FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Teodor Duraković Naměřeno: 18. března 2024

Obor: F Skupina: Út 14:00 Testováno:

Úloha č. **6**: **Zeemanův jev**

1. Zadání

1. Ověřte funkci Fabry-Perotova interferometru. Ukažte, že naměřené poloměry různých interferenčních kroužků jedné vlnové délky souhlasí s vhodným vztahem uvedeným v návodu.

2. Pomocí posunu vlnočtů při normálním Zeemanově jevu zjistěte velikost Bohrova magnetonu.

3. Zjistěte, které složky rozštěpených spektrálních čar jsou vyzařovány ve směru kolmém na indukci magnetického pole, a které ve směru rovnoběžném. Změřte, jak jsou jednotlivé složky rozštěpených spektrálních čar polarizovány. Polarizaci stanovte pro oba směry záření (kolmý i rovnoběžný k magnetické indukci) a pro normální Zeemanův jev.

2. Teorie

Zeemanovým jevem se nazývá rozštěpení spektrálních čar vyzařovaných atomy v magnetickém poli, vznikající kvůli změně energie jednotlivých hladin působením magnetického pole. V experimentu pozorujeme přechod kadmia $3\ ^1D_2 \rightarrow 2^1P_1$ s odpovídající vlnovou délkou 643,847 nm. Při přechodu se energie fotonu vyzářeného v magnetickém poli posune o hodnotu

$$E_{m_{\rm J1}} - E_{m_{\rm J2}} = (m_{\rm J2} - m_{\rm J1}) \,\mu_{\rm B} B,$$
 (1)

kde E je energie jednotlivých stavů, $m_{\rm J}$ kvantová čísla, $\mu_{\rm B}$ Bohrův magnetron a B magnetická indukce. Podle výběrových pravidel může $\Delta m_{\rm J}$ nabývat pouze hodnot -1,0,1, v magnetickém poli tedy dochází k rozštěpení na tři čáry. Na směru záření kromě počtu čar závisí i jejich polarizace, která může být lineární i kruhová.

V případě použití Fabry-Perotova interferometru (v textu bude dále označován i zkratkou FP) lze pomocí formule

$$\frac{r_{b,p}^2 - r_{a,p}^2}{r_{a,p+1}^2 - r_{a,p}^2} = 2nd\left(\tilde{\lambda}_b - \tilde{\lambda}_a\right)$$
 (2)

z poloměrů kružnic, které jsou v rámci interference tvořeny, změřit rozdíl vlnočtů dvou blízkých spektrálních čar. Jelikož zároveň platí

$$r_{a,p+1}^2 - r_{a,p}^2 = 2(fZn)^2 \frac{1}{2nd\tilde{\lambda}_a} = konst.,$$
 (3)

kde f je ohnisková vzdálenost čočky, Z zvětšení, n index lomu pro vlnovou délku λ_a a d tloušťka FP interferometru, musí být rozdíl kvadrátů poloměrů všech kružnic odpovídajících jedné spektrální čáře být stejný. Tím lze činnost FP interferometru ověřit. Bohrův magneton lze určit formulí

$$\mu_B = \frac{r_{a,p+1}^2 - r_{a,p}^2}{r_{b,p}^2 - r_{a,p}^2} \frac{hc}{2ndB},\tag{4}$$

přičemž druhý index v $r_{x,y}$ označuje index skupin kružnic, první index označuje konkrétní z kružnic ve skupině (může tedy nabývat hodnot 1, 2 a 3, resp. a, b a c).

3. Měření

Funkčnost rezonátoru úspěšně ověřujeme - majíli rozdíly kvadrátů být konstantní, závislost kvadrátů poloměrů na pořadí (resp. druhém indexu p) bude lineární. Takové výsledky skutečně získáváme (obr. 1).

Obrázek 1: Závislost kvadrátu poloměru kroužku na jeho pořadí

Z experimentální tabulky se závislostí indukce na proudu v cívkách lze polynomickým fitem třetího stupně získat funkci indukce na proudu (obr. 2), se získanými koeficienty (funkcí) pracujeme pro získání velikosti magnetické indukce.

Obrázek 2: Získané hodnoty závislosti velikosti magnetické indukce na proudu jejich proložení polynomem třetího stupně.

