Chapter 4

Linear Independence and Basis

4.1 Finitely Generated Spaces

We shall now begin investigating the question of obtaining a spanning set of optimal size. We shall first introduce the notion of finitely generated spaces. We have,

Definition 4.1.1 Let \mathcal{V} be a vector space over a field \mathcal{F} . A subspace \mathcal{W} of \mathcal{V} is said to be finitely generated if there exists a finite spanning set for \mathcal{W} , that is, if there exists $S \subset \mathcal{W}$ such that S is finite and $\mathcal{L}[S] = \mathcal{W}$

We illustrate this by some examples.

Example 4.1.1 Consider the vector space \mathbb{R}^3 . Let \mathcal{W} be the subspace defined as

$$W = \left\{ x = \begin{pmatrix} \alpha \\ \beta \\ \alpha + \beta \end{pmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

Clearly the set of vectors

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

form a finite spanning set for \mathcal{W} . Hence \mathcal{W} is a finitely generated subspace.

Clearly the set of vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

form a finite spanning set for \mathbb{R}^3 and hence the vector space \mathbb{R}^3 is itself finitely generated.

Example 4.1.2 Let \mathcal{V} be the vector space, $\mathcal{F}_{\mathbb{R}}[\mathbb{R}]$ of all functions from \mathbb{R} to \mathbb{R} . We have

$$\mathcal{F}_{\mathbb{R}}[\mathbb{R}] = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$$

Consider the subspace $W = \mathbb{R}[x]$ of all polynomials in x with real coefficients. Then W is not finitely generated. For, suppose it is finitely generated. This would then mean that there exists a finite spanning set

$$S = p_1, p_2, \cdots, p_k$$

for \mathcal{W} . Let

$$d = Max. \{ degree \ p_j : 1 \le j \le k \}$$

Since S is a spanning set for W we have

$$p \in \mathcal{W} \implies p = \alpha_1 p_1 + \alpha_2 p_2 + \dots + \alpha_k p_k, \ (\alpha_j \in \mathbb{R}, \ 1 \le j \le k)$$

 $\implies degree \ p \le d$

This means that no polynomial in \mathcal{W} can have degree greater than d. Thus is a contradiction, since for example, $x^{d=1}$ is a polynomial of degree greater than d and is in \mathcal{W} . Thus \mathcal{W} is not finitely generated. On the other hand, consider the subspace, $\mathcal{W} = \mathbb{R}_N[x]$, of all polynomials in \mathcal{V} of degree less than or equal to N. Then clearly

$$S = \{p_n = x^n\}_{n=0}^N$$

is a finite spanning set for \mathcal{W} and hence this subspace is finitely generated.

4.2 Linear Independence

We shall next introduce the notion of a linearly independent set. Consider a finite set of vectors

$$u_1, u_2, \cdots, u_r$$

in a vector space \mathcal{V} . Any linear combination of these vectors is of the form

$$\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_r u_r$$

where $\alpha_j \in \mathcal{F}$, for $1 \leq j \leq r$. In particular,

$$0u_1 + 0u_2 + \cdots + 0u_r$$

is a linear combination of these vectors and is equal to θ_{ν} . This linear combination is called the trivial linear combination of these vectors. Thus we find that given any finite set of vectors, we can obtain the zero vector θ_{ν} , as a linear combination of these vectors.

Example 4.2.1 Consider the vector space $\mathcal{V} = \mathbb{R}^3$ and the set of vectors,

$$S = u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Then clearly we can write the zero vector θ_{ν} as a the trivial linear combination of these vectors as

$$\theta_{y} = 0u_1 + 0u_2$$

Further this is the only way we can express θ_{ν} as a linear combination of u_1, u_2 . For if a linear combination gives θ_{ν} , then we must have,

$$\alpha_1 u_1 + \alpha_2 u_2 = \theta_{\nu}$$

$$\Longrightarrow$$

$$\begin{pmatrix} \alpha_1 \\ \beta_1 \\ \alpha_1 + \beta_1 \end{pmatrix} = 0$$

$$\Longrightarrow$$

$$\alpha_1, \text{ and } \alpha_2 = 0$$

On the other hand consider theset of vectors,

$$S = u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Then we have the trivial linear combination

$$\theta_{v} = 0u_1 + 0u_2 + 0u_3$$

We also have

$$1u_1 + 1u_2 + (-1)u_3 = \theta_{v}$$

In fact, for any $\alpha \in \mathbb{R}$ we have

$$\alpha u_1 + \alpha u_2 + (-\alpha)u_3 = \theta_{v}$$

Thus nontrivial linear combinations of u_1, u_2, u_3 also give rise to the zero vector.

From the above example it follows that given any finite subset S of a vector space \mathcal{V} , the following two possibilities arise:

- 1. EITHER θ_{ν} can be expressed ONLY as the trivial linear combination of the vectors in S,
- 2. OR θ_{ν} can also be expressed as a nontrivial linear combination of the vectors in S

We distinguish these two possibilities with the following definition:

Definition 4.2.1 Let V be a vector space over a field \mathcal{F} . A nonempty finite subset

$$S = u_1, u_2, \cdots, u_r$$

is said to be **linearly independent** if

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r = \theta_y \implies \alpha_i = 0, \ 1 \le j \le r$$
 (4.2.1)

(that is, the only way to express the zero vector as a linear combination of the vectors in S is to express it as the trivial linear combination).

If S is not linearly independent it is said to be linearly dependent.

Remark 4.2.1 The set

$$S = u_1, u_2, \cdots, u_r$$

is linearly dependent means that there exist $a_1, \alpha_2, \dots, \alpha_r \in \mathcal{F}$, at least one of which is not zero, such that

$$\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_r u_r = \theta_{\nu}$$

Example 4.2.2 In Example 4.2.1 above, the set

$$S = u_1, u_2$$

is linearly independent, whereas te set

$$S = u_1, u_2, u_3$$

is linearly dependent.

Example 4.2.3 Consider the vector space $\mathcal{V} = \mathbb{R}[x]$ of all polynomials over \mathbb{R} .

1. Consider the set

$$S_1 = p_1, p_2, p_3$$

where

$$p_1 = 1, p_2 = x, p_3 = x^2$$

We have

$$\alpha_{1}p_{1} + \alpha_{2}p_{2} + \alpha_{3}p_{3} = \theta_{v}$$

$$\Longrightarrow$$

$$\alpha_{1} + \alpha_{2}x + \alpha_{3}x^{2} = \theta_{v}$$

$$\Longrightarrow$$

$$\alpha_{1}, \alpha_{2} \text{ and } \alpha_{3} = 0$$

Hence the set S_1 is linearly independent.

2. Next we consider the set

$$S_2 = f_1, f_2, f_3$$

where

$$f_1 = 1 + x$$
, $f_2 = 1 + x^2$, $f_3 = 1 + x + x^2$

We have

Hence the set S_2 is linearly independent.

3. Consider the set

$$S_3 = f_1, f_2, f_3$$

where

$$f_1 = 1 + x$$
, $f_2 = x + x^2$, $f_3 = 1 + x^2$

We have

$$\alpha_{1}f_{1} + \alpha_{2}f_{2} + \alpha_{3}f_{3} = \theta_{v}$$

$$\Longrightarrow$$

$$\alpha_{1}(1+x) + \alpha_{2}(x+x^{2}) + \alpha_{3}(1+x^{2}) = \theta_{v}$$

$$\Longrightarrow$$

$$(\alpha_{1} + \alpha_{3}) + (\alpha_{1} + \alpha_{2})x + (\alpha_{2} + \alpha_{3})x^{2} = \theta_{v}$$

$$\Longrightarrow$$

$$\alpha_{1} + \alpha_{3} = 0$$

$$\alpha_{1} + \alpha_{2} = 0$$

$$\alpha_{2} + \alpha_{3} = 0$$

$$\Longrightarrow$$

$$\alpha_{1}, \alpha_{2} \text{ and } \alpha_{3} = 0$$

Hence the set S_3 is linearly independent

4. Consider the set

$$S_4 = f_1, f_2, f_3$$

where

$$f_1 = 1 - x$$
, $f_2 = 1 + x$, $f_3 = 1$

This set is linearly dependent since we have

$$1f_1 + 1f_2 + (-2)f_3 = \theta_{y}$$

a nontrivial linear combination giving rise to θ_{y} .

