Springer Texts in Business and Economics

Badi H. Baltagi

Solutions Manual for Econometrics

Third Edition

Springer Texts in Business and Economics

Badi H. Baltagi

Solutions Manual for *Econometrics*

Third Edition

Badi H. Baltagi Center for Policy Research and Department of Economics Syracuse University Syracuse NY, USA

ISSN 2192-4333 ISSN 2192-4341 (electronic)
ISBN 978-3-642-54547-4 ISBN 978-3-642-54548-1 (eBook)
DOI 10.1007/978-3-642-54548-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948208

© Springer-Verlag Berlin Heidelberg 1997, 2010, 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This manual provides solutions to selected exercises from each chapter of the fifth edition of *Econometrics* by Badi H. Baltagi. Eviews and Stata as well as SAS® programs are provided for the empirical exercises. Some of the problems and solutions are obtained from Econometric Theory (ET) and these are reprinted with the permission of Cambridge University Press. I would like to thank Peter C.B. Phillips, and past editors of the Problems and Solutions section, Alberto Holly, Juan Dolado and Paolo Paruolo for their useful service to the econometrics profession. I would also like to thank my colleague (from Texas A&M) James M. Griffin for providing many empirical problems and data sets. I have also used three empirical data sets from Lott and Ray (1992). The reader is encouraged to apply these econometric techniques to their own data sets and to replicate the results of published articles. Instructors and students are encouraged to get other data sets from the Internet or journals that provide backup data sets to published articles. The Journal of Applied Econometrics and the American Economic Review are two such journals. In fact, the Journal of Applied Econometrics has a replication section for which I am serving as an editor. In my course I require my students to replicate an empirical paper.

I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng, Kiseok Nam, Dong Li, Gustavo Sanchez, Long Liu and Liu Tian who solved several of the exercises. I would also like to thank Martina Bihn at Springer for her continuous support and professional editorial help.

Please report any errors, typos or suggestions to: Badi H. Baltagi, Center for Policy Research and Department of Economics, Syracuse University, Syracuse, New York 13244-1020, Telephone (315) 443-1630, Fax (315) 443-1081, or send Email to bbaltagi@ maxwell.syr.edu. My home page is www-cpr.maxwell.syr.edu/faculty/baltagi.

Data

The data sets used in this text can be downloaded from the Springer website. The address is: http://www.springer.com/978-3-642-54547-4. Please check the link "Samples, Supplements, Data Sets" from the right-hand column. There is also a readme file that describes the contents of each data set and its source.

¹ Baltagi, Badi H., *Econometrics*, 5th Ed., Springer-Verlag, Berlin, Heidelberg, 2011.

vi Preface

Reference

Lott, W.F. and S. Ray (1992), *Econometrics Problems and Data Sets* (Harcourt, Brace Jovanovich: San Diego, CA).

Contents

I	What is Econometrics?	1
2	A Review of Some Basic Statistical Concepts	5
3	Simple Linear Regression	29
4	Multiple Regression Analysis	49
5	Violations of the Classical Assumptions	79
6	Distributed Lags and Dynamic Models	125
7	The General Linear Model: The Basics	157
8	Regression Diagnostics and Specification Tests	185
9	Generalized Least Squares	213
10	Seemingly Unrelated Regressions	233
11	Simultaneous Equations Model	259
12	Pooling Time-Series of Cross-Section Data	313
13	Limited Dependent Variables	333
14	Time-Series Analysis	383

CHAPTER 1 What is Econometrics?

This chapter emphasizes that an econometrician has to be a competent mathematician and statistician who is an economist by training. It is the unification of statistics, economic theory and mathematics that constitutes econometrics. Each view point, by itself is necessary but not sufficient for a real understanding of quantitative relations in modern economic life, see Frisch (1933).

Econometrics aims at giving empirical content to economic relationships. The three key ingredients are economic theory, economic data, and statistical methods. Neither 'theory without measurement', nor 'measurement without theory' are sufficient for explaining economic phenomena. It is as Frisch emphasized their union that is the key for success in the future development of econometrics.

Econometrics provides tools for testing economic laws, such as purchasing power parity, the life cycle hypothesis, the wage curve, etc. These economic laws or hypotheses are testable with economic data. As Hendry (1980) emphasized "The three golden rules of econometrics are test, test and test."

Econometrics also provides quantitative *estimates* of price and income elasticities of demand, returns to scale in production, technical efficiency in cost functions, wage elasticities, etc. These are important for policy decision making. Raising the tax on a pack of cigarettes by 10%, how much will that reduce consumption of cigarettes? How much will it generate in tax revenues? What is the effect of raising minimum wage by \$1 per hour on unemployment? What is the effect of raising beer tax on motor vehicle fatality?

Econometrics also provides *predictions* or *forecasts* about future interest rates, unemployment, or GNP growth. As Klein (1971) emphasized: "Econometrics should give a base for economic prediction beyond experience if it is to be useful."

Data in economics are not generated under ideal experimental conditions as in a physics laboratory. This data cannot be replicated and is most likely measured with error. Most of the time the data collected are not ideal for the economic question at hand. Griliches (1986, p. 1466) describes economic data as the world that we want to explain, and at the same time the source of all our trouble. The data's imperfections makes the econometrician's job difficult and sometimes impossible, yet these imperfections are what gives econometricians their legitimacy.

Even though economists are increasingly getting involved in collecting their data and measuring variables more accurately and despite the increase in data sets and data storage and computational accuracy, some of the warnings given by Griliches (1986, p. 1468) are still valid today:

econometricians want too much from the data and hence tend to be disappointed by the answers, because the data are incomplete and imperfect. In part it is our fault, the appetite grows with eating. As we get larger samples, we keep adding variables and expanding our models, until on the margin, we come back to the same insignificance levels.

Pesaran (1990, pp. 25–26) also summarizes some of the limitations of econometrics:

There is no doubt that econometrics is subject to important limitations, which stem largely from the incompleteness of the economic theory and the non-experimental nature of economic data. But these limitations should not distract us from recognizing the fundamental role that econometrics has come to play in the development of economics as a scientific discipline. It may not be possible conclusively to reject economic theories by means of econometric methods, but it does not mean that nothing useful can be learned from attempts at testing particular formulations of a given theory against (possible) rival alternatives. Similarly, the fact that econometric modelling is inevitably subject to the problem of specification searches does not mean that the whole activity is pointless. Econometric models are important tools for forecasting and policy analysis, and it is unlikely that they will be discarded in the future. The challenge is to recognize their limitations and to work towards turning them into more reliable and effective tools. There seem to be no viable alternatives.

Econometrics have experienced phenomenal growth in the past 50 years. There are six volumes of the *Handbook of Econometrics*, most of it dealing with post 1960s research. A lot of the recent growth reflects the rapid advances in computing technology. The broad availability of micro data bases is a major advance which facilitated the growth of panel data methods (see Chap. 12) and microeconometric methods especially on sample selection and discrete choice (see Chap. 13) and that also lead to the award of the Nobel Prize in Economics to James Heckman and Daniel McFadden in 2000. The explosion in research in time series econometrics which lead

to the development of ARCH and GARCH and cointegration (see Chap. 14) which also lead to the award of the Nobel Prize in Economics to Clive Granger and Robert Engle in 2003.

The challenge for the twenty-first century is to narrow the gap between theory and practice. Many feel that this gap has been widening with theoretical research growing more and more abstract and highly mathematical without an application in sight or a motivation for practical use. Heckman (2001) argues that econometrics is useful only if it helps economists conduct and interpret *empirical research* on economic data. He warns that the gap between econometric theory and empirical practice has grown over the past two decades. Theoretical econometrics becoming more closely tied to mathematical statistics. Although he finds nothing wrong, and much potential value, in using methods and ideas from other fields to improve empirical work in economics, he does warn of the risks involved in uncritically adopting the methods and mind set of the statisticians:

Econometric methods uncritically adapted from statistics are not useful in many research activities pursued by economists. A theorem-proof format is poorly suited for analyzing economic data, which requires skills of synthesis, interpretation and empirical investigation. Command of statistical methods is only a part, and sometimes a very small part, of what is required to do first class empirical research.

Geweke et al. (2008) in the *The New Palgrave Dictionary* provide the following recommendations for the future:

Econometric theory and practice seek to provide information required for informed decision-making in public and private economic policy. This process is limited not only by the adequacy of econometrics, but also by the development of economic theory and the adequacy of data and other information. Effective progress, in the future as in the past, will come from simultaneous improvements in econometrics, economic theory, and data. Research that specifically addresses the effectiveness of the interface between any two of these three in improving policy — to say nothing of all of them — necessarily transcends traditional subdisciplinary boundaries within economics. But it is precisely these combinations that hold the greatest promise for the social contribution of academic economics.

For a world wide ranking of econometricians as well as academic institutions in the field of econometrics, see Baltagi (2007).

References

- Baltagi, B.H. (2007), "Worldwide Econometrics Rankings: 1989–2005," *Econometric Theory*, 23: 952–1012.
- Frisch, R. (1933), "Editorial," Econometrica, 1: 1–14.
- Geweke, J., J. Horowitz, and M. H. Pesaran (2008), "Econometrics," *The New Palgrave Dictionary of Economics*. Second Edition. Eds. Steven N. Durlauf and Lawrence E. Blume. Palgrave Macmillan.
- Griliches, Z. (1986), "Economic Data Issues," in Z. Griliches and M.D. Intriligator (eds), *Handbook of Econometrics Vol. III* (North Holland: Amsterdam).
- Heckman, J.J. (2001), "Econometrics and Empirical Economics," *Journal of Econometrics*, 100: 3–5.
- Hendry, D.F. (1980), "Econometrics Alchemy or Science?" *Economica*, 47: 387–406.
- Klein, L.R. (1971), "Whither Econometrics?" *Journal of the American Statistical Association*, 66: 415–421.
- Pesaran, M.H. (1990), "Econometrics," in J. Eatwell, M. Milgate and P. Newman; The New Palgrave: Econometrics (W.W. Norton and Company: New York).

CHAPTER 2

A Review of Some Basic Statistical Concepts

- **2.1** Variance and Covariance of Linear Combinations of Random Variables.
 - a. Let Y = a + bX, then E(Y) = E(a + bX) = a + bE(X). Hence, $var(Y) = E[Y - E(Y)]^2 = E[a + bX - a - bE(X)]^2 = E[b(X - E(X))]^2$ $= b^2 E[X - E(X)]^2 = b^2 var(X).$

Only the multiplicative constant b matters for the variance, not the additive constant a.

b. Let
$$Z = a + bX + cY$$
, then $E(Z) = a + bE(X) + cE(Y)$ and
$$var(Z) = E[Z - E(Z)]^2 = E[a + bX + cY - a - bE(X) - cE(Y)]^2$$
$$= E[b(X - E(X)) + c(Y - E(Y))]^2$$
$$= b^2 E[X - E(X)]^2 + c^2 E[Y - E(Y)]^2 + 2bc \ E[X - E(X)][Y - E(Y)]$$
$$= b^2 var(X) + c^2 var(Y) + 2bc \ cov(X, Y).$$

c. Let
$$Z = a+bX+cY$$
, and $W = d+eX+fY$, then $E(Z) = a+bE(X)+cE(Y)$

$$E(W) = d + eE(X) + fE(Y)$$

and

$$cov(Z, W) = E[Z - E(Z)][W - E(W)]$$

$$= E[b(X-E(X))+c(Y-E(Y))][e(X-E(X))+f(Y-E(Y))]$$

$$= be \ var(X) + cf \ var(Y) + (bf + ce) \ cov(X, Y).$$

- **2.2** *Independence and Simple Correlation.*
 - **a.** Assume that X and Y are continuous random variables. The proof is similar if X and Y are discrete random variables and is left to the reader. If X and Y are independent, then $f(x,y) = f_1(x)f_2(y)$ where $f_1(x)$ is the marginal probability density function (p.d.f.) of X and $f_2(y)$ is the marginal p.d.f. of Y. In this case,

$$E(XY) = \iint xyf(x,y)dxdy = \iint xyf_1(x)f_2(y)dxdy$$
$$= (\int xf_1(x)dx)(\int yf_2(y)dy) = E(X)E(Y)$$

Hence,

$$cov(X, Y) = E[X - E(X)][Y - E(Y)] = E(XY) - E(X)E(Y)$$

= $E(X)E(Y) - E(X)E(Y) = 0$.

b. If Y = a + bX, then E(Y) = a + bE(X) and cov(X, Y) = E[X - E(X)][Y - E(Y)] = E[X - E(X)][a + bX - a - bE(X)] = b var(X) which takes the sign of b since var(X) is always positive. Hence,

$$\begin{split} & correl(X,y) = \rho_{xy} = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}} = \frac{b \ var(X)}{\sqrt{var(X)var(Y)}} \\ & but \ var(Y) = b^2 \ var(X) \ from \ problem \ 2.1a. \ Hence, \ \rho_{XY} = \frac{b \ var(X)}{\sqrt{b^2(var(X))^2}} = \\ & \pm 1 \ depending \ on \ the \ sign \ of \ b. \end{split}$$

2.3 Zero Covariance Does Not Necessarily Imply Independence.

$$E(X) = \sum_{X=-2}^{2} XP(X) = \frac{1}{5}[(-2) + (-1) + 0 + 1 + 2] = 0$$

$$E(X^{2}) = \sum_{X=-2}^{2} X^{2}P(X) = \frac{1}{5} [4 + 1 + 0 + 1 + 4] = 2$$

and
$$var(X) = 2$$
. For $Y = X^2$, $E(Y) = E(X^2) = 2$ and

$$E(X^3) = \sum_{X=-2}^{2} X^3 P(X) = \frac{1}{5} [(-2)^3 + (-1)^3 + 0 + 1^3 + 2^3] = 0$$

In fact, any odd moment of X is zero. Therefore,

$$E(YX) = E(X^2.X) = E(X^3) = 0$$

and

$$cov(Y, X) = E(X - E(X))(Y - E(Y)) = E(X - 0)(Y - 2)$$

= $E(XY) - 2E(X) = E(XY) = E(X^3) = 0$
Hence, $\rho_{XY} = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}} = 0$.

2.4 The *Binomial Distribution*.

a.
$$Pr[X = 5 \text{ or } 6] = Pr[X = 5] + Pr[X = 6]$$

 $= b(n = 20, X = 5, \theta = 0.1) + b(n = 20, X = 6, \theta = 0.1)$
 $= {20 \choose 5} (0.1)^5 (0.9)^{15} + {20 \choose 6} (0.1)^6 (0.9)^{14}$
 $= 0.0319 + 0.0089 = 0.0408.$

This can be easily done with a calculator, on the computer or using the Binomial tables, see Freund (1992).

b.
$$\binom{n}{n-X} = \frac{n!}{(n-X)!(n-n+X)!} = \frac{n!}{(n-X)!X!} = \binom{n}{X}$$

Hence.

$$\begin{split} b(n,n-X,1-\theta) &= \binom{n}{n-X} (1-\theta)^{n-X} (1-1+\theta)^{n-n+X} \\ &= \frac{n}{X} (1-\theta)^{n-X} \theta^X = b(n,X,\theta). \end{split}$$

c. Using the MGF for the Binomial distribution given in problem 2.14a, we get

$$M_X(t) = [(1 - \theta) + \theta e^t]^n.$$

Differentiating with respect to t yields $M_X'(t) = n[(1-\theta) + \theta e^t]^{n-1}\theta e^t$.

Therefore, $M'_X(0) = n\theta = E(X)$.

Differentiating $M'_{x}(t)$ again with respect to t yields

$$M_X''(t) = n(n-1)[(1-\theta) + \theta e^t]^{n-2}(\theta e^t)^2 + n[(1-\theta) + \theta e^t]^{n-1}\theta e^t.$$

Therefore $M_X''(0) = n(n-1)\theta^2 + n\theta = E(X^2)$.

Hence $\text{var}(X) = E(X^2) - (E(X))^2 = n\theta + n^2\theta^2 - n\theta^2 - n^2\theta^2 = n\theta(1-\theta)$. An alternative proof for $E(X) = \sum_{X=0}^{n} Xb(n, X, \theta)$. This entails factorial moments and the reader is referred to Freund (1992).

d. The likelihood function is given by

$$\begin{split} L(\theta) &= f(X_1,..,X_n;\theta) = \theta^{\sum\limits_{i=1}^n X_i} (1-\theta)^{n-\sum\limits_{i=1}^n X_i} \\ \text{so that } \log L(\theta) &= \left(\sum\limits_{i=1}^n X_i\right) \log \theta + \left(n-\sum\limits_{i=1}^n X_i\right) \log (1-\theta) \\ \frac{\partial \log L(\theta)}{\partial \theta} &= \frac{\sum\limits_{i=1}^n X_i}{\theta} - \frac{\left(n-\sum\limits_{i=1}^n X_i\right)}{(1-\theta)} = 0. \end{split}$$

Solving for θ one gets

$$\sum_{i=1}^n X_i - \theta \sum_{i=1}^n X_i - \theta n + \theta \sum_{i=1}^n X_i = 0$$

so that
$$\hat{\theta}_{mle} = \sum_{i=1}^{n} X_i / n = \bar{X}$$
.

consistent for θ is satisfied.

e.
$$E(\bar{X}) = \sum_{i=1}^{n} E(X_i)/n = n\theta/n = \theta$$
.
Hence, \bar{X} is unbiased for θ . Also, $var(\bar{X}) = var(X_i)/n = \theta(1-\theta)/n$ which goes to zero as $n \to \infty$. Hence, the sufficient condition for \bar{X} to be

f. The joint probability function in part d can be written as

$$f(X_1,..,X_n;\theta)=\theta^{n\bar{X}}(1-\theta)^{n-n\bar{X}}=h(\bar{X},\theta)g(X_1,\ldots,X_n)$$

where $h(\bar{X},\theta)=\theta^{n\bar{X}}(1-\theta)^{n-n\bar{X}}$ and $g(X_1,..,X_n)=1$ for all X_i 's. The latter function is independent of θ in form and domain. Hence, by the factorization theorem, \bar{X} is sufficient for θ .

- g. \bar{X} was shown to be MVU for θ for the Bernoulli case in Example 2 in the text.
- **h.** From part (d), $L(0.2) = (0.2)^{\sum_{i=1}^{n} X_i} (0.8)^{n-\sum_{i=1}^{n} X_i}$ while $L(0.6) = (0.6)^{\sum_{i=1}^{n} X_i}$ (0.4) $(0.4)^{n-\sum_{i=1}^{n} X_i}$ with the likelihood ratio $\frac{L(0.2)}{L(0.6)} = (\frac{1}{3})^{\sum_{i=1}^{n} X_i} 2^{n-\sum_{i=1}^{n} X_i}$

The uniformly most powerful critical region C of size $\alpha \leq 0.05$ is given by $\left(\frac{1}{3}\right)^{\sum\limits_{i=1}^{n}X_{i}}2^{n-\sum\limits_{i=1}^{n}X_{i}} \leq k$ inside C. Taking logarithms of both sides

$$-\sum_{i=1}^{n} X_{i}(log \ 3) + \left(n - \sum_{i=1}^{n} X_{i}\right) log \ 2 < log \ k$$

solving
$$-\left(\sum_{i=1}^{n} X_i\right) log \ 6 \le K'$$
 or $\sum_{i=1}^{n} X_i \ge K$

where K is determined by making the size of $C=\alpha \leq 0.05$. In this case, $\sum_{i=1}^n X_i \sim b(n,\theta) \text{ and under } H_o \ ; \ \theta=0.2. \text{ Therefore, } \sum_{i=1}^n X_i \sim b(n=20,\theta=0.2). \text{ Hence, } \alpha=\text{Pr}[b(n=20,\theta=0.2)\geq K] \leq 0.05.$

From the Binomial tables for n=20 and $\theta=0.2$, K=7 gives $Pr[b(n=20,\theta=0.2) \geq 7] = 0.0322$. Hence, $\sum_{i=1}^{n} X_i \geq 7$ is our required critical region.

i. The likelihood ratio test is

$$\frac{L(0.2)}{L(\hat{\theta}_{mle})} = \frac{(0.2)^{\sum\limits_{i=1}^{n}X_{i}}(0.8)^{n-\sum\limits_{i=1}^{n}X_{i}}}{\left(\bar{X}\right)^{\sum\limits_{i=1}^{n}X_{i}}\left(1-\bar{X}\right)^{n-\sum\limits_{i=1}^{n}X_{i}}}$$

so that LR = $-2 \log L(0.2) + 2 \log L(\hat{\theta}_{mle})$

$$= -2 \left\lceil \sum_{i=1}^{n} X_{i} (\log 0.2 - \log \bar{X}) \right\rceil - 2 \left\lceil \left(n - \sum_{i=1}^{n} X_{i}\right) (\log 0.8 - \log(1 - \bar{X})) \right\rceil.$$

This is given in Example 5 in the text for a general $\theta_o.$ The Wald statistic is given by $W=\frac{(\bar{X}-0.2)^2}{\bar{X}(1-\bar{X})/n}$

and the LM statistic is given by LM = $\frac{(\bar{X} - 0.2)^2}{(0.2)(0.8)/n}$

Although, the three statistics, LR, LM and W look different, they are all based on $|\bar{X}-2| \ge k$ and for a finite n, the same exact critical value could be obtained from the binomial distribution.

2.5 d. *The Wald, LR, and LM Inequality*. This is based on Baltagi (1994). The likelihood is given by Eq. (2.1) in the text.

$$L\left(\mu,\sigma^{2}\right) = (1/2\pi\sigma^{2})^{n/2}e^{-(1/2\sigma^{2})\sum_{i=1}^{n}(X_{i}-\mu)^{2}} \tag{1}$$

It is easy to show that the score is given by

$$S\left(\mu,\sigma^{2}\right) = \begin{pmatrix} \frac{n(\bar{X}-\mu)}{\sigma^{2}} \\ \frac{\sum\limits_{i=1}^{n} (X_{i}-\mu)^{2} - n\sigma^{2}}{2\sigma^{4}} \end{pmatrix}, \tag{2}$$

and setting $S(\mu,\sigma^2)=0$ yields $\hat{\mu}=\bar{X}$ and $\hat{\sigma}^2=\sum\limits_{i=1}^n{(X_i-\bar{X})^2}/n.$ Under $H_o,~\tilde{\mu}=\mu_0$ and

$$\tilde{\sigma}^2 = \sum_{i=1}^n (X_i - \mu_0)^2 / n.$$

Therefore,

$$\log L\left(\tilde{\mu}, \tilde{\sigma}^2\right) = -\frac{n}{2}\log \tilde{\sigma}^2 - \frac{n}{2}\log 2\pi - \frac{n}{2}$$
 (3)

and

$$\log L\left(\hat{\mu}, \hat{\sigma}^2\right) = -\frac{n}{2}\log \hat{\sigma}^2 - \frac{n}{2}\log 2\pi - \frac{n}{2}.\tag{4}$$

Hence,

$$LR = n \log \left[\frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \right].$$
 (5)

It is also known that the information matrix is given by

$$I\begin{pmatrix} \mu \\ \sigma_2 \end{pmatrix} = \begin{bmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{bmatrix}. \tag{6}$$

Therefore,

$$W = (\hat{\mu} - \mu_0)^2 \hat{I}_{11} = \frac{n^2 (\bar{X} - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2},$$
(7)

where \hat{I}_{11} denotes the (1,1) element of the information matrix evaluated at the unrestricted maximum likelihood estimates. It is easy to show from (1) that

$$\log L(\tilde{\mu}, \hat{\sigma}^2) = -\frac{n}{2} \log \hat{\sigma}^2 - \frac{n}{2} \log 2\pi - \frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{2\hat{\sigma}^2}.$$
 (8)

Hence, using (4) and (8), one gets

$$-2\log\left[L\left(\tilde{\mu},\hat{\sigma}^{2}\right)/L(\hat{\mu},\hat{\sigma}^{2})\right] = \frac{\sum_{i=1}^{n} (X_{i} - \mu_{0})^{2} - n\hat{\sigma}^{2}}{\hat{\sigma}^{2}} = W,$$
 (9)

and the last equality follows from (7). Similarly,

$$LM = S^{2}\left(\tilde{\mu}, \tilde{\sigma}^{2}\right)\tilde{I}^{11} = \frac{n^{2}(\bar{X} - \mu_{0})^{2}}{\sum\limits_{i=1}^{n}\left(X_{i} - \mu_{0}\right)^{2}},$$
(10)

where \tilde{I}^{11} denotes the (1,1) element of the inverse of the information matrix evaluated at the restricted maximum likelihood estimates. From (1), we also get

$$\log L\left(\hat{\mu}, \tilde{\sigma}^2\right) = -\frac{n}{2}\log \tilde{\sigma}^2 - \frac{n}{2}\log 2\pi - \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{2\tilde{\sigma}^2}$$
(11)

Hence, using (3) and (11), one gets

$$-2\log\left[L\left(\tilde{\mu},\tilde{\sigma}^{2}\right)/L\left(\hat{\mu},\tilde{\sigma}^{2}\right)\right] = n - \frac{\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}}{\tilde{\sigma}^{2}} = LM,$$
(12)

where the last equality follows from (10). $L(\tilde{\mu}, \tilde{\sigma}^2)$ is the restricted maximum; therefore, $\log L(\tilde{\mu}, \hat{\sigma}^2) \leq \log L(\tilde{\mu}, \tilde{\sigma}^2)$, from which we deduce that $W \geq LR$. Also, $L(\hat{\mu}, \hat{\sigma}^2)$ is the unrestricted maximum; therefore $\log L(\hat{\mu}, \hat{\sigma}^2) \geq \log L(\hat{\mu}, \tilde{\sigma}^2)$, from which we deduce that $LR \geq LM$.

An alternative derivation of this inequality shows first that

$$\frac{LM}{n} = \frac{W/n}{1 + (W/n)} \quad \text{and} \quad \frac{LR}{n} = \log\left(1 + \frac{W}{n}\right).$$

Then one uses the fact that $y \ge \log(1 + y) \ge y/(1 + y)$ for y = W/n.

2.6 Poisson Distribution.

a. Using the MGF for the Poisson derived in problem 2.14c one gets

$$M_x(t) = e^{\lambda(e^t - 1)}.$$

Differentiating with respect to t yields

$$M_x'(t) = e^{\lambda(e^t - 1)} \lambda e^t.$$

Evaluating $M'_X(t)$ at t = 0, we get

$$M'_{x}(0) = E(X) = \lambda.$$

Similarly, differentiating $M'_{\rm X}(t)$ once more with respect to t, we get

$$M_x''(t) = e^{\lambda(e^t - 1)} \left(\lambda e^t\right)^2 + e^{\lambda(e^t - 1)} \lambda e^t$$

evaluating it at t = 0 gives

$$M_x''(0) = \lambda^2 + \lambda = E(X^2)$$

so that

$$var(X) = E(X^2) - (E(X)^2) = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

Hence, the mean and variance of the Poisson are both equal to λ .

b. The likelihood function is

$$L(\lambda) = \frac{e^{-n\lambda}\lambda^{\sum\limits_{i=1}^{n}X_{i}}}{X_{1}!X_{2}!..X_{n}!}$$

so that

$$\log L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} X_i\right) \log \lambda - \sum_{i=1}^{n} \log X_i!$$

$$\frac{\partial \log L(\lambda)}{\partial \lambda} = -n + \frac{\sum\limits_{i=1}^{n} X_i}{\lambda} = 0.$$

Solving for λ , yields $\hat{\lambda}_{mle} = \bar{X}$.

- c. The method of moments equates E(X) to \bar{X} and since $E(X) = \lambda$ the solution is $\hat{\lambda} = \bar{X}$, same as the ML method.
- **d.** $E(\bar{X}) = \sum_{i=1}^{n} E(X_i)/n = n\lambda/n = \lambda$. Therefore \bar{X} is unbiased for λ . Also, $var(\bar{X}) = \frac{var(X_i)}{n} = \frac{\lambda}{n}$ which tends to zero as $n \to \infty$. Therefore, the sufficient condition for \bar{X} to be consistent for λ is satisfied.

e. The joint probability function can be written as

$$f(X_1,..,X_n;\lambda)=e^{-n\lambda}\lambda^{n\bar{X}}\frac{1}{X_1!..X_n!}=h\left(\bar{X},\lambda\right)\,g\left(X_1,..,X_n\right)$$

where $h(\bar{X},\lambda)=e^{-n\lambda}\lambda^{n\bar{X}}$ and $g(X_1,..,X_n)=\frac{1}{X_1!..X_n!}$. The latter is independent of λ in form and domain. Therefore, \bar{X} is a sufficient statistic for λ .

f. $\log f(X; \lambda) = -\lambda + X \log \lambda - \log X!$

and

$$\frac{\partial \log f(X;\lambda)}{\partial \lambda} = -1 + \frac{X}{\lambda}$$

$$\frac{\partial^2 \log f(X;\lambda)}{\partial \lambda^2} = \frac{-X}{\lambda^2}.$$

The Cramér–Rao lower bound for any unbiased estimator $\hat{\lambda}$ of λ is given by

$$\operatorname{var}\left(\hat{\lambda}\right) \geq -\frac{1}{n \operatorname{E}\left(\frac{\partial^2 \log f(X;\lambda)}{\partial \lambda^2}\right)} = \frac{\lambda^2}{n \operatorname{E}(X)} = \frac{\lambda}{n}.$$

But $var(\bar{X}) = \lambda/n$, see part (d). Hence, \bar{X} attains the Cramér–Rao lower bound.

g. The likelihood ratio is given by

$$\frac{L(2)}{L(4)} = \frac{e^{-2n} 2^{\sum_{i=1}^{n} X_i}}{e^{-4n} 4^{\sum_{i=1}^{n} X_i}}$$

The uniformly most powerful critical region C of size $\alpha \le 0.05$ is given by

$$e^{2n} \left(\frac{1}{2}\right)_{i=1}^{\sum\limits_{j=1}^{n} X_{i}} \leq k \text{ inside } C$$

Taking logarithms of both sides and rearranging terms, we get

$$-\left(\sum_{i=1}^n X_i\right) log \, 2 \leq K'$$

or

$$\sum_{i=1}^{n} X_i \ge K$$

where K is determined by making the size of $C = \alpha \le 0.05$. In this case, $\sum_{i=1}^{n} X_i \sim Poisson(n\lambda)$ and under H_o ; $\lambda = 2$. Therefore, $\sum_{i=1}^{n} X_i \sim Poisson(\lambda) = 18$. Hence $\alpha = Pr[Poisson(18) \ge K] \le 0.05$.

From the Poisson tables, for $\lambda = 18$, K = 26 gives $Pr[Poisson(18) \ge 26] = 0.0446$. Hence, $\sum_{i=1}^{n} X_i \ge 26$ is our required critical region.

h. The likelihood ratio test is

$$\frac{L(2)}{L(\bar{X})} = \frac{e^{-2n}2^{\sum\limits_{i=1}^{n}X_{i}}}{e^{-n\bar{X}}\left(\bar{X}\right)^{\sum\limits_{i=1}^{n}X_{i}}} = e^{n(\bar{X}-2)}\left(\frac{2}{\bar{X}}\right)^{\sum\limits_{i=1}^{n}X_{i}}$$

so that

$$LR = -2 \log L(2) + 2 \log L(\bar{X}) = -2n(\bar{X} - 2) - 2 \sum_{i=1}^{n} X_i \left[\log 2 - \log \bar{X} \right].$$

In this case,

$$C(\lambda) = \left| \frac{\partial^2 \log L(\lambda)}{\partial \lambda^2} \right| = \left| -\frac{\sum\limits_{i=1}^n X_i}{\lambda^2} \right|$$

and

$$I(\lambda) = -E \left[\frac{\partial^2 \log L(\lambda)}{\partial \lambda^2} \right] = \frac{n\lambda}{\lambda^2} = \frac{n}{\lambda}.$$

The Wald statistic is based upon

$$W = (\bar{X} - 2)^2 I(\hat{\lambda}_{mle}) = (\bar{X} - 2)^2 \cdot \frac{n}{\bar{X}}$$

using the fact that $\hat{\lambda}_{mle} = \bar{X}$. The LM statistic is based upon

$$LM = S^2(2)I^{-1}(2) = \frac{n^2(\bar{X}-2)^2}{4} \cdot \frac{2}{n} = \frac{n(\bar{X}-2)^2}{2}.$$

Note that all three test statistics are based upon $|\bar{X} - 2| \ge K$, and for finite n the same exact critical value could be obtained using the fact that $\sum_{i=1}^{n} X_i$ has a Poisson distribution, see part (g).

2.7 The Geometric Distribution.

a. Using the MGF for the Geometric distribution derived in problem 2.14d, one gets

$$M_x(t) = \frac{\theta e^t}{[1-(1-\theta)e^t]}.$$

Differentiating it with respect to t yields

$$M_X'(t) = \frac{\theta e^t \left[1 - (1 - \theta) e^t \right] + (1 - \theta) e^t \theta e^t}{[1 - (1 - \theta) e^t]^2} = \frac{\theta e^t}{[1 - (1 - \theta) e^t]^2}$$

evaluating $M'_{x}(t)$ at t = 0, we get

$$M_x'(0) = E(X) = \frac{\theta}{\theta^2} = \frac{1}{\theta}.$$

Similarly, differentiating $M_X'(t)$ once more with respect to t, we get

$$M_x''(t) = \frac{\theta e^t \left[1 - (1 - \theta)e^t\right]^2 + 2\left[1 - (1 - \theta)e^t\right](1 - \theta)e^t\theta e^t}{[1 - (1 - \theta)e^t]^4}$$

evaluating $M_x''(t)$ at t = 0, we get

$$M_x''(0) = E(X^2) = \frac{\theta^3 + 2\theta^2(1-\theta)}{\theta^4} = \frac{2\theta^2 - \theta^3}{\theta^4} = \frac{2-\theta}{\theta^2}$$

so that

$$var(X) = E(X^2) - (E(X))^2 = \frac{2 - \theta}{\theta^2} - \frac{1}{\theta^2} = \frac{1 - \theta}{\theta^2}.$$

b. The likelihood function is given by

$$L(\theta) = \theta^{n} (1 - \theta)^{\sum_{i=1}^{n} X_{i} - n}$$

so that

$$\log L(\theta) = n \log \theta + \left(\sum_{i=1}^n X_i - n\right) \log(1-\theta)$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = \frac{n}{\theta} - \frac{\sum\limits_{i=1}^{n} X_i - n}{(1 - \theta)} = 0$$

solving for θ one gets

$$n(1-\theta) - \theta \sum_{i=1}^{n} X_i + n\theta = 0$$

or

$$n=\theta \sum_{i=1}^n X_i$$

which yields

$$\hat{\theta}_{mle} = n/\sum_{i=1}^n X_i = \frac{1}{\bar{X}}.$$

The method of moments estimator equates

$$E(X) = \bar{X}$$

so that

$$\frac{1}{\hat{\theta}} = \bar{X}$$
 or $\hat{\theta} = \frac{1}{\bar{X}}$

which is the same as the MLE.

2.8 The *Uniform Density*.

a.
$$E(X) = \int_0^1 x \, dx = \frac{1}{2} [x^2]_0^1 = \frac{1}{2}$$

 $E(X^2) = \int_0^1 x^2 dx = \frac{1}{3} [x^3]_0^1 = \frac{1}{3}$
so that $var(X) = E(X^2) - (E(X))^2 = \frac{1}{3} - \frac{1}{4} = \frac{4-3}{12} = \frac{1}{12}$.

b. $\Pr[0.1 < X < 0.3] = \int_{0.1}^{0.3} dx = 0.3 - 0.1 = 0.2$. It does not matter if we include the equality signs $\Pr[0.1 \le X \le 0.3]$ since this is a continuous random variable. Note that this integral is the area of the rectangle, for X between 0.1 and 0.3 and height equal to 1. This is just the length of this rectangle, i.e., 0.3 - 0.1 = 0.2.

2.9 The Exponential Distribution.

a. Using the MGF for the exponential distribution derived in problem 2.14e, we get

$$M_x(t) = \frac{1}{(1 - \theta t)}.$$

Differentiating with respect to t yields

$$M_x'(t) = \frac{\theta}{(1-\theta t)^2}.$$

Therefore

$$M_X'(0) = \theta = E(X).$$

Differentiating $M'_X(t)$ with respect to t yields

$$M_X''(t) = \frac{2\theta^2 (1 - \theta t)}{(1 - \theta t)^4} = \frac{2\theta^2}{(1 - \theta t)^3}.$$

Therefore

$$M_X''(0) = 2\theta^2 = E(X^2).$$

Hence

$$var(X) = E(X^2) - (E(X))^2 = 2\theta^2 - \theta^2 = \theta^2.$$

b. The likelihood function is given by

$$L\left(\theta\right) = \left(\frac{1}{\theta}\right)^n e^{-\sum\limits_{i=1}^n X_i/\theta}$$

so that

$$log L(\theta) = -nlog\theta - \frac{\sum\limits_{i=1}^{n} X_i}{\theta}$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = \frac{-n}{\theta} + \frac{\sum_{i=1}^{n} X_i}{\theta^2} = 0$$

solving for θ one gets

$$\sum_{i=1}^{n} X_i - n\theta = 0$$

so that

$$\hat{\theta}_{mle} = \bar{X}$$
.

c. The method of moments equates $E(X) = \bar{X}$. In this case, $E(X) = \theta$, hence $\hat{\theta} = \bar{X}$ is the same as MLE.

d. $E(\bar{X}) = \sum_{i=1}^{n} E(X_i)/n = n\theta/n = \theta$. Hence, \bar{X} is unbiased for θ . Also, $var(\bar{X}) = var(X_i)/n = \theta^2/n$ which goes to zero as $n \to \infty$. Hence, the sufficient condition for \bar{X} to be consistent for θ is satisfied.

e. The joint p.d.f. is given by

$$f(X_1,..,X_n;\theta) = \left(\frac{1}{\theta}\right)^n e^{-\sum\limits_{i=1}^n X_i/\theta} = e^{-n\bar{X}/\theta} \left(\frac{1}{\theta}\right)^n = h(\bar{X};\theta)g(X_1,\ldots,X_n)$$
 where $h(\bar{X};\theta) = e^{-n\bar{X}/\theta} \left(\frac{1}{\theta}\right)^n$ and $g(X_1,\ldots,X_n) = 1$ independent of θ in

form and domain. Hence, by the factorization theorem, \bar{X} is a sufficient statistic for θ .

f. $\log f(X; \theta) = -\log \theta - \frac{X}{\theta}$

and

$$\begin{split} \frac{\partial \log f(X;\theta)}{\partial \theta} &= \frac{-1}{\theta} + \frac{X}{\theta^2} = \frac{X - \theta}{\theta^2} \\ \frac{\partial^2 \log f(X;\theta)}{\partial \theta^2} &= \frac{1}{\theta^2} - \frac{2X\theta}{\theta^4} = \frac{\theta - 2X}{\theta^3} \end{split}$$

The Cramér–Rao lower bound for any unbiased estimator $\hat{\theta}$ of θ is given by

$$var\left(\hat{\theta}\right) \geq \frac{-1}{nE\left(\frac{\partial^2\log f(X;\theta)}{\partial \theta^2}\right)} = \frac{-\theta^3}{nE\left(\theta - 2X\right)} = \frac{\theta^2}{n}.$$

But $var(\bar{X}) = \theta^2/n$, see part (d). Hence, \bar{X} attains the Cramér–Rao lower bound.

g. The likelihood ratio is given by

$$\frac{L(1)}{L(2)} = \frac{e^{-\sum_{i=1}^{n} X_i}}{e^{-\sum_{i=1}^{n} X_i/2}} = 2^n e^{-\sum_{i=1}^{n} x_i/2}.$$

The uniformly most powerful critical region C of size $\alpha \le 0.05$ is given by $2^n e^{-\sum_{i=1}^n X_i/2} \le k$ inside C.

Taking logarithms of both sides and rearranging terms, we get

$$n \log 2 - \left(\sum_{i=1}^{n} X/2\right) \le K'$$

or

$$\sum_{i=1}^n X_i \geq K$$

where K is determined by making the size of $C=\alpha \leq 0.05$. In this case, $\sum_{i=1}^{n} X_i$ is distributed as a Gamma p.d.f. with $\beta=\theta$ and $\alpha=n$. Under H_o ; $\theta=1$. Therefore,

$$\sum_{i=1}^{n} X_i \sim Gamma(\alpha = n, \beta = 1).$$

Hence, $Pr[Gamma(\alpha = n, \beta = 1) \ge K] \le 0.05$

K should be determined from the integral $\int_K^\infty \frac{1}{\Gamma(n)} x^{n-1} e^{-x} \ dx = 0.05$ for n=20.

h. The likelihood ratio test is

$$\frac{L(1)}{L(\bar{X})} = \frac{e^{-\sum\limits_{i=1}^{n}X_i}}{\left(\frac{1}{\bar{X}}\right)^n e^{-n}}$$

so that

$$LR = -2\log L(1) + 2\log L(\bar{X}) = 2\sum_{i=1}^{n} X_{i} - 2n\log \bar{X} - 2n.$$

In this case,

$$C\left(\theta\right) = \left|\frac{\partial^{2} \log L(\theta)}{\partial \theta^{2}}\right| = \left|\frac{n}{\theta^{2}} - \frac{2\sum\limits_{i=1}^{n} X_{i}}{\theta^{3}}\right| = \left|\frac{n\theta - 2\sum\limits_{i=1}^{n} X_{i}}{\theta^{3}}\right|$$

and

$$I(\theta) = -E \left\lceil \frac{\partial^2 \ell n L\left(\theta\right)}{\partial \theta^2} \right\rceil = \frac{n}{\theta^2}.$$

The Wald statistic is based upon

$$W = \left(\bar{X} - 1\right)^2 I\left(\hat{\theta}_{mle}\right) = \left(\bar{X} - 1\right)^2 \frac{n}{\bar{X}^2}$$

using the fact that $\hat{\theta}_{mle} = \bar{X}$. The LM statistic is based upon

$$LM = S^{2}(1)I^{-1}(1) = \left(\sum_{i=1}^{n} X_{i} - n\right)^{2} \frac{1}{n} = n\left(\bar{X} - 1\right)^{2}.$$

All three test statistics are based upon $|\bar{X}-1| \ge k$ and, for finite n, the same exact critical value could be obtained using the fact that $\sum_{i=1}^{n} X_i$ is Gamma $(\alpha = n, \text{ and } \beta = 1)$ under H_o , see part (g).

2.10 The Gamma Distribution.

a. Using the MGF for the Gamma distribution derived in problem 2.14f, we get

$$M_X(t) = (1 - \beta t)^{-\alpha}.$$

Differentiating with respect to t yields

$$M_X'(t) = -\alpha(1-\beta t)^{-\alpha-1}(-\beta) = \alpha\beta(1-\beta t)^{-\alpha-1}.$$

Therefore

$$M'_{x}(0) = \alpha \beta = E(X).$$

Differentiating $M_X'(t)$ with respect to t yields

$$M_{v}''(t) = -\alpha\beta(\alpha+1)(1-\beta t)^{-\alpha-2}(-\beta) = \alpha\beta^{2}(\alpha+1)(1-\beta t)^{-\alpha-2}.$$

Therefore

$$M''_{v}(0) = \alpha^{2}\beta^{2} + \alpha\beta^{2} = E(X^{2}).$$

Hence

$$var(X) = E(X^{2}) - (E(X))^{2} = \alpha \beta^{2}$$
.

b. The method of moments equates

$$E(X) = \bar{X} = \alpha \beta$$

and

$$E(X^2) = \sum_{i=1}^{n} X_i^2 / n = \alpha^2 \beta^2 + \alpha \beta^2.$$

These are two non-linear equations in two unknowns. Substitute $\alpha=\bar{X}/\beta$ into the second equation, one gets

$$\sum_{i=1}^{n} X_i^2/n = \bar{X}^2 + \bar{X}\beta$$

Hence,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n\bar{X}}$$

and

$$\hat{\alpha} = \frac{n\bar{X}^2}{\sum\limits_{i=1}^n \left(X_i - \bar{X}\right)^2}.$$

c. For $\alpha = 1$ and $\beta = \theta$, we get

$$f(X; \alpha = 1, \beta = \theta) = \frac{1}{\Gamma(1)\theta} X^{1-1} e^{-X/\theta} \quad \text{for} \quad X > 0 \quad \text{and} \quad \theta > 0,$$
$$= \frac{1}{\theta} e^{-X/\theta}$$

which is the exponential p.d.f.

d. For $\alpha = r/2$ and $\beta = 2$, the Gamma ($\alpha = r/2$, $\beta = 2$) is χ_r^2 . Hence, from part (a), we get

$$E(X) = \alpha\beta = (r/2)(2) = r$$

and

$$var(X) = \alpha \beta^2 = (r/2)(4) = 2r.$$

The expected value of a χ^2_r is r and its variance is 2r.

e. The joint p.d.f. for $\alpha=r/2$ and $\beta=2$ is given by

$$\begin{split} f(X_1,..,X_n;\alpha &= r/2,\beta = 2) = \left(\frac{1}{\Gamma(r/2)2^{r/2}}\right)^n (X_1\dots X_n)^{\frac{r}{2}-1} e^{-\sum\limits_{i=1}^n X_i/2} \\ &= h(X_1,..,X_n;r) g\left(X_1,..,X_n\right) \end{split}$$

where

$$h(X_1,..,X_n;r) = \left(\frac{1}{\Gamma\left(r/2\right)2^{r/2}}\right)^n (X_1\dots X_n)^{\frac{r}{2}-1}$$

and $g(X_1,..,X_n)=e^{-\sum\limits_{i=1}^n X_i/2}$ independent of r in form and domain. Hence, by the factorization theorem $(X_1\dots X_n)$ is a sufficient statistic for r.

- **f.** Let $X_1,..,X_m$ denote independent N(0,1) random variables. Then, $X_1^2,..,X_m^2$ will be independent χ_1^2 random variables and $Y = \sum_{i=1}^m X_i^2$ will be χ_m^2 . The sum of m independent χ_1^2 random variables is a χ_m^2 random variable.
- **2.12** The *t-distribution with r Degrees of Freedom*.
 - **a.** If $X_1,..,X_n$ are $IIN(\mu,\sigma^2)$, then $\bar{X}\sim N(\mu,\sigma^2/n)$ and $z=\frac{(\bar{X}-\mu)}{\sigma/\sqrt{n}}$ is N(0,1).
 - **b.** $(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$. Dividing our N(0, 1) random variables z in part (a), by the square-root of our χ^2_{n-1} random variable in part (b), divided by its degrees of freedom, we get

$$t = \frac{\left(\bar{X} - \mu\right)/\sigma/\sqrt{n}}{\sqrt{\frac{(n-1)s^2}{\sigma^2}/(n-1)}} = \frac{(\bar{X} - \mu)}{s/\sqrt{n}}.$$

Using the fact that \bar{X} is independent of s^2 , this has a t-distribution with (n-1) degrees of freedom.

c. The 95% confidence interval for μ would be based on the t-distribution derived in part (b) with (n-1) = 15 degrees of freedom.

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{20 - \mu}{2/\sqrt{16}} = \frac{20 - \mu}{1/2} = 40 - 2\mu$$

$$Pr[-t_{\alpha/2} < t < t_{\alpha/2}] = 1 - \alpha = 0.95$$

From the t-tables with 15 degrees of freedom, $t_{0.025} = 2.131$. Hence

$$Pr[-2.131 < 40 - 2\mu < 2.131] = 0.95.$$

rearranging terms, one gets

$$Pr[37.869/2 < \mu < 42.131/2] = 0.95$$

$$Pr[18.9345 < \mu < 21.0655] = 0.95.$$

2.13 The *F-distribution*.

$$(n_1 - 1) s_1^2 / \sigma_1^2 = 24(15.6) / \sigma_1^2 \sim \chi_{24}^2$$

also

$$(n_2 - 1)s_2^2/\sigma_2^2 = 30(18.9)/\sigma_2^2 \sim \chi_{30}^2$$

Therefore, under H_0 ; $\sigma_1^2 = \sigma_2^2$

$$F = s_2^2/s_1^2 = \frac{18.9}{15.6} = 1.2115 \sim F_{30,24}.$$

Using the F-tables with 30 and 24 degrees of freedom, we find $F_{.05,30,24} = 1.94$. Since the observed F-statistic 1.2115 is less than 1.94, we do not reject H_0 that the variance of the two shifts is the same.

2.14 *Moment Generating Function (MGF).*

a. For the Binomial Distribution,

$$\begin{aligned} M_{x(t)} &= E(e^{Xt}) = \sum_{X=0}^{n} \binom{n}{X} e^{Xt} \theta^{X} (1 - \theta)^{n-X} \\ &= \sum_{X=0}^{n} \binom{n}{X} (\theta e^{t})^{X} (1 - \theta)^{n-X} \\ &= \left[(1 - \theta) + \theta e^{t} \right]^{n} \end{aligned}$$

where the last equality uses the binomial expansion $(a + b)^n = \sum_{X=0}^n \binom{n}{X} a^X b^{n-X}$ with $a = \theta e^t$ and $b = (1 - \theta)$. This is the fundamental relationship underlying the binomial probability function and what makes it a proper probability function.

b. For the Normal Distribution,

$$\begin{split} M_X(t) &= E\left(e^{Xt}\right) = \int_{-\infty}^{+\infty} e^{Xt} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(X-\mu)^2} dx \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2}\left\{X^2 - 2\mu X + \mu^2 - Xt2\sigma^2\right\}} dx \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2}\left\{X^2 - 2(\mu + t\sigma^2)X + \mu^2\right\}} dx \end{split}$$

completing the square

$$\begin{split} M_{x}(t) &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^{2}}\left\{\left[x-\left(\mu+t\sigma^{2}\right)\right]^{2}-\left(\mu+t\sigma^{2}\right)^{2}+\mu^{2}\right\}} dx \\ &= e^{-\frac{1}{2\sigma^{2}}\left[\mu^{2}-\mu^{2}-2\mu t\sigma^{2}-t^{2}\sigma^{4}\right]} \end{split}$$

The remaining integral integrates to 1 using the fact that the Normal density is proper and integrates to one. Hence $M_x(t)=e^{\mu t+\frac{1}{2}\sigma^2t^2}$ after some cancellations.

c. For the Poisson Distribution,

$$\begin{split} M_x(t) &= E(e^{Xt}) = \sum_{X=0}^{\infty} e^{Xt} \frac{e^{-\lambda} \lambda^X}{X!} = \sum_{X=0}^{\infty} \frac{e^{-\lambda} (\lambda e^t)^X}{X!} \\ &= e^{-\lambda} \sum_{X=0}^{\infty} \frac{(\lambda e^t)^X}{X!} = e^{\lambda} e^t - \lambda = e^{\lambda (e^t - 1)} \end{split}$$

where the fifth equality follows from the fact that $\sum_{X=0}^{\infty} \frac{a^X}{X!} = e^a$ and in this case $a = \lambda e^t$. This is the fundamental relationship underlying the Poisson distribution and what makes it a proper probability function.

d. For the Geometric Distribution,

$$\begin{split} M_X(t) &= E(e^{Xt}) = \sum_{X=1}^{\infty} \theta (1-\theta)^{X-1} e^{Xt} = \theta \sum_{X=1}^{\infty} (1-\theta)^{X-1} e^{(X-1)t} e^t \\ &= \theta e^t \sum_{X=1}^{\infty} \left[(1-\theta) e^t \right]^{X-1} = \frac{\theta e^t}{1 - (1-\theta) e^t} \end{split}$$

where the last equality uses the fact that $\sum_{X=1}^{\infty} a^{X-1} = \frac{1}{1-a}$ and in this case $a = (1-\theta)e^t$. This is the fundamental relationship underlying the Geometric distribution and what makes it a proper probability function.

e. For the Exponential Distribution,

$$\begin{split} M_X(t) &= E(e^{Xt}) = \int_0^\infty \frac{1}{\theta} e^{-X/\theta} e^{Xt} dx \\ &= \frac{1}{\theta} \int_0^\infty e^{-X\left[\frac{1}{\theta} - t\right]} dx \\ &= \frac{1}{\theta} \int_0^\infty e^{-X\left[\frac{1 - \theta t}{\theta}\right]} dx \\ &= \frac{1}{\theta} \cdot \frac{-\theta}{(1 - \theta t)} \left[e^{-X\left(\frac{1 - \theta t}{\theta}\right)} \right]_0^\infty = (1 - \theta t)^{-1} \end{split}$$

f. For the Gamma Distribution,

$$\begin{split} M_X(t) &= E(e^{Xt}) = \int_0^\infty \frac{1}{\Gamma\left(\alpha\right)\beta^\alpha} X^{\alpha-1} e^{-X/\beta} e^{Xt} \, dx \\ &= \frac{1}{\Gamma\left(\alpha\right)\beta^\alpha} \int_0^\infty X^{\alpha-1} e^{-X\left(\frac{1}{\beta}-t\right)} dx \\ &= \frac{1}{\Gamma(\alpha)\beta^\alpha} \int_0^\infty X^{\alpha-1} e^{-X\left(\frac{1-\beta t}{\beta}\right)} dx \end{split}$$

The Gamma density is proper and integrates to one using the fact that $\int_0^\infty X^{\alpha-1} e^{-X/\beta} dx = \Gamma(\alpha) \beta^{\alpha}.$ Using this fundamental relationship for the last integral, we get

$$M_x(t) = \frac{1}{\Gamma\left(\alpha\right)\beta^\alpha} \cdot \Gamma(\alpha) \left(\frac{\beta}{1-\beta t}\right)^\alpha = (1-\beta t)^{-\alpha}$$

where we substituted $\beta/(1-\beta t)$ for the usual β . The χ^2_r distribution is Gamma with $\alpha=\frac{r}{2}$ and $\beta=2$. Hence, its MGF is $(1-2t)^{-r/2}$.

- **g.** This was already done in the solutions to problems 5, 6, 7, 9 and 10.
- **2.15** *Moment Generating Function Method.*
 - **a.** If $X_1, ..., X_n$ are independent Poisson distributed with parameters (λ_i) respectively, then from problem 2.14c, we have

$$M_{X_i}(t) = e^{\lambda_i(e^t - 1)}$$
 for $i = 1, 2, ..., n$

$$Y=\sum\limits_{i=1}^n~X_i$$
 has $M_Y(t)=\prod\limits_{i=1}^n~M_{X_i}(t)$ since the $X_i{'s}$ are independent. Hence
$$M_Y(t)=e^{\sum\limits_{i=1}^n\lambda_i\left(e^t-1\right)}$$

which we recognize as a Poisson with parameter $\sum_{i=1}^{n} \lambda_i$.

b. If $X_1, ..., X_n$ are IIN (μ_i, σ_i^2) , then from problem 2.14b, we have

$$M_{X_i(t)} = e^{\mu_i t + \frac{1}{2}\sigma_i^2 t^2}$$
 for $i = 1, 2, .., n$

 $Y=\sum\limits_{i=1}^n\,X_i$ has $M_Y(t)=\prod\limits_{i=1}^n\,M_{X_i}(t)$ since the $X_i{}'s$ are independent. Hence

$$M_Y(t) = e^{\left(\sum\limits_{i=1}^n \mu_i\right)t + \frac{1}{2}\left(\sum\limits_{i=1}^n \sigma_i^2\right)t^2}$$

which we recognize as Normal with mean $\sum_{i=1}^{n} \mu_i$ and variance $\sum_{i=1}^{n} \sigma_i^2$.

- **c.** If $X_1,..,X_n$ are $IIN(\mu,\sigma^2)$, then $Y=\sum_{i=1}^n X_i$ is $N(n\mu,n\sigma^2)$ from part b using the equality of means and variances. Therefore, $\bar{X}=Y/n$ is $N(\mu,\sigma^2/n)$.
- **d.** If $X_1, ..., X_n$ are independent χ^2 distributed with parameters (r_i) respectively, then from problem 2.14f, we get

$$M_{X_i}(t) = (1-2t)^{-r_i/2}$$
 for $i = 1, 2, ..., n$

 $Y = \sum_{i=1}^{n} X_i$ has $M_Y(t) = \prod_{i=1}^{n} M_{X_i}(t)$ since the X_i 's are independent. Hence,

$$M_Y(t) = (1-2t)^{-\sum\limits_{i=1}^{n} r_i/2}$$

which we recognize as χ^2 with degrees of freedom $\sum_{i=1}^{n} r_i$.

- **2.16** Best Linear Prediction. This is based on Amemiya (1994).
 - **a.** The mean squared error predictor is given by MSE = $E(Y \alpha \beta X)^2 = E(Y^2) + \alpha^2 + \beta^2 E(X^2) 2\alpha E(Y) 2\beta E(XY) + 2\alpha\beta E(X)$ minimizing this

MSE with respect to α and β yields the following first-order conditions:

$$\begin{split} &\frac{\partial MSE}{\partial \alpha} = 2\alpha - 2E(Y) + 2\beta E(X) = 0 \\ &\frac{\partial MSE}{\partial \beta} = 2\beta E(X^2) - 2E(XY) + 2\alpha E(X) = 0. \end{split}$$

Solving these two equations for α and β yields $\hat{\alpha} = \mu_Y - \hat{\beta}\mu_X$ from the first equation, where $\mu_Y = E(Y)$ and $\mu_X = E(X)$. Substituting this in the second equation one gets

$$\hat{\beta}E(X^2)-E(XY)+\mu_Y\mu_X-\hat{\beta}\mu_X^2=0$$

$$\hat{\beta}var(X) = E(XY) - \mu_X \mu_Y = cov(X, Y).$$

Hence, $\hat{\beta} = \text{cov}(X, Y)/\text{var}(X) = \sigma_{XY}/\sigma_X^2 = \rho\sigma_Y/\sigma_X$, since $\rho = \sigma_{XY}/\sigma_X\sigma_Y$. The *best* predictor is given by $\hat{Y} = \hat{\alpha} + \hat{\beta}X$.

b. Substituting $\hat{\alpha}$ into the *best* predictor one gets

$$\hat{Y} = \hat{\alpha} + \hat{\beta}X = \mu_Y + \hat{\beta}(X - \mu_X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X)$$

one clearly deduces that $E(\hat{Y}) = \mu_Y$ and $var(\hat{Y}) = \rho^2 \frac{\sigma_Y^2}{\sigma_X^2} var(X) = \rho^2 \sigma_Y^2$. The prediction error $\hat{u} = Y - \hat{Y} = (Y - \mu_Y) - \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X)$ with $E(\hat{u}) = 0$ and $var(\hat{u}) = E(\hat{u}^2) = var(Y) + \rho^2 \frac{\sigma_Y^2}{\sigma_X^2} var(X) - 2\rho \frac{\sigma_Y}{\sigma_X} \sigma_{XY} = \sigma_Y^2 + \rho^2 \sigma_Y^2 - 2\rho^2 \sigma_Y^2 = \sigma_Y^2 (1 - \rho^2)$.

This is the proportion of the var(Y) that is not explained by the *best linear* predictor \hat{Y} .

c.
$$cov(\hat{Y}, \hat{u}) = cov(\hat{Y}, Y - \hat{Y}) = cov(\hat{Y}, Y) - var(\hat{Y})$$

But

$$\begin{split} cov(\hat{Y},Y) &= E\left(\hat{Y} - \mu_Y\right)(Y - \mu_Y) = E\left(\rho \frac{\sigma_Y}{\sigma_X}\left(X - \mu_X\right)(Y - \mu_Y)\right) \\ &= \rho \frac{\sigma_Y}{\sigma_X}cov\left(X,Y\right) = \rho^2 \frac{\sigma_X\sigma_Y^2}{\sigma_X} = \rho^2\sigma_Y^2 \end{split}$$

Hence, $cov(\hat{Y}, \hat{u}) = \rho^2 \sigma_Y^2 - \rho^2 \sigma_Y^2 = 0$.

2.17 The Best Predictor.

a. The problem is to minimize $E[Y - h(X)]^2$ with respect to h(X). Add and subtract E(Y/X) to get

$$E\{[Y - E(Y/X)] + [E(Y/X) - h(X)]\}^{2}$$

$$= E[Y - E(Y/X)]^{2} + E[E(Y/X) - h(X)]^{2}$$

and the cross-product term E[Y - E(Y/X)][E(Y/X) - h(X)] is zero because of the law of iterated expectations, see the Appendix to Chapter 2 Amemiya (1994). In fact, this says that expectations can be written as

$$E = E_X E_{Y/X}$$

and the cross-product term given above $E_{Y/X}[Y-E(Y/X)][E(Y/X)-h(X)]$ is clearly zero. Hence, $E[Y-h(X)]^2$ is expressed as the sum of two positive terms. The first term is not affected by our choice of h(X). The second term however is zero for h(X) = E(Y/X). Clearly, this is the *best predictor* of Y based on X.

b. In the Appendix to Chapter 2, we considered the bivariate Normal distribution and showed that $E(Y/X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X)$. In part (a), we showed that this is the *best predictor* of Y based on X. But, in this case, this is exactly the form for the *best linear predictor* of Y based on X derived in problem 2.16. Hence, for the bivariate Normal density, the *best predictor* is identical to the *best linear predictor* of Y based on X.

References

Amemiya, T. (1994), Introduction to Statistics and Econometrics (Harvard University Press: Cambridge).

Baltagi, B.H. (1994), "The Wald, LR, and LM Inequality", *Econometric Theory*, Problem 94.1.2, 10: 223–224.

Freund, J.E. (1992), Mathematical Statistics (Prentice-Hall: New Jersey).

CHAPTER 3

Simple Linear Regression

- 3.1 For least squares, the first-order conditions of minimization, given by Eqs. (3.2) and (3.3), yield immediately the first two numerical properties of OLS estimates, i.e., $\sum_{i=1}^{n} e_i = 0$ and $\sum_{i=1}^{n} e_i X_i = 0$. Now consider $\sum_{i=1}^{n} e_i \hat{Y}_i = \hat{\alpha} \sum_{i=1}^{n} e_i + \hat{\beta} \sum_{i=1}^{n} e_i X_i = 0$ where the first equality uses $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$ and the second equality uses the first two numerical properties of OLS. Using the fact that $e_i = Y_i \hat{Y}_i$, we can sum both sides to get $\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} Y_i \sum_{i=1}^{n} \hat{Y}_i$, but $\sum_{i=1}^{n} e_i = 0$, therefore we get $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$. Dividing both sides by n, we get $\overline{Y}_i = \sum_{i=1}^{n} \hat{Y}_i = \sum_{i=1}^{n} \hat{Y}_i$.
- 3.2 Minimizing $\sum_{i=1}^{n} (Y_i \alpha)^2$ with respect to α yields $-2\sum_{i=1}^{n} (Y_i \alpha) = 0$. Solving for α yields $\hat{\alpha}_{ols} = \overline{Y}$. Averaging $Y_i = \alpha + u_i$ we get $\overline{Y} = \alpha + \overline{u}$. Hence $\hat{\alpha}_{ols} = \alpha + \overline{u}$ with $E(\hat{\alpha}_{ols}) = \alpha$ since $E(\overline{u}) = \sum_{i=1}^{n} E(u_i)/n = 0$ and $var(\hat{\alpha}_{ols}) = E(\hat{\alpha}_{ols} \alpha)^2 = E(\overline{u})^2 = var(\overline{u}) = \sigma^2/n$. The residual sum of squares is $\sum_{i=1}^{n} (Y_i \hat{\alpha}_{ols})^2 = \sum_{i=1}^{n} (Y_i \overline{Y})^2 = \sum_{i=1}^{n} y_i^2$.
- 3.3 a. Minimizing $\sum_{i=1}^{n} (Y_i \beta X_i)^2$ with respect to β yields $-2 \sum_{i=1}^{n} (Y_i \beta X_i) X_i = 0$. Solving for β yields $\hat{\beta}_{ols} = \sum_{i=1}^{n} Y_i X_i / \sum_{i=1}^{n} X_i^2$. Substituting $Y_i = \beta X_i + u_i$ yields $\hat{\beta}_{ols} = \beta + \sum_{i=1}^{n} X_i u_i / \sum_{i=1}^{n} X_i^2$ with $E(\hat{\beta}_{ols}) = \beta$ since X_i is nonstochastic and $E(u_i) = 0$. Also, $var(\hat{\beta}_{ols}) = E(\hat{\beta}_{ols} \beta)^2 = E\left(\sum_{i=1}^{n} X_i u_i / \sum_{i=1}^{n} X_i^2\right)^2 = \sigma^2 / \sum_{i=1}^{n} X_i^2 / \left(\sum_{i=1}^{n} X_i / \left(\sum_{i=1$
 - **b.** From the first-order condition in part (a), we get $\sum_{i=1}^{n} e_i X_i = 0$, where $e_i = Y_i \hat{\beta}_{ols} X_i$. However, $\sum_{i=1}^{n} e_i$ is not necessarily zero. Therefore $\sum_{i=1}^{n} Y_i$ is

not necessarily equal to $\sum_{i=1}^{n} \hat{Y}_{i}$, see problem 3.1. $\sum_{i=1}^{n} e_{i} \hat{Y}_{i} = \hat{\beta}_{ols} \sum_{i=1}^{n} e_{i} X_{i} = 0$, using $\hat{Y}_{i} = \hat{\beta}_{ols} X_{i}$ and $\sum_{i=1}^{n} e_{i} X_{i} = 0$. Therefore, only two of the numerical properties considered in problem 3.1 hold for this regression without a constant.

- 3.4 $E\left(\sum_{i=1}^{n} x_i u_i\right)^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j E\left(u_i u_j\right) = \sum_{i=1}^{n} x_i^2 var(u_i) + \sum_{i \neq j} \sum_{j=1}^{n} x_j var(u_i) = \sigma^2 \sum_{i=1}^{n} x_i^2 since cov(u_i, u_j) = 0$ for $i \neq j$ and $var(u_i) = \sigma^2$ using assumptions 2 and 3
- **3.5 a.** From Eq. (3.4), we know that $\hat{\alpha}_{ols} = \overline{Y} \hat{\beta}_{ols} \overline{X}$, substituting $\overline{Y} = \alpha + \beta \overline{X} + \overline{u}$ we get $\hat{\alpha}_{ols} = \alpha + \left(\beta \hat{\beta}_{ols}\right) \overline{X} + \overline{u}$. Therefore, $E\left(\hat{\alpha}_{ols}\right) = \alpha$ since $E\left(\hat{\beta}_{ols}\right) = \beta$, see Eq. (3.5), and $E(\overline{u}) = 0$.
 - $\begin{aligned} \textbf{b.} \ \, & \text{var} \, (\hat{\alpha}_{\text{ols}}) = E(\hat{\alpha}_{\text{ols}} \alpha)^2 = E\left[\left(\beta \hat{\beta}_{\text{ols}}\right) \overline{X} + \overline{u}\right]^2. \\ & = \text{var} \big(\hat{\beta}_{\text{ols}}\big) \overline{X}^2 + \text{var}(\overline{u}) + 2 \overline{X} \text{cov} \big(\hat{\beta}_{\text{ols}}, \overline{u}\big) \\ & \text{But from (3.6), var} \big(\hat{\beta}_{\text{ols}}\big) = \sigma^2 \big/ \sum_{i=1}^n x_i^2. \, \text{Also, var}(\overline{u}) = \sigma^2 / n \, \text{and} \end{aligned}$

$$cov(\hat{\beta}_{ols}, \overline{u}) = E\left(\frac{\sum\limits_{i=1}^n x_i u_i}{\sum\limits_{i=1}^n x_i^2} \cdot \frac{\sum\limits_{i=1}^n u_i}{n}\right) = \sigma^2 \sum\limits_{i=1}^n x_i / n \sum\limits_{i=1}^n x_i^2 = 0$$

where the first equality follows from Eq. (3.5). The second equality uses the fact that $cov(u_i, u_j) = 0$ for $i \neq j$ and $var(u_i) = \sigma^2$ from assumptions 2 and 3. The last equality follows from the fact that $\sum_{i=1}^{n} x_i = 0$. Therefore,

$$\text{var}\left(\hat{\alpha}_{\text{ols}}\right) = \sigma^2 \left[(1/n) + \left(\overline{X}^2 / \sum_{i=1}^n x_i^2\right) \right] = \sigma^2 \sum_{i=1}^n X_i^2 / \left(n \sum_{i=1}^n x_i^2\right).$$

c. $\hat{\alpha}_{ols}$ is unbiased for α and $var(\hat{\alpha}_{ols}) \to 0$ as $n \to \infty$, since $\sum_{i=1}^{n} x_i^2/n$ has a finite limit as $n \to \infty$ by assumption 4. Therefore, $\hat{\alpha}_{ols}$ is consistent for α .

d. Using (3.5) and part (a), we get

$$\begin{split} & cov\left(\hat{\alpha}_{ols},\hat{\beta}_{ols}\right) = E\left(\hat{\alpha}_{ols} - \alpha\right)\left(\hat{\beta}_{ols} - \beta\right) = -\overline{X}var\left(\hat{\beta}_{ols}\right) + cov\left(\overline{u},\hat{\beta}_{ols}\right) \\ & = -\sigma^2\overline{X} \bigg/ \sum_{i=1}^n {x_i}^2 \end{split}$$

The last equality uses the fact that $cov(\overline{u}, \hat{\beta}_{ols}) = 0$ from part (b).

$$\textbf{3.6 a. } \hat{\alpha}_{ols} = \overline{Y} - \hat{\beta}_{ols} \overline{X} = \sum_{i=1}^n Y_i/n - \overline{X} \sum_{i=1}^n w_i Y_i = \sum_{i=1}^n \lambda_i Y_i \text{ where } \lambda_i = (1/n) - \overline{X} w_i, \ \hat{\beta}_{ols} = \sum_{i=1}^n w_i Y_i \text{ and } w_i \text{ is defined above (3.7)}.$$

b.
$$\sum\limits_{i=1}^n \lambda_i = 1 - \overline{X} \sum\limits_{i=1}^n w_i = 1$$
 where $\sum\limits_{i=1}^n w_i = 0$ from (3.7), and

$$\sum_{i=1}^n \lambda_i X_i = \sum_{i=1}^n X_i/n - \overline{X} \sum_{i=1}^n X_i w_i = \overline{X} - \overline{X} = 0$$

using
$$\sum_{i=1}^{n} w_i X_i = 1$$
 from (3.7).

c. Any other linear estimator of α , can be written as

$$\tilde{\alpha} = \sum_{i=1}^n b_i Y_i = \alpha \sum_{i=1}^n b_i + \beta \sum_{i=1}^n b_i X_i + \sum_{i=1}^n b_i u_i$$

where the last equality is obtained by substituting Eq. (3.1) for Y_i . For $E(\tilde{\alpha})$ to equal α , we must have $\sum_{i=1}^n b_i = 1$, $\sum_{i=1}^n b_i X_i = 0$. Hence, $\tilde{\alpha} = \alpha + \sum_{i=1}^n b_i u_i$.

- **d.** Let $b_i = \lambda_i + f_i$, then $1 = \sum_{i=1}^n b_i = \sum_{i=1}^n \lambda_i + \sum_{i=1}^n f_i$. From part (b), $\sum_{i=1}^n \lambda_i = 1$, therefore $\sum_{i=1}^n f_i = 0$. Similarly, $0 = \sum_{i=1}^n b_i X_i = \sum_{i=1}^n \lambda_i X_i + \sum_{i=1}^n f_i X_i$. From part (b), $\sum_{i=1}^n \lambda_i X_i = 0$, therefore $\sum_{i=1}^n f_i X_i = 0$.
- e. $var(\tilde{\alpha}) = E(\tilde{\alpha} \alpha)^2 = E\left(\sum_{i=1}^n b_i u_i\right)^2 = \sigma^2 \sum_{i=1}^n b_i^2$ using the expression of $\tilde{\alpha}$ from part (c) and assumptions 2 and 3 with $var(u_i) = \sigma^2$ and $cov(u_i, u_j) = 0$ for $i \neq j$. Substituting, $b_i = \lambda_i + f_i$ from part (d), we get

$$var(\tilde{\alpha}) = \sigma^2 \left(\sum_{i=1}^n \lambda_i^2 + \sum_{i=1}^n f_i^2 + 2 \sum_{i=1}^n \lambda_i f_i \right)$$

For
$$\lambda_i=(1/n)-\overline{X}w_i$$
 from part (a), we get $\sum\limits_{i=1}^n\lambda_if_i=\sum\limits_{i=1}^nf_i/n-\overline{X}\sum\limits_{i=1}^nw_if_i=0.$

This uses $\sum_{i=1}^n f_i = 0$ and $\sum_{i=1}^n f_i X_i = 0$ from part (d). Recall, $w_i = x_i / \sum_{i=1}^n x_i^2$ and so $\sum_{i=1}^n w_i f_i = 0$. Hence, $var(\tilde{\alpha}) = \sigma^2 \left(\sum_{i=1}^n \lambda_i^2 + \sum_{i=1}^n f_i^2\right) = var\left(\hat{\alpha}_{ols}\right) + \sigma^2 \sum_{i=1}^n f_i^2$. Any linear unbiased estimator $\tilde{\alpha}$ of α , will have a larger variance than $\hat{\alpha}_{ols}$ as long as $\sum_{i=1}^n f_i^2 \neq 0$. $\sum_{i=1}^n f_i^2 = 0$ when $f_i = 0$ for all i, which means that $b_i = \lambda_i$ for all i and $\tilde{\alpha} = \sum_{i=1}^n b_i Y_i = \sum_{i=1}^n \lambda_i Y_i = \hat{\alpha}_{ols}$. This proves that $\hat{\alpha}_{ols}$ is BLUE for α .

3.7 a. $\frac{\partial log L}{\partial \alpha} = 0$ from (3.9) leads to $-\frac{1}{2\sigma^2} \frac{\partial RSS}{\partial \alpha} = 0$ where RSS $= \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2$.

Solving this first-order condition yields $\hat{\alpha}_{ols}$. Therefore, $\hat{\alpha}_{mle} = \hat{\alpha}_{ols}$. Similarly, $\frac{\partial log L}{\partial \beta} = 0$ from (3.9) leads to $-\frac{1}{2\sigma^2}\frac{\partial RSS}{\partial \beta} = 0$. Solving for β yields $\hat{\beta}_{ols}$. Hence, $\hat{\beta}_{mle} = \hat{\beta}_{ols}$.

b.
$$\frac{\partial \log L}{\partial \sigma^2} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{\sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2}{2\sigma^4}$$

Setting $\frac{\partial log L}{\partial \sigma^2} = 0$, yields $\hat{\sigma}_{mle}^2 = \sum_{i=1}^n \left(Y_i - \hat{\alpha} - \hat{\beta} X_i\right)^2/n = \sum_{i=1}^n e_i^2/n$ where $\hat{\alpha}$ and $\hat{\beta}$ are the MLE estimates, which in this case are identical to the OLS estimates.

3.9 a.
$$R^2 = \frac{\sum\limits_{i=1}^{n} \hat{y}_i^2}{\sum\limits_{i=1}^{n} y_i^2} = \frac{\hat{\beta}_{ols}^2 \sum\limits_{i=1}^{n} x_i^2}{\sum\limits_{i=1}^{n} y_i^2} = \frac{\left(\sum\limits_{i=1}^{n} x_i y_i\right)^2 \left(\sum\limits_{i=1}^{n} x_i^2\right)}{\left(\sum\limits_{i=1}^{n} x_i^2\right)^2 \left(\sum\limits_{i=1}^{n} y_i^2\right)} = \frac{\left(\sum\limits_{i=1}^{n} x_i y_i\right)^2}{\sum\limits_{i=1}^{n} x_i^2 \sum\limits_{i=1}^{n} y_i^2} = r_{xy}^2$$

where the second equality substitutes $\hat{y}_i = \hat{\beta}_{ols} x_i$ and the third equality substitutes $\hat{\beta}_{ols} = \sum_{i=1}^n x_i y_i / \sum_{i=1}^n x_i^2$.

b. Multiply both sides of $y_i = \hat{y}_i + e_i$ by \hat{y}_i and sum, one gets $\sum_{i=1}^n y_i \hat{y}_i = \sum_{i=1}^n \hat{y}_i^2 + \sum_{i=1}^n \hat{y}_i e_i$. The last term is zero by the numerical properties of least

squares. Hence,
$$\sum_{i=1}^{n} y_i \hat{y}_i = \sum_{i=1}^{n} \hat{y}_i^2$$
. Therefore

$$r_{y\hat{y}}^2 = \frac{\left(\sum\limits_{i=1}^n y_i \hat{y}_i\right)^2}{\sum\limits_{i=1}^n y_i^2 \sum\limits_{i=1}^n \hat{y}_i^2} = \frac{\left(\sum\limits_{i=1}^n \hat{y}_i^2\right)^2}{\sum\limits_{i=1}^n y_i^2 \sum\limits_{i=1}^n \hat{y}_i^2} = \frac{\sum\limits_{i=1}^n \hat{y}_i^2}{\sum\limits_{i=1}^n y_i^2} = R^2.$$

3.11 Optimal Weighting of Unbiased Estimators. This is based on Baltagi (1995).

All three estimators of β can be put in the linear form $\hat{\beta} = \sum\limits_{i=1}^n w_i Y_i$ where

$$\begin{split} w_i &= X_i / \sum_{i=1}^n X_i^2 & \text{for } \hat{\beta}_1, \\ &= \left(1 / \sum_{i=1}^n X_i \right) & \text{for } \hat{\beta}_2, \\ &= \left(X_i - \overline{X} \right) / \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 & \text{for } \hat{\beta}_3. \end{split}$$

All satisfy $\sum_{i=1}^{n} w_i X_i = 1$, which is necessary for $\hat{\beta}_i$ to be unbiased for i=1,2,3. Therefore

$$\hat{\beta}_i = \beta + \sum_{i=1}^n w_i u_i \qquad \text{for } i = 1, 2, 3$$

with $E(\hat{\beta}_i) = \beta$ and $var(\hat{\beta}_i) = \sigma^2 \sum_{i=1}^n w_i^2$ since the u_i 's are $IID(0, \sigma^2)$. Hence,

$$\text{var}\big(\hat{\beta}_1\big) = \sigma^2 / \sum_{i=1}^n X_i^2, \text{var}\big(\hat{\beta}_2\big) = \sigma^2 / n\overline{X}^2 \text{ and } \text{var}\big(\hat{\beta_3}\big) = \sigma^2 / \sum_{i=1}^n (X_i - \overline{X})^2.$$

$$\begin{aligned} \textbf{a.} & \hspace{0.5cm} \text{cov}\big(\hat{\beta}_1, \hat{\beta}_2\big) = E\left(\sum_{i=1}^n u_i \big/ \sum_{i=1}^n X_i\right) \left(\sum_{i=1}^n X_i u_i \big/ \sum_{i=1}^n X_i^2\right) \\ & \hspace{0.5cm} = \sigma^2 \sum_{i=1}^n \left(X_i \big/ \sum_{i=1}^n X_i^2\right) \left(1 \big/ \sum_{i=1}^n X_i\right) = \sigma^2 \big/ \sum_{i=1}^n X_i^2 = \text{var}\big(\hat{\beta}_1\big) > 0. \\ & \hspace{0.5cm} \text{Also,} \end{aligned}$$

$$\begin{split} \rho_{12} &= \text{cov}(\hat{\beta}_1, \hat{\beta_2}) / \left[\text{var}(\hat{\beta}_1) \text{var}(\hat{\beta}_2) \right]^{1/2} \\ &= \left[\text{var}(\hat{\beta}_1) / \text{var}(\hat{\beta}_2) \right]^{1/2} = \left(n \overline{X}^2 / \sum_{i=1}^n X_i^2 \right)^{1/2} \end{split}$$

with $0 < \rho_{12} \le 1$. Samuel-Cahn (1994) showed that whenever the correlation coefficient between two unbiased estimators is equal to the square root of the ratio of their variances, the optimal combination of these two unbiased estimators is the one that weights the estimator with the smaller variance by 1. In this example, $\hat{\beta}_1$ is the best linear unbiased estimator (BLUE). Therefore, as expected, when we combine $\hat{\beta}_1$ with any other unbiased estimator of β , the optimal weight α^* turns out to be 1 for $\hat{\beta}_1$ and zero for the other linear unbiased estimator.

b. Similarly,

$$\begin{split} &\operatorname{cov}(\hat{\beta}_1,\hat{\beta}_3) = E\left(\sum_{i=1}^n X_i u_i / \sum_{i=1}^n X_i^2\right) \left[\sum_{i=1}^n (X_i - \overline{X}) u_i / \sum_{i=1}^n (X_i - \overline{X})^2\right] \\ &= \sigma^2 \sum_{i=1}^n \left(X_i / \sum_{i=1}^n X_i^2\right) \left[(X_i - \overline{X}) / \sum_{i=1}^n (X_i - \overline{X})^2\right] \\ &= \sigma^2 / \sum_{i=1}^n X_i^2 = \operatorname{var}(\hat{\beta}_1) > 0. \text{ Also} \\ &\rho_{13} = \operatorname{cov}(\hat{\beta}_1,\hat{\beta}_3) / \left[\operatorname{var}(\hat{\beta}_1)\operatorname{var}(\hat{\beta}_3)\right]^{1/2} = \left[\operatorname{var}(\hat{\beta}_1) / \operatorname{var}(\hat{\beta}_3)\right]^{1/2} \\ &= \left[\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 / \sum_{i=1}^n X_i^2\right]^{1/2} = \left(1 - \rho_{12}^2\right)^{1/2} \end{split}$$

with $0 < \rho_{13} \le 1$. For the same reasons given in part (a), the optimal combination of $\hat{\beta}_1$ and $\hat{\beta}_3$ is that for which $\alpha^* = 1$ for $\hat{\beta}_1$ and $1 - \alpha^* = 0$ for $\hat{\beta}_3$.

$$\begin{aligned} \textbf{c.} \ \ &\text{Finally,} \ &\text{cov}\big(\hat{\beta}_2,\hat{\beta}_3\big) = E\left(\sum_{i=1}^n u_i \big/ \sum_{i=1}^n X_i\right) \left[\sum_{i=1}^n \left(X_i - \overline{X}\right) u_i \big/ \sum_{i=1}^n \left(X_i - \overline{X}\right)^2\right] \\ &= \sigma^2 \sum_{i=1}^n \left(X_i - \overline{X}\right) \big/ \left(\sum_{i=1}^n X_i\right) \left[\sum_{i=1}^n \left(X_i - \overline{X}\right)^2\right] = 0. \end{aligned}$$

Hence $\rho_{23}=0$. In this case, it is a standard result, see Samuel-Cahn (1994), that the optimal combination of $\hat{\beta}_2$ and $\hat{\beta}_3$ weights these unbiased estimators in proportion to $var(\hat{\beta}_3)$ and $var(\hat{\beta}_2)$, respectively. In other words

$$\begin{split} \hat{\beta} &= \left\{ var(\hat{\beta}_2) / \left[var(\hat{\beta}_2) + var(\hat{\beta}_3) \right] \right\} \hat{\beta}_3 \\ &+ \left\{ var(\hat{\beta}_3) / \left[var(\hat{\beta}_2) + var(\hat{\beta}_3) \right] \right\} \hat{\beta}_2 \end{split}$$

$$\begin{split} &= \left(1-\rho_{12}^2\right)\hat{\beta}_3 + \rho_{12}^2\hat{\beta}_2\\ \text{since } \text{var}\big(\hat{\beta}_3\big)\big/\text{var}\big(\hat{\beta}_2\big) = \rho_{12}^2\big/\left(1-\rho_{12}^2\right) \text{ and}\\ \rho_{12}^2 &= n\overline{X}^2\big/\sum_{i=1}^n X_i^2 \text{ while } 1-\rho_{12}^2 = \sum_{i=1}^n \left(X_i-\overline{X}\right)^2\big/\sum_{i=1}^n X_i^2. \text{ Hence,}\\ \hat{\beta} &= \left[\sum_{i=1}^n \left(X_i-\overline{X}\right)^2\big/\sum_{i=1}^n X_i^2\right]\hat{\beta}_3 + \left[n\overline{X}^2\big/\sum_{i=1}^n X_i^2\right]\hat{\beta}_2\\ &= \left(1\big/\sum_{i=1}^n X_i^2\right)\left[\sum_{i=1}^n \left(X_i-\overline{X}\right)Y_i + n\overline{X}\overline{Y}\right] = \sum_{i=1}^n X_iY_i\big/\sum_{i=1}^n X_i^2 = \hat{\beta}_1. \end{split}$$

See also the solution by Trenkler (1996).

3.12 Efficiency as Correlation. This is based on Zheng (1994). Since $\hat{\beta}$ and $\tilde{\beta}$ are linear unbiased estimators of β , it follows that $\hat{\beta} + \lambda(\hat{\beta} - \tilde{\beta})$ for any λ is a linear unbiased estimator of β . Since $\hat{\beta}$ is the BLU estimator of β .

$$\operatorname{var}\left[\hat{\beta} + \lambda(\hat{\beta} - \tilde{\beta})\right] = \operatorname{E}\left[\hat{\beta} + \lambda(\hat{\beta} - \tilde{\beta})\right]^{2} - \beta^{2}$$

is minimized at $\lambda=0$. Setting the derivative of $var\left[\hat{\beta}+\lambda(\hat{\beta}-\tilde{\beta})\right]$ with respect to λ at $\lambda=0$, we have $2E\left[\hat{\beta}(\hat{\beta}-\tilde{\beta})\right]=0$, or $E(\hat{\beta}^2)=E(\hat{\beta}\tilde{\beta})$. Thus, the squared correlation between $\hat{\beta}$ and $\tilde{\beta}$ is

$$\begin{split} \frac{\left[\operatorname{cov}(\hat{\beta},\tilde{\beta})\right]^{2}}{\operatorname{var}(\hat{\beta})\operatorname{var}(\tilde{\beta})} &= \frac{\left[\operatorname{E}\left[\left(\hat{\beta}-\beta\right)\left(\tilde{\beta}-\beta\right)\right]\right]^{2}}{\operatorname{var}(\hat{\beta})\operatorname{var}(\tilde{\beta})} = \frac{\left[\operatorname{E}(\hat{\beta}\tilde{\beta})-\beta^{2}\right]^{2}}{\operatorname{var}(\hat{\beta})\operatorname{var}(\tilde{\beta})} \\ &= \frac{\left[\operatorname{E}(\hat{\beta}^{2})-\beta^{2}\right]^{2}}{\operatorname{var}(\hat{\beta})\operatorname{var}\left(\tilde{\beta}\right)} = \frac{\left[\operatorname{var}\left(\hat{\beta}\right)\right]^{2}}{\operatorname{var}(\hat{\beta})\operatorname{var}(\tilde{\beta})} = \frac{\operatorname{var}(\hat{\beta})}{\operatorname{var}(\tilde{\beta})}, \end{split}$$

where the third equality uses the result that $E(\hat{\beta}^2) = E(\hat{\beta}\tilde{\beta})$. The final equality gives $var(\hat{\beta})/var(\tilde{\beta})$ which is the relative efficiency of $\hat{\beta}$ and $\tilde{\beta}$.

3.13 a. Adding 5 to each observation of X_i , adds 5 to the sample average \overline{X} and it is now 12.5. This means that $x_i = X_i - \overline{X}$ is unaffected. Hence $\sum_{i=1}^n x_i^2$ is the same and since Y_i , is unchanged, we conclude that $\hat{\beta}_{ols}$ is still the same at

 $0.8095. \ However, \ \hat{\alpha}_{ols} = \overline{Y} - \hat{\beta}_{ols} \overline{X} \ is \ changed \ because \ \overline{X} \ is \ changed. \ This is now \ \hat{\alpha}_{ols} = 6.5 - (0.8095)(12.5) = -3.6188. \ It has \ decreased \ by \ 5\hat{\beta}_{ols} \ since \ \overline{X} \ increased \ by \ 5 \ while \ \hat{\beta}_{ols} \ and \ \overline{Y} \ remained \ unchanged. \ It is \ easy to see that \ \hat{Y}_i = \hat{\alpha}_{ols} + \hat{\beta}_{ols} X_i \ remains \ the \ same. \ When \ X_i \ increased \ by \ 5, \ with \ \hat{\beta}_{ols} \ the \ same, \ this \ increases \ \hat{Y}_i \ by \ 5\hat{\beta}_{ols}. \ But \ \hat{\alpha}_{ols} \ decreases \ \hat{Y}_i \ by \ -5\hat{\beta}_{ols}.$ The net effect on \hat{Y}_i \ is zero. \text{Since } Y_i \ is \ unchanged, \text{this means } e_i = Y_i - \hat{Y}_i \ is \ unchanged. \ Hence \ s^2 = \sum_{i=1}^n e_i^2/n - 2 \ is \ unchanged. \text{Since } x_i \ is \ unchanged \ s^2/\sum_{i=1}^n x_i^2 \ is \ unchanged \ and \ se(\hat{\beta}_{ols}) \ and \ the \ t-statistic \ for \ H_o^a; \ \beta = 0 \ are \ unchanged. \text{The}

$$\operatorname{var}(\hat{\alpha}_{\text{ols}}) = s^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} x_i^2} \right] = 0.311905 \left[\frac{1}{10} + \frac{(12.5)^2}{52.5} \right] = 0.95697$$

with its square root given by $\hat{se}(\hat{\alpha}_{ols}) = 0.97825$. Hence the t-statistic for H_o^b ; $\alpha = 0$ is -3.6189/0.97825 = -3.699. This is significantly different from zero. $R^2 = 1 - \left(\sum_{i=1}^n e_i^2 / \sum_{i=1}^n y_i^2\right)$ is unchanged. Hence, only $\hat{\alpha}_{ols}$ and its standard error and t-statistic are affected by an additive constant of 5 on X_i .

b. Adding 2 to each observation of Y_i , adds 2 to the sample average \overline{Y} and it is now 8.5. This means that $y_i = Y_i - \overline{Y}$ is unaffected. Hence $\hat{\beta}_{ols}$ is still the same at 0.8095. However, $\hat{\alpha}_{ols} = \overline{Y} - \hat{\beta}_{ols}\overline{X}$ is changed because \overline{Y} is changed. This is now $\hat{\alpha}_{ols} = 8.5 - (0.8095)(7.5) = 2.4286$ two more than the old $\hat{\alpha}_{ols}$ given in the numerical example. It is easy to see that $\hat{Y}_i = \hat{\alpha}_{ols} + \hat{\beta}_{ols}X_i$ has increased by 2 for each i = 1, 2, ..., 10 since $\hat{\alpha}_{ols}$ increased by 2 while $\hat{\beta}_{ols}$ and X_i are the same. Both Y_i and \hat{Y}_i increased by 2 for each observation. Hence, $e_i = Y_i - \hat{Y}_i$ is unchanged. Also, $s^2 = \sum_{i=1}^n e_i^2/n - 2$ and $s^2/\sum_{i=1}^n x_i^2$ are unchanged. This means that $se(\hat{\beta}_{ols})$ and the t-statistic for H_o^a ; $\beta = 0$ are unchanged. The

$$\operatorname{var}(\hat{\alpha}_{ols}) = s^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right]$$

is unchanged and therefore se $(\hat{\alpha}_{ols})$ is unchanged. However, the t-statistic for H_o^b ; $\alpha=0$ is now 2.4286/0.60446=4.018 which is now statistically significant. $R^2=1-\left(\sum\limits_{i=1}^n e_i^2 / \sum\limits_{i=1}^n y_i^2\right)$ is unchanged. Again, only $\hat{\alpha}_{ols}$ is affected by an additive constant of 2 on Y_i .

c. If each X_i is multiplied by 2, then the old \overline{X} is multiplied by 2 and it is now 15. This means that each $x_i = X_i - \overline{X}$ is now double what it was in Table 3.1. Since y_i is the same, this means that $\sum_{i=1}^n x_i y_i$ is double what it was in Table 3.1 and $\sum_{i=1}^n x_i^2$ is four times what it was in Table 3.1. Hence,

$$\hat{\beta}_{ols} = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i^2 = 2 (42.5) / 4 (52.5) = 0.8095 / 2 = 0.40475.$$

In this case, $\hat{\beta}_{ols}$ is half what it was in the numerical example. $\hat{\alpha}_{ols} = \overline{Y} - \hat{\beta}_{ols} \overline{X}$ is the same since $\hat{\beta}_{ols}$ is half what it used to be while \overline{X} is double what it used to be. Also, $\hat{Y}_i = \hat{\alpha}_{ols} + \hat{\beta}_{ols} X_i$ is the same, since X_i is doubled while $\hat{\beta}_{ols}$ is half what it used to be and $\hat{\alpha}_{ols}$ is unchanged. Therefore, $e_i = Y_i - \hat{Y}_i$ is unchanged and $s^2 = \sum_{i=1}^n e_i^2/n - 2$ is also unchanged.

Now, $s^2/\sum_{i=1}^n x_i^2$ is one fourth what it used to be and $se(\hat{\beta}_{ols})$ is half what it used to be. Since, $\hat{\beta}_{ols}$ and $se(\hat{\beta}_{ols})$ have been both reduced by half, the t-statistic for H_o^a : $\beta=0$ remains unchanged. The

$$var(\hat{\alpha}) = s^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right]$$

is unchanged since \overline{X}^2 and $\sum\limits_{i=1}^n x_i^2$ are now both multiplied by 4. Hence, $se(\hat{\alpha}_{ols})$ and the t-statistic for H_o^b ; $\alpha=0$ are unchanged. $R^2=1-\left(\sum\limits_{i=1}^n e_i^2/\sum\limits_{i=1}^n y_i^2\right)$ is also unchanged. Hence, only $\hat{\beta}$ is affected by a multiplicative constant of 2 on X_i .

3.14 a. Dependent Variable: LNC

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob > F
Model Error C Total	1 44 45	0.04693 1.60260 1.64953	0.04693 0.03642	1.288	0.2625
Root MSE Dep Mean C.V.		0.19085 4.84784 3.93675	R-square Adj R-sq	0.0285 0.0064	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	5.931889	0.95542530	6.209	0.0001
LNY	1	-0.227003	0.19998321	-1.135	0.2625

The income elasticity is -0.227 which is negative! Its standard error is (0.1999) and the t-statistic for testing this income elasticity is zero is -1.135 which is insignificant with a p-value of 0.26. Hence, we cannot reject the null hypothesis. $R^2 = 0.0285$ and s = 0.19085. This regression is not very useful. The income variable is not significant and the R^2 indicates that the regression explains only 2.8% of the variation in consumption.

b. Plot of Residuals, and the 95% confidence interval for the predicted value.

SAS Program for 3.14

```
Data CIGARETT;
Input OBS STATE $ LNC LNP LNY;
Cards;
Proc reg data=cigarett;
model Inc=Iny;
*plot residual. *Iny='*';
*plot (U95. L95.)*Iny='-' p.*Iny /overlay
symbol='*';
output out=out1 r=resid p=pred u95=upper95 195=lower95;
proc plot data=out1 vpercent=75 hpercent=100;
plot resid*Iny='*';
proc plot data=out1 vpercent=95 hpercent=100;
plot (Upper95 Lower95)*Iny='-' Pred*Iny='*'
/overlay;
run;
```

3.15 Theil's *minimum mean square* estimator of β . $\tilde{\beta}$ can be written as:

a.
$$\tilde{\beta} = \sum_{i=1}^{n} X_i Y_i / \left[\sum_{i=1}^{n} X_i^2 + \left(\sigma^2 / \beta^2 \right) \right]$$

Substituting $Y_i = \beta X_i + u_i$ we get

$$\tilde{\beta} = \frac{\beta \sum_{i=1}^{n} X_{i}^{2} + \sum_{i=1}^{n} X_{i} u_{i}}{\sum_{i=1}^{n} X_{i}^{2} + (\sigma^{2}/\beta^{2})}$$

and since $E(X_iu_i) = 0$, we get

$$E(\tilde{\beta}) = \frac{\beta \sum\limits_{i=1}^n {X_i}^2}{\sum\limits_{i=1}^n {X_i}^2 + (\sigma^2/\beta^2)} = \beta \left(\frac{1}{1+c}\right)$$

where
$$c=\sigma^2/\beta^2\sum\limits_{i=1}^n {X_i}^2>0.$$

b. Therefore, $\operatorname{Bias}(\tilde{\beta}) = \operatorname{E}(\tilde{\beta}) - \beta = \beta \left(\frac{1}{1+c}\right) - \beta = -[c/(1+c)]\beta$. This bias is positive (negative) when β is negative (positive). This also means that $\tilde{\beta}$ is biased towards zero.

c. Bias²(
$$\tilde{\beta}$$
) = $[c^2/(1+c)^2]\beta^2$ and

$$\begin{split} var(\tilde{\beta}) &= E\left(\tilde{\beta} - E(\tilde{\beta})\right)^2 = E\left(\frac{\sum\limits_{i=1}^n X_i u_i}{\sum\limits_{i=1}^n X_i^2 + (\sigma^2/\beta^2)}\right)^2 \\ &= \frac{\sigma^2 \sum\limits_{i=1}^n X_i^2}{\left[\sum\limits_{i=1}^n X_i^2 + (\sigma^2/\beta^2)\right]^2} \end{split}$$

using $var(u_i) = \sigma^2$ and $cov(u_i, u_j) = 0$ for $i \neq j$. This can also be written as $var(\tilde{\beta}) = \frac{\sigma^2}{\sum\limits_i X_i^2 (1+c)^2}$. Therefore,

$$MSE(\tilde{\beta}) = Bias^2(\tilde{\beta}) + var(\tilde{\beta})$$

$$MSE(\tilde{\beta}) = \frac{c^2}{(1+c)^2} \beta^2 + \frac{\sigma^2}{\sum\limits_{i=1}^n X_i^2 (1+c)^2} = \frac{\beta^2 c^2 \sum\limits_{i=1}^n X_i^2 + \sigma^2}{\sum\limits_{i=1}^n X_i^2 (1+c)^2}$$

But $\beta^2 \sum_{i=1}^n X_i^2 c = \sigma^2$ from the definition of c. Hence,

$$MSE(\tilde{\beta}) = \frac{\sigma^2(1+c)}{\sum\limits_{i=1}^{n} X_i^2 \left(1+c\right)^2} = \frac{\sigma^2}{\sum\limits_{i=1}^{n} X_i^2 \left(1+c\right)} = \frac{\sigma^2}{\sum\limits_{i=1}^{n} X_i^2 + (\sigma^2/\beta^2)}$$

The Bias($\hat{\beta}_{ols}$) = 0 and var($\hat{\beta}_{ols}$) = $\sigma^2/\sum_{i=1}^n X_i^2$. Hence

$$MSE(\hat{\beta}_{ols}) = var\left(\hat{\beta}_{ols}\right) = \sigma^2 / \sum_{i=1}^{n} X_i^2.$$

This is larger than MSE($\tilde{\beta}$) since the latter has a positive constant (σ^2/β^2) in the denominator.

3.16 a. Dependent Variable: LNEN

Analysis of Variance

Source	DF	Sum Squa		Me Squ		F Valu	ie P	rob > F
Model Error C Total	1 18 19	30.82 41.21 72.03	502	30.82 2.28	2384 3972	13.46	62	0.0018
	Root Dep M C.V.		9.8	1318 7616 2158	R-sq Adj F		0.4279 0.3961	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	1.988607	2.17622656	0.914	0.3729
LNRGDP	1	0.743950	0.20276460	3.669	0.0018

b. Plot of Residual *LNRGDP

As clear from this plot, the W. Germany observation has a large residual.

c. For
$$H_o$$
; $\beta=1$ we get $t=(\hat{\beta}-1)/s.e.(\hat{\beta})=(0.744-1)/0.203=-1.26$. We do not reject H_o .

e. Dependent Variable: LNEN

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob > F
Model Error C Total	1 18 19	59.94798 2.01354 61.96153	59.94798 0.11186	535.903	0.0001
	Root MSE Dep Mean C.V.		Adj R-sq	0.9675 0.9657	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	-0.778287	0.48101294	-1.618	0.1230
LNRGDP	1	1.037499	0.04481721	23.150	0.0001

Plot of Residual*LNRGDP

SAS PROGRAM

Data Rawdata;

Input Country \$ RGDP EN;

Cards;

Data Energy; Set Rawdata;

 $LNRGDP = log(RGDP); \quad LNEN = log(EN);$

Proc reg data=energy;

Model LNEN=LNRGDP;

Output out=OUT1 R=RESID;

Proc Plot data=OUT1 hpercent=85 vpercent=60;

Plot RESID*LNRGDP="";

run;

3.17 b. Dependent Variable: LNRGDP

Analysis of Variance

Source	DF	Sum o Square		ean uare	FV	alue	Prob > F
Model Error C Total	1 18 19	53.8829 1.809 55.692	83 0.	38294 10055	535	.903	0.0001
		ot MSE Mean	0.31709 10.60225 2.99078	R-sqı Adj R		0.9675 0.9657	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	1.070317	0.41781436	2.562	0.0196
LNEN	1	0.932534	0.04028297	23.150	0.0001

e. Log-log specification

Dependent Variable: LNEN1

Analysis of Variance

Source	DF	Sum o		Mea Squa	 F Value	Pro	b > F
Model Error C Total	1 18 19	59.947 2.013 61.961	54	59.947 0.111	 535.903	0	.0001
	Root I Dep I C.V.		14.	33446 31589 33628	-square dj R-sq	0.967 0.965	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	3.316057	0.48101294	6.894	0.0001
LNRGDP		1.037499	0.04481721	23.150	0.0001

Linear Specificiation

Dependent Variable: EN1

Analysis of Variance

Source	DF		ım of uares		ean uare	F Value	Prob > F
Model Error C Total	1 18 19	3.138	5506E14 1407E13 3646E14		506E14 115E12	386.28 6	0.0001
		MSE Mean		3.09457 56.0000 3.65877	R-square Adj R-sq	0.9555 0.9530	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	-190151	383081.08995	-0.496	0.6256
RGDP	1	46.759427	2.37911166	19.654	0.0001

Linear Specification before the multiplication by 60

Dependent Variable: EN

Analysis of Variance

Source	DF	Sun Squa		lean quare	F Value	Prob > F
Model Error C Total	1 18 19	1870708 871705 1957879	7582.2	 70848717 80976.79	386.286	0.0001
		ot MSE 22006. 5 Mean 76787.		 R-square Adj R-sq	0.9555 0.9530	

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	-3169.188324	6384.6848326	-0.496	0.6256
RGDP	1	0.779324	0.03965186	19.654	0.0001

What happens when we multiply our energy variable by 60? For the linear model specification, both $\hat{\alpha}^*$ and $\hat{\beta}^*$ are multiplied by 60, their standard errors are also multiplied by 60 and their t-statistics are the same.

For the log-log model specification, $\hat{\beta}$ is the same, but $\hat{\alpha}$ is equal to the old $\hat{\alpha} + \log 60$. The intercept therefore is affected but not the slope. Its standard error is the same, but its t-statistic is changed.

g. Plot of residuals for both linear and log-log models

SAS PROGRAM

Data Rawdata:

Input Country \$ RGDP EN;

Cards;

Data Energy; Set Rawdata;

LNRGDP=log (RGDP); LNEN=log(EN);

EN1=EN*60; LNEN1=log(EN1);

Proc reg data=energy; Model LNRGDP=LNEN;

Proc reg data=energy; Model LNEN1=LNRGDP/CLM, CLI;

Output out=OUT1 R=LN_RESID;

Proc reg data=energy; Model EN1=RGDP;

Output out=OUT2 R=RESID;

```
Proc reg data=energy; Model EN=RGDP;
data Resid; set out1 (keep=Inrgdp In_resid);
set out2(keep=rgdp resid);
Proc plot data=resid vpercent=60 hpercent=85;
Plot In_resid*Inrgdp='*';
Plot resid*rgdp='*';
run;
```

3.18 For parts (b) and (c), SAS will automatically compute confidence intervals for the mean (CLM option) and for a specific observation (CLI option), see the SAS program in 3.17.

95% CONFIDENCE PREDICTION INTERVAL

COUNTRY	Dep Var LNEN1	Predict Value	Std Err Predict	Lower95% Mean	Upper95% Mean	Lower95% Predict	Upper95% Predict
AUSTRIA	14.4242	14.4426	0.075	14.2851	14.6001	13.7225	15.1627
BELGIUM	15.0778	14.7656	0.077	14.6032	14.9279	14.0444	15.4868
CYPRUS	11.1935	11.2035	0.154	10.8803	11.5268	10.4301	11.9770
DENMARK	14.2997	14.1578	0.075	14.0000	14.3156	13.4376	14.8780
FINLAND	14.2757	13.9543	0.076	13.7938	14.1148	13.2335	14.6751
FRANCE	16.4570	16.5859	0.123	16.3268	16.8449	15.8369	17.3348
GREECE	14.0038	14.2579	0.075	14.1007	14.4151	13.5379	14.9780
ICELAND	11.1190	10.7795	0.170	10.4222	11.1368	9.9912	11.5678
IRELAND	13.4048	13.0424	0.093	12.8474	13.2375	12.3132	13.7717
ITALY	16.2620	16.2752	0.113	16.0379	16.5125	15.5335	17.0168
MALTA	10.2168	10.7152	0.173	10.3526	11.0778	9.9245	11.5059
NETHERLAND	15.4379	15.0649	0.081	14.8937	15.2361	14.3417	15.7882
NORWAY	14.2635	13.9368	0.077	13.7760	14.0977	13.2160	14.6577
PORTUGAL	13.4937	14.0336	0.076	13.8744	14.1928	13.3131	14.7540
SPAIN	15.4811	15.7458	0.097	15.5420	15.9495	15.0141	16.4774
SWEDEN	14.8117	14.7194	0.077	14.5581	14.8808	13.9985	15.4404
SWZERLAND	14.1477	14.3665	0.075	14.2094	14.5237	13.6465	15.0866
TURKEY	14.4870	15.1736	0.083	14.9982	15.3489	14.4494	15.8978
UK	16.5933	16.3259	0.115	16.0852	16.5667	15.5832	17.0687
W. GERMANY	16.8677	16.7713	0.130	16.4987	17.0440	16.0176	17.5251

References

Baltagi, B.H. (1995), "Optimal Weighting of Unbiased Estimators," *Econometric Theory*, Problem 95.3.1, 11:637.

Samuel-Cahn, E. (1994), "Combining Unbiased Estimators," The American Statistician, 48: 34–36.

- Trenkler, G. (1996), "Optimal Weighting of Unbiased Estimators," *Econometric Theory*, Solution 95.3.1, 12: 585.
- Zheng, J. X. (1994), "Efficiency as Correlation," *Econometric Theory*, Solution 93.1.3, 10:228.

CHAPTER 4

Multiple Regression Analysis

- **4.1** The regressions for parts (a), (b), (c), (d) and (e) are given below.
 - a. Regression of LNC on LNP and LNY

Dependent Variable: LNC

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 43 45	0.50098 1.14854 1.64953	0.25049 0.02671	9.378	0.0004
Root M Dep M C.V.		0.16343 4.84784 3.37125	R-square Adj R-sq	0.3037 0.2713	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	4.299662	0.90892571	4.730	0.0001
LNP	1	-1.338335	0.32460147	-4.123	0.0002
LNY	1	0.172386	0.19675440	0.876	0.3858

b. Regression of LNC on LNP

Dependent Variable: LNC

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.48048 1.16905 1.64953	0.48048 0.02657	18.084	0.0001
	Root MSE Dep Mean C.V.	0.16300 4.84784 3.36234	R-square Adj R-sq	0.2913 0.2752	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	5.094108	0.06269897	81.247	0.0001
LNP		-1.198316	0.28178857	-4.253	0.0001

c. Regression of LNY on LNP

Dependent Variable: LNY

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob > F
Model Error C Total	1 44 45	0.22075 0.68997 0.91072	0.22075 0.01568	14.077	0.0005
Dep	Root MSE Dep Mean C.V.		R-square Adj R-sq	0.2424 0.2252	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	4.608533	0.04816809	95.676	0.0001
LNP	1	0.812239	0.21648230	3.752	0.0005

d. Regression of LNC on the residuals of part (c).

Dependent Variable: LNC

Analysis of Variance

Source	DF	Sur Squ			ean uare	F Val	ue	Prob>F
Model Error C Total	1 44 45	1.62	2050 2903 1953		2050 3702	0.5	54	0.4607
	Root M Dep M C.V.		0.19 4.84 3.96	784	R-sq Adj F		0.01 -0.01	

Parameter	Ectimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	4.847844	0.02836996	170.879	0.0001
RESID_C	1	0.172386	0.23164467	0.744	0.4607

e. Regression of Residuals from part (b) on those from part (c).

Dependent Variable: RESID_B

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.02050 1.14854 1.16905	0.02050 0.02610	0.785	0.3803
Root MS Dep Mea C.V.	_	0.16157 -0.00000 -2.463347E16	R-square Adj R-sq	0.0175 -0.0048	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	-6.84415 E-16	0.02382148	-0.000	1.0000
RESID_C	1	0.172386	0.19450570	0.886	0.3803

- **f.** The multiple regression coefficient estimate of real income in part (a) is equal to the slope coefficient of the regressions in parts (d) and (e). This demonstrates the residualing out interpretation of multiple regression coefficients.
- **4.2** Simple Versus Multiple Regression Coefficients. This is based on Baltagi (1987).

