Skript zur Vorlesung Analysis III bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie $\label{eq:Wintersemester} Wintersemester~2024/25$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

1	Einleitung: Motivation für Maßtheorie	3
2	$\sigma\text{-Algebren und Maße}$	
3	[*] Dynkinsysteme	10
4	[*] Eindeutigkeit von Maßen und erste Eigenschaften des Lebesgue-Maßes	12

Alle mit $[\ast]$ markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventuell noch Änderungen.

1 Einleitung: Motivation für Maßtheorie

[21. Okt] Wir wollen in diesem Modul eine Theorie erarbeiten, um Teilmengen des \mathbb{R}^n messen (das heißt ihnen einen Inhalt zuordnen) zu können. Außerdem soll diese Zuordnung eines Inhalts bestimmten (intuitiv klaren) Anforderungen genügen. Wenn wir zum Beispiel zwei Teilmengen des \mathbb{R}^2 A und B, die disjunkt sind und denen wir entsprechende Inhalte zugeordnet haben, betrachten, dann soll nach unserem intuitiven geometrischen Verständnis auch gelten

$$Fläche(A \cup B) = Fläche(A) + Fläche(B)$$

Für einfache Teilmengen des \mathbb{R}^2 haben wir bereits eine Möglichkeit, deren Flächeninhalt zu messen:

Beispiel 1.1.1 (Messen eines Rechtecks). Im Fall eines Rechteckes $R \subseteq \mathbb{R}^2$ mit den Seitenlängen a und b wissen wir bereits, dass wir einen sinnvollen Flächeninhalt durch

$$Fläche(R) = a \cdot b$$

berechnen können.

Beispiel 1.1.2 (Messen eines Dreiecks). Auch für ein Dreieck $D\subseteq\mathbb{R}^2$ mit Grundfläche g und Höhe h kennen wir die Formel

$$Fläche(D) = \frac{1}{2}gh$$

Beispiel 1.1.3 (Parkettierung). Wir können auch eine komplexere Form $F \subseteq \mathbb{R}^2$ mittels (abzählbar) unendlich vielen Dreiecken approximieren. Dafür nehmen wir abzählbar viele paarweise disjunkte Dreiecke $(\Delta_n)_n$, sodass $\bigcup_{j\in\mathbb{N}} \Delta_j = F$. Dann gilt

$$\operatorname{Fl\"{a}che}(F) = \operatorname{Fl\"{a}che}\left(\bigcup_{j\in\mathbb{N}}\Delta_j\right) \stackrel{(^1)}{=} \sum_{j=1}^{\infty}\operatorname{Fl\"{a}che}(\Delta_j)$$

Bemerkung 1.1.4. Wir wollen dementsprechend ein Maß finden, also nach unserem Verständnis eine Abbildung $\mu: \mathcal{F} \to [0, \infty]$, wobei $\mathcal{F} \subseteq \mathcal{P}(E) := \{U: U \subseteq E\}$ eine Familie von Teilmengen von $E \neq \emptyset$ ist. Außerdem soll gelten, dass

- (i) $\mu(\varnothing) = 0$
- (ii) Für $A, B \in \mathcal{F}$ mit $A \cap B = \emptyset$ ist $\mu(A \cup B) = \mu(A) + \mu(B)$
- (iii) Für eine Folge $A_n \in \mathcal{F}$ mit $A_n \cap A_m = \emptyset$ für $n \neq m$ ist

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{j=1}^{\infty}\mu(A_n)$$

Diese Liste an Eigenschaften führt wie wir später sehen werden zu einer reichhaltigen Theorie

 $^{^{1}\}sigma$ -Additivität

2 σ -Algebren und Maße

2.1 σ -Algebren

Definition 2.1.1 (σ -Algebra). Sei $E \neq \emptyset$ eine Menge. Eine σ -Algebra in E ist ein System von Teilmengen $\mathcal{A} \subseteq \mathcal{P}(E)$ von E mit folgenden Eigenschaften

- (Σ_1) $E \in \mathcal{A}$
- (Σ_2) $A \in \mathcal{A} \Rightarrow A^{\mathcal{C}} := E \setminus A \in \mathcal{A}$
- (Σ_3) Für $(A_n)_n \subseteq \mathcal{A}$ gilt $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$. Das heißt \mathcal{A} ist stabil unter (abzählbaren) Vereinigungen

Eine Menge $A \in \mathcal{A}$ heißt messbar (\mathcal{A} -messbar).

Lemma 2.1.2 (Eigenschaften von σ -Algebren). Sei \mathcal{A} eine σ -Algebra in E. Dann gilt

- (i) $\varnothing \in \mathcal{A}$
- (ii) $A, B \in \mathcal{A} \Rightarrow (A \cup B) \in \mathcal{A}$ (das heißt \mathcal{A} ist auch stabil unter endlichen Vereinigungen)
- (iii) Für $(A_n)_n \subseteq \mathcal{A}$ gilt $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- (iv) $A, B \in \mathcal{A} \Rightarrow A \setminus B = A \cap B^{\mathcal{C}} \in \mathcal{A}$

Beweis.

