SLOS220I - JULY 1998 - REVISED MARCH 2001

- Rail-to-Rail Output Swing
- Gain Bandwidth Product . . . 6.4 MHz
- ±80 mA Output Drive Capability
- Supply Current . . . 500 μA/channel
- Input Offset Voltage . . . 100 μV
- Input Noise Voltage . . . 11 nV/√Hz
- Slew Rate . . . 1.6 V/μs
- Micropower Shutdown Mode (TLV2460/3/5) . . . 0.3 μA/Channel
- Universal Operational Amplifier EVM
- Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control/Print Support Qualification to Automotive Standards

description

The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for portable applications. The input common-mode voltage range extends beyond the supply rails for maximum dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters.

The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/ μ s of slew rate with only 500 μ A of supply current, providing good ac performance with low power consumption. Three members of the family offer a shutdown terminal, which places the amplifier in an ultralow supply current mode (I_{DD} = 0.3 μ A/ch). While in shutdown, the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with an input noise voltage of 11 nV/ ν Hz and input offset voltage of 100 μ V.

This family is available in the low-profile SOT23, MSOP, and TSSOP packages. The TLV2460 is the first rail-to-rail input/output operational amplifier with shutdown available in the 6-pin SOT23, making it perfect for high-density circuits. The family is specified over an expanded temperature range ($T_A = -40^{\circ}C$ to 125°C) for use in industrial control and automotive systems, and over the military temperature range ($T_A = -55^{\circ}C$ to 125°C) for use in military systems.

SELECTION GUIDE

DEVICE	V _{DD} [V]	V _{IO} [μV]	I _{DD} /ch [μΑ]	IB [pA]	GBW [MHz]	SLEW RATE [V/μs]	V _{n, 1 <u>kH</u>z [nV/√Hz]}	I _O [mA]	SHUTDOWN	RAIL-RAIL
TLV246x(A)	2.7–6	150	550	1300	6.4	1.6	11	25	Υ	I/O
TLV277x(A)	2.5–5.5	360	1000	2	5.1	10.5	17	6	Υ	0
TLV247x(A)	2.7–6	250	600	2.5	2.8	1.5	15	20	Υ	I/O
TLV245x(A)	2.7–6	20	23	500	0.22	0.11	52	10	Υ	I/O
TLV225x(A)	2.7–8	200	35	1	0.2	0.12	19	3	_	_
TLV226x(A)	2.7–8	300	200	1	0.71	0.55	12	3	_	_

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS220I - JULY 1998 - REVISED MARCH 2001

TLV2460C/I/AI and TLV2461C/I/AI AVAILABLE OPTIONS

	V		PACKAGED DE	VICES	
T _A	V _{IO} max AT 25°C	SMALL OUTLINE (D)	SOT-23 [†] (DBV)	SYMBOL	PLASTIC DIP (P)
0°C to 70°C	2000 μV	TLV2460CD TLV2461CD	TLV2460CDBV TLV2461CDBV	VAOC VAPC	TLV2460CP TLV2461CP
-40°C to 125°C	2000 μV	TLV2460ID TLV2461ID	TLV2460IDBV TLV2461IDBV	VAOI VAPI	TLV2460IP TLV2461IP
40 0 10 123 0	1500 μV	TLV2460AID TLV2461AID	_ _		TLV2460AIP TLV2461AIP

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460CDR).

TLV2460M/AM/Q/AQ and TLV2461M/AM/Q/AQ AVAILABLE OPTIONS

			P	ACKAGED DEVICES	S		
TA	V _{IO} max AT 25°C	SMALL OUTLINE† (D)	SMALL OUTLINE† (PW)	CERAMIC DIP (JG)	CERAMIC FLATPACK (U)	CHIP CARRIER (FK)	
-40°C to 125°C	2000 μV	TLV2460QD TLV2461QD	TLV2460QPW TLV2461QPW	_ _	_ _	_ _	
-40 0 10 123 0	1500 μV	TLV2460AQD TLV2461AQD	TLV2460AQPW TLV2461AQPW	_ _	_ _	_ _	
-55°C to 125°C	2000 μV	_	1 1	TLV2460MJG TLV2461MJG	TLV2460MU TLV2461MU	TLV2460MFK TLV2461MFK	
-55°C to 125°C	1500 μV	1 1	1 1	TLV2460AMJG TLV2461AMJG	TLV2460AMU TLV2461AMU	TLV2460AMFK TLV2461AMFK	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460QDR).

