Лекция IV

B., c. 262-264; **K.**, c. 97-99; **Φ.**, c. 337-340; **Γ.**, c. 46-57.

§9. Жорданова нормальная форма оператора

Если вернуться к произвольному линейному оператору \mathcal{A} , то можно заметить, что на циклическом подпространстве нильпотентного оператора $\mathcal{N} = \mathrm{Ker}(\mathcal{A} - \lambda \mathcal{E})|_{V^{\lambda}}$ оператор \mathcal{A} задаётся матрицей

$$J(\lambda) = J(0) + \lambda E = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix},$$

называемой *жордановой клеткой* с собственным значением λ

Определение 9.1. *Жордановой матрицей* называется блочно-диагональная матрица

$$J = \begin{pmatrix} J_1 & & & \mathbf{O} \\ & J_2 & & \\ & & \ddots & \\ \mathbf{O} & & & J_k \end{pmatrix},$$

где $J_1, J_2, \dots J_k$ — какие-то жордановы клетки.

Жорданова матрица также называется жордановой нормальной формой (ЖНФ) для оператора \mathcal{A} . Верна следующая

Теорема 9.1. (основная теорема о структуре оператора) Если характеристический многочлен χ_A раскладывается на линейные сомножители, то существует базис, в котором матрица оператора A жорданова. Она определена однозначно, с точностью до перестановки жордановых клеток.

Следствие 9.1.1. Матрица любого оператора над полем комплексных чисел приводится к $KH\Phi$.

Другими словами, любая комплексная матрица подобна жордановой.

В выборе жорданова базиса есть значительная свобода. Поймём, что количество жордановых клеток не зависит от выбора жорданова базиса. Достаточно сделать это для нильпотентного оператора.

Пусть $n(\lambda)$ — количество жордановых клеток в J(N) с собственным значением λ . Оно равно количеству столбцов в диаграмме Юнга, то есть количеству

векторов в нижней строке диаграммы. То есть $n(\lambda) = \dim \operatorname{Ker} \mathcal{N}$. С другой стороны $\operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E}) = V_{\lambda} \leqslant V^{\lambda}$, следовательно, $\operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E}) = \operatorname{Ker} \mathcal{N}$, поэтому

$$n(\lambda) = \dim \operatorname{Ker}(A - \lambda \mathcal{E}).$$

Пусть $n_k(\lambda)$ — число жордановых клеток размера $k \times k$ с собственным значением λ , они соответствуют столбцам высоты k. Так как ядро оператора \mathcal{N}^k — это линейная оболочка векторов, стоящих в строках высоты не больше k, то их количество — это разница между количество вектор высоты не меньше k (dim Ker \mathcal{N}^k) и количество вектора высоты меньше k (dim Ker \mathcal{N}^{k-1}). А чтобы найти количество столбцов высоты ровно k, нужно из этого числа вычесть количество столбцов высоты не больше k+1, которое вычисляется аналогично (dim Ker \mathcal{N}^{k+1} — dim Ker \mathcal{N}^k). Итого получаем

$$n_k(\lambda) = \dim \operatorname{Ker} \mathcal{N}^k - \dim \operatorname{Ker} \mathcal{N}^{k-1} - (\dim \operatorname{Ker} \mathcal{N}^{k+1} - \dim \operatorname{Ker} \mathcal{N}^k),$$

то есть

$$n_k(\lambda) = 2 \dim \operatorname{Ker} \mathcal{N}^k - \dim \operatorname{Ker} \mathcal{N}^{k-1} - \dim \operatorname{Ker} \mathcal{N}^{k+1}.$$

Так как ${\rm Ker}(\mathcal{A}-\lambda\mathcal{E})\leqslant V^\lambda,$ то ${\rm Ker}(\mathcal{A}-\lambda\mathcal{E})^k={\rm Ker}\,\mathcal{N}^k,$ и

$$n_k(\lambda) = 2 \dim \operatorname{Ker}(A - \lambda \mathcal{E})^k - \dim \operatorname{Ker}(A - \lambda \mathcal{E})^{k-1} - \dim \operatorname{Ker}(A - \lambda \mathcal{E})^{k+1}.$$

Полученные формулы показывают, что число жордановых клеток не зависит от выбора жорданова базиса, следовательно, ЖН Φ единственная с точностью до перестановки клеток.

