Dynamic programming (DP) in computer vision

Petar Ivanov

Moscow State University

Graphics and Media Lab

Presented: 15 Feb 2012 Last modified: 15 Feb 2012

What is DP?

DP compared to other methods

Fast

Greedy – when an optimal choice can be done at each step

DP – when overlapping subproblems are presented and recursive formula exists

Slow

More complicated algos

Divide and conquere algorithms

Fibonacci numbers

Topologically sorted:

- Fib(1), Fib(2), ...
- Fib(n) = function(Fib(k)), k<n

Overlapping subproblems:

- Fib(n) = Fib(n-1) + Fib(n-2)
- Fib(n-1) = Fib(n-2) + Fib(n-3)

• ...

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Active contours using DP

(Felzenszwalb and Ramin Zabih)

Choose control points and get the contours

(Rivaz)

(Rivaz)

Time complexity: O(NK³)

Active contours: Iterations

(Felzenszwalb and Ramin Zabih)

Choose K near candidate positions for each control point. Iterate DP steps with the new candidate postitions until convergence.

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Seam carving

Original image

Least important horizontal features removed

Seam carving: Feature estimation

Calculate some energy (gradient, entropy, etc.) for each pixel

Seam carving

Calculate the seams with lowest energy

Seam carving: DP

Seam carving: DP

Seam carving: DP

Seam carving: Result

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Cell analysis: The aim

Given a tissue picture.
The cells have to be segmented

(Nekrasov K., Laptev D., Vetrov D.)

Cell analysis: The approach

(Nekrasov K., Laptev D., Vetrov D.) Enough bright corner points of the cells are thresholded but the connections between them are unclear

Cell analysis: The approach

Try to find a path for each pair of near points

(Nekrasov K., Laptev D., Vetrov D.)

Cell analysis: South-Eestern movement

$$F(x,y) = \max\{F(x,y-1), F(x-1,y)\} + I(x,y)$$

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Left image

Depth map

Right image

$$E(D) = E_{data}(D) + E_{smooth}(D)$$

/

Unary potential (color similarity)

Pair potential (smooth edges)

(Rehg)

Extract each pair of horizontal lines and Search for the corresponding pixels

31

Different ways

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Trajectory approximation

Given N points on the plane. Curve approximation using segments, circles and clothoids (kind of a spiral)

Trajectory approximation

Examples of DP in CV

- Active contours
- Seam carving
- Cell analysis
- Stereo Correspondence
- Trajectory approximation
- Inpainting and quilting

Image inpainting

Image inpainting

(Efros)

Image quilting

40

Let the DP be with you

Presentation destination:

http://pesho.me/share