FACULTAD DE CIENCIAS

Tarea 5 Análisis Númerico

Oscar Andrés Rosas Hernandez Alarcón Alvarez Aylin Pahua Castro Jesús Miguel Ángel

Diciembre 2018

ÍNDICE

$\mathbf{\acute{I}ndice}$

1	D 1	Allowers de Comments de la comments	0
Ι.	Pro	blemas de Computadora	2
	1.1.	12	3
	1.2.	13	4
	1.3.	14	6
	1.4.	15	7
	1.5.	16	8
	1.6.	17	15
	1.7.	18	17
2.	Ane	exo	19
	2.1.	HermiteInterpolant	19
	2.2.	LagrangeInterpolant	20
	2.3.	NewtonInterpolant	21
	2.4.	Spline3Interpolant	23

1. Problemas de Computadora

Una nota importante es que al inicio de CADA script se incluyen los algoritmos, porfavor cambia el valor de la variable Directory para que sea un string que apunte desde donde estas a donde estan la carpeta de los algoritmos

Esta linea:

getd(pwd() + Directory);

Para ejecutar cada uno basta con hacer algo como:

exec("/Users/mac/Documents/Projects/Learning/UNAM/NumericalAnalysis/Homework4/Code/1.sce", -1)

1.1. 12

Ejecuta los scripts que esta dentro de Code llamado: 12a.sce y 12b.sce

En este código muestra justo lo que se nos pide, eso si, calcular este interpolante toma un par de segundos, ten paciencia.

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

        points = [ \\ -0.5; \\ -0.25;
11
13
        \begin{array}{ll} {\rm valuations} = [ \\ {-0.024}; \end{array}
14
                0.334;
1.101;
\frac{19}{20}
                0.751;
2.189;
4.002;
21
22
24
25
27
28
        pointsEvaluated = HermiteInterpolant(points, valuations, derivatives, pointsToEvaluate)
        plot(points, valuations, "*red")
plot(pointsToEvaluate, pointsEvaluated, "-blue")
30
31
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

  3
          points = [
0.1;
0.2;
0.3;
0.4;
11
13
14
                     -0.620;
-0.283;
16
17
\frac{19}{20}
                     0.248;
21
\frac{22}{23}
          \begin{array}{rl} {\rm derivatives} \; = \; [ \\ 3.585 \, ; \end{array}
24
25
                     3.140;
2.666;
26
27
28
30
31
32
33
          plot(points, valuations, "*red")
plot(pointsToEvaluate, pointsEvaluated, "-blue")
```

1.2. 13

Ejecuta los scripts que esta dentro de Code llamado: 13a.sce, 13b.sce y 13c.sce Creo que es obvio que gracias a la información en la derivada Hermite será mejor

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

10
13
                  0;
0.6;
15
16
18
          valuations = [
    f(points(1));
    f(points(2));
    f(points(3));
19
20
21
23
24
          \begin{array}{l} derivatives = [\\ & ( \ f(points(1) + 0.00001) - \ f(points(1)) \ ) \ / \ (0.00001); \\ & ( \ f(points(2) + 0.00001) - \ f(points(2)) \ ) \ / \ (0.00001); \\ & ( \ f(points(3) + 0.00001) - \ f(points(3)) \ ) \ / \ (0.00001); \\ \end{array} 
25
26
28
29
31
32
          pointsToEvaluate = linspace(-0.1, 1, 30)
          pointsEvaluated1 = HermiteInterpolant(points, valuations, derivatives, pointsToEvaluate)\\ pointsEvaluated2 = LagrangeInterpolant(points, valuations, pointsToEvaluate)
\frac{34}{35}
         plot(points, valuations, "*red")
plot(pointsToEvaluate, pointsEvaluated1, "-blue")
plot(pointsToEvaluate, pointsEvaluated2, "-green")
plot(pointsToEvaluate, f(pointsToEvaluate), "-m")
37
38
39
40
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Angel

 6
12
                     0;
0.6;
14
15
17
18
          valuations = [
    f(points(1));
    f(points(2));
    f(points(3));
20
21
23
24
          \begin{array}{l} derivatives = [\\ & (\ f(points(1)\ +\ 0.00001)\ -\ f(points(1))\ )\ /\ (0.00001);\\ & (\ f(points(2)\ +\ 0.00001)\ -\ f(points(2))\ )\ /\ (0.00001);\\ & (\ f(points(3)\ +\ 0.00001)\ -\ f(points(3))\ )\ /\ (0.00001); \end{array}
25
26
27
31
32
           pointsEvaluated1 = HermiteInterpolant(points, valuations, derivatives, pointsToEvaluate)\\ pointsEvaluated2 = LagrangeInterpolant(points, valuations, pointsToEvaluate)
```

```
plot(points, valuations, "*red")
plot(pointsToEvaluate, pointsEvaluated1, "-blue")
plot(pointsToEvaluate, pointsEvaluated2, "-green")
plot(pointsToEvaluate, f(pointsToEvaluate), "-m")

hl=legend(['Points'; 'Hermite'; 'Lagrange'; 'Real']);
xtitle("Hermite Interpolant", "x", "f(x)");
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

  3
11
13
                     0;
0.6;
0.9;
14
16
17
          valuations = [
    f(points(1));
    f(points(2));
    f(points(3));
19
20
21
23
24
          \begin{array}{l} derivatives = [\\ & (\ f(points(1)\ +\ 0.00001)\ -\ f(points(1))\ )\ /\ (0.00001);\\ & (\ f(points(2)\ +\ 0.00001)\ -\ f(points(2))\ )\ /\ (0.00001);\\ & (\ f(points(3)\ +\ 0.00001)\ -\ f(points(3))\ )\ /\ (0.00001); \end{array}
25
27
28
30
31
          pointsEvaluated1 = HermiteInterpolant(points, valuations, derivatives, pointsToEvaluate)\\ pointsEvaluated2 = LagrangeInterpolant(points, valuations, pointsToEvaluate)
33
35
36
          plot(points, valuations, "*red")
plot(pointsToEvaluate, pointsEvaluated1, "-blue")
plot(pointsToEvaluate, pointsEvaluated2, "-green")
plot(pointsToEvaluate, f(pointsToEvaluate), "-m")
38
39
           hl=legend(['Points'; 'Hermite'; 'Lagrange'; 'Real']);
xtitle("Hermite Interpolant", "x", "f(x)");
41
42
```

