high torque high power high acceleration servo system

Hüseyin YÜRÜK

high torque high power high acceleration servo system:

Abstract

Table of Contents

1. Introduction		1
2. Basic Calculations		2
3. Servo Motor & Driver alternatives		9
4. Conclusion	1	2

Chapter 1. Introduction

```
The requirements are given as follows:
@azimuth
the load is turned 90° in 100ms
@elevation
the load is turned 60° in 100ms
@azimuth & @elevation
the load is turned 60° in azimuth and the load is turned 30° in elevation
at the same time
servo system should be fit a phi 40cm x height 75cm cyclinder
servo system weight should be less than 135kg
servo motors should include safety brakes
stabilized pointing accuracy should be smaller than 0.5°
azimuth angle range is [-185° to +185°]
elevation angle range is [-30° to +60°]
operating temperature range should be -30° to +52°
%% input parameters
deltaposdeg = 90; %% [degree]
period = 0.2; %% [seconds] T
                               45° --> -45° 0.1s
inertiaazimuth = 1.6; %% [kg.m^2] motor inertia is not included
inertiaelevation = 0.5; %% [kg.m^2] motor inertia is not included
azimuthloadmass = 50; %% [kg]
elevationloadmass = 25; %% [kg]
```

input parameters are given above.

Chapter 2. Basic Calculations

basic calculations are given below

```
%% velocity, acc, power, torque calculations
%% assume sinusoidal profiles
%% theta = A*cos(wt) --> position
%% angvel = -A*w*sin(wt) --> angular velocity dtheta/dt
%% angacc = -A*w^2*cos(wt) --> angular acceleration dangvel/dt
%% desired requirement : 90° --> 100ms for azimuth
%% desired requirement : 60° --> 100ms for elevation
deltaposdegazmimuth = 90; %% [degree]
deltaposdegelevation = 60; %% [degree]
deltaposradazimuth = deltaposdegazmimuth*2*pi / 360; %% [rad] 2*A
deltaposradelevation = deltaposdegelevation*2*pi / 360; %% [rad] 2*A
period = 0.2; %% [seconds] T
angfreg = 2*pi/period; %% [rad/s] w = 2pi/T
maxanqvelazimuthrads = (deltaposradazimuth/2) * angfreq; %% [rad/s]
maxangvelelevationrads = (deltaposradelevation/2) * angfreg; %% [rad/s]
maxangvelazimuthdegs = maxangvelazimuthrads * 360 / (2*pi); %% [deg/s]
maxangvelelevationdegs = maxangvelelevationrads * 360 / (2*pi); %% [deg/s]
maxangvelazimuthrpm = maxangvelazimuthrads * 60 / (2*pi); %% [rpm]
maxanqvelelevationrpm = maxanqvelelevationrads * 60 / (2*pi); %% [rpm]
maxangaccazimuthrads2 = (deltaposradazimuth/2) * angfreg^2; %% [rad/s^2]
maxangaccelevationrads2 = (deltaposradelevation/2) * angfreg^2; %% [rad/s^2]
maxangaccazimuthdegs2 = maxangaccazimuthrads2 * 360 / (2*pi); %% [deg/s^2]
maxangaccelevationdegs2 = maxangaccelevationrads2 * 360 / (2*pi); %% [deg/s^2]
