Instructions:

• Problems 1-3,5-12 are from chapter 9 of Heil's Introduction to Real Analysis. I wrote the rest of the problems from notes I have accumulated over the years. But I'm sure there should be in some textbooks in some variations.

• Problems 1, 6, 12,14, 16 will be collected and graded.

Problem 1. Show that the only function $f \in L^1(\mathbb{R})$ such that f = f * f is f = 0 a.e.

- 2. Suppose that $f \in L^1(\mathbb{R})$ and there exist $\alpha \in (0,1)$ and C > 0 such that $|\hat{f}(\xi)| \leq C/|\xi|^{1+\alpha}$ for $\alpha \neq 0$. Prove that f is Hölder continuous with exponent α .
- 3. Suppose that $f \in L^1(\mathbb{R})$ is such that $\hat{f} \in L^1(\mathbb{R})$. Prove the following statements:
 - 3.1 $f, \hat{f} \in C_0(\mathbb{R})$.
 - 3.2 $\hat{f}(x) = f(-x)$ for all $x \in \mathbb{R}$.
 - 3.3 $\hat{\hat{f}}(x) = f(x)$ for all $x \in \mathbb{R}$
- 4. Let $h(x) = e^{-\pi x^2}$ for $x \in \mathbb{R}$. Justify why $\hat{h}(\xi)$ is the solution to the differential equation

$$\begin{cases} y'(\xi) + 2\pi \xi y(\xi) = 0 \ \forall \xi \in \mathbb{R} \\ y(0) = 1 \end{cases}$$

Conclude that $\hat{h}(\xi) = e^{-\pi \xi^2}$ for all $\xi \in \mathbb{R}$.

Problem 5. Suppose \mathbb{T} is the one-dimensional torus. Suppose $f \in L^1(\mathbb{T})$ and $g \in C(\mathbb{T})$.

- 5.1 Show that $f * g \in C(\mathbb{T})$.
- 5.2 Assume now that $g \in C^1(\mathbb{T})$. Show that $f * g \in C^1(\mathbb{T})$ and (f * g)' = f * g'.

Problem 6. Suppose $f \in AC(\mathbb{T})$, i.e., f is 1 periodic and absolutely continuous on [01].

- 6.1 Prove that $\hat{f}'(n) = 2\pi i n \hat{f}(n)$ for $n \in \mathbb{Z}$ and conclude that $\lim_{|n| \to \infty} n \hat{f}(n) = 0$.
- 6.2 Show that if $\int_0^1 f(x)dx = 0$, then

$$\int_0^1 |f(x)|^2 dx \le \frac{1}{4\pi^2} \int_0^1 |f'(x)|^2 dx.$$

Problem 7. Prove that if $f \in L^1(\mathbb{T})$ and $g \in L^\infty(\mathbb{T})$, then

$$\lim_{m \to \infty} \int_0^1 f(x)g(mx)dx = \hat{f}(0)\hat{g}(0) = \left(\int_0^1 f(x)dx\right) \left(\int_0^1 g(x)dx\right)$$

Problem 8. Let $f, g \in L^2(\mathbb{R})$. Prove the following statements.

- 8.1 \widehat{fg} is continuous, $\widehat{fg} = \widehat{f} * \widehat{g}$, and $f * g = (\widehat{f}\widehat{g})$.
- 8.2 If in addition, $f*g \in L^2(\mathbb{R})$, then $\widehat{f*g} = \widehat{f}\widehat{g}$. In particular, this is the case when $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and $g \in L^2(\mathbb{R})$.

¹©Kasso Okoudjou and Tufts University

- 8.3 $f \in AC(\mathbb{R})$ if and only if f = g * h for some $g, h \in L^2(\mathbb{R})$. That is $AC(\mathbb{R}) = L^2(\mathbb{R}) * L^2(\mathbb{R})$.
- Problem 9. $AC(\mathbb{T}) = L^2(\mathbb{T}) * L^2(\mathbb{T})$ that is $f \in AC(\mathbb{T})$ if and only if f = g * h for some $g, h \in L^2(\mathbb{T})$
- Problem 10. Find a nontrivial $f \in L^2(\mathbb{R})$ such that f = f * f a.e.
- Problem 11. Fix $g \in L^2(\mathbb{R})$. Prove that $\{T_a g := g(\cdot a)\}_{a \in \mathbb{R}}$ is complete in $L^2(\mathbb{R})$ if and only if $\hat{g}(\xi) \neq 0$ a.e.
- Problem 12. Fix $g \in L^2(\mathbb{R})$. Prove that $\{T_k g := g(\cdot k)\}_{k \in \mathbb{Z}}$ is an orthonormal sequence if and only if

