		Dados da tabela de motores WEG			
Setor	Carga	Potência mecânica (cv)	Fator de potência	Rendimento (100% da capacidade)	
	Motor 1	60	0.89	0.95	
4	Motor 2	150	0.88	0.96	
' [Motor 3	20	0.87	0.92	
	Motor 4	150	0.84	0.96	
	Motor 5	20	0.8	0.93	
2	Motor 6	20	0.78	0.92	
	Motor 7	30	0.81	0.92	
	Tomadas 1	-	0.92	-	
	Tomadas 2	-	0.92	-	
3	Aquecimento 1	-	1	-	
	Aquecimento 2	-	1	-	
	Aquecimento 3	-	1	-	

	#NAME?	#NAME?	
Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)	POLOS
45	23.05	50.56	II
110	59.37	125.00	П
15	8.50	17.24	11
110	71.05	130.95	IV
15	11.25	18.75	IV
15	12.03	19.23	VI
22	15.93	27.16	VIII
80	34.08	86.96	-
80	34.08	86.96	-
30	<u>-</u>	-	-
30	-	-	-
30	-	-	-

Setor	Carga	Potência mecânica (cv)
	Motor 1	60
l , [Motor 2	150
'	Motor 3	20
	Motor 4	150
	Motor 5	20
2	Motor 6	20
	Motor 7	30
	Tomadas 1	-
	Tomadas 2	-
3	Aquecimento 1	-
	Aquecimento 2	-
	Aquecimento 3	-

1
1.12
PVC 70 °C

Carga	prrente tabela WEG em 440v (A)
Motor 1	69.80
Motor 2	171.00
Motor 3	24.50
Motor 4	178.00
Motor 5	26.30
Motor 6	27.20
Motor 7	38.60
	I = P /(raiz(3)*v*FP) (A)
lluminação 1	132.12
lluminação 2	132.12
Aquecimento 1	45.58
Aquecimento 2	45.58
Aquecimento 3	45.58

Comprimento do condutor (m)	5

Carga	I (A)
Motor 1	80.83
Motor 2	198.02
Motor 3	28.37
Motor 4	206.12
Motor 5	30.46
Motor 6	31.50

Motor 7	44.70
Tomadas 1	132.12
Tomadas 2	132.12
Aquecimento 1	45.58
Aquecimento 2	45.58
Aquecimento 3	45.58

Potência aparente (kVA)	Cabo mm² - queda de tensão
50.56	25 mm²
125.00	95 mm²
17.24	4 mm²
130.95	95 mm²
18.75	4 mm²
19.23	4 mm²
27.16	10 mm²
86.96	50 mm²
86.96	50 mm²
30	10 mm²
30	10 mm²
30	10 mm²

Tabela 42 NBR5410	
Tabela 40 NBR5410	
Tabela 36 NBR5410	

Metódo Ampacidade (I = I tabela * FA * FT)

ı In em 380 V usar a expressão: In(380 V)	Metódo B2 - 3 condutores carregados
80.83	I cabo 99 A - 35 mm²
198.02	I cabo 206 A - 120 mm²
28.37	I cabo 34 A - 6 mm²
206.12	I cabo 236 A - 150 mm²
30.46	I cabo 34 A - 6 mm²
31.50	I cabo 34 A - 6 mm²
44.70	l cabo 46 - 10 mm²
	Metódo B2 - 3 condutores carregados
-	l cabo 149 A - 70 mm²
-	l cabo 149 A - 70 mm²
-	I cabo 46 A - 10 mm²
-	I cabo 46 A - 10 mm²
-	I cabo 46 A - 10 mm²

Metódo Queda de Tensão (raiz(3)*I*L*CosFP)/(56*S) (Tabela fabricante Cobrecom)

