I Критерий Коши для несобственных интегралов

Пусть f(x) определена на [a,w) и интегрируема на $orall [a,b] \subset [a,w).$

Интеграл
$$\int\limits_a^w f(x)dx$$
 сходится $\iff orall arepsilon < 0 \exists b \in [a,w): orall b', b'' \in [a,w)(b',b''>b \Rightarrow |\int\limits_{b'}^{b''} f(x)dx| < arepsilon)$

Доказательство

По определению несобственный интеграл сходится $\iff \exists$ конечный предел функции

$$F(R) = \int\limits_a^R f(x)\,dx, R o +\infty$$

По критерию Коши существования конечного предела функции необходимо и достаточно чтобы:

$$orall \epsilon > 0 \ \exists b \in [a,w) > a : orall b' > b, orall b'' > b \implies |F(b'') - F(b')| < \epsilon$$

Подставим выражение для F(R) и получим

$$orall \epsilon > 0 \; \exists b \in [a,w) > a: orall b' > b, orall b'' > b \implies \Big| \int\limits_{b'}^{b''} f(x) \, dx \Big| < \epsilon$$

Сделаем вывод. Сходимость интеграла будет тогда и только тогда, когда существует конечный предел функции F(R), что и дает условие Коши.

2 Признаки сравнения для несобственных интегралов

і признак общий признак сравнения

Пусть f и $g\geqslant 0$ на [a,w), $f(x)\leqslant g(x),$ $x\in [a,w)$

Тогда $\int\limits_a^w g(x)\,dx$ сходится $\Rightarrow\int\limits_a^w f(x)\,dx$ сходится, и наоборот, из расходимости интеграла

$$\int\limits_{a}^{w}f(x)\,dx\implies\int\limits_{a}^{w}g(x)\,dx$$
 -расходится

2 признак (aka Телековский 9.10.4)

Пусть f,g>0 на [a,w) и $\exists c_1,c_2>0$ такие, что $c_1\cdot g\leq f\leq c_2\cdot g$ на [a,w). Тогда $\int\limits_a^w f(x)\,dx$ и $\int\limits_a^w g(x)\,dx$ сходятся или расходятся одновременно

з признак(в предельной форме)

Если $\lim_{x o w} rac{f(x)}{g(x)} = C > 0$, то $\int\limits_a^w f$ и $\int\limits_a^w g$ сходятся или расходятся одновременно.

Доказательство

I признак

Пусть интеграл $\int\limits_a^w g(x)\,dx$ сходится, тогда по критерию Коши:

$$orall \epsilon > 0 \exists b \in [a,w) > a: orall b' > b, orall b'' > b \implies \Big| \int\limits_{b'}^{b''} g(x) \, dx \Big| < \epsilon$$

Из заданного в условии неравенства следует, что:

$$\Big|\int\limits_{b'}^{b''}f(x)\,dx\Big|\leq \Big|\int\limits_{b'}^{b''}g(x)\,dx\Big|$$

Для функции f(x) можно записать, что:

$$orall \epsilon > 0 \, \exists b \in [a,w) : orall b' > b, orall b'' > b \implies \Big| \int\limits_{b'}^{b''} f(x) \, dx \Big|$$

Это значит что по критерию Коши интеграл $\int\limits_a^w f(x)\,dx$ - сходится В обратную сторону также.

2 признак

- **1**. Предположим, что $\int\limits_a^w f(x)\,dx$ сходится. Воспользуемся оценкой $c_1\cdot g\leq f$. По первому признаку $\int\limits_a^w f(x)\,dx$ сходится, поэтому $\int\limits_a^w g(x)\,dx$ сходится
- 2. Пусть $\int\limits_a^w f(x)\,dx$ расходится. Используем правую оценку и первый признак сравнения

3.4.

