Discussions on Simulation of Max-ID Processes

Peng Zhong

extSTAT@KAUST

September 7, 2020

Max-ID Processes

For the convenience of notations, we adopt the same notations as in Dombry and Eyi-Minko (2013).

General Representation for Max-ID Processes:

A max-id process $\eta(t), t \in T$ can be represented by

$$\eta(t) = \bigvee_{i=1}^N \phi_i(t), t \in \mathcal{T}; \quad \Phi = \sum_{i=1}^N \delta_{\phi_i}$$

where $\phi_i(t)$ are continuous functions (random variables) on T, and Φ is the Poisson point process (or Poisson random measure) with mean measure μ on the space of continuous functions on T, denoted by C. ϕ_i are called the atoms of Φ .

 $N = \Phi(\mathcal{C}) \sim Poisson(\mu(\mathcal{C}))$ if $\mu(\mathcal{C})$ is finite, otherwise $N = +\infty$ almost surely.

More Notations

- $lackbox{ } [\Phi] = \{\phi_i\}_{i=1}^N$, is the set of atom functions of Φ .
- ▶ $\max(\Phi)(t) = \max\{f(t); f \in [\Phi]\}$, which equals to $\eta(t)$ in distribution.
- \blacktriangleright W.L.O.G, assume $\mathcal C$ is the space of non-negative and non-null continuous functions on $\mathcal T$.
- ▶ M(C) be the space of point processes $M = \sum_{i \in I} \delta_{f_i}$ on C such that $\{f_i \in C : ||f_i|| = \sup_t (f_i(t)) > \epsilon \}$ is finite $\forall \epsilon > 0$.
- ▶ Let $K \subset T$ be a closed subset of T, we have the following notations,

$$\left\{ \begin{array}{ll} f_1 =_{\mathcal{K}} f_2 & \Leftrightarrow & \forall \ t \in \mathcal{K}, \ f_1(t) = f_2(t) \\ f_1 <_{\mathcal{K}} f_2 & \Leftrightarrow & \forall \ t \in \mathcal{K}, \ f_1(t) < f_2(t) \\ f_1 \not< f_2 & \Leftrightarrow & \exists \ t \in \mathcal{K}, \ f_1(t) \ge f_2(t). \end{array} \right.$$

Let $\mathbf{s} = (s_1, \dots, s_\ell) \in T^\ell$ and $f(\mathbf{s}) = (f(s_1), \dots, f(s_\ell))$ we denote $\mu_{\mathbf{s}}(A) = \mu(\{f \in \mathcal{C} : f(\mathbf{s}) \in A\}), A \subset [0, +\infty)^\ell \setminus \{0\}$ and $\bar{\mu}_{\mathbf{s}}(x) = \mu(\{f \in \mathcal{C}; f(\mathbf{s}) \not< x\}), x \in [0, +\infty)^\ell \setminus \{0\}.$

K-extremal functions and K-sub-extremal functions

Definition (Extremal Functions)

An atom function $f \in [\Phi]$ is called K-sub-extremal if and only if $f <_k \max(\Phi)$. Otherwise, we call it K-extremal function. In other words, a sub-extremal function has no contribution to the maximum $\max(\Phi)$ on K.

Definition (Decomposition of PPP)

We can decompose the PPP Φ to K-extremal PPP and K-sub-extremal PPP as following

$$\Phi_K^+ = \sum_{i=1}^N \mathbb{1}_{\{\phi_i \not<_K \eta\}} \delta_{\phi_i}; \quad \Phi_K^- = \sum_{i=1}^N \mathbb{1}_{\{\phi_i <_K \eta\}} \delta_{\phi_i}$$

Hitting Scenarios

Definition (Hitting Scenarios)

A hitting scenarios on $K = \{t_1, t_2, \dots, t_k\}$ is a ordered partition set $\Theta = (\theta_1, \dots, \theta_{\ell(\Theta)}) \in \mathcal{P}_K$ of K.

Let $\{P_s(x, df); x \in [0, +\infty)^l \setminus \{0\}\}$ be the conditional measure $\mu(df)$ given f(s) = x.

Regular Conditional Distributions for Max-ID Processes

$$\pi_t(y,\cdot) = Pr[\Theta \in \cdot | \eta(t) = y];$$

$$Q_t(y,\tau,\cdot) = Pr[(\phi_j^+) \in \cdot | \eta(t) = y, \Theta = \tau]$$

$$R_t(y,\tau,(f_i),\cdot) = Pr[\Phi_K^{-1} \in \cdot | \eta(t) = y, \Theta = \tau, (\phi_i^+) = (f_i)]$$

Theorem (3.2 in Dombry and Eyi-Minko (2013)) Suppose $C_t^-(y) = \{M \in M(\mathcal{C}); \forall f \in [M], f(t) < y\}$ and assumption A holds, we have

▶ Let

$$\pi_t(y,\tau) = \frac{d\nu_t^{\tau}}{d\nu_t}(y) \tag{1}$$

$$Q_{t}(y,\tau,df_{1}\cdots df_{l}) = \bigotimes_{i=1}^{\ell} \left\{ \frac{1_{\{f_{j}(t_{\tau_{j}^{c}}) < y_{\tau_{j}^{c}}\}} P_{t_{\tau_{j}}}(y_{\tau_{j}},df_{j})}{P_{t_{\tau_{j}}}(y_{\tau_{j}},\{f(t_{\tau_{j}^{c}}) < y_{\tau_{j}^{c}}\})} \right\}$$
(2)

$$R_{t}(y,\tau,(f_{j}),B) = R_{t}(y,B) = \frac{Pr[\Phi \in B \cap C_{t}^{-}(y)]}{Pr[\Phi \in C_{t}^{-}(y)]}.$$
 (3)

Conditional Independence

From (3), we have conditional independence between Φ_K^- and Φ_K^+ given $\eta(t)=y$.

