ДОПУСКАЕМЫЕ МЕХАНИЧЕСКИЕ НАГРУЗКИ НА ВЫСТУПАЮЩИЙ КОНЕЦ ВАЛА ЭЛЕКТРОДВИГАТЕЛЯ

При сопряжении двигателя с приводимым механизмом используются три основных вида передачи вращающего момента: упругой муфтой; клиновыми или плоскими ремнями; зубчатой передачей.

На вал двигателя, кроме вращающего момента, действуют поперечные (радиальные) и продольные (осевые) силы, создаваемые этими видами передач, вес ротора, включая среднюю часть вала, а также сила одностороннего магнитного притяжения.

При выборе двигателя в числе других параметров необходимо знать допускаемую нагрузку на выступающий конец вала, значение которой определяется следующими факторами: допускаемым прогибом вала; соотношением критической и номинальной частот вращения вала; допускаемым напряжением, определяемым материалом вала, долговечностью подшипников.

Принимается, что прогиб вала не должен превышать 10% номинального значения воздушного зазора между статором и ротором.

Критическая частота вращения вала должна быть не ниже 130% номинальной.

Расчёт прочности проводится на основе теории наибольших касательных напряжений. Приведённое напряжение σ в любом сечении вала должно удовлетворять условию $\sigma \leq (\sigma_{\scriptscriptstyle T})/1.5$, где ($\sigma_{\scriptscriptstyle T}$) – предел текучести материала вала.

Долговечность подшипников, оцениваемая расчётной наработкой, установлена нормативной документацией на конкретные типы двигателей серии 4A. Расчётная наработка подшипников для двигателей основного исполнения согласно ГОСТ 19523-81 должна быть не менее 14000 часов.

Расчётная схема сил, действующих на вал электродвигателя, представлена на рис 4,1. На схеме приняты обозначения:

F_r, F_a – соответственно радиальная и аксиальная нагрузки на выступающий конец вала.

 P_{p} - вес ротора с валом.

 $\dot{Q}_{\text{\tiny M}}$ – сила одностороннего магнитного притяжения.

R_A, R_Б – реакции в подшипниках A и Б.

 G_{π} – вес полумуфты, шкива или шестерни.

 P_{π} – реакция передачи.

Рис 4.1 Схема нагружения горизонтально расположенного вала, a- для двигателей с h=50-250 мм, 6- для двигателей с h=280-355 мм

Основные исходные данные для механического расчёта вала двигателей основного исполнения серии 4A всех высот оси вращения приведены в табл. 4.1-4.3. Размеры выступающего конца вала (l_1 и d_1) приведены в гл 5.

Реакция передачи Р_п, Н, определяется по формуле

$$P_n = \frac{M_{HOM}C_n}{R_0} \quad (4.1)$$

Где $M_{\text{ном}}$ — номинальный вращающий момент, Hм, (3.1); R_0 — радиус, на котором расположен элемент, передающий усилие , м; C_{π} — коэффициент, зависящий от способа сопряжения двигателя с приводимым механизмом.

При передаче упругой муфтой R_0 - радиус расположения пальцев муфты: C_n =0.3. Для зубчатой передачи R_0 - радиус делительной окружности шестерни: C_n =1.08. Для шкивов R_0 - радиус

соприкосновения шкива с ремнём; при этом для клиноременной передачи R_0 = $d_p/2$, где d_p – расчётный диаметр шкива по ГОСТ 20898-80, C_n =1.8. Для плоскоременной передачи C_n =3 при частоте вращения до 1000 об/мин, при частоте вращения 1500 об/мин и мощности двигателя до 20 кВт C_n =5.

Расчёт вала на жёсткость проводят в следующей последовательности, Прогиб вала посередине сердечника ротора от веса ротора, м

$$f_p = \frac{P_p}{3EL_1^2} (L_3^2 S_1 + L_2^2 S_2) \quad (4.2)$$

где E – модуль упругости материала вала, Па; для стали E=2,06 10^{11} Па

Таблица 4.1 Основные исходные даны для механического расчёта вала двигателей с высотой оси вращения до 250 мм, степени защиты IP44 и IP23

