UNIVERSIDADE FEDERAL DO PARANÁ - DEPTO DE MATEMÁTICA

Disciplina MNUM7009 - Análise Numérica I - PPGMNE

Profs. Lucas G. Pedroso e Luiz C. Matioli

Lista de exercícios sobre o Método de Gradientes Conjugados.

Todos exercícios abaixo devem ser entregues.

1. Considere

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 3 & 2 \\ -1 & 2 & 4 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, w = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

- a) Verifique se os vetores $v \in w$ são A-conjugados.
- b) Verifique se é possível aplicar o método de Gradientes conjugados para resolver Ax = b usando os vetores v e w como direções. Em caso afirmativo, aplique duas iterações do método e avalie o resíduo $r = Ax_2 b$.
- **2.** Seja $f(x) = \frac{1}{2}x^T A x + b^T x$, A > 0, onde:

a)
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} -3 \\ 0 \\ -3 \end{bmatrix}$; b) $A = \begin{bmatrix} 4 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ -1 & -1 & 5 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}$, $b = \begin{bmatrix} -7 \\ -8 \\ 4 \\ -6 \end{bmatrix}$

A partir de $x_0 = 0$ (vetor nulo), em cada um dos casos determine a solução pelo Método de Gradientes Conjugados.

3. Encontre o minimizador da quadrática $q(x) = \frac{1}{2}x^TAx + b^Tx$, onde $A \in \mathbb{R}^{3\times 3}$, A > 0 e $b \in \mathbb{R}^3$ são dados por

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{array} \right] \text{ e } b = \left[\begin{array}{c} 2 \\ 0 \\ 0 \end{array} \right],$$

utilizando o algoritmo de Gradientes Conjugados a partir do ponto inicial $x_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$.

4. Considere

$$A_{1} = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{bmatrix}, -I = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, e$$

Forme a matrix A, 16×16 sob a forma particionada

$$A = \begin{bmatrix} A_1 & -I & O & O \\ -I & A_1 & -I & O \\ O & -I & A_1 & -I \\ O & O & -I & A_1 \end{bmatrix}.$$

Seja $b = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6)^T$. Resolva o sistema linear Ax = b usando o Método de Gradientes Conjugados com tolerância 0, 05.