Подробная инструкция по эксплуатации устройством: Тестер Аналоговых Микросхем (Т.А.М)

Устройство предназначено для тестирования работоспособности по трём критериям аналоговых микросхем: операционных усилителей (OPA2134, UA4721), аналоговых умножителей (AD633-DIP, AD633-SOIC) и инструментальных усилителей. (AD8221, AD620).

Устройство состоит из 4 отдельных элементов:

Наименование элемента.	Значение			
DC преобразователь	Преобразует однополярное напряжение в			
DD39AJPA.	двухполярное напряжение.			
Arduino Nano.	Микроконтроллер.			
РСВ для интегральных	Расположение компонентов и микросхем.			
схем и компонентов.				
MCP 4725.	Цифро-аналоговый преобразователь 12-битный.			

Рисунок 1 - Аналоговая схема РСВ для микросхем.

Рисунок 2 – Схема устройства.

Принцип работы устройства заключается в управлении подаваемым на микросхему напряжением с помощью Arduino. Для этого используется МСР4725, представляющий собой 12-разрядный ЦАП, который принимает до 4096 возможных входных значений, обеспечивая аналоговый выход. Выходное значение 0 соответствует нулевому напряжению, а значение 4095 — полномасштабному выходу, определяемому опорным напряжением, подаваемым на вывод VCC.

С помощью DC-преобразователя подаётся двухполярное напряжение (+V и -V) на микросхемы. Каждое выходное напряжение с микросхем поступает на аналоговый пин Arduino, который затем автономно определяет вставленную микросхему и подставляет необходимые значения для сравнения с теоретическими расчётами согласно заданному алгоритму.

В результате, если микросхема исправна, загорается зелёный светодиод, а если неисправна – красный светодиод.

Рисунок 5 – Схема разводки РСВ

Таблица 1 - Список

Наименование	Количество шт.	
Кроватки под микросхемы	6	
Резистор с номиналом 2к Ом	6	
Резистор с номиналом 11к Ом	6	
Резистор с номиналом 10к Ом	2	
Кнопка	1	
Красный Светодиод	1	
Зелёный Светодиод	1	
Жёлтый Светодиод	3	

Рисунок 6 – Правильное размещение микросхем

Инструкция по использованию устройством

- 1. Подключите устройство к лабораторному блоку питания и установите напряжение +6V.
- 2. Вставьте микросхему в соответствующий отсек.
- 3. Включите устройство, нажав кнопку питания.
- 4. С помощью кнопки mode выберите нужный режим подачи напряжения. Уровень режима отображается с помощью трёх жёлтых светодиодов, указывающих на следующие уровни: +0.5V, +1V, +2.5V.
- 5. Подождите 2-3 секунды.
- 6. Если загорается зелёный светодиод, микросхема исправна. Если загорается красный светодиод, микросхема неисправна.
- 7. Выключите устройство, нажав кнопку питания.

Правила предостерегающие от поломки устройства: Важно!

- 1. Не вытаскивать микросхему до отключения питания.
- 2. Не превышать напряжение больше +12V.
- 3. Бережно вставлять и отсоединять микросхемы от кроваток.
- 4. Вставить микросхему только в свою кроватку в нужном направлении.
- 5. Не подвергать падению.
- 6. Не вставлять больше 1 микросхемы для теста!

В Таблице 1 предоставлены условия, в которых микросхема должна работать исправно (гореть зелёным светодиодом).

Таблица 1 - Условия

Наименование			
микросхемы	+0.5V	+1 V	+2.5V
OPA2134	+	+	+
AD620	+	-	-
AD633 DIP	+	+	+
AD633 SOIC	+	+	+
UA4721	Нету образца		
AD8221	Нету образца		

Погрешность сравнения напряжения, высчитанного по теоретической формуле, не должна превышать 0.01V по сравнению с реальным напряжением в микросхемах.

Прошивка Arduino:

https://github.com/SingingSinking/Analog-chip-tester-leti.git