## **Clouded Thoughts**

Air Quality & Cognitive Performance

Arthur Amorim

January 23, 2019

**Question**: How does air quality affect the decision-making of individuals performing high level of inductive reasoning?

### Motivation

#### News headlines:

- "WHO reveals 7 million die from pollution each year [...]" The Telegraph, May 2018
- "More than 95% of world's population breathe dangerous air, major study finds" – The Guardian, Apr 2018

#### Report takeaway:

 1990 Clean Air Act Amendments avert 160k deaths and 86k hospitalizations each year – EPA 2015

### Motivation

#### Air pollution may adversely affect our life every day:

- Decreased productivity for fruit pickers in California [Graff Zivin and Neidell, AER 2012]
- Decreased productivity for call center workers in China [Chang et al., WP 2016]
- Increased ball/strike call error for MLB baseball umpires [Archsmith, Heyes and Saberian, JAERE 2018]





Literature suggests air quality decreases some cognitive functions...

Literature suggests air quality decreases some cognitive functions...

**Question**: How does air quality affect the decision-making of individuals performing high level of inductive reasoning?

**Question**: How does air quality affect the decision-making of individuals performing high level of inductive reasoning?

### Why

- High value jobs are cognitively demanding and often involve decisions
- Even modest impacts could add up if the affected cognitive skills are ubiquitous

#### This talk:

 Estimating a causal effect of air pollution on the quality of decision-making for expert players of the game Go

```
game example
```

- Purely cognitive game demanding high level of inductive reasoning and concentration
- Played indoors, typically in "laboratorial" environment
- Age distribution of players is wide

```
age dist'n
```

- Popular game in Japan and South Korea...
- ...Which are affected by Asian dust source of exogenous spatial and time variation in air pollution



Asian dust storm and air pollution movement



Asian dust storm in Seoul

- Popular game in Japan and South Korea...
- ...Which are affected by Asian dust source of exogenous spatial and time variation in air pollution

- Popular game in Japan and South Korea...
- ...Which are affected by Asian dust source of exogenous spatial and time variation in air pollution
- Players' cognitive performance can be objectively measured using the Leela Zero Go-playing AI

## Roadmap

- Background & Data
- 2 Empirical Strategy
- Results
- 4 Conclusion

### Background – Asian dust

#### Asian dust storms

- Natural phenomena carrying dust particles from northern China to its neighbours
- Traces back to 174 A.D.
- Growing environmental concern in East Asia due to China's economic growth
- Under the radar of environmental authorities in Japan/Korea

### Data – Asian dust

Strategy adopted by Japan/Korea: "Asian dust storm" warnings Daily records:

- 81 weather stations in South Korea; 1961–today
- 59 weather stations in Japan; 1967-today

#### Methodology:

- Verify dust occurrence in desert regions of northern China;
- Track dust movements through weather maps/satellite imagery;
- Onfirm storm visually and issue dust warning when necessary

#### Data – Asian dust

Strategy adopted by Japan/Korea: "Asian dust storm" warnings Daily records:

- 81 weather stations in South Korea; 1961–today
- 59 weather stations in Japan; 1967-today

- Match dust records with air pollution data from NIER
- Korea: 24hr-avg of  $PM_{10}$   $O_3$   $SO_2$  and, CO (2001-2017)
- Japan: 24hr-avg of SPM PM<sub>2.5</sub> SO<sub>2</sub> and, CO (2009-2016)





Dust-detecting stations in South Korea



**Dust-detecting stations in Japan** 



## Background – Go

#### What is Leela Zero?

- Al modeled after Google Deepmind's Alpha Go Zero
- Reinforcement learning: "trained" Go exclusively with self-play
- Currently stronger than any human

#### How it works?

- Given a board configuration, Leela Zero computes choice probabilities for each possible move
- She then performs Monte Carlo Tree Search (MCTS) a large number of times, drawing from these choice probabilities
- In the end, Leela Zero picks the move with highest "value," derived from choice probabilities plus Monte Carlo wins





Alpha Go Zero's Neural Network

#### Data - Go

#### Move evaluations:

- Ask Leela Zero to analyze a subset of mid-game moves of each game (moves 100-120)
- In each state  $s_t$ , Leela Zero outputs a value representation  $v(a_t)$  for each action  $a_t$  visited in the MCTS simulations
- The move played in the actual game can be classified as:
  - Strong, if it equals the preferred move outputted by Leela Zero
  - Acceptable if it belongs to the set of moves visited in the MCTS step (but is not the preferred move)
  - Blunder, otherwise