1.3. 14

Ejecuta los scripts que esta dentro de Code llamado: 14a.sce y 14b.sce

En este código muestra justo lo que se nos pide, eso si, grafico ambos interpolantes de Newton, para que veas que son iguales e incluso hice que dentro del interpolante de Newton nos genere un string con la representación del interpolante, se ve bonito.

```
Rosas Hernandez Oscar Andres
Alarcón Alvarez Aylin Yadira Guadalupe
                                      Pahua Castro Jesús
                                                                                  Miguel Ångel
                   -0.5; \\ -0.25;
12
13
15
                   0.334;
16
17
                    1.101;
18
\frac{20}{21}
          pointsEvaluated = NewtonHomogeneousInterpolant(points, valuations, pointsToEvaluate)\\ pointsEvaluated2 = NewtonInterpolant(points, valuations, pointsToEvaluate)
\frac{23}{24}
         \begin{array}{lll} plot\left(points\;,\;valuations\;,\;"*red"\right)\\ plot\left(pointsToEvaluate\;,\;pointsEvaluated2\;,\;"-green"\right)\\ plot\left(pointsToEvaluate\;,\;pointsEvaluated\;,\;"-blue"\right) \end{array}
25
\frac{26}{27}
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Angel

         \begin{array}{ccc} \mathtt{points} &=& [\\ &0.1; \end{array}
10
                  0.3;
11
13
14
                   -0.620;
-0.283;
17
19
                   0.248;
20
23
24
25
         pointsEvaluated = NewtonHomogeneousInterpolant(points, valuations, pointsToEvaluate)\\ pointsEvaluated2 = NewtonInterpolant(points, valuations, pointsToEvaluate)
26
27
         plot (pointsToEvaluate, pointsEvaluated2, "-green") plot (pointsToEvaluate, pointsEvaluated, "-blue")
28
29
30
```

1.4. 15

Ejecuta los scripts que esta dentro de Code llamado: 15.sce

En este código muestra justo lo que se nos pide. Se puso todo en un solo archivo justo para comparar:

Ahora si:

- En [1,5] El mejor tiene que ser el polinomio por lo cerca que esta con respecto a la verdadera función gamma, digo no hay mucho mas que decir, fácil de deducir porque el polinomio tiene un grado mas que el Spline en este Castro
- En [1,2] Tiene mucho mejor rendimiento el Spline, por la misma razón, al solo representar un fragmento lo peude hacer mucho mejor, mientras que el polinomio tiene que ser el mismo para este fragmento y para todo lo demas, por lo que en giros bruscos es mcuho mejor el spline. Como en este caso.

```
6
7
8
9
                                x(1)^2 x(1)^3 
 x(2)^2 x(2)^3 
 x(3)^2 x(3)^3
10
13
14
15
16
                    Coefficients (1)
Coefficients (2)
Coefficients (3)
17
18
                    Coefficients (4)
Coefficients (5)
20
21
22
23
24
         function [x] = f(x) 
    x = a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4 endfunction
26
27
28
29
30
         [estimations] = f(points);
plot(points, estimations, "black-");
31
32
33
34
35
36
37
38
         plot(points, estimations, "blue-");
plot(points, gamma(points), "red-");
plot(x, y, "m*");
39
40
41
43
```

1.5. 16

- a) En el inciso A hay solo que calcular condicionales y como dice que lo hagamos a través de una libreria lo hice usando la función de scilab. Donde si bien a todas las fue de la patada, tengo que admitir que la versión 4) es la mejor y por mucho.
- c) Pues hace lo que tiene que hacer :v
- d) Ahi notamos la ventaja del Spline, porque en los polinomio en los extremos tienen unas pendientes terriblemente feas. Pero el spline no :)

No esta extremadamente cerca pero la idea esta bien.

- e) Toma su tiempo, no te preocupes, pero obviamente da el mismo polinomio.
- f) Da obviamente da el mismo polinomio.

