Soluzione - Simulazione di Elaborazione di segnali e immagini

Università degli Studi di Verona 29 Gennaio 2020

1 Soluzione Esercizio

La convoluzione può essere riscritta come il prodotto tra i due segnali:

$$y(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) d\tau = \int_{-\infty}^{\infty} h(\tau) \cdot x(t - \tau) d\tau$$

Assumendo che il segnale $h\left(t\right)$, che per convenzione scriveremo $h\left(f\right)$, negli estremi sia uguale a zero, si esegue una convoluzione grafica. Quindi, si evidenziano con le lettere a,b,c e d i vari spostamenti:

Ad ogni spostamento del segnale $h\left(f\right)$, si costruisce graficamente l'area del segnale risultante, ovvero $y\left(t\right)$:

2 Soluzione Esercizio

Assumendo che i segnali siano rappresentati nel dominio del tempo discreto, allora la loro convoluzione corrisponde come il prodotto tra i due segnali:

$$y(t) = \sum_{\tau} x(\tau) \cdot h(t - \tau)$$

$$= \sum_{\tau} h(\tau) \cdot x(t - \tau)$$

$$= \sum_{\tau} h(\tau) \cdot 2\delta(t - 0.5)$$

↓ Proprietà di setacciamento

$$= 2 \cdot h (t - 0.5)$$

Graficamente il segnale $y\left(t\right)$ risulta uguale a zero fino al valore 0.5, ovvero finché il segnale $h\left(t\right)$ interseca il segnale $x\left(t\right)$. Dopodiché, rimane di ampiezza pari a 2 fino al valore 1.5, ovvero l'ultima intersezione registrata durante la convoluzione (per la convoluzione grafica si guardi la soluzione precedente):

Nota: il valore $x(t-\tau)$ è pari a $2\delta(t-0.5)$ poiché è stato fornito dal testo dell'esercizio.

3 Soluzione Esercizio

La soluzione dell'esercizio prevede 3 casi per 3 valori di campionamento diverso. Nel primo caso (a) si determina anche il risultato (output) grafico del campionamento nel dominio del tempo continuo e nel dominio delle frequenze.

Caso a

Il campionamento è ogni 15 Hz, quindi il grafico è:

L'ampiezza del segnale diventa 30 (2×15). Anche senza il teorema di Nyquist¹ è possibile notare l'aliasing.

Il risultato post campionamento è un segnale costante di ampiezza 30 (si ricorda che il campionamento è la moltiplicazione del segnale per un treno di impulsi):

Nel dominio delle frequenze, il segnale è un impulso centrato in 0 con ampiezza pari a 30:

¹Teorema di Nyquist

$\underline{\text{Caso } b}$

Il campionamento è ogni 17.5 Hz, quindi il grafico è:

L'ampiezza del segnale diventa 35 (2 \times 17.5). Si manifesta aliasing.

Caso c

Il campionamento è ogni 22 Hz, quindi il grafico è:

L'ampiezza del segnale diventa 44 (2 \times 17.5). L'aliasing non si presenta.

4 Soluzione Esercizio

Si applica il filtro di ricostruzione ideale con una frequenza che dipende a quanto è stato campionato ogni segnale.

Caso a

La frequenza del campionamento è stata con una frequenza di 15 Hz. Quindi, la frequenza di taglio del filtro di ricostruzione ideale è 7.5 Hz ($15 \div 2$).

Filtro di ampiezza unitaria

A sinistra in alto, la rappresentazione del segnale insieme al filtro e a destra in basso, la ricostruzione ideale che non corrisponde al segnale originario.

Il filtro, da definizione, taglia tutte le frequenze e si ottiene una box di base 15 e altezza 30. Dato che il segnale manifestava aliasing, il segnale $\underline{\text{non}}$ può essere ricostruito.

Caso b

La frequenza del campionamento è stata con una frequenza di 17.5 Hz. Quindi, la frequenza di taglio del filtro di ricostruzione ideale è 8.75 Hz $(17.5 \div 2)$.

filtro di ampiezza unitaria

A sinistra in alto, la rappresentazione del segnale insieme al filtro e a destra in basso, la ricostruzione ideale che non corrisponde al segnale originario.

Il filtro, da definizione, taglia tutte le frequenze e si ottiene una box di base 17.5 e altezza 35. Dato che il segnale manifestava aliasing, il segnale <u>non</u> può essere ricostruito.

Caso c

La frequenza del campionamento è stata con una frequenza di 22 Hz. Quindi, la frequenza di taglio del filtro di ricostruzione ideale è 11 Hz $(22 \div 2)$.

A sinistra in alto, la rappresentazione del segnale insieme al filtro e a destra in basso, la ricostruzione ideale che corrisponde al segnale originario.

Il filtro, da definizione, taglia tutte le frequenze e si ottiene una box di base 20 e altezza 44. Dato che il segnale <u>non</u> manifestava aliasing, **è stato ricostruito con successo**.