1 Определения

Определение 1.1. Кольцо – это тройка (R, +, *), где R – непустое множество, $+, *: R^2 \mapsto R$, такая что (R, +) – абелева группа, а также выполнена дистрибутивность умножения * относительно сложения + слева и справа. Нейтральный элемент относительно сложения обозначается 0

Кольцо с единицей — это кольцо, в котором относительно умножения есть нейтральный элемент, обозначаемый 1: 1*a=a*1=1

Ассоциативное кольцо — это кольцо, в котором выполнена ассоциативность операции умножения: a*(b*c)=(a*b)*c

Коммутативное кольцо — это кольцо, в котором выполнена коммутативность операции умножения a*b=b*a, а также присутствует единица и выполнена ассоциативность.

Определение 1.2. Элемент $a \neq 0$ ассоциативного кольца с единицей R называется обратимым, если $\exists a^{-1} \in R : a^{-1} * a = a * a^{-1} = 1$

Определение 1.3. Элемент $0 \neq a \in R$ называется делителем нуля, если $\exists 0 \neq b \in R : ab = 0$

Определение 1.4. Для кольца K множество его обратимых элементов обозначается K^*

Элементы a и b называются ассоциированными, если $\exists c \in K^* : a = cb$

Определение 1.5. Коммутативное кольцо без делителей нуля называется областью целостности.

Определение 1.6. Ненулевой необратимый элемент a области целостности называется неразложимым, если из того, что он представляется в виде a=bc, следует, что либо b либо c обратим.

Определение 1.7. Ненулевой необратимый элемент p называется простым, если из того, что p|ab следует, что либо p|a либо p|b

Определение 1.8. Евклидово кольцо – это область целостности K с определенной на ней функцией евклидовой нормы $N: K \setminus \{0\} \mapsto \mathbb{N}_0$:

- 1. $\forall a, b \in K \setminus \{0\} : N(a) < N(ab)$
- 2. $\forall a, b \in K \setminus \{0\} : \exists q, r : a = qb + r, N(r) < N(b)$

Определение 1.9. Пусть K – область целостности. Тогда элемент $z \in K$ называется наибольшим общим делителем элементов $a,b \in K$ (обозначается как (a,b)), если z|a,z|b и $\forall z':z'|a,z'|b$ выполнено, что z'|z

Определение 1.10. Пусть R_1 и R_2 – кольца. Отображение $\varphi: R_1 \mapsto R_2$ наызвается гомоморфизмом колец, если:

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\varphi(a * b) = \varphi(a) * \varphi(b)$

Определение 1.11. Подмножество $R \subset K$ называется подкольцом, если оно замкнуто относительно умножения и является подгруппой по сложению.

Определение 1.12. Подкольцо R коммутативного кольца K называется идеалом, если оно замкнуто относительно умножения на элемент из K, то есть $\forall r \in R, k \in K : rk \in R$

Определение 1.13. Тривиальным называют идеал, либо совпадающий со всем кольцом, либо состоящий из одного элемента (нейтрального элемента по сложению)

Определение 1.14. Идеал I коммутативного кольца K называется порожденным элементами x_1, \cdots, x_n (обозначение $I = (x_1, \cdots, x_n)$), если $I = \{a_1 * x_1 + a_2 * x_2 + \cdots + a_n * x_n | \forall i : a_i \in K\}$

Определение 1.15. Идеал конечнопорожден, если он порожден конечным числом элементов.

Определение 1.16. Идеал называется главным, если он порожден одним элементом.

Определение 1.17. Кольцо называется кольцом главных идеалов (КГИ), если в нём все идеалы главные.

Определение 1.18. Область целостности называется факториальным кольцом, если в нём любой ненулевой элемент либо обратим, либо с точностью до перестановки и домножения на обратимые представляется в виде произведения неразложимых.

