F70TS2 - Time Series

Exercises 4

1. In the notes it is shown that, under given conditions, the sample mean \bar{x} obtained from a realisation of a stochastic process is asymptotically normal. Is this property important? Why? Assume that $\bar{x}=1.56$ is obtained from a realisation of a time series with absolutely summable $\gamma(k)$. Furthermore, we also obtained its asymptotic variance $\mathrm{Var}(\bar{x})\approx 0.01$. What is the approximate 95% confidence interval of the unknown expectation μ ?

For a large sample you can use the approximation of the normal quantile $Z_{0.025} = 1.96 \approx 2$.

2. Assume that \bar{x} is calculated from a realisation $x_1, ..., x_{900}$ of the following causal stationary ARMA models with unknown mean:

(a)
$$X_t - \mu = 0.5(X_{t-1} - \mu) + 0.2(X_{t-2} - \mu) + 0.4\epsilon_{t-1} + \epsilon_t$$

(b)
$$X_t - \mu = 0.2(X_{t-1} - \mu) + 0.6\epsilon_{t-1} + 0.3\epsilon_{t-2} + \epsilon_t$$

(c) X_t Assignment₂Project Exam Help

where ϵ_t are i.i.d. N(0,1) random variables. Calculate the asymptotic $Var(\bar{x})$ in each case and compare your results in all cases. What general conclusions can be drawn?

3. Three causal stationary All models with unknown mean are given below.

(a)
$$X_t - \mu = 0.7(X_{t-1} - \mu) + \epsilon_t$$
,

(b)
$$X_t - \mu = -0.2$$
 Add μ We that powcoder

(c)
$$X_t - \mu = 0.45(X_{t-1} - \mu) + 0.3(X_{t-2} - \mu) + \epsilon_t$$
,

where ϵ_t are i.i.d. N(0,1) random variables. Let Y_t denote an i.i.d. process with unknown mean and the same variance as X_t , i.e. $\mathrm{Var}(Y_t) = \mathrm{Var}(X_t) = \gamma(0)$. Calculate $\gamma(0)$ for each of the models above. Given data $x_1,...,x_{400}$ and $y_1,...,y_{400}$, you can obtain \bar{x} and \bar{y} . You should calculate the asymptotic $\mathrm{Var}(\bar{x})$ for each model and compare them with the corresponding $\mathrm{Var}(\bar{y}) = \frac{1}{400}\gamma(0)$. Comment on your results.

4. Suppose you have calculated the first 20 sample autocorrelations $\hat{\rho}(k)$ for k=1,...,20, from a time series with n=400 observations. Assume that you know the underlying process $\{X_t\}$ is stationary. You want to check whether X_t could be independent. What are your conclusions in the following cases: a) $|\hat{\rho}(k)| > 0.1$ for at least one k, and b) $|\hat{\rho}(k)| < 0.1$ for all k? Why are the condition 'at least one' and the bound 0.1 used? Assume now that you calculated the first 40 sample autocorrelations $\hat{\rho}(k)$ for k=1,...,40, from a time series with n=1600 observations. How should you formulate and answer similar questions?