Løsning til eksamen i Matematik 2, 01035, Maj 2017

Jens Gravesen

5. maj 2017

Opgave 1

(i) Da

$$\left| (-1)^n \frac{3}{2n^2 + n} \right| \le \frac{3}{2} \frac{1}{n^2}, \quad \text{og} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ er konvergent},$$

giver sammenlignings kriteriet, at den givne række er absolut konvergent.

(ii)
$$\left| \frac{\left((-1)^{n+1} + \frac{1}{(n+1)!} \right) x^{n+1}}{\left((-1)^n + \frac{1}{n!} \right) x^n} \right| = \left| \frac{\left(-1 + (-1)^n \frac{1}{(n+1)!} \right) x}{1 + (-1)^n \frac{1}{n!}} \right| \to |-x| = |x| \text{ for } n \to \infty,$$

ser vi, at konvergensradius er $\rho = 1$.

- (iii) Det karakteristiske polynomium har dobbeltroden -2. så den fuldstændige løsning er $y(t) = c_1 e^{-2t} + t e^{-2t}$, $c_1, c_2 \in \mathbb{R}$.
- (iv) Routh-Hurwittz kriterium giver følgendebetingelser for asymptotisk stabilitet:

$$2 > 0$$
, $2 - c > 0$, $2c > 0$, $\begin{vmatrix} 2 & 2c \\ 1 & 2 - c \end{vmatrix} = 4 - 2c - 2c = 4(1 - c) > 0$.

Dvs. c < 2, c > 0 og c < 1 eller 0 < c < 1.

- (v) Vi har $\left|\frac{(2-x)^{n+1}}{(2-x)^n}\right| = |2-x|$, så kvotient kriteriet giver vi har konvergens af rækken hvis og kun hvis |2-x| < 1, dvs. $-1 < 2-x < 1 \iff -3 < -x < -1 \iff 1 < x < 3$.
- (vi) Da $1 \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2}$ og $\cos 2A = \cos^2 A \sin^2 A$ har vi

$$f(x) = 1 - \sin^2 \frac{x}{2} = \frac{1}{2} \left(1 - \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} \right) = \frac{1}{2} \left(1 + \cos x \right) = \frac{1}{2} + \frac{1}{2} \cos x.$$

Opgave 2

(i) Karakterligningen har løsningerne $-1, \pm i$, så den fuldstændige løsning til den homogene ligning er

$$y_{\text{hom}}(t) = c_1 e^{-t} + c_2 \cos t + c_3 \sin t$$
, $c_1, c_2, c_3 \in \mathbb{R}$.

(ii) $H(s) = \frac{1}{(s^2 + 1)(s + 1)}$

(iii) Hivis $u(t) = e^{2it}$ fås det stationære svar

$$y_c(t) = H(2i) e^{2it} = \frac{e^{2it}}{(-4+1)(2i+1)} = \frac{(\cos(2t) + i\sin(2t))(1-2i)}{-3(1+2i)(1-2i)}$$
$$= \frac{\cos(2t) + 2\sin(2t) + i(-2\cos(2t) + i\sin(2t))}{-15}.$$

hvis $u(t) = \cos(2t) = \Re(e^{2it})$ fås så det stationære svar

$$y_1(t) = \Re(y_c(t)) = -\frac{\cos(2t) + 2\sin(2t)}{15}$$
.

(iv) Da $u(t) = e^{-t}$ er en løsning til den homogene ligning har vi en løsning på formen $y(t) = a t e^{-t}$. Vi har

$$y'(t) = a(-t+1)e^{-t}, \quad y''(t) = a(t-2)e^{-t}, \quad y'''(t) = a(-t+3)e^{-t},$$

og dermed

$$y'''(t) + y''(t) + y'(t) + y(t) = a(1 - 2 + 3)e^{-t} = 2ae^{-t}.$$

Vi ser, at hvis a = 12 får vi en partikulær løsning

1/2

$$y_2(t) = \frac{t e^{-t}}{2}$$
.

(v) Den fuldstændige løsning for $u(t) = e^{-t} + \cos(2t)$ er nu givet ved

$$y(t) = y_1(t) + y_2(t) + y_{\text{hom}}(t)$$

$$= \frac{t e^{-t}}{2} - \frac{\cos(2t) + 2\sin(2t)}{15} + c_1 e^{-t} + c_2 \cos t + c_3 \sin t, \quad c_1, c_2, c_3 \in \mathbb{R}.$$

Opgave 3

(i)

(ii) Hvis

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$

så har vi

$$S(-\pi) = 0$$
, $S\left(-\frac{\pi}{2}\right) = -1$, $S(0) = \emptyset$, $S\left(\frac{\pi}{2}\right) = 0$, $S(\pi) = 0$.

(iii) Vi har

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (\sin x - 1) \, \mathrm{d}x = \frac{1}{\pi} \left[-\cos x - x \right]_{-\pi/2}^{\pi/2} = \frac{1}{\pi} \left(-\frac{\pi}{2} - \frac{\pi}{2} \right) = -1.$$

Da $\sin x \cos nx$ er ulige har vi for $n \in \mathbb{N}$, at

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (\sin(x) - 1) \cos nx \, dx = -\frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi/2}^{\pi/2} = \frac{1}{\pi} \left(\frac{\sin \frac{n\pi}{2} - \sin \frac{-n\pi}{2}}{n} \right) = \frac{2 \sin \frac{n\pi}{2}}{n\pi}$$

$$= \begin{cases} 0 & \text{hvis } n \text{ er lige,} \\ \frac{2}{n\pi} & \text{hvis } n = 1 + 4m, \ m = 0, 1, 2, \dots, \\ -\frac{2}{n\pi} & \text{hvis } n = 3 + 4m, \ m = 0, 1, 2, \dots. \end{cases}$$

Mangler at udregne by

Opgave 4

(i) Hvis $y(t) = a_0 t^2 + a_1 t + a_2$ fås

$$ty''(t) + y(t) = 2a_0 t + a_0 t^2 + a_1 t + a_2 = a_0 t^2 + (2a_0 + a_1) t + a_2$$
.

Dette giver t^2 hvis og kun hvis

$$a_0 = 1$$
, $2a_0 + a1 = 0$, og $a_2 = 0$.

Vi ser at $a_1 = -2a_0 = -2$ og vi har altså løsningen

$$y_n(t) = t^2 - 2t.$$

(ii) Ved indsættelse af en potensrække $y(t) = \sum_{n=0}^{\infty} a_n \, t^n$ fås

$$y'(t) = \sum_{n=1}^{\infty} n \, a_n \, t^{n-1} \,,$$

$$y''(t) = \sum_{n=2}^{\infty} n \, (n-1) \, a_n \, t^{n-2} \,,$$

$$t \, y''(t) = \sum_{n=2}^{\infty} n \, (n-1) \, a_n \, t^{n-1} = \sum_{n=1}^{\infty} (n+1) \, n \, a_{n+1} \, t^n \,.$$

Så

$$ty''(t) + y(t) = a_0 + \sum_{n=1}^{\infty} ((n+1) n a_{n+1} + a_n) t^n.$$

Hvis potensrækken er en løsning til den homogene ligning, har vi altså

$$a_0 = 0$$
 og $a_{n+1} = \frac{-a_n}{n(n+1)}$, for $n = \emptyset, 1, 2, \dots$

a, w en arbitrar konstant