

CS 3205 COMPUTER NETWORKS

JAN-MAY 2020

LECTURE: 07TH - 09ND APRIL 2020

COVERS - SEC 3.5 OF THE KUROSE BOOK

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size
- **connection-oriented:**
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

TCP seq. numbers, ACKs

sequence numbers:

-byte stream "number" of first byte in segment's data

acknowledgements:

- —seq # of next byte expected from other side
- -cumulative ACK

Q: how receiver handles out-oforder segments

—A: TCP spec doesn't say, up to implementor

TCP seq. numbers, ACKS

simple telnet scenario

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- Ionger than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

Q: how to estimate RTT?

- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- * typical value: $\alpha = 0.125$

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta) *DevRTT + \beta* | SampleRTT-EstimatedRTT | (typically, \beta = 0.25)
```

TimeoutInterval = EstimatedRTT + 4*DevRTT

"safety margin"

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
- retransmissions triggered by:
 - timeout events
 - duplicate acks

let's initially consider simplified TCP sender:

- ignore duplicate acks
- ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval: TimeOutInterval

timeout:

- retransmit segment that caused timeout
- * restart timer

ack rcvd:

- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP sender (simplified)

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver	TCP receiver action
arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
arrival of in-order segment with expected seq #. One other segment has ACK pending	immediately send single cumulative ACK, ACKing both in-order segments
arrival of out-of-order segment higher-than-expect seq. # . Gap detected	immediately send duplicate ACK, indicating seq. # of next expected byte
arrival of segment that partially or completely fills gap	immediate send ACK, provided that segment starts at lower end of gap

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3
ACKs for same data
("triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

 likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

