

12Be(d,p)实验评估和模拟

报 告 人:李晓斌

指导老师:陈洁、柳卫平

- 一 研究背景
- 9 实验设置
- **三**实验模拟
- 四 总结

Be同位素

实验目标

 12 Be (d, p) 13 Be

- ➤ ¹³Be 激发态:
 - 共振态自旋宇称 (0.5 MeV)?
 - 谱因子和态宽度 (2 MeV), 核心激发成分的贡献?
 - 可能的共振态(1 MeV)的自旋宇称?
- ▶ 其他反应道:
 - ¹²Be^{g,m}(d,t): 激发态数据的完善
 - ¹²Be^{g,m}(d,d): 光学模型参数的优化

不同实验得到的¹³Be自旋宇称

12Be東流和AT-TPC

AT-TPC + EN-course

Tanihata, I et. al, Radio-isotope Beams at RCNP(2016).

12**Be同核异能态**: 0₂+ 331 ns

E2衰变: 2.11 MeV+0.144 MeV γ ~14%

通过Q值区分¹²Be^m(d,p) 和 ¹²Be^g(d,p)

活性靶时间投影室

电离 漂移 电子倍增 Pad读出

- > 三维径迹重建
- > 大角度覆盖
- > 低探测阈值

- ➤ 初级束: ¹⁸O(60 MeV/u)
- > 次级束: ¹²Be (Isomer(2.24 MeV), 18 MeV/u,
 - $\sim 5 \times 10^3 \text{pps}$)
- ➤ 工作气体: C₃D₈
- ➤ 气压: 450/500 torr

触发信号模拟

- ▶反应道: ¹²Be (d, p)、 ¹²Be(d, d)、 ¹²C(¹²Be, ¹²Be)
 - 反应发生在中心 (18 MeV/u)
- ➤ Micromegas 上的信号
 - 信号最大值随质心系角度的变化
 - 限制上下限阈值

450 torr

Reaction	Min detection angle(C.M)	Max detection angle(C.M)	Max detection angle(Lab)	Max detection energy(MeV/u)	Angle of residual(lab)
d(12Be,d)12Be	11.8°	28.4°	75.6°	3.2	3.97°
d(12Be,p)13Be	~0°	22.5°	118.5°	5.0	2.17°
¹² C(¹² Be, ¹² Be) ¹² C	31.5°	95.8°	42.5°	9.6	42.62°

500 torr

Reaction	Min detection angle(C.M)	Max detection angle(C.M)	Max detection angle(Lab)	Max detection energy(MeV/u)	Angle of residual(lab)
d(12Be,d)12Be	12.2°	29.3°	75.1°	3.4	4.08°
d(12Be,p)13Be	~0°	23.6°	116.6°	5.3	2.26°
¹² C(¹² Be, ¹² Be) ¹² C	32.8°	97.3°	41.1°	10.2	41.3°

能量分辨率

$$Q = \frac{E}{W_e} \cdot G$$

- > 考虑反应中阻停事件
- ▶ 电荷、射程 ▶ 能量
- 能量分辨率约600 keV(σ)

粒子鉴别和激发能

能够很好地区分d和p

激发能分辨率极限: 1.5 MeV

总结

- ▶ ¹²Be (d, p)¹³Be 将帮助厘清非束缚核¹³Be的激发态信息
- ➤ 使用ATTPCROOT模拟了主要反应道的触发
- ➤ 模拟得到AT-TPC能量分辨率约为600 keV

下一步计划

- ➤ 更准确的射程-能量转换关系,优化PID
- > 零度硅探测器的模拟
- > 更真实的条件进行模拟
- **>** ...

