

The Science Peer Academic Coaches offer 15-minute sessions to help you feel prepared for your final exams.

Study smarter, not harder.

Exam Success in 15 Min or Less!

Create your own study plan, pick up some helpful study tips, and learn essential time management strategies.

April 2 - 12

Lecture 33.

Mutual inductance & Self-inductance.
Uniform and non-uniform magnetic field.
Faraday's law applications: current generator.
Eddy currents.
Are B-field and E-field connected?

Week 10: External current \Longrightarrow

External magnetic field

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I}{r^2} \frac{d\vec{l} \times \hat{r}}{r^2} \qquad B_{wire} = \frac{\mu_0 I}{2\pi r}, \text{ RHR}$$

$$B_{wire} = \frac{\mu_0 I}{2\pi r}$$
, RHR

Week 11:

Changing external current

Changing external magnetic field

Induced magnetic field

Induced current (need a loop)

Inductance: Mutual inductance

- Current i_1 creates magnetic field, $B_{1\text{at}2}$, at the location of Coil 2
- Current i_2 creates magnetic field, B_{2at1} , at the location of Coil 1

- Now assume that $i_1 = i_1(t)$
 - We have: i_1 changes => B_{1at2} changes =>

$$\Phi_2$$
 changes => $\varepsilon_2 = -\frac{d\Phi_2}{dt}$ appears.

• Likewise: i_2 changes => B_{2at1} changes =>

$$B_{\rm 2at1}$$
 changes => Φ_1 changes => $\varepsilon_1 = -\frac{d\Phi_1}{dt}$ appears.

• This is called mutual inductance (change of current in one coil induces emf in another coil)

Inductance: Mutual inductance

EMF induced in Coil 2:

$$\varepsilon_2 = -\frac{d\Phi_2}{dt}$$

$$\Phi_2 \propto B_{1at2} \propto i_1(t)$$

Coil 2

$$\Phi_2 = M_{1\text{at2}} \ i_1(t)$$
, where $M_{1\text{at2}}$ is some constant. Hence, $\varepsilon_2 = -M_{1\text{at2}} \frac{d i_1}{d t}$

$$\varepsilon_2 = -M_{1\text{at}2} \frac{di_1}{dt}$$

• Likewise, if i_2 changes, EMF is induced in coil 1: $\varepsilon_1 = -M_{2\text{at}1} \frac{di_2}{dt}$

$$\varepsilon_1 = -M_{2\text{at}1} \frac{di_2}{dt}$$

• Interestingly, it is always true that: $M_{1at2} = M_{2at1} \equiv M$

Application: Transformers

- Two windings over the same core, one connected to AC source, the other to a resistor
- The magnetic field lines due to a current in one winding are kept almost completely within the iron core (high magnetic permeability).

• Let Φ_B be the magnetic flux through one turn of a coil.

$$\varepsilon_1 = -\frac{d\Phi_{B1}}{dt} = -N_1 \frac{d\Phi_B}{dt}$$

$$\frac{\varepsilon_1}{\varepsilon_2} = \frac{N_1}{N_2}$$

$$\varepsilon_2 = -\frac{d\Phi_{B2}}{dt} = -N_2 \frac{d\Phi_B}{dt}$$

 By changing the ratio of the number of turns in the two coils, we can up- or down-convert the voltage of the AC source

Application: Transformers

Household: 120 V

 High voltage transmission (prevents losses): ~500 kV

 Neighborhood transmission: ~25 kV

$$\frac{\varepsilon_1}{\varepsilon_2} = \frac{N_1}{N_2}$$

• By changing the ratio of the number of turns in the two coils, we can up- or down-convert the voltage of the AC source

Inductance: Self-inductance

 Assume that the current through this solenoid changes.

What happens?

• We have:
$$i$$
 changes => B changes => Φ_B changes => $\varepsilon = -\frac{d\Phi_B}{dt}$ appears

Q: How does the induced EMF depend on the number of turns in the solenoid, N?

- A. It does not depend on *N*
- B. Proportional to *N*
- C. Proportional to N^2
- D. Something else

$$B_{solenoid} = \mu_0 nI$$

Inductance: Self-inductance

 Assume that the current through this solenoid changes.

What happens?

• We have:
$$i$$
 changes => B changes =>

• We have:
$$i$$
 changes => B changes => Φ_B changes => $\varepsilon = -\frac{d\Phi_B}{dt}$ appears.

Q: How does the induced EMF depend on the number of turns in the solenoid, N?

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

$$\Phi_B = N \cdot B(t) A$$

$$\varepsilon = -\frac{d\Phi_B}{dt}$$
 $\Phi_B = N \cdot B(t) A$ $B(t) = \mu_0 \frac{N}{L_S} I(t)$

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\frac{\mu_0 A N^2}{L_0} \frac{di}{dt} = -L \frac{di}{dt} = \Delta V_{L}$$

C. Proportional to
$$N^2$$
D. Something else

Here L is what we know as inductance!!

$$B_{solenoid} = \mu_0 n I$$

Uniform vs non-uniform magnetic field

Week 10: find net force

- Uniform magnetic field
- Same force on the pairs of sides of the loop
- Zero net force

HW 10: find net force

- Non-uniform magnetic field
- Different forces on the horizontal sides of the loop
- Non-zero net force

DEMO!

World's Easiest DIY Electric Train

A battery with two attached magnets streams like crazy through a cooper coil

All parts are conducting => it's a closed circuit

...and B-field builds up inside this coil.

check: E-dipols in Fifield

It's non-uniform => pushes S and N poles differently => net force on the "train"!

Application of Faraday's law: Generator

A device that produces alternating current from mechanical rotation

- Loop rotates => effective area exposed to the magnetic field changes with time (or $\theta = \theta(t)$)
- Cycle: min => increasing => max =>
 decreasing => min => ...
- As a result, an alternating current is produced

https://phet.colorado.edu/en/simulation/legacy/generator

HW-10

Cf: Week 9, electric motor

(current => mechanical rotation)

Example 29.10

• Another current generator: Faraday's disk dynamo

··· Emf induced across this segment is

 $d\mathcal{E} = vB dr = \omega Br dr$.

Idea: Lorentz's force on electrons towards the center =>

If the circuit is closed, conventional current flows in the "from the center" direction

Motional EMF:

$$d\varepsilon = \vec{E} \cdot d\vec{r} = \frac{\vec{F}}{q}d\vec{r} = (\vec{v} \times \vec{B}) \cdot d\vec{r} = vBdr$$

$$\varepsilon = \int_0^R d\varepsilon = \int_0^R vBdr$$
 and $v = \omega r$

$$\varepsilon = B \int_0^R (\omega r) dr = \frac{\omega B R^2}{2}$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Everything is going so well so far...

- But: why changing magnetic flux creates electric current??
- What exactly moves the charges around?
- Does the induced emf appear only in a loop? Can it appear in a piece of metal?
- Yes. Example: Eddy currents.
 - "Whirlpools" of electron motion; no wires to define the path of electrons.
 - Heats the sheet
 - ightharpoonup Force in the direction opposite to \vec{F}_{pull}
 - ⇒ train brakes

Can induced emf appear in air? In vacuum?

• Yes, it can.