

Flora of New Caledonia

New Caledonian Flora

Gymnosperms

7% of all world species

5 families (15 genera, 13/19 of known Araucaria species)

Monocotyledons

Arecaceae (11 genera, 39 species, 9 endemic)

Pandanaceae (45 species, 38 endemic)

Dicotyledons

128 families

- ++ Rubiaceae, Pittosporaceae, Cunoniaceae, Euphorbiaceae
- -- Fabaceae, Lamiaceae, Malvaceae, Ericaceae

Basal angiosperms group

Lauraceae, Proteaceae, Winteraceae, Piperaceae, Annonaceae, Monimiaceae...

& the famous Amborella...

New Caledonian Flora

How such a diverse flora is

distributed in such diverse

++ Rubiaceae habitats ? Ioniaceae, Euphorbiaceae

Lauraceae, Proteaceae, Winteraceae, Piperaceae, Annonaceae, Monimiaceae...

Available Datasets

Herbarium (NOU)

- Specimens collected from 1855
- ≈ 403 types (mainly isotypes)
- ≈ 80 000 specimens
 - ≈ 4000 taxa (194 families)

Permanent Plots (NC-PIPPN)

- Established in humid forest since 2005
- 200 plots (0.04ha, DBH>=5cm)
- 6 plots (1ha, DBH>=10 cm, X,Y)
- ≈ 38000 trees
- ≈ 1000 taxa (90 families)

Cartography (GIS) and modelling

- Substrat, topography, orography
- Vegetation

Available Datasets

Herbarium (NOU)

- Specimens collected from 1855
- ≈ 403 types (mainly isotypes)
- ≈ 80 000 specimens
 - ≈ 4000 taxa (194 families)

Permanent Plots (NC-PIPPN)

- Established in humid forest since 2005
- 200 plots (0.04ha, DBH>=5cm)
- 6 plots (1ha, DBH>=10 cm, X,Y)
- ≈ 38000 trees
- ≈ 1000 taxa (90 families)

Cartography (GIS) and modelling

- Substrat, topography, orography
- Vegetation

Trees of New Caledonian forests

How many tree species in rain forests?

Trees of New Caledonian forests

How many tree species in rain forests?

According to NC-PIPPN

- Only rain forests
- Reaching DBH>=10cm
- Excluding Tree-ferns & palms
 - > 707 taxa at species rank
 - > 80 families, 195 genera
 - 43794 occurrences
 - 23920 in plot20 (0.04ha)
 - 5489 in plot 100 (1ha)
 - 14385 specimen (NOU)

Endemic species : rare or abundant ?

Araucariaceae Agathis montana

- Endemic to Caledonia
- Rare in New Caledonia
- Abundant on Mt Panié
 - Elevation 1250-1600m

Distribution of Tree Occurrences

- Broad range of rain forest tree species distribution
- Unbalanced sample in respect to the altitudinal gradient
- Richness depends on the observation effort

Distribution of Tree Taxa

- Spatial disparity of tree specimens
- Linked to the collection effort
- Species distribution highly clumped (>80%)

Tree Abundance and Orography

- Two main localities are data deficient
- Plots highly increase the occurences
- Herbarium specimens highly increase the diversity

Forest Diversity (0.04 ha plots)

➤ Low influence of environnemental parameters (Ibanez & al, 2014)

Explained variance (%)	Substrate	Elevation	Rainfall	Slope
Species richness	2.26*	0.01	4.88**	0.06
Shannon diversity	0.41	0.8	5.73***	0.05
Simpson diversity	0.01	1.18	4.51**	0.26

Spatial Distribution of Trees

> Floristic dissimilarity

Independence of the Euclidean distance

$$Iss = \frac{2C}{(A+B)} \times 100$$

NC-PIPPN - Plot20

114 UM

87 non-UM

23920 trees

201 plots (0.04ha)

Floristic dissimilarities (0.04 ha plots)

- ❖ ≈ I/3 species only on UM-substrat
- ❖ ≈ I/3 species only non-UM-substrat
- ❖ ≈ I/3 substrat-tolerant

Elevation

Floristic dissimilarity slightly decreases with elevation

Ultramafic (UM) No-ultramafic (no-UM)

Floristic dissimilarities (Iha plots)

Tree Species Richness Modelling

- High variability of the I ha plot richness [100-200]?
- > Overestimation rate is mainly explained by the plot elevation

Forest communities (Iha plot)

Iha Plot	Density	Basal area	Richness
Atéou (NC)	820	70.0	82
La Guen (NC)	1061	41.8	73
Forêt Plate (NC)	973	57.0	94
Tiwae (NC)	1446	37.0	92
Boirou (NC)	1144	69.5	93
Djeve (NC)	1235	70.2	91
Rivière bleue (NC, Jaffré et al., 1991)	1183-1533	47.0 - 49.5	103 - 131
Col d'Amieux (NC, Jaffré et al., 1995)	1256	55.5	95 - 106
New Caledonia (summary)	820-1533	37-70.2	73-131
South Pacific (Keppel, 2009)	529-916	30-46.3	35 - 167
Borneo (Indonesia, Aiba et al., 1999)	464- 510	34 – 38.3	148
Mauritius (Strasberg,, 1996)	1079	81.5	40
French Guiana (Couteron et al., 2005)	397 - 874	20.6 – 34.2	154-220

In Summary...

How are assembled Caledonian rain forests?

- > High taxonomic diversity
- > High aggregation of taxa (high local abundance)
- > High density of trees (i.e. DBH>10 cm)
- > Homogenous diversity
 - Relatively insensitive to environmental conditions
- > Medium floristic richness
- > High floristic dissimilarities
 - High beta-diversity

...the distributed diversity makes complex conservation actions...

