Probability and statistics review for Stochastic Finance and Applied Stochastic Processes

Jaehyuk Choi

Peking University HSBC Business School

2017-18, Module 1 (Fall)

Jaehyuk Choi (PHBS)

Quantitative finance courses in PHBS

- Y1-M3: Stochastic Finance by Jaehyuk Choi [required for Qfin MA]
- Y1-M4: Derivative Pricing by Lei (Jack) Sun
- Y2-M1: Applied Stochastic Processes by Jaehyuk CHOI Application, Programming, Course project
- Y2-M3: Topics in Quantitative Finance by Jaehyuk CHOI Machine Learning for Finance
- Y2-M3: Numerical Methods and Analysis by Jake ZHAO
- Y2-M3: Bayesian Statistics by Qian CHEN

Probability & Statistics Basics

- Random Variable (RV): U, X, Y, Z
- Probability density function (PDF): $f_X(x)$
- Cumulative density function (CDF): $F_X(x) = \int f_X(x) dx$
- Standard deviation, variance:

$$Var(X) = E((X - \bar{X})^2) = E(X^2) - E(X)^2, \quad \sigma_X = \sqrt{Var(X)}$$

- (Centralized) Moments: $M_k(X) = E((X \bar{X})^k) = \int (x \bar{X})^k f_X(x) dx$
- Moment generating function (MGF): $M_X(t) = E(e^{tX})$

$$M_X(t) = 1 + tM_1 + \frac{t^2}{2!}M_2 + \dots + \frac{t^k}{k!}M_k$$

- Characteristic function (CF): $\phi_X(t) = E(e^{itX}) + \cdots$
- Covariance: $Cov(X,Y) = E((X-\bar{X})(Y-\bar{Y})) = E(XY) E(X)E(Y)$
- $\bullet \ \, \mathsf{Correlation:} \ \, \rho(X,Y) = \mathsf{Cov}(X,Y)/\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)} = \mathsf{Cov}(X,Y)/(\sigma_X\sigma_Y)$

4□ > 4□ > 4 = > 4 = > = 90

Prob. Distribution: Uniform distribution

Properties

- Support: [0,1]
- PDF: f(x) = 1
- CDF: F(x) = x
- Mean: E(U) = 1/2
- Var: Var(U) = 1/12

Uniform distribution is a fundamental RV which can be generated by computer. Once U is generated, any RV X is generated by inverse transform sampling

$$X = F_X^{-1}(U)$$

Prob. Distributions: True/False, Up/Down, Win/Lose, etc

Bernoulli distribution

- P(X = 1) = p, P(X = 0) = q = (1 p)
- E(X) = p, Var(X) = pq

Binomial distribution

- $Y = \sum_{1}^{n} X_k \sim N(n, p)$ for i.i.d. Bernoulli $\{X_k\}$ with p.
- $P(Y=k) = \binom{n}{k} p^k q^{(n-k)}$
- E(Y) = np, $Var(Y) = \sum_{1}^{n} Var(X_k) = npq$.
- \bullet Approximated as normal dist. for large $n{:}~B(n,p)\approx N(np,npq)$

Prob. Distribution: Event (default, arrival) at a constant rate λ

Exponential distribution

- \bullet Distribution for the survival time or the interval between the events, T
- PDF: $f(t) = \lambda e^{-\lambda t}$, CDF: $F(t) = 1 e^{-\lambda t}$
- $E(T) = 1/\lambda$, $Var(T) = 1/\lambda^2$.
- Memoryless: past events have no impact on the future!

Poisson distribution (discrete)

- ullet The number of occurrences X of a Poisson-type event in a unit time interval T=1
- PDF: $P(X = k) = \lambda^k e^{-\lambda}/k!$
- $E(X) = \operatorname{Var}(X) = \lambda$

Gamma distribution

- ullet The distribution of time X before the next k Poisson-type events occur
- $X \sim \Gamma(\alpha, \beta)$ where $\alpha = k$, $\beta = \lambda$.
- PDF: $f(x) = \frac{\beta^{\alpha} x^{\alpha 1} e^{-\beta x}}{\Gamma(\alpha)}$ for $x \ge 0$ and $\alpha, \beta > 0$.
- $E(X) = \alpha/\beta$, $Var(X) = \alpha/\beta^2$.

Normal (Gaussian) Distribution

- $X \sim N(\mu, \sigma^2), \quad Z \sim N(0, 1)$
- PDF: $f_X(x) = \frac{1}{\sqrt{2\sigma^2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \frac{1}{\sigma} n(\frac{x-\mu}{\sigma})$
- CDF: $F_X(x) = N(\frac{x-\mu}{\sigma})$
- MGF: $M_X(x) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$, $M_k = \sigma^k (k-1)!!$ for even k.
- Skewness: $s=M_3/\sigma^3=0$, Kurtosis $\kappa=M_4/\sigma^4=3$ (Ex-kurtosis: 0).

Variations

- Multivariate normal distribution: (X_1, \cdots, X_n)
- \bullet Log-normal distribution: $Y \sim e^{\mu + \sigma Z}$ for standard normal Z.

Jaehyuk Choi (PHBS) Prob. Stat. Review 2017-18, M1, ASP 7

Conditional Probability and Independence

Conditional Probability

A probability of an event \boldsymbol{A} given that an event \boldsymbol{B} has occurred.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Independence

The two events A and B are (statistically) independent if $P(A \cap B) = P(A)P(B)$. Equivalently,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A) \quad \text{if} \quad P(B) \neq 0$$
and
$$P(B|A) = P(B) \quad \text{if} \quad P(A) \neq 0$$

- Joint CDF: $F_{X,Y}(x,y) = F_X(x)F_Y(y) \left(P(X \le x, Y < y) = P(X \le x)P(Y \le y) \right)$
- Joint PDF: $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
- E(XY)=E(X)E(Y), $\mathrm{Cov}(X,Y)=\rho(X,Y)=0$. However, $\rho(X,Y)=0$ does not imply independence.

8 / 8