Pro hodnotu Bohrova magnetonu měříme poloměry kružnic a hodnotu získáváme použitím formule (4):

I [A]	B [mT]	$r_{a,p+1}$	$r_{b,p+1}$	$\mu_{\mathrm{B}}^{ab}[\mathrm{A.m^2}]$	$\mu_{\rm B}^{bc}.10^{-24} [{\rm A.m^2}]$
5.08	321	17.3	23.0	10.8 ± 0.7	9.7 ± 0.8
6.03	380	17.5	23.1	11.0 ± 0.7	9.4 ± 0.7
6.54	412	17.5	23.2	10.2 ± 0.6	9.8 ± 0.7
7.25	454	17.7	23.3	10.8 ± 0.7	9.9 ± 0.7
7.60	474	17.8	23.4	11.0 ± 0.7	10.4 ± 0.8
7.77	483	17.8	23.4	10.8 ± 0.7	10.2 ± 0.8
8.02	497	17.8	23.4	10.5 ± 0.7	9.9 ± 0.8
8.62	530	17.9	23.5	10.5 ± 0.8	10.2 ± 0.8
9.09	550	18.0	23.6	10.7 ± 0.8	10.6 ± 0.9
9.60	580	18.0	23.6	10.2 ± 0.8	10.1 ± 0.9
10.02	600	18.1	23.7	10.5 ± 0.9	10.6 ± 0.9
	<u> </u>	·		10.6 ± 0.7	10.1 ± 0.8

Pozorujeme, že při kalkulaci z druhého a třetího setu (bc) získáváme lepší výsledky, než v případě setu prvního a druhého (ab). Takové výsledky jsme očekávali, jelikož pro větší kružnice bylo určení jejich poloměru jednodušší, než u kružnic menších. Hodnoty r_a, r_b, r_c jsou ve všech případech stejné - na ně magnetická indukce nepůsobí, proto jsme pro každou z hodnot statisticky zpracovali hodnotu průměrnou a s ní pracovali pro všechny hodnoty proudu, resp. indukce:

$$r_{a,p} = 16.22 \pm 0.05, \quad r_{b,p} = 22.3 \pm 0.05, \quad r_{c,p} = 27 \pm 0.05 \,\text{mm}$$

Též lze spočítat rozdíl energie dvou blízkých spektrálních čar, tj. hlavních a vedlejších, a za pomocí formule (1) vykreslit závislost ΔE na B (Obr. 3)a následně hodnotu Bohrova magnetonu určit.

Obrázek 3

Tímto složitějším způsobem získáváme hodnotu Bohrova magnetonu:

$$\mu_{\rm B} = 10.13 \pm 0.32 \cdot 10^{-24} \, \rm A.m^2$$

Anomální Zeemanův jev pozorujeme úspěšně, vzniká 9 čar.

V případě pozorování jevu kolmo na magnetickou indukci pozorujeme lineární polarizaci hlavní spektrální čáry i čar vedlejších. Při vertikální polarizaci (kolmo na magnetickou indukci) jsou přítomny pouze čáry vedlejší, hlavní je naopak přítomna při polarizaci horizontální (±90°, rovnoběžně s magnetickou indukcí). Při pozorování jevu rovnoběžně na magnetickou indukci není hlavní spektrální čára vyzářena vůbec, vedlejší čáry na lineární polarizátor nereagují - jsou totiž polarizovány kruhově, což dokazujeme vložením čtvrtvlnné destičky před lineární polarizátor, přičemž je polarizace vnitřního kroužku na vnější kolmá. Světlo lze nyní při správném nastavení polarizátoru vyfiltrovat, což svědčí o původně kruhové polarizaci, přičemž je u jedné složky pravotočivá a u druhé levotočivá.

4. Závěr

Podařilo se nám ověřit funkčnost FP interferometru a následným zpracováním dat z něj stanovit velikost Bohrova magnetonu. Jak již je nastíněno v bezprostřední evaluaci výsledků po tabulce s daty,

limitem přesnosti bylo samotné rozlišení CCD kamery - poloměry nám vycházely při malém proudovém rozdílu na pixel identické. Předpokládáme, že by vyšší rozlišení kamery mohlo přinést i větší přesnost experimentu (i samotná velikost nejistoty je ovlivněna zejména přesností "měřítka", kterým byla právě kamera). Ke skutečné hodnotě^[1] je náš výsledek nicméně velice blízko, v rámci stanovené odchylky. Úspěšně jsme stanovili polarizační stavy pro klasický Zeemanův jev.

5. Zdroje

1. The NIST Reference on Constants, Units and Uncertainty; Bohr Magneton.

Dostupné z WWW:

https://physics.nist.gov/cgi-bin/cuu/Value?mub