P. Maurer ENS Rennes

Leçon 153. Polynômes d'endomorphismes en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.

Devs:

- Réduction de Frobenius
- Décomposition de Dunford

Références:

- 1. Gourdon, Algèbre
- 2. Objectif Agrégation
- 3. Zavidovique, Un max de maths
- 4. FGN, Oraux X-ENS Algèbre 2

Dans ce qui suit, K désigne un corps commutatif et E est un espace vectoriel sur K, de dimension finie $n \in \mathbb{N}^*$.

1 Polynômes d'endomorphismes

1.1 L'algèbre K[f]

Définition 1. Soit $P = a_n X^n + \cdots + a_0 \in K[X]$. Pour $f \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(K)$, on définit

- $P(f) = a_n f^n + \cdots + a_0 \operatorname{Id}_E$,
- $\bullet \quad P(A) = a_n A^n + \dots + a_0 I_n.$

roposition 2.

L'application φ_f : $\begin{cases} (K[X], +, \times) \to (\mathcal{L}(E), +, \circ) \\ P \mapsto P(f) \end{cases}$ est un morphisme de k-algèbre.

L'ensemble $K[f] := \{P(f) \mid P \in k[X]\}$ est alors une sous-algèbre commutative de $\mathcal{L}(E)$.

Exemple 3. Si $M = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$, alors $P(M) = \operatorname{diag}(P(\alpha_1), \dots, P(\alpha_n))$.

Proposition 4. Soit $f \in \mathcal{L}(E)$ et $P \in K[X]$ tel que P(f) = 0. Si λ est une valeur propre de f, alors $P(\lambda) = 0$.

Théorème 5. (Lemme des novaux)

Soit $f \in \mathcal{L}(E)$ et $P = P_1 \cdots P_r \in K[X]$, les polynômes P_i étant premiers entre eux deux à deux. Alors

$$\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f).$$

1.2 Polynôme minimal

On se donne $f \in \mathcal{L}(E)$.

Proposition 6. Le noyau Ker φ_f de l'application définie en proposition 2 est un idéal non nul de K[X] appelé idéal des polynômes annulateurs.

Proposition 7. Il existe un unique polynôme unitaire $\pi_f \in K[X]$ qui engendre $\text{Ker } \varphi_f$. On l'appelle le polynôme minimal de f.

Exemple 8. Si f est un projecteur, $\pi_f = X(X+1)$. Si f est une symétrie non triviale et $car(k) \neq 2$, on a $\pi_f = (X+1)(X-1)$. Si f est nilpotente d'ordre r, on a $\pi_f = X^r$.

Proposition 9. Soit $\lambda \in k$. Alors $\lambda \in \operatorname{Sp}(f) \iff \pi_f(\lambda) = 0$.

Proposition 10. π_f est invariant par similitude : pour tout $p \in GL(E)$, $\pi_{pfp^{-1}} = \pi_f$.

Corollaire 11. On a l'isomorphisme de K-algèbres $K[f] \simeq K[X]/(\pi_f)$, et si $\pi_u = P_1 \cdots P_r$ avec P_1, \ldots, P_r premiers entre eux deux-à-deux, $K[f] \simeq K[X]/(P_1) \times \cdots \times K[X]/(P_r)$.

Proposition 12. Si $k = \deg(\pi_f)$, alors K[f] est de dimension k, et une base est donnée $par (Id_E, f, ..., f^{k-1}).$

Proposition 13. Si F est un sous-espace vectoriel de E stable par f, alors $\pi_{f_{1E}}|\pi_f$. Si $E = F_1 \oplus F_2$ avec F_1 et F_2 des sous-espaces vectoriels de E stables par f, alors $\pi_f =$ $ppcm(\pi_{f|_{F_1}}, \pi_{f|_{F_2}}).$

Proposition 14. Soit P et Q deux polynômes unitaires tels que $\pi_f = PQ$, et F = Ker P(u). Alors $\pi_{u_{|F}} = P$.

1.3 Polynôme caractéristique

Définition 15. On appelle polynôme caractéristique de A (resp. de f) le polynôme de k[X] défini par $\chi_A(X) = \det(A - XI_n)$ (resp. $\chi_f(X) = \det(f - X\operatorname{Id})$).

Proposition 16. Le polynôme caractéristique est stable par transposition : $\chi_{A^T} = \chi_A$.

Proposition 17. χ_A est un polynôme de degré n. Si $\chi_A = (-1)^n \sum_{k=0}^n a_k X^k$, alors on a $a_n = 1$, $a_{n-1} = -\text{Tr}(A)$ et $a_0 = (-1)^n \det(A)$.

Section 2

Exemple 18. (Calcul pratique de χ_A)

2

Si
$$n = 2$$
, $\chi_A(X) = X^2 - \text{Tr}(A) X + \text{det}(A)$.

