My Project

Generated by Doxygen 1.8.16

1	Namespace Index	1
	1.1 Namespace List	1
2	Hierarchical Index	3
	2.1 Class Hierarchy	3
3	Class Index	5
	3.1 Class List	5
4	File Index	7
	4.1 File List	7
5	Namespace Documentation	9
	5.1 camera Namespace Reference	9
	5.1.1 Detailed Description	9
	5.2 Camera Namespace Reference	9
	5.3 main Namespace Reference	9
	5.3.1 Detailed Description	10
	5.3.2 Function Documentation	10
	5.3.2.1 getData()	10
	5.3.2.2 stateMachine()	10
	5.3.3 Variable Documentation	10
	5.3.3.1 oldState	11
	5.3.3.2 state	11
	5.3.3.3 t	11
	5.3.3.4 theCamera	11
	5.3.3.5 theRobotController	11
	5.4 RobotControl Namespace Reference	11
	5.4.1 Detailed Description	11
6	Class Documentation	13
	6.1 Camera.Camera Class Reference	13
	6.1.1 Detailed Description	14
	6.1.2 Constructor & Destructor Documentation	14
	6.1.2.1init()	14
	6.1.3 Member Function Documentation	14
	6.1.3.1 cameraDetectionDice()	14
	6.1.3.2 capture()	15
	6.1.3.3 detectNumberOnDice()	15
	6.1.3.4 foundDice()	16
	6.1.3.5 initRelation()	17
	6.1.3.6 midpoint()	17
	6.1.4 Member Data Documentation	18
	6.1.4.1 angleRot	18
		. •

6.1.4.2 camera	. 18
6.1.4.3 deltaX_m	. 18
6.1.4.4 deltaY_m	. 18
6.1.4.5 imgCrop	. 19
6.1.4.6 pixelsPerMeter	. 19
6.1.4.7 robotController	. 19
6.2 RobotControl.RobotControl Class Reference	. 19
6.2.1 Detailed Description	. 20
6.2.2 Constructor & Destructor Documentation	. 21
6.2.2.1init()	. 21
6.2.3 Member Function Documentation	. 21
6.2.3.1 adjustPliers()	. 21
6.2.3.2 calibrate()	. 21
6.2.3.3 initRelations()	. 22
6.2.3.4 master()	. 22
6.2.3.5 moveToPosition()	. 23
6.2.3.6 setObjectPosition()	. 24
6.2.3.7 statePliers()	. 24
6.2.3.8 stop()	. 25
6.2.3.9 updateCurrentPosition()	. 25
6.2.4 Member Data Documentation	. 26
6.2.4.1 angularacceleration	. 26
6.2.4.2 angularvelocity	. 26
6.2.4.3 BorderReached	. 26
6.2.4.4 evZone	. 26
6.2.4.5 host	. 27
6.2.4.6 lastZone	. 27
6.2.4.7 linearacceleration	. 27
6.2.4.8 linearvelocity	. 27
6.2.4.9 MaxReached	. 27
6.2.4.10 object_posX	. 27
6.2.4.11 object_posY	. 28
6.2.4.12 object_posZ	. 28
6.2.4.13 object_Rz	. 28
6.2.4.14 oldState	. 28
6.2.4.15 posx	. 28
6.2.4.16 posy	. 28
6.2.4.17 posz	. 29
6.2.4.18 rx	. 29
6.2.4.19 ry	. 29
6.2.4.20 rz	. 29
6.2.4.21 state	. 29

