LCIE

Etablissement de Moirans

170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

Rapport d'essai / Test report

N° 115645-R1-E

JDE: 106361

DELIVRE A / ISSUED TO

: INGENICO

1 Rue Claude Chappe

B.P.348

07503 GUILHERAND GRANGES - FRANCE

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux normes

FCC CFR 47 Part 15, Subpart B et C.

Electromagnetic compatibility tests according to the standards

FCC CFR 47 Part 15, Subpart B and C

Matériel testé / Apparatus under test

Produit / Product

: Terminal de paiement / Payement terminal

Marque / Trade mark

: INGENICO

Constructeur / Manufacturer

: INGENICO

Nom commercial / Marketing name

ISMP

Type sous test / Model under test

: IMP350-01T1496A & IMP320-01T1492A

N° de série / serial number

: PROTO1 & PROTO1

FCC ID

: XKB-IMP3YYW

Date des essais / Test date

: Du 19 au 21 Avril 2011 et 16 Février 2012 /

From April 19th to 21st, 2011 and February 16th, 2012

Lieu d'essai / Test location

: LCIE SUD-EST

ZI Centr'Alp – 170 rue de Chatagnon

38430 MOIRANS - FRANCE

Test réalisé par / Test performed by

: Anthony MERLIN

Ce document comporte / Composition of document : 36 pages.

MOIRANS, LE 16 FÉVRIER 2012 / FEBRUARY 16TH, 2012

Ecrit par / Written by, Anthony MERLIN

Approuvé par / Apparentatione CENTRAL DES DIE INDUSTRIES ELECTRIQUES LCIE SUD-EST

ZI Centr'Alp 170. Rue de Chatagnon 38439 MOIRANS

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIE Ce document résulte d'essais effectives se un spécimen, un échantillon contraire, la décision de conformité prend en ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Sauf inc compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification.

This document shall not be reproduced, except in full, without t he written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested . Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

33, av du Général Leclerc

Tél: +33 1 40 95 60 60

Société par Actions Simplifiée

92266 Fontenay-aux-Roses cedex

Fax: +33 1 40 95 86 56 contact@lcie.fr

au capital de 15 745 984 € RCS Nanterre B 408 363 174

France

www.lcie.fr

www.lcie.com

SUMMARY

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

1.

2.

3.

4.

5.

6.

7.

8.

9.

Page: 2/36

Page: 3 / 36

1. **TEST PROGRAM**

- FCC Part 15, Subpart B (Digital Devices) - ANSI C63.4 (2003) Standard:

EMISSION TEST	LIMITS		RESULTS (Comments)	
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	PASS
150kHz-30MHz	150-500kHz	66 to 56	56 to 46	
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 30MHz-2GHz*	88MHz-216MI 216MHz-960N	m z : 40 dBμV/m Hz : 43.5 dBμV/m //Hz : 46.0 dBμV/m lz : 54.0 dBμV/m	PASS	

Page: 4/36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

Standard: - FCC Part 15, Subpart C

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS			RESULTS (Comments)
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	PASS
, 150kHz-30MHz	150-500kHz	66 to 56	56 to 46	
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz	Measure at 3 490kHz-1.705	: 67.6dBµV/m /F(l	PASS	
Radiated emissions 30MHz-2GHz*	Measure at 3 30MHz-88MH 88MHz-216MI 216MHz-960N		PASS	
Fundamental field strength	Operation wi 13.110-14.010 Limit: 84dBµ		PASS	
Fundamental frequency tolerance	Operation wi 13.110-14.010	thin the band) MHz §15.2	PASS	
Bandedge compliance	Operation wi 13.110-14.010	thin the band) MHz §15.2	225	PASS

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

Page: 5 / 36

2. System test configuration

2.1. JUSTIFICATION

The system was configured for testing in a typical fashion (as a customer would normally use it).

