FIT1043 Introduction to Data Science Module 4: Data Resources, Processes, Standards and Tools Lecture 8

Monash University

Discussion

In the tutorial you used three different tools for data wrangling:

- SAS
 - general purpose Data Analytics
 - strange syntax!
 - very widely used commercial product
- DataWrangler
 - specialised Data Wrangling tool
 - intuitive Graphical User Interface (GUI)
 - no coding required!
- Python
 - general purpose open-source programming language
 - contains packages (Pandas) for manipulating data

Note that there are many other tools we could have used

R, Matlab, Java, SPSS.

Unit Schedule: This Week

Module	Week	Content
1.	1	overview and look at projects
	2	(job) roles, and the impact
2.	3	data business models
	4	application areas and case studies
3.	5	characterising data and "big" data
	6	data sources and case studies
4.	7	resources and standards
	8	resources case studies
5.	9	data analysis theory
	10	data analysis process
6.	11	issues in data management
	12	data management frameworks

Standards and Issues (ePub section 4.5)

more on standards and issues

- some standards
 - some standards for semi-structured data, data science process and predictive models
- open data and open source software
 - critical infrastructure and tools
- APIs and SaaS
 - think Web 3.0

Standards and Issues Open data and open source software

critical infrastructure and tools

Software Usage Survey

2016 Data Science Salary Survey (DSSS)

Survey: Clusters amongst the Respondents

Analysts and data scientists with very small tool stacks, as well as programmers and developers who aren't data scientists; this functions as a miscellaneous category

Cluster 2 Analysts and engineers who use many Microsoft tools

Cluster 3 Coding analysts and data scientists, Python-dominant

Cluster 4 Data engineers and architects who use many different tools, largely open-source

Survey: Commonly Used Software

	Cluster			
Tools	1	2	3	4
Windows	86%	92%	48%	55%
SQL	62%	75%	65%	80%
Excel	66%	84%	59%	60%
R	30%	69%	67%	69%
Python	27%	32%	96%	84%
Linux	37%	21%	70%	91%
Mac OS X	26%	23%	70%	67%
MySQL	26%	33%	41%	57%
ggplot	13%	33%	53%	52%
Microsoft SQL Server	32%	51%	17%	27%
Tableau	17%	56%	21%	37%
Scikit-learn	7%	7%	73%	57%
Matplotlib	5%	5%	67%	42%
Oracle	22%	31%	10%	30%
Bash	9%	7%	42%	58%
PostgreSQL	11%	12%	26%	53%
Spark	9%	6%	20%	69%

	Cluster			
Tools	1	2	3	4
Hive	11%	13%	23%	46%
Java	16%	8%	14%	44%
Unix	10%	12%	21%	36%
JavaScript	12%	8%	18%	39%
Apache Hadoop	5%	6%	18%	55%
Shiny	5%	19%	21%	27%
D3	5%	6%	20%	49%
Spark MILib	2%	3%	14%	49%
Visual Basic/VBA	11%	24%	6%	5%
Cloudera	6%	8%	11%	30%
SQLite	7%	4%	15%	24%
Redshift	5%	7%	10%	21%
MongoDB	4%	5%	15%	24%
ElasticSearch	5%	3%	9%	33%
Teradata	6%	13%	8%	13%
PowerPivot	10%	19%	2%	2%
C++	7%	3%	13%	17%
Weka	5%	5%	8%	25%

Survey: Operating Systems

OPERATING SYSTEMS (Respondents could choose more than one OS)

Survey: Number of Tools used

(from 2014 survey)

Figure 1-13. Number of tools used

Survey: Programming Languages

Survey: Relational Databases

Survey: Management and Big Data

Survey: Visualization

Open Source Software: Examples

Prize winning Open Source platforms for managing big data:

- ► BOSSIE Awards for Big Data 2015
- Similar awards also for applications:
 - ► BOSSIE Awards for Applications 2015

Many of the state-of-the-art platforms are integrated in:

► Hortonworks Data Platform

Popular Open Source Projects

Let's have a look at what all these Open Source Projects doing

- 1. Hadoop Distributed File System (HDFS)
- 2. Apache Hadoop YARN
- 3. Apache Cassandra
- 4. Apache HBase
- 5. Apache Hive
- 6. Apache Mahout
- 7. Apache Pig
- 8. Apache Spark
- 9. Apache Storm
- 10. Apache Tez

Standards and Issues APIs and SaaS

think Web 3.0

REST API Terminology

API: Application Programmer Interface

Routines providing programatic access to an application.

