3 Week 3 Homework

- **3.1 Exercise.** Let $S \subseteq C[0,1]$. Consider the following two statements:
 - S is an open subset of $(C[0,1], \|\cdot\|_1)$.
 - S is an open subset of $(C[0,1], \|\cdot\|_{\infty})$.

Determine if the first statement implies the second, and vice-versa. Supply proof or counterexample as appropriate.

Proof. We claim that the first statement implies the second, but not the converse.

Suppose that S is an open subset of $(C[0,1], \|\cdot\|_1)$. For any $g \in S$, there is an open ball with respect to the 1-norm centered around g with radius ε such that $B_1(g,\varepsilon) \subseteq S$. We proceed to show that $B_{\infty}(g,\varepsilon) \subseteq B_1(g,\varepsilon)$. Let $f \in B_{\infty}(g,\varepsilon)$. Then

$$||f - g||_1 = \int_0^1 |f - g| \le \int_0^1 \sup\{|f - g|\} = ||f - g||_\infty < \varepsilon$$

Thus $B_{\infty}(g,\varepsilon) \subseteq B_1(g,\varepsilon) \subseteq S$. Thus S is an open subset of $(C[0,1], \|\cdot\|_1)$.

Now we show that the converse is not necessarily true. Let $S=B_{\infty}(0,1)$. This is an open subset of $(C[0,1],\|\cdot\|_{\infty})$. Consider $f(x)=0\in B_{\infty}(0,1)$. For every $\varepsilon>0$, we can always find $n\in\mathbb{N}$ such that $n>\frac{1}{\varepsilon}$. Let $g(x)=x^{n-1}$. Since $\int_0^1g(x)dx=\frac{1}{n}<\varepsilon$, $g(x)\in B_1(0,\varepsilon)$. But g(1)=1, which means that $g(x)\notin B_{\infty}(0,1)$. Thus f is not an interior point of $B_{\infty}(0,1)$ with respect to the 1-norm, which means that $B_{\infty}(0,1)$ is not an open subset of $(C[0,1],\|\cdot\|_1)$.

3.2 Exercise. Can linear subspaces be open and/or closed?

(a) Let $C^{\infty}[0,1]$ denote the set of infinitely differentiably functions $f:[0,1]\to \mathbf{R}$. Prove that $C^{\infty}[0,1]$ is not a closed subset of $(C[0,1],\|\cdot\|_{\infty})$.

Proof. To show that this set is not closed, we just need to find a limit point that is not an element of the set. Let $f(x) = |x - \frac{1}{2}|$. Clearly $f \notin C^{\infty}[0,1]$. To prove f is a limit point of $C^{\infty}[0,1]$, first let $\varepsilon > 0$ and consider the open ball $B(f,\varepsilon)$. There exists an $n \in \mathbb{N}$ such that $n+1 > \frac{1}{\varepsilon} \implies asdfasfas$. Let

$$g_n(x) = \int_{\frac{1}{2}}^x \frac{e^{-\frac{n}{t}} - e^{-\frac{n}{1-t}}}{e^{-\frac{n}{t}} + e^{-\frac{n}{1-t}}} dt, \ x \in [0, 1]$$

Since the integrand is constructed using infinitely differentiable functions, g_n is infinitely differentiable as well, thus $g_n \in C^{\infty}[0,1]$. Notice that $g_n(1) = \int_{\frac{1}{2}}^1 \frac{e^{-\frac{n}{t}} - e^{-\frac{n}{1-t}}}{e^{-\frac{n}{t}} + e^{-\frac{n}{1-t}}} dt$. If we perform the substitution u = 1 - t, we see that

$$g_n(1) = \int_{\frac{1}{2}}^1 \frac{e^{-\frac{n}{t}} - e^{-\frac{n}{1-t}}}{e^{-\frac{n}{t}} + e^{-\frac{n}{1-t}}} dt = -\int_{\frac{1}{2}}^0 \frac{e^{-\frac{n}{1-u}} - e^{-\frac{n}{u}}}{e^{-\frac{n}{1-u}} + e^{-\frac{n}{u}}} du = g_n(0)$$