The OLS residuals from $Y_i = \gamma + \delta_2 \hat{v}_{2i} + \delta_3 \hat{v}_{3i} + w_i$, say \hat{w}_i , satisfy the following conditions:

$$\begin{split} \sum_{i=1}^n \hat{w}_i &= 0 \qquad \sum_{i=1}^n \hat{w}_i \hat{v}_{2i} = 0 \qquad \sum_{i=1}^n \hat{w}_i \hat{v}_{3i} = 0 \\ \text{with } Y_i &= \hat{\gamma} + \hat{\delta}_2 \hat{v}_{2i} + \hat{\delta}_3 \hat{v}_{3i} + \hat{w}_i. \end{split}$$

Multiply this last equation by \hat{v}_{2i} and sum, we get $\sum_{i=1}^{n} Y_{i}\hat{v}_{2i} = \hat{\delta}_{2}\sum_{i=1}^{n} \hat{v}_{2i}^{2} + \hat{\delta}_{3}\sum_{i=1}^{n} \hat{v}_{2i}\hat{v}_{3i}$ since $\sum_{i=1}^{n} \hat{v}_{2i} = 0$ and $\sum_{i=1}^{n} \hat{v}_{2i}\hat{w}_{i} = 0$. Substituting $\hat{v}_{3i} = X_{3i} - \hat{c} - \hat{d}X_{2i}$ and using the fact that $\sum_{i=1}^{n} \hat{v}_{2i}X_{3i} = 0$, we get $\sum_{i=1}^{n} Y_{i}\hat{v}_{2i} = \hat{\delta}_{2}\sum_{i=1}^{n} \hat{v}_{2i}^{2} - \hat{\delta}_{3}\hat{d}\sum_{i=1}^{n} X_{2i}\hat{v}_{2i}$. From $X_{2i} = \hat{a} + \hat{b}X_{3i} + \hat{v}_{2i}$, we get that $\sum_{i=1}^{n} X_{2i}\hat{v}_{2i} = \sum_{i=1}^{n} \hat{v}_{2i}^{2}$. Hence,

$$\sum_{i=1}^n Y_i \hat{\nu}_{2i} = \left(\hat{\delta}_2 - \hat{\delta}_3 \hat{d}\right) \sum_{i=1}^n \hat{\nu}_{2i}^2 \text{ and } \hat{\beta}_2 = \sum_{i=1}^n Y_i \hat{v}_{2i} \Big/ \sum_{i=1}^n \hat{\nu}_{2i}^2 = \hat{\delta}_2 - \hat{\delta}_3 \hat{d}.$$

Similarly, one can show that $\hat{\beta}_3=\hat{\delta}_3-\hat{\delta}_2\hat{b}.$ Solving for $\hat{\delta}_2$ and $\hat{\delta}_3$ we get

$$\hat{\delta}_2 = \left(\hat{\beta}_2 + \hat{\beta}_3 \hat{d}\right) / (1 - \hat{b} \hat{d}) \quad \text{and} \quad \hat{\delta}_3 = \left(\hat{\beta}_3 + \hat{b} \hat{\beta}_2\right) / (1 - \hat{b} \hat{d}).$$

4.3 a. Regressing X_i on a constant we get $\hat{X}_i = \overline{X}$ and $\hat{v}_i = X_i - \hat{X}_i = X_i - \overline{X} = x_i$. Regressing Y_i on \hat{v}_i we get

$$\hat{\beta}_{ols} = \sum_{i=1}^n Y_i \hat{\nu}_i \big/ \sum_{i=1}^n \hat{\nu}_i^2 = \sum_{i=1}^n Y_i x_i \big/ \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \big/ \sum_{i=1}^n x_i^2.$$

b. Regressing a constant 1 on X_i we get

$$b = \sum_{i=1}^n X_i \Big/ \sum_{i=1}^n {X_i}^2 \text{ with residuals } \hat{w}_i = 1 - \left(n \overline{X} \Big/ \sum_{i=1}^n {X_i}^2 \right) X_i$$

so that, regressing Y_i on \hat{w}_i yields $\hat{\alpha} = \sum_{i=1}^n \hat{w}_i Y_i / \sum_{i=1}^n \hat{w}_i^2$.

But
$$\sum\limits_{i=1}^n \hat{w_i} Y_i = n\overline{Y} - n\overline{X} \sum\limits_{i=1}^n X_i Y_i / \sum\limits_{i=1}^n X_i^2 = \frac{n\overline{Y}}{\sum\limits_{i=1}^n X_i^2 - n\overline{X}} \sum\limits_{i=1}^n X_i Y_i}{\sum\limits_{i=1}^n X_i^2}$$
 and

$$\sum_{i=1}^n \hat{w}_i^2 = n + \tfrac{n^2 \overline{X}^2}{\sum\limits_{i=1}^n X_i^2} - \tfrac{2n \overline{X} \sum\limits_{i=1}^n X_i}{\sum\limits_{i=1}^n X_i^2} = \tfrac{n \sum\limits_{i=1}^n X_i^2 - n^2 \overline{X}^2}{\sum\limits_{i=1}^n X_i^2} = \tfrac{n \sum\limits_{i=1}^n x_i^2}{\sum\limits_{i=1}^n X_i^2}.$$

$$\text{Therefore, } \hat{\alpha} = \frac{\overline{Y}\sum_{i=1}^{n}{X_i}^2 - \overline{X}\sum_{i=1}^{n}{X_i}Y_i}{\sum\limits_{i=1}^{n}{x_i}^2} = \frac{\overline{Y}\sum_{i=1}^{n}{x_i}^2 + n\overline{X}^2\overline{Y} - \overline{X}\sum_{i=1}^{n}{X_i}Y_i}{\sum\limits_{i=1}^{n}{x_i}^2}$$

$$= Y - \frac{\overline{X} \left(\sum\limits_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y} \right)}{\sum\limits_{i=1}^{n} {x_i}^2} = \overline{Y} - \hat{\beta}_{ols} \overline{X}$$

where
$$\hat{\beta}_{ols} = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i^2$$
.

- **c.** From part (a), $\operatorname{var}(\hat{\beta}_{ols}) = \sigma^2 / \sum_{i=1}^n \hat{\nu}_i^2 = \sigma^2 / \sum_{i=1}^n x_i^2$ as it should be. From part (b), $\operatorname{var}(\hat{\alpha}_{ols}) = \sigma^2 / \sum_{i=1}^n \hat{w}_i^2 = \frac{\sigma^2 \sum_{i=1}^n X_i^2}{n \sum_{i=1}^n x_i^2}$ as it should be.
- **4.4** Effect of Additional Regressors on R²
 - **a.** Least Squares on the $K = K_1 + K_2$ regressors minimizes the sum of squared error and yields $SSE_2 = \min \sum_{i=1}^n (Y_i \alpha \beta_2 X_{2i} ... \beta_{K_1} X_{K_1i} ... \beta_K X_{Ki})^2$ Let us denote the corresponding estimates by $(a,b_2,..,b_{K_1},..,b_K)$. This implies that $SSE_2^* = \sum_{i=1}^n (Y_i \alpha^* \beta_2^* X_{2i} ... \beta_{K_1}^* X_{K_1i} ... \beta_K^* X_{Ki})^2$ based on arbitrary $(\alpha^*,\beta_2^*,..,\beta_{K_1}^*,..,\beta_K^*)$ satisfies $SSE_2^* \geq SSE_2$. In particular, substituting the least squares estimates using only K_1 regressors say $\hat{\alpha},\hat{\beta}_2,...,\hat{\beta}_{K_1}$ and $\hat{\beta}_{K_1+1} = 0,...,\hat{\beta}_K = 0$ satisfy the above inequality. Hence, $SSE_1 \geq SSE_2$. Since $\sum_{i=1}^n y_i^2$ is fixed, this means that $R_2^2 \geq R_1^2$. This is based on the solution by Rao and White (1988).
 - **b.** From the definition of \overline{R}^2 , we get $(1 \overline{R}^2) = \left[\sum_{i=1}^n e_i^2 / (n K) \right] / \left[\sum_{i=1}^n y_i^2 / (n-1) \right]$. But $R^2 = 1 \left(\sum_{i=1}^n e_i^2 / \sum_{i=1}^n y_i^2 \right)$, hence $(1 \overline{R}^2) = \frac{\sum e_i^2}{\sum y_i^2} \cdot \frac{n-1}{n-k} = (1 R^2) \cdot \frac{n-1}{n-k}$ as required in (4.16).

4.5 This regression suffers from perfect multicollinearity. $X_2 + X_3$ is perfectly collinear with X_2 and X_3 . Collecting terms in X_2 and X_3 we get

$$Y_i = \alpha + (\beta_2 + \beta_4)X_{2i} + (\beta_3 + \beta_4)X_{3i} + \beta_5X_{2i}^2 + \beta_6X_{3i}^2 + u_i$$

so

 $(\beta_2 + \beta_4)$, $(\beta_3 + \beta_4)$, β_5 and β_6 are estimable by OLS.

- **4.6 a.** If we regress e_t on X_{2t} and X_{3t} and a constant, we get zero regression coefficients and therefore zero predicted values, i.e., $\hat{e}_t = 0$. The residuals are therefore equal to $e_t \hat{e}_t = e_t$ and the residual sum of squares is equal to the total sum of squares. Therefore, $R^2 = 1 \frac{RSS}{TSS} = 1 1 = 0$.
 - **b.** For $Y_t = a + b\hat{Y}_t + \nu_t$, OLS yields $\hat{b} = \sum_{t=1}^T \hat{y}_t y_t / \sum_{t=1}^T \hat{y}_t^2$ and $\hat{a} = \overline{Y} \hat{b}\overline{\hat{Y}}$. Also, $Y_t = \hat{Y}_t + e_t$ which gives $\overline{Y} = \overline{\hat{Y}}$ since $\sum_{t=1}^T e_t = 0$. Also, $y_t = \hat{y}_t + e_t$. Therefore, $\sum_{t=1}^T y_t \hat{y}_t = \sum_{t=1}^T \hat{y}_t^2$ since $\sum_{t=1}^T \hat{y}_t e_t = 0$. Hence,

$$\hat{b} = \sum_{t=1}^{T} \hat{y}_t^2 / \sum_{t=1}^{T} \hat{y}_t^2 = 1 \qquad \text{and} \qquad \hat{a} = \overline{Y} - 1 \cdot \overline{Y} = 0$$

$$\hat{Y}_t = 0 + 1 \cdot \hat{Y}_t = \hat{Y}_t \qquad \qquad \text{and} \qquad \qquad Y_t - \hat{Y}_t = e_t$$

 $\sum_{t=1}^{T} e_t^2$ is the same as the original regression, $\sum_{t=1}^{T} y_t^2$ is still the same, therefore, R^2 is still the same.

c. For $Y_t = a + be_t + v_t$, OLS yields $\hat{b} = \sum_{t=1}^T e_t y_t / \sum_{t=1}^T e_t^2$ and $\hat{a} = \overline{Y} - \hat{b}\overline{e} = \overline{Y}$ since $\overline{e} = 0$. But $y_t = \hat{y}_t + e_t$, therefore, $\sum_{t=1}^T e_t y_t = \sum_{t=1}^T e_t \hat{y}_t + \sum_{t=1}^T e_t^2 = \sum_{t=1}^T e_t^2$ since $\sum_{t=1}^T e_t \hat{y}_t = 0$. Hence, $\hat{b} = \sum_{t=1}^T e_t^2 / \sum_{t=1}^T e_t^2 = 1$.

Also, the predicted value is now $\hat{Y}_t = \hat{a} + \hat{b}e_t = \overline{Y} + e_t$ and the new residual is $= Y_t - \hat{Y}_t = y_t - e_t = \hat{y}_t$. Hence, the new RSS = old regression sum of

squares =
$$\sum_{t=1}^{T} \hat{y}_t^2$$
, and

$$(newR^2) = 1 - \frac{new\,RSS}{TSS} = 1 - \frac{Old\,Reg.SS}{TSS} = \frac{\sum\limits_{t=1}^{T}e_t^2}{\sum\limits_{t=1}^{T}y_t^2} = (1 - (old\,R^2)).$$

- **4.7** For the Cobb–Douglas production given by Eq. (4.18) one can test H_o ; $\alpha + \beta + \gamma + \delta = 1$ using the following t-statistic $t = \frac{(\hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta}) 1}{s.e.(\hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta})}$ where the estimates are obtained from the unrestricted OLS regression given by (4.18). The $var(\hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta}) = var(\hat{\alpha}) + var(\hat{\beta}) + var(\hat{\gamma}) + var(\hat{\delta}) + 2cov(\hat{\alpha}, \hat{\beta}) + 2cov(\hat{\alpha}, \hat{\gamma}) + 2cov(\hat{\alpha}, \hat{\delta}) + 2cov(\hat{\beta}, \hat{\gamma}) + 2cov(\hat{\beta}, \hat{\delta}) + 2cov(\hat{\gamma}, \hat{\delta})$. These variance–covariance estimates are obtained from the unrestricted regression. The observed t-statistic is distributed as t_{n-5} under H_o .
- **4.8 a.** The restricted regression for H_o ; $\beta_2 = \beta_4 = \beta_6$ is given by $Y_i = \alpha + \beta_2(X_{2i} + X_{4i} + X_{6i}) + \beta_3X_{3i} + \beta_5X_{5i} + \beta_7X_{7i} + \beta_8X_{8i} + ... + \beta_KX_{Ki} + u_i$ obtained by substituting $\beta_2 = \beta_4 = \beta_6$ in Eq. (4.1). The unrestricted regression is given by (4.1) and the F-statistic in (4.17) has two restrictions and is distributed $F_{2,n-K}$ under H_o .
 - **b.** The restricted regression for H_o ; $\beta_2 = -\beta_3$ and $\beta_5 \beta_6 = 1$ is given by $Y_i + X_{6i} = \alpha + \beta_2 (X_{2i} X_{3i}) + \beta_4 X_{4i} + \beta_5 (X_{5i} + X_{6i}) + \beta_7 X_{7i} + ... + \beta_K X_{Ki} + u_i$ obtained by substituting both restrictions in (4.1). The unrestricted regression is given by (4.1) and the F-statistic in (4.17) has two restrictions and is distributed $F_{2,n-K}$ under H_o .
- **4.10 a.** For the data underlying Table 4.1, the following computer output gives the mean of log(wage) for females and for males. Out of 595 individuals observed, there were 528 Males and 67 Females. The corresponding means of log(wage) for Males and Females being $\overline{Y}_M = 7.004$ and $\overline{Y}_F = 6.530$, respectively. The regression of log(wage) on FEMALE and MALE without a constant yields coefficient estimates $\hat{\alpha}_F = \overline{Y}_F = 6.530$ and $\hat{\alpha}_M = \overline{Y}_M = 7.004$, as expected.

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square		F Value	Prob>F
Model Error U Total	2 593 595	28759.48792 100.82277 28860.31068	14379.7439 0.1700	-	84576.019	0.0001
Root Dep M C.V.		0.41234 6.95074 5.93227	R-square Adj R-sq	0.9965 0.9965		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
FEM	1	6.530366	0.05037494	129.635	0.0001
M		7.004088	0.01794465	390.316	0.0001

$FEM{=}0$

Variable	N	Mean	Std Dev	Minimum	Maximum
LWAGE	528	7.0040880	0.4160069	5.6767500	8.5370000
FEM=1					
Variable	N	Mean	Std Dev	Minimum	Maximum
LWAGE	67	6.5303664	0.3817668	5.7493900	7.2793200

b. Running log(wage) on a constant and the FEMALE dummy variable yields

$$\hat{\alpha}=7.004=\overline{Y}_M=\hat{\alpha}_M$$
 and $\hat{\beta}=-0.474=\widehat{\left(\alpha_F-\alpha_M\right)}$. But $\hat{\alpha}_M=7.004.$

Therefore,
$$\hat{\alpha}_F = \hat{\beta} + \hat{\alpha}_M = 7.004 - 0.474 = 6.530 = \overline{Y}_F = \hat{\alpha}_F$$
.

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	1	13.34252	13.34252	78.476	0.0001
Error	593	100.82277	0.17002		
C Total	594	114.16529			

Root MSE	0.41234	R-square	0.1169
Dep Mean	6.95074	Adj R-sq	0.1154
CΫ	5 03227		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	7.004088	0.01794465	390.316	0.0001
FEM	1	-0.473722	0.05347565	-8.859	0.0001

4.12 a. The unrestricted regression is given by (4.28). This regression runs EARN on a constant, FEMALE, EDUCATION and (FEMALE × EDUCATION). The URSS = 76.63525. The restricted regression for equality of slopes and intercepts for Males and Females, tests the restriction H_0 ; $\alpha_F = \gamma = 0$. This regression runs EARN on a constant and EDUC. The RRSS = 90.36713. The SAS regression output is given below. There are two restrictions and the F-test given by (4.17) yields

$$F = \frac{(90.36713 - 76.63525)/2}{76.63525/591} = 52.94941.$$

This is distributed as $F_{2,591}$ under H_o . The null hypothesis is rejected.

Unrestricted Model (with FEM and FEM*EDUC)

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	3 591 594	37.53004 76.63525 114.16529	12.51001 0.12967	96.475	0.0001
	Root MSE Dep Mean C.V.	0.36010 6.95074 5.18071	R-square Adj R-sq	0.3287 0.3253	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	6.122535	0.07304328	83.821	0.0001
FEM	1	-0.905504	0.24132106	-3.752	0.0002
ED	1	0.068622	0.00555341	12.357	0.0001
F_EDC	1	0.033696	0.01844378	1.827	0.0682

Restricted Model (without FEM and FEM*EDUC)

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 593 594	23.79816 90.36713 114.16529	23.79816 0.15239	156.166	0.0001
	Root MSE Dep Mean C.V.	0.39037 6.95074 5.61625	R-square Adj R-sq	0.2085 0.2071	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	6.029192	0.07546051	79.899	0.0001
ED		0.071742	0.00574089	12.497	0.0001

b. The unrestricted regression is given by (4.27). This regression runs EARN on a constant, FEMALE and EDUCATION. The URSS = 77.06808. The restricted regression for the equality of intercepts given the same slopes for Males and Females, tests the restriction H_o ; $\alpha_F = 0$ given that $\gamma = 0$. This is the same restricted regression given in part (a), running EARN on a constant and EDUC. The RRSS = 90.36713. The F-test given by (4.17) tests one restriction and yields

$$F = \frac{(90.36713 - 77.06808)/1}{77.06808/592} = 102.2.$$

This is distributed as $F_{1,592}$ under H_o . Note that this observed F-statistic is the square of the observed t-statistic of -10.107 for $\alpha_F=0$ in the unrestricted regression. The SAS regression output is given below.

Unrestricted Model (with FEM)

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 592 594	37.09721 77.06808 114.16529	18.54861 0.13018	142.482	0.0001
	t MSE Mean	0.36081 6.95074 5.19093	R-square Adj R-sq	0.3249 0.3227	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	6.083290	0.06995090	86.965	0.0001
FEM	1	-0.472950	0.04679300	-10.107	0.0001
ED	1	0.071676	0.00530614	13.508	0.0001

c. The unrestricted regression is given by (4.28), see part (a). The restricted regression for the equality of intercepts allowing for different slopes for Males and Females, tests the restriction H_o ; $\alpha_F=0$ given that $\gamma\neq 0$. This regression runs EARN on a constant, EDUCATION and (FEMALE \times EDUCATION). The RRSS = 78.46096. The SAS regression output is given below. The F-test given by (4.17), tests one restriction and yields:

$$F = \frac{(78.46096 - 76.63525)/1}{76.63525/591} = 14.0796.$$

This is distributed as $F_{1,591}$ under H_0 . The null hypothesis is rejected. Note that this observed F-statistic is the square of the t-statistic (-3.752) on $\alpha_F = 0$ in the unrestricted regression.

Restricted Model (without FEM)

Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 592 594	35.70433 78.46096 114.16529	17.85216 0.13254	134.697	0.0001
Root M Dep M C.V.		0.36405 6.95074 5.23763	R-square Adj R-sq	0.3127 0.3104	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	6.039577	0.07038181	85.812	0.0001
ED	1	0.074782	0.00536347	13.943	0.0001
F_EDC	1	-0.034202	0.00360849	-9.478	0.0001

4.13 a. Dependent Variable: LWAGE

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	12 582 594	52.48064 61.68465 114.16529	4.37339 0.10599	41.263	0.0001
Root Dep I C.V.	MSE Mean	0.32556 6.95074 4.68377	R-square Adj R-sq	0.4597 0.4485	

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	5.590093	0.19011263	29.404	0.0001
EXP	1	0.029380	0.00652410	4.503	0.0001
EXP2	1	-0.000486	0.00012680	-3.833	0.0001

WKS	1	0.003413	0.00267762	1.275	0.2030
OCC	1	-0.161522	0.03690729	-4.376	0.0001
IND	1	0.084663	0.02916370	2.903	0.0038
SOUTH	1	-0.058763	0.03090689	-1.901	0.0578
SMSA	1	0.166191	0.2955099	5.624	0.0001
MS	1	0.095237	0.04892770	1.946	0.0521
FEM	1	-0.324557	0.06072947	-5.344	0.0001
UNION	1	0.106278	0.03167547	3.355	0.0008
ED	1	0.057194	0.00659101	8.678	0.0001
BLK	1	-0.190422	0.05441180	-3.500	0.0005

b. H_o : EARN = $\alpha + u$.

If you run EARN on an intercept only, you would get $\hat{\alpha}=6.9507$ which is average log wage or average earnings $=\bar{y}$. The total sum of squares = the residual sum of squares $=\sum_{i=1}^n (y_i-\bar{y})^2=114.16529$ and this is the restricted residual sum of squares (RRSS) needed for the F-test. The unrestricted model is given in Table 4.1 or part (a) and yields URSS =61.68465. Hence, the joint significance for all slopes using (4.20) yields

$$F = \frac{(114.16529 - 61.68465)/12}{61.68465/582} = 41.26 \quad also$$

$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - K}{K - 1} = \frac{0.4597}{1 - 0.4597} \cdot \frac{582}{12} = 41.26.$$

This F-statistic is distributed as $F_{12,582}$ under the null hypothesis. It has a p-value of 0.0001 as shown in Table 4.1 and we reject H_o . The Analysis of Variance table in the SAS output given in Table 4.1 always reports this F-statistic for the significance of all slopes for any regression.

c. The restricted model excludes FEM and BLACK. The SAS regression output is given below. The RRSS = 66.27893. The unrestricted model is given in Table 4.1 with URSS = 61.68465. The F-statistic given in (4.17) tests two restrictions and yields

$$F = \frac{(66.27893 - 61.68465)/2}{61.68465/582} = 21.6737.$$

This is distributed as F_{2,582} under the null hypothesis. We reject H_o.

Model:Restricted Model (w/o FEMALE & BLACK)

Dependent Variable: LWAGE

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	10 584 594	47.88636 66.27893 114.16529	4.78864 0.11349	42.194	0.0001
Root MSE Dep Mean C.V.		0.33688 6.95074 4.84674	R-square Adj R-sq	0.4194 0.4095	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	5.316110	0.19153698	27.755	0.0001
EXP	1	0.028108	0.00674771	4.165	0.0001
EXP2	1	-0.000468	0.00013117	-3.570	0.0004
WKS	1	0.004527	0.00276523	1.637	0.1022
OCC	1	-0.162382	0.03816211	-4.255	0.0001
IND	1	0.102697	0.03004143	3.419	0.0007
SOUTH	1	-0.073099	0.03175589	-2.302	0.0217
SMSA	1	0.142285	0.03022571	4.707	0.0001
MS	1	0.298940	0.03667049	8.152	0.0001
UNION	1	0.112941	0.03271187	3.453	0.0006
ED	1	0.059991	0.00680032	8.822	0.0001

d. The restricted model excludes MS and UNION. The SAS regression output is given below. This yields RRSS = 63.37107. The unrestricted model is given in Table 4.1 and yields URSS = 61.68465. The F-test given in (4.17) tests two restrictions and yields

$$F = \frac{(63.37107 - 61.68465)/2}{61.68465/582} = 7.9558.$$

This is distributed as $F_{2,582}$ under the null hypothesis. We reject H_o .

Restricted Model (without MS & UNION)

Dependent Variable: LWAGE

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	10 584 594	50.79422 63.37107 114.16529	5.07942 0.10851	46.810	0.0001
Root Dep I C.V.	MSE Mean	0.32941 6.95074 4.73923	R-square Adj R-sq	0.4449 0.4354	

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	5.766243	0.18704262	30.828	0.0001
EXP	1	0.031307	0.00657565	4.761	0.0001
EXP2	1	-0.000520	0.00012799	-4.064	0.0001
WKS	1	0.001782	0.00264789	0.673	0.5013
OCC	1	-0.127261	0.03591988	-3.543	0.0004
IND	1	0.089621	0.02948058	3.040	0.0025
SOUTH	1	-0.077250	0.03079302	-2.509	0.0124
SMSA	1	0.172674	0.02974798	5.805	0.0001
FEM	1	-0.425261	0.04498979	-9.452	0.0001
ED	1	0.056144	0.00664068	8.454	0.0001
BLK	1	-0.197010	0.5474680	-3.599	0.0003

- e. From Table 4.1, using the coefficient estimate on Union, $\hat{\beta}_u = 0.106278$, we obtain $\hat{g}_u = e^{\hat{\beta}_u} 1 = e^{0.106278} 1 = 0.112131$ or (11.2131%). If the disturbances are log normal, Kennedy's (1981) suggestion yields $\tilde{g}_u = e^{\hat{\beta}_u 0.5 \cdot var(\hat{\beta}_u)} 1 = e^{0.106278 0.5(0.001003335)} 1 = 0.111573$ or (11.1573%).
- **f.** From Table 4.1, using the coefficient estimate on MS, $\hat{\beta}_{MS}=0.095237$, we obtain $\hat{g}_{MS}=e^{\hat{\beta}_{MS}}-1=e^{0.095237}-1=0.09992$ or (9.992%).

4.14 Crude Quality

a. Regression of POIL on GRAVITY and SULPHUR.

Dependent Variable: POIL

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 96 98	249.21442 22.47014 271.68456	124.60721 0.23406	532.364	0.0001
	MSE Mean	0.48380 15.33727 3.15442	R-square Adj R-sq	0.9173 0.9156	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	12.354268	0.23453113	52.676	0.0001
GRAVITY	1	0.146640	0.00759695	19.302	0.0001
SULPHUR	1	-0.414723	0.04462224	-9.294	0.0001

b. Regression of GRAVITY on SULPHUR.

Dependent Variable: GRAVITY

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 97 98	2333.89536 4055.61191 6389.50727	2333.89536 41.81043	55.821	0.0001
	Root MSE Dep Mean C.V.	6.46610 24.38182 26.52017	R-square Adj R-sq	0.3653 0.3587	

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	29.452116	0.93961195	31.345	0.0001
SULPHUR	1	-3.549926	0.47513923	-7.471	0.0001

Regression of POIL on the Residuals from the Previous Regression

Dependent Variable: POIL

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 97 98	87.20885 184.47571 271.68456	87.20885 1.90181	45.856	0.0001
Root Dep M C.V.		1.37906 15.33727 8.99157	R-square Adj R-sq	0.3210 0.3140	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	15.337273	0.13860093	110.658	0.0001
RESID_V		0.146640	0.02165487	6.772	0.0001

c. Regression of POIL on SULPHUR

Dependent Variable: POIL

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 97 98	162.00557 109.67900 271.68456	162.00557 1.13071	143.278	0.0001
	MSE Mean	1.06335 15.33727 6.93310	R-square Adj R-sq	0.5963 0.5921	

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	16.673123	0.15451906	107.903	0.0001
SULPHUR	1	-0.935284	0.07813658	-11.970	0.0001

Regression of Residuals in part (c) on those in part (b).

Dependent Variable: RESID_W

Analysis of '	Variance
---------------	----------

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 97 98	87.20885 22.47014 109.67900	87.20885 0.23165	376.467	0.0001
Root MSE Dep Mean C.V.		0.48130 0.00000 2.127826E16	R-square Adj R-sq	0.7951 0.7930	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	3.082861E-15	0.04837260	0.000	1.0000
RESID_V		0.146640	0.00755769	19.403	0.0001

d. Regression based on the first 25 crudes.

Dependent Variable: POIL

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 22 24	37.68556 2.44366 40.12922	18.84278 0.11108	169.640	0.0001
Root MSE Dep Mean C.V.		0.33328 15.65560 2.12882	R-square Adj R-sq	0.9391 0.9336	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	11.457899	0.34330283	33.375	0.0001
GRAVITY	1	0.166174	0.01048538	15.848	0.0001
SULPHUR	1	0.110178	0.09723998	1.133	0.2694

e. Deleting all crudes with sulphur content outside the range of 1-2%.

Dependent Variable: POIL

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 25 27	28.99180 2.81553 31.80732	14.49590 0.11262	128.714	0.0001
Root MSE Dep Mean C.V.		0.33559 15.05250 2.22947	R-square Adj R-sq	0.9115 0.9044	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	11.090789	0.37273724	29.755	0.0001
GRAVITY	1	0.180260	0.01123651	16.042	0.0001
SULPHUR	1	0.176138	0.18615220	0.946	0.3531

SAS PROGRAM

Data Crude;

Input POIL GRAVITY SULPHUR;

Cards;

Proc reg data=CRUDE;

Model POIL=GRAVITY SULPHUR;

Proc reg data=CRUDE;

Model GRAVITY=SULPHUR;

Output out=OUT1 R=RESID_V;

run;

Data CRUDE1; set crude; set OUT1(keep=RESID_V);

Proc reg data=CRUDE1;

Model POIL=RESID_V;

Proc reg data=CRUDE1; Model POIL=SULPHUR; Output out=OUT2 R=RESID_W;

Proc reg data=OUT2;

Model RESID_W=RESID_V;

Data CRUDE2; set CRUDE(firstobs=1 obs=25);

Proc reg data=CRUDE2;

Model POIL=GRAVITY SULPHUR;

run;

data CRUDE3; set CRUDE;

if SULPHUR < 1 then delete;

if SULPHUR > 2 then delete;

Proc reg data=CRUDE3;

Model POIL=GRAVITY SULPHUR;

run;

4.15 a. MODEL1 (1950–1972)

Dependent Variable: LNQMG

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 17 22	1.22628 0.00596 1.23224	0.24526 0.00035	699.770	0.0001
Root MSE Dep Mean C.V.		0.01872 17.96942 0.10418	R-square Adj R-sq	0.9952 0.9937	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP LNCAR LNPOP LNRGNP LNPGNP	1 1 1 1	1.680143 0.363533 1.053931 -0.311388 0.124957	2.79355393 0.51515166 0.90483097 0.16250458 0.15802894	0.601 0.706 1.165 -1.916 0.791	0.5555 0.4899 0.2602 0.0723 0.4400
LNPMG	1	1.048145	0.26824906	3.907	0.0011

MODEL2(1950-1972)

Dependent Variable: QMG CAR

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	3 19 22	0.01463 0.02298 0.03762	0.00488 0.00121	4.032	0.0224
Root MS Dep Me C.V.		0.03478 -0.18682 -18.61715	R-square Adj R-sq	0.3890 0.2925	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	-0.306528	2.37844176	-0.129	0.8988
RGNP_POP	1	-0.139715	0.23851425	-0.586	0.5649
CAR_POP	1	0.054462	0.28275915	0.193	0.8493
PMG_PGNP	1	0.185270	0.27881714	0.664	0.5144

b. From model (2) we have

$$\begin{split} \log QMG - \log CAR &= \gamma_1 + \gamma_2 \log RGNP - \gamma_2 \log POP + \gamma_3 \log CAR \\ &- \gamma_3 \log POP + \gamma_4 \log PMG - \gamma_4 \log PGNP + v \end{split}$$

For this to be the same as model (1), the following restrictions must hold:

$$eta_1 = \gamma_1$$
, $eta_2 = \gamma_3 + 1$, $eta_3 = -(\gamma_2 + \gamma_3)$, $eta_4 = \gamma_2$, $eta_5 = -\gamma_4$, and $eta_6 = \gamma_4$.

d. Correlation Analysis

Variables: LNCAR LNPOP LNRGNP LNPGNP LNPMG

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
LNCAR	23	18.15623	0.26033	417.59339	17.71131	18.57813
LNPOP	23	12.10913	0.10056	278.50990	11.93342	12.25437
LNRGNP	23	7.40235	0.24814	170.25415	6.99430	7.81015
LNPGNP	23	3.52739	0.16277	81.12989	3.26194	3.86073
LNPMG	23	-1.15352	0.09203	-26.53096	-1.30195	-0.94675

Pearson Correlation Coefficients/Prob > |R| under Ho: Rho = 0/N = 23

	LNCAR	LNPOP	LNRGNP	LNPGNP	LNPMG
LNCAR	1.00000	0.99588	0.99177	0.97686	0.94374
	0.0	0.0001	0.0001	0.0001	0.0001
LNPOP	0.99588	1.00000	0.98092	0.96281	0.91564
	0.0001	0.0	0.0001	0.0001	0.0001
LNRGNP	0.99177	0.98092	1.00000	0.97295	0.94983
	0.0001	0.0001	0.0	0.0001	0.0001
LNPGNP	0.97686	0.96281	0.97295	1.00000	0.97025
	0.0001	0.0001	0.0001	0.0	0.0001
LNPMG	0.94374	0.91564	0.94983	0.97025	1.00000
	0.0001	0.0001	0.0001	0.0001	0.0

This indicates the presence of multicollinearity among the regressors.

f. MODEL1 (1950–1987)

Dependent Variable: LNQMG

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 32 37	3.46566 0.02553 3.49119	0.69313 0.00080	868.762	0.0001
Root M Dep Me C.V.		0.02825 18.16523 0.15550	R-square Adj R-sq	0.9927 0.9915	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	9.986981	2.62061670	3.811	0.0006
LNCAR	1	2.559918	0.22812676	11.221	0.0001
LNPOP	1	-2.878083	0.45344340	-6.347	0.0001
LNRGNP	1	-0.429270	0.14837889	-2.893	0.0068
LNPGNP	1	-0.178866	0.06336001	-2.823	0.0081
LNPMG	1	-0.141105	0.04339646	-3.252	0.0027

MODEL2 (1950-1987)

Dependent Variable: QMG_CAR

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	3 34 37	0.35693 0.12444 0.48137	0.11898 0.00366	32.508	0.0001
Root MSE Dep Mear C.V.	_	0.06050 -0.25616 -23.61671	R - square Adj R - sq	0.7415 0.7187	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	-5.853977	3.10247647	-1.887	0.0677
RGNP_POP	1	-0.690460	0.29336969	-2.354	0.0245
CAR_POP	1	0.288735	0.27723429	1.041	0.3050
PMG_PGNP	1	-0.143127	0.07487993	-1.911	0.0644

g. Model 2: SHOCK74 (= 1 if year \geq 1974)

Dependent Variable: QMG_CAR

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	4	0.36718	0.09179	26.527	0.0001
Error	33	0.11419	0.00346		
C Total	37	0.48137			

Root MSE	0.05883	R - square	0.7628
Dep Mean	-0.25616	Adj R - sq	0.7340
C.V.	-22.96396		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	for HO: Parameter=0	Prob> T
INTERCEP	1	-6.633509	3.05055820	-2.175	0.0369
SHOCK74	1	-0.073504	0.04272079	-1.721	0.0947
RGNP_POP	1	-0.733358	0.28634866	-2.561	0.0152
CAR_POP	1	0.441777	0.28386742	1.556	0.1292
PMG_PGNP	1	-0.069656	0.08440816	-0.825	0.4152

The t-statistic on SHOCK 74 yields -1.721 with a p-value of 0.0947. This is insignificant. Therefore, we cannot reject that gasoline demand per car did not permanently shift after 1973.

h. Model 2: DUMMY74 (=SCHOCK74 × PMG_PGNP)

Dependent Variable: QMG_CAR

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	4 33 37	0.36706 0.11431 0.48137	0.09177 0.00346	26.492	0.0001
	MSE Mean	0.05886 -0.25616 -22.97560	R - square Adj R - sq	0.7625 0.7337	

Parameter Estimates

DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
1	-6.606761	3.05019318	-2.166	0.0376
1	-0.727422	0.28622322	-2.541	0.0159
1	0.431492	0.28233413	1.528	0.1360
1	-0.083217	0.08083459	-1.029	0.3107
1	0.015283	0.00893783	1.710	0.0967
	DF 1 1 1 1	1 -6.606761 1 -0.727422 1 0.431492 1 -0.083217	DF Estimate Error 1 -6.606761 3.05019318 1 -0.727422 0.28622322 1 0.431492 0.28233413 1 -0.083217 0.08083459	DF Estimate Error Parameter=0 1 -6.606761 3.05019318 -2.166 1 -0.727422 0.28622322 -2.541 1 0.431492 0.28233413 1.528 1 -0.083217 0.08083459 -1.029

The interaction dummy named DUMMY74 has a t-statistic of 1.71 with a p-value of 0.0967. This is insignificant and we cannot reject that the price elasticity did not change after 1973.

SAS PROGRAM

```
Data RAWDATA:
Input Year CAR QMG PMG POP RGNP PGNP;
Cards:
Data USGAS; set RAWDATA;
LNQMG=LOG(QMG);
LNCAR=LOG(CAR);
LNPOP=LOG(POP);
LNRGNP=LOG(RGNP);
LNPGNP=LOG(PGNP);
LNPMG=LOG(PMG);
QMG_CAR=LOG(QMG/CAR);
RGNP_POP=LOG(RGNP/POP);
CAR_POP=LOG(CAR/POP);
PMG_PGNP=LOG(PMG/PGNP);
Data USGAS1; set USGAS;
If YEAR>1972 then delete:
Proc reg data=USGAS1;
  Model LNQMG=LNCAR LNPOP LNRGNP LNPGNP LNPMG;
  Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP;
Proc corr data=USGAS1;
  Var LNCAR LNPOP LNRGNP LNPGNP LNPMG:
run;
Proc reg data=USGAS;
  Model LNQMG=LNCAR LNPOP LNRGNP LNPGNP LNPMG;
  Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP;
run;
```

data DUMMY1; set USGAS; If Year>1974 then SHOCK74=0; else SHOCK74=1; DUMMY74=PMG_PGNP*SHOCK74;

Proc reg data=DUMMY1;

Model QMG_CAR=SHOCK74 RGNP_POP CAR_POP PMG_PGNP; Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP DUMMY74; run;

4.16 a. MODEL1

Dependent Variable: LNCONS

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 132 137	165.96803 62.06757 228.03560	33.19361 0.47021	70.593	0.0001
	Root MSE Dep Mean C.V.	0.68572 11.89979 5.76243	R - square Adj R - sq	0.7278 0.7175	

Parameter Estimates

		Parameter	Standard	T for HO:	
Variable	DF	Estimate	Error	Parameter=0	Prob> T
INTERCEP	1	-53.577951	4.53057139	-11.826	0.0001
LNPG	1	-1.425259	0.31539170	-4.519	0.0001
LNPE	1	0.131999	0.50531143	0.261	0.7943
LNPO	1	0.237464	0.22438605	1.058	0.2919
LNHDD	1	0.617801	0.10673360	5.788	0.0001
LNPI	1	6.554349	0.48246036	13.585	0.0001

b. The following plot show that states with low level of consumption are over predicted, while states with high level of consumption are under predicted. One can correct for this problem by either running a separate regression for each state, or use dummy variables for each state to allow for a varying intercept.

c. Model 2Dependent Variable: LNCONS

Analysis	of Va	ariance
----------	-------	---------

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	10 127 137	226.75508 1.28052 228.03560	22.67551 0.01008	2248.917	0.0001
	Root MSE Dep Mean C.V.	0.10041 11.89979 0.84382	R - square Adj R - sq	0.9944 0.9939	

Plot of PRED*LNCONS. Symbol is value of STATE.

NOTE: 42 obs hidden.

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
INTERCEP	1	6.260803	1.65972981	3.772	0.0002
LNPG	1	-0.125472	0.05512350	-2.276	0.0245
LNPE	1	-0.121120	0.08715359	-1.390	0.1670
LNPO	1	0.155036	0.03706820	4.182	0.0001
LNHDD	1	0.359612	0.07904527	4.549	0.0001
LNPI	1	0.416600	0.16626018	2.506	0.0135
DUMMY_NY	1	-0.702981	0.07640346	-9.201	0.0001
DUMMY_FL	1	-3.024007	0.11424754	-26.469	0.0001
DUMMY_MI	1	-0.766215	0.08491262	-9.024	0.0001
DUMMY_TX	1	-0.679327	0.04838414	-14.040	0.0001
DUMMY_UT	1	-2.597099	0.09925674	-26.165	0.0001

f. Dummy Variable Regression without an Intercept

NOTE: No intercept in model. R-square is redefined.

Dependent Variable: LNCONS

Analysis of Variance

Source	DF	Sum of Squares	Mea Squa		F Value	Prob>F
Model Error U Total	11 127 138	19768.2601 1.2805 19769.5407	52 0.0°	1456 1008	178234.700	0.0001
Root Dep I C.V.		0.10041 11.89979 0.84382	R - square Adj R - sq	0.99 0.99		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob> T
LNPG	1	-0.125472	0.05512350	-2.276	0.0245
LNPE	1	-0.121120	0.08715359	-1.390	0.1670
LNPO	1	0.155036	0.03706820	4.182	0.0001
LNHDD	1	0.359612	0.07904527	4.549	0.0001
LNPI	1	0.416600	0.16626018	2.506	0.0135
DUMMY_CA	1	6.260803	1.65972981	3.772	0.0002
DUMMY_NY	1	5.557822	1.67584667	3.316	0.0012
DUMMY_FL	1	3.236796	1.59445076	2.030	0.0444
DUMMY_MI	1	5.494588	1.67372513	3.283	0.0013
DUMMY_TX	1	5.581476	1.62224148	3.441	0.0008
DUMMY_UT	1	3.663703	1.63598515	2.239	0.0269

SAS PROGRAM

```
Data NATURAL:
Input STATE $ SCODE YEAR Cons Pg Pe Po LPgas HDD Pi;
Cards:
Data NATURAL1; SET NATURAL;
LNCONS=LOG(CONS);
LNPG=LOG(PG);
LNPO=LOG(PO);
LNPE=LOG(PE);
LNHDD=LOG(HDD);
LNPI=LOG(PI);
******* PROB16.a ********;
***********
Proc reg data=NATURAL1;
     Model LNCONS=LNPG LNPE LNPO LNHDD LNPI;
  Output out=OUT1 R=RESID P=PRED;
Proc plot data=OUT1 vpercent=75 hpercent=100;
     plot PRED*LNCONS=STATE;
Data NATURAL2; set NATURAL1;
If STATE='NY' THEN DUMMY_NY=1; ELSE DUMMY_NY=0;
If STATE='FL' THEN DUMMY_FL=1; ELSE DUMMY_FL=0;
If STATE='MI' THEN DUMMY_MI=1: ELSE DUMMY_MI=0:
If STATE='TX' THEN DUMMY_TX=1; ELSE DUMMY_TX=0;
If STATE='UT' THEN DUMMY_UT=1; ELSE DUMMY_UT=0;
If STATE='CA' THEN DUMMY_CA=1; ELSE DUMMY_CA=0;
******* PROB16.c **********;
*********************
Proc reg data=NATURAL2;
     Model LNCONS=LNPG LNPE LNPO LNHDD LNPI DUMMY_NY
DUMMY_FL DUMMY_MI DUMMY_TX
                                      DUMMY_UT;
******* PROB16.f *********;
```

Proc reg data=NATURAL2;

Model LNCONS=LNPG LNPE LNPO LNHDD LNPI
DUMMY_CA DUMMY_NY DUMMY_FL DUMMY_MI

DUMMY_TX DUMMY_UT/NOINT;

run;

References

- Baltagi, B.H. (1987), "Simple versus Multiple Regression Coefficients," *Econometric Theory*, Problem 87.1.1, 3: 159.
- Kennedy, P.E. (1981), "Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations," American Economic Review, 71: 802.
- Rao, U.L.G. and P.M. White (1988), "Effect of an Additional Regressor on R²," *Econometric Theory*, Solution 86.3.1, 4: 352.

CHAPTER 5

Violations of the Classical Assumptions

5.1 s² is Biased Under Heteroskedasticity. From Chap. 3 we have shown that

$$e_i = Y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} X_i = y_i - \hat{\beta}_{ols} x_i = \left(\beta - \hat{\beta}_{ols}\right) x_i + (u_i - \overline{u})$$

for i = 1, 2, ..., n.

The second equality substitutes $\hat{\alpha}_{ols} = \bar{Y} - \hat{\beta}_{ols}\bar{X}$ and the third equality substitutes $y_i = \beta x_i + (u_i - \bar{u})$. Hence,

$$\sum_{i=1}^n e_i^2 = \left(\hat{\beta}_{ols} - \beta\right)^2 \sum_{i=1}^n x_i^2 + \sum_{i=1}^n \left(u_i - \overline{u}\right)^2 - 2\left(\hat{\beta}_{ols} - \beta\right) \sum_{i=1}^n x_i \left(u_i - \overline{u}\right) \text{ and }$$

$$E\left(\sum_{i=1}^n e_i^2\right) = \sum_{i=1}^n x_i^2 var\left(\hat{\beta}_{ols}\right) + E\left[\sum_{t=1}^T \left(u_i - \overline{u}\right)^2\right] - 2E\left(\sum_{i=1}^n x_i u_i\right)^2 / \sum_{i=1}^n x_i^2.$$

But $E\left(\sum_{i=1}^{n} x_i u_i\right)^2 = \sum_{i=1}^{n} x_i^2 \sigma_i^2$ since the u_i 's are uncorrelated and heteroskedastic and

$$\begin{split} E\left[\sum_{i=1}^{n}\left(u_{i}-\overline{u}\right)^{2}\right] &= E\left(\sum_{i=1}^{n}u_{i}^{2}\right) + nE\left(\overline{u}^{2}\right) - 2E\left(\overline{u}\sum_{i=1}^{n}u_{i}\right) \\ &= \sum_{i=1}^{n}E\left(u_{i}^{2}\right) - nE\left(\overline{u}^{2}\right) \\ &= \sum_{i=1}^{n}\sigma_{i}^{2} - \frac{1}{n}E\left(\sum_{i=1}^{n}u_{i}^{2}\right) = \sum_{i=1}^{n}\sigma_{i}^{2} - \frac{1}{n}\sum_{i=1}^{n}\sigma_{i}^{2} \\ &= \left(\frac{n-1}{n}\right)\sum_{i=1}^{n}\sigma_{i}^{2}. \end{split}$$

Hence,
$$E(s^2) = \frac{1}{n-2} E\left(\sum_{i=1}^n e_i^2\right)$$

$$= \frac{1}{n-2} \left[\frac{\sum_{i=1}^n x_i^2 \sigma_i^2}{\sum_{i=1}^n x_i^2} + \left(\frac{n-1}{n}\right) \sum_{i=1}^n \sigma_i^2 - 2 \frac{\sum_{i=1}^n x_i^2 \sigma_i^2}{\sum_{i=1}^n x_i^2} \right]$$

$$= \frac{1}{n-2} \left[-\frac{\sum_{i=1}^n x_i^2 \sigma_i^2}{\sum_{i=1}^n x_i^2} + \left(\frac{n-1}{n}\right) \sum_{i=1}^n \sigma_i^2 \right].$$

Under homoskedasticity this reverts back to $E(s^2) = \sigma^2$.

5.2 OLS Variance is Biased Under Heteroskedasticity.

$$E\left[\hat{var}\left(\hat{\beta}_{ols}\right)\right] = E\left(\frac{s^2}{\sum\limits_{i=1}^{n}x_i^2}\right) = \frac{E(s^2)}{\sum\limits_{i=1}^{n}x_i^2}$$
. Using the results in prob-

lem 5.1, we

$$\text{get}\,E\left[\hat{var}\left(\hat{\beta}_{ols}\right)\right] = \frac{1}{n-2}\left[-\frac{\sum\limits_{i=1}^{n}x_{i}^{2}\sigma_{i}^{2}}{\left(\sum\limits_{i=1}^{n}x_{i}^{2}\right)^{2}} + \left(\frac{n-1}{n}\right)\frac{\sum\limits_{i=1}^{n}\sigma_{i}^{2}}{\sum\limits_{i=1}^{n}x_{i}^{2}}\right]$$

$$E\left[\hat{var}\left(\hat{\beta}_{ols}\right)\right] - var\left(\hat{\beta}_{ols}\right) = \frac{(n-1)}{n(n-2)} \frac{\sum\limits_{i=1}^{n} \sigma_i^2}{\sum\limits_{i=1}^{n} x_i^2} - \frac{\sum\limits_{i=1}^{n} x_i^2 \sigma_i^2}{\left(\sum\limits_{i=1}^{n} x_i^2\right)} \left(\frac{1}{n-2} + 1\right)$$

Substituting $\sigma_i^2 = bx_i^2$ where b > 0, we get

$$\begin{split} E\left[\hat{var}\left(\hat{\beta}_{ols}\right)\right] - var\left(\hat{\beta}_{ols}\right) &= \frac{b\sum\limits_{i=1}^{n}x_{i}^{2}\sum\limits_{i=1}^{n}x_{i}^{2} - nb\sum\limits_{i=1}^{n}x_{i}^{2}x_{i}^{2}}{n\left(\sum\limits_{i=1}^{n}x_{i}^{2}\right)^{2}} \cdot \frac{n-1}{n-2} \\ &= -\frac{n-1}{n-2} \cdot \frac{b\sum\limits_{i=1}^{n}\left(x_{i}^{2} - \sum\limits_{i=1}^{n}x_{i}^{2}\middle/n\right)^{2}}{\left(\sum\limits_{i=1}^{n}x_{i}^{2}\right)^{2}} < 0 \end{split}$$

for b > 0.

This means that, on the average, the estimated standard error of $\hat{\beta}_{ols}$ understates the true standard error. Hence, the t-statistic reported by the regression package for H_o ; $\beta=0$ is overblown.

- **5.3** Weighted Least Squares. This is based on Kmenta (1986).
 - **a.** From the first equation in (5.11), one could solve for $\tilde{\alpha}$

$$\tilde{\alpha} \sum_{i=1}^{n} \left(1 \middle/ \sigma_{i}^{2}\right) = \sum_{i=1}^{n} \left(Y_{i} \middle/ \sigma_{i}^{2}\right) - \tilde{\beta} \sum_{i=1}^{n} \left(X_{i} \middle/ \sigma_{i}^{2}\right).$$

Dividing both sides by $\sum_{i=1}^{n} (1/\sigma_i^2)$ one gets

$$\begin{split} \tilde{\alpha} &= \left[\sum_{i=1}^{n} \left(Y_i \middle/ \sigma_i^2 \right) \middle/ \sum_{i=1}^{n} \left(1 \middle/ \sigma_i^2 \right) \right] - \tilde{\beta} \left[\sum_{i=1}^{n} \left(X_i \middle/ \sigma_i^2 \right) \middle/ \sum_{i=1}^{n} \left(1 \middle/ \sigma_i^2 \right) \right] \\ &= \overline{Y}^* - \tilde{\beta} \overline{X}^*. \end{split}$$

Substituting $\tilde{\alpha}$ in the second equation of (5.11) one gets

$$\begin{split} \sum_{i=1}^n Y_i X_i / \sigma_i^2 &= \left(\sum_{i=1}^n X_i / \sigma_i^2\right) \left[\sum_{i=1}^n \left(Y_i \middle/ \sigma_i^2\right) \middle/ \sum_{i=1}^n \left(1 \middle/ \sigma_i^2\right)\right] \\ &- \tilde{\beta} \left[\sum_{i=1}^n \left(X_i \middle/ \sigma_i^2\right)\right]^2 \middle/ \sum_{i=1}^n \left(1 \middle/ \sigma_i^2\right) + \tilde{\beta} \sum_{i=1}^n \left(X_i^2 \middle/ \sigma_i^2\right). \end{split}$$

Multiplying both sides by $\sum_{i=1}^{n} (1/\sigma_i^2)$ and solving for $\tilde{\beta}$ one gets (5.12b)

$$\tilde{\beta} = \frac{\left[\sum\limits_{i=1}^{n}\left(1\middle/\sigma_{i}^{2}\right)\right]\left[\sum\limits_{i=1}^{n}\left(Y_{i}X_{i}\middle/\sigma_{i}^{2}\right)\right] - \left[\sum\limits_{i=1}^{n}\left(X_{i}\middle/\sigma_{i}^{2}\right)\right]\left[\sum\limits_{i=1}^{n}\left(Y_{i}\middle/\sigma_{i}^{2}\right)\right]}{\left[\sum\limits_{i=1}^{n}X_{i}^{2}\middle/\sigma_{i}^{2}\right]\left[\sum\limits_{i=1}^{n}\left(1\middle/\sigma_{i}^{2}\right)\right] - \left[\sum\limits_{i=1}^{n}\left(X_{i}\middle/\sigma_{i}^{2}\right)\right]^{2}}$$

 $\begin{aligned} \textbf{b.} \ \ &\text{From the regression equation } Y_i = \alpha + \beta X_i + u_i \text{ one can multiply by } w_i^* \\ &\text{and sum to get } \sum_{i=1}^n w_i^* Y_i = \alpha \sum_{i=1}^n w_i^* + \beta \sum_{i=1}^n w_i^* X_i + \sum_{i=1}^n w_i^* u_i. \text{ Now divide} \\ &\text{by } \sum_{i=1}^n w_i^* \text{ and use the definitions of } \bar{Y}^* \text{ and } \bar{X}^* \text{ to get } \bar{Y}^* = \alpha + \beta \bar{X}^* + \bar{u}^* \\ &\text{where } \bar{u}^* = \sum_{i=1}^n w_i^* u_i \Big/ \sum_{i=1}^n w_i^*. \end{aligned}$

Subtract this equation from the original regression equation to get $Y_i - \bar{Y}^* = \beta(X_i - \bar{X}^*) + (u_i - \bar{u}^*)$. Substitute this in the expression for $\tilde{\beta}$ in (5.12b), we get

$$\tilde{\beta} = \beta + \frac{\sum\limits_{i=1}^{n} w_{i}^{*} \big(X_{i} - \overline{X}^{*} \big) \big(u_{i} - \overline{u}^{*} \big)}{\sum\limits_{i=1}^{n} w_{i}^{*} \big(X_{i} - \overline{X}^{*} \big)^{2}} = \beta + \frac{\sum\limits_{i=1}^{n} w_{i}^{*} \big(X_{i} - \overline{X}^{*} \big) u_{i}}{\sum\limits_{i=1}^{n} w_{i}^{*} \big(X_{i} - \overline{X}^{*} \big)^{2}}$$

where the second equality uses the fact that

$$\sum_{i=1}^n w_i^* \big(X_i - \overline{X}^* \big) = \sum_{i=1}^n w_i^* X_i - \left(\sum_{i=1}^n w_i^* \right) \left(\sum_{i=1}^n w_i^* X_i \right) \bigg/ \sum_{i=1}^n w_i^* = 0.$$

Therefore, $E(\tilde{\beta}) = \beta$ as expected, and

$$\begin{split} \operatorname{var}\left(\tilde{\beta}\right) &= \operatorname{E}\left(\tilde{\beta} - \beta\right)^{2} = \operatorname{E}\left(\frac{\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})u_{i}}{\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})^{2}}\right)^{2} \\ &= \frac{\sum\limits_{i=1}^{n} w_{i}^{*2}(X_{i} - \overline{X}^{*})^{2}\sigma_{i}^{2}}{\left[\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})^{2}\right]^{2}} = \frac{\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})^{2}}{\left[\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})^{2}\right]^{2}} \\ &= \frac{1}{\sum\limits_{i=1}^{n} w_{i}^{*}(X_{i} - \overline{X}^{*})^{2}} \end{split}$$

where the third equality uses the fact that the u_i 's are not serially correlated and heteroskedastic and the fourth equality uses the fact that $w_i^* = (1/\sigma_i^2)$.

5.4 Relative Efficiency of OLS Under Heteroskedasticity

a. From Eq. (5.9) we have

$$var(\hat{\beta}_{ols}) = \sum_{i=1}^{n} x_i^2 \sigma_i^2 / \left(\sum_{i=1}^{n} x_i^2\right)^2 = \sigma^2 \sum_{i=1}^{n} x_i^2 X_i^{\delta} / \left(\sum_{i=1}^{n} x_i^2\right)^2$$

where $x_i = X_i - \bar{X}$. For $X_i = 1, 2, ..., 10$ and $\delta = 0.5, 1, 1.5$ and 2. This is tabulated below.

b. From problem 5.3 part (b) we get

$$\begin{split} & \text{var}\big(\tilde{\beta}_{\text{BLUE}}\big) = \frac{1}{\sum\limits_{i=1}^{n} w_{i}^{*}\big(X_{i} - \overline{X}^{*}\big)^{2}} \\ & \text{where } w_{i}^{*} \ = \ \left(1/\sigma_{i}^{2}\right) \ = \ \left(1/\sigma^{2}X_{i}^{\delta}\right) \ \text{and} \ \overline{X}^{*} \ = \ \sum\limits_{i=1}^{n} w_{i}^{*}X_{i} \Big/\sum\limits_{i=1}^{n} w_{i}^{*} \ = \\ & \frac{\sum\limits_{i=1}^{n} \left(X_{i}/X_{i}^{\delta}\right)}{\sum\limits_{i=1}^{n} \left(1/X_{i}^{\delta}\right)}. \end{split}$$

For $X_i = 1, 2, ..., 10$ and $\delta = 0.5, 1, 1.5$ and 2, this variance is tabulated below.

c. The relative efficiency of OLS is given by the ratio of the two variances computed in parts (a) and (b). This is tabulated below for various values of δ.

δ	$var(\hat{\beta}_{ols})$	$var(\tilde{\beta}_{\text{BLUE}})$	$var(\tilde{\beta}_{BLUE})/var(\hat{\beta}_{ols})$
0.5	$0.0262 \sigma^2$	$0.0237 \sigma^2$	0.905
1	$0.0667 \sigma^2$	$0.04794 \sigma^2$	0.719
1.5	$0.1860 \sigma^2$	$0.1017 \sigma^2$	0.547
2	$0.5442 \sigma^2$	$0.224 \sigma^2$	0.412

As δ increases from 0.5 to 2, the relative efficiency of OLS with respect to BLUE decreases from 0.9 for mild heteroskedasticity to 0.4 for more serious heteroskedasticity.

5.6 The AR(1) model. From (5.26), by continuous substitution just like (5.29), one could stop at u_{t-s} to get

$$u_t = \rho^s u_{t-s} + \rho^{s-1} \varepsilon_{t-s+1} + \rho^{s-2} \varepsilon_{t-s+2} + \dots + \rho \varepsilon_{t-1} + \varepsilon_t \qquad \text{for } t > s.$$

Note that the power of ρ and the subscript of ϵ always sum to t. Multiplying both sides by u_{t-s} and taking expected value, one gets

$$E\left(u_{t}u_{t-s}\right) = \rho^{s}E\left(u_{t-s}^{2}\right) + \rho^{s-1}E\left(\epsilon_{t-s+1}u_{t-s}\right) + ... + \rho E\left(\epsilon_{t-1}u_{t-s}\right) + E\left(\epsilon_{t}u_{t-s}\right)$$

using (5.29), u_{t-s} is a function of ϵ_{t-s} , past values of ϵ_{t-s} and u_o . Since u_o is independent of the ϵ 's, and the ϵ 's themselves are not serially correlated, then u_{t-s} is independent of ϵ_t , ϵ_{t-1},\ldots , ϵ_{t-s+1} . Hence, all the terms on the right hand side of $E(u_tu_{t-s})$ except the first are zero. Therefore, $cov(u_t,u_{t-s}) = E(u_tu_{t-s}) = \rho^s\sigma_u^2$ for t > s.

5.7 *Relative Efficiency of OLS Under the AR(1) Model.*

a.
$$\hat{\beta}_{ols} = \sum_{t=1}^{T} x_t y_t / \sum_{t=1}^{T} x_t^2 = \beta + \sum_{t=1}^{T} x_t u_t / \sum_{t=1}^{T} x_t^2$$
 with $E(\hat{\beta}_{ols}) = \beta$ since x_t and u_t are independent. Also,

$$\begin{split} \operatorname{var}\left(\hat{\beta}_{ols}\right) &= E\left(\hat{\beta}_{ols} - \beta\right)^2 = E\left(\sum_{t=1}^T x_t u_t \middle/ \sum_{t=1}^T x_t^2\right)^2 = \sum_{t=1}^T x_t^2 E\left(u_t^2\right) \middle/ \left(\sum_{t=1}^T x_t^2\right)^2 \\ &+ E\left[\sum_{s \neq t} \sum_{t \neq 1} x_t x_s u_t u_s \middle/ \left(\sum_{t=1}^T x_t^2\right)^2\right] \\ &= \frac{\sigma_u^2}{\sum\limits_{t=1}^T x_t^2} \left[1 + 2\rho \frac{\sum\limits_{t=1}^{T-1} x_t x_{t+1}}{\sum\limits_{t=1}^T x_t^2} + 2\rho^2 \frac{\sum\limits_{t=1}^{T-2} x_t x_{t+2}}{\sum\limits_{t=1}^T x_t^2} + ... + 2\rho^{T-1} \frac{x_1 x_T}{\sum\limits_{t=1}^T x_t^2}\right] \end{split}$$

using the fact that $E(u_t u_s) = \rho^{|t-s|} \sigma_u^2$ as shown in problem 6.

Alternatively, one can use matrix algebra, see Chap. 9. For the AR(1) model, $\Omega = E(uu')$ is given by Eq. (9.9) of Chap. 9. So

$$\begin{split} x'\Omega x &= (x_1,\ldots,x_T) \begin{bmatrix} 1 & \rho & \rho^2 & \ldots & \rho^{T-1} \\ \rho & 1 & \rho & \ldots & \rho^{T-2} \\ \cdot & \cdot & \cdot & \cdot \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \ldots & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_T \end{pmatrix} \\ &= (x_1^2 + \rho x_1 x_2 + \ldots + \rho^{T-1} x_T x_1) + (\rho x_1 x_2 + x_2^2 + \ldots + \rho^{T-2} x_T x_2) \\ &+ (\rho^2 x_1 x_3 + \rho x_2 x_3 + \ldots + \rho^{T-3} x_T x_3) + \ldots \\ &+ (\rho^{T-1} x_1 x_T + \rho^{T-2} x_2 x_T + \ldots + x_T^2) \end{split}$$

collecting terms, we get

$$x'\Omega x = \sum_{t=1}^{T} x_t^2 + 2\rho \sum_{t=1}^{T-1} x_t x_{t+1} + 2\rho^2 \sum_{t=1}^{T-2} x_t x_{t+2} + \dots + 2\rho^{T-1} x_1 x_T$$

Using Eq. (9.5) of Chap. 9, we get $var(\hat{\beta}_{ols}) = \sigma_u^2 \frac{x'\Omega x}{(x'x)^2}$

$$= \frac{\sigma_u^2}{\sum\limits_{t=1}^T x_t^2} \left[1 + 2\rho \frac{\sum\limits_{t=1}^{T-1} x_t x_{t+1}}{\sum\limits_{t=1}^T x_t^2} + 2\rho^2 \frac{\sum\limits_{t=1}^{T-2} x_t x_{t+2}}{\sum\limits_{t=1}^T x_t^2} + ... + 2\rho^{T-1} \frac{x_1 x_T}{\sum\limits_{t=1}^T x_t^2} \right].$$

Similarly, Ω^{-1} for the AR(1) model is given by Eq. (9.10) of Chap. 9, and $var(\hat{\beta}_{BLUE}) = \sigma^2(X'\Omega^{-1}X)^{-1}$ below equation (9.4). In this case,

$$x'\Omega^{-1}x = \frac{1}{1-\rho^2}(x_1,\dots,x_T) \begin{bmatrix} 1 & -\rho & 0 & \dots & 0 & 0 & 0 \\ -\rho & 1+\rho^2 & -\rho & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\rho & 1+\rho^2 & -\rho \\ 0 & 0 & 0 & \dots & 0 & -\rho & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_T \end{bmatrix}$$

$$\begin{split} x'\Omega^{-1}x &= \frac{1}{1-\rho^2} \left[x_1^2 - \rho x_1 x_2 - \rho x_1 x_2 + (1+\rho^2) x_2^2 - \rho x_3 x_2 - \rho x_2 x_3 \right. \\ &\quad \left. + (1+\rho^2) x_3^2 - \rho x_4 x_3 + ... + x_T^2 - \rho x_{T-1} x_T \right]. \end{split}$$

Collecting terms, we get

$$x'\Omega^{-1}x = \frac{1}{1-\rho^2} \left[\sum_{t=1}^{T} x_t^2 - 2\rho \sum_{t=1}^{T-1} x_t x_{t+1} + \rho^2 \sum_{t=1}^{T-1} x_t^2 \right]$$

For $T \to \infty$, $\sum_{t=2}^{T-1} x_t^2$ is equivalent to $\sum_{t=1}^{T} x_t^2$, hence

$$\operatorname{var}\left(\hat{\beta}_{PW}\right) = \sigma_{u}^{2}(x'\Omega^{-1}x)^{-1} = \frac{\sigma_{u}^{2}}{\sum\limits_{t=1}^{T}x_{t}^{2}}\left[\frac{1-\rho^{2}}{1+\rho^{2}-2\rho\sum\limits_{t=1}^{T-1}x_{t}x_{t+1}\Big/\sum\limits_{t=1}^{T}x_{t}^{2}}\right].$$

b. For x_t following itself an AR(1) process: $x_t = \lambda x_{t-1} + v_t$, we know that λ is the correlation of x_t and x_{t-1} , and from problem 5.6, correl $(x_t, x_{t-s}) = \lambda^s$. As $T \to \infty$, λ is estimated well by $\sum_{t=1}^{T-1} x_t x_{t+1} / \sum_{t=1}^{T} x_t^2$. Also, λ^2 is estimated

well by
$$\sum\limits_{t=1}^{T-2} x_t x_{t+2} \bigg/ \sum\limits_{t=1}^{T} x_t^2,$$
 etc. Hence

$$\begin{split} \text{asy eff} \big(\hat{\beta}_{ols} \big) &= \lim_{T \to \infty} \frac{\text{var} \big(\hat{\beta}_{PW} \big)}{\text{var} \big(\hat{\beta}_{ols} \big)} = \frac{1 - \rho^2}{(1 + \rho^2 - 2\rho\lambda) \left(1 + 2\rho\lambda + 2\rho^2\lambda^2 + .. \right)} \\ &= \frac{(1 - \rho^2)(1 - \rho\lambda)}{(1 + \rho^2 - 2\rho\lambda)(1 + \rho\lambda)} \end{split}$$

where the last equality uses the fact that $(1 + \rho \lambda)/(1 - \rho \lambda) = (1 + 2\rho \lambda + 2\rho^2 \lambda^2 + ..)$. For $\lambda = 0$, or $\rho = \lambda$, this asy $eff(\hat{\beta}_{ols})$ is equal to $(1 - \rho^2)/(1 + \rho^2)$.

c. The asy eff($\hat{\beta}_{ols}$) derived in part (b) is tabulated below for various values of ρ and λ . A similar table is given in Johnston (1984, p. 312). For $\rho > 0$, loss in efficiency is big as ρ increases. For a fixed λ , this asymptotic efficiency drops from the 90 to a 10% range as ρ increases from 0.2 to 0.9. Variation in λ has minor effects when $\rho > 0$. For $\rho < 0$, the efficiency loss is still big as the absolute value of ρ increases, for a fixed λ . However, now variation in λ has a much stronger effect. For a fixed negative ρ , the loss in efficiency decreases with λ . In fact, for $\lambda = 0.9$, the loss in efficiency drops from 99% to 53 as ρ goes from -0.2 to -0.9. This is in contrast to say $\lambda = 0.2$ where the loss in efficiency drops from 93 to 13% as ρ goes from -0.2 to -0.9.

(Asymptotic Relative Efficiency of $\hat{\beta_{ols}}$) x 100

λ	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	10.5	22.0	34.2	47.1	60.0	72.4	83.5	92.3	98.0	100	98.0	92.3	83.5	72.4	60.0	47.1	34.2	22.0	10.5
0.1	11.4	23.5	36.0	48.8	61.4	73.4	84.0	92.5	98.1	100	98.0	92.2	83.2	71.8	59.0	45.8	32.8	20.7	9.7
0.2	12.6	25.4	38.2	50.9	63.2	74.7	84.8	92.9	98.1	100	98.1	92.3	83.2	71.6	58.4	44.9	31.8	19.8	9.1
0.3	14.1	27.7	40.9	53.5	65.5	76.4	85.8	93.3	98.2	100	98.1	92.5	83.5	71.7	58.4	44.5	31.1	19.0	8.6
0.4	16.0	30.7	44.2	56.8	68.2	78.4	87.1	93.9	98.4	100	98.3	92.9	84.1	72.4	58.8	44.6	30.8	18.5	8.2
0.5	18.5	34.4	48.4	60.6	71.4	80.8	88.6	94.6	98.6	100	98.4	93.5	85.1	73.7	60.0	45.3	31.1	18.4	7.9
0.6	22.0	39.4	53.6	65.4	75.3	83.6	90.3	95.5	98.8	100	98.6	94.3	86.6	75.7	62.1	47.1	32.0	18.6	7.8
0.7	27.3	46.2	60.3	71.2	79.9	86.8	92.3	96.4	99.0	100	98.9	95.3	88.7	78.8	65.7	50.3	34.2	19.5	7.8
0.8	35.9	56.2	69.3	78.5	85.4	90.6	94.6	97.5	99.3	100	99.2	96.6	91.4	83.2	71.4	56.2	38.9	22.0	8.4
0.9	52.8	71.8	81.7	87.8	92.0	94.9	97.1	98.7	99.6	100	99.6	98.1	95.1	89.8	81.3	68.3	50.3	29.3	10.5

d. Ignoring autocorrelation, $s^2 / \sum_{t=1}^T x_t^2$ estimates $\sigma_u^2 / \sum_{t=1}^T x_t^2$, but asy.var $\left(\hat{\beta}_{ols}\right) = \left(\sigma_u^2 / \sum_{t=1}^T x_t^2\right) (1-\rho\lambda)/(1+\rho\lambda)$ so the asy.bias in estimating the $var(\hat{\beta}_{ols})$ is

$$asy.var\left(\hat{\beta}_{ols}\right) - \sigma_u^2 \Big/ \sum_{t=1}^T x_t^2 = \frac{\sigma_u^2}{\sum\limits_{t=1}^T x_t^2} \left[\frac{1-\rho\lambda}{1+\rho\lambda} - 1 \right] = \frac{\sigma_u^2}{\sum\limits_{t=1}^T x_t^2} \left[\frac{-2\rho\lambda}{1+\rho\lambda} \right]$$

and asy.proportionate bias = $-2\rho\lambda/(1+\rho\lambda)$.

Percentage Bias in estimating $var(\hat{\beta}_{ols})$

ρ

λ	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	0	0.1	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.1	19.8	17.4	15.1	12.8	10.5	8.3	6.2	4.1	0	-2.0	-5.8	-7.7	-9.5	-11.3	-13.1	-14.8	-16.5
0.2	43.9	38.1	32.6	27.3	22.2	17.4	12.8	8.3	0	-3.9	-11.3	-14.8	-18.2	-21.4	-24.6	-27.6	-30.5
0.3	74.0	63.2	53.2	43.9	35.3	27.3	19.8	12.8	0	-5.8	-16.5	-21.4	-26.1	-30.5	-34.7	-38.7	-42.5
0.4	112.5	94.1	77.8	63.2	50.0	38.1	27.3	17.4	0	-7.7	-21.4	-27.6	-33.3	-38.7	-43.8	-48.5	-52.9
0.5	163.6	133.3	107.7	85.7	66.7	50.0	35.3	22.2	0	-9.5	-26.1	-33.3	-40.0	-46.2	-51.9	-57.1	-62.1
0.6	234.8	184.6	144.8	112.5	85.7	63.2	43.9	27.3	0	-11.3	-30.5	-38.7	-46.2	-52.9	-59.2	-64.9	-70.1
0.7	340.5	254.5	192.2	144.8	107.7	77.8	53.2	32.6	0	-13.1	-34.7	-43.8	-51.9	-59.2	-65.8	-71.8	<i>–</i> 77.3
0.8	514.3	355.6	254.5	184.6	133.3	94.1	63.2	38.1	0	-14.8	-38.7	-48.5	-57.1	-64.9	-71.8	-78.0	-83.7
0.9	852.6	514.3	340.5	234.8	163.6	112.5	74.0	43.9	0	-16.5	-42.5	-52.9	-62.1	-70.1	-77.3	-83.7	-89.5

This is tabulated for various values of ρ and λ . A similar table is given in Johnston (1984, p. 312).

For ρ and λ positive, var $\left(\hat{\beta}_{ols}\right)$ is underestimated by the conventional formula. For $\rho=\lambda=0.9$, this underestimation is almost 90%. For $\rho<0$, the var $(\hat{\beta}_{ols})$ is overestimated by the conventional formula. For $\rho=-0.9$ and $\lambda=0.9$, this overestimation is of magnitude 853%.

$$\begin{split} \textbf{e.} \ \, & e_t = y_t - \hat{y}_t = (\beta - \hat{\beta}_{ols}) x_t + u_t \\ \ \, & \text{Hence, } \sum_{t=1}^T e_t^2 = \left(\hat{\beta}_{ols} - \beta\right)^2 \sum_{t=1}^T x_t^2 + \sum_{t=1}^T u_t^2 - 2\left(\hat{\beta}_{ols} - \beta\right) \sum_{t=1}^T x_t u_t \text{ and} \\ \ \, & E\left(\sum_{t=1}^T e_t^2\right) = \sum_{t=1}^T x_t^2 \operatorname{var}\left(\hat{\beta}_{ols}\right) + T\sigma_u^2 - 2E\left(\sum_{s=1}^T x_s u_s\right) \left(\sum_{t=1}^T x_t u_t\right) \Big/ \left(\sum_{t=1}^T x_t^2\right) \\ \ \, & = -\sum_{t=1}^T x_t^2 \operatorname{var}\left(\hat{\beta}_{ols}\right) + T\sigma_u^2 \\ \ \, & = -\sigma_u^2 \left[1 + 2\rho \frac{\sum_{t=1}^{T-1} x_t x_{t+1}}{\sum_{t=1}^T x_t^2} + 2\rho^2 \frac{\sum_{t=1}^{T-2} x_t x_{t+2}}{\sum_{t=1}^T x_t^2} + ... + 2\rho^{T-1} \frac{x_1 x_T}{\sum_{t=1}^T x_t^2}\right] + T\sigma_u^2 \end{split}$$
 So that $E(s^2) = E\left(\sum_{t=1}^T e_t^2 / (T-1)\right)$

$$= \sigma_u^2 \left\{ T - \left(1 + 2\rho \frac{\sum\limits_{t=1}^{T-1} x_t x_{t+1}}{\sum\limits_{t=1}^{T} x_t^2} + 2\rho^2 \frac{\sum\limits_{t=1}^{T-2} x_t x_{t+2}}{\sum\limits_{t=1}^{T} x_t^2} + ... + 2\rho^{T-1} \frac{x_1 x_T}{\sum\limits_{t=1}^{T} x_t^2} \right) \right\} / (T-1)$$

If $\rho=0$, then $E(s^2)=\sigma_u^2.$ If x_t follows an AR(1) model with parameter $\lambda,$ then for large T, $E(s^2)=\sigma_u^2\left(T-\frac{1+\rho\lambda}{1-\rho\lambda}\right)/(T-1).$ For $T=101,~E(s^2)=\sigma_u^2\left(101-\frac{1+\rho\lambda}{1-\rho\lambda}\right)/100.$

This can be tabulated for various values of ρ and λ . For example, when $\rho = \lambda = 0.9$, $E(s^2) = 0.915 \,\sigma^2$.

- **5.10** Regressions with Non-zero Mean Disturbances.
 - a. For the gamma distribution, $E(u_i) = \theta$ and $var(u_i) = \theta$. Hence, the disturbances of the simple regression have non-zero mean but constant variance. Adding and subtracting θ on the right hand side of the regression we get $Y_i = (\alpha + \theta) + \beta X_i + (u_i \theta) = \alpha^* + \beta X_i + u_i^* \text{ where } \alpha^* = \alpha + \theta$ and $u_i^* = u_i \theta$ with $E(u_i^*) = 0$ and $var(u_i^*) = \theta$. OLS yields the BLU estimators of α^* and β since the u_i^* disturbances satisfy all the requirements of the Gauss–Markov Theorem, including the zero mean assumption. Hence, $E(\hat{\alpha}_{ols}) = \alpha^* = \alpha + \theta$ which is biased for α by the mean of the disturbances θ . But $E(s^2) = var(u_i^*) = var(u_i) = \theta$. Therefore,

$$E\left(\hat{\alpha}_{ols}-s^2\right)=E\left(\hat{\alpha}_{ols}\right)-E(s^2)=\alpha+\theta-\theta=\alpha.$$

- **b.** Similarly, for the χ^2_{ν} distribution, we have $E(u_i) = \nu$ and $var(u_i) = 2\nu$. In this case, the same analysis applies except that $E(\hat{\alpha}_{ols}) = \alpha + \nu$ and $E(s^2) = 2\nu$. Hence, $E(\hat{\alpha}_{ols} s^2/2) = \alpha$.
- **c.** Finally, for the exponential distribution, we have $E(u_i) = \theta$ and $var(u_i) = \theta^2$. In this case, plim $\hat{\alpha}_{ols} = \alpha + \theta$ and plim $s^2 = \theta^2$. Hence, plim $(\hat{\alpha}_{ols} s) = \theta$ plim $\hat{\alpha}_{ols} \theta$.
- **5.11** The Heteroskedastic Consequences of an Arbitrary Variance for the Initial Disturbance of an AR(1) Model. Parts (a), (b), and (c) are based on the solution given by Kim (1991).

a. Continual substitution into the process $u_t = \rho u_{t-1} + \epsilon_t$ yields

$$u_t = \rho^t u_o + \sum_{j=0}^{t-1} \rho^j \epsilon_{t-j}.$$

Exploiting the independence conditions, $E(u_o\epsilon_j)=0$ for all j, and $E(\epsilon_i\epsilon_j)=0$ for all $i\neq j$, the variance of u_t is

$$\begin{split} \sigma_t^2 &= \text{var}(u_t) = \rho^{2t} \, \text{var}(u_o) + \sum_{j=0}^{t-1} \rho^{2j} \, \text{var}\left(\epsilon_{t-j}\right) = \rho^{2t} \sigma_\epsilon^2 / \tau + \sigma_\epsilon^2 \sum_{j=0}^{t-1} \rho^{2j} \\ &= \rho^{2t} \sigma_\epsilon^2 / \tau + \sigma_\epsilon^2 [(1 - \rho^{2t}) / (1 - \rho^2)] \\ &= \left[\left\{ 1 / (1 - \rho^2) + [1 / \tau - 1 / (1 - \rho^2)] \rho^{2t} \right\} \sigma_\epsilon^2 \; . \end{split}$$

This expression for σ_t^2 depends on t. Hence, for an arbitrary value of τ , the disturbances are rendered heteroskedastic. If $\tau=1-\rho^2$ then σ_t^2 does not depend on t and σ_t^2 becomes homoskedastic.

b. Using the above equation for σ_t^2 , define

$$\begin{split} a &= \sigma_t^2 - \sigma_{t-1}^2 = \left[(1/\tau) - 1/(1-\rho^2) \right] \rho^{2t} (1-\rho^{-2}) \sigma_\epsilon^2 = bc \\ \text{where } b &= (1/\tau) - 1/(1-\rho^2) \text{ and } c = \rho^{2t} (1-\rho^{-2}) \sigma_\epsilon^2. \text{ Note that } c < 0. \text{ If } \tau > \\ 1 - \rho^2, \text{ then } b < 0 \text{ implying that } a > 0 \text{ and the variance is increasing. While } \\ \text{if } \tau < 1 - \rho^2, \text{ then } b > 0 \text{ implying that } a < 0 \text{ and the variance is decreasing.} \\ \text{If } \tau &= 1 - \rho^2 \text{ then } a = 0 \text{ and the process becomes homoskedastic.} \\ \text{Alternatively, one can show that } \frac{\partial \sigma_t^2}{\partial t} = \frac{2\sigma_\epsilon^2 \rho^{2t} \log \rho}{\tau (1-\rho^2)} [(1-\rho^2) - \tau] \end{split}$$

Alternatively, one can show that $\frac{\partial \sigma_t}{\partial t} = \frac{2\sigma_\epsilon \rho}{\tau(1-\rho^2)} [(1-\rho^2) - \tau]$ where $\partial a^{bx}/\partial x = ba^{bx} \log a$, has been used. Since $\log \rho < 0$, the right hand side of the above equation is positive (σ_t^2 is increasing) if $\tau > 1 - \rho^2$, and is negative otherwise.

c. Using $u_t=\rho^t u_o+\sum\limits_{j=0}^{t-1}\rho^j\epsilon_{t-j},$ and noting that $E(u_t)=0$ for all t, finds, for $t\geq s,$

$$\begin{split} cov(u_t, \ u_{t-s}) &= E(u_t u_{t-s}) = \left(\rho^t u_o + \sum_{i=0}^{t-1} \rho^i \epsilon_{t-i} \right) \left(\rho^{t-s} u_o + \sum_{j=0}^{t-s-1} \rho^j \epsilon_{t-s-j} \right) \\ &= \rho^{2t-s} var(u_o) + \rho^s \sum_{i=0}^{t-s-1} \rho^{2i} var(\epsilon_{t-s-i}) \\ &= \rho^{2t-s} \sigma_\epsilon^2 / \tau + \sigma_\epsilon^2 \left[\rho^s (1 - \rho^{2(t-s)}) / (1 - \rho^2) \right] \\ &= \rho^s \left\{ 1 / (1 - \rho^2) + \left[(1/\tau) - 1 / (1 - \rho^2) \right] \rho^{2(t-s)} \right\} \sigma_\epsilon^2 = \rho^s \sigma_{t-s}^2 \end{split}$$

d. The Bias of the Standard Errors of OLS Process with an Arbitrary Variance on the Initial Observation. This is based on the solution by Koning (1992). Consider the time-series model

$$y_t = \beta x_t + u_t \,$$

$$u_t = \rho u_{t-1} + \varepsilon_t$$

with $0<\rho<1,\;\epsilon_t\sim \mathrm{IIN}\left(0,\sigma_\epsilon^2\right),\;u_o\sim \mathrm{IIN}\left(0,\left(\sigma_\epsilon^2/\tau\right)\right),\;\tau>0.$ The x's are positively autocorrelated. Note that

$$var(u_t) = \sigma_t^2 = \sigma_\epsilon^2 \left(\frac{\rho^{2t}}{\tau} + \sum_{s=1}^{t-1} \rho^{2s} \right) = \sigma_\epsilon^2 \left(\frac{\rho^{2t}}{\tau} + \frac{1-\rho^{2t}}{1-\rho^2} \right).$$

The population variance of the OLS estimator for β is

$$var\left(\hat{\beta}_{ols}\right) = \frac{\sum\limits_{t=1}^{T}\sum\limits_{s=1}^{T}x_{s}x_{t}cov(u_{t},u_{s})}{\left(\sum\limits_{t=1}^{T}x_{t}^{2}\right)^{2}} = \frac{\sum\limits_{t=1}^{T}\sigma_{t}^{2}x_{t}^{2} + 2\sum\limits_{t=1}^{T}\sum\limits_{s>t}^{T}x_{s}x_{t}\rho^{s-t}\sigma_{t}^{2}}{\left(\sum\limits_{t=1}^{T}x_{t}^{2}\right)^{2}}.$$

Also, note that in the stationary case ($\tau = 1 - \rho^2$), we have:

$$\text{var}\left(\hat{\beta}_{ols}\right) = \frac{\sigma_{\epsilon}^2 \Big/ (1-\rho^2)}{\sum\limits_{t=1}^T x_t^2} + \frac{(2\sigma_{\epsilon}^2/(1-\rho^2))\sum\limits_{t=1}^T \sum\limits_{s>t}^T x_s x_t \rho^{s-t}}{\left(\sum\limits_{t=1}^T x_t^2\right)^2} \geq \frac{\sigma_{\epsilon}^2/(1-\rho^2)}{\sum\limits_{t=1}^T x_t^2},$$

since each term in the double summation is non-negative. Hence, the true variance of $\hat{\beta}_{ols}$ (the left hand side of the last equation) is greater than the

estimated variance of $\hat{\beta}_{ols}$ (the right hand side of the last equation). Therefore, the true t-ratio corresponding to H_o ; $\beta=0$ versus H_1 ; $\beta\neq0$ is lower than the estimated t-ratio. In other words, OLS rejects too often.

From the equation for σ_t^2 it is easily seen that $\partial \sigma_t^2/\partial \tau < 0$, and hence, that the true variance of $\hat{\beta}_{ols}$ is larger than the estimated $var(\hat{\beta}_{ols})$ if $\tau < 1 - \rho^2$. Hence, the true t-ratio decreases and compared to the stationary case, OLS rejects more often. The opposite holds for $\tau > 1 - \rho^2$.

- **5.12** *ML Estimation of Linear Regression Model with AR(1) Errors and Two Observations.* This is based on Baltagi and Li (1995).
 - **a.** The OLS estimator of β is given by

$$\hat{\beta}_{ols} = \sum_{i=1}^{2} x_i y_i / \sum_{i=1}^{2} x_i^2 = (y_1 x_1 + y_2 x_2) / (x_1^2 + x_2^2).$$

b. The log-likelihood function is given by logL = $-\log 2\pi - \log \sigma^2 - (1/2)\log(1-\rho^2) - \left(u_2^2 - 2\rho u_1 u_2 + u_1^2\right)/2\sigma^2(1-\rho^2)$; setting $\partial \log L/\partial \sigma^2 = 0$ gives $\hat{\sigma}^2 = \left(u_2^2 - 2\rho u_1 u_2 + u_1^2\right)/2(1-\rho^2)$; setting $\partial \log L/\partial \rho = 0$ gives $\rho\sigma^2(1-\rho^2) + u_1 u_2 + \rho^2 u_1 u_2 - \rho u_2^2 - \rho u_1^2 = 0$; substituting $\hat{\sigma}^2$ in this last equation, we get $\hat{\rho} = 2u_1 u_2/\left(u_1^2 + u_2^2\right)$; setting $\partial \log L/\partial \beta = 0$ gives $u_2(x_2-\rho x_1) + u_1(x_1-\rho x_2) = 0$; substituting $\hat{\rho}$ in this last equation, we get $(u_1x_1-u_2x_2)\left(u_1^2-u_2^2\right) = 0$. Note that $u_1^2 = u_2^2$ implies a $\hat{\rho}$ of ± 1 , and this is ruled out by the stationarity of the AR(1) process. Solving $(u_1x_1-u_2x_2) = 0$ gives the required MLE of β :

$$\hat{\beta}_{mle} = (y_1 x_1 - y_2 x_2) / \left(x_1^2 - x_2^2\right).$$

- c. By substituting $\hat{\beta}_{mle}$ into u_1 and u_2 , one gets $\hat{u}_1 = x_2(x_1y_2 x_2y_1)/(x_1^2 x_2^2)$ and $\hat{u}_2 = x_1(x_1y_2 x_2y_1)/(x_1^2 x_2^2)$, which upon substitution in the expression for $\hat{\rho}$ give the required estimate of ρ : $\hat{\rho} = 2x_1x_2/(x_1^2 + x_2^2)$.
- **d.** If $x_1 \to x_2$, with $x_2 \neq 0$, then $\hat{\rho} \to 1$. For $\hat{\beta}_{mle}$, we distinguish between two cases.

- (i) For $y_1 = y_2$, $\hat{\beta}_{mle} \rightarrow y_2/(2x_2)$, which is half the limit of $\hat{\beta}_{ols} \rightarrow y_2/x_2$. The latter is the slope of the line connecting the origin to the observation (x_2, y_2) .
- (ii) For $y_1 \neq y_2$, $\hat{\beta}_{mle} \rightarrow \pm \infty$, with the sign depending on the sign of x_2 , $(y_1 y_2)$, and the direction from which x_1 approaches x_2 . In this case, $\hat{\beta}_{ols} \rightarrow \bar{y}/x_2$, where $\bar{y} = (y_1 + y_2)/2$. This is the slope of the line connecting the origin to (x_2, \bar{y}) .

Similarly, if $x_1 \to -x_2$, with $x_2 \neq 0$, then $\hat{\rho} \to -1$. For $\hat{\beta}_{mle}$, we distinguish between two cases:

- (i) For $y_1=-y_2,\ \hat{\beta}_{mle}\to y_2/(2x_2),$ which is half the limit of $\hat{\beta}_{ols}\to y_2/x_2.$
- (ii) For $y_1 \neq -y_2$, $\hat{\beta}_{mle} \to \pm \infty$, with the sign depending on the sign of x_2 , $(y_1 + y_2)$, and the direction from which x_1 approaches $-x_2$. In this case, $\hat{\beta}_{ols} \to (y_2 y_1)/2x_2 = (y_2 y_1)/(x_2 x_1)$, which is the standard formula for the slope of a straight line based on two observations. In conclusion, $\hat{\beta}_{ols}$ is a more reasonable estimator of β than $\hat{\beta}_{mle}$ for this two-observation example.
- **5.13** The backup regressions are given below: These are performed using SAS.

OLS REGRESSION OF LNC ON CONSTANT, LNP, AND LNY

Dependent Variable: LNC

Source	DF	Sum Squa		Me Squ	F Value	Prob>F
Model Error C Total	2 43 45	0.50 1.14 1.64	854	0.25 0.02	 9.378	0.0004
	Root N Dep N C.V.	_	0.16 4.84 3.37	784	quare R-sq	0.3037 0.2713

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	4.299662	0.90892571	4.730	0.0001
LNP	1	-1.338335	0.32460147	-4.123	0.0002
LNY	1	0.172386	0.19675440	0.876	0.3858

PLOT OF RESIDUAL VS. LNY

b. Regression for Glejser Test (1969)

Dependent Variable: ABS_E

MODEL: Z1=LNY $^{\wedge}(-1)$

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.04501 0.37364 0.41865	0.04501 0.00849	5.300	0.0261
	MSE Mean	0.09215 0.12597 73.15601	R-square Adj R-sq	0.1075 0.0872	

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob>F
INTERCEP	1	-0.948925	0.46709261	-2.032	0.0483
Z1(LNY^ - 1)		5.128691	2.22772532	2.302	0.0261

MODEL: Z2=LNY $^(-0.5)$ Dependent Variable: ABS_E

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.04447 0.37418 0.41865	0.04447 0.00850	5.229	0.0271
Root MSE Dep Mean C.V.		0.09222 0.12597 73.20853	R-square Adj R-sq	0.1062 0.0859	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	-2.004483	0.93172690	-2.151	0.0370
Z2 (LNY^5)		4.654129	2.03521298	2.287	0.0271

MODEL: Z3=LNY^(0.5)

Dependent Variable: ABS_E

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.04339 0.37526 0.41865	0.04339 0.00853	5.087	0.0291
Root MSE Dep Mean C.V.		0.09235 0.12597 73.31455	R-square Adj R-sq	0.1036 0.0833	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	2.217240	0.92729847	2.391	0.0211
Z3 (LNY^.5)	1	-0.957085	0.42433823	-2.255	0.0291

MODEL: Z4=LNY^1

Dependent Variable: ABS_E

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	0.04284 0.37581 0.41865	0.04284 0.00854	5.016	0.0302
	t MSE Mean	0.09242 0.12597 73.36798	R-square Adj R-sq	0.1023 0.0819	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	1.161694	0.46266689	2.511	0.0158
Z4 (LNY^1)	1	-0.216886	0.09684233	-2.240	0.0302

c. Regression for Goldfeld and Quandt Test (1965) with first 17 obervations Dependent Variable: LNC

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 14 16	0.22975 0.68330 0.91305	0.11488 0.04881	2.354	0.1315
	t MSE Mean	0.22092 4.85806 4.54756	R-square Adj R-sq	0.2516 0.1447	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	3.983911	4.51225092	0.883	0.3922
LNP	1	-1.817254	0.86970957	-2.089	0.0554
LNY	1	0.248409	0.96827122	0.257	0.8013

REGRESSION FOR GOLDFELD AND QUANDT TEST (1965) w/last 17 obs

Dependent Variable: LNC

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 14 16	0.17042 0.21760 0.38803	0.08521 0.01554	5.482	0.0174
	t MSE Mean	0.12467 4.78796 2.60387	R-square Adj R-sq	0.4392 0.3591	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	6.912881	1.57090447	4.401	0.0006
LNP	1	-1.248584	0.39773565	-3.139	0.0072
LNY	1	-0.363625	0.31771223	-1.145	0.2716

d. Data for Spearman Rank Correlation Test

OBS	STATE	LNC	RANKY	ABS_E	RANKE	D
1	MS	4.93990	1	0.04196	11	10
2	UT	4.40859	2	0.41867	46	44
3	WV	4.82454	3	0.10198	21	18
4	NM	4.58107	4	0.28820	44	40
5	AR	5.10709	5	0.32868	45	40
6	LA	4.98602	6	0.21014	38	32
7	SC	5.07801	7	0.08730	19	12
8	OK	4.72720	8	0.10845	22	14
9	AL	4.96213	9	0.13671	30	21
10	ID	4.74902	10	0.11628	24	14

11	KY	5.37906	11	0.23428	40	29
12	SD	4.81545	12	0.11470	23	11
13	ΑZ	4.66312	13	0.22128	39	26
14	ND	4.58237	14	0.28253	43	29
15	MT	4.73313	15	0.17266	34	19
16	WY	5.00087	16	0.02320	5	-11
17	TN	5.04939	17	0.14323	31	14
18	IN	5.11129	18	0.11673	25	7
19	GA	4.97974	19	0.03583	10	-9
20	TX	4.65398	20	0.08446	18	-2
21	IA	4.80857	21	0.01372	3	-18
22	ME	4.98722	22	0.25740	41	19
23	WI	4.83026	23	0.01754	4	-19
24	OH	4.97952	24	0.03201	9	-15
25	VT	5.08799	25	0.20619	36	11
26	MO	5.06430	26	0.05716	15	-11
27	KS	4.79263	27	0.04417	12	-15
28	NE	4.77558	28	0.09793	20	-8
29	MI	4.94744	29	0.12797	28	-1
30	FL	4.80081	30	0.05625	14	-16
31	MN	4.69589	31	0.02570	8	-23
32	PA	4.80363	32	0.02462	6	-26
33	NV	4.96642	33	0.26506	42	9
34	RI	4.84693	34	0.11760	26	-8
35	VA	4.93065	35	0.04776	13	-22
36	WA	4.66134	36	0.00638	2	-34
37	DE	5.04705	37	0.20120	35	-2
38	CA	4.50449	38	0.14953	32	-6
39	IL	4.81445	39	0.00142	1	-38
40	MD	4.77751	40	0.20664	37	-3
41	NY	4.66496	41	0.02545	7	-34
42	MA	4.73877	42	0.12018	27	-15
43	NH	5.10990	43	0.15991	33	-10
44	DC	4.65637	44	0.12810	29	-15
45	CT	4.66983	45	0.07783	17	-28
46	NJ	4.70633	46	0.05940	16	-30

SPEARMAN RANK CORRELATION TEST

OBS	R	T
1	-0.28178	1.94803

e. Harvey's Multiplicative Heteroskedasticity Test (1976)

Dependent Variable: LNE_SQ

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	1 44 45	14.36012 211.14516 225.50528	14.36012 4.79875	2.992	0.0907
	MSE Mean	2.19061 -4.97462 -44.03568	R-square Adj R-sq	0.0637 0.0424	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP LLNY	1 1	24.852752 -19.082690	17.24551850 11.03125044	1.441 -1.730	0.1566 0.0907
Variable	N	Mean	Std Dev	Minimum	Maximum

Variable	N	Mean	Std Dev	Minimum	Maximum
HV_TEMP	46	25.0589810	22.8713299	-2.4583422	113.8840204
LNE_SQ	46	-4.9746160	2.2385773	-13.1180671	-1.7413218

HARVEY'S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)

OBS HV_TEST

1 2.90997

f. Regression for Breusch and Pagan Test (1979)

Dependent Variable: X2

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	1	10.97070	10.97070	6.412	0.0150
Error	44	75.28273	1.71097		
C Total	45	86.25344			

Root MSE	1.30804	R-square	0.1272
Dep Mean	1.00001	Adj R-sq	0.1074
C.V.	130.80220		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	17.574476	6.54835118	2.684	0.0102
LNY	1	-3.470761	1.37065694	-2.532	0.0150

BREUSCH & PAGAN TEST (1979)

OBS	RSSBP
1	5.48535

g. Regression for White Test (1979)

Dependent Variable: E_SQ

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 40 45	0.01830 0.03547 0.05377	0.00366 0.00089	4.128	0.0041
	Root MSE Dep Mean C.V.	0.02978 0.02497 119.26315	R-square Adj R-sq	0.3404 0.2579	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	18.221989	5.37406002	3.391	0.0016
LNP	1	9.506059	3.30257013	2.878	0.0064
LNY	1	-7.893179	2.32938645	-3.389	0.0016
LNP_SQ	1	1.281141	0.65620773	1.952	0.0579
LNPY	1	-2.078635	0.72752332	-2.857	0.0068
LNY_SQ	1	0.855726	0.25304827	3.382	0.0016

Normality Test (Jarque-Bera) This chart was done with EViews.

Series:RESID Sample 1 46 Observations 4 6
Obscivations 4 0
Mean -9.95E-1 Median 0.00756 Maximum 0.32867 Minimum -0.41867 Std.Dev. 0.15976 Skewness -0.18193 Kurtosis 2.812526
Jarque-Bera 0.32113 Probability 0.85165

SAS PROGRAM

```
Data CIGAR;
Input OBS STATE $ LNC LNP LNY;
CARDS;
Proc reg data=CIGAR;
     Model LNC=LNP LNY;
   Output OUT=OUT 1 R=RESID;
Proc Plot data=OUT1 hpercent=85 vpercent=60;
     Plot RESID*LNY="";
run;
***** GLEJSER'S TEST (1969) *****;
Data GLEJSER; set OUT1;
   ABS_E=ABS(RESID);
  Z1=LNY**-1;
  Z2=LNY**-.5;
  Z3=LNY**.5;
  Z4=LNY;
```

```
Proc reg data=GLEJSER;
     Model ABS_E=Z1:
     Model ABS_E=Z2:
     Model ABS_E=Z3:
     Model ABS_E=Z4:
TITLE 'REGRESSION FOR GLEJSER TEST (1969)':
LABEL Z1='LNY^^(-1)'
     Z2='LNY^^(-0.5)'
     Z3='LNY^^(0.5)'
     Z4='LNY^^(1)';
run;
***** GOLDFELD & QUANDT TEST (1965) *****;
*****************
Proc sort data=CIGAR out=GOLDFELD;
     By LNY;
Data GQTEST1; set GOLDFELD;
     If _N_<18; OBS=_N_;
Data GQTEST2; set GOLDFELD;
     If _N_>29; OBS=_N_-29;
Proc reg data=GQTEST1;
     Model LNC=LNP LNY;
  Output out=GQ_OUT1 R=GQ_RES1;
TITLE 'REGRESSION FOR GOLDFELD AND QUANDT TEST (1965)
     w/ first 17 obs';
Proc reg data=GQTEST2;
     Model LNC=LNP LNY;
  Output out=GQ_OUT2 R=GQ_RES2;
TITLE 'REGRESSION FOR GOLDFELD AND QUANDT TEST (1965)
     w/last 17 obs';
run;
```

```
***** SPEARMAN'S RANK CORRELATION TEST *****:
Data SPEARMN1; set GOLDFELD;
  RANKY=_N_;
Proc sort data=GLEJSER out=OUT2;
  By ABS_E;
Data TEMP1; set OUT2;
  RANKE=_N_;
Proc sort data=TEMP1 out=SPEARMN2;
  By LNY;
Data SPEARMAN;
   Merge SPEARMN1 SPEARMN2;
     By LNY;
   D=RANKE-RANKY;
* Difference b/w Ranking of —RES— and Ranking of LNY;
  D_SQ=D**2;
Proc means data=SPEARMAN NOPRINT;
  Var D_SQ:
  Output out=OUT3 SUM=SUM_DSQ;
Data SPTEST; Set OUT3;
   R=1-((6*SUM_DSQ)/(46**3-46));
  T=SQRT (R**2*(46-2)/(1-R**2));
Proc print data=SPEARMAN;
   Var STATE LNC RANKY ABS_E RANKE D;
TITLE 'DATA FOR SPEARMAN RANK CORRELATION TEST';
Proc print data=SPTEST;
```

```
Var R T:
TITLE 'SPEARMAN RANK CORRELATION TEST':
run:
*HARVEY'S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976) **;
Data HARVEY; set OUT1;
  E_SQ=RESID**2;
  LNE_SQ=LOG(E_SQ);
  LLNY=LOG(LNY);
Proc reg data=HARVEY;
    Model LNE_SQ=LLNY;
  Output out=OUT4 R=RLNESQ;
TITLE 'HARVEY' 'S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)';
Data HARVEY1; set OUT4;
  HV_TEMP=LNE_SQ**2-RLNESQ**2;
Proc means data=HARVEY1;
  Var HV_TEMP LNE_SQ:
  Output out=HARVEY2 SUM=SUMTMP SUMLNESQ;
Data HARVEY3; set HARVEY2;
  HV_TEST=(SUMTMP-46* (SUMLNESQ/46)**2)/4.9348;
Proc print data=HARVEY3;
  Var HV_TEST:
TITLE 'HARVEY' 'S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)';
***** BREUSCH & PAGAN TEST (1979) *****;
*****************
Proc means data=HARVEY;
  Var E_SQ:
```

```
Output out=OUT5 MEAN=S2HAT;
  TITLE 'BREUSCH & PAGAN TEST (1979)';
Proc print data=OUT5;
  Var S2HAT;
Data BPTEST; set HARVEY;
  X2=E_SQ/0.024968;
Proc reg data=BPTEST;
     Model X2=LNY;
  Output out=OUT6 R=BP_RES;
  TITLE 'REGRESSION FOR BREUSCH & PAGAN TEST (1979)';
Data BPTEST1; set OUT6;
   BP_TMP=X2**2-BP_RES**2;
Proc means data=BPTEST1;
  Var BP_TMP X2;
  Output out=OUT7 SUM=SUMBPTMP SUMX2;
Data BPTEST2; set OUT7;
   RSSBP=(SUMBPTMP-SUMX2**2/46)/2;
Proc print data=BPTEST2;
  Var RSSBP;
***** WHITE'S TEST (1980) *****;
************
Data WHITE; set HARVEY;
  LNP_SQ=LNP**2;
  LNY_SQ=LNY**2;
  LNPY=LNP*LNY;
Proc reg data=WHITE;
```

Model E_SQ=LNP LNY LNP_SQ LNPY LNY_SQ; TITLE 'REGRESSION FOR WHITE TEST (1979)';

run;

- **5.15** The backup regressions are given below.
 - a. OLS regression of consumption on a constant and Income using EViews

Dependent Variable: Consumption

Method: Least Squares

Sample: 1959 2007

Included observations: 49

	Coefficient	Std. Error	t-Statistic	Prob.
C Y	-1343.314 0.979228	219.5614 0.011392	-6.118168 85.96093	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.993680 0.993545 437.6277 9001348. -366.4941 7389.281 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	16749.10 5447.060 15.04057 15.11779 15.06987 0.180503

b. The Breusch–Godfrey Serial Correlation LM Test for serial correlation of the first order is obtained below using EViews. An F-statistic as well as the LM statistic which is computed as T* R-squared are reported, both of which are significant. The back up regression is also shown below these statistics. This regression runs the OLS residuals on their lagged values and the regressors in the original model. We cannot reject first order serial correlation.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	168.9023	Prob. F(1,46)	0.0000
Obs*R-squared	38.51151	Prob. Chi-Square(1)	0.0000

Test Equation:

Dependent Variable: RESID Method: Least Squares

Sample: 1959 2007 Included observations: 49

Presample missing value lagged residuals set to zero.

	Coefficient	Std. Error	t-Statistic	Prob.
C Y RESID(-1)	-54.41017 0.003590 0.909272	102.7650 0.005335 0.069964	-0.529462 0.673044 12.99624	0.5990 0.5043 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.785949 0.776643 204.6601 1926746. -328.7263 84.45113 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	-5.34E-13 433.0451 13.53985 13.65567 13.58379 2.116362

c. Cochrane-Orcutt AR(1) regression—twostep estimates using Stata

. prais c y, corc two

Iteration 0: rho = 0.0000

Iteration 1: rho = 0.9059

Cochrane-Orcutt AR(1) regression – twostep estimates

Source	SS	df	MS	Number of obs	=	48
	.'			F(1, 46)	=	519.58
Model	17473195	1	17473195	Prob > F	=	0.0000
Residual	1546950.74	46	33629.364	R-squared	=	0.9187
				Adi R-squared	=	0.9169
Total	19020145.7	47	404683.951	Root MSE	=	183.38

С	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
y _cons	.9892295 -1579.722	.0433981 1014.436	22.79 -1.56	0.000 0.126	.9018738 -3621.676	1.076585 462.2328
rho	.9059431					

Durbin-Watson statistic (original) 0.180503

Durbin-Watson statistic (transformed) 2.457550

Cochrane-Orcutt AR(1) regression – iterated estimates using Stata 11 . prais c y, corc

Iteration 0: rho = 0.0000

Iteration 1: rho = 0.9059

Iteration 2: rho = 0.8939

Iteration 3: rho = 0.8893

Iteration 4: rho = 0.8882

Iteration 5: rho = 0.8880

Iteration 6: rho = 0.8879

Iteration 7: rho = 0.8879

Iteration 8: rho = 0.8879

Iteration 9: rho = 0.8879

Cochrane-Orcutt AR(1) regression – iterated estimates

Source	SS	df	MS	Number of obs	=	48
				F(1, 46)	=	689.89
Model	23168597	1	23168597	Prob > F	=	0.0000
Residual	1544819.27	46	33583.0277	R-squared	=	0.9375
	'			Adj R-squared	=	0.9361
Total	24713416.3	47	525817.367	Root MSE	=	183.26

С	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
y _cons rho	.996136 -1723.689 .8879325	.0379253 859.2143	26.27 -2.01	0.000 0.051	.9197964 -3453.198	1.072476 5.819176

Durbin-Watson statistic (original) 0.180503

Durbin-Watson statistic (transformed) 2.447750

d. Prais-Winsten AR(1) regression—iterated estimates using Stata 11

. prais c y

Iteration 0: rho = 0.0000

Iteration 1: rho = 0.9059

Iteration 2: rho = 0.9462

Iteration 3: rho = 0.9660

Iteration 4: rho = 0.9757

Iteration 5: rho = 0.9794

Iteration 6: rho = 0.9805

Iteration 7: rho = 0.9808

Iteration 8: rho = 0.9808

Iteration 9: rho = 0.9808

Iteration 10: rho = 0.9809

Iteration 11: rho = 0.9809

Iteration 12: rho = 0.9809

Prais-Winsten AR(1) regression – iterated estimates							
Source	SS	df	MS				
Model	3916565.48	1	3916565.48				
Residual	1535401.45	47	32668.1159				
	' 						
Total	5/51066 03	18	113582 644				

Number of obs	=	49
F(1, 47)	=	119.89
Prob > F	=	0.0000
R-squared	=	0.7184
Adj R-squared	=	0.7124
Root MSE	=	180.74

С	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
y _cons	.912147 358.9638	.047007 1174.865		0.000 0.761	.8175811 -2004.56	1.006713 2722.488
rho	.9808528					

Durbin-Watson statistic (original) 0.180503

Durbin-Watson statistic (transformed) 2.314703

e. The Newey-West HAC Standard Errors using EViews are shown below:

Dependent Variable: Consum

Method: Least Squares

Sample: 1959 2007

Included observations: 49

Newey-West HAC Standard Errors & Covariance (lag truncation = 3)

	Coefficient	Std. Error	t-Statistic	Prob.
C Y	-1343.314 0.979228	422.2947 0.022434	-3.180987 43.64969	0.0026 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.993680 0.993545 437.6277 9001348. -366.4941 7389.281 0.000000	Mean depende S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	16749.10 5447.060 15.04057 15.11779 15.06987 0.180503

- **5.16** Using EViews, Q_{t+1} is simply Q(1) and one can set the sample range from 1954–1976.
 - a. The OLS regression over the period 1954–1976 yields

$$RS_t = \underset{(8.53)}{-6.14} + \underset{(1.44)}{6.33} \ Q_{t+1} - \underset{(1.37)}{1.67} \, P_t$$

with $R^2=0.62$ and D.W. = 1.07. The t-statistic for $\gamma=0$ yields t=-1.67/1.37=-1.21 which is insignificant with a p-value of 0.24.

Therefore, the inflation rate is insignificant in explaining real stock returns.

LS // Dependent Variable is RS Sample: 1954 1976

Included observations: 23

Variable	Coefficier	nt	Std. Erro	or t-Stati	stic	Prob.
C Q(1) P	-6.13728 6.32958 -1.66530	0	8.52895 1.43984 1.37076	2 4.396	024	0.4801 0.0003 0.2386
R-squared Adjusted R-sq S.E. of regres: Sum squared Log likelihood Durbin-Watso	sion resid	0.616110 0.57772 13.8874 3857.212 -91.5409 1.066618	1 S 3 A 2 S 5 F	lean dependent D. dependent va kaike info criterio chwarz criterion -statistic rob(F-statistic)	ar 2 on !	8.900000 21.37086 5.383075 5.531183 16.04912 0.000070

- **b.** The D.W. = 1.07. for n = 23 and two slope coefficients, the 5% critical values of the D.W. are $d_L=1.17$ and $d_U=1.54$. Since $1.07 < d_L$, this indicates the presence of positive serial correlation.
- ${f c.}$ The Breusch and Godfrey test for first-order serial correlation runs the regression of OLS residuals ${f e}_t$ on the regressors in the model and ${f e}_{t-1}$. This yields

$$e_t = \underset{(8.35)}{-4.95} + \underset{(1.44)}{1.03} \ Q_{t+1} + \underset{(1.30)}{0.49} \ P_t + \underset{(0.22)}{0.45} \ e_{t-1}$$

with $R^2=0.171$ and n=23. The LM statistic is nR^2 which yields 3.94. This distributed as χ^2_1 under the null hypothesis and has a p-value of 0.047. This is significant at the 5% level and indicates the presence of first-order serial correlation.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	3.922666	Probability	0.062305
Ohs*R-squared	3 935900	Probability	0.047266

Test Equation:

LS // Dependent Variable is RESID

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-4.953720	8.350094	-0.593253	0.5600
Q(1)	1.030343	1.442030	0.714509	0.4836
P	0.487511	1.303845	0.373903	0.7126
RESID(-1)	0.445119	0.224743	1.980572	0.0623

R-squared	0.171126	Mean dependent var	4.98E-15
Adjusted R-squared	0.040251	S.D. dependent var	13.24114
S.E. of regression	12.97192	Akaike info criterion	5.282345
Sum squared resid	3197.143	Schwarz criterion	5.479822
Log likelihood	-89.38255	F-statistic	1.307555
Durbin-Watson stat	1.818515	Prob(F-statistic)	0.301033

d. The Cochrane-Orcutt yields the following regression

$$\begin{split} RS_t^* &= -14.19 + 7.47 \ Q_{t+1}^* - 0.92 \ P_t^* \\ \text{where } RS_t^* &= RS_t - \hat{\rho}RS_{t-1}, \ Q_{t+1}^* = Q_{t+1} - \hat{\rho}Q_t \text{ and } P_t^* = P_t - \hat{\rho}P_{t-1} \text{ with } \\ \hat{\rho}_{CO} &= 0.387. \end{split}$$

e. The AR(1) options on EViews yields the following results:

$$RS_t = \underset{(7.92)}{-7.32} + \underset{(1.36)}{5.91} \ Q_{t+1} - \underset{(1.28)}{1.25} \ P_t$$

with $R^2=0.68$. The estimate of ρ is $\hat{\rho}=-0.027$ with a standard error of 0.014 and a t-statistic for $\rho=0$ of -1.92. This has a p-value of 0.07. Note that even after correcting for serial correlation, P_t remains insignificant while Q_{t+1} remains significant. The estimates as well as their standard errors are affected by the correction for serial correlation. Compare with part (a).

