1 APPLICATIONS LINÉAIRES DÉFINIES EXPLICITEMENT

- Pourquoi les applications suivantes NE sont-elles
- Montrer que les applications suivantes sont linéaires puis déterminer une base de leur noyau et une base de leur image.
 - a) $(x,y) \mapsto (y-3x,5x+2y,x+y)$. 1) (9)
 - $(x, y, z) \longmapsto (x+y+z, x+3y+2z, 3x+y+2z).$ b)
 - $(x,y,z) \longmapsto (2x-y+z,3x+y-z,$
 - 2) (1) (1)
 - a) $P \longmapsto X(P'(X+1)-P'(1))$ de $\mathbb{R}_3[X]$ dans
 - $P \longmapsto P XP' P(0)$ de $\mathbb{R}[X]$ dans lui-même. **b**)
 - $M \longmapsto \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} M$ de $\mathcal{M}_2(\mathbb{R})$ dans lui-même.
- Montrer que l'application : 3

$$(x, y, z) \longrightarrow (x + 2y, 4x - y + z, 2x + 2y + 3z)$$

est un automorphisme de \mathbb{R}^3 et déterminer sa réciproque.

Soient $a, b, c \in \mathbb{R}$ non tous nuls.

 $A = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}.$ Déterminer sans

CALCUL une base de Im A et une équation de Ker A par simple contemplation de A.

- 5
 - 1) Montrer que l'application $P \mapsto (P(0), P')$ est un isomorphisme de $\mathbb{K}[X]$ sur $\mathbb{K} \times \mathbb{K}[X]$.
 - **2)** En déduire une nouvelle preuve du fait que $\mathbb{K}[X]$ n'est pas de dimension finie.
- $\bigcirc \bigcirc \bigcirc$ Montrer que $P \longrightarrow P(X) + P(X+1)$ est un automorphisme:
 - 1) de $\mathbb{R}_n[X]$ pour tout $n \in \mathbb{N}$.
- **2)** de $\mathbb{R}[X]$.
- On note Δ l'endomorphisme $P \longmapsto P(X+1) P(X)$ de $\mathbb{R}[X].$
 - 1) \bigcirc Déterminer Ker \triangle .
 - **2)** \bigcirc \bigcirc Déterminer Im $\triangle_{|\mathbb{R}_n[X]}$ pour tout $n \in \mathbb{N}^*$.
 - **3)** $\bigcirc \bigcirc \bigcirc$ Montrer que \triangle est surjectif de $\mathbb{R}[X]$ sur lui-même.

- \bigcirc \bigcirc Soient E un espace vectoriel et F et G deux sous-espaces vectoriels de E de dimension finie.
 - 1) Déterminer l'image et le noyau de l'application $(f,g) \longmapsto f + g \operatorname{de} F \times G \operatorname{dans} E.$
 - 2) Redémontrer ainsi la formule de Grassmann.
- Soit $n \in \mathbb{N}$. Pour tout $k \in [0, n]$, on pose :

- X^i est combinaison linéaire de B_0, \ldots, B_n pour tout $i \in [0, n]$. Qu'en déduit-on?
- 2) 🕑 🕑 On reprend l'exercice indépendamment de la question 1). Montrer par récurrence sur n que la famille (B_0, \ldots, B_n) est libre.
- **3)** $\bigcirc \bigcirc \bigcirc$ Pour tout $P \in \mathbb{R}_n[X]$, on pose :

$$\varphi(P) = \sum_{k=0}^{n} {n \choose k} P\left(\frac{k}{n}\right) B_k.$$

Montrer que φ est un automorphisme de $\mathbb{R}_n[X]$.

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que les \mathbb{K} -espaces vectoriels $\mathcal{M}_{n,p}(\mathbb{K})$ et $\mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ sont isomorphes.

