Réponses exercices Pont Mathématiques (1bapm10)

Ruben Hillewaere ECAM

Septembre-Novembre 2021

Table des matières

Trigonometry - Appendix D	2
Vectors - Chapter 12	3
Algebra - Review of Algebra	5
Systems of Linear Equations - Claco	6
Coordinate Geometry and Lines - Appendix B	7
Conic Sections - Chapter 10.5	8
Complex Numbers	9
Functions and Limits - Chapter 1	11
Derivatives - Chapter 2	14
Applications of Differentiation - Chapter 3	16
Inverse Functions - Chapter 6	18

Trigonometry - Appendix D

32.
$$\sin x = -\frac{2}{3}\sqrt{2}$$
, $\tan x = 2\sqrt{2}$, $\cot x = \frac{\sqrt{2}}{4}$
33. $\sin \beta = -\frac{1}{\sqrt{10}}$, $\cos \beta = -\frac{3}{\sqrt{10}}$, $\tan \beta = \frac{1}{3}$
36. $25\cos(40^\circ) = 19.15111$ cm
46. -
48. -
51. -
53. -
55. -
56. -
57. -
60. $\frac{8\sqrt{2}-3}{15}$
62. $\frac{4-6\sqrt{2}}{15}$
69. $x = \frac{\pi}{6}$ ou $x = \frac{\pi}{2}$ ou $x = \frac{5\pi}{6}$ ou $x = \frac{3\pi}{2}$
71. $x = 0$ ou $x = \pi$ ou $x = 2\pi$
72. $x = 0$ ou $x = 2\pi$ ou $x = \frac{\pi}{3}$ ou $x = \frac{5\pi}{3}$
75. $0 \le x < \frac{\pi}{4}$ ou $\frac{3\pi}{4} < x < \frac{5\pi}{4}$ ou $\frac{7\pi}{4} < x \le 2\pi$
76. $\frac{\pi}{4} < x < \frac{5\pi}{4}$
89. -

Suppl1 $x = \frac{\pi}{6} + 2k\pi$ ou $x = -\frac{\pi}{2} + 2k\pi$

Suppl2 $\frac{2\pi}{3} + k\pi \le x \le \pi + k\pi$

Vectors - Chapter 12

Three-Dimensional Coordinate Systems 12.1

6. -

11.
$$\overline{PQ} = 6$$
, $\overline{PR} = 6$, $\overline{QR} = 2\sqrt{10}$, no, yes

14. (a) 6

- (b) 4
- (c) 2
- (d) $2\sqrt{10}$
- (e) $2\sqrt{13}$
- (f) $2\sqrt{5}$

12.2 Vectors

6. -

7.
$$\vec{c} = \frac{1}{2} (\vec{a} + \vec{b}), \quad \vec{d} = \frac{1}{2} (\vec{b} - \vec{a})$$

8. $||\vec{w}|| = \sqrt{2}$

21.
$$\vec{a} + \vec{b} = (6, -3, -2), \quad 4\vec{a} + 2\vec{b} = (20, -12, 0), \quad ||\vec{a}|| = \sqrt{29}, \quad ||\vec{a} - \vec{b}|| = 7$$

25. $\vec{1_d} = (\frac{8}{9}, -\frac{1}{9}, \frac{4}{9})$ **26.** $(\frac{24}{7}, \frac{8}{7}, -\frac{12}{7})$

26.
$$\left(\frac{24}{7}, \frac{8}{7}, -\frac{12}{7}\right)$$

27. $\theta = \frac{\pi}{3}$

29.
$$\vec{v} = (-2\sqrt{3}, 2)$$

30. $F_x = 50 \cos 38^\circ \approx 39.4 \text{ N}, \quad F_y = 50 \sin 38^\circ \approx 30.8 \text{ N}$

32. $||\vec{R}|| \approx 28.7 \text{ N}, \quad \theta \approx 12.4^{\circ}$

37. $||\vec{F}|| \approx 26.09 \text{ N}$

47. Une sphère de rayon 1 centrée en (x_0, y_0, z_0)

12.3 The Dot Product

8. $\vec{a} \cdot \vec{b} = 7$

10.
$$\vec{a} \cdot \vec{b} = -2000\sqrt{2}$$

15.
$$\theta = \operatorname{Arccos}\left(\frac{17}{13\sqrt{2}}\right) \approx 22^{\circ}$$

