Permit Number 3505

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissio</u> lb/hr	n Rates * TPY**
1	Grinding Plant Baghouse Stack	PM ₁₀	3.23	14.15
2	Rotary Calciner Wet Scrubber Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	1.30 2.71 3.49 0.10 5.70 <0.01 0.04	3.80 7.89 10.20 0.30 16.30 <0.01 0.13
4	Lingl Dryer Waste Heat Dump Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	17.40 <0.01 <0.01 <0.01 <0.01 0.20 0.20	0.44 <0.01 <0.01 <0.01 <0.01 1.00
5	Lingl Dryer Stack	PM_{10} SO_2 NO_x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10

6	Lingl Dryer Stack	PM_{10} SO_2 NO_x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
7	Lingl Dryer Stack	PM_{10} SO_2 NO_x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
8	Lingl Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
9	Lingl Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
11	Lingl Dryer Stack	PM_{10} SO_2 NO_x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
12	Lingl Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO	0.45 <0.01 <0.01 <0.01 <0.01	1.97 <0.01 <0.01 <0.01 <0.01

13	Lingl Dryer Stack	HCI HF PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.02 0.02 0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	0.10 0.10 1.97 <0.01 <0.01 <0.01 0.10
14	Lingl Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
15	Lingl Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.45 <0.01 <0.01 <0.01 <0.01 0.02 0.02	1.97 <0.01 <0.01 <0.01 <0.01 0.10
16	ENP Plant Kiln DIFF	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	3.18 32.39 3.15 0.18 4.16 3.04 0.68	13.93 141.87 13.81 0.80 18.22 13.32 2.98
16A	ENP Plant Kiln Bypass	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	8.80 35.63 3.15 0.18 4.16 7.60 7.57	1.54 6.24 0.55 0.03 0.73 1.33 1.33
17	Mold Plant Pre-Heat Burner	PM ₁₀ SO ₂ NO _x	0.15 0.32 0.06	0.68 1.41 0.24

18	Rotary Calciner Bypass	VOC CO PM ₁₀ SO ₂ NO _x VOC CO HCI HF	<0.01 0.07 <0.01 1.96 1.99 <0.01 0.70 <0.01 <0.01	0.01 0.32 <0.01 0.02 0.02 <0.01 0.01 <0.01
19	Swindell Holding Room Stack	$\begin{array}{c} PM_{10} \\ SO_2 \\ NO_x \\ VOC \\ CO \\ HCI \\ HF \end{array}$	1.87 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	8.19 <0.01 <0.01 <0.01 <0.01 <0.01
23	Shapes Dryer Stack	PM ₁₀ SO ₂ NO _x VOC CO HCI HF	0.02 0.08 0.01 <0.01 0.04 <0.01 <0.01	0.09 0.34 0.05 <0.01 0.16 <0.01 <0.01
24	Smog Hog	PM ₁₀ VOC	0.13 0.01	1.00 0.01
25	Surge Bin Dust Collector	PM ₁₀	2.40	11.00
26	Extrusion Plant Transfer Point	PM PM ₁₀	0.03 0.01	0.01 0.01
27	Sand Hopper	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
28	Sand Screen No. 1	PM PM ₁₀	0.13 0.01	0.07 0.01
29	Sand Screen No. 2	PM PM ₁₀	0.13 0.01	0.07 0.01