4.3 Properties of Linearly Dependent Sets

We shall now look at an useful property of a linearly dependent set. Consider a linearly dependent set

$$S = u_1, u_2, \cdots, u_r$$

(We arrange these vectors in S in some order as above). By Remark 4.2.1, there exist $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathcal{F}$, at least one of which is not zero, such that

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r = \theta_{\mathcal{V}}$$

Let k be the largest index such that $\alpha_k \neq 0$, that is, $\alpha_k \neq 0$ and $\alpha_j = 0$ if j > k. Then we have

$$\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k = \theta_{\lambda}$$

Since $\alpha_k \neq 0$ we get

$$u_k = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_{(k-1)} u_{(k-1)}$$

where

$$\beta_j = \alpha^{-1} \alpha_j \text{ for } 1 \le j \le (k-1)$$

Thus we see that u_k is a linear combination of the preceding vectors $u_1, u_2, \dots, u_{(k-1)}$. Thus we have the following property of a linearly dependent set:

Property 1:

If S is a finite linearly dependent set, (in a vector space \mathcal{V}), whose vectors are arranged in some order

$$S=u_1,u_2,\cdots,u_r$$

then there exists a vector u_k such that it is a linear combination of the preceding vectors $u_1, u_2, \dots, u_{(k-1)}$

Example 4.3.1 Consider the following set of vectors in the vector space \mathbb{R}^4 :

$$S = u_1, u_2, u_3, u_4, u_5$$

where

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 3 \end{pmatrix}, \ u_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ u_5 = \begin{pmatrix} 3 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$

This is a linearly dependent set since we can have nontrivial linear combination giving rise to θ_4 . For example,

$$2u_1 + 3u_2 + (-1)u_3 + 0u_4 + 0u_5 = \theta_4$$

We see that the vector u_3 can be expressed as linear combination of the preceding vectors u_1, u_2 as

$$u_3 = 2u_1 + 3u_2$$

We shall now use this property to remove the redundancies from a linearly dependent spanning set for a subspace.

Consider a finite set of vectors

$$S = u_1, u_2, \cdots, u_r$$

Without loss of generality let us assume that these vectors are all nonzero.

Case 1: S is linearly independent

In this case S is a linearly independent spanning set for $\mathcal{L}[S]$.

Case 2; S is linearly dependent

In this case, by the above property of linearly dependent sets, we must have a u_k such that it is a linear combination of the preceding vectors $u_1, u_2, \dots, u_{(k-1)}$. Let k_1 be the smallest index such that u_{k_1} is a linear combination of the preceding vectors. (Since the vectors are all nonzero vectors we have $k_1 > 1$). The means that,

- 1. u_{k_1} is a linear combination of $u_1, u_2, \dots, u_{(k_1-1)}$, and
- 2. u_j is NOT a linear combination of $u_1, u_2, \dots, u_{(j-1)}$ for any $j < k_1 1$

Now any vector that can be written as a linear combination of u_1, u_2, \dots, u_r can also be written as a linear combination of the set of vectors,

$$S_1 = u_1, u_2, \dots, u_{(k_1-1)}, u_{(k_1+1)}, \dots, u_r$$

obtained from S by removing the vector u_k . Thus we have

$$\mathcal{L}[S] = \mathcal{S}_1$$

If S_1 is linearly independent then it is a linearly independent spanning set for $\mathcal{L}[S]$ and $S_1 \subset S$.

If S_1 is linearly dependent, we repeat the above process with S_1 and remove one more vector to get a subset $S_2 \subset S_1 \subset S$ such that

$$\mathcal{L}[S_2] = \mathcal{L}[S_1] = \mathcal{L}[S]$$

If S_2 is linearly independent then it is a linearly independent spanning set for $\mathcal{L}[S]$. If not, we continue this process and in each step we remove one vector, and since S is a finite set, we get, after a finite number of steps, a subset $\tilde{S} \subset S$ such that \tilde{S} is a linearly independent spanning set for $\mathcal{L}[S]$. Thus we have the following property of a linearly dependent set:

Property 2:

If S is a finite linearly dependent set in a vector space \mathcal{V} , there exists a subset $\tilde{S} \subset S$ such that, \tilde{S} is a linearly independent spanning set for $\mathcal{L}[S]$.

Example 4.3.2 Consider the set of vectors in the Example 4.3.1. We had seen that this is a linearly dependent set. We shall now find a subset \tilde{S} of S which is a linearly independent spanning set for $\mathcal{L}[S]$. We proceed as follows: We observe that all the vectors are nonzero vectors. (If the zero vector is in the set we remove it first).

Then we consider u_1, u_2 and write these as row vectors of a matrix and find the RRE form.

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)$$

This is already in RRE form and since there are no zero rows it follows that u_1, u_2 are linearly independent. We then append u_3 . We have

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 3 & 5 & 3 \end{pmatrix} \xrightarrow{R_3 - 2R_1} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 3 & 3 & 3 \end{pmatrix} \xrightarrow{R_3 - 3R_2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The zero row gives us that u_3 is a linear combination of u_1 and u_2 . In fact the above EROs give us

$$u_3 - 2u_1 - 3u_3 = \theta_4$$

Hence

$$u_3 = 2u_1 + 3u_2$$

as observed in Example . We now this redundant u_3 . Next we append u_4 to u_1, u_2 .

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \xrightarrow{-R_3} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 - R_3, R_2 - R_3} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

The absence of zero rows in the RRE form gives us that u_1, u_2, u_3 are linearly independent. Next we append u_5 to these three vectors.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 2 & 2 \end{pmatrix} \xrightarrow{R_4 - 3R_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & 2 \end{pmatrix} \xrightarrow{R_4 - 2R_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}$$

$$R_{4} \xrightarrow{-2R_{3}} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

The zero row gives us the fact that u_5 is a linear combination of u_1, u_2, u_4 . Hence we remove this redundant u_5 . Thus we finally get the linearly independent subset

$$\tilde{S} = u_1, u_2, u_4$$

of S such that $\mathcal{L}[S] = \mathcal{L}[\tilde{S}]$

These ideas lead us to the notion of a basis which we introduce i the next section.

4.4 Basis

Consider a finitely generated subspace W of a vector space V. Since W is finitely generated there must be a finite spanning set, say

$$S = u_1, u_2, \cdots, u_r$$

Since S is a spanning set for \mathcal{W} , we have $\mathcal{L}[S] = \mathcal{W}$. If S is linearly independent then we have a linearly independent spanning set for \mathcal{W} . If S is linearly dependent, then by Property 2 of the previous section we can get a linearly independent subset $\tilde{S} \subset S$ such that $\mathcal{L}[\tilde{S}] = \mathcal{L}[S] = \mathcal{W}$. Hence \tilde{S} is a linearly independent spanning set. Thus, in any case, we see that a finitely generated subspace must possess a linearly independent, finite, spanning set. This leads us to the following definition:

Definition 4.4.1 A finite linearly independent spanning set for a finitely generated subspace is called a **BASIS** for the subspace.

Remark 4.4.1 If the vector space \mathcal{V} is itself finitely generated then it will have finite, linearly independent, spanning set and such a spanning set is called a basis for \mathcal{V}