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

 6
                  1900.
10
                  1930:
15
                  1960:
18
\frac{20}{21}
                  076212168;
                  092228496;
106021537;
123202624;
23
26
                  151325798
28
29
                  203302031
                  226542199:
31
32
34
35
         function [y] = f2(t, j)

y = (t - 1900)^{(j-1)}
37
38
39
         \begin{array}{ccc} function & [y] & = & f3(t, j) \\ y & = & (t - 1940) \hat{\ }(j - 1) \end{array}
\frac{40}{41}
42
43
44
         function [y] = f4(t, j)
y = ((t - 1940) / 40)^{(j-1)}
45
46
47
48
49
50
51
52
53
54
```

```
f1(x(9), 2)
f1(x(9), 9)
                                                                                                                        f1(x(9), 3) f1(x(9), 4) f1(x(9), 5) f1(x(9), 6) f1(x(9), 7)
 57
  60
                             f_{2}(x(1), 1)
  61
                 A2
  62
                                                                         f2(x(1), 2)

f2(x(1), 9)

f2(x(2), 2)

f2(x(2), 9)

f2(x(3), 2)

f2(x(3), 9)
                              f2(x(1), 8)

f2(x(2), 1)

f2(x(2), 8)
  63
                              f2(x(3), 1)

f2(x(3), 8)
  64
                               f2(x(4), 1)

f2(x(4), 8)

f2(x(5), 1)
                                                                          f2(x(4), 2)

f2(x(4), 9)

f2(x(5), 2)
  65
  66
                                                                         f2(x(5), 9)

f2(x(6), 9)
                              f2(x(5), 8)
f2(x(6), 1)
  67
                                                                          f2(x(6), 9)

f2(x(7), 9)

f2(x(7), 9)
                              f_{2}(x(7), 1)
f_{2}(x(7), 8)
  68
                                                                          f_2(x(8), 2)

f_2(x(8), 9)
  69
                              f2(x(9), 1)
  70
  71
  73
  74
                 АЗ
                                                                         f3(x(1), 2)

f3(x(1), 9)

f3(x(2), 2)

f3(x(2), 9)
                             f3(x(2), 1)

f3(x(2), 8)
  76
                             f3(x(2), 8)

f3(x(3), 1)

f3(x(3), 8)

f3(x(4), 1)

f3(x(4), 8)

f3(x(5), 1)
                                                                         f3(x(2), 9)

f3(x(3), 2)

f3(x(3), 9)

f3(x(4), 2)

f3(x(4), 9)

f3(x(5), 2)
  77
  79
                                                                         f3(x(5), 9)

f3(x(6), 2)

f3(x(6), 9)
                              f3(x(6), 1)

f3(x(6), 8)
  80
                                                                                                                       f3(x(6), 3)
                                                                                                                                                                   f3(x(6), 4)
                                                                                                                                                                                                                                                             f3(x(6), 6)
                                                                                                                                                                                                                                                                                                          f3(x(6), 7)
                               f3(x(7), 1)

f3(x(7), 8)
                                                                          f3(x(7), 2)
f3(x(7), 9)
  81
  82
                              f3(x(8), 8)

f3(x(9), 1)

f3(x(9), 8)
                                                                         f3(x(8), 9)

f3(x(9), 2)
  83
  84
  87

\begin{array}{l}
f_4(x(1), 1) \\
f_4(x(1), 8) \\
f_4(x(2), 1) \\
f_4(x(2), 8)
\end{array}

                                                                         f4(x(1), 2)

f4(x(1), 9)

f4(x(2), 2)

f4(x(2), 9)

f4(x(3), 2)
  88
  89
  90
                                                                         f4(x(3),
f4(x(3),
f4(x(4),
f4(x(4),
f4(x(5),
f4(x(5),
f4(x(6),
f4(x(6),
                              f4(x(3), 8)
f4(x(4), 1)
f4(x(4), 8)
f4(x(5), 1)
f4(x(5), 8)
  91
  92
                             \begin{array}{c} \text{f4} \left( \mathbf{x}(5) \,,\,\, 8 \right) \\ \text{f4} \left( \mathbf{x}(6) \,,\,\, 1 \right) \\ \text{f4} \left( \mathbf{x}(6) \,,\,\, 8 \right) \\ \text{f4} \left( \mathbf{x}(7) \,,\,\, 1 \right) \\ \text{f4} \left( \mathbf{x}(7) \,,\,\, 8 \right) \\ \text{f4} \left( \mathbf{x}(8) \,,\,\, 1 \right) \\ \text{f4} \left( \mathbf{x}(8) \,,\,\, 8 \right) \\ \text{f4} \left( \mathbf{x}(9) \,,\,\, 1 \right) \\ \text{f4} \left( \mathbf{x}(9) \,,\,\, 8 \right) \end{array}
  93
                                                                          f4(x(7), 2)

f4(x(7), 9)

f4(x(8), 2)
  94
  95
                                                                         f4(x(8),
f4(x(9),
f4(x(9),
  96
  97
  98
               disp(cond(A1))
disp(cond(A2))
disp(cond(A3))
disp(cond(A4))
100
101
102
103
              Coefficients = inv (A4) * y
a0 = Coefficients (1)
a1 = Coefficients (2)
a2 = Coefficients (3)
104
105
106
108
               egin{array}{ll} a4 &=& Coefficients (5) \ a5 &=& Coefficients (6) \end{array}
109
                                Coefficients (7)
111
112
114
115
```

