

I.	Modélisation						
:	À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.	3	С			1,05	
	Même question avec Hz(p).	2	С			0,7	
3	Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	С			0,7	
4	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1	С			0,35	
	Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.	1	С		П	0,35	
(Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	Х			0	
II.	Tendance						
	Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.	2	С			0,7	
:	Déduire des questions 1 et 2 la valeur du gain de tendance.	2	D			0,1	
- 3	Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.	2	D			0,1	
II.	Performances de la boucle de tendance						
	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D			0,1	
:	Comparer vos résultats à ceux obtenus en boucle simple.	1	D			0,05	
	Note: 4,2/20						

I. Modélisation

1-À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.

T=2,8(2)-1,8(48)=-80,8s t=5,5*46=253s K=DELTA X/DELTA Y=2/10=5 H(p)=Ke^-Tp)(1+tp)=2e^+80,8p)(1+253p)

2-Même question avec $H_z(p)$. je suis passé de 97% a 32%

3-Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

EASYREG											
Nouveau fichier	Faire les calculs	Les valeurs	Le graphe								
Enregistrer fichier	Aide	du plan de Black	du plan de Black								
Fichier de travail	A propos	temporelles	temporel								
Donner la fonction de transfert en boucle ouverte :											
$T(p) = \frac{N(p)}{D(p)}e^{-Rp}$ $N(p) = \boxed{0.56}$ $D(p) = \boxed{1+253p}$ $R = \boxed{80.8}$ Constante de temps pour le calcul (en s) $\boxed{100}$											
Résultats des calculs											
$\omega_{\text{min}} = 0.001$; $\omega_{\text{max}} = 0.1$; raison = 1.05											
Argument _{min} = -541.97854769512 ° Argument _{max} = -18.827420130554 °											
Module _{min} = -32.941572626265 db Module _{max} = -5.3056924747464 db											
X _{min} = 0 % ; X _{max} = 35.86852424695 %											
bgfkb5hqqhls1bspbadifmjfnl											

4-Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

Fichier de travail	A propos	temporelles	temporel
Temps en s	Erreur en %		Mesure en %
0	100		0
10	100		0
20	100		0
30	100		0
40	100		0
50	100		0
60	100		0
70	100		0
80	97.87072243346		2.1292775665399
90	95.822405991123		4.1775940088768
100	93.851972303248		6.1480276967522
110	91.956460048371		8.0435399516286
120	90.133020502806		9.866979497194
130	88.378913259353		11.621086740647
140	86.691502108808		13.308497891192
150	85.068251078054		14.931748921946
160	83.552058848366		16.447941151634
170	82.137130855842		17.862869144158
180	80.817958409239		19.182041590761
190	79.58930532801		20.41069467199
200	78.446195183159		21.553804816841
210	77.383899114398		22.616100885602
220	76.397924198226		23.602075801774
230	75.484002342639		24.515997657361
240	74.637114308505		25.362885691495
250	73.852555084635		26.147444915365
260	73 125915852932		26 874084147068

Le temps de réponse pour +/- 5% est entre 190 et 200s avec un dépassement de 0

5-Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.

II. Tendance

1-Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.

2-Déduire des questions 1 et 2 la valeur du gain de tendance.

D'après le schéma le gain de tendance G(p)=Q

3-Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.

III. Performances de la boucle de tendance

1 et 2-Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q. -Comparer vos résultats à ceux obtenus en boucle simple.

on constate que avec l'augmentation du débit Q la température augmente considérablement.

