MTHS100 - Assignment 7

Question 1

a) Is quadratic, concave up, y-intercept =
$$(x - 5)^2 - 7$$

= $x^2 - 2 * 5 + 25 - 7$
= $x^2 - 10x + 18$
y-intercept = 18

- b) Is neither
- c) Is a constant
- d) Is neither
- e) Is quadratic, concave down, y-intercept = 2/3
- f) Is quadratic, concave down, y-intercept = 0
- g) Is quadratic, concave up, y-intercept = 0
- h) Is linear, decreasing with a slope of 1, y-intercept = 99

Question 2

$$y = x/2 - 1$$

Where $x = 1$ Where $x = 2$
 $= 1/2 - 1$ $= 2/2 - 1$
 $= 1/2 - 2/2$ $= 2/2 - 2/2$
 $= -1/2$ $= 0$

Inverse

$$x = y/2 - 1$$

 $x + 1 = y/2$
 $y = x * 2 + 1 * 2$
 $y = 2x + 2$

Find the slope:

$$m = y2 - y1 / x2 - x1$$

$$m = 4 - 1 / -3/2 - 3/2$$

$$m = 3 / -6/2 = -3/1$$

$$m = 3 / -3$$

$$m = -1$$

Solve for b:

For (3/2, 1)

$$1 = -1 * 3/2 + b$$

$$-b = -1 * 3/2 - 1$$

$$-b = -3/2 - 1$$

$$-b = -3/2 - 2/2$$

$$-b = -5/2$$

To get positive b, we times both sides by -1

$$b = 5/2$$

Final equation:

$$-1x + 5/2$$

Check solution using coordinates: (3/2,1)

$$1 = -1 * 3/2 + 5/2$$

$$1 = -3/2 + 5/2$$

$$1 = 2/2$$

a)
$$y = x^2$$

b)
$$y = (x + 1)^2$$

c)
$$y = (x + 1)^2 - 2$$

e)
$$y = (x + 1)^2 - 2$$

= $(x + 1)(x + 1) - 2$
= $x^2 + 2x + 1 - 2$
= $x^2 + 2x - 1$

Question 5

 $y = (x + 1)^2$ is equal to $y = x^2 + 1$. With the domain restricted to $x \ge -1$ is invertible.

Inverse:

$$x = y^2 + 1$$

$$x - 1 = y^2$$

$$y = \sqrt{x - 1}$$

Solve:

$$x^2 - 4x + 5 = 0$$

$$= 4 + /- \sqrt{-4/2}$$

As we can't take the negative of a root, we can conclude that this parabola has not x's, meaning that it does not intercept the x axis. Since it has a positive x^2 we can also conclude it sits above the x-axis and opens concave up.

Find the vertex:

$$x \& y \text{ vertex's} = (2, 1)$$

The vertex is the minimum of this function due to it having a positive x^2 . It opens concave up.

Question 7

$$y = -x^2 - 3x + 1$$

Since it has a negative x^2, we can conclude that this parabola is concave down

y intercept = 1

x intercepts = -3.3, 0.3

Find the vertex:

$$yv = c - b^2/4a$$
 $xv = -b/2a$
 $= 1 - 9/-4$ $= -(-3)/2*-1$
 $= 1 + 9/4$ $= 3/-2$
 $= 4/4 + 9/4$ $= -1 & 1/2$
 $= 13/4$
 $= 3 & 1/4$

$$xv = -3/2 \text{ or } -1 \text{ \& } 1/2, \ yv = 13/4 \text{ or } 3 \text{ \& } 1/4$$

