

Verma modules over a Block Lie algebra

Qifan Jiang¹⁾, Yuezhu Wu^{1, 2)}

¹⁾Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

²⁾Department of Mathematics, Qufu Normal University, Qufu 273165, China

Abstract. Let \mathcal{B} be the Lie algebra with basis $\{L_{i,j}, C \mid i, j \in \mathbb{Z}\}$ and relations $[L_{i,j}, L_{k,l}] = ((j+1)k - i(l+1))L_{i+k, j+l} + i\delta_{i,-k}\delta_{j+l,-2}C$, $[C, L_{i,j}] = 0$. It is proved that an irreducible highest weight \mathcal{B} -module is quasifinite if and only if it is a proper quotient of a Verma module. For an additive subgroup Γ of \mathbb{F} , there corresponds to a Lie algebra $\mathcal{B}(\Gamma)$ of Block type. Given a total order \succ on Γ and a weight Λ , a Verma $\mathcal{B}(\Gamma)$ -module $M(\Lambda, \succ)$ is defined. The irreducibility of $M(\Lambda, \succ)$ is completely determined.

Key words: Verma modules, Lie algebras of Block type, irreducibility, quasifinite modules

Mathematics Subject Classification (2000): 17B10, 17B65, 17B68.

§1. Introduction

Since a class of infinite dimensional simple Lie algebras was introduced by Block [B], generalizations of Block algebras have been studied by some authors, partially because they are closely related to the Virasoro algebra or algebras associated quantum plane (e.g., [DZ, LW, OZ, S1–S4, SZ, X1, X2, ZM]).

For an additive subgroup Γ of a field \mathbb{F} of characteristic 0, we consider in this paper the *Lie algebra $\mathcal{B}(\Gamma)$ of Block type* with basis $\{L_{\alpha,i}, C \mid \alpha \in \Gamma, i \in \mathbb{Z}\}$ and relations

$$\begin{aligned} [L_{\alpha,i}, L_{\beta,j}] &= ((i+1)\beta - (j+1)\alpha)L_{\alpha+\beta, i+j} + \alpha\delta_{\alpha,-\beta}\delta_{i+j,-2}C, \\ [C, L_{\alpha,i}] &= 0. \end{aligned} \tag{1.1}$$

This particular Block type Lie algebra attracts our attention because it is also a special case of Cartan type S Lie algebras (e.g., [X, SX1]), or Poisson (or Hamiltonian) algebras (e.g., [X, S6, SX2]). One of our motivations to study representations of this Lie algebra is to better understand representations of Lie algebras of 4 families of Cartan type.

The Lie algebra $\mathcal{B}(\Gamma)$ is Γ -graded (but not finitely graded):

$$\mathcal{B}(\Gamma) = \bigoplus_{\alpha \in \Gamma} \mathcal{B}(\Gamma)_\alpha, \quad \text{where } \mathcal{B}(\Gamma)_\alpha = \text{span}\{L_{\alpha,i} \mid i \in \mathbb{Z}\} + \delta_{\alpha,0}\mathbb{F}C. \tag{1.2}$$

Note that $\mathcal{B}(\Gamma)_0$ is an infinite dimensional commutative subalgebra of $\mathcal{B}(\Gamma)$ (but it is not a Cartan subalgebra). For a total order “ \succ ” on Γ compatible with its group structure (in case $\Gamma = \mathbb{Z}$, we always choose the normal order on \mathbb{Z}), we denote $\Gamma_\pm = \{x \in \Gamma \mid \pm x \succ 0\}$.

