

Capitolul 3 Sistemul decizional

Cap.3 Sistemul decizional

- Cuprinsul capitolului:
- 1. Elementele și etapele procesului decizional
- 2. Cerințe față de decizii
- 3. Tipologia deciziilor
- 4. Metode și tehnici manageriale de fundamentare a deciziilor manageriale

1. Elementele și etapele procesului decizional

- Definiție o linie de acţiune aleasă în mod conştient de către conducerea întreprinderii în scopul de a ajunge la un anumit rezultat.
- Decizia este un act de creaţie = gândirea logică + factorii psihologici.
- Sistemul decizional ansamblul elementelor interdependente care permit elaborarea şi fundamentarea deciziilor.

1. Elementele și etapele procesului decizional

- Elementele sistemului decizional
 - Decidentul
 - Obiectivul
 - Mulţimea alternativelor
 - Multimea criteriilor decizionale
 - Mediul ambiant
 - Consecințele variantelor
 - Utilitatea fiecărei consecințe a diferitelor variante.

1. Elementele și etapele procesului decizional

- Etapele procesului decizional:
 - Identificarea şi definirea problemelor sau a oportunităților;
 - 2. Stabilirea criteriilor şi obiectivelor decizionale;
 - 3. Stabilirea variantelor decizionale posibile;
 - 4. Alegerea variantei optime;
 - 5. Implementarea (Aplicarea) variantei optime
 - 6. Evaluarea rezultatelor

2. Cerințe față de decizii

- 1. Fundamentarea științifică a deciziei
- 2. Adoptarea deciziilor trebuie făcută de organe sau persoane care au drept legal și împuternicirea de a lua decizii
- 3. Coordonarea deciziilor
- 4. Luarea în timp util a deciziilor sau oportunitatea deciziilor
- 5. Decizia să fie eficientă
- 6. Decizia să fie completă

A) După gradul de cunoaștere a mediului ambiant de către decident și după natura variabilelor ce influențează rezultatele potențiale se deosebesc trei tipuri de decizii:

- decizii în condiții de **CERTITUDINE**;

- Probabilitatea (N₁) = 1
- decizii în condiții de RISC;

$$-P(N_K) = p_1 + p_2 + ... + p_k = 1$$

- decizii în condiții de INCERTITUDINE
 - P = necunoscută

- B) După orizontul de timp pentru care se adoptă și în raport cu implicațiile deciziilor asupra obiectivului condus există trei categorii de decizii:
 - decizii strategice;
 - decizii tactice;
 - decizii curente.
- C) După numărul persoanelor ce participă la adoptarea deciziei avem:
 - decizii individuale (unipersonale);
 - decizii de grup (colective).

STRATEGICE

Middle Management

TACTICE

Lower Management

CURENTE

- D) În funcție de periodicitatea elaborării se întâlnesc:
 - decizii unice (nerepetitive);
 - decizii de rutină (repetitive).
- E) Ţinând seama de numărul criteriilor decizionale ele se pot grupa în:
 - decizii unicriteriale;
 - decizii multicriteriale.

- F) După sfera de cuprindere şi obiectivul managerial avem:
 - decizii globale (generale);
 - decizii parțiale;
 - decizii locale.
- G) După posibilitatea anticipării sunt:
 - decizii anticipate;
 - decizii imprevizibile;
 - decizii prospective.

Top Management

PARȚIALE

Middle Management

LOCALE

Lower Management

3. Tipologia deciziilor - Concluzii

- Crește complexitatea deciziilor, amploarea problemelor
- Informațiile necesare deciziei devin tot mai puțin probabile, chiar incerte
- Necesitatea consultării mai multor persoane

4. Metode și tehnici de fundamentare a deciziilor manageriale

Metodele tradiţionale

ansamblu de procedee, decidenți individuali (nivelul execuţiei).

Metodele comparative

 se utilizează pentru fundamentarea unor decizii pe baza principiului continuității fenomenelor. (comparații, în perioade trecute, cu elemente prestabilite, cuprinse în planuri, programe etc.)

