (2p)
    - Deux valeurs se situent 'à cheval' sur la moitié de l'échantillon : Médiane = moyenne de pème valeur et de (p+1)ème valeur
    - Ex série statistique paire (N=10) :

## I. Tendance centrale

#### 2. Médiane $(\tilde{x})$

- Comment retrouver la médiane :
  - Par série statistique brute et ordonnée (cf. supra)
    - Ex série statistique impaire (N=9): 1 1 2 2 2 3 4 5 5 → Médiane = 2 ((p+1)ème valeur))
  - Par table des effectifs cumulés
    - Repérer valeur ou classe  $(x_i)$  qui comprend la  $(p+1)^{\grave{e}me}$  valeur (N impair) ou la  $p^{\grave{e}me}$  et  $(p+1)^{\grave{e}me}$  valeur (N pair)

| Réponses x <sub>i</sub> de la variable x | 45 | 55 | 60 | 75 | 80 | 85 | 90 |
|------------------------------------------|----|----|----|----|----|----|----|
| Effectifs n <sub>i</sub>                 | 1  | 2  | 3  | 5  | 2  | 1  | 1  |
| Effectifs cumulés n <sub>i</sub>         | 1  | 3  | 6  | 11 | 13 | 14 | 15 |

 Par graphe des effectifs cumulés



### I. Tendance centrale

- 3. Moyenne ( $\mu$  ou  $\bar{x}$ ) \*
  - Somme de toutes les observations divisée par nombre d'observations
  - Soit,  $\bar{x} = \frac{1}{N} \sum_{i=1}^{i=n} x_i = \frac{1}{N} \sum_{i=1}^{i=c} n_i x_i$

Via données brutes Via table effectif sein des classes

Si données groupées par classes, le centre de classe peut être considéré comme estimation de x<sub>i</sub>

- Sous l'h° d'équirépartition au

- Ex série (N=13): 1 1 1 1 1 2 2 2 2 3 3 3 3

$$\bar{x} = \frac{1+1+1+1+\dots+3+3+3}{13}$$

Via données brutes

$$\bar{x} = \frac{(5*1) + (4*2) + (4*3)}{13}$$

Via table effectif

\*  $\bar{x}$  quand échantillon ;  $\mu$  quand population

### I. Tendance centrale

- 3. Moyenne ( $\mu$  ou  $\bar{x}$ ) : propriétés
  - Uniquement pour variables quantitatives
  - Unique : une seule moyenne pour toute série statistique
  - Somme des écarts entre x<sub>i</sub> et la moyenne est nulle
    - Les différences positives et négatives s'annulent

$$\sum_{i=1}^{i=n} (x_i - \bar{x}) = 0$$

- Moyenne de deux séries statistiques (pour une même variable)
  - Ex moyenne taille homme (série a) et taille femme (série b)

$$\bar{x} = \frac{\sum_{i=1}^{i=n} x_i (\text{s\'erie } a) + \sum_{i=1}^{i=n} x_i (\text{s\'erie } b)}{N_a + N_b} = \frac{\sum_{i=1}^{i=c} n_i x_i (\text{s\'erie } a) + \sum_{i=1}^{i=c} n_i x_i (\text{s\'erie } b)}{N_a + N_b}$$



B. Dispersion

## I. Variance et écart-type

- Compléments aux indices de position
  - Indices de position ne disent rien sur la dispersion
    - <u>Ex</u>: pour une même moyenne (10), scores sur 20 de deux groupes
      A et B

Groupe A

Groupe B



- Notion de 'Moment' : écart moyen des x<sub>i</sub> à la moyenne

$$m = \frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})$$

- Donne une indication de la dispersion des valeurs autour de la moyenne mais 'pas utilisable' comme tel
  - Les différences positives et négatives s'annulent
  - Valeur absolue des différences ou les élever à la puissance 2 → moment d'ordre 2 = variance (cf. dia suivante)

11

**Groupe A:** 10 - 12 - 8 - 9 - 11

## I. Variance et écart-type

- 1. Variance  $(\sigma^2 \text{ ou s}^2)^*$ 
  - Moyenne des carrés des écarts des valeurs x<sub>i</sub> à la moyenne

élevés au carré

$$\sigma^{2} = \frac{\left(X_{1} - \overline{X}\right)^{2} + \left(X_{2} - \overline{X}\right)^{2} + \left(X_{3} - \overline{X}\right)^{2} + \dots \left(X_{n} - \overline{X}\right)^{2}}{\left(X_{n} - \overline{X}\right)^{2} + \dots \left(X_{n} - \overline{X}\right)^{2}}$$

- ou, plus simplement

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})^2 = \frac{1}{N} \sum_{i=1}^{i=c} n_i (x_i - \bar{x})^2$$

Via données brutes Via table effectif

Si données groupées par classes, le centre de classe peut être considéré comme estimation de  $\mathbf{x}_i$ 

- Sous l'hypothèse d'équirépartition au sein des classes

\*  $s^2$  quand échantillon ;  $\sigma^2$  quand population

## I. Variance et écart-type

1. Variance ( $\sigma^2$  ou  $s^2$ )

Groupe A | 8 9 10 11 12 | 1 | 1 | 1 | 1

Variance = 
$$\frac{(8-10)^2 + (9-10)^2 + (10-10)^2 + (11-10)^2 + (12-10)^2}{5} = \frac{10}{5} = 2$$