Then $\Gamma = \Gamma_+ \cup \{0\} \cup \Gamma_-$, and we have the *triangular decomposition*

$$\mathcal{B}(\Gamma) = \mathcal{B}(\Gamma)_- \oplus \mathcal{B}(\Gamma)_0 \oplus \mathcal{B}(\Gamma)_+, \quad \text{where } \mathcal{B}(\Gamma)_\pm = \bigoplus_{\pm \alpha \succ 0} \mathcal{B}(\Gamma)_\alpha.$$

Thus we have the notion of a Verma module $M(\Lambda, \succ)$ with respect to a function, called a *weight*, $\Lambda \in \mathcal{B}(\Gamma)_0^*$ (the dual space of $\mathcal{B}(\Gamma)_0$) and the order “ \succ ” (cf. (2.1)).

A weight Λ is described by the *central charge* $c = \Lambda(C)$ and its *labels* $\Lambda_i = \Lambda(L_{0,i-1})$ for $i \in \mathbb{Z}$. For $j \in \mathbb{Z}$, we introduce the j -th generating series

$$\Delta_\Lambda^{(j)}(z) = \sum_{i=0}^{\infty} \frac{\Lambda_{i+j}}{i!} z^i. \quad (1.3)$$

A function $\Delta(z)$ is called a *quasipolynomial* if it is a linear combination of functions of the form $p(z)e^{\alpha z}$, where $p(z) \in \mathbb{F}[z]$, $\alpha \in \mathbb{F}$. Recall [KL, KR] the well-known characterization that a formal power series is a quasipolynomial if and only if it satisfies a nontrivial linear differential equation with constant coefficients.

A $\mathcal{B}(\Gamma)$ -module V is *quasifinite* if V is finitely Γ -graded, namely,

$$V = \bigoplus_{\alpha \in \Gamma} V_\alpha \quad \text{with} \quad \mathcal{B}(\Gamma)_\alpha V_\beta \subset V_{\alpha+\beta}, \quad \dim V_\alpha < \infty \quad \text{for} \quad \alpha, \beta \in \Gamma.$$

Quasifinite modules are closely studied by some authors, e.g., [KL, KR, KWY, LZ, S3, S4]. Quasifinite irreducible modules over the Lie algebras $\mathcal{B}'(\Gamma)$ are proved to be a highest or lowest weight module in [S5], where

$$\mathcal{B}'(\Gamma) = \text{span}\{L_{\alpha,i}, C \mid \alpha \in \Gamma, i \geq -1\} \quad (1.4)$$

is a subalgebra of $\mathcal{B}(\Gamma)$.

Since each grading space $\mathcal{B}(\Gamma)_\alpha$ in (1.2) is infinite-dimensional, the classification of quasifinite modules is a nontrivial problem as pointed in [KL, KR]. Thus the classification of graded modules with infinite dimensional grading spaces is a nontrivial problem as well.

The main results in this paper are the following.

Theorem 1.1 *Suppose V is an irreducible highest weight $\mathcal{B}(\mathbb{Z})$ -module of weight Λ . The following statements are equivalent:*

- (1) V is quasifinite;
- (2) V is a proper quotient of the Verma module $M(\Lambda, \succ)$;
- (3) $\Sigma_\Lambda^{(j)}(z) := z\Delta_\Lambda^{(-j)}(z) - j\Delta_\Lambda^{(-j-1)}(z) - \frac{c}{j!}z^j$ is a quasipolynomial and satisfies the same nontrivial linear differential equation with constant coefficients for all $j \in \mathbb{Z}$.

Theorem 1.2 *Let $M(\Lambda, \succ)$ be the Verma $\mathcal{B}(\Gamma)$ -module with highest weight Λ (cf. (2.1)).*

(1) *With respect to a dense order “ \succ ” of Γ (cf. (2.8)),*

$$M(\Lambda, \succ) \text{ is irreducible} \iff \Lambda \neq 0.$$

Moreover, in case $\Lambda = 0$, the submodule

$$\begin{aligned} M'(0, \succ) &= \sum_{k>0, \alpha_1, \dots, \alpha_k \in G_+} \mathbb{F} L_{-\alpha_1, i_1} \cdots L_{-\alpha_k, i_k} v_0 \quad \text{is irreducible} \\ \iff \forall x, y \in \Gamma_+, \exists n \in \mathbb{Z}_+ \text{ such that } nx &\succ y. \end{aligned}$$

