

Open Source Tools For Transport Planning: Indicator Calculation Methodology Report

Prepared by

Table of Contents

Table of Contents	2
Indicator Calculation Methodology	3
Number of modes and types	3
Transit system length in km	3
Number of stops	4
Weekly number of hours of service	5
Ratio of number of stops to route-length	8
Average distance between stops	10
Average weekday peak, non-peak, and aggregated time traveled between stops	13
Average system weekday / weekend frequency	14
Average fare for a 5km trip, by mode	17
Ratio of Total Transit Lines Length over Total Road Network Length (RBR)	18
Transit Line Network Density (BND)	18
Coverage of Transit Stops for 500 meter Radius (CBS_500)	19
Ratio of the Transit-Pattern Operating Suburban Lines (STR)	20
On-Time Performance (for low frequency- service)	20
Regularity of Headways (for high-frequency service)	20
Dwell Time Performance	21
Travel Time Performance	21
Average Service Frequency (ASF) within city and within a bounded area	21
System coverage (city and bounded area)	21
System accessibility (city and bounded area)	21
System accessibility for low-income residents (city and bounded area)	22
Service frequency, weighted by served population (city and bounded area)	22
Job accessibility	23
Access Index	23
Boston Example Results	24
Chicago Example Results	29
Zhengzhou Example Results	34

The World Bank

Open Source Tools for Transport Planning

Indicator Calculation Methodology

The calculation methods outlined in this document provide examples of how to measure indicators using a spatially enabled SQL database. These examples do not necessarily prescribe the exact approach that full-fledged software will take, but provide a proof-of-concept and logical structure for calculations. With more robust software, there will likely be performance enhancements related to memory caching and multithreading that can be taken advantage of.

Number of modes and types

Required Data: GTFS

Tables Accessed: Routes, Route types

Discussion: The route types table contains friendly names of the types of transit used in the system. This query joins the description to the routes table, counts the number of individual routes, and groups by the route type.

SQL:

```
SELECT t.description, COUNT(r.*) as numlines FROM gtfs_routes r
JOIN gtfs_route_types t ON r.route_type = t.route_type
GROUP BY t.description;
```

Transit system length in km

Required Data: GTFS

Tables Accessed: Shapes or Stop times

Discussion: The shapes.txt GTFS file is optional, as is the stop_times shape_distance_traveled field. This indicator will not be available for GTFS data that includes neither shapes nor stop distance traveled.

This series of queries creates and spatially enables two new tables in the database. The shapelines table contains a line for each shape_id from the shapes.txt table. Subsequent queries calculate line length and group by route, mode, and system.

SQL:

```
--This creates a polyline table with the local UTM projection

CREATE TABLE shapelines (shape_id VARCHAR, len_ft NUMERIC);

SELECT AddGeometryColumn ( 'shapelines', 'geom', 32619, 'LINESTRING', 2);

--Add a local projection column to the points

SELECT AddGeometryColumn ( 'gtfs_shapes', 'geom', 32619, 'POINT', 2);
```



```
UPDATE gtfs_shapes SET geom = ST_Transform(ST_SetSRID(ST_MakePoint(shape_pt_lon,
shape_pt_lat),4326),32619);
--Builds the lines
INSERT INTO shapelines (SELECT shape_id, 0.0, ST_MakeLine(ST_SnapToGrid(geom, 1.0)
ORDER BY shape_pt_sequence) as newgeom FROM gtfs_shapes GROUP BY shape_id);
UPDATE shapelines SET len meters = ST Length(geom);
-- length by mode if there's a shapes.txt
SELECT description, SUM(avg_len) as modelength
FROM
(SELECT r.route id, AVG(s.len meters/1000) as avg len, r.route type
FROM shapelines s
JOIN gtfs_trips t ON s.shape_id = t.shape_id
JOIN gtfs routes r on r.route id = t.route id
GROUP BY r.route_id, s.len_meters, r.route_type
) as lengths
JOIN gtfs_route_types USING(route_type)
GROUP BY description
-- if no shapes.txt and stop_distance_traveled is populated
SELECT description, SUM(avg_len) as modelength
FROM
(SELECT r.route_id, AVG(s.maxstopdist) as avg_len, r.route_type
FROM (SELECT trip_id, MAX(shape_dist_traveled)/1000 AS maxstopdist
FROM gtfs_stop_times GROUP BY trip_id) s
JOIN gtfs trips t ON t.trip id = s.trip id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, r.route_type
) as lengths
JOIN gtfs_route_types USING(route_type)
GROUP BY description
```

Number of stops

Required Data: GTFS

Tables Accessed: Routes, trips, and stop times

Discussion: This query counts the number of stops per route or mode.

SQL:

--By Route


```
SELECT route_id, MAX(number) as num_stops
FROM
(SELECT t.trip_id, r.route_id, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY t.trip id, r.route id
) as route_stops
GROUP BY route_id;
--By Mode
SELECT gtfs_route_types.description, COUNT(*)
FROM
(SELECT st.stop id, r.route type, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY st.stop_id, r.route_type
) as route_stops
JOIN gtfs_route_types USING(route_type)
GROUP BY gtfs_route_types.description;
```

Weekly number of hours of service

Required Data: GTFS

Tables Accessed: Routes, trips, stop times, calendar, calendar dates, frequencies Discussion: The GTFS definition recommends that stop times after midnight not wrap around the day change (going from 23:59 to 00:00), but instead continue above the 24-hour mark. This calculation depends on the data following this recommendation.

The SQL query below only gets hours of service for Monday. The query will be repeated for each day of the week, and the duration for each day can be summed to get the weekly number or hours of service. The query controls for some routes being operated on a frequency basis.

