Compresión de imágenes

Fernando Martínez fernando.martinez@upc.edu

Departament de Matemàtiques • Universitat Politècnica de Catalunya

9 de mayo de 2022

Transformaciones

2 Transformaciones de interés

3 JPEG (Joint Photographic Experts Group)

Transformaciones (ejemplos I)

Ejemplo

- Multiplicar XCVI por XII: XCVI=96, XII=12, 96·12=1152, 1152=MCLII
- Burrows-Wheeler

Ejemplo

Nube de puntos \rightarrow Rotación $\alpha \rightarrow$ cuantización \rightarrow Rotación $-\alpha$.

Transformaciones (ejemplos II)

Ejemplo

Nube de puntos \to Tranformación \to cuantización \to Transformación inversa.

Transformaciones lineales ortogonales

Transformaciones lineales invertibles:

$$\vec{y} = A\vec{x}$$
 $y_i = \sum_j a_{ij} x_j$

$$\vec{x} = A^{-1}\vec{y} \equiv B\vec{y}$$
 $x_i = \sum_j b_{ij}y_j$

Transformaciones lineales ortogonales: $A^{-1} = A^{T}$,

$$y_i = \sum_j a_{ij} x_j$$
 $x_i = \sum_j a_{ji} y_j$

Las transformaciones ortogonales conservan la norma (energía)

$$\vec{y}^T \cdot \vec{y} = (A\vec{x})^T \cdot A\vec{x} = \vec{x}^T A^T \cdot A\vec{x} = \vec{x}^T \cdot \vec{x}$$

Transformaciones lineales ortogonales: Ejemplo 1

Ejemplo

$$G_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, \qquad G^{-1} = G^{T}$$

$$G_{\frac{\pi}{4}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad \vec{x} = \begin{pmatrix} a \\ a \end{pmatrix}, \qquad \vec{y} = G_{\frac{\pi}{4}} \vec{x} = \begin{pmatrix} \sqrt{2}a \\ 0 \end{pmatrix}$$

Si \vec{x} tiene la energía repartida equitativamente entre las componentes, la transformación la concentra en la primera componente: modificar la segunda componente transformada no afecta significativamente a la energía y, por lo tanto, el error sería pequeño:

$$\vec{x} = \begin{pmatrix} a - \epsilon \\ a + \epsilon \end{pmatrix}, \quad \vec{y} = G_{\frac{\pi}{4}} \vec{x} = \begin{pmatrix} \sqrt{2}a \\ \sqrt{2}\epsilon \end{pmatrix}.$$

Transformaciones lineales ortogonales: Ejemplo 2 (I)

Ejemplo

$$\vec{x} = (a, a, a, a, a)^{T}, \quad \vec{y} = W\vec{x} = (2a, 0, 0, 0)^{T}$$

$$\vec{x} = (a, a, -a, -a,)^{T}, \quad \vec{y} = W\vec{x} = (0, 2a, 0, 0)^{T}$$

$$\vec{x} = (a, -a, -a, a,)^{T}, \quad \vec{y} = W\vec{x} = (0, 0, 2a, 0)^{T}$$

$$\vec{x} = (a, -a, a, -a,)^{T}, \quad \vec{y} = W\vec{x} = (0, 0, 0, 2a)^{T}$$

Si la energía está repartida equitativamente entre las componentes, la transformación la concentra en la primera componente. Si hay un salto brusco a mitad concentra la energía en la segunda componente...

Transformaciones lineales ortogonales: Ejemplo 2 (II)

Ejemplo (continuación)

Si

$$\vec{x} = \begin{pmatrix} 5 \\ 9 \\ 10 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

$$\vec{y} = W\vec{x} = \begin{pmatrix} 16 \\ -2 \\ -3 \\ -1 \end{pmatrix} = 16 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Transformaciones lineales ortogonales: Ejemplo 2 (III)

Ejemplo (continuación)

Si eliminamos la última componente

$$\vec{y'} = \begin{pmatrix} 16 \\ -2 \\ -3 \\ 0 \end{pmatrix} = 16 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

entonces

$$\vec{x'} = W^{-1}\vec{y'} = W^T\vec{y'} = W\vec{y'} = \begin{pmatrix} 5,5\\8,5\\10,5\\7,5 \end{pmatrix}.$$

Comparando la energía: $\|\vec{x}\| = \|\vec{y}\| = 16,43, \|\vec{x'}\| = \|\vec{y'}\| = 16,40.$