TLV2462C/I/AI and TLV2463C/I/AI AVAILABLE OPTIONS

		PACKAGED DEVICES							
TA	V _{IO} max AT 25°C	SMALL OUTLINE† (D)	MSOP (DGK)	SYMBOL	MSOP† (DGS)	SYMBOL	PLASTIC DIP (N)	PLASTIC DIP (P)	
0°C to 70°C	2000 μV	TLV2462CD TLV2463CD	TLV2462CDGK —	xxTIAAI	– TLV2463CDGS	– xxTIAAK	_ TLV2463CN	TLV2462CP —	
-40°C to	2000 μV	TLV2462ID TLV2463ID	TLV2462IDGK —	xxTIAAJ	– TLV2463IDGS	– xxTIAAL	_ TLV2463IN	TLV2462IP —	
125°C	1500 μV	TLV2462AID TLV2463AID	_ _	_	_ _		– TLV2463AIN	TLV2462AIP —	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462CDR).

[‡] Chip forms are tested at T_A = 25°C only.

[‡] Chip forms are tested at $T_A = 25^{\circ}C$ only.

SLOS220I - JULY 1998 - REVISED MARCH 2001

TLV2462M/AM/Q/AQ and TLV2463M/AM/Q/AQ AVAILABLE OPTIONS

		PACKAGED DEVICES							
TA	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	SMALL OUTLINE [†] (PW)	CERAMIC DIP (JG)	CERAMIC DIP (J)	CERAMIC FLATPACK (U)	CHIP CAR- RIER (FK)		
-40°C to 125°C	2000 μV	TLV2462QD TLV2463QD	TLV2462QPW TLV2463QPW	_ _	_ _		<u> </u>		
-40 0 10 123 0	1500 μV	TLV2462AQD TLV2463AQD	TLV2462AQPW TLV2463AQPW	_ _	_				
–55°C to 125°C	2000 μV	_ _		TLV2462MJG —	— TLV2463MJ	TLV2462MU	TLV2462MFK TLV2463MFK		
	1500 μV	-	_ _	TLV2462AMJG —	— TLV2463AMJ	TLV2462AMU	TLV2462AMFK TLV2463AMFK		

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462QDR).

TLV2464C/I/AI and TLV2465C/I/AI AVAILABLE OPTIONS

12121010/2/14 4114 12121000/2/14 ////12/22 01 110/10								
	.,	PACKAGED DEVICES						
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (N)	TSSOP (PW)				
0°C to 70°C	2000 μV	TLV2464CD TLV2465CD	TLV2464CN TLV2465CN	TLV2464CPW TLV2465CPW				
-40°C to 125°C	2000 μV	TLV2464ID TLV2465ID	TLV2464IN TLV2465IN	TLV2464IPW TLV2465IPW				
40 0 10 123 0	1500 μV	TLV2464AID TLV2465AID	TLV2464AIN TLV2465AIN	TLV2464AIPW TLV2465AIPW				

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number(e.g., TLV2464CDR).

TLV2464M/AM/Q/AQ and TLV2465M/AM/Q/AQ AVAILABLE OPTIONS

		PACKAGED DEVICES					
TA	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	SMALL OUTLINE [†] (PW)	CERAMIC DIP (J)	CHIP CARRIER (FK)		
-40°C to 125°C	2000 μV	TLV2464QD TLV2465QD	TLV2464QPW TLV2465QPW	_ _	_ _		
-40 0 10 123 0	1500 μV	TLV2464AQD TLV2465AQD	TLV2464AQPW TLV2465AQPW	_ _	_ _		
–55°C to 125°C	2000 μV	1 1	-	TLV2464MJ TLV2465MJ	TLV2464MFK TLV2465MFK		
-55°C to 125°C	1500 μV	1 1	-	TLV2464AMJ TLV2465AMJ	TLV2464AMFK TLV2465AMFK		

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2464QDR).

