### Statistics for Al and CS

Week 8: Recap

Harmen de Weerd

University of Groningen

Fall 2021



#### What is it all about

Statistics revolves around quantifying confidence

- What can this sample tell me about the population?
  - How accurate are these claims?
- How much work do I have to do to be 95% sure of my conclusion?



#### Tools of the trade

There are two main tools used in statistics

- Hypothesis testing
- Confidence intervals



# Hypothesis testing

- Assume the truth of the null hypothesis H<sub>0</sub>
- Compare the p-value against the significance level  $\alpha$
- Draw a conclusion about the null hypothesis H<sub>0</sub>



# Hypothesis testing

- Hypotheses are never about sample statistics
  - Population parameters are typically Greek letters  $\mu, \sigma, \pi, \beta, \rho, p$
  - Sample statistics are typically Latin letters  $\bar{x}$ , b, s, r
- Hypotheses are always exact
  - Hypotheses do not have words like significant or approximate
- Assume the truth of the null hypothesis H<sub>0</sub>
- Compare the p-value against the significance level  $\alpha$
- Draw a conclusion about the null hypothesis H<sub>0</sub>



# Hypothesis testing

- Assume the truth of the null hypothesis H<sub>0</sub>
  - Null hypothesis  $H_0$  makes an exact claim about the value of  $\theta$ 
    - + H<sub>0</sub>: The mean heights of mothers and daughters are equal
    - +  $H_0$ :  $\theta = 0$
    - H<sub>0</sub>: The mean heights of mothers and daughters differ
    - $H_0$ :  $\theta \neq 0$
  - Alternative hypothesis  $H_1$  is typically the complement of  $H_0$
- ullet Compare the p-value against the significance level  $\alpha$
- Draw a conclusion about the null hypothesis H<sub>0</sub>



# Hypothesis testing

- Assume the truth of the null hypothesis H<sub>0</sub>
- ullet Compare the p-value against the significance level  $\alpha$ 
  - The significance level  $\alpha$  is set before the hypothesis test starts
    - Typically,  $\alpha = 0.05$
  - The p-value is the probability of observing your sample statistic, or something more extreme, assuming that  $H_0$  is true
    - The lowest level of significance at which you would reject H<sub>0</sub>
- Draw a conclusion about the null hypothesis H<sub>0</sub>



0000000

# Hypothesis testing

- Assume the truth of the null hypothesis H<sub>0</sub>
- Compare the p-value against the significance level  $\alpha$
- Draw a conclusion about the null hypothesis H<sub>0</sub>
  - Reject  $H_0$  if the p-value is low, or fail to reject  $H_0$  if it is high
    - Never accept H<sub>0</sub>
    - Never draw conclusions in terms of H<sub>1</sub>
  - Explain the conclusion in terms of  $\theta$ 
    - We reject H<sub>0</sub> and conclude that there the mean heights of mothers and daughters are not equal
    - We fail to reject H<sub>0</sub> and conclude that there is no reason to believe that the mean heights of mothers and daughters are not equal



#### Statistical errors

#### Type I error

- Rejecting a null hypothesis that is true
- ullet The Type I error rate equals significance level lpha by definition
  - ullet If the Type I error rate exceeds lpha, the test is not appropriate

#### Type II error

- Failing to reject a null hypothesis that is false
- To calculate the Type II error rate, you need to know the actual value of the population parameter
  - Increasing the sample size decreases Type II error rate
  - $\bullet$  Increasing  $\alpha$  increases the Type I error rate and decreases the Type II error rate



#### Confidence intervals

#### There are two types of confidence intervals

- Confidence interval for population parameters
  - Based on sample statistics and hypothesized distributions
    - This confidence interval is different for each sample
  - With C\% confidence, the value of a population parameter is found in a C% confidence interval
- Confidence interval for sample statistics
  - Based on population parameters and known distributions
    - This confidence interval is the same across all samples
  - In C\% of the cases, the value of a sample statistic falls within the C% confidence interval



