Caleidoscoop Hoofdstuk 3

3 Equivalentierelaties

Opgave 3.1

- a) Stel de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \Longleftrightarrow a = b$.
 - 1 Reflexief: Bekijk $a\mathcal{R}a \implies a = a$
 - 2 Symmetrie: Bekijk $(a\mathcal{R}b \implies b\mathcal{R}a) \implies a = b \implies b = a$
 - 3 Transitiviteit: Bekijk $((a\mathcal{R}b \wedge b\mathcal{R}c) \implies a\mathcal{R}c) \implies (a=b \wedge b=c) \implies a=c$
- b) Neem de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \iff a \mod 42 = b \mod 42$.
 - 1 Reflexief: $a \mod 42 = a \mod 42$
 - 2 Symmetrie: $(a \mod 42 = b \mod 42) \implies b \mod 42 = a \mod 42$
 - 3 Transitiviteit: $(a \mod 42 = b \mod 42 \land b \mod 42 = c \mod 42) \iff a \mod 42 = c \mod 42$
- c) Bewijs. X **Aanname**: Ik stel dat A een verzameling is waarbij $A \neq \emptyset$, en $A/_{\sim} = \emptyset$. Aangezien $A \neq \emptyset$ bestaat er een $a \in A$, maar als we een equivalentierelatie hebben, dan volgt vanuit reflexiviteit dat $a \sim a$. Als $a \sim a$ dan moet er een equivalentieklasse $\overline{a} = \{b \in A : b \sim a\}$ bestaan waarbij $a \in \overline{a}$, maar $\overline{a} \in A/_{\sim}$. Dit is een tegenspraak want we stelde dat $A/_{\sim} = \emptyset$, en dus kan $A/_{\sim}$ niet leeg zijn.

Opgave 3.2

- a) X wordt gepartitioneerd in $X/_{\sim}$, omdat $|X/_{\sim}| = \infty = \text{zit}$ in elke equivalentieklasse minstens 1 representant die in X moet liggen. Dit betekent dus dat $|X| \ge |X/_{\sim}| = \infty$.
- b) Geval 1: $(|X/_{\sim}|) = (n \land |X| = \infty)$: Neem $X = \mathbb{Z}$ met $x \sim y$ als $x \equiv y \mod n$, dan heeft $|X/_{\sim}|$ precies n elementen namelijk: $\{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$. Hieruit volgt dus dat $|X| = \infty$, en $|X/_{\sim}| = n$.
 - Geval 2: $(|X/_{\sim}| = n) \wedge (|X| = n)$: Laat $X = \mathbb{Z}_k$ en maak een equivalentie relatie waarbij $x \sim y \iff x = y$. Dan heeft onder reflexiviteit iedere $x \in X$ een equivalentieklasse, namelijk: $X/_{\sim} = \{\overline{0}, \overline{1}, \dots, \overline{k-1}\}$. Dit betekent dus dat |X| = k en $|X/_{\sim}| = k$.
- c) Dan moet $X = \emptyset$,

Bewijs. Stel dat |X| = n en $|X/_{\sim}| = 0$ dan geldt $\forall x \in X$ dat $x \in \overline{x}$, maar dit kan niet want $|X/_{\sim}| = 0$, en dus moet |X| = 0.

Opgave 3.3

- a) 1 Reflexief: a a = 0 en $0 \in W$, dus reflexief. $(: 0 \in W)$
 - 2 Symmetrie: als $a b \in W$ dan $(-1)(a b) \in W \iff b a \in W$ $(\because v \in W \implies \lambda v \in W)$
 - 3 Transitiviteit: $a b + b c = a c \in W$ $(\because v, w \in W \implies v + w \in W)$
- b) Neem een $a \in V$ dan geldt voor alle $b \in V$, dat hij equivalent is aan a, en dus heeft de $V/_{\sim}$ slechts één equivalentieklasse.
- c) Neem een willekeurige $\overline{a} \in V/_{\sim}$, dan moet \overline{a} zichzelf bevatten, want $a \sim b \Leftrightarrow a b \in \{0\} = W$, en dus a = b. Dit betekent dat elk element in V een eigen equivalentieklasse heeft met zichzelf.

Opgave 3.4

Ik heb er geen kunnen vinden als we vanuit \mathbb{Z} dit proberen op te lossen. Als we vanuit $\mathbb{Z}_{\geq 0}$ starten dan kan ik het wel oplossen.