Si
$$n = 3$$
, $\chi_A(X) = -X^3 + \text{Tr}(A) X^2 - \frac{1}{2} (\text{Tr}(A)^2 - \text{Tr}(A^2)) X + \det(A)$.

Ces formules permettent le calcul efficace du polynôme caractéristique en petite dimension. En grande dimension (en général, à partir de n=4) on leur préfère l'algorithme du pivot de Gauss pour le déterminant.

Exemple 19. Si f est nilpotent, $\chi_f(X) = (-1)^n X^n$.

Théorème 20. (Cayley-Hamilton) On a $\chi_f(f) = 0$. Autrement dit, $\mu_f | \chi_f$.

Corollaire 21. Les valeurs propres de f sont racines de son polynôme caractéristique (en fait, ce sont les seules).

2 Application à la réduction des endomorphismes

2.1 Diagonalisation

Définition 22. On dit que f est diagonalisable s'il existe une base de vecteurs propres de f. On dit que A est diagonalisable si elle est semblable à une matrice diagonale.

Proposition 23. (Condition suffisante de diagonalisabilité)

Si χ_f est scindé à racines simples, alors f est diagonalisable.

Théorème 24. Les propositions suivantes sont équivalents :

- f est diagonalisable.
- π_f est scindé à racines simples dans k.
- χ_f est scindé dans k et $\dim(E_\lambda) = v_\lambda$, où v_λ désigne la multiplicité de λ en tant que racine de χ_f .
- $E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} E_{\lambda}.$

Corollaire 25. Si f possède n valeurs propres distinctes, alors f est diagonalisable.

Exemple 26. Les projecteurs et les symétries sont toujours diagonalisables (sauf si car(k) = 2).

Les endomorphismes nilpotents non nuls ne sont jamais diagonalisables.

Exemple 27. Les matrices de rotation de \mathbb{R}^2 (d'angle non congru à π modulo \mathbb{Z}) ne sont pas diagonalisables dans $\mathcal{M}_2(\mathbb{R})$, mais elles le sont dans $\mathcal{M}_2(\mathbb{C})$.

Théorème 28. Si $k = \mathbb{F}_q$ est fini avec $q = p^n$, f est diagonalisable si et seulement si F(f) = 0, où $F(X) = X^q - X$.

Proposition 29. Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Alors:

- i. Tout sous-espace propre de f est stable par q (en particulier Ker f).
- ii. Im f est stable par g.

Théorème 30. (Diagonalisation simultannée).

Si f et $g \in \mathcal{L}(E)$ sont des endomorphismes diagonalisables qui commutent, alors ils sont diagonalisables dans une même base de vecteurs propres : on dit qu'ils sont codiagonalisables.

2.2 Trigonalisation et applications

Définition 31. Un endomorphisme $f \in \mathcal{L}(E)$ est dit trigonalisable s'il existe une base B de E dans laquelle la matrice de f soit triangulaire supérieure. On dit que B trigonalise f.

Une matrice $A \in \mathcal{M}_n(K)$ est dite trigonalisable si A est semblable à une matrice triangulaire supérieure.

Théorème 32. Un endomorphisme $f \in \mathcal{L}(E)$ est trigonalisable si et seulement si son polynôme caractéristique χ_f est scindé sur K.

Théorème 33. (Trigonalisation simultanée). Si f et g sont trigonalisables et commutent, alors ils sont trigonalisables dans une même base de E.

Développement 1 :

Proposition 34. Soit $P = P_1 \cdots P_r$ un polynôme annulateur de f avec P_1, \ldots, P_r premiers entre eux deux à deux. On a $E = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$, et la projection sur $\operatorname{Ker} P_i(f)$ parallèlement à $\bigoplus_{i \neq j} \operatorname{Ker} P_j(f)$ est un polynôme en f.

Théorème 35. (Décomposition de Jordan-Chevalley)

On suppose que χ_f est scindé sur k. Alors il existe un unique couple (d,n) d'endomorphismes de $\mathcal{L}(E)$ tels que :

- d est diagonalisable, n est nilpotent.
- f = d + n et $d \circ n = n \circ d$

De plus, d et n sont des polynômes en f.

Application 36. Les morphismes continus de \mathbb{U} vers $GL_n(\mathbb{R})$ sont de la forme :

$$\varphi \colon e^{it} \mapsto Q \begin{pmatrix} R_{tk_1} & & & \\ & \ddots & & & (0) \\ & & R_{tk_r} & & \\ & & & 1 & \\ & & & (0) & & \ddots & \\ & & & & 1 \end{pmatrix} Q^{-1}$$

Où
$$Q \in GL_n(\mathbb{R}), r \in \mathbb{N}, k_1, \dots, k_r \in \mathbb{Z}^*$$
 et $R_\theta = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ pour tout $\theta \in \mathbb{R}$.

Annexe 3

2.3 Invariants de similitude

Notation 37. Si $x \in E$, on note P_x le polynôme unitaire engendrant l'idéal $\{P \in \mathbb{K}[X] : P(f)(x) = 0\}$, et E_x l'ensemble $\{P(f)(x) : P \in \mathbb{K}[X]\}$.

