

WEBENCH® Design Report

VinMin = 13.0V VinMax = 60.0V Vout = 12.0V Iout = 0.2A Device = LMR16006YDDCR Topology = Buck Created = 1/25/16 9:24:00 AM BOM Cost = \$1.87 BOM Count = 8 Total Pd = 0.47W

Design: 702229/60 LMR16006YDDCR LMR16006YDDCR 13.0V-60.0V to 12.00V @ 0.2A

Electrical BOM

# Name	Manufacturer Manufacturer	Part Number	Properties	Qty	Price	Footprint
I. Cboo	t MuRata	GRM188R72A104KA35D Series= X7R	Cap= 100.0 nF VDC= 100.0 V IRMS= 0.0 A	1	\$0.03	0603 5 mm ²
2. Cin	TDK	C3225X7R2A225K230AB Series= X7R	Cap= 2.2 uF ESR= 2.8 mOhm VDC= 100.0 V IRMS= 9.8247 A	1	\$0.19	1210 15 mm ²
3. Cout	MuRata	GRM21BR61E475MA12L Series= X5R	Cap= 4.7 uF ESR= 2.0 mOhm VDC= 25.0 V IRMS= 7.29 A	1	\$0.06	0805 7 mm ²
1. D1	Diodes Inc.	DFLS1100-7	VF@Io= 770.0 mV VRRM= 100.0 V	1	\$0.14	PowerDI123 13 mm ²
5. L1	Coilcraft	ME3220-823KLB	L= 82.0 μH DCR= 3.0 Ohm	1	\$0.23	ME3220 16 mm ²
S. Rfbb	Vishay-Dale	CRCW04026K04FKED Series= CRCWe3	Res= 6.04 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7. Rfbt	Vishay-Dale	CRCW040288K7FKED Series= CRCWe3	Res= 88.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
3. U1	Texas Instruments	LMR16006YDDCR	Switcher	1	\$1.20	DDC0006A 10 mm²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	81.56 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	16.905 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	229.407 mA	Current	Peak switch current in IC
4.	lin Avg	47.84 mA	Current	Average input current
5.	L lpp	58.561 mA	Current	Peak-to-peak inductor ripple current
6.	M1 Irms	91.794 mA	Current	Q lavg
7.	BOM Count	8	General	Total Design BOM count
8.	FootPrint	72.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	2.1 MHz	General	Switching frequency
10.	IC Tolerance	18.0 mV	General	IC Feedback Tolerance
11.	M Vds Act	55.069 mV	General	Voltage drop across the MosFET
12.	Pout	2.4 W	General	Total output power
13.	Total BOM	\$1.87	General	Total BOM Cost
14.	D1 Tj	45.211 degC	Op_Point	D1 junction temperature
15.	Vout Actual	11.999 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
16.	Vout OP	12.0 V	Op_Point	Operational Output Voltage
17.	Cross Freq	30.627 kHz	Op_point	Bode plot crossover frequency
18.	Duty Cycle	21.033 %	Op_point	Duty cycle
19.	Efficiency	83.612 %	Op_point	Steady state efficiency
20.	IC Tj	49.984 degC	Op_point	IC junction temperature
21.	ICThetaJA	102.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
22.	IOUT_OP	200.0 mA	Op_point	lout operating point
23.	Phase Marg	60.869 deg	Op_point	Bode Plot Phase Margin
24.	VIN_OP	60.0 V	Op_point	Vin operating point
25.	Vout p-p	860.066 μV	Op_point	Peak-to-peak output ripple voltage
26.	Cin Pd	18.626 μW	Power	Input capacitor power dissipation
27.	Cout Pd	571.556 nW	Power	Output capacitor power dissipation
28.	Diode Pd	121.687 mW	Power	Diode power dissipation
29.	IC Pd	195.92 mW	Power	IC power dissipation
30.	L Pd	151.262 mW	Power	Inductor power dissipation

#	Name	Value	Category	Description
31.	Total Pd	470.401 mW	Power	Total Power Dissipation
32.	Vout Tolerance	3.349 %	Unknown	Vout Tolerance based on IC Tolerance and voltage divider resistors if
				applicable

Design Inputs

#	Name	Value	Description
1.	lout	200.0 m	Maximum Output Current
2.	VinMax	60.0	Maximum input voltage
3.	VinMin	13.0	Minimum input voltage
4.	Vout	12.0	Output Voltage
5.	base_pn	LMR16006Y	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LMR16006Y Product Folder: http://www.ti.com/product/LMR16006: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.