SQL:

```
--For individual routes
-- Duration of Service (for a single weekday)
-- By route

SELECT mins.route_id, maxs.maxtime - mins.mintime as duration FROM

(SELECT MIN(mintime) as mintime, route_id, route_type FROM

(SELECT MIN(CAST(SUBSTRING(arrival_time FROM 0 FOR 3) AS INTEGER)) as mintime, r.route_id, r.route_type

FROM gtfs_stop_times st
```



```
JOIN gtfs_trips t ON st.trip_id = t.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
WHERE t.service_id IN (SELECT service_id FROM gtfs_calendar WHERE monday = 1) AND NOT
EXISTS (SELECT gtfs_frequencies.trip_id FROM gtfs_frequencies WHERE st.trip_id =
gtfs_frequencies.trip_id)
GROUP BY r.route_id, r.route_type
UNION
SELECT MIN(CAST(SUBSTRING(start_time FROM 0 FOR 3) AS INTEGER)) as mintime, r.route_id,
r.route type
FROM gtfs_frequencies f
JOIN gtfs_trips t ON f.trip_id = t.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
WHERE t.service id IN (SELECT service id FROM gtfs calendar WHERE monday = 1)
GROUP BY r.route_id, r.route_type
) as freq_stop_mins GROUP BY route_id, route_type) as mins
JOIN
(SELECT MAX(maxtime) as maxtime, route_id, route_type FROM
(SELECT MAX(CAST(SUBSTRING(arrival time FROM 0 FOR 3) AS INTEGER)) as maxtime,
r.route id, r.route type
FROM gtfs_stop_times st
JOIN gtfs_trips t ON st.trip_id = t.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
WHERE t.service_id IN (SELECT service_id FROM gtfs_calendar WHERE monday = 1) AND NOT
EXISTS (SELECT gtfs_frequencies.trip_id FROM gtfs_frequencies WHERE st.trip_id =
gtfs_frequencies.trip_id)
GROUP BY r.route_id, r.route_type
UNION
SELECT MAX(CAST(SUBSTRING(end_time FROM 0 FOR 3) AS INTEGER)) as maxtime, r.route_id,
r.route_type
FROM gtfs_frequencies f
JOIN gtfs_trips t ON f.trip_id = t.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
WHERE t.service id IN (SELECT service id FROM gtfs calendar WHERE monday = 1)
GROUP BY r.route_id, r.route_type
) as freq_stop_maxs GROUP BY route_id, route_type) as maxs
ON mins.route_id = maxs.route_id;
-- By mode
SELECT route_types.description, MAX(maxs.maxtime) - MIN(mins.mintime) as duration
FROM
```



```
(SELECT mintime, route_id, route_type FROM
(SELECT MIN(CAST(SUBSTRING(arrival_time FROM 0 FOR 3) AS INTEGER)) as mintime,
r.route_id, r.route_type
              FROM gtfs_stop_times st
              JOIN gtfs_trips t ON st.trip_id = t.trip_id
              JOIN gtfs_routes r on r.route_id = t.route_id
              WHERE t.service id IN (SELECT service id FROM gtfs calendar WHERE monday
= 1) AND NOT EXISTS (SELECT gtfs_frequencies.trip_id FROM gtfs_frequencies WHERE
st.trip_id = gtfs_frequencies.trip_id)
GROUP BY r.route id, r.route type
UNION
SELECT MIN(CAST(SUBSTRING(start_time FROM 0 FOR 3) AS INTEGER)) as mintime, r.route_id,
r.route_type
FROM gtfs frequencies f
JOIN gtfs_trips t ON f.trip_id = t.trip_id
JOIN gtfs_routes r ON r.route_id = t.route_id
WHERE t.service id IN (SELECT service id FROM gtfs calendar WHERE monday = 1)
GROUP BY r.route id, r.route type
) AS freq_stop_mins GROUP BY route_id, route_type, mintime) as mins
JOIN
(SELECT maxtime, route id, route type FROM
       (SELECT MAX(CAST(SUBSTRING(arrival_time FROM 0 FOR 3) AS INTEGER)) as maxtime,
r.route_id, r.route_type
              FROM gtfs_stop_times st
              JOIN gtfs_trips t ON st.trip_id = t.trip_id
              JOIN gtfs routes r on r.route id = t.route id
              WHERE t.service_id IN (SELECT service_id FROM gtfs_calendar WHERE monday
= 1) AND NOT EXISTS (SELECT gtfs_frequencies.trip_id FROM gtfs_frequencies WHERE
st.trip id = gtfs frequencies.trip id)
GROUP BY r.route_id, r.route_type
UNION
SELECT MAX(CAST(SUBSTRING(end time FROM 0 FOR 3) AS INTEGER)) as maxtime, r.route id,
r.route type
FROM gtfs_frequencies f
JOIN gtfs_trips t ON f.trip_id = t.trip_id
JOIN gtfs routes r ON r.route id = t.route id
WHERE t.service_id IN (SELECT service_id FROM gtfs_calendar WHERE monday = 1)
GROUP BY r.route_id, r.route_type
) AS freq_stop_maxs GROUP BY route_id, route_type, maxtime) as maxs
ON mins.route_id = maxs.route_id
```


JOIN

```
(SELECT * FROM gtfs_route_types) as route_types ON mins.route_type =
route_types.route_type
GROUP BY route_types.description;
```

Ratio of number of stops to route-length

Required Data: GTFS

Tables Accessed: Routes, trips, shapes or stop times

Discussion: There are two ways to derive the length of a route, as shown above. The below queries rely on either a shapes.txt file or the stop_distance_traveled field in the stops_times.txt field. SQL:

```
SELECT lenavgs.route_id, stopscount.num_stops / lenavgs.routelength AS coverage
FROM
(SELECT route_id, route_type, AVG(len_meters/1000) as routelength
FROM
(SELECT s.shape_id, s.len_meters, t.route_id, r.route_type
FROM shapelines s
JOIN gtfs_trips t ON s.shape_id = t.shape_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY s.shape_id, s.len_meters, t.route_id, r.route_type
) as lengths
GROUP BY route_id, route_type) as lenavgs
(SELECT route_id, MAX(number) as num_stops
(SELECT t.trip_id, r.route_id, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY t.trip id, r.route id
) as route_stops
GROUP BY route_id) as stopscount
ON lenavgs.route id = stopscount.route id;
--by mode
SELECT gtfs_route_types.description, stopssum.numbstops / lenavgs.modelength AS
coverage
FROM
(SELECT route_type, SUM(avg_len) as modelength
```



```
FROM
(SELECT r.route_id, AVG(s.len_meters/1000) as avg_len, r.route_type
FROM shapelines s
JOIN gtfs_trips t ON s.shape_id = t.shape_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, s.len_meters, r.route_type
) as lengths
GROUP BY route_type) as lenavgs
JOIN
(SELECT route type, SUM(num stops) as numbstops
FROM
(SELECT route_id, route_type, MAX(number) as num_stops
FROM
(SELECT t.trip id, r.route id, route type, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs routes r on r.route id = t.route id
GROUP BY t.trip_id, r.route_id, route_type
) as route_stops
GROUP BY route_type, route_id) as stopscount
GROUP BY route_type) as stopssum
ON lenavgs.route_type = stopssum.route_type
JOIN gtfs_route_types ON lenavgs.route_type = gtfs_route_types.route_type;
--for when there's no shapes.txt
SELECT lenavgs.route_id, stopscount.num_stops / lenavgs.routelength AS coverage
(SELECT r.route_id, AVG(s.maxstopdist) as routelength, r.route_type
FROM (SELECT trip_id, MAX(shape_dist_traveled)/1000 AS maxstopdist
FROM gtfs stop times GROUP BY trip id) s
JOIN gtfs_trips t ON t.trip_id = s.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, r.route_type
) as lenavgs
JOIN
(SELECT route_id, MAX(number) as num_stops
(SELECT t.trip_id, r.route_id, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs trips t ON st.trip id = t.trip id
LEFT JOIN gtfs routes r on r.route id = t.route id
GROUP BY t.trip_id, r.route_id
) as route stops
GROUP BY route_id) as stopscount
```



```
ON lenavgs.route_id = stopscount.route_id;
--by mode
SELECT gtfs_route_types.description, stopssum.numbstops / lenavgs.modelength AS
FROM
(SELECT route type, SUM(routelength) as modelength
(SELECT r.route_id, AVG(s.maxstopdist) as routelength, r.route_type
FROM (SELECT trip id, MAX(shape dist traveled)/1000 AS maxstopdist
FROM gtfs_stop_times GROUP BY trip_id) s
JOIN gtfs_trips t ON t.trip_id = s.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, r.route_type
) as lengths
GROUP BY route_type) as lenavgs
JOIN
(SELECT route_type, SUM(num_stops) as numbstops
(SELECT route_id, route_type, MAX(number) as num_stops
FROM
(SELECT t.trip_id, r.route_id, route_type, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY t.trip_id, r.route_id, route_type
) as route_stops
GROUP BY route_type, route_id) as stopscount
GROUP BY route type) as stopssum
ON lenavgs.route_type = stopssum.route_type
JOIN gtfs_route_types ON lenavgs.route_type = gtfs_route_types.route_type;
```

