Razvoj LSTM neuronske mreže i primena nad problemom sekvencijalnog učenja seminarski rad u okviru kursa

Seminarski rad u okviru kursa Računarska inteligencija Matematički fakultet

Milena Kurtić, Nevena Soldat mimikurtic67@gmail.com, nevenasoldat@gmail.com

15. april 2020.

Sažetak

U okviru ovog rada predstavljen je primer implementacije LSTM neuronske mreže u programskom jeziku Python, uz korišćenje biblioteka za rad kao što su pandas, numpy, keras i druge. Prvi deo rada opisuje teorijsku osnovu iza ovih mreža. Zatim je opisana primena na problem generisanja teksta. Videćemo koje su njene prednosti, kao i ograničenja. Pokazana je razlika u ponašanju modela sa različitim konfiguracijama.

Sadržaj

1	Uvod	2
2	Rekurentne neuronske mreže 2.1 Arhitektura RNN	2 2 3
3	2.3 LSTM neuronske mreže	3 5
4	Zaključak	5
Li	teratura	5
A	Dodatak	6

1 Uvod

Neuronske mreže (eng. neural networks) predstavljaju najpopularniju i jednu od najprimenjenijih metoda mašinskog učenja. Njihove primene su mnogobrojne i pomeraju domete veštačke inteligencije, računarstva i primenjene matematike. Postoji više vrsta neuronskih mreža: potpuno povezane, konvolutivne, rekurentne, grafovske neuronske mreže. U vrstu rekurentnih spada i LSTM neuronska mreza.

Osnovna ideja veštačke neuronske mreže je simulacija velike količine gusto napakovanih, međusobno povezanih nervnih ćelija u okviru računara, tako da je omogućeno učenje pojmova, prepoznavanje šablona i donošenje odluka na način koji je sličan čovekovom. Suštinski, veštačke neuronske mreže su softverske simulacije, napravljene programirajući obične računare koji rade u uobičajenom režimu sa svojim tranzistorima i serijski povezanim logičkim kolima, tako da se ponašaju kao da su napravljene od milijardu međusobno povezanih ćelija mozga koje rade paralelno.

2 Rekurentne neuronske mreže

Rekurentne neuronske mreže (eng. Recurrent Neural Networks - RNN) predstavljaju arhitekturu mreža specijalizovanu za obradu sekvencijalnih podataka, poput rečenica prirodnog jezika i vremenskih serija. Sekvence nameću važnost redosleda zapažanja podataka, kako prilikom treniranja modela, tako i prilikom predviđanja. Mreže su konstruisane sa idejom da se modeluje zavisnost među instancama. Elementi ulazne sekvence se obrađuju u koracima, mreža ima skriveno stanje koje akumulira informaciju o elementiam sekvence obrađenim u prethodnim koracima, a parametri određuju na koji način se to stanje menja iz koraka u korak na osnovu prethodnog stanja i tekućih ulaza i kako se generiše izlaz u zavisnosti od tekućeg stanja.

"Learning of sequential data continues to be a fundamental task and a challenge in pattern recognition and machine learning. Applications involving sequential data may require prediction of new events, generation of new sequences, or decision making such as classification of sequences or sub-sequences."

— On Prediction Using Variable Order Markov Models, 2004.

2.1 Arhitektura RNN

Rekurentne neuronske mreže sadrže petlje koje obezbeđuju čuvanje informacija [1].

Slika 1: Prikaz RNN mreže

Na slici 1 prikazan je jedan deo neuronske mreže, A, čiji je ulaz x_t , a izlaz h_t . Petlja omogućava da se informacije prosleđuju iz jednog koraka u mreži u drugi. Biće jednostavnije ako ih zamislimo na sledeći način:

Slika 2: Prikaz RNN mreže u obliku lanca

Rekurentna mreža predstavlja veći broj istih mreža, koje prenose poruke narednom delu u lancu, što je prikazano na slici 2.

2.2 Problemi sa RNN

Postoje dva osnovna problema rekurentnih neuronskih mreža u njihovoj osnovnoj formi. Prvi se tiče problema nestajućih i eksplodirajućih gradijenata. Naime, graf izračunavanja rekurentne neuronske mreže je tipično vrlo dubok zbog velike dužine sekvence. Usled toga, prilikom izračunavanja gradijenta propagacijom u prošlost, dolazi do velikog broja množenja koja neretko čine da koordinate gradijenta ili eksplodiraju ili nestanu.

Drugi problem se odnosi na dugoročno čuvanje informacije i modelovanje dugoročnih zavisnosti u podacima. Kako se skriveno stanje u svakom koraku dobija linearnom kombinacijom prethodnog stanja i ulaza, doprinos starijih ulaza se brzo gubi pod uticajem novih. Dugoročno čuvanje relevantnih informacija nije moguće.

