

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	16.49 psf	(ASCE 7-05, Eq. 7-2)
$I_s =$	1.00	
$C_s =$	0.73	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.15	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 1.85 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

$S_S =$	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	A		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>69</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.01	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
$I_x =$	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.553	k-ft
$M_z =$	0.134	k-ft
$M_{y \text{ allowable}} =$	1.234	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	<u>60%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	1.5x0.25
Aluminum Type =	6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
$S_y =$	0.02 in^3
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.003 k-ft
$P_n =$	0.071 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>7%</u>

A cross brace kit is required every 27 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>25.41</u>	<u>1789.40</u> k	
Compressive Load =	1250.56	<u>1265.18</u> k	
Lateral Load =	2.84	<u>1090.59</u> k	
Moment (Weak Axis) =	0.01	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 26843.1 in-lbs Resisting Force Required = 894.77 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1491.28 lbs to resist overturning. Minimum Width = Weight Provided = Sliding 262.07 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 655.17 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion 262.07 lbs Sliding Force = Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{\text{22 in}} = \frac{23 \text{ in}}{\text{24 in}} = \frac{25 \text{ in}}{\text{1994 lbs}} = \frac{24 \text{ in}}{\text{2086 lbs}} = \frac{25 \text{ in}}{\text{2086 lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W				
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	457 lbs	457 lbs	457 lbs	457 lbs	414 lbs	414 lbs	414 lbs	414 lbs	612 lbs	612 lbs	612 lbs	612 lbs	-10 lbs	-10 lbs	-10 lbs	-10 lbs
FB	317 lbs	317 lbs	317 lbs	317 lbs	542 lbs	542 lbs	542 lbs	542 lbs	615 lbs	615 lbs	615 lbs	615 lbs	-859 lbs	-859 lbs	-859 lbs	-859 lbs
F _V	52 lbs	52 lbs	52 lbs	52 lbs	474 lbs	474 lbs	474 lbs	474 lbs	390 lbs	390 lbs	390 lbs	390 lbs	-524 lbs	-524 lbs	-524 lbs	-524 lbs
P _{total}	2768 lbs	2858 lbs	2949 lbs	3039 lbs	2950 lbs	3041 lbs	3131 lbs	3222 lbs	3220 lbs	3311 lbs	3401 lbs	3492 lbs	327 lbs	381 lbs	436 lbs	490 lbs
M	353 lbs-ft	353 lbs-ft	353 lbs-ft	353 lbs-ft	507 lbs-ft	507 lbs-ft	507 lbs-ft	507 lbs-ft	615 lbs-ft	615 lbs-ft	615 lbs-ft	615 lbs-ft	728 lbs-ft	728 lbs-ft	728 lbs-ft	728 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	0.19 ft	0.19 ft	0.18 ft	0.18 ft	2.23 ft	1.91 ft	1.67 ft	1.49 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	255.7 psf	254.1 psf	252.5 psf	251.1 psf	255.4 psf	253.8 psf	252.3 psf	250.9 psf	270.8 psf	268.4 psf	266.3 psf	264.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	348.1 psf	342.4 psf	337.2 psf	332.4 psf	388.2 psf	380.7 psf	373.9 psf	367.7 psf	431.8 psf	422.5 psf	414.0 psf	406.1 psf	436.1 psf	224.8 psf	175.3 psf	154.7 psf

Maximum Bearing Pressure = 436 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 196.1 \text{ ft-lbs}$

Resisting Force Required = 213.96 lbs S.F. = 1.67 Weight Required = 356.61 lbs

Minimum Width = 22 in in Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D + 0.65625E	+ 0.75S	0	.362D + 0.875	5E
Width		22 in			22 in			22 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	70 lbs	176 lbs	66 lbs	226 lbs	641 lbs	222 lbs	20 lbs	51 lbs	19 lbs
F _V	1 lbs	1 lbs	0 lbs	6 lbs	6 lbs	1 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2538 lbs	2644 lbs	2534 lbs	2576 lbs	2991 lbs	2572 lbs	742 lbs	773 lbs	741 lbs
М	2 lbs-ft	2 lbs-ft	0 lbs-ft	11 lbs-ft	8 lbs-ft	1 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.31 ft	1.83 ft	1.83 ft	1.82 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	276.2 sqft	287.8 sqft	276.4 sqft	277.0 sqft	323.3 sqft	280.3 sqft	80.8 sqft	84.2 sqft	80.8 sqft
f _{max}	277.6 psf	289.1 psf	276.5 psf	285.0 psf	329.3 psf	280.9 psf	81.2 psf	84.5 psf	80.9 psf

Maximum Bearing Pressure = 329 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.962 k	Maximum Axial Load =	1.163 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>17%</u>	Utilization =	<u>20%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.628 k	Maximum Axial Load =	0.071 k
Maximum Axial Load = M8 Bolt Shear Capacity =	0.628 k 5.692 k	Maximum Axial Load = M10 Bolt Capacity =	0.071 k 8.894 k

M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.023 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 69.00 \text{ in}$$

$$J = 0.255$$

$$179.672$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
 $\phi F_L = 29.0 \text{ ksi}$

3.4.16

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 69.00 \text{ in}$$

$$J = 0.255$$

$$186.579$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_L = 28.9$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F c \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$Ix = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.234 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

b/t = 7.4S1 = 12.21

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 23.9 S1 = 12.21

S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L = 28.5 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

 $\begin{array}{lll} \textbf{3.4.11} & & & \\ \textbf{L}_{b} = & & 33.78 \text{ in} \\ \textbf{ry} = & & 1.374 \\ \textbf{Cb} = & & 1.10 \\ & & & 23.4092 \end{array}$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.4 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} \mathsf{L_b} = & 33.78 \text{ in} \\ \mathsf{ry} = & 1.374 \\ \mathsf{Cb} = & 1.10 \\ & 24.5845 \\ & \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ \mathsf{S1} = & 1.37733 \\ & \\ S2 = & 1.2C_c \\ & \\ \mathsf{S2} = & 79.2 \\ & \\ \mathsf{\phiF_L} = & \\ \mathsf{\phib}[\mathsf{Bc\text{-}Dc^*Lb/(1.2^*ry^*\sqrt{(Cb))})} \\ & \\ \mathsf{\phiF_I} = & 29.4 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{UT} = 9.4 \text{ ksi}$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(R)
$$\frac{\theta_{Y}}{1.00}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1 N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

$$\begin{array}{lll} \textbf{3.4.16.2} \\ \textbf{b/t} = & 24.46 \\ \textbf{t} = & 2.6 \\ \textbf{ds} = & 6.05 \\ \textbf{rs} = & 3.49 \\ \textbf{S} = & 21.70 \\ \textbf{pst} = & 0.22 \\ \textbf{F}_{\text{UT}} = & 9.37 \end{array}$$

28.24

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

 $\phi F_L = 13.5 \text{ ksi}$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$Ix = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.443 \text{ k-ft}$$

3.4.18

 $F_{ST} =$

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$W = 217168 \text{ mm}$$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$

S2 =

3.4.9

b/t = 4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 24.46 S1 = 12.21

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$

32.70

3.4.9.1

b/t =24.46 2.6 t = ds = 6.05 rs = 3.49 S = 21.70 pst = 0.22 10.43 $F_{UT} =$ $F_{ST}=$ 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$ $\phi F_L =$ 14.3 ksi

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 31.2$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$
3.4.16.1 Not Used
Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

7.75

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.423 \text{ k-ft}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \psi = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S_{1} = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\theta_{b}}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$

7.75

3.4.18

$$\begin{array}{lll} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 15 \\ Cc = & 15 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.8 \text{ ksi} \\ k = & 39958.2 \text{ mm}^4 \\ 0.096 \text{ in}^4 \\ y = & 15 \text{ mm} \\ Sx = & 0.163 \text{ in}^3 \\ M_{\text{max}} St = & 0.404 \text{ k-ft} \\ \end{array}$$

Weak Axis:

3.4.14

$$\begin{array}{lll} L_b = & 46.38 \text{ in} \\ J = & 0.16 \\ & 121.663 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 29.8 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

3.4.18

$$\begin{array}{rcl} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 15 \\ Cc = & 15 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max}Wk = & 0.450 \text{ k-ft} \\ \end{array}$$

0.450 k-ft

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$
S1 = 6.87
S2 = 131.3

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{1.6Dp}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 11$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 15$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.408 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$k_1Bbr$$

