

Upravljanje elektromotornim pogonima 2009/2010

Prof.dr.sc. Nedjeljko Perić

Zavod za automatiku i računalno inženjerstvo Fakultet elektrotehnike i računarstva

Predavanje 1 – Poboljšanje vladanja sustava upravljanja pomoću složenijih struktura

Cili

- Razumjeti učinkovitost nadogradnje osnovne jednopetljaste regulacijske strukture uvođenjem predupravljanja po poremećajnim veličinama procesa
- Razumjeti praktičnost primjene kaskadne strukture upravljanja u automatizaciji postrojenja i procesa kojom se može osigurati učinkovita kompenzacija poremećajnih veličina kao i dobro slijeđenje referentne veličine (uz određene dodatne funkcije)
- Ovladati praktičnim tehnikama sinteze regulatora u kaskadnoj strukturi upravljanja kao što su:
 - tehnički optimum i
 - simetrični optimum
- Stvoriti podloge za nadogradnju koncepta kaskadne strukture upravljanja s ciljem udovoljenja zahtjeva specifičnih u automatizaciji raznorodnih proizvodnih i radnih procesa

Složene strukture regulatora

- Dosadašnja razmatranja odnosila su se na sustave upravljanja s jednom povratnom vezom (jednopetljaste regulacijske krugove)
- Uz pretpostavku da se na sustav upravljanja postavljaju visoki dinamički zahtjevi (σ_m, t_a, t_ε,...), procesi
 - koji se opisuju matematičkim modelima višeg reda, i/ili
 - s izraženim mrtvim vremenima, i/ili
 - na koje djeluju izražene smetnje

zahtijevaju složene strukture regulatora – visoki red polinoma u brojniku i nazivniku $G_R(s)$

- Visoki red regulatora $G_R(s)$ sučeljava se s poteškoćama u realizaciji te s osjetljivošću na smetnje (šum u mjernim signalima)
- Budući da su ovi regulatori na modelima zasnovani regulatori, oni su u pravilu osjetljivi na promjene parametara procesa

Pobolišanja regulacijskog vladanja

- Moguća poboljšanja regulacijskog vladanja najčešće se zasnivaju na:
 - unaprijednoj kompenzaciji utjecaja smetnje (unaprijednoj regulaciji smetnie, engl. feedforward control), adje se utjecaj smetnie kompenzira prije nego što smetnja počne djelovati na reguliranu veličinu (vidi Sliku 1.1)
 - skraćenju putova signala između mjesta djelovanja poremećaja z i mjesta djelovanja upravljačke veličine u (u smjeru toka signala), što se postiže primjenom višepetljaste kaskadne regulacije

Slika 1.1: Prikaz djelovanja smetnji na proces

ॐ F≣₹ ∪

Unaprijedna kompenzacija utjecaja smetnje

- Unaprijedna kompenzacija utjecaja smetnje predstavlja proširenje osnovne strukture sustava upravljanja zasnovane na povratnoj vezi
- Utjecaj smetnje može se kompenzirati na jedan od dvaju načina:
 - preko regulatora,
 - preko izvršnog elementa

Komepnzacija smetnje preko regulatora

 Signal smetnje z' u ovoj se realizaciji dovodi preko upravljačkog člana $G_{ij}(s)$ na ulaz regulatora (Slika 1.2)

Slika 1.2: Unaprijedna kompenzacija smetnje preko regulatora

 Pri tome je smetnju z' potrebno ili mjeriti ili estimirati (određivati na temelju lakše mjerljivih veličina procesa)

Projektiranje upravljačkog uređaja (1)

 Projektiranje upravljačkog uređaja zasniva se na blokovskom prikazu na Slici 1.2:

$$Y(s) = [R(s) - Y(s) - Z'(s) \cdot G_{U}(s)] G_{R}(s)G_{P}(s) + Z'(s)G_{PZ}(s)$$
 (1-1)

Iz (1-1) slijedi:

$$Y(s) = \frac{G_{\rho z}(s) - G_{\upsilon}(s)G_{\varrho}(s)G_{\varrho}(s)}{1 + G_{\varrho}(s)G_{\varrho}(s)} \cdot Z'(s) + \frac{G_{\varrho}(s)G_{\varrho}(s)}{1 + G_{\varrho}(s)G_{\varrho}(s)} \cdot R(s) \quad (1-2)$$

Uvedimo oznake:

$$G_R(s) = \frac{B(s)}{A(s)}, \quad G_D(s) = \frac{D(s)}{C(s)},$$

$$G_U(s) = \frac{B_U(s)}{A_U(s)}, \quad G_{DZ}(s) = \frac{D_Z(s)}{C_Z(s)}$$

$$\deg[A(s)] = z, \quad \deg[B(s)] = w,$$

$$\deg[C(s)] = n, \quad \deg[D(s)] = m,$$

$$\deg[C_Z(s)] = n_Z, \quad \deg[D_Z(s)] = m_Z$$

7 / 51

Projektiranje upravljačkog uređaja (2)