PRAIS-WINSTEN PROCEDURE

LS // Dependent Variable is RS

Sample: 1954 1976

Included observations: 23

Convergence achieved after 4 iterations

Variable	Coefficien	it	Std. Er	ror	t-Statistic	Prob.
С	-7.315299		7.9218		-0.923435	0.3674
Q(1)	5.905362	2	1.3625	72	4.333981	0.0004
Р	-1.246799	9	1.2777	83	-0.975752	0.3414
AR(1)	-0.02711	5	0.0141	18	-1.920591	0.0699
R-squared		0.677654	ļ	Mean de	pendent var	8.900000
Adjusted R-square	ed	0.626757	,	S.D. depo	endent var	21.37086
S.E. of regression	1	13.05623	}	Akaike in	fo criterion	5.295301
Sum squared resi	id	3238.837	,	Schwarz	criterion	5.492779
Log likelihood		89.53155	;	F-statistic	0	13.31429
Durbin-Watson st	at	1.609639)	Prob (F-s	statistic)	0.000065
Inverted AR Roots	S	03	3			

5.18 The back up regressions are given below. These are performed using SAS.

a. Dependent Variable: EMP

Analysis of Variance

Source	DF		m of lares		Mean Square	F Value	Prob>F
Model Error C Total	1 73 74	4316	02.9483 0.95304 63.9013	277	70902.9483 591.24593	4686.549	0.0001
		MSE Mean	24.315 587.941 4.135	41	R-square Adj R-sq	0.9847 0.9845	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP RGNP_1	1 1	-670.591096 1.008467	18.59708022 0.01473110	-36.059 68.458	0.0001 0.0001
Durbin-Watso (For Number 1st Order Aut	of Obs	,			

c. Dependent Variable: RESID

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	1	26929.25956	26929.25956	148.930	0.0001
Error	73	13199.74001	180.81836		
U Total	74	40128.99957			

Root MSE Dep Mean C.V.	13.44687 -0.74410 1807.13964	R-square Adj R-sq	0.6711 0.6666
------------------------------	------------------------------------	----------------------	------------------

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
RESID_	1	0.791403	0.06484952	12.204	0.0001

COCHRANE-ORCUTT(1949) METHOD

Dependent Variable: EMP_STAR

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error U Total	2 72 74	1358958.4052 12984.21373 1371942.619	679479.20261 180.33630	3767.845	0.0001
	Root MSE Dep Mean C.V.	13.42894 129.70776 10.35322	R-square Adj R-sq	0.9905 0.9903	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
C_STAR	1	-628.267447	50.28495095	-12.494	0.0001
RGNPSTAR		0.972263	0.03867418	25.140	0.0001

d. Prais-Winsten(1954, Yule-Walker) 2-Step Method

Autoreg Procedure
Dependent Variable = EMP

Ordinary Least Squares Estimates

SSE	53280.82	DFE	74
MSE	720.0111	Root MSE	26.83302
SBC	722.3376	AIC	717.6761
Reg Rsq	0.9816	Total Rsq	0.9816
Durbin's t	13.43293	PROB>t	0.0001
Durhin-Watson	0.3023		

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	-672.969905	20.216	-33.289	0.0001
RGNP	1	1.003782	0.016	62.910	0.0001

Estimates of Autocorrelations

Lag	Covariance	Correlation	-198765432101234567891
0	701.0635	1.000000	**********
1	574.9163	0.820063	******

Preliminary MSE = 229.5957

Estimates of the Autoregressive Parameters

	Lag 1	Coefficier -0.820063				t Rati -12.243		
Yule-Walker Estimates								
S	SE	1	4259.84	DFE			73	
M	1SE	1	95.3403	Roo	t MSE	13.9	97642	
S	BC	6	27.6068	AIC		620	.6146	
R	leg Rsq		0.8919	Tota	l Rsq	0	.9951	
	urbin-Wa	tson	2.2216		•			
Variable	DF	B Valu	ie	Std Error	t F	Ratio	Appro	x Prob
Intercept	1	-559.809	933	47.373	-11	1.817	(0.0001

e. Breusch and Godfrey (1978) LM Test

RGNP

Dependent Variable: RESID Residual

1

0.914564

Analysis of Variance

0.037

24.539

0.0001

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 71 73	27011.59888 13076.42834 40088.02723	13505.7994 184.1750		0.0001
	Root MSE Dep Mean C.V.	13.571 -0.744 -1823.836	10 Adj	1	6738 6646

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob> T
INTERCEP	1	-7.177291	10.64909636	-0.674	0.5025
RESID_1	1	0.790787	0.06546691	12.079	0.0001
RGNP_1	1	0.005026	0.00840813	0.598	0.5519

SAS PROGRAM

```
Data ORANGE:
Input DATE EMP RGNP:
Cards;
Data ORANGE1; set ORANGE;
RGNP_1=LAG(RGNP);
RGNP_2=LAG2(RGNP);
EMP_1=LAG(EMP);
Proc reg data=ORANGE1;
    Model EMP=RGNP_1/DW;
  Output out=OUT1 R=RESID;
Data TEMP; set OUT1;
RESID_1=LAG(RESID);
Proc reg data=TEMP;
    Model RESID=RESID_1/noint:
run;
***** COCHRANE-ORCUTT(1949) METHOD *****;
Data CO_DATA; set ORANGE1;
EMP_STAR=EMP-0.791403<sup>*</sup>EMP_1; *** RHO=0.791403 ***;
RGNPSTAR=RGNP_1-0.791403^*RGNP_2;
C_STAR=1-0.791403;
Proc reg data=CO_DATA;
    Model EMP_STAR=C_STAR RGNPSTAR/noint;
TITLE 'COCHRANE-ORCUTT(1949) METHOD';
```

```
***** PRAIS-WINSTEN (1954, YULE-WALKER) METHOD *****;
```

Proc autoreg data=ORANGE1;

Model EMP=RGNP /DW=1 DWPROB LAGDEP NLAG=1 METHOD=YW; TITLE 'PRAIS-WINSTEN(1954, YULE-WALKER) 2-STEP METHOD';

```
****BREUSCH & GODFREY (1978) LM TEST FOR AUTOCORRELATION***;
```

Proc reg data=TEMP;

Model RESID=RESID_1 RGNP_1;

Title 'BREUSCH AND GODFREY (1978) LM TEST';

run;

5.21 a. Replication of TABLE VIII, Wheeler(2003, p. 90) entitled: County population Growth Robustness Check. We will only replicate the first and last columns of that table for p=1 and p=5.

For
$$p = 1$$
:

. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop, vce(r);

Linear regression	Number of obs	=	3102
-	F(9, 3092)	=	39.69
	Prob > F	=	0.0000
	R-squared	=	0.1275
	Root MSE	_	110//1

dpopgr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
collrate	.532155	.0658555	8.08	0.000	.40303	.66128
mfgrate	.0529082	.0202971	2.61	0.009	.0131111	.0927054
ur	0242001	.0790394	-0.31	0.759	1791751	.1307749
pcinc	1.17e-06	3.59e-06	0.33	0.743	-5.86e-06	8.21e-06
educsh	.1104783	.0197946	5.58	0.000	.0716664	.1492901
hwsh	0928439	.0420438	-2.21	0.027	1752805	0104073
polsh	.1669871	.1764535	0.95	0.344	1789909	.512965
nwrate	1077442	.0161301	-6.68	0.000	139371	0761173
logpop	.011208	.0026897	4.17	0.000	.0059341	.0164818
_cons	2330741	.027877	-8.36	0.000	2877334	1784147

The higher the proportion of the adult resident population (i.e. of age 25 or older) with a bachelor's degree or more (collrate); and the higher the proportion of total employment in manufacturing (mfgrate) the higher the County population growth rate (over the period 1980–1990). The unemployment rate (ur) and Per capita income (pcinc) have the right sign but are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County population growth rate, whereas the higher the share of local government expenditures going to roads and highways (hwsh), the lower is the County population growth rate. Except for (polsh), these local government expenditures shares are significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County population growth rate. The larger the size of the county as measured by the log of total resident population (logpop), the higher is the County population growth rate. This is significant.

- . test logpop=0;
- $(1) \log pop = 0$

F(1, 3092) = 17.36

Prob > F = 0.0000

Adding a polynomial of degree 5 in size as measured by logpop, we get for p=5: reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4 logpop5, vce(r);

Linear	regression
--------	------------

Number of obs	=	3102
F(9, 3092)	=	
Prob > F	=	
R-squared	=	0.1584
Root MSE	=	.1085

dpopgr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4	.5625516 .0134073 0814677 2.12e-06 .1078933 0492989 .2709651 0963006 -1.570676 .2330949 014022 .0002559	.0654039 .0207008 .0801316 3.25e-06 .0193862 .0415435 .1762385 .0156924 1.056792 .2197 .0222803	8.60 0.65 -1.02 0.65 5.57 -1.19 1.54 -6.14 -1.49 1.06 -0.63 0.23	0.000 0.517 0.309 0.514 0.000 0.235 0.124 0.000 0.137 0.289 0.529 0.817	.4343121 0271813 2385844 -4.26e-06 .0698822 1307546 0745914 1270692 -3.642762 197678 0577077	.6907911 .053996 .0756489 8.50e-06 .1459044 .0321568 .6165217 0655321 .5014103 .6638678 .0296637
logpop5 _cons	2.34e-06 3.515146	.0000214	0.11 1.77	0.913 0.077	0000396 3857338	.0000443 7.416025

The results are similar to the p=1 regression, but we lost the significance of mfgrate and hwsh. The joint test for the fifth degree polynomial in logpop is significant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.

. test (logpop
$$= 0$$
) (logpop $2 = 0$) (logpop $3 = 0$) (logpop $4 = 0$) (logpop $5 = 0$);

- (1) logpop = 0
- (2) logpop2 = 0
- (3) logpop3 = 0
- (4) logpop4 = 0
- (5) $7 \log pop 5 = 0$

$$F(5, 3088) = 25.88$$

 $Prob > F = 0.0000$

. test logpop5 = 0;

(1)
$$logpop5 = 0$$

 $F(1, 3088) = 0.01$
 $Prob > F = 0.9127$

Replication of TABLE IX, Wheeler(2003, p. 91) entitled: County employment Growth Robustness Check. We will only replicate the first and last columns of that table for p=1 and p=5.

For p=1:

. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp, vce(r);

Linear regression	Number of obs	=	3102
•	F(9, 3092)	=	36.11
	Prob > F	=	0.0000
	R-squared	=	0.1108
	Boot MSF	=	13223

dpopgr	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Interval]	
collrate	.6710405	.0836559	8.02	0.000	.5070137	.8350673
mfgrate	.0500175	.0248382	2.01	0.044	.0013163	.0987186
ur	.1106634	.0858513	1.29	0.197	057668	.2789947
pcinc	-3.31e-06	5.00e-06	-0.66	0.508	0000131	6.49e-06
educsh	.1659616	.0234637	7.07	0.000	.1199556	.2119675
hwsh	0704289	.0500245	-1.41	0.159	1685135	.0276557
polsh	.1989802	.1944894	1.02	0.306	1823613	.5803217
nwrate	1593102	.019703	-8.09	0.000	1979426	1206779
logemp	.0088257	.0033238	2.66	0.008	.0023087	.0153427
_cons	2242782	.0310394	-7.23	0.000	2851382	1634183

The higher the proportion of the adult resident population (i.e. of age 25 or older) with a bachelor's degree or more (collrate); and the higher the proportion of total employment in manufacturing (mfgrate) the higher the County employment growth rate (over the period 1980–1990). The unemployment rate (ur) and Per capita income (pcinc) are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County employment growth rate, whereas the higher the share of local government expenditures going to

roads and highways (hwsh), the lower is the County employment growth rate. Except for (educsh), these local government expenditures shares are not significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County educsh growth rate. The larger the size of the county as measured by the log of total resident educsh (logemp), the higher is the County employment growth rate. This is significant.

 $.\ test\ logemp=0;\\$

(1)
$$logemp = 0$$

$$F(1, 3092) = 7.05$$

$$Prob > F = 0.0080$$

Adding a polynomial of degree 5 in size as measured by logemp, we get for p=5: reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 logemp5, vce(r);

Linear regression	Number of obs	=	3102
·	F(13, 3088)	=	33.47
	Prob > F	=	0.0000
	R-squared	=	0.1295
	Root MSE	=	.13091

dempgr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
collrate	.7127472	.0798073	8.93	0.000	.5562665	.8692279
mfgrate	.0162264	.0256496	0.63	0.527	0340656	.0665184
ur	.0654624	.0829589	0.79	0.430	0971977	.2281226
pcinc	-5.60e-06	3.67e-06	-1.52	0.128	0000128	1.60e-06
educsh	.1677939	.0231205	7.26	0.000	.1224607	.2131271
hwsh	034885	.049391	-0.71	0.480	1317276	.0619577
polsh	.2933336	.1922457	1.53	0.127	0836087	.6702759
nwrate	1540241	.0175901	-8.76	0.000	1885135	1195347
logemp	-2.760358	.8853777	-3.12	0.002	-4.496347	-1.024369
logemp2	.5122333	.1992707	2.57	0.010	.1215167	.9029498
logemp3	044739	.0218277	-2.05	0.040	0875373	0019406
logemp4	.0018485	.0011644	1.59	0.113	0004346	.0041316
logemp5	000029	.0000242	-1.20	0.231	0000765	.0000185
_cons	5.430814	1.540746	3.52	0.000	2.409824	8.451804

The results are similar to the p=1 regression, but we lost the significance of mfgrate. The joint test for the fifth degree polynomial in logpop is significant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.

```
. test (logemp = 0) (logemp 2 = 0) (logemp 3 = 0) (logemp 4 = 0) (logemp 5 = 0);
```

- (1) logemp = 0
- (2) logemp2 = 0
- (3) logemp3 = 0
- (4) logemp4 = 0
- (5) logemp5 = 0

$$Prob > F = 0.0000$$
 . test logemp5 = 0;
$$(1) \quad logemp5 = 0$$

$$F(1, 3088) = 1.44$$

Prob > F = 0.2307

F(5, 3088) = 18.27

- **b.** Breusch–Pagan test for heteroskedasticity for the specification with a fourth degree polynomial in log(size) in TABLE VIII, Wheeler(2003, p. 90).
 - . reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2

logpop3 log	pop4;					
Source	SS	df	MS	Number of obs	=	3102
	'			F(12,3089)	=	48.43
Model	6.84020955	12	.570017462	Prob > F	=	0.0000
Residual	36.3559406	3089	.011769485	R-squared	=	0.1584
	'			Adj R-squared	=	0.1551
Total	43.1961502	3101	.013929749	Root MSE	=	.10849

dpopgr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop	.5632503 .013464 0817679 2.07e-06 .10792 0493372 .2712608 0964934 -1.684932 .2569229	.0516707 .0198056 .0672396 2.51e-06 .0179056 .0421236 .1304948 .0151612 .3836672 .057085	10.90 0.68 -1.22 0.83 6.03 -1.17 2.08 -6.36 -4.39 4.50	0.000 0.497 0.224 0.409 0.000 0.242 0.038 0.000 0.000	.4619378 0253694 2136069 -2.85e-06 .072812 1319303 .0153953 1262205 -2.437201 .1449945	.6645628 .0522974 .050071 6.99e-06 .143028 .0332559 .5271262 0667663 9326635 .3688513
logpop3 logpop4 _cons	0164455 .0003763 3.7286	.0037063 .0037225 .0000898 .9577641	-4.42 4.19 3.89	0.000 0.000 0.000 0.000	0237443 .0002003 1.850681	0091467 .0005523 5.606519

. estat hettest logpop logpop2 logpop3 logpop4, rhs normal;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: logpop logpop2 logpop3 logpop4 collrate mfgrate ur pcinc educsh hwsh polsh nwrate

$$chi2(12) = 589.14$$

Prob > chi2 = 0.0000

Breusch-Pagan test for heteroskedasticity for the specification with a 4th degree polynomial in log(size) in TABLE IX, Wheeler(2003, p. 91).

. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 ;

Source	SS	df	MS	Number of obs	=	3102
	.'			F(12,3089)	=	38.23
Model	7.861795	12	.655149583	Prob > F	=	0.0000
Residual	52.9333023	3089	.017136064	R-squared	=	0.1293
	-'			Adj R-squared	=	0.1259
Total	60.7950973	3101	.019604998	Root MSE	=	.1309

dempgr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
collrate mfgrate ur	.7040415 .0156912 .0691242	.0626979 .0242125 .0802564	11.23 0.65 0.86	0.000 0.517 0.389	.5811078 0317831 0882371	.8269753 .0631654 .2264855
pcinc educsh	-4.95e-06	3.06e-06 .0216266	-1.61 7.74	0.106 0.000	000011 .1250204	1.06e-06 .2098283
hwsh	034799 .2889395	.0507792	-0.69 1.84	0.493 0.066	1343634 0196147	.0647654
polsh nwrate	1516358	.0182735	-8.30	0.000	1874653	1158063
logemp logemp2	-1.730393 .2785811	.3710692 .0599367	-4.66 4.65	0.000 0.000	-2.45796 .1610613	-1.002826 .3961009
logemp3 logemp4	0189696 .000464	.0042326 .0001103	-4.48 4.21	0.000 0.000	0272686 .0002478	0106706 .0006802
_cons	3.666787	.8526094	4.30	0.000	1.995049	5.338526

. estat hettest logemp logemp2 logemp3 logemp4, rhs normal;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: logemp logemp2 logemp3 logemp4 collrate mfgrate ur pcinc

educsh hwsh polsh nwrate

chi2(12) = 425.82

Prob > chi2 = 0.0000

References

Baltagi, B. and Q. Li (1995), "ML Estimation of Linear Regression Model with AR(1) Errors and Two Observations," *Econometric Theory*, Solution 93.3.2, 11: 641–642.

Johnston, J. (1984), Econometric Methods, 3rd. Ed., (McGraw-Hill: New York).

Kim, J.H. (1991), "The Heteroscedastic Consequences of an Arbitrary Variance for the Initial Disturbance of an AR(1) Model," *Econometric Theory*, Solution 90.3.1, 7: 544–545.

Kmenta, J. (1986), Elements of Econometrics (Macmillan: New York).

Koning, R.H. (1992), "The Bias of the Standard Errors of OLS for an AR(1) Process with an Arbitrary Variance on the Initial Observations," *Econometric Theory*, Solution 92.1.4, 9: 149–150.

CHAPTER 6

Distributed Lags and Dynamic Models

6.1 a. Using the Linear Arithmetic lag given in Eq. (6.2), a 6 year lag on income gives a regression of consumption on a constant and $Z_t = \sum_{i=0}^6 (7-i) \; X_{t-i} \; \text{where} \; X_t \; \text{denotes income. In this case,}$

$$Z_t = 7X_t + 6X_{t-1} + ... + X_{t-6}$$

The Stata regression output is given below:

. gen z_6=7*ly+6*l.ly+5*l2.ly+4*l3.ly+3*l4.ly+2*l5.ly+l6.ly

(6 missing values generated)

. reg lc z_6

Source	SS	df	MS	Number of obs	=	43
	<u></u>			F(1, 41)	=	3543.62
Model	3.26755259	1	3.26755259	Prob > F	=	0.0000
Residual	.037805823	41	.000922093	R-squared	=	0.9886
	<u></u>			Adj R-squared	=	0.9883
Total	3.30535842	42	.07869901	Root MSE	=	.03037

	Coef.				[95% Conf.	•
z_6	.0373029 4950913	.0006266	59.53	0.000		

From Eq. (6.2)

$$\beta_i = [(s+1) - i]\beta$$
 for $i = 0, ..., 6$

with β estimated as the coefficient of Z_t (which is z_6 in the regression). This estimate is 0.037 and is statistically significant.

Now we generate the regressors for an Almon lag first-degree polynomial with a far end point constraint using Stata:

. gen Z0= ly+l.ly+l2.ly+l3.ly+l4.ly+l5.ly+l6.ly

(6 missing values generated)

. gen Z1=0*ly+l.ly+2*l2.ly+3*l3.ly+4*l4.ly+5*l5.ly+6*l6.ly

(6 missing values generated)

. gen Z=Z1-7*Z0

(6 missing values generated)

. reg lc Z

Source	SS	df	MS	Number of obs	=	43
Model Residual	3.26755293 .037805483	1 41	3.26755293 .000922085	F(1, 41) Prob > F R-squared	= = =	3543.66 0.0000 0.9886
Total	3.30535842	42	.07869901	Adj R-squared Root MSE	=	0.9883 .03037

lc		Std. Err.		 [95% Conf.	•
	0373029 4950919	.0006266	-59.53 -2.88	 0385684 8427679	0360374 147416

The EViews output for PDL(Y,6,1,2) which is a sixth order lag, *first degree* polynomial, with a *far end point* constraint is given by:

Dependent Variable: LNC Method: Least Squares

Sample (adjusted): 1965 2007

Included observations: 43 after adjustments

C PDL01	Coefficient -0.495091 0.149212	Std. Error 0.172156 0.002507	-2.875817	Prob. 0.0064 0.0000
R-squared Adjusted R-squa S.E. of regressic Sum squared re Log likelihood F-statistic Prob(F-statistic)	on sid	0.988562 0.988283 0.030366 0.037806 90.27028 3543.634 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	9.749406 0.280533 -4.105595 -4.023678 -4.075386 0.221468

Lag Distribution of LNY	i	Coefficient	Std. Error	t-Statistic
. *	0	0.26112	0.00439	59.5284
. * i	1	0.22382	0.00376	59.5284
*	2	0.18651	0.00313	59.5284
*	3	0.14921	0.00251	59.5284
. *	4	0.11191	0.00188	59.5284
. *	5	0.07461	0.00125	59.5284
. *	6	0.03730	0.00063	59.5284
	Sum of Lags	1.04448	0.01755	59.5284

b. Using an Almon-lag second degree polynomial described in Eq. (6.4), a 6 year lag on income gives a regression of consumption on a constant, $Z_0 = \sum_{i=0}^6 X_{t-i}, Z_1 = \sum_{i=0}^6 i X_{t-i}$ and $Z_2 = \sum_{i=0}^6 i^2 X_{t-i}$. This yields the Almon-lag without near or far end-point constraints. A near end-point constraint imposes $\beta_{-1} = 0$ in Eq. (6.1) which yields $a_0 - a_1 + a_2 = 0$ in Eq. (6.4). Substituting for a_0 in Eq. (6.4) yields the regression in (6.5). The following Stata code, generates the variables needed to estimate an Almon lag

The following Stata code, generates the variables needed to estimate an Almon lag second-degree polynomial with a near end point constraint:

- . gen Z2=0*ly+l.ly+2^2*l2.ly+3^2*l3.ly+4^2*l4.ly+5^2*l5.ly+6^2*l6.ly
- (6 missing values generated)
- . gen Z01= Z1+Z0
- (6 missing values generated)
- . gen Z02= Z2-Z0
- (6 missing values generated)
- . reg lc Z01 Z02

Source	SS	df	MS		Number of obs	=	43
Model Residua Total	3.266962 al .0383959 3.305358	978 40	1.63348 .000959 	899	F(2, 40) Prob > F R-squared Adj R-squared Root MSE	= = = =	1701.72 0.0000 0.9884 0.9878 .03098
lc	Coef.	Std. Err.	t	P> t	[95% Cor	of. Inte	erval]
Z01 Z02 _cons	.1708636 0441775 8139917	.0260634 .0085125 .2306514	6.56 -5.19 -3.53	0.000 0.000 0.001	.1181875 0613819 -1.280156		.2235397 026973 3478277

The EViews output for PDL(Y,6,2,1) which is a sixth order lag, second degree polynomial, with a *near end point* constraint is given by:

Dependent Variable: LNC Method: Least Squares

Sample (adjusted): 1965 2007

Included observations: 43 after adjustments

	Coefficient	Std.	Error	t-Statistic	Prob.
C PDL01 PDL02	-0.813961 0.259216 -0.044177	0.04	0649 3085 8512	-3.529009 6.016333 -5.189671	0.0011 0.0000 0.0000
R-squared Adjusted R-squa S.E. of regressio Sum squared res Log likelihood F-statistic Prob(F-statistic)	n sid	0.988384 0.987803 0.030982 0.038396 89.93716 1701.718 0.000000	S.D. de Akaike Schwa Hanna	dependent var ependent var e info criterion arz criterion an-Quinn criter. a-Watson stat	9.749406 0.280533 -4.043589 -3.920714 -3.998276 0.377061
Lag Distribution of LNY	i	С	oefficient	Std. Error	t-Statistic
. * . * . * . * . *	0 1 2 3 4 5 6	(0.21504 0.34172 0.38006 0.33003 0.19166 0.03508 0.35016	0.03457 0.05213 0.05266 0.03621 0.00402 0.04810 0.11562	6.21968 6.55566 7.21676 9.11501 47.7225 0.72915 3.02843
	Sum		1.07327	0.02249	47.7225
	Lag	5			

c. The far end-point constraint imposes $\beta_7 = 0$. This translates into the following restriction $a_0 + 7a_1 + 49a_2 = 0$. Substituting for a_0 in (6.4) yields the regression in (6.6) with s = 6, i.e., the regression of consumption on a constant, $(Z_1 - 7Z_0)$ and $(Z_2 - 49Z_0)$.

The following Stata code, generates the variables needed to estimate an Almon lag second-degree polynomial with a far end point constraint:

. gen Z10_far=Z1-7*Z0

(6 missing values generated)

. gen Z20_far=Z2-7^2*Z0

(6 missing values generated)

. reg lc Z10_far Z20_far

Source	SS	df	MS		Number of obs	=	43
					F(2, 40)	=	3536.82
Model	3.28677238	2	1.64338619	9	Prob > F	=	0.0000
Residual	.018586036	40	.00046465	1	R-squared	=	0.9944
	-'				Adj R-squared	=	0.9941
Total	3.30535842	42	.0786990	1	Root MSE	=	.02156
lc	Coef.	Std. Err.	t	P> t	[95% Co	nf. Int	terval]
Z10_far Z20_far	3833962 .0381843	.0538147	-7.12 6.43	0.000	4921598 .0261849		2746326 .0501837
_cons	-1.237493	.1681062	-7.36	0.000	-1.577249		8977381

The EViews output for PDL(Y,6,2,2) which is a sixth order lag, second degree polynomial, with a *far end point* constraint is given by:

Dependent Variable: LNC

Method: Least Squares

Sample (adjusted): 1965 2007

Included observations: 43 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
C PDL01	-1.237555 0.006206	0.168112 0.022306	-7.361483 0.278216	0.0000 0.7823
PDL02	-0.154297	0.018196	-8.479577	0.0000

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.994377 0.994096 0.021556 0.018586 105.5364 3536.826 0.000000	Mean de S.D. dep Akaike i Schwarz Hannan Durbin-\	9.749406 0.280533 -4.769135 -4.646261 -4.723823 0.377278	
Lag Distribution of LNY	i	Coefficient	Std. Error	t-Statistic
. * . * . * . * . * . * . * . *	0 1 2 3 4 5 6 Sum of Lags	0.81278 0.46755 0.19869 0.00621 -0.10990 -0.14964 -0.11301 1.11266	0.08583 0.03799 0.00292 0.02231 0.03451 0.03488 0.02338	9.46951 12.3071 68.0281 0.27822 -3.18430 -4.29038 -4.83449 -68.0281

d. The following Stata code, generates the variables needed to estimate an Almon lag *second-degree* polynomial with *both near and far end point* constraints:

. gen Z_NF=-47* Z0-6* Z1+ Z2 (6 missing values generated)

. reg lc Z_NF

SS	df	MS		Number of obs	=	43
				F(1, 41)	=	2663.90
0.200200	•				=	0.0000
.05010146	3 41	.0012219	87		=	0.9848
				, .	=	0.9845
3.3053584	2 42	.078699	01	Root MSE	=	.03496
Coef.	Std. Err.	t	P> t	[95% Co	nf. Int	erval]
.0028049 .2411805	.0000543 .1936405	-51.61 -1.25	0.000 0.220	0029147 6322455		0026952 .1498845
	3.2552569 .05010146 3.3053584 Coef.	3.25525695	3.25525695	3.25525695	F(1, 41) 3.25525695	F(1, 41) = 3.25525695

The EViews output for PDL(Y,6,2,3) which is a sixth order lag, second degree polynomial, with *both near and far end point* constraints is given by:

Dependent Variable: LNC
Method: Least Squares

Sample (adjusted): 1965 2007

Included observations: 43 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
C PDL01	-0.233622 0.097163	0.197176 0.001918	-1.184841 50.64935	0.2429 0.0000
R-squared Adjusted R-squa S.E. of regressio Sum squared res Log likelihood F-statistic Prob(F-statistic)	on 0.98 on 0.03 sid 0.09 83.4 256	33886 S.I 35612 Ak 51996 Sc 41817 Ha	ean dependent var D. dependent var kaike info criterion chwarz criterion annan-Quinn criter. urbin-Watson stat	9.749406 0.280533 -3.786892 -3.704975 -3.756683 0.214478
Lag Distribution of LNY	i	Coefficien	t Std. Error	t-Statistic
. * . * . * . * . *	0 1 2 3 4 5 6	0.08502 0.14574 0.18218 0.19433 0.18218 0.14574	0.00168 0.00288 0.00360 0.00384 0.00360 0.00288 0.00168	50.6494 50.6494 50.6494 50.6494 50.6494 50.6494
	Sum of Lags	1.02021	0.02014	50.6494

- e. The RRSS for the Chow test for the *arithmetic lag restrictions* is given by the residual sum of squares of the regression in part (a), i.e., .037805823. The URSS is obtained from running consumption on a constant and six lags on income. The corresponding Stata regression is given below:
 - . reg lc ly l.ly l2.ly l3.ly l4.ly l5.ly l6.ly

Source	SS	df	MS	Number of obs	=	43
	·			F(7, 35)	=	1093.59
Model	3.29031477	7	.470044967	Prob > F	=	0.0000
Residual	.015043647	35	.000429818	R-squared	=	0.9954
	'			Adj R-squared	=	0.9945
Total	3.30535842	42	.07869901	Root MSE	=	.02073

lc	Coef.	Std. Err.	t	$P{>} t $	[95% Conf.	Interval]
ly						
<u>-</u> .	1.237818	.2192865	5.64	0.000	.7926427	1.682993
L1.	.2504519	.310222	0.81	0.425	3793323	.8802361
L2.	203472	.3005438	-0.68	0.503	8136084	.4066644
L3.	0279364	.3041055	-0.09	0.927	6453034	.5894306
L4.	.0312238	.3049614	0.10	0.919	5878808	.6503284
L5.	0460776	.3048432	-0.15	0.881	6649422	.572787
L6.	1270834	.2028801	-0.63	0.535	5389519	.2847851
_cons	-1.262225	.1667564	-7.57	0.000	-1.600758	9236913

URSS = .015043647. The number of restrictions given in (6.2) is 6. Hence, the Chow F-statistic can be computed as follows:

. display (.037805483-.015043647)*35/(6*.015043647)

8.8261428

and this is distributed as F(6,35) under the null hypothesis. This rejects the arithmetic lag restrictions.

- f. Similarly, the Chow test for the Almon lag second-degree polynomial with a near end point constraint can be computed using RRSS = .038395978 from part (b). URSS = .015043647 from the last regression in part (e), and the number of restrictions is 5:
 - . display (.038395978-.015043647)*35/(5*.015043647)

10.866136

and this is distributed as F(5,35) under the null hypothesis. This rejects the Almon lag *second-degree* polynomial with a *near end point* constraint.

- g. The Chow test for the Almon lag second-degree polynomial with a far end point constraint can be computed using RRSS = .018586036 from part (c).
 URSS = .015043647 from the last regression in part (e), and the number of restrictions is 5:
 - . display (.018586036-.015043647)*35/(5*.015043647)

1.6483186

and this is distributed as F(5,35) under the null hypothesis. This does not reject the Almon lag *second-degree* polynomial with a *far end point* constraint.

Finally, The Chow test for the Almon lag *second-degree* polynomial with *both near and far end point* constraints can be computed using RRSS = .050101463 from part (d). URSS = .015043647 from the last regression in part (e), and the number of restrictions is 6:

. display (.050101463-.015043647)*35/(6*.015043647) 13.594039

and this is distributed as F(6,35) under the null hypothesis. This rejects the Almon lag *second-degree* polynomial with *both near and far end point* constraints.

6.2 a. For the Almon-lag third degree polynomial

$$\beta_i = a_0 + a_1 i + a_2 i^2 + a_3 i^3$$
 for $i = 0, 1, ..., 5$.

In this case, (6.1) reduces to

$$\begin{split} Y_i &= \alpha + \sum_{i=1}^5 \left(a_0 + a_1 i + a_2 i^2 + a_3 i^3 \right) X_{t-i} + u_t \\ &= \alpha + a_0 + \sum_{i=0}^5 X_{t-i} + a_1 \sum_{i=0}^5 i X_{t-i} + a_2 \sum_{i=0}^5 i^2 X_{t-i} + a_3 \sum_{i=0}^5 i^3 X_{t-i} + u_t, \end{split}$$

Now α , a_0, a_1, a_2 and a_3 can be estimated from the regression of Y_t on a constant, $Z_0 = \sum_{i=0}^5 X_{t-i}, Z_1 = \sum_{i=0}^5 i X_{t-i}, Z_2 = \sum_{i=0}^5 i^2 X_{t-i}$ and $Z_3 = \sum_{i=0}^5 i^3 X_{t-i}$. The following Stata code generates the variables to run the OLS regression:

. gen Z5_0= ly+l.ly+l2.ly+l3.ly +l4.ly +l5.ly

(5 missing values generated)

. gen Z5_1=I.ly+2*I2.ly +3*I3.ly +4*I4.ly +5*I5.ly

(5 missing values generated)

. gen Z5_2=l.ly+2^2*l2.ly +3^2*l3.ly +4^2*l4.ly +5^2*l5.ly

(5 missing values generated)

. gen Z5_3=l.ly+2^3*l2.ly +3^3*l3.ly +4^3*l4.ly +5^3*l5.ly

(5 missing values generated)

. reg lc Z5_0 Z5_1 Z5_2 Z5_3

Source	SS	df	MS	Number of obs	=	44
	-'			F(4, 39)	=	2063.28
Model	3.589741	185 4	.897435462	Prob > F	=	0.0000
Residual	.0169632	<u>2</u> 97 39	.000434956	R-squared	=	0.9953
	-'			Adj R-squared	=	0.9948
Total	3.606705	515 43	.083876864	Root MSE	=	.02086

lc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Z5_0	1.27317	.1911863	6.66	0.000	.8864591	1.659881
Z5_1	-1.623359	.5714614	-2.84	0.007	-2.779249	4674696
Z5_2	.5693275	.2955923	1.93	0.061	0285644	1.167219
Z5_3	0599977	.0390623	-1.54	0.133	1390087	.0190133
_cons	-1.128979	.1533499	-7.36	0.000	-1.439158	8187994

b. The estimate of β_3 is $\hat{\beta}_3 = \hat{a}_0 + 3\hat{a}_1 + 9\hat{a}_2 + 27\hat{a}_3$ with

$$\operatorname{var}(\hat{\beta}_{3}) = \operatorname{var}(\hat{a}_{0}) + 9 \operatorname{var}(\hat{a}_{1}) + 81 \operatorname{var}(\hat{a}_{2}) + 27^{2} \operatorname{var}(\hat{a}_{3})$$

$$+ 2.3. \operatorname{cov}(\hat{a}_{0}, \hat{a}_{1}) + 2.9. \operatorname{cov}(\hat{a}_{0}, \hat{a}_{2}) + 2.27. \operatorname{cov}(\hat{a}_{0}, \hat{a}_{3})$$

$$+ 2.3.9. \operatorname{cov}(\hat{a}_{1}, \hat{a}_{2}) + 2.3.27 \operatorname{cov}(\hat{a}_{1}, \hat{a}_{3}) + 2.9.27 \operatorname{cov}(\hat{a}_{2}, \hat{a}_{3}).$$

The estimate of β_3 can be computed from this regression results as follows:

- . *beta3
- . display 1.27317+3*(-1.623359)+9*.5693275+27*(-.0599977)
- -.0928974

The var-cov matrix of the regression estimates are given by:

. matrix list e(V)

symmetric e(V)[5,5]

The EViews output for PDL(Y,5,3) which is a fifth order lag, *third degree* polynomial, with *no end point* constraint is given by:

Dependent Variable: LNC

Method: Least Squares

Sample (adjusted): 1964 2007

Included observations: 44 after adjustments

	Coefficient	Std.	Error	t-Statistic	Prob.
C PDL01 PDL02 PDL03 PDL04	-1.129013 -0.176078 -0.066325 0.209243 -0.059926	0.12 0.16 0.06	63388 62030 62878 66943 99088	-7.360517 -1.442904 -0.407206 3.125704 -1.533091	0.0000 0.1570 0.6861 0.0033 0.1333
R-squared Adjusted R-sqi S.E. of regress Sum squared i Log likelihood F-statistic Prob(F-statistic	uared (ision (incresid (in	0.995295 0.994813 0.020859 0.016968 110.5002 2062.698 0.000000	S.D. de Akaike Schwar Hannan	ependent var pendent var info criterion z criterion -Quinn criter. Watson stat	9.736786 0.289615 -4.795464 -4.592715 -4.720275 0.393581
Lag Distribution of LNY	i	C	Coefficient	Std. Error	t-Statistic
. * .* *. .* .* .* .* .*	0 1 2 3 4 5		1.27295 0.15942 -0.17608 -0.09309 0.04883 -0.10987	0.19130 0.15649 0.12203 0.11943 0.15599 0.17870	6.65411 1.01868 -1.44290 -0.77943 0.31306 -0.61485
	Sum o Lags		1.10217	0.01492	73.8706

c. Imposing the near end-point constraint $\beta_{-1} = 0$ yields the following restriction on the third degree polynomial in a's:

$$a_0 - a_1 + a_2 - a_3 = 0.$$

solving for a_0 and substituting above yields the following constrained regression:

$$Y_t = \alpha + a_1(Z_1 + Z_0) + a_2(Z_2 - Z_0) + a_3(Z_1 + Z_3) + u_t \\$$

The corresponding Stata regression is reported below.

- . gen ZZ01= Z5_0+Z5_1
- (5 missing values generated)
- . gen ZZ03= Z5_0+Z5_3
- (5 missing values generated)
- . gen ZZ02= Z5_2-Z5_0

(5 missing values generated)

. reg lc ZZ01 ZZ03 ZZ02

Source	SS	df	MS	Number of obs	=	44
	<u></u>			F(3, 40)	=	2205.97
Model	3.58503644	3	1.19501215	Prob > F	=	0.0000
Residual	.021668704	40	.000541718	R-squared	=	0.9940
	<u></u>			Adj R-squared	=	0.9935
Total	3.60670515	43	.083876864	Root MSE	=	.02327

lc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ZZ01	.2551128	.0259506	9.83	0.000	.2026646	.307561
ZZ03	.0632448	.0123507	5.12	0.000	.0382831	.0882065
ZZ02	3852599	.0629406	-6.12	0.000	5124676	2580523
_cons	9865419	.1641747	-6.01	0.000	-1.318351	6547324

- **d.** Test the near end point constraint with a Chow test. The URSS = .016963297 from part (a) and RRSS = .021668704 from part (c) and there is one restriction.
 - . display (.021668704-.016963297)*39/(1*.016963297)

10.818114

and this is distributed as F(1,39) under the null hypothesis. This rejects the *near end point* constraint.

e. The Chow test for the Almon 5 year lag *third-degree* polynomial with *no* end point constraints can be computed using RRSS = .016963297 from part
(a). URSS = .016924337 from the unrestricted 5 year lag regression given below:

. reg lc ly l.ly l2.ly l3.ly l4.ly l5.ly

Source		SS	df	MS	Number of obs	=	44
	-'		 	 	F(6, 37)	=	1308.00
Model		3.58978081	6	.598296802	Prob > F	=	0.0000
Residual		.016924337	37	.000457415	R-squared	=	0.9953
	-'		 	 	Adj R-squared	=	0.9945
Total		3.60670515	43	.083876864	Root MSE	=	.02139

lc	Coef.	Std. Err.	t	$P{>} t $	[95% Conf. Interval]		
ly L1. L2. L3. L4.	1.303457 .090694 1401868 0460399 0255622 0800021	.2224286 .3099447 .3081789 .3104643 .3129629 .2087812	5.86 0.29 -0.45 -0.15 -0.08 -0.38	0.000 0.771 0.652 0.883 0.935 0.704	.852774 5373136 7646165 6751003 6596853 5030331	1.75414 .7187016 .484243 .5830204 .6085608 .3430288	
_cons	-1.13104	.1574744	-7.18	0.000	-1.450114	8119665	

and the number of restrictions is 3:

. display (.016963297-.016924337)*37/(3*.016924337)

.02839146

and this is distributed as F(3,37) under the null hypothesis. This does not reject the Almon 5 year lag *third-degree* polynomial restrictions.

6.3 a. From (6.18),
$$Y_t = \beta Y_{t-1} + \nu_t$$
. Therefore, $Y_{t-1} = \beta Y_{t-2} + \nu_{t-1}$ and
$$\rho Y_{t-1} = \rho \beta Y_{t-2} + \rho \nu_{t-1}.$$

Subtracting this last equation from (6.18) and re-arranging terms, one gets

$$Y_t = (\beta + \rho) Y_{t-1} - \rho \beta Y_{t-2} + \varepsilon_t.$$

Multiply both sides by Y_{t-1} and sum, we get

$$\sum_{t=2}^T Y_t Y_{t-1} = (\beta + \rho) \sum_{t=2}^T Y_{t-1}^2 - \rho \beta \sum_{t=2}^T Y_{t-1} Y_{t-2} + \sum_{t=2}^T Y_{t-1} \epsilon_t.$$

Divide by $\sum_{t=2}^{T} Y_{t-1}^2$ and take probability limits, we get

$$\begin{split} plim \sum_{t=2}^{T} Y_{t} Y_{t-1} \Big/ \sum_{t=2}^{T} Y_{t-1}^{2} &= (\beta + \rho) - \rho \beta \ plim \left(\sum_{t=2}^{T} Y_{t-1} Y_{t-2} \Big/ \sum_{t=2}^{T} Y_{t-1}^{2} \right) \\ &+ plim \left(\sum_{t=2}^{T} Y_{t-1} \epsilon_{t} \Big/ \sum_{t=2}^{T} Y_{t-1}^{2} \right) \end{split}$$

The last term has zero probability limits since it is the $cov(Y_{t-1}, \epsilon_t)/var(Y_{t-1})$. The numerator is zero whereas the denominator is finite and positive. As $T \to \infty$, plim $\sum_{t=2}^T Y_{t-1} Y_{t-2}$ is almost identical to plim $\sum_{t=2}^T Y_t Y_{t-1}$. Hence, as $T \to \infty$, one can solve for

$$plim \sum_{t=2}^{T} Y_{t} Y_{t-1} / \sum_{t=2}^{T} Y_{t-1}^{2} = (\beta + \rho) / (1 + \rho \beta).$$

Therefore,

$$p\lim\hat{\beta}_{ols} = (\beta + \rho)/(1 + \rho\beta)$$

and

$$plim\left(\hat{\beta}_{ols} - \beta\right) = \rho \left(1 - \beta^{2}\right) / \left(1 + \rho \beta\right).$$

- **b.** One can tabulate the asymptotic bias of $\hat{\beta}_{ols}$ derived in (a) for various values of $|\rho| < 1$ and $|\beta| < 1$.
- c. For $\hat{\rho} = \sum_{t=2}^T \hat{\nu}_t \hat{\nu}_{t-1} / \sum_{t=2}^T \hat{\nu}_{t-1}^2$ with $\hat{\nu}_t = Y_t \hat{\beta}_{ols} Y_{t-1}$ we compute

$$\sum_{t=2}^{T} \hat{\nu}_{t-1}^2 \ / T = \sum_{t=2}^{T} Y_t^2 \ / T - 2 \hat{\beta}_{ols} \left(\sum_{t=2}^{T} Y_t Y_{t-1} \ / T \right) + \hat{\beta}_{ols}^2 \left(\sum_{t=2}^{T} Y_{t-1}^2 / T \right).$$

Defining the covariances of Y_t by γ_s , and using the fact that $plim(\Sigma Y_t Y_{t-s}/T) = \gamma_s$ for s=0,1,2,..., we get

$$plim \sum_{t=2}^{T} \hat{\nu}_{t-1}^{2} / T = \gamma_{0} - 2 \left(plim \hat{\beta}_{ols} \right) \gamma_{1} + \left(plim \hat{\beta}_{ols} \right)^{2} \gamma_{0}.$$

But

$$\text{plim} \hat{\beta}_{ols} = \text{plim} \left[\frac{\sum\limits_{t=2}^{T} Y_t Y_{t-1} / T}{\sum\limits_{t=2}^{T} Y_{t-1}^2 / T} \right] = \gamma_1 / \gamma_0.$$

Hence.

$$plim \sum_{t=2}^{T} \hat{v}_{t-1}^{2} / T = \gamma_{0} - 2\gamma_{1}^{2} / \gamma_{0} - \gamma_{1}^{2} / \gamma_{0} = \gamma_{0} - \left(\gamma_{1}^{2} / \gamma_{0}\right) = \left(\gamma_{0}^{2} - \gamma_{1}^{2}\right) / \gamma_{0}.$$

Also, $\hat{\nu}_{t-1} = Y_{t-1} - \hat{\beta}_{ols} Y_{t-2}$. Multiply this equation by $\hat{\nu}_t$ and sum, we get

$$\sum_{t=2}^{T} \hat{\nu}_t \hat{\nu}_{t-1} = \sum_{t=2}^{T} Y_{t-1} \hat{\nu}_t - \hat{\beta}_{ols} \sum_{t=2}^{T} Y_{t-2} \hat{\nu}_{t-1}.$$

But, by the property of least squares $\sum_{t=2}^{T} Y_{t-1} \hat{v}_t = 0$, hence

$$\begin{split} \sum_{t=2}^{T} \hat{\nu}_{t} \hat{\nu}_{t-1} \ / T &= - \hat{\beta}_{ols} \sum_{t=2}^{T} Y_{t-2} \hat{\nu}_{t} \ / T = - \hat{\beta}_{ols} \sum_{t=2}^{T} Y_{t-2} Y_{t} / T \\ &+ \hat{\beta}_{ols}^{2} \sum_{t=2}^{T} Y_{t-2} Y_{t-1} / T \end{split}$$

and

$$plim \sum_{t=2}^{T} \hat{\nu}_t \hat{\nu}_{t-1} \ / T = -\frac{\gamma_1}{\gamma_0} \cdot \gamma_2 + \frac{\gamma_1^2}{\gamma_0^2} \cdot \gamma_1 = \frac{\gamma_1 \left(\gamma_1^2 - \gamma_0 \gamma_2\right)}{\gamma_0^2}.$$

Hence,

$$plim\hat{\rho} = plim \left(\sum_{t=2}^T \hat{\nu}_t \hat{\nu}_{t-1} \ / T \right) / plim \left(\sum_{t=2}^T \hat{\nu}_{t-1}^2 \ / T \right) = \frac{\gamma_1}{\gamma_0} \frac{\left(\gamma_1^2 - \gamma_0 \gamma_2 \right)}{\left(\gamma_0^2 - \gamma_1^2 \right)}.$$

From part (a), we know that

$$Y_1 = (\beta + \rho) Y_{t-1} - \rho \beta Y_{t-2} + \epsilon_t$$

multiply both sides by Y_{t-2} and sum and take plim after dividing by T, we get

$$\gamma_2 = (\beta + \rho) \gamma_1 - \rho \beta \gamma_0$$

so that

$$\gamma_0 \gamma_2 = (\beta + \rho) \gamma_1 \gamma_0 + \rho \beta \gamma_0^2$$

and

$$\gamma_1^2 - \gamma_0 \gamma_2 = \gamma_1^2 - (\beta + \rho) \gamma_1 \gamma_0 + \rho \beta \gamma_0^2$$

But from part (a), $p\lim\hat{\beta}_{ols} = \gamma_1/\gamma_0 = (\beta + \rho)/(1 + \rho\beta)$. Substituting

$$(\beta + \rho)\gamma_0 = (1 + \rho\beta)\gamma_1$$

above we get

$$\gamma_1^2 - \gamma_0 \gamma_2 = \gamma_1^2 - (1 + \rho \beta) \gamma_1^2 + \rho \beta \gamma_0^2 = \rho \beta (\gamma_0^2 - \gamma_1^2)$$
.

Hence,

$$plim\hat{\rho} = \frac{\gamma_1}{\gamma_0} \cdot \rho\beta = \rho\beta \left(\beta + \rho\right) / \left(1 + \rho\beta\right)$$

and

$$\begin{split} \text{plim} \left(\hat{\rho} - \rho \right) &= \left(\rho \beta^2 + \rho^2 \beta - \rho - \rho^2 \beta \right) / \left(1 + \rho \beta \right) = \rho \left(\beta^2 - 1 \right) / \left(1 + \rho \beta \right) \\ &= - \text{plim} \left(\hat{\beta}_{ols} - \beta \right). \end{split}$$

The asymptotic bias of $\hat{\rho}$ is negative that of $\hat{\beta}_{ols}$.

- **d.** Since $d = \sum_{t=2}^T (\hat{v}_t \hat{v}_{t-1})^2 / \sum_{t=2}^T \hat{v}_t^2$ and as $T \to \infty$, $\sum_{t=2}^T \hat{v}_t^2$ is almost identical to $\sum_{t=2}^T \hat{v}_{t-1}^2$, then plim $d \approx 2(1 \text{plim}\hat{\rho})$ where $\hat{\rho}$ was defined in (c). But $\text{plim}\hat{\rho} = \rho \rho(1-\beta^2)/(1+\rho\beta) = (\rho^2\beta + \rho\beta^2)/(1+\rho\beta) = \rho\beta(\rho+\beta)/(1+\rho\beta)$. Hence, $\text{plim } d = 2\left[1 \frac{\rho\beta(\beta+\rho)}{1+\beta\rho}\right]$.
- e. Knowing the true disturbances, the Durbin-Watson statistic would be

$$d^* = \sum_{t=2}^{T} (v_t - v_{t-1})^2 / \sum_{t=2}^{T} v_t^2$$

and its plim $d^* = 2(1 - \rho)$. This means that from part (d)

$$\begin{split} \text{plim} \left(d - d^* \right) &= 2 \left(1 - \text{plim} \hat{\rho} \right) - 2 \left(1 - \rho \right) = 2 \left[\rho - \beta \rho \left(\rho + \beta \right) / \left(1 + \rho \beta \right) \right] \\ &= 2 \left[\rho + \rho^2 \beta - \beta \rho^2 - \beta^2 \rho \right] / \left(1 + \rho \beta \right) = 2 \rho \left(1 - \beta^2 \right) / \left(1 + \rho \beta \right) \\ &= 2 \text{plim} (\hat{\beta}_{ols} - \beta) \end{split}$$

from part (a). The asymptotic bias of the D.W. statistic is twice that of $\hat{\beta}_{ols}$. The plim d and plim d* and the asymptotic bias in d can be tabulated for various values of ρ and β .

6.4 a. From (6.18) with MA(1) disturbances, we get

$$Y_t = \beta Y_{t-1} + \epsilon_t + \theta \epsilon_{t-1} \text{ with } |\beta| < 1.$$

In this case,

$$\begin{split} \hat{\beta}_{ols} &= \sum_{t=2}^{T} Y_{t} Y_{t-1} / \sum_{t=2}^{T} Y_{t-1}^{2} = \beta + \sum_{t=2}^{T} Y_{t-1} \epsilon_{t} / \sum_{t=2}^{T} Y_{t-1}^{2} \\ &+ \theta \sum_{t=2}^{T} Y_{t-1} \epsilon_{t-1} / \sum_{t=2}^{T} Y_{t-1}^{2} \end{split}$$

so that

$$\begin{split} plim\left(\hat{\beta}_{ols} - \beta\right) &= plim\left(\sum_{t=2}^{T} Y_{t-1}\epsilon_{t} \ / T\right) / plim\left(\sum_{t=2}^{T} Y_{t-1}^{2} \ / T\right) \\ &+ \theta plim\left(\sum_{t=2}^{T} Y_{t-1}\epsilon_{t-1} \ / T\right) / plim\left(\sum_{t=2}^{T} Y_{t-1}^{2} \ / T\right). \end{split}$$

Now the above model can be written as

$$(1 - \beta L) Y_t = (1 + \theta L) \varepsilon_t$$

or

$$Y_t = (1 + \theta L) \sum_{i=0}^{\infty} \beta^i L^i \epsilon_t$$

$$Y_t = (1+\theta L) \left(\epsilon_t + \beta \epsilon_{t-1} + \beta^2 \epsilon_{t-2} + ..\right)$$

$$Y_t = \epsilon_t + (\theta + \beta) \left[\epsilon_{t-1} + \beta \epsilon_{t-2} + \beta^2 \epsilon_{t-3} + .. \right]$$

From the last expression, it is clear that $E(Y_t) = 0$ and

$$var(Y_t) = \sigma_{\epsilon}^2 [1 + (\theta + \beta)^2/(1 - \beta^2)] = plim \sum_{t=2}^T Y_{t-1}^2/T.$$

Also,

$$\sum_{t=2}^{T}Y_{t-1}\epsilon_{t}/T = \sum_{t=2}^{T}\epsilon_{t}\left[\epsilon_{t-1} + (\theta+\beta)\left(\epsilon_{t-2} + \beta\epsilon_{t-3} + ..\right)\right]/T$$

Since the ε_t 's are not serially correlated, each term on the right hand side has zero plim. Hence, plim $\sum_{t=2}^{T} Y_{t-1} \varepsilon_t / T = 0$ and the first term on the right hand

side of plim $(\hat{\beta}_{ols} - \beta)$ is zero. Similarly,

$$\begin{split} \sum_{t=2}^T Y_{t-1} \epsilon_{t-1} / T &= \sum_{t=2}^T \epsilon_{t-1}^2 / T + (\theta + \beta) \\ &\left[\sum_{t=2}^T \epsilon_{t-1} \epsilon_{t-2} / T + \beta \sum_{t=2}^T \epsilon_{t-1} \epsilon_{t-3} / T + .. \right] \end{split}$$

which yields plim $\sum_{t=2}^{1} Y_{t-1} \epsilon_{t-1} / T = \sigma_{\epsilon}^2$ since the second term on the right hand side has zero plim. Therefore,

$$\begin{aligned} \text{plim}\left(\hat{\beta}_{ols} - \beta\right) &= \left.\theta\sigma_{\epsilon}^2 \right/ \sigma_{\epsilon}^2 \left[1 + \left(\theta + \beta\right)^2 / \left(1 - \beta^2\right)\right] \\ &= \left.\theta \left(1 - \beta^2\right) / \left(1 - \beta^2 + \theta^2 + \beta^2 + 2\theta\beta\right) \\ &= \left.\theta \left(1 - \beta^2\right) / \left(1 + \theta^2 + 2\theta\beta\right) = \delta \left(1 - \beta^2\right) / \left(1 + 2\beta\delta\right) \end{aligned}$$

where $\delta = \theta/(1 + \theta^2)$.

b. The asymptotic bias of $\hat{\beta}_{ols}$ derived in part (a) can be tabulated for various values of β and $0 < \theta < 1$.

$$\textbf{c.} \ \text{Let} \ \hat{\nu}_t = Y_t - \hat{\beta}_{ols} Y_{t-1} = \beta Y_{t-1} - \hat{\beta}_{ols} Y_{t-1} + \nu_t = \nu_t - \left(\hat{\beta}_{ols} - \beta\right) Y_{t-1}. \ \text{But}$$

$$\hat{\beta}_{ols} - \beta = \sum_{t=2}^T Y_{t-1} \nu_t \bigg/ \sum_{t=2}^T Y_{t-1}^2. \label{eq:bols}$$

Therefore,

$$\begin{split} \sum_{t=2}^{T} \hat{\nu}_{t}^{2} &= \sum_{t=2}^{T} \nu_{t}^{2} + \left(\sum_{t=2}^{T} Y_{t-1} \nu_{t}\right)^{2} / \sum_{t=2}^{T} Y_{t-1}^{2} - 2 \left(\Sigma Y_{t-1} \nu_{t}\right)^{2} / \sum_{t=2}^{T} Y_{t-1}^{2} \\ &= \sum_{t=2}^{T} \nu_{t}^{2} - \left(\sum_{t=2}^{T} Y_{t-1} \nu_{t}\right)^{2} / \sum_{t=2}^{T} Y_{t-1}^{2}. \end{split}$$

But, $\nu_t = \epsilon_t + \theta \epsilon_{t-1}$ with $\text{var}(\nu_t) = \sigma_\epsilon^2 (1 + \theta^2).$ Hence,

$$plim \sum_{t=2}^T \nu_t^2 \big/ T = \sigma_\epsilon^2 + \theta^2 \sigma_\epsilon^2 = \sigma_\epsilon^2 (1+\theta^2).$$

Also,

$$\begin{split} \text{plim} \sum_{t=2}^T Y_{t-1} \nu_t \big/ T &= \text{plim} \sum_{t=2}^T Y_{t-1} \epsilon_t / T + \theta \text{plim} \sum_{t=2}^T Y_{t-1} \epsilon_t \big/ T \\ &= 0 + \theta \sigma_\epsilon^2 = \theta \sigma_\epsilon^2 \end{split}$$

from part (a). Therefore,

$$\begin{split} \text{plim} \sum_{t=2}^{T} \hat{\nu}_{t}^{2} \big/ T &= \sigma_{\epsilon}^{2} \left(1 + \theta^{2} \right) - \theta^{2} \sigma_{\epsilon}^{4} / \sigma_{\epsilon}^{2} \left[1 + (\theta + \beta)^{2} / \left(1 - \beta^{2} \right) \right] \\ &= \sigma_{\epsilon}^{2} \left[1 + \theta^{2} - \theta^{2} \left(1 - \beta^{2} \right) / \left(1 - \theta^{2} + 2\theta \beta \right) \right] \\ &= \sigma_{\epsilon}^{2} \left[1 + \theta^{2} - \theta \delta \left(1 - \beta^{2} \right) / \left(1 + 2\delta \beta \right) \right] = \sigma_{\epsilon}^{2} \left[1 + \theta^{2} - \theta \theta^{*} \right] \\ \text{where } \delta &= \frac{\theta}{(1 + \theta^{2})} \text{ and } \theta^{*} = \delta (1 - \beta^{2}) / (1 + 2\beta \delta). \end{split}$$

- **6.5 a.** The stata commands to generate the Durbin h statistic from scratch are the following:
 - . gen lc_lag=l.lc

(1 missing value generated)

. reg lc ly lc_lag

Source	SS	df	MS	Number of obs	=	48
	.`			F(2, 45)	=	12645.37
Model	5.02839276	2	2.51419638	Prob > F	=	0.0000
Residual	.008947057	45	.000198823	R-squared	=	0.9982
	.'			Adj R-squared	=	0.9981
Total	5.03733982	47	.107177443	Root MSE	=	.0141

lc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ly	.3091105	.0816785	3.78	0.000	.1446015	.4736194
lc_lag	.7045042	.0765288	9.21	0.000	.5503673	.8586411
_cons	1475238	.0870474	-1.69	0.097	3228462	.0277986

. display .0765288²

.00585666

. predict miu, resid

(1 missing value generated)

. reg miu l.miu, noconstant

Sourc	e	SS	df	N	1S	Number of obs F(1, 46)	=	47 15.78
Model Resid Total	ual	.002284571 .006660987 .008945558	1 46 47	.000	2284571 0144804 0190331	Prob > F R-squared Adj R-squared Root MSE	= = = =	0.0002 0.2554 0.2392 .01203
miu	Coef.	Std. E	rr.	t	P> t	[95% Conf. I	nterv	al]
miu L1.	.506596	64 .12754	11	3.97	0.000	.2498695		.7633234

^{. *} Durbin's h

3.4995099

This is asymptotically distributed as N(0,1) under the null hypothesis of $\rho = 0$. This rejects H_0 indicating the presence of serial correlation.

b. The EViews output for the Breusch and Godfrey test for *first*-order serial correlation is given below. The back up regression is given below the test statistics. This regresses the OLS residuals on their lagged value and the regressors in the model including the lagged dependent variable. This yields an $R^2 = 0.278576$. The number of observations is 48. Therefore, the LM statistic = $TR^2 = 48(0.278576) = 13.372$. This is asymptotically distributed as Chi-Square(1) under the null hypothesis of $\rho = 0$. The p-value is 0.0003, and we reject the null hypothesis.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	16.99048	Prob. F(1,44)	0.0002
Obs*R-squared	13.37165	Prob. Chi-Square(1)	0.0003

Test Equation:

Dependent Variable: RESID

Method: Least Squares

Sample: 1960 2007

Included observations: 48

Presample missing value lagged residuals set to zero.

[.] display .5065964*(48*(1-.00585666))^0.5

	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.061130	0.076227	-0.801941	0.4269
LNC(-1)	-0.081685	0.068658	-1.189747	0.2405
LNY	0.086867	0.073256	1.185810	0.2421
RESID(-1)	0.552693	0.134085	4.121951	0.0002
R-squared	0.278576	Mean o	dependent var	-5.00E-16
Adjusted R-squared	0.229388	S.D. de	ependent var	0.013797
S.E. of regression	0.012112	Akaike	info criterion	-5.909614
Sum squared resid	0.006455	Schwa	rz criterion	-5.753680
Log likelihood	145.8307	Hanna	n-Quinn criter.	-5.850686
F-statistic	5.663494	Durbin-	-Watson stat	1.773229
Prob(F-statistic)	0.002272			

c. The EViews output for the Breusch and Godfrey test for *second*-order serial correlation is given below. The back up regression is given below the test statistics. This regresses the OLS residuals e_t on e_{t-1} and e_{t-2} and the regressors in the model including the lagged dependent variable. This yields an $R^2 = 0.284238$. The number of observations is 48. Therefore, the LM statistic = $TR^2 = 48(0.284238) = 13.643$.

This is asymptotically distributed as Chi-Square(2) under the null hypothesis of no second-order serial correlation. The p-value is 0.0011, and we reject the null hypothesis.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	8.537930	Prob. F(2,43)	0.0008
Obs*R-squared	13.64344	Prob. Chi-Square(2)	0.0011

Test Equation:

Dependent Variable: RESID

Method: Least Squares

Sample: 1960 2007

Included observations: 48

Presample missing value lagged residuals set to zero.

	Coefficient	Std. Error	t-Statistic	Prob.
C LNC(-1) LNY RESID(-1) RESID(-2)	-0.049646 -0.067455 0.071648 0.591123 -0.092963	0.079289 0.073355 0.078288 0.150313 0.159390	-0.626136 -0.919582 0.915192 3.932602 -0.583241	0.5345 0.3629 0.3652 0.0003 0.5628
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.284238 0.217656 0.012204 0.006404 146.0198 4.268965 0.005364	S.D. de Akaike Schwar Hannar	ependent var oendent var info criterion z criterion -Quinn criter. Watson stat	-5.00E-16 0.013797 -5.875827 -5.680910 -5.802167 1.867925

6.6 U.S. Gasoline Data, Table 4.2.

a. STATIC MODEL

Dependent Variable: QMG_CAR

Δna	lveie.	∩ † \	/arı	ance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	3 34 37	0.35693 0.12444 0.48137	0.11898 0.00366	32.508	0.0001
	Root MSE Dep Mean C.V.	0.06050 -0.25616 -23.61671	R-square Adj R-sq	0.7415 0.7187	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	-5.853977	3.10247647	-1.887	0.0677
RGNP_POP	1	-0.690460	0.29336969	-2.354	0.0245
CAR_POP	1	0.288735	0.27723429	1.041	0.3050
PMG_PGNP	1	-0.143127	0.07487993	-1.911	0.0644

DYNAMIC MODEL

Autoreg Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

SSE	0.014269	DFE	32
MSE	0.000446	Root MSE	0.021117
SBC	-167.784	AIC	-175.839
Reg Rsq	0.9701	Total Rsq	0.9701
Durbin h	2.147687	PROB>h	0.0159

Godfrey's Serial Correlation Test

	Alternativ	ve LN	Л Pr	ob>LM	
	AR(+ 1) AR(+ 2)			0302 0759	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept RGNP_POP CAR_POP	1 1	0.523006 0.050519 -0.106323	1.1594 0.1127 0.1005	0.451 0.448 -1.058	0.6550 0.6571 0.2981
PMG_PGNP LAG_DEP	1	-0.100323 -0.072884 0.907674	0.0267 0.0593	-2.733 15.315	0.2981 0.0101 0.0001

c. LM Test for AR(1) by BREUSCH & GODFREY

Dependent Variable: RESID

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 30 35	0.00178 0.01237 0.01415	0.00036 0.00041	0.863	0.5172
	Root MSE Dep Mean C.V.	0.02031 -0.00030 -6774.59933	R-square Adj R-sq	0.1257 -0.0200	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	I for HO: Parameter=0	Prob > T
INTERCEP	1	-0.377403	1.15207945	-0.328	0.7455
RESID_1	1	0.380254	0.18431559	2.063	0.0479
RGNP_POP	1	-0.045964	0.11158093	-0.412	0.6833
CAR_POP	1	0.031417	0.10061545	0.312	0.7570
PMG_PGNP	1	0.007723	0.02612020	0.296	0.7695
LAG_DEP	1	-0.034217	0.06069319	-0.564	0.5771

SAS PROGRAM

```
Data RAWDATA:
Input Year CAR QMG PMG POP RGNP PGNP;
Cards:
Data USGAS; set RAWDATA;
LNQMG=LOG(QMG);
LNCAR=LOG(CAR);
LNPOP=LOG(POP);
LNRGNP=LOG(RGNP);
LNPGNP=LOG(PGNP);
LNPMG=LOG(PMG);
QMG_CAR=LOG(QMG/CAR);
RGNP_POP=LOG(RGNP/POP);
CAR_POP=LOG(CAR/POP);
PMG_PGNP=LOG(PMG/PGNP);
LAG_DEP=LAG(QMG_CAR);
Proc reg data=USGAS:
  Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP;
  TITLE 'STATIC MODEL';
Proc autoreg data=USGAS;
    Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP
                  LAG_DEP/LAGDEP=LAG_DEP godfrey=2;
  OUTPUT OUT=MODEL2 R=RESID:
  TITLE 'DYNAMIC MODEL':
RUN;
DATA DW_DATA; SET MODEL2;
RESID_1=LAG(RESID):
PROC REG DATA=DW_DATA;
     MODEL RESID=RESID_1 RGNP_POP CAR_POP PMG_PGNP LAG_DEP;
TITLE 'LM Test for AR(1) by BREUSCH & GODFREY';
RUN;
```

6.7 a. Unrestricted Model

Autoreg Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

	E	0.031403 0.001427 -96.1812 0.9216 0.5683	DFE Root MSE AIC Total Rsq	22 0.037781 -110.839 0.9216	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	-7.46541713	3.0889	-2.417	0.0244
RGNP_POP	1	-0.58684334	0.2831	-2.073	0.0501
CAR_POP	1	0.24215182	0.2850	0.850	0.4046
PMG_PGNP	1	-0.02611161	0.0896	-0.291	0.7734
PMPG_1	1	-0.15248735	0.1429	-1.067	0.2975
PMPG_2	1	-0.13752842	0.1882	-0.731	0.4726
PMPG_3	1	0.05906629	0.2164	0.273	0.7875
PMPG_4	1	-0.21264747	0.2184	-0.974	0.3408
PMPG_5	1	0.22649780	0.1963	1.154	0.2609
PMPG_6	1	-0.41142284	0.1181	-3.483	0.0021

b. Almon Lag (S = 6, P = 2)

PDLREG Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

,	Ē	0.04017 0.001545 -102.165 0.8998 0.5094	DFE Root MSE AIC Total Rsq	26 0.039306 -110.96 0.8998	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept RGNP_POP CAR_POP PMG_PGNP** PMG_PGNP** PMG_PGNP**	1 1	-5.06184299 -0.35769028 0.02394559 -0.24718333 -0.05979404 -0.10450923	2.9928 0.2724 0.2756 0.0340 0.0439 0.0674	-1.691 -1.313 0.087 -7.278 -1.363 -1.551	0.1027 0.2006 0.9314 0.0001 0.1847 0.1331

Variable	Parameter Value	Std Error	t Ratio	Approx Prob
PMG_PGNP(0)	-0.11654	0.045	-2.58	0.0159
PMG_PGNP(1)	-0.07083	0.020	-3.46	0.0019
PMG_PGNP(2)	-0.04792	0.024	-1.98	0.0584
PMG_PGNP(3)	-0.04781	0.028	-1.74	0.0944
PMG_PGNP(4)	-0.07052	0.021	-3.33	0.0026
PMG_PGNP(5)	-0.11603	0.021	-5.40	0.0001
PMG_PGNP(6)	-0.18434	0.054	-3.42	0.0021

Estimate of Lag Distribution

Variable	-0.184 0
PMG_PGNP(0)	*************
PMG_PGNP(1)	*********
PMG_PGNP(2)	*******
PMG_PGNP(3)	*******
PMG_PGNP(4)	*********
PMG_PGNP(5)	**************
PMG_PGNP(6)	************

c. Almon Lag (S=4,P=2)

PDLREG Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

SSE MSE SBC Reg F Durbir	lsq n-Watson	0.065767 0.002349 -94.7861 0.8490 0.5046	DFE Root MSE AIC Total Rsq	28 0.048464 -103.944 0.8490	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept RGNP_POP CAR_POP PMG_PGNP**0 PMG_PGNP**1	1 1 1 1	-6.19647990 -0.57281368 0.21338192 -0.19423745 -0.06534647	3.6920 0.3422 0.3397 0.0414 0.0637	-1.678 -1.674 0.628 -4.687 -1.026	0.1044 0.1053 0.5351 0.0001 0.3138
PMG_PGNP**2	1	0.03085234	0.1188	0.260	0.7970

Variable	Parameter Value	Std Error	t Ratio	Approx Prob
PMG_PGNP(0)	-0.02905	0.070	-0.41	0.6834
PMG_PGNP(1)	-0.07445	0.042	-1.78	0.0851
PMG_PGNP(2)	-0.10336	0.061	-1.70	0.0999
PMG_PGNP(3)	-0.11578	0.033	-3.51	0.0015
PMG_PGNP(4)	-0.11170	0.092	-1.22	0.2329

Estimate of Lag Distribution

ALMON LAG(S=8,P=2)

PDLREG Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

SSE MSE SBC Reg Rsq Durbin-Wat	son	0.020741 0.000864 -112.761 0.9438 0.9531	DFE Root MSE AIC Total Rsq	0.0293 -121.1 0.94	68
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	-7.71363805	2.3053	-3.346	0.0027
RGNP_POP	1	-0.53016065	0.2041	-2.597	0.0158
CAR_POP	1	0.17117375	0.2099	0.815	0.4229
PMG_PGNP**0	1	-0.28572518	0.0267	-10.698	0.0001
PMG_PGNP**1		-0.09282151	0.0417	-2.225	0.0358
PMG_PGNP**2		-0.12948786	0.0512	-2.527	0.0185

	Parameter	Std	t	Approx
Variable	Value	Error	Ratio	Prob
PMG_PGNP(0)	-0.11617	0.028	-4.09	0.0004
PMG_PGNP(1)	-0.07651	0.016	-4.73	0.0001
PMG_PGNP(2)	-0.05160	0.015	-3.34	0.0027
PMG_PGNP(3)	-0.04145	0.018	-2.30	0.0301
PMG_PGNP(4)	-0.04605	0.017	-2.63	0.0146
PMG_PGNP(5)	-0.06541	0.013	-4.85	0.0001
PMG_PGNP(6)	-0.09953	0.012	-8.10	0.0001
PMG_PGNP(7)	-0.14841	0.025	-5.97	0.0001
PMG_PGNP(8)	-0.21204	0.047	-4.53	0.0001

Estimate of Lag Distribution

Variable	-0.212 0
PMG_PGNP(0)	***********
PMG_PGNP(1)	********
PMG_PGNP(2)	******
PMG_PGNP(3)	******
PMG_PGNP(4)	******
PMG_PGNP(5)	*******
PMG_PGNP(6)	**********
PMG_PGNP(7)	***************
PMG_PGNP(8)	*************

d. Third Degree Polynomial Almon Lag(S = 6, P = 3)

PDLREG Procedure

Dependent Variable = QMG_CAR

SSE

Ordinary Least Squares Estimates

DFE

25

0.034308

MSE SBC Reg Rsq Durbin-W	atson	0.001372 -103.747 0.9144 0.6763	Root MSE AIC Total Rsq	0.037045 -114.007 0.9144	,
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept RGNP_POP CAR_POP PMG_PGNP**0 PMG_PGNP**1 PMG_PGNP**2 PMG_PGNP**3	1 1 1 1 1 1	-7.31542415 -0.57343614 0.23462358 -0.24397597 -0.07041380 -0.11318734 -0.19730731	3.0240 0.2771 0.2790 0.0320 0.0417 0.0637 0.0955	-2.419 -2.069 0.841 -7.613 -1.690 -1.778 -2.067	0.0232 0.0490 0.4084 0.0001 0.1035 0.0876 0.0493

Variable	Parameter Value	Std Error	t Ratio	Approx Prob
PMG_PGNP(0)	-0.03349	0.059	-0.57	0.5725
PMG_PGNP(1)	-0.14615	0.041	-3.54	0.0016
PMG_PGNP(2)	-0.12241	0.043	-2.87	0.0082
PMG_PGNP(3)	-0.04282	0.026	-1.64	0.1130
PMG_PGNP(4)	-0.01208	0.045	0.27	0.7890
PMG_PGNP(5)	-0.03828	0.043	-0.90	0.3788
PMG_PGNP(6)	-0.27443	0.067	-4.10	0.0004

Estimate of Lag Distribution

e. Almon Lag(S = 6, P = 2) with Near End-Point Restriction

PDLREG Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

SSE MSE SBC Reg Rsq Durbin-Wa	atson	0.046362 0.001717 -101.043 0.8843 0.5360	DFE Root MSE AIC Total Rsq	-10	27 11438 8.372 .8843
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept RGNP_POP CAR_POP PMG_PGNP**0 PMG_PGNP**1 PMG_PGNP**2	1 1 1 1 1	-3.81408793 -0.28069982 -0.05768233 -0.21562744 -0.07238330 0.02045576	3.0859 0.2843 0.2873 0.0317 0.0458 0.0268	-1.236 -0.988 -0.201 -6.799 -1.581 0.763	0.2271 0.3322 0.8424 0.0001 0.1255 0.4519
Restriction	DF	L Value	Std Error	t Ratio	Approx Prob
PMG_PGNP(-1)	-1	0.03346081	0.0176	1.899	0.0683

Parameter Value	Std Error	t Ratio	Approx Prob
-0.02930	0.013	-2.31	0.0286
-0.05414	0.020	-2.75	0.0105
-0.07452	0.021	-3.49	0.0017
-0.09043	0.018	-4.91	0.0001
-0.10187	0.015	-6.80	0.0001
-0.10886	0.022	-4.88	0.0001
-0.11138	0.042	-2.66	0.0130
	-0.02930 -0.05414 -0.07452 -0.09043 -0.10187 -0.10886	-0.02930 0.013 -0.05414 0.020 -0.07452 0.021 -0.09043 0.018 -0.10187 0.015 -0.10886 0.022	-0.02930 0.013 -2.31 -0.05414 0.020 -2.75 -0.07452 0.021 -3.49 -0.09043 0.018 -4.91 -0.10187 0.015 -6.80 -0.10886 0.022 -4.88

Estimate of Lag Distribution

ALMON LAG(S=6,P=2) with FAR END-POINT RESTRICTION

PDLREG Procedure

Dependent Variable = QMG_CAR

Ordinary Least Squares Estimates

SSE MSE SBC Reg Rsq Durbin-Watso	on	0.050648 0.001876 -98.2144 0.8736 0.5690	DFE Root M AIC Total R		0.043 -105. 0.8	-
			Sto	ŀ	t	Approx
Variable	DF	B Value	Erro	or Ra	atio	Prob
Intercept	1	-6.0284889	2 3.27	22 -1.8	842	0.0764
RGNP_POP	1	-0.4902138	1 0.29	48 -1.6	663	0.1079
CAR_POP	1	0.1587812	7 0.29	82 0.	532	0.5988
PMG_PGNP**0	1	-0.2085184	0.03	37 -6. ⁻	195	0.0001
PMG_PGNP**1	1	-0.0024294	4 0.04	18 -0.0	058	0.9541
PMG_PGNP**2	1	0.0615967	1 0.02	40 2.	568	0.0161
Restriction	DF	L Value	Std Error	t Ratio	Appro	x Prob
PMG_PGNP(7)	-1	0.03803694	0.0161	2.363		0.0256

Variable	Parameter Value	Std Error	t Ratio	Approx Prob
PMG_PGNP(0)	-0.04383	0.039	-1.12	0.2730
PMG_PGNP(1)	-0.07789	0.022	-3.49	0.0017
PMG_PGNP(2)	-0.09852	0.016	-6.20	0.0001
PMG_PGNP(3)	-0.10570	0.018	-5.90	0.0001
PMG_PGNP(4)	-0.09943	0.020	-5.01	0.0001
PMG_PGNP(5)	-0.07973	0.018	-4.43	0.0001
PMG_PGNP(6)	-0.04659	0.011	-4.05	0.0004

Estimate of Lag Distribution

SAS PROGRAM

Data RAWDATA;

Input Year CAR QMG PMG POP RGNP PGNP;

Cards:

Data USGAS; set RAWDATA;

LNQMG=LOG(QMG);

LNCAR=LOG(CAR);

LNPOP=LOG(POP);

LNRGNP=LOG(RGNP);

LNPGNP=LOG(PGNP);

LNPMG=LOG(PMG);

QMG_CAR=LOG(QMG/CAR);

RGNP_POP=LOG(RGNP/POP);

CAR_POP=LOG(CAR/POP);

PMG_PGNP=LOG(PMG/PGNP);

PMPG_1=LAG1(PMG_PGNP);

PMPG_2=LAG2(PMG_PGNP);

PMPG_3=LAG3(PMG_PGNP);

PMPG_4=LAG4(PMG_PGNP);

PMPG_5=LAG5(PMG_PGNP);

```
PMPG_6=LAG6(PMG_PGNP):
Proc autoreg data=USGAS:
Model QMG_CAR=RGNP_POP CAR_POP PMG_PGNP PMPG_1 PMPG_2 PMPG_3
               PMPG_4 PMPG_5 PMPG_6;
  TITLE 'UNRESTRICTED MODEL':
PROC PDLREG DATA=USGAS;
    MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(6,2);
TITLE 'ALMON LAG(S=6,P=2)';
PROC PDLREG DATA=USGAS;
    MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(4,2);
TITLE 'ALMON LAG(S=4,P=2)';
PROC PDLREG DATA=USGAS;
    MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(8,2);
TITLE 'ALMON LAG(S=8,P=2)';
PROC PDLREG DATA=USGAS;
    MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(6,3);
TITLE 'Third Degree Polynomial ALMON LAG(S=6,P=3)';
PROC PDLREG DATA=USGAS;
    MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(6,2,,FIRST);
TITLE 'ALMON LAG(S=6,P=2) with NEAR END-POINT RESTRICTION';
```

MODEL QMG_CAR=RGNP_POP CAR_POP PMG_PGNP(6,2,,LAST);

TITLE 'ALMON LAG(S=6,P=2) with FAR END-POINT RESTRICTION';

PROC PDLREG DATA=USGAS;

RUN:

CHAPTER 7

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables.

The regression model in (7.1) can be written as $y = XCC^{-1}\beta + u$ where C is a non-singular matrix. Let $X^* = XC$, then $y = X^*\beta^* + u$ where $\beta^* = C^{-1}\beta$.

a.
$$P_{X^*} = X^* (X^{*\prime}X^*)^{-1} X^{*\prime} = XC [C'X'XC]^{-1} C'X' = XCC^{-1} (X'X)^{-1} C'^{-1}C'X' = P_X.$$

Hence, the regression of y on X* yields

$$\hat{y} = X^* \hat{\beta}_{ols}^* = P_{X^*} y = P_X y = X \hat{\beta}_{ols}$$

which is the same fitted values as those from the regression of y on X. Since the dependent variable y is the same, the residuals from both regressions will be the same.

- **b.** Multiplying each X by a constant is equivalent to post-multiplying the matrix X by a diagonal matrix C with a typical k-th element c_k . Each X_k will be multiplied by the constant c_k for k = 1, 2, ..., K. This diagonal matrix C is non-singular. Therefore, using the results in part (a), the fitted values and the residuals will remain the same.
- **c.** In this case, $X = [X_1, X_2]$ is of dimension nx2 and

$$X^* = [X_1 - X_2, X_1 + X_2] = [X_1, X_2] \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = XC$$

where $C=\begin{bmatrix}1&1\\-1&1\end{bmatrix}$ is non-singular with $C^{-1}=\frac{1}{2}\begin{bmatrix}1&-1\\1&1\end{bmatrix}$. Hence, the results of part (a) apply, and we get the same fitted values and residuals when we regress y on (X_1-X_2) and (X_1+X_2) as in the regression of y on X_1 and X_2 .

7.2 The FWL Theorem.

a. The inverse of a partitioned matrix

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

is given by

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1} A_{12} B_{22} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} B_{22} \\ -B_{22} A_{21} A_{11}^{-1} & B_{22} \end{bmatrix}$$

where $B_{22} = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$. From (7.9), we get

$$\begin{split} B_{22} &= \left(X_2' X_2 - X_2' X_1 \left(X_1' X_1 \right)^{-1} X_1' X_2 \right)^{-1} = \left(X_2' X_2 - X_2' P_{X_1} X_2 \right)^{-1} \\ &= \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1}. \end{split}$$

Also, $-B_{22}A_{21}A_{11}^{-1} = -(X_2'\overline{P}_{X_1}X_2)^{-1}X_2'X_1(X_1'X_1)^{-1}$. Hence, from (7.9), we solve for $\hat{\beta}_{2,ols}$ to get

$$\hat{\beta}_{2,ols} = -B_{22}A_{21}A_{11}^{-1}X_1'y + B_{22}X_2'y$$

which yields

$$\begin{split} \hat{\beta}_{2,ols} &= - \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1} X_2' P_{X_1} y + \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1} X_2' y \\ &= \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1} X_2' \overline{P}_{X_1} y \end{split}$$

as required in (7.10).

b. Alternatively, one can write (7.9) as

$$(X'_1X_1) \hat{\beta}_{1,ols} + (X'_1X_2) \hat{\beta}_{2,ols} = X'_1y$$
$$(X'_2X_1) \hat{\beta}_{1,ols} + (X'_2X_2) \hat{\beta}_{2,ols} = X'_2y.$$

Solving for $\hat{\beta}_{1,ols}$ in terms of $\hat{\beta}_{2,ols}$ by multiplying the first equation by $(X_1'X_1)^{-1}$ we get

$$\begin{split} \hat{\beta}_{1,ols} &= \left(X_1' X_1 \right)^{-1} X_1' y - \left(X_1' X_1 \right)^{-1} X_1' X_2 \hat{\beta}_{2,ols} \\ &= \left(X_1' X_1 \right)^{-1} X_1' \left(y - X_2 \hat{\beta}_{2,ols} \right). \end{split}$$

Substituting $\hat{\beta}_{1,ols}$ in the second equation, we get

$$X_2'X_1 \left(X_1'X_1\right)^{-1} X_1'y - X_2'P_{X_1}X_2 \hat{\beta}_{2,ols} + \left(X_2'X_2\right) \hat{\beta}_{2,ols} = X_2'y.$$

Collecting terms, we get $(X_2'\overline{P}_{X_1}X_2)\hat{\beta}_{2,ols} = X_2'\overline{P}_{X_1}y$.

Hence, $\hat{\beta}_{2,ols} = (X_2' \overline{P}_{X_1} X_2)^{-1} X_2' \overline{P}_{X_1} y$ as given in (7.10).

c. In this case, $X = [\iota_n, X_2]$ where ι_n is a vector of ones of dimension n.

$$\begin{split} P_{X_1} &= \iota_n \left(\iota_n' \iota_n \right)^{-1} \iota_n' = \iota_n \iota_n' / n = J_n / n \text{ where } J_n = \iota_n \iota_n' \text{ is a matrix of ones} \\ \text{of dimension n. But } \iota_n' y = \sum_{i=1}^n y_i \text{ and } \iota_n' y / n = \overline{y}. \text{ Hence, } \overline{P}_{X_1} = I_n - P_{X_1} = I_n - J_n / n \text{ and } \overline{P}_{X_1} y = (I_n - J_n / n) y \text{ has a typical element } (y_i - \overline{y}). \text{ From the} \\ \text{FWL Theorem, } \hat{\beta}_{2,\text{ols}} \text{ can be obtained from the regression of } (y_i - \overline{y}) \text{ on the} \\ \text{set of variables in } X_2 \text{ expressed as deviations from their respective means,} \\ \text{i.e., } \overline{P}_{X_1} X_2 = (I_n - J_n / n) X_2. \end{split}$$

From part (b),

$$\begin{split} \hat{\beta}_{1,ols} &= \left(X_1'X_1\right)^{-1}X_1'\left(y - X_2\hat{\beta}_{2,ols}\right) = \left(\iota_n'\iota_n\right)^{-1}\iota_n'\left(y - X_2\hat{\beta}_{2,ols}\right) \\ &= \frac{\iota_n'}{n}\left(y - X_2\hat{\beta}_{2,ols}\right) = \overline{y} - \overline{X}_2'\hat{\beta}_{2,ols} \end{split}$$

where $\overline{X}_2' = \iota_n' X_2/n$ is the vector of sample means of the independent variables in X_2 .

7.3 $D_i = (0,0,...,1,0,...,0)'$ where all the elements of this nx1 vector are zeroes except for the i-th element which takes the value 1. In this case, $P_{D_i} = D_i \left(D_i' D_i\right)^{-1} D_i' = D_i D_i'$ which is a matrix of zeroes except for the i-th diagonal element which takes the value 1. Hence, $I_n - P_{D_i}$ is an identity matrix except for the i-th diagonal element which takes the value zero. Therefore, $(I_n - P_{D_i})y$ returns the vector y except for the i-th element which is zero. Using the FWL Theorem, the OLS regression

$$y = X\beta + D_i\gamma + u$$

yields the same estimates as $(I_n-P_{D_i})y=(I_n-P_{D_i})X\beta+(I_n-P_{D_i})u$ which can be rewritten as $\tilde{y}=\tilde{X}\beta+\tilde{u}$ with $\tilde{y}=(I_n-P_{D_i})y,\ \tilde{X}=(I_n-P_{D_i})X$.

The OLS normal equations yield $(\tilde{X}'\tilde{X})\hat{\beta}_{ols} = \tilde{X}'\tilde{y}$ and the i-th OLS normal equation can be ignored since it gives $0'\hat{\beta}_{ols} = 0$. Ignoring the i-th observation equation yields $(X^{*'}X^{*})\hat{\beta}_{ols} = X^{*'}y^{*}$ where X^{*} is the matrix X without the i-th observation and y^{*} is the vector y without the i-th observation. The FWL Theorem also states that the residuals from \tilde{y} on \tilde{X} are the same as those from y on X and D_{i} . For the i-th observation, $\tilde{y}_{i} = 0$ and $\tilde{x}_{i} = 0$. Hence the i-th residual must be zero. This also means that the i-th residual in the original regression with the dummy variable D_{i} is zero, i.e., $y_{i} - x'_{i}\hat{\beta}_{ols} - \hat{\gamma}_{ols} = 0$. Rearranging terms, we get $\hat{\gamma}_{ols} = y_{i} - x'_{i}\hat{\beta}_{ols}$. In other words, $\hat{\gamma}_{ols}$ is the forecasted OLS residual for the i-th observation from the regression of y^{*} on X^{*} . The i-th observation was excluded from the estimation of $\hat{\beta}_{ols}$ by the inclusion of the dummy variable D_{i} .

- 7.5 If $u \sim N(0, \sigma^2 I_n)$ then $(n-K)s^2/\sigma^2 \sim \chi^2_{n-K}$. In this case,
 - **a.** $E[(n-K)s^2/\sigma^2] = E(\chi^2_{n-K}) = n-K$ since the expected value of a χ^2 random variable with (n-K) degrees of freedom is (n-K). Hence,

$$[(n-K)/\sigma^2] E(s^2) = (n-K) \text{ or } E(s^2) = \sigma^2.$$

b. $var[(n-K)s^2/\sigma^2] = var(\chi^2_{n-K}) = 2(n-K)$ since the variance of a χ^2 random variable with (n-K) degrees of freedom is 2(n-K). Hence,

$$[(n-K)^2/\sigma^4] \operatorname{var}(s^2) = 2(n-K) \operatorname{or} \operatorname{var}(s^2) = 2\sigma^4/(n-K).$$

7.6 a. Using the results in problem 7.4, we know that $\hat{\sigma}_{mle}^2 = e'e/n = (n-K)s^2/n$. Hence,

$$E(\hat{\sigma}_{mle}^2) = (n - K) E(s^2)/n = (n - K)\sigma^2/n.$$

This means that $\hat{\sigma}_{mle}^2$ is biased for σ^2 , but asymptotically unbiased. The bias is equal to $-K\sigma^2/n$ which goes to zero as $n\to\infty$.

b. $var\left(\hat{\sigma}_{mle}^2\right) = (n-K)^2 \, var(s^2)/n^2 = (n-K)^2 2\sigma^4/n^2 (n-K) = 2(n-K)\sigma^4/n^2$ and

$$\begin{split} \text{MSE}\left(\hat{\sigma}_{mle}^2\right) &= \text{Bias}^2\left(\hat{\sigma}_{mle}^2\right) + \text{var}\left(\hat{\sigma}_{mle}^2\right) = K^2\sigma^4/n^2 + 2(n-K)\sigma^4/n^2 \\ &= \left(K^2 + 2n - 2K\right)\sigma^4/n^2. \end{split}$$

$$\begin{aligned} \textbf{c.} \; & \text{Similarly, } \tilde{\sigma}^2 = e'e/r = (n-K)s^2/r \text{ with } E(\tilde{\sigma}^2) = (n-K)\sigma^2/r \text{ and} \\ & \text{var}(\tilde{\sigma}^2) = (n-K)^2 \, \text{var}(s^2)/r^2 = (n-K)^2 2\sigma^4/r^2(n-K) = 2(n-K)\sigma^4/r^2 \\ & \text{MSE}(\tilde{\sigma}^2) = \text{Bias}^2(\tilde{\sigma}^2) + \text{var}(\tilde{\sigma}^2) = (n-K-r)^2\sigma^4/r^2 + 2(n-K)\sigma^4/r^2. \end{aligned}$$

Minimizing $MSE(\tilde{\sigma}^2)$ with respect to r yields the first-order condition

$$\frac{\partial MSE\left(\tilde{\sigma}^2\right)}{\partial r} = \frac{-2(n-K-r)\sigma^4r^2 - 2r(n-K-r)^2\sigma^4}{r^4} - \frac{4r(n-K)\sigma^4}{r^4} = 0$$

which yields

$$(n - K - r)r + (n - K - r)^{2} + 2(n - K) = 0$$
$$(n - K - r)(r + n - K - r) + 2(n - K) = 0$$
$$(n - K)(n - K - r + 2) = 0$$

since n > K, this is zero for r = n - K + 2. Hence, the Minimum MSE is obtained at $\tilde{\sigma}_*^2 = e'e/(n - K + 2)$ with

$$\begin{split} \text{MSE}\left(\tilde{\sigma}_*^2\right) &= 4\sigma^4/(n-K+2)^2 + 2(n-K)\sigma^4/(n-K+2)^2 \\ &= 2\sigma^4(n-K+2)/(n-K+2)^2 = 2\sigma^4/(n-K+2). \end{split}$$

Note that $s^2 = e'e/(n-K)$ with $MSE(s^2) = var(s^2) = 2\sigma^4/(n-K) > MSE(\tilde{\sigma}_*^2)$.

Also, it can be easily verified that MSE $(\tilde{\sigma}_{mle}^2) = (K^2 - 2K + 2n)\sigma^4/n^2 \ge$ MSE $(\tilde{\sigma}_*^2)$ for $2 \le K < n$, with the equality holding for K = 2.

7.7 Computing Forecasts and Forecast Standard Errors Using a Regression Package. This is based on Salkever (1976). From (7.23) one gets

$$\mathbf{X}^{*\prime}\mathbf{X}^{*} = \begin{bmatrix} \mathbf{X}^{\prime} & \mathbf{X}_{\mathrm{o}}^{\prime} \\ \mathbf{0} & \mathbf{I}_{\mathrm{T_{o}}} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{0} \\ \mathbf{X}_{\mathrm{o}} & \mathbf{I}_{\mathrm{T_{o}}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{\prime}\mathbf{X} + \mathbf{X}_{\mathrm{o}}^{\prime}\mathbf{X}_{\mathrm{o}} & \mathbf{X}_{\mathrm{o}}^{\prime} \\ \mathbf{X}_{\mathrm{o}} & \mathbf{I}_{\mathrm{T_{o}}} \end{bmatrix}$$

and

$$X^{*\prime}y^* = \begin{bmatrix} X'y + X'_o y_o \\ y_o \end{bmatrix}.$$

a. The OLS normal equations yield

$$\begin{split} X^{*\prime}X^*\begin{bmatrix} \hat{\beta}_{ols} \\ \hat{\gamma}_{ols} \end{bmatrix} &= X^{*\prime}y^* \\ \text{or } (X'X)\hat{\beta}_{ols} + \left(X_o'X_o\right)\hat{\beta}_{ols} + X_o'\hat{\gamma}_{ols} &= X'y + X_o'y_o \\ \text{and } X_o\hat{\beta}_{ols} + \hat{\gamma}_{ols} &= y_o \end{split}$$

From the second equation, it is obvious that $\hat{\gamma}_{ols} = y_o - X_o \hat{\beta}_{ols}$. Substituting this in the first equation yields

$$(X'X)\hat{\beta}_{ols} + (X_o'X_o)\hat{\beta}_{ols} + X_o'y_o - X_o'X_o\hat{\beta}_{ols} = X'y + X_o'y_o$$

which upon cancellations gives $\hat{\beta}_{ols} = (X'X)^{-1}X'y.$

Alternatively, one could apply the FWL Theorem using $X_1 = \begin{bmatrix} X \\ X_0 \end{bmatrix}$ and

$$X_2 = \begin{bmatrix} 0 \\ I_{T_0} \end{bmatrix}$$
. In this case, $X_2' X_2 = I_{T_0}$ and

$$P_{X_2} = X_2 \left(X_2' X_2 \right)^{-1} X_2' = X_2 X_2' = \begin{bmatrix} 0 & 0 \\ 0 & I_{T_o} \end{bmatrix}.$$

This means that

$$\overline{P}_{X_2} = I_{n+T_0} - P_{X_2} = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}.$$

Premultiplying (7.23) by \overline{P}_{X_2} is equivalent to omitting the last T_o observations. The resulting regression is that of y on X which yields $\hat{\beta}_{ols} = (X'X)^{-1}X'y$ as obtained above. Also, premultiplying by \overline{P}_{X_2} , the last T_o observations yield zero residuals because the observations on both the

dependent and independent variables are zero. For this to be true in the original regression, we must have $y_o - X_o \hat{\beta}_{ols} - \hat{\gamma}_{ols} = 0$. This means that $\hat{\gamma}_{ols} = y_o - X_o \hat{\beta}_{ols}$ as required.

b. The OLS residuals of (7.23) yield the usual least squares residuals

$$e_{ols} = y - X\hat{\beta}_{ols}$$

for the first n observations and zero residuals for the next T_o observations. This means that $e^{*\prime}=\left(e_{ols}^\prime,\ 0^\prime\right)$ and $e^{*\prime}e^*=e_{ols}^\prime e_{ols}$ with the same residual sum of squares. The number of observations in (7.23) is $n+T_o$ and the number of parameters estimated is $K+T_o$. Hence the new degrees of freedom in (7.23) is $(n+T_o)-(K+T_o)=(n-K)=$ the old degrees of freedom in the regression of y on X. Hence, $s^{*2}=e^{*\prime}e^*/(n-K)=e_{ols}^\prime e_{ols}/(n-K)=s^2$.

c. Using partitioned inverse formulas on (X^{*}/X^{*}) one gets

$$\left(X^{*\prime} X^{*} \right)^{-1} = \begin{bmatrix} (X'X)^{-1} & -(X'X)^{-1} X'_{o} \\ -X_{o}(X'X)^{-1} & I_{T_{o}} + X_{o}(X'X)^{-1} X'_{o} \end{bmatrix}.$$

This uses the fact that the inverse of

$$\begin{split} A &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{is} \quad A^{-1} = \begin{bmatrix} B_{11} & -B_{11}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}B_{11} & A_{22}^{-1} + A_{22}^{-1}A_{21}B_{11}A_{12}A_{22}^{-1} \end{bmatrix} \\ \text{where } B_{11} &= \left(A_{11} - A_{12}A_{22}^{-1}A_{21} \right)^{-1}. \text{ Hence, } s^{*2}(X^{*\prime}X^{*})^{-1} = s^{2}(X^{*\prime}X^{*})^{-1} \\ \text{and is given by (7.25)}. \end{split}$$

d. If we replace y_o by 0 and I_{T_o} by $-I_{T_o}$ in (7.23), we get

$$\begin{bmatrix} y \\ 0 \end{bmatrix} = \begin{bmatrix} X & 0 \\ X_o & -I_{T_o} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \begin{bmatrix} u \\ u_o \end{bmatrix}$$
 or $y^* = X^*\delta + u^*$. Now $X^{*'}X^* = \begin{bmatrix} X' & X'_o \\ 0 & -I_{T_o} \end{bmatrix} \begin{bmatrix} X & 0 \\ X_o & -I_{T_o} \end{bmatrix} = \begin{bmatrix} X'X + X'_o X_o & -X'_o \\ -X_o & I_{T_o} \end{bmatrix}$ and $X^{*'}y^* = \begin{bmatrix} X'y \\ 0 \end{bmatrix}$. The OLS normal equations yield $(X'X)\hat{\beta}_{ols} + (X'_o X_o)\hat{\beta}_{ols} - X'_o\hat{\gamma}_{ols} = X'y \quad \text{and} \quad -X_o\hat{\beta}_{ols} + \hat{\gamma}_{ols} = 0.$ From the second equation, it immediately follows that $\hat{\gamma}_{ols} = X_o\hat{\beta}_{ols} = \hat{y}_o$ the forecast of the T_o observations using the estimates from the first n

observations. Substituting this in the first equation yields

$$(X'X)\hat{\beta}_{ols} + (X'_oX_o)\hat{\beta}_{ols} - X'_oX_o\hat{\beta}_{ols} = X'y$$

which gives $\hat{\beta}_{ols} = (X'X)^{-1}X'y$.

Alternatively, one could apply the FWL Theorem using $X_1 = \begin{bmatrix} X \\ X_o \end{bmatrix}$ and $X_2 = \begin{bmatrix} 0 \\ -I_{T_o} \end{bmatrix}$. In this case, $X_2'X_2 = I_{T_o}$ and $P_{X_2} = X_2X_2' = \begin{bmatrix} 0 & 0 \\ 0 & I_{T_o} \end{bmatrix}$ as before. This means that $\overline{P}_{X_2} = I_{n+T_o} - P_{X_2} = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}$.

As in part (a), premultiplying by \overline{P}_{X_2} omits the last T_o observations and yields $\hat{\beta}_{ols}$ based on the regression of y on X from the first n observations only. The last T_o observations yield zero residuals because the dependent and independent variables for these T_o observations have zero values. For this to be true in the original regression, it must be true that $0 - X_o \hat{\beta}_{ols} + \hat{\gamma}_{ols} = 0$ which yields $\hat{\gamma}_{ols} = X_o \hat{\beta}_{ols} = \hat{y}_o$ as expected. The residuals are still $(e'_{ols}, 0')$ and $s^{*2} = s^2$ for the same reasons given in part (b). Also, using partitioned inverse as in part (c) above, we get

$$\left(X^{*\prime} X^{*} \right)^{-1} = \begin{bmatrix} (X'X)^{-1} & (X'X)^{-1} X'_{o} \\ X_{o} (X'X)^{-1} & I_{T_{o}} + X_{o} (X'X)^{-1} X'_{o} \end{bmatrix}.$$

Hence, $s^{*2}(X^{*\prime}X^{*})^{-1} = s^{2}(X^{*\prime}X^{*})^{-1}$ and the diagonal elements are as given in (7.25).

- **7.8 a.** $cov(\hat{\beta}_{ols}, e) = E(\hat{\beta}_{ols} \beta)e' = E[(X'X)^{-1}X'uu'\overline{P}_X] = \sigma^2(X'X)^{-1}X'\overline{P}_X = 0$ where the second equality uses the fact that $e = \overline{P}_X$ u and $\hat{\beta}_{ols} = \beta + (X'X)^{-1}X'u$. The third equality uses the fact that $E(uu') = \sigma^2I_n$ and the last equality uses the fact that $\overline{P}_XX = 0$. But $e \sim N(0, \sigma^2\overline{P}_X)$ and $\hat{\beta}_{ols} \sim N(\beta, \sigma^2(X'X)^{-1})$, therefore zero covariance and normality imply independence of $\hat{\beta}_{ols}$ and e.
 - **b.** $\hat{\beta}_{ols} \beta = (X'X)^{-1}X'u$ is linear in u, and $(n K)s^2 = e'e = u'\overline{P}_X$ u is quadratic in u. A linear and quadratic forms in normal random variables

 $u \sim N(0, \sigma^2 I_n)$ are independent if $(X'X)^{-1}X'\overline{P}_X = 0$, see Graybill (1961), Theorem 4.17. This is true since $\overline{P}_X X = 0$.

7.9 a. Replacing R by c' in (7.29) one gets $(c'\hat{\beta}_{ols} - c'\beta)'[c'(X'X)^{-1}c]^{-1}(c'\hat{\beta}_{ols} - c'\beta)/\sigma^2$. Since $c'(X'X)^{-1}c$ is a scalar, this can be rewritten as

$$(c'\hat{\beta}_{ols} - c'\beta)^2/\sigma^2c'(X'X)^{-1}c$$

which is exactly the square of z_{obs} in (7.26). Since $z_{obs} \sim N(0, 1)$ under the null hypothesis, its square is χ_1^2 under the null hypothesis.

b. Dividing the statistic given in part (a) by $(n-K)s^2/\sigma^2 \sim \chi^2_{n-K}$ divided by its degrees of freedom (n-K) results in replacing σ^2 by s^2 , i.e.,

$$(c'\hat{\beta}_{ols} - c'\beta)^2/s^2c'(X'X)^{-1}c.$$

This is the square of the t-statistic given in (7.27). But, the numerator is $z_{obs}^2 \sim \chi_1^2$ and the denominator is $\chi_{n-K}^2/(n-K)$. Hence, if the numerator and denominator are independent, the resulting statistic is distributed as F(1,n-K) under the null hypothesis.

7.10 a. The quadratic form $u'Au/\sigma^2$ in (7.30) has

$$A = X(X'X)^{-1}R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1}X'.$$

This is symmetric, and idempotent since

$$\begin{split} A^2 &= X(X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1} R(X'X)^{-1}X'X(X'X)^{-1} \\ & R' \left[R(X'X)^{-1}R' \right]^{-1} R(X'X)^{-1}X' \\ &= X(X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1} R(X'X)^{-1}X' = A \\ \text{and rank } (A) &= \text{tr}(A) = \text{tr} \left(R(X'X)^{-1}(X'X)(X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1} \right) \\ &= \text{tr}(I_\sigma) = g \text{ since } R \text{ is gxK}. \end{split}$$

b. From lemma 1, $u'Au/\sigma^2 \sim \chi_g^2$ since A is symmetric and idempotent of rank g and $u \sim N(0, \sigma^2 I_n)$.

7.11 a. The two quadratic forms $s^2 = u'\overline{P}_X u/(n-K)$ and $u'Au/\sigma^2$ given in (7.30) are independent if and only if $\overline{P}_X A = 0$, see Graybill (1961), Theorem 4.10. This is true since $\overline{P}_X X = 0$.

b. $(n-K)s^2/\sigma^2$ is χ^2_{n-K} and $u'Au/\sigma^2 \sim \chi^2_g$ and both quadratic forms are independent of each other. Hence, dividing χ^2_g by g we get $u'Au/g\sigma^2$. Also, χ^2_{n-K} by (n-K) we get s^2/σ^2 . Dividing $u'Au/g\sigma^2$ by s^2/σ^2 we get $u'Au/gs^2$ which is another way of writing (7.31). This is distributed as F(g,n-K) under the null hypothesis.

7.12 Restricted Least Squares

a. From (7.36), taking expected value we get

$$\begin{split} E\big(\hat{\beta}_{rls}\big) &= E\big(\hat{\beta}_{ols}\big) + (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1} \big(r\text{-RE}\big(\hat{\beta}_{ols}\big)\big) \\ &= \beta + (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1} (r\text{-R}\beta) \end{split}$$

since $E\left(\hat{\beta}_{ols}\right)=\beta$. It is clear that $\hat{\beta}_{rls}$ is in general biased for β unless $r=R\beta$ is satisfied, in which case the second term above is zero.

 $\textbf{b.} \ \text{var}\big(\hat{\beta}_{rls}\big) = E\big[\hat{\beta}_{rls} - E\big(\hat{\beta}_{rls}\big)\big] \big[\hat{\beta}_{rls} - E\big(\hat{\beta}_{rls}\big)\big]'$

But from (7.36) and part (a), we have

$$\begin{split} \hat{\beta}_{rls} - E\big(\hat{\beta}_{rls}\big) &= \big(\hat{\beta}_{ols} - \beta\big) + (X'X)^{-1}R' \left[R(X'X)^{-1}R'\right]^{-1}R\big(\beta - \hat{\beta}_{ols}\big) \\ using \, \hat{\beta}_{ols} - \beta &= (X'X)^{-1}X'u, \, \text{one gets} \, \hat{\beta}_{rls} - E\big(\hat{\beta}_{rls}\big) = A(X'X)^{-1}X'u \, \text{where} \\ A &= I_K - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R. \, \text{It is obvious that A is not symmetric,} \\ i.e., \, A &\neq A'. \, \text{However,} \, A^2 = A, \, \text{since} \end{split}$$

$$\begin{split} A^2 &= I_K - (X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R - (X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R \\ &+ (X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R(X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R \\ &= I_K - (X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1}R = A. \end{split}$$

Therefore,

$$\begin{split} \text{var}\left(\hat{\beta}_{\text{rls}}\right) &= E\left[A(X'X)^{-1}X'uu'X(X'X)^{-1}A'\right] = \sigma^2A(X'X)^{-1}A' \\ &= \sigma^2\left[(X'X)^{-1} - (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1}R(X'X)^{-1} \right. \\ &- (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1}R(X'X)^{-1} \\ &+ (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1}R(X'X)^{-1}R' \\ &\left. \left[R(X'X)^{-1}R'\right]^{-1}R(X'X)^{-1} \right. \\ &= \sigma^2\left[(X'X)^{-1} - (X'X)^{-1}R'\left[R(X'X)^{-1}R'\right]^{-1}R(X'X)^{-1}\right] \end{split}$$

c. Using part (b) and the fact that $var\left(\hat{\beta}_{ols}\right) = \sigma^2(X'X)^{-1}$ gives $var\left(\hat{\beta}_{ols}\right) - var\left(\hat{\beta}_{rls}\right) = \sigma^2(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}$ and this is positive semi-definite, since $R(X'X)^{-1}R'$ is positive definite.

7.13 The Chow Test

a. OLS on (7.47) yields

$$\begin{split} \begin{pmatrix} \hat{\beta}_{1,ols} \\ \hat{\beta}_{2,ols} \end{pmatrix} &= \begin{bmatrix} X_1' X_1 & 0 \\ 0 & X_2' X_2 \end{bmatrix}^{-1} \begin{bmatrix} X_1' y_1 \\ X_2' y_2 \end{bmatrix} \\ &= \begin{bmatrix} \left(X_1' X_1 \right)^{-1} & 0 \\ 0 & \left(X_2' X_2 \right)^{-1} \end{bmatrix} \begin{pmatrix} X_1' y_1 \\ X_2' y_2 \end{pmatrix} = \begin{pmatrix} \left(X_1' X_1 \right)^{-1} X_1' y_1 \\ \left(X_2' X_2 \right)^{-1} X_2' y_2 \end{pmatrix} \end{split}$$

which is OLS on each equation in (7.46) separately.

- **b.** The vector of OLS residuals for (7.47) can be written as $e' = (e'_1, e'_2)$ where $e_1 = y_1 X_1 \hat{\beta}_{1,ols}$ and $e_2 = y_2 X_2 \hat{\beta}_{2,ols}$ are the vectors of OLS residuals from the two equations in (7.46) separately. Hence, the residual sum of squares $= e'e = e'_1e_1 + e'_2e_2 = \text{sum of the residual sum of squares from running } y_i \text{ on } X_i \text{ for } i = 1, 2.$
- c. From (7.47), one can write

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{bmatrix} X_1 \\ 0 \end{bmatrix} \beta_1 + \begin{bmatrix} 0 \\ X_2 \end{bmatrix} \beta_2 + \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}.$$

This has the same OLS fitted values and OLS residuals as $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \gamma_1 + \begin{bmatrix} 0 \\ X_2 \end{bmatrix} \gamma_2 + \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ where $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ X_2 \end{bmatrix}$. This follows from problem 7.1 with $X = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix}$ and $C = \begin{bmatrix} I_K & 0 \\ I_K & I_K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \otimes I_K$ where C is non-singular since $C^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \otimes I_K = \begin{bmatrix} I_K & 0 \\ -I_K & I_K \end{bmatrix}$. Hence, the X matrix in (7.47) is related to that in (7.49) as follows:

$$\begin{bmatrix} X_1 & 0 \\ X_2 & X_2 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix} C$$

and the coefficients are therefore related as follows:

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = C^{-1} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{bmatrix} I_K & 0 \\ -I_K & I_K \end{bmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 - \beta_1 \end{pmatrix}$$

as required in (7.49). Hence, (7.49) yields the same URSS as (7.47). The RRSS sets $(\beta_2 - \beta_1) = 0$ which yields the same regression as (7.48).

