## Конечные автоматы

1

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

Для чего в синтаксис ДКА или ДМПА включают (внедряют) действия?

• Для осуществления дополнительных проверок правил языка L, которые не описываются синтаксисом автомата (т.е. относятся к семантике, или смысловой нагрузке языка L).

#### Примеры:

a := (a + a)\*a; z = f(a, a, a);

var a, a, a: integer; int f(int a, int a, int a);

3

Для чего в синтаксис ДКА или ДМПА включают (внедряют) действия?

 Для выполнения следующего этапа синтаксического анализа и перевода – генерации или интерпретации кода.

#### Пример:

- построение псевдокода для математического выражения;
- вычисление математического выражения;
- интерпретация кода JavaScript и т.д.

4

#### Проверка семантики для ЯВУ:

• диапазоны чисел, длина строк;

```
var a: integer; int a;
```

$$a := 12345678901;$$
  $a = 12345678901;$ 

$$x := 1.5e + 50;$$
  $x = 1.5e + 500;$ 

var s: string;

s := 'abcde...'; { более 255 символов }

5

#### Проверка семантики для ЯВУ:

• необъявленные или не инициализированные переменные;

var a, b: integer;

int a, b;

a := 5;

a = 5;

c := a + b;

c = a + b;

6

#### Проверка семантики для ЯВУ:

```
• конфликты имён;
```

```
var a, b, a: integer; int a, b, a;
var real: real; double double;
var r: record struct r {
    x: integer; int x;
    x: real; double x;
end; };
```

#### Проверка семантики для ЯВУ:

• конфликты имён;

```
function f(a, a: integer): real; double f(int a, int a)
begin
end;
procedure f;
void f(int a, int a)
begin
end.

{
```

#### 8

#### Проверка семантики для ЯВУ:

- ошибки с размерностью массивов (неверные границы массива, недопустимые индексы, неправильное количество измерений и т.п.);
- ошибки использования типов данных;

var a: array [real] of integer;

var x: integer;

x := 1.5;

• и т.д.

9

Включённые (внедрённые) в синтаксис действия обозначаются следующим образом:

$$\langle A_1 \rangle, \langle A_2 \rangle, \dots$$

Они добавляются к результату функции переходов:

- для ДКА  $\delta(q, a) = (q', \langle A \rangle);$
- для ДМПА  $\delta(q, a, z) = (q', \beta, \langle A \rangle)$ .

Действие выполняется либо до перехода в состояние q', либо сразу после (определяется разработчиком).



|   | ••• | a                     | ••• |
|---|-----|-----------------------|-----|
|   |     |                       |     |
| q |     | $q',\langle A  angle$ |     |
|   |     |                       |     |





|     | ••• | a, z                           | ••• |
|-----|-----|--------------------------------|-----|
| ••• | ••• | •••                            | ••• |
| q   |     | $q', \beta, \langle A \rangle$ |     |
| ••• |     |                                | ••• |



#### Как описать действие?

- на естественном языке;
- графическим представлением алгоритма;
- словесным описанием алгоритма;
- программным кодом на условном языке;
- программным кодом на ЯВУ.

Т.е. действие, с точки зрения ЯВУ, это некоторая функция.

## 12

#### Входные параметры:

- текущее состояние q;
- текущий символ под считывающей головкой а;
- верхний символ магазина (стека) *z* или весь стек в случае ДМПА;
- результат функции переходов  $\delta(q, a)$  для ДКА или  $\delta(q, a, z)$  для ДМПА (весь или частично, но, как минимум, идентификатор действия  $\langle A \rangle$ ).



Результат функции  $A(q, a, \delta)$  или  $A(q, a, z, \delta)$ :

- true, если автомат может продолжать выполнение синтаксического анализа.
- false, если в результате выполнения действия выяснилось, что входная цепочка содержит семантическую ошибку. В этом случае автомат переходит в состояние ERROR.

При необходимости, возможны более сложные действия, например, изменение функцией A текущего состояния автомата и т.д.

14

Как меняется алгоритм построения функции переходов?

• При добавлении новой дуги в граф функции переходов необходимо определить – требуется ли в этом случае выполнение какого-то дополнительного действия. Если да, то проверяем – было ли уже ранее описано такое действие. Если да, то указываем его идентификатор на дуге графа. Если нет, то описываем новое действие, и указываем его идентификатор на дуге графа.