2.2. HARDWARE IDENTIFICATION

• Model:

Commercial Name: ISMP

Reference:

- o IMP320-01T1492A (No barcode / With Contact less / With Bluetooth)
- IMP350-01T1496A (With barcode / With Contact less / With Bluetooth)
 Full options

Equipment under test (EUT):

IMP350-01T1496A Serial number: PROTO1

Base with power supply adaptor:

PHIHONG PSC12A-050, 100-240VAC / 5A / 50-60Hz, output 5VDC / 2A (US plug) PHIHONG PSC12R-050, 100-240VAC / 5A / 50-60Hz, output 5VDC / 2A (Multi plug)

Micro USB power supply adaptor:

PHIHONG PSAC05R-050, 100-240VAC / 300mA / 50-60Hz, output 5VDC / 1A, No: 05 rev: 01.

Internal max frequencies:

Clock: 400MHz
 RFID 13.56MHz
 Bluetooth: 2400-2483.5MHz

Input/output:

- 2 x Power supply contacts (Base and Terminal)
- 1 x Mini USB, only used for recharge with power supply PHIHONG PSAC05R-050
- 1 x Dock connector

• Cables:

- None

Auxiliaries equipment used during test:

- 1 x IPOD Touch, Apple, Model: A1367, Sn: C3XDV35UDCP7, FCCID: BCG-E2407, IC: 579C-E2407
- 1 x Laptop IBM ThinkPad T60.
- 1 x IMP300-BCSN1476A (Base), FCCID: XKB-IMP3XXCX, sn: Proto1

• Functions:

- 1 x Contact less RFID reader at 13.56MHz, disabled during the recharge, tested only in configuration n2.
- 1 x Bluetooth at 2400-2483.5MHz, always ON.
- 1 x Barcode, not used on base, tested only in configuration n².
- 1 x Contact card reader, not used on base, tested only in configuration n2.

Page: 6/36

2.3. EUT CONFIGURATION

Configuration n 1:

Terminal on its base for recharge with following parameters (with or without Iphone plugged, worst case results presented):

- Recharge of terminal
- Recharge of Iphone
- Bluetooth, hopping mode
- Contact less OFF
- CAM0 (Contact card) OFF
- Barcode OFF

Configuration n2:

Software TestCem used on terminal, followings functions are tested in loop during all tests (with or without Iphone plugged, worst case results presented):

- CAM0 (Contact card)
- Contact less
- Barcode
- Bluetooth, hopping mode
- Iphone plugged.

Configuration n3:

Terminal plugged to power supply PHIHONG PSAC05R-050 for recharge with following parameters (with or without lphone plugged, worst case results presented):

- Recharge of terminal
- Bluetooth, hopping mode
- Contact less OFF
- CAM0 (Contact card) OFF
- Barcode OFF

2.4. EQUIPMENT MODIFICATIONS

None

2.5. SPECIAL ACCESSORIES

None

Page: 7 / 36

3. RADIATED EMISSION DATA

3.1. **CLIMATIC CONDITIONS**

: April 19th, 2011 : A.MERLIN April 20th, 2011 February 16th, 2012 Date of test and

Test performed by

Atmospheric pressure : 1011mb 1011mb 1004mb Relative humidity 23% : 31% 28% Ambient temperature : 22℃ 21℃ 21℃

3.2. **TEST SETUP**

The installation of EUT is identical for pre-characterization measurement in a 3 meters semi anechoic chamber and for measures on a 10 meters Open site.

Configuration nฯ

Configuration n²

Page: 9 / 36

Configuration n3

Page: 10/36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

3.3. TEST SEQUENCE AND RESULTS

3.3.1. Pre-characterization at 3 meters [9kHz-30MHz]

A pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. For Pre-characterization, the loop antenna was rotated during the test for maximized the emission measurement. Measurement performed on 3 axis of EUT. Frequency band investigated is 9kHz to 30MHz.

The pre-characterization graphs are obtained in PEAK detection.

See graph for 9kHz-30MHz band: Emr#1 Configuration $n^2 - Axis Z$ (See annex 1)

3.3.2. Pre-characterization [30MHz-2GHz]

For frequency band 30MHz to 1GHz, a pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a log-periodic antenna. The EUT is being rotated on 360° and on 3 axis during the measurement. The precharacterization graphs are obtained in PEAK detection.

For frequency band 1GHz to 2GHz, a search is performed in the semi-anechoic chamber in order to determine frequencies radiated by the EUT (Measuring distance reduced to 1m).