Для удобства при ручном нахождении ЖНФ, запишем формулы в виде, содержащем ранги матриц. Пусть $r_k = \operatorname{rank}(\mathcal{A} - \lambda \mathcal{E})^k$, $n = \dim V = \operatorname{размер}$ матрицы оператора. Тогда $\dim \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})^k = n - r_k(\lambda)$. Следовательно,

$$n(\lambda) = n - r_1(\lambda),$$

$$n_k(\lambda) = r_{k-1}(\lambda) - 2r_k(\lambda) + r_{k+1}(\lambda).$$

Итак, если нам нужно найти ЖНФ оператора $\mathcal{A} \in \operatorname{End}(V)$, то:

1) Находим собственные значения $\lambda_1, \dots \lambda_s$. Тогда $V = \bigoplus_{i=1}^s V^{\lambda_i}$ и в согласованном базисе оператор имеет блочно-диагональную матрицу

$$\begin{pmatrix} A_1 & & \mathbf{O} \\ & A_2 & & \\ & & \ddots & \\ \mathbf{O} & & & A_s \end{pmatrix};$$

2) Выясняем, как устроен каждый блок A_i для $\lambda_i = \lambda$. Для этого надо понять устройство оператора $\mathcal{A}|_{V^{\lambda}}$. Нам известно, что $\mathcal{A}|_{V^{\lambda}} = \lambda \mathcal{E} + \mathcal{N}$, \mathcal{N} — нильпотентный оператор. Тогда $V^{\lambda} = \bigoplus_{i=1}^m U_i$, U_i — циклические подпространства \mathcal{N} . Схема действия \mathcal{N} на V^{λ} однозначно задаётся диаграммой Юнга;

- 3) В базисе V^{λ} , составленном из базисов U_i , матрица нильпотентного оператора N имеет блочно-диагональный вид, где на диагонали стоят нильпотентные жордановы клетки получаем нильпотентную жорданову матрицу. Матрица оператора $\mathcal{A}|_{V^{\lambda}} = \lambda \mathcal{E} + \mathcal{N}$ получается из неё прибавлением λ по главной диагонали;
 - 4) Собираем из всех блоков A_i ЖНФ оператора \mathcal{A} .

Пример 9.1. Найдём ЖН Φ оператора $\mathcal{A} \in \operatorname{End}(\mathbb{R}^4)$, заданного матрицей

$$A = \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix},$$

Давайте одно из собственных значений угадаем. Заметим, что $\lambda_1=1$ является собственным значением, так как матрица A-E вырожденная, поскольку имеет нулевой столбец:

$$A = \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix}.$$

Найдём её ранг:

$$\operatorname{rank} \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} = \operatorname{rank} \begin{pmatrix} 1 & 4 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 3 & 0 & -3 \\ 0 & 3 & 0 & -1 \end{pmatrix} = 2,$$

 $r_1(1) = \text{rank}(A - E) = 2$. Тогда геометрическая кратность $\lambda = 1$ как минимум $\dim \text{Ker}(\mathcal{A} - \mathcal{E}) = 2 = 4 - 2$, то есть ещё как минимум ещё одно собственное значение равно 1. Найдём оставшиеся собственные значения по теореме Виета:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= \operatorname{tr} A, \\ \lambda_1 \lambda_2 \lambda_3 \lambda_4 &= \det A, \end{cases} \begin{cases} \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= 4, \\ \lambda_1 \lambda_2 \lambda_3 \lambda_4 &= 1, \end{cases}$$

откуда $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1$. Следовательно, всё пространство является корневым с собственным значением 1 и $n(1) = n - r_1(1) = 4 - 2 = 2$, то есть всего две жордановы клетки. Вычислим нужные ранги:

$$r_0(1) = \operatorname{rank}(A - E)^0 = \operatorname{rank} E = 4,$$

 $r_1(1) = \operatorname{rank}(A - E)^1 = 2,$
 $r_2(1) = \operatorname{rank}(A - E)^2 = 1,$
 $r_3(1) = \operatorname{rank}(A - E)^3 = 0.$

