NBHM 2025 Solutions- Abstract Algebra

January 26, 2025

Solution 4:

Problem Statement: The prime elements of the ring $\mathbb{Z}[i]$, i.e., a + bi, $a, b \in \mathbb{Z}$, are called *Gaussian primes*. Which of the following are Gaussian primes?

Note. It suffices to state just the letter corresponding to a statement. If more than one statement is true, then all such must be identified.

- (a) 5 + 0i
- (b) 0 + 7i
- (c) 3 + 5i
- (d) 4 + 5i

Solution: Do by yourself using norm!

Answer: (b), (d)

Solution 6:

Problem Statement: Let S_{11} be the symmetric group on 11 letters. How many subgroups of order 11 are there in S_{11} ?

Solution: We want to determine the number of subgroups of order 11 in S_{11} . Subgroups of order 11 are cyclic, and every element in such a subgroup has order 11 except for the identity.

The symmetric group S_{11} contains 11! elements. To form a subgroup of order 11, we focus on the 11-cycles, as these elements have order 11.

The total number of permutations forming an 11-cycle is given by:

$$\frac{11!}{11} = 10!.$$

Each cyclic subgroup of order 11 contains exactly 10 non-identity elements. Since each subgroup is formed by these 10 elements and the identity, we divide by 10 to avoid overcounting:

$$\frac{10!}{10} = 9!.$$

Hence, the total number of subgroups of order 11 in S_{11} is 9!.

Solution 7:

Problem Statement: For $n \ge 1$, let S_n denote the set of all permutations of $\{1, 2, ..., n\}$. Let p_n denote the probability of the event that a randomly chosen permutation does not fix any integer in its original position. Find

$$\lim_{n\to\infty}p_n$$
.

Solution: https://en.wikipedia.org/wiki/Derangement#Growth_of_number_of_derangements_as_n_approaches_%E2%88%9E

Solution 15:

Problem Statement: What is the number of homomorphisms from the symmetric group S_7 to the alternating group A_8 (i.e., the subgroup of all even permutations in the symmetric group S_8)?

Solution: We are asked to determine the number of homomorphisms from the symmetric group S_7 to the alternating group A_8 . By the first isomorphism theorem, we examine the kernel of a potential homomorphism. The following cases are possible for the quotient $S_7/\ker(\phi)$:

1.
$$S_7/A_7$$
, 2. S_7/S_7 , 3. $S_7/\{e\}$.

Let us analyze each case: - Case 2, S_7/S_7 , corresponds to the trivial homomorphism, contributing exactly one homomorphism. - Case 3, $S_7/\{e\}$, suggests an injective homomorphism. However, since S_n can only be embedded into A_{n+2} , this case is not possible. - Therefore, the only valid case is S_7/A_7 , where the kernel is A_7 . The problem then reduces to finding the number of subgroups of order 2 in A_8 , as these subgroups correspond to nontrivial homomorphisms.

Subgroups of order 2 in A_8 are generated by involutions, and there are two possible types of involutions: - Products of two disjoint 2-cycles, - Products of four disjoint 2-cycles.

Subcase 1: Products of two disjoint 2-cycles To calculate the number of products of two disjoint 2-cycles, we use the formula for partitioning a set of *n* elements into *s* pairs. Specifically, the number of ways to partition 4 elements into two disjoint 2-cycles is given by:

$$\frac{n!}{\prod_{i=1}^{s}(k_i!m_i^{k_i})} = \frac{8!}{2! \cdot 2^2 \cdot 4! \cdot 1^4} = \frac{40320}{2 \cdot 4 \cdot 24 \cdot 1} = 210.$$

Thus, the total number of products of two disjoint 2-cycles is 210.

Subcase 2: Products of four disjoint 2-cycles Now, we calculate the number of products of four disjoint 2-cycles. The number of ways to partition 8 elements into four disjoint pairs (to form a product of four disjoint 2-cycles) is:

$$\frac{8!}{4! \cdot 2^4} = \frac{40320}{24 \cdot 16} = 105.$$

Thus, the total number of subgroups of order 2 in A_8 is the sum of the two cases:

$$210 + 105 = 315.$$

Including the trivial homomorphism, the total number of homomorphisms from S_7 to A_8 is:

$$315 + 1 = 316$$
.

Thus, the total number of homomorphisms from S_7 to A_8 is 316.

