COSC 290 Discrete Structures

Lecture 25: Partial orders and Warshall relations

Prof. Michael Hay Wednesday, Apr. 4, 2018

Colgate University

Plan for today

- 1. Review: Transitive Closure
- 2. Warshall relations
- 3. Partial orders
- 4. Hasse diagram

Review: Transitive Closure

Review: Transitive closures

A transitive closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies transitivity.

Review: Computing the transitive closure

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supseteq R$ that is *transitive*

- 1: R' := R
- 2: repeat
- 3: $new := (R \circ R') R'$
- 4: $R' := R' \cup new$
- 5: **until** |new| = 0
- 6: **return** R'

Warshall relations

Warshall relation

Warshall relations are a more efficient way of computing transitive closure.

Warshall relations are a sequence of relations W_0, W_1, \ldots, W_n . Each one can be computed with a "small" update from the previous one.

In the end, W_n is the transitive closure of R.

4

Warshall relation

Let $A := \{a_1, a_2, \dots, a_n\}$, a finite set.

Let R be a relation on A.

For k = 0 to n, let W_k denote the k^{th} Warshall relation for R where W_k is defined as...

- $W_0 := R$
- For $k \ge 1$, W_k is a relation on A such that $\langle a_i, a_j \rangle \in W_k$ iff there is a sequence of relationships in R connecting a_i to a_j using any subset of the elements $\{a_1, a_2, \ldots, a_k\}$ as intermediates.

(Example shown on board.)

Example

W_0 (i.e., this is the relation R)

```
FFFT
TFFF
FTFF
W_1
FTFF
W_2
TTFT
```

W₃ F F F T T F F T T T F T

W_4

```
T T F T
T T F T
T T F T
```

Poll: what pairs are in W_k ?

Background: Definition of Warshall relations: for relation R on A where |A| = n, the Warshall relations are a sequence of relations $W_0, W_1, \ldots, W_{n-1}, W_n$. Relation W_k is a relation on A such that $\langle a_i, a_j \rangle \in W_k$ iff there is a sequence of relationships in R connecting a_i to a_j using any subset of the elements $\{a_1, a_2, \ldots, a_k\}$ as intermediates.

Question: Consider two Warshall relations W_{k-1} and W_k and the difference between them $W_k - W_{k-1}$. Consider some $\langle x, y \rangle \in W_k - W_{k-1}$. Which of the following statement could be true?

- A) No such pair exists (implying $W_{k-1} \supseteq W_k$)
- B) $\langle x, y \rangle \in R$
- C) There is a path from x to y using only $\{a_1, \ldots, a_{k-1}\}$
- D) $\langle x, a_k \rangle \in R$ and $\langle a_k, y \rangle \in R$
- E) $\langle x, a_k \rangle \in W_{k-1}$ and $\langle a_k, y \rangle \in W_{k-1}$
- F) More than one / None of the above

Partial orders

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Example (Partial order)

The *prefixOf* relation is a partial order:

- "a" ≤ "aa"
- "aa" ≺ "aardvark"

Note: not all pairs comparable: "a" $ot \leq$ "b" and "b" $ot \leq$ "a"

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be incomparable.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be incomparable.

Example (Strict partial order)

The *ancestorOf* relation (ancestor is parent or (recursively) parent of ancestor):

- "DT" \prec "Don Jr"

Poll: partial order

Relation \leq is a partial order if it is reflexive, antisymmetric, transitive.

Consider two relations on a set of track runners:

- $a \leq_1 b$ if the number of races in which a competed is no more than the number in which b competed.
- $a \leq_2 b$ if the total amount of time (measured in nanoseconds with laser precision so that ties are impossible) that a ran is no more than the total amount of time that b ran.

Is \leq_1 a partial order? Is \leq_2 a partial order?

- A) Yes, Yes
- B) Yes, No
- C) No, Yes
- D) No, No

Hasse diagram

Hasse diagram

A partial order \leq on A can be drawn using a Hasse diagram.

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Example: isSubstringOf relation on the strings $\{a, b, c, ab, bc, abc, cd\}$.

Exercise: draw Hasse diagram

Complete the following exercise: on a piece of paper, draw a Hasse diagram for the relation on $A := \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ for the relation $R \subseteq A \times A$ where

$$R := \{ \langle x, y \rangle \in A \times A : y \bmod x = 0 \}$$

- Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Example partial order

A to do list,

[attendClass, sleep, borrowBook, eat, brushTeeth, study]

with constraints:

- borrowBook ≤ study
- study \leq attendClass
- sleep \leq attendClass
- eat ≺ brushTeeth
- $brushTeeth \leq sleep$

What should you do first? Brush teeth? Eat? Borrow book?

Total order

Relation *R* is a total order if it is a partial order where every pair is comparable (either $\langle a,b\rangle \in R$ or $\langle b,a\rangle \in R$).

A total order can be written succinctly as an ordered list.

Is previous example a total order?

Topological ordering

Given a partial order \leq , a topological ordering is a total order \leq_{total} that is *consistent* with \leq .

(See book for formal definition of consistent; see earlier lectures for algorithms for topological sort.)