Т	T							P _P		
Типоразмер	L_1 ,	L ₂ , MM	а, мм	d ₂ , мм	d ₃ ,	C	инхронная ч	астота вращ	ения, об/мин	
электродвигателя	MM				MM	3000	1500	1000	750	600,500
4AA50A	102	56	145	10	1.4	4,8	5,7			
4AA50B	102	52	14,5	10	14	5,4	6,5			
4AA56A	114	52,5	1.5	12	17	4,8	6,7			
4AA56B	114	57	15	12	1 /	5,6	7,8			
4AA63A	129	60	15	1.5	20	6,7	9	10,8		
4AA63B	129	64,5	15	15	20	7,6	10,3	15,7		
4A71A	157	79	23	20	27	22,3	24,3	27,2		
4A71B	157		23	20	21	24,3	26,3	33,6	29,2	
4A80A	157	78,5	24.5	25	32	33,3	38,2	42,1	42,1	
4A80B	177	88,5	24,5	25	32	39,2	46,1	54,9	50	
4A90LA	201	100.5	24.5	25	22	40	57.0	69.0	63,7	
4A90LB	201	100,5	24,5	25	32	49	57,8	68,9	77,9	
4A100S	202	101	26	30	27	65,6	77,7			
4A100L	232	116	26	30	37	80,2	95,1	96,7	99,7	
4A112MA	249	124.5	22.5	35	43	00.2	122	115	115	
4A112MB	249	124,5	32,5	33	43	98,2	123	133	138	
4A132S	252	126	38	45	<i>5 1</i>		176	201	205	
4A132M	302	151	38	45	54	170	225	260	264	
4A, 4AH160S	354	177	44	50	60	249/223	334/308	396	386	
4A, 4AH160M	397	198,5	44	30	60	277/268	421/376	502	489	
4A, 4AH180S	385	192,5	45	<i>c</i> 0	70	329/325	485/443	/445	/520	
4A, 4AH180M	425	212,5	45	60	/0	382/363	574/531	522/531	575/629	
4A, 4AH200M	458	229	F2 F	<i>(5</i>	75	455/482	693/671	713/695	713/865	
4A, 4AH200L	498	249	53,5	65	75	517/557	818/800	797/765	797/990	
4A, 4A225M	505	252,5	57,5	70	80	647/615	964/928	969/933	969/1060	
4A, 4AH250S	571	285,5		0.5	100	930/892	1270/1180	1230/1270	1230/1270	1240
4A, 4AH250M	611	305,5	59,5	85	100	1036/998	1430/1260	1410/1445	1410/1445	1430

Примечание. В знаменателе указаны веса роторов двигателей со степенью защиты IP23

Таблица 4.2 Основные исходные данные для механического расчёта вала двигателей с высотами оси вращения 280-355 мм; степень защиты IP44

Типоразмер	T 100	L	I vor		7,,,,,,,	L ₅	a .6/2	-	L ₆ ,	L ₇ ,
электро двигателя	L ₁ , мм	L ₂ , MM	L ₄ , MM	3000	Синхронная ч 1500	1000	750	600,500	MM	MM
4A280S	711	368		96,5	74	89	91,5	99	15	146
4A280M	751	388	146	102	84	91,5	79	114	13	140
4A315S	783	391,5	98	128,5	108,5	116	86	128,5	15	98
4A315M	834	417		124	99	119	94	126,5		
4A355S	840	420	90	142,5	107,5	140	125	140	15	90
4A355M	900	450	70	137,5	82,5	132,5	130	140	13	70

Продолжение табл.4.2

Типоразмер	a,	d_1 ,	d ₂ ,	d ₄ , мм	d ₅ , мм	d ₆ , мм	P _p , H
электродвигателя	MM	MM	пмм		Синхрон	ная частота врап	цения, об/мин

				3000	≤1500	3000	≤1500	3000	≤1550	3000	1500	1000	750	600, 500
4A280S	67,5	85	100	103	113	118	128	110	120	1610	2085	2234	2325	2350
4A280M	07,3	63	100	103	113	110	120	110	120	1745	2225	2470	2765	2500
4A315S	(7.5	05	100	115	112	110	120	110	120	2050	2725	2960	3480	3175
4A315M	67,5	95	100	115	113	118	128	110	120	2275	2970	3225	3795	3565
4A355S	84	110	115	123	133	120	148	130	140	2815	3950	4255	4705	4890
4A355M	04	110	115	123	133	138	148	130	140	3125	4595	4880	5175	5555

Таблица 4.3 Основные исходные данные для механического расчёта вала двигателей с высо-

тами оси вращения 280-355 мм, степень защиты IP23

Тинования				L ₅ , M	IM			L ₆ , N	IM			
Типоразмер	1 101	L	Lyne	(Синхрон	ная час	тота вр	ащения	, об/мин		L_7 ,	a,
электродви- гателя	L_1 , MM	L_2 , MM	L_4 , MM	3000	≤150	300	150	100	750	600,	MM	MM
гателя				3000	0	0	0	0	730	500		
	681	325				20	30	32,5	12,5	32,5		
4AH280S	001	323	75	115	105	20	30	32,3	12,5	32,3	74,5	67,
4AH280M	721	345	7.5	113	103	17,5	35	30,5	17,5	35	7 1,5	5
1111200111	, = 1	0.0				1.,0		20,0	17,0			
4AH315S	705	352,5	55	130	1		37,5	35	15	27,5	55	67
4AH315M	755	377,5	33	130	,	62,5	42,5	37,5	20	32,5	33	07
4AH355S	860	430	55	227	,	15,5	40	47,5	25	40		7.4
4AH355M	920	460	55	227	'	18	35	50	15	32,5	55	74

Продолжение таблицы 4.3

Типоразмар			d_4	, MM	d_5	, MM	d_6	, MM			P _p , H		
Типоразмер электродвига-	d ₂ , мм	d_3 ,				Синхро	нная час	тота враш	ения, об	/мин			
теля	u ₂ , mm	MM	3000	≤1500	3000	≤1500	3000	≤1550	3000	1500	1000	750	600, 500
4AH280S	85	100	103	113	118	128	110	120	1540	1920	2000	2205	2275
4AH280M	63	100	103	113	110	120	110	120	1715	2080	2225	2420	2550
4AH315S	95	115	1	133	1	.48	1	40		2510	2735	3350	3500
4AH315M	93	113	1	. 33	1	.46	1	40	2195	2790	3010	3740	3960
4AH355S	110	125	122	1.42	1.40	150	140	150	2930	3590	3870	4520	4320
4AH355M	110	125	133	143	148	156	140	150	3150	4155	4470	5330	4730