Seção do condutor (mm²)			
25			
95			
4			
95			
4			
4			

0.81	10
0.92	50
0.92	50
1	10
1	10
1	10

nm² - seção mínima (NBR5410 -Tab	Cabo mm² - Ampacidade
1,5 mm² iluminação 2,5 mm² tomadas	35 mm²
1,5 mm² iluminação 2,5 mm² tomadas	120 mm²
1,5 mm² iluminação 2,5 mm² tomadas	6 mm²
1,5 mm² iluminação 2,5 mm² tomadas	150 mm²
1,5 mm² iluminação 2,5 mm² tomadas	6 mm²
1,5 mm² iluminação 2,5 mm² tomadas	6 mm²
1,5 mm² iluminação 2,5 mm² tomadas	10 mm²
1,5 mm² iluminação 2,5 mm² tomadas	70 mm²
1,5 mm² iluminação 2,5 mm² tomadas	70 mm²
1,5 mm² iluminação 2,5 mm² tomadas	10 mm²
1,5 mm² iluminação 2,5 mm² tomadas	10 mm²
1,5 mm² iluminação 2,5 mm² tomadas	10 mm²

Correção da corrente (I cabo) (A)
110.88
230.72
38.08
264.32
38.08
38.08
51.52
166.88
166.88
51.52
51.52
51.52

Queda de Tensão (V)	Tensão < 4% ((deltatensão/tensão
0.44	0.12
0.28	0.07
0.95	0.25
0.28	0.07
0.94	0.25
0.95	0.25

0.56	0.15
0.41	0.11
0.41	0.11
0.70	0.19
0.70	0.19
0.70	0.19

Cabo mm² - escolhido	Disjuntor BT (A)
35 mm ²	90 A (modelo MPW90)
120 mm²	224 A (modelo FNH1-224U)
6 mm²	32 A (modelo MPW40)
150 mm²	224 A (modelo FNH1-224U)
6 mm²	32 A (modelo MPW40-3-U032)
6 mm²	32 A (modelo MPW40-3-U032)
10 mm²	50 A (modelo MPW80i-3-U050)
70 mm²	125 A (modelo MDW-B125-3 curva B)
70 mm ²	125 A (modelo MDW-B125-3 curva B)
10 mm ²	50 A (modelo MDW-B50-3)
10 mm²	50 A (modelo MDW-B50-3)
10 mm²	50 A (modelo MDW-B50-3)

Setor	Potência ativa (kW)	Potência reativa (kVAr)
1	280	161.98
2	52	39.21
3	250	68.16
	582	269.35

Novo Fator de Potência				
Setor 1	280.00			
Setor 2	52			
Setor 3	250			

Fator de Agrupamento	1
Fator de Temperatura (20 °C)	1.12
Isolação do cabo	PVC 70 °C

	Metódo Ampacid
Setor	Somátoria corrente
1	513.34
2	106.65
3	400.97

Setor	I (A)
1	513.34
2	106.65
3	400.97

	Metódo Ampacida
Setor	Somátoria corrente
Trafo-QGF	1020.97

Potência aparente (kVA)	Cabo mm² - Ampacidade
323.48	630 mm²
65.13	50 mm²
259.12	400 mm²
647.73	

161.98	323.48
39.21	65.13
68.16	259.12

Tabela 42 NBR5410	
Tabela 40 NBR5410	
Tabela 36 NBR5410	

ade (I = I tabela * FA * FT)	
Metódo B2 - 3 condutores carregados	Correção da corrente (I cabo) (A)
I cabo 559 A - 630 mm²	626.08
I cabo 118 A - 50 mm²	132.16
I cabo 425 A - 400 mm²	476.00

Metódo Queda de Tensão (raiz(3)*I*L*CosFP)/(56*S) (Tabela fabricante C

Comprimento do condutor (m) FP total

25 0.87

35 0.80

30 0.96

ade (I = I tabela * FA * FT)	
Metódo B2 - 3 condutores carregados	Correção da corrente (I cabo) (A)
I cabo 1074 A - 3 x 300 mm ²	1202.88

Cabo mm² - queda de tensão	m² - seção mínima (NBR5410 -Ta
500 mm ²	5 mm² iluminação 2,5 mm² tomad
35 mm²	5 mm² iluminação 2,5 mm² tomad
240 mm²	5 mm² iluminação 2,5 mm² tomad

