Лекция №2

§ 2. Функции комплексного переменного

Сформулируем ряд основных определений, которые далее будут часто использоваться.

Определение 2.1. б-окрестностью точки $\mathbf{z_0}$ называется множество точек $\mathbf{z_0}$, лежащих внутри круга радиуса $\boldsymbol{\delta}$ с центром в точке $\mathbf{z_0}$, т. е. множество точек, удовлетворяющих неравенству $|\mathbf{z} - \mathbf{z_0}| < \boldsymbol{\delta}$.

Определение 2.2. Областью комплексной плоскости называется множество точек **D**, обладающее следующими свойствами:

- 1. вместе с каждой точкой из D этому множеству принадлежит и некоторая окрестность этой точки, то есть некоторый круг без границы с центром в этой точке (свойство открытости);
- **2.** две любые точки из D можно соединить ломаной, состоящей из точек D (свойство связности).

Определение 2.3. Область называется односвязной, если любую замкнутую кривую, лежащую в этой области, можно стянуть в точку, не выходя за пределы этой области.

Определение 2.4. Граничной точкой области **D** называют такую точку, которая сама не принадлежит **D**, но в любой окрестности которой лежат точки этой области.

Определение 2.5. Совокупность граничных точек области **D** называют границей этой области $\Gamma(\mathbf{D})$.

Определение 2.6. Область **D** с присоединенной κ ней границей $\Gamma(D)$ называется замкнутой областью и обозначается \overline{D} .

Проиллюстрируем некоторые понятия геометрически.

Изображение множеств на комплексной плоскости

Рассмотрим задачи, связанные с изображением на комплексной плоскости линий или областей, заданных уравнениями и неравенствами.

<u>Пример</u>. Изобразить на комплексной плоскости область, заданную неравенством $\text{Re }z\leq 3$.

Решение. Re z = x, тогда неравенство можно переписать так: $x \le 3$. Ha

плоскости xOy это определяет полуплоскость левее прямой x = 3 (см. рис. 6).

<u>Пример</u>. Изобразить на комплексной плоскости линию, заданную |z| = 4.

Решение. По определению, |z| — это расстояние от начала координат до точки z, т.е. |z| = 4 — это геометрическое множество точек, равноудаленных от начала координат. Таким геометрическим местом является окружность с центром в начале координат радиуса R = 4.

Также можно вывести уравнение кривой алгебраическим способом. Из (1.1) $|z| = \sqrt{x^2 + y^2}$, т. е. уравнение переписывается в виде $\sqrt{x^2 + y^2} = 4$, или $x^2 + y^2 = 4^2$ – это и есть уравнение окружности с центром в точке 0 и R = 4.

<u>Пример</u>. Изобразить на комплексной плоскости область, заданную неравенством $1 < |z-1+i| \le 2$.

Решение.
$$|z-1+i|=|z-(1-i)|\leq 2$$

Это множество точек z, расстояние которых от точки 1-i не больше 2, то есть круг с центром в 1-i радиуса 2. Множество точек z таких, что

1 < |z - (1 - i)| представляет собой внешность круга радиуса 1 с центром в точке 1 - i. Таким образом, исходное множество – кольцо с центром в точке 1 - i (см. рис. 7).

Puc. 7

<u>Пример</u>. Изобразить на комплексной плоскости область, заданную неравенством $2 < |z+3+2i| \le 4$.

Решение: по аналогии с предыдущим примером получим кольцо с центром в точке (-3-2i), радиус внутренней окружности равен 2 (линия обозначается пунктиром), радиус второй окружности равен 4 (линия сплошная.

<u>Пример</u>. Изобразить на комплексной плоскости область, заданную |z| < 4.

Решение: по аналогии с предыдущими примерами получим, что задана внутренняя часть круга с центром в точке 0, радиус равен 4, причем граница

области – окружность – обозначается пунктиром.

Заметим, что для случая |z| > 4, получим внешнюю часть круга.

<u>Пример.</u> Изобразить на комплексной плоскости область, заданную неравенством $\left|\frac{z-1}{z+1}\right| \ge 1$.

Решение: Пусть z не равно (-1). Умножим обе части неравенства на положительное число |z+1|, получим $|z-1| \ge |z+1|$.

Положим z = x + iy.

$$\sqrt{(x-1)^2 + y^2} \ge \sqrt{(x+1)^2 + y^2}$$

Возведем в квадрат:

$$(x-1)^2 + y^2 \ge (x+1)^2 + y^2$$
.

Перенося в левую часть все слагаемые, получим $(x-1)^2-(x+1)^2\geq 0$ или $-4x\geq 0$, или $x\leq 0$ – это левая полуплоскость вместе с границей x=0, причем выкалывается точка z=-1.

Определение 2.7. Говорят, что в области **D** определена функция $\omega = f(z)$ с множеством значений E, если каждой точке $z \in D$ поставлено в соответствие одно (однозначная функция) или целое множество (многозначная функция) значений $\omega \in E$.