Прогиб вала посередине сердечника ротора, м, от силы $F_{\scriptscriptstyle T}$

$$f_n = \frac{F_r b}{3EL_1^2} \left[\left(1.5L_1 S_0 - S_1 \right) L_3 + L_2 S_2 \right] \quad (4.3)$$

Для определения $S_1,\,S_2,\,S_3$ составляют таблицу вспомогательных данных (табл. 4.4)

Таблица 4 4

									1 40	лица 4.4
Часть вала	Номер участков вала	d _i	J _i =πd _i ⁴ /64	×	${ m x_i}^3$	$x_i^3 - x_{i-1}^3$	$(x_i^3 - x_{i-1}^3)/J_i$	x_i^2	$x_i^2 - x_{i-1}^2$	$(x_i^2 - x_i - \frac{1}{2})/J_i$
Правая	1/2 m									
				$S_1 = \sum_{i=1}^m$	$\frac{x_i^3 - x_{i-1}^3}{J_i}$			S_0 =	$=\sum_{i=1}^{m}\frac{x_i^2-1}{J_i}$	x_{i-1}^2
Левая	1 2 m									
				$S_2 = \sum_{i'=1}^{m'}$	$\frac{x_i^{\prime 3} - x_{i-1}^{\prime 3}}{J_i}$					

Начальный расчётный эксцентриситет ротора, м, при горизонтальном расположении вала

$$e_0 = 0.1\delta + f_p + f_n$$
 (4.4)

$$e_0 = 0.1\delta + f_n$$
 (4.5)

Где δ- воздушный зазор между статором и ротором, м, (см. гл.6)

Начальная сила одностороннего магнитного притяжения, H, при числе полюсов 2p=2

$$Q_0 = D_{a2} l_2 \frac{e_0}{\delta} 10^5 \tag{4.6}$$

При числе полюсов 2р>2

$$Q_0 = 1.5D_{a2}l_2\frac{e_0}{\delta}10^5$$
 (4.7)

Где D_{a2} и l_2 — наружный диаметр и длина сердечника ротора, м; $D_{a2} = D_i - 2\delta$, Внутренний диаметр сердечника статора D_{i1} и длина сердечника ротора, приближённо равная длине сердечника статора, приведены в гл. 6.

Прогиб вала, м, от силы одностороннего магнитного притяжения Q_0 при горизонтальном расположении вала

$$f_0 = \frac{f_p Q_0}{P_p} \quad (4.8)$$

При вертикальном положении вала

$$f_0 = \frac{Q_0}{3EL_1^2} (L_3^2 S_1 + L_2^2 S_2) \quad (4.9)$$

Установившейся прогиб вала, м, от силы одностороннего магнитного притяжения

$$f_{M} = \frac{f_{0}}{1 - m}$$
 (4.10)

Где
$$m = \frac{f_0}{e_0}$$

Сила установившегося одностороннего магнитного притяжения, Н

$$Q_M = \frac{Q_0}{1 - m} \quad (4.11)$$

Суммарный прогиб вала посредине сердечника ротора, м, при горизонтальном положении вала

$$f = f_p + f_u + f_M$$
 (4.12)

При вертикальном положении вала

$$f = f_n + f_M$$
 (4.13)

Критическая частота вращения, об/мин

$$n_{\kappa p} = 30 \sqrt{\frac{(1-m)}{f_p}}$$
 (4.14)

Расчёт вала на прочность проводится в наиболее опасном сечении 1-1(рис. 4.1), а при горизонтальном положении вала также проверяется напряжение в точке приложения сил P_p и Q_M ,

При совместном действии изгиба и кручения приведённое напряжение в і-м сечении вала, Па, равно:

$$\sigma_i = \sqrt{M_{usei}^2 + \frac{(\alpha k_{\scriptscriptstyle M} M_{\scriptscriptstyle HOM})^2}{W_i}} \quad (4.15)$$

Где $k_{\rm M}$ – коэффициент перегрузки по моменту; a=0.8 для реверсивных двигателей; W_i =0,1 d_i^3 – момент сопротивления при изгибе.

Изгибающий момент в сечении 1-1, Нм,

$$M_{u \approx 11} = k_{M} F_{r} b (1 - \frac{L_{2}}{L_{1}}) + (P_{p} + Q_{M}) \frac{L_{3}}{L_{1}} L_{2}$$
 (4.17)

При расчёте момента сопротивления W_i в указанных сечениях значение диаметра вала d_i уменьшают на глубину шпоночного паза,

Расчёт долговечности подшипников проводят в такой последовательности.

