Mathematical Tripos Part IA Vectors and Matrices

Michaelmas Term 2018 Dr. J.M. Evans

Example Sheet 2

- 1. In the following, the indices i, j, k, ℓ take the values 1, 2, 3 and the summation convention applies.
 - (a) Simplify the following expressions:

$$\delta_{ij}v_j\,,\quad \delta_{ij}\delta_{jk}\,,\quad \delta_{ij}\delta_{ji}\,,\quad \delta_{ij}v_iv_j\,,\quad \varepsilon_{ijk}\delta_{jk}\,,\quad \varepsilon_{ijk}v_jv_k\,,\quad \varepsilon_{ijk}\varepsilon_{ij\ell}\,,\quad \varepsilon_{ijk}\varepsilon_{ikj}\,.$$

- (b) Given that $A_{ij} = \varepsilon_{ijk} a_k$ (for all i, j), show that $2a_k = \varepsilon_{kij} A_{ij}$ (for all k).
- (c) Show that $\varepsilon_{ijk} S_{ij} = 0$ (for all k) if and only if $S_{ij} = S_{ji}$ (for all i, j).
- **2.** For vectors in \mathbb{R}^3 , simplify $\varepsilon_{ijk}(\mathbf{a} \times \mathbf{b})_k$ and deduce a standard formula for $\mathbf{c} \times (\mathbf{a} \times \mathbf{b})$.
 - (a) Let \mathbf{m} , \mathbf{u} and \mathbf{a} be fixed vectors in \mathbb{R}^3 such that $\mathbf{m} \cdot \mathbf{u} = 0$ and $\mathbf{a} \cdot \mathbf{u} \neq 0$. Show that the line $\mathbf{r} \times \mathbf{u} = \mathbf{m}$ meets the plane $\mathbf{r} \cdot \mathbf{a} = \kappa$ (a constant) in the point

$$\mathbf{r} = \frac{\mathbf{a} \times \mathbf{m} + \kappa \mathbf{u}}{\mathbf{a} \cdot \mathbf{u}}.$$

Explain clearly the geometrical meaning of the condition $\mathbf{a} \cdot \mathbf{u} \neq 0$.

(b) Let **a** and **b** be vectors in \mathbb{R}^3 with $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$. Show that the planes $\mathbf{r} \cdot \mathbf{a} = \kappa$ and $\mathbf{r} \cdot \mathbf{b} = \rho$ (where κ , ρ are constants) intersect in the line

$$\mathbf{r} \times (\mathbf{a} \times \mathbf{b}) = \rho \, \mathbf{a} - \kappa \, \mathbf{b} \;,$$

i.e., show that every point that lies on both planes lies on the line and, conversely, every point on the line lies on both planes. What happens if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$?

3. Show that $M_{ij} = \delta_{ij} + \varepsilon_{ijk} n_k$ and $N_{ij} = \delta_{ij} - \varepsilon_{ijk} n_k + n_i n_j$ obey $N_{ij} M_{jk} = 2\delta_{ik}$, if $n_i n_i = 1$ (indices take values 1, 2, 3 and the summation convention applies). Verify that

$$\mathbf{y} = \mathbf{x} + \mathbf{x} \times \mathbf{n} \iff y_i = M_{ij} x_j$$

where \mathbf{x} , \mathbf{y} , \mathbf{n} are vectors in \mathbb{R}^3 with components x_i , y_i , n_i . Use these results to find \mathbf{x} in terms of \mathbf{y} , given that \mathbf{n} is a unit vector.

4. The set X consists of six vectors in \mathbb{R}^4 :

$$(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1).$$

Find two different subsets Y of X whose members are linearly independent, each of which yields a linearly dependent subset of X whenever any element $\mathbf{v} \in X$ with $\mathbf{v} \notin Y$ is adjoined to Y.

5. Let V be the set of all vectors $\mathbf{x} = (x_1, \dots, x_n)$ in \mathbb{R}^n $(n \ge 4)$ such that their components satisfy

$$x_i + x_{i+1} + x_{i+2} + x_{i+3} = 0$$
 for $i = 1, 2, ..., n - 3$.

Find a basis for V.

- **6.** State the Cauchy-Schwarz inequality for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and give a necessary and sufficient condition for equality to hold.
 - (a) By considering suitable vectors in \mathbb{R}^3 , or otherwise, show that

$$x^2 + y^2 + z^2 \geqslant yz + zx + xy$$
, for any real numbers x, y, z .

(b) By considering suitable vectors in \mathbb{R}^4 , or otherwise, show that

$$3(x^{2} + y^{2} + z^{2} + 4) - 2(yz + zx + xy) - 4(x + y + z) = 0$$

holds for unique real values of x, y, z, to be determined.