Тогда

$$n_1(1) = r_0(1) - 2r_1(1) + r_2(1) = 1,$$

$$n_2(1) = r_1(1) - 2r_2(1) + r_3(1) = 0,$$

$$n_3(1) = r_2(1) - 2r_3(1) + r_4(1) = 1.$$

То есть у нас одна жорданова клетка размером 1×1 и одна жорданова клетка размером 3×3 , то есть оператор \mathcal{A} имеет следующую ЖНФ:

$$J(\mathcal{A}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Диаграмма Юнга нильпотентного оператора $\mathcal{A} - \mathcal{E}$ имеет вид

Пример 9.2. Найдём ЖНФ оператора из примера 8.2. Оператор нильпотентен. Достаточно одного взгляда на диаграмму Юнга, чтобы написать ЖНФ:

§10. Построение жорданова базиса

Как найти сам жорданов базис? Есть два разных подхода:

- Начать с собственных векторов и подниматься вверх
- Начать с корневых векторов наибольшей высоты и спускаться вниз

Далее будет показать второй подход. Одной из причин этого является то, что так действуют системы компьютерной алгебры. Дело в том, что подходящих «самых высоких» векторов оказывается столь много, что с большой вероятностью подойдут какие-то векторы стандартного базиса (ниже мы это видим) или их нехитрые линейные комбинации.

Пример 10.1. Продолжим предыдущий пример. Отметим, что нумерация векторов жорданова базиса должна соответствовать выбранной перестановке клеток в ЖНФ! Так, если рассмотреть матрицу нильпотентного оператора

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

то первый вектор при его действии должен переходит в нулевой, второй — тоже в нулевой, третий — во второй, четвёртый — в третий:

$$e_{4}$$
 e_{3}
 $e_{2}e_{1}$

Итак, самый высокий столбец в нашей диаграмме Юнга высоты 3. «Самый высокий» вектор должен обнулять матрицу $(A-E)^3$ (в данном случае это выполнится автоматически, так как всё пространство — корневое для нильпотентного оператора высоты 3) и не должен обнулять матрицу $(A-E)^2$. Так как

$$(A-E)^2 = \begin{pmatrix} 3 & 9 & 0 & -18 \\ 1 & 3 & 0 & -6 \\ 3 & 9 & 0 & -18 \\ 1 & 3 & 0 & 6 \end{pmatrix},$$

то в качестве «самого высокого» вектора e_4 жорданова базиса можно взять первый, второй или четвёртый векторы стандартного базиса, так как их образы не являются нулевыми (именно они записаны в первом, втором и четвёртом столбцах матрицы). Пусть $e_4 = (1,0,0,0)^T$. Тогда $(A-E)e_4 = e_3$, $(A-E)^2e_4 = (A-E)e_3 = e_2$:

$$e_3 = \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 0 \\ -1 \end{pmatrix}.$$

Ровно это мы и ожидали получить ©

$$e_2 = \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 1 \end{pmatrix}.$$

Осталось найти e_1 . Он дополняет вектор e_2 до базиса $\mathrm{Ker}(\mathcal{A}-\mathcal{E})$, поэтому можно взять любой вектор из этого ядра, линейно независимый с e_2 , например, $e_1 = (0,0,1,0)^T$.

Итак, у нас следующий жорданов базис: $e_1 = (0,0,1,0)^T$, $e_2 = (3,1,3,1)^T$, $e_3 = (0,-2,0,-1)^T$, $e_4 = (1,0,0,0)$. Проверим себя. Матрица перехода от стандартного базиса к жорданову имеет вид

$$C = \begin{pmatrix} 0 & 3 & 0 & 1 \\ 0 & 1 & -2 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix},$$

тогда

$$C^{-1}AC = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Подумайте, как изменится нумерация векторов при перестановке жордановых клеток в ${\rm WH}\Phi$ и проверьте себя.

Замечание. Вообще, если ЖНФ J найдена, то найти матрицу перехода можно с помощью матричного уравнения XJ-AX=0, а столбцы матрицы перехода и есть векторы жорданова базиса. Решение данного матричного уравнения сводится к решению однородной СЛАУ. Пространство её решений, вообще говоря, многомерно. Из решений можно взять любое, которое даёт невырожденную матрицу.