zac Tilel Alvarado 7 de enero de 2025 10° Escuela Oaxaqueña de Matemáticas aniel Alvarado ESEM

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

Capítulo 1

Básicos de Teoría de Grupos y Acciones de Grupos

Estudiaremos en todo el curso algo llamado la **teoría geométrica de grupos**. Esta teoría está en la intersección de varias áreas, como son la teoría de grupos, la topología algebraica y la geometría diferencial.

Veremos básicos de teoría de grupos (junto con cosas de acciones de grupos) y cosas de topología algebraica.

§1.1 Grupos Libres

La motivación de grupos libres es que cuando tenemos dos espacios vectoriales V y W, para definir un morfismo f entre ambos espacios basta con definirlo en la base de V. Sin embargo, en grupos resulta más complicado hacer esta definición para poder definir el morfismo.

Definición 1.1.1

Sea S un conjunto y \hat{S} un conjunto disjunto de S y biyectivo a S. Una **palabra** en $S \cup \hat{S}$ es una sucesión finita en $S \cup \hat{S}$. Denotamos por A(S) al conjunto de todas las palabras en S.

Observación 1.1.1

Lo último en la definición anterior quiere decir que tomemos una función biyectiva $\varphi: S \to \hat{S}$.

Proposición 1.1.1

Sea S un conjunto, entonces A(S) es un monoide con la operación de concatenación. Tal que:

- 1. La palabra vacía $\emptyset = \varepsilon$ es el elemento neutro.
- 2. La operación es asociativa.

Demostración:

Pero, ¿cómo agregamos inversos?

Definición 1.1.2

Sea S un conjunto. Definimos la relación \sim en A(S) como la generada por:

$$\forall x, y \in A(S) \forall s \in Sxs\hat{s}y \sim xy;$$

 $\forall x, y \in A(S) \forall s \in Sx\hat{s}sy \sim xy;$

Proposición 1.1.2

El espacio cociente $F(S) = A[S]/\sim$ es un grupo con la operación concatenación $[w] \cdot [v] = [wv]$. F(S) es llamado **grupo libre**.

Demostración:

Ejemplo 1.1.1

Si $S = \{a\}$, entonces $F(S) = \{\ldots, \hat{a}\hat{a}\hat{a}, \hat{a}\hat{a}, \hat{a}, \emptyset, a, aa, aaa, \ldots\} \cong \mathbb{Z}$.

En el ejemplo anterior la concatenación de palabras se denotará simplemente por potencia y, al elemento asociado en \hat{S} se le denotará por s^{-1} .

Ejemplo 1.1.2

Si |S| > 1, entonces F(S) no es abeliano.

Proposición 1.1.3 (Propiedad Universal de Grupos Libres)

Sea F(S) el grupo libre generado por S. Para todo grupo H y toda función $f:S\to H$ existe un único homomorfismo de grupos $\hat{f}:F(S)\to H$ tal que el diagrama:

es conmutativo, esto es que:

$$\hat{f}\circ\iota=f$$

Demostración:

Definición 1.1.3

Sea $n \in \mathbb{N}$ y $S = \{x_1, ..., x_n\}$ con $x_i \neq x_j$ para todo $i, j \in [|1, n|]$ con $i \neq j$. Enotnes, escribimos por F_n al **grupo libre generado por** S y F_n es llamado **grupo libre de rango** n.

§1.2 Generadores y Relaciones

Definición 1.2.1

Sea G un grupo y $S \subseteq G$. El subgrupo normal generado por S es el subgrupo normal más pequeño que contiene a S, denotamos este conjunto por: $\langle S \rangle^{\triangleleft} = \langle \langle S \rangle \rangle$.

Ejemplo 1.2.1

Si G es un grupo abeliano, entonces para todo $S \subseteq G$:

$$\langle S \rangle^{\triangleleft} = \langle S \rangle$$

Definición 1.2.2

Sea S un conjunto y considere el conjunto de palabras de $S \cup S^{-1}$ denotado por $(S \cup S^{-1})^*$. Entonces, para $R \subseteq S \cup S^{-1}$ definimos:

$$\langle S|R\rangle = F(S)/\langle R\rangle^{\triangleleft}$$

Si G es grupo con $G \cong \langle S|R\rangle$, entonces el par (S,R) es llamado una **presentación de** G.