APPLICATIONS LINÉAIRES ABSTRAITES

- \bigcirc Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$ et $k \in \mathbb{N}^*$. Comparer Ker f et Ker f^k , puis Im f et Im f^k .
- \bigcirc Soient E un \mathbb{K} -espace vectoriel et $f, g \in \mathcal{L}(E)$. On suppose que f et g commutent. Montrer qu'alors Ker get Im g sont stables par f.
- P Soient E un \mathbb{K} -espace vectoriel et $f,g \in \mathcal{L}(E)$. Montrer que : E = Im f + Ker g si et seulement si : $\operatorname{Im}(gf) = \operatorname{Im} g$.
- \bigcirc Soient E, F et G trois \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F,G)$.
 - 1) a) Exprimer la proposition : $g \circ f = 0_{\mathcal{L}(E,G)}$ en termes de noyau et d'image.
 - **b)** Quelle relation en déduit-on entre rg(f) et rg(g) si E, F et G sont de dimension finie?
 - **2)** Montrer que : $f(\text{Ker } (g \circ f)) = \text{Ker } g \cap \text{Im } f$.
- \bigcirc \bigcirc Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. 15
 - 1) Montrer que:

 $\operatorname{Ker} f \cap \operatorname{Im} f = \{0_F\} \iff \operatorname{Ker} f^2 = \operatorname{Ker} f.$

2) Montrer que :

$$E = \operatorname{Ker} f + \operatorname{Im} f \iff \operatorname{Im} f^2 = \operatorname{Im} f.$$

- **3)** On suppose à présent *E* de dimension finie. Montrer l'équivalence des assertions suivantes :
 - (i) $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
 - (ii) $\operatorname{Ker} f^2 = \operatorname{Ker} f$.
 - (iii) $\operatorname{Im} f^2 = \operatorname{Im} f$.
- Soient E un \mathbb{K} -espace vectoriel. À quelle condition nécessaire et suffisante l'anneau $\mathcal{L}(E)$ est-il commutatif?
- Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f, g \in \mathcal{L}(E, F)$. Montrer l'inégalité :

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

 $\operatorname{Ker} u = \operatorname{Im} u \iff u^2 = 0_{\mathcal{L}(E)} \text{ et } \dim E = 2 \operatorname{rg}(u).$

- Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $f \in \mathcal{L}(E)$.
 - 1) 9 9 On suppose f nilpotent, i.e. qu'une certaine puissance de f est nulle. On note alors p le plus petit entier naturel non nul pour lequel $f^p = 0_{\mathscr{L}(E)}$, appelé l'indice de nilpotence de f.
 - a) Écrire avec des quantificateurs les propositions : $f^p = 0_{\mathscr{L}(E)}$ et : $f^{p-1} \neq 0_{\mathscr{L}(E)}$.
 - **b)** Montrer que la famille :

$$\left(x,f(x),f^2(x),\ldots,f^{p-1}(x)\right)$$

est libre pour un certain $x \in E$.

- c) En déduire que : $f^n = 0_{\mathscr{L}(E)}$.
- 2) (9(9(9)
 - a) On suppose que pour tout $x \in E$:

$$\exists p \in \mathbb{N}^* / f^p(x) = 0_F.$$

Montrer qu'alors f est nilpotent.

- **b)** Trouver un contre-exemple au résultat **a)** dans le cas où *E* est de dimension infinie.
- Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. 1) $\bigcirc \bigcirc \bigcirc$ Si : $f^2 = 3f - 2\mathrm{Id}_E$, montrer que :

$$E = \operatorname{Ker}(f - \operatorname{Id}_{E}) \oplus \operatorname{Ker}(f - 2\operatorname{Id}_{E}).$$

2) S S Si: $f^3 = \operatorname{Id}_E$, montrer que: $E = \operatorname{Ker} \left(f - \operatorname{Id}_E \right) \oplus \operatorname{Ker} \left(f^2 + f + \operatorname{Id}_E \right).$

- On suppose que : fg = h, gh = f et hf = g.
 - **1)** Montrer que *f* , *g* et *h* ont même noyau *K* et même image *I* .
 - **2)** Montrer que : $f^5 = f$.
 - **3)** En déduire que : $E = K \oplus I$.
- Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ de rang 1. Montrer que pour un certain $\lambda \in \mathbb{K}$: $f^2 = \lambda f$.
- Soient E, F, G des \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.
 - 1) $\bigcirc \bigcirc \bigcirc$ Montrer que si E et F sont de dimension finie, alors :

 $\dim \operatorname{Ker} (g \circ f) \leq \dim \operatorname{Ker} f + \dim \operatorname{Ker} g.$