Transformaciones lineales

En el caso de imágenes se acostumbra a trabajar con bloques que son matrices

$$Y_{kl} = \sum_{i} \sum_{j} a_{klij} X_{ij}$$

Las transformaciones lineales con las que se trabaja son separables: se aplica primero una transformación a las filas y después otra (usualmente la misma) a las columnas:

$$Y_{kl} = \sum_{i} \sum_{j} A_{ki} B_{lj} X_{ij} = \sum_{i} \sum_{j} A_{ki} A_{jl} X_{ij} = \sum_{i} \sum_{j} A_{ki} X_{ij} A_{jl},$$

matricialmente:

$$Y = AXA^{T}$$
, $X = A^{T}YA$ $(A^{-1} = A^{T} \text{ortogonal})$.

Se definen las matrices auxiliares $\tilde{H}_1 = (1)$, $\tilde{H}_{2N} = \begin{pmatrix} \tilde{H}_N & \tilde{H}_N \\ \tilde{H}_N & -\tilde{H}_N \end{pmatrix}$

Se multiplican por $\frac{1}{\sqrt{N}}$ (así conseguiremos $HH^T=I$) y se reordenan las filas según el número de cambios de signo:

N = 4

Las imágenes I_i son base: cualquier imagen I se puede escribir como combinación lineal de los elementos de la base $I = \sum_i \lambda_i I_i$.

La transformación es lineal: $A \cdot I = \sum_{i} \lambda_{i} A \cdot I_{i}$.

 $A \cdot I_i$ es una matriz cuyos elementos son todos 0 excepto el que ocupa la posición i que vale 1. Por lo tanto:

$$A \cdot I = \begin{pmatrix} \lambda_1 & \lambda_2 & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \lambda_r \end{pmatrix}$$

 λ_1 recibe el nombre de componente principal, es la que tiene mayor influencia en la imagen y acostumbra a tener el mayor valor (es la media de la imagen), a medida que nos alejamos de λ_1 menos influencia en la imagen y podemos prescindir de ellas.

Serie trigonométrica de Fourier

Dada una función suficientemente regular periódica de periodo T, $f(t) = f(t + kT), \ k \in \mathbb{Z}$, podemos representarla por su serie trigonométrica de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1} a_n \cos(\frac{2\pi}{T}nt) + \sum_{n=1} b_n \sin(\frac{2\pi}{T}nt)$$

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(\frac{2\pi}{T} n t) dt$$
$$b_n = \frac{2}{T} \int_0^T f(t) \sin(\frac{2\pi}{T} n t) dt$$

Si T es el periodo, $\nu \equiv \frac{1}{T}$ es la frecuencia y $\omega \equiv \frac{2\pi}{T} = 2\pi\nu$ es la frecuencia angular.

Serie trigonométrica de Fourier

Una función f se puede escribir como $f(t) = f_P(t) + f_I(t)$ siendo $f_P(t) = \frac{f(t) + f(-t)}{2}$ una función par y $f_I(t) = \frac{f(t) - f(-t)}{2}$ una función impar.

Si

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{2\pi}{T}nt) + \sum_{n=1}^{\infty} b_n \sin(\frac{2\pi}{T}nt)$$

entonces

$$f_P(t) = \frac{a_0}{2} + \sum_{n=1} a_n \cos(\frac{2\pi}{T}nt)$$
 $f_I(t) = \sum_{n=1} b_n \sin(\frac{2\pi}{T}nt)$

Serie trigonométrica de Fourier

Identidad de Parseval

$$\frac{2}{T} \int_0^T |f(t)|^2 dt = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Discrete Cosine Transform (DCT)

Dada una función definida en el intervalo [0, T/2] la podemos extender a toda la recta real

• de forma simétrica $(b_n = 0)$,

- de forma antisimétrica $(a_n = 0)$,
- de cualquier otra forma.

Discrete Cosine Transform (DCT)

Teorema

Es posible reconstruir una señal periódica continua si se muestrea a una tasa mayor que el doble de su frecuencia máxima.