See graphs for 30MHz-1GHz:

H polarization	Emr#2	Configuration nๆ	(See annex 1)
V polarization	Emr#3	Configuration nๆ	(See annex 1)
H polarization	Emr#4	Configuration n ^o 2 – Axis XY	(See annex 1)
V polarization	Emr#5	Configuration n ^o 2 – Axis XY	(See annex 1)
H polarization	Emr#6	Configuration n ^o 2 – Axis Z	(See annex 1)
V polarization	Emr#7	Configuration n ^o 2 – Axis Z	(See annex 1)
H polarization	Emr#8	Configuration n3 – Axis XY	(See annex 1)
V polarization	Emr#9	Configuration n3 – Axis XY	(See annex 1)
H polarization	Emr#10	Configuration $n\Im$ – Axis Z	(See annex 1)
V polarization	Emr#11	Configuration $n\Im$ – Axis Z	(See annex 1)

Page: 11 / 36

3.3.3. Characterization on 10 meters open site below 30 MHz

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz.

Antenna height was 1m for both horizontal and vertical polarization.

Antenna was rotated around its vertical axis.

Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on clauses 3.2.

Frequency (MHz)	QPeak Limit (dBμV/m) @ 30m	Qpeak (dBµV/m)	Qpeak-Limit (Margin dB)	Turntable Angle (deg)	Ant. Pol./ Angle (deg)	Tot Corr (dB)
13.56* ¹	84	26.7	-57.3	90	90	35.3

^{*1:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

Limits Sub clause §15.225

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)				
13.553-13.567	15 848 84 dBµV/m	30				
13.410-13.553 13.567-13.710	334 50.5 dBµV/m	30				
13.110-13.410 13.710-14.010	106 40.5 dBµV/m	30				

See chapter 5 of this test report for band edge measurements.

Page: 12 / 36

3.3.4. Characterization on 10 meters open site from 30MHz to 2GHz

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz and 1MHz from 1GHz to 2GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.2

Worst case final data result:

Configuration n₁:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	41.478	40.0	30.2	-9.8	95	V	100	12.9	/
2	42.309	40.0	30.8	-9.2	105	V	100	12.5	/
3	44.782	40.0	30.0	-10.0	100	V	100	11.7	/
4	142.112	43.5	34.3	-9.2	355	V	150	13.9	/
5	219.331	46.0	39.1	-6.9	0	V	100	13.3	/
6	225.362	46.0	38.8	-7.2	0	V	100	13.7	/
7	353.058	46.0	35.4	-10.6	75	V	250	17.9	/
8	557.587	46.0	33.6	-12.4	110	V	300	22.7	/
9	580.598	46.0	39.2	-6.8	310	V	200	23.1	/

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Configuration n2:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	40.679	40.0	37.6	-2.4	0	V	100	13.1	AXIS Z
2	54.25	40.0	39.0	-1.0	10	V	100	7.9	AXIS XY
3	67.800	40.0	36.6	-3.4	15	V	100	7.4	AXIS XY
4	108.474	43.5	35.0	-8.5	15	V	150	13.0	AXIS XY
5	122.033	43.5	37.9	-5.6	300	Н	200	14.7	AXIS XY
6	176.000	43.5	32.3	-11.2	110	Н	250	11.9	AXIS XY
7	325.009	46.0	39.2	-6.8	160	V	100	17.0	AXIS XY
8	352.542	46.0	40.2	-5.8	135	Н	200	17.9	AXIS Z
9	375.012	46.0	39.4	-6.6	40	Н	150	18.6	AXIS Z
10	425.012	46.0	39.2	-6.8	115	V	200	19.9	AXIS XY
11	475.014	46.0	45.2	-0.8	0	V	250	21.0	AXIS Z
12	500.014	46.0	44.3	-1.7	45	V	200	21.6	AXIS XY
13	625.018	46.0	44.0	-2.0	25	V	250	23.8	AXIS Z
14	875.012	46.0	41.2	-4.8	55	V	200	27.1	AXIS Z