%% torque = inertia * acc
%% power = torque * angvel
maxtorqueazimuth = inertiaazimuth * maxangaccazimuthrads2; %% [Nm]
maxtorqueelevation = inertiaelevation * maxangaccelevationrads2; %% [Nm]
%% plot the assumed profiles
tres = period / 100; %% [seconds]
t = 0:tres:period;
posdegazimutharr = deltaposdegazmimuth/2 * cos(angfreg*t);
posdegelevationarr = deltaposdegelevation/2 * cos(angfreg*t);
figure;
plot(t,posdegazimutharr);
hold on;
plot(t,posdegelevationarr,'r');
grid;
legend ('azimuth','elevation');
title('position of the load vs time')
xlabel('time [seconds]');
ylabel('position [degree]');
saveas(gcf, 'snapshots\position_load', 'png')
angveldegazimuthsarr = -1*maxangvelazimuthdegs * sin(angfreg*t);
angveldegelevationsarr = -1*maxangvelelevationdegs * sin(angfreg*t);
figure;
plot(t,angveldegazimuthsarr);
plot(t,angveldegelevationsarr,'r');
grid;
```

```
legend ('azimuth','elevation');
title('angular velocity of the load vs time')
xlabel('time [seconds]');
ylabel('angular velocity [degree/s]');
saveas(gcf, 'snapshots\velocity_load', 'png')
angaccdegs2azimutharr = -1*maxangaccazimuthdegs2 * cos(angfreg*t);
angaccdegs2elevationarr = -1*maxangaccelevationdegs2 * cos(angfreg*t);
figure;
plot(t,angaccdegs2azimutharr);
hold on;
plot(t,angaccdegs2elevationarr,'r');
grid;
legend ('azimuth','elevation');
title('angular acceleration of the load vs time')
xlabel('time [seconds]');
ylabel('angular acceleration [degree/s^2]');
saveas(gcf, 'snapshots\acceleration_load', 'png')
angaccrads2azimutharr = -1*maxangaccazimuthrads2 * cos(angfreg*t);
angaccrads2elevationarr = -1*maxangaccelevationrads2 * cos(angfreg*t);
torqueazimutharr = inertiaazimuth * angaccrads2azimutharr;
torqueelevationarr = inertiaelevation * angaccrads2elevationarr;
figure;
plot(t,torqueazimutharr);
hold on;
plot(t,torqueelevationarr,'r');
legend ('azimuth','elevation');
title('requirred torque of the load vs time')
xlabel('time [seconds]');
ylabel('torque [Nm]');
saveas(gcf, 'snapshots\torque_load', 'png')
angvelradsazimutharr = -1*maxangvelazimuthrads * sin(angfreg*t);
angvelradselevationarr = -1*maxangvelelevationrads * sin(angfreg*t);
powerazimutharr = torqueazimutharr .* angvelradsazimutharr;
powerelevationarr = torqueelevationarr .* angvelradselevationarr;
maxpowerazimuth = max(powerazimutharr); %% [watt]
maxpowerelevation = max(powerelevationarr); %% [watt]
figure;
plot(t,powerazimutharr);
hold on;
plot(t,powerelevationarr,'r');
grid;
legend ('azimuth','elevation');
title('requirred power of the load vs time')
xlabel('time [seconds]');
ylabel('power [Watt]');
saveas(gcf, 'snapshots\power_load', 'png')
```


