

Ensemble Learning: Bagging

Pilsung Kang
School of Industrial Management Engineering
Korea University

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks

	y(1)	y(1)	X(I)
	y(2)	y(2)	X(2)
= f	y(3)	y(3)	X(3)
_ ' (•	•	•
	(12)	(1 0)	> (()
	y(k-2)	y(k-2)	X(k-2)
	y(k-2) y(k-1)	y(k-2) y(k-1)	X(k-2) X(k-1)

X(I)

X(2)

X(3)

X(k-2)

X(k-1)

X(k)

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-I) blocks

X(I)	y(1)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f /	X(3)	1
•	•	•	- 12(•	_
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-I)	y(k-1)	y(k-1)		X(k-I)	
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks

X(I)	y(I)	y(1)		X(I)
X(2)	y(2)	y(2)		X(2)
X(3)	y(3)	y(3)	= f	X(3)
•	•	•	_ 13(•
X(k-2)	y(k-2)	y(k-2)		X(k-2)
X(k-I)	y(k-1)	y(k-1)		X(k-I)
X(k)	y(k)	y(k)		X(k)

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks

X(I)	y(I)
X(2)	y(2)
X(3)	y(3)
•	•
X(k-2)	y(k-2)
X(k-I)	y(k-1)
X(k)	y(k)

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks

			· · · · · · · · · · · · · · · · · · ·	
X(I)	y(1)	y(1)		X(I)
X(2)	y(2)	y(2)		X(2)
X(3)	y(3)	y(3)	= f $/$	X(3)
• •	•	•	- 'k(•
X(k-2)	y(k-2)	y(k-2)		X(k-2)
X(k-1)	y(k-1)	y(k-1)		X(k-1)
X(k)	y(k)	y(k)		X(k)

• K-fold data split

✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-I) blocks

• Final output
$$\hat{y} = \delta\Big(f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_{k-1}(\mathbf{x}), f_k(\mathbf{x})\Big)$$

 $\checkmark \delta(\cdot)$: An aggregation function of individual outputs (ex: simple average)

Breiman (1996)

• Main Idea

- ✓ Each member of the ensemble is constructed from a different training dataset
- ✓ Each dataset is generated by sampling from the total *N* data examples, choosing *N* items uniformly at random with replacement
- ✓ Each dataset sample is known as a bootstrap

Original Dataset

Original Date	aset
χ ^l	yl
x^2	y ²
x^3	y ³
x ⁴	y ⁴
x ⁵	y ⁵
x ⁶	y ⁶
x ⁷	y ⁷
x ₈	y 8
x ⁹	y ⁹
×10	y 10

Bootstrap	
x^3	y ³
x ⁶	y ⁶
x^2	y ²
× ¹⁰	y ¹⁰
x ₈	y 8
x ⁷	y ⁷
x ⁷	y ⁷
x^3	y ³
x ²	y ²
x^7	y ⁷

Bootsti ap 2			
y ⁷			
yΙ			
y ¹⁰			
yΙ			
y ⁸			
y ⁶			
y ²			
y ⁶			
y ⁴			
y ⁹			

Bootstrap 2

Bootstrap B				
x ⁹	y ⁹			
x ⁵	y ⁵			
× ²	y ²			
× ⁴	y ⁴			
x ⁷	y ⁷			
× ²	y ²			
x ⁵	y ⁵			
x ¹⁰	y ¹⁰			
x ⁸	λ_8			
x ²	y ²			

- Bagging: <u>B</u>ootstrapp <u>Aggregating</u>
 - ✓ Probability that an instance is not included in a bootstrap

$$p = \left(1 - \frac{1}{N}\right)^N \rightarrow \lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^N = e^{-1} = 0.368$$

✓ Fits well with the models with low bias and high variance

Bagging with Decision Tree

- Result Aggregating
 - √ For classification problem
 - Majority voting

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\sum_{j=1}^{n} \delta(\hat{y}_j = i), i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance		Predicted class label	
0.80	Model I	0.90		I	n
0.75	Model 2	0.92		ı	$\sum \delta(\hat{y}_j = 0) = 4$
0.88	Model 3	0.87		1	j=1
0.91	Model 4	0.34		0	
0.77	Model 5	0.41		0	$\sum_{i=1}^{n} S(x_i)$
0.65	Model 6	0.84		I	$\sum \delta(\hat{y}_j = 1) = 6$
0.95	Model 7	0.14		0	j=1
0.82	Model 8	0.32		0	
0.78	Model 9	0.98		I	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57	11	I	

- Result Aggregating
 - √ For classification problem
 - Weighted voting (weight = training accuracy of individual models)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{\sum_{j=1}^{n} (TrnAcc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{j=1}^{n} (TrnAcc_{j})}, \quad i \in \{0, 1\} \right)$$

			J	•
Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	I	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 0)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.75	Model 2	0.92	I	$\frac{1}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.88	Model 3	0.87	I	J
0.91	Model 4	0.34	0	
0.77	Model 5	0.41	0	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 1)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.576$
0.65	Model 6	0.84	1	$\sum_{j=1}^{n} (TrnAcc_j) = 0.370$
0.95	Model 7	0.14	0	
0.82	Model 8	0.32	0	.^ 1
0.78	Model 9	0.98	I	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57		

- Result Aggregating
 - √ For classification problem
 - Weighted voting (weight = predicted probability for each class)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} P(y=i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	I	$1 \sum_{n=0}^{\infty} p(n)$
0.75	Model 2	0.92	I	$\frac{1}{n}\sum_{j=1}^{n}P(y=0) = 0.375$
0.88	Model 3	0.87	I	j=1
0.91	Model 4	0.34	0	m
0.77	Model 5	0.41	0	$\frac{1}{n}\sum_{j=1}^{n} P(y=1) = 0.625$
0.65	Model 6	0.84	I	n = 1 $(g - 1) = 0.020$
0.95	Model 7	0.14	0	j=1
0.82	Model 8	0.32	0	^ 1
0.78	Model 9	0.98	I	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57	3 I	

- Result Aggregating: Stacking
 - ✓ Use another prediction model to aggregate the results
 - Input: Predictions made by ensemble members
 - Target: Actual true label

- Result Aggregating: Stacking
 - ✓ The winner of KDD-cup 2015
 - MOOC dropout prediction

Bagging: Algorithm

Algorithm 1 Bagging

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

for t = 1 to T do

Build a dataset S_t , by sampling N items, randomly with replacement from S.

Train a model h_t using S_t , and add it to the ensemble.

end for

For a new testing point (x', y'),

If model outputs are continuous, combine them by averaging.

If model outputs are class labels, combine them by voting.

Bagging: Illustration

Aggregation examples

- Out of bag error (OOB Error)
 - ✓ Use the training instances that are not sampled for validation

• Bagged Trees vs. Single Tree

