

# LLM-Pruner: On the Structural Pruning Of Large Language Models

NeurlPS 2023

Xinyin Ma, Gongfan Fang, Xinchao Wang\* National University of Singapore

Presenter: Yuankun Feng 2025.04.25

# 目录

- 研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

# 目录

- 研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

### LLM发展现状与挑战

#### 发展现状:

■ 能力突飞猛进,通用任务解决成为核心

#### 面临挑战:

- 模型规模指数级增长,部署成本飙升
- 压缩率与性能不能兼顾
- 任务无关压缩的结构性挑战
- 模型碎片化与硬件适配鸿沟

### 现有压缩技术分类

- 蒸馏
- 量化
- 剪枝



### 蒸馏

- 原理:用大模型(教师模型)指导小模型(学生模型)训练,把大模型知识迁移到小模型,使 小模型规模小但性能高。
- 优点:几乎不损失性能,但模型体积和计算量大幅减小,推理速度变快,存储和部署成本降低。
- 适用场景:移动设备、嵌入式系统等资源受限场景。



### 量化

- 原理:将模型参数和计算从高精度数据类型转换为低精度数据类型,降低存储和计算需求,同 时保持性能。
- 优点:模型体积减小,计算效率提升,适合在资源受限的环境中使用。
- 适用场景: 适用于移动设备、物联网设备等场景。

### Quantization type



### 剪枝

■ 原理:去除神经网络中冗余的参数或连接,使模型结构更紧凑,保留核心部分以维持性能。

■ 优点:模型体积减小、计算量降低,推理速度加快,存储和计算成本减少。

■ 适用场景: 适用于移动设备、嵌入式系统等资源受限场景。



### 任务专用压缩

- 定义:针对单一任务(如文本分类)进行模型压缩,通过裁剪与任务无关的结构实现轻量化。
- 代表方法:

知识蒸馏 (如TinyBERT、DistilBERT) : 用大模型指导小模型学习特定任务知识

任务特定剪枝:仅保留与目标任务相关的神经元(如BERT仅保留最后几层分类层)。

- 通用性丧失
- 数据依赖重
- 效率问题



### 目录

- 研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

### 核心思想

- 任务无关压缩:保留LLM的多任务能力(分类、 生成、推理),无需针对特定任务微调。
- 结构化剪枝:通过依赖关系分析移除冗余结构 (如注意力头、FFN层),而非随机剪枝。
- 快速恢复: 仅需3小时LoRA微调(单GPU), 显著低于传统蒸馏(如TinyBERT需14天)。

### 关键步骤

- 依赖检测与结构分组
- 重要性评估
- 快速恢复



### 依赖检测

- 原理:通过神经元输入输出关系构建依赖图,识别必须同步剪枝的耦合结构。
- 规则:

前向依赖:  $N_j \in Out(N_i) \land Deg^-(N_j) = 1 \Rightarrow N_j$ 依赖 $N_i$ 

反向依赖:  $N_i \in In(N_j) \land Deg^+(N_i) = 1 \Rightarrow N_i$ 依赖 $N_j$ 

Forward Dependency

同步剪枝

**Backward Dependency** 





### 触发-遍历算法流程

- 基于依赖检测规则,从单个神经元出发,递归遍历所有依赖的神经元,自动构建不可分割的依赖组, 为结构化剪枝提供剪枝单元。
- 目标:无需人工干预,适配任意LLM架构 (如LLaMA/Vicuna/ChatGLM)。



### 结构分组

- 核心思想:在构建依赖图后,LLM-Pruner将结构自动划分为三个耦合组,作为剪枝基本单元。
- 结构耦合组是剪枝的最小单位,确保功能完整性和梯度一致性,是区别于随机剪枝的核心特征。



### 校准集与梯度 / Hessian 概念

■ 定义:

用于评估模型中 "依赖组" 重要性的小规模代表性数据集(如论文中采用的 Bookcorpus 子集)。

■ 作用: 替代原始大规模训练数据,高效计算梯度与损失变化,降低计算成本。

| 概念             | 数学定义                                            | 物理意义               | 计算成本     |
|----------------|-------------------------------------------------|--------------------|----------|
| 梯度 (一阶导数)      | $rac{\partial \mathcal{L}}{\partial W_{ m i}}$ | 反映参数变化的<br>"方向与快慢" | O (N)    |
| Hessian (二阶导数) | $rac{\partial^2 \mathcal{L}}{\partial W_i^2}$  | 反映参数变化的<br>"敏感性变化" | $O(N^2)$ |