20.
$$\theta = \operatorname{Arccos}\left(\frac{2}{9\sqrt{5}}\right) \approx 84^{\circ}$$

- 25. Triangle rectangle
- **37.** $\alpha = \beta = \gamma = 55^{\circ}$
- **44.** Projection scalaire : $\frac{2}{\sqrt{14}}$, projection vectorielle : $(\frac{1}{7}, \frac{2}{7}, \frac{3}{7})$
- **51.** $W = 2400 \cos 40^{\circ} \approx 1838.5 \text{ J}$
- **53.** $\delta = \frac{13}{5}$
- **56.** $\theta = \operatorname{Arccos} \sqrt{\frac{2}{3}} \approx 35^{\circ}$
- **57.** $\theta = \operatorname{Arccos}\left(-\frac{1}{3}\right) \approx 109.5^{\circ}$

12.4 The Cross Product

- 1. (15, -10, -3)
- **8.** (2, -1, 1)
- **9**. $\vec{0}$
- **12.** $-2\overrightarrow{1}_{z}$
- 13. (a) Scalaire
 - (b) Dénué de sens
 - (c) Vecteur
 - (d) Dénué de sens
 - (e) Dénué de sens
 - (f) Scalaire
- **14.** $||\vec{u} \times \vec{v}|| = 40\sqrt{3}$, rentrant dans la page
- **15.** $||\vec{u} \times \vec{v}|| = 6$, rentrant dans la page
- **27.** 20
- **31.** $(12, -1, 17), \frac{1}{2}\sqrt{434}$
- **35.** 16
- 38. Coplanaires
- **43.** $\theta = 60^{\circ}$
- **44.** (a, 2a 5, a 1) avec $a \in \mathbb{R}$

Algebra - Review of Algebra

- **31.** (x+6)(x+1)
- **34.** (x+4)(2x-1)
- **36.** (2x + 1(4x + 3)
- **37.** (3x+2)(2x-3)
- **42.** $(x-3)(x^2+3x+9)$
- **44.** $(x-1)^2(x-2)$
- **46.** (x-3)(x-4)(x+5)
- **55.** $(x+1)^2+4$
- **56.** $(x-8)^2+4^2$
- **60.** $3(x-4)^2+2$
- **136.** $x \ge \sqrt{5}$ ou $x \le -\sqrt{5}$
- **137.** $x \le 1$
- **140.**] $-\infty$, 0[\cup]1, 3[
- **147.** x = 2 ou $x = -\frac{4}{3}$
- **151.** 3 < *x* < 5
- **153.** $]-\infty, -7] \cup [-3, +\infty[$

Systems of Linear Equations - Claco

Enoncés: https://claco.ecam.be/apiv2/resource_file76899/raw

- **1.** (a) (2, 5)
- **2.** (a) Système simplement indéterminé, $S = \{(-1 + \alpha, -4 + 2\alpha, \alpha) \mid \alpha \in \mathbb{R}\}$, livre ouvert
 - (b) Système à solution unique , $S = \{(-2, 1, 3)\}$, pyramide à base triangulaire
 - (c) Système impossible, $S = \{\}$, A et C sont confondus, B est parallèle
 - (d) Système impossible, $S = \{\}$, prisme
 - (e) Système à solution unique, $S = \{(1, -2, 0)\}$, pyramide à base triangulaire
 - (g) Système simplement indéterminé, $S = \{ (\frac{1}{7} \alpha, \frac{2}{7} \alpha, \alpha) \mid \alpha \in \mathbb{R} \}$, livre ouvert
 - (h) Système simplement indéterminé, $S=\{(\alpha,1-\alpha,3+2\alpha)\,|\,\alpha\in\mathbb{R}\}$, B et C sont confondus, A est sécant

Coordinate Geometry and Lines - Appendix B

15.
$$m_{AB} = m_{CD} = \frac{1}{2}$$
, $m_{AD} = m_{BC} = -3$

16.
$$m_{AB} = m_{CD} = \frac{1}{5}$$
, $m_{AD} = m_{BC} = -5$, et $\frac{1}{5} \cdot 5 = -1$

