Tema 3

Circuitos lógicos combinacionales

Juan J. Navarro

juanjo@ac.upc.edu

Tel: 93 4016983 Despacho D6-205

Copyright ® Juan J. Navarro. Departament d'Arquitectura de Computadors. Universitat Politècnica de Catalunya

3.5. Algebra de Conmutación. Circuitos equivalentes. Minimización

- 3.5.1. Algebra de Conmutación
- 3.5.2. Demostración de teoremas. Ejemplo.
- 3.5.3. De la expresión lógica al circuito directo
- 3.5.4. Expresiones/circuititos equivalentes Actividad #3.1.(f)
- 3.5.5. ¿Síntesis mínima? Fin Actividad #3.1, en casa

3.5. Apéndice (a). Algebra de conmutación o **Algebra de Boole** con dos elementos (0, 1)

- 3.5.1. Algebra de conmutación
- 3.5.2. Demostración de teoremas. Ejemplo.
- 3.5.3. De la expresión lógica al circuito directo
- 3.5.4. Expresiones/circuititos equivalentes Actividad #3.1.(f)
- 3.5.5. ¿Síntesis mínima?

2

Copyright © Juan J. Navarro, Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya.

3.5.1. Álgebra de Conmutación

Axiomas (definición de las puertas Not, And y Or):

Variables lógicas binarias:

(A1) if
$$x=0$$
 then $x\neq 1$

(A1') if
$$x=1$$
 then $x\neq 0$

Complementación:

(A2) if
$$x=0$$
 then $!x=1$

(A2') if
$$x=1$$
 then $!x=0$

Funciones And y Or

(A3) 0.0=0

(A3') 1+1=1

(A4) $1 \cdot 1 = 1$

(A4') 0+0=0

(A5) 0.1=1.0=0

(A5') 1+0=0+1=1

Álgebra de Conmutación

Teoremas de 1 variable

(se demuestran a partir de los axiomas):

$$(T1) x+0=x$$

$$(T1') \times 1=x$$

$$(T2) x+1=1$$

$$(T1') x \cdot 0 = 0$$

$$(T3) x+x=x$$

(T2')
$$x \cdot x = x$$

$$(T4) !(!x)=x$$

$$(T5) x+!x=1$$

$$(T5') x \cdot ! x = 0$$

5

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

Álgebra de Conmutación

Teoremas de 2 y 3 variables:

Conmutatividad:

(T6)
$$x+y=y+x$$

(T6')
$$x \cdot y = y \cdot x$$

(T7)
$$(x+y)+z=x+(y+z)$$

(T7')
$$(x\cdot y)\cdot z = x\cdot (y\cdot z)$$

(T8)
$$(x\cdot y)+(x\cdot z)=x\cdot (y+z)$$

$$(T8') (x+y)\cdot(x+z)=x+(y\cdot z)$$

(T9)
$$x+(x\cdot y)=x$$

$$(T9') x \cdot (x + y) = x$$

$$(T10) !(x+y) = !x \cdot !y$$

$$(T10')$$
 $!(x\cdot y) = !x + !y$

6

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

3.5.2. Demostración de teoremas

A partir de los axiomas (Tablas de verdad de la Not, And y Or):

Ejemplo: (T8') $(x+y)\cdot(x+z)=x+(y\cdot z)$

X	у	х+у
0	0	0
0	1	1
1	0	1
1	1	1

X	у	z	x+y	X + Z	(x + y)•(x + z)	y•z	x + (y•z)
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	0 0 1 1 1 1 1	0 1 0 1 1 1 1	0 0 0 1 1 1 1	0 0 0 1 0 0 0	0 0 0 1 1 1 1
(x+y)·(x+z)=x+(y-z)							

Ejemplo de demostración de teoremas. Enunciado

A partir de los axiomas (Tablas de verdad de la Not, And y Or):

• Combinación, un teorema más:

(T11)
$$(x\cdot y)+(x\cdot !y)=x$$

Completad	las	columnas	de	la	tabla
O O p . O to. o.		00.0	~~	۰	

.,		١
Х	У	X•y
0	0	0
0	1	0
1	0	0
1	1	1
		0 0 0 0 1

X	у	x∙y	!y	x∙!y	(x·y)+(x·!y)
0	0				
0	1				
1	0				
1	1				

		ì
Χ	У	x+ y
0	0	0
0	1	1
1	0	1
1	1	1

Ejemplo de demostración de teoremas. Solución

A partir de los axiomas (Tablas de verdad de la Not, And y Or):

• Combinación, un teorema más: (T11) $(x\cdot y)+(x\cdot !y)=x$

Х	!x	_
0	1	
0 1	0	
	1	
X	у	х-у
0	0	0
0 0 1	0 1	0
1	0	0 0 0
1	1	1
		,

		i
Х	У	x+ y
0	0	0
0	1	1
1	0	1
1	1	1

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya

3.5.3. De la expresión lógica al circuito directo

- Del circuito lógico combinacional a la expresión lógica directa de cada una de sus salidas (visto ya en análisis)
- De la expresión lógica al circuito lógico directo
 - v.g. Expresión lógica: $w=((x\cdot y)+(x\cdot !y))+y$

