

Trabalho Prático

Laboratorial #1

ANDREIA OLIVEIRA - 13566 & PEDRO MIRANDA - 13719

SISTEMAS DIGITAIS

1ºANO - ENG.INFORMÁTICA 2013/2014

06-12-2013

Desenvolvimento de três circuitos combinatórios, com intuito de desenvolver um conversor de 4 bits binários para bcd, um somador e um multiplicador de 2 números de 3 bits.

Conteúdo

1.	Intro	oduç	ão	1
	1.1.	Obje	ectivos	1
	1.2.	Intro	odução ao projecto e à utilização de circuitos combinatórios	2
	1.3.	Det	ecção de erros em Sistemas Digitais	3
2.	Desc	crição	o dos diversos circuitos e a sua implementação	4
	2.1.	Circ	uito 1	5
	2.1.	1.	Tabelas de verdade	5
	2.1.	2.	Mapas de Karnaugh	6
	2.2.	1.	Expressões booleanas simplificadas	8
	2.1.	3.	Esquema dos circuitos obtidos a partir do DigitalWorks	9
	2.2.	Circ	uito 2	10
	2.2.	1.	Tabelas de verdades	11
	2.2.	2.	Mapas de Karnaugh	12
	2.2.	3.	Expressões booleanas simplificadas	13
	2.2.	4.	Esquema do circuito obtidos a partir do DigitalWorks	14
	2.3.	Circ	uito 3	15
	2.3.	1.	Tabela de verdade	16
	2.3.	2.	Mapas de Karnaugh	17
	2.3.	3.	Expressões booleanas obtidas através do Mapa de Karnaugh	19
	2.3.4	4.	Esquemas do circuito 3 obtidos a partir do software "Digital Works"	20
	2.4.	Imp	lementação em Bancada de Teste	22
2	Con	clucă		22

1. Introdução

1.1. Objectivos

O objectivo deste trabalho teve por base implementar três circuitos combinatórios, utilizando portas discretas e circuitos integrados.

Os três circuitos implementados têm as seguintes funcionalidades, respectivamente:

- Circuito 1 Circuito combinatório para conversão de número binário de 4 bits para BCD.
- **Circuito 2** Somador de dois números binários de três dígitos. Para além da soma o circuito deve de ter uma saída para o bit de transporte.
- Circuito 3 Circuito multiplicador de dois números binários de três dígitos. Para além do resultado da multiplicação o circuito deve de ter uma saída para o bit de transporte.

Os três circuitos integrados foram simulados no programa "Digital Works".

Para além disso, foram implementados, numa bancada de teste, os circuitos 1 e 2.

1.2. Introdução ao projecto e à utilização de circuitos combinatórios

O projecto de circuitos combinatórios começa pela especificação do problema que se pretende resolver e culmina num diagrama lógico, que expressa um conjunto de expressões booleanas obtidas através de métodos de simplificação.

Os procedimentos chave para projectar eficientemente este tipo de circuito devem ser os seguintes:

- 1. A partir da especificação do circuito, determinar o número de inputs e outpus necessários, imputando-lhes um nome.
- 2. Construção de uma tabela de verdade que define as relações requeridas entre inputs e outputs.
- 3. Obtenção de funções simplificadas para cada output como função dos inputs através da metodologia dos Mapas de Karnaugh.
- 4. Desenho do diagrama lógico.
- 5. Verificação do projecto e seus resultados.

1.3. Detecção de erros em Sistemas Digitais

A verificação de resultados e detecção de erros é muitas vezes um dos procedimentos que mais tempo consome na elaboração de projectos de sistemas digitais. Por isso, é importante existir alguma sistematização de procedimentos para detecção de erros, para com isso os mesmos serem mais facilmente detectados.

Na fase de teste deve-se em primeiro lugar observar o funcionamento do sistema e comparálo com o funcionamento esperado.

Caso exista algum funcionamento anormal, deve-se procurar isolar os circuitos com problemas.

Por último, já com os circuitos com comportamento anómalo identificados, efectuam-se os testes necessários para corrigir o problema.

2. Descrição dos diversos circuitos e a sua implementação

Todos os circuitos foram implementados segundo a filosofia de projecto descrita anteriormente.