#### Data - Go

#### Game records:

- GoGoD: Internet archive of historical Go games sourced from printed and online media
- Each record includes metadata about the game
- I lookup player names on a database of player biographies and a database of player elo ratings
- Final games dataset comprises 22,213 games played between 1980 and 2018, with 60% of games coming from major Go tournaments

| Property name | Description                       |  |  |  |
|---------------|-----------------------------------|--|--|--|
| Player Name   | name of player                    |  |  |  |
| Rank          | rank of player at game date       |  |  |  |
| Elo           | elo rating of player at game date |  |  |  |
| Age           | age of player at game date        |  |  |  |
| Gender        | gender of player                  |  |  |  |
| # of Moves    | number of moves played in game    |  |  |  |
| Date          | date of game                      |  |  |  |
| Place         | place where game was played       |  |  |  |
| Event Name    | name of game event                |  |  |  |
| Place         | place where game was playe        |  |  |  |

Variables from Game Records, Bios, and Elo database



|                       | tournaments | games  | avg duration | % high dan | Prize(USD) |
|-----------------------|-------------|--------|--------------|------------|------------|
| Bacchus               | 36          | 328    | 364          | 69         | unknown    |
| Fujitsu               | 26          | 591    | 224          | 92         | 130,000    |
| Gosei                 | 41          | 1,139  | 366          | 97         | 70,000     |
| GS Caltex             | 15          | 273    | 166          | 79         | 60,000     |
| Honinbo               | 86          | 1,516  | 311          | 89         | 280,000    |
| Judan                 | 40          | 1,145  | 476          | 97         | 130,000    |
| Kisei                 | 60          | 1,382  | 393          | 87         | 400,000    |
| Kiseong               | 25          | 290    | 382          | 72         | unknown    |
| Kuksu                 | 61          | 473    | 157          | 67         | unknown    |
| LG                    | 24          | 607    | 241          | 78         | 60,000     |
| Meijin                | 79          | 1,635  | 350          | 93         | 300,000    |
| Myeongin              | 53          | 598    | 201          | 72         | 90,000     |
| NEC                   | 37          | 226    | 211          | 98         | unknown    |
| Nongshim <sup>†</sup> | 19          | 256    | 182          | 80         | 440,000    |
| Oza                   | 42          | 791    | 425          | 95         | 120,000    |
| Paedal                | 9           | 80     | 158          | 72         | unknown    |
| Paewang               | 26          | 240    | 199          | 81         | unknown    |
| Samsung               | 23          | 734    | 151          | 82         | 175,000    |
| Siptan                | 9           | 266    | 136          | 68         | unknown    |
| Taewang               | 15          | 145    | 258          | 77         | unknown    |
| Tengen                | 45          | 1,246  | 419          | 96         | 125,000    |
| Tong Yang             | 11          | 162    | 235          | 90         | unknown    |
|                       | 782         | 14,123 | 273          | 83         |            |
|                       | (Sum)       | (Sum)  | (Mean)       | (Mean)     |            |

### Summary of tournaments in data



### Data - Combined

#### Final dataset:

- Match recorded Go games with Asian dust + air quality data by city and date
- Compute percent of strong and blunder moves for each player in each game

Main specification at game level:

$$Y_{pjt} = \alpha + \delta Dust_{jt} + \beta Fem_p + \gamma Dan_{pt} + \psi_j + \eta_{ym(t)} + \phi_p + \varepsilon_{pjt}$$

where

 $Y_{pjt}$  is the performance metric of player p in city j and day t  $Dust_{jt}$  indicates Asian dust events in city j and day t  $Fem_p$  equals 1 if player is Female  $Dan_{pt}$  is the Dan ranking of player p on day t  $\psi_j, \eta_{ym(t)}, \phi_p$  are city, year-month, and player FE respectively.

 $\delta$ : effect of an Asian dust day on quality of decision-making.



Does  $Y_{pjt}$  actually measure cognitive performance?

### Does $Y_{pjt}$ actually measure cognitive performance?



Does *Dust<sub>jt</sub>* actually induce air pollution shock?

