

Pattern Recognition

Lecture 12: Repetition

Dr. Andreas Fischer andreas.fischer@unifr.ch

Lecture 1 – Classification

What is the difference between generative and discriminative classification?

Lecture 2 – Bayes Classifier

- Two classes, known prior probabilities $p(C_1)$ and $p(C_2)$.
- Known likelihoods p(x | C₁) and p(x | C₂).
- According to Bayes' theorem, what is the optimal decision rule for classifying a pattern x?

Lecture 3 – Clustering

- What is the minimum spanning tree (MST) of the graph shown below?
- Divide the nodes into three clusters based on the MST.

Lecture 4 – Support Vector Machine

- What is a kernelizable algorithm?
- Kernelize the K-nearest neighbor (KNN) algorithm:

$$\left\|\varphi(x) - \varphi(y)\right\|^2 = \dots$$

Lecture 5 – Artificial Neural Networks

 Design a multi-layer perceptron (MLP) for digit classification. Draw the different layers, perceptrons, and connections between the perceptrons (details of individual perceptrons can be omitted).

Lecture 6 – Feature Select. & Classifier Combination

Consider the class rankings of classifiers K₁,...,K₄ below. Which class should be chosen based on the Borda count?

$$K_1$$
: (C_3, C_1, C_4, C_2)
 K_2 : (C_1, C_4, C_3, C_2)
 K_3 : (C_3, C_4, C_2, C_1)
 K_4 : (C_4, C_3, C_2, C_1)

Lecture 7 – String Matching I

Consider the cost function below. What is the string edit distance (SED) between the strings x = ABABBB and y = BABAAA?

$$c(A \to \varepsilon) = c(B \to \varepsilon) = c(\varepsilon \to A) = c(\varepsilon \to B) = 1$$

 $c(A \to B) = c(B \to A) = 2 \quad A \neq B$

3

Lecture 8 – String Matching II

 Design a continuous hidden Markov model (HMM) for cursive handwriting recognition. What are the model components of a character HMM? Draw a sketch of the model.

Lecture 9 – Graph Matching I

Find the maximum common subgraph of g₁ and g₂ based on the maximum clique in their association graph.

Lecture 10 – Graph Matching II

 Consider the two graphs below. Draw a sketch of the linear sum assignment problem (LSAP) for bipartite approximation of graph edit distance. What are the four parts of the corresponding cost matrix?

Lecture 11 – Kernel Functions

 Compute the common walk kernel κ(g,g') of graphs g and g' based on their product graph.

