Math 318: Assignment 6 Solutions

Problem 1

One possible model for σ is as follows. Let $M=\{0,1,2\}$ and let $R^M=M^2$, so in other words, xR^My for any $x,y\in M$. Then given $x\in M$, we can choose y and z with $y\neq x$, $z\neq x$ and $y\neq z$, and we will have xR^My and zR^Mx . Thus $M\models\sigma$.

Problem 2

There are many possibilities here. We list a few:

- Let $L = \{f\}$ where f is a unary function symbol, and let σ be the conjunction of the following sentences:
 - $\forall x \forall y [f(x) = f(y) \rightarrow x = y]$ (injective)
 - $\exists x \forall y [x \neq f(y)]$ (not surjective)

Note (\mathbb{N}, S) is an infinite model of σ , where S is the successor function. On the other hand, note that if $\mathcal{M} \models \sigma$, then since f is an injection on M which is not a surjection, we must have that M must be infinite.

- Let $L = \{<\}$ where < is a binary relation symbol, and let σ be the conjunction of the following sentences:
 - $\forall x [\neg x < x]$ (irreflexive)
 - $\forall x \forall y \forall z [x < y \land y < z \rightarrow x < z]$ (transitive)
 - $\forall x \exists y [x < y]$ (unbounded)

Note that $(\mathbb{N}, <)$ is an infinite model of σ . On the other hand, if $\mathcal{M} \models \sigma$, then given $x_0 \in M$, we can use unboundedness to construct a sequence:

$$x_0 < x_1 < x_2 < \cdots$$

Now if i < j, then $x_i < x_j$ by transitivity and thus $x_i \neq x_j$ by irreflexivity. Thus the x_n are distinct, and thus M is infinite.

Problem 3

There are many possibilities here. For example, let $L = \emptyset$ and let σ being the sentence $\exists x \forall y [x = y]$. Then models of σ are exactly the one-element sets.

Problem 4

There are many possibilities here.

Part (a)

Let $L=\varnothing$ and let σ be the sentence $\forall x[x=x]$. Let $n\geq 1$ and let M be a set with |M|=n (in particular, we could choose M=n). Then $M\models\sigma$, so $n\in\operatorname{spec}\sigma$. Thus $\mathbb{N}_+\subset\operatorname{spec}\sigma$, and thus $\operatorname{spec}\sigma=\mathbb{N}_+$.

Part (b)

Let $L = \{f\}$ where f is a unary function symbol, and let σ be the conjunction of the following sentences:

- $\forall x [f(f(x)) = x]$ (involution)
- $\forall x[x \neq f(x)]$ (no fixed points)

Let $n \geq 1$. Define \mathcal{M} by $M = \{1, 2, \dots, n\} \sqcup \{-1, -2, \dots, -n\}$ and f(x) = -x. Then $\mathcal{M} \models \sigma$, so $2n \in \operatorname{spec} \sigma$. Thus $X \subset \operatorname{spec} \sigma$. Conversely, let \mathcal{M} be a finite model of σ . f partitions M into sets of the form $\{x, f(x)\}$ which are of size two since f has no fixed points. Thus M has even order, so $|M| \subset X$. Thus $\operatorname{spec} \sigma \subset X$ and thus $\operatorname{spec} \sigma = X$.

Part (c)

Let $L=\{\vee,\wedge,\neg,0,1\}$ be the language of Boolean algebras, and let σ be the conjunction of the sentences in the theory of Boolean algebras. Let $n\in\mathbb{N}$ and let M be a set with |M|=n (in particular, we could choose M=n). Then $\mathcal{P}(M)\models\sigma$, so $2^n\in\operatorname{spec}\sigma$. Thus $X\subset\operatorname{spec}\sigma$. Conversely, let \mathcal{M} be a finite model of σ . Since \mathcal{M} is a finite Boolean algebra, its order must be a power of two, so we have $|M|\subset X$. Thus $\operatorname{spec}\sigma\subset X$ and thus $\operatorname{spec}\sigma=X$.

Problem 5

Let $L=\{E\}$ be the language of graphs and let T be the theory of graphs. Suppose we have $T'\supset T$ such that every connected graph satisfies T'. Let $L'=L\cup\{a,b\}$ where a and b are constant symbols. For $n\geq 0$, let σ_n be the L'-sentence saying that there is no path of length n from a to b. More precisely, define σ_n as follows:

- Let σ_0 be the sentence $a \neq b$.
- Let σ_1 be the sentence $\neg(aEb)$.
- For $n \geq 2$, let σ_n be the following sentence:

$$\forall x_1, \dots, x_{n-1} \neg (aEx_1 \land x_1Ex_2 \land \dots \land x_{n-2}Ex_{n-1} \land x_{n-1}Eb)$$

Define the set of L'-sentences $\tilde{T}=T'\cup\{\sigma_n:n\geq 0\}$. We claim that \tilde{T} is satisfiable. Let $F\subset \tilde{T}$ be finite. Then $F\subset T'\cup\{\sigma_n:n< N\}$ for some N. Consider the L'-structure \mathcal{M} where $M=\{0,1,\ldots,N\}$ and xEy iff |x-y|=1, and a=0 and b=N. Now \mathcal{M} is a connected graph, so $\mathcal{M}\models T'$. Also, note that a and b are of distance N>n in \mathcal{M} , so $\mathcal{M}\models\sigma_n$ for n< N. Thus $\mathcal{M}\models T'\cup\{\sigma_n:n< N\}$, and thus $\mathcal{M}\models F$. Thus every finite subset of \tilde{T} is satisfiable so by the compactness theorem, \tilde{T} is satisfiable. Let \mathcal{M} be a model of \tilde{T} . Then $\mathcal{M}\models\{\sigma_n:n\geq 0\}$, so there is no path of any length from a to b, so \mathcal{M} is disconnected. But $\mathcal{M}\models T'$ as well. Thus any theory satisfied by every connected graph is also satisfied by a disconnected graph, and thus there cannot be a theory of connected graphs.

Problem 6

Let $L=\{<\}$ be the language of orders and let T be the theory of linear orders. Suppose we have $T'\supset T$ such that every well-order models T'. Let $L'=L\cup\{c_n:n\geq 0\}$ where each c_n is a constant symbol. Let σ_n be the L'-sentence $c_{n+1}< c_n$. Define the set of L'-sentences $\tilde{T}=T'\cup\{\sigma_n:n\geq 0\}$. Let $F\subset \tilde{T}$ be finite. Then $F\subset T'\cup\{\sigma_n:n< N\}$ for some N. Consider the L'-structure M where $M=\{-N,-N+1,\ldots,1,0\}$ with the usual order, and $c_n=-n$ for $n\leq N$, and $c_n=0$ for n>N. Now M is a well-order, so $M\models T'$. Also, if n< N, then $c_{n+1}=-n-1<-n=c_n$, so $M\models \sigma_n$. Thus $M\models T'\cup\{\sigma_n:n< N\}$, and thus $M\models F$. Thus every finite subset of \tilde{T} is satisfiable so by the compactness theorem, \tilde{T} is satisfiable. Let M be a model of \tilde{T} . Note that $\{c_n:n\geq 0\}\subset M$ has no lower bound, since for any c_n , we have $c_{n+1}< c_n$. Thus M is not a well-order. But $M\models T'$ as well. Thus any theory satisfied by every well-order is also satisfied by a non-well-order, and thus there cannot be a theory of well-orders.