Extraction plan for APCL18_283-APCL18_376

2018-07-11

This is a script for adding samples that are not in the laboratory database and have not been extracted. This is set up to handle one plate at a time.

Obtain a list of all clownfish sample ids from the Leyte database

```
# connect to leyte fieldwork db
leyte <- read_db("Leyte")
# import fish table
# select down to only sample_id numbers and remove any rows without a sample
fish <- leyte %>% tbl("clownfish") %>%
    # select only the column sample_id
select(sample_id) %>%
# remove any non-sample observations
filter(!is.na(sample_id)) %>%
distinct(sample_id) %>%
# remove any repeat sample_ids (this should not be needed)
collect()

# make sure each sample_id is only represented once
fish <- distinct(fish)</pre>
```

Select the range of samples in the plate

```
work <- fish %>%
  filter(sample_id >= params$first, sample_id <= params$last)

# define wells
plate <- data.frame(row = rep(LETTERS[1:8], 12), col = unlist(lapply(1:12, rep, 8))) %>%
  mutate(sample_id = ifelse(row == "D" & col == 2, "XXXX", NA),
        sample_id = ifelse(row == "E" & col == 8, "XXXX", sample_id))

samples <- plate %>%
  filter(is.na(sample_id)) %>%
  select(-sample_id)

plate <- anti_join(plate, samples, by = c("row", "col"))

samples <- cbind(samples, work)

plate <- rbind(plate, samples) %>%
  arrange(col, row)
```

Make a plate map of sample IDs (for knowing where to place fin clips)

```
platemap <- as.matrix(reshape2::acast(plate, plate[,1] ~ plate[,2]), value.var = plate[,3])
knitr::kable(platemap, booktabs = T) %>%
    # use scale_down to get map to fit within the bounds of the pdf
kable_styling(latex_options = "scale_down")
```

	1	2	3	4	5	6	7	8	9	10	11	12
A	APCL18_283	APCL18_291	APCL18_298	APCL18_306	APCL18_314	APCL18_322	APCL18_330	APCL18_338	APCL18_345	APCL18_353	APCL18_361	APCL18_369
В	APCL18_284	APCL18_292	APCL18_299	APCL18_307	APCL18_315	APCL18_323	APCL18_331	APCL18_339	APCL18_346	APCL18_354	APCL18_362	APCL18_370
C	APCL18_285	APCL18_293	APCL18_300	APCL18_308	APCL18_316	APCL18_324	APCL18_332	APCL18_340	APCL18_347	APCL18_355	APCL18_363	APCL18_371
D	APCL18_286	XXXX	APCL18_301	APCL18_309	APCL18_317	APCL18_325	APCL18_333	APCL18_341	APCL18_348	APCL18_356	APCL18_364	APCL18_372
E	$APCL18_287$	$APCL18_294$	APCL18_302	APCL18_310	APCL18_318	APCL18_326	$APCL18_334$	XXXX	APCL18_349	APCL18_357	APCL18_365	APCL18_373
F	APCL18_288	APCL18_295	APCL18_303	APCL18_311	APCL18_319	APCL18_327	APCL18_335	APCL18_342	APCL18_350	APCL18_358	APCL18_366	APCL18_374
G	APCL18_289	APCL18_296	APCL18_304	APCL18_312	APCL18_320	APCL18_328	APCL18_336	APCL18_343	APCL18_351	APCL18_359	APCL18_367	APCL18_375
H	$APCL18_290$	$APCL18_297$	$APCL18_305$	APCL18_313	$APCL18_321$	$APCL18_329$	APCL18_337	APCL18_344	$APCL18_352$	APCL18_360	APCL18_368	$APCL18_376$

ONLY DO THIS ONCE

Generate extract numbers for database

```
lab <- read_db("Laboratory")
extracted <- lab %>% tbl("extraction") %>%
    summarise(last = max(extraction_id, na.rm = T)) %>%
    collect() %>%
    mutate(last = substr(last, 2,5))

plate <- plate %>%
    mutate(well = 1:nrow(plate)) %>%
    mutate(extraction_id = paste("E", well + as.numeric(extracted$last), sep = "")) %>%
    mutate(well = paste(row, col, sep = "")) %>%
    mutate(method = "DNeasy96",
        final_vol = "200")

plate_name <- plate %>%
    summarise(first = min(extraction_id),
        last = max(extraction_id, na.rm = T))
```

Make a platemap with extraction ids

```
map <- plate %>%
  select(row, col, extraction_id)
  platemap <- as.matrix(reshape2::acast(map, map[,1] ~ map[,2]), value.var = map[,3])</pre>
```

Using extraction_id as value column: use value.var to override.

```
knitr::kable(platemap, booktabs = T) %>%
kable_styling()
```

	1	2	3	4	5	6	7	8	9	10	11	12
A	E4839	E4847	E4855	E4863	E4871	E4879	E4887	E4895	E4903	E4911	E4919	E4927
В	E4840	E4848	E4856	E4864	E4872	E4880	E4888	E4896	E4904	E4912	E4920	E4928
\mathbf{C}	E4841	E4849	E4857	E4865	E4873	E4881	E4889	E4897	E4905	E4913	E4921	E4929
D	E4842	E4850	E4858	E4866	E4874	E4882	E4890	E4898	E4906	E4914	E4922	E4930
\mathbf{E}	E4843	E4851	E4859	E4867	E4875	E4883	E4891	E4899	E4907	E4915	E4923	E4931
\mathbf{F}	E4844	E4852	E4860	E4868	E4876	E4884	E4892	E4900	E4908	E4916	E4924	E4932
G	E4845	E4853	E4861	E4869	E4877	E4885	E4893	E4901	E4909	E4917	E4925	E4933
Н	E4846	E4854	E4862	E4870	E4878	E4886	E4894	E4902	E4910	E4918	E4926	E4934

```
plate <- plate %>%
  mutate(plate = paste(plate_name$first, plate_name$last, sep = "-")) %>%
  select(-row, -col)
```

Import the extract list into the database

Make sure you have created your output PDF for this labwork before sending to the database

```
rm(lab)
lab <- write_db("Laboratory")

## Loading required package: DBI

# dbWriteTable(lab, "extraction", plate, row.names = F, overwrite = F, append = T)

dbDisconnect(lab)

## [1] TRUE

rm(lab)</pre>
```

Load fin clips

Calculate the amount of lysis buffer to make

```
num_samples <- params$num_samples
w_error <- num_samples *1.1

mix <- readr::read_csv("num_samples_w_error, ul_prot_k, ml_ATL_buff
0,0,0") %>%
mutate(num_samples_w_error = w_error,
ul_prot_k = w_error * 20 * 0.001,
ml_ATL_buff = w_error * 180 * 0.001)
kable(mix)
```

num_samples_w_error	ul_prot_k	ml_ATL_buff
105.6	2.112	19.008

- 1. Set up tubes of fin clips into the plate formation on tube holder block according to plate map.
- 2. Create the lysis mix in a 50mL falcon tube, do not vortex (foamy), and pour into 50mL reservoir.
- 3. Place an 8 well strip of collection tubes (H position labeled with the column number) onto the loading plate and fill with $200\mathrm{uL}$ of lysis mix.
- 4. Double check that the next column of tubes matches the plate map
- 5. Place the fins in the collection tubes
- 6. Cap the tubes
- 7. When the entire plate is done, place in the incubator overnight.
- 8. Allow the plate to cool and check the caps to make sure they are on securely.
- 9. Follow the Qiagen protocol for plate extraction.

Next follow the protocol for gel and pico_plate to check quality and quantity of extracts