Proposta per l'elaborato di matematica e fisica

Per lo studente

Atomo di idrogeno, studio di funzione e distribuzioni di probabilità

Rifletti sulla teoria

- Definisci la distribuzione di probabilità di una variabile aleatoria.
- Definisci gli integrali impropri su un intervallo illimitato. Fornisci un esempio di funzione il cui integrale improprio su un intervallo illimitato è convergente e uno di funzione il cui integrale improprio su un intervallo illimitato diverge a -∞.
- Spiega il metodo di integrazione per parti.
- Descrivi la struttura dell'atomo di idrogeno con il modello di Bohr.
- Spiega il concetto di onda stazionaria e il dualismo onda-particella.
- Distingui i concetti di orbita e orbitale

Mettiti alla prova

- **1.** Nel modello semiclassico dell'atomo di Bohr, l'elettrone gira attorno al nucleo su orbite quantizzate. Mostra come è possibile ricavare il raggio di Bohr e calcolane il valore r_B .
- 2. Assumi per l'elettrone una struttura ondulatoria stazionaria come in figura e verifica l'ipotesi di quantizzazione di Bohr.

3. Nel modello ondulatorio di Schrödinger, la densità di probabilità di "trovare l'elettrone nello stato fondamentale (n=1) alla distanza r dal nucleo" è data dalla funzione

$$p(r) = \frac{4}{r_B^3} r^2 e^{-\frac{2r}{r_B}}.$$

Studia la funzione p(r), senza calcolare la derivata seconda e verifica che il massimo della funzione coincide con il raggio di Bohr.

4. Calcola l'area sottesa dalla curva e verifica che è uguale a 1. Commenta il significato fisico del risultato.

Prosegue >>

Possibili integrazioni multidisciplinari

- A seguito dell'occupazione tedesca della Danimarca durante la Seconda guerra mondiale, Niels Bohr fuggì con il figlio negli Stati Uniti dove entrò nell'orbita del Progetto Manhattan. Qual è stato il ruolo del Progetto Manhattan nel conflitto mondiale?
 Descrivi e commenta l'Obiettivo 16: Pace, giustizia e istituzioni forti dell'Agenda 2030.
- Niels Bohr e Werner Heisenberg sono due dei tre protagonisti dell'opera teatrale Copenhagen di Michael Frayn. Confronta l'approccio di Frayn, Brecht e Dürrenmatt al tema della responsabilità etica degli scienziati.

Per l'insegnante

Possibili domande da fare durante il colloquio

In sede d'esame, per verificare l'effettiva comprensione della parte teorica, si possono fare allo studente le seguenti domande.

- Perché, a differenza del modello planetario di Rutherford, il modello atomico di Bohr è definito semiclassico?
- Spiega perché l'orbita dell'elettrone intorno al nucleo forma un'onda stazionaria e introduci l'ipotesi di De Broglie.
- Enuncia il teorema di De L'Hospital. Fai un esempio di limite in cui è utile applicare tale teorema.
- Definisci la distribuzione di probabilità normale.
- Definisci gli integrali impropri di funzioni con un numero finito di punti di singolarità. Fornisci un esempio di funzione il cui integrale improprio di questo tipo è convergente e uno di funzione il cui integrale improprio di questo tipo diverge a $+\infty$.

Traccia di svolgimento del Mettiti alla prova

1. Ricavare il raggio di Bohr.

Secondo l'ipotesi di Bohr deve valere:

$$|m\vec{v} \times \vec{r}| = n \frac{h}{2\pi}.$$

Inoltre, dalla condizione di equilibrio sappiamo che deve valere:

$$\frac{mv^2}{r} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r^2}.$$

Possiamo quindi confrontare le due espressioni:
$$v^2 = \frac{n^2h^2}{4\pi^2m^2r^2}, \quad v^2 = \frac{e^2}{4\pi\epsilon_0mr} \quad \rightarrow \quad r = \frac{\epsilon_0h^2}{\pi me^2} \cdot n^2.$$

Per n = 1 ricaviamo $r_B = 5.29 \cdot 10^{-11} \text{ m}$.