Average distance between stops

Required Data: GTFS

Tables Accessed: Routes, trips, shapes or stop times

Discussion: Similar to the above indicator, there are two ways to calculate this indicator, depending on data available.

SQL:

```
-- works if shape_dist_traveled is populated
-- By Route
SELECT lenavgs.route_id, lenavgs.routelength / stopscount.num_stops AS coverage
FROM
```



```
(SELECT r.route_id, AVG(s.maxstopdist) as routelength, r.route_type
FROM (SELECT trip_id, MAX(shape_dist_traveled)/1000 AS maxstopdist
FROM gtfs stop times GROUP BY trip id) s
JOIN gtfs_trips t ON t.trip_id = s.trip_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, r.route_type
) as lenavgs
JOIN
(SELECT route_id, MAX(number) as num_stops
FROM
(SELECT t.trip_id, r.route_id, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs routes r on r.route id = t.route id
GROUP BY t.trip_id, r.route_id
) as route_stops
GROUP BY route id) as stopscount
ON lenavgs.route_id = stopscount.route_id;
-- By Mode
SELECT gtfs_route_types.description, lenavgs.modelength / stopssum.numbstops AS
coverage
FROM
(SELECT route_type, SUM(routelength) as modelength
FROM
(SELECT r.route_id, AVG(s.maxstopdist) as routelength, r.route_type
FROM (SELECT trip_id, MAX(shape_dist_traveled)/1000 AS maxstopdist
FROM gtfs_stop_times GROUP BY trip_id) s
JOIN gtfs trips t ON t.trip id = s.trip id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, r.route_type
) as lengths
GROUP BY route_type) as lenavgs
JOIN
(SELECT route_type, SUM(num_stops) as numbstops
FROM
(SELECT route_id, route_type, MAX(number) as num_stops
FROM
(SELECT t.trip_id, r.route_id, route_type, COUNT(*) as number
FROM gtfs stop times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY t.trip_id, r.route_id, route_type
```



```
) as route_stops
GROUP BY route_type, route_id) as stopscount
GROUP BY route_type) as stopssum
ON lenavgs.route_type = stopssum.route_type
JOIN gtfs_route_types ON lenavgs.route_type = gtfs_route_types.route_type;
--otherwise, need to use shape length
-- By Route
SELECT lenavgs.route_id, lenavgs.routelength / stopscount.num_stops AS coverage
FROM
(SELECT route_id, route_type, AVG(len_meters/1000) as routelength
(SELECT s.shape_id, s.len_meters, t.route_id, r.route_type
FROM shapelines s
JOIN gtfs_trips t ON s.shape_id = t.shape_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY s.shape_id, s.len_meters, t.route_id, r.route_type
) as lengths
GROUP BY route_id, route_type) as lenavgs
JOIN
(SELECT route_id, MAX(number) as num_stops
(SELECT t.trip_id, r.route_id, COUNT(*) as number
FROM gtfs_stop_times st
LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id
LEFT JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY t.trip_id, r.route_id
) as route_stops
GROUP BY route id) as stopscount
ON lenavgs.route_id = stopscount.route_id;
-- By Mode
SELECT gtfs_route_types.description, lenavgs.modelength / stopssum.numbstops AS
coverage
FROM
(SELECT route type, SUM(avg len) as modelength
(SELECT r.route_id, AVG(s.len_meters/1000) as avg_len, r.route_type
FROM shapelines s
JOIN gtfs_trips t ON s.shape_id = t.shape_id
JOIN gtfs_routes r on r.route_id = t.route_id
GROUP BY r.route_id, s.len_meters, r.route_type
) as lengths
```



```
GROUP BY route_type) as lenavgs

JOIN

(SELECT route_type, SUM(num_stops) as numbstops

FROM

(SELECT route_id, route_type, MAX(number) as num_stops

FROM

(SELECT t.trip_id, r.route_id, route_type, COUNT(*) as number

FROM gtfs_stop_times st

LEFT JOIN gtfs_trips t ON st.trip_id = t.trip_id

LEFT JOIN gtfs_routes r on r.route_id = t.route_id

GROUP BY t.trip_id, r.route_id, route_type

) as route_stops

GROUP BY route_type, route_id) as stopscount

GROUP BY route_type = stopssum

ON lenavgs.route_type = stopssum.route_type

JOIN gtfs_route_types ON lenavgs.route_type = gtfs_route_types.route_type;
```

