

Olimpic Birds Problemas da Semana 6 Física

1 Questão Curta: Átomo de hidrogênio

Escrito por William Alves

Um átomo de hidrogênio que inicialmente se encontra em repouso emite um fóton, o que indica uma transição do estado de energia \mathbf{n} para seu estado fundamental $n_{\rm o}$. Em seguida, o átomo atinge um elétron em repouso permanecendo junto a ele após o contato. Determine a velocidade do sistema após a colisão em função da energia do fóton em seu estado fundamental $E_{\rm o}$, da velocidade da luz \mathbf{c} , da massa do átomo \mathbf{m} , e de \mathbf{n} .

2 Questão Média: Trabalho de um sistema de cargas

Escrito p<mark>or Ti</mark>ago Rocha

Considere que nós trazemos uma carga q_1 para uma região sem carga. Depois, a essa mesma região, trazemos cargas q_2, q_3, \ldots, q_n , uma de cada vez. A separação entre as cargas 1 e 2 é r_{12} , entre as cargas 2 e 3 é r_{23} e assim por diante. Considere que todas as cargas fiquem fixas após serem colocadas. Chame a constante eletrostática do meio de k.

- a) Considere n=3 cargas. Calcule a energia potencial elétrica dessa configuração.
- b) Qual a quantidade de trabalho necessário para criar a situação do item a)?
- c) Agora, generalizeo resutado e obtenha o trabalho necessário para criar um sistema com N cargas.

3 Questão Longa: Transformação retilínea

Escrito por Guilherme Rodrigues

Considere um ciclo termodinâmico no gráfico $P \times V$, onde o segmento \overline{AB} é uma reta. Sabendo que os pontos A e B possuem a mesma temperatura.

- a) Determine o intervalo em que a reta é uma transformação endotérmica ou exotérmica.
- b) Apresente o volume do ponto de mudança de comportamento.
- c) Encontre a equação que determine a variação de calor de uma transformação definida pela reta \overline{AB} , com base em V_0 (volume inicial) e V_F (volume final).
- d) Calcule o rendimento η como uma máquina térmica.

Dados: $V_A + V_B = K$; $C_v = \alpha R$ onde R é a constante dos gases ideais, V_A é o volume do gás no ponto A e V_B é o volume do gás no ponto B.