- (i) $E \in \mathcal{A} \stackrel{(\Sigma_2)}{\Rightarrow} \varnothing = E^{\mathcal{C}} \in \mathcal{A}$
- (ii) Wir definieren $A_1 \coloneqq A, A_2 \coloneqq B$ und $A_i \coloneqq \varnothing$ für $i \ge 3$. Dann gilt gilt (Σ_3)

$$A \cup B = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$$

(iii)
$$A_n \in \mathcal{A} \Rightarrow (A_n)^{\mathcal{C}} \in \mathcal{A} \Rightarrow \bigcup_{n \in \mathbb{N}} (A_n)^{\mathcal{C}} \in \mathcal{A} \Rightarrow \left(\left(\bigcup_{n \in \mathbb{N}} A_n \right)^{\mathcal{C}} \right)^{\mathcal{C}} \in \mathcal{A} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$$

(iv)
$$A \setminus B = A \cap B^{C} = A \cap B^{C} \cap E \cap E \cap \cdots$$
. Dann gilt nach (iii), dass $A \setminus B \in \mathcal{A}$

Beispiel 2.1.3. Wir betrachten einige Beispiele für σ -Algebren

- (a) Für eine Mengen E ist die Potenzmenge $\mathcal{P}(E)$ selber nach Definition immer eine σ -Algebra über E.
- (b) $\{\emptyset, E\}$ ist die kleinste σ -Algebra in E.
- (c) Für $A \subseteq E$ gilt $\mathcal{A} := \{\varnothing, A, A^{\mathcal{C}}, E\}$ ist die kleinste σ -Algebra, die A enthält.
- (d) Sei E überabzählbar. Dann ist $\mathcal{A} \coloneqq \left\{ A \subseteq E : A \text{ oder } A^{\mathbf{C}} \text{ ist abzählbar} \right\}$ eine σ -Algebra.
- (e) Sei \mathcal{A} eine σ -Algebra in E. Für $F \subseteq E$ beliebig ist $\mathcal{A}_F := \{A \cap F : A \in \mathcal{A}\}$ die Spur- σ -Algebra von F.

(f) Seien E, E' nicht-leere Mengen, $f: E \to E'$ eine Funktion und \mathcal{A}' eine σ -Algebra in E'. Dann ist auch

$$\mathcal{A} \coloneqq \left\{ f^{-1}(A') : A' \in \mathcal{A}' \right\}$$

eine σ -Algebra.

Beweis von (d). Wir prüfen die Kriterien

- (Σ_1) $E^{\rm C} = \emptyset$ ist abzählbar $\Rightarrow E \in \mathcal{A}$
- (Σ_2) $A \in \mathcal{A} \Leftrightarrow A$ oder $A^{\mathbb{C}}$ ist abzählbar $\Leftrightarrow A^{\mathbb{C}}$ oder $(A^{\mathbb{C}})^{\mathbb{C}}$ ist abzählbar $\Leftrightarrow A^{\mathbb{C}} \in \mathcal{A}$
- (Σ_3) Sei $A_n \in \mathcal{A}$ für $n \in \mathbb{N}$. Wir unterscheiden 2 Fälle FALL 1: Alle A_n sind abzählbar. Dann ist auch $\bigcup_{n \in \mathbb{N}} A_n$ abzählbar. FALL 2: Ein A_j ist überabzählbar. Dann ist aber $(A_j)^{\mathbb{C}}$ abzählbar $\Rightarrow \bigcap_{n \in \mathbb{N}} (A_n)^{\mathbb{C}} \subseteq (A_j)^{\mathbb{C}}$ ist abzählbar. Dann ist $(\bigcup_{n=1}^{\infty} A_n)^{\mathbb{C}} = \bigcap_{n \in \mathbb{N}} (A_n)^{\mathbb{C}}$ abzählbar. Das heißt $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$. \square

Notation 2.1.4 (Durchschnitt). Seien I eine beliebige Menge und $(A_j)_{j\in I} \subseteq \mathcal{P}(E)$ eine beliebige Familie von Mengensystemen in E. Dann ist

$$\bigcap_{j \in I} \mathcal{A}_j := \{ A : A \subseteq \mathcal{A}_j \ \forall j \in I \}$$

der Durchschnitt der A_i .

Satz 2.1.5. Sei I eine beliebige Menge und $(A_j)_{j\in I}$ eine Familie von σ -Algebren in E. Dann gilt

$$\bigcap_{j\in I} \mathcal{A}_j$$

ist wieder eine σ -Algebra.

Beweis.

- (Σ_1) $E \in \mathcal{A}_j \ \forall j \in I \Rightarrow E \subseteq \bigcap_{j \in I} \mathcal{A}_j$
- (Σ_2) $A \in \bigcap_{j \in I} A_j \Leftrightarrow A \in A_j \ \forall j \in I$. Daraus folgt $A^{\mathcal{C}} \in A_j \ \forall j \in I \Rightarrow A^{\mathcal{C}} \in \bigcap_{j \in I} A_j$

$$(\Sigma_3)$$
 Sei $A_n \in \bigcap_{j \in I} A_j$. Dann gilt $A_n \in A_j \ \forall j \in I \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in A_j \ \forall j \in I$

Satz 2.1.6. Sei $\zeta \subseteq \mathcal{P}(E)$ für E nicht-leer ein System von Teilmengen von E. Dann existiert eine kleinste σ -Algebra $\sigma(E)$ in E, welche ζ enthält. Das heißt

- (a) $\sigma(\zeta)$ ist eine σ -Algebra in E und
- (b) Für eine σ -Algebra \mathcal{A} in E mit $\zeta \subseteq A$ folgt $\sigma(\zeta) \subseteq \mathcal{A}$

Wir nennen $\sigma(\zeta)$ in diesem Fall die von ζ erzeugte σ -Algebra und ζ den Erzeuger von $\sigma(\zeta)$.