Metodele de optimizare

 instrumente matematice și urmăresc ca în procesul decizional să se utilizeze căi și mijloace care să conducă la obținerea unui **optim economic**.

- 1. Decident individual
- Metoda Utilității Globale;
- Metoda ELECTRE (ELimination Et Choix Traduisant la REalité);
- Metoda ONICESCU.

EXEMPLU:

La o fabrică specializată în producerea și îmbutelierea sucurilor naturale trebuie să ia decizia de a se achiziționa o nouă linie de îmbuteliat, mai performantă decât liniile aflate în dotare. Pentru aceasta au fost studiate mai multe oferte ale unor producători de astfel de linii de îmbuteliat, iar dintre toate ofertele studiate, 4 au fost cele care i-au atras atenția (ofertele alese corespund din punct de vedere tehnic cerințelor firmei și se încadrează în bugetul de achiziție)

Matricea consecințelor economice

	Preț de achiziție (C1) - LEI -	CAPACITATE A DE IMBUTELIER E (C2) - STICLE/H -	CHELTUIELI CU FUNCȚIONAREA ȘI ÎNTREȚINEREA (C3) -(lei/LUNĂ)-	TERMEN DE LIVRARE (C4) -(ZILE)-	GARANȚI E (C5) -LUNI-	CONDIȚII DE PLATĂ (AVANS) (C6) -%-
Oferta 1	120.000	2500	6300	105	12	30
Oferta 2	118.000	2400	6500	100	12	25
Oferta 3	100.000	2100	6200	90	12	40
Oferta 4	115.000	2300	6000	120	12	30

Matricea utilităților primare

	Preț de achiziție (C1) - LEI -	CAPACITATEA DE IMBUTELIERE (C2) - STICLE/H -	CHELTUIELI CU FUNCȚIONAREA ȘI ÎNTREȚINEREA (C3) -(lei/LUNĂ)-	TERMEN DE LIVRARE (C4) -(ZILE)-
Oferta 1 (V1)	0	1	0,4	0,5
Oferta 2 (V2)	0,1	0,75	0	0,66
Oferta 3 (V3)	1	0	0,6	1
Oferta 4 (V4)	0,25	0,5	1	0
k	0,4	0,3	0,2	0,1

Metoda ELECTRE

- Etapele metodei:
 - 1. Calculul utilității variantelor
 - 2. Calculul coeficienților de **CONCORDANȚĂ și DISCORDANȚĂ** ai variantelor decizionale.

$$C(V_g, V_h) = \frac{\sum_{j} k_j}{\sum_{i=1}^{n} k_j} \quad u_{gj} \geq u_{hj}$$

– Coeficienţii de concordanţă au valori cuprinse între 0 şi 1, arătând cu cât o variantă V_g depăşeşte o variantă V_h .

Metoda ELECTRE

Coeficienții de discordanță

$$d(V_g, V_h) = \frac{1}{E} \max \left| u_{gj} - u_{hj} \right| \qquad u_{gj} \leq u_{hj}$$

 Coeficienţii de discordanţă au valori cuprinse între 0 şi 1, arătând cu cât o variantă "h" depăşeşte o variantă "g".

- 3. Alegerea variantei optime cu ajutorul matricei de surclasare.
 - În această etapă se construieşte matricea de concordanţă-discordanţă
 - Se face diferenţa între coeficienţii de concordanţă şi cei de discordanţă

- După ce s-a construit matricea diferenţelor se compară mărimile obţinute, atribuindu-se valoarea 1 celei mai mari diferenţe dintre două variante şi valoarea 0 pentru cealaltă diferenţă dintre aceleaşi 2 variante.
- În acest mod se construieşte MATRICEA DE SURCLASARE. Varianta optimă este aceea care surclasează toate celelalte variante.