[‡] Chip forms are tested at T_A = 25°C only.

SLOS220I - JULY 1998 - REVISED MARCH 2001

TLV246x PACKAGE PINOUTS

SLOS220I - JULY 1998 - REVISED MARCH 2001

TLV246x PACKAGE PINOUTS (continued)

NC - No internal connection

SLOS220I – JULY 1998 – REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)		6 V
Differential input voltage, V _{ID}		$-0.2 \text{ V to V}_{DD} + 0.2 \text{ V}$
Input current, I _I (any input)		± 200 mA
Output current, IO		± 175 mA
Total input current, I _I (into V _{DD+})		175 mA
Total output current, IO (out of GND)		175 mA
Continuous total power dissipation		
Operating free-air temperature range, T _A :	C suffix	0°C to 70°C
	I and Q suffix	40°C to 125°C
	M suffix	–55°C to 125°C
Maximum junction temperature, T _J		150°C
Storage temperature range, T _{stq}		
Lead temperature 1.6 mm (1/16 inch) from		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to GND.

DISSIPATION RATING TABLE FOR C and I SUFFIX

PACKAGE	θJC (°C/W)	θJA (°C/W)	T _A ≤ 25°C POWER RATING	T _A < 125°C POWER RATING
D (8)	38.3	176	710 mW	142 mW
D (14)	26.9	122.6	1022 mW	204.4 mW
D (16)	25.7	114.7	1090 mW	218 mW
DBV (5)	55	324.1	385 mW	77.1 mW
DBV (6)	55	294.3	425 mW	84.9 mW
DGK	54.2	259.9	481 mW	96.2 mW
DGS	54.1	257.7	485 mW	97 mW
N (14, 16)	32	78	1600 mW	320.5 mW
P (8)	41	104	1200 mW	240.4 mW
PW (14)	29.3	173.6	720 mW	144 mW
PW (16)	28.7	161.4	774 mW	154.9 mW

NOTE: Thermal resistances are not production tested and are for informational purposes only.

DISSIPATION RATING TABLE FOR Q and M SUFFIX

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C [‡]	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

[‡] This is the inverse of the traditional junction-to-ambient thermal resistance (ROJA). Thermal resistances are not production tested and are for informational purposes only.

SLOS220I - JULY 1998 - REVISED MARCH 2001

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage V	Single supply	2.7	6	V
Supply voltage, V _{DD}	Split supply	±1.35	±3	٧
Common-mode input voltage range, VICR		-0.2	V _{DD} +0.2	٧
	C-suffix	0	70	
Operating free-air temperature, TA	I-suffix and Q-suffix	-40	125	°C
	M-suffix	-55	125	
Shutdown on/off voltage level [‡]	VIH	2		V
Situtuowii on/on voitage level+	V_{IL}		0.7	V

[‡] Relative to voltage on the GND terminal of the device.

