

# **STB80PF55 STP80PF55**

# P-channel 55 V, 0.016 Ω 80 A TO-220, D<sup>2</sup>PAK STripFET<sup>TM</sup> II Power MOSFET

#### **Features**

| Туре      | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|-----------|------------------|---------------------|----------------|
| STP80PF55 | 55V              | <0.018Ω             | 80A            |
| STB80PF55 | 55V              | <0.018Ω             | 80A            |

- Extremely dv/dt capability
- 100% avalanche tested
- Application oriented characterization

## **Application**

■ Switching applications

### **Description**

These Power MOSFETs are the latest development of STMicroelectronics unique "single feature size" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps allowing remarkable manufacturing reproducibility.



Figure 1. Internal schematic diagram



Table 1. Device summary

| Order code | Marking | Package            | Packaging     |
|------------|---------|--------------------|---------------|
| STP80PF55  | P80PF55 | TO-220             | Tube          |
| STB80PF55  | B80PF55 | D <sup>2</sup> PAK | Tape and reel |

August 2010 Doc ID 8177 Rev 6 1/16

## **Contents**

| 1 | Electrical ratings         | . 3 |
|---|----------------------------|-----|
| 2 | Electrical characteristics |     |
| 3 | Test circuits              |     |
| 4 | Package mechanical data    | . 9 |
| 5 | Packaging mechanical data  | 14  |
| 6 | Revision history           | 15  |

## 1 Electrical ratings

Table 2. Absolute maximum ratings

| Symbol                             | Parameter                                            | Value      | Unit |
|------------------------------------|------------------------------------------------------|------------|------|
| $V_{DS}$                           | Drain-source voltage (V <sub>GS</sub> = 0)           | 55         | V    |
| V <sub>GS</sub>                    | Gate-source voltage                                  | ±16        | V    |
| I <sub>D</sub> <sup>(1)</sup>      | Drain current (continuous) at T <sub>C</sub> = 25°C  | 80         | Α    |
| I <sub>D</sub>                     | Drain current (continuous) at T <sub>C</sub> = 100°C | 57         | Α    |
| I <sub>DM</sub> <sup>(2)</sup>     | Drain current (pulsed)                               | 320        | Α    |
| P <sub>TOT</sub>                   | Total dissipation at T <sub>C</sub> = 25°C           | 300        | W    |
|                                    | Derating factor                                      | 2          | W/°C |
| dv/dt (3)                          | Peak diode recovery voltage slope                    | 7          | V/ns |
| E <sub>AS</sub> <sup>(4)</sup>     | Single pulse avalanche energy                        | 1.4        | J    |
| T <sub>j</sub><br>T <sub>stg</sub> | Operating junction temperature Storage temperature   | -55 to 175 | °C   |

- 1. Current limited by package.
- 2. Pulse width limited by safe operating area .
- 3.  $I_{SD} \le 40A$ ,  $di/dt \le 300 \text{ A/}\mu\text{s}$ ,  $V_{DD} = 80\% V_{(BR)DSS}$ .
- 4. Starting Tj=25°C,  $I_D$ =80A,  $V_{DD}$ =40V.

Table 3. Thermal data

| Symbol                | Parameter                                      | Value | Unit |
|-----------------------|------------------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case max           | 0.5   | °C/W |
| R <sub>thj-a</sub>    | Thermal resistance junction-ambient max        | 62.5  | °C/W |
| T <sub>I</sub>        | Maximum lead temperature for soldering purpose | 300   | °C   |

Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

## 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

Table 4. On/off states

| Symbol               | Parameter                                             | Test conditions                                                 | Min. | Тур.  | Max.    | Unit                     |
|----------------------|-------------------------------------------------------|-----------------------------------------------------------------|------|-------|---------|--------------------------|
| V <sub>(BR)DSS</sub> | Drain-source<br>breakdown voltage                     | $I_D = 250 \text{ mA}, V_{GS} = 0$                              | 55   |       |         | V                        |
| I <sub>DSS</sub>     | Zero gate voltage drain current (V <sub>GS</sub> = 0) | $V_{DS}$ = Max rating<br>$V_{DS}$ = Max rating, $T_{C}$ =125 °C |      |       | 1<br>10 | μ <b>Α</b><br>μ <b>Α</b> |
| I <sub>GSS</sub>     | Gate-body leakage current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ±16 V                                         |      |       | ±10     | μΑ                       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                            | 2    | 3     | 4       | ٧                        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                     | $V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$                     |      | 0.016 | 0.018   | Ω                        |

