INTEL MCS-80

MICROCOMPUTER WORKSHOP

-STUDENT STUDY GUIDE-

PREFACE

THIS STUDENT STUDY GUIDE IS FOR PARTICIPANTS IN THE MCS-80 MICROCOMPUTER WORKSHOP.

THE GUIDE CONSISTS OF THE FOLLOWING SECTIONS:

SECTION I - INTRODUCTION

OBJECTIVES, MATERIALS LIST

SECTION II - VISUALS

A COPY OF ALL VISUAL AIDS

SECTION III - EXERCISES AND LABORATORY PROJECTS

SECTION IV - REFERENCE MATERIALS

APPENDICES AND MISCELLANEOUS ITEMS

SECTION II

VISUALS

CONTENTS

TITLE		PAGE #
Part I	System Introduction	2-1
Part II	Assembly Language Instructions	2 - 9
	A. •INR/DCR •HLT •MOV •IN/OUT •LXI,MVI •JMP •ORG •END	
	B. •ADD •CARRY •SUBTRACT •ROTATE •LOGICALS •DEFINE STORAGE	
Part III	Microcomputer Development System	2-29
	A. Monitor	
	B. Editor	
	C. Assembler	
Part IV	Basic Hardware	2 - 41
Part V	Assembly Language Instructions	2 - 5 3
	A. •CALL/RET •DB •PUSH/POP	
	B. •RST •STAX •DAA/DAD •STA,SHLD •XCHG/XTHL •DW	
	C. Macros	
Part VI	Peripherals and Design	2 - 79
	A. 8224 E. 8251	
	B. 8228 F. 8214	
	C. MEMORY G. 8257	
	D. 8255	
Part VII	ICE 80	2-109

2 0

PART I

SYSTEM INTRODUCTION

" NOTES "

--- FUNCTIONAL SECTIONS ---

PROGRAMS ADDRESS STACK DATA

• OPERATIONS DECISIONS

• EXTERNAL COMMUNICATION

PROGRAM COUNTER

TYPICAL MEMORY LAYOUT

MACHINE INSTRUCTIONS

TYPES:

- REGISTER
- ARITHMETIC
- · LOGICAL

- INPUT/OUTPUT
- CONTROL

INSTRUCTIONS MAY BE ONE, TWO OR THREE BYTES LONG.

EXAMPLES:

MOV C,A

MOV C,A

ADI 7

ADI 7

JMP 4296H

JMP.	
96	
42	

EXECUTION SEQUENCE

PROGRAM SEGMENT

1 - INPUT VALUE

2 - ADD SEVEN

3 - OUTPUT VALUE

STEP NUMBER

1A,B,C,D IN 4

2A,B,C

ADI 7

3A,B,C,D OUT 2

" NOTES "

PART II

ASSEMBLY LANGUAGE INSTRUCTION

NUMBER SYSTEMS

• DECIMAL (10 digits, Ø thru 9)

$$109_{10}$$
 MAY BE REPRESENTED AS:
$$(1x10^2) + (0x10^1) + (9x10^0)$$

$$100 + \emptyset + 9 = 109_{10}$$

• BINARY (2 DIGITS, Ø AND 1)

01101101₂ MAY BE REPRESENTED AS:

$$(0x2^{7})+(1x2^{6})+(1x2^{5})+(0x2^{4})+(1x2^{3})+(1x2^{2})+(0x2^{1})+(1x2^{0})$$

$$0 + 64 + 32 + 0 + 8 + 4 + 0 + 1$$

THUS, $109_{10} = 01101101_2$

HEXADECTIMAL SYSTEM

• 16 DIGITS, Ø THRU F

20 210110, 2 111110			
	HEX	BINARY	DECIMAL
	0	0000	0
	1	0001	1
	2	0010	2
	3	0011	3
15B3H MAY BE REPRESENTED AS:	4	0100	4
7 0	5	0101	5
$(1x16^3) + (5x16^2) + (Bx16^1) + (3x16^0)$	6	0110	6
	7	0111	7
4096 + 1230 + 176 + 3	8	1000	8
	9	1001	9
15B3H = 5555 ₁₀	Α	1010	10
10	В	1011	11
	C	1100	12
	D	1101	13
	Ε	1110	14
	F	1111	15

LANGUAGES

PROBLEM:

SELECT THE LARGER OF TWO NUMBERS STORED IN MEMORY AND STORE IT IN A THIRD LOCATION

MACHINE	CODE	ASSEMBL	.Y	PL/M
3A FF 01 21 D3 00 BE DA 43 01 7E 32 88 01	GO:	LDA LXI CMP JC MOV STA	Y H,X M GO A,M Z	IF X > Y THEN Z = X; ELSE Z = Y;

IN 3

III 3 MOV 11,A

LXI H,100H IN 3 MOV M,A

LXI H,100H
IN 3
MOV M,A
INX H

LXI H, 100H LOOP: IN 3 MOV M,A INX H JMP LOOP MVI B,OAH
LXI H,100H
LOOP: IN 3
MOV M,A
INX H
DCR B
JNZ LOOP

ОН ORG MVI B,OAH Н,100Н LXI L00P: IN 3 M,A MOV INX Н DCR В LOOP JNZ HLT END OH

ADRS	HEX	MNEMONIC
00	06	[1V]
	OA	
02	21	LXI
	00	
	91	
05	DB	IM
	03	
07	77	MOV
30	23	INX
09	95	DCR
AO	C2	JNZ
	05	
	00	
OD	76	HLT

REVIEW		8080 assembly language PROGRAMMING MANUAL PAGE NUMBER
IN / OUT	PORT #	38
MOV	DESTINATION , SOURCE	16
LXI	DESTINATION , 16 BIT VALUE	26
MVI	DESTINATION , 8 BIT VALUE	26
INR / DCR	8 BIT REGISTER	<u>1</u> 5
INX / DCX	16 BIT REGISTER	24
JMP	UNCONDITIONAL	32
JNZ / JZ	ZERO	32
JNC / JC	CARRY	32
JPO / JPE	PARITY	33
JP / JM	SIGN	33
HLT	HALT	39
ORG	BEGIN ASSEMBLY	39
END	STOP ASSEMBLY	41

" NOTES "

PROBLEM

	ORG MVI LXI	100H B,OAH H,BUFR
L00P:	IN	3
	MOV	C,A
	IN	4
	ADD	С
	MOV	$M_{A}A$
	INX	Н
	DCR	В
	JNZ	L00P
	HLT	
BUFR:	DS	10
	END	100H

ARITHMETICS

ADD
$$A \leftarrow -- A + R$$

ADC $A \leftarrow -- A + R + CARRY$

SUB $A \leftarrow -- A + \overline{R} + 1$

SBB $A \leftarrow --- A + (\overline{R + CARRY}) + 1$

8080 SUBTRACT OPERATION

-1101 0011

Complement ≥

1 +D3

 $\overline{R} = 1000 \ 1001$ (ones complement)

-1000 1010 (TWOS COMPLEMENT)

PROBLEM

	ORG	100H
	MVI	B,OAH
	LXI	H,BUFR
L00P:	ΙN	3
	MOV	C,A
EQUAL:	IN	4
	CMP	C
_	JZ	EQUAL
	ADD	С
	MOV	M٫A
	INX	H
	DCR	В
	JNZ	LOOP
	HLT	
BUFR:	DS	10
	END	100H

COMPARE

FLAGS SET BY THE RESULT OF A-R

	CARRY	ZERO
R < A	0	0
R = A	0	1
R > A	1	0

LOGICALS

A <--- A <operator> R

	ORA	ANA	XRA
ACCUMULATOR "OTHER ONE"		0011	
	0111	0001	0110

RESULT IN ACCUMULATOR

WAIT IF BIT 3 = 0

WAIT: IN 5 ANI 8 JZ WAIT

MISCELLANEOUS

ORA A CARRY <--- 0

XRA A CARRY <--- 0

ZERO <--- 1

SIGN <--- 0

PARITY <--- 1

ACCUMULATOR <--- 0

CMA A \leftarrow \overline{A} STC CARRY \leftarrow \overline{A} CMC CARRY \leftarrow \overline{CARRY}

 $R\ L\ C$

R R C

RAL

R A R

WAIT: IN 5
RRC
JNC WAIT

SHIFT LEFT

MVI B,3

SHFT: ORA A

RAL

DCR B

JNZ SHFT

REVIEW		8080 ASSESSAD LINES PROCRAMNING MAND. PAGE NUMBER
ADD / ADI	ADD	17 / 27
ADC / ACI	ADD WITH CARRY	18 / 27
SUB / SUI	SUBTRACT	18 / 27
SBB / SBI	SUBTRACT WITH BORROW	19 / 28
CMP / CPI	COMPARE	20 / 29
ORA / ORI	LOGICAL OR	20 / 29
ANA / ANI	LOGICAL AND	19 / 28
XRA / XRI	LOGICAL EXCLUSIVE OR	19 / 29
CMA	COMPLEMENT ACCUMULATOR	15
STC	SET CARRY	14
CMC	COMPLEMENT CARRY	14
RLC / RRC	ROTATE ACCUMULATOR	21
RAL / RAR	ROTATE ACCUMULATOR & CARRY	22

START DEVICE AND WAIT FOR COMPLETION

PROGRAM EXECUTION

START DEVICE WAIT LOOP

INTERRUPT INPUT / OUTPUT

START DEVICE AND CONTINUE PROGRAM EXECUTION

PROGRAM EXECUTION

DIRECT MEMORY ACCESS INPUT / OUTPUT

START DEVICE AND HARDWARE I/O PROCESSOR AND CONTINUE PROGRAM EXECUTION

C P U OVERHEAD

(ASSUME 100 TRANSFER PER SECOND DEVICE)

PROGRAMMED	INTERRUPT	DMA
100 %	1 %	0.01 %
WAIT FOR TRANSFERS	100 MICROSECOND SERVICE ROUTINE	1 MEMORY CYCLE PER TRANSFER
1 second	1/100 second	NEGLIGIBLE
FOR	FOR	FOR
100 CHARACTERS	100 characters	100 CHARACTERS

COMMAND

STATUS

DATA

TAPE READER I/O PORT ASSIGNMENT

INPUT PORTS F9 (STATUS) 7 0 1 = DONE F8 (DATA) 7 0 UTPUT PORT F9 (COMMAND) 1 = START 7 3 0

TIME IN USEC		•		
3.5	L00P:	VIV I	A,08H	; DEVICE START
5		OUT	F9	; COMMAND
5	WAIT:	IN	F9	; GET STATUS
2		ANI	1H	; ISOLATE BIT 0
5		JZ	WAIT	; IS BIT O SET?
5		IN	F8	; YES - GET DATA
3.5	¥	VOM	M,A	; STORE IN MEMORY
2.5		INX	Н	; UPDATE ADDRESS
2.5		DCR	В	; UPDATE COUNTER
5		JNZ	LOOP	; MORE TO GO?
39.0		•		

8080 PTR INTERFACE

" NOTES "

_

PART III

MICROCOMPUTER DEVELOPMENT SYSTEM

INTELLEC MDS

- SYSTEM DEVELOPMENT (SOFTWARE & HARDWARE)
- DOS or PTS
- CHIP EMULATION
- EXPANDABLE MEMORY & I/O
- CONTROL PROGRAM (MONITOR)
- RAM RESIDENT MACRO ASSEMBLER
- TEXT EDITOR

INTELLEC MEMORY LAYOUT

• SPACE FOR E4K MEMORY (RAM OR ROM)

