Theorem 1. Suppose that the state $|\psi\rangle$ is real. If we substitute the column set \mathcal{A}_n with \mathcal{A}'_n in the problem (??), the optimal solution of the restricted problem is also optimal for the original problem.

1 The proof of Theorem 1

In this section, we prove Theorem 1. The proof is based on the following lemma.

Lemma 1. Suppose y is a real vector and satisfies $|a^{\dagger}y| \leq 1$ for all $a \in \mathcal{A}'_n$ such that a is a real vector. Then, y satisfies $|a^{\dagger}y| \leq 1$ for all $a \in \mathcal{A}_n$.

Proof. Fix $a \in \mathcal{A}$ and suppose that a represents the state $|\phi\rangle$. Now, consider to write $|\phi\rangle$ as in the form (??). The case k=0 is trivial since then $a \in \mathcal{A}'_n$. Suppose that $|\phi_i\rangle$ can be written as $\frac{1}{2^{k/2}} \sum_{x=0}^{2^k-1} (-1)^{x^\top Qx} i^{c^\top x} |Rx+t\rangle$ with k>0 and $a^\dagger y = \alpha + i\beta$ $(\alpha, \beta \in \mathbb{R})$. The following two states

$$|\phi_{+}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx} |Rx+t\rangle , \quad |\phi_{-}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx+c^{\top}x} |Rx+t\rangle$$

belongs to \mathcal{A}'_n , and denote the column vectors of $|\phi_+\rangle$ and $|\phi_-\rangle$ as a_+ and a_- , respectively. Then, we have $a_+^{\dagger}y = \alpha + \beta$, $a_-^{\dagger}y = \alpha - \beta$ from the assumption, and

$$\left|a^{\dagger}y\right| = \sqrt{\alpha^2 + \beta^2} \leq |\alpha| + |\beta| = \max\{|\alpha + \beta|, |\alpha - \beta|\} \leq 1,$$

which completes the proof.

Now, we are ready to prove Theorem 1.

Theorem 1. Suppose that the state $|\psi\rangle$ is real. If we substitute the column set \mathcal{A}_n with \mathcal{A}'_n in the problem (??), the optimal solution of the restricted problem is also optimal for the original problem.

Proof. Let x^* and y^* be the optimal solutions of the restricted primal and dual problems, namely, the problem (??) and the problem (??) with the column set \mathcal{A}'_n instead of \mathcal{A}_n . We can assure such solutions always exists. Now, we show that the x^*, y^* are optimal not only for the restricted problems but also for the original problems.

Let OPT be the optimal value for the original problem. Since x^* can be a feasible solution for the original primal problem, it is clear that OPT $\leq \|x^*\|_1$. By the strong duality theorem, OPT is also the optimal value for the original dual problem. From the lemma 1, we can see that y^* is a feasible solution for the original dual problem and OPT $\geq \text{Re}\{b^{\dagger}y^*\}$. Again, by applying the strong duality theorem to the restricted problems, we have $\|x^*\|_1 = \text{Re}\{b^{\dagger}y^*\}$, which means that OPT $= \|x^*\|_1 = \text{Re}\{b^{\dagger}y^*\}$. Therefore, x^* and y^* are also optimal solutions for the original problems.