1 Revision

Proposition 1.1 (Prop. 1.5 in Talk 8). Let $b_{ij} \in \mathbb{Q}_p$ and suppose $\forall i : \lim_{j \to \infty} b_{ij} = 0$ and $\lim_{i \to \infty} b_{ij} = 0$ uniformly in j, then both series $\sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} b_{ij}\right)$ and $\sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} b_{ij}\right)$ converge and have equal sum.

Proposition 1.2 (Prop. 2.1 in Talk 8). Let $f(X) \in \mathbb{Q}_p[[X]]$ be a power series, then the radius of convergence is

$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

2 Formal Derivatives of Power Series

Theorem-Definition 2.1. Let $f(X) = \sum_{n=0}^{\infty} a_n X^n$, we define its formal derivative as

$$f'(X) = \sum_{n=1}^{\infty} na_n X^{n-1},$$

Then f'(X) has the properties of the derivative:

- Additivity: (f+g)'(X) = f'(X) + g'(X)
- Product Rule: (fg)'(X) = f(X)g'(X) + f'(X)g(x)
- Chain Rule: $(f \circ g)'(X) = f'(g(X))g'(X)$

Proof. Let $f(X) = \sum_{n=0}^{\infty} a_n X^n, g(X) = \sum_{n=0}^{\infty} b_n X^n$

• Additivity:

$$(f+g)'(X) = (\sum_{n=0}^{\infty} a_n X^n + \sum_{n=0}^{\infty} b_n X^n)' = (\sum_{n=0}^{\infty} (a_n + b_n) X^n)' = \sum_{n=1}^{\infty} n(a_n + b_n) X^{n-1} = \sum_{n=1}^{\infty} na_n X^{n-1} + \sum_{n=1}^{\infty} nb_n X^{n-1} = f'(X) + g'(X)$$

• Product Rule:

$$f(X)g'(X) + f'(X)g(X) = \left(\sum_{n=0}^{\infty} a_n X^n\right) \cdot \left(\sum_{n=0}^{\infty} (n+1)b_{n+1} X^n\right) + \left(\sum_{n=0}^{\infty} (n+1)a_{n+1} X^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n X^n\right)$$

$$= \sum_{n=0}^{\infty} c_n X^n + \sum_{n=0}^{\infty} d_n X^n, \quad c_n = \sum_{i=0}^{n} (i+1)b_{i+1}a_{n-i}, d_n = \sum_{i=0}^{n} (i+1)a_{i+1}b_{n-i}$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} (i+1)b_{i+1}a_{n-i} X^n + \sum_{n=0}^{\infty} \sum_{i=0}^{n} (i+1)a_{i+1}b_{n-i} X^n = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} (i+1)b_{i+1}a_{n-i} + \sum_{i=0}^{n} (i+1)a_{i+1}b_{n-i}\right) X^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} (i+1)(b_{i+1}a_{n-i} + a_{i+1}b_{n-i})\right) X^n$$

• Chain Rule:

Proposition 2.2. Let f(X) be a power series which converges for all $|x| < \rho$, if |a| < 1 and $|b| < \rho$, then g(x) = f(ax + b) is given by a power series g(X) which converges for $|x| < \rho$.

3 Strassman's Theorem

Remark 3.1. Let $(R, +, \cdot)$ be a ring, $x, y \in R$, then we have $x^n - y^n = (x - y) \sum_{j=0}^{n-1} x^j y^{n-1-j}, \forall n \in \mathbb{N}_0$ *Proof.*, we use induction on n, Base case: n = 2, it's easy to see that

$$(x-y)\sum_{j=0}^{n-1} x^j y^{n-1-j} = (x-y)(x+y) = x^2 - y^2$$

Induction hypothesis: we assume for an arbitrary $n \ge 2$: $x^n - y^n = (x - y) \sum_{j=0}^{n-1} x^j y^{n-1-j}$, Induction step: consider

$$(x-y)\sum_{j=0}^{n} x^{j}y^{n-j} = (x-y)(y^{n} + y^{n-1}x + \dots + x^{n-1}y + x^{n})$$

1

$$= (x - y)(y(y^{n-1} + y^{n-2}x + \dots + yx^{n-2} + x^{n-1}) + x^n) = y\underbrace{(x - y)\sum_{j=0}^{n-1} x^j y^{n-1-j}}_{=x^n - y^n} + x^n(x - y)$$

$$= y(x^n - y^n) + x^n(x - y) = yx^n - y^{n+1} + x^{n+1} - yx^n = x^{n+1} - y^{n+1}.$$

Lemma 3.2. Let $f(X) \in \mathbb{Q}_p[[X]]$ be a non-zero power series which converges $\forall x \in \mathbb{Z}_p$, then $\exists N \in \mathbb{N}_0$ such that $|a_N| = \max_{n \in \mathbb{N}_0} |a_n|$ and $|a_n| < |a_N|$ $\forall n > N$

Proof. Since f(X) converges $\forall x \in \mathbb{Z}_p$, then we have

$$\forall x \in \mathbb{Z}_p : \lim_{n \to \infty} |a_n x^n| = 0 = \lim_{n \to \infty} |a_n| \cdot |x^n| \implies \lim_{n \to \infty} |a_n| = 0$$

Theorem 3.3 (Strassman). Let $f(X) \in \mathbb{Q}_p[[X]]$ and suppose we have $\lim_{n\to\infty} a_n = 0$, so that f(x) converges $\forall x \in \mathbb{Z}_p$. Define $N \in \mathbb{N}_0$ like in Lemma 2.2 then the function f has at most N zeros.