position of the load, delta position is 90° for azimuth delta position is 60° for elevation period is 0.2000 second

angular velocity of the load in degree/s for azimuth maximum angular velocity of the load is 1.4137e+03 deg/s 235.6194 rpm for elevation maximum angular velocity of the load is 942.4778 deg/s 157.0796 rpm

acceleration of the load in degree/s^2 for azimuth maximum acceleration 4.4413e+04 deg/s^2 for elevation maximum acceleration 2.9609e+04 deg/s^2

desired torque in Nm for azimuth maximum desired torque is 1.2403e+03 Nm for elevation maximum desired torque is 258.3856 Nm

desired power in Watt for azimuth maximum desired power 1.5271e+04 Watt for elevation maximum desired power 2.1209e+03 Watt

Chapter 3. Servo Motor & Driver alternatives

a servo motor from Kollmorgen KBM series is given below

Motor Parameter	Symbol	Units	TOL	KE	3M(S)-88X03	-X		
				A	В	C		
Continuous Stall Torque at 25°C Amb. (1)	Тс	Nm	NOM	538	545	545		
		lb-ft	NUIVI	397	402	402		
Continuous Current	lc	Arms	NOM	18.2	35.5	45.2		
Peak Stall Torque	Тр	Nm	NOM	1200	1200	1200		
(25°C winding temp)	īμ	lb-ft	INOIVI	885	885	885		
Peak Current	lp	Arms	NOM	53.1	106	134		
Rated Continuous Output Power	P Rated	Watts		10450	16000	16000		
at 25°C Amb. (1)	HP Rated	HP		14.0	21.4	21.4		
Speed at Rated Power	N Rated	RPM		225	425	425		
Torque Sensitivity (2)	Kt	Nm / Arms	+/-10%	30.0	15.5	12.8		
iorquo ocrisitivity (2)	IX.	lb-ft / Arms	77 10 70	22.1	11.5	9.4		
Back EMF Constant	Kb	Vrms/kRPM	+/- 10%	1812	940	772		
Motor Constant	Km	Nm/√watt	+/-10%	20.6	20.9	20.9		
Wiotor Constant	KIII	lb-ft /√watt	1/ 10/0	15.2	15.4	15.4		
Resistance (line to line)	Rm	Ohms	+/- 10%	1.41	0.370	0.250		
Inductance	Lm	mH		26	7.0	4.7		
Inertia (KBM)	Jm	Kg-m ²			0.298			
		lb-ft-s ²			0.220			
Weight (KBM)	Wt	Kg			106			
vveigiit (KDIVI)	VVL	lb			234			
Inertia (KBMS)	Jm	Kg-m ²			0.315			
illertia (NDIVIO)	JIII	lb-ft-s ²			0.232			
Weight (KBMS)	Wt	Kg			111			
vveigit (KDIVIO)	VVI	lb	lb			245		
Max Static Friction	Tf	Nm			6.51			
Wax Static Friction	"	lb-ft			4.80			
Cogging Friction (Peak-to-Peak)	Tcog	Nm			4.88			
cogging inction (i cak-to-i cak)	reog	lb-ft			3.60			
Viscous Damping	Fi	Nm/ kRPM			2.30			
Viscous Bumping	"	lb-ft / kRPM			1.70			
Thermal Resistance (3)	TPR	°C / watt			0.124			
Number of Poles	Р	-			46			
Recommended				02407	04807	04807		
Voltage Req'd at Rated Output	Vac Input	Vac		480	480	400		
Peak Stall Torque (4)	Tp Drive	Nm	+/-10%	1153	1160	1050		
(Motor with Drive)	T D III O	lb-ft	1, 10,0	850	856	774		
Cont. Stall Torque (4)	Tc Drive	Nm	+/-10%	538	545	545		
(Motor with Drive)	10 DIIVE	lb-ft	7/ 10/0	397	402	402		

Notes 1) Winding temperature = 155°C at continuous stall, at rated output, and for performance curves.

²⁾ To calculate no-load Kt and Kb at 25°C, multiply by 1.064.

³⁾ TPR assumes motor is housed and mounted to a 20" x 20" x 3/4" heat sink or equivalent.
4) Peak & Continuous Torques may be limited by drive current, see www.kollmorgen.com for complete drive ratings.

dimensions are as follows

KBM 88 Outline Drawings

dimensions cont.d

suggested driver from Kollmorgen AKD drive series is given below

240/480 Vac 3 Phase (187-528 V)

		Model					
Rated Data	Units	AKD-x00307	AKD-x00607	AKD-x01207	AKD-x02407	AKD-x04807	
Drive Continuous Output Power	Watts	2000	4000	8000	16,000	32,000	
Rated supply voltage	٧		240/480				
Control logic, supply voltage	٧		24				
Rated output current (RMS value ±3%)	Α	3	6	12	24	48	
Peak output current (±3%)	Α	9	18	30	48	96	
Peak time	s						
Current loop Bandwidth max.	kHz	2.5	2.5 to 4 2 to 3				
Velocity loop Bandwidth max.	Hz	0 to 800	0 to 600				
Position loop Bandwidth max.	Hz						
Update rate	MHz						
Weight (standard width)	kg	2.7			5.3	11.5	
Weight (extended width)	kg	2.9			5.5	11.7	
Height, without connectors	mm	256			306	385	
Height, with connector	mm	290			340	526	
Standard Width front/back	mm	65/70 99			99/105	185/185	
Extended Width front/back	mm	95/100 98			99/105	-	
Depth, without connectors	mm	185			228	225	
Depth, with connectors	mm	< 225 < 265			< 265	< 265	

Chapter 4. Conclusion

to choose suitable servo motor especially for azimuth seems to be a big problem.