0.87	
0.80	
0.96	·

obrecom)

cabo mm²	Queda de Tensão (V)
500	0.69
35	2.63
240	1.50

Cabo mm² - escolhido	Disjuntor BT (Caixa moldada)
630 mm²	(modelo DWB650 com ajuste de 0
50 mm²	(modelo DWB160 com ajuste de 0
400 mm ²	(modelo DWB650 com ajuste de 0,

eda de Tensão < 4% ((quedadetensão/tensãorede)*100) ((%)
0.18	
0.69	
0.39	

- 1,8)
-),8)
- ,7)

Setor		Corrent	e de curto-circuito
Setor	trifásico (lcs) - kA	monofásico franco (lcft) - kA	Fator de assimetria
Ponto de entrega	lcs = 8,20 < -78,69° KA	lcft = 6,80 < -87,54° kA	
Secundário do transformador	lcs= 23,33 < -78,75° KA	Icft= 22,96 < -78,63 KA	
QGF	lcs=22,38 <-77,66°KA	Icft= 16,93 < -71,35°KA	
Barramento área 1	Ics= 17,54 < -76,94°KA	lcft =5,66 <-58,99°KA	1.4
Barramento área 2	Ics= 9,86 < -37,42°KA	Icft =3,60 < -48,00°KA	1.02
Barramento área 3	lcs= 16,44 < -72,91°KA	Icft= 4,86 <-57,86°KA	1.32

Corrente de curto assimétrica (Ica) - kA
24,56 kA
10,05 kA
21,71 kA

Setor	Carga	Potência mecânica (cv)
	Motor 1	60
4	Motor 2	150
'	Motor 3	20
	Motor 4	150
	Motor 5	20
2	Motor 6	20
	Motor 7	30
	lluminação 1	-
	Iluminação 2	-
3	Aquecimento 1	-
	Aquecimento 2	
	Aquecimento 3	-
Total		

Т	otal	
	o tui	

		Correção Fator de Pot
Motor	FP desejado	S' (=P/FP desejado)
1	0.92	48.91
2	0.92	119.57
3	0.92	16.30
4	0.92	119.57

	19.70
	42.70

Motor	FP desejado	S' (=P/FP desejado)
5	0.92	16.30
6	0.92	16.30
7	0.92	23.91
		17.06

Potência aparente (kVA)	Fator de potência
50.56	0.89
125.00	0.88
17.24	0.87
130.95	0.84
18.75	0.8
19.23	0.78
27.16	0.81
86.96	0.92
86.96	0.92
30	1
30	1
30	1
652.81	

tência	
Q' (= raiz(S'^2-P^2)	Qc (=Q-Q')(KVAr)
19.17	3.88
46.86	12.51
6.39	2.11
46.86	24.19

Q' (= raiz(S'^2-P^2)	Qc (=Q-Q')(KVAr)
6.39	4.86
6.39	5.64
9.37	6.56

Rendimento (100% da capacidade)	Potência ativa (kW)	Potência reativa (kVAr)
0.95	45	23.05
0.96	110	59.37
0.92	15	8.50
0.96	110	71.05
0.93	15	11.25
0.92	15	12.03
0.92	22	15.93
-	80	34.08
-	80	34.08
-	30	30
-	30	30
-	30	30

	Novo c
Motor Setor 1	I antes (A)
1	80.83
2	198.02
3	28.37
4	206.12

Banco de Capacitores Trifásico Fixo 50 KVAr

Motor Setor 2	I antes (A)
5	30.46
6	31.50
7	44.70

Banco de Capacitores Trifásico Fixo 20 KVAr

arregamento dos condutores				
I depois (A)	I total setor antes (A)	I total setor depois (A)	Redução	
74.32				
181.66	513.34	462.41	50.93	
24.77	313.34	402.41	50.93	
181.66				

I depois (A)	I total setor antes (A)	I total setor depois (A)	Redução
24.77			
24.77	106.65	85.88	20.78
36.33			

Etapas	
1) Escolha dos valores base	
Tensão base - MT -Vb	
Potência base -Pb	
Impedância base - Zb	
Corrente base - Ib - MT	
Tensão base - BT -Vbbt	_
Corrente base - lb - BT	

2) Impedâncias do sistema de suprimento	
Seq positiva	
Rps	
Xps	
Seq zero -Z0s	
Rp0	
Xp0	