- Revenim la problema rezolvată anterior prin metoda utilității globale
- Coeficienții de concordanță

	V1	V2	V3	V4
V1		0,5	0,3	0,4
V2	0,5		0,3	0,4
V3	0,7	0,7		0,5
V4	0,6	0,6	0,5	

Coeficienții de discordanță

	V1	V2	V3	V4
V1		0,16	1	0,6
V2	0,4		0,9	1
V3	1	0,75		0,5
V4	0,5	0,66	1	

Matricea diferențelor

	V1	V2	V3	V4
V1		0,34	-0,7	-0,2
V2	0,1		-0,6	-0,6
V3	-0,3	-0,05		0
V4	0,1	-0,06	-0,5	

Matricea de surclasare

	V1	V2	V3	V4	Puncte
V1		1	0	0	1
V2	0		0	0	0
V3	1	1		1	3
V4	1	1	0		2

- Metoda ONICESCU dacă criteriile sunt echiimportante
 - 1. Stabilirea matricei consecințelor variantelor decizionale, notată cu "A";
 - Atribuirea de locuri fiecărei variante, după fiecare criteriu în parte, matrice notată cu "B";
 - 3. Scrierea unei noi matrici "C" în care se indică de câte ori o variantă "i" ocupă locul "j".
 - 4. Stabilirea variantei optime după următoarea funcție:

$$f(V_i) = \alpha_{i1} \frac{1}{2} + \alpha_{i2} \frac{1}{2^2} + \dots + \alpha_{im} \frac{1}{2^m}$$

- Metoda ONICESCU dacă criteriile sunt diferite ca importanță
 - 1. Stabilirea matricelor "A" și "B" la fel ca în prima variantă
 - 2. Atribuirea coeficienţilor de importanţă ai criteriilor, diferenţiaţi după relaţia:
 - 3. Stabilirea variantei optime

$$f(V_i) = \sum_{j=1}^{m} p_j \times 2^{-loc(V_i, C_j)}$$
 $P = \frac{1}{2^k}$

Delegarea unei sarcini către subordonați

Un proiect apărut ca o sarcină suplimentară trebuie delagat unuia din cei 5 angajați pe care îi avem în subordine.

- Anca este o persoană foarte competentă •
 profesional, cu o creativitate slabă și a mai
 lucrat la 2 proiecte asemănătoare, însă are
 alte atribuții și sarcini prioritare care nu-i
 permit să realizeze proiectul mai repede •
 de 9 zile.
- Bogdan este o persoană cu o competență profesională bună, cu o creativitate foarte bună și a mai lucrat la un proiect asemănător, iar atribuțiile și sarcinile din cadrul departamentului îi pemit să finalizeze proiectul în 7 zile.
- Cosmin are o competență profesională excelentă, o creativitate bună, a mai

elaborat o singură dată un proiect asemănător, iar timpul de realizare a sarcinii 6 zile.

- Dan are o competență profesională slabă, creativitate excelentă, 4 proiecte asemănătoare ca experiență, timp de realizare a sarcinii 8 zile.
- Elena foarte slab pregătită profesional (ea a fost angajată doar de câteva saptămâni), o creativitate redusă, nu are nici un fel de experiență în elaborarea de proiecte, iar în ceea ce privește timpul de realizare a proiectului, managerul consideră că ea nu se va putea încadra în termenul de 10 zile.

Delegarea unei sarcini către subordonați

Matricea A: Matricea consecințelor economice

	Competența profesională	Creativitatea	Experiența	Termen de finalizare
ANCA	Foarte bună	slabă	2	9
BOGDAN	bună	Foarte bună	1	7
COSMIN	excelentă	bună	1	6
DAN	slabă	excelentă	4	8