6.2.4.22 takeOrRelease	29
6.2.4.23 theCamera	30
6.2.4.24 xSearch	30
6.2.4.25 ySearch	30
6.2.4.26 ZeroReached	30
6.2.4.27 zSearch	30
6.3 main.RobotControl_Thread Class Reference	31
6.3.1 Detailed Description	31
6.3.2 Constructor & Destructor Documentation	31
6.3.2.1init()	32
6.3.3 Member Function Documentation	32
6.3.3.1 run()	32
7 File Documentation	33
7.1 C:/Users/rebor/Documents/GitHub/PGA/Code/Camera.py File Reference	33
7.2 C:/Users/rebor/Documents/GitHub/PGA/Code/main.py File Reference	33
7.3 C:/Users/rebor/Documents/GitHub/PGA/Code/RobotControl.py File Reference	34

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

camera														 												ç
Camera														 												ç
main																										
Robot Co																										14

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Camera.Camera	13
RobotControl.RobotControl	19
Thread	
main.RobotControl Thread	31

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Camera.Camera	
Take a picture and anlyse it to detect a dice	13
RobotControl.RobotControl	
Control the robot	19
main.RobotControl_Thread	
Class RobotControl Thread update postion of the robot	31

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

C:/Users/rebor/Documents/GitHub/PGA/Code/Camera.py	33
C:/Users/rebor/Documents/GitHub/PGA/Code/main.py	33
C:/Users/rebor/Documents/GitHub/PGA/Code/RobotControl.py	34

8 File Index

Namespace Documentation

5.1 camera Namespace Reference

5.1.1 Detailed Description

image analysis

5.2 Camera Namespace Reference

Classes

· class Camera

take a picture and anlyse it to detect a dice

5.3 main Namespace Reference

Classes

• class RobotControl_Thread

Class RobotControl_Thread update postion of the robot.

Functions

• def getData ()

launch robotController Thread

• def stateMachine (ev=int)

stateMachine manage the state of the soft: init, running, stop

Variables

```
• int state = STATE_INIT
```

actual state for the state machine

• int oldState = STATE_INIT

old state for the state machine

• theRobotController = RobotControl()

class RobotControl object

• theCamera = Camera()

class Camera object

• t = Timer(0.1,getData)

timer to launch thread periodically

5.3.1 Detailed Description

main of the program

5.3.2 Function Documentation

5.3.2.1 getData()

```
def main.getData ( )
```

launch robotController Thread

5.3.2.2 stateMachine()

```
def main.stateMachine (
ev = int )
```

stateMachine manage the state of the soft: init, running, stop

Parameters

ev event to trigger the state machine

5.3.3 Variable Documentation

5.3.3.1 oldState

```
int main.oldState = STATE_INIT
```

old state for the state machine

5.3.3.2 state

```
int main.state = STATE_INIT
actual state for the state machine
```

5.3.3.3 t

```
main.t = Timer(0.1,getData)
timer to launch thread periodically
```

5.3.3.4 theCamera

```
main.theCamera = Camera()

class Camera object
```

5.3.3.5 theRobotController

```
main.theRobotController = RobotControl()
class RobotControl object
```

5.4 RobotControl Namespace Reference

Classes

class RobotControl
 Control the robot.

5.4.1 Detailed Description

control the robot

Class Documentation

6.1 Camera.Camera Class Reference

take a picture and anlyse it to detect a dice

Public Member Functions

• def __init__ (self)

the constructor

def initRelation (self, robotController)

intialise relation

• def capture (self)

capture an image

def cameraDetectionDice (self)

manage the dice detection then trigger the state machine of class RobotControl depending on the dice number

• def detectNumberOnDice (self, image)

detect the number on a dice

def midpoint (self, ptA, ptB)

calculate the mid point between 2 points

def foundDice (self, imagePath, width_object)

search a dice in an image

Public Attributes

deltaX_m

delta x of the object in meter from the center of the camera

• deltaY_m

delta y of the object in meter from the center of the camera

angleRot

orientation the object in radian

pixelsPerMeter

pixels per meter ration

imgCrop

image of the dice

robotController

robotController object

• camera

camera object

6.1.1 Detailed Description

take a picture and anlyse it to detect a dice

6.1.2 Constructor & Destructor Documentation

```
6.1.2.1 __init__()
```

the constructor

Here is the caller graph for this function:

6.1.3 Member Function Documentation

6.1.3.1 cameraDetectionDice()

```
\begin{tabular}{ll} $\operatorname{def Camera.Camera.Camera.DetectionDice} & ( \\ & self \end{tabular} \label{eq:camera.camera.detectionDice} \end{tabular}
```

manage the dice detection then trigger the state machine of class RobotControl depending on the dice number

Parameters

self The object pointer.

