1. 质点运动学

	地 级 学长	<u> </u>	_ 姓名	成绩	 -	
– ,	选择题					
	1.某质点的运动方程为 $x = 2t$	$-7t^3 + 3$ (SI), \square	削该质点作			
	(A)匀加速直线运动,加速度	沿 X 轴正方向;	(B)匀加速直线运动	,加速度沿 X 轴负方	页向;	
	(C)变加速直线运动,加速度%	沿 X 轴正方向;	(D)变加速直线运动	,加速度沿 X 轴负方	前向。	
					()
	2.一质点做曲线运动,则下列记	说法正确的是				
	$(1) \left \Delta \vec{r} \right = \Delta s , (2) \left \Delta \vec{r} \right = \Delta r ,$	$(3) \left \mathbf{d}\vec{r} \right = \mathbf{d}s \; , (4)$	$\left \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right = \frac{\mathrm{d}s}{\mathrm{d}t} .$			
	(A)(2)正确; (B)(2)(3) 正确	i; (C)(4) 正确;	(D)(3)(4) 正确。			
					()
	3 .以下五种运动形式中, \vec{a} 保持	寺不变的运动是				
	(A)单摆的运动;	(B)匀速率圆周运	动;			
	(C)行星的椭圆轨道运动;	(D)抛体运动;	(E) 圆锥摆运动。			
					(
	4.对于沿曲线运动的物体,以	下几种说法中哪一种	中是正确的:			
	(A)切向加速度必不为零;	(B)法向加速度必	不为零(拐点处除外);			
	(C)由于速度沿切线方向,法向]分速度必为零,因	此法向加速度必为零	;		
	(D)若物体作匀速率运动,其总	加速度必为零;				
	(E)若物体的加速度 \vec{a} 为恒矢量	,它一定作匀变速	率运动。			
					(
	5.在相对地面静止的坐标系内,	A、B 二船都以 3	m·s ⁻¹ 的速率匀速行驶	\mathbf{P} ,A 船沿 \mathbf{X} 轴正向,	B船沿	Y
轴〕	E向,今在 A 船上设置与静止坐	标系方向相同的坐	标系 $(x \setminus y$ 方向单位	矢用 \vec{i} 、 \vec{j} 表示),那	『么在 A	船
上的	的坐标系中,B 船的速度(以 m·s	-1 为单位)为				
	(A) $3\vec{i} + 3\vec{j}$; (B) $-3\vec{k}$	$\vec{i} + 3\vec{j}$; (C) -	$-3\vec{i} - 3\vec{j}$; (D)	$3\vec{i}-3\vec{j}$.		
					(,

二、填空题

三、计算题

1.有一质点沿X轴作直线运动,t时刻的坐标为 $x=5t^2-3t^3(SI)$; 试求:(1)第 2 秒内的平均避度; (2)第 2 秒末的瞬时速度; (3)第 2 秒末的加速度。

2.一质点沿 X 轴运动,其加速度 a 与位置坐标 x 的关系为 $a=3+6x^2(SI)$,如果质点在原点处的速度 为零,试求其在任意位置处的速度 $\upsilon(x)=?$ 。

3.质点 M 在水平面内运动轨迹如图所示,OA 段为直线,AB、BC 段分别为不同半径的两个 1/4 圆周,设 t=0 时,M 在 O 点,已知运动方程为 $S=20t+5t^2(SI)$,求 t=2s 时刻,质点 M 的切向加速度和法向加速度。

4.质点由静止开始作直线运动,初始加速度为 a_0 ,以后加速度均匀增加,每经过时间 t_0 增加 a_0 ,求经过时间t后质点的速度和位移。

5.当一列火车以 10ms-1 的速度向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成 30°角,求(1)雨滴相对于地面的水平速度和相对于列车的水平速度;(2)雨滴相对于地面的速率和相对于列车的速率。

2. 牛顿定律

班级

一、选择题

1.如图所示,一只质量为m的猴,抓住一质量为M的直杆,杆与天花板用一线相连,若悬线突然断开后,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为:

(A)
$$g$$
; (B) mg/M ; (C) $\frac{M+m}{M}g$; (D) $\frac{M+m}{M-m}g$; (E) $\frac{M-m}{M}g$.

2.如图所示,质量为 m 的木块用细绳水平拉住,静止于光滑的斜面上,斜面给木块的支持力是

(A) $mg\cos\theta$; (B) $mg\sin\theta$; (C) $mg/\cos\theta$; (D) $mg/\sin\theta$.

3.如图所示,滑轮、绳子的质量及一切摩擦阻力忽略不计, $m_1=2m_2$, m_1 与 m_2 运动过程中,弹簧秤的指示:

(A)大于
$$(m_1 + m_2)g$$
; (B)等于 $(m_1 + m_2)g$; (C)小于 $(m_1 + m_2)g$ 。

- 4. 一物体作匀速率曲线运动,则
- (A) 其所受合外力一定总为零;
- (B) 其加速度一定总为零;
- (C) 其法向加速度一定总为零;
- (D) 其切向加速度一定总为零。

()

- 5. 牛顿第二定律的动量表示式为 $\vec{F} = \frac{\mathrm{d}(m\vec{\upsilon})}{\mathrm{d}\,t}$,即有 $\vec{F} = m\frac{\mathrm{d}\vec{\upsilon}}{\mathrm{d}t} + \vec{\upsilon}\frac{\mathrm{d}\,m}{\mathrm{d}t}$.物体作怎样的运动才能使上式中右边的两项都不等于零,而且方向不在一直线上?
 - (A) 定质量的加速直线运动;
- (B) 定质量的加速曲线运动;
- (C) 变质量的直线运动;

(D) 变质量的曲线运动。

()

二、填空题

1.质量相等的两物体 A 和 B,分别固定在弹簧的两端,竖直放在光滑水平面 C 上,如图所示;弹簧的质量与物体 A、B 的质量相比,可以忽略不计,若把支持面 C 迅速移走,则 在 移 开 的 一 瞬 间, A 的 加 速 度 大 小 a_A = ________, B 的 加 速 度 的 大 小

$a_{\mathbf{p}}$	=	0
ъ		

2.一半径为 R 的圆环绕其竖直直径以角速度 ω 转动,一小珠可以在圆环上作无摩擦的滑动。如图所示,要使小珠相对静止在 $\angle\theta$ 位置,则角速度 $\omega=$ ______。

3.如图所示,半径为 R 的圆环固定在光滑的水平桌面上,一物体沿圆环内壁作圆周运动, t=0 时,物体的速率为 v_0 (沿切线方向),若物体与圆环的摩擦系数为 μ ,求物体稍后任意时刻的速率 v=_____。

4. 质量为 10 kg 的物体在变力作用下从静止开始作直线运动,力随时间的变化规律是 F = 3 + 4t (式中 F 以 N、t 以 s 计),由此可知, 3 s 后此物体的速率为 $v = ______$ 。

5.一质量为m 的质点沿X 轴正向运动,设该质点通过坐标为x (x>0) 点时的速度为 $v=k\sqrt{x}\,\vec{i}$ (k>0 为常量),则质点所受到的合力为______。

三、计算题

1.已知一质量为 m 的质点在 X 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离 x 的平方成反比,即 $f = -k/x^2$, k 是比例常数,设质点在 x = A 时的速度为零,求 x = A/2 处的速度的大小。

3.一质量为 m=10kg 的质点在力 F=120t+40(N)的作用下,沿 X 轴作直线运动,在 t=0 时,质点位于 x=5m 处,其速度 $v_0=6$ m·s $^{-1}$,求质点在任意时刻的速度和位置表达式。

4.如图所示,一轻弹簧原长为 L_0 ,劲度系数为 k,一端系在转台中心,另一端系质量为 m 的小球,设转台平面非常光滑,让该系统以 O 为圆心,角速度为 ω 转动,求小球作圆运动的半径 R。

5.如图所示为一物块在光滑水平面上受力运动的俯视图,该物块质量为 2.0 kg,以 3.0 m·s⁻² 的加速度沿图示的 \vec{a} 方向加速运动。作用在该物体上有三个水平力,图中给出了其中的两个力 \vec{F}_1 和 \vec{F}_2 , \vec{F}_1 的大小为 10 N, \vec{F}_2 的大小为 20 N。试以单位矢量和大小、角度表示第三个力。

3. 动量守恒定律和能量守恒定律

班级_	学号	姓名	成绩
-----	----	----	----

一、选择题

 $1.质量分别为 <math>m_1$ 、 m_2 的两个物体用一倔强系数为k的轻弹簧相联,放在水 平光滑桌面上,如图所示,当两物体相距x时,系统由静止释放,已知弹簧的 自然长度为 x_0 ,则当物体相距 x_0 时, m_1 的速度大小为:

(A)
$$\sqrt{\frac{k(x-x_0)^2}{m_1}}$$
; (B) $\sqrt{\frac{k(x-x_0)^2}{m_2}}$; (C) $\sqrt{\frac{k(x-x_0)^2}{m_1+m_2}}$; (D) $\sqrt{\frac{km_2(x-x_0)^2}{m_1(m_1+m_2)}}$

2. 质量为 m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为 Δt , 打击前铁锤速率为v, 则在打击 木桩的时间内,铁锤所受平均合外力的大小为

(A)
$$\frac{mv}{\Delta t}$$
; (B) $\frac{mv}{\Delta t} - mg$; (C) $\frac{mv}{\Delta t} + mg$; (D) $\frac{2mv}{\Delta t}$ ()

3.一质量为m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑下,到达最低点B点时,它对容器的正压力数值为N如图所示,则质点自A滑到B的过程中,摩擦力对其作的功为:

$$(A) R(N-3mg)/2;$$

(A)
$$R(N-3mg)/2$$
; (B) $R(3mg-N)/2$;

)

(C)
$$R(N-mg)/2$$
; (D) $R(N-2mg)/2$.

