Week 5: Kernel, range, rank-nullity theorem, matrix inverse

1.

Find the inverse of
$$A=\begin{bmatrix}0&\frac{1}{2}&-\frac{1}{2}\\1&0&1\\2&\frac{1}{2}&1\end{bmatrix}$$
.

(a)
$$A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & -2 \\ 2 & 4 & -2 \end{bmatrix}$$
 (100%)
(b) $A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & -4 & -2 \end{bmatrix}$
(c) $A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & 4 & -2 \end{bmatrix}$

(b)
$$A^{-1} = \begin{bmatrix} -2 & -3 & 2\\ 4 & 4 & 2\\ 2 & -4 & -2 \end{bmatrix}$$

(c)
$$A^{-1} = \begin{bmatrix} -2 & -3 & 2 \\ 4 & 4 & 2 \\ 2 & 4 & -2 \end{bmatrix}$$

Augmented matrix:
$$\begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & \frac{1}{2} & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{reorder\ rows} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & \frac{1}{2} & 1 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \end{bmatrix} \xrightarrow{R2-2R1\rightarrow R2}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & -1 & 0 & -2 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \end{bmatrix} \xrightarrow{R3-R2\to R3} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & -1 & 0 & -2 & 1 \\ 0 & 0 & \frac{1}{2} & 1 & 2 & -1 \end{bmatrix} \xrightarrow{\substack{2R2\to R2\\ 2R3\to R3\\ 2R3\to R3}}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 & -4 & 2 \\ 0 & 0 & 1 & 2 & 4 & -2 \end{bmatrix} \xrightarrow{R1-R3\to R1} \begin{bmatrix} 1 & 0 & 0 & -2 & -3 & 2 \\ 0 & 1 & 0 & 4 & 4 & -2 \\ 0 & 0 & 1 & 2 & 4 & -2 \end{bmatrix}$$

2.

Find the inverse of $A = \begin{bmatrix} 3.5 & -1 & 0.5 \\ 10 & -3 & 2 \\ 2.5 & -1 & 1.5 \end{bmatrix}$.

(a)
$$A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$

(b) $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & -2 \end{bmatrix}$
(c) $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$

(b)
$$A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & -2 \end{bmatrix}$$

(c)
$$A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$$

(d) the inverse does not exist (100%)

Note that:

$$\begin{bmatrix} 3.5 & -1 & 0.5 \\ 10 & -3 & 2 \\ 2.5 & -1 & 1.5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Meaning that $\dim(\ker(A)) > 0 \Rightarrow A$ is singular and doesn't have an inverse

3.

MULTI [1.0 point] [0 penalty] [Single] [Shuffle]
$$\text{Find the inverse of } A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

(a)
$$A^{-1} = \begin{bmatrix} 0 & -0.5 & 0.5 \\ -0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix}$$
 (100%)
(b) $A^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0 \\ 0.5 & -0.5 & 0 \\ -0.5 & 0 & 0.5 \\ 0.5 & -0.5 & 0 \end{bmatrix}$
(c) $A^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 \\ 0.5 & -0.5 & 0 \end{bmatrix}$
(d) the inverse does not exist

(d) the inverse does not exist

Augmented matrix:

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2+R3\to R3} \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 1 & 0 \\ 0 & 2 & 2 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{R3\to R2 \\ 0.5R2\to R2} \xrightarrow{0.5R2\to R2} \begin{bmatrix} 0.5R3\to R3 \\ 0.5R3\to R3 \\ R2+R1\to R1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & 0.5 & 0.5 \\ 0 & 1 & 1 & 0 & 0.5 & 0.5 \\ 0 & 0 & 1 & 0.5 & 0.5 & 0 \end{bmatrix} \xrightarrow[R2-R3\to R2]{R1-2R3\to R1} \begin{bmatrix} 1 & 0 & 0 & 0 & -0.5 & 0.5 \\ 0 & 1 & 0 & -0.5 & 0 & 0.5 \\ 0 & 0 & 1 & 0.5 & 0.5 & 0 \end{bmatrix}$$

4.

Find the kernel of $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

(a)
$$\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\-1 \end{bmatrix} \right\}$$
 (100%)
(b) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$

(c)
$$\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 2\\1\\-1 \end{bmatrix} \right\}$$

(d) $\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$

Write out the augmented matrix corresponding to Ax = 0:

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow$$
$$\Rightarrow x = \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$$

5.

An $n \times k$ matrix A has the following kernel:

$$\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$$

What is the dimension of its image $\dim(\operatorname{im}(A))$?

- (a) $\dim(\operatorname{im}(A)) = k 1$
- (b) $\dim(\operatorname{im}(A)) = k 2 (100\%)$
- (c) $\dim(\operatorname{im}(A)) = n 3$
- (d) $\dim(\operatorname{im}(A)) = n$

Using the rank-nullity theorem $(\dim(\ker(A)) + \dim(\operatorname{im}(A)) = \dim(\operatorname{Dom}(A)) = k)$:

$$\dim(\ker(A)) = 2 \Rightarrow \dim(\operatorname{im}(A)) = k - 2$$

6.

Given the matrix $A = B \cdot C \cdot D$ find its inverse A^{-1} .