electrical characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	T _A †	MIN	TYP	MAX	UNIT
				25°C		100	2000	
.,	loosed offer december on	$V_{DD} = 3 V$,		Full range			2200	,,
V _{IO}	Input offset voltage	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1.5 \text{ V},$	TLV246xA	25°C		150	1500	μV
		$R_S = 50 \Omega$	1LV246XA	Full range			1700	
ανιο	Temperature coefficient of input offset voltage	1				2		μV/°C
				25°C		2.8	7	
lιο	Input offset current	V _{DD} = 3 V,	TLV246xC	Full range			20	nA
		V _{IC} = 1.5 V,	TLV246xI/Q/M	Full range			75	
		$V_{O} = 1.5 V$,		25°C		4.4	14	
lΒ	Input bias current	$R_S = 50 \Omega$	TLV246xC	Full range			25	nA
			TLV246xI/Q/M	Full range			75	
		I _{OH} = -2.5 mA		25°C		2.9		V
V	High-level output voltage			Full range	2.8			
VOH		I _{OH} = -10 mA		25°C		2.7		
				Full range	2.5			
		V _{IC} = 1.5 V, I _{OL} = 2.5 mA		25°C		0.1		
Voi	Low-level output voltage	VIC = 1.5 V,	$I_{OL} = 2.5 \text{ mA}$	Full range			0.2	V
VOL	Low-level output voltage	V _{IC} = 1.5 V,	1 10 mA	25°C		0.3		
		V _{IC} = 1.5 V,	I _{OL} = 10 mA	Full range			0.5	
		Sourcing		25°C		50		
loo	Short-circuit output current	Sourcing		Full range	20			mA
los	Short-circuit output current	Sinking		25°C		40		IIIA
		Sirikirig		Full range	20			
Ю	Output current	Measured 1 V fro	om rail	25°C		±40		mA
Δ, τ	Large-signal differential voltage	R _I = 10 kΩ	D: 401/0		90	105		dB
AVD	amplification			Full range	89			ub
r _{i(d)}	Differential input resistance			25°C		10 ⁹		Ω

[†] Full range is 0°C to 70°C for the C suffix, -40°C to 125°C for the I and Q suffixes, and -55°C to 125°C for the M suffix.

SLOS220I - JULY 1998 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ (unless otherwise noted) (continued)

	PARAMETER	TEST CONDI	T _A †	MIN	TYP	MAX	UNIT		
c _{i(c)}	Common-mode input capacitance	f = 10 kHz		25°C		7		pF	
z ₀	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		33		Ω	
				25°C	66	80			
CMRR	Common-mode rejection ratio	ratio $V_{ICR} = -0.2 \text{ V to } 3.2 \text{ V},$ $R_S = 50 \Omega$ TLV246xC Full range 6-	64			dB			
		11.5 - 00 11	TLV246xI/Q/M	Full range	60				
	Supply voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	$V_{DD} = 2.7 \text{ V to 6 V},$	$V_{IC} = V_{DD}/2$,	25°C	80	85			
kovr		No load	_	Full range	75			dB	
ksvr		V _{DD} = 3 V to 5 V,	V _{IC} = V _{DD} /2,	25°C	85	95			
		No load		Full range	80				
1	Cumply current (nor channels)	V= 15V	No local	25°C		0.5	0.575	m A	
¹DD	Supply current (per channels)	V _O = 1.5 V,	No load	Full range			0.9	mA	
1	Supply current in shutdown	SHDN < 0.7 V, Per channel in shutdown		25°C		0.3			
IDD(SHDN)	(TLV2460, TLV2463, TLV2465)			Full range			2.5	μΑ	

T Full range is 0°C to 70°C for the C suffix, -40°C to 125°C for the I and Q suffixes, and -55°C to 125°C for the M suffix.