Average weekday peak, non-peak, and aggregated time traveled between stops

Required Data: GTFS

Tables Accessed: Routes, trips, stop times, calendar

Discussion: This indicator averages the time it takes to get between consecutive stops along a route, aggregated at different levels. Including the day of the week and limits on stop times narrow the focus to particular blocks of time. The below query is the average without regard to time. SQL:

```
-- by route

SELECT d.route_id, AVG((b.maxtime - a.mintime) * 60 / c.numstops) AS

avg_min_between_stops

FROM (SELECT trip_id, MIN(CAST(substring(arrival_time from 1 for 2) as decimal) +

cast(substring(arrival_time from 4 for 2) as decimal)/60) as mintime,

min(stop_sequence) as minseq FROM gtfs_stop_times GROUP BY trip_id ORDER BY trip_id) a

JOIN (SELECT trip_id, MAX(CAST(substring(arrival_time from 1 for 2) as decimal) +

cast(substring(arrival_time from 4 for 2) as decimal)/60) as maxtime,

max(stop_sequence) as maxseq FROM gtfs_stop_times GROUP BY trip_id ORDER BY trip_id) b

ON a.trip_id = b.trip_id

JOIN (SELECT trip_id, COUNT(*) as numstops FROM gtfs_stop_times GROUP BY trip_id ORDER

BY trip_id) c ON a.trip_id = c.trip_id

JOIN gtfs_trips d ON d.trip_id = a.trip_id

GROUP BY d.route_id

-- by mode
```



```
SELECT f.description, AVG((b.maxtime - a.mintime) * 60 / c.numstops) AS

avg_min_between_stops

FROM (SELECT trip_id, MIN(CAST(substring(arrival_time from 1 for 2) as decimal) +

cast(substring(arrival_time from 4 for 2) as decimal)/60) as mintime,

min(stop_sequence) as minseq FROM gtfs_stop_times GROUP BY trip_id ORDER BY trip_id) a

JOIN (SELECT trip_id, MAX(CAST(substring(arrival_time from 1 for 2) as decimal) +

cast(substring(arrival_time from 4 for 2) as decimal)/60) as maxtime,

max(stop_sequence) as maxseq FROM gtfs_stop_times GROUP BY trip_id ORDER BY trip_id) b

ON a.trip_id = b.trip_id

JOIN (SELECT trip_id, COUNT(*) as numstops FROM gtfs_stop_times GROUP BY trip_id ORDER

BY trip_id) c ON a.trip_id = c.trip_id

JOIN gtfs_trips d ON d.trip_id = a.trip_id

JOIN gtfs_routes e ON d.route_id = e.route_id

JOIN gtfs_route_types f ON e.route_type = f.route_type

GROUP BY f.description
```

Average system weekday / weekend frequency

Required Data: GTFS

Tables Accessed: Routes, trips, stop times, calendar, frequencies

Discussion: Compiles the headway for a specific stop and route combination, then averages by route and mode. Weekend and weekday options can be selected by modifying the join to the calendar table. This query accommodates GTFS data that relies on frequency-based scheduling using the frequencies.txt table.

SQL:

JOIN


```
(SELECT trip_id, service_id, route_id FROM gtfs_trips) AS trips ON
trips.trip_id=freqs.trip_id
JOIN
(SELECT service id, monday, tuesday, wednesday, thursday, friday FROM gtfs calendar
       WHERE monday='1' OR tuesday='1' OR wednesday='1' OR thursday='1' OR friday='1'
) AS weekdays
ON weekdays.service id=trips.service id) AS trip route start end hrs
) AS wghted_headways
GROUP BY route_id) as agg_components
UNION --Connect stop-based counting to frequency-based counting
select avg(num/duration_hrs) as buses_per_hr, rt_stp_duration.route_id from
--Get the duration (and some other stats) separately
(select (max(rt_stp_hrs.arrtime) - min(rt_stp_hrs.arrtime)) as duration_hrs, count(*)
as num, rt_stp_hrs.route_id, rt_stp_hrs.stop_id from
       --Gives all arrivals for one stop without regard to day.
(select distinct gtfs_stop_times.trip_id, arrival_time, departure_time, stop_id,
trips.route_id,
           CAST(substring(arrival_time from 1 for 2) as decimal) +
           cast(substring(arrival_time from 4 for 2) as decimal)/60 as arrtime
       from gtfs_stop_times
       --Gives the trip_id to join the next query on
join(select trip_id, service_id, route_id from gtfs_trips) as trips on
trips.trip_id=gtfs_stop_times.trip_id
-- Gives all trips which occur on the specified days.
join(select service_id, monday, tuesday, wednesday, thursday, friday
           from gtfs_calendar
           where monday='1' or tuesday='1' or wednesday='1' or thursday='1' or
friday='1') as weekdays
on weekdays.service_id=trips.service_id
--Filter out anything that's in frequencies
WHERE NOT EXISTS (SELECT gtfs frequencies.trip id FROM gtfs frequencies WHERE
gtfs_stop_times.trip_id = gtfs_frequencies.trip_id)
order by arrtime, stop_id) as rt_stp_hrs group by rt_stp_hrs.route_id,
rt_stp_hrs.stop_id
) as rt_stp_duration where rt_stp_duration.duration_hrs > 0.05 group by
rt_stp_duration.route_id
```



```
--by mode
SELECT AVG(buses_per_hr), description FROM
((SELECT 3600*(srv_end-srv_start)/(sum) as buses_per_hr, route_id FROM
(SELECT SUM(trip_headway_hrs_wghted), MIN(starttime) as srv_start, MAX(endtime) as
srv_end, route_id FROM
(SELECT (endtime-starttime)*headway_secs as trip_headway_hrs_wghted, starttime,
endtime, trip_id, route_id FROM
(SELECT start_time, end_time, freqs.trip_id, trips.route_id, headway_secs,
       CAST(substring(start_time FROM 1 FOR 2) as decimal) +
       CAST(substring(start_time FROM 4 for 2) as decimal)/60 AS starttime,
       CAST(substring(end_time FROM 1 FOR 2) as decimal) +
       CAST(substring(end time FROM 4 for 2) as decimal)/60 AS endtime
       FROM gtfs_frequencies as freqs
JOIN
(SELECT trip_id, service_id, route_id FROM gtfs_trips) AS trips ON
trips.trip_id=freqs.trip_id
JOIN
(SELECT service_id, monday, tuesday, wednesday, thursday, friday FROM gtfs_calendar
       WHERE monday='1' OR tuesday='1' OR wednesday='1' OR thursday='1' OR friday='1'
) AS weekdays
ON weekdays.service_id=trips.service_id) AS trip_route_start_end_hrs
) AS wghted_headways
GROUP BY route id) as agg components
UNION --Connect stop-based counting to frequency-based counting
select avg(num/duration_hrs) as buses_per_hr, rt_stp_duration.route_id from
--Get the duration (and some other stats) separately
(select (max(rt_stp_hrs.arrtime) - min(rt_stp_hrs.arrtime)) as duration_hrs, count(*)
as num, rt stp hrs.route id, rt stp hrs.stop id from
       --Gives all arrivals for one stop without regard to day.
(select distinct gtfs_stop_times.trip_id, arrival_time, departure_time, stop_id,
trips.route_id,
           CAST(substring(arrival_time from 1 for 2) as decimal) +
           cast(substring(arrival_time from 4 for 2) as decimal)/60 as arrtime
       from gtfs_stop_times
       --Gives the trip_id to join the next query on
```



```
join(select trip_id, service_id, route_id from gtfs_trips) as trips on
trips.trip_id=gtfs_stop_times.trip_id
-- Gives all trips which occur on the specified days.
join(select service_id, monday, tuesday, wednesday, thursday, friday
           from gtfs_calendar
           where monday='1' or tuesday='1' or wednesday='1' or thursday='1' or
friday='1') as weekdays
on weekdays.service_id=trips.service_id
--Filter out anything that's in frequencies
WHERE NOT EXISTS (SELECT gtfs_frequencies.trip_id FROM gtfs_frequencies WHERE
gtfs_stop_times.trip_id = gtfs_frequencies.trip_id)
order by arrtime, stop_id) as rt_stp_hrs group by rt_stp_hrs.route_id,
rt_stp_hrs.stop_id
) as rt stp duration where rt stp duration.duration hrs > 0.05 group by
rt_stp_duration.route_id
) as avg_freq_by_rt
JOIN
(SELECT route_id, route_type FROM gtfs_routes) AS types ON types.route_id =
avg_freq_by_rt.route_id
JOIN
(SELECT route_type, description FROM gtfs_route_types) as descs ON
types.route_type=descs.route_type
) AS freq_with_descs
GROUP BY description;
```

