Matematická analýza III

Stručné výpisky z materiálů p. doc. Klazara

Letní semestr 2020/2021

Viktor Soukup

Obsah

1	Metrické prostory	
2	Řady	;
	2.1 Mocninné řady	
	2.2 Funkční řady	
	2.3 Konvergence a operace s řadami	
	2.2Funkční řady2.3Konvergence a operace s řadami2.4Fourierovy řady	•
3	Komplexní analýza	
	3.1 Holomorfní funkce	
	3.2 Póly funkcí	
	3.2 Póly funkcí	
4	Úvod do diferenciálních rovnic	
	4.1 Rovnice se separovanýmí proměnými	
	4.2 Lineární rovnice	
	13 Věta o evistenci	

1 Metrické prostory

Definice (Metrický prostor): Metrický prostor je dvojice (M,d) množiny $M \neq \emptyset$ a zobrazení

$$d: M \times M \to \mathbb{R}$$

zvaného metrika či vzdálenost, které $\forall x, y, z \in M$ splňuje:

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Z těchto podmínek plyne i $d(x,y) \ge 0$.

Definice (Podprostor): Každá podmnožina $X \subset M$ určuje nový metrický prostor (X, d'), tak zvaný podprostor metrického prostoru (M, d). Pro $x, y \in X$ klademe d'(x, y) := d(x, y). Obě metriky označíme stejným symbolem a máme (X, d).

Definice (Izometrie): Izometrie f dvou metrických prostorů (M,d) a (N,e) je bijekce $f:M\to N$, jež zachovává vzdálenosti:

$$\forall x,y \in M: d(x,y) = e(f(x),f(y))$$

Existuje-li f, prostory M a N jsou <u>izometrické</u>. Znamená to, že jsou fakticky nerozlišitelné.

Příklad (Euklidovský prostor): Euklidovský prostor $(\mathbb{R}^n, e_n), n \in \mathbb{N}$, s metrikou e_n danou pro $\overline{x}, \overline{y}^1 \in \mathbb{R}^n$ formulí

$$e_n(\overline{x}, \overline{y}) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Geometricky je e_n délka úsečky určené body \overline{x} a \overline{y} . Euklidovským prostorem pak rozumíme obecněji každý podprostor (X, e_n) , když $X \subset \mathbb{R}^n$.

Příklad (Sférická metrika): Jako

$$S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^3 = 1\}$$

si označíme jednotkovou sféru v euklidovském prostoru \mathbb{R}^n . Funkci $s:S\times S\to [0,\pi]$ definujeme pro $\overline{x},\overline{y}\in S$ jako

$$s(\overline{x}, \overline{y}) = \begin{cases} 0 \dots \overline{x} = \overline{y} \\ \varphi \dots \overline{x} \neq \overline{y} \end{cases}$$

kde φ je úhel sevřený dvěma přimkami procházejícímí počátkem $\overline{0}$ a body \overline{x} a \overline{y} . Tento úhel je vlastně délka kratšího z oblouků mezi body \overline{x} a \overline{y} na jednotkové kružnici vytknuté na S rovinou určenou počátkem a body \overline{x} a \overline{y} . Funkci s nazveme sférickou metrikou.

Tvrzení: (S, s) je metrický prostor.

Definice ((Horní) hemisféra): (Horní) hemisféra H je množina

$$H := \{(x_1, x_2, x_3) \in S \mid x_3 \ge 0\} \subset S$$

Věta (H není plochá): Metrický prostor (H, s) není izometrický žádnému Euklidovskému prostoru (X, e_n) s $X \subset \mathbb{R}^n$

$$\overline{\overline{x}} = (x_1, \dots, x_n), \overline{y} = (y_1, \dots, y_n)$$

Definice (Ultrametrika): Metrika d v metrickém prostoru (M, d) je ultrametrika(nearchimédovká metrika), pokud splňuje silnou trojúhelníkovou nerovnost

$$\forall x, y, z \in M : d(x, y) \le \max(d(x, z), d(z, y))$$

Protože $\max(d(x,z),d(z,y)) \leq d(x,z) + d(z,y)$, je každá ultrametrika metrika. V ultrametrických prostorech nefunguje intuice založená na Euklidovských prostorech.

Tvrzení (Trojúhelníky v ultrametrickém prostoru): V ultrametrickém prostoru (M,d) je každý trojúhelník rovnoramenný, to jest má dvě stejně dlouhé strany.

Definice (Otevřená koule): (Otevřená) koule v metrickém prostoru (M,d) se středem v $a \in M$ a poloměrem r>0 je podmnožina

$$B(a,r) := \{ x \in M \mid d(x,a) < r \} \subset M$$

Vždy $B(a,r) \neq \emptyset$, protože $a \in B(a,r)$.

p-adické metriky jsem prozatím vynechal.

- 2 Řady
- 2.1 Mocninné řady
- 2.2 Funkční řady
- 2.3 Konvergence a operace s řadami
- 2.4 Fourierovy řady
- 3 Komplexní analýza
- 3.1 Holomorfní funkce
- 3.2 Póly funkcí
- 3.3 Aplikace
- 4 Úvod do diferenciálních rovnic
- 4.1 Rovnice se separovanýmí proměnými
- 4.2 Lineární rovnice
- 4.3 Věta o existenci

The End