(D)
$$R(N-2mg)/2$$

4.如图所示,一质量为m的物体,位于质量可以忽略的直立弹簧正上方高度为h处,该 物体从静止开始落向弹簧,若弹簧的倔强系数为k,不考虑空气阻力,则物体可能获得的最 大动能是:

(A)
$$mgh$$
; (B) $mgh - \frac{m^2g^2}{2k}$; (C) $mgh + \frac{m^2g^2}{2k}$; (D) $mgh - \frac{m^2g^2}{k}$

(

5.一烟火总质量为 M+2m,从离地面高 h 处自由下落到 h/2 时炸开,并飞出质量均为 m 的两块,它们 相对于烟火体的速度大小相等,方向一上一下,爆炸后烟火体从h/2处落到地面的时间为 t_1 ,若烟火体在 自由下落到 h/2 处不爆炸, 它从 h/2 处落到地面的时间为 t_0 , 则:

$$(A)t_1 > t_2$$
:

(B)
$$t_1 < t_2$$
:

(C)
$$t_1 = t_2$$
:

(A)
$$t_1 > t_2$$
; (B) $t_1 < t_2$; (C) $t_1 = t_2$; (D)无法确定。

二、填空题

1.如图所示,倔强系数为k的轻弹簧,一端固定在墙壁上,另一端连一质量为m的滑块,滑块静止在坐标原点O,此时弹簧长度为原长,滑块与桌面间的摩擦系数

为 μ ,若滑块在不变的外力 \vec{F} 作用下向右移动,则它到达最远位置时系统的弹性势能 $E_p =$ _____。

2.两球质量分别为 $m_1 = 3.0g$, $m_2 = 5.0g$,在光滑的水平桌面上运动,用直角坐标 OXY 描述其运动,两者速度分别为 $\vec{v}_1 = 8\vec{i}$ cm/s, $\vec{v}_2 = (8.0\vec{i} + 16\vec{j})$ cm/s,若碰撞后两球合为一体,则碰撞后两球速度 \vec{v} 的大小 $v = _____$ cm/s, \vec{v} 与 X 轴的夹角 $\alpha = _____$ 。

3.如图所示,两块并排的木块 A 和 B,质量分别为 m_1 和 m_2 ,静止地放置在光滑的水平 面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为 Δt_1 和 Δt_2 ,木块对子弹的阻力为恒力 F,则子弹穿出后,木块 A 的速度大小为______,木块 B 的速度大小为_____

4.如图所示,一光滑的滑梯,质量为M高度为h,放在一光滑水平面上,滑梯轨道底部与水平面相切,质量为m的小物块自滑梯顶部由静止下滑,则:(1)物块滑到地面时,滑梯的速度为_________;(2)物块下滑的整个过程中,滑梯对物块所作的功为

5.一人从 10m 深的井中提水,起始时桶中装有 10kg 的水,桶的质量为 1kg,由于水桶漏水,每升高 1m 要漏去 0.2kg 的水,求水桶匀速地从井中提到井口,人所作的功 W=

三、计算题

1.一匀质链条总长为 L,质量为 m,放在桌面上,并使其下垂,下垂一端的长度为 a,设链条与桌面之间的滑动摩擦系数为 μ ,令链条由静止开始运动,则: (1) 到链条离开桌面的过程中,摩擦力对链条作了多少功? (2) 链条离开桌面时的速率是多少?

2.在光滑的水平铁轨上,一辆质量为 m_1 =200kg 的无动力检修车正以 υ_0 = 3m/s 的速度前进,车上站立 一质量为 m_2 =50kg 的人,此人向着与铁轨成 60° 角的侧前方以相对于车的速度 u=5m/s 跳下,求跳下车后,检修车的速度和跳车过程中铁轨受到的侧向冲量。

3.用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深成正比,如果在击第一次时,能将钉击入木板内 1cm,再击第二次时(锤仍然以与第一次同样的速度击钉),能击入多深?

4.质量为 M=2.0kg 的物体(不考虑体积),用一根长为 l =1.0m 的细绳悬挂在天花板上,今有一质量为 m=20g 的子弹以 υ_0 = 600m/s 的水平速度射穿物体,刚射出物体的子弹的速度大小 υ_0 = 30m/s,设穿透时间极短,求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。

5. 水平面上有一质量为 m_0 、倾角为 θ 的楔块;一质量为 m 的小滑块从高为 h 处由静止下滑。求 m 滑到底面的过程中,m 对 m_0 作的功 W 及 m_0 后退的距离 s 。(忽略所有摩擦)

4. 刚体转动

班级 _______ 学号 ______ 姓名 _____ 成绩 _____

一、选择题

1.两个半径相同、质量相等的细圆环 A 和 B, A 环的质量均匀分布, B 环的质量分布不均匀. 它们对 通过环心并与环面垂直的轴的转动惯量分别为 J_A 和 J_B ,则有:

- (A) $J_A > J_B$;
- (B) $J_A < J_B$:
- (C) $J_A=J_B$;
- (D) 不能确定 J_A 、 J_B 哪个大。

2.一个人站在有光滑固定转铀的转动平台上,双臂伸直水平地举二哑铃,在该人把此二哑铃水平收缩 到胸前的过程中,人、哑铃与转动平台组成的系统的

- (A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒;
- (C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量也不守恒。

)

(

3.质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转 动,转动惯量为 J,开始时平台和小孩均静止,当小孩突然以相对于地面为v 的速率在台边缘沿顺时针转 向走动时,此平台相对地面旋转的角速度和旋转方向分别为:

$$(A)\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right), \quad \text{逆时针}; \qquad (B)\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R} \right), \quad \text{逆时针};$$

$$(C)\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right), \quad \text{顺时针}; \qquad (D) \quad \omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R} \right), \quad \text{顺时针}.$$

4.光滑的水平桌面上,有一长为 2L、质量为 m 的匀质细杆,可绕过其中点且 垂直于杆的竖直光滑固定轴 O 自由转动,其转动惯量为 $mL^2/3$,起初杆静止,桌 面上有两个质量均为 m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以

相同速率v 相向运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,与杆粘在一起转 动,则这一系统碰撞后的转动角速度应为:

(A)
$$\frac{2v}{3L}$$
; (B) $\frac{4v}{5L}$; (C) $\frac{6v}{7L}$; (D) $\frac{8v}{9L}$.

5. 地球的质量为m,太阳的质量为m0,地心与太阳中心的距离为m0,引力常数为m0,地球绕太阳转动 的轨道角动量的大小为

(A)
$$m\sqrt{Gm_0R}$$
; (B) $\sqrt{\frac{Gmm_0}{R}}$; (C) $mm_0\sqrt{\frac{G}{R}}$ (D) $\sqrt{\frac{Gmm_0}{2R}}$

()

二、填空题

1.一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩 M_r 外,还受到恒定的外力矩 M 的作用,若 M=40N·m,轮子对固定轴的转动惯量为 J=20kg·m²,在 t=10s 内,轮子的角速度 ω_0 =0 增大到 ω =15rad/s,则 M_r =_____。

2.如图所示,一静止的均匀细杆,长为 L、质量为 M,可绕通过杆的端点且垂 直于杆长的光滑固定轴 O 在水平面内转动,转动惯量为 $ML^2/3$,一质量为 m、速率为v0 的子弹在水平面内沿与杆垂直的方向射入并穿出杆的自由端,设刚穿出杆时子弹的速率为v1/2,则此时杆的角速度为_____。

3.在一水平放置的质量为 m、长度为 l 的均匀细棒上,套着一质量也为 m 的钢珠 B(可看作质点),钢珠用不计质量的细线拉住,处于棒的中点位置,棒和钢珠所组成的系统以角速度 ω_0 绕 OO $^{\prime}$ 轴转动,如图所示,若在转动过程中细线被拉断,

在 钢 珠 沿 棒 滑 动 过 程 中 , 该 系 统 转 动 的 角 速 度 ω 与 钢 珠 离 轴 的 距 离 x 的 函 数 关 系 为 $\omega(x) =$ _______。(已知棒本身对 OO $^{'}$ 轴的转动惯量为 $ml^2/3$)。

4.圆盘形飞轮 A 的质量为 m,半径为 r,最初以角速度 ω_0 转动,与 A 共轴的圆盘形飞轮 B 的质量为 4m,半径为 2r,最初静止,如图所示。若两飞轮啮合后,以同一角速度 ω 转动,则 $\omega =$ ______,啮合过程中机械能的损失为 $\Delta W =$ ______。

三、计算题

1.以 30N·m 的恒力矩作用在有固定轴的飞轮上,在 10s 内飞轮的转速由零增大到 5rad/s,此时移去该力矩,飞轮因摩擦力矩的作用经 90s 而停止,试计算此飞轮对其固定轴的转动惯量。

2.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为 M/4,均匀分布在其边缘上,绳子的 A 端有一质量为 M 的人抓住了绳端,而在绳的另一端 B 系了一质量为 M/4 的重物,如图。已知滑轮对 O 轴的转动惯量 $J=MR^2/4$,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求 B 端重物上升的加速度?