3) Corrente de curto-circuito no ponto de fornecimento de energia (Média tensão)
lcs
Módulo de Ics
Fase de Ics

4) Corrente de curto-circuito fase-terra
Zeq deste ponto - lado de alta do transformador
Icft
Módulo de Icft
Fase de Icft
Potência de curto-circuito no ponto de entrega
Pcc

5) Impedância do transformador	
Pot nominal trafo	
Perdas do Cobre	
Resistência percentual Rpt	
Resistência pu Rut	
Resistência pu Rut	
Impedância percentual Zpt	
Impedância p.u. Zut	
reatância pu Xut	
Impedância pu do trafo Zut	

4) Corrente de curto-cicuito secundário do transformador (lado BT)	
Impedância equivalente até o ponto - Apenas sequência positiva!	
Corrente de curto-circuito trifásica	
Ics	
Módulo de Ics	
Fase de lcs	
Impedância equivalente até o ponto	
Icft	
Modulo Icft	
Fase de Icft	

npedância do circuito que liga o transformador ao QGF
Lc
Nc
Sc
Sequência positiva
R_cabo
R_caboPos_ohm
R_caboPos_pu
X_cabo
X_caboPos_ohm
X_caboPos_pu
Z_caboPos_pu
Sequência zero
R_cabo
R_caboZero_ohm
R_caboZero_pu
X_cabo
X_caboZero_ohm
X_caboZero_pu
Z_caboZero_pu

7) Corrente de curto-circuito do barramento do QGF		
Impedância equivalente até o ponto - Apenas sequência positiva!		
Corrente de curto-circuito trifásica		
Ics		
Módulo de Ics		
Fase de Ics		

Zeq até este ponto
Icft
Módulo de Icft
Fase de Icft

npedância do cabo entre QGF e o Setor 3
Lc
Nc
Sc
Sequência positiva
R_cabo
R_caboPos_ohm
R_caboPos_pu
X_cabo
X_caboPos_ohm
X_caboPos_pu
Z_caboPos_pu
Sequência zero
R_cabo
R_caboZero_ohm
R_caboZero_pu
X_cabo
X_caboZero_ohm
X_caboZero_pu
Z_caboZero_pu

9) Corrente de curto-circuito no Setor 3
Impedância equivalente até o ponto - Apenas sequência positiva!
Corrente de curto-circuito trifásica
Ics
Módulo de Ics
Fase de lcs

Corrente de curto-circuito fase-terra

Corrente de curto-circuito lase-terra	
Zeq até o Setor 3	
Icft	
Módulo de Icft	
Fase de Icft	

10) Corrente assimetria de curto-circuito no Setor 3	
relação X/R no CCM	
Fator de assimetria	
Corrente de curto-circuito assimétrica - Ica	
Impulso de corrente de curto-circuito	

Cálculo do fator de assimetria
tau
Corrente de cuto-circuito assimétrico - Ica
Impulso da corrente de curto-circuito

8) Impedância do cabo entre QGF	e o Setor 1	
	Lc	
	Nc	
	Sc	
	Sequência positiva	
	R_cabo	
	R_caboPos_ohm	
	R_caboPos_pu	
	X_cabo	
	X_caboPos_ohm	
	X_caboPos_pu	
	Z_caboPos_pu	
	Sequência zero	
	R_cabo	
	R_caboZero_ohm	
	R_caboZero_pu	
	X_cabo	
	X_caboZero_ohm	
	X_caboZero_pu	
	Z_caboZero_pu	

9) Corrente de curto-circuito no Setor 1
Impedância equivalente até o ponto - Apenas sequência positiva!
Corrente de curto-circuito trifásica
lcs
Módulo de Ics
Fase de Ics

Corrente de curto-circuito fase-terra

Zeq até o Setor 1
Icft
Módulo de Icft
Fase de Icft

10) Corrente assimetria de curto-circuito no Setor 1
relação X/R no CCM
Fator de assimetria

