List of pdfcomments

Notes on the Diffusion Equation

Wednesday 22nd January, 2014

1 Introduction

Consider an arbitrary solution $u: \mathbb{X} \times \mathbb{T} \to \mathbb{R}$ to the simple diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.$$
(1)

A computationally feasible approach would be to first establish a sequence of discrete grid-points, $\vec{X} = [X_j]_{j \in \mathbb{J}}$, and thence summarise the continuum dynamics u by the coarse dynamics $\vec{U} = [U_j]_{j \in \mathbb{J}}$, where $U_j(t) := u(X_j, t)$ for all $t \in \mathbb{T}$. We may suppose that \vec{U} evolves temporally according to some self-contained system

$$\dot{\vec{U}}(t) = \vec{g}(\vec{U}(t)). \tag{2}$$

Consequently, a link from the coarse dynamics \vec{U} back to the continuum dynamics u might be provided by choosing an appropriate spatial mapping of the form

$$u := u(x, \vec{U}(t)). \tag{3}$$

Under this scheme, the linear diffusion equation (1) becomes

$$\frac{\partial u}{\partial \vec{U}} \cdot \vec{g} = \frac{\partial^2 u}{\partial x^2} \,. \tag{4}$$

Observe that the evolution of u now has nonlinear interactions with \vec{U} .

2 Centre Manifold Approximation

The original diffusion equation (1) admits eigensolutions of the form

$$\tilde{u}(x,t) = e^{\lambda t + ikx}, \qquad (5)$$

which are physically realisable for real eigenvalues $\lambda = -k^2 \leq 0$ for corresponding eigenmode wavenumbers $\pm k$. As a consequence, the transient solutions corresponding to $\lambda < 0$ decay rapidly to the centre manifold corresponding to $\lambda = 0$.

This centre manifold can be found in practice by iteratively refining approximations to u. In particular, consider a series expansion of the form

$$u \sim \hat{u}_0 + \gamma \hat{u}_1 + \gamma^2 \hat{u}_2 + \cdots, \tag{6}$$

for some parameter $0 \le \gamma \le 1$. Now, the constant eigensolution for $\lambda = 0$ implies a slow evolution for the coarse dynamics given by equation (2), which therefore admits a series expansion of the form

$$\dot{\vec{U}} \sim \gamma \vec{g}_1 + \gamma^2 \vec{g}_2 + \cdots$$
 (7)

Hence, equation (4) may be decomposed at each order ℓ of the parameter γ , giving

$$\frac{\partial^2 \hat{u}_0}{\partial x^2} = 0, (8)$$

$$\frac{\partial^2 \hat{u}_{\ell}}{\partial x^2} = \sum_{m=0}^{\ell-1} \frac{\partial \hat{u}_m}{\partial \vec{U}} \cdot \vec{g}_{\ell-m}, \quad \text{for } \ell = 1, 2, \dots$$
 (9)

3 Leading Approximation

The leading equation (8) admits any spatially piecewise linear function as a solution. Hence, in keeping with the discretisation imposed by the coarse dynamics of Section 1, let the spatial domain be partitioned into contiguous intervals, namely $\mathbb{X} = \bigcup_{j \in \mathbb{J}^+} \mathbb{I}_j$, where $\mathbb{I}_j := [X_{j-1}, X_j]$ and $\mathbb{J}^+ := \mathbb{J} \setminus \{\underline{J}\}$ with $\underline{J} := \inf \mathbb{J}$. Then, consider the piecewise linear approximation

$$\hat{u}_0 = \sum_{j \in \mathbb{J}^+} \chi_j(\xi_j U_j + (1 - \xi_j) U_{j-1}), \qquad (10)$$

with indicator $\chi_j(x) = 1$ (or 0) for $x \in \mathbb{I}_j$ (or $x \notin \mathbb{I}_j$), and linear interpolator $\xi_j(x) = \frac{x - X_{j-1}}{X_j - X_{j-1}}$. This particular approximation is chosen to be continuous across the internal interval boundaries, namely $X_j = \mathbb{I}_j \cap \mathbb{I}_{j+1}$ for $j \in \mathbb{J}^0 := \mathbb{J}^+ \setminus \{\bar{J}\}$, where $\bar{J} := \sup \mathbb{J}$. In general, it suffices to impose a continuity condition at the right-hand end of each interval, namely:

$$[u]_j = 0 \qquad \forall j \in \mathbb{J}^0 \,, \tag{11}$$

where $[u]_j := \lim_{\epsilon \to 0^+} u(X_j + \epsilon, t) - u(X_j - \epsilon, t)$. Unfortunately, this linear approximation is not smooth at the interval boundaries. For convenience, consider regular grid spacings of size $X_j - X_{j-1} = H$. Then, denoting $\partial u/\partial x$ as u', observe that

$$[\hat{u}'_0]_j = \frac{1}{H}(U_{j+1} + U_{j-1} - 2U_j) = \frac{1}{H} \delta^2 \hat{u}_0 \big|_{X_j} , \qquad (12)$$

for the centred difference $\delta u(x,t) := u(x + \frac{H}{2},t) - u(x - \frac{H}{2},t)$. However, this non-smoothness may be corrected at higher order by imposing a further internal boundary condition, namely

$$[u']_j = \frac{1-\gamma}{H} \delta^2 u \Big|_{X_j} \quad \forall j \in \mathbb{J}^0.$$
 (13)

Consequently, smooth approximations are found in the limit as $\gamma \to 1$.

4 Linear Eigenmode Analysis

Consider a single eigenmode of the form (5) for some fixed, non-dimensionalised wavenumber $\kappa = kH > 0$. Thus, allowing for the partitioning of \mathbb{X} , let

$$\tilde{u} \sim \sum_{j \in \mathbb{J}^+} \chi_j a_j e^{i\kappa \xi_j} + \text{c.c.},$$
 (14)

for arbitrary, time-varying, complex coefficients $a_j = A_j + iB_j$. We now seek the 'spatial' evolution from interval to interval for the given wavenumber. The continuity condition (11) implies that

$$a_{j+1} - a_j e^{i\kappa \xi_j} + \text{c.c.} = 0.$$
 (15)

Similarly, the smoothness condition (13) implies that

$$ika_{j+1} - ika_j e^{i\kappa} + \text{c.c.} = \frac{1-\gamma}{H} \left(a_{j+1} e^{i\kappa} + a_j - 2a_j e^{i\kappa} \right) + \text{c.c.},$$
 (16)

where continuity has also been invoked at the left-hand of the jth interval. In coefficient form, the update from the jth to (j + 1)th segment is

$$\begin{bmatrix} 1 & 0 \\ fc & 1 - fs \end{bmatrix} \begin{bmatrix} A_{j+1} \\ B_{j+1} \end{bmatrix} = \begin{bmatrix} c & -s \\ s + f(2c - 1) & c - 2fs \end{bmatrix} \begin{bmatrix} A_j \\ B_j \end{bmatrix}, \quad (17)$$

where $c+is := e^{i\kappa}$ and $f := \frac{1-\gamma}{\kappa}$. Now, letting $a_{j+1} = \mu a_j$, the characteristic equation for the growth factor μ is

$$(1 - fs) \left[\mu^2 - 2\frac{c - fs}{1 - fs} \mu + 1 \right] = 0,$$
(18)

with roots given by

$$\mu = \beta \pm \sqrt{\beta^2 - 1} \quad \text{for } \beta = \frac{c - fs}{1 - fs}. \tag{19}$$

Observe that $\beta \leq 1$ since $c = \cos \kappa \leq 1$ and $1 - fs = 1 - (1 - \gamma) \frac{\sin \kappa}{\kappa} \geq 0$. Thus, for $|\beta| < 1$, the factors are complex with magnitude $|\mu| = 1$, indicating marginally stable evolution of a_j . This includes the limiting case of $\gamma = 1$ (f = 0), for which $\mu = c \pm is = e^{\pm i\kappa}$. Likewise, $\mu = \pm 1$ for $\beta = \pm 1$, corresponding to $\kappa = n\pi$, $n = 0, 1, 2, \ldots$ Finally, for small regions near each $\kappa = (2n+1)\pi$, it is found that $\beta < -1$, resulting in two real factors, $\mu < -1$ and $-1 < \mu < 0$, indicating unstable (saddle) evolution. More precisely, these unstable regions occur when

$$\frac{\kappa}{2} < (1 - \gamma) \tan \frac{\kappa}{2}, \quad \kappa \neq n\pi.$$
 (20)

Thus, at equilibrium $(\gamma = 0)$ there is an initial forbidden gap $\kappa \in (0, \pi)$ adjacent to the centre manifold wavenumber $\kappa = 0$ (see Figure 1), indicating that transient solutions decay to the centre manifold at a rate of at least $\lambda = -k^2 = -\frac{\pi^2}{H^2}$. It is this gap that provides robustness to nonlinear perturbations of the system about the equilibrium.

5 Linear Dual Space

Assume for convenience that there are $|\mathbb{J}| \geq 3$ discrete grid-points, and thus $|\mathbb{J}^+| \geq 2$ intervals. Then an appropriate inner product for spatially square-integrable fields u and v is given by

$$\langle u, v \rangle = \int_{X_J}^{X_{\bar{J}}} uv \ dx = \sum_{i \in \mathbb{T}^+} \int_{\mathbb{I}_i} uv \ dx \,.$$
 (21)

Figure 1: The equilibrium spectrum determined by the forbidding condition (20).

It can then be shown, for twice-differentiable fields, that

$$\langle u'', v \rangle = \langle u, v'' \rangle + R,$$
 (22)

with residual

$$R = \sum_{j \in \mathbb{J}^+} [r]_{X_{j-1}}^{X_j} = r_{\bar{J}} - r_{\underline{J}} - \sum_{j \in \mathbb{J}^0} [r]_j, \qquad (23)$$

for r = u'v - v'u. Now, assuming that both u and v obey conditions (11) and (13), the residual jump at X_i becomes

$$[r]_{j} = [u']_{j}V_{j} - [v']_{j}U_{j}$$

$$= \frac{1-\gamma}{H}\left[(U_{j+1} + U_{j-1})V_{j} - (V_{j+1} + V_{j-1})U_{j}\right]. \tag{24}$$

Observe that terms from surrounding intervals \mathbb{I}_{j-1} and \mathbb{I}_{j+1} will cancel terms from \mathbb{I}_j , leaving only contributions from the outermost boundary intervals $\mathbb{I}_{\underline{J}+1}$ and $\mathbb{I}_{\overline{J}}$; consequently:

$$R = u'_{\bar{J}}V_{\bar{J}} - v'_{\bar{J}}U_{\bar{J}} - u'_{\underline{J}}V_{\underline{J}} + v'_{\underline{J}}U_{\underline{J}} - \frac{1 - \gamma}{H} \left[U_{\bar{J}}V_{\bar{J}-1} - V_{\bar{J}}U_{\bar{J}-1} + U_{\underline{J}}V_{\underline{J}+1} - V_{\underline{J}}U_{\underline{J}+1} \right].$$
 (25)

On a finite domain, there are three main outer boundary conditions that lead to a zero residual:

periodic Having period $\bar{J} - \underline{J}$ corresponds to $U_{\bar{J}} = U_{\underline{J}}$. Furthermore, by joining the domain cylindrically at X_J and $X_{\bar{J}}$, it can be shown that

$$u'_{\underline{J}} - u'_{\bar{J}} = [u']_{\bar{J}} = \frac{1 - \gamma}{H} (U_{\underline{J}+1} + U_{\bar{J}-1} - 2U_{\bar{J}}), \qquad (26)$$

using condition (13). Hence, R=0 if correspondingly v is periodic with period $\bar{J}-\underline{J}$.

Dirichlet Setting u = 0 at the boundaries corresponds to $U_{\underline{J}} = U_{\bar{J}} = 0$, giving R = 0 if correspondingly v = 0 on the boundaries.

Neumann Requiring u' = 0 on the boundaries (for $\gamma = 1$) corresponds to

$$u'_{\underline{J}} = \frac{1 - \gamma}{H} (U_{\underline{J}+1} - U_{\underline{J}}), \quad u'_{\bar{J}} = \frac{1 - \gamma}{H} (U_{\bar{J}} - U_{\bar{J}-1}), \quad (27)$$

giving R = 0 if correspondingly v' = 0 on the boundaries.

Under any of the above three conditions, observe that $\langle \mathcal{L}u, v \rangle = \langle u, \mathcal{L}v \rangle$ for $\mathcal{L} = \partial^2/\partial x^2$, and hence \mathcal{L} is self-adjoint. Furthermore, we are free to choose any dual v, e.g. to satisfy $\mathcal{L}v = 0$ for conenience. In particular, we may specifically target the j-th interval for u by selecting $v = \hat{v}_0^{[j]}$, where

$$\hat{v}_0^{[j]} := \chi_j \xi_j + \chi_{j+1} (1 - \xi_{j+1}) \quad \forall j \in \mathbb{J}^0.$$
 (28)

Observe that this dual satisfies conditions (11) and (13) for $\gamma = 0$. It can then be shown in general that

$$\langle u'', \hat{v}_0^{[j]} \rangle = -[u']_j + \frac{1}{H} \delta^2 u \big|_{X_j} ,$$
 (29)

for any continuous, twice-differentiable field u.