15

Как меняется алгоритм построения функции переходов?

• Иногда требуется совершить дополнительное действие при успешном (HALT) или даже неуспешном (ERROR) завершении разбора. В графе это отобразить невозможно, только в комментариях к нему, а также в таблице функции переходов:

|     | ••• | a                            | ••• | Τ                           |
|-----|-----|------------------------------|-----|-----------------------------|
| ••• |     |                              |     |                             |
| q   |     | ERROR, $\langle A_i \rangle$ | ••• | HALT, $\langle A_j \rangle$ |
|     |     |                              |     |                             |



17

|                  | O        | 1        | 2        | 3-4         | 5           | 6-9            | Т    |
|------------------|----------|----------|----------|-------------|-------------|----------------|------|
| $q_{o}$          | $q_{_1}$ | $q_2$    | $q_5$    | $q_{_{11}}$ | $q_{_{11}}$ | $q_{_{11}}$    |      |
| $q_1$            |          |          |          |             |             |                | HALT |
| $q_2$            | $q_3$    | $q_3$    | $q_3$    | $q_3$       | $q_3$       | $\mathbf{q}_3$ | HALT |
| $\mathbf{q}_3$   | $q_4$    | $q_4$    | $q_4$    | $q_4$       | $q_4$       | $q_4$          | HALT |
| $q_4$            |          |          |          |             |             |                | HALT |
| $q_5$            | $q_6$    | $q_6$    | $q_6$    | $q_6$       | $q_8$       | $q_{10}$       | HALT |
| $q_6$            | $q_7$    | $q_7$    | $q_7$    | $q_7$       | $q_7$       | $q_7$          | HALT |
| $\overline{q_7}$ |          |          |          |             |             |                | HALT |
| $q_8$            | $q_9$    | $q_9$    | $q_9$    | $q_9$       | $q_9$       |                | HALT |
| $(q_9)$          |          |          |          |             |             |                | HALT |
| $q_{10}$         |          |          |          |             |             |                | HALT |
| $q_{11}$         | $q_{12}$ | $q_{12}$ | $q_{12}$ | $q_{12}$    | $q_{12}$    | $q_{12}$       | HALT |
| $q_{12}$         |          |          |          |             |             |                | HALT |

|                           | O                                   | 1                                   | 2                                   | 3-4                                 | 5                          | 6-9                        | Т    |
|---------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------|----------------------------|------|
| $q_{o}$                   | $q_{_1}$                            | $q_2$                               | $q_5$                               | $q_{_{11}}$                         | $q_{_{11}}$                | $q_{_{11}}$                |      |
| $q_{_1}$                  |                                     |                                     |                                     |                                     |                            |                            | HALT |
| $\mathbf{q_2}$            | $q_3$                               | $q_3$                               | $q_3$                               | $q_3$                               | $q_3$                      | $q_3$                      | HALT |
| $\overline{q_3}$          | $q_{_1}$                            | $q_{_1}$                            | $\mathbf{q_{1}}$                    | $\mathbf{q_{i}}$                    | $\mathbf{q_{i}}$           | $\mathbf{q_{i}}$           | HALT |
| $q_5$                     | $q_6$                               | $q_6$                               | $q_6$                               | $q_6$                               | $q_8$                      | $\mathbf{q_{1}}$           | HALT |
| $\overline{\mathbf{q}_6}$ | $q_{_1}$                            | $\mathbf{q}_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}$          | $\mathbf{q_{1}}$                    | $\mathbf{q_{i}}$           | $\mathbf{q_{i}}$           | HALT |
| $q_8$                     | $q_{_1}$                            | $q_{_1}$                            | $q_{1}$                             | $q_{\scriptscriptstyle 1}$          | $q_{\scriptscriptstyle 1}$ |                            | HALT |
| $q_{11}$                  | $\mathbf{q}_{\scriptscriptstyle 1}$ | $\mathbf{q}_{\scriptscriptstyle 1}$ | $\mathbf{q}_{\scriptscriptstyle 1}$ | $\mathbf{q}_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}$ | HALT |