Procedeu-se à simulação do circuito através do software "Digital Works".

A implementação foi efectuada de duas formas distintas:

- utilização de portas lógicas discretas
- utilização de circuitos integrados.

Para além disso, os circuito 1 e 2, implementados através de circuitos integrados, foram implementados em bancada de teste.

2.1. Circuito 1

O circuito combinatório 1 executa conversões de números binários de quatro bits para BCD.

Os seguintes subcapítulos descrevem os resultados obtidos nas diferentes fases do projecto.

2.1.1. Tabelas de verdade

E ₃	E ₂	E ₁	E ₀	A ₂	B ₂	C ₂	D ₂	A ₁	B ₁	C ₁	D_1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	1	0
0	0	1	1	0	0	0	0	0	0	1	1
0	1	0	0	0	0	0	0	0	1	0	0
0	1	0	1	0	0	0	0	0	1	0	1
0	1	1	0	0	0	0	0	0	1	1	0
0	1	1	1	0	0	0	0	0	1	1	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	1
1	1	0	0	0	0	0	1	0	0	1	0
1	1	0	1	0	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	1	0	0
1	1	1	1	0	0	0	1	0	1	0	1
				l				l			

2.1.2. Mapas de Karnaugh

D_1		E_1E_0								
		00	01	11	10					
	00	0	1	1	0					
E_3E_2	01	0	1	1	0					
	11	0	1	1	0					
	10	0	1	1	0					

2.2.1. Expressões booleanas simplificadas

Display 2

- $A_2 = 0$
- $B_2 = 0$
- $C_2 = 0$
- $D_2 = E_3E_2 + E_3E_1$

$$D_2 = E_3 (E_2 + E_1) (\underline{1})$$

Display 1

- $\bullet \quad A_1 = E_3 \bar{E}_2 \bar{E}_1$
- $B_1 = \bar{E}_3 E_2 + E_2 E_1$

- $\mathbf{B_1} = \mathbf{E_2} (\bar{\mathbf{E}}_3 + \mathbf{E}_1) (\underline{2})$
- $C_1 = \bar{E}_3 E_1 + E_3 E_2 \bar{E}_1$
- $D_1 = E_0$

Nota: Para obtenção de um circuito mais simplificado, ou seja, com um menor número de portas lógicas, efectuaram-se as simplificações dos circuitos D_1 e D_2 descritas em D_2 e D_2 los circuitos D_2 e D_3 descritas em D_3 e D_3 e D_4 escritas em D_4 escritas en D_4 escritas em D_4 escritas en D_4 escri

2.1.3. Esquema dos circuitos obtidos a partir do DigitalWorks

2.1.3.1. Portas Lógicas

Figura 1 - Circuito I, portas lógicas discretas

2.1.3.2. Circuitos Integrados

Figura 2 - Circuito I, circuitos integrados

2.2. Circuito 2

O circuito combinatório 2 é um somador de números binários de 3 bits.

Optou-se por acrescentar a este circuito um display que transforma o resultado obtido em binário em números decimais. Utilizou-se para isso o circuito 1.

Os seguintes subcapítulos descrevem os resultados obtidos nas diferentes fases do projecto.

2.2.1. Tabelas de verdades

2.2.1.1. Tabela de Verdade para S_2 , S_3 , C_2 e C_3

Α	В	CE	Cs	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Legenda:

 C_E — Bit de transporte de entrada

C_S – Bit de transporte de saída

S – Soma

2.2.1.2. Tabela de Verdade para S_1 e C_1

Α	В	Cs	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Legenda:

Cs – Bit de transporte de saída

S - Soma

2.2.2. Mapas de Karnaugh

2.2.2.1. Mapas de Karnaugh para S_2 , S_3 , $C_2 \triangleright C_3$

2.2.2.2. Mapas de Karnaugh para S₁ E C₁

2.2.3. Expressões booleanas simplificadas

2.2.3.1. Expressão com simplificações de Karnaugh e algébricas de C₂, C₃

$$C_S = \mathbf{BC_E} + AB + AC_E \Leftrightarrow C_S = B(C_E + A) + AC_E$$

2.2.3.2. Expressão com simplificações de Karnaugh e algébricas de S₂, S₃

$$S = \overline{A} \overline{B} C_E + \overline{AB} \overline{C_E} + ABC_E + A\overline{B} \overline{C_E}$$

$$S = \overline{A}(\overline{B}C_E + B\overline{C_E}) + A(\overline{B}C_E + \overline{B}C_E)$$

$$S = \overline{A}(B \oplus C_E) + A(B \oplus \overline{C_E})$$

$$S = A \oplus B \oplus C$$

2.2.3.3. Expressão com simplificações de Karnaugh e algébricas de C₁

$$C_S = AB$$

Expressão com simplificações de Karnaugh e algébricas de S₁

$$S = \overline{AB} + A\overline{B}$$

$$S = A \oplus B$$

2.2.4. Esquema do circuito obtidos a partir do DigitalWorks

2.2.5.1. Portas Lógicas

Figura 3 - Circuito 2, portas lógicas discretas

2.2.5.2. Circuitos Integrados

Circuito 2 - Circuitos Integrados

Figura 4 - Circuito 2, circuitos integrados

2.3. Circuito 3

O circuito combinatório 3 é um multiplicador de números de 3 bits

Os seguintes subcapítulos descrevem os resultados obtidos nas diferentes fases do projecto.

Para obter os valores da tabela de verdade e os mapas de Karnaugh utilizou-se uma folha de excel, criada pelos autores do trabalho, como descrito em 2.3.1 e 2.3.2.

