In [245]: import pandas as pd

In [246]: data=pd.read_csv("/home/placement/Desktop/csv/fiat500.csv")

In [247]: data.describe()

Out[247]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [248]: data.head()

Out[248]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

```
In [249]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):
                      Non-Null Count Dtype
    Column
     -----
    ID
                      1538 non-null
 0
                                      int64
    model
                                      object
                      1538 non-null
 2
    engine power
                      1538 non-null
                                      int64
 3
                      1538 non-null
                                      int64
     age in days
 4
    km
                      1538 non-null
                                      int64
 5
     previous_owners 1538 non-null
                                      int64
    lat
                      1538 non-null
                                     float64
 7
    lon
                      1538 non-null
                                     float64
                                      int64
     price
                      1538 non-null
dtypes: float64(2), int64(6), object(1)
memory usage: 108.3+ KB
```

Out[250]:

	model	engine_power	age_in_days	km	previous_owners	price
	0 lounge	51	882	25000	1	8900
	1 pop	51	1186	32500	1	8800
	2 sport	74	4658	142228	1	4200
	3 lounge	51	2739	160000	1	6000
	4 pop	73	3074	106880	1	5700
						
15	33 sport	51	3712	115280	1	5200
15	34 lounge	74	3835	112000	1	4600
15	35 pop	51	2223	60457	1	7500
15	36 lounge	51	2557	80750	1	5990
15	37 pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [251]: data1.shape

Out[251]: (1538, 6)

In [252]: data1=pd.get_dummies(data1)
 data1

Out[252]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [253]: data1.shape
Out[253]: (1538, 8)
In [254]: y=data1['price']
x=data1.drop(['price'],axis=1)
```

```
In [255]: y
Out[255]: 0
                    8900
                    8800
                    4200
           2
           3
                   6000
           4
                    5700
                    . . .
           1533
                   5200
           1534
                   4600
           1535
                   7500
           1536
                   5990
           1537
                   7900
           Name: price, Length: 1538, dtype: int64
In [256]: from sklearn.model selection import train test split
           x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
In [257]: x test.shape
Out[257]: (508, 7)
In [258]: x train.head(5)
Out[258]:
                engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                         51
                                   425
                                      13111
            527
                                                         1
                                                                     1
                                                                               0
                                                                                          0
            129
                         51
                                  1127 21400
                                                         1
                                                                     1
                                                                               0
                                                                                          0
            602
                         51
                                  2039
                                       57039
                                                         1
                                                                     0
                                                                               1
                                                                                          0
                                                         1
            331
                         51
                                  1155 40700
                                                                     1
                                                                               0
                                                                                          0
                                   425 16783
            323
                         51
                                                         1
                                                                     1
                                                                               0
                                                                                          0
```

```
In [259]: y_test.head(5)
Out[259]: 481
                  7900
          76
                  7900
          1502
                  9400
          669
                  8500
          1409
                  9700
          Name: price, dtype: int64
In [260]: y_train.head(5)
Out[260]: 527
                 9990
          129
                 9500
          602
                 7590
          331
                 8750
          323
                 9100
          Name: price, dtype: int64
```

```
In [261]: | from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
          ridge = Ridge()
          parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y_train)
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=5.56109e-26): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.70876e-26): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=6.91585e-23): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.08003e-23): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.01022e-23): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.57959e-23): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.24161e-23): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=6.92759e-21): result may not be accurate.
            return linalq.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.09091e-21): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
```

```
Ill-conditioned matrix (rcond=7.02112e-21): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.57414e-21): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.23284e-21): result may not be accurate.
            return linalq.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=6.9277e-17): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.09099e-17): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.02123e-17): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.57407e-17): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
          /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning:
          Ill-conditioned matrix (rcond=7.23274e-17): result may not be accurate.
            return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
Out[261]:
             GridSearchCV
           ▶ estimator: Ridge
                 ▶ Ridge
In [262]: ridge_regressor.best_params_
Out[262]: {'alpha': 30}
In [263]: ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
          y pred ridge=ridge.predict(x train)
```

In [264]: from sklearn.metrics import r2_score

r2_score(y_test,ypred)

Out[264]: 0.8415526986865394

In [265]: from sklearn.metrics import mean_squared_error
Ridge_error=mean_squared_error(ypred,y_test)

Ridge error

Out[265]: 581887.727391353

```
In [266]: results=pd.DataFrame(columns=['Actual','predicted'])
    results['Actual']=y_test
    results['predicted']=ypred
    results=results.reset_index()
    results['ID']=results.index
    results.head(15)
```

Out[266]:

	index	Actual	predicted	ID
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9
10	1088	9890	10434.349636	10
11	576	7990	7732.262557	11
12	965	7380	7698.672401	12
13	1488	6800	6565.952404	13
14	1432	8900	9662.901035	14

In [272]: data=data.loc[(data.model=='lounge')]
 data

Out[272]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
11	12	lounge	51	366	17500	1	45.069679	7.704920	10990
1528	1529	lounge	51	2861	126000	1	43.841980	10.515310	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.361120	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.994500	10800
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990

1094 rows × 9 columns

```
In [270]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID' ,y='Actual' ,data=results.head(50))
sns.lineplot(x='ID' ,y='predicted' ,data=results.head(50))
```

Out[270]: <Axes: xlabel='ID', ylabel='Actual'>

In []:	
In [1:	