Functional Analysis
Basics A. DONES, Spory 2021
Function space (space of
functions):
- Space of polynomials of Jegree n'. The
- C CO of all DOM
- Space of (twice) continuous/2
- Space of all continuous Punctions Co Punctions 2
C° C C C C C

These are vertor spaces LEP" LLEP" $f_1, f_2 \in \mathcal{P}^n$, $f_1 + f_2 \in \mathcal{P}^n$ -> Linear Algebra Applies $\dim \Gamma^n = n + 1$ Casis 5 x , x , x , x , x } (n+1) monomials Pris just like Ru P1, P2 E Pn

Praud Prave linearly interpendent $\begin{cases}
P_1 = \alpha_0 + \alpha_1 \times + \alpha_2 \times + \dots + \alpha_n \times \\
P_2 = \alpha_0 + \alpha_1 \times + \dots + \alpha_n \times
\end{cases}$ if I the vectors are brearly magnetice. Inner-products for functions 1) ||f(x)|| = max |f(x)| ||f(x)|| = max |f(x)| $||f(x)||_1 = ||f(x)||_{dx}$

(3)
$$L_2$$
 norm

$$\|f(x)\|_2 = \sqrt{\int_1^2 |f(x)|^2} dx$$

(4) Weighted L_2 norm:

For vectors m \mathbb{R}^n

$$\|X\|_2^2 = \sqrt{\sum_{i=1}^n w_i |X_i|^2}$$

In matrix notation

$$(\|X\|_2)^2 = X W X$$

where $W = Diag \{w_i\}$

Can generalize to any positive matrix W

 $\|f(x)\|_2 = \int_{\omega(x)}^{\beta} |f(x)|^2 dx$ where wcx > 0 m [a, 6] If w(x) = 1 we get the Standard Lz norm $\| + (x) \|_{2} = (+, +)$ & Inner product $\int_{A}^{A} f(x) g(x) dx$ 2 inner product Complex conjugate

The lifteent function norms (L1, L2, L0) are truly lifterent, unlike in frite-limensional vector spaces (Pn)

La,6) function space

f(x) \in L_2[a,6]

Iff ||f(x)||_2 is finite

||f(x)||^2 dx \(\infty \)

Function is square integrable

Ou a computer, we always represent functions as Knite-Limensiand vectors. $f(x) \rightleftharpoons f(x_0), f(x_0), \dots, f(x_n)$ $f(x) \approx T$ polynomial polynomial interpolation 11 + (x) 12 = h || + ||₂ compute exactly = h = 1/(xi)/2 =

can be evaluated on () ((x) / Ix his grid spacing $X_i = a + i \cdot k$ Similarly Similarly (+,g) \longrightarrow h (+,g)theorem: $h(f,g) \xrightarrow{h \to 0} (f,g)$ $= \left(\int_{-\infty}^{\infty} (x) dx \right)$