Ejemplo 1.2.2

Para todo $n \in \mathbb{N}$, $\langle x|x^n \rangle \cong \mathbb{Z}/n\mathbb{Z}$.

Ejemplo 1.2.3

 $\mathbb{Z} \cong \langle a | \emptyset \rangle.$

Ejemplo 1.2.4

Considere F_n y \mathbb{Z}^n . Ambos no son isomorfos ya que F_n no necesariamente es abeliano. Sea:

$$R = \left\{ x_i x_j x_i^{-1} x_j^{-1} \middle| x_i, x_j \in F_n \right\} \subseteq F_n$$

entonces:

$$\mathbb{Z}^n \cong F_n/\langle R \rangle^{\triangleleft}$$

tal que:

(0,)

Proposición 1.2.1 (Propiedad Universal de la presentación de Grupos)

Demostración:

El problema de la palabra: Sea $G = \langle S|R\rangle$, dar un algoritmo que determine cuando una palabra representa una palabra trivial o no.

Definición 1.2.3

Sea G un grupo. Decimos que G es **finitamente presentado** (abreviado por f.p.) si existe un conjunto finito S y un conjunto finito $S \subseteq (S \cup S^{-1})^*$ tal que:

$$\langle S|R\rangle \cong G$$

Ejemplo 1.2.5

 \mathbb{Z} , \mathbb{Z}^n y $\mathbb{Z}/n\mathbb{Z}$ son f.p.

§1.3 Producto Libre de Grupos

Definición 1.3.1

Sea $\{G_i\}_{i\in I}$ una familia no vacía de grupos. El **producto libre de** $\{G_i\}_{i\in I}$, denotado por:

$$*_{i \in I}G_i$$

es el conjunto Ω de todas las palabras reducidas $g_1 \cdots g_n$, donde $g_i \in G$ y $g_i \neq e_i$. Además, g_i y g_{i+1} no están en el mismo G_j .

Proposición 1.3.1

 Ω con la operación de concatenación y reducción es un grupo.

Demostración:

Ejercicio 1.3.1

Si $G_i = \langle S_i | R_i \rangle$, entonces $*_{i \in I} G_i = \langle \bigcup_{i \in I} S_i | \bigcup_{i \in I} R_i \rangle$.

Demostración:

Ejercicio 1.3.2

Investigar la propiedad universal del producto libre de grupos.

§1.4 Pushout de Grupos

Supongamos que tenemos el siguiente diagrama de grupos:

¿será posible construir el grupo L junto con los morfismos β_1 y β_2 ?

Resulta que esto también satisface una propiedad universal.

Definición 1.4.1

Sean A un grupo y $\alpha_i:A\to G_i,\ i=1,2$ morfismos de grupos. Un grupo G junto con morfismos $\beta_i:G_i\to G$ satisfaciendo:

$$\beta_1 \circ \alpha_1 = \beta_2 \circ \alpha_2$$

es llamado un **pushout** de G_1 y G_2 sobre A si la siguiente propiedad universal se satisface:

§1.5 ACCIONES DE GRUPOS

Definición 1.5.1

Sean G un grupo y X un conjunto. Una acción de G en X es una función binaria $G \times X \to X$, $(g,x) \mapsto gx$ que satisface dos axiomas:

- 1. ex = x.
- 2. $\forall g, h \in G, g(hx) = (gh)x$, para todo $x \in X$.

Esta acción se denota por $G \curvearrowright X$.

Ejemplo 1.5.1

 $\mathbb{Z} \curvearrowright \mathbb{R}$ dada por $(n, x) \mapsto n + x$.

Esta acción se puede generalizar a una $\mathbb{Z}^n \curvearrowright \mathbb{R}^n$, tal que $(\vec{n}, \vec{x}) \mapsto \vec{n} + \vec{x}$.

Estas dos acciones cumplen los dos axiomsa de la definición anterior.

Ejemplo 1.5.2

 $\mathbb{Z}/2\mathbb{Z} \curvearrowright \mathbb{S}^2$. Tomando $\mathbb{Z}/2\mathbb{Z} = \langle a|a^2\rangle$, hacemos ax = -x para todo $x \in \mathbb{S}^2$. Esta acción es llamada **acción antipodal**.

