MAKERERE UNIVERSITY

SCHOOL OF COMPUTING & INFORMATICS TECHNOLOGY

END OF SEMESTER I EXAMINATION 2017/2018

PROGRAMME: BCS and BSSE

YEAR OF STUDY: BCS I and BSSE II

COURSE NAME: COMPUTER ORGANISATION AND ARCHITECTURE

COURSE CODE: CSC 1104

DATE: 14th DECEMBER 2017 TIME: 04:00 p.m. – 7:00 p.m.

EXAMINATION INSTRUCTIONS

I. ATTEMPT ALL QUESTIONS IN SECTION A (40 MARKS)

- 2. ATTEMPT THREE (03) QUESTIONS IN SECTION B (60 MARKS)
- 3. DO NOT OPEN THIS EXAM UNTIL YOU ARE TOLD TO DO SO
- 4. ALL ROUGH WORK SHOULD BE IN YOUR ANSWER BOOKLET

SECTION A [40 Marks]

(a)	(i)	Differentiate Computer Organization from Computer Architecture			
			(2 Marks)		
	(ii)	List any two attributes of Computer Architecture.	(2 Marks)		
(b)	Given a Binary number 10110011.110112 find its equivalent in				
	(i)	Octal (Base 8)	(2 Marks)		
	(ii)	Hexadecimal (Base 16)	(2 Marks)		
	(iii)	Decimal (Base 10)	(2 Marks)		
(c)	Estimate the biggest base ten number that can be expressed in 64 bits assuming that the bits are expressed as:				
	(i)	An Ordinary Binary number	(2 marks)		
	(ii)	A Sign Magnitude Number	(2 marks)		
(d)	Name and draw Logic Gates with the following characteristics:				
	(i)	It outputs 1's if all the inputs are the same	(2 marks)		
	(ii)	It outputs 1's if all the inputs are 0's.	(2 marks)		
(e)	Use examples to help you explain the following:				
	(i)	A Literal	(l mark)		
	(ii)	A Miniterm	(l mark)		
	(iii)	A Maxiterm	(1 mark)		
(f)	(i)	What is a Demultiplexer?	(1 mark)		
	(ii)	Draw a logic diagram for a 1-3 Demultiplexer	(2 marks)		
	(iii)	How many control lines would you need to design a 1-7 Demu	ıltiplexer?		
			(l mark)		
(g)	Some	e Error Detection schemes use Parity Bits.			
	(i)	What is a Parity Bit?	(1 mark)		
	(ii)	Differentiate Even Parity from Odd Parity	(2 marks)		
(h)	(i)	Use a diagram to help you explain what you understand by \mathbf{a}	period.		
			(2 marks)		
	(ii)	A Sine Curve makes 120 periods in two seconds. What is its fr	equency?		
			(2 marks)		
(i)	Assume that an 8bit register is loaded with a Hexadecimal number DC_{16} , what are				
	its new contents after the following operations assuming that the carry bit is 1?				
	(i)	RLC (ii) RAR (1	mark each)		

- (j) (i) Find the corresponding postfix expression for the infix expression $\frac{(p*q)(a+b)}{c} + \frac{(a*b)(p-q)}{c}$ (3 marks)
 - (ii) Derive the infix expression for the postfix expression below:

SECTION B [60 Marks]

Question 1:

(v)

(a) Consider a Decimal Number -125₁₀ and write its equivalent as:

A Double Precision IEEE Floating Point Number

(i)	An ordinary Binary Number	(1 mark)
(ii)	An 8 bit Sign magnitude number	(1 mark)
(iii)	An 8 bit Two's Complement Number	(1 mark)
(iv)	A Typical 32 bit Floating Point Number	(2 marks)

- (b) Use an example to help you explain how you would detect a Numeric Overflow when working with Two's Complement Numbers. (2 marks)
- (c) The two numbers A = C2D80000 and B = 41100000 are Single Precision IEEE Floating Point numbers, find

(i)	A + B	(3 marks)
(ii)	A * B	(3 marks)
(iii)	A/B	(3 marks)

(d) Add the two numbers +5678 and -2489 as Packed BCD numbers (2 marks)

Question 2:

- (a) (i) Use a Truth Table to prove whether $\overline{A} + \overline{B} + \overline{C}$ is equivalent to $\overline{A} + \overline{B} + \overline{C}$ (3 marks)
 - (ii) Use Boolean Algebra to help you simplify the following expression: $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ (3 marks)
- (b) A Karnaugh Map is described by an expression $F(A,B,C,D) = \sum (0,5,7,8,10,12)$
 - (i) Draw a Truth Table corresponding to the above expression. (3 marks)
 - (ii) Generate the corresponding Sum of Products expression (3 marks)
 - (iii) Simplify the expression using the Karnaugh Map method (3 marks)
 - (iv) Simplify the same expression again using the Karnaugh Map method assuming that there are also some Don't Care cases described by an expression $d(A,B,C,D) = \sum (1,2,13,14,15)$ (3 marks)
 - (v) Draw a Logical Diagram corresponding to the simplified expression from part (iv) above. (2 marks)

(2 marks)

Question 3:

- (a) Explain briefly how a Half Adder differs from a Full Adder (2 marks)
- (b) (i) Starting from a Truth Table, derive an expression for a 1-2 Demultiplexer and hence draw a corresponding Logical Diagram. (6 marks)
 - (ii) How many control lines would you need to draw a 6-1 Multiplexer? (1 mark)
- (c) (i) What is a Decoder?

(1 mark)

(ii) Draw a Truth Table for a decoder with three inputs and six outputs.

(3 marks)

(iii) Draw a Logical diagram corresponding to the table in part (ii) above.

(3 marks)

(d) Use an example to help you explain the difference between a ROM circuit and a Programmed Logic Array. (4 marks)

Question 4:

(a) Draw a symbol, a defining table and a well labelled diagram for a J-K flip flop.

(6 marks)

- (b) The Timing diagrams below show inputs for the J-K flip-flop. Give corresponding Q outputs assuming that it is:
 - (i) An Ordinary Flip-flop (a latch)

(2 marks)

(ii) A positively edge triggered flip-flop

(2 marks)

(iii) A negatively edge triggered flip-flop

(2 marks)

Assume in all cases that the initial state of Q is 0

(c) (i) How does a normal J-K flip flop differ from a Master-Slave J-K flip-flop?

(2 marks)

(ii) How would you modify a J-K flip flop to get a T flip flop?

(2 marks)

- (d) (i) Explain briefly advantages of Parallel Data Transmission over Serial Transmission. (2 marks)
 - (ii) An ASCII character 71 is to be transmitted in serial using 8 data bits, one start and one stop bit. Show how this can be represented on a timing diagram.

(2 marks)

Question 5:

- (a) (i) What are the components of the CPU's Control Unit? (2 marks)
 - (ii) Give the functions of each of the mentioned components in part (i) above. (4 marks)
 - (iii) Give the main functions of the Arithmetic and Logic Unit. (2 marks)
- (b) Why do you think that accessing a register in faster than accessing memory? (2 marks)
- (c) A new microprocessor has just been manufactured. Explain the factors you will need to consider when studying this new microprocessor. (5 marks)
- (d) Assume that the bus of this processor has 64 address lines and that the most 4 significant bits are used to identify a memory module.
 - (i) What is the address space of its memory? (1 mark)
 - (ii) What is the total amount of memory it can access? (1 mark)
 - (iii) How many bits are used to write an address of its memory location? (1 mark)
 - (iv) How many modules are in this memory (1 mark)
 - (v) How big is each module? (1 mark)