1. A ma	aterial is generally considered a semiconductor when
	E _G is less than or equal to zero
✓ !	E _G is smaller than the thermal energy (3 eV)
~	Correct That is correct
	If the bandgap of a material is greater than the thermal energy it is considered an insulator.
	The material exclusively consists of one element
2. Which photo	ons result in the highest energy conversion with minimum wasted energy?
O E _{ph} ≥E _G	5 (photon energy equal to or larger than the bandgap)
\bigcirc E _{ph} \gg E	(photon energy much greater than the bandgap)
\bigcirc E _{ph} = E _G	5 (photon energy equal to the bandgap)
\bigcirc E _{ph} < E _G	5 (photon energy smaller than the bandgap)
✓ Corr Tha	rect at is correct
	Conduction band E Valence band

Describe the difference between n-type and p-type doped semiconductors. Why are both needed for a solar cell?

I'm n-type semiconductor electrons are majority carriers and hole are minority carriers.in p-type semiconductors hole majority and electrons are minority carriers

✓ Correct

In an n-doped semiconductor the concentration of free electron is drastically increased and there is therefore a majority of negative charge carriers. A n-type silicon semiconductor is made by introducing for example Phosphorus, that has one additional valence electron as compared to silicon.

A p-doped semiconductor is created by introducing foreign atoms with less valence electrons (e.g. boron) than the silicon semiconductor. In the p-doped material hole conductance becomes possible.

With both types of doped silicon semiconductor it is possible to form a pn-junction. With the pn-junction a static electric field is formed allowing the charges to be seperated and current extracted from the solar cell.

- 2. Which photons result in the highest energy conversion with minimum wasted energy?
 - E_{ph} ≥ E_G (photon energy equal to or larger than the bandgap)
 - E_{ph} » E_G (photon energy much greater than the bandgap)
 - E_{ph} = E_G (photon energy equal to the bandgap)
 - E_{ph} < E_G (photon energy smaller than the bandgap)

3. Describe the difference between n-type and p-type doped semiconductors. Why are both needed for a solar cell?

I'm n-type semiconductor electrons are majority carriers and hole are minority carriers.in p-type semiconductors hole majority and electrons are minority carriers

✓ Correct

In an n-doped semiconductor the concentration of free electron is drastically increased and there is therefore a majority of negative charge carriers. A n-type silicon semiconductor is made by introducing for example Phosphorus, that has one additional valence electron as compared to silicon.

A p-doped semiconductor is created by introducing foreign atoms with less valence electrons (e.g. boron) than the silicon semiconductor. In the p-doped material hole conductance becomes possible.

With both types of doped silicon semiconductor it is possible to form a pn-junction. With the pnjunction a static electric field is formed allowing the charges to be seperated and current extracted from the solar cell.