7.14 a. The FWL Theorem states that $\hat{\beta}_{2,ols}$ from $\overline{P}_{X_1}y = \overline{P}_{X_1}X_2\beta_2 + \overline{P}_{X_1}u$ will be identical to the estimate of β_2 obtained from Eq. (7.8). Also, the residuals from both regressions will be identical. This means that the RSS from (7.8) given by $y'\overline{P}_Xy = y'y - y'P_Xy$ is identical to that from the above regression. The latter is similarly obtained as

$$y'\overline{P}_{X_1}y - y'\overline{P}_{X_1}\overline{P}_{X_1}X_2 (X_2'\overline{P}_{X_1}X_2)^{-1}X_2'\overline{P}_{X_1}\overline{P}_{X_1}y$$

$$= y'\overline{P}_{X_1}y - y'\overline{P}_{X_1}X_2 (X_2'\overline{P}_{X_1}X_2)^{-1}X_2'\overline{P}_{X_1}y$$

b. For testing H_0 ; $\beta_2=0$, the RRSS = $y'\overline{P}_{X_1}y$ and the URSS is given in part (a). Hence, the numerator of the Chow F-statistics given in (7.45) is given by

$$(RRSS-URSS)/k_2 = y'\overline{P}_{X_1}X_2(X_2'\overline{P}_{X_1}X_2)^{-1}X_2'\overline{P}_{X_1}y/k_2$$

Substituting $y=X_1\beta_1+u$ under the null hypothesis, yields $u'\overline{P}_{X_1}X_2\left(X_2'\overline{P}_{X_1}X_2\right)^{-1}X_2'\overline{P}_{X_1}u/k_2 \text{ since } \overline{P}_{X_1}X_1=0.$

- c. Let $v=X_2'\overline{P}_{X_1}u$. Given that $u\sim N\left(0,\sigma^2I_n\right)$, then v is Normal with mean zero and $var(v)=X_2'\overline{P}_{X_1}var(u)\overline{P}_{X_1}X_2=\sigma^2X_2'\overline{P}_{X_1}X_2$ since \overline{P}_{X_1} is idempotent. Hence, $v\sim N\left(0,\sigma^2X_2'\overline{P}_{X_1}X_2\right)$. Therefore, the numerator of the Chow F-statistic given in part (b) when divided by σ^2 can be written as $v'[var(v)]^{-1}v/k_2$. This is distributed as $\chi^2_{k_2}$ divided by its degrees of freedom k_2 under the null hypothesis. In fact, from part (b), $A=\overline{P}_{X_1}X_2\left(X_2'\overline{P}_{X_1}X_2\right)^{-1}X_2'\overline{P}_{X_1}$ is symmetric and idempotent and of rank equal to its trace equal to k_2 . Hence, by lemma 1, $u'Au/\sigma^2$ is $\chi^2_{k_2}$ under the null hypothesis.
- **d.** The numerator $u'Au/k_2$ is independent of the denominator $(n-k)s^2/(n-k) = u'\overline{P}_Xu/(n-k)$ provided $\overline{P}_XA = 0$ as seen in problem 7.11. This is true because $\overline{P}_X\overline{P}_{X_1} = \overline{P}_X\left(I_n P_{X_1}\right) = \overline{P}_X \overline{P}_XX_1\left(X_1'X_1\right)^{-1}X_1' = \overline{P}_X$ since $\overline{P}_XX_1 = 0$. Hence,

$$\begin{split} \overline{P}_X A &= \overline{P}_X \overline{P}_{X_1} X_2 \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1} X_2' \overline{P}_{X_1} = \overline{P}_X X_2 \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1} X_2' \overline{P}_{X_1} = 0 \\ \text{since } \overline{P}_X X_2 &= 0. \text{ Recall, } \overline{P}_X X = \overline{P}_X [X_1, X_2] = [\overline{P}_X X_1, \overline{P}_X X_2] = 0. \end{split}$$

e. The Wald statistic for H_0 ; $\beta_2=0$ given in (7.41) boils down to replacing R by $[0,I_{k_2}]$ and r by 0. Also, $\hat{\beta}_{mle}$ by $\hat{\beta}_{ols}$ from the unrestricted model given in (7.8) and σ^2 is replaced by its estimate $s^2=URSS/(n-k)$ to make the Wald statistic feasible. This yields $W=\hat{\beta}_2'[R(X'X)^{-1}R']^{-1}\hat{\beta}_2/s^2$. From problem 7.2, we showed that the partitioned inverse of X'X yields $B_{22}=(X_2'\overline{P}_{X_1}X_2)^{-1}$ for its second diagonal (k_2xk_2) block. Hence,

$$R(X'X)^{-1}R' = [0,I_{k_2}] \, (X'X)^{-1} \left[\begin{matrix} 0 \\ I_{k_2} \end{matrix} \right] = B_{22} = \left(X_2' \overline{P}_{X_1} X_2 \right)^{-1}.$$

Also, from problem 7.2, $\hat{\beta}_{2,ols} = (X_2' \overline{P}_{X_1} X_2)^{-1} X_2' \overline{P}_{X_1} y = (X_2' \overline{P}_{X_1} X_2)^{-1} X_2' \overline{P}_{X_1} u$ after substituting $y = X_1 \beta_1 + u$ under the null hypothesis and using

 $\overline{P}_{X_1}X_1=0$. Hence,

$$s^{2}W = u'\overline{P}_{X_{1}}X_{2} (X_{2}'\overline{P}_{X_{1}}X_{2})^{-1} (X_{2}'\overline{P}_{X_{1}}X_{2}) (X_{2}'\overline{P}_{X_{1}}X_{2})^{-1} X_{2}'\overline{P}_{X_{1}}u$$

$$= u'\overline{P}_{X_{1}}X_{2} (X_{2}'\overline{P}_{X_{1}}X_{2})^{-1} X_{2}'\overline{P}_{X_{1}}u$$

which is exactly k₂ times the expression in part (b), i.e., the numerator of the Chow F-statistic.

f. The restricted MLE of β is $(\hat{\beta}'_{1,rls}, 0')$ since $\beta_2 = 0$ under the null hypothesis. Hence the score form of the LM test given in (7.44) yields

$$\left(y-X_1\hat{\beta}_{1,\text{rls}}\right)'X(X'X)^{-1}X'\left(y-X_1\hat{\beta}_{1,\text{rls}}\right)\bigg/\sigma^2.$$

In order to make this feasible, we replace σ^2 by $\tilde{s}^2 = RRSS/(n-k_1)$ where RRSS is the restricted residual sum of squares from running y on X_1 . But this expression is exactly the regression sum of squares from running $(y-X_1\hat{\beta}_{1,rls})/\tilde{s}$ on the matrix X. In order to see this, the regression sum of squares of y on X is usually $y'P_xy$. Here, y is replaced by $(y-X_1\hat{\beta}_{1,rls})/\tilde{s}$.

- **7.15** Iterative Estimation in Partitioned Regression Models. This is based on Baltagi (1996).
 - **a.** The least squares residuals of y on X_1 are given by $\overline{P}_{X_1}y$, where $\overline{P}_{X_1} = I P_{X_1}$ and $P_{X_1} = X_1 \left(X_1' X_1 \right)^{-1} X_1'$. Regressing these residuals on x_2 yields $b_2^{(1)} = \left(x_2' x_2 \right)^{-1} x_2' \overline{P}_{X_1} y$. Substituting for y from (7.8) and using $\overline{P}_{X_1} X_1 = 0$ yields $b_2^{(1)} = \left(x_2' x_2 \right)^{-1} x_2' \overline{P}_{X_1} (x_2 \beta_2 + u)$ with

$$E\left(b_{2}^{(1)}\right)=\left(x_{2}^{\prime}x_{2}\right)^{-1}x_{2}^{\prime}\overline{P}_{X_{1}}x_{2}\beta_{2}=\beta_{2}-\left(x_{2}^{\prime}x_{2}\right)^{-1}x_{2}^{\prime}P_{X_{1}}x_{2}\beta_{2}=(1-a)\beta_{2}$$

where $a=\left(x_2'P_{X_1}x_2\right)/\left(x_2'x_2\right)$ is a scalar, with $0\leq a<1.$ $a\neq 1$ as long as x_2 is linearly independent of X_1 . Therefore, the bias $\left(b_2^{(1)}\right)=-a\beta_2$.

$$\begin{aligned} \textbf{b.} \ \ b_1^{(1)} &= \left(X_1' X_1 \right)^{-1} X_1' \left(y - x_2 b_2^{(1)} \right) = \left(X_1' X_1 \right)^{-1} X_1' \left(I - P_{x_2} \overline{P}_{X_1} \right) y \text{ and} \\ b_2^{(2)} &= \left(x_2' x_2 \right)^{-1} x_2' \left(y - X_1 b_1^{(1)} \right) = \left(x_2' x_2 \right)^{-1} x_2' \left[I - P_{X_1} \left(I - P_{x_2} \overline{P}_{X_1} \right) \right] y \\ &= \left(x_2' x_2 \right)^{-1} x_2' \left[\overline{P}_{X_1} + P_{X_1} P_{x_2} \overline{P}_{X_1} \right] y = (1 + a) b_2^{(1)}. \end{aligned}$$

Similarly,

$$\begin{split} b_1^{(2)} &= \left(X_1' X_1 \right)^{-1} X_1' \left(y - x_2 b_2^{(2)} \right) = \left(X_1' X_1 \right)^{-1} X_1' \left(y - (1+a) x_2 b_2^{(1)} \right) \\ b_2^{(3)} &= \left(x_2' x_2 \right)^{-1} x_2' \left(y - X_1 b_1^{(2)} \right) \\ &= \left(x_2' x_2 \right)^{-1} x_2' \left[y - P_{X_1} \left(y - (1+a) x_2 b_2^{(1)} \right) \right] \\ &= b_2^{(1)} + (1+a) \left(x_2' x_2 \right)^{-1} x_2' P_{X_1} x_2 b_2^{(1)} = (1+a+a^2) b_2^{(1)}. \end{split}$$

By induction, one can infer that

$$b_2^{(j+1)} = (1+a+a^2+..+a^j)b_2^{(1)} \quad \text{for} \quad j=0,1,2,\dots$$

Therefore,

$$E\left(b_2^{(j+1)}\right) = (1 + a + a^2 + ... + a^j)E\left(b_2^{(1)}\right)$$
$$= (1 + a + a^2 + ... + a^j)(1 - a)\beta_2 = (1 - a^{j+1})\beta_2$$

and the bias $\left(b_2^{(j+1)}\right) = -a^{j+1}\beta_2$ tends to zero as $j \to \infty$, since |a| < 1.

c. Using the Frisch-Waugh-Lovell Theorem, least squares on the original model yields

$$\begin{split} \hat{\beta}_2 &= \left(x_2' \overline{P}_{X_1} x_2\right)^{-1} x_2' \overline{P}_{X_1} y = \left(x_2' x_2 - x_2' P_{X_1} x_2\right)^{-1} x_2' \overline{P}_{X_1} y \\ &= (1-a)^{-1} \left(x_2' x_2\right)^{-1} x_2' \overline{P}_{X_1} y = b_2^{(1)} \big/ (1-a). \end{split}$$
 As $j \to \infty$, $\lim b_2^{(j+1)} = \left(\sum_{j=0}^\infty a^j\right) b_2^{(1)} = b_2^{(1)} \big/ (1-a) = \hat{\beta}_2. \end{split}$

7.16 *Maddala* (1992, pp. 120–127).

a. For H_o ; $\beta=0$, the RRSS is based on a regression of y_i on a constant. This yields $\hat{\alpha}=\overline{y}$ and the RRSS $=\sum_{i=1}^n(y_i-\overline{y})^2=$ usual TSS. The URSS is the usual least squares residual sum of squares based on estimating α and β . The

log-likelihood in this case is given by

$$\log L(\alpha, \beta, \sigma^2) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta X_i)^2$$

with the unrestricted MLE of α and β yielding $\hat{\alpha}_{ols}=\overline{y}-\hat{\beta}_{ols}\overline{X}$ and

$$\hat{\beta}_{ols} = \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right) y_{i} \Big/ \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

and $\hat{\sigma}_{mle}^2 = URSS/n.$ In this case, the unrestricted log-likelihood yields

$$\begin{split} logL\left(\hat{\alpha}_{mle},\hat{\beta}_{mle},\hat{\sigma}_{mle}^2\right) &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \hat{\sigma}_{mle}^2 - \frac{URSS}{(2URSS/n)} \\ &= -\frac{n}{2}\log 2\pi - \frac{n}{2} - \frac{n}{2}\log(URSS/n). \end{split}$$

Similarly, the restricted MLE yields $\hat{\alpha}_{rmle}=\overline{y}$ and $\hat{\beta}_{rmle}=0$ and

$$\hat{\sigma}_{rmle}^2 = RRSS/n = \sum_{i=1}^n \left(y_i - \overline{y}\right)^2/n.$$

The restricted log-likelihood yields

$$\begin{split} \log L\left(\hat{\alpha}_{rmle},\hat{\beta}_{rmle},\hat{\sigma}_{rmle}^2\right) &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \hat{\sigma}_{rmle}^2 - \frac{RRSS}{(2RRSS/n)} \\ &= -\frac{n}{2}\log 2\pi - \frac{n}{2} - \frac{n}{2}\log(RRSS/n). \end{split}$$

Hence, the LR test is given by

$$LR = n(log RRSS-logURSS) = n log(RRSS/URSS)$$
$$= nlog(TSS/RSS) = n log(1/1 - r^2)$$

where TSS and RSS are the total and residual sum of squares from the unrestricted regression. By definition $R^2=1-(RSS/TSS)$ and for the simple regression $r_{XY}^2=R^2$ of that regression, see Chap. 3.

b. The Wald statistic for H_o ; $\beta = 0$ is based upon $r\left(\hat{\beta}_{mle}\right) = (\hat{\beta}_{mle} - 0)$ and $R\left(\hat{\beta}_{mle}\right) = 1$ and from (7.40), we get $W = \hat{\beta}_{mle}^2/var\left(\hat{\beta}_{mle}\right) = \hat{\beta}_{ols}^2/var(\hat{\beta}_{ols})$.

This is the square of the usual t-statistic for $\beta = 0$ with $\hat{\sigma}_{mle}^2$ used instead of s^2 in estimating σ^2 . Using the results in Chap. 3, we get

$$W = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} / \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}}{\hat{\sigma}_{mle}^{2} / \left(\sum_{i=1}^{n} x_{i}^{2}\right)} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}}{\hat{\sigma}_{mle}^{2} \sum_{i=1}^{n} x_{i}^{2}}$$

with $\hat{\sigma}_{mle}^2 = URSS/n = TSS(1-R^2)/n$ from the definition of $R^2.$ Hence,

$$W = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}}{\left(\sum_{i=1}^{n} y_{i}^{2}\right)\left(\sum_{i=1}^{n} x_{i}^{2}\right)(1 - R^{2})} = \frac{nr^{2}}{1 - r^{2}}$$

using the definition of $r_{XY}^2 = r^2 = R^2$ for the simple regression.

- c. The LM statistic given in (7.43) is based upon LM = $\hat{\beta}_{ols}^2/\hat{\sigma}_{mle}^2\left(\sum_{i=1}^n x_i^2\right)$. This is the t-statistic on $\beta=0$ using $\hat{\sigma}_{mle}^2$ as an estimate for σ^2 . In this case, $\hat{\sigma}_{mle}^2=RRSS/n=\sum_{i=1}^n y_i^2/n$. Hence, LM = $n\left(\sum_{i=1}^n x_i y_i\right)^2/\sum_{i=1}^n y_i^2$. $\sum_{i=1}^n x_i^2=nr^2$ from the definition of $r_{XY}^2=r^2$.
- **d.** Note that from part (b), we get $W/n = r^2/(1-r^2)$ and $1 + (W/n) = 1/(1-r^2)$. Hence, from part (a), we have $(LR/n) = \log(1/1-r^2) = \log[1 + (W/n)]$.

From part (c), we get (LM/n) = (W/n)/[1 + (W/n)]. Using the inequality $x \ge \log(1+x) \ge x/(1+x)$ with x = W/n we get $W \ge LR \ge LM$.

e. From Chap. 3, R^2 of the regression of logC on logP is 0.2913 and n=46. Hence, $W=nr^2/1-r^2=(46)(0.2913)/(0.7087)=18.91$,

$$LM = nr^2 = (46)(0.2913) = 13.399$$

and LR = $n \log(1/1 - r^2) = 46 \log(1/0.7087) = 46 \log(1.4110342) = 15.838$. It is clear that W > LR > LM in this case.

7.17 Engle (1984, pp. 785–786).

a. For the Bernoulli random variable y_t with probability of success θ , the log-likelihood function is given by $\log L(\theta) = \sum_{t=1}^{T} [y_t \log \theta + (1-y_t) \log(1-\theta)]$.

The score is given by

$$\begin{split} S(\theta) &= \partial \log L(\theta) / \partial \theta = \sum_{t=1}^{T} y_t / \theta - \sum_{t=1}^{T} (1 - y_t) / (1 - \theta) \\ &= \left[\sum_{t=1}^{T} y_t - \theta \sum_{t=1}^{T} y_t - \theta T + \theta \sum_{t=1}^{T} y_t \right] / \theta (1 - \theta) \\ &= \sum_{t=1}^{T} (y_t - \theta) / \theta (1 - \theta) \end{split}$$

The MLE is given by setting $S(\theta) = 0$ giving $\hat{\theta}_{mle} = \sum_{t=1}^{T} y_t / T = \overline{y}$.

Now
$$\partial^2 \log L(\theta)/\partial \theta^2 = \left[-T\theta(1-\theta) - \sum_{t=1}^T (y_t - \theta)(1-2\theta) \right]/\theta^2(1-\theta)^2.$$

Therefore, the information matrix is

$$\begin{split} I(\theta) &= -E\left[\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right] = \left(T\theta(1-\theta) + (1-2\theta)\sum_{t=1}^T \left[E(y_t) - \theta\right]\right) / \\ \theta^2(1-\theta^2) &= T/\theta(1-\theta). \end{split}$$

b. For testing H_o ; $\theta = \theta_o$ versus H_A ; $\theta \neq \theta_o$, the Wald statistic given in (7.40) has $r(\theta) = \theta - \theta_o$ and $R(\theta) = 1$ with $I^{-1}\left(\hat{\theta}_{mle}\right) = \hat{\theta}_{mle}(1 - \hat{\theta}_{mle})/T$. Hence,

$$W = T \left(\hat{\theta}_{mle} - \theta_o \right)^2 \middle/ \hat{\theta}_{mle} \left(1 - \hat{\theta}_{mle} \right) = T (\overline{y} - \theta_o)^2 / \overline{y} (1 - \overline{y}).$$

The LM statistic given in (7.42) has $S(\theta_o) = T(\overline{y} - \theta_o)/\theta_o(1 - \theta_o)$ and $I^{-1}(\theta_o) = \theta_o(1 - \theta_o)/T$. Hence,

$$LM = \frac{T^2(\overline{y} - \theta_o)^2}{[\theta_o(1 - \theta_o)]^2} \cdot \frac{\theta_o(1 - \theta_o)}{T} = \frac{T(\overline{y} - \theta_o)^2}{\theta_o(1 - \theta_o)}.$$

The unrestricted log-likelihood is given by

$$\begin{split} \log L\left(\hat{\theta}_{mle}\right) &= \log L(\overline{y}) = \sum_{t=1}^{T} \left[y_t \log \overline{y} + (1-y_t) \log (1-\overline{y}) \right] \\ &= T \overline{y} \log \overline{y} + T(1-\overline{y}) \log (1-\overline{y}). \end{split}$$

The restricted log-likelihood is given by

$$\begin{split} \log L(\theta_o) &= \sum_{t=1}^T \left[y_t \log \theta_o + (1-y_t) \log (1-\theta_o) \right] \\ &= T \overline{y} \log \theta_o + T (1-\overline{y}) \log (1-\theta_o). \end{split}$$

Hence, the likelihood ratio test gives

$$\begin{split} LR &= 2T\overline{y}(\log\overline{y} - \log\theta_o) + 2T(1-\overline{y})\left[\log(1-\overline{y}) - \log(1-\theta_o)\right] \\ &= 2T\overline{y}\log(\overline{y}/\theta_o) + 2T(1-\overline{y})\log\left[(1-\overline{y})/(1-\theta_o)\right]. \end{split}$$

All three statistics have a limiting χ_1^2 distribution under H_o . Each statistic will reject when $(\bar{y} - \theta_o)^2$ is large. Hence, for finite sample exact results one can refer to the binomial distribution and compute exact critical values.

7.18 For the regression model

$$y = X\beta + u \quad \text{with} \quad u \sim N(0, \sigma^2 I_T).$$

$$\begin{split} \textbf{a.} \ \ L(\beta,\sigma^2) &= (1/2\pi\sigma^2)^{T/2} \exp\left\{-(y-X\beta)'(y-X\beta)/2\sigma^2\right\} \\ &\log L = -(T/2)(\log 2\pi + \log \sigma^2) - (y-X\beta)'(y-X\beta)/2\sigma^2 \\ &\partial \log L/\partial\beta = -(-2X'y+2X'X\beta)/2\sigma^2 = 0 \\ &\text{so that } \hat{\beta}_{mle} = (X'X)^{-1}X'y \text{ and } \partial \log L/\partial\sigma^2 = -T/2\sigma^2 + \hat{u}'\hat{u}/2\sigma^4 = 0. \\ &\text{Hence, } \hat{\sigma}_{mle}^2 = \hat{u}'\hat{u}/T \qquad (\text{where } \hat{u} = y-X\hat{\beta}_{mle}). \end{split}$$

b. The score for β is $S(\beta) = \partial \log L(\beta)/\partial \beta = (X'y - X'X\beta)/\sigma^2.$

The Information matrix is given by

$$I(\beta,\sigma^2) = -E \left[\frac{\partial^2 \log L}{\partial (\beta,\sigma^2) \partial (\beta,\sigma^2)'} \right] = -E \left[-\frac{X'X}{\sigma^2} - \frac{X'y - X'X\beta}{\sigma^4} - \frac{X'y - X'X\beta}{\sigma^4} - \frac{(y - X\beta)'(y - X\beta)}{\sigma^6} \right]$$

since
$$E(X'y - X'X\beta) = X'E(y - X\beta) = 0$$
 and $E(y - X\beta)'(y - X\beta) = T\sigma^2$

$$I(\beta, \sigma^2) = \begin{bmatrix} \frac{X'X}{\sigma^2} & 0\\ 0 & \frac{T}{2\sigma^4} \end{bmatrix}$$

which is block-diagonal and also given in (7.19).

c. The Wald statistic given in (7.41) needs

$$\begin{split} r(\beta) &= \beta_1 - \beta_1^0 \\ R(\beta) &= [I_{k_1}, 0] \\ W &= \left(\hat{\beta_1} - \beta_1^0\right)' \left[\left(I_{k_1}, 0\right) \hat{\sigma}^2 (X'X)^{-1} \begin{pmatrix} I_{k_1} \\ 0 \end{pmatrix} \right]^{-1} \left(\hat{\beta}_1 - \beta_1^0\right) \end{split}$$
 with

$$(X'X)^{-1} = \begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

and

$$a = (X'_1 X_1 - X'_1 X_2 (X'_2 X_2)^{-1} X'_2 X_1)^{-1}$$

$$= [X'_1 [I - X_2 (X'_2 X_2)^{-1} X'_2] X_1]^{-1} = [X'_1 \overline{P}_{X_2} X_1]^{-1}$$

by partitioned inverse. Therefore,

$$W = \left(\beta_1^0 - \hat{\beta}_1\right)' \left[X_1' \overline{P}_{X_2} X_1\right] \left(\beta_1^0 - \hat{\beta}_1\right) / \hat{\sigma}^2$$

as required. For the LR statistic $LR = -2 \left(\log L_r^* - \log L_u^* \right)$ where L_r^* is the restricted likelihood and L_u^* is the unrestricted likelihood.

$$\begin{split} LR &= -2 \left[\left(-\frac{T}{2} - \frac{T}{2} \log 2\pi - \frac{T}{2} \log \left(\frac{RRSS}{T} \right) \right) \right. \\ &\left. - \left(-\frac{T}{2} - \frac{T}{2} \log 2\pi - \frac{T}{2} \log \left(\frac{URSS}{T} \right) \right) \right] \\ &= T \, \log(RRSS/URSS) = T \log \left[\frac{\tilde{u}'\tilde{u}}{\hat{u}'\tilde{u}} \right] \end{split}$$

For the LM statistic, the score version is given in (7.42) as

$$LM = S(\tilde{\beta})' I^{-1} (\tilde{\beta}) S (\tilde{\beta})$$

where

$$\tilde{\sigma}^2 S\left(\tilde{\beta}_2\right) = \begin{bmatrix} \tilde{\sigma}^2 S_1\left(\tilde{\beta}_2\right) \\ \tilde{\sigma}^2 S_2\left(\tilde{\beta}_2\right) \end{bmatrix} = \begin{bmatrix} X_1'\left(y - X\tilde{\beta}\right) \\ X_2'\left(y - X\tilde{\beta}\right) \end{bmatrix}.$$

The restriction on β_1 is $(\beta_1 = \beta_1^0)$, but there are no restrictions on β_2 . Note that $\tilde{\beta}_2$ can be obtained from the regression of $(y - X_1\beta_1^0)$ on X_2 . This yields

$$\tilde{\beta}_2 = \left(X_2'X_2\right)^{-1}X_2'\left(y - X_1\beta_1^0\right).$$

Therefore,

$$\begin{split} \tilde{\sigma}^2 S_2 \left(\tilde{\beta}_2 \right) &= X_2' \left(y - X \tilde{\beta} \right) = X_2' y - X_2' X_1 \beta_1^0 - X_2' X_2 \; \tilde{\beta}_2 \\ &= X_2' y - X_2' X_1 \beta_1^0 - X_2' y + X_2' X_1 \beta_1^0 = 0. \end{split}$$

Hence, $LM = S_1\left(\tilde{\beta}\right)'I^{11}\left(\tilde{\beta}\right)S_1\left(\tilde{\beta}\right)$ where $I^{11}(\beta)$ is obtained from the partitioned inverse of $I^{-1}(\beta)$. Since $S_1\left(\tilde{\beta}\right) = X_1'\left(y - X\tilde{\beta}\right)\Big/\tilde{\sigma}^2 = X_1'\tilde{u}/\tilde{\sigma}^2$ and $I^{-1}(\tilde{\beta}) = \tilde{\sigma}^2(X'X)^{-1}$ with $I^{11}\left(\tilde{\beta}\right) = \tilde{\sigma}^2\left[X_1'\overline{P}_{X_2}X_1\right]^{-1}$ we get

$$LM = \tilde{u}'X_1 \left[X_1' \overline{P}_{X_2} X_1 \right]^{-1} X_1' \tilde{u} / \tilde{\sigma}^2$$

$$\begin{aligned} \textbf{d.} \ \ W &= \left(\beta_1^o - \hat{\beta}_1\right)' \left[X_1' \overline{P}_{X_2} X_1\right] \left(\beta_1^o - \hat{\beta}_1\right) / \hat{\sigma}^2 \\ &= \left(\beta_1^o - \hat{\beta}_1\right)' \left[R \left(X'X\right)^{-1} R'\right]^{-1} \left(\beta_1^o - \hat{\beta}_1\right) / \hat{\sigma}^2 \\ &= \left(r - R\hat{\beta}\right)' \left[R \left(X'X\right)^{-1} R'\right]^{-1} \left(r - R\hat{\beta}\right) / \hat{\sigma}^2. \end{aligned}$$

From (7.39) we know that $\tilde{u}'\tilde{u} - \hat{u}'\hat{u} = \left(r - R\hat{\beta}\right)' \left[R(X'X)^{-1}R'\right]^{-1} \left(r - R\hat{\beta}\right)$. Also, $\hat{\sigma}^2 = \hat{u}'\hat{u}/T$. Therefore, $W = T(\tilde{u}'\tilde{u} - \hat{u}'\hat{u})/\hat{u}'\hat{u}$ as required.

$$LM = \tilde{\mathbf{u}}' \mathbf{X}_1 \left[\mathbf{X}_1' \overline{\mathbf{P}}_{\mathbf{X}_2} \mathbf{X}_1 \right]^{-1} \mathbf{X}_1' \tilde{\mathbf{u}} / \tilde{\sigma}^2$$

From (7.43) we know that LM = $(r - R\tilde{\beta})'[R(X'X)^{-1}R']^{-1}(r - R\tilde{\beta})/\tilde{\sigma}^2$ and $\tilde{\sigma}^2 = \tilde{u}'\tilde{u}/T$. Using (7.39) we can rewrite this as LM = $T(\tilde{u}'\tilde{u} - \hat{u}'\hat{u})/\tilde{u}'\tilde{u}$ as required. Finally,

$$LR = T \ \log \left(\tilde{u}' \tilde{u} / \hat{u}' \hat{u} \right) = T \ \log \left(1 + \frac{ \left(\tilde{u}' \tilde{u} - \hat{u}' \hat{u} \right) }{ \hat{u}' \hat{u} } \right) = T \ \log (1 + W/T).$$

Also, W/LM =
$$\frac{\tilde{u}'\tilde{u}}{\hat{u}'\hat{u}}$$
 = 1 + W/T. Hence, LM = W/(1 + W/T) and from (7.45)

$$((\mathbf{T} - \mathbf{k})/\mathbf{T}) \cdot \mathbf{W}/\mathbf{k}_1 = \frac{(\tilde{\mathbf{u}}'\tilde{\mathbf{u}} - \hat{\mathbf{u}}'\hat{\mathbf{u}})/\mathbf{k}_1}{\hat{\mathbf{u}}'\hat{\mathbf{u}}/\mathbf{T} - \mathbf{k}} \sim F_{k_1, T-k}$$

Using the inequality $x \ge \log(1+x) \ge x/(1+x)$ with x = W/T we get $(W/T) \ge \log(1+W/T) \ge (W/T)/(1+W/T)$ or $(W/T) \ge (LR/T) \ge (LM/T)$ or $W \ge LR \ge LM$. However, it is important to note that all the statistics are monotonic functions of the F-statistic and exact tests for each would produce identical critical regions.

e. For the cigarette consumption data given in Table 3.2 the following test statistics were computed for H_0 : $\beta = -1$

Wald =
$$1.16 > LR = 1.15 > LM = 1.13$$

and the SAS program that produces these results is given below.

f. The Wald statistic for H_0^A ; $\beta = -1$ yields 1.16, for H_0^B ; $\beta^5 = -1$ yields 0.43 and for H_0^C ; $\beta^{-5} = -1$ yields 7.89. The SAS program that produces these results is given below.

SAS PROGRAM

```
Data CIGARETT;
Input OBS STATE $ LNC LNP LNY;
Cards;
```

Proc IML; Use CIGARETT; Read all into Temp;

N=NROW(TEMP); ONE=Repeat(1,N,1); Y=Temp[,2]; X=ONE||Temp[,3]||Temp[,4]; BETA_U=INV(X`*X)*X`*yY; R={0 1 0}; Ho=BETA_U[2,]+1;

BETA_R=BETA_U+INV(X`*X)*R`*INV(R*yINV(X`*X)*R`)*Ho; ET_U=Y-X*BETA_U;

```
ET_R=Y-X*BETA_R:
SIG_U=(ET_U`*ET_U)/N;
SIG_R=(ET_R`*ET_R)/N;
X1=X[,2];
X2=X[,1]||X[,3];
Q_X2=I(N)-X2*INV(X2`*X2)*X2`;
VAR_D=SIG_U*INV(X1`*Q_X2*X1);
WALD=Ho `*INV(VAR_D)*Ho;
LR=N*LOG(1+(WALD/N));
LM=(ET_R`*X1*INV(X1`*Q_X2*X1)*X1`*ET_R)/SIG_R;
   *WALD=N* (ET_R`*ET_R-ET_U`*ET_U)/(ET_U`*ET_U);
   *LR=N*Log(ET_R`*ET_R/(ET_U`*ET_U));
   *LM=N*(ET_R`*ET_R-ET_U`*ET_U)/(ET_R`*ET_R);
PRINT 'Chapter 7 Problem 18. (e)',, WALD;
PRINT LR:
PRINT LM;
BETA=BETA_U[2,];
H1=BETA+1;
H2=BETA**5+1;
H3=BETA^{**}(-5)+1;
VAR_D1=SIG_U*INV(X1*Q_X2*X1);
VAR_D2=(5*BETA**4)*VAR_D1*(5*BETA**4);
VAR_D3=(-5*BETA**(-6))*VAR_D1*(-5*BETA**(-6));
WALD1=H1`*INV(VAR_D1)*H1;
WALD2=H2`*INV(VAR_D2)*H2;
WALD3=H3`*INV(VAR_D3)*H3;
PRINT 'Chapter 7 Problem 18.(f)',, WALD1;
PRINT WALD2;
PRINT WALD3;
```

7.19 *Gregory and Veall* (1985).

a. For $H^A: \beta_1 - 1/\beta_2 = 0$, we have $r^A(\beta) = \beta_1 - 1/\beta_2$ and $\beta' = (\beta_0, \beta_1, \beta_2)$. In this case, $R^A(\beta) = (0, 1, 1/\beta_2^2)$ and the unrestricted MLE is OLS on (7.50) with variance–covariance matrix $\hat{V}(\hat{\beta}_{ols}) = \hat{\sigma}^2(X'X)^{-1}$ where $\hat{\sigma}_{mle}^2 = URSS/n$. Let v_{ij} denote the corresponding elements of $\hat{V}(\hat{\beta}_{ols})$ for i, j = 0,1,2. Therefore,

$$\begin{split} W^{A} &= \left(\hat{\beta}_{1} - 1/\hat{\beta}_{2}\right) \left[\left(0, 1, 1/\hat{\beta}_{2}^{2}\right) \hat{V}\left(\hat{\beta}_{ols}\right) \left(0, 1, 1/\hat{\beta}_{2}^{2}\right)'\right]^{-1} \left(\hat{\beta}_{1} - 1/\hat{\beta}_{2}\right) \\ &= \left(\hat{\beta}_{1}\hat{\beta}_{2} - 1\right)^{2} / \left(\hat{\beta}_{2}^{2} v_{11} + 2v_{12} + v_{22}/\hat{\beta}_{2}^{2}\right) \end{split}$$

as required in (7.52). Similarly, for H^B ; $\beta_1\beta_2-1=0$, we have $r^B(\beta)=\beta_1\beta_2-1$.

In this case, $R^B(\beta) = (0, \beta_2, \beta_1)$ and

$$\begin{split} W^B &= \left(\hat{\beta}_1 \hat{\beta}_2 - 1\right) \left[\left(0, \hat{\beta}_2, \hat{\beta}_1\right) \; \hat{V} \left(\hat{\beta}_{ols}\right) \left(0, \hat{\beta}_2, \hat{\beta}_1\right)' \right]^{-1} \left(\hat{\beta}_1 \hat{\beta}_2 - 1\right) \\ &= \left(\hat{\beta}_1 \hat{\beta}_2 - 1\right)^2 \left/ \left(\hat{\beta}_2^2 v_{11} + 2\hat{\beta}_1 \hat{\beta}_2 \; v_{12} + \hat{\beta}_1^2 \; v_{22}\right) \end{split}$$

as required in (7.53).

7.20 *Gregory and Veall* (1986).

a. From (7.51), we get $W = r(\hat{\beta}_{ols})'[R(\hat{\beta}_{ols})\hat{\sigma}^2(X'X)^{-1}R(\hat{\beta}_{ols})']^{-1}r(\hat{\beta}_{ols})$. For H^A ; $\beta_1\rho + \beta_2 = 0$, we have $r(\beta) = \beta_1\rho + \beta_2$ and $R(\beta) = (\beta_1, \rho, 1)$ where $\beta' = (\rho, \beta_1, \beta_2)$. Hence,

$$W^A = \left(\hat{\beta}_1\hat{\rho} + \hat{\beta}_2\right) \left[\left(\hat{\beta}_1, \hat{\rho}, 1\right) \hat{\sigma}^2 (X'X)^{-1} \left(\hat{\beta}_1, \hat{\rho}, 1\right)' \right]^{-1} \left(\hat{\beta}_1\hat{\rho} + \hat{\beta}_2\right)$$

Where the typical element of the matrix are $[y_{t-1}, x_t, x_{t-1}]$. For H^B ; $\beta_1 + (\beta_2/\rho) = 0$, we have $r(\beta) = \beta_1 + (\beta_2/\rho)$ and

$$R(\beta) = \left(-\frac{\beta_2}{\rho^2}, 1, \frac{1}{\rho}\right)$$
. Hence,

$$\begin{split} W^B &= \left(\hat{\beta}_1 + \hat{\beta}_2/\hat{\rho}\right) \left[\left(-\frac{\hat{\beta}_2}{\hat{\rho}^2}, 1, \frac{1}{\hat{\rho}} \right) \hat{\sigma}^2 (X'X)^{-1} \left(-\frac{\hat{\beta}_2}{\hat{\rho}^2}, 1, \frac{1}{\hat{\rho}} \right)' \right]^{-1} \\ & \left(\hat{\beta}_1 + \hat{\beta}_2/\hat{\rho} \right). \end{split}$$

For H^C ; $\rho + (\beta_2/\beta_1) = 0$, we have

$$r(\beta) = \rho + \beta_2/\beta_1 \qquad \text{and} \qquad R(\beta) = \left(1, -\frac{\beta_2}{\beta_1^2}, \frac{1}{\beta_1}\right).$$

Hence,

$$\begin{split} W^C &= \left(\hat{\rho} + \hat{\beta}_2 \big/ \hat{\beta}_1\right) \left[\left(1, -\frac{\hat{\beta}_2}{\hat{\beta}_1^2}, \frac{1}{\hat{\beta}_1}\right) \hat{\sigma}^2 (X'X)^{-1} \left(1, -\frac{\hat{\beta}_2}{\hat{\beta}_1^2}, \frac{1}{\hat{\beta}_1}\right)' \right]^{-1} \\ & \left(\hat{\rho} + \frac{\hat{\beta}_2}{\hat{\beta}_1}\right). \end{split}$$

for H^D , $(\beta_1 \rho/\beta_2) + 1 = 0$, we have

$$r(\beta) = (\beta_1 \rho/\beta_2) + 1 \qquad \text{and} \qquad R(\beta) = \left(\frac{\beta_1}{\beta_2}, \frac{\rho}{\beta_2}, -\frac{\beta_1 \rho}{\beta_2^2}\right).$$

Hence,

$$W^{D} = \left(\frac{\hat{\beta}_{1}\hat{\rho}}{\hat{\beta}_{2}} + 1\right) \left[\left(\frac{\hat{\beta}_{1}}{\hat{\beta}_{2}}, \frac{\hat{\rho}}{\hat{\beta}_{2}}, -\frac{\hat{\beta}_{1}\hat{\rho}}{\hat{\beta}_{2}^{2}}\right) \hat{\sigma}^{2} (X'X)^{-1} \left(\frac{\hat{\beta}_{1}}{\hat{\beta}_{2}}, \frac{\hat{\rho}}{\hat{\beta}_{2}}, -\frac{\hat{\beta}_{1}\hat{\rho}}{\hat{\beta}_{2}^{2}}\right)' \right]^{-1}$$

$$\left(\frac{\hat{\beta}_{1}\hat{\rho}}{\hat{\beta}_{2}} + 1\right).$$

b. Apply these four Wald statistics to the equation relating real per-capita consumption to real per-capita disposable income in the U.S. over the post World War II period 1959–2007. The SAS program that generated these Wald statistics is given below

SAS PROGRAM

```
Data CONSUMP:
Input YEAR Y C;
cards:
PROC IML; USE CONSUMP;
READ ALL VAR {Y C};
Yt=Y[2:NROW(Y)];
YLAG=Y[1:NROW(Y)-1];
Ct=C[2:NROW(C)];
CLAG=C[1:NROW(C)-1];
X=CLAG || Yt || YLAG;
BETA=INV(X`*X)*X`*Ct;
RH0=BETA[1];
BT1=BETA[2];
BT2=BETA[3];
Px=X*INV(X^*X)*X^*;
Qx=I(NROW(X))-Px;
et_U=Qx*Ct;
SIG_U=SSQ(et_U)/NROW(X);
Ha=BT1*RHO+BT2;
Hb=BT1+BT2/RHO;
Hc=RHO+BT2/BT1;
Hd=BT1*RHO/BT2+1;
Ra=BT1 || RHO || {1};
Rb=(-BT2/RHO**2) || {1} || (1/RHO);
Rc={1} || (-BT2/BT1**2) || (1/BT1);
Rd=(BT1/BT2) || (RHO/BT2) || (-BT1*RHO/BT2**2);
VAR_a=Ra*SIG_U*INV(X`*X)*Ra`;
VAR_b=Rb*SIG_U*INV(X`*X)*Rb`;
```

VAR_c=Rc*SIG_U*INV(X`*X)*Rc`; VAR_d=Rd*SIG_U*INV(X`*X)*Rd`;

WALD_a=Ha`*INV(VAR_a)*Ha;

WALD_b=Hb`*INV(VAR_b)*Hb;

WALD_c=Hc`*INV(VAR_c)*Hc;

WALD_d=Hd`*INV(VAR_d)*Hd;

PRINT 'Chapter 7 Problem 20. (b)',, WALD_a;

PRINT WALD_b;

PRINT WALD_c;

PRINT WALD_d;

7.21 Effect of Additional Regressors on R^2 . For the regression equation $y = X\beta + u$ the OLS residuals are given by $e = y - X\hat{\beta}_{ols} = \bar{P}_X y$ where $\bar{P}_X = I_n - P_X$, and $P_X = X(X'X)^{-1}X'$ is the projection matrix. Therefore, the SSE for this regression is $e'e = y'\bar{P}_X y$. In particular, $SSE_1 = y'\bar{P}_{X_1} y$, for $X = X_1$ and $SSE_2 = y'\bar{P}_X y$ for $X = (X_1, X_2)$. Therefore,

$$SSE_1 - SSE_2 = y'(\overline{P}_{X_1} - \overline{P}_{X_2})y = y'(P_X - P_{X_1})y = y'Ay$$

where $A = P_X - P_{X_1}$. This difference in the residual sums of squares is non-negative for any vector y because y'Ay is positive semi-definite. The latter result holds because A is symmetric and idempotent. In fact, A is the difference between two idempotent matrices that also satisfy the following property: $P_X P_{X_1} = P_{X_1} P_X = P_{X_1}$. Hence,

$$A^2 = P_X^2 - P_{X_1} - P_{X_1} + P_{X_1}^2 = P_X - P_{X_1} = A.$$

 $R^2=1$ - (SSE/TSS) where TSS is the total sum of squares to be explained by the regression and this depends only on the y's. TSS is fixed for both regressions. Hence $R_2^2 \geq R_1^2$, since $SSE_1 \geq SSE_2$.

References

Baltagi, B. H. (1996), "Iterative Estimation in Partitioned Regression Models," *Econometric Theory*, Solutions 95.5.1, 12:869–870.

- Engle, R.F. (1984), "Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics," In: Griliches, Z. and M.D. Intrilligator (eds) Handbook of Econometrics (North-Holland: Amsterdam).
- Graybill, F.A. (1961), An Introduction to Linear Statistical Models, Vol. 1 (McGraw-Hill: New York).
- Gregory, A.W. and M.R. Veall (1985), "Formulating Wald Tests of Nonlinear Restrictions," Econometrica, 53: 1465–1468.
- Gregory, A.W. and M.R. Veall (1986), "Wald Tests of Common Factor Restrictions," Economics Letters, 22: 203–208.
- Maddala, G.S. (1992), Introduction to Econometrics (Macmillan: New York).
- Salkever, D. (1976), "The Use of Dummy Variables to Compute Predictions, Prediction Errors, and Confidence Intervals," Journal of Econometrics, 4: 393–397.

CHAPTER 8

Regression Diagnostics and Specification Tests

8.1 Since $H = P_X$ is idempotent, it is positive semi-definite with $b'H b \ge 0$ for any arbitrary vector b. Specifically, for b' = (1, 0, ..., 0) we get $h_{11} \ge 0$. Also, $H^2 = H$. Hence,

$$h_{11} = \sum_{i=1}^n h_{1j}^{}{}^2 \geq h_{11}^2 \geq 0.$$

From this inequality, we deduce that $h_{11}^2 - h_{11} \le 0$ or that $h_{11}(h_{11} - 1) \le 0$. But $h_{11} \ge 0$, hence $0 \le h_{11} \le 1$. There is nothing particular about our choice of h_{11} . The same proof holds for h_{22} or h_{33} or in general h_{ii} . Hence, $0 \le h_{ii} \le 1$ for i = 1, 2, ..., n.

8.2 A Simple Regression With No Intercept. Consider

$$y_i = x_i \beta + u_i$$
 for $i = 1, 2, ..., n$

- **a.** $H = P_x = x(x'x)^{-1}x' = xx'/x'x$ since x'x is a scalar. Therefore, $h_{ii} = x_i^2/\sum_{i=1}^n x_i^2$ for i=1,2,...,n. Note that the x_i 's are not in deviation form as in the case of a simple regression with an intercept. In this case $tr(H) = tr(P_x) = tr(xx')/x'x = tr(x'x)/x'x = x'x/x'x = 1$. Hence, $\sum_{i=1}^n h_{ii} = 1$.
- $\begin{aligned} \textbf{b.} \ \ &\text{From (8.13), } \hat{\beta} \hat{\beta}_{(i)} = \frac{(x'x)^{-1}x_ie_i}{1-h_{ii}} = \frac{x_ie_i}{\sum\limits_{j=1}^n x_j^2 x_i^2} = \frac{x_ie_i}{\sum\limits_{j\neq i} x_j^2}. \\ &\text{From (8.18), (n-2)} \ s_{(i)}^2 = (n-1)s^2 \frac{e_i^2}{1-h_{ii}} = (n-1)s^2 e_i^2 \left(\sum\limits_{i=1}^n x_i^2 / \sum\limits_{j\neq i} x_j^2\right). \\ &\text{From (8.19), DFBETAS}_i = (\hat{\beta} \hat{\beta}_{(i)}) / s_{(i)} \sqrt{(x'x)^{-1}} = \frac{x_ie_i}{\sum\limits_{j\neq i} x_j^2} \cdot \left(\sum\limits_{i=1}^n x_i^2\right)^{1/2} / s_{(i)}. \end{aligned}$

c. From (8.21), DFFIT_i =
$$\hat{y}_i - \hat{y}_{(i)} = x_i'[\hat{\beta} - \hat{\beta}_{(i)}] = \frac{h_{ii}e_i}{(1 - h_{ii})} = \frac{x_i^2e_i}{\sum\limits_{i \neq i} x_j^2}$$
.

From (8.22),

$$\begin{split} DFFITS_{i} &= \left(\frac{h_{ii}}{1-h_{ii}}\right)^{1/2} \frac{e_{i}}{s_{(i)}\sqrt{1-h_{ii}}} = & \left(\frac{x_{i}^{2}}{\sum\limits_{j \neq i}^{2}}\right)^{1/2} \frac{e_{i}}{s_{(i)}\left(\sum\limits_{j \neq i}^{2} x_{j}^{2} / \sum\limits_{i=1}^{n} x_{i}^{2}\right)^{1/2}} \\ &= \frac{x_{i}e_{i}\left(\sum\limits_{i=1}^{n} x_{i}^{2}\right)^{1/2}}{s_{(i)}\sum\limits_{j \neq i}^{2} x_{j}^{2}} \end{split}$$

d. From (8.24),
$$D_i^2(s) = \frac{(\hat{\beta} - \hat{\beta}_{(i)})^2 \sum_{i=1}^n x_i^2}{ks^2} = \frac{x_i^2 e_i^2}{\left(\sum\limits_{j \neq i} x_j^2\right)^2} \cdot \frac{\sum\limits_{i=1}^n x_i^2}{ks^2}$$
 from part (b).

From (8.25),
$$D_i^2(s) = \frac{e_i^2}{ks^2} \left(\frac{x_i^2 \sum_{j=1}^n x_j^2}{\left(\sum_{j \neq i} x_j^2\right)^2} \right).$$

e.
$$\det [X'_{(i)}X_{(i)}] = x'_{(i)}x_{(i)} = \sum_{j \neq i} x_j^2$$
, while

$$\text{det}\left[X'X\right] = x'x = \sum_{i=1}^n x_i^2 \text{ and } (1-h_{ii}) = 1 - \left(x_i^2 \sum_{i=1}^n x_i^2\right) = \sum_{j \neq i} x_j^2 \Big/ \sum_{i=1}^n x_i^2.$$

The last term is the ratio of the two determinants. Rearranging terms, one can easily verify (8.27). From (8.26),

$$COVRATIO_i = \frac{s_{(i)}^2}{s^2} \left[\frac{\sum\limits_{i=1}^n x_i^2}{\sum\limits_{j \neq i}^n x_j^2} \right].$$

8.3 From (8.17) $s_{(i)}^2 = \frac{1}{n-k-1} \sum_{t \neq i} \left(y_t - x_t' \hat{\beta}_{(i)} \right)^2$ substituting (8.13), one gets

$$s_{(i)}^2 = \frac{1}{n-k-1} \sum_{t \neq i} \left(y_t - x_t' \hat{\beta} + \frac{x_t'(X'X)^{-1} x_i e_i}{1-h_{ii}} \right)^2$$

$$or \quad (n-k-1)s_{(i)}^2 = \sum_{t \neq i} \left(e_t + \frac{h_{it}e_i}{1-h_{ii}}\right)^2$$

where $h_{it} = x_t'(X'X)^{-1}x_i$. Adding and subtracting the i-th term of this summation, yields

$$\begin{split} (n-k-l)s_{(i)}^2 &= \sum_{t=1}^n \left(e_t + \frac{h_{it}e_i}{1-h_{ii}}\right)^2 - \left(e_i + \frac{h_{ii}e_i}{1-h_{ii}}\right)^2 \\ &= \sum_{t=1}^n \left(e_t + \frac{h_{it}e_i}{1-h_{ii}}\right)^2 - \frac{e_i^2}{(1-h_{ii})^2} \end{split}$$

which is the first equation in (8.18). The next two equations in (8.18) simply expand this square and substitute $\sum_{t=1}^{n} e_t h_{it} = 0$ and $\sum_{t=1}^{n} h_{it}^2 = h_{ii}$ which follow from the fact that He = 0 and $H^2 = H$.

- 8.4 Obtaining e_i* from an Augmented Regression
 - a. In order to get $\hat{\beta}^*$ from the augmented regression given in (8.5), one can premultiply by \overline{P}_{d_i} as described in (8.14) and perform OLS. The Frisch–Waugh–Lovell Theorem guarantees that the resulting estimate of β^* is the same as that from (8.5). The effect of \overline{P}_{d_i} is to wipe out the i-th observation from the regression and hence $\hat{\beta}^* = \hat{\beta}_{(i)}$ as required.
 - **b.** In order to get $\hat{\phi}$ from (8.5), one can premultiply by \overline{P}_x and perform OLS on the transformed equation $\overline{P}_x y = \overline{P}_x d_i \phi + \overline{P}_x u$. The Frisch–Waugh–Lovell Theorem guarantees that the resulting estimate of ϕ is the same as that from (8.5). OLS yields $\hat{\phi} = \left(d_i' \overline{P}_x d_i\right)^{-1} d_i' \overline{P}_x y$. Using the fact that $e = \overline{P}_x y$, $d_i' e = e_i$ and $d_i' P_x d_i = d_i' H d_i = h_{ii}$ one gets $\hat{\phi} = e_i/(1-h_{ii})$ as required.
 - c. The Frisch–Waugh–Lovell Theorem also states that the residuals from (8.5) are the same as those obtained from (8.14). This means that the i-th observation residual is zero. This also gives us the fact that $\hat{\phi} = y_i x_i' \hat{\beta}_{(i)} =$ the forecasted residual for the i-th observation, see below (8.14). Hence the RSS from (8.5) = $\sum_{t \neq i} \left(y_t x_t' \hat{\beta}_{(i)} \right)^2$ since the i-th observation contributes a zero residual. As in (8.17) and (8.18) and problem 8.3 one can substitute (8.13) to get

$$\sum_{t \neq i} \left(y_t - x_t' \hat{\beta}_{(i)} \right)^2 = \sum_{t \neq i} \left(y_t - x_t' \hat{\beta} + \frac{x_t' \left(X' X \right)^{-1} x_i e_i}{1 - h_{ii}} \right)^2 = \sum_{t \neq i} \left(e_t + \frac{h_{it} e_i}{1 - h_{ii}} \right)^2$$

Using the same derivation as in the solution to problem 8.3, one gets $\sum_{t\neq i} \left(y_t - {x_t}' \hat{\beta}_{(i)}\right)^2 = \sum_{t=1}^n e_t^2 - \frac{e_i^2}{1-h_{ii}} \text{ which is an alternative way of writing (8.18).}$

- **d.** Under Normality of the disturbances, $u \sim N(0, \sigma^2 I_n)$, we get the standard t-statistic on $\hat{\phi}$ as $t = \hat{\phi}/s.e.(\hat{\phi}) \sim t_{n-k-1}$ under the null hypothesis that $\phi = 0$. But $\hat{\phi} = \left(d_i' \overline{P}_x d_i\right)^{-1} d_i' \overline{P}_x y = \phi + \left(d_i' \overline{P}_x d_i\right)^{-1} d_i' \overline{P}_x u$ with $E(\hat{\phi}) = \phi$ and $var(\hat{\phi}) = \sigma^2 \left(d_i' \overline{P}_x d_i\right)^{-1} = \sigma^2/(1-h_{ii})$. This is estimated by $var(\hat{\phi}) = s_{(i)}^2/(1-h_{ii})$. Hence, $t = \hat{\phi}/s.e.(\hat{\phi}) = \frac{e_i}{1-h_{ii}} \cdot \left(\frac{1-h_{ii}}{s_{(i)}^2}\right)^{1/2} = \frac{e_i}{s_{(i)}\sqrt{1-h_{ii}}} = e_i^*$ as in (8.3).
- 8.5 a. Applying OLS on this regression equation yields

$$\begin{pmatrix} \hat{\beta}^* \\ \hat{\varphi}^* \end{pmatrix} = \begin{bmatrix} X'X & 0 \\ 0 & D_p' \overline{P}_X D_p \end{bmatrix}^{-1} \begin{bmatrix} X'y \\ D_p' \overline{P}_X y \end{bmatrix}$$

using the fact that $\overline{P}_xX=0.$ Hence $\hat{\beta}^*=(X'X)^{-1}X'y=\hat{\beta}_{ols}$ and

- $\begin{array}{ll} \textbf{b.} \ \ \hat{\phi}^* \ = \ \left(D_p'\overline{P}_xD_p\right)^{-1}D_p'\overline{P}_xy \ = \ \left(D_p'\overline{P}_xD_p\right)^{-1}D_p'e \ = \ \left(D_p'\overline{P}_xD_p\right)^{-1}e_p \ \text{since} \\ e \ = \ \overline{P}_xy \ \text{and} \ D_p'e \ = e_p \end{array}$
- c. The residuals are given by

$$y - X \hat{\beta}_{ols} - \overline{P}_x D_p \left(D_p' \overline{P}_x D_p \right)^{-1} e_p = e - \overline{P}_x D_p \left(D_p' \overline{P}_x D_p \right)^{-1} D_p' e$$

so that the residuals sum of squares is

$$\begin{split} e'e &+ e_p'(D_p'\overline{P}_xD_p)^{-1}D_p'\overline{P}_xD_p \left(D_p'\overline{P}_xD_p\right)^{-1}e_p - 2e'\overline{P}_xD_p \left(D_p'\overline{P}_xD_p\right)^{-1}e_p \\ &= e'e - e_p' \left(D_p'\overline{P}_xD_p\right)^{-1}e_p \end{split}$$

since $\overline{P}_x e = e$ and $e'D_p = e'_p$. From the Frisch-Waugh-Lovell Theorem, (8.6) has the same residuals sum of squares as (8.6) premultiplied by \overline{P}_x , i.e., $\overline{P}_x y = \overline{P}_x D_p \phi^* + \overline{P}_x u$. This has also the same residuals sum of squares

as the augmented regression in problem 8.5, since this also yields the above regression when premultiplied by \overline{P}_x .

- **d.** From (8.7), the denominator residual sum of squares is given in part (c). The numerator residual sum of squares is e'e—the RSS obtained in part (c). This yields $e_p' \left(D_p' \overline{P}_x D_p \right)^{-1} e_p$ as required.
- e. For problem 8.4, consider the augmented regression $y = X\beta^* + \overline{P}_x d_i \phi + u$. This has the same residual sum of squares by the Frisch-Waugh-Lovell Theorem as the following regression:

$$\overline{P}_x y = \overline{P}_x d_i \varphi + \overline{P}_x u$$

This last regression also have the same residual sum of squares as

$$y = X\beta^* + d_i\phi + u$$

Hence, using the first regression and the results in part (c) we get Residual Sum of Squares = (Residual Sum of Squares with d_i deleted)

$$-e'd_i \left(d_i'\overline{P}_xd_i\right)^{-1}d_i'e$$

when D_p is replaced by d_i . But $d_i'e = e_i$ and $d_i'\overline{P}_xd_i = 1 - h_{ii}$, hence this last term is $e_i^2/(1-h_{ii})$ which is exactly what we proved in problem 8.4, part (c). The F-statistic for $\phi=0$, would be exactly the square of the t-statistic in problem 8.4, part (d).

8.6 Let A = X'X and $a = b = x_i'$. Using the updated formula

$$\begin{split} &(A-a'b)^{-1} = A^{-1} + A^{-1}a' \left(I - bA^{-1}a'\right)^{-1}bA^{-1} \\ &\left(X'X - x_ix_i'\right)^{-1} = \left(X'X\right)^{-1} + \left(X'X\right)^{-1}x_i \left(1 - x_i' \left(X'X\right)^{-1}x_i\right)^{-1}x_i' \left(X'X\right)^{-1} \end{split}$$

Note that $X' = [x_1, .., x_n]$ where x_i is kxl, so that

$$X'X = \sum_{j=1}^{n} x_{j}x'_{j} \quad \text{and} \quad X'_{(i)}X_{(i)} = \sum_{j \neq i} x_{j}x'_{j} = X'X - x_{i}x'_{i}.$$

Therefore,

$$\left(X'_{(i)}X_{(i)}\right)^{-1} = \left(X'X\right)^{-1} + \frac{\left(X'X\right)^{-1}x_ix_i'\left(X'X\right)^{-1}}{1 - h_{ii}}$$

where $h_{ii}=x_i{}'(X'X)^{-1}x_i$. This verifies (8.12). Note that $X'y=\sum\limits_{j=1}^nx_jy_j$ and

$$X'_{(i)}y_{(i)}=\sum_{j\neq i}x_jy_j=X'y-x_iy_i.$$

Therefore, post-multiplying $\left(X'_{(i)}X_{(i)}\right)^{-1}$ by $X'_{(i)}y_{(i)}$ we get

$$\begin{split} \hat{\beta}_{(i)} = & \left(X_{(i)}' X_{(i)} \right)^{-1} X_{(i)}' y_{(i)} = \hat{\beta} - \left(X' X \right)^{-1} x_i y_i + \frac{(X' X)^{-1} x_i x_i' \hat{\beta}}{1 - h_{ii}} \\ & - \frac{(X' X)^{-1} x_i x_i' (X' X)^{-1} x_i y_i}{1 - h_{ii}} \end{split}$$

and

$$\begin{split} \hat{\beta} - \hat{\beta}_{(i)} &= -\frac{(X'X)^{-1}x_ix_i'\hat{\beta}}{1 - h_{ii}} + \left(\frac{1 - h_{ii} + h_{ii}}{1 - h_{ii}}\right) \left(X'X\right)^{-1}x_iy_i \\ &= \frac{(X'X)^{-1}x_i\left(y - x_i'\hat{\beta}\right)}{1 - h_{ii}} = \frac{(X'X)^{-1}x_ie_i}{1 - h_{ii}} \end{split}$$

which verifies (8.13).

8.7 From (8.22),

$$\text{DFFITS}_{i}\left(\sigma\right) = \left(\frac{h_{ii}}{1 - h_{ii}}\right)^{1/2} \frac{e_{i}}{\sigma\sqrt{1 - h_{ii}}} = \frac{\sqrt{h_{ii}}e_{i}}{\sigma\left(1 - h_{ii}\right)}$$

while from (8.25)

$$\sqrt{k}D_i(\sigma) = \frac{e_i}{\sigma} \left(\frac{\sqrt{h}_{ii}}{1-h_{ii}} \right)$$

which is identical.

- $\begin{array}{lll} \textbf{8.8} \; \det \left[X'_{(i)} X_{(i)} \right] \; = \; \det \left[X' X x_i x_i' \right] \; = \; \det \left[\left\{ I_k x_i x_i' (X'X)^{-1} \right\} X'X \right] . \; \; \text{Let} \\ a \; = \; x_i \; \text{and} \; b' \; = \; x_i' (X'X)^{-1} . \; \; \text{Using} \; \det \left[I_k ab' \right] \; = \; 1 b'a \; \text{one} \; \text{gets} \\ \det \left[I_k x_i x_i' (X'X)^{-1} \right] = 1 x_i' (X'X)^{-1} x_i = 1 h_{ii} . \; \text{Using} \; \det (AB) = \det (A) \\ \det (B), \; \text{one} \; \text{gets} \; \det \left[X'_{(i)} X_{(i)} \right] = (1 h_{ii}) \; \det (X'X) \; \text{which verifies} \; (8.27) . \end{array}$
- **8.9** The cigarette data example given in Table 3.2.
 - **a.** Tables 8.1 and 8.2 were generated by SAS with PROC REG asking for all the diagnostic options allowed by this procedure.

b. For the New Hampshire (NH) observation number 27 in Table 8.2, the leverage $h_{NH}=0.13081$ which is larger than $2\bar{h}=2k/n=0.13043$. The internally studentized residual \tilde{e}_{NH} is computed from (8.1) as follows:

$$\tilde{e}_{NH} = \frac{e_{NH}}{s\sqrt{1 - h_{NH}}} = \frac{0.15991}{0.16343\sqrt{1 - 0.13081}} = 1.0495$$

The externally studentized residual e_{NH}^* is computed from (8.3) as follows:

$$e_{(NH)}^* = \frac{e_{NH}}{s_{(NH)}\sqrt{1-h_{NH}}} = \frac{0.15991}{0.163235\sqrt{1-0.13081}} = 1.0508$$

where $s_{(NH)}^2$ is obtained from (8.2) as follows:

$$\begin{split} s_{(NH)}^2 &= \frac{(n-k)s^2 - e_{NH}^2/(1-h_{NH})}{(n-k-1)} \\ &= \frac{(46-3)(0.16343)^2 - (0.15991)^2/(1-0.13081)}{(46-3-1)} \\ &= \frac{1.14854 - 0.02941945}{42} = 0.0266457 \end{split}$$

both \tilde{e}_{NH} and $e^*_{(NH)}$ are less than 2 in absolute value. From (8.13), the change in the regression coefficients due to the omission of the NH observation is given by $\hat{\beta} - \hat{\beta}_{(NH)} = (X'X)^{-1}x_{NH}e_{NH}/(1-h_{NH})$ where $(X'X)^{-1}$ is given in the empirical example and $x'_{NH} = (1,0.15852,\ 5.00319)$ with $e_{NH} = 0.15991$ and $h_{NH} = 0.13081$. This gives $(\hat{\beta} - \hat{\beta}_{(NH)})' = (-0.3174,\ -0.0834,\ 0.0709)$. In order to assess whether this change is large or small, we compute DFBETAS given in (8.19). For the NH observation, these are given by

$$DFBETAS_{NH,1} = \frac{\hat{\beta}_1 - \hat{\beta}_{1,(NH)}}{s_{(NH)}\sqrt{(X'X)_{11}^{-1}}} = \frac{-0.3174}{0.163235\sqrt{30.9298169}} = -0.34967$$

Similarly, DFBETAS_{NH,2} = -0.2573 and DFBETAS_{NH,3} = 0.3608. These are not larger than 2 in absolute value. However, DFBETAS_{NH,1} and DFBETAS_{NH,3} are both larger than $2/\sqrt{n} = 2/\sqrt{46} = 0.2949$ in absolute value.

The change in the fit due to omission of the NH observation is given by (8.21). In fact,

$$\begin{split} DFFIT_{NH} &= \hat{y}_{NH} - \hat{y}_{(NH)} = x_{NH}' [\hat{\beta} - \hat{\beta}_{(NH)}] \\ &= (1, \, 0.15952, \, 5.00319) \begin{pmatrix} -0.3174 \\ -0.0834 \\ 0.0709 \end{pmatrix} = 0.02407. \end{split}$$

or simply

DFFIT_{NH} =
$$\frac{h_{NH}e_{NH}}{1 - h_{NH}} = \frac{(0.13081)(0.15991)}{(1 - 0.13081)} = 0.02407.$$

Scaling it by the variance of $\hat{y}_{(NH)}$ we get from (8.22)

DFFIT_{NH} =
$$\left(\frac{h_{NH}}{(1 - h_{NH})}\right)^{1/2} e_{NH}^*$$

= $\left(\frac{0.13081}{1 - 0.13081}\right)^{1/2} (1.0508) = 0.40764.$

This is not larger than the size adjusted cutoff of $2/\sqrt{k/n} = 0.511$. Cook's distance measure is given by (8.25) and for NH can be computed as follows:

$$\begin{split} D_{NH}^2(s) &= \frac{e_{NH}^2}{ks^2} \left(\frac{h_{NH}}{(1-h_{NH})^2} \right) = \left(\frac{(0.15991)^2}{3(0.16343)^2} \right) \left(\frac{0.13081}{(1-0.13081)^2} \right) \\ &= 0.05526 \end{split}$$

COVRATIO omitting the NH observation can be computed from (8.28) as follows:

$$COVRATIO_{NH} = \left(\frac{s_{(NH)}^2}{s^2}\right)^k \frac{1}{1 - h_{NH}} = \left(\frac{0.0266457}{(0.16343)^2}\right)^3 \left(\frac{1}{(1 - 0.13081)}\right)$$
$$= 1.1422$$

which means that $|COVRATIO_{NH} - 1| = 0.1422$ is less than 3k/n = 0.1956. Finally, FVARATIO omitting the NH observation can be computed from (8.29) as

$$FVARATIO_{NH} = \frac{s_{(NH)}^2}{s^2(1 - h_{NH})} = \frac{0.0266457}{(0.16343)^2(1 - 0.13081)} = 1.14775$$

- **c.** Similarly, the same calculations can be obtained for the observations of the states of AR, CT, NJ and UT.
- **d.** Also, the states of NV, ME, NM and ND.

8.10 The Consumption—Income data given in Table 5.3.

The following Stata output runs the ols regression of C on Y and generates the influence diagnostics one by one. In addition, it highlights the observations with the diagnostic higher than the cut off value recommended in the text of the chapter.

. reg c y

Source	SS df MS		Number of obs	=	49		
Model Residual	1.4152e+ 9001347.		1.4152e+09 7 191518.037		F(1, 47) Prob > F R-squared Adj R-squared	= = = =	7389.28 0.0000 0.9937 0.9935
Total	1.4242e+09 48 29670457.8		457.8	Root MSE	=	437.63	
С	Coef.	Std. Err.	t	P> t	[95% Conf.	Inter	val]
y _cons	.979228 -1343.314	.0113915 219.5614	85.96 -6.12	0.000 0.000	.9563111 -1785.014		1.002145 901.6131

- . predict h, hat
- . predict e if e(sample), residual
- . predict est1 if e(sample), rstandard
- . predict est2 if e(sample), rstudent
- . predict dfits, dfits
- . predict covr, covratio
- . predict cook if e(sample), cooksd
- . predict dfbet, dfbeta(y)
- . list e est1 est2 cook h dfits covr, divider

	е	est1	est2	cook	h	dfits	covr
1.	635.4909	1.508036	1.529366	.0892458	.0727745	.4284583	1.019567
2.	647.5295	1.536112	1.55933	.0917852	.0721806	.4349271	1.015024
3.	520.9777	1.234602	1.241698	.0575692	.0702329	.3412708	1.051163
4.	498.7493	1.179571	1.184622	.0495726	.0665165	.3162213	1.053104
5.	517.4854	1.222239	1.228853	.0510749	.064003	.3213385	1.045562
6.	351.0732	.8263996	.8235661	.0208956	.0576647	.2037279	1.075873
7.	321.1447	.7538875	.7503751	.0157461	.0525012	.1766337	1.075311
8.	321.9283	.7540409	.7505296	.0144151	.0482588	.1690038	1.070507
9.	139.071	.3251773	.3220618	.0024888	.0449572	.0698759	1.08818
10.	229.1068	.5347434	.5306408	.0061962	.0415371	.1104667	1.07598
11.	273.736	.6382437	.6341716	.0083841	.0395361	.1286659	1.068164
12.	17.04481	.0396845	.0392607	.0000301	.0367645	.0076702	1.083723
13.	-110.857	25773	2551538	.0011682	.0339782	047853	1.077618
14.	.7574701	.0017584	.0017396	4.95e-08	.0310562	.0003114	1.077411
15.	-311.9394	7226375	7189135	.0072596	.0270514	1198744	1.049266
16.	-289.1532	6702327	6662558	.006508	.0281591	1134104	1.053764
17.	-310.0611	7183715	7146223	.0072371	.0272825	119681	1.049793
18.	-148.776	3443774	3411247	.0015509	.0254884	0551685	1.065856
19.	-85.67493	1981783	1961407	.0004859	.0241443	0308519	1.067993
20.	-176.7102	4084195	4047702	.0019229	.0225362	0614609	1.060452
21.	-205.995	4759794	4720276	.0025513	.022026	0708388	1.057196
22.	-428.808	9908097	9906127	.0110453	.0220072	1485998	1.023316
23.	-637.0542	-1.471591	-1.490597	.0237717	.0214825	2208608	.9708202
24.	-768.879	-1.77582	-1.818907	.034097	.0211669	267476	.928207
25.	-458.3625	-1.058388	-1.059773	.0118348	.0206929	1540507	1.015801
26.	-929.7892	-2.146842	-2.23636	.0484752	.020602	3243518	.8671094
27.	-688.1302	-1.589254	-1.616285	.0272016	.0210855	2372122	.9548985
28.	-579.1982	-1.338157	-1.349808	.019947	.0217933	2014737	.9874383
29.	-317.75	734245	7305942	.0061013	.0221336	1099165	1.043229
30.	-411.8743	9525952	9516382	.0111001	.0238806	1488479	1.028592
31.	-439.981	-1.01826	-1.018669	.0133716	.0251442	1635992	1.02415
32.	-428.6367	9923085	9921432	.0130068	.0257385	1612607	1.027102
33.	-479.2094	-1.109026	-1.111808	.0158363	.0251048	1784142	1.015522
34.	-549.0905	-1.271857	-1.280483	.0222745	.0268017	2124977	1.000132
35.	-110.233	2553027	2527474	.0008897	.0265748	041761	1.069479
36.	66.3933	.1538773	.1522699	.0003404	.0279479	.0258193	1.072884
37.	32.47656	.0753326	.0745313	.0000865	.0295681	.0130097	1.075499
38.	100.64	.2336927	.2313277	.0008919	.031631	.0418084	1.075547
39.	122.4207	.2847169	.2819149	.001456	.0346758	.0534312	1.077724
40.	-103.4364	2414919	2390574	.0012808	.0420747	0501011	1.087101

41.	339.5579	.7941921	.7910236	.0150403	.0455199	.1727454	1.064579
42.	262.4189	.6163763	.6122634	.010752	.0535693	.145664	1.085279
43.	395.0927	.9290681	.9276894	.025475	.0557367	.2253859	1.065336
44.	282.3303	.6658444	.6618519	.0144581	.0612288	.1690281	1.091159
45.	402.1435	.9501951	.9491935	.0312551	.0647518	.2497567	1.073755
46.	385.8501	.9156712	.9140675	.0329419	.0728531	.2562288	1.086167
47.	799.5297	1.898972	1.955164	.1449345	.0744023	.5543262	.9614341
48.	663.9663	1.584488	1.611164	.1138252	.0831371	.4851599	1.020218
49.	642.6846	1.539513	1.562965	.117268	.0900456	.4916666	1.034467

. list year c est2 h dfbet if dfbet>(2/7)

	year	С	est2	h	dfbet
47.	2005	26290	1.955164	.0744023	.4722213
48.	2006	26835	1.611164	.0831371	.4214261
49.	2007	27319	1.562965	.0900456	.4323753

. list year c est2 dfbet h if abs(est2)>2

26. 1984 16343 -2.236360314578	
20. 1304 10040 -2.200000014370	.020602

. list year c est2 dfbet h if h>(4/49)

	year	С	est2	dfbet	h
48.	2006	26835	1.611164	.4214261	.0831371
49.	2007	27319	1.562965	.4323753	.0900456

. list year c est2 dfbet h if abs(est2)>2

	year	С	est2	dfbet	h
26.	1984	16343	-2.23636	0314578	.020602

. list year c est2 dfbet h dfits if dfits>(2*sqrt(2/49))

	year	С	est2	dfbet	h	dfits
1. 2. 47. 48. 49.	1959 1960 2005 2006 2007	8776 8837 26290 26835 27319	1.529366 1.55933 1.955164 1.611164 1.562965	3634503 3683456 .4722213 .4214261 .4323753	.0727745 .0721806 .0744023 .0831371 .0900456	.4284583 .4349271 .5543262 .4851599 .4916666

. list year c est2 dfbet h covr if abs(covr-1)>(3*(2/49))

	year	С	est2	dfbet	h	covr
26.	1984	16343	-2.23636	0314578	.020602	.8671094

8.12 The Gasoline data used in Chap. 10. The following SAS output gives the diagnostics for two countries: Austria and Belgium.

a. AUSTRIA:

Obs	Dep Var	Predict	Std Err	Lower95%	Upper95%	Lower95%	Upper95%
	Y	Value	Predict	Mean	Mean	Predict	Predict
1	4.1732	4.1443	0.026	4.0891	4.1996	4.0442	4.2445
2	4.1010	4.1121	0.021	4.0680	4.1563	4.0176	4.2066
3	4.0732	4.0700	0.016	4.0359	4.1041	3.9798	4.1602
4	4.0595	4.0661	0.014	4.0362	4.0960	3.9774	4.1548
5	4.0377	4.0728	0.012	4.0469	4.0987	3.9854	4.1603
6 7 8	4.0340 4.0475 4.0529	4.0756 4.0296 4.0298	0.012 0.013 0.014 0.016	4.0480 3.9991 3.9947	4.1032 4.0601 4.0650	3.9877 3.9407 3.9392	4.1636 4.1185 4.1205
9 10 11 12 13 14 15 16 17 18	4.0455 4.0464 4.0809 4.1067 4.1280 4.1994 4.0185 4.0290 3.9854 3.9317 3.9227	4.0191 4.0583 4.1108 4.1378 4.0885 4.1258 4.0270 3.9799 4.0287 3.9125 3.9845	0.019 0.015 0.016 0.022 0.015 0.022 0.017 0.016 0.017 0.024 0.019	3.9794 4.0267 4.0767 4.0909 4.0561 4.0796 3.9907 3.9449 3.9931 3.8606 3.9439	4.0587 4.0898 4.1450 4.1847 4.1210 4.1721 4.0632 4.0149 4.0642 3.9643 4.0250	3.9266 3.9690 4.0206 4.0420 3.9989 4.0303 3.9359 3.8893 3.9379 3.8141 3.8916	4.1115 4.1475 4.2011 4.2336 4.1782 4.2214 4.1180 4.0704 4.1195 4.0108 4.0773

Obs	Residual	Std Resi		Student esidual	-2-1	-0 1 2	Cook's D	Rstudent
1 2	0.0289 -0.0111		029 033	0.983 -0.335		*	0.188 0.011	0.9821 -0.3246
3	0.00316		036	0.088			0.000	0.0853
4	-0.00661		037	-0.180			0.001	-0.1746
5	-0.0351		.037	-0.942	*		0.024	-0.9387
6	-0.0417		037	-1.126	**		0.039	-1.1370
7	0.0179		036	0.491		*	0.009	0.4787
8 9	0.0231 0.0264		036 034	0.649 0.766		*	0.023	0.6360 0.7554
10	-0.0119		036	-0.328			0.043 0.004	-0.3178
11	-0.0119		036	-0.838	*		0.004	-0.8287
12	-0.0300		032	-0.957	*		0.105	-0.9541
13	0.0395		036	1.093		**	0.053	1.1008
14	0.0735		033	2.254		****	0.563	2.6772
15	-0.00846	0.	035	-0.239			0.003	-0.2318
16	0.0492		036	1.381		**	0.101	1.4281
17	-0.0433		.035	-1.220	**		0.082	-1.2415
18	0.0192		.031	0.625		*	0.061	0.6118
19	-0.0617	0.	.034	-1.802	***		0.250	-1.9663
	Hat Diag	Cov		INTER	CEP	X1	X2	Х3
Obs	Н	Ratio	Dffits	Dfbe	tas	Dfbetas	Dfbetas	Dfbetas
1	0.4377	1.7954	0.8666		2112	0.4940	-0.0549	-0.5587
2	0.2795	1.7750	-0.2022		0321	-0.0859	-0.0141	0.1009
3	0.1665	1.5779	0.0381		0095	-0.0042	0.0134	0.0008
4 5	0.1279 0.0959	1.4980 1.1418	-0.0669 -0.3057)284 1381	0.0188 0.0735	-0.0202 -0.0382	-0.0118 -0.0387
6	0.0959	1.0390	-0.3980		2743	0.0733	0.0362	-0.0367
7	0.1031	1.4246	0.1876		1200	-0.1390	0.0742	0.1219
8	0.1767	1.4284	0.2947		2174	-0.2359	0.0665	0.2176
9	0.2254	1.4500	0.4075		2985	-0.3416	0.0910	0.3220
10	0.1424	1.4930	-0.1295	0.0	0812	0.0693	0.0280	-0.0607
11	0.1669	1.3061	-0.3710	0.0	0513	-0.0795	0.2901	0.1027
12	0.3150	1.4954	-0.6470		0762	-0.1710	0.5599	0.2111
13	0 4 5 0 0	1 1101	0.4639	0.0	0284	0.1127	-0.3194	-0.1143
	0.1508	1.1134						
14	0.3070	0.3639	1.7819	0.9	9050	1.3184	-1.3258	-1.2772
14 15	0.3070 0.1884	0.3639 1.5990	1.7819 -0.1117	0.0 -0.0	9050 0945	1.3184 -0.0574	-1.3258 -0.0153	-1.2772 0.0407
14 15 16	0.3070 0.1884 0.1754	0.3639 1.5990 0.9276	1.7819 -0.1117 0.6587	0.0 0.0- 0.0	9050 9945 3450	1.3184 -0.0574 -0.0416	-1.3258 -0.0153 0.3722	-1.2772 0.0407 0.1521
14 15 16 17	0.3070 0.1884 0.1754 0.1810	0.3639 1.5990 0.9276 1.0595	1.7819 -0.1117 0.6587 -0.5836	9.0 9.0- 9.0- 9.0-	9050 0945 3450 4710	1.3184 -0.0574 -0.0416 -0.2819	-1.3258 -0.0153 0.3722 -0.0069	-1.2772 0.0407 0.1521 0.1923
14 15 16	0.3070 0.1884 0.1754	0.3639 1.5990 0.9276	1.7819 -0.1117 0.6587	0.9 -0.6 -0.4 -0.	9050 9945 3450	1.3184 -0.0574 -0.0416	-1.3258 -0.0153 0.3722	-1.2772 0.0407 0.1521

Sum of Residuals 0 Sum of Squared Residuals 0.0230 Predicted Resid SS (Press) 0.0399

b. BELGIUM:

Obs	Dep Var Y	Predict Value	Std Err Predict	Lower95% Mean	Upper Mea		Lower95% Predict	Upper95% Predict
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	4.1640 4.1244 4.0760 4.0013 3.9944 3.9515 3.8205 3.9069 3.8287 3.8546 3.8704 3.8722 3.9054 3.8960 3.8182 3.8778 3.8641	4.1311 4.0947 4.0794 4.0412 4.0172 3.9485 3.8923 3.9045 3.8242 3.8457 3.8516 3.8537 3.8614 3.8941 3.8941 3.8462	0.019 0.017 0.015 0.013 0.012 0.015 0.017 0.012 0.019 0.014 0.011 0.014 0.013 0.016 0.013	4.0907 4.0593 4.0471 4.0136 3.9924 3.9156 3.8458 3.7842 3.8166 3.8273 3.8305 3.8606 3.8592 3.8185	3 4.1 4.6 4.6 4.6 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	1715 1301 1117 0688 0420 9814 9189 9309 3643 3748 3759 3776 3922 9142 9289 3760 3760 3760	4.0477 4.0137 3.9997 3.9632 3.9402 3.8685 3.8008 3.8270 3.7410 3.7672 3.7747 3.7769 3.7822 3.8097 3.8133 3.7689 3.7689	4.2144 4.1757 4.1591 4.1192 4.0942 4.0285 3.9639 3.9820 3.9074 3.9242 3.9284 3.9304 3.9405 3.9651 3.9749 3.9253
18 19	3.8543 3.8427	3.8452 3.8492	0.014 0.028	3.8163 3.7897		3742 9086	3.7668 3.7551	3.9237 3.9433
Obs	Residual		Err idual	Student Residual	-2-1-0	12	Cook's D	Rstudent
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.0329 0.0297 -0.00343 -0.0399 -0.0228 0.00302 -0.0618 0.00445 0.00890 0.0188 0.0186 0.0440 0.00862 -0.0759 0.0305 -0.00074 0.00907		.028 .030 .031 .032 .032 .032 .031 .030 .032 .029 .031 .032 .032 .031 .032 .031 .032 .031 .032	1.157 0.992 -0.112 -1.261 -0.710 0.099 -2.088 0.074 0.156 0.284 0.583 0.575 1.421 0.271 -2.525 0.972 -0.025 0.289 -0.326	** **** ****	** * * * * * * * * * * * *	0.148 0.076 0.001 0.067 0.016 0.001 0.366 0.000 0.003 0.004 0.011 0.010 0.110 0.003 0.472 0.043 0.000 0.004	1.1715 0.9911 -0.1080 -1.2890 -0.6973 0.0956 -2.3952 0.0715 0.1506 0.2748 0.5700 0.5620 1.4762 0.2624 -3.2161 0.9698 -0.0237 0.2798 -0.3160

Obs	Hat Diag H	Cov Ratio	Dffits	INTERCEP Dfbetas	X1 Dfbetas	X2 Dfbetas	X3 Dfbetas
1	0.3070	1.3082	0.7797	-0.0068	0.3518	0.0665	-0.4465
2	0.2352	1.3138	0.5497	0.0273	0.2039	0.1169	-0.2469
3	0.1959	1.6334	-0.0533	0.0091	-0.0199	0.0058	0.0296
4	0.1433	0.9822	-0.5272	0.1909	-0.0889	0.1344	0.2118
5	0.1158	1.3002	-0.2524	0.0948	-0.0430	0.0826	0.1029
6	0.2039	1.6509	0.0484	-0.0411	-0.0219	-0.0356	0.0061
7	0.2516	0.4458	-1.3888	0.0166	0.9139	-0.6530	-1.0734
8	0.1307	1.5138	0.0277	-0.0028	-0.0169	0.0093	0.0186
9	0.3019	1.8754	0.0990	-0.0335	-0.0873	0.0070	0.0884
10	0.1596	1.5347	0.1198	-0.0551	-0.0959	-0.0243	0.0886
11	0.1110	1.3524	0.2014	-0.0807	-0.1254	-0.0633	0.1126
12	0.1080	1.3513	0.1956	-0.0788	-0.0905	-0.0902	0.0721
13	0.1792	0.9001	0.6897	0.5169	0.0787	0.5245	0.1559
14	0.1353	1.4943	0.1038	0.0707	0.0596	0.0313	-0.0366
15	0.2284	0.1868	-1.7498	-1.4346	-1.1919	-0.7987	0.7277
16	0.1552	1.2027	0.4157	0.3104	0.1147	0.2246	0.0158
17	0.2158	1.6802	-0.0124	-0.0101	-0.0071	-0.0057	0.0035
18	0.1573	1.5292	0.1209	0.0564	0.0499	0.0005	-0.0308
19	0.6649	3.8223	-0.4451	0.1947	-0.0442	0.3807	0.1410

Sum of Residuals 0 Sum of Squared Residuals 0.0175 Predicted Resid SS (Press) 0.0289

SAS PROGRAM

Data GASOLINE;

Input COUNTRY \$ YEAR Y X1 X2 X3;

CARDS;

DATA AUSTRIA; SET GASOLINE;

IF COUNTRY='AUSTRIA';

Proc reg data=AUSTRIA;

Model Y=X1 X2 X3 / influence p r cli clm;

RUN;

DATA BELGIUM; SET GASOLINE;

IF COUNTRY='BELGIUM';%

Proc reg data=BELGIUM;

Model Y=X1 X2 X3 / influence p r cli clm:

RUN;

- **8.13** *Independence of Recursive Residual.* This is based on Johnston (1984, p. 386).
 - **a.** Using the updating formula given in (8.11) with $A = (X'_t X_t)$ and $a = -b = x'_{t+1}$, we get

$$\begin{split} & \left(X_t' X_t + x_{t+1} x_{t+1}' \right)^{-1} = \left(X_t' X_t \right)^{-1} \\ & - \left(X_t' X_t \right)^{-1} x_{t+1} \left(1 + x_{t+1}' \left(X_t' X_t \right)^{-1} x_{t+1} \right)^{-1} x_{t+1}' \left(X_t' X_t \right)^{-1} \end{split}$$

But $X_{t+1} = \begin{pmatrix} X_t \\ X'_{t+1} \end{pmatrix}$, hence $X'_{t+1}X_{t+1} = X'_tX_t + x_{t+1}x'_{t+1}$. Substituting this expression we get

$$\left(X_{t-1}'X_{t+1}\right)^{-1} = \left(X_t'X_t\right)^{-1} - \frac{\left(X_t'X_t\right)^{-1}x_{t+1}x_{t+1}'\left(X_t'X_t\right)^{-1}}{1 + x_{t+1}'\left(X_t'X_t\right)^{-1}x_{t+1}}$$

which is exactly (8.31).

$$\begin{aligned} \textbf{b.} \ \ \hat{\beta}_{t+1} &= \left(X_{t+1}' X_{t+1}\right)^{-1} X_{t+1}' \ Y_{t+1} \\ \text{Replacing } X_{t+1}' \ \text{by } \left(X_t', x_{t+1}\right) \text{ and } Y_{t+1} \ \text{by } \begin{pmatrix} Y_t \\ y_{t+1} \end{pmatrix} \text{ yields} \end{aligned}$$

$$\hat{\beta}_{t+1} = \left(X_{t+1}' X_{t+1} \right)^{-1} \left(X_t' Y_t + x_{t+1} y_{t+1} \right)$$

Replacing $(X'_{t+1}X_{t+1})^{-1}$ by its expression in (8.31) we get

$$\begin{split} \hat{\beta}_{t+1} &= \hat{\beta}_t + \left(X_t' X_t \right)^{-1} x_{t+1} y_{t+1} - \frac{\left(X_t' X_t \right)^{-1} x_{t+1} x_{t+1}' \hat{\beta}_t}{f_{t+1}} \\ &- \frac{\left(X_t' X_t \right)^{-1} x_{t+1} x_{t+1}' \left(X_t' X_t \right)^{-1} x_{t+1} y_{t+1}}{f_{t+1}} \\ &= \hat{\beta}_t - \frac{\left(X_t' X_t \right)^{-1} x_{t+1} x_{t+1}' \hat{\beta}_t}{f_{t+1}} + \left(\frac{f_{t+1} - f_{t+1} + 1}{f_{t+1}} \right) \left(X_t' X_t \right)^{-1} x_{t+1} y_{t+1} \\ &= \hat{\beta}_t - \left(X_t' X_t \right)^{-1} x_{t+1} \left(y_{t+1} - x_{t+1}' \hat{\beta}_t \right) / f_{t+1} \end{split}$$

where we used the fact that $x_{t+1}'\left(X_t'X_t\right)^{-1}x_{t+1}=f_{t+1}-1.$

c. Using (8.30), $w_{t+1} = \left(y_{t+1} - x_{t+1}'\hat{\beta}_t\right)/\sqrt{f_{t+1}}$ where $f_{t+1} = 1 + x_{t+1}'\left(X_t'X_t\right)^{-1}x_{t+1}$. Defining $v_{t+1} = \sqrt{f_{t+1}}$ w_{t+1} we get $v_{t+1} = y_{t+1} - x_{t+1}'\hat{\beta}_t = x_{t+1}'(\beta - \hat{\beta}_t) + u_{t+1}$ for t = k, ..., T-1. Since $u_t \sim IIN(0, \sigma^2)$, then w_{t+1} has zero mean and $var(w_{t+1}) = \sigma^2$. Furthermore, w_{t+1} are linear in the y's. Therefore, they are themselves normally distributed. Given normality of the w_{t+1} 's it is sufficient to show that $cov(w_{t+1}, w_{s+1}) = 0$ for $t \neq s$; t = s = k, ..., T-1. But f_{t+1} is fixed. Therefore, it suffices to show that $cov(v_{t+1}, v_{s+1}) = 0$ for $t \neq s$.

Using the fact that $\hat{\beta}_t = (X_t'X_t)^{-1} X_t'Y_t = \beta + (X_t'X_t)^{-1} X_t'u_t$ where $u_t' = (u_1, ..., u_t)$, we get $v_{t+1} = u_{t+1} - x_{t+1}' (X_t'X_t)^{-1} X_t'u_t$. Therefore,

$$\begin{split} E\left(v_{t+1}v_{s+1}\right) &= E\left\{\left[u_{t+1} - x_{t+1}'(X_t'X_t)^{-1}X_t'u_t\right]\left[u_{s+1} - x_{s+1}'\left(X_s'X_s\right)^{-1}X_s'u_s\right]\right\} \\ &= E\left(u_{t+1}u_{s+1}\right) - x_{t+1}'\left(X_t'X_t\right)^{-1}X_t'E\left(u_tu_{s+1}\right) \\ &- E\left(u_{t+1}u_s'\right)X_s\left(X_s'X_s\right)^{-1}x_{s+1} \\ &+ x_{t+1}'\left(X_t'X_t'\right)^{-1}X_t'E\left(u_tu_s'\right)X_s\left(X_s'X_s\right)^{-1}x_{s+1}. \end{split}$$

Assuming, without loss of generality, that t < s, we get $E(u_{t+1}u_{s+1}) = 0$, $E(u_{t+1}u_{s+1}) = 0$ since t < s < s+1, $E(u_{t+1}u_s') = (0,...,\sigma^2,..0)$ where the σ^2 is in the (t+1)-th position, and

$$E(u_{t}u'_{s}) = E\begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{t} \end{pmatrix} (u_{1}, ..., u_{t}, u_{t+1}, ..., u_{s}) = \sigma^{2}(I_{t}, 0)$$

Substituting these covariances in $E(v_{t+1}v_{s+1})$ yields immediately zero for the first two terms and what remains is

$$\begin{split} &E\left(v_{t+1}v_{s+1}\right) = -\sigma^2 x_{t+1} \left(X_s' X_s\right)^{-1} x_{s+1} + \sigma^2 x_{t+1}' \left(X_t' X_t\right)^{-1} X_t' \left[I_t, 0\right] X_s \left(X_s' X_s\right)^{-1} x_{s+1} \\ &But\left[I_t, 0\right] X_s = X_t \text{ for } t < s. \text{ Hence} \end{split}$$

$$E(v_{t+1}v_{s+1}) = -\sigma^2 x_{t+1} (X_s'X_s)^{-1} x_{s+1} + \sigma^2 x_{t+1} (X_s'X_s)^{-1} x_{s+1} = 0 \qquad \text{for } t \neq s.$$

A simpler proof using the C matrix defined in (8.34) is given in problem 8.14.

8.14 Recursive Residuals are Linear Unbiased With Scalar Covariance Matrix (LUS).

a. The first element of w = Cy where C is defined in (8.34) is

$$\begin{split} w_{k+1} &= -x_{k+1}'(X_k'X_k)^{-1}X_k'Y_k/\sqrt{f_{k+1}} + y_{k+1}/\sqrt{f_{k+1}} \\ \text{where } Y_k' &= (y_1,..,y_k). \text{ Hence, using the fact that } \hat{\beta}_k = \left(X_k'X_k\right)^{-1}X_k'Y_k, \\ \text{we get } w_{k+1} &= \left(y_{k+1} - x_{k+1}'\hat{\beta}_k\right)/\sqrt{f_{k+1}} \text{ which is (8.30) for } t = k. \\ \text{Similarly, the t-th element of } w &= \text{Cy from (8.34) is } w_t = -x_t'\left(X_{t-1}'X_{t-1}\right)^{-1}. \end{split}$$

Similarly, the t-th element of w = Cy from (8.34) is $w_t = -x_t (X_{t-1}X_{t-1})$ $X'_{t-1}Y_{t-1}/\sqrt{f_t} + y_t/\sqrt{f_t}$ where $Y'_{t-1} = (y_1, ..., y_{t-1})$. Hence, using the fact that $\hat{\beta}_{t-1} = (X'_{t-1}X_{t-1})^{-1} X'_{t-1}Y_{t-1}$, we get $w_t = (y_t - x'_t\hat{\beta}_{t-1})/\sqrt{f_t}$ which is (8.30) for t = t - 1. Also, the last term can be expressed in the same way.

$$w_T = -x_T'(X_{T-1}'X_{T-1})^{-1}X_{T-1}'Y_{T-1}/\sqrt{f_T} + y_T/\sqrt{f_T} = (y_T - x_T'\hat{\beta}_{T-1})/\sqrt{f_T}$$

which is (8.30) for t = T - 1.

b. The first row of CX is obtained by multiplying the first row of C by

$$X = \begin{bmatrix} X_k \\ x'_{k+1} \\ \vdots \\ x'_T \end{bmatrix}.$$

This yields $-x_{k+1}'\left(X_{k}'X_{k}\right)^{-1}X_{k}'X_{k}/\sqrt{f_{k+1}}+x_{k+1}'/\sqrt{f_{k+1}}=0$

Similarly, the t-th row of CX is obtained by multiplying the t-th row of C by

$$X = \begin{bmatrix} X_{t-1} \\ x_t' \\ \vdots \\ x_T' \end{bmatrix}.$$

This yields $-x'_t (X'_{t-1} X_{t-1})^{-1} X'_{t-1} X_{t-1} / \sqrt{f_t} + x'_t / \sqrt{f_t} = 0$.

Also, the last row of CX is obtained by multiplying the T-th row of C by $X = \begin{bmatrix} X_{T-1} \\ x_T' \end{bmatrix}.$

This yields $-x_T' \left(X_{T-1}' X_{T-1} \right)^{-1} X_{T-1}' X_{T-1} / \sqrt{f_T} + x_T' / \sqrt{f_T} = 0.$

This proves that CX = 0. This means that $w = Cy = CX\beta + Cu = Cu$ since CX = 0.

Hence, E(w) = CE(u) = 0. Note that

$$C' = \begin{bmatrix} \frac{-X_k(X_k'X_k)^{-1}x_{k+1}}{\sqrt{f_{k+1}}} & ... & \frac{-X_{t-1}(X_{t-1}'X_{t-1})^{-1}x_t}{\sqrt{f_t}} & ... & \frac{-X_{T-1}(X_{T-1}'X_{T-1})^{-1}x_T}{\sqrt{f_T}} \\ \frac{1}{\sqrt{f_{k+1}}} & & \frac{1}{\sqrt{f_t}} & ... & . \\ 0 & 0 & ... & . \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & ... & \frac{1}{\sqrt{f_T}} \end{bmatrix}$$

so that the first diagonal element of CC' is

$$\begin{split} \frac{x_{k+1}'(X_k'X_k)^{-1}X_k'X_k(X_k'X_k)^{-1}x_{k+1}}{f_{k+1}} + \frac{1}{f_{k+1}} &= \frac{1 + x_{k+1}'(X_k'X_k)^{-1}x_{k+1}}{f_{k+1}} \\ &= \frac{f_{k+1}}{f_{k+1}} = 1 \end{split}$$

similarly, the t-th diagonal element of CC' is

$$\frac{x_t'(X_{t-1}'X_{t-1})^{-1}X_{t-1}'X_{t-1}(X_{t-1}'X_{t-1})^{-1}x_t}{f_t} + \frac{1}{f_t} = \frac{f_t}{f_t} = 1$$

and the T-th diagonal element of CC' is

$$\frac{x_{T}'(X_{T-1}'X_{T-1})^{-1}X_{T-1}'X_{T-1}(X_{T-1}'X_{T-1})^{-1}x_{T}}{f_{T}} + \frac{1}{f_{T}} = \frac{f_{T}}{f_{T}} = 1$$

Using the fact that

$$X_{t-1} = \begin{bmatrix} X_k \\ x'_{k+1} \\ \vdots \\ x'_{t-1} \end{bmatrix},$$

one gets the (1,t) element of CC' by multiplying the first row of C by the t-th column of C'. This yields

$$\frac{x_{k+1}'(X_k'X_k)^{-1}X_k'X_k(X_{t-1}'X_{t-1})^{-1}x_t}{\sqrt{f_{k+1}}\sqrt{f_t}} - \frac{x_{k+1}'(X_{t-1}'X_{t-1})^{-1}x_t}{\sqrt{f_{k+1}}\sqrt{f_t}} = 0.$$

Similarly, the (1,T) element of CC' is obtained by multiplying the first row of C by the T-th column of C'. This yields

$$\frac{x'_{k+1}(X'_kX_k)^{-1}X'_kX_k(X'_{T-1}X_{T-1})^{-1}x_T}{\sqrt{f_{k+1}}\sqrt{f_T}} - \frac{x'_{k+1}(X'_{T-1}X_{T-1})^{-1}x_T}{\sqrt{f_{k+1}}\sqrt{f_T}} = 0.$$

Similarly, one can show that the (t,1)-th element, the (t,T)-th element, the (T,1)-th element and the (T,t)-th element of CC' are all zero. This proves that $CC' = I_{T-k}$. Hence, w is linear in y, unbiased with mean zero, and $var(w) = var(Cu) = C E(uu')C' = \sigma^2 CC' = \sigma^2 I_{T-k}$,

i.e., the variance–covariance matrix is a scalar times an identity matrix. Using Theil's (1971) terminology, these recursive residuals are (LUS) linear unbiased with a scalar covariance matrix. A further result holds for all LUS residuals. In fact, $C'C = \overline{P}_x$ see Theil (1971, p. 208). Hence,

$$\sum_{t=k+1}^T w_t^2 = w'w = y'C'Cy = y'\overline{P}_xy = e'e = \sum_{t=1}^T e_t^2$$

Therefore, the sum of squares of the (T - k) recursive residuals is equal to the sum of squares of the T least squares residuals.

- c. If $u \sim N(0, \sigma^2 I_T)$ then w = Cu is also Normal since it is a linear function of normal random variables. From part (b) we proved that w has mean zero and variance $\sigma^2 I_{T-k}$. Hence, $w \sim N(0, \sigma^2 I_{T-k})$ as required.
- **d.** Let us express the (t + 1) residuals as follows:

$$Y_{t+1} - X_{t+1}\hat{\beta}_{t+1} = Y_{t+1} - X_{t+1}\hat{\beta}_t - X_{t+1}(\hat{\beta}_{t+1} - \hat{\beta}_t)$$

so that

$$\begin{split} RSS_{t+1} &= (Y_{t+1} - X_{t+1} \hat{\beta}_{t+1})' (Y_{t+1} - X_{t+1} \hat{\beta}_{t+1}) \\ &= (Y_{t+1} - X_{t+1} \hat{\beta}_t)' (Y_{t+1} - X_{t+1} \hat{\beta}_t) + (\hat{\beta}_{t+1} - \hat{\beta}_t)' X'_{t+1} X_{t+1} \\ &\qquad (\hat{\beta}_{t+1} - \hat{\beta}_t) - 2 (\hat{\beta}_{t+1} - \hat{\beta}_t)' X'_{t+1} (Y_{t+1} - X_{t+1} \hat{\beta}_t) \\ Partition \ Y_{t+1} &= \begin{pmatrix} Y_t \\ y_{t+1} \end{pmatrix} \ \text{and} \ X_{t+1} &= \begin{pmatrix} X_t \\ x'_{t+1} \end{pmatrix} \ \text{so that the first term of} \\ RSS_{t+1} \ \text{becomes} \ (Y_{t+1} - X_{t+1} \hat{\beta}_t)' (Y_{t+1} - X_{t+1} \hat{\beta}_t) \\ &= [(Y_t - X_t \hat{\beta}_t)', (y_{t+1} - x'_{t+1} \hat{\beta}_t)'] \begin{pmatrix} Y_t - X_t \hat{\beta}_t \\ y_{t+1} - x'_{t+1} \hat{\beta}_t \end{pmatrix} \\ &= RSS_t + f_{t+1} \ w_{t+1}^2 \end{split}$$

where $f_{t+1} = 1 + x'_{t+1} \left(X'_t X_t \right)^{-1} x_{t+1}$ is defined in (8.32) and w_{t+1} is the recursive residual defined in (8.30). Next, we make the substitution for $(\hat{\beta}_{t+1} - \hat{\beta}_t)$ from (8.32) into the second term of RSS_{t+1} to get $(\hat{\beta}_{t+1} - \hat{\beta}_t)' X'_{t+1} X_{t+1} (\hat{\beta}_{t+1} - \hat{\beta}_t) = (y_{t+1} - x'_{t+1} \hat{\beta}_t)' x'_{t+1} (X'_t X_t)^{-1} (X'_t X_t)^{-1} (X'_t X_t)^{-1} X_{t+1} (y_{t+1} - x'_{t+1} \hat{\beta}_t)$

Postmultiplying (8.31) by x_{t+1} one gets

$$(X'_{t+1}X_{t+1})^{-1}x_{t+1} = (X'_tX_t)^{-1}x_{t+1} - \frac{(X'_tX_t)^{-1}x_{t+1}c}{1+c}$$

where $c = x'_{t+1} (X'_t x_t)^{-1} x_{t+1}$. Collecting terms one gets

$$(X'_{t+1}X_{t+1})^{-1} x_{t+1} = (X'_tX_t)^{-1} x_{t+1}/f_{t+1}$$

where $f_{t+1} = 1 + c$.

Substituting this above, the second term of RSS_{t+1} reduces to $x'_{t+1} \left(X'_t X_t \right)^{-1} x_{t+1} w_{t+1}^2$.

For the third term of RSS_{t+1}, we observe that $X'_{t+1}\left(Y_{t+1}-X'_{t+1}\hat{\beta}_{t}\right)=\left[X'_{t},x_{t+1}\right]\begin{bmatrix}y_{t}-X_{t}\hat{\beta}_{t}\\y_{t+1}-x'_{t+1}\hat{\beta}_{t}\end{bmatrix}=X'_{t}(Y_{t}-X_{t}\hat{\beta}_{t})+x_{t+1}(y_{t+1}-x'_{t+1}\hat{\beta}_{t}).$ The first term is zero since X_{t} and its least squares residuals are orthogonal.

Hence, $X'_{t+1}(Y_{t+1} - X_{t+1}\hat{\beta}_t) = x_{t+1}w_{t+1}\sqrt{f_{t+1}}$ and the third term of RSS_{t+1} becomes $-2(\hat{\beta}_{t+1} - \hat{\beta}_t)'x_{t+1}w_{t+1}\sqrt{f_{t+1}}$ using (8.32), this reduces to $-2x'_{t+1}(X'_tX_t)^{-1}x_{t+1}w_{t+1}^2$. Adding all three terms yields

$$RSS_{t+1} = RSS_t + f_{t+1}w_{t+1}^2 + x'_{t+1}(X'_tX_t)^{-1}x_{t+1}w_{t+1}^2$$

$$-2x'_{t+1}(X'_tX_t)^{-1}x_{t+1}w_{t+1}^2$$

$$= RSS_t + f_{t+1}w_{t+1}^2 - (f_{t+1} - 1)w_{t+1}^2 = RSS_t + w_{t+1}^2 \text{ as required.}$$

- **8.15** The Harvey and Collier (1977) Misspecification t-test as a Variable Additions *Test*. This is based on Wu (1993).
 - **a.** The Chow F-test for H_0 ; $\gamma = 0$ in (8.44) is given by

$$F = \frac{RRSS - URSS}{URSS/(T-k-1)} = \frac{y'\overline{P}_x y - y'\overline{P}_{[X,z]} y}{y'\overline{P}_{[X,z]} y/(T-k-1)}.$$

Using the fact that $z=C'\iota_{T-k}$ where C is defined in (8.34) and ι_{T-k} is a vector of ones of dimension (T-k). From (8.35) we know that CX=0, $CC'=I_{T-k}$ and $C'C=\overline{P}_x$. Hence, $z'X=\iota'_{T-k}CX=0$ and

$$P_{[X,z]} = [X,z] \begin{bmatrix} X'X & 0 \\ 0 & z'z \end{bmatrix}^{-1} \begin{pmatrix} X' \\ z' \end{pmatrix} = P_X + P_z$$

Therefore, URSS = $y'\overline{P}_{[X,z]}y = y'y - y'P_xy - y'P_zy$ and RRSS = $y'\overline{P}_Xy = y'y - y'P_xy$ and the F-statistic reduces to

$$F = \frac{y'P_zY}{y'(\overline{P}_x - P_z)y/(T - k - 1)}$$

which is distributed as F(1, T-k-1) under the null hypothesis H_0 ; $\gamma = 0$.

b. The numerator of the F-statistic is

$$y'P_zy = y'z(z'z)^{-1}z'y = y'C'\iota_{T-k} \left(\iota'_{T-K}CC'\iota_{T-k}\right)^{-1}\iota'_{T-k}Cy$$

But $CC' = I_{T-k}$ and $\iota'_{T-k}CC'\iota_{T-k} = \iota'_{T-k}\iota_{T-k} = (T-k)$. Therefore $y'P_zy = y'C'\iota_{T-k}\iota'_{T-k}Cy/(T-k)$. The recursive residuals are constructed as w = Cy, see below (8.34). Hence

$$y'P_zy=w'\iota_{T-k}\iota_{T-k}'w/(T-k)=\left(\sum_{t=k+1}^Tw_t\right)^2/(T-k)=(T-k)\overline{w}^2$$

where $\overline{w} = \sum_{t=k+1}^{T} w_t/(T-k)$. Using $\overline{P}_X = C'C$, we can write

$$y'\overline{P}_xy=y'C'Cy=w'w=\sum_{t=k+1}^Tw_t^2$$

Hence, the denomentator of the F-statistic is $y'(\overline{P}_x-P_z)y/(T-k-1)=\sum_{t=k+1}^T w_t^2-(T-k)\overline{w}^2 \bigg]/(T-k-1)=\sum_{t=k+1}^T (w_t-\overline{w})^2/(T-k-1)=s_w^2$ where $s_w^2=\sum_{t=k+1}^T (w_t-\overline{w})^2/(T-k-1)$ was given below (8.43). Therefore, the F-statistic in part (a) is $F=(T-k)\overline{w}^2/s_w^2$ which is the square of the Harvey and Collier (1977) t_{T-k-1} -statistic given in (8.43).

8.16 The Gasoline data model given in Chap. 10.

a. Using Eviews, and the data for AUSTRIA one can generate the regression of y on X_1 , X_2 and X_3 and the corresponding recursive residuals.

LS // Dependent Variable is Y

Sample: 1960 1978

Included observations: 19

Variable	Coeffic	eient	Std.	Error	t-Statistic	Prob.
C X1 X2 X3	3.7260 0.760 -0.793 -0.519	721 199	0.370 0.21 0.150 0.110	1471 0086	9.990422 3.597289 -5.284956 -4.595336	0.0000 0.0026 0.0001 0.0004
R-squared		0.73344	10	Mean	dependent var	4.056487
Adjusted R-squ S.E. of regressi Sum squared re Log likelihood Durbin-Watson	on esid	0.68012 0.03919 0.02304 36.8313 1.87963 RECUR	94 12 36 34	Akaike Schwa F-stati Prob(F	-statistic)	0.069299 -6.293809 -6.094980 13.75753 0.000140

0.001047 -0.010798 0.042785 0.035901 0.024071 -0.009944 -0.007583 0.018521 0.006881 0.003415 -0.092971 0.013540 -0.069668 0.000706 -0.070614

b. EViews also gives as an option a plot of the recursive residuals plus or minus twice their standard error. Next, the CUSUM plot is given along with 5% upper and lower lines.

d. Chow Forecast Test: Forecast from 1978 to 1978

F-statistic 3.866193 Probability 0.069418 Log likelihood ratio 4.633206 Probability 0.031359 Test Equation:

LS // Dependent Variable is Y

Sample: 1960 1977

Included observations: 18

Variable	Coefficie	ent S	Std. Error	t-Statistic	Prob.
С	4.000172		0.369022	10.83991	0.0000
X1	0.8037	52 (0.194999	4.121830	0.0010
X2	-0.7381	74 (0.140340	-5.259896	0.0001
X3	-0.5222	16 (0.103666	-5.037483	0.0002
R-squared	().732757	Mear	n dependent var	4.063917
Adjusted R-squ	ared (0.675490	S.D.	dependent var	0.063042
S.E. of regressi	on (0.035913	Akail	ce info criterion	-6.460203
Sum squared re	esid (0.018056	Schw	arz criterion	-6.262343
Log likelihood	3	36.60094	F-sta	tistic	12.79557
Durbin-Watson	stat 2	2.028488	Prob	(F-statistic)	0.000268

- **8.17** *The Differencing Test in a Regression with Equicorrelated Disturbances.* This is based on Baltagi (1990).
 - a. For the equicorrelated case Ω can be written as $\Omega = \sigma^2 (1 \rho) [E_T + \theta \overline{J}_T]$ where $E_T = I_T \overline{J}_T$, $\overline{J}_T = J_T/T$ and $\theta = [1 + (T 1)\rho]/(1 \rho)$.

$$\Omega^{-1} = [E_T + (1/\theta)\overline{J}_T]/\sigma^2(1-\rho)$$

$$\iota'\Omega^{-1} = \iota'/\theta\sigma^2(1-\rho)$$

and $L = E_T/\sigma^2(1-\rho)$. Hence $\hat{\beta} = (X'E_TX)^{-1}X'E_TY$, which is the OLS estimator of β , since E_T is a matrix that transforms each variable into deviations from its mean. That GLS is equivalent to OLS for the equicorrelated case, is a standard result in the literature.

Also, $D\Omega = \sigma^2(1-\rho)D$ since $D\iota = 0$ and $D\Omega D' = \sigma^2(1-\rho)DD'$. Therefore, $M = P_{D'}/\sigma^2(1-\rho)$ where $P_{D'} = D'(DD')^{-1}D$. In order to show that M = L, it remains to show that $P_{D'} = E_T$ or equivalently that $P_{D'} + \bar{J}_T = I_T$ from the definition of E_T . Note that both $P_{D'}$ and \bar{J}_T are symmetric

idempotent matrices which are orthogonal to each other. $(D\bar{J}_T=0 \text{ since } D\iota=0)$. Using Graybill's (1961) Theorem 1.69, these two properties of $P_{D'}$ and \bar{J}_T imply a third: Their sum is idempotent with rank equal to the sum of the ranks. But rank of $P_{D'}$ is (T-1) and rank of \bar{J}_T is 1, hence their sum is idempotent of rank T, which could only be I_T . This proves the Maeshiro and Wichers (1989) result, i.e., $\hat{\beta}=\tilde{\beta}$, which happens to be the OLS estimator from (1) in this particular case.