### 重要性评估

#### ■ 目的:

量化每个"依赖组"(耦合结构)对模型整体性能的影响。 识别并准备移除那些移除后对模型性能损失最小的组。

#### ■ 两种估计方式:

向量级重要性 
$$(I_{W_i})$$
:  $I_{W_i} = |\Delta L(D)| = |L_{W_i}(D) - L_{W_i=0}(D)|$ 

元素级重要性 
$$(I_{W_i^k})$$
: 
$$IW_i^k = |\Delta L(D)| = |\frac{\partial L(D)}{\partial W_i^k} W_i^k - \frac{1}{2} W_i^k H_{kk} W_i^k + O(\|W_i^k\|^3)|$$

| 方法    | 描述                        | 优缺点       |
|-------|---------------------------|-----------|
| 向量级估计 | 整组结构作为一个整体评估对<br>Loss 的影响 | 高效,适合大模型  |
| 元素级估计 | 每个参数单独评估,再进行聚合            | 精细,计算开销较大 |

### 重要性聚合策略对比

■ 为什么需要聚合?

我们已经识别了耦合结构组,同一个组内的结构需要一起剪枝。

为了决定剪枝哪个"组",我们需要一个单一的分数来代表整个组的重要性。

聚合策略就是将组内所有结构的个体重要性分数合并(聚合)成一个组的总重要性分数的方法。

#### ■ 聚合策略

| 聚合策略              | 描述           | 特点             | 使用场景              |
|-------------------|--------------|----------------|-------------------|
| 求和 (Summation)    | 所有元素重要度求和    | 稳定且平衡,保持结构一致性  | 大部分情况             |
| 最大 (Maximum)      | 取组内重要度最大值    | 保守,保留最强的特征     | 需要保证最强特征的场景       |
| 乘积 (Product)      | 所有元素重要度相乘    | 激进,去除对模型影响小的特征 | 目标是减少特征数的场景       |
| 仅最后节点 (Last-only) | 仅关注组内最后一层的节点 | 轻量,忽略中间节点的影响   | 需要关注最终结果输出的<br>场景 |

### LoRA 低秩适配原理

- 为何需要快速恢复?
  - 剪枝操作虽然减小了模型尺寸,但通常会导致性能下降。
  - 需要一个后续的微调步骤来恢复模型的性能。
  - 传统的全模型微调计算量大、耗时且需要大量数据, 与我们低资源压缩的目标不符。
- 解决方案: 低秩适配 (LoRA)

核心思想: 在预训练模型的权重矩阵上,不直接修改原始权重 W,而是引入低秩矩阵的更新。



### 微调流程与超参数

#### ■ 微调步骤:

- 剪枝后的模型:剪去多余的参数并使用 LoRA 低秩矩阵进行初始化。
- 选择微调数据集: 使用少量样本数据集 (如 50K Alpaca 数据集)。
- 选择优化器与算法:选择标准优化算法(如 Adam 或 LAMB)。
- 微调训练:通常设置为 2 个 Epoch,使用 1 GPU 进行微调。

#### ■ 超参数设置:

| 超参数     | 值           |
|---------|-------------|
| 学习率     | 1e-5 或 2e-5 |
| Epoch 数 | 2-3         |
| GPU 时间  | 3 小时        |

# 目录

- 研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

### 实验设置

■ 模型选择:

| 模型         | 特点                    | 适配重点       |
|------------|-----------------------|------------|
| LLaMA-7B   | 开源标杆模型,无预训练任务<br>特定优化 | 验证通用剪枝能力   |
| Vicuna-7B  | 对话优化,含 RLHF 训练        | 验证对话场景性能保留 |
| ChatGLM-6B | 中文预训练,支持多语言           | 验证跨语言任务适配性 |

这些模型代表了当下流行的开源 LLM,具有不同的结构特点(例如 LLaMA 和 Vicuna 基于 Transformer 解码器, ChatGLM 是双语模型)。

