CS 458 Grant Davis 10/06/22

Homework 2

HW2-1:

a) Yes = 4, No = 6

Entropy = $(4/10 * \log 4/10 + 6/10 * \log 6/10)$

b) Body temperature: 0.9708 - 0.36095 = 0.60985

Give Birth: 0.60985

c) Give Birth:

Classification Error Rate:

Give Birth	Yes	No
Yes	4	0
No	1	5

Error_yes = $1 - \max(4/5, 1/5) = 0.2$

 $Error_no = 1 - max(0/5, 5/5) = 0$

Weighted Classification Error = 5/10 * 0.2 + 5/10 * 0 = 0.1

Original Classification Error = 1 - max (4/10, 6/10) = 0.4

Classification Error = Error Origin - Weighted Classification Error = 0.4-0.1 = 0.3

Four Legged:

Classification Error Rate:

Four Legged	Yes	No
Yes	2	2
No	2	4

Error_yes = $1 - \max(2/4, 2/4) = 0.5$

Error no = $1 - \max(2/6, 4/6) = 0.34$

Weighted Classification Error = 4/10 * 0.5 + 6/10 * 0.34 = 0.398

Original Classification Error = 1 - max (4/10, 6/10) = 0.4

Classification Error = Error_Origin - Weighted Classification Error = 0.4- 0.398 = 0.002

Give Birth is the best option for classification error

d) Parents Gini Index = $1 - (4/10)^2 - (6/10)^2 = 0.48$ Give Birth:

Gini_Yes =
$$1 - (4/5)^2 - (1/5)^2 = 0.32$$

Gini_No = $1 - (0/5)^2 - (5/5)^2 = 0.45$
Weighted Gini Index = $5/10 * 0.32 + 5/10 * 0 = 0.16$
Gini Index = Gini Parents - Gini Split = $0.48 - 0.16 = 0.32$

Four Legged:

Gini_Yes =
$$1 - (2/4)^2 - (2/4)^2 = 0.5$$

Gini_No = $1 - (2/6)^2 - (4/6)^2 = 045$
Weighted Gini Index = $4/10 * 0.5 + 6/10 * 0.45 = 0.4664$
Gini Index = Gini Parents - Gini Split = $0.48 - 0.46 = 0.0136$

Give Birth is the best option for Gini Index

HW2-2. Model Overfitting

a) Optimistic error = T1 =
$$(2+1+1+3+2+1+1+3+1)/73 = 16/73 = 0.2197$$

T2 = $(1+2+6+5+3+3)/73 = 20/73 = 0.27397$

b) Pessimistic error
$$(0.5 \text{ penalty}) = T1 = 0.21917 + 13*0.5/73 = 0.090$$

$$T2 = 0.27396 + 6*0.5/73 = 0.44$$

$$(0.75 \text{ penalty}) = T1 = 0.21917 + 13*0.75/73 = 0.135$$

$$T2 = 0.27396 + 6*0.75/73 = 0.67$$

$$(1 \text{ penalty}) = T1 = 0.21917 + 13*1/73 = 0.18$$

$$T2 = 0.27396 + 6*173 = 0.89$$

- c) Tree 1 would be based on the generalization error the tree with the lower value is preferred.
- d) Tree 2 would be based on Ocala razor choosing the simpler tree when error is similar.