Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ЛАБОРАТОРНАЯ РАБОТА № 5

««Канальный уровень передачи информации. Отказоустойчивость и повышение пропускной способности каналов»

Выполнили студенты 2 курса ИП-013:

Ириков Евгений

Егор Смирнов

Эдокова Ксения

Проверил: преподаватель

Петрук Е.А.

Задача

- 1. Соберите сеть, состоящую из двух коммутаторов 2960.
- 1.1. На каждом коммутаторе отключите использование протокола SPT в VLAN 1.
- 1.2. На одном из коммутаторов сконфигурируйте layer 3 для VLAN 1 (например, IP адрес 1.1.1.1).
- 1.3. Административно включите интерфейс VLAN 1.
- 1.4. Соедините коммутаторы двумя каналами (интерфейсы fastEthernet 0/1 и 0/2).
- 1.5. На коммутаторе, на котором настроен VLAN, попробуйте выполнить запрос ARP несуществующего адреса (например, 2.2.2.2, можно сделать команду ping).
- 1.6. В режиме моделирования убедитесь, что даже после завершения запроса в сети бесконечно присутствует широковещательные запросы ARP и получился цифровой шторм.
- 2. В моделируемую сеть предприятия в главном офисе добавьте коммутатор и соедините его так, как показано на рисунке 16.

Рисунок 16 – Схема сети исследуемого предприятия

2.1 Настройте между коммутаторами Switch0 и SW1 агрегированный канал. Какой из коммутаторов выполняет пассивную и активную роль выбирает преподаватель.

- 2.2 Используя режим моделирования продемонстрируйте работоспособность созданного агрегированного канала. Подсказка для этого можно временно в сеть добавить сетевые устройства.
- 2.3 Настройте коммутатор Switch 0 так, чтобы все его каналы участвовали в VLAN с номерами 30 и 40. Настройте коммутаторы SW-mobile, SW-office, SW01 так, чтобы коммутатор Switch 0 стал участником VLAN с номерами 30 и 40.
- 2.4 Проведите «вручную» расчет конфигурации сети после применения протокола STP в VLAN с номерами 1, 30, 40. Продемонстрируйте правильность своих расчетов результатами работы STP в моделируемой сети.
- 2.5 Измените конфигурацию сети так, чтобы корневыми коммутаторами для STP в сетях VLAN с номерами 30 и 40 были те, которые укажет преподаватель. Также преподаватель вправе потребовать изменить скорости передачи некоторых каналов.
- 2.6 Повторите п.2.4 с учетом сделанных настроек.
- 2.7 Используя режим моделирования продемонстрируйте путь прохождения юникастового трафика в сетях VLAN с номерами 30 и 40. (Например, ping).

Ход работы

1. Мы собрали схему из двух коммутаторов:

1.1. Для отключения STP-протокола мы использовали следующую команду:

Switch(config)# no spanning-tree vlan 1 — отключение SPT в vlan 1

Повторили ее на втором устройстве.

1.2. Мы сконфигурировали layer3, как в предыдущей лабораторной работе:

- 1.3. Запустили из административного режима командой # no shutdown
- 1.4.&1.5. Соединили и подали запрос ping с ранее настроенного коммутатора на неизвестный адрес:

	0.002	Switch1	Switch0
	0.002	Switch0	Switch1
	0.003	Switch0	Switch1
	0.003	Switch1	Switch0
	0.004	Switch0	Switch1
	0.004		Switch1
	0.005	Switch1	Switch0
	0.005	Switch1	Switch0
	0.006	Switch0	Switch1
	0.006	Switch0	Switch1
(9)	0.007	Switch1	Switch0
(9)	0.007		Switch1

Таким образом мы получили цифровой шторм, пакет, который путешествует по каналу и не может достигнуть адресата. Из-за того, что коммутаторы соединены двумя каналами происходит путаница из-за особенностей работы коммутаторов (для того что бы найти адресата, коммутатор отправляет широковещательный запрос, который доходит до первого коммутатора по второму каналу, и так повторяется сколько угодно долго). Именно для того, чтобы не возникало путаницы был разработан STP-протокол, который организует работу закольцованных коммутаторов, что бы в их сети не возникало цифрового шторма.

2. Мы добавили новый коммутатор в сеть главного офиса, как это требовалось по заданию:

2.1. Настроили агрегированный канал связи между коммутатором Switch0 и SW01 через интерфейсы 0/1-0/2 и 0/6-0/7 соответственно:

Активную роль выдали коммутатору SwitchO с помощью команд:

Switch(config)# interface fa0/1 — выбор интерфейса Switch(config-if)# channel-protocol lacp — указание протокола для интерфейса Switch(config-if)# channel-group 1 mode (active/passive) — указание группы и режима работы интерфейса

Аналогичные манипуляции необходимо провести со всеми интерфейсами двух коммутаторов, для установления агрегированного канала связи.

2.2. Пример работы агрегированного канала связи:

2.3. Были добавлены записи в коммутатор, которые делают его участником vlan 30 и 40:

VLAN	Name	Status	Ports	
1	default	active	Fa0/7, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14	
			Fa0/15, Fa0/16, Fa0/17, Fa0/18	
			Fa0/19, Fa0/20, Fa0/21, Fa0/22	
			Fa0/23, Fa0/24	
30	VLAN30	active	Fa0/5	
40	VLAN40	active	Fa0/6	
1002	fddi-default	active		
1003	token-ring-default	active		
1004	fddinet-default	active		
1005	trnet-default	active		
Switch#				

Так же, перевели все интерфейсы, отходящие от Switch0 к остальным коммутатором в trunk режим для передачи тегированного трафика.

2.4. Мы получили STP дерево, следующего вида:

Cxeмa Spanning-Tree для Vlan 1, 30, 40

2.5. Для того что бы изменить конфигурацию STP дерева, необходимо изменить приоритет узлов, а коммутаторы сами перестроят дерево, общаясь между собой BPDU пакетами. Для того что бы изменить приоритет коммутатора мы использовалм следующую команду:

Switch(config)# spanning-tree vlan №vlan priority <npuopumem>

Чем меньше приоритет, тем главнее коммутатор в сети.

2.7. Вот пример трафика от оконечных устройств Vlan 30 и 40 до правых портов к серверам, соответствующих Vlan'os.

