Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean

Paper report by: Nikita Ivlev, Lev Leontev, Aleksandr Kariakin

Introduction

Skip-gram architecture

Skipgrams

Step - 1 The product is really good The product is wonderful The product is awful

Step - 3

1	The	1	0	0	0	0	0	0
2	product	0	1	0	0	0	0	0
3	is	0	0	1	0	0	0	0
4	really	0	0	0	1	0	0	0
5	wonderful	0	0	0	0	1	0	0
6	good	0	0	0	0	0	1	0
7	awful	0	0	0	0	0	0	1

Skip-gram architecture

Skipgrams

Step - 1

The product is 'eally good The product is wonderful The product is awful

Step - 4

Input Words	Target Word
product	The
product	is

Hierarchical Softmax

Hierarchical Softmax

$$p(w|w_I) = \prod_{j=1}^{\infty} \sigma\left(\llbracket n(w, j+1) = \operatorname{ch}(n(w, j)) \rrbracket \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I}\right)$$
$$\sum_{w=1}^{W} p(w|w_I) = 1 \qquad \mathcal{O}(W^2) \to \mathcal{O}(W \log(W))$$

Negative Sampling

Subsampling of Frequent Words

"in", "the", "a" — ?

To counter the imbalance between the rare and frequent words, we used a simple subsampling approach: each word w_i in the training set is discarded with probability computed by the formula

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}} \tag{5}$$

Learning Phrases

$$score(w_i, w_j) = \frac{count(w_i w_j) - \delta}{count(w_i) \times count(w_j)}$$

NBA Teams							
Detroit	Detroit Pistons	Toronto	Toronto Raptors				
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies				
	Airlines						
Austria	Austrian Airlines	Spain	Spainair				
Belgium	Brussels Airlines	Greece	Aegean Airlines				
Company executives							
Steve Ballmer	Microsoft	Larry Page Werner Vogels	Google				
Samuel J. Palmisano	Samuel J. Palmisano IBM		Amazon				

Phrase Skip-Gram Results

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Comparison to Published Word Representations

Model (training time)	Redmond	Havel	ninjutsu	graffiti	capitulate
Collobert (50d)	conyers	plauen	reiki	cheesecake	abdicate
(2 months)	lubbock	dzerzhinsky	kohona	gossip	accede
	keene	osterreich	karate	dioramas	rearm
Turian (200d)	McCarthy	Jewell	-	gunfire	-
(few weeks)	Alston	Arzu	-	emotion	-
	Cousins	Ovitz	-	impunity	-
Mnih (100d)	Podhurst	Pontiff	1.5	anaesthetics	Mavericks
(7 days)	Harlang	Pinochet	-	monkeys	planning
W 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Agarwal	Rodionov	_	Jews	hesitated
Skip-Phrase	9 Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
(1000d, 1 day)	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model trained on phrases using over 30 billion training words. An empty cell means that the word was not in the vocabulary.