Ejemplo 1.5.3

 $GL(n,\mathbb{R}) \curvearrowright \mathbb{R}^n$ tal que $(A,\vec{x}) \mapsto A\vec{x}$ el producto de matrices usual viendo a \vec{x} como vector columna.

Observación 1.5.1

Una acción $G \curvearrowright X$ es lo mismo que un morfismo de grupos $\varphi : G \to \operatorname{Aut}(X)$.

Dependiendo de X, podemos pedir diferentes cosas para Aut (X). En el caso anterior hacemos $g \mapsto \varphi_g$ donde $\varphi_g : X \to X$ es tal que $x \mapsto \varphi_g(x) = gx$.

De forma viceversa, podemos definir un morfimso de grupos a partir de una acción de grupos.

Definición 1.5.2

Sea $G \curvearrowright X$. Dado $x \in X$ definimos la **órbita de** x como:

$$\mathcal{O}_x = \left\{ gx \middle| g \in G \right\}$$

Ejemplo 1.5.4

En la acción $\mathbb{Z} \curvearrowright \mathbb{R}$

Definición 1.5.3

Dada una acción de grupos $G \curvearrowright X$, definimos el **espacio cociente** X/G como el espacio cociente generado a partir de la relación \sim dada por:

$$x \sim y$$
 si y sólo si $\exists g \in G$ tal que $y = gx$

5

Ejemplo 1.5.5

Si $\mathbb{Z}^2 \curvearrowright \mathbb{R}^2$, entonces el espacio $\mathbb{R}^2/\mathbb{Z}^2 = \mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$.

Eiemplo 1.5.6

En la acción $\mathbb{Z}/2\mathbb{Z} \curvearrowright \mathbb{S}^2$, el espacio resulta que $\mathbb{S}^2/(\mathbb{Z}/2\mathbb{Z}) = \mathbb{R}P^2$.

Capítulo 2

Gráficas y Árboles

§2.1 Básicos

Observación 2.1.1

En lo que sigue, todas las gráficas serán no dirigidas, simples y sin lazos.

Que sean no dirigidas es que las aristas no tienen dirección, que sean simples es que no haya más de una arista uniendo dos vértices y que no tengan lazos es que un vértice no sea unido hacia sí mismo por una arista.

Definición 2.1.1

Sea A un conjunto, se define el conjunto de k-tuplas de A, denotado por $[A]^k$, como el conjunto de todos los subconjuntos de A de cardinalidad k.

Definición 2.1.2

Una **gráfica** es un par G = (V, E) de conjuntos disjuntos, donde V es un conjunto no vacío de **vértices** o **nodos** V y un conjunto E de **aristas** tal que $E \subseteq [V]^2$.

Ejemplo 2.1.1

Considere la gráfica G = (V, E) donde $V = \{a, b, c, d\}$ y $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}$.

Definición 2.1.3

Sea (V, E) una gráfica.

- 1. Decimos que dos vértices $v, v' \in V$ son vecinos o adyacentes si están unidos por una arista, es decir si $\{v, v'\} \in E$.
- 2. El número de vecinos de un vértice v es el **grado del vértice**, denotado por deg(v).
- 3. Si el grado de todos los vértices de una gráfica es el mismo, decimos que la gráfica es regular.

Definición 2.1.4

Una gráfica se dice completa si todos los vértices son vecinos unos de otros (salvo él mismo).

Ejemplo 2.1.2

```
(\{a,b\},\{\{a,b\}\}) es completa y regular.

(\{a,b,c\},\{\{a,b\},\{a,c\},\{b,c\}\}) es completa y regular.

(\{a,b,c,d\},\{\{a,b\},\{b,c\},\{c,d\},\{d,a\}\}) no es completa y pero sí es regular.
```

Definición 2.1.5

Sean X y Y gráficas.

- 1. Una función $f:V(X)\to V(Y)$ es de **gráficas** si envía aristas en aristas, es decir para todo $\{v,w\}\in E(X)\Rightarrow \{f(v),f(w)\}\in E(Y)$.
- 2. Decimos que X y Y son **isomorfas** si existe una función de gráficas que es biyectiva.

Definición 2.1.6

Sea X una gráfica. Un **camino de longitud** $n \in \mathbb{N} \cup \{\infty\}$ **en** X es una sucesión de vértices $v_0, v_1, ...$ tal que $v_i \neq v_j$ si $i \neq j$ y $\{v_i, v_{i+1}\} \in E(X)$.