Proof. induction on N.

• Base case: if N = 0, then $|a_0| > |a_n|, \forall n \ge 1$, we want to show that there are no zeros: $f(x) \ne 0 \forall x \in \mathbb{Z}_p$, if we had f(x) = 0, then

$$0 = f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

$$\implies |a_0| = |a_1 x + a_2 x^2 + \cdots| \le \max_{n \ge 1} |a_n x^n| \le \max_{n \ge 1} |a_n|$$

But this contradicts the assumption that $|a_0| > |a_n|, \forall n \geq 1$, so there are no zeros in this case.

• Induction step: Suppose N was defined like before, and $\exists \alpha \in \mathbb{Z}_p : f(\alpha) = 0$, then we have for any $x \in \mathbb{Z}_p$

$$f(x) = f(x) - f(\alpha) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n \alpha^n = \sum_{n=0}^{\infty} a_n (x^n - \alpha^n) \stackrel{\text{2.1}}{=} (x - \alpha) \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_n x^j \alpha^{n-1-j}$$
$$= (x - \alpha) \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} c_{nj}, \quad c_{nj} := \begin{cases} a_n x^j \alpha^{n-1-j} & j < n, \\ 0 & j \ge n. \end{cases}$$

We can use prop 1.1 to change the order of the summation but first we have to show the conditions of the proposition:

- 1. $\forall n \in \mathbb{N}_0, \lim_{j \to \infty} c_{nj} = 0$: Clear, since we have $c_{nj} = 0, \forall j \geq n$.
- 2. $\lim_{n\to\infty} c_{nj} = 0$ uniformly in j: This is also easy to see, because we have $|a_n x^j \alpha^{n-1-j}| \le |a_n| \to 0$ unrelated to j.

So we can switch the sums and then we have

$$(x - \alpha) \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} c_{nj} = (x - \alpha) \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} c_{nj}$$

since $\forall j \geq n : c_{nj} = 0$, we need to only consider when n > j so its equal to

$$= (x - \alpha) \sum_{j=0}^{\infty} \sum_{n=j+1}^{\infty} a_n x^j \alpha^{n-1-j} = (x - \alpha) \sum_{j=0}^{\infty} x^j \sum_{n=0}^{\infty} a_{n+j+1} \alpha^n$$
=:b_i

$$=(x-\alpha)g(x), \quad g(x):=\sum_{j=0}^{\infty}b_jx^j$$

Now we check if g(X) fits the assumptions of the theorem, to use the induction steps. We need to show that g(X) is non zero and that $b_j \to 0$

- -g(X) is non zero: clear since if g(X) was the zero power series then f(X) would also be zero, which is a contradiction.
- $-b_j \to 0$: Consider $|b_j| = |\sum_{n=0}^{\infty} a_{n+j+1} \alpha^n| \le \max_n |a_{n+j+1} \alpha^n| \le \max_n |a_{n+j+1}| \xrightarrow{j \to \infty} 0$

Now we look for $\max_{j} |b_{j}|$, note that

$$|b_j| \le \max_n |a_{n+j+1}| \le |a_N|, \forall j$$

So we have

$$|b_{N-1}| = |a_N + a_{N+1}\alpha + a_{N+2}\alpha^2 + \dots| = |a_N|$$

Finnaly, if j > N - 1, then

$$|b_j| \le \max_k |a_{j+k+1}| \le \max_{j>N} |a_j| < |a_N|$$

So the index at which the maximum coefficient is reached b_n is N-1, if we assume that g(X) has at most N-1 zeros in \mathbb{Z}_p then f(X) has at most N zeros (g's zeros and α).

Corollary 3.4. Let $f(X) = \sum a_n x^n$ be a non-zero power series which converges on \mathbb{Z}_p , and let $\alpha_1, ..., \alpha_m \in \mathbb{Z}_p$ be the roots of f(X) in \mathbb{Z}_p , then there exists another power series g(X) which also converges on \mathbb{Z}_p but has no zeros in \mathbb{Z}_p , for which

$$f(X) = \left(\prod_{i=1}^{m} (X - \alpha_i)\right) g(X)$$

Proof. Clear from the proof of the theorem.

Corollary 3.5. Let $f(X) = \sum a_n x^n$ be a non-zero power series which converges on $p^m \mathbb{Z}_p$, for some $m \in \mathbb{Z}$. Then f(X) has a finite number of roots in $p^m \mathbb{Z}_p$.