We shall now study some properties of linearly independent sets and basis. Suppose now V is a finitely generated space and so has a basis, say,

$$\mathcal{B} = u_1, u_2, \cdots, u_d$$

Let

$$S = v_1, v_2, \cdots, v_r$$

be any linearly independent set in \mathcal{V} . Consider the set

$$S_1 = v_1, u_1, u_2, \cdots, u_d$$

Since $v_1 \in \mathcal{V}$ and \mathcal{B} is a basis we must have v_1 as a linear combination of the vectors in \mathcal{B} . Hence S_1 must be linearly dependent. Hence by Property 2 of linearly dependent spanning sets obtained in the previous section, we must have a subset $\tilde{S}_1 \subset S_1$ such that S_1 is a linearly independent spanning set for \mathcal{V} , that is, \tilde{S}_1 is a basis for \mathcal{V} . This is got by the process of removing the redundancy in the linearly dependent spanning set, S_1 , using the procedure described in the previous section. Clearly the process does not remove v_1

from the set S_1 . Hence there must be a proper subset \mathcal{B}' of \mathcal{B} , (obtained by removing at least one vector from \mathcal{B}), such that

$$\mathcal{B}_1 = v_1, \mathcal{B}'$$

is a basis for \mathcal{V} . Now we let

$$S_2 = v_2, v_1, \mathcal{B}'$$

Since this is a linearly dependent set we can repeat the above argument to S_2 to obtain a proper subset \mathcal{B}'_1 of \mathcal{B}_1 , (and hence a proper subset of \mathcal{B}), such that

$$\mathcal{B}_2 = v_2, v_1, \mathcal{B}_1'$$

is a basis for \mathcal{V} . We continue this process. There arise two possibilities: Possibility 1: The process continues for r steps In this case we get a basis

$$\mathcal{B}_r = v_r, v_{(r-1)}, \cdots, v_1, \mathcal{B}'_{(r-1)}$$

where $\mathcal{B}'_{(r-1)}$ is a proper subset of \mathcal{B} . Since in each step we remove at least one of the vectors in \mathcal{B} we must have at least r vectors in \mathcal{B} , that is,

$$r \leq d \tag{4.4.1}$$

Possibility 2: The process terminates at the kth step where k < rIn this case we have a basis

$$\mathcal{B}_k = v_k, v_{(k-1)}, \cdots, v_1$$

for \mathcal{V} , and k < r. hence we have

$$\mathcal{V} = \mathcal{L}[\mathcal{B}_k]$$
 and $v_{(k+1)} \in \mathcal{V}$

Hence $v_{(k+1)}$ must be a linear combination of v_1, v_2, \dots, v_k , which is a contradiction, since S is linearly independent. Thus this possibility cannot arise. Hence we have (4.4.1). Thus we have

Property 1:

If a vector space \mathcal{V} has a basis consisting of d vectors then any linearly independent set in \mathcal{V} can have at most d vectors

We shall now apply this to get another important property of a basis. Suppose \mathcal{V} is finitely generated vector space. Then it has a finite basis. Let

$$\mathcal{B} = u_1, u_2, \cdots, u_d$$

be a basis for \mathcal{V} . If \mathcal{B}' is any oter basis for \mathcal{V} then since \mathcal{B}' must be linearly independent it can have at most d vectors in it and hence it must be finite. Thus every basis for \mathcal{V} will be finite. Further, let

$$\mathcal{B} = u_1, u_2, \cdots, u_m$$

$$\mathcal{B}' = v_1, v_2, \cdots, v_n$$

be any two bases for \mathcal{V} . Since \mathcal{B} is a basis for \mathcal{V} and \mathcal{B}' is linearly independent we get by Property 1 above,

$$n \leq m \tag{4.4.2}$$

Similarly, since \mathcal{B}' is a basis for \mathcal{V} and \mathcal{B} is linearly independent we get by Property 1 above,

$$m \leq n \tag{4.4.3}$$

From (4.4.2) and (4.4.3) we get

$$m = n \tag{4.4.4}$$

Summarising we get

Property 2:

In a finitely generated vector space all bases are finite and all bases have the same number of vectors

This leads us to the following definition:

Definition 4.4.2 For a finitely generated vector space, the number of vectors in any basis is called the **DIMENSION** of the space

Remark 4.4.2 From now on we shall, therefore, refer to a finitely generated vector space as a Finite Dimensional Vector Space.

Definition 4.4.3 For a matrix $A \in \mathcal{F}^{m \times n}$, the dimension of \mathcal{R}_A , the Range of A, is defined as the "Rank of A" and is denoted by ρ_A , and the dimension of \mathcal{N}_A , the Null Space of A, is defined as the "Nullity of A" and is denoted by ν_A .

Remark 4.4.3 Similarly the rank of A^T is the dimension of \mathcal{R}_{A^T} , the Range of A^T , and is denoted by ρ_{A^T} , and the dimension of \mathcal{N}_{A^T} , the Null space of A^T , is denoted by ν_{A^T}

Remark 4.4.4 It is easy to see that for any matrix, the Nullity of a matrix as defined above is the same as the nullity as defined in

Now consider a n dimensional vector space. Hence bases have exactly n vectors. By Property 1 above, any linearly independent set can have at most n vectors. Hence any set having more than n vectors must be linearly dependent. Thus we have

Property 3:

In an n dimensional vector space any subset having more than n vectors must be linearly dependent

An immediate consequence is the following:

Let $\mathcal{B} = u_1, u_2, \dots, u_n$ be a basis for an n dimensional vector space. Then any set S in \mathcal{V} such that \mathcal{B} is a proper subset of S must contain at least one vector more that that in \mathcal{B} . Hence S must have more than n vectors and by the above property it follows that S must be linearly dependent. Thus any set S of which \mathcal{B} is a proper subset must be linearly dependent. This means that \mathcal{B} cannot be a proper subset of any linearly independent set. In other words, we say that \mathcal{B} is a maximal linearly independent set in \mathcal{V} . Thus we have,

Property 4:

A basis for V is a maximal linearly independent set in V Next, consider a linearly independent set,

$$S=u_1,u_2,\cdots,u_r$$

Suppose $u \in \mathcal{V}$ is such that $u \notin \mathcal{L}[S]$

Now consider the set

$$S_1 = u_1, u_2, \cdots, u_r, u$$

We shall se that this is linearly independent. For,

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r + \alpha u = \theta_{\mathcal{V}}$$

$$\Longrightarrow$$

$$\alpha = 0$$

For, if not, then $\alpha \neq 0$ and hence α^{-1} exists and we get

$$u = \alpha^{-1}\alpha_1 u_1 + \alpha^{-1}\alpha_2 u_2 + \dots + \alpha^{-1}\alpha_r u_r$$

and hence $u \in \mathcal{L}[S]$ - a contradiction. Hence $\alpha = 0$. But then

$$\begin{array}{rcl} \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_r u_r + \alpha u & = & \theta_{\mathcal{V}} \\ & \Longrightarrow & \\ \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_r u_r & = & \theta_{\mathcal{V}} \\ & \Longrightarrow & \\ \alpha_j & = & 0 \text{ for } 1 \leq j \leq r \\ & \text{ (since S is linearly independent)} \end{array}$$

Thus we have

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r + \alpha u = \theta_{\mathcal{V}} \implies \alpha = \alpha_1 = \alpha_2 = \dots = \alpha_r = 0$$
 \Longrightarrow

 S_1 is linearly independent. Thus we have

Property 5:

If $S = u_1, u_2, \dots, u_r$ is linearly independent and $u \in \mathcal{V}$ is such that $u \notin \mathcal{L}[S]$ then $S_1 = u_1, u_2, \dots, u_r, u$ is also linearly independent

An immediate consequence of this property is the following: Suppose W is a subspace and $S = u_1, u_2, \dots, u_r$ linearly independent in W and $u \in V$ such that $u \notin W$. Then we have

$$\mathcal{L}[S] \subset \mathcal{W} \implies u \not\in \mathcal{L}[S]$$

$$\implies$$

$$S_1 = u_1, u_2, \cdots, u_r, u \quad \text{is} \quad \text{linearly independent}$$

Thus we have

Property 6:

If $S = u_1, u_2, \dots, u_r$ is a linearly independent subset of a subspace \mathcal{W} and $u \in \mathcal{V}$ is such that $u \notin \mathcal{W}$ then $S_1 = u_1, u_2, \dots, u_r, u$ is a linearly independent subset of \mathcal{V}

We shall now look at a consequence of this property.

Consider an n dimensional vector space V and let

$$S = u_1, u_2, \cdots, u_n$$

be a linearly independent set in \mathcal{V} . Since this is a linearly independent set, the only way this can fail to be a basis is that it is not a spanning set for \mathcal{V} . Now,

S is not a spanning set for $\mathcal{V} \Longrightarrow \mathcal{W} = \mathcal{L}[S] \neq \mathcal{V}$

 \Longrightarrow

There exists a vector $u \in \mathcal{V}$ such that $u \notin \mathcal{W}$

 \Longrightarrow

(By Property 5 above) u_1, u_2, \dots, u_n, u is a linearly independent set

- a contradiction, since by Property 1, no linearly independent set in an n dimensional space can have more than n vectors. Thus we must have $\mathcal{L}[S] = \mathcal{V}$ and hence S will be a linearly independent spanning set for \mathcal{V} and therefore a basis for \mathcal{V} . Thus we have

Property 7:

In an n dimensional vector space \mathcal{V} any set of n linearly independent vectors must form a basis for \mathcal{V} .