 Uz navedene oznake izlaz Y(s) je (radi lakšeg zapisa izostavlja se oznaka "(s)"):

$$Y = \frac{A_u A C D_z - B_u B D C_z}{A_u C_z (AC + BD)} \cdot Z' + \frac{BD}{AC + BD} \cdot R$$
 (1-3)

 Iz (1-3) slijedi da je karakteristična jednadžba sustava upravljanja s obzirom na smetnju:

$$A_{U}C_{z}(AC+BD)=0, (1-4)$$

a karakteristična jednadžba s obzirom na vodeću veličinu

$$AC + BD = 0, (1-5)$$

te su dakle vlastita gibanja različita

 U idealnom slučaju utjecaj smetnje se u cijelosti kompenzira uz (vidi (1-2) i (1-3)):

$$G_{pz} = G_u G_R G_p \rightarrow G_u = \frac{G_{pz}}{G_R G_p} = \frac{ACD_z}{BDC_z}$$
 (1-6)

Projektiranje upravljačkog uređaja (3)

Uz G₁, odabran prema (1-6), prema (1-2) slijedi:

$$\frac{Y(s)}{Z'(s)} = \frac{G_{pz} - G_u G_R G_p}{1 + G_R G_p} = 0$$
 (1-7)

• Uz pretpostavku da je w = z (isti red brojnika i nazivnika prijenosne funkcije regulatora), dobije se iz (1-6) uvjet za realizaciju upravljačkog uređaja kada se postiže potpuna kompenzacija smetnie:

$$m + n_z \ge m_z + n$$
,

odnosno

$$(n-m) \le (n_z - m_z) \tag{1-8}$$

- Prema tome, polni višak prijenosne funkcije $G_{\rm p}(s)$ treba biti manji ili jednak od polnog viška $G_{pz}(s)$
- Za slučaj kad je $G_{DZ} = G_{D}$ (tj. smetnja djeluje na ulazu procesa), slijedi $G_u = \frac{1}{G_0}$

9/51

Primjer 1.1: Upotreba I-regulatora uz djelovanje smetnje na ulaz procesa

Za regulator I-tipa

$$G_R(s) = \frac{1}{T_I s}$$

dobije se

$$G_{U}(s) = T_{I}s$$

 Približna (realna) izvedba upravljačkog uređaja (Slika 1.3) zasniva se na prijenosnoj funkciji:

$$T_{l} = RC$$

$$T_{v} = RC_{v}$$

$$U_{u}$$

Slika 1.3: Izvedba $G_u(s)$ u Primjeru 1.1

Primjer 1.2: Upotreba Pl regulatora uz djelovanje smetnje na ulaz procesa

• Za regulator PI tipa

$$G_R(s) = K_R \frac{1 + T_I s}{T_I s}$$

proizlazi:

$$G_{U}(s) = \frac{1}{K_{R}} \frac{T_{I}s}{1 + T_{I}s}$$

Kompenzacija utjecaja smetnje neposredno preko izvršnog elementa

Kompenzacija utjecaja smetnje preko izvršnog elementa prikazana je na Slici 1.4

Slika 1.4: Kompenzacija smetnje neposredno preko izvršnog člana

Projektiranje upravljačkog uređaja (1)

• Iz Slike 1.4 slijedi:

$$Y = [(R - Y)G_R - Z'G_u] \cdot G_p + Z'G_{pz},$$

odnosno

$$Y = \frac{G_{pz} - G_u G_p}{1 + G_R G_p} Z' + \frac{G_R G_p}{1 + G_R G_p} R,$$
 (1-9)

$$Y = \frac{A[A_uCD_z - B_uDC_z]}{A_uC_z(AC + BD)}Z' + \frac{BD}{AC + BD}R$$
 (1-10)

- Prema (1-3) i (1-10) evidentno je da su karakteristične jednadžbe u oba načina kompenzacije jednake
- Idealna kompenzacija utjecaja smetnje preko izvršnog elementa slijedi iz (1-9):

$$G_{pz} = G_u G_p \rightarrow G_u = \frac{G_{pz}}{G_p} = \frac{CD_z}{DC_z}$$
 (1-11)

Projektiranje upravljačkog uređaja (2)

- Iz (1-11) dobije se uvjet za realizaciju upravljačkog uređaja koji je identičan uvjetu (1-8) $(n - m < n_z - m_z)$
- Za slučaj $G_{DZ} = G_D$ (smetnja djeluje na ulaz procesa) slijedi $G_U = 1$
- U slučaju da je $G_p(s)$ s neminimalno-faznim vladanjem ili ako je $G_{DZ}(s)$ nestabilno dobio bi se prema (1-6) ili (1-11) nestabilni upravljački član (ne može se realizirati) pa kompenzacija utjecaja smetnje na prikazani način nije moguća
- U tim slučajevima može se koristiti statička kompenzacija (umjesto razmatrane dinamičke kompenzacije) pomoću proporcionalnog člana:

$$G_{u} = \frac{K_{pz}}{K_{p}}, \tag{1-12}$$

gdje je
$$K_{pz}=G_{pz}(0)$$
 i $K_p=G_p(0)$

 Napomena: Predupravljanje ne utječe na stabilnost sustava u slučaju linearnih procesa. Stoga se predupravljanje može dodati nakon što se podesi zatvoreni regulacijski krug

