

Elements of this presentation courtesy of Airservices Australia, the Air Traffic Alliance, Eurocontrol, LVNL, Martinair, NASA Ames, Qantas, Transavia, United & other Tailored Arrivals partners

Rob Mead 9 Jan 2007

Topics

- Tailored Arrivals overview
- Tailored Arrivals development framework
- Sample technical results
 - focus on latest trials
- Applicable areas of discussion
- Conclusion

Tailored Arrivals Overview

What is a Tailored Arrival?

Engineering, Operations & Technology | Phantom Works

Ideally: A smooth, efficient descent from cruise altitude to runway enabled through use of <u>existing</u> aircraft automation

- Final cruise segment routing and descent profile are tailored to achieve waypoint arrival times required for spacing
 - Requires coordination across ATC boundaries
- Delivered by data-link well prior to TOD
- Loaded into and flown by aircraft FMS, achieving a continuous, near idle descent
- New ground automation generates custom routes that are reviewed and uplinked by controllers to:
 - Avoid conflicts
 - Meet sequence and schedule constraints
 - Avoid weather, terrain, and restricted airspace
- Reduces workload and the potential for pilot & controller error
 - Allows pilots to take full advantage of existing aircraft automation
 - New ATC automation tools aid controller
 - Reduces VHF congestion factor in many incidents, multiple accents

Tailored Arrivals

- Clearances based on merge point time delivered prior to TOD for maximum use of automation "Windows" used to ensure separation from other streams, and to optimize for a/c type Lower fuel burn, lower environmental impact, increased predictability

Tailored Arrival Components

Copyright © 2006 Boeing. All

EOT PW no-icon.ppt

Development framework

Tailored Arrivals Development framework

Engineering, Operations & Technology | Phantom Works

General Format for development

- Step 1
 - Verify and demonstrate a/c capability to follow pre-determined profiles and achieve predicted times
 - Begin airspace integration
 - cross-center/sector clearances
- Step 2
 - Routine use of pre-defined profiles
 - Supports ground tool requirements capture
 - provides early benefits
 - Design advanced ground tools for time-based sequencing and conflict avoidance, and profile clearance generation
- Step 3
 - Introduce advanced ground tools
 - Dynamically generate clearances in congested periods

Datalink clearances become essential at this point

Benefits of global format

- Global format established to ensure global procedures
- Unplanned benefit of the format has been steady, timely progress

What we need ...

Copyright 2000 200111917111 EOT PW no-icon.ppt

Basic Oceanic Tailored Arrival 28R, Track C

Engineering, Operations & Technology | Phantom Works

Clearance includes published procedure, transition, and runway

Clearance includes vertical, lateral, and speed constraints

Clearance is from en-route airspace through to destination

Additional speed schedule clearance used to fine-tune TOD and arrival time

At COSTS cleared to:

- CINNY
- BRINY
- N37W122210/7500A
- · OSI -----
- MENLO ----/4500A
- ILS28R Approach
- Runway 28R

Copyright © 2006 Boeing, All

Sample technical results

Profile predictability

Engineering, Operations & Technology | Phantom Works

All flights

Standard Procedure

Refined procedure

Time predictability

Engineering, Operations & Technology | Phantom Works

Copyright © 2006 Boeing. All

EOT PW no-icon.ppt

Bay Area trials

They build airports where people live

1st Round of SFO Oceanic Tailored Arrivals

Potential SFO benefits

	Δ Fuel(lbs)	$_{\Delta}$ Time(sec)	Δ Distance(nm)		
747/220	392.8	37.0	5		
	782.5	73.7	10		
	1568.0	147.9	20		
	3123.0	296.5	40		
757/220	77.0	42.5	5		
	154.0	85.0	10		
	306.0	168.0	20		
	612.0	336.0	40		
767/240	135.2	34.7	5		
	270.4	69.4	10		
	540.8	138.8	20		
	1081.6	277.6	40		
777/240	192.0	36.8	5		
	384.0	73.6	10		
	768.0	147.2	20		
	1536.0	294.4	40		

- → Time and fuel savings based on OTA vs. baseline scenarios with an 8000' level flight segment of the listed distances added, at 220 knots or 240 knots for the 747/757 and 767/777 respectively.
- → Baseline scenario with level segment of 5 NM may be considered representative of a low congestion period whereas the 20NM level segment case would represent a congested period
- Estimates based simply on the difference in flight time and fuel burned compared to the OTA procedure from a cruise condition of 37,000' and flight Mach number 0.863, 0.798, 0.802, and 0.845 for the 747, 757, 767, and 777, respectively.
- → Assessment requires confirmation with simulator data and / or flight data.