$$32 = \frac{1}{mDbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.68476 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.81587 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{F} cy)/(\lambda^2) \\ & \phi \textbf{F}_L = & 10.0603 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 5.05 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-50.353	-50.353	0	0
2	M16	V	-81.003	-81.003	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	100.707	100.707	0	0
2	M16	V	48.164	48.164	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	216.382	2	290.816	2	0	15	0	15	0	1	0	1
2		min	-265.209	3	-421.617	3	119	3	0	3	0	1	0	1
3	N7	max	.002	3	360.991	1	045	15	0	15	0	1	0	1
4		min	152	2	3.994	12	955	1	002	1	0	1	0	1
5	N15	max	0	15	961.97	1	.537	1	.001	1	0	1	0	1
6		min	-1.562	2	-19.548	3	52	3	0	3	0	1	0	1
7	N16	max	777.375	2	973.216	2	0	10	0	1	0	1	0	1
8		min	-838.917	3	-1376.458	3	-60.441	3	0	3	0	1	0	1
9	N23	max	.002	3	360.745	1	2.182	1	.004	1	0	1	0	1
10		min	152	2	4.355	12	.096	15	0	15	0	1	0	1
11	N24	max	216.584	2	294.131	2	60.907	3	0	1	0	1	0	1
12		min	-265.462	3	-419.803	3	.008	10	0	3	0	1	0	1
13	Totals:	max	1208.475	2	3041.162	1	0	1	·					
14		min	-1369.613	3	-2226.929	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	248.626	1	.655	4	.345	1	0	15	0	15	0	1
2			min	-362.972	3	.154	15	053	3	0	1	0	1	0	1
3		2	max	248.752	1	.603	4	.345	1	0	15	0	15	0	15
4			min	-362.877	3	.142	15	053	3	0	1	0	1	0	4
5		3	max	248.878	1	.552	4	.345	1	0	15	0	15	0	15
6			min	-362.783	3	.13	15	053	3	0	1	0	3	0	4
7		4	max	249.004	1	.501	4	.345	1	0	15	0	1	0	15
8			min	-362.689	3	.118	15	053	3	0	1	0	3	0	4
9		5	max	249.13	1	.45	4	.345	1	0	15	0	1	0	15
10			min	-362.594	3	.106	15	053	3	0	1	0	3	0	4
11		6	max	249.255	1	.399	4	.345	1	0	15	0	1	0	15
12			min	-362.5	3	.094	15	053	3	0	1	0	3	0	4
13		7	max	249.381	1	.348	4	.345	1	0	15	0	1	0	15
14			min	-362.405	3	.082	15	053	3	0	1	0	3	0	4
15		8	max	249.507	1	.297	4	.345	1	0	15	0	1	0	15
16			min	-362.311	3	.07	15	053	3	0	1	0	3	0	4
17		9	max	249.633	1	.245	4	.345	1	0	15	0	1	0	15
18			min	-362.217	3	.058	15	053	3	0	1	0	3	0	4
19		10	max	249.759	1	.194	4	.345	1	0	15	0	1	0	15
20			min	-362.122	3	.046	15	053	3	0	1	0	3	0	4
21		11	max	249.885	1	.143	4	.345	1	0	15	0	1	0	15
22			min	-362.028	3	.033	12	053	3	0	1	0	3	0	4
23		12	max	250.011	1	.101	2	.345	1	0	15	0	1	0	15
24			min	-361.933	3	.013	12	053	3	0	1	0	3	0	4
25		13	max	250.137	1	.061	2	.345	1	0	15	0	1	0	15
26			min	-361.839	3	013	3	053	3	0	1	0	3	0	4
27		14	max	250.262	1	.021	2	.345	1	0	15	0	1	0	15
28			min	-361.745	3	043	3	053	3	0	1	0	3	0	4
29		15	max	250.388	1	014	15	.345	1	0	15	0	1	0	15
30			min	-361.65	3	073	3	053	3	0	1	0	3	0	4
31		16	max	250.514	1	026	15	.345	1	0	15	0	1	0	15
32			min	-361.556	3	113	4	053	3	0	1	0	3	0	4
33		17	max	250.64	1	038	15	.345	1	0	15	0	1	0	15
34			min	-361.461	3	164	4	053	3	0	1	0	3	0	4
35		18	max		1	05	15	.345	1	0	15	0	1	0	15
36			min	-361.367	3	215	4	053	3	0	1	0	3	0	4
37		19	max	250.892	1	062	15	.345	1	0	15	0	1	0	15
									•					-	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	
38			min	-361.273	3	266	4	053	3	0	1	0	3	0	4
39	M3	1	max	167.229	2	1.758	4	015	15	0	15	.001	1	0	4
40			min	-173.997	3	.413	15	353	1	0	1	0	15	0	15
41		2	max	167.159	2	1.581	4	015	15	0	15	.001	1	0	2
42			min	-174.049	3	.372	15	353	1	0	1	0	15	0	12
43		3	max	167.09	2	1.404	4	015	15	0	15	.001	1	0	2
44			min	-174.101	3	.33	15	353	1	0	1	0	15	0	3
45		4	max	167.021	2	1.227	4	015	15	0	15	0	1	0	15
46			min	-174.153	3	.289	15	353	1	0	1	0	15	0	4
47		5	max	166.952	2	1.051	4	015	15	0	15	0	1	0	15
48			min	-174.205	3	.247	15	353	1	0	1	0	15	0	4
49		6	max		2	.874	4	015	15	0	15	0	1	0	15
50			min	-174.257	3	.206	15	353	1	0	1	0	15	0	4
51		7	max		2	.697	4	015	15	0	15	0	1	0	15
52			min	-174.309	3	.164	15	353	1	0	1	0	15	0	4
53		8	max	166.744	2	.52	4	015	15	0	15	0	1	0	15
54			min	-174.361	3	.122	15	353	1	0	1	0	15	001	4
55		9	max	166.674	2	.343	4	015	15	0	15	0	1	0	15
56		 	min	-174.413	3	.081	15	353	1	0	1	0	15	001	4
57		10	max	166.605	2	.166	4	015	15	0	15	0	1	0	15
58		10	min	-174.465	3	.039	15	353	1	0	1	0	15	001	4
59		11			2	.017	2	015	15	0	15	0	1	0	15
60		- ' '	max min	-174.517	3	038	3	353	1	0	1	0	15	001	4
61		12				038	15	015	15	0	15	0	1	0	15
62		12	max	-174.569	2			353	1		1	0	15		
		12	min		3	187	4			0		_		001	4
63		13	max	166.397	2	085	15	015	15	0	<u>15</u> 1	0	1 15	0	15
64		4.4	min	-174.621	3	364	4	353	1	0	15	0		001	15
65		14	max	166.328	2	127	15	015	15	0	1	0	1	0	
66		4.5	min	-174.673	3	541	4	353	1	0		0	15	001	4
67		15	max	166.258	2	169	15	015	15	0	15	0	1	0	15
68		4.0	min	-174.725	3	718	4	353	1	0	1_	0	15	0	4
69		16	max		2	21	15	015	15	0	15	0	1	0	15
70		47	min	-174.777	3	895	4	353	1_	0	1_	0	3	0	4
71		17	max	166.12	2	252	15	015	15	0	15	0	15	0	15
72		40	min	-174.829	3	-1.071	4	353	1	0	1_	0	1_	0	4
73		18	max	166.05	2	293 -1.248	15	015	15	0	<u>15</u> 1	0	15	0	15
74		40	min	-174.881	3		4	353	1	0	•	0	1_	0	4
75		19	max	165.981	2	335	15	015	15	0	15	0	15	0	1
76	N.4.4		min	-174.933	3	-1.425	4	353	1	0	1_	0	1	0	1
77	M4	1	max		1	0	1	045	15	0	1	0	3	0	1
78			mın	3.411	12	0	1	-1.016	1	0	1_	0	2	0	1
79		2	max		1	0	1	045	15	0	1	0	15	0	1
80			min	3.444	12	0	1	-1.016	1_	0	1_	0	1_	0	1
81		3		359.955	1	0	1	045	15	0	1	0	15	0	1
82			min	3.476	12	0	1	-1.016	1_	0	1	0	1_	0	1
83		4	max		1	0	1	045	15	0	1	0	15	0	1
84		_	min	3.508	12	0	1	-1.016	1_	0	1_	0	1_	0	1
85		5	max		1	0	1	045	15	0	1	0	15	0	1
86			min	3.541	12	0	1	-1.016	1	0	1	0	1_	0	1
87		6	max		1	0	1	045	15	0	1	0	15	0	1
88			min	3.573	12	0	1	-1.016	1_	0	1	0	1_	0	1
89		7	max		1	0	1	045	15	0	1	0	15	0	1
90			min	3.605	12	0	1	-1.016	1_	0	1	0	1_	0	1
91		8		360.279	1	0	1	045	15	0	1	0	15	0	1
92			min	3.638	12	0	1	-1.016	1_	0	1	0	1_	0	1
93		9	max		1	0	1	045	15	0	1	0	15	0	1
94			min	3.67	12	0	1	-1.016	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
95		10	max	360.408	1	0	1	045	15	0	1	0	15	0	1
96			min	3.702	12	0	1	-1.016	1	0	1	0	1	0	1
97		11	max	360.473	1	0	1	045	15	0	1	00	15	0	1
98			min	3.735	12	0	1	-1.016	1	0	1	0	1	0	1
99		12	max	360.538	1	0	1	045	15	0	1	0	15	0	1
100		10	min	3.767	12	0	1	<u>-1.016</u>	1_	0	1	001	1	0	1
101		13	max	360.602	1	0	1	<u>045</u>	15	0	1	0	15	0	1
102		4.4	min	3.8	12	0	1	-1.016	1	0	1	<u>001</u>	1	0	1
103		14	max		1	0	1	045	15	0	1	0	15	0	1
104		4.5	min	3.832	12	0	1	<u>-1.016</u>	1	0	1	001	1	0	1
105		15	max	360.732	1	0	1	045	15	0	1	0	15	0	1
106		4.0	min	3.864	12	0	1	<u>-1.016</u>	1	0	1	001	1	0	1
107		16	max	360.797	1	0	1	045	15	0	1	0	15	0	1
108			min	3.897	12	0	1	<u>-1.016</u>	1_	0	1	001	1	0	1
109		17	max	360.861	1	0	1	045	15	0	1	0	15	0	1
110		40	min	3.929	12	0	1	<u>-1.016</u>	1	0	1	001	1	0	1
111		18	max		1	0	1	045	15	0	1	0	15	0	1
112		40	min	3.961	12	0	1	-1.016	1	0	1	002	1	0	1
113		19	max		1	0	1	045	15	0	1	0	15	0	1
114	1.10	4	min	3.994	12	0	1	<u>-1.016</u>	1	0	1	002	1	0	1
115	<u>M6</u>	1	max	796.293	1	.656	4	.104	1	0	3	0	3	0	1
116				-1162.61	3	.154	15	189	3	0	10	0	9	0	1
117		2	max		1	.605	4	.104	1	0	3	0	3	0	15
118			min	-1162.516	3	.142	15	<u>189</u>	3	0	10	0	9	0	4
119		3	max	796.545	1	.554	4	.104	1	0	3	0	3	0	15
120				-1162.421	3	.13	15	189	3	0	10	0	10	0	4
121		4	max		1	.503	4	.104	1	0	3	0	3	0	15
122		_	min	-1162.327	3	.118	15	<u>189</u>	3	0	10	0	10	0	4
123		5		796.797	1	.452	4	.104	1	0	3	0	1	0	15
124			min	-1162.233	3	.103	12	189	3	0	10	0	10	0	4
125		6		796.923	1	.409	2	.104	1	0	3	0	1	0	15
126		7	min	-1162.138	3	.083	12	189	3	0	10	0	10	0	4
127		7	max		1	.37	2	.104	1	0	3	0	1	0	15
128			min	-1162.044	3	.063	12	189	3	0	10	0	3	0	4
129		8	max	797.175	1	.33	2	.104	1	0	3	0	1	0	15
130				-1161.949	3	.043	12	189	3	0	10	0	3	0	4
131		9	max	797.3	1	.29	2	.104	1	0	3	0	1	0	12
132		40	min	-1161.855	3	.023	12	189	3	0	10	0	3	0	4
133		10		797.426	1	.25	2	.104	1	0	3	0	1	0	12
134 135		11	min	797.552	<u>3</u>	003	2	189 .104	3	0	3	0	3	0	12
		11		-1161.666		.21				0		0	3	0	2
136		10			3	033	2	<u>189</u>	3	0	10			0	_
137		12		797.678 -1161.572	1	.17		.104	1	0	3	0	1	0	12
138		12		797.804	3	063	3	189	3	0	10	0	3	0	2
139		13		-1161.477	1	.13	2	.104	3	0	10	0		<u>0</u> 	12
140		1.1			3	093	3	<u>189</u>					3		_
141		14		797.93 -1161.383	1	.091	3	.104	3	0	3	0	3	0	12
142		15	min		3	122		<u>189</u>		0	10	0		0	_
143		15		798.056 -1161.289	1	.051	2	.104	3	0	3	<u> </u>	3	0 0	12
144		16	min		3	152	3	189	_	0	10		1		12
145		16		798.181	1	.011	2	.104	1	0	3	0		0	12
146		17	min	-1161.194	3	182	2	189	3	0	10	0	3	0	2
147		17		798.307	1	029		.104	1	0	3	0	1	0	12
148		40		-1161.1	3	212	3	189	3	0	10	0	3	0	2
149		18	max	798.433 -1161.005	1	05	15	.104	3	0	10	<u> </u>	1	<u>0</u> 	2
150		10	min		3	242	15	189				0	3		
151		19	шах	798.559	1	062	15	.104	1	0	3	U	1	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
152			min	-1160.911	3	272	3	189	3	0	10	0	3	0	2
153	M7	1		628.404	2	1.761	4	.023	3	0	1_	0	1	0	2
154			min	-533.426	3	.414	15	013	2	0	3	0	3	0	3
155		2	max	628.334	2	1.584	4	.023	3	0	1	0	1	0	2
156			min	-533.478	3	.372	15	013	2	0	3	0	3	0	3
157		3	max	628.265	2	1.408	4	.023	3	0	1	0	1	0	2
158			min	-533.53	3	.331	15	013	2	0	3	0	3	0	3
159		4	max	628.196	2	1.231	4	.023	3	0	1	0	1	0	2
160			min	-533.582	3	.289	15	013	2	0	3	0	3	0	3
161		5		628.126	2	1.054	4	.023	3	0	1	0	1	0	15
162				-533.634	3	.248	15	013	2	0	3	0	3	0	3
163		6	max		2	.877	4	.023	3	0	1	0	1	0	15
164				-533.686	3	.206	15	013	2	0	3	0	3	0	4
165		7	max	627.988	2	.7	4	.023	3	0	1	0	1	0	15
166				-533.738	3	.165	15	013	2	0	3	0	3	0	4
167		8	max		2	.523	4	.023	3	0	1	0	1	0	15
168			min		3	.123	15	013	2	0	3	0	3	001	4
169		9	max		2	.357	2	.023	3	0	1	0	1	0	15
170		9	min	-533.842	3	.069	12	013	2	0	3	0	3	001	4
		10				.22				_	<u>ა</u> 1	_	1	001 0	_
171 172		10	max	627.78 -533.894	2		3	.023	2	0	3	0	3		15
$\overline{}$		44			3	007		013				_	_	001	4
173		11	max	627.71	2	.082	2	.023	3_	0	1_	0	1	0	15
174		40		-533.946	3	11	3	013	2	0	3	0	3	001	4
175		12	max	627.641	2	043	15	.023	3_	0	_1_	0	1	0	15
176		10		-533.998	3	213	3	013	2	0	3	0	3	001	4
177		13	max		2	085	15	.023	3	0	1_	0	1	0	15
178			min		3	361	4	013	2	0	3	0	3	001	4
179		14	max		2	126	15	.023	3	0	_1_	0	1	0	15
180				-534.102	3	538	4	013	2	0	3	0	3	001	4
181		15		627.433	2	168	15	.023	3	0	_1_	0	1	0	15
182			min		3	714	4	013	2	0	3	0	3	0	4
183		16		627.364	2	21	15	.023	3	0	_1_	0	1	0	15
184			min	-534.206	3	891	4	013	2	0	3	0	3	0	4
185		17	max	627.295	2	251	15	.023	3	0	_1_	0	1	0	15
186			min	-534.258	3	-1.068	4	013	2	0	3	0	3	0	4
187		18	max	627.225	2	293	15	.023	3	0	1	0	1	0	15
188			min	-534.31	3	-1.245	4	013	2	0	3	0	3	0	4
189		19	max	627.156	2	334	15	.023	3	0	1	0	1	0	1
190			min	-534.362	3	-1.422	4	013	2	0	3	0	3	0	1
191	M8	1	max	960.806	1	0	1	.636	1	0	1	0	10	0	1
192				-20.421	3	0	1	519	3	0	1	0	1	0	1
193		2	max		1	0	1	.636	1	0	1	0	1	0	1
194			min		3	0	1	519	3	0	1	0	3	0	1
195		3	max	960.935	1	0	1	.636	1	0	1	0	1	0	1
196			min	-20.324	3	0	1	519	3	0	1	0	3	0	1
197		4	max	961	1	0	1	.636	1	0	<u> </u>	0	1	0	1
198			min	-20.276	3	0	1	519	3	0	1	0	3	0	1
199		5	max		1	0	1	.636	1	0	1	0	1	0	1
200			min	-20.227	3	0	1	519	3	0	1	0	3	0	1
201		6	max	961.129	<u></u>	0	1	.636	<u> </u>	0	1	0	1	0	1
202		0	min	-20.179	3	0	1	519	3	0	1	0	3	0	1
		7					1				1	_	1		
203		1	max		1	0	_	.636	1	0		0		0	1
204		0	min	-20.13	3	0	1	519	3	0	1_	0	3	0	
205		8	max		1_	0	1	.636	1_	0	1_	0	1	0	1
206			min	-20.082	3	0	1	519	3	0	1_	0	3	0	1
207		9	max		_1_	0	1	.636	1	0	1_	0	1	0	1
208			min	-20.033	3	0	1	519	3	0	1_	0	3	0	1

