PUBH 501 Biostatistics

STATA: LINEAR REGRESSION AND CORRELATION

Overview

- Linear regression
 - Predicting one variable from another
 - Understanding the regression line (slope & intercept)
- Correlation
 - Measuring strength and direction of a relationship
 - Interpreting r vs R squared

Data: Preinstalled in Stata

- Using Stata dataset: load data using the following code sysuse auto
- •Data on automobiles from 1978. Mixture of variable types
- describe

obs: vars:	74 12			1978 Automobile Data 13 Apr 2018 17:45 (_dta has notes)
	storage	display	value	
variable name	type	format	label	variable label
make	str18	%-18s		Make and Model
price	int	%8.0gc		Price
mpg	int	%8.0g		Mileage (mpg)
rep78	int	%8.0g		Repair Record 1978
headroom	float	%6.1f		Headroom (in.)
trunk	int	%8.0g		Trunk space (cu. ft.)
weight	int	%8.0gc		Weight (lbs.)
length	int	%8.0g		Length (in.)
turn	int	%8.0g		Turn Circle (ft.)
displacement	int	%8.0g		Displacement (cu. in.)
gear_ratio	float	%6.2f		Gear Ratio
foreign	byte	%8.0g	origin	Car type

Linear regression

$$\hat{y} = heta_0 + heta_1 x$$

Where:

- \hat{y} is the predicted value
- xis the input (independent variable)
- θ_0 is the intercept (value of \hat{y} when x=0)
- ullet $heta_1$ is the slope or coefficient (how much \hat{y} changes with one unit of x)

Linear regression

- •Look for a linear relationship between an exposure (IV) and a continuous outcome (DV).
- •Is car head room associated with gas mileage (mpg)?
- Assumptions:
 - Normality of residuals (can start with check of normality of variable)
 - Relationship between variables is linear (Is there a directional trend?)
 - Homoscedasticity (error terms don't change based on variable value)

Linear regression

- • H_0 : slope = 0
- •H₁: slope !=0

scatter headroom mpg

•The scatterplot suggests a negative linear relationship between headroom and mpg

-regress- command

- •Linear regression is run using the –regress- command
- •regress outcome exposure
- regress headroom mpg

- •Where the first variable is the outcome, or the dependent variable
- •The second variable is the independent variable

regress headroom mpg

Source	SS	df	MS	Numl	per of obs	=	74
+				F(1	, 72)	=	14.88
Model	8.94634123	1	8.94634123	3 <mark>Pro</mark> l	> F	=	0.0002
Residual	43.3002804	72	.601392783	3 <mark>R-so</mark>	quared	=	0.1712
+				Adj	R-squared	=	0.1597
Total	52.2466216	73	.715707146	6 Roo	MSE	=	.7755
headroom +	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
mpg _cons	<mark>060509</mark> 4.281922	.0156883 .346067	-3.86 12.37	0.000	0917831 3.59205		0292349 4.971794

Reading the output

- •The coef for mpg is -0.06 (95% CI -.09, -.03). This is the slope of the line
- •Coef for _cons is the intercept of the line = 4.3
- •R-squared = 0.17 → overall model fit, 17% of the variation in headroom is explained by mpg
- •Overall F p-value is <0.001 --> overall model significance

Examining residuals

- Assumption of linear regression → residuals are normally distributed
- We looked at the distribution of the variable instead

•Can assess the residuals using the –predict- command *after* you run

the regression command

```
regress headroom mpg
predict head_r, residual
hist head r
```


Linear regression results summary

- •There is a significant association between mpg and headroom in cars
- •With each unit increase in mpg, there is a 0.06 unit decrease in head room
- •17% of the variation in headroom can be explained by car mpg

Correlation

Correlation

- We will look at two types of correlation
 - Pearson (parametric)
 - Measures linear relationships between continuous, normally distributed variables
 - Based on actual values
 - Spearman (non-parametric)
 - Monotonic, not necessarily linear relationships
 - Based on ranks of values

Pearson correlation

- Linear relationship
- Continuous and normal distributed variables
- •H₀: there is no correlation
- •H₁: the variables are correlated

```
pwcorr mpg headroom, sig
                  mpg headroom
       mpg | 1.0000
   headroom | -0.4138  1.0000
               0.0002
```

Significant p-value, correlation coefficient = -0.4138, p<0.05

Spearman correlation

- Nonparametric → doesn't assume normality
- Based on ranks
- •Again, H₀: there is no correlation

spearman mpg headroom

. spearman mpg headroom

Number of obs =
$$74$$

Spearman's rho = -0.4866

Test of Ho: mpg and headroom are independent Prob
$$> |t| = \frac{0.0000}{}$$

Correlation coefficient (r) of -0.4866 is significant p<0.001. However we should use the Pearson correlation coefficient in this case, because we meet assumptions for parametric test.

You can look at more than one variable in Spearman, but must include the –stats- option

spearman mpg headroom price, stats(rho p)

. spearman mpg headroom price,stats(rho p)

Number of observations = 74

rho p-value

	mpg	headroom	price
mpg	1.0000		
headroom	-0.4866	1.0000	
	0.0000	•	
price	-0.5419	0.0969	1.0000
	0.0000	0.4104	

Review

Concept	Correlation	Regression
Purpose	Measures the strength and direction of a relationship between two variables	Describes the <i>relationship itself</i> and predicts one variable from another
Question it answers	"How strongly are X and Y related?"	"How much does Y change when X changes?"
Type of relationship	Symmetrical (treats X and Y equally)	Asymmetrical (predicts Y from X)

Review

Concept	Symbol	Range	Meaning
Correlation coefficient	r	-1 → +1	Strength and direction of linear relationship
Coefficient of determination	R^2	0 → 1	% of variation in Y explained by X

Tip of the day: tables

- •There are a lot of commands, user-written and Stata native, that produce publication ready table 1
- •Table 1 is usually the first table in the manuscript, which describes your sample
- •Some examples include table1 tabout

Tables

	Mean	Mean	Mean
	price	mpg	headroom
Car type			
Domestic	6,072.4	19.8	3.2
Foreign	6,384.7	0 24.8	2.6
Total	6,165.3	21.3	3
Repair Record 1978			
-	4,564.5	0 21	1.8
2	5,967.6	0 19.1	3.4
3	6,429.2	0 19.4	3.2
4	6,071.5	21.7	3
Ţ.	5,913.0	0 27.4	2.5
Total	6,146.0	21.3	3

table1, by(foreign) vars(price conts \ mpg contn %2.1f \ headroom conts)

Factor	Domestic	Foreign	p-value
N	52	22	
Price, median (IQR)	4,782.5 (4,184, 6,234)	5,759 (4,499, 7,140)	0.30
Mileage (mpg), mean (SD)	19.8 (4.7)	24.8 (6.6)	<0.001
Headroom (in.), median (IQR)	3.5 (2.2, 4.0)	2.5 (2.5, 3.0)	0.011