D206

Die Wärmepumpe

Leander Flottau Leander.flottau@tu-dortmund.de

 ${\it Jan~Gaschina} \\ {\it jan.gaschina@tu-dortmund.de}$

Durchführung: 17.11..2020 Abgabe: 01.12.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	i neorie	3			
2	Zielsetzung				
3	Theorie	3			
	3.1 Grundlagen	3			
	3.2 Massendurchsatz	4			
	3.3 Kompressorleistung	4			
	3.4 Funktionsweise	4			
4	Durchführung	5			
5	Auswertung	6			
	5.1 Messwerte	6			
	5.2 Aufgabe 5.a und 5.b	8			
	5.3 Aufgabe 5c Berechnung der Differentialkoeffizeinten:				
	5.4 Aufgabe 5d Berechnung der Güteziffer				
	5.5 Aufgabe 5e Der Massendurchsatz	10			
	5.5.1 Berchnung von L				
	5.5.2 Berechnung des Massendurchsatzes	11			
	5.6 Aufgabe 5e Berechnung der Mechanischen Kompressorleistung	11			
	5.7 Aufgabe 5g Gründe für die schlechte Güteziffer	12			
6	Diskussion	12			
7	Literatur	12			

1 Theorie

2 Zielsetzung

Bei dem vorliegenden Experiment der Wärmepumpe wird Wärmeenergie aus einem kälteren in ein Wärmeres Reservoir übertragen. Dabei sollen essentielle Kennwerte der Wärmepumpe wie die Güteziffer und der Massendurchsatz bestimmt werden.

3 Theorie

3.1 Grundlagen

Die Wärmepumpe arbeitet zwischen zwei Wärmereservoirs. Sie bringt die Arbeit auf, die nötig ist um Wärme vom kälteren in das wärmere Reservoir zu transferieren. Aus dem ersten Hauptsatz der Thermodynamik folgt für den Zusammenhang zwischen den Wärmemengen und der aufgebrachten Arbeit:

$$Q_1 = Q_2 + A.$$

Eine wichtige Kennziffer einer Wärmepumpe ist die Güteziffer v, die das Verhältnis zwischen der transportierten Wärmemenge Q_1 und der dafür aufgebrachten Arbeit A angibt:

$$v = \frac{Q_1}{A}.$$

Aus dem zweiten Hauptsatz der Thermodynamik lässt sich außerdem für den idealisierten Fall eines reversiblen Prozesses ein Zusammenhang zwischen den reduzierten Wärmemengen herstellen. Hierbei sind die Temperaturen der Reservoire T_1 und T_2 als konstant anzunehmen:

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0.$$

Daraus lässt sich für die Güteziffer ein neuer Zusammenhang herleiten:

$$Q_{1} = \frac{Q_{1}}{T_{1}}T_{2} + A \iff Q_{1} = \frac{A}{1 - \frac{T_{2}}{T_{1}}} \implies v_{r}eal = \frac{T_{1}}{T_{1} - T_{2}}$$
 (1)

Daraus folgt, dass die Wärmepumpe effizienter arbeitet, je kleiner die Temperaturdifferenz der Reservoire ist. Mit zwei Messreihen T_1 und T_2 und den aus diesen Daten mithilfe von Ausgleichsrechnungen erhaltenen Funktionen $T_1(t)$ und $T_2(t)$ lässt sich die pro Zeit gewonnene Wärmemenge

$$\frac{dQ_1}{dt} = (m_1 c_w + m_k c_k) \frac{dT_1}{dt} \tag{2}$$

sowie die pro Zeit aus dem kälteren Reservoire entnommene Wärmemenge

$$\frac{dQ_2}{dt} = (m_2 c_w + m_k c_k) \frac{dT_2}{dt} \tag{3}$$

bestimmen. Dabei ist m_kc_k die Wärmekapazität von Kupferschlange und Eimer, c_w die spezifische Wärmekapazität von Wasser und m_1 bzw. m_2 die Masse des Wassers im jeweiligen Reservoir. Damit ergibt sich die Güteziffer der Wärmepumpe als:

$$v = \frac{dQ_1}{Ndt} = \frac{1}{N}(m_1c_w + m_kc_k)\frac{dT_1}{dt} \tag{4} \label{eq:varphi}$$

Mit der über die Zeit gemittelten Leistungsaufnahme des Kompressors N.