operating characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDI	TIONS	T _A †	MIN	TYP	MAX	UNIT	
		Vo.(22) = 2 V	C _I = 160 pF,	25°C	1	1.6			
SR	Slew rate at unity gain	$V_{O(PP)} = 2 V$, $R_L = 10 \text{ k}\Omega$	CL = 160 pr,	Full range	0.8		V/μs		
V	Equivalent input noise voltage	f = 100 Hz		25°C		16		->4/1	
V _n	Equivalent input noise voitage	f = 1 kHz		25°C		11		nV/√Hz	
In	Equivalent input noise current	f = 1 kHz				0.13		pA/√Hz	
		., .,	A _V = 1			0.006%			
THD + N	Total harmonic distortion plus noise	$V_{O(PP)} = 2 V$, $R_{I} = 10 \text{ k}\Omega$, $f = 1 \text{ kHz}$	A _V = 10	25°C		0.02%			
	110.00	11 - 10 100, 1 - 1 1012	A _V = 100			0.08%			
t _(on)			Both channels			7.6		μs	
	Amplifier turnon time	$A_V = 1$, $R_L = 10 \text{ k}\Omega$	Channel 1 only, Channel 2 on	25°C		7.65			
	Amplifier turnoff time		Both channels			333			
t _(off)		$A_V = 1$, $R_L = 10 \text{ k}\Omega$	Channel 1 only, Channel 2 on	25°C		328		ns	
			Channel 2 only, Channel 1 on			329			
	Gain-bandwidth product	f = 10 kHz, C _L = 160 pF	$R_L = 10 \text{ k}\Omega$,	25°C		5.2		MHz	
		V(STEP)PP = 2 V,	0.1%			1.47			
	Settling time	$AV = -1$, $C_L = 10 pF$, $R_L = 10 k\Omega$	0.01%	25°C		1.78			
t _S		V _(STEP) PP = 2 V,	0.1%] 20 0		1.77		μS	
		$AV = -1$, $C_L = 56 pF$, $R_L = 10 k\Omega$	0.01%			1.98			
φm	Phase margin at unity gain	P. = 10 kO	C _I = 160 pF	25°C		44°			
	Gain margin	$R_L = 10 \text{ k}\Omega,$	OL = 100 pr	25°C		7		dB	

[†] Full range is 0°C to 70°C for the C suffix, -40°C to 125°C for the I and Q suffixes, and -55°C to 125°C for the M suffix.

SLOS220I – JULY 1998 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		T _A †	MIN	TYP	MAX	UNIT	
						150	2000		
V	land the state of the state of	V _{DD} = 5 V,		Full range			2200	μV	
V _{IO}	Input offset voltage	V _{IC} = 2.5,	TIMOACAA	25°C		150	1500		
		$V_0 = 2.5 \text{ V},$	TLV246xA	Full range			1700		
αVIO	Temperature coefficient of input offset voltage	R _S = 50 Ω		25°C		2		μV/°C	
				25°C		0.3	7	nA	
lio	Input offset current	V _{DD} = 5 V,	TLV246xC	Full range			15		
		$V_{IC} = 2.5 \text{ V},$	TLV246xI/Q/M	Full range			60		
		$V_O = 2.5 V$,		25°C		1.3	14		
I _{IB}	Input bias current	$R_S = 50 \Omega$	TLV246xC	Full range			30	nA	
			TLV246xI/Q/M	Full range			60		
		J 0.5 mA		25°C		4.9			
V	High lavel autout valtage	$I_{OH} = -2.5 \text{ mA}$		Full range	4.8			W	
VOH	High-level output voltage	10 4				4.8		V	
		10H = -10 MA	$I_{OH} = -10 \text{ mA}$						
V _{OL}		V 0.5.V		25°C		0.1		,,	
	Low-level output voltage	V _{IC} = 2.5 V,	$I_{OL} = 2.5 \text{ mA}$	Full range			0.2		
		V 0.5.V	I 10 mA	25°C		0.2	٧		
		$V_{IC} = 2.5 \text{ V}, \qquad I_{OL} = 10 \text{ m}$		Full range				0.3	
los	Short circuit output current	Sourcing Sinking		25°C		145		mA	
				Full range	60				
	Short-circuit output current			25°C		100			
				Full range	60				
lo	Output current	Measured at 1 V	from rail	25°C		±80		mA	
۸–	Large-signal differential voltage	V_{IC} = 2.5 V, R_L = 10 k Ω , V_O = 1 V to 4 V		25°C	92	109		dB	
AVD	amplification			Full range	90				
r _{i(d)}	Differential input resistance			25°C		10 ⁹		Ω	
^C i(c)	Common-mode input capacitance	f = 10 kHz		25°C		7		pF	
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		29		Ω	
		V _{ICR} = -0.2 V to		25°C	71	85			
CMRR	Common-mode rejection ratio	5.2 V,	TLV246xC	Full range	69			dB	
		$R_S = 50 \Omega$	TLV246xI/Q/M	Full range	60				
^k SVR		V _{DD} = 2.7 V to 6 V,	V _{IC} = V _{DD} /2,	25°C	80	85		4B	
	Supply voltage rejection ratio	No load		Full range	75			dB	
	$(\Delta V_{DD} / \Delta V_{IO})$	V _{DD} = 3 V to 5 V.	V _{IC} = V _{DD} /2,	25°C	85	95		dB	
		No load		Full range	80				
lnn	Supply current (per channel)	V _O = 2.5 V,	No load,	25°C		0.55	0.65	mA	
IDD	очрріў сипені (рег спаннеі)	VO = 2.5 V, NO loau,		Full range			1	111/4	
IDD(SHDN)	Supply current in shutdown	SHDN < 0.7 V, Po	er channels in	25°C Full range		1		μΑ	
= = (5.15.4)	(TLV2460, TLV2463, TLV2465)	snutaown	shutdown				3		