|                | O                                    | 1                          | 2                          | 3-4                                 | 5                          | 6-9                                 | 1    |
|----------------|--------------------------------------|----------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|------|
| $q_{o}$        | $\mathbf{q}_{\scriptscriptstyle{1}}$ | $q_2$                      | $q_5$                      | $q_3$                               | $q_3$                      | $q_3$                               |      |
| $q_{_1}$       |                                      |                            |                            |                                     |                            |                                     | HALT |
| ${f q_2}$      | $q_3$                                | $q_3$                      | $q_3$                      | $q_3$                               | $q_3$                      | $q_3$                               | HALT |
| $\mathbf{q}_3$ | $q_{\scriptscriptstyle 1}$           | $q_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}$ | $\mathbf{q_{\scriptscriptstyle 1}}$ | $\mathbf{q_{i}}$           | $\mathbf{q_{\scriptscriptstyle 1}}$ | HALT |
| ${f q}_5$      | $q_3$                                | $q_3$                      | $q_3$                      | ${ m q}_3$                          | $q_8$                      | $\mathrm{q}_{\scriptscriptstyle 1}$ | HALT |
| $q_8$          | $q_{_1}$                             | $q_{_1}$                   | $q_{_1}$                   | $\mathbf{q_{i}}$                    | $q_{\scriptscriptstyle 1}$ |                                     | HALT |

|            | O                                    | 1        | 2     | 3-4                        | 5                                   | 6-9                                 | Τ    |
|------------|--------------------------------------|----------|-------|----------------------------|-------------------------------------|-------------------------------------|------|
| $q_{o}$    | $\mathbf{q}_{\scriptscriptstyle{1}}$ | $q_2$    | $q_4$ | $q_3$                      | $q_3$                               | $q_3$                               |      |
| $q_{_1}$   |                                      |          |       |                            |                                     |                                     | HALT |
| ${f q_2}$  | $q_3$                                | $q_3$    | $q_3$ | $q_3$                      | $q_3$                               | $q_3$                               | HALT |
| $q_3$      | $q_{_1}$                             | $q_{_1}$ | $q_1$ | $q_{\scriptscriptstyle 1}$ | $\mathbf{q}_{\scriptscriptstyle 1}$ | $q_{_1}$                            | HALT |
| ${ m q}_4$ | $q_3$                                | $q_3$    | $q_3$ | $q_3$                      | $q_5$                               | $\mathbf{q_{\scriptscriptstyle 1}}$ | HALT |
| $q_5$      | $\mathbf{q_{i}}$                     | $q_{_1}$ | $q_1$ | $q_{i}$                    | $q_{\scriptscriptstyle 1}$          |                                     | HALT |

21

#### Получили следующий ДКА $M = (Q, \Sigma, \delta, q_0, F)$ :

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\};$
- $\Sigma = \{0-9\};$
- $\delta = \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_0, 2), q_4), ((q_0, 3-9), q_3), ((q_2, 0-9), q_3), ((q_3, 0-9), q_1), ((q_4, 0-4), q_3), ((q_4, 5), q_5), ((q_4, 6-9), q_1), ((q_5, 0-5), q_1)\};$
- $q_o = q_o$ ;
- $F = \{q_1, q_2, q_3, q_4, q_5\}.$

22

#### Или ДКА $M = (Q, \Sigma, \delta, q_0)$ :

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\};$
- $\Sigma = \{0-9\};$
- $\delta = \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_0, 2), q_4), ((q_0, 3-9), q_3), ((q_1, \bot), HALT), ((q_2, 0-9), q_3), ((q_2, \bot), HALT), ((q_3, 0-9), q_1), ((q_3, \bot), HALT), ((q_4, 0-4), q_3), ((q_4, 5), q_5), ((q_4, 6-9), q_1), ((q_4, \bot), HALT)\};$
- $q_0 = q_0$ .

## 23

#### Плюсы такого подхода:

• Не требуется внедрение действий.

#### Минусы:

- Сложная функция переходов.
- При изменении допустимого диапазона значений почти все компоненты автомата (Q,  $\delta$ , F) придётся определять заново.

Пример: 4-байтное целое число в диапазоне от –2 147 483 648 до +2 147 483 647.

• Допустим не для всех типов чисел.