# Bootstrapping

#### A bootstrap sample samples from your dataset

- Approximates the population distribution without assumptions
- Can be used for confidence intervals for population parameters
  - Take a sample with replacement from your dataset of the same size as your dataset
  - Estimate the population parameter
  - Repeat many times
  - Create a confidence interval for the population parameter by discarding the lowest and highest 5% of your estimations



000000

#### Simulation

#### Simulation simulates the process of drawing samples

- Makes assumptions about the populations distribution
- Can be used for hypothesis testing
  - Draw a sample from the hypothesized distribution
  - Calculate the test statistic
  - Repeat many times
  - Calculate the p-value by counting how often the simulated value is at least as extreme as the observed value in the sample



#### Simulation

#### Simulation simulates the process of drawing samples

- Makes assumptions about the populations distribution
- Can be used for hypothesis testing
  - Draw a sample from the hypothesized distribution
  - Calculate the test statistic
  - Repeat many times
  - Calculate the p-value by counting how often the simulated value is at least as extreme as the observed value in the sample
- Can be used for confidence intervals for sample statistics
  - Draw a sample from the hypothesized distribution
  - Calculate the sample statistic
  - Repeat many times
  - Create a confidence interval for the sample statistic by discarding the lowest and highest 5% of your simulated data



Non-parametric methods make few (or no) assumptions about the population distribution

- Continuous data
  - Sign test
  - Wilcoxon signed rank test
  - Wilcoxon rank sum test
- Categorical data
  - Chi squared test for goodness of fit
  - Chi squared test for independence



Works on continuous data

probability of success

Only assumes independent observations

0.69

The sign test has a very high Type II error rate

### Wilcoxon signed rank test

The **Wilcoxon signed rank test** tests the median:  $H_0: m = m_0$ 

- Works on continuous data
- Assumes independent observations from a symmetric distribution

```
> wilcox.test(rexp(10) - 1)  {\rm Wilcoxon\ signed\ rank\ exact\ test}   data: rexp(10) - 1  {\rm V} = 4,\ p{\rm -value} = 0.01367  alternative hypothesis: true location is not equal to 0
```



The **Wilcoxon rank sum test** tests two medians:  $H_0: m_1 = m_2$ 

- Works on continuous data
- Assumes independent observations from populations with equal distribution shapes



# Chi squared test for goodness of fit

The **Chi squared test for goodness of fit** tests two or more proportions:  $H_0: p_1 = \pi_1, p_2 = \pi_2, \dots, p_k = \pi_k$ 

Central limit theorem

- Works on a single categorical variable
- Null proportions must add up to one:  $\sum \pi_i = 1$

```
> chisq.test(table(sample(1:5, 100, replace = TRUE)))
        Chi-squared test for given probabilities
      table(sample(1:5, 100, replace = TRUE))
X-squared = 6.4, df = 4, p-value = 0.1712
```

# Chi squared test for independence

The **Chi squared test for independence** tests for independence of two variables X and Y:  $H_0: X$  and Y are independent

Works on paired samples X and Y of categorical data

```
> chisq.test(sample(1:5, 100, replace = TRUE), runif(100) < 0.5)
      Pearson's_Chi-squared_test
data: \_sample(1:5,\_100,\_replace\_=\_TRUE)\_and\_runif(100)\_<\_0.5
```

#### Central limit theorem

General

For a sufficiently large sample  $X_i$ ,  $(1 \le i \le n)$  that are independent and identically distributed with mean  $\mu$  and standard deviation  $\sigma$ , the mean  $\bar{X}$  is approximately normally distributed with mean  $\mu$  and standard deviation  $\sigma/\sqrt{n}$ 

- For normally distributed data, n=2 is probably enough
- For symmetric distributions, n = 20 is probably enough
- For skewed distributions n = 200 is probably enough

