Exercise 7. If A and B are finite, show that the set of all functions $f: A \to B$ is finite.

Proof. Let D be the set of all functions from A to B. If $B = \emptyset$, then there is no function from A to B, so D is empty, and thus finite. If $A = \emptyset$, then there is one function f from A to B (the function whose rule of assignment is \emptyset), so $D = \{f\}$ and is therefore finite.

Otherwise, let

$$\phi: D \to \mathscr{P}(A \times B)$$
$$f \mapsto \big\{ \big(a, f(a)\big) \mid a \in A \big\}$$

Let $f,g:A\to B$ be distinct functions. There exists $x\in A$ such that $f(x)\neq g(x)$, from which we deduce that $\phi(f)\neq \phi(g)$, so that ϕ is injective. Since A and B are finite, the cartesian product $A\times B$ is finite, and so is $\mathscr{P}(A\times B)$; let $h:\mathscr{P}(A\times B)\to\{1,2,\ldots,n\}$ be a bijection, for some n. Then $h\circ\phi$ is an injection from D to $\{1,2,\ldots,n\}$, so that D is finite.