Beweis. Wir definieren $I := \{ \mathcal{A} : \mathcal{A} \text{ ist } \sigma\text{-Algebra und } \zeta \subseteq \mathcal{A} \}$ die Menge aller σ -Algebra, die ζ enthalten. Dabei gilt I nicht-leer, da $\mathcal{P}(E) \in I$. Damit gilt nach Satz 2.1.5, dass

$$\sigma(\zeta) \coloneqq \bigcap_{A \in I} \mathcal{A}$$

eine σ -Algebra ist. Dabei ist $\zeta \subseteq \sigma(\zeta)$ nach Forderung an I. Und nach unserer Konstruktion ist auch Anforderung (b) erfüllt.

Beispiel 2.1.7. Sei $\zeta := \{A\}$. Dann ist $\{\varnothing, A, A^{\mathrm{C}}, E\}$ die von ζ erzeugte σ -Algebra.

Definition 2.1.8. Sei \mathcal{O}_d das System der offenen Mengen im \mathbb{R}^d . Dann definieren wir die Borel- σ -Algebra

$$\mathcal{B}_d = \mathcal{B}ig(\mathbb{R}^dig) \coloneqq \sigma(\mathcal{O}_d)$$

2.2 Maße und Prämaße

Sei in diesem Teilkapitel stets X eine Menge.

[25. Okt] Notation 2.2.1 (Disjunkte Vereinigung). Seien A, B Mengen mit $A \cap B = \emptyset$. Dann schreiben wir $A \cup B := A \cup B$ als disjunkte Vereinigung von A und B.

Definition 2.2.2 (Maß). Ein (positives) Maß μ auf X ist eine Funktion $\mu: \mathcal{A} \to [0, \infty]$ mit

- (M_0) \mathcal{A} ist eine σ -Algebra.
- (M_1) $\mu(\varnothing) = 0$
- (M_2) Sei $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ eine Folge paarweise disjunkter Mengen. Dann folgt

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n)$$

Definition 2.2.3 (Prämaß). Ist $\mathcal{A} \subseteq \mathcal{P}(X)$ nicht unbedingt eine σ-Algebra und $\mu : \mathcal{A} \to [0, \infty]$ eine Funktion, so heißt μ Prämaß, falls

- (PM_1) $\mu(\emptyset) = 0$ (das setzt also auch voraus, dass $\emptyset \in A$)
- (PM_2) Sind $(A_n)_n \subseteq \mathcal{A}$ paarweise disjunkt und $(\bigsqcup_{n\in\mathbb{N}} A_n) \in \mathcal{A}$, dann folgt

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n)$$

Definition 2.2.4 (Wachsende und fallende Teilmengenfolgen). Sei $(A_n)_n$ eine Folge von Teilmengen von X. Dann nennen wir $(A_n)_n$

- wachsend, falls $A_n \subseteq A_{n+1} \ \forall n \in \mathbb{N}$
- fallend, falls $A_{n+1} \subseteq A_n \ \forall n \in \mathbb{N}$

Notation 2.2.5.

- 1. Für eine wachsende Teilmengenfolge $(A_n)_n$ schreiben wir $A_n \nearrow A$, falls $\bigcup_{n=1}^{\infty} A_n = A$.
- 2. Für eine fallende Teilmengenfolge $(A_n)_n$ schreiben wir $A_n \searrow A$, falls $\bigcap_{n=1}^{\infty} A_n = A$.

Definition 2.2.6 (Messraum und Maßraum). Sei X eine Menge, \mathcal{A} eine σ -Algebra und $\mu : \mathcal{A} \to [0, \infty]$ ein Maß.

- 1. Wir nennen das Paar (X, A) einen Messraum.
- 2. Wir nennen das Tripel (X, \mathcal{A}, μ) einen Maßraum.

- 3. Wir nennen μ endlich und (X, \mathcal{A}, μ) einen endlichen Maßraum, falls $\mu(X) < \infty$.
- 4. Wir nennen μ Wahrscheinlichkeitsmaß (W-Maß) und (X, \mathcal{A}, μ) einen Wahrscheinlichkeitsraum (W-Raum), falls $\mu(X) = 1$.
- 5. Wir nennen μ σ -endlich, falls es eine Folge $(A_n)_n \subseteq \mathcal{A}$ gibt mit $A_n \nearrow X$ und $\mu(A_n) < \infty \ \forall n \in \mathbb{N}$. In diesem Fall heißt $(A_n)_n$ eine ausschöpfende Folge.

