Algebraické struktury

ZPRACUJE: Mystik

Operace

Operace

Zobrazení $A^n \longrightarrow A$ se nazvává n-nární operace (0-nární operace = konstanta)

Parciální operace

Zobrazení není definováno pro všechny možné hodnoty operandů (např.: dělění je parciální operace, protože není definováno dělění nulou)

Cayleyova tabulka

Způsob zápisu definice binárních operací s konečným definičním oborem (sloupce jsou hodnoty prvního operandu, řádky hodnoty druhého operandu, příslušná buňka je výsledek operace)

Cayleyova tabulka pro binární

scitani							
+	0	1					
0	0	1					
1	1	1					

Obsah

- 1 Operace
 - 1.1 Typy operací
- 2 Algebry
 - 2.1 Speciální prvky algeber
 - 2.2 Univerzální algebra
 - 2.3 Grupy
 - 2.4 Okruhy, obory integrity, tělesa, pole
 - 2.5 Svazy a Booleovy algebry
- 3 Relace uspořádání a svazy
- 4 Odkazy
- 5 Příklady k procvičení

Typy operací

Asociativní

$$(x \circ y) \circ z = x \circ (y \circ z)$$

Komutativní

$$x \circ y = y \circ x$$

Distributivní (* distributivní nad +)

$$x(y+z) = xy + xz$$
$$(y+z)x = yx + zx$$

Operace s dělením

$$\forall (a,b) \in A, \exists (x,y) \in A : a \circ x = b \land y \circ a = b$$

Pokud A není prázdná tak o je operace s dělěním pokud je asociativní, existuje neutrální prvek a každý prvek A je invertibilní

Operace s krácením

$$a \circ x_1 = a \circ x_2 \Rightarrow x_1 = x_2$$

 $x_1 \circ a = x_2 \circ a \Rightarrow x_1 = x_2$

Rovnice $a \circ x = b$ a $y \circ a = b$ mají v operaci s krácením maximálně jendno řešení. Pokud je operace i asociativní tak mají práve jendo řešení.

Pro konečnou množinu A platí: ○ je operace s dělením ⇔ ○ je operace s krácením

Absorbční zákony

$$\begin{array}{l} \text{(viz Svazy dole)} \\ a \cap \left(a \cup b\right) = a \\ a \cup \left(a \cap b\right) = a \end{array}$$

Algebry

1 z 5

Speciální prvky algeber

Neutrální prvek (vzhledem k operaci O)

Levý neutrální prvek $e \circ x = x$

Pravý neutrální prvek $x \circ e = x$

Neutrální prvek $e \circ x = x \circ e = x$

- Existuje nejvýše jeden neutrální prvek pro každou operaci
- V multiplikativním značení (pro operace značené jako násobení) jej nazýváme jednotkový prvek (1)
- V aditivním značení (pro operace značené jako sčítání) jej nazýváme nulový prvek (0)

Inverzní prvek (k prvku x vzhledem k operaci O)

Algebraické struktury – FITwiki

Levý inverzní prvek $y \circ x = e$ Pravý inverzní prvek $x \circ y = e$

Inverzní prvek $y\circ x=x\circ y=e$

- Pokud existuje inverzní prvek k y, tak y nazýváme ínvertibilní
- Pokud je operace asociativní existuje nejvýče jeden inverzní prvek
- V multiplikativním značení jej značíme x⁻¹
- V aditivním značení jej značíme x

Univerzální algebra

$$U:=(A,(\omega_i)_{i\in I})$$
 (množina hodnot, operace, operace, ...)

A - množina hodnot, I - množina indexů, ω_i - n_i -nární operace na A pro $i \in I$

Typ algebry

$$U := (A, (n_i)_{i \in I})$$

Popisuje typy operací v algebře. Např.: (2, 2, 1) je algebra s dvema binárními a jendou unární operací

Grupy

Algebry s jednou binární operací (a případně několika unárními operacemi)

Přehled typů grup

Název	Zápis	Asociativní	Neutrální prvek	Inverzní prvek	Komutativní	Poznámka
Grupoid	(A, \circ)	_	-	-	_	
Pologrupa	(A, \circ)	Ano	-	-	-	Asociativní grupoid
Monoid	(A, \circ, e)	Ano	Ano	-	-	Pologrupa + neutrální prvek
Grupa	$(A, \circ, e, ^{-1})$	Ano	Ano	Ano	_	Monoid + inverzní prvek
Abelovská grupa	$(A, \circ, e, ^{-1})$	Ano	Ano	Ano	Ano	Komutativní grupa

