Lemma: 4

 $\mathcal{F}_0 \subset \mathcal{M}$

Proof

Take any $A \in \mathcal{F}_0$ and any $E \subset \Omega$, we want to show that

$$P^*(A \cap E) + P^*(A^c \cap E) \le P^*(E).$$

Let $\varepsilon > 0$. Cover E by \mathcal{F}_0 sets and specifically choose a cover $\{A_n\}$ s.t. $\sum_{n=1}^{\infty} P(A_n) < P^*(E) + \varepsilon$ by the definition of infimum. Now since $A \cap E \subset \bigcup_{n=1}^{\infty} (A \cap A_n)$, $A^c \cap E \subset \bigcup_{n=1}^{\infty} (A^c \cap A_n)$

 $P^*(A \cap E) + P^*(A^c \cap E) \le \sum_{n=1}^{\infty} P^*(A \cap A_n) + \sum_{n=1}^{\infty} P^*(A^c \cap A_n) \text{ by countable additivity}$ $= \sum_{n=1}^{\infty} P^*(A_n)$ $\le \sum_{n=1}^{\infty} P(A_n)$ $< P(E) + \varepsilon$

Let $\varepsilon \to 0$, then $P^*(A \cap E) + P^*(A^c \cap E) \le P(E) \Rightarrow A \in \mathcal{M} \Rightarrow \mathcal{F}_0 \subset \mathcal{M}$.

Lemma: 5

 $A \in \mathcal{F}_0 \Rightarrow P^*(A) \ge P(A)$

Proof

We already know that $P^*(A) \leq P(A)$. We just need to show the other way around.

1

Cover A with $(A_n) \in \mathcal{F}_0(A \subset \bigcup_{n=1}^{\infty} A_n)$. Then $A = \bigcup_{n=1}^{\infty} (A \cap A_n)$. So

$$P(A) = P\left(\bigcup_{n=1}^{\infty} (A \cap A_n)\right)$$

$$\leq \sum_{n=1}^{\infty} P(A \cap A_n) \text{ by c.s.}$$

$$\leq \sum_{n=1}^{\infty} P(A_n)$$

Note that $P^*(A)$ is the infimum for terms like $\sum_{n=1}^{\infty} P(A_n)$. But here $P(A) \leq \sum_{n=1}^{\infty} P(A_n)$. Hence $P(A) \leq P^*(A)$

Remark. $P^*(\Omega) = P(\Omega) = 1$ by Lemma 5, since $\Omega \in \mathcal{F}_0$.

So P^* , restricted to \mathcal{F} , is a probability measure on \mathcal{F} and it agrees with P for sets in \mathcal{F}_0 .

Lemma

The extension is unique.

Proof

Let Q be another extension of P to \mathcal{F} . Let $A \in \mathcal{F}$,

$$P^*(A) = \inf \left\{ \sum_{n=1}^{\infty} P(A_n) : A_n \in \mathcal{F}_0, A \subset \bigcup_{n=1}^{\infty} A_n \right\}$$

$$= \inf \left\{ \sum_{n=1}^{\infty} Q(A_n) : A_n \in \mathcal{F}_0, A \subset \bigcup_{n=1}^{\infty} A_n \right\}$$

$$\geq \inf \left\{ Q\left(\bigcup_{n=1}^{\infty} A_n\right) : A_n \in \mathcal{F}_0, A \subset \bigcup_{n=1}^{\infty} A_n \right\}$$

$$\geq \inf \left\{ Q(A) : A_n \in \mathcal{F}_0, A_n \subset \cup A_n \right\}$$

$$= Q(A)$$

$$A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \Rightarrow P^*(A^c) \ge Q(A^c) \Rightarrow 1 - p^*(A) \ge 1 - Q(A) \Rightarrow Q(A) \ge P^*(A)$$

Definition: pi system

A π -system is a collection of subsets of Ω that is closed under finite intersections.

Note. This is a weak definition, and includes fields and σ -fields. Commonly denoted by \mathcal{P} .

Theorem: 3.3

Let \mathcal{F}_0 be a π -system. Suppose that P_1 and P_2 are two probability measures on $\mathcal{F} = \sigma(\mathcal{F}_0)$. If P_1 and P_2 agree on \mathcal{F}_0 , they agree on \mathcal{F} .

(See Billingsley for proof.)

Note. This is a stronger theorem.

1 "Denumerable" Probabilities

Note. If we write P(A), the assumption is that there is an underlying (Ω, \mathcal{F}, P) .

1.1 Limit Sets

Definition: limsup

For a sequence $A_1, A_2, \ldots \in \mathcal{F}$, we define the set called "limsup over n of A_n " as

$$\lim \sup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Example. A_1, A_2 and $A_n = \emptyset$ for $n \ge 3$. Then $\limsup_n A_n = \emptyset$.

Note.

- 1) Since \mathcal{F} is closed under countable unions or intersections, $\limsup_n A_n$, $\liminf_n A_n \in \mathcal{F}$.
- 2) $\omega \in \limsup_n A_n \Rightarrow \omega \in \bigcup_{k=n}^{\infty} A_k$ for all $n \Rightarrow \omega$ is in infinitely many of the A_n .
- 3) $\omega \in \liminf_n A_n \Rightarrow \omega$ is in at least one $\bigcup_{k=n}^{\infty} A_k \Rightarrow w$ is in all but a finitely many of the A_n .