[†] Full range is 0°C to 70°C for the C suffix, -40°C to 125°C for the I and Q suffixes, and -55°C to 125°C for the M suffix.

SLOS220I - JULY 1998 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CON	IDITIONS	T _A †	MIN	TYP	MAX	UNIT	
		Vo.(22) - 2.V	C _L = 160 pF,	25°C	1	1.6			
SR	Slew rate at unity gain	$V_O(PP) = 2 V$, $R_L = 10 k\Omega$	С <u>L</u> = 160 рг,	Full range	0.8			V/μs	
v _n	Equivalent input noise voltage	f = 100 Hz	25°C		14		nV/√Hz		
٧n	Equivalent input hoise voltage	f = 1 kHz		25°C		11		IIV/VIIZ	
In	Equivalent input noise current	f = 100 Hz		25°C		0.13		pA.∕√ Hz	
		V _{O(PP)} = 4 V,	A _V = 1		C	0.004%			
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	A _V = 10	25°C		0.01%			
		f = 10 kHz	A _V = 100		-	0.04%			
			Both channels]		7.6		μs	
t _(on)	Amplifier turnon time	$A_V = 1$, $R_L = 10 \text{ k}\Omega$	Channel 1 only, Channel 2 on	25°C		7.65			
			Channel 2 only, Channel 1 on			7.25			
	Amplifier turnoff time	A _V = 1, R _L = 10 kΩ	Both channels			333		ns	
t _(off)			Channel 1 only, Channel 2 on	25°C		328			
			Channel 2 only, Channel 1 on			329			
	Gain-bandwidth product	f = 10 kHz, C _L = 160 pF	$R_L = 10 \text{ k}\Omega$,	25°C		6.4		MHz	
	Settling time	$V_{(STEP)PP} = 2 V,$ $A_{V} = -1,$	0.1%			1.53		- μs	
		$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C		1.83			
t _S		$V_{(STEP)PP} = 2 V,$ $A_{V} = -1,$	0.1%			3.13			
		$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%			3.33			
φm	Phase margin at unity gain	R _I = 10 kΩ,	C _L = 160 pF	25°C		45°			
	Gain margin		OL = 100 pi	25°C		7		dB	

[†] Full range is 0°C to 70°C for the C suffix, -40°C to 125°C for the I and Q suffixes, and -55°C to 125°C for the M suffix.