Наибольшая радиальная нагрузка на подшипник со стороны выступающего конца вала А, Н, при горизонтальном положении вала

$$R_{A} = k_{M} F_{r} (1 + \frac{b}{L_{1}}) + (P_{p} + Q_{M}) \frac{L_{3}}{L_{1}}$$
 (4.18)

При вертикальном положении ва

$$R_A = k_M F_r (1 + \frac{b}{L_1}) + Q_M \frac{L_3}{L_1}$$
 (4.19)

Наибольшая радиальная нагрузка на подшипник Б, Н, при горизонтальном положении вала

$$R_E = k_M F_r \frac{b}{L_1} + (P_p + Q_M) \frac{L_2}{L_1}$$
 (4.20)

При вертикальном положении вала

$$R_{\rm E} = k_{\rm M} F_{\rm r} \frac{b}{L_{\rm l}} + Q_{\rm M} \frac{L_{\rm 2}}{L_{\rm l}}$$
 (4.21)

Расчёт долговечности подшипников закреплённой опоры (опора Б на рис. 4.1) проводится по приведённой динамической нагрузке Q_{5} , H, которая для радиальных однорядных шарикоподшипников, установленных в серии 4A равна:

$$Q_{\scriptscriptstyle B} = R_{\scriptscriptstyle B} K_{\scriptscriptstyle B} K_{\scriptscriptstyle T}$$
 при $\frac{A_{\scriptscriptstyle B}}{R_{\scriptscriptstyle B}} \le e$ (4.22)

$$Q_{\scriptscriptstyle E} = (0.56R_{\scriptscriptstyle E} + Y\!A_{\scriptscriptstyle E})K_{\scriptscriptstyle E}K_{\scriptscriptstyle T}$$
 при $\frac{A_{\scriptscriptstyle E}}{R_{\scriptscriptstyle E}} > e$ (4.23)

Здесь А_Б – усилие, создаваемое пружиной осевого поджатия, Н,

При горизонтальной установке двигателя

$$A_E = F_a + A_0$$
 (4.24)

При вертикальной установке двигателя

$$A_{E} = P_{p} + G_{n} + F_{a} + A_{0} \quad (4.25)$$

 K_{δ} – коэффициент безопасности, для асинхронных двигателей общего назначения K_{δ} принимается равным 1,2; $K_{\scriptscriptstyle T}$ – температурный коэффициент, для подшипников, работающих при температуре, не превышающей 100°C, $K_{\scriptscriptstyle T}$ =1.

Значения коэффициентов Y и 1 приведены в таблице 4.5

Таблица 4.5

F_a/C_0	Y	e	F_a/C_0	Y	e	F_a/C_0	Y	e
0,014	2,3	0,19	0,084	1,55	0,28	0,28	1,15	0,38
0,028	1,99	0,22	0,11	1,45	0,3	0,42	1,04	0,42
0,056	1,73	0,26	0,17	1,31	0,34	0,56	1	0,44

С₀- статистическая грузоподъёмность подшипника, Н.

Таблица 4.6. Значения номинальной долговечности шарикоподшипников

T				C/	Q при час	тоте враще	ения, об/м	ИН			
L _h , ч	500	600	720	750	900	1000	1200	1500	1800	3000	3600
1000	3,11	3,3	3,51	3,56	3,78	3,91	4,16	4,48	4,76	5,65	6
2000	3,91	4,16	4,42	4,48	4,76	4,93	5,24	5,65	6	7,11	7,56
3000	4,48	4,76	5,06	5,13	5,45	5,65	6	6,46	6,87	8,14	8,65
4000	4,93	5,24	5,57	5,65	6	6,21	6,6	7,11	7,56	8,96	9,52
5000	5,31	5,65	6	6,08	6,46	6,69	7,11	7,66	8,14	9,65	10,26
6000	5,65	6	6,37	6,46	6,87	7,11	7,56	8,14	8,65	10,26	10,9
7000	5,94	6,32	6,71	6,8	7,23	7,49	7,96	8,57	9,11	10,8	11,48
8000	6,21	6,6	7,02	7,11	7,56	7,83	8,32	8,96	9,52	11,29	12
9000	6,46	6,87	7,3	7,4	7,86	8,14	8,65	9,32	9,9	11,74	12,48
10000	6,69	7,11	7,56	7,66	8,14	8,43	8,96	9,65	10,26	12,16	12,93
11000	6,91	7,34	7,8	7,91	8,41	8,71	9,25	9,97	10,59	12,56	13,34
12000	7,11	7,56	8,03	8,14	8,65	8,96	9,52	10,26	10,9	12,93	13,74
13000	7,31	7,76	8,25	8,36	8,89	9,21	9,78	10,54	11,20	13,28	14,11
14000	7,49	7,96	8,45	8,57	9,11	9,44	10,03	10,8	11,48	13,61	14,46
15000	7,66	8,14	8,65	8,77	9,32	9,65	10,26	11,05	11,75	13,93	14,80
16000	7,83	8,32	8,84	8,96	9,52	9,86	10,48	11,29	12	14,23	15,12
17000	7,99	8,49	9,02	9,15	9,72	10,07	10,7	11,52	12,24	14,52	15,43

