

Guía de Estudio para ingreso a Posgrado

Asia	ınatura:	Quími	ica
ASIG	matura.	Q uiiii	ıca

4	. – .	/	,
7	\ Le iin		20140
) Es un	UXIUU	aciuo.
	,		

a) Li₂O

b) NaOH

c) H₂SO₄

d) **F₂O**

e) CsF

2) Es una base inorgánica:

a) CH₄

b) CH₃-OH

c) LiCOOH

d) R-COH

e) Be(OH)₂

3) Su combinación con oxígeno genera anhidridos (óxidos básicos):

a) Na, Li, K, F

b) Na, Li, K, S

c) Na, Li, Be, Cs

d) Na, Li, H, F e)

Na, Li, F, Ti

4) La concentración de hidrogeniones de una sustancia con pOH 5 es de:

b) 1 x 10⁻⁵

c) 1x 10⁻¹⁰

d) 1 x 10⁻⁹

e) pH = 9

5) Un recipiente contiene medio mol de O2. ¿Cuántos gramos del compuesto hay dentro?

a) 16 gr

b) 32 gr

c) 6.023x10²³ d) 1.66-10⁻²⁴ e) medio mol

6) En condiciones de temperatura y presión normal de un gas ideal un volumen de 22.4 L contiene 6.023x10²³ moléculas del gas. ¿Cuántos volúmenes del recipiente tendrán medio mol del gas si su peso molecular es 18 gramos?

a) 22.4 L

b) 11.2 L

c) 5.06 L

d) 3 volumemes

e) medio volumen

7) Este tipo de molécula biológica se caracteriza por la formación de enlaces éster al unirse químicamente:

a) azúcares b) aminoácidos

c) nucleótidos d) grasas

e) ribonucleotidos

8) Se define como isómero químico:

- a) Moléculas con diferentes sumatoria de peso molecular y diferente número de oxidación.
- b) Moléculas con el mismo peso atómico pero diferente cadena y estructura funcional.
- c) Conjunto de átomos con el mismo peso molecular pero diferente arreglo espacial.
- d) Conjunto de átomos con el mismo peso molecular e idéntico arreglo espacial.
- e) Conjunto de átomos y moléculas con idéntica masa molecular e idéntico arreglo espacial.
- 9) Si la □G de la reacción 2 de la glucólisis (Glu-6-P a Fru-6P) catalizada por la enzima Glucosa-6-fosfato isomerasa es de 1.7, entonces el valor de la constante de equilibrio será:

a) negativo a 1	b) positivo	c) mayor que 1	d) menor (que 1	e) cercano
	-	de una solución de omar Consi	•	-	
_	b) 20 gr.	c) 15.66 mL. d)	16.66 gr. e) 1	6.66 mL.	
a) Libera cal	orb) Consume	ción es exergónica calor c) Consun disminuye el calor.	ne energía d) l	Libera energía	
externa (y te Recuerde la a) menor tem	emperatura co a ley de Charlo nperatura denti n permanece c	ses ideales como sonstante) ocurre ques P1V1 = P2V2: ro del sistema. b) onstante.	ue: mayor tempera		stema.
		Asignatura:	<u>Bioquímic</u>	<u>a</u>	
-	ontra concent	a puede tener un o ración de sustrato gmoidal c) paraból).		
a) regiones dc) moléculas	leterminantes d altamente hid	E reconocen: de grasa b) epítope rofílicas d) Anillos las a factores CREE	nitrocarbonado		S
-		cidos aromáticos _l ntro de su estructi		a estructura tip	o ciclo
a) HKR e) DE		b) GAVLY	c) FYW		d) ST
•	•	le un aminoácido l OOH-CHR- NH ₃ c)	•	d) R-COOH	e) CONH ₂
5) Este par cercano a 7.		s un excelente am	ortiguador fisio	ológico pues su	pK es
	co-lactato 3.86	5	b) Ácido ao	cético-Acetato de	Sodio 4.76

- c) Carbonato-ácido carbónico pK 6.37
- d) Ácido fórmico-Formiato 3.75

e) NH₃-NH₂ pK 9.25

- 6) La disminución de la energía metabólica dentro de la célula puede ser parametrizada como:
- a) ATP / ADP
- b) ATP + $\frac{1}{2}$ ADP /AMP + ADP + ATP
- c) ATP / ADP + PPI
- d) NADH + NADPH / NAD+ + NADP e) ATP + GTP+ UTP +