Satz 2.2.7 (Eigenschaften von Maßen). Seien (X, \mathcal{A}, μ) ein Maßraum sowie $A, B, A_n, B_n \in \mathcal{A}$. Dann gilt

(i)
$$A \cap B = \emptyset \Rightarrow \mu(A \sqcup B) = \mu(A) + \mu(B)$$
 (Additivität)

(ii)
$$A \subseteq B \Rightarrow \mu(A) \le \mu(B)$$
 (Monotonie)

(iii)
$$A \subseteq B$$
 und $\mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A)$

(iv)
$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$
 (Starke Additivität)

(v)
$$\mu(A \cup B) \le \mu(A) + \mu(B)$$
 (Subadditivität)

(vi)
$$(A_n)_n \nearrow A \Rightarrow \mu(A) = \sup_{n \in \mathbb{N}} \mu(A_n) = \lim_{n \to \infty} \mu(A_n)$$
 (Stetigkeit von unten)

(vii)
$$(B_n)_n \searrow B$$
 und $\mu(B_1) < \infty \Rightarrow \mu(B) = \inf_{n \in \mathbb{N}} \mu(B_n) = \lim_{n \to \infty} \mu(B_n)$ (Stetigkeit von oben)

(viii)
$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu(A_n)$$
 (σ -Subadditivität)

Beweis.

(i) Sei $A_1 := A, A_2 := B$ und $A_n := \emptyset$ für $n \ge 3$. Dann gilt

$$A \sqcup B = \bigsqcup_{n \in \mathbb{N}} A_n$$

$$\Rightarrow \mu(A \sqcup B) = \sum_{n=1}^{\infty} \mu(A_n) = \mu(A_1) + \mu(A_2) = \mu(A) + \mu(B)$$

(ii) Sei $A \subseteq B$, dann folgt $B = A \sqcup (B \setminus A)$. Mit (i) folgt

$$\mu(B) = \mu(A \sqcup (B \setminus A)) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

- (iii) $\mu(B) = \mu(A) + \mu(B \setminus A)$. Dann folgt $\mu(B \setminus A) = \mu(B) \mu(A)$, falls $\mu(A) < \infty$.
- (iv) Es gilt $A \cup B = A \sqcup (B \setminus (A \cap B))$. Dann folgt

$$\begin{split} \mu(A \cup B) + \mu(A \cap B) &= \mu(A \sqcup (B \setminus (A \cap B))) + \mu(A \cap B) \\ &= \mu(A) + \mu(B \setminus (A \cap B)) + \mu(A \cap B) \\ &= \mu(A) + \mu(B) - \mu(A \cap B) + \mu(A \cap B) \\ &= \mu(A) + \mu(B) \end{split}$$

(v) Aus (iv) folgt
$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B) \ge \mu(A \cup B)$$

(vi) Sei $(A_n)_n$ wachsend. Wir definieren eine neue Folge von Mengen $(F_n)_n$ mit $F_1 := A_1$ und $F_n := A_n \setminus A_{n-1}$ für $n \ge 2$. Dann sind F_j paarweise disjunkt und es gilt

$$\bigcup_{j=1}^{n} A_{j} = \bigsqcup_{j=1}^{n} F_{j}$$

$$\Rightarrow \mu \left(\bigcup_{n \in \mathbb{N}} A_{n} \right) = \mu \left(\bigsqcup_{j \in \mathbb{N}} F_{j} \right) = \sum_{j=1}^{\infty} \mu(F_{j})$$

$$= \lim_{n \to \infty} \sum_{j=1}^{n} \mu(F_{j}) = \lim_{n \to \infty} \mu \left(\bigsqcup_{j=1}^{n} F_{j} \right)$$

$$= \lim_{n \to \infty} \mu(A_{n}) = \sup_{n \in \mathbb{N}} \mu(A_{n})$$

(vii) Sei $(B_n)_n \searrow B$ mit $\mu(B_1) < \infty$. Wir definieren $A_n := B_1 \setminus B_n \nearrow B_1 \setminus B$ wachsend. Dann gilt nach (vi)

$$\mu(B_1 \setminus B) = \lim_{n \to \infty} \mu(B_1 \setminus B_n)$$

$$\Rightarrow \mu(B_1) - \mu(B) = \lim_{n \to \infty} (\mu(B_1) - \mu(B_n)) = \mu(B_1) - \lim_{n \to \infty} \mu(B_n)$$

$$\Rightarrow \mu(B) = \lim_{n \to \infty} \mu(B_n) = \inf_{n \in \mathbb{N}} \mu(B_n)$$

(viii) Sei $(A_n)_n \subseteq \mathcal{A}$. Dann ist $A := \bigsqcup_{n \in \mathbb{N}} A_n$. Wir definieren $\hat{A}_k := \bigcup_{j=1}^k A_j$ wachsend. Dann gilt

$$\bigcup_{k=1}^{\infty} \hat{A}_k = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{k} A_n = \bigcup_{n \in \mathbb{N}} A_n$$

Nach (v) gilt

$$\mu(A) = \mu\left(\bigcup_{k=1}^{\infty} \hat{A}_k\right) = \lim_{k \to \infty} \mu\left(\hat{A}_k\right) = \lim_{k \to \infty} \mu\left(\bigcup_{j=1}^k A_j\right)$$

$$\leq \lim_{k \to \infty} \sum_{j=1}^k \mu(A_j) = \sum_{n=1}^{\infty} \mu(A_n)$$

Bemerkung 2.2.8.

- 1. Wir schreiben statt "paarweise disjunkt" auch kürzer "disjunkt"
- 2. Satz 2.2.7 überträgt sich auch auf Prämaße, sofern \mathcal{A} stabil bezüglich Durchschnitt, Vereinigung und Mengendifferenz ist (für (i)-(iv)) und sofern \mathcal{A} stabil bezüglich abzählbaren Schnitten und Vereinigungen ist (für die verbleibenden Eigenschaften)

Beispiel 2.2.9 (Dirac-Maβ). Sei X eine Menge, A eine σ -Algebra in X und $x_0 \in X$. Wir definieren

$$\delta_{x_0}(A) := \begin{cases} 0 & x_0 \notin A \\ 1 & x_0 \in A \end{cases}$$

Dann ist δ_{x_0} ein Maß in X und wird als *Dirac*-Maß bezeichnet.