```
function [x] = f(x)
    x = a0*f4(x, 1) + a1*f4(x, 2) + a2*f4(x, 3) + a3*f4(x, 4) + a4*f4(x, 5) + a5*f4(x, 6) +
    a6*f4(x, 7) + a7*f4(x, 8) + + a8*f4(x, 9)
endfunction

points = linspace(1900, 1980)';

[estimations] = f(points);
plot(points, estimations, "black-");
plot(x, y, "m*");

legend(['Poly'; 'Points'])
xtitle("Population data", "year", "population");
```

```
[
1900;
1910;
1920;
   10
   11
   13
   16
                                                                                          [
076212168;
092228496;
   18
   19
   21
                                                                                            123202624:
                                                                                            132164569;
   23
   24
                                                                                            203302031;
 26
27
                                               29
   30
                                                                                      = \begin{bmatrix} f4(x(1), 1) \\ f4(x(2), 1) \\ f4(x(2), 1) \\ f4(x(3), 1) \\ f4(x(3), 1) \\ f4(x(3), 1) \\ f4(x(4), 1) \\ f4(x(5), 1) \\ f4(x(6), 1) \\ f4(x(6), 1) \\ f4(x(7), 1) \\ f4(x(8), 1) \\ f4(x(8), 1) \\ f4(x(9), 1) \\ f4(x(9), 8) \\ f4(x(9), 1) \\ f4(x(9), 8) \\ f4(x(9), 8
   32
                                               A4 =
                                                                                                                                                                                                                                  \begin{array}{c} f4\left(x\left(1\right),\ 2\right) \\ f4\left(x\left(1\right),\ 9\right) \\ f4\left(x\left(2\right),\ 2\right) \\ f4\left(x\left(2\right),\ 9\right) \\ f4\left(x\left(3\right),\ 9\right) \\ f4\left(x\left(4\right),\ 2\right) \\ f4\left(x\left(4\right),\ 9\right) \\ f4\left(x\left(5\right),\ 2\right) \\ f4\left(x\left(6\right),\ 9\right) \\ f4\left(x\left(6\right),\ 9\right) \end{array}
   33
   34
35
36
 37
   38
 39
                                                                                                                                                                                                                                        \begin{array}{c} f4(x(6), 2) \\ f4(x(6), 9) \\ f4(x(7), 2) \\ f4(x(7), 9) \end{array}
   40
                                                                                                                                                                                                                                      f4(x(7), 9)

f4(x(8), 2)

f4(x(8), 9)

f4(x(9), 2)

f4(x(9), 9)
   41
 42
   43
                                           disp(cond(A1))
disp(cond(A2))
disp(cond(A3))
disp(cond(A4))
// @Author: Rosas Hernandez Oscar Andres
// @Author: Alarcón Alvarez Aylin Yadira Guadalupe
// @Author: Pahua Castro Jesús Miguel Angel
   45
   46
   48
   49
   51
   52
                                           a0 = Coefficients(1)
a1 = Coefficients(2)
   54
   55
                                                                                                   Coefficients (3)
Coefficients (4)
   57
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

         -1
    10
                                                                                                                            1920;
                                                                                                                         1930;
1940;
    13
                                                                                                                         1960;
1970;
    16
    18
    19
    21
                                                                                                                       092228496;
106021537;
    23
    24
                                                                                                                         123202624:
                                                                                                                         151325798;
179323175;
    26
    27
  29
                                                                                                                         226542199
    30
    32
    33
    34
    35
                                                                                                                  = \begin{bmatrix} f4(x(1), 1) \\ f4(x(1), 8) \\ f4(x(2), 1) \\ f4(x(2), 8) \\ f4(x(3), 1) \\ f4(x(3), 8) \\ f4(x(4), 1) \\ f4(x(5), 1) \\ f4(x(5), 1) \\ f4(x(5), 8) \\ f4(x(6), 1) \\ f4(x(6), 8) \\ f4(x(7), 1) \\ f4(x(7), 8) \\ f4(x(8), 1) \\ f4(x(8), 1) \\ f4(x(8), 1) \\ f4(x(8), 1) \\ f4(x(9), 8) \\ f4(x(9), 1) \\ f4(x(9), 8) \\ f4(x(9), 8
    36
                                                                                                                                                                                                                                                                                                        \begin{array}{c} f4\left(x\left(1\right),\ 2\right) \\ f4\left(x\left(1\right),\ 9\right) \\ f4\left(x\left(2\right),\ 2\right) \\ f4\left(x\left(2\right),\ 9\right) \\ f4\left(x\left(3\right),\ 9\right) \\ f4\left(x\left(4\right),\ 2\right) \\ f4\left(x\left(4\right),\ 9\right) \\ f4\left(x\left(5\right),\ 2\right) \\ f4\left(x\left(5\right),\ 9\right) \\ f4\left(x\left(6\right),\ 9\right) \\ f4\left(x\left(6\right),\ 9\right) \\ f4\left(x\left(7\right),\ 2\right) \\ f4\left(x\left(7\right),\ 9\right) \\ f4\left(x\left(8\right),\ 2\right) \end{array}
  37
  38
39
    40
    41
    42
    43
    44
                                                                                                                                                                                                                                                                                                                  f4(x(8), 9)

f4(x(9), 2)

f4(x(9), 9)
    45
    46
                                                           disp(cond(A1))
disp(cond(A2))
disp(cond(A3))
disp(cond(A4))
    48
    49
    51
```

```
a0 = Coefficients(1)
a1 = Coefficients(2)
a2 = Coefficients(3)
a3 = Coefficients(4)
a4 = Coefficients(5)
a5 = Coefficients(6)
a6 = Coefficients(7)
a7 = Coefficients(8)
a8 = Coefficients(9)
56
58
59
60
61
62
63
64
           \begin{array}{llll} & function & [x] = f(x) \\ & x = a0*f4(x, 1) + a1*f4(x, 2) + a2*f4(x, 3) + a3*f4(x, 4) + a4*f4(x, 5) + a5*f4(x, 6) + a6*f4(x, 7) + a7*f4(x, 8) + a8*f4(x, 9) \end{array}
66
67
68
           [estimations] = f(points); \\ plot(points, estimations, "black-"); \\ plot(x, y, "m*"); \\ \\
            \begin{array}{l} [\,estimations2\,] \,=\, Spline \\ 3Interpolant\,(x,\,\,y,\,\,points\,,\,\,0)\,; \\ plot\,(\,points\,,\,\,estimations2\,\,,\,\,"m-"\,)\,; \end{array} 
80
82
           disp("Poly:" + string(estimations(100)))
disp("Spline:" + string(estimations2(100)))
83
```

```
    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

                                                                                                                                                                   [
1900:
                 9
   10
                                                                                                                                                                      1920;
1930;
   12
   13
                                                                                                                                                                      1960:
   15
   18
   20
                                                                                                                                                                   [
076212168;
   21
                                                                                                                                                                   092228496;
106021537;
123202624;
   23
                                                                                                                                                                      151325798;
179323175;
   26
                                                                                                                                                                   203302031;
226542199;
   29
   31
                                                                                   34
   35
                                                                                                                                                            = \begin{bmatrix} f4(x(1), 1) & f4(x(1), 8) & f4(x(2), 1) & f4(x(2), 8) & f4(x(3), 1) & f4(x(3), 8) & f4(x(4), 1) & f4(x(4), 8) & f4(x(5), 1) & f4(x(5), 1
                                                                                                                                                                                                                                                                                                                                                                                                                             \begin{array}{c} f4\left(x\left(1\right),\ 2\right) \\ f4\left(x\left(1\right),\ 9\right) \\ f4\left(x\left(2\right),\ 2\right) \\ f4\left(x\left(2\right),\ 9\right) \\ f4\left(x\left(3\right),\ 2\right) \\ f4\left(x\left(4\right),\ 2\right) \\ f4\left(x\left(4\right),\ 2\right) \\ f4\left(x\left(5\right),\ 2\right) \\ f4\left(x\left(5\right),\ 9\right) \\ f4\left(x\left(6\right),\ 2\right) \end{array}
37
38
39
   40
                                                                                                                                                                          f4(x(5), 1)

f4(x(5), 8)

f4(x(6), 1)
   41
   42
                                                                                                                                                                          f4(x(6), 8)

f4(x(7), 1)

f4(x(7), 8)
                                                                                                                                                                                                                                                                                                                                                                                                                                           f4(x(6), f4(x(7), f4(x(4), f4(x(5), f4(x(4), f4(x(5), f
   43
   44
```

```
f4(x(9), 8) f4(x(9), 9)
46
47
          disp(cond(A1))
disp(cond(A2))
disp(cond(A3))
disp(cond(A4))
49
50
51
52
         Coefficients = inv (A4) * y
a0 = Coefficients(1)
a1 = Coefficients(2)
a2 = Coefficients(3)
a3 = Coefficients(4)
a4 = Coefficients(5)
a5 = Coefficients(6)
a6 = Coefficients(7)
a7 = Coefficients(8)
a8 = Coefficients(9)
53
55
57
60
61
           a8 = Coefficients (9)
63
64
           function [x] = f(x) 
 x = a0*f4(x, 1) + a1*f4(x, 2) + a2*f4(x, 3) + a3*f4(x, 4) + a4*f4(x, 5) + a5*f4(x, 6) + a6*f4(x, 7) + a7*f4(x, 8) + a8*f4(x, 9)
66
67
68
70
71
          [estimations] = f(points); \\ plot(points, estimations, "black-"); \\ plot(x, y, "m*");
           \begin{array}{l} \left[\,estimations2\,\right] \,=\, LagrangeInterpolant\left(\,x\,,\,\,y\,,\,\,points\,\right)\,; \\ plot\left(\,points\,,\,\,estimations2\,\,,\,\,^{"}m^{-"}\,\right)\,; \end{array} 
\frac{76}{77}
81
```