$$\sum_{k \in \mathbb{Z}} |\hat{g}(\xi - k)|^2 = 1 \ a.e.$$

- Problem 13. Let $H = \{ f \in L^2(\mathbb{R}) : \hat{f}(\xi) = 0 \, \forall |\xi| > 1/2 \}$. Any function in H is called a badlimited function with bandwidth 1.
 - 13.1 Prove that H is a closed subspace of $L^2(\mathbb{R})$.
 - 13.2 Prove that $f \in H$, then the inversion formula $f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi = \int_{-1/2}^{1/2} \hat{f}(\xi) e^{2\pi i x \xi} d\xi$ holds for all $x \in \mathbb{R}$, and $f \in C^{\infty}(\mathbb{R})$. That is, $H \subset L^{2}(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$.
 - 13.3 For each $k \in \mathbb{Z}$ define $\varphi_k(x) = \mathrm{sinc}(x-k) = \frac{\sin \pi(x-k)}{\pi(x-k)}$. Prove that $\{\varphi_k\}$ is an orthonormal sequence in H.
 - 13.4 Suppose that $f \in H$ is such that $\langle f, \varphi_k \rangle = 0$ for all $k \in \mathbb{Z}$. Prove that $\hat{f}(\xi) = 0$ a.e., and conclude that $\{\varphi_k\}$ is an orthonormal basis for H.
 - 13.5 Prove that for each $f \in H$

$$f(x) = \sum_{k \in \mathbb{Z}} f(k)\varphi_k(x) = \sum_{k \in \mathbb{Z}} f(k) \frac{\sin \pi(x-k)}{\pi(x-k)}$$

where the series converges in L^2 and uniformly. This formula is the Shannon Sampling Theorem.

Problem 14. Let $p(x) = \chi_{[0,1)}(x)$ and $h(x) = \chi_{[0,1/2)}(x) - \chi_{[1/2,1)}(x)$. For $j, k \in \mathbb{Z}$, set $I_{jk} = [2^{-j}k, 2^{-j}(k+1))$ and define

$$\begin{cases} p_{jk}(x) = 2^{j/2} p(2^j x - k) \\ h_{jk}(x) = 2^{j/2} h(2^j x - k) \end{cases}$$

- 14.1 Prove that $\{h_{jk}\}_{j,k\in\mathbb{Z}}$ is an orthonormal sequence in $L^2(\mathbb{R})$.
- 14.2 For $j \in \mathbb{Z}$, show that $\{p_{jk}\}_{k \in \mathbb{Z}}$ is an orthonormal sequence in $L^2(\mathbb{R})$.
- 14.3 Fix $j \in \mathbb{Z}$ and let $g_j(x)$ be a step function, constant on all (dyadic intervals) $I_{j,k}$ $k \in \mathbb{Z}$. Show that $g_j(x) = g_{j-1}(x) + r_{j-1}(x)$ where

$$r_{j-1}(x) = \sum_{k \in \mathbb{Z}} a_{j-1}(k) h_{j-1,k}(x)$$

for some coefficients $\{a_{j-1}(k)\}_{k\in\mathbb{Z}}$ and $g_{j-1}(x)$ is a step function constant on all intervals $I_{j-1,k}$ $k\in\mathbb{Z}$

14.4 Now fix $J \geq 0$ and consider

$$\{p_{Jk}: 0 \le k \le 2^J - 1\} \cup \{h_{i,k}: j \ge J \& 0 \le k \le 2^j - 1\}$$

Prove that $\{p_{Jk}: 0 \le k \le 2^J - 1\} \cup \{h_{j,k}: j \ge J \& 0 \le k \le 2^j - 1\}$ is an orthonormal sequence in $L^2[0,1]$.