En la práctica la frecuencia máxima vendrá dada por el número de muestras (samples) N ya que hacemos una extensión simétrica T=2N (DCT)

Discrete Cosine Transform (DCT)

Un vector \vec{x} de N componentes puede representar una señal periódica simétrica de frecuencia máxima N-1.

$$\vec{x} = \sum_{n=0}^{N-1} a_n \vec{\Theta}^{(n)}, \Theta_i^{(n)} = c_n \cos\left(\frac{2\pi}{2N}n(i+\frac{1}{2})\right), \ c_0 = \frac{1}{2\sqrt{2}}, c_n = \frac{1}{2} \ n \neq 0$$

$$\begin{split} \vec{\Theta}^{(0)} &= \frac{1}{2\sqrt{2}}[1,...,1] \\ \vec{\Theta}^{(1)} &= \frac{1}{2} \left[\cos \left(\frac{\pi}{2N} \right), \cos \left(\frac{3\pi}{2N} \right), \cos \left(\frac{5\pi}{2N} \right), ..., \cos \left(\frac{\pi}{N} (N-1+\frac{1}{2}) \right) \right] \\ \vec{\Theta}^{(2)} &= \frac{1}{2} \left[\cos \left(\frac{\pi}{N} \right), \cos \left(\frac{3\pi}{N} \right), \cos \left(\frac{5\pi}{N} \right), ..., \cos \left(\frac{\pi}{N} 2(N-1+\frac{1}{2}) \right) \right] \\ ... \\ \vec{\Theta}^{(N-1)} &= \frac{1}{2} \left[\cos \left(\frac{\pi(N-1)}{N} \right), \cos \left(\frac{3\pi(N-1)}{2N} \right), ..., \cos \left(\frac{\pi}{N} (N-1)(N-1+\frac{1}{2}) \right) \right] \end{split}$$

Ejemplo DCT (I)

Ejemplo

- Dominio espacial: $\vec{x} = [0.75, 0.71, 0.64, 0.55, 0.45, 0.36, 0.3, 0.25]$
- Dominio frecuencias: $\vec{a} = [1,418, 0,503, 0,00191, 0,00279, -0,00354, 0,00672, -0,00462, 0,00225]$
- Dominio frecuencias: $\vec{a}' = [1,418, 0,503, 0, 0, 0, 0, 0, 0]$
- Dominio espacial: $\vec{x}' = [0.748, 0.710, 0.641, 0.550, 0.452, 0.361, 0.292, 0.254]$
- \bullet Energia perdida: $0.005\,\%$

Ejemplo DCT (II)

Discrete Cosine Transform (DCT) 1D

Una manera de calcular una^1 DCT-1D de $\vec{x} = (x_0, x_1, ..., x_{N-1})$ es:

$$a_i = \sqrt{\frac{2}{N}} c_i \sum_{k=0}^{N-1} x_k \cos\left(\frac{(2k+1)i\pi}{2N}\right)$$

$$c_0 = \frac{1}{\sqrt{2}}, \qquad c_i = 1, \ i \neq 0$$

La inversa, dadas las amplitudes a_i , es:

$$x_k = \sqrt{\frac{2}{N}} \sum_{i=0}^{N-1} c_i a_i \cos\left(\frac{(2k+1)i\pi}{2N}\right)$$

¹Hay otras definiciones de DCT, dependiendo de cómo se toman los puntos.

Discrete Cosine Transform (DCT) 2D

En el caso 2D, la DCT que se utiliza en JPEG es:

$$\omega_{ij} = \frac{1}{\sqrt{2N}} c_i c_j \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} P_{xy} \cos\left(\frac{(2x+1)i\pi}{2N}\right) \cos\left(\frac{(2y+1)j\pi}{2N}\right)$$
$$c_0 = \frac{1}{\sqrt{2}}, \qquad c_i = 1, \ i \neq 0$$

siendo P una imagen de $N \times N$ píxeles y P_{xy} el valor del píxel correspondiente. La inversa es:

$$P_{xy} = \frac{1}{\sqrt{2N}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} c_i c_j \omega_{ij} \cos\left(\frac{(2x+1)i\pi}{2N}\right) \cos\left(\frac{(2y+1)j\pi}{2N}\right)$$

Discrete Cosine Transform (DCT) 2D

Matricialmente se puede escribir:

$$\omega = C P C^{T}$$

$$C = (C_{ij}) \qquad C_{0j} = \frac{1}{\sqrt{N}}, \quad C_{ij} = \sqrt{\frac{2}{N}} \cos\left(\frac{(2j+1)i\pi}{2N}\right)$$

Lo usual es aplicar la DCT a bloques 8×8 de la imagen. En este caso al calcular CP cada elemento de la matriz requiere 8 productos, en total $8\cdot 8\times 8$ para el bloque. Multiplicar por C^T necesita los mismos productos. En total $2\cdot 8^3$ multiplicaciones.