3.在半径为 R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为 R/2 处,人的质量是圆盘质量的 1/10,开始时盘载人相对地面以角速度 ω_0 匀速转动,然后此人垂直圆盘半径相对于盘以速率v 沿与盘转动相反方向作圆周运动,如图所示。己知圆盘对中心轴的转动惯量为 $MR^2/2$,人可视为质点,求: (1) 圆盘对地的角速度;(2)欲使圆盘对地静止,人沿着 R/2 圆周对圆盘的速度 \vec{v} 的大小及方向?

4.质量为 m_1 、长为 l 的均匀细杆,静止平放在滑动摩擦系数为 μ 的水平桌面上,它可绕通过其端点 O 且与桌面垂直的固定光滑轴转动,另有一水平运动的质量为 m_2 的小滑块,从侧面垂直于杆与杆的另一端 A 相碰撞,设碰撞时间极短,已知小滑块在碰撞前后的速度分别为 $\vec{v_1}$ 和 $\vec{v_2}$,方向如图所示,求碰撞后从细杆开始转动到停止转动的过程所需的时间,(已知杆绕 O 点的转动惯量 $J=ml^2/3$)。

5.如图所示,一均匀细杆长为 l,质量为 m,平放在摩擦系数为 μ 的水平桌面上,设开始时杆以角速度 ω_0 绕过中心 O 且垂直于桌面的轴转动,试求:(1)作用在杆上的摩擦力矩; (2)经过多长时间杆才停止转动。

5. 气体动理论

班级	学号	姓名	成绩
----	----	----	----

一、选择题

1.按 PV^2 = 恒量规律膨胀的理想气体,膨胀后的温度为:

(A)升高; (B)不变; (C)降低; (D)无法确定。

2.标准状态下,若氧气和氦气的体积比 $V_1/V_2=1/2$,则其内能 E_1/E_2 为:

(A)1/2;(B)5/6;(C)3/2;(D)1/3_o

3.如图为定量理想气体内能 E 随体积 V 的变化关系,则此直线表示的过程为:

(B)绝热过程; (C)等温过程; (A)等压过程; (D)等容过程。

4. 定量理想气体, v_{p1} , v_{p2} 分别是分子在温度 T_1 , T_2 时的最概然速率,相应的分子速率分布函数的 最大值分别为 $f(v_{p1})$ 和 $f(v_{p2})$, 当 $T_1 > T_2$ 时,

- $\text{(A) } v_{pl} > v_{p2} \text{ , } f(v_{p1}) < f(v_{p2}) \text{; } \text{(B) } v_{pl} < v_{p2} \text{ , } f(v_{p1}) < f(v_{p2})$
- (C) $v_{pl} > v_{p2}$, $f(v_{p1}) > f(v_{p2})$; (D) $v_{pl} < v_{p2}$, $f(v_{p1}) > f(v_{p2})$

) (

5. 汽缸内盛有一定量的理想气体,当温度不变,压强增大一倍时,该气体分子的平均碰撞次数 \overline{Z} 和平 均自由程 $\overline{\lambda}$ 的变化情况是:

- (A) \overline{Z} 和 $\overline{\lambda}$ 都增大一倍: (B) \overline{Z} 和 $\overline{\lambda}$ 都减为原来的一半:
- (C) \overline{Z} 增大一倍而 $\overline{\lambda}$ 减为原来的一半; (D) \overline{Z} 减为原来的一半而 $\overline{\lambda}$ 增大一倍。

)

三、计算题

1. 已知某种理想气体的分子方均根速率为 400m/s, 当其压强为 latm 时,求气体的密度。

	2. 在容积为 2. 0×10 ⁻³ m³ 的容器	中,有内能为6.	. 75×10²J 的刚性	双原子分子理想气体	。(1)求气体的压
强;	(2)设分子总数为 5.4×10 ²² 个,	求分子的平均 ³	平动动能及气体的	的温度。	
	3. 求氢气和氦气压强体积和温度	相等时,它们的	的质量比 M (H ₂)	/M(H ₂)和内能比	$E (H_2) / E (H_2),$
(H_2)	视为刚性双原子分子气体)。				

- 4.图中是 2kg 氢气的等温线,其中: P_1 =4×10⁵Pa, V_1 =2.5m³, P_2 =1.2×10⁶Pa。试求:
- (1) 该等温线对应的温度; (2) b 点和 d 点的内能。

- 5. 己知空气分子的有效直径 d=3. 5×10^{-10} m,空气分子的摩尔质量为: $\mu = 29 \times 10^{-3}$ kg/mol,计算空气 分子在标准状态下的几个物理量。
- (1)单位体积的分子数 n=? (2) 平均速率 $\overline{v}=?$ (3) 平均碰撞频率 $\overline{Z}=?$
- (4) 平均自由程 $\overline{\lambda}$ =? (5) 平均平动动能 $\overline{\varepsilon}_{k}$ =?

6. 热力学基础

班级	
----	--

一、选择题

- 1. 对于一定量的理想气体,下列过程中可能实现的是:
- (A)恒温下绝热膨胀;
- (B)绝热过程中体积不变而温度上升;
- (C)恒压下温度不变;
- (D)吸热而温度不变。

- 2. 一定量的理想气体,如果内能的增量 $dE = \frac{M}{C_v} C_v dT$,那么它的适用条件是:
- (A)必须温度升高;
- (B)应该是双原子分子气体;
- (C)任何热力学过程;
- (D)必须是等体过程。

- 3.如图所示,一定量理想气体从体积 V_1 膨胀到体积 V_2 分别经历的过程是: $A \rightarrow B$ 等压过程; $A \rightarrow C$ 等 温过程; A→D 绝热过程, 其中吸热最多的过程:
 - (A)是 A→B
- (B)是 A→C
- (C)是 $A \rightarrow D$ (D)既是 $A \rightarrow B$ 也是 $A \rightarrow C$,两过程吸热一样多。

- 4. 用下列两种方法: (1) 使高温热源的温度 T_1 升高 ΔT_1 ; (2) 使低温热源的温度 T_2 降低同样的 ΔT 值。 分别可使卡诺循环的效率升高 $\Delta\eta$,和 $\Delta\eta$,,两者相比:
 - $(A) \Delta \eta_1 > \Delta \eta_2$; $(B) \Delta \eta_2 > \Delta \eta_1$; $(C) \Delta \eta_1 = \Delta \eta_2$; (D)无法确定哪个大。

- 5.一绝热容器被隔板分为两半,一半是真空,另一半理想气体,若把隔板抽出,气体将进行自由膨胀, 达到平衡后:
 - (A) 温度不变, 熵增加; (B)温度升高, 熵增加;

 - (C)温度降低,熵增加; (D)温度不变,熵不变。

二、填空题

	$1.$ 某理想气体等温压缩到给定体积时对外界气体作功 $ A_1 $,又经绝热膨胀返回原来体积时气体对外们
功	$ A_2 $,则整个过程中气体(1)从外界吸收的热量 $Q = $
ΔE	$\mathcal{E} = \underline{\hspace{1cm}}_{\circ}$
	2.3 mol 的理想气体开始时处在压强 p_1 = $6atm$ 、温度 T_1 = $500K$ 的平衡态,经过一个等温过程,压强变为
$p_2=$	3atm,该气体在等温过程中吸收的热量为 Q =
	3.单原子理想气体在等压下膨胀所作的功为 W ,则传递给气体的热量是。
	4.对下列过程中各物理量用符号"+,-或0"填入表中:

物理量过程	ΔV	ΔP	ΔT	ΔE	W	Q
等容升温						
等压膨胀						
等温压缩						
绝热膨胀						

三、计算题

1.汽缸内有 2mol 氦气(He),初始温度为 27℃,体积为 20 升。先将氦气定压膨胀,直至体积加倍,然后绝热膨胀,直至回复初温为止,若把氦气视为理想气体,试求:

- (1)在 p—V 图上大致画出气体的状态变化过程; (2)在这过程中氦气吸热多少?
- (3) 氦气的内能变化多少? (4) 氦气所作的总功是多少?

2.一定量的刚性双原子分子理想气体,开始时处于压强为 $p_0=1.0\times10^5$ P_a,体积为 $V_0=4\times10^{-3}$ m³,温度为 T_0 =300K 的初态,后经等压膨胀过程温度上升到 T_1 =450K,再经绝热过程温度降回到 T_2 =300K,求气体在 整个过程中对外作的功。

- 3.一定量的理想气体,由状态 a 经 b 到达 c, (如图, abc 为一直线) 求此过程中。
- (1) 气体对外作的功; (2) 气体内能的增量;
- (3)气体吸收的热量。 [1atm=1.013×10⁵P_a]

4. 一卡诺热机(可逆的)当高温热源温度为 127℃,低温热源温度为 27℃时,其每次循环对外作的净功为 8000J,今维持低温热源温度不变,提高高温热源的温度,使其每次循环对外作的净功为 10000J,若两个卡诺循环都工作在相同的两条绝热线之间,试求:

(1) 第二个循环热机的效率; (2) 第二个循环高温热源的温度。

5 如图所示, abcda 为 1mol 单原子分子理想气体的循环过程, 求:

- (1)气体循环一次,在吸热过程中从外界共吸收的热量;
- (2)气体循环一次做的净功; (3)证明 $T_aT_c=T_bT_d$ 。

7. 静电场

班级 _	学号	姓名	成绩	
------	----	----	----	--

一、选择题

- 1.下列几个说法中哪一个是正确的?
- (A) 电场中某点场强的方向, 就是将点电荷放在该点所受电场力的方向;
- (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;
- (C) 场强方向可由 $\vec{E} = \vec{F}/q$ 定出,其中 q 为试验电荷的电量,q 可正,可负, \vec{F} 为试验电荷所受的电场力;

(D) 以上说法都不正确。 ()

2. 图中所示为一沿 X 轴放置的"无限长"分段均匀带电直线,电荷线密度分别为

 $+\lambda$ (x<0)和 $-\lambda$ (x>0),则 OXY 坐标平面上点(0,a)处的场强 \vec{E} 为:

(A) 0; (B) $\frac{\lambda}{2\pi\varepsilon_0 a}\vec{i}$; (C) $\frac{\lambda}{4\pi\varepsilon_0 a}\vec{i}$; (D) $\frac{\lambda}{2\pi\varepsilon_0 a}(\vec{i}+\vec{j})$.