7. Let **n** be a unit vector in \mathbb{R}^3 . Identify the image and kernel (null space) of each of the following linear maps $\mathbb{R}^3 \to \mathbb{R}^3$:

(a)
$$\mathcal{T}: \mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} - (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$$
, (b) $\mathcal{Q}: \mathbf{x} \mapsto \mathbf{x}' = \mathbf{n} \times \mathbf{x}$.

Show that $\mathcal{T}^2 = \mathcal{T}$ and interpret the map \mathcal{T} geometrically. Interpret the maps \mathcal{Q}^2 and $\mathcal{Q}^3 + \mathcal{Q}$, and show that $\mathcal{Q}^4 = \mathcal{T}$.

- 8. Give a geometrical description of the images and kernels of each of the linear maps on \mathbb{R}^3
 - (a) $T: (x, y, z) \mapsto (x + 2y + z, x + 2y + z, 2x + 4y + 2z)$
 - (b) $S: (x, y, z) \mapsto (x + 2y + 3z, x y + z, x + 5y + 5z).$
- **9.** A linear map $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$ is defined by $\mathbf{x} \mapsto A\mathbf{x}$ where

$$A = \begin{pmatrix} a & a & b & a \\ a & a & b & 0 \\ a & b & a & b \\ a & b & a & 0 \end{pmatrix}.$$

Find the image and kernel of A for all real values of a and b.

10. The linear map $\mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$\mathbf{x} \mapsto \mathbf{x}' = \cos \theta \, \mathbf{x} + (\mathbf{x} \cdot \mathbf{n}) (1 - \cos \theta) \, \mathbf{n} - \sin \theta (\mathbf{x} \times \mathbf{n})$$
 (*)

is a rotation by angle θ in a positive sense about the unit vector \mathbf{n} . Check this in the case $\mathbf{n} = (0, 0, 1)$. Show that the expression given above for a general rotation can be written $\mathbf{x}' = R\mathbf{x}$, where R is a matrix with entries R_{ij} that should be found explicitly in terms of θ , n_i , δ_{ij} , ε_{ijk} , etc. Hence show that

$$R_{ii} = 2\cos\theta + 1$$
, $\varepsilon_{ijk}R_{jk} = -2n_i\sin\theta$.

Determine θ and **n** for the rotation given by the matrix

$$R = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} .$$

- 11. (a) Give examples of 2×2 real matrices representing the following types of transformations in \mathbb{R}^2 :
 - (i) reflection; (ii) dilatation (or scaling); (iii) shear; and (iv) rotation.

Which of these types of transformation are always represented by a 2×2 matrix with determinant +1? For which types (i)-(iv) do transformations A and B of the same type obey AB = BA, in general?

- (b) A linear map $\mathbb{R}^2 \to \mathbb{R}^2$ with $\mathbf{x} \mapsto \mathbf{x}' = M\mathbf{x}$ is defined by z' = cz where $z = x_1 + ix_2$, $z' = x_1' + ix_2'$ and c = a + ib is a fixed complex number. Find the 2×2 matrix M in terms of a and b. Which types of transformations (i)-(iv) can be obtained for particular choices of c = a + ib?
- 12. Let $R(\mathbf{n}, \theta)$ be the matrix corresponding to a rotation with angle θ and axis \mathbf{n} , as given in (*) of question 10. Let $H(\mathbf{n})$ be the matrix corresponding to reflection in a plane through the origin with unit normal \mathbf{n} , as defined by

$$\mathbf{x} \mapsto \mathbf{x}' = H(\mathbf{n})\mathbf{x} = \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$$
.

In the following, \mathbf{i} , \mathbf{j} , \mathbf{k} are the standard orthonormal basis vectors in \mathbb{R}^3 .

- (a) Find explicitly the matrices $R(\mathbf{i}, \frac{\pi}{2})$ and $R(\mathbf{j}, \frac{\pi}{2})$ and check that $R(\mathbf{i}, \frac{\pi}{2})R(\mathbf{j}, \frac{\pi}{2}) \neq R(\mathbf{j}, \frac{\pi}{2})R(\mathbf{i}, \frac{\pi}{2})$.
- (b) Show by both algebraic and geometrical means that the map $\mathbf{x} \mapsto \mathbf{x}' = -H(\mathbf{n})\mathbf{x}$ is a rotation through an angle π about \mathbf{n} .
- (c) Given that $\mathbf{n}_{\pm} = \cos\left(\frac{1}{2}\theta\right)\mathbf{i} \pm \sin\left(\frac{1}{2}\theta\right)\mathbf{j}$, prove that

$$H(\mathbf{i}) H(\mathbf{n}_{-}) = H(\mathbf{n}_{+}) H(\mathbf{i}) = R(\mathbf{k}, \theta)$$

and draw diagrams to explain the geometrical meaning of this result.

Comments to: J.M.Evans@damtp.cam.ac.uk