Dans la suite, on notera k le degré de π_f et ℓ_x le degré de P_x pour $x \in E$.

Proposition 38. L'ensemble E_x est un sous-espace vectoriel de E de dimension ℓ_x , dont une base est $(x, \ldots, f^{\ell_x-1}(x))$.

Théorème 39. Il existe $x \in E$ tel que $P_x = \pi_f$.

Définition 40. On dit que f est cyclique s'il existe $x \in E$ tel que $E_x = E$. D'après ce qui précède, ceci équivant à dire que $k = \deg(\pi_f) = n$, ou encore que $\pi_f = (-1)^n \chi_f$, où χ_f désigne le polynôme caractéristique de f.

Définition 41. Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_0$ un polynôme unitaire de $\mathbb{K}[X]$. On appelle matrice compagnon de P la matrice C(P) (voire annexe).

Proposition 42. Le polynôme caractéristique $\chi_{\mathcal{C}(P)}$ de $\mathcal{C}(P)$ vérifie $\chi_{\mathcal{C}(P)} = (-1)^p P$.

Développement 2 :

Théorème 43. (Invariants de similitude)

Soit $f \in \mathcal{L}(E)$. Il existe une suite finie F_1, \dots, F_r de sous-espaces vectoriels de E, tous stables par f, telle que

- 1. $E = \bigoplus_{i=1}^{r} F_{i}$
- 2. pour tout $i \in [1, r]$, $f_{|F|}$ est un endomorphisme cyclique,
- 3. $\text{si } P_i = \pi_{f_i}$ on a $P_{i+1} | P_i$ pour tout $i \in [1, r-1]$.

La suite P_1, \ldots, P_r ne dépend que de f et non du choix de la décomposition. On l'appelle suite des invariants de similitude de f.

Application 44. (réduction de Frobenius)

Soit $f \in \mathcal{L}(E)$ et P_1, \ldots, P_r la suite des invariants de similitude de f. Alors il existe une base \mathcal{B} de E dans laquelle $\operatorname{mat}_{\mathcal{B}}(f) = \operatorname{diag}(\mathcal{C}(P_1), \ldots, \mathcal{C}(P_r))$. On a $P_1 = \pi_f$ et $P_1 \cdots P_r$ est le polynôme caractéristique de f, à un facteur $(-1)^n$ près.

3 Autres applications

3.1 Calcul de puissances et d'inverse

Proposition 45. Si $A \in \mathcal{M}_n(K)$ et $P \in K[X]$ est un polynôme annulateur de A, alors écrivant $X^k = P(X)Q(X) + R(X)$ la division euclidienne de X^k par P, on a $A^k = R(A)$ avec $\deg(R) < \deg(\pi_A)$.

Exemple 46. Si
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, alors $A^k = \frac{2^k + (-1)^{k-1}}{3}A + \frac{2^k + 2(-1)^k}{3}I_n$.

Proposition 47. Si $A \in GL_n(K)$, alors $A^{-1} \in K[A]$.

Corollaire 48. Pour tout $A \in \mathcal{M}_n(K)$, on a $K[A]^{\times} = K[A] \cap GL_n(K)$.

3.2 Exponentielle de matrice

Proposition 49. On considère une norme d'algèbre $\|.\|$ sur $\mathcal{M}_n(k)$, par exemple la norme d'opérateur. On rappelle que $(\mathcal{M}_n(k),\|.\|)$ est alors un espace de Banach. La série $\sum_{k\in\mathbb{N}}\frac{A^k}{k!}$ est normalement convergente, donc convergente.

Définition 50. On note
$$\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$$
.

Proposition 51. Si $P \in GL_n(k)$, on a $\exp(PAP^{-1}) = P \exp(A) P^{-1}$.

Proposition 52. Si A = D + N avec D diagonalisable et N nilpotente, alors:

$$\exp(A) = \exp(D)\exp(N)$$

Remarque 53. Si χ_A est scindé sur k, la réduction de Jordan-Chevalley donne alors une méthode simple pour calculer $\exp(A)$. En effet, $\exp(D)$ se calcule facilement par la proposition 50, et le calcul de $\exp(N)$ est immédiat puisque $N^n=0$ implique que $\exp(N)=\sum_{k=0}^{n-1}\frac{N^k}{k!}$.

Théorème 54. Pour tout $A \in \mathcal{M}_n(\mathbb{C})$, on $a \exp(\mathbb{C}[A]) = \mathbb{C}[A]^{\times}$.

Corollaire 55. L'exponentielle de matrices exp: $\mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

4 Annexe

Matrice compagnon (définition 41).

$$C(P) = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & 0 & & & -a_1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{p-2} \\ 0 & \cdots & 0 & 1 & -a_{p-1} \end{pmatrix}.$$