System Affordability as a Proportion of Poverty Line Income

Required Data: GTFS, road network

Tables Accessed: Fare attributes, fare rules

Discussion: Where fare information is not included in the GTFS data, an average one-way fare can be during software configuration. The income threshold defining poverty will also be collected during configuration. The threshold in the United States for an individual is \$11,490

-- Rides per month = 42, Fare = \$2.50, Poverty line = \$11490 divided by 12 months SELECT (42 * 2.5) / (11490 / 12) * 100;

Ratio of Total Transit Lines Length over Total Road Network Length (RBR)

Required Data: GTFS, road network, regional boundary

Tables Accessed: Shapes, roads, region

Discussion: This set of queries buffers the transit system shape by 3m, then clips the road network that falls within that buffer. This is the measure of roadway covered by the transit system, which is divided by the total road network length, each relative to the region or city boundary. In the software, this sequence will need significant optimization, as the SQL performance is quite slow. SQL:

```
-- First calculate the length of road segments
ALTER TABLE roads ADD COLUMN len_meters NUMERIC;
UPDATE roads SET len_meters = ST_Length(geom);
-- Create a spatial index on shapelines
CREATE INDEX spidx_shapelines ON shapelines USING GIST(geom);
-- Create a spatial index on roads
CREATE INDEX spidx_roads ON roads USING GIST(geom);
-- Takes a long time
CREATE TABLE shapesbuffer AS SELECT ST_Union(ST_Buffer(shapelines.geom,3)) as geom FROM
shapelines;
SELECT DISTINCT
(SELECT SUM(len_meters/1000)
FROM
       (SELECT ST_Intersection(shapesbufferunion.geom,roads.geom), len_meters
       FROM shapesbufferunion, roads
       WHERE ST_Intersects(shapesbufferunion.geom,roads.geom)) as clip) /
(SELECT SUM(len meters/1000)
FROM
       (SELECT ST_Intersection(region.geom,roads.geom), len_meters
       FROM region, roads
       WHERE ST_Intersects(region.geom,roads.geom)) as clip)
FROM shapelines;
```

Transit Line Network Density (BND)

Required Data: Shapes, regional boundary

Tables Accessed: Shapes, region

Discussion: The result of this indicator is an index representing kilometers of transit lines over square kilometers of area. The query selects a subset of lines where they intersect the regional and city boundaries. The line lengths are calculated in the same way as the above query. SQL:

Coverage of Transit Stops for 500 meter Radius (CBS_500)

Required Data: Stops, boundary files

Tables Accessed: Stops, region, city

Discussion: The stops table must first be given a spatial column, if it does not already have one. The calculation unions the 500m buffers of each stop, then divides the area by the total regional or city area. Only stops within the comparison area are buffered. If the system has lines using informal stops, a 500m buffer of the lines themselves can be used.

SQL:

```
SELECT AddGeometryColumn ( 'gtfs_stops', 'geom', 2264, 'POINT', 2);
UPDATE gtfs_stops SET geom =
ST_Transform(ST_SetSRID(ST_Makepoint(stop_lon,stop_lat),4326),2264);

SELECT
(SELECT ST_Area(ST_Union(ST_Buffer(gtfs_stops.geom,500)))
FROM gtfs_stops, city
WHERE ST_Intersects(city.geom,gtfs_stops.geom)) / (SELECT SUM(ST_Area(geom)) from city)
as CBS_500;

SELECT
(SELECT ST_Area(ST_Union(ST_Buffer(gtfs_stops.geom,500)))
FROM gtfs_stops, region
```



```
WHERE ST_Intersects(region.geom,gtfs_stops.geom)) / (SELECT SUM(ST_Area(geom)) from
region) as CBS_500;

-- For informal stop usage
-- This will take some time to union the line buffer - in production software, this
buffer would be cached
SELECT
(SELECT ST_Area(ST_Union(ST_Buffer(shapelines.geom,500)))
FROM shapelines, city
WHERE ST_Intersects(city.geom, shapelines.geom)) / (SELECT SUM(ST_Area(geom)) from
city) as CBS_500;

SELECT
(SELECT ST_Area(ST_Union(ST_Buffer(shapelines.geom,500)))
FROM shapelines, region
WHERE ST_Intersects(region.geom, shapelines.geom)) / (SELECT SUM(ST_Area(geom)) from
region) as CBS_500;
```

Ratio of the Transit-Pattern Operating Suburban Lines (STR)

Required Data: GTFS, city boundary

Tables Accessed: Stops, trips, routes, stop times, city

Discussion: This query calculates the ratio of the number of routes with stops outside the urban center of the system to the total number of routes.

