奈米纖維素

-改質後吸附金屬離子能力之探討

作者:蔡宇翔

江昀容

指導老師:曹淇峰老師

指導教授:蔡偉博教授

大綱

- 動機
- 奈米纖維素簡介
- •研究目的
- 方法與過程
- 研究結果
- 未來展望

研究動機

- •工業革命以來,人類持續對地球造成傷害
- •空氣汙染、全球暖化、廢油、廢熱汙染、水質汙染
- 工廠惡意排放、家庭、畜牧業廢水,對生態造成一定影響
- 奈米纖維素具有可以淨化水質的能力

奈米纖維素晶體 cellulose nanocrystal

- ●簡稱為CNC
- ●長度介於100~2000nm
- ●粒徑約2~20nm
- ●其表面積比一般纖維素大
- ●進行表面改質以吸附重金屬離子

表面改質

研究問題

- ●從植物中萃取CNC
- ●CNC改質
- ●CNC製成濾紙後吸附
- ●不同吸附環境之研究
- ●不同重金屬之吸附比較

研究方法與過程

- ●萃取CNC
- ●CNC改質

醛基化 磺酸化 羧酸化

- ●製作濾紙,並加入各種CNC
- 銅、鎳離子濃度檢量線
- ●吸附效果測量

奈米纖維素的萃取—酒糟

表面改質一醛基化

- CNC (g): NaIO₄ (g) = 1:3
- ●調整pH值至3~4之間
- ●避光在45°C溫水浴下反應 4hr
- ●NalO₄ (g): 乙二醇(mL)= 2:1 (除去過多的NalO₄)
- ●透析兩天

表面改質一醛基化

表面改質一羧酸化

- ●在CNC中加入TEMPO、NaBr、NaClO
- ●常溫下反應4小時
- ●pH值維持9-10
- ●透析兩天

TEMPO結構式

表面改質一羧酸化

表面改質一磺酸化

- ●醛基化CNC質量(g): NaHSO₃ (g)= 1:1
- ●室溫反應72hr
- ●透析兩天

表面改質一磺酸化

製作濾紙

- ●竹纖維及CNC加水放入果汁機打散
- ●打好的紙漿開始操紙
- ●操紙後放入烘箱烘乾
- ●測量紙張的厚度、面密度、過濾速度

過濾裝置圖

操紙機

UPNKO

銅離子濃度檢量線

配製0.005~0.020M共16組不同濃度的硫酸銅溶液

$$Cu^{2+} + 4 NH_3 \rightarrow Cu(NH_3)_4^{2+}$$

產生藍色錯合物

- 每一組取0.1 mL 以光電比色計測量吸光度
- 吸光度跟濃度成線性關係

銅離子濃度檢量線

CNC灑在紙上並吸附

- ●將50mg的改質CNC均勻灑在濾紙上
- ●用檸檬酸&次磷酸鈉進行crosslink(將CNC鍵結於紙上)
- ●在0.005M的硫酸銅溶液進行吸附一天
- ●比色並比較結果

不同吸附環境探討

- ●將原本pH=5的硫酸銅吸附環境調整成pH=3
- ●將含有不同改質CNC的濾紙浸泡於硫酸銅溶液中
- ●比色並比較酸性環境之影響
- ●不比較鹼性環境原因:銅離子沉澱

不同重金屬吸附探討一鎳

●配製0.016~0.030M共15組硫酸鎳溶液,並比色

$$Ni^{2+} + 6NH_3 \rightarrow Ni(NH_3)_6^{2+}$$

●繪製成檢量線

藍紫色錯合物

錦離子濃度檢量線

不同重金屬吸附探討一鎳

- ●含有羧酸化CNC的濾紙浸泡於0.015M硫酸鎳溶液中
- ●吸附一天後比色

研究結果一紙張物理性質

竹纖紙重量測量次數	4g	3g	2g	2g+0.2g CNC
紙張厚度	0.049	0.040	0.037	0.038
面密度(g/cm^2)	0.019	0.015	0.010	0.011
過濾速率(mL/s)	0.50	0.35	11.42	8.79

考量到過濾速度,我們決定用2g的竹纖維紙做為濾紙

研究結果—CNC操在紙上吸附

吸光度 組別	吸附前溶液	醛基化	羧酸化		
第一組		0.087	0.090		
第二組	0.090	0.089	0.091		
第三組	0.090	0.092	0.092		
Avg		0.089	0.091		
濃度換算(M)	幾乎無吸附				
m-mol(Cu)/50mg	戏于無吸削				
mg(Cu)/1g(CNC)					

因為吸附效果不佳,推測操 紙時沒有將CNC留在紙上

研究結果一CNC灑在紙上吸附

CNC種類 及環境	吸附前溶液	羧酸化	醛基化	磺酸化
比色數據	0.096	0.087	0.089	0.091
濃度換算(M)	0.0045	0.0036	0.0038	0.0040
m-mol(Cu) /50mg	-	0.0216	0.0168	0.012
mg(Cu) /1g(CNC)	-	27.65	21.5	15.48

- 1. 灑在濾紙上可以讓CNC 有效吸附重金屬
- 2. 其中又以羧酸化CNC吸 附效果最佳

研究結果一比較吸附環境

CNC種類 及環境	吸附前溶液	羧酸化	羧酸化 (酸)	醛基化	醛基化 (酸)	磺酸化	磺酸化 (酸)
比色數據	0.096	0.087	0.091	0.089	0.089	0.091	0.091
濃度換算(M)	0.0045	0.0036	0.0040	0.0038	0.0038	0.0040	0.0040
m-mol(Cu) /50mg	-	0.0216	0.012	0.0168	0.0168	0.012	0.012
mg(Cu) /1g(CNC)	-	27.65	15.48	21.5	21.5	15.48	15.48

酸性環境對於羧酸化CNC的吸附效果影響較大

研究結果—線離子的吸附

吸光度 組別	吸附前溶液	羧酸化
比色數據	0.062	0.056
濃度換算(M)	0.0153	0.0118
m-mol(Ni) /50mg		0.0263
mg(Ni) /1g(CNC)	(30.81

● 羧酸化CNC也可有效 吸附鎳離子

結論

- ●噴灑在濾紙上的CNC成功吸附重金屬
- ●其中又以羧酸化CNC對銅、鎳離子的吸附能力最強
- ●羧酸化CNC吸附效果為醛基化的1.5倍,為磺酸化的2倍
- ●酸性環境下對羧酸化CNC吸附的影響最大

未來展望

- ●往低廉海洋濾水器發展 (羧酸化CNC效果最佳)
- ●測量更多種類重金屬的吸附效果
- ●測試更多植物纖維奈米化後的產量差異

THE END~感謝

- 台大化工系副系主任 蔡偉博教授
- 台大化工系N402實驗室
- 建國中學化學科教師 曹淇峰老師
- 建國中學226班導師 高君陶老師
- 建國中學225班導師 姚志鴻老師
- 建國中學 特教組
- 背後默默支持我們的父母