- b. The Plosser, Schwert and White differencing test is based on the difference between the OLS estimator from (1) and the OLS estimator from (2). But OLS on (1) is equivalent to GLS on (1). Also, part (a) proved that GLS on (1) is in fact GLS from (2). Hence, the differencing test can be based upon the difference between the OLS and GLS estimators from the differenced equation. An alternative solution is given by Koning (1992).
- **8.18 a.** Stata performs Ramsey's RESET test by issuing the command estat ovtest after running the regression as follows:

. reg lwage wks south smsa ms exp exp2 occ ind union fem blk ed

(We suppress the regression output since it is the same as Table 4.1 in the text and solution 4.13).

. estat ovtest

Ramsey RESET test using powers of the fitted values of Iwage

Ho: model has no omitted variables

$$F(3, 579) = 0.79$$

 $Prob > F = 0.5006$

This does not reject the null of no regression misspecification.

- **b.** Stata also performs White's (1982) Information matrix test by issuing the command estat imtest after running the regression as follows:
 - . estat imtest

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	103.28 5.37 1.76	81 12 1	0.082 0.9444 0.1844
Total	110.41	94	0.1187

This does not reject the null, even though heteroskedasticity seems to be a problem.

- **8.20 a.** Stata performs Ramsey's RESET test by issuing the command estat ovtest after running the regression as follows:
 - . reg Inc Inrp Inrdi

(We suppress the regression output since it is the same as that in solution 5.13).

. estat ovtest

Ramsey RESET test using powers of the fitted values of Inc.

Ho: model has no omitted variables

$$F(3, 40) = 3.11$$

$$Prob > F = 0.0369$$

This rejects the null of no regression misspecification at the 5% level.

- **b.** Stata also performs White's (1982) Information matrix test by issuing the command estat imtest after running the regression as follows:
 - . estat imtest

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis		5 2 1	0.0079 0.1664 0.8028
Total	19.31	8	0.0133

This rejects the null, and seems to indicate that heteroskedasticity seems to be the problem. This was confirmed using this data set in problem 5.13.

References

- Baltagi, B.H. (1990), "The Differencing Test in a Regression with Equicorrelated Disturbances," Econometric Theory, Problem 90.4.5, 6: 488.
- Graybill, F.A. (1961), An Introduction to Linear Statistical Models, Vol. 1 (McGraw-Hill: New York).
- Harvey, A.C. and P. Collier (1977), "Testing for Functional Misspecification in Regression Analysis," Journal of Econometrics, 6: 103–119.
- Johnston, J. (1984), Econometric Methods (McGraw-Hill: New York).
- Koning, R.H. (1992), "The Differencing Test in a Regression with Equicorrelated Disturbances," Econometric Theory, Solution 90.4.5, 8: 155–156.
- Maeshiro, A. and R. Wichers (1989), "On the Relationship Between the Estimates of Level Models and Difference Models," American Journal of Agricultural Economics, 71: 432–434.
- Theil, H. (1971), Principles of Econometrics (Wiley: New York).
- White, H. (1982), "Maximum Likelihood Estimation of Misspecified Models," Econometrica, 50: 1–25.
- Wu, P. (1993), "Variable Addition Test," Econometric Theory, Problem 93.1.2, 9: 145–146.

CHAPTER 9

Generalized Least Squares

- **9.1** GLS Is More Efficient than OLS.
 - **a.** Equation (7.5) of Chap. 7 gives $\hat{\beta}_{ols} = \beta + (X'X)^{-1}X'u$ so that $E(\hat{\beta}_{ols}) = \beta$ as long as X and u are uncorrelated and u has zero mean. Also,

$$\begin{split} var\big(\hat{\beta}_{ols}\big) &= E\big(\hat{\beta}_{ols} - \beta\big)\big(\hat{\beta}_{ols} - \beta\big)' = E[(X'X)^{-1}X'uu'X(X'X)^{-1}] \\ &= (X'X)^{-1}X' \ E(uu')X(X'X)^{-1} = \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}. \end{split}$$

$$\begin{aligned} \textbf{b.} \ \, & \mathrm{var}\big(\hat{\beta}_{ols}\big) - \mathrm{var}\big(\hat{\beta}_{GLS}\big) = \sigma^2[(X'X)^{-1}X'\Omega X(X'X)^{-1} - (X'\Omega^{-1}X)^{-1}] \\ &= \sigma^2[(X'X)^{-1}X'\Omega X(X'X)^{-1} - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\Omega\Omega^{-1} \\ & \quad X(X'\Omega^{-1}X)^{-1}] \\ &= \sigma^2[(X'X)^{-1}X' - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}]\Omega[X(X'X)^{-1} \\ &- \Omega^{-1}X(X'\Omega^{-1}X)^{-1}] \\ &= \sigma^2 \ \, A\Omega A' \end{aligned}$$

where $A = [(X'X)^{-1}X' - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}]$. The second equality post multiplies $(X'\Omega^{-1}X)^{-1}$ by $(X'\Omega^{-1}X)(X'\Omega^{-1}X)^{-1}$ which is an identity of dimension K. The third equality follows since the cross-product terms give $-2(X'\Omega^{-1}X)^{-1}$. The difference in variances is positive semi-definite since Ω is positive definite.

9.2 a. From Chap. 7, we know that $s^2 = e'e/(n - K) = u'\bar{P}_Xu/(n - K)$ or $(n - K)s^2 = u'\bar{P}_Xu$. Hence,

$$\begin{split} (n-K)E(s^2) &= E(u'\bar{P}_Xu) = E[tr(u'\bar{P}_Xu)] \\ &= tr[E(uu')\bar{P}_X] = tr(\Sigma\bar{P}_X) = \sigma^2 tr(\Omega\bar{P}_X) \end{split}$$

and $E(s^2) = \sigma^2 tr(\Omega \bar{P}_X)/(n-K)$ which in general is not equal to σ^2 .

b. From part (a),

$$(n - K)E(s^2) = tr(\Sigma \bar{P}_X) = tr(\Sigma) - tr(\Sigma P_X)$$

but, both Σ and P_X are non-negative definite. Hence, $tr(\Sigma P_X) \geq 0$ and

$$(n - K)E(s^2) \le tr(\Sigma)$$

which upon rearranging yields $E(s^2) \leq tr(\Sigma)/(n-K)$. Also, Σ and \bar{P}_X are non-negative definite. Hence, $tr(\Sigma \bar{P_X}) \geq 0$. Therefore, $E(s^2) \geq 0$. This proves the bound derived by Dufour (1986):

$$0 \le E(s^2) \le tr(\Sigma)/(n-K)$$

where $\text{tr}(\Sigma) = \sum_{i=1}^n \sigma_i^2$. Under homoskedasticity $\sigma_i^2 = \sigma^2$ for i=1,2,...,n. Hence, $\text{tr}(\Sigma) = n\sigma^2$ and the upper bound becomes $n\sigma^2/(n-K)$. A useful bound for $E(s^2)$ has been derived by Sathe and Vinod (1974) and Neudecker (1977, 1978). This is given by $0 \le \text{mean of } (n-K)$ smallest characteristic roots of $\Sigma \le E(s^2) \le \text{mean of } (n-K)$ largest characteristic roots of $\Sigma < \text{tr}(\Sigma)/(n-K)$.

c. Using $s^2 = u' \bar{P}_X u/(n-K) = u' u/(n-K) - u' P_X u/(n-K)$ we have plim $s^2 = \text{plim } u' u/(n-K) - \text{plim } u' P_X u/(n-K)$. By assumption plim $u' u/n = \sigma^2$. Hence, the first term tend in plim to σ^2 as $n \to \infty$. The second term has expectation $\sigma^2 \text{tr}(P_X \Omega)/(n-K)$. But, $P_X \Omega$ has rank K and therefore exactly K non-zero characteristic roots each of which cannot exceed λ_{max} . This means that

$$E[u'P_Xu/(n-K)] \le \sigma^2K\lambda_{max}/(n-K).$$

Using the condition that $\lambda_{max}/n \to 0$ as $n \to \infty$ proves that

$$\lim E[u'P_Xu/(n-K)] \to 0$$

as $n \to \infty$. Hence, plim $[u'P_Xu/(n-K)] \to 0$ as $n \to \infty$ and plim $s^2 = \sigma^2$. Therefore, a sufficient condition for s^2 to be consistent for σ^2 irrespective of X is that $\lambda_{max}/n \to 0$ and plim $(u'u/n) = \sigma^2$ as $n \to \infty$, see Krämer and Berghoff (1991).

d. From (9.6), $s^{*2} = e^{*'}e^*/(n-K)$ where $e^* = y^* - X^*\hat{\beta}_{GLS} = y^* - X^*(X^{*'}X^*)^{-1}X^{*'}y^* = \bar{P}_{X^*}y^*$ using (9.4), where $\bar{P}_{X^*} = I_n - P_{X^*}$ and $P_{X^*} = X^*(X^{*'}X^*)^{-1}X^{*'}$. Substituting y^* from (9.3), we get $e^* = \bar{P}_{X^*}u^*$ where $\bar{P}_{X^*}X^* = 0$. Hence, $(n-K)s^{*2} = e^{*'}e^* = u^{*'}\bar{P}_{X^*}u^*$ with

$$\begin{split} (n-K)E(s^{*2}) &= E\left(u^{*\prime}\bar{P}_{X^*}u^*\right) = E\left[\text{tr}\left(u^*u^{*\prime}\bar{P}_{X^*}\right)\right] \\ &= \text{tr}\left[E\left(u^*u^{*\prime}\right)\bar{P}_{X^*}\right] = \text{tr}\left(\sigma^2\bar{P}_{X^*}\right) = \sigma^2(n-K) \end{split}$$

from the fact that $var(u^*) = \sigma^2 I_n$. Hence, $E(s^{*2}) = \sigma^2$ and s^{*2} is unbiased for σ^2 .

- **9.3** *The AR(1) Model.*
 - **a.** From (9.9) and (9.10) we get

$$\begin{split} \Omega\Omega^1 &= \left[\frac{1}{1-\rho^2}\right] \begin{bmatrix} 1 & \rho & \rho^2 & \dots & \rho^{T-1} \\ \rho & 1 & \rho & \dots & \rho^{T-2} \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \dots & 1 \end{bmatrix} \\ & \begin{bmatrix} 1 & -\rho & 0 & \dots & 0 & 0 & 0 \\ -\rho & 1+\rho^2 & -\rho & \dots & 0 & 0 & 0 \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \dots & -\rho & 1+\rho^2 & -\rho \\ 0 & 0 & 0 & \dots & 0 & -\rho & 1 \end{bmatrix} \\ & = \left[\frac{1}{1-\rho^2}\right] \begin{bmatrix} (1-\rho^2) & 0 & 0 & \dots & 0 \\ 0 & (1-\rho^2) & 0 & \dots & 0 \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \dots & (1-\rho^2) \end{bmatrix} = I_T \end{split}$$

The multiplication is tedious but simple. The (1,1) element automatically gives $(1 - \rho^2)$. The (1,2) element gives $-\rho + \rho(1 + \rho^2) - \rho\rho^2 = -\rho + \rho(1 + \rho^2)$

 $\rho+\rho^3-\rho^3=0.$ The (2,2) element gives $-\rho^2+(1+\rho^2)-\rho\rho=1-\rho^2$ and so on.

b. For P^{-1} defined in (9.11), we get

$$\begin{split} P^{-1\prime}P^{-1} &= \begin{bmatrix} \sqrt{1-\rho^2} & -\rho & 0 & \dots & 0 & 0 \\ 0 & 1 & -\rho & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -\rho \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \\ &\begin{bmatrix} \sqrt{1-\rho^2} & 0 & 0 & \dots & 0 & 0 & 0 \\ -\rho & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -\rho & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\rho & 1 & 0 \\ 0 & 0 & 0 & \dots & -\rho & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & -\rho & 0 & \dots & 0 & 0 & 0 \\ -\rho & 1+\rho^2 & -\rho & \dots & 0 & 0 & 0 \\ -\rho & 1+\rho^2 & -\rho & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\rho & 1+\rho^2 & -\rho \\ 0 & 0 & 0 & \dots & 0 & -\rho & 1 \end{bmatrix} = (1-\rho^2)\Omega^{-1} \end{split}$$

Again, the multiplication is simple but tedious. The (1,1) element gives

$$\sqrt{1-\rho^2}\sqrt{1-\rho^2}-\rho(-\rho)=(1-\rho^2)+\rho^2=1$$

the (1,2) element gives $\sqrt{1-\rho^2}.0 - \rho.1 = -\rho$, the (2,2) element gives $1 - \rho(-\rho) = 1 + \rho^2$ and so on.

c. From part (b) we verified that $P^{-1}/P^{-1}=(1-\rho^2)\Omega^{-1}$. Hence, $\Omega/(1-\rho^2)=PP'$ or $\Omega=(1-\rho^2)PP'$. Therefore,

$$\begin{split} var(P^{-1}u) &= P^{-1}var(u)P^{-1\prime} = \sigma_u^2 P^{-1}\Omega P^{-1\prime} \\ &= \sigma_u^2 (1-\rho^2)P^{-1}PP'P^{-1\prime} = \sigma_\epsilon^2 I_T \\ since \, \sigma_u^2 &= \sigma_\epsilon^2/(1-\rho^2). \end{split}$$

9.4 Restricted GLS. From Chap. 7, restricted least squares is given by $\hat{\beta}_{rls} = \hat{\beta}_{ols} + (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(r - R\hat{\beta}_{ols})$. Applying the same analysis to the transformed model in (9.3) we get that $\hat{\beta}_{ols}^* = (X^{*\prime}X^*)^{-1}X^{*\prime}y^* = \hat{\beta}_{GLS}$. From (9.4) and the above restricted estimator, we get

$$\hat{\beta}_{RGLS} = \hat{\beta}_{GLS} + (X^{*\prime}X^*)^{-1}R'[R(X^{*\prime}X^*)^{-1}R']^{-1}(r - R\,\hat{\beta}_{GLS})$$

where X^* now replaces X. But $X^{*\prime}X^* = X'\Omega^{-1}X$, hence,

$$\hat{\beta}_{RGLS} = \hat{\beta}_{GLS} + (X'\Omega^{-1}X)^{-1}R'[R(X'\Omega^{-1}X)^{-1}R']^{-1}(r - R\,\hat{\beta}_{GLS}).$$

- **9.5** Best Linear Unbiased Prediction. This is based on Goldberger (1962).
 - **a.** Consider linear predictors of the scalar y_{T+s} given by $\hat{y}_{T+s} = c'y$. From (9.1) we get $\hat{y}_{T+s} = c'X\beta + c'u$ and using the fact that $y_{T+s} = x'_{T+s}\beta + u_{T+s}$, we get

$$\hat{y}_{T+s} - y_{T+s} = (c'X - x'_{T+s})\beta + c'u - u_{T+s}.$$

The unbiased condition is given by $E(\hat{y}_{T+s}-y_{T+s})=0$. Since E(u)=0 and $E(u_{T+s})=0$, this requires that $c'X=x'_{T+s}$ for this to hold for every β . Therefore, an unbiased predictor will have prediction error

$$\hat{y}_{T+s} - y_{T+s} = c'u - u_{T+s}$$
.

b. The prediction variance is given by

$$\begin{split} var\left(\hat{y}_{T+s}\right) &= E\left(\hat{y}_{T+s} - y_{T+s}\right) \left(\hat{y}_{T+s} - y_{T+s}\right)' = E(c'u - u_{T+s})(c'u - u_{T+s})' \\ &= c'E(uu')c + var(u_{T+s}) - 2c'E(u_{T+s}u) = c'\Sigma c + \sigma_{T+s}^2 - 2c'\omega \end{split}$$

using the definitions $\sigma_{T+s}^2 = var(u_{T+s})$ and $\omega = E(u_{T+s}u)$.

c. Minimizing $var(\hat{y}_{T+s})$ subject to $c'X = x'_{T+s}$ sets up the following Lagrangian function

$$\psi(c,\lambda) = c' \Sigma c - 2c' \omega - 2\lambda' (X'c - x_{T+s})$$

where σ_{T+s}^2 is fixed and where λ denotes the Kx1 vector of Lagrangian multipliers. The first order conditions of ψ with respect to c and λ yield $\partial \psi/\partial c = 2\Sigma c - 2\omega - 2X\lambda = 0$ and $\partial \psi/\partial \lambda = 2X'c - 2x_{T+s} = 0$.

In matrix form, these two equations become

$$\begin{bmatrix} \Sigma & X \\ X' & 0 \end{bmatrix} \begin{pmatrix} \hat{c} \\ -\hat{\lambda} \end{pmatrix} = \begin{pmatrix} \omega \\ x_{T+s} \end{pmatrix}.$$

Using partitioned inverse matrix formulas one gets

$$\begin{pmatrix} \hat{c} \\ -\hat{\lambda} \end{pmatrix} = \begin{bmatrix} \Sigma^{-1}[I_T - X(X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}] & \Sigma^{-1}X(X'\Sigma^{-1}X)^{-1} \\ (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1} & -(X'\Sigma^{-1}X)^{-1} \end{bmatrix} \begin{pmatrix} \omega \\ x_{T+s} \end{pmatrix}$$

so that

$$\hat{c} = \Sigma^{-1} X (X' \Sigma^{-1} X)^{-1} x_{T+s} + \Sigma^{-1} [I_T - X (X' \Sigma^{-1} X)^{-1} X' \Sigma^{-1}] \omega.$$

Therefore, the BLUP is given by

$$\begin{split} \hat{y}_{T+s} &= \hat{c}' y = x'_{T+s} (X' \Sigma^{-1} X)^{-1} X' \Sigma^{-1} y + \omega' \Sigma^{-1} y \\ &- \omega' \Sigma^{-1} X (X' \Sigma^{-1} X)^{-1} X' \Sigma^{-1} y \\ &= x'_{T+s} \hat{\beta}_{GLS} + \omega' \Sigma^{-1} y - \omega' \Sigma^{-1} X \hat{\beta}_{GLS} \\ &= x'_{T+s} \hat{\beta}_{GLS} + \omega' \Sigma^{-1} (y - X \hat{\beta}_{GLS}) \\ &= x'_{T+s} \hat{\beta}_{GLS} + \omega' \Sigma^{-1} e_{GLS} \end{split}$$

where $e_{GLS} = y - X\hat{\beta}_{GLS}$. For $\Sigma = \sigma^2 \Omega$, this can also be written as

$$\hat{y}_{T+s} = x_{T+s}' \hat{\beta}_{GLS} + \omega' \Omega^{-1} e_{GLS} / \sigma^2. \label{eq:ytau_tensor}$$

d. For the stationary AR(1) case

$$u_t = \rho u_{t-1} + \epsilon$$
 with $\epsilon_t \sim \text{IID}\left(0, \sigma_{\epsilon}^2\right)$

$$|\rho| < 1$$
 and $var(u_t) = \sigma_u^2 = \sigma_\epsilon^2/(1-\rho^2)$. In this case, $cov(u_t, u_{t-s}) = \rho^s \sigma_u^2$.

Therefore, for s periods ahead forecast, we get

$$\omega = E(u_{T+s}u) = \begin{pmatrix} E(u_{T+s}u_1) \\ E(u_{T+s}u_2) \\ \vdots \\ E(u_{T+s}u_T) \end{pmatrix} = \sigma_u^2 \begin{pmatrix} \rho^{T+s-1} \\ \rho^{T+s-2} \\ \vdots \\ \rho^s \end{pmatrix}.$$

From Ω given in (9.9) we can deduce that $\omega = \rho^s \sigma_u^2$ (last column of Ω). But, $\Omega^{-1}\Omega = I_T$. Hence, Ω^{-1} (last column of Ω) = (last column of I_T) = (0, 0, .., 1)'. Substituting for the last column of Ω the expression $(\omega/\rho^s \sigma_u^2)$ yields

$$\Omega^{-1} \omega / \rho^s \sigma_u^2 = (0, 0, .., 1)'$$

which can be transposed and rewritten as

$$\omega'\Omega^{-1}/\sigma_u^2 = \rho^s(0,0,..,1).$$

Substituting this expression in the BLUP for y_{T+s} in part (c) we get

$$\begin{split} \hat{y}_{T+s} &= x_{T+s}' \hat{\beta}_{GLS} + \omega' \Omega^{-1} e_{GLS} / \sigma^2 = x_{T+s}' \hat{\beta}_{GLS} + \rho^s (0,0,..,1) e_{GLS} \\ &= x_{T+s}' \hat{\beta}_{GLS} + \rho^s e_{T,GLS} \end{split}$$

where $e_{T,GLS}$ is the T-th GLS residual. For s = 1, this gives

$$\hat{y}_{T+1} = x'_{T+1} \hat{\beta}_{GLS} + \rho e_{T,GLS}$$

as shown in the text.

9.6 The W, LR and LM Inequality. From Eq. (9.27), the Wald statistic W can be interpreted as a LR statistic conditional on $\hat{\Sigma}$, the unrestricted MLE of Σ , i.e., $W = -2 \log[\max_{R\beta = r} L(\beta/\hat{\Sigma})/\max_{\beta} L(\beta/\hat{\Sigma})]$. But, from (9.34), we know that the likelihood ratio statistic $LR = -2 \log[\max_{R\beta = r, \Sigma} L(\beta, \Sigma)/\max_{\beta, \Sigma} L(\beta, \Sigma)]$. Using (9.33), $\max_{R\beta = r} L(\beta/\hat{\Sigma}) \leq \max_{R\beta = r, \Sigma} L(\beta, \Sigma)$. The right hand side term is an unconditional maximum over all Σ whereas the left hand side is a conditional maximum based on $\hat{\Sigma}$ under the null hypothesis H_o ; $R\beta = r$. Also, from (9.32) $\max_{\beta, \Sigma} L(\beta, \Sigma) = \max_{\beta} L(\beta/\hat{\Sigma})$. Therefore, $W \geq LR$. Similarly, from Eq. (9.31), the Lagrange Multiplier statistic can be interpreted as a LR statistic conditional on $\tilde{\Sigma}$, the restricted maximum likelihood of Σ , i.e., $LM = -2 \log[\max_{R\beta = r} L(\beta/\hat{\Sigma})/\max_{\beta} L(\beta/\hat{\Sigma})]$. Using (9.33), $\max_{R\beta = r} L(\beta/\hat{\Sigma}) = \max_{R\beta = r, \Sigma} L(\beta, \Sigma)$ and from (9.32), we get $\max_{\beta} L(\beta/\hat{\Sigma}) \leq \max_{\beta} L(\beta, \Sigma)$ because the latter is an

unconditional maximum over all Σ . Hence, $LR \ge LM$. Therefore, $W \ge LR \ge LM$.

9.7 The W, LR and LM for this simple regression with H_o ; $\beta=0$ were derived in problem 7.16 in Chap. 7. Here, we follow the alternative derivation proposed by Breusch (1979) and considered in problem 9.6. From (9.34), the LR is given by $LR=-2\log\left[L\left(\tilde{\alpha},\;\tilde{\beta}=0,\;\tilde{\sigma}^2\right)/L\left(\hat{\alpha}_{mle},\hat{\beta}_{mle},\hat{\sigma}^2_{mle}\right)\right]$

where
$$\tilde{\alpha} = \bar{y}$$
, $\tilde{\beta} = 0$, $\tilde{\sigma}^2 = \sum_{i=1}^n (y_i - \bar{y})^2/n$ and
$$\hat{\alpha}_{mle} = \hat{\alpha}_{ols} = \bar{y} - \hat{\beta}_{ols}\bar{X},$$

$$\hat{\beta}_{mle} = \hat{\beta}_{ols} = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i^2, \ \hat{\sigma}_{mle}^2 = \sum_{i=1}^{n} e_i^2 / n$$

and $e_i = y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} X_i$, see the solution to problem 7.16. But,

$$logL\left(\alpha,\beta,\sigma^{2}\right)=-\frac{n}{2}\log2\pi-\frac{n}{2}\log\sigma^{2}-\sum_{i=1}^{n}(y_{i}-\alpha-\beta X_{i})^{2}/2\sigma^{2}.$$

Therefore,

$$\begin{split} logL\left(\tilde{\alpha},\ \tilde{\beta}=0,\ \tilde{\sigma}^2\right) &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \tilde{\sigma}^2 - \sum_{i=1}^n (y_i - \bar{y})^2/2\tilde{\sigma}^2 \\ &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \tilde{\sigma}^2 - \frac{n}{2} \end{split}$$

and

$$\begin{split} logL\left(\hat{\alpha}_{mle},\hat{\beta}_{mle},\hat{\sigma}_{mle}^2\right) &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log\hat{\sigma}_{mle}^2 - \sum_{i=1}^n e_i^2/2\hat{\sigma}_{mle}^2 \\ &= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log\hat{\sigma}_{mle}^2 - \frac{n}{2}. \end{split}$$

Therefore,

$$\begin{split} LR &= -2 \left[-\frac{n}{2} \log \tilde{\sigma}^2 + \frac{n}{2} \log \hat{\sigma}_{mle}^2 \right] = n \log \left(\tilde{\sigma}^2 / \hat{\sigma}_{mle}^2 \right) \\ &= n \log \left(TSS / RSS \right) = n \log (1/1 - R^2) \end{split}$$

where TSS = total sum of squares, and RSS = residual sum of squares for the simple regression. Of course, $R^2 = 1 - (RSS/TSS)$.

Similarly, from (9.31) we have

$$LM = -2 \log \left[\underset{\alpha,\beta=0}{max} L\left(\alpha,\beta/\tilde{\sigma}^2\right) / \underset{\alpha,\beta}{max} L(\alpha,\beta/\tilde{\sigma}^2) \right].$$

But, maximization of $L(\alpha, \beta/\tilde{\sigma}^2)$ gives $\hat{\alpha}_{ols}$ and $\hat{\beta}_{ols}$. Therefore,

$$\underset{\alpha,\beta}{\text{max}}L(\alpha,\beta/\tilde{\sigma}^2) = L\left(\hat{\alpha},\hat{\beta},\tilde{\sigma}^2\right)$$

with

$$logL\left(\hat{\alpha},\hat{\beta},\tilde{\sigma}^2\right) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \tilde{\sigma}^2 - \sum_{i=1}^n e_i^2/2\tilde{\sigma}^2.$$

Also, restricted maximization of $L(\alpha, \beta/\tilde{\sigma}^2)$ under H_o ; $\beta=0$ gives $\tilde{\alpha}=\bar{y}$ and $\tilde{\beta}=0$. Therefore, $\max_{\alpha,\beta=0} L(\alpha,\beta/\tilde{\sigma}^2)=L(\tilde{\alpha},\tilde{\beta},\tilde{\sigma}^2)$. From this, we conclude that

$$\begin{split} LM &= -2 \left[-\frac{n}{2} + \frac{\sum\limits_{i=1}^{n} e_{i}^{2}}{2\tilde{\sigma}^{2}} \right] = n - \left(\sum\limits_{i=1}^{n} e_{i}^{2} \middle/ \tilde{\sigma}^{2} \right) \\ &= n - \left(n \sum\limits_{i=1}^{n} e_{i}^{2} \middle/ \sum\limits_{i=1}^{n} y_{i}^{2} \right) = n[1 - (RSS/TSS)] = nR^{2}. \end{split}$$

Finally, from (9.27), we have W=-2 log $\left[\underset{\alpha,\beta=0}{\text{maxL}} \left(\alpha,\beta/\hat{\sigma}_{mle}^2\right) / \underset{\alpha,\beta}{\text{maxL}} \left(\alpha,\beta/\hat{\sigma}_{mle}^2\right) \right].$

The maximization of $L(\alpha, \beta/\hat{\sigma}^2)$ gives $\hat{\alpha}_{ols}$ and $\hat{\beta}_{ols}$. Therefore,

$$\underset{\alpha\beta}{max}L(\alpha,\beta/\hat{\sigma}^2)=L(\hat{\alpha},\hat{\beta},\hat{\sigma}^2).$$

Also, restricted maximization of $L(\alpha,\beta/\hat{\sigma}^2)$ under $\beta=0$ gives $\tilde{\alpha}=\bar{y}$ and $\tilde{\beta}=0$. Therefore, $\max_{\alpha,\beta=0} L(\alpha,\beta/\tilde{\sigma}^2)=L(\tilde{\alpha},\tilde{\beta}=0,\hat{\sigma}^2)$ with

$$logL(\tilde{\alpha},\tilde{\beta}=0,\hat{\sigma}^2)=-\frac{n}{2}\log 2\pi -\frac{n}{2}\log \hat{\sigma}^2 -\sum_{i=1}^n (y_i-\bar{y})^2/2\hat{\sigma}_{mle}^2.$$

Therefore,

$$\begin{split} W &= -2\left[-\frac{\sum\limits_{i=1}^{n}(y_i - \bar{y})^2}{2\hat{\sigma}_{mle}^2} + \frac{n}{2}\right] = \frac{TSS}{\hat{\sigma}_{mle}^2} - n = \frac{nTSS}{RSS} - n \\ &= n\left(\frac{TSS - RSS}{RSS}\right) = n\left(\frac{R^2}{1 - R^2}\right). \end{split}$$

This is exactly what we got in problem 7.16, but now from Breusch's (1979) alternative derivation. From problem 9.6, we infer using this LR interpretation of all three statistics that $W \ge LR \ge LM$.

- **9.8** Sampling Distributions and Efficiency Comparison of OLS and GLS. This is based on Baltagi (1992).
 - **a.** From the model it is clear that $\sum_{t=1}^{2} x_t^2 = 5$, $y_1 = 2 + u_1$, $y_2 = 4 + u_2$, and

$$\hat{\beta}_{ols} = \frac{\sum_{t=1}^{2} x_t y_t}{\sum_{t=1}^{2} x_t^2} = \beta + \frac{\sum_{t=1}^{2} x_t u_t}{\sum_{t=1}^{2} x_t^2} = 2 + 0.2u_1 + 0.4u_2$$

Let $u' = (u_1, u_2)$, then it is easy to verify that E(u) = 0 and

$$\Omega = var(u) = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}.$$

The disturbances have zero mean, are heteroskedastic and serially correlated with a correlation coefficient $\rho = -0.5$.

b. Using the joint probability function $P(u_1,u_2)$ and $\hat{\beta}_{ols}$ from part (a), one gets

Probability
1/8
3/8
3/8
1/8

Therefore, $E(\hat{\beta}_{ols})=\beta=2$ and $var(\hat{\beta}_{ols})=0.52$. These results can be also verified from $\hat{\beta}_{ols}=2+0.2u_1+0.4u_2$. In fact, $E(\hat{\beta}_{ols})=2$ since

$$E(u_1) = E(u_2) = 0 \text{ and }$$

$$var(\hat{\beta}_{ols}) = 0.04 \text{ var}(u_1) + 0.16 \text{ var}(u_2) + 0.16 \text{ cov}(u_1, u_2)$$
$$= 0.04 + 0.64 - 0.16 = 0.52.$$

Also,

$$\Omega^{-1}=\frac{1}{3}\begin{bmatrix}4&1\\1&1\end{bmatrix} \text{ and } (x'\Omega^{-1}x)^{-1}=1/4=\text{var}\big(\tilde{\beta}_{GLS}\big)$$

In fact, $\tilde{\beta}_{GLS}=(x'\Omega^{-1}x)^{-1}x'\Omega^{-1}y=1/4(2y_1+y_2)$ which can be rewritten as

$$\tilde{\beta}_{GLS}=2+1/4[2u_1+u_2]$$

Using $P(u_1,u_2)$ and this equation for $\tilde{\beta}_{GLS}$, one gets

$\tilde{\beta}_{GLS}$	Probability
1	1/8
2	3/4
3	1/8

Therefore, $E(\tilde{\beta}_{GLS})=\beta=2$ and $var(\tilde{\beta}_{GLS})=0.25$. This can also be verified from $\tilde{\beta}_{GLS}=2+1/4[2u_1+u_2]$. In fact, $E(\tilde{\beta}_{GLS})=2$ since $E(u_1)=E(u_2)=0$ and

$$var\left(\tilde{\beta}_{GLS}\right) = \frac{1}{16}[4var(u_1) + var(u_2) + 4cov(u_1, u_2)] = \frac{1}{16}[4 + 4 - 4] = \frac{1}{4}.$$

This variance is approximately 48% of the variance of the OLS estimator.

c. The OLS predictions are given by $\hat{y}_t = \hat{\beta}_{ols} x_t$ which means that $\hat{y}_1 = \hat{\beta}_{ols}$ and $\hat{y}_2 = 2\hat{\beta}_{ols}$. The OLS residuals are given by $\hat{e}_t = y_t - \hat{y}_t$ and their probability function is given by

$$\begin{array}{c|c} (\hat{e}_1, \hat{e}_2) & Probability \\ \hline (0,0) & 1/4 \\ (1.6, -0.8) & 3/8 \\ (-1.6, 0.8) & 3/8 \\ \end{array}$$

Now the estimated
$$var(\hat{\beta}_{ols}) = S(\hat{\beta}_{ols}) = \frac{s^2}{\sum\limits_{t=1}^2 x_t^2} = \frac{\Sigma \hat{e}_t^2}{5}$$
, and this has

probability function

$$\begin{array}{c|c} S(\hat{\beta}_{ols}) & Probability \\ \hline 0 & 1/4 \\ 0.64 & 3/4 \\ \end{array}$$

with
$$E\left[S\left(\hat{\beta}_{ols}\right)\right]=0.48\neq var\left(\hat{\beta}_{ols}\right)=0.52.$$

Similarly, the GLS predictions are given by $\tilde{y}_t = \tilde{\beta}_{GLS} x_t$ which means that $\tilde{y}_1 = \tilde{\beta}_{GLS}$ and $\tilde{y}_2 = 2\tilde{\beta}_{GLS}$. The GLS residuals are given by $\tilde{e}_t = y_t - \tilde{y}_t$ and their probability function is given by

$$\begin{array}{c|c} (\tilde{e}_1,\tilde{e}_2) & Probability \\ \hline (0,0) & 1/4 \\ (1,-2) & 3/8 \\ (-1,2) & 3/8 \\ \end{array}$$

The MSE of the GLS regression is given by $\tilde{s}^2 = \tilde{e}'\Omega^{-1}\tilde{e} = 1/3$ $\left[4\tilde{e}_1^2 + 2\tilde{e}_1\tilde{e}_2 + \tilde{e}_2^2\right]$ and this has a probability function

$$\begin{array}{c|c} \tilde{s}^2 & Probability \\ \hline 0 & 1/4 \\ 4/3 & 3/4 \\ \end{array}$$

with $E(\tilde{s}^2) = 1$. An alternative solution of this problem is given by Im and Snow (1993).

9.9 Equi-correlation.

a. For the regression with equi-correlated disturbances, OLS is equivalent to GLS as long as there is a constant in the regression model. Note that

$$\Omega = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \vdots & \vdots & & \vdots \\ \rho & \rho & \rho & \dots & 1 \end{bmatrix}$$

so that u_t is homoskedastic and has constant serial correlation. In fact, correlation $(u_t, u_{t-s}) = \rho$ for $t \neq s$. Therefore, this is called equi-correlated. Zyskind's (1967) condition given in (9.8) yields

$$P_{X}\Omega = \Omega P_{X}$$
.

In this case,

$$P_{X}\Omega = (1 - \rho)P_{X} + \rho P_{X}\iota_{T}\iota'_{T}$$

and

$$\Omega P_{X} = (1 - \rho)P_{X} + \rho \iota_{T} \iota_{T}' P_{X}.$$

But, we know that X contains a constant, i.e., a column of ones denoted by ι_T . Therefore, using $P_XX=X$ we get $P_X\iota_T=\iota_T$ since ι_T is a column of X. Substituting this in $P_X\Omega$ we get

$$P_X\Omega = (1 - \rho)P_X + \rho \iota_T \iota_T'$$

Similarly, substituting $\iota_T' P_X = \iota_T'$ in ΩP_X we get $\Omega P_X = (1 - \rho) P_X + \rho \iota_T \iota_T'$. Hence, $\Omega P_X = P_X \Omega$ and OLS is equivalent to GLS for this model.

b. We know that $(T-K)s^2=u'\bar{P}_Xu$, see Chap. 7. Also that

$$\begin{split} E(u'\bar{P}_Xu) &= E[tr(uu'\bar{P}_X)] = tr[E(uu'\bar{P}_X)] = tr(\sigma^2\Omega\bar{P}_X) \\ &= \sigma^2tr[(1-\rho)\bar{P}_X + \rho\iota_T\iota_T'\bar{P}_X] = \sigma^2(1-\rho)tr(\bar{P}_X) \end{split}$$

since
$$\iota_T'\bar{P}_X = \iota_T' - \iota_T'P_X = \iota_T' - \iota_T' = 0$$
 see part (a). But, $tr(\bar{P}_X) = T - K$, hence, $E(u'\bar{P}_Xu) = \sigma^2(1-\rho)(T-K)$ and $E(s^2) = \sigma^2(1-\rho)$.

Now for Ω to be positive semi-definite, it should be true that for every arbitrary non-zero vector a we have $a'\Omega a \geq 0$. In particular, for $a=\iota_T$, we get

$$\iota_{\mathsf{T}}'\Omega\iota_{\mathsf{T}} = (1-\rho)\iota_{\mathsf{T}}'\iota_{\mathsf{T}} + \rho\iota_{\mathsf{T}}'\iota_{\mathsf{T}}\iota_{\mathsf{T}}'\iota_{\mathsf{T}} = \mathsf{T}(1-\rho) + \mathsf{T}^2\rho.$$

This should be non-negative for every ρ . Hence, $(T^2 - T)\rho + T \ge 0$ which gives $\rho \ge -1/(T-1)$. But, we know that $|\rho| \le 1$. Hence, $-1/(T-1) \le$

 $\rho \le 1$ as required. This means that $0 \le E(s^2) \le [T/(T-1)]\sigma^2$ where the lower and upper bounds for $E(s^2)$ are attained at $\rho = 1$ and $\rho = -1/(T-1)$, respectively. These bounds were derived by Dufour (1986).

9.10 a. The model can be written in vector form as: $y = \alpha \iota_n + u$ where $y' = (y_1,...,y_n)$, ι_n is a vector of ones of dimension n, and $u' = (u_1,...,u_n)$. Therefore, $\hat{\alpha}_{ols} = \left(\iota'_n \iota_n\right)^{-1} \iota'_n y = \sum_{i=1}^n y_i/n = \bar{y}$ and

$$\Sigma = var(u) = E(uu') = \sigma^2 \begin{bmatrix} 1 & \rho & .. & \rho \\ \rho & 1 & .. & \rho \\ \vdots & \vdots & .. & \vdots \\ \rho & \rho & .. & 1 \end{bmatrix} = \sigma^2 [(1 - \rho)I_n + \rho J_n]$$

where I_n is an identity matrix of dimension n and J_n is a matrix of ones of dimension n. Define $E_n=I_n-\bar{J}_n$ where $\bar{J}_n=J_n/n$, one can rewrite Σ as $\Sigma=\sigma^2[(1-\rho)E_n+(1+\rho(n-1))\bar{J}_n]=\sigma^2\Omega \text{ with }$

$$\Omega^{-1} = \left[\frac{1}{1-\rho}E_n + \frac{1}{1+\rho(n-1)}\bar{J}_n\right]$$

Therefore.

$$\begin{split} \hat{\alpha}_{GLS} &= (\iota_n' \Sigma^{-1} \iota_n)^{-1} \iota_n' \Sigma^{-1} y = \left(\frac{\iota_n' \bar{J}_n \iota_n}{1 + \rho(n-1)} \right)^{-1} \frac{\iota_n' \bar{J}_n y}{1 + \rho(n-1)} \\ &= \frac{\iota_n' \bar{J}_n y}{n} = \frac{\iota_n' y}{n} = \bar{y} \end{split}$$

 $\label{eq:b.s2} \textbf{b.} \ \ s^2 = e'e/(n-1) \ \text{where } e \text{ is the vector of OLS residuals with typical element}$ $e_i = y_i - \bar{y} \text{ for } i = 1,..,n. \text{ In vector form, } e = E_n y \text{ and}$

$$s^2 = y' E_n y/(n-1) = u' E_n u/(n-1)$$

since $E_n \iota_n = 0$. But,

$$E(u'E_nu)=tr(\Sigma E_n)=\sigma^2tr[(1-\rho)E_n]=\sigma^2(1-\rho)(n-1)$$

since $E_n \bar{J}_n = 0$ and $tr(E_n) = (n-1)$. Hence, $E(s^2) = \sigma^2(1-\rho)$ and $E(s^2) - \sigma^2 = -\rho \sigma^2$.

This bias is negative if $0<\rho<1$ and positive if $-1/(n-1)<\rho<0$.

c. $s_*^2 = e_{GLS}'\Omega^{-1}e_{GLS}/(n-1) = e'\Omega^{-1}e/(n-1)$ where e_{GLS} denotes the vector of GLS residuals which in this case is identical to the OLS residuals.

Substituting for $e = E_n y$ we get

$$s_*^2 = \frac{y' E_n \Omega^{-1} E_n y}{n-1} = \frac{u' E_n \Omega^{-1} E_n u}{(n-1)}$$

since $E_n \iota_n = 0$. Hence,

$$\begin{split} E(s_*^2) &= \sigma^2 tr(\Omega E_n \Omega^{-1} E_n)/(n-1) = \frac{\sigma^2}{(n-1)} tr[(1-\rho) E_n] \left[\frac{1}{1-\rho} E_n \right] \\ &= \frac{\sigma^2}{(n-1)} tr[E_n] = \sigma^2 \end{split}$$

d. true var
$$(\hat{\alpha}_{ols}) = (\iota'_n \iota_n)^{-1} \iota'_n \Sigma \iota_n (\iota'_n \iota_n)^{-1} = \iota'_n \Sigma \iota_n / n^2$$

$$= \sigma^2 [(1 + \rho(n-1))\iota'_n \bar{J}_n \iota_n] / n^2 = \sigma^2 [1 + \rho(n-1)] / n \quad (9.1)$$

which is equal to $\text{var}(\hat{\alpha}_{GLS}) = (\iota'_n \Sigma^{-1} \iota_n)^{-1}$ as it should be. estimated $\text{var}((\hat{\alpha}_{ols}) = s^2 (\iota'_n \iota_n)^{-1} = s^2/n$ so that

$$\begin{split} E[\text{estimated var}(\hat{\alpha}_{\text{ols}}) - \text{true var}(\hat{\alpha}_{\text{ols}})] &= E(s^2)/n - \sigma^2[1 + \rho(n-1)]/n \\ &= \sigma^2[1 - \rho - 1 - \rho(n-1)]/n \\ &= -\rho\sigma^2. \end{split}$$

9.15 Neighborhood Effects and Housing Demand

a. This replicates the first three columns of Table VII in Ioannides and Zabel (2003,p. 569) generating descriptive statistics on key variables, by year:

. by year, sort: sum price pincom1 highschool changehand white npersons married $\,$

-> year = 1985					
Variable	Obs	Mean	Std. Dev.	Min	Max
price pincom1 highschool changehand white	1947 1947 1947 1947 1947	81.92058 28.55038 .8361582 .2891628 .8798151	25.0474 15.47855 .3702271 .4534901 .3252612	44.89161 3.557706 0 0 0	146.1314 90.00319 1 1
npersons married	1947 1947	2.850539 .7134052	1.438622 .4522867	1 0	11

-> year = 1989					
Variable	Obs	Mean	Std. Dev.	Min	Max
price pincom1 highschool changehand white	2318 2318 2318 2318 2318 2318	116.7232 47.75942 .8597929 .3170837 .8658326	49.82718 30.3148 .3472767 .4654407 .3409056	48.3513 4.444763 0 0 0	220.3118 174.0451 1 1
npersons married	2318 2318	2.768335 .6535807	1.469969 .4759314	1 0	11 1
-> year = 1993					
Variable	Obs	Mean	Std. Dev.	Min	Max
price pincom1 highschool changehand white	2909 2909 2909 2909 2909	115.8608 50.07294 .8697147 .2781024 .8480578	44.73127 29.95046 .3366749 .4481412 .3590266	53.93157 6.201 0 0 0	240.2594 184.7133 1 1 1
npersons married	2909 2909	2.738398 .6452389	1.435682 .4785231	1 0	9

This replicates the last column of Table VII in Ioannides and Zabel (2003, p.569) generating descriptive statistics on key variables for the pooled data:

. sum price pincom1 highschool changehand white npersons married

Variable	Obs	Mean	Std. Dev.	Min	Max
price pincom1	7174 7174	106.9282 43.48427	44.90505 28.45273	44.89161 3.557706	240.2594 184.7133
highschool	7174	.8574017	.3496871	0	1
changehand	7174	.2936995	.4554877	0	1
white	7174	.8624198	.3444828	0	1
npersons	7174	2.778506	1.448163	1	11
married	7174	.6664343	.4715195	0	1

- **b.** This replicates column 1 of Table VIII of Ioannides and Zabel(2003, p. 577) estimating mean of neighbors housing demand. The estimates are close but do not match.
 - . reg Inhdemm Inprice d89 d93 Inpincomem highschoolm changehandm whitem npersonsm marriedm hagem hage2m fullbathsm bedroomsm garagem

Total 1454.43392 7173 .20276508 Root MSE = .28272		SS 82.202688 72.231228	df 14 7159		44777 931726	Numbe F(14, 7 Prob > R-squa Adj R-s	F red	= = = =	7174 788.35 0.0000 0.6066 0.6058
Inprice	Total 1	454.43392	7173	.202	276508			=	.28272
d89 d93 0967419 .0102894 -9.40 0.000 1169122 0765715 d93 d93 1497614 .0109956 -13.62 0.000 1713159 1282068 Inpincomem .3622927 .0250064 14.49 0.000 .3132728 .4113126 highschoolm .1185672 .0263588 4.50 0.000 .066896 .1702383 changehandm .0249327 .0179043 1.39 0.164 0101651 .0600305 whitem .2402858 .0144223 16.66 0.000 .2120139 .2685577 npersonsm 0692484 .0069556 -9.96 0.000 0828834 0556134 marriedm .1034179 .0236629 4.37 0.000 .0570315 .1498042 hagem .0074906 .0009053 8.27 0.000 .0057159 .0092652 hage2m 008222 .0010102 -8.14 0.000 0102023 0062417 fullbathsm .2544969 .0085027 <td>Inhdemm</td> <td>Coef.</td> <td>Std. E</td> <td>rr.</td> <td>t</td> <td>P> t </td> <td>[95%</td> <td>Conf.</td> <td>Interval]</td>	Inhdemm	Coef.	Std. E	rr.	t	P> t	[95%	Conf.	Interval]
	d89 d93 Inpincomem highschoolm changehandm whitem npersonsm marriedm hagem hage2m fullbathsm bedroomsm	0967419 1497614 .3622927 .1185672 .0249327 .2402858 0692484 .1034179 .0074906 008222 .2544969 .1770101	.01028 .01099 .02500 .02635 .01790 .01442 .00695 .02366 .00090 .00101	394 956 964 588 943 223 556 529 953 102 927 258	-9.40 -13.62 14.49 4.50 1.39 16.66 -9.96 4.37 8.27 -8.14 29.93 19.12	0.000 0.000 0.000 0.000 0.164 0.000 0.000 0.000 0.000 0.000 0.000	116912 171315 .313272 .06689 010165 .212013 082883 .05703 .005715 010202 .237825 .15886	22 59 28 96 51 39 34 15 59 23	0765715 1282068 .4113126 .1702383 .0600305 .2685577 0556134 .1498042 .0092652 0062417 .2711647 .1951586

This replicates column 2 of Table VIII of loannides and Zabel(2003, p.577) estimating a standard housing demand with no neighborhood effects. The estimates do not match. This may be because the authors included only one observation per cluster. Here, all observations are used.

. reg Inhdem Inprice Inpincome highschool changehand white npersons married d89 d93, vce(cluster neigh)

Linear regression

(Std. Err. adjusted for 365 clusters in neigh)

Inhdemm	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Inprice	1982708	.059528	-3.33	0.001	3153328	0812088
Inpincome	.3376063	.0346802	9.73	0.000	.2694076	.405805
highschool	.0702029	.0285124	2.46	0.014	.0141332	.1262727
changehand	.0009962	.0210258	0.05	0.962	040351	.0423434

white	.1964783	.0563134	3.49	0.001	.0857379	.3072186
npersons	0038604	.0077642	-0.50	0.619	0191287	.0114078
married	000329	.0227977	-0.01	0.988	0451607	.0445026
d89	0882059	.0223177	-3.95	0.000	1320937	0443181
d93	1181923	.0240871	-4.91	0.000	1655596	0708249
_cons	4.144696	.2843044	14.58	0.000	3.585611	4.703781

This replicates column 3 of Table VIII of loannides and Zabel(2003, p.577) estimating a reduced form housing demand. The estimates do not match.

- . reg Inhdem Inprice Inpincome highschool changehand white npersons married d89
- > d93 Inpincomem highschoolm changehandm whitem npersonsm marriedm hagem hage2m fullbathsm bedroomsm garagem, vce(cluster neigh)

Linear regression $\begin{array}{cccc} \text{Number of obs} & = & 7174 \\ \text{F(20, 364)} & = & 34.27 \\ \text{Prob} > \text{F} & = & 0.0000 \\ \text{R-squared} & = & 0.4220 \\ \text{Root MSE} & = & .40883 \\ \end{array}$

(Std. Err. adjusted for 365 clusters in neigh)

Inhdemm	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Inprice	2850123	.1280493	-2.23	0.027	5368216	0332029
Inpincome	.1042973	.0192407	5.42	0.000	.0664603	.1421342
highschool	.0027566	.0172223	0.16	0.873	031111	.0366242
changehand	.0154469	.0110693	1.40	0.164	006321	.0372148
white	.0189483	.0208229	0.91	0.363	022	.0598967
npersons	.0044466	.0042704	1.04	0.298	0039512	.0128443
married	.0079301	.0150311	0.53	0.598	0216286	.0374889
d89	1015519	.0288299	-3.52	0.000	158246	0448578
d93	1571002	.0365114	-4.30	0.000	2289	0853004
Inpincomem	.2963244	.1108145	2.67	0.008	.0784074	.5142413
highschoolm	.1294341	.0832116	1.56	0.121	0342018	.2930701
changehandm	.0029356	.0550799	0.05	0.958	1053792	.1112504
whitem	.207916	.0682558	3.05	0.002	.0736908	.3421412
npersonsm	0710319	.0216564	-3.28	0.001	1136194	0284444
marriedm	.1154993	.0812373	1.42	0.156	0442541	.2752526
hagem	.0079615	.0039834	2.00	0.046	.0001281	.0157949
hage2m	0085303	.0043061	-1.98	0.048	0169983	0000623
fullbathsm	.2520568	.0343649	7.33	0.000	.1844781	.3196356
bedroomsm	.1514635	.0385524	3.93	0.000	.0756501	.2272769
garagem	.2012601	.0555207	3.62	0.000	.0920784	.3104418
_cons	2.715015	.6149303	4.42	0.000	1.505753	3.924277

References

- Baltagi, B.H. (1992), "Sampling Distributions and Efficiency Comparisons of OLS and GLS in the Presence of Both Serial Correlation and Heteroskedasticity," Econometric Theory, Problem 92.2.3, 8: 304–305.
- Breusch, T.S. (1979), "Conflict Among Criteria for Testing Hypotheses: Extensions and Comments," Econometrica, 47: 203–207.
- Dufour, J.M. (1986), "Bias of s² in Linear Regressions with Dependent Errors," The American Statistician, 40: 284–285.
- Goldberger, A.S. (1962), "Best Linear Unbiased Prediction in the Generalized Linear Regression Model," Journal of the American Statistical Association, 57: 369–375.
- Ioannides, Y.M. and J.E Zabel (2003), "Neighbourhood Effects and Housing Demand," Journal of Applied Econometrics 18: 563–584.
- Krämer, W. and S. Berghoff (1991), "Consistency of s² in the Linear Regression Model with Correlated Errors," Empirical Economics, 16: 375–377.
- Neudecker, H. (1977), "Bounds for the Bias of the Least Squares Estimator of s² in Case of a First-Order Autoregressive Process (positive autocorrelation)," Econometrica, 45: 1257–1262.
- Neudecker, H. (1978), "Bounds for the Bias of the LS Estimator in the Case of a First-Order (positive) Autoregressive Process Where the Regression Contains a Constant Term," Econometrica, 46: 1223–1226.
- Sathe, S.T. and H.D. Vinod (1974), "Bounds on the Variance of Regression Coefficients Due to Heteroscedastic or Autoregressive Errors," Econometrica, 42: 333–340.
- Zyskind, G. (1967), "On Canonical Forms, Non-Negative Covariance Matrices and Best and Simple Least Squares Linear Estimators in Linear Models," The Annals of Mathematical Statistics, 38: 1092–1109.

CHAPTER 10

Seemingly Unrelated Regressions

- **10.1** When Is OLS as Efficient as Zellner's SUR?
 - a. From (10.2), OLS on this system gives

$$\begin{split} \hat{\beta}_{ols} &= \begin{pmatrix} \hat{\beta}_{1,ols} \\ \hat{\beta}_{2,ols} \end{pmatrix} = \begin{bmatrix} X_1'X_1 & 0 \\ 0 & X_2'X_2 \end{bmatrix}^{-1} \begin{bmatrix} X_1'y_1 \\ X_2'y_2 \end{bmatrix} \\ &= \begin{bmatrix} \left(X_1'X_1 \right)^{-1} & 0 \\ 0 & \left(X_2'X_2 \right)^{-1} \end{bmatrix} \begin{pmatrix} X_1'y_1 \\ X_2'y_2 \end{pmatrix} = \begin{bmatrix} \left(X_1'X_1 \right)^{-1} X_1'y_1 \\ \left(X_2'X_2 \right)^{-1} X_2'y_2 \end{bmatrix} \end{split}$$

This is OLS on each equation taken separately. For (10.2), the estimated $var(\hat{\beta}_{ols})$ is given by

$$s^{2} \begin{bmatrix} (X'_{1}X_{1})^{-1} & 0 \\ 0 & (X'_{2}X_{2})^{-1} \end{bmatrix}$$

where $s^2 = RSS/(2T - (K_1 + K_2))$ and RSS denotes the residual sum of squares of this system. In fact, the RSS = $e_1'e_1 + e_2e_2 = RSS_1 + RSS_2$ where

$$e_i = v_i - X_i \hat{\beta}_{i \text{ ols}}$$
 for $i = 1, 2$.

If OLS was applied on each equation separately, then

$$\text{var}\left(\hat{\beta}_{1,\text{ols}}\right) = s_1^2 \left(X_1' X_1\right)^{-1} \qquad \text{with} \qquad s_1^2 = RSS_1/(T-K_1)$$

and

$$\text{var}\left(\hat{\beta}_{2,\text{ols}}\right) = s_2^2 \left(X_2' X_2\right)^{-1} \qquad \text{with} \qquad s_2^2 = RSS_2/(T-K_2).$$

Therefore, the estimates of the variance–covariance matrix of OLS from the system of two equations differs from OLS on each equation separately by a scalar, namely s^2 rather than s_i^2 for i=1,2.

b. For the system of equations given in (10.2), $X' = \text{diag}\left[X'_i\right], \Omega^{-1} = \Sigma^{-1} \otimes I_T$ and

$$X'\Omega^{-1} = \begin{bmatrix} X_1' & 0 \\ 0 & X_2' \end{bmatrix} \begin{bmatrix} \sigma^{11}I_T & \sigma^{12}I_T \\ \sigma^{21}I_T & \sigma^{22}I_T \end{bmatrix} = \begin{bmatrix} \sigma^{11}X_1' & \sigma^{12}X_1' \\ \sigma^{21}X_2' & \sigma^{22}X_2' \end{bmatrix}.$$

Also, $X'X = \text{diag}[X_i'X_i] \text{ with } (X'X)^{-1} = \text{diag}[(X_i'X_i)^{-1}].$ Therefore,

$$P_X = \text{diag}[P_{X_i}] \qquad \text{and} \qquad \bar{P}_X = \text{diag}\left[\bar{P}_{X_i}\right].$$

Hence,

$$X'\Omega^{-1}\bar{P}_X = \begin{bmatrix} \sigma^{11}X_1'\bar{P}_{X_1} & \sigma^{12}X_1'\bar{P}_{X_2} \\ \sigma^{21}X_2'\bar{P}_{X_1} & \sigma^{22}X_2'\bar{P}_{X_2} \end{bmatrix}.$$

$$\begin{split} \text{But, } X_i'\bar{P}_{X_i} &= 0 \text{ for } i=1,2. \text{ Hence, } X'\Omega^{-1}\bar{P}_X = \begin{bmatrix} 0 & \sigma^{12}X_1'\bar{P}_{X_2} \\ \sigma^{21}X_2'\bar{P}_{X_1} & 0 \end{bmatrix} \\ \text{and this is zero if } \sigma^{ij}X_i'\bar{P}_{X_j} &= 0 \text{ for } i \neq j \text{ with } i,j=1,2. \end{split}$$

- **c.** (i) If $\sigma_{ij}=0$ for $i\neq j$, then, Σ is diagonal. Hence, Σ^{-1} is diagonal and $\sigma^{ij}=0$ for $i\neq j$. This automatically gives $\sigma^{ij}X_i'\bar{P}_{X_j}=0$ for $i\neq j$ from part (b).
 - (ii) If all the X_i 's are the same, then $X_1=X_2=X^*$ and $\bar{P}_{X_1}=\bar{P}_{X_2}=\bar{P}_{X^*}$. Hence,

$$X_i' \bar{P}_{X_i} = X^{*\prime} \bar{P}_X * = 0 \qquad \quad \text{for } i,j = 1,2.$$

This means that $\sigma^{ij}X_i'\bar{P}_{X_i}=0$ from part (b) is satisfied for i, j = 1, 2.

d. If $X_i = X_j C'$ where C is a non-singular matrix, then $X_i' \bar{P}_{X_j} = C X_j' \bar{P}_{X_j} = 0$. Alternatively, $X_i' X_i = C X_j' X_j C'$ and $\left(X_i' X_i \right)^{-1} = C'^{-1} \left(X_j' X_j \right)^{-1} C^{-1}$. Therefore,

$$P_{X_i} = P_{X_i} \quad \text{and} \quad \bar{P}_{X_i} = \bar{P}_{X_i}.$$

Hence, $X_i'\bar{P}_{X_j}=X_i'\bar{P}_{X_i}=0$. Note that when $X_i=X_j$ then $C=I_K$ where K is the number of regressors.

10.3 What Happens to Zellner's SUR Estimator when the Set of Regressors in One Equation Are Orthogonal to Those in the Second Equation?

a. If X_1 and X_2 are orthogonal, then $X_1'X_2 = 0$. From (10.6) we get

$$\begin{split} \hat{\beta}_{GLS} &= \begin{bmatrix} \sigma^{11} X_1' X_1 & 0 \\ 0 & \sigma^{22} X_2' X_2 \end{bmatrix}^{-1} \begin{bmatrix} \sigma^{11} X_1' y_1 + \sigma^{12} X_1' y_2 \\ \sigma^{21} X_2' y_1 + \sigma^{22} X_2' y_2 \end{bmatrix} \\ &= \begin{bmatrix} \left(X_1' X_1 \right)^{-1} / \sigma^{11} & 0 \\ 0 & \left(X_2' X_2 \right)^{-1} / \sigma^{22} \end{bmatrix} \begin{bmatrix} \sigma^{11} X_1' y_1 + \sigma^{12} X_1' y_2 \\ \sigma^{21} X_2' y_1 + \sigma^{22} X_2' y_2 \end{bmatrix} \\ &= \begin{bmatrix} \left(X_1' X_1 \right)^{-1} X_1' y_1 + \sigma^{12} \left(X_1' X_1 \right)^{-1} X_1' y_2 / \sigma^{11} \\ \sigma^{21} \left(X_2' X_2 \right)^{-1} X_2' y_1 / \sigma^{22} + \left(X_2' X_2 \right)^{-1} X_2' y_2 \end{bmatrix} \\ &= \begin{bmatrix} \hat{\beta}_{1,ols} + (\sigma^{12} / \sigma^{11}) \left(X_1' X_1 \right)^{-1} X_1' y_2 \\ \hat{\beta}_{2,ols} + (\sigma^{21} / \sigma^{22}) \left(X_2' X_2 \right)^{-1} X_2' y_1 \end{bmatrix} \end{split}$$

as required.

b. var
$$(\hat{\beta}_{GLS}) = (X'\Omega^{-1}X)^{-1} = \begin{bmatrix} (X'_1X_1)^{-1}/\sigma^{11} & 0\\ 0 & (X'_2X_2)^{-1}/\sigma^{22} \end{bmatrix}$$

If you have doubts, note that

$$\hat{\beta}_{1,GLS} = \beta_1 + (X_1'X_1)^{-1} X_1' u_1 + (\sigma^{12}/\sigma^{11}) (X_1'X_1)^{-1} X_1' u_2$$

using $X_1'X_2 = 0$. Hence, $E(\hat{\beta}_{1,GLS}) = \beta_1$ and

$$\begin{split} \mathrm{var}\left(\hat{\beta}_{1,GLS}\right) &= E\left(\hat{\beta}_{1,GLS} - \beta_{1}\right) \left(\hat{\beta}_{1,GLS} - \beta_{1}\right)' \\ &= \sigma_{11} \left(X_{1}'X_{1}\right)^{-1} + \sigma_{22} (\sigma^{12}/\sigma^{11})^{2} \left(X_{1}'X_{1}\right)^{-1} \\ &+ 2\sigma_{12}\sigma^{12}/\sigma^{11} \left(X_{1}'X_{1}\right)^{-1}. \end{split}$$

But,
$$\Sigma^{-1} = \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{12} & \sigma_{11} \end{bmatrix} / \left(\sigma_{11} \sigma_{22} - \sigma_{12}^2 \right)$$
.

Hence, $\sigma^{12}/\sigma^{11} = -\sigma_{12}/\sigma_{22}$ substituting that in var($\hat{\beta}_{1,GLS}$) we get

$$\begin{aligned} \operatorname{var}\left(\hat{\beta}_{1,GLS}\right) &= \left(X_1'X_1\right)^{-1} \left[\sigma_{11} + \sigma_{22}\left(\sigma_{12}^2/\sigma_{22}^2\right) - 2\sigma_{12}^2/\sigma_{22}\right] \\ &= \left(X_1'X_1\right)^{-1} \left[\sigma_{11}\sigma_{22} + \sigma_{12}^2 - 2\sigma_{12}^2\right]/\sigma_{22} = \left(X_1'X_1\right)^{-1}/\sigma^{11} \end{aligned}$$

since $\sigma^{11} = \sigma_{22}/\left(\sigma_{11}\sigma_{22} - \sigma_{12}^2\right)$. Similarly, one can show that $var(\hat{\beta}_{2,GLS}) = \left(X_2'X_2\right)^{-1}/\sigma^{22}$.

c. We know that $\operatorname{var}(\hat{\beta}_{1,\text{ols}}) = \sigma_{11} \left(X_1' X_1 \right)^{-1}$ and $\operatorname{var}(\hat{\beta}_{2,\text{ols}}) = \sigma_{22} \left(X_2' X_2 \right)^{-1}$. If X_1 and X_2 are single regressors, then $\left(X_i' X_i \right)$ are scalars for i = 1, 2. Hence,

$$\operatorname{var}\left(\hat{\beta}_{1,GLS}\right)/\operatorname{var}\left(\hat{\beta}_{1,ols}\right) = \frac{(1/\sigma^{11})}{\sigma_{11}} = 1/\sigma_{11}\sigma^{11} = \frac{\left(\sigma_{11}\sigma_{22} - \sigma_{22}^{2}\right)}{\sigma_{11}\sigma_{22}} = 1 - \rho^{2}$$
 where $\rho^{2} = \sigma_{12}^{2}/\sigma_{22}\sigma_{11}$. Similarly,

$$\operatorname{var}\left(\hat{\beta}_{2,GLS}\right)/\operatorname{var}\left(\hat{\beta}_{2,ols}\right) = \frac{(1/\sigma^{22})}{\sigma_{22}} = 1/\sigma_{22}\sigma^{22} = \frac{\left(\sigma_{11}\sigma_{22} - \sigma_{12}^{2}\right)}{\sigma_{22}\sigma_{11}} = 1 - \rho^{2}.$$

10.4 From (10.13), $\tilde{s}_{ij}=e_i'e_j/[T-K_i-K_j+tr(B)]$ for i,j=1,2. where $e_i=y_i-X_i\hat{\beta}_{i,ols}$ for i=1,2. This can be rewritten as $e_i=\bar{P}_{X_i}y_i=\bar{P}_{X_i}u_i$ for i=1,2. Hence,

$$\begin{split} E(e_i'e_j) &= E\left(u_i'\bar{P}_{X_i}\bar{P}_{X_j}u_j\right) = E[tr\left(u_i'\bar{P}_{X_i}\bar{P}_{X_j}u_j\right)] = E[tr\left(u_ju_i'\bar{P}_{X_i}\bar{P}_{X_j}\right)] \\ &= tr[E\left(u_ju_i'\right)\bar{P}_{X_i}\bar{P}_{X_j}] = \sigma_{ji}tr\left(\bar{P}_{X_i}\bar{P}_{X_j}\right). \end{split}$$

But $\sigma_{ji}=\sigma_{ij}$ and $\text{tr}\left(\bar{P}_{X_i}\bar{P}_{X_j}\right)=\text{tr}\left(I_T-P_{X_j}-P_{X_i}+P_{X_i}P_{X_j}\right)=T-K_j-K_i+\text{tr}(B)$ where $B=P_{X_i}P_{X_j}$. Hence, $E(\tilde{s}_{ij})=E\left(e_i'e_j\right)/\text{tr}(\bar{P}_{X_i}\bar{P}_{X_j})=\sigma_{ij}$. This proves that \tilde{s}_{ij} is unbiased for σ_{ij} for i,j=1,2.

- **10.5** Relative Efficiency of OLS in the Case of Simple Regressions. This is based on Kmenta (1986, pp. 641–643).
 - **a.** Using the results in Chap. 3, we know that for a simple regression $Y_i = \alpha + \beta X_i + u_i$ that $\hat{\beta}_{ols} = \sum_{i=1}^n x_i y_i / \sum_{i=1}^n x_i^2$ and $var\left(\hat{\beta}_{ols}\right) = \sigma^2 / \sum_{i=1}^n x_i^2$ where $x_i = X_i \bar{X}$ and $var(u_i) = \sigma^2$. Hence, for the first equation in (10.15), we get $var\left(\hat{\beta}_{12,ols}\right) = \sigma_{11}/m_{x_1x_1}$ where $m_{x_1x_1} = \sum_{t=1}^T \left(X_{1t} \bar{X}_1\right)^2$ and $\sigma_{11} = var(u_1)$.

Similarly, for the second equation in (10.15), we get $var\left(\hat{\beta}_{22,ols}\right) = \sigma_{22}/m_{x_2x_2}$ where $m_{x_2x_2} = \sum_{t=1}^{T} \left(X_{2t} - \bar{X}_2\right)^2$ and $\sigma_{22} = var(u_2)$.

b. In order to get rid of the constants in (10.15), one can premultiply (10.15) by $I_2 \otimes (I_T - \bar{J}_T)$ where $\bar{J}_T = J_T/T$ and $J_T = \iota_T \iota_T'$ with ι_T being a vector of ones. Recall, from the FWL Theorem in Chap. 7 that $I_T - \bar{J}_T$ is the

orthogonal projection on the constant ι_T , see problem 7.2. This yields

$$\tilde{Y}_1 = \tilde{X}_1\beta_{12} + \tilde{u}_1$$

$$\tilde{Y}_2 = \tilde{X}_2 \beta_{22} + \tilde{u}_2$$

where $\tilde{Y}_i = (I_T - \bar{J}_T)Y_i$, $\tilde{X}_i = (I_T - \bar{J}_T)X_i$ and $\tilde{u}_i = (I_T - \bar{J}_T)u_i$ for i = 1, 2. Note that $Y_i' = (Y_{i1}, ..., Y_{iT}), X_i' = (X_{il}, ..., X_{iT})$ and $u_i' = (u_{il}, ..., u_{iT})$ for i = 1, 2. GLS on this system of two equations yields the same GLS estimators of β_{12} and β_{22} as in (10.15). Note that $\Omega = E\begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix}$ $(\tilde{u}_1', \tilde{u}_2') = \Sigma \otimes (I_T - \bar{J}_T)$ where $\Sigma = [\sigma_{ij}]$ for i, j = 1, 2. Also, for this transformed system

$$\begin{split} \tilde{X}'\Omega^{-1}\tilde{X} &= \begin{bmatrix} \tilde{X}_1' & 0 \\ 0 & \tilde{X}_2' \end{bmatrix} \left(\Sigma^{-1} \otimes (I_T - \bar{J}_T) \right) \begin{bmatrix} \tilde{X}_1 & 0 \\ 0 & \tilde{X}_2 \end{bmatrix} \\ &= \begin{bmatrix} \sigma^{11}\tilde{X}_1'\tilde{X}_1 & \sigma^{12}\tilde{X}_1'\tilde{X}_2 \\ \sigma^{21}\tilde{X}_2'\tilde{X}_1 & \sigma^{22}\tilde{X}_2'\tilde{X}_2 \end{bmatrix} \end{split}$$

since $\Sigma^{-1}\otimes (I_T-\bar{J}_T)$ is the generalized inverse of $\Sigma\otimes (I_T-\bar{J}_T)$ and $(I_T-\bar{J}_T)\tilde{X}_i=\tilde{X}_i$ for i=1,2. But, X_i and X_j are Txl vectors, hence, $\tilde{X}_i'\tilde{X}_j=m_{x_ix_j}=\sum_{i=1}^T(X_{it}-\bar{X}_i)(X_{jt}-\bar{X}_j)$ for i,j=1,2. So

$$\tilde{X}'\Omega^{-1}\tilde{X} = \begin{bmatrix} \sigma^{11}m_{x_1x_1} & \sigma^{12}m_{x_1x_2} \\ \sigma^{21}m_{x_2x_1} & \sigma^{22}m_{x_2x_2} \end{bmatrix}.$$

But
$$\Sigma^{-1} = \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{12} & \sigma_{11} \end{bmatrix} / (\sigma_{11}\sigma_{22} - \sigma_{12}^2).$$

$$\begin{split} & \text{Hence, var}\begin{pmatrix} \hat{\beta}_{12,GLS} \\ \hat{\beta}_{22,GLS} \end{pmatrix} = \left(\tilde{X}' \Omega^{-1} \tilde{X} \right)^{-1} = (\sigma_{11} \sigma_{22} - \sigma_{12}^2) \\ & \begin{bmatrix} \sigma_{22} m_{x_1 x_1} & -\sigma_{12} m_{x_1 x_2} \\ -\sigma_{12} m_{x_2 x_1} & \sigma_{11} m_{x_2 x_2} \end{bmatrix}^{-1}. \end{split}$$

Simple inversion of this 2×2 matrix yields

$$\text{var}\left(\hat{\beta}_{12,GLS}\right) = \left(\sigma_{11}\sigma_{22} - \sigma_{12}^2\right)\sigma_{11}m_{x_2x_2}/\left[\sigma_{11}\sigma_{22}m_{x_1x_1}\ m_{x_2x_2}\ - \sigma_{12}^2m_{x_1x_2}^2\right].$$

where the denominator is the determinant of the matrix to be inverted. Also,

$$\text{var}\left(\hat{\beta}_{22,GLS}\right) = \left(\sigma_{11}\sigma_{22} - \sigma_{12}^2\right)\sigma_{22}m_{x_1x_1}/\left[\sigma_{11}\sigma_{22}m_{x_1x_1}m_{x_2x_2} - \sigma_{12}^2m_{x_1x_2}^2\right].$$

c. Defining $\rho = \text{correlation } (u_1, u_2) = \sigma_{12}/(\sigma_{11}\sigma_{22})^{1/2}$ and $r = \text{sample correlation coefficient between } X_1 \text{ and } X_2 = m_{x_1x_2}/(m_{x_2x_2}m_{x_1x_1})^{1/2}$, then $\text{var}(\hat{\beta}_{12,\text{ols}})/\text{var}(\hat{\beta}_{12,\text{ols}})$

$$\begin{split} &= \left(\sigma_{11}\sigma_{22} - \sigma_{12}^2\right) m_{x_1x_1} \ m_{x_2x_2} / \left[\sigma_{11}\sigma_{22} m_{x_2x_2} \ m_{x_1x_1} \ - \sigma_{12}^2 m_{x_1x_2}^2\right] \\ &= \sigma_{11}\sigma_{22} (1 - \rho^2) / \sigma_{11}\sigma_{22} (1 - \rho^2 r^2) = (1 - \rho^2) / (1 - \rho^2 r^2) \end{split}$$

similarly, $var(\hat{\beta}_{22,GLS})/var(\hat{\beta}_{22,ols})$

$$= (\sigma_{11}\sigma_{22} - \sigma_{12}^2) m_{x_1x_1} m_{x_2x_2} / [\sigma_{11}\sigma_{22}m_{x_2x_2} m_{x_1x_1} - \sigma_{12}^2 m_{x_1x_2}^2]$$

$$= \sigma_{11}\sigma_{22}(1 - \rho^2) / \sigma_{11}\sigma_{22}(1 - \rho^2 r^2) = (1 - \rho^2) / (1 - \rho^2 r^2).$$

d. Call the relative efficiency ratio $E=(1-\rho^2)/(1-\rho^2r^2)$. Let $\theta=\rho^2$, then $E=(1-\theta)/(1-\theta r^2)$. So that

$$\partial E/\partial \theta = \frac{-(1-\theta r^2) + r^2(1-\theta)}{(1-\theta r^2)^2} = \frac{-1+\theta r^2 + r^2 - \theta r^2}{(1-\theta r^2)^2} = \frac{-(1-r^2)}{(1-\theta r^2)^2} \leq 0$$

since $r^2 \leq 1$. Hence, the relative efficiency ratio is a non-increasing function of $\theta = \rho^2$. Similarly, let $\lambda = r^2$, then $E = (1-\theta)/(1-\theta\lambda)$ and $\partial E/\partial \lambda = \theta(1-\theta)/(1-\theta\lambda)^2 \geq 0$ since $0 \leq \theta \leq 1$. Hence, the relative efficiency ratio is a non-decreasing function of $\lambda = r^2$. This relative efficiency can be computed for various values of ρ^2 and r^2 between 0 and 1 at 0.1 intervals. See Kmenta (1986, Table 12-1, p. 642).

10.6 Relative Efficiency of OLS in the Case of Multiple Regressions. This is based on Binkely and Nelson (1988). Using partitioned inverse formulas, see the solution to problem 7.7(c), we get that the first block of the inverted matrix in (10.17) is

$$var\left(\hat{\beta}_{1,GLS}\right) = A_{11} = \left\lceil \sigma^{11}X_1'X_1 - \sigma^{12}X_1'X_2 \left(\sigma^{22}X_2'X_2\right)^{-1}\sigma^{21}X_2'X_1 \right\rceil^{-1}.$$

But,
$$\Sigma^{-1} = \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{12} & \sigma_{11} \end{bmatrix} / (\sigma_{11}\sigma_{22} - \sigma_{12}^2).$$

Divide both the matrix on the right hand side and the denominator by $\sigma_{11}\sigma_{22}$, we get

$$\Sigma^{-1} = \left[1/(1 - \rho^2) \right] \begin{bmatrix} 1/\sigma_{11} & -\rho^2/\sigma_{12} \\ -\rho^2/\sigma_{21} & 1/\sigma_{22} \end{bmatrix}$$

where $\rho^2 = \sigma_{12}^2 / \sigma_{11} \sigma_{22}$. Hence,

$$\mathrm{var}\left(\hat{\beta}_{1,GLS}\right) = \left\lceil \frac{1}{\sigma_{11}(1-\rho^2)} X_1' X_1 - \sigma_{22} \left(\frac{\rho^2}{\sigma_{12}}\right)^2 \left(X_1' P_{X_2} X_1\right) / (1-\rho^2) \right\rceil^{-1}.$$

But $\rho^2 \sigma_{22} / \sigma_{12}^2 = 1 / \sigma_{11}$, hence

$$\begin{split} \operatorname{var}\left(\hat{\beta}_{1,GLS}\right) &= \left[\frac{1}{\sigma_{11}(1-\rho^2)} X_1' X_1 - \frac{\rho^2}{\sigma_{11}(1-\rho^2)} X_1' P_{X_2} X_1\right]^{-1} \\ &= \sigma_{11}(1-\rho^2) \left[X_1' X_1 - \rho^2 X_1' P_{X_2} X_1 \right]^{-1}. \end{split}$$

Add and subtract $\rho^2 X_1' X_1$ from the expression to be inverted, one gets

$$\mbox{var}\left(\hat{\beta}_{1,GLS}\right) = \sigma_{11}(1-\rho^2) \left[(1-\rho^2) X_1' X_1 + \rho^2 X_1' \bar{P}_{X_2} X_1 \right]^{-1}. \label{eq:var_eq}$$

Factor out $(1 - \rho^2)$ in the matrix to be inverted, one gets

$$var\left(\hat{\beta}_{1,GLS}\right) = \sigma_{11} \left\{ X_1' X_1 + [\rho^2/(1-\rho^2)] E'E \right\}^{-1} \label{eq:var_eq}$$

where $E = \bar{P}x_2X_1$ is the matrix whose columns are the OLS residuals of each variable in X_1 regressed on X_2 .

10.7 When X_1 and X_2 are orthogonal, then $X_1'X_2 = 0$. R_q^2 is the R^2 of the regression of variable X_q on the other $(K_1 - 1)$ regressors in X_1 . R_q^{*2} is the R^2 of the regression of $\begin{bmatrix} X_q \\ \theta e_q \end{bmatrix}$ on the other $(K_1 - 1)$ regressors in $W = \begin{bmatrix} X_1 \\ \theta E \end{bmatrix}$. But $E = \bar{P}x_2 \ X_1 = X_1 - Px_2 \ X_1 = X_1$ since $Px_2 \ X_1 = X_2 \ (X_2'X_2)^{-1} \ X_2'X_1 = 0$. So $e_q = X_q$ and $W = \begin{bmatrix} X_1 \\ \theta X_1 \end{bmatrix}$. Regressing $\begin{bmatrix} X_q \\ \theta X_q \end{bmatrix}$ on the other $(K_1 - 1)$ regressors in $\begin{bmatrix} X_1 \\ \theta X_1 \end{bmatrix}$ yields the same R^2 as that of X_q on the other $(K_1 - 1)$

regressors in X_1 . Hence, $R_q^2=R_q^{\ast 2}$ and from (10.22) we get

$$\begin{aligned} \operatorname{var}\left(\hat{\beta}_{q,SUR}\right) &= \sigma_{11} / \left\{ \sum_{t=1}^{T} x_{tq}^{2} (1 - R_{q}^{2}) + \theta^{2} \sum_{t=1}^{T} e_{tq}^{2} \left(1 - R_{q}^{2} \right) \right\} \\ &= \sigma_{11} / \left\{ \sum_{t=1}^{T} x_{tq}^{2} \left(1 - R_{q}^{2} \right) \right\} (1 + \theta^{2}) \\ &= \sigma_{11} (1 - \rho^{2}) / \sum_{t=1}^{T} x_{tq}^{2} (1 - R_{q}^{2}) \end{aligned}$$

since $1 + \theta^2 = 1/(1 - \rho^2)$.

- **10.8** *SUR With Unequal Number of Observations*. This is based on Schmid (1977).
 - **a.** Ω given in (10.25) is block-diagonal. Therefore, Ω^{-1} is block-diagonal:

$$\begin{split} \Omega^{-1} &= \begin{bmatrix} \sigma^{11}I_T & \sigma^{12}I_T & 0 \\ \sigma^{12}I_T & \sigma^{22}I_T & 0 \\ 0 & 0 & \frac{1}{\sigma_{22}}I_N \end{bmatrix} \text{ with } \Sigma^{-1} = [\sigma^{ij}] \text{ for } i,j=1,2. \\ X &= \begin{bmatrix} X_1 & 0 \\ 0 & {X_2}^* \\ 0 & {X_2}^0 \end{bmatrix} \text{ and } y = \begin{pmatrix} y_1 \\ {y_2}^* \\ {y_2}^0 \end{pmatrix} \end{split}$$

where X_1 is TxK_1 , X_2^* is TxK_2 and X_2^o is NxK_2 . Similarly, y_1 is Tx1, y_2^* is Tx1 and y_2^o is Nx1.

$$\begin{split} X'\Omega^{-1} &= \begin{bmatrix} X_1' & 0 & 0 \\ 0 & X_2^{*\prime} & X_2^{0\prime} \end{bmatrix} \begin{bmatrix} \sigma^{11}I_T & \sigma^{12}I_T & 0 \\ \sigma^{12}I_T & \sigma^{22}I_T & 0 \\ 0 & 0 & \frac{1}{\sigma_{22}}I_N \end{bmatrix} \\ &= \begin{bmatrix} \sigma^{11}X_1' & \sigma^{12}X_1' & 0 \\ \sigma^{12}X_2^{*\prime} & \sigma^{22}X_2^{*\prime} & \frac{1}{\sigma_{22}}X_2^{0\prime} \end{bmatrix}. \end{split}$$

Therefore,

$$\begin{split} \hat{\beta}_{GLS} &= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y \\ &= \begin{bmatrix} \sigma^{11}X_1'X_1 & \sigma^{12}X_1'X_2* \\ \sigma^{12}X_2^{*\prime}X_1 & \sigma^{22}X_2^{*\prime}X_2^* + (X_2^{0\prime}X_2^{0}/\sigma_{22}) \end{bmatrix}^{-1} \\ & \begin{bmatrix} \sigma^{11}X_1'y_1 + \sigma^{12}X_1'y_2^* \\ \sigma^{12}X_2^{*\prime}y_1 + \sigma^{22}X_2^{*\prime}y_2^* + (X_2^{0\prime}y_2^{0}/\sigma_{22}) \end{bmatrix} \end{split}$$

b. If $\sigma_{12} = 0$, then from (10.25)

$$\Omega = \begin{bmatrix} \sigma_{11} I_T & 0 & 0 \\ 0 & \sigma_{22} I_T & 0 \\ 0 & 0 & \sigma_{22} I_N \end{bmatrix} \quad \text{and} \quad \Omega^{-1} = \begin{bmatrix} \frac{1}{\sigma_{11}} I_T & 0 & 0 \\ 0 & \frac{1}{\sigma_{22}} I_T & 0 \\ 0 & 0 & \frac{1}{\sigma_{22}} I_N \end{bmatrix}$$

so that $\sigma^{12} = 0$ and $\sigma^{ii} = 1/\sigma_{ii}$ for i = 1, 2. From (10.26)

$$\hat{\beta}_{GLS} = \begin{bmatrix} \frac{X_1'X_1}{\sigma_{11}} & 0 \\ 0 & \left[\frac{X_2^{*'}X_2^{*}}{\sigma_{22}} + \frac{X_2^{0'}X_2^{0}}{\sigma_{22}}\right] \end{bmatrix}^{-1} \begin{bmatrix} \left(X_1'y_1/\sigma_{11}\right) \\ \left(X_2^{*'}y_2^{*} + X_2^{0'}y_2^{0}\right)/\sigma_{22} \end{bmatrix}$$

so that

$$\hat{\beta}_{GLS} = \begin{bmatrix} \left(X_1' X_1 \right)^{-1} X_1' y_1 \\ \left[X_2^{*'} X_2^* + X_2^{0'} X_2^{0} \right]^{-1} \left[X_2^{*'} y_2^* + X_2^{0'} y_2^{0} \right] \end{bmatrix} = \begin{pmatrix} \hat{\beta}_{1, ols} \\ \hat{\beta}_{2, ols} \end{pmatrix}$$

Therefore, SUR with unequal number of observations reduces to OLS on each equation separately if $\sigma_{12} = 0$.

- 10.9 Grunfeld (1958) investment equation.
 - a. OLS on each firm.

Firm 1

Autoreg Procedure

Dependent Variable = INVEST

Ordinary Least Squares Estimates

SSE	275298.9	DFE	16
MSE	17206.18	Root MSE	131.1723
SBC	244.7953	AIC	241.962
Reg Rsg	0.8411	Total Rsq	0.8411
Durbin-Watson	1 3985		

Godfrey's Serial Correlation Test

Alternative	LM	Prob>LM
AR(+ 1)	2.6242	0.1052
AR(+ 2)	2.9592	0.2277
AR(+ 3)	3.8468	0.2785

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept VALUE1	1	-72.906480 0.101422	154.0	-0.473 2.733	0.6423 0.0147
CAPITAL1	1	0.101422	0.0371 0.0623	2.733 7.481	0.00147

Covariance of B-Values

	Intercept	VALUE1	CAPITAL1
Intercept	23715.391439	-5.465224899	0.9078247414
VALUE1	-5.465224899	0.0013768903	-0.000726424
CAPITAL1	0.9078247414	-0.000726424	0.0038773611

Firm 2

Autoreg Procedure

Dependent Variable = INVEST

Ordinary Least Squares Estimates

SSE	224688.6	DFE	16
MSE	14043.04	Root MSE	118.5033
SBC	240.9356	AIC	238.1023
Reg Rsq	0.1238	Total Rsq	0.1238
Durbin-Watson	1.1116	•	

Godfrey's Serial Correlation Test

		Alternative	LM	Prob>LM	
		AR(+ 1) AR(+ 2) AR(+ 3)	4.6285 10.7095 10.8666	0.0314 0.0047 0.0125	
Variable	DF	B Value	Std Error	r t Ratio	Approx Prob
Intercept VALUE1 CAPITAL1	1 1 1	306.273712 0.015020 0.309876	0.0913	0.165	0.1177 0.8713 0.1602

Covariance of B-Values

	Intercept	VALUE1	CAPITAL1
Intercept	34309.129267	-15.87143322	-8.702731269
VALUE1 CAPITAL1	-15.87143322 -8.702731269	0.0083279981 -0.001769902	-0.001769902 0.0442679729
CAFIIALI	-0.702731209	-0.001709902	0.0442013123

Firm 3

Autoreg Procedure

Dependent Variable = INVEST

Ordinary Least Squares Estimates

SSE	14390.83	DFE	16
MSE	899.4272	Root MSE	29.99045
SBC	188.7212	AIC	185.8879
Reg Rsq	0.6385	Total Rsq	0.6385
Durbin-Watson	1.2413	•	

Godfrey's Serial Correlation Test

	Alte	rnative L	_M I	Prob>LM	
	AR(+ 2) 8.	7742 6189 2541	0.0958 0.0134 0.0104	
Variable	DF	B Value	Std Erro	r t Ratio	Approx Prob
Intercept VALUE1 CAPITAL1	1 1 1	-14.649578 0.031508 0.162300	39.6927 0.0189 0.0311	1.665	0.7169 0.1154 0.0001

Covariance of B-Values

	Intercept	VALUE1	CAPITAL1
Intercept VALUE1	1575.5078379 -0.706680779	-0.706680779 0.0003581721	-0.498664487 0.00007153
CAPITAL1	-0.498664487	0.00007153	0.0009691442

Plot of RESID*YEAR.

c. SUR model using the first 2 firms

Model: FIRM1

Dependent variable: FIRM1_I

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	-74.776254	153.974556	-0.486	0.6338
FIRM1_F1	1	0.101594	0.037101	2.738	0.0146
FIRM1_C1	1	0.467861	0.062263	7.514	0.0001

Model: FIRM2

Dependent variable: FIRM2_I

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	309.978987	185.198638	1.674	0.1136
FIRM2_F1	1	0.012508	0.091244	0.137	0.8927
FIRM2_C1	1	0.314339	0.210382	1.494	0.1546

SUR model using the first 2 firms

SYSLIN Procedure

Seemingly Unrelated Regression Estimation

Cross Model Covariance

Sigma	FIRM1	FIRM2
FIRM1	17206.183816	-355.9331435
FIRM2	-355.9331435	14043.039401

Cross Model Correlation

Corr	FIRM1	FIRM2
FIRM1 FIRM2	1 -0.022897897	-0.02289789

Cross Model Inverse Correlation

Inv Corr	FIRM1	FIRM2
FIRM1	1.0005245887	0.0229099088
FIRM2	0.0229099088	1.0005245887

Cross Model Inverse Covariance

Inv Sigma	FIRM1	FIRM2
FIRM1	0.0000581491	1.4738406E - 6
FIRM2	1.4738406E - 6	0.000071247

System Weighted MSE: 0.99992 with 32 degrees of freedom. System

Weighted R-Square: 0.7338

d. SUR model using the first three firms

Model: FIRM1

Dependent variable: FIRM1_I

		Parar	neter Estimates		
Variable	DF	Parameter Estimate	Standard Error	T for HO: $Parameter = 0$	Prob > T
INTERCEP FIRM1_F1 FIRM1_C1	1 1 1	-27.616240 0.088732 0.481536	147.621696 0.035366 0.061546	-0.187 2.509 7.824	0.8540 0.0233 0.0001

Model: FIRM2

Dependent variable: FIRM2_I

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	255.523339	167.011628	1.530	0.1456
FIRM2_F1	1	0.034710	0.081767	0.425	0.6769
FIRM2_C1	1	0.353757	0.195529	1.809	0.0892

Model: FIRM3

FIRM3_C1

Dependent variable: FIRM3_I

		Param	neter Estimates		
Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	-27.024792	35.444666	-0.762	0.4569
FIRM3_F1	1	0.042147	0.016579	2.542	0.0217

0.0002

4.854

1.7084100377

0.029134

SUR model using the first 3 firms

1

SYSLIN Procedure

Inv Corr FIRM1

FIRM2

FIRM3

Seemingly Unrelated Regression Estimation

0.141415

Cross Model Covariance				
Sigma	FIRM1	FIRM2	FIRM3	
FIRM1 FIRM2 FIRM3	17206.183816 -355.9331435 1432.3838645	-355.9331435 14043.039401 1857.4410783	1432.3838645 1857.4410783 899.4271732	
Cross Model Correlation				

Corr	FIRM1	FIRM2	FIRM3
FIRM1	1	-0.022897897	0.3641112847
FIRM2	-0.022897897	1	0.5226386059
FIRM3	0.3641112847	0.5226386059	1

Cross Model Inverse Correlation

-0.642833518

FIRM1	FIRM2	FIRM3
1.2424073467	0.3644181288	-0.642833518
0.3644181288	1.4826915084	-0.907600576

-0.907600576

Cross Model Inverse Covariance

Inv Sigma	FIRM1	FIRM2	FIRM3
FIRM1	0.000072207	0.0000234438	-0.000163408
FIRM2	0.0000234438	0.000105582	-0.000255377
FIRM3	-0.000163408	-0.000255377	0.0018994423

System Weighted MSE: 0.95532 with 48 degrees of freedom.

System Weighted R-Square: 0.6685

SAS PROGRAM

```
data A; infile 'B:/DATA/grunfeld.dat';
input firm year invest value capital;
data aa; set A; keep firm year invest value capital;
if firm>3 then delete:
data A1; set aa; keep firm year invest value capital;
if firm>1 then delete;
data AA1; set A1;
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA1;
   model invest=value1 capital1/ godfrey=3 covb;
   output out=E1 r=resid;
title 'Firm 1';
proc plot data=E1;
   plot resid*year="":
Title 'Firm 1';
run;
data A2; set aa; keep firm year invest value capital;
if firm=1 or firm=3 then delete;
```

```
data AA2: set A2:
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA2;
   model invest=value1 capital1/ godfrey=3 covb;
   output out=E2 r=resid;
title 'Firm 2';
proc plot data=E2;
     plot resid*year="";
Title 'Firm 2';
run;
data A3; set aa; keep firm year invest value capital;
if firm<=2 then delete;
data AA3; set A3;
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA3;
   model invest=value1 capital1/ godfrey=3 covb;
   output out=E3 r=resid;
title 'Firm 3';
proc plot data=E3;
     plot resid*year="";
title 'Firm 3':
run;
Proc iml;
use aa;
read all into temp;
sur=temp[1:20,3:5]||temp[21:40,3:5]||temp[41:60,3:5];
c={"F1_i" "F1_f" "F1_c" "F2_i" "F2_f" "F2_c" "F3_i" "F3_f" "F3_c"};
create sur_data from sur [colname=c];
append from sur;
```

```
data surdata; set sur_data;
firm1_i=f1_i; firm1_f1=lag(f1_f); firm1_c1=lag(f1_c);
firm2_i=f2_i; firm2_f1=lag(f2_f); firm2_c1=lag(f2_c);
firm3_i=f3_i; firm3_f1=lag(f3_f); firm3_c1=lag(f3_c);

proc syslin sur data=surdata;
   Firm1: model firm1_i=firm1_f1 firm1_c1;
   Firm2: model dusing the first 2 firms';

run;

proc syslin sur data=surdata;
   Firm1: model firm1_i=firm1_f1 firm1_c1;
   Firm2: model firm1_i=firm1_f1 firm1_c1;
   Firm2: model firm1_i=firm1_f1 firm1_c1;
   Firm2: model firm3_i=firm3_f1 firm3_c1;

title 'SUR model using the first 3 firms';

run;
```

10.11 Grunfeld (1958) Data-Unequal Observations. The SAS output is given below along with the program.

Ignoring the extra OBS				
BETA	STD_BETA			
48.910297	116.04249			
0.0834951	0.0257922			
0.2419409	0.0654934			
-58.84498	125.53869			
0.1804117	0.0629202			
0.3852054	0.1213539			

WILKS METHOD
BETA STD_BETA

47.177574 116.24131
0.0835601 0.0258332
0.245064 0.0656327

-58.93095 135.57919
0.1803626 0.0679503
0.3858253 0.1309581

SRIVASTAVA & Z/ BETA	AATAR METHOD STD BETA
DLIA	OID_DEIA
47.946223	116.04249
0.0835461	0.0257922
0.2435492	0.0654934
-59.66478	135.42233
0.1808292	0.067874
0.3851937	0.1309081

HOCKING & S	MITH METHOD
BETA	STD_BETA
48.769108	116.12029
0.083533	0.0258131
0.2419114	0.0655068
-60.39359	135.24547
0.1813054	0.0677879
0.384481	0.1308514

SAS PROGRAM

```
data AA; infile 'a:/ch10/grunfeld.dat';
input firm year invest value capital;
data AAA; set AA;
keep firm year invest value capital;
if firm>=3 then delete:
Proc IML;
use AAA; read all into temp;
Y1=temp[1:15,3]; Y2=temp[21:40,3]; Y=Y1//Y2;
X1=temp[1:15,4:5]; X2=temp[21:40,4:5];
N1=15; N2=20; NN=5; K=3;
*-----*:
          X1=J(N1,1,1)||X1;
          X2=J(N2,1,1)||X2;
          X=(X1/J(N2,K,0))||(J(N1,K,0)//X2);
          BT1=INV(X1`*X1)*X1`*Y1;
          BT2=INV(X2`*X2)*X2`*Y2;
```

```
e1=Y1-X1*BT1: e2=Y2-X2*BT2:
e2_15=e2[1:N1.]: ee=e2[16:N2.]:
S11=e1`*e1/N1: S12=e1`*e2_15/N1:
S22_15=e2_15\*e2_15/N1;
S22_4=ee`*ee/NN; S22=e2`*e2/N2;
S_12=S12*SQRT(S22/S22_15);
S_11=S11 - (NN/N2)*((S12/S22_15)**(2))*(S22_15-S22_4);
S1_2=S12*S22/S22_15; ZERO=J(NN,2*N1,0);
OMG1=((S11||S12)//(S12||S22_15))@I(N1);
OMG2=((S11||S12)//(S12||S22))@I(N1);
OMG3=((S11||S_12)/(S_12||S22))@I(N1);
OMG4=((S_11||S1_2)//(S1_2||S22))@I(N1);
OMEGA1=(OMG1//ZERO)||(ZERO //(S22_15@I(NN)));
OMEGA2=(OMG2//ZERO)||(ZERO`//(S22@I(NN)));
OMEGA3=(OMG3//ZERO)||(ZERO`//(S22@I(NN)));
OMEGA4=(OMG4//ZERO)||(ZERO`//(S22@I(NN)));
OMG1_INV=INV(OMEGA1); OMG2_INV=INV(OMEGA2);
OMG3_INV=INV(OMEGA3); OMG4_INV=INV(OMEGA4);
******* Ignoring the extra OBS *******;
BETA1=INV(X`*OMG1_INV*X)*X`*OMG1_INV*Y;
VAR_BT1=INV(X`*OMG1_INV*X);
STD_BT1=SQRT(VECDIAG(VAR_BT1));
OUT1=BETA1||STD_BT1; C={"BETA" "STD_BETA"};
PRINT 'Ignoring the extra OBS',,OUT1(|COLNAME=C|);
******* WILKS METHOD ********:
BETA2=INV(X`*OMG2_INV*X)*X`*OMG2_INV*Y;
VAR_BT2=INV(X`*OMG2_INV*X);
STD_BT2=SQRT(VECDIAG(VAR_BT2));
OUT2=BETA2||STD_BT2;
PRINT 'WILKS METHOD'..OUT2(|COLNAME=C|);
******* SRIVASTAVA & ZAATAR METHOD ********;
BETA3=INV(X`*OMG3_INV*X)*X`*OMG3_INV*Y;
```

 $VAR_BT3=INV(X`*OMG3_INV*X);$

STD_BT3=SQRT(VECDIAG(VAR_BT3));

OUT3=BETA3||STD_BT3;

PRINT 'SRIVASTAVA & ZAATAR METHOD',,OUT3(|COLNAME=C|);

******* HOCKING & SMITH METHOD ********;

BETA4=INV(X`*OMG4_INV*X)*X`*OMG4_INV*Y;

VAR_BT4=INV(X`*OMG4_INV*X);

STD_BT4=SQRT(VECDIAG(VAR_BT4));

OUT4=BETA4||STD_BT4;

PRINT 'HOCKING & SMITH METHOD',,OUT4(|COLNAME=C|);

10.12 Baltagi and Griffin (1996) Gasoline Data.

a. SUR Model with the first two countries

SYSLIN Procedure

Seemingly Unrelated Regression Estimation

Model: AUSTRIA

Dependent variable: AUS_Y

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	3.713252	0.371877	9.985	0.0001
AUS_X1	1	0.721405	0.208790	3.455	0.0035
AUS_X2	1	-0.753844	0.146377	-5.150	0.0001
AUS_X3	1	-0.496348	0.111424	-4.455	0.0005

Model: BELGIUM

Dependent variable: BEL_Y

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	2.843323	0.445235	6.386	0.0001
BEL_X1	1	0.835168	0.169508	4.927	0.0002
BEL_X2	1	-0.130828	0.153945	-0.850	0.4088
BEL_X3	1	-0.686411	0.092805	-7.396	0.0001

b. SUR Model with the first three countries

SYSLIN Procedure

Seemingly Unrelated Regression Estimation

Model: AUSTRIA

Dependent variable: AUS_Y

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	3.842153	0.369141	10.408	0.0001
AUS_X1	1	0.819302	0.205608	3.985	0.0012
AUS_X2	1	-0.786415	0.145256	-5.414	0.0001
AUS_X3	1	-0.547701	0.109719	-4.992	0.0002

Model: BELGIUM

Dependent variable: BEL_Y

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	2.910755	0.440417	6.609	0.0001
BEL_X1	1	0.887054	0.167952	5.282	0.0001
BEL_X2	1	-0.128480	0.151578	-0.848	0.4100
BEL_X3	1	-0.713870	0.091902	-7.768	0.0001

Model: CANADA

Dependent variable: CAN_Y

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter $= 0$	Prob > T
INTERCEP	1	3.001741	0.272684	11.008	0.0001
CAN_X1	1	0.410169	0.076193	5.383	0.0001
CAN_X2	1	-0.390490	0.086275	-4.526	0.0004
CAN_X3	1	-0.462567	0.070169	-6.592	0.0001

c. Cross Model Correlation

Corr	AUSTRIA	BELGIUM	CANADA
AUSTRIA	1	0.2232164952	-0.211908098
BELGIUM	0.2232164952	1	-0.226527683
CANADA	-0.211908098	-0.226527683	1

Breusch and Pagan (1980) diagonality LM test statistic for the first three countries yields $\lambda_{LM}=T\left(r_{12}^2+r_{31}^2+r_{32}^2\right)=2.77$ which is asympotically distributed as χ_3^2 under the null hypothesis. This does not reject the diagonality of the variance–covariance matrix across the three countries.

SAS PROGRAM

```
Data gasoline:
Input COUNTRY $ YEAR Y X1 X2 X3;
CARDS:
Proc IML;
use GASOLINE:
read all into temp:
sur=temp [1:19,2:5] | | temp[20:38, 2:5] | | temp[39:57,2:5];
c={"AUS_Y" "AUS_X1" "AUS_X2" "AUS_X3" "BEL_Y" "BEL_X1" "BEL_X2"
"BEL_X3" "CAN_Y" "CAN_X1" "CAN_X2" "CAN_X3"};
create SUR_DATA from SUR [colname=c];
append from SUR;
proc syslin sur data=SUR_DATA;
     AUSTRIA: model AUS_Y=AUS_X1 AUS_X2 AUS_X3;
     BELGIUM: model BEL_Y=BEL_X1 BEL_X2 BEL_X3;
title 'SUR MODEL WITH THE FIRST 2 COUNTRIES':
proc syslin sur data=SUR_DATA;
     AUSTRIA: model AUS_Y=AUS_X1 AUS_X2 AUS_X3;
     BELGIUM: model BEL_Y=BEL_X1 BEL_X2 BEL_X3;
     CANADA: model CAN_Y=CAN_X1 CAN_X2 CAN_X3;
title 'SUR MODEL WITH THE FIRST 3 COUNTRIES':
run;
```

- **10.13** Trace Minimization of Singular Systems with Cross-Equation Restrictions. This is based on Baltagi (1993).
 - **a.** Note that $\sum_{i=1}^3 y_{it} = 1$, implies that $\sum_{i=1}^3 \bar{y}_i = 1$, where $\bar{y}_i = \sum_{t=1}^T y_{it}/T$, for i = 1, 2, 3. This means that $\sum_{t=1}^T x_t(y_{3t} \bar{y}_3) = -\sum_{t=1}^T x_t(y_{2t} \bar{y}_2) \sum_{t=1}^T x_t(y_{1t} \bar{y}_1)$ or $b_3 = -b_2 b_1$. This shows that the b_i 's satisfy the adding up restriction $\beta_1 + \beta_2 + \beta_3 = 0$.
 - **b.** Note also that $\beta_1 = \beta_2$ and $\beta_1 + \beta_2 + \beta_3 = 0$ imply $\beta_3 = -2\beta_1$. If we ignore the first equation, and impose $\beta_1 = \beta_2$, we get

$$\begin{bmatrix} y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \iota & 0 & X \\ 0 & \iota & -2X \end{bmatrix} \begin{bmatrix} \alpha_2 \\ \alpha_3 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

which means that the OLS normal equations yield

$$T\hat{\alpha}_2 + \hat{\beta}_1 \ \sum_{t=1}^T \, x_t = \sum_{t=1}^T \, y_{2t}$$

$$T\hat{\alpha}_3 - 2\hat{\beta}_1 \sum_{t=1}^{T} x_t = \sum_{t=1}^{T} y_{3t}$$

$$\hat{\alpha}_2 \ \sum_{t=1}^T \ x_t - 2 \hat{\alpha}_3 \ \sum_{t=1}^T \ x_t + 5 \hat{\beta}_1 \ \sum_{t=1}^T \ x_t^2 = \sum_{t=1}^T \ x_t y_{2t} - 2 \ \sum_{t=1}^T \ x_t y_{3t}.$$

Substituting the expressions for $\hat{\alpha}_2$ and $\hat{\alpha}_3$ from the first two equations into the third equation, we get $\hat{\beta}_1 = 0.2b_2 - 0.4b_3$. Using $b_1 + b_2 + b_3 = 0$ from part (a), one gets $\hat{\beta}_1 = 0.4b_1 + 0.6b_2$.

c. Similarly, deleting the second equation and imposing $\beta_1 = \beta_2$ one gets

$$\begin{bmatrix} y_1 \\ y_3 \end{bmatrix} = \begin{bmatrix} \iota & 0 & X \\ 0 & \iota & -2X \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_3 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_3 \end{bmatrix}.$$

Forming the OLS normal equations and solving for $\hat{\beta}_1$, one gets $\hat{\beta}_1 = 0.2b_1 - 0.4b_3$. Using $b_1 + b_2 + b_3 = 0$ gives $\hat{\beta}_1 = 0.6b_1 + 0.4b_2$.

d. Finally, deleting the third equation and imposing $\beta_1 = \beta_2$ one gets

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \iota & 0 & X \\ 0 & \iota & X \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix}.$$

Forming the OLS normal equations and solving for $\hat{\beta}_1$ one gets $\hat{\beta}_1 = 0.5b_1 + 0.5b_2$.

Therefore, the estimate of β_1 is not invariant to the deleted equation. Also, this non-invariancy affects Zellner's SUR estimation if the restricted least squares residuals are used rather than the unrestricted least squares residuals in estimating the variance covariance matrix of the disturbances. An alternative solution is given by Im (1994).

10.17 The SUR results are replicated using Stata below:

. sureg (Growth: dly = yrt gov m2y inf swo dtot f_p cy d80 d90) (Inequality: gih = yrt m2y civ mlg mlgldc), corr

Seemingly unrelated regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	Р
Growth	119	9	2.313764	0.4047	80.36	0.0000
Inequality	119	5	6.878804	0.4612	102.58	0.0000

	Coef.	Std. Err.	Z	P> z	[95% Co	nf. Interval]
Growth						
yrt	0497042	.1546178	-0.32	0.748	3527496	.2533412
gov	0345058	.0354801	-0.97	0.331	1040455	.0350338
m2y	.0084999	.0163819	0.52	0.604	023608	.0406078
inf	0020648	.0013269	-1.56	0.120	0046655	.000536
SWO	3.263209	.60405	5.40	0.000	2.079292	4.447125
dtot	17.74543	21.9798	0.81	0.419	-25.33419	60.82505
f_pcy	-1.038173	.4884378	-2.13	0.034	-1.995494	0808529
d80	-1.615472	.5090782	-3.17	0.002	-2.613247	6176976
d90	-3.339514	.6063639	-5.51	0.000	-4.527965	-2.151063
_cons	10.60415	3.471089	3.05	0.002	3.800944	17.40736

Inequality						
yrt	-1.000843	.3696902	-2.71	0.007	-1.725422	2762635
m2y	0570365	.0471514	-1.21	0.226	1494516	.0353785
civ	.0348434	.5533733	0.06	0.950	-1.049748	1.119435
mlg	.1684692	.0625023	2.70	0.007	.0459669	.2909715
mlgldc	.0344093	.0421904	0.82	0.415	0482823	.117101
_cons	33.96115	4.471626	7.59	0.000	25.19693	42.72538

Correlation matrix of residuals:

Growth Inequality
Inequality 0.0872 1.0000

Breusch-Pagan test of independence: chi2(1) = 0.905, Pr = 0.3415.

b. Note that the correlation among the residuals of the two equations is weak (0.0872) and the Breusch–Pagan test for diagonality of the variance–covariance matrix of the disturbances of the two equations is statistically insignificant, not rejecting zero correlation among the two equations.

References

- Baltagi, B.H. (1993), "Trace Minimization of Singular Systems With Cross-Equation Restrictions," *Econometric Theory*, Problem 93.2.4, 9: 314–315.
- Baltagi, B.H. and J.M. Griffin (1983), "Gasoline Demand in the OECD: An Application of Pooling and Testing Procedures," European Economic Review, 22: 117–137.
- Binkley, J.K. and C.H. Nelson (1988), "A Note on the Efficiency of Seemingly Unrelated Regression," The American Statistician, 42: 137–139.
- Breusch, T.S. and A.R. Pagan (1980), "The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics, Review of Economic Studies, 47: 239–253.
- Grunfeld, Y. (1958), "The Determinants of Corporate Investment," unpublished Ph.D. dissertation (University of Chicago: Chicago, IL).
- Im, Eric Iksoon (1994), "Trace Minimization of Singular Systems With Cross-Equation Restrictions," *Econometric Theory*, Solution 93.2.4, 10: 450.
- Kmenta, J. (1986), Elements of Econometrics (Macmillan: New York).
- Schmidt, P. (1977), "Estimation of Seemingly Unrelated Regressions With Unequal Numbers of Observations," Journal of Econometrics, 5: 365–377.

