ZŁOŻONOŚĆ PROBLEMÓW ALGORYTMICZNYCH

Dolne i górne oszacowania złożoności problemu

 Złożoność każdego poprawnego algorytmu znajdującego rozwiązanie danego problemu ustanawia górne oszacowanie złożoności dla tego problemu.

Czy można skonstruować algorytm o niższej złożoności?

Jeśli się uda, to górne oszacowanie złożoności problemu zostaje poprawione.

> Dolne oszacowanie złożoności problemu (otrzymane w wyniku analizy samego problemu) określa zakres dalszej poprawy rzędu złożoności algorytmów rozwiązujących ten problem.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Problemy zamknięte i luki algorytmiczne

Jeśli dysponujemy dla danego problemu algorytmem o złożoności O(g(N)), to możemy powiedzieć, że złożoność problemu wynosi O(g(N)), bo na pewno nie jest wyższego rzędu niż g(N) – algorytm daje górne oszacowanie, a notacja O(⋅) ma dokładnie taki sam sens oszacowania od góry.

Jeśli górne i dolne oszacowania złożoności problemu algorytmicznego spotkają się w klasie złożoności tego samego rzędu, to możemy stwierdzić, że złożoność problemu wynosi dokładnie $\Theta(g(N))$ i taki problem nazywamy **zamkniętym** (z punktu widzenia określania jego złożoności).

Jeśli dla problemu algorytmicznego najlepsze znane górne i dolne oszacowania różnią się rzędem złożoności, to taką sytuację nazywamy luką algorytmiczną.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2006 r.

3

problem	dolne .	górne
Wyszukiwanie z listy nieuporządkowanej	oszacowanie ⊖ (N)	oszacowanie O(N)
Wyszukiwanie z listy uporządkowanej	Θ (lgN)	O(lgN)
Sortowanie (bez ograniczania wartości)	$\Theta(N \cdot \lg N)$	O(N·lgN)
Wyznaczanie "najkrótszej sieci kolejowej"	$\Theta(N)$	$O(s(N)\cdot N)^{-1}$

 $^{1)}$ s(N) - bardzo wolno rosnąca funkcja, np. dla N=64~000 ma wartość 4

Wyszukiwanie z listy, sortowanie - problemy zamknięte

Wyznaczanie "najkrótszej sieci kolejowej" – luka algorytmiczna

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2006 r.

Przykład – problem wież Hanoi

Problem jest zamknięty

(dolne ograniczenie złożoności = złożoność algorytmu rekurencyjnego lub iteracyjnego) i ma złożoność $\Theta(2^N)$.

Podobno mnisi tybetańscy rozwiązują ten problem w pewnym klasztorze dla N = 64 i kiedy skończą, to także nasz świat się skończy!

1 ruch na sekundę \Rightarrow czas wykonania ok. **586 146 828 647 lat**

1 mln ruchów na sekundę \Rightarrow czas wykonania ok. **586 147 lat**

 2^{64} = 18 446 744 073 709 551 616

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Przykład – problem ułożenia płaskiej układanki

Algorytm ma rozstrzygać, czy istnieje takie ułożenie kwadratu $M \times M$ z $N = M^2$ kafelków, które zachowuje zgodność kolorów na przyległych bokach?

Zakładamy, że kafelków nie można obracać

 $Jest\ to\ przykład\ tzw.\ \textbf{problemu}\ \textbf{decyzyjnego}-problemu$ algorytmicznego, który polega na znalezieniu prawidłowej odpowiedzi "tak" lub "nie" na postawione pytanie (czesto jest to pytanie o istnienie rozwiązania problemu)

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

1

W problemie ułożenia płaskiej układanki występuje luka algorytmiczna, a górne oszacowanie jego złożoności jest rzędu $\mathbf{O}(N!)$,

bo nie wymyślono lepszego algorytmu, jak tylko przeglądanie wszystkich możliwych ułożeń, których jest właśnie N!

Dla układanki 5 x 5 oznacza to:

1 mln układów na sekundę ⇒ czas sprawdzenia wynosi ok. **492 869 990 446 lat**

25! = 15 511 210 043 330 985 984 000 000

 $\langle \Box \Box \rangle$

7

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Funkcja	N				
	10	50	100	300	1000
$\lg N$	3	5	6	8	9
N	10	50	100	300	1000
N * lg N	33	282	664	2468	9965
N 2	100	2500	10 000	90 000	1 000 000
N 3	1000	125 000	1 000 000	27 mln (8 cyfr)	1 mld (10 cyfr)
2^N	1024	Liczba 16 cyfrowa	Liczba 31 cyfrowa	Liczba 91 cyfrowa	Liczba 302 cyfrowa
N!	3,6 mln (7 cyfr)	Liczba 65 cyfrowa	Liczba 161 cyfrowa	Liczba 623 cyfrowa	00
N^N	10 mld (11 cyfr)	Liczba 85 cyfrowa	Liczba 201 cyfrowa	Liczba 744 cyfrowa	00

Dla porównania:

liczba protonów w widocznym wszechświecie ma 126 cyfr, liczba mikrosekund od "wielkiego wybuchu" ma 24 cyfry.

Zapotrzebowanie na czas

(jeśli wykonanie jednej operacji trwa mikrosekundę)

Familia in	N				
Funkcja	10	20	50	100	300
N 2	1/10 000	1/2500	1/400	1/100	9/100
	sek.	sek.	sek.	sek.	sek.
2 N	1/1000	1	35,7	400 bilionów	75 cyfrowa
	sek.	sek.	lat	stuleci	liczba stuleci
N^N	2,8	3,3	70 cyfrowa	185 cyfrowa	728 cyfrowa
	godziny	biliona lat	liczba stuleci	liczba stuleci	liczba stuleci

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Funkcja f(N) jest (asymptotycznie) **ograniczona z góry** przez funkcję g(N), jeśli $\exists N_0$ i $C \forall N \ge N_0$: $f(N) \le C \cdot g(N)$

Jeśli $f(N) \prec g(N)$, to f(N) jest ograniczona z góry przez g(N)

Funkcje złożoności dzielimy generalnie na:

- ➤ wielomianowe, dla których istnieje takie k < ∞, że są one ograniczone z góry przez funkcję N^k,
- \triangleright **ponadwielomianowe**, dla których takie k nie istnieje (np. 2^N).

Algorytm wielomianowy, to algorytm o złożoności $\mathbf{O}(N^k)$ dla $k < \infty$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r. 11

Jak sobie poradzić z problemem płaskiej układanki?

- Może po prostu poczekać na zbudowanie dostatecznie szybkiego komputera?
- 2. Może brak algorytmu wielomianowego dla tego problemu wynika z braku wiedzy i inwencji u informatyków?
- 3. Może udało by się wykazać, że dolne oszacowanie złożoności dla tego problemu jest wykładnicze i stwierdzić, że problem jest za trudny?
- 4. Może jest on tak szczególnym przypadkiem, że można go pominąć, bo wszystkie ważne problemy są łatwo rozwiązywalne?

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

13

Rozważmy 1. propozycję:

Funkcja złożoności	Maksymalny rozmiar zadania, które dla którego można znaleźć rozwiązanie w godzinę			
	Najszybszy współ- czesny komputer	Komputer 100 razy szybszy	Komputer 1000 razy szybszy	
N ²	K	10 * K	31,6 * K	
2^N	L	L+6	L + 10	

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

14

Rozważmy 4. propozycję:

Układanie płaskiej układanki należy do klasy problemów NPC (NP-zupełnych), która obejmuje ponad 1000 problemów algorytmicznych o jednakowych cechach:

- dla wszystkich tych problemów istnieją ponadwielomianowe algorytmy
- dla żadnego jak dotąd nie znaleziono algorytmu wielomianowego, czyli górne oszacowanie złożoności jest ponadwielomianowe (wykładnicze)
- dla żadnego nie udowodniono, że nie może istnieć dla niego algorytm wielomianowy
- \triangleright najlepsze wyznaczone dolne oszacowania złożoności są liniowe, tzn. $\Theta(N)$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

15

Zatem dla problemu płaskiej układanki i pozostałych 1000 problemów NPC nie wiadomo nawet czy są to problemy trudno, czy łatwo rozwiązywalne!

W wielu dziedzinach zastosowań informatyki wciąż formułowane są nowe problemy, które okazują się problemami NPC.

Przykłady problemów algorytmicznych z klasy NPC (NP-zupełnych)

Inne płaskie układanki

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Problem komiwojażera

Problem polega na znajdowaniu w sieci połączeń pomiędzy miastami <u>najkrótszej</u> drogi zamkniętej (cyklu), która pozwala odwiedzić <u>każde</u> z miast i powrócić do miasta wyjściowego.

Sieć z podanymi długościami połączeń

Minimalny cykl o długości 28

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r

 $\langle \Box \rangle$

17

W wersji decyzyjnej problem komiwojażera polega na stwierdzaniu czy istnieje cykl o długości nie większej niż podana wartość L.

Algorytmy rozwiązywania problemu komiwojażera mają duże znaczenie np. przy:

- > projektowaniu sieci telekomunikacyjnych,
- > projektowaniu układów scalonych,
- > planowaniu linii montażowych,
- > programowaniu robotów przemysłowych .

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 $\langle \Box \Box \rangle$

18

Problem wyznaczania drogi Hamiltona

Problem polega na sprawdzaniu, czy w grafie istnieje droga, która przez <u>każdy wierzchołek</u> przechodzi <u>dokładnie raz</u>.

W tym grafie nie istnieje,

ale po uzupełnieniu grafu jedną krawędzią można ją wyznaczyć

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

⟨□ □⟩ ¹

Problemy przydziału i układania harmonogramu

Na przykład:

- Należy przydzielić prace do wykonania pracownikom z uwzględnieniem różnych ograniczeń
- Należy wypełnić kontenery pojemnikami o różnych rozmiarach
- Należy ułożyć plan zajęć dopasowujący nauczycieli, klasy i godziny lekcyjne w taki sposób, aby dwie klasy nie miały jednocześnie zajęć z tym samym nauczycielem, nauczyciel nie prowadził w tym samym czasie lekcji w dwóch różnych klasach, dwaj nauczyciele nie prowadzili jednocześnie lekcji w tej samej klasie itd.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 \Box

20

Problem spełnialności zdania logicznego

Problem polega na algorytmicznym rozstrzyganiu, czy istnieje zestaw takich prostych zdań logicznych o określonych wartościach prawda lub fałsz, które wstawione do podanego złożonego zdania logicznego, spowodują, że całe to zdanie stanie się prawdziwe.

Np. zdanie

$$\neg (E \Rightarrow F) \land (F \lor (D \Rightarrow E))$$

będzie prawdziwe po wstawieniu zdań o następujących wartościach

$$E \leftarrow PRAWDA, F \leftarrow FAŁSZ, D \leftarrow FAŁSZ$$

i zatem jest spełnialne.

A zdanie

$$\neg ((D \land E) \Rightarrow F) \land (F \lor (D \Rightarrow \neg E))$$

nie jest spełnialne.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Kolorowanie mapy płaskiej 3 kolorami lub szukanie tzw. liczby chromatycznej grafu

Problem polega na algorytmicznym rozstrzyganiu, czy podana mapa może być pokolorowana **3 kolorami** tak, aby sąsiednie obszary nie miały tego samego koloru.

- dla 2 kolorów problem jest łatwo rozwiązywalny - wystarczy sprawdzić, czy mapa nie zawiera punktów, w których styka się nieparzysta liczba obszarów, np.
- dla 4 kolorów problem jest banalny, bo udowodniono twierdzenie o czterech kolorach.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

22

Problem polega na algorytmicznym znajdowaniu **najmniejszej liczby kolorów**, którymi można pokolorować wierzchołki podanego grafu tak, aby każde dwa wierzchołki bezpośrednio połączone krawędzią miały różne kolory.

Łatwo można skonstruować graf wymagający dowolnie dużej liczby kolorów:

Klika - zbiór wierzchołków w grafie połączonych krawędziami każdy z każdym

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 $\langle \Box \Box \rangle$

23

Problem załadunku plecaka

Problem polega na algorytmicznym wyznaczaniu takiego upakowania podanych przedmiotów do plecaka, aby łączna ich wartość była maksymalna, ale nie została przekroczona pojemności plecaka.

<u>Dane wejściowe:</u> dla ponumerowanych przedmiotów 1, 2, ..., N są podane ich wartości $c_1, c_2, ..., c_N$ i objętości $a_1, a_2, ..., a_N$ oraz podana jest objętość plecaka b i zachodzi $b < \sum_{i=1}^{N} a_i$

Należy wyznaczyć wartość zmiennych decyzyjnych $x_1, x_2, ..., x_N$, dla kórych $x_i = 1$ oznacza "zapakowanie" przedmiotu o numerze i, a $x_i = 0$ pominięcie tego przedmiotu, tak aby były spełnione warunki:

 $\max \sum_{i=1,\dots,N}^{N} c_i \cdot x_i \qquad i \qquad \sum_{i=1,\dots,N}^{N} a_i \cdot x_i \le b$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 $\langle \Box \Box \rangle$

24