### Proportion test

0 625

General

The **proportion test** tests a proportion:  $H_0: p = p_0$ 

- Assumes independent observations of a binary variable
- R makes use of a normal approximation based on CLT

• Given 
$$H_0: p=p_0, \ \mu=n\cdot p_0 \ \text{and} \ \sigma=\sqrt{\frac{p_0(1-p_0)}{n}}$$



The **proportion test** tests the equality of two proportions:

```
H_0: p_1 = p_2
```

• Assumes independent observations of binary variable

```
> prop.test(c(50,20), c(80, 50))

        2-sample test for equality of proportions
        with continuity correction

data: c(50, 20) out of c(80, 50)
X-squared = 5.3952, df = 1, p-value = 0.02019
alternative hypothesis: two.sided
95 percent confidence interval:
        0.03643263 0.41356737
sample estimates:
prop 1 prop 2
        0.625 0.400
```



#### *t*-test

General

The *t*-**test** tests a population mean:  $H_0: \mu = \mu_0$ 

- Population distribution of the mean is approximately normal
- In general, the population standard deviation is unknown
  - To correct for this, the *t*-test uses the *t* distribution

```
> t.test(rnorm(20))
    One Sample t-test

data: rnorm(20)
t = 0.026165, df = 19, p-value = 0.9794
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    -0.4959853    0.5085430
sample estimates:
    mean of x
0.006278833
```



#### *t*-test

The **independent samples** t**-test** tests the equality of two population means:  $H_0: \mu_1 = \mu_2$ 

- Population distributions of means are approximately normal
- A paired samples *t*-test is a one-sample *t*-test

 $-0.002683389 \quad 0.066346082$ 



### Methods based on normally distributed data

- (Multiple) linear regression
- ANOVA
- Logistic regression



# Assumptions of linear regression

Linear regression assumes a linear relationship between response variable Y and explanatory variables  $X_i$ 

- ullet Works on continuous response variables Y
- ullet The explanatory variables  $X_i$  are linearly independent
  - Collinearity: some explanatory variables  $X_i$  are correlated
- Residuals are normally distributed
  - Note: not their mean, so CLT does not apply
- The variance of the residuals is constant
  - Heteroskedasticity: variance is not constant



General

```
> summary(Im(len ~ supp + dose, ToothGrowth))
Residuals:
   Min 1Q Median 3Q Max
-6.600 - 3.700 0.373 2.116 8.800
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2725 1.2824 7.231 1.31e-09 ***
suppVC -3.7000 1.0936 -3.383 0.0013 **
dose
         9.7636 0.8768 11.135 6.31e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.236 on 57 degrees of freedom
Multiple R-squared: 0.7038, Adjusted R-squared: 0.6934
F-statistic: 67.72 on 2 and 57 DF, p-value: 8.716e-16
```

For every unit increase in **dose**, **len** increases by 9.79636, assuming that **suppVC** remains constant



General

```
> summary(Im(len ~ supp + dose, ToothGrowth))
Residuals:
   Min 1Q Median 3Q Max
-6.600 - 3.700 0.373 2.116 8.800
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2725 1.2824 7.231 1.31e-09 ***
suppVC -3.7000 1.0936 -3.383 0.0013 **
dose
         9.7636 0.8768 11.135 6.31e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.236 on 57 degrees of freedom
Multiple R-squared: 0.7038, Adjusted R-squared: 0.6934
F-statistic: 67.72 on 2 and 57 DF, p-value: 8.716e-16
```

Marginal tests test the significance of individual coefficients while assuming other variables are constant  $H_0: \beta_i = 0$ 



```
> summary(Im(len ~ supp + dose, ToothGrowth))
Residuals:
  Min 1Q Median 3Q Max
-6.600 - 3.700 0.373 2.116 8.800
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2725 1.2824 7.231 1.31e-09 ***
suppVC -3.7000 1.0936 -3.383 0.0013 **
dose
       9.7636 0.8768 11.135 6.31e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.236 on 57 degrees of freedom
Multiple R-squared: 0.7038, Adjusted R-squared: 0.6934
F-statistic: 67.72 on 2 and 57 DF, p-value: 8.716e-16
```