()

3.如图所示,一个带电量为 q 的点电荷位于正立方体的 A 角上,则通过侧面 abcd 的电场强度通量等于:

(A)
$$\frac{q}{6\varepsilon_0}$$
; (B) $\frac{q}{12\varepsilon_0}$; (C) $\frac{q}{24\varepsilon_0}$; (D) $\frac{q}{36\varepsilon_0}\vec{i}$.

4.半径为 R 的均匀带电球面,总电量为 Q,设无穷远处电势为零,则该带电体所产生的电场的电势 U,随离球心的距离 r 变化的分布曲线为:

- 5.下面说法正确的是:
- (A)等势面上各点场强的大小一定相等; (B)在电势高处, 电势能也一定高;
- (C)场强大处, 电势一定高; (D)场强的方向总是从电势高处指向电势低处。

()

二、填空题

1.电荷面密度为 σ 的均匀带电平板,以平板上的一点 O 为中心,R 为半径作一半球面如图所示,则通过此半球面的电通量=____。

2.两个平行的"无限大"均匀带电平面,其电荷面密度分别为 $+\sigma$ 和 -2σ ,如图所示。设方向向右为正,则 A、B、C 三个区域的电场强度分别为:

$$E_A = \underline{\hspace{1cm}}; \hspace{1cm} E_B = \underline{\hspace{1cm}}; \hspace{1cm} E_C = \underline{\hspace{1cm}}$$

3.有一个球形的橡皮膜气球,电荷 q 均匀地分布在球面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为 r),其电场强度的大小将由变_为____。

4.如图所示,AB=2L,OCD 是以 B 为中心,L 为半径的半圆。A 点有正点电荷+q,B 点有负点电荷-q。

- (1) 把单位正电荷从 O 点沿 OCD 移到 D 点,电场力对它作功为_____;
- (2) 把单位负电荷从 D 点沿 AD 的延长线移到无穷远去,电场力对它作功为。

三、计算题

1.无限长的均匀带正电的细棒 L,电荷线密度为 $+\lambda$,在它旁边放一均匀带电的细棒 AB,长为 l,线密度为 $+\lambda$ ',且 AB 与 L 垂直。A 端距 L 为 a,求 AB 所受电场力的大小和方向。

2.如图所示,一厚为 a 的"无限大"带电平板,电荷体密度 $\rho = kx$ $(0 \le x \le a) k$ 为一正的常数。 求:(1)板外两侧任一点 M_1 、 M_2 的电场强度大小;(2)板内任一点 M 的电场强度;(3)场强最小的点在何处。

3.均匀带电球壳内半径为 R_1 ,外半径为 R_2 ,电荷体密度为 ρ ,求 $(1)r < R_1$ 处, $(2)R_1 < r < R_2$ 处, $(3)r > R_2$ 处各点的场强。

4.一半径为 R 的带电球体,其电荷体密度分布为: $\rho = \frac{qr}{\pi R^4} \propto r(r \leq R)$ (q 为正常数)。 试求: (1)带电球体的总电量; (2)球内、外各点的电场强度; (3)球内、外各点的电势。

5.电量 q 均匀分布在长为 2 l 的细杆上,(1)求在杆外延长线上与杆端距离为 a 的 P 点的电势(设无穷远处为电势零点)。(2)由场强和电势的微分关系求场强。

8. 静电场中的导体与电介质

一、选择题

1."无限大"均匀带电平面 A 附近平行放置有一定厚度的"无限大"平面导体板 B, 如 图所示,已知 A 上的电荷面密度为 $+\sigma$,则在导体板 B 的两个表面 1 和 2 上的感应电荷 面密度为:

)

(A)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = 0$;

(A)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = 0$; (B) $\sigma_1 = -\sigma$, $\sigma_2 = +\sigma$;

(C)
$$\sigma_1=-\frac{1}{2}\sigma$$
 , $\sigma_2=+\frac{1}{2}\sigma$; (D) $\sigma_1=-\frac{1}{2}\sigma$, $\sigma_2=-\frac{1}{2}\sigma$.

2.面积为S的空气平行板电容器,两极板上带电量 $\pm q$,忽略边缘效应,则两极板间的作用力为:

$$\text{(A)} \ \frac{q^2}{\varepsilon_0 S}; \quad \text{(B)} \ \frac{q^2}{2\varepsilon_0 S}; \quad \text{(C)} \ \frac{q^2}{2\varepsilon_0 S^2}; \quad \text{(D)} \ \frac{q^2}{\varepsilon_0 S^2}.$$

3.如图所示, 当两极板带上恒定的等量异号电荷时, 有一个质量为 m, 带电量 为+q的质点,平衡在极板间的空气区域中。此后,若将平行板电容器中的电介质抽 去,则该质点:

- (A) 保持不动; (B) 是否运动不能确定; (C) 向上运动; (D) 向下运动。

 $4.C_1$ 和 C_2 两空气电容器串联起来接上电源充电,保持电源联接,再把一电介质板插入 C_1 中。

- $(A)C_1$ 上电势差减小, C_2 上电量增大;
- $(B)C_1$ 上电势差减小, C_2 上电量不变;
- $(C)C_1$ 上电势差增大, C_2 上电量减小;
- $(D)C_1$ 上电势差增大, C_2 上电量不变。

5.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电 能之间的关系是:

- (A) 球体的静电能等于球面的静电能; (B)球体的静电能大于球面的静电能;
- (C)球体的静电能小于球面的静电能; (D)无法比较。

二、填空题

()

三、计算题

1.A、B、C 是三块平行金属板,面积均为 200cm^2 。A、B 相距 4.0 mm,A、C 相距 2.0 mm,B、C 两板都接地。(1)设 A 板带正电 3.0×10^{-7} C,不计边缘效应,求 B 板和 C 板上的感应电荷,以及 A 板的电势。 (2)若在 A、B 间充以相对电容率 \mathcal{E}_r = 5 的均匀电介质,再求 B 板和 C 板上的感应电荷,以及 A 板的电势。 以及 A 板的电势。

2.半径分别为 a 和 b 的两个金属球,它们的间距比本身线度大得多,今用一细导线将两者相连接,并给系统带上电荷 Q。求:

(1)每个球上分配到的电荷是多少? (2)按电容定义式, 计算此系统的电容。

3.在半径为 R 的金属球之外有一层半径为 R 的均匀介质层,如图所示,设电介质相对电容率为 ε_r ,金属球带电量为 Q,求:

- (1)介质层内、外场强 $E_{\rm Pl}(\mathbf{r})$, $E_{\rm Pl}(\mathbf{r})$;
- (2)介质层内、外的电势 $V_{\rm Pl}(\mathbf{r})$, $V_{\rm Pl}(\mathbf{r})$ 。

4.一平板电容器,两板相距 d,板间充以介电常数分别为 ε_1 和 ε_2 的两种均匀介质,其面积各占 S_1 和 S_2 ,设电容器板上带电量 Q。计算板上电荷分布以及电容器的电容。

5.两个相同的空气电容器,其电容各为 8 μ F ,都充电到 900V 后,将电源断开,把其中一个浸入煤油 $(\varepsilon_r=2)$ 之中,然后把这两个电容并联。求(1)浸入煤油过程中能量的损失 $\Delta W_1=?$ (2)并联过程中能量的损失 $\Delta W_2=?$

9. 恒定磁场

一、选择题

1. 无限长的直导线在 A 点弯成半径为 R 的圆环,则当通以电流 I 时,圆心 O 处的磁感应强度大小等于:

(B)
$$\frac{\mu_0 I}{\Delta R}$$

(E)
$$\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$$

2.两半径为 R 的相同的导体细圆环,互相垂直放置,且两接触点 $A \times B$ 连线为环的直径,现有电流 I沿 AB 连线方向由 A 端流入,再由 B 端流出,则环中心处的磁感应强度大小为:

- (A) 0; (B) $\mu_0 I / 4R$; (C) $\sqrt{2}\mu_0 I / 4R$;
- (D) $\sqrt{2}\mu_0 I/R$; (E) $\sqrt{2}\mu_0 I/8R$.

