Single Image Haze Removal Using Dark Channel Prior

Team4 r11943018 林子軒、r11943022 范詠為

Outline

- Motivation
- Problem Definition
- Introduction
- Algorithm
- Expected Results
- Demo / Results
- Reference

Motivation

When traveling in the mountains and forests, the photos often appear hazy and unclear. By using image dehazing, we can restore the pictures to their original clarity as much as possible.

Problem Definition

Goal: Produce a visually pleasing and natural-looking haze-free image that enhances the details and colors of the scene while preserving its overall appearance.

Application

surveillance

- object detection & recognition
- o identification of people or vehicles

aerial photography

- o the clarity of the terrain
- detect changes or anomalies in the landscape

computer vision

- image classification, segmentation, or tracking
- o improve the accuracy

Related Methods

Different categories of image dehazing methods [2]

Haze Imaging Equation

$$t(\mathbf{x}) = e^{-\beta d(\mathbf{x})}$$

medium transmission

$$\underline{\mathbf{I}(\mathbf{x})} = \underline{\mathbf{J}(\mathbf{x})}\underline{t(\mathbf{x})} + \underline{\mathbf{A}}(1 - t(\mathbf{x}))$$

observed intensity

scene radiance

atmospheric light

hazy

haze-free

Dark Channel Prior (DCP)[1]

In outdoor haze-free images, pixels with low intensity in at least one RGB channel are commonly found in local regions not covering the sky.

Dark Channel Prior (DCP)[1]

Mainly result from three factors:

- shadows
- colorful objects or surfaces
- dark objects or surfaces

Dark Channel Prior (DCP)[1]

$$J^{\mathrm{dark}}(\mathbf{x}) = \min_{\mathbf{y} \in \Omega(\mathbf{x})} \left(\min_{c \in \{r,g,b\}} J^c(\mathbf{y}) \right) ~~ \mathbf{0} \text{ if haze-free}$$
 arbitrary image J $\min_{(b)} \mathrm{of}(r,g,b) = \mathrm{minimum}(15x15)$

Algorithm

Refine Transmission Map

Soft-matting

- large sparse linear system
- time-consuming

$$E(\mathbf{t}) = \mathbf{t}^{\mathrm{T}} \mathbf{L} \mathbf{t} + \lambda (\mathbf{t} - \tilde{\mathbf{t}})^{\mathrm{T}} (\mathbf{t} - \tilde{\mathbf{t}}).$$

$$\sum_{k|(i,j)\in w_k} \left(\delta_{ij} - \frac{1}{|w_k|} \left(1 + (\mathbf{I}_i - \mu_k)^T \left(\Sigma_k + \frac{\varepsilon}{|w_k|} \mathbf{U}_3 \right)^{-1} (\mathbf{I}_j - \mu_k) \right) \right),$$
(16)

Guided Filter

- spatial kernel (gaussian)
- guided range kernel
- much faster (box filter)

Expected Result - Qualitative

Fig. 6. Haze removal. (a) Input hazy images. (b) Estimated transmission maps before soft matting. (c) Refined transmission maps after soft matting. (d), (e) Recovered images using (b) and (c), respectively.

Expected Result - Quantitative

Peak Signal-to-Noise Ratio (PSNR)

$$PSNR = 10\log_{10}\left(\frac{255^2}{MSE}\right)$$

Structural Similarity Index (SSIM)

$$SSIM(r,i) = \left(\frac{2\mu_r \mu_i + c_1}{\mu_r^2 + \mu_i^2 + c_1}\right) \left(\frac{2\mu_{ri} + c_2}{\sigma_r^2 + \sigma_i^2 + c_2}\right)$$

Table 17 PSNR and SSIM comparison of existing techniques on RESIDE dataset

Method	SOTS Outdoor		SOTS Indoor	
	PSNR	SSIM	PSNR	SSIM
DCP [63]	19.13	0.82	16.62	0.82

with ground-truth

Demo

Result (DCP)

Result (DCP)

Scene - City

Scene - Forests / Mountains

Scene - Buildings

DCP Speed (s)

Image size	(408x612)	(800x1200)	(1500x2000)
1. preprocess	0.016	0.034	0.077
2. dcp	1.673	6.066	18.783
3. estimate A	0.011	0.042	0.157
4. estimate tmap	1.975	5.849	18.266
5. refine tmap (guided filter)	0.024	0.097	0.330
6. scene reconstruction	0.010	0.032	0.106
Total	3.709	12.121	37.719

DCP Window Size

Guided Filter Window Size

Future Work

- Apply DCP/GIMP on RESIDE dataset
 - image result
 - o PSNR, SSIM
- Soft-matting vs. Guided filter (DONE)
 - speed & performance
- Pre/Post-processing for better result
 - contrast enhancement
 - color correction
 - noise reduction

Reference

[1] He, Kaiming, Jian Sun, and Xiaoou Tang. "Single image haze removal using dark channel prior." *IEEE transactions on pattern analysis and machine intelligence* 33.12 (2010): 2341-2353.

[2] Agrawal, Subhash Chand, and Anand Singh Jalal. "A comprehensive review on analysis and implementation of recent image dehazing methods." *Archives of Computational Methods in Engineering* 29.7 (2022): 4799-4850.

Todos

- DEMO 前
 - 傳統DCP
 - use guided filter (explain) DONE
 - 在不同階段的圖(e.g. transmission map & refined map) DONE
 - 圖片結果
 - RESIDE dataset DONE, real image DONE
 - PSNR, SSIM
 - RESIDE dataset DONE
 - 不同場景比較 DONE
 - 速度分析 DONE
 - 不同參數速度、效果比較DONE
 - NN-based
 - 用 pretrained model inference
 - 圖片結果
 - RESIDE dataset DONE, real image DONE
 - PSNR, SSIM
 - RESIDE dataset DONE
 - inference 速度 DONE
 - 不同場景比較DONE
- DEMO 後 future work
 - RESIDE dataset DONE
 - 可能可以實作soft-matting看有多慢 DONE
 - 其他優化(pre/post processing 讓圖片變更自然 Contrast Enhancement)