Aprendizado de Máquina: Métodos para Avaliação de Classificadores

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Estimativa de erro

- Várias medidas podem ser usadas para avaliar um classificador
 - Acurácia (será usada como exemplo)
 - Taxa de erro (bastante comum nos exemplos da literatura)
 - Precisão, cobertura, medida-f, ...
- Regressão/agrupamento: tem suas próprias medidas: erros quadrático médio, silhueta, ...

Estimativa de erro

- Preferências de times extraídos de uma turma com 30 alunos reflete preferência dos brasileiros?
- Será que as medidas obtidas (ex. acurácia) são confiáveis? Elas são importantes para:
 - Tratar under/overfitting
 - Comparar modelos induzidos (ex.: duas versões de uma mesma rede neural)
 - Comparar algoritmos (ex.: rede neural vs SVM)

Estimativa de erro (3)

- Geralmente não é possível medir com exatidão a acurácia do modelo, deve ser estimada
- Não é possível usar o próprio conjunto de treino para calcular as medidas: propenso a overfitting
- Estratégia: dividir dataset em subconjuntos de treinamento, teste e, opcionalmente, validação (se o algoritmo permitir)

Métodos

- Principais estratégias:
 - Hold-out
 - Randon subsampling
 - Cross validation
 - Leave-one-out
 - Bootstrap

Hold-out

- Indicado para grandes datasets. Por exemplo, mais de 1000 instâncias (isso varia de problema para problema)
- Também conhecido como split-sample, é a técnica mais simples para estimativa de erro
- Faz uma divisão única do dataset e roda o algoritmo uma única vez
- Divisões típicas: 1/2, 2/3, 3/4 ou 4/5 das instâncias para treino e o restante para teste

Hold-out (2)

- Pequena quantidade de dados: resultados não são muito confiáveis. Exemplo para acurácia:
 - Conjunto de treino pequeno: algoritmo pode cometer underfitting e acurácia estimada pode ficar baixa
 - Conjunto de teste pequeno: estimativa da acurácia é menos confiável, variância alta, acurácia real pode ser muito diferente

Hold-out (3)

- Idealmente, classes devem estar igualmente distribuídas em treinamento e teste
 - Se a classe A aparecer mais no treino do que no teste, classificador será pouco testado com uma classe que ele aprendeu bem
 - Se a classe A aparecer mais no teste do que no treino, classificador será muito testado com uma classe que ele aprendeu pouco
 - Resultado: estimativa fica pessimista

Random Subsampling

- Indicado para datasets médios ou pequenos, pois pode obter uma estimativa mais precisa da acurácia
- Ideia geral: definir vários conjuntos de teste e de treino usando amostragem e treinar vários classificadores
- Idealmente, um conjunto de treino e seu respectivo teste são partições do dataset, ou seja, não possuem instâncias repetidas
 - Amostragem sem reposição

Random Subsampling (2)

- Processo: dividir o dataset em treino e teste n vezes, treinando um classificador a cada iteração e calculando acurácia
- Acurácia real é estimada a partir da média das acurácias das diferentes partições
- Desvio padrão pequeno é um indicativo que a acurácia real é próxima da estimativa obtida

Random Subsampling (3)

Exemplo para o dataset: \$\hat{x}_1\$, \$\hat{x}_2\$, \$\hat{x}_3\$, \$\hat{x}_4\$, \$\hat{x}_5\$, \$\hat{x}_6\$, \$\hat{x}_7\$, \$\hat{x}_8\$

	Treino	Validação	Teste
Part. 1	$\hat{\mathbf{x}}_{2}$, $\hat{\mathbf{x}}_{4}$, $\hat{\mathbf{x}}_{6}$, $\hat{\mathbf{x}}_{7}$	$\hat{\mathbf{x}}_{5}$, $\hat{\mathbf{x}}_{8}$	$\hat{\mathbf{x}}_{1}$, $\hat{\mathbf{x}}_{3}$
Part. 2	\hat{x}_3 , \hat{x}_4 , \hat{x}_5 , \hat{x}_8	$\hat{\mathbf{x}}_{1}$, $\hat{\mathbf{x}}_{7}$	$\hat{\mathbf{x}}_{2}$, $\hat{\mathbf{x}}_{6}$
Part. 3	$\hat{X}_3, \hat{X}_4, \hat{X}_5, \hat{X}_7$	$\hat{\mathbf{X}}_{2}$, $\hat{\mathbf{X}}_{8}$	\hat{X}_1 , \hat{X}_6

Random Subsampling (4)

- O algoritmo original não controla número de vezes que uma instância é usada para treinamento e teste
- Algumas instâncias podem ser mais utilizados para treinamento que outras
 - O mesmo se aplica ao teste