Does Dust<sub>jt</sub> actually induce air pollution shock? e.g. Seoul



### Does *Dust<sub>jt</sub>* actually induce air pollution shock?



# Results

| Dep. Var:<br>Strong moves per game (%) | (1)               | (2)               | (3)               | (4)               |
|----------------------------------------|-------------------|-------------------|-------------------|-------------------|
| - Strong moves per game (70)           |                   |                   |                   |                   |
| Dust event                             | -0.219<br>(0.471) | -0.173<br>(0.533) | -0.166<br>(0.543) | -0.229<br>(0.675) |
| Controls                               | Fem               | Fem               | Fem, Dan          | Fem,Dan           |
| Fixed Effects                          | Y-M               | Y-M,City          | Y-M,City          | All               |
| Observations                           | 43755             | 43755             | 43755             | 43755             |
| $R^2$                                  | 0.016             | 0.023             | 0.024             | 0.056             |

Effect of air pollution on % strong moves @



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                  | (1)                 | (2)                 | (3)                | (4)               |
|----------------------------|---------------------|---------------------|--------------------|-------------------|
| Blunder moves per game (%) |                     |                     |                    |                   |
| Dust event                 | 1.227***<br>(0.362) | 1.235***<br>(0.361) | 1.233**<br>(0.373) | 1.041*<br>(0.457) |
| Controls                   | Fem                 | Fem                 | Fem,Dan            | Fem,Dan           |
| Fixed Effects              | Y-M                 | Y-M,City            | Y-M,City           | All               |
| Observations               | 43755               | 43755               | 43755              | 43755             |
| $R^2$                      | 0.013               | 0.017               | 0.018              | 0.065             |

### Effect of air pollution on % blunders @



 $<sup>^*</sup>$  p < 0.05,  $^{**}$  p < 0.01,  $^{***}$  p < 0.001

| Dep. Var:                   | (1)     | (2)      | (3)      | (4)     |
|-----------------------------|---------|----------|----------|---------|
| Strong moves per game (%)   |         |          |          |         |
| Panel A                     |         |          |          |         |
| Below median age (30 yrs)   |         |          |          |         |
| Dust event                  | -0.130  | 0.025    | 0.006    | -0.260  |
|                             | (0.558) | (0.652)  | (0.673)  | (0.866) |
| Controls                    | Fem     | Fem      | Fem, Dan | Fem,Dan |
| Fixed Effects               | Y-M     | Y-M,City | Y-M,City | All     |
| $R^2$                       | 0.030   | 0.040    | 0.041    | 0.080   |
| Observations                | 21427   | 21427    | 21427    | 21427   |
|                             | (1)     | (2)      | (3)      | (4)     |
| Panel B                     |         |          |          |         |
| Above median age (30 yrs)   |         |          |          |         |
| Dust event                  | -0.952  | -1.191   | -1.155   | -1.207  |
|                             | (0.835) | (0.845)  | (0.836)  | (0.825) |
| Controls                    | Fem     | Fem      | Fem, Dan | Fem,Dan |
| Fixed Effects               | Y-M     | Y-M,City | Y-M,City | All     |
| $R^2$                       | 0.027   | 0.037    | 0.038    | 0.077   |
| Observations                | 21427   | 21427    | 21427    | 21427   |
| Character to a constitution |         |          |          |         |

Effect of air pollution on % strong moves (age split) @



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                      | (1)      | (2)      | (3)      | (4)     |
|--------------------------------|----------|----------|----------|---------|
| Blunder moves per game (%)     |          |          |          |         |
| Panel A                        |          |          |          |         |
| Below median age (30 yrs)      |          |          |          |         |
| Dust event                     | 0.650    | 0.735    | 0.751    | 0.637   |
|                                | (0.824)  | (0.788)  | (0.817)  | (1.001) |
| Controls                       | Fem      | Fem      | Fem,Dan  | Fem,Dan |
| Fixed Effects                  | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                          | 0.024    | 0.032    | 0.034    | 0.083   |
| Observations                   | 21427    | 21427    | 21427    | 21427   |
|                                | (1)      | (2)      | (3)      | (4)     |
| Panel B                        |          |          |          |         |
| Above median age (30 yrs)      |          |          |          |         |
| Dust event                     | 2.204*** | 2.185*** | 2.153*** | 1.836** |
|                                | (0.547)  | (0.554)  | (0.555)  | (0.643) |
| Controls                       | Fem      | Fem      | Fem,Dan  | Fem,Dan |
| Fixed Effects                  | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                          | 0.024    | 0.032    | 0.033    | 0.093   |
| Observations                   | 21427    | 21427    | 21427    | 21427   |
| Standard errors in parentheses |          |          |          |         |