SYSTEM MONITOR

- UTILITY / DEBUG PROGRAM
- ROM RESIDENT
- USES RAM LOCATIONS 0 6

318 LOCATIONS AT TOP OF LAST CONTIGUOUS RAM

- COMMUNICATIONS VIA TELETYPE / CRT
- SUPPORTS MANY PERIPHERALS

MONITOR COMMANDS

CARRIAGE RETURN

ASSIGN I/O DEVICE

ALDEV=PDEV

AR=P 2

• TRANSFER CONTROL

GADDRESS

G10 🕽

READ HEX TAPE

RBIAS ADDRESS

RO 2

DISPLAY AND MODIFY MEMORY

SADDRESS SP XX- SP XX-ZZ SP XX-

contents type in displayed new contents

\$10 2F- 48-C3 FF-2

TEXT EDITOR

- CREATE SOURCE TAPES
- CORRECT SOURCE TAPES
- AUTOMATIC SPACE COMPRESSION

MEMORY MAP

COMMAND FORMAT

•	PROMPT	SYMBOL	IS	ΑH	ASTERISK	
---	--------	--------	----	----	----------	--

• TERMINATED BY TWO CONTROL CHARACTERS

OR

\$\$ PRINTED AS ACKNOWLEDGMENT

CANCELS A COMMAND

RUB

OR

CANCELS A CHARACTER

TEXT INPUT

• I {TEXT} \$\$

AUTOMATIC LINEFEED AFTER CARRIAGE RETURN

1

TABS TO EVERY EIGHTH COLUMN

FROM KEYBOARD

• A\$\$

APPEND PAPER TAPE TO WORKSPACE

FROM TAPE

WORKSPACE FORMAT

- LINE BY LINE BASIS
- (LF) DEFINES A LINE

BUFFER (WORKSPACE) POINTER

- POSITION LOCATOR
- POINTS BETWEEN CHARACTERS
- COMMANDS

B - BEGINNING OF WORKSPACE

Z - END OF WORKSPACE

NC - + N CHARACTERS

 $NL - \pm N$ LINES ($\emptyset L$ IS BEGINNING OF LINE)

\$\$

	ORG	10H	PROGRAM IN WORKSPACE
START:	IN	3	
	OUT	4	
	JMP	START	1 - CHANGE IN 3 TO IN 4
	END	10H	2 - ADD CMA AFTER IN 3

 $torgt10H_{rf}^{c1}START:tINt3_{rf}^{c1}touTt4_{rf}^{c1}t$ B\$\$ 1) FINt3\$\$ 2) ${\tt JMPtSTART}_{\tt rf}^{\tt c1}{\tt tENDt10H}_{\tt rf}^{\tt c1}$ tORGt10Hc1sTART:tINtrftOUTt4c1tJ -D\$\$ 3) $\mathsf{MPtSTART}^{c1}_{rf}\mathsf{tENDt10H}^{c1}_{rf}$ $\texttt{tORGt10H}_{\texttt{rf}}^{\texttt{c1}} \texttt{START:tINt4}_{\texttt{rf}}^{\texttt{c1}} \texttt{tOUTt4}_{\texttt{rf}}^{\texttt{c1}} \texttt{t}$ I4\$\$ 4) 2C\$\$ 5) ${\tt JMPtSTART}_{\tt rf}^{\tt c1}{\tt tENDt10H}_{\tt rf}^{\tt c1}$ tORGt10H_{rf}^{c1}START:tINt4_{rf}^{c1}tCMA_{rf}^{c1}tOU ItCMA_r 6)

 $\mathsf{Tt4}^{c1}_{rf}\mathsf{tJMPtSTART}^{c1}_{rf}\mathsf{tENDt10H}^{c1}_{rf}$

B\$\$ STEP 1 S3\$4\$\$ STEPS 2,3,4 $LItCMA_r^c$ \$\$ STEPS 5,6

BS3\$4\$LI tCMA^c\$\$ steps 1,2,3,4,5 & 6

JUST A BIT MORE

• DELETE A LINE

F {TEXT} \$\$

ØL\$\$

K\$\$

- TO CHECK POSITION OF THE BUFFER POINTER

 NT\$\$ TYPE ± N LINES
 BUFFER POINTER NOT MOVED!
- PUNCH A COPY OF THE WORKSPACE

 N\$\$
 E\$\$

MACRO ASSEMBLER

A PROGRAM WHICH CONVERTS ASSEMBLY LANGUAGE TO BINARY CODE AND CHECKS FOR CERTAIN TYPES OF PROGRAMMER ERRORS.

TAPE FORMATS

ASSEMBLER OPERATION

SYMBOL TABLE

ASSEMBLED (CREATED) FROM LABELS AND EQUATE STATEMENTS DURING PASS 1.

TYPICAL LISTING

LOC	CONTENTS	LABEL	CODE	OPERAND
A000		NUM	EQU	OAH
0000			ORG	0
0000	060A		IVM	B, NUM
0002	210001		LXI	H,100H
0005	DB03	L00P:	Iil	3
0007	77		MOV	M,A
0008	23		INX	Н
0009	05		DCR	В
000A	C20500		JNZ	L00P
000D	76		HLT	
000D	, -		END	0

CORRESPONDING	SAMBOT	TABLE
C 14 LPA	0004	
NUM	A000	
1.00P	0005	

FOUR FIELDS 1 OR MORE SPACES

IS THE DELIMITER

LABEL	CODE	OPERAND	COMMENT
BEGIN:	ORG IN MOV IN ADD OUT JMP	10H 4 B,A 5 B 4 BEGIN	; START ASSEMBLER ; READ DATA INTO A ; MOVE TO B ; READ DATA INTO A ; ADD B TO A ; WRITE DATA PORT 4 ; DO FOREVER
	END	10H	; STOP ASSEMBLER

LABEL - 1 TO 5 CHARACTERS; FIRST CHARACTER IS ALPHABETIC OR 0 OR ?

TERMINATED BY COLON. CANNOT BE AN INSTRUCTION MNEMONIC OR REGISTER NAME.

CODE - INSTRUCTION OR PSEUDO-INSTRUCTION MNEMONIC

OPERAND - NONE, 1 OR 2 ITEMS (TWO ITEMS SEPERATED BY A COMMA) REGISTERS , IMMEDIATE DATA OR ADDRESSES

COMMENT - BEGINS WITH SEMICOLON

PART IV

BASIC HARDWARE

" NOTES "

2 - 43

8080 SYSTEM

BASIC 8080 TIMING

EACH MACHINE CYCLE PERFORMS 1 OR 10 DIFFERENT FUNCTIONS:

- 1. FETCH (M1)
- 2. MEMORY READ
- 3. MEHORY WRITE
- 4. STACK READ
- 5. STACK WRITE
- 6. IMPUT
- 7. OUTPUT
- 8. INTERRUPT
- 9. HALT
- 10. HALT-INTERRUPT

STATE (CLOCK PERIOD) DESCRIPTION

- T1 ADDRESS BUS <--- MEMORY ADDRESS OR I/O PORT # DATA BUS <--- STATUS INFORMATION
- T2 READY AND HOLD INPUTS SAMPLED CHECK FOR HALT INSTRUCTION
- T3 DATA BUS ←-- DATA FROM MEMORY OR INPUT PORT

 DATA BUS ←-- DATA FROM CPU FOR MEMORY OF

 OUPUT PORT
- T4 JUSED FOR INTERNAL PROCESSOR OPERATIONS IF NEEDED
 T5 Justin 1988 Justin 1988

Relation between READY, WAIT and WR

HOLD OPERATION (READ MODE)

HOLD Operation (Write mode)

CLOCK PERIOD

480 NSEC < T_{CY} < 2 USEC

CLOCK RISE & FALL TIME

5 NSEC < T_R , T_F < 50 NSEC

 t_{D1} MIN 0 NSEC

t_{Ø1} 60 NSEC MINIMUM

 ${\rm t_{D2}}$ MIN 70 NSEC

t_{Ø2} 220 NSEC MINIMUM

t_{D3} MIN 80 NSEC

ADDRESS

 T_{DA} = address output delay from \emptyset_2 , maximum of 200 nsec

 T_{DH} = data hold time from \emptyset_2 during dbin, minimum is T_{DF} (25 - 140 nsec) T_{DS1} = data setup time during \emptyset_1 and dbin, minimum is 30 nsec T_{DS2} = data setup time during \emptyset_2 and dbin, minimum is 150 nsec

CONTROL

 $T_{
m DC}$ = control signal output delay from \emptyset_1 or \emptyset_2 , 120 NSEC MAXIMUM

" NOTES "

PART V

ASSEMBLY LANGUAGE INSTRUCTIONS

SUBROUTIAES

SECTIONS OF A PROGRAM THAT ARE CALLED AND RETURNED FROM

• PC + 3 SAVED AS THE RETURN ADDRESS

THE 8080 STACK

- IMPLEMENTED FOR SUBROUTINE RETURN ADDRESSES
- ADDRESSED BY THE SP REGISTER WITH INITIAL LOCATION SET BY THE USER

LXI SP,1FCOH

(SPHL)

- CALL WRITES THE RETURN ADDRESS INTO THE STACK
- RET READS THE RETURN ADDRESS FROM THE STACK

- PUSH WRITES
- POP READS
- BITS (15 THRU 8) AT (SP) 1
- BITS (7 THRU 0) AT (SP) 2
- SP AUTOMATICALLY ADJUSTED

TEMPORARY REGISTER SAVIIIG

; SUBROUTINE UTILIZES II, L, AND A.

SUBX: PUSII H

; SÂVE HL

; RESTORE HL

PUSII PSW

; SAVE A, FLAGS

LXI H, BUF1

IN 1

MOV M.A

POP PSW

; RESTORE A,FLAGS

POP II

RET

PARAMETER PASSING

REGISTERS

BYTE	ADDRESS
Α	HL
В .	DE
С	BC `
D	
Ε	
н	
L	

- STACK
- VARIABLE MEMORY

TTY SERIAL BIT STREAM

10 CHARACTERS / SECOND
11 BITS / CHARACTER

TTY INTERFACE <TRANSMIT >

TELETYPE OUTPUT SUBROUTINE

(ASSUME TTY CONNECTED TO PORT 2 BIT 0)

```
; THIS SUBROUTINE ENTERED WITH CHARACTER TO BE OUTPUT IN THE C REGISTER
TYOUT: MVI
                B,11
                        ; SET COUNTER FOR 11 BITS
        MOV
                A,C
                        ; CHARACTER TO ACCUMULATOR
        ORA
                        ; CLEAR CARRY - FOR START BIT
        RAL
                        ; MOVE CARRY TO A(O)
MORE:
        OUT
                        ; SEND TO TTY
        CALL
                DELAY
                        ; KILL TIME
        RAR
                        ; POSITION NEXT BIT
        STC
                        ; SET CARRY - FOR STOP BITS
        DCR
                        ; DECREMENT BIT COUNTER
        JNZ
                MORE
                        ; DONE ?
        RET
                        ; YES
; 9 MSEC DELAY ( ASSUME NO WAIT STATES )
DELAY: MVI
                D,6
DLO:
        MVI
                E,200
DL1:
        DCR
                Ε
                        ; 1.5 MSEC
        JNZ
                DL1
                        ; INNER LOOP
        DCR
                D
        JNZ
                DLO
        RET
```

MESSAGE OUTPUT ROUTINE

MEMORY CONTENTS AFTER ASSEMBLING ABOVE

REVIEW

8080 Assembly Language PROGRAMMING MANUAL PAGE NUMBER

CALL	UNCONDITIONAL	34
CNZ, CNC, CPO, CP CZ, CC, CPE, CM	ZERO, CARRY, PARITY, SIGN	34 / 35
RET	UNCONDITIONAL	36
RNZ, RNC, RPO, RP RZ, RC, RPE, RM	ZERO, CARRY, PARITY, SIGN	36 / 37
SPHL	SP <hl< td=""><td>25</td></hl<>	25
PUSH PSW, B, D, H	STACK WRITE	22
POP PSW, B, D, H	STACK READ	23
DB	DEFINE BYTE (s)	15

INTERRUPT PROCESS

- STOPS CURRENT PROGRAM EXECUTION
- A "SPECIAL" SUBROUTINE CALL INSTRUCTION IS EXECUTED

' CURRENT PROGRAM'

PROGRAM COUNTER NOT INCREMENTED DURING INTERRUPT INSTRUCTION

INTERRUPT SPECTRUM

CONVENIENCE <----- NECESSITY

DEVICES THAT:

- RARILY REQUIRE SERVICE
- CAN
 WAIT
 FOR
 SERVICE

DEVICES THAT:

