Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-09-18

Plan for Today

- Semantics of Boolean Expressions (ctd.)
- Validity this is a semantic concept
- Equivalence
 - Meaning of equivalence chains
- Starting Propositional Calculus (LADM Chapter 3)
 - **Theorems** this is a **syntactic** concept
 - Equivalence axioms and theorems
 - Surprising uses of "Symmetry of ≡"

Necessary and Sufficient Conditions

(Textbook p. 36)

To stay dry, it's **neccessary** to wear a raincoat.

= You will stay dry **only** if you wear a raincoat.

$$= \left(\begin{bmatrix} You & will \\ stay & dry. \end{bmatrix} \Rightarrow \begin{bmatrix} You & wear & a \\ raincoat. \end{bmatrix} \right)$$

To stay dry, it's **sufficient** to wear a raincoat.

You will stay dry if you wear a raincoat.

$$= \left(\begin{array}{c} \text{You will} \\ \text{stay dry.} \end{array} \right) \Leftarrow \left[\begin{array}{c} \text{You wear a} \\ \text{raincoat.} \end{array} \right]$$

Binary Boolean Operators: "even if"

Args.
$$p \neq q \neq p$$

F F F The moon is green, even if $2+2=7$. F T F The moon is green, even if $1+1=2$. T F T $1+1=2$, even if the moon is green. T T T $1+1=2$, even if the sun is a star.

Args. $p \neq q \neq p$ F F F The moon is green, even if 2+2=7. F T F The moon is green, even if 1+1=2. T F T 1+1=2, even if the moon is green. T T T 1+1=2, even if the sun is a star.

1 + 1 = 2, and, if the sun is a star, we still have 1 + 1 = 2.

Declarations:

$$t := 1 + 1 = 2$$

s :=The sun is a star

Formalisation:

$$t \land (s \Rightarrow t)$$

Evaluation of Boolean Expressions Using Truth Tables

p	q	$\neg p$	$q \wedge \neg p$	$p \lor (q \land \neg p)$
F	F	Т	F	F
F	Т	Т	T	Т
Т	F	F	F	Т
Т	Т	F	F	Т

- Identify variables
- Identify subexpressions
- Enumerate possible states (of the variables)
- Evaluate (sub-)expressions in all states

Alternative Presentation of Truth Tables

p	q	p	\Rightarrow	(<i>q</i>	\wedge	$\neg p)$
F	F		Т		F	Т
F	T		Т		Т	Τ
Т	F		F		F	F
Т	Т		F		F	F

- Identify variables
- Identify subexpressions in doubt, add parentheses!
- Enumerate possible states (of the variables)
- Evaluate (sub-)expressions in all states writing the result below the operator forming the subexpression
- (Proof tables are useful for confirming Boolean laws you want to be confident doing them.)

Args.			Transforming "even if" — Truth Table
t	S	t	
Т	Т	Т	1 + 1 = 2, even if the sun is a star.

1 + 1 = 2, and, if the sun is a star, we still have 1 + 1 = 2.

Declarations:	t	S	t	^	(s	\Rightarrow	<i>t</i>)
1 1 2	F	F		F		Т	
t := 1 + 1 = 2	F	Т		F		F	
s := The sun is a star	Т	F		Т		Т	
Formalisation: $t \land (s \Rightarrow t)$	Т	Т		Т		Т	

The truth table shows: $t \land (s \Rightarrow t)$ is **logically equivalent** to t.

We actually can already **prove** the equivalence $t \land (s \Rightarrow t) \equiv t$:

$$t \land (s \Rightarrow t)$$

$$\equiv \langle \text{ Definition of } \Rightarrow \rangle$$

$$t \land (\neg s \lor t)$$

$$\equiv \langle \text{ Absorption } \rangle$$

$$t$$

Truth Table for Associativity of Equivalence

 $(p \equiv (q \equiv r)) = ((p \equiv q) \equiv r)$ is true in every state:

- it is valid
- that is, \equiv is associative

Validity and Satisfiability

- A boolean expression is **satisfied** in state *s* iff it evaluates to *true* in state *s*.
- A boolean expression is valid iff it is satisfied in every state.
- A valid boolean expression is called a tautology.
- A boolean expression is satisfiable iff there is a state in which it is satisfied.
- A boolean expression is called a **contradiction** iff it evaluates to *false* in every state.
- Two boolean expressions are called a **logically equivalent** iff they evaluate to the same truth value in every state.

These definitions rely on states / truth tables: Semantic concepts

What Does $p \equiv q \equiv r$ Mean?

We know that \equiv is associative:

$$(p \equiv q \equiv r) = ((p \equiv q) \equiv r) = (p \equiv (q \equiv r))$$

We also know:

"One or three of p, q, and r are true."

LADM Theory of Integers — Trichotomy

(15.44) **Trichotomy:**
$$(a < b \equiv a = b \equiv a > b) \land \neg (a < b \land a = b \land a > b)$$

 $p \equiv q \equiv r$ means:

"One or three of p, q, and r are true."

So, Trichotomy says:

"One or three of a < b, a = b, and a > b are true, but not all three."

"Exactly one of a < b, a = b, and a > b is true."

LADM Exercise 2.6

Translate the following English statements into Boolean expressions.

- None or both of *p* and *q* is *true*.
- 2 Exactly one of *p* and *q* is *true*.
- **3** Zero, two, or four of p, q, r, and s are true.
- One or three of p, q, r, and s are true.

Among $p_1, \ldots, p_{2\cdot k}$, an even number are *true*.

Equality Properties

Equivalence ≡ can only used with Boolean values

 \implies In " $p \equiv q$ ", both p and q must be Boolean values

Equality = can be used "at" arbitrary types

- \implies In "a = b", you only know that a and b have the same type
- \Longrightarrow If *p* and *q* are Boolean values,

then
$$(p = q) = (p \equiv q)$$

or, equivalently,
$$(p = q) \equiv (p \equiv q)$$

⇒ Equivalence is equality of Boolean values

- (1.2) Axiom, Reflexivity of =: a = a
- (1.3) **Axiom, Symmetry of =:** (a = b) = (b = a)
- (1.4) Inference rule, Transitivity of =: $\frac{X = Y \quad Y = Z}{X = Z}$
- (1.5) **Leibniz::** $\frac{X = Y}{E[z := X] = E[z := Y]}$

Theorems

A theorem is

- either an axiom
- or the conclusion of an inference rule where the premises are theorems
- or a Boolean expression proved (using the inference rules) equal to an axiom or a previously proved theorem. ("— This is ...")

Such proofs will be presented in the calculational style.

Propositional Calculus

- Calculus: method of reasoning by calculation with symbols
- Propositional Calculus: calculating
 - with Boolean expressions
 - containing propositional variables
- The Textbook's Propositional Calculus: Equational Logic E
 - a set of axioms defining operator properties
 - four inference rules:
 - $\frac{X = Y}{E[z := X] = E[z := Y]}$ • (1.5) **Leibniz**:

We can apply equalities inside expressions.

• (1.4) Transitivity:

We can chain equalities.

 $\frac{E}{E[x \coloneqq R]}$ • (1.1) Substitution:

We can can use substitution instences of theorems.

• Equipollence: $\frac{X = Y}{Y}$

— This is ...

Calculational Proof Format

 E_0

= \langle Explanation of why $E_0 = E_1 \rangle$

= \langle Explanation of why $E_1 = E_2$ — with comment \rangle

= \langle Explanation of why $E_2 = E_3 \rangle$

Because the **calculational presentation** is **conjunctional**, this reads as:

$$E_0 = E_1$$
 \wedge $E_1 = E_2$ \wedge $E_2 = E_3$

$$E_1 = E_2$$

$$E_2 = E_3$$

Because = is **transitive**, this justifies:

$$E_0 = E_3$$

Theorems — Remember!

A theorem is

- either an axiom
- or the conclusion of an inference rule where the premises are theorems
- or a Boolean expression proved (using the inference rules) equal to an axiom or a previously proved **theorem**. ("— This is ...")

Such proofs will be presented in the calculational style.

Note:

- The theorem definition does not use evaluation/validity
- All theorems in E are valid • But:
 - All valid Boolean expressions are theorems in E
- Important:
 - We will prove theorems without using validity!
 - This trains an essential mathematical skill!

Equivalence Axioms

(3.1) Axiom, Associativity of \equiv :

$$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$$

(3.2) Axiom, Symmetry of \equiv :

$$p \equiv q \equiv q \equiv p$$

Can be used as:

- $(p \equiv q) = (q \equiv p)$
- $p = (q \equiv q \equiv p)$
- $(p \equiv q \equiv q) = p$

Example theorem — shown differently in the textbook:

Proving $p \equiv p \equiv q \equiv q$:

$$p \equiv p \equiv q \equiv q$$

=
$$\langle (3.2)$$
 Symmetry of \equiv , with p , $q := p$, $q \equiv q \rangle$
 $p \equiv q \equiv q \equiv p$ — This is (3.2) Symmetry of \equiv

Equivalence Axioms

(3.1) Axiom, Associativity of \equiv :

$$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$$

(3.2) Axiom, Symmetry of \equiv :

$$p \equiv q \equiv q \equiv p$$

Can be used as:

- $(p \equiv q) = (q \equiv p)$
- $p = (q \equiv q \equiv p)$
- $(p \equiv q \equiv q) = p$

Example theorem — shown differently in the textbook:

Proving $p \equiv p \equiv q \equiv q$:

$$p \equiv (p \equiv (q \equiv q))$$

(3.2) Symmetry of \equiv , with p , $q := p$, (3.3)

$$\equiv$$
 ((3.2) Symmetry of \equiv , with p , $q := p$, $(q \equiv q)$) $p \equiv ((q \equiv q) \equiv p)$ — This is (3.2) Symmetry of \equiv

Raymond Smullyan posed many puzzles about an island that has two kinds of inhabitants:

- knights, who always tell the truth, and
- knaves, who always lie.

You encounter two people *A* and *B*.

What are A and B if

- A says "We are both knaves."?
- A says "At least one of us is a knave."?
- A says "If I am a knight, then so is B."?
- A says "We are of the same type."?
- A says "B is a knight" and

B says "The two of us are opposite types."?

Explanation:

$$A_H \equiv A \text{ is a knight}$$

Axiom schema "Knighthood":

$$A \text{ says "X"} \equiv A_H \equiv X$$

You encounter two people *A* and *B*. What are *A* and *B* if

• *A* says "We are of the same type."?

$$A says "AH ≡ BH"$$
≡ ⟨ "Knighthood" ⟩
$$A_{H} ≡ (A_{H} ≡ B_{H})$$
≡ ⟨ (3.3) Associativity of ≡ ⟩
$$A_{H} ≡ A_{H} ≡ B_{H}$$
≡ ⟨ (3.2) Symmetry of ≡: $p ≡ q ≡ q ≡ p$ ⟩
$$B_{H}$$

Equivalence Axioms

(3.1) Axiom, Associativity of \equiv :

$$((p\equiv q)\equiv r)\equiv (p\equiv (q\equiv r))$$

(3.2) Axiom, Symmetry of \equiv :

$$p \equiv q \equiv q \equiv p$$

Can be used as:

$$(p \equiv q) = (q \equiv p)$$

•
$$p = (q \equiv q \equiv p)$$

•
$$(p \equiv q \equiv q) = p$$

(3.3) Axiom, Identity of \equiv :

$$true \equiv q \equiv q$$

Can be used as:

•
$$(true \equiv q) = q$$

•
$$true = (q \equiv q)$$

Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of \equiv :

$$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$$

(3.2) Axiom, Symmetry of \equiv :

$$p \equiv q \equiv q \equiv p$$

(3.3) Axiom, Identity of \equiv :

$$true \equiv q \equiv q$$

Can be used as: $true = (q \equiv q)$

The least interesting theorem:

Proving (3.4) *true*:

=
$$\langle \text{ Identity of } \equiv (3.3), \text{ with } q := true \rangle$$

$$true \equiv true$$

=
$$\langle$$
 Identity of \equiv (3.3), with $q := q \rangle$

$$true \equiv q \equiv q$$
 — This is Identity of $\equiv (3.3)$

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of \equiv :

$$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$$

(3.2) Axiom, Symmetry of \equiv :

$$p \equiv q \equiv q \equiv p$$

(3.3) Axiom, Identity of \equiv :

$$true \equiv q \equiv q$$

Theorems and Metatheorems:

- (3.4) *true*
- (3.5) **Reflexivity of** \equiv : $p \equiv p$
- (3.6) **Proof Method**: To prove that $P \equiv Q$ is a theorem, transform P to Q or Q to P using Leibniz.
- (3.7) **Metatheorem**: Any two theorems are equivalent.

Negation Axioms and Theorems

(3.8) **Axiom, Definition of** *false*:

(3.9) Axiom, Commutativity of \neg with \equiv :

$$\neg(p \equiv q) \equiv \neg p \equiv q$$

(LADM: "Distributivity of \neg over \equiv ")

Can be used as:

- (3.10) Axiom, Definition of \neq :

$$(p \not\equiv q) \equiv \neg (p \equiv q)$$

Theorems:

 $(3.11) \neg p \equiv q \equiv p \equiv \neg q$

- $(\neg p \equiv \neg q) \equiv (p \equiv q)$

- (3.12) **Double negation**: $\neg \neg p \equiv p$
- (3.13) **Negation of** *false*: $\neg false \equiv true$
- (3.14) $(p \not\equiv q) \equiv \neg p \equiv q$
- (3.15) $\neg p \equiv p \equiv false$

Inequivalence Theorems

- (3.16) **Symmetry of** *≢*: $(p \not\equiv q) \equiv (q \not\equiv p)$
- (3.17) Associativity of \neq : $((p \not\equiv q) \not\equiv r) \equiv (p \not\equiv (q \not\equiv r))$
- (3.18) Mutual associativity: $((p \neq q) \equiv r) \equiv (p \neq (q \equiv r))$
- (3.19) Mutual interchangeability: $p \not\equiv q \equiv r \equiv p \equiv q \not\equiv r$

Note: Mutual associativity is not (yet...) automated!

(But omission of parentheses is implemented, similar to

- \bullet k-m+n
- \bullet k+m-n
- \bullet k-m-n
- None of these has m n as subexpression!
- But the second one is equal to k + (m n) ...)

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator \circ that is defined in terms of another, say \bullet , expand the definition of \circ to arrive at a formula that contains \bullet ; exploit properties of \bullet to manipulate the formula, and then (possibly) reintroduce \circ using its definition.

Textbook, p. 48

"Unfold-Fold strategy"

Inequivalence Theorems: Symmetry

(3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$

Proving (3.16) Symmetry of \neq :

$$p \neq q$$
= $\langle (3.10) \text{ Definition of } \neq \rangle$ — **Unfold**
 $\neg (p \equiv q)$
= $\langle (3.2) \text{ Symmetry of } \equiv \rangle$
 $\neg (q \equiv p)$
= $\langle (3.10) \text{ Definition of } \neq \rangle$ — **Fold**
 $q \neq p$