Brandon M. Keltz An Introduction to Computational Science by Allen Holder and Joseph Eichholz Chapter 2 - Solving Systems of Equations November $18,\,2019$

Problem 4. Suppose A is an $m \times n$ matrix such that the rank(A) = n. Show that $A^T A \succ 0$.

Proof. Let the column vectors of A be denoted A_i for all $i \in \{1, 2, ..., n\}$, which is

$$A = \begin{bmatrix} | & | & | \\ A_1 & A_2 & \dots & A_n \\ | & | & | \end{bmatrix}.$$

Since the rank(A) = n, this means that the collection of the vectors A_i are linearly independent. By this linear independence we have

$$0 < ||Ax|| = (Ax)^T Ax = x^T A^T Ax,$$

which gives $x^T A^T A x > 0$.

1