3. 在电流元 $I d\vec{l}$ 激发的磁场中、若在距离电流元为 \vec{r} 处的磁感应强度为 $d\vec{B}$ 。则下 列叙述中正确的是

- (A) $d\vec{B}$ 的方向与 \vec{r} 方向相同; (B) $d\vec{B}$ 的方向与 $Id\vec{l}$ 方向相同;
- (C) $d\vec{B}$ 的方向垂直于 $Id\vec{l}$ 与 \vec{r} 组成的平面; (D) $d\vec{B}$ 的方向为($-\vec{r}$)方向。

- 4. 磁场中的高斯定理 $\oint_{\mathcal{B}} \bar{B} \cdot d\bar{S} = 0$ 说明了磁场的性质之一是
 - (A) 磁场力是保守力;

(B) 磁感应线可能闭合;

(C) 磁场是无源场;

(D) 磁场是无势场。

5. 有一内部充满相对磁导率为 μ_r 的均匀磁介质的螺线管,其长为l,半径为a(l>a),总匝数为N,通 以稳恒电流 I, 则管中一点的:

- (A)磁感应强度大小 $B = \mu_r NI/l$; (B)磁感应强度大小 $B = \mu_0 \mu_r NI$;
- (C)磁场强度大小为 $H = \mu_0 NI/l$; (D)磁场强度大小为H = NI/l。

)

二、填空题

1.在均匀磁场 \vec{B} 中,有一半径为 R 的圆面,其法线 \vec{n} 与 \vec{B} 夹角为 60° ,则通过以该圆周为边线的任意 曲面 S 的磁通量 $\Phi_{\rm m} = \iint \vec{B} \cdot d\vec{S} =$ ______。

2.有一折成如图所示的无限长导线,已知电流 I=10A,半圆半径 R=0.5cm,则圆心 O 点的磁感应强度 *B* =_______,方向_____。

3.如图所示,在真空中,流出纸面的电流为 2I,流进纸面的电流为 I,则对于图中的 L_1 、 L_2 、 L_3 、 L_4 闭合曲线:

- (A) $\oint_{L_1} \vec{B} \cdot d\vec{l} = \underline{\qquad}$; (B) $\oint_{L_2} \vec{B} \cdot d\vec{l} = \underline{\qquad}$;
- (C) $\oint_{L_3} \vec{B} \cdot d\vec{l} =$ ______; (D) $\oint_{L_4} \vec{B} \cdot d\vec{l} =$ _______

4. 有一电子在磁感应强度 B=0.2T 的匀强磁场中沿圆周运动,电子运动形成的等效圆电流强度

(电子电量 $e=1.6\times10^{-19}$ C,电子质量 $m=9.11\times10^{-31}$ kg,圆轨道半径 R=1 米)。

5. 如图所示,虚线表示是 $B = \mu_0 H$ 的关系曲线,图中 $a \cdot b \cdot c$ 分别代表哪一类磁介质的 $B \sim H$ 关系曲 线?

a代表_____的 $B\sim H$ 关系曲线;

b代表_____的 $B \sim H$ 关系曲线;

c 代表______的 $B \sim H$ 关系曲线。

三、计算题

1.如上右图所示,在截面均匀铜环上任意两点 A、B 用两根长直导线沿半径 方向引到很远的电源上,求环中心处O点的磁感应强度。

2.如图为一半径为 R_2 的带电薄圆盘,其中半径为 R_1 的阴影部分均匀带正电荷,面

电荷密度为 $+\sigma$,其余部分均匀带负电荷,面电荷密度为 $-\sigma$,当圆盘以角速度 ω 旋转时,测得圆盘中心 O 点的磁感应强度为零,问 R_1 与 R_2 满足什么关系?

3.一对同轴的无限长空心导体圆筒,内、外半径分别为 R_1 和 R_2 (筒壁厚度可以忽略不计),电流 I 沿内筒流去,沿外筒流回,如图所示。(1)计算两圆筒间的磁感应强度;(2)求通过长度为 I 的一段截面(图中斜线部分)的磁通量。

4.一半径为 R 的无限长半圆柱面导体,载有与轴线上的长直导线载有等值反向的电流 I,如图所示,

试求轴线上长直导线单位长度所受磁力。

5.长直圆柱形铜导线,外面包一层相对磁导率为 μ_r 的圆柱形磁介质。导线半径为 R_1 ,磁介质的半径为 R_2 ,导线内有均匀分布的电流 I 通过,铜的相对磁导率可取 1,求导线和介质内外的磁场强度 \vec{B} 和磁感应强度 \vec{H} 分布。

10. 电磁感应

一、选择题

1.如图,导体棒 AB 在均匀磁场 \vec{B} 中绕通过 C 点的垂直于棒长且沿磁场方向的轴 OO' 转动(角速度 $\vec{\omega}$ 与 \vec{B} 同方向), BC 的长度为棒长的 1/3, 则:

- (A)A 点比 B 点电势高;
- (B)A 点与 B 点电势相等;

(C)A 点比 B 点电势低; (D)有稳恒电流从 A 点流向 B 点。 (

2.在圆柱形空间内有一磁感应强度为 \vec{B} 的均匀磁场,如图所示, \vec{B} 的大小以速率 dB/dt变化,有一长度为 l_0 的金属棒先后放在磁场的两个不同位置 1(ab)和 2(a'b'),则金属棒 在这两个位置时棒内的感应电动势的大小关系为:

3 自感为 0.5H 的线圈中, 通有 $i = 4 \sin \pi t$ A 的电流, 当 t=7/4s 时, 线圈中自感电动势大小和方向为:

- (A) $\sqrt{2\pi}V$, 与电流 I 反向; (B) $\sqrt{2}/2V$, 与电流 I 反向;
- (C) $\sqrt{2}/2V$, 与电流 I 同向; (D) $\sqrt{2\pi}V$, 与电流 I 同向。

4 在圆柱形空间内有一磁感应强度为 \vec{B} 的均匀磁场,如图所示。 \vec{B} 的大小以速率 dB/dt 变化。在磁场 中有 $A \times B$ 两点,其间可放直导线 \overline{AB} 和弯曲的导线 AB,则:

(A)电动势只在 \overline{AB} 导线中产生; (B)电动势在 \overline{AB} 和 AB中都产生,且两者大小相等。

(C)电动势只在 AB 导线中产生; (D) \overline{AB} 导线中的电动势小于 AB 导线中的电动势。

5.如图,平板电容器(忽略缘效应)充电时,沿环路 L_1 、 L_2 磁场强度 \vec{H} 的环流中,必有:

- (A) $\oint_{L_1} \vec{H} \cdot d\vec{l} > \oint_{L_2} \vec{H} \cdot d\vec{l}$; (B) $\oint_{L_1} \vec{H} \cdot d\vec{l} = \oint_{L_2} \vec{H} \cdot d\vec{l}$;

1.半径为 r 的小导线环置于半径为 R 的大导线环中心,二者在同一平面内,且 r<< R,在大导线环中通有正弦电流 $I=I_0\sin\omega t$,其中 ω 、 I_0 为常数, t 为时间,则任一时刻小导线环中感应时电动势的大小为

3. 半径为 a 的无限长密绕螺线管,单位长度上的匝数为 n,通以交变电流

 $i = I_m \sin \omega t$,则围在管外的同轴圆形回路(半径为r)上的感生电动势为______

4.一个薄壁纸筒,长为 30cm、截面直径为 3cm,筒上绕有 500 匝线圈,纸筒内由 $\mu_r=5000$ 的铁芯充满,则线圈的自感系数为_____。

5.半径为 R 的无限长柱形导体上均匀流有电流 I,该导体材料的相对磁导率 $\mu_r=1$,则在导体轴线上一点 的 磁 场 能 量 密 度 w_{m0} _______, 在 与 导 体 轴 线 相 距 r 处 $(r\!<\!R)$ 的 磁 场 能 量 密 度 w_{mr} ______。

三、计算题

1.如图所示,长直导线中电流为 i,矩形导线框 abcd 与长直导线共面,且 ad 与 AB 平行,dc 边固定,ab 边沿 da 及 cd 以速度 \vec{v} 无磨擦地匀速平动,设线框自感忽略不计,t=0 时,ab 边与 dc 边重合。

(1)如 $i=I_0$, I_0 为常量,求 ab 中的感应电动势,ab 两点哪点电势高?

(2)如 $i = I_0 \cos \omega t$, 求线框中的总感应电动势。

2.一长圆柱状磁场,磁场方向沿轴线并垂直图面向里,磁场大小既随到轴线的距离r成正比而变化,又随时间t作正弦变化,即: $B=B_0r\sin\omega t$, B_0 、 ω 均为常数,若在磁场内放一半径为a 的金属圆环,环心在圆柱状磁场的轴线上,求金属环中的感生电动势。

3.如图所示,在半径为R的无限长直圆柱形空间内,存在磁感应强度为 \vec{B} 的均匀磁场, \vec{B} 的方向平行于圆柱轴线,在垂直于圆柱轴线的平面内有一无限长直导线,两线相距为d,且d>R,已知 $\frac{\mathrm{d}B}{\mathrm{d}t}=k$,k>0,求长直导线中的感应电动势的大小和方向。

4.一无限长直导线通有电流 $i = I_0 e^{-3t}$, I_0 为常量,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示,求: (1) 矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数。

- 5.截面为矩形的螺绕环共 N 匝,尺寸如图所示,图下半部两矩形表示螺绕环的截面,在螺环的轴线上另有一无限长直导线。
 - (1)求螺绕环的自感系数; (2)求长直导线和螺绕环的互感系数。
 - (3)若在螺绕环内通以稳恒电流 I,求螺绕环内储存的磁能。

11. 振动

班级 _______ 学号 ______ 姓名 _____ 成绩 _____

一、选择题

1.一质点作简谐振动的方程为 $x = A\cos(\omega t + \varphi)$, 当时间 t = T/4(T) 为周期)时,质点的速度为:

(A) $-A\omega\sin\varphi$; (B) $A\omega\sin\varphi$; (C) $-A\omega\cos\varphi$; (D) $A\omega\cos\varphi$.