Now consider an n dmensional vector space \mathcal{V} , and let

$$S=u_1,u_2,\cdots,u_r$$

be any linearly independent set in \mathcal{V} and r < n. Then S is not a basis for \mathcal{V} since any basis must have n vectors. Hence we have $\mathcal{W} = \mathcal{L}[S]$ is a proper subspace of \mathcal{V} . Therfore, there exists a vector $u_{(r+1)} \in \mathcal{V}$ such that $u_{(r+1)} \notin \mathcal{W}$. By Property 5 we have, the set

$$S_1 = u_1, u_2, \cdots, u_r, u_{(r+1)}$$

is linearly independent in \mathcal{V} . If r+1=n this will be a basis for \mathcal{V} . If (r+1) < n then we have $\mathcal{L}[S_1]$ is a proper subspace of \mathcal{V} . We can get a vector $u_{(r+2)} \in \mathcal{V}$ such that $u_{(r+2)} \notin \mathcal{L}[S_1]$. Continuiung this process n-r

times we get vectors $u_{(r+1)}, u_{(r+2)}, \cdots, u_n$ such that

$$\mathcal{B} = u_1, u_2, \cdots, u_r, u_{(r+1)}, u_{(r+2)}, \cdots, u_n$$

is a basis for \mathcal{V} . Thus we are able to get a basis of which the given linearly independent set is a part. We state this property as follows:

Property 8:

In an n dimensional vector space any linearly independent set having less than n vectors can be "extended" to be a basis for \mathcal{V} .

We shall now look at an application of the above result.

Let $A \in \mathcal{F}^{m \times n}$ be a nonzero matrix. Then \mathcal{N}_A is a proper subspace of \mathcal{F}^n and its dimension is denoted by ν_A . Let

$$\mathcal{B}_{\mathcal{N}_A} = \varphi_1, \varphi_2, \cdots, \varphi_{\nu_A}$$

be a basis for \mathcal{N}_A , (where $\nu_A < n$). By the Property 8 above, we can extend this to a basis

$$\mathcal{B} = \varphi_1, \varphi_2, \cdots, \varphi_{\nu_A}, v_1, v_2, \cdots, v_{(n-\nu_A)}$$

for \mathcal{F}^n , by appending suitable vectors $v_1, v_2, \dots, v_{(n-\nu_A)}$. Now any vector $b \in \mathcal{R}_A$ is of the form Ax for some $x \in \mathcal{F}^n$, and any $x \in \mathcal{F}^n$ is a linear combination of the vectors in the basis \mathcal{B} . Therefore we have,

$$b \in \mathcal{R}_{A} \implies \exists x \in \mathcal{F}^{n} \ni b = Ax$$

$$\implies b = A\left(\sum_{j=1}^{\nu} {}_{A}\alpha_{j}\varphi_{j} + \sum_{k=1}^{(n-\nu_{A})} \beta_{k}v_{k}\right)$$

$$(\text{where } \alpha_{j}, \beta_{k} \in \mathcal{F}, \ 1 \leq j \leq \nu_{A}, \ 1 \leq k \leq n - \nu_{A})$$

$$b = \sum_{j=1}^{\nu} {}_{A}\alpha_{j}(A\varphi_{j}) + \sum_{k=1}^{(n-\nu_{A})} \beta_{k}(Av_{k}) \ (\text{since } A\varphi_{j} = \theta_{n} \text{ as } \varphi_{j} \in \mathcal{N}_{A}$$

$$b = \sum_{k=1}^{(n-\nu_{A})} \beta_{k}u_{k} \text{ where } u_{k} = Av_{k} \in \mathcal{R}_{A}$$

Thus we see that the set of vectors,

$$S = u_1, u_2, \cdots, u_k$$

is in \mathcal{R}_A and every vector in \mathcal{R}_A is a linear combination of these vectors. Hence S is a spanning set for \mathcal{R}_A . If we show that S is also linearly independent then it will become a linearly independent spanning set and hence

a basis for \mathcal{R}_A . We now proceed to prove that S is linearly independent. We have,

$$\sum_{k=1}^{(n-\nu_A)} \beta_k u = \theta_n \implies \sum_{k=1}^{(n-\nu_A)} \beta_k (Av_k) = \theta_n \text{ (since } u_k = Av_k$$

$$\implies A \left(\sum_{k=1}^{(n-\nu_A)} \beta_k v_k \right) = \theta_n$$

$$\implies \sum_{k=1}^{(n-\nu_A)} \beta_k v_k \in \mathcal{N}_A$$

$$\implies \sum_{k=1}^{(n-\nu_A)} \beta_k v_k = \sum_{j=1}^{\nu_A} \gamma_j \varphi_j, \text{ since } \mathcal{B}_{\mathcal{N}_A} \text{ is a basis for } \mathcal{N}_A$$

$$\implies \sum_{j=1}^{\nu_A} \gamma_j \varphi_j + \sum_{k=1}^{(n-\nu_A)} (-\beta_k) v_k = \theta_n$$

$$\implies \gamma_j = 0, \ \beta_k = 0, \ 1 \le j \le \nu_A, \ 1 \le k \le \nu_A$$

$$\implies S \text{ is linearly independent}$$

Thus S is a linearly independent spanning set for \mathcal{R}_A and hence basis for \mathcal{R}_A . Since there are $n - \nu_A$ vectos in S we get

Dimension
$$\mathcal{R}_{A} = n - \nu_{A}$$

But the dimension of \mathcal{R}_A is ρ_A , the rank of A. Thus we get

$$\rho_{\scriptscriptstyle A} + \nu_{\scriptscriptstyle A} \quad = \quad \text{number of columns of} \ A \tag{4.4.5}$$

Similarly we get

$$\rho_{{}_{A^T}} + \nu_{{}_{A^T}} = \text{number of columns of } A^T$$
 (4.4.6)

Thus we have,

Theorem 4.4.1 Rank Nullity Theorem: For any matrix $\overline{A \in \mathcal{F}^{m \times n}}$, we have

 $Rank\ of\ A + Nullity\ of\ A = Number\ of\ Columns\ in\ A$

Remark 4.4.5 We had observed in that

Row Rank of A + Nullity of A = Number of Columns in A

Comparing this with the above theorem we get

$$Row \ Rank \ of \ A = Rank \ of \ A \tag{4.4.7}$$

Since $col(A) = \mathcal{R}_A$ we have the column rank of A to be the same as the rank of A. Hence we get that all the three ranks of A are the same. that is, For any matrix A,

Row Rank of
$$A = Column \ Rank \ of \ A = Rank \ of \ A$$
 (4.4.8)

From the above equations we also get,

$$Rank A = Row Rank A$$

$$= Column Rank A^{T}$$

$$= Rank A^{T}$$

Thus we get

For any matrix $A \in \mathcal{F}^{m \times n}$

$$\rho_{\scriptscriptstyle A}, {\rm the\ Rank\ of}\ A = \rho_{\scriptscriptstyle A^T}, {\rm the\ Rank\ of}\ A^T \qquad (4.4.9)$$

Example 4.4.1 Clearly, the set of vectors

 $\mathcal{B} = \{e_j\}_{j=1}^n$ where v_j has jth component as 1 and all other components as zero

is a linearly independent spanning set for \mathcal{F}^n and hence form a basis for \mathcal{F}^n . Since \mathcal{F}^2 has a basis with n vectors, the dimension of \mathcal{F}^n is n. Any linearly independent set in \mathcal{F}^n which has n vectors must be a basis for \mathcal{F}^n . For example, the dimension of \mathcal{F}^2 is 2 and the set,

$$S : v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

is a linearly independent set in \mathcal{F}^2 and hence is a basis for \mathcal{F}^2

Example 4.4.2 Consider the subspace,

$$\mathcal{W} = \left\{ \left\{ x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} : \alpha, \ \beta \in \mathbb{R} \right\} \right\}$$

We have,

$$x \in \mathcal{W} \iff x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} \text{ for some } \alpha, \beta \in \mathcal{F}$$

$$\iff x = \alpha \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \alpha, \beta \in \mathbb{R}$$

$$\iff x \in \mathcal{L}[v_1, v_2] \text{ where}$$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \text{ and}$$

$$v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Now it is easy to see that $\mathcal{B}: v_1, v_2$ is a linearly independent in \mathcal{W} . Hence \mathcal{B} is a linearly independent spanning set for \mathcal{W} and hence a basis for \mathcal{W} . Since \mathcal{W} has a basis with two vectors we have,

$$Dimension \mathcal{W} = 2$$

Further any two linearly independent vectors in \mathcal{W} will form a basis for \mathcal{W} . For example the set,

$$\mathcal{B}' : v_1' = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, v_2' = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

is a linearly independent set in \mathcal{W} and this is a set with two linearly independent vectors, and the dimension of \mathcal{W} is two, this set will also form a basis for \mathcal{W} .

