Simple MFQS

PCS3732 - Laboratório de Processadores Prof: Bruno Abrantes Basseto

Integrantes:

Dênio Araujo de Almeida Francisco Cavalheiro Mariani Lucas Von Ancken Garcia

NUSP: 10309013 NUSP: 11803701

NUSP: 11257592

Agenda

- 1. Proposta do Projeto
- 2. Funcionamento do Algoritmo MFQS
- 3. Implementação dos Principais Componentes
- 4. Demonstração prática

Proposta do Projeto

Proposta do Projeto

Implementar, na placa Evaluator, um escalonador de processos com prioridades que atenda aos seguintes requisitos funcionais

- Evitar que processos de mais baixa prioridade sofram **starvation**
- Permitir que processos concedam voluntariamente tempo de execução (**yield**)
- Permitir que processos sejam finalizados e retirados de execução (halt)

O MFQS (Multi-Level Feedback Queue Scheduler) prevê a existência de múltiplas filas de processos com diferentes prioridades

- Processos de menor prioridade só poderão executar após as filas de maior prioridade terem sido esvaziadas
- Feedback: a prioridade dos processos muda dinamicamente de acordo com o comportamento deles ao longo do tempo
- Aging: Se um processo estiver aguardando muito tempo para ser executado (starvation), a prioridade deles pode ser aumentada

Com uma estrutura multinível e de feedback, MFQS busca alcançar dois principais objetivos:

- O1 Diminu mais c
 - Diminuir o tempo médio de *turnaround*: procura-se priorizar a execução de processos mais curtos e penalizar processos mais longos
- 02

Tornar o SO mais responsivo: manter a prioridade de processos que abandonam a execução em CPU para operações de I/O (processos iterativos)

Algumas regras são seguidas pelo MFQS para esses objetivos...

- Em cada fila, define-se um tempo máximo para a execução contínua de um processo em termos de número de *ticks*: quanta_limit
- O2
 Atualiza-se continuamente a quantidade de *ticks* restantes (exec_slots) do processo em execução
- Se um processo consome muito tempo de CPU ininterruptamente, ultrapassando "quanta_limit", a sua prioridade é diminuída → ajuda a evitar starvation!

Mais algumas regras...

04

Toda vez que processo deixa a execução antes do esgotamento de exec_slots, devido a uma operação I/O por exemplo, ele é retirado da frente da fila, mas sua prioridade é preservada

05

O tempo de espera dos processos (age) é atualizado a cada tick. A prioridade dele é aumentada se este tempo supera um limite pré-definido para a fila (age_limit)

Exemplo de Downgrade: Tempo de execução da thread 1 ultrapassou limite de 2 slots de tempo

- prioridade

Exemplo de Upgrade: Tempo de espera da thread 4 ultrapassou limite de 10 slots de tempo (aging)

- prioridade

Exemplo de Yield ou I/O: Caso a thread 3 seja retirada de execução da CPU antes do esgotamento do slot de tempo, ela permanece na mesma fila

+ prioridade

- prioridade

Detalhes Relevantes da Implementação

Principais Componentes

Implementação do Escalonador

Task Control Block (TCB)

Além do contexto, também são armazenados na TCB os parâmetros específicos de cada thread utilizados pelo escalonador

Implementação da Fila Multinível

Em nossa implementação do MFQS, utilizam-se 3 filas de prioridade construídas com listas duplamente ligadas. Cada nó guarda uma referência para uma TCB.

```
#define NUM_OF_QUEUES 3

typedef struct {
    queue_t* queues[NUM_OF_QUEUES];
    tcb_t* next_thread;
} multiqueue_t;
```

```
// Estrutura da tabela de TCBs
typedef struct {
   node_t* head;
   uint32_t quanta_limit;
   uint32_t age_limit;
} queue_t;
```

```
typedef struct node_t {
    tcb_t* tcb;
    struct node_t* next_node;
    struct node_t* previous_node;
} node_t;
```

Implementação do Boot

Assim que a placa Evaluator é ligada, executa-se uma função de boot responsável por criar as estruturas de fila e inicializar as threads a serem executadas

O1 As estruturas TCB e da fila multinível são criadas dinamicamente com uso da função *malloc*