18000	8,14	8,65	9,2	9,32	9,91	10,26	10,9	11,75	12,48	14,8	15,72
19000	8,29	8,81	9,36	9,49	10,09	10,45	11,1	11,96	12,71	15,07	16,01
20000	8,43	8,96	9,52	9,65	10,26	10,63	11,29	12,16	12,93	15,33	16,28
21000	8,57	9,11	9,68	9,81	10,43	10,8	11,48	12,36	13,14	15,58	16,55
22000	8,71	9,25	9,83	9,97	10,59	10,97	11,66	12,56	13,34	15,82	16,81
23000	8,84	9,39	9,98	10,12	10,75	11,13	11,83	12,74	13,54	16,06	17,06
24000	8,96	9,52	10,12	10,26	10,9	11,29	12	12,93	13,74	16,29	17,31
25000	9,08	9,65	10,26	10,4	11,05	11,45	12,16	13,10	13,92	16,,51	17,54
26000	9,2	9,78	10,39	10,54	11,2	11,6	12,32	13,28	14,11	16,73	17,78
27000	9,32	9,9	10,53	10,67	11,34	11,74	12,48	13,44	14,29	16,94	18
28000	9,43	10,03	10,65	10,8	11,48	11,89	12,63	13,61	14,46	17,15	18,22
29000	9,55	10,14	10,78	10,93	11,61	12,03	12,78	13,77	14,63	17,35	18,43
30000	9,65	10,26	10,9	11,05	11,74	12,16	12,93	13,92	14,8	17,54	18,64
35000	10,16	10,8	11,48	11,63	12,36	12,81	13,61	14,65	15,58	18,47	19,63
40000	10,63	11,29	12	12,16	12,93	13,08	14,23	15,33	16,29	19,31	20,52

Таблица 4.7. Значения номинальной долговечности роликоподшипников

	1 4031	пца т.т.	<u> </u>				ения, об/м		одшин	IIKOD	
L _h , ч	500	600	720	750	900	1000	1200	1500	1800	3000	3600
1000	2,77	2,93	3,1	3,13	3,31	3,42	3,61	3,86	4,07	4,75	5,02
2000	3,42	3,61	3,81	3,86	4,07	4,2	4,44	4,75	5,02	5,85	6,18
3000	3,86	4,07	4,3	4,36	4,6	4,75	5,02	5,36	5,67	6,6	6,97
4000	4,2	4,44	4,69	4,75	5,02	5,18	5,47	5,85	6,17	7,2	7,6
5000	4,5	4,75	5,02	5,08	5,36	5,53	5,85	6,25	6,6	7,7	8,13
6000	4,75	5,02	5,3	5,36	5,67	5,85	6,17	6,6	6,97	8,13	8,59
7000	4,97	5,25	5,55	5,62	5,93	6,12	6,46	6,92	7,3	8,51	8,99
8000	5,18	5,47	5,78	5,85	6,17	6,37	6,73	7,2	7,6	8,86	9,36
9000	5,36	5,66	5,98	6,06	6,40	6,6	6,97	7,46	7,88	9,18	9,7
10000	5,53	5,85	6,17	6,25	6,6	6,82	7,2	7,7	8,13	9,48	10,01
11000	5,69	6,02	6,35	6,43	6,79	7	7,41	7,92	8,36	9,75	10,3
12000	5,85	6,17	6,52	6,6	6,97	7,2	7,6	8,13	8,59	10,01	10,57
13000	5,99	6,33	6,68	6,76	7,14	7,37	7,79	8,33	8,79	10,25	10,82
14000	6,12	6,46	6,83	6,92	7,3	7,54	7,96	8,51	8,99	10,48	11,07
15000	6,25	6,6	6,97	7,06	7,46	7,7	8,13	8,69	9,18	10,7	11,30
16000	6,37	6,73	7,11	7,2	7,6	7,85	8,29	8,86	9,36	10,91	11,52
17000	6,49	6,86	7,24	7,33	7,74	7,99	8,44	9,02	9,53	11,11	11,73
18000	6,6	6,97	7,36	7,46	7,88	8,13	8,59	9,18	9,7	11,3	11,94
19000	6,71	7,09	7,49	7,58	8	8,26	8,73	9,33	9,85	11,49	12,13
20000	6,82	7,20	7,6	7,7	8,13	8,39	8,86	9,48	10,01	11,66	12,32
21000	6,92	7,30	7,71	7,81	8,25	8,51	8,99	9,61	10,16	11,84	12,5
22000	7	7,41	7,82	7,92	8,36	8,63	9,12	9,75	10,3	12	12,68
23000	7,11	7,51	7,93	8,03	8,48	8,75	9,24	9,88	10,43	12,16	12,85
24000	7,2	7,6	8,03	8,13	8,59	8,86	9,36	10,01	10,57	12,32	13,01
25000	7,29	7,7	8,13	8,23	8,69	8,97	9,48	10,13	10,7	12,47	13,17
26000	7,37	7,79	8,22	8,33	8,79	9,08	9,59	10,25	10,82	12,62	13,33
27000	7,46	7,88	8,32	8,42	8,89	9,18	9,7	10,37	10,95	12,76	13,48
28000	7,54	7,96	8,41	8,51	8,99	9,28	9,8	10,48	11,07	12,9	13,63
29000	7,62	8,05	8,5	8,6	9,09	9,38	9,91	10,59	11,19	13,04	13,77
30000	7,7	8,13	8,59	8,69	9,18	9,48	10,01	10,7	11,3	13,17	13,91
35000	8,06	8,51	8,99	9,1	9,61	9,91	10,48	11,2	11,84	13,8	14,57
40000	8,39	8,86	9,36	9,48	10,01	10,33	10,91	11,66	12,32	14,36	15,17

Для «плавающей» опоры (опора A), если установлен радиальный однорядный шарикоподшипник, приведённая динамическая нагрузка Q_A вычисляется по (4.22), (4.23) при этом A_A = A_0 , если вал расположен горизонтально, и A_A =0, если вал расположен вертикально.