Example 4.4.3 Consider the vector space \mathbb{C}^2 over the field \mathbb{C} . Clearly, the set

$$\mathcal{B}$$
: $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

is a linearly independent spanning set for \mathbb{C}^2 and hence a basis for \mathbb{C}^2 . Thus dimension of this vector space is 2. The set

$$\mathcal{B}'$$
 : $v_1 = \begin{pmatrix} i \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

is a linearly independent set in \mathbb{C}^2 and hence is also a basis for this vector space.

Example 4.4.4 Now consider the vector space $\mathcal{V} = \mathbb{C}^2$ over the field $\mathcal{F} = \mathbb{R}$. Clearly, the set

$$S$$
: $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

is a linearly independent set in this vector space. However this does not span this vector space. For, we cannot express the vectors $x=\begin{pmatrix}i\\0\end{pmatrix}$ in this vector space, as a linear combination

$$\alpha e_1 + \beta e_2$$
 where $\alpha, \beta \in \mathbb{R}$

Hence the set S is only a linearly independent set in this vector space but not a basis for this vector space. We can extend S to a basis for this vector space by appending the vectors

$$e_3 = \begin{pmatrix} i \\ 0 \end{pmatrix}$$
 and $e_4 = \begin{pmatrix} 0 \\ i \end{pmatrix}$

The set

 \mathcal{B} : e_1, e_2, e_3, e_4 (as defined above)

is clearly a linearly independent set in this vector space. Moreover,

$$x \in \mathcal{V} \implies x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, where $x_1, x_2 \in \mathbb{C}$
 $\implies x = \begin{pmatrix} a+ib \\ c+id \end{pmatrix}$ where $a, b, c, d \in \mathbb{R}$
 $\implies x = ae_1 + ce_2 + be_3 + de_4$ where $a, b, c, d \in \mathbb{R}$
 $\implies x$ is a linear combination of the vectors in \mathcal{B}

Thus \mathcal{B} is a linearly independent spanning set for this vector space, and hence a basis for this vector space. Hence the dimension of this vector space is 4. In general, \mathbb{C}^n as a vector space over \mathbb{R} has dimension 2n.

Example 4.4.5 In the vector space $\mathcal{F}^{m \times n}$, of all $m \times n$ matrices over \mathcal{F} , let \mathcal{B} be the set of matrices,

$$\mathcal{B} = \{A_{ij}\}_{1 \le i \le m, \ 1 \le j \le n}$$

where A_{ij} is the $m \times n$ matrix whose (p,q)th entry is 0 if $(p,q) \neq (i,j)$ and (i,j)th entry is 1. Then the set S is clearly linearly independent. It is also a spanning set for this vector space since any $A = (a_{ij}) \in \mathcal{F}^{m \times n}$ can be expressed as a linear combination of the vectors in \mathcal{B} as follows:

$$A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} A_{ij}$$

Hence S is a basis for $\mathcal{F}^{m \times n}$, and therefore the dimension of this space is $m \times n$. For instance, the set of matrices

$$\mathcal{B}: A_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ A_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ A_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

is a basis for $\mathbb{R}^{2\times 2}$, and the dimension of this vector space is

$$2 \times 2 = 4$$

.

Example 4.4.6 For the vector space of all complex $m \times n$ matrices over the field of complex numbers, the set of matrices, $\{A_{ij}\}$ as defined above is a basis, and hence the dimension of this vector space is $m \times n$. However, analogous to our observations in Example 4.4.4, this set is only a linearly independent set in the vector space of all complex $m \times n$ matrices over the field of real numbers. For this subspace, this set appended with the set,

$$S_1 = \{B_{ij}\}_{1 \le i \le m, \ 1 \le j \le n}$$

where, B_{ij} is the $m \times n$ matrix whose (p,q)th entry is 0 if $(p,q) \neq (i,j)$ and (i,j)th entry is i, is a basis, that is $S \cup S_1$ is a basis for this vector space. Hence the dimension of this vector space is $2(m \times n)$. For instance,

dimension of
$$\mathbb{C}^{3\times 4}$$
 ober $\mathbb{C}=3\times 4=12$
dimension of $\mathbb{C}^{3\times 4}$ over $\mathbb{R}=2(3\times 4)=24$

Example 4.4.7 Let \mathcal{V} be the vector space over \mathbb{R} of all positive real numbers endowed with the operations,

$$x \oplus y = xy$$
 for all $x, y \in \mathbb{R}^+$
 $\alpha \odot x = x^{\alpha}$ for all $\alpha \in \mathbb{R}$ and for all $x \in \mathbb{R}^+$

The zero vector of this vector space is $\theta_{\nu} = 1$. Consider any $b \in \mathbb{R}^+$ such that $b \neq \theta_{\nu}$, that is $b \neq 1$. Then we have that the set consisting of the single vector b is linearly independent, since b is a nonzero vector. Now let $x \in \mathbb{R}^+$. Can we express x as a linear combination of b? We have,

$$x = \alpha \odot b$$
 where $\alpha \in \mathbb{R}$ $x = b^{\alpha}$
 $\alpha = log_b(x)$

For any $x \in \mathbb{R}^+$ we have $log_b(x)$ is well defined and hence we can write

$$\begin{array}{rcl}
x & = & b^{\log_b(x)} \\
& = & \log_b(x) \odot b
\end{array}$$

Thus every x in \mathcal{V} is a linear combination of b and hence b is a spanning set for \mathcal{V} . Since it is also linearly independent, as observed above, we see that the set consisting of the single vector b is a basis for \mathcal{V} . Hence dimension of this space is 1, and any positive real number b, other than 1, is a basis for this space.

Example 4.4.8 Consider the vector space $\mathbb{R}_2[x]$, of all polynomials over \mathbb{R} whose degree is ≤ 2 . Consider the following set of vectors in $\mathbb{R}_2[x]$:

$$\mathcal{B}: p_1, p_2, p_3 \text{ where } p_1(x) = 1, \ p_2(x) = x, \ p_3(x) = x^2$$

We have

$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 = \theta_{\nu} \iff \alpha_1 + \alpha_2 x + \alpha_3 x^2 = \theta_{\nu}$$
 $\iff \alpha_1 = \alpha_2 = \alpha_3 = 0$
 $\implies \mathcal{B} \text{ is linearly independent}$

Moreover, any $p(x) = a_0 + a_1x + a_2x^2$ in $\mathbb{R}_2[x]$, can be expressed as a linear combination of the vectors in \mathcal{B} as,

$$p = a_0p_1 + a_1p_1 + a_2p_2$$

Hence \mathcal{B} is a spanning set for $\mathbb{R}_2[x]$. Since \mathcal{B} is both linearly independent set and spanning set, it follows that \mathcal{B} is a basis for $\mathbb{R}_2[x]$. Consequently the dimension of this space is 3. Hence any linearly independent set in $\mathbb{R}_2[x]$ having three vectors will be a basis for $\mathbb{R}_2[x]$. For example, consider the set,

$$\mathcal{B}'$$
: p'_1, p'_2, p'_3 where $p_1(x) = 1 + x$, $p_2(x) = x + x^2$, $p_3(x) = 1 + x^2$

We have

$$\alpha_1 p_1' + \alpha_2 p_2' + \alpha_3 p_3' = \theta_{\nu} \iff \alpha_1 (1+x) + \alpha_2 (x+x^2) + \alpha_3 (1+x^2) = \theta_{\nu}$$

$$\iff (\alpha_1 + \alpha_3) + (\alpha_1 + \alpha_2) x + (\alpha_2 + \alpha_3) x^2 = \theta_{\nu}$$

$$\iff \alpha_1 + \alpha_3 = 0, \ \alpha_1 + \alpha_2 = 0, \ \alpha_2 + \alpha_3 = 0$$

$$\iff \alpha_1 = \alpha_2 = \alpha_3 = 0$$

$$\iff \mathcal{B}' \text{ is linearly independent}$$

Since \mathcal{B}' is linearly independent, has three vectors, and the dimension of $\mathbb{R}_2[x]$ is 3, it follows that \mathcal{B}' is also a basis for $\mathbb{R}_2[x]$.