Corrente de curto-circuito assimétrica - Ica
Impulso de corrente de curto-circuito
Cálculo do fator de assimetria
tau
Corrente de cuto-circuito assimétrico - Ica
Impulso da corrente de curto-circuito

mpedância do cabo entre QGF e o Setor 2	
Lc	
Nc	
Sc	
Sequência positiva	
R_cabo	
R_caboPos_ohm	
R_caboPos_pu	
X_cabo	
X_caboPos_ohm	
X_caboPos_pu	
Z_caboPos_pu	
Sequência zero	
R_cabo	
R_caboZero_ohm	
R_caboZero_pu	
X_cabo	
X_caboZero_ohm	
X_caboZero_pu	
Z_caboZero_pu	

9) Corrente de curto-circuito no Setor 2
Impedância equivalente até o ponto - Apenas sequência positiva!
Corrente de curto-circuito trifásica
lcs
Módulo de Ics
Fase de lcs

Corrente de curto-circuito fase-terra

Zeq até o Setor 2	
Icft	
Módulo de Icft	
Fase de Icft	

10) Corrente assimetria de curto-circuito no Setor 2

relação X/R no CCM
•
Fator de assimetria
Corrente de curto-circuito assimétrica - Ica
Impulso de corrente de curto-circuito
Cálculo do fator de assimetria
tau
Corrente de cuto-circuito assimétrico - Ica
Impulso da corrente de curto-circuito

Valor	Unidade
Valor	Unidade
13800	V
100000000	VA
1.9044	Ohms
4183.697603	A
380	V
151934.2814	А
0,1+0,5j	
0.1	pu na base de 100MVA
0.5	
0,2+0,8j	pu na base de 100MVA
0.2	
0.8	
1600 11446262427 9045 57221212197	
1609,11446262437-8045,57231312187j	A former contesions
1609,11446262437-8045,57231312187j	A - forma cartesiana
8204.906045	A
78.69006753	graus
0.4.4.0	
0,4+1,8j	
1476,59915393766-6644,69619271948j	A - Forma cartesiana
6806.785773	A
-87.54376898	graus
196116135.1	VA
1000	VA
11700	W
1.17	%
0.0117	pu
1.17	pu
0.06	pu
6	•
0	pu
5.884819453	pu <mark>pu</mark>

1,27+6,38481945347519j	
4553,13620867285-22890,513889336j	
23338.95189	Α
-78.75016878	graus
3,91+19,4544583604256j	
4526,03309006527-22519,5709177962j	
22969.89442	
-78.63596585	

10	m
3	
300	mm²
0.0781	mohms/m
0.000260333	ohms
0.180286242	pu
0.1068	mOhms/m
0.000356	ohms
0.246537396	pu
0,180286241920591+0,246537396121884j	
1.8781	mohms/m
0.006260333	ohms
4.335410896	pu
2.4067	mohms/m
0.008022333	ohms
5.555632502	pu
4,3354108956602+5,5556325023084j	pu

1,45028624192059+6,63135684959707j	
4782,0462580566-21865,6526496857j	
22382.46484	А
-77.66357663	graus

A - forma cartesiana
Α
graus
T
m
mm²
mOhms/m
ohms
pu
mOhms/m
ohms
pu
pu
Pu
mOhms/m
ohms
pu
mOhms/m
ohms
pu pu
pu
pu
pu pu
pu pu
pu pu A A
pu pu
pu pu A A
pu pu A A graus
pu pu A A graus A - forma cartesiana
pu pu A A graus
pu pu A A graus A - forma cartesiana A
pu pu A A graus A - forma cartesiana A
pu pu A A graus A - forma cartesiana A
pu pu A A graus A - forma cartesiana A

1	Valor real
0.008633127909	
21839.61396	
30885.87827	

25	m
1	
630	mm²
0.0292	mOhms/m
0.00073	ohms
0.505540166	pu
0.1042	mOhms/m
0.002605	ohms
1.80401662	pu
0,505540166204986+1,80401662049861j	pu
1.8376	mOhms/m
0.04594	ohms
31.81440443	pu
2.3001	mOhms/m
0.0575025	ohms
39.8216759	pu
31,814404432133+39,821675900277j	pu

1,95582640812558+8,43537347009568j	
3963,10987712657-17092,678459448j	А
17546.10774	А
-76.94605626	graus

_

41,4314681440444+68,932874796252j	
2919,55510726368-4857,49927977618j	A - forma cartesiana
5667.371637	А
-58.99241674 graus	