Solution 23:

Problem Statement: Let $i := \sqrt{-1}$ denote a square root of -1.

- (a) All subrings of $\mathbb{Q}[i]$ are unique factorization domains. *True/False*
- (b) All subrings of \mathbb{Q} are exactly of the form $\mathbb{Z}\left[\frac{1}{n}\right]$ for some non-zero integer n. *True/False*

Solution: (*a*) False.

Let us see for example the number 26 in the ring $\mathbb{Z}[5i]$. We will show that there are two different irreducible factorizations of 26 in this ring.

1. Factorization 1: $26 = 13 \times 2$

First, observe that 13 and 2 are irreducible elements in $\mathbb{Z}[5i]$. Since neither of them can be factored further into non-unit elements of $\mathbb{Z}[5i]$, we conclude that this is one valid factorization of 26.

2. Factorization 2: 26 = (1+5i)(1-5i)

Now, let's consider another factorization. We can calculate:

$$(1+5i)(1-5i) = 1^2 - (5i)^2 = 1 - (-25) = 1+25 = 26.$$

Thus, we have another factorization of 26 into the product of two elements, 1 + 5i and 1 - 5i, which are irreducible in $\mathbb{Z}[5i]$.

Conclusion:

We have now shown two different irreducible factorizations of 26 in $\mathbb{Z}[5i]$:

$$26 = 13 \times 2$$
 and $26 = (1+5i)(1-5i)$.

Since these factorizations involve different irreducible elements and are not associates, we conclude that $\mathbb{Z}[5i]$ does not satisfy the unique factorization property, i.e., it is not a unique factorization domain.

(b) False.

A subring of \mathbb{Q} that is not of the form $\mathbb{Z}\left[\frac{1}{n}\right]$ is the ring of rational integers of the form $\frac{a}{p^k}$, where $a \in \mathbb{Z}$ and p is a fixed prime number. The subring is given by:

$$S = \left\{ \frac{a}{p^k} : a \in \mathbb{Z}, k \in \mathbb{N} \right\},\,$$

where p is a prime number, a is an integer, and k is a natural number.

This ring is different from $\mathbb{Z}\left[\frac{1}{n}\right]$ because it contains rationals where the denominator is restricted to powers of a single prime p, as opposed to being allowed to be any integer n. The ring is a subring of \mathbb{Q} but does not have the form $\mathbb{Z}\left[\frac{1}{n}\right]$ for any integer n.

Solution 29:

Problem Statement: Let $R = \mathbb{Z}/n\mathbb{Z}$ be the commutative ring of integers modulo n, and consider the polynomials

$$p(x) = x^2 + x + 1$$
 and $q(x) = x^4 + 2x^3 + x^2 + 2025x + 2024$

from R[x]. The number of integers n, where $n \ge 10$, such that p(x) divides q(x) in R[x] is equal to

Solution: We are given the commutative ring $R = \mathbb{Z}/n\mathbb{Z}$ and two polynomials

$$p(x) = x^2 + x + 1$$
 and $q(x) = x^4 + 2x^3 + x^2 + 2025x + 2024 \in R[x]$,

and are tasked with finding the number of integers $n \ge 10$ such that p(x) divides q(x) in R[x].

To determine when p(x) divides q(x), we first perform the division of q(x) by p(x). The goal is to express q(x) as a product of p(x) and some polynomial, plus a remainder. Performing the division, we get

$$q(x) = (x^2 + x + 1)(x^2 + x + 2024) - 2025x^2.$$

For $p(x) = x^2 + x + 1$ to divide q(x), the remainder $-2025x^2$ must be zero in $\mathbb{Z}/n\mathbb{Z}$. This implies

$$2025x^2 \equiv 0 \pmod{n},$$

which holds for all *x* if and only if

$$2025 \equiv 0 \pmod{n}.$$

Thus, *n* must divide 2025.

Now, we compute the divisors of 2025. First, we factorize 2025:

$$2025 = 5^2 \times 3^4$$
.

The divisors of 2025 are all numbers of the form $5^a \times 3^b$, where $0 \le a \le 2$ and $0 \le b \le 4$. These divisors are:

Next, we identify the divisors of 2025 that are greater than or equal to 10. These divisors are:

Thus, there are 11 such divisors.

Therefore, the number of integers $n \ge 10$ such that p(x) divides q(x) is equal to the number of divisors of 2025 greater than or equal to 10, which is 11.

