Natural Language Processing

Module description

Target Audience: Students enrolled on MSc Data Science programme who are interested in learning about machine processing of natural language that is a key target for the application of Data Science techniques.

Content Differentiation: Natural language processing (NLP) involves machines processing and extracting information from natural human languages. NLP is a crucial target for the application of data science techniques. It consists of a range of specialized techniques that researchers are developing in the significant and growing field of Natural Language Processing. By taking this module, you will gain a solid grasp and practical experience with those techniques. The module complements other modules in the programme which involve the processing and interpretation of data by machines.

Module goals and objectives

Upon successful completion of this module, you will be able to:

- Explain differences between rule-based and statistical approaches to NLP, and evaluate their relative merits
- Select appropriate statistical language analysis techniques for a particular problem
- Utilize software tools such as corpus readers, stemmers, taggers and parsers and carry out analysis of existing texts by writing software using existing NLP libraries
- Define formal grammars for fragments of a natural language
- Evaluate applications of statistical techniques to natural language analysis such as classification, information extraction and probabilistic parsing.

Textbook and Readings

Specific essential readings for each week from the following list are included in the Readings page for each week:

• Bird, Steven, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. O'Reilly Media, Inc., 2009.

- Jurafsky, Dan, and James H. Martin. "Speech and Language Processing (3rd draft ed.)." (2019).
- Perkins, Jacob. Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd, 2014.
- Python Natural Language Processing Cookbook: Over 50 recipes to understand, analyze, and generate text for implementing language processing tasks, Zhenya Antić, Packt Publishing Ltd, 2021
- Provost, Foster, and Tom Fawcett. Data Science for Business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc., 2013.
- Schütze, Hinrich, Christopher D. Manning, and Prabhakar Raghavan. Introduction to information retrieval. Vol. 39. Cambridge: Cambridge University Press, 2008.
- Hovy, Dirk. Text Analysis in Python for Social Scientists: Discovery and Exploration.
 Cambridge University Press, 2020.
- VanderPlas, Jake. Python data science handbook: Essential tools for working with data. O'Reilly Media, Inc., 2016.

Module outline

The module consists of ten topics that focus on key areas of the fundamentals of computer science.

	Key concepts:			
Topic 1.	 Alternative paradigms within NLP NLP toolkits and libraries Evaluation in NLP 			
	Learning outcomes:			
	 Understand the scope and impact of NLP Explore the development environment Describe the evolution of NLP approaches 			

	T			
	Key concepts:			
T o	Word and sentence tokenization			
Topic 2.	Text normalization			
	Text corpora			
	Learning outcomes:			
	Understand text processing fundamentals			
	Apply text processing techniques			
	Manipulate unstructured data			
	iviampulate unstructured data			
	Key concepts:			
Topic 3.	Word frequency distributions			
	 ngram language models and perplexity 			
	Topic models			
	Learning outcomes:			
	Perform basic statistical analyses on			
	language data			
	 Understand how to statistically model natural language 			
	Perform topic modelling on language data			
	a chemitopie modeling em language data			
	Key concepts:			
Topic 4.	Lexical semantics representations			
	Word embeddings			
	Similarity metrics			
	Learning outcomes:			
	 Understand how word meanings are 			
	represented			

Topic 5.	 Analyse curated and distributed word representations Apply semantic similarity techniques Key concepts:				
	Supervised classificationFeature extraction and selectionSentiment lexicons				
	Learning outcomes:				
	 Understand the fundamentals of text categorization Apply sentiment analysis techniques Evaluate text categorization techniques 				
Topic 6.	Key concepts:				
	 Context-free grammars Dependency grammars Probabilistic parsing 				
	Learning outcomes:				
	 Understand the fundamentals of grammars and parsing Apply practical syntax analysis techniques Understand probabilistic approaches to parsing 				
Topic 7.	Key concepts:				
	Named entitiesRelation extractionInformation extraction pipelines				

	Understand the definition and scope of information extraction Apply entity recognition techniques Create practical information extraction applications			
Topic 8.	 Key concepts: Boolean search Vector space models Query expansion Learning outcomes: Understand IR fundamentals Analyse IR data structures Apply IR techniques and principles 			
Topic 9.	 Key concepts: Speech acts & grounding Dialog system architectures Frames and slot filling Learning outcomes: Understand the properties of human conversation Anayse dialog system architectures Create simple chatbots 			

Topic 10.	Key concepts:			
	 NLP skills and competencies Natural language engineering NLP trends and developments 			
	Learning outcomes:			
	 Understand how NLP concepts and principles are applied in industry Gain insight into the challenges faced by NLP practitioners Compare and contrast different contexts for NLP practice 			

Activities of this module

The course is comprised of the following elements:

- Lecture videos introduce the main concepts of the topics and illustrate them with examples
- Practice guizzes will be used to reinforce your learning and understanding
- Activities drive the work that you do for each topic, where you are asked to solve challenges of different types
- Graded assignments include a practical coursework assignment and a written exam.
- Discussions with your peers will help to guide your work and encourage you to explore different types of solutions to problems
- Readings will help to reinforce your learning of concepts.

How to pass this module

The module has two major assessments each worth 50% of your grade:

- Coursework: this will be assessed midway through the course. The coursework comprises a variety of exercises which in total will take up to 25 hours of study time to complete.
- The examination will be two hours long and consist of multiple-choice questions and longer written answers.

Activity	Required?	Deadline week	Estimated time per course	% of final grade
Written, staff graded coursework	Yes	12	Approximately 25 hours	50%
Written examination	Yes	20	2 hours	50%