Effect of air pollution on % blunders (age split) @





<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Conclusion

#### Conclusion

#### This research:

- Documents air pollution shocks induced by Asian dust storms
  - $PM_{10}$ :  $\uparrow 75\%$ ,  $PM_{2.5}$ :  $\uparrow 45\%$
  - Other pollutants: ambiguous/small change
- Constructs measures of cognitive performance in Go based on move evaluations from an AI which outperforms humans
  - % of **strong** moves same move as suggested by Leela Zero
  - % of blunders move outside of Leela Zero's consideration set

#### Conclusion

#### This research:

- Exploits Asian dust storms and documents effect of air pollution on quality of decision-making in Go
  - Find no significant effect on players' ability to play strong moves
  - Find overall  $\approx 7\%$  increase in **blunders**
- Uncovers some heterogeneity:
  - Effects are driven by older players (i.e. insignificant for younger ones)

Key takeaway: Air quality increases propensity of human error in a mentally taxing task, yet it does not appear to affect cognitive skill of inductive reasoning.



### What's next?

**Strong** and **Blunder** are extreme cases.

#### What's next?

**Strong** and **Blunder** are extreme cases.

Can move choices, in general, reveal something about the thought process of players?

# What's next? Depth of Satisficing

# Kramnik vs Anand 2008 WCH Game 3: Stockfish centipawn values at various depths

|      | Depth $\rightarrow$ |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |
|------|---------------------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|
| Move | 1                   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11  | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   |
| Nd2  | 103                 | 093  | 087  | 093  | 027  | 028  | 000  | 000  | 056  | -007 | 039 | 028  | 037  | 020  | 014  | 017  | 000  | 006  | 000  |
| Bxd7 | 048                 | 034  | -033 | -033 | -013 | -042 | -039 | -050 | -025 | -010 | 001 | 000  | -009 | -027 | -018 | 000  | 000  | 000  | 000  |
| Qg8  | 114                 | 114  | -037 | -037 | -014 | -014 | -022 | 068  | -008 | -056 | 042 | -004 | -032 | 000  | -014 | -025 | -045 | -045 | -050 |
|      |                     |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |
| Nxd4 | -056                | -056 | -113 | -071 | -071 | -145 | -020 | -006 | 077  | 052  | 066 | 040  | 050  | 051  | -181 | -181 | -181 | -213 | -213 |

# What's next? Depth of Satisficing

# Kramnik vs Anand 2008 WCH Game 3: Stockfish centipawn values at various depths

|      | Depth $\rightarrow$ |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |
|------|---------------------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|
| Move | 1                   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11  | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   |
| Nd2  | 103                 | 093  | 087  | 093  | 027  | 028  | 000  | 000  | 056  | -007 | 039 | 028  | 037  | 020  | 014  | 017  | 000  | 006  | 000  |
| Bxd7 | 048                 | 034  | -033 | -033 | -013 | -042 | -039 | -050 | -025 | -010 | 001 | 000  | -009 | -027 | -018 | 000  | 000  | 000  | 000  |
| Qg8  | 114                 | 114  | -037 | -037 | -014 | -014 | -022 | 068  | -008 | -056 | 042 | -004 | -032 | 000  | -014 | -025 | -045 | -045 | -050 |
| Nxd4 | -056                | -056 | -113 | -071 | -071 | -145 | -020 | -006 | 077  | 052  | 066 | 040  | 050  | 051  | -181 | -181 | -181 | -213 | -213 |

#### Classify moves as:

- Swing-up if move becomes a better choice if we think "deeply"
- Swing-down if move becomes a worse choice instead