Matricea B: Locurile fiecărei variante pentru fiecare criteriu

	Competența profesională	Creativitatea	Experiența	Termen de finalizare
ANCA	Locul 2	Locul 4	Locul 2	Locul 4
BOGDAN	Locul 3	Locul 2	Locul 3	Locul 2
COSMIN	Locul 1	Locul 3	Locul 3	Locul 1
DAN	Locul 4	Locul 1	Locul 1	Locul 3

dacă criteriile sunt echiimportante Matricea C

	Locul 1	Locul 2	Locul 3	Locul 4
ANCA	0	2	0	2
BOGDAN	0	2	2	0
COSMIN	2	0	2	0
DAN	2	0	1	1

dacă criteriile sunt echiimportante

Matricea C

$$f(V_1) = 0 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2^2} + 0 \cdot \frac{1}{2^3} + 2 \cdot \frac{1}{2^4} = \frac{10}{2^4}$$

$$f(V_2) = 0 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2^2} + 2 \cdot \frac{1}{2^3} + 0 \cdot \frac{1}{2^4} = \frac{12}{2^4}$$

$$f(V_3) = 2 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2^2} + 2 \cdot \frac{1}{2^3} + 0 \cdot \frac{1}{2^4} = \frac{20}{2^4}$$

$$f(V_4) = 2 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2^2} + 1 \cdot \frac{1}{2^3} + 1 \cdot \frac{1}{2^4} = \frac{19}{2^4}$$

dacă criteriile sunt diferite ca importanță

Matricea B: Locurile fiecărei variante pentru fiecare criteriu

k1=0,3 k2=0,3 k3=0,25 k4=0,15
$$P: \left(\frac{1}{2^3}; \frac{1}{2^2}; \frac{1}{2}; \frac{1}{2}; \frac{1}{2^3}; \frac{1}{2}\right)$$

$$f(V_1) = \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{2} \cdot \frac{1}{2^4} + \frac{1}{2^2} \cdot \frac{1}{2^2} + \frac{1}{2^3} \cdot \frac{1}{2^4} = \frac{29}{2^7}$$

$$f(V_2) = \frac{1}{2} \cdot \frac{1}{2^3} + \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{2^2} \cdot \frac{1}{2^3} + \frac{1}{2^3} \cdot \frac{1}{2^2} = \frac{32}{2^7}$$

$$f(V_3) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2^3} + \frac{1}{2^2} \cdot \frac{1}{2^3} + \frac{1}{2^3} \cdot \frac{1}{2} = \frac{52}{2^7}$$

$$f(V_4) = \frac{1}{2} \cdot \frac{1}{2^4} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2^2} \cdot \frac{1}{2} + \frac{1}{2^3} \cdot \frac{1}{2^3} = \frac{54}{2^7}$$

- 2. Decident colectiv
- Cerinţele de raţionalizare a deciziilor de grup (J.K.Arrow):
 - 1. metoda deciziei de grup trebuie să fie aplicabilă tuturor variantelor posibile;
 - dacă o variantă urcă pe scara preferinţelor fiecărui individ, atunci ea trebuie să urce pe scara preferinţelor grupului;

- 3. dacă decizia se referă la "n" variante posibile, clasamentul făcut de grup acestora nu trebuie să fie modificat prin luarea în considerare a unei noi variante;
- regula după care se ia decizia de grup nu trebuie să fie independentă de opiniile individuale, trebuie să depindă direct de acestea;
- decizia de grup nu trebuie să fie identică cu opinia unui anumit membru al grupului fără a ţine seama de opiniile celorlalţi.

- 2. Decident colectiv
- Metoda simplei majorităţi (Paradoxul lui Condorcet)
- Metoda calculului majorităţii ca o compunere de utilităţii individuale
 - Utilitatea individuală a fiecărei variante din punctul de vedere al fiecărui decident se calculează ca la metoda utilității globale.
 - Utilitatea globală a variantelor se calculează ca o sumă de utilităţi
 individuale ale variantelor, din punctul de vedere al fiecărui decident.
 - Apare în plus coeficientul de ierarhizare a decidentului K