CHAPTER 11

Simultaneous Equations Model

- **11.1** The Inconsistency of OLS. The OLS estimator from Eq. (11.14) yields $\hat{\delta}_{ols} = \sum_{t=1}^{T} p_t q_t / \sum_{t=1}^{T} p_t^2$ where $p_t = P_t \bar{P}$ and $q_t = Q_t \bar{Q}$. Substituting $q_t = \delta p_t + (u_{2t} \bar{u}_2)$ from (11.14) we get $\hat{\delta}_{ols} = \delta + \sum_{t=1}^{T} p_t (u_{2t} \bar{u}_2) / \sum_{t=1}^{T} p_t^2$. Using (11.18), we get plim $\sum_{t=1}^{T} p_t (u_{2t} \bar{u}_2) / T = (\sigma_{12} \sigma_{22}) / (\delta \beta)$ where $\sigma_{ij} = \text{cov}(u_{it}, u_{jt})$ for i, j = 1, 2 and t = 1, 2, ..., T. Using (11.20) we get plim $\hat{\delta}_{ols} = \delta + [(\sigma_{12} \sigma_{22}) / (\delta \beta)] / [(\sigma_{11} + \sigma_{22} 2\sigma_{12}) / (\delta \beta)^2]$ $= \delta + (\sigma_{12} \sigma_{22}) (\delta \beta) / (\sigma_{11} + \sigma_{22} 2\sigma_{12})$.
- **11.2** When Is the IV Estimator Consistent?
 - a. For Eq. (11.30) $y_1 = \alpha_{12}y_2 + \alpha_{13}y_3 + \beta_{11}X_1 + \beta_{12}X_2 + u_1$. When we regress y_2 on X_1 , X_2 and X_3 to get $y_2 = \hat{y}_2 + \hat{v}_2$, the residuals satisfy $\sum_{t=1}^T \hat{y}_{2t}\hat{v}_{2t} = 0$ and $\sum_{t=1}^T \hat{v}_{2t}X_{1t} = \sum_{t=1}^T \hat{v}_{2t}X_{2t} = \sum_{t=1}^T \hat{v}_{2t}X_{3t} = 0$. Similarly, when we regress y_3 on X_1 , X_2 and X_4 to get $y_3 = \hat{y}_3 + \hat{v}_3$, the residuals satisfy $\sum_{t=1}^T \hat{y}_{3t}\hat{v}_{3t} = 0$ and $\sum_{t=1}^T \hat{v}_{3t}X_{1t} = \sum_{t=1}^T \hat{v}_{3t}X_{2t} = \sum_{t=1}^T \hat{v}_{3t}X_{4t} = 0$. In the second stage regression $y_1 = \alpha_{12}\hat{y}_2 + \alpha_{13}\hat{y}_3 + \beta_{11}X_1 + \beta_{12}X_2 + \epsilon_1$ where $\epsilon_1 = \alpha_{12}(y_2 \hat{y}_2) + \alpha_{13}(y_3 \hat{y}_3) + u_1 = \alpha_{12}\hat{v}_2 + \alpha_{13}\hat{v}_3 + u_1$. For this to yield consistent estimates, we need $\sum_{t=1}^T \hat{y}_{2t}\epsilon_{1t} = \sum_{t=1}^T \hat{y}_{2t}u_{1t}$; $\sum_{t=1}^T \hat{y}_{3t}\epsilon_{1t} = \sum_{t=1}^T \hat{y}_{3t}u_{1t}$; $\sum_{t=1}^T \hat{y}_{3t}\epsilon_{1t} = \sum_{t=1}^T \hat{y}_{2t}\epsilon_{1t} = \sum_{t=1}^T X_{1t}u_{1t}$ and $\sum_{t=1}^T X_{2t}\epsilon_{1t} = \sum_{t=1}^T X_{2t}u_{1t}$. But $\sum_{t=1}^T \hat{y}_{2t}\epsilon_{1t} = \alpha_{12}\sum_{t=1}^T \hat{v}_{2t}\hat{y}_{2t} + \alpha_{13}\sum_{t=1}^T \hat{v}_{3t}\hat{y}_{2t} + \sum_{t=1}^T \hat{y}_{2t}u_{1t}$ with $\sum_{t=1}^T \hat{v}_{2t}\hat{y}_{2t} = 0$ because \hat{v}_2 are the residuals and \hat{y}_2 are the predicted values from the same regression. However, $\sum_{t=1}^T \hat{v}_{3t}\hat{y}_{2t}$ is not necessarily zero

because \hat{v}_3 is only orthogonal to X_1 , X_2 and X_4 , while \hat{y}_2 is a perfect linear combination of X_1 , X_2 and X_3 . Hence, $\sum_{t=1}^T \hat{v}_{3t} X_{3t}$ is not necessarily zero, which makes $\sum_{t=1}^T \hat{v}_{3t} \hat{y}_{2t}$ not necessarily zero.

Similarly, $\sum_{t=1}^{T} \hat{y}_{3t} \epsilon_{1t} = \alpha_{12} \sum_{t=1}^{T} \hat{v}_{2t} \hat{y}_{3t} + \alpha_{13} \sum_{t=1}^{T} \hat{v}_{3t} \hat{y}_{3t} + \sum_{t=1}^{T} \hat{y}_{3t} u_{1t}$ with $\sum_{t=1}^{T} \hat{v}_{3t} \hat{y}_{3t} = 0$ and $\sum_{t=1}^{T} \hat{v}_{2t} \hat{y}_{3t}$ not necessarily zero. This is because \hat{v}_{2t} is only orthogonal to X_1 , X_2 and X_3 , while \hat{y}_3 is a perfect linear combination of X_1 , X_2 and X_4 . Hence, $\sum_{t=1}^{T} \hat{v}_{2t} X_{4t}$ is not necessarily zero, which makes $\sum_{t=1}^{T} \hat{v}_{2t} \hat{y}_{3t}$ not necessarily zero. Since both X_1 and X_2 are included in the first stage regressions, we have $\sum_{t=1}^{T} X_{1t} \epsilon_{1t} = \sum_{t=1}^{T} X_{1t} u_{1t}$ using the fact that $\sum_{t=1}^{T} X_{1t} \hat{v}_{2t} = \sum_{t=1}^{T} X_{1t} \hat{v}_{3t} = 0$. Also, $\sum_{t=1}^{T} X_{2t} \epsilon_{1t} = \sum_{t=1}^{T} X_{2t} u_{1t}$ since $\sum_{t=1}^{T} X_{2t} \hat{v}_{2t} = \sum_{t=1}^{T} X_{2t} \hat{v}_{3t} = 0$.

b. The first stage regressions regress y_2 and y_3 on X_2 , X_3 and X_4 to get $y_2=\hat{y}_2+\hat{v}_2$ and $y_3=\hat{y}_3+\hat{v}_3$ with the residuals satisfying $\sum_{t=1}^T\hat{v}_{2t}\hat{y}_{2t}=\sum_{t=1}^T\hat{v}_{2t}X_{2t}=\sum_{t=1}^T\hat{v}_{2t}X_{3t}=\sum_{t=1}^T\hat{v}_{2t}X_{4t}=0$ and $\sum_{t=1}^T\hat{v}_{3t}\hat{y}_{3t}=\sum_{t=1}^T\hat{v}_{3t}X_{2t}=\sum_{t=1}^T\hat{v}_{3t}X_{3t}=\sum_{t=1}^T\hat{v}_{3t}X_{4t}=0$. In the second stage regression $y_1=\alpha_{12}\hat{y}_2+\alpha_{13}\hat{y}_3+\beta_{11}X_1+\beta_{12}X_2+\epsilon_1$ where $\epsilon_1=\alpha_{12}(y_2-\hat{y}_2)+\alpha_{13}(y_3-\hat{y}_3)+u_1=\alpha_{12}\hat{v}_2+\alpha_{13}\hat{v}_3+u_1$. For this to yield consistent estimates, we need $\sum_{t=1}^T\hat{y}_{2t}\epsilon_{1t}=\sum_{t=1}^T\hat{y}_{2t}u_{1t};\;\sum_{t=1}^T\hat{y}_{3t}\epsilon_{1t}=\sum_{t=1}^T\hat{y}_{3t}u_{1t};\;\sum_{t=1}^T\hat{y}_{3t}u_{1t};\;\sum_{t=1}^T\hat{y}_{3t}u_{1t};\;\sum_{t=1}^TX_{1t}\epsilon_{1t}=\sum_{t=1}^TX_{1t}u_{1t}$ and $\sum_{t=1}^TX_{2t}\epsilon_{1t}=\sum_{t=1}^TX_{2t}u_{1t}.$

The first two equalities are satisfied because

$$\sum_{t=1}^{T} \hat{y}_{2t} \hat{v}_{2t} = \sum_{t=1}^{T} \hat{y}_{2t} \hat{v}_{3t} = 0 \qquad \text{and} \qquad \sum_{t=1}^{T} \hat{y}_{3t} \hat{v}_{2t} = \sum_{t=1}^{T} \hat{y}_{3t} \hat{v}_{3t} = 0$$

since the *same* set of X's are included in both first stage regressions. $\sum_{t=1}^{T} X_{2t} \epsilon_{1t} = \sum_{t=1}^{T} X_{2t} u_{1t} \text{ because } \sum_{t=1}^{T} X_{2t} \hat{v}_{2t} = \sum_{t=1}^{T} X_{2t} \hat{v}_{3t} = 0 \text{ since } X_2 \text{ is}$

included in both first-stage regressions. However, $\sum_{t=1}^{T} X_{1t} \epsilon_{1t} \neq \sum_{t=1}^{T} X_{1t} u_{1t}$

since
$$\sum_{t=1}^{T} X_{1t} \hat{v}_{2t} \neq 0$$
 and $\sum_{t=1}^{T} X_{1t} \hat{v}_{3t} \neq 0$

because X_1 was not included in the first stage regressions.

11.3 Just-Identification and Simple IV. If Eq. (11.34) is just-identified, then X_2 is of the same dimension as Y_1 , i.e., both are Txg_1 . Hence, Z_1 is of the same dimension as X, both of dimension $Tx(g_1 + k_1)$. Therefore, $X'Z_1$ is a square non-singular matrix of dimension $(g_1 + k_1)$. Hence, $(Z_1'X)^{-1}$ exists. But from (11.36), we know that

$$\begin{split} \hat{\delta}_{1,2SLS} &= \left(Z_1' P_X Z_1 \right)^{-1} Z_1' P_X y_1 = \left[Z_1' X (X'X)^{-1} X' Z_1 \right]^{-1} Z_1' X (X'X)^{-1} X' y_1 \\ &= \left(X' Z_1 \right)^{-1} (X'X) \left(Z_1' X \right)^{-1} \left(Z_1' X \right) (X'X)^{-1} X' y_1 = (X'Z_1)^{-1} X' y_1 \end{split}$$

as required. This is exactly the IV estimator with W = X given in (11.41). It is important to emphasize that this is only feasible if $X'Z_1$ is square and non-singular.

11.4 2SLS Can Be Obtained as GLS. Premultiplying (11.34) by X' we get $X'y_1 = X'Z_1\delta_1 + X'u_1$ with $X'u_1$ having mean zero and $var(X'u_1) = \sigma_{11}X'X$ since $var(u_1) = \sigma_{11}I_T$. Performing GLS on this transformed equation yields

$$\hat{\delta}_{1,GLS} = [Z_1'X(\sigma_{11}X'X)^{-1}X'Z_1]^{-1}Z_1'X(\sigma_{11}X'X)^{-1}X'y_1 = (Z_1'P_XZ_1)^{-1}Z_1'P_Xy_1$$
 as required.

- 11.5 The Equivalence of 3SLS and 2SLS.
 - **a.** From (11.46), (i) if Σ is diagonal then Σ^{-1} is diagonal and $\hat{\Sigma}^{-1} \otimes P_X$ is block-diagonal with the i-th block consisting of $P_X/\hat{\sigma}_{ii}$. Also, Z is block-diagonal, therefore, $\{Z'[\hat{\Sigma}^{-1} \otimes P_X]Z\}^{-1}$ is block-diagonal with the i-th block consisting of $\hat{\sigma}_{ii} \left(Z'_i P_X Z_i \right)^{-1}$. In other words,

$$\begin{split} Z'\Big[\hat{\Sigma}^{-1}\otimes P_X\Big]Z = &\begin{pmatrix} Z'_1 & 0 & ... & 0 \\ 0 & Z'_2 & ... & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & ... & Z'_G \end{pmatrix} \begin{bmatrix} P_X/\hat{\sigma}_{11} & 0 & ... & 0 \\ 0 & P_X/\hat{\sigma}_{22} & ... & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & ... & P_X/\hat{\sigma}_{GG} \end{bmatrix} \\ & \times \begin{pmatrix} Z_1 & 0 & ... & 0 \\ 0 & Z_2 & ... & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & ... & Z_G \end{pmatrix} \\ & = \begin{pmatrix} Z'_1P_XZ_1/\hat{\sigma}_{11} & 0 & ... & 0 \\ 0 & Z'_2P_XZ_2/\hat{\sigma}_{22} & ... & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & ... & Z'_GP_XZ_G/\hat{\sigma}_{GG} \end{pmatrix} \\ & = \begin{pmatrix} Z'_1P_Xy_1/\hat{\sigma}_{11} \\ 0 & ... & ... & ... \\ 0 & 0 & ... & Z'_GP_XZ_G/\hat{\sigma}_{GG} \end{pmatrix} \\ & \text{and } Z'\Big[\hat{\Sigma}^{-1}\otimes P_X\Big]y = \begin{pmatrix} Z'_1P_Xy_1/\hat{\sigma}_{11} \\ Z'_2P_Xy_2/\hat{\sigma}_{22} \\ \vdots \\ Z'_GP_Xy_G/\hat{\sigma}_{GG} \end{pmatrix} \end{split}$$

Hence, from (11.46) $\hat{\delta}_{3SLS} = \{Z'[\hat{\Sigma}^{-1} \otimes P_X]Z\}^{-1}\{Z'[\hat{\Sigma}^{-1} \otimes P_X]y\}$

$$= \begin{pmatrix} \hat{\sigma}_{11} \left[Z_1' \ P_X Z_1 \right]^{-1} & 0 & ... & 0 \\ 0 & \hat{\sigma}_{22} \left[Z_2' \ P_X Z_2 \right]^{-1} & ... & 0 \\ \vdots & \vdots & ... & \vdots \\ 0 & 0 & ... & \hat{\sigma}_{GG} \left[Z_G' P_X Z_G \right]^{-1} \end{pmatrix} \\ \times \begin{pmatrix} Z_1' P_X y_1 / \hat{\sigma}_{11} \\ Z_2' P_X y_2 / \hat{\sigma}_{22} \\ \vdots \\ Z_G' P_X y_G / \hat{\sigma}_{GG} \end{pmatrix} \\ = \begin{pmatrix} \left(Z_1' P_X Z_1 \right)^{-1} Z_1' P_X y_1 \\ \left(Z_2' P_X Z_2 \right)^{-1} Z_2' P_X y_2 \\ \vdots \\ \left(Z_2' P_X Z_2 \right)^{-1} Z_2' P_X y_2 \end{pmatrix} = \begin{pmatrix} \hat{\delta}_{1,2SLS} \\ \hat{\delta}_{2,2SLS} \\ \vdots \\ \hat{\delta}_{G,2SLS} \end{pmatrix}$$

(ii) If every equation in the system is just-identified, then $Z_i'X$ is square and non-singular for i=1,2,..,G. In problem 11.3, we saw that for say the first equation, both Z_1 and X have the same dimension $Tx(g_1+k_1)$. Hence, $Z_1'X$ is square and of dimension (g_1+k_1) . This holds for every

equation of the just-identified system. In fact, problem 11.3 proved that
$$\begin{split} \hat{\delta}_{i,2SLS} &= (X'Z_i)^{-1}X'y_i \text{ for } i=1,2,..,G. \text{ Also, from (11.44), we get} \\ \hat{\delta}_{3SLS} &= \{\text{diag}\left[Z_i'X\right]\left[\hat{\Sigma}^{-1}\otimes(X'X)^{-1}\right] \text{ diag}\left[X'Z_i\right]\}^{-1} \end{split}$$

But each $Z_i'X$ is square and non-singular, hence

$$\begin{split} \hat{\delta}_{3SLS} &= \left[\text{diag} \left(X'Z_i \right)^{-1} \left(\hat{\Sigma} \otimes \left(X'X \right) \right) \, \text{diag} \left(Z_i'X \right)^{-1} \right] \\ & \{ \text{diag} \left(Z_i'X \right) \left\lceil \hat{\Sigma}^{-1} \otimes \left(X'X \right)^{-1} \right\rceil (I_G \otimes X')y \}. \end{split}$$

 $\{\operatorname{diag}\left[Z_{i}'X\right]\left[\hat{\Sigma}^{-1}\otimes(X'X)^{-1}\right]\left(I_{G}\otimes X'\right)y\}.$

which upon cancellation yields

$$\begin{split} \hat{\delta}_{3SLS} &= \text{diag}(X'Z_i)^{-1} \ (I_G \otimes X') y \\ &= \begin{pmatrix} (X'Z_1)^{-1} & 0 & .. & 0 \\ 0 & (X'Z_2)^{-1} & .. & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & .. & (X'Z_G)^{-1} \end{pmatrix} \begin{pmatrix} X'y_1 \\ X'y_2 \\ \vdots \\ X'y_G \end{pmatrix} \\ &= \begin{pmatrix} (X'Z_1)^{-1}X'y_1 \\ (X'Z_2)^{-1}X'y_2 \\ \vdots \\ (X'Z_G)^{-1}X'y_G \end{pmatrix} = \begin{pmatrix} \hat{\delta}_{1,2SLS} \\ \hat{\delta}_{2,2SLS} \\ \vdots \\ \hat{\delta}_{G,2SLS} \end{pmatrix} \quad \text{as required.} \end{split}$$

b. Premultiplying (11.43) by $(I_G \otimes P_X)$ yields $y^* = Z^*\delta + u^*$ where $y^* = (I_G \otimes P_X)y$, $Z^* = (I_G \otimes P_X)Z$ and $u^* = (I_G \otimes P_X)u$. OLS on this transformed model yields

$$\begin{split} \hat{\delta}_{ols} &= (Z^{*\prime}Z^{*})^{-1}Z^{*\prime}y^{*} = [Z^{\prime}(I_{G} \otimes P_{X})Z]^{-1} \left[Z^{\prime}(I_{G} \otimes P_{X})y\right] \\ &= \begin{pmatrix} \left(Z_{1}^{\prime}P_{X}Z_{1}\right)^{-1} & 0 & .. & 0 \\ 0 & \left(Z_{2}^{\prime}P_{X}Z_{2}\right)^{-1} & .. & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & .. & \left(Z_{G}^{\prime}P_{X}Z_{G}\right)^{-1} \end{pmatrix} \begin{pmatrix} Z_{1}^{\prime}P_{X}y_{1} \\ Z_{2}^{\prime}P_{X}y_{2} \\ \vdots \\ Z_{G}^{\prime}P_{X}y_{G} \end{pmatrix} \\ &= \begin{pmatrix} \left(Z_{1}^{\prime}P_{X}Z_{1}\right)^{-1}Z_{1}^{\prime}P_{X}y_{1} \\ \left(Z_{2}^{\prime}P_{X}Z_{2}\right)^{-1}Z_{2}^{\prime}P_{X}y_{2} \\ \vdots \\ \left(Z_{G}^{\prime}P_{X}Z_{G}\right)^{-1}Z_{G}^{\prime}P_{X}y_{G} \end{pmatrix} = \begin{pmatrix} \hat{\delta}_{1,2SLS} \\ \hat{\delta}_{2,2SLS} \\ \vdots \\ \hat{\delta}_{G,2SLS} \end{pmatrix} \end{split}$$

which is the 2SLS estimator of each equation in (11.43). Note that u^* has mean zero and $var(u^*) = \Sigma \otimes P_X$ since $var(u) = \Sigma \otimes I_T$. The generalized inverse of $var(u^*)$ is $\Sigma^{-1} \otimes P_X$. Hence, GLS on this transformed model yields

$$\begin{split} \hat{\delta}_{GLS} &= [Z^{*\prime}(\Sigma^{-1} \otimes P_X)Z^*]^{-1}Z^{*\prime}(\Sigma^{-1} \otimes P_X)y^* \\ &= [Z^{\prime}(I_G \otimes P_X)(\Sigma^{-1} \otimes P_X)(I_G \otimes P_X)Z]^{-1}Z^{\prime}(I_G \otimes P_X)(\Sigma^{-1} \otimes P_X) \\ &\times (I_G \otimes P_X)y \\ &= [Z^{\prime}(\Sigma^{-1} \otimes P_X)Z]^{-1}Z^{\prime}[\Sigma^{-1} \otimes P_X]y. \end{split}$$

Using the Milliken and Albohali condition for the equivalence of OLS and GLS given in Eq. (9.7) of Chap. 9, we can obtain a necessary and sufficient condition for 2SLS to be equivalent to 3SLS. After all, the last two estimators are respectively OLS and GLS on the transformed * system. This condition gives $Z^{*'}(\Sigma^{-1}\otimes P_X)\bar{P}_{Z^*}=0$ since Z^* is the matrix of regressors and $\Sigma\otimes P_X$ is the corresponding variance-covariance matrix. Note that $Z^*=\text{diag}[P_XZ_i]=\text{diag}[\hat{Z}_i]$ or a block-diagonal matrix with the i-th block being the matrix of regressors of the second-stage regression of 2SLS. Also, $P_{Z^*}=\text{diag}[P_{\hat{Z}_i}]$ and $\bar{P}_{Z^*}=\text{diag}[\bar{P}_{\hat{Z}_i}]$. Hence, the above condition reduces to $\sigma^{ij}\hat{Z}_i'\bar{P}_{\hat{Z}_i}=0$ for $i\neq j$ and i,j=1,2,..,G.

If Σ is diagonal, this automatically satisfies this condition since $\sigma_{ij} = \sigma^{ij} = 0$ for $i \neq j$. Also, if each equation in the system is just-identified, then $Z_i'X$ and $X'Z_j$ are square and non-singular. Hence,

$$\begin{split} \hat{Z}_{i}'P_{\hat{Z}_{j}} &= \hat{Z}_{i}'\hat{Z}_{j} \left(\hat{Z}_{j}'\hat{Z}_{j}\right)^{-1}\hat{Z}_{j}' = Z_{i}'X(X'X)^{-1}X'Z_{j} \left[Z_{j}'X(X'X)^{-1}X'Z_{j}\right]^{-1} \\ &Z_{i}'X(X'X)^{-1}X' = Z_{i}'X(X'X)^{-1}X' = Z_{i}'P_{X} = \hat{Z}_{i}' \end{split}$$

after some cancellations. Hence, $\hat{Z}_i'\bar{P}_{\hat{Z}_j}=\hat{Z}_i'-\hat{Z}_i'P_{\hat{Z}_j}=\hat{Z}_i'-\hat{Z}_i'=0$, under just-identification of each equation in the system.

11.6 a. Writing this system of two equations in the matrix form given by (A.1) we

$$\begin{split} \text{get} \quad B = \begin{bmatrix} 1 & b \\ 1 & -d \end{bmatrix}; \Gamma = \begin{bmatrix} -a & 0 & 0 \\ -c & -e & -f \end{bmatrix}; y_t = \begin{pmatrix} Q_t \\ P_t \end{pmatrix} \\ x_t' = [1, W_t, L_t] \quad \text{ and } \quad u_t' = (u_{1t}, u_{2t}). \end{split}$$

- b. There are two zero restrictions on Γ . These restrictions state that W_t and L_t do not appear in the demand equation. Therefore, the first equation is overidentified by the order condition of identification. There are two excluded exogenous variables and only one right hand side included endogenous variable. However, the supply equation is not identified by the order condition of identification. There are no excluded exogenous variables, but there is one right hand side included endogenous variable.
- **c.** The transformed matrix FB should satisfy the following normalization restrictions:

$$f_{11} + f_{12} = 1$$
 and $f_{21} + f_{22} = 1$.

These are the same normalization restrictions given in (A.6). Also, F Γ must satisfy the following zero restrictions:

$$f_{11}0 - f_{12}e = 0$$
 and $f_{11}0 - f_{12}f = 0$.

If either e or f are different from zero, so that at least W_t or L_t appear in the supply equation, then $f_{12}=0$. This means that $f_{11}+0=1$ or $f_{11}=1$, from the first normalization equation. Hence, the first row of F is indeed the first row of an identity matrix and the demand equation is identified. However, there are no zero restrictions on the second equation and in the absence of any additional restrictions $f_{21}\neq 0$ and the second row of F is not necessarily the second row of an identity matrix. Hence, the supply equation is not identified.

11.7 a. In this case,

$$\begin{split} B &= \begin{bmatrix} 1 & b \\ 1 & -f \end{bmatrix}; \Gamma = \begin{bmatrix} -a & -c & -d & 0 & 0 \\ -e & 0 & 0 & -g & -h \end{bmatrix}; y_t = \begin{pmatrix} Q_t \\ P_t \end{pmatrix} \\ x_t' &= \begin{bmatrix} 1, Y_t, A_t, W_t, L_t \end{bmatrix} \quad \text{and} \quad u_t' = (u_{1t}, u_{2t}). \end{split}$$

b. There are four zero restrictions on Γ . These restrictions state that Y_t and A_t are absent from the supply equation whereas W_t and L_t are absent from the demand equation. Therefore, both equations are over-identified. For each equation, there is one right hand sided included endogenous variable and two excluded exogenous variables.

c. The transformed matrix FB should satisfy the following normalization restrictions:

$$f_{11} + f_{12} = 1$$
 and $f_{21} + f_{22} = 1$.

Also, $F\Gamma$ must satisfy the following zero restrictions:

$$-f_{21}c + f_{22}0 = 0$$
 $-f_{21}d + f_{22}0 = 0.$

and

$$f_{11}0 - f_{12}g = 0$$
 $f_{11}0 - f_{12}h = 0$.

If either c or d are different from zero, so that at least Y_t or A_t appear in the demand equation, then $f_{21}=0$ and from the second normalization equation we deduce that $f_{22}=1$. Hence, the second row of F is indeed the second row of an identity matrix and the supply equation is identified. Similarly, if either g or h are different from zero, so that at least W_t or L_t appear in the supply equation, then $f_{12}=0$ and from the first normalization equation we deduce that $f_{11}=1$. Hence, the first row of F is indeed the first row of an identity matrix and the demand equation is identified.

11.8 a. From example (A.1) and Eq. (A.5), we get

$$A = [B, \Gamma] = \begin{bmatrix} \beta_{11} & \beta_{12} & \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \beta_{21} & \beta_{22} & \gamma_{21} & \gamma_{22} & \gamma_{23} \end{bmatrix} = \begin{bmatrix} 1 & b & -a & -c & 0 \\ 1 & -e & -d & 0 & -f \end{bmatrix}$$

Therefore, ϕ for the first equation consists of only one restriction, namely that W_t is not in that equation, or $\gamma_{13}=0$. This makes $\varphi'=(0,0,0,0,1)$, since

 $\alpha_1' \phi = 0$ gives $\gamma_{13} = 0$. Therefore,

$$A\phi = \begin{pmatrix} \gamma_{13} \\ \gamma_{23} \end{pmatrix} = \begin{pmatrix} 0 \\ -f \end{pmatrix}.$$

This is of rank one as long as $f \neq 0$. Similarly, for φ the second equation consists of only one restriction, namely that Y_t is not in that equation, or $\gamma_{22}=0$. This makes $\varphi=(0,0,0,1,0)$, since $\alpha_1'\varphi=0$ gives $\gamma_{22}=0$. Therefore, $A\varphi=\begin{pmatrix} \gamma_{12}\\ \gamma_{22} \end{pmatrix}=\begin{pmatrix} -c\\ 0 \end{pmatrix}$. This is of rank one as long as $c\neq 0$.

b. For the supply and demand model given by (A.3) and (A.4), the reduced form is given by

$$\Pi = \begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \end{bmatrix} = \begin{bmatrix} ea + bd & ec & bf \\ a - d & c & -f \end{bmatrix} / (e + b).$$

This can be easily verified by solving the two equations in (A.3) and (A.4) for P_t and Q_t in terms of the constant, Y_t and W_t .

From part (a) and Eq.(A.17), we can show that the parameters of the first structural equation can be obtained from $\alpha_1'[W, \varphi] = 0$ where $\alpha_1' = (\beta_{11}, \beta_{12}, \gamma_{11}, \gamma_{12}, \gamma_{13})$ represents the parameters of the first structural equation. $W' = [\Pi, I_3]$ and $\varphi' = (0, 0, 0, 0, 1)$ as seen in part (a).

$$\beta_{11}\pi_{11} + \beta_{12}\pi_{21} + \gamma_{11} = 0$$

$$\beta_{11}\pi_{12} + \beta_{12}\pi_{22} + \gamma_{12} = 0$$

$$\beta_{11}\pi_{13}+\beta_{12}\pi_{23}+\gamma_{13}=0$$

$$\gamma_{13} = 0$$

If we normalize by setting $\beta_{11}=1,$ we get $\beta_{12}=-\pi_{13}/\pi_{23}$ also

$$\begin{split} \gamma_{12} &= -\pi_{12} + \frac{\pi_{13}}{\pi_{23}}\pi_{22} = \frac{\pi_{22}\pi_{13} - \pi_{12}\pi_{23}}{\pi_{23}} \text{ and } \\ \gamma_{11} &= -\pi_{11} + \frac{\pi_{13}}{\pi_{23}}\pi_{21} = \frac{\pi_{21}\pi_{13} - \pi_{11}\pi_{23}}{\pi_{23}}. \end{split}$$

One can easily verify from the reduced form parameters that $\beta_{12}=-\pi_{13}/\pi_{23}=-bf/-f=b.$

Similarly, $\gamma_{12} = (\pi_{22}\pi_{13} - \pi_{12}\pi_{23})/\pi_{23} = (cbf + ecf)/ - f(e + b) = -c$. Finally, $\gamma_{11} = (\pi_{21}\pi_{13} - \pi_{11}\pi_{23})/\pi_{23} = (abf + aef)/ - f(e + b) = -a$. Similarly, for the second structural equation, we get,

$$(\beta_{21},\beta_{22},\gamma_{21},\gamma_{22},\gamma_{23})\begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{13} & 0 \\ \pi_{21} & \pi_{22} & \pi_{23} & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = (0,0,0,0,0)$$

which can be rewritten as

$$\beta_{21}\pi_{11} + \beta_{22}\pi_{21} + \gamma_{21} = 0$$

$$\beta_{21}\pi_{12}+\beta_{22}\pi_{22}+\gamma_{22}=0$$

$$\beta_{21}\pi_{13} + \beta_{22}\pi_{23} + \gamma_{23} = 0$$

$$\gamma_{22} = 0.$$

If we normalize by setting $\beta_{21}=1$, we get $\beta_{22}=-\pi_{12}/\pi_{22}$ also

$$\begin{split} \gamma_{23} &= -\pi_{13} + \frac{\pi_{12}}{\pi_{22}}\pi_{23} = \frac{\pi_{23}\pi_{12} - \pi_{13}\pi_{22}}{\pi_{22}} \text{ and } \\ \gamma_{21} &= -\pi_{11} + \frac{\pi_{12}}{\pi_{22}}\pi_{21} = \frac{\pi_{12}\pi_{21} - \pi_{11}\pi_{22}}{\pi_{22}}. \end{split}$$

One can easily verify from the reduced form parameters that

$$eta_{22} = -\pi_{12}/\pi_{22} = -ec/c = -e$$
. Similarly,
$$\gamma_{23} = (\pi_{23}\pi_{13} - \pi_{13}\pi_{22})/\pi_{22} = (-ecf - bdf)/c(e + b) = -f$$
. Finally,
$$\gamma_{21} = (\pi_{12}\pi_{21} - \pi_{11}\pi_{22})/\pi_{22} = (-dec - bdc)/c(e + b) = -d$$
.

11.9 For the simultaneous model in problem 11.6, the reduced form parameters are given

by
$$\pi = \begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \end{bmatrix} = \begin{bmatrix} ab + bc & be & bf \\ a - c & -e & -f \end{bmatrix} / (b + d)$$

This can be easily verified by solving for P_t and Q_t in terms of the constant, W_t and L_t . From the solution to 11.6, we get

$$A = [B, \Gamma] = \begin{bmatrix} \beta_{11} & \beta_{12} & \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \beta_{21} & \beta_{22} & \gamma_{21} & \gamma_{22} & \gamma_{23} \end{bmatrix} = \begin{bmatrix} 1 & b & -a & 0 & 0 \\ 1 & -d & -c & -e & -f \end{bmatrix}$$

For the first structural equation,

$$\phi = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

with $\alpha_1' \phi = 0$ yielding $\gamma_{12} = \gamma_{13} = 0$. Therefore, (A.17) reduces to

$$(\beta_{11},\beta_{12},\gamma_{11},\gamma_{12},\gamma_{13})\begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{13} & 0 & 0 \\ \pi_{21} & \pi_{22} & \pi_{23} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} = (0,0,0,0,0)$$

This can be rewritten as

$$\begin{split} \beta_{11}\pi_{11} + \beta_{12}\pi_{21} + \gamma_{11} &= 0 \\ \beta_{11}\pi_{12} + \beta_{12}\pi_{22} + \gamma_{12} &= 0 \\ \beta_{11}\pi_{13} + \beta_{12}\pi_{23} + \gamma_{13} &= 0 \\ \gamma_{12} &= 0 \\ \gamma_{13} &= 0 \end{split}$$

If we normalize by setting $\beta_{11}=1$, we get $\beta_{12}=-\pi_{13}/\pi_{23}$; $\beta_{12}=-\pi_{12}/\pi_{22}$. Also, $\gamma_{11}=-\pi_{11}+(\pi_{12}/\pi_{22})\pi_{21}=\frac{\pi_{12}\pi_{21}-\pi_{11}\pi_{22}}{\pi_{22}}$ and $\gamma_{11}=-\pi_{11}+(\pi_{13}/\pi_{23})\pi_{21}=\frac{\pi_{21}\pi_{13}-\pi_{11}\pi_{23}}{\pi_{23}}$ one can easily verify from the reduced form parameters that

$$\beta_{12} = -\pi_{13}/\pi_{23} = -bf/-f = b$$
. Also $\beta_{12} = -\pi_{12}/\pi_{22} = -be/-e = b$. Similarly,

$$\gamma_{11} = \frac{\pi_{12}\pi_{21} - \pi_{11}\pi_{22}}{\pi_{22}} = \frac{abe - bce + ead + ebc}{-e(b+d)} = \frac{a(be + ed)}{-(be + ed)} = -a$$

Also,

$$\gamma_{11} = \frac{\pi_{21}\pi_{13} - \pi_{11}\pi_{23}}{\pi_{23}} = \frac{abf - bcf + adf + bcf}{-f(b+d)} = \frac{a(bf + df)}{-(bf + df)} = -a$$

For the second structural equation there are no zero restrictions. Therefore, (A.15) reduces to

$$(\beta_{21},\beta_{22},\gamma_{21},\gamma_{22},\gamma_{23}) \begin{vmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (0,0,0,0,0)$$

This can be rewritten as

$$\beta_{21}\pi_{11} + \beta_{22}\pi_{21} + \gamma_{21} = 0$$

$$\beta_{21}\pi_{12} + \beta_{22}\pi_{22} + \gamma_{22} = 0$$

$$\beta_{21}\pi_{13} + \beta_{22}\pi_{23} + \gamma_{23} = 0$$

Three equations in five unknowns. When we normalize by setting $\beta_{21} = 1$, we still get three equations in four unknowns for which there is no unique solution.

11.10 Just-Identified Model.

a. The *generalized instrumental variable* estimator for δ_1 based on W is given below (11.41)

$$\begin{split} \hat{\delta}_{1,IV} &= \left(Z_1' P_W Z_1 \right)^{-1} Z_1' P_W y_1 \\ &= \left[Z_1' W \left(W'W \right)^{-1} W' Z_1 \right]^{-1} Z_1' W (W'W)^{-1} W' y_1 \\ &= \left(W' Z_1 \right)^{-1} (W'W) \left(Z_1' W \right)^{-1} \left(Z_1' W \right) (W'W)^{-1} W^{-1} y_1 \\ &= \left(W' Z_1 \right)^{-1} W' y_1 \end{split}$$

since $W'Z_1$ is square and non-singular under just-identification. This is exactly the expression for the *simple instrumental variable* estimator for δ_1 given in (11.38).

b. Let the minimized value of the criterion function be

$$Q = (y_1 - Z_1 \hat{\delta}_{1,IV})' P_W (y_1 - Z_1 \hat{\delta}_{1,IV}).$$

Substituting the expression for $\hat{\delta}_{1,IV}$ and expanding terms, we get

$$\begin{split} Q &= y_1' P_W y_1 - y_1' W \left(Z_1' W \right)^{-1} Z_1' P_W y_1 - y_1' P_W Z_1 (W' Z_1)^{-1} W' y_1 \\ &+ y_1' W \left(Z_1' W \right)^{-1} Z_1' P_W Z_1 (W' Z_1)^{-1} W' y_1 \\ Q &= y_1' P_W y_1 - y_1' W \left(Z_1' W \right)^{-1} Z_1' W (W' W)^{-1} W' y_1 \\ &- y_1' W (W' W)^{-1} W' Z_1 \left(W_1' Z_1 \right)^{-1} W' y_1 \\ &+ y_1' W \left(Z_1' W \right)^{-1} Z_1' W (W' W)^{-1} W' Z_1 (W' Z_1)^{-1} W' y_1 \\ Q &= y_1' P_W y_1 - y_1' P_W y_1 - y_1' P_W y_1 + y_1' P_W y_1 = 0 \end{split}$$

as required.

c. Let $\hat{Z}_1 = P_W Z_1$ be the set of second stage regressors obtained from regressing each variable in Z_1 on the set of instrumental variables W. For the just-identified case

$$\begin{split} P_{\hat{Z}_1} &= P_{P_W Z_1} = \hat{Z}_1 \left(\hat{Z}_1' \hat{Z}_1 \right)^{-1} \hat{Z}_1' = P_W Z_1 \left(Z_1' P_W Z_1 \right)^{-1} Z_1' P_W \\ &= W (W'W)^{-1} W' Z_1 \left[Z_1' W (W'W)^{-1} W' Z_1 \right]^{-1} Z_1^{-1} W (W'W)^{-1} W' \\ &= W (W'W)^{-1} W' Z_1 (W'Z_1)^{-1} (W'W) \left(Z_1'W \right)^{-1} Z_1' W (W'W)^{-1} W' \\ &= W (W'W)^{-1} W' = P_W. \end{split}$$

Hence, the residual sum of squares of the second stage regression for the just-identified model, yields $y_1'\bar{P}_{\hat{Z}_1}y_1=y_1'\bar{P}_Wy_1$ since $P_{\hat{Z}_1}=P_W$. This is exactly the residual sum of squares from regression y_1 on the matrix of instruments W.

11.11 The More Valid Instruments the Better. If the set of instruments W_1 is spanned by the space of the set of instruments W_2 , then $P_{W_2}W_1=W_1$. The corresponding two instrumental variables estimators are

$$\hat{\delta}_{1,W_i} = \left(Z_1' P_{W_i} Z_1 \right)^{-1} Z_1' P_{W_i} y_1 \qquad \text{for } i = 1, 2$$

with asymptotic covariance matrices

$$\sigma_{11} \text{ plim} (Z'_1 P_{w_i} Z_1 / T)^{-1}$$
 for $i = 1, 2$.

The difference between the asymptotic covariance matrix of $\hat{\delta}_{1,W_1}$ and that of $\hat{\delta}_{1,W_2}$ is positive semi-definite if

$$\sigma_{11} \left[plim \frac{Z_1' P_{W_1} Z_1}{T} \right]^{-1} - \sigma_{11} \left[plim \frac{Z_1' P_{W_2} Z_1}{T} \right]^{-1}$$

is positive semi-definite. This holds, if $Z_1'P_{W_2}Z_1 - Z_1'P_{W_1}Z_1$ is positive semi-definite. To show this, we prove that $P_{W_2} - P_{W_1}$ is idempotent.

$$\begin{split} (P_{W_2} - P_{W_1})(P_{W_2} - P_{W_1}) &= P_{W_2} - P_{W_2} P_{W_1} - P_{W_1} P_{W_2} + P_{W_1} \\ &= P_{W_2} - P_{W_1} - P_{W_1} + P_{W_1} = P_{W_2} - P_{W_1}. \end{split}$$

This uses the fact that $P_{W_2}P_{W_1} = P_{W_2}W_1 (W_1'W_1)^{-1} W_1' = W_1 (W_1'W_1)^{-1}$ $W_1 = P_{W_1}$, since $P_{W_2}W_1 = W_1$.

- 11.12 Testing for Over-Identification. The main point here is that W spans the same space as $[\hat{Z}_1, W^*]$ and that both are of full rank ℓ . In fact, W^* is a subset of instruments W, of dimension $(\ell-k_1-g_1)$, that are linearly independent of $\hat{Z}_1=P_WZ_1$.
 - a. Using instruments W, the second stage regression on $y_1 = Z_1 \delta_1 + W^* \gamma + u_1$ regresses y_1 on $P_W[Z_1, W^*] = [\hat{Z}_1, W^*]$ since $\hat{Z}_1 = P_W Z_1$ and $W^* = P_W W^*$. But the matrix of instruments W is of the same dimension as the matrix of regressors $[\hat{Z}_1, W^*]$. Hence, this equation is just-identified, and from problem 11.10, we deduce that the residual sum of squares of this second stage regression is exactly the residual sum of squares obtained by regressing y_1 on the matrix of instruments W, i.e.,

$$URSS^* = y_1' \bar{P}_W y_1 = y_1' y_1 - y_1' P_W y_1.$$

b. Using instruments W, the second stage regression on $y_1 = Z_1 \delta_1 + u_1$ regresses y_1 on $\hat{Z}_1 = P_W Z_1$. Hence, the RRSS* $= y_1' \bar{P}_{\hat{Z}_1} y_1 = y_1' y_1 - y_1' P_{\hat{Z}_1} y_1$ where $\bar{P}_{\hat{Z}_1} = I - P_{\hat{Z}_1}$ and $P_{\hat{Z}_1} = \hat{Z}_1 \left(\hat{Z}_1' \hat{Z}_1\right)^{-1} \hat{Z}_1' = \hat{Z}_1' \hat{Z}_1'$

$$P_WZ_1\left(Z_1'P_WZ_1\right)^{-1}Z_1'P_W$$
. Therefore, using the results in part (a) we get
$$RRSS^*-URSS^*=y_1'P_Wy_1-y_1'P_{\hat{Z}_1}y_1$$
 as given in (11.49).

c. Hausman (1983) proposed regressing the 2SLS residuals $(y_1 - Z_1\tilde{\delta}_{1,2SLS})$ on the set of instruments W and obtaining nR_u^2 where R_u^2 is the uncentered R^2 of this regression. Note that the regression sum of squares yields

$$\begin{split} &(y_1 - Z_1 \tilde{\delta}_{1,2SLS})' P_W (y_1 - Z_1 \tilde{\delta}_{1,2SLS}) \\ &= y_1' P_W y_1 - y_1' P_W Z_1 (Z_1' P_W Z_1)^{-1} Z_1' P_W y_1 - y_1' P_W Z_1 (Z_1' P_W Z_1)^{-1} Z_1' P_W y_1 \\ &+ y_1' P_W Z_1 (Z_1' P_W Z_1)^{-1} Z_1' P_W Z_1 \left(Z_1' P_W Z_1 \right)^{-1} Z_1' P_W y_1 \\ &= y_1' P_W y_1 - y_1' P_W Z_1 \left(Z_1' P_W Z_1 \right)^{-1} Z_1' P_W y_1 \\ &= y_1' P_W y_1 - y_1' P_{\hat{\mathcal{T}}_2}, y_1 = RRSS^* - URSS^* \end{split}$$

as given in part (b). The total sum of squares of this regression, uncentered, is the 2SLS residuals sum of squares given by

$$(y_1 - Z_1 \tilde{\delta}_{1.2SLS})'(y_1 - Z_1 \tilde{\delta}_{1.2SLS}) = T\tilde{\sigma}_{11}$$

where $\tilde{\sigma}_{11}$ is given in (11.50). Hence, the test statistic

$$\begin{split} \frac{RRSS^* - URSS^*}{\tilde{\sigma}_{11}} &= \frac{Regression \: Sum \: of \: Squares}{Uncentered \: Total \: Sum \: of \: Squares \: / \: T} \\ &= T(uncentered \: R^2) = T \: R_u^2 \: as \: required. \end{split}$$

This is asymptotically distributed as χ^2 with $\ell - (g_1 + k_1)$ degrees of freedom. Large values of this test statistic reject the null hypothesis.

d. The GNR for the unrestricted model given in (11.47) computes the residuals from the restricted model under H_o ; $\gamma=0$. These are the 2SLS residuals $(y_1-Z_1\tilde{\delta}_{1,2SLS})$ based on the set of instruments W. Next, one differentiates the model with respect to its parameters and evaluates these derivatives at the restricted estimates. For instrumental variables W one

has to premultiply the right hand side of the GNR by P_W , this yields $(y_1 - Z_1\tilde{\delta}_{1.2SLS}) = P_W Z_1 b_1 + P_W W^* b_2 + \text{residuals}.$

But $\hat{Z}_1 = P_W Z_1$ and $P_W W^* = W^*$ since W^* is a subset of W. Hence, the GNR becomes $(y_1 - Z_1 \tilde{\delta}_{1,2SLS}) = \hat{Z}_1 b_1 + W^* b_2 + \text{residuals}$. However, $[\hat{Z}_1, W^*]$ spans the same space as W, see part (a). Hence, this GNR regresses 2SLS residuals on the matrix of instruments W and computes TR_u^2 where R_u^2 is the uncentered R^2 of this regression. This is Hausman's (1983) test statistic derived in part (c).

11.15 a. The artificial regression in (11.55) is given by

$$y_1 = Z_1 \delta_1 + (Y_1 - \hat{Y}_1) \eta + residuals$$

This can be rewritten as $y_1=Z_1\delta_1+\bar{P}_WY_1\eta+\text{residuals}$ where we made use of the fact that $\hat{Y}_1=P_WY_1$ with $Y_1-\hat{Y}_1=Y_1-P_WY_1=\bar{P}_WY_1$. Note that to residual out the matrix of regressors \bar{P}_WY_1 , we need

$$\bar{P}_{\bar{P}_WY_1} = I - \bar{P}_W Y_1 (Y_1' \bar{P}_W Y_1)^{-1} Y_1' \bar{P}_W$$

so that, by the FWL Theorem, the OLS estimate of δ_1 can also be obtained from the following regression

$$\bar{P}_{\bar{P}_wY_1}y_1 = \bar{P}_{\bar{P}_wY_1}Z_1\delta_1 + \text{residuals}.$$

Note that

$$\bar{P}_{\bar{P}_WY_1}Z_1 = Z_1 - \bar{P}_WY_1(Y_1'\bar{P}_WY_1)^{-1}Y_1'\bar{P}_WZ_1$$

with $\bar{P}_W Z_1 = [\bar{P}_W Y_1, 0]$ and $\bar{P}_W X_1 = 0$ since X_1 is part of the instruments in W. Hence, $\bar{P}_{\bar{P}_W Y_1} Z_1 = [Y_1, X_1] - [\bar{P}_W Y_1, 0] = [P_W Y_1, X_1] = [\hat{Y}_1, X_1] = P_W [Y_1, X_1] = P_W Z_1 = \hat{Z}_1$

In this case,

$$\begin{split} \hat{\delta}_{1,ols} &= \left(Z_1' \bar{P}_{\bar{P}_W Y_1} Z_1 \right)^{-1} Z_1' \bar{P}_{\bar{P}_W Y_1} y_1 = \left(\hat{Z}_1' \hat{Z}_1 \right)^{-1} \hat{Z}_1' y_1 \\ &= \left(Z_1' P_W Z_1 \right)^{-1} Z_1' P_W y_1 = \hat{\delta}_{1,IV} \end{split}$$

as required.

b. The FWL Theorem also states that the residuals from the regressions in part (a) are the same. Hence, their residuals sum of squares are the same. The last regression computes an estimate of the $var(\hat{\delta}_{1,ols})$ as $\tilde{s}^2 \left(Z_1' P_W Z_1\right)^{-1}$ where \tilde{s}^2 is the residual sum of squares divided by the degrees of freedom of the regression. In (11.55), this is the MSE of that regression, since it has the same residuals sum of squares. Note that when $\eta \neq 0$ in (11.55), IV estimation is necessary and \tilde{s}_{11} underestimates σ_{11} and will have to be replaced by

$$(y_1 - Z_1 \hat{\delta}_{1,IV})'(y_1 - Z_1 \hat{\delta}_{1,IV})/T.$$

11.16 Recursive Systems.

a. The order condition of identification yields one excluded exogenous variable (x_3) from the first equation and no right hand side endogenous variable i.e., $k_2 = 1$ and $g_1 = 0$. Therefore, the first equation is over-identified with degree of over-identification equal to one. The second equation has two excluded exogenous variables $(x_1 \text{ and } x_2)$ and one right hand side endogenous variable (y_1) so that $k_2 = 2$ and $g_1 = 1$. Hence, the second equation is over-identified of degree one. The rank condition of identification can be based on

$$A = [B, \Gamma] = \begin{bmatrix} 1 & 0 & \gamma_{11} & \gamma_{12} & 0 \\ \beta_{21} & 1 & 0 & 0 & \gamma_{23} \end{bmatrix}$$

with $y_t' = (y_{1t}, y_{2t})$ and $x_t' = (x_{1t}, x_{2t}, x_{3t})$. For the first equation, the set of zero restrictions yield

$$\phi_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ so that } \alpha_1' \phi_1 = (\beta_{12}, \gamma_{13}) = 0$$

where α_1' is the first row of A. For the second equation, the set of zero restrictions yield

$$\phi_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ so that } \alpha_2' \phi_2 = (\gamma_{21}, \gamma_{22}) = 0$$

where α'_2 is the second row of A. Hence, for the first equation

$$A\phi_1 = \begin{bmatrix} 0 & 0 \\ 1 & \gamma_{23} \end{bmatrix}$$

which is of rank 1 in general. Hence, the first equation is identified by the rank condition of identification. Similarly, for the second equation

$$A\phi_2 = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ 0 & 0 \end{bmatrix}$$

which is of rank 1 as long as either γ_{11} or γ_{12} are different from zero. This ensures that either x_1 or x_2 appear in the first equation to identify the second equation.

b. The first equation is already in reduced form format

$$y_{1t} = -\gamma_{11}x_{1t} - \gamma_{12}x_{2t} + u_{1t}$$

 y_{1t} is a function of x_{1t}, x_{2t} and only u_{1t} , not u_{2t} . For the second equation, one can substitute for y_{1t} to get

$$y_{2t} = -\gamma_{23}x_{3t} - \beta_{21}(-\gamma_{11}x_{1t} - \gamma_{12}x_{2t} + u_{1t}) + u_{2t}$$

= $\beta_{21}\gamma_{11}x_{1t} + \beta_{21}\gamma_{12}x_{2t} - \gamma_{23}x_{3t} + u_{2t} - \beta_{21}u_{1t}$

so that y_{2t} is a function of x_{1t} , x_{2t} , x_{3t} and the error is a linear combination of u_{1t} and u_{2t} .

c. OLS on the first structural equation is also OLS on the first reduced form equation with only exogenous variables on the right hand side. Since x_1 and x_2 are not correlated with u_{1t} , this yields consistent estimates for γ_{11}

and γ_{12} . OLS on the second equation regresses y_{2t} on y_{1t} and x_{3t} . Since x_{3t} is not correlated with u_{2t} , the only possible correlation is from y_{1t} and u_{2t} . However, from the first reduced form equation y_{1t} is only a function of exogenous variables and u_{1t} . Since u_{1t} and u_{2t} are not correlated because Σ is diagonal for a recursive system, OLS estimates of β_{21} and γ_{23} are consistent.

d. Assuming that $u_t \sim N(0, \Sigma)$ where $u_t' = (u_{1t}, u_{2t})$, this exercise shows that OLS is MLE for this recursive system. Conditional on the set of x's, the likelihood function is given by

$$L(B,\Gamma,\Sigma) = (2\pi)^{-T/2} |B|^T |\Sigma|^{-T/2} \exp\left(-\frac{1}{2} \sum_{t=1}^T u_t' \Sigma^{-1} u_t\right)$$

so that

$$\log L = -(T/2)\log 2\pi + T\log|B| - (T/2)\log|\Sigma| - \frac{1}{2}\sum_{t=1}^{T}u_{t}'\Sigma^{-1}u_{t}.$$

Since B is triangular, |B|=1 so that $\log |B|=0$. Therefore, the only place in logL where B and Γ parameters appear is in $\sum_{t=1}^T u_t' \Sigma^{-1} u_t$. Maximizing logL with respect to B and Γ is equivalent to minimizing $\sum_{t=1}^T u_t' \Sigma^{-1} u_t$ with

respect to B and Γ . But Σ is diagonal, so Σ^{-1} is diagonal and

$$\sum_{t=1}^T u_t' \Sigma^{-1} u_t = \sum_{t=1}^T u_{1t}^2 / \sigma_{11} + \sum_{t=1}^T u_{2t}^2 / \sigma_{22}.$$

The partial derivatives of logL with respect to the coefficients of the first structural equation are simply the partial derivatives of $\sum_{t=1}^{T} u_{1t}^2/\sigma_{11}$ with respect to those coefficients. Setting these partial derivatives equal to zero yields the OLS estimates of the first structural equation. Similarly, the partial derivatives of logL with respects to the coefficients of the second structural equation are simply the derivatives of $\sum_{t=1}^{T} u_{2t}^2/\sigma_{22}$ with respect to those coefficients. Setting these partial derivatives equal to zero yields the OLS estimates of the second structural equation. Hence, MLE is equivalent to OLS for a recursive system.

11.17 Hausman's Specification Test: 2SLS Versus 3SLS. This is based on Baltagi (1989).

a. The two equations model considered is

$$y_1 = Z_1 \delta_1 + u_1$$
 and $y_2 = Z_2 \delta_2 + u_2$ (1)

where y_1 and y_2 are endogenous; $Z_1 = [y_2, x_1, x_2]$, $Z_2 = [y_1, x_3]$; and x_1, x_2 and x_3 are exogenous (the y's and x's are Tx1 vectors). As noted in the problem, $\tilde{\delta} = 2$ SLS, $\tilde{\tilde{\delta}} = 3$ SLS, and the corresponding residuals are denoted by \tilde{u} and \tilde{u} . $\delta'_1 = (\alpha, \beta_1, \beta_2)$ and $\delta'_2 = (\gamma, \beta_3)$ with $\alpha \gamma \neq 1$, so that the system is complete and we can solve for the reduced form.

Let $X = [x_1, x_2, x_3]$ and $P_X = X(X'X)^{-1}X'$, the 3SLS equations for model (1) are given by

$$Z'\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right) Z^{\tilde{\tilde{\delta}}} = Z'\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right) y \tag{2}$$

where $Z = \text{diag}[Z_i]$, $y' = (y'_1, y'_2)$, and $\tilde{\Sigma}^{-1} = [\tilde{\sigma}^{ij}]$ is the inverse of the estimated variance-covariance matrix obtained from 2SLS residuals. Equation (2) can also be written as

$$Z'\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right)\tilde{\tilde{\mathbf{u}}} = 0,\tag{3}$$

or more explicitly as

$$\tilde{\sigma}^{11} Z_1' P_X \tilde{\tilde{u}}_1 + \tilde{\sigma}^{12} Z_1' P_X \tilde{\tilde{u}}_2 = 0 \tag{4}$$

$$\tilde{\sigma}^{12} Z_2' P_X \tilde{\tilde{u}}_1 + \tilde{\sigma}^{22} Z_2' P_X \tilde{\tilde{u}}_2 = 0 \tag{5}$$

Using the fact that Z'_1X is a square non-singular matrix, one can premultiply (4) by $(X'X) (Z'_1X)^{-1}$ to get

$$\tilde{\sigma}^{11} X' \tilde{\tilde{\mathbf{u}}}_1 + \tilde{\sigma}^{12} X' \tilde{\tilde{\mathbf{u}}}_2 = 0. \tag{6}$$

b. Writing Eq. (5) and (6) in terms of $\tilde{\delta}_1$ and $\tilde{\delta}_2$, one gets

$$\tilde{\sigma}^{12} (Z_2' P_X Z_1) \tilde{\tilde{\delta}}_1 + \tilde{\sigma}^{22} (Z_2' P_X Z_2) \tilde{\tilde{\delta}}_2 = \tilde{\sigma}^{12} (Z_2' P_X Y_1) + \tilde{\sigma}^{22} (Z_2' P_X Y_2)$$
 (7)

and

$$\tilde{\sigma}^{11} X' Z_1 \tilde{\tilde{\delta}}_1 + \tilde{\sigma}^{12} X' Z_2 \tilde{\tilde{\delta}}_2 = \tilde{\sigma}^{11} X' y_1 + \tilde{\sigma}^{12} X' y_2. \tag{8}$$

Premultiply (8) by $\tilde{\sigma}^{12}Z_2'X(X'X)^{-1}$ and subtract it from $\tilde{\sigma}^{11}$ times (7). This eliminates $\tilde{\tilde{\delta}}_1$, and solves for $\tilde{\tilde{\delta}}_2$:

$$\tilde{\tilde{\delta}}_2 = (Z_2' P_X Z_2)^{-1} Z_2' P_X y_2 = \tilde{\delta}_2. \tag{9}$$

Therefore, the 3SLS estimator of the over-identified equation is equal to its 2SLS counterpart.

Substituting (9) into (8), and rearranging terms, one gets

$$\tilde{\sigma}^{11}X'Z_1\tilde{\tilde{\delta}}_1 = \tilde{\sigma}^{11}X'y_1 + \tilde{\sigma}^{12}X'\tilde{u}_2.$$

Premultiplying by $Z_1'X(X'X)^{-1}/\tilde{\sigma}^{11}$, and solving for $\tilde{\delta}_1$, one gets

$$\tilde{\tilde{\delta}}_{1} = (Z_{1}'P_{X}Z_{1})^{-1}Z_{1}'P_{X}y_{1} + (\tilde{\sigma}^{12}/\tilde{\sigma}^{11})(Z_{1}'P_{X}Z_{1})^{-1}Z_{1}'P_{X}\tilde{u}_{2}.$$
(10)

Using the fact that $\tilde{\sigma}^{12} = -\tilde{\sigma}_{12}/|\tilde{\Sigma}|$, and $\tilde{\sigma}^{11} = \tilde{\sigma}_{22}/|\tilde{\Sigma}|$, (10) becomes

$$\tilde{\tilde{\delta}}_1 = \tilde{\delta}_1 - (\tilde{\sigma}_{12}/\tilde{\sigma}_{22}) \left(Z_1' P_X Z_1 \right)^{-1} Z_1' P_X \tilde{u}_2. \tag{11}$$

Therefore, the 3SLS estimator of the just-identified equation differs from its 2SLS (or indirect least squares) counterpart by a linear combination of the 2SLS (or 3SLS) residuals of the over-identified equation; see Theil (1971).

c. A Hausman-type test based on $\tilde{\delta}_1$ and $\tilde{\delta}_1$ is given by

$$\mathbf{m} = (\tilde{\delta}_1 - \tilde{\tilde{\delta}}_1)' \left[\mathbf{V} \left(\tilde{\delta}_1 \right) - \mathbf{V} \left(\tilde{\tilde{\delta}}_1 \right) \right]^{-1} \left(\tilde{\delta}_1 - \tilde{\tilde{\delta}}_1 \right), \tag{12}$$

$$\begin{split} \text{where } V(\tilde{\delta}_1) &= \tilde{\sigma}_{11} \left(Z_1' P_X Z_1 \right)^{-1} \\ \text{and } V(\tilde{\tilde{\delta}}_1) &= \left(1/\tilde{\sigma}^{11} \right) \left(Z_1' P_X Z_1 \right)^{-1} + \left(\tilde{\sigma}_{12}^2/\tilde{\sigma}_{22} \right) \left(Z_1' P_X Z_1 \right)^{-1} \\ & \left(Z_1' P_X Z_2 \right) \left(Z_2' P_X Z_2 \right)^{-1} \left(Z_2' P_X Z_1 \right) \left(Z_1' P_X Z_1 \right)^{-1}. \end{split}$$

The latter term is obtained by using the partitioned inverse of $Z'(\tilde{\Sigma}^{-1} \otimes P_X)Z$. Using (11), the Hausman test statistic becomes

$$\begin{split} m &= \left(\tilde{\sigma}_{12}^2/\tilde{\sigma}_{22}^2\right) \left(\tilde{u}_2' P_X Z_1\right) \left[\left(\tilde{\sigma}_{11} - 1/\tilde{\sigma}^{11}\right) \left(Z_1' P_X Z_1\right) \right. \\ &\left. - \left(\tilde{\sigma}_{12}^2/\tilde{\sigma}_{22}\right) \left(Z_1' P_X Z_2\right) \left(Z_2' P_X Z_2\right)^{-1} \left(Z_2' P_X Z_1\right) \right]^{-1} \left(Z_1' P_X \tilde{u}_2\right). \end{split}$$

However, $(\tilde{\sigma}_{11} - 1/\tilde{\sigma}^{11}) = (\tilde{\sigma}_{12}^2/\tilde{\sigma}_{22})$; this enables us to write

$$m = \tilde{u}_{2}'\hat{Z}_{1} \left[\hat{Z}_{1}'\hat{Z}_{1} - \hat{Z}_{1}'\hat{Z}_{2} \left(\hat{Z}_{2}'\hat{Z}_{2} \right)^{-1} \hat{Z}_{2}'\hat{Z}_{1} \right]^{-1} \hat{Z}_{1}'\tilde{u}_{2}/\tilde{\sigma}_{22}, \tag{13}$$

where $\hat{Z}_i = P_X Z_i$ is the matrix of second stage regressors of 2SLS, for i = 1, 2. This statistic is asymptotically distributed as χ_3^2 , and can be given the following interpretation:

Claim: $m = TR^2$, where R^2 is the R-squared of the regression of \tilde{u}_2 on the set of second stage regressors of both equations, \hat{Z}_1 and \hat{Z}_2 .

Proof. This result follows immediately using the fact that $\tilde{\sigma}_{22} = \tilde{u}_2'\tilde{u}_2/T = \text{total sums of squares/T}$, and the fact that the regression sum of squares is given by

RSS =
$$\tilde{u}'_{2} \begin{bmatrix} \hat{Z}_{1} & \hat{Z}_{2} \end{bmatrix} \begin{bmatrix} \hat{Z}'_{1} \hat{Z}_{1} & \hat{Z}'_{1} \hat{Z}_{2} \\ \hat{Z}'_{2} \hat{Z}_{1} & \hat{Z}'_{2} \hat{Z}_{2} \end{bmatrix}^{-1} \begin{bmatrix} \hat{Z}'_{1} \\ \hat{Z}'_{2} \end{bmatrix} \tilde{u}_{2},$$

$$= \tilde{u}'_{2} \hat{Z}_{1} \begin{bmatrix} \hat{Z}'_{1} \hat{Z}_{1} - \hat{Z}'_{1} \hat{Z}_{2} (\hat{Z}'_{2} \hat{Z}_{2})^{-1} \hat{Z}'_{2} \hat{Z}_{1} \end{bmatrix}^{-1} \hat{Z}'_{1} \tilde{u}_{2},$$
(14)

where the last equality follows from partitioned inverse and the fact that $\hat{Z}_2'\tilde{u}_2=0$.

11.18 a. Using the order condition of identification, the first equation has two excluded exogenous variables x_2 and x_3 and only one right hand sided included endogenous variable y_2 . Hence,

$$k_2 = 2 > g_1 = 1$$

and the first equation is over-identified with degree of over-identification equal to one. Similarly, the second equation has one excluded exogenous variable x_1 and only one right hand side included endogenous variable y_1 . Hence, $k_2=1=g_1$ and the second equation is just-identified. Using the rank condition of identification

$$A = [B \Gamma] = \begin{bmatrix} 1 & -\beta_{12} & \gamma_{11} & 0 & 0 \\ -\beta_{21} & 1 & 0 & \gamma_{22} & \gamma_{23} \end{bmatrix}$$

with $y'_t = (y_{1t}, y_{2t})$ and $x'_t = (x_{1t}, x_{2t}, x_{3t})$. The first structural equation has the following zero restrictions:

$$\varphi_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{so that } \alpha_1' \varphi_1 = (\gamma_{12}, \gamma_{13}) = 0$$

where α'_1 is the first row of A. Similarly, the second structural equation has the following zero restriction:

$$\varphi_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{so that } \alpha_2' \varphi_2 = \gamma_{21} = 0$$

where α_2' is the second row of A. Hence, $A\varphi_1 = \begin{bmatrix} 0 & 0 \\ \gamma_{22} & \gamma_{23} \end{bmatrix}$ which has rank one provided either γ_{22} or γ_{23} is different from zero. Similarly, $A\varphi_2 = \begin{pmatrix} \gamma_{11} \\ 0 \end{pmatrix}$ which has rank one provided $\gamma_{11} \neq 0$. Hence, both equations are identified by the rank condition of identification.

b. For the first equation, the OLS normal equations are given by

$$(Z_1'Z_1)\begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{ols} = Z_1'y_1$$

where $Z_1 = [y_2, x_1]$. Hence,

$$Z_1'Z_1 = \begin{bmatrix} y_2'y_2 & y_2'x_1 \\ x_1'y_2 & x_1'x_1 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 10 & 20 \end{bmatrix}$$

$$Z_1'y_1 = \begin{pmatrix} y_2'y_1 \\ x_1'y_1 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

obtained from the matrices of cross-products provided by problem 11.18. Hence, the OLS normal equations are

$$\begin{bmatrix} 8 & 10 \\ 10 & 20 \end{bmatrix} \begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{\text{ols}} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

solving for the OLS estimators, we get

$$\begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{\text{obs}} = \frac{1}{60} \begin{bmatrix} 20 & -10 \\ -10 & 8 \end{bmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$$

OLS on the second structural equation can be deduced in a similar fashion.

c. For the first equation, the 2SLS normal equations are given by

$$(Z_1' P_X Z_1) \begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{2 \le 1.5} = Z_1' P_X y_1$$

where $Z_1 = [y_2, x_1]$ and $X = [x_1, x_2, x_3]$. Hence,

$$\begin{split} Z_1'X &= \begin{bmatrix} y_2'x_1 & y_2'x_2 & y_2'x_3 \\ x_1'x_1 & x_1'x_2 & x_1'x_3 \end{bmatrix} = \begin{bmatrix} 10 & 20 & 30 \\ 20 & 0 & 0 \end{bmatrix} \\ (X'X)^{-1} &= \begin{bmatrix} 1/20 & 0 & 0 \\ 0 & 1/20 & 0 \\ 0 & 0 & 1/10 \end{bmatrix} \quad \text{and} \ X'y_1 &= \begin{bmatrix} x_1'y_1 \\ x_2'y_1 \\ x_3'y_1 \end{bmatrix} = \begin{pmatrix} 5 \\ 40 \\ 20 \end{pmatrix} \\ Z_1'X(X'X)^{-1} &= \begin{bmatrix} 0.5 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \\ Z_1'P_XZ_1 &= \begin{bmatrix} 0.5 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 20 & 0 \\ 30 & 0 \end{bmatrix} = \begin{bmatrix} 115 & 10 \\ 10 & 20 \end{bmatrix} \end{split}$$

with

$$Z_1' P_X y_1 = \begin{bmatrix} 0.5 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} 5 \\ 40 \\ 20 \end{pmatrix} = \begin{pmatrix} 102.5 \\ 5 \end{pmatrix}.$$

Therefore, the 2SLS normal equations are

$$\begin{bmatrix} 115 & 10 \\ 10 & 20 \end{bmatrix} \begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{2SLS} = \begin{pmatrix} 102.5 \\ 5 \end{pmatrix}$$

solving for the 2SLS estimates, we get

$$\begin{pmatrix} \hat{\beta}_{12} \\ \hat{\gamma}_{11} \end{pmatrix}_{2SLS} = \frac{1}{2200} \begin{bmatrix} 20 & -10 \\ -10 & 115 \end{bmatrix} \begin{pmatrix} 102.5 \\ 5 \end{pmatrix} = \frac{1}{2200} \begin{pmatrix} 2000 \\ -250 \end{pmatrix} = \begin{pmatrix} 10/11 \\ -9/44 \end{pmatrix}$$

2SLS on the second structural equation can be deduced in a similar fashion.

d. The first equation is over-identified and the reduced form parameter estimates will give more than one solution to the structural form parameters.

However, the second equation is just-identified. Hence, 2SLS reduces to indirect least squares which in this case solves uniquely for the structural parameters from the reduced form parameters. ILS on the second equation yields

$$\begin{pmatrix} \hat{\beta}_{21} \\ \hat{\gamma}_{22} \\ \hat{\gamma}_{23} \end{pmatrix}_{ILS} = (X'Z_1)^{-1}X'y_2$$

where $Z_1 = [y_1, x_2, x_3]$ and $X = [x_1, x_2, x_3]$. Therefore,

$$X'Z^1 = \begin{bmatrix} x_1'y_1 & x_1'x_2 & x_1'x_3 \\ x_2'y_1 & x_2'x_2 & x_2'x_3 \\ x_3'y_1 & x_3'x_2 & x_3'x_3 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 40 & 20 & 0 \\ 20 & 0 & 10 \end{bmatrix} \qquad \text{and}$$

$$X'y_2 = \begin{pmatrix} x_1'y_2 \\ x_2'y_2 \\ x_3'y_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}$$

so that

$$\begin{pmatrix} \hat{\beta}_{21} \\ \hat{\gamma}_{22} \\ \hat{\gamma}_{23} \end{pmatrix}_{\text{II S}} = \begin{bmatrix} 5 & 0 & 0 \\ 40 & 20 & 0 \\ 20 & 0 & 10 \end{bmatrix}^{-1} \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}$$

Note that $X'Z_1$ for the first equation is of dimension 3×2 and is not even square.

- **11.19** Supply and Demand Equations for Traded Money. This is based on Laffer (1970).
 - b. OLS Estimation

SYSLIN Procedure

Ordinary Least Squares Estimation

Model: SUPPLY

Dependent variable: LNTM_P

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	2	0.28682	0.14341	152.350	0.0001
Error	18	0.01694	0.00094		
C Total	20	0.30377			

Root MSE	0.03068	R-Square	0.9442
Dep Mean	5.48051	Adj R-SQ	0.9380
C.V.	0.55982	•	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	3.661183	0.272547	13.433	0.0001
LNRM_P	1	0.553762	0.089883	6.161	0.0001
LNI	1	0.165917	0.012546	13.225	0.0001

OLS ESTIMATION OF MONEY DEMAND FUNCTION

SYSLIN Procedure

Ordinary Least Squares Estimation

Model: DEMAND

Dependent variable: LNTM_P

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	4 16 20	0.29889 0.00488 0.30377	0.07472 0.00030	245.207	0.0001
	Root MSE Dep Mean C.V.		R-Square Adj R-SQ	0.9839 0.9799	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	3.055597	0.647464	4.719	0.0002
LNY_P	1	0.618770	0.055422	11.165	0.0001
LNI	1	-0.015724	0.021951	-0.716	0.4841
LNS1	1	-0.305535	0.101837	-3.000	0.0085
LNS2	1	0.147360	0.202409	0.728	0.4771

c. 2SLS Estimation

SYSLIN Procedure

Two-Stage Least Squares Estimation

Model: SUPPLY

Dependent variable: LNTM_P

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 18 20	0.29742 0.01778 0.30377	0.14871 0.00099	150.530	0.0001
	Root MSE Dep Mean C.V.		R-Square Adj R-SQ	0.9436 0.9373	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	3.741721	0.280279	13.350	0.0001
LNRM_P	1	0.524645	0.092504	5.672	0.0001
LNI	1	0.177757	0.013347	13.318	0.0001

Test for Overidentifying Restrictions

Numerator:	0.001342	DF:	2	F Value:	1.4224
Denominator:	0.000944	DF:	16	Prob>F:	0.2700

2SLS ESTIMATION OF MONEY DEMAND FUNCTION

SYSLIN Procedure

Two-Stage Least Squares Estimation

Model: DEMAND

Dependent variable: LNTM_P

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	4	0.30010	0.07503	154.837	0.0001
Error	16	0.00775	0.00048		
C Total	20	0.30377			

Root MSE	0.02201	R-Square	0.9748
Dep Mean	5.48051	Adj R-SQ	0.9685
C.V.	0.40165	•	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	1.559954	1.222958	1.276	0.2203
LNY_P	1	0.761774	0.111639	6.824	0.0001
LNI	1	-0.083170	0.049518	-1.680	0.1125
LNS1	1	-0.187052	0.147285	-1.270	0.2222
LNS2	1	0.228561	0.259976	0.879	0.3923

The total number of instruments equals the number of parameters in the equation. The equation is just identified, and the test for over identification is not computed.

d. 3SLS Estimation

SYSLIN Procedure
Three-Stage Least Squares Estimation

Cross Model Covariance

Sigma	SUPPLY	DEMAND
SUPPLY DEMAND	0.0009879044 -0.000199017	-0.000199017 0.000484546
Corr	Cross Model Covariance SUPPLY	DEMAND
SUPPLY DEMAND	1 -0.287650003	-0.287650003 1
	Cross Model Inverse Correlation	on
Inv Corr	SUPPLY	DEMAND
SUPPLY DEMAND	1.0902064321 0.3135978834	0.3135978834 1.0902064321
	Cross Model Inverse Covariand	ce
Inv Sigma	SUPPLY	DEMAND
SUPPLY DEMAND	1103.5545963 453.26080422	453.26080422 2249.9545257

System Weighted MSE: 0.53916 with 34 degrees of freedom.

System Weighted R-Square: 0.9858

Model: SUPPLY

Dependent variable: LNTM_P

3SLS ESTIMATION OF MODEY SUPPLY AND DEMAND FUNCTION

SYSLIN Procedure Three-Stage Least Squares Estimation

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	3.741721	0.280279	13.350	0.0001
LNRM_P	1	0.524645	0.092504	5.672	0.0001
LNI	1	0.177757	0.013347	13.318	0.0001

Model: DEMAND

Dependent variable: LNTM_P

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	1.887370	1.186847	1.590	0.1313
LNY_P	1	0.764657	0.110168	6.941	0.0001
LNI	1	-0.077564	0.048797	-1.590	0.1315
LNS1	1	-0.234061	0.141070	-1.659	0.1165
LNS2	1	0.126953	0.250346	0.507	0.6190

e. HAUSMAN TEST

Hausman Test 2SLS vs OLS for SUPPLY Equation

HAUSMAN 6.7586205

2SLS vs OLS for DEMAND Equation

HAUSMAN 2.3088302

SAS PROGRAM

Data Laffer1; Input TM RM Y S2 i S1 P;

Cards;

Data Laffer; Set Laffer1;

LNTM_P=LOG(TM/P);

```
LNRM_P=LOG(RM/P);
LNi=LOG(i):
LNY_P=LOG(Y/P):
LNS1=LOG(S1);
LNS2=LOG(S2):
T=21;
Proc syslin data=Laffer outest=ols_s outcov;
SUPPLY: MODEL LNTM_P=LNRM_P LNi;
TITLE 'OLS ESTIMATION OF MONEY SUPPLY FUNCTION';
Proc syslin data=Laffer outest=ols_s outcov;
DEMAND: MODEL LNTM_P=LNY_P LNi LNS1 LNS2;
TITLE 'OLS ESTIMATION OF MONEY DEMAND FUNCTION';
Proc syslin 2SLS data=Laffer outest=TSLS_s outcov;
ENDO LNTM_P LNi;
INST LNRM_P LNY_P LNS1 LNS2;
SUPPLY: MODEL LNTM_P=LNRM_P LNi/overid;
TITLE '2SLS ESTIMATION OF MONEY SUPPLY FUNCTION':
Proc syslin 2SLS data=Laffer outest=TSLS_d outcov;
ENDO LNTM_P LNi;
INST LNRM_P LNY_P LNS1 LNS2;
DEMAND: MODEL LNTM_P=LNY_P LNi LNS1 LNS2/overid:
TITLE '2SLS ESTIMATION OF MONEY DEMAND FUNCTION';
Proc SYSLIN 3SLS data=Laffer outest=S_3SLS outcov;
ENDO LNTM_P LNi;
INST LNRM_P LNY_P LNS1 LNS2;
SUPPLY: MODEL LNTM_P=LNRM_P LNi;
DEMAND: MODEL LNTM_P=LNY_P LNi LNS1 LNS2;
TITLE '3SLS ESTIMATION':
```

RUN:

```
PROC IML;
```

TITLE 'HAUSMAN TEST';

```
use ols_s; read all var {intercep lnrm_p lni} into ols1; olsbt_s=ols1[1,]; ols_v_s=ols1[2:4,]; use ols_d; read all var {intercep lny_p lni lns1 lns2} into ols2; olsbt_d=ols2[1,]; ols_v_d=ols2[2:6,];
```

use tsls_s; read all var {intercep lnrm_p lni} into tsls1; tslsbt_s=tsls1[13,]; tsls_v_s=tsls1[14:16,]; use tsls_d; read all var {intercep lny_p lni lns1 lns2} into tsls2; tslsbt_d=tsls2[13,]; tsls_v_d=tsls2[14:18,];

d=tslsbt_s '-olsbt_s'; varcov=tsls_v_s-ols_v_s; Hausman=d '*inv(varcov)*d; print 'Hauman Test',, '2SLS vs OLS for SUPPLY Equation',, Hausman;

d=tslsbt_d '-olsbt_d'; varcov=tsls_v_d-ols_v_d;
Hausman=d '*inv(varcov)*d;
print '2SLS vs OLS for DEMAND Equation',, Hausman;

11.20 a. Writing this system of two equations in matrix form, as described in (A.1) we get

$$\begin{split} B &= \begin{bmatrix} 1 & \alpha_1 \\ 1 & -\beta_1 \end{bmatrix}; \Gamma = \begin{bmatrix} -\alpha_o & -\alpha_2 \\ -\beta_o & 0 \end{bmatrix}; y_t = \begin{pmatrix} Q_t \\ P_t \end{pmatrix} \\ x_t' &= [1, X_t] \text{ and } \quad u_t' = (u_{1t}, u_{2t}). \end{split}$$

There are no zero restrictions for the demand equation and only one zero restriction for the supply equation (X_t does not appear in the supply equation). Therefore, the demand equation is not identified by the order condition since the number of excluded exogenous variables $k_2=0$ is less than the number of right hand side included endogenous variables $g_1=1$.

Similarly, the supply equation is just-identified by the order condition since $k_2=g_1=1$.

By the rank condition, only the supply equation need be checked for identification. In this case, $\phi' = (0, 1)$ since $\gamma_{22} = 0$. Therefore,

$$A\varphi = [B,\Gamma]\varphi = \begin{pmatrix} \gamma_{12} \\ \gamma_{22} \end{pmatrix} = \begin{pmatrix} -\alpha_2 \\ 0 \end{pmatrix}.$$

This is of rank one as long as $\alpha_2 \neq 0$, i.e., as long as X_t is present in the demand equation. One can also premultiply this system of two equations by

$$F = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix},$$

the transformed matrix FB should satisfy the following normalization restrictions:

$$f_{11} + f_{12} = 1$$
 and $f_{21} + f_{22} = 1$.

Also, $F\Gamma$ must satisfy the following zero restriction:

$$-\alpha_2 f_{21} + 0 f_{22} = 0.$$

If $\alpha_2 \neq 0$, then $f_{21} = 0$ which also gives from the second normalization equation that $f_{22} = 1$. Hence, the second row of F is indeed the second row of an identity matrix and the supply equation is identified. However, for the demand equation, the only restriction is the normalization restriction $f_{11} + f_{12} = 1$ which is not enough for identification.

b. The OLS estimator of the supply equation yields $\hat{\beta}_{1,ols} = \sum_{t=1}^{T} p_t q_t / \sum_{t=1}^{T} p_t^2$ where $p_t = P_t - \bar{P}$ and $q_t = Q_t - \bar{Q}$. Substituting $q_t = \beta_1 p_t + (u_{2t} - \bar{u}_2)$ we get $\hat{\beta}_{1,ols} = \beta_1 + \sum_{t=1}^{T} p_t (u_{2t} - \bar{u}_2) / \sum_{t=1}^{T} p_t^2$.

The reduced form equation for
$$P_t$$
 yields $P_t = \frac{\alpha_o - \beta_o}{\alpha_1 + \beta_1} + \frac{\alpha_2}{\alpha_1 + \beta_1} X_t + \frac{u_{1t} - u_{2t}}{\alpha_1 + \beta_1}$

Hence,
$$p_t = \frac{\alpha_2}{\alpha_1 + \beta_1} x_t + \frac{(u_{1t} - \bar{u}_1) - (u_{2t} - \bar{u}_2)}{\alpha_1 + \beta_1}$$
 where $x_t = X_t - \bar{X}$.
Defining $m_{xx} = \underset{T \to \infty}{\text{plim}} \sum_{t=1}^{T} x_t^2 / T$, we get

$$m_{pp} = \underset{T \rightarrow \infty}{\text{plim}} \sum_{t=1}^{T} p_t^2 / T = \left(\frac{\alpha_2}{\alpha_1 + \beta_1}\right)^2 m_{xx} + \frac{m_{u_1u_1} + m_{u_2u_2} - 2m_{u_1u_2}}{(\alpha_1 + \beta_1)^2}$$

using the fact that $m_{xu_1} = m_{xu_2} = 0$. Also,

$$m_{pu_2} = plim \sum_{t=1}^{T} p_t u_{2t} / T = \frac{m_{u_1 u_2} - m_{u_2 u_2}}{(\alpha_1 + \beta_1)}$$

using the fact that $m_{xu_2} = 0$. Hence,

$$\underset{T \rightarrow \infty}{\text{plim}} \, \hat{\beta}_{1,ols} = \beta_1 + \frac{m_{pu_2}}{m_{pp}} = \beta_1 + \frac{(\sigma_{12} - \sigma_{22})(\alpha_1 + \beta_1)}{[\sigma_{11} + \sigma_{22} - 2\sigma_{12} + \alpha_2^2 m_{xx}]}$$

where $m_{u_1u_2}=\sigma_{12},\ m_{u_1u_1}=\sigma_{11}$ and $m_{u_2u_2}=\sigma_{22}$. The second term gives the simultaneous equation bias of $\hat{\beta}_{1,ols}$.

c. If $\sigma_{12} = 0$, then

$$\underset{T \to \infty}{\text{plim}} \left(\hat{\beta}_{1,\text{ols}} - \beta_1 \right) = -\frac{\sigma_{22}(\alpha_1 + \beta_1)}{[\sigma_{11} + \sigma_{22} + \alpha_2^2 m_{xx}]}.$$

The denominator is positive and α_1 and β_1 are positive, hence this bias is negative.

11.21 a. X_2 , X_3 , X_4 and X_5 are excluded from the first equation. y_2 is the only included right hand side endogenous variable. Therefore, $k_2 = 4$ and $g_1 = 1$, so the first equation is over-identified with degree of over-identification equal to $k_2 - g_1 = 3$. X_1 , X_3 , X_4 and X_5 are excluded from the second equation, while y_1 and y_3 are the included right hand side endogenous variables. Therefore, $k_2 = 4$ and $g_1 = 2$, so the second equation is over-identified with degree of over-identification equal to $k_2 - g_1 = 2$. X_1 and X_2 are excluded from the third equation and there are no right hand side included endogenous variables. Therefore, $k_2 = 2$ and $g_1 = 0$ and the third equation is over-identified with degree of over-identification equal to $k_2 - g_1 = 2$.

b. Regress y₁ and y₃ on all the X's including the constant, i.e., [1, X₁, X₂, ..., X₅]. Get ŷ₁ and ŷ₃ and regress y₂ on a constant, ŷ₁, ŷ₃ and X₂ in the second-step regression.

c. For the first equation, regressing y_2 on X_2 and X_3 yields

$$\begin{split} y_2 &= \hat{\pi}_{21} + \hat{\pi}_{22} X_2 + \hat{\pi}_{23} X_3 + \hat{v}_2 = \hat{y}_2 + \hat{v}_2 \\ \text{with } \sum_{t=1}^T \hat{v}_{2t} &= \sum_{t=1}^T \hat{v}_{2t} X_{2t} = \sum_{t=1}^T \hat{v}_{2t} X_{3t} = 0 \text{ by the property of least squares.} \\ \text{Replacing } y_2 \text{ by } \hat{y}_2 \text{ in Eq. (1) yields} \end{split}$$

$$\begin{aligned} y_1 &= \alpha_1 + \beta_2 \, (\hat{y}_2 + \hat{v}_2) + \gamma_1 X_1 + u_1 = \alpha_1 + \beta_2 \hat{y}_2 + \gamma_1 X_1 + (\beta_2 \hat{v}_2 + u_1) \,. \\ \text{In this case, } \sum_{t=1}^T \hat{y}_{2t} \hat{v}_{2t} &= 0 \text{ because the predictors and residuals of the same} \\ \text{regression are uncorrelated. Also, } \sum_{t=1}^T \hat{y}_{2t} u_{1t} &= 0 \text{ since } \hat{y}_{2t} \text{ is a linear combination of } X_2 \text{ and } X_3 \text{ and the latter are exogenous. However, } \sum_{t=1}^T X_{1t} \hat{v}_{2t} \\ \text{is not necessarily zero since } X_1 \text{ was not included in the first stage regression. Hence, this estimation method does not necessarily lead to consistent} \end{aligned}$$

d. The test for over-identification for Eq. (1) can be obtained from the F-test given in Eq. (11.48) with RRSS* obtained from the second stage regression residual sum of squares of 2SLS run on Eq. (1), i.e., the regression of y_1 on $[1, \hat{y}_2, X_1]$ where \hat{y}_2 is obtained from the regression of y_2 on $[1, X_1, X_2..., X_5]$. The URSS* is obtained from the residual sum of squares of the regression of y_1 on all the set of instruments, i.e., $[1, X_1, ..., X_5]$. The URSS is the 2SLS residual sum of squares of Eq. (1) as reported from any 2SLS package. This is obtained as

$$URSS = \sum_{t=1}^T \left(y_{1t} - \hat{\alpha}_{1,2SLS} - \hat{\beta}_{2,2SLS}y_{2t} - \hat{\gamma}_{1,2SLS}X_{1t}\right)^2.$$

estimates.

Note that this differs from RRSS* in that y_{2t} and not \hat{y}_{2t} is used in the computation of the residuals. ℓ , the number of instruments is 6 and $k_1=2$ while $g_1=1$. Hence, the numerator degrees of freedom of the F-test is

 $\ell - (g_1 + k_1) = 3$ whereas the denominator degrees of freedom of the F-test is $T - \ell = T - 6$. This is equivalent to running 2SLS residuals on the matrix of all predetermined variables $[1, X_1, ..., X_5]$ and computing T times the uncentered R^2 of this regression. This is asymptotically distributed as χ^2 with three degrees of freedom. Large values of this statistic reject the over-identification restrictions.

- **11.23** *Identification and Estimation of a Simple Two-Equation Model.* This solution is based upon Singh and Bhat (1988).
 - $\begin{array}{l} \textbf{a.} \ \textit{Identification} \ \textit{with} \ \textit{no} \ \textit{further} \ \textit{information} \ \textit{available}. \ \text{The structural} \\ \text{model being studied is} \ \begin{bmatrix} 1 & -\beta \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y_{t1} \\ y_{t2} \end{bmatrix} = \begin{bmatrix} \alpha \\ \gamma \end{bmatrix} + \begin{bmatrix} u_{t1} \\ u_{t2} \end{bmatrix}, \ \text{with} \\ \Sigma = E \begin{bmatrix} u_{t1}^2 & u_{t1}u_{t2} \\ u_{t2}u_{t1} & u_{t2}^2 \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}. \ \text{The reduced-form equation is} \\ \text{given by} \ \begin{bmatrix} y_{t1} \\ y_{t2} \end{bmatrix} = \begin{bmatrix} \pi_{11} \\ \pi_{12} \end{bmatrix} + \begin{bmatrix} \nu_{t1} \\ \nu_{t2} \end{bmatrix}, \ \text{with} \ \Omega = E \begin{bmatrix} \nu_{t1}^2 & \nu_{t1}\nu_{t2} \\ \nu_{t2}\nu_{t1} & \nu_{t2}^2 \end{bmatrix} = \begin{bmatrix} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{bmatrix}. \end{aligned}$

The structural and reduced form parameters are related as follows:

$$\begin{bmatrix} 1 & -\beta \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \pi_{11} \\ \pi_{12} \end{bmatrix} = \begin{bmatrix} \alpha \\ \gamma \end{bmatrix}$$
 or

$$\alpha = \pi_{11} - \beta \pi_{12}$$

$$\gamma = \pi_{12} - \pi_{11}$$

We assume that the reduced-form parameters π_{11} , π_{12} , ω_1^2 , ω_{12} and ω_2^2 have been estimated. The identification problem is one of recovering α , γ , β , σ_1^2 and σ_{12} and σ_2^2 from the reduced-form parameters.

From the second equation, it is clear that γ is identified. We now examine the relation between Σ and Ω given by $\Sigma = B\Omega B'$ where $B = \begin{bmatrix} 1 & -\beta \\ -1 & 1 \end{bmatrix}$. Thus, we have

$$\begin{split} \sigma_1^2 &= \omega_1^2 - 2\beta\omega_{12} + \beta^2\omega_2^2, \\ \sigma_{12} &= -\omega_1^2 + (1+\beta)\omega_{12} - \beta\omega_2^2, \\ \sigma_2^2 &= \omega_1^2 - 2\omega_{12} + \omega_2^2. \end{split}$$

Knowledge of ω_1^2 , ω_{12} , and ω_2^2 is enough to recover σ_2^2 . Hence, σ_2^2 is identified. Note, however, that σ_1^2 and σ_{12} depend on β . Also, α is dependent on β . Hence, given any $\beta = \beta^*$, we can solve for α , σ_1^2 and σ_{12} . Thus, in principle, we have an infinity of solutions as the choice of β varies. Identification could have been studied using rank and order conditions. However, in a simple framework as this, it is easier to check identification directly. Identification can be reached by imposing an extra restriction $f(\beta,\alpha,\sigma_1^2,\sigma_{12})=0$, which is independent of the three equations we have for σ_1^2 , σ_{12} and α . For example, $\beta=0$ gives a recursive structure. We now study the particular case where $f(\beta,\alpha,\sigma_1^2,\sigma_{12})=\sigma_{12}=0$.

b. Identification with $\sigma_{12} = 0$: When $\sigma_{12} = 0$, one can solve immediately for β from the σ_{12} equation:

$$\beta = \frac{\omega_{12} - \omega_1^2}{\omega_2^2 - \omega_{12}}.$$

Therefore, β can be recovered from ω_1^2 , ω_{12} , and ω_2^2 . Given β , all the other parameters (σ_1^2, α) can be recovered as discussed above.

c. *OLS estimation of* β *when* $\sigma_{12} = 0$: The OLS estimator of β is

$$\hat{\beta}_{ols} = \frac{\sum\limits_{t=1}^{T} (y_{t1} - \overline{y}_1)(y_{t2} - \overline{y}_2)}{\sum\limits_{t=1}^{T} (y_{t2} - \overline{y}_2)^2} = \beta + \frac{\sum\limits_{t=1}^{T} (u_{t1} - \overline{u}_1)(y_{t1} - \overline{y}_1)}{\sum\limits_{t=1}^{T} (y_{t2} - \overline{y}_2)^2}$$

$$+ \ \frac{\sum\limits_{t=1}^{T} (u_{t1} - \overline{u}_1)(u_{t2} - \overline{u}_2)}{\sum\limits_{t=1}^{T} (y_{t2} - \overline{y}_2)^2}.$$

The second term is non-zero in probability limit as y_{t1} and u_{t1} are correlated from the first structural equation. Hence $\hat{\beta}_{ols}$ is not consistent.

d. From the second structural equation, we have $y_{t2}-y_{t1}=\gamma+u_{t2}$, which means that $(y_{t2}-\bar{y}_2)-(y_{t1}-\bar{y}_1)=u_{t2}-\bar{u}_2$, or $z_t=u_{t2}-\bar{u}_2$. When $\sigma_{12}=0$, this z_t is clearly uncorrelated with u_{t1} and by definition correlated with y_{t2} . Therefore, $z_t=(y_{t2}-\bar{y}_2)-(y_{t1}-\bar{y}_1)$ may be taken as instruments, and thus

$$\tilde{\beta}_{IV} = \frac{\sum\limits_{t=1}^{T} z_t(y_{t1} - \overline{y}_1)}{\sum\limits_{t=1}^{T} z_t(y_{t2} - \overline{y}_2)} = \frac{\sum\limits_{t=1}^{T} (y_{t1} - \overline{y}_1)[(y_{t2} - \overline{y}_2) - (y_{t1} - \overline{y}_1)]}{\sum\limits_{t=1}^{T} (y_{t2} - \overline{y}_2)[(y_{t2} - \overline{y}_2) - (y_{t1} - \overline{y}_1)]}$$

is a consistent estimator of β .

e. From the identification solution of β as a function of reduced-form parameters in part (b), one can obtain an alternate estimator of β by replacing the reduced-form parameters by their sample moments. This yields the indirect least squares estimator of β :

$$\tilde{\beta}_{ILS} = \frac{\sum\limits_{t=1}^{T} (y_{t1} - \overline{y}_1)(y_{t2} - \overline{y}_2) - \sum\limits_{t=1}^{T} (y_{t1} - \overline{y}_1)^2}{\sum\limits_{t=1}^{T} (y_{t2} - \overline{y}_2)^2 - \sum\limits_{t=1}^{T} (y_{t1} - \overline{y}_1)(y_{t2} - \overline{y}_2)} = \hat{\beta}_{IV}$$

obtained in part (d). The OLS estimators of the reduced-form parameters are consistent. Therefore, $\tilde{\beta}_{ILS}$ which is a continuous tranform of those estimators is also consistent. It is however, useful to show this consistency directly since it brings out the role of the identifying restriction.

From the structural equations, we have

$$\begin{bmatrix} 1 & -\beta \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y_{t1} - \overline{y}_1 \\ y_{t2} - \overline{y}_2 \end{bmatrix} = \begin{bmatrix} u_{t1} - \overline{u}_1 \\ u_{t2} - \overline{u}_2 \end{bmatrix}.$$

Using the above relation and with some algebra, it can be shown that for $\beta \neq 1$:

$$\tilde{\beta}_{ILS} = \frac{\sum\limits_{t=1}^{T} (u_{t1} - \overline{u}_1)(u_{t2} - \overline{u}_1) + \beta \sum\limits_{t=1}^{T} (u_{t2} - \overline{u}_2)^2}{\sum\limits_{t=1}^{T} (u_{t1} - \overline{u}_1)(u_{t2} - \overline{u}_2) + \sum\limits_{t=1}^{T} (u_{t2} - \overline{u}_2)^2} \quad \text{since,}$$

$$plim_{\overline{T}}^{1}\sum_{t=1}^{T}(u_{t1}-\bar{u}_{1})(u_{t2}-\bar{u}_{2})=\sigma_{12}, \quad and \quad plim_{\overline{T}}^{1}\sum_{t=1}^{T}(u_{t2}-\bar{u}_{2})^{2}=\sigma_{2}^{2}.$$

Therefore, $\text{plim } \tilde{\beta}_{ILS} = \left(\sigma_{12} + b\sigma_2^2\right)/\left(\sigma_{12} + \sigma_2^2\right)$. The restriction $\sigma_{12} = 0$ implies $\text{plim } \tilde{\beta}_{ILS} = \beta$ which proves consistency. It is clear that $\tilde{\beta}_{ILS}$ can be interpreted as a method-of-moments estimator.

- **11.24** Errors in Measurement and the Wald (1940) Estimator. This is based on Farebrother (1987).
 - **a.** The simple IV estimator of β with instrument z is given by $\hat{\beta}_{IV} = \sum_{i=1}^{n} z_i y_i / \sum_{i=1}^{n} z_i x_i$. But $\sum_{i=1}^{n} z_i y_i = \text{sum of the } y_i$'s from the second sample minus the sum of the y_i 's from the first sample. If n is even, then $\sum_{i=1}^{n} z_i y_i = \frac{n}{2} (\bar{y}_2 \bar{y}_1)$. Similarly, $\sum_{i=1}^{n} z_i x_i = \frac{n}{2} (\bar{x}_2 \bar{x}_1)$, so that $\hat{\beta}_{IV} = (\bar{y}_2 \bar{y}_1)/(\bar{x}_2 \bar{x}_1) = \hat{\beta}_W$.
 - **b.** Let $\rho^2 = \sigma_u^2/\left(\sigma_u^2 + \sigma_*^2\right)$ and $\tau^2 = \sigma_*^2/\left(\sigma_u^2 + \sigma_*^2\right)$ then $w_i = \rho^2 x_i^* \tau^2 u_i$ has mean $E(w_i) = 0$ since $E\left(x_i^*\right) = E(u_i) = 0$. Also,

$$var(w_i) = (\rho^2)^2 \sigma_*^2 + (\tau^2)^2 \sigma_u^2 = \sigma_*^2 \sigma_u^2 / \left(\sigma_*^2 + \sigma_u^2\right).$$

Since w_i is a linear combination of Normal random variables, it is also Normal.

$$E(x_i w_i) = \rho^2 E\left(x_i x_i^*\right) - \tau^2 E(x_i u_i) = \rho^2 \sigma_*^2 - \tau^2 \sigma_u^2 = 0.$$

 $c. \text{ Now } \tau^2 x_i + w_i = \tau^2 \left({x_i}^* + u_i \right) + \rho^2 {x_i}^* - \tau^2 u_i = (\tau^2 + \rho^2) {x_i}^* = {x_i}^* \text{ since } \\ \tau^2 + \rho^2 = 1.$

Using this result and the fact that $y_i = \beta x_i^* + \epsilon_i$, we get

$$\hat{\beta}_W = \sum_{i=1}^n z_i y_i \Big/ \sum_{i=1}^n z_i x_i$$

$$=\beta\tau^2+\beta\left(\sum_{i=1}^nz_iw_i\Big/\sum_{i=1}^n\ z_ix_i\right)+\left(\sum_{i=1}^nz_i\epsilon_i\Big/\sum_{i=1}^n\ z_ix_i\right)$$

so that $E(\hat{\beta}_W/x_1,..,x_n)=\beta\tau^2$. This follows because w_i and ϵ_i are independent of x_i and therefore independent of z_i which is a function of x_i . Similarly, $\hat{\beta}_{ols}=\sum_{i=1}^n x_i y_i \Big/ \sum_{i=1}^n x_i^2=\beta\tau^2+\beta\sum_{i=1}^n w_i x_i \Big/ \sum_{i=1}^n x_i^2+\sum_{i=1}^n x_i \epsilon_i \Big/ \sum_{i=1}^n x_i^2$ so that $E(\hat{\beta}_{ols}/x_1,...,x_n)=\beta\tau^2$ since w_i and ϵ_i are independent of x_i . Therefore, the bias of $\hat{\beta}_{ols}=$ bias of $\hat{\beta}_W=(\beta\tau^2-\beta)=-\beta\sigma_u^2/\left(\sigma_*^2+\sigma_u^2\right)$ for all choices of z_i which are a function of x_i .

11.25 Comparison of t-ratios. This is based on Farebrother (1991). Let $Z_1 = [y_2, X]$, then by the FWL-Theorem, OLS on the first equation is equivalent to that on $\bar{P}_X y_1 = \bar{P}_X y_2 \alpha + \bar{P}_X u_1$. This yields $\hat{\alpha}_{ols} = \left(y_2' \bar{P}_X y_2\right)^{-1} y_2' \bar{P}_X y_1$ and the residual sum of squares are equivalent

$$y_1'\overline{P}_2y_1 = y_1'\overline{P}_Xy_1 - y_1'\overline{P}_Xy_2 (y_2'\overline{P}_Xy_2)^{-1} y_2'\overline{P}_Xy_1$$

so that $var(\hat{\alpha}_{ols})=s_1^2\left(y_2'\bar{P}_Xy_2\right)^{-1}$ where $s_1^2=y_1'\bar{P}_Zy_1/(T-K)$. The t-ratio for $H_o^a;\alpha=0$ is

$$t = \frac{y_2' \bar{P}_X y_1}{y_2' \bar{P}_X y_2} \left(\frac{(T - K) y_2' \bar{P}_X y_2}{y_1' \bar{P}_Z y_1} \right)^{1/2}$$

$$= (T-K)^{1/2} (y_2' \bar{P}_X y_1) \left[(y_1' \bar{P}_X y_1) (y_2' \bar{P}_X y_2) - (y_1' \bar{P}_X y_2)^2 \right]^{1/2}.$$

This expression is unchanged if the roles of y_1 and y_2 are reversed so that the t-ratio for H_o^b ; $\gamma=0$ in the second equation is the same as that for H_o^a ; $\alpha=0$ in the first equation.

For y_1 and y_2 jointly Normal with correlation coefficient ρ , Farebrother (1991) shows that the above two tests correspond to a test for $\rho = 0$ in the bivariate Normal model so that it makes sense that the two statistics are identical.

