```
A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E
```

FIGURA 1. Códigos para preencher o gabarito.

Figura 2. Gabarito.

Nas questões 1–3, considere $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$, onde $\vec{v} = (2, 4, -3)$, $\vec{v}_1 = (1, 0, 0)$, $\vec{v}_2 = (0, -1, 0)$ e $\vec{v}_3 = (0, 0, 2)$.

- **1.** Determine c_1 .
- **2.** Determine c_2 .
- **3.** Determine $6c_3$.

Nas questões 4–6, considere $\vec{v} = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3$, onde $\vec{v} = (7, 8, 9)$, $\vec{v}_1 = (2, 1, 4)$, $\vec{v}_2 = (1, -1, 3)$ e $\vec{v}_3 = (3, 2, 5)$.

- **4.** Determine a.
- **5.** Determine b.
- **6.** Determine c.
- 7. Determine o valor de k para que $\vec{v}=(1,-2,k)$ seja combinação linear de $\vec{v}_1=(3,0,-2)$ e $\vec{v}_2=(2,-1,-5)$.
- 8. Determine x para que os vetores $\vec{v}_1 = (1, x, 3), \ \vec{v}_2 = (x, 4, 6)$ e $\vec{v}_3 = (3, 6, 9)$ sejam coplanares.
- **9.** Determine o menor y tal que $\vec{v}_1 = (1, 0, y/3), \ \vec{v}_2 = (2, 1, 4)$ e $\vec{v}_3 = (y/2, 1, y)$ são coplanares.
- 10. Determine o maior y tal que $\vec{v}_1=(1,0,y/3), \ \vec{v}_2=(2,1,4)$ e $\vec{v}_3=(y/2,1,y)$ são coplanares
- 11. Num sistema ortogonal e positivamente orientado, calcule o produto misto de \vec{u} , \vec{v} e \vec{w} , sendo $\vec{u}=(1,2,3), \ \vec{v}=(1,4,2)$ e $\vec{w}=(2,1,5).$

Em cada uma das questões 12–13, são dadas as coordenadas de vetores \vec{u} , \vec{v} e \vec{w} com relação a um sistema ortogonal de coordenadas, positivamente orientado. Calcule o volume do poliedro \mathbf{P} que têm arestas $[\![A,B]\!]$, $[\![A,C]\!]$, $[\![A,D]\!]$ tais que $\overrightarrow{AB} = \vec{u}$, $\overrightarrow{AC} = \vec{v}$, $\overrightarrow{AD} = \vec{w}$, nos seguintes casos:

- **12. P** é um paralelepípedo, $\vec{u} = (3, 4, 2), \vec{v} = (6, 1, 2)$ e $\vec{w} = (1, 3, 1),$
- **13. P** é um tetraedro, $\vec{u} = (2, 3, 5)$, $\vec{v} = (1, 2, 3)$ e $\vec{w} = (6, 1, 1)$.

Nas questões 14-19, considere que as coordenadas dadas são com relação a um sistema ortogonal. Calcule:

- **14.** $\vec{u} \cdot \vec{v}$, para $\vec{u} = (3, 5, 4)$ e $\vec{v} = (-1, 1, 2)$.
- **15.** x tal que $\vec{u} \cdot \vec{v} = 7$, sendo $\vec{u} = (5, 3, 6)$ e $\vec{v} = (x, 3, 8)$.
- **16.** $\vec{u} \cdot \vec{v}$ para $\vec{u} = (5, 1, 2)$ e $\vec{v} = (1, -2, 3)$.
- **17.** |a| tal que $||\vec{u}|| = 15$, sendo $\vec{u} = (a, 12, 0)$.
- **18.** $-\sqrt{\|\vec{u}\|^2-2}$ para $\vec{u}=(5,3,-2)$.
- **19.** A soma dos algarismos de $||\vec{u}||^2$, para $\vec{u} = (4, 6, -2)$.

Nas questões 20–24, suponha que \vec{u} e \vec{v} são ortogonais e que suas coordenadas são dadas em relação a um sistema de coordenadas ortogonal.

- **20.** Se x = -6, $\vec{u} = (2x y, 3x + y, x 2y)$ e $\vec{v} = (4, -1, 5)$, quanto vale y?
- **21.** Se y = 6, $\vec{u} = (2x y, 3x + y, x 2y)$ e $\vec{v} = (4, -1, 5)$, quanto vale x?
- **22.** Se $\vec{u} = (k+1, 3, 2k-4)$ e $\vec{v} = (5, -2, k)$, qual é o menor possível valor de 2k?
- **23.** Se $\vec{u} = (k+1, 3, 2k-4)$ e $\vec{v} = (5, -2, k)$, qual é o maior possível valor de 2k?
- **24.** Se $\vec{u} = (x, x + 1, 2)$ e $\vec{v} = (3, -2, x)$, quanto vale -12x?

Nas questões 25–30, considere que \vec{u} e \vec{v} estão dados em relação a um sistema de coordenadas ortogonal. Seja (x, y, z) a tripla de coordenadas de $\vec{u} \wedge \vec{v}$. Calcule:

- **25.** x para $\vec{u} = (2, 3, -1)$ e $\vec{v} = (1, 0, 4)$.
- **26.** $y \text{ para } \vec{u} = (2, 3, -1) \text{ e } \vec{v} = (1, 0, 4).$
- **27.** z para $\vec{u} = (2, 3, -1)$ e $\vec{v} = (1, 0, 4)$.
- **28.** $x\sqrt{|x|}/|x|$ para $\vec{u}=(5,-2,3)$ e $\vec{v}=(-1,4,2)$.
- **29.** $y \text{ para } \vec{u} = (5, -2, 3) \text{ e } \vec{v} = (-1, 4, 2).$
- **30.** z/2 para $\vec{u} = (5, -2, 3)$ e $\vec{v} = (-1, 4, 2)$.