	D	1		02
	C1	C2	C1	C2
V1	u11	u12	u11	u12
V2	u21	u22	u21	u22
V3	u31	u32	u31	u32
k	0,5	0,5	0,7	0,3
K	0,	,6),4
u11x0,5+		U11x0,6		12x0,4
u12x0,5	U	21x0,6	+ U	22x0,4
	U:	31x0,6	+ U	32x0,4

- 1. Decident individual
 - Pentru fiecare stare de condiţii se determină utilităţile consecinţelor, prin însumarea acestora sau prin ponderarea cu coeficienţii de importanţă (specifici fiecărei stări N_g) şi se calculează utilităţile sinteză (pe variante) a stării naturii respective.
 - În caz de echiimportanță
- dacă criteriile sunt diferite

$$U_{ij} = \sum_{j=1}^{n} u_{ijg}$$

$$U_{ij} = \sum_{j=1}^{n} u_{ijg} k_{jg}$$

- 1. Decident individual
 - Varianta optimă se obţine pe baza relaţiei:

$$V_{opt} = \max_{i} \sum_{g=1}^{k} U_{ig} p_g$$

	N1 ce mi		N2 cerere medie		N3 cerere mare	
min	C1 profit	C2 cost	C1 profit	C2 cost	C1 profit	C2 cost
V1	150		200		210	
V2	200		2:10		230	
V3	230		240		280	
k	0,6	0,4	0,6	0,4	ž 0,6	0,4
Р	0,	2	0	,7	0,	,1

- 2. Decident colective
 - Varianta optimă se obţine pe baza relaţiei:

$$V_{opt} = \max_{i} \sum_{j=1}^{n} \sum_{g=1}^{k} \sum_{J=1}^{N} U(a_{ijg}) \cdot k_{j} \cdot p_{g} \cdot K_{J}$$

Metoda utilităţii globale

Simularea decizională

- Se bazează pe un model
- Riscul cercetătorului modelul să fie ireal
- Riscul firmei experimentele reale pot avea consecințe dezastruoase pentru firmă
- Problema: nivelul de detaliere al modelului
- Etapele simulării
 - Stabilirea domeniului de simulat
 - Elaborarea modelelor
 - Elaborarea programelor pentru calculator
 - Simularea decizională propriu-zisă.

- Decizii unicriteriale
- 5 reguli de adoptare a deciziilor:
 - REGULA PESIMISTĂ (regula prudenței) a fost dezvoltată de statisticianul Abraham Wald.

$$V_{opt} = \max_{i} \left(\min_{k} a_{ik} \right)$$
 $i = \overline{1, m}$ $k = \overline{1, n}$

$$i=1,m$$

$$k = \overline{1,n}$$

- REGULA OPTIMISTĂ
$$i = \overline{1,m}$$

$$V_{opt} = \max_{i} \left(\max_{k} a_{ik} \right) \quad k = \overline{1,n}$$

- REGULA OPTIMALITĂŢII (regula lui Leonard Hurwicz)

$$V_{opt} = \max_{i} \left[\alpha \times a_{ik}^{\max} + (1 - \alpha) \times a_{ik}^{\min} \right]$$

$$i = \overline{1, m} \quad k = \overline{1, n}$$

 REGULA PROPORŢIONALITĂŢII (echilibrului, Bayes-Laplace)

$$V_{opt} = \max_{i} \frac{\sum_{k=1}^{n} a_{ik}}{n}$$

- REGULA MINIMIZĂRII REGRETELOR (L. Savage)
- Varianta optimă se calculează după relaţia

$$R_{ik} = \max_{i} (a_{ik}) - a_{ik} \quad i = \overline{1,m} \qquad k = \overline{1,n}$$

$$V_{opt=\min_{i}} \left(\max_{k} R_{ik} \right)$$

$$i = \overline{1, m}$$
 $k = \overline{1, n}$

Decizii multicriteriale

- Se calculează utilitățile primare și apoi cele sinteză la fel ca la situația de risc
- Se aplică cele 5 reguli enunțate anterior