Here is the call graph for this function:

6.1.3.2 capture()

```
\begin{tabular}{ll} $\operatorname{def Camera.Camera.capture} & ( \\ & self \end{tabular} ) \label{eq:camera.capture}
```

capture an image

Parameters

self The object pointer.	
--------------------------	--

Here is the caller graph for this function:

6.1.3.3 detectNumberOnDice()

detect the number on a dice

self	The object pointer.
image	image of the dice

Returns

the dice number

Here is the caller graph for this function:

6.1.3.4 foundDice()

search a dice in an image

Parameters

self	The object pointer.
imagePath	path to the image
width_object	width in mm of the object

Returns

an image of the dice

Here is the call graph for this function:

Here is the caller graph for this function:

Camera.Camera.Camera.foundDice

6.1.3.5 initRelation()

intialise relation

Parameters

self	The object pointer.
self	The robot controller object

6.1.3.6 midpoint()

calculate the mid point between 2 points

self	The object pointer.
ptΑ	point 1
ptΒ	point 2

Returns

the middle point

Here is the caller graph for this function:

6.1.4 Member Data Documentation

6.1.4.1 angleRot

Camera.Camera.angleRot

orientation the object in radian

6.1.4.2 camera

Camera.Camera.camera

camera object

6.1.4.3 deltaX_m

Camera.Camera.deltaX_m

delta x of the object in meter from the center of the camera

6.1.4.4 deltaY_m

Camera.Camera.deltaY_m

delta y of the object in meter from the center of the camera

6.1.4.5 imgCrop

Camera.Camera.imgCrop

image of the dice

6.1.4.6 pixelsPerMeter

Camera.Camera.pixelsPerMeter

pixels per meter ration

6.1.4.7 robotController

Camera.Camera.robotController

robotController object

The documentation for this class was generated from the following file:

• C:/Users/rebor/Documents/GitHub/PGA/Code/Camera.py

6.2 RobotControl.RobotControl Class Reference

Control the robot.

Public Member Functions

def __init__ (self)

constructor

• def initRelations (self, theCamera)

get camera object

· def calibrate (self)

Put the robot in original state.

def updateCurrentPosition (self)

update robot position get position X,Y,Z and orientation of tool center point

def moveToPosition (self, x=float, y=float, z=float, rz=float)

move the robot to a position XYZ with angle rz

• def setObjectPosition (self, dx=float, dy=float, rz=float)

set the object found postion

def statePliers (self)

check the state of the pliers

def adjustPliers (self, pliersState)

open or close the pliers

• def master (self, event)

State machine who manage the soft as follow: Step 1: Move the pliers Step 2: Search the dice Step 3: dice found --> go step 4, else step 1 Step 4: Grab the dice Step 5: Launch the dice and go back to step 1 Stop if the dice is 6.

def stop (self)

this function stop the robot and put him in original state

Public Attributes

· angularvelocity

angular velocity of the robot

angularacceleration

angular acceleration of the robot

linearvelocity

linear velocity of the robot

linearacceleration

linear acceleration of the robot

posx

tool center point position x

posy

tool center point position y

• posz

tool center point position z

rx

tool center point orientation rx

ry

tool center point orientation ry

rz

tool center point orientation rz

object_posX

x postion of the object to catch

object_posY

y postion of the object to catch

- · object_Rz
- takeOrRelease
- ZeroReached
- MaxReached
- evZone
- lastZone
- BorderReached
- xSearch

position x to search the object

ySearch

position y to search the object

zSearch

position z to search the object

host

IP Address of the robot.

state

state of the state machine

oldState

oldstate of the state machine

• theCamera

camera object

object_posZ

6.2.1 Detailed Description

Control the robot.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 __init__()

constructor

Here is the caller graph for this function:

6.2.3 Member Function Documentation

6.2.3.1 adjustPliers()

open or close the pliers

Parameters

pliersState	True->Open, False->Close
self	The object pointer.

