Modelo atómico	Experimento que pretende explicar	Descripción del modelo	Representación gráfica	Fecha	Novedad principal que introduce
DALTON	Las primeras leyes de la Química Clásica obtenidas a finales del siglo XVIII	Los átomos son esferas rígidas, inalterables e indestructibles		1803-1807 Vale 1808	Cambia drásticamente el concepto de elemento dado por los griegos. Aire, Tierra, fuego, agua y éter ya no son elementos.
THOMSON	Iluminación de un tubo de vidrio que contiene un gas a baja presión, al someterlo a un alto voltaje. Esto demuestra que la materia tiene carga eléctrica.	El átomo es una bola maciza con carga positiva (protones) en la que se encuentran incrustadas unas partículas negativas llamadas electrones. El átomo contiene el mismo número de cargas positivas que cargas negativas.	10+	1904 Vale 1897 pero en ese año fue cuando se descubrió el electrón	El átomo es divisible. Se puede romper en una parte positive y otra negativa. Los electrones tienen una masa, aproximadamente 2000 veces, menor a la de los protones.
RUTHERFORD	Bombardear una lámina de oro con radiaciones y comprobar que la mayoría atraviesan la lámina y solo unas pocas (< 5%) rebotan.	El átomo tiene dos partes: una central llamada núcleo constituida por protones y neutrones y, otra parte externa, llamada corteza, en la que se encuentran todos los electrones girando a la misma distancia del núcleo.	p ⁺ n	1911	El átomo está hueco, tiene dos partes muy separadas entre sí. Además, el átomo contiene otras partículas neutras llamadas neutrones, de masa similar a la de los protones.
BOHR (nm) 400 uz lanca Na H	Los espectros discontinuos producidos por la radiación emitida de los elementos en estado gaseoso.	El átomo tiene dos partes tal y como decía Rutherford pero, en la corteza, los electrones se sitúan en órbitas circulares diferentes con niveles de energía distintos y bien definidos. Giran alrededor del núcleo en órbitas estables.	órbitas estables electrón electrón niveles	1913	Los electrones tienen energía diferente por lo que se sitúan a distancias distintas del núcleo.

BOHR- SOMMERFIELD	Cuando se analizan los espectros con más detenimiento se observa que las líneas se desdoblan, es decir, lo que parecía ser una única línea son más.	Los electrones giran alrededor del núcleo en órbitas circulares y otras que son elípticas.		1916	Los electrones se sitúan en niveles y subniveles de energía
CUÁNTICO Shrödinger Born	Radiación del cuerpo negro Hipótesis de Planck Dualidad onda-corpúsculo Principio de incertidumbre de Heisenberg	Es imposible conocer con certeza la velocidad y posición de los electrones. Se habla de orbitales como zona de mayor probabilidad de encontrar al electrón. La posición del electrón viene determinada por 4 números cuánticos obtenidos como solución de la ecuación de onda asociada al electrón.	Orbital 2s Orbital 2s Orbital 2s Orbital 2s,	1926	No se conoce la trayectoria del electrón. Se habla de orbitales atómicos como zonas de mayor probabilidad de encontrar el electrón.