- 2) $\bigcirc \bigcirc \bigcirc \bigcirc$ \bigcirc Montrer que si on suppose seulement Ker f et Ker g de dimension finie, alors Ker $(g \circ f)$ l'est aussi avec la même inégalité.
- Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $u, v \in \mathcal{L}(E, F)$. Montrer que :

 $\dim \operatorname{Ker} (u+v) \leq \dim (\operatorname{Ker} u \cap \operatorname{Ker} v) + \dim (\operatorname{Im} u \cap \operatorname{Im} v).$

- - 1) Montrer que pour tout $n \in \mathbb{N}^*$:

$$fg^n - g^n f = ng^{n-1}.$$

- **2)** Montrer que la famille $(g^k)_{k \in \mathbb{N}}$ est libre.
- \bigcirc \bigcirc \bigcirc Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie, K un sous-espace vectoriel de E et E un sous-espace vectoriel de E. À quelle condition nécessaire et suffisante simple E0 et E1 sont-ils respectivement le noyau et l'image d'une même application linéaire de E2 dans E3?
- 28 © © Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$ de rang r. Montrer que f est la somme de r applications linéaires de rang 1.
- 29 ③ ⑤ ⑤ Soient E un \mathbb{K} -espace vectoriel de dimension 2 et $u \in \mathcal{L}(E)$. Montrer que : $u^2 = 0_{\mathcal{L}(E)}$ si et seulement s'il existe un vecteur $a \in \operatorname{Ker} u$ et une forme linéaire λ de E tels que pour tout $x \in E$: $u(x) = \lambda(x)a$.

3 CALCUL MATRICIEL

Christophe Bertault - Mathématiques en MPSI

Soient $a, b, c \in \mathbb{R}$. Calculer le rang des matrices

1)
$$\begin{pmatrix} 2 & 1 & 3 & -3 \\ -1 & 2 & 1 & 4 \\ 1 & 1 & 2 & -1 \end{pmatrix}$$
 2)
$$\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$$
3)
$$\begin{pmatrix} -1 & 0 & 1 & 0 \\ 2 & 5 & -2 & -5 \\ 6 & 5 & 4 & 3 \\ 9 & 5 & 0 & 1 \\ 7 & 0 & 5 & -3 \end{pmatrix}$$
 4)
$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

 \bigcirc \bigcirc \bigcirc Soit $\lambda \in \mathbb{R}$. À quelle condition nécessaire et suffisante sur λ les sous-espaces vectoriels :

$$Vect((\lambda, \lambda, 1))$$
 et $Vect((1, \lambda, 1), (2, 1, 1))$

sont-ils supplémentaires dans \mathbb{R}^3 ?

espaces vectoriels $\operatorname{Ker} A$ et $\operatorname{Im} A$ sont-ils supplémentaires dans \mathbb{R}^4 ?

1) \bigcirc Montrer que pour tout $X \in \mathbb{R}^n$:

$${}^{t}XX = 0 \implies X = 0.$$

2) $\textcircled{\circ}$ $\textcircled{\circ}$ En déduire que pour tout $M \in \mathcal{M}_{n,p}(\mathbb{R})$:

$$rg(M) = rg({}^{t}MM).$$

3) \bigcirc Généraliser au cas où $M \in \mathcal{M}_{n,p}(\mathbb{C})$.

1) Compléter le calcul par blocs suivant :

$$\begin{pmatrix} A & C \\ B & D \end{pmatrix} = \begin{pmatrix} I_n & 0_{n,p} \\ \cdots & I_p \end{pmatrix} \begin{pmatrix} \cdots & 0_{n,q} \\ 0_{p,n} & D - BA^{-1}C \end{pmatrix} \begin{pmatrix} I_n & \cdots \\ 0_{q,n} & I_q \end{pmatrix}.$$