Model Name

Schletter, Inc.HCV

: HC\

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
209		10	max	961.388	1	0	1	.636	1	0	1	0	1	0	1
210			min	-19.984	3	0	1	519	3	0	1	0	3	0	1
211		11	max	961.453	1	0	1	.636	1	0	1	0	1	0	1
212			min	-19.936	3	0	1	519	3	0	1	0	3	0	1
213		12	max	961.517	1	0	1	.636	1	0	1	0	1	0	1
214			min	-19.887	3	0	1	519	3	0	1	0	3	0	1
215		13	max		1	0	1	.636	1	0	1	0	1	0	1
216		1.0	min	-19.839	3	0	1	519	3	0	1	0	3	0	1
217		14	max	961.647	1	0	1	.636	1	0	1	0	1	0	1
218		17	min	-19.79	3	0	1	519	3	0	1	0	3	0	1
219		15			1	0	1	.636	1	0	1	0	1	0	1
		15	max								_				
220		40	min	-19.742	3	0	1	519	3	0	1	0	3	0	1
221		16	max		1	0	1	.636	1	0	1	0	1	0	1
222			min	-19.693	3	0	1	519	3	0	1	0	3	0	1
223		17	max	961.841	1_	0	1_	.636	1_	0	1	0	1_	0	1
224			min	-19.645	3	0	1	519	3	0	1	0	3	0	1
225		18	max		1_	0	1	.636	1_	0	1	0	1_	0	1
226			min	-19.596	3	0	1	519	3	0	1	0	3	0	1
227		19	max	961.97	1	0	1	.636	1	0	1	.001	1	0	1
228			min	-19.548	3	0	1	519	3	0	1	0	3	0	1
229	M10	1	max	251.295	1	.65	4	005	15	0	1	0	1	0	1
230			min	-327.321	3	.153	15	145	1	0	3	0	3	0	1
231		2	max	251.421	1	.599	4	005	15	0	1	0	1	0	15
232			min	-327.227	3	.141	15	145	1	0	3	0	3	0	4
233		3	max	251.547	1	.548	4	005	15	0	1	0	1	0	15
234		1	min	-327.133	3	.129	15	145	1	0	3	0	3	0	4
		1							15	_	1				_
235		4	max		1	.496	4	005		0		0	1	0	15
236		-	min	-327.038	3	.117	15	145	1_	0	3	0	3	0	4
237		5	max		1	.445	4	005	15	0	1	0	1	0	15
238			min	-326.944	3	.105	15	145	1	0	3	0	3	0	4
239		6	max		1	.394	4	005	15	0	1	0	1	0	15
240			min	-326.849	3	.093	15	145	1	0	3	0	3	0	4
241		7	max		1_	.343	4	005	15	0	1	0	1_	0	15
242			min	-326.755	3	.081	15	145	1	0	3	0	3	0	4
243		8	max	252.177	1	.292	4	005	15	0	1	0	1	0	15
244			min	-326.661	3	.069	15	145	1	0	3	0	3	0	4
245		9	max	252.302	1	.241	4	005	15	0	1	0	1	0	15
246			min	-326.566	3	.057	15	145	1	0	3	0	3	0	4
247		10	max	252.428	1	.19	4	005	15	0	1	0	1	0	15
248			min	-326.472	3	.045	15	145	1	0	3	0	3	0	4
249		11	max	252.554	1	.141	2	005	15		1	0	15	0	15
250				-326.377	3	.033	15		1	0	3	0	3	0	4
251		12	max		1	.101	2	005	15	0	1	0	15	0	15
252		12	min	-326.283	3	.021	15	145	1	0	3	0	3	0	4
253		13			1	.061	2	005	15	0	1	0	15	0	15
254		13	min	-326.189	3	.009	12	145	1	0	3	0	3	0	4
		1.1											15		
255		14	max		1	.021	2	005	15	0	1	0		0	15
256		4 =	min		3	021	9	145	1_	0	3	0	3	0	4
257		15	max	253.058	1	015	15	005	15	0	1	0	15	0	15
258			min	-326	3	066	4	145	1	0	3	0	3	0	4
259		16	max		1	027	15	005	15	0	1	0	15	0	15
260			min	-325.905	3	117	4	145	1	0	3	0	3	0	4
261		17	max		1_	039	15	005	15	0	1	0	15	0	15
262			min	-325.811	3	168	4	145	1	0	3	0	1	0	4
263		18			1	051	15	005	15	0	1	0	15	0	15
264			min	-325.717	3	22	4	145	1	0	3	0	1	0	4
265		19	max		1	063	15		15	0	1	0	15	0	15
					•						<u> </u>	<u> </u>			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
266			min	-325.622	3	271	4	145	1	0	3	0	1	0	4
267	M11	1	max	166.854	2	1.761	4	.388	1	0	1	0	3	0	4
268			min	-174.65	3	.414	15	026	3	0	15	001	1	0	12
269		2	max	166.785	2	1.585	4	.388	1	0	1	0	3	0	2
270			min	-174.702	3	.372	15	026	3	0	15	001	1	0	3
271		3	max	166.715	2	1.408	4	.388	1	0	1	0	3	0	2
272			min	-174.754	3	.331	15	026	3	0	15	0	1	0	3
273		4	max	166.646	2	1.231	4	.388	1	0	1	0	3	0	15
274			min	-174.806	3	.289	15	026	3	0	15	0	1	0	3
275		5	max	166.577	2	1.054	4	.388	1	0	1	0	3	0	15
276		3		-174.858			15	026	3		15	0	1		
			min		3	.248				0			_	0	4
277		6	max	166.508	2	.877	4	.388	1	0	1	0	3	0	15
278		_	min	-174.91	3	.206	15	026	3	0	15	0	1	0	4
279		7	max	166.438	2	.7	4	.388	1	0	1	0	3	0	15
280			min	-174.962	3	.165	15	026	3	0	15	0	1	0	4
281		8	max	166.369	2	.524	4	.388	1	0	1	0	3	0	15
282			min	-175.014	3	.123	15	026	3	0	15	0	1	001	4
283		9	max	166.3	2	.347	4	.388	1	0	1	0	3	0	15
284			min	-175.066	3	.081	15	026	3	0	15	0	1	001	4
285		10	max	166.23	2	.17	4	.388	1	0	1	0	3	0	15
286			min	-175.118	3	.035	12	026	3	0	15	0	1	001	4
287		11	max	166.161	2	.017	2	.388	1	0	1	0	3	0	15
288			min	-175.17	3	054	3	026	3	0	15	0	1	001	4
289		12	max	166.092	2	043	15	.388	1	0	1	0	3	0	15
290		12	min	-175.222	3	184	4	026	3	0	15	0	1	001	4
291		13	max	166.022	2	085	15	.388	1	0	1	0	3	0	15
		13	-						3		15				
292		4.4	min	-175.274	3	361	4	026		0		0	1	001	4
293		14	max	165.953	2	126	15	.388	1	0	1	0	3	0	15
294			min	-175.326	3	537	4	026	3	0	15	0	1	001	4
295		15	max	165.884	2	168	15	.388	1	0	1	0	3	0	15
296			min	-175.378	3	714	4	026	3	0	15	0	2	0	4
297		16	max		2	209	15	.388	1	0	1	0	3	0	15
298			min	-175.43	3	891	4	026	3	0	15	0	10	0	4
299		17	max	165.745	2	251	15	.388	1	0	1	0	3	0	15
300			min	-175.482	3	-1.068	4	026	3	0	15	0	15	0	4
301		18	max	165.676	2	293	15	.388	1	0	1	0	1	0	15
302			min	-175.534	3	-1.245	4	026	3	0	15	0	15	0	4
303		19	max	165.606	2	334	15	.388	1	0	1	0	1	0	1
304			min	-175.586	3	-1.422	4	026	3	0	15	0	15	0	1
305	M12	1	max	359.58	1	0	1	2.319	1	0	1	0	2	0	1
306	2		min		12	0	1	.096	15		1	0	3	0	1
307		2	max		1	0	1	2.319	1	0	1	0	1	0	1
308			min	3.805	12	0	1	.096	15	0	1	0	15	0	1
309		3	max	359.71	1	0	1	2.319	1	0	1	0	1	0	1
310		3	min	3.837	12	0	1	.096	15	0	1	0	15	0	1
		4					1				1				-
311		4	max		1	0		2.319	1	0	-	0	1	0	1
312			min	3.869	12	0	1	.096	15	0	1	0	15	0	1
313		5	max	359.839	1	0	1	2.319	1	0	1	0	1	0	1
314			min	3.902	12	0	1	.096	15	0	1	0	15	0	1
315		6	max	359.904	1	0	1	2.319	1	0	1	.001	1	0	1
316			min	3.934	12	0	1	.096	15	0	1	0	15	0	1
317		7	max	359.969	1	0	1	2.319	1	0	1	.001	1	0	1
318			min	3.966	12	0	1	.096	15	0	1	0	15	0	1
319		8	max	360.033	1	0	1	2.319	1	0	1	.001	1	0	1
320			min	3.999	12	0	1	.096	15	0	1	0	15	0	1
321		9	max	360.098	1	0	1	2.319	1	0	1	.002	1	0	1
322			min	4.031	12	0	1	.096	15	0	1	0	15	0	1
ULL			1111111	7.001	14	U		.000	IU	U		U	10	U	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	360.163	1	0	1	2.319	1	0	1	.002	1	0	1
324			min	4.063	12	0	1	.096	15	0	1	0	15	0	1
325		11	max	360.227	1	0	1	2.319	1	0	1	.002	1	0	1
326			min	4.096	12	0	1	.096	15	0	1	0	15	0	1
327		12	max	360.292	1	0	1	2.319	1	0	1	.002	1	0	1
328			min	4.128	12	0	1	.096	15	0	1	0	15	0	1
329		13	max	360.357	1	0	1	2.319	1	0	1	.003	1	0	1
330			min	4.16	12	0	1	.096	15	0	1	0	15	0	1
331		14	max	360.421	1	0	1	2.319	1	0	1	.003	1	0	1
332			min	4.193	12	0	1	.096	15	0	1	0	15	0	1
333		15	max	360.486	1	0	1	2.319	1	0	1	.003	1	0	1
334			min	4.225	12	0	1	.096	15	0	1	0	15	0	1
335		16	max	360.551	1	0	1	2.319	1	0	1	.003	1	0	1
336			min	4.257	12	0	1	.096	15	0	1	0	15	0	1
337		17	max	360.616	1	0	1	2.319	1	0	1	.003	1	0	1
338			min	4.29	12	0	1	.096	15	0	1	0	15	0	1
339		18	max	360.68	1	0	1	2.319	1	0	1	.004	1	0	1
340			min	4.322	12	0	1	.096	15	0	1	0	15	0	1
341		19	max	360.745	1	0	1	2.319	1	0	1	.004	1	0	1
342			min	4.355	12	0	1	.096	15	0	1	0	15	0	1
343	M1	1	max	114.735	1	341.407	3	-1.903	15	0	1	.09	1	0	2
344			min	4.659	15	-248.51	1	-45.888	1	0	3	.004	15	0	3
345		2	max	114.875	1	341.226	3	-1.903	15	0	1	.08	1	.054	1
346			min	4.701	15	-248.752	1	-45.888	1	0	3	.003	15	074	3
347		3	max	88.065	3	5.78	9	-1.89	15	0	12	.07	1	.107	1
348			min	-12.444	10	-23.789	2	-45.751	1	0	1	.003	15	147	3
349		4	max	88.17	3	5.579	9	-1.89	15	0	12	.06	1	.109	2
350			min	-12.328	10	-24.031	2	-45.751	1	0	1	.002	15	144	3
351		5	max	88.275	3	5.377	9	-1.89	15	0	12	.05	1	.114	2
352			min	-12.212	10	-24.273	2	-45.751	1	0	1	.002	15	141	3
353		6	max	88.379	3	5.175	9	-1.89	15	0	12	.04	1	.12	2
354			min	-12.095	10	-24.515	2	-45.751	1	0	1	.002	15	138	3
355		7	max	88.484	3	4.974	9	-1.89	15	0	12	.03	1	.125	2
356			min	-11.979	10	-24.757	2	-45.751	1	0	1	.001	15	135	3
357		8	max	88.589	3	4.772	9	-1.89	15	0	12	.02	1	.13	2
358			min	-11.863	10	-24.998	2	-45.751	1	0	1	0	15	132	3
359		9	max	88.693	3	4.571	9	-1.89	15	0	12	.01	1	.136	2
360			min	-11.746	10	-25.24	2	-45.751	1	0	1	0	15	129	3
361		10	max	88.798	3	4.369	9	-1.89	15	0	12	.001	3	.141	2
362			min	-11.63	10	-25.482	2	-45.751	1	0	1	0	10	126	3
363		11	max	88.903	3	4.168	9	-1.89	15	0	12	0	3	.147	2
364			min	-11.514	10	-25.724	2	-45.751	1	0	1	01	1	122	3
365		12	1		3	3.966	9	-1.89	15	0	12	0	12	.153	2
366		· -	min		10	-25.966	2	-45.751	1	0	1	02	1	119	3
367		13			3	3.765	9	-1.89	15	0	12	001	15	.158	2
368			min	-11.281	10	-26.208	2	-45.751	1	0	1	03	1	116	3
369		14	max		3	3.563	9	-1.89	15	0	12	002	15	.164	2
370			min		10	-26.449	2	-45.751	1	0	1	04	1	113	3
371		15	max		3	3.362	9	-1.89	15	0	12	002	15	.17	2
372			min	-11.048	10	-26.691	2	-45.751	1	0	1	049	1	109	3
373		16	max		2	111.555	2	-1.904	15	0	1	002	15	.174	2
374			min	-5.904	3	-162.416	3	-46.053	1	0	12	06	1	105	3
375		17	max		2	111.313	2	-1.904	15	0	1	003	15	.15	2
376			min	-5.8	3	-162.598	3	-46.053	1	0	12	003	1	069	3
377		18	max	- 5.8 -4.692	15	347.504	2	-1.949	15	0	3	003	15	.076	2
378		10	min	-114.857	1	-159.22	3	-47.157	1	0	2	003 08	1	035	3
379		10	max		15	347.262	2	-1.949	15	0	3	004	15	<u>035</u> 0	2
319		l 19	шах	-4.05	เข	341.202		-1.545	LΙΌ	U	J	004	l 10	U	

Model Name

Schletter, Inc. HCV

: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

380	Member	Sec	min	Axial[lb]	LC 1	y Shear[lb]	LC 3	z Shear[lb] -47.157	LC 1	Torque[k-ft]	LC 2	y-y Mome 09	LC 1	z-z Mome	LC 3
381	M5	1	max	<u>-114.718</u> 259.302	1	1120.889	3	0	10	0	1	.007	3	0	3
382	IVIO		min	6.959	12	-815.531	1	-54.465	3	0	3	0	10	0	2
383		2	max	259.442	1	1120.708	3	0	10	0	1	.001	1	.176	1
384			min	7.028	12	-815.773	1	-54.465	3	0	3	005	3	243	3
385		3	max	268.247	3	5.626	9	6.162	3	0	3	_ 003 _	1	.35	1
386		1	min	-48.197	10	-87.144	2	699	1	0	1	016	3	481	3
387		4	max	268.352	3	5.424	9	6.162	3	0	3	0	1	.358	1
388		_	min	-48.081	10	-87.386	2	699	1	0	1	015	3	47	3
389		5	max	268.457	3	5.223	9	6.162	3	0	3	0	1	.377	2
390			min	-47.965	10	-87.628	2	699	1	0	1	014	3	459	3
391		6	max	268.562	3	5.021	9	6.162	3	0	3	0	1	.396	2
392			min	-47.848	10	-87.869	2	699	1	0	1	012	3	448	3
393		7	max	268.666	3	4.82	9	6.162	3	0	3	0	1	.415	2
394			min	-47.732	10	-88.111	2	699	1	0	1	011	3	437	3
395		8	max	268.771	3	4.618	9	6.162	3	0	3	0	1	.434	2
396			min	-47.615	10	-88.353	2	699	1	0	1	01	3	426	3
397		9	max	268.876	3	4.416	9	6.162	3	0	3	0	1	.453	2
398			min	-47.499	10	-88.595	2	699	1	0	1	008	3	415	3
399		10	max	268.98	3	4.215	9	6.162	3	0	3	0	10	.472	2
400			min	-47.383	10	-88.837	2	699	1	0	1	007	3	404	3
401		11	max	269.085	3	4.013	9	6.162	3	0	3	0	10	.492	2
402			min	-47.266	10	-89.078	2	699	1	0	1	006	3	393	3
403		12	max	269.19	3	3.812	9	6.162	3	0	3	0	10	.511	2
404			min	-47.15	10	-89.32	2	699	1	0	1	004	3	381	3
405		13	max	269.295	3	3.61	9	6.162	3	0	3	0	10	.53	2
406			min	-47.034	10	-89.562	2	699	1	0	1	003	3	37	3
407		14	max	269.399	3	3.409	9	6.162	3	0	3	0	10	.55	2
408			min	-46.917	10	-89.804	2	699	1	0	1	002	3	359	3
409		15	max	269.504	3	3.207	9	6.162	3	0	3	0	10	.569	2
410			min	-46.801	10	-90.046	2	699	1	0	1	0	1	348	3
411		16	max	300.635	2	437.178	2	6.133	3	0	3	0	3	.584	2
412			min	-23.194	3	-499.379	3	713	1	0	10	0	1	332	3
413		17	max	300.775	2	436.936	2	6.133	3	0	3	.002	3	.49	2
414			min	-23.089	3	-499.56	3	713	1	0	10	001	1	224	3
415		18	max	-8.633	12	1136.165	2	5.615	3	0	3	.003	3	.246	2
416			min	-259.468	1	-517.52	3	161	1	0	1	001	1	112	3
417		19	max	-8.563		1135.923	2	5.615	3	0	3	.004	3	0	3
418			min	-259.328	1	-517.701	3	161	1	0	1	001	1	0	2
419	<u>M9</u>	1_	max	114.313	1	341.361	3	59.305	3	0	3	004	15	0	2
420			min	4.638	15			2.183	15	0	1	089	1	0	3
421		2	max		1_	341.18	3	59.305	3	0	3	002	12	.054	1
422		_	min	4.68	15	-248.75	1	2.183	15	0	1	079	1	074	3
423		3	max		3	5.757	9	44.652	1	0	1	.01	3	.107	1
424		4	min	-11.991	10	-23.799	2	809	3	0	15	068	1	147	3
425		4	max	88.156	3	5.556	9	44.652	1	0	1	.01	3	.109	2
426		-	min	-11.874	10	-24.04	2	809	3	0	15	058	1	144	3
427		5	max	88.26	3	5.354	9	44.652	1	0	1	.01	3	.114	2
428		6	min	-11.758	10	-24.282	2	809	3	0	15	048	1	141	3
429		6	max		3	5.152 -24.524	9	44.652	3	0	15	.01 039	1	.12 138	3
		7	min	-11.642	10			809				.009		.125	
431		7	max min	88.47 -11.525	3 10	4.951 -24.766	9	44.652 809	3	0	15	029	1	135	3
432		8	max	88.574	3	4.749	9	44.652	1	0	1	.009	3	.13	2
434		0	min	-11.409	10	-25.008	2	809	3	0	15	019	1	132	3
435		9	max	88.679	3	4.548	9	44.652	1	0	1	.009	3	.136	2
436		3	min	-11.292	10	-25.249	2	809	3	0	15	01	1	129	3
1 00			HIIII	11.232	10	20.243		.003	J	U	IJ	.01		.123	J

