5. The condition number of a matrix. Definitions and properties. Present your solution to Exercise 2.18 and discuss it.

Numerical Analysis E2021

Institute of Mathematics Aalborg University

Numerical Analysis E2021

Motivation

interpretations

MATLAB

We wish to analyse errors for when we compute solutions to linear equations. Thus, we introduce the condition number

$$\kappa(A) = ||A^{-1}|| ||A|| \tag{1}$$

satisfying

$$\kappa(cA) = \kappa(A), \quad c \neq 0$$

$$\kappa(A^{-1}) = \kappa(A)$$

$$\kappa(AB) \leq \kappa(A)\kappa(B)$$

$$\kappa(Q) = 1$$

$$\kappa(QA) = \kappa(AQ) = 1$$
(2)

for orthogonal Q.

3

Numerical Analysis

Interpretations

 κ is a measure of "how" singular a matrix is. If it is not too much larger than one, we can calculate the inverse with good accuracy.

Can also be used in analysis of round-off errors introduced during Gaussian elimination.

Is also used in the following relative error estimate for solving a system Ax = b, where $(A + E)x_c = b$

$$\frac{\|x_t - x_c\|}{\|x_t\|} \le \frac{\kappa(A)\|E\|/\|A\|}{1 - \kappa(A)\|E\|/\|A\|} \tag{3}$$

Numerical Analysis F2021

Motivation

MATI AR

MATLAB demo for poorly conditioned system.

MATLAB demo of exercise 2.18.

3