SQL:

```
SELECT CAST(COUNT(*) as DECIMAL) / CAST((SELECT COUNT(*) FROM gtfs_routes) AS DECIMAL)
FROM
(SELECT t.route_id FROM gtfs_trips t
JOIN gtfs_stop_times st ON st.trip_id = t.trip_id
WHERE st.stop_id IN (SELECT stop_id FROM gtfs_stops, city WHERE NOT
ST_Contains(city.geom, gtfs_stops.geom))
GROUP BY t.route id) as suburbanlines;
```

On-Time Performance (for low frequency- service)

Required Data: GTFS, Real-time analysis results

Tables Accessed: Routes, trips, stop times, calendar

Discussion: This indicator is calculated using the real-time analysis results, and measures the average deviation from schedule time per route and mode. Additional metrics (standard deviation, z-scores, etc.) may be desirable once data is available and sample results calculated.

Regularity of Headways (for high-frequency service)

Required Data: GTFS, Real-time analysis results

Tables Accessed: Routes, trips, stop times, calendar, frequencies

Discussion: This indicator is calculated using the real-time analysis results, and measures the average deviation from scheduled frequency per route and mode. Additional metrics (standard deviation, z-scores, etc.) may be desirable once data is available and sample results calculated.

Dwell Time Performance

Required Data: GTFS, Real-time analysis results Tables Accessed: Routes, trips, stop times, calendar

Discussion: This indicator is calculated using the real-time analysis results, and measures the average deviation from scheduled dwell time per route and mode. Additional metrics (standard deviation, z-scores, etc.) may be desirable once data is available and sample results calculated. Dwell time is a somewhat unreliable measure in the real-time analysis results, and indicator results should be understood in this context.

Travel Time Performance

Required Data: GTFS, Real-time analysis results Tables Accessed: Routes, trips, stop times, calendar

Discussion: This indicator is calculated using the real-time analysis results, and measures the average deviation from scheduled time between stops per route and mode. Additional metrics (standard deviation, z-scores, etc.) may be desirable once data is available and sample results calculated.

Average Service Frequency (ASF) within city and within a bounded area

Required Data: GTFS

Tables Accessed: Routes, trips, stop times, calendar

Discussion: This indicator is calculated in the same fashion as average weekday / weekend frequency.

System coverage (city and bounded area)

Required Data: Stops, boundary files Tables Accessed: Stops, region, city

Discussion: The calculation for this query is identical to that of CBS500, with the exception that the

buffer distance may be variable.

System accessibility (city and bounded area)

Required Data: Population data, GTFS Tables Accessed: Stops, population

Discussion: This query is a template for selecting a subset of the population and setting the buffer distance of transit stops. In this case, it is the total population measured in 2012 within 500m of a stop.

SQL:


```
SELECT CAST(subpop.subpopsum AS DECIMAL) / CAST(totalpop.totalpopsum AS DECIMAL) as ratio

FROM (SELECT SUM(pop2012) as subpopsum FROM pop,(SELECT

ST_Union(ST_Buffer(gtfs_stops.geom,500)) as geom FROM gtfs_stops) as coverage WHERE

ST_Intersects(coverage.geom, pop.geom)) AS subpop,

(SELECT SUM(pop2012) as totalpopsum FROM pop) as totalpop;
```

System accessibility for low-income residents (city and bounded area)

Required Data: Population data, GTFS Tables Accessed: Stops, population

Discussion: Similar to the above indicator, this query is a template to compare a subset of a population to overall population served by the transit system. Configurable items include the subset of the population to choose, as well as the buffer distance from stops. SQL:

```
SELECT CAST(subpop.subpopsum AS DECIMAL) / CAST(totalpop.totalpopsum AS DECIMAL) as ratio

FROM (SELECT SUM(low_income) as subpopsum FROM pop,(SELECT

ST_Union(ST_Buffer(gtfs_stops.geom,500)) as geom FROM gtfs_stops) as coverage WHERE

ST_Intersects(coverage.geom, pop.geom)) AS subpop,

(SELECT SUM(pop2012) as totalpopsum FROM pop,(SELECT

ST_Union(ST_Buffer(gtfs_stops.geom,500)

)) as geom FROM gtfs_stops) as coverage WHERE ST_Intersects(coverage.geom, pop.geom))

as totalpop;
```

Service frequency, weighted by served population (city and bounded area)

Required Data: GTFS, population

Tables Accessed: Routes, trips, stop times, population

Discussion: This query weights the frequency of each stop, per route, with the population served (within 500m). The frequency is counted for each individual served, and the average is calculated by dividing by the sum of population.

SQL:


```
CAST(substring(arrival_time from 1 for 2) as decimal) +
       cast(substring(arrival_time from 4 for 2) as decimal)/60 as arrtime
       from gtfs_stop_times
       --Gives the trip_id to join the next query on
       join(
       select trip_id, service_id from gtfs_trips
       ) as trips on trips.trip id=gtfs stop times.trip id
       --Gives all trips which occur on the specified days.
       join(
       select service_id, monday, tuesday, wednesday, thursday, friday
       from gtfs_calendar
       where monday='1' or tuesday='1' or wednesday='1' or thursday='1' or friday='1'
       ) as weekdays
       on weekdays.service id=trips.service id
       order by arrtime
       ) as stop_trip_times group by stop_id
       ) as stop_durtn_counts where stop_durtn_counts.duration_hrs > 0.05
  ) as stop_freq
JOIN
  (SELECT gtfs_stops.stop_id, SUM(pop.pop2012) as stoppop
       FROM gtfs_stops
       INNER JOIN pop
       ON ST_Intersects(ST_Buffer(gtfs_stops.geom,500), pop.geom)
       GROUP BY gtfs_stops.stop_id
  ) as pop_served_stop
ON pop_served_stop.stop_id=stop_freq.stop_id
) as weight pop;
```

Job accessibility

Required Data: GTFS, population data, job data

Tables Accessed:

Discussion: This indicator requires network traversal to be calculated accurately, and cannot be calculated simply in SQL. The approach to calculating this indicator is to set up a series of job locations as destination / origins, calculate the travel time from each job origin, and then select and sum the population that falls into the composite travel shed. Since the technology architecture to calculate this indicator is as of yet undetermined, a full example is temporarily deferred.