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]					LC	Torque[k-ft]	LC				
437		10	max	88.784	3	4.346	9	44.652	1	0	1	.009	3	.141	2
438			min	-11.176	10	-25.491	2	809	3	0	15	0	1	126	3
439		11	max	88.889	3	4.145	9	44.652	1	0	1	.01	1	.147	2
440			min	-11.06	10	-25.733	2	809	3	0	15	0	15	122	3
441		12	max	88.993	3	3.943	9	44.652	1	0	1	.019	1	.152	2
442			min	-10.943	10	-25.975	2	809	3	0	15	0	15	119	3
443		13	max		3	3.742	9	44.652	1	0	1	.029	1	.158	2
444			min	-10.827	10	-26.217	2	809	3	0	15	.001	15	116	3
445		14	max	89.203	3	3.54	9	44.652	1	0	1	.039	1	.164	2
446		17	min	-10.711	10	-26.459	2	809	3	0	15	.002	15	113	3
447		15			3	3.339	9	44.652		0	1	.002	1	.17	2
		15	max						1						
448		40	min	-10.594	10	-26.7	2	809	3	0	15	.002	15	109	3
449		16	max		2	111.233	2	44.988	1	0	15	.059	1	.174	2
450			min	-6.263	3	-162.888	3	831	3	0	1	.002	15	105	3
451		17	max	92.001	2	110.991	2	44.988	1	0	15	.068	1	.15	2
452			min	-6.159	3	-163.07	3	831	3	0	1	.003	15	069	3
453		18	max	-4.677	15	347.504	2	47.333	1	0	2	.079	1	.076	2
454			min	-114.445	1	-159.214	3	355	3	0	3	.003	15	035	3
455		19	max	-4.635	15	347.262	2	47.333	1	0	2	.089	1	0	2
456			min	-114.305	1	-159.396	3	355	3	0	3	.004	15	0	3
457	M13	1	max	59.301	3	248.184	1	-4.638	15	0	2	.089	1	0	1
458			min	2.183	15	-341.375	3	-114.303	1	0	3	.004	15	0	3
459		2	max	59.301	3	175.456	1	-3.546	15	0	2	.025	1	.186	3
460		_	min	2.183	15	-241.182	3	-87.172	1	0	3	0	10	135	1
461		3	max	59.301	3	102.729	1	-2.454	15	0	2	.006	3	.308	3
462		-	min	2.183	15	-140.99	3	-60.042	1	0	3	022	1	224	1
		1							15						3
463		4	max		3	30.001	1	-1.362		0	2	.002	3	.366	
464		-	min	2.183	15	-40.798	3	-32.911	1	0	3	052	1	267	1
465		5	max	59.301	3	59.395	3	.317	10	0	2	0	3	.36	3
466			min	2.183	15	-42.727	1	-5.78	1	0	3	065	1	263	1
467		6	max	59.301	3	159.587	3	21.35	1	0	2	0	12	.29	3
468			min	2.183	15	-115.454	1	-1.077	3	0	3	06	1	212	1
469		7	max	59.301	3	259.779	3	48.481	1	0	2	0	12	.156	3
470			min	2.183	15	-188.182	1	.436	12	0	3	037	1	115	1
471		8	max	59.301	3	359.972	3	75.612	1	0	2	.003	2	.028	1
472			min	2.183	15	-260.91	1	1.496	12	0	3	0	3	042	3
473		9	max	59.301	3	460.164	3	102.742	1	0	2	.059	1	.218	1
474			min	2.183	15	-333.637	1	2.555	12	0	3	.001	12	304	3
475		10	max	59.301	3	560.356	3	129.873	1	0	2	.134	1	.455	1
476			min	2.183	15	-406.365	1	3.615	12	0	3	.003	12	63	3
477		11	max		1	333.637	•	-2.277	12		3	.058	1	.218	1
478			min	1.903	15			-102.32	1	0	2	005	3	304	3
479		12	max		1	260.909	1	-1.218	12	0	3	.003	2	.028	1
480		14	min	1.903	15	-359.972	3	-75.189	1	0	2	006	3	042	3
481		12	max			188.182	1	072	3		3	008	15	.156	
		13			11					0	2				3
482		4.4	min	1.903	15	-259.779	3	-48.059	1	0		038	1	115	1
483		14	max		1	115.454	1	1.517	3	0	3	002	15	.29	3
484			min	1.903	15	-159.587	3	-20.928	1	0	2	06	1	212	1
485		15	max	46.012	_1_	42.726	1	6.203	1	0	3	003	15	.36	3
486			min	1.903	15	-59.395	3	317	10	0	2	064	1	263	1
487		16	max		1	40.798	3	33.333	1	0	3	002	12	.366	3
488			min	1.903	15	-30.001	1	1.383	15	0	2	052	1	267	1
489		17	max	46.012	1	140.99	3	60.464	1	0	3	0	3	.308	3
490			min	1.903	15	-102.729	1	2.475	15	0	2	022	1	224	1
491		18	max		1	241.183	3	87.594	1	0	3	.026	1	.186	3
492			min	1.903	15	-175.457	1	3.567	15	Ö	2	0	10	135	1
493		19			1	341.375	3	114.725	1	0	3	.09	1	0	1
			mux	10.012		011.070		1111120			<u> </u>	.00			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	. LC
494			min	1.903	15	-248.184	1	4.659	15	0	2	.004	15	0	3
495	M16	1	max	.358	3	347.439	2	-4.635	15	0	3	.089	1	0	2
496			min	-47.202	1	-159.421	3	-114.316	1	0	2	.004	15	0	3
497		2	max	.358	3	245.64	2	-3.543	15	0	3	.025	1	.087	3
498			min	-47.202	1	-112.94	3	-87.186	1	0	2	0	10	189	2
499		3	max	.358	3	143.842	2	-2.451	15	0	3	0	12	.144	3
500			min	-47.202	1	-66.458	3	-60.055	1	0	2	022	1	314	2
501		4	max	.358	3	42.043	2	-1.359	15	0	3	002	15	.172	3
502			min	-47.202	1	-19.976	3	-32.924	1	0	2	052	1	373	2
503		5	max	.358	3	26.506	3	.305	10	0	3	003	15	.17	3
504			min	-47.202	1	-59.756	2	-5.794	1	0	2	065	1	368	2
505		6	max	.358	3	72.987	3	21.337	1	0	3	002	15	.138	3
506			min	-47.202	1	-161.554	2	326	3	0	2	06	1	297	2
507		7	max	.358	3	119.469	3	48.468	1	0	3	002	15	.077	3
508			min	-47.202	1	-263.353	2	.906	12	0	2	037	1	161	2
509		8	max	.358	3	165.951	3	75.598	1	0	3	.003	2	.04	2
510			min	-47.202	1	-365.152	2	1.965	12	0	2	004	3	015	3
511		9	max	.358	3	212.433	3	102.729	1	0	3	.059	1	.305	2
512			min	-47.202	1	-466.95	2	3.025	12	0	2	002	3	135	3
513		10	max	-1.949	15	-10.573	15	129.86	1	0	15	.134	1	.636	2
514			min	-47.202	1	-568.749	2	-6.666	3	0	2	.004	12	286	3
515		11	max	-1.949	15	466.95	2	-3.42	12	0	2	.059	1	.305	2
516			min	-47.034	1	-212.433	3	-102.317	1	0	3	.001	12	135	3
517		12	max	-1.949	15	365.152	2	-2.36	12	0	2	.003	2	.04	2
518			min	-47.034	1	-165.951	3	-75.186	1	0	3	0	3	015	3
519		13	max	-1.949	15	263.353	2	-1.301	12	0	2	002	15	.077	3
520			min	-47.034	1	-119.469	3	-48.056	1	0	3	038	1	161	2
521		14	max	-1.949	15	161.554	2	241	12	0	2	002	12	.138	3
522			min	-47.034	1	-72.987	3	-20.925	1	0	3	06	1	297	2
523		15	max	-1.949	15	59.756	2	6.206	1	0	2	002	12	.17	3
524			min	-47.034	1	-26.506	3	305	10	0	3	064	1	368	2
525		16	max	-1.949	15	19.976	3	33.336	1	0	2	001	12	.172	3
526			min	-47.034	1	-42.043	2	1.374	15	0	3	052	1	373	2
527		17	max	-1.949	15	66.458	3	60.467	1	0	2	0	3	.144	3
528			min	-47.034	1	-143.842	2	2.466	15	0	3	022	1	314	2
529		18	max	-1.949	15	112.94	3	87.598	1	0	2	.026	1	.087	3
530			min	-47.034	1	-245.64	2	3.558	15	0	3	0	10	189	2
531		19	max	-1.949	15	159.421	3	114.728	1	0	2	.09	1	0	2
532			min	-47.034	1	-347.439	2	4.65	15	0	3	.004	15	0	3
533	M15	1	max	0	1	2.022	4	.068	3	0	9	0	9	0	1
534			min	-69.539	3	0	1	021	9	0	3	0	3	0	1
535		2	max	0	1	1.797	4	.068	3	0	9	0	9	0	1
536			min	-69.61	3	0	1	021	9	0	3	0	3	0	4
537		3	max	0	1	1.573	4	.068	3	0	9	0	9	0	1
538			min	-69.68	3	0	1	021	9	0	3	0	3	001	4
539		4	max	0	1	1.348	4	.068	3	0	9	0	9	0	1
540			min	-69.751	3	0	1	021	9	0	3	0	3	002	4
541		5	max	0	1	1.123	4	.068	3	0	9	0	9	0	1
542			min	-69.821	3	0	1	021	9	0	3	0	3	002	4
543		6	max	0	1	.899	4	.068	3	0	9	0	9	0	1
544		Ĭ	min	-69.892	3	0	1	021	9	0	3	0	3	003	4
545		7	max	0	1	.674	4	.068	3	0	9	0	3	0	1
546			min	-69.962	3	0	1	021	9	0	3	0	9	003	4
547		8	max	0	1	.449	4	.068	3	0	9	0	3	0	1
548			min	-70.033	3	0	1	021	9	0	3	0	9	003	4
549		9	max	0	1	.225	4	.068	3	0	9	0	3	<u>.005</u>	1
550			min	-70.103	3	0	1	021	9	0	3	0	9	003	4
000			111111	70.100				.021						.000	

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]		y-y Mome		z-z Mome	LC
551		10	max	0	1	0	1	.068	3	0	9	0	3	0	1
552			min	-70.174	3	0	1	021	9	0	3	0	9	003	4
553		11	max	0	1	0	1	.068	3	0	9	0	3	0	1
554			min	-70.244	3	225	4	021	9	0	3	0	9	003	4
555		12	max	0	1	0	1	.068	3	0	9	0	3	0	1
556			min	-70.315	3	449	4	021	9	0	3	0	9	003	4
557		13	max	0	1	0	1	.068	3	0	9	0	3	0	1
558			min	-70.385	3	674	4	021	9	0	3	0	9	003	4
559		14	max	0	1	0	1	.068	3	0	9	0	3	0	1
560			min	-70.456	3	899	4	021	9	0	3	0	9	003	4
561		15	max	0	1	0	1	.068	3	0	9	0	3	0	1
562			min	-70.526	3	-1.123	4	021	9	0	3	0	9	002	4
563		16	max	0	1	0	1	.068	3	0	9	0	3	0	1
564			min	-70.597	3	-1.348	4	021	9	0	3	0	9	002	4
565		17	max	0	1	0	1	.068	3	0	9	0	3	0	1
566			min	-70.667	3	-1.573	4	021	9	0	3	0	9	001	4
567		18	max	0	1	0	1	.068	3	0	9	0	3	0	1
568			min	-70.738	3	-1.797	4	021	9	0	3	0	9	0	4
569		19	max	0	1	0	1	.068	3	0	9	0	3	0	1
570			min	-70.808	3	-2.022	4	021	9	0	3	0	9	0	1
571	M16A	1	max	0	10	2.022	4	.028	1	0	3	0	3	0	1
572			min	-69.863	3	0	10	028	3	0	2	0	1	0	1
573		2	max	0	10	1.797	4	.028	1	0	3	0	3	0	10
574			min	-69.792	3	0	10	028	3	0	2	0	1	0	4
575		3	max	0	10	1.573	4	.028	1	0	3	0	3	0	10
576			min	-69.722	3	0	10	028	3	0	2	0	1	001	4
577		4	max	0	10	1.348	4	.028	1	0	3	0	3	0	10
578			min	-69.651	3	0	10	028	3	0	2	0	1	002	4
579		5	max	0	10	1.123	4	.028	1	0	3	0	3	0	10
580			min	-69.581	3	0	10	028	3	0	2	0	1	002	4
581		6	max	00.001	10	.899	4	.028	1	0	3	0	3	0	10
582			min	-69.51	3	0	10	028	3	0	2	0	1	003	4
583		7	max	0	10	.674	4	.028	1	0	3	0	3	0	10
584			min	-69.44	3	0	10	028	3	0	2	0	1	003	4
585		8	max	0	10	.449	4	.028	1	0	3	0	3	0	10
586			min	-69.369	3	0	10	028	3	0	2	0	1	003	4
587		9	max	0	10	.225	4	.028	1	0	3	0	3	0	10
588		- 3	min	-69.299	3	0	10	028	3	0	2	0	1	003	4
589		10	max	_ -03.233 _ 0	10	0	1	.028	1	0	3	0	3	0	10
590		10	min	-69.228	3	0	1	028	3	0	2	0	1	003	4
591		11	max		10	0	10	.028	1	0	3	0	3	003 0	10
592			min	-69.158	3	225	4	028	3	0	2	0	1	003	4
593		12	max	0 -09.136	10	0	10	.028	1	0	3	0	3	003 0	10
594		12	min	-69.087	3	449	4	028	3	0	2	0	1	003	4
595		13	max	09.067	10	449 0	10	.028	1	0	3	0	2	003 0	10
596		13	min	-69.017	3	674	4	028	3	0	2	0	3	003	4
597		14		0 -69.017	10	074 0	10	.028	1	0	3	0	2	003 0	10
		14	max											_	
598		4.5	min	-68.946	3	899	4	028	3	0	2	0	3	003	4
599		15	max	.088	2	1 1 2 2	10	.028	1	0	3	0	2	0	10
600		40	min	<u>-68.876</u>	3	-1.123	4	028	3	0	2	0	3	002	4
601		16	max	.182	2	0	10	.028	1	0	3	0	2	0	10
602		47	min	-68.805	3	-1.348	4	028	3	0	2	0	3	002	4
603		17	max	.276	2	0	10	.028	1	0	3	0	1	0	10
604		4.0	min	<u>-68.735</u>	3	-1.573	4	028	3	0	2	0	3	001	4
605		18	max	.37	2	0	10	.028	1	0	3	0	1	0	10
606			min	-68.664	3	-1.797	4	028	3	0	2	0	3	0	4
607		19	max	.464	2	0	10	.028	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-68.594	3	-2.022	4	028	3	0	2	0	3	0	1