### 实验设置

- 评估数据集:
  - 零样本分类数据集 (Zero-shot Classification): 用于衡量模型在未见过特定任务训练数据情况下的推理和理解能力。

数据集列表: BoolQ, PIQA, HellaSwag, WinoGrande, ARC-easy, ARC-challenge, OpenbookQA。

● 零样本困惑度数据集 (Zero-shot Perplexity - PPL): 用于衡量模型在语言建模和生成流畅度方面的表现, PPL 值越低越好。

数据集列表: WikiText2, PTB (Penn Treebank)。

#### ■ 评估指标:

平均准确率 (Average Accuracy)、困惑度 (Perplexity - PPL)、剪枝前后与其他模型对比。

### 20% 剪枝性能对比

■ 实验: LLaMaA-7B 20% 结构化剪枝效果评估

■ 结果:经过 20% 结构化剪枝后, LLM-Pruner 通过低资源快速微调,能够将 LLaMA-7B 的零样本分类性能恢复到接近原始模型的水平。

| Pruning Ratio | Method                                | WikiText2↓      | PTB↓             | BoolQ          | PIQA           | HellaSwag      | WinoGrande     | ARC-e          | ARC-c          | OBQA           | Average        |
|---------------|---------------------------------------|-----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Ratio = 0%    | LLaMA-7B <mark>51</mark><br>LLaMA-7B* | 12.62           | 22.14            | 76.5<br>73.18  | 79.8<br>78.35  | 76.1<br>72.99  | 70.1<br>67.01  | 72.8<br>67.45  | 47.6<br>41.38  | 57.2<br>42.40  | 68.59<br>63.25 |
|               | L2<br>Random                          | 582.41<br>27.51 | 1022.17<br>43.19 | 59.66<br>61.83 | 58.00<br>71.33 | 37.04<br>56.26 | 52.41<br>54.46 | 33.12<br>57.07 | 28.58<br>32.85 | 29.80<br>35.00 | 42.65<br>52.69 |
| Ratio = 20%   | Channel                               | 74.63           | 153.75           | 62.75          | 62.73          | 41.40          | 51.07          | 41.38          | 27.90          | 30.40          | 45.38          |
| w/o tune      | Vector                                | 22.28           | 41.78            | 61.44          | 71.71          | 57.27          | 54.22          | 55.77          | 33.96          | 38.40          | 53.25          |
|               | Element <sup>2</sup>                  | 19.77           | 36.66            | 59.39          | 75.57          | 65.34          | <u>61.33</u>   | 59.18          | <u>37.12</u>   | 39.80          | 56.82          |
|               | Element <sup>1</sup>                  | 19.09           | 34.21            | 57.06          | <u>75.68</u>   | 66.80          | 59.83          | 60.94          | 36.52          | 40.00          | 56.69          |
|               | Channel                               | 22.02           | 38.67            | 59.08          | 73.39          | 64.02          | 60.54          | 57.95          | 35.58          | 38.40          | 55.57          |
| Ratio = 20%   | Vector                                | 18.84           | 33.05            | 65.75          | 74.70          | 64.52          | 59.35          | 60.65          | 36.26          | 39.40          | 57.23          |
| w/ tune       | Element <sup>2</sup>                  | 17.37           | 30.39            | 69.54          | 76.44          | 68.11          | 65.11          | 63.43          | 37.88          | 40.00          | 60.07          |
|               | Element <sup>1</sup>                  | 17.58           | 30.11            | 64.62          | 77.20          | 68.80          | 63.14          | 64.31          | 36.77          | 39.80          | 59.23          |