11.28 This gives the backup runs for Crime Data for 1987 for Tables 11.2 to 11.6

. ivreg lcrmrte (lprbarr lpolpc= ltaxpc lmix) lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban if year==87

MS

Number of obs=

Instrumental variables (2SLS) regression

SS

Source

Ipolpc .5136133 .1976888 2.60 0.011 .1192349 .9079 Iprbconv 2713278 .0847024 -3.20 0.002 4403044 1023 Iprbpris 0278416 .1283276 -0.22 0.829 2838482 .2281 lavgsen 280122 .1387228 -2.02 0.047 5568663 0033 Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwfied .2974661 .3425026 0.87 0.388 <	Model Residu	Model 22.6350465 Residual 4.16465515		20 1.13175232 69 .060357321		F(20,69) Prob > F R-squared	= 17.35 =0.0000 =0.8446
Iprbarr 4393081 .2267579 -1.94 0.057 8916777 .0130 Ipolpc .5136133 .1976888 2.60 0.011 .1192349 .9079 Iprbconv 2713278 .0847024 -3.20 0.002 4403044 1023 Iprbpris 0278416 .1283276 -0.22 0.829 2838482 .2281 Iavgsen 280122 .1387228 -2.02 0.047 5568663 0033 Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	Total	26.7997	7016 89	.301120	0243		
Ipolpc .5136133 .1976888 2.60 0.011 .1192349 .9079 Iprbconv 2713278 .0847024 -3.20 0.002 4403044 1023 Iprbpris 0278416 .1283276 -0.22 0.829 2838482 .2281 lavgsen 280122 .1387228 -2.02 0.047 5568663 0033 Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwfed .2974661 .3425026 0.87 0.388 <t< td=""><td>lcrmrte </td><td>Coef.</td><td>Std. Err.</td><td>t</td><td>P> t </td><td>[95% Cor</td><td>nf. Interval]</td></t<>	lcrmrte	Coef.	Std. Err.	t	P> t	[95% Cor	nf. Interval]
Iprbconv 2713278 .0847024 -3.20 0.002 4403044 1023 Iprbpris 0278416 .1283276 -0.22 0.829 2838482 .2281 lavgsen 280122 .1387228 -2.02 0.047 5568663 0033 Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwfied .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 <				-			.0130615
Iprbpris 0278416 .1283276 -0.22 0.829 2838482 .2281 lavgsen 280122 .1387228 -2.02 0.047 5568663 0033 ldensity .3273521 .0893292 3.66 0.000 .1491452 .505 lwcon .3456183 .2419206 1.43 0.158 137 .8282 lwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 lwtrd .212578 .3239984 0.66 0.514 433781 .8589 lwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 lwser 2911556 .1122454 -2.59 0.012 5150789 0672 lwmfg .0642196 .1644108 0.39 0.697 263771 .3922 lwfed .2974661 .3425026 0.87 0.388 3858079 .9807 lwsta .0037846 .3102383 0.01 0.990 615124 .6226 lwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 lpctymle .0095115 .1869867 0.05 0.960 3635166 .3825 lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369							.9079918
lavgsen 280122 .1387228 -2.02 0.047 5568663 0033 Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389							1023512
Idensity .3273521 .0893292 3.66 0.000 .1491452 .505 Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.2281651</td>							.2281651
Iwcon .3456183 .2419206 1.43 0.158 137 .8282 Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0033776</td>							0033776
Iwtuc .1773533 .1718849 1.03 0.306 1655477 .5202 Iwtrd .212578 .3239984 0.66 0.514 433781 .8589 Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	Idensity					.1491452	.505559
lwtrd .212578 .3239984 0.66 0.514 433781 .8589 lwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 lwser 2911556 .1122454 -2.59 0.012 5150789 0672 lwmfg .0642196 .1644108 0.39 0.697 263771 .3922 lwfed .2974661 .3425026 0.87 0.388 3858079 .9807 lwsta .0037846 .3102383 0.01 0.990 615124 .6226 lwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 lpctymle .0095115 .1869867 0.05 0.960 3635166 .3825 lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwcon	.3456183	.2419206	1.43	0.158	137	.8282366
Iwfir 3540903 .2612516 -1.36 0.180 8752731 .1670 Iwser 2911556 .1122454 -2.59 0.012 5150789 0672 Iwmfg .0642196 .1644108 0.39 0.697 263771 .3922 Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwtuc	.1773533	.1718849	1.03	0.306	1655477	.5202542
lwser 2911556 .1122454 -2.59 0.012 5150789 0672 lwmfg .0642196 .1644108 0.39 0.697 263771 .3922 lwfed .2974661 .3425026 0.87 0.388 3858079 .9807 lwsta .0037846 .3102383 0.01 0.990 615124 .6226 lwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 lpctymle .0095115 .1869867 0.05 0.960 3635166 .3825 lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwtrd	.212578	.3239984	0.66	0.514	433781	.8589371
lwmfg .0642196 .1644108 0.39 0.697 263771 .3922 lwfed .2974661 .3425026 0.87 0.388 3858079 .9807 lwsta .0037846 .3102383 0.01 0.990 615124 .6226 lwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 lpctymle .0095115 .1869867 0.05 0.960 3635166 .3825 lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwfir	3540903	.2612516	-1.36	0.180	8752731	.1670925
Iwfed .2974661 .3425026 0.87 0.388 3858079 .9807 Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwser	2911556	.1122454	-2.59	0.012	5150789	0672322
Iwsta .0037846 .3102383 0.01 0.990 615124 .6226 Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwmfg	.0642196	.1644108	0.39	0.697	263771	.3922102
Iwloc 4336541 .5166733 -0.84 0.404 -1.464389 .597 Ipctymle .0095115 .1869867 0.05 0.960 3635166 .3825 Ipctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwfed	.2974661	.3425026	0.87	0.388	3858079	.9807402
lpctymle .0095115 .1869867 0.05 0.960 3635166 .3825 lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwsta	.0037846	.3102383	0.01	0.990	615124	.6226931
lpctmin .2285766 .0543079 4.21 0.000 .1202354 .3369	lwloc	4336541	.5166733	-0.84	0.404	-1.464389	.597081
	lpctymle	.0095115	.1869867	0.05	0.960	3635166	.3825397
	lpctmin	.2285766	.0543079	4.21	0.000	.1202354	.3369179
west0952899 .1301449 -0./3 0.46/3549219 .1643	west	0952899	.1301449	-0.73	0.467	3549219	.1643422
central1792662 .0762815 -2.35 0.02233144370270	central	1792662	.0762815	-2.35	0.022	3314437	0270888
urban1139416 .143354 -0.79 0.4293999251 .1720	urban	1139416	.143354	-0.79	0.429	3999251	.1720419
_cons -1.159015 3.898202 -0.30 0.767 -8.935716 6.617	_cons	-1.159015	3.898202	-0.30	0.767	-8.935716	6.617686

Instrumented: | lprbarr lpolpc

Instruments: Iprbconv Iprbpris lavgsen Idensity Iwcon Iwtuc Iwtrd Iwfir Iwser Iwmfg

lwfed lwsta lwloc lpctymle lpctmin west central urban ltaxpc lmix

[.] estimates store b2sls

[.] reg lcrmrte lprbarr lprbconv lprbpris lavgsen lpolpc ldensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban if year $=\!=\!87$

Source	SS	df	MS		ber of obs	=	90
Model	22.8072483	20	1.14036241	F(20,69) Prob > F		=	19.71 0.0000
Residual	3.99245334	69	.057861643		> г uared	=	0.8510
nesiduai	3.99243334	09	.037601043		uareu R-squared	=	0.8078
Total	26.7997016	89	.301120243	,	MSE	=	.24054
Icrmrte	Coef.	Std. Err.	 t	P> t	[95% Co	nf. Int	tervall
lprbarr	4522907	.0816261	-5.54	0.000	6151303		2894511
Iprbconv	3003044	.0600259	-5.00	0.000	4200527		180556
Iprbpris	0340435	.1251096	-0.27	0.786	2836303		.2155433
lavgsen	2134467	.1167513	-1.83	0.072	4463592		.0194659
lpolpc	.3610463	.0909534	3.97	0.000	.1795993		.5424934
Idensity	.3149706	.0698265	4.51	0.000	.1756705		.4542707
lwcon	.2727634	.2198714	1.24	0.219	165868		.7113949
lwtuc	.1603777	.1666014	0.96	0.339	171983		.4927385
lwtrd	.1325719	.3005086	0.44	0.660	4669263		.7320702
lwfir	3205858	.251185	-1.28	0.206	8216861		.1805146
lwser	2694193	.1039842	-2.59	0.012	4768622		0619765
lwmfg	.1029571	.1524804	0.68	0.502	2012331		.4071472
lwfed	.3856593	.3215442	1.20	0.234	2558039		1.027123
lwsta	078239	.2701264	-0.29	0.773	6171264		.4606485
lwloc	1774064	.4251793	-0.42	0.678	-1.025616		.670803
lpctymle	.0326912	.1580377	0.21	0.837	2825855		.3479678
lpctmin	.2245975	.0519005	4.33	0.000	.1210589		.3281361
west	087998	.1243235	-0.71	0.481	3360167		.1600207
central	1771378	.0739535	-2.40	0.019	3246709		0296046
urban	0896129	.1375084	-0.65	0.517	3639347		.184709
_cons	-3.395919	3.020674	-1.12	0.265	-9.421998		2.630159

[.] estimates store bols

[.] hausman b2sls bols

	Coeffi				
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))	
	b2sls	bols	Difference	Š.E.	
lprbarr	4393081	4522907	.0129826	.2115569	
lpolpc	.5136133	.3610463	.152567	.1755231	
Iprbconv	2713278	3003044	.0289765	.0597611	
Iprbpris	0278416	0340435	.0062019	.0285582	
lavgsen	280122	2134467	0666753	.0749208	
Idensity	.3273521	.3149706	.0123815	.0557132	
lwcon	.3456183	.2727634	.0728548	.1009065	
lwtuc	.1773533	.1603777	.0169755	.0422893	
lwtrd	.212578	.1325719	.0800061	.1211178	
lwfir	3540903	3205858	0335045	.0718228	
lwser	2911556	2694193	0217362	.0422646	
lwmfg	.0642196	.1029571	0387375	.0614869	
lwfed	.2974661	.3856593	0881932	.1179718	

lwsta	.0037846	078239	.0820236	.1525764
lwloc	4336541	1774064	2562477	.293554
lpctymle	.0095115	.0326912	0231796	.0999404
lpctmin	.2285766	.2245975	.0039792	.0159902
west	0952899	087998	0072919	.0384885
central	1792662	1771378	0021284	.0187016
urban	1139416	0896129	0243287	.0405192

b = consistent under Ho and Ha; obtained from ivreg B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic chi2(20) = (b-B)'[(V_b-V_B)^ (-1)](b-B) = 0.87

Prob > chi2 = 1.0000

. ivreg lcrmrte (lprbarr lpolpc= ltaxpc lmix) lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban if year==87, first

First-stage regressions

Source	SS	df	MS	Number of obs	=	90
				F(20,69)	=	3.11
Model	6.84874028	20	.342437014	Prob > F	=	0.0002
Residual	7.59345096	69	.110050014	R-squared	=	0.4742
	' 			Adj R-squared	=	0.3218
Total	14.4421912	89	.162271812	Root MSE	=	.33174

Iprbarr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Iprbconv Iprbpris Iavgsen Idensity Iwcon Iwtuc Iwtrd Iwfir Iwser Iwmfg Iwfed Iwsta Iwloc Ipctymle	1946392 0240173 .1565061 2211654 2024569 0461931 .0494793 .050559 .0551851 .0550689 .2622408 4843599 .7739819 3373594	.0877581 .1732583 .1527134 .0941026 .3020226 .230479 .4105612 .3507405 .1500094 .2138375 .4454479 .3749414 .5511607 .2203286	-2.22 -0.14 1.02 -2.35 -0.67 -0.20 0.12 0.14 0.37 0.26 0.59 -1.29 1.40 -1.53	0.030 0.890 0.309 0.022 0.505 0.842 0.904 0.886 0.714 0.798 0.558 0.201 0.165 0.130	3697119 3696581 1481488 408895 8049755 5059861 769568 6491492 2440754 3715252 6264035 -1.232347 3255536 776903	0195665 .3216236 .4611611 0334357 .4000616 .4135999 .8685266 .7502671 .3544456 .481663 1.150885 .2636277 1.873517 .1021842
lpctmin west central	0096724 .0701236 .0112086	.0729716 .1756211 .1034557	-0.13 0.40 0.11	0.895 0.691 0.914	1552467 280231 1951798	.1359019 .4204782 .217597
ociniai	.0112000	.1007001	0.11	0.017	.1001700	.211001

urban Itaxpc Imix _cons	²	0150372 1938134 2682143 .319234	.2026425 .1755345 .0864373 3.797113	-0.07 -1.10 3.10 -1.14	0.941 0.273 0.003 0.259	4192979 5439952 .0957766 -11.89427	.389223 ² .156368 ² .4406519 3.255799	4 9
Source		SS	df	MS		Number of obs	= 90 = 4.42	
Model		6.998303	44 20	.349915	172	F(20,69) Prob > F	= 4.42 $=$ 0.0000	
Residu	al	5.466833		.0792294	465	R-squared	= 0.5614	
Total		12.46513	66 89	.1400577	714	Adj R-squared Root MSE	= 0.4343 = .28148	
lpolpc	 	Coef.	Std. Err.	t	P> t	[95% C	onf. Interval]	-
laukaan.		0007744	.0744622	0.05	0.000	1447700	450000	-
Iprbconv Iprbpris		.0037744 0487064	.1470085	0.05 -0.33	0.960 0.741		.1523223 .2445675	-
lavgsen		.3958972	.1295763	3.06	0.003		.6543948	-
Idensity		.0201292	.0798454	0.25	0.802		.1794165	-
lwcon		5368469	.2562641	-2.09	0.040	-1.04808	025614	4
lwtuc		0216638	.1955598	-0.11	0.912	411795	.3684674	4
lwtrd		4207274	.3483584	-1.21	0.231		.2742286	-
lwfir		.0001257	.2976009	0.00	1.000		.5938232	
lwser		.0973089	.1272819	0.76	0.447		.3512293	3
lwmfg		.1710295	.1814396	0.94	0.349		.5329916	-
lwfed		.8555422	.3779595	2.26	0.027		1.60955	
lwsta		1118764	.3181352	-0.35	0.726		.5227859	
lwloc		1.375102	.4676561	2.94	0.004		2.30805	-
lpctymle		.4186939	.1869473	2.24	0.028		.7916436	-
lpctmin		0517966	.0619159	-0.84	0.406		.0717222	
west		.1458865	.1490133	0.98	0.331		.4431599	
central		.0477227	.0877814	0.54	0.588		.2228419	
urban Itaxpc		1192027 .5601989	.1719407 .1489398	-0.69 3.76	0.490		.2238097	
lmix		.2177256	.0733414	2.97	0.000		.3640378	_
_cons		-16.33148	3.221824	-5.07	0.000		-9.904113	-
						22.70004	0.004110	-
Instrum	ent	al variables	(2SLS) regre	ession				
Source		SS	df	MS		umber of obs	= 90	0
Model	1	22.6350465	20	1.1317523		20,69)	= 17.35	-
Residual		4.16465515	69	.06035732	1 R-	ob > F squared	= 0.0000 $= 0.8446$	6
Total		26.7997016	89	.30112024		lj R-squared oot MSE	= 0.7996 = .24568	

Icrmrte	Coef.	Std. Err.	t	P> t	[95% C	onf. Interval]
Iprbarr Ipolpc Iprbconv Iprbpris Iavgsen Idensity Iwcon	4393081 .5136133 2713278 0278416 280122 .3273521 .3456183	.2267579 .1976888 .0847024 .1283276 .1387228 .0893292 .2419206	-1.94 2.60 -3.20 -0.22 -2.02 3.66 1.43	0.057 0.01 0.002 0.829 0.047 0.000 0.158	1 .1192349 24403044 92838482 7556863 0 .1491452	.0130615 .9079918 1023512 .2281651 0033776 .505559 .8282366
if year==8						
Source	SS	df	MS	-	lumber of obs (20,69)	= 90 = 4.42
Model Residual	6.99830344 5.46683312	20 69	.34991517 .07922946	2 F 5 F	Prob > F R-squared Adj R-squared	= 0.0000 = 0.5614 = 0.4343
Total	12.4651366	89	.14005771		Root MSE	= .28148
lpolpc	Coef.	Std. Err.	t	P> t	[95% Cor	nf. Interval]
Imix Itaxpc Iprbconv Iprbpris Iavgsen Idensity Iwcon Iwtuc Iwtrd Iwfir Iwser Iwmfg Iwfed Iwsta Iwloc Ipctymle Ipctmin west	.2177256 .5601989 .0037744 0487064 .3958972 .0201292 5368469 0216638 4207274 .0001257 .0973089 .1710295 .8555422 1118764 1.375102 .4186939 0517966 .1458865	.0733414 .1489398 .0744622 .1470085 .1295763 .0798454 .2562641 .1955598 .3483584 .2976009 .1272819 .1814396 .3779595 .3181352 .4676561 .1869473 .0619159 .1490133	2.97 3.76 0.05 -0.33 3.06 0.25 -2.09 -0.11 -1.21 0.00 0.76 0.94 2.26 -0.35 2.94 2.24 -0.84 0.54	0.004 0.000 0.960 0.741 0.003 0.802 0.040 0.912 0.231 1.000 0.447 0.349 0.027 0.726 0.004 0.028 0.406 0.331 0.588	.0714135 .2630721 1447736 3419802 .1373996 1391581 -1.04808 411795 -1.115683 5935718 1566116 1909327 .1015338 7465387 .4421535 .0457442 1753154 151384	.3640378 .8573258 .1523223 .2445675 .6543948 .1794165 025614 .3684674 .2742286 .5938232 .3512293 .5329916 1.609551 .5227859 2.30805 .7916436 .0717222 .4431599
central urban _cons	.0477227 1192027 -16.33148	.0877814 .1719407 3.221824	-0.69 -5.07	0.490 0.000	1273964 4622151 -22.75884	.2228419 .2238097 -9.904113

The test that the additional instruments are jointly significant in the first stage regression for lpolpc is performed as follows:

[.] test lmix=ltaxpc=0

⁽¹⁾ lmix - ltaxpc = 0

⁽²⁾ Imix = 0

F(2,69) = 10.56Prob > F = 0.0001

. ivregress 2sls lcrmrte (lprbarr lpolpc= ltaxpc lmix) lprbconv lprbpris lavgsen Idensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban if year==87

Instrumental variables (2SLS) regression $\begin{array}{cccc} \text{Number of obs} & = & 90 \\ \text{Wald chi2(20)} & = & 452.49 \\ \text{Prob} > \text{chi2} & = & 0.0000 \\ \text{R-squared} & = & 0.8446 \\ \text{Root MSE} & = & .21511 \\ \end{array}$

Icrmrte	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]
lprbarr	4393081	.1985481	-2.21	0.027	8284552	050161
lpolpc	.5136133	.1730954	2.97	0.003	.1743526	.852874
Iprbconv	2713278	.074165	-3.66	0.000	4166885	1259672
Iprbpris	0278416	.112363	-0.25	0.804	2480691	.1923859
lavgsen	280122	.121465	-2.31	0.021	5181889	042055
Idensity	.3273521	.0782162	4.19	0.000	.1740512	.4806531
lwcon	.3456183	.2118244	1.63	0.103	06955	.7607865
lwtuc	.1773533	.1505016	1.18	0.239	1176244	.4723309
lwtrd	.212578	.2836914	0.75	0.454	3434468	.7686029
lwfir	3540903	.2287506	-1.55	0.122	8024333	.0942527
lwser	2911556	.0982815	-2.96	0.003	4837837	0985274
lwmfg	.0642196	.1439573	0.45	0.656	2179316	.3463707
lwfed	.2974661	.2998936	0.99	0.321	2903145	.8852468
lwsta	.0037846	.2716432	0.01	0.989	5286262	.5361954
lwtuc	.1773533	.1718849	1.03	0.306	1655477	.5202542
lwtrd	.212578	.3239984	0.66	0.514	433781	.8589371
lwfir	3540903	.2612516	-1.36	0.180	8752731	.1670925
lwser	2911556	.1122454	-2.59	0.012	5150789	0672322
lwmfg	.0642196	.1644108	0.39	0.697	263771	.3922102
lwfed	.2974661	.3425026	0.87	0.388	3858079	.9807402
lwsta	.0037846	.3102383	0.01	0.990	615124	.6226931
lwloc	4336541	.5166733	-0.84	0.404	-1.464389	.597081
lpctymle	.0095115	.1869867	0.05	0.960	3635166	.3825397
lpctmin	.2285766	.0543079	4.21	0.000	.1202354	.3369179
west	0952899	.1301449	-0.73	0.467	3549219	.1643422
central	1792662	.0762815	-2.35	0.022	3314437	0270888
urban	1139416	.143354	-0.79	0.429	3999251	.1720419
_cons	-1.159015	3.898202	-0.30	0.767	-8.935716	6.617686

Instrumented: | Iprbarr lpolpc

Instruments: Iprbconv Iprbpris lavgsen Idensity Iwcon Iwtuc Iwtrd Iwfir Iwser Iwmfg

lwfed lwsta lwloc lpctymle lpctmin west central urban ltaxpc lmix

[.] reg lprbarr lmix ltaxpc lprbconv lprbpris lavgsen Idensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban if year==87

Source	SS	df	MS		Number of obs	=	90
Model	6.84874028	20	.3424370	 14	F(20, 69) Prob > F	=	3.11 0.0002
Residual	7.59345096	69	.1100500		R-squared	=	0.4742
nesiduai	7.59545096	09	.1100500	14	Adj R-squared	=	0.3218
Total	14.4421912	89	.1622718	12	Root MSE	=	.33174
Iprbarr	Coef.	Std. Err.	t	P> t	[95% Co	onf. Int	erval]
lmix	.2682143	.0864373	3.10	0.003	.0957766		.4406519
Itaxpc	1938134	.1755345	-1.10	0.273	5439952		.1563684
Iprbconv	1946392	.0877581	-2.22	0.030	3697119	-	.0195665
Iprbpris	0240173	.1732583	-0.14	0.890	3696581		.3216236
lavgsen	.1565061	.1527134	1.02	0.309	1481488		.4611611
Idensity	2211654	.0941026	-2.35	0.022	408895	-	.0334357
lwcon	2024569	.3020226	-0.67	0.505	8049755		.4000616
lwtuc	0461931	.230479	-0.20	0.842	5059861		.4135999
lwtrd	.0494793	.4105612	0.12	0.904	769568		.8685266
lwfir	.050559	.3507405	0.14	0.886	6491492		.7502671
lwser	.0551851	.1500094	0.37	0.714	2440754		.3544456
lwmfg	.0550689	.2138375	0.26	0.798	3715252		.481663
lwfed	.2622408	.4454479	0.59	0.558	6264035		1.150885
lwsta	4843599	.3749414	-1.29	0.201	-1.232347		.2636277
lwloc	.7739819	.5511607	1.40	0.165	3255536		1.873517
lpctymle	3373594	.2203286	-1.53	0.130	776903		.1021842
lpctmin	0096724	.0729716	-0.13	0.895	1552467		.1359019
west	.0701236	.1756211	0.40	0.691	280231		.4204782
central	.0112086	.1034557	0.11	0.914	1951798		.217597
urban	0150372	.2026425	-0.07	0.941	4192979		.3892234
_cons	-4.319234	3.797113	-1.14	0.259	-11.89427		3.255799

Then we can test that the additional instruments are jointly significant in the first stage regression for lprbarr as follows:

- . test lmix=ltaxpc=0
- (1) lmix ltaxpc = 0
- (2) Imix = 0

$$F(2, 69) = 5.78$$

Prob > F = 0.0048

For Ipolpc, the first stage regression is given by

. reg lpolpc lmix ltaxpc lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban

lwloc	- 4336541	4523966	-0.96	0.338	-1 320335	453027
lpctymle	.0095115	.1637246	0.06	0.954	3113827	3304058
Ipctmin	.2285766	.0475517	4.81	0.000	.135377	.3217763
west	0952899	.1139543	-0.84	0.403	3186361	.1280564
central	1792662	.0667917	-2.68	0.007	3101756	0483569

urban	1139416	.1255201	-0.91	0.364	3599564	.1320732
_cons	-1.159015	3.413247	-0.34	0.734	-7.848855	5.530825

Instrumented:

lprbarr lpolpc

Instruments:

Iprbconv Iprbpris lavgsen Idensity Iwcon Iwtuc Iwtrd Iwfir Iwser Iwmfg Iwfed

lwsta lwloc lpctymle lpctmin west central urban ltaxpc lmix

. estat firststage

Shea's partial R-squared

Variable	Shea's Partial R-sq.	Shea's Adj. Partial R-sq.
lprbarr	0.1352	-0.0996
lpolpc	0.2208	0.0093

Minimum eigenvalue statistic = 5.31166

Critical Values Ho: Instruments are weak	# of endogenous regressors: # of excluded instruments:			
2SLS relative bias	5%	10% (not ava	20% ailable)	30%
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 7.03 7.03	15% 4.58 4.58	20% 3.95 3.95	25% 3.63 3.63

One can run the same IV regressions for other years, but this is not done here to save space.

11.30 *Growth and Inequality Reconsidered*

a. The 3SLS results are replicated using Stata below:

reg3 (Growth: dly = yrt gov m2y inf swo dtot f_pcy d80 d90) (Inequality: gih = yrt m2y civ mlg mlgldc), exog(commod f_civ f_dem f_dtot f_flit f_gov f_inf f_m2y f_swo f_yrt pop urb lex lfr marea oil legor_fr legor_ge legor_mx legor_ sc legor_uk) endog (yrt gov m2y inf swo civ mlg mlgldc)

Three-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	Р
Growth	119	9	2.34138	0.3905	65.55	0.0000
Inequality	119	5	7.032975	0.4368	94.28	0.0000

	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]	
	'						
Growth							
yrt	0280625	.1827206	-0.15	0.878	3861882	.3300632	
gov	0533221	.0447711	-1.19	0.234	1410718	.0344276	
m2y	.0085368	.0199759	0.43	0.669	0306152	.0476889	
inf	0008174	.0025729	-0.32	0.751	0058602	.0042254	
SWO	4.162776	.9499015	4.38	0.000	2.301003	6.024548	
dtot	26.03736	23.05123	1.13	0.259	-19.14221	71.21694	
f_pcy	-1.38017	.5488437	-2.51	0.012	-2.455884	3044564	
d80	-1.560392	.545112	-2.86	0.004	-2.628792	4919922	
d90	-3.413661	.6539689	-5.22	0.000	-4.695417	-2.131906	
_cons	13.00837	3.968276	3.28	0.001	5.230693	20.78605	
Inequality							
yrt	-1.244464	.4153602	-3.00	0.003	-2.058555	4303731	
m2y	120124	.0581515	-2.07	0.039	2340989	0061492	
civ	.2531189	.7277433	0.35	0.728	-1.173232	1.67947	
mlg	.292672	.0873336	3.35	0.001	.1215012	.4638428	
mlgldc	0547843	.0576727	-0.95	0.342	1678207	.0582522	
_cons	33.13231	5.517136	6.01	0.000	22.31893	43.9457	

Endogenous variables: dly gih yrt gov m2y inf swo civ mlg mlgldc

Exogenous variables: dtot f_pcy d80 d90 commod f_civ f_dem f_dtot f_flit f_gov f_inf f_m2y f_swo f_yrt pop urb lex lfr marea oil legor_fr legor_ge legor_mx legor_sc legor_uk

- **b.** The 3sls results of the respecified equations are replicated using Stata below:
 - . reg3 (Growth: dly = gih yrt gov m2y inf swo dtot f_pcy d80 d90) (Inequality: gih = dly yrt m2y civ mlg mlgldc), exog(f_civ f_dem f_dtot f_flit f_gov f_inf f_m2y f_swo f_yrt pop urb lex lfr marea commod oil legor_fr legor_ge legor_mx legor_sc legor_uk) endog(yrt gov m2y inf swo civ mlg mlgldc)

Three-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	Р
Growth	119	10	2.366525	0.3773	65.26	0.0000
Inequality	119	6	6.969627	0.4469	96.06	0.0000

	Coef.	Std. Err.	Z	$P{>} z $	[95% Co	nf. Interval]
Growth						
gih	0181063	.0452471	-0.40	0.689	106789	.0705763
yrt	0642514	.1971126	-0.33	0.744	4505851	.3220822
gov	0559828	.0457033	-1.22	0.221	1455597	.0335941
m2y	.0084914	.0201616	0.42	0.674	0310246	.0480074
inf	.0002947	.0031579	0.09	0.926	0058948	.0064841
SWO	4.148469	.9771934	4.25	0.000	2.233205	6.063733
dtot	28.56603	23.60078	1.21	0.226	-17.69064	74.8227
f_pcy	-1.35157	.5565555	-2.43	0.015	-2.442399	2607418
d80	-1.581281	.5498957	-2.88	0.004	-2.659057	503505
d90	-3.392124	.6624323	-5.12	0.000	-4.690467	-2.09378
_cons	13.67011	4.382862	3.12	0.002	5.079854	22.26036
Inequality						
dly	.2642484	.3586634	0.74	0.461	438719	.9672158
yrt	-1.221263	.4122647	-2.96	0.003	-2.029286	4132386
m2y	115859	.0577899	-2.00	0.045	2291251	0025929
civ	.1510064	.7449721	0.20	0.839	-1.309112	1.611125
mlg	.2951145	.0870164	3.39	0.001	.1245654	.4656635
mlgldc	0451182	.0581734	-0.78	0.438	159136	.0688996
_cons	32.06252	5.611046	5.71	0.000	21.06507	43.05997

Endogenous variables: dly gih yrt gov m2y inf swo civ mlg mlgldc

Exogenous variables: dtot f_pcy d80 d90 f_civ f_dem f_dtot f_flit f_gov f_inf f_m2y f_swo f_yrt pop urb lex lfr marea commod oil legor_fr legor_ge legor_mx legor_sc legor_uk

11.31 *Married Women Labor Supply*

- **b.** The following Stata output replicates Equation 2 of Table IV of Mroz (1987, p. 770) which runs 2SLS using the following instrumental variables:
 - . local B unem city motheduc fatheduc
 - . local E exper expersq
 - . local control age educ
 - . ivregress 2sls hours (lwage= 'B' 'E') nwifeinc kidslt6 kidsge6 'control', vce(robust)

Instrumental variables (2SLS) regression	Number of obs	=	428
, , ,	Wald chi2(6)	=	18.67
	Prob > chi2	=	0.0048
	R-squared	=	
	Root MSE	=	1141.3

hours	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lwage	1261.574	460.7772	2.74	0.006	358.4673	2164.681
nwifeinc	-8.341979	4.586405	-1.82	0.069	-17.33117	.6472101
kidslt6	-234.7069	182.201	-1.29	0.198	-591.8143	122.4005
kidsge6	-59.78876	49.04792	-1.22	0.223	-155.9209	36.34341
age	-10.23035	9.264046	-1.10	0.269	-28.38755	7.926846
educ	-147.895	52.71884	-2.81	0.005	-251.222	-44.56794
_cons	2374.632	531.9775	4.46	0.000	1331.976	3417.289

Instrumented: Iwage

Instruments: nwifeinc kidslt6 kidsge6 age educ unem city motheduc fatheduc exper expersq

. estat overid

Test of overidentifying restrictions:

Score chi2(5) = 5.9522 (p = 0.3109)

. estat firststage, forcenonrobust all

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	Robust F(6,416)	Prob > F
lwage	0.1719	0.1500	0.0468	2.58071	0.0182

Shea's partial R-squared

Variable	Shea's Partial R-sq.	Shea's Adj. Partial R-sq.
lwage	0.0468	0.0240

Minimum eigenvalue statistic = 3.40543

Critical Values # of endogenous regressors: 1
Ho: Instruments are weak # of excluded instruments: 6

2SLS relative bias	5%	10%	20%	30%
	19.28	11.12	6.76	5.15
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 29.18 4.45	15% 16.23 3.34	20% 11.72 2.87	25% 9.38 2.61

Similarly, the following Stata output replicates Equation 3 of Table IV of Mroz(1987, p. 770) which runs 2SLS using the following instrumental variables:

. local F2 age2 educ2 age_educ

. ivregress 2sls hours (lwage= 'B' 'E' 'F2') nwifeinc kidslt6 kidsge6 'control', vce(robust)

Instrumental variables (2SLS) regression	Number of obs	=	428
· · · ·	Wald chi2(6)	=	24.56
	Prob > chi2	=	0.0004
	R-squared	=	
	Root MSE	=	942.03

hours	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lwage	831.2505	312.1889	2.66	0.008	219.3715	1443.129
nwifeinc	-6.963789	3.814549	-1.83	0.068	-14.44017	.5125885
kidslt6	-270.9764	154.5197	-1.75	0.079	-573.8294	31.87667
kidsge6	-78.37192	39.257	-2.00	0.046	-155.3142	-1.429619
age	-9.38908	7.589533	-1.24	0.216	-24.26429	5.486132
educ	-102.9946	36.35213	-2.83	0.005	-174.2435	-31.74576
_cons	2287.175	432.9381	5.28	0.000	1438.632	3135.718

Instrumented: Iwage

Instruments: nwifeinc kidslt6 kidsge6 age educ unem city motheduc fatheduc exper expersq age2 educ2 age_educ

. estat overid

Test of overidentifying restrictions:

Score chi2(8) = 19.8895 (p = 0.0108)

. estat firststage, forcenonrobust all

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	Robust F(6,416)	Prob > F	
lwage	0.1846	0.1570	0.0614	2.3555	0.0133	

Shea's partial R-squared

Variable	Shea's Partial R-sq.	Shea's Adj. PartialR-sq.	
lwage	0.0614	0.0320	

Minimum eigenvalue statistic = 3.0035

Critical Values # of endogenous regressors: 1
Ho: Instruments are weak # of excluded instruments: 9

2SLS relative bias	5%	10%	20%	30%
	20.53	11.46	6.65	4.92
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 36.19 3.81	15% 19.71 2.93	20% 14.01 2.54	25% 11.07 2.32

Similarly, one can generate the rest of the regressions in Table IV and their related diagnostics.

References

Baltagi, B.H. (1989), "A Hausman Specification Test in a Simultaneous Equations Model," *Econometric Theory*, Solution 88.3.5, 5: 453–467.

Farebrother, R.W. (1987), "The Exact Bias of Wald's Estimation," *Econometric Theory*, Solution 85.3.1, 3: 162.

Farebrother, R.W. (1991), "Comparison of t-Ratios," *Econometric Theory*, Solution 90.1.4, 7: 145–146.

- Hausman, J.A. (1983), "Specification and Estimation of Simultaneous Equation Models," Chapter 7 in Griliches, Z. and Intriligator, M.D. (eds.) Handbook of Econometrics, Vol. I (North Holland: Amsterdam).
- Laffer, A.B., (1970), "Trade Credit and the Money Market," Journal of Political Economy, 78: 239–267.
- Mroz, T.A. (1987), "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, 55: 765–799.
- Singh, N. and A N. Bhat (1988), "Identification and Estimation of a Simple Two-Equation Model," *Econometric Theory*, Solution 87.3.3, 4: 542–545.
- Theil, H. (1971), Principles of Econometrics (Wiley: New York).
- Wald, A. (1940), "Fitting of Straight Lines if Both Variables are Subject to Error," Annals of Mathematical Statistics, 11: 284–300.

CHAPTER 12

Pooling Time-Series of Cross-Section Data

- **12.1** Fixed Effects and the Within Transformation.
 - a. Premultiplying (12.11) by Q one gets

$$Qy = \alpha Q\iota_{NT} + QX\beta + QZ_{\mu}\mu + Q\nu$$

But $PZ_{\mu}=Z_{\mu}$ and $QZ_{\mu}=0$. Also, $P\iota_{NT}=\iota_{NT}$ and $Q\iota_{NT}=0$. Hence, this transformed equation reduces to (12.12)

$$Qy = QX\beta + Q\nu$$

Now
$$E(Qv) = QE(v) = 0$$
 and $var(Qv) = Q var(v)Q' = \sigma_v^2 Q$, since

$$var(\nu) = \sigma_{\nu}^2 I_{NT}$$

and Q is symmetric and idempotent.

b. For the general linear model $y = X\beta + u$ with $E(uu') = \Omega$, a necessary and sufficient condition for OLS to be equivalent to GLS is given by $X'\Omega^{-1}\bar{P}_X$ where $\bar{P}_X = I - P_X$ and $P_X = X(X'X)^{-1}X'$, see Eq. (9.7) of Chap. 9. For Eq. (12.12), this condition can be written as

$$(X'Q)(Q/\sigma_v^2)\bar{P}_{QX}=0$$

using the fact that Q is idempotent, the left hand side can be written as

$$(X'Q)\bar{P}_{QX}/\sigma_{\nu}^2$$

which is clearly 0, since \bar{P}_{QX} is the orthogonal projection of QX.

One can also use Zyskind's condition $P_X\Omega = \Omega P_X$ given in Eq. (9.8) of Chap. 9. For Eq. (12.12), this condition can be written as

$$P_{OX}(\sigma_v^2 Q) = (\sigma_v^2 Q) P_{OX}$$

But, $P_{QX} = QX(X'QX)^{-1}X'Q$. Hence, $P_{QX}Q = P_{QX}$ and $QP_{QX} = P_{QX}$ and the condition is met. Alternatively, we can verify that OLS and GLS yield the same estimates. Note that $Q = I_{NT} - P$ where $P = I_N \otimes \bar{J}_T$ is idempotent and is therefore its own generalized inverse. The variance–covariance matrix of the disturbance $\tilde{\nu} = Q\nu$ in (12.12) is $E(\tilde{\nu}\tilde{\nu}') = E(Q\nu\nu'Q) = \sigma_{\nu}^2Q$ with generalized inverse Q/σ_{ν}^2 . OLS on (12.12) yields

$$\hat{\beta} = (X'OOX)^{-1}X'OOy = (X'OX)^{-1}X'Oy$$

which is $\tilde{\beta}$ given by (12.13). Also, GLS on (12.12) using generalized inverse yields

$$\hat{\beta} = (X'QQQX)^{-1}X'QQQy = (X'QX)^{-1}X'Qy = \tilde{\beta}.$$

c. The Frisch-Waugh-Lovell (FWL) theorem of Davidson and MacKinnon (1993, p. 19) states that for

$$y = X_1 \beta_1 + X_2 \beta_2 + u \tag{12.1}$$

If we premultiply by the orthogonal projection of X2 given by

$$M_2 = I - X_2(X_2'X_2)^{-1}X_2',$$

then $M_2X_2 = 0$ and (1) becomes

$$M_2 y = M_2 X_1 \beta_1 + M_2 u \tag{12.2}$$

The OLS estimate of β_1 from (2) is the same as that from (1) *and* the residuals from (1) are the same as the residuals from (2). This was proved in Sect. 7.3. Here we will just use this result. For the model in (12.11)

$$y = Z\delta + Z_{\mu}\mu + \nu$$

Let $Z=X_1$ and $Z_\mu=X_2$. In this case, $M_2=I-Z_\mu\left(Z'_\mu Z_\mu\right)^{-1}Z'_\mu=I-P=Q$. In this case, premultiplying by M_2 is equivalent to premultiplying by Q and Eq. (2) above becomes Eq. (12.12) in the text. By the FWL theorem, OLS on (12.12) which yields (12.13) is the same as OLS on

(12.11). Note that

$$Z = [\iota_{NT}, X]$$
 and $QZ = [0, QX]$ since $Q\iota_{NT} = 0$.

- **12.2** Variance—Covariance Matrix of Random Effects.
 - **a.** From (12.17) we get

$$\Omega = \sigma_{\mu}^2(I_N \otimes J_T) + \sigma_{\nu}^2(I_N \otimes I_T)$$

Replacing J_T by $T\bar{J}_T$, and I_T by $(E_T + \bar{J}_T)$ where E_T is by definition $(I_T - \bar{J}_T)$, one gets

$$\Omega = T\sigma_{\iota\iota}^2(I_N \otimes \bar{J}_T) + \sigma_{\nu}^2(I_N \otimes E_T) + \sigma_{\nu}^2(I_N \otimes \bar{J}_T)$$

collecting terms with the same matrices, we get

$$\Omega = (T\sigma_{\mu}^2 + \sigma_{\nu}^2)(I_N \otimes \bar{J}_T) + \sigma_{\nu}^2(I_N \otimes E_T) = \sigma_1^2 P + \sigma_{\nu}^2 Q$$

where $\sigma_1^2 = T\sigma_\mu^2 + \sigma_\nu^2.$

- **b.** $P=Z_{\mu}\left(Z'_{\mu}Z_{\mu}\right)^{-1}Z'_{\mu}=I_{N}\otimes\bar{J}_{T}$ is a projection matrix of Z_{μ} . Hence, it is by definition symmetric and idempotent. Similarly, $Q=I_{NT}-P$ is the orthogonal projection matrix of Z_{μ} . Hence, Q is also symmetric and idempotent. By definition, $P+Q=I_{NT}$. Also, $PQ=P(I_{NT}-P)=P-P^{2}=P-P=0$.
- **c.** From (12.18) and (12.19) one gets

$$\Omega\Omega^{-1}=(\sigma_1^2P+\sigma_{\nu}^2Q)\left(\frac{1}{\sigma_1^2}P+\frac{1}{\sigma_{\nu}^2}Q\right)=P+Q=I_{NT}$$

since $P^2=P,\ Q^2=Q$ and PQ=0 as verified in part (b). Similarly, $\Omega^{-1}\Omega=I_{NT}.$

d. From (12.20) one gets

$$\begin{split} \Omega^{-1/2} \Omega^{-1/2} &= \left(\frac{1}{\sigma_1} P + \frac{1}{\sigma_{\nu}} Q \right) \left(\frac{1}{\sigma_1} P + \frac{1}{\sigma_{\nu}} Q \right) = \frac{1}{\sigma_1^2} P^2 + \frac{1}{\sigma_{\nu}^2} Q^2 \\ &= \frac{1}{\sigma_1^2} P + \frac{1}{\sigma_{\nu}^2} Q = \Omega^{-1} \end{split}$$

using the fact that $P^2 = P$, $Q^2 = Q$ and PQ = 0.

12.3 Fuller and Battese (1974) Transformation.

From (12.20) one gets $\sigma_{\nu}\Omega^{-^1/_2}=Q+(\sigma_{\nu}/\sigma_1)P$

Therefore,

$$\begin{split} y^* &= \sigma_{\nu} \Omega^{-1/2} y = Qy + (\sigma_{\nu}/\sigma_1) Py = y - Py + (\sigma_{\nu}/\sigma_1) Py \\ &= y - (1 - (\sigma_{\nu}/\sigma_1)) Py = y - \theta Py \end{split}$$

where $\theta=1-(\sigma_{\nu}/\sigma_{1})$. Recall that the typical element of Py is $\bar{y}_{i.}$, therefore, the typical element of y^{*} is $y_{it}^{*}=y_{it}-\theta\bar{y}_{i.}$

12.4 Unbiased Estimates of the Variance-Components. $E(u'Pu) = E(tr(uu'P)) = tr(E(uu')P) = tr(\Omega P)$. From (12.21), $\Omega P = \sigma_1^2 P$ since PQ = 0. Hence, from (12.18),

$$E\left(\hat{\sigma}_{l}^{2}\right)=\frac{E(u'Pu)}{tr(P)}=\frac{tr\left(\sigma_{l}^{2}P\right)}{tr(P)}=\sigma_{l}^{2}.$$

Similarly, $E(u'Qu) = tr(\Omega Q) = tr(\sigma_v^2 Q)$ where the last equality follows from (12.18) and the fact that $\Omega Q = \sigma_v^2 Q$ since PQ = 0. Hence, from (12.22),

$$E\left(\hat{\sigma}_{\nu}^{2}\right) = \frac{E(u'Qu)}{tr(Q)} = \frac{tr\left(\sigma_{\nu}^{2}Q\right)}{tr(Q)} = \sigma_{\nu}^{2}.$$

- 12.5 Swamy and Arora (1972) Estimates of the Variance-Components.
 - a. $\hat{\hat{\sigma}}_{\nu}^2$ given by (12.23) is the s^2 from the regression given by (12.11). In fact

$$\hat{\hat{\sigma}}_{v}^{2} = y'Q[I_{NT} - P_{OX}]Qy/[N(T-1) - K]$$

where $P_{QX} = QX(X'QX)^{-1}X'Q$. Substituting Qy from (12.12) into $\hat{\hat{\sigma}}_{\nu}^2$, one gets

$$\hat{\hat{\sigma}}_{v}^{2} = v'Q[I_{NT} - P_{OX}]Qv/[N(T-1) - K]$$

with $Qv \sim (0, \sigma_v^2 Q)$. Therefore,

$$\begin{split} E[\nu'Q[I_{NT}-P_{QX}]Q\nu] &= E[tr\{Q\nu\nu'Q[I_{NT}-P_{QX}]\}] \\ &= \sigma_{\nu}^2 tr\{Q-QP_{QX}\} = \sigma_{\nu}^2\{N(T-1)-tr(P_{QX})\} \end{split}$$

where the last equality follows from the fact that $QP_{QX} = P_{QX}$. Also,

$$tr(P_{QX}) = tr(X'QX)(X'QX)^{-1} = tr(I_K) = K.$$

Hence,
$$E\left(\hat{\hat{\sigma}}_{\nu}^{2}\right) = \sigma_{\nu}^{2}$$
.

b. Similarly, $\hat{\sigma}_1^2$ given by (12.26) is the s^2 from the regression given by

$$Py = PZ\delta + Pu$$

In fact,

$$\hat{\hat{\sigma}}_{1}^{2} = y'P[I_{NT} - P_{PZ}]Py/(N - K - 1)$$

where $P_{PZ}=PZ(Z'PZ)^{-1}Z'P.$ Substituting Py from (3) into $\hat{\hat{\sigma}}_1^2$ one gets

$$\hat{\hat{\sigma}}_{I}^{2} = u'P[I_{NT} - P_{PZ}]Pu/(N-K-1) = u'P[I_{NT} - P_{PZ}]Pu/(N-K-1)$$

with Pu $\sim \left(0,\sigma_1^2P\right)$ as can be easily verified from (12.18). Therefore,

$$\begin{split} E(u'P[I_{NT}-P_{PZ}]Pu) &= E[tr\{Puu'P(I_{NT}-P_{PZ})\} = \sigma_1^2tr\{P-PP_{PZ}\} \\ &= \sigma_1^2\{N-tr(P_{PZ})\} \end{split}$$

where the last equality follows from the fact that $PP_{PZ} = P_{PZ}$. Also,

$$tr(P_{PZ}) = tr(Z'PZ)(Z'PZ)^{-1} = tr(I_{K'}) = K'.$$

Hence,
$$E\left(\hat{\hat{\sigma}}_{1}^{2}\right) = \sigma_{1}^{2}$$
.

12.6 System Estimation.

a. OLS on (12.27) yields

$$\begin{split} \hat{\delta}_{ols} &= \left[(Z'Q, Z'P) \begin{pmatrix} QZ \\ PZ \end{pmatrix} \right]^{-1} (Z'Q, Z'P) \begin{pmatrix} QY \\ Py \end{pmatrix} \\ &= (Z'QZ + Z'PZ)^{-1} (Z'Qy + Z'Py) \\ &= (Z'(Q+P)Z)^{-1} Z'(Q+P)y = (Z'Z)^{-1} Z'y \\ \text{since } Q+P &= I_{NT}. \end{split}$$

b. GLS on (12.27) yields

$$\begin{split} \hat{\delta}_{gls} &= \left((Z'Q, Z'P) \begin{bmatrix} \sigma_{\nu}^2 Q & 0 \\ 0 & \sigma_{l}^2 P \end{bmatrix}^{-1} \begin{pmatrix} QZ \\ PZ \end{pmatrix} \right)^{-1} \\ (Z'Q, Z'P) \begin{bmatrix} \sigma_{\nu}^2 Q & 0 \\ 0 & \sigma_{l}^2 P \end{bmatrix}^{-1} \begin{pmatrix} Qy \\ Py \end{pmatrix} \end{split}$$

Using generalized inverse

$$\begin{bmatrix} \sigma_{\nu}^2 Q & 0 \\ 0 & \sigma_1^2 P \end{bmatrix}^{-1} = \begin{bmatrix} Q/\sigma_{\nu}^2 & 0 \\ 0 & P/\sigma_1^2 \end{bmatrix}$$

one gets

$$\begin{split} \hat{\delta}_{GLS} &= \left[(Z'QZ)/\sigma_{\nu}^2 + (Z'PZ)/\sigma_{1}^2 \right]^{-1} \left[(Z'Qy)/\sigma_{\nu}^2 + (Z'Py)/\sigma_{1}^2 \right] \\ &= (Z'\Omega^{-1}Z)^{-1}Z'\Omega^{-1}y \end{split}$$

where Ω^{-1} is given by (12.19).

12.7 Random Effects Is More Efficient than Fixed Effects. From (12.30) we have

$$var(\hat{\beta}_{GLS}) = \sigma_{\nu}^2 [W_{XX} + \varphi^2 B_{XX}]^{-1}$$

where $W_{XX}=X'QX$, $B_{XX}=X'(P-\bar{J}_{NT})X$ and $\varphi^2=\sigma_{\nu}^2/\sigma_1^2$. The Within estimator is given by (12.13) with $var(\tilde{\beta}_{Within})=\sigma_{\nu}^2W_{XX}^{-1}$ Hence,

$$(\text{var}(\hat{\beta}_{GLS}))^{-1} - (\text{var}(\tilde{\beta}_{Within}))^{-1} = \frac{1}{\sigma_{\nu}^2} [W_{xx} + \phi^2 B_{XX}] - \frac{1}{\sigma_{\nu}^2} W_{XX} = \phi^2 B_{XX} / \sigma_{\nu}^2$$

which is positive semi-definite. Hence, $var(\tilde{\beta}_{Within})-var(\tilde{\beta}_{GLS})$ is positive semi-definite. This last result uses the well known fact that if $A^{-1}-B^{-1}$ is positive semi-definite, then B-A is positive semi-definite.

- 12.8 Maximum Likelihood Estimation of the Random Effects Model.
 - **a.** Differentiating (12.34) with respect to ϕ^2 yields

$$\begin{split} &\frac{\partial L_c}{\partial \varphi^2} = -\frac{NT}{2} \cdot \frac{d'\left(P - \bar{J}_{NT}\right)d}{d'\left[Q + \varphi^2(P - \bar{J}_{NT})\right]d} + \frac{N}{2} \cdot \frac{1}{\varphi^2} \\ &\text{setting } \partial L_c/\partial \varphi^2 = 0, \text{ we get } Td'(P - \bar{J}_{NT})d\varphi^2 = d'Qd + \varphi^2d'(P - \bar{J}_{NT})d \\ &\text{solving for } \varphi^2, \text{ we get } \hat{\varphi}^2(T - 1)d'\left(P - \bar{J}_{NT}\right)d = d'Qd \text{ which yields } (12.35). \end{split}$$

b. Differentiating (12.34) with respect to β yields

$$\begin{split} \frac{\partial L_c}{\partial \beta} &= -\frac{NT}{2} \cdot \frac{1}{d' \left[Q + \varphi^2 (P - \bar{J}_{NT})\right] d} \cdot \frac{\partial}{\partial \beta} d' [Q + \varphi^2 (P - \bar{J}_{NT})] d \\ \text{setting } \frac{\partial L_c}{\partial \beta} &= 0 \text{ is equivalent to solving } \frac{\partial d' [Q + \varphi^2 (P - \bar{J}_{NT})] d}{\partial \beta} = 0 \\ \text{Using the fact that } d &= y - X\beta \text{, this yields} \end{split}$$

$$-2X'\left[Q+\varphi^2\left(P-\bar{J}_{NT}\right)\right](y-X\hat{\beta})=0$$

Solving for $\hat{\beta}$, we get $X'[Q + \varphi^2(P - \bar{J}_{NT})]X\hat{\beta} = X'[Q + \varphi^2(P - \bar{J}_{NT})]y$ which yields (12.36).

- **12.9** Prediction in the Random Effects Model.
 - a. From (12.2) and (12.38), $E(u_{i,T+S}u_{jt}) = \sigma_{\mu}^{2}$, for i=j and zero otherwise. The only correlation over time occurs because of the presence of the same individual across the panel. The ν_{it} 's are not correlated for different time periods. In vector form

$$w = E(u_{i,T+S} u) = \sigma_{\mu}^{2}(0,...,0,...,1...,1,...,0,...,0)'$$

where there are T ones for the i-th individual. This can be rewritten as $w=\sigma_{\mu}{}^2(\ell_i\otimes\iota_T)$ where ℓ_i is the i-th column of I_N , i.e., ℓ_i is a vector that has 1 in the i-th position and zero elsewhere. ι_T is a vector of ones of dimension T.

$$\begin{array}{l} \textbf{b.} \ \left(\ell_{i}' \otimes \iota_{T}' \right) P = \left(\ell_{i}' \otimes \iota_{T}' \right) \left(I_{N} \otimes \frac{\iota_{T} \iota_{T}'}{T} \right) = \left(\ell_{i}' \otimes \iota_{T}' \right). \\ \text{Therefore, in (12.39)} \end{array}$$

$$\begin{split} w'\Omega^{-1} &= \sigma_{\mu}^2 \left(\ell_i{}' \otimes \iota_T{}' \right) \left[\frac{1}{\sigma_i^2} \, P + \frac{1}{\sigma_{\nu}^2} \, Q \right] = \frac{\sigma_{\mu}^2}{\sigma_i^2} \left(\ell_i{}' \otimes \iota_T{}' \right) \\ \text{since} \left(\ell_i{}' \otimes \iota_T{}' \right) Q &= \left(\ell_i{}' \otimes \iota_T{}' \right) \left(I_{NT} - P \right) = \left(\ell_i{}' \otimes \iota_T{}' \right) - \left(\ell_i{}' \otimes \iota_T{}' \right) = 0. \end{split}$$

12.10 Using the motor gasoline data on diskette, the following SAS output and program replicates the results in Tables 12.1–12.7. The program uses the IML procedure (SAS matrix language). This can be easily changed into GAUSS or any other matrix language.

RES	HII.	TC	$\cap \vdash$	\cap I	C
ロロン	UH	1.5	()C	l II	. `

LOOK1	PARAMETER S	STANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	2.39133 0.88996 -0.89180 -0.76337	0.11693 0.03581 0.03031 0.01861	20.45017 24.85523 -29.4180 -41.0232
	RESULTS	OF BETWEEN	
LOOK1	PARAMETER S	STANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	2.54163 0.96758 -0.96355 -0.79530	0.52678 0.15567 0.13292 0.08247	4.82480 6.21571 -7.24902 -9.64300
	RESULT	S OF WITHIN	
LOOK1	PARAMETER ST	ANDARD ERROR	T-STATISTICS
INCOME PRICE CAR	0.66225 -0.32170 -0.64048	0.07339 0.04410 0.02968	9.02419 -7.29496 -21.5804
	RESULTS OF V	WALLACE-HUSSAIN	
LOOK1	PARAMETER S	STANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	1.90580 0.54346 -0.47111 -0.60613	0.19403 0.06353 0.04550 0.02840	9.82195 8.55377 -10.3546 -21.3425
	RESULTS	S OF AMEMIYA	
LOOK1	PARAMETER S	STANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	2.18445 0.60093 -0.36639 -0.62039	0.21453 0.06542 0.04138 0.02718	10.18228 9.18559 -8.85497 -22.8227
	RESULTS O	F SWAMY-ARORA	
LOOK1	PARAMETER S	STANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	1.99670 0.55499 -0.42039 -0.60684	0.17824 0.05717 0.03866 0.02467	11.20260 9.70689 -10.8748 -24.5964

PRICE

CAR

-9.47515

-23.2001

RESULTS OF NERLOVE

LOOK1	PARAMETER STA	ANDARD ERROR	T-STATISTICS
INTERCEPT INCOME PRICE CAR	2.40173 0.66198 -0.32188 -0.64039	1.41302 0.07107 0.04271 0.02874	1.69972 9.31471 -7.53561 -22.2791
	RESULTS OF MAX	IMUM LIKELIHOOD	
LOOK1	PARAMETER STA	ANDARD ERROR	T-STATISTICS
INTERCEPT INCOME	2.10623 0.58044	0.20096 0.06286	10.48088 9.23388

ONE-WAY ERROR COMPONENT MODEL WITH GASOLINE DATA: BETA, VARIANCES OF BETA, AND THETA

0.04072

0.02647

-0.38582

-0.61401

ESTIMATORS	BETA1	BETA2	BETA3	STD_BETA1	STD_BETA2	STD_BETA3	THETA
OLS BETWEEN	0.88996 0.96758	-0.89180 -0.96355	-0.76337 -0.79530	0.03581 0.15567	0.03031 0.13292	0.01861 0.08247	0.00000
WITHIN	0.66225	-0.32170	-0.64048	0.07339	0.04410	0.02968	1.00000
WALLACE & HUSSAIN	0.54346	-0.47111	-0.60613	0.06353	0.04550	0.02840	0.84802
AMEMIYA SWAMY	0.60093	-0.36639	-0.62039	0.06542	0.04138	0.02718	0.93773
& ARORA	0.55499	-0.42039	-0.60684	0.05717	0.03866	0.02467	0.89231
NERLOVE IMLE	0.66198 0.58044	-0.32188 -0.38582	-0.64039 -0.61401	0.07107 0.06286	0.04271 0.04072	0.02874 0.02647	0.99654 0.92126

NEGATIVE VAR_MHU

NEGA_VAR **OLS ESTIMATOR** BETWEEN ESTIMATOR WITHIN ESTIMATOR WALLACE & HUSSAIN ESTIMATOR 0 AMEMIYA ESTIMATOR 0 SWAMY & ARORA ESTIMATOR 0 NERLOVE ESTIMATOR IMLE

SAS PROGRAM

Options linesize=162; Data Gasoline;

```
Infile 'b:/gasoline.dat' firstobs=2:
Input @1 Country $ @10 Year @15 Lgaspcar @29 Lincomep
    @44 Lprpmg @61 Lcarpcap;
Proc IML:
    Use Gasoline; Read all into Temp;
    N=18; T=19; NT=N*T;
    One=Repeat(1,NT,1);
    X=Temp[,3:5]; Y=Temp[,2]; Z=One||X; K=NCOL(X);
    I_t=J(T,1,1); JT=(I_t*I_t); Z_U=I(N)@I_t;
    P=Z_U*INV(Z_U`*Z_U)*Z_U`; Q=I(NT)-P;
    JNT=Repeat(JT,N,N); JNT_BAR=JNT/NT:
* ----- OLS ESTIMATORS ----- *;
    OLS_BETA=INV(Z`*Z)*Z`*Y;
    OLS_RES=Y-Z*OLS_BETA;
    VAR_REG=SSQ(OLS_RES)/(NT-NCOL(Z));
    VAR_COV=VAR_REG*INV(Z`*Z);
    STD_OLS=SQRT(VECDIAG(VAR_COV));
    T_OLS=OLS_BETA/STD_OLS:
  LOOK1=OLS_BETA||STD_OLS||T_OLS;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF OLS' ...
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
* ------ BETWEEN ESTIMATOR -----*;
    BW_BETA=INV(Z`*P*Z)*Z`*P*Y;
    BW_RES=P*Y-P*Z*BW_BETA;
    VAR_BW=SSQ(BW_RES)/(N-NCOL(Z));
    V_C_BW=VAR_BW*INV (Z`*P*Z);
```

```
STD_BW=SQRT(VECDIAG(V_C_BW)):
    T_BW=BW_BETA/STD_BW:
 LOOK1=BW_BETA||STD_BW||T_BW;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF BETWEEN'...
 LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
* ----- WITHIN ESTIMATORS -----*;
    WT_BETA=INV(X^*Q^*X)^*X^*Q^*Y;
    WT_RES=Q*Y-Q*X*WT_BETA;
    VAR_WT=SSQ(WT_RES)/(NT-N-NCOL(X));
    V_C_WT=VAR_WT^*INV(X^*Q^*X);
    STD_WT=SQRT(VECDIAG(V_C_WT));
    T_WT=WT_BETA/STD_WT:
  LOOK1=WT_BETA||STD_WT||T_WT;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF WITHIN',,
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
* -- WALLACE & HUSSAIN ESTIMATOR OF VARIANCE COMPONENTS --- *;
    WH_V_V=(OLS_RES)^*Q^*OLS_RES)/(NT-N);
    WH_V_1=(OLS_RES)*P*OLS_RES)/N;
    ****** Checking for negative VAR_MHU ******;
    WH_V_MHU=(WH_V_1-WH_V_V)/T;
    IF WH_V_MHU<0 THEN NEGA_WH=1; ELSE NEGA_WH=0;
    WH_V_MHU=WH_V_MHU # (WH_V_MHU>0);
    WH_V_1=(T^*WH_V_MHU)+WH_V_V;
```

```
OMEGA\_WH=(Q/WH\_V\_V)+(P/WH\_V\_1):
    WH_BETA=INV(Z`*OMEGA_WH*Z)*Z`*OMEGA_WH*Y:
    THETA_WH=1-(SQRT(WH_V_V)/SQRT(WH_V_1)):
    OMEGAWH=(Q/SQRT(WH_V_V))+(P/SQRT(WH_V_1));
    WH_RES=(OMEGAWH*Y)-(OMEGAWH*Z*WH_BETA);
    VAR_WH=SSQ(WH_RES)/(NT-NCOL(Z));
    V_C_WH=INV(Z`*OMEGA_WH*Z);
    STD_WH=SQRT(VECDIAG(V_C_WH));
    T_WH=WH_BETA/STD_WH:
  LOOK1=WH_BETA||STD_WH||T_WH;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF WALLACE-HUSSAIN',,
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
  FREE OMEGA_WH OMEGAWH WH_RES:
* -- AMEMIYA ESTIMATOR OF VARIANCE COMPONENTS --- *;
    Y_BAR=Y[:]; X_BAR=X[:,];
    ALPHA_WT=Y_BAR-X_BAR*WT_BETA;
    LSDV_RES=Y-ALPHA_WT*ONE-X*WT_BETA;
    AM_V_V=(LSDV_RES`*Q*LSDV_RES)/(NT-N);
    AM_V_1=(LSDV_RES`*P*LSDV_RES)/N;
    ***** Checking for negative VAR_MHU *******;
    AM_V_MHU=(AM_V_1-AM_V_V)/T;
    IF AM_V_MHU<0 THEN NEGA_AM=1: ELSE NEGA_AM=0:
    AM_V_MHU=AM_V_MHU # (AM_V_MHU>0);
    AM_V_1=(T^*AM_V_MHU)+AM_V_V;
    OMEGA\_AM=(Q/AM\_V\_V)+(P/AM\_V\_1);
    AM_BETA=INV(Z`*OMEGA_AM*Z)*Z`*OMEGA_AM*Y;
```

```
THETA_AM=1-(SQRT(AM_V_V)/SQRT(AM_V_1)):
    OMEGAAM=(Q/SQRT(AM_V_V))+(P/SQRT(AM_V_1)):
    AM_RES=(OMEGAAM*Y)-(OMEGAAM*Z*AM_BETA):
    VAR_AM=SSQ(AM_RES)/(NT-NCOL(Z));
    V_C_AM=INV(Z`*OMEGA_AM*Z);
    STD_AM=SQRT(VECDIAG(V_C_AM));
    T_AM=AM_BETA/STD_AM;
  LOOK1=AM_BETA||STD_AM||T_AM;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF AMEMIYA',,
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
  FREE OMEGA_AM OMEGAAM AM_RES;
* --- SWAMY & ARORA ESTIMATOR OF VARIANCE COMPONENTS ---- *;
    SA_V_V = (Y^*Q^*Y - Y^*Q^*X^*INV(X^*Q^*X)^*X^*Q^*Y)/(NT-N-K);
    SA_V_1=(Y^*P^*Y-Y^*P^*Z^*INV(Z^*P^*Z)^*Z^*P^*Y)/(N-K-1);
    ****** Checking for negative VAR_MHU *******;
    SA_V_MHU=(SA_V_1-SA_V_V)/T;
    IF SA_V_MHU<0 THEN NEGA_SA=1; ELSE NEGA_SA=0;
    SA_V_MHU=SA_V_MHU # (SA_V_MHU>0);
    SA_V_1=(T^*SA_V_MHU)+SA_V_V;
    OMEGA\_SA=(Q/SA\_V\_V)+(P/SA\_V\_1);
    SA_BETA=INV(Z`*OMEGA_SA*Z)*Z`*OMEGA_SA*Y;
    THETA_SA=1-(SQRT(SA_V_V)/SQRT(SA_V_1));
    OMEGASA=(Q/SQRT(SA_V_V))+(P/SQRT(SA_V_1));
    SA_RES=(OMEGASA*Y)-(OMEGASA*Z*SA_BETA);
    VAR_SA=SSQ(SA_RES)/(NT-NCOL(Z));
    V_C_SA=INV(Z`*OMEGA_SA*Z);
```

```
STD_SA=SQRT(VECDIAG(V_C_SA)):
    T_SA=SA_BETA/STD_SA:
  LOOK1=SA_BETA||STD_SA||T_SA;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF SWAMY-ARORA',,
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
  FREE OMEGA_SA OMEGASA SA_RES:
*-- NERLOVE ESTIMATOR OF VARIANCE COMPONENTS AND BETA --*;
    MHU=P*LSDV_RES;
    MEAN_MHU=MHU[:];
    DEV_MHU=MHU-(ONE*MEAN_MHU);
    VAR_MHU=SSQ(DEV_MHU)/T*(N-1);
    NL_V_V=SSQ(WT_RES)/NT;
    NL_V_1=T^*VAR_MHU+NL_V_V;
    OMEGA_NL=(Q/NL_V_V)+(P/NL_V_1);
    NL_BETA=INV(Z`*OMEGA_NL*Z)*Z`*OMEGA_NL*Y;
    THETA_NL=1-(SQRT(NL_V_V)/SQRT(NL_V_1));
    OMEGANL=(Q/SQRT(NL_V_V))+(P/SQRT(NL_V_1));
    NL_RES=(OMEGANL*Y)-(OMEGANL*Z*NL_BETA);
    VAR_NL=SSQ(NL_RES)/(NT-NCOL(Z));
    V_C_NL=INV(Z^*OMEGA_NL^*Z);
    STD_NL=SQRT(VECDIAG(V_C_NL));
    T_NL=NL_BETA/STD_NL:
  LOOK1=NL_BETA| |STD_NL| |T_NL;
  CTITLE={'PARAMETER' 'STANDARD ERROR' 'T-STATISTICS'};
  RTITLE={'INTERCEPT' 'INCOME' 'PRICE' 'CAR'};
  PRINT 'RESULTS OF NERLOVE',,
  LOOK1(|COLNAME=CTITLE ROWNAME=RTITLE FORMAT=8.5|);
  FREE OMEGA_NL OMEGANL NL_RES;
```

```
*--- MAXIMUM LIKELIHOOD ESTIMATION ----*;
```

```
/* START WITH WITHIN AND BETWEEN BETA SUGGESTED BY BREUSCH(1987) */;
```

```
CRITICAL=1;
BETA_W=WT_BETA;
BETA_B=BW_BETA[2:K+1,];
BETA_MLE=WT_BETA;

DO WHILE (CRITICAL>0.0001);
WT_RES=Y - X*BETA_W;
BW_RES=Y - X*BETA_B;

PHISQ_W=(WT_RES`*Q*WT_RES)/((T-1)*(WT_RES`*(P-JNT_BAR)*WT_RES));
PHISQ_B=(BW_RES`*Q*BW_RES)/((T-1)*(BW_RES`*(P-JNT_BAR)*BW_RES));
```

PHISQ_B=(BW_RES`*Q*BW_RES)/((T-1)*(BW_RES`*(P-JNT_BAR)*BW_RES));
CRITICAL=PHISQ_W-PHISQ_B;
BETA_W=INV(X`*(Q+PHISQ_W*(P-JNT_BAR))*X)*X`*(Q+PHISQ_W*(P-JNT_BAR))*Y;

BETA_B=INV(X`* (Q+PHISQ_B*(P-JNT_BAR))*X)*X`*(Q+PHISQ_B*(P-JNT_BAR))*Y;

BETA_MLE=(BETA_W+BETA_B)/2; END;

D_MLE=Y-X*BETA_MLE;

```
PHISQ_ML=(D_MLE` *Q*D_MLE)/((T-1)*D_MLE` *(P-JNT_BAR)*D_MLE);

THETA_ML=1-SQRT(PHISQ_ML);

VAR_V_ML=D_MLE` *(Q+PHISQ_ML*(P-JNT_BAR))*D_MLE/NT;

VAR_1_ML=VAR_V_ML/PHISQ_ML;

OMEGA_ML=(Q/VAR_V_ML)+(P/VAR_1_ML);

ML_BETA=INV(Z`*OMEGA_ML*Z)*Z` *OMEGA_ML*Y;

OMEGAML=(Q/SQRT(VAR_V_ML))+(P/SQRT(VAR_1_ML));
```

NEGA_VAR={.,,,.}//NEGA_WH//NEGA_AM//NEGA_SA//{.,.}; OUTPUT=BETA| |STD_ERR| |THETAS| |NAGA_VAR; C2={"BETA1" "BETA2" "BETA3" "STD_BETA1" "STD_BETA2" "STD_BETA3" "THETA"};

STD_ERR=STD_OLS`[,2:K+1]//STD_BW`[,2:K+1]//STD_WT`//STD_WH`[,2:K+1]//

STD_AM`[,2:K+1]//STD_SA`[,2:K+1]//STD_NL`[,2:K+1]//STD_ML`[,2:K+1];
THETAS={0...1}//THETA_WH//THETA_AM//THETA_SA//THETA_NL//THETA_ML;

R={"OLS ESTIMATOR" "BETWEEN ESTIMATOR" "WITHIN ESTIMATOR" "WALLACE & HUSSAIN ESTIMATOR" "AMEMIYA ESTIMATOR" "SWAMY & ARORA ESTIMATOR" "NERLOVE ESTIMATOR" "IMLE"};

PRINT 'ONE-WAY ERROR COMPONENT MODEL WITH GASOLINE DATA:
BETA, VARIANCES OF BETA, AND THETA'
..OUTPUT (|ROWNAME=R COLNAME=C2 FORMAT=8.5|):

PRINT 'NEGATIVE VAR_MHU',, NEGA_VAR (|ROWNAME=R|);

12.11 Bounds on s^2 in the Random Effects Model.

a. This solution is based on Baltagi and Krämer (1994). From (12.3), one gets $\hat{\delta}_{ols}=(Z'Z)^{-1}Z'y$ and $\hat{u}_{ols}=y-Z\hat{\delta}_{ols}=\bar{P}_Zu$ where $\bar{P}_Z=I_{NT}-P_Z$ with $P_Z=Z(Z'Z)^{-1}Z'$. Also,

$$E(s^2) = E[\hat{u}'\hat{u}/(NT-K')] = E\left[u'\bar{P}_Zu/(NT-K')\right] = tr(\Omega\bar{P}_Z)/(NT-K')$$

which from (12.17) reduces to

$$E(s^2) = \sigma_v^2 + \sigma_u^2 (NT - tr(I_N \otimes J_T)P_Z)/(NT - K')$$

since
$$tr(I_{NT}) = tr(I_N \otimes J_T) = NT$$

and $tr(P_Z) = K'$. By adding and subtracting σ_{μ}^2 , one gets

$$E(s^2) = \sigma^2 + \sigma_u^2 [K' - tr(I_N \otimes J_T)P_Z]/(NT - K')$$

where $\sigma^2 = E(u_{it}^2) = \sigma_{ii}^2 + \sigma_{v}^2$ for all i and t.

b. Nerlove (1971) derived the characteristic roots and vectors of Ω given in (12.17). These characteristic roots turn out to be σ_{ν}^2 with multiplicity N(T-1) and $\left(T\sigma_{\mu}^2+\sigma_{\nu}^2\right)$ with multiplicity N. Therefore, the smallest (n-K') characteristic roots are made up of the (n-N) σ_{ν}^2 's and (N-K') of the $\left(T\sigma_{\mu}^2+\sigma_{\nu}^2\right)$'s. This implies that the mean of the (n-K') smallest characteristic roots of $\Omega=\left[(n-N)\sigma_{\nu}^2+(N-K')\left(T\sigma_{\mu}^2+\sigma_{\nu}^2\right)\right]/(n-K')$. Similarly, the largest (n-K') characteristic roots are made up of the $N\left(T\sigma_{\mu}^2+\sigma_{\nu}^2\right)$'s and (n-N-K') of the σ_{ν}^2 's. This implies that the mean of the (n-K') largest characteristic roots of $\Omega=\left[N\left(T\sigma_{\mu}^2+\sigma_{\nu}^2\right)+(n-N-K')\sigma_{\nu}^2\right]/(n-K')$. Using the Kiviet and Krämer (1992) inequalities, one gets

 $0 \le \sigma_{\nu}^2 + (n - TK')\sigma_{\mu}^2/(n - K') \le E(s^2) \le \sigma_{\nu}^2 + n\sigma_{\mu}^2/(n - K') \le n\sigma^2/(n - K').$ As $n \to \infty$, both bounds tend to σ^2 , and s^2 is asymptotically unbiased, irrespective of the particular evolution of X.

12.12 $M = I_{NT} - Z(Z'Z)^{-1}Z'$ and $M^* = I_{NT} - Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime}$ are both symmetric and idempotent. From (12.43), it is clear that $Z = Z^*I^*$ with $I^* = (\iota_N \otimes I_{K'})$, ι_N being a vector of ones of dimension N and K' = K + 1.

$$MM^* = I_{NT} - Z(Z'Z)^{-1}Z' - Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime} + Z(Z'Z)^{-1}Z'Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime}$$

Substituting $Z = Z^*I^*$, the last term reduces to

$$\begin{split} Z(Z'Z)^{-1}Z'Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime} &= Z(Z'Z)^{-1}I^{*\prime}Z^{*\prime}Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime} \\ &= Z(Z'Z)^{-1}Z^{\prime\prime} \end{split}$$
 Hence, $MM^* = I_{NT} - Z^*(Z^{*\prime}Z^*)^{-1}Z^{*\prime} = M^*.$

12.13 This problem differs from problem 12.12 in that $\dot{Z} = \Sigma^{-1/2} Z$ and $\dot{Z}^* = \Sigma^{-1/2} Z^*$. Since $Z = Z^*I^*$, premultiplying both sides by $\Sigma^{-1/2}$ one gets $\dot{Z} = \dot{Z}^*I^*$. Define

$$\dot{\mathbf{M}} = \mathbf{I}_{NT} - \dot{\mathbf{Z}} (\dot{\mathbf{Z}}' \dot{\mathbf{Z}})^{-1} \dot{\mathbf{Z}}'$$

and

$$\dot{M}^* = I_{NT} - \dot{Z}^* (\dot{Z}^{*\prime} \dot{Z}^*)^{-1} \dot{Z}^{*\prime}$$

Both are projection matrices that are symmetric and idempotent. The proof of $\dot{M}\dot{M}^* = \dot{M}^*$ is the same as that of $MM^* = M^*$ given in problem 12.12 with \dot{Z} replacing Z and \dot{Z}^* replacing Z^* .

12.16 a. $\hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y = \beta + (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}u$ with $E(\hat{\beta}_{GLS}) = \beta$ $\tilde{\beta}_{Within} = (X'QX)^{-1}X'Qy = \beta + (X'QX)^{-1}X'Qu \text{ with } E(\tilde{\beta}_{Within}) = \beta$ Therefore, $\hat{q} = \hat{\beta}_{GLS} - \tilde{\beta}_{Within}$ has $E(\hat{q}) = 0$. $cov(\hat{\beta}_{GLS}, \hat{q}) = E(\hat{\beta}_{GLS} - \beta)(\hat{q}')$ $= E(\hat{\beta}_{GLS} - \beta)[(\hat{\beta}_{GLS} - \beta)' - (\tilde{\beta}_{Within} - \beta)']$ $= var(\hat{\beta}_{GLS}) - cov(\hat{\beta}_{GLS}, \tilde{\beta}_{Within})$ $= E[(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}uu'\Omega^{-1}X(X'\Omega^{-1}X)^{-1}]$

 $- E[(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}uu'OX(X'OX)^{-1}]$

$$= (X'\Omega^{-1}X)^{-1} - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\Omega QX(X'QX)^{-1}$$
$$= (X'\Omega^{-1}X)^{-1} - (X'\Omega^{-1}X)^{-1} = 0.$$

b. Using the fact that $\tilde{\beta}_{Within} = -\hat{q} + \hat{\beta}_{GLS}$, one gets

$$\label{eq:var} var(\tilde{\beta}_{Within}) = var(-\hat{q} + \hat{\beta}_{GLS}) = var(\hat{q}) + var(\hat{\beta}_{GLS}),$$

since $cov(\hat{\beta}_{GLS}, \hat{q}) = 0$. Therefore,

$$var(\hat{\mathfrak{q}}) = var(\tilde{\beta}_{Within}) - var(\hat{\beta}_{GLS}) = \sigma_{\nu}^{2} (X'QX)^{-1} - (X'\Omega^{-1}X)^{-1}.$$

Detailed solutions for problems 12.17, 12.18 and 12.21 are given in Baltagi (2009).

References

- Baltagi, B.H. (2009), A Companion to Econometric Analysis of Panel Data (Wiley: Chichester).
- Baltagi, B.H. and W. Krämer (1994), "Consistency, Asymptotic Unbiasedness and Bounds on the Bias of s² in the Linear Regression Model with Error Components Disturbances," Statistical Papers, 35: 323–328.
- Davidson, R. and J.G. MacKinnon, 1993, *Estimation and Inference in Econometrics* (Oxford University Press, New York).
- Fuller, W.A. and G.E. Battese (1974), "Estimation of Linear Models with Cross-Error Structure," Journal of Econometrics, 2: 67–78.
- Nerlove, M. (1971), "A Note on Error Components Models," Econometrica, 39: 383–396.
- Swamy, P.A.V.B. and S.S. Arora (1972), "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error Components Regression Models," Econometrica, 40: 261–275.

CHAPTER 13

Limited Dependent Variables

13.1 The Linear Probability Model

$$\begin{array}{c|cc} y_i & u_i & Prob. \\ \hline 1 & 1-x_i'\beta & \pi_i \\ 0 & -x_i'\beta & 1-\pi_i \end{array}$$

a. Let $\pi_i = \text{Pr}[y_i = 1]$, then $y_i = 1$ when $u_i = 1 - x_i'\beta$ with probability π_i as shown in the table above. Similarly, $y_i = 0$ when $u_i = -x_i'\beta$ with probability $1 - \pi_i$. Hence, $E(u_i) = \pi_i \left(1 - x_i'\beta\right) + (1 - \pi_i) \left(-x_i'\beta\right)$.

For this to equal zero, we get, $\pi_i - \pi_i x_i' \beta + \pi_i x_i' \beta - x_i' \beta = 0$ which gives $\pi_i = x_i' \beta$ as required.

$$\begin{aligned} \mathbf{b}. & \text{var}(\mathbf{u}_i) = \mathrm{E}(\mathbf{u}_i^2) = \left(1 - x_i'\beta\right)^2 \pi_i + \left(-x_i'\beta\right)^2 (1 - \pi_i) \\ &= \left[1 - 2x_i'\beta + \left(x_i'\beta\right)^2\right] \pi_i + \left(x_i'\beta\right)^2 (1 - \pi_i) \\ &= \pi_i - 2x_i'\beta \pi_i + (x_i'\beta)^2 \\ &= \pi_i - \pi_i^2 = \pi_i (1 - \pi_i) = x_i'\beta \left(1 - x_i'\beta\right) \end{aligned}$$

using the fact that $\pi_i = x_i'\beta$.

13.2 a. Since there are no slopes and only a constant, $x_i'\beta = \alpha$ and (13.16) becomes $\log \ell = \sum_{i=1}^n \{y_i \log F(\alpha) + (1-y_i) \log[1-F(\alpha)]\}$ differentiating with respect to α we get

$$\frac{\partial \log \ell}{\partial \alpha} = \sum_{i=1}^n \frac{y_i}{F(\alpha)} \cdot f(\alpha) + \sum_{i=1}^n \frac{(1-y_i)}{1-F(\alpha)} (-f(\alpha)).$$

Setting this equal to zero yields $\sum_{i=1}^{n} (y_i - F(\alpha)) f(\alpha) = 0$.

Therefore, $\hat{F}(\alpha) = \sum_{i=1}^{n} y_i/n = \bar{y}$. This is the proportion of the sample with $y_i = 1$.

b. Using $\hat{F}(\alpha) = \bar{y}$, the value of the maximized likelihood, from (13.16), is

$$\begin{split} \log \ell_{\rm r} &= \sum_{\rm i=1}^{\rm n} \{y_{\rm i} \log \bar{y} + (1\!-\!y_{\rm i}) \log (1\!-\!\bar{y})\} = n\bar{y} \log \bar{y} + (n\!-\!n\bar{y}) \log (1\!-\!\bar{y}) \\ &= n[\bar{y} \log \bar{y} + (1-\bar{y}) \log (1-\bar{y})] \qquad \text{as required.} \end{split}$$

c. For the empirical example in Sect. 13.9, we know that $\bar{y} = 218/595 = 0.366$. Substituting in (13.33) we get,

$$\log \ell_r = n[0.366 \log 0.366 + (1 - 0.366) \log(1 - 0.366)] = -390.918.$$

- **13.3** Union participation example. See Tables 13.3–13.5. These were run using EViews.
 - a. OLS ESTIMATION

LS // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Sum squared resid

Durbin-Watson stat

Log likelihood

ob.
0000
2534
0000
0000
4303
0000
0284
1213
1708
0601
4807
887
222
391

105.8682

-330.6745

1.900963

Schwarz criterion

Prob(F-statistic)

F-statistic

-1.608258

17.79528

0.000000

LOGIT ESTIMATION

LOGIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 4 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.380828	1.338629	3.272624	0.0011
EX	-0.011143	0.009691	-1.149750	0.2507
WKS	-0.108126	0.021428	-5.046037	0.0000
OCC	1.658222	0.264456	6.270325	0.0000
IND	0.181818	0.205470	0.884888	0.3766
SOUTH	-1.044332	0.241107	-4.331411	0.0000
SMSA	0.448389	0.218289	2.054110	0.0404
MS	0.604999	0.365043	1.657336	0.0980
FEM	-0.772222	0.489665	-1.577040	0.1153
ED	-0.090799	0.049227	-1.844501	0.0656
BLK	0.355706	0.394794	0.900992	0.3680

Log likelihood -312.3367 Obs with Dep=1 218 Obs with Dep=0 377

Variable	Mean All	Mean D=1	Mean D=0
С	1.000000	1.000000	1.000000
EX	22.85378	23.83028	22.28912
WKS	46.45210	45.27982	47.12997
OCC	0.512605	0.766055	0.366048
IND	0.405042	0.513761	0.342175
SOUTH	0.292437	0.197248	0.347480
SMSA	0.642017	0.646789	0.639257
MS	0.805042	0.866972	0.769231
FEM	0.112605	0.059633	0.143236
ED	12.84538	11.84862	13.42175
BLK	0.072269	0.082569	0.066313

PROBIT ESTIMATION

PROBIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.516784	0.762606	3.300242	0.0010
EX	-0.006932	0.005745	-1.206501	0.2281
WKS	-0.060829	0.011785	-5.161707	0.0000
OCC	0.955490	0.152136	6.280522	0.0000
IND	0.092827	0.122773	0.756089	0.4499
SOUTH	-0.592739	0.139100	-4.261243	0.0000
SMSA	0.260701	0.128629	2.026756	0.0431
MS	0.350520	0.216282	1.620664	0.1056
FEM	-0.407026	0.277034	-1.469226	0.1423
ED	-0.057382	0.028842	-1.989533	0.0471
BLK	0.226482	0.228843	0.989683	0.3227

Log likelihood -313.3795 Obs with Dep=1 218 Obs with Dep=0 377

d. Dropping the industry variable (IND).

OLS ESTIMATION

LS // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EX WKS	1.216753 -0.001848 -0.017874	0.225390 0.001718 0.003417	5.398425 -1.075209 -5.231558	0.0000 0.2827 0.0000
OCC SOUTH	0.322215 -0.173339	0.046119 0.039580	6.986568 -4.379418	0.0000 0.0000
SMSA	0.085043	0.038446	2.212014	0.0274
MS FEM	0.100697 -0.114088	0.063722 0.078947	1.580267 -1.445122	0.1146 0.1490
ED	-0.017021	0.008524	-1.996684	0.0463
BLK	0.048167	0.071061	0.677822	0.4982
R-squared	0	232731 Mear	dependent var	0.366387

R-squared	0.232731	Mean dependent var	0.366387
Adjusted R-squared	0.220927	S.D. dependent var	0.482222
S.E. of regression	0.425634	Akaike info criterion	-1.691687
Sum squared resid	105.9811	Schwarz criterion	-1.617929
Log likelihood	-330.9916	F-statistic	19.71604
Durbin-Watson stat	1.907714	Prob(F-statistic)	0.000000

LOGIT ESTIMATION

LOGIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 4 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.492957	1.333992	3.368053	0.0008
EX	-0.010454	0.009649	-1.083430	0.2791
WKS	-0.107912	0.021380	-5.047345	0.0000
OCC	1.675169	0.263654	6.353652	0.0000
SOUTH	-1.058953	0.240224	-4.408193	0.0000
SMSA	0.449003	0.217955	2.060074	0.0398
MS	0.618511	0.365637	1.691599	0.0913
FEM	-0.795607	0.489820	-1.624285	0.1049
ED	-0.096695	0.048806	-1.981194	0.0480
BLK	0.339984	0.394027	0.862845	0.3886

Log likelihood -312.7267 Obs with Dep=1 218 Obs with Dep=0 377

Variable	Mean All	Mean D=1	Mean D=0
С	1.000000	1.000000	1.000000
EX	22.85378	23.83028	22.28912
WKS	46.45210	45.27982	47.12997
OCC	0.512605	0.766055	0.366048
SOUTH	0.292437	0.197248	0.347480
SMSA	0.642017	0.646789	0.639257
MS	0.805042	0.866972	0.769231
FEM	0.112605	0.059633	0.143236
ED	12.84538	11.84862	13.42175
BLK	0.072269	0.082569	0.066313

PROBIT ESTIMATION

PROBIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.570491	0.759181	3.385875	0.0008
EX	-0.006590	0.005723	-1.151333	0.2501
WKS	-0.060795	0.011777	-5.162354	0.0000
OCC	0.967972	0.151305	6.397481	0.0000
SOUTH	-0.601050	0.138528	-4.338836	0.0000
SMSA	0.261381	0.128465	2.034640	0.0423
MS	0.357808	0.216057	1.656085	0.0982
FEM	-0.417974	0.276501	-1.511657	0.1312
ED	-0.060082	0.028625	-2.098957	0.0362
BLK	0.220695	0.228363	0.966423	0.3342

Log likelihood -313.6647Obs with Dep = 1 218 Obs with Dep = 0 377

f. The restricted regressions omitting IND, FEM and BLK are given below:

LS // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

=======		========	=======	========
Variable	Coefficient	Std.Error	t-Statistic	Prob.
======		========	========	========
С	1.153900	0.218771	5.274452	0.0000
EX	-0.001840	0.001717	-1.071655	0.2843
WKS	-0.017744	0.003412	-5.200421	0.0000
OCC	0.326411	0.046051	7.088110	0.0000
SOUTH	-0.171713	0.039295	-4.369868	0.0000
SMSA	0.086076	0.038013	2.264382	0.0239
MS	0.158303	0.045433	3.484351	0.0005
ED	-0.017204	0.008507	-2.022449	0.0436

=========	========	================	=======
R-squared	0.229543	Mean dependent var	0.366387
Adjusted R-squared	0.220355	S.D. dependent var	0.482222
S.E. of regression	0.425790	Akaike info criterion	-1.694263
Sum squared resid	106.4215	Schwarz criterion	-1.635257
Log likelihood	-332.2252	F-statistic	24.98361
Durbin-Watson stat	1.912059	Prob(F-statistic)	0.000000
=========	========	=======================================	=======

LOGIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 4 iterations

======= Variable	Coefficient	Std.Error	t-Statistic	Prob.
=======	========	========	========	======
С	4.152595	1.288390	3.223088	0.0013
EX	-0.011018	0.009641	-1.142863	0.2536
WKS	-0.107116	0.021215	-5.049031	0.0000
OCC	1.684082	0.262193	6.423059	0.0000
SOUTH	-1.043629	0.237769	-4.389255	0.0000
SMSA	0.459707	0.215149	2.136687	0.0330
MS	0.975711	0.272560	3.579800	0.0004
ED	-0.100033	0.048507	-2.062229	0.0396
======	========	========		======

Log likelihood -314.2744 Obs with Dep=1 218 Obs with Dep=0 377

=======	========	=========	=======
Variable	Mean All	Mean $D=1$	Mean D=0
=======	========	=========	========
С	1.000000	1.000000	1.000000
EX	22.85378	23.83028	22.28912
WKS	46.45210	45.27982	47.12997
OCC	0.512605	0.766055	0.366048
SOUTH	0.292437	0.197248	0.347480
SMSA	0.642017	0.646789	0.639257
MS	0.805042	0.866972	0.769231
ED	12.84538	11.84862	13.42175
======	========	=========	=======

PROBIT // Dependent Variable is UNION

Sample: 1 595

Included observations: 595

Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EX WKS OCC SOUTH SMSA MS ED	2.411706 -0.006986 -0.060491 0.971984 -0.580959 0.273201 0.545824 -0.063196	0.741327 0.005715 0.011788 0.150538 0.136344 0.126988 0.155812 0.028464	3.253228 -1.222444 -5.131568 6.456745 -4.260988 2.151388 3.503105 -2.220210	0.0012 0.2220 0.0000 0.0000 0.0000 0.0319 0.0005 0.0268
======	========	=======	========	=======

Log likelihood -315.1770 Obs with Dep=1 218 Obs with Dep=0 377

13.4 Occupation regression.

a. OLS Estimation

LS // Dependent Variable is OCC

Sample: 1 595

Included observations: 595

Variable	Coefficient	Std	. Error	t-Statistic	Prob.
С	2.111943	0.1	82340	11.58245	0.0000
ED	-0.111499	0.0	06108	-18.25569	0.0000
WKS	-0.001510	0.0	03044	-0.496158	0.6200
EX	-0.002870	0.0	01533	-1.872517	0.0616
SOUTH	-0.068631	0.0	35332	-1.942452	0.0526
SMSA	-0.079735	0.0	34096	-2.338528	0.0197
IND	0.091688	0.0	33693	2.721240	0.0067
MS	0.006271	0.0	56801	0.110402	0.9121
FEM	-0.064045	0.0	70543	-0.907893	0.3643
BLK	0.068514	0.0	63283	1.082647	0.2794
R-square	ed	0.434196	Mean de	ependent var	0.512605
	<u> </u>	0.101100		oponaoni vai	0.012000

R-squared	0.434196	Mean dependent var	0.512605
Adjusted R-squared	0.425491	S.D. dependent var	0.500262
S.E. of regression	0.379180	Akaike info criterion	-1.922824
Sum squared resid	84.10987	Schwarz criterion	-1.849067
Log likelihood	-262.2283	F-statistic	49.88075
Durbin-Watson stat	1.876105	Prob(F-statistic)	0.000000

LOGIT ESTIMATION

LOGIT // Dependent Variable is OCC

Sample: 1 595

Included observations: 595

Convergence achieved after 5 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	11.62962	1.581601	7.353069	0.0000
ED	-0.806320	0.070068	-11.50773	0.0000
WKS	-0.008424	0.023511	-0.358297	0.7203
EX	-0.017610	0.011161	-1.577893	0.1151
SOUTH	-0.349960	0.260761	-1.342073	0.1801
SMSA	-0.601945	0.247206	-2.434995	0.0152
IND	0.689620	0.241028	2.861157	0.0044

MS	-0.178865	0.417192	-0.428735	0.6683
FEM	-0.672117	0.503002	-1.336212	0.1820
BLK	0.333307	0.441064	0.755687	0.4501

Log likelihood -244.2390 Obs with Dep=1 305 Obs with Dep=0 290

Variable	Mean All	Mean D=1	Mean D=0
С	1.000000	1.000000	1.000000
ED	12.84538	11.10164	14.67931
WKS	46.45210	46.40984	46.49655
EX	22.85378	23.88525	21.76897
SOUTH	0.292437	0.298361	0.286207
SMSA	0.642017	0.554098	0.734483
IND	0.405042	0.524590	0.279310
MS	0.805042	0.816393	0.793103
FEM	0.112605	0.095082	0.131034
BLK	0.072269	0.091803	0.051724

PROBIT ESTIMATION

PROBIT // Dependent Variable is OCC

Sample: 1 595

Included observations: 595

Convergence achieved after 4 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.416131	0.847427	7.571312	0.0000
ED	-0.446740	0.034458	-12.96473	0.0000
WKS	-0.003574	0.013258	-0.269581	0.7876
EX	-0.010891	0.006336	-1.718878	0.0862
SOUTH	-0.240756	0.147920	-1.627608	0.1041
SMSA	-0.327948	0.139849	-2.345016	0.0194
IND	0.371434	0.135825	2.734658	0.0064
MS	-0.097665	0.245069	-0.398522	0.6904
FEM	-0.358948	0.296971	-1.208697	0.2273
BLK	0.215257	0.252219	0.853453	0.3938

Log likelihood -246.6581 Obs with Dep=1 305 Obs with Dep=0 290

13.5 Truncated Uniform Density.

$$\Pr\left[x > -\frac{1}{2}\right] = \int_{-1/2}^{1} \frac{1}{2} dx = \frac{1}{2} \left[\frac{3}{2}\right] = \frac{3}{4}. \text{ So that}$$

$$f\left(x/x > -\frac{1}{2}\right) = \frac{f(x)}{\Pr\left[x > -\frac{1}{2}\right]} = \frac{1/2}{3/4} = \frac{2}{3} \text{ for } -\frac{1}{2} < x < 1.$$

$$\mathbf{b.} \ E\left[x/x > -\frac{1}{2}\right] = \int_{-1/2}^{1} xf\left(x/x > -\frac{1}{2}\right) dx = \int_{-1/2}^{1} x \cdot \frac{2}{3} dx = \frac{2}{3} \cdot \frac{1}{2} [x^{2}]_{-1/2}^{1}$$

$$= \frac{1}{3} \left[1 - \frac{1}{4}\right] = \frac{1}{4}$$

$$E(x) = \int_{-1}^{1} x \cdot \frac{1}{2} dx = \frac{1}{2} \cdot \frac{1}{2} \cdot [1 - (-1)^{2}] = 0.$$
Therefore, $\frac{1}{4} = E\left[x/x > -\frac{1}{2}\right] > E(x) = 0.$ Because the density is truncated from below, the new mean shifts to the right.

c.
$$E(x^2) = \int_{-1}^{1} x^2 \cdot \frac{1}{2} dx = \frac{1}{2} \cdot \frac{1}{3} \cdot [x^3]_{-1}^1 = \frac{1}{3}$$

$$\begin{aligned} \operatorname{var}(\mathbf{x}) &= \mathrm{E}(\mathbf{x}^2) - (\mathrm{E}(\mathbf{x}))^2 = \mathrm{E}(\mathbf{x}^2) = \frac{1}{3} \\ &\mathrm{E}\left(\mathbf{x}^2/\mathbf{x} > -\frac{1}{2}\right) = \int_{-1/2}^1 \mathbf{x}^2 \cdot \frac{2}{3} \cdot d\mathbf{x} = \frac{2}{3} \cdot \frac{1}{3} [\mathbf{x}^3]_{-1/2}^1 = \frac{2}{9} \left[1 + \frac{1}{8}\right] = \frac{1}{4} \\ &\mathrm{var}\left(\mathbf{x}/\mathbf{x} > -\frac{1}{2}\right) = \mathrm{E}\left(\mathbf{x}^2/\mathbf{x} > -\frac{1}{2}\right) - \left(\mathrm{E}\left[\mathbf{x}/\mathbf{x} > -\frac{1}{2}\right]\right)^2 = \frac{1}{4} - \left(\frac{1}{4}\right)^2 \\ &= \frac{1}{4} - \frac{1}{16} = \frac{3}{16} < \operatorname{var}(\mathbf{x}) = \frac{1}{3}. \end{aligned}$$

Therefore, as expected, truncation reduces the variance.

13.6 Truncated Normal Density.

a. From the Appendix, Eq. (A.1), using $c=1, \ \mu=1, \ \sigma^2=1$ and $\Phi(0)=\frac{1}{2}, \ \text{we get}, \ f(x/x>1)=\frac{\varphi(x-1)}{1-\Phi(0)}=2\varphi(x-1) \ \text{for} \ x>1$ Similarly, using Eq. (A.2), for $c=1, \ \mu=1 \ \text{and} \ \sigma^2=1 \ \text{with} \ \Phi(0)=\frac{1}{2},$ we get $f(x/x<1)=\frac{\varphi(x-1)}{\Phi(0)}=2\varphi(x-1) \ \text{for} \ x<1$

b. The conditional mean is given in (A.3) and for this example we get

$$E(x/x > 1) = 1 + 1 \cdot \frac{\phi(c^*)}{1 - \Phi(c^*)} = 1 + \frac{\phi(0)}{1 - \Phi(0)} = 1 + 2\phi(0)$$
$$= 1 + \frac{2}{\sqrt{2\pi}} \approx 1.8 > 1 = E(x)$$

with $c^* = \frac{c - \mu}{\sigma} = \frac{1 - 1}{1} = 0$. Similarly, using (A.4) we get,

$$E(x/x < 1) = 1 - 1 \cdot \frac{\phi(c^*)}{\Phi(c^*)} = 1 - \frac{\phi(0)}{1/2} = 1 - 2\phi(0) = 1 - \frac{2}{\sqrt{2\pi}}$$
$$\approx 1 - 0.8 = 0.2 < 1 = E(x).$$

c. From (A.5) we get, $var(x/x > 1) = 1(1 - \delta(c^*)) = 1 - \delta(0)$ where

$$\delta(0) = \frac{\phi(0)}{1 - \Phi(0)} \left[\frac{\phi(0)}{1 - \Phi(0)} - 0 \right] \qquad \text{for} \quad x > 1$$
$$= 2\phi(0)[2\phi(0)] = 4\phi^2(0) = \frac{4}{2\pi} = \frac{2}{\pi} = 0.64 \qquad \text{for} \quad x > 1$$

From (A.6), we get $var(x/x > 1) = 1 - \delta(0)$ where

$$\delta(0) = \frac{-\phi(0)}{\Phi(0)} \left[\frac{-\phi(0)}{\Phi(0)} - 0 \right] = 4\phi^2(0) = \frac{4}{2\pi} = 0.64 \quad \text{for} \quad x < 1.$$

Both conditional truncated variances are less than the unconditional var(x) = 1.

13.7 Censored Normal Distribution.

a. From the Appendix we get,

$$\begin{split} E(y) &= \text{Pr}[y = c] \; E(y/y = c) + \text{Pr}[y > c] \; E(y/y > c) \\ &= c \Phi(c^*) + (1 - \Phi(c^*)) E(y^*/y^* > c) \\ &= c \Phi(c^*) + (1 - \Phi(c^*)) \left[\mu + \sigma \frac{\varphi(c^*)}{1 - \Phi(c^*)} \right] \end{split}$$

where $E(y^*/y^* > c)$ is obtained from the mean of a truncated normal density, see (A.3).

b. Using the result on conditional variance given in Chap. 2 we get, var(y) = E(conditional variance) + var(conditional mean). But

$$E(\text{conditional variance}) = P[y = c] \text{ } var(y/y = c) + P[y > c] \text{ } var(y/y > c)$$

$$= \Phi(c^*) \cdot 0 + (1 - \Phi(c^*))\sigma^2(1 - \delta(c^*))$$

where var(y/y > c) is given by (A.5).

var(conditional mean) =
$$P[y = c] \cdot (c - E(y))^2 + Pr(y > c)[E(y/y>c) - E(y)]^2$$

= $\Phi(c^*)(c - E(y))^2 + [1 - \Phi(c^*)][E(y/y > c) - E(y)]^2$

where E(y) is given by (A.7) and E(y/y > c) is given by (A.3). This gives

$$var(conditional\ mean) = \Phi(c^*) \{c - c\Phi(c^*) - (1 - \Phi(c^*))\}$$

$$\begin{split} \left[\mu + \sigma \frac{\varphi(c^*)}{1 - \Phi(c^*)}\right]^2 \\ + \left[1 - \Phi(c^*)\right] \left\{\mu + \sigma \frac{\varphi(c^*)}{1 - \Phi(c^*)} - c\Phi(c^*) \right. \\ - \left. (1 - \Phi(c^*)) \left[\mu + \frac{\sigma\varphi(c^*)}{1 - \Phi(c^*)}\right]\right\}^2 \\ = \Phi(c^*) \left\{ (1 - \Phi(c^*)) \left(c - \mu - \sigma \frac{\varphi(c^*)}{1 - \Phi(c^*)}\right)\right\}^2 \\ + \left. (1 - \Phi(c^*)) \left\{\Phi(c^*) \left(c - \mu - \sigma \frac{\varphi(c^*)}{1 - \Phi(c^*)}\right)\right\}^2 \\ = \left\{\Phi(c^*)[1 - \Phi(c^*)]^2 \right. \\ + \left. (1 - \Phi(c^*))\Phi^2(c^*)\right\}\sigma^2 \left[c^* - \frac{\varphi(c^*)}{1 - \Phi(c^*)}\right]^2 \\ = \Phi(c^*)[1 - \Phi(c^*)]\sigma^2 \left[c^* - \frac{\varphi(c^*)}{1 - \Phi(c^*)}\right]^2. \end{split}$$

Summing the two terms, we get the expression in (A.8)

$$var(y) = \sigma^2 (1 - \Phi(c^*)) \left\{ 1 - \delta(c^*) + \left[c^* - \frac{\varphi(c^*)}{1 - \Phi(c^*)} \right]^2 \Phi(c^*) \right\}.$$

c. For the special case where c=0 and $c^*=-\mu/\sigma$, the mean in (A.7) simplifies to

$$\begin{split} E(y) &= 0.\Phi(c^*) + \left(1 - \Phi\left(-\frac{\mu}{\sigma}\right)\right) \left[\mu + \frac{\sigma \varphi(-\mu/\sigma)}{1 - \Phi(-\mu/\sigma)}\right] \\ &= \Phi\left(\frac{\mu}{\sigma}\right)\right) \left[\mu + \sigma \frac{\varphi(\mu/\sigma)}{\Phi(\mu/\sigma)}\right] \end{split}$$

as required. Similarly, from part (b), using
$$c^* = -\mu/\sigma$$
 and $\Phi(-\mu/\sigma) = \Phi(\mu/\sigma)$, we get $var(y) = \sigma^2 \Phi\left(\frac{\mu}{\sigma}\right) \left[1 - \delta\left(-\frac{\mu}{\sigma}\right) + \left(-\frac{\mu}{\sigma} - \frac{\phi(-\mu/\sigma)}{1 - \Phi(-\mu/\sigma)}\right)^2 \Phi\left(-\frac{\mu}{\sigma}\right)\right]$ where $\delta\left(-\frac{\mu}{\sigma}\right) = \frac{\phi(-\mu/\sigma)}{1 - \Phi(-\mu/\sigma)}$
$$\left[\frac{\phi(-\mu/\sigma)}{1 - \Phi(-\mu/\sigma)} + \frac{\mu}{\sigma}\right] = \frac{\phi(\mu/\sigma)}{\Phi(\mu/\sigma)} \left[\frac{\phi(-\mu/\sigma)}{\Phi(\mu/\sigma)} + \frac{\mu}{\sigma}\right].$$

- 13.8 Fixed vs. adjustable mortgage rates. This is based on Dhillon et al. (1987).
 - a. The OLS regression of Y on all variables in the data set is given below. This was done using EViews. The $R^2=0.434$ and the F-statistic for the significance of all slopes is equal to 3.169. This is distributed as F(15,62) under the null hypothesis. This has a p-value of 0.0007. Therefore, we reject H_0 and we conclude that this is a significant regression. As explained in Sect. 13.6, using BRMR this also rejects the insignificance of all slopes in the logit specification.

Unrestricted Least Squares

LS // Dependent Variable is Y Sample: 1 78 Included observations: 78

Variable	Coefficient	Std. Erro	r t-Statistic	Prob.
	1.272832	 1.411806	0.901563	0.3708
BA	0.000398	0.007307	0.054431	0.9568
BS	0.017084	0.020365	0.838887	0.4048
NW	-0.036932	0.025320	-1.458609	0.1497
FI	-0.221726	0.092813	-2.388949	0.0200
PTS	0.178963	0.091050	1.965544	0.0538
MAT	0.214264	0.202497	1.058108	0.2941
MOB	0.020963	0.009194		0.0261
MC	0.189973	0.150816		0.2125
FTB	-0.013857	0.136127		0.9192
SE	0.188284	0.360196		0.6030
YLD	0.656227	0.366117		0.0779
MARG	0.129127	0.054840		0.0217
CB	0.172202	0.137827		0.2162
STL	-0.001599	0.005994		0.7905
LA	-0.001761	0.007801	-0.225725	0.8222
=======	:======		=======================================	=======
R-squared		0.433996	Mean dependent var	0.589744
Adjusted R-s	quared	0.297059	S.D. dependent var	0.495064

R-squared	0.433996	Mean dependent var	0.589744
Adjusted R-squared	0.297059	S.D. dependent var	0.495064
S.E. of regression	0.415069	Akaike İnfo criter	-1.577938
Sum squared resid	10.68152	Schwarz criterion	-1.094510
Log likelihood	-33.13764	F-statistic	3.169321
Durbin-Watson stat	0.905968	Prob(F-statistic)	0.000702
==========	========	==============	=======

Plot of Y and YHAT

b. The URSS from part (a) is 10.6815 while the RRSS by including only the cost variables is 14.0180 as shown in the enclosed output from EViews. The Chow-F statistic for insignificance of 10 personal characteristics variables is

$$F = \frac{(14.0180 - 10.6815)/10}{10.6815/62} = 1.9366$$

which is distributed as F(10,62) under the null hypothesis. This has a 5% critical value of 1.99. Hence, we cannot reject H_o . The principal agent theory suggests that personal characteristics are important in making this mortgage choice. Briefly, this theory suggests that information is asymmetric and the borrower knows things about himself or herself that the lending institution does not. Not rejecting H_o does not provide support for the principal agent theory.

TESTING THE EFFICIENT MARKET HYPOTHESIS WITH THE LINEAR PROBABILITY MODEL

Restricted Least Squares

LS // Dependent Variable is Y

Sample: 178

Included observations: 78

Variable	Coefficient	Std. Er	ror t-Stati	stic Prob.		
FI MARG YLD PTS MAT C	-0.237228 0.127029 0.889908 0.054879 0.069466 1.856435	0.0785 0.0514 0.3320 0.0721 0.1967 1.2897	96 2.466 37 2.680 65 0.760 27 0.353	784 0.0160 151 0.0091 465 0.4495 108 0.7250		
R-squared Adjusted R-squa S.E. of regressio Sum squared res Log likelihood Durbin-Watson s	n sid	0.257199 0.205616 0.441242 14.01798 -43.73886 0.509361	Mean dependent S.D. dependent v Akaike info criter Schwarz criterion F-statistic Prob(F-statistic)	var 0.495064 -1.562522		

c. The logit specification output using EViews is given below. The unrestricted log-likelihood is equal to -30.8963. The restricted specification output is also given showing a restricted log-likelihood of -41.4729. Therefore, the LR test statistic is given by LR = 2(41.4729 - 30.8963) = 21.1532 which is distributed as χ^2_{10} under the null hypothesis. This is significant given that the 5% critical value of χ^2_{10} is 18.31. This means that the logit specification does not reject the principal agent theory as personal characteristics are not jointly insignificant.

TESTING THE EFFICIENT MARKET HYPOTHESIS WITH THE LOGIT MODEL

Unrestricted Logit Model

LOOT // Dogg dogs Modelle is M

LOGIT // Dependent Variable is Y

Sample: 1 78

Included observations: 78

Convergence achieved after 5 iterations

======		========	========	=======
Variable	Coefficient	Std. Error	t-Statistic	Prob.
======		========	========	======
С	4.238872	10.47875	0.404521	0.6872
BA	0.010478	0.075692	0.138425	0.8904
BS	0.198251	0.172444	1.149658	0.2547
NW	-0.244064	0.185027	-1.319072	0.1920
FI	-1.717497	0.727707	-2.360149	0.0214
PTS	1.499799	0.719917	2.083294	0.0414
MAT	2.057067	1.631100	1.261153	0.2120
MOB	0.153078	0.097000	1.578129	0.1196
MC	1.922943	1.182932	1.625575	0.1091
FTB	-0.110924	0.983688	-0.112763	0.9106
SE	2.208505	2.800907	0.788496	0.4334
YLD	4.626702	2.919634	1.584686	0.1181
MARG	1.189518	0.485433	2.450426	0.0171
CB	1.759744	1.242104	1.416744	0.1616
STL	-0.031563	0.051720	-0.610265	0.5439
LA	-0.022067	0.061013	-0.361675	0.7188
=======				

Log likelihood -30.89597 Obs with Dep=1 46 Obs with Dep=0 32

Variable Mean All		Mean $D=1$	Mean $D=0$			
======	=======	========	=======			
С	1.000000	1.000000	1.000000			
BA	36.03846	35.52174	36.78125			
BS	16.44872	15.58696	17.68750			
NW	3.504013	2.075261	5.557844			
FI	13.24936	13.02348	13.57406			
PTS	1.497949	1.505217	1.487500			
MAT	1.058333	1.027609	1.102500			
MOB	4.205128	4.913043	3.187500			
MC	0.602564	0.695652	0.468750			
FTB	0.615385	0.521739	0.750000			
SE	0.102564	0.043478	0.187500			
YLD	1.606410	1.633261	1.567813			
MARG	2.291923	2.526304	1.955000			
CB	0.358974	0.478261	0.187500			
STL	13.42218	11.72304	15.86469			
LA	5.682692	4.792174	6.962812			

Restricted Logit Model

LOGIT // Dependent Variable is Y

Sample: 178

Included observations: 78

Convergence achieved after 4 iterations

Variable C	Coefficient	Std. Error	t-Statistic	Prob.
MARG 0. YLD 4. PTS 0. MAT 0.	1.264608	0.454050	-2.785172	0.0068
	.717847	0.313845	2.287265	0.0251
	.827537	1.958833	2.464497	0.0161
	.359033	0.423378	0.848019	0.3992
	.550320	1.036613	0.530883	0.5971
	.731755	7.059485	0.953576	0.3435

Log likelihood -41.47292 Obs with Dep=1 46 Obs with Dep=0 32

======	Mean All	=========	=======
Variable		Mean D=1	Mean D=0
FI	13.24936	13.02348	13.57406
MARG	2.291923	2.526304	1.955000
YLD	1.606410	1.633261	1.567813
PTS	1.497949	1.505217	1.487500
MAT	1.058333	1.027609	1.102500
C	1.000000	1.000000	1.000000

d. Similarly, the probit specification output using EViews is given below. The unrestricted log-likelihood is equal to -30.7294. The restricted log-likelihood is -41.7649. Therefore, the LR test statistic is given by LR = 2(41.7649 - 30.7294) = 22.0710 which is distributed as χ^2_{10} under the null hypothesis. This is significant given that the 5% critical value of χ^2_{10} is 18.31. This means that the probit specification does not reject the principal agent theory as personal characteristics are not jointly insignificant.

TESTING THE EFFICIENT MARKET HYPOTHESIS WITH THE PROBIT MODEL

Unrestricted Probit Model

PROBIT // Dependent Variable is Y

Sample: 1 78

Included observations: 78

Convergence achieved after 5 iterations

====== Variable	Coefficien	Std. Error	t-Statistic	Prob.			
====== C	3.107820	5.954673	0.521913	0.6036			
BA	0.003978	0.044546	0.089293	0.9291			
BS	0.108267	0.099172	1.091704	0.2792			
NW	-0.128775	0.103438	-1.244943	0.2178			
FI	-1.008080	0.418160	-2.410750	0.0189			
PTS	0.830273	0.379895	2.185533	0.0326			
MAT	1.164384	0.924018	1.260131	0.2123			
MOB	0.093034	0.056047	1.659924	0.1020			
MC	1.058577	0.653234	1.620518	0.1102			
FTB	-0.143447	0.550471	-0.260589	0.7953			
SE	1.127523	1.565488	0.720237	0.4741			
YLD	2.525122	1.590796	1.587332	0.1175			
MARG	0.705238	0.276340	2.552069	0.0132			
CB	1.066589	0.721403	1.478493	0.1443			
STL	-0.016130	0.029303	-0.550446	0.5840			
LA	-0.014615	0.035920	-0.406871	0.6855			

Log likelihood -30.72937 Obs with Dep=1 46 Obs with Dep=0 32

Restricted Probit Model

PROBIT // Dependent Variable is Y

Sample: 178

Included observations: 78

Convergence achieved after 3 iterations

======= Variable	coefficient	Std. Error	t-Statistic	Prob.
====== Fl	 -0.693584	0.244631	-2.835225	0.0059
MARG	0.419997	0.175012	2.399811	0.0190
YLD PTS	2.730187 0.235534	1.099487 0.247390	2.483146 0.952076	0.0154 0.3442
MAT	0.221568	0.610572	0.362886	0.7178
C =======	3.536657 ========	4.030251	0.877528 ========	0.3831

Log likelihood -41.76443 Obs with Dep=1 46 Obs with Dep=0 32

13.13 Problem Drinking and Employment. The following Stata output replicates the OLS results given in Table 5 of Mullahy and Sindelar (1996, p. 428) for males. The first regression is for employment, given in column 1 of Table 5 of the paper, and the second regression is for unemployment, given in column 3 of Table 5 of the paper. Robust standard errors are reported.

. reg emp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Regression with robust standard errors	Number of obs	=	9822
	F (20, 9801)	=	46.15
	Prob > F	=	0.0000
	R-squared	=	0.1563
	Root MSE	=	.27807

emp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
hvdrnk90	0155071	.0101891	-1.52	0.128	0354798	.0044657
ue88	0090938	.0022494	-4.04	0.000	013503	
age	.0162668	.0029248	5.56	0.000	.0105336	.0220001
agesq	0002164	.0000362	-5.98	0.000	0002873	0001455

educ	.0078258	.0011271	6.94	0.000	.0056166	.0100351
married	.0505682	.0098396	5.14	0.000	.0312805	.0698558
famsize	.0020612	.0021796	0.95	0.344	0022113	.0063336
white	.0773332	.0104289	7.42	0.000	.0568905	.097776
hlstat1	.5751898	.0306635	18.76	0.000	.5150831	.6352965
hlstat2	.5728	.0306427	18.69	0.000	.512734	.632866
hlstat3	.537617	.0308845	17.41	0.000	.4770769	.598157
hlstat4	.3947391	.0354291	11.14	0.000	.3252908	.4641874
region1	0013608	.0094193	-0.14	0.885	0198247	.017103
region2	.0050446	.0084215	0.60	0.549	0114633	.0215526
region3	.0254332	.0081999	3.10	0.002	.0093596	.0415067
msa1	0159492	.0083578	-1.91	0.056	0323322	.0004337
msa2	.0073081	.0072395	1.01	0.313	0068827	.0214989
q1	0155891	.0079415	-1.96	0.050	0311561	000022
q2	0068915	.0077786	-0.89	0.376	0221392	.0083561
q3	0035867	.0078474	-0.46	0.648	0189692	.0117957
_cons	0957667	.0623045	-1.54	0.124	2178964	.0263631

. reg unemp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Regression with robust standard errors	Number of obs $F(20, 9801)$ $Prob > F$	= = =	9822 3.37 0.0000
	R-squared	=	0.0099
	Root MSE	=	.17577

emp	 Coef.	Robust Std. Err.	t	P> t	[95% Co	nf. Interval]
hvdrnk90 ue88 age agesq educ married famsize white hIstat1 hIstat2 hIstat3 region1 region2 region3	.0100022 .0045029 0014753 .0000123 0028141 0092854 .0003859 0246801 .0150194 .0178594 .0225153 .0178865 .0007911 0029056 0065005	.0066807 .0014666 .0017288 .0000206 .0006307 .0060161 .0013719 .0063618 .0113968 .0114658 .0116518 .0136228 .005861 .0053543	1.50 3.07 -0.85 0.60 -4.46 -1.54 0.28 -3.88 1.32 1.56 1.93 0.13 -0.54 -1.28	0.134 0.002 0.393 0.551 0.000 0.123 0.778 0.000 0.188 0.119 0.053 0.189 0.893 0.587 0.202	0030934 .0016281 0048641 0000281 0040504 0210782 0023033 0371506 0073206 0046097 00088171 0106977 0134011	.0230977 .0073776 .0019134 .0000527 0015777 .0025073 .0030751 0122096 .0373594 .0403285 .0453552 .0445901 .01228 .0075898
msa1	0008801	.0052004	-0.17	0.866	011074	.0093139

msa2	0055184	.0047189	-1.17	0.242	0147685	.0037317
q1	.0145704	.0051986	2.80	0.005	.00438	.0247607
q2	.0022831	.0047579	0.48	0.631	0070434	.0116096
q3	.000043	.0047504	0.01	0.993	0092687	.0093547
_cons	.0927746	.0364578	2.54	0.011	.0213098	.1642394

The following Stata output replicates the OLS results given in Table 6 of Mullahy and Sindelar (1996, p. 429) for females. The first regression is for employment, given in column 1 of Table 6 of the paper, and the second regression is for unemployment, given in column 3 of Table 6 of the paper. Robust standard errors are reported.

. reg emp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Regression with robust standard errors	Number of obs	=	12534
	F(20, 12513)	=	117.99
	Prob > F	=	0.0000
	R-squared	=	0.1358
	Root MSE	=	.42932

emp	 Coef.	Robust Std. Err.	t	P> t	[95% Con	f. Interval]
hvdrnk90 ue88	0168969	.0120102	0.50 -5.80	0.618 0.000	017554 0226028	.0295296 011191
age agesg	.04635 0005898	.0036794 .0000449	12.60 -13.13	0.000 0.000	.0391378 0006778	.0535622 0005018
educ	.0227162	.0015509	14.65	0.000	.0196762	.0257563
married famsize	.0105416 0662794	.0111463 .0030445	0.95 -21.77	0.344 0.000	0113068 072247	.0323901 0603118
white	0077594	.0104111	-0.75	0.456	0281668	.012648
hvdrnk90 ue88	.0059878 0168969	.0120102 .002911	0.50 -5.80	0.618 0.000	017554 0226028	.0295296 011191
age	.04635	.002911	-5.60 12.60	0.000	.0391378	.0535622
agesq	0005898	.0000449	-13.13	0.000	0006778	0005018
educ married	.0227162 .0105416	.0015509 .0111463	14.65 0.95	0.000 0.344	.0196762 0113068	.0257563 .0323901
famsize	0662794	.0030445	-21.77	0.000	072247	0603118
white hlstat1	0077594 .4601695	.0104111 .0253797	-0.75 18.13	0.456 0.000	0281668 .4104214	.012648 .5099177
hlstat2	.4583823	.0252973	18.12	0.000	.4104214	.5079689

hlstat3	.4096243	.0251983	16.26	0.000	.3602317	.4590169
hlstat4	.2494427	.027846	8.96	0.000	.1948602	.3040251
region1	0180596	.0129489	-1.39	0.163	0434415	.0073223
region2	.0095951	.0114397	0.84	0.402	0128285	.0320186
region3	.0465464	.0108841	4.28	0.000	.0252119	.067881
msa1	0256183	.0109856	-2.33	0.020	0471518	0040848
msa2	.0051885	.0103385	0.50	0.616	0150765	.0254534
q1	0058134	.0107234	-0.54	0.588	0268329	.0152061
q2	0061301	.0109033	-0.56	0.574	0275022	.0152421
q3	0168673	.0109023	-1.55	0.122	0382376	.0045029
_cons	5882924	.0782545	-7.52	0.000	7416831	4349017

. reg unemp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Regression with robust standard errors Number of obs = F(20, 12513) =

5.99 Prob > F = 0.0000 R-squared = 0.0141 Root MSE = .18409

12534

		Robust				
emp	Coef.	Std. Err.	t	P> t	[95% Cor	nf. Interval]
hvdrnk90	.0149286	.0059782	2.50	0.013	.0032104	.0266468
ue88	.0038119	.0013782	2.77	0.006	.0011105	.0065133
age	0013974	.0015439	-0.91	0.365	0044237	.0016289
agesq	4.43e-06	.0000181	0.24	0.807	0000311	.00004
educ	0011631	.0006751	-1.72	0.085	0024865	.0001602
married	0066296	.0058847	-1.13	0.260	0181645	.0049053
famsize	.0013304	.0013075	1.02	0.309	0012325	.0038933
white	0308826	.0051866	-5.95	0.000	0410493	020716
hlstat1	.008861	.0092209	0.96	0.337	0092135	.0269354
hlstat2	.0079536	.0091305	0.87	0.384	0099435	.0258507
hlstat3	.0224927	.0093356	2.41	0.016	.0041934	.0407919
hlstat4	.0193116	.0106953	1.81	0.071	0016528	.040276
region1	.0020325	.0055618	0.37	0.715	0088694	.0129344
region2	0005405	.0049211	-0.11	0.913	0101866	.0091057
region3	0079708	.0046818	-1.70	0.089	0171479	.0012063
msa1	002055	.0049721	-0.41	0.679	0118011	.007691
msa2	—.0130041	.0041938	-3.10	0.002	0212246	0047835
q1	.0025441	.0043698	0.58	0.560	0060214	.0111095
q2	.0080984	.0046198	1.75	0.080	0009571	.0171539
q3	.0102601	.0046839	2.19	0.029	.001079	.0194413
_cons	.0922081	.0350856	2.63	0.009	.023435	.1609813

The corresponding probit equation for employment for males is given by the following stata output (this replicates Table 13.6 in the text):

. probit emp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Probit regression $\label{eq:Log_pseudolikelihood} \mbox{Log pseudolikelihood} = -2698.1797$					Number of obs Wald chi2(20) Prob > chi2 Pseudo R2	= 9822 = 928.34 = 0.0000 = 0.1651
omn	Coef.	Robust Std. Err.	Z	D. 171	IOE9/ Conf	Intonual ¹
emp		Siu. Eii.		P> z	[95% Conf. l	iiileivaij
hvdrnk90	1049465	.0589878	-1.78	0.075	2205606	.0106675
ue88	0532774	.0142024	-3.75	0.000	0811135	0254413
age	.0996338	.0171184	5.82	0.000	.0660824	.1331853
agesq	0013043	.0002051	-6.36	0.000	0017062	0009023
educ	.0471834	.0066738	7.07	0.000	.034103	.0602638
married	.2952921	.0540855	5.46	0.000	.1892866	.4012976
famsize	.0188906	.0140462	1.34	0.179	0086395	.0464206
white	.3945226	.0483378	8.16	0.000	.2997822	.489263
hlstat1	1.816306	.0983443	18.47	0.000	1.623554	2.009057
hlstat2	1.778434	.0991528	17.94	0.000	1.584098	1.97277
hlstat3	1.547836	.0982635	15.75	0.000	1.355244	1.740429
hlstat4	1.043363	.1077276	9.69	0.000	.8322209	1.254505
region1	.0343123	.0620016	0.55	0.580	0872085	.1558331
region2	.0604907	.0537881	1.12	0.261	044932	.1659135
region3	.1821206	.0542342	3.36	0.001	.0758236	.2884176
msa1	0730529	.0518715	-1.41	0.159	1747192	.0286134
msa2	.0759533	.0513087	1.48	0.139	02461	.1765166
q1	1054844	.0527723	-2.00	0.046	2089162	0020525
q2	0513229	.052818	-0.97	0.331	1548444	.0521985
q3	0293419	.0543746	-0.54	0.589	1359142	.0772303
_cons	-3.017454	.3592294	-8.40	0.000	-3.72153	-2.313377

We can see how the probit model fits by looking at its predictions.