6.2.3.2 calibrate()

```
\begin{tabular}{ll} \tt def RobotControl.RobotControl.calibrate ( \\ \tt self ) \end{tabular}
```

Put the robot in original state.

Parameters

self	The object pointer.
------	---------------------

Here is the caller graph for this function:

6.2.3.3 initRelations()

```
\begin{tabular}{ll} $\operatorname{def RobotControl.initRelations} & ( \\ & self, \\ & the \textit{Camera} \end{tabular} )
```

get camera object

Parameters

self	The object pointer.
theCamera	the camera object.

6.2.3.4 master()

```
\begin{tabular}{ll} $\operatorname{def RobotControl.master} & ( \\ & self, \\ & event \end{tabular} \label{eq:control.master}
```

State machine who manage the soft as follow: Step 1: Move the pliers Step 2: Search the dice Step 3: dice found --> go step 4, else step 1 Step 4: Grab the dice Step 5: Launch the dice and go back to step 1 Stop if the dice is 6.

self	The object pointer.
event	event to trigger state machine.

Here is the call graph for this function:

Here is the caller graph for this function:

6.2.3.5 moveToPosition()

```
def RobotControl.RobotControl.moveToPosition (
    self,
    x = float,
    y = float,
    z = float,
    rz = float )
```

move the robot to a position XYZ with angle rz

Χ	: Position X of the Tool Center Point
У	: Position Y of the Tool Center Point
Z	: Position Z of the Tool Center Point
rz	: orientation of the object
self	The object pointer.

Here is the caller graph for this function:

6.2.3.6 setObjectPosition()

set the object found postion

Parameters

dx	: Delta X of the object from the center of the camera
dy	: Delta Y of the object from the center of the camera
rz	: orientation of the object
self	The object pointer.

6.2.3.7 statePliers()

```
\label{eq:control} \mbox{def RobotControl.statePliers (} \\ self \mbox{)}
```

check the state of the pliers

self The object pointer.

Here is the call graph for this function:

6.2.3.8 stop()

```
\label{eq:control.RobotControl.stop} \mbox{ def RobotControl.stop (} \\ self \mbox{ )}
```

this function stop the robot and put him in original state

Parameters

```
self The object pointer.
```

Here is the call graph for this function:

6.2.3.9 updateCurrentPosition()

```
\label{lem:control.updateCurrentPosition} \mbox{ (} \\ self \mbox{ )}
```

update robot position get position X,Y,Z and orientation of tool center point

Parameters

Here is the call graph for this function:

6.2.4 Member Data Documentation

6.2.4.1 angularacceleration

RobotControl.RobotControl.angularacceleration

angular acceleration of the robot

6.2.4.2 angularvelocity

RobotControl.RobotControl.angularvelocity

angular velocity of the robot

6.2.4.3 BorderReached

RobotControl.RobotControl.BorderReached

6.2.4.4 evZone

RobotControl.RobotControl.evZone

6.2.4.5 host

RobotControl.RobotControl.host

IP Address of the robot.