24

### Вариант с действиями:





#### Вариант с действиями:

|                  | 0                            | 1-9                           | 1    |
|------------------|------------------------------|-------------------------------|------|
| $q_{o}$          | $q_{\scriptscriptstyle 1}$   | $q_2$ , $\langle A_1 \rangle$ |      |
| $\mathbf{q_{i}}$ |                              |                               | HALT |
| ${f q_2}$        | $q_{2},\langle A_{2}\rangle$ | $q_{2},\langle A_{2}\rangle$  | HALT |

#### Функция $A(q, a, \langle A \rangle)$ :

- если  $\langle A \rangle = \langle A_1 \rangle$ , то n := ЧИСЛО(a), вернуть true;
- если  $\langle A \rangle = \langle A_2 \rangle$ , то  $n := n \times 10 + \text{ЧИСЛО}(a)$ , если  $n \leq 255$ , вернуть true, иначе вернуть false.

Здесь n — целое число.



Получили следующий ДКА  $M = (Q, \Sigma, \delta, q_0, F)$ :

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{0-9\};$
- $\delta = \{((q_0, 0), (q_1, \langle \rangle)), ((q_0, 1-9), (q_2, \langle A_1 \rangle)), ((q_2, 0-9), (q_2, \langle A_2 \rangle))\};$
- $q_0 = q_0$ ;
- $F = \{q_1, q_2\}.$



#### Запуск автомата для правильной цепочки:

$$(q_0, \ll 125 \perp \gg) \Rightarrow^1 (q_2, \ll 25 \perp \gg), n = 1;$$
  
 $\Rightarrow^2 (q_2, \ll 5 \perp \gg), n = 1 \times 10 + 2 = 12 < 255;$   
 $\Rightarrow^3 (q_2, \ll \perp \gg), n = 12 \times 10 + 5 = 125 < 255;$   
 $\Rightarrow^4 HALT$ 

#### Запуск автомата для неправильной цепочки:

$$(q_0, \text{ } \text{ } \text{5210} \bot \text{ }) \Rightarrow^1 (q_2, \text{ } \text{ } \text{210} \bot \text{ }), n = 5;$$
  
 $\Rightarrow^2 (q_2, \text{ } \text{ } \text{10} \bot \text{ }), n = 5 \times 10 + 2 = 52 < 255;$   
 $\Rightarrow^3 \text{ } \text{ERROR}, \text{ } \text{T.K.} \ n = 52 \times 10 + 1 = 521 > 255.$ 



#### Плюсы такого подхода:

- Простая функция переходов.
- При изменении допустимого диапазона значений необходимо лишь исправить число 255 в действии  $\langle A_2 \rangle$  на какое-либо другое.
- Допустим для всех типов чисел.

#### Минусы:

• Требуется написание дополнительной функции для выполнения внедрённых действий.

29

Пример 2. Пусть язык L описывает список идентификаторов, разделенных запятыми. Идентификатор должен начинаться с буквы латинского алфавита или подчёркивания, далее могут следовать другие необязательные буквы, подчёркивания или цифры. Также в этой записи допустимы пробелы и другие символыразделители в начале и конце входной цепочки, а также между идентификаторами и запятыми. Идентификаторы должны быть уникальными.

30

#### Выполним анализ языка.

1. В алфавит войдут большие и маленькие буквы латинского алфавита, символ подчёркивания, цифры, запятая и символы-разделители (обычно в ЯВУ это символы пробела, табуляции, возврата каретки и перехода на следующую строку). Для их обозначения будем использовать символ « □ ».

31

Выполним анализ языка.

2. Внедрённые действия будем использовать для проверки уникальности идентификаторов. Для этого нам нужен какой-то контейнер CONTAINER для хранения прочитанных из входной цепочки идентификаторов (массив, список и т.п.). Для выделения из входной цепочки идентификаторов (а мы их считываем посимвольно) также потребуется некоторый строковый буфер BUFFER. Соответственно, нужны внедрённые действия для заполнения этого буфера.



#### Построим граф функции переходов:





#### Табличное представление функции переходов:

|                            | ш                          | a-z, A-Z, _                                                          | 0-9                                                                  | ,                          | 1                           |
|----------------------------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|-----------------------------|
| $q_{o}$                    | $q_o$                      | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                      |                            |                             |
| $q_{\scriptscriptstyle 1}$ | $q_2, \langle A_3 \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | HALT, $\langle A_3 \rangle$ |
| $\mathbf{q_2}$             | $q_2$                      |                                                                      |                                                                      | $q_{o}$                    | HALT                        |

#### Функция $A(q, a, \langle A \rangle)$ :

- если  $\langle A \rangle = \langle A_1 \rangle$ , то BUFFER := a, вернуть true;
- если  $\langle A \rangle = \langle A_2 \rangle$ , то BUFFER := BUFFER + a, вернуть true;
- если  $\langle A \rangle = \langle A_3 \rangle$ , то если CONTAINER содержит BUFFER, вернуть false, иначе CONTAINER := CONTAINER + BUFFER, очистить BUFFER, вернуть true.