()

2.一物体作谐振动,振幅为 A,在起始时刻质点的位移为-A/2 且向 x 轴的正方向运动,代表此谐振动的旋转矢量图为:

()

3.如图所示,一质量为m的滑块,两边分别与倔强系数为 k_1 和 k_2 的轻弹簧联接,两弹簧的另外两端分别固定在墙上。滑块m可在光滑的水平面上滑动,O点为平衡位置。将滑块m向左移动了 x_0 的距离,自静止释放,并从释放时开始计时,取坐标如图示,则振动方程为:

- (A) $x = x_0 \cos[\sqrt{(k_1 + k_2)/m} \cdot t];$
- (B) $x = x_0 \cos[\sqrt{k_1 k_2 / m(k_1 + k_2)} \cdot t + \pi];$

(C) $x = x_0 \cos[\sqrt{(k_1 + k_2)/m} \cdot t + \pi];$

(D)
$$x = x_0 \cos[(k_1 + k_2)/m \cdot t + \pi]$$
 (

4.一单摆,把它从平衡位置拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其摆动,若自放手时开始计时,如用余弦函数表示其运动方程,则该单摆振动的初位相为:

(A) θ ; (B) π ; (C) 0; (D) $\pi/2$.

5.如图,用两个完全相同的弹簧和小重物构成的弹簧振子,分别按图中所示的位置放置,空气和斜面的阻力均忽略。当两振子以相同的振幅作简谐振动时:

- (A) 它们的角频率不同; (B) 它们的最大动能不同;
- (C) 它们各自到达平衡位置时弹簧形变不同;
- (D) 以上结论都不对。 ()

1.一远洋货轮,质量为m,浮在水面时其水平截面积为S。设在水面附近货轮的水平截面积近似相等,水的密度为 ρ ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期。

2.一放置在水平桌面上的弹簧振子,振幅 $A=2.0\times10^{-2}\,\mathrm{m}$,周期 $T=0.50\mathrm{s}$,求下列情况下 的运动方程。 当 t=0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在 $x=1.0\times10^{-2}\,\mathrm{m}$ 处,向负方向运动。

- 3.一质点作谐振动, 其振动方程为: $x = 6.0 \times 10^{-2} \cos(\pi t/3 \pi/4)$ (SI)。
- (1) 振幅、周期、频率及初位相各为多少? (2) 当 x 值为多大时,系统的势能为总能量的一半? (3) 质点从平衡位置移动到此位置所需最短时间为多少?

4.某振动质点的 x-t 曲线如图所示,试求:(1)运动方程; (2)点 P 对应的相位;(3)到达点 P 相应位置所需的时间。

5.有两个振动方向相同的简谐振动,其振动方程分别为

$$x_1 = 4\cos(2\pi t + \pi) \text{ (cm)}$$

$$x_2 = 3\cos\left(2\pi t + \frac{\pi}{2}\right)(\text{cm})$$

- (1) 求它们的合振动方程;
- (2) 另有一同方向的简谐振动 $x_3=2\cos(2\pi t+\varphi_3)$ (cm),问当 φ_3 为何值时, x_1+x_3 的振幅为最大值?当 φ_3 为何值时, x_1+x_3 的振幅为最小值?

12. 波动

一、选择题

1.在下面几种说法中,正确的说法是:

- (A) 波源不动时,波源的振动频率与波动的频率在数值上是不同的;
- (B) 波源振动的速度与波速相同:
- (C) 在波传播方向上的任一质点的振动位相总是比波源的位相滞后;
- (D) 在波传播方向上的任一质点的振动位相总是比波源的位相超前。
- 2.一简谐波沿 X 轴正方向传播,图中所示为 t=T/4 时的波形曲线。若振动以余弦函数表示,且此题各点 振动的初相取 $-\pi$ 到 π 之间的值,则:
 - (A) 0 点的初位相为 $\varphi_0 = 0$ (B) 1 点的初位相为 $\varphi_1 = -\pi/2$

(C) 2 点的初位相为 $\varphi_2 = \pi$ (D) 3 点的初位相为 $\varphi_3 = -\pi/2$ 。

)

()

()

- 3.一平面简谐波的波动方程为 $y = 0.1\cos(3\pi t \pi x + \pi)(SI), t = 0$ 时的波形曲线如图所示,则:
 - (A) a 点的振幅为-0.1m;
- (B) 波长为 4m;

(C) a、b 两点间位相差为 $\pi/2$ (D) 波速为 6ms⁻¹。

4.两列相干波,其波动方程为 $y_1 = A\cos 2\pi(\chi - x/\lambda)$ 和 $y_2 = A\cos 2\pi(\chi + x/\lambda)$,沿相反方向传播 叠加形成的驻波中,各处的振幅是:

(A)2A; (B)
$$|2A\cos(2\pi y)|$$
; (C) $2A\cos(2\pi x/\lambda)$; (D) $|2A\cos(2\pi x/\lambda)|$.

5.设声波在媒质中的传播速度为u,声源的频率为 v_s ,若声源S不动,而接收器R相对于媒质以速度 V_R 沿 S、R 连线向着声源 S 运动,则接收器 R 接受到的信号频率为:

(A)
$$V_s$$
; (B) $\frac{u + V_R}{u} V_s$; (C) $\frac{u - V_R}{u} V_s$; (D) $\frac{u}{u - V_B} V_s$.

三、计算题

1.某质点作简谐振动,周期为 2s,振幅为 0.06m,开始计时 (t=0),质点恰好处在 A/2 处且向负方向运动,求:(1)该质点的振动方程;(2)此振动以速度 u=2m/s 沿 X 轴正方向传播时,形成的平面简谐波的波动方程;(3)该波的波长。

y= 。(固定端处有半波损失)

2.一平面简谐波在介质中以速度 u=20m/s 自左向右传播,已知在波线上的某点 A 的振动 方程为 $y=3\cos(4\pi t-\pi)$ (SI) 另一点 D 在 A 点右方 18 米处。

- (1) 若取x 轴方向向左并以A 为坐标原点, 试写出波动方程, 并求出D 点的振动方程。
- U U O A D
- (2) 若取 x 轴方向向右以 A 点左方 10 米处的 O 点为 x 坐标原点,重新写出波动方程及 D 点的振动方程。

3.如图为平面简谐波在 t=0 时的波形图,设此简谐波的频率为 $250H_z$,且此时图中质点 P 的运动方向向上。求:(1)该波的波动方程;(2)在距原点 O 为 7.5m 处质点的运动方程与 t=0 时该点的振动速度。

4.一平面简谐波,波速为 340 m/s,频率为 300 Hz,在横截面积为 3.00×10^{-2} m² 的管内的空气中传播,若在 10 s 内通过截面的能量为 2.70×10^{-2} J,求:(1)通过截面的平均能流;(2)波的平均能流密度;(3)波的平均能量密度。

5.同一介质中两相干波源位于 A、B 两点,其振幅相等,频率均为 100Hz,位相差为 π ,若 A、B 两点相距 30m,且波的传播速度 u=400m/s,若以 A 为坐标原点,试求 AB 连线上因干涉而静止的各节点的位置。

13. 光学(1)

一、选择题

1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:

- (A) 使屏靠近双缝:
- (B) 使两缝的间距变小;
- (C) 把两个缝的宽度稍微调窄; (D) 改用波长较小的单色光源。

2.在双缝干涉实验中, 若单色光源 S 到两缝 S₁S₂ 距离相等,则观察屏上中央明条纹位于图中 O 处,现 将光源 S 向下移动到示意图中的 S'位置,则:

- (A) 中央明条纹也向下移动, 且条纹间距不变;
- (B) 中央明条纹向上移动, 且条纹间距增大;
- (C) 中央明条纹向下移动, 且条纹间距增大:
- (D) 中央明条纹向上移动, 且条纹间距不变。

3.在折射率为 n'=1.68 的平板玻璃表面涂一层折射率为 n=1.38 的 MgF_2 透明薄膜,可以减少玻璃表面的 反射光,若用波长 $\lambda = 500$ nm 的单色光垂直入射,为了尽量减少反射,则 MgF₂薄膜的最小厚度应是:

- (A) 90.6nm;
- (B) 78.1nm;
- (C) 181.2nm;
- (D) 156.3nm_o

)

4.用劈尖干涉法可检测工件表面缺陷, 当波长为λ 的单色平行光垂直入射时, 若观察到的干涉条纹如图 所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹变曲处对应 的部分:

- (A) 凸起,且高度为 $\lambda/4$; (B) 凸起,且高度为 $\lambda/2$;
- (C) 凹陷,且深度为 $\lambda/2$; (D) 凹陷,且深度为 $\lambda/4$ 。

5.如图,用单色光垂直照射在观察牛顿环的装置上,设其平凸透镜可以在垂直 的方向上移动,在透镜离开平玻璃过程中,可以观察到这些环状干涉条纹。

(A) 向右平移; (B) 向中心收宿; (C) 向外扩张; (D) 静止不动; (E) 向左平移。

(

$1.$ 在双缝干涉实验中,所用单色光波长为 $\lambda = 562.5$ nm,双缝与观察屏的距离 $D=1.2$ m,	若测得屏上相邻
明条纹间距为 Δx =1.5mm,则双缝的间距 d =mm。	
2.如图,在双缝干涉实验中,若把一厚度为 e ,折射率为 n 的半圆筒形薄云母片复	1.500
盖在 S ₁ 缝上,中央明条纹将向	s, , , , , , , , , , , , , , , , , , ,
到原中央明纹 O 处的光程差为。	₹5, < ₹ 5 ,
3.在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,干涉条纹将	劈棱方向移动,
相邻条纹间的距离将变。	
4.在牛顿环实验中,平凸透镜的曲率半径为 3.00m, 当用某种单色光照射时,测得第	k 个暗环半径为
4.24mm,第 k +10 个暗环半径为 6.00mm,则所用单色光的波长为	
5.若在迈克逊干涉仪的可动反射镜 M 移动 0.620mm 的过程中,观察到干涉条纹移动员	了 2300 条,则所
用光波的波长为nm。	
三、计算题	
1.在双缝干涉实验中,两缝间距为 0.30mm, 用单色光垂直照射双缝, 在离缝 1.20m 的	屏上测得中央明
纹一侧第 5 条暗纹与另一侧第 5 条暗纹间的距离为 22.78mm,问所用光的波长为多少,是	:什么颜色的光?