Envelope Member Section Deflections

Member Sec Xin IC Xin IC Zin IC Xin Xin IC Xin Xin IC Xin		HOPE MEITIK		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iii Deile											
2		Member	Sec			LC	y [in]	LC	z [in]							
3	1	<u>M2</u>	1_			•										
A				min												_
Section Sect	3		2	max						1		<u>15</u>				2
Fig.				min	003	3	009	3		3			4634.521	2	4567.728	1
Name	_ 5		3	max	.002	_	.008	2	.008	1		<u>15</u>		3		2
Section Sect	6			min		3	009	3		3	-6.603e-4			2		1
9			4	max	.002	1	.007	2	.007	1	-2.618e-5	15		1	NC	2
10	8			min	003	3	008	3	001	3	-6.294e-4	1	5651.025	2	5418.371	1
11	9		5	max	.002	1	.006	2	.007	1	-2.489e-5	15	NC	1	NC	2
12	10			min	003	3	008	3	0	3		1	6320.356	2	5973.656	1
13	11		6	max	.002	1	.006	2	.006	1	-2.359e-5	15	NC	1	NC	2
14	12			min	003	3	007	3	0	3	-5.677e-4	1	7137.176	2	6647.87	1
15	13		7	max	.002	1	.005	2	.005	1	-2.229e-5	15	NC	1	NC	2
16	14			min	002	3	007	3	0	3	-5.368e-4	1	8145.933	2	7477.002	1
17	15		8	max	.001	1	.004	2	.005	1	-2.1e-5	15	NC	1	NC	2
18	16			min	002	3	007	3	0	3	-5.06e-4	1	9409.379	2	8512.192	1
10	17		9	max	.001	1	.004	2	.004	1	-1.97e-5	15	NC	1	NC	2
Description	18			min	002	3	006	3	0	3	-4.751e-4	1	NC	1	9828.174	1
11	19		10	max	.001	1	.003	2	.003	1	-1.84e-5	15	NC	1	NC	1
122	20			min	002	3	006	3	0	3	-4.442e-4	1	NC	1	NC	1
12 max	21		11	max	.001	1	.002	2	.003	1	-1.711e-5	15	NC	1	NC	1
24	22			min	002	3	005	3	0	3	-4.134e-4	1	NC	1	NC	1
13 max	23		12	max	0	1	.002	2	.002	1	-1.581e-5	15	NC	1	NC	1
Decomposition Color Colo	24			min	001	3	005	3	0	3	-3.825e-4	1	NC	1	NC	1
14 max	25		13	max	0	1	.002	2	.002	1	-1.452e-5	15	NC	1	NC	1
Description	26			min	001	3	004	3	0	3	-3.516e-4	1	NC	1	NC	1
15 max	27		14	max	0	1	.001	2	.001	1	-1.322e-5	15	NC	1	NC	1
30	28			min	0	3	003	3	0	3	-3.208e-4	1	NC	1	NC	1
31	29		15	max	0	1	0	2	0	1	-1.192e-5	15	NC	1	NC	1
Signature Sign	30			min	0	3	003	3	0	3	-2.899e-4	1	NC	1	NC	1
17 max	31		16	max	0	1	0	2	0	1	-1.063e-5	15	NC	1	NC	1
34 min 0 3 001 3 0 3 -2.282e-4 1 NC 1 NC 1 35 18 max 0 1 0 2 0 1 -8.033e-6 15 NC 1 NC 1 36 min 0 3 0 3 -1.973e-4 1 NC 1 NC 1 37 19 max 0 1 0 1 -6.641e-6 12 NC 1 NC 1 38 min 0 1 0 1 -6.641e-6 12 NC 1 NC 1 39 M3 1 max 0 1 0 1 -7.665e-4 1 NC 1 NC 1 40 min 0 1 0 1 7.85e-5 1 NC 1 NC 1 41 2 max<	32			min	0	3	002	3	0	3		1	NC	1	NC	1
34 min 0 3 001 3 0 3 -2.282e-4 1 NC 1 NC 1 35 18 max 0 1 0 2 0 1 -8.033e-6 15 NC 1 NC 1 36 min 0 3 0 3 -1.973e-4 1 NC 1 NC 1 37 19 max 0 1 0 1 -6.641e-6 12 NC 1 NC 1 38 min 0 1 0 1 -6.641e-6 12 NC 1 NC 1 39 M3 1 max 0 1 0 1 -7.665e-4 1 NC 1 NC 1 40 min 0 1 0 1 7.85e-5 1 NC 1 NC 1 41 2 max<	33		17	max	0	1	0	2	0	1	-9.33e-6	15	NC	1	NC	1
36 min 0 3 0 3 -1.973e-4 1 NC 1 NC 1 37 19 max 0 1 0 1 -6.641e-6 12 NC 1 NC 1 38 min 0 1 0 1 0 1 -1.665e-4 1 NC 1 NC 1 39 M3 1 max 0 1 0 1 7.85e-5 1 NC 1 NC 1 40 min 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43	34			min	0	3	001	3	0	3	-2.282e-4	1	NC	1	NC	1
37 19 max 0 1 0 1 -6.641e-6 12 NC 1 NC 1 38 min 0 1 0 1 -1.665e-4 1 NC 1 NC 1 39 M3 1 max 0 1 0 1 0 1 7.85e-5 1 NC 1 NC 1 40 min 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC	35		18	max	0	1	0	2	0	1	-8.033e-6	15	NC	1	NC	1
38 min 0 1 0 1 -1.665e-4 1 NC 1 NC 1 39 M3 1 max 0 1 0 1 7.85e-5 1 NC 1 NC 1 40 min 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 <	36			min	0	3	0	3	0	3	-1.973e-4	1	NC	1	NC	1
39 M3 1 max 0 1 0 1 7.85e-5 1 NC 1 NC 1 40 min 0 1 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.336e-4	37		19	max	0	1	0	1	0	1	-6.641e-6	12	NC	1	NC	1
39 M3 1 max 0 1 0 1 7.85e-5 1 NC 1 NC 1 40 min 0 1 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.336e-4	38			min	0	1	0	1	0	1		1	NC	1	NC	1
40 min 0 1 0 1 0 1 3.178e-6 15 NC 1 NC 1 41 2 max 0 3 0 2 0 12 9.588e-5 1 NC 1 NC 1 42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6		M3	1	max	0	1	0	1	0	1		1	NC	1	NC	1
42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6					0	1	0	1	0	1		15	NC	1	NC	1
42 min 0 2 0 3 0 1 3.9e-6 15 NC 1 NC 1 43 3 max 0 3 0 2 0 12 1.133e-4 1 NC 1 NC 1 44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6	41		2					2					NC		NC	1
44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>2</td> <td>0</td> <td></td> <td>0</td> <td>1</td> <td></td> <td>15</td> <td>NC</td> <td>1</td> <td></td> <td>1</td>					0	2	0		0	1		15	NC	1		1
44 min 0 2 002 3 0 1 4.621e-6 15 NC 1 NC 1 45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 </td <td>43</td> <td></td> <td>3</td> <td></td> <td>0</td> <td>3</td> <td>0</td> <td></td> <td>0</td> <td>12</td> <td>1.133e-4</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	43		3		0	3	0		0	12	1.133e-4	1	NC	1	NC	1
45 4 max 0 3 0 2 0 12 1.306e-4 1 NC 1 NC 1 46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 15 NC 1 NC 1							002		0			15		1		1
46 min 0 2 003 3 0 1 5.342e-6 15 NC 1 NC 1 47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 15 NC 1 NC 1			4		0	3	0		0	12		1	NC	1	NC	1
47 5 max 0 3 0 2 0 3 1.48e-4 1 NC 1 NC 1 48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 15 NC 1 NC 1	46					2	003		0	1		15		1		1
48 min 0 2 003 3 0 1 6.064e-6 15 NC 1 NC 1 49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 15 NC 1 NC 1			5		0				0	3	1.48e-4			1		1
49 6 max 0 3 0 2 0 3 1.654e-4 1 NC 1 NC 1 50 min 0 2 004 3 0 1 6.785e-6 15 NC 1 NC 1					0		003		0			15		1		1
50 min 0 2004 3 0 1 6.785e-6 15 NC 1 NC 1	49		6	max	0	3	0		0	3		1	NC	1	NC	1
	50				0		004	3	0	1		15	NC	1	NC	1
	51		7	max	0	3	0	2	0	3	1.828e-4	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC		LC	(n) L/z Ratio	
52			min	0	2	005	3	0	1	7.507e-6	15	NC	1	NC	1
53		8	max	0	3	0	2	0	3	2.002e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	006	3	0	1	8.228e-6	15	NC	1	NC	1
55		9	max	0	3	.001	2	0	3	2.175e-4	1_	NC	1_	NC	1_
56			min	0	2	006	3	0	1	8.95e-6	15	NC	1	NC	1
57		10	max	0	3	.002	2	0	2	2.349e-4	1_	NC	1_	NC	1
58			min	0	2	007	3	0	15	9.671e-6	15	NC	1	NC	1
59		11	max	.001	3	.002	2	0	1	2.523e-4	1	NC	1	NC	1
60			min	001	2	007	3	0	15	1.039e-5	15	NC	1	NC	1
61		12	max	.001	3	.003	2	.001	1	2.697e-4	1	NC	1_	NC	1
62			min	001	2	007	3	0	15	1.111e-5	15	NC	1	NC	1
63		13	max	.001	3	.003	2	.001	1	2.87e-4	1	NC	1	NC	1
64			min	001	2	008	3	0	15	1.184e-5	15	NC	1	NC	1
65		14	max	.001	3	.004	2	.002	1	3.044e-4	1	NC	1	NC	1
66			min	001	2	008	3	0	15	1.256e-5	15	NC	1	NC	1
67		15	max	.002	3	.005	2	.002	1	3.218e-4	1	NC	1	NC	1
68			min	001	2	008	3	0	15	1.328e-5	15	9079.889	2	NC	1
69		16	max	.002	3	.006	2	.003	1	3.392e-4	1	NC	1	NC	1
70			min	002	2	008	3	0	15	1.4e-5	15	7681.422	2	NC	1
71		17	max	.002	3	.007	2	.003	1	3.566e-4	1	NC	1	NC	1
72			min	002	2	008	3	0	15	1.472e-5	15	6601.978	2	NC	1
73		18	max	.002	3	.008	2	.004	1	3.739e-4	1	NC	3	NC	1
74			min	002	2	008	3	0	15	1.544e-5	15	5758.991	2	NC	1
75		19	max	.002	3	.009	2	.004	1	3.913e-4	1	NC	3	NC	1
76			min	002	2	008	3	0	15	1.616e-5	15	5094.604	2	NC	1
77	M4	1	max	.002	1	.011	2	0	15		12	NC	1	NC	2
78			min	0	12	009	3	003	1	-5.817e-4	1	NC	1	5883.298	
79		2	max	.002	1	.01	2	0	15		12	NC	1	NC	2
80			min	0	12	009	3	003	1	-5.817e-4	1	NC	1	6418.537	1
81		3	max	.002	1	.01	2	0	15		12	NC	1	NC	2
82			min	0	12	008	3	003	1	-5.817e-4	1	NC	1	7055.54	1
83		4	max	.001	1	.009	2	0	15		12	NC	1	NC	2
84			min	0	12	008	3	002	1	-5.817e-4	1	NC	1	7821.15	1
85		5	max	.001	1	.008	2	0	15	-2.353e-5	12	NC	1	NC	2
86			min	0	12	007	3	002	1	-5.817e-4	1	NC	1	8751.939	
87		6	max	.001	1	.008	2	0	15		12	NC	1	NC	2
88			min	0	12	007	3	002	1	-5.817e-4	1	NC	1	9898.774	1
89		7	max	.001	1	.007	2	0	15		12	NC	1	NC	1
90			min	0	12	006	3	002	1	-5.817e-4	1	NC	1	NC	1
91		8	max	.001	1	.007	2	0		-2.353e-5		NC	1	NC	1
92			min		12	006	3	001	1	-5.817e-4	1	NC	1	NC	1
93		9	max	0	1	.006	2	0		-2.353e-5		NC	1	NC	1
94			min	0	12	005	3	001	1	-5.817e-4	1	NC	1	NC	1
95		10	max	0	1	.005	2	0	15	-2.353e-5		NC	1	NC	1
96		- 10	min	0	12	005	3	001	1	-5.817e-4	1	NC	1	NC	1
97		11	max	0	1	.005	2	0	15		12	NC	1	NC	1
98			min	0	12	004	3	0	1	-5.817e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0	15		12	NC	1	NC	1
100		12	min	0	12	004	3	0	1	-5.817e-4	1	NC	1	NC	1
101		13	max	0	1	.004	2	0		-2.353e-5		NC	1	NC	1
102		13	min	0	12	003	3	0	1	-5.817e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0	15		•	NC	1	NC	1
104		14	min	0	12	003	3	0	1	-5.817e-4	1	NC	1	NC	1
105		15		0	1	.002	2	0	15	-3.817e-4 -2.353e-5	12	NC NC	1	NC	1
106		10	max	0	12	002	3	0	1	-2.353e-5 -5.817e-4	1	NC NC	1	NC NC	1
107		16		0	1	.002	2	0	15			NC NC	1	NC NC	1
		10	max												
108			min	0	12	002	3	0	1	-5.817e-4	<u>1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC y [in] LC z [in]		LC x Rotate [r LC (n) L/y Ratio LC					(n) L/z Ratio	LC		
109		17	max	0	1	.001	2	0	15		12	NC	1_	NC	1
110			min	0	12	001	3	0	1	-5.817e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-2.353e-5	12	NC	1	NC	1
112			min	0	12	0	3	0	1	-5.817e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-2.353e-5	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-5.817e-4	1	NC	1	NC	1
115	M6	1	max	.008	1	.032	2	.004	1	3.781e-4	3	NC	3	NC	1
116			min	011	3	029	3	005	3	-6.079e-8		1214.524	2	8290.745	
117		2	max	.007	1	.03	2	.004	1	3.662e-4	3	NC	3	NC	1
118			min	011	3	028	3	004	3	-5.739e-8	10	1299.26	2	8811.458	
119		3	max	.007	1	.028	2	.003	1	3.543e-4	3	NC	3	NC	1
120			min	01	3	026	3	004	3	-1.563e-6	2	1396.313	2	9428.284	
		1													
121		4	max	.006	1	.026	2	.003	1	3.424e-4	3_	NC	3_	NC NC	1
122		_	min	009	3	025	3	004	3	-3.33e-6	1_	1508.147	2	NC	1
123		5	max	.006	1	.024	2	.003	1	3.306e-4	3	NC	3	NC	1
124			min	009	3	023	3	004	3	-7.915e-6	1_	1637.933	2	NC	1
125		6	max	.006	1	.022	2	.002	1	3.187e-4	3_	NC	3	NC	1
126			min	008	3	022	3	003	3	-1.25e-5	1_	1789.825	2	NC	1
127		7	max	.005	1	.02	2	.002	1	3.068e-4	3	NC	3	NC	1
128			min	008	3	02	3	003	3	-1.708e-5	1	1969.364	2	NC	1
129		8	max	.005	1	.018	2	.002	1	2.95e-4	3	NC	3	NC	1
130			min	007	3	018	3	003	3	-2.167e-5	1	2184.109	2	NC	1
131		9	max	.004	1	.016	2	.002	1	2.831e-4	3	NC	3	NC	1
132			min	006	3	017	3	002	3	-2.625e-5	1	2444.64	2	NC	1
133		10	max	.004	1	.014	2	.001	1	2.712e-4	3	NC	3	NC	1
134		1.0	min	006	3	015	3	002	3	-3.084e-5	1	2766.243	2	NC	1
135		11	max	.003	1	.012	2	.001	1	2.594e-4	3	NC	3	NC	1
136			min	005	3	014	3	002	3	-3.542e-5	1	3171.835	2	NC	1
137		12		.003	1	.011	2	<u>002</u> 0	1	2.475e-4	3	NC	3	NC	1
		12	max		_										1
138		40	min	004	3	012	3	001	3	-4.001e-5	1	3697.424	2	NC NC	-
139		13	max	.003	1	.009	2	0	1	2.356e-4	3	NC 4400,000	3	NC NC	1
140			min	004	3	01	3	<u>001</u>	3	-4.459e-5	1_	4403.002	2	NC	1
141		14	max	.002	1	.007	2	0	1	2.238e-4	3	NC	3	NC	1
142			min	003	3	009	3	0	3	-4.918e-5	<u> 1</u>	5396.528	2	NC	1
143		15	max	.002	1	.006	2	0	1	2.119e-4	3	NC	_1_	NC	1
144			min	003	3	007	3	0	3	-5.376e-5	1_	6893.875	2	NC	1
145		16	max	.001	1	.004	2	0	1	2.e-4	3	NC	1	NC	1
146			min	002	3	005	3	0	3	-5.834e-5	1_	9398.664	2	NC	1
147		17	max	0	1	.003	2	0	1	1.882e-4	3	NC	1	NC	1
148			min	001	3	003	S	0	3	-6.293e-5	1	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	1.763e-4	3	NC	1	NC	1
150			min	0	3	002	3	0	3	-6.751e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.644e-4	3	NC	1	NC	1
152		· ·	min	0	1	0	1	0	1	-7.21e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	3.37e-5	1	NC	1	NC	1
154	IVII		min	0	1	0	1	0	1	-7.717e-5	3	NC NC	1	NC	1
		2			_								•		
155		2	max	0	3	.001	2	0	3	2.826e-5	1_2	NC NC	1_1	NC NC	1
156		_	min	0	2	002	3	0	1	-5.72e-5	3_	NC NC	1_	NC NC	1
157		3	max	0	3	.003	2	0	3	2.282e-5	1_	NC	1_	NC	1
158			min	0	2	004	3	0	1	-3.723e-5	3_	NC	1_	NC	1
159		4	max	.001	3	.004	2	.001	3	1.739e-5	1_	NC	1_	NC	1
160			min	001	2	006	3	0	1	-1.725e-5	3	NC	1	NC	1
161		5	max	.001	3	.006	2	.001	3	1.195e-5	1_	NC	1_	NC	1
162			min	002	2	008	3	0	1	0	10	8058.164	2	NC	1
163		6	max	.002	3	.007	2	.002	3	2.269e-5	3	NC	1	NC	1
164			min	002	2	01	3	0	1	0	10	6459.907	2	NC	1
165		7	max	.002	3	.009	2	.002	3	4.266e-5	3	NC	3	NC	1
	_			_		_		_	_			_	_	_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
166			min	002	2	011	3	0	1	0	10	5368.754	2	NC	1
167		8	max	.002	3	.01	2	.002	3	6.263e-5	3	NC	3	NC	1
168			min	003	2	013	3	001	1	-4.358e-6	1_	4570.094	2	NC	1
169		9	max	.003	3	.012	2	.002	3	8.26e-5	3	NC	3	NC	1
170		4.0	min	003	2	<u>015</u>	3	001	1	-9.795e-6	1_	3956.964	2	NC	1
171		10	max	.003	3	.013	2	.002	3	1.026e-4	3	NC 0.470.000	3	NC NC	1
172		44	min	004	2	016	3	001	1	-1.523e-5	1_	3470.066	2	NC NC	1
173		11	max	.003	3	.015	2	.002	3	1.225e-4	3	NC	3	NC NC	1
174		40	min	004	2	018	3	001	1	-2.067e-5	1	3073.808	2	NC NC	1
175		12	max	.004	3	.017 019	3	.002	3	1.425e-4	<u>3</u>	NC 2745.435	2	NC NC	1
176 177		13	min	004 .004	3	.019 .019	2	002 .003	3	-2.61e-5 1.625e-4	3	NC	3	NC NC	1
178		13	max	005	2	02	3	003	1	-3.154e-5	<u> </u>	2469.623	2	NC NC	1
179		14	max	.003	3	.021	2	.002	3	1.824e-4	3	NC	3	NC NC	1
180		14	min	005	2	021	3	002	1	-3.698e-5	1	2235.597	2	NC	1
181		15	max	.005	3	.023	2	.003	3	2.024e-4	3	NC	3	NC	1
182		10	min	006	2	022	3	002	1	-4.241e-5	1	2035.497	2	NC	1
183		16	max	.005	3	.025	2	.002	3	2.224e-4	3	NC	3	NC	1
184		10	min	006	2	023	3	002	1	-4.785e-5	1	1863.413	2	NC	1
185		17	max	.005	3	.027	2	.003	3	2.424e-4	3	NC	3	NC	1
186		<u> </u>	min	006	2	024	3	002	1	-5.329e-5	1	1714.789	2	NC	1
187		18	max	.006	3	.029	2	.002	3	2.623e-4	3	NC	3	NC	1
188			min	007	2	025	3	002	1	-5.872e-5	1	1586.043	2	NC	1
189		19	max	.006	3	.031	2	.002	3	2.823e-4	3	NC	3	NC	1
190			min	007	2	026	3	002	1	-6.416e-5	1	1474.317	2	NC	1
191	M8	1	max	.005	1	.037	2	.002	1	-9.522e-8	10	NC	1	NC	2
192			min	0	3	029	3	002	3	-2.179e-4	3	NC	1	9622.542	1
193		2	max	.004	1	.035	2	.002	1	-9.522e-8	10	NC	1	NC	1
194			min	0	3	028	3	002	3	-2.179e-4	3	NC	1	NC	1
195		3	max	.004	1	.033	2	.002	1	-9.522e-8	10	NC	1_	NC	1_
196			min	0	3	026	3	001	3	-2.179e-4	3	NC	1	NC	1
197		4	max	.004	1	.031	2	.002	1	-9.522e-8	10	NC	_1_	NC	1
198			min	0	3	024	3	001	3	-2.179e-4	3	NC	1_	NC	1
199		5	max	.004	1	.029	2	.001	1	-9.522e-8	10	NC	_1_	NC	1
200			min	0	3	023	3	001	3	-2.179e-4	3	NC	_1_	NC	1
201		6	max	.003	1	.027	2	.001	1	-9.522e-8	10	NC	_1_	NC	1
202		<u> </u>	min	0	3	021	3	0	3	-2.179e-4	3	NC	1_	NC	1
203		7	max	.003	1	.025	2	.001	1	-9.522e-8	10	NC	1_	NC NC	1
204			min	0	3	019	3	0	3	-2.179e-4	3_	NC	_1_	NC NC	1
205		8	max	.003	1	.023	2	0	1	-9.522e-8		NC NC	1_	NC NC	1
206			min		3	018	3	0		-2.179e-4		NC NC	1	NC NC	1
207		9	max	.003	1	.021	2	0	1	-9.522e-8		NC NC	1	NC	1
208		10	min	0	3	016	2	0	1			NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	3	.019	3	0		-9.522e-8		NC NC	1	NC NC	1
210		11	min max	.002	1	015 .016	2	<u> </u>	1	-2.179e-4 -9.522e-8	10	NC NC	1	NC NC	1
212			min	0	3	013	3	0	3		3	NC	1	NC	1
213		12	max	.002	1	.014	2	0	1	-9.522e-8		NC	1	NC	1
214		12	min	0	3	011	3	0	3	-9.522e-6 -2.179e-4	3	NC	1	NC	1
215		13		.002	1	.012	2	0	1	-9.522e-8		NC	1	NC	1
216		13	max min	.002	3	012	3	0	3	-9.522e-6 -2.179e-4	3	NC NC	1	NC NC	1
217		14	max	.001	1	.01	2	0	1	-9.522e-8	_	NC	1	NC	1
218			min	0	3	008	3	0	3	-2.179e-4		NC	1	NC	1
219		15	max	.001	1	.008	2	0	1	-9.522e-8		NC	1	NC	1
220		10	min	0	3	006	3	0	3	-2.179e-4	3	NC	1	NC	1
221		16	max	0	1	.006	2	0	1	-9.522e-8		NC	1	NC	1
222			min	0	3	005	3	0	3	-2.179e-4		NC	1	NC	1
						.000			_						

