

单元3.3 基本的集合恒等式

第六章 集合代数

6.4 集合恒等式

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

内容提要

- (1)集合恒等式
 - -13组最基本的集合恒等式
- (2) 半形式化方法
 - 推导集合等式和包含式

集合恒等式(①~④)

设E是全集,A,B,C为E的任意子集。

- ① 幂等律 A∪A=A, A∩A=A
- ② 交換律 AUB=BUA, AMB=BMA
- ③ 结合律 (AUB)UC = AU(BUC)

 $(A \cap B) \cap C = A \cap (B \cap C)$

④ 分配律 A∪(B∩C) = (A∩B)∩(A∪C)

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

集合恒等式(5~6)

⑤ 德•摩根律

$$^{\sim}(A \cap B) = ^{\sim}A \cup ^{\sim}B$$

$$E-(A\cap B) = (E-A)\cup (E-B)$$

⑥ 吸收律 A∪(A∩B) = A, A∩(A∪B) = A

基本的等值式(⑦~(13))

⑦ 零律
$$A \cup E = E$$
, $A \cap \emptyset = \emptyset$

⑧ 同一律
$$A \cup \emptyset = A$$
, $A \cap E = A$

由定义证明下面的恒等式:

(1) 分配律: A∪(B∩C) = (A∪B)∩(A∪C)

(2) 零律: A∩∅ = ∅

(3) 排中律: A∪~A = E

分配律的证明

(1) 对于任意的x,

 $x \in A \cup (B \cap C)$

- $\Leftrightarrow x \in A \lor x \in (B \cap C)$
- $\Leftrightarrow x \in A \lor (x \in B \land x \in C)$
- **⇔ (x∈A∨x∈B)∧(x∈A∨x∈C) (命题逻辑分配律)**
- $\Leftrightarrow x \in (A \cup B) \land x \in (A \cup C) \Leftrightarrow x \in (A \cup B) \cap (A \cup C),$
- 因而,A∪(B∩C)=(A∪B)∩(A∪C)。 □

零律的证明

(2) 对于任意的x,

$$x \in A \cap \emptyset$$

$$\Leftrightarrow x \in A \land x \in \emptyset$$

$$\Leftrightarrow x \in A \land 0$$

 \Leftrightarrow 0

(命题逻辑零律)

$$\Leftrightarrow x \in \emptyset$$
,

排中律的证明

(3) 对于任意的x,

 $x \in A \cup ^{\sim} A$

 $\Leftrightarrow x \in A \lor x \in A$

 $\Leftrightarrow x \in A \lor x \notin A$

 $\Leftrightarrow x \in A \lor \neg (x \in A)$

⇔1 (命题逻辑排中律)

⇔ x ∈ E, 因而, A ∪ ~ A = E。 □

差集的性质

集合差集运算具有下列性质:

$$(1)A - B = A - (A \cap B);$$

(2)
$$A - B = A \cap \sim B$$
 (补交转换律)

(3)
$$A \cup (B - A) = A \cup B$$
;

(4)
$$A \cap (B - C) = (A \cap B) - C$$

石纯一等,《数理逻辑与集合论》第二版,清华大学出版社,第9.5节

差集的性质

证 (1): $A - B = A - (A \cap B)$;

$$\forall x, x \in A - (A \cap B) \Leftrightarrow x \in A \land \neg (x \in A \cap B)$$

$$\Leftrightarrow x \in A \land \neg (x \in A \land x \in B)$$

$$\Leftrightarrow x \in A \land (x \notin A \lor x \notin B)$$

$$\Leftrightarrow (x \in A \land x \notin A) \lor (x \in A \land x \notin B)$$

$$\Leftrightarrow x \in A - B$$

对称差的性质

集合对称差运算具有下列性质:

(1)交换律: $A \oplus B = B \oplus A$;

(2)结合律: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(3)分配律: $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$;

(4)同一律: $A \oplus \emptyset = A$

(5)零律: $A \oplus A = \emptyset$

 $(6) \qquad A \oplus (A \oplus B) = B$

对称差的性质

证明(3)分配律: $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$;

```
A \cap (B \oplus C)
=A \cap ((B - C) \cup (C - B))
=A \cap ((B \cap \sim C) \cup (C \cap \sim B))
=(A \cap B \cap \sim C) \cup (A \cap C \cap \sim B)
=(A \cap B \cap \sim C) \cup (A \cap B \cap \sim A) \cup (A \cap C \cap \sim B) \cup (A \cap C \cap \sim A)
=((A \cap B) \cap (\sim C \cup \sim A)) \cup ((A \cap C) \cap (\sim B \cup \sim A))
=((A \cap B) \cup \sim (A \cap C)) \cup ((A \cap C) \cup \sim (A \cap B))
=(A \cap B) \oplus (A \cap C)
```