#### Shimako vs Hirohisa 7th Shinjin-O Leela Zero win rate values at various depths

|      | $Depth \to$ |       |       |       |       |       |
|------|-------------|-------|-------|-------|-------|-------|
| Move | 1           | 2     | 3     | 4     | 5     | swing |
| G2   | 10.32       | 11.15 | 12.25 | 11.15 | 12.60 | 5.96  |
| N11  | 10.32       | 12.75 | 13.22 | 12.89 | 12.49 | 1.21  |
| J14  | 10.30       | 10.30 | 10.30 | 10.30 | 11.21 | 4.07  |
| O11  | 11.97       | 12.17 | 11.50 | 11.53 | 10.88 | -3.22 |
| L13  | 10.02       | 12.35 | 11.37 | 11.48 | 10.02 | -4.71 |
| J13  | 7.60        | 7.60  | 7.60  | 8.14  | 7.60  | -0.11 |

where

$$swing(m) = \sum_{d=1}^{D} \delta_d(m) - \delta_D(m)$$

 $\delta_d(m)$  is the difference from optimality of move m at depth d.





Average error of swing-down moves and AI moves vs depth High ranked players (5-dan and above)



Average error of swing-down moves and AI moves vs depth Low ranked players (4-dan and below) swing-up case

How do decisions and thought process revealed from Go players transport to other life situations?

# Thank you!

Have suggestions on how to refine this research? Contact me! anova0515@gmail.com



Age distribution of Go players in the data back



## Does $Y_{pjt}$ actually measure cognitive performance?



| Dep. Var:                             | (1)                 | (2)                 | (3)                  | (4)                 | (5)                 | (6)                  |
|---------------------------------------|---------------------|---------------------|----------------------|---------------------|---------------------|----------------------|
| Pr(Black wins)<br>$\Delta strong > 0$ | 1.504***<br>(14.70) | 1.507***<br>(14.65) | 1.510***<br>(14.68)  |                     |                     |                      |
| $\Delta$ blunder $< 0$                |                     |                     |                      | 2.677***<br>(35.40) | 2.624***<br>(34.46) | 2.613***<br>(34.20)  |
| $\Delta \mathit{rank} < 0$            |                     | 1.101***<br>(18.48) | 1.124***<br>(21.13)  |                     | 1.093***<br>(16.61) | 1.114***<br>(19.16)  |
| $\Delta \mathit{age} > 10$            |                     |                     | 0.659***<br>(-12.74) |                     |                     | 0.670***<br>(-11.95) |
| Observations                          | 22165               | 22165               | 22165                | 22165               | 22165               | 22165                |

Exponentiated coefficients; t statistics in parentheses





<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

Logistic models from previous slide:

$$F[Pr(Black\ wins)] = \beta_0 + \beta_1 \mathbb{1}(\Delta strong > 0) + \beta_2 \mathbb{1}(\Delta rank < 0) + \beta_3 \mathbb{1}(\Delta age > 10)\}$$

$$F[Pr(Black wins)] = \beta_0 + \beta_1 \mathbb{1}(\Delta blunder < 0) + \beta_2 \mathbb{1}(\Delta rank < 0) + \beta_3 \mathbb{1}(\Delta age > 10)\}$$

where 
$$F[x] = ln \frac{x}{1-x}$$



### Does Dust<sub>jt</sub> actually induce air pollution shock?





### Does Dust<sub>jt</sub> actually induce air pollution shock?









| Dep. Var:                 | (1)     | (2)      | (3)      | (4)     |
|---------------------------|---------|----------|----------|---------|
| Strong moves per game (%) |         |          |          |         |
| Panel A                   |         |          |          |         |
| Low/Amateur-Dan           |         |          |          |         |
| Dust event                | 0.841   | 0.570    | 0.678    | -0.092  |
|                           | (0.939) | (0.746)  | (0.673)  | (0.737) |
| Controls                  | Fem     | Fem      | Fem,Age  | Fem,Age |
| Fixed Effects             | Y-M     | Y-M,City | Y-M,City | All     |
| $R^2$                     | 0.061   | 0.071    | 0.076    | 0.182   |
| Observations              | 8540    | 8540     | 8178     | 8178    |
|                           | (1)     | (2)      | (3)      | (4)     |
| Panel B                   |         |          |          |         |
| High Dan                  |         |          |          |         |
| Dust event                | -0.332  | -0.324   | -0.260   | -0.340  |
|                           | (0.626) | (0.669)  | (0.688)  | (0.783) |
| Controls                  | Fem     | Fem      | Fem,Age  | Fem,Age |
| Fixed Effects             | Y-M     | Y-M,City | Y-M,City | All     |
| $R^2$                     | 0.018   | 0.026    | 0.026    | 0.053   |
| Observations              | 35215   | 35215    | 34686    | 34686   |
| 6: 1 1 : :1               |         |          |          |         |

