

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

Computer Engineering Department

Course Name: Microprocessor Lab Number: 10636392

Lab Report Grading Sheet

Instructor: Dr. Aladdin Al-Masri	Experiment #: 5	
Academic Year: 2022/2023	Experiment Name: ADC0809 analog-to-digital	
	conversion	
Semester: Spring 2023		

Students					
1. Mohammad Aker			2. Ahmad Ashayer		
Performed on: April 18th 2023		Submitted on: April 25th 2023			
Report's Outcomes					
ILO =() %	ILO =() %	ILO =() %	ILO =() %	ILO =() %

((, ,	, , ,	(),;
Evaluation Criterion			Grade	Points	
Abstract answers of the questions: "What did you do? How did you do it? What did you find?"			0.5		
Introduction and Theory Sufficient, clear and complete statement of objectives. In addition to Presents sufficiently the theoretical basis.		1.5			
	ntly described to en ment needed to cond	able another experiduct the experiment.		2	
Crisp explanation of	erimental results, in	n-Lab Worksheet) ults. Comparison of t cluding discussion o		4	
	narize the major fir uate specificity. Rec	ndings from the exp ommendations appr		1	
		ers applied, conter nsistent, good visual a		1	

An-Najah National University Faculty of Engineering and IT

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

Total	10		
-------	----	--	--

Abstract:

The aim of the experiment is to understand the basic principles of Analog-to-Digital Conversion (ADC) and to grasp the use of ADC0809 Converter.

To achieve that goals, first we need to start the A/D conversion by sending 0x00 to ADC0809 port address. This value sends CS and WR signals and channel addresses. Before reading the converted result from ADC0809 port address, we have to wait for the conversion to be done (write a delay code). Moreover, we want to display fraction in addition to the real number/ integer

• Introduction and theory:

ADC0809 is an 8-bit A/D Converter with 8-channel multiplexer. It uses successive-approximation conversion technique to convert analog input voltages in range 0-Vcc to 8-bit digital code. The 8-channel multiplexer can directly access any of 8-single-ended analog signals.

As shown in the figure above, a potentiometer is used as the input analog voltage of IN-0 of ADC0809 in the experiment system. Then, the program converts the analog input into digital code. Other pins of ADC0809 are connected as follows:

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

Procedure:

Before we begin the actual work, we must first study and understand the entire procedure, as well as the 8255 IC's setup. We must also be aware that the 8255 IC has a specific configuration code as shown in Figure 1, which it will be output for A and C and B ports.

Port Address

Register	Address
Control word register	OFF2BH
PORT A	0FF28H
PORT B	0FF29H
PORT C	0FF2AH

Figure 1: 8255 Control Word Configuration and ports Addresses.

And based on Figure 1, GA mode = 00, PA=0, PC=0, GB mode = 0, and PB = 0, so we will have 10000000 for the 8255 Config Reg which equals 80 in hex.

An-Najah National University Faculty of Engineering and IT

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

• The code

CODE SEGMENT
ASSUME CS:CODE
ORG 2000H
; CODE INITIALIZATIONS ARE WRITTEN HERE
START:
; YOUR CODE IS WRITTEN HERE
mov dx,0FF2BH
mov al,80h
out dx,al
main:
;to start convertion
mov dx,8000h
mov al,0
out dx,al
;read value of analog
mov dx,8000h
in al,dx
mov cx,0ffh
d:

An-Najah National University Faculty of Engineering and IT

loop d1

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

loop d	
;convert value	
mov bl,51	
mov ah,0	
div bl	
mov ch,ah; save fraction value	
mov ah,0	
mov bx,offset numbers1	
xlat ; value in al	
push ax	
mov dx,0ff29h	
mov al,0efh	
out dx,al	
pop ax	
;display integer value	
mov dx,0ff28h	
out dx,al	
push cx	
mov cx,0ffh	
d1:	

An-Najah National University Faculty of Engineering and IT

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

pop cx
;display fraction
mov al,ch
mov ah,0
mov bl,10
mul bl
mov bl 51
mov bl,51
div bl
push ax
mov dx,0ff29h
mov al,0f7h
out dx,al
pop ax
mov dx,0ff28h
mov bx,offset numbers2
mov ah,0
xlat
out dx,al
jmp main
numbers1 db 40h,79h,24h,030h,19h,12h

numbers2 db 0c0h,0f9h,0a4h,0b0h,99h,92h,83h,0f8h,80h,98h

جامعة النجاح الوطنية كلية الهندسة وتكنولوجيا

END START

CODE ENDS

Experimental Results & Discussion:

After doing the experiment and debugging the assembly code the results was 100% as we wanted with no errors at all. While we changing the value of the input at the ADC the output was starting from 0.0 V and ending with 5 V at our wanted 7-segment displays.

Since the input at the ADC was a 0-5V analog signal, and the output was a discrete 8-bit number (0-255) and we were able to display the number at the 7-segment displays on the kit, then we have successfully converted an analog signal to a digital signal by using the ADC0809 on the kit.

These images represent the results we obtained:

Conclusions:

The conclusion of the ADC experiment using assembly language would be that the experiment was successful in converting the analog signal from the potentiometer to a digital value using the ADC module. The digital value was then displayed on the 7-segment display using assembly language code.

Additionally, the experiment showed that the code was able to correctly print the decimal fraction successfully.

Overall, the experiment demonstrated the functionality of the ADC module and the ability to manipulate the digital value in assembly language to achieve a desired outcome.