BIN 1

BIN 2

BIN1 * BIN2

2.3.1. Tabela de verdade

David	Dec2	Dec1*Dec2	DIN 4	DIN 3	BIN1 * BIN2	MSB	D1	LSB	MSB	D2	LSB	MS					LSB
Dec1 0			BIN 1 000	BIN 2 000	000000 000000	A1 0	B1	C1	A2	B2	C2	F 0	E	D	c	B	A
0			000	000	000000	0	0	0	0	0	1	0	0	0	0	0	0
0			000	010	000000	0	0	0	0	1	0	0	0	0	0	0	0
0			000	011	000000	0	0	0	0	1	1	0	0	0	0	0	0
0			000	100	000000	0	0	0	1	0	0	0	0	0	0	0	0
0	5	5 0		101	000000	0	0	0	1	0	1	0	0	0	0	0	0
0				110	000000	0	0	0	1	1	0	0	0	0	0	0	0
0	7	7 0	000	111	000000	0	0	0	1	1	1	0	0	0	0	0	0
1	(0	001	000	000000	0	0	1	0	0	0	0	0	0	0	0	0
1	1	1	001	001	000001	0	0	1	0	0	1	0	0	0	0	0	1
1	2	2 2	001	010	000010	0	0	1	0	1	0	0	0	0	0	1	0
1	3	3	001	011	000011	0	0	1	0	1	1	0	0	0	0	1	1
1	4	•	001	100	000100	0	0	1	1	0	0	0	0	0	1	0	0
1	5		001	101	000101	0	0	1	1	0	1	0	0	0	1	0	1
1	6		001	110	000110	0	0	1	1	1	0	0	0	0	1	1	0
1	7		001	111	000111	0	0	1	1	1	1	0	0	0	1	1	1
2			010	000	000000	0	1	0	0	0	0	0	0	0	0	0	0
2			010	001	000010	0	1	0	0	0	1	0	0	0	0	1	0
2			010	010	000100	0	1	0	0	1	0	0	0	0	1	0	0
2			010	011	000110	0	1	0	0	1	1	0	0	0	1	1	0
2				100	001000	0	1	0	1	0	0	0	0	1	0	0	0
2			010 010	101	001010	0	1	0	1	0	1	0	0	1	0	1	0
2			010	110 111	001100 001110	0	1 1	0	1 1	1 1	0	0	0	1	1 1	0	0
3			010	000	000000	0	1		0	0	0	0	0	0	0	0	0
3		_	011	000	000000	0	1	1 1	0	0	1	0	0	0	0	1	1
3			011	010	00011	0	1	1	0	1	0	0	0	0	1	1	0
3			011	010	001001	0	1	1	0	1	1	0	0	1	0	0	1
3			011	100	001100	0	1	1	1	0	0	0	0	1	1	0	0
3			011	101	001111	0	1	1	1	0	1	0	0	1	1	1	1
3	6		011	110	010010	0	1	1	1	1	0	0	1	0	0	1	0
3	7		011	111	010101	0	1	1	1	1	1	0	1	0	1	0	1
4	. (0	100	000	000000	1	0	0	0	0	0	0	0	0	0	0	0
4	. 1		100	001	000100	1	0	0	0	0	1	0	0	0	1	0	0
4	. 2	2 8	100	010	001000	1	0	0	0	1	0	0	0	1	0	0	0
4	. 3	3 12	100	011	001100	1	0	0	0	1	1	0	0	1	1	0	0
4	. 4	16	100	100	010000	1	0	0	1	0	0	0	1	0	0	0	0
4	. 5		100	101	010100	1	0	0	1	0	1	0	1	0	1	0	0
4			100	110	011000	1	0	0	1	1	0	0	1	1	0	0	0
4			100	111	011100	1	0	0	1	1	1	0	1	1	1	0	0
5		_	101	000	000000	1	0	1	0	0	0	0	0	0	0	0	0
5			101	001	000101	1	0	1	0	0	1	0	0	0	1	0	1
5			101	010	001010	1	0	1	0	1	0	0	0	1	0	1	0
5			101	011	001111	1	0	1	0	1	1	0	0	1	1	1	1
5			101	100	010100	1	0	1	1	0	0	0	1	0	1	0	0
5			101	101	011001	1	0	1	1	0	1	0	1	1	0	0	1
5			101	110	011110	1	0	1	1	1	0	0	1	1	1	1	0
5			101	111	100011	1	0	1	1	1	1	1	0	0	0	1	1
6				000	000000	1	1	0	0	0	0	0	0	0	0	0	0
6			110	001	000110	1	1	0	0	0	1	0	0	0	1	1	0
6			110 110	010 011	001100 010010	1	1	0	0	1	0	0	0	1 0	1	0	0
6			110	100	011000	1	1	0	1	1 0	1 0	0	1 1	1	0	1 0	0
6			110	100	011110	1	1	0	1	0	1	0	1	1	1	1	0
6			110	110	100100	1	1	0	1	1	0	1	0	0	1	0	0
6			110	111	101010	1	1	0	1	1	1	1	0	1	0	1	0
7			111	000	000000	1	1	1	0	0	0	0	0	0	0	0	0
7			111	000	000111	1	1	1	0	0	1	0	0	0	1	1	1
7			111	010	00111	1	1	1	0	1	0	0	0	1	1	1	0
7			111	011	010101	1	1	1	0	1	1	0	1	0	1	0	1
7			111	100	011100	1	1	1	1	0	0	0	1	1	1	0	0
7				101	100011	1	1	1	1	0	1	1	0	0	0	1	1
7				110	101010	1	1	1	1	1	0	1	0	1	0	1	0
7			111	111	110001	1	1	1	1	1	1	1	1	0	0	0	1

2.3.2. Mapas de Karnaugh

Α								
	A2B2C2							
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	1	1	0	0	1	1	0
011	0	1	1	0	0	1	1	0
010	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	1	1	0	0	1	1	0
101	0	1	1	0	0	1	1	0
100	0	0	0	0	0	0	0	0

В		_						
	A2B2C2							
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	0	1	1	1	1	0	0
011	0	1	0	1	1	0	1	0
010	0	1	1	0	0	1	1	0
110	0	1	1	0	0	1	1	0
111	0	1	0	1	1	0	1	0
101	0	0	1	1	1	1	0	0
100	0	0	0	0	0	0	0	0

С								
	A2B2C2							
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	0	0	0	1	1	1	1
011	0	0	0	1	0	1	1	1
010	0	0	1	1	1	1	0	0
110	0	1	0	1	1	0	1	0
111	0	1	1	1	0	0	0	1
101	0	1	1	0	1	0	0	1
100	0	1	1	0	0	1	1	0