Primjer 1.3: Regulacija temperature pregrijača pare

• Regulirana veličina je temperatura pare $\vartheta \triangleq y$ na izlazu iz pregrijača pare. Dotok rashladne vode u hladnjak s ubrizgavanjem određen je upravljačkom veličinom u. Promjena toka pare predstavlja smetnju q=z' za regulacijski krug temperature pare (iznos smetnje ovisi o potrošnji)

Slika 1.5: Kompenzacija utjecaja smetnje preko regulatora

Slika 1.6: Kompenzacija utjecaja smetnje neposredno preko izvr. el.

Kaskadna regulacija (1)

- Često je moguće proces promatrati kroz više parcijalnih, međusobno povezanih potprocesa
- Pretpostavimo da se proces može prikazati pomoću dva potprocesa (Slika 1.7)

Slika 1.7: Proces s dva potprocesa u sustavu upravljanja

Kaskadna regulacija (2)

• Prema Slici 1.7, osnovnoj jednopetljastoj strukturi upravljanja dodaje se pomoćni upravljački član $G_{y1}(s)$ koji na temelju mjerenja pomoćne varijable y_1 tvori pomoćnu upravljačku veličinu

Slika 1.8: Sustav upravljanja nadograđen pomoćnim upravljačkim članom

Kaskadna regulacija (3)

- Pomoćnom upravljačkom veličinom korigira se signal povratne veze sustava
- Upravljački član $G_{v1}(s)$ treba imati sljedeća svojstva:
 - ne smije utjecati na stacionarno stanje, odnosno $G_{v1}(s)$ ima derivacijski karakter ("elastična povratna veza");
 - ima korekcijski karakter i doprinosi boljem dinamičkom vladanju sustava, uz relativno jednostavnu izvedbu regulatora $G_{\mathbb{R}}(s)$;
 - ima svojstvo predikcije
- Regulacijska struktura prikazana na Slici 1.8 naziva se i regulacijskom strukturom s pomoćnom upravljačkom veličinom
- Obično se takva struktura ne realizira u suvremenim rješenjima sustava upravljanja

Kaskadna regulacija (4)

 Koristeći se pravilima blokovske algebre, blokovsku shemu na Slici 1.8 moguće je prikazati i na način kao na Slici 1.9

Slika 1.9: Blokovska shema ekvivalentna blokovskoj shemi na Slici 1.8

 Sustav na Slici 1.9 promatran izvana nije se promijenio u odnosu na sustav sa Slike 1.8 ($\frac{Y(s)}{P(s)}$ je nepromijenjen) – pri tome su samo neke unutarnie variiable izgubile svoj identitet

Kaskadna regulacija (5)

Shema sa Slike (1.9) može se dalje transformirati te se dobije sustav prikazan na Slici 1.10

Slika 1.10: Blokovska shema ekvivalentna blokovskoj shemi na Slici 1.9

Kaskadna regulacija (6)

- Sustav upravljanja sa Slike 1.10 ima dva regulacijska kruga (petlje):
 I pomocni regulacijski krug (unufarnji regulacijski krug, podređeni regulacijski krug)
 - II glavni regulacijski krug (vanjski regulacijski krug, nadređeni regulacijski krug)
- Regulacijska struktura prema Slici 1.10 naziva se kaskadnom strukturom upravljanja (kaskadnom regulacijom)
- U takvoj strukturi evidentna je hijerarhija:
 - Glavni regulator G_{R2} ne djeluje neposredno na izvršni element nego tvori referentnu (vodeću) veličinu za podređeni regulator G_{P1}
 - Utjecaj smetnje u podređenom regulacijskom krugu praktički se kompenzira u tom krugu
- Ako se mjeri više pomoćnih veličina u procesu (prikazanom kroz potprocese), onda se može dobiti višestruka kaskadna struktura upravljanja
- Kaskadna regulacijska struktura pokazuje određene sličnosti sa strukturom upravljanja zasnovanoj na varijablama stanja – za optimalni regulator stanja postoje povratne veze za sva stanja

21 / 51

Kaksadna regulacija (7)

Iz Slike 1.10 slijedi:

$$Y = \left\{ \left[(R-Y)G_{R2} - \frac{Y}{G_{p2}} \right] G_{R1}G_{p1} + Z'G_{pz} \right\} G_{p2},$$

odnosno (uz izostavljanje oznake "(s)" radi jednostavnosti):

$$Y = \frac{G_{pz}G_{p2}}{1 + G_{R1}G_{p1}(1 + G_{R2}G_{p2})}Z' + \frac{G_{R1}G_{R2}G_{p1}G_{p2}}{1 + G_{R1}G_{p1}(1 + G_{R2}G_{p2})}R \quad (1-13)$$

