

Evolution of CMOS device and technology for low power applications

Dr. Sanatan Chattopadhyay

Department of Electronic Science

Centre for Research in Nanoscience and Nanotechnology

University of Calcutta

Systems, circuits and devices

Developing an electronic system

Metal-oxide-semiconductor field effect transistors (MOSFETs)

The workhorse of modern electronic gadgets

Si based CMOS is the key

As a material

Si is abundant in nature

High quality native oxide (SiO_2)

Appropriate mechanical strength

Market

Microelectronic market

80% is dominated by CMOS**

97% is covered by Si

- Complementary-Metal-oxide-Semiconductor (CMOS).
- P Metal-Oxide-Semiconductor Field Effect Transistor (p-MOSFET).
- N Metal-Oxide-Semiconductor Field Effect Transistor (n-MOSFET).

$$CM OS = p - MOS + n - MOS$$

CMOS is a combination of an n-MOSFET and p-MOSFET.

Two orthogonal electric fields work together to initiate the operation of a MOSFET. Vertical field applied from the gate creates a channel for the carriers and lateral electric field drags the carriers from source to the drain, leading to generate a current along the channel.

MOSFET schematics

MOSFET schematics

- 3 or 4-terminal devices: Gate (G), Source (S) and Drain (D).
- Import regions: channel, junctions, gate insulator.
- Device parameters: Gate length (L), device width (W), oxide thickness, channel doping.

On application of voltages at the gate (V_G) , and S/D regions (V_{DS}) , current flows through the channel (from S to D).

Basic processing modules

Typical MOSFET process flow

Junction depth (X_j) and doping profile

Process parameters:

- Implantation
- Implantation dose
- Implantation energy
- Implantation profile

- At the depth of X_j , the n-type (S/D) and p-type (substrate) doping concentrations will be same.
- Low implant energy reduces junction depth, high energy increases it.

Dimension: L_g, T_{ox} and W

Process parameters:

- Lithography
- Wavelength used
- Different techniques
- Exposure time
- Lateral diffusion of dopants
- Physical and electrical length

Process parameters:

- Oxidation time
- Oxidation temperature
- Oxidation environment
- Oxidation techniques
- Oxidation kinetics

Physics of the metal-oxide-semiconductor (MOS) systems

Band diagram of MOS system

- Band bends on application of a gate voltage, leading to redistribution of carrier underneath the oxide layer.
- Either the majority carrier or minority carriers will be attracted, depending upon the polarity of the applied voltage and substrate doping nature.
- The measurement parameter is the surface potential (Ψ_s) .
- Surface potential is positive when band bend downward and it is negative when it bend upward.

3-D band alignment in a MOSEFT

3-D band alignment in a MOSEFT

• Inversion layer is tapered @ drain end. E_{Fn} crosses down to E_i near the drain.

MOSFET: transport modeling

Charge sheet model:

- channel is very thin, no voltage drops across it.
- vertical electric field is very high compared to lateral electric field.
 - total charge at the metal side = to the net charge in the semiconductor side.

Net charge:

$$|Q_n(y)| = [V_G - y - 2\Psi_B]C_{ox} - \sqrt{2\varepsilon_s qN_A(2\Psi_B + y)}$$

S

Current-voltage characteristic:

$$I_{D} = \frac{W}{L} \cdot \mu_{n} \cdot C_{ox} \left\{ \left(V_{G} - V_{FB} - 2\Psi_{B} - \frac{V_{D}}{2} \right) V_{D} - \frac{2\sqrt{2\varepsilon_{s}qN_{A}}}{3C_{ox}} \left[3.\sqrt{\frac{\Psi_{B}}{2}} \cdot V_{D} \right] \right\}$$

Electrical characteristics

Transfer characteristics

Linear region:

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \frac{W}{L} \cdot (V_{G} - V_{th})V_{D}$$

Saturation region:

$$I_{p} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \cdot \frac{W}{L} \cdot \frac{(V_{G} - V_{th})^{2}}{2}$$

Characteristic parameters

Threshold voltage: V_{th}

Off-state leakage current: l_{off}

• On-state current: I_{on}

• On-state/off-state current: I_{on}/I_{off}

• Trans-conductance: 9m

• Channel conductance: 9d

Sub-threshold slope:

• Drain voltage: V_{dd}

Channel mobility:

• S/D resistance: R_s and R_d

DIBL