Например, $\omega = |z|$ – однозначная функция, $\omega = \sqrt[n]{z} - n$ -значная функция, т.к. имеет n корней, $\omega = Arg\ z$ – бесконечнозначная функция, т.к. слагаемое $2\pi k$, входящее в $Arg\ z$, принимает бесконечное число значений при $k=0,\pm 1,\pm 2,\ldots$

Пусть z = x + iy, тогда

$$\omega = f(z) = u(x, y) + iv(x, y),$$

где $u(x,y)=\mathrm{Re}f(z)$ – действительная часть функции, $v(x,y)=\mathrm{Im}f(z)$ – мнимая часть функции.

Пример. Найти действительную и мнимую части функции

$$\omega = 5z + 3$$
.

Решение. Положим z = x + iy, тогда $\omega = 5(x + iy) + 3 = (5x + 3) + 5iy$.

Получаем

u(x,y) = 5x + 3 - действительная часть функции,

v(x,y) = 5y – мнимая часть функции.

Пример. Найти действительную и мнимую части функции

$$\omega = z^2 + i\overline{z}$$
.

Решение. Положим z = x + iy, тогда $\omega = (x + iy)^2 + i(x - iy) = x^2 + 2xyi - y^2 + ix + y = (x^2 - y^2 + y) + i(2xy + x)$. Получаем $u(x,y) = x^2 - y^2 + y$ – действительная часть функции, v(x,y) = 2xy + x – мнимая часть функции.

Теперь перейдем к изучению функций комплексного переменного. Начнем с рассмотрения элементарных функций комплексного переменного и их свойств.

Элементарные функции комплексного переменного

<u>Основные элементарные</u> функции комплексного переменного определяются следующими формулами (здесь z = x + iy).

1. Дробно-рациональная функция

$$\omega = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + a_m}.$$

В частности, рациональной функцией является многочлен $\omega = a_0 z^n + a_1 z^{n-1} + \ldots + a_n$.

2. **Показательная функция e^z** при $z=x+i\cdot y\in \mathbb{C}$ определяется равенством $e^z=e^x\cdot(\cos y+i\cdot\sin y)$.

В частности, при $z \in \mathbf{R}$ (т.е. при y=0) функция e^z совпадает с обычной экспонентой, а при x=0 получаем формулу Эйлера:

$$e^{i\cdot y} = \cos y + i \cdot \sin y$$
.

Свойства показательной функции:

а)
$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$
, где z_1 , z_2 – комплексные числа,

в)
$$e^{z+2\pi ki} = e^z (k = 0, \pm 1, \pm 2,...)$$
, т.е.

 e^z – периодическая функция с периодом $2\pi i$.

3. Тригонометрические функции

Из формулы Эйлера следует, что $\forall x \in \mathbf{R}$

$$\cos x = \frac{e^{i \cdot x} + e^{-i \cdot x}}{2}, \sin x = \frac{e^{i \cdot x} - e^{-i \cdot x}}{2i}.$$

По аналогии с этими равенствами введем функции комплексного переменного $\cos z$ и $\sin z \quad \forall z \in \mathbb{C}$:

$$\cos z = \frac{e^{i \cdot z} + e^{-i \cdot z}}{2}, \quad \sin z = \frac{e^{i \cdot z} - e^{-i \cdot z}}{2i}.$$
 (2.1)

Функции sinz и cosz — периодические с периодом $T=2\pi$. Справедливо основное тригонометрическое тождество: $cos^2z + sin^2z = 1$.

Функции tgz и ctgz определяются равенствами $tgz = \frac{sinz}{cosz}$, $ctgz = \frac{cosz}{sinz}$. Для тригонометрических функций комплексного переменного остаются в силе все формулы тригонометрии.

4. Гиперболические функции

Гиперболические функции shz, chz, thz, cthz определяются равенствами

$$shz = \frac{e^z - e^{-z}}{2}, chz = \frac{e^z + e^{-z}}{2},$$

$$thz = \frac{shz}{chz}, cthz = \frac{chz}{shz}.$$

Основное гиперболическое тождество $ch^2z - sh^2z = 1$.

5. Связь между тригонометрическими и гиперболическими функциями

$$sinz = -ish(iz)$$
, $cosz = ch(iz)$, $tgz = -ith(iz)$, $ctgz = icth(iz)$, $shz = -isin(iz)$, $chz = cos(iz)$, $thz = -itg(iz)$, $cthz = ictg(iz)$.

6. *Погарифмическая функция Ln z*, где $z \neq 0$, определяется как функция, обратная показательной, причем

Ln
$$z = ln|z| + iArg z = ln|z| + i(arg z + 2\pi k),$$

 $k = 0, \pm 1, \pm 2, ...$ (2.2)

Функция $\omega = \operatorname{Ln} z$ является многозначной.