Solution 37:

Problem Statement: Let p be a fixed prime and \mathbb{F}_p be the finite field with p elements.

- (a) Suppose $L \supset K \supset \mathbb{F}_p$ are field extensions such that $Gal(L/K) = \mathbb{Z}/m\mathbb{Z}$ and $Gal(K/\mathbb{F}_p) = \mathbb{Z}/n\mathbb{Z}$. Then, $Gal(L/\mathbb{F}_p) = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. True/False
- (b) There exist infinitely many Galois extensions of $\mathbb Q$ with Galois group isomorphic to $\mathbb Z$.

 True/False

Solution:

- (a) Suppose $L \supset K \supset \mathbb{F}_p$ are field extensions such that $Gal(L/K) = \mathbb{Z}/m\mathbb{Z}$ and $Gal(K/\mathbb{F}_p) = \mathbb{Z}/n\mathbb{Z}$. Then, we are to check if $Gal(L/\mathbb{F}_p) = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Let p = 2, $K = \mathbb{F}_4$, and $L = \mathbb{F}_8$. The extension K/\mathbb{F}_2 has degree 2, so $Gal(K/\mathbb{F}_2) = \mathbb{Z}/2\mathbb{Z}$, thus n = 2. The extension L/K also has degree 2, so $Gal(L/K) = \mathbb{Z}/2\mathbb{Z}$, and hence m = 2. However, the total extension L/\mathbb{F}_2 has degree 3, so $Gal(L/\mathbb{F}_2) \cong \mathbb{Z}/3\mathbb{Z}$. This is not isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and hence the statement is False.
- (b) Let L/K be a Galois extension, and consider its Galois group Gal(L/K), endowed with the Krull topology. This topology arises from the inverse system of finite Galois subextensions M of L/K, with the open subgroups of Gal(L/K) corresponding to Gal(L/M) for each such M. The Krull topology ensures that Gal(L/K) is a profinite group, meaning it is compact, Hausdorff, and totally disconnected.

The group Gal(L/K) can be expressed as the inverse limit

$$Gal(L/K) = \varprojlim_{M \subseteq L} Gal(M/K),$$

where M runs over all finite Galois subextensions of L/K. Compactness in this topology is an essential property, and it implies that every open cover of Gal(L/K) has a finite subcover. Moreover, the group is totally disconnected, as the connected components reduce to singletons.

Consider \mathbb{Z} , the additive group of integers, under the Krull topology. For \mathbb{Z} to qualify as a Galois group, it must satisfy the properties of a profinite group. However, \mathbb{Z} fails to meet these criteria. It is not compact, as an open cover such as $\{\{n\} \mid n \in \mathbb{Z}\}$ in the discrete topology does not admit a finite subcover. Furthermore, \mathbb{Z} is not an inverse limit of finite groups. While \mathbb{Z} is totally disconnected in the discrete topology, this alone is insufficient for it to be profinite.

The profinite completion of \mathbb{Z} , denoted $\widehat{\mathbb{Z}}$, is compact and profinite. However, $\mathbb{Z} \neq \widehat{\mathbb{Z}}$, which further confirms that \mathbb{Z} cannot arise as the Galois group of any Galois extension L/K.

Thus, there are no Galois extensions of \mathbb{Q} with Galois group isomorphic to \mathbb{Z} , as such a group does not satisfy the necessary topological properties under the Krull topology. *False*.

Solution 40:

Problem Statement: Let $S^1 \subset \mathbb{C}$ denote the unit circle, which forms a group under the operation $e^{i\theta} \cdot e^{i\gamma} = e^{i(\theta+\gamma)}$ with identity element $1 \in \mathbb{C}$. Define $G := \{a+ib \in S^1 : a, b \in \mathbb{Q}\}$. Note that G itself forms a subgroup of S^1 .

- (a) The group G is isomorphic to \mathbb{Q}/\mathbb{Z} . True/False
- (b) For a fixed prime p, the subset $H:=\{(a,b)\in G: a=\frac{r}{p^s} \text{ for some } r,s\in \mathbb{Z}\}$ forms a subgroup of G. *True/False*

Solution:

(a) Let $S^1 \subseteq \mathbb{C}$ denote the unit circle, which forms a group under the operation $e^{i\theta} \cdot e^{i\gamma} = e^{i(\theta+\gamma)}$ with identity element $1 \in \mathbb{C}$. Define $G := \{a+ib \in S^1 : a,b \in \mathbb{Q}\}$. Note that G forms a subgroup of S^1 .