D								
	A2B2C2							
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	0	0	0	0	0	0	0
011	0	0	1	0	0	n	1	1
010	0	0	0	0		1	1	1
110	0	0	0	1	0	1	1	1
111	0	0	0	1	1	0	0	1
101	0	0	1	1	1	0	1	0
100	0	0	1	1	1	1	0	0
					'			
	1							
E		ı						
	A2B2C2							
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	0	0	0	0	0	0	0
011	0	0	0	0	1	1	0	0
010	0	0	0	0	0	0	0	0
110	0	0	1	0	0	0	1	1
111	0	0	1	0	0	1	0	1
101	0	0	0	0	1	0	1	1
100	0	0	0	0	1	1	1	1
_	1							
F								
	A2B2C2							1
A1B1C1	000	001	011	010	110	111	101	100
000	0	0	0	0	0	0	0	0
001	0	0	0	0	0	0	0	0
011	0	0	0	0	0	0	0	0
010	0	0	0	0	0	0	0	0
110	0	0	0	0	1	1	0	0
111	0	0	0	0	1	1	1	0
101	0	0	0	0	0	1	0	0
100	0	0	0	0	0	0	0	0

2.3.3. Expressões booleanas obtidas através do Mapa de Karnaugh

Circuito A

$$A = C_1C_2$$

Circuito B

$$B = \mathbf{B_1} \overline{\mathbf{B_2}} \mathbf{C_2} + \mathbf{C_1} \mathbf{B_2} \overline{\mathbf{C_2}} + \overline{\mathbf{B_1}} \mathbf{C_1} \mathbf{B_2} + \mathbf{B_1} \overline{\mathbf{C_1}} \mathbf{C_2} \Leftrightarrow$$

$$\Leftrightarrow B = B_1 C_2 (\overline{B_2} + \overline{C_1}) + C_1 B_2 (\overline{C_2} + \overline{B_1}) \Leftrightarrow$$

$$\Leftrightarrow B = B_1 C_2 (\overline{B_2} \overline{C_1}) + C_1 B_2 (\overline{C_2} \overline{B_1}) \Leftrightarrow$$

$$\Leftrightarrow B = (B_1 C_2) \oplus (C_1 B_2)$$

Circuito C

$$C = \overline{B_1}C_1A_2B_2\overline{C_2} + \overline{A_1}C_1A_2C_2 + C_1A_2\overline{B_2} \overline{C_2} + \overline{A_1}B_1\overline{C_1}B_2 + B_1\overline{A_2}B_2\overline{C_2} + B_1\overline{A_2}C_2 + A_1B_1\overline{C_1}B_2\overline{C_2} +$$

Circuito D

$$D = \overline{A_1} B_1 C_1 \overline{A_2} B_2 C_2 + A_1 \overline{A_2} B_2 \overline{C_2} + A_1 C_1 B_2 \overline{C_2} + A_1 \overline{B_1} \overline{C_1} B_2 + A_1 \overline{B_1} \overline{A_2} B_2 + A_1 \overline{B_1} \overline{A_2} B_2 + A_1 \overline{B_1} \overline{C_1} A_2 C_2 + \overline{A_1} B_1 \overline{C_1} A_2 + B_1 A_2 \overline{B_2} \overline{C_1} + A_1 \overline{B_1} C_1 A_2 \overline{B_2} C_2$$

Circuito E

$$\begin{aligned} &\mathsf{E} = \overline{\mathbf{A_1}} \mathbf{B_1} \mathbf{C_1} \mathbf{A_2} \mathbf{B_2} \ + \ \mathbf{A_1} \mathbf{B_1} \overline{\mathbf{C_1}} \mathbf{A_2} \overline{\mathbf{B_2}} \ + \ \mathbf{A_1} \mathbf{A_2} \overline{\mathbf{B_2}} \ \overline{\mathbf{C_2}} \ + \ \mathbf{A_1} \mathbf{B_1} \mathbf{C_1} \mathbf{B_2} \mathbf{C_2} \ + \\ &+ \mathbf{A_1} \overline{\mathbf{B_1}} \mathbf{A_2} \overline{\mathbf{B_2}} + \ \mathbf{A_1} \mathbf{B_1} \overline{\mathbf{A_2}} \mathbf{B_2} \mathbf{C_2} \ + \ \mathbf{A_1} \overline{\mathbf{B_1}} \ \overline{\mathbf{C_1}} \mathbf{A_2} \ + \ \mathbf{A_1} \overline{\mathbf{B_1}} \mathbf{A_2} \mathbf{B_2} \overline{\mathbf{C_2}} \end{aligned}$$