Table 5. Dynamic

| Symbol                                                   | Parameter                                                         | Test conditions                                                      | Min. | Тур.                | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|------|---------------------|------|----------------|
| 9 <sub>fs</sub>                                          | Forward transconductance                                          | $V_{DS} > I_{D(on)} \times R_{DS(on)max},$<br>$I_{D} = 40 \text{ A}$ | -    | 32                  |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance Output capacitance Reverse transfer capacitance | $V_{DS} = 25 \text{ V, f} = 1 \text{MHz,}$<br>$V_{GS} = 0$           | -    | 5500<br>1130<br>600 |      | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>     | Total gate charge<br>Gate-source charge<br>Gate-drain charge      | $I_D$ = 25 A, $V_{DD}$ = 80 V,<br>$V_{GS}$ = 10 V<br>(see Figure 15) | -    | 190<br>27<br>65     | 258  | nC<br>nC<br>nC |

Table 6. Switching times

| Symbol                                             | Parameter                                       | Test conditions                                                                                | Min. | Тур.           | Max. | Unit           |
|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|------|----------------|------|----------------|
| t <sub>d(on)</sub>                                 | Turn-on delay time<br>Rise time                 | $V_{DD}$ =25 V, $I_{D}$ =40 A,<br>$R_{G}$ =4.7 $\Omega$ , $V_{GS}$ =10 V<br>(see Figure 14)    | -    | 35<br>190      | -    | ns<br>ns       |
| t <sub>d(off)</sub>                                | Turn-off delay time<br>Fall time                | $V_{DD}$ =25 V, $I_{D}$ =40 A,<br>$R_{G}$ =4.7 $\Omega$ , $V_{GS}$ =10 V<br>(see Figure 14)    | -    | 165<br>80      | -    | ns<br>ns       |
| t <sub>r(Voff)</sub> t <sub>f</sub> t <sub>c</sub> | Off-voltage rise time Fall time Cross-over time | $V_{clamp}$ =40 V, $I_{D}$ =80 A,<br>$R_{G}$ =4.7 $\Omega$ , $V_{GS}$ =10 V<br>(see Figure 14) | -    | 60<br>40<br>85 | -    | ns<br>ns<br>ns |

Table 7. Source drain diode

| Symbol                                                 | Parameter                                                              | Test condictions                                                                                   | Min. | Тур.            | Max.     | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|-----------------|----------|---------------|
| I <sub>SD</sub>                                        | Source-drain current<br>Source-drain current (pulsed)                  |                                                                                                    | -    |                 | 10<br>40 | A<br>A        |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                     | $I_{SD} = 80 \text{ A}, V_{GS} = 0$                                                                | -    |                 | 1.6      | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD} = 80 \text{ A, di/dt} = 100 \text{ A/µs}$<br>$V_{DD} = 25 \text{ V, T}_j = 150 \text{ °C}$ | -    | 110<br>495<br>9 |          | ns<br>μC<br>A |

<sup>1.</sup> Pulse width limited by Tjmax .

Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

<sup>2.</sup> Pulsed: pulse duration = 300  $\mu$ s, duty cycle 1.5 %.