Получили следующий ДКА  $M = (Q, \Sigma, \delta, q_0, F)$ :

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{a-z, A-Z, \_, o-9, ,, \sqcup \};$
- $\delta = \{((q_0, \sqcup), (q_0, \langle \rangle)), ((q_0, a-zA-Z_{-}), (q_1, \langle A_1 \rangle)), ((q_1, \sqcup), (q_2, \langle A_3 \rangle)), ((q_1, a-zA-Z_{-}), (q_1, \langle A_2 \rangle)), ((q_1, o-9), (q_1, \langle A_2 \rangle)), ((q_1, ,), (q_0, \langle A_3 \rangle)), ((q_2, \sqcup), (q_2, \langle \rangle)), ((q_2, ,), (q_0, \langle \rangle))\};$
- $q_0 = q_0$ ;
- $F = \{q_1, q_2\}.$



#### Запуск автомата для правильной цепочки:

36

Пример 3. Пусть язык L описывает математические выражения, состоящие из целых чисел и знаков сложения и умножения. Необходимо построить автомат, описывающий язык L, а также строящий для выражения обратную польскую запись (ОПЗ), т.е. переводящий выражение в постфиксную форму:

$$1 + 2 \times 3 \Rightarrow 1 \ 2 \ 3 \times +$$
 $12 \times 5 - 10/5 + 1 \Rightarrow 12 \ 5 \times 10 \ 5 / - 1 +$ 
 $5 + 7 + 2 \Rightarrow 5 \ 7 + 2 +$ или  $5 \ 7 \ 2 + +$ 



#### Для чего нужна польская запись?

• Это более простая форма представления математических выражений, в которой не требуются скобки, т.к. порядок выполнения операций определяется только порядком следования операций и операндов ОПЗ:

$$1 + 2 \times 3 \Rightarrow 123 \times +$$
  
 $(1 + 2) \times 3 \Rightarrow 12 + 3 \times$ 



#### Для чего нужна польская запись?

• Выражения, записанные в ОПЗ, компиляторам и интерпретаторам гораздо проще вычислять.

Для ОПЗ, содержащей только бинарные операции, алгоритм вычисления следующий:

- 1. Пока входная цепочка не пуста:
- 1.1. Извлечь из неё очередной элемент.
- 1.2. Если это операнд (идентификатор, число и т.п.), поместить его в стек.
- 1.3. Если это знак операции, извлечь из стека два операнда, выполнить над ними данную операцию, результат поместить обратно в стек.
- 2. Результатом вычисления выражения является элемент на вершине стека.



#### Например:

 $1 + 2 \times 3 \Rightarrow 123 \times +$ 

| Строка | 123×+ | 2 3 × + | 3×+ | ×+          | + |   |
|--------|-------|---------|-----|-------------|---|---|
| Стек   |       | 1       | 2   | 3<br>2<br>1 | 6 | 7 |

$$12 \times 5 - 10/5 + 1 \Rightarrow 12.5 \times 10.5 / - 1 +$$

| Строка | 12 5 × 10 5 / - 1 + |               | 5 × 10 5 / - 1 + |     | × 10 5 / - 1 + |         | 10 | 5/-1+ |
|--------|---------------------|---------------|------------------|-----|----------------|---------|----|-------|
| Стек   |                     |               | 12               |     | 5<br>12        |         | 60 | )     |
| Строка | 5 / - 1 +           | / - 1 +       | -1+              | 1 + |                | +       |    |       |
| Стек   | 10<br>60            | 5<br>10<br>60 | 2<br>60          | 58  |                | 1<br>58 |    | 59    |

40

#### Для чего нужна польская запись?

• Это представление дерева, полученное при его обходе в глубину.