6 First-order Approximation

Substituting the leading approximation (10) into the nonlinear diffusion equation (9) for $\ell = 1$ results in the first-order equation

$$\hat{u}_1'' = \sum_{j \in \mathbb{J}^+} \chi_j(\xi_j g_{1,j} + (1 - \xi_j) g_{1,j-1}). \tag{30}$$

Spatial integration then gives

$$\hat{u}_{1}' = \frac{H}{2} \sum_{j \in \mathbb{J}^{+}} \chi_{j} (\xi_{j}^{2} g_{1,j} - (1 - \xi_{j})^{2} g_{1,j-1} + c_{1,j}), \qquad (31)$$

$$\hat{u}_1 = \frac{H^2}{6} \sum_{j \in \mathbb{J}^+} \chi_j(\xi_j^3 g_{1,j} + (1 - \xi_j)^3 g_{1,j-1} + 3\xi_j c_{1,j} + d_{1,j}). \tag{32}$$

Recall from the chosen spatial discretisation that $u|_{X_j} = U_j$ at each gridpoint. Observe this is already satisfied by \hat{u}_0 from equation (10), implying from expansion (6) that

$$\hat{u}_{\ell}|_{X_i} \equiv 0 \quad \text{for } \ell = 1, 2, \dots$$
 (33)

Thus $[\hat{u}_{\ell}]_j = 0$, satisfying the continuity condition (11), and furthermore $\delta^2 \hat{u}_{\ell}|_{X_j} = 0$. Now, evaluating equation (32) at $\xi_j = 0$ gives $d_{1,j} = -g_{1,j-1}$, and at $\xi_j = 1$ gives $3c_{1,j} = -(g_{1,j} - g_{1,j-1})$. Thus, from equation (31), observe that

$$[\hat{u}_1']_j = -H\left(1 + \frac{1}{6}\delta^2\right)g_{1,j}. \tag{34}$$

However, the smoothness condition (13) gives

$$[\hat{u}_1']_j = \frac{1}{H} \delta^2 \hat{u}_1 \big|_{X_j} - \frac{1}{H} \delta^2 \hat{u}_0 \big|_{X_j} = -\frac{1}{H} \delta^2 U_j, \qquad (35)$$

and hence

$$\left(1 + \frac{1}{6}\delta^2\right)g_{1,j} = \frac{1}{H^2}\delta^2 U_j.$$
(36)

This solution can also be otained more directly via the dual space by computing $\langle \hat{u}_{1}'', \hat{v}_{0}^{[j]} \rangle$ from equations (28) and (30), and using results (29) and (35).

Consequently, as a first approximation, the coarse dynamics evolve according to

$$\dot{\vec{U}} = \frac{\gamma}{H^2} S \delta^2 \vec{U} + \mathcal{O}(\gamma^2) \,, \tag{37}$$

from equations (2) and (7), where, for convenience, we let $S := (1 + \frac{1}{6}\delta^2)^{-1}$. Now, recall from Section 2 that the eigensolution $\tilde{u}(x,t) = e^{\lambda t + ikx}$ to the diffusion equation (1) has the exact spectrum $\lambda = -k^2$. It can further be shown that this eigensolution satisfies the relation $\delta^2 \tilde{u} = -2(1-c)\tilde{u}$, where, as before, $c := \cos kH$. Hence, the spectrum of the first-order approximation with $\gamma = 1$ is given by

$$\lambda = -\frac{6(1-c)}{H^2(2+c)} \sim -k^2 - \frac{1}{12}H^2k^4 + \mathcal{O}(H^4k^6),$$
 (38)

which reveals an error of size $\mathcal{O}(H^2k^4)$ in comparison to the exact spectrum.

The behaviour of this approximate spectrum is shown in Figure 2. Observe that the second turning point of the approximation occurs at $k = \frac{\pi}{H}$, corresponding to c = -1. Hence, from the left-hand side of equation (38), we obtain $\lambda = -\frac{12}{H^2}$, in contrast to the true value of $\lambda = -\frac{\pi^2}{H^2}$, giving an error of $\Delta\lambda \approx -\frac{2.1}{H^2}$. Using the right-hand side of equation (38) instead leads to an approximate error estimate of $\Delta\lambda \approx -\frac{\pi^4}{12H^2} \approx -\frac{8.1}{H^2}$.

Figure 2: The exact spectrum (λ versus k) of the linear diffusion equation, compared to a first-order approximation with H=0.4 and H=0.2 for $\gamma=1$.

Alternatively, suppose for the sake of argument that $X_j \equiv jH$. Then the continuum eigenmode $\tilde{u}(x,t) = e^{\lambda t + i\pi x/H}$ gives rise to a sawtooth mode in the coarse dynamics of the form $\tilde{U}_j = e^{\lambda t}(-1)^j$. It can then be shown that \tilde{U}_j obeys the relation $\delta^2 \tilde{U}_j = -4\tilde{U}_j$, and satisfies equation (37) for $\gamma = 1$ with a decay rate of $\lambda = -\frac{12}{H^2}$, the same as above.

7 Second-order Approximation

For convenience, consider the shift operator $\sigma u(x,t) := u(x+H,t)$; whence $\delta := \sigma^{1/2} - \sigma^{-1/2}$. Then, from equation (9) for $\ell = 2$, we obtain

$$\hat{u}_{2}'' = \frac{\partial \hat{u}_{0}}{\partial \vec{U}} \cdot \vec{g}_{2} + \frac{\partial \hat{u}_{1}}{\partial \vec{U}} \cdot \vec{g}_{1}
= \sum_{j \in \mathbb{J}^{+}} \chi_{j} \left\{ \xi_{j} + (1 - \xi_{j})\sigma^{-1} \right\} g_{2,j}
- \frac{1}{6} \sum_{j \in \mathbb{J}^{+}} \chi_{j} \xi_{j} (1 - \xi_{j}) \left\{ (2 - \xi_{j})\sigma^{-1} + (1 + \xi_{j}) \right\} S\delta^{2} g_{1,j}, \quad (39)$$

using equations (10), (32), and (36). Next, observe from equations (29), (13) and (33) that

$$\langle \hat{u}_{\ell}^{"}, \hat{v}_{0}^{[j]} \rangle \equiv 0 \quad \text{for } \ell = 2, 3, \dots$$
 (40)

Alternatively, it can be shown by direct integration and simplification that

$$\langle \hat{u}_{2}^{"}, \hat{v}_{0}^{[j]} \rangle = HS^{-1}g_{2,j} - \frac{H}{6} \left(\frac{7}{60} \delta^{2} + \frac{1}{2} \right) S\delta^{2}g_{1,j},$$
 (41)

from equations (28) and (39). Hence, as a second approximation, the coarse dynamics evolve according to

$$\dot{\vec{U}} = \frac{\gamma}{H^2} S \delta^2 \vec{U} + \frac{\gamma^2}{60H^2} (7 - 2S) S^2 \delta^4 \vec{U} + \mathcal{O}(\gamma^3) , \qquad (42)$$

using the fact that $S\delta^2 = 6(1 - S)$.

Thus, following Section 6, the approximate spectrum for $\gamma = 1$ is now

$$\lambda = -\frac{1}{5H^2} \frac{96 + 27c - 72c^2 - 51c^3}{8 + 12c + 6c^2 + c^3} \sim -k^2 - \frac{1}{180} H^4 k^6 + \mathcal{O}(H^6 k^8). \tag{43}$$

Observe that the $\mathcal{O}(H^2k^4)$ error term from the first-order approximation (38) has now been completely eliminated by the second-order correction, in favour of an $\mathcal{O}(H^4k^6)$ error. This adjusted spectral behaviour is shown in Figure 3. Observe that the turning point again occurs at $k = \frac{\pi}{H}$. Hence, as per Section 6, the sawtooth mode (with c = -1) now has a decay rate of $\lambda = -\frac{48}{5H^2}$, leading to an error of $\Delta\lambda \approx \frac{0.27}{H^2}$, which is an order of magnitude smaller than the first-order error.

Figure 3: The exact spectrum (λ versus k) of the linear diffusion equation, compared to a second-order approximation with H=0.4 and H=0.2 for $\gamma=1$.