4.323076923	
1.4	

24564.55084	
34739.52095	
1	Valor real
0.011467317695	
24615.41956	
34811.46018	

	1
35	m
1	
50	mm²
0.445	mOhms/m
0.015575	ohms
10.78601108	pu
0.1127	mOhms/m
0.0039445	ohms
2.731648199	pu
10,7860110803324+2,73164819944598j	pu
2.245	mOhms/m
0.078575	ohms
54.41481994	pu
2.5991	mOhms/m
0.0909685	ohms
62.99757618	pu
54,4148199445983+62,9975761772853j	pu

12,236297322253+9,36300504904305j	
7831,37803926053-5992,43628946573j	A
7831,37803926053-5992,43628946573j 9861.023004	A A

84,5928254847645+93,964038231155j	
2412,0863522499-2679,29783549407j	A - forma cartesiana
3605.107136	А
-48.00430213 graus	

0.765331153	
1.02	
10058.24346	
14224.50432	
1	Valor real
0.002030103935	
10023.38591	
14175.2083	

OBS	
OBS	Fórmula utilizada
13,8 KV	
100MVA	
	#NAME?
	#NAME?
	#NAME?
	<u>, </u>
	0,1+0,5j
	#NAME?
Ics = 8,20 < -78,69° KA	#NAME?
1C3 - 8,20 \ -78,03 KA	#NAME?
	#NAME?
	#NAIVIE!
	#NAME?
Ponto chave da análise!	#NAME?
Icft = 6,80 < -87,54° kA	#NAME?
ICIT - 0,00 \ -07,34 KA	#NAME?
	#INAIVIE!
106 11 MV/A	#NAME?
196,11 MVA	#INAIVIE!

1000kva	
11,7Kw	
0,0117pu	#NAME?
na base de 1000Kva	#NAME?
na base de 100MVA	#NAME?
6% - dado de placa na base de 1000Kva	
Na base de 100MVA	#NAME?
na base de Pb	#NAME?
1,17+j5,884 pu	#NAME?

Estacionamente

	#NAME?
1,27 + j6,3848 pu	#NAME?
	#NAME?
Ics= 23,33 < -78,75° KA	#NAME?
	#NAME?
	#NAME?
	#NAME?
Icft= 22,96 < -78,63 KA	#NAME?
	#NAME?

Comprimento do circuito	
Condutores por fase	
Tabelado	
	#NAME?
Zbase = Vbase ² /Pbase	#NAME?
Tabelado	
	#NAME?
	#NAME?
	#NAME?
Tabelado	
	#NAME?
	#NAME?
Tabelado	
	#NAME?
	#NAME?
	#NAME?

1,450+j6,631pu	#NAME?
	#NAME?
lcs=22,38 <-77,66°KA	#NAME?
	#NAME?

	#NAME?	
Icft= 16,93 < -71,35°KA	#NAME?	
	#NAME?	
	#NAME?	
		
Comprimento do circuito		
Condutores por fase		
Tabelado		
	#NAME?	
Zbase = Vbase ² /Pbase	#NAME?	
Tabelado		
	#NAME?	
	#NAME?	_
1,26 + j2,19 pu	#NAME?	_
		Cabos de 1
Tabelado		Lc = 130m
	#NAME?	Nc = 1 con
	#NAME?	R = 0,1868
Tabelado		X = 0,1076
	#NAME?	
20.55	#NAME?	
38,65 + j49,35 pu	#NAME?	
		\neg
2.74 + :0.02	#NIA N 4 F 2	_
2,71 + j8,82 pu	#NAME?	Seq. Zero
	#NAME?	R = 1,9868
Ics= 16,44 < -72,91°KA	#NAME?	X = 2,5104
1C5- 10,44 \ -72,91 KA	#NAME?	A = 2,5104
L	#IVAIVIL:	
49,79 + j79,25 pu	#NAME?	\neg
Icft= 4,86 <-57,86°KA	#NAME?	
1010 1,00 1,00 101	#NAME?	
	#NAME?	
21,71 kA	#NAME?	
30,70 kA	#NAME?	7
2-7:		

	#NAME?
	#NAME?
21,83 kA	#NAME?
30,88 kA	#NAME?