2. Verifica dell'ipotesi di quantizzazione di Bohr.

Dall'ipotesi di De Broglie deve valere

$$\lambda = \frac{h}{mv}$$

 $\lambda = \frac{h}{mv}.$ Inoltre, dalla circolarità dell'orbita di Bohr sappiamo che

$$2\pi r = n\lambda \rightarrow \lambda = \frac{2\pi r}{n}$$

 $2\pi r=n\lambda \ \ \, \rightarrow \ \ \, \lambda=\frac{2\pi r}{n}.$ Osserviamo che uguagliando le espressioni di λ ricaviamo:

$$\frac{h}{mv} = \frac{2\pi r}{n} \rightarrow |m\vec{v} \times \vec{r}| = n \frac{h}{2\pi}.$$

3. Studiamo la funzione p(r).

Poiché r_B è una costante, la funzione $p(r) = \frac{4}{r_s^2} r^2 e^{-\frac{2r}{r_B}}$ può essere riscritta come

$$p(r) = br^2 e^{-ar}$$

 $p(r) = br^2e^{-ar}$, dove $a = \frac{2}{r_B}$ e $b = \frac{4}{r_B^3}$ sono due costanti positive.

Dominio

Il dominio naturale della funzione è R, ma dal significato fisico della variabile possiamo assumere come dominio l'intervallo $[0; +\infty[$.

Segno della funzione

La funzione è sempre positiva e si annulla nell'origine, quindi:

Proseque >>

Limiti agli estremi del dominio

Dobbiamo calcolare il limite per $r \to +\infty$. Si tratta di una forma indeterminata del tipo $0 \cdot \infty$, possiamo applicare il teorema De L'Hospital scrivendo il limite come rapporto:

$$\lim_{r \to +\infty} p(r) = \lim_{r \to +\infty} br^2 e^{-ar} = \lim_{r \to +\infty} \frac{br^2}{e^{ar}} = \lim_{r \to +\infty} \frac{2br}{ae^{ar}} = \lim_{r \to +\infty} \frac{2b}{a^2 e^{ar}} = 0.$$

La funzione ha un asintoto orizzontale destro di equazione y = 0.

Derivata prima e studio del segno della derivata prima

Calcoliamo la derivata prima della funzione:

$$p'(r) = bre^{-ar}(2 - ar).$$

La derivata si annulla per r = 0 e per $r = \frac{2}{a}$ ed è positiva per $0 < r < \frac{2}{a}$.

La funzione ammette un punto di massimo relativo per $r=\frac{2}{a}=r_B$. Osserviamo che dato il comportamento agli estremi il punto è di massimo assoluto. Quindi, la funzione ammette un massimo per un valore di r pari al raggio di Bohr.

Inoltre, per r = 0 la funzione ammette un minimo relativo.

Grafico della funzione

Tracciamo il grafico qualitativo della funzione.

4. Calcolo dell'area.

Per calcolare l'area sottesa dal grafico nell'intervallo $[0; +\infty[$ dobbiamo calcolare l'integrale improprio:

$$\int_{0}^{+\infty} p(r) \ dr = \int_{0}^{+\infty} br^{2} e^{-ar} \ dr.$$

Procediamo applicando la formula di integrazione per parti ripetutamente:

$$\int_{0}^{+\infty} br^{2}e^{-ar} dr = b \int_{0}^{+\infty} r^{2}e^{-ar} dr = b \lim_{k \to +\infty} \int_{0}^{k} r^{2}e^{-ar} dr = b \lim_{k \to +\infty} \left\{ \left[-\frac{1}{a}r^{2}e^{-ar} \right]_{0}^{k} - \left(-\frac{1}{a} \right) \int_{0}^{k} 2re^{-ar} dr \right\} = b \lim_{k \to +\infty} \left\{ \left[-\frac{1}{a}r^{2}e^{-ar} - \frac{2}{a^{2}}re^{-ar} \right]_{0}^{k} + \frac{2}{a^{2}} \int_{0}^{k} e^{-ar} dr \right\} = b \lim_{k \to +\infty} \left\{ -\frac{1}{a}k^{2}e^{-ak} - \frac{2}{a^{2}}ke^{-ak} - \frac{2}{a^{3}}[e^{-ar}]_{0}^{k} \right\} = b \lim_{k \to +\infty} \left\{ -\frac{1}{a}k^{2}e^{-ak} - \frac{2}{a^{2}}ke^{-ak} - \frac{2}{a^{3}}e^{-ak} + \frac{2}{a^{3}} \right\} = b \cdot \frac{2}{a^{3}} = \frac{4}{r_{B}^{3}} \cdot \frac{2}{8} = 1.$$

Prosegue >>

Il calcolo dell'integrale improprio conferma che la probabilità di trovare l'elettrone in tutto lo spazio, ovvero per valori di $r \in [0; +\infty[$, è uguale a 1. Quindi, la particella si trova in qualche punto tra il nucleo e l'infinito.

Il risultato classico, cioè l'orbita di Bohr, esprime la distanza a cui è più probabile rinvenire l'elettrone. La regione in cui questa probabilità è sensibilmente diversa da 0 esprime l'orbitale sferico 1s.