- 3. $f(x,y) = x^2 + y^2$, g(x,y) = xy = 1, and $\nabla f = \lambda \nabla g \implies \langle 2x, 2y \rangle = \langle \lambda y, \lambda x \rangle$, so $2x = \lambda y$, $2y = \lambda x$, and xy = 1. From the last equation, $x \neq 0$ and $y \neq 0$, so $2x = \lambda y \implies \lambda = 2x/y$. Substituting, we have $2y = (2x/y)x \implies y^2 = x^2 \implies y = \pm x$. But xy = 1, so $x = y = \pm 1$ and the possible points for the extreme values of f are (1,1) and (-1,-1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbitrarily large, and hence $f(x,y) = x^2 + y^2$ can be made arbitrarily large. The minimum value is f(1,1) = f(-1,-1) = 2.
- 6. $f(x,y) = e^{xy}$, $g(x,y) = x^3 + y^3 = 16$, and $\nabla f = \lambda \nabla g \implies \langle ye^{xy}, xe^{xy} \rangle = \langle 3\lambda x^2, 3\lambda y^2 \rangle$, so $ye^{xy} = 3\lambda x^2$ and $xe^{xy} = 3\lambda y^2$. Note that $x = 0 \iff y = 0$ which contradicts $x^3 + y^3 = 16$, so we may assume $x \neq 0, y \neq 0$, and then $\lambda = ye^{xy}/(3x^2) = xe^{xy}/(3y^2) \implies x^3 = y^3 \implies x = y$. But $x^3 + y^3 = 16$, so $2x^3 = 16 \implies x = 2 = y$. Here there is no minimum value, since we can choose points satisfying the constraint $x^3 + y^3 = 16$ that make $f(x,y) = e^{xy}$ arbitrarily close to 0 (but never equal to 0). The maximum value is $f(2,2) = e^4$.
- 21. $f(x,y) = e^{-xy}$. For the interior of the region, we find the critical points: $f_x = -ye^{-xy}$, $f_y = -xe^{-xy}$, so the only critical point is (0,0), and f(0,0) = 1. For the boundary, we use Lagrange multipliers. $g(x,y) = x^2 + 4y^2 = 1 \Rightarrow \lambda \nabla g = \langle 2\lambda x, 8\lambda y \rangle$, so setting $\nabla f = \lambda \nabla g$ we get $-ye^{-xy} = 2\lambda x$ and $-xe^{-xy} = 8\lambda y$. The first of these gives $e^{-xy} = -2\lambda x/y$, and then the second gives $-x(-2\lambda x/y) = 8\lambda y \Rightarrow x^2 = 4y^2$. Solving this last equation with the constraint $x^2 + 4y^2 = 1$ gives $x = \pm \frac{1}{\sqrt{2}}$ and $y = \pm \frac{1}{2\sqrt{2}}$. Now $f\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{2\sqrt{2}}\right) = e^{1/4} \approx 1.284$ and $f\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2\sqrt{2}}\right) = e^{-1/4} \approx 0.779$. The former are the maxima on the region and the latter are the minima.
- 27. Let the sides of the rectangle be x and y. Then f(x,y) = xy, $g(x,y) = 2x + 2y = p \implies \nabla f(x,y) = \langle y,x \rangle$, $\lambda \nabla g = \langle 2\lambda, 2\lambda \rangle$. Then $\lambda = \frac{1}{2}y = \frac{1}{2}x$ implies x = y and the rectangle with maximum area is a square with side length $\frac{1}{4}p$.
- 30. The distance from (0,1,1) to a point (x,y,z) on the plane is $d=\sqrt{x^2+(y-1)^2+(z-1)^2}$, so we minimize $d^2=f(x,y,z)=x^2+(y-1)^2+(z-1)^2$ subject to the constraint that (x,y,z) lies on the plane x-2y+3z=6, that is, g(x,y,z)=x-2y+3z=6. Then $\nabla f=\lambda\nabla g \Rightarrow \langle 2x,2(y-1),2(z-1)\rangle=\langle \lambda,-2\lambda,3\lambda\rangle$, so $x=\lambda/2,y=1-\lambda$, $z=(3\lambda+2)/2$. Substituting into the constraint equation gives $\frac{\lambda}{2}-2(1-\lambda)+3\cdot\frac{3\lambda+2}{2}=6 \Rightarrow \lambda=\frac{5}{7}$, so $x=\frac{5}{14}$, $y=\frac{2}{7}$, and $z=\frac{29}{14}$. This must correspond to a minimum, so the point on the plane closest to the point (0,1,1) is $(\frac{5}{14},\frac{2}{7},\frac{29}{14})$.
- 37. f(x,y,z)=xyz, g(x,y,z)=x+2y+3z=6 \Rightarrow $\nabla f=\langle yz,xz,xy\rangle=\lambda\nabla g=\langle \lambda,2\lambda,3\lambda\rangle$. Then $\lambda=yz=\frac{1}{2}xz=\frac{1}{3}xy$ implies x=2y, $z=\frac{2}{3}y$. But 2y+2y+2y=6 so y=1, x=2, $z=\frac{2}{3}$ and the volume is $V=\frac{4}{3}$.