CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Pages
Final	April 2014	2
Instructors:	A. Boyarsky, J. Brody, N. Essis-Breton,	Course Examiner
	E. Ghadimi, H. Proppe, R. Wang	A. Atoyan, H. Proppe
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

MARKS

- [10] **1.** (a) Sketch the graph of f(x) = |x 3|, and approximate the area between the graph y = f(x) and the x-axis on the interval [-2,4] by the midpoint Riemann sum using partitioning of the interval into three subintervals of equal length. Compare this approximation with the exact value of $\int_{-2}^{4} f(x) dx$.
 - (b) Use the Fundamental Theorem of Calculus to calculate the derivative of $F(x) = \int_{-x}^{x} e^{-t^3} dt$,

and determine whether F(x) is increasing or decreasing at x=-2

[10] **2.** Calculate the following indefinite integrals:

(a)
$$\int \frac{x^2 - 3}{x^2 - 9} dx$$
 (b)
$$\int \sqrt{x} \ln x dx$$

[12] **3.** Find the antiderivative F(t) of the function f(t) passing through the given point:

(a)
$$f(t) = \left(t - \frac{1}{t}\right)^2$$
, $F(1) = -1.$ (b) $f(t) = \frac{e^t}{1 + e^{2t}}$, $F(0) = -\frac{\pi}{4}$.

[12] 4. Evaluate the following definite integrals (give the exact answers):

(a)
$$\int_{0}^{\pi} \cos^{2}(x) \sin^{3}(x) dx$$
 (b) $\int_{0}^{\pi/4} \sqrt{1 + 8 \tan(x)} \sec^{2}(x) dx$

- **5.** Evaluate the improper integral $\int_0^4 \frac{1}{x-2} dx$ or show that it diverges.
- [18] **6.** (a) Sketch the curves $x = y^2 4y$ and $x = 2y y^2$, find their points of intersection, and find the area enclosed by the curves.
 - (b) Sketch the region between the curves $y = \cos x$ and $y = \sin x$; $0 \le x \le \pi/4$, and find the volume of the solid generated by rotating this region about the x-axis.
 - (c) Find the average value of the function $f(x) = \frac{x}{\sqrt{9+x^2}}$ on the interval [0, 4].
- [8] 7. Find the limit of the sequence $\{a_n\}$ or prove that the limit does not exist:
 - (a) $a_n = \frac{3n^2 \cos(\pi n)}{\sqrt{1 + 4n^4}}$ (b) $a_n = \ln(n+1) \ln(n)$
- [12] 8. Determine whether the series is divergent or convergent, and if convergent, whether absolutely or conditionally:
- (a) $\sum_{1}^{\infty} \frac{(-1)^n n}{1+n^2}$ (b) $\sum_{1}^{\infty} \frac{(-3)^{3n}}{n!}$ (c) $\sum_{1}^{\infty} \frac{1}{n (\ln n)^2}$
- **9.** Find the interval of convergence of the series [5]

$$\sum_{n=1}^{\infty} \frac{(4x-2)^n}{n+1}$$

(a) the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{8^n}$$

- (b) within this radius, the sum of the series as a function of x.
- [5] Bonus Question. Let $f(x) = \sqrt{6x x^2}$.
 - Determine the domain [a, b] of f and graph this function.
 - Calculate the definite integral of f over its domain: $\int_{a}^{b} f(x) dx$.