

# CPE 323 Intro to Embedded Computer Systems Digital-to-Analog Conversion

Aleksandar Milenkovic milenka@uah.edu





#### Admin

- Quiz.06 is tomorrow
- HW.5 due Tuesday next week





# MSP430FG4618 Block Diagram







## DAC – System View



$$Vout = Vref \cdot \frac{DAC\_DATA}{2^N}$$





#### How does it work?

- Multiple implementations
- One of the simplest: WEIGTHED RESISTOR DAC
- 4-bit DAC; Digital input: b<sub>3</sub> b<sub>2</sub> b<sub>1</sub> b<sub>0</sub> (b<sub>3</sub> is the MSB)
- Reference voltage: V<sub>R</sub>





# 4-bit Weighted Resistor DAC





## R-2R Ladder DAC





#### Modes

- -N = 8 (8-bit mode) or N = 12 (12-bit mode) => DAC12RES control bit
- unsigned or straight binary mode (0 4095) or signed mode (-2048 2047) => DAC12DF
- Voltage output equations for straight binary
- Amplification (1x or 3x) => DAC12IR

$$Vout = V_{FS} \cdot \frac{DAC\_DATA}{2^N}$$

| 12 bit 0 1 Vout = $Vref \times \frac{DAC12\_xDAT}{4096}$                                                                                                                         |            |          |         |                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------|------------------------------------------------------------|
| Vout = $Vref \times 3 \times \frac{DAC12\_XDAT}{4096}$ 12 bit 0 1 Vout = $Vref \times \frac{DAC12\_XDAT}{4096}$ 8 bit 1 0 Vout = $Vref \times 3 \times \frac{DAC12\_XDAT}{4096}$ | Resolution | DAC12RES | DAC12IR | Output Voltage Formula                                     |
| Vout = $Vref \times \frac{DAC12\_XDAT}{4096}$<br>8 bit 1 0 Vout = $Vref \times 3 \times \frac{DAC12\_XE}{4096}$                                                                  | 12 bit     | 0        | 0       | Vout = Vref $\times$ 3 $\times$ $\frac{DAC12\_xDAT}{4096}$ |
| 8 bit 1 0 Vout = $Vref \times 3 \times \frac{DAC12\_xE}{256}$                                                                                                                    | 12 bit     | 0        | 1       | Vout = Vref $\times \frac{DAC12\_xDAT}{4096}$              |
|                                                                                                                                                                                  | 8 bit      | 1        | 0       | Vout = Vref $\times$ 3 $\times$ $\frac{DAC12\_xDAT}{256}$  |
| 8 bit 1 1 Vout = Vref $\times \frac{DAC12\_xDAT}{256}$                                                                                                                           | 8 bit      | 1        | 1       | Vout = Vref $\times \frac{DAC12\_xDAT}{256}$               |





- 2 channels (0\_OUT, 1\_OUT)
- Outputs (4618)
  - DAC12OPS=0 (0\_OUT => P6.6 and 1\_OUT => P6.7)
  - DAC12OPS=1 (0\_OUT => VeREF+,
    1\_OUT => P5\_1)
- Reference Voltage
  - Internal 1.5 V or 2.5 (from Voltage Gen in ADC12) or external VeREF+







- Voltage Output
  - DAC12\_xDAT is double buffered
  - When to update output voltage is controlled by DAC12LSEL (latch selection)
    - 0 transparent (as soon as you write to into data register it becomes visible to the core)
    - 1 DAC data is latched and presented to the core on the next write
    - 2, 3 data is latched on the rising edge of the signal coming from from TimerA CCR1 or TimerB CCR2







- DAC12AMPx control bits configure DAC12 amplifier as follows
  - these setting control setting time vs.
     current consumption of the DAC12 input and output amplifiers

| DAC12AMPx | Input Buffer         | Output Buffer            |
|-----------|----------------------|--------------------------|
| 000       | Off                  | DAC12 off, output high Z |
| 001       | Off                  | DAC12 off, output 0 V    |
| 010       | Low speed/current    | Low speed/current        |
| 011       | Low speed/current    | Medium speed/current     |
| 100       | Low speed/current    | High speed/current       |
| 101       | Medium speed/current | Medium speed/current     |
| 110       | Medium speed/current | High speed/current       |
| 111       | High speed/current   | High speed/current       |



11/4/2020 © A. Milenkovic





# MSP430 DAC12 Registers

| Register        | Short Form | Register Type | Address | Initial State  |
|-----------------|------------|---------------|---------|----------------|
| DAC12_0 control | DAC12_0CTL | Read/write    | 01C0h   | Reset with POR |
| DAC12_0 data    | DAC12_0DAT | Read/write    | 01C8h   | Reset with POR |
| DAC12_1 control | DAC12_1CTL | Read/write    | 01C2h   | Reset with POR |
| DAC12_1 data    | DAC12_1DAT | Read/write    | 01CAh   | Reset with POR |

#### DAC12\_xCTL, DAC12 Control Register

| 15       | 14            | 13     | 12       | 11         | 10       | 9              | 8            |
|----------|---------------|--------|----------|------------|----------|----------------|--------------|
| DAC12OPS | PS DAC12SREFx |        | DAC12RES | DAC12LSELx |          | DAC12<br>CALON | DAC12IR      |
| rw-(0)   | rw-(0)        | rw-(0) | rw-(0)   | rw-(0)     | rw-(0)   | rw-(0)         | rw-(0)       |
|          |               |        |          | ı          |          |                |              |
| 7        | 6             | 5      | . 4      | 3          | . 2      | 1              | 0            |
|          | DAC12AMPx     |        | DAC12DF  | DAC12IE    | DAC12IFG | DAC12ENC       | DAC12<br>GRP |
| rw-(0)   | rw-(0)        | rw-(0) | rw-(0)   | rw-(0)     | rw-(0)   | rw-(0)         | rw-(0)       |