Pode ser criadas tanto threads que terminam a sua execução quanto threads que executam indefinidamente.

```
void boot() {
   os tcb = create tcb(0, 0, 2, 0, (uint32 t)os thread);
   tcb t* user tcb1 = create tcb(1, 0, 2, 0, (uint32 t)user thread);
   tcb t* user tcb2 = create tcb(2, 0, 2, 0, (uint32 t)user thread);
   tcb t* user tcb3 = create tcb(3, 1, 4, 0, (uint32 t)user thread);
   tcb t* user tcb4 = create tcb(4, 1, 4, 0, (uint32 t)user thread);
   tcb t* user tcb5 = create tcb(5, 2, 6, 0, (uint32 t)user thread);
   tcb t* user tcb6 = create tcb(6, 2, 6, 0, (uint32 t)user thread);
   queue t *queue0 = (queue t*)malloc(sizeof(queue t));
   queue0->age limit = 5;
   queue t *queue1 = (queue t*)malloc(sizeof(queue t));
    queue1->quanta limit = 4;
   queue1->age limit = 10;
   queue t *queue2 = (queue t*)malloc(sizeof(queue t));
   queue2->quanta limit = 6;
   queue2->age limit = 21;
    queue2->head = NULL;
```

Funções Yield e Halt

Função Yield:

Permite visualizar os efeitos de uma concessão de tempo de execução antes do esgotamento do slot de tempo no MFQS, optou-se por utilizar a interrupção de botão da Evaluator para essa finalidade.

Função Halt:

De modo a permitir que uma thread em execução seja finalizada, criou-se uma chamada de sistema para esse propósito: halt(). Ela promove a retirada do nó correspondente a thread em execução da estrutura da fila multinível

Implementação do Halt

De modo a permitir que uma thread em execução seja finalizada, criou-se uma chamada de sistema para esse propósito: *halt()*

O tratamento dessa chamada de sistema envolve:

Remover nó correspondente a thread em execução da estrutura da fila multinível

Realizar um novo escalonamento e troca de contexto

Implementação do Yield

De modo a permitir a visualização dos efeitos de uma concessão de tempo de execução antes do esgotamento do slot de tempo no MFQS, optou-se por utilizar a interrupção de botão da Evaluator para essa finalidade.

Tratamento específico para interrupção de botão

02

Nesse tratamento, a thread é movida para o final da mesma fila caso ainda reste slots de execução (prioridade mantida nesse caso)

Outros Aspectos Importantes

Condição de Fila Multinível vazia:

O sistema operacional executa indeterminadamente uma thread padrão até que uma nova thread surja na fila multinível

Chamadas de Sistema Auxiliares:

De modo a permitir uma thread acesse dados de sua TCB, tornou-se necessário implementar chamadas de sistema para que o sistema operacional disponibilize essas informações.

Demonstração Prática

- Placa Evaluator-7T
 - Display de 7 segmentos exibe TID da thread

- LEDs exibem fila onde a thread está:
 - verde é a fila mais prioritária
 - amarelo é a fila intermediária
 - vermelho é a fila menos prioritária

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread X remaining_slots = a age = b cpu_time = c	-	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	-	-	-	-	-	-

t = 0

Fila 0 quanta_limit = 2	Thread 1 remaining_slots = 2 cpu_time = 0	Thread 2 remaining_slots = 2 cpu_time = 0	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 0 cpu_time = 0	Thread 4 remaining_slots = 4 age = 0 cpu_time = 0	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 0 cpu_time = 0	Thread 6 remaining_slots = 6 age = 0 cpu_time = 0	-	-	-	-

t = 1

Fila 0 quanta_limit = 2	Thread 1 remaining_slots = 1 cpu_time = 1	Thread 2 remaining_slots = 2 cpu_time = 0	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 1 cpu_time = 0	Thread 4 remaining_slots = 4 age = 1 cpu_time = 0	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 1 cpu_time = 0	Thread 6 remaining_slots = 6 age = 1 cpu_time = 0	-	-	-	-

t = 2

Fila 0 quanta_limit = 2	Thread 1 remaining_slots = 0 cpu_time = 2	Thread 2 remaining_slots = 2 cpu_time = 0	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 2 cpu_time = 0	Thread 4 remaining_slots = 4 age = 2 cpu_time = 0	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 2 cpu_time = 0	TThread 6 remaining_slots = 6 age = 2 cpu_time = 0	-	-	-	-

t = 2

Fila 0 quanta_limit = 2	Thread 2 remaining_slots = 2 cpu_time = 0	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 2 cpu_time = 0	Thread 4 remaining_slots = 4 age = 2 cpu_time = 0	Thread 1 remaining_slots = 4 age = 0 cpu_time = 2	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 2 cpu_time = 0	Thread 6 remaining_slots = 6 age = 2 cpu_time = 0	-	-	-	-

t = 3

Fila 0 quanta_limit = 2	Thread 2 remaining_slots = 1 cpu_time = 1	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 3 cpu_time = 0	Thread 4 remaining_slots = 4 age = 3 cpu_time = 0	Thread 1 remaining_slots = 4 age = 1 cpu_time = 2	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 3 cpu_time = 0	Thread 6 remaining_slots = 6 age = 3 cpu_time = 0	-	-	-	-