Thus we can conclude that

$$g_n(1) = \frac{1}{2}(g_n(1) + g_n(0)) = \frac{1}{2} \left(\int_{\frac{1}{2}}^1 \frac{e^{-\frac{n}{t}} - e^{-\frac{n}{1-t}}}{e^{-\frac{n}{t}} + e^{-\frac{n}{1-t}}} dt + \int_{\frac{1}{2}}^0 \frac{e^{-\frac{n}{t}} - e^{-\frac{n}{1-t}}}{e^{-\frac{n}{t}} + e^{-\frac{n}{t}}} dt \right) = \frac{1}{2} \left(\right)$$

which we can solve by using the substitution

We compute $||f - g_n||_{\infty} = \sup\{|f(x) - g_n(x)| : x \in [0, 1]\}.$

Let $h(x) = f(x) - g_n(x)$. We try to maximize |h(x)|. Taking its derivative with respect to x, we get

$$h'(x) = f'(x) - g'_n(x) = \frac{x - \frac{1}{2}}{|x - \frac{1}{2}|} - \frac{e^{-\frac{n}{x}} - e^{-\frac{n}{1-x}}}{e^{-\frac{n}{x}} + e^{-\frac{n}{1-x}}}$$

There is a critical point at $x = \frac{1}{2}$ since $h'(\frac{1}{2})$ is undefined. Otherwise, if $x > \frac{1}{2}$,

$$h'(x) = 1 - \frac{e^{-\frac{n}{x}} - e^{-\frac{n}{1-x}}}{e^{-\frac{n}{x}} + e^{-\frac{n}{1-x}}} = \frac{2e^{-\frac{n}{1-x}}}{e^{-\frac{n}{x}} + e^{-\frac{n}{1-x}}} > 0$$

If x < 0,

$$h'(x) = -1 - \frac{e^{-\frac{n}{x}} - e^{-\frac{n}{1-x}}}{e^{-\frac{n}{x}} + e^{-\frac{n}{1-x}}} = \frac{-2e^{-\frac{n}{x}}}{e^{-\frac{n}{x}} + e^{-\frac{n}{1-x}}} < 0$$

Checking all critical points and endpoints, we see that

$$h(\frac{1}{2}) = 0h(0) =$$

(b) Let C be the set of **convergent** sequences of real numbers. Prove that C is a closed subset of $(\ell^{\infty}, \|\cdot\|_{\infty})$.

(c) Let $(X, \|\cdot\|)$ be a normed vector space, and let M be a linear subspace of X. Prove that M is an open set if and only if M = X.

3.3 Exercise. The Bolzano-Weierstrass Theorem.

(a) Prove that every bounded sequence in $(\mathbf{R}^d, \|\cdot\|_2)$ has a convergent subsequence.

Proof. We take the Bolzano-Weierstrass Theorem in \mathbb{R} for granted and use this to prove it for \mathbb{R}^d . We will do this using induction on d. When d = 1, it follows trivially from the theorem in \mathbb{R} .

Now suppose that the claim is true for some d=k, for some $k \in \mathbb{N}$. Let $(a_n)_{n\geq 1}$ be a bounded sequence in $(\mathbf{R}^k, \|\cdot\|_2)$. Define another sequence $(b_n)_{n\geq 1}$ in \mathbb{R}^{k-1} such that b_i is the first k-1 components of a_i . From our assumption, b_i has a convergent subsequence $(b_{n_i})_{i\geq 1}$. Consider the sequence $(a_{n_i})_{i\geq 0}$. \square

(b) Give an example of a normed vector space $(X, \|\cdot\|)$ containing a sequence (x_n) which has no convergent subsequences.