Определение 1.19. Идеал $I \neq K$ называется простым, если $ab \in I \Rightarrow a \in I \lor b \in I$

Определение 1.20. Идеал $I \neq K$ называется максимальным, если не существует другого нетривиального идеала, содержащего I

2 Вопросы сложности 2

Утверждение 2.1. В коммутативном кольце элемент не может иметь двух различных обратных

Доказательство. Пусть K — коммутативное кольцо, $a \in K$ — ненулевой элемент этого кольца, a_1, a_2 — два различных обратных элемента к нему. Тогда, с одной стороны $a_1aa_2 = a_1(aa_2) = a_1$, а с другой стороны $a_1aa_2 = (a_1a)a_2 = a_2$. Получили, что $a_1 = a_2$. Противоречие.

Утверждение 2.2. Пусть R – кольцо с единицей, причем |R| > 1. Тогда в этом кольце $1 \neq 0$

Доказательство. Пусть $a \in R$. Докажем, что $a \cdot 0 = 0$. Воспользуемся тем, что 0 = 0 + 0 (это прямое следствие аксиом кольца), а также дистрибутивностью:

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

Если добавить к обоим частям равнества обратный по сложению $-(a \cdot 0)$, то получим, что $a \cdot 0 = 0$.

Пусть теперь 1=0. Поскольку |R|>1, то можно найти такой $a\in R$, что $a\neq 0$. Тогда $a\cdot 1=0$ из выше доказанного. С другой стороны, поскольку 1 — нейтральный элемент по умножению, $a\cdot 1=a$. Тогда a=0. Но мы выбирали a так, что $a\neq 0$. Противоречие.

Утверждение 2.3. Пусть R – ассоциативное кольцо c единицей. a – обратимый элемент в R. Тогда a не может быть делителем нуля.

Доказательство. Пусть $\exists b \neq 0 : ab = 0$. Умножим последнее равенство на a^{-1} . Тогда $0 = a^{-1}ab = (a^{-1}a)b = b$. Получили, что b = 0. Противоречие. \square

Утверждение 2.4. Пусть K – область целостности, пусть $a,b,c\in K$, причем $c\neq 0$. Тогда $ac=bc\Rightarrow a=b$

Доказательство. $ac = bc \Leftrightarrow ac - bc = 0 \Leftrightarrow (a - b)c = 0$. Поскольку K -область целостности, то либо c = 0, либо a - b = 0. Но первое противоречит условию, поэтому верно второе, то есть a = b.

Утверждение 2.5. $S=\{\frac{p}{q}\in\mathbb{Q}:(p,1)=1,q|n\}$ не является подкольцом \mathbb{Q}

Доказательство. Пусть $n=12,\,\frac{1}{4}\in S,\frac{1}{6}\in S.$ Но их произведение $\frac{1}{4}\cdot\frac{1}{6}=\frac{1}{24}\not\in S.$ Получили, что S не замкнуто относительно умножения.

Утверждение 2.6. Пусть p – простое, $S = \{ \frac{a}{b} \in \mathbb{Q} : (a,b) = 1, \not p | b \}$. Тогда S – подкольцо в \mathbb{Q}

Доказательство. Проверяем замкнутость относительно операций. Пусть $\frac{a}{b} \in S, \frac{c}{d} \in S$, причем /p|b,/p|d $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$, причем /p|bd. Действительно, пусть p|bd. Так как p простое, то либо p|b, либо p|d. А это не так. Поскольку p|bd, то и после сокращения дроби $\frac{ad+bc}{bd}$ на некоторое число e, $p|\frac{bd}{e}$. Действительно, воспользуемся ОТА: пусть $bd = p_1p_2\cdots p_k$, причем в этом разложении нет числа p. Но тогда после сокращения, в разложении числа bd могут лишь исчезнуть некоторые p_i , но не появится p.