Theorem (4.1 in Dombry and Eyi-Minko (2013))

Let $t \in T$ and suppose that the distribution for $\eta(t)$ has no atom. Then conditionally on $\eta(t) = y, \phi_t^+$ and $\Phi_{\{t\}}^-$ are independent. The conditional distribution of ϕ_t^+ is equal to $P_t(y,\cdot)$. The conditional distribution of $\Phi_{\{t\}}^-$ is equal to the distribution of a Poisson point measure with intensity $1_{\{f(t) < y\}} \mu(df)$. Furthermore, for $\ell \geq 1$, $s \in T^\ell$ and $z \in [0,\infty)^\ell$, we have

$$P[\eta(s) < z|\eta(t) = y] = P_t(y, \{f(s) < z\}) \exp[-\mu(\{f(s) \not< z, f(t) < y\})]$$

Simulation via Extremal Functions

Theorem (Theorem based on 2 in Dombry et al. (2016))

The distribution of $(\phi_{x_n}^+)_{1 \le n \le N}$ is given as follows:

- ▶ 1. Initial distribution: the extremal function $\phi_{x_1}^+$ is distributed as $P_{x_1}(Y,\cdot)$ given Y, where Y is distributed the same as the marginal distribution of η .
- ▶ 2. Conditional distribution: for $1 \le n \le N-1$, the conditional distribution of $\phi_{x_{n+1}}^+$ with respect to $(\phi_{x_i}^+)_{1 \le i \le n}$ is equal to the distribution of

$$\tilde{\phi}_{x_{n+1}}^{+} = \begin{cases} \arg\max_{\phi \in [\tilde{\Phi}_{\{x_{1}, \dots, x_{n+1}\}}]} \phi(x_{n+1}), & [\tilde{\Phi}_{\{x_{1}, \dots, x_{n+1}\}}] \neq \emptyset \\ \arg\max_{\phi \in [\Phi_{\{x_{1}, \dots, x_{n}\}}]} \phi(x_{n+1}), & [\tilde{\Phi}_{\{x_{1}, \dots, x_{n+1}\}}] = \emptyset \end{cases}$$

where
$$[\Phi_{x_1,...,x_{n+1}}]$$
 is a PPP with intensity $1_{\{f(x_i) < Z_n(x_i), i \le i \le n\}} 1_{\{f(x_{n+1}) > Z_n(x_{n+1})\}} \mu(df)$, $Z_n(x) = \max_{\phi \in \Phi^+_{\{x_1,...,x_n\}}} \phi(x) = \max_{1 \le i \le n} \phi^+_{x_i}(x)$.

Algorithms

```
Algorithm: Simulation of a max-id process Z, exact at \mathbf{x} = (x_1, \dots, x_N).
1 Simulate -\log(G(z)) \sim \operatorname{Exp}(1) and Y \sim P_{x_1}(z,\cdot), where G is the
  marginal distribution.
2 Set Z(x) = Y(x).
3 For n = 2, ..., N:
      Simulate -\log(G(z)) \sim \exp(1).
     while (z > Z(x_n)) {
        Simulate \mathbf{Y} \sim P_{\mathbf{x}_{n}}(\mathbf{z},\cdot).
         If Y(x_i) < Z(x_i) for all i = 1, ..., n - 1,
8
            update Z(x) by the componentwize \max(Z(x), Y())
9
         Simulate -\log(G(e)) \sim \operatorname{Exp}(1) and update -\log(G(z)) by
        -\log(G(z)) - \log(G(e))
10
11 Return Z(x)
```

Algorithms for $P_x(z,\cdot)$

- ► What I don't understand well:
- ▶ $P_x(z,\cdot)$ is the conditional distribution of $\phi(x)$ given $\phi(x)=z$.
- ► From Theorem 4.1 in Dombry and Eyi-Minko (2013), we know that the conditional distribution of $\phi(x)^+$ is equal to $P_x(z,\cdot)$ given $\eta(x)=z$.
- ► Why are they equal?

Apart from this, if we have the spectral representation $\phi_i(\mathbf{x}) = R_i W_i(\mathbf{x})$, where R_i is a Poisson point process on $[0, \infty)$ and $W_i(\mathbf{x})$ is a Gaussian random field. There are many ways to sample $R_i W_i(\mathbf{x})$ given its value at x_0 .

- ► MCMC
- Adaptive Rejection Sampling

Simulation Study: Comparison based on Extremal Coefficients I

Result file

The End

References I

Dombry, C., Engelke, S. and Oesting, M. (2016) Exact simulation of max-stable processes. *Biometrika* **103**, 303–317.

Dombry, C. and Eyi-Minko, F. (2013) Regular conditional distributions of continuous max-infinitely divisible random fields. *Electronic Journal of Probability* **18**, 1–21.