Para una imagen $n \times n$ son necesarios $\frac{n}{8} \frac{n}{8} 2 \cdot 8^3 = 16n^2$ productos. (Aplicar la DCT a toda la imagen: $2n^3$)

Se puede reducir el número de productos escribiendo $C = C_1 C_2 \cdots C_7$ siendo C_1 matrices con pocos elementos no nulos y siendo éstos en su mayoría ± 1 .²

²Ver página 323 de la 4^a edición del Salomon.

Discrete Sine Transform (DST)

Notemos que sin(x) es una función impar i.e. f(0) = 0.

Por lo tanto la DST no tiene coeficiente DC (siempre vale 0).

$$a_i = \sum_{k=0}^{N} x_k \sin\left(\frac{\pi}{N+1}(k+1)(i+1)\right)$$

Discrete Sine Transform (DST)

Ejemplo

$$x = (1, 1, 1, 1, 1, 1, 1, 1)$$

 $DST(x) = (5,67, 0, 1,73, 0,0,84,0, 0,36, 0)$
 $DCT(x) = (8,0,0,0,0,0,0,0)$

Ejemplo

$$\begin{split} x &= (0,\ 0.87,\ 1.47,\ 1.985,\ 2.5,\ 1.866,\ 0.643,\ 0.002) \\ DST(x) &= (8.28,\ -0.297,\ -2.57,\ 0.750,\ -0.522,\ -0.644,\ -0.137,\ 0.0176) \\ DCT(x) &= (3.30,\ -0.0668,\ -2.42,\ 0.314,\ -0.128,\ -0.365,\ -0.0157,\ 0.0247) \end{split}$$

JPEG (Joint Photographic Experts Group)

① Transformación $RGB \to YC_bC_r$, en el caso de imágenes de color:

$$Y = 0.299 R + 0.587 G + 0.114 B$$

$$C_b = -0.1687 R - 0.3313 G + 0.5 B + 128$$

$$C_r = 0.5 R - 0.4187 G - 0.0813 B + 128$$

$$R = Y + 1,402 (C_r - 128)$$

$$G = Y - 0,71414 (C_r - 128) - 0,34414 (C_b - 128)$$

$$B = Y + 1,772 (C_b - 128)$$

- Para cada componente, se divide la imagen en bloques 8 × 8. (Si el número de filas o columnas no es multiplo de 8, se replica la última fila/columna.)
- ① A cada bloque se le aplica la DCT, pero previamente se le resta 128 a cada elemento del bloque para que el coeficiente DC se reduzca su valor en $128 \cdot 64 = 8192$ en promedio.

JPEG (Joint Photographic Experts Group)

Se cuantizan los valores obtenidos, con las matrices de cuantización. Los estándares usan una para la componente Y, luminancia, y otras para las componentes C_b y C_r , crominancias, pero se pueden utilizar otras que se han de incluir.

Se tratan los coeficientes DC y AC por separado. Todos los DC se codifican juntos (sus diferencias); los 63 AC se codifican juntos.

JPEG (DC)

0:	0									0
1:	-1	1								10
2:	-3	-2	2	3						110
3:	-7	-6	-5	-4	4	5	6	7		1110
4:	-15	-14		-9	-8	8	9	10	 15	11110
5:	-31	-30	-29		-17	-16	16	17	 31	111110
6:	-63	-62	-61		-33	-32	32	33	 63	1111110
7:	-127	-126	-125		-65	-64	64	65	 127	11111110
:				:						
14:	-16383	-16382	-16381		-8193	-8192	8192	8193	 16383	1111111111111111
15:	-32767	-32766	-32765		-16385	-16384	16384	16385	 32767	11111111111111111
16:	32768									11111111111111111

Figura: Código de Huffman para los coeficientes DC y sus diferencias

JPEG (DC)

Ejemplo

DC: 1118, 1114, 1119... \longmapsto 1118, -4, 5 1118 está en la fila 11, columna 1118 de la tabla 1, codificamos

-4 está en la fila 3, columna 3 de la tabla, codificamos

$$\underbrace{1110}_{1110} \underbrace{3 \text{ columna } 3 \text{ con } 3 \text{ bits}}_{011}$$

5 está en la fila 3, columna 5 de la tabla, codificamos

 $\underbrace{1110}
\underbrace{101}
\underbrace{101}$

JPEG (AC)

Para cada bloque se codifican los 63 coeficientes AC con una combinación de RLE y Huffman.