Аналогично с произведением. Понятно также, что все обратные к $\frac{a}{b}$ в S лежат, ведь это просто $\frac{-a}{b}$

Утверждение 2.7. Пусть p – простое, $S = \{\frac{a}{b} \in \mathbb{Q} : (a,b) = 1, \exists n \in \mathbb{N}_0 : b = p^n\}$. Тогда S – подкольцо в \mathbb{Q}

Доказательство. Проверяем замкнутость операций, пусть $\frac{a}{n^n} \in S, \frac{b}{n^m} \in S$.

Без ограничения общности, m>n. Тогда $\frac{a}{p^n}+\frac{b}{p^m}=\frac{ap^{m-n}+b}{p^m}$. После сокращения последней дроби её знаменатель останется степенью p. Аналогично с произведением. Обратные ко всем элементам также лежат.

Утверждение 2.8. Множество обратимых элементов ассоциативного кольца с единицей является группой по умножению и называется мультипликативной группой кольца

Доказательство. Пусть K^* – это множество всех обратимых элементов ассоциативного кольца с единицей К. Понятно, что для этих элементов выполняется ассоциативность, ведь она наследуется из кольца K. Кроме того, $1 \in K^*$, ведь 1 — обратимый элемент. И последнее: если a — обратим, то a^{-1} тоже обратим. В итоге мы доказали, что K^* – группа.

Утверждение 2.9. $a \sim b \Leftrightarrow a|b \wedge b|a$

Доказательство. Пусть $a \sim b$. Тогда $\exists c \in K^* : a = bc$. Тогда b|a. Кроме того, $c^{-1}a = b$, то есть a|b.

Наоборот, пусть a|b,b|a. Понятно, что тогда $a \neq 0, b \neq 0$. Тогда b = ca, a =db. Тогда b = cdb. Сокращая на b получаем, что cd = 1, а это означает, что c и d – обратимые, то есть $a \sim b$

Утверждение 2.10. Если a – неразложим, a b $\sim a$, то b – неразложим.

Доказательство. Пусть b – разложимый элемент, то есть $\exists c, d \notin K^* : b =$ cd. Но a=eb, причем $e\in K^*$. Тогда a=ecd. Но $ec\notin K^*$. Действительно, пусть $ec \in K^*$. $e^{-1} \in K^*$. Тогда $c \in K^*$, а это не так. Получили разложения для a на необратимые элементы.

Утверждение 2.11. Пусть p – простой, $p \sim q$. Тогда q тоже простой.

Доказательство. Пусть $q|ab,q=cp,c\in K^*$. Тогда ab=dq=cdp. Тогда p|ab. Тогда либо p|a, либо p|b. Пусть, без ограничения общности, p|a. Тогда $a = ep = ec^{-1}q$. Но тогда q|a.

Утверждение 2.12. Пусть $d_1=(a,b), d_2=(a,b)$. Тогда $d_1\sim d_2$

Доказательство. Поскольку d_1 – наибольший общий делитель, а d_2 – общий делитель, то $d_2|d_1$. Аналогично, $d_1|d_2$. По критерию ассоциированности, $d_1 \sim d_2$

Утверждение 2.13. $\mathbb{Z}[\omega]$ – евклидово кольцо с нормой $N(a+b\omega)=a^2+$ $b^2 - ab$

Доказательство. Заметим, что $|a+b\omega|^2=(a+b\omega)\cdot(a+b\overline{\omega})=a^2+ab(\omega+b\omega)$ $\overline{\omega}$) + $b^2\omega\overline{\omega} = a^2 + b^2 - ab = N(a + b\omega) \ge 1$, при $(a,b) \ne 0$

Тогда для $z_1,z_2 \neq 0$: $N(z_1z_2)=z_1z_2\overline{z}_1\overline{z}_2=N(z_1)N(z_2)\geq N(z_1)$ и первое свойство нормы выполнено.