CTP

- 7) Representa una medida en escala logarítmica de la alcalinidad celular:
- a) pH
- b) pOH
- c) pH + pOH = 14
- d) Kw
- e) K_{eq}

- 8) En el ciclo de Krebs ocurren reacciones de:
- a) Descarboxilación oxidativa

- b) Carboxilación
- c) Desaminación
- d) Oxidación y reducción de ácido pirúvico e) Transdesaminación oxidativa
- 9) Para la transducción de señales se requiere de segundos mensajeros dentro de la célula. El recebtor □-adrenérgico de la epinefrina está asociado con:
- a) La activación y fosforilación de los recptores RTK.
- b) La activación de la fosfolipasa C (PLC) y la generación de GMPc
- c) La activación de proteínas G□ y la generación de AMPc por la Adenilato ciclasa.
- d) La activación de la Guanilato ciclasa y la fosforilación de blancos celulares por la PKC
- e) La activación de respuestas ionotrópicas y metabotrópicas.
- 10) Se denomina fosfolípidos a:
- a) Derivados de ceramida y derivados del ácido fosfatídico con el grupo fosfato.
- b) Sólo a los fosfoglicéridos con PO₄.
- c) Sólo a los derivados de esfingosina con fosfato unido.
- d) Sólo a los fosfo-esfingolípidos.
- e) Ceras y derivados del araquidonato.
- 11) Son características del anabolismo:
- a) Destrozar polímeros y generar monómeros más energía.
- b) Regenerar a las biomoléculas ingeridas para ingresar en un estado dinámico celular.
- c) Re invertir materiales de desecho para la biosíntesis a través de reacciones acopladas.
- d) Realizar reacciones reductoras endergónicas con inversión de energía para la biosíntesis celular.
- e) Construir un mapa metabólico dinámico a través de mecanismos redox.
- 12) Es una vía cuyas enzimas y reacciones son únicamente catabólicas:
- a) Gluconeogénesis
- b)b-reducción c) ciclo de Krebs-Henseleit d) Glucólisis
- e) Glucogenolisis
- 13) Al disociarse 0.9 % de NaCl en una solución acuosa arroja una osmolaridad de 0.310 Osmol /litro. ¿Cuál será la osmolaridad resultante de una solución 0.9 % de hidróxido de potasio?
- a) 155 mOsmol / litro
- b) 0.15 mili osmol / litro
- c) 0.15 Osmol / litro.

ď	150	Osmol /	dL

e) 310 miliOsmol / decilitro

14) Se define así al estado donde la toda la enzima E1 (hiperbólica o sigmoidal) se encuentra unida al sustrato:

- a) Km
- b) V max
- c) Kcat
- d) Vmax / Km e) Kcat / Km

15) Son ejemplos de modificaciones covalentes reversibles para el control de la actividad de las enzimas:

- a) Ubiquitinación, ribosilación y glicosilación.
- b) Acetilación, fosforilación y adenilación.
- c) Adenilación, miristolilación y derivatización química.
- d) Unión de inhibidores acompetitivos.
- e) Expresión y regulación genética.

Asignatura: Matemáticas

1) Se tienen dos cajas con 22 bolas rojas, 31 bolas café y 33 bolas amarillas. La probabilidad de encontrar al azar una esfera roja es: a) 2/172 b) 1/86 c) 2/86 d) 0.011 e)

0.00581

- 2) El costo de un automóvil valuado en 150, 000 \$ M. N. menos un descuento adicional de 17 % sobre un descuento primario de 20 % es:
- a) 127,500 \$ M. N.
- b) 125,000\$ M. N.
- c) 102, 000\$ M. N.

- d) 94, 500 \$ M. N.
- e) 99,600 \$ M. N.

3) La probabilidad de tener un par de homocigos recesivos dentro de una cruza al azar de dos familias de heterocigotos para dos pares de alelos es:

- a) 1/4
- b) 0.5
- c) 1/6
- d) 1/8
- e) 0.125

4) Es la integral de e:

b) e^X c) la misma constante a) cero d) In e e) e^X - X

5) Es la derivada de 5X²:

- a) 10X
- b) 10X²
- c) 5X + X d) $4X^2 + S$

6) Se define como el inverso multiplicativo de cualquier número:

- a) 1/X
- b)
- c)
- d)
- e)

7) Se define como el neutro aditivo universal.