We aim to determine whether G is isomorphic to \mathbb{Q}/\mathbb{Z} .

The group \mathbb{Q}/\mathbb{Z} has the property that every element has finite order. Hence, if G contains an element of infinite order, G cannot be isomorphic to \mathbb{Q}/\mathbb{Z} .

Consider the element $\frac{3}{5} + \frac{4}{5}i \in G$. Its order depends on whether the angle $\theta = \arcsin\left(\frac{4}{5}\right)$ is a rational multiple of π . If θ is not a rational multiple of π , then $\frac{3}{5} + \frac{4}{5}i$ has infinite order.

By Niven's theorem, if θ is a rational multiple of π , then $\sin(\theta)$ must take one of the following values: $0, \pm \frac{1}{2}, \pm 1$. Here, $\sin(\theta) = \frac{4}{5}$, which does not belong to this set. Thus, $\theta = \arcsin\left(\frac{4}{5}\right)$ is not a rational multiple of π , and the element $\frac{3}{5} + \frac{4}{5}i$ has infinite order.

Since G contains an element of infinite order, while every element of \mathbb{Q}/\mathbb{Z} has finite order, we conclude that G is not isomorphic to \mathbb{Q}/\mathbb{Z} . Hence, *False*.

(b) We have to verifying whether the subset $H := \{(a,b) \in G : a = \frac{r}{p^s} \text{ for some } r,s \in \mathbb{Z}\}$ forms a subgroup of G, where G is the group of elements a+ib on the unit circle S^1 with $a,b \in \mathbb{Q}$. We'll use the one-step subgroup test to show that $xy^{-1} \in H$ for all $x,y \in H$.

Let $x = a_1 + ib_1$ and $y = a_2 + ib_2$, both of which lie on the unit circle, so we have the conditions:

$$a_1^2 + b_1^2 = 1$$
 and $a_2^2 + b_2^2 = 1$.

We now compute xy^{-1} :

$$xy^{-1} = (a_1 + ib_1)(a_2 - ib_2) = (a_1a_2 + b_1b_2) + i(b_1a_2 - a_1b_2).$$

Thus, the real part of xy^{-1} is:

$$a_1a_2 + b_1b_2$$
.

Next, we use the fact that both x and y lie on the unit circle. The conditions $a_1^2 + b_1^2 = 1$ and $a_2^2 + b_2^2 = 1$ imply:

$$a_1^2 + b_1^2 = a_2^2 + b_2^2,$$

which simplifies to:

$$a_1^2 - a_2^2 = b_2^2 - b_1^2$$
.

This can be factored as:

$$(a_1 - a_2)(a_1 + a_2) = (b_2 - b_1)(b_2 + b_1).$$

This leads us to:

$$a_1 = b_2$$

$$a_2 = b_1$$

$$\Rightarrow a_1 a_2 = b_1 b_2.$$

Thus, the real part of xy^{-1} , which is $a_1a_2 + b_1b_2$, simplifies to:

$$a_1a_2 + b_1b_2 = 2a_1a_2 = 2b_1b_2.$$

Since a_1 , a_2 and b_1 , b_2 are both of the form $\frac{r}{p^s}$ for some integers r and s, the product a_1a_2 and b_1b_2 will also be of the form $\frac{r}{p^s}$, and so their sum, i.e. $a_1a_2 + b_1b_2$, where $r \in \mathbb{Z}$ and $s \in \mathbb{Z}$. This shows that the real part of xy^{-1} lies in H.

Next, consider the imaginary part of xy^{-1} , which is given by:

$$b_1a_2 - a_1b_2$$
.

Since b_1 , a_1 , b_2 , a_2 are all rational numbers, their linear combination $b_1a_2 - a_1b_2$ is also rational. Therefore, the imaginary part of xy^{-1} is rational.

Since both the real and imaginary parts of xy^{-1} are rational, we conclude that xy^{-1} lies in H. This verifies that $xy^{-1} \in H$, and by the one-step subgroup test, H is indeed a subgroup of G. So, True.

Corrections are welcome at- virat[dot]algebraicgeometry[at]gmail[dot]com