Теперь нужно сказать пару слов, про то, как мы делим элементы в $\mathbb{Z}[\omega]$ (то есть как для любых двух $a,b\in\mathbb{Z}[\omega]$ выбрать $q,r\in\mathbb{Z}[\omega]$ так, что a=bq+r, причем N(r)< N(b))

Положим $q = \left[\frac{a}{b}\right]$ — ближайшую к $\frac{a}{b}$ точку из $\mathbb{Z}[\omega]$, $r = b*(q - \frac{a}{b}) = b*(\left[\frac{a}{b}\right] - \frac{a}{b}) = bq - a$. Если мы докажем, что $\left|\left[\frac{a}{b}\right] - \frac{a}{b}\right| < 1$, это будет означать, что N(r) < N(1)N(b) = N(b). Для этого докажем, что расстояние вообще от любой точки из \mathbb{C} до ближайшей точки $\mathbb{Z}[\omega]$ удовлетворяет требуемому неравенству. Рассмотрим $z \in \mathbb{C}$. Для неё в $\mathbb{Z}[\omega]$ есть три ближайшие точки z_1, z_2, z_3 , образующие треугольник вокруг z. Любой такой треугольник является равносторонним со стороной 1. Докажем, что $f(z) = \max_z \min\{|z_1 - z|, |z_2 - z|, |z_3 - z|\} < 1$. Но максимум достигается, когда все $|z_i - z|$ равны. Тогда точка z — центр описанной окружности вокрут треугольника, а f(z) — то радиус описанной окружности, который находится по формуле $\frac{abc}{4kS} = \frac{1}{\sqrt{3}} < 1$

Утверждение 2.14. В области целостности $\mathbb{Z}[u]$ элемент z=a+bu делится на $k\in\mathbb{Z}$ тодгда и только тогда, когда a u b делятся на k.

Доказательство. Пусть k|z. Тогда a+bu=z=k(x+yu)=kx+kyu. Пусть u=c+di. Тогда a+bc+bdi=kx+kyc+kydi. Два компексных числа равны, если равны их мнимые и действительные части, поэтому

$$\begin{cases} a + bc = kx + kyc, \\ bd = kyd \end{cases}$$

Считаем, что $d \neq 0$, в противном случае утверждение не верно (например, 2|1+3=4, но неверно, что 2|1,2|3). Тогда b=ky, a=kx. Значит, a и b делятся на k.

Пусть наоборот, a и b делятся на k. Тогда b=ky, a=kx. z=a+bu=k(x+uy). Тогда k|z.

Утверждение 2.15. $B \mathbb{Z}[\omega]$ если z|x,|z|=|x|, то $z\sim x$

Доказательство. x=zy, причем |x|=|z||y|, а значит, |y|=1. Но в $\mathbb{Z}[\omega]$ все такие z, что |z|=1 обратимы, следовательно, $z\sim x$

Утверждение 2.16. $B \mathbb{Z}[i]$ если z|x,|z|=|x|, то $z\sim x$

Доказательство. x=zy, причем |x|=|z||y|, а значит, |y|=1. Но в $\mathbb{Z}[i]$ все такие z, что |z|=1 обратимы, следовательно, $z\sim x$

Утверждение 2.17. Если z – неразложимый в $\mathbb{Z}[i]$, то $\exists p$ – простое, $N(z) = p \lor N(z) = p^2$

Доказательство. Будет пользоваться тем фактом, что $\mathbb{Z}[i]]$ – факториальное кольцо. Тогда z – простой. $N(z)=z\overline{z}$, причем $N(z)\in\mathbb{Z}$. Разложим N(z) на простые. $z\overline{z}=p_1^{k_1}p_2^{k_2}\cdots p_s^{k_s}$. То есть $z|p_1^{k_1}\cdots p_s^{k_s}$. но z – простое, поэтому $\exists i:z|p_i$. То есть $z=p_i$. Обозначим $z=p_i$, оно простое. $z=p_i$ 0 Есть $z=p_i$ 1 варианта:

- 1. N(x) = 1. Тогда $N(z) = p^2$
- 2. N(x) = p. Тогда N(z) = p.
- 3. $N(x)=p^2$. Тогда N(z)=1, и z обратим, а значит, не является неразложимым. Противоречие.