25.
$$y = -5x + 11$$

33.
$$x + 2y + 11 = 0$$

34.
$$y = -\frac{2}{3}x + 6$$

36.
$$y = -2x + \frac{1}{3}$$

56. médiane par
$$C: \sqrt{37}$$
, médiane par $B: \frac{1}{2}\sqrt{109}$, médiane par $A: \frac{1}{2}\sqrt{145}$

58.
$$(3, -5) \cdot (10, 6) = 0$$
, intersection $(2, 5)$

59.
$$y = x - 3$$

60. (a)
$$PQ \leftrightarrow y = 2x - 2$$
, $PR \leftrightarrow y = -3x + 3$, $QR \leftrightarrow y = -\frac{1}{2}x + \frac{11}{2}$

(b) Médianes :
$$y = -\frac{4}{3}x + \frac{14}{3}$$
, $y = \frac{1}{3}x + 3$, $x = 1$, centre de gravité $\left(1, \frac{10}{3}\right)$

(c) Hauteurs :
$$y = 2(x-1)$$
, $y-4 = \frac{1}{3}(x-3)$, $y-6 = -\frac{1}{2}(x+1)$, orthocentre (3, 4)

(d) Médiatrices :
$$y = -\frac{1}{2}x + 3$$
, $y = \frac{1}{3}x + 3$, $y = 2x + 3$, centre du cercle circonscrit $(0,3)$

(e) Droite d'Euler :
$$y = \frac{1}{3}x + 3$$

Conic Sections - Chapter 10.5

- **9.** $y^2 = -x$, foyer $(-\frac{1}{4}, 0)$, directrice $x = \frac{1}{4}$
- **10.** $(x-2)^2 = 2(y+2)$, foyer $(2, -\frac{3}{2})$, directrice $y = -\frac{5}{2}$
- **18.** $\frac{(x-2)^2}{9} + \frac{(y-1)^2}{4} = 1$, foyers $(2+\sqrt{5},1)$ et $(2-\sqrt{5},1)$
- **19.** sommets (0,5) et (0,-5), foyers $(0,\sqrt{34})$ et $(0,-\sqrt{34})$, asymptotes $y=\frac{5}{3}x$ et $y=-\frac{5}{3}x$
- **27.** hyperbole, sommets (1,0) et (-1,0), foyers $(\sqrt{5},0)$ et $(-\sqrt{5},0)$
- **28.** parabole, sommet (0, -4), foyer $(0, -\frac{63}{16})$, directrice $y = -\frac{65}{16}$
- **29.** ellipse, sommets $(\sqrt{2}, 1)$, $(-\sqrt{2}, 1)$, (0, 0) et (0, 2), foyers (1, 1) et (-1, 1)
- **30.** hyperbole, sommets (1,1) et (1,-1), foyers $(1,\sqrt{2})$ et $(1,-\sqrt{2})$
- **31.** parabole, sommet (1, -2), foyer $(1, -\frac{11}{6})$, directrice $y = -\frac{13}{6}$
- **32.** ellipse, sommets $(1+\sqrt{2},2)$, $(1-\sqrt{2},2)$,, foyers (2,2) et (0,2)
- **47.** $\frac{(y-1)^2}{25} \frac{(x+3)^2}{39} = 1$ **51.** $\frac{x^2}{1940^2} + \frac{y^2}{1937^2} = 1$
- **52.** (a) $y^2 = 10x$, (b) $|CD| = 2\sqrt{110}$

Complex Numbers

Appendix H

- **5.** 12 7i
- **8.** $-\frac{5}{17} + \frac{14}{17}i$
- **12.** 1
- **16.** $-1 2\sqrt{2}i$, $\left|-1 + 2\sqrt{2}i\right| = 3$
- **21.** x = -1 + 2i ou x = -1 2i
- **23.** $x = -\frac{1}{2} + \frac{\sqrt{7}}{2}i$ ou $x = -\frac{1}{2} \frac{\sqrt{7}}{2}i$
- **30.** $zw = 64 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$, $\frac{z}{w} = \left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$, $\frac{1}{z} = \frac{1}{8} \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- **31.** $zw = 4\sqrt{2}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$, $\frac{z}{w} = 2\sqrt{2}\left(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}\right)$, $\frac{1}{z} = \frac{1}{4}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- **34.** $16 + 16\sqrt{3}i$
- **36.** 16
- **38.** 2, $2e^{i\frac{2\pi}{5}}$, $2e^{i\frac{4\pi}{5}}$. $2e^{i\frac{6\pi}{5}}$. $2e^{i\frac{8\pi}{5}}$
- **40.** $2^{1/6}e^{i\frac{\pi}{12}}$. $2^{1/6}e^{i\frac{3\pi}{4}}$. $2^{1/6}e^{i\frac{17\pi}{12}}$
- **45.** $-e^2$

Exercices supplémentaires (Claco)

Enoncés : https://claco.ecam.be/apiv2/resource_file47140/raw

- 3. (a) $-\frac{1}{3}$
- **4.** (a) $z = 2e^{-i\frac{\pi}{12}}$
- **5.** 1 i
- **7.** (c) $z_1 = \frac{1+i\sqrt{7}}{2}$, $z_2 = \frac{1-i\sqrt{7}}{2}$, $z_3 = \frac{-1+i\sqrt{7}}{2}$, $z_4 = \frac{-1-i\sqrt{7}}{2}$
- **8.** (a) $z_1 = \frac{1}{4}e^{i(\pi/6)} = \frac{\sqrt{3}}{8} + \frac{i}{8}$
 - (b) $e^{2\sqrt{3}}$
 - (c) 0
 - (d) $z_r = 4e^{i\frac{\pi}{3}} = 2 + 2\sqrt{3}i$
- **10.** Les points (x, y) tels que $\left(x \frac{1}{2}\right)^2 + \left(y \frac{1}{2}\right)^2 = \frac{1}{2}$, ce qui représente un cercle avec rayon $\frac{1}{\sqrt{2}}$ et centre $\left(\frac{1}{2}, \frac{1}{2}\right)$ (sans les points z = 1 et z = i!).
- **11.** (a) $z_0^5 = 1$

- (b) -
- (c) $\alpha^2 + \alpha 1 = \beta^2 + \beta 1 = 0$ (d) $\alpha = 2\cos\frac{2\pi}{5}$ (e) $\cos\frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$

- **12.** (a) vrai
 - (b) faux
 - (c) vrai
 - (d) vrai
- **13.** Les points (x, y) du cercle avec équation $\left(x + \frac{1}{2}\right)^2 + \left(y \frac{1}{2}\right)^2 = \frac{1}{2}$

Functions and Limits - Chapter 1

1.1 Four Ways to Represent a Function

40.
$$Dom(f) = \mathbb{R} \setminus \{-7, 3\}$$

42.
$$Dom(f) = [-2, 3]$$

43. Dom
$$(h) =]-\infty$$
, $0[\cup]5$, $+\infty[$

44.
$$Dom(f) = \mathbb{R} \setminus \{-2, -1\}$$

67.
$$A(x) = \frac{\sqrt{3}}{4}x^2$$
 avec $x > 0$

72.
$$A(x) = 5x - x^2 \left(\frac{\pi+4}{8}\right)$$
 avec $0 < x < \frac{20}{2+\pi}$

72.
$$A(x) = 5x - x^2 \left(\frac{\pi+4}{8}\right) \text{ avec } 0 < x < \frac{20}{2+\pi}$$
74. $E(x) = \begin{cases} 10 + 0.06x & \text{si } 0 \le x \le 1200 \\ 82 + 0.07(x - 1200) & \text{si } x > 1200 \end{cases}$

- **81.** Fonction impaire
- **82.** Fonction paire
- 83. Ni paire, ni impaire
- 84. Fonction impaire

1.2 Mathematical Models: A Catalog of Essential Functions

11.
$$f(x) = 2(x-3)^2$$

12.
$$g(x) = -x^2 - \frac{5}{2}x + 1$$

13.
$$f(x) = -3x(x+1)(x-2)$$

18. (a) Jari va plus vite

(b) vitesse Jari: 110 km/h; vitesse Jade: 100 km/h

(c) Jade: $x_1(t) = \frac{5}{3}t + 15$ et Jari: $x_2(t) = \frac{11}{6}t$

1.3 New Functions from Old Functions

- (a) Graphe 3
 - (b) Graphe 1
 - (c) Graphe 4
 - (d) Graphe 5
 - (e) Graphe 2

12

- 14. symétrie autour de l'axe x et translation de 1 vers le bas
- 15. compression horizontale d'un facteur 4
- 19. translation de 1 vers la droite et 4 vers le haut
- 23. étirement horizontal d'un facteur 2 (changement de la fréquence), étirement vertical d'un facteur 3 (changement de l'amplitude), ensuite translation de 1 vers le haut
- **61.** (a) $s = f(d) = \sqrt{d^2 + 36}$
 - (b) d = g(t) = 30t
 - (c) $(f \circ g)(t) = \sqrt{900t^2 + 36}$, distance entre le phare et le bateau en fonction du temps depuis midi

1.5 The Limit of a Function

- 1. -
- 2. -
- 10. la limite à gauche est 150 mg, la limite à droite est 300 mg, l'injection fait croître instantanément la quantité de 150 mg
- **11.** la limite existe partout sauf en a = 1
- **36.** $-\infty$
- **45.** $m \to \infty$

1.6 Calculating Limits Using the Limit Laws

- 10. (a) les deux membres n'ont pas le même domaine
 - (b) $x \rightarrow 2$ implique que $x \neq 2$
- **19.** $\frac{9}{2}$
- 23. $\frac{1}{6}$
- **27.** 1
- **30.** 0
- 31. $-\frac{1}{2}$
- **68.** (4, 0)

3.4 Limits at Infinity; Horizontal Asymptotes

- **12.** −3
- **19.** −2
- **20.** 2
- **26.** $-\frac{3}{4}$
- **31.** 1

Derivatives - Chapter 2

2.1 Derivatives and Rates of Change

17.
$$g'(0) < 0 < g'(4) < g'(2) < g'(-2)$$

- **24.** $3a^2 3$
- **28.** y + 3 = 4(x 5)
- **57.** f'(0) n'existe pas

2.2 The Derivative as a Function

- **41.** f n'est pas dérivable en x=1 parce que f n'y existe pas, et en x=5 parce que le graphe a une tangente verticale à cette abscisse
- **42.** f n'est dérivable en x=-2 et x=3 parce qu'il y a des points anguleux à ces abscisses, et en x=1 parce qu'il y a une discontinuité
- **47.** a = f, b = f', c = f''
- **49.** c est la position, b est la vitesse, a est l'accélération

2.3 Differentiation Formulas

- **13.** $-\frac{1}{2}x^{-3/2} + \frac{1}{4}x^{-3/4}$
- **63.** Tangente : $y \frac{1}{2} = -\frac{1}{3}(x-1)$; Normale : $y \frac{1}{2} = 3(x-1)$
- **65.** $y \frac{1}{2} = \frac{1}{2}(x+1)$
- **73.** (a) a(t) = 6t
 - (b) 12 m/s^2
 - (c) 6 m/s^2
- **119.** 1000

2.4 Derivatives of Trigonometric Functions

- **19.** $\frac{\sin t + (t^2 + t)\cos t}{(1+t)^2}$
- **40.** $\left(-\frac{\pi}{6} + 2k\pi, \frac{\sqrt{3}}{3}\right)$ et $\left(\frac{7\pi}{6} + 2k\pi, -\frac{\sqrt{3}}{3}\right)$

2.6 Implicit Differentiation

31.
$$y = x + \frac{1}{2}$$

33.
$$y-1=-\frac{9}{13}(x-3)$$

2.7 Rates of Change in the Natural and Social Sciences

- 1. Attention, il y a un faute dans l'énoncé : $f(t) = t^3 9t^2 + 24t$
 - (a) $v(t) = 3t^2 18t + 24$
 - (b) 9 m/s
 - (c) t = 2 s ou t = 4 s
 - (d) $0 \le t < 2$ ou t > 4
 - (e) 44 m
 - (f) -
 - (g) -12 m/s^2
 - (h) La particule accélère lorsque 2 < t < 3 et $4 < t \le 6$. La particule ralentit lorsque $0 \le t < 2$ et 3 < t < 4.

2.9 Linear Approximations and Differentials

- **6.** $\sqrt[3]{0.95} \approx 0.9833$ et $\sqrt[3]{1.1} \approx 1.033$
- **10**. -
- **44.** (a) 1.209
 - (b) 3%

Applications of Differentiation - Chapter 3

3.1 Maximum and Minimum Values

5. Maximum absolu en f(4) = 5, pas de minimum absolu, maximums locaux en f(4) = 5 et f(6) = 4, minimums locaux en f(2) = 2 et f(1) = f(5) = 3.

