ΘΕΜΑ 4

Τρία σημειακά σωματίδια Σ_1 , Σ_2 και Σ_3 βρίσκονται σε ευθεία, στις θέσεις A, B και Γ ενός οριζοντίου μονωτικού επιπέδου μεγάλων διαστάσεων. Για τις μεταξύ τους αποστάσεις ισχύει $AB=B\Gamma=r=3$ m. Οι μάζες των

σωματιδίων είναι $m_1=m_3=m=3\cdot 10^{-2}~{\rm kg}$ και $m_2=2\cdot 10^{-2}~{\rm kg}$, ενώ για τα φορτία τους ισχύει: $q_1=q_2=q_3=10^{-4}~{\rm C}.$

4.1. Να υπολογίσετε την ηλεκτρική δυναμική ενέργεια του συστήματος των τριών φορτίων.

Μονάδες 6

4.2. Ποιο από τα φορτία του παραπάνω συστήματος δέχεται μηδενική συνισταμένη δύναμη, όταν τα σωματίδια βρίσκονται στις θέσεις που έχουν τοποθετηθεί αρχικά; Να δικαιολογήσετε την απάντησή σας.

Μονάδες 4

4.3. Αφήνουμε τα φορτία Σ_1 και Σ_3 ελεύθερα να κινηθούν ενώ το Σ_2 παραμένει στην αρχική του θέση. Να βρείτε τα μέτρα των ταχυτήτων τους όταν θα έχουν φτάσει σε πολύ μεγάλη (άπειρη) απόσταση.

Μονάδες 8

Επαναφέρουμε τα φορτία στις αρχικές τους θέσεις. Ακινητοποιούμε τα Σ_1 και Σ_3 στις θέσεις Λ και Γ και τα κρατάμε σταθερά σε αυτές και εκτοξεύουμε το Σ_2 με οριζόντια ταχύτητα μέτρου $\upsilon_0=20\sqrt{21}$ m/s (σε διεύθυνση διαφορετική από την ευθεία στην οποία βρίσκονται τα τρία φορτία).

4.4. Ποια είναι η ταχύτητα με την οποία το Σ_2 φτάνει στο άπειρο;

Μονάδες 7

Δίνεται $k_c=9\cdot 10^9~{
m N\cdot m^2/C^2}.$ Η επίδραση της βαρύτητας, οι τριβές και η αντίσταση του αέρα θεωρούνται αμελητέες.