Circuito directo:

10

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

3.5.4. Expresiones/Circuitos Equivalentes

- Reglas de precedencia en expresiones lógicas: (), !, ·, +
 - v.g.: $(x\cdot y)+(x\cdot z) \Rightarrow x\cdot y+x\cdot z$
- Expresiones lógicas equivalentes (las igualdades de los teoremas):
 - v.g.: $((x\cdot y)+(x\cdot !y))+y$ es equivalente a x+y
- Una expresión lógica especifica un circuito lógico, y al revés
- Circuitos lógicos equivalentes:
 - v.g.: $w=((x\cdot y)+(x\cdot !y))+y$ es equivalente a w=x+y

Actividad #3.1(f)

- Individual
- Intercambiad la hoja de la actividad #3.1 con vuestro compañero.
- En la parte de atrás de la hoja (tercer 1/3):
- Dibuja un circuito equivalente al original, pero con menor número de puertas (una puerta de 3 entradas cuenta como 2 puertas de 2 entradas).

Solución de la actividad #3.1(f)

Copyright © Juan J. Navarro, Universitat Politècnica de Catalunya.

3.5.5. ¿Síntesis mínima?

Objetivos importantes de IC

- Análisis: Dado un esquema encontrar la tabla de verdad (no importa cómo). Solución única.
- **Síntesis:** Dada una tabla de verdad encontrar la expresión en suma de minterms y dibujar el circuito que la implementa directamente con Not, And y Or (o con Dec y Or o con ROM). Solución única.
- De momento:

No tenéis que saber encontrar la implementación de una tabla de verdad con el número mínimo de puertas, eso lo veremos en el Apéndice (b)

14

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

¿Síntesis mínima para la Actividad #3.1?

¿La implementación en suma de minterms de #3.1(d) tiene menos hardware que el circuito original?

¿Y que el circuito equivalente que hemos obtenido en #3.1(f)? Cualquier respuesta es posible, depende de los circuitos, ya que la expresión en suma de minterms (que es única, para cada tabla de verdad) no tiene porque ser mínima.

Respuesta

Circuitos equivalentes

16

¿Síntesis mínima? Ejemplo del Mx

• **1. Funcionalidad:** Multiplexor (Mx) if s=0 then w=x₀ else w=x₁

• 2. Tabla de verdad:

S	\mathbf{x}_1	\mathbf{x}_0	W		
0	0	0	0		
0	0	1	1		$!s\cdot!x_1\cdot x_0$
0	1	0	0		
0	1	1	1		$!s \cdot x_1 \cdot x_0$
1	0	0	0		1 0
1	0	1	0		
1	1	0	1		$s \cdot x_1 \cdot ! x_0$
1	1	1	1	\Longrightarrow	$\mathbf{S} \cdot \mathbf{X}_1 \cdot \mathbf{X}_0$
					1 0

• 4. Circuito directo:

+ 3. Expresión en suma de minterms:

$$w(s,x_1, x_0) = m_1 + m_3 + m_6 + m_7 = !s \cdot !x_1 \cdot x_0 + !s \cdot x_1 \cdot x_0 + s \cdot x_1 \cdot !x_0 + s \cdot x_1 \cdot x_0$$

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

¿Síntesis mínima? Ejemplo del Mx

• 2. Tabla de verdad:

• 5. Circuito directo:

18

• 3. Expresión en suma de minterms:

$$W(s, x_1, x_0) = !s \cdot !x_1 \cdot x_0 + !s \cdot x_1 \cdot x_0 + s \cdot x_1 \cdot !x_0 + s \cdot x_1 \cdot x_0$$

• 4. Minimización de la expresión usando teoremas:

$$\begin{aligned} & \mathsf{W}(\mathsf{S},\mathsf{X}_1,\,\mathsf{X}_0) = |\mathsf{S}\cdot|\mathsf{X}_1\cdot\mathsf{X}_0 + |\mathsf{S}\cdot\mathsf{X}_1\cdot\mathsf{X}_0 + \mathsf{S}\cdot\mathsf{X}_1\cdot|\mathsf{X}_0 + \mathsf{S}\cdot\mathsf{X}_1\cdot\mathsf{X}_0 = \\ & = |\mathsf{S}\cdot\mathsf{X}_0\cdot(|\mathsf{X}_1+\mathsf{X}_1) + \mathsf{S}\cdot\mathsf{X}_1\cdot(|\mathsf{X}_0+\mathsf{X}_0) = \\ & = |\mathsf{S}\mathsf{X}_0+\mathsf{S}\mathsf{X}_1 \end{aligned}$$

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.