Sample Flights: Current vs. OTA

- Noise levels unchanged compared with existing nighttime procedure
- Vertical and Lateral Path variation reduced
- Flight efficiencies in accordance with predictions

The Key Issues

- Ground automation still under development
- Capability to coordinate, issue, and execute crosscenter clearances requires operational change
 - Ground systems and staff are not used to working like this
 - Today's aircraft have the needed capabilities, but currently aircrews and controllers don't get to routinely use them
 - Small issues with loading a datalink route clearance
 - Voice clearances that pass through constraints in the route clearance
 - Managing VNAV in the descent
 - Impact of loading (or not) weather information
- These issues are <u>not</u> exclusive to Tailored Arrivals
 - But Tailored Arrivals are a good way to work them!

Summary

- Three branches of development activity in progress
 - San Francisco conducting Oceanic Tailored Arrivals, covering development Step 1 and parts of Step 2
 - Australia conducting Phase 2 Tailored Arrivals flights, targeted at Step 2
 - The Netherlands launching second project, targeted at completing Step 2
- Collectively, these provide the platform for global development of Tailored Arrivals
 - Covering Airbus and Boeing aircraft
 - Using existing aircraft capabilities
 - Tackling two major issues for 4D operations
 - Providing step-wise benefits

Thanks to our Partners!

The key work areas

Engineering, Operations & Technology | Phantom Works

- 1. The ability to coordinate a clearance across multiple centers / sectors, and deliver it prior to TOD
 - Not a "technology issue", but without it there is no 4D

2. Ground functionality that:

- Produces sufficiently accurate a/c profiles to identify the constraints. To do this, the ground needs
 - Sufficiently accurate a/c models
 - Up-to-date weather models
 - Sufficient information about each a/c
 - Aircraft use current speed, gross weight at TOD, and the speed envelope for descent calculation
- Uses these profiles to sequence and de-conflict a/c across the ATS Centers & Sectors involved

And some of those people have influence

Engineering, Operations & Technology | Phantom Works

PW no-icon.ppt

Clearance for Option 1

Engineering, Operations & Technology | Phantom Works

```
ATC DL Uplink Message AT1 - ATCCTR1 - .N777BO - CRC is valid
19,,
0(83): At [pos] Cleared [routeclr]
 pos(fix): COSTS
 dest airport(): KSFO
 arr runway(): 28R
 app proc(): APP,ILS28R,MENLO
 route info(): 5
   (pub): CINNY
   (pub): BRINY
   (I/I): N37W122
   (pub): OSI
   (pub): MENLO
 route info add():
   wp spd alt: 2
    pos(I/I): N37W122; spd(ias): 210; ATWalt(qnh): 7500A
    pos(fix): MENLO; ATWalt(qnh): 4500A
```

Copyright © 2006 Boeing. All

EOT PW no-icon.ppt

PILOT NOTES

W124-45-36.000

1. Load TA Clearance in FMS

W126-05-41.000

- 2. Verify speed and altitude constraints on MCDU LEGS page
- 3. Enter VREF +5 as speed constraint for the final approach fix
- 4. Altitude clearance required to initiate descent
- 5. Add drag when indicated airspeed exceeds FMC speed + 10 kts
- 6. Use Speed brakes above 10000 feet as required to maintain VNAV path and speed, use flaps after OSI
- 7. Arm APPROACH after starting turn on the localizer and receiving ATC clearance for ILS
- 8. After glide slope capture, manage approach and landing normally
- 9. Set gear and flaps as needed for normal landing No later than 1 mile prior to final approach, select gear down and landing flap

ATC CLEARANCE INFORMATION (from flight test plan)

- The data linked route clearance is to ILS28R using MENLO Transition, BRINY, NW37 W122 at or above 7500 and speed 210 kts, OSI, MENLO at or above 4500
- Initial TA Descent Clearance: "Descend at pilot's discretion, maintain 7500 ft"
- TA continuation clearance: "Cross MENLO at or above 4500 feet, cleared ILS approach 28R"
- 4. Contact SFO TWR on final.

Cross at 210 kts and at or above 7500'

Today

- Lower airspace "manually" adjusts streams to correct merge point times
- · Higher fuel burn, higher environmental impact, decreased predictability

Sample Non-Oceanic Tailored Arrivals flights

1st Round of SFO OTA Testing

Engineering, Operations & Tec

OTA Attempted OTAs		Successful Route Uplink		Successful Wind Uplink		Successful** CDA (ZOA)		Successful** CDA (NCT)			
2	21		17 17		7	13		16*		8*	
Basic	EDA	Basic	EDA	Basic	EDA	Basic	EDA	Basic	EDA	Basic	EDA
7	14	3	14	3	14	3	10	6	10	0	8

^{*} Data not yet available for 1 flight so it is not included

^{**} Nocopyrights@h2000iBdbyrhorMtvel-off segments.

Copyright © 2006 Boeing. All rights reserved.