Beispiel 2.2.10. Sei $\mathcal{A} := \{A \subseteq \mathbb{R} : A \text{ ist abz\"{a}hlbar oder } A^{\mathbb{C}} \text{ ist abz\"{a}hlbar} \}$. Dann ist \mathcal{A} nach Beispiel 2.1.3 (d) eine σ -Algebra in \mathbb{R} . Wir definieren ein Maß auf \mathcal{A} mit

$$\mu(A) := \begin{cases} 0 & A \text{ ist abz\"{a}hlbar} \\ 1 & A \text{ ist nicht abz\"{a}hlbar} \end{cases}$$

Beispiel 2.2.11 (Zählmaß). Sei (X, A) ein Messraum. Dann definieren wir das Zählmaß

$$|A| := \begin{cases} \#A & \text{falls } A \text{ endlich} \\ \infty & \text{falls } A \text{ unendlich} \end{cases}$$

wobei #A die Anzahl an Elemente in A angibt.

Beispiel 2.2.12 (Diskretes W-Maß). Sei $\Omega = \{\omega_1, \omega_2, \ldots\}$ eine abzählbare Menge, $\mathcal{A} = \mathcal{P}(\Omega)$ und $(p_n)_{n \in \mathbb{N}} \subseteq [0, 1]$ mit $\sum_{n \in \mathbb{N}} p_n = 1$. Dann ist

$$\mathbb{P}(A) := \sum_{n \in \mathbb{N}: \ \omega_n \in A} p_n = \sum_{n \in \mathbb{N}} p_n \delta_{\omega_n}(A)$$

ein sogenanntes diskretes W-Maß. Der Raum $(\Omega, \mathcal{A}, \mathbb{P})$ heißt diskreter W-Raum.

- [28. Okt] Bemerkung 2.2.13 (Ring und Algebra). Ein Mengensystem $R \subseteq \mathcal{P}(X)$ heißt Ring, wenn folgende Eigenschaften erfüllt sind
 - $(R_1) \varnothing \in R$
 - (R_2) $A, B \subseteq R \Rightarrow (A \setminus B) \in R$
 - (R_3) $A, B \subseteq R \Rightarrow (A \cup B) \in R$

Ist ferner $X \in R$, dann heißt R Algebra.

Bemerkung 2.2.14 (Eigenschaften von Mengenringen). Es sei R ein Mengenring. Dann gilt

- 1. Nach der Mengengleichheit $A \cap B = A \setminus (A \setminus B)$ enthält R auch Schnitte.
- 2. Wir definieren die symmetrische Mengendifferenz $\Delta: R \times R \to R$, $(A, B) \mapsto (A \setminus B) \cup (B \setminus A)$. Dann definiert (R, Δ, \cap) einen kommutativen Ring im Sinne der Algebra, wobei Δ der "Addition" und \cap der "Multiplikation" entspricht.

3 [*] Dynkinsysteme

Definition 3.1.1 (Dynkinsystem). Ein Mengensystem $\mathcal{D} \subseteq \mathcal{P}(X)$ heißt Dynkinsystem, falls

- $(D_1) X \in \mathcal{D}$
- (D_2) $D \in \mathcal{D} \Rightarrow D^C \in \mathcal{D}$
- (D₃) Für eine paarweise disjunkte Mengenfolge $(D_n)_n \subseteq \mathcal{D} \Rightarrow \bigsqcup_{n \in \mathbb{N}} D_n \in \mathcal{D}$

Beispiel 3.1.2.

- 1. Jede σ -Algebra ist ein Dynkinsystem.
- 2. Sei X eine 2n-elementige Menge. Dann ist $\mathcal{D} := \{A \subseteq X : A \text{ hat eine gerade Anzahl an Elementen}\}$ ein Dynkinsystem, aber keine σ -Algebra.

Lemma 3.1.3. Sei I eine beliebige Indexmenge und $(\mathcal{D}_j)_{j\in I}$ eine Familie von Dynkinsystemen in X, dann ist $\bigcap_{j\in I} \mathcal{D}_j$ wieder ein Dynkinsystem.

Beweis. (Übung)
$$\Box$$

Satz 3.1.4. Sei $\mathcal{G} \subseteq \mathcal{P}(X)$. Dann existiert das kleinste Dynkinsystem $\delta(\mathcal{G})$, welches \mathcal{G} enthält. Wir nennen $\delta(\mathcal{G})$ das von \mathcal{G} erzeugte Dynkinsystem.

Beweis. $\mathcal{P}(X)$ ist ein Dynkinsystem. Wir definieren also

$$I = \{ \mathcal{D} \subseteq \mathcal{P}(X) : \mathcal{D} \text{ ist ein Dynkinsystem und } \mathcal{G} \subseteq \mathcal{D} \} \neq \emptyset$$

Anschließend setzen wir analog zum Schnitt über σ -Algebren

$$\delta(\mathcal{G}) \coloneqq \bigcap_{\mathcal{D} \in I} \mathcal{D} \qquad \Box$$

Definition 3.1.5. Sei $\mathcal{D} \subseteq \mathcal{P}(X)$. Wir nennen $\mathcal{D} \cap$ -stabil, falls $A, B \in \mathcal{D} \Rightarrow (A \cap B) \in \mathcal{D}$. Analog dazu nennen wir $\mathcal{D} \cup$ -stabil, falls $A, B \in \mathcal{D} \Rightarrow (A \cup B) \in \mathcal{D}$.