- FREQUENTLY REQUIRE SERVICE
- MUST
 BE
 SERVICED
 NOW

BENEFIT

INCREASED PROCESSOR UTILIZATION

THE SPECIAL INTERRUPT INSTRUCTIONS

EIGHT 1 BYTE SUBROUTINE CALL'S

RST Ø THRU RST 7

- EXTERNAL HARDWARE MUST PUT THE RST BIT PATTERN ONTO THE DATA BUS WHEN THE INTA STATUS SIGNAL IS PRODUCED (T2)
- PROGRAM COUNTER SET TO:
 Ø, 8, 10, 18, 20, 28, 30, 38 (HEX)

MEMORY ADDRESS

RST'S ALSO USEFUL FOR OFTEN CALLED SUBROUTINES

INTERRUPT PROCESSING

```
PUSH PSW ; 11 STATES 5.5 MICRO-SEC
SVC:
      PUSH B
          D
                  ;
      PUSH
      PUSH
           Н
           H ; 10 STATES 5.0 MICRO-SEC
      POP
           D
      POP
      POP
           PSW
      POP
                  ; 4 STATES 2.0 MICRO-SEC
      ΕI
                   ; 10 STATES 5.0 MICRO-SEC
      RET
```

WORST CASE TIMING

- 9 MICRO-SEC INITIAL RESPONSE ASSUMING XTHL EXECUTION
- 5.5 MICRO-SEC FOR RST INSTRUCTION
- 5 MICRO-SEC FOR JMP INSTRUCTION
- 49 MICRO-SEC FOR SAVE/RESTORE/ENABLE
 - 68.5 MICRO-SEC TOTAL

LOOK UP TABLE

INPUT VALUE 4 MUST SELECT SPECIFIC ROUTINE ROUTA: JMP_XXXX_ ROUT1: ROUT2: ROUT3: ROUT4: ROUT5: ROUT6: JMP ZZZZ

I	N	4
---	---	---

MEMORY LOCATION 700 702 704 706 708 70A 70C	TABLE:	PCHL DW DW DW DW DW DW	ROUTØ ROUT1 ROUT2 ROUT3 ROUT4 ROUT5 ROUT6	MEMORY CONTENTS 800 850 883 943 9AB 1012 10FE
800	ROUTØ:	•		
850	ROUT1:	1		
888	ROUT2:	•		
943	ROUT3:	,		
9AB	ROUT4:	•		
1012	ROUT5:	•		

ROUT6:

10FE

	IN LXI	4 H,TABLE			IN LXI DAD	4 H,TABLE B
TABLE:	PCHL DW •	ROUTØ	7	ΓABLE:	PCHL DW :	ROUTØ
	IN MOV MVI LXI DAD	C,A B,O H,TABLE B			IN ADD MOV MVI LXI DAD MOV INX MOV	4 A C,A B,O H,TABLE B C,M H
TABLE:	DW • •	ROUT Ø	Т	ABLE:	PCHL DW	ROUTØ

BYTE MOVE SUBROUTINE

```
; ENTER WITH FROM ADDRESS IN HL
          TO ADDRESS IN BC
          COUNTER IN D
MOVE: MOV A,M ; GET FROM BYTE
      STAX B ; STORE IT
      INX
                  FROM = FROM + 1
            Н
      INX
            В
                  ; T0 = T0 + 1
                  ; COUNT = COUNT - 1
      DCR
            D
      JNZ
            MOVE ; DONE ?
                   ; YES
      RET
```

DECIMAL ADJUST ACCUMULATOR

PURPOSE: CONVERTS RESULT OF BINARY ADDITION TO BCD VALUES.

RULE 1: IF $A_{LS4} > 9$ or IF A.C. = 1 THEN ADD 6.

RULE 2: IF $A_{MS4} > 9$ or IF C = 1 THEN ADD 60.

EXAMPLES:

DECIMAL		BCD	
29		0010 1001	
+ 1		1	
 30		0010 1010	
		0110	(RULE 1)
		0011 0000	
18		0001 1000	
+18		0001 1000	
		0011 0000	
		0110	(RULE 1)
		0011 0110	
72		0111 0010	
+ <u>93</u>		1001 0011	
165		0000 0101	(D/III = 0)
		0110 0000	(RULE 2)
		0110 0101	
94		1001 0100	
+07		0000 0111	
101		1001 1011 0110	(RULE 1)
		1010 0001	
	W1000000000000000000000000000000000000	0110 0000	(RULE 2)
	1	0000 0001	

DIRECT LOAD / STORE INSTRUCTIONS

LDA ADDRESS A
$$\leftarrow$$
--- M ($_{B_3}$ $_{B_2}$)

STA ADDRESS M ($_{B_3}$ $_{B_2}$) \leftarrow --- A

$$\frac{3 \text{ BYTES}}{B_2} \qquad \frac{B_1}{ADRS_{LSB}} \qquad \frac{LDA}{B_3} \qquad \frac{ADRS_{LSB}}{ADRS_{MSB}}$$

16 - BIT

SPECIALS

XTHL:

HL ←> TOS

EXAMPLE: 3 BYTE CALL FOR SINGLE CHARACTER PRINT

	5		
	CALL	COMC	MOV NEXT ADR TO C
	DB	'A'	
	ζ		
	\$		
COMC:	XTHL		GET RET ADDR
	MOV	C,M	GET PARAMETER
	INX	Н	;BUMP RET ADDR
	XTHL		
	CALL	CO	PRINT CHAR IN C REG.
	RET		
	5		

XCHG:

HL DE

EXAMPLE: PERFORM SAME JOB ON 2 BLOCKS OF MEMORY

5 IVN B, COUNT COUNT = 2X BYTE COUNT ;BEG.ADR X BLOCK LXI H, ADRX1 LXI D, ADRY1 ;BEG.ADR Y BLOCK ON HL ADDRESS LOOP: CALL JOB H INX XCHG DCR В JNZ L00P JOB: MOV M,A**RET**

REVIEW

8080 ASSEMBLY LANGUAGE PROGRAMMING MANUAL PAGE NUMBER

		PAGE NUMBER
RST	RESTART	37
EI	ENABLE INTERRUPT	38
DI	DISABLE INTERRUPT	38
DAA	DECIMAL ADJUST ACCUMULATOR	15
PCHL	PC < HL	31
DAD	HL € HL + RP	24
STAX / LDAX	STORE/LOAD A THRU BC OR DE	17
STA / LDA	STORE/LOAD A THRU MEMORY	30
SHLD / LHLD	STORE/LOAD HL THRU MEMORY	30 / 31
XTHL	HL TOS	25
XCHG	HL DE	24
DW	DEFINE WORDS	14

SILICON GATE MOS 8080

INSTRUCTION SET

Summary of Processor Instructions

Mnemonic	Description	D ₇	, D ₆				Code 3 D) ₁ D ₀	Clock ^[2] Cycles	Mnemonic	Description	D ₇	D ₆				ode [₁ D ₀	Clock ⁽²⁾ Cycles
MOV _{r1, r2}	Move register to register	0	1	D		D	s	s	s	5	0.7	D									
MOV M, r	Move register to memory	Ö	i	1	1	0	S	S	S	7	RZ RNZ	Return on zero	1	1	0	0	1	0	0	0	5/11
MOV r, M	Move memory to register	Ŏ	i	Ď	Ď	n	1	1	0	7	RP	Return on no zero	!	1	0	0	0	0	0	0	5/11
HLT	Halt	Õ	1	1	1	0	i	i	Ö	7	RM	Return on positive	!	1	1	1	0	0	0	0	5/11
MVIr	Move immediate register	Ŏ	Ö	Ď	Ď	Ď	i	1	ŏ	7	RPE	Return on minus		1	1	1	1	0	0	0	5/11
MVIM	Move immediate memory	Ō	Ō	1	1	Ō	1	1	Õ	10	RPO	Return on parity even Return on parity odd	,	1	1	0	1	0	0	0	5/11
INR r	Increment register	0	0	D	D	D	1	0	Ō	5	RST	Restart	,	;	1 A	A	0 A	0	0	0 1	5/11
DCR r	Decrement register	0	0	D	D	D	1	0	1	5	. IN	Input	i	i	Ô	î	1	Ö	1	1	11 10
INR M	Increment memory	0	0	1	1	0	1	0	0	10	OUT	Output	i	i	0	i	ò	0	i	i	10
DCR M	Decrement memory	0	0	1	1	0	1	0	1	10	LXIB	Load immediate register	ò	Ö	Ö	Ó	0	0	Ó	i	10
ADD r	Add register to A	1	0	0	0	0	S	S	S	4		Pair B & C	٠	٠	٠	٠	٠	·	٠	•	10
ADC r	Add register to A with carry	1	0	0	0	1	S	S	S	4	LXID	Load immediate register	0	0	0	1	0	0	0	1	10
SUB r	Subtract register from A	1	0	0	1	0	S	S	S	4		Pair D & E	•	•	٠	•	٠	٠	٠	•	
SBB r	Subtract register from A	1	0	0	1	1	S	S	S	4	LXIH	Load immediate register	0	0	1	0	0	0	0	1	10
	with borrow											Pair H & L									
ANA r	And register with A	1	0	1	0	0	S	S	S	4	LXI SP	Load immediate stack pointer	0	0	1	1	0	0	0	1	10
XRA r	Exclusive Or register with A	1	0	1	0	1	S	S	S	4	PUSH B	Push register Pair B & C on	1	1	0	0	0	1	0	1	11
ORA r	Or register with A	1	0	1	1	0	S	S	S	4		stack									
CMPr	Compare register with A	1	0	1	1	1	S	S	S	4	PUSH D	Push register Pair D & E on	1	1	0	1	0	1	0	1	11
ADD M	Add memory to A	1	0	0	0	0	1	1	0	7		stack									
ADC M	Add memory to A with carry	1	0	0	0	1	1	1	0	7	PUSH H	Push register Pair H & L on	1	1	1	0	0	1	0	1	11
SUB M	Subtract memory from A	1	0	0	1	0	1	1	0	7		stack				_	-		Ť	·	• •
SBB M	Subtract memory from A with borrow	1	0	0	1	1	1	1	0	7	PUSH PSW	Push A and Flags on stack	1	1	1	1	0	1	0	1	11
ANA M	And memory with A	1	0	1	0	0	1	1	0	7	POP B	Pop register pair B & C off	1	1	0	0	0	0	0	1	10
XRA M	Exclusive Or memory with A	1	0	1	0	1	1	1	0	7		stack		•	٠	·	·	٠	٠	•	10
ORA M	Or memory with A	1	0	1	1	0	1	1	0	7	POP D	Pop register pair D & E off	1	1	0	1	0	0	0	1	10
CMP M	Compare memory with A	1	0	1	1	1	1	1	0	7	1	stack	•	•	•	•	•	٠	·	-	
ADI ACI	Add immediate to A Add immediate to A with	1	1	0	0	0	1	1	0	7 7	POP H	Pop register pair H & L off stack	1	1	1	0	0	0	0	1	10
	carry										POP PSW	Pop A and Flags	1	1	1	1	0	0	0	1	10
SUI	Subtract immediate from A	1	1	0	1	0	1	1	0	7		off stack	•	•		•	٠	Ü	٠	•	10
SBI	Subtract immediate from A	1	1	0	1	1	1	1	0	7	STA	Store A direct	0	0	1	1	0	0	1	0	13
	with borrow										LDA	Load A direct	Õ	ŏ	1	i	1	Õ	1	0	13
ANI	And immediate with A	1	1	1	0	0	1	1	0	7	XCHG	Exchange D & E, H & L	1	1	1	Ö	i	ō	1	1	4
XRI	Exclusive Or immediate with A	1	1	1	0	1	1	1	0	7		Registers									
ORI	Or immediate with A	1		1		0	1	,	0	7	XTHL	Exchange top of stack, H & L	1	1	1	0	0	0	1	1	18
CPI	Compare immediate with A	i	i	1	1	1	1	i	0	7	SPHL	H & L to stack pointer	1	1	1	1	1	0	0	1	5
RLC	Rotate A left	Ó	Ó	Ô	Ó	Ó	1	i	1	4	PCHL	H & L to program counter	1	1	1	0	1	0	0	1	5
RRC	Rotate A right	Ö	0	0	0	1	i	1	i	4	DADB	Add B & C to H & L	0	0	0	0	1	0	0	1	10
RAL	Rotate A left through carry	Ö	0	0	1	Ö	i	i	i	4	DADD	Add D & E to H & L	0	0	0	1	1	0	0	1	10
RAR	Rotate A right through	0	0	0	1	1	i	' i	i	4	DADH	Add H & L to H & L	0	0	1	0	1	0	0	1	10
******	carry	·	٠	U	•	•	•	•	•	4	DAD SP	Add stack pointer to H & L	0	0	1	1	1	0	0	1	10
JMP	Jump unconditional	1	1	n	0	0	0	1	1	10	STAX B	Store A indirect	0	0	0	0	0	0	1	0	7
JC	Jump on carry	i	i	Õ	1	1	o	1	Ö	10	STAX D	Store A indirect	0	0	0	1	0	0	1	0	7
JNC	Jump on no carry	i	1	Ö	i	Ö	Ö	i	Ö	10	LDAXB	Load A indirect	0	0	0	0	1	0	1	0	7
JZ	Jump on zero	1	i	Õ	ò	1	Õ	i	Ö	10	LDAX D INX B	Load A indirect	0	0	0	1	1	0	1	0	7
JNZ	Jump on no zero	1	1	Ō	Ō	Ó	Ō	1	Ŏ	10	INXD	Increment B & C registers	0	0	0	0	0	0	1	1	5 5
JP	Jump on positive	1	1	1	1	Ō	Ö	1	Ō	10	INXH	Increment D & E registers	n	0	0	1	0	0	1	1	5 5
JM	Jump on minus	1	1	1	1	1	Ö	1	Õ	10	INX SP	Increment H & L registers Increment stack pointer		0	1	1	•	•	•	1	-
JPE	Jump on parity even	1	1	1	Ö	1	Ō	1	Õ	10	DCX B	Decrement 8 & C	0	0	0	0	0	0	1	1	5 5
JPO	Jump on parity odd	1	1	1	Õ	Ö	Ö	1	Ö	10	DCXD			-	-	1	•	-	•	1	5
CALL	Call unconditional	1	1	Ò	ō	1	1	Ó	1	17	DCXH	Decrement D & E Decrement H & L	0	0	0	-	1	0	1	1	5 5
CC	Call on carry	1	1	Ō	1	i	1	Ō	Ö	11/17	DCX SP	Decrement stack pointer	0	0	1	0	1	0	1	1	5 5
CNC	Call on no carry	1	1	Ō	1	0	1	0	Ō	11/17	CMA	Compliment A	0	0	1	Ó	1	0	1	1	4
CZ	Call on zero	1	1	Ō	Ó	1	1	Ō	Ō	11/17	STC	Set carry	0	0	i	1	Ó	i	i	1	4
CNZ	Call on no zero	i	1	Õ	Ö	Ó	1	Õ	Õ	11/17	CMC	Compliment carry	0	0	1	1	1	1	i		
CP	Call on positive	1	1	ĭ	ĭ	Ö	1	Õ	Ŏ	11/17	DAA	Decimal adjust A		0	1	0	0	1		1	4
CM	Call on minus	i	1	i	i	1	i	Ö	Ö	11/17	SHLD	Store H & L direct		0	1	0	0	0	1	1 0	4 16
CPE	Call on parity even	i	i	i	Ö	i	i	0	Ö	11/17	LHLD	Load H & L direct		0	i	0	1	0		-	
CPO	Call on parity odd	i	i	i	Ö	ò	i	0	Ö	11/17	EI	Enable Interrupts		1	1	1	1	0	1	0	16 4
RET	Return	i	i	ò	Ö	1	Ö	Ö	1	10	DI	Disable interrupt		1	1	1	Ó	0	1	1	4
RC	Return on carry	i	1	Ö	1	i	Ö	Ō	Ö	5/11	NOP	No-operation		0	0	0	0	0	0	0	4
RNC	Return on no carry		1	Ō	1	Ò	Ō	Ö	Ō	5/11		sporation	٠	•	٠	J	•	Ü	Ü	U	7
	•																				