(2) *With respect to a discrete order “ \succ ” (cf. (2.9)),*

$$M(\Lambda, \succ) \text{ is irreducible} \iff \mathcal{B}(a\mathbb{Z})\text{-module } M_a(\Lambda, \succ) \text{ is irreducible.}$$

§2. Proof of the main result

Let Γ be any additive subgroup of \mathbb{F} . Denote by $U = U(\mathcal{B}(\Gamma))$ the universal enveloping algebra of $\mathcal{B}(\Gamma)$. For any $\Lambda \in \mathcal{B}(\Gamma)_0^*$, let $I(\Lambda, \succ)$ be the left ideal of U generated by the elements

$$\{L_{\alpha, i} \mid \alpha \succ 0, i \in \mathbb{Z}\} \cup \{h - \Lambda(h) \cdot 1 \mid h \in \mathcal{B}(\Gamma)_0\}.$$

Then the *Verma $\mathcal{B}(\Gamma)$ -module* with respect to the order “ \succ ” is defined as

$$M(\Lambda, \succ) = U/I(\Lambda, \succ), \tag{2.1}$$

which has a basis consisting of all vectors of the form

$$\begin{aligned} L_{-\alpha_1, i_1} L_{-\alpha_2, i_2} \cdots L_{-\alpha_k, i_k} v_\Lambda, \quad \text{where } i_j \in \mathbb{Z}, 0 \prec \alpha_1 \preccurlyeq \cdots \preccurlyeq \alpha_k, \\ \text{and } i_s \leq i_{s+1} \text{ if } \alpha_s = \alpha_{s+1}. \end{aligned} \tag{2.2}$$

where v_Λ is the coset of 1 in $M(\Lambda, \succ)$. Thus $M(\Lambda, \succ)$ is a *highest weight $\mathcal{B}(\Gamma)$ -module* in the sense

$$M(\Lambda, \succ) = \bigoplus_{\alpha \preccurlyeq 0} M_\alpha, \tag{2.3}$$

where $M_0 = \mathbb{F} v_\Lambda$, and M_α for $\alpha \prec 0$ is spanned by vectors in (2.2) with $\alpha_1 + \cdots + \alpha_k = -\alpha$. So it is a Γ -graded $\mathcal{B}(\Gamma)$ -module with

$$\dim M_{-\alpha} = \infty \quad \text{for } \alpha \in \Gamma_+. \tag{2.4}$$

For any $a \in \Gamma$, we denote

$$\mathcal{B}(a\mathbb{Z}) = \text{span}\{L_{na, k}, C \mid n, k \in \mathbb{Z}\}, \tag{2.5}$$

which is a subalgebra of $\mathcal{B}(\Gamma)$ isomorphic to $\mathcal{B}(\mathbb{Z})$. We also denote

$$M_a(\Lambda, \succ) = \mathcal{B}(a\mathbb{Z})\text{-submodule of } M(\Lambda, \succ) \text{ generated by } v_\Lambda. \tag{2.6}$$

Denote

$$B(\alpha) = \{\beta \in \Gamma \mid 0 \prec \beta \prec \alpha\} \quad \text{for } \alpha \in \Gamma_+. \quad (2.7)$$

The order “ \succ ” is called *dense* if

$$\#B(\alpha) = \infty \quad \text{for all } \alpha \in \Gamma_+, \quad (2.8)$$

it is *discrete* if

$$B(a) = \emptyset \quad \text{for some } a \in \Gamma_+. \quad (2.9)$$

Theorem 1.2 is an analog of a result in [WS] (where the Lie algebras $\mathcal{B}'(\Gamma)$ were considered instead of $\mathcal{B}(\Gamma)$). Since the proof is similar to that in [WS], we omit the detail.