Okruhy, obory integrity, tělesa, pole

Algebry s dvěma binárními operacemi + a * (a případně několika unárními operacemi)

- Operace + tvoří abelovskou grupu
- nulový prvek = 0 = neutrální prvek pro operaci +
- jednotkový prvek = 1 = neutrální prvek pro operaci *
- Operace * je distributivní nad +

Přehled

Název	Zápis	* asociativní	* jednotkový prvek	* inverzní prvek (0 != 1)	* komutativní	Popis operace *	Poznámka
Okruh	(A, +,0, -, *)	Ano	-	-	-	Pologrupa	
Komutativní okruh	(A, +,0, -, *)	Ano	-	-	Ano	Komut. pologrupa	Okruh s komut. operací *
Okruh s jednotkovým prvkem	(<i>A</i> , + ,0, - , * ,1)	Ano	Ano	-	_	Monoid	Okruh s neutr. prvkem pro *
Komututativní okruh s jednotkovým prvkem	(<i>A</i> , + ,0, - , * ,1)	Ano	Ano	-	Ano	Komut. monoid	Okruh s komut. operací * s neutr. prvkem
Obor integrity	(A, +,0, -, *,1)	Ano	Ano	-	Ano	Monoid	Komut. okruh s jendn. prvkem, kde neexistuje dělitel 0
Těleso	(<i>A</i> , + ,0, - , * ,1)	Ano	Ano	Ano	-	Grupa	Okruh s jedn. prvkem a inverzním prvkem
Pole	(<i>A</i> , + ,0, - , * ,1)	Ano	Ano	Ano	Ano	Abelovksá grupa	Komutativní okruh

29.5.2011 17:01

Svazy a Booleovy algebry

Algebry s dvěma binárními operacemi \(\cap a \bullet \) (a případně několika unárními operacemi)

- Obě operace mají stejné vlastnosti
- nulový prvek = 0 = neutrální prvek pro operaci U
- jednotkový prvek = 1 = neutrální prvek pro operaci
- ullet Komplementární prvky: $a\cap a'=0$ a $a\cup a'=1$
- Jednotkový prvek anulový prvek josu komplementární: 0' = 1, 1' = 0

Přehled

Název	Zápis	Asociativní	Komutativní	Absorbční	Distributivní	Neutrální prvky	Komplementární prvky	Poznámka
Svaz	(V,\cap,\cup)	Ano	Ano	Ano	-	_	-	
Distributivní svaz	(V,\cap,\cup)	Ano	Ano	Ano	Ano	-	-	Svaz, kde operace jsou vzájemně distributivní
Ohraničený svaz	$(V,\cap,\cup,0,1)$	Ano	Ano	Ano	-	Ano	-	Svaz s nulovým a jednotkovým prvkem
Komplementární (ohraničený) svaz	$(V,\cap,\cup,0,1)$	Ano	Ano	Ano	-	Ano	Ano	Ohraničený svaz s komplementárními prvky

3 z 5 29.5.2011 17:01

Booleův svaz	$(V,\cap,\cup,0,1)$	Ano	Ano	Ano	Ano	Ano	Ano	Distributivní a komplementární svaz (komplement existuje, ale není uveden jako operace)
Booleova algebra	$(V,\cap,\cup,0,1,')$	Ano	Ano	Ano	Ano	Ano	Ano	Booleúv svaz, kde je komplemet jako unární operace

Věta o komplementech v Booleově algebře

$$(a')'=a$$
 $(a\cup b)'=a'\cap b', (a\cap b)'=a'\cup b'$ (DeMorganovy zákony)

Relace uspořádání a svazy

(Částečně) uspořádaná množina

množina na které je definována relace (obvykle značíme <) částečného uspořádání

- každá podmnožina uspořádané množiny je také uspořádaná
- Sousední prvky prvky a, b mezi nimiž je relace \leq a neexistuje žádná prvek c mezi nimi tj. takový, že a < c < b
- Hasseúv diagram graf, kde uzly jsou prvky množiny a hrany jsou mezi prvky, které jsou sousední dle relace <

Lineárně uspořádaná množina (řetězec)

částečně uspořádaná množina pro kterou platí srovnatelnost (u každých dvou prvků lze rozhodnout, který "je větší")