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.004	2	0	1	-9.522e-8	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-2.179e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-9.522e-8	10	NC	1	NC	1
226			min	0	3	002	3	0	3	-2.179e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.179e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.009	2	0	3	7.343e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	003	3	009	3	001	1	-4.218e-4	3	4250.127	2	NC	1
231		2	max	.002	1	.008	2	0	3	6.963e-4	1	NC	3	NC	1
232		-			3		3	001	1	-4.077e-4			2	NC NC	1
		-	min	003		009					3	4639.412			_
233		3	max	.002	1	.008	2	0	3	6.584e-4	1	NC	3	NC	1
234			min	003	3	009	3	001	1	-3.936e-4	3	5102.562	2	NC	1
235		4	max	.002	1	.007	2	0	3	6.204e-4	_1_	NC	_1_	NC	1
236			min	003	3	008	3	001	1	-3.795e-4	3	5657.434	2	NC	1
237		5	max	.002	1	.006	2	0	3	5.824e-4	1	NC	1	NC	1
238			min	002	3	008	3	001	1	-3.654e-4	3	6327.834	2	NC	1
239		6	max	.002	1	.006	2	0	3	5.444e-4	1	NC	1	NC	1
240			min	002	3	007	3	001	1	-3.512e-4	3	7146.025	2	NC	1
241		7	max	.002	1	.005	2	0	3	5.064e-4	1	NC	1	NC	1
242			min	002	3	007	3	001	1	-3.371e-4	3	8156.565	2	NC	1
243		8		.002	1	.004	2	<u>001</u> 0	3		1	NC	1	NC NC	1
		-	max							4.685e-4					
244			min	002	3	007	3	0	1	-3.23e-4	3_	9422.373	2	NC NC	1
245		9	max	.001	1	.004	2	0	3	4.305e-4	_1_	NC	_1_	NC	1
246			min	002	3	006	3	0	1	-3.089e-4	3	NC	<u>1</u>	NC	1
247		10	max	.001	1	.003	2	0	3	3.925e-4	_1_	NC	_1_	NC	1
248			min	002	3	006	3	0	1	-2.948e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	3.545e-4	1	NC	1	NC	1
250			min	001	3	005	3	0	1	-2.807e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	3.165e-4	1	NC	1	NC	1
252			min	001	3	005	3	0	1	-2.666e-4	3	NC	1	NC	1
253		13	max	0	1	.002	2	0	3	2.785e-4	1	NC	1	NC	1
254			min	001	3	004	3	0	1	-2.525e-4	3	NC	1	NC	1
255		14		0	1	.001	2	0	3	2.406e-4	1	NC	1	NC	1
256		14	max	0	3	003	3	0	1	-2.383e-4	3	NC NC	1	NC NC	1
		4.5	min						-		_		•		
257		15	max	0	1	0	2	0	3	2.026e-4	1_	NC	1_	NC NC	1
258		1.0	min	0	3	003	3	0	1	-2.242e-4	3	NC	1_	NC	1
259		16	max	00	1	0	2	0	3	1.646e-4	_1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.101e-4	3	NC	_1_	NC	1
261		17	max	0	1	0	2	0	3	1.266e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-1.96e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	8.863e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.819e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	5.065e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	-1.678e-4	3	NC	1	NC	1
267	M11	1		0	1	0	1	0	1	7.916e-5	3	NC	1	NC	1
	IVI I I	-	max	0	1	0	1	0	1		1	NC NC	1	NC NC	1
268			min							-2.454e-5	_				
269		2	max	0	3	0	2	0	1	5.881e-5	3_	NC	1_	NC NC	1
270			min	0	2	0	3	0	3	-5.331e-5	1_	NC	_1_	NC	1
271		3	max	0	3	0	2	0	2	3.847e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-8.208e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	2	1.812e-5	3	NC	1	NC	1
274			min	0	2	003	3	001	3	-1.109e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	-1.84e-6	12	NC	1	NC	1
276			min	0	2	004	3	001	3	-1.396e-4	1	NC	1	NC	1
277		6	max	0	3	<u>.00+</u>	2	0	10	-7.443e-6	15	NC	1	NC	1
278			min	0	2	004	3	002	3	-1.684e-4	1	NC	1	NC NC	1
279		7			3		2			-8.705e-6	•		1		
2/9		7	max	0	<u> </u> 3	0	<u> </u>	0	10	-6.7U5E-6	<u>15</u>	NC		NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC		LC
280			min	0	2	005	3	002	3	-1.972e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	-9.967e-6	15	NC	_1_	NC	1
282			min	0	2	006	3	002	3	-2.259e-4	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	10	-1.123e-5	<u>15</u>	NC	_1_	NC	1
284		1.0	min	0	2	006	3	002	3	-2.547e-4	_1_	NC	1_	NC	1
285		10	max	0	3	.002	2	0	15	-1.249e-5	<u>15</u>	NC	1	NC NC	1
286		4.4	min	0	2	007	3	003	1_	-2.835e-4	1_	NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0	15	-1.375e-5	<u>15</u>	NC	1_	NC NC	1
288		40	min	001	2	007	3	003	1	-3.123e-4	1_	NC NC	1_	NC NC	1
289		12	max	.001	3	.003	3	0 004	15	-1.502e-5 -3.41e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	001 .001	3	008 .003	2	004 0	15	-3.41e-4 -1.628e-5	<u>1</u> 15	NC NC	1	NC NC	2
292		13	max	001	2	008	3	005	1	-3.698e-4	1	NC NC	1	9942.87	1
293		14		.001	3	008 .004	2	<u>005</u> 0		-3.096e-4 -1.754e-5	15	NC NC	1	NC	2
294		14	max min	001	2	008	3	005	1	-3.986e-4	1	NC NC	1	8644.378	1
295		15	max	.002	3	.005	2	<u>005</u> 0	15	-1.88e-5	15	NC	1	NC	2
296		10	min	001	2	008	3	006	1	-4.273e-4	1	9094.829	2	7635.23	1
297		16	max	.002	3	.006	2	0	15	-2.006e-5	15	NC	1	NC	2
298		10	min	002	2	008	3	007	1	-4.561e-4	1	7692.868	2	6837.092	1
299		17	max	.002	3	.007	2	0	15	-2.133e-5	15	NC	1	NC	2
300			min	002	2	008	3	007	1	-4.849e-4	1	6610.989	2	6197.055	
301		18	max	.002	3	.008	2	0	15	-2.259e-5	15	NC	3	NC	2
302			min	002	2	008	3	008	1	-5.136e-4	1	5766.271	2	5678.367	1
303		19	max	.002	3	.009	2	0	15	-2.385e-5	15	NC	3	NC	2
304			min	002	2	008	3	009	1	-5.424e-4	1	5100.632	2	5254.906	1
305	M12	1	max	.002	1	.011	2	.007	1	4.957e-4	1	NC	1	NC	3
306			min	0	12	009	3	0	15	2.196e-5	15	NC	1	2612.544	1
307		2	max	.002	1	.01	2	.007	1	4.957e-4	1	NC	1	NC	3
308			min	0	12	009	3	0	15	2.196e-5	15	NC	1	2849.213	1
309		3	max	.002	1	.01	2	.006	1	4.957e-4	1_	NC	1_	NC	3
310			min	0	12	008	3	0	15	2.196e-5	15	NC	1	3130.926	
311		4	max	.001	1	.009	2	.006	1	4.957e-4	1_	NC	_1_	NC	2
312			min	0	12	008	3	0	15	2.196e-5	15	NC	1_	3469.558	
313		5	max	.001	1	.008	2	.005	1	4.957e-4	_1_	NC	_1_	NC	2
314			min	0	12	007	3	0	15	2.196e-5	15	NC	_1_	3881.283	1
315		6	max	.001	1	.008	2	.004	1	4.957e-4	<u>1</u>	NC	_1_	NC	2
316		_	min	0	12	007	3	0	15	2.196e-5	15	NC	1_	4388.6	1
317		7	max	.001	1	.007	2	.004	1_	4.957e-4	1_	NC	1_	NC NC	2
318			min	0	12	006	3	0	15	2.196e-5	15	NC	1_	5023.557	1
319		8	max	.001	1	.007	2	.003	1	4.957e-4	1_	NC NC	1_	NC F000 004	2
320			min		12	006	3	0		2.196e-5			1	5833.081	
321		9	max	0	1	.006	2	.003	1	4.957e-4	1_	NC NC	1	NC COOR 4 C4	2
322		10	min	0	12	005	2	0	15		<u>15</u>	NC NC	<u>1</u> 1	6888.161	1
323		10	max	0	12	.005	3	.002	1	4.957e-4	1_	NC NC	1	NC	2
324		11	min max	0	1	005 .005	2	<u> </u>	15	2.196e-5 4.957e-4	<u>15</u> 1	NC NC	1	8300.405 NC	1
326		11	min	0	12	004	3	0	15	2.196e-5	15	NC	1	NC	1
327		12	max	0	1	.004	2	.001	1	4.957e-4	1	NC	1	NC	1
328		12	min	0	12	004	3	0	15	2.196e-5	15	NC	1	NC	1
329		13	max	0	1	.004	2	.001	1	4.957e-4	1	NC	1	NC	1
330		13	min	0	12	003	3	0	15	2.196e-5	15	NC	1	NC	1
331		14	max	0	1	.003	2	0	1	4.957e-4	1	NC	1	NC	1
332			min	0	12	003	3	0	15	2.196e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	4.957e-4	1	NC	1	NC	1
334		10	min	0	12	002	3	0	15	2.196e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	4.957e-4	1	NC	1	NC	1
336		<u>,</u>	min	0	12	002	3	0		2.196e-5	15	NC	1	NC	1
000													_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	4.957e-4	_1_	NC	_1_	NC	1_
338			min	0	12	001	3	0	15	2.196e-5	15	NC	1_	NC	1
339		18	max	0	1	00	2	0	1	4.957e-4	_1_	NC	_1_	NC	1
340			min	0	12	0	3	0	15	2.196e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	4.957e-4	1_	NC	1_	NC	1
342	N 4 4		min	0	1	0	1	0	1	2.196e-5	15	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.008	3	.025	3	.003	3	1.17e-2	1_	NC	1	NC NC	1
344			min	009	2	022	2	004	1	-1.591e-2	3	NC NC	1_	NC NC	1
345		2	max	.008	3	.015	3	.002	3	5.601e-3	2	NC	4	NC NC	1
346		2	min	009	2	013	2	007 .001	1	-7.871e-3 2.282e-5	3	4749.362 NC	3	NC NC	2
347		3	max	.008	3	.005	3	009	3	-4.501e-4	<u>3</u>	2460.601	4	8135.208	
349		4	min	009 .008	3	004 .004	2	009 .001	3		3	NC	<u>3</u>	NC	2
350		4	max	009	2	003	3	01	1	2.56e-5 -3.868e-4	1	1753.935	3	6747.452	1
351		5		.008	3	003 .01	2	<u>01</u> 0	3	2.838e-5	3	NC	4	NC	2
352			max	009	2	009	3	011	1	-3.236e-4	1	1391.782	2	6500.182	1
353		6	max	.008	3	.016	2	0	3	3.116e-5	3	NC	5	NC	2
354		—	min	009	2	015	3	01	1	-2.603e-4	1	1182.263	2	6988.858	
355		7	max	.008	3	.02	2	0	3	3.394e-5	3	NC	5	NC	2
356			min	009	2	019	3	009	1	-1.971e-4	1	1052.966	2	8387.564	
357		8	max	.008	3	.024	2	0	3	3.672e-5	3	NC	5	NC	1
358			min	009	2	021	3	007	1	-1.338e-4	1	971.774	2	NC	1
359		9	max	.008	3	.026	2	0	3	3.95e-5	3	NC	5	NC	1
360			min	009	2	023	3	005	1	-7.061e-5	1	923.516	2	NC	1
361		10	max	.008	3	.027	2	0	3	4.228e-5	3	NC	5	NC	1
362			min	009	2	023	3	003	1	-7.363e-6	1	900.943	2	NC	1
363		11	max	.008	3	.026	2	0	3	5.588e-5	1	NC	5	NC	1
364			min	009	2	023	3	0	1	2.501e-6	15	901.423	2	NC	1
365		12	max	.008	3	.025	2	.001	1	1.191e-4	1_	NC	5	NC	1
366			min	009	2	021	3	0	15	5.099e-6	15	925.963	2	NC	1
367		13	max	.008	3	.021	2	.003	1	1.824e-4	_1_	NC	5	NC	2
368			min	009	2	018	3	0	15	7.697e-6	15	979.772	2	8600.472	1
369		14	max	.008	3	017	2	.004	1	2.456e-4	_1_	NC	4	NC	2
370			min	009	2	014	3	0	15	1.03e-5		1074.902	2	7120.67	1
371		15	max	.008	3	.011	2	.005	1_	3.088e-4	_1_	NC	4_	NC	2
372		40	min	009	2	009	3	0	15	1.289e-5		1237.852	2	6597.07	1
373		16	max	.008	3	.003	2	.004	1	3.528e-4	1_	NC 4500 544	4_	NC	2
374		4-	min	009	2	003	3	0	15	1.471e-5		1533.514	2	6826.541	1
375		17	max	.008	3	.004	3	.003	1	4.232e-5	3_	NC 0470.405	4	NC 0044 044	2
376		10	min max	009	3	006	3	0	1 <u>5</u>	-6.274e-5	2	2170.125	<u>2</u>	8214.344	1
377		18		.008	2	.012		.001		8.127e-3	2	NC	4	NC NC	1
378 379		19	min	009 .008	3	017 .02	3	<u> </u>	1 <u>5</u>	-3.839e-3 1.64e-2	2	4204.277 NC	<u>2</u> 1	NC NC	1
380		19	max min	009	2	029	2	002	1	-7.794e-3	3	NC NC	1	NC NC	1
381	M5	1	max	.026	3	.08	3	.002	3	2.935e-6	3	NC	1	NC NC	1
382	IVIO		min	03	2	073	2	004	1	4.217e-8	15	NC NC	1	NC	1
383		2	max	.026	3	.047	3	.004	3	1.042e-4	3	NC	4	NC	1
384			min	03	2	042	2	004	1	-6.786e-5	1	1466.127	3	NC	1
385		3	max	.026	3	.017	3	.005	3	2.034e-4	3	NC	5	NC	1
386		J	min	03	2	013	2	004	1	-1.345e-4	1	758.622	2	NC	1
387		4	max	.026	3	.012	2	.006	3	1.969e-4	3	NC	5	NC	1
388			min	03	2	009	3	004	1	-1.284e-4	1	529.802	2	NC	1
389		5	max	.026	3	.034	2	.006	3	1.905e-4	3	NC	5	NC	1
390		Ť	min	03	2	03	3	004	1	-1.223e-4	1	418.994	2	NC	1
391		6	max	.026	3	.053	2	.006	3	1.841e-4	3	NC	5	NC	1
392		Ĭ	min	03	2	047	3	004	1	-1.161e-4	1	355.635	2	NC	1
393		7	max	.026	3	.068	2	.006	3	1.777e-4	3	NC	5	NC	1
											_		_		

