一、填空题(每空1分,共15分)

- 1. 信道复用技术常用有三种方式: <u>时分多路复用 TDM</u>, <u>频分多路复用 FDM</u>, 和波分复用。
- 2. 在局域网模型中,数据链路层又分为 逻辑链路控制子层 LLC 和 媒体访问控制子层 MAC 。
- 3. 有线传输介质通常有双绞线 、同轴电缆和 光纤 。
- 5. ATM 信元具有固定长度,总长度是 53 字节,其中 5 字节是信元头。
- 6. 传输层的套接字地址由 IP 地址 和端口号构成。
- 7. 因特网中设计了两种服务质量模型: 综合业务和 差分业务 。
- 9. IEEE 802.11 定义了两个 MAC 子层: <u>分布式协同功能 DCF</u> 和点协调功能 (PCF)。
- - 11. ARP 请求报文是广播发送; ARP 回答报文是 单播 发送。
- - 13. TCP 协议采用 <u>三次握手</u> 机制建立连接。

二、选择题(每题 2 分,共 20 分)
1.100Base-TX 以太网选用的物理拓扑结构通常是(B)。
A. 网状 B. 星型
C. 总线 D. 环状
2. HDLC 协议监控帧中提供的差错控制机制是(A)。
A. 后退 N 帧(Go Back N)+ 选择重发(Selective Retransmition)
B. 后退 N 帧(Go Back N)+ 停等协议(Stop and Wait)
C. 停等协议(Stop and Wait)+ 选择重发(Selective Retransmition)
D. 后退 N 帧 (Go Back N)+ 选择重发 (Selective Retransmition)+ 停等协议 (Stop
and Wait)
3. 组建局域网可以用集线器,也可以用二层交换机; 用二层交换机连接的一组工
作站(^C)。
A. 同属一个冲突域,但不属一个广播域
B. 同属一个冲突域,也同属一个广播域
C. 不属一个冲突域,但同属一个广播域
D. 不属一个冲突域,也不属一个广播域
4. 标准以太网使用的介质访问方法是(B)。
A. 1-持续的 CSMA 方法;
B. 1-持续的 CSMA/CD 方法;
C. 非持续的 CSMA/CD 方法;
D. p-持续的 CSMA 方法。
5. CIDR 技术的主要作用是(A)。
A. 把小的网络汇聚成大的超网; B. 把大的网络划分成小的子网;
C. 解决地址资源不足的问题; D.由多个主机共享同一个网络地址
6. 把网络 172.6.32.0/20 划分为 172.6.32.0/24 等多个大小相同的子网,则该网络划
分后的最大子网个数、每个子网内的最大主机个数为(D)。
A. 32, 254 B. 16, 128 C. 8, 128 D. 16, 254
7. 一个 BGP 发言人与其它自治系统中的 BGP 发言人要交换路由信息, 就要先建
立(A)连接,然后在此连接上交换 BGP 报文以建立 BGP 会话。
A. TCP B. UDP C. HTTP D. RIP
8. 下列哪组协议属于应用层协议?(С)
A. IP、TCP和UDP B. ARP、IP和UDP
C. RIP、SMTP 和 TELNET D. OSPF、FTP 和 HTTP

四、计算题(共32分)

1. 如图所示的三种编码,每种8个比特,求其数据流。

答:

(1) NRZ-I: **10011001**. ---2 分;

(2) Differential Manchester: 11000100. ---2 分;

(3) AMI: **01110001**. ---1 分;

2. 使用每个信号元素 8 个电平级的传输方案在 PSTN 传输数据。如果 PSTN 的带宽是 3000Hz, 典型的信噪比是 20dB, 试求出无噪声下 Nyquist 最大数据传输速率 C, 和有噪声下的理论最大信息速率 C-max。

答:

$$C = 2W \log_2 M$$

$$W = 3000Hz, M = 8$$

所以
$$C = 2 \times 3000 \times \log_2 8 = 18000 bps$$

---3分;

$$SNR = 10 \lg \frac{S}{N}$$
, 因此 $20 = 10 \lg \frac{S}{N}$, $\frac{S}{N} = 100$
$$C_{MAX} = W \log_2(1 + \frac{S}{N}) = 3000 \times \log_2(1 + 100) = 19936 \ bps$$
---2 分