Table 1:压缩后的 LLaMA-7B 的零样本性能

### 20% 剪枝性能对比

■ 实验: LLaMaA-13B 20% 结构化剪枝效果评估

■ 结果: LLM-Pruner 同样能够成功对 LLaMA-13B 进行 20% 结构化剪枝,并通过低资源快速微调有

效恢复模型性能。

| Pruning Ratio           | Method                           | WikiText2↓                              | PTB↓                                     | BoolQ                                   | PIQA                                    | HellaSwag                               | WinoGrande                              | ARC-e                                   | ARC-c                                   | OBQA                                    | Average                                 |
|-------------------------|----------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Ratio = 0%              | LLaMA-13B*                       | 11.58                                   | 20.24                                    | 68.47                                   | 78.89                                   | 76.24                                   | 70.09                                   | 74.58                                   | 44.54                                   | 42.00                                   | 64.97                                   |
| Ratio = 20%<br>w/o tune | L2<br>Random<br>Channel<br>Block | 61.15<br>19.24<br>49.03<br>16.01        | 91.43<br>31.84<br>106.48<br><u>29.28</u> | 61.50<br>63.33<br>62.39<br><u>67.68</u> | 67.57<br>73.18<br>66.87<br>77.15        | 52.90<br>63.54<br>49.17<br>73.41        | 57.54<br>60.85<br>58.96<br><u>65.11</u> | 50.13<br>64.44<br>49.62<br><u>68.35</u> | 31.14<br>36.26<br>31.83<br>38.40        | 36.80<br>38.00<br>33.20<br>42.40        | 51.08<br>57.09<br>50.29<br><u>61.79</u> |
| Ratio = 20%<br>w/ tune  | L2<br>Random<br>Channel<br>Block | 20.97<br>16.84<br>17.58<br><b>15.18</b> | 38.05<br>31.98<br>29.76<br><b>28.08</b>  | <b>73.24</b> 64.19 69.20 70.31          | 76.77<br>76.06<br>76.55<br><b>77.91</b> | 71.86<br>68.89<br>68.89<br><b>75.16</b> | 64.64<br>63.30<br>66.38<br><b>67.88</b> | 67.59<br>66.88<br>62.08<br><b>71.09</b> | 39.93<br>38.31<br>38.99<br><b>42.41</b> | 40.80<br>40.80<br>39.60<br><b>43.40</b> | 62.12<br>59.78<br>60.24<br><b>64.02</b> |

Table 2: 压缩后的 LLaMA-13B 的零样本性能

### 20% 剪枝性能对比

■ 实验: Vicuna-7B 20% 结构化剪枝效果评估

■ 结果: LLM-Pruner 同样能够有效压缩 Vicuna-7B 模型 20%,并通过快速微调将性能保持在原始模

型的较高水平 (92.03%)。

|                | 364.4                | ******     | DEED !  | D 10  | DIO 4 | ** " "    | ****       |       |       |          |         |
|----------------|----------------------|------------|---------|-------|-------|-----------|------------|-------|-------|----------|---------|
| Pruned Model   | Method               | WikiText2↓ | PTB↓    | BoolQ | PIQA  | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA   A | Average |
| Ratio = 0%     | Vicuna-7B            | 16.11      | 61.37   | 76.57 | 77.75 | 70.64     | 67.40      | 65.11 | 41.21 | 40.80    | 62.78   |
|                | 12                   | 3539.98    | 5882.21 | 55.90 | 56.15 | 32.37     | 51.85      | 30.01 | 28.41 | 28.20    | 40.41   |
|                | random               | 34.63      | 112.44  | 61.47 | 70.89 | 54.67     | 56.27      | 55.60 | 31.74 | 34.60    | 52.18   |
| Ratio = 20%    | Channel              | 71.75      | 198.88  | 51.77 | 63.93 | 42.58     | 55.17      | 43.94 | 29.27 | 33.40    | 45.72   |
| w/o tune       | Vector               | 27.03      | 92.51   | 62.17 | 71.44 | 55.80     | 53.43      | 55.77 | 33.28 | 37.80    | 52.81   |
|                | Element <sup>2</sup> | 24.70      | 94.34   | 62.87 | 75.41 | 64.00     | 58.41      | 60.98 | 37.12 | 39.00    | 56.83   |
|                | Element <sup>1</sup> | 25.74      | 92.88   | 61.70 | 75.30 | 63.75     | 56.20      | 63.22 | 36.60 | 37.00    | 56.25   |
|                | Vector               | 19.94      | 74.66   | 63.15 | 74.59 | 61.95     | 60.30      | 60.48 | 36.60 | 39.40    | 56.64   |
| Ratio = $20\%$ | Element <sup>2</sup> | 18.97      | 76.78   | 60.40 | 75.63 | 65.45     | 63.22      | 63.05 | 37.71 | 39.00    | 57.78   |
| w/ tune        | Element <sup>1</sup> | 19.69      | 78.25   | 63.33 | 76.17 | 65.13     | 60.22      | 62.84 | 37.12 | 39.20    | 57.71   |

Table 4: 压缩后的 Vicuna-7B 的零样本性能

### 20% 剪枝性能对比

#### ■ 小结:

LLM-Pruner 在多种大型语言模型(LLaMA-7B/13B, Vicuna-7B)上均能有效实现 20% 的结构化剪枝。

剪枝后,模型性能通过低资源快速微调得到显著恢复,保持接近原始模型的零样本能力。 实验结果验证了 LLM-Pruner 方法的有效性和在不同 LLMs 上的泛化能力。