4.5 Ordered Basis and Coordinates

Consider a finite dimensional vector space \mathcal{V} . A basis for \mathcal{V} is a linearly independent set. When we list the elements of a set, the order in which we

list these elements, is not relevant. However when we prescibe a particular order in which these elements are to be listed then we get the notion of an ordered set. Thus a basis for \mathcal{V} in which the vectors are arranged in a prescribed order is called an "**ordered basis**" for \mathcal{V} . Thus for example the

sets
$$\mathcal{B} = \left\{ e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 and $\mathcal{B}' = \left\{ e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$

represent the same basis, but as ordered basis they are different.

Now consider an n dimensional vector space \mathcal{V} and an ordered basis for \mathcal{V} ,

$$\mathcal{B} = v_1, v_2, \cdots, v_n$$

Since \mathcal{B} is a basis, it is a spanning set for \mathcal{V} , and hence every vector $x \in \mathcal{V}$ is a linear combination of the vectors in \mathcal{B} . Let

$$x = \sum_{j=1}^{n} x_j v_j \text{ where } x_j \in \mathcal{F}, \ 1 \le j \le n$$
 (4.5.1)

Using the fact that \mathcal{B} is linearly independent, we can easily see that the above representation of any $x \in \mathcal{V}$ is unique. Thus, corresponding to every $x \in \mathcal{V}$ we get a unique sequence of n scalars $x_1, x_2, \dots, x_n \in \mathcal{F}$ such that (4.5.1) holds. Now consider the column vector $[x]_{\mathcal{B}} \in \mathcal{F}^n$ defined as,

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \tag{4.5.2}$$

This is constructed using the vector x and its representation as a linear combination of the vectors in the ordered basis \mathcal{B} . Thus, corresponding to every $x \in \mathcal{V}$ we have a unique $[x]_{\mathcal{B}} \in \mathcal{F}^n$. This gives us a transformation,

$$T: \mathcal{V} \longrightarrow \mathcal{F}^n$$

defined as

$$T_{\scriptscriptstyle \mathcal{B}}(x) = [x]_{\scriptscriptstyle \mathcal{B}} \tag{4.5.3}$$

WE now observe some simple properties of this transformation which converts every $x \in \mathcal{V}$ to the language of column vectors in \mathcal{F}^n . We have

$$x, y \in \mathcal{V} \implies x = \sum_{j=1}^{n} x_j v_j \text{ and } y = \sum_{j=1}^{n} y_j v_j$$

$$\Rightarrow x + y = \sum_{j=1}^{n} (x_j + y_j) v_j$$

$$\Rightarrow$$

$$T_{\mathcal{B}}(x) = [x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$T_{\mathcal{B}}(y) = [y]_{\mathcal{B}} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$T_{\mathcal{B}}(x + y) = [x + y]_{\mathcal{B}} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$= T_{\mathcal{B}}(x) + T_{\mathcal{B}}(y)$$

Thus we see that

$$T_{\scriptscriptstyle \mathcal{B}}(x+y) = T_{\scriptscriptstyle \mathcal{B}}(x) + T_{\scriptscriptstyle \mathcal{B}}(y) \text{ for all } x,y \in \mathcal{V}$$
 (4.5.4)

Thus, the transformation T "preserves" the addition operation. Similarly we have

$$= \alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \alpha T_{\mathcal{B}}(x)$$

Thus we have

$$T_{\mathcal{B}}(\alpha x) = \alpha T_{\mathcal{B}}(x) \text{ for all } a \in \mathcal{F} \text{ and for all } x \in \mathcal{V}$$
 (4.5.5)

Thus, the transformation T_{B} preserves scalar multiplication.

Thus, the transformation T preserves the two basic operations of the vector space, and hence preserves superpositions. We generalize this to get the notion of a linear transformation.

Definition 4.5.1 Let $\mathcal V$ and $\mathcal W$ be vector spaces over a field $\mathcal F$. A transformation

$$T:V\longrightarrow W$$

is said to be a "linear transformation" from \mathcal{V} to \mathcal{W} if,

$$T(x+y) = T(x) + T(y) \text{ for all } x, y \in \mathcal{V} \text{ and,}$$
 (4.5.6)

$$T(\alpha x) = \alpha T(x)$$
 for all $a \in \mathcal{F}$ and for all $x \in \mathcal{V}$ (4.5.7)

Hence from the above discussion, it follows that, every ordered basis \mathcal{B} to \mathcal{V} gives rise to a linear transformation $T_{\mathcal{B}}$ from \mathcal{V} to \mathcal{F}^n which maps $x \in \mathcal{V}$ to $T_{\mathcal{B}}(x) = [x]_{\mathcal{B}}$ in \mathcal{F}^n . This transformation $T_{\mathcal{B}}$ can be interpreted as a coding of a vectors x in the abstarct vector space \mathcal{V} , to a column vectors $T_{\mathcal{B}}(x) = [x]_{\mathcal{B}}$ in \mathcal{F}^n . We shall now look at some more properties of this code. We have,

$$x, y \in \mathcal{V}, x \neq y \iff [x]_{\mathcal{B}} \neq [y]_{\mathcal{B}}(Why?)$$

 $\iff T_{\mathcal{B}}(x) \neq T_{\mathcal{B}}(y)$

We acn also state the above property as

$$T_{\mathcal{B}}(x) = T_{\mathcal{B}}(y) \iff x = y$$

Thus this coding assigns different column vectors codes to different vectors. We say that the transformation $T_{\mathcal{B}}$ is "one-one". We generalize this to abstract linear transformations as follows:

Definition 4.5.2 Let V and W be vector spaces over a field F. A linear transformation

$$T: \mathcal{V} \longrightarrow \mathcal{W}$$

is said to be "one-one" if

$$T(x) = T(y) \iff x = y$$
 (4.5.8)

Further we have,

$$u \in \mathcal{F} \implies u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
 where $u_j \in \mathcal{F}, \ 1 \le j \le n$
 $\implies x = u_1 v_1 + u_2 v_2 + \dots + u_n v_n \in \mathcal{V}$
 $\implies \exists x \in \mathcal{V} \text{as defined above and } [x]_{\mathcal{B}} = u$
 $\implies \exists x \in \mathcal{V} \text{ such that } T_{\mathcal{B}}(x) = u$

Thus, we have the following property:

For every
$$u \in \mathcal{F}^n \quad \exists \ \mathrm{a} \ x \in \mathcal{V} \ \mathrm{such \ that} \quad T_{\scriptscriptstyle \mathcal{B}}(x) = u$$

We say that $T_{\mathcal{B}}$ is "onto". What this says is that the coding of $x \in \mathcal{V}$ to $T_{\mathcal{B}}(x) \in \mathcal{F}^n$ uses every code available in \mathcal{F}^n .

We generalize this as follows:

Definition 4.5.3 Let V and W be vector spaces over a field F. A linear transformation

$$T: \mathcal{V} \longrightarrow \mathcal{W}$$

is said to be "onto" if

For every
$$u \in \mathcal{F}^n \quad \exists \ a \ x \in \mathcal{V} \text{ such that } \quad T(x) = u$$
 (4.5.9)

The transformation $T_{\mathcal{B}}$ is both one-one and onto, that is, every vectors $x \in \mathcal{V}$ has a unique column vector code $T_{\mathcal{B}}(x) = [x]_{\mathcal{B}}$, and every column vector $u \in \mathcal{F}^n$ is the code of a vector $x \in \mathcal{V}$. We call such transformations as isomorphisms. We have

Definition 4.5.4 Let V and W be vector spaces over a field F. A linear transformation

$$T: \mathcal{V} \longrightarrow \mathcal{W}$$

is said to be an "**isomorphism**" of $\mathcal V$ onto $\mathcal W$ if it is both one-one and onto.

Thus $T_{\mathcal{B}}$ is an isomrphism of \mathcal{V} ono \mathcal{F}^n .