3. 在下图中,局域网的数据速率是 10 Mbps,站点 A 和站点 C 之间的距离是 $2000 \text{ 米,信号的传播速率是 } 200 \text{m}/\,\mu\,\text{s}$ 。站点 A 开始在 t1=0 时刻开始发送一个帧,站点 C 在 $t2=3\,\mu\,\text{s}$ 时刻发送一个帧。假设帧足够长保证两个站点的冲突检测。

- (1) 站点 C 听到冲突的时刻 t3=?
- (2) 站点 A 听到冲突的时刻 t4=?
- (3) 站点 A 在检测到冲突前发送的比特数是多少?
- (4) 站点 C 在检测到冲突前发送的比特数是多少?
- (5) 若 A-D 之间距离为 10km,按照 CSMA/CD 协议,该局域网最短帧长应该是多少?

答:

We have $t_1 = 0$ and $t_2 = 3 \mu s$

a.
$$t_3 - t_1 = (2000 \text{ m}) / (2 \times 10^8 \text{ m/s}) = 10 \text{ } \mu\text{s} \rightarrow t_3 = 10 \text{ } \mu\text{s} + t_1 = 10 \text{ } \mu\text{s}$$

b.
$$t_4 - t_2 = (2000 \text{ m}) / (2 \times 10^8 \text{ m/s}) = 10 \text{ µs} \rightarrow t_4 = 10 \text{ µs} + t_2 = 13 \text{ µs}$$

c.
$$T_{fr(A)} = t_4 - t_1 = 13 - 0 = 13 \ \mu s \rightarrow Bits_A = 10 \ Mbps \times 13 \ \mu s = 130 \ bits$$

d.
$$T_{fr(C)} = t_3 - t_2 = 10 - 3 = 07 \mu s$$
 \rightarrow Bits_C = 10 Mbps \times 07 $\mu s = 70$ bits

e. $tp=10km/200m/ \mu s = 50 \mu s$, $\therefore 2tp=100 \mu s$

最短帧长 Lmin ≥ 2tp × 10 M bps = 1000 bits

---答案(1)和(2)每题 1 分, 答案(3)(4)(5)每题 2 分

- 4. 两个相邻的节点 $A \times B$ 采用滑动窗口协议,其序号占用 3 比特,在后退 N 帧 ARQ 的方式中,发送方的窗口尺寸为 5。假定 A 给 B 发送数据,对于下列事件,画出发送方窗口的位置,并说明可以继续发送的帧号。
- (1)在 A 发送数据帧之前。
- (2)在 A 发送数据帧 0, 1, 2 之后, B 应答了 0, 1 帧, 并且 A 收到了这些应答帧。
- (3)在 A 发送数据帧 3, 4, 5之后, B 应答了 4号帧, 并且 A 收到了这些应答帧。

答:

---答案(1)每题 1 分, 答案(2)(3)每题 3 分

5.按照下图给出的拓扑结构,使用 Dijkstra 算法求结点 A 到结点 F 的最小费用路径,并给出以 A 为顶点的最小代价通路树。

答:

T	L(B) path	L(C) path	L(D) path	L(E) path	L(F) path
1 {A}	1 A-B	∞ -	4 A-D	∞ -	∞ -
2{A,B}	1 A-B	4 A-B-C	4 A-D	2 A-B-E	∞ _
3{A,B,E}	1 A-B	3 A-B-E-C	3 A-B-E-D	2 A-B-E	6 A-B-E-F
4{A,B,E,C}	1 A-B	3 A-B-E-C	3 A-B-E-D	2 A-B-E	5 A-B-E-C-F
5{A,B,E,C,D}	1 A-B	3 A-B-E-C	3 A-B-E-D	2 A-B-E	5 A-B-E-C-F
6{A,B,E,C,D,F}	1 A-B	3 A-B-E-C	3 A-B-E-D	2 A-B-E	5 A-B-E-C-F

------每个步骤1分,画图1分

采用可变长子网掩码技术可把大网络分成小子网。假设 A 公司需要把子网掩码为 255.255.0.0 的网络 40.15.0.0 分为两个子网,假设第一个子网为 40.15.0.0 / 17,则(1) 第二个子网的网络号和子网掩码是多少?假设另外一个 B 公司有 2 个分部,第一分部有 2000 台主机,(2)则至少应给其分配多少个 C 类网络?如果分配给第一分部的网络号为 196.25.64.0,(3)则指定给其的子网掩码为是多少?假设给 B 公司的第二分部分配的 C 类网络号为 196.25.16.0~196.25.31.0,(4)则其对应的子网掩码是多少?如果路由器收到一个目标地址为 11000100.00011001.01000011.00100001 的数据报,(5)则该数据报应送给 B 公司的第一分部还是第二分部?以上答案的计算过程全部写出。