Для однорядных радиальных роликоподшипников с короткими цилиндрическими роликами, установленных на опоре А.

$$Q_A = R_A K_{\delta} K_T \ (4.26)$$

Номинальная долговечность подшипников, млн, оборотов.

$$L = \left(\frac{C}{Q}\right)^{\alpha} \quad (4.27a)$$

Или в часах

$$L_h = (\frac{C}{O})^{\alpha} \frac{10^6}{60\pi}$$
 (4.27 б)

Где С- динамическая грузоподъёмность подшипника, H; Q- приведённая динамическая нагрузка ,H; Показатель степени а=3 для шариковых подшипников, а=10/3 для роликовых. Значения динамической С и статической С₀ грузоподъёмностей приведены в каталожных и справочных данных на подшипники (1). По найденному значению C/Q и табл. 4.6 или 4.7 определяется долговечность подшипников в зависимости от номинальной частоты вращения двигателя,

Таблица 4.8 Типы подшипников, применяемых в двигателях серии 4А

Таолица 4.0	тины подшинников, п	рименяемых в двигате	лях серии 4А
Высота оси вращения, мм –	Сторона основного выс	ступающего конца вала	Противоположная сторона
Высота оси вращения, мм	Группа конструктивн	ых исполнений по способу м	юнтажа (ГОСТ2479-79)
	IM1	IM2, IM3	IM1,IM2,IM3
50	180 500	180 500	180 500
56	180 501	180 501	180 501
63	180 502	180 502	180 502
71	180 604	180 604	180 604
80	180 605	180 605	180 605
90	180 605	180 605	180 605
100	180 606	180 606	180 606
112	180 607	180 607	180 607
132	180 609	180 609	180 609
160*	2310	310	310
180*	2312	312	312
200*	2313	313	313
225*	2314	314	314
250*	2317	317	317
280	2317	2317	317
315	2319		319
355	2322		322

^{* -}В двигателях с высотами оси вращения 160-250 мм при 2р=2 с обеих сторон установлены шарикоподшипники.

Принимая предельными значения прогиба вала $(f=0,1\delta)$, критической частоты вращения $(n_{\kappa p}=1,3~n_{\text{ном}})$, приведённого напряжения в наиболее нагруженном сечении вала $(\sigma=(\sigma_T)/1.5)$ и задаваясь долговечностью подшипников (табл. 4.8) $L_h=20000$ ч, можно рассчитать предельно допускаемые усилия на выступающий конец вала двигателей 4A основного исполнения всех высот оси вращения.

На рис 4.2-4.18 представлены зависимости предельно допускаемой радиальной нагрузки на выступающий конец вала от точки её приложения F_r =f(x), рассчитанные при условиях F_a =0 и $\kappa_{\rm M}$ =1,Расстояние x (см. рис 4.1) от заплечика выступающего конца до точки приложения силы F_r изменяется от x=0 до x= l_1 + $l/2l_{1n}$ + B, где l_{1n} – длина упругой втулки втулочно-пальцевой муфты, B – монтажный зазор между полумуфтами.

На рис, 4,19-3,35 представлены зависимости предельно допустимой аксиальной нагрузки от действующей радиальной F_a = $f(F_r)$, приложенной посредине выступающего конца вала (x/l_1 =0/5). Сплошной линией даны зависимости для горизонтального расположения вала и штриховой - для вертикального.

Для двигателей с высотами осей вращения 160-280 мм и степенью защиты IP23 допускается использовать те же кривые, что и для соответствующих типоразмеров двигателей со степенью защиты IP44. При этом для защищённых двигателей с высотами оси вращения и синхронными частотами вращения, указанными в табл. 4.9, при определении предельно допускаемых усилий сле-

дует вводит поправки (знак «-» означает, что радиальная и аксиальная нагрузки должны быть уменьшены, «+» - что они могут быть увеличены на указанные значения)

Таблица 4.9

Divisions sour provincing and	Синхронная частота вра-	Поправка, кН	
Высота оси вращения, мм	щения, об/мин	$\Delta F_{ m r}$	$\Delta \mathrm{F}_\mathrm{a}$
180	750	-0,2	-0,1
200	1000	-0,18	-0,08
	750	-0,44	-0,2
225	1000	-0,2	-0,1
	1500	+0,15	+0,05
250	1000	-0,2	-0,1
	750	-0,1	-0,05
280	1500	+0,18	+0,04
	1000	+0,22	+0,06
	750	+0,24	+0,07
	600	-,0,08	

Рис 4.2 F_r =f(x) для двигателей с h=50 мм

Рис 4,3 F_r =f(x) для двигателей с h=56 мм

Рис 4.4 F_r =f(x) для двигателей с h=63 мм

Рис 4.5 F_r =f(x) для двигателей с h=71 мм

Рис $4.6 \; F_r = f(x)$ для двигателей с $h = 80 \; \text{мм}$

Рис 4.7 F_r =f(x) для двигателей с h=90 мм

Рис. 4.8. $F_r = f(x)$ для двигателей с h = 100 мм.