```
/ @Author: Rosas Hernandez Oscar Andres
/ @Author: Alarcón Alvarez Aylin Yadira Guadalupe
/ @Author: Pahua Castro Jesús Miguel Ángel
 3
  6
 9
10
11
12
14
                   1960:
15
\frac{17}{18}
                   1980:
20
                   [
076212168;
21
                   092228496;
106021537;
22
23
25
                   132164569;
151325798;
26
29
31
          \begin{array}{lll} function & [y] = f4(t\,,\,j) \\ y = & ((t\,-\,1940)\,/\,40\,)\,\hat{}(j\,-1) \\ endfunction & \end{array} 
33
34
35
                  36
                                                 f4(x(1), 2)
f4(x(1), 9)
f4(x(2), 2)
f4(x(2), 9)
f4(x(3), 2)
37
38
39
                                                 f4(x(3),
f4(x(4),
                   f4(x(3), 8)
f4(x(4), 1)
40
                                                 f4(x(4)),

f4(x(4)),

f4(x(5)),
                    f4(x(4),
f4(x(5),
41
```

```
\begin{array}{llll} f4\left(x(6),8\right) & f4\left(x(7),9\right) \\ f4\left(x(7),1\right) & f4\left(x(7),2\right) \\ f4\left(x(7),8\right) & f4\left(x(7),9\right) \\ f4\left(x(8),1\right) & f4\left(x(8),2\right) \\ f4\left(x(8),8\right) & f4\left(x(8),9\right) \\ f4\left(x(9),1\right) & f4\left(x(9),2\right) \\ f4\left(x(9),8\right) & f4\left(x(9),9\right) \end{array}
43
44
45
 46
 47
                disp(cond(A1))
disp(cond(A2))
disp(cond(A3))
disp(cond(A4))
 48
 49
51
53
54
55
               Coefficients = inv (Ac a0 = Coefficients (1) a1 = Coefficients (2) a2 = Coefficients (3) a3 = Coefficients (4) a4 = Coefficients (5) a5 = Coefficients (6) a6 = Coefficients (7) a7 = Coefficients (8) a8 = Coefficients (8)
57
58
59
60
62
63
65
                  \begin{array}{l} {\rm function} \ \ [x] = f(x) \\ x = a0*f4(x,\ 1) + a1*f4(x,\ 2) + a2*f4(x,\ 3) + a3*f4(x,\ 4) + a4*f4(x,\ 5) + a5*f4(x,\ 6) + a6*f4(x,\ 7) + a7*f4(x,\ 8) + + a8*f4(x,\ 9) \\ \end{array} 
66
68
\frac{70}{71}
                 [estimations] = f(points); \\ plot(points, estimations, "black-"); \\ plot(x, y, "m*"); \\
                  \begin{array}{l} [\,estimations2\,] \,=\, NewtonInterpolant\,(\,x\,,\,\,y\,,\,\,points\,)\,;\\ plot\,(\,points\,,\,\,estimations2\,\,,\,\,\,"m-"\,)\,; \end{array} 
81
```

1.6. 17

Ejecuta los scripts que esta dentro de Code llamado: 17.sce

En este código muestra justo lo que se nos pide, eso si, el snoppy se ve mas bonito se mueves la grafica, haciendola mas horizontal

```
Rosas Hernandez Oscar Andres
Alarcón Alvarez Aylin Yadira Guadalupe
Pahua Castro Jesús Miguel Angel
 10
 11
13
14
15
\begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 40 \\ 41 \\ 42 \\ \end{array}
                               17;
20;
23;
24;
25;
 43
44
45
\begin{array}{c} 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ \end{array}
                        [
27.7;
28;
29;
30;
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                points1 = linspace(1, 17);
plot(0, 0, "*red")
                \label{eq:continuous} \begin{tabular}{ll} [estimations1] = Spline3Interpolant(x1, y1, points1, [-1; +0.67]); \\ plot(points1, estimations1, "blue-"); \\ plot(x1, y1, "m*"); \end{tabular}
                 points2 = linspace(17, 27.7);
                \label{eq:continuous} \begin{array}{l} [\,\text{estimations2}\,] = Spline 3 Interpolant\,(x2\,,\,y2\,,\,points2\,,\,[-3;\,\,+4])\,;\\ plot\,(points2\,,\,\,estimations2\,,\,\,"red-")\,;\\ plot\,(x2\,,\,\,y2\,,\,\,"m*")\,; \end{array}
```

Análisis Númerico 16 Ve al Índice

1.7. 18

Ejecuta los scripts que esta dentro de Code llamado: 18.sce

En este código muestra justo lo que se nos pide, eso si, el snoppy se ve mas bonito se mueves la grafica, haciendola mas horizontal y debo de admitir que con este spline me gusto mas como se ve