The F test tests the explanatory power of the entire model



$$\mathsf{H}_0:\beta_1=\beta_2=\cdots=\beta_k=0$$

General

```
> summary(Im(len ~ supp + dose, ToothGrowth))
Residuals:
   Min 1Q Median 3Q
                            Max
-6.600 - 3.700 0.373 2.116 8.800
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2725 1.2824 7.231 1.31e-09 ***
suppVC -3.7000 1.0936 -3.383 0.0013 **
dose
           9.7636 0.8768 11.135 6.31e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.236 on 57 degrees of freedom
Multiple R-squared: 0.7038, Adjusted R-squared: 0.6934
F-statistic: 67.72 on 2 and 57 DF, p-value: 8.716e-16
```

Coefficient of determination  $R^2$  is the percentage of variation in the explanatory variable Y that is explained by the model



#### Model selection

Coefficient of determination  $R^2$  is the percentage of variation in the explanatory variable Y that is explained by the model

- Adding variables to a regression model can not decrease  $R^2$
- To determine whether one model is better, you can use
  - Adjusted  $R^2$ : larger is better
  - Akaike Information Criterion AIC: smaller is better
    - stepAIC automatically finds minimal AIC
  - Bayesian Information Criterion BIC: smaller is better



#### ANOVA

ANOVA tests the equality of multiple means:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

- Assumes normality of the data and equality of variances
- Equivalent to a linear regression model with only categorical explanatory variables

```
> summary(aov(len \sim supp + dose, data = ToothGrowth))
           Df Sum Sg Mean Sg F value Pr(>F)
            1 205.4 205.4 11.45 0.0013 **
supp
dose
           1 2224.3 2224.3 123.99 6.31e-16 ***
Residuals 57 1022.6 17.9
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```



### Two-way ANOVA

Interaction happens when the effect of  $X_1$  on Y depends on the value of  $X_2$ 

- The effect of dosage on tooth length depends on supplement
- The effect of supplement on tooth length depends on dosage

```
summary(aov(len ~ supp * dose, data = ToothGrowth))

Df Sum Sq Mean Sq F value Pr(>F)
supp 1 205.4 205.4 12.317 0.000894 ***
dose 1 2224.3 2224.3 133.415 < 2e-16 ***
supp:dose 1 88.9 88.9 5.333 0.024631 *
Residuals 56 933.6 16.7

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```



Regression

### Tukey Honestly Significant Differences

General

ANOVA can only show *that* there is a difference, not what the difference is

- Tukey HSD performs pairwise t-tests with p-values adjusted to account for multiple tests
- Only valid if ANOVA results in a significant effect

# Logistic regression constructs a linear relationship between binary variable Y and explanatory variables $X_i$

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \sum \beta_j X_j$$

- Uses generalized linear model with a binomial linking function
- Does not assume normality



# Logistic regression

General

Logistic regression constructs a linear relationship between binary variable Y and explanatory variables  $X_i$ 

 For every unit increase in site, the odds of spam are multiplied by  $e^{0.48181}$ 

```
> summary(glm(spam ~ ., data=emails10, family=binomial))
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.11277 0.03805 -29.247 < 2e-16 ***
site 0.48181 0.05935 8.118 4.74e-16 ***
monday -1.68278 0.22584 -7.451 9.24e-14 ***
Signif. codes: 0 '*** ' 0.001 '** ' 0.05 '.' 0.1 '...' 1
```

Null deviance: 6297.6 on 5727 degrees of freedom

Residual deviance: 5818.8 on 5717 degrees of freedom AIC: 5840 8