- a) Cero
- c) uno
- c) 1 + X = 0
- d) 1 X = 0 e) a * b = c

8) La pendiente de la siguiente gráfica es:

- a) cero
- b) 1
- c) -1
- d) $\frac{1}{2}$ e) x2-y2 / x1-y1
- 9) Si se desplaza como se ve en la figura, la pendiente resultante sería:

- a) -0.5
- b) 0.5
- c) 1
- d) -1 E) -2
- 10) Se consideran las medidas de tendencia central por excelencia:
- a) $R^2 y X^2$ cuartiles
- b) media y moda
- c) Anova
- d) desviación estándar
- e)

11) La longitud de polipeptido constituido por 17 residuos de aminoácidos arreglados en hélice □ que está doblado a la mitad es de Å. Considere que el producto de traslación de 1.5 Å por aminoácido.

- a) 25.5
- b) 11.33
- c) 0.088
- d) 12.77
- e) 5.66

12) Considerando que el producto de traslación de las proteínas arregladas en hélice alfa es de 1.5 A y el producto de avance de las láminas □ es de 3.5 A, durante la centrifugación de las muestras, en gradientes de densidad, las proteínas todo b quedarán en:

- a) La parte superior de la columna.
- b) La parte inferior de la columna.
- c) La parte media de la columna
- d) En la primera fase de separación de la exclusión molecular.
- e) El último tercio inferior de la columna.
- 13) Resuelve el siguiente sistema de ecuaciones:

$$\begin{cases}
5x + 6y = 22 \\
4x + 4y = 12
\end{cases}$$

a)
$$x = 8$$
, $y = 3$ **b)** $x = -4$, $y = 7$ c) $x = 4$, $y = 7$ d) $x = -4$, $y = 28$ e) $x = 1$, $y = 2$

Bioquímica-Biología Celular-Biología Molecular

- 1. ¿Cuál es el valor del pH de una solución que contiene 25 milimoles por litro de protones? Recuerde que el pH = $-log[H^+]$
- A) 0.5
- B) 1.6
- C) 2.4
- D) 5.8
- E) 7.6

Conteste las siguientes preguntas utilizando las respuestas dadas en los incisos A-E.

- 2. Para llevar a cabo su función debe cruzar la membrana plasmática y unirse a un receptor intracelular.
- 3. Se une a un receptor de la membrana plasmática que se acopla a una proteína G heterotrimérica, la cual activa una enzima para la producción de AMPc.
- 4. Interactúa con un receptor en la membrana plasmática que tiene actividad de tirosina cinasa.
- A) Valina
- B) Epinefrina
- C) Cortisol
- D) Manosa
- E) Insulina
- 5. Se determina que el DNA circular de un plásmido contiene 27 % de adenosina. ¿Cuál sería el porcentaje de citidina?
- A) 20%
- B) 23 %
- C) 25 %
- D) 27 %
- E) 30 %
- 6. Dentro de la célula es frecuente que el cambio de energía libre ($\square G$ ') de una reacción catalizada por una enzima es diferente del cambio de energía libre estándar ($\square G^{\circ}$). Esto se debe a que:
- A) la enzima disminuye la energía de activación
- B) Los reactantes y productos no se encuentran a una concentración de 1 M.

- C) La enzima acelera solamente la velocidad de la reacción en el sentido de la formación de los productos
- D) La reacción dentro de la célula se encuentra en el equilibrio
- E) La enzima se inhibe con los productos
- 7. Estos dos organelos contienen su propio DNA y llevan a cabo la síntesis ribosomal de algunas proteínas.
- A) Retículo endoplásmico rugoso y núcleo
- B) Lisosomas y retículo endoplásmico liso
- C) cloroplastos y mitocondrias
- D) peroxisomas y vacuolas
- E) núcleo y vesículas de secreción
- 8. Se determinó que la reacción A + B = C + D tenía un $\Box G^{\circ}$ de -4 kcal/mol. Si en un tubo de ensayo se coloca cada uno de los compuestos (A, B, C y D) a una concentración de 1 M, ¿hacia dónde se llevaría a cabo la reacción en presencia de un catalizador?
- A) P + Q -> A + B
- B) Como se añadió una concentración 1 M de cada compuesto, se encuentra en equilibrio.
- C) A + B -> P + Q
- D) Se requiere más información para contestar la pregunta
- E) No se lleva a cabo

