brms

Estadística bayesiana al alcance de todos

David Hervás Marín y Victoria Fornés Ferrer Plataforma de Data Science, Bioestadística y Bioinformática. IIS La Fe bioestadistica@iislafe.es

IX Jornadas de Usuarios de R, Granada 2017

Paradigma bayesiano vs. frecuentista

Estimación de parámetros

Con un 95% de confianza, el intervalo contiene el verdadero valor del parámetro de la población

5.00 Value 5.25

4.75

Existe una probabilidad de 0.95 de que el intervalo contenga el valor del parámetro de la población

Importancia de las priors

Softwares disponibles

Hastings (Gibbs sampling)

WINBUGS

Metropolis-Hastings (Gibbs sampling)

STAN

Hamiltonian Monte Carlo (No-U-Turn Sampler)

INLA

Integrated
Nested
Laplace
Approximation

Código Stan

```
#Alternativa bayesiana a la función lm
sink("lmbayes.stan")
cat("
data {
  int N: //the number of observations
  int K; //the number of columns in the model matrix
  real y[N]; //the response
  matrix[N,K] X; //the model matrix
parameters {
  vector[K] beta; //the regression parameters
  real sigma; //the standard deviation
transformed parameters {
  vector[N] linpred:
  linpred = X*beta;
}
model {
  beta[1] ~ uniform(-500, 500);
  for(i in 2:K)
//prior for the slopes following Gelman 2008
    beta[i] \sim uniform(-50, 50);
  y ~ normal(linpred, sigma);
sink()
#load libraries
library(rstan); library(coda)
#the model
X <- model.matrix(~ hp + disp + gear + am, data=mtcars)</pre>
y <- mtcars$mpg
m_norm<-stan(file="lmbayes.stan",data = list(N=dim(mtcars)[1],
             K=6,y=y,X=X), pars = c("beta", "sigma")); m_norm
round(coef(mod1),2)
```


Código Stan vs brms

```
#Alternativa bayesiana a la función lm
sink("lmbayes.stan")
cat("
data {
  int N: //the number of observations
  int K; //the number of columns in the model matrix
  real y[N]; //the response
  matrix[N,K] X; //the model matrix
parameters {
  vector[K] beta; //the regression parameters
  real sigma; //the standard deviation
transformed parameters {
  vector[N] linpred:
  linpred = X*beta;
}
model {
  beta[1] ~ uniform(-500, 500);
  for(i in 2:K)
//prior for the slopes following Gelman 2008
    beta[i] \sim uniform(-50, 50);
  v ~ normal(linpred, sigma);
sink()
#load libraries
library(rstan); library(coda)
#the model
X <- model.matrix(~ hp + disp + gear + am, data=mtcars)</pre>
y <- mtcars$mpg
m_norm<-stan(file="lmbayes.stan",data = list(N=dim(mtcars)[1],</pre>
             K=6,y=y,X=X), pars = c("beta","sigma")); m_norm
round(coef(mod1),2)
```


brms

brms es un paquete creado por Paul-Christian Bürkner (University of Münster) para el ajuste de modelos bayesianos que da soporte a cualquier tipo de modelo:

Linear models

Robusts linear models

Logistic regression

Categorical models

Count data models

Survival

Ordinal regression

Zero-inflated and hurdle models

Generalized additive models

Non-linear models

La sintaxis es la misma que la del paquete lme4:

```
brm(form = y \sim x1 + x2 + x3 + (1|id), data, family = gaussian(), prior = NULL, chains = 4, iter = 2000, ...)
```

Let's practice!!

David Hervás Marín
bioestadistica@iislafe.es
Victoria Fornés Ferrer

apoyo bioestadistica@iislafe.es

Plataforma de Data Science, Bioestadística y Bioinformática. IIS La Fe

IX Jornadas de Usuarios de R, Granada 2017

https://github.com/David-Hervas/9JRes

https://cran.r-project.org/bin/windows/Rtools/