Mean Feld Therry

- a, h, a. Hantree - Fock Mathods

Reduce the many - body groblem to the groblem & a single gentricle moving in an effective mean field generated by all of the Filer gentricles.

Fundamental operapienation in condensed metter and nuclaw physics.

We will consider nomeletivistic men fuld methods.

- Petieles interest through an instantaneous getential;

 $V(\vec{x} - \vec{x}') = \sum_{\vec{q}} e^{i\vec{q}\cdot(\vec{x} - \vec{x}')} \tilde{V}(\vec{q})$

In the language of Second Quantization,

H = H + V

In The MEAN FIELD APPROXIMATION, the correction to the ground state energy is found by taking the vacuum (i.e., ground state) expectation value of v:

E -> E + <01V10> How to we calculate (01/10)? <0/2 at at a a 10) All of the terms left with a normal ordering of specitors will So, we are left with

= = = [13 × 13 4 × (2-2) < 4 (2) + (2) > < 4 (2) > < 4 (2) > <

Now consider

 $\times \sqrt{2} \int d^{3}x \, d^{3}x' \, d^{3}y \, d^{3}y' \, \langle \hat{V}(\vec{x}) \hat{V}(\vec{x}') \rangle \langle \hat{V}(\vec{y}) \hat{V}(\vec{y}') \rangle$ $\times e^{i(\vec{x}-\vec{y}) \cdot \vec{x}} e^{-i\vec{k} \cdot \vec{x}'} e^{i(\vec{k}+\vec{y}) \cdot \vec{y}} e^{-i\vec{y}^{2} \cdot \vec{y}'}$

 $\times \int_{a^{3}} \times d^{3} + (\vec{x}) \hat{\psi}(\vec{y}) > (\hat{\psi}) + (\vec{y}) \hat{\psi}(\vec{x}) > e^{i\vec{x}\cdot(\vec{x}-\vec{y})}$

Digramatic Analysis Remember om original diegeen for V= = を V(す) む む む む む む む で 2 - 1 k+2 The diagrams that consumed to VEV have no external lines -For the Hantier term we contract (at a) and (at a) and Dugiamentuly this conegorale to the grigh "TANPOLE" DIAGRAM For the Fock turn, we control (a a) and (a a).

1-1-12 7-12 " OYSTER" DIAGRAM

The sum wer to will of up to the Farmi momentum:

$$N = 2 \sqrt{\frac{1}{(2\pi)^3}} 4\pi \int_{0}^{k_F} k^2 dk = \frac{\sqrt{12}}{\pi^2} \frac{1}{3} k^3$$

Then

$$E = EN = \frac{3}{5}NE = N^{\frac{3}{2}}E$$

$$E = (\sqrt{15}N)^{1/2}/C$$

$$S = (\sqrt{$$

$$\Delta E^{(F)} = 2 \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{e^2}{4\pi\epsilon_0} \right\} F\left(\frac{e^2}{8\pi}\right) \right\}$$

$$= -\frac{3}{2\pi} F \left(\frac{e^{2}}{4\pi\epsilon} \right) \int dx \, x^{2} F(x)$$

$$= -\frac{3\sqrt{8\pi}}{4\pi} \left(\frac{e^2}{4\pi6}\right)$$

Finilly

$$\frac{E}{N} = \left(\frac{2.2}{\pi^2} - \frac{0.916}{\pi_s}\right) \frac{Rydbugs}{sletton}$$