Appendix – A list of possibly relevant equations

- Complex number:
 - Euler's formula: $e^{j\theta} = \cos \theta + i \sin \theta$
- Fundamental period of a periodic signal:
 - Continuous-time sinusoidal of the form $x(t) = A\cos(\omega t + \phi)$: $T_0 = 2\pi/\omega$
 - Discrete-time sinusoidal of the form $x[n] = A\cos(\Omega n + \phi)$: $N_0 = 2\pi m/\Omega$ if N_0 and m have no factors in common.
 - Continuous-time complex exponential of the form $x(t) = e^{j\omega t}$: $T_0 = 2\pi/|\omega|$
 - Discrete-time complex exponential of the form $x[n] = e^{j\Omega n}$: $N_0 = 2\pi m/|\Omega|$ if N_0 and m have no factors in common.
- Even/odd part of a signal:
 - Continuous-time signal x(t):

* Even part:
$$\mathcal{E}\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

* Odd part:
$$\mathcal{O}\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

- Discrete-time signal x[n]:

* Even part:
$$\mathcal{E}\{x[n]\} = \frac{1}{2}(x[n] + x[-n])$$

* Odd part:
$$\mathcal{O}\{x[n]\} = \frac{1}{2}(x[n] - x[-n])$$

- Convolution sum: $x[n]*h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$
 - Commutative property: x[n] * h[n] = h[n] * x[n]
 - Distributive property: $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$
 - Associative property: $x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$
- Convolution integral: $x(t)*h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$

 - Distributive property: $x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$
 - Associative property: $x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t)$

• Properties of continuous-time LTI systems:

- Memoryless: h(t) = 0 for $t \neq 0$.
- Invertibility: $h(t) * h_1(t) = \delta(t)$ where $h_1(t)$ is the unit impulse response of the inverse system.
- Causality: h(t) = 0 for t < 0.
- Stability: $\int_{-\infty}^{+\infty} |h(t)| dt < \infty$

• Properties of discrete-time LTI systems:

- Memoryless: h[n] = 0 for $n \neq 0$.
- Invertibility: $h[n] * h_1[n] = \delta[n]$ where $h_1[n]$ is the unit impulse response of the inverse system.
- Causality: h[n] = 0 for n < 0.
- Stability: $\sum_{n=-\infty}^{+\infty} |h[n]| < \infty$

• Continuous-time Fourier series:

- Formulas: Consider x(t) periodic with fundamental period $T_0 = T$.

* Synthesis:
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

* Analysis:
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

- Properties: Consider x(t) and y(t) periodic with period T, $x(t) \leftrightarrow a_k$, $y(t) \leftrightarrow b_k$.
 - * Linearity: $Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k$
 - * Time shift: $x(t-t_0) \leftrightarrow \left[e^{-jk(2\pi/T)t_0}\right] a_k$
 - * Time reversal: $x(-t) \leftrightarrow a_{-k}$
 - * Time scaling: $x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$
 - * Multiplication: $x(t)y(t) \leftrightarrow \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
 - * Differentiation: $\frac{dx(t)}{dt} \leftrightarrow (jk\omega_0)a_k$
 - * Parseval's relation: $\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$

- Discrete-time Fourier series:
 - Formulas: Consider x[n] periodic with fundamental period $N_0 = N$.

* Synthesis:
$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

* Analysis:
$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

- Properties: Consider x[n] and y[n] periodic with period N, $x[n] \leftrightarrow a_k$, $y[n] \leftrightarrow b_k$.
 - * Linearity: $Ax[n] + By[n] \leftrightarrow Aa_k + Bb_k$
 - * Time shift: $x[n-n_0] \leftrightarrow \left[e^{-jk(2\pi/N)n_0}\right] a_k$
 - * Time reversal: $x[-n] \leftrightarrow a_{-k}$
 - * Multiplication: $x[n]y[n] \leftrightarrow \sum_{l=\langle N \rangle} a_l b_{k-l}$
 - * First difference: $x[n] x[n-1] \leftrightarrow \left[1 e^{-jk(2\pi/N)}\right] a_k$
 - * Parseval's relation: $\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$
 - End of Paper —