

Autómatas finitos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Autómatas finitos

Corresponde al modelo de computación

Más simple

Características

No tiene memoria

Reconoce un número finito de "mensajes"

Tiene un estado en el que se encuentra

Ejemplo

Una puerta automática

Puede estar abierta o cerrada (2 estados) Tiene 2 sensores (AFUERA, ADENTRO) Cada sensor reconoce la presencia (o ausencia) de una persona Se abre si algún sensor reconoce una presencia **AFUERA** Sino, se cierra o mantiene cerrada **ADENTRO AMBOS** Abierto Cerrado NADA **AFUERA NADA ADENTRO AMBOS**

Definición formal

Un autómata finito "M" es una 5-Tupla (Q, Σ , δ , q_0 , F) donde:

Q: set finito llamado "estados" (ejemplo: q0,q1, q2, q3)

Σ: set finito llamado "alfabeto" (ejemplo: 0,1)

 δ : QxΣ \rightarrow Q es la función de transición

 $q_0 \in Q$ estado inicial (ejemplo q0)

F ⊆ Q set de estados de aceptación (ejemplo q3)

Función de transición: Representación gráfica

Se puede representar mediante un diagrama de estados.

Una representación gráfica donde:

Cada estado es un vértice

Los estados finales tienen un borde doble

Las transiciones son ejes dirigidos desde un vértice

Las aristas están rotuladas por el o las símbolos del alfabeto que dispara el pasaje de estado

El estado de inicio tiene un eje entrante que no tiene origen en otro vértice

Función de transición: Tabla de transición

La función de transición se puede representar mediante una tabla:

	0	1	
q_0	q_1	$q_{_1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
q_1	$q_{_1}$	q_2	
q_2	$q_{_1}$	q_3	
q_3	$q_{_1}$	$q_{_1}$	

Cómputo

El autómata recibe un String de entrada (escrito en el alfabeto Σ)

Procesa el mismo

Partiendo del estado inicial

Utilizando la función de transición

Retorna una salida de

"Aceptación": Si al terminar de procesar el string el estado final corresponde a uno de aceptación

"Rechazo" si no es de aceptación.

Ejemplo:

Dado el string:

001011

La progresión de estados es:

$$q_0 \rightarrow q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_1$$

$$\rightarrow q_2 \rightarrow q_3$$

Retorna salida de "Aceptación"

Ejemplo (cont):

Dado el string:

011110

La progresión de estados es:

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_1$$

$$\rightarrow q_2 \rightarrow q_1$$

Retorna salida de "Rechazo"

Lenguaje de Máquina

Sea A el set de todos los String que la máquina M acepta

("Aceptar" es el proceso de finalizar la ejecución en el estado de aceptación)

Llamaremos a A el lenguaje de la maquina M

L(M) = A

Diremos que "M reconoce A"

(o que M acepta A)

Ejemplo:

La máquina reconoce el lenguaje:

L(M) = { w / w binarias terminadas 3 "0" o más }

Cómputo (Definición formal)

Sea

 $M = (Q, \Sigma, \delta, q_0, F)$ un autómata finito

 $w = w_1 w_2 \cdots w_n$ una cadena donde cada w_i es parte del alfabeto Σ

Entonces

M acepta w si existe una secuencia de estados $r_0, r_1, ..., r_n$ en Q con las condiciones:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ para todo i=0,..,n-1
- $3. r_n \in F$

Presentación realizada en Julio de 2020