Si $n < \infty$, decimos que v_0 y v_n son unidos por un camino.

- 1. Decimos que X es **conexo** si cualesquiera dos vértices están unidos por un camino.
- 2. Sea $n \in \mathbb{N}$. Un **ciclo** de longitud n es un camino $v_0, ..., v_{n-1}$ en X con $\{v_{n-1}, v_0\} \in X$.

Definición 2.1.7

Decimos que una gráfica X es un **árbol** si es conexa y no tiene ciclos.

Proposición 2.1.1

Una gráfica es un árbol si y sólo si para cualesquiera dos vértices existe un único camino que une a ambos vértices.

Demostración:

Ejercicio.

Definición 2.1.8

Un grupo G actúa libremente en un conjunto X si $g \cdot x \neq x$ para todo $g \in G \setminus \{e_G\}$.

Teorema 2.1.1

Un grupo G actúa libremente en un árbol si y sólo si G es grupo libre.

Demostración:

Esto será inmediata después de que veamos la parte de topología algebraica.

Naturalmente surge la siguiente pregunta: ¿qué pasa si relajamos la condición de actuar libremente? ¿qué tipos de grupos pueden aparecer? Resulta que hay un teorema que enuncia lo que sucede en esta sucesión y aparecen productos libres de grupos, pushouts de grupos y grupos HNN. Esto es conocido como la **teoría de Basser-Serre**.

Definición 2.1.9

Una *n*-variedad es un espacio topológico (X, τ) que localmente es homeomorfo a \mathbb{R}^n .

Ejemplo 2.1.3

Ejemplos de 3-variedades son $\mathbb{T}^3 = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$, \mathbb{R}^3 , cualquier abierto de \mathbb{R}^3 , una superficie Σ producto con \mathbb{S}^1 es también una 3-variedad.

Resulta que hay un teorema que si, tomamos una 3-variedad M^3 , podemos ver a:

$$M^3 = M_1 \# M_2 \# \cdots \# M_r$$

(donde se está haciedo aquí suma conexa). Va a resultar que:

$$\pi_1(M^3) = \pi_1(M_1) * \pi_1(M_2) * \cdots * \pi_1(M_r)$$

es el producto libre de estos grupos.

Capítulo 3

Ejercicios y Problemas Teoría de Grupos

§3.1 Preliminares Teoría de Grupos

Ejercicio 3.1.1

Supongamos que G es un grupo que tiene un subgrupo de índice finito H. Demuestra que G tiene un subgrupo normal de índice finito.

Demostración:

Sea:

$$N = \langle H \rangle^{\triangleleft}$$

tenemos los siguientes subgrupos de G:

que satisfacen (por ser el índice multiplicativo):

$$[G:H] = [G:N][N:H]$$

como $[G:H]<\infty$, se sigue que $[G:N]<\infty$, con lo que N es el subgrupo normal buscado.

Ejercicio 3.1.2

¿Cuál es el grupo de automorfismos del grupo aditivo \mathbb{Z} ?

Solución:

Considere al grupo de automorfismos del grupo aditivo \mathbb{Z} , digamos:

$$A = \operatorname{Aut}\left(\mathbb{Z}\right) = \left\{f : \mathbb{Z} \to \mathbb{Z} \middle| f \text{ es isomorfismo}\right\}$$

Afirmamos que Aut $(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ donde $\mathbb{Z}/2\mathbb{Z}$ es el grupo aditivo de los enteros módulo 2. En efecto, afirmamos que:

$$\mathrm{Aut}\left(\mathbb{Z}\right)=\left\{\mathbb{1}_{\mathbb{Z}},-\mathbb{1}_{\mathbb{Z}}\right\}$$

donde $\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es la identidad de \mathbb{Z} y $-\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es tal que $-\mathbb{1}_{\mathbb{Z}}(m) = -m$ para todo $m \in \mathbb{Z}$. En efecto, es claro que $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\} \subseteq \operatorname{Aut}(\mathbb{Z})$.