### Effect of air pollution on % strong moves (rank split)



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                  | (1)      | (2)      | (3)      | (4)     |
|----------------------------|----------|----------|----------|---------|
| Blunder moves per game (%) | . ,      | . ,      | . ,      | . ,     |
| Panel A                    |          |          |          |         |
| Low/Amateur-Dan            |          |          |          |         |
| Dust event                 | 1.369    | 1.717*   | 1.714*   | 2.150** |
|                            | (0.967)  | (0.769)  | (0.749)  | (0.720) |
| Controls                   | Fem      | Fem      | Fem,Age  | Fem,Age |
| Fixed Effects              | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                      | 0.056    | 0.063    | 0.068    | 0.189   |
| Observations               | 8540     | 8540     | 8178     | 8178    |
|                            | (1)      | (2)      | (3)      | (4)     |
| Panel B                    |          |          |          |         |
| High Dan                   |          |          |          |         |
| Dust event                 | 1.233*** | 1.259*** | 1.159*** | 1.008** |
|                            | (0.260)  | (0.270)  | (0.264)  | (0.351) |
| Controls                   | Fem      | Fem      | Fem,Age  | Fem,Age |
| Fixed Effects              | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                      | 0.015    | 0.020    | 0.021    | 0.061   |
| Observations               | 35215    | 35215    | 34686    | 34686   |

Effect of air pollution on % blunders (rank split) robust



 $<sup>^{\</sup>ast}$  p < 0.05,  $^{\ast\ast}$  p < 0.01,  $^{\ast\ast\ast}$  p < 0.001

| Dep. Var:                 | (1)               | (2)               | (3)               | (4)               |
|---------------------------|-------------------|-------------------|-------------------|-------------------|
| Strong moves per game (%) |                   |                   |                   |                   |
| Dust event                | -0.219<br>(0.471) | -0.173<br>(0.533) | -0.261<br>(0.719) | -0.482<br>(0.750) |
| Controls                  | Fem               | Fem               | Fem,Elo           | Fem,Elo           |
| Fixed Effects             | Y-M               | Y-M,City          | Y-M,City          | All               |
| Observations              | 43755             | 43755             | 41213             | 41213             |
| $R^2$                     | 0.016             | 0.023             | 0.028             | 0.052             |

Effect of air pollution on % strong moves





<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                  | (1)                 | (2)                 | (3)               | (4)              |
|----------------------------|---------------------|---------------------|-------------------|------------------|
| Blunder moves per game (%) |                     |                     |                   |                  |
| Dust event                 | 1.227***<br>(0.362) | 1.235***<br>(0.361) | 1.088*<br>(0.536) | 0.916<br>(0.561) |
| Controls                   | Fem                 | Fem                 | Fem,Elo           | Fem,Elo          |
| Fixed Effects              | Y-M                 | Y-M,City            | Y-M,City          | All              |
| Observations               | 43755               | 43755               | 41213             | 41213            |
| $R^2$                      | 0.013               | 0.017               | 0.027             | 0.060            |

### Effect of air pollution on % blunders back



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                 | (1)     | (2)      | (3)      | (4)     |
|---------------------------|---------|----------|----------|---------|
| Strong moves per game (%) |         |          |          |         |
| Panel A                   |         |          |          |         |
| Below median age (30 yrs) |         |          |          |         |
| Dust event                | -0.130  | 0.025    | -0.156   | -0.407  |
|                           | (0.558) | (0.652)  | (0.767)  | (0.938) |
| Controls                  | Fem     | Fem      | Fem,Elo  | Fem,Elo |
| Fixed Effects             | Y-M     | Y-M,City | Y-M,City | All     |
| R <sup>2</sup>            | 0.030   | 0.040    | 0.044    | 0.079   |
| Observations              | 21427   | 21427    | 19936    | 19936   |
|                           | (1)     | (2)      | (3)      | (4)     |
| Panel B                   |         |          |          |         |
| Above median age (30 yrs) |         |          |          |         |
| Dust event                | -0.952  | -1.191   | -1.411   | -1.568  |
|                           | (0.835) | (0.845)  | (1.034)  | (1.019) |
| Controls                  | Fem     | Fem      | Fem,Elo  | Fem,Elo |
| Fixed Effects             | Y-M     | Y-M,City | Y-M,City | All     |
| $R^2$                     | 0.027   | 0.037    | 0.043    | 0.069   |
| Observations              | 21427   | 21427    | 20514    | 20514   |