- 2) En déduire une égalité intéressante de rangs.
- 35 On travaille dans cet exercice avec le corps de base \mathbb{C} . Pour tout $X=(z_1,\ldots,z_n)\in\mathbb{C}^n$, on appelle conjugué de X le vecteur : $\overline{X}=(\overline{z_1},\ldots,\overline{z_n})$.
 - 1) Soit F un sous-espace vectoriel de \mathbb{C}^n . On note \overline{F} l'ensemble des conjugués des éléments de F. Montrer que \overline{F} est un sous-espace vectoriel de \mathbb{C}^n et que : $\dim \overline{F} = \dim F$.
 - **2)** Montrer que pour tout $M \in \mathcal{M}_n(\mathbb{C})$:

$$rg(\overline{M}) = rg(M).$$

- 3) Soit $A \in \mathcal{M}_3(\mathbb{R})$ mais donc : $A \in \mathcal{M}_3(\mathbb{C})$. On suppose que : $A^3 = -A$. Afin de montrer que A n'est pas inversible, on suppose par l'absurde qu'elle l'est.
 - a) Montrer l'égalité:

$$\mathbb{C}^3 = \text{Ker}(A - iI_3) \oplus \text{Ker}(A + iI_3).$$

- b) Conclure.
- 36 © Soient $A \in \mathcal{M}_p(\mathbb{K}), B \in \mathcal{M}_q(\mathbb{K})$ et $X \in \mathcal{M}_{p,q}(\mathbb{K})$.

 Montrer que la matrice par blocs $\begin{pmatrix} A & X \\ 0_{q,p} & B \end{pmatrix}$ est inversible si et seulement si A et B le sont. Que vaut son inverse dans ce cas ?
 - $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que : A + B = AB.
 - 1) Montrer que $I_n A$ et $I_n B$ sont inversibles.
 - **2)** Montrer que *A* et *B* commutent.
- Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

 - **2)** $\bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que pour tout $\lambda \in \mathbb{K}$, $AB \lambda I_n$ est inversible si et seulement si $BA \lambda I_n$ l'est.

4 FORMES LINÉAIRES ET HYPERPLANS

- Soit $\alpha \in \mathbb{C}$. Montrer que $\{P \in \mathbb{C}[X]/ P(\alpha) = 0\}$ est un hyperplan de $\mathbb{C}[X]$ et en déterminer une base.
- Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle et H_1 et H_2 deux hyperplans distincts de E. Calculer $\dim(H_1 \cap H_2)$.

5 Projecteurs et symétries

- On note $\mathscr{S}_n(\mathbb{K})$ (resp. $\mathscr{A}_n(\mathbb{K})$) l'ensemble des matrices symétriques (resp. antisymétriques) de $\mathscr{M}_n(\mathbb{K})$. Redémontrer l'égalité : $\mathscr{M}_n(\mathbb{K}) = \mathscr{S}_n(\mathbb{K}) \oplus \mathscr{A}_n(\mathbb{K})$ en exhibant une certaine symétrie.
- On note φ l'application : $(x,y,z) \longmapsto \left(-3x+4y-6z,-12x+16y-24z,-6x+8y-12z\right).$
 - 1) De quelle matrice φ est-elle l'application linéaire canoniquement associée? En déduire que φ est un projecteur de \mathbb{R}^3 .
 - 2) Caractériser φ géométriquement.

3

43 © On pose :
$$A = \begin{pmatrix} 2 & 2 & -1 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & -2 & 1 \end{pmatrix}$$
. Calculer A^2 , puis montrer que : $\mathbb{R}^4 = \operatorname{Ker} A \oplus \operatorname{Im} A$.

 A^2 , puis montrer que : $\mathbb{R}^4 = \operatorname{Ker} A \oplus \operatorname{Im} A$.

1) Montrer que :

$$\mathbb{R}_2[X] = \mathbb{R}_1[X] \oplus \text{Vect}(X^2 + X + 1),$$

puis déterminer une expression de la projection sur $\mathbb{R}_1[X]$ parallèlement à $\text{Vect}(X^2 + X + 1)$.

2) On pose :
$$G = \{(x, y, z) \in \mathbb{R}^3 / x + y + 2z = 0\}$$

et
$$F = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + z = 0 \text{ et } 2x + y - z = 0\}.$$

Montrer que : $\mathbb{R}^3 = F \oplus G$, puis déterminer une expression de la symétrie par rapport à F parallèlement à G.