Example 4.5.1 Consider the vector space $\mathcal{V} = \mathbb{R}^2$. Consider the ordered basis

$$\mathcal{B} = v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ can bewritten as

$$x = x_1e_1 + x_2e_2$$

Hence we have

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Now consider the ordered basis

$$\mathcal{B}' = v_1' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ v_2' = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Then we have

$$x = \frac{x_1 + x_2}{2}v_1' + \frac{x_1 - x_2}{2}v_2'$$

Hence we have

$$[x]_{\mathcal{B}'} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$

Thus we have

$$T_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$T_{\mathcal{B}'}(x) = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$

We can easily verify that both $T_{\mathcal{B}}$ and $T_{\mathcal{B}'}$ are isomorphisms of \mathbb{R}^2 onto \mathbb{R}^2

Example 4.5.2 Let \mathcal{W} be he subspace of \mathbb{R}^3 defined as follows:

$$\mathcal{W} = \left\{ x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

Consider the following ordered basis for \mathcal{W} :

$$\mathcal{B}: v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Then any $x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} \in \mathcal{W}$ can be written as

$$x = \alpha v_1 + \beta v_2$$

Hence we have

$$[x]_{\mathcal{B}} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Note that, since the subspace W is two dimensional, its coding is done as a (2×1) column vectors. We therefore have

$$T_{\mathcal{B}}(x) = [x]_{\mathcal{B}} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

is an isomorphism of \mathcal{W} onto \mathbb{R}^2 . Consider now the following ordered basis foe \mathcal{W} :

$$\mathcal{B}': \ v_1' = \begin{pmatrix} 1\\2\\4 \end{pmatrix}, v_2' = \begin{pmatrix} 1\\-2\\0 \end{pmatrix},$$

Then any $x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} \in \mathcal{W}$ can be written as

$$x = \frac{2\alpha + \beta}{4}v_1' + \frac{2\alpha - \beta}{4}v_2'$$

Hence we have

$$[x]_{\mathcal{B}'} = \begin{pmatrix} \frac{2\alpha + \beta}{4} \\ \frac{2\alpha - \beta}{4} \end{pmatrix}$$

Thus we have

$$T_{\mathcal{B}}(x) = [x]_{\mathcal{B}'} = \begin{pmatrix} \frac{2\alpha + \beta}{4} \\ \frac{2\alpha - \beta}{4} \end{pmatrix}$$

For example, if $x \in \mathcal{W}$ is the vector

$$x = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

then we have

$$\alpha = 2$$
 and $\beta = 3$

Hence we have

$$T_{\mathcal{B}}(x) = [x]_{\mathcal{B}} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

$$T_{\mathcal{B}'} = [x]_{\mathcal{B}'} = \begin{pmatrix} \frac{7}{4}\\\frac{1}{4} \end{pmatrix}$$

The transformations $T_{\mathcal{B}}$ and $T_{\mathcal{B}'}$ are both isomorphisms of \mathcal{W} onto \mathbb{R}^2 .

Example 4.5.3 Consider the vector space $\mathcal{V} = \mathbb{R}_2[x]$, of all polynomials in x, of degree less than or equal to two, with real coefficients. Consider the following ordered basis for $\mathbb{R}_2[x]$:

$$\mathcal{B}: p_1, p_2, p_3 \text{ where } p_1(x) = 1, \ p_2(x) = x, \ p_3(x) = x^2$$

Then any polynomial $p(x) = a_0 + a_1x + a_2x^2$ can be written as

$$p = a_0 p_1 + a_1 p_2 + a_2 p_3$$

Hence we get

$$[p]_{\mathcal{B}} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$$

Now consider the ob,

$$\mathcal{B}': p'_1, p'_2, p'_3$$
 where $p_1(x) = 1 + x$, $p_2(x) = x + x^2$, $p_3(x) = 1 + x^2$

Then p can be written as

$$p = \frac{a_0 + a_1 - a_2}{2} p_1' + \frac{-a_0 + a_1 + a_2}{2} p_2' + \frac{a_0 - a_1 + a_2}{2} p_3'$$

Hence we have

$$[p]_{\mathcal{B}'} = \begin{pmatrix} \frac{a_0 + a_1 - a_2}{2} \\ \frac{-a_0 + a_1 + a_2}{2} \\ \frac{a_0 - a_1 + a_2}{2} \end{pmatrix}$$

For example, if $p = 4x^2 - 3x + 2$ then $a_0 = 2$, $a_1 = -3$, $a_2 = 4$ and hence we get

$$[p]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$
$$[p]_{\mathcal{B}'} = \begin{pmatrix} -\frac{5}{2} \\ -\frac{1}{2} \\ \frac{9}{2} \end{pmatrix}$$

The linear transformations $T_{\mathcal{B}}$ and $T_{\mathcal{B}'}$ defined respectively as $T_{\mathcal{B}}(p) = [p]_{\mathcal{B}}$ and $T_{\mathcal{B}'}(p) = [p]_{\mathcal{B}'}$ are isomorphisms of $\mathbb{R}_2[x]$ onto \mathbb{R}^3 .

4.6 Relation Between Different Bases Representations

Let \mathcal{V} be an n dimensional vector space over a field \mathcal{F} and let

$$\mathcal{B} = u_1, u_2, \cdots, u_n$$

$$\mathcal{B}' = u'_1, u'_2, \cdots, u'_n$$

be any two ordered bases for \mathcal{V} . Any vector $x \in \mathcal{V}$ can be represented as column vectors

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \text{ and } [x]_{\mathcal{B}'} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$

respectively w.r.t the ordered bases \mathcal{B} and \mathcal{B}' . Since both these column vectors represent the same vector there must be some relationship between these two column vectors. What is this connection? We shall first look at a simple example.

Example 4.6.1 Consider the vector space \mathbb{R}^2 and consider the two ordered bases

$$\mathcal{B} = e_1, e_2 \text{ where } e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\mathcal{B}' = u_1, u_2 \text{ where } u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Any vector $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ has the representations

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$[x]_{\mathcal{B}'} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$

Now consider the matrix

$$\mathcal{M}_{\scriptscriptstyle\mathcal{BB'}} = \left(egin{array}{ccc} rac{1}{2} & rac{1}{2} \ rac{1}{2} & -rac{1}{2} \end{array}
ight)$$

Then it is easy to verify that

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'}[x]_{\mathcal{B}} = [x]_{\mathcal{B}'}$$

Thus we find that by premultiplying $[x]_{\mathcal{B}}$, the representation of x w.r.t. the ordered basis \mathcal{B} , by the matrix $\mathcal{M}_{\mathcal{BB}'}$, we can get $[x]_{\mathcal{B}'}$, the representation of x w.r.t. the ordered basis \mathcal{B}' . Similarly if we define $\mathcal{M}_{\mathcal{B}'\mathcal{B}}$ to be the matrix,

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

it is easy to verify that

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}}[x]_{\mathcal{B}'} = [x]_{\mathcal{B}}$$

Hence premultiplying $[x]_{\mathcal{B}'}$, the representation of x w.r.t. the ordered basis \mathcal{B}' , by the matrix $\mathcal{M}_{\mathcal{B}'\mathcal{B}}$, we can get $[x]_{\mathcal{B}}$, the representation of x w.r.t. the ordered basis \mathcal{B} . Further, it is easy to check that

$$\mathcal{M}_{_{\mathcal{B}\mathcal{B}'}}\mathcal{M}_{_{\mathcal{B}'\mathcal{B}}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

Thus there are two matrices one converting \mathcal{B} representations to \mathcal{B}' representations, and the other converting \mathcal{B}' representations to \mathcal{B} representations, and these two matrices are inverses of each other.

