Electricity Consumption Analyzer

Prepared by:

Zeyad Saad Abdel-Fattah, Joseph George Wahba, Muhammed Ashraf El-Kateb, Zyad Gamal

Saeed, Menna-Allah Ahmed Abdelhalim Ramadan

Date: November 26, 2024

Table of Contents

- 1. Executive Summary
- 2. Introduction
- 3. Why Build the System?
- 4. System Overview
- 5. Project Structure
- 6. Technical Details
- 7. Requirements Analysis Strategies
- 8. Requirements Gathering Techniques
- 9. Al and Technology Integration
- 10. Challenges and Solutions
- 11. Future Enhancements
- 12. References

Executive Summary

A	concise	description	of the	Electricity	Consumption	Analyzer,	summarizing	its	goals,	scope,	and
be	enefits.										

Introduction

Introduce	the pro	oject wi	th a	background	on	electricity	consumption	challenges	and	the	need t	for	this
solution.													

Why Build the System?

Detail the motivations, including:

- Rising electricity costs
- Lack of user awareness
- Environmental benefits
- Convenience and control
- Integration of AI-powered insights

System Overview

Overview of the features and functionalities:

- Real-time energy tracking
- AI-based recommendations
- User-friendly interface
- Cost management tools

Project Structure

Requirements Gathering:

- Identifying user needs and system specifications.

System Design:

- Designing intuitive UI and backend architecture.

Data Collection & Integration:

- Using real-time data from smart meters.

Development Phases:

- 1. Prototype Development
- 2. Al Integration
- 3. Testing & Iteration

Final Implementation and Launch:

- Deployment with cloud integration and post-launch support.

Technical Details

Functional Requirements:

- Track real-time electricity usage.
- Store usage history.
- Generate Al-based recommendations.

Non-Functional Requirements:

- Performance: Minimal delay in data updates.
- Usability: Easy navigation for all users.
- Reliability: Accurate analysis and predictions.
- Security: Data encryption for privacy.

Requirements Analysis Strategies

- Problem Analysis: Identify user issues.
- Root Cause Analysis: Investigate underlying causes.
- Duration Analysis: Optimize energy management steps.
- Activity-Based Costing: Assess activity-related costs.
- Benchmarking: Study similar solutions.
- Technology Analysis: Leverage AI and machine learning.

Requirements Gathering Techniques

- Interviews
- Joint Application Development (JAD)
- Questionnaires
- Document analysis
- Observations

Al and Technology Integration

- How AI analyzes user patterns.
- Algorithms for personalized recommendations.
- Scalability using cloud solutions.

Challenges and Solutions

Challenge: User adoption of the system.

Solution: Simplified tutorials and onboarding.

Challenge: Integration with various smart meters.

Solution: Standardized APIs and protocols.

Future Enhancements

- Integration with renewable energy sources.
- Advanced predictive analytics for electricity costs.
- Smart home automation features.

References

Cite any	supporting	materials	or framewo	rks used	during th	ie project.