Documentação Técnica

Introdução

O objetivo deste projeto é implementar um jogo interativo que desafie a memória e o raciocínio lógico. O jogador deve apagar todos os LEDs de uma matriz 5x5, utilizando um joystick para selecionar os LEDs e alternar seus estados (aceso/apagado), assim como o dos LEDs adjacentes. O sistema é baseado na plataforma **BitDogLab V5** e utiliza hardware adicional.

Especificações Técnicas

Hardware Utilizado

- Placa BitDogLab V5
 - o Alternativa: Raspberry Pi Pico W
- Componentes adicionais:
 - o Matriz de LEDs WS2812B (5x5)
 - o Display OLED 128x64 (I2C)
 - o Display LCD TFT 1.8" (128 * RGB * 160)
 - Joystick analógico KY-023
 - o Botão A (GPIO5) e Botão B (GPIO6)
 - o Buzzer A (GPIO21) e Buzzer B (GPIO10)
 - o Resistores, jumpers e placa de prototipagem.

Conexões do Hardware

- 1. Matriz de LEDs WS2812B
 - o Conexão: Pino "IN" ao GPIO7 da Raspberry Pi Pico.
- 2. Joystick KY-023
 - o VRx: GPIO27
 - o VRy: GPIO26
 - o SW: GPIO22
- 3. Display OLED (I2C)
 - o SDA: GPIO14
 - o SCL: GPIO15
 - o Endereço I2C: 0x3C
- 4. Display LCD TFT 128 * RGB * 160

Pino do LCD GPIO na BitDogLab

BL	GP10 ou GP8
CS	GP17
DC	GP16
RST	GP20
SDA	GP19
SCL	GP18

Pino do LCD GPIO na BitDogLab

VCC 3V3 GND GND

5. Botões

Botão A: GPIO5Botão B: GPIO6

Dependências de Software

- Bibliotecas:
 - o ssd1306.py (Display OLED)
 - o ST7735.py (Display LCD TFT)
 - o sysfont.py (Fontes para o display LCD)
- Ambiente de desenvolvimento:
 - Thonny IDE
 - o Firmware MicroPython compatível com Raspberry Pi Pico.

Fluxo de Execução

- 1. Inicialização do Hardware
 - o Configuração dos pinos GPIO e I2C.
 - Teste inicial de cada componente.
- 2. Início do Jogo
 - o Apresentação da interface inicial nos displays.
- 3. Mecânica do Jogo
 - o O jogador utiliza o joystick para selecionar LEDs.
 - o O botão SW do joystick alterna os estados dos LEDs.
 - o Feedback visual (matriz de LEDs).
- 4. Progresso
 - o Níveis incrementais com aumento de dificuldade.
- 5. Finalização
 - o Exibição de resultados e possibilidade de reiniciar.

Estrutura de Arquivos

- main.py: Arquivo principal com o código-fonte.
- ssd1306.py: Biblioteca para o display OLED.
- ST7735.py: Biblioteca para o display LCD TFT.
- sysfont.py: Biblioteca de fontes para o display LCD TFT.
- docs/: Contém os arquivos PDF de documentação técnica e do usuário.
- README.md: Descrição geral do projeto.