3.2 Massendurchsatz

Weiterhin lässt sich $(dQ_2)/dt$ mithilfe der Verdampfungswärme L neu ausdrücken:

$$\frac{dQ_2}{dt} = L\frac{dm}{dt} \tag{5}$$

Dies erlaubt die Berechnung des Massendurchsatzes \dot{m} , wenn die Verdampfungswärme bekannt ist:

$$\dot{m} = \frac{dm}{dt} = \frac{1}{L} \frac{dQ_2}{dt} = \frac{1}{L} (m_2 c_w + m_k c_k) \frac{dT_2}{dt}$$
 (6)

3.3 Kompressorleistung

Zuletzt muss noch die mechanische Kompressor Leistung berechnet werden. Für die Arbeit , die der Kompressor benötigt um das Volumen V_a auf das Volumen V_b zu reduzieren gilt:

$$A_m = -p_a V_a^K \int_{V_a}^{V_b} V^- K dV = \frac{p_a V_a^k}{K-1} (V_b^{-k+1} - V_a^{-K+1}) = \frac{1}{K-1} (p_a \sqrt[K]{\frac{p_a}{p_b}} - p_a) V_a \quad (7)$$

Daraus ergibt sich die mechanische Kompressorleistung N_m als zeitliche ableitung der aufgewendeten Arbeit:

$$N_{m} = \frac{dA_{m}}{dt} = \frac{1}{K-1} (p_{a} \sqrt[K]{\frac{p_{a}}{p_{b}}} - p_{a}) \frac{1}{\rho} \dot{m} \tag{8}$$

3.4 Funktionsweise

Die Wärmepumpe funktioniert mithilfe eines Gases, welches im kalten Reservoir Wärme aufnimmt und speichert, und diese anschließend bei der Kondensation im wärmeren Reservoiran dieses abgibt. Um dies realisieren zu können wird ein Kompressor benötigt,sowie ein Drosselventil, welches dazu dient den Duck des Gases von p_b auf p_a zu verringern. Da das Gas so beschaffen ist, dass es bei dem Druck p_a und der Temparatur T_2 des Kälteren Reservoirs gasförmig ist, verdampft es in Reservoire 2 und nimmt dabei die Verdampfungswärme L auf. Anschließend wird das Gas im Kompressor in einem, wie für die Rechnungen angenommen annähernd adiabatisch ablaufenden Verfahren, unter Aufwendung der Arbeit A, auf das Volumen V_b komprimiert, wodurch sich der Druck auf p_b erhöht. Da das verwendete Medium weiterhin beim Druck p_b und der höheren Temperatur T_1 flüssig sein soll, kondensiert das Gas im wärmeren Reservoire mit der

Temperatur T_1 und gibt dabei die in Q_2 aufgenommene Kondensationswärme L an Q_1 ab. Anschließend wird der Druck mit Hilfe des Drosselventils wieder verringert und der Prozess wiederholt sich.

4 Durchführung

Dieser Versuch wurde nicht real durchgeführt, es wurden nur entsprechende Messreihen zur Verfügung gestellt, sodas hier nur eine theoretische Durchführung beschrieben werden kann. Dazu sei hier zunächst der schematische Aufbau der Wärmepumpe dargestellt:??

Abbildung 1: Schematischer Aufbau der Wärmepumpe.

Die Abbildung ?? zeigt den Schematischen Aufbau der Wärmepumpe. Es gibt zwei wassergefüllte Reservoire, das Wasser wird durch jewils einen Rührmotor in Bewegung gehalten. Durch das Wasser in den Reservoiren verläuft ein mehrfach gewundenes Rohr. Die Rohre sind oben über ein Drosselventil miteinander verbunden, jeweils vor und

hinter dem Drosselventil wird mit einem Manometer der Druck gemessen. Unten sind die Rohrwindungen über einen Kompressor verbunden. Im weiteren sind Messgeräte für die Wassertemperaturen in den Reservoiren(Thermometer), die Leistung elektrische Leistung des Kompressors (Wattmeter) und die Zeit (Uhr) vorhanden.

Zunächst wird die Messapparatur mit einer genau bestimmten Wassemenge befüllt. Anschließend werden die Rührmotoren und der Kompressor eingeschaltet. Sobald das geschehen ist werden im Minutentakt die Drücke p_a und p_b sowie die Temperaturen T_1 und T_2 wie auch die Leistungsaufnahme des Kompressors abgelesen und notiert.

5 Auswertung

Im folgenden Kapitel werden die gemessenen Werte und die benötigten Umrechnungen tabellarisch dargestellt, Ausgleichskurven für die Verläufe von T_1 und T_2 , sowie deren Differentialkoeffizienten berechnet. Darauf folgt die berechnung der realen Güteziffer v, des Massendurchsatzes $\frac{\Delta m}{\Delta t}$, und der Kompressorleistung.