We now look at how to find such matrices in the general situation. Let \mathcal{V} be an n dimensional vector space over a field \mathcal{F} and

$$\mathcal{B} = v_1, v_2, \cdots, v_n$$

$$\mathcal{B}' = v'_1, v'_2, \cdots, v'_n$$

be any two ordered bases for \mathcal{V} . Any vector $x \in \mathcal{V}$ can be represented as column vectors

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \text{ and } [x]_{\mathcal{B}'} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$

In particular, let us consider the vector v_j in \mathcal{V} w.r.t. the ordered basis \mathcal{B}' to get the representation

$$\begin{bmatrix} v_j \end{bmatrix}_{\mathcal{B}'} = \begin{pmatrix} v_{1j} \\ v_{2j} \\ \vdots \\ v_{nj} \end{pmatrix}$$

This means

$$v_j = \sum_{i=1}^n v_{ij} v_i' \tag{4.6.1}$$

We can do this for $j = 1, 2, \dots, n$ and get n column vectors

$$\left\{ \left[v_j \right]_{\mathcal{B}'} \right\}_{j=1}^n$$

Now consider $x \in \mathcal{V}$ We have

$$x = \sum_{j=1}^{n} x_j v_j$$

Substituting for v_j from (4.6.1) we get

$$x = \sum_{j=1}^{n} x_j \left\{ \sum_{i=1}^{n} v_{ij} v_i' \right\}$$
$$= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} v_{ij} x_j \right\} v_i'$$

From the above we get the *i*th coordinate of x w.r.t. the ordered basis \mathcal{B}' is given by

$$\sum_{i=1}^{n} v_{ij} x_j$$

Hence we get

$$[x]_{\mathcal{B}'} = \begin{pmatrix} \sum_{j=1}^{n} v_{1j} x_{j} \\ \sum_{j=1}^{n} v_{2j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} v_{ij} x_{j} \\ \vdots \\ \sum_{j=1}^{n} v_{nj} x_{j} \end{pmatrix}$$

$$= \mathcal{M}_{\mathcal{B}\mathcal{B}'}[x]_{\mathcal{B}}$$

where $\mathcal{M}_{\mathcal{BB'}}$ is the matrix whose (i, j)-th entry is v_{ij} . Thus the columns of $\mathcal{M}_{\mathcal{BB'}}$ are respectively $[v_1]_{\mathcal{B'}}, [v_2]_{\mathcal{B'}}, \cdots, [v_j]_{\mathcal{B'}}, \cdots, [v_n]_{\mathcal{B'}}$. Thus we have a matrix which converts \mathcal{B} representations to $\mathcal{B'}$ representations. This matrix arises from the representation of the vectors in the ordered basis \mathcal{B} w.r.t. the ordered basis $\mathcal{B'}$. Analogously, by representing the vectors in the ordered basis $\mathcal{B'}$ w.r.t. the ordered basis \mathcal{B} we get a matrix $\mathcal{M}_{\mathcal{B'B}}$ whose jth column

is the column vector $[v'_j]_{\mathcal{B}}$. This matrix converts \mathcal{B}' representations to \mathcal{B} representations as

$$[x]_{\mathcal{B}} = \mathcal{M}_{\mathcal{B}'\mathcal{B}}[x]_{\mathcal{B}'}$$

We shall now illustrate this with some examples.

Example 4.6.2 Consider $\mathcal{V} = \mathbb{R}^2$ and the two ordered bases

$$\mathcal{B} = v_1, v_2 \text{ where } v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\mathcal{B}' = v'_1, v'_2 \text{ where } v'_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v'_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

We have

$$v_1 = \frac{1}{2}v_1' + \frac{1}{2}v_2'$$

$$v_2 = \frac{1}{2}v_1' - \frac{1}{2}v_2'$$

Hence we have

$$\left[v_1\right]_{\mathcal{B}'} = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right)$$

$$\begin{bmatrix} v_2 \end{bmatrix}_{\mathcal{B}'} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

Taking these as the two columns of $\mathcal{M}_{\scriptscriptstyle\mathcal{BB'}}$ we get

$$\mathcal{M}_{\mathcal{BB'}} = \begin{pmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{2} & -rac{1}{2} \end{pmatrix}$$

For any $x \in \mathbb{R}^2$ we have

$$[x]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$[x]_{\mathcal{B}'} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$

It is easy to see that

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'}[x]_{\mathcal{B}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$
$$= [x]_{\mathcal{B}'}$$

Similarly, we have

$$v_1' = 1v_1 + 1v_2 v_2' = 1v_1 - 1v_2$$

Hence we get

$$[v_1']_{\mathcal{B}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$[v_1']_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Hence we have

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

It is easy to see that

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}}[x]_{\mathcal{B}'} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 - x_2}{2} \end{pmatrix}$$
$$= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= [x]_{\mathcal{B}}$$

Further, we have,

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'}\mathcal{M}_{\mathcal{B}'\mathcal{B}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example 4.6.3 Consider the subspace,

$$\mathcal{W} = \left\{ \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

of \mathbb{R}^3 . We have seen in Example that w.r.t. the two ordered basis

$$\mathcal{B} : v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and}$$

$$\mathcal{B}' : v_1' = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, v_2' = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \text{ and}$$

we have for any $x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \end{pmatrix} \in \mathcal{W}$,

$$[x]_{\mathcal{B}} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
$$[x]_{\mathcal{B}'} = \begin{pmatrix} \frac{2\alpha + \beta}{4} \\ \frac{2\alpha - \beta}{4} \end{pmatrix}$$

We have, therefore,

$$[v_1]_{\mathcal{B}'} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$[v_2]_{\mathcal{B}'} = \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{pmatrix}$$

Hence we get,

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'} = \left(\begin{bmatrix} v_1 \end{bmatrix}_{\mathcal{B}'} \begin{bmatrix} v_2 \end{bmatrix}_{\mathcal{B}'} \right)$$
$$= \left(\begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix} \right)$$

It is easy to check that,

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'}[x]_{\mathcal{B}} = [x]_{\mathcal{B}'} \text{ for any } x \in \mathcal{W}$$

Similarly we have,

$$[v_1']_{\mathcal{B}} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$[v_2']_{\mathcal{B}} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Hence we get,

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}} = \left(\begin{bmatrix} v_1' \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} v_2' \end{bmatrix}_{\mathcal{B}} \right)$$
$$= \left(\begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \right)$$

It is easy to check that,

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}}[x]_{\mathcal{B}'} = [x]_{\mathcal{B}} \text{ for all } x \in \mathcal{W}$$

Example 4.6.4 Consider the vector space $\mathbb{R}_2[x]$, and the two ordered basis,

$$\mathcal{B}$$
: p_1, p_2, p_3 where $p_1(x) = 1, p_2(x) = x, p_3(x) = x^2$
 \mathcal{B}' : p'_1, p'_2, p'_3 where $p'_1(x) = 1 + x, p'_2(x) = x + x^2, p'_3(x) = 1 + x^2$

We have seen in Example 4.5.3 that any $p(x) = a_0 + a_1x + a_2x^2 \in \mathbb{R}_2[x]$ can be represented w.r.t. these two ordered basis as,

$$[p]_{\mathcal{B}} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$$

$$[p]_{\mathcal{B}'} = \begin{pmatrix} \frac{a_0 + a_1 - a_2}{2} \\ \frac{-a_0 + a_1 + a_2}{2} \\ \frac{a_0 - a_1 + a_2}{2} \end{pmatrix}$$

Hence we get

$$[p_1]_{\mathcal{B}'} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$[p_2]_{\mathcal{B}'} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$[p_3]_{\mathcal{B}'} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

Hence we get,

$$\mathcal{M}_{\mathcal{B}\mathcal{B}'} = \left([p_1]_{\mathcal{B}'} [p_2]_{\mathcal{B}'} [p_3]_{\mathcal{B}'} \right)$$
$$= \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right)$$

It is easy to check that

$$\mathcal{M}_{\scriptscriptstyle \mathcal{BB}'}[x]_{\scriptscriptstyle \mathcal{B}} \ = \ [x]_{\scriptscriptstyle \mathcal{B}'} \text{ for all } x \in \mathbb{R}_2[x]$$

Similarly, we have,

$$[p_1']_{\mathcal{B}} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$[p_2']_{\mathcal{B}} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

$$[p_3']_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Hence we get,

$$\mathcal{M}_{\mathcal{B}'\mathcal{B}} = \left(\begin{array}{ccc} [p'_1]_{\mathcal{B}} & [p'_2]_{\mathcal{B}} & [p'_3]_{\mathcal{B}} \end{array} \right)$$
$$= \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right)$$

It is easy to check that

$$\mathcal{M}_{\scriptscriptstyle\mathcal{B}'\mathcal{B}}[x]_{\scriptscriptstyle\mathcal{B}'} \ = \ [x]_{\scriptscriptstyle\mathcal{B}} \text{ for all } x \in \mathbb{R}_2[x]$$