Effect of air pollution on % strong moves back





<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Dep. Var:                      | (1)      | (2)      | (3)      | (4)     |
|--------------------------------|----------|----------|----------|---------|
| Blunder moves per game (%)     |          |          |          |         |
| Panel A                        |          |          |          |         |
| Below median age (30 yrs)      |          |          |          |         |
| Dust event                     | 0.650    | 0.735    | 0.782    | 0.615   |
|                                | (0.824)  | (0.788)  | (0.950)  | (1.106) |
| Controls                       | Fem      | Fem      | Fem,Elo  | Fem,Elo |
| Fixed Effects                  | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                          | 0.024    | 0.032    | 0.040    | 0.084   |
| Observations                   | 21427    | 21427    | 19936    | 19936   |
|                                | (1)      | (2)      | (3)      | (4)     |
| Panel B                        |          |          |          |         |
| Above median age (30 yrs)      |          |          |          |         |
| Dust event                     | 2.204*** | 2.185*** | 1.886*** | 1.634** |
|                                | (0.547)  | (0.554)  | (0.503)  | (0.605) |
| Controls                       | Fem      | Fem      | Fem,Elo  | Fem,Elo |
| Fixed Effects                  | Y-M      | Y-M,City | Y-M,City | All     |
| $R^2$                          | 0.024    | 0.032    | 0.045    | 0.083   |
| Observations                   | 21427    | 21427    | 20514    | 20514   |
| Standard orrors in parentheses |          |          |          |         |

Effect of air pollution on % blunders (back)



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

| Sample:     | (1)<br>Full | (2)<br>Younger | (3)<br>Older | (4)<br>Low/Amateur-Dan | (5)<br>High-Dan |
|-------------|-------------|----------------|--------------|------------------------|-----------------|
| Strong (%)  | -0.373      | -0.861         | -1.105       | -0.677                 | -0.492          |
|             | (0.699)     | (0.776)        | (0.896)      | (0.591)                | (0.845)         |
| Blunder (%) | 0.931*      | 0.801          | 1.501*       | 2.681***               | 0.739**         |
|             | (0.398)     | (0.828)        | (0.636)      | (0.662)                | (0.273)         |
| N           | 28785       | 13190          | 15302        | 3256                   | 25236           |

Column (4) of results tables w/o untreated players back

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001



Average error of swing-up moves and AI moves vs depth High ranked players (5-dan and above) back

# Background – Go

A model of Go [from Silver et al. 2017; Igami 2018]

## Background – Go

**A model of Go** [from Silver et al. 2017; Igami 2018] Discrete time: t = 0, 1, 2, ... Two players: i = 1, 2 alternating moves  $a_t$  Deterministic state transition:  $s_{t+1} = f(s_t, a_t)$ ; f() and  $s_0$  given Action space in period t is the finite set of legal moves:  $a_t \in \mathcal{A}(s_t)$  After  $a_t$  is played, the game either continues in period t + 1 or

$$s_t \in \mathcal{S} = \mathcal{S}_{cont} \cup \mathcal{S}_{win} \cup \mathcal{S}_{lose}$$

concludes. Thus, the state space consists of

# Background - Go

#### Model (cont'd)

Payoff of player 1 in each period t is

$$u_1(s_t) = egin{cases} 1, & ext{if } s_t \in \mathcal{S}_{win} \ -1, & ext{if } s_t \in \mathcal{S}_{lose} \ 0, & ext{if } s_t \in \mathcal{S}_{cont} \end{cases}$$

 $u_2(s_t)$  is similarly defined with payoffs flipped.

# Background – Go

#### Model (cont'd)

Go players (and Als) choose a move at each turn by searching for  $a_t^*$  that maximizes an evaluation function V() in some future period t+K given parameters  $\theta$ 

$$a_t^* = \underset{a_t \in \mathcal{A}(s_t)}{\operatorname{arg max}} \{ V(s_{t+K}; \theta) \}$$

AGZ