Permit Number 3505 Page 5

30	Calcine Drop Point	PM PM ₁₀	0.18 0.01	0.70 0.03
31	Conveyor Pile Drop	PM	<0.01	<0.01
	Point No. 1	PM ₁₀	<0.01	<0.01
32	Conveyor Pile Drop	PM	<0.01	<0.01
	Point No. 2	PM ₁₀	<0.01	<0.01
33	Screening Transfer Point	PM	<0.01	<0.01
	No. 1	PM ₁₀	<0.01	<0.01
34	Screening Transfer Point	PM	<0.01	<0.01
	No. 2	PM ₁₀	<0.01	<0.01
35	Grandslam Transfer	PM	0.05	0.02
	Point No. 1	PM ₁₀	0.02	0.01
36	Grandslam Transfer	PM	0.05	0.02
	Point No. 2	PM ₁₀	0.02	0.01
37	Diesel Tank - 10,000 gal	VOC	<0.01	<0.01
38	Gasoline Tank - 1,000 gal	VOC	<0.01	<0.01
39	Swindell Kiln	PM_{10} SO_2 NO_x VOC CO HCI HF	9.93 7.65 4.00 0.27 3.54 1.94 4.22	43.50 33.50 17.50 1.20 15.50 8.50 18.50
40	Extrusion Plant Transfer	PM	0.02	0.01
	Point	PM ₁₀	0.01	<0.01
41	Soft Mud Plant Transfer	PM	0.02	0.01
	Point No. 1	PM ₁₀	0.01	<0.01
42	Soft Mud Plant Transfer	PM	0.02	0.01
	Point No. 2	PM ₁₀	0.01	<0.01
43	Diesel Tank - 500 gal	VOC	<0.01	<0.01
56	Farr Dust Collector -	PM ₁₀	0.86	1.29

Permit Number 3505 Page 6

64A	source de-hacker/pkg HI-VAC Dust Collector	PM ₁₀	0.86	1.29
65A	ENP Plant Kiln Car Cleaner Dust Collector	PM ₁₀	0.43	0.50
92A	Farr Dust Collector - dry set	PM ₁₀	0.86	1.29
FUG1	Rotary Calciner Building (4)	PM PM ₁₀	0.01 0.01	0.01 0.01
FUG2	Grandslam Crusher Building (4)	PM PM ₁₀	0.06 0.02	0.02 0.01
FUG3	Calcine Clay Storage Building (4)	PM PM ₁₀	0.02 0.01	0.01 0.01
FUG4	Raw Material Clay Storage (4)	PM PM ₁₀	0.08 0.02	0.04 0.01
FUG5	Shapes Operation Building (4)	PM PM ₁₀	0.10 0.04	0.03 0.01
FUG6	ENP Manufacturing Building (4)	PM PM ₁₀	1.05 0.80	0.50 0.40
FUG7	Swindell Coatings Storage Building (4)	PM PM ₁₀	0.16 0.13	0.10 0.10
FUG8	Harrop Building (4)	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
FUG9	Mold Plant Building (4)	PM PM ₁₀	0.10 0.04	0.04 0.02
FUG10	Grinding Plant Building (4)	PM PM ₁₀	1.42 0.14	0.45 0.04
FUG11	Stockpile (4)	PM PM ₁₀		7.23 3.61
FUG13	Raw Clay Hopper (4)	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) Exempt Solvent Those carbon compounds or mixtures of carbon compounds used as solvents which have been excluded from the definition of volatile organic compound.

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM_{10} - particulate matter equal to or less than 10 microns in diameter

CO - carbon monoxide HCl - hydrogen chloride HF - hydrogen fluoride

HAP - any air contaminant (pollutant) listed in § 112(b) of the Federal Clean Air Act or
 Title 40 Code of Federal Regulations Part 63, Subpart C

- (4) Fugitive emissions are an estimate.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedules:

5,840 Hrs/year for the Rotary Calciner,

5,000 Hrs/year for the Grinding and Screening, and

8,760 Hrs/year for all other permitted facilities. (2/08)

Maximum Allowable Production Rates: (2/07)

Rotary Calciner (EPN 2)			40,000	TPY
Grinding Plant (EPN 1)	300	TPH	546,000	TPY
ENP Plant Kiln (EPN 16)	26.5	TPH	232,000	TPY

Swindell Kiln (EPN 39)

<u>87,599</u> TPY

** Compliance with annual emission limits is based on a rolling 12-month period.

Date April 8, 2008