2.在图示的双缝干涉实验中,若用半圆筒形薄玻璃片(折射率 n_1 =1.4)覆盖缝 S_1 ,用同样厚度的玻璃片(折射率 n_2 =1.7)覆盖缝 S_2 ,将使屏上原来未放玻璃时的中央明条纹所在处 O 变为第五级明纹。设单色光波长 λ = 480nm,求玻璃片的厚度 d。

3.利用干涉来降低玻璃表面的反射,使氦氖激光器发出的波长为 632.8nm 的激光毫不反射地透过透镜,通常在透镜表面复盖一层 MgF2(*n*=1.38 小于透镜的折射率)的透明薄膜,当光线垂直入射时,试求此薄膜必须有多厚?最薄厚度为多少?

4.在牛顿环装置中,透镜与玻璃平板间充以液体时,第 10 个暗环的直径由 1.40cm 变为 1.27cm,求该液体的折射率。

5.牛顿环装置中,透镜的曲率半径 R=40cm,用单色光垂直照射,在反射光中观察某一级暗环的半径 r=2.5mm,现把平板玻璃向下平移 d_0 =5.0 μ m,上述被观察暗环的半径变为何值?

13. 光学(2)

班级	学号	姓名		成绩
一、选择题				
1.在夫琅禾费单缝衍射] 丁实验中,对于给定的入身	村单色光,当	缝宽度变小时,降	余中央亮纹的中心位置不
变外,各级衍射条纹。				
(A) 对应的衍射角变小	\; (B) 对应的衍	射角变大;		
(C) 对应的衍射角也不	下变; (D) 光强也不	变。		
				()
2.在如图所示的单缝夫	: 琅和费衍射实验装置中,	S为单缝,L	为透镜,C为放	在 L 的焦平面处的屏幕。
当把单缝 S 垂直于透镜光线	抽稍微向上平移时,屏幕	上的衍射图样		L C
(A) 向上平移;	(B) 向下平移;			=s +
(C) 不动; ((D) 条纹间距变大。			V
			()
$3.$ 波长 $\lambda = 500$ nm 的单	色光垂直照射到宽度 a=	= 0.25mm 的单	缝上,单缝后面)	放置一凸透镜,在凸透镜
的焦平面上放置一屏幕, 月	 目以观测衍射条纹,今测	得屏幕上中央	明条纹一侧第三个	个暗条纹和另一侧第三个
暗条纹之间的距离为 d=12	\mathbf{mm} ,则凸透镜的焦距 f	为:		
(A) 2m; (B) 1m;	(C) $0.5m$; (D) $0.2m$	n; (E) 0.1r	n∘	
				()
4.某元素的特征光谱中	□含有波长分别为礼 1=450	nm 和 ¹ ₂ =750	0nm(1nm=10 ⁻⁹ m)É	的光谱线,光栅光谱中,
这两种波长的谱线有重叠理	现象,重叠处 [№] 2的谱线的	勺级数将是:		
(A) 2, 3, 4, 5·····;		11 ·····;;		
(C) 2, 4, 6, 8·····;	(D) 3, 6, 9,	12•••••		
				()
5.一束平行单色光垂直	直入射在光栅上,当光栅	常数(b+b')	为下列哪种情况的	时(b 代表每条缝的宽度)
k = 3,6,9等级次的主极为	、均不出现?			
(A) $b+b'=2b$; (B)	b+b'=3b; (C) $b+b'=3b$	$b' = 4b \; ; (D)$	b+b'=6b.	

三、计算题

- 1.在某个单缝衍射实验中,光源发出的光含有两种波长 λ_1 和 λ_2 ,并垂直入射于单缝上,假如 λ_1 的第一级衍射极小与 λ_2 的第二级衍射极小相重合,试问:
 - (1)这两种波长之间有何关系?
 - (2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?

2. 若有一波长为 λ =600nm 的单色平行光,垂直入射到缝宽 a=0.6mm 的单缝上,缝后有一焦距 f=40cm 透镜。试求:(1)屏上中央明纹的宽度;(2)若在屏上 P 点观察到一明纹,op =1.4mm,问 P 点处是第几级明纹,对 P 点而言狭缝处波面可分成几个半波带?

- 3.一衍射光栅,每厘米有 200 条透光缝,每条透光缝宽为 $a=2\times10^{-3}$ cm,在光栅后放一焦距 f=1m 的凸透镜,现以 $^{1}=600$ nm 的单色平行光垂直照射光栅。求:
 - (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少?
 - (2) 在该宽度内,有几个光栅衍射主极大?

4.一束具有两种波长 $λ_1$ 和 $λ_2$ 的平	行光垂直照射到-	一衍射光栅上,测得	波长λ ₁ 的第三级主极	大衍射角和
λ_2 的第四级主极大衍射角均为 30°。	己知 ¹ 1=560nm,	试求: (1) 光栅常	数; (2) 波长』2。	

- 5. 以波长 0.11nm 的 x 射线照射岩盐晶面,实验测得在 x 射线与晶面的夹角(掠射角)为 $11^{\circ}30'$ 时获得第一级极大的反射光。问:
 - (1)岩盐晶体原子平面之间的间距 d为多大?
- (2)如以另一束待测的 x 射线照射岩盐晶面,测得 x 射线与晶面的夹角为 $17^{\circ}30'$ 时获得第一级极大反射光,则待测 x 射线的波长是多少?

13. 光学(3)

班级	学号	姓名	成绩	
一 、选择题 1 两偏振片堆着	季 在一起,一束自然-	光垂直入射其上时没有光线	线诵讨。 当其中一偏振片	慢慢转动 180 ⁰ 时
透射光强度发生的			ACCO IN PROPERTY	KKN-7 100 M
		先增加,后又减小至零;		
(C) 光强先增加	加,后减小,再增加:	;		
(D) 光强先增加	加,然后减小,再增	加,再减小至零。		
				()
的反射和吸收,则	穿过两个偏振片后的	两个偏振片,且此两偏振月]光强 <i>I</i> 为:	片的偏振化方向成 45°角,	若不考虑偏振片
(A) $\sqrt{2}I_0/4$;				
(C) $I_0/2$;	(D) $\sqrt{2}I_0/2$.			
				()
3.三个偏振片	P ₁ 、P ₂ 与 P ₃ 堆叠在-	一起, P_1 与 P_3 的偏振化方	向相互垂直, P_2 与 P_1 的 0	扁振化方向间夹角
	的自然光垂直入射到 个偏振片后的光强为	偏振片 P1,并依次透过偏 J:	振片 P ₁ 、P ₂ 与 P ₃ ,若不想	垮虑偏振片的吸收
(A) $I_0/4$;	(B) $3I_0/8$;			
(C) $3I_0/32$;	(D) $I_0/16$.			
				()
4.自然光以 60	的入射角照射到某一	一透明介质表面时,反射光	光为线偏振光,则知:	
(A) 折射光为约	线偏振光,折射角为	30°; (B) 折射光为部分	·偏振光,折射角为30°;	
(C) 折射光为约	线偏振光,折射角不同	能确定; (D) 折射光为部分	分偏振光,折射角不能确	定。
				()
5.一束光是自然	然光和线偏振光的混	合光,让它垂直通过一偏	振片,若以此入射光束为	可轴旋转偏振片,
测得透射光强度最	大值是最小值的 5 倍	5,那么入射光束中自然光	占与线偏振光的光强比值为	为:
(A) 1/2:	(B) 1/5: (C) 1/3	$(D) 2/3_{\circ}$		

2.在以下五个图中,左边四个图表示线偏振光入射于两种介质分界面上,最右边的图表示入射光是自然光。 n_1 、 n_2 为两种介质的折射率,图中入射角 i_0 =arctg(n_2/n_1), $i \neq i_0$,试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来。

- 3.某一块火石玻璃的折射率是 1.65, 现将这块玻璃浸没在水中(*n*=1.33), 欲使从这块玻璃表面反射到水中的光是完全偏振的,则光由水射向玻璃的入射角应为。
- 5.一束线偏振的平行光,在真空中波长为 589nm(1nm=10 $^{\circ}$ m),垂直入射到方解石晶体上,晶体的光轴和表面平行,如图所示。已知方解石晶体对此单色光的折射率为 n_0 =1.658, n_e =1.486,这晶体中的寻常光的波长 λ 0 = _______,非寻常光的波长 λ 2 = ______。

三、计算题

1.在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长 $\lambda_1 = 400.0$ nm, $\lambda_2 = 760.0$ nm。已知单缝宽度 $a=1.0\times10^{-2}$ cm,透镜焦距f=50cm,求两种光第一级衍射明纹中心之间的距离。

若用光栅常数 $d=1.0\times10^{-3}$ cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离。

- 2.将三个偏振片叠放在一起,第二个与第三个偏振化方向分别与第一个的偏振化方向成 45° 和 90° 角。
- (1) 强度为 I_0 的自然光垂直入射到这一堆偏振片上,试求经每偏振片后的光强和偏振状态。
- (2) 如果将第二个偏振片抽走,情况又如何?