NOTES: 1. DDD or SSS - 000 B - 001 C - 010 D - 011 E - 100 H - 101 L - 110 Memory - 111 A.

^{2.} Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

MACROS

1. DEFINITION

MOVRT MACRO
RRC
RRC
RRC
RRC
RRC
ANI ØFH
ENDM

2. REFERENCE

MOV A,M MOVRT MOV M,A

3. EXPANSION

5 5 7E A,H MOV 0F + MOVRT 0F + OF + θF + E6 0F + M, A77 MOV

MACRO PARAMETERS

DEFINITION -

SHV . LOOP:	MACRO MVI RRC ANI DCR JNZ ENDM	REG, AMT REG, AMT 7FH REG LOOP	;	
REFERENCE -	•			
	:			
	: CUV	C E		
	SHV :	C,5		•
	:			
	SHV	D,8		
	:			
	: C:IV	D /r		
	SilV	B,4		
	:			
	:			

BREAKPOINTS

- Debugging Aid
- OPTIONAL PART OF THE SYSTEM MONITOR'S GO COMMAND

 G ADDRESS, BKPT1 ADDRESS, BKPT2 ADDRESS
- WHEN A BKPT IS ENCOUNTERED:

ALL REGISTERS/FLAGS SAVED
BREAKPOINTS CLEARED
CONTROL TRANSFERRED TO THE SYSTEM MONITOR
* BKPT ADDRESS (PRINTED BY SYTEM MONITOR)

- X (EXAMINE/MODIFY REGISTERS) COMMAND USED TO INSPECT
- G,BKPT1 ADDRESS,BKPT2 ADDRESS

STARTS EXECUTION FROM PREVIOUS BKPT ADDRESS

- Two bkpts allow bracketing of conditional instructions
- FRONT PANEL MAY BE USED TO PROVIDE RANDOM BREAKPOINT

 INT Ø SWITCH GENERATES RST Ø
- BKPT1 and BKPT2 addresses must be at first byte of MULTIPLE BYTE INSTRUCTIONS

PART VI

PERIPHERALS AND DESIGN

DESIGN GUIDELINES

DEFINE SYSTEM PROBLEM

SYSTEM SPECIFICATION BASIC SYSTEM DIAGRAM

DEFINE PERIPHERAL EQUIPMENT

I/O PORT ASSIGNMENT RAM, ROM MEMORY SIZE FINAL HARDWARE DIAGRAM

• FLOWCHART BASIC SOLUTION

FLOWCHARTS
PL/M or ASBM. LANG. CODING

HARDWARE & SOFTWARE

DEBUG PROGRAMS & PROTOTYPE

8080 FAMILY

SYSTEM CONTROLLER AND BUS DRIVER FOR 8080A CPU

- Built-in Bi-Directional Bus Driver for Data Bus Isolation
- Allows the use of Multiple Byte Instructions (e.g. CALL) for Interrupt Acknowledge
- User Selected Single Level Interrupt Vector (RST 7)

CLOCK GENERATOR AND DRIVER FOR 8080A CPU

PIN CONFIGURATION

BLOCK DIAGRAM

PIN NAMES

RESIN	RESET INPUT
RESET	RESET OUTPUT
RDYIN	READY INPUT
READY	READY OUTPUT
SYNC	SYNC INPUT
STSTB	STATUS STB (ACTIVE LOW)
φ ₁	8080
φ2	CLOCKS

XTAL 1	CONNECTIONS
XTAL 2	FOR CRYSTAL
TANK	USED WITH OVERTONE XTAL
osc	OSCILLATOR OUTPUT
φ ₂ (TTL)	φ ₂ CLK (TTL LEVEL)
Vcc	+5V
V_{DD}	+12V
GND	OV

8080A CPU Standard Interface

" NOTES "

IS A WAIT STATE NEEDED?

ACCES	S TIMES*	t _{CO}	t _{ACC}	CAT.	TYPE
	8080A 8080A- 2 8080A-1	424 244 134	610 455 340		
	1702A 8708 8111-2 8102A-4 8107B-4	900 120 650 230 250	1300 450 850 450 270	PROM PROM RAM RAM RAM	256 x 8 1K z 8 256 STATIC 1K STATIC 4K DYM

*REF: SEPTEMBER '75 8080 USER'S MANUAL

MEMORY MAPPED 1/0

" NOTES "

PROGRAMMABLE PERIPHERAL INTERFACE

- 24 Programmable I/O Pins
- **■** Completely TTL Compatible
- Direct Bit Set/Reset Capability
 Easing Control Application Interface

PIN CONFIGURATION

PIN NAMES

D ₇ -D ₀	DATA BUS (BI-DIRECTIONAL)
RESET	RESET INPUT
C\$	CHIP SELECT
RD	READ INPUT
WR	WRITE INPUT
A0, A1	PORT ADDRESS
PA7-PA0	PORT A (BIT)
PB7-PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
Vcc	+5 VOLTS
GND	ØVOLTS

8255 BLOCK DIAGRAM

THREE MODES AVAILABLE

MODE 1 INPUT

MODE 1 OUTPUT

OUT ØF7

CTL OUT 2 - 97

LINE PRINTER (CENTRONIX 500)

; READ PORT C (STATUS) LPT: IN ØF6H JUNMASK BIT 3 ANI 8H JNZ LPT C REG HAS DATA MOV A,C ;DATA OUT PORT A OUT ØF4H STROBE LOW MVI A,7FH STROBE OUT PORT C OUT ØF6H STROBE HI MVI A,ØFFH STROBE OUT PORT C OUT ØF6H **RET**

PAPER TAPE PUNCH (REMEX)

PROGRAMMING

PTP:	IN ØF6H	;READ PORT C (STATUS)
	ANI 4H	;UNMASK BIT 2
	JNZ PTP	
	MOV A,C	C REG HAS DATA
	CMA	; COMPLEMENT
	OUT ØF4H	;DATA OUT <u>PORT A</u>
	MVI A,ØFFH	;DIRCTL & PUNCMD HI
	OUT ØF6H	;DIRCTL & PUNCMD OUT
	MVI A,ØBFH	;DIRCTL HI <u>- PUN</u> CMD LO
	OUT ØF6H	;DIRCTL & PUNCMD OUT
	MVI A,ØFFH	;SAME AS ABOVE
	OUT ØF6H	

PAPER TAPE READER (REMEX)

PROGRAMMING

```
;DRIVE/LOW
          A,ØEFH
PTR1: MVI
                      ;DRIVE/OUT PORT C
      OUT
           ØF6H
      MVI
                      ;DRIVE/HI
           A,ØFFH
                      ;DRIVE/OUT PORT C
      OUT
           ØF6H
                      ;TIMEOUT = 25ms
      MVI
           Н, 25
PTR2: IN
           ØF6H
                      READ PORT C (STATUS)
                      JUNMASK BIT Ø
      ANI
            111
            PTR3
      JZ
                      :Ims DELAY
      CALL
            DELAY
      DCR
            H
      JNZ
            PTR2
      JMP
           TIMOUT
                      ;DATA IN PORT B
PTR3: IN
           ØF5H
                      ; COMPLEMENT
      CMA
      RET
```

Silicon Gate MOS 8251

PROGRAMMABLE COMMUNICATION INTERFACE

- Synchronous and Asynchronous Operation
 - Synchronous:

 5-8 Bit Characters
 Internal or External Character
 Synchronization

 Automatic Sync Insertion
 - Asynchronous:
 5-8 Bit Characters
 Clock Rate 1,16 or 64 Times
 Baud Rate
 Break Character Generation
 1,1½, or 2 Stop Bits
 False Start Bit Detection
- Baud Rate DC to 56k Baud (Sync Mode)
 DC to 9.6k Baud (Async Mode)
- Full Duplex, Double Buffered, Transmitter and Receiver
- Error Detection Parity, Overrun, and Framing
- Fully Compatible with 8080 CPU
- 28-Pin DIP Package
- All Inputs and Outputs Are TTL Compatible
- Single 5 Volt Supply
- Single TTL Clock

The 8251 is a Universal Synchronous/Asynchronous Receiver / Transmitter (USART) Chip designed for data communications in microcomputer systems. The USART is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM Bi-Sync). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data transmission errors and control signals such as SYNDET, TxEMPT. The chip is constructed using N-channel silicon gate technology.