Access Index

Required Data:

Tables Accessed:

 $\label{eq:Discussion$

SQL:

Boston Example Results

Number of modes and types

description	1	numlines
	· + ·	407
Bus	ı	197
Intercity Rail		12
Underground Rail		8
Ferry		3
Street Level Rail	1	11

Transit System Length in kilometers

description		modelength
Bus		10036.37838040307908800000
Intercity Rail		1534.6089044789766000
Underground Rail		194.6697746270275200
Street Level Rail	Ī	211.4597392782880600

Number of Stops per Route

route_id	num_stops
131	-
505	28
CR-Fitchburg	18
94	40
275	2
79	21
351	24
07	19
CR-Greenbush	10
38	43
222	61
240	82
34	45
880_	20
68	15

436		61
439		50
43		20
221		39
47		39
32		41
9702		22
882_		16
75		27
217		85

Number of stops per mode

description		count
	+-	
Bus		7696
Intercity Rail		137
Underground Rail		102
Ferry		6
Street Level Rail		150

Weekly number of hours in service - these results are for Monday only By route:

route_id	1	duration
70A	·+ 	 15
751	ĺ	19
50	1	14
CR-Middleborough	1	18
326	1	13
708		14
503		13
112		14
111		21
238		18
434		12
Logan-33		11
4050		1
Boat-F1		17
80		20

By mode:

description | duration

Bus	22
Intercity Rail	21
Underground Rail	22
Ferry	17
Street Level Rail	23

Number of stops per kilometer

route_id		coverage
01		3.7502145377915875
04	1	3.7175188317261752
05		5.2922152564834317
07		4.3793751226126449
08		5.6597016491916552
09		5.3970313635213175
10		6.1959845609160915
100		4.3392329903062473
101		6.2014935175235907
104		4.1668256815217900
105		4.2772058399081693
106		5.6742376700781739
108		5.9761372413109610
109		5.5054643279267203
11		5.1108343091188745
110	- 1	4.8847664659694873
111		3.9747968793396159

Number of stops per kilometer (by mode)

description		coverage
	+-	
Street Level Rail		1.0262000735488507
Underground Rail		0.55992256737768206987
Intercity Rail		0.09969966911663780589
Bus	Ι	0.73811485769256951194

Average distance between stops (by route)

	route_id		coverage
		+-	
01			0.26665141151867976071
04			0.26899661985993617647
05			0.18895678870486448276

07	0.22834307909285026316
08	0.17668775882255642157
09	0.18528704627492575333
10	0.16139485019183901042
100	0.23045547501919772105
101	0.16125147872432585714
104	0.23999084109388140625
105	0.23379749243526465116
106	0.17623512763190672245
108	0.16733216785708121489

Average distance between stops (by mode)

description +	coverage
·	
Street Level Rail	0.97446884460040580645
Underground Rail	1.7859612351103442
Intercity Rail	10.0301235586861216
Bus	1.35480269713864458531

Average time between consecutive stops on a trip (in minutes)

```
description | avg_min_between_stops
-------

Bus | 0.98250231267564764220

Intercity Rail | 5.78788857109534004145

Underground Rail | 2.00569748113414382000

Ferry | 9.01971726190476190483

Street Level Rail | 1.55378384223877357018
```

Average system weekday / peak / weekend frequency

buses_per_hr | route_id

```
27.72509500897147623842 | 39
12.99294354838709677417 | 171
9.87217323397889808466 | 428
48.000000000000000000038 | 9701
2.26797135454872592716 | CR-Lowell
9.76009605694933908543 | 116
11.54450507141879846706 | 70
5.03589183017887235715 | 236
1.10735932707482292745 | 913_
13.50818971879160263960 | 45
```

1.59104181729788717646 | CR-Worcester

- 10.36648362816475108598 | 117
- 1.43611786269894734362 | CR-Fitchburg
- 7.70438552112994282449 | 100
- 25.33451839914779233583 | 77
- 3.64219653389170785362 | 439
- 9.10478444081802356020 | 41
- 1.25825246947865956589 | Boat-F3
- 7.44912312243229237423 | 94
- 1.33467710707008739501 | CR-Franklin
- 8.53178877806942060774 | 27
- 19.75025675839450091293 | 22
- 6.55024726385309147265 | 18
- 13.84694918990679130721 | 43
- 5.39294337150375765559 | 436

System Affordability as a Proportion of Poverty Line Income 10.97%

Ratio of Transit Length to Road Length 0.20958106432611699287

Transit Line Network Density Region: 0.0112457816953249 City: 5.41088829044538

Coverage of Transit Stops for 500 meters Radius (CBS_500)

City: 1.06696659280942 Region: 0.00352030475304973

Ratio of the Transit-Pattern Operating Suburban Lines (STR) 0.68398268398268398268

Percent of working-age population living within .5 km of a transit stop 0.28810685020257480195

Percent of sub-population within .5 km of a transit stop 0.23048821881903212983

Average Service Frequency, weighted by population 17.03596367385869195058

Chicago Example Results

Number of modes and types

description		numlines
	-+	
Bus		126
Underground Rail	-	8

Transit System Length in kilometers

description | modelength

Bus | 9162.03636687290311700000

Underground Rail | 620.2784371682611500

Number of stops per mode description | count

Bus | 11298 Underground Rail | 296

Weekly number of hours in service - these results are for Monday only By route:

route_id	duration
	+
50	20
112	19
111	19
12	24
J14	21
52A	20
125	13
80	24
206	13
85A	16
9	25
18	15
51	16
146	19
53A	21
86	17
3	24
91	19
155	24
Brn	25
192	13
35	21
67	24
63	24

By mode:

description		duration
	+	
Bus	1	24
Underground Rail		24

Number of stops per kilometer

route_id		coverage
	-+	
1		4.9938786919840467

10		1.5646665884871703
100		5.9471060023054493
103		7.3265884031246463
106		4.4146123354051465
108		5.9045979835421426
11		4.9164065352113857
111		4.8793578310134675
111A		4.6760616956989990
112		6.9034594878388405
115		5.0111795980952442
119		5.2338399167791543
12		7.4172671444257571
120		3.3765359167102014
121		2.5882109326739186
124		4.4005484171337238
125		4.4145275520274712
126		7.7109473663606479
132		2.0711225424436801
134		2.0889753903850233
135		2.5033015794028763
136		2.4077353515506738
143		2.9510555774170951
146	-	4.1103437617742000

Number of stops per kilometer (by mode)

description	coverage	
	0.40626916058931238300	
Bus	0.8025508419270392217	7

Average distance between stops (by route)

route_id	distance
+	
48	0.619872514619883
2	1.22084107744108
X98	25.948
135	1.32462629107981
94	0.668003554230685
79	0.508957523208976
63W	0.667007322929168
4	0.614729313393039