6.2.4.6 lastZone

RobotControl.RobotControl.lastZone

6.2.4.7 linearacceleration

RobotControl.RobotControl.linearacceleration

linear acceleration of the robot

6.2.4.8 linearvelocity

 ${\tt RobotControl.RobotControl.linear velocity}$

linear velocity of the robot

6.2.4.9 MaxReached

RobotControl.RobotControl.MaxReached

6.2.4.10 object_posX

RobotControl.RobotControl.object_posX

x postion of the object to catch

6.2.4.11 object_posY

RobotControl.RobotControl.object_posY

y postion of the object to catch

6.2.4.12 object_posZ

RobotControl.RobotControl.object_posZ

6.2.4.13 object_Rz

RobotControl.RobotControl.object_Rz

6.2.4.14 oldState

RobotControl.RobotControl.oldState

oldstate of the state machine

6.2.4.15 posx

RobotControl.RobotControl.posx

tool center point position x

6.2.4.16 posy

RobotControl.RobotControl.posy

tool center point position y

6.2.4.17 posz

RobotControl.RobotControl.posz

tool center point position z

6.2.4.18 rx

RobotControl.RobotControl.rx

tool center point orientation rx

6.2.4.19 ry

RobotControl.RobotControl.ry

tool center point orientation ry

6.2.4.20 rz

RobotControl.RobotControl.rz

tool center point orientation rz

6.2.4.21 state

RobotControl.RobotControl.state

state of the state machine

6.2.4.22 takeOrRelease

RobotControl.RobotControl.takeOrRelease

6.2.4.23 theCamera

RobotControl.RobotControl.theCamera

camera object

6.2.4.24 xSearch

RobotControl.RobotControl.xSearch

position x to search the object

6.2.4.25 ySearch

RobotControl.RobotControl.ySearch

position y to search the object

6.2.4.26 ZeroReached

RobotControl.RobotControl.ZeroReached

6.2.4.27 zSearch

RobotControl.RobotControl.zSearch

position z to search the object

The documentation for this class was generated from the following file:

• C:/Users/rebor/Documents/GitHub/PGA/Code/RobotControl.py

6.3 main.RobotControl_Thread Class Reference

Class RobotControl_Thread update postion of the robot.

Inheritance diagram for main.RobotControl_Thread:

Collaboration diagram for main.RobotControl_Thread:

Public Member Functions

- def __init__ (self)the constructor
- def run (self)

get position of the robot

6.3.1 Detailed Description

Class RobotControl_Thread update postion of the robot.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 __init__()

```
\begin{tabular}{ll} $\operatorname{def main.RobotControl\_Thread.\_\_init}\_ & ( \\ & self \end{tabular} ) \label{eq:control_Thread.}
```

the constructor

Here is the caller graph for this function:

6.3.3 Member Function Documentation

6.3.3.1 run()

```
\begin{tabular}{ll} $\operatorname{def main.RobotControl\_Thread.run} & ( \\ & self \end{tabular} \label{eq:self}
```

get position of the robot

The documentation for this class was generated from the following file:

• C:/Users/rebor/Documents/GitHub/PGA/Code/main.py

File Documentation

7.1 C:/Users/rebor/Documents/GitHub/PGA/Code/Camera.py File Reference

Classes

· class Camera.Camera

take a picture and anlyse it to detect a dice

Namespaces

- Camera
- camera

7.2 C:/Users/rebor/Documents/GitHub/PGA/Code/main.py File Reference

Classes

class main.RobotControl_Thread
 Class RobotControl_Thread update postion of the robot.

Namespaces

• main

Functions

• def main.getData ()

launch robotController Thread

• def main.stateMachine (ev=int)

stateMachine manage the state of the soft: init, running, stop

34 File Documentation

Variables

• int main.state = STATE_INIT

actual state for the state machine

• int main.oldState = STATE_INIT

old state for the state machine

• main.theRobotController = RobotControl()

class RobotControl object

• main.theCamera = Camera()

class Camera object

• main.t = Timer(0.1,getData)

timer to launch thread periodically

7.3 C:/Users/rebor/Documents/GitHub/PGA/Code/RobotControl.py File Reference

Classes

• class RobotControl.RobotControl

Control the robot.

Namespaces

RobotControl