Convex Optimization

TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015

Prof. Nati Srebro

Lecture 1: Optimization Problems

$$(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$$

$$s.t. \qquad f_i(x) \le b_i \qquad i = 1 \dots m$$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

Examples:

- Minimize cost (maximize profit) while achieving goals
- Find maximum likelihood parameters
- Minimize error of model on data
- Find minimum energy configuration

$$(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$$

$$s.t. \qquad f_i(x) \le b_i \qquad i = 1 \dots m$$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

- Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \leq b_i \ \forall_{i=1...m}$ and $x \in dom(f_0)$
- Def: The optimal value of (P) is:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le b_i \ \forall_{i=1...m} \}$$

 $f_0(x) < \infty$

• Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal point</u>) if it is feasible and $f_0(x^*) = p^*$

```
\min -\log(x)
        x \log(x)
                                                              \log(x^2+1)
                                                                                            [|x|-1]_{+}
min
                                                      min
                                                                                    min
                                  x \leq 2
                            s.t.
 (0, \infty) feasible
                          (0,2] feasible
                                                            \mathbb{R} feasible
                                                                                          \mathbb{R} feasible
   p^* = -1/e
                             p^* = \log(2)
                                                             p^* = 0
                                                                                           p^* = 0
                                x^* = 2
                                                              x^* = 0
                                                                                       x^* \in [-1, +1]
    x^* = 1/e
```

$$(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$$

$$s.t. \qquad f_i(x) \le b_i \qquad i = 1 \dots m$$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

- Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \leq b_i \ \forall_{i=1...m}$ and $x \in dom(f_0)$
- Def: The optimal value of (P) is:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le b_i \ \forall_{i=1...m} \}$$

- Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal point</u>) if it is feasible and $f_0(x^*) = p^*$
- Def: We say (P) is <u>infeasible</u>, and $p^* = \infty$, if no point $x \in \mathbb{R}^n$ is feasible
- Def: We say (P) is <u>unbounded from below</u> if $p^* = -\infty$

$$\begin{array}{c|c} \min & \log(x-5) \\ s. \ t. & x \leq 2 \end{array} \qquad \begin{array}{c|c} \min & x \\ s. \ t. & x \leq -1 \\ -x \leq -1 \end{array}$$
 infeasible
$$p^* = \infty \qquad \qquad \text{infeasible, } p^* = \infty$$

min 1/x s.t. $x \ge 3$ (3, \infty) feasible $p^* = 0$ no x^*

 $f_0(x) < \infty$

Example: Lemonade Stand

$$profit(x)=(x-1)100e^{-5x}$$

$$\min_{x} f(x) \qquad f(x) = -(x-1)100e^{-5x}$$

$$0 = f'(x^*) = -100 \left(e^{-5x} - 5e^{-5x}(x - 1) \right) = -100(6 - 5x^*)e^{-5x}$$

$$\Rightarrow x^* = 1.2, p^* = -0.0496$$

Example: Least Squares

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m (\langle a_i, x \rangle - b_i)^2 = ||A^{\mathsf{T}}x - b||^2$$

- Data: $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ ($A = [a_1, ..., a_m] \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}$)
- Optimization variable: x

$$0 = \nabla f(x^*) = 2A(A^{\mathsf{T}}x^* - b) \implies AA^{\mathsf{T}}x^* = Ab \implies x^* = (AA^{\mathsf{T}})^{-1}Ab$$

Example: ℓ_1 Regression

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m |\langle a_i, x \rangle - b_i| = ||A^\mathsf{T} x - b||_1$$

Rewrite as a linear program:

$$\min \sum_{i=1}^{m} z_i$$

$$x \in \mathbb{R}^n, z \in \mathbb{R}^m$$

$$s.t. \qquad -z_i \leq \langle a_i, x \rangle - b_i \leq z_i \quad i = 1..m$$

Example

min
$$100(1-x)(1-3\log x)$$
s.t.
$$x \ge 1$$

$$x \le 1.3$$

$$x^* = 1.18098...$$

$$(P) \quad \min_{x \in \mathbb{R}^n} \quad f_0(x)$$

$$s.t. \qquad f_i(x) \le b_i \qquad i = 1..m$$

$$f_0, f_1, ..., f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

- Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \le b_i \ \forall_{i=1...m}$ and $x \in dom(f_0)$
- Def: The optimal value of (P) is: $p^* = \inf \{ f_0(x) \mid f_i(x) \le b_i \ \forall_{i=1...m} \}$ or $p^* = \infty$ if no feasible point exists
- Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal</u> point) if it is feasible and $f_0(x^*) = p^*$
- Def: $x \in \mathbb{R}$ is ϵ -suboptimal if it is feasible and $f_0(x) \le p^* + \epsilon$, i.e. $\forall_{\text{feasible } x'} f_0(x) \le f_o(x') + \epsilon$

How did I find an ϵ -suboptimum?

min
$$100(1-x)(1-3\log x)$$
s.t.
$$x \ge 1$$

$$x \le 1.3$$

$$x^* = 1.18098 \dots$$

Grid Search

$$\min_{x \in \mathbb{R}} f_0(x)
s. t. MIN \le x \le MAX$$

- Parameter: $\delta > 0$
- Method: Evaluate $f_0(x)$ at $x \in \{MIN, MIN + \delta, MIN + 2\delta, \dots, MIN + \left|\frac{MAX MIN}{s}\right|\delta\}$

returning minimum

- Analysis: We will always have \tilde{x} in the grid with $|\tilde{x} x^*| \le \delta$, and so: $|f_0(\tilde{x}) f_0(x^*)| \le |x x^*| \cdot |f'(\overline{x})| \le \delta \cdot D$
- For \hat{x} return by Grid Search we have:

$$f_0(\hat{x}) \le f_0(\tilde{x}) \le f_0(x^*) + \delta D$$

• Conclusion: If $\forall_{MIN \leq x \leq MAX} |f_0'(x)| \leq D$, and we use $\delta = \frac{\epsilon}{D}$, we can find an ϵ -suboptimal solution using $\frac{(MAX-MIN)D}{\epsilon}$ evaluations.

Grid Search

- Only depends on specific forms of access (oracles) to f, not on the form of the function
 - In this case: evaluation oracle $x \mapsto f(x)$
 - Later on, also $x \mapsto \nabla f(x)$, $x \mapsto \nabla^2 f(x)$, others
- Runtime guarantee (on #access and operations) in terms of specific assumptions / quantities, and desired ϵ
 - In this case: $|f'| \le D$ (Lipschitz assumption)
- But, disappointing runtime:
 - $O\left(\frac{1}{\epsilon}\right)$ means exponential in #digits of precision
 - In higher dimension, grid of size $\left(\frac{MAX-MIN}{\delta}\right)^n$ ensures $\|x-x^*\| \leq \delta \sqrt{n}$ runtime is $\left(\frac{MAX-MIN}{\epsilon}\sqrt{n}D\right)^n$
- Can't do any better without more assumptions:

Theorem: for any ϵ and any algorithm making $< ^1/_{3\epsilon}$ evaluation queries, there exists a function $f:[0,1]\to\mathbb{R}$, with $|f'|\le 1$ for which the algorithm fails to find a ϵ -suboptimal solution.

Bisection Search

$$\min_{x \in \mathbb{R}} f(x)
s. t. MIN \le x \le MAX$$

- Assume $|f'| \le D$ and f is convex
- Access to f(x), f'(x)

Init:
$$x_L^{(0)} = MIN, x_H^{(0)} = MAX$$

Iter: $x^{(k)} = \frac{x_L^{(k)} + x_H^{(k)}}{2}$

If $f'(x^{(k)}) = 0$, stop

If $f'(x^{(k)}) < 0$: $x_L^{(k+1)} \leftarrow x^{(k)}$
 $x_H^{(k+1)} \leftarrow x_H^{(k)}$

If $f'(x^{(k)}) > 0$: $x_L^{(k+1)} \leftarrow x_L^{(k)}$
 $x_H^{(k+1)} \leftarrow x_H^{(k)}$

Bisection Search

• Claim: If f(x) is convex and $\forall_{MIN \leq x \leq MAX} f'(x) \leq D$, then $f(x^{(k)}) \leq p^* + D(MAX - MIN)2^{-k}$

• Conclusion: #iterations, and therefor #evals and runtime, to find ϵ -suboptimal solution:

$$O\left(\log\left(\frac{MAX - MIN}{\epsilon}D\right)\right)$$

Bisection Search

$$\min_{x \in \mathbb{R}} f(x)
s.t. MIN \le x \le MAX$$

Init:
$$x_L^{(0)} = MIN, x_H^{(0)} = MAX$$

Iter: $x^{(k)} = \frac{x_L^{(0)} + x_H^{(0)}}{2}$

If $\left\| x_L^{(k)} - x_H^{(k)} \right\| \le \frac{\epsilon}{D}$, stop

If $f'(x^{(k)}) = 0$, stop

If $f'(x^{(k)}) < 0$: $x_L^{(k+1)} \leftarrow x_H^{(k)}$

If $f'(x^{(k)}) > 0$: $x_L^{(k+1)} \leftarrow x_H^{(k)}$
 $x_H^{(k+1)} \leftarrow x_H^{(k)}$

Convex Optimization Problems

(P)
$$\min_{x \in \mathbb{R}^n} f_0(x)$$
s.t.
$$f_i(x) \le b_i \qquad i = 1 \dots m$$

• Def: (P) is a <u>convex optimization problem</u> if f_0, f_1, \dots, f_m are convex functions

• In this course: methods for solving convex optimization problems of form (P), based on oracle access to $f_0, f_1, ..., f_m$, with guarantees based on their properties

Optimization vs Solving Equations

$$(P) \qquad \min_{x \in \mathbb{R}^n} f(x)$$

• Claim (Optimality Condition for Unconstrained Optimization): If f(x) is convex and differentiable in its domain, then

$$x^*$$
 is optimal iff $\nabla f(x^*) = 0$

Conclusion:

Minimizing
$$f(x) \Leftrightarrow \text{solving } \nabla f(x) = 0$$

As we shall see later—also for constrained optimization

About the Course

- Methods for solving convex optimization problems, based on oracle access, with guarantees based on their properties
 - And also a few more specific methods...
- Understanding different optimization methods
 - Understanding their derivation
 - When are they appropriate
 - Guarantees (a few proofs, not a core component)
- Working and reasoning about optimization problems
 - Optimality conditions
 - Duality
 - Standard forms: LP, QP, SDP, etc
- Prerequisites:
 - Linear Algebra (vector fields, linear transformations, matrices, eigenvalues)
 - Multi-dimensional Calculus (gradients, Hessians, partial derivatives, directional derivatives)
 - Some background in Algorithms (runtime analysis, proving correctness of an algorithm), and programming

Course Structure

TAs: Blake Woodworth (head), Haoyang Liu, Greg Naitzat, Angela Wu

Contact us: convex-optimization-2018-staff@ttic.edu

Communication, homework, lecture slides, help forum via course page on canvas

If not registered, please complete webform

- Lectures Mondays and Wednesdays 12:05PM
- Recitations (choose one): Monday 4-5PM TTIC 530
 OR Tuesday 4:30-5:30 Ryerson 276
- Homeworks due every Friday (50% of the grade)
 Some Python programming, mostly completing provided code (can use other languages, eg MATLAB, R, Julia, etc, if you prefer—no code or support provided)
- TA office hours: Tuesday, Wednesday, Thursday and Friday (see website)
- 7-8 homeworks (50% of grade), final (50% of grade)
- Books:
 - Boyd and Vandenberghe "Convex Optimization" (about 70% of the class)
 - Nocedal and Wright "Numerical Optimization"
 - Nemirovski "Efficient Methods in Convex Programming"

We are looking for additional graders

Homework #1

- Available now, due next Friday 1/12, back 1/17
- Material covered: this lecture + Monday's lecture (convexity)
- Used also to evaluate control of prerequisites and readiness to take class
 - A,B: satisfactory performance; prepared to take the class
 - C: borderline; may take class but should consider difficulty and/or preparation
 - Below C: advised to not take class this quarter
- For this homework only: no collaboration on required questions (OK to collaborate on future homework)