Comprimento do circuito
Condutores por fase
Tabelado
Zbase = Vbase²/Pbase
Tabelado
0,87 + j1,81 pu
Tabelado
Tabelado
31,81 + j39,82 pu

1,95 + j8,43pu	
Ics= 17,54 < -76,94°KA	

41,43 + j68,93pu
Icft =5,66 <-58,99°KA

24,56 kA
34,73 kA
24,61 kA
34,81 kA

Comprimento do circuito
Condutores por fase
Tabelado
Zbase = Vbase ² /Pbase
Tabelado
10,78 + j2,73pu
Tabelado
Tabelado
54,41 + j62,99 pu

12,23 + j9,36 pu	
Ics= 9,86 < -37,42°KA	

84,59 + j93,96 pu
Icft =3,60 < -48,00°KA

40.05 4	
10,05 kA	
14,22 kA	
10,02 kA	
14,17 kA	

.20mm² - até CCM 3

d po fase mOhm/m mOhm/m

mOhm/m mOhm/m

Dados do Pro	jeto Luminotécnico	
Comprimento (m)	20	
Lagura (m)	15	
Área (m²)	300	#NAME?
(Em) para algumas atividades - NBR ISO	Local (Lux)	500
Altura plano de trabalho (m)	1	
Altura pé direito (m)	4.6	
Altura luminária instalada	0.8	
Altura da montagem luminária (hm)	2.8	#NAME?
Índice do local (k)	3.06	#NAME?
Índice de reflexão (Tabela 13.8)	751	
teto - branco	7	
parede - clara	5	
piso - escuro	1	
Coeficiente de utilização		
modelo da lampada Catalogo Philips	TLDRS32W-CO-25	
elado (índice reflexão 751 por índice do lo	0.81	
Fator de depreciação (d) tabela 13.10	0.67	
Calculo quantidade de Lú		
S área em m²	300	
Em - nível de iluminância mantida	500	
Fator de utilização u	0.81	
Fator de depreciação (d)	0.67	
Fluxo total em lúmens	276395.80	#NAME?
Total de lâmpadas de 32 w	4	
ninoso Phillipsmodelo TLDRS32W-CO-25	2350.00	
Fluxo total por luminária	9400.00	#NAME?
Quantidade de luminárias	29.40	#NAME?
	30 luminárias	

CCM-

Setor	Carga		
	Motor 1		
1	Motor 2		
'	Motor 3		
	Motor 4		
	Motor 5		
2	Motor 6		
	Motor 7		
	Tomadas 1		
	Tomadas 2		
3	Aquecimento 1		
	Aquecimento 2		
	Aquecimento 3		

	QGF-CCM		
Setor	Cabo mm² - escolhido		
1	630 mm²		
2	50 mm²		
3	400 mm²		

	Metódo Ampacidade (
Setor	Somátoria corrente
Trafo-QGF	1020.97

carga

Cabo mm² - escolhido	Disjuntor BT (A)
35 mm ²	90 A (modelo MPW90)
120 mm²	224 A (modelo FNH1-224U)
6 mm²	32 A (modelo MPW40)
150 mm²	224 A (modelo FNH1-224U)
6 mm²	32 A (modelo MPW40-3-U032)
6 mm²	32 A (modelo MPW40-3-U032)
10 mm ²	50 A (modelo MPW80i-3-U050)
70 mm ²	125 A (modelo MDW-B125-3 curva B)
70 mm²	125 A (modelo MDW-B125-3 curva B)
10 mm²	50 A (modelo MDW-B50-3)
10 mm²	50 A (modelo MDW-B50-3)
10 mm ²	50 A (modelo MDW-B50-3)

Disjuntor BT (Caixa moldada)

A (modelo DWB650 com ajuste de 0,8)

(modelo DWB160 com ajuste de 0,8)

A(modelo DWB650 com ajuste de 0,7)

I = I tabela * FA * FT)	
letódo B2 - 3 condutores carregado	Correção da corrente (I cabo) (A)
I cabo 1074 A - 3 x 300 mm ²	1202.88