8251 CONNECTIONS

(AS DONE IN THE MDS)

3251 PROGRAMMING

<u>PROG</u>	RAMMING	<u>ACCUMULATOR</u>	<u>DEFINITION</u>	<u>FUNCTION</u>
	RESET			
DONE ONCE	OUT ØF5H	11001110	16X —— 8 BITS —— DISABLE PARITY —— ODD PARITY —— TWO STOP BITS	MODE CONTROL WORD
	OUT ØF5H	00100111	— TRANSMIT ENABLE — DTR OUTPUT TO Ø — RECEIVER ENABLE — RTS OUTPUT TO Ø	COMMAND CONTROL WORD
INPUT OPER	IN ØF5H	XXXXXXXXX XXXXXXXXX	RCVR BFR NOT READY RCVR BFR READY	STATUS OF IMPUT DEVICE
OF LA	IN ØF4H	DATA		DATA XFER
OUTPUT OPER	. I IN ØF5H	XXXXXXXO XXXXXXX1	TRANSMIT NOT READY TRANSMIT READY	STATUS OF OUTPUT DEVICE
S, Ell	OUT ØF4H	DATA		DATA XFER

Schottky Bipolar 8214

PRIORITY INTERRUPT CONTROL UNIT

- **■** Eight Priority Levels
- **■** Current Status Register
- Priority Comparator
- **Fully Expandable**
- High Performance (50ns)
- 24-Pin Dual In-Line Package

PIN CONFIGURATION

PIN NAMES

INPUTS	A CONTRACTOR OF THE CONTRACTOR			
Ro-R7	REQUEST LEVELS (R7 HIGHEST PRIORITY)			
B ₀ ·B ₂	CURRENT STATUS			
SGS	STATUS GROUP SELECT			
ECS	ENABLE CURRENT STATUS			
INTE	INTERRUPT ENABLE			
CLK	CLOCK (INT F-F)			
ELR	ENABLE LEVEL READ			
ETLG	ENABLE THIS LEVEL GROUP			
OUTPUT	"S :			
A ₀ ·A ₂	REQUEST LEVELS OPEN			
INT	INTERRUPT (ACT. LOW) _ COLLECTOR			
ENLG	ENABLE NEXT LEVEL GROUP			

LOGIC DIAGRAM

8 LEVEL CONTROLLER

^{*}RST 0 WILL VECTOR PROGRAM COUNTER TO LOCATION 0 (ZERO) AND INVOKE THE SAME ROUTINE AS "RESET" INPUT TO 8080.

THIS COULD RE-INITIALIZE THE SYSTEM BASED ON THE ROUTINE INVOKED.

⁽A CAUTION TO SYSTEM PROGRAMMERS.)

Silicon Gate MOS 8257

PROGRAMMABLE DMA CONTROLLER

- Four Channel DMA Controller
- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal and Modulo 256/128 Outputs
- Auto Load Mode
- Single TTL Clock (Ø2/TTL)
- Single +5V Supply
- Expandable
- 40 Pin Dual-in-Line Package

The 8257 is a Direct Memory Access (DMA) Chip which has four channels for use in 8080 microcomputer systems. Its primary function is to generate, upon a peripheral request, a sequential memory address which will allow the peripheral to access or deposit data directly from or to memory. It uses the Hold feature of the 8080 to acquire the system bus. It also keeps count of the number of DMA cycles for each channel and notifies the peripheral when a programmable terminal count has been reached. Other features that it has are two mode priority logic to resolve the request among the four channels, programmable channel inhibit logic, an early write pulse option, a modulo 256/128 Mark output for sectored data transfers, an automatic load mode, a terminal count status register, and control signal timing generation during DMA cycles. There are three types of DMA cycles: Read DMA Cycle, Write DMA Cycle and Verify DMA Cycle.

The 8257 is a 40-pin, N-channel MOS chip which uses a single +5V supply and the ϕ 2 (TTL) clock of the 8080 system. It is designed to work in conjunction with a single 8212 8-bit, three-state latch chip. Multiple DMA chips can be used to expand the number of channels with the aid of the 8214 Priority Interrupt Chip.

" NOTES "

PART VII

ICE 80

ICE-80

IN-CIRCUIT EMULATION

FOR

8080 BASED SYSTEM

ICE-80 FEATURES

- EXTEND MDS EXECUTION AND DEBUG CAPABILITIES INTO USER SYSTEM.
- REAL TIME EMULATION OF 8080 SYSTEM.
- SHARED MEMORY AND I/O CAPABILITY.
- . DYNAMIC TRACING OF USER PROGRAM.
- SINGLE STEP OR MULTIPLE SINGLE STEP.
- DUAL HARDWARE BREAKPOINT CAPABILITY.
- SYMBOLIC DEBUG CAPABILITY.

EMULATION

• DEFINITION - HARDWARE, MICROPROGRAMS, AND SOFTWARE
ADDED TO ONE SYSTEM TO ALLOW ONE SYSTEM TO IMITATE
ANOTHER!!

ICE 80 MODES

- EMULATION
- INTERROGATION
- SINGLE STEP

ICE 80 ADDRESS MAP

- MEMORY
- 1/0

MEMORY MAP SAMPLE

MEMORY MAP SAMPLE

INTERNAL MEMORY

ICE-80 COMMAND

XFORM MEM Ø INTO 3

ICE-80 PATH

PC ADDRESS → MDS MEMORY

MEMORY MAP SAMPLE

EXTERNAL MEMORY

 ICE-80 COMMAND
 ICE-80 PATH

 XFORM MEM Ø UNGUARDED
 PC ADDRESS → USER MEMORY

1CE SO BREAKPOINTS

- DUAL HARDWARE BREAKPOINT REGISTERS
- USER DEFINED SIGNAL BREAK

INFORMATION PATHS WITH ICE-89

CONTROL BLOCK SUMMARY

ADDRESS (BASE +)	CONTENTS	COMMENTS
0	Break register	Cause of emulation break
1	Break Status Register	8080 pins at break
2 3 4	Timer, Low Timer, Mid Timer, High	Interval Timer, 20 bits
5 6 7 8 9 A B C D E F 10 11	8080 PC, Low 8080 PC, High 8080 Reg. C 8080 Reg. B 8080 Reg. E 8080 Reg. D 8080 Reg. L 8080 Reg. L 8080 Flags 8080 Flags 8080 SP, Low 8080 SP, High 8080 Int. Enable	8080 machine state
12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	Comp 2 Add., Low Comp 2 Add., High Comp 1 Add., Low Comp 1 Add., High Comp 2 Extension Comp 2 Condition Comp 1 Extension Comp 1 Condision User Condition Enable Comp 2 Ext. Enable Comp 1 Enable Comp 1 Ext. Enable Timeout Enable	Comparator conditions

ADDRESS (BASE +)	CONTENTS	COMMENTS
20-DF	Snap Data	Snap Data Byte 1 = Status Byte 2 = Address, High Byte 3 = Address, Los Byte 4 = Data
EO-EF	Address Map	Address Map
F0 F1 F2	Address, Low Address, High Byte To Be Tranferred	Move Data
F5 F6	Test 1 (=A5H on LCB) Test 2 (=5AH on LCB)	Test Data
F7 F8 F9 FA FB FC	Failed Command Failure Type Failed Add., Low Failed Add., High Good Data Bad Data	Failure Data

IDEAL SYSTEM GROUNDING

ICE-80 BLOCK DIAGRAM

COMMAND LANGUAGE

INTERFACES USER TO ICE-80 HARDWARE

ENGLISH-LIKE SENTENCES

REFER TO SYMBOLIC NAMES

TYPES OF COMMANDS

EMULATION

- RUN TO BREAKPOINT
- BREAK AFTER EACH INSTRUCTION (SINGLE STEP)
- · ACTIONS TO PERFORM AT BREAK
- · CONDITIONS FOR AUTOMATICALLY RESUMING

INTERROGATION

- · OBTAIN INFORMATION ABOUT STATE OF USER'S SYSTEM
- · MODIFY STATE

UTILITY

- · LOAD OR SAVE USER'S PROGRAM
- . DEFINE NEW SYMBOLS
- RETURN TO MONITOR

EMULATION COMMANDS

GO FROM START LOCATION > UNTIL SACK READ>

THEN (DUMP) CONTINUE (WHILE MEM JACK <3)

STEP BY <1 INSTRUCTION> FROM <START LOCATION>

THEN < DUMP > CONTINUE < FOREVER >

RANGE <100H TO 300H> , <START LOCATION TO END LOCATION>

CONTINUE

CALL < ROUT 1>

INTERROGATION COMMANDS

DISPLAY <MEMORY 100H TO 10FH>

<REGISTER A>

(ALL SYMBOLS)

<ALL PINS>

BASE <HEX>

<DEC>

<OCT>

CHANGE (MEMORY 100H=C3H)

⟨REGISTER A=25H⟩

(FLAG CARRY=1)

XFORM (MEMORY Ø TO 3 UNGUARDED)

⟨NEHORY Ø THTO 3⟩

<10 Ø TO 3 UNGUARDED)

SLARCH CIGON TO BOOK CHASK WHIP FOR CWITE

UTILITY COMMANDS

LOAD

LOAD <FILE.HEX> (ISIS ICE-80 ONLY)

SAVE <1000H TO 2000H>

SAVE <FILE. HEX < 1000H TO 2000H (ISIS ICE-80 ONLY)

MOVE <MEMORY 1000H TO 10FFH> INTO <MDSHEM 7000H>

FILL <MEMORY 1000H TO 10FFH> WITH <FFH>

TIMEOUT ENABLED

EXIT

OBJECTIVES: To WRITE THE ASSEMBLY LANGUAGE PROGRAM DESCRIBED BELOW.

PROGRAM DESCRIPTION: The program is to read a byte from port 0 and check it for being equal to FFH. If it is FFH then FFH is to be stored in memory address 3020H and then enter the halt state. If it is not, the port should be read again and the above procedure repeated. Origin the program at 3000H.

DON'T FORGET THE END STATEMENT.

SAMPLE CODING FORM:

LABEL	CODE	OPERAND	COMMENTS
			ۇ
			ر (
)
			ز
			ز
			:

WORKSESSION # 2

OBJECTIVES: To WRITE THE SEQUENCE OF INSTRUCTIONS THAT WILL READ VALUES FROM INPUT PORT NUMBER 3 UNTIL A VALUE WITH BITS 5 AND 3 SET IS ENCOUNTERED. THEN HALT. NOTE: ANY NUMBER THAT HAS A TRUE B5 AND B3 SHOULD CAUSE A HALT. FOR EXAMPLE:

	1		ì :	_	1			
0	0	J	1	1	0	0	0	INPUT NEW VALUE
0	0	1	0	0	0	0	0	INPUT NEW VALUE
0	0	1	0	1	0	0	Û	HALT
1	0	1	1	1	0	1	1	INPUT NEW VALUE INPUT NEW VALUE HALT HALT
			,		-			

TO WRITE THE SEQUENCE OF INSTRUCTIONS THAT WILL READ A VALUE FROM INPUT PORT NUMBER 4 AND CHECK IF BIT 7 IS SET.

To WRITE THE SEQUENCE OF INSTRUCTIONS THAT WILL TEST THE 16 BIT VALUE IN THE 10 AND 10REGISTERS FOR ZERO.

WORKSESSION # 3

OBJECTIVE:

To write the sequence of instructions that will rotate the value in the B and C registers right one bit position.

WORKSESSION #4

OBJECTIVE: To write a subroutine that outputs a character from the C register to the teletype that is interfaced to the MDS.

Input Port Assignments

F4 TTY data in (8 bits parallel)

F5 USART (8251) status

Output Port Assignment

F4 TTY data out (8 bits parallel)

" NOTES "

Starting the System Monitor

- Cold Start Procedure
 - 1) Apply power by turning key to ON position.
 - 2) Set BOOT switch on.
 - 3) Press RESET switch.
 - 4) Type a "space" on device selected to be the system console:

Monitor then prints on console. MDS MONITOR, Vx.x

5) Set BOOT switch off. Monitor then prompts with a period (.) and is ready to accept a command:

System Monitor Commands

The Display and Substitute Memory commands are used to display and enter data into memory. The format of the Substitute command is:

Using the Substitute command, small programs may be entered into memory in their machine code form and executed using the Go command (discussed below). Such a program is:

Memory Location	Assembly Language	Machine <u>Code</u>	
100, 101	IN 0	DB,00	
102, 103	OUT 1	D3,01	
104, 105, 106	JMP 100H	C3,00,01	

This program is entered as:

$$\mathsf{S100}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{DB}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{0}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{0}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{D3}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{1}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{C3}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{0}_{\mathsf{sp}}\mathsf{xx}\text{-}\mathsf{1}_{\mathsf{sp}}$$

LABORATORY PROJECT #1 (continued)

To look at location 100 through 106 in more legible form use the Display Memory command.