Laat $x \sim y$ met $x, y \in \mathbb{Z}_{\geq 0}$ als x en y op hetzelfde niveau n liggen in Pascal's driehoek.

- 1 Reflexief: x ligt op hetzelfde niveau als x en dus reflexief.
- 2 Symmetrie: x en y op hetzelfde niveau betekent y en x op hetzelfde niveau en dus geldt symmetrie.
- 3 Transitiviteit: Als x en y op hetzelfde niveau liggen en y en z ook. Dan moet x ook op hetzelfde niveau liggen als z.

Tot slot heb ik nog een idee om alsnog met \mathbb{Z} dit op te lossen. We moeten eerst een functie f opstellen met $f: \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ waarbij

$$f = \begin{cases} 2x & \text{als } x \ge 0\\ |2x+1| & \text{als } x < 0 \end{cases}$$

Dit zorgt ervoor dat we gewoon met $\mathbb{Z}_{\geq 0}$ verder kunnen werken en dan dezelfde equivalentierelatie kunnen opstellen als hierboven. Ik weet niet of dit goed is...

Opgave 3.5

- a) Bewijs. 1 Reflexief: Als p = p dan moet p' = p'.
 - 2 Symmetrie: Als $p \sim q$ dan $p' = q' \implies q' = p' \implies q \sim p$
 - 3 Transitiviteit: Als $p \sim q \land q \sim r$ dan p' = q' en q' = r' waardoor $p' = r' \implies p \sim r$.

b) Laat $p, q \in \mathbb{Z}[X]$ waarbij $p \neq q$ en $\overline{p} = \overline{q}$, dan geldt $f(\overline{p}) \neq f(\overline{q})$ maar dit is een tegenspraak want $\overline{p} = \overline{q}$. Dit betekent dat dit geen functie is, Aangezien voor elk argument hebben we een unieke waarde moeten hebben.

c) Laat P = p(x) + c en Q = q(x) + d met $P \neq Q$ en P' = Q', dan:

$$g(\overline{P}) = p(1) + c - (p(0) + c)$$

= $p(1) - p(0)$

$$g(\overline{Q}) = q(1) + c - (q(0) + c)$$
$$= q(1) - q(0)$$

Het verschil tussen P en Q was de constante. De constante verdwijnt door de functie g en dus is deze wel goed gedefinieerd.

Opgave 3.6

Correct gedefinieerd

Neem $f: X/_{\sim} \to \mathbb{Z}_{\geq 0}$ met $f(\overline{x}) := g(x)$, waarbij $g: X - > \mathbb{Z}_{\geq 0}$ met $g(x) = x \mod 2$. Beschouw $X \in \mathbb{Z}_{\geq 0}$ en stel de equivalentierelatie $(x \sim y)$ als $(x \mod 6) = (y \mod 6)$ op. Als we nu willekeurige $x, y \in \overline{x}$ representanten zouden selecteren dan f(x) = f(y), aangezien voor elk element in \overline{a} geldt dat het in dezelfde restklasse valt. Ofwel voor $\overline{0}$ kunnen we elk element schrijven als 2(x) + 0, $\overline{1} \Longrightarrow 2(x) + 1$, $\overline{2} \Longrightarrow 2(x) + 2$, etc. Voorbeeld:

$$\overline{0} = \{0, 6, 12, 18, 24, \dots\}
= \{(2 \cdot 0), (2 \cdot 3), (2 \cdot 4), \dots\}
\overline{1} = \{1, 7, 13, 19, \dots\}$$

$$\dot{\dot{}} = \{\dots\dots\}$$

 $= \{(2 \cdot 0 + 1), (2 \cdot 3 + 1), (2 \cdot 6 + 1), \dots\}$

Incorrect gedefinieerd

Neem $f: X/_{\sim} \to \mathbb{Z}_{\geq 0}$ met $f(\overline{x}) := g(x)$ waarbij $g: X \to \mathbb{Z}_{\geq 0}$ met $g(x) = x \mod 2$. Beschouw $X \in \mathbb{Z}_{\geq 0}$ en stel de equivalentierelatie $x \sim y$ als $(x \mod 3) = (y \mod 3)$ op. Als we nu willekeurige $x, y \in \overline{x}$ representanten zouden selecteren dan $f(x) \neq f(y)$, want neem bijvoorbeeld $3, 6 \in \overline{0}$, dan $f(3) = 3 \mod 2 = \boxed{1}$ en $f(6) = 6 \mod 2 = \boxed{0}$. Hieruit volgt dus dat f geen functie is aangezien een argument meer dan één waarde kan vertegenwoordigen.