SLOS220I - JULY 1998 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	vs Common-mode input voltage	1, 2
I _{IB}	Input bias current	vs Free-air temperature	3, 4
I _{IO}	Input offset current	vs Free-air temperature	3, 4
V _{OH}	High-level output voltage	vs High-level output current	5, 6
V _{OL}	Low-level output voltage	vs Low-level output current	7, 8
V _{O(PP)}	Peak-to-peak output voltage	vs Frequency	9, 10
	Open-loop gain	vs Frequency	11, 12
	Phase	vs Frequency	11, 12
A_{VD}	Differential voltage amplification	vs Load resistance	13
	Capacitive load	vs Load resistance	14
Z ₀	Output impedance	vs Frequency	15, 16
CMRR	Common-mode rejection ratio	vs Frequency	17
ksvr	Supply-voltage rejection ratio	vs Frequency	18, 19
IDD	Complex comment	vs Supply voltage	20
	Supply current	vs Free-air temperature	21
	Amplifier turnon characteristics		22
	Amplifier turnoff characteristics		23
	Supply current turnon		24
	Supply current turnoff		25
	Shutdown supply current	vs Free-air temperature	26
SR	Slew rate	vs Supply voltage	27
V	Faulty clent input noise veltage	vs Frequency	28, 29
v _n	Equivalent input noise voltage	vs Common-mode input voltage	30, 31
THD	Total harmonic distortion	vs Frequency	32, 33
THD+N	Total harmonic distortion plus noise	vs Peak-to-peak signal amplitude	34, 35
		vs Frequency	11, 12
φm	Phase margin	vs Load capacitance	36
		vs Free-air temperature	37
	0:1.1:11	vs Supply voltage	38
	Gain bandwidth product	vs Free-air temperature	39
	Large signal follower		40, 41
	Small signal follower		42, 43
	Inverting large signal		44, 45
	Inverting small signal		46, 47

SLOS220I - JULY 1998 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

INPUT BIAS AND INPUT OFFSET CURRENT

INPUT BIAS AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 6 $V_{DD} = 5 V$ $V_1 = 2.5 V$ 5 lΒ 3 2 1 lιο 0 -55 -35 -15 25 45 105 125 TA - Free-Air Temperature - °C Figure 4

TYPICAL CHARACTERISTICS

HIGH-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS

OPEN-LOOP GAIN AND PHASE

Figure 11

TYPICAL CHARACTERISTICS

OPEN-LOOP GAIN AND PHASE

Figure 12

DIFFERENTIAL VOLTAGE AMPLIFICATION

Figure 13

SLOS220I – JULY 1998 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS

COMMON-MODE REJECTION RATIO

TYPICAL CHARACTERISTICS

SLOS220I – JULY 1998 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS

AMPLIFIER WITH A SHUTDOWN PULSE TURNON CHARACTERISTICS 5 **Shutdown Pin** 4 V_{SD} - Shutdown Voltage - V 2 0 **Amplifier Output** 3 $V_{DD} = 5 V$ $R_L = 10 \text{ k}\Omega$ $A_V = 1$ T_A = 25°C 1 -3 -1 3 9 11 t - Time - μs Figure 22

SUPPLY CURRENT WITH A SHUTDOWN PULSE TURNON CHARACTERISTICS

TYPICAL CHARACTERISTICS

TURNOFF SUPPLY CURRENT WITH A SHUTDOWN PULSE

Figure 25

SHUTDOWN SUPPLY CURRENT

FREE-AIR TEMPERATURE

Figure 26

SLEW RATE

Figure 27

SLOS220I - JULY 1998 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE vs COMMON-MODE INPUT VOLTAGE

EQUIVALENT INPUT NOISE VOLTAGE vs COMMON-MODE INPUT VOLTAGE

TYPICAL CHARACTERISTICS

FREQUENCY $V_{DD} = \pm 2.5 \text{ V}$ $V_{O(PP)} = 4 V$ $R_L = 10 \text{ k}\Omega$ **IHD - Total Harmonic Distortion - %** 0.1 $A_{V} = 100$ $A_{V} = 10$ 0.010 $A_V = 1$ 0.001 10 100 1k 10k 100k f - Frequency - Hz

TOTAL HARMONIC DISTORTION

TOTAL HARMONIC DISTORTION PLUS NOISE

TOTAL HARMONIC DISTORTION PLUS NOISE PEAK-TO-PEAK SIGNAL AMPLITUDE

Figure 33

SLOS220I - JULY 1998 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

55 ****35

25

Figure 39

TA - Free-Air Temperature - °C

45

85

105 125

4.5

V_{DD} - Supply Voltage - V

Figure 38

5.5

2.5

TYPICAL CHARACTERISTICS

SLOS220I - JULY 1998 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

Figure 45

INVERTING SMALL SIGNAL

Figure 47

PARAMETER MEASUREMENT INFORMATION

Figure 48

APPLICATION INFORMATION

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 49. A minimum value of 20 Ω should work well for most applications.

