Movimiento de Proyectiles Act.3

Eduardo Castillo Bastida

28 de septiembre de 2017

El movimiento de un proyectil es un tipo de movimiento en el cual un objeto o partícula describe una trayectoria parabólica. La posición en cualquier instante durante su recorrido, se puede determinar según las siguientes ecuaciones:

$$x = v_0 t \cos(\theta)$$

$$y = v_0 t \sin(\theta) - gt^2$$
(1)

El tipo de trayectoria, el alcance horizontal y la altura máxima del movimiento de un proyectil en cercanías de la superficie terrestre, dependen de los parámetros iniciales del ángulo y la velocidad inicial del lanzamiento.

1. Dependencia del ángulo

La siguiente actividad consiste en determinar las gráficas de las trayectorias de un proyectil en función del ángulo de lanzamiento. Se requiere especificar la velocidad inicial y el número de puntos de cada gráfica. Los ángulos tomados corresponden a 15°, 30°, 45°, 60°, 75° y 90°. El número de puntos para cada gráfica corresponde a 20. El tiempo de vuelo será calculado con la siguiente ecuación:

$$t = \frac{2v_0 sin(\theta)}{g} \tag{2}$$

Si se selecciona, por ejemplo, una velocidad inicial de 10 m/s. Las trayectorias obtenidas para los ángulos seleccionados, corresponden a los mostrados en la figura 1:

2. Aplicación Fortran

La aplicación Fortran empleado para obtener el conjunto de datos para los ángulos especificados, corresponde a:

```
program Vector
   implicit none
```

! definimos constantes

real, parameter :: g = 9.81

real, parameter :: pi = 3.1415927

! definimos las variables

integer::i, k, nps
real :: a, vi, tv

Figura 1: Trayectoria de un proyectil en función del ángulo (θ)

```
real, dimension(20):: t=0.,x=0.,y=0.
! Leer valores para el ángulo a, y la velocidad inicial u desde la terminal
 write(*,*) 'MOVIMIENTO PARABÓLICO'
 write(*,*) 'DATOS DESPLAZAMIENTO VERTICAL Y HORIZONTAL'
 write(*,*) 'Introduzca los valores de la velocidad inicial (vi) en m&
    &/s y el número de datos'
 read(*,*) vi,nps
!Definimos el ciclo
 cicloenangulo:do k=15,90,15
    ! convirtiendo ángulo a radianes
    a = k * pi / 180.0
    ! las ecuación para el cálculo del tiempo de vuelo
    tv=2*vi*sin(a)/g
ciclodeposicion: do i=0,nps
  t(i)=t(i)+i*(tv/real(nps))
  x(i)=x(i)+vi*t(i)*cos(a)
  y(i)=y(i)+(2*vi*t(i)*sin(a)-g*t(i)**2)/2
! output data to a file
  open(1, file='datos.dat', status='unknown')
  write(1,1000) x(i), y(i)
  1000 format(f15.10,5x,f15.10)
```

end do ciclodeposicion

```
write(1,1100)
1100 format(/)

do i=0,nps
    t(i)=0
    x(i)=0
    y(i)=0
    end do
end do cicloenangulo
close(1)
```