Opgave 3.7

Zij $(a,b),(c,d)\in X/_{\sim}$ en laat de vermenigvuldiging als volgt zijn:

$$(a, b) \cdot (c, d) = (a - b)(c - d)$$

$$= ac - ad - bc + bd$$

$$= (ac + bd) - (ad + bc)$$

$$= (ac + bd, ad + bc)$$

We gaan nu laten zien dat de berekening representant onafhankelijk is. Neem (ac+bd, ad+bc), en (a'c'+b'd', a'd'+b'c') en kijk of:

$$(ac + bd, ad + bc) \sim (a'c' + b'd', a'd' + b'c')$$
 \downarrow
 $ac + bd + a'd' + b'c' = ad + bc + a'c' + b'd'$
 \downarrow
 $(ac + bd) - (ad + bd) = (a'c' + b'd') - (a'd' + b'c')$
 \downarrow
 $(ac + bd, ad + bd) = (a'c' + b'd', a'd' + b'c')$

Hieruit volgt dat het representant onafhankelijk is. Ik twijfel nog over deze uitwerking...

Opgave 3.8

Zij $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_{\neq 0}$ met f(x) = (x, 1), waarbij we een equivalentierelatie opstellen:

$$(a,b) \sim (c,d) \Longleftrightarrow ad = bc$$

Opstellen van equivalentierelatie op $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$

1 Reflexief: Neem $(a,b) \in \mathbb{Z} \times \mathbb{Z}_{\neq 0}$ dan:

$$(a,b) \sim (a,b)$$

$$\downarrow ab = ba$$
 $ab = ab \quad (\because \text{Vermedigvuldiging is commutatiof in } \mathbb{Z})$

De relatie is dus reflexief.

2 Symmetrie: Als $(a,b) \sim (c,d)$, waarbij (a,b) en $(c,d) \in \mathbb{Z} \times \mathbb{Z}$ dan:

$$ad = bc$$
 \downarrow
 $bc = ad$
 \downarrow
 $cb = da$ (: Vermedigvuldiging is commutation in \mathbb{Z})
 \downarrow
 $(c, d) \sim (a, b)$

De relatie is dus symmetrisch.

3 Transitiviteit: Als $(a,b) \sim (c,d) \wedge (c,d) \sim (e,f)$ dan $(a,b) \sim (e,f)$

$$(a,b) \sim (c,d) \implies ad = bc$$

$$\downarrow \downarrow$$

$$(c,d) \sim (e,f) \implies cf = de$$

$$\downarrow \downarrow$$

$$ad(f) = bc(f)$$

$$\downarrow \downarrow$$

$$ad(f) = b(de)$$

$$\downarrow \downarrow$$

$$af = be$$

$$\downarrow \downarrow$$

$$(a,b) \sim (e,f)$$

De relatie is dus transitief.

Opstellen optelling in $\mathbb{Z}\times\mathbb{Z}$

Neem (a,b) en $(c,d) \in \mathbb{Z} \times \mathbb{Z}$ dan definiëren we een optelling:

$$(a,b) + (c,d) = (ad + bc, bd)$$

Opstellen vermenigvuldiging in $\mathbb{Z} \times \mathbb{Z}$

Neem (a, b) en $(c, d) \in \mathbb{Z} \times \mathbb{Z}$ dan definiëren we een vermenigvuldiging:

$$(a,b) \cdot (c,d) = (ac,bd)$$

Representant-onafhankelijkheid

Neem $(a,b) \sim (a',b')$ en $(c,d), \sim (c',d')$ dan moet gelden:

• Optelling:

$$(a,b) + (c,d) = (ad + bc,bd) \sim (a',b') + (c',d') = (a'd' + b'c',b'd')$$

$$\downarrow \downarrow \\ (ad + bc,bd) \sim (a'd' + b'c',b'd')$$

$$\downarrow \downarrow \\ ((ad + bc)(b'd') = (bd)(a'd' + b'c'))$$

Nu moeten we nog bewijzen of de equivalentierelatie representant-onafhankelijk is. Neem $(a, b) \sim (c, d)$ en $(a', b') \sim (c', d')$ dan:

a

Waarbij de interpretatie als volgt is:

$$\overline{(a,b)} = \frac{a}{b}$$

En nu hebben we \mathbb{Q} ?