Circuito F

$$F = \mathbf{A}_{1}\mathbf{B}_{1}\mathbf{A}_{2}\mathbf{B}_{2} + \mathbf{A}_{1}\mathbf{B}_{1}\mathbf{C}_{1}\mathbf{A}_{2}\mathbf{C}_{2} + \mathbf{A}_{1}\mathbf{C}_{1}\mathbf{A}_{2}\mathbf{B}_{2}\mathbf{C}_{2} \Leftrightarrow$$

$$\Leftrightarrow F = \mathbf{A}_{1}\mathbf{A}_{2}(\mathbf{B}_{1}\mathbf{B}_{2} + \mathbf{B}_{1}\mathbf{C}_{1}\mathbf{C}_{2} + \mathbf{C}_{1}\mathbf{B}_{2}\mathbf{C}_{2}) \Leftrightarrow$$

$$\Leftrightarrow F = \mathbf{A}_{1}\mathbf{A}_{2}[\mathbf{B}_{1}(\mathbf{B}_{2} + \mathbf{C}_{1}\mathbf{C}_{2}) + \mathbf{C}_{1}\mathbf{B}_{2}\mathbf{C}_{2}]$$

Nota: Os esquemas do circuito apresentados são implementações dos resultados retirados inicialmente das tabelas de Karnaugh, não se procedeu à implementação das simplificações adicionais calculadas em(2.2.3)

2.3.4. Esquemas do circuito 3 obtidos a partir do software "Digital Works"

Figura 5 - Circuito 3, portas lógicas discretas

Figura 6 - Circuito 3, circuitos integrados

2.4. Implementação em Bancada de Teste

Após serem simulados no computador, os circuitos 1 e 2 foram implementados em bancada de teste. Como pode ser visto nas ilustrações ($\underline{1}$) e ($\underline{2}$) e em <u>SOMADOR.MOV</u>.

Ilustração 1 - Implementação do circuito 1 em bancada de teste

Ilustração 2 - Implementação do circuito 2 em bancada de teste

3. Conclusão

Durante a realização deste trabalho deparamo-nos com algumas dificuldades e tomaram-se algumas opções que visaram que as tarefas fossem efectuadas de modo eficiente, minimizando erros.

Todo o processo procurou seguir as matrizes enunciadas em (1.2).

Sem dúvida que a verificação do projecto e seus resultados foi a tarefa mais morosa em todo o processo, quer em ambiente digital quer na bancada de teste.

Seguiu-se a metodologia apresentada em (1.3), seguindo os seguintes passos:

- Verificação dos resultados por comparação com tabela de verdade
- A partir dos resultados errados na tabela de verdade, isolar os circuitos com erros.
- Comparação da expressão algébrica com modelo implementado
- Verificação dos Mapas de Karnaugh.

A verificação de cada passo foi efectuada nesta sequência, e a passagem para o passo seguinte apenas se efectuava caso o erro persistisse.

Esta metodologia foi adoptada quer na simulação em computador quer na bancada de teste.

De modo a conseguir-se uma mais rápida e eficaz montagem em bancada de teste dos circuitos 1 e 2, foram utilizados, para além dos métodos descritos anteriormente, dois métodos:

- Utilizou-se um código de cores de modo a conseguir distinguir cada output pela sua cor correspondente, mantendo os fios de cobre com cor comum para o circuito que daria origem a uma saída, sendo esta distinta da cor das outras saídas.
- Anotaram-se as coordenadas das saídas através das letras e números da breadboard utilizada.

Estes métodos permitem uma maior facilidade, em caso de erro, de isolar o circuito com comportamento anormal e de repará-lo, de modo a obter uma correta implementação dos circuitos 1 e 2.

Depois de finalizado este trabalho e tendo passado por algumas dificuldades inerentes à realização de um projecto de sistemas digitais, é possível aos autores afirmar que esta experiência foi bastante enriquecedora.