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
394			min	03	2	06	3	003	1	-1.1e-4	1	316.508	2	NC	1
395		8	max	.026	3	.079	2	.006	3	1.712e-4	3	NC	5_	NC	1
396			min	03	2	069	3	003	1	-1.039e-4	1	291.908	2	NC	1
397		9	max	.026	3	.086	2	.006	3	1.648e-4	3	NC	15	NC	1
398			min	03	2	074	3	003	1	-9.776e-5	1	277.247	2	NC	1
399		10	max	.026	3	.089	2	.006	3	1.584e-4	3	NC	15	NC	1
400			min	03	2	075	3	003	1	-9.163e-5	1	270.329	2	NC	1
401		11	max	.026	3	.088	2	.005	3	1.52e-4	3	NC	15	NC	1
402			min	03	2	073	3	003	1	-8.55e-5	1	270.354	2	NC	1
403		12	max	.026	3	.082	2	.005	3	1.455e-4	3	NC	5	NC	1
404			min	03	2	067	3	003	1	-7.937e-5	1	277.615	2	NC	1
405		13	max	.026	3	.072	2	.004	3	1.391e-4	3	NC	5	NC	1
406			min	03	2	057	3	002	1	-7.324e-5	1_	293.673	2	NC	1
407		14	max	.025	3	.056	2	.004	3	1.327e-4	3	NC	5	NC	1
408			min	03	2	044	3	002	1	-6.711e-5	1	322.148	2	NC	1
409		15	max	.025	3	.036	2	.003	3	1.263e-4	3	NC	5	NC	1
410			min	03	2	028	3	002	1	-6.098e-5	1	371.007	2	NC	1
411		16	max	.025	3	.01	2	.002	3	1.155e-4	3	NC	5	NC	1
412			min	03	2	008	3	002	1	-5.902e-5	1	459.812	2	NC	1
413		17	max	.025	3	.014	3	.002	3	2.305e-6	3	NC	5	NC	1
414			min	03	2	021	2	002	1	-1.565e-4	1	651.721	2	NC	1
415		18	max	.025	3	.039	3	.001	3	4.151e-8	12	NC	4	NC	1
416			min	03	2	057	2	002	1	-7.988e-5	1	1263.565	2	NC	1
417		19	max	.025	3	.065	3	0	3	0	1	NC	1	NC	1
418			min	03	2	096	2	002	1	-5.249e-7	3	NC	1	NC	1
419	M9	1	max	.008	3	.024	3	.002	3	1.592e-2	3	NC	1	NC	1
420			min	009	2	022	2	004	1	-1.17e-2	1	NC	1	NC	1
421		2	max	.008	3	.014	3	.001	3	7.861e-3	3	NC	4	NC	1
422			min	009	2	013	2	0	1	-5.713e-3	1	4750.429	3	NC	1
423		3	max	.008	3	.005	3	.001	1	1.666e-4	1	NC	4	NC	1
424			min	009	2	004	2	0	3	-4.875e-5	3	2461.162	3	NC	1
425		4	max	.008	3	.004	2	.003	1	1.147e-4	1	NC	4	NC	1
426			min	009	2	003	3	001	3	-5.414e-5	3	1754.312	3	NC	1
427		5	max	.008	3	.01	2	.003	1	6.285e-5	1	NC	4	NC	2
428			min	009	2	01	3	002	3	-5.954e-5	3	1392.653	2	9939.013	
429		6	max	.008	3	.016	2	.003	1	2.152e-5	2	NC	5	NC	1
430			min	009	2	015	3	003	3	-6.494e-5	3	1182.995	2	NC	1
431		7	max	.008	3	.02	2	.002	1	5.854e-6	10	NC	5	NC	1
432			min	009	2	019	3	003	3	-7.033e-5	3	1053.608	2	9543.098	3
433		8	max	.008	3	.024	2	0	2	1.199e-6	10	NC	5	NC	1
434			min		2	022	3	004		-9.283e-5	1	972.357	2	8953.606	3
435		9	max	.008	3	.026	2	0	2	-3.456e-6		NC	5	NC	1
436			min	009	2	023	3	004	3	-1.447e-4	1	924.06	2	8653.408	3
437		10	max	.008	3	.027	2	0	10	-8.111e-6	10	NC	_ <u></u>	NC	1
438		1.0	min	009	2	024	3	004	3	-1.966e-4	1	901.463	2	8585.959	
439		11	max	.008	3	.026	2	0	10		15	NC	5	NC	1
440			min	009	2	023	3	005	1	-2.485e-4	1	901.933	2	8736.063	
441		12	max	.008	3	.025	2	0	15		15	NC	5	NC	2
442		12	min	009	2	021	3	006	1	-3.004e-4	1	926.475	2	9122.788	
443		13	max	.008	3	.021	2	0		-1.524e-5		NC	5	NC	2
444		10	min	009	2	018	3	008	1	-3.523e-4	1	980.3	2	7374.733	
445		14	max	.008	3	.017	2	0	15		15	NC	4	NC	2
446		17	min	009	2	014	3	009	1	-4.042e-4	1	1075.467	2	6425.215	
447		15	max	.008	3	.011	2	0	15	-1.961e-5	15	NC	4	NC	2
448		13	min	009	2	009	3	009	1	-4.561e-4	1	1238.484	2	6137.043	
449		16	max	.008	3	.003	2	009 0	15		15	NC	4	NC	2
450		10	min	009	2	003	3	009	1	-4.96e-4	1	1534.268	2	6477.705	
450			111111	009		003	J	009		- 4 .308-4		1004.200		0477.703	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC		LC
451		17	max	.008	3	.004	3	0	15 5.081e-5	3	NC	4	NC	2
452			min	009	2	006	2	007	1 -2.509e-4	1	2171.123	2	7901.676	1
453		18	max	.008	3	.012	3	0	15 3.887e-3	3	NC	4	NC	1
454			min	009	2	017	2	005	1 -8.157e-3	2	4206.147	2	NC	1
455		19	max	.008	3	.02	3	0	3 7.793e-3	3	NC	1	NC	1
456			min	009	2	029	2	002	1 -1.64e-2	2	NC	1	NC	1
457	M13	1	max	.004	1	.024	3	.008	3 3.82e-3	3	NC	1	NC	1
458	WITO		min	002	3	022	2	009	2 -3.484e-3	2	NC	1	NC	1
459		2	max	.002	1	.142	3	.016	1 4.775e-3	3	NC	5	NC	2
460			min	002	3	107	2	004	10 -4.379e-3	2	1170.586	3	6717.04	1
461		3		.002	1	.239	3	.043	1 5.73e-3	3	NC	5	NC	3
		- 3	max											
462		-	min	002	3	178	1	002		2	642.212	3_	2912.862	
463		4	max	.004	1	301	3	.065	1 6.685e-3	3	NC	5	NC	3
464			min	002	3	224	1	0	10 -6.169e-3	2	498.442	3	1996.231	1
465		5	max	.004	1	.322	3	.074	1 7.64e-3	3_	NC	_5_	NC	3
466			min	002	3	24	1	002	10 -7.064e-3	2	464.464	3	1755.007	1
467		6	max	.004	1	.301	3	.069	1 8.595e-3	3	NC	5_	NC	3
468			min	002	3	225	1	004	10 -7.959e-3	2	499.401	3	1893.131	1
469		7	max	.004	1	.247	3	.049	1 9.549e-3	3	NC	5	NC	2
470			min	002	3	188	2	008	10 -8.854e-3	2	619.963	3	2597.841	1
471		8	max	.004	1	.176	3	.021	3 1.05e-2	3	NC	5	NC	2
472			min	003	3	139	2	012	10 -9.749e-3	2	911.531	3	5586.98	1
473		9	max	.004	1	.11	3	.024	3 1.146e-2	3	NC	4	NC	1
474		Ť	min	003	3	093	2	024	2 -1.064e-2	2	1611.75	3	8684.999	2
475		10	max	.003	1	.08	3	.026	3 1.241e-2	3	NC	4	NC	4
476		10	min	003	3	073	2	03	2 -1.154e-2	2	2483.469	3	6397.787	2
477		11		.003	1	<u>075</u> .11	3	.029	3 1.146e-2	3	NC	4	NC	1
			max		3									
478		40	min	003		093	2	024	2 -1.064e-2	2	1611.749	3	6695.645	
479		12	max	.004	1	.176	3	.031	3 1.051e-2	3_	NC	5	NC	2
480		10	min	003	3	139	2	012	10 -9.749e-3	2	911.53	3	5506.03	1
481		13	max	.004	1	.247	3	.049	1 9.553e-3	3	NC	5_	NC	2
482			min	003	3	188	2	008	10 -8.854e-3	2	619.963	3	2584.638	
483		14	max	.004	1	.301	3	.069	1 8.599e-3	3_	NC	5_	NC	5_
484			min	003	3	225	1	004	10 -7.959e-3	2	499.4	3	1890.946	
485		15	max	.004	1	.322	3	.074	1 7.646e-3	3	NC	5	NC	5
486			min	003	3	239	1	002	10 -7.065e-3	2	464.463	3	1757.982	1
487		16	max	.004	1	.302	3	.064	1 6.692e-3	3	NC	5	NC	3
488			min	003	3	224	1	0	10 -6.17e-3	2	498.441	3	2005.377	1
489		17	max	.004	1	.24	3	.043	1 5.738e-3	3	NC	5	NC	3
490			min	003	3	178	1	002	10 -5.275e-3	2	642.211	3	2937.498	
491		18	max	.004	1	.143	3	.016	1 4.785e-3		NC	5	NC	2
492		1.0	min	003	3	107	2	004	10 -4.38e-3	2	1170.585		6821.279	
493		19	max	.004	1	.025	3	.008	3 3.831e-3	3	NC	1	NC	1
494		13	min	003	3	022	2	009	2 -3.486e-3	2	NC	1	NC	1
495	M16	1	max	.002	1	.022	3	.008	3 4.366e-3	2	NC	1	NC	1
496	IVITO	-		0	3	029	2	009	2 -3.079e-3	3	NC NC	1	NC NC	1
		2	min									•		
497		2	max	.002	1	.078	3	.016	1 5.498e-3	2	NC	5_	NC 0704 457	2
498		-	min	0	3	15	2	004	10 -3.83e-3	3_	1135.409	2	6721.157	1
499		3	max	.002	1	.126	3	.043	1 6.629e-3	2	NC	5	NC NC	3
500			min	0	3	25	2	002	10 -4.581e-3	3	622.158	2_	2914.179	
501		4	max	.002	1	.158	3	.065	1 7.761e-3	2	NC	<u>5</u>	NC	3
502			min	0	3	315	2	0	10 -5.333e-3	3	481.82	2	1997.055	1
503		5	max	.002	1	.17	3	.074	1 8.892e-3	2	NC	5	NC	5
504			min	0	3	337	2	001	10 -6.084e-3	3	447.336	2	1755.809	1
505		6	max	.002	1	.163	3	.068	1 1.002e-2	2	NC	5	NC	5
506			min	0	3	317	2	004	10 -6.836e-3	3	478.005	2	1894.319	
507		7	max	.002	1	.14	3	.048	1 1.115e-2	2	NC	5	NC	2
			man	.002				.0.10			.,0			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	264	2	008	10	-7.587e-3	3	586.714	2	2600.776	
509		8	max	.002	1	.108	3	.028	3	1.229e-2	2	NC	5_	NC	2
510			min	0	3	192	2	012	10	-8.339e-3	3	842.943	2	5605.274	1
511		9	max	.002	1	.079	3	.027	3	1.342e-2	2	NC	4	NC	1
512			min	0	3	126	2	024	2	-9.09e-3	3	1416.476	2	7293.782	3
513		10	max	.002	1	.065	3	.025	3	1.455e-2	2	NC	4	NC	4
514			min	0	3	096	2	03	2	-9.841e-3	3	2057.252	2	6427.842	2
515		11	max	.002	1	.079	3	.024	3	1.342e-2	2	NC	4	NC	1
516			min	0	3	126	2	024	2	-9.089e-3	3	1416.476	2	8564.522	3
517		12	max	.002	1	.108	3	.024	3	1.229e-2	2	NC	5_	NC	2
518			min	0	3	192	2	012	10	-8.336e-3	3	842.943	2	5553.801	1
519		13	max	.002	1	.14	3	.049	1	1.116e-2	2	NC	5	NC	2
520			min	0	3	264	2	008	10	-7.584e-3	3	586.714	2	2595.765	1
521		14	max	.002	1	.163	3	.068	1	1.002e-2	2	NC	5	NC	3
522			min	0	3	317	2	004	10	-6.831e-3	3	478.005	2	1896.88	1
523		15	max	.002	1	.17	3	.074	1	8.893e-3	2	NC	5	NC	3
524			min	0	3	337	2	002	10	-6.078e-3	3	447.336	2	1762.773	1
525		16	max	.002	1	.158	3	.064	1	7.762e-3	2	NC	5	NC	3
526			min	0	3	315	2	0	10	-5.326e-3	3	481.82	2	2010.742	1
527		17	max	.002	1	.126	3	.042	1	6.631e-3	2	NC	5	NC	3
528			min	0	3	25	2	002	10	-4.573e-3	3	622.158	2	2946.179	1
529		18	max	.002	1	.078	3	.016	1	5.5e-3	2	NC	5	NC	2
530			min	0	3	15	2	004	10	-3.82e-3	3	1135.41	2	6847.479	1
531		19	max	.002	1	.02	3	.008	3	4.369e-3	2	NC	1_	NC	1
532			min	0	3	029	2	009	2	-3.068e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.862e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-6.146e-5	2	NC	1	NC	1
535		2	max	0	3	002	15	.001	1	8.72e-4	3	NC	1	NC	1
536			min	0	2	008	4	0	3	-5.576e-4	2	9667.907	4	NC	1
537		3	max	0	3	004	15	.004	1	1.358e-3	3	NC	5	NC	1
538			min	0	2	016	4	004	3	-1.054e-3	2	4919.668	4	NC	1
539		4	max	0	3	006	15	.007	1	1.844e-3	3	NC	15	NC	4
540			min	0	2	024	4	007	3	-1.55e-3	2	3375.18	4	6246.073	3
541		5	max	0	3	007	15	.011	1	2.329e-3	3	NC	15	NC	4
542			min	0	2	03	4	012	3	-2.046e-3	2	2633.687	4	4114.517	3
543		6	max	0	3	008	15	.016	1	2.815e-3	3	9429.42	15	NC	4
544			min	0	2	036	4	018	3	-2.542e-3	2	2216.526	4	3003.472	3
545		7	max	0	3	01	15	.021	1	3.301e-3	3	8362.194	15	NC	4
546			min	0	2	041	4	023	3	-3.038e-3	2	1965.659	4	2352.247	3
547		8	max	0	3	01	15	.026	1	3.787e-3	3	7721.698	15	NC	4
548			min	001	2	044	4	029	3	-3.535e-3	2	1815.101	4	1942.197	3
549		9	max	0	3	011	15	.03	1	4.273e-3	3	7376.946	15	NC	4
550			min	001	2	046	4	033	3	-4.031e-3	2	1734.061	4	1673.583	3
551		10	max	0	3	011	15	.033	1	4.759e-3	3	7267.882	15	NC	4
552			min	001	2	047	4	037	3	-4.527e-3	2	1708.424	4	1496.22	3
553		11	max	0	3	011	15	.035	1	5.244e-3	3	7376.946	15	NC	5
554			min	002	2	046	4	04	3	-5.023e-3	2	1734.061	4	1383.74	3
555		12	max	0	3	01	15	.036	1	5.73e-3	3	7721.698	15	NC	5
556			min	002	2	044	4	041	3	-5.519e-3	2	1815.101	4	1323.081	3
557		13	max	0	3	01	15	.035	1	6.216e-3	3	8362.194	15	NC	5
558			min	002	2	041	4	039	3	-6.015e-3	2	1965.659	4	1310.523	
559		14	max	.001	3	009	15	.032	1	6.702e-3	3	9429.42	15	NC	5
560			min	002	2	037	4	036	3	-6.512e-3	2	2216.526		1351.873	
561		15	max	.001	3	007	15	.027	1	7.188e-3	3	NC	15	NC	4
562		1.0	min	002	2	031	4	029	3	-7.008e-3	2	2633.687	4	1468.218	
563		16	max	.001	3	006	15	.019	1	7.673e-3	3	NC	15	NC	4
564		1	min	002	2	024	4	02	3	-7.504e-3	2	3375.18		1716.704	
			11.001	1002	_	1021		102		, , , , , , , , , , , , ,	_	30.0.10			