+ 1 × 2 3 — префиксная запись 1 2 3 × + — постфиксная запись 1 + 2×3 — инфиксная запись



#### Алгоритм построения ОПЗ:

- 1. Пока входная цепочка не пуста:
- 1.1. Извлечь из неё очередной элемент.
- 1.2. Если этот операнд, то просто помещаем его в выходную строку.
- 1.3. Если это открывающая скобка, то помещаем ее в стек.
- 1.4. Если это закрывающая скобка, то извлекаем символы из стека в выходную строку до тех пор, пока не встретим в стеке открывающую скобку. Саму открывающую скобку со стека просто удаляем.
- 1.5. Если символ знак операции, то определяем приоритет данной операции.

## 42

#### Алгоритм построения ОПЗ:

- 1.5.1. Если стек пуст, или находящийся на его вершине знак операций имеет меньший приоритет, чем приоритет текущего символа, то помещаем текущий символ в стек.
- 1.5.2. Пока символы, находящиеся на вершине стека, имеют приоритет, больший или равный приоритету текущего символа, то извлекаем их из стека в выходную строку. После этого текущий символ помещаем в стек.
- 2. Если вся входная строка разобрана, а в стеке еще остаются знаки операций, извлекаем их из стека в выходную строку.

Примечание. Операции умножения и деления имеют наивысший приоритет (3). Операции сложения и вычитания имеют меньший приоритет (2). Наименьший приоритет (1) имеет открывающая скобка.

43

#### Например: $12 \times 5 - 10/5 + 1$

| Входная<br>строка  | $12 \times 5 - 10/5 + 1$ | ×5 – 10/5 + 1 | 5 - 10/5 + 1 | -10/5 + 1 | 10/5 + 1 |
|--------------------|--------------------------|---------------|--------------|-----------|----------|
| Выходная<br>строка |                          | 12            | 12           | 12 5      | 12 5 ×   |
| Стек               |                          |               | ×            | ×         | _        |

| Входная<br>строка  | /5 + 1    | 5 + 1     | + 1         | 1               |                   |
|--------------------|-----------|-----------|-------------|-----------------|-------------------|
| Выходная<br>строка | 12 5 × 10 | 12 5 × 10 | 12 5 × 10 5 | 12 5 × 10 5 / – | 12 5 × 10 5 / – 1 |
| Стек               | _         | -/        | -/          | +               | +                 |

Результат: 12  $5 \times 10 5 / - 1 +$ 



#### Выполним анализ языка.

- 1. В алфавит войдут цифры, а также знаки операций сложения и умножения.
- 2. Для формирования ОПЗ нам потребуется стек, т.е. будем строить ДМПА.
- 3. Согласно алгоритму построения ОПЗ, алфавит магазинных символов включает знаки операций.
- 4. В начале разбора стек пуст, в конце разбора он также должен быть пуст (это следует из алгоритма построения ОПЗ).



## Построим табличное представление функции переходов:

|         | 0-9, e                                                                                        | +, Ø                                                                           | +,+                              | +,× | ×,Ø | ×, +                                                                                 | ×,× | ⊥, Ø                        | ⊥, +                                                   | ⊥,×                                                        |
|---------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-----|-----|--------------------------------------------------------------------------------------|-----|-----------------------------|--------------------------------------------------------|------------------------------------------------------------|
| $q_{o}$ | $q_{\scriptscriptstyle 1}, {\color{red} e}, \ \langle A_{\scriptscriptstyle 1}  angle$        |                                                                                |                                  |     |     |                                                                                      |     |                             |                                                        |                                                            |
| $q_{i}$ | $egin{aligned} & 	ext{q}_{1}, 	extbf{\emph{e}}, \ & \langle 	ext{A}_{2}  angle \end{aligned}$ | $\begin{array}{c} \mathbf{q_o,+,} \\ \langle \mathbf{A_3} \rangle \end{array}$ | $q_o, +, \\ \langle A_4 \rangle$ |     |     | $\begin{array}{c} \mathbf{q_o,+\times,} \\ \langle \mathbf{A_3} \rangle \end{array}$ |     | HALT, $\langle A_3 \rangle$ | ${ m q}_2, {\color{red} e}, \ \langle { m A}_5  angle$ | ${ m q}_{2}, {\color{red} e}, \ \langle { m A}_{5}  angle$ |
| $q_2$   |                                                                                               |                                                                                |                                  |     |     |                                                                                      |     | HALT                        | $q_2, {\color{red} e}, \ \langle A_6  angle$           | _ <del>_</del>                                             |

$$1+2+3 \Rightarrow 1\ 2+3+,$$
 если  $\langle A_4 \rangle$  или  $1\ 2\ 3++,$  если  $\langle A_3 \rangle$ 