```
Rosas Hernandez Oscar Andres
Alarcón Alvarez Aylin Yadira Guadalupe
Pahua Castro Jesús Miguel Angel
 10
 11
13
14
15
\begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 40 \\ 41 \\ 42 \\ \end{array}
                              17;
20;
23;
24;
25;
 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
                              29;
30;
 60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                points1 = linspace(1, 17);
plot(0, 0, "*red")
               \label{eq:continuous} \begin{tabular}{ll} [estimations1] = Spline3Interpolant(x1, y1, points1, 0); \\ plot(points1, estimations1, "blue-"); \\ plot(x1, y1, "m*"); \\ \end{tabular}
                points2 = linspace(17, 27.7);
                 \begin{array}{l} [\,estimations2\,] \,=\, Spline 3 Interpolant\,(x2\,,\,\,y2\,,\,\,points2\,\,,\,\,0)\,;\\ plot\,(\,points2\,\,,\,\,estimations2\,\,,\,\,\,"\,red-"\,)\,;\\ plot\,(\,x2\,,\,\,y2\,,\,\,\,"m*\,"\,)\,; \end{array}
```

Análisis Númerico 18 Ve al Índice

2. Anexo

2.1. HermiteInterpolant

```
Function to approximate a function using the Lagrange method

((a) param: points a vector of points

((a) param: valuations a vector such valuations(i) = f(points(i))

((a) param: pointsToEvaluate a vector of points to evaluate

((a) pointsEvaluated such pointsEvaluated(i) = f(pointsToEvaluate(i))

    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Angel

11
12
                                          \begin{array}{ll} numberOfEvaluations &= length \, (pointsToEvaluate) \\ pointsEvaluated &= zeros \, (numberOfEvaluations \, , \  \, 1) \end{array}
15
                                           \begin{array}{ll} HermiteEvaluations = zeros \, (numberOfEvaluations \,, & n) \\ HermiteEvaluationsHat = zeros \, (numberOfEvaluations \,, & n) \end{array}
                                                                 \begin{array}{lll} & & & & \\ \text{for } & i & = (1:n) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ 
23
                                                               tender = (1 : numberOlEvaluations)
temporal = 0
for i = (1 : n)
    temporal = temporal + valuations(i) * HermiteEvaluations(evaluation, i)
    temporal = temporal + derivatives(i) * HermiteEvaluationsHat(evaluation, i)
31
33
34
36
                     \begin{array}{lll} function & [pointsEvaluated] = HermitePolynomial(points, j, pointsToEvaluate) \\ & numberOfEvaluations = length(pointsToEvaluate) \\ & pointsEvaluated = zeros(numberOfEvaluations, 1) \end{array}
37
39
40
                                            \begin{array}{lll} for & evaluation = (1 : numberOfEvaluations) \\ & temporal = (LagrangePolynomial(points, j, points(j) + 0.0001) - LagrangePolynomial(points, j, points(j))) / (0.0001) \\ \end{array} 
42
                                            pointsEvaluated(evaluation) = 1-2 * (pointsToEvaluate(evaluation) - points(j)) * temporal pointsEvaluated(evaluation) = pointsEvaluated(evaluation) * LagrangePolynomial(points, j, pointsToEvaluate(evaluation))^2
44
46
47
                      function [pointsEvaluated] = HermiteHatPolynomial(points, j, pointsToEvaluate)
   numberOfEvaluations = length(pointsToEvaluate)
   pointsEvaluated = zeros(numberOfEvaluations, 1)
48
49
51
                                          \begin{array}{lll} number Of Evaluations &=& length (points To Evaluate) \\ for &evaluation &=& (1 : number Of Evaluations) \\ &&points Evaluated (evaluation) &=& (points To Evaluate (evaluation) - points (j)) * \\ Lagrange Polynomial (points, j, points To Evaluate (evaluation)) ^2 \\ && - 2 \\ \end{array}
54
```

2.2. LagrangeInterpolant

```
4

    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

 10
 11
 13
                                       \begin{array}{ll} numberOfEvaluations \, = \, length \, (\, pointsToEvaluate) \\ pointsEvaluated \, = \, zeros \, (numberOfEvaluations \, , \, \, 1 \end{array}
 14
 16
 17
                                         \begin{array}{lll} for & evaluation = (1 : numberOfEvaluations) \\ & for & i = (1 : n) \\ & & LangrangeEvaluations(:, i) = LagrangePolynomial(points, i, pointsToEvaluate) \end{array} 
 19
 21
 23
 24
                                                          27
29
30
32
33
                     function [pointsEvaluated] = LagrangePolynomial(points, k, pointsToEvaluate)
35
36
                                       numberOfEvaluations = length(pointsToEvaluate)
for evaluation = (1 : numberOfEvaluations)
  temporal = 1
  for i = (1 : n)
      if (i ~= k)
      temporal = temporal * (pointsToEvaluate(evaluation) - points(i)) / (points(k) - points(i)) / (points(i)) / (points(i))
38
39
 40
 41
42
 43
 45
 46
 48
```

Análisis Númerico 20 Ve al Índice

2.3. NewtonInterpolant

```
Guaram: points a vector of points

@param: valuations a vector such valuations(i) = f(points(i))

@param: pointsToEvaluate a vector of points to evaluate

@return: pointsEvaluated such pointsEvaluated(i) = f(pointsToEvaluate(i))