14.5 For $f \in L^2[0,1]$ find g_j $(j \geq J)$ a step function constant on all $I_{j,k}$ $k \in \mathbb{Z}$ that approximate f in the L^2 norm. Use this and the previous question to show $\{p_{Jk}: 0 \leq k \leq 2^J - 1\} \cup \{h_{j,k}: j \geq J \& 0 \leq k \leq 2^J - 1\}$ is an orthonormal basis for $L^2[0,1]$

Problem 15. Let Df = f' and for $k \in \mathbb{N}$ let $D^k f = f^{(k)}$.

15.1 Show that if f is n-times differentiable and $x^j f^{(k)}(x) \in L^1(\mathbb{R})$ for $j = 0, 1, 2, \ldots, m$ and $k = 0, 1, 2, \ldots, n$, then

$$(D^n((-\widehat{2\pi ix})^m f(x)))(\xi) = (2\pi i\xi)^n D^m \hat{f}(\xi), \, \forall \xi \in \mathbb{R}$$

15.2 The Schwartz space is

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : x^m f^{(n)}(x) \in L^{\infty}(\mathbb{R}) \text{ for } \text{ all } m, n \ge 0 \}$$

Exhibit a nonzero function in $\mathcal{S}(\mathbb{R})$, and show that if $f \in \mathcal{S}(\mathbb{R})$, then $f^{(n)} \in L^1(\mathbb{R})$ for every $n \geq 0$. Prove that $\mathcal{S}(\mathbb{R})$ is dense in $L^1(\mathbb{R})$.

- 15.3 Show that if $f \in \mathcal{S}(\mathbb{R})$, then $\hat{f} \in \mathcal{S}(\mathbb{R})$.
- 15.4 Prove that the Fourier transform maps $\mathcal{S}(\mathbb{R})$ bijectively onto itself.

Problem 16. Let $0 \neq \varphi \in L^2(\mathbb{R})$ and for each $f \in L^2(\mathbb{R})$ let $V_{\varphi}f$ be the function defined on \mathbb{R}^2 by

$$V_{\varphi}f(x,\xi) = \int_{\mathbb{R}} f(t)\overline{\varphi(t-x)}e^{-2\pi it\xi} dt.$$

For $a, b \in \mathbb{R}$, let T_a be the translation operator by a $(T_a f(x) = f(x - a))$, and M_b the modulation operator by b $(M_b f(x) = e^{2\pi bx} f(x))$.

- 16.1 Prove that for each $f \in L^2(\mathbb{R})$, $V_{\varphi}f$ is uniformly continuous on \mathbb{R}^2 and that $\lim_{|(x,\xi)| \to \infty} V_{\varphi}f(x,\xi) = 0$.
- 16.2 Prove that if $f, \varphi \in \mathcal{S}(\mathbb{R})$, then $V_{\varphi} f \in \mathcal{S}(\mathbb{R}^2)$; that is $V_{\varphi} f \in C^{\infty}(\mathbb{R}^2)$ and for all $n, m, k, \ell \geq 0$

$$x^n y^m \frac{\partial^{k+l} V_{\varphi} f(x,y)}{\partial^k x \partial^l y} \in L^{\infty}(\mathbb{R}^2)$$

- 16.3 Prove that V_{φ} is an isometry from $L^2(\mathbb{R})$ into $L^2(\mathbb{R}^2)$ and that $\|V_{\varphi}f\|_{L^2(\mathbb{R}^2)} = \|\varphi\|_{L^2(\mathbb{R})} \|f\|_{L^2(\mathbb{R})}$ for each $f \in L^2(\mathbb{R})$.
- 16.4 Show that the operator V_{φ}^* given by

$$V_{\varphi}^* F(t) = \|\varphi\|_2^{-2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x,\xi) e^{2\pi i \xi t} \varphi(t-x) dx d\xi$$

maps $L^2(\mathbb{R}^2)$ into $L^2(\mathbb{R})$ and the for each $f \in L^2(\mathbb{R})$ the following inversion formula holds in a sense you should specify:

$$f(t) = \|\varphi\|_2^{-2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\varphi} f(x,\xi) e^{2\pi i \xi t} \varphi(t-x) dx d\xi$$