Nejmenší/největší prvek množiny

všechny prvky množiny jsou větší/menší než nejmenší/největší prvek množiny

existuje vždy nejvýše jeden nejmenší/největší prvek

Maximální/minimální prvek množiny

žádný prvek není větší/menší než maximální/minimální prvek

může jich být více

Dolní/horní závora množiny $M\subset N$

prvek z nad-množiny N, který je menší/větší než všechny prvky podmnožiny M

Infimum inf(M)

největší dolní závora

Infimum sup(M)

nejmenší horní závora

Svazově uspořádaná množina

Pro každé dva prvky existuje právě jedno společné supremum a infimum

- Pokud je (V,\cap,\cup) svaz pak (V,\leq) je svazově uspořádaná množina pokud platí $a\leq b\Leftrightarrow a\cap b=a$
- Inverzně: (V,\cap,\cup) je svaz pokud definujeme operace jako $a\cap b=supa, b$ a $a\cup b=infa,b$

Princip duality

- ullet Je-li (V,\leq) uspořádaná množina pak i (V,\geq) je uspořádaná množina
- ullet Je-li (V,\leq) svazově uspořádaná množina pak i (V,\geq) je svazově uspořádaná množina
- Je-li (V, \cap, \cup) svaz pak i (V, \cup, \cap) je svaz
- ullet Je-li $(V,\cap,\cup,0,1,')$ Booleova algebra pak i $(V,\cup,\cap,1,0,')$ je Booleova algebra

Odkazy

Kategorie Algebraické struktury na Wikipedii (cz) (http://cs.wikipedia.org/wiki/Kategorie:Algebraick%C3%A9_struktury)

Příklady k procvičení

1) Nechť \mathbb{C}^* značí multiplikativní grupu všech nenulových komplexních čísel a G její podgrupu všech komplexních čísel s absolutní hodnotou 1.

4 z 5 29.5.2011 17:01

Algebraické struktury – FITwiki

Nechť $f:\mathbb{C}^* \to G$ je surjektivní zobrazení dané vztahem $f(z)=\frac{z}{|z|}$. Dokažte, že f je homomorfismus a určete (načrtněte) třídy kongruence dané jádrem zobrazení f.

- 2) Nechť \mathbb{C}^* značí multiplikativní grupu všech nenulových komplexních čísel a \mathbb{R}^+ její podgrupu všech kladných reálných čísel. Nechť $f:\mathbb{C}^* \to \mathbb{R}^+$ je surjektivní zobrazení dané vztahem f(z)=|z|. Dokažte, že f je homomorfismus a určete (načrtněte) třídy kongruence dané jádrem zobrazení f.
- 3) Uvažujme algebru $\mathcal{A}=(\mathbb{Z},t)$ s jednou unární operací t definovanou pro libovolné $x\in Z$ předpisem t(x)=x+1
- (a) Popište všechny podalgebry alegebry \mathcal{A} .
- (b) Uvažujme rozklad množiny \mathbb{Z} , jehož třídy jsou všechny dvouprvkové množiny tvaru $\{2k, 2k+1\}, k \in \mathbb{Z}$. Je příslušná ekvivalence kongruencí na algebře \mathcal{A} ?
- 4) Na množině $\mathbb C$ komplexních čísel uvažujme operaci + obvyklého sčítání. Buď $f:\mathbb C\to\mathbb C$ zobrazení dané předpisem f(a+ib)=a-ib. Pak:
- (a) $(\mathbb{C},+)$ není grupa
- (b) f je zobrazení grupy $(\mathbb{C},+)$ do sebe, které není homomorfismem
- (c) f je homomorfismus grupy $(\mathbb{C},+)$ do sebe, který není izomorfismem
- (d) f je izomorfismus grupy $(\mathbb{C},+)$ na sebe (tedy automorfismus)
- (e) neplatí žádná z uvedených možností
- 5) Položme $P=\{f:\mathbb{R}\to\mathbb{R};\exists a\in\mathbb{R}-\{0\}\forall x\in\mathbb{R}:f(x)=ax\}$. Dokažte, že (P,\circ) , kde \circ značí skládání zobrazení, je grupoid. Zjistěte, zda (P,\circ) je dokonce grupa (svůj závěr odůvodněte).

Kategorie: Matematické struktury v informatice | Státnice MAT | Státnice 2011

Stránka byla naposledy editována 25. 5. 2011 v 20:30.

5 z 5 29.5.2011 17:01