Frage: Wann ist ein Dynkinsystem eine σ -Algebra?

Lemma 3.1.6. Sei \mathcal{D} ein Dynkinsystem. Dann gilt \mathcal{D} ist genau dann eine σ -Algebra, wenn $A, B \in \mathcal{D} \Rightarrow (A \cap B) \in \mathcal{D}$.

Beweis. "⇒ " Sei \mathcal{D} eine σ-Algebra. Dann ist \mathcal{D} ein Dynkinsystem. Seien $A, B \in \mathcal{D}$. Dann folgt $A^{\mathbf{C}}, B^{\mathbf{C}} \in \mathcal{D} \Rightarrow A \cap B = \left(A^{\mathbf{C}} \cup B^{\mathbf{C}}\right)^{\mathbf{C}} \in \mathcal{D}$.

" \Leftarrow " Zu zeigen ist Eigenschaft (Σ_3) . Sei $(D_n)_n \subseteq \mathcal{D}$ eine Mengenfolge. Wir definieren $D_0' \coloneqq \varnothing$ und $D_n' \coloneqq D_1 \cup D_2 \cup \cdots \cup D_n$. Dann ist $(D_n')_n$ eine aufsteigende Folge und es gilt

$$\bigcup_{n\in\mathbb{N}} D_n = \bigcup_{n\in\mathbb{N}} D'_n = \bigsqcup_{n\in\mathbb{N}} (D'_n \setminus D'_{n-1})$$

Außerdem ist

$$\bigsqcup_{n\in\mathbb{N}} \left(D'_n \setminus D'_{n-1}\right) \in \mathcal{D} \text{ falls } \left(D'_n \setminus D'_{n-1}\right) \in \mathcal{D} \ \forall n \in \mathbb{N}$$

Und es gilt $D'_n \setminus D'_{n-1} = \left(D'_n \cap (D'_{n-1})^{\mathcal{C}}\right) \in \mathcal{D}$, falls $D'_n \in \mathcal{D} \ \forall n \in \mathbb{N}_0$. Wir haben also unsere Behauptung gezeigt, wenn wir gezeigt haben, dass $\mathcal{D} \cup \text{-stabil}$ ist. Es gilt aber

$$A \cup B = \left(A^{\mathbf{C}} \cap B^{\mathbf{C}}\right)^{\mathbf{C}} \in \mathcal{D}$$

Damit ist (Σ_3) gezeigt.

Satz 3.1.7. Sei X eine beliebige Menge und $\mathcal{G} \subseteq \mathcal{P}(X)$. Dann folgt aus \mathcal{G} ist \cap -stabil, dass $\delta(\mathcal{G})$ \cap -stabil ist.

Beweis. Wir nehmen ein beliebiges $D \in \delta(\mathcal{G})$ und definieren

$$\mathcal{D}_D := \{ Q \in \mathcal{P}(X) : Q \cap D \in \delta(\mathcal{G}) \}$$

Behauptung: \mathcal{D}_D ist ein Dynkinsystem. Stimmt diese Behauptung, dann können wir folgendermaßen argumentieren: Da $\mathcal{G} \cap$ -stabil ist, gilt

$$\forall G, D \in \mathcal{G} : G \cap D \in \mathcal{G} \subseteq \delta(\mathcal{G})$$

$$\Leftrightarrow \forall D \in \mathcal{G} : \mathcal{G} \subseteq \mathcal{D}_{D}$$

$$\Rightarrow \forall D \in \mathcal{G} : \delta(\mathcal{G}) \subseteq \delta(\mathcal{D}_{D}) \stackrel{(\text{Beh.})}{=} \mathcal{D}_{D}$$

$$\Leftrightarrow \forall D \in \mathcal{G} \ \forall G \in \delta(\mathcal{G}) : G \cap D \in \delta(\mathcal{G})$$

Aus Symmetriegründen gilt dann

$$\forall G \in \delta(\mathcal{G}) \ \forall D \in \mathcal{G} : D \cap G = G \cap D \in \delta(\mathcal{G})$$

$$\Leftrightarrow \forall G \in \delta(\mathcal{G}) : \mathcal{G} \subseteq \mathcal{D}_{G}$$

$$\Rightarrow \delta(\mathcal{G}) \subseteq \delta(D_{G}) = D_{g} \ \forall G \in \delta(\mathcal{G})$$

$$\Leftrightarrow \forall D, G \in \delta(\mathcal{G}) : D \cap G \in \delta(\mathcal{G})$$

Das heißt $\delta(\mathcal{G})$ ist σ -stabil.