K-Fold Cross-Validation

- Indicado para datasets médios ou pequenos
 - Um dos métodos mais populares para avaliar classificadores
- Cada instância participa o mesmo número de vezes no treinamento, e apenas uma vez do teste
- Processo: dividir dataset em k partições mutuamente exclusivas
- A cada iteração, uma delas é usada para testar o modelo e as demais k-1 partições para treinar

K-Fold Cross-Validation (2)

- Normalmente, k=10 (validação cruzada de 10 partes)
- Exemplo para k=3
 - Classificador 1: treinado sobre a partição 1 e 2 e testado com a partição 3
 - Classificador 2: treino usando 1 e 3 e teste usando 2
 - Classificador 3: treino usando 2 e 3 e teste usando 1

K-Fold Cross-Validation (3)

- Dataset: {\hat{x}₁, \hat{x}₂, \hat{x}₃, \hat{x}₄, \hat{x}₅, \hat{x}₆}
- Partição 1: $\{\hat{x}_1, \hat{x}_2\}$
- Partição 2: $\{\hat{x}_3, \hat{x}_4\}$
- Partição 3: $\{\hat{x}_5, \hat{x}_6\}$

	Treino+Validação	Teste
Rodada 1	\hat{X}_{1} , \hat{X}_{2} , \hat{X}_{3} , \hat{X}_{4}	$\hat{\mathbf{x}}_{5}$, $\hat{\mathbf{x}}_{6}$
Rodada 2	$\hat{\mathbf{X}}_{1}$, $\hat{\mathbf{X}}_{2}$, $\hat{\mathbf{X}}_{5}$, $\hat{\mathbf{X}}_{6}$	\hat{X}_3 , \hat{X}_4
Rodada 3	\hat{x}_3 , \hat{x}_4 , \hat{x}_5 , \hat{x}_6	\hat{x}_1 , \hat{x}_2

Leave-One-Out

- Indicado para datasets muito pequenos
 - Equivale ao k-fold cross validation com k do tamanho do dataset inteiro
 - A cada iteração, uma instância é utilizado para testar o modelo e as n-1 restantes para o treinamento
 - O número de modelos induzidos é igual ao número de instâncias do dataset

Leave-One-Out (2)

- Sua estimativa de erro é praticamente não tendenciosa
- Computacionalmente caro se for utilizado em datasets maiores
 - 10-fold cross validation aproxima razoavelmente bem o leave-one-out em boa parte dos datasets

Leave-One-Out (3)

- Pode ser pessimista se dataset está balanceado
 - Vai haver um leve desbalanceamento ao remover-se uma instância para teste
 - Classificador que sempre vicia na classe majoritária nunca não vai acertar classe da instância de teste

Validação Cruzada Repetida

- Roda a validação cruzada várias vezes
 - Mudando a forma de criar a partição em cada rodada
 - Mais caro: um classificador é induzido em cada parte de cada validação cruzada
 - Objetivo: obter uma estimativa mais confiável da acurácia

Validação Cruzada Repetida (2)

- Variante popular: 5x2 cross validation (Dietterich, 1998)
 - 5 rodadas
 - Cada uma dividindo teste e validação em duas partições de mesmo tamanho (50-50)
 - Testes empíricos sugerem que 5 rodadas é um bom valor

Bootstrap

- Indicado para datasets muito pequenos
- Funciona melhor que cross-validation para neste tipo de dataset
 - Com poucas instâncias, conjunto de treinamento pode ser muito diferente do conjunto de teste
 - Acurácia estimada pode ser muito pessimista

Bootstrap (2)

- Forma mais simples de bootstrap:
 - Ao invés de usar subconjuntos dos dados, usar subamostras (pode repetir instâncias)
 - Usa sorteio com reposição para gerar vários conjuntos de treino, cada um têm o mesmo tamanho do dataset original
 - Conjunto de treino é usado para testar
 - Pode ser muito otimista

Bootstrap (3)

- Bootstrap 632:
 - Estatisticamente, cada conjunto de treino contém ≈ 63,2% das instâncias originais
 - As demais 36,8% são usadas para teste
 - Acurácia de cada conjunto de teste pode ser pessimista
 - Usa acurácia de cada conjunto de treino para balancear esse efeito

Bootstrap (4)

Cálculo usado Bootstrap 632:

$$acc_{boot} = \frac{1}{b} \sum_{i=1}^{b} 0.632 acc(teste_i) + 0.368 acc(treino_i)$$

 Resultados empíricos bons, porém pode ser otimista caso o classificador memorize o conjunto de treino

Créditos

- Adaptado de:
 - Notas de aula do Prof. Dr. André C. P. L. F. de Carvalho - ICMC-USP