Рис. 4.9. $F_r = f(x)$ для двигателей с h = 112 мм.

Рис. 4.10. $F_r = f(x)$ для двигателей с h = 132 мм.

Рис. 4.11. $F_r = f(x)$ для двигателей с h = 160 мм и степенью защиты IP44.

a — со стороны выступающего конца вала — роликоподшинник; δ — со стороны выступающего конца вала — шарикоподшинник.

Рис. 4.12. То же, что и на рис. 4.11, с h=180 мм.

Рис. 4.13. То же, что и на рис. 4.11, с $h=200\,$ мм.

Рис. 4.14. То же, что и на рис. 4.11, с h=225 мм.

Рис. 4.15. То же, что и на рис. 4.11, с h=250 мм.

Рис. 4.16. $F_r = f(x)$ для двигателей с h = 280 мм и степенью защиты IP44.

Рис. 4.17. $F_r = f(x)$ для двигателей с h = 315 мм. a = co степенью защиты 1Р44; b = co степенью защиты 1Р23.

Рис. 4.18. $F_r = f(x)$ для двигателей с h = 355 мм. a - co степенью защиты IP44; b - co степенью защиты IP23.

Зависимость расчетной долговечности подшипников от предельно допускаемой радиальной нагрузки $L_h = f(F_r)$, приложенной посредине выступающего конца вала (x/l₁=0,5), приведена на рис. 4.36—4.52. Эти зависимости рассчитаны при $k_m = 1$ и наиболее употребительном для асинхронных электродвигателей диапазоне долговечности подшипников от 10 000 до 40 000 Ч.

В ряде случаев предельно допускаемая радиальная нагрузка, начиная с некоторого значения F'_r определяется не долговечностью подшипников, а жесткостью вала (рис. 4.46,а и 4.46,6 при n_c = 1000 об/мин, рис. 4.47,6 при n_c =1000 и 750 об/мин и т. д.). Тогда кривая L_h = $f(F_r)$ при F_r = F'_r переходит в прямую, параллельную оси ординат. Для ряда двигателей со степенью защиты IP44 при установке со стороны привода роликоподшипника предельно допускаемая радиальная нагрузка определяется жесткостью вала, в связи с чем долговечность подшипников превышает 40 000 ч. Значения предельно допускаемых радиальных нагрузок для этих двигателей могут быть взяты из табл. 4.10 или из соответствующих кривых F_r =f(x) при x= $0,5l_I$.

Таблица 4.10

Высота оси вращения,	Синхронная частота	F_c , кH, при расположении вала	
MM	вращения, об/мин	горизонтальном	вертикальном
160	1000 750	3,35 3,40	4,00 4,00
200	1000 750	5,90 5,90	-
315	750 600 500	9,50 8,20 8,20	- - -
355	600 500	14,6 14,6	-

Рис. 4.19. $F_a = f(F_r)$ для двигателей с h = 50 мм.

Рис. 4.20. $F_a = f(F_r)$ для двигателей с h = 56 мм.

Рис. 4.21. $F_{\alpha} = f(F_r)$ для двигателей с h = 63 мм.

Рис. 4.22. $F_a = f(F_r)$ для двигателей с h = 71 мм.

Рис. 4.23. $F_a = f(F_r)$ для двигателей с h = 80 мм.

Рис. 4.24. $F_a = f(F_r)$ для двигателей с h = 90 мм.

Рис. 4.25. $F_a = f(F_r)$ для двигателей с h = 100 мм.

Рис. 4.26. $F_a = f(F_r)$ для двигателей с h = 112 мм.

Рис. 4.27. $F_a = f(F_r)$ для двигателей с h = 132 мм.

Рис. 4.28. $F_0 = f(F_r)$ для двигателей с h = 160 мм и степенью защиты IP44.

a — со стороны выступающего конца вала — роликоподшилник; δ — со стороны выступающего конца вала — шарикоподшилник.

Рис. 4.29. То же, что и на рис. 4.28, с h=180 мм.

Рис. 4.30. То же, что и на рис. 4.28, с h=200 мм.

Рис. 4.31. To же, что и на рис. 4.28, с h=225 мм.

Рис. 4.32. То же, что и на рис. 4.28, с h=250 мм.

Рис. 4.33. $F_a = f(F_r)$ для двигателей с h = 280 мм и степенью защиты IP44.

Рис. 4.34. $F_a = f(F_r)$ для двигателей с h = 315 ммг. a = co степенью защиты 1Р44; b = co степенью защиты 1Р23.

Рис. 4.35. $F_a = f(F_r)$ для двигателей с h = 355 мм. a - co степенью защиты IP44; b - co степенью защиты IP23.

Рис. 4.36. $L_h = f(F_r)$ для двигателей с h = 50 мм. a -вал расположен горизонтально; b -вал расположен вертикально.

Рис. 4.37. То же, что и на рис. 4.36, с h=56 мм.

Рис. 4.38. То же, что и на рис. 4.36, с h=63 мм.

Рис. 4.39. То же, что и на рис. 4.36, с $h=71\,$ мм.

PHC. 4.40. То же, что и на рис. 4.36, с h=80 мм.

Рис. 4.41. То же, что и на рис. 4.36, с h=90 мм.

Рис. 4.42. То же, что и на рис. 4.36, с h=100 мм.

Рис. 4.43. То же, что и на рис. 4.36, с h=112 мм.

Рис. 4.44. То же, что и на рис. 4.36, с h=132 мм.

Рис. 4.45. $L_h = f(F_r)$ для двигателей с h = 160 мм и степенью защиты 1Р44.

a — вал расположен горизонтально, со стороны выступающего конца вала — роликоподшипник; б — вал расположен вертикально, со стороны выступающего конца вала — роликоподшипник; ϵ — вал расположен горизонтально, со стороны выступающего конца вала — шарикоподшипник; ϵ — вал расположен вертикально, со стороны выступающего конца вала — шарикоподшипник.

Рис. 4.46. То же, что и на рис. 4.45, с h=180 мм.

Рис. 4.47. То же, что и на рис. 4.45, с $h=200\,$ мм.

Рис. 4.48. То же, что и на рис. 4.45, с h=225 мм.

Рис. 4.49. То же, что и на рис. 4.45, с h=250 мм.

Рис. 4.50. $L_h = f(F_r)$ для двигателей с h = 280 мм и степенью за-

д — вал расположен горизонтально: б — вал расположен вертикально.

Рис. 4.51. $L_h = f(F_r)$ для двигателей с h = 315 мм. a = co степенью защиты 1Р44; $\delta = co$ степенью защиты 1Р23.

Рис. 4.52. $L_h = f(F_r)$ для двигателей с h = 355 мм. a = co степенью защиты IP44; b = co степенью защиты IP23.

Рис. 4.53. Зависимость $F_{\tau(0,5)}/F_{\tau(x)}$ от x/l_1 .

I- для двигателей с h=50+63 мм; 280+355 мм при $n_{\rm c}=3000$ об/мин; 2- для двигателей с h=71+180 мм; 200+225 мм при $n_{\rm c} \lesssim 1500$ об/мин; 3- для двигателей с h=200+225 мм при $n_{\rm c}=3000$ об/мин; 250 мм; 280+355 мм при $n_{\rm c} \lesssim 1500$ об/мин.

Для двигателей с высотами оси вращения 160—280 мм и степенью защиты IP23 можно пользоваться зависимостями $L_h = f(F_r)$, приведенными на рис. 4.45—4.50. Для двигателей, указанных в табл. 4.9, следует вводить поправку ΔF_r .

На рис. 4.53 представлены зависимости $F_{r(0,5)}/F_{r(x)}$ от x/l_I : $F_{r(0,5)}$ — предельно допускаемая радиальная нагрузка, приложенная посредине выступающего конца вала при заданной долговечности подшипников; $F_{r(x)}$ — предельно допускаемая радиальная нагрузка, приложенная к произвольной точке свободного конца вала при той же расчетной долговечности. Кривые рис. 4.53 позволяют быстро рассчитать $F_r(x)$ по значению $F_{r(0,5)}$, найденному из рис. 4.36—4.52 при заданной долговечности подшипников.

Пример 1. Определить предельно допускаемую радиальную нагрузку посредине выступающего конца вала двигателя 4A180M6. Исполнение IM3011 (вал расположен вертикально). Необходимая расчетная долговечность подшипника 20 000 ч. По табл. 4.8 определяем, что в исполнении IM3011 в двигателе 4A180 со стороны выступающего конца вала установлен шарикоподшипник 312. Из рис. 4.46,г для 20 000 ч по кривой для n_c =1000 об/мин находим F_r =3,70 кH.

 Π р и м е р 2. Для этого же двигателя определить предельно допускаемую аксиальную нагрузку при действии на выступающий конец вала радиальной нагрузки 3,70 кH. Из рис. 4.29,6 по кривой для n_c =1000 об/мин (штриховой) находим F_a =1,90 кH.

П р и м е р 3. Определить для этого же двигателя предельно допускаемую радиальную нагрузку F_r , если она приложена к концу выступающего вала (x/I_I =1). Из рис. 4.12,6 по штриховой кривой для n_c =1000 об/мин находим предельно допускаемую нагрузку: при x=110 мм F_r =3,35 кH.

Пример 4. Определить для того же двигателя предельно допускаемую радиальную нагрузку F_r , приложенную к концу выступающего вала, при расчетной долговечности подшипников 30 000 ч. Из рис. 4.46,г находим при x/l_1 =0,5 $F_{r(0,5)}$ =3,20 кН. Из рис. 4.53 находим по кривой 2 для x/l_1 =1 $F_{r(0,5)}$ / $F_{r(1)}$ =1,106

$$Fr_{(1)} = \frac{F_{r(0,5)}}{F_{r(0,5) \cdot Fr(1)}} = \frac{3.2}{1,106} = 2,89\kappa H$$

Более точно отношение $F_{r(0,5)}/F_r(x)$ может быть найдено по графикам $F_r=f(x)$, приведенным на рис. 4.2—4.18.

Кривые, представленные на рис. 4.2—4.53 для двигателей основного исполнения, справедливы также для двигателей с повышенным пусковым моментом, с повышенным скольжением, малошумных, специализированных исполнений по условиям окружающей среды.