通过对比剪枝前后的分类准确率,表明 LLM-Pruner 在进行 20% 剪枝后依然能够保持较高的性能,表明剪枝技术在减少 计算量的同时不会显著影响模型的表现。

### 高剪枝率困惑度表现

■ 实验: LLM-Pruner 在高压缩率下的表现

■ 结果: 尽管 LLM-Pruner 在高剪枝率下能比简单基线更好地保持性能,但模型困惑度仍显著增加,表明极高压缩率仍是挑战。



Figure 4: LLaMA-7B (左) 和 Vicuna-7B (右) 在不同剪枝率下的剪枝结果

### 高剪枝率困惑度表现

- 小结:
  - 提高剪枝率会导致性能下降。
  - 相比简单基线, LLM-Pruner 在高剪枝率下能更长时间保持性能稳定。
  - 极高压缩率下,性能显著下降,仍是当前挑战。

### 与现有方法对比

■ 实验: 与 DistilBERT 对比

■ 结果: LLM-Pruner 剪枝的模型在参数量相近的情况下,平均准确率高于传统的蒸馏方法 DistilBERT。

| Pruning Ratio | #Param | Average |
|---------------|--------|---------|
| DistilBert    | 3.50B  | 44.64   |
| LLM-Pruner    | 3.35B  | 48.88   |

Table 8: DistilBert 对比 LLM-Pruner

### 与现有方法对比

■ 实验: 与 StableLM 对比

■ 结果: LLM-Pruner 能够在低资源下构建性能与同等规模从头训练模型 (StableLM) 相当甚至更优

的轻量级大型语言模型。

| Pruning Ratio   #Param            | Latency   BoolQ                  | PIQA | HellaSwag | WinoGrande     | ARC-e | ARC-c | OBQA   Average                 |
|-----------------------------------|----------------------------------|------|-----------|----------------|-------|-------|--------------------------------|
| StableLM-3B 3.6B<br>LLaMA-3B 3.6B | 31.69s   48.78<br>37.96s   61.41 |      |           | 54.62<br>55.01 |       |       | 27.40   45.84<br>37.40   50.30 |

Table 9: 从头训练 (StableLM-3B) 对比剪枝 (LLaMA-3B by LLM-Pruner)

### 与现有方法对比

- 小结:
  - LLM-Pruner 剪枝的模型在性能上优于传统的蒸馏方法 (DistilBERT)。
  - LLM-Pruner 能在低资源下构建性能与从头训练模型 (StableLM) 相当甚至更优的轻量级 LLM。
  - 实验表明 LLM-Pruner 是一个高效且有竞争力的 LLM 压缩与构建方法。

消融研究: 依赖组 vs. 单独剪枝

■ 实验:剪枝策略对比:考虑依赖 vs. 忽略依赖

■ 结果: 忽略结构依赖关系进行剪枝会导致大型语言模型性能急剧下降, 甚至难以恢复。

|            | Method         | WikiText2↓ | PTB↓     | Average† |
|------------|----------------|------------|----------|----------|
| w/o Tuning | w/o dependency | 68378.42   | 79942.47 | 38.32    |
|            | w/ dependency  | 19.09      | 34.21    | 56.69    |
| w/ Tuning  | w/o dependency | 13307.46   | 13548.08 | 38.10    |
|            | w/ dependency  | 17.58      | 30.11    | 59.23    |

Table 6: 基于依赖的结构化剪枝的效果

消融研究: 依赖组 vs. 单独剪枝

#### ■ 小结:

- 结构依赖关系对模型功能至关重要,剪枝必须考虑依赖。
- 忽略依赖关系进行剪枝会导致模型性能崩溃,即使微调也难以恢复。
- 这个结果验证了 LLM-Pruner "发现阶段"识别依赖组的必要性。

消融研究: 聚合策略与层敏感性分析

■ 实验:聚合策略的影响

■ 结果: 聚合策略的选择会影响剪枝后模型在不同任务上的侧重表现。论文选择了"求和"策略作为默

认,因为它综合性能较好。

| Method     | WikiText2↓ | PTB↓   | ARC-e↑ | PIQA↑ | OBQA↑ |
|------------|------------|--------|--------|-------|-------|
| Summation  | 66.13      | 164.25 | 40.70  | 63.49 | 34.80 |
| Max        | 62.59      | 144.38 | 39.60  | 63.71 | 34.60 |
| Production | 77.63      | 192.88 | 37.84  | 62.08 | 35.00 |
| Last-only  | 130.00     | 170.88 | 41.92  | 64.75 | 35.20 |