5 Error

доделать 3 и 4 пункт

3 признак

Пусть
$$|rac{f}{g}-C|<\epsilon$$
. Тогда $\epsilon=rac{C}{2}$

$$-rac{C}{2}<rac{f}{g}-C<rac{C}{2} \implies rac{C}{2}<rac{f}{g}<rac{3}{2}C$$

при этом $x \in O(w)$. Доказано по второму признаку сравнения

3 Признаки Дирихле и Абеля сходимости несобственных интегралов

Признак Дирихле

Пусть f непрерывна на [a, w), ее первообразная F ограничена на [a, w). Пусть g непрерывно дифференцируема на [a, w).

Пусть g o 0 и x o w.

Тогда $\lim_{a}^{w} fg$ сходится.

Доказательство

 $\int\limits_a^\omega f\cdot g=\int\limits_a^\omega F'\cdot g=Fg\Big|_a^\omega-\int\limits_a^\omega F\cdot g'.$ Нужно доказать, что $\int\limits_a^\omega F'\cdot g$ сходится. Рассмотрим $\lim\limits_{b o\omega}F(a)g(b)-F(a)g(a).$ Этот предел равен нулю. Теперь рассмотрим второй интеграл $\int\limits_a^\omega F\cdot g'.$ Пусть F ограничена константой M. Тогда

$$egin{aligned} -M \left| \int\limits_a^\omega g'
ight| & \leq \int\limits_a^\omega F \cdot g' \leq M \cdot \left| \int\limits_a^\omega g'
ight| \ & \int\limits_a^\omega g' = g(\omega) - g(a) = \lim_{b o \omega} g(b) = 0 \ & -M \left| g(a)
ight| \leq \cdots \leq M \left| g(a)
ight| \end{aligned}$$

Признак Абеля

Пусть f непрерывна на [a,w) и $\int\limits_a^w$ сходится. Пусть g непрерывно дифференцируема на [a,w), монотонна и ограничена на этом же промежутке. Тогда $\int\limits_{x}^{w}fg$ сходится

Доказательство

 $\int\limits_{-\infty}^{\omega}f\cdot g.\,f$ непр. \implies есть первообразная F. Тогда $\int\limits_{-\infty}^{\omega}=F(\omega)-F(a).$ Теперь нужно показать, что первообразная ограничена. По условию этот интеграл сходится, поэтому $F(\omega)$ - конечно. $\lim_{t\to\infty} F(b)$. Заметим, что F - непр. как интеграл с переменным верхним пределом. Тогда на любом промежутке [a,b] F - ограничена. (разбиваем промежуток $[a,\omega)$) на промежуток [a,b] и $[b,\omega)$. На $[b,\omega]$ Fограничена по определению предела. Поэтому F огр. на $[a,\omega)$. Поэтому f удовлетворяет условию признака Дирихле. g - монотонна и ограничена $\implies \exists \lim_{b o \omega} g(b)$ = C. Рассмотрим h(x) = g(x) - C. Понятно, что h - непр.дифф. и h o 0, когда $x o \omega$, поэтому h тоже удовлетворяет условиям признака Дирихле.

Рассмотрим интеграл $\int\limits_a^\omega f\cdot g==\int\limits_a^\omega f(g-c)+\int\limits_a^\omega f\cdot c$ - сходится по признаку Дирихле \implies данный интеграл сходится.

4 Преобразование Абеля. Признаки Дирихле и Абеля сходимости знакопеременных рядов

5 Перестановка членов в абсолютно сходящихся рядах

6 Теорема Римана

7 Критерий Коши равномерной сходимости функциональной последовательности и функционального ряда

- 8 Признак Вейерштрасса равномерной сходимости функционального ряда
- 9 Признаки Абеля и Дирихле равномерной сходимости функционального ряда
- то Теорема о предельном переходе в функциональных последовательностях и функциональных рядах
- 11 Теорема о почленном интегрировании функциональной последовательности и функционального ряда
- 12 Теорема о почленном дифференцировании функциональной последовательности и функционального ряда
- 13 Первая и вторая теоремы Абеля для степенных рядов и следствия
- 14 Теорема Коши-Адамара
- 15 Бесконечная дифференцируемость степенного ряда
- 16 Теорема Вейерштрасса о приближении непрерывной на отрезке функции многочленом