Figure 49. Driving a Capacitive Load

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 50. Output Offset Voltage Model

APPLICATION INFORMATION

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 51).

Figure 51. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 52. 2-Pole Low-Pass Sallen-Key Filter

SLOS220I - JULY 1998 - REVISED MARCH 2001

APPLICATION INFORMATION

shutdown function

Three members of the TLV246x family (TLV2460/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.3 μ A/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to V_{DD} — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 22, 23, 24, and 25. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and guad are listed in the data tables.

circuit layout considerations

To achieve the levels of high performance of the TLV246x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements Optimum high performance is achieved when stray series
 inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
 thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
 the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
 the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

SLOS220I - JULY 1998 - REVISED MARCH 2001

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:

$$\mathsf{P}_\mathsf{D} = \left(\frac{\mathsf{T}_\mathsf{MAX}^{-\mathsf{T}}\mathsf{A}}{\theta_\mathsf{JA}}\right)$$

Where:

P_D = Maximum power dissipation of THS246x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE

NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 53. Maximum Power Dissipation vs Free-Air Temperature

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{™}$ Release 8, the model generation software used with Microsim $PSpice^{™}$. The Boyle macromodel (see Note 2) and subcircuit in Figure 54 are generated using the TLV246x typical electrical and operating characteristics at $T_A = 25$ °C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Intergrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

Figure 54. Boyle Macromodels and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

SLOS220I - JULY 1998 - REVISED MARCH 2001

macromodel information (continued)

.subckt TLV_246Y c1 c2 css dc de dlp dln dp egnd fb 21.600E6 -1E3 1E ga gcm iss hlim j1 j2 r2 rd1 rd2	11 72 10 70 54 90 92 4 99 7 E3 22E6 72 0 74 90 11 12 72 3 3	12 7 99 53 70 91 90 3 0 99 6 –22E 0 72 4 0 2 1 9 11	11 12 345.26E-6 10 99 15.422E-9 dc 18.850E-6 vlim 1K 10 jx1 10 jx2 100.00E3 2.8964E3 2.8964E3	.model .model .model	dy D(ls: jx1 NJF jx2 NJF s1x VS\	=800.00 (Is=1.0 (Is=1.0 WITCH	0E-18 Rs=1m Cjo=10p) 1000E-12 Beta=6.3239E-3 Vto=-1) 1000E-12 Beta=6.3239E-3 Vto=-1) 1(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0)
	3 8 7			.model	s1x VS\	ŴІТСН	

Figure 54. Boyle Macromodels and Subcircuit (Continued)

MECHANICAL DATA

D (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusion.

SLOS220I – JULY 1998 – REVISED MARCH 2001

MECHANICAL DATA

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusion.

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

MECHANICAL DATA

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004

MECHANICAL DATA

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T8

MECHANICAL DATA

J (R-GDIP-T**) 14 PIN SHOWN

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

0.100 (2,54) 0.023 (0,58)

0.015 (0,38)

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.

0.014 (0,36)

0.008 (0,20)

4040083/D 08/98

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

MECHANICAL DATA

PW (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220I - JULY 1998 - REVISED MARCH 2001

MECHANICAL DATA

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

MECHANICAL INFORMATION

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, and GDIP1-T20

1

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

1

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

1

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Leads 1, 2, 3 may be wider than leads 4, 5, 6 for package orientation.

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

1

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

1

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated