1. Soft drop method in future collider performance

In this section, we use the specific method about the soft-drop to study the performance of the detector in the different cell sizes. In the Figure ,, ,, are the distribution of the signal and background.

1.1. Analysis method

In this analysis, We fix the central at the median in signal distribution, and we use the different width to open the window to draw ROC curves.

1.2. The conclusion of the results

Figure 1: Distributions of mass soft drop at β =0, signal=ww, in 5,10TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown here.

Figure 2: study of "fix central and change width" in mass soft drop at β =0, signal=ww, in 5, 10, 20, 40TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown in each picture.

Figure 3: Distributions of mass soft drop at β =0, signal=tt, in 5,10TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown here.

(c) Central at Median (20 \times 20=165,5 \times (d) Central at Median (20 \times 20=190,5 \times 5=175,1 \times 1=170) change width in cluster at 5=200,1 \times 1=190) change width in cluster at 20 TeV 40TeV

0.3 0.35 signal efficiency

Z'(20TeV)→tt¯→3 jets —— 20×20 cm HCAL

5×5 cm HCAL

1×1 cm HCAI

0.15

0.2

0.25

0.1

 $Z'(40TeV)\rightarrow t\bar{t}\rightarrow 3 \text{ jets}$

20×20 cm HCAL

0.15

0.2

0.25 0.3 signal efficiency

5×5 cm HCAL 1×1 cm HCAL 0.1 0

Figure 4: study of "fix central and change width" in mass soft drop at β =0, signal=tt, in 5, 10, 20, 40TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown in each picture.

Figure 5: Distributions of mass soft drop at β =2, signal=ww, in 5,10TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown here.

Figure 6: study of "fix central and change width" in mass soft drop at β =2, signal=ww, in 5, 10, 20, 40TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown in each picture.

Figure 7: Distributions of mass soft drop at β =2, signal=tt, in 5,10TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown here.

(a) Central at Median (20 \times 20=185,5 \times (b) Central at Median (20 \times 20=240,5 \times 5=185,1 \times 1=185) change width in cluster at 5=240,1 \times 1=240) change width in cluster at 5TeV

(c) Central at Median (20 \times 20=360,5 \times (d) Central at Median (20 \times 20=620,5 \times 5=375, 1 \times 1=365) change width in cluster at 5=625, 1 \times 1=630) change width in cluster at 20 TeV 40 TeV

Figure 8: study of "fix central and change width" in mass soft drop at β =2, signal=tt, in 5, 10, 20, 40TeV energy of collision in different detector sizes. Cell Size in 20×20, 5×5, and 1×1(cm×cm) are shown in each picture.