答:

(1) 由于第一个子网为 40.15.0.0/17, 其划分子网的最小借位是第三个 8bit 为的第一个bit, 其权值为 128, 所以, 第二个子网应该是 40.15.128.0/17;

-----1分

(2) 按照 $1 \uparrow C$ 类网络可以容纳 254 台主机,2000/254 = 7.8,所以至少应该分配给其分配 $8 \uparrow C$ 类网地址才能满足需求;

-----1分

(3) 8 个 C 类网需要 3 个 bit 才能表达,并且是 8 个 C 类网合并成一个大块地址,所以,子网掩码需要在典型的 C 类掩码 255.255.255.0 的基础上向左移动 3bit,所以,其子网掩码为 196.25.64.0/21,即 255.255.248.0:

-----2 分

(4) 地址范围 $196.25.16.0 \sim 196.25.31.0$,发生变化的 bit 是第 3 个 8bit 位的第 4 位,即右起 12 个 bit 位从全 0 变化为全 1,而变化的应该是主机位,而子网掩码只指示网络 bit 位,所以其子网掩码为 255.255.11110000.00000000,即 255.255.240.0;

-----2分

(5) 目标地址 11000100.00011001.01000011.00100001 与第一部分网络的子网掩码 255.255.248.0 相与得到目标网络号为: 196.25.64.0, 刚好与第一部分的网络号一致, 所以数据报应该传送给 B 公司的第一部分; 而与第二部分网络的子网掩码 255.255.240.0 相与得到目标网络号是 196.25.64.0, 而第二部分的网络号是 196.25.16.0, 所以不能传送给第二部分。

三、简答题(每题5分,共25分)

1. 请对比 OSI/RM 参考模型与 TCP/IP 体系结构的异同。

答:

OSI	TCP/IP	
Application		
Presentation	Application	
Session		
Transport	Transport (host-to-host)	
Network	Internet	
Data Link	Network Access	
Physical	Physical	

-----5分

(按 TCP 各层给分,每层 1 分,图示或语言描述均可)

2. 请简要说明 CSMA/CD 协议的工作原理。

答:

发送数据前载波侦听,等待空闲。------1分

发送后侦听网络,检测冲突。------2分

如果冲突,则立即停止发送,发送 Jamming 信号,使其他站停止发送,然后继续等待时机。 ------2 分

3. 数据链路层已有差错控制,但在传输层仍需差错控制,请分析其原因? 答:

数据链路层的差错控制负责相邻两个节点间的差错控制,-----2分 而传输层的差错控制负责发送端和接收端的差错控制,-----2分 但在中间的节点,如路由器上的网络层有可能出现丢包等差错等,---------1分

因此仅有数据链路层的差错控制还是不够的,还需要传输层的差错控制。

4. 简述虚电路和数据报交换技术的特点。

答:

数据报:每个分组独立,不沿相同的路径前进,需要为每个数据报单独进行路由,并且也不按顺序到达,目的节点需要回复分组顺序,灵活但开销大,由端系统实现不可靠的服务到可靠服务的转变;------2分

虚电路:发送任何数据报前,需要建立预定的路由,所有分组按顺序,沿相同路由到达目的节点,不需要单独路由,且预定路由不独占,高效但灵活性差,在网络层就实现了部分可靠服务。------3分

5. 简述 TCP 拥塞控制中的慢启动和拥塞避免的原理,并画出示意图,阈值为 16。 答:

当有一次超时发生时:

- 1) 设置慢启动阈值为目前拥塞窗口大小的一半,即 ssthresh=cwnd/2。------1分
- 2) 设置 cwnd=1, 执行慢启动过程, 直到 cwnd=ssthresh。这个阶段中 cwnd 每接收到一个 ACK 就增加 1。------- 1 分
- 3) 当 cwnd>=ssthresh, 进入拥塞避免阶段, 每过一个往返时间 cwnd 就增加 1。------1 分

-----2 分