Waste Classification:

Using Neural Networks

tri le

Why Garbage?

- 292.4 million tons generated in 2018
 146.1 million ended up in landfills
- 4.9 lbs generated per personUp 33.8% from 3.3 lbs in 1980

Global issue – land, water, air pollution
 Risk of contamination and toxins

What Can Be Done?

Motivation: Create a deep learning model environmental and waste management industries can leverage to improve recycling efforts
Waste Management & Republic Services

Goal: Identify whether an object is organic or recyclable
With high accuracy up from 67.5%

Data & Methodology

Organic vs Recyclable

25K+ Total Images

22K+ Training

2500+ Test

Various images & sizes
 Width x Height x RGB

Data & Methodology

- Image Augmentation Rescale & Resize
- Reshape Input Values $2D \rightarrow 1D$
- o Train, Validation, Test **Datasets**

Findings & Results

Model Type	Parameters	Accuracy	Loss
Non-Deep			
Learning Random	-	62.5%	-
Forests			
Non-Deep			
Learning Logistic	-	62.5%	-
Regression			
Feed Forward	3,932,401	86.4%	37.5%
Neural Net			
Convolutional	4,129,505	82.5%	56.7%
Network #1			
Convolutional	4,200,163	82.6%	40.8%
Network #2			

ActivationReLU & Sigmoid

Loss FunctionBinary Cross-Entropy

OptimizerAdam

Findings & Results

Findings & Results

Conclusion

- O Best performing model:
 Feed Forward Neural Network
 - What does this mean?
 Additional modeling required as
 CNNs are expected to perform better

Potential Future Work

- CNN Optimization
 VGG-16, Inception, ResNet
- Transfer LearningImageNet

Autoencoders, Transformers,
 Reinforcement Learning, GANs

Thank You Questions?

CNN #2
Accuracy