(a)
$$A^{-1} = D^{-1}C^{-1}B^{-1}$$
 (100%)
(b) $A^{-1} = B^{-1}C^{-1}D^{-1}$

(b)
$$A^{-1} = B^{-1}C^{-1}D^{-1}$$

(c)
$$A^{-1} = D^{-1}B^{-1}C^{-1}$$

(d)
$$A^{-1} = C^{-1}D^{-1}B^{-1}$$

Using
$$(B \cdot C)^{-1} = C^{-1}B^{-1}$$
:
 $(BCD)^{-1} = D^{-1} \cdot (BC)^{-1} = D^{-1}C^{-1}B^{-1}$

7.

A linear map $D: \mathbb{R}^2 \to \mathbb{R}^2$ is given by the following matrix in the standard basis: $D_{\text{st}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. How is the map represented in the following basis: $\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$?

(a)
$$D_{\text{new}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (100%)

(b)
$$D_{\text{new}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(c)
$$D_{\text{new}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$D_{\text{new}} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(d) $D_{\text{new}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

To act on an element given by the coordinates in the new basis one can:

- (a) convert coordinates to the standard ones
- (b) act with the map, represented in the standard basis
- (c) convert back to the new basis

Converting the above mentioned map composition to the matrix multiplication language:

$$D_{new} = \underbrace{\left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}\right)^{-1}}_{(c)} \cdot \underbrace{D_{st}}_{(b)} \cdot \underbrace{\left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}\right)}_{(a)} = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

8.

Consider the standard basis in \mathbb{R}^3 : $\{e_x, e_y, e_z\}$.

Which of the following matrices represents a counterclockwise rotation around the z-axis?

(a)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(100%)
(b)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{bmatrix}$$

(c)
$$\mathcal{R} = \begin{bmatrix} 1 & 0 & -\sin \varphi \\ \cos \varphi & 1 & \cos \varphi \\ \sin \varphi & 0 & 1 \end{bmatrix}$$

(d)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(c)
$$\mathcal{R} = \begin{bmatrix} 1 & 0 & -\sin\varphi \\ \cos\varphi & 1 & \cos\varphi \\ \sin\varphi & 0 & 1 \end{bmatrix}$$

(d)
$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The rotation matrix should act as follows on the basis vectors:

$$\mathcal{R}e_x = \cos\varphi \, e_x + \sin\varphi \, e_y; \quad \mathcal{R}e_y = -\sin\varphi \, e_x + \cos\varphi \, e_y; \quad \mathcal{R}e_z = e_z$$

Given that
$$e_x \equiv \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $e_y \equiv \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_z \equiv \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, then

$$\mathcal{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

9.

Consider the space of 2×2 Hermitian Matrices $H_2(\mathbb{C})$ (the space of 2×2 matrices A with complex entries such that $A^{\dagger} := \overline{A}^T = A$).

Which of the following is true?

- (a) $H_2(\mathbb{C})$ is a vector space over the field of real numbers, but not over the complex numbers. (100%)
- (b) $H_2(\mathbb{C})$ is a vector space over the field of real numbers and over the complex numbers.
- (c) $H_2(\mathbb{C})$ is not a vector space over the field of real numbers or complex numbers.
- (d) $H_2(\mathbb{C})$ is a vector space over the field of complex numbers, but not over the real numbers.

Consider two matrices $A, B \in H_2(\mathbb{C})$. We can see that $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger} = A+B$, so the space is closed under addition. Now consider $(cA)^{\dagger} = \overline{c}A^{\dagger} = \overline{c}A$, with \overline{c} being the complex conjugate of c. If $c \in \mathbb{R}$, then $\overline{c} = c$, and thus the space is closed under scalar multiplication. However, if $c \in \mathbb{C}$, then $(cA)^{\dagger} = \bar{c}A \neq cA$, and thus the space is not closed under scalar multiplication.

10.

Consider the vector space $P_2(\mathbb{R}) = \{p(x) \mid p(x) \text{ is a quadratic polynomial}\}.$

Is the derivative operator $\mathcal{D}: p(x) \mapsto p'(x) \equiv \frac{\mathrm{d}}{\mathrm{d}x} p(x)$ a linear operator? If it is, how is it represented in the standard basis $\mathfrak{B} = \{1, x, x^2\}$

Hint: You can express a polynomial $ax^2 + bx + c$ as $\begin{bmatrix} c \\ b \end{bmatrix}$

- (a) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ (100%) (b) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

- (c) \mathcal{D} is a linear operator with $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
- (d) \mathcal{D} is not a linear operator

The derivative is a linear operator since
$$\frac{\mathrm{d}}{\mathrm{d}x}(\alpha p(x) + \beta q(x)) = \alpha \frac{\mathrm{d}}{\mathrm{d}x}p(x) + \beta \frac{\mathrm{d}}{\mathrm{d}x}q(x)$$

We know: $\mathcal{D}(p(x)) = \frac{\mathrm{d}}{\mathrm{d}x}(ax^2 + bx + c) = 2ax + b \equiv \begin{bmatrix} b \\ 2a \\ 0 \end{bmatrix}$

Therefore, $[\mathcal{D}]_{\mathfrak{B}} \begin{bmatrix} c \\ b \\ a \end{bmatrix} = \begin{bmatrix} b \\ 2a \\ 0 \end{bmatrix}$. This is only satisfied by $[\mathcal{D}]_{\mathfrak{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Total of marks: 10