    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Ángel

11
          {	t function \ igl[ pointsEvaluated igr] = 	t NewtonInterpolant(points, valuations, pointsToEvaluate)}
                   n = length(points)
Differences = NewtonInterpolantCoefficients(points, valuations)
12
14
                            1 = (2 : n')
data = data + " + " + string(Differences(i))
for j = (1 : i - 1)
17
                                       if (points(j) > 0)

data = data + "(x - " + string(points(j)) + ")"
19
20
21
22
23
25
26
28
                   \begin{array}{ll} numberOfEvaluations \ = \ length \, (\, pointsToEvaluate) \\ pointsEvaluated \ = \ zeros \, (\, numberOfEvaluations \, , \ \ 1 \end{array}
30
31
                    \begin{array}{lll} for & evaluation = (1:numberOfEvaluations) \\ & temporal = Differences(n) \\ & for & j = (n-1:-1:1) \\ & temporal = temporal * ( pointsToEvaluate(evaluation) - points(j) ) + Differences(j) \\ \end{array} 
33
34
36
37
39
40
41
                function to aproximate a function using the rewish method but the points from a homogenues partition (param: points a vector of points (i) = f(points(i)) (param: valuations a vector such valuations(i) = f(points(i)) (param: pointsToEvaluate a vector of points to evaluate (vector) (pointsToEvaluate(i))
42
43
44
45
47
48
                   n = length(points)

Differences = NewtonInterpolantCoefficients(points, valuations)
50
51
                   \begin{array}{ll} numberOfEvaluations &= length (pointsToEvaluate) \\ pointsEvaluated &= zeros (numberOfEvaluations \,, \, \, 1 \\ h &= points \, (2) \, - \, points \, (1) \end{array}
56
                    \begin{array}{lll} for & evaluation = (1 : numberOfEvaluations) \\ s = ( & pointsToEvaluate(evaluation) - points(1) ) / h \\ \end{array} 
58
59
                              \begin{array}{lll} \text{temporal} &=& \text{Difference} \\ \text{for} & k = (2 : n) \\ & \text{temporal2} &=& \text{Differences}(k) * h^{(k-1)} \\ \text{for} & \text{term} &= (0 : k - 2) \\ & \text{temporal2} &=& \text{temporal2} * (s - \text{term}) \\ \end{array} 
61
62
64
65
66
67
68
70
                @param: points a vector of points 
 @param: valuations a vector such valuations(i) = f(points(i)) 
 @return: Differences such Differences(i) = f[x_0 \dots x_i]
73
77
78
                   n = length (points)
81
83
                   for order = (1 : n - 1)
for i = (n : -1 : order + 1)
84
```

Análisis Númerico 22 Ve al Índice

2.4. Spline3Interpolant

```
Gparam: x a vector of points

Gparam: y a vector such valuations(i) = f(x(i))

Gparam: pointsToEvaluate a vector of points to evaluate

Gparam: type if 0 then Spline natural if [a, b] then spline complete where f(x_0)' = -a and f(x_n)' = -b

Greturn: pointsEvaluated such pointsEvaluated(i) = f(pointsToEvaluate(i))

    @Author: Rosas Hernandez Oscar Andres
    @Author: Alarcón Alvarez Aylin Yadira Guadalupe
    @Author: Pahua Castro Jesús Miguel Angel

11
12
14
          \begin{array}{ll} numberOfEvaluations = length (pointsToEvaluate) \\ pointsEvaluated = zeros (numberOfEvaluations, 1) \end{array}
17
19
                  for evaluation = (1 : numberOfEvaluations)
  point = pointsToEvaluate(evaluation)
  i = FindPoint(point, x)
20
21
22
23
                           \begin{array}{l} sum1 = z\left(i + 1\right) \; / \; \left(6 \; * \; h(i)\right) \; * \; \left(point - x(i)\right) \hat{\;\;} 3 \\ sum2 = z\left(i\right) \; / \; \left(6 \; * \; h(i)\right) \; * \; \left(x(i+1) - point\right) \hat{\;\;} 3 \\ sum3 = \left( \; y(i+1)/h(i) - z(i+1)/6 \; * \; h(i) \; \right) \; * \; \left(point - x(i)\right) \\ sum4 = \left( \; y(i)/h(i) - z(i)/6 \; * \; h(i) \; \right) \; * \; \left(x(i+1) - point\right) \end{array}
25
28
                           pointsEvaluated(evaluation) = sum1 + sum2 + sum3 + sum4
30
31
33
34
               36
37
39
40
41
42
43
44
45
47
48
                  \begin{array}{lll} for & i = (1 : n - 1) \\ & h(i) = & t(i+1) - t(i); \\ & b(i) = 6 * (y(i+1) - y(i)) \ / \ h(i); \end{array}
50
51
53
55
56
58
59
61
62
64
65
67
70
73
                @param: point a point :v
@param: data a vector of values
@return: i a number such data(i) <= point <= data(i+1)
74
75
76
77
78
79
          function [i] = FindPoint(point, data)
  middle = 1, start = 1
  final = length(data)
81
                   while (start < final)
middle = start + floor((final - start) / 2)
83
84
```

Análisis Númerico 24 Ve al Índice