Einfürung in die Algebra Hausaufgaben Blatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 12, 2023)

Problem 1. Seien $n \in \mathbb{N}^*$, T die Menge der positiven Teiler von n und G eine Gruppe der Ordnung n. Für $t \in T$ definieren wir die Mengen

$$M_t := \{g \in G | \operatorname{ord}(g) = t\} \subseteq G.$$

- (a) Zeigen Sie, dass jedes $g \in G$ in genau einer der Mengen M_t mit $t \in T$ liegt.
- (b) Sei nun zudem G zyklisch. Zeigen Sie, dass dann $|M_t| = \varphi(t)$ für alle $t \in T$ gilt.
- (c) Folgern Sie: Für jedes $n \in \mathbb{N}^*$ gilt $n = \sum_{t|n,t>0} \varphi(t)$.
- *Proof.* (a) Sei $g \in G$ beliebig und $H = \langle g \rangle$. H ist eine Untergruppe von G. Es gilt auch, dass $|H| = \operatorname{ord}(g)$. Wir wissen, dass |H| teilt |G|. Daraus folgt, dass $\operatorname{ord}(g)$ teilt |G|, und g liegt in genau einer der Mengen M_t mit $t \in T$.
 - (b) h

Problem 2. Zeigen Sie, dass für eine Gruppe G der Ordnung $n \in \mathbb{N}^*$ äquivalent sind:

- (a) *G* ist zyklisch.
- (b) G besitzt zu jedem positiven Teiler t von n genau eine Untergruppe der Ordnung t.
- **Problem 3.** (a) Bestimmen Sie die Ordnungen der Elemente für jede der Diedergruppen D_n mit $n \ge 3$.
 - (b) Zeigen Sie, dass Satz 2.23 für nicht-abelsche Gruppen im Allgemeinen falsch ist.

(Satz 2.23) Sei
n die größte Elementordnung in einer abelschen Gruppe G. Dann gilt $g^n=e$ für all
e $g\in G$.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 4. Sei $n \geq 3$.

- (a) Zeigen Sie, dass die Menge $R:=\{r^0,r^1,\ldots,r^{n-1}\}$ ein Normalteiler von D_n ist.
- (b) Zeigen Sie, dass die Gruppe $\langle x \rangle$ für kein $D_n \backslash R$ ein Normalteiler von D_n ist.