D low address, high address CR D100, 106 (CR)

To run the program enter the Program Execute command.

G address CR

Ports \emptyset and 1 are located on the blue I/O box attached to the MDS.

To return to the system monitor from this program;

Press the INTERRUPT Ø switch on the front

panel — the monitor prints an asterisk

and the current program counter value

and then prompts with a period (.).

* PC value

To abort a command or operation type:

CONTROL C

USING THE TEXT EDITOR

- Loading the editor into RAM memory.
 - 1) If not under control of the system monitor start the system monitor. See Cold Start Procedure on page 3-6.
 - 2) Place the tape into the tapereader and enter:

 $\frac{\texttt{Command}}{\texttt{AR=P} \quad \texttt{CR}}$

Description

Assigns paper tape input device to be the high speed reader

RO CR

Reads the tape into memory

REMOVE TAPE FROM READER WHEN DONE!

G20 CR

Go to location 20

The console prints:
INTELLEC MDS TEXT EDITOR, VERSION x.x

Creating a Source Tape

- 1) Use the I (INSERT) command and enter the following program:
 - the text for legibility. TAB = CTRL
 - b) Remember, the editor provides a linefeed upon receipt of the carriage return-character.
 - c) Do not press (ESC) (ESC) keys until all source lines are entered.

2) Punch a copy of the workspace

N\$\$ Punch 6 inches blank tape, the teletype p

tape, the teletype prints: START PUNCH, TYPE CHAR When the leader is punched turn the punch off and type

any character

Punch the workspace text;

the teletype prints: START PUNCH, TYPE CHAR After text and trailer is

punched type any character
(turn punch off first)

NOTICE THAT THE SPACES
HAVE BEEN DELETED WHEREVER
THE TAB FEATURE WAS USED.
THIS SAVES TIME AND TAPE.

Editing the Source Tape

(\$ = ESC)

E\$\$

- 1. Put the source tape to be edited in the tape reader.
- 2. Use the A\$\$ command to read the tape into the editor.
- 3. Remove the source tape from the reader.
- 4. Move the buffer pointer to the beginning of the workspace with the B\$\$ commmand.
- 5. Use the T command to obtain a listing of the workspace (do not count the lines, just use a large number 20T\$\$)
- 6. Delete the instruction 'IN ∅'

FIN 'tab' \emptyset \$\$ Find the instruction

 \emptyset L\$\$ Move pointer to beginning of line

K\$\$ Delete the line

To verify:

-1L\$\$ Move pointer back 1 line

2T\$\$ Print two lines

Replace the IN ∅ instruction 7. FMOV\$\$ Find the line to insert in front of Move pointer to beginning of ØL\$\$ 1ine ILOOP: 'tab' IN 'tab' Ø \$\$ To verify: Move back two lines -2L\$\$ Print three lines 3T\$\$ Change the B, A to C, A Pointer left in front of the B FMOV 'tab' \$\$ Delete one character (pointer is left in D\$\$ front of the comma) Put C in front of the comma IC\$\$ To verify: Move pointer to beginning of ØL\$\$ line Print one line T\$\$ Change the C, A back to B, A 9. Search for C,A and when found SC, A\$B, A\$\$ replace it with B, A To verify: ØL\$\$ T\$\$ Punch a copy of the workspace using the N and E commands. 10. Punch 6 inches blank tape; the N\$\$ teletype prints: START PUNCH, TYPE CHAR When the leader is punched turn the punch off and type any character Punch the workspace text; the E\$\$ teletype prints: START PUNCH, TYPE CHAR After text and trailer is punched type any character (turn punch off first) NOTICE THAT THE SPACES HAVE BEEN DELETED WHEREVER THE TAB FEATURE WAS USED. SAVES TIME AND TAPE,

USING THE MACRO ASSEMBLER

• L	oading the Assembler into RAM memory.
1	. Turn the tape reader on.
Omit i previo assign	device to be the reader.
2	. Place the assembler tape into the tape reader and enter the command:
	$R\emptyset$ CR Reads the tape into memory
• A	ssembling the source program.
1	. Enter the command: $G2\emptyset$ (CR) Console prints:
	8080 MDS MACRO ASSEMBLER, VERSION x.x P=
2	. Place the source tape in the reader and type
	a '1'
	The source tape is read in and the symbol
	table is created.
	When pass 1 is finished the console prints: $P=$
3	Reset the source tape in the reader and type a '2'
	When pass 2 is finished the console prints: P=
4	Reset the source tape in the reader, turn the
	punch on and type a '3'
	The hexadecimal object tape is punched. TURN
_	THE PUNCH OFF.
5	Press INTERRUPT Ø switch. Control is returned
6	to the Monitor. Description: Tape Reader and enter
C	command:
	$R\emptyset$ (CR)
7	7. Enter the command G3000 (CR)
	The Dreamen is Executing!

The Program is Executing!!

Objective: To write a program that searches a string of characters in memory locations 3100H through 3109H for a colon. If a colon is found, output a 1 to port number Ø. If a colon is not found, output a 2 to port number Ø. In either case, enter the halt state upon completion. Origin the program at 3000H. Use an END statement argument (in the opened field) of 3000H.

OBJECTIVE: Alter the program written in Laboratory Program Project #1 such that actual messages are output on the TTY instead of lighting lites on port 0. Sample messages are:

I FOUND IT!

or

I GIVE UP!

LABORATORY PROJECT #4

OBJECTIVE: Alter the program above such that instead of searching memory for a colon, the program checks what is input from the TTY. If a colon is input, a message is typed out. If any other character is input, no action is taken and the program waits for the next input character.

After the messages is printed, return to checking the next input character.

Starting the Systems Implementation Supervisor

- Cold Start Procedure
 - 1. Apply power by turning key to ON position.
 - 2. Turn on Diskette.
 - 3. Insert a "system" diskette in the drive 0 opening with the read/write access slot first and the index hole, which is slightly off center, toward the bottom of the drive. Close the door.
 - 4. Set BOOT switch on.
 - 5. Press RESET switch (Interrupt light 2 should go on.)
 - 6. Type a "space" on device selected to be the system console (Interrupt light 2 should go off.)
 - 7. Set BOOT switch off: Supervisor then prints on console:

ISIS, Vx.x

and prompts with a dash (-). It is now ready to accept a command.

Editing Command Inputs

- RUBOUT This key operates the same as on the text editor, i.e., it deletes the character while, repeat-printing it.
- CONT-R This retypes the current command string.

 This is valuable when many rubouts were used.
- CONT-X This cancels the current line and types a number sign (#) and a carriage return.

Using the Text Editor

- Procedures for calling up the text editor vary according to whether:
 - a. a source file is to be created,
 - b. a source <u>tape</u> exists and is to be read and changed into a disc file,
 - c. a source file exists now on the disc and is to be edited.

Each situation is described below.

- A. Create a new source file called LABEX
 - 1. Enter the command:

EDIT LABEX CR

2. The console prints:

ISIS TEXT EDITOR, Vx.x

NEW FILE

and prompts with the editor asterisk (*). It is now ready to receive the same text editor commands as covered on the paper tape operating system except for the N\$\$ command which is no longer needed.

3. Abort and return back to ISIS by using the Quit command. Enter:

Q\$\$

and an ISIS prompt will result.

- B. A source tape exists
 - 1. Load the source tape onto the tape reader.
 - 2. Enter the command:

EDIT :HR: TO LABEX (CR)

NOTE: Other I/O file designations are:

:TP:TTY PUNCH OUTPUT

:TR:TTY TAPE READER INPUT

:HP:HIGH SPEED PUNCH OUTPUT

:LP:LINE PTR OUTPUT

:VI:CRT INPUT

: VO: CRT OUTPUT

:TO:TTY LIST OUTPUT

3. The console prints:

ISIS TEXT EDITOR, Vx.x

and prompts with the editor asterisk (*).

4. Enter:

A\$\$

The tape will read in and a prompt is printed. The source program is now in the workspace and is ready for a normal edit.

5. Make some kind of an edit then output the file onto the disc by entering:

E\$\$

6. Verify the file has been added by entering \overline{CR}

The directory prints out with the new filename added to it.

7. Verify it is a correct file by entering:

COPY LABEX TO : CO: (CR)

The console prints out the hexidecimal file in the same format as the source <u>tape</u> which was read in.

- C. Source file already exists on the disk and needs to be edited.
 - 1. Enter the command:

EDIT LABEX (CR)

The console prints out:

ISIS TEXT EDITOR, Vx.x

and an (*).

2. Enter:

A\$\$

This causes the file to be read from the disk and be put in the editor workspace.

- 3. Do an edit of some kind.
- 4. Enter:

E\$\$

to output the file.

5. Enter:

DIR (CR)

The console prints out the directory. Notice

there is now <u>2</u> files, LABEX and LABEX.BAK.

The latter is a back up version that does not have the last edit.

6. Files can be copied and/or deleted. Enter:

COPY LABEX.BAK TO BACKUP (CR)

Examine the directory (a fast version) by entering:

DIR\$F (CR) where \$ = (SHIFT) (4)
The file BACKUP is now a copy of LABEX.BAK
so we can now delete LABEX.BAK. Enter:

DELETE LABEX.BAK (CR)
The console responds with:
LABEX.BAK, DELETED

Using the Macro Assembler

- Calling up the assembler.
 - 1. Enter:

ASM8Ø LABEX (CR

(Note: The source program must be a disk file)

2. The console prints out:

ISIS 8080 MACRO ASSEMBLER, Vx.x

ASSEMBLY COMPLETE, NO PROGRAM ERRORS

and a prompt (-) if there are no errors.

Otherwise it prints the number of errors.

3. Enter:

DIR (CR)

A hexadecimal object file and a list file has been created corresponding to the object tape and listing as done on the paper tape system.

- 4. Change the name of the hexfile by entering RENAME LABEX.HEX TO LAX (CR) Examine the directory to see the results.
- 5. To print out the listing, enter:

 COPY LABEX.LST TO :CO: (CR)
- 6. To execute the object code it must be changed from hex to binary. Enter:

 HEXBIN LAX TO LAX.BIN (CR)
- 7. Enter:

DIR CR

Notice the new binary file you just created.

8. To execute the program now enter:

LAX.BIN (CR)

The program is now executing! Now put ISIS back in control by hitting Interrupt 1.

9. Other ISIS commands not covered in this section are:

ATTRIB - used to assign WRITE PROTECT and INVISIBILITY attributes to any file.

FORMAT - used to initialize a new diskette. Consult chapter 4 in the DOS Operator's Manual for details.

LABORATORY PROJECT #6

- 1. If the MDS was just powered up, perform the bootstrap procedure as discussed in the preceding sections.
- 2. Paper Tape Operating System
 - Enter AR = P $\overline{\text{CR}}$
 - · Load the object tape on the tape reader
 - Enter RØ (CR)
 Proceed to debug techniques below.

Disk Operating System

• Enter - DEBUG (FILENAME) (CR)
The console will print an asterisk followed by the starting address (as specified by the 'END' statement argument" then a monitor prompt.

Debug Techniques

- 1. Using the program listing, choose one or two breakpoint instructions and locate the addresses where the breakpoint instructions are located.

 REMEMBER TO SELECT ONLY THE 1ST BYTE OF MULTIPLE BYTE INSTRUCTIONS.
- 2. Enter the following commands for execution up to the breakpoints:

If no breakpoint desired-

• G(ST.ADDR) **(**C

If one breakpoint desired-

• G(ST.ADDR), (BRKPT ADDR)

CR

If two breakpoints desired-

• G(ST.ADDR), (BRKPT ADDR), (BRKPT ADDR)

- 3. Execution should now begin. If either breakpoint is reached, the system will print the breakpoint
- 4. Display all registers by entering:

address and a monitor prompt.