Now suppose $\Gamma = \mathbb{Z}$, and from now on, we shall only consider the Lie algebra

$$\mathcal{B} = \mathcal{B}(\mathbb{Z}). \quad (2.10)$$

The Lie algebra \mathcal{B} has a nice realization in the space $\mathbb{F}[x^{\pm 1}, t^{\pm 1}] \oplus \mathbb{F}C$ by setting

$$L_{i,j} = x^i t^{j+1} \quad \text{for any } i, j \in \mathbb{Z},$$

with the bracket

$$[x^i f(t), x^j g(t)] = x^{i+j} (j f'(t)g(t) - i f(t)g'(t)) + i \delta_{i,-j} \text{Res}_t t^{-1} f(t)g(t), \quad (2.11)$$

for $i, j \in \mathbb{Z}$ and $f(t), g(t) \in \mathbb{F}[t^{\pm 1}]$, where the prime stands for the derivative $\frac{d}{dt}$, and $\text{Res}_t f(t)$ stands for the *residue* of the Laurent polynomial $f(t)$, namely the coefficient of t^{-1} in $f(t)$. Denote by $M(\Lambda)$ the Verma \mathcal{B} -module with highest weight vector v_Λ , and by $L(\Lambda) = M(\Lambda)/M'$ the irreducible highest weight module of weight Λ , where M' is the maximal proper submodule of $M(\Lambda)$. Set

$$\mathcal{A} = \{a \in \mathcal{B} \mid av_\Lambda \in M'\} \quad \text{and} \quad \mathcal{P} = \mathcal{A} + \mathcal{B}_0. \quad (2.12)$$

Clearly, $\mathcal{B}_+ \subset \mathcal{A}$, and \mathcal{P} is a subalgebra of \mathcal{B} .

Theorem 1.1 will follow from the following proposition.

Proposition 2.1 *The following conditions are equivalent:*

- (1) $M(\Lambda)$ is reducible.
- (2) $\mathcal{P}_{-1} \neq \{0\}$.
- (3) There exists $0 \neq f(t) = \sum_{j=0}^m a_j t^j \in \mathbb{F}[t]$ for some $m \in \mathbb{N}$ and $a_j \in \mathbb{F}$, such that (where $a_{-k} = 0$ if $k > 0$ or $k < -m$)

$$\Lambda((t^k f(t))' - a_{-k} C) = 0 \quad \text{for all } k \in \mathbb{Z}. \quad (2.13)$$

(4) $\Sigma_{\Lambda}^{(j)}(z) := z\Delta_{\Lambda}^{(-j)}(z) - j\Delta_{\Lambda}^{(-j-1)}(z) - \frac{c}{j!}z^j$ is a quasipolynomial and satisfies the same nontrivial linear differential equation with constant coefficients for all $j \in \mathbb{Z}$.
(5) $L(\Lambda)$ is quasifinite.

Proof. We shall follow some arguments in [S1].

(1) \Rightarrow (2): Assume $M' \neq 0$. Similar to the proof in [WS], we can prove that \mathcal{P} is a parabolic subalgebra of \mathcal{B} , namely,

$$\mathcal{P} \supset \mathcal{B}_0 + \mathcal{B}_+ \neq \mathcal{P}, \quad \text{and} \quad \mathcal{P}_{-1} = \mathcal{P} \cap \mathcal{B}_{-1} \neq 0.$$

(2) \Rightarrow (3): Let $f(t)$ be the monic polynomial, called the *characteristic polynomial* of \mathcal{P} , with minimal degree such that $x^{-1}f(t) \in \mathcal{P}$ (cf. [S1, KL]). Set $a = x^{-1}f(t)$. Then from

$$[t^{-1}, x^{-1}tf(t)] = x^{-1}t^{-1}f(t), \quad [t^k, x^{-1}f(t)] = -kx^{-1}t^{k-1}f(t) \quad \text{for } k \in \mathbb{Z}, \quad (2.14)$$