- \bigcirc \bigcirc Soit $A \in \mathbb{R}[X]$ non nul. Montrer que l'application qui à tout $P \in \mathbb{R}[X]$ associe le reste de la division euclidienne de P par A est un projecteur de $\mathbb{R}[X]$ — que l'on caractérisera géométriquement.
- \bigcirc \bigcirc Soient E un \mathbb{K} -espace vectoriel et p et q deux projecteurs de *E*. On suppose que : $pq = 0_{\mathcal{L}(E)}$ pose : r = p+q-qp. Montrer que r est la projection sur Im $p \oplus$ Im q de direction Ker $p \cap$ Ker q.
- \bigcirc \bigcirc Soient *E* un \mathbb{K} -espace vectoriel et *p* et *q* deux projecteurs de E. On suppose que p et q commutent. Montrer que pq est le projecteur de E sur Im $p \cap \text{Im } q$ de direction Ker p + Ker q.
- \bigcirc \bigcirc Soient *E* un \mathbb{K} -espace vectoriel et *p* et *q* deux projecteurs de E.
 - 1) Montrer que p + q est un projecteur de E si et seulement si : $pq = qp = 0_{\mathscr{L}(E)}$.
 - 2) Montrer que, dans ce cas, Im p et Im q sont en somme directe et que p + q est le projecteur de *E* sur Im p + Im q de direction Ker $p \cap \text{Ker } q$.
- \bigcirc \bigcirc Soient E un \mathbb{K} -espace vectoriel et $p, q \in \mathcal{L}(E)$. Montrer que p et q sont des projecteurs de mêmes noyaux si et seulement si : p = pq et q = qp.
- \bigcirc \bigcirc Soit E un \mathbb{K} -espace vectoriel. On note $\mathscr{P}(E)$ l'ensemble des projecteurs de *E*.

1) Montrer que la relation $\leq \sup \mathscr{P}(E)$ définie pour tous $p, q \in \mathcal{P}(E)$ par :

$$p \preccurlyeq q \iff pq = qp = p$$

est une relation d'ordre.

- **2)** Montrer que pour tous $p, q \in \mathcal{P}(E)$, si p et qcommutent : $\inf\{p,q\} = pq$.
- sion finie et $f \in \mathcal{L}(E)$. On veut montrer l'équivalence suivante:
 - $\operatorname{Ker} f = \operatorname{Im} f.$ (i)
 - $f^2 = 0_{\mathscr{L}(E)}$ et $\exists g \in \mathscr{L}(E) / fg + gf = \mathrm{Id}_E$.
 - 1) Montrer l'implication (ii) \Longrightarrow (i).
 - **2)** On suppose à présent que : $\operatorname{Ker} f = \operatorname{Im} f$.
 - a) Montrer que : $f^2 = 0_{\mathcal{L}(E)}$.
 - b) Pourquoi peut-on se donner un supplémentaire I de Ker f dans E?
 - c) On note p la projection sur Ker f parallèlement à I et on pose : $g = f_{|I|}^{-1} \circ p$. Conclure.

SOMMES D'UN NOMBRE FINI DE SOUS-ESPACES VECTORIELS

- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soient E un \mathbb{K} -espace vectoriel et $f_1, \ldots, f_n \in \mathcal{L}(E)$. On suppose que : $f_i f_j = 0$ pour tous $i, j \in [1, n]$ distincts et que : $f_1 + \ldots + f_n = \mathrm{Id}_E$.
 - 1) Montrer que f_1, \ldots, f_n sont des projecteurs.
 - **2)** Montrer que : $E = \bigoplus_{i=1}^{n} \operatorname{Im} f_i$.
- \bigcirc \bigcirc Soient E un \mathbb{K} -espace vectoriel de dimension finie et F_1, \ldots, F_p des sous-espaces vectoriels de E pour lesquels : $E = \sum_{i=1}^{p} F_i$. Montrer qu'il existe des sousespaces vectoriels G_1, \dots, G_p de E pour lesquels :

$$G_1 \subset F_1, \quad \dots, \quad G_p \subset F_p \qquad \text{et} \qquad E = \bigoplus_{i=1}^p G_i.$$

- Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. 54
 - 1) $\bigcirc \bigcirc \bigcirc$ Montrer que pour tous $x \in E$, $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$, si: $f(x) = \lambda x$, alors:

$$P(f)(x) = P(\lambda)x$$
.

2) $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que pour tous $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ distincts, les sous-espaces vectoriels :

$$\operatorname{Ker} \left(f - \lambda_1 \operatorname{Id}_E \right), \dots, \operatorname{Ker} \left(f - \lambda_p \operatorname{Id}_E \right)$$

sont en somme directe. On pourra convoquer certains polynômes de Lagrange.