REST: REpresentational State Transfer

- a stateless API usually running over HTTP
- Watch a simple introduction to REST-based APIs in this video: REST API concepts and examples by WebConcepts

SaaS: Software as a Service

► The provisioning of software in a Web browser and/or via an API over the Web as a subscription service.

The API Economy

Companies provide functionality via APIs so that others can make use of their data and services:

- ► The Application Economy: A New Model for IT (CISCO)
- ProgrammableWeb API Category: Data
- ► Top 30 Predictive Analytics API

Example APIs

Many companies are exposing their data and their website functionality as APIs for others to make use of:

- ► Facebook API
- ► Twitter API
- ► LinkedIn API
- ► Google Maps API
- ► Youtube API
- Amazon Advertising API
- ► TripAdvisor API

Case Studies of Data and Standards (ePub section 4.8)

look at some examples of standardised data collections

Twitter

- microblogging with attached media
- big corporate use
- also has information about users, their follower network, locations, hashtags, emojis+emoticons, ...

Sample Twitter XML Data

```
<?xml version="1.0" encoding="UTF-8" ?>
- <statuses type="array">
 < <status>
    <created_at>Wed Jun 10 00:57:28 +0000 2009 </created at>
    <id>2097065233</id>
    <text>sitting in vegas @ airport, kid in stroller, with dvd player in lap. First ever for me. HELLO! </text>
    <source>web</source>
    <truncated>false</truncated>
    <in reply to status id />
    <in reply to user id />
    <favorited>false</favorited>
    in reply to screen name />
  - dusers
     <id>5189091</id>
      <name>kristin bednarz</name>
      <screen name>kristinbednarz</screen name>
      <location>iPhone: 33.447393,-101.821675
      <description>photographer in WEST TEXAS</description>
      <url>http://www.yourlifemypassion.com</url>
      cprotected>false</protected>
      <followers count>245</followers count>
      cprofile background color>352726/profile background color>
      cprofile text color>3E4415/profile text color>
      cprofile link color>D02B55/profile link color>
      cprofile sidebar fill color>99CC33
      <friends count>90</friends count>
      <created_at>Thu Apr 19 04:54:45 +0000 2007
/created_at>
      <favourites count>3</favourites count>
```

Twitter App Ecosystem

from Gadgetdaily.xyz

Twitter Developer API

See Twitter's developer platform

- ▶ library interfaces for Java, C++, Javascript, Python, Perl, PHP, Ruby, ...
- allows other applications to manage Twitter data for users
- extensive developer policy
- ► lots of example case studies

Freebase and DBPedia

Freebase:

- an example of a graph database we looked at earlier
- graph can be represented in RDF which is triples of URIs
- now owned by Google, currently read-only (may be decommissioned soon)
- used by others as a knowledge-base in many text processing pipelines:
 - ▶ e.g., using <u>TextRazor</u> to extract meaning from text

DBpedia:

- aim to extract all structured content from information in Wikipedia
- open source project

Medical Data Dictionaries

The Unified Medical Language System (UMLS)

Medical Data Dictionaries, cont.

ICD: the International Classification of Diseases

- used to classify diseases and other health problems
- based on health and vital records
- for example:
 - Pneumonia due to Streptococcus pneumoniae

Medical Data Dictionaries, cont.

Other Medical Dictionaries:

- ► SNOMED CT
 - Systematized Nomenclature of Medicine Clinical Terms
- ► Gene Ontology
 - concepts for describing gene function

Usage of Medical Dictionaries:

- controlled vocabularies
- semantic data exploration
- clinical surveillance
- decision support

Publishing Repositories

- PUBMED, we have seen before
- ► ACM Digital Library
- ► Patent databases (for WIPO, USPTO, EPO, etc.), e.g., Global Patent Search Network

News and Event Registry

Event Registry

- collect news article globally, process and organise as events
- perform concept and event identification
- create a document database for inspection
- sometimes news stored as NewsML

Government Data

- US Government's Data.GOV
- ► NYC Open Data
- Australia's Urban Intelligence Network (AURIN)
- ► BioGrid Australia

Unit Schedule: Next Week

Module	Week	Content
1.	1	overview and look at projects
	2	(job) roles, and the impact
2.	3	data business models
	4	application areas and case studies
3.	5	characterising data and "big" data
	6	data sources and case studies
4.	7	resources and standards
	8	resources case studies
5.	9	data analysis theory
	10	data analysis process
6.	11	issues in data management
	12	data management frameworks