. estat classification

Probit model for emp

Classified	Irue D	~D	Total
+	8743 79	826 174	9569 253
Total	8822	1000	9822

Classified + if predicted Pr(D) >= .5

True D defined as emp != 0

Sensitivity Specificity Positive predictive value Negative predictive value	$Pr (+ D) Pr (- \sim D) Pr (D +) Pr (\sim D -) $	99.10% 17.40% 91.37% 68.77%
False + rate for true ~D False - rate for true D False + rate for classified + False - rate for classified -	$\begin{array}{l} \operatorname{Pr}\left(+\mid \sim D\right) \\ \operatorname{Pr}(-\mid D) \\ \operatorname{Pr}(\sim \! D\mid +) \\ \operatorname{Pr}\left(D\mid -\right) \end{array}$	82.60% 0.90% 8.63% 31.23%
Correctly classified		90.79%

We could have alternatively run a logit regression on employment for males

.logit emp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Logistic regression	Number of obs	=	9822
	Wald chi2(20)	=	900.15
	Prob > chi2	=	0.0000
Log pseudolikelihood = -2700.0567	Pseudo R2	=	0.1646

emp	Coef.	Robust Std. Err.	Z	P> z	[95% Conf	f. Interval]
hvdrnk90	1960754	.1114946	-1.76	0.079	4146008	.02245
ue88	1131074	.0273316	-4.14	0.000	1666764	0595384
age	.1884486	.0332284	5.67	0.000	.123322	.2535751
agesq	0024584	.0003965	-6.20	0.000	0032356	0016813
educ	.0913569	.0127978	7.14	0.000	.0662738	.1164401
married	.5534291	.1057963	5.23	0.000	.3460721	.760786
famsize	.0365059	.0276468	1.32	0.187	0176808	.0906927

And the corresponding predictions for the logit model are given by

. estat classification Logistic model for emp

		· True		
Classified		D	\sim D	Total
+		8740	822	9562
_	İ	82	178	260
Total		8822	1000	9822

Classified + if predicted Pr(D) >= .5

True D defined as emp !=0

Sensitivity Specificity Positive predictive value Negative predictive value	Pr(+— D) Pr(-—~D) Pr(D— +) Pr(~D— -)	99.07% 17.80% 91.40% 68.46%
$ \begin{aligned} & \text{False} + \text{rate for true} \sim & \text{D} \\ & \text{False} - \text{rate for true D} \\ & \text{False} + \text{rate for classified} + \\ & \text{False} - \text{rate for classified} - \end{aligned} $	$\Pr(+ \sim D)$ $\Pr($	82.20% 0.93% 8.60% 31.54%
Correctly classified		90.80%

The marginal effects for the probit model can be obtained as follows:

.dprobit emp hvdrnk90 ue88 age agesq educ married famsize white hlstat1 hlstat2 hlstat3 hlstat4 region1 region2 region3 msa1 msa2 q1 q2 q3, robust

Iteration 0: log pseudolikelihood =-3231.8973
Iteration 1: log pseudolikelihood =-2707.0435
Iteration 2: log pseudolikelihood =-2698.2015
Iteration 3: log pseudolikelihood =-2698.1797

Probit regression, reporting marginal effects

Number of obs = 9822

Wald chi2(20) = 928.34 Prob > chi2 = 0.0000 Pseudo R2 = 0.1651

Log pseudolikelihood = -2698.1797

emp	dF/dx	Robust Std. Err.	Z	P> z	x-bar	[95% Conf	. Interval]
hvdrnk90*	0161704	.0096242	-1.78	0.075	.099165	035034	.002693
ue88	0077362	.0020463	-3.75	0.000	5.56921	011747	003725
age	.0144674	.0024796	5.82	0.000	39.1757	.009607	.019327
agesq	0001894	.0000297	-6.36	0.000	1627.61	000248	000131
educ	.0068513	.0009621	7.07	0.000	13.3096	.004966	.008737
married*	.0488911	.010088	5.46	0.000	.816432	.029119	.068663
famsize	.002743	.002039	1.34	0.179	2.7415	001253	.006739
white*	.069445	.0100697	8.16	0.000	.853085	.049709	.089181
hlstat1*	.2460794	.0148411	18.47	0.000	.415903	.216991	.275167
hlstat2*	.1842432	.0099207	17.94	0.000	.301873	.164799	.203687
hlstat3*	.130786	.0066051	15.75	0.000	.205254	.11784	.143732
hlstat4*	.0779836	.0041542	9.69	0.000	.053451	.069841	.086126
region1*	.0049107	.0087468	0.55	0.580	.203014	012233	.022054
region2*	.0086088	.0075003	1.12	0.261	.265628	006092	.023309
region3*	.0252543	.0071469	3.36	0.001	.318265	.011247	.039262
msa1*	0107946	.0077889	-1.41	0.159	.333232	026061	.004471
msa2*	.0109542	.0073524	1.48	0.139	.434942	003456	.025365
q1*	0158927	.0082451	-2.00	0.046	.254632	032053	.000267
q2*	0075883	.0079484	-0.97	0.331	.252698	023167	.00799
q3*	0043066	.0080689	-0.54	0.589	.242822	020121	.011508
obs. P	.8981877						
pred. P	.9224487	(at x-bar)					

^(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P>|z| correspond to the test of the underlying coefficient being 0

One can also run logit and probit for the unemployment variable and repeat this for females. This is not done here to save space.

13.15 Fertility and Female Labor Supply

a. Carrasco (2001, p. 391) Table 4, column 1, ran a fertility probit equation, which we replicate below using Stata:

probit f dsex ags26l educ_2 educ_3 age drace inc

Probit regre	ession				Number of obs	=	5/68	
					LR chi2 (7)	=	964.31	
					Prob > chi2	=	0.0000	
Log likeliho	ood = -1561.1	312			Pseudo R2	=	0.2360	
Ü								
f	Coef.	Std. Err.	Z	P> z	[95% Conf.	Inte	rval]	
dsex	.3250503	.0602214	5.40	0.000	.2070184		4430822	

dsex	.3250503	.0602214	5.40	0.000	.2070184	.4430822
ags26l	-2.135365	.1614783	-13.22	0.000	-2.451857	-1.818873
educ_2	.0278467	.1145118	0.24	0.808	1965922	.2522856
educ_3	.3071582	.1255317	2.45	0.014	.0611207	.5531958
age	0808522	.0048563	-16.65	0.000	0903703	071334
drace	0916409	.0629859	-1.45	0.146	215091	.0318093
inc	.003161	.0029803	1.06	0.289	0026803	.0090022
_cons	1.526893	.1856654	8.22	0.000	1.162996	1.890791

For part (b) the predicted probabilities are obtained as follows:

. Istat

Probit model for f

01:6:1		rue	T-4-1
Classified	ן ט	\sim D	Total
+	2 654	3 5109	5 5763
Total	656	5112	5768

Classified + if predicted Pr(D) >= .5True D defined as f != 0

Pr(+ D) $Pr(- \sim D)$ Pr(D +) $Pr(\sim D -)$	0.30% 99.94% 40.00% 88.65%
$Pr(+ \sim D)$ Pr(- D) $Pr(\sim D +)$ Pr(D -)	0.06% 99.70% 60.00% 11.35%
	88.61%
	$Pr(- \sim D)$ Pr(D +) $Pr(\sim D -)$ $Pr(+ \sim D)$ Pr(- D) $Pr(\sim D +)$

> The estimates reveal that having children of the same sex has a significant and positive effect on the probability of having an additional child. The marginal effects are given by dprobit in Stata

. dprobit f dsex ags26l educ_2 educ_3 age drace inc

Probit regression, reporting marginal effects $\label{eq:Loglikelihood} \mbox{Log likelihood} = -1561.1312$					LR ch Prob	per of obs = mi2 (7) = chi2 = do R2 =	5768 964.31 0.0000 0.2360
f	dF/dx	Std. Err.	Z	P> z	x-bar	[95%	C.I.]
dsex* ags261* educ_2* educ_3* age drace* inc	.0302835 1618148 .0022157 .0288636 0065031 0077119 .0002542	.0069532 .0066629 .0090239 .0140083 .0007644 .0055649	5.40 -13.22 0.24 2.45 -16.65 -1.45 1.06	0.000 0.000 0.808 0.014 0.000 0.146 0.289	.256415 .377601 .717753 .223994 32.8024 .773232 12.8582	.016655 174874 015471 .001408 008001 018619 000218	.043912 148756 .019902 .056319 005005 .003195 .000727
obs. P pred. P	.1137309 .0367557	(at x-bar)					

^(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P> |z| correspond to the test of the underlying coefficient being 0

If we replace same sex by its components: same sex female and same sex male variables, the results do not change indicating that having both boys or girls does not matter, see Carrasco (2001,p.391) Table 4, column 2.

. probit f dsexm dsexf ags26l educ_2 educ_3 age drace inc

Probit regr	ression $ood = -1561.1$	284			Number of obs LR chi2 (8) Prob > chi2 Pseudo R2	= 5768 = 964.32 = 0.0000 = 0.2360
f	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dsexm dsexf ags26l educ_2 educ_3 age drace inc _cons	.328542 .3209239 -2.135421 .027657 .3068706 0808669 0918074 .0031709 1.527551	.0764336 .0820417 .1614518 .1145384 .1255904 .0048605 .0630233 .0029829 .1858818	4.30 3.91 -13.23 0.24 2.44 -16.64 -1.46 1.06 8.22	0.000 0.000 0.000 0.809 0.015 0.000 0.145 0.288	.1787349 .1601252 -2.451861 -1968342 .0607179 0903934 2153308 0026754 1.163229	.4783491 .4817226 -1.818981 .2521482 .5530233 -0713404 .031716 .0090173 1.891872

[.] Istat

Probit model for f

True									
Classified	D	\sim D	Total						
		'							
+	2	3	5						
-	654	5109	5763						
		'							
Total	656	5112	5768						

Classified + if predicted Pr(D) >= .5True D defined as f!= 0

Sensitivity Specificity Positive predictive value Negative predictive value	Pr(+ D) $Pr(- \sim D)$ Pr(D +) $Pr(\sim D -)$	0.30% 99.94% 40.00% 88.65%
False + rate for true ∼D False - rate for true D False + rate for classified + False - rate for classified -	$Pr(+ \sim D)$ Pr(- D) $Pr(\sim D +)$ Pr(D -)	0.06% 99.70% 60.00% 11.35%
Correctly classified		88.61%

. dprobit f dsexm dsexf ags26l educ_2 educ_3 age drace inc

Probit regression, reporting marginal effects Number of obs = 5768 LR chi2 (7) = 964.32 Prob > chi2 = 0.0000 Pseudo R2 = 0.2360

Log likelihood = -1561.1284

f	dF/dx	Std. Err.	Z	P> z	x-bar	[95% (D.I.]
dsexm* dsexf* ags26l* educ_2* educ_3* age drace* inc	.0325965 .032261 16182 .0022008 .0288323 0065042 0077266 .000255	.0095475 .0103983 .0066634 .0090273 .01401 .0007645 .0055692	4.30 3.91 -13.23 0.24 2.44 -16.64 -1.46 1.06	0.000 0.000 0.000 0.809 0.015 0.000 0.145 0.288	.145111 .111304 .377601 .717753 .223994 32.8024 .773232 12.8582	.013884 .011881 17488 015492 .001373 008003 018642 000218	.051309 .052641 14876 .019894 .056291 005006 .003189 .000728
obs. P pred. P	.1137309 .0367556	(at x-bar)					

^(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P>|z| correspond to the test of the underlying coefficient being 0

c. Carrasco (2001, p. 392) Table 5, column 4, ran a female labor force participation OLS equation, which we replicate below using Stata 10:

. reg dhw f ags26l fxag26l educ_2 educ_3 age drace inc dhwl

Source	SS	df	MS		Number of obs F(9, 5758)	= 5768 $=$ 445.42
Model Residual	419.800476 602.985758	9 5758	46.6444 .104721		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4104 = 0.4095
Total	1022.78623	5767	.177351	523	Root MSE	= .32361
dhw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f ags26l fxag26l educ_2 educ_3 age drace inc dhwl _cons	0888995 0194454 0581458 .0491989 .0725501 .0014193 0098333 0018149 .6253973 .2373022	.0144912 .0093334 .1629414 .0186018 .0207404 .0007854 .010379 .0004887 .0103188 .032744	-6.13 -2.08 -0.36 2.64 3.50 1.81 -0.95 -3.71 60.61 7.25	0.000 0.037 0.721 0.008 0.000 0.071 0.343 0.000 0.000	1173077 0377424 3775723 .0127323 .0318912 0001203 03018 002773 .6051686 .1731117	0604912 0011484 .2612806 .0856655 .1132091 .002959 .0105134 0008568 .645626

Carrasco (2001, p. 392) Table 5, column 1, ran a female labor force participation probit equation, which we replicate below using Stata:

. probit dhw f ags26l fxag26l educ_2 educ_3 age drace inc dhwl

Probit regr	ression $cod = -2036.8$	086			Number of obs LR chi2 (7) Prob > chi2 Pseudo R2	= 5768 = 2153.17 = 0.0000 = 0.3458
dhw	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
f ags26l fxag26l educ_2 educ_3 age drace inc dhwl _cons	4103849 1064159 1886427 .2338264 .3773278 .0091203 0577508 0088483 1.932025 8540838	.0690538 .0480907 .7087803 .0858408 .1001949 .0041132 .0542972 .0024217 .0462191 .1638299	-5.94 -2.21 -0.27 2.72 3.77 2.22 -1.06 -3.65 41.80 -5.21	0.000 0.027 0.790 0.006 0.000 0.027 0.288 0.000 0.000	5457279 200672 -1.577827 .0655816 .1809494 .0010586 1641714 0135948 1.841438 -1.175184	2750419 0121598 1.200541 .4020713 .5737062 .017182 .0486699 0041019 2.022613 5329831

. Istat

Prohit	modal	for dh	۱۸/

JIIVV	True			
Classified			Total	
+	4073 366	378 951	4451 1317	
Total	4439	1329	5768	

Classified + if predicted Pr(D) >= .5True D defined as dhw != 0

Sensitivity	$Pr(+ \mid D)$	91.75%
Specificity	$Pr(- \mid \sim D)$	71.56%
Positive predictive value	$Pr(\mid D \mid +)$	91.51%
Negative predictive value	$Pr(\sim D \mid -)$	72.21%
False + rate for true \sim D	$Pr(+ \sim D)$	28.44%
False - rate for true D	Pr(- D)	8.25%
False + rate for classified +	$Pr(\sim D +)$	8.49%
False - rate for classified -	Pr(D -)	27.79%
Correctly classified		87.10%

The marginal effects are given by dprobit in Stata:

. dprobit dhw f ags26l fxag26l educ_2 educ_3 age drace inc dhwl

Probit regression, reporting marginal effects $\begin{array}{cccc} \text{Number of obs} & = & 5768 \\ \text{LR chi2 (9)} & = & 2153.17 \\ \text{Prob} > \text{chi2} & = & 0.0000 \\ \text{Log likelihood} = -2036.8086 & \text{Pseudo R2} & = & 0.3458 \end{array}$

dhw	dF/dx	Std. Err.	Z	P> z	x-bar	[95% (D.I.]
f* ags26l* fxag26l* educ_2* educ_3* age drace* inc dhwl*	1200392 0275503 0524753 .0626367 .0870573 .0023327 0145508 0022631 .6249756	.0224936 .0125892 .2127127 .0239923 .0206089 .0010504 .0134701 .0006189 .0134883	-5.94 -2.21 -0.27 2.72 3.77 2.22 -1.06 -3.65 41.80	0.000 0.027 0.790 0.006 0.000 0.027 0.288 0.000 0.000	.113731 .377601 .000693 .717753 .223994 32.8024 .773232 12.8582 .771671	164126 052225 469385 .015613 .046665 .000274 040952 003476 .598539	075953 002876 .364434 .109661 .12745 .004391 .01185 00105 .651412
obs. P pred. P	.7695908 .8271351	(at x-bar)					

^(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P> |z| correspond to the test of the underlying coefficient being 0

d. The 2sls estimates in Table 5, column 5, of Carrasco (2001, p. 392) using as instruments the same sex variables and their interactions with ags26l is given below, along with the over-identification test and the first stage diagnostics:

. ivregress 2sls dhw (f fxag26l =dsexm dsexf sexm_26l sexf_26l) ags26l educ_2 e

> duc_3 age drace inc dhwl

Instrumental variables (2SLS) regression $\begin{array}{cccc} \text{Number of obs} & = & 5768 \\ \text{Wald chi2(9)} & = & 3645.96 \\ \text{Prob} > \text{chi2} & = & 0.0000 \\ \text{R-squared} & = & 0.3565 \\ \end{array}$

Root MSE = .3378

dhw	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
f	2164685	.2246665	-0.96	0.335	6568067	.2238697
fxag26l	-3.366305	3.512783	-0.96	0.338	-10.25123	3.518623
ags26l	0385731	.0467522	-0.83	0.409	1302058	.0530596
educ_2	.0331807	.0288653	1.15	0.250	0233943	.0897557
educ_3	.064607	.0348694	1.85	0.064	0037357	.1329497
age	0001934	.0030344	-0.06	0.949	0061407	.0057539
drace	0163251	.012366	-1.32	0.187	0405621	.0079118
inc	0017194	.0005162	-3.33	0.001	0027312	0007076
dhwl	.6230639	.017256	36.11	0.000	.5892427	.6568851
_cons	.3330965	.141537	2.35	0.019	.0556891	.610504

Instrumented: f fxag26l

Instruments: ags26l educ_2 educ_3 age drace inc dhwl dsexm dsexf sexm_26l

sexf_26l

. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(2) = .332468 (p = 0.8468)Basmann chi2(2) = .331796 (p = 0.8471)

. estat firststage

Shea's partial R-squared

Variable	Shea's Partial R-sq.	Shea's Adj. Partial R-sq.
f	0.0045	0.0028
fxag26l	0.0023	0.0006

Minimum eigenvalue statistic = 3.36217

Critical Values Ho: Instruments are weak		# of endogenous regressors: 2 # of excluded instruments: 4					
2SLS relative bias	5% 11.04	10% 7.56	20% 5.57	30% 4.73			
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 16.87 4.72	15% 9.93 3.39	20% 7.54 2.99	25% 6.28 2.79			

e. So far, heterogeneity across the individuals is not taken into account. Carrasco (2001, p. 393) Table 7, column 4, ran a female labor force participation fixed effects equation with robust standard errors, which we replicate below using Stata:

. xtreg dhw f ags26l fxag26l dhwl, fe r

Fixed-effects (within) regression	Number of obs	=	5768
Group variable: ident	Number of groups	=	1442
R-sq: within $= 0.0059$	Obs per group: min avg max	=	4
between $= 0.6185$		=	4.0
overall $= 0.2046$		=	4
corr(u_i, Xb) = 0.4991	F(4,4322) Prob > F	=	4.64 0.0010

(Std. Err. adjusted for clustering on ident)

dhw	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
f ags26l fxag26l dhwl _cons	0547777 .0012836 2204885 .0356233 .7479995	.0155326 .0126213 .2013721 .0236582 .0193259	-3.53 0.10 -1.09 1.51 38.70	0.000 0.919 0.274 0.132 0.000	0852296 0234607 615281 0107588 .7101108	0243257 .0260279 .1743041 .0820055 .7858881
sigma_u sigma_e rho	.33260036 .27830212 .58818535	(fraction of v	/ariance du	ue to u₋i)		

Note that only fertility is significant in this equation.

Fixed effects 2sls using as instruments the same sex variables and their interactions with ags26l is given below:

. xtivreg dhw (f fxag26l =dsexm dsexf sexm_26l sexf_26l)ags26l age inc dhwl, fe

Fixed-effects (within) IV regression Group variable: ident							5768 1442
R-sq: within = . between = 0.1125 overall = 0.0332				Obs per gr avg max	•		4 4.0 4
$corr(u_i, Xb) = 0.0882$				Wald chi2(Prob > ch		=	39710.29 0.0000
dhw	Coef.	Std. Err.	Z	P> z	[95% (Conf.	Interval]
f fxag26l ags26l age inc dhwl _cons	2970225 -2.1887 0584866 .000651 0011213 .0362943 .7920305	.156909 2.433852 .0467667 .0043265 .0010482 .0160524 .1623108	-1.89 -0.90 -1.25 0.15 -1.07 2.26 4.88	0.058 0.369 0.211 0.880 0.285 0.024 0.000	60455; -6.9589; 15014; 00782; 00317; .00483; .47390;	63 76 87 58 22	.0105134 2.581562 .0331744 .0091307 .0009331 .0677565 1.110154
sigma_u sigma_e rho	.3293446 .29336161 .55759255	(fraci	tion of va	riance due t	o u_i)		
F test that all u_i=0: $F(1441,4320) = 2.16$					Prob > F	= 0.0	000
Instrumented: f fxag26l Instruments: ags26l age inc dhwl dsexm dsexf sexm_26l sexf_26l							

13.16 *multinomial logit model*

- **a.** Table II of Terza (2002, p. 399) columns 3,4, 9 and 10 are replicated below for the male data using Stata:
 - . mlogit y alc90th ue88 age agesq schooling married famsize white excellent verygood good fair northeast midwest south centercity othermsa q1 q2 q3, baseoutcome(1)

Multinomial logistic regression	Number of obs	=	9822
-	LR chi2 (40)	=	1276.47
	Prob > chi2	=	0.0000
Log likelihood = -3217.481	Pseudo R2	=	0.1655

Log likelinoo	00 = -3217.48	31			Pseudo R2	= 0.1655
у	Coef.	Std. Err.	Z	P> z	[95% Cor	ıf. Interval]
2						
alc90th	.1270931	.21395	0.59	0.552	2922412	.5464274
ue88	.0458099	.051355	0.89	0.372	0548441	.1464639
age	.1617634	.0663205	2.44	0.015	.0317776	.2917492
agesq	0024377	.0007991	-3.05	0.002	004004	0008714
schooling	0092135	.0245172	-0.38	0.707	0572664	.0388393
married	.4004928	.1927458	2.08	0.038	.022718	.7782677
famsize	.0622453	.0503686	1.24	0.217	0364753	.1609659
white	.0391309	.1705625	0.23	0.819	2951653	.3734272
excellent	2.91833	.4486757	6.50	0.000	2.038942	3.797719
verygood	2.978336	.4505932	6.61	0.000	2.09519	3.861483
good	2.493939	.4446815	5.61	0.000	1.622379	3.365499
fair	1.460263	.4817231	3.03	0.002	.5161027	2.404422
northeast	.0849125	.2374365	0.36	0.721	3804545	.5502796
midwest	.0158816	.2037486	0.08	0.938	3834583	.4152215
south	.1750244 2717445	.2027444 .1911074	0.86 -1.42	0.388 0.155	2223474 6463081	.5723962 .1028192
centercity othermsa	0921566	.1911074	-1.42 -0.48	0.133	4702486	.2859354
q1	.422405	.1929070	2.13	0.033	.0345738	.8102362
q2	0219499	.2056751	-0.11	0.033	4250657	.3811659
q2 q3	0365295	.2109049	-0.17	0.862	4498954	.3768364
_cons	-6.113244	1.427325	-4.28	0.000	-8.910749	-3.315739
	' 					
3						
alc90th	1534987	.1395003	-1.10	0.271	4269144	.1199169
ue88	0954848	.033631	-2.84	0.005	1614004	0295693
age	.227164	.0409884	5.54	0.000	.1468282	.3074999
agesq	0030796	.0004813	-6.40	0.000	0040228	0021363
schooling	.0890537	.0152314	5.85	0.000	.0592008	.1189067
married	.7085708 .0622447	.1219565 .0332365	5.81 1.87	0.000 0.061	.4695405 0028975	.9476012 .127387
famsize white	.7380044	.1083131	6.81	0.000	0028975 .5257147	.9502941
excellent	3.702792	.1852415	19.99	0.000	3.339725	4.065858
verygood	3.653313	.1894137	19.29	0.000	3.282069	4.024557
good	2.99946	.1786747	16.79	0.000	2.649264	3.349656
fair	1.876172	.1885159	9.95	0.000	1.506688	2.245657
northeast	.088966	.1491191	0.60	0.551	203302	.3812341
midwest	.1230169	.1294376	0.95	0.342	130676	.3767099
south	.4393047	.1298054	3.38	0.001	.1848908	.6937185
centercity	2689532	.1231083	-2.18	0.029	510241	0276654
othermsa	.0978701	.1257623	0.78	0.436	1486195	.3443598
q1	0274086	.1286695	-0.21	0.831	2795961	.224779
q2	110751	.126176	-0.88	0.380	3580514	.1365494
q3	0530835	.1296053	-0.41	0.682	3071052	.2009382
_cons	-6.237275	.8886698	-7.02	0.000	-7.979036	-4.495515

(y==1 is the base outcome)

**using bootstrap for the var-cov matrix

. mlogit y alc90th ue88 age agesq schooling married famsize white excellent ver > ygood good fair northeast midwest south centercity othermsa q1 q2 q3, baseout

> come(1) vce(bootstrap)

(running mlogit on estimation sample)

Bootstrap replications (50)

---+-- 1 ---+-- 2 ---+-- 3 ---+-- 550

Multinomial logistic regression 9822 Number of obs = Replications = 50 Wald chi2 (40) = 7442.69 $\mathsf{Prob} > \mathsf{chi2} \qquad = \quad 0.0000$ Pseudo R2 =

0.1655

Log likelihood = -3217.481

	Observed	Bookstrap			Norma	l-based		
У	Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]		
2								
alc90th	.1270931	.1933016	0.66	0.511	251771	.5059573		
ue88	.0458099	.0566344	0.81	0.419	0651914	.1568112		
age	.1617634	.0615543	2.63	0.009	.0411192	.2824076		
agesq	0024377	.0007266	-3.35	0.001	0038619	0010135		
schooling	0092135	.0249799	-0.37	0.712	0581732	.0397462		
married	.4004928	.2069088	1.94	0.053	0050409	.8060266		
famsize	.0622453	.0534164	1.17	0.244	0424489	.1669395		
white	.0391309	.1817052	0.22	0.829	3170046	.3952665		
excellent	2.91833	.5134264	5.68	0.000	1.912033	3.924628		
verygood	2.978336	.5473854	5.44	0.000	1.905481	4.051192		
good	2.493939	.4904972	5.08	0.000	1.532582	3.455296		
fair	1.460263	.5156181	2.83	0.005	.4496697	2.470855		
northeast	.0849125	.2058457	0.41	0.680	3185377	.4883627		
midwest	.0158816	.197601	0.08	0.936	3714093	.4031725		
south	.1750244	.2211406	0.79	0.429	2584032	.608452		
centercity	2717445	.1708023	-1.59	0.112	6065108	.0630218		
othermsa	0921566	.191577	-0.48	0.630	4676406	.2833275		
q1	.422405	.2392306	1.77	0.077	0464783	.8912883		
q2	0219499	.2404712	-0.09	0.927	4932649	.4493651		
q3	0365295	.2500046	-0.15	0.884	5265295	.4534704		
_cons	-6.113244	1.259449	-4.85	0.000	-8.581719	-3.644769		

3						
alc90th	1534987	.1129983	-1.36	0.174	3749714	.0679739
ue88	0954848	.0349536	-2.73	0.006	1639927	026977
age	.227164	.0431	5.27	0.000	.1426896	.3116385
agesq	0030796	.0005224	-5.90	0.000	0041034	0020558
schooling	.0890537	.0173814	5.12	0.000	.0549868	.1231207
married	.7085708	.1286085	5.51	0.000	.4565028	.9606389
famsize	.0622447	.0361903	1.72	0.085	0086869	.1331764
white	.7380044	.1320206	5.59	0.000	.4792488	.9967599
excellent	3.702792	.2019607	18.33	0.000	3.306956	4.098627
verygood	3.653313	.2090086	17.48	0.000	3.243663	4.062962
good	2.99946	.2053791	14.60	0.000	2.596925	3.401996
fair	1.876172	.2063004	9.09	0.000	1.471831	2.280514
northeast	.088966	.1624429	0.55	0.584	2294162	.4073482
midwest	.1230169	.1410455	0.87	0.383	1534272	.399461
south	.4393047	.1340076	3.28	0.001	.1766547	.7019547
centercity	2689532	.098325	-2.74	0.006	4616666	0762398
othermsa	.0978701	.1067784	0.92	0.359	1114117	.307152
q1	0274086	.1206965	-0.23	0.820	2639694	.2091523
q2	110751	.1303469	-0.85	0.396	3662263	.1447243
q3	0530835	.1329726	-0.40	0.690	313705	.2075381
_cons	-6.237275	.8224026	-7.58	0.000	-7.849155	-4.625396

(y==1 is the base outcome)

. mlogit y alc90th ue88 age agesq schooling married famsize white excellent ver > ygood good fair northeast midwest south centercity othermsa q1 q2 q3, baseout > come(1) vce(robust)

Iteration 0: log pseudolikelihood = -3855.7148

Iteration 1: log pseudolikelihood = -3692.5753

Iteration 2: log pseudolikelihood = -3526.5092

Iteration 3: log pseudolikelihood = -3236.3918

Iteration 4: log pseudolikelihood = -3219.1826

Iteration 5: log pseudolikelihood = -3217.5569

Iteration 6: log pseudolikelihood = -3217.4813

Iteration 7: log pseudolikelihood = -3217.481

^{**}using robust for the var-cov matrix

Multinomial logistic regression

Number of obs = 9822

Wald chi2 (40) = 1075.69

Prob > chi2 = 0.0000

Log pseudolikelihood = -3217.481Pseudo R2 = 0.1655

Robust Coef. Std. Err. P>|z|[95% Conf. Interval] у Z 2 alc90th .1270931 .2152878 0.59 0.555 - 2948632 5490494 ue88 .0458099 .0500181 0.92 0.360 -.0522238 .1438436 age .1617634 .0668732 2.42 0.016 .0306944 .2928324 agesq -.0024377 .0008087 -3.01 0.003 -.0040227 -.0008527 schooling -.0092135 .0234188 -0.390.694 -.0551135 .0366864 married .4004928 .204195 1.96 0.050 .0002779 .8007078 famsize .0622453 .0517847 1.20 0.229 -.0392509 .1637416 0.23 white .0391309 .1711588 0.819 -.2963342 .3745961 excellent 2.91833 .4548999 6.42 0.000 2.026743 3.809918 2.978336 .4566665 6.52 0.000 2.083286 verygood 3.873386 good 2.493939 .4507366 5.53 0.000 1.610511 3.377366 2.99 fair 1.460263 .48807 0.003 .5036629 2.416862 .23845 northeast .0849125 0.36 0.722 -.382441 .552266 midwest .0158816 .2044175 0.08 0.938 -.3847694 .4165326 0.387 .1750244 .2022599 0.87 -.2213977 .5714466 south centercity -.2717445 .1911311 -1.420.155 -.6463546 .1028656 -.0921566 -0.47 0.637 -.475352 .2910389 othermsa .1955115 .422405 2.14 .8086887 q1 .1970871 0.032 .0361213 q2 -.0219499 .2049964 -0.11 0.915 -.4237355 .3798357 q3 -.0365295 .2109886 -0.170.863 -.4500595 .3770005 _cons -6.113244 1.412512 -4.330.000 -8.881717 -3.344771 3 alc90th -.1534987 .1392906 -1.10 0.270 -.4265033 .1195059 -.0954848 .0335442 -2.85 0.004 ue88 -.1612303 -.0297394age .227164 .0411389 5.52 0.000 .1465333 .3077948 agesq -.0030796 .000487 -6.32 0.000 -.004034 -.0021251 schooling .0890537 .0160584 5.55 0.000 .0575798 .1205276 married .7085708 .1315325 5.39 0.000 .4507719 .9663698 famsize .0622447 .035511 1.75 0.080 -.0073556 .1318451 white .7380044 .1139831 6.47 0.000 .5146017 .9614071 excellent 3.702792 .190178 19.47 0.000 3.33005 4.075534 verygood 3.653313 .1929514 18.93 0.000 3.275135 4.03149 2.99946 .1849776 16.22 0.000 2.636911 3.36201 good 0.000 1.876172 .1956878 9.59 1.492631 2.259713 fair northeast .088966 .1505301 0.59 0.555 -.2060675 .3839996 .1230169 .1302651 0.94 0.345 midwest -.1322981 .3783319 south .4393047 .1341061 3.28 0.001 .1764616 .7021478 centercity -.2689532 .1266976 -2.12 0.034 -.5172758 -.0206306 0.77 0.443 othermsa .0978701 .1275274 -.152079 .3478193 -0.21 0.832 q1 -.0274086 .1288453 -.2799406 .2251235 q2 -0.88 -.110751 .12602 0.379 -.3577457 .1362437 q3 -.0530835 .1321321 -0.40 0.688 -.3120576 .2058907 _cons -6.237275 .8601993 -7.25 0.000 -7.923235 -4.551316

(y==1 is the base outcome)

- **b.** For the female data, the multinomial logit estimates yield:
 - . mlogit y alc90th ue88 age agesq schooling married famsize white excellent verygood good fair northeast midwest south centercity othermsa q1 q2 q3, baseoutcome(1)

20020 Till 20000 Till 20000 Till							
у	Coef.	Std. Err.	Z	P> z	[95% Conf	f. Interval]	
2							
alc90th	1241993	.2365754	-0.52	0.600	5878785	.3394799	
ue88	001862	.0514214	-0.04	0.971	1026462	.0989221	
age	0392239	.0612728	-0.64	0.522	1593164	.0808687	
agesq	.0004834	.0007411	0.65	0.514	0009691	.0019359	
schooling	0121174	.0254645	-0.48	0.634	0620269	.037792	
married	.0117958	.2220045	0.05	0.958	423325	.4469167	
famsize	.0092434	.0495871	0.19	0.852	0879456	.1064324	
white	.2817941	.1935931	1.46	0.146	0976414	.6612296	
excellent	.0420423	.4579618	0.09	0.927	8555463	.939631	
verygood	.0449091	.4574373	0.10	0.922	8516516	.9414698	
good	.0182444	.4544742	0.04	0.968	8725086	.9089974	
fair	.2925131	.4839658	0.60	0.546	6560424	1.241069	
northeast	1721726	.2163151	-0.80	0.426	5961425	.2517973	
midwest	2643294	.1944624	-1.36	0.174	6454687	.11681	
south	0161982	.1814209	-0.09	0.929	3717766	.3393803	
centercity	0812978	.1869101	-0.43	0.664	447635	.2850393	
othermsa	.044578	.1738872	0.26	0.798	2962347	.3853908	
q1	22.30515	1.328553	16.79	0.000	19.70123	24.90906	
q2	22.24068	1.32893	16.74	0.000	19.63603	24.84534	
q3	18.65596	1.360765	13.71	0.000	15.98891	21.32301	
_cons	-23.50938				•		
3							
alc90th	.1288509	.0812475	1.59	0.113	0303912	.2880931	
ue88	.0148758	.0188237	0.79	0.429	022018	.0517696	
age	.0175243	.0230613	0.76	0.447	0276751	.0627236	
agesq	0002381	.00028	-0.85	0.395	0007868	.0003106	
schooling	.0035127	.0095824	0.37	0.714	0152685	.0222939	
married	0997914	.078327	-1.27	0.203	2533095	.0537266	
famsize	.0027002	.0184619	0.15	0.884	0334844	.0388849	
white	0277798	.066196	-0.42	0.675	1575217	.1019621	
excellent	1178398	.1636194	-0.72	0.471	4385278	.2028483	
verygood	1170045	.1633395	-0.72	0.474	437144	.203135	
good	1144024	.1622966	-0.70	0.481	4324979	.2036931	
fair	0344312	.1775054	-0.19	0.846	3823353	.3134729	
northeast	0548967	.0819514	-0.67	0.503	2155184	.105725	
midwest	.0572296	.0720545	0.79	0.427	0839946	.1984538	

south	.1500468	.0698025	2.15	0.032	.0132365	.2868571
centercity	.0366537	.06934	0.53	0.597	0992503	.1725576
othermsa	.0638026	.0655869	0.97	0.331	0647453	.1923505
q1	22.22019	.4972432	44.69	0.000	21.24561	23.19477
q2	22.22849	.4972341	44.70	0.000	21.25392	23.20305
q3	19.74301	.4973915	39.69	0.000	18.76815	20.71788
_cons	-21.64045					

(y==1 is the base outcome)

13.17 *Tobit estimation of Married Women Labor Supply*

. sum hours, detail

a. A detailed summary of the hours of work show that mean hours of work is 741, the median is 288, the minimum is zero and the maximum is 4950.

· oun	hours worked, 1975						
	Percentiles	Smallest					
1%	0	0					
5%	0	0					
10%	0	0	Obs	753			
25%	0	0	Sum of Wgt.	753			
50%	288		Mean	740.5764			
		Largest	Std. Dev.	871.3142			
75%	1516	3640					
90%	1984	3686	Variance	759188.5			
95%	2100	4210	Skewness	.9225315			
99%	3087	4950	Kurtosis	3.193949			

b. Using the notation of solution 11.31, OLS on this model yields

. reg hours nwifeinc kidslt6 kidsge6 'control' 'E', r

Linear regression					Number of obs	=	753
•					F(7, 745)	=	45.81
					Prob > F	=	0.0000
					R-squared	=	0.2656
					Root MSE	=	750.18
		Robust					
hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Inter	val]
nuifaina		0.040660	1 51	0.104	7.045200)E01060
nwifeinc	-3.446636	2.240662	-1.54	0.124	-7.845398 -554.0000	-	9521268
kidslt6	-442.0899	57.46384	-7.69	0.000	-554.9002	_	29.2796
kidsge6	-32.77923	22.80238	-1.44	0.151	-77.5438	- 1	1.98535

age -30.51163 4.244791 -7.19 0.000 -38.84481 -22.17846 2.21 educ 28.76112 13.03905 0.028 3.163468 54.35878 exper 65.67251 10.79419 6.08 0.000 44.48186 86.86316 expersq -.7004939 .3720129 -1.88 0.060 -1.430812 .0298245 _cons 1330.482 274.8776 4.84 0.000 790.8556 1870.109

Tobit estimation with left censoring at zero is represented by the option II(0)

-.0002233

.8844287

. tobit hours nwifeinc kidslt6 kidsge6 'control' 'E', II(0)

Tobit regression $\label{eq:Loglikelihood} \mbox{Log likelihood} = -3819.0946$					Number of obs LR chi2 (7) Prob > chi2 Pseudo R2	= 753 = 271.59 = 0.0000 = 0.0343
hours	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
nwifeinc kidslt6 kidsge6 age educ exper expersq _cons	-8.814243 -894.0217 -16.218 -54.40501 80.64561 131.5643 -1.864158 965.3053	4.459096 111.8779 38.64136 7.418496 21.58322 17.27938 .5376615 446.4358	-1.98 -7.99 -0.42 -7.33 3.74 7.61 -3.47 2.16	0.048 0.000 0.675 0.000 0.000 0.000 0.001 0.031	-17.56811 -1113.655 -92.07675 -68.96862 38.27453 97.64231 -2.919667 88.88528	0603724 -674.3887 59.64075 -39.8414 123.0167 165.4863 8086479 1841.725
/sigma	1122.022	41.57903			1040.396	1203.647

Obs. summary: 325 left-censored observations at hours <= 0

> 428 uncensored observations 0 right-censored observations

c. This replicates Table 17.1 of Wooldridge (2009, p. 585) using Stata

. reg inlf nwifeinc kidslt6 kidsge6 'control' 'E', r

-.0005963 .00019

.5855192

.1522599

expersq

_cons

Linear regr	ession				Number of obs F(7, 745) Prob > F R-squared Root MSE	= 753 = 62.48 = 0.0000 = 0.2642 = .42713
inlf	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc kidslt6 kidsge6 age educ exper	0034052 2618105 .0130122 0160908 .0379953 .0394924	.0015249 .0317832 .0135329 .002399 .007266 .00581	-2.23 -8.24 0.96 -6.71 5.23 6.80	0.026 0.000 0.337 0.000 0.000	0063988 3242058 013555 0208004 .023731 .0280864	0004115 1994152 .0395795 0113812 .0522596 .0508983

-3.14

3.85

0.002

0.000

-.0009693

.2866098

The Logit estimates yield:

. logit inlf nwifeinc kidslt6 kidsge6 'control' 'E', r

Iteration 0: log pseudolikelihood = -514.8732

Iteration 1: log pseudolikelihood = -402.38502

Iteration 2: log pseudolikelihood = -401.76569

Iteration 3: log pseudolikelihood = -401.76515

Iteration 4: log pseudolikelihood = -401.76515

Logistic regression	Number of obs	=	753
	Wald chi2 (7)	=	158.48
	Prob > chi2	=	0.0000
Log pseudolikelihood = -401.76515	Pseudo R2	=	0.2197

inlf	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
nwifeinc	0213452	.0090782	-2.35	0.019	039138	0035523
kidslt6	-1.443354	.2031615	-7.10	0.000	-1.841543	-1.045165
kidsge6	.0601122	.0798825	0.75	0.452	0964546	.2166791
age	0880244	.0144393	-6.10	0.000	1163248	0597239
educ	.2211704	.0444509	4.98	0.000	.1340482	.3082925
exper	.2058695	.0322914	6.38	0.000	.1425796	.2691594
expersq	0031541	.0010124	-3.12	0.002	0051384	0011698
_cons	.4254524	.8597308	0.49	0.621	-1.259589	2.110494

. estat classification

Logistic model for inlf

Classified	Tr D	ue ∼D	Total
+	347 81	118 207	465 288
Total	428	325	753

Classified + if predicted Pr(D) >= .5True D defined as inlf != 0

Sensitivity Specificity Positive predictive value Negative predictive value	Pr(+ D) $Pr(- \sim D)$ Pr(D +) $Pr(\sim D -)$	81.07% 63.69% 74.62% 71.88%
False + rate for true ~D False - rate for true D False + rate for classified + False - rate for classified -	$Pr(+ \sim D)$ Pr(- D) $Pr(\sim D +)$ Pr(D -)	36.31% 18.93% 25.38% 28.13%
Correctly classified		73.57%
		. mfx

Marginal effects after logit y = Pr(inlf) (predict) = .58277201

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
nwifeinc	0051901	.00221	-2.35	0.019	009523	000857	20.129
kidslt6	3509498	.04988	-7.04	0.000	448718	253182	.237716
kidsge6	.0146162	.01941	0.75	0.451	023428	.05266	1.35325
age	021403	.00353	-6.07	0.000	028317	014489	42.5378
educ	.0537773	.01086	4.95	0.000	.032498	.075057	12.2869
exper	.0500569	.00788	6.35	0.000	.034604	.06551	10.6308
expersq	0007669	.00025	-3.11	0.002	001251	000283	178.039

[.] margeff

Average partial effects after logit

y = Pr(inlf)

variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nwifeinc	0038118	.0015923	-2.39	0.017	0069327	0006909
kidslt6	240805	.0262576	-9.17	0.000	292269	189341
kidsge6	.0107335	.0142337	0.75	0.451	017164	.038631
age	0157153	.0023842	-6.59	0.000	0203883	0110423
educ	.0394323	.0074566	5.29	0.000	.0248176	.0540471
exper	.0367123	.0051935	7.07	0.000	.0265332	.0468914
expersq	0005633	.0001767	-3.19	0.001	0009096	0002169

. probit inlf nwifeinc kidslt6 kidsge6 'control' 'E', r

Iteration 0: log pseudolikelihood = -514.8732

Iteration 1: log pseudolikelihood = -402.06651

Iteration 2: log pseudolikelihood = -401.30273

Iteration 3: log pseudolikelihood = -401.30219

Iteration 4: log pseudolikelihood = -401.30219

Probit regression

Number of obs = 753 Wald chi2 (7) = 185.10 Prob > chi2 = 0.0000

= 0.2206

Pseudo R2

Log pseudolikelihood = -401.30219

Robust inlf Coef. Std. Err. z P>|z|[95% Conf. Interval] nwifeinc | -.0120237 .0053106 -2.26 0.024 -.0224323 -.0016152 kidslt6 -.8683285 -7.47 0.000 .1162037 -1.096084 -.6405735 kidsge6 .036005 .0452958 0.79 0.427 -.0527731 .124783 -.0528527 .0083532 -6.33 0.000 -.0692246 age -.0364807 educ .1309047 .0258192 5.07 0.000 .0803 .1815095 6.54 -3.14 .086395 exper .1233476 .0188537 0.000 .1603002 -.0030645 expersq -.0018871 .0006007 0.002 -.0007097 .2700768 .505175 0.53 0.593 -.7200481 1.260202 _cons

. mfx

Marginal effects after probit

y = Pr(inlf) (predict)

= .58154201

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Χ
nwifeinc kidslt6	0046962 3391514	.00208	-2.26 -7.43	0.024 0.000	008766 428628	000626 249675	20.129
kidsge6	.0140628	.01769	0.80	0.427	020603	.048729	1.35325
age educ	0206432 .0511287	.00327 .01011	-6.31 5.06	0.000 0.000	027056 .031308	014231 .07095	42.5378 12.2869
exper expersq	.0481771 0007371	.00739 .00024	6.52 -3.14	0.000 0.002	.033694 001198	.06266 000276	10.6308 178.039

[.] margeff

Average partial effects after probit

y = Pr(inlf)

Variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nwifeinc	0036162	.0015759	-2.29	0.022	0067049	0005275
kidslt6	2441788	.0257356	-9.49	0.000	2946198	1937379
kidsge6	.0108274	.0135967	0.80	0.426	0158217	.0374765
age	0158917	.0023447	-6.78	0.000	0204873	011296
educ	.0393088	.0073669	5.34	0.000	.02487	.0537476
exper	.037046	.0051959	7.13	0.000	.0268621	.0472299
expersq	0005675	.0001775	-3.20	0.001	0009154	0002197

. dprobit inlf nwifeinc kidslt6 kidsge6 'control' 'E', r

Iteration 0: log pseudolikelihood = -514.8732

Iteration 1: log pseudolikelihood = -405.78215

Iteration 2: log pseudolikelihood = -401.32924

Iteration 3: log pseudolikelihood = -401.30219

Iteration 4: log pseudolikelihood = -401.30219

Probit regression, reporting marginal effects

Log pseudolikelihood = -401.30219

 inlf
 dF/dx
 Robust Std. Err.
 z
 P>|z|
 x-bar
 [95% C.I.]

 nwifeinc kidslt6
 -.0046962
 .0020767
 -2.26
 0.024
 20.129
 -.008766
 -.000626

 kidslt6
 -.3391514
 .045652
 -7.47
 0.000
 .237716
 -.428628
 -.249675

 kidsge6
 .0140628
 .0176869
 0.79
 0.427
 1.35325
 -.020603
 .048729

 age
 -.0206432
 .0032717
 -6.33
 0.000
 42.5378
 -.027056
 -.014231

 educ
 .0511287
 .010113
 5.07
 0.000
 12.2869
 .031308
 .07095

 exper
 .0481771
 .0073896
 6.54
 0.000
 10.6308
 .033694
 .06266

 expersq
 -.0007371
 .000235
 -3.14
 0.002
 178.039
 -.001198
 -.000276

 obs. P
 .5683931
 .581542
 (at x-bar)
 (at x-bar)
 .0024
 .0024
 .00279
 .000276

z and P> |z| correspond to the test of the underlying coefficient being 0

. estat classification

Probit model for inlf

	Tr	ue	
Classified	D	\sim D	Total
+	348	120	468
-	80	205	285
Total	428	325	753

Classified + if predicted Pr(D) >= .5True D defined as inlf!= 0

Sensitivity Specificity Positive predictive value Negative predictive value	$Pr(+ \mid D)$ $Pr(- \mid \sim D)$ $Pr(\mid D \mid +)$ $Pr(\sim D \mid -)$	81.31% 63.08% 74.36% 71.93%
False + rate for true \sim D False - rate for true D False + rate for classified + False - rate for classified -	$Pr(+ \sim D)$ Pr(- D) $Pr(\sim D +)$ Pr(D -)	36.92% 18.69% 25.64% 28.07%
Correctly classified		73.44%

d. Wooldridge (2009, Chapter 17) recommends one obtain the estimates of (β/σ^2) from a probit using an indicator of labor force participation. Then comparing those with the Tobit estimates generated by dividing β by σ^2 . If these estimates are different or have different signs, then the Tobit estimation may not be appropriate. Part (c) gave such probit estimates. For (kidslt6) this was estimated at -0.868. From part (b) the tobit estimation gave a β estimate for (kidslt6) of -894 and an estimate of σ^2 of 1122. The resulting estimate of (β/σ^2) is -0.797. These have the same sign but with different magnitudes.

13.18 Heckit Estimation of Married Women's Earnings

a. OLS on this model yields

. reg lwage educ exper expersq

Heckman selection model – two-step estimates

Source	SS	df	MS		Number of obs	=	428
Model	35.0222967	3	11.6740989		F(3, 424) Prob > F	=	26.29 0.0000
Residual	188.305144	424	.444115906		R-squared Adj R-squared	=	0.1568 0.1509
Total	223.327441	427	.523015084		Root MSE	=	.66642
lwage	Coef.	Std. Err.	t	P> t	[95% Co	nf. In	terval]
educ	.1074896	.0141465	7.60	0.000	.0796837		.1352956
exper	.0415665	.0131752	3.15	0.002	.0156697		.0674633
expersq	0008112	.0003932	-2.06	0.040	0015841		0000382
_cons	5220406	.1986321	-2.63	0.009	9124667		1316144
	5220400	.1300021	2.00	0.000	.512-1007		.1010144

Heckman two-step estimates

. heckman lwage educ exper expersq, select (educ exper expersq age kidslt6 kidsge6 nwifeinc) twostep

Number of obs =

(regressior	n model with sam		sored obs censored obs	=	325 428		
			d chi2(3) b > chi2	=	51.53 0.0000		
lwage	Coef.	Std. Err.	Z	P> z	[95% Cor	f. Int	erval]
lwage educ exper expersq _cons	.1090655 .0438873 0008591 5781032	.015523 .0162611 .0004389 .3050062	7.03 2.70 -1.96 -1.90	0.000 0.007 0.050 0.058	.0786411 .0120163 0017194 -1.175904		.13949 .0757584 1.15e-06 .019698
select educ exper expersq age kidslt6 kidsge6 nwifeinc _cons	.1309047 .1233476 0018871 0528527 8683285 .036005 0120237 .2700768	.0252542 .0187164 .0006 .0084772 .1185223 .0434768 .0048398 .508593	5.18 6.59 -3.15 -6.23 -7.33 0.83 -2.48 0.53	0.000 0.000 0.002 0.000 0.000 0.408 0.013 0.595	.0814074 .0866641 003063 0694678 -1.100628 049208 0215096 7267473		.180402 .1600311 0007111 0362376 636029 .1212179 0025378 1.266901
mills lambda	.0322619	.1336246	0.24	0.809	2296376		.2941613
rho sigma lambda	0.04861 .66362875 .03226186	.1336246					

b. The inverse mills ratio coefficient lambda is estimated to be .032 with a standard error of 0.134 which is not significant. This does not reject the null hypothesis of no sample selection.

c. The MLE of this Heckman (1976) sample selection model.

. heckman lwage educ exper expersq, select (educ exper expersq age kidslt6 kidsge6 nwifeinc)

Number of obs =

753

Iteration 0: log likelihood = -832.89776

Iteration 1: log likelihood = -832.88509

Iteration 2: log likelihood = -832.88508

Heckman selection model

(regression	model with san		sored obs ensored obs	=	325 428		
Log likeliho	od = -832.885		d chi2(3) b > chi2	= =	59.67 0.0000		
lwage	Coef.	Std. Err.	Z	P> z	[95% Co	nf. In	terval]
lwage educ exper expersq	.1083502 .0428369 0008374	.0148607 .0148785 .0004175	7.29 2.88 -2.01	0.000 0.004 0.045	.0792238 .0136755 0016556		.1374767 .0719983 0000192
_cons	5526973	.2603784	-2.12	0.034	-1.06303		0423651
select							
educ exper expersq age kidslt6 kidsge6 nwifeinc _cons	.1313415 .1232818 0018863 0528287 8673988 .0358723 0121321 .2664491	.0253823 .0187242 .0006004 .0084792 .1186509 .0434753 .0048767	5.17 6.58 -3.14 -6.23 -7.31 0.83 -2.49 0.52	0.000 0.000 0.002 0.000 0.000 0.409 0.013 0.601	.0815931 .0865831 003063 0694476 -1.09995 0493377 0216903 7310898		.1810899 .1599806 0007095 0362098 6348472 .1210824 002574 1.263988
/athrho /Insigma	.026614 4103809	.147182 .0342291	0.18 -11.99	0.857 0.000	2618573 4774687		.3150854 3432931
rho sigma lambda	.0266078 .6633975 .0176515	.1470778 .0227075 .0976057			2560319 .6203517 1736521		.3050564 .7094303 .2089552
LR test of indep. eqns. (rho = 0):				chi2(1) = 0.03 Prob > chi2 = 0.8577			

This yields the same results as the two-step Heckman procedure and the LR test for (rho = 0) is not significant.

References

- Carrasco, R. (2001), "Binary Choice with Binary Endogenous Regressors in Panel Data: Estimating the Effect Fertility on Female Labor Participation," Journal of Business & Economic Statistics, 19: 385–394.
- Dhillon, U.S., J.D. Shilling and C.F. Sirmans (1987), "Choosing Between Fixed and Adjustable Rate Mortgages," Journal of Money, Credit and Banking, 19: 260–267.
- Heckman, J. (1976), "The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models," Annals of Economic and Social Measurement, 5: 475–492.
- Mullahy, J. and J. Sindelar (1996), "Employment, Unemployment, and Problem Drinking," Journal of Health Economics, 15: 409–434.
- Terza, J. (2002), "Alcohol Abuse and Employment: A Second Look," Journal of Applied Econometrics, 17: 393–404.
- Wooldridge, J.M. (2009), *Introductory Econometrics: A Modern Approach* (South-Western: Ohio).

CHAPTER 14

Time-Series Analysis

- **14.1** The AR(1) Model. $y_t = \rho y_{t-1} + \epsilon_t$ with $|\rho| < 1$ and $\epsilon_t \sim \text{IIN}\left(0, \sigma_\epsilon^2\right)$. Also, $y_o \sim N\left(0, \sigma_\epsilon^2/1 \rho^2\right)$.
 - a. By successive substitution

$$\begin{split} y_t &= \rho y_{t-1} + \epsilon_t = \rho(\rho y_{t-2} + \epsilon_{t-1}) + \epsilon_t = \rho^2 y_{t-2} + \rho \epsilon_{t-1} + \epsilon_t \\ &= \rho^2 (\rho y_{t-3} + \epsilon_{t-2}) + \rho \epsilon_{t-1} + \epsilon_t = \rho^3 y_{t-3} + \rho^2 \epsilon_{t-2} + \rho \epsilon_{t-1} + \epsilon_t \\ &= \cdots = \rho^t y_o + \rho^{t-1} \epsilon_1 + \rho^{t-2} \epsilon_2 + \cdots + \epsilon_t \end{split}$$

Then, $E(y_t) = \rho^t E(y_0) = 0$ for every t, since $E(y_0) = E(\varepsilon_t) = 0$.

$$\begin{split} var(y_t) &= \rho^{2t}var(y_o) + \rho^{2(t-1)}var(\epsilon_1) + \rho^{2(t-2)}var(\epsilon_2) + \dots + var(\epsilon_t) \\ &= \rho^{2t}\left(\frac{\sigma_\epsilon^2}{1-\rho^2}\right) + (\rho^{2(t-1)} + \rho^{2(t-2)} + \dots + 1)\sigma_\epsilon^2 \\ &= \frac{\rho^{2t}}{1-\rho^2} \cdot \sigma_\epsilon^2 + \frac{1-\rho^{2t}}{1-\rho^2} \cdot \sigma_\epsilon^2 = \frac{\sigma_\epsilon^2}{1-\rho^2} = var(y_o) \quad \text{for every t.} \end{split}$$

If $\rho=1$, then $var(y_t)=\sigma_\epsilon^2/0\to\infty$. Also, if $|\rho|>1$, then $1-\rho^2<0$ and $var(y_t)<0$.

b. The AR(1) series y_t has zero mean and constant variance $\sigma^2 = var(y_t)$, for t = 0, 1, 2, ... In part (a) we could have stopped the successive substitution at y_{t-s} , this yields

$$y_t = \rho^s y_{t-s} + \rho^{s-1} \epsilon_{t-s+1} + \dots + \epsilon_t$$

Therefore, $cov(y_t, y_{t-s}) = cov(\rho^s y_{t-s} + \rho^{s-1} \epsilon_{t-s+1} + \cdots + \epsilon_t, y_{t-s}) = \rho^s var(y_{t-s}) = \rho^s \sigma^2$ which only depends on s the distance between t and t-s. Therefore, the AR(1) series y_t is said to be covariance-stationary or weakly stationary.

c. First one generates $y_o = 0.5 \ N(0,1)/(1-\rho^2)^{1/2}$ for various values of ρ . Then $y_t = \rho y_{t-1} + \epsilon_t$ where $\epsilon_t \sim IIN(0,0.25)$ for t=1,2,..,T.

- **14.2** The MA(1) Model. $y_t = \epsilon_t + \theta \epsilon_{t-1}$ with $\epsilon_t \sim \text{IIN}\left(0, \sigma_\epsilon^2\right)$
 - $$\begin{split} \textbf{a.} \ E(y_t) &= E(\epsilon_t) + \theta E(\epsilon_{t-1}) = 0 \text{ for all t. Also,} \\ var(y_t) &= var(\epsilon_t) + \theta^2 var(\epsilon_{t-1}) = (1+\theta^2)\sigma_\epsilon^2 \quad \text{for all t.} \end{split}$$

Therefore, the mean and variance are independent of t.

$$\begin{aligned} \textbf{b.} \ & \text{cov}(y_t, y_{t-1}) = \text{cov}(\epsilon_t + \theta \epsilon_{t-1}, \epsilon_{t-1} + \theta \epsilon_{t-2}) = \theta \text{var}(\epsilon_{t-1}) = \theta \sigma_\epsilon^2 \\ & \text{cov}(y_t, y_{t-s}) = \text{cov}(\epsilon_t + \theta \epsilon_{t-1}, \epsilon_{t-s} + \theta \epsilon_{t-s-1}) = \begin{cases} \theta \sigma_\epsilon^2 & \text{when } s = 1 \\ 0 & \text{when } s > 1 \end{cases} \\ & \text{Since } E(y_t) = 0 \text{ for all } t \text{ and } \text{cov}(y_t, y_{t-s}) = \begin{cases} \theta \sigma_\epsilon^2 & \text{when } s = 1 \\ 0 & \text{when } s > 1 \end{cases} \\ & \text{for all } t \text{ and } s \text{, then the MA}(1) \text{ process is covariance stationary.} \end{aligned}$$

c. First one generates $\epsilon_t \sim \text{IIN}(0, 0.25)$. Then, for various values of θ , one generates $y_t = \epsilon_t + \theta \epsilon_{t-1}$.

14.3

a. The sample autocorrelation function for Income using EViews is as follows:

Correlogram of Income Sample: 1959 2007 Included observations: 49

	Partial					
Autocorrelation	Correlation		AC	PAC	Q-Stat	Prob.
. ******	. *****	1	0.935	0.935	45.538	0
. ******	. .	2	0.869	-0.043	85.714	0
. *****	. .	3	0.804	-0.031	120.81	0
. *****	. .	4	0.737	-0.05	150.95	0
. ****	. .	5	0.671	-0.026	176.52	0
. ****	. .	6	0.607	-0.026	197.93	0
. ****	. .	7	0.545	-0.022	215.62	0
. ****	. .	8	0.484	-0.034	229.91	0
. ***	. .	9	0.428	-0.006	241.33	0
. ***	. .	10	0.373	-0.023	250.25	0
. **	. .	11	0.324	0.005	257.17	0
. **	. .	12	0.278	-0.022	262.37	0
. **	. .	13	0.232	-0.025	266.12	0
. *.	. .	14	0.189	-0.022	268.68	0
. *.	. .	15	0.15	-0.009	270.33	0

. *.	.* .	16	0.105	-0.077	271.17	0
. .	. .	17	0.061	-0.033	271.46	0
. .	. .	18	0.016	-0.056	271.48	0
. .	. .	19	-0.029	-0.038	271.56	0
.* .	. .	20	-0.072	-0.024	272	0

The sample autocorrelation function for differenced Income is as follows:

Correlogram of Differenced Income

Sample: 1959 2007 Included observations: 48

	Partial					
Autocorrelation	Correlation		AC	PAC	Q-Stat	Prob.
. [.	.1.	1	0.021	0.021	0.0234	0.879
. *.	. *.	2	0.145	0.145	1.1253	0.57
.* .	.* .	3	-0.141	-0.15	2.1907	0.534
. į .	. į .	4	-0.008	-0.022	2.1944	0.7
.* .	.* .	5	-0.145	-0.106	3.3743	0.642
. *.	. *.	6	0.112	0.11	4.0884	0.665
** .	** .	7	-0.309	-0.306	9.6689	0.208
. [.	. [.	8	0.05	0.026	9.8171	0.278
** .	.* .	9	-0.232	-0.166	13.135	0.157
.* .	** .	10	-0.129	-0.228	14.18	0.165
. *.	. *.	11	0.077	0.182	14.561	0.203
. *.	. .	12	0.137	0.024	15.804	0.2
. .	. .	13	-0.019	-0.056	15.83	0.258
. **	. *.	14	0.209	0.11	18.905	0.169
. .	. .	15	-0.057	-0.022	19.145	0.207
. *.	. .	16	0.113	0.043	20.371	0.256
.* .	.* .	17	-0.06	-0.149	20.094	0.216
.* .	. .	18	-0.074	-0.054	20.813	0.289
. *.	. *.	19	0.083	0.185	21.386	0.316
. *.	. .	20	0.089	0	22.069	0.337

b. The Augmented Dickey–Fuller test statistic for Income using a constant and linear trend is as follows:

Null Hypothesis: Y has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.843738	0.6677
Test critical values:	1% level	-4.161144	
	5% level	-3.506374	
	10% level	-3.183002	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Y) Method: Least Squares

Sample (adjusted): 1960 2007

Included observations: 48 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
Y(-1) C @TREND(1959)	-0.165599 1771.254 67.25568	0.089817 798.2947 34.64899	-1.843738 2.218797 1.941058	0.0718 0.0316 0.0585
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.100578 0.060604 269.0066 3256405. -335.1074 2.516070 0.092083	Mean depe S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion iterion uinn criter.	394.3542 277.5483 14.08781 14.20476 14.13201 1.806165

This does not reject the null hypothesis of unit root for Income.

c. The Augmented Dickey–Fuller test statistic for differenced Income using a constant and linear trend is as follows:

Null Hypothesis: D(Y) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.717325	0.0000
Test critical values:	1% level	-4.165756	
	5% level	-3.508508	
	10% level	-3.184230	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(Y,2) Method: Least Squares

Sample (adjusted): 1961 2007

Included observations: 47 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
D(Y(-1)) C @TREND(1959)	-1.002187 330.8657 2.866879	0.149194 96.73746 3.046308	-6.717325 3.420244 0.941100	0.0000 0.0014 0.3518
R-squared Adjusted R-squared	0.506532 0.484102	Mean depe S.D. depen		9.914894 388.6497
S.É. of regression	279.1518	Akaike info	criterion	14.16309
Sum squared resid	3428732.	Schwarz cr	iterion	14.28118
Log likelihood	-329.8326	Hannan-Qı	uinn criter.	14.20753

F-statistic 22.58242 Durbin-Watson stat 2.018360

Prob(F-statistic) 0.000000

This rejects the null hypothesis of unit root for differenced Income. We conclude that Income is I(1).

d. Let R1 denote the ols residuals from the regression of Consumption on Income and a constant. This tests R1 for unit roots: This ADF includes a constant

Null Hypothesis: R1 has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

Augmented Dickey-Fuller test statistic		t-Statistic -1.502798	Prob.* 0.5237
Test critical values:	1% level 5% level 10% level	-3.574446 -2.923780 -2.599925	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(R1) Method: Least Squares

Sample (adjusted): 1960 2007

Included observations: 48 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
R1(-1) C	-0.094140 -1.110596	0.062643 26.49763	-1.502798 -0.041913	0.1397 0.9667
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.046798 0.026076 183.4889 1548737. -317.2710 2.258401 0.139726	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	0.149870 185.9291 13.30296 13.38093 13.33242 2.408726

This ADF includes a constant and a linear trend.

Null Hypothesis: R1 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Autom	atic based on SIC, MA	XLAG=10)	
	,	t-Statistic	Prob.*
Augmented Dickey-Fu	uller test statistic	-1.000195	0.9342
Test critical values:	1% level 5% level 10% level	-4.165756 -3.508508 -3.184230	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(R1) Method: Least Squares

Sample (adjusted): 1961 2007

Included observations: 47 after adjustments

Coefficient	Std. Error	t-Statistic	Prob.
-0.062470	0.062458	-1.000195	0.3228
-0.324625	0.145177	-2.236060	0.0306
-121.4508	54.46854	-2.229742	0.0310
4.793820	1.937792	2.473856	0.0174
0.209855			-0.103081
0.154728	S.D. depen	dent var	187.9309
172.7812	Akaike info	criterion	13.22319
1283693.	Schwarz cr	iterion	13.38065
-306.7451	Hannan-Qu	uinn criter.	13.28245
3.806787	Durbin-Wat	tson stat	2.032797
0.016614			
	-0.062470 -0.324625 -121.4508 4.793820 0.209855 0.154728 172.7812 1283693. -306.7451 3.806787	-0.062470 0.062458 -0.324625 0.145177 -121.4508 54.46854 4.793820 1.937792 0.209855 Mean depe 0.154728 S.D. depen 172.7812 Akaike info 1283693. Schwarz cr -306.7451 Hannan-Qu 3.806787 Durbin-Wat	-0.062470

Both ADF tests do not reject the null hypothesis of unit roots in the ols residuals.

f. Correlogram of log(consumption)

Correlogram of log(consumption)

Sample: 1959 2007 Included Observations: 49

	Partial					
Autocorrelation	Correlation		AC	PAC	Q-Stat	Prob
. *****	. *****	1	0.937	0.937	45.664	0
. ******	.* .	2	0.87	-0.059	85.895	0
. *****	. į .	3	0.801	-0.053	120.74	0
. *****	.i.	4	0.733	-0.027	150.61	0
. *****	. į .	5	0.667	-0.03	175.86	0
. *****	. į .	6	0.603	-0.021	196.97	0
. ****	. į .	7	0.541	-0.017	214.41	0
. ****	. į .	8	0.482	-0.024	228.6	0
. ***	.i.	9	0.425	-0.027	239.89	0
. ***	. į .	10	0.373	0.003	248.81	0
. **	. į .	11	0.324	-0.016	255.73	0
. **	.i.	12	0.275	-0.041	260.85	0
. **	. į .	13	0.228	-0.027	264.44	0
. j*.	. į .	14	0.183	-0.011	266.84	0
. *.	. į .	15	0.142	-0.01	268.33	0
. *.	.* .	16	0.099	-0.063	269.07	0
. į .	. [.	17	0.055	-0.038	269.3	0
. į .		18	0.012	-0.036	269.32	0
. į .	. [.	19	-0.029	-0.028	269.39	0
.* .	. .	20	-0.068	-0.022	269.78	0

For log(consumption), the ADF with a Constant and Linear Trend yields:

Null Hypothesis: LOGC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.201729	0.0965
Test critical values:	1% level	-4.165756	
	5% level	-3.508508	
	10% level	-3.184230	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGC)

Method: Least Squares

Sample (adjusted): 1961 2007

Included observations: 47 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
LOGC(-1) D(LOGC(-1)) C @TREND(1959)	-0.216769 0.447493 1.987148 0.004925	0.067704 0.129784 0.614623 0.001590	-3.201729 3.447996 3.233118 3.097180	0.0026 0.0013 0.0024 0.0034
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.311464 0.263427 0.013715 0.008088 136.9955 6.483785 0.001019	Mean depe S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion iterion uinn criter.	0.024014 0.015980 -5.659384 -5.501924 -5.600131 1.978461

We do not reject the null hypothesis that log(consumption) has unit root at the 5% level, but we do so at the 10% level.

For differenced log(consumption), the ADF with a Constant and Linear Trend yields:

Null Hypothesis: D(LOGC) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic based on SIC, MAXLAG=10)

Augmented Dickey-Fuller test statistic		t-Statistic -5.143889	Prob.* 0.0006
Test critical values:	1% level 5% level 10% level	-4.170583 -3.510740 -3.185512	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGC,2)

Method: Least Squares Sample (adjusted): 1962 2007

Included observations: 46 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
D(LOGC(-1)) D(LOGC(-1),2) C @TREND(1959)	-0.848482 0.253834 0.026204 -0.000215	0.164950 0.143686 0.006566 0.000165	-5.143889 1.766584 3.990611 -1.307036	0.0000 0.0846 0.0003 0.1983
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.403764 0.361175 0.014642 0.009005 131.1178 9.480625 0.000066	Mean depe S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wa	dent var criterion riterion uinn criter.	0.000300 0.018320 -5.526861 -5.367849 -5.467294 2.028804

We do reject the null hypothesis that differenced log(consumption) has unit root at the 5% level.

Correlogram of log Income Sample: 1959 2007 Included Observations: 49

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ******	. ******	1	0.935	0.935	45.507	0
. *****	. .	2	0.867	-0.057	85.463	0
. *****	. .	3	0.798	-0.042	120.07	0
. *****	. .	4	0.729	-0.041	149.58	0
. ****	. .	5	0.661	-0.035	174.36	0
. ****	. .	6	0.596	-0.012	194.98	0
. ****	. .	7	0.534	-0.016	211.96	0
. ****	. .	8	0.475	-0.026	225.69	0

. ***	. .	9	0.418	-0.015	236.64	0
. ***	. .	10	0.365	-0.021	245.17	0
. **	. .	11	0.315	-0.009	251.7	0
. **	. .	12	0.268	-0.023	256.54	0
. **	. .	13	0.222	-0.023	259.97	0
. *.	. .	14	0.179	-0.017	262.26	0
. *.	. .	15	0.141	0.002	263.72	0
. *.	.* .	16	0.098	-0.079	264.44	0
. .	. .	17	0.055	-0.035	264.68	0
. .	. .	18	0.011	-0.043	264.69	0
. .	. .	19	-0.031	-0.034	264.77	0
.* .	. .	20	-0.071	-0.018	265.2	Ω

For log(Income), the ADF with a Constant and Linear Trend yields:

Null Hypothesis: LOGY has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

	t-Statistic	Prob.*
Iller test statistic	-1.567210	0.7912
1% level	-4.161144	
5% level	-3.506374	
10% level	-3.183002	
	1% level 5% level	Iller test statistic -1.567210 1% level -4.161144 5% level -3.506374

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGY)

Method: Least Squares

Sample (adjusted): 1960 2007

Included observations: 48 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
LOGY(-1) C @TREND(1959)	-0.079684 0.765061 0.001460	0.050844 0.469055 0.001136	-1.567210 1.631070 1.285021	0.1241 0.1099 0.2054
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.118240 0.079051 0.015364 0.010623 133.8739 3.017149 0.058936	S.D. deper Akaike info Schwarz o	o criterion criterion Juinn criter.	0.022569 0.016010 -5.453080 -5.336130 -5.408884 1.746698

We do not reject the null hypothesis that log(income) has unit root at the 5% level.

For differenced log(income), the ADF with a Constant and Linear Trend yields:

Null Hypothesis: D(LOGY) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

	t-Statistic Prob.*
Augmented Dickey-Fuller test statisti Test critical values : 1% level 5% level 10% level	c -6.336919 0.0000 -4.165756 -3.508508 -3.184230

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGY,2)

Method: Least Squares

Sample (adjusted): 1961 2007

Included observations: 47 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
D(LOGY(-1)) C @TREND(1959)	-0.924513 0.029916 -0.000347	0.145893 0.006480 0.000172	-6.336919 4.616664 -2.019494	0.0000 0.0000 0.0496
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.477988 0.454260 0.015436 0.010484 130.8994 20.14464 0.000001	S.D. depe Akaike info Schwarz o	o criterion criterion Quinn criter.	0.000278 0.020895 -5.442528 -5.324434 -5.398088 2.057278

We do reject the null hypothesis that differenced log(income) has unit root at the 5% level.

The OLS regression of log(consumption) on log(income) and a constant yields:

Dependent Variable: LOGC

Method: Least Squares

Sample: 1959 2007

Included observations: 49

	Coefficient	Std. Error	t-Statistic	Prob.
C LOGY	-0.625988 1.053340	0.107332 0.010972	-5.832253 95.99861	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.02413	8 S.D 66 Aka 79 Sch 8 Har 33 Dur	an dependent var dependent var like info criterion warz criterion nnan-Quinn criter. bin-Watson stat	9.672434 0.335283 -4.570278 -4.493061 -4.540982 0.205803

Let R2 denote the ols residuals from the regression of Log(Consumption) on log(Income) and a constant.

This tests R2 for unit roots:

Null Hypothesis: R2 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-1.898473 -4.161144 -3.506374 -3.183002	0.6399
	10 /0 IEVEI	-3.10300Z	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(R2)

Method: Least Squares

Sample (adjusted): 1960 2007

Included observations: 48 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
R2(-1)	-0.122648	0.064603	-1.898473	0.0641
С	-0.005115	0.003074	-1.663739	0.1031
@TREND(1959)	0.000201	0.000109	1.838000	0.0727

R-squared	0.126883	Mean dependent var	-0.000115
Adjusted R-squared	0.088078	S.D. dependent var	0.010949
S.E. of regression	0.010455	Akaike info criterion	-6.222927
Sum squared resid	0.004919	Schwarz criterion	-6.105977
Log likelihood	152.3503	Hannan-Quinn criter.	-6.178732
F-statistic	3.269755	Durbin-Watson stat	2.497289
Prob(F-statistic)	0.047220		

We do not reject the null hypothesis of unit roots in these ols residuals.

Johansen's Cointegration Tests for Log(consumption) and log(Y)

Sample (adjusted): 1961 2007

Included observations: 47 after adjustments
Trend assumption: Linear deterministic trend

Series: LOGC LOGY

Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None	0.253794	14.26745	15.49471	0.0759
At most 1	0.010751	0.508018	3.841466	0.4760

Trace test indicates no cointegration at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None	0.253794	13.75944	14.26460	0.0600
At most 1	0.010751	0.508018	3.841466	0.4760

Max-eigenvalue test indicates no cointegration at the 0.05 level

Both tests indicate no cointegration between Log(consumption) and log(Y) at the 5% level

GARCH(1,1) for Log(consumption) and log(Y)

Dependent Variable: LOGC

Method: ML - ARCH (Marquardt) - Normal distribution

Sample: 1959 2007 Included observations: 49

Convergence achieved after 20 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Coefficient C LOGY	Std. Error -0.712055 1.063091	z-Statistic 0.077795 0.007986	Prob. -9.152987 133.1172	0.0000 0.0000	
Variance Equation					
С	0.000127	0.000114	1.112565	0.2659	
RESID(-1)^2	1.332738	0.542199	2.458025	0.0140	
GARCH(-1)	-0.195201	0.120479	-1.620211	0.1052	
R-squared	0.994060	Mean de	oendent var	9.672434	
Adjusted R-squared	0.993521	S.D. depe	endent var	0.335283	
S.E. of regression	0.026989	Akaike in	fo criterion	-4.800472	
Sum squared resid	0.032049	Schwarz	criterion	-4.607429	
Log likelihood	122.6116	Hannan-0	Quinn criter.	-4.727232	
F-statistic	1841.004	Durbin-W	atson stat	0.178014	
Prob(F-statistic)	0.000000				

14.5 Data Description: This data is obtained from the Citibank data base.

M1: is the seasonally adjusted monetary base. This a monthly average series. We get the quarterly average of M1 by using $(M1_t + M1_{t+1} + M1_{t+2})/3$.

TBILL3: is the T-bill-3 month-rate. This is a monthly series. We calculate a quarterly average of TBILL3 by using $(TBILL3_t + TBILL3_{t+1} + TBILL3_{t+2})/3$. Note that TBILL3 is an annualized rate (per annum).

GNP: This is Quarterly GNP. All series are transformed by taking their natural logarithm.

a. VAR with two lags on each variable

Sample(adjusted): 1959:3 1995:2

Included observations: 144 after adjusting endpoints

Standard errors & t-statistics in parentheses

	LNGNP	LNM1	LNTBILL3
LNGNP(-1)	1.135719	-0.005500	1.437376
	(0.08677)	(0.07370)	(1.10780)
	(13.0886)	(-0.07463)	(1.29751)
LNGNP(-2)	-0.130393	0.037241	-1.131462
	(0.08750)	(0.07431)	(1.11705)
	(-1.49028)	(0.50115)	(-1.01290)

LNM1(-1)	0.160798	1.508925	1.767750
	(0.07628)	(0.06478)	(0.97383)
	(2.10804)	(23.2913)	(1.81525)
LNM1(-2)	-0.163492	-0.520561	-1.892962
	(0.07516)	(0.06383)	(0.95951)
	(-2.17535)	(-8.15515)	(-1.97284)
LNTBILL3(-1)	0.001615	-0.036446	1.250074
	(0.00645)	(0.00547)	(0.08230)
	(0.25047)	(-6.65703)	(15.1901)
LNTBILL3(-2)	-0.008933	0.034629	-0.328626
	(0.00646)	(0.00549)	(0.08248)
	(-1.38286)	(6.31145)	(-3.98453)
С	-0.011276	-0.179754	-1.656048
	(0.07574)	(0.06433)	(0.96696)
	(-0.14888)	(-2.79436)	(-1.71264)
R-squared		0.999899	0.946550
Adj. R-squared		0.999895	0.944209
Sum sq. resids		0.006527	1.474870
S.E. equation		0.006902	0.103757
Log likelihood		515.7871	125.5229
Akaike AI C		-9.904358	-4.484021
Schwarz SC		-9.759992	-4.339656
Mean depender		5.860579	1.715690
S.D. dependent		0.672211	0.439273
Determinar	nt Residual Cov	ariance 2	.67E-11

Determinant Residual Covariance Log Likelihood 1355.989
Akaike Information Criteria -24.24959
Schwarz Criteria -24.10523

b. VAR with three lags on each variable

Sample(adjusted): 1959:4 1995:2

Included observations: 143 after adjusting endpoints

Standard errors & t-statistics in parentheses

	LNGNP	LNM1	LNTBILL3
LNGNP(-1)	1.133814	-0.028308	1.660761
	(0.08830)	(0.07328)	(1.11241)
	(12.8398)	(-0.38629)	(1.49295)
LNGNP(-2)	-0.031988	0.103428	0.252378
	(0.13102)	(0.10873)	(1.65053)
	(-0.24414)	(0.95122)	(0.15291)

LNGNP(-3)	-0.105146	-0.045414	-1.527252
	(0.08774)	(0.07281)	(1.10526)
	(-1.19842)	(-0.62372)	(-1.38180)
LNM1(-1)	0.098732	1.375936	1.635398
	(0.10276)	(0.08528)	(1.29449)
	(0.96081)	(16.1349)	(1.26335)
LNM1(-2)	-0.012617	-0.134075	-3.555324
	(0.17109)	(0.14198)	(2.15524)
	(-0.07375)	(-0.94432)	(-1.64962)
LNM1(-3)	-0.085778	-0.253402	1.770995
	(0.09254)	(0.07680)	(1.16577)
	(-0.92693)	(-3.29962)	(1.51917)
LNTBILL3(-1)	0.001412	-0.041461	1.306043
	(0.00679)	(0.00564)	(0.08555)
	(0.20788)	(-7.35638)	(15.2657)
LNTBILL3(-2)	-0.013695	0.039858	-0.579077
	(0.01094)	(0.00908)	(0.13782)
	(-1.25180)	(4.38997)	(-4.20158)
LNTBILL3(-3)	0.006468	0.000144	0.207577
	(0.00761)	(0.00632)	(0.09588)
	(0.84990)	(0.02281)	(2.16504)
С	0.037812	-0.166320	-2.175434
	(0.07842)	(0.06508)	(0.98789)
	(0.48217)	(-2.55566)	(-2.20210)
R-squared Adj. R-squared Sum sq. resids S.E. equation Log likelihood Akaike AIC Schwarz SC Mean depender S.D. dependent		0.005938 0.006682 518.4767 -9.949432 -9.742240 5.866929	0.950041 0.946661 1.368186 0.101425 129.5215 -4.509499 -4.302307 1.718861 0.439160

Determinant Residual Covariance 2.18E-11 Log Likelihood 1360.953 Akaike Information Criteria -24.40808 Schwarz Criteria -24.20088

d. Pairwise Granger Causality Tests

Sample: 1959:1 1995:2

Lags: 3

Null Hypothesis:	Obs	F-Statistic	Probability
LNTBILL3 does not Granger Cause LNM1	143	20.0752	7.8E-11
LNM1 does not Granger Cause LNTBILL3		1.54595	0.20551

e. Pairwise Granger Causality Tests

Pairwise Granger Causality Tests

Sample: 1959:1 1995:2

Lags: 2

Null Hypothesis: Obs F-Statistic Probability

LNTBILL3 does not Granger Cause LNM1 144 23.0844 2.2E-09

LNM1 does not Granger Cause LNTBILL3 3.99777 0.02051

14.6 *The Simple Deterministic Time Trend Model.* This is based on Hamilton (1994).

$$y_t = \alpha + \beta t + u_t$$
 $t = 1, ..., T$ where $u_t \sim IIN(0, \sigma^2)$.

In vector form, this can be written as

$$y = X\phi + u, \quad X = [1, t], \quad \phi = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

a. $\hat{\phi}_{ols} = (X'X)^{-1}X'y$ and $\hat{\phi}_{ols} - \phi = (X'X)^{-1}X'u$

Therefore,

$$\begin{split} \hat{\phi}_{ols} - \phi &= \begin{bmatrix} \hat{\alpha}_{ols} - \alpha \\ \hat{\beta}_{ols} - \beta \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1' \\ t' \end{pmatrix} (1, t) \end{bmatrix}^{-1} \begin{pmatrix} 1' \\ t' \end{pmatrix} u \\ &= \begin{bmatrix} 1'1 & 1't \\ t'1 & t't \end{bmatrix}^{-1} \begin{bmatrix} 1'u \\ t'u \end{bmatrix} \\ &= \begin{bmatrix} \sum_{t=1}^{T} 1 & \sum_{t=1}^{T} t \\ \sum_{t=1}^{T} t & \sum_{t=1}^{T} t^{2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{t=1}^{T} u_{t} \\ \sum_{t=1}^{T} t u_{t} \end{bmatrix} = \begin{bmatrix} T & \sum_{t=1}^{T} t \\ \sum_{t=1}^{T} t & \sum_{t=1}^{T} t^{2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{t=1}^{T} u_{t} \\ \sum_{t=1}^{T} t u_{t} \end{bmatrix} \end{split}$$

b.
$$\frac{X'X}{T} = T^{-1} \begin{bmatrix} T & \sum_{t=1}^{1} t \\ \sum_{t=1}^{T} t & \sum_{t=1}^{T} t^2 \end{bmatrix} = T^{-1} \begin{bmatrix} T & T(T+1)/2 \\ T(T+1)/2 & T(T+1)(2T+1)/6 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & (T+1)/2 \\ (T+1)/2 & (T+1)(2T+1)/6 \end{bmatrix}$$

Therefore, $plim(\frac{X'X}{T})$ diverges as $T \to \infty$ and is not a positive definite matrix.

c. Note that

$$\begin{split} A^{-1}(X'X)A^{-1} &= \begin{bmatrix} T^{-\frac{1}{2}} & 0 \\ 0 & T^{-\frac{3}{2}} \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} 1 & \sum_{t=1}^{T} t \\ \sum_{t=1}^{T} t & \sum_{t=1}^{T} t^2 \end{bmatrix} \begin{bmatrix} T^{-\frac{1}{2}} & 0 \\ 0 & T^{-\frac{3}{2}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} 1 & \frac{1}{T^2} \sum_{t=1}^{T} t \\ \frac{1}{T^2} \sum_{t=1}^{T} t & \frac{1}{T^3} \sum_{t=1}^{T} t^2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & \frac{T(T+1)}{2T^2} \\ \frac{T(T+1)}{2T^2} & \frac{T(T+1)(2T+1)}{6T^3} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} + \frac{1}{2T} \\ \frac{1}{2} + \frac{1}{2T} & \frac{1}{3} + \frac{1}{2T} + \frac{1}{6T^2} \end{bmatrix} \end{split}$$

Therefore plim $A^{-1}(X'X)A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} = Q$ as $T \to \infty$ which is a finite positive definite matrix. Also

$$A^{-1}(X'u) = \begin{bmatrix} \frac{1}{\sqrt{T}} & 0 \\ 0 & \frac{1}{T\sqrt{T}} \end{bmatrix} \begin{bmatrix} 1'u \\ t'u \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{T}} & 0 \\ 0 & \frac{1}{T\sqrt{T}} \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} u_t \\ \sum_{t=1}^{T} t u_t \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_t \\ \frac{1}{T\sqrt{T}} \sum_{t=1}^{T} t u_t \end{bmatrix}$$

d. Show that $z_1 = \frac{1}{\sqrt{T}}\sum_{t=1}^T u_t \sim N(0,\sigma^2)$. $u_t \sim N(0,\sigma^2)$, so that $\sum_{t=1}^T u_t \sim N(0,T\sigma^2)$.

Therefore,
$$\frac{1}{\sqrt{T}}\sum_{t=1}^{T}u_{t}\sim N\left(0,\frac{1}{\sqrt{T}}\cdot T\sigma^{2}\cdot\frac{1}{\sqrt{T}}\right)=N(0,\sigma^{2}).$$

Also, show that
$$z_2 = \frac{1}{T\sqrt{T}}\sum_{t=1}^{T}tu_t \sim N\left[0, \frac{\sigma^2}{6T^2}\cdot(T+1)(2T+1)\right]$$
.

$$\begin{split} & \text{Let } \sigma_t^2 = \text{var} \left(\frac{t}{T} u_t \right) = E \left(\frac{t}{T} u_t \right)^2 = \frac{t^2}{T^2} \sigma^2. \text{ Then,} \\ & \frac{1}{T} \sum_{t=1}^T \sigma_t^2 = \frac{\sigma^2}{T^3} \sum_{t=1}^T t^2 = \frac{\sigma^2}{T^3} \cdot \frac{T(T+1)(2T+1)}{6} = \frac{\sigma^2(T+1)(2T+1)}{6T^2} \\ & \text{Since } \text{var} \left(\frac{1}{T\sqrt{T}} \sum_{t=1}^T t u_t \right) = \frac{1}{T} \text{var} \left(\sum_{t=1}^T \frac{t}{T} u_t \right) = \frac{1}{T} \sum_{t=1}^T \sigma_t^2 = \frac{\sigma^2(T+1)(2T+1)}{6T^2} \\ & \text{Therefore } \frac{1}{T\sqrt{T}} \sum_{t=1}^T t u_t \sim N \left(0, \frac{\sigma^2(T+1)(2T+1)}{6T^2} \right) \\ & \text{Now } z_1 = \frac{1}{\sqrt{T}} \sum_{t=1}^T u_t \sim N(0, \sigma^2) \text{ and} \\ & z_2 = \frac{1}{T\sqrt{T}} \sum_{t=1}^T t u_t \sim N \left(0, \frac{(T+1)(2T+1)}{6T^2} \sigma^2 \right) \end{split}$$

with

$$\begin{split} cov(z_1,z_2) &= E(z_1z_2) = E\left(\sum_{t=1}^T \frac{t}{T^2} u_t^2\right) = \sigma^2 \sum_{t=1}^T t/T^2 \\ &= T(T+1)\sigma^2/2T^2 = (T+1)\sigma^2/2T. \end{split}$$

Hence,

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \sim N \begin{pmatrix} 0, \sigma^2 \begin{bmatrix} 1 & \frac{T+1}{2T} \\ \frac{T+1}{2T} & \frac{(T+1)(2^T+1)}{6T^2} \end{bmatrix} \end{pmatrix}$$

Therefore as $T \to \infty$, $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ has an asymptotic distribution that is

$$N\left(0,\sigma^2\begin{bmatrix}1&\frac{1}{2}\\\frac{1}{2}&\frac{1}{3}\end{bmatrix}\right) \text{ or } N(0,\sigma^2Q).$$

$$\mathbf{e.} \begin{bmatrix} \sqrt{T} \left(\hat{\alpha}_{ols} - \alpha \right) \\ T \sqrt{T} \left(\hat{\beta}_{ols} - \beta \right) \end{bmatrix} = [A^{-1}(X'X)A^{-1}]^{-1}[A^{-1}(X'u)]$$

But from part (c), we have plim $A^{-1}(X'X)A^{-1}$ is Q which is finite and positive definite. Therefore plim $[A^{-1}(X'X)A^{-1}]^{-1}$ is Q^{-1} . Also, from part (d)

$$A^{-1}(X'u) = \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_t \\ \frac{1}{T\sqrt{T}} \sum_{t=1}^{T} t u_t \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

has an asymptotic distribution $N(0,\sigma^2Q)$. Hence, $[A^{-1}(X'X)A^{-1}]^{-1}$ $[A^{-1}(X'u)]$ has an asymptotic distribution $N(0,Q^{-1}\sigma^2QQ^{-1})$ or $N(0,\sigma^2Q^{-1})$. Thus,

$$\begin{bmatrix} \sqrt{T} \left(\hat{\alpha}_{ols} - \alpha \right) \\ T\sqrt{T} \left(\hat{\beta}_{ols} - \beta \right) \end{bmatrix},$$

has an asymptotic distribution $N(0, \sigma^2 Q^{-1})$. Since $\hat{\beta}_{ols}$ has the factor $T\sqrt{T}$ rather than the usual \sqrt{T} , it is said to be *superconsistent*. This means that not only does $(\hat{\beta}_{ols} - \beta)$ converge to zero in probability limits, but so does $T(\hat{\beta}_{ols} - \beta)$. Note that the normality assumption is not needed for this result. Using the central limit theorem, all that is needed is that u_t is White noise with finite fourth moments, see Sims et al. (1990) or Hamilton (1994).

- **14.7** *Test of Hypothesis with a Deterministic Time Trend Model.* This is based on Hamilton (1994).
 - **a.** Show that plim $s^2 = \frac{1}{T-2} \sum_{t=1}^T (y_t \hat{\alpha}_{ols} \hat{\beta}_{ols} t)^2 = \sigma^2$. By the law of large

$$numbers \ \frac{1}{T-2} \sum_{t=1}^T (y_t - \hat{\alpha}_{ols} - \hat{\beta}_{ols} t)^2 = \frac{1}{T-2} \sum_{t=1}^T u_t^2.$$

Hence, plim
$$s^2 = plim \frac{1}{T-2} \sum_{t=1}^T u_t^2 = var(u_t) = \sigma^2$$

b. Show that $t_{\alpha}=\frac{\hat{\alpha}_{ols}-\alpha_{o}}{\left[s^{2}(1,0)(X'X)^{-1}\begin{bmatrix}1\\0\end{bmatrix}\right]^{\frac{1}{2}}}$ has the same asymptotic N(0,1)

distribution as $t_{\alpha}^* = \frac{\sqrt{T}(\hat{\alpha}_{ols} - \alpha_o)}{\sigma \sqrt{q^{11}}}$. Multiplying both the numerator and denominator of t_{α} by \sqrt{T} gives

$$t_{\alpha} = \frac{\sqrt{T} \left(\hat{\alpha}_{ols} - \alpha_{o}\right)}{\left\lceil s^{2}(\sqrt{T}, 0)(X'X)^{-1} \left\lceil \frac{\sqrt{T}}{0} \right\rceil \right\rceil^{\frac{1}{2}}}$$

> From problem 14.6, part (c), we showed that for $A = \begin{bmatrix} \sqrt{T} & 0 \\ 0 & T\sqrt{T} \end{bmatrix}$ the $p\lim[A^{-1}(X'X)A^{-1}]^{-1} = Q^{-1}$ where

$$Q = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix}.$$

Now, $[\sqrt{T}, 0]$ in t_{α} can be rewritten as [1,0]A, because

$$[1,0]A = [1,0] \begin{bmatrix} \sqrt{T} & 0 \\ 0 & T\sqrt{T} \end{bmatrix} = [\sqrt{T},0].$$

Therefore,
$$t_{\alpha} = \frac{\sqrt{T}(\hat{\alpha}_{ols} - \alpha_{o})}{\left\lceil s^{2}[1,0]A(X'X)^{-1}A \binom{1}{0} \right\rceil^{\frac{1}{2}}}$$

Using plim
$$s^2 = \sigma^2$$
 and plim $A(X'X)^{-1}A = Q^{-1}$, we get
$$\text{plim} \left[s^2[1,0]A(X'X)^{-1}A \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right]^{1/2} = \left[\sigma^2[1,0]Q^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right]^{1/2} = \sigma \sqrt{q^{11}}$$

where q^{11} is the (1,1) element of Q^{-1} . Therefore, t_{α} has the same asymptotic distribution as

$$\frac{\sqrt{T}\left(\hat{\alpha}_{ols}-\alpha_{o}\right)}{\sigma\sqrt{q^{11}}}=t_{\alpha}^{*}$$

In problem 14.6, part (e), we showed that $\begin{bmatrix} \sqrt{T} (\hat{\alpha}_{ols} - \alpha_o) \\ T\sqrt{T} (\hat{\beta}_{ols} - \beta_o) \end{bmatrix}$ has an asymptotic distribution $N(0,\sigma^2Q^{-1}),$ so that $\sqrt{T}\left(\hat{\alpha}_{ols}-\alpha_o\right)$ is asymptotically distributed N(0, $\sigma^2 q^{11}$). Thus,

$$t_{\alpha}^{*} = \frac{\sqrt{T} \left(\hat{\alpha}_{ols} - \alpha_{o}\right)}{\sigma \sqrt{q^{11}}}$$

is asymptotically distributed as N(0,1) under the null hypothesis of $\alpha=\alpha_o$. Therefore, both t_{α} and t_{α}^{*} have the same asymptotic N(0,1) distribution.

c. Similarly, for testing H_o ; $\beta = \beta_o$, show that

$$t_{\beta} = (\hat{\beta}_{ols} - \beta_o)/[s^2(0, 1)(X'X)^{-1}(0, 1)']^{1/2}$$

has the same asymptotic N(0,1) distribution as $t_{\beta}^* = T\sqrt{T}(\hat{\beta}_{ols}-\beta_o)/\sigma\sqrt{q^{22}}$. Multiplying both numerator and denominator of t_{β} by $T\sqrt{T}$ we get,

$$\begin{split} t_{\beta} &= T\sqrt{T}(\hat{\beta}_{ols} - \beta_o)/[s^2(0, T\sqrt{T})(X'X)^{-1}(0, T\sqrt{T})']^{1/2} \\ &= T\sqrt{T}(\hat{\beta}_{ols} - \beta_o)/[s^2(0, 1)A(X'X)^{-1}A(0, 1)']^{1/2} \end{split}$$

Now $[0, T\sqrt{T}]$ in t_{β} can be rewritten as [0,1]A because

$$[0,1]A = [0,1] \begin{bmatrix} \sqrt{T} & 0 \\ 0 & T\sqrt{T} \end{bmatrix} = [0, T\sqrt{T}].$$

Therefore, plim $t_{\beta}=T\sqrt{T}\left(\hat{\beta}_{ols}-\beta_{o}\right)/[\sigma^{2}(0,1)Q^{-1}(0,1)']^{1/2}=T\sqrt{T}\left(\hat{\beta}_{ols}-\beta_{o}\right)/\sigma\sqrt{q^{22}}.$ Using plim $s^{2}=\sigma^{2}$ and plim $A(X'X)^{-1}A=Q^{-1}$, we get that plim $[s^{2}(0,1)A(X'X)^{-1}A(0,1)']^{1/2}=[\sigma^{2}(0,1)Q^{-1}(0,1)']^{1/2}=\sigma\sqrt{q^{22}}$ where q^{22} is the (2,2) element of Q^{-1} . Therefore, t_{β} has the same asymptotic distribution as

$$T\sqrt{T}\left(\hat{\beta}_{ols} - \beta_o\right)/\sigma\sqrt{q^{22}} = t_{\beta}^*$$

From problem 14.6, part (e), $T\sqrt{T}\left(\hat{\beta}_{ols}-\beta_o\right)$ has an asymptotic distribution $N(0,\sigma^2q^{22})$. Therefore, both t_β and t_β^* have the same asymptotic N(0,1) distribution. Also, the usual OLS t-tests for $\alpha=\alpha_o$ and $\beta=\beta_o$ will give asymptotically valid inference.

- **14.8** A Random Walk Model. This is based on Fuller (1976) and Hamilton (1994). $y_t = y_{t-1} + u_t, \ t = 0, 1, ..., T \ where \ u_t \sim IIN(0, \sigma^2) \ and \ y_o = 0.$
 - **a.** Show that $y_t = u_1 + \dots + u_t$ with $E(y_t) = 0$ and $var(y_t) = t\sigma^2$. By successive substitution, we get

$$\begin{split} y_t &= y_{t-1} + u_t = y_{t-2} + u_{t-1} + u_t = \cdots = y_o + u_1 + u_2 + \cdots + u_t \\ \text{substituting } y_o &= 0 \text{ we get } y_t = u_1 + \cdots + u_t. \\ \text{Hence, } E(y_t) &= E(u_1) + \cdots + E(u_t) = 0 \\ \text{var}(y_t) &= \text{var}(u_1) + \cdots + \text{var}(u_t) = t\sigma^2 \\ \text{and } y_t &\sim N(0, t\sigma^2). \end{split}$$

b. Squaring the random walk equation, we get

$$y_t^2 = (y_{t-1} + u_t)^2 = y_{t-1}^2 + 2y_{t-1}u_t + u_t^2$$

Solving for $y_{t-1}u_t$ yields $y_{t-1}u_t = \frac{1}{2} (y_t^2 - y_{t-1}^2 - u_t^2)$

Summing over t = 1, 2, ..., T, we get

$$\sum_{t=1}^T (y_{t-1}u_t) = \frac{1}{2} \sum_{t=1}^T \left(y_t^2 - y_{t-1}^2\right) - \frac{1}{2} \sum_{t=1}^T u_t^2.$$

But

$$\sum_{t=1}^{2} y_{t}^{2} = y_{1}^{2} + \dots + y_{T}^{2}$$

$$\sum_{t=1}^{T} y_{t-1}^2 = y_o^2 + \dots + y_{T-1}^2$$

Hence, by subtraction $\sum_{t=1}^{T} (y_t^2 - y_{t-1}^2) = y_T^2 - y_o^2$ Substituting this result

above, we get
$$\sum_{t=1}^{T} y_{t-1} u_t = \frac{1}{2} (y_T^2 - y_o^2) - \frac{1}{2} \sum_{t=1}^{T} u_t^2 = \frac{1}{2} y_T^2 - \frac{1}{2} \sum_{t=1}^{T} u_t^2$$

Dividing by
$$T\sigma^2$$
 we get $\frac{1}{T\sigma^2}\sum_{t=1}^Ty_{t-1}u_t=\frac{1}{2}\left(\frac{y_T}{\sqrt{T}\sigma}\right)^2-\frac{1}{2T\sigma^2}\sum_{t=1}^Tu_t^2$

But, from part (a), $y_T \sim N(0, T\sigma^2)$ and $y_T/\sqrt{T}\sigma \sim N(0, 1)$. There-

fore, $(y_T/\sqrt{T}\sigma)^2 \sim \chi_1^2$. Also, by the law of large numbers, $p\lim_{t=1}^{\frac{\sum u_t^2}{T}} =$

$$var(u_t) = \sigma^2. \text{ Hence, plim} \frac{1}{2\sigma^2} \cdot \frac{\sum\limits_{t=1}^{T} u_t^2}{T} = \frac{1}{2}. \text{ Therefore, } \frac{1}{T\sigma^2} \sum\limits_{t=1}^{T} y_{t-1} u_t = \frac{1}{2}.$$

$$\frac{1}{2} \left(\frac{y_T}{\sqrt{T}\sigma} \right)^2 - \frac{1}{2\sigma^2} \cdot \frac{1}{T} \sum_{t=1}^T u_t^2 \text{ is asymptotically distributed as } \frac{1}{2} \left(\chi_1^2 - 1 \right).$$

c. Show that
$$E\left(\sum_{t=1}^{T} y_{t-1}^2\right) = \frac{T(T-1)}{2}\sigma^2$$
. Using the results in part (a), we get $y_{t-1} = y_0 + u_1 + u_2 + \cdots + u_{t-1}$

Substituting
$$y_o=0$$
, squaring both sides and taking expected values, we get
$$E\left(y_{t-1}^2\right)=E\left(u_1^2\right)+\cdots+E\left(u_{t-1}^2\right)=(t-1)\sigma^2 \text{ since the } u_t\text{'s are independent.}$$

Therefore,

$$E\left(\sum_{t=1}^{T} y_{t-1}^{2}\right) = \sum_{t=1}^{T} E\left(y_{t-1}^{2}\right) = \sum_{t=1}^{T} (t-1)\sigma^{2} = \frac{T(T-1)}{2}\sigma^{2}$$

where we used the fact that $\sum_{t=1}^{T} t = T(T+1)/2$ from problem 14.6.

d. For the AR(1) model, $y_t = \rho y_{t-1} + u_t$, show that OLS estimate of ρ satisfies

$$\begin{aligned} \text{plim T}\left(\hat{\rho} - \rho\right) &= \text{plim} \frac{\sum\limits_{t=1}^{T} y_{t-1} u_t / T\sigma^2}{\sum\limits_{t=1}^{T} y_{t-1}^2 / T^2\sigma^2} = 0 \text{ where} \\ \sum\limits_{t=1}^{T} y_{t-1} y_t && \sum\limits_{t=1}^{T} y_{t-1} u_t \end{aligned}$$

$$\hat{\rho} = \frac{\sum_{t=1}^{1} y_{t-1} y_t}{\sum_{t=1}^{T} y_{t-1}^2} = \rho + \frac{\sum_{t=1}^{1} y_{t-1} u_t}{\sum_{t=1}^{T} y_{t-1}^2}.$$

From part (b), $\frac{1}{T\sigma^2}\sum_{t=1}^Ty_{t-1}u_t$ has an asymptotic distribution $\frac{1}{2}\left(\chi_1^2-1\right)$. This implies that $\sum_{t=1}^Ty_{t-1}u_t/\sigma^2$ converges to an asymptotic distribution of $\frac{1}{2}\left(\chi_1^2-1\right)$ at the rate of T. Also, from part (c), $E\left(\sum_{t=1}^Ty_{t-1}^2\right)=\frac{\sigma^2T(T-1)}{2}$ implies that $\lim_{t\to 1}\frac{1}{T^2}\sum_{t=1}^Ty_{t-1}^2$ is $\sigma^2/2$. This means that $\sum_{t=1}^Ty_{t-1}^2/\sigma^2$ converges to $\frac{1}{2}$ at the rate of T^2 . One can see that the asymptotic distribution of $\hat{\rho}$ when $\rho=1$ is a ratio of a $\frac{1}{2}(\chi_1^2-1)$ random variable to a non-standard distribution in the denominator which is beyond the scope of this book, see Hamilton (1994) or Fuller (1976) for further details. The object of this exercise is to show that if $\rho=1$, $\sqrt{T}(\hat{\rho}-\rho)$ is no longer Normal as in the standard stationary least squares regression with $|\rho|<1$. Also, to show that for the non-stationary (random walk) model, $\hat{\rho}$ converges at a faster rate (T) than for the stationary case (\sqrt{T}). From part (c) it is clear that one has to divide the denominator of $\hat{\rho}$ by T^2 rather than T to get a convergent distribution.

14.9 Cointegration Example

a. Solving for the reduced form from (14.13) and (14.14) we get

$$Y_{t} = \frac{u_{t} - v_{t}}{(\alpha - \beta)} = \frac{1}{(\alpha - \beta)} u_{t} - \frac{1}{(\alpha - \beta)} v_{t}$$

and

$$C_t = \frac{\beta(u_t - v_t)}{(\alpha - \beta)} + u_t = \frac{\alpha}{(\alpha - \beta)} u_t - \frac{\beta}{(\alpha - \beta)} v_t$$

In this case, u_t is I(0) and v_t is I(1). Therefore both Y_t and C_t are I(1). Note that there are no excluded exogenous variables in (14.13) and (14.14) and only one right hand side endogenous variable in each equation. Hence both equations are unidentified by the order condition of identification. However, a linear combination of the two structural equations will have a mongrel disturbance term that is neither AR(1) nor random walk. Hence, both equations are identified. If $\rho=1$, then both u_t and v_t are random walks and the mongrel disturbance is also a random walk. Therefore, the system is unidentified. In such a case, there is no cointegrating relationship between C_t and Y_t . Let $(C_t-\gamma Y_t)$ be another cointegrating relationship, then subtracting it from the first cointegrating relationship, one gets $(\gamma-\beta)Y_t$ which should be I(0). Since Y_t is I(1), this can only happen if $\gamma=\beta$. Differencing both equations in (14.13) and (14.14) we get

$$\begin{split} \Delta C_t - \beta \Delta Y_t &= \Delta u_t = (\rho-1)u_{t-1} + \epsilon_t = \epsilon_t + (\rho-1)(C_{t-1} - \beta Y_{t-1}) \\ &= \epsilon_t + (\rho-1)C_{t-1} - \beta(\rho-1)Y_{t-1} \end{split}$$

and $\Delta C_t - \alpha \Delta Y_t = \Delta \nu_t = \eta_t.$ Writing them as a VAR, we get (14.17)

$$\begin{bmatrix} 1 & -\beta \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \Delta C_t \\ \Delta Y_t \end{bmatrix} = \begin{bmatrix} \epsilon_t + (\rho-1)C_{t-1} - \beta(\rho-1)Y_{t-1} \\ \eta_t \end{bmatrix}$$

Post-multiplying by the inverse of the first matrix, we get

$$\begin{bmatrix} \Delta C_t \\ \Delta Y_t \end{bmatrix} = \left(\frac{1}{\beta - \alpha}\right) \begin{bmatrix} -\alpha & \beta \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \epsilon_t + (\rho - 1)C_{t-1} - \beta(\rho - 1)Y_{t-1} \\ \eta_t \end{bmatrix}$$

$$\begin{split} &= \frac{1}{\beta - \alpha} \begin{bmatrix} -\alpha \epsilon_t - \alpha(\rho - 1) C_{t-1} + \alpha \beta(\rho - 1) Y_{t-1} + \beta \eta_t \\ -\epsilon_t - (\rho - 1) C_{t-1} + \beta(\rho - 1) Y_{t-1} + \eta_t \end{bmatrix} \\ &= \frac{1}{(\beta - \alpha)} \begin{bmatrix} -\alpha(\rho - 1) & \alpha \beta(\rho - 1) \\ -(\rho - 1) & \beta(\rho - 1) \end{bmatrix} \begin{pmatrix} C_{t-1} \\ Y_{t-1} \end{pmatrix} + \begin{pmatrix} h_t \\ g_t \end{pmatrix} \end{split}$$

where h_t and g_t are linear combinations of ϵ_t and η_t . This is Eq. (14.18). This can be rewritten as

$$\begin{split} \Delta C_t &= \frac{-\alpha(\rho-1)}{\beta-\alpha}(C_{t-1}-\beta Y_{t-1}) + h_t = -\alpha\delta Z_{t-1} + h_t \\ \Delta Y_t &= \frac{-(\rho-1)}{\beta-\alpha}(C_{t-1}-\beta Y_{t-1}) + g_t = -\delta Z_{t-1} + g_t \end{split}$$

where

$$\delta = (\rho - 1)/(\beta - \alpha)$$
 and $Z_t = C_t - \beta Y_t$.

These are Eqs. (14.19) and (14.20). This is the *Error-Correction Model* (ECM) representation of the original model. Z_{t-1} is the error correction term. It represents a disequilibrium term showing the departure from long-run equilibrium. Note that if $\rho=1$, then $\delta=0$ and Z_{t-1} drops from both ECM equations.

b.
$$\hat{\beta}_{ols} = \frac{\sum_{t=1}^{1} C_t Y_t}{\sum_{t=1}^{T} Y_t^2} = \beta + \frac{\sum_{t=1}^{1} Y_t u_t}{\sum_{t=1}^{T} Y_t^2}$$

Since u_t is I(0) if $\rho \neq 1$ and Y_t is I(1), we have $p\lim\sum_{t=1}^T Y_t^2/T^2$ is O(1), while $p\lim\sum_{t=1}^T Y_t u_t/T$ is O(1). Hence $T(\hat{\beta}_{ols}-\beta)$ is O(1) or $(\hat{\beta}_{ols}-\beta)$ is O(T).

References

Fuller, W.A. (1976), Introduction to Statistical Time Series (John Wiley and Sons: New York).

- Hamilton, J.D. (1994), Time Series Analysis (Princeton University Press: Princeton, New Jersey).
- Sims, C.A., J.H. Stock and M.W. Watson (1990), "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, 58: 113–144.