Definition

 Heap wird auch Halde genannt Definition (max-heap):

Eine Halde (Heap) ist ein **lineares Feld** A[0..n-1], wobei gilt: $A[i] \ge \max \{A[2i+1], A[2i+2]\}$, für $i=0,1,...,\lfloor n/2 \rfloor -1$ (Haldenbedingung)

- nicht automatisch absteigend sortiert
- Darstellung als Graph/Binärbaum
 - siehe [[Bäume & Spannbäume]]

- Eigenschaften
 - A[0] ist Maximum (Wurzel)
 - vollständiger Baum
 - * letzte Ebene evtl. nicht komplett
 - jeder Teilbaum wieder Halde
 - $h = \lfloor log_2(n) \rfloor$

Heapify

· Verhalde-Prozedur

Verhalden von Element A[i]

Voraussetzung: Die Teilbäume mit Wurzel LINKS(i) und RECHTS(i) sind Halden, aber Element i verletzt möglicherweise die

Haldenbedingung. $A[i] \ge \max \{A[2i+1], A[2i+2]\}$ VERHALDE(A,0) Haldenbedingung (HB)

index: Index von

VERHALDE(A, i)
//N...aktuelle Haldengröße
1: l ← LINKS(i), r ← RECHTS(i)
2: index ← i

3: IF 1<N and A[1]>A[i] THEN index←14: IF r<N and A[r]>A[index] THEN index←r

5: **IF** i≠index **THEN**

6: vertausche A[i], A[index]

7: VERHALDE (A, index)

Laufzeit: T(n) = O(log n)

- Aufbau einer Halde mittel Heapify
 - gegeben lineares Feld in beliebiger Reihenfolge
 - Blätter (einzelnes Element) sind triviale Halden
 - Verhalde auf Eltern der Blätter (vorletzte Schicht) anwenden
 - Wiederholen für alle Knoten bis zur Wurzel

BAUE_HALDE(A)

1: FOR $i \leftarrow \lfloor n/2 \rfloor - 1$ DOWNTO 0

2: VERHALDE (A, i)

Laufzeit

BAUE_HALDE(A)

1: FOR $i \leftarrow \lfloor n/2 \rfloor - 1$ DOWNTO 0

VERHALDE (A, i)

– Naive Analyse: n/2 * VERHALDE

Laufzeit: $T(n) \in \frac{n}{2}O(\log n) \in O(n\log n)$

 Aber: Element der Höhe h kann in O(h) Zeit verhaldet werden \Rightarrow Laufzeit $T(n) \in O(n)$

*

$$T(n) \leq \sum_{j=0}^{k}$$

$$h = L M u I$$

$$n \ge 2$$

$$T(n) \leq \sum_{j=0}^{h} i 2^{h-j} = \sum_{j=0}^{h} i \cdot 2^{j} \leq n$$