子集的性质

集合间的⊆具有下列性质:

(1)
$$A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C)$$
;

$$(2)A \subseteq B \Rightarrow (A \cap C) \subseteq (B \cap C)$$

$$(3)(A \subseteq B) \land (C \subseteq D) \Rightarrow (A \cup C) \subseteq (B \cup D);$$

$$(4)(A \subseteq B) \land (C \subseteq D) \Rightarrow (A \cap C) \subseteq (B \cap D);$$

$$(5)(A \subseteq B) \land (C \subseteq D) \Rightarrow (A - C) \subseteq (B - D);$$

(6)
$$C \subseteq D \Rightarrow (A - D) \subseteq (A - C)$$

证明: $(A \cup B) = B \Leftrightarrow A \subseteq B \Leftrightarrow (A \cap B) = A \Leftrightarrow A - B = \emptyset$

设命题1: $(A \cup B) = B$, 命题2: $A \subseteq B$, 命题3:

 $(A \cap B) = A$,命题4: $A - B = \emptyset$

1⇒2:已知 $(A \cup B) = B$,任取x,

 $x \in A \Rightarrow x \in A \lor x \in B \Leftrightarrow x \in A \cup B \Leftrightarrow x \in B$ 所以 $A \subseteq B$ 。

2 ⇒ 3: 己知 $A \subseteq B$,则 $\forall x, x \in A \Rightarrow x \in B$ $x \in A \cap B \Leftrightarrow x \in A \land x \in B \Leftrightarrow x \in A$,

 $x \in A \Leftrightarrow x \in A \land x \in A \Rightarrow x \in A \land x \in B \Leftrightarrow x \in A \cap B.$ 所以 $(A \cap B) = A$ 。

3
$$\Rightarrow$$
 4: 已知 $(A \cap B) = A$,
 $A - B = A \cap \sim B = (A \cap B) \cap \sim B = A \cap (B \cap \sim B)$
 $= \emptyset$

$$4 \Rightarrow 1$$
: 已知 $A - B = \emptyset$, $A \cup B = B \cup A = B \cup (A - B) = B \cup \emptyset = B$ 其中, $B \cup A = B \cup (A - B)$ 见差集运算性质(3)。

已知 $A \cup B = A \cup C$, $A \cap B = A \cap C$, 证明B=C。证明1:

$$B = B \cap (A \cup B) = B \cap (A \cup C)$$

$$= (B \cap A) \cup (B \cap C)$$

$$= (A \cap C) \cup (B \cap C) = (A \cup B) \cap C$$

$$= (A \cup C) \cap C = C$$

证明2: 反证法。请同学自己尝试。

幂集的性质

集合幂集运算具有下列性质:

- 1) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$;
- 2) $A=B \Leftrightarrow P(A)=P(B)$;
- 3) $P(A) \in P(B) \Rightarrow A \in B$;
- 4) $P(A) \cap P(B) = P(A \cap B)$;
- 5) $P(A) \cup P(B) \subseteq P(A \cup B)$;
- 6) $P(A-B) \subseteq (P(A)-P(B)) \cup \{\emptyset\}$

幂集性质(1)的证明

(1) 先证必要性。

对于任意的x,

$$x \in P(A)$$

 $\Leftrightarrow x \subseteq A$

$$\Rightarrow x \subseteq B \quad (A \subseteq B)$$

 $\Leftrightarrow x \in P(B)$,

故有 P(A)⊆P(B)。

再证充分性。

对于任意的y,

y∈A

$$\Leftrightarrow \{y\} \in P(A)$$

$$\Rightarrow \{y\} \in P(B) (P(A) \subseteq P(B))$$

 \Leftrightarrow y \in B

所以,A⊆B。

幂集性质(6)的证明

对于任意的集合x,

若 $x=\emptyset$, $x\in P(A)\cup P(B)$ 且 $x\in (P(A)-P(B))\cup \{\emptyset\}$ 。若 $x\neq\emptyset$, $x\in P(A-B)$

 $\Leftrightarrow x \subseteq A - B \Rightarrow x \subseteq A \land x \not\subseteq B$

 $\Leftrightarrow x \in P(A) \land x \notin P(B)$

 $\Leftrightarrow x \in (P(A)-P(B))$

综上所述,可知 P(A-B) ⊆ (P(A)-P(B))∪{∅}。

小结

- (1)集合恒等式
 - -13组最基本的集合恒等式
- (2) 半形式化方法
 - 推导集合等式和包含式