La siguiente figura muestra la curva de velocidad contra la concentración de sustrato para una enzima que sigue la cinética de Michaelis-Menten. De acuerdo con esta cinética, existe una velocidad máxima (Vmax), se alcanza a concentraciones infinitas de sustrato, y una Km que se define como la concentración de sustrato que se requiere para alcanzar el 50 % de la Vmax. Con base en la figura,

- 9. ¿Cuál es el valor aproximado de la Vmax?
- A)1
- B) 5
- C) 10

- D) 16
- E) 30
- 10. ¿Cuál es el valor de la Km?
- A) 1
- B) 4
- C) 8
- D) 12
- E) 16

De matemáticas:

- 1. Corresponde al 45 por ciento de x
- A) 0.45x
- B) 4.5x/1
- C) 4.5x/10
- D) 4.5x/100
- E) 4.5x/1000
- 2. $(2.2 \times 10^4) + (5.5 \times 10^3) + (8.3 \times 10^2) + (7 \times 10^1) =$
- A) 2840
- B) 28235
- C) 28350
- D) 28400
- E) 29250
- 3. 1/3 + 2/7 + 8/27 =
- A) 11/37
- B) 16/37
- C) 16/189
- D) 173/189
- E) 183/189
- 4. Si $5^{x+1} = 625$, ¿cuál es el valor de x?
- A)1
- B) 2
- C) 3
- D) 4
- E) 5
- 5. Si x + y = 34, x + z = 41, y + z = 43, ¿cuál es el valor de la suma x + y + z?
- A) 25
- B) 39
- C) 51
- D) 59
- E) 63
- 6. Si z = (y-x)/(w-x), entonces x =
- A) (y-z)/(w-z)
- B) (y+z)/(w+z)
- C) (yw-z)/(yw+z)

- D) (y-wz)/(1-z)
- E) (y+wz)/(z-1)
- 7. Cinco manzanas se pasaron de la canasta A a la canasta B, y otras 10 manzanas de la canasta A se pasaron a la canasta C. Si la canasta A tenía originalmente 10 manzanas más que la canasta C, ¿cuántas manzanas tiene de más la canasta C con respecto a la canasta A?
- A)0
- B) 5
- C) 10
- D) 15
- E) 20
- 8. Si x<0 y $(5x 5)^2 = 289$, ¿cuál es el valor de x?
- A)1
- B) 2
- C) 3
- D) 4
- E) 5
- 9. Si x > 0, entonces $(9^x)(27^x) =$
- $A)3^{4x}$
- B) 3^{5x}
- C) 3^{6x}
- D) 3^{7x}
- E) 3^{8x}
- 10. Si x + 2y = 14 y 3x + y = 12, entonces p =
- A)-2
- B) -1
- C) 1
- D) 2
- E) 3
- 11. Una balanza está en equilibrio si en uno de sus platos hay 27 naranjas y en el otro hay 18 toronjas.¿Cuál es el menor número, distinto de cero, de frutas de cada clase que puede dejarse para que la balanza se mentenga en equilibrio?
- A) 2 manzanas y 1 toronja
- B) 3 manzanas y 2 toronjas
- C) 4 manzanas y 1 toronja
- D) 4 manzanas y 2 toronjas
- E) 3 manzanas y 1 toronja
- 12. En una canasta hay manzanas, peras, naranjas y plátanos. Hay 44 frutas en la canasta. Hay 2 manzanas más que peras. Hay 8 peras más que plátanos. Hay dos plátanos más que naranjas. ¿Cuántas peras hay en la canasta?
- A)5
- B) 10
- C) 15
- D) 20

- E) 23
- 13. Si $z = x^*y$, entonces log(z) =
- A) log(x + y)
- B) log(x y)
- C) log(x) + log(y)
- D) $log(x)^y$
- E) $1/\log(x) + \log(y)$