Name: Connor Raymond Stewart ID:101041125

Acknowledgment: No Help Receaved

MATH 3802 Assignment #11:

Let G=(V,E) be the undirected graph depicted below:

1) Let H denote the line graph of G:
a) (2 Points) Give a Sketch of H, Label all the nodes properly:

— H has a node Set of E & an edge-set of Eef: e, f EE, e \(\frac{1}{2} \),

e and f share an end &

- The node set is:

or, gr, bd, 29, b9, c9, cd, ac, ab, ad

- We see the following graph:

b) (1 Point) Give a Stable Set in H of Cardinality 3:

A Stable Set exists is SEV is no two nodes in S are adjacent.

in G Where G=(V,E).

Since 72-1>9r, 62,02

ac -> c2, cd, ab, ad ? H, we see that:

dr -> fr,ad,cd,bd

Since Prachedr are not adjacent in

(S={7%, ac, dr.} & Isl=3)

Acknowledgment: No Help Receaved

(2) Let (LP) denote the Problem:

max Suev Xu S.t. X4+Xw = 1 YUW EE $0 \le \chi_u \le 1$ YUE V XE 77V

a) (3 Points) USE Microsoft excel to Solve (LP) for the graph G: See Attachment for Excel Solution We formulate the following linear Program:

> Max Xr+Xa+X6+Xc+Xd+Xp+Xq Site Xr + Xd < 1 $\chi_r + \chi_p \leq 1$ $x_b + x_d \leq 1$ Xb + Xq ≤ 1 Xc+Xd ≤ 1 X2+ Xq ≤1 $X_{c}+X_{q} \leq 1$ $X_{a}+X_{c} \leq 1$ X2+X6 <1 Xa+Xj ≤1 0 £ Xr, Xa, Xb, Xc, Xd, Xp, Xg, £ 1

b) (2 Points) Give two maximal cliques in G having condinality at least 3. (A Clique is maximal is it is not strictly contained in another clique. For example, 40,63 is a Clique that is not maximal because it is strictly contained in the clique 29,6,03.) Clique I: {a,b,c,d}
Clique I: {b,c,9}

C) (2 Points) Add the Clique inequalities for the Cliques you gave in part (b) to (LP). & resolve. Provide a Screenshot of the formulation & the answer report: See Attachments

Question 2 Part a Linear Program Formulation

Variables x_r	x_a	x_b	x_c	x_d	x_p	x_q			
Values	1	0	1	1	0	1	0		
							sumpr	ods	
Objective	1	1	1	1	1	1	1	4	
dr	1				1			1 <=	1
qr	1						1	1 <=	1
bd			1		1			1 <=	1
bq			1				1	1 <=	1
cd				1	1			1 <=	1
pq						1	1	1 <=	1
cq				1			1	1 <=	1
ac		1		1				1 <=	1
ab		1	1					1 <=	1
ad		1			1			0 <=	1

Question 2 Part a Answer Report

Microsoft Excel 16.0 Answer Report

Worksheet: [New Microsoft Excel Worksheet.xlsx]Sheet1

Report Created: 4/5/2021 12:47:58 AM

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.031 Seconds. Iterations: 7 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

	Cell	Name	Original Value	Final Value
\$1\$4		Objective sumprods	0	4

Variable Cells

	Cell	Name	Original Value	Final Value	Integer
\$B\$2	Value	s x_r	0	1	Binary
\$C\$2	Value	s x_a	0	0	Binary
\$D\$2	Value	s x_b	0	1	Binary
\$E\$2	Value	s x_c	0	1	Binary
\$F\$2	Value	s x_d	0	0	Binary
\$G\$2	Value	s x_p	0	1	Binary
\$H\$2	Value	s x_q	0	0	Binary

Constraints

	Cell	Name	Cell Value	Formula	Status	Slack
\$1\$6		dr sumprods	1	\$I\$6<=\$K\$6	Binding	0
\$1\$7		qr sumprods	1	\$I\$7<=\$K\$7	Binding	0
\$1\$8		bd sumprods	1	\$I\$8<=\$K\$8	Binding	0
\$1\$9		bq sumprods	1	\$I\$9<=\$K\$9	Binding	0
\$1\$10		cd sumprods	1	\$I\$10<=\$K\$10	Binding	0
\$I\$11		pq sumprods	1	\$I\$11<=\$K\$11	Binding	0
\$I\$12		cq sumprods	1	\$I\$12<=\$K\$12	Binding	0
\$I\$13		ac sumprods	1	\$I\$13<=\$K\$13	Binding	0
\$1\$14		ab sumprods	1	\$I\$14<=\$K\$14	Binding	0
\$I\$15		ad sumprods	0	\$I\$15<=\$K\$15	Not Binding	g 1
\$B\$2:	H\$2=Binary					

Question 2 Part c Linear Program Formulation

Variables x_r	x_a	x_b	x_c	x_d	x_p	x_q			
Values	1	1	0	0	0	1	0		
							sump	rods	
Objective	1	1	1	1	1	1	1	3	
dr	1				1			1 <=	1
qr	1						1	1 <=	1
bd			1		1			0 <=	1
bq			1				1	0 <=	1
cd				1	1			0 <=	1
pq						1	1	1 <=	1
cq				1			1	0 <=	1
ac		1		1				1 <=	1
ab		1	1					1 <=	1
ad		1			1			1 <=	1
abcd		1	1	1	1			1 <=	1
bcq			1	1			1	0 <=	1

Acknowledgement: No Help Received Question 2 Part c Answer Report

Microsoft Excel 16.0 Answer Report

Worksheet: [New Microsoft Excel Worksheet.xlsx]Question 2c

Report Created: 4/5/2021 12:52:44 AM

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.031 Seconds. Iterations: 6 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

	Cell	Name	Original Value	Final Value
\$1\$4		Objective sumprods	4	3

Variable Cells

	Cell	Name	Original Value	Final Value	Integer
\$B\$2		Values x_r	1	1	Binary
\$C\$2		Values x_a	0	1	Binary
\$D\$2		Values x_b	1	0	Binary
\$E\$2		Values x_c	1	0	Binary
\$F\$2		Values x_d	0	0	Binary
\$G\$2		Values x_p	1	1	Binary
\$H\$2		Values x_q	0	0	Binary

Constraints

C	ell Name	Cell Value	Formula	Status	Slack
\$1\$6	dr sumprods	1	\$I\$6<=\$K\$6	Binding	0
\$1\$7	qr sumprods	1	\$I\$7<=\$K\$7	Binding	0
\$1\$8	bd sumprods	0	\$I\$8<=\$K\$8	Not Binding	1
\$1\$9	bq sumprods	0	\$I\$9<=\$K\$9	Not Binding	1
\$1\$10	cd sumprods	0	\$I\$10<=\$K\$10	Not Binding	1
\$ \$11	pq sumprods	1	\$I\$11<=\$K\$11	Binding	0
\$1\$12	cq sumprods	0	\$I\$12<=\$K\$12	Not Binding	1
\$1\$13	ac sumprods	1	\$I\$13<=\$K\$13	Binding	0
\$I\$14	ab sumprods	1	\$I\$14<=\$K\$14	Binding	0
\$I\$15	ad sumprods	1	\$I\$15<=\$K\$15	Binding	0
\$1\$16	abcd sumprod	ls 1	\$I\$16<=\$K\$16	Binding	0
\$I\$17	bcq sumprods	0	\$I\$17<=\$K\$17	Not Binding	1
\$B\$2:\$H\$	S2=Binary				