we have $\mathcal{P}_{-1} = x^{-1}f(t)\mathbb{F}[t^{\pm 1}]$. Write $f(t) = \sum_{j=0}^m a_j t^j$ for some $m \in \mathbb{N}$ and $a_j \in \mathbb{F}$. From definition (2.12), we see M' is a proper submodule. We have $b \cdot av_{\Lambda} = 0$ for all $b \in \mathcal{B}_+$. In particular

$$[xt^k, x^{-1}f(t)]v_{\Lambda} = \Lambda(-(t^k f(t))' + a_{-k}C) = 0 \quad \text{for all } k \in \mathbb{Z}.$$

(3) \Rightarrow (4): Suppose we have (2.13). Using $e^{zt} = \sum_{i=0}^{\infty} \frac{z^i}{i!}t^i$ as a generating series of $\mathbb{F}[t]$, noting that $f(t)e^{zt} = f(\frac{\partial}{\partial z})e^{zt}$, by (2.13) and (2.11), we have (recall that the prime stands for $\frac{\partial}{\partial t}$, and the definition of $\Delta_{\Lambda}^{(j)}(z)$ in (1.3)),

$$\begin{aligned} 0 &= \Lambda((f(t)t^{-j}e^{zt})' - \text{Res}_t t^{-j-1}f(t)e^{zt}C) \\ &= \Lambda((f(\frac{\partial}{\partial z})t^{-j}e^{zt})') - \text{Res}_t t^{-j-1}f(\frac{\partial}{\partial z})e^{zt}c \\ &= \Lambda(-jf(\frac{\partial}{\partial z})t^{-j-1}e^{zt} + f(\frac{\partial}{\partial z})zt^{-j}e^{zt}) - f(\frac{d}{dz})\frac{z^j}{j!}c \\ &= -jf(\frac{\partial}{\partial z})\Lambda(t^{-j-1}e^{zt}) + f(\frac{\partial}{\partial z})z\Lambda(t^{-j}e^{zt}) - f(\frac{d}{dz})\frac{z^j}{j!} \\ &= -jf(\frac{d}{dz})\Delta_{\Lambda}^{(-j-1)}(z) + f(\frac{d}{dz})z\Delta_{\Lambda}^{(-j)}(z) - f(\frac{d}{dz})\frac{z^j}{j!}c \\ &= f(\frac{d}{dz})\Sigma_{\Lambda}^{(j)}(z) \quad \text{for } j \in \mathbb{Z}. \end{aligned} \quad (2.15)$$

Namely, $\Sigma_{\Lambda}^{(j)}(z)$ is a quasipolynomial by the statement after (1.3).

(4) \Rightarrow (5): Assume we have (2.15). It suffices to prove \mathcal{P}_{-i} has finite codimension in \mathcal{B}_{-i} for all $i > 0$. For this, we only need to prove $\mathcal{P}_{-i} \neq 0$ for all $i > 0$ (then we can proceed as in (2.14) to prove \mathcal{P}_{-i} has finite codimension).

First from definition (2.12), $a \in \mathcal{P}_{-1}$ if and only if $b \cdot a \cdot v_\Lambda = 0$ for all $b \in \mathcal{B}_1$. Then from (2.15), one has

$$x^{-1}t^j f(t) \in \mathcal{P}_{-1} \quad \text{for all } j \in \mathbb{Z}, \quad (2.16)$$

this is because $xt^k \cdot x^{-1}t^j f(t) \cdot v_\Lambda = 0$ for all $k \in \mathbb{Z}$, i.e., $\mathcal{B}_1 \cdot x^{-1}t^j f(t) \cdot v_\Lambda = 0$. In particular, from (2.16), one has $\mathcal{P}_{-1} \neq 0$. Assume that $\mathcal{P}_{-i} \neq 0$ and $0 \neq x^{-i}g(t) \in \mathcal{P}_{-i}$. Then

$$x^{-i-1}(-ijt^{j-1}f(t)g(t) - it^j f'(t)g(t) + t^j f(t)g'(t)) = [x^{-1}t^j f(t), x^{-i}g(t)] \in \mathcal{P}_{-i-1},$$

for all $j \in \mathbb{Z}$. In particular, $\mathcal{P}_{-i-1} \neq 0$.