Oba ova problema se prevazilaze upotrebom duge kratkoročne memorije (eng. long short term memory), skraćeno LSTM, što je složena jedinica mreže sa specifičnom strukturom koja omogućava kontrolu čitanja i upisa u jedinicu. Upravo ova jedinica dovela je do ključnih uspeha rekurentnih neuronskih mreža i predstavlja standardni izbor prilikom formulisanja modela rekurentne mreže. [2]

2.3 LSTM neuronske mreže

LSTM neuronske mreže su specijalizovane za prevazilaženje problema kratkotrajne memorije. Pamćenje dugih sekvenci je praktično njihovo podrazumevano ponašanje, a ne nešto sa čime se muče. Kao što je već prikazano, sve rekurentne mreže imaju lančanu formu, sastavljenu od modula mreže koji se ponavljaju. Kod LSTM mreža, struktura ovih modula je malo drugačija. Umesto jednog sloja mreže, imamo četiri koja su povezana na veoma poseban način (Slika 3).

Na slici iznad, svaka linija prenosi vektor podataka, od izlaza iz prethodnog čvora, do ulaza u naredni. Roze krugovi predstavljaju operacije, poput sabiranja vektora, dok žuti pravougaonici predstavljaju slojeve mreže. Linije koje se spajaju obeležavaju spajanje informacija, dok linije

Slika 3: Prikaz lanca LSTM mreže

koje se razdvajaju predstavljaju sadržaj koji se kopira, gde kopije idu na različita mesta (Slika 4).

Slika 4: Notacija

Osnovna ideja LSTM-a je postojanje takozvane ćelije koja čuva skriveno stanje, uz kontrolu pisanja, čitanja i zaboravljanja. Na slici 5 je to horizontalna linija na vrhu dijagrama.

Slika 5: Ćelija LSTM mreže

Stanje ćelije prolazi kroz ceo lanac, uz male linearne interakcije. Informacije se veoma lako prenose nepromenjene. LSTM može da doda ili ukloni informacije iz stanja ćelije, pomoću struktura koje se nazivaju kapije. Kapije odlučuju koje informacije i u kojoj količini će biti očuvane.

Prvi korak u našoj LSTM mreži je odabir informacija koje će biti obrisane iz stanja ćelije. Kapija koja kontroliše ovu operaciju naziva se "kapija zaboravljanja". Ovaj sloj koristi sigmoidnu aktivacionu funkciju, čiji je izlaz interval brojeva između 0 i 1. Vrednost 1 znači da se potpuno zadržava sadržaj, a 0 da se potpuno briše (Slika 6).

Sledeći korak predstavlja odlučivanje o tome koje nove informacije ćemo dodati u stanje ćelije. Sastoji se iz dva dela. Prvo, sloj koji predstavlja "ulaznu kapiju" odlučuje koje će vrednosti ažurirati. Zatim naredni sloj, čija je aktivaciona funkcija tangens hiperbolički, pravi vektor novih vrednosti (\tilde{C}_t) , koje se mogu dodati u stanje ćelije. U sledećem koraku kombinujemo ova dva dela i pravimo novo stanje ćelije (Slika 7).

Sada prethodno stanje ćelije C_{t-1} ažuriramo u novo C_t . Pomnožimo staro stanje sa f_t , time zaboravljajući ono što smo odlučili da zaboravimo.

Slika 6: Kapija zaboravljanja

Slika 7: Ulazna kapija

Zatim dodamo $i_t \times \tilde{C}_t$. Ovo su potencijalne nove vrednosti, skalirane za onoliko koliko smo odlučili da ažuriramo svaku vrednost stanja (Slika 8).

Slika 8: Računanje novog stanja ćelije

Na kraju je potrebno da odlučimo šta će biti izlaz. Ova vrednost zavisi od stanja ćelije, uz male promene. Prvo prolazimo kroz sloj sa sigmoidnom aktivacionom funkcijom koji odlučuje koje delove ćelije ćemo staviti u izlaz. Zatim prođemo kroz aktivacionu funkciju tangens hiperbolički (kako bismo uokvirili vrednosti u interval između -1 i 1), i pomnožimo sa izlazom iz sloja sa sigmoidnom funkcijom kako bismo u izlaz stavili samo ono što smo odlučili (Slika 9).

3 Problem generisanja teksta

4 Zaključak

Literatura

- [1] Understanding lstm networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
- [2] Mladen Nikolić i Anđelka Zečević. Mašinsko učenje. 2019.

Slika 9: Računanje izlaza

A Dodatak