Утверждение 2.18. Если z – неразложимый в $\mathbb{Z}[\omega]$, то $\exists p$ – простое, $N(z) = p \vee N(z) = p^2$

Доказательство повторяет предыдущее. Будет пользоваться тем фактом, что $\mathbb{Z}[\omega]$ — факториальное кольцо. Тогда z — простой. $N(z)=z\overline{z}$, причем $N(z)\in\mathbb{Z}$. Разложим N(z) на простые. $z\overline{z}=p_1^{k_1}p_2^{k_2}\cdots p_s^{k_s}$. То есть $z|p_1^{k_1}\cdots p_s^{k_s}$. но z — простое, поэтому $\exists i:z|p_i$. То есть $zx=p_i$. Обозначим $z=p_i$, оно простое. $z=p_i$ 0 Верианта:

- 1. N(x) = 1. Тогда $N(z) = p^2$
- 2. N(x) = p. Тогда N(z) = p.
- 3. $N(x)=p^2$. Тогда N(z)=1, и z обратим, а значит, не является неразложимым. Противоречие.

Утверждение 2.19. Если x — неразложимый элемент $\mathbb{Z}[i]$ и $N(z)=p^2$, то $z\sim p$

Доказательства. В рамках предыдущего доказательства мы показали, что $\exists x: zx=p$. Тогда $N(z)N(x)=p^2$, но также $N(z)=p^2$, а значит, N(x)=1. Значит, x — обратим и $z\sim p$

Утверждение 2.20. Если x – неразложимый элемент $\mathbb{Z}[\omega]$ и $N(z)=p^2$, то $z\sim p$

Доказательство. Аналогично.

Утверждение 2.21. Если для $z \in \mathbb{Z}[i]$ выполнено, что N(z) = p, где p – простое, то z неразложим.

Доказательство. Пусть z разложим, тогда $z=z_1z_2$, причем $z_1,z_2\notin\mathbb{Z}[i]^*$. Тогда $p=N(z)=N(z_1)N(z_2)$. Так как p простое, то либо $N(z_1)=1$, либо $N(z_2)=1$. Но тогда либо z_1 , либо z_2 обратим. Противоречие.

Утверждение 2.22. Если для $z \in \mathbb{Z}[\omega]$ выполнено, что N(z) = p, где p – простое, то z неразложим.

Доказательство. Аналогично.

Утверждение 2.23. Множество делителей нуля кольца K вместе c нулём не всегда образуют идеал.

Доказательство. Рассмотрим $K=\mathbb{Z}_6$. Его множество делителей нуля (вместе с нулем) — это $\{0,2,3\}$. Это множество не образует даже подкольцо, так как $2+3=5\not\in\{0,2,3\}$

Утверждение 2.24. 3 – разложимый элемент $\mathbb{Z}[\omega]$

Доказательство.
$$(1-\omega)(1-\omega^2)=1-\omega-\omega^2+\omega^3=2-\omega-\omega^2=2-\omega-(-1-\omega)=3$$

Утверждение 2.25. Если идеал $I\subset K$ содержит обратимый элемент, то I=K

Доказательство. Пусть $a \in I$ — обратимый элемент. Тогда $\exists a^{-1} \in K$: $aa^{-1} = 1$. Из опеределения идеала $\forall x \in I : \forall y \in K : xy \in I$. Значит, $1 = aa^{-1} \in I$. Раз $1 \in I$, то и $\forall y \in K : 1 \cdot y \in I$. Значит, $K \subset I$. Но тогда K = i.

Утверждение 2.26. $I = (a_1, \dots, a_k) = \{x_1 a_1 + \dots + x_k a_k : \forall i : x_i \in K\}$ - это минимальный по включению идеал, содержащий элементы a_1, \dots, a_k .

