Практика по алгоритмам #15 Конец

1. Новые задачи

- 1. Найти отрезок зацикленного массива минимальной длины с суммой хотя бы x за $\mathcal{O}(n)$. Возможны отрицательные числа.
- 2. Дерево Штейнера для множества вершин T связный подграф, содержащий все вершины из T, такой, что суммарный вес всех ребер подграфа минимален. Наша задача найти дерево Штейнера. Веса неотрицательны. Граф неориентирован.
 - а) Для |T| = |V| найти за $\mathcal{O}(E \log V)$
 - b) Для |T|=2 найти за $\mathcal{O}(E\log V)$
 - c) Для |T|=3 найти за $\mathcal{O}(E\log V)$
 - d) Для |T|=4 найти за $\mathcal{O}(V^3)$
 - е) Для |T|=k найти за $\mathcal{O}(V^3+3^kV)$
- 3. Задача про счётчик
 - а) Изначально значение счётчика равно 0. Затем n раз происходит операция +1. Докажите, что амортизированное время работы одной операции не $\mathcal{O}(\log n)$, а $\mathcal{O}(1)$.
 - b) В предыдущей задаче мы делали только операцию +1. Придумайте структуру, которая делает операции +1, -1, isZero, каждую за амортизированное $\mathcal{O}(\log^*(n))$.
 - с) А теперь все те же самые операции за $\mathcal{O}(\log^*(n))$ в худшем случае.
- 4. В алгоритм A^* подсунуть функцию оценки f, на которой он будет работать дольше. Лучше даже экспоненциально долго.
- 5. Выразить количество AVL деревьев высоты h из n вершин через произведение многочленов.
- 6. Выбрать всем вершинам потенциалы так, чтобы веса всех ребёр совпали.
- 7. Найти второй по величине кратчайший путь в графе за $\mathcal{O}(E \log V)$.

2. Разбор задач

1. Кратчайший отрезок с суммой хотя бы x

Насчитаем заранее частичные суммы $s_i = \sum [1..i]$. Храним текущий оптимальный ответ best, изначально $+\infty$. Перебираем правую границу отрезка r. Для каждого r нужно выбрать такое $l\colon l\le r\wedge s_r-s_l\ge x\wedge r-l\to \min$. Пусть на отрезке [1..r) у нас есть последовательность минимумов: $s_{m_1}< s_{m_2}< s_{m_3}< \dots < s_{m_k} \ (1\le m_1< m_2< m_3\dots < r)$. Пока $s_r-s_{m_1}\ge x$, то обновляем best значением $r-m_1$ и удаляем m_1 из дека минимумом. В конце у нас есть желание добавить на вершину стека пару $\langle r,s_r\rangle$. Для этого, пока $s_{m_k}\ge s_r$, снимаем верхний элемент со стека, и в конце кладем на стек $\langle r,s_r\rangle$.

2. Дерево Штейнера

- а) $|T| = |V| \Rightarrow$ минимальное остовное дерево
- b) $|T| = 2 \Rightarrow$ кратчайший путь между вершинами
- с) $T = \{A, B, C\}$, значит дерево имеет вид центр M, а из него пути в A, B, C. Найдем Дейкстрой кратчайшие пути от A, B, C. Перебрем вершину M.
- d) $T = \{A, B, C, D\}$. Дерево имеет одну из трех конфигураций, перебираем, какую. Запустим в начале Флойда. Теперь нужно перебрать два центра -X, Y и проверить d[X,Y] + d[A,X] + d[B,X] + d[C,Y] + d[D,Y] на оптимальность.