5.1 Messwerte

In der Folgenden Tabelle sind die Messwerte Zeit t in Minuten und Sekunden, die Temperaturen T_1 und T_2 jeweils in grad Celsius und Kelvin, sowie die Drücke p_1 und p_2 in Bar und die Kompressorleistung N in Watt aufgeführt.

Tabelle 1: Daten und deren Umrechnung

t[mix]	[n] $t[s]$	$T_1[^{\circ}C]$	$T_1[K]$	$p_1[\mathrm{Bar}]$	$T_2[^{\circ}\mathrm{C}]$	$T_2[{ m K}]$	$p_2[Bar]$	N[W]
0	0	21,7	294,85	4,0	21,7	294,85	4,1	120
1	60	23,0	296,15	5,0	21,7	294,85	3,2	120
2	120	24,3	297,45	5,5	21,6	294,75	3,4	120
3	180	25,3	298,45	6,0	21,5	294,65	3,5	120
4	240	26,4	$299,\!55$	6,0	20,8	293,95	$3,\!5$	120
5	300	27,5	$300,\!65$	6,0	20,1	$293,\!25$	3,4	120
6	360	28,8	301,95	6,5	19,2	$292,\!35$	3,3	120
7	420	29,7	$302,\!85$	6,5	18,5	291,65	3,2	120
8	480	30,9	304,95	7,0	17,7	$290,\!85$	3,2	120
9	540	31,9	$305,\!05$	7,0	16,9	$290,\!05$	3,0	120
10	600	32,9	$306,\!05$	7,0	16,2	$289,\!35$	3,0	120
11	660	33,9	307,90	7,5	15,5	$288,\!65$	2,9	120
12	720	34,8	307,95	7,5	14,9	288,05	2,8	120
13	780	35,7	$308,\!85$	8,0	14,2	$287,\!35$	2,8	120
14	840	36,7	309,85	8,0	13,6	286,75	2,7	120
15	900	37,6	310,75	8,0	13,0	$286,\!15$	2,6	120
16	960	38,4	$311,\!55$	8,5	12,4	$285,\!55$	2,6	120
17	1020	39,2	$312,\!35$	8,5	11,7	$284,\!85$	2,6	120
18	1080	40,0	$313,\!15$	9,0	11,3	$284,\!45$	2,5	120
19	1140	40,7	$313,\!85$	9,0	10,9	284,05	2,5	120
20	1200	41,4	$314,\!55$	9,0	10,4	$283,\!55$	2,4	120
21	1260	42,2	$315,\!35$	9,0	9,9	283,05	2,4	120
22	1320	42,9	316,05	9,5	9,5	$282,\!65$	2,4	120
23	1380	43,6	316,75	9,5	9,1	$282,\!25$	2,4	120
24	1440	44,3	$317,\!45$	10,0	8,7	$281,\!85$	2,4	120
25	1500	44,9	$318,\!05$	10,0	8,3	$281,\!45$	2,4	120
26	1560	$45,\!5$	$318,\!65$	10,0	8,0	$281,\!15$	2,3	120
27	1620	46,1	$319,\!25$	10,0	7,7	$280,\!85$	2,2	122
28	1680	46,7	$319,\!85$	10,5	7,4	$280,\!55$	2,2	122
29	1740	47,3	$320,\!45$	10,5	7,1	$280,\!25$	2,2	122
30	1800	47,8	320,95	10,75	6,8	279,95	2,2	122
31	1860	48,4	$321,\!55$	11,0	5,6	278,75	2,2	122
32	1920	48,9	$322,\!05$	11,0	4,3	277,45	2,2	122
33	1980	49,4	$322,\!55$	11,0	3,4	$276,\!55$	2,2	122
34	2040	49,9	$323,\!05$	11,0	3,0	$276,\!15$	2,2	122
35	2100	50,3	323,45	11,0	2,9	276,05	2,2	122

5.2 Aufgabe 5.a und 5.b

Im folgenden sind die Temperaturen T_1 und T_2 in Kelvin gegen die Zeit t in Minuten, sowie die durch quadratische Regression errechneten Ausgleichskurven aufgetragen.

