Aula 12

Projeções (3D → 2D)

Projeção é a transformação necessária para apresentar objetos 3D na tela 2D

As projeções geométricas planares (PGP) são obtidas com a passagem de linhas (projetores) pelos pontos que definem o objeto e a posterior interseção dos projetores com um plano de projeção

Projeção Perspectiva

Projeção Perspectiva

Nesta projeção, objetos mais distantes aparecem menores (esta é a projeção usada na câmara fotográfica e no olho humano)

Projeção Paralela

Projeção Paralela

Nesta projeção, objetos mais distantes aparecem do mesmo tamanho que os mais próximos

Classificação das Projeções

Projeção Paralela

Ponto de projeção no infinito e, portanto, utiliza projetores paralelos

Projeção Paralela Ortogonal (Ortográfica)

É uma projeção paralela em que a direção dos projetores é normal ao plano de projeção

Projeção Paralela Ortogonal Multivista

Diversas vistas (frontal, topo, lateral, etc.) são apresentadas em conjunto. o plano de projeção sempre é paralelo a um

dos três planos x, y e z Projeções

Projeção Paralela Ortogonal Axonométrica

O plano de projeção não é paralelo a um dos planos x, y ou z e, assim, mais de uma face do objeto aparece na projeção final

Projeção Paralela Oblíqua

A direção de projeção não é perpendicular ao plano de projeção, porém, o plano de projeção é paralelo a um dos planos x, y ou z

Projeção Paralela Oblíqua Cavaleira

Muito usada na engenharia, usa dois eixos perpendiculares e o terceiro eixo é inclinado em 45º com o plano de projeção

Projeção Paralela Oblíqua Cabinet

Muito usada na engenharia, usa dois eixos perpendiculares e o terceiro eixo é inclinado em arctan(2) ou $\cong 63,4^{\circ}$

Projeção Perspectiva

Retas paralelas passam a convergir para os pontos de projeção, estando os pontos de projeção sobre os eixos x, y e z e, sendo a redução não uniforme

Projeção Perspectiva

Pintor usando a projeção por um ponto

Projeção Perspectiva

Pintura de Canaletto (1735-1745) da Praça de São Marcos (Veneza) feita usando projeção por um ponto

Projeção por um ponto

Em um desenho com um ponto de fuga, sempre vai existir uma face que não vai aparecer distorcida para o observador, ou seja, será mostrada de frente. No exemplo acima, a parede com a TV é visualizada dessa forma

Projeção Perspectiva

2 Pontos

Projeção Perspectiva

Perspectiva usando dois

Pontos de fuga

Projeção Perspectiva por dois Pontos de fuga

Em um desenho com dois pontos de fuga todas as faces aparecem distorcidas, ou seja, nenhuma aparece de frente.

Projeção Perspectiva

Projeção Perspectiva 3 Pontos

Projeção Paralela: paralelepípedo de visualização Projeção Perspectiva: frustum de visualização

Matrizes de Projeção

Usando matrizes de transformação, uma projeção paralela ortogonal é uma projeção sobre um dos três planos xy, xz ou yz

Exemplo:

matriz de projeção ortogonal sobre o plano xy ou seja, z=0

Matrizes de Projeção

A projeção paralela obliqua pode ser obtida com a matriz de transformação abaixo

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ L\cos\theta & Lsen\theta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{com L} = 1 \text{ e } \theta = 45^{\circ} \text{ para Cavaleira}$$

$$\text{e L} = \frac{1}{2} \text{ e } \theta = \arctan(2) \cong 63,4^{\circ}$$

$$\text{para Cabinet}$$

$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ L\cos\theta & Lsen\theta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x + z \cdot L\cos\theta & y + z \cdot Lsen\theta & 0 & 1 \end{bmatrix}$$

Matrizes de Projeção

A projeção Perspectiva é definida por uma matriz com elementos não nulos na matriz [3x1]

exemplo:

1	0	0	0	
0	1	0	0	corresponde a uma matriz perspectiva
0	0	0	1/R	de um ponto de projeção localizado em
0	0	0	1	z=R, projetado no plano z=0

Matrizes de Projeção

A projeção em perspectiva mais simples usa a origem como centro de projeção e o plano em z = 1 como o plano da imagem. Então a forma funcional desta transformação é x' = x / z e y' = y / z

$$\begin{bmatrix} x & y & z & 1 \\ x & y & z & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} x & y & z & z \end{bmatrix}$$
$$= \begin{bmatrix} \frac{x}{z} & \frac{y}{z} & \frac{z}{z} & 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{z} & \frac{y}{z} & 1 & 1 \end{bmatrix}$$

Matrizes de Projeção

De modo geral, a figura mostra a projeção p' do ponto p no

plano

Por semelhança de triângulos, $\frac{y}{z+d} = \frac{y'}{d} \Rightarrow y' = \frac{y}{1-\frac{z}{d}}$ e fazendo o mesmo para x' e z' tem-se

$$\begin{bmatrix} \frac{x}{1 - \frac{z}{d}} & \frac{y}{1 - \frac{z}{d}} & \frac{z}{1 - \frac{z}{d}} & 1 \end{bmatrix}$$

Matrizes de Projeção

Para facilitar a matriz de transformação, reescreve-se

$$\begin{bmatrix} \frac{x}{1 - \frac{z}{d}} & \frac{y}{1 - \frac{z}{d}} & \frac{z}{1 - \frac{z}{d}} & 1 \end{bmatrix}$$

$$\begin{bmatrix} x & y & z & 1 - \frac{z}{d} \end{bmatrix}$$

para

e a matriz fica
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrizes de Projeção

Exemplos de projeções de dois e três pontos são:

$\lceil 1 \rceil$	0	0	1/R1		$\lceil 1 \rceil$	0	0	1/R1
0	1	0	1/ <i>R</i> 2	e	0	1	0	1/ <i>R</i> 2
0	0	1	0	J	0	0	1	1/ <i>R</i> 3
$\lfloor 0$	0	0	1		$\lfloor 0$	0	0	1

Geometria da Projeção Perspectiva

A projeção perspectiva pode ser construída geometricamente, encontrando as interseções dos pontos no espaço 3D com

o plano de projeção

Ponto de Projeção P₁=(a,b,c)

Ponto a ser Projetado

 $\circ P_2 = (d, e, f)$

A reta P₁P₂ em coordenadas paramétricas fica:

$$x = a + (d - a).t$$
 (1)

$$y = b + (e - b).t$$
 (2)

$$z = c + (f - c).t$$
 (3)

Geometria da Projeção Perspectiva

Em (3), quando z=0

$$c + (f - c).t = 0$$

$$\log (f - c).t = -c$$

então,
$$t = \frac{-c}{f - c}$$
 ou, ainda $t = \frac{c}{c - f}$

substituindo t em (1) e (2) tem - se :

$$x = a + (d - a).t$$
 (1)

$$y = b + (e - b).t$$
 (2)

$$z = c + (f - c).t$$
 (3)

$$x = a + \frac{c}{c - f} (d - a)$$

$$y = b + \frac{c}{c - f} (e - b)$$

deste modo, dado um ponto qualquer (d,e,f) no espaço 3D, é projetado no plano z=0 com o ponto de projeção em (a,b,c)

Exercício: entregar agora

Considerando o ponto de projeção (10,10,-10), projete o ponto (40,30,50) no plano z = 0