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Page: 13 / 36

Configuration n3:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)		Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	39.789	40.0	37.9	-2.1	110	V	100	13.7	AXIS Z
2	40.879	40.0	33.1	-6.9	15	Н	150	13.3	AXIS Z
3	41.299	40.0	37.0	-3.0	355	V	100	12.9	AXIS Z
4	44.724	40.0	32.7	-7.3	0	V	150	11.7	AXIS Z
5	131.051	43.5	34.8	-8.7	180	V	100	14.7	AXIS Z
6	223.961	46.0	36.9	-9.1	110	V	150	13.6	AXIS Z
7	226.447	46.0	34.9	-11.1	200	Н	220	13.8	AXIS Z
8	229.745	46.0	32.7	-13.3	100	V	200	14.0	AXIS Z
9	233.449	46.0	33.1	-12.9	10	Н	250	14.2	AXIS Z
10	480.491	46.0	39.9	-6.1	350	V	150	21.1	AXIS Z
11	483.697	46.0	39.5	-6.5	245	Н	200	21.2	AXIS Z
12	580.786	46.0	37.9	-8.1	45	V	250	23.1	AXIS Z

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Frequency band 1GHz to 2GHz

Measurements are performed using a PEAK and Average detection. (RBW = 1MHz)

Configuration n₁:

No	Frequency (GHz)	Limit Average	Measure Average	Margin (Mes-Lim)	Angle Table		Correc.	Comments
	, ,	(dBµV/m)	(dBµV/m)	` (dB)	(deg)	(cm)	(dB)	

No Significant Frequency observed

Note: Measures have been done at 3m distance.

Configuration n²:

No	Frequency	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments
	(GHz)	Average	Average	(Mes-Lim)	Table	Ant.	Ant.	factor	
		(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)	

No Significant Frequency observed

Note: Measures have been done at 3m distance.

Configuration n3:

No	Frequency	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments
	(GHz)	Average	Average	(Mes-Lim)	Table	Ant.	Ant.	factor	
		(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)	

No Significant Frequency observed

Note: Measures have been done at 3m distance.

RESULTS: PASS

Page: 14/36

3.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

Page: 15/36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

4. Fundamental frequency tolerance (15.225e)

4.1. TEST CONDITIONS

Test performed by : A.MERLIN
Date of test : April 21st, 2011

Ambient temperature $: 21^{\circ}$ C Relative humidity $: 27^{\circ}$

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency when the temperature is varied from -20% to +50% at the no minal power voltage and the primary power voltage is varied from 85% to 115% of the rated supply voltage at 20%.

4.2. Temperature and voltage fluctuation

Temperature has been set at +20°C, -20°C and +50°C.

The voltage is varied from 3.50VDC to 4.26VDC, last regulation of power supply of RF module (worst case). Minimal voltage declared by INGENICO, below RFID module is disabled.

Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

The equipment (RF box) is set in a climatic chamber. Measure is performed on one channel of RF module.

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 3.7VDC			
Frequency Drift (MHz)	+ 0.000005	REF	- 0.000060
Carrier level (dBc)	- 1.40	REF	- 0.00
Mains voltage: 3.5VDC			
Frequency Drift (MHz)	+ 0.000005	+ 0.000008	- 0.000056
Carrier level (dBc)	- 1.70	+ 0.16	+ 0.20
Mains voltage: 4.26VDC			
Frequency Drift (MHz)	+ 0.000008	+ 0.000009	- 0.000055
Carrier level (dBc)	- 0.32	+ 0.32	- 0.20

Frequency drift measured is **60 Hz** when the temperature is varied from -20° C to $+50^{\circ}$ C and voltage is varied from 3.50VDC to 4.26VDC.

Page: 16/36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

5. BAND-EDGE COMPLIANCE §15.209

5.1. CLIMATIC CONDITIONS

Date of test : April 21st, 2011
Test performed by : A.MERLIN
Atmospheric pressure : 1006mb
Relative humidity : 27%
Ambient temperature : 21℃

5.2. Frequency band 13.110-14.010MHz

Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasi-peak detector. The graphs are obtained with a measuring receiver ESU8.

Page: 17 / 36

6. CONDUCTED EMISSION DATA

6.1. CLIMATIC CONDITIONS

Date of test : April 21st, 2011
Test performed by : A.MERLIN
Atmospheric pressure : 1006mb
Relative humidity : 27%
Ambient temperature : 21℃

6.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart B and C.