е) |T|=k. Запустим в начале Флойда. Решение задачи — динамика по подмножествам $f[v,A,type],\,v$ — корень дерева, которое мы строим, $A\subseteq [1..k]$ — вершины, которые нужно покрыть, type-0 или $1,\,f$ — суммрные вес уже выбранных рёбер. Из [v,A,0] делаем переход-расщепление $relax(f[v,A,0],f[v,B,1]+f[v,A\backslash B,1])$. Из [v,A,1] для каждой вершины u делаем переход-путь relax(f[v,A,1],f[u,A,0]+d[v,u]). Время работы алгоритма $\mathcal{O}(V^3+3^kV+2^kV^2)$. Если мы не добавили третий параметр type, получился бы граф с циклами, на котором динамику считать не получилось бы.

3. Счетчик

- а) Когда мы i-й раз делаем +1, k_i единиц заменятся на 0, один ноль заменится на 1. Время работы t_i равно k_i+1 . За n запросов появится n единиц \Rightarrow не более n раз единица заменится на ноль $\Rightarrow \sum k_i \leq n \Rightarrow \sum t_i \leq 2n$.
- b) Рассмотрим систему счисления $x=\sum_{i=0}^{\infty}d_i2^i$, где $0\leq d_i\leq 2$. Число x может иметь несколько представлений в такой "системе счисления". Сделаем +1: если нулевой разряд был равен 0 или 1, то время $\mathcal{O}(1)$, иначе мы двойку меняем на единицу и делаем +1 в следующий разряд. Заметим, что все операции кроме последней порождают единицу, а последняя операция уменьшит число единиц не более чем на один. То же самое с -1. За n запросов удалится не более n единиц \Rightarrow появится не более $n+\mathcal{O}(\log n)$ единиц \Rightarrow время работы $\mathcal{O}(n)$. Операция isZero: нужно хранить количество ненулевых цифр d_i . Для этого предположим, что с числами не более $\log n$ операции +1 и -1 происходят за $\mathcal{O}(1)$.
- с) Рассмотрим систему счисления: $x = \sum_{i=0}^{\infty} d_i (2^{i+1}-1)$, где $0 \le d_i \le 2$, но двойка может быть не более чем одна, а в более младших разрядах должны быть нули. Каждое число имеет единственное представление в таком виде, например $9 = 2 \cdot 1 + 7$, а $124 = 2 \cdot 15 + 31 + 63$, а 64 = 1 + 63. Заметим, что операции +1 и -1 теперь можно сделать за $\mathcal{O}(1)$ без амортизации.. **P.S.** Заметим, что если такую систему счисления использовать в биномиальной куче, то мы получим кучу с Add за $\mathcal{O}(1)$, Merge и ExtractMin за $\mathcal{O}(\log n)$, все времена без амортизации. Если применить сверху BootStrapping, получается куча с Add и Merge за $\mathcal{O}(1)$, ExtractMin за $\mathcal{O}(\log n)$.

5. AVL-деревья

$$f[h,n] = \sum_{a=0}^{n-1} \Big[f[h-1,a] f[h-1,n-a-1] + 2 f[h-2,a] f[h-1,n-a-1] \Big].$$

А теперь увидим многочлены, пусть $f[h](x) = \sum f[h,n]x^n$, тогда $f[h](x) = x \cdot f[h-1](x) \cdot (f[h-1](x) + 2f[h-2](x))$. Многочлены мы умеем перемножать быстро Карацубой и Фурье.

6. Потенциалы

Ищем потенциалы p_v . Если все потенциалы увеличить на константу, веса рёбер не изменятся \Rightarrow пусть $p_1=0$. Пусть мы угадали вес рёбер z, который мы получим в итоге. Возьмем любой остов графа и делая переходы от вершины 1 однозначно посчитаем все потенциалы по формуле: $z=w+p_a-p_b \Rightarrow p_b=(w+p_a)-z$. Теперь нужно для каждого ребра не из остова проверить, что вес этого ребра тоже равен z. Как угадать z? Потенциал $p_v=A_v\cdot z+B_v$, а рёбра не из остова задают линейные уравнения на z, которые нужно решить. Время работы $\mathcal{O}(n+m)$.