

Geant4 Simulation Studies

Claire Landgraf Jacob McMurtry Xiang Zhang

Overview

- Intro to our Code
 - How it works
 - What's the geometry
- Applications
 - Simulating a tracking detector (Jacob)
 - Energy deposition by varying different materials and particle energies (Claire)
 - Track Momentum analysis? (Xiang)

Intro (Setting up our simulations):

- Geant4 has a lot of moving parts
- Based our code on example
 B2a in the Geant4 library
 - Changes to detector operations occurred in TrackerSD and TrackerHit files
 - Changes to root file creation for data storage in RunAction and Event Action Files
 - Changes to physical geometries in DetectorConstruction file
 - Changes to incident beam in PrimaryActionGenerator File

Simulating a Tracking Detector:

- Series of 5
 "SensitiveDetectors",
 regions filled with
 Xenon gas
- Spaced 80 cm apart (center to center)
- 20 cm thick
- Radius starts at 24 cm and increases by 54 cm each chamber

Actual Tracks vs. Electron showers

Chamber	Proton Track (cm)	Electron Shower (cm)	Predicted (cm)
1	7.09	6.823	~5.38
2	18.33	17.57	~17.5
3	34.75	38.47	~37
4	56.54	53.88	~72.3
5	84.13	80.38	~100

Why the discrepancy?

- Rounding errors
- Electrons bending in the opposite direction
- Energy loss on each detector

$$\frac{mv^2}{r} = q\vec{v} \times \vec{B}$$

$$h = \frac{mv}{qB} - \sqrt{(\frac{mv}{qB})^2 - x^2}$$

Energy of proton: 3GeV

Varying materials within the chambers

Xenon energy deposition: Energy Deposition Chamber 1

Helium:

Argon:

Adding a target

- Target radius of 2.5 cm
- Depth of 5cm
- 85 cm between target and first chamber
- Placed right in front of particle gun

Magnetic field: 0

Energy of proton: 3GeV

Chamber: Xe

Adding a target and varying the target material

Pb target:

Au target:

Al target:

Magnetic field: 0

Energy of proton: 3GeV

Chamber: Xe

Varying the energy of the proton beam

0.3GeV:

3GeV:

30GeV:

Ep and Moller scattering simulation

I use e- beam to hit fixed Hydrogen target. Here is the result for 1000 eshooting to the target. The magnetic field is 1 tesla in positive x position.

Results energy for electrons of my detectors

Momentum distribution for electrons on the back edges in Chamber 1

Just for compare