46

|         | 0-9, e                                                                                       | +, Ø                                                                     | +,+                              | +,×                              | ×,Ø                                      | ×, + | ×,× | ⊥, Ø                        | ⊥, +                                                                                        | ⊥,×                                          |
|---------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|------|-----|-----------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|
| $q_{o}$ | $q_{\scriptscriptstyle 1}, {\color{red} e}, \ \langle A_{\scriptscriptstyle 1}  angle$       |                                                                          |                                  |                                  |                                          |      |     |                             |                                                                                             |                                              |
| $q_{i}$ | $egin{aligned} & \mathbf{q_1},  oldsymbol{e}, \ & \langle \mathbf{A_2}  angle \end{aligned}$ | $\begin{array}{c} {\bf q_o,+,} \\ \langle {\bf A_3} \rangle \end{array}$ | $q_o, +, \\ \langle A_4 \rangle$ | $q_o, +, \\ \langle A_4 \rangle$ | $q_{o}, \times, \ \langle A_{3} \rangle$ |      |     | HALT, $\langle A_3 \rangle$ | $egin{aligned} & \mathbf{q}_2, oldsymbol{e}, \ & \langle \mathbf{A}_5  angle \end{aligned}$ | $q_2, {\color{red} e}, \ \langle A_5  angle$ |
| $q_2$   |                                                                                              |                                                                          |                                  |                                  |                                          |      |     | HALT                        | $q_2, {\color{red} e}, \ \langle A_6  angle$                                                | $q_2, {\color{red} e}, \ \langle A_6  angle$ |

 $\langle A_1 \rangle$ : BUFFER := a;

 $\langle A_2 \rangle$ : BUFFER := BUFFER + a;

 $\langle A_3 \rangle$ : POLSTR := POLSTR + BUFFER, очистить BUFFER;

 $\langle A_4 \rangle$ :  $\langle A_3 \rangle$ ; пока ПРИОР $(z) \geq \Pi$ РИОР $(a), M \rightarrow POLSTR;$ 

 $\langle A_5 \rangle : \langle A_3 \rangle ; M \to \text{POLSTR};$ 

 $\langle A_6 \rangle$ :  $M \to \text{POLSTR}$ .

47

#### Запуск автомата для правильной цепочки:

$$\begin{array}{l} (q_{o}, \ll 1 \times 2 + 3 \times 4 \perp \gg, \ll \gg) \Rightarrow^{1} (q_{1}, \ll \times 2 + 3 \times 4 \perp \gg, \ll \gg), \ B = \ll 1 \gg; \\ \Rightarrow^{2} (q_{o}, \ll 2 + 3 \times 4 \perp \gg, \ll \times \gg), \ B = \ll \gg, \ P = \ll 1 \gg; \\ \Rightarrow^{3} (q_{1}, \ll + 3 \times 4 \perp \gg, \ll \times \gg), \ B = \ll 2 \gg, \ P = \ll 1 \gg; \\ \Rightarrow^{4} (q_{o}, \ll 3 \times 4 \perp \gg, \ll + \gg), \ B = \ll \gg, \ P = \ll 1 \times 2 \times \gg; \\ \Rightarrow^{5} (q_{1}, \ll \times 4 \perp \gg, \ll + \gg), \ B = \ll 3 \gg, \ P = \ll 1 \times 2 \times \gg; \\ \Rightarrow^{6} (q_{o}, \ll 4 \perp \gg, \ll + \times \gg), \ B = \ll \gg, \ P = \ll 1 \times 2 \times 3 \gg; \\ \Rightarrow^{7} (q_{1}, \ll \perp \gg, \ll + \times \gg), \ B = \ll 4 \gg, \ P = \ll 1 \times 2 \times 3 \times; \\ \Rightarrow^{8} (q_{2}, \ll \perp \gg, \ll + \gg), \ B = \ll \gg, \ P = \ll 1 \times 2 \times 3 \times 4 \times \#; \\ \Rightarrow^{9} (q_{2}, \ll \perp \gg, \ll + \gg), \ B = \ll \gg, \ P = \ll 1 \times 2 \times 3 \times 4 \times \#; \\ \Rightarrow^{10} \ HALT \end{array}$$