Groupe B 1 2 3 17 18 19

$$Variance = \frac{(1-10)^2 + (2-10)^2 + (3-10)^2 + (17-10)^2 + (18-10)^2 + (19-10)^2}{6} = \frac{388}{6} = 64,66$$

## I. Variance et écart-type

- 2. Ecart-type ( $\sigma$  ou s)\*
  - Racine carrée de la variance

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{i=c} n_i (x_i - \bar{x})^2}$$

- Indice similaire à la variance mais plus facilement interprétable
  - moyenne des écarts et non moyenne des carrés des écarts
  - La valeur d'écart-type peut s'exprimer selon la même métrique que la série statistique dont il est issu

\*  $\emph{s}$  quand échantillon ;  $\sigma$  quand population

# I. Variance et écart-type

## 2. Ecart-type ( $\sigma$ ou s)



Groupe B: Variance ( $\sigma^2$ )= 64,66 Ecart type ( $\sigma$ ) =  $\sqrt{64,66}$  = 8,04

15

## C. Exercices

## **Exercices**

#### 1. Données

# <u>Données sur le salaire net et le niveau d'études des employés d'une ASBL.</u> - Salaires : euros

- Niveau d'études : 1 Primaire, 2 Secondaire inférieur, 3 Secondaire supérieur, 4 Supérieur de type court, 5 Supérieur de type universitaire

| Sujets         | $X_1$ | $X_2$ | $X_3$ | $X_4$ | X <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | $X_9$ | X <sub>10</sub> |
|----------------|-------|-------|-------|-------|----------------|----------------|----------------|----------------|-------|-----------------|
| Salaire net    | 1500  | 2250  | 1750  | 1500  | 2000           | 2500           | 2000           | 2000           | 1750  | 2000            |
| Niveau d'étude | 3     | 5     | 4     | 3     | 4              | 5              | 4              | 4              | 3     | 4               |

## **Exercices**

## 2. Effectifs et fréquences

| Variable : Salaire Net                  |      |      |      |      |      |  |  |  |  |  |
|-----------------------------------------|------|------|------|------|------|--|--|--|--|--|
| Réponses x <sub>i</sub> de la variable  | 1500 | 1750 | 2000 | 2250 | 2500 |  |  |  |  |  |
| Effectifs (n <sub>i</sub> )             | 2    | 2    | 4    | 1    | 1    |  |  |  |  |  |
| Effectifs cumulés                       | 2    | 4    | 8    | 9    | 10   |  |  |  |  |  |
| Fréquences<br>relatives (%)             | 20%  | 20%  | 40%  | 10%  | 10%  |  |  |  |  |  |
| Fréquences<br>relatives<br>cumulées (%) | 20%  | 40%  | 80%  | 90%  | 100% |  |  |  |  |  |

| Variable : Niveau d'études              |     |     |      |  |  |  |  |  |  |  |
|-----------------------------------------|-----|-----|------|--|--|--|--|--|--|--|
| Réponses x <sub>i</sub> de la variable  | 3   | 4   | 5    |  |  |  |  |  |  |  |
| Effectifs (n <sub>i</sub> )             | 3   | 5   | 2    |  |  |  |  |  |  |  |
| Effectifs cumulés                       | 3   | 8   | 10   |  |  |  |  |  |  |  |
| Fréquences<br>relatives (%)             | 30% | 50% | 20%  |  |  |  |  |  |  |  |
| Fréquences<br>relatives<br>cumulées (%) | 30% | 80% | 100% |  |  |  |  |  |  |  |

### **Exercices**

3. Tendance centrale (1)

Salaire Net

– Moyenne :

$$\overline{X}\left(salaire\;net\right) = \frac{1500 + 2250 + 1750 + 1500 + 2000 + 2500 + 2000 + 2000 + 1750 + 2000}{10} = 1925$$

Ou, plus simplement

$$\bar{X}\left(salaire\;net\right) = \frac{(1500*2) + (1750*2) + (2000*4) + 2250 + 2500}{10} = 1925$$

- Médiane : 2000

- Mode: 2000

19

## **Exercices**

3. Tendance centrale (2)

Niveau d'études

– Moyenne :

$$\bar{X}$$
 (niveau d'études) =  $\frac{3+5+4+3+4+5+4+4+3+4}{10}$  = 3,9

Ou, plus simplement

$$\bar{X}$$
 (niveau d'études) =  $\frac{(3*3) + (4*5) + (5*2)}{10} = 3.9$ 

- Médiane: 4

- Mode: 4

## **Exercices**

- 4. Dispersion (1)
  - Salaire Net
  - Variance : σ²

 $=\frac{(1500-1925)^2+(2250-1925)^2+(1750-1925)^2+(1500-1925)^2+(2000-1925)^2+(2500-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)^2+(2000-1925)$ 

= 88125

- Ecart-type:  $\sigma$  (salaire net) =  $\sqrt{88125}$ 

21

## **Exercices**

4. Dispersion (2)

Niveau d'études

Variance : σ²

$$=\frac{(3-3.9)^2+(5-3.9)^2+(4-3.9)^2+(4-3.9)^2+(3-3.9)^2+(4-3.9)^2+(5-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+(4-3.9)^2+($$

**– Ecart-type**: σ (niveau d'études) =  $\sqrt{0.49}$  = 0.7