 Γ лавным значением $\operatorname{Ln} \mathbf{z}$ называется значение, получаемое при $\mathbf{k} = \mathbf{0}$

$$lnz = ln|z| + iargz.$$

Свойства функции Ln z:

a)
$$Ln(z_1z_2) = Ln z_1 + Ln z_2$$
,

b)
$$\operatorname{Ln}\left(\frac{z_1}{z_2}\right) = \operatorname{Ln} z_1 - \operatorname{Ln} z_2$$
.

7. Общая показательная функция определяется равенством

$$a^z = e^{z \ln a}, \tag{2.3}$$

где a – любое комплексное число, $a \ne 0$.

8. *Общая степенная функция* $w=z^a$, где a – любое комплексное число, $z \neq 0$

$$z^a = e^{a \operatorname{Ln} z}. (2.4)$$

Рассмотрим типовые задачи с использованием указанных функций.

<u>Пример.</u> Вычислить sin(3 - i).

Решение. Используя формулы (2.1) получаем

$$sin(3-i) = \frac{1}{2i} \left[e^{i(3-i)} - e^{-i(3-i)} \right] = -\frac{i}{2} \left[e^{1+3i} - e^{-1-3i} \right] =$$

$$= -\frac{i}{2} \left[e(\cos 3 + i\sin 3) - e^{-1}(\cos 3 - i\sin 3) \right] =$$

$$= -i \left[\cos 3 \left(\frac{e^{-e^{-1}}}{2} \right) + i\sin 3 \left(\frac{e^{+e^{-1}}}{2} \right) \right] =$$

$$= \sin 3ch 1 - i\cos 3sh 1.$$

Пример. Вычислить Ln(-1).

Решение. Из формулы (2.2) получаем

$$Ln(-1) = ln|-1| + i(arg(-1) + 2\pi k) = i(\pi + 2\pi k) =$$

$$= (2k + 1)\pi i, k = 0, \pm 1, \pm 2, \dots$$

<u>Пример.</u> Вычислить i^{2i} .

Pешение. Положим a=i, z=2i и воспользуемся формулой (2.4) $i^{2i}=e^{2i{\rm Ln}i}$

Вычислим отдельно Ln(i). Используя формулу (2.2), получим:

$$\operatorname{Ln}(i) = \ln|i| + i(\arg i + 2\pi k) = i\left(\frac{\pi}{2} + 2\pi k\right),$$

$$|i| = \sqrt{0 + 1^2} = 1, \ln|i| = \ln 1 = 0, \arg i = \frac{\pi}{2},$$

$$i^{2i} = e^{2i \cdot i\left(\frac{\pi}{2} + 2\pi k\right)} = e^{-\pi - 4\pi k}, k = 0, \pm 1, \pm 2, \dots$$

Решение уравнений

<u>Пример.</u> Решить уравнение sinz = 3, корни уравнения изобразить на комплексной плоскости.

Решение. Используя формулу (2.1), уравнение можно переписать в виде $\frac{e^{iz}-e^{-iz}}{2i}=3$ или $e^{2iz}-6ie^{iz}-1=0$ – это квадратное уравнение относительно e^{iz} . Его корни

$$e^{iz} = 3i \pm 2\sqrt{2}i = i(3 \pm 2\sqrt{2})$$

Прологарифмируем полученное равенство

$$iz = \text{Ln}(i(3 \pm 2\sqrt{2})) = ln|i(3 \pm 2\sqrt{2})| +$$

 $+i(arg(i(3 \pm 2\sqrt{2})) + 2\pi k), k = 0, \pm 1, \pm 2, ...$

Вычислим $|i(3 \pm 2\sqrt{2})| = 3 \pm 2\sqrt{2}$, $arg(i(3 \pm 2\sqrt{2})) = \frac{\pi}{2}$, получим

$$iz = ln(3 \pm 2\sqrt{2}) + i\left(\frac{\pi}{2} + 2\pi k\right),$$

отсюда вычислим

$$z = \frac{1}{i}ln(3 \pm 2\sqrt{2}) + \frac{\pi}{2} + 2\pi k = \frac{\pi}{2} + 2\pi k - iln(3 \pm 2\sqrt{2}).$$

Получили две серии корней

$$z_1 = \frac{\pi}{2} + 2\pi k - iln(3 + 2\sqrt{2}), z_2 = \frac{\pi}{2} + 2\pi k - iln(3 - 2\sqrt{2}).$$

Преобразуем z_2 .

$$-ln(3-2\sqrt{2}) = ln\frac{1}{3-2\sqrt{2}} = ln(3+2\sqrt{2}),$$

поэтому

$$z_2 = \frac{\pi}{2} + 2\pi k + i \ln(3 + 2\sqrt{2}).$$

Корни находятся на двух прямых, параллельных оси Ox и отстоящих от нее на расстояние $ln(3 + 2\sqrt{2})$ (см. рис. 8).

