

CSE260 Digital Logic Design

SOP & POS

 Sum-of-Products (SOP) Expression: a product term or a logical sum (OR) of several product terms.

Examples: x+yz', xy'+x'yz, AB+A'B'

Product-of-Sums (POS) Expression: a sum term or a logical product (AND) of several sum terms.

Examples: x(y+z'), (x+y')(x'+y+z), (A+B)(A'+B')

Every boolean expression can either be expressed as sum-of-products or product-of-sums expression.

Examples:

SOP: x'y + xy' + xyz

POS: (x + y')(x' + y)(x' + z')

MIN & MAX TERM

Minterms are sum terms.

For Boolean functions, the minterms of a function are the terms for which the result is 1.

Boolean functions can be expressed as sumof-Minterms.

Maxterms are Product terms.

For Boolean functions, the maxterms of a function are the terms for which the result is 0.

Boolean functions can be expressed as Products-of-Maxterms.

MIN and MAX

	Α	В	С	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

```
Min Terms : 0,1,4,5 [000,001,100,101] F=\sum (0,1,4,5)
```

```
Max Terms : 2,3,6,7 [010,011,110,111] F=\Pi(2,3,6,7)
```


MIN-SOP and MAX-POS

Minterms			Maxterns		
X	У	term	notation	term	notation
0	0	x'y'	m0	x+y	M
0	1	x'y	ml	X+y'	Ml
1	0	Xy'	m2	x'+y	M2
1	1	Xy	m3	x'+y'	MB

Each minterm is the complement of the corresponding maxterm:

Example: m2 = xy'

m2' = (xy')' = x' + (y')' = x'+y = M2

MIN-SOP and MAX-POS

	A	В	C	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

```
Min Terms: 0,1,4,5 [000,001,100,101]

F=\sum(0,1,4,5)

F=A'B'C'+A'B'C+AB'C'+AB'C
```

```
Max Terms : 2,3,6,7 [010,011,110,111]

F=\Pi(2,3,6,7)

F=(A+B'+C)(A+B'+C')(A'+B'+C) (A'+B'+C')
```

Conversion between MIN & MAX

 $F2 = \Sigma(m1, m4, m5, m6, m7)$

The complement function of F2 is:

$$F2' = \Sigma(m0, m2, m3) = m0 + m2 + m3$$

F2 =
$$(m0 + m2 + m3)'$$

= $m0' \cdot m2' \cdot m3'$
= $M0 \cdot M2 \cdot M3$
= $\Pi(M0,M2,M3)$

X	y	Z	F2	F2'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Every Boolean function can be expressed as either Sum-of-Minterms or Product-of-Maxterms.

Simplified Function to SOP & POS

How to Covert into SOP:

Check if each term contains all variable, if not then AND (x+x') if x is the missing term

Simplified Function, F=A+B'C

How To Convert into SOP

- F=A+B'C
- =A(B+B')(C+C')+B'C(A+A')
- =(AB+AB')(C+C')+B'C(A+A')
- =AB(C+C')+AB'(C+C')+B'C(A+A')
- =ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C
- =ABC+ABC'+AB'C+AB'C'+A'B'C = $\sum (1,4,5,6,7)$

How to Covert into POS:

- 1. Often distributive law (x+yz)=(x+y)(x+z) is used
- 2.If then terms, like x, are missing, OR xx'
- 3.Each POS is missing a term so OR missing terms

Again applying distributive law

Simplified Function, F=A+B'C

How to Convert into POS

$$A + B'C$$
= $(A+B')$ $(A+C)$
= $(A+B'+CC')$ $(A+BB'+C)$
= $(A+B)$ $(A+C)$ $(A$

Thanks