Abbildung 2: Temperaturverlauf

$$T(t) = At^2 + Bt + C$$

mit folgenden Faktoren für T_1 :

$$A_1=-0,012\pm 0$$
 , $B_1=1,217\pm 0,005$, $C_1=294,97\pm 0,041$

und folgenden Faktoren für T_2 :

$$A_2=0,003\pm0,001$$
 , $B_2=-0,673\pm0,035$, $C_2=295,870\pm0,263$

Alle Faktoren wurden duch die Numpy Polyfit Funktion berechnet.

5.3 Aufgabe 5c Berechnung der Differentialkoeffizeinten:

Im nächsten Schritt werden die Differentialkoeffizeinten der Ausgleichskurven berechnet, dazu werden die an die Temperaturverläufe von T_1 und T_2 angenäherten quadratischen Funktionen differenziert.

$$\begin{split} T_1 &= -0,012 \pm 0t^2 + 1,217t \pm 0,005 + 294,97 \pm 0,041 \\ &\Rightarrow \dot{T}_1 = -0,024 \pm 0t + (1,217 \pm 0,005) \\ T_2 &= 0,003 \pm 0,001t^2 - 0,673 \pm 0,035t + 295,870 \pm 0,263 \\ &\Rightarrow \dot{T}_2 = 0,006 \pm 0,002t - 1,346 \pm 0,005 \end{split}$$

In der nachfolgenden Tabelle wurden die Differentiale der Ausgleichskurven \dot{T}_1 und \dot{T}_2 an vier willkürlich ausgesuchten Stellen t ausgewertet und zusammen mit dem gewählten Zeitpunkt und der entsprechenden Kompressorleistung aufgeführt.

Tabelle 2: Delta T

t[min]	$\dot{T_1}$	$\dot{T_2}$	$ar{N}$
7	$1,049 \pm 0,005$	-0.750 ± 0.04	120
14	$0,881 \pm 0,005$	$-0,498 \pm 0,04$	120
21	$0,713 \pm 0,005$	$-0,246 \pm 0,05$	120
28	$0,545 \pm 0,005$	$0,006\pm0,05$	122

5.4 Aufgabe 5d Berechnung der Güteziffer

Die reale Güteziffer \boldsymbol{v}_{real} berechnet sich über folgenden Ausdruck:

$$v_{real} = \frac{\Delta Q_1}{\Delta t N}$$

Mit der pro Zeiteinheit gewonnenen Wärmemenge:

$$\frac{\Delta Q_1}{\Delta t} = (m_1 c_w + m_k c_k) \dot{T}_1$$

Wärmekapazität Wasser für $m_1 = 4kg$ und $c_w = 16,736 \frac{J}{kg*K}$:

$$m_1 c_w = 66,944 \frac{J}{K}$$

Wärmekapazität Kupferschlange und Behälter:

$$m_k c_k = 750 \frac{J}{K}$$

Die theoretische Güteziffer $\boldsymbol{v}_{theorie}$ berechnet sich durch:

$$v_{theorie} = \frac{T_1}{T_1 - T_2}$$

 Δv bezeichnet die Abweichung zwischen der realen Güteziffer v_{real} und der theoretische Güteziffer $v_{theorie}$

Tabelle 3: Güteziffern

t[min]	v_{real}	v_{thorie}	Δv
7	$7,141 \pm 0,034$	$27,040 \pm 0,340$	$19,90 \pm 0,34$
14	$5,998 \pm 0,034$	$13,410 \pm 0,080$	$7,42 \pm 0,09$
21	$4,854 \pm 0,034$	$9,760 \pm 0,040$	$4,91\pm0,05$
28	$4,774 \pm 0,033$	$8,139\pm0,028$	$3,36\pm0,04$

5.5 Aufgabe 5e Der Massendurchsatz

Der Massendurchsatz lässt sich nach folgender Vorschrift berechnen:

$$\frac{\Delta m}{\Delta t} = (m_2 c_w + m_k c_k) \frac{\dot{T_2}}{L}$$

5.5.1 Berchnung von L

Zur Berechnung der Verdampfungswärme L wird der $\ln(p_2)$ gegen $\frac{1}{T_2}$ aufgetragen und eine Ausgleichsgerade bestimmt aus deren Steigung man mit $L=-\frac{m}{R}$ die gesuchte Größe berechnen kann.