Table 7:不同聚合策略对组重要性估计的影响

### 消融研究: 聚合策略与层敏感性分析

■ 实验:层敏感性分析

■ 结果:模型不同层对剪枝的敏感性不同,其中初始层和最后层对性能影响尤其显著。



Figure 3: 层敏感性分析: 仅移除单层中的组

消融研究:聚合策略与层敏感性分析

#### ■ 小结:

- 不同的重要性聚合策略会导致模型在不同下游任务上(如生成与分类)表现出权衡。
- 模型不同层的重要性差异显著,特别是首尾层更为关键。
- 消融研究表明,选择合适的聚合策略与层剪枝策略能显著优化剪枝效果,求和策略能在大多数情况下保持模型性能,而后层剪枝对性能影响较小。

### 微调数据量对恢复性能的影响

■ 实验:数据量需求分析:50k vs. 2.59M

■ 结果: 仅使用 50k 样本进行微调即可实现与使用 2.59M 样本相近的模型性能恢复,突显了方法的数

据高效性。

| Model      | #Samples               | BoolQ | PIQA  | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA   Av | erage |
|------------|------------------------|-------|-------|-----------|------------|-------|-------|-----------|-------|
| LLaMA-7B   | -                      | 73.18 | 78.35 | 72.99     | 67.01      | 67.45 | 41.38 | 39.80 5   | 3.25  |
| LLaMA-5.4B | 50k [ <mark>49]</mark> | 64.62 | 77.20 | 68.80     | 63.14      | 64.31 | 36.77 |           | 9.23  |
| LLaMA-5.4B | 2.59M [59]             | 76.57 | 77.37 | 66.60     | 65.82      | 70.62 | 40.70 |           | 2.36  |

Table 10: 模型恢复: 50k 样本对比 2.59M 样本

### 微调数据量对恢复性能的影响

#### ■ 小结:

- 少量数据已足够: 使用 50K 样本 即可恢复 95% 的模型性能, 是高效恢复的最佳平衡点。
- 更多数据仍有效,但收益递减:进一步使用 2.59M 样本,性能提升有限,仅从 94.97% 增加到 98.02%。
- LLM-Pruner 具备极强的数据效率:相比传统压缩方式(如蒸馏),无需大规模语料,适合快速部署。

消融研究: 步长对性能的影响

实验: 消融研究: 后训练时长对性能的影响

■ 结果: 微调初期模型性能迅速恢复, 但训练步长过长可能导致过拟合, 损害泛化能力。



Figure 5:零样本数据集上的困惑度随训练步数的变化

消融研究: 步长对性能的影响

■ 小结:

- 模型性能在后训练的早期阶段(少量步数/epoch)即可快速恢复。
- 训练步长过长可能导致模型在微调数据集上过拟合,损害在其他通用任务上的泛化能力。
- 实验支持采用短时高效微调策略 (例如 2 个 epoch) 。

# 目录

- 研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

# 结论

# LLM-Pruner: On the Structural Pruning Of Large Language Models

- LLM-Pruner 提出任务无关的结构化剪枝方法
- 依赖图驱动的结构分组机制
- 基于 LoRA 的快速恢复方案
- 在 20% 剪枝率下准确率几乎无损
- 消融研究验证依赖组剪枝优于单独剪枝
- 相比 DistilBERT、StableLM, LLM-Pruner 在准确率和效率上更具优势

# 目录

- ■研究背景
- LLM-Pruner方法
- 实验与结果
- ■结论
- **■** Thinking

# Thinking

■ 跨模态模型的适配性

论文实验集中于文本类 LLM (LLaMA/ChatGLM) ,但对多模态模型 (如 LLaVA、Flamingo)的剪枝效果尚未验证。多模态模型的跨模态交互层 (如视觉编码器 - 文本解码器接口) 依赖关系更复杂,现有依赖检测规则可能失效。

■ 硬件兼容性与部署效率

论文仅测试 NVIDIA GPU (A100/4090) ,但边缘端设备 (如 ARM 架构芯片, Arduino, 树莓派) 对模型稀疏性、计算密度有不同需求。依赖组剪枝的"块状参数减少" (如整头剪除) 是否比细粒度剪枝更适合低算力设备?