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
565		17	max	.001	3	004	15	.008	1	8.159e-3	3	NC	5	NC	4
566			min	003	2	017	4	007	3	-8.e-3	2	4919.668	4	2276.544	3
567		18	max	.001	3	002	2	.01	3	8.645e-3	3	NC	1	NC	4
568			min	003	2	009	4	013	2	-8.496e-3	2	9667.907	4	4054.225	3
569		19	max	.001	3	.005	2	.032	3	9.131e-3	3	NC	1	NC	1
570			min	003	2	002	9	033	2	-8.992e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.01	3	2.66e-3	3	NC	1	NC	1
572			min	001	3	001	9	01	2	-2.578e-3	2	NC	1	NC	1
573		2	max	0	10	002	15	.002	9	2.555e-3	3	NC	1	NC	1
574			min	001	3	009	4	003	2	-2.465e-3	2	9667.907	4	NC	1
575		3	max	0	10	004	15	.008	1	2.45e-3	3	NC	5	NC	4
576			min	001	3	017	4	003	3	-2.351e-3	2	4919.668	4	6245.676	1
577		4	max	0	10	006	15	.012	1	2.345e-3	3	NC	15	NC	4
578			min	001	3	024	4	008	3	-2.237e-3	2	3375.18	4	4743.901	1
579		5	max	0	10	007	15	.015	1	2.239e-3	3	NC	15	NC	4
580			min	001	3	031	4	011	3	-2.123e-3	2	2633.687	4	4090.709	1
581		6	max	0	10	008	15	.017	1	2.134e-3	3	9429.42	15	NC	4
582			min	001	3	036	4	013	3	-2.009e-3	2	2216.526	4	3802.23	1
583		7	max	0	10	01	15	.018	1	2.029e-3	3	8362.194	15	NC	4
584			min	0	3	041	4	014	3	-1.896e-3	2	1965.659	4	3726.436	1
585		8	max	0	10	01	15	.017	1	1.924e-3	3	7721.698	15	NC	4
586			min	0	3	044	4	014	3	-1.782e-3	2	1815.101	4	3810.699	1
587		9	max	0	10	011	15	.016	1	1.819e-3	3	7376.946	15	NC	4
588			min	0	3	046	4	013	3	-1.668e-3	2	1734.061	4	4046.675	1
589		10	max	0	10	011	15	.015	1	1.713e-3	3	7267.882	15	NC	4
590			min	0	3	047	4	012	3	-1.554e-3	2	1708.424	4	4457.131	1
591		11	max	0	10	011	15	.013	1	1.608e-3	3	7376.946	15	NC	4
592			min	0	3	046	4	01	3	-1.44e-3	2	1734.061	4	5100.403	1
593		12	max	0	10	01	15	.011	1	1.503e-3	3	7721.698	15	NC	4
594			min	0	3	044	4	008	3	-1.327e-3	2	1815.101	4	6092.32	1
595		13	max	0	10	01	15	.008	1	1.398e-3	3	8362.194	15	NC	2
596			min	0	3	041	4	006	3	-1.213e-3	2	1965.659	4	7662.336	1
597		14	max	0	10	008	15	.006	1	1.293e-3	3	9429.42	<u>15</u>	NC	1
598			min	0	3	036	4	004	3	-1.099e-3	2	2216.526	4	NC	1
599		15	max	0	10	007	15	.004	1	1.187e-3	3	NC	<u> 15</u>	NC	1
600			min	0	3	03	4	002	3	-9.851e-4	2	2633.687	4	NC	1
601		16	max	0	10	006	15	.002	1	1.082e-3	3	NC	<u>15</u>	NC	1
602			min	0	3	024	4	0	3	-8.713e-4	2	3375.18	4	NC	1
603		17	max	0	10	004	15	0	9	9.768e-4	3	NC	5	NC	1
604			min	0	3	016	4	0	2	-7.575e-4	2	4919.668	4	NC	1
605		18	max	0	10	002	15	0	3	8.716e-4	3	NC	_1_	NC	1
606			min	0	3	008	4	0	2	-6.437e-4	2	9667.907	4	NC	1
607		19	max	0	1	0	1	0	1	7.664e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-5.299e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.