(5) \Rightarrow (1): It follows from (2.4). \square

Acknowledgement. This work is supported by NSF grants 10571120, 10471096 of China and Yucai Su's grant "One Hundred Talents Program" from University of Science and Technology of China.

References

- [B] R. Block, On torsion-free abelian groups and Lie algebras, *Proc. Amer. Math. Soc.* **9** (1958), 613–620.
- [DZ] D. Dokovic, K. Zhao, Derivations, isomorphisms and cohomology of generalized Block algebras, *Algebra Colloq.* **3** (1996), 245–272.
- [KL] V. Kac, J. Liberati, Unitary quasifinite representations of W_∞ , *Lett. Math. Phys.* **53** (2000), 11–27.
- [KR] V. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, *Comm. Math. Phys.* **157** (1993), 429–457.
- [KWF] V. Kac, W. Wang, C.H. Yan, Quasifinite representations of classical Lie subalgebras of $\mathcal{W}_{1+\infty}$, *Adv. Math.* **139** (1998), 46–140.
- [LZ] N. Lam, R.B. Zhang, Quasifinite modules for Lie superalgebras of infinite rank, *Trans. Amer. Math. Soc.* **358** (2005), 403–439.
- [LW] S. Lin, Y. Wu, Representations of the quantized Weyl algebra associated to the quantum plane, *Algebra Colloquium* **12** (2005), 715–720.
- [OZ] J. M. Osborn, K. Zhao, infinite-dimensional Lie algebras of generalized Block type, *Proc. Amer. Math. Soc.* **127** (1999), 1641–1650.
- [S1] Y. Su, Derivations and structure of the Lie algebras of Xu type, *Manuscripta Math.* **105** (2001), 483–500.

- [S2] Y. Su, Structure of Lie superalgebras of Block type related to locally finite derivations, *Comm. Algebra* **30** (2002), 3205–3226.
- [S3] Y. Su, Quasifinite representations of a Lie algebra of Block type, *J. Algebra* **276** (2004), 117–128.
- [S4] Y. Su, Quasifinite representations of a family of Lie algebras of Block type, *J. Pure Appl. Algebra* **192** (2004), 293–305.
- [S5] Y. Su, Classification of quasifinite modules over the Lie algebras of Weyl type, *Adv. Math.* **174**(2003), 57–68.
- [S6] Y. Su, Poisson brackets and structure of nongraded Hamiltonian Lie algebras related to locally-finite derivations, *Canad. J. Math.* **55** (2003), 856–896.
- [SX1] Y. Su, X. Xu, Structures of divergence-free Lie algebras, *J. Algebra* **243** (2001), 557–595.
- [SX2] Y. Su, X. Xu, Central simple Poisson algebras, *Science in China A* **47** (2004), 245–263.
- [SZ] Y. Su, J. Zhou, Structure of the Lie algebras with a feature of Block algebras, *Comm. Algebra* **30** (2002), 3205–3226.
- [WS] Y. Wu, Y. Su, Highest weight representations of a Lie algebra of Block type, preprint (arXiv: math.QA/0511733).
- [X1] X. Xu, Generalizations of Block algebras, *Manuscripta Math.* **100** (1999), 489–518.
- [X2] X. Xu, Quadratic conformal superalgebras, *J. Algebra* **231** (2000), 1–38.
- [X3] X. Xu, New generalized simple Lie algebras of Cartan type over a field with characteristic 0, *J. Algebra* **224** (2000), 23–58.
- [ZM] L. Zhu, D. Meng, Structure of degenerate Block algebras, *Algebra Colloq.* **10** (2003), 53–62.