### 2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220 and Figure 3. Thermal impedance for TO-220 and  ${\rm D^2PAK}$ 



Figure 4. Output characterisics

Figure 5. Transfer characteristics



Figure 6. Transconductance



Figure 7. Static drain-source on resistance



477

HV29260 C(pF) Vge(V)f=1MHz $V_{GS} = 0V$ V<sub>DD</sub>=-25V ID=-80A 8000 6000 Ciss 4000 -8 2000 -10 Crss -12 L 50 75 100 125 150Qg(nC)

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. vs temperature

0 10 20 30 40 Vds(V)

Figure 11. Normalized on resistance vs temperature



Figure 12. Source-drain diode forward characteristics

Figure 13. Normalized  $BV_{DSS}$  vs temperature



## 3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit



Figure 16. Test circuit for inductive load switching and diode recovery times



8/16 Doc ID 8177 Rev 6

# 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. D<sup>2</sup>PAK mechanical data

| D.  |      | mm   |       |       | inch  |       |
|-----|------|------|-------|-------|-------|-------|
| Dim | Min. | Тур. | Max.  | Min.  | Тур.  | Max.  |
| А   | 4.40 |      | 4.60  | 0.173 |       | 0.181 |
| A1  | 0.03 |      | 0.23  | 0.001 |       | 0.009 |
| b   | 0.70 |      | 0.93  | 0.027 |       | 0.037 |
| b2  | 1.14 |      | 1.70  | 0.045 |       | 0.067 |
| С   | 0.45 |      | 0.60  | 0.017 |       | 0.024 |
| c2  | 1.23 |      | 1.36  | 0.048 |       | 0.053 |
| D   | 8.95 |      | 9.35  | 0.352 |       | 0.368 |
| D1  | 7.50 |      |       | 0.295 |       |       |
| E   | 10   |      | 10.40 | 0.394 |       | 0.409 |
| E1  | 8.50 |      |       | 0.334 |       |       |
| е   |      | 2.54 |       |       | 0.1   |       |
| e1  | 4.88 |      | 5.28  | 0.192 |       | 0.208 |
| Н   | 15   |      | 15.85 | 0.590 |       | 0.624 |
| J1  | 2.49 |      | 2.69  | 0.099 |       | 0.106 |
| L   | 2.29 |      | 2.79  | 0.090 |       | 0.110 |
| L1  | 1.27 |      | 1.40  | 0.05  |       | 0.055 |
| L2  | 1.30 |      | 1.75  | 0.051 |       | 0.069 |
| R   |      | 0.4  |       |       | 0.016 |       |
| V2  | 0°   |      | 8°    | 0°    |       | 8°    |

Figure 17. D<sup>2</sup>PAK drawing



Table 9. TO-220 mechanical data

| Dim | mm    |       |       |  |  |
|-----|-------|-------|-------|--|--|
| Dim | Min.  | Тур.  | Max.  |  |  |
| A   | 4.40  |       | 4.60  |  |  |
| b   | 0.61  |       | 0.88  |  |  |
| b1  | 1.14  |       | 1.70  |  |  |
| С   | 0.48  |       | 0.70  |  |  |
| D   | 15.25 |       | 15.75 |  |  |
| D1  |       | 1.27  |       |  |  |
| E   | 10    |       | 10.40 |  |  |
| е   | 2.40  |       | 2.70  |  |  |
| e1  | 4.95  |       | 5.15  |  |  |
| F   | 1.23  |       | 1.32  |  |  |
| H1  | 6.20  |       | 6.60  |  |  |
| J1  | 2.40  |       | 2.72  |  |  |
| L   | 13    |       | 14    |  |  |
| L1  | 3.50  |       | 3.93  |  |  |
| L20 |       | 16.40 |       |  |  |
| L30 |       | 28.90 |       |  |  |
| ØP  | 3.75  |       | 3.85  |  |  |
| Q   | 2.65  |       | 2.95  |  |  |

Figure 18. TO-220 drawing øΡ Ε H1 <u>D1</u> L20 L30 b1(X3) -**-** *b* (*X3*)

\_e1\_\_

#### Packaging mechanical data 5

### D<sup>2</sup>PAK FOOTPRINT



#### TAPE AND REEL SHIPMENT



on sales type

# 6 Revision history

Table 10. Document revision history

| Date        | Revision | Changes                                                        |
|-------------|----------|----------------------------------------------------------------|
| 09-Sep-2004 | 4        | Revalidation                                                   |
| 12-Sep-2006 | 5        | New template, D <sup>2</sup> PAK added                         |
| 09-Aug-2010 | 6        | Content reworked to improve readability, no technical changes. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 8177 Rev 6

