Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

6. Prüfungstermin (20.9.2013)

Gruppe A

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe (je 1 Punkt): Teilfolge einer (reellen) Folge, die allgemeine Potenzfunktion, gleichmäßig stetige (reelle) Funktion.
 - (b) Formuliere und beweise den Zwischenwertsatz (Existenz einer Nullstelle). Begründe jeden deiner Beweisschritte! (6 Punkte)
 - (c) Beantworte folgende Fragen zum obigen Beweis. Verweise explizit auf deine Ausarbeitung von (b): Wo wird die Vollständigkeit von \mathbb{R} verwendet, wo die Stetigkeit der Funktion? Ist die Nullstelle eindeutig? (3 Punkte)
- 2. Beispiele und Gegenbeispiele.
 - (a) Folgen 1. Stelle die Folge $a_n = (-1)^n (1+1/n)$ $(n \ge 1)$ auf zwei Arten graphisch dar. (1 Punkt)
 - (b) Reihen. Gib, falls existent, jeweils ein Beispiel für eine (reelle) Reihe mit den folgenden Eigenschaften an: (je 1 Punkt) konvergent aber nicht absolut konvergent, absolut konvergent, absolut konvergent aber nicht konvergent.
 - (c) (Un-)Stetige Funktionen. Zeige explizit die Stetigkeit der Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(t) = t^2 \cos(1/t) \ (t \neq 0), \quad f(0) = 0$$

und die Unstetigkeit der Funktion

$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = x \ (x \le 1)$, $g(x) = -x$, $(x > 1)$.

Fertige jeweils eine Skizze an (je 2 Punkte).

(d) Folgen 2. Berechne die Grenzwerte der Folgen (2+3 Punkte)

$$a_n = 2\sqrt{n + \sqrt{n}} - 2\sqrt{n}, \quad b_0 > 0 \text{ und } b_{n+1} = \frac{1}{2} \left(b_n + \frac{7}{b_n} \right).$$

Bitte umblättern!

3. Vermischtes.

- (a) Reihenkonvergenz anschaulich. Erkläre anschaulich, wie es möglich ist, dass eine Reihe positiver reeller Zahlen überhaupt konvergiert. (3 Punkte).
- (b) Nichtverschwinden auf Umgebung. Formuliere das entsprechende Resultat exakt aus und beweise es: Eine stetige Funktion, die in einem Punkt nicht verschwindet, verschwindet schon auf einer ganzen Umgebung nicht. Begründe jeden deiner Beweisschritte und fertige eine Skizze an (4 Punkte).
- (c) Exponential funktion vs. Potenz funktion. Zeige, dass für alle $k \in \mathbb{N}$

$$\lim_{x \to \infty} \frac{e^x}{r^k} = \infty.$$

Fertige eine Skizze an und interpretiere das Resultat anschaulich. (2 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 3 Punkte)

(a) Für reelle Reihen $\sum a_k$ mit $a_k \geq 0$ für alle $k \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{\infty} a_k \text{ konvergent } \Leftrightarrow s_n = \sum_{k=0}^{n} a_k \text{ beschränkt}$$

(b) Die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, f(x) = 1/x ist im Punkt $x_0 = 0$ stetig ergänzbar.