Sea ahora $f \in Aut(\mathbb{Z})$, se tiene que:

$$f(m) = f(\underbrace{1 + \dots + 1}_{m \text{-veces}}) = \underbrace{f(1) + \dots + f(1)}_{m \text{-veces}} = mf(1)$$

para todo $m \in \mathbb{N}$. De forma análoga se demuestra que:

$$f(-m) = -mf(1), \quad \forall m \in \mathbb{N}$$

Así que:

$$f(m) = mf(1), \quad \forall m \in \mathbb{Z}$$

por lo que f está únicamente determinada por su valor en 1. Como \mathbb{Z} tiene únicamente dos generadores (por ser un grupo cíclico infinito), al ser f automorfismo debe suceder que $\mathbb{Z} = \langle f(1) \rangle$, así que f(1) = 1 ó f(1) = -1, es decir que:

$$f(m) = mf(1)$$

$$= \begin{cases} m & \text{si } f(1) = 1 \\ -m & \text{si } f(1) = -1 \end{cases}$$

$$= \begin{cases} 1_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \\ -1_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \end{cases}$$

es decir, que $f = \mathbb{1}_{\mathbb{Z}}$ o $f = -\mathbb{1}_{\mathbb{Z}}$. Por tanto, Aut $(\mathbb{Z}) = \{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$. Para la otra parte, es inmediato que el grupo $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$ con la composición de funciones es isomorfo al grupo aditivo $\mathbb{Z}/2\mathbb{Z}$.

Ejercicio 3.1.3

Supongamos que tenemos una sucesión exacta corta de grupos:

$$1 \to N \to G \to K \to 1$$

demuestra que si N y K son grupos finitamente generados, entonces G es finitamente generado.

Demostración:

Al tenerse la sucesión exacta corta de grupos, estamos diciendo que existen homomorfismos f_0 : $\langle 1 \rangle \to N, f_1 : N \to G, f_2 : G \to K \text{ y } f_3 : K \to \langle 1 \rangle$ tales que:

$$\operatorname{Im}(f_{i-1}) = \ker(f_i), \quad \forall i = 1, 2, 3$$

En particular, notemos que f_1 es monomorfismo y que f_2 es epimorfismo, ya que:

$$\ker(f_1) = \operatorname{Im}(f_0) = \langle e_N \rangle$$

siendo e_N la identidad del grupo N y, además:

$$Im(f_2) = ker(f_3) = K$$

por lo que se tiene lo afirmado.

Supongamos ahora que N y K son finitamnete generados, entonces existen elementos $n_1, ..., n_m \in N$ y $k_1, ..., k_l \in K$ tales que:

$$N = \langle n_1, ..., n_m \rangle$$
 y $K = \langle k_1, ..., k_l \rangle$

Como f_3 es epimorfismo, entonces del Primer Teorema de Isomorfismo se sigue que:

$$K \cong G/\ker(f_3) = G/\operatorname{Im}(f_2) = G/N'$$

donde $N' = f_2(N)$.

Afirmamos que:

$$G = \langle f_1(n_1), ..., f_1(n_m), f_2^{-1}(k_1), ..., f_2^{-1}(k_l) \rangle$$

Ejercicio 3.1.4

Demuestra que en el producto semidirecto $N \rtimes_{\varphi} H$, H es un subgrupo normal si y sólo si φ es el homomorfismo trivial.

Demostración:

Recordemos que el producto semidirecto $N \rtimes_{\varphi} H$ es el grupo $N \times H$ dotado de la operación:

$$(n,h)(n',h') = (n\varphi_h(n'),hh')$$

donde $\varphi: H \to \operatorname{Aut}(N)$ es un homomorfismo tal que $h \mapsto \varphi_h$. El elemento neutro de este grupo es (e_N, e_H) , donde cada elemento tiene como inverso:

$$(n,h)^{-1} = ((\varphi_{h^{-1}}(n))^{-1}, h^{-1})$$

Sean $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, se tiene que:

$$(n_{1}, h_{1})(e_{N}, h)(n_{1}, h_{1})^{-1} = (n_{1}, h_{1})(e_{N}, h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}\varphi_{h_{1}}(e_{N}), h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}\varphi_{h_{1}}(e_{N}), h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}e_{N}, h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}, h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= \left(n_{1}\varphi_{h_{1}h} \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1} \right), h_{1}hh_{1}^{-1} \right)$$

$$= \left(n_{1}\varphi_{h_{1}h} \left((\varphi_{h_{1}^{-1}}(n_{1}^{-1})), h_{1}hh_{1}^{-1} \right) \right)$$

$$= \left(n_{1}\varphi_{h_{1}hh_{1}^{-1}} \left(n_{1}^{-1} \right), h_{1}hh_{1}^{-1} \right)$$

pues, $\varphi_{h_1}(e_N) = e_N$ y por ser $h \mapsto \varphi_h$ homomorfismo.