X (CR)

- 5. Change the contents of a register by entering:
 - X (register)'space'

 Contents of register will be printed. Index new contents and hit space. The contents of next register in sequence is printed (as in the monitor 'Substitute' command). Again, new contents may be entered. Return to a 'prompt' by CR. Restore original contents to all registers.
- 6. Using the 'Substitute' command, display the contents of the top of stack by entering the stack pointer displayed in no. 4 above. (S = SP)
 - S (STACK POINTER), (CR)

 Also display the contents of 'M' (as pointed at by the H and L registers:
 - S (H and L CONTENTS), _____ CR
- 7. Continue execution by entering 'G' and new break-points:
 - G, BRKPT1, BRKPT2 (CR)
- 8. Using above techniques, debug your program!!

Helpful Hints

- 9. When errors are located, use the substitue command to change the wrong machine code in memory.
- 10. If an instruction needs to be completely wiped out, use the NOP command.
- 11. If a group of instructions need to be inserted, use RST7:

PROGRAM WITH A BUG

LOC	CODE	1	_
3000	3E	!	73
3001	Ø8	ı	23
3002	D3		FE
3003	F9		04
3004	DB		L
3005	F9		

This code needs to be inserted here.

CORRECTED PROGRAM

LOC	CODE	LOC	CODE
3000	3E	38	D3
3001	Ø8	39	F9
3002	FF(RST7)	3A	73
3003	ØØ 👤	3B	23
3004	DB "	3C	FE
3005	F9	BD	0 4
		3E	C9(RET)

12. Re-execute after a bug has been fixed to make sure it is correct. After <u>all</u> bugs have been found and corrected, edit the corresponding errors from the source program.

LABORATORY PROJECT #7

UNIVERSAL PROM PROGRAMMER

Using the PROM Programmer.

- 1. Set POWER switch on to ON position.
- 2. Erase PROMs using Ultraviolet light.
- Start System Monitor.
- 4. Insert PROM (24-pin) into Socket 2 and lock.
- 5. Place the hexadecimal object tape from laboratory project #2 into the reader and enter the following commands:

AR=P CR RO CR

6. When the tape has been read enter the command:

- 7. Remove PROM following a prompt from the Monitor and turn PROM programmer power off.
- 8. Optionally, if a PROM board is available, turn MDS power OFF and insert the PROM into the PROM Module at position A1.
- 9. Ensuring PROM Module is selected for Address 3000 3FFF replace module into the MDS.
- 10. Restart the Monitor and enter G3000 \mathbb{CR} the program is now running.

NOTE: The special construction of the 8704, 8708 family of proms requires a slightly different programming algorithm from the one normally used to program 1702As. Therefore, a special software interface is needed. The program is read in and starts in location 20 just like the editor and assembler. Once read in, the commands are the same as above.

ICE 80 EXERCISES

ICE LAB EXERCISES

Introduction:

Prior to Power Up of the Intellec MDS, ensure that ICE-80 cables are disconnected and the clock select jumpers are configured for internal clock.

It is our intention to begin the lab exercises with basic command sequences to familiarize you with the ICE-80 command language before an actual debug session.

EXE	RCISES	REFERE	NCE & NOTES
Ι.	Power up and Initialization		
STEP			
1)	Power ON Intellec MDS and Console Device.	REFERE	NCE: Section 2, pages 10-16 of the ICE-80 Operator's Manual. MCS 822-1075
2)	Power Diskette System and load System Diskette into Drive Ø position.	NOTE:	The Interrupt 2 indicator should be illuminated on the Intellec MDS.
3)	Press Boot and Reset the Intellec MDS.		
4)	System Console and Release	NOTE:	The MDS responds with the message:
	Boot Switch.		"ISIS Ver x.x"
			and prompts with (-) hyphen.
5)	Enter, via console:	NOTE:	When ICE-80 is initialized properly the console prompts
	"ICE-80"		with:
	followed by carriage return.	1'	'ISIS ICE 80 Ver x.x"
		NOTE:	ICE-80 now goes through an automatic system checkout to verify presence of clock and interface connection. If test is successful the fallowing prompt is issued:

11 % % 11

(double asterisk)

following prompt is issued:

II. Interrogation

STEP

- 1) In order to familiarize you with the commands of the ICE-80 Software Driver, the following exercises should be performed.
- 2) Enter, via console:

"XFORM MEMORY Ø to FH"

followed by carriage return.

3) Enter, via console:

"XFORM IO Ø to FH"

followed by carriage return.

4) Enter:

"BASE HEX"

followed by carriage return.

5) Enter:

"DISPLAY ALL REG"

followed by carriage return.

REFERENCE: Section 3, page 43 of ICE-80 Operator's Manual.

NOTE: The console responds with:

 $\emptyset H = G, \emptyset H$ 1H=G, 1H2H = G, 2H3H=G,3H4H=G,4H5H=G,5H6H=G,6H7H=G,7H8H=G,8H9H = G, 9HAH = G, AHBH=G,BHCH = G, CHDH = G, DHEH=G,EHFH=G, FH

NOTE: The console responds with same message as above.

REFERENCE: BASE and DISPLAY commands in Section 3, page 37 & 38 of ICE-80 Operator's Manual.

NOTE: The command BASE HEX initializes ICE-80 to display values in Base 16.

NOTE: This command displays all 8080 registers in the following manner:

B= C= D= E= H= L= F= A= P= *= S=

* references last instruction executed

F references Flag Byte

II. Interrogation (cont.)

STEP

6) Enter:

"DISPLAY ALL PINS"

followed by carriage return.

7) Enter:

"XFORM MEMORY Ø INTO 6"

followed by carriage return.

8) Enter:

"CHANGE MEMORY 100H= 3EH, AAH, C3H, 00H, Ø1H"

followed by carriage return.

9) Enter:

"SEARCH MEMORY Ø1ØØH to Ø1ØFH MASK ØFFH for AAH"

followed by carriage return.

10) We will now initialize ICE-80 to operate with internal MDS Memory and I/\emptyset .

This is in preparation for executing the program shown in Figure 1.

11) The program is origined at 3000H and utilizes some of the Intellec MDS Monitor I/O. In order to set up User memory for storage of the program enter:

"XFORM MEMORY 3 INTO 7"

followed by carriage return.

12) Because Monitor I/O is being used we must now enter:

"XFORM MEMORY FH INTO FH"

followed by carriage return.

NOTE: Pins are displayed:

HLT= HLD= INT= RDY= RST=

NOTE: This command assigns user

memory block Ø to by

physically located in MDS

Memory block 6.

NOTE: This command has stored in

memory location Ø thru 4

the short routine:

Ø,1 MVI A,ØAAH 2,3,4 JMP Ø1ØØH

NOTE: This command searches User

memory 100H to 10FH for value AAH and will print location of each occurance.

NOTE: This command assigns User memory block 3 to be located in MDS Memory block 7.

NOTE: The Monitor is located in MDS Memory at F800H to FFFFH. This command allows program to access the FH block of

memory.

II. Interrogation (cont.)

STEP

13) Enter:

"XFORM MEMORY Ø INTO 6"

followed by carriage return.

14) Enter:

"MOVE MDS MEM \emptyset TO FH INTO MEM \emptyset " followed by carriage return.

15) Enter:

"XFORM IO FH INTO FH"

followed by carriage return.

16) Mount diskette:

"TNGØØØ. 2Ø5"

in Drive \emptyset and closed drive door.

17) Enter:

"LOAD WAYNE3. DEM"

followed by carriage return.

18) Enter:

"DISPLAY ALL SYMBOL"

followed by carriage return.

19) Enter:

"DISPLAY MEMORY 3Ø2ØH TO 3Ø2FH"

followed by carriage return

NOTE: These commands permit the Monitor to access the dedicated RAM associated with normal MDS operation.

NOTE: We have essentially moved locations Ø to FH of MDS Memory into MDS Memory 6000H to 600FH.

NOTE: This command allows our exercise program to access MDS IO at block FH.

NOTE: This command loads the Hex file WAYNE3 DEM into User memory under direction of address map we have set up.

REFERENCE: Figure 1 for program listing.

NOTE: This command displays symbols loaded with Hex file.

BLOCKØØ1 ØØØØH 303EH CHECK FCA2H CIFE51H DBYTE LCRLF FEB6H LINE 3028H FDA1H LØ LOOPC ØØØ2H ØØØ5H NDIGIT 302DH NEXTC OUTCT 3000H

NOTE: This command displays contents of memory in this format:

3Ø2ØH= 31H 20H 30H 21H - - - -

III. Emulation

STEP

1) In order for the program to execute, the CRT or TTY console will be used. Enter:

"GO FROM 3Ø2ØH"

followed by carriage return.

2) With each depression of Space Key, the program continues by incrementing a counter and listing values. Enter successive:

"SPACE KEY TO VERIFY!"

- 3) To exit from emulation, press the Interrupt 4 switch on the front panel of the MDS.
- 4) Enter:

"DISPLAY ALL REGISTERS:

followed by carriage return.

5) Enter:

"DISPLAY CYCLES 10"

followed by carriage return.

NOTE: The console will print:

"EMULATION BEGUN"

and then print:

Ø1 Ø2 Ø3 Ø4 Ø5

NOTE: The console then prints:

"PROCESSING ABORTED"
EMULATION TERMINATED AT XXXX"

NOTE: The "*=" indicates last instruction executed when Interrupt entered.

The "P=" indicates next instruction to be fetched.

NOTE: This command displays the last 10 machine cycles completed up to the interrupt.

Format is:

Status Address Data

III. Emulation (cont.)

STEP

6) We will now set a breakpoint condition for this program. The "OUTCT" is the memory location that determines the value to be output. So we will set a breakpoint on the read of that location and continue emulation while OUTCT≠ FH.

7) Enter:

"GO from 3020H until OUTCT READ THEN DUMP continue while Memory OUTCT<>FH."

followed by carriage return.

- 8) Upon the break occuring each time you will see the DUMP of all 8080 registers until Memory OUTCT=FH
- 9) Emulation terminates with message Emulation terminated at 3031H. Enter:

"DISPLAY CYCLES 10"

followed by carriage return.

10) Enter:

"DISPLAY MEMORY OUTCT"

followed by carriage return.

11) Enter:

"DISPLAY ALL PINS"

followed carriage return.

REFERENCE: Section 3, page 27-31 ICE-80 Operator's Manual.

NOTE: THEN DUMP means display all registers - For this entry may not fit on one line, prior to entering carriage return, enter:

"&"

and the carriage return. This allows the command to be continued on next line.

NOTE: The last machine cycle printed is the last instruction occuring with the breakpoint.

NOTE: This command displays location 3000H=FH. The condition for emulation break.

NOTE: Pins HLD, HLTA, INT, READY and RESET are displayed.

Emulation (cont.) III.

STEP

12) Enter:

"DISPLAY ALL FLAGS"

followed by carriage return.

Enter: 13)

"EXIT"

followed by carriage return.

The AUX CARRY, CARRY, PARITY, NOTE:

SIGN, ZERO, and INTE are

displayed.

REFERENCE: Section 3, page 22 & 23 of ICE-80 Operator's Manual-

for Pins & Flags.

This returns control back to Intellec MDS Monitor. NOTE:

You are now ready to perform

the following exercises with

ICE-80!

Exercise 1

After Bootstrapping the system, initialize ICE-80 and load Wayne3.DEM.

Use internal MDS memory and MDS Monitor.

Map User memory block 3 to be MDS block 6 and User Memory block Ø to be MDS block 7.

Execute the program!

Exercise 2

Emulate Wayne 3. DEM. with a breakpoint set for instruction at location 303FH being executed.

What is value stored in LOOPC??

How many machine cycles for last two instructions?

Exercise 3

Enter the parameters to ICE-80 that will cause program to continually output the 1st line repetitively!!

REFERENCE: Figure 1 and ICE-80 Operator's Manual.

NOTE: Don't forget to move location Ø to FH of MDS memory to User Memory.

REFERENCE: Figure 1

NOTE: Instruction at 303FH is DCR LOOPC.

