Evaluating 5 reconstruction methods in all three categories

Eleftherios Garyfallidis and Michael Paquette Université de Sherbrooke, Quebec, Canada scil.dinf.usherbrooke.ca

Local Reconstruction Methods

CSD: Constrained Spherical Deconvolution

Tournier et al.

SDT: Spherical Deconvolution Transform

Descoteaux et al.

PSO: Multi-tensor with particle swarming.

Paquette et al.

DSID: Diffusion Spectrum Imaging with Deconvolution

Canales-Rodriguez et al.

GQID: Generalized Q-sampling Imaging with Spherical Deconvolution

Garyfallidis PhD thesis

DSI real ODF

$$\psi_{DSI}(\hat{\mathbf{u}}) = \int_0^\infty P(r\hat{\mathbf{u}})r^2 dr$$

Signal to Propagator relationship

$$S(\mathbf{q}) = S_0 \int P(\mathbf{r}) \exp(i2\pi \mathbf{q} \cdot \mathbf{r}) d\mathbf{r}$$

$$Q(\mathbf{r}) = S_0 P(\mathbf{r})$$

$$S(\mathbf{q}) = \int Q(\mathbf{r}) \exp(i2\pi \mathbf{q} \cdot \mathbf{r}) d\mathbf{r}$$

$$S(\mathbf{q}) = S(-\mathbf{q})$$

$$Q(\mathbf{r}) = \int S(\mathbf{q}) \exp(-2\pi \mathbf{q} \cdot \mathbf{r}) d\mathbf{q}$$

cosine transform

$$Q(\mathbf{r}) = \int S(\mathbf{q}) \cos(2\pi \mathbf{q} \cdot \mathbf{r}) \mathbf{q}$$

GQI2 real ODF

$$\psi_{GQI2}(\hat{\mathbf{u}}) = \int_{0}^{\hat{r}} Q(r\hat{\mathbf{u}})r^{2}dr$$

$$\psi_{GQI2}(\hat{\mathbf{u}}) = \lambda^3 \int S(\mathbf{q}) H(2\pi\lambda\mathbf{q} \cdot \hat{\mathbf{u}}) d\mathbf{q}$$

$$H(x) = \begin{cases} \frac{2\cos(x)}{x^2} & +\frac{(x^2-2)\sin(x)}{x^3}, x \neq 0\\ & 1/3 & , x = 0 \end{cases}$$

Spherical Deconvolution Transform

GQI2 vs GQID

(GQI2 with deconvolution)

Dipy Developers (Core team)

Matthew Berkeley

Ariel Stanford

Eleftherios Cambridge, UK

Bago UCSF

Ian MRC CBU Cambridge, UK

Stefan South Africa

Dipy Developers (Full list)

- Eleftherios Garyfallidis, University of Sherbrooke, QC, CA
- Ian Nimmo-Smith, MRC Cognition and Brain Sciences Unit, Cambridge, UK
- Matthew Brett, University of California, Berkeley, CA, US
- Bago Amirbekian, University of California, San Fransisco, CA, US
- Ariel Rokem, Stanford University, CA, US
- Stefan Van der Walt, Stellenbosch University, ZA
- Maxime Descoteaux, University of Sherbrooke, QC, CA
- Michael Paquette, University of Sherbrooke, QC, CA
- Christopher Nguyen, University of California, Los Angeles, CA, US
- Emanuele Olivetti, NeuroInformatics Laboratory (NILab), Trento, IT
- Yaroslav Halchenco, PBS Department, Dartmouth, NH, US
- Samuel St-Jean, University of Sherbrooke, QC, CA
- Your name here

We combine expertise in computer science, mathematics, psychology and medicine.

Mission

The purpose of dipy is to make it easier to do better diffusion MR imaging research.

- clearly written
- clearly explained

Travis

- a good fit for the underlying ideas
- a natural home for collaboration

We hope that, if we fail to do this, you will let us know and we will try and make it better.

<u>Truly Open</u>	<u>Dependencies</u>
BSD License	Numpy
Documentation	Scipy
Unit tests	Cython
Examples	Nibabel
Tutorials	(Optional)
Buildbots	Python vtk
Git/Github	Pytables
GMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMU	

Reconstruction

- Diffusion Spectrum Imaging (Wedeen)
- Generalized Q-Sampling Imaging (Yeh)
- Diffusion Spectrum Imaging with Deconvolution (Canales-Rodriguez)
- Qball (Descoteaux)
- Constant Solid Angle (Aganj)
- Opdt (Tristan-Vega)
- Diffusion Tensor (Basser)
- Simulations
- ++ CSD + MultiTensor on their way.

Tracking

- Deterministic
- Probabilistic
- Statistics (length etc.)
- Streamline counts

Input / Output

- nifti
- dicom (partly supported)
- trackvis
- hdf5
- fast pickling
- numpy io

algorithms List of

Segmentation

- QuickBundles

Volume

- Fast volume traversal (ndindex)
- Reslice volumes

Registration

- Warp streamlines

And your module here

Get involved and share some code!

Dipy 0.6 is out.

Thank you!