Wir zeigen noch die Behauptung:

- (D₁) Da $X \cap D = D \in \delta(\mathcal{G})$ folgt $X \in \mathcal{D}_D$.
- (D₂) Sei $Q \in \mathcal{D}_D$. Dann ist auch $Q^{\mathbb{C}} \in \mathcal{D}_D$, denn $Q^{\mathbb{C}} \cap D = (Q^{\mathbb{C}} \cup D^{\mathbb{C}}) \cap D = (Q \cap D)^{\mathbb{C}} \cap D = D \setminus (Q \cap D) \in \delta(\mathcal{G})$.
- (D_3) (Fehlt, siehe handschriftliches Skript)

Korollar 3.1.8. Sei X eine beliebige Menge und $\mathcal{G} \subseteq \mathcal{P}(X)$. Wenn $\mathcal{G} \cap$ -stabil ist, dann ist $\delta(\mathcal{G})$ eine σ -Algebra und es gilt $\sigma(\mathcal{G}) = \delta(\mathcal{G})$.

Beweis. Nach Satz 3.1.7 ist $\delta(\mathcal{G})$ ∩-stabil und damit nach Lemma 3.1.6 eine σ -Algebra. Damit gilt dann $\sigma(\mathcal{G}) \subseteq \delta(\mathcal{G})$, da $\sigma(\mathcal{G})$ die kleinste σ -Algebra ist, die \mathcal{G} enthält. Außerdem ist $\delta(\mathcal{G}) \subseteq \delta(\sigma(\mathcal{G})) = \sigma(\mathcal{G})$.

4 [*] Eindeutigkeit von Maßen und erste Eigenschaften des Lebesgue-Maßes

- [04. Nov] Satz 4.1.1 (Eindeutigkeitssatz). Sei (X, A) ein beliebiger Messraum und $A = \sigma(\mathcal{E})$ für $\mathcal{E} \subseteq \mathcal{P}(X)$. Ferner seien μ, ν Maße auf A mit
 - (a) \mathcal{E} ist \cap -stabil
 - (b) Es gibt Mengen $G_n \in \mathcal{E}$ mit $G_n \nearrow X$ $(X = \bigcup_{n \in \mathbb{N}} G_n)$ mit $\mu(G_n), \nu(G_n) < \infty \ \forall n \in \mathbb{N}$

Dann gilt: Aus $\mu(A) = \nu(A) \ \forall A \in \mathcal{E}$ folgt $\mu = \nu$ auf \mathcal{A} . Das heißt unter den obigen Voraussetzungen wird ein Maß eindeutig durch seine Werte auf dem Erzeuger definiert.

Beweis. Da $\mathcal{E} \cap$ -stabil ist, folgt nach Korollar 3.1.8, dass $\delta(\mathcal{E}) = \sigma(\mathcal{E}) = \mathcal{A}$. Wir halten $n \in \mathbb{N}$ fest und betrachten

$$\mathcal{D}_n := \{ A \in \mathcal{A} : \mu(G_n \cap A) = \nu(G_n \cap A) \}$$

 \mathcal{D}_n ist ein Dynkinsystem:

- (D₁) Folgt direkt.
- (D_2) Sei $A \in \mathcal{D}_n$. Dann ist

$$\mu(G_n \cap A^{\mathcal{C}}) = \mu(G_n \setminus A) = \mu(G_n \setminus (A \cap G_n))$$

$$= \mu(G_n) - \mu(A \cap G_n)$$

$$= \nu(G_n) - \nu(A \cap G_n)$$

$$= \nu(G_n \cap A^{\mathcal{C}})$$

$$\Rightarrow A^{\mathcal{C}} \in \mathcal{D}_n$$

 (D_3) Sei $(A_m)_m \subseteq \mathcal{D}_n$ eine Folge paarweise disjunkter Mengen. Dann gilt

$$\mu\left(\left(\bigsqcup_{m\in\mathbb{N}}A_m\right)\cap G_n\right) = \mu\left(\bigsqcup_{m\in\mathbb{N}}\left(A_m\cap G_n\right)\right) = \sum_{m\in\mathbb{N}}\mu(A_m\cap G_n)$$
$$= \sum_{m\in\mathbb{N}}\nu(A_m\cap G_n) = \nu\left(\left(\bigsqcup_{m\in\mathbb{N}}A_m\right)\cap G_n\right)$$
$$\Rightarrow \bigsqcup_{m\in\mathbb{N}}A_m\in\mathcal{D}_n$$

Nach Konstruktion von \mathcal{D}_n gilt $\mathcal{D}_n \subseteq \mathcal{A}$. Andererseits ist $\mathcal{E} \subseteq \mathcal{D}_n$. Sei $A \in \mathcal{E}$ und $A \cap G_n \in \mathcal{E}$, da $\mathcal{E} \cap$ -stabil. Nach Voraussetzung gilt $\nu(A \cap G_n) = \mu(A \cap G_n)$, also folgt $A \in \mathcal{D}_n$.

Da $\mathcal{E} \subseteq \mathcal{D}_n \Rightarrow \sigma(\mathcal{E}) = \delta(\mathcal{E}) \subseteq \delta(\mathcal{E}) = \mathcal{D}_n$. Damit gilt $\sigma(\mathcal{E}) \subseteq \mathcal{D}_n$. Das heißt $\forall A \in \sigma(\mathcal{E})$ folgt $\mu(A \cap G_n) = \nu(A \cap G_n)$.