REFERENCE: Page 27-30 of ICE-80 Operator's Manual.

```
FIRES IS A DEMONSTRALION PROGRAM FOR THE
                                       INTELLEC MDS/ICE 80
 0005
               NDIGI
                       EQU 5
 2000
               LUJPC
                       EQU D
                       :ADDRESSES OF MUNITUR FUNCTIONS
 FEB6
               LURLE
                       EQU OFEB6H
 FE51
               DBYTE
                       EUU OFESIH
 FCA2
               CI
                       EQU OF CASH
                                       CONSOLE INPUT
 FDAL
               Co
                       EQU OFDAIH
                                        CONSOLE OUTPUT
 3000
               JKG
                       3000H
 3000
               JUICI:
                      DS 1
                                       JONE BYTE FOR OUTPUT COUNTER
 3020
                       3020H
               0xG
 3020 312030
                       LXI 5P, 30204
 3023 210030
                       LXI H. BUTCT
                                       : DUIPUI COUNTER
 3026 3600
                       O.M IVM
                                       :INIT JUIPUT VALUE TJ ZERJ
-3023 CDB6FE
               LINE:
                       CALL LURLE
                                       FRINT DIE LIVE
 302B 1605
                       MVI LOUPC, NDIGI
 3020 210030
                       LXI H. JUICT
               NEXIC:
                                       ; NEXT CHARACTER
 3030 34
                       INR M
3031 7E
                       MOV A.M
                                       FAR JUIPUT SUBRAULTNE
 3032 CD51FE
                       CALL DBYTE
                                       CONVERT TO ACSIT
 3035 0E20
                       MVI C. .
                                       SET UP BLANK
 3037 CDA1FD
                       CALL CO
                                       FPRINI BLANK
 3034 15
                       DOR LUDPO
 3038 022030
                       JAZ VEXIC
 303E CDASFC
                       CALL CT
               CHECK:
                                       ; WAIT FOR "SPACE"
 3041 E67F
                       4VI 7F4
                                       SSIRTP OFF PARTLY BIT .
                       195
 3043 FE20
                                       ; SPACE
3045 023E30
                       JNZ CHECK
3043 032330
                       JMP LINE
0000
                       END
```

FIGURE 1

SYMBOL TABLE

UHEUK	303E	σŢ	FC48	DHYLE	FESI	LUKLF	FE96
LIVE	3023	LJ	FDA1	LJJPC	0005	10161	0005
VEX10	302D	JUICI	3000				

FIGURE 2

EXERCISES/ LABORATORY PROJECT

SOLUTIONS

WORKSESSION #1 - SOLUTION

	ORG	3000H	
	LXI	H,3020H	; DESTINATION ADDRESS
LOOP:	IN	0	
	INR	A	; IF FFH, A NOW = 0
	JNZ	LOOP	
	DCR	A	; RESTORE TO FFH
	MOV	М,А	; MOV A TO 3020H
	HLT		
	END	3000H	

WORKSESSION # 2 SOLUTION

		\		
Part # 1	LOOP:	IN	3	; input
		ANI	28H	; isolate bits
		CPI	28Н	; 5 and 3 ; 5 and 3 set?
		JNZ {	LOOP	; no loop!
Part # 2		<pre> { IN</pre>	ц	; input
		ORA	A	; set flags
		JM \$	SET	; check bit 7
Part # 3		{ MOV	A,E	; copy E to A
		ORA	D	; merge in D
		JZ.	ZERO	; jump zero

WORKSESSION # 3 SOLUTION

```
; copy C to A
MOV
       A,C
                ; copy C(0) to Carry flag
RRC
               ; copy B to A
       А,В
VOM
                ; Carry to B(7), B(0) to Carry
RAR
                ; copy A to B
        В,А
VOM
        A,C
                ; copy C to A
VOM
                ; Carry to C(7)
RAR
                ; copy A to C
        C,A
VOM
```

WORKSESSION #4 SOLUTION

WAIT: ΙN OF5H ; READ IN STATUS ANI ; ISOLATE BIT Ø JΖ WAIT ; IS IT A ZERO? VOM A,C ;NO - CHARACTER TO A OUT 0F4H . ;OUTPUT FROM A RET ; DONE

Since the USART (8251) is programmable, it must be initialized prior to use.

; Set 8251 mode for - 16x baud rate factor ; 2 stop bits, parity disabled, 8 bit character ;

MVI A, OCEH
OUT OF5H

- ; Set 8251 command for
- ; Receive and transmit enable

MVI A,5 OUT OF5H

This initialization is done by the System Monitor program in the MDS.

LABORATORY PROJECT #2

SOLUTION:

	ORG	3000H		
	LXI	H,3100H	قر	ADDRESS 3100
L00P:	VOM	A,M	;	READ CHARACTER
	CPI	, ,	ۋ	IS IT A COLON
	JZ	EXIT	. ۋ	YES - OUTPUT A 1
	INX	H	ز	ADDRESS NEXT CHARACTER
	VOM	A,L	;	GET CURRENT ADDRESS
	CPI	OAH	;	IS IT LAST + 1 ?
	JNZ	L00P	;	NO
	MVI	A,3BH	, ii	YES - OUTPUT A 2
EXIT:	ADI	0C7H	;	":" + 0C7H = 01
	OUT	Ø	į	
	HLT			
	END	3000H		

<u>ALTERNATE SOLUTION:</u>

	ORG	3000H	
	LXI	H,3100H	START SEARCH ADDR.
	MVI	B,10	SEARCH 10 LOCATIONS
L00P:	MOV	A,M	
	CPI	' :'	;IS IT A COLON?
	JZ	FOUND	
	IMX	Н	JUPDATE MEMORY POINTER
	DCR	В	;UPDATE LOC. COUNT
	JNZ	L00P	
	MVI	A,2	
	OUT	0	OUTPUT A 2
	HLT		
FOUND:	MVI	A,1	
	OUT	0	;OUTPUT A 1
	HLT		
	END	3000H	

LABORATORY PROJECT #3 - SOLUTION (BASED ON 'ALTERNATE' SOLUTION OF #2)

;PROGRAM N	ORG LXI LXI MVI MOV CPI JZ	3000H SP,3B00H H,3100H B,10 A,M	;IS IT A COLON?
	LXI JMP LXI	H,MSG1 OUTPT	1
MESSAG	ES		
MSG1: MSG2:	DB DB	-	AN FIND',ODH,OAH UND IT',ODH,OAH
;PRINT	SUBROUTIN	E	
PRINT: LOOP1:	MOV INX MOV CALL DCR JNZ RET	B,M H C,M CO B LOOP1	;LOAD CHAR COUNT ;LOAD A CHAR ;PRINT CHAR IN C ;UPDATE CHAR COUNT
EQUATE	E STATEMEN	iTS	
CO	EQU	ØF809H	
	END	3000H	

LABORATORY PROJECT #4 - SOLUTION

TTY COLON MONITOR ; PROGRAM NAME: ORG 3000H LXI SP,3BOOH CALL ;TTY CHAR TO ACCUM L00P: CI; IS IT A COLON? **':'** CPI JNZ L00P LXI H,MSG1 ;LOAD CHAR COUNT MOV $B_{\bullet}M$ L00P1: INX Н MOV $C_{\mathcal{M}}$;LOAD A CHAR IN C ;TYPE CHAR CALL CO DCR В JNZ L00P1 JMP L00P **MESSAGE** 19, 'YOU TYPED A COLON', ODH, OAH MSG1: DB ; EQUATE STATEMENTS COEQU ØF809H EQU ØF803H CIEND 3000H

SECTION IV

REFERENCE MATERIALS

CONTENTS

	PAGE #
APPENDIX A	4-2
MESSAGE CUTPUT SUBROUTINE	·
APPENDIX B	$L_{i}^{*}-L_{i}^{*}$
TIME OF DAY ROUTINE	
APPENDIX C	4-6
8080 system control	

" NOTES "

MESSAGE OUTPUT SUBROUTINE

```
MEMORY
ADDRESS
           CONTENTS
400,1,1
                            CALL
                                    PRINT
403,4
              500
                           DW
                                    MSG1 ·
                                             ; ADDRESS OF MESSAGE
405
                      <CONTINUE>
500-50C
          00...
                  MSG1:
                           DB
                                    (FINI-MSG1-1), 'START READER'
50D
                           DB
                  FINI:
                  PRINT:
                           XTHL
                                             ; HL <-> TOS
                           MOV
                                    E_{M}
                                             ; E <--- MEMORY
                           INX
                                    Н
                           VOM
                                    D<sub>M</sub>
                                             ; D <--- MEMORY
                           INX
                           XTHL
                                             ; HL <--> TOS
                           XCHG
                                             ; HL≪--> DE
                           MOV
                                    B_{M}
                                             ; B <--- MEMORY
                  MORE:
                           INX
                                    H
                           MOV
                                    C_{\mathcal{M}}
                                             ; C <--- MEMORY
                           CALL
                                    CO
                                             ; GO TO MONITOR
                           DCR
                                    В
                                             ; B <--- B - 1
                           JNZ
                                    MORE
                           RET
```

XTHL REVEALED

	,	PRINT			·	sp 03 04
PRINT:	XTHL	•	н 04	L 03		SP ?
	MOV	E,M		E 00		
	INX	Н	н 04	L 04		
	MOV	D,M	р 05			
	INX	Н	н 04	L 05		
	XTHL		н ?	L ?		sp 05
	XCHG		н 05	L 00		04
			D ?	E ?		
	MOV	В,М		B OC		
	1					

. -

TIME OF DAY CLOCK

- ASSUME A 1 SECOND COUNTER INTERRUPTING AND FORCING A RST 2 INSTRUCTION
- 3 BCD COUNTERS (SECONDS, MINUTES, HOURS) IN RAM MEMORY

```
10H
        ORG
                TIME
        JMP
         .
                "XXXX" ; SOMEWHERE IN RAM MEMORY
        ORG
                1
SEC:
       DS
                       ; COUNTER
                       ; COUNTER
MIN:
       DS
                1
                        ; COUNTER
HRS:
        DS
                "YYYY" ; IN ROM MEMORY
        ORG
;
   INITIALIZE COUNTERS TO ZERO & START TIMER
;
                   ; SET A TO ZERO
        XRA
                Α
                H, SEC ; GET SECONDS ADDRESS
        LXI
        MOV
                A \cup A
                       ; SET SECONDS TO ZERO
        INX
                Н
                        ; ADDRESS MINUTES
        MOV
                A \subset M
                        ; SET MINUTES TO ZERO
                        ; ADDRESS HOURS
                Н
        INX
                A 
u
                        ; SET HOURS TO ZERO
        VOM
                1رA
                        ; TIMER START COMMAND
        MVI
                2
        OUT
                        ; ASSUME TIMER ATTACHED BIT 0
                        ; INTERRUPT SYSTEM ON
        ΕI
        DΙ
                        ; DISABLE INTERRUPT SYSTEM
                         ; BEFORE READING TIME
```

1 - 1

```
TIME: PUSH H
                       ; SAVE H AND L
                        ; SAVE A AND FLAGS
        PUSH
                PSW
                       ; GET SECONDS COUNTER
                H, SEC
        LXI
        MOV
                A \cup M
                        ; INCREMENT IT
                Α
        INR
                        ; REMAKE INTO BCD
        DAA
                MνA
                        ; PUT IT BACK INTO MEMORY
        MOV
                        ; 60 SECONDS YET ?
                60н
        CPI
        JNZ
                EXIT
                       ; NO
                0 ر м
                        ; YES, SET SECONDS TO ZERO
        MVI
                Н
                        ; GET MINUTES COUNTER
        INX
        VOM
                A \wedge M
        INR
                Α
        DAA
                ΜJΑ
        VOM
                       ; 60 MINUTES YET ?
                60н
        CPI
                       ; NO
                EXIT
        JNZ
                м, О
        I VM
                      ; GET HOURS COUNTER
        INX
                Н
        MOV
                A \cup M
        INR
                Α
        DAA
        MOV
                A 
otin A
                      ; 24 HOURS YET ?
        CPI
                24H
                       ; NO
        JNZ
                EXIT
                0 ر M
        MVI
                      ; RESTORE FLAGS AND A
                PSW
EXIT:
        POP
                       ; RESTORE L AND H
        POP
                Н
                        ; ENABLE INTERRUPTS
        ΕI
        RET
```


8080 System Control