Los 63 coeficientes AC formarán una lista que contenga unos pocos 13 ceros

elementos no nulos, por ejemplo 2, 0, $-2, \ \widehat{0..,0} \ , -1, 0,$

Se codifica de la siguiente forma, para cada valor $x \neq 0$:

- lacktriangle z representa el número de ceros que preceden a x,
- $oldsymbol{0}$ se busca x en la tabla $oldsymbol{1}$, sea R su fila y C su columna,
- \odot Con R y z, se usa la tabla 2 para elegir una entrada E
- \bullet E se concatena con el valor de C usando R bits.

			R		
Z	1	2	3	4	5
Z	6	7	8	9	10
0	00	01	100	1011	11010
U	111000	1111000	1111110110	111111111110000010	1111111111000001
1	1100	11011	1111001	111110110	11111110110
1	11111111110000100	11111111110000101	11111111110000110	111111111100001111	1111111111000100
0	11100	11111001	1111110111	1111111110100	1111111110001001
2	1111111110001010	1111111110001011	1111111110001100	1111111110001101	1111111110001110
2	111010	111110111	1111111110101	111111111100011111	1111111111001000
3	11111111110010001	11111111110010010	11111111110010011	11111111110010100	1111111111001010
	111011	11111111000	11111111110010110	111111111100101111	1111111111001100
4	11111111110011001	11111111110011010	11111111110011011	111111111100111100	1111111111001110
_	1111010	111111110111	111111111100111110	111111111100111111	1111111111010000
5	11111111110100001	11111111110100010	11111111110100011	11111111110100100	1111111111010010
	1111011	1111111110110	11111111110100110	111111111101001111	1111111111010100
6	11111111110101001	11111111110101010	11111111110101011	11111111110101100	1111111111010110
_	11111010	1111111110111	111111111101011110	111111111101011111	11111111111011000
7	11111111110110001	11111111110110010	11111111110110011	11111111110110100	1111111111011010
0	111111000	1111111111000000	11111111110110110	11111111110110111	1111111111011100
8	11111111110111001	11111111110111010	11111111110111011	111111111101111100	1111111111011110
	111111001	111111111101111110	111111111101111111	11111111111000000	1111111111100000
9	11111111111000010	11111111111000011	11111111111000100	11111111111000101	1111111111100011
1.0	111111010	111111111110001111	11111111111001000	11111111111001001	1111111111100101
10	11111111111001011	11111111111001100	11111111111001101	111111111110011110	1111111111100111
11	1111111001	11111111111010000	11111111111010001	111111111111010010	1111111111101001
11	11111111111010100	11111111111010101	111111111111010110	111111111110101111	1111111111101100
10	1111111010	11111111111011001	11111111111011010	11111111111011011	11111111111101110
12	11111111111011101	1111111111110111110	11111111111011111	11111111111100000	1111111111110000
1.0	111111111000	11111111111100010	11111111111100011	11111111111100100	1111111111110010
13	11111111111100110	11111111111100111	11111111111101000	11111111111101001	1111111111110101
	11111111111101011	11111111111101100	11111111111101101	11111111111101110	1111111111110111
14	11111111111110000	11111111111110001	11111111111110010	11111111111110011	1111111111111010
1 5	11111111111110101	111111111111110110	11111111111111111111	11111111111111000	1111111111111100
15				1111111111111111	
ndo.n	nartinez@upc.edu (M	IAT, U Compr	esión de imágenes	9 de may	o de 2022 38

JPEG: ejemplo AC (I)

Ejemplo

$$2,0,-2,\overbrace{0..,0}^{13\ ceros},-1,0,...$$

- z = 0, x = 2: R = 2, C = 2 R = 2, $z = 0 \rightarrow 01$ C = 2 con R = 2 bits $\rightarrow 10$ 0110
- z = 1, x = -2: R = 2, C = 1 R = 2, $z = 1 \rightarrow 11011$ C = 1 con R = 2 bits $\rightarrow 01$ 1101101

JPEG: ejemplo AC (II)

Ejemplo

$$2,0,-2,\overbrace{0..,0}^{13\ ceros},-1,0,...$$

•
$$z = 13$$
, $x = -1$: $R = 1$, $C = 0$
 $R = 1$, $z = 13 \rightarrow 111111111000$
 $C = 0$ con $R = 1$ bits $\rightarrow 0$
1111111110000

Como ya no hay más términos no nulos se envía EOB: 1010.

Si hay 16 o más ceros consecutivos se envía 11111111001 para indicar 15 ceros y se procede con lo restante.

Resumiendo: 0110 1101101 1111111110000 1010

27 bits para los 63 coeficientes AC.

JPEG: ejemplo AC (III)

Los 63 coeficientes AC se ordenan en zig-zag para conseguir que el número de ceros consecutivos aumente: