Problem 1.

Task). Griven the data. We can get the MST.

Double the edge. we can get

=> 1-2-6-3-6-4-5-4-6 -2-1

After shortcutting. We can get: |->2>6>3>4>J>|.

The total cost is: 10+3+2+6+5+23=19.

Task 2. Griven the data. We can get the MST.

The set of odd degree vectices is: U = [1, 3, 5, 6]. The minimum cost mentioning is:

Add back to MST. we can get:

$$\begin{array}{c} (1) \\ (2) \\ (3) \\ (3) \\ (4) \end{array} \Rightarrow (3) \Rightarrow (3)$$

After shortcutting. We can get:

1-2-6-3-4-5-71.

The stal cost is IJ.

Problem 2.

Task 1.

Vmax = 6.

Let T[i.w] be the min-size of subset $S \subseteq \{i,2,...,i\}$ s.t. $\sum_{k \in S} V_k = W$

Since nx Vmax = 4x6 = 24

$$T[1,0]=0$$
. $T[1,1]=\infty$. $T[1,2]=\infty$. $T[1,3]=\omega$

$$T[2,0]=0.$$
 $T[2,1]=\omega$ $T[2,2]=\omega$ $T[2,3]=\omega$

$$T[2,4]=3.$$
 $T[2,5]=\omega$ $T[2,6]=\omega$ $T[2,7]=\omega$

$$T[3,0]=0$$
 $T[3,1]=\infty$ $T[3,2]=\omega$ $T[3,3]=\omega$

$$T[3,4]=3$$
. $T[3,5]=\infty$ $T[3,6]=8$ $T[3,7]=\infty$

$$T[3,8] = 6$$
 $T[3,9] = \omega$ $T[3,10] = 11$ $T[3,11] = \omega$

$$T[3.12]=00$$
 $T[3.13]=00$ $T[3.14]=14$ $T[3.11]=00$ for $15 \le w \le 24$.

$$T[4,0]=0 \qquad T[4,1]=\infty \qquad T[4,2]=\infty \qquad T[4,3]=\omega$$

$$T[4,4]=3, \qquad T[4,1]=1. \qquad T[4,6]=8 \qquad T[4,7]=\infty$$

$$T[4,8]=6 \qquad T[4,9]=8 \qquad T[4,0]=11 \qquad T[4,1]=13.$$

$$T[4,12]=\infty \qquad T[4,13]=11 \qquad T[4,14]=14 \qquad T[4,12]=16$$

$$T[4,16]=\infty \qquad T[4,1]=\infty \qquad T[4,18]=\infty \qquad T[4,9]=19.$$

$$T[4,\omega]=\infty \qquad \text{for } z_0 \leq \omega \leq 24.$$
For $v \leq 8$. the measurum value is $\frac{9}{2}$ with the size of 8 .

Task 2,

, ,	•			
1	Vi	Si	Ui/Si	By ranking. $\frac{U_1}{S_1} > \frac{U_2}{S_2} > \frac{U_4}{S_4} > \frac{U_3}{S_3}$.
			4/3	According to greedy algorithm, we will
2	4	3	4/3	choose item 1, item 2 first. After that.
3	8	6	3/4	there's no room for other items.
4	J	5	1	However. of choose item 1 and item 4
				or rem = 2 and rem q, we get volume = ?.
				size = 8

Therefre greedy algorithme is not optimal.

Problem 3.

Task 1

Round 1

$$R_1 = \frac{cost}{num} = \frac{6}{I} = 1.2$$

$$R_2 = \frac{15}{5} = 3$$

$$R_3 = \frac{7}{7} = 1$$

Round # 2.

$$R_1 = \frac{6}{3} = 2$$
 \vee

$$R_2 = \frac{15}{5} = 3$$

Round # 3

$$R_2 = \frac{15}{2} = 7.5$$

Task 2.

Obviously, the greedy algorithm is not optimal

Simply choose set 2 and set 3 can cover the while ground set. cost-fot' = (I+) = 22.

Bonus

Task 1:

$$\beta ij \geq 0$$

Task 2

· Zjed Bij & fi Vief.

The stal money needed to open facility #1 is at least the total contribution from every client towards opening facility #1 i.

· dj-Bij & dig Vief.jed

This is equavilent to dj = Bij+dij Hef.jeD.

The total payment by client j is at most the sum of contribution it makes truends opening facility of and the distance in between