Abbildung 3: Dampfdruck-Kurve

Die durch die Numpy Polyfit Funktion bestimmte Steigung $m=-1719.830\pm88.369$ lefert mit der allgemeinen Gaskonstante $R=8,314\frac{kg*m^2}{s^2*mol*K}$ den Wert für $L=207\pm11\frac{kg^2*m^2}{s^4*mol}$. Die Fitfunktion lautet: $f(T)=\frac{-1719.830\pm88.369}{T}+7.327\pm0.310$

5.5.2 Berechnung des Massendurchsatzes

Für den Massendurchsatz ergeben sich also folgende Werte:

$$\frac{\Delta m}{\Delta t} = (m_2 c_w + m_k c_k) \frac{\dot{T}_2}{L}$$

mit:

$$\begin{split} m_2 &= 4kg \\ c_w &= 16,736 \frac{J}{kg*K} \\ m_2 c_w &= 66,944 \frac{J}{K} \\ m_k c_k &= 750 \frac{J}{K} \end{split}$$

$$\begin{split} &(\frac{\Delta m}{\Delta t})_1 = -2.49 \pm 0.20 \frac{kg}{s} \\ &(\frac{\Delta m}{\Delta t})_2 = -2.33 \pm 0.21 \frac{kg}{s} \\ &(\frac{\Delta m}{\Delta t})_3 = -2.16 \pm 0.24 \frac{kg}{s} \\ &(\frac{\Delta m}{\Delta t})_4 = -2.16 \pm 0.24 \frac{kg}{s} \end{split}$$

5.6 Aufgabe 5e Berechnung der Mechanischen Kompressorleistung

Die Mechanische Kompressorleistung berechnet sich wie folgt:

$$N_{mech} = \frac{1}{\kappa-1} (p_2 \sqrt[\kappa]{\frac{p_1}{p_2}} - p_1) \frac{1}{\rho} \frac{\Delta m}{\Delta t}$$

mit:

$$\rho = \frac{\rho_0 T_0 p_1}{T_2 p_0}$$

mit folgenden Werten für Cl_2F_2C :

$$\begin{split} \rho_0 &= 5, 51 \frac{g}{L} \\ \kappa &= 1, 14 \\ T_0 &= 273, 15 \pm 0, 1K \\ p_0 &= 5, 1Bar \end{split}$$

ergeben sich diese Werte:

Tabelle 4: Kompressorleistung

t[min]	ρ	N[W]
7	7,589	1.21 ± 0.10
14	9,262	1.67 ± 0.15
21	,	1.84 ± 0.21
28	12,097	2.13 ± 0.24

5.7 Aufgabe 5g Gründe für die schlechte Güteziffer

Gründe für die schlechte Güteziffer sind in den nicht idealen Bedingungen eines realen Versuchsaufbaus zu finden. Da der Versuch jedoch nicht real durchgeführt wurde sind diese nicht offensichtlich und es können nur Mutmaßungen angestellt werden. Zu diesen Mutmaßungen gehören: eine nicht perfekte Isolierung der Reservoire und deren Verbindungen, und eventuell unpräzise oder schlecht ablesbare Messinstrumente.

6 Diskussion

Besonders auffällig sind in diesem Protokoll sind die großen Abweichungen der empirisch bestimmten Güteziffern von den Theoriewerten, hier sind die empirischen Größen um knapp das doppelte kleiner als die Theoretischen Werte. Dabei liegen aus unserer Sicht keine offensichtlichen Rechenfehler vor. Im Weiteren ist auffällig das die Mechanische Leistungen sehr geringe Werte aufweisen. Die deutliche Diskrepanz zwischen der idealen Güteziffer, die sich aus den Temperaturen der Reservoire ergibt, und der deutlich geringeren realen Güteziffer, die aus den Messwerten bestimmt wurde, lässt sich auf die vielen Näherungen zurückführen, die für die ideale Wärmepumpe vorgenommen wurden. Zunächst wird für die ideale Güteziffer zum einen angenommen, dass der Kompressor adiabatisch arbeitet und zum anderen, dass der vorliegende Prozess reversibel ist. Beide Annahmen treffen in einem realen System natürlich nicht zu. Bei einer idealen Wärmepumpe wird von einer perfekten Isolierung ausgegangen, wohingegen bei der realen Wärmepumpe der Austausch von Wärme mit der Umgebung für Verluste sorgt. Weiterhin werden Leistungsverluste des Kompressors, sowie durch Reibung auftretende Verluste vernachlässigt. Diese Effekte führen im realen System zu der deutlich geringeren Güteziffer.

7 Literatur

- 1. TU Dortmund Versuch 206 Die Wärmepumpe
- 2. TU Dortmund Versuch 203 Verdampfungswärme und Dampfdruckkurve
- 3. Meschede Gerthsen Physik 2015