Доказательство. Во-первых, I – это идеал. Действительно, пусть $x \in I, y \in K$. Тогда $x = x_1a_1 + \cdots + x_ka_k$. $yx = yx_1a_1 + \cdots + yx_ka_k \in I$. Кроме того, это подгруппа по сложению.

Пусть J — другой идеал, содержащий a_1, \cdots, a_k . Тогда $\forall i: \forall x \in K: xa_i \in J$. Тогда $\forall x_1, \cdots, x_k: x_1a_1 + \cdots + x_ka_k \in J$. Но тогда $I \subset J$. Но это и означает, что I — минмальный по включению идеал, содержащий элементы a_1, \cdots, a_k .

Утверждение 2.27. Идеал $(x, x + 1) \subset \mathbb{Z}[x]$ не является ни простым, ни максимальным.

Доказательство. $x \in (x, x+1), x+1 \in (x, x+1) \Rightarrow x+1-x=1 \in (x, x+1).$ Но тогда $I=\mathbb{Z}[x]$. То есть этот идеал тривиальный. Значит, он не максимальный и не простой.

3 Вопросы сложности 3

Утверждение 3.1. Множество $S = \{x + \sqrt{2}y : x, y \in \mathbb{Q}\}$ является кольцом.

Доказательство. Так как $S \subset \mathbb{R}$, а \mathbb{R} – кольцо, то достаточно проверить замкнутость S. Пусть $x + \sqrt{2}y \in S, a + \sqrt{2}b \in S$. Тогда $-(x + \sqrt{2}y) = -x + \sqrt{2}(-y) \in S$. $(x + \sqrt{2}y) + (a + \sqrt{2}b) = (x + a) + \sqrt{2}(y + b) \in S$. $(x + \sqrt{2}y)(a + \sqrt{2}b) = (xa + 2yb) + \sqrt{2}(ya + xb) \in S$. Получаем, что S замкнуто относительно операци. Значит S – подкольцо, значит S – кольцо.

Утверждение 3.2. Простой элемент области целостности является неразложимым.

Доказательство. Пусть p — простой элемент области целостности K. Пусть p — разложим, то есть $\exists a \not ! nK^*, b \not \in K^* : p = ab$. Тогда p|ab. Значит, либо p|a, либо p|b. Пусть без ограничения общности p|a. Тогда a = px. Тогда p = pxb. Значит, p(1-xb) = 0. Так как $p \neq 0$, то 1-xb = 0. Значит, xb = 1, и следовательно, $b \in K^*$. Противоречие.

Утверждение 3.3. При каких $u \in \mathbb{C}$ множество $\mathbb{Z}[u] = \{a+bu: a,b \in \mathbb{Z}\}$ является областью целостности.

Доказательство. Заметим, что $\mathbb{Z}[u] \subset \mathbb{C}$. Но в \mathbb{C} делителей нуля нет, так как это поле (ну или так: пусть a – делители нуля в \mathbb{C} , тогда 0 = |ab| = |a||b|. Но тогда либо |a| = 0, либо |b| = 0).

Осталось проверить, при каких u $\mathbb{Z}[u]$ замкнуто. Понятно, что (a+bu)+(c+du)=(a+c)+(d+b)u, то есть относительно сложения это множество всегда замкнуто. Посмотрим, что происходит при умножении: $(a+bu)(c+du)=ac+(bc+ad)u+bdu^2$. Значит, это множество замкнуто тогда и только тогда, когда $u^2\in\mathbb{Z}[u]$. То есть $\exists r,s:u^2=r+su$. Заметим, что если u- корень $u^2=r+su$, то и \overline{u} это тоже корень $u^2=r+su$. Тогда по теореме Виета это означает, что $u+\overline{u}=2\Re u\in\mathbb{Z}, u\cdot\overline{u}=|u|^2\in\mathbb{Z}$