t = 4

t = 4

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 4 age = 0 cpu_time = 0	Thread 4 remaining_slots = 4 age = 4 cpu_time = 0	Thread 1 remaining_slots = 4 age = 2 cpu_time = 2	Thread 2 remaining_slots = 4 age = 0 cpu_time = 2	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 4 cpu_time = 0	Thread 6 remaining_slots = 6 age = 4 cpu_time = 0	-	-	-	-

t = 8

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 3 remaining_slots = 0 age = 0 cpu_time = 4	Thread 4 remaining_slots = 4 age = 8 cpu_time = 0	Thread 1 remaining_slots = 4 age = 6 cpu_time = 2	Thread 2 remaining_slots = 4 age = 4 cpu_time = 2	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 8 cpu_time = 0	Thread 6 remaining_slots = 6 age = 8 cpu_time = 0	-	-	-	-

t = 8

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 4 remaining_slots = 4 age = 0 cpu_time = 0	Thread 1 remaining_slots = 4 age = 6 cpu_time = 2	Thread 2 remaining_slots = 4 age = 4 cpu_time = 2	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 8 cpu_time = 0	Thread 6 remaining_slots = 6 age = 8 cpu_time = 0	Thread 3 remaining_slots = 6 age = 0 cpu_time = 4	-	-	-

t = 12

t = 12

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 1 remaining_slots = 4 age = 0 cpu_time = 2	Thread 2 remaining_slots = 4 age = 8 cpu_time = 2	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 12 cpu_time = 0	Thread 6 remaining_slots = 6 age = 12 cpu_time = 0	Thread 3 remaining_slots = 6 age = 4 cpu_time = 4	Thread 4 remaining_slots = 6 age = 0 cpu_time = 4	-	-

t = 15

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 1 remaining_slots = 1 age = 0 cpu_time = 5	Thread 2 remaining_slots = 4 age = 11 cpu_time = 2	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 15 cpu_time = 0	Thread 6 remaining_slots = 6 age = 15 cpu_time = 0	Thread 3 remaining_slots = 6 age = 7 cpu_time = 4	Thread 4 remaining_slots = 6 age = 3 cpu_time = 4	-	-

t = 15

Fila 0 quanta_limit = 2	Thread 2 remaining_slots = 2 age = 0 cpu_time = 2	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 1 remaining_slots = 1 age = 0 cpu_time = 5	-	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 15 cpu_time = 0	Thread 6 remaining_slots = 6 age = 15 cpu_time = 0	Thread 3 remaining_slots = 6 age = 7 cpu_time = 4	Thread 4 remaining_slots = 6 age = 3 cpu_time = 4	-	-

t = 17

Fila 0 quanta_limit = 2	Thread 2 remaining_slots = 0 age = 0 cpu_time = 4	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 1 remaining_slots = 1 age = 2 cpu_time = 5	-	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 17 cpu_time = 0	Thread 6 remaining_slots = 6 age = 17 cpu_time = 0	Thread 3 remaining_slots = 6 age = 9 cpu_time = 4	Thread 4 remaining_slots = 6 age = 5 cpu_time = 4	-	-

t = 17

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 1 remaining_slots = 1 age = 0 cpu_time = 5	Thread 2 remaining_slots = 4 age = 0 cpu_time = 4	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 17 cpu_time = 0	Thread 6 remaining_slots = 6 age = 17 cpu_time = 0	Thread 3 remaining_slots = 6 age = 9 cpu_time = 4	Thread 4 remaining_slots = 6 age = 5 cpu_time = 4	-	-

t = 18

t = 18

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 2 remaining_slots = 4 age = 0 cpu_time = 4	-	-	-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 5 remaining_slots = 6 age = 18 cpu_time = 0	Thread 6 remaining_slots = 6 age = 18 cpu_time = 0	Thread 3 remaining_slots = 6 age = 10 cpu_time = 4	Thread 4 remaining_slots = 6 age = 6 cpu_time = 4	Thread 1 remaining_slots = 6 age = 0 cpu_time = 6	-

t = 22

t = 22

Fila 0 quanta_limit = 2	-	-	-	-	-	-
Fila 1 quanta_limit = 4 aging_limit = 10	Thread 5 remaining_slots = 6 age = 0 cpu_time = 0	Thread 6 remaining_slots = 6 age = 0 cpu_time = 0		-	-	-
Fila 2 quanta_limit = 6 age_limit = 21	Thread 3 remaining_slots = 6 age = 14 cpu_time = 4	Thread 4 remaining_slots = 6 age = 10 cpu_time = 4	Thread 1 remaining_slots = 6 age = 4 cpu_time = 6	Thread 2 remaining_slots = 0 age = 0 cpu_time = 8		-