Example on Multiple Linear Regression

Use multiple linear regression to fit the following table of data:

	x_1	1	2	3	4	5
	x_2	4	3	2	1	0
	у	18	16	16	12	10

Compute coefficients and the error of estimate.

Solution:

$$y = f(x_1, x_2) = a_1 + a_2x_1 + a_3x_2$$

Then, the sum of square of errors is given by:

$$Q = \sum_{i=1}^{n} \{y_i - f(x_1, x_2) = \}^2 = \sum_{i=1}^{n} \{y_i - (a_1 + a_2x_1 + a_3x_2)\}^2$$

Differentiation above equation w. r. t. a1, a2, a3 and equating them to zