COMPUTAÇÃO ADAPTATIVA

COMPUTAÇÃO NEURONAL E SISTEMAS DIFUSOS

Trabalho prático nº 1 − O Perceptrão

1. Objectivos:

- familiarização com a Neural Network Toolbox do Matlab
- treinar um perceptrão para funções lógicas e verificar os limites do perceptrão

2. Elementos de estudo:

Capítulos 2 e 3 das aulas teóricas

NN Toolbox User's Guide

3. Resumo da regra de aprendizagem do perceptrão (um neurónio):

O erro é a diferença entre a saída desejada, $t_{\rm j}$, e a saída de facto obtida $a_{\rm j}$, para uma dada entrada $p_{\rm j}$

$$e_i = t_i - a_i$$

E = T-A (forma matricial)

As actualizações dos pesos (W) e do desvio (b) são dadas, para cada nova entrada p_i fornecida, por:

$$\Delta w_{ji} = e_j p_i$$

 $\Delta b_i = e_i$

Matricialmente

$$\Delta W = e p^T$$

 $\Delta b = e$

Embora m Matlab tenha o treino do perceptrão implementado (ver pag 3.14 do User's Guide fonecido no SI), cada grupo deve programar a técnica.

4. Estrutura de dados da NN Toolbox

Estudar o Cap. 14 do User's Guide sobre as estruturas de dados e de objectos usadas na toolbox RN.

5. Perceptões AND, OR e XOR

Para cada função lógica criar um perceptrão com os dados das tabelas seguintes:

AND	OR	XOR
p1 p2 t	p1 p2 t	p1 p2 t
0 0 0	0 0 0	0 0 0
0 1 0	0 1 0	0 1 0
1 0 0	1 0 0	1 0 0
1 1 1	1 1 1	1 1 1
1		

e treiná-los para ver o que dá.

6. Visualização

Em cada iteração apresentar a evolução (pontos a classificar , fronteira de decisão), como na figura seguinte

7. Conclusões

Analise os resultados obtidos e comente as limitações do perceptrão. Construa uma RN que ultrapasse, nestes exemplos, as limitações do perceptrão.