Modifiable only when DAC12ENC = 0





# MSP430 DAC12 Registers

| Register        | Short Form | Register Type | Address | Initial State  |
|-----------------|------------|---------------|---------|----------------|
| DAC12_0 control | DAC12_0CTL | Read/write    | 01C0h   | Reset with POR |
| DAC12_0 data    | DAC12_0DAT | Read/write    | 01C8h   | Reset with POR |
| DAC12_1 control | DAC12_1CTL | Read/write    | 01C2h   | Reset with POR |
| DAC12_1 data    | DAC12_1DAT | Read/write    | 01CAh   | Reset with POR |

#### DAC12\_xCTL, DAC12 Control Register

| 15       | 14            | 13     | 12       | 11         | 10       | 9              | 8            |
|----------|---------------|--------|----------|------------|----------|----------------|--------------|
| DAC12OPS | PS DAC12SREFx |        | DAC12RES | DAC12LSELx |          | DAC12<br>CALON | DAC12IR      |
| rw-(0)   | rw-(0)        | rw-(0) | rw-(0)   | rw-(0)     | rw-(0)   | rw-(0)         | rw-(0)       |
|          |               |        |          |            |          |                |              |
| 7        | 6             | 5      | . 4      | 3          | . 2      | 1              | 0            |
|          | DAC12AMPx     |        | DAC12DF  | DAC12IE    | DAC12IFG | DAC12ENC       | DAC12<br>GRP |
| rw-(0)   | rw-(0)        | rw-(0) | rw-(0)   | rw-(0)     | rw-(0)   | rw-(0)         | rw-(0)       |

Modifiable only when DAC12ENC = 0





# Example #1

Problem statement: Using DAC12\_0 and 2.5V ADC12REF reference with a gain of 1, output 1V on P6.6.

```
// MSP430xG461x
// ------
// / | XIN|-
// | | 32kHz
// --|RST XOUT|-
// | DACO/P6.6|--> 1V
```

#### Design:

Step 1: Clocks: ACLK = 32kHz, MCLK = SMCLK = default DCO 1048576Hz, ADC12CLK = ADC12OSC

Step 2: Stop watchdog timer.

Step 3: Ports initialization: P6.6 as special function port (analog output channel A0).

Step 4: DAC12 initialization:

Internal reference voltage (2.5V); software delay to settle down.

Select medium speed/current; DAC12AMPx=5 (101).

Gain should be 1 (DAC12IR=1); Default is gain 3 (DAC12IR=0).

Latch: DAC latches the data when written to DAC12\_0DAT (DAC12LSELx=00; default).

DAC12ENC=1 (Enable converter).

Step 5: Software organization. Use TimerA to allow for the internal reference voltage.





#### Example #1

```
#include "msp430xG46x.h"
void main(void)
                                      // Stop WDT
 WDTCTL = WDTPW + WDTHOLD;
 ADC12CTL0 = REF2 5V + REFON;
                                        // Internal 2.5V ref on
 TACCR0 = 13600;
                                          // Delay to allow Ref to settle
 TACCTLO |= CCIE;
                                          // Compare-mode interrupt.
 TACTL = TACLR + MC 1 + TASSEL 2;
                                         // up mode, SMCLK
  __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, enable interrupts
  TACCTLO &= ~CCIE;
                                         // Disable timer interrupt
   disable interrupt();
                                          // Disable Interrupts
 DAC12 OCTL = DAC12IR + DAC12AMP 5 + DAC12ENC; // Int ref gain 1
 DAC12 0DAT = 0 \times 0666;
                                          // 1.0V
   bis SR register(LPM0 bits + GIE); // Enter LPM0
#pragma vector = TIMERAO VECTOR
 interrupt void TA0 ISR(void)
 TACTL = 0;
                                          // Clear Timer A control registers
   bic SR register on exit(LPM0 bits);
                                        // Exit LPMx, interrupts enabled
```





# Example #2 (Voltage Ramp)

Problem statement: Using DAC12\_0 and 2.5V ADC12REF reference with a gain of 1, output positive ramp on P6.6. Use WDT to provide ~0.5ms interrupt used to wake up the CPU and update the DAC with new sample. Use the internal 2.5V Vref.







# Example #2 (Voltage Ramp)

```
#include "msp430xG46x.h"
void main(void) {
                                                                                                             4095
 WDTCTL = WDT MDLY 0 5;
                                          // WDT ~0.5ms interval timer
 IE1 |= WDTIE; 	
                                          // Enable WDT interrupt
 ADC12CTL0 = REF2 5V + REFON;
                                          // Internal 2.5V ref on
                                                                                        4096 \times 0.5 \text{ ms}
= 2048 \text{ ms}
 TACCR0 = 13600;
                                          // Delay to allow Ref to settle
 TACCTLO |= CCIE;
                                          // Compare-mode interrupt.
  TACTL = TACLR + MC 1 + TASSEL 2;
                                        // up mode, SMCLK
   bis SR register(LPMO bits + GIE);  // Enter LPMO, enable interrupts
  TACCTLO &= ~CCIE;
                                          // Disable timer interrupt
                                                                                   T = 2.048 S
  disable interrupt();
                                          // Disable Interrupts
 DAC12 OCTL = DAC12IR + DAC12AMP 5 + DAC12ENC; // Int ref gain 1
 while (1)
    bis SR register(LPM0 bits + GIE);
                                        // Enter LPMO, interrupts enabled
   DAC12 0DAT++;
                                          // Positive ramp
   DAC12 ODAT &= 0x0FFF;
```





# Example #2 (cont'd)