- Iz (1-13) evidentno je da stabilnost sustava (vidi karakterističnu jednadžbu) ovisi i o podređenom regulacijskom krugu
- Stoga je prvi korak u sintezi kaskadnog sustava upravljanja sinteza podređenog kruga

Kaskadna regulacija (8)

 Iz Slike 1.10 slijedi prijenosna funkcija zatvorenog podređenog kruga s obzirom na njegovu vodeću veličinu (z'= 0):

$$G_{uy1} = \frac{G_{R1}G_{p1}}{1 + G_{R1}G_{p1}}$$
 (1-14)

• $G_{uy1}(s)$ predstavlja dio procesa glavnog regulacijskog kruga (Slika 1.11)

Slika 1.11: Shema glavnog regulacijskog kruga

Kaskadna regulacija (9)

- Nakon obavljene sinteze podređenog regulacijskog kruga, problem sinteze vanjskog kruga svodi se na standardni problem sinteze jednopetljastog regulacijskog kruga (ako se radi o dvopetljastoj kaskadnoj strukturi)
- Podređeni regulacijski krugovi su obično brži od nadređenih, te se često prijenosna funkcija podređenog regulacijskog kruga može strukturno pojednostavniti pri sintezi nadređenog regulacijskog kruga
- Regulatori smješteni u pojedinim regulacijskim petljama obično su jednostavnije strukture (PID regulatori, ili iz njih izvedeni regulatori)
- Kaskadni se sustavi upravljanja vrlo često primjenjuju u automatizaciji raznih postrojenja i procesa gdje je potrebno imati dobru slijednu regulaciju te dobru čvrstu regulaciju (regulaciju smetnie)
- Također se nerijetko kaskadna regulacija kombinira s unaprijednom regulacijom po smetnji

Kaskadna regulacija (10)

- U primjenama kaskadnih sustava upravljanja afirmirali su se praktični postupci parametriranja regulatora:
 - tehnički optimum
 - simetrični optimum

Tehnički optimum (1)

 Pretpostavka za provedbu sinteze prema tehničkom optimumu (engl. magnitude optimum) jest da je proces bez astatizma

Slika 1.12: Amplitudno-frekvencijska karakteristika zatvorenog kruga kod primjene tehničkog optimuma

- Zasniva se na zahtjevima:
 - amplitudno-frekvencijska karakteristika zatvorenog regulacijskog kruga $|G_r(j\omega)|$ treba imati konstantnu vrijednost u čim širem frekvencijskom području (ω_b čim veće)
 - |G_r(jω)| praktički ne smije imati rezonantno uzdizanje (M = 1 za sustave svedene na jediničnu povratnu vezu)
- Temeljem ovih zahtjeva postiže se brzi, približno aperiodski odziv sustava upravljanja

Tehnički optimum (2)

 Za daljnja razmatranja pretpostavimo strukturu procesa prikazanu na Slici 1.13 koja se sastoji od jednog aperiodskog člana s dominantnom vremenskom konstantom i njemu u seriju povezanih više aperiodskih članova s nedominantnim vremenskim konstantama

Slika 1.13: Struktura procesa pogodna za primjenu sinteze prema tehničkom optimumu

Tehnički optimum (3)

Ako je:

$$T_2 + T_3 + \ldots + T_k = T_{\Sigma} \ll T_1$$
, npr. $T_1 > (5 \div 10)T_{\Sigma}$,

onda se može primijeniti sljedeća aproksimacija:

$$\frac{1}{1+T_2s}\cdot\frac{1}{1+T_3s}\cdots\frac{1}{1+T_ks}\approx\frac{1}{1+(T_2+T_3+\cdots+T_k)s}=\frac{1}{1+T_{\Sigma}s}$$
 (1-15)

U tom se slučaju dobije regulacijski krug prikazan na Slici 1.14

Slika 1.14: Regulacijski krug pri sintezi prema tehničkom optimumu

Tehnički optimum (4)

Za strukturu procesa na Slici 1.14 preporuča se koristiti Pl regulator:

$$G_R(s) = K_R \frac{1 + T_I s}{T_I s}$$

 Integracijskom vremenskom konstantom kompenzira se dominantna vremenska konstanta procesa, tj. odabiremo:

$$T_I = T_1, \tag{1-16}$$

pa slijedi (uz $K_o = K_R K_p$ – kružno pojačanje):

$$G_{o}(s) = K_{R} \frac{1 + T_{I}s}{T_{I}s} \frac{K_{D}}{1 + T_{1}s} \frac{1}{1 + T_{\Sigma}s} = \frac{K_{o}}{T_{I}s(1 + T_{\Sigma}s)}$$
(1-17)

 Prijenosna funkcija zatvorenog kruga s obzirom na vodeću veličinu glasi:

$$G_{r}(s) = \frac{G_{o}(s)}{1 + G_{o}(s)} = \frac{\frac{K_{o}}{T_{l}s(1 + T_{\Sigma}s)}}{1 + \frac{K_{o}}{T_{l}s(1 + T_{\Sigma}s)}} = \frac{K_{o}}{K_{o} + T_{l}s + T_{l}T_{\Sigma}s^{2}}$$
(1-18)

Tehničkin optimum (5)

• Ako se prijenosna funkcija svede na opći oblik prijenosne funkcije drugog reda ($G(s) = \frac{1}{1 + \frac{2\zeta}{\omega_0} s + \frac{s^2}{...2}}$), dobije se:

$$G_r(s) = \frac{1}{1 + \frac{T_1 s}{K_O} + \frac{T_1 T_E s^2}{K_O}},$$
 (1-19)

iz čega slijedi:

$$\frac{2\zeta}{\omega_{D}} = \frac{T_{I}}{K_{O}}, \ \frac{1}{\omega_{D}^{2}} = \frac{T_{I}T_{\Sigma}}{K_{O}} \rightarrow \omega_{D} = \sqrt{\frac{K_{O}}{T_{I}T_{\Sigma}}}, \tag{1-20}$$

$$\zeta = \frac{1}{2}\omega_n \frac{T_I}{K_O} = \frac{1}{2}\sqrt{\frac{K_O}{T_I T_\Sigma}} \cdot \frac{T_I}{K_O} \rightarrow \zeta = \frac{1}{2}\sqrt{\frac{1}{K_O} \frac{T_I}{T_\Sigma}}, \quad (1-21)$$

$$K_{o} = \frac{1}{\Delta C^{2}} \cdot \frac{T_{I}}{T_{\Sigma}}, \ K_{R} = \frac{1}{\Delta C^{2}} \cdot \frac{1}{K_{D}} \cdot \frac{T_{1}}{T_{\Sigma}}$$
 (1-22)

Tehnički optimum (6)

- Izbor $\zeta = \frac{\sqrt{2}}{2}$ predstavlja tehnički najprihvatljiviji izbor za većinu primjena ($\sigma_m = 4.3\%$)
- Preporuča se

$$\zeta = \frac{\sqrt{2}}{2} \rightarrow K_R = \frac{1}{2} \cdot \frac{1}{K_s} \cdot \frac{T_1}{T_{\Sigma}}$$
 (1-23)

• Iz (1-19) za $\zeta = \frac{\sqrt{2}}{2}$ dobije se prijenosna funkcija zatvorenog sustava u kojem su parametri PI regulatora određeni prema tehničkom optimumu:

$$G_r(s) = \frac{1}{1 + 2T_r s + 2T_r^2 s^2}$$
 (1-24)

Tehnički optimum (7)

 Analitički izraz za prijelaznu funkciju zatvorenog sustava s obzirom na referentnu veličinu glasi (Slika 1.15):

$$h_{r}(t/T_{\Sigma}) = 1 - e^{-\frac{t}{2T_{\Sigma}}} \left(\cos\frac{t}{2T_{\Sigma}} + \sin\frac{t}{2T_{\Sigma}}\right)$$

$$h_{r}(t/T_{\Sigma})$$

$$0$$

$$4.7$$

$$8.4$$

$$t/T_{\Sigma}$$

$$0$$

$$1-25$$

Slika 1.15: Prijelazna funkcija zatvorenog sustava upravljanja podešenog prema tehničkom optimumu

Tehnički optimum (8)

- Kao što je vidljivo iz (1-25) i Slike 1.15, odziv sustava isključivo ovisi o zbroju T_{Σ} nedominantnih (nekompenziranih) vremenskih konstanti
- Iz prijelazne funkcije (Slika 1.15) može se očitati:
 - $t_{\rm u} \approx 4.7T_{\rm x}$ ulazno vrijeme (vrijeme porasta (0 ÷ 100%))
 - $t_{2\%} \approx 8.4T_{\Sigma}$ vrijeme ustaljivanja ($\varepsilon = \pm 2\%$)

⊕F≣₹

Primjer 1.4: Proces s dvije dominantne vremenske konstante (1)

Proces u regulacijskom krugu na Slici 1.16 upravlja se PID regulatorom

Slika 1.16: Regulacijski krug u Primjeru 1.4

- Pri tome su T_1 i T_2 dominantne vremenske konstante, a T_{Σ} je zbroj nedominantnih vremenskih konstanti regulacijskog kruga
- Potrebno je odrediti prijenosnu funkciju zatvorenog sustava $G_r(s)$ uz kompenzaciju dominantnih vremenskih konstanti procesa integracijskom i derivacijskom vremenskom konstantom regulatora

Primjer 1.4: Proces s dvije dominantne vremenske konstante (2)

Slika 1.17: Načelna shema realnog PID regulatora s operacijskim pojačalom

 Prijenosna funkcija PID regulatora sa Slike 1.17 glasi:

$$G_R(s) = K_R \frac{1 + T_I s}{T_I s} \frac{1 + T_D s}{1 + T_{\nu} s},$$

gdje je
$$K_R = \frac{R_3}{R_1}$$
, $T_1 = R_3 C_3$, $T_D = R_4 C_4$, $T_{11} = R_5 C_4$

- $T_{\nu} \ll T_{D}$ postiže se izborom $R_{5} \ll R_{A}$
- Izborom, primjerice: $T_l = T_1$, $T_D = T_2$, te K_R prema (1-22) $(K_R = \frac{1}{2} \frac{1}{K_P} \frac{T_1}{T_\Sigma})$ dobije se:

$$G_r(s) = \frac{1}{1 + 2T_r s + 2T_r^2 s^2}$$
 (1-26)

• Ovdje je u T_{Σ} uračunata i mala parazitna vremenska konstanta T_{ν}

Primjer 1.4: Proces s dvije dominantne vremenske konstante (3)

- Prijenosna funkcija (1-26) identična je prijenosnoj funkciji (1-24)
- Prema tome, prikladnim izborom strukture regulatora i prikladnim parametriranjem regulatora može se dobiti za različite strukture procesa jednako vladanje zatvorenog sustava

Simetrični optimum (1)

 Pretpostavka za primjenu simetričnog optimuma (engl. symmetrical optimum) (Kessler 1958.) jest da je proces s astatizmom 1. reda (Slika 1.18):

Slika 1.18: Regulacijski krug prikladan za sintezu prema simetričnom optimumu

- Τ_Σ je zbroj nedominantnih vremenskih konstanata procesa
- Uz odabrani (preporučeni) regulator PI djelovanja $G_R(s) = K_R \frac{1+T_I s}{\tau_c}$ dobije se prijenosna funkcija otvorenog kruga:

$$G_{o}(s) = K_{R} \frac{1 + T_{I}s}{T_{I}s} \frac{K_{p}}{1 + T_{\Sigma}s} \frac{1}{T_{i}s} = K_{o} \frac{1}{T_{I}T_{i}s^{2}} \cdot \underbrace{\frac{1 + T_{I}s}{1 + T_{\Sigma}s}}_{\text{prethodienje}}$$
(1-27)

Simetrični optimum (2)

 Da bi sustav upravljanja, čija je prijenosna funkcija otvorenog kruga (1-27), bio stabilan, mora vrijediti:

$$T_l > T_{\Sigma}$$
 (1-28)

Izraz za fazno-frekvencijsku karakteristiku za (1-27) glasi:

$$\varphi_o(\omega) = -180^\circ + \operatorname{arctg}\omega T_I - \operatorname{arctg}\omega T_{\Sigma}$$
 (1-29)

 Maksimalna vrijednost fazno-frekvencijske karakteristike (1-29) dobije se kako slijedi:

$$\frac{d\varphi_o(\omega)}{d\omega} = \frac{I_I}{1 + (\omega I_I)^2} - \frac{I_{\Sigma}}{1 + (\omega I_{\Sigma})^2} = 0 \rightarrow \omega_m = \frac{1}{\sqrt{I_I I_{\Sigma}}}, \quad (1-30)$$

odnosno

$$\varphi_{\mathcal{O}}(\omega_m) = -180^{\circ} + \operatorname{arctg}\sqrt{\frac{T_I}{T_{\Sigma}}} - \operatorname{arctg}\sqrt{\frac{T_{\Sigma}}{T_I}}$$
 (1-31)

Simetrični optimum (3)

Ako se odabere da je presječna frekvencija

$$\omega_{c} = \omega_{m} \tag{1-32}$$

dobiju se simetrična amplitudno-frekvencijska i simetrična fazno-frekvencijska karakteristika kao na Slici (1.19)

Slika 1.19: Frekvencijske karakteristike sustava – simetrični optimum

- Iz fazno-frekvencijske karakteristike je vidljivo da se dobije maksimalno fazno osiguranje pri $\omega_m=\omega_c$
- Da bi se postigla simetričnost frekvencijskih karakteristika, tj. maksimalno fazno osiguranje, potrebno je da parametri regulatora K_R i T_I imaju točno određene vrijednosti

Simetrični optimum (4)

Neka je integracijska vremenska konstanta regulatora:

$$T_I = \alpha^2 T_{\Sigma}, \tag{1-33}$$

pri čemu je a konstanta koju treba odrediti (a > 1 prema (1-28) jer $T_1 > T_{\Sigma}$)

Iz (1-29), (1-30) i (1-32), uz (1-33) slijedi izraz za fazno osiguranje:

$$\gamma = \varphi_0(\omega_c) + 180^\circ = \text{arctg}\sqrt{\frac{T_l}{T_{\Sigma}}} - \text{arctg}\sqrt{\frac{T_{\Sigma}}{T_l}},$$
 (1-34)

odnosno:

$$\gamma = \arctan g - \arctan \frac{1}{g} = \arctan \frac{1}{2} (a - \frac{1}{g})$$
 (1-35)

Iz (1-35) dobije se:

$$a = tg\gamma + \frac{1}{\cos\gamma} = \frac{1 + \sin\gamma}{\cos\gamma}$$
 (1-36)

Upravljanje elektromotornim pogonima::

Simetrični optimum (5)

• Iz (1-33) i (1-36) slijedi:

$$T_{I} = \left(\frac{1 + \sin \gamma}{\cos \gamma}\right)^{2} T_{\Sigma} \tag{1-37}$$

• Za određivanje pojačanja regulatora K_R polazi se od izraza:

$$|G_o(j\omega_c)|=1,$$

pa se iz (1-27) dobije:

$$|G_0(j\omega_c)| = \frac{K_0}{T_I T_i \omega_c^2} \frac{\sqrt{1 + (\omega_c T_I)^2}}{\sqrt{1 + (\omega_c T_\Sigma)^2}} = 1$$
 (1-38)

• Iz (1-38), uz (1-32) i (1-33) slijedi: $(\omega_c = \frac{1}{\sqrt{I_1 I_2}} = \frac{1}{a I_2})$:

$$K_R = \frac{1}{Q} \frac{1}{K_D} \frac{T_i}{T_{\Sigma}} \tag{1-39}$$

Upravljanje elektromotornim pogonima::

Simetrični optimum (6)

Lako se može dokazati da vrijedi svojstvo simetričnosti:

$$\left|G_{o}(j\frac{\omega_{c}}{\omega})\right| = \frac{1}{\left|G_{o}(j\frac{\omega}{\omega_{c}})\right|},$$
 (1-40)

$$\varphi_0(\frac{\omega_c}{\omega}) = \varphi_0(\frac{\omega}{\omega_c}) \tag{1-41}$$

 Uvrštenjem (1-33) i (1-39) u (1-27) dobije se prijenosna funkcija zatvorenog sustava s obzirom na referentnu veličinu:

$$G_r(s) = \frac{G_o(s)}{1 + G_o(s)} = \frac{1 + \alpha^2 T_{\Sigma} s}{1 + \alpha^2 T_{\Sigma} s + \alpha^3 T_{\Sigma}^2 s^2 + \alpha^3 T_{\Sigma}^3 s^3}$$
(1-42)

• Za $\alpha = 2$ slijedi fazno osiguranje $\gamma = 37^{\circ}$

Simetrični optimum (7)

• Iz (1-42), uz $\alpha = 2$, dobije se prijelazna funkcija (Slika 1.20)

$$h_r\left(\frac{t}{T_{\Sigma}}\right) = 1 + e^{-\frac{t}{2T_{\Sigma}}} - 2e^{-\frac{t}{4T_{\Sigma}}}\cos\frac{\sqrt{3}}{4T_{\Sigma}}t\tag{1-43}$$

Slika 1.20: Prijelazna funkcija zatvorenog sustava upravljanja podešenog prema simetričnom optimumu

- Karakteristične veličine odziva sa Slike 1.20:
 - $t_{\rm u} \approx 3.1T_{\rm r}$ ulazno vrijeme
 - $t_m \approx 6T_{\Sigma}$ vrijeme prvog maksimuma $(t_m \approx \frac{3}{\omega_c} = \frac{3}{1/\alpha I_c} \stackrel{\alpha=2}{=} 6T_{\Sigma})$
 - $t_{2\%} \approx 16.5T_{\Sigma}$ vrijeme ustaliivania ($\varepsilon = \pm 2\%$)
 - $t_r \approx 3.1 T_{\Sigma}$ vrijeme porasta $(0 \div 100\%)$

Simetrični optimum (8)

Prijenosna funkcija zatvorenog sustava s obzirom na smetnju z glasi:

$$G_{zz}(s) = \frac{Y(s)}{Z(s)} = \frac{\alpha T_{\Sigma}}{T_i} \frac{\sigma^2 T_{\Sigma} s (1 + T_{\Sigma} s)}{1 + \sigma^2 T_{\Sigma} s + \sigma^3 T_{\Sigma}^2 s^2 + \sigma^3 T_{\Sigma}^3 s^3}$$
(1-44)

• Za z = -S(t) i a = 2 iz (1-44) dobije se prijelazna funkcija (Slika 1.21)

Slika 1.21: Prijelazna funkcija s obzirom na poremećaj

- Karakteristične veličine odziva sa Slike 1.21:
 - $y_p \approx 1.75 \frac{T_{\Sigma}}{T_c}$ maksimalni "propad" regulirane veličine
 - $t_{\rm mz} \approx 3T_{\Sigma}$ vrijeme maksimalnog propada
 - $t_{1z} \approx 8.3T_{\Sigma}$ ulazno vrijeme

Simetrični optimum (9)

- Na temelju prijelaznih funkcija h_r i h_z može se konstatirati
 - odziv sustava na vodeću veličinu je brz, ali s velikim regulacijskim nadvišenjem σ_m
 - postiže se veoma brza kompenzacija utjecaja smetnje
- Kompenzacija regulacijskog nadvišenja efikasno se može postići ugradnjom prefiltra u granu referentne veličine (Slika 1.22)

Slika 1.22: Regulacijski krug podešen prema simetričnom optimumu, s prefiltrom

Simetrični optimum (10)

Prijenosna funkcija prefiltra je:

$$G_{V} = \frac{1}{1 + \alpha^2 T_{\Sigma} s} \tag{1-45}$$

- Pri tome se kompenziraju nule prijenosne funkcije (1-42), dok se polovi ne mijenjaju
- Nakon kompenzacije nula prijenosne funkcije zatvorenog sustava, s regulatorom podešenim prema simetričnom optimimumu dobije se:

$$G_r(s) = \frac{Y(s)}{R(s)} = \frac{1}{1 + \alpha^2 T_{\Sigma} s + \alpha^3 T_{\Sigma}^2 s^2 + \alpha^3 T_{\Sigma}^3 s^3}$$
(1-46)

Polovi prijenosne funkcije (1-46) su:

$$s_{p1} = -\frac{1}{\alpha T_{\Sigma}}, \quad s_{p23} = -\frac{1}{\alpha T_{\Sigma}} \left[\frac{\alpha - 1}{2} \pm j \sqrt{1 - \left(\frac{\alpha - 1}{2}\right)^2} \right]$$
 (1-47)

Simetrični optimum (11)

• Za a = 3 je (trostruki pol):

$$s_{p1} = s_{p2} = s_{p3} = -\frac{1}{3T_{\Sigma}}$$
 (1-48)

• Za 1 < *a* < 3 dobije se:

$$s_{p1} = -\frac{1}{aT_{\Sigma}}, \quad s_{p23} = -\frac{1}{aT_{\Sigma}} \left[\frac{a-1}{2} \pm j\sqrt{1 - \left(\frac{a-1}{2}\right)^2} \right] = -\frac{1}{aT_{\Sigma}} e^{\pm j\alpha}, \tag{1-49}$$

gdje je:

$$\alpha = \arccos \frac{a-1}{2} = \arccos \zeta$$

Simetrični optimum (12)

• Za $\alpha = 2$ dobije se razmještaj polova u kompleksnoj s-ravnini kao na Slici 1.23

- Raspored polova isti je kao i za Butterworthov filtar trećeg reda
- Uočimo da je (Slika 1.23):

$$\omega_{\mathsf{n}} = \frac{1}{2\mathcal{I}_{\mathsf{\Sigma}}}$$

Slika 1.23: Raspored polova zatvorenog sustava upravljanja uz a=2

48 / 51

Simetrični optimum (13)

• Za prijenosnu funkciju (1-46) uz a=2 dobije se prijelazna funkcija h_r prikazana Slikom 1.24, a čiji je analitički oblik:

$$h_r(t/T_{\Sigma}) = 1 - e^{-t/2T_{\Sigma}} - \frac{2}{\sqrt{3}}e^{-t/4T_{\Sigma}}\sin\frac{\sqrt{3}}{4T_{\Sigma}}t$$
 (1-50)

Slika 1.24: Prijelazna funkcija sustava upravljanja podešenog prema simetričnom optimumu, uz dodan prefiltar

- Karakteristične veličine odziva sa Slike 1.24:
 - $t_u \approx 7.6T_{\Sigma}$ ulazno vrijeme
 - $t_m \approx 10T_{\Sigma}$ vrijeme prvog maksimuma
 - $t_{2\%} \approx 13.3 T_{\Sigma}$ vrijeme ustaljivanja ($\varepsilon = \pm 2\%$)
- Budući da se prefiltar G_V(s) ne nalazi u zatvorenoj petlji, ostaju sačuvana dobra svojstva sustava u pogledu brze kompenzacije utjecaja smetnje

Simetrični optimum (14)

 Ako je u procesu sa statičkim svojstvima dominantna vremenska konstanta izrazito velikog iznosa, tada se može primijeniti aproksimacija (Slika 1.25):

$$\frac{1}{1+I_1s}\approx\frac{1}{I_1s}\tag{1-51}$$

 U takvim se slučajevima može također primijeniti simetrični optimum (u modificiranom obliku)

Slika 1.25: Aproksimacija PT₁-člana I-članom

50 / 51

Zaključak

- Nadogradnjom osnovne jednopetljaste regulacijske strukture predupravljanjem po poremećajnim veličinama procesa značajno se može kompenzirati utjecaj poremećajnih veličina
- Koncept kaskadnog višepetljastog upravljanja hijerarhijski je koncept svojstven uređenim i organiziranim sustavima
- Koncept kaskadnog višepetljastog upravljanja afirmirao se u automatizaciji raznih proizvodnih i radnih procesa jer osigurava učinkovitu kompenzaciju poremećajnih veličina procesa kao i dobro slijeđenje referentne veličine (uz određene dodatne funkcije)
- U kaskadnim sustavima upravljanja afirmirali su se praktični postupci sinteze regulatora – tehnički optimum i simetrični optimum
- Tehnički se optimum primjenjuje za upravljanje procesima sa statičkim svojstvima
- Simetrični se optimum primjenjuje za upravljanje procesima s astatičkim svojstvima