ELEC-311 Project 2 Combinational Circuit Design

Charles Pittman October 1, 2013

1 Objective

First Objective

Given a function, design a combinational logic logic circuit.

Second Objective

Minimize the circuit using a Karnaugh map.

Third Objective

Create the circuit using only NAND gates.

2 Discussion

The circuit to be constructed was a 2-bit comparator. A 2-bit comparator takes two 2-bit numbers, $P = P_1 P_0$ and $Q = Q_1 Q_0$, and produces an output, $GT = 1 \iff P > Q$. The truth table describing this function is shown in Table 1. This can be displayed more concisely as a summation of min-terms: $\sum_{m} (P_1, P_0, Q_1, Q_0) = (4, 8, 9, 12, 13, 14)$.

Using a Karnaugh map (Fig 1), a minimal form of the function was found: $GT = P_0\overline{Q_1Q_0} + P_1P_0\overline{Q_0} + P_1\overline{Q_1}$. This function was then translated into the circuit shown in Fig 2.

The NAND gate is considered to be a functionally complete set because any logic function can be created with only NAND gates. To verify, the circuit was again translated into one using only NAND gates (Fig 3).

3 Results

Figure 1: Karnaugh map used to minimize function.

mt	P	Q	P_1	P_0	Q_1	Q_0	GT (P > Q)
0	0	0	0	0	0	0	0
1	0	1	0	0	0	1	0
2	0	2	0	0	1	0	0
3	0	3	0	0	1	1	0
4	1	0	0	1	0	0	1
5	1	1	0	1	0	1	0
6	1	2	0	1	1	0	0
7	1	3	0	1	1	1	0
8	2	0	1	0	0	0	1
9	2	1	1	0	0	1	1
10	2	2	1	0	1	0	0
11	2	3	1	0	1	1	0
12	3	0	1	1	0	0	1
13	3	1	1	1	0	1	1
14	3	2	1	1	1	0	1
15	3	3	1	1	1	1	0

Table 1: Truth table for 2-bit comparator.

Figure 2: Circuit implemented from function.

Figure 3: Identical circuit using only NAND gates.