Υ	8.67699999999999
Pink	2.71516216216215
8A	0.602781193693695
205	0.8031686637618
82	0.605614202222893
34	0.581336370457717
68	0.634233760075867
157	0.623228416149068
43	0.626381913716813
5	0.596820427236315
156	0.588036610008319
47	0.563274876499646
75	0.591964285714286
76	0.589265438165443
70	0.612624919406834
103	0.544735833998403

Average distance between stops (by mode)

description		distance
	+	
Underground Rail		3.09614382997897
Bus	Ι	0.69755568756576

Average time between consecutive stops on a trip (in minutes) By route:

route_id		avg_min_between_stops
48	1	0.63584763254938693535
2		1.32155197248780136481
X98		12.99999999999999999
135		1.62249841788452764655
94		0.66022541386438415069
79		0.72102027260736935337
63W		0.55514400167251353856
4		0.70323066165563254681
Υ		4.00000000000000000000000
Pink		1.66963871087582427788
8A		0.56853512978375241792
205		0.83544419208483461187
82		0.72980171977688700760
34		0.56334214210680942328
68		0.51031616279294297870

157	1.00040082728926043118
43	0.71312714639309085449
5	0.44626168224299065421
156	0.97125599952462106789
47	0.68226065370483834319
75	0.62483577782085244772
76	0.77085729252957964941
70	0.72584190474715369023
103	0.48644756412739546500

By mode:

description		<pre>avg_min_between_stops</pre>			
	+				
Bus		0.75333144128802291409			
Underground Rail	I	2.04041373993074064064			

Average system weekday frequency (buses per hour) By route:

buses_per_hr	I	route_id
8.88700040769585157355		85
9.08481596592020447795		75
3.73048660490879002847		100
11.23325320312689201950		55
5.16289197525055587360		108
4.95406680275577568474		95W
8.73706888544796794151		157
8.72996545277827868018		121
7.20820497658871123797		86
9.76016390288920069430		53A
19.69030486304387848275		134
11.09534473168975347087		22
7.97929770076150466602		115
8.08144589603739069920		111
6.26287396793551092437		30
6.95568847243399742586		28
5.04109589041095890411		Υ

By mode:

avg		description
	+-	
8.64073091203859964676		Bus

6.04372039720269206074 | Underground Rail

System Affordability as a Proportion of Poverty Line Income 9.87%

Ratio of Transit Length to Road Length 0.76056620109906795973 -- This is calculated with the city boundary, not regional boundary.

Transit Line Network Density City: 0.35074626865671641791

Coverage of Transit Stops for 500 meters Radius (CBS_500)

City: 0.905869514700218

-- Regional data not available because it is operated by different agencies (Pace and Metra)

Ratio of the Transit-Pattern Operating Suburban Lines (STR)

0.35074626865671641791 -- The CTA does not provide much service outside Chicago's borders; this is provided by Pace and Metra.

Percent of working-age population living within .5 km of a transit stop 0.58694025909722974378

Percent of sub-population within .5 km of a transit stop 0.23048821881903212983

Population weight frequency per hour, system-wide: 11.00965975405449364971

Zhengzhou Example Results

Number of modes and types

description | numlines
----Bus | 226

Transit System Length in kilometers description | modelength
----Bus | 3019.73899133209

Number of stops by route

route_id	num_	stops
	·-+	
289		12
48		25
113		26
962		36
B11		28
2		38
B16		29
131		19
254		20
135		17
275		16
B10		16
79		29
268		17
4		18
38		24

Number of stops per mode description | count

Bus | 7031

Weekly number of hours in service - these results are for Monday only $\ensuremath{\mathsf{By}}$ route:

route_id | duration

_	•	
	+	
50		16
903		17
273		14
112		16
621	1	13
111		16
12		15
B1A	1	18
272	1	14
203	1	17
58		17
125		11

80		17
B20	- 1	17
206	- 1	16
628		15
18	- 1	15

By mode:

description | duration
----Bus | 24

Number of stops per kilometer

route_id | coverage

	-+-	
route_id	I	coverage
	-+-	
50	-	1.88251401189407
903		1.75573782228987
273		3.15135786449161
621		1.30832969908417
112		1.60732380586324
111		1.8308808571235
12		1.17311226684394
B1A		1.26292000398817
272		1.94274612879265
203		2.40711262957642
58		1.99264255058246
125		0.860030101053538
80		1.99474716579672
B20		1.70614869742109
206		2.19178082191781
628		1.65584002037957
18		1.49142431021625

Number of stops per kilometer (by mode)

description | coverage
----Bus | 1.82267408401811

Average distance between stops (by route)

route_id | routeavgstopdist

	+
50	0.531204545454545
903	0.569561119721041
273	0.317323529411765
621	0.76433333333333
112	0.622152173913043
111	0.546185185185181
12	0.85243333333333
B1A	0.791815789473683
272	0.514735294117645
203	0.415435483870969
58	0.501846153846156
125	1.16275
80	0.50131666666667
B20	0.586115384615385
206	0.456249999999999

Average distance between stops (by mode)

```
description | coverage
-----
Bus | 0.548644438832139
```

Average time between consecutive stops on a trip (in minutes)

By route:

```
route_id | avg_min_between_stops
-----
        4.56439393939393939394
289
        4.800000000000000000000
48
        4.79986962190352020861
962
        4.86111111111111111111
        4.82142857142857142857
B11
        4.86842105263157894737
        4.82758620689655172414
B16
131
        4.72953216374269005848
254
        4.750000000000000000000
135
        4.67436974789915966387
275
        4.687500000000000000000
B10
        4.67708333333333333333
79
        4.82450738916256157635
        4.70588235294117647059
268
```


4 | 4.71405228758169934641

By mode:

description | avg_min_between_stops
----Bus | 4.74547519609168491380

Average weekday frequency (stops per hour)

buses_per_hour	I	route_id
9.82578397212543554007		1
12.29234199468313180688	I	10
12.06783493499152063313		100
12.0555555555555555		101
12.42156108909524654482		102
12.35992372477355792150		103
12.06451612903225806452		104
12.0666666666666666667		105
12.0666666666666666667		106
12.33932391138273491215		107
12.05555555555555555		108
12.51366828131329712378		109
12.06896551724137931034		11
12.07407407407407407407		111
12.28481240981240981241		112
12.49397877984084880637		113
12.07407407407407407407		114

By mode:

Additional indicators not calculated due to lack of road network and population data