Proof. Define

$$g(X) = f(p^m X) = \sum a_n p^{mn} X^n,$$

Since f(x) converges for $x \in p^m \mathbb{Z}_p$, $g(x) = f(p^m x)$ converges for $x \in \mathbb{Z}_p$, applying the theorem to g(X) gives the finiteness of its zeros.

Corollary 3.6. Let $f(X) = \sum a_n x^n$ and $g(X) = \sum b_n X^n$ be two p-adic power series which converge in a disc $p^m \mathbb{Z}_p$. If there exist infinitely many numbers $\alpha \in p^m Z_p$ such that $f(\alpha) = g(\alpha)$, then $a_n = b_n, \forall n \geq 0$

Proof. Define

$$h(X) = f(X) - g(X) = \sum (a_n - b_n)X^n$$

, then h(X) converges also on $p^m \mathbb{Z}_p$, by Corollary 2.5 h(X) has to have finitely many zeros, otherwise it must be the zero power series. Which means that

$$f(X) = g(X) \implies a_n = b_n \forall n \ge 0$$

Corollary 3.7. Let $f(X) = \sum a_n x^n$ be a p-adic power series which converges in some disc $p^m \mathbb{Z}_p$. If the function $p^m \mathbb{Z}_p \to \mathbb{Q}_p$, $x \mapsto f(x)$ is periodic, that is, $\exists \pi \in p^m \mathbb{Z}_p : f(x + \pi) = f(x), \forall \in p^m \mathbb{Z}_p$ then f(X) is constant

Proof. The series f(X) - f(0) has zeros at $n\pi$ for all $n \in \mathbb{Z}$, since $\pi \in p^m \mathbb{Z}_p$ implies $n\pi \in p^m \mathbb{Z}_p$, this gives infinitely many zeros, and hence the series f(X) - f(0) must be identically zero, i.e. f(X) must be constant. \square

Corollary 3.8. Let $f(X) = \sum a_n x^n$ be a p-adic power series which is entire, that is, f(x) converges $\forall x \in \mathbb{Q}_p$. Then f(X) has at most countably many zeros. Furthermore, if the set of zeros is not finite then the zeros form a sequence α_n with $|\alpha_n| \to \infty$.

Proof. This is clear, because the number of zeros in each bounded disk $p^m \mathbb{Z}_p$ is finite.

4 The p-adic Logarithm Function

Definition 4.1 (Formal power series for the logarithm).

$$\log(1+X) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{X^n}{n} = X - \frac{X^2}{2} + \frac{X^3}{3} \mp \dots \in \mathbb{Q}_p[[X]]$$

Since the coefficients are in \mathbb{Q} we can consider it as a power series with coefficients in \mathbb{Q}_p

Remark 4.2. We use log when referring to the formal power series, not the logarithm function itself.

Proposition 4.3. $\log(1+X)$ converges if and only if |x| < 1

Proof.

Definition 4.4. Let $U_1 = B(1,1) = \{x \in \mathbb{Z}_p : |x-1| < 1\} = 1 + p\mathbb{Z}_p$, we define the *p*-adic logarithm of $x \in U_1$ as:

$$\log_p(x) = \log(1 + (x - 1)) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x - 1)^n}{n}$$

In order to be able to call it a logarithm, it has to fill the usual logarithmic property:

Proposition 4.5. Let $a, b \in 1 + p\mathbb{Z}_p$, then we have

$$\log_p(ab) = \log_p(a) + \log_p(b)$$

Proof. Let $x, y \in p\mathbb{Z}_p$ such that a = 1 + x, b = 1 + y, and define for $x \in Z_p$

$$f(x) = \log_p(1+x) = \sum_{n \ge 1} (-1)^{n+1} \frac{x^n}{n}$$

5 Roots of Unity

Proposition 5.1. For $p \neq 2$ we have $\log_p(x) = 0 \iff x = 1$ and for p = 2, we have $\log_p(x) = 0 \iff x = \pm 1$.

Proof. We know that $\log_p(x)$ converges only for $x \in p\mathbb{Z}_p$, not in \mathbb{Z}_p , but we can do a change of variables like in Corollary 2.5

Proposition 5.2. Let $p \neq 2, x \in \mathbb{Q}_p$ and $x^p = 1$, then x = 1.

Proof.

Corollary 5.3. (Remark 4.5 in Talk 6) There are no p-th and hence no p^n -th roots of unity in \mathbb{Q}_p .

Proof.

Proposition 5.4. If $p = 2, x \in \mathbb{Q}_2$ and $x^4 = 1$ then $x = \pm 1$, which means that there are no fourth roots of unity in \mathbb{Q}_2

Proof.

Remark 5.5. We now summarize what we know so far about the roots of unity in \mathbb{Q}_p :

- If p=2, then the only roots of unity are ± 1
 - If $p \neq 2$, then \mathbb{Q}_p contains all the p-1-st roots of unity and none other. (their existence was shown in Talk 6)

References

[Gou] Fernando Q. Gouvêa: p-adic Numbers.