Newton's Forward difference interpolation

formula -

Newton's forward difference interpolating polynomial passing through a set of points (x_i, y_i) where $i = 0, 1, \dots n$ is given by

$$y = y_0 + u \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)}{n!} \Delta^n y_0$$

where
$$u = \frac{x-x_0}{h}$$

$$(u-1) = \frac{x-x_0-1}{h} = \frac{x-x_0-h}{h}$$

$$= \frac{x-x_1}{h}$$

Similar we can show that

$$(u-2) = \frac{x-x_2}{h}$$

Ex. 1) Find Newtones interpolating polynomial satisfying the data.

œ	0	1	2	3	4
У	-4	-4	0	14	44.

Soln: Prepare forward difference table for given (xi, yi)

We get

$$y_0 = -4$$
 $\Delta y_0 = 0$

$$\Delta^2 y_0 = 4$$
 $\Delta^3 y_0 = 6$ $\Delta^4 y_0 = 0$

and h = 1

By using Newton's forward difference interpolation formula

$$y = y_0 + 4 \Delta y_0 + \frac{4(4-1)}{2!} \Delta^2 y_0 + \frac{4(4-1)(4-2)}{3!} \Delta^3 y_0$$

Here
$$u = \frac{x-3c_0}{h} = \frac{x-0}{1} = \infty$$

$$y = -4 + 0 + \frac{x(x-1)}{2!}(4) + \frac{x(x-1)(x-2)}{3!}(6) + 0$$

$$= -4 + 2 \propto (\propto -1) + \propto (\propto -1) (\propto -2)$$

 $y = x^2 - x^2 - 4$ which is the required interpolating polynomial.

Practice session:

1) Find a polynomial passing through the points (0,1), (1,1), (2,7), (3,25), (4,61), (5,121) using Newton's interpolation formula and hence find y and $\frac{dy}{dx}$ at x=0.5

Soln: -

Ans
$$y = 1-x+x^3$$

 $y|_{0.5} = 0.625$
 $\frac{dy}{dx}|_{0.5} = -0.25$

2) Estimate the number of students who secured marks between 40 and 45 from the following table.

Marks	30-40	40-50	50-60	60-70	70-80
No. of students y	31	42	51	35	31

Operator Theory -

- 1) Forward difference operator: (Δ) $\Delta f(x) = f(x+h) f(x)$
- 2) Backward difference operator (∇) $\nabla f(\infty) = f(\infty) f(\infty h)$
- 3) Central difference operator (d) $\delta f(\infty) = f(\infty + \frac{h}{2}) f(\infty \frac{h}{2})$
- 4) Average operator (4) $uf(x) = \frac{f(x+\frac{h}{2}) + f(x-\frac{h}{2})}{2}$

Practice examples:

- 1) Show that $\Delta \nabla = \nabla \Delta = \delta^2$
- 2) Show that $u^2 = 1 + \frac{6^2}{4}$

Shift operator: (E)

$$Ef(x) = f(x+h)$$

$$E_{\chi} t(\infty) = t(\infty + \lambda \mu)$$

Important Relations:

1)
$$\Delta = E-1$$

$$2) \quad \nabla = \mathbf{1} - \mathbf{E}^{-1}$$

3)
$$\delta = E^{k} \nabla$$

4)
$$\delta = \overline{E}^{\frac{1}{2}} \Delta$$

Newton's backward difference interpolating polynomial which passes through (x_i, y_i) i = 0, 1, 2...n is given by

$$y = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n$$
... + $\frac{u(u+1)(u+2) \cdot - \cdot (u+n-1)}{n!} \nabla^n y_n$.

Ex. 1) Estimate the population in 1895 and 1925 from the following statistics.

Year oc:	1891	1901	1911	1921	1931
Population y:	46	66	18	93	101

soln: Newtons forward/backward difference table.

α	y	Ay	∆ ² y	By	449
1891	46	20			
1901	66		-5		
1911	8)	15	-3	·2 -1	-3
1921	93	12	-4		
1931	101	. 8			

.. Forwardedifferences: 20, -5, 2, -3

Backward différences: 8, -4, -1, -3.

Newtons forward difference interpolation:

$$y = y_0 + 4 \Delta y_0 + \frac{4(4-1)}{2!} \Delta^2 y_0 + \frac{4(4-1)(4-2)}{3!} \Delta^3 y_0$$

$$+ \frac{4(4-1)(4-2)(4-3)}{4!} \Delta^4 y_0$$

Here $y_0 = 46$, $\Delta y_0 = 20$, $\Delta^2 y_0 = -5$, $\Delta^3 y_0 = 2$ $\Delta^4 y_0 = -3$

$$u = \frac{3c - x_0}{h} = \frac{1895 - 1891}{10} = 0.4$$

.. y = 54.85

Newtons backdisfaird différence interpolation:

$$y = y_4 + 9 \nabla y_4 + \frac{9(9+1)}{2!} \nabla^2 y_4 + \frac{9(9+1)(9+2)}{3!} \nabla^3 y_4 + \frac{9(9+1)(9+2)(9+3)}{4!} \nabla^4 y_4$$

Here
$$y_4 = 101$$
, $\nabla y_4 = 8$ $\nabla^2 y_4 = -4$ $\nabla^3 y_4 = -1$ $\nabla^4 y_4 = -3$ $Q = \frac{x - x_3}{h} = \frac{1925 - 1931}{10} = -0.6$ $Y = 96.84$

Practice session:

1) For the following tabulated data.

æ	1	2	3	4	5	
y	3.47	6.92	11.25	16.75	22.94	

Find y at $\infty = 4.5$

Ans: 19.81875