3.2 The Mean Value Theorem

29. $f(4) \ge 16$

3.5 Maximum and Minimum Values

55. $f(x) = x + \frac{4}{x^2}$; $Dom(f) = \mathbb{R}_0$; Racine : $x = -\sqrt[3]{4}$; Pas de symétrie; Asymptote verticale : x = 0; Asymptote oblique : y = x; $f'(x) = \frac{x^3 - 8}{x^3}$, donc f est croissante pour x < 0 et x > 2 et f est décroissante pour 0 < x < 2; Minimum local en f(2) = 3, pas de maximum local; $f''(x) = \frac{24}{x^4} > 0$, donc la concavité est vers le haut sur tout le domaine

59. Avec la méthode des binômes conjugués, on vérifie que : $\lim_{x\to\infty}\left(\sqrt{4x^2+9}-2x\right)=0$ et $\lim_{x\to-\infty}\left(\sqrt{4x^2+9}+2x\right)=0$

3.7 The Mean Value Theorem

4. x = y = 8 et la somme des carrés est minimum 128

6. $X = \frac{1}{4}$, la distance verticale minimale est $\frac{7}{8}$

13. Le champs devrait mesurer 100 m sur 150 m.

26. $\left(\frac{5}{2}, \sqrt{\frac{5}{2}}\right)$

30. $x = \frac{a}{\sqrt{2}}$, $y = \frac{b}{\sqrt{2}}$ et l'aire maximale vaut 2ab

40. $x = \frac{20}{4+\pi}$, $y = \frac{10}{4+\pi}$

60. $y-5=-\frac{5}{3}(x-3)$

80. $\theta \approx 0.853$ et $L \approx 7.02$ m

Inverse Functions - Chapter 6

6.1 **Inverse Functions**

- **22.** La vitesse v de la particule en fonction de sa masse est $v = c\sqrt{1 \frac{m_0^2}{m^2}}$
- **32.** $f^{-1}(x) = \sqrt[4]{2-x}$ pour $x \le 2$

6.2 **Exponential Functions and Their Derivatives**

- 8. -
- **15.** (a) $\mathbb{R} \setminus \{-1, 1\}$; (b) \mathbb{R}
- **42.** $\frac{2e^{2t}}{\cos^2{(1+e^{2t})}}$
- **52.** $y = \frac{1}{4}x + \frac{1}{2}$

Logarithmic Functions 6.3

- **23.** (a) $x = \frac{1}{4}(e^3 2)$; (b) $x = \frac{1}{2}(3 + \ln 12)$
- **25.** (a) $x = \frac{1+\sqrt{5}}{2}$; (b) $x = \frac{1}{2} \left(1 \frac{\ln 9}{\ln 5}\right)$
- **43.**] 2, 2[
- **57.** (a) fonction impaire; (b) $f^{-1}(x) = \frac{1}{2}(e^x e^{-x})$

Derivatives of Logarithmic Functions 6.4

- 29. –
- **41.** y = 3(x 3)
- **42.** y = x 1
- **51.** $y' = x^x(1 + \ln x)$
- $53. \ y' = x^{\sin x} \left(\frac{\sin x}{x} + \ln x \cos x \right)$

Inverse Trigonometric Functions 6.6

- 7. $\frac{2}{\sqrt{5}}$ 9. $\frac{119}{169}$

23.
$$f'(x) = \frac{5}{\sqrt{1-25x^2}}$$

23.
$$f'(x) = \frac{5}{\sqrt{1-25x^2}}$$

24. $g'(x) = -\frac{1}{2\sqrt{x(1-x)}}$

49. P doit être $5 - 2\sqrt{5}$ au-dessus de A

6.7 **Hyperbolic Functions**

- **19**. -
- 30. -
- **53.** $y' = \sinh^{-1}\left(\frac{x}{3}\right)$
- **59.** (a) $y'(7) = \sinh \frac{7}{20}$; (b) $\theta \approx 70.34^{\circ}$

Indeterminate Forms and l'Hospital's Rule 6.8

- **15.** 2
- **30.** $-\frac{1}{2}$ **33.** $\frac{1}{\ln 3}$
- **35.** 0 (sans L'Hospital!)
- **47.** 0 (deux fois L'Hospital!)
- **56.** ∞
- **59.** e^{-2}
- **62.** *e*