The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 and C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50uH.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

6.3. TEST SETUP

The EUT is placed on the ground reference plane, at 80cm from the LISN. The distance between the EUT and the vertical ground plane is 40cm.

Auxiliaries are powered by another LISN.

The cable has been shorted to 1meter length. The EUT is powered trough the LISN (measure).

Configuration na

Page: 18 / 36

Configuration n3

Page: 19/36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

6.4. TEST SEQUENCE AND RESULTS

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection.

Measures are also performed in Quasi-Peak and Average for any strong signal.

Configuration n ?:

Measure on L1: graph Emc#1 (see annex 1)
Measure on N: graph Emc#2 (see annex 1)

Configuration n3:

Measure on L1: graph Emc#3 (see annex 1)
Measure on N: graph Emc#4 (see annex 1)

RESULT: PASS

Page: 20 / 36

7. ANNEX 1 (GRAPHS)

Page: 21 / 36

Page: 22 / 36

Page: 23 / 36

Page: 24 / 36

Page: 25 / 36

Page: 26 / 36

Page: 27 / 36

Page: 28 / 36

Page: 29 / 36

Page: 31 / 36

Page: 32 / 36

Page: 33 / 36

Page: 34 / 36

Page: 35 / 36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

8. TEST EQUIPMENT LIST

USED	N°LCIE	TYPE	COMPANY	REF	CAL DATE	CAL DUE		
RADIATED EMISSION DATA								
X	C2040051	Antenna Bi-log	CHASE	CBL6111A	08/10	08/12		
X	C2040052	Antenna Loop	ELECTRO-METRICS	EM-6879	12/10	12/11		
X	C2042027	Antenna horn	EMCO	3115	10/10	10/11		
X	A5329038	Cable N/N	-	-	04/11	04/12		
X	A5329061	Cable	SUCOFLEX	106G	01/11	01/12		
X	A5329188	Cable OATS (Mast at 10m)	UTIFLEX	-	05/10	05/11		
X	A5329199	Cable OATS (Mast at 10m)	UTIFLEX	-	05/10	05/11		
X	A5329207	Cable	UTIFLEX	_	02/11	02/12		
X	D3044017	Semi-Anechoic chamber #3	SIEPEL	_	-	-		
X	A3169050	Radiated emission comb generator	BARDET	-	-	-		
X	F2000409	OATS	-	-	08/10	08/11		
X	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11		
X	B4204052	Thermo-hygrometer	HUGER	_	04/10	04/12		
X	F2000371	Turntable chamber (Cage#3)	ETS Lingren	Model 2165	-	-		
X	F2000372	Turntable / Mast controller (OATS)	ETS Lindgren	Model 2066	-	-		
X	F2000392	Antenna mast (OATS)	ETS Lindgren	2071-2	-	-		
X	F2000393	Turntable controller (Cage#2-3)	ETS Lingren	Model 2066	-	-		
X	F2000403	Turntable (OATS)	ETS Lindgren	Model 2187	-	-		
FUNDAMENTAL FREQUENCY TOLERANCE								
Х	C2040052	Antenna Loop	ELECTRO-METRICS	EM-6879	12/09	12/10		
Х	A5329352	Cable N/N	-	-	12/10	12/11		
Х	D1022117	Climatic chamber	BIA CLIMATIC	CL 6-25	02/11	02/13		
Х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11		
BANDEDGE	COMPLIANCE							
Х	C2040052	Antenna Loop	ELECTRO-METRICS	EM-6879	12/09	12/10		
Х	A5329352	Cable N/N	-	-	12/10	12/11		
Х	D1022117	Climatic chamber	BIA CLIMATIC	CL 6-25	02/11	02/13		
Х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11		
CONDUCTE	D EMISSION DA	TA						
Х	A7122104	Attenuator 11dB DC-18GHz 1W	HEWLETT PACKARD	8494B	06/10	06/11		
Х	A5329352	Cable N/N	-	-	12/10	12/11		
Х	D3044010	Faraday Cage	RAY PROOF	-	01/11	01/12		
Х	A3169049	Conducted emission comb generator	BARDET		-	-		
Х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11		

Page: 36 / 36

RAPPORT D'ESSAI / TEST REPORT N° 115645-R1-E

9. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude Iimite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB