Linn - Anal - Lecture - Notes

(Dated: February 8, 2024)

https://github.com/isakrukan/MAT4400-LinnAnaly

I. INTEGRATION OF COMPLEX FUNCTIONS (LEC. 7)

Assume (X, \mathfrak{B}, μ) is a measure space.

Definition I.1. A measurable function $f: X \to \mathbb{C}$ is called integrable (or μ -integrable) if

$$\int\limits_X |f| d\mu < \infty.$$

Denote by $\mathcal{L}^1(X, \mathfrak{B}, d\mu)$, $\mathcal{L}^1(X, d\mu)$ or $\mathcal{L}^1_{\mathbb{C}}$ the set of integrable functions. This is also a vector space over \mathbb{C} , since

$$|f+g| \le |f| + |g|$$
, $|cf| = |c||f|$ $(c \in \mathbb{C})$, and the other axioms are should be easy.

This vector space is spanned by positive functions, since

$$f = \text{Re}(f)_{+} - \text{Re}(f)_{-} + i\text{Im}(f)_{+} - i\text{Im}(f)_{-},$$

where for a function h we let

$$h_{+} = \max\{h, 0\}, h_{-} = -\min\{h, 0\},\$$

and if $f \in \mathcal{L}^1(X, d\mu)$, then

$$(\operatorname{Re}(f))_{\pm}, (\operatorname{Im}(f))_{\pm} \in \mathcal{L}^{1}(X, d\mu),$$

as

$$|(\operatorname{Re}(f))_{\pm}|, |(\operatorname{Im}(f))_{\pm}| \le |f|.$$

Proposition 1. The integral extends uniquely from the positive integrable functions to a linear function (functional?) $\mathcal{L}^1(X, d\mu) \to \mathbb{C}$, that is, to a map s.t.

$$\int\limits_X (f+g)d\mu = \int\limits_X f d\mu + \int\limits_X g d\mu,$$

$$\int\limits_X c f d\mu = c \int\limits_X f d\mu, \ c \in \mathbb{C}.$$

Proof. Uniqueness is clear, as positive functions in $\mathcal{L}^1(X, d\mu)$ spans the entire space. We first extend the integral to real integrable functions by letting

$$\int\limits_{Y}(g-h)d\mu:=\int\limits_{Y}gd\mu-\int\limits_{Y}hd\mu,$$

for $g, h \in \mathcal{L}^1(X, d\mu), g, h \ge 0.$

This is well-defined, since if

$$g - h = g' - h',$$

then g+h'=h+g' and hence $\int\limits_X g d\mu + \int\limits_X h' d\mu = \int\limits_X g' d\mu + \int\limits_X h' d\mu$. Now we extend the integral to the entire space $\mathcal{L}'(X,d\mu)$ by

$$\int\limits_X f d\mu := \int\limits_X (\mathrm{Re}(f)) d\mu + i \int\limits_X (\mathrm{Im}(f)) d\mu.$$

We easily get that by definition:

$$\int_{X} (f_1 + f_2) d\mu = \int_{X} f_1 d\mu + \int_{X} f_2 d\mu, \ \forall f_1, f_2 \in \mathcal{L}^1(X, d\mu),$$

and

$$\int\limits_X cfd\mu = c\int\limits_X fd\mu \ \forall f \in \mathcal{L}^1(X,d\mu) \ \forall c \ge 0.$$

In order to prove the last property for all $c \in \mathbb{C}$, it remains to check it for c = -1 and c = i.

For c = -1 it follows, since if $g, h \ge 0$, then

$$\begin{split} \int\limits_X \left(-(g-h) \right) d\mu &= \int\limits_X \left(h-g \right) d\mu \\ &= \int\limits_X h d\mu - \int\limits_X g d\mu \\ &= -\int\limits_X \left(g-h \right) d\mu. \end{split}$$

Similarly, for c = i it is proved by a simple computation:

$$\int_{X} if d\mu = \int_{X} \operatorname{Re}(if) d\mu + i \int_{X} \operatorname{Im}(if) d\mu$$

$$= \int_{X} (-\operatorname{Im}(f)) d\mu + i \int_{X} (\operatorname{Re}(f)) d\mu$$

$$= i \left(\int_{X} (\operatorname{Re}(f)) d\mu + i \int_{X} (\operatorname{Im}(f)) d\mu \right)$$

$$= i \int_{X} f d\mu.$$

Proposition 2 (Triangle Inequality). For every $f \in \mathcal{L}^1(X, d\mu)$ we have

$$\Big| \int\limits_X f d\mu \Big| \le \int\limits_X |f| d\mu.$$

Proof. Choose $z \in \Pi := \{w \in \mathbb{C} : |w| = 1\}$ s.t.

$$z\int\limits_X f d\mu \geq 0.$$

Then

$$\begin{split} \left| \int\limits_X f d\mu \right| &= \left| z \int\limits_X \right| \\ &= z \int\limits_X f d\mu \\ &= \int\limits_X z f d\mu \\ &= \int\limits_X \operatorname{Re}(zf) d\mu + i \int\limits_X \operatorname{Im}(zf) d\mu \\ &= \int\limits_X \left(\operatorname{Re}(zf) \right)_+ d\mu - \int\limits_X \left(\operatorname{Re}(zf) \right)_- d\mu \\ &\leq \int\limits_X \left(\operatorname{Re}(zf) \right)_+ d\mu \\ &\leq \int\limits_X \left| f \right| d\mu, \end{split}$$

since $(\operatorname{Re}(zf))_+ \leq |f|$.

II. COMPLETIONS OF MEASURE SPACES (LEC. 8)

Definition II.1. A measure space (X, \mathfrak{B}, μ) is called **complete** if whenever $A \in \mathfrak{B}, \mu(A) = 0$, we have $B \in \mathfrak{B}$ for all $B \subset A$.

Any measure space (X, \mathfrak{B}, μ) can be completed as follows:

Let \mathfrak{B} be the σ -algebra generated by \mathfrak{B} and all sets $B \subset X$ s.t. $\exists A \in \mathfrak{B}$ with $B \subset A$ and $\mu(A) = 0$.

Proposition 3. The σ -algebra $\bar{\mathfrak{B}}$ can also be described as follows:

 $\bar{\mathfrak{B}} := \{B \subset X : A_1 \subset B \subset A_2 \text{ for some } A_1, A_2 \in \mathfrak{B} \text{ with } \mu(A_2 \backslash A_1)\},$

with B, A_1, A_2 as above, we define

$$\bar{\mu}(B) := \mu(A_1) = \mu(A_2).$$

Then $(X, \mathfrak{B}, \bar{\mu})$ is a complete measure space.

Proof. Consider the collection of sets

 $\tilde{\mathfrak{B}} := \{B \subset X : A_1 \subset B \subset A_2 \text{ for some } A_1, A_2 \in \mathfrak{B} \text{ with } \mu(A_2 \backslash A_1)\},$

this is a σ -algebra; $\emptyset \in \tilde{\mathfrak{B}}$ (take $A_1 = A_2 = \emptyset$), if $B \in \tilde{\mathfrak{B}}$ and A_1, A_2 are as above, then $A_2^c \subset B^c \subset A_1^c$ and

 $\mu(A_1 \backslash A_2) = \mu(A_2 \backslash A_1) = 0$, so $B^c \in \mathfrak{B}$. Finally, assume $(B_n)_{n \in \mathbb{N}} \subset \mathfrak{B}$ and let $A'_n, A''_n \in \mathfrak{B}$ be s.t.

$$A'_n \subset B_n \subset A''_n, \ \mu(A''_n \backslash A'_n) = 0.$$

Put
$$A_1 = \bigcup_{n=1}^{\infty} A'_n$$
, $A_2 = \bigcup_{n=1}^{\infty} A''_n$. Then

$$A_1 \subset \bigcup_{n=1}^{\infty} B_n \subset A_2, \ A_2 \backslash A_1 \subset \bigcup_{n=1}^{\infty} (A_n'' \backslash A_n'),$$

SO

$$\mu(A_2 \backslash A_1) \le \sum_{n=1}^{\infty} \mu(A_n'' \backslash A_n'),$$

hence

$$\bigcup_{n=1}^{\infty} B_n \in \tilde{\mathfrak{B}}.$$

Thus, \mathfrak{B} is a σ -algebra. It contains \mathfrak{B} and all sets $B \subset X$ s.t. $B \subset A$ and $\mu(A) = 0$ for some $A \in \mathfrak{B}$. Hence, $\bar{\mathfrak{B}} \subset \tilde{\mathfrak{B}}$. On the other hand, if $B \in \tilde{\mathfrak{text}}$, $A_1 \subset B \subset A_2$, $A_1, A_2 \in \mathfrak{B}$ and $\mu(A_2 \setminus A_1) = 0$, then

$$B = A_1 \cup (B \setminus A_1)$$
 and $B \setminus A_1 \subset A_2 \setminus A_1$,

hence $B \in \bar{\mathfrak{B}}$. Thus $\bar{\mathfrak{B}} = \tilde{\mathfrak{B}}$.

Next, we need to show that $\bar{\mu}$ is well-defined. Assume

$$A_1 \subset B \subset A_2, \ A_1' \subset B \subset A_2',$$

with $A_1, A_2, A_1', A_2' \in \mathfrak{B}, \ \mu(A_2 \backslash A_1) = \mu(A_2' \backslash A_1') = 0.$ Then

$$A_1 \backslash A_1' \subset A_2' \backslash A_1'$$

hence

$$\mu(A_1 \backslash A_1') = 0.$$

It follows that

$$\mu(A_1) = \mu(A_1 \cap A_1),$$

 $\mu(A_1') = \mu(A_1 \cap A_1').$

and for the same reason that

Therefor $\mu(A_1) = \mu(A_1)$, so $\bar{\mu}$ is well-defined.

Finally, we have to check that μ is a measure. Assume $(B_n)_{n\in\mathbb{N}}$ is a sequence of disjoint sets in $\bar{\mathfrak{B}}$. As above, choose $A'_n, A''_n \in \mathfrak{B}$ s.t.

$$A'_n \subset B_n \subset A''_n$$
 and $\mu(A''_n \backslash A'_n) = 0$.

Then for
$$A_1 = \bigcup_{n=1}^{\infty} A'_n$$
 and $A_2 = \bigcup_{n=1}^{\infty} A''_n$ we have

$$A_1 \subset \bigcup_{n=1}^{\infty} B_n \subset A_2 \text{ and } \mu(A_2 \backslash A_1) = 0.$$

Hence,

$$\bar{\mu}\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu(A_1) = \mu\left(\bigcup_{n=1}^{\infty} A'_n\right)$$
$$= \sum_{n=1}^{\infty} \mu(A'_n) = \sum_{n=1}^{\infty} \bar{\mu}(B_n).$$

We also have $\bar{\mu}(\emptyset) = \mu(\emptyset) = 0$.

Definition II.2. If μ is a Borel measure on a **metric** space (X, d), then the completion $\mathfrak{B}(X)$ of the Borel σ -algebra with respect to μ is called the σ -algebra of μ -measurable sets.

For $\mu = \lambda_n$ on \mathbb{R}^n we talk about the σ -algebra of **Lebesque measurable sets**. Instead of $\bar{\lambda}_n$ we still write λ_n and call it the **Lebesgue measure**. A function $f: \mathbb{R}^n \to \mathbb{C}$, measurable with respect to the σ -algebra of Lebesgue measurable sets is called **Lebesgue measurable**.

Proposition 4. Assume (X, \mathfrak{B}, μ) is a measure space and consider its completion $(X, \bar{\mathfrak{B}}, \bar{\mu})$. Assume $f: X \to \mathbb{C}$ is $\bar{\mathfrak{B}}$ -measurable. Then there is a \mathfrak{B} -measurable function $g: X \to \mathbb{C}$ s.t. $f = g \bar{\mu}$ -a.e (almost everywhere).

Proof. By considering separately $(\text{Re}(f))_{\pm}$, $(\text{Im}(f))_{\pm}$ we may assume that $f \geq 0$. Assume first that f is simple,

$$f = \sum_{k=1}^{\infty} c_k 1_{B_k}, \ c_k \ge 0, \ B_k \in \bar{\mathfrak{B}}.$$

Let $A_k \in \mathfrak{B}$ be s.t. $A_K \subset B_k$, $\bar{\mu}(B_k \backslash A_k) = 0$. Then define

$$g = \sum_{k=1}^{\infty} c_k 1_{A_k}.$$

We have $0 \le g \le f$ and $f = g \bar{\mu}$ -a.e., namely,

$${x: f(x) \neq g(x)} \subset \bigcup_{n=1}^{n} (B_k \backslash A_k).$$

For general $f \geq 0$ choose simple $\bar{\mathfrak{B}}$ -measurable functions f_n s.t.

$$0 \le f_1 \le f_2 \le ..., f_n \uparrow f$$
 pointwise.

Then we can find simple \mathfrak{B} -measurable functions g_n s.t. $0 \leq g_n \leq f_n$ and the set

$$A_n := \{x : f_n(x) \neq g_n(x)\}$$

has measure zero. Consider

$$\tilde{g}_n := \max \{g_1, ..., g_n\}.$$

Then

$$0 \le \tilde{g}_1 \le \tilde{g}_2 \le \dots, \ \tilde{g}_n \le f_n,$$

and

$$\{x : \tilde{g}_n(x) < f_n(x)\} \subset A_n.$$

Define $g(x) := \lim_{n \to \infty} \tilde{g_n}(x)$. Then g(x) is \mathfrak{B} -measurable, $g \leq f$ and

$${x: g(x) < f(x)} \subset \bigcup_{n=1}^{\infty} A_n,$$

so
$$g = f \bar{\mu}$$
-a.e.