Secure Messaging

Britta Hale

*The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Secure Messaging

Britta Hale

*The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Pre-shared Keys

Pre-shared Keys

Session-based

Secure End-to-End Messaging

Secure Messaging

The Signal Protocol

Secret: a

Public: $A = g^a$

 $Key1: B^a = (g^b)^a = g^{ba}$

Server

Secret: b

Public: $B = g^b$

Key1:
$$A^b = (g^a)^b = g^{ba}$$

Desired Property #1: Forward Secrecy

Desired Property #2:
Post-Compromise Security (PCS)

*Condition: adversary is passive for one epoch

The Signal Protocol

The Signal Protocol

Secret: a

Public: $A = g^a$

 $Key1: B^a = (g^b)^a = g^{ba}$

Server

Secret: b

Public: $B = g^b$

Key1:
$$A^b = (g^a)^b = g^{ba}$$

The Signal Protocol

Secret: a

Public: $A = g^a$

 $Key1: B^a = (g^b)^a = g^{ba}$

Secret: b

Public: $B = g^b$

Key1:
$$A^b = (g^a)^b = g^{ba}$$

New Secret: b_2 , Public: $B_2 = g^{b_2}$

$$Key2: A^{b_2} = g^{ab_2}$$

$$Key2: B^{ab_2} = g^{ab_2}$$

New Secret: a_2 , Public: $A_2 = g^{a_2}$

Setup (handshake)

Perfect Forward Secrecy

Post-Compromise Security

*Attacker must be passive for an epoch to allow PCS healing

Forward and Post-Compromise Secure End-to-End Messaging

Secure End-to-End Messaging

Active Attacker is catastrophic to security

Ratcheting - Compromise?

Is that not a break in entity authentication?

Authentication In Signal

One-way QR-code / Numeric Authentication

Signal Issues

Static public keys

Signal Issues

Static public keys

Signal Issues

Static public keys

local_fprint = H(0)|fvers $||idpk_A|| \text{ID}_A ||idpk_A||$

remote fprint = $H(0||fvers||idpk_B||ID_B||idpk_B)$

Signal Issues

Static public keys

local_fprint = H(0)|fvers $||idpk_A|| ID_A ||idpk_A||$ remote fprint = H(0)|fvers $||idpk_B|| ID_B ||idpk_B||$

Based on public information only No link to Signal protocol

User-to-Device: Real Life is Complex

Weak User Mediation

User-to-Device: Real Life is Complex

Weak User Mediation

Adversary allowed: Read, Replay, Delete

- Modify/create User-to-Device messages?
- Modify/create Device-to-User messages?
- Modify/ create Device-to-Device messages?

Fixing authentication:

- 1) accounting for user interaction
- 2) detection of active man-in-the-middle attack

Modified
Device-to-User
Signal Authentication
(MoDUSA)

New QR-code computation:

```
fprint^{i-1} = HMAC(ak^{i-1}, H^{i-1}||fvers||role)

fprint^{i} = HMAC(ak^{i}, H^{i}||fvers||role)
```

- *Session specific
- *Asynchronicity in computation

User-to-Device: Real Life is Complex

Auth. Initiator I	Auth. Responder I'	CD Without E.	CD with E.	CU Without E.	CU With E.
Display match	Display match	V	4	V	X
Display match	Scan match	· ·	✓	X	X
Scan match	Display match	V	€.	V	X
Scan match	Scan match	V	1	V	X
Display non-match	Scan non-match	1	1	X	X
Scan non-match	Display non-match	4	√	¥	√
Scan non-match	Scan non-match	V	✓	✓.	V

Great... but I never compared QR codes to begin with.

Great... but I never compared QR codes to begin with.

Can we automate ratcheted authentication to get man-in-the-middle detection without relying on human users?

ACKA: Authenticated Continuous Key Agreement

Forward and Post-Compromise End-to-End Messaging with Man-in-the-Middle Detection

Forward and Post-Compromise Secure End-to-End Messaging

Pre-shared Keys

Session-based

Asynchronous

Session-based

Asynchronous

Attack risk

Attack risk

Jamming Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Session-based

Asynchronous

Jamming

Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Session-based

Asynchronous

Jamming

Added delays under jamming

Jamming

Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Session-based

Jamming

Traceability

Armek risks (also server access)

Interoperability

Manual overhead

Scalability

Asynchronous

Jamming

Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Session-based

Jamming

Traceability

Artack risks (also server access)

Interoperability

Manual overhead

Scalability

Asynchronous

Jamming

Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Jamming

Traceability

Attack risks (also server access)

Interoperability

Manual overhead

Scalability

Jamming

Traceability

Attack risks*

Interoperability

Manual overhead

Scalability

Pairwise Signal K_{AB} K_{BC} K_{AC} K_{AD} K_{BD} K_{CD}

Pairwise Signal

Message: m

Overhead!

Solution attempt: Sender Keys

Message: m

Reducing overhead...

Solution attempt: Sender Keys

Jamming

Traceability

Attack risk

Interoperability

Manual overhead

Scalability

Jamming

Traceability

Attack risks

Interoperability

Manual overhead

Scalability

Jamming

Traceability

Attack risks*

Interoperability

Manual overhead

Scalability

group-centric design

Messaging Layer Security (MLS)

*International Standard: IETF RFC 9420

Messaging Layer Security (MLS)

*International Standard: IETF RFC 9420

Message Layer Security (MLS)

- Add group members
- Remove/eject group members
- Key evolution
- Create new groups
- Subgroup branching
- Post-quantum compatible

Multi-device = groups of pairs

Design for pairs

Design for multi-device

Works for groups of size 2

Scalability to groups
Asynchronicity for relays / retrieval / delays
ACKA for continuous authentication

group-centric design

Forward and Post-Compromise End-to-End Asynchronous Multi-device ACKA Messaging with Man-in-the-Middle Detection

Forward and Post-Compromise End-to-End Asynchronous Multi-device ACKA
Messaging with Man-in-the-Middle Detection

Have we covered "security"?

- Deniability / unlinkability
- Guardianship for offline Post-Compromise Security
- Signature key ratcheting for impersonation protection in future groups

Deniability: an MLS design story

Application message deniability:

It is not possible to prove authorship of a given message M.

- Assuming the adversary is not a conversation partner (group external)
- Assuming that the adversary is a conversation partner
- · Assuming that the adversary is the distribution service
- · Assuming that the adversary is the authentication service

Ciphertext deniability:

It is not possible to prove authorship of a given ciphertext C.

- · Assuming the adversary is not a conversation partner (group external)
- Assuming that the adversary is a conversation partner
- · Assuming that the adversary is the distribution service
- · Assuming that the adversary is the authentication service

Key deniability:

It is not possible to prove ownership of a given key K (regardless of messages sent).

- · Assuming the adversary is not a conversation partner (group external)
- Assuming that the adversary is a conversation partner
- · Assuming that the adversary is the distribution service
- · Assuming that the adversary is the authentication service

Non-application message deniability:

It is not possible to prove authorship of a given non-application message M.

- Assuming the adversary is not a conversation partner (group external)
- Assuming that the adversary is a conversation partner
- Assuming that the adversary is the distribution service
- · Assuming that the adversary is the authentication service

Conversation membership unlinkability:

It is not possible to prove membership in a given conversation.

- Assuming the adversary is not a conversation partner (group external)
- Assuming that the adversary is a conversation partner
- · Assuming that the adversary is the distribution service
- · Assuming that the adversary is the authentication service

Ciphertext unlinkability:

If in possession and proof of authorship of a ciphertext C1, it is not possible to prove authorship of another ciphertext C2.

- Assuming the adversary is not a conversation partner (group external)
- · Assuming that the adversary is a conversation partner
- Assuming that the adversary is the distribution service
- Assuming that the adversary is the authentication service

Each of the possibilities can be considered under **online** or **offline** deniability....

So those are 48 options to start with.

What deniability/privacy guarantees do people want?

- Activists (courts? framing?)
- "Normal" end users (false accusations? misinterpretations?)
- Governments (untraceability?)
- Cryptographic researchers (cool new algorithms and protocols?)

(OTR is over 15yrs old already!)

Metadata is dangerous Forward and Post-Compromise End-to-End Asynchronous Multi-device, Low-Metadata ACKA Messaging with Man-in-the-Middle Detection

Forward and Post-Compromise End-to-End Asynchronous Multi-device ACKA

Messaging with Man-in-the-Middle Detection

group-centric design

Space Systems

Unmanned Systems

Summary:

Attacks and subversion methods are continuously changing → security is a moving target

Cryptography should meet that challenge but can also be applied in unanticipated ways