 \Rightarrow): Suponga que H es un subgrupo normal de $N \rtimes_{\varphi} H$, esto es que el grupo H visto como subgrupo de $N \rtimes_{\varphi} H$:

$$H = \left\{ (e_N, h) \middle| h \in H \right\}$$

es subgrupo normal de $N \rtimes_{\varphi} H$. Como es normal, se sigue que:

$$(n_1, h_1)(e_N, h)(n_1, h_1)^{-1} \in H$$

para todo $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, por lo que:

$$\left(n_1\varphi_{h_1hh_1^{-1}}\left(n_1^{-1}\right), h_1hh_1^{-1}\right) \in H$$

nuevamente, para todo $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$. En particular:

$$n_1 \varphi_{h_1 h h_1^{-1}} \left(n_1^{-1} \right) = e_N$$

por lo que para todo $n \in N$ y $h \in H$:

$$n^{-1}\varphi_h(n) = e_N \Rightarrow \varphi_h(n) = n$$

es decir, que $\varphi_h = \mathbb{1}_H$, por lo que $h \mapsto \varphi_h$ es el homomorfismo trivial.

 \Leftarrow): Suponga que φ es trivial, se sigue que:

$$(n_1, h_1)(e_N, h)(n_1, h_1)^{-1} = \left(n_1 \varphi_{h_1 h h_1^{-1}} \left(n_1^{-1}\right), h_1 h h_1^{-1}\right)$$

$$= (n_1 \mathbb{I}_H(n_1^{-1}), h_1 h h_1^{-1})$$

$$= (n_1 n_1^{-1}, h_1 h h_1^{-1})$$

$$= (e_N, h_1 h h_1^{-1}) \in H$$

para todo $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, por lo que H es normal en $N \rtimes_{\varphi} H$.

Ejercicio 3.1.5

Demuestra que el producto libre en n generadores F_n es isomorfo al producto libre de n copias de \mathbb{Z} , $\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$.

Demostración:

Ejercicio 3.1.6

Demuestra que el producto libre G * H de grupos no triviales H y G tiene centro trivial.

Demostración:

Sean G y H grupos no triviales. Considere G*H su producto libre. El centro de G*H se define por:

$$Z(G*H) = \left\{ x \in G*H \middle| xy = yx, \forall y \in G*H \right\}$$

Sea $u \in Z(G * H)$, se tiene que:

$$ux = xu, \quad \forall x \in G * H$$

como G y H son no triviales, podemos tomar u = gh donde $g \in G \setminus \{e_G\}$ y $h \in H \setminus \{e_H\}$. Se sigue así que:

$$ugh = ghu$$

Si $u \neq e_{G*H}$, entonces existirían $x_1, ..., x_n \in G \cup H$ (alternándose un elemento con otro estando uno en G y otro en H) junto con $m_1, ..., m_n \in \mathbb{Z}$ tales que:

$$u = x_1^{m_1} \cdots x_n^{m_n}$$

así que:

$$x_1^{m_1}\cdots x_n^{m_n}gh = ghx_1^{m_1}\cdots x_n^{m_n}$$

reduciendo ambas palabras resulta que x_n está en G y H a la vez, cosa que no puede suceder ya que ello implicaría que $x_i \in G \cap H$ para todo i = 1, ..., n. Por tanto, $u = e_{G*H}$.

Ejercicio 3.1.7

Demuestra que $\mathbb{Z}_2 * \mathbb{Z}_2$ es isomorfo a $\mathbb{Z} \rtimes \mathbb{Z}_2$.

Demostración:

Ejercicio 3.1.8

Denotemos por F_n al grupo libre en n generadores. Demuestre que F_n es isomorfo a F_m si y sólo si n=m.

Demostración:

Como F_n es grupo libre en n generadores y F_m lo es en m, tomamos $x_1,...,x_n$ y $y_1,...,y_m$ tales que:

$$F_n =$$

 \Rightarrow): Supongamos que F_n es isomorfo a F_m .

Ejercicio 3.1.9

Demuestra que todo grupo admite una presentación.

Demostración:

Sea G un grupo y tomemos S=G. Considere F(S) el grupo libre sobre el conjunto S. Sea $f:S\to G$ la función dada por:

$$f(s) = s, \quad \forall s \in S = G$$

entonces, por la propiedad universal de grupos libres existe un único homomorfismo $\hat{f}: F(S) \to G$ tal que:

$$\hat{f} \circ \iota = f$$

en particular, \hat{f} es epimorfismo, pues:

$$\hat{f} \circ \iota(S) = f(S) = G$$

así que, por el primer teorema de isomorfismos existe un único isomorfismo $g: G \to F(S)/\ker(\hat{f})$. Tomando:

$$K = \ker(\hat{f})$$

se sigue que:

$$\langle K \rangle^{\triangleleft} = \ker(\hat{f})$$

por lo que $G \cong F(S)/\langle K \rangle^{\triangleleft}$

Ejercicio 3.1.10

Demuestra que el grupo con presentación:

$$\langle x,y|xyx^{-1}y^{-1}\rangle$$

es isomorfo a \mathbb{Z}^2 .

§3.2 ACCIONES DE GRUPOS

Ejercicio 3.2.1

Sean G un grupo y X un G-conjunto, es decir que G actúa en X. Para $x \in X$ definimos el **estabilizador de** x como:

$$G_x = \left\{ g \in G \middle| gx = x \right\}$$

Sean $x, y \in X$ tales que existe $g \in G$ tal que y = gx. Demuestre que $G_y = gG_xg^{-1}$.

Demostración:

Veamos la doble contención:

- Sea $g_1 \in G_y$, entonces $g_1y = y$, por lo cual $g_1gx = gx$, luego $g^{-1}g_1gx = g^{-1}gx = x$, así que $g^{-1}g_1g \in G_x$, por tanto $g_1 \in gG_xg^{-1}$.
- Sea $gg_1g^{-1} \in gG_xg^{-1}$, entonces se cumple que $g_1x = x$, así que:

$$gg_1g^{-1}y = gg_1(g^{-1}y)$$

$$= gg_1x$$

$$= gx$$

$$= y$$

por tanto, $gg_1g^{-1} \in G_y$.

por los dos incisos se sigue la igualdad.

Ejercicio 3.2.2

Sean G un grupo y X un G-conjunto, es decir, G actúa en X. Haga lo siguiente:

- (a) Demuestra que la siguiente relación en X es una relación de equivalencia: $x \sim y$ si y sólo si existe $g \in G$ tal que y = gx.
- (b) Demuestra que G_x es un subgrupo de G para todo $x \in X$.

Demostración:

De (a): Veamos que la relación \sim en X es de equivalencia:

- (Reflexividad) Sea $x \in X$, entonces existe $e_G \in G$ tal que $x = e_G x$, por lo cual $x \sim x$.
- (Simetría) Sean $x, y \in X$ tales que $x \sim y$, entonces existe $g \in G$ tal que y = gx. Se cumple además que existe $g^{-1} \in G$ tal que:

$$g^{-1}y = g^{-1}(gx)$$
$$= (g^{-1}g)x$$
$$= e_G x$$
$$= x$$

por lo cual, $y \sim x$.

■ (Transitividad): Sean $x, y, z \in X$ tales que $x \sim y$ y $y \sim z$, entonces existen $g_1, g_2 \in G$ tales que:

$$y = g_1 x \ y \ z = g_2 y$$

por lo cual:

$$z = g_2 y$$

$$= g_2(g_1 x)$$

$$= (g_2 g_1) x$$

14

así que existe $g_2g_1 \in G$ tal que $z = (g_2g_1)x$, por ende $x \sim z$.

de los tres incisos anteriores se sigue que \sim es relación de equivalencia.

De (b): Sea $x \in X$ y considere el conjunto G_x . Este conjunto es no vacío pues $e_G \in G_x$. Sean $a, b \in G_x$, se tiene que:

$$x = ax y x = bx$$

en particular, de la segunda igualdad se tiene que $x = b^{-1}x$, por lo cual $x = ax = a(b^{-1}x) = (ab^{-1})x$. Por tanto, $ab^{-1} \in G_x$. Luego, G_x es subgrupo de G.

Definición 3.2.1 (Árboles como espacios métricos)

Sea T un árbol. Una **geodésica entre dos puntos** x_1 **y** x_2 **de** T es un camino de longitud mínima que une x_1 y x_2 .

Definición 3.2.2

Sea G un grupo actuando en una gráfica Y. Una **inversión** consiste de un elemento $g \in G$ y una arista $\{u, v\}$ de Y tal que $g\{u, v\} = \{u, v\}$ y gu = v.

Ejercicio 3.2.3

Sean T un árbol y s un automorfismo de T. Si α es una geodésica, entonces $s\alpha$ es una geodésica.

Demostración:

Sea α una geodésica entre dos vértices del árbol T, digamos v_1 y v_2 . Como s es un automorfismo de T, entonces s es una función de gráficas (que va de T en sí misma) que es biyectiva.

Además, al ser s automorfismo se sigue que los vértices $s(v_1)$ y $s(v_2)$ son unidos por el camino $s\alpha$. Veamos que $s\alpha$ es una geodésica. En efecto, en caso de que no fuese un camino de longitud mínima, existiría otro camino, digamos β que une a los vértices $s(v_1)$ con $s(v_2)$.

Por ser s automorfismo, podemos tomar automorfismo inverso s^{-1} y sería tal que $s^{-1}\beta$ es un camino que une a los vértices v_1 y v_2 , el cual debe tener longitud menor que el camino α (ya que los caminos α y $s\alpha$ tienen la misma longitud) $\#_c$, pues α es una geodésica. Por tanto, $s\alpha$ es geodésica.

Ejercicio 3.2.4

Sea T un árbol y G un grupo actuando en T sin inversiones. Sea H un subgrupo de G tal que el conjunto de puntos fijos:

 $T^{H} = \left\{ x \in T \middle| hx = x, \forall h \in H \right\}$

es no vacío. Entonces, T^H es un subárbol de T.

Demostración:

Es inmediato que T^H es una subgráfica de T. Para ver que es subárbol de T basta con ver que T^H es conexo y que no tiene ciclos. En caso de que tenga solamente un vértice, es inmediato que es un árbol, por lo que supongamos que tiene a lo sumo 2 vértices.

- Sean $x, y \in T^H$ diferentes, entonces hx = x y hy = y para todo $h \in H$. Como T es un árbol, existe un único camino α que une a x con y, sean $v_1, ..., v_n$. Probaremos que los vértices de este camino están en T^H . En efecto, procederemos por inducción sobre la longitud del camino.
 - Supongamos que el camino es de longitud 1, entonces ya se tiene que x, y son vértices de la gráfica T^H , veamos que $\{x, y\}$ es una arista de la gráfica T^H .
- Veamos que no tiene ciclos. Suponga que T^H tiene un cíclo, entonces T no podría ser un árbol, ya que por ser T^H subgráfica de T se seguiría que T tiene al menos un ciclo $\#_c$. Por tanto, T^H no tiene ciclos.

Ejercicio 3.2.5

Sea γ la línea recta real con su estructura de gráfica canónica, es decir los vértices son los enteros \mathbb{Z} , y las aristas son $\{n, n+1\}$ con $n \in \mathbb{Z}$. Demuestra que el grupo $\operatorname{Aut}(\gamma)$ es isomorfo a D_{∞} .

Demostración:

Recordemos que:

$$D_{\infty} = \langle x, y \middle| x^2 = y^2 = 1 \rangle$$

Sea $f \in \text{Aut}(\gamma)$, entonces $f: \gamma \to \gamma$ es función entre dos gráficas y es biyectiva. Afirmamos que existe $n \in \mathbb{Z}$ tal que

$$f(m) = m + n$$

para todo vértice $m \in \mathbb{Z}$ y,

$${f(m), f(m+1)} = {m+n, m+n+1}$$

Ejercicio 3.2.6

Demuestra que todo grupo finito actuando en un árbol tiene un punto fijo.

Demostración:

Sea T un árbol y $G \curvearrowright T$ una acción del grupo G en T, siendo G grupo finito. Veamos que T tiene un punto fijo, es decir que existe $x \in T$ tal que:

$$gx = x, \quad \forall g \in G$$

En efecto, suponga que no existe $x \in T$ tal que sucede lo anterior, por lo que para todo $x \in T$ existe $g_x \in G$ tal que:

$$g_x x \neq x$$

Sea:

$$\left\{g_x x \middle| x \in T\right\}$$