3. 有三个偏振片堆叠在一起,第一块与第三块的偏振化方向相互垂直,第二块和第一块的偏振化方向相互平行,然后第二块偏振片以恒定角速度 ω 绕光传播的方向旋转,如图所示。设入射自然光的光强为 I_0 。试证明:此自然光通过这一系统后,出射光的光强为 $I=I_0(1-\cos 4\omega t)/16$ 。

4.测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角 θ 处?(水的 折射率为 1.33)

5.如图所示安排的三种透光介质 I、II、III,其折射率分别为 n_1 = 1.33, n_2 = 1.50, n_3 = 1,两个交界面相互平行,一束自然光自介质 I 中入射到 I 与 II 的交界面上,若反射光为线偏振光。

- (1) 求入射角 i。
- (2) 介质Ⅱ、Ⅲ界面上的反射光是不是线偏振光? 为什么?

14. 相对论

班级	学号	姓名	成绩	
一、选择题				
1.(1)某惯性系中一	观察者,测得两事件同	时刻、同地点发生, 则	在其它惯性系中,它	们不同时发生。
(2)在惯性系中同时	刻、不同地点发生的	事件,在其它惯性系中	业不同时发生;	
(3)在某惯性系中不	同时、不同地发生的	两事件,在其它惯性系	中必不同时,而同地	过发生;
(4)在不同惯性系中	对同一物体的长度、	体积、质量、寿命的测	量结果都相同;	
(5)某惯性系中观察	者将发现,相对他静	止的时钟比相对他匀速	运动的时钟走得快。	
正确说法是:				
(A) (1),	(3), (4), (5); (B)	(1), (2), (3); (C) (2), (5); (D) (1), (3)	0
				()
2.相对地球的速度	为 v 的一飞船,要到	离地球为 5 光年的星球	求去。若飞船上的宇航	
光年,则 v 应是:				
(A) $\frac{1}{2}c$;	(B) $\frac{3}{5}c$;	(C) $\frac{9}{10}c$; (D) $\frac{2}{3}c$	} -c∘ 5	
-	J			()
3.坐标轴相互平行	的两个惯性系 S、S',	S'相对 S 沿 OX 轴正	方向以 v 匀速运动,在	E S'中有一根静止的
刚性尺,测得它与 OX	´轴成 30°角,与 O	X 轴成 45°角,则v 应为	力:	
2	1	$2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$	-	
(A) $\frac{2}{3}c$	(B) $\frac{1}{3}c$; (C)	$(\frac{2}{3})^{\frac{1}{2}}c;$ (D) $(\frac{1}{3})^{\frac{1}{3}}$	<i>C</i> •	
				()
4.观察者甲、乙,分	别静止在惯性系 S、	S', S' 相对 S 以 \vec{u} 运动,	S′中一个固定光源发	战出一束光与 <i>礼</i> 同向
(1) 乙测得该光道	速为 c ; (2) 甲测	得光速为 <i>c+u</i> ;		
(3) 甲测得光速	内 <i>c-u</i> ; (4)甲测行	專光相对乙的速度为 <i>c-</i> √	u。 正确答案是:	
(A) (1), (3), ((4); (B) (1), (4	i); (C) (2), (3);	(D) (1) , (2) ,	(4)。
				()
5.在惯性系 S 中,	两个静质量都是 m ₀ 的	的粒子,都以速度 v 沿同	司一直线相向运动并相	目撞,之后合为一个
整体,则其静质量 M_0	为 :			

(A) $2m_0$; (B) $2m_0\sqrt{1-(v/c)^2}$; (C) $\frac{m_0}{2}\sqrt{1-(v/c)^2}$; (D) $2m_0/\sqrt{1-(v/c)^2}$

1.狭义相对论两条基本原理是: (1),
(2)
2.真空中有两个惯性系 S 、 S' ,将点光源 P 置于 S' 的原点,当 S 、 S' 的两原点重合时, P 发出一光波,此
后观测该光波波阵面的形状和波面方程在 S'中应为:;
在 S 中应为:。
3. 测得不稳定粒子 π^+ 介子的固有寿命平均值是 $2.6 \times 10^{-8}\mathrm{s}$, 当它相对某实验室以 0.80c 的速度运动
时,所测的寿命应是s。
4.若一个电子的速度 $v=0.99$ c 时,它的动能为MeV;若把电子加速到能量 $\varepsilon=2.0\times10^7$ eV
时,则其动能为eV,(1eV=1.60×10 ⁻¹⁹ J,电子静质量 $m_e = 9.11 \times 10^{-31} \text{kg}$)。
5. 粒子的相对论动量是非相对论动量的 2 倍时,其速度大小 $v=$
能等于静能时,其速度大小 $v=$ 。
三、计算题

1.在惯性系 S 中的同一地点先后发生了两事件 A 和 B, B 比 A 晚发生 Δt =2.0s, 在惯性系 S'中测得 B 比

A 晚发生 $\Delta t'$ =3.0s。试问在 S'中观测发生 A、B 的两地点之间的距离为多少?

得	2.一固有长度 L ₀ = 飞船长度及船身通							,该站测
中	3.一个立方体的情 的观察者测得其密	体积为 V ₀ ,	当它相对某	E惯性系 S 剂	品一边长方[句以匀速υ	运动时,	静止在 S

4.坐标轴相互平行的两惯性系 S、S',S'相对 S 沿 X 轴匀速运动,现有两事件发生,在 S 中测得其空间、时间间隔分别为 $\Delta x=5.0\times10^6$ m, $\Delta t=0.010$ s;而在 S'中观测二者却是同时发生,那么其空间间隔 Δx 是多少?

5.两火箭 A、B 沿同一直线相向运动,测得二者相对地球的速度大小分别是 $\upsilon_{\rm A}=0.900c$, $\upsilon_{\rm B}=0.800c$,试求二者互测的相对运动速度。

15. 量子物理

班级	学号	姓名	成绩	
一、选择题				
1. 黑体辐射、光电线	效应及康普顿效应皆突	出表明了光的		
(A)波动性;	(B)粒子性;			
(C)单色性;	(D)偏振性。			
			()
2. 已知某金属中电	子逸出功为 eV。,当用一	一种单色光照射该金属表面	面时,可产生光电效应。则该为	化的波
长应满足:				
$(A)\lambda \leq hc/(eV)$	(V_0) ; (B) $\lambda \ge hc/(eV_0)$	(0);		
$(C)\lambda \leq eV_0/($	(hc) ; (D) $\lambda \ge eV_0/($	<i>hc</i>) 。		
			()
3.康普顿效应说明石	E光和微观粒子的相互们	作用过程中,以下定律严	格适用	
(A)动量守恒、	动能守恒; (B)牛中	硕定律、动能定律;		
(C)动能守恒、	机械能守恒; (D)动量	量守恒、能量守恒。		
			()
4.某可见光波长为 5	550.0nm,若电子的德名	万罗依波长为该值时,其	非相对论动能为:	
(A)5.00×10 ⁻⁶ e	V; (B)7.98×10 ⁻²⁵ eV;			
(C)1.28×10 ⁻⁴	eV; (D)6.63×10 ⁻⁵ eV.			
			()
5.已知光子的波长力	l = 300.0nm,测量此沿	皮长的不确定量 $\Delta \lambda = 3.0$)×10 ⁻² nm,则该光子的位置不	「确定
量为:				
(A) 300.0nm;	(B) $3.0 \times 10^{-29} \text{ nm}$;		
(C) 3×10^{-1} m	; (D) 0.38m °			
			()

三、计算题

1. 用波长 $\lambda = 410$ nm 的单色光照射某金属表面,若产生的光电子的最大动能 $E_k = 1.00 \mathrm{eV}$,试求能使该金属发生光效应的入射光的最大波长是多少?(1nm $= 10^{-9}$ m, $h = 6.63 \times 10^{-34} \, \mathrm{J} \cdot \mathrm{s}$)。

2. 已知康普顿效应中入射 X 射线的波长 $\lambda = 0.07$ nm ,散射线与入射线相垂直,试求反冲电子的动能 $E_{\rm k}$; 反冲电子的运动方向偏离入射 X 射线的夹角 θ 。($h = 6.63 \times 10^{-34} \, {
m J\cdot s}$; $m_{\rm e} = 9.11 \times 10^{-31} \, {
m kg}$)。

3.若氢原子的运动速率等于它在 300K 时的方均根速率,试求其波长。另有一个质量 m=1.00g,速率 v=1.00cm·s⁻¹的小球,其波长又为多少? $(h=6.63\times10^{-34}\mathrm{J\cdot s},\ k=1.38\times10^{-23}\mathrm{J\cdot K^{-1}},\$ 氢原子质量 $m_{\mathrm{H}}=1.67\times10^{-27}\mathrm{kg})$ 。

4.已矢	Π钠的电子逸出功为 2.486eV,试求:	: (1)钠的光电效应红限波长;	(2)用波长为 400.0nm 的光照射
	钠所放出的光电子的初速度。		
5.(1) [‡]	可见光中,波长为 500nm 的光子的俞	论量、动量、质量及静能各为	多少?(2)若电子和光子的波长均
	,它们的动量和动能各为多少?		