Für $A \in \sigma(\mathcal{E})$ definieren wir eine aufsteigende Folge $A_n := A \cap G_n \nearrow A$. Da μ, ν Maße sind, sind sie von unten stetig. Das heißt

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(A \cap G_n)$$
$$= \lim_{n \to \infty} \nu(A \cap G_n) = \nu(A)$$

Bemerkung 4.1.2 (Ausschöpfende Folgen). Wir nennen $(G_n)_n$ im Sinne von Satz 4.1.1 eine ausschöpfende Folge. Wir nennen ein Maß μ auf \mathcal{A} σ -endlich, wenn es eine Folge $(G_n)_n \subseteq \mathcal{A}$ gibt mit $G_n \nearrow X$ und $\mu(G_n) < \infty \ \forall n \in \mathbb{N}$.

Satz 4.1.3 (Eigenschaften der Borelmengen). In Definition 2.1.8 hatten wir $\mathcal{B}(\mathbb{R}^d) := \sigma(\mathcal{O}_d)$, wobei \mathcal{O} das System offener Teilmengen im \mathbb{R}^d war. Wir definieren nun

- \mathcal{A}_d : System der abgeschlossenen Teilmengen im \mathbb{R}^d
- \mathcal{K}_d : System der kompakten Teilmengen im \mathbb{R}^d

Dann gilt
$$\sigma(\mathcal{K}_d) = \sigma(\mathcal{A}_d) = \sigma(\mathcal{O}_d) = \mathcal{B}(\mathbb{R}^d).$$

Beweis. Schritt 1: $\sigma(\mathcal{A}_d) = \sigma(\mathcal{O}_d)$ ist klar, da σ -Algebren stabil unter Komplementbildung sind.

SCHRITT 2: Es gilt $\mathcal{K}_d \subseteq \mathcal{A}_d \Rightarrow \sigma(\mathcal{K}_d) \subseteq \sigma(\mathcal{A}_d)$.

SCHRITT 3: Für $n \in \mathbb{N}$ definieren wir $K_n := \{|x| < n\}$. Sei $A \in \mathcal{A}_d$, dann ist $A \cap K_n$ kompakt und

$$\bigcup_{n \in \mathbb{N}} K_n = \mathbb{R}^d$$

$$A = \bigcup_{n \in \mathbb{N}} (A \cap K_n) \in \sigma(\mathcal{K}_d)$$

$$\Rightarrow \mathcal{A} \subseteq \sigma(\mathcal{K}_d)$$

$$\Rightarrow \sigma(\mathcal{A}_d) \subseteq \sigma(\sigma(\mathcal{K}_d)) = \sigma(\mathcal{K}_d)$$

$$\Rightarrow \sigma(\mathcal{K}_d) = \sigma(\mathcal{A}_d) = \sigma(\mathcal{O}_d)$$

Im Folgenden nehmen wir an, dass das Lebesgue-Maß λ^d auf $\mathcal{B}(\mathbb{R}^d)$ existiert. Wir werden das später noch beweisen, aber entwickeln das Maß nun nach unserem geometrischen Verständnis unter der Annahme, dass es existiert (das tut es) und untersuchen erste Eigenschaften:

Beobachtung 4.1.4. Wir betrachten den Fall d=1 und ein halboffenes Intervall I:=[a,b). Dann muss gelten $\lambda^1(I)=b-a$. Wir betrachten allgemeine d mit $a,b\in\mathbb{R}^d$ wobei $a\leq b$ (das heißt $a_i\leq b_i$). Dann sei

$$[a,b) := \left\{ x \in \mathbb{R}^d : a_j \le x_j \le b_j \ \forall j \in \{1,\dots,d\} \right\}$$

und wir definieren nach unserem geometrischen Verständnis

$$\lambda^d([a,b)) := \prod_{j=1}^d (b_j - a_j)$$

Definition 4.1.5. Es sei $J^d := \{[a,b) : a,b \in \mathbb{R}^d, a \leq b\}$ das Mengensystem der halboffenen Intervalle im \mathbb{R}^d .

Bemerkung 4.1.6 (Translationsinvarianz des Lebesgue-Maß). Es sei $c \in \mathbb{R}^d$ und wir definieren eine Translation $T_c(x) := x + c$ mit inverser Funktion T_c^{-1} . Dann gilt für ein halboffenes Intervall I := [a, b)

$$\lambda^d \left(T_c^{-1}(I) \right) = \lambda^d ([a - c, b - c))$$
$$= \prod_{j=1}^d (b_j - c_j - (a_j - c_j))$$

$$= \prod_{j=1}^{d} (b_j - a_j) = \lambda^d(I)$$

Das heißt auf J^d ist λ^d invariant unter Translation.

Lemma 4.1.7. Sei $B \in \mathcal{B}^d$ eine Borelmenge und $c \in \mathbb{R}^d$. Dann ist $B + c := \{b + c : b \in B\} \in \mathcal{B}^d$.

Beweis. Sei $c \in \mathbb{R}^d$ fest. Schritt 1: Wir wenden das "Wünsch-dir-was"-Vorgehen an und definieren

$$\mathcal{A} := \left\{ A \in \mathcal{B}^d : A + c \in \mathcal{B}^d \right\}$$

Dann ist \mathcal{A} eine σ -Algebra (Übung).

SCHRITT 2: \mathcal{O}_d ist translationsinvariant. Das heißt $\mathcal{O}_d \subseteq \mathcal{A} \Rightarrow \mathcal{B}^d = \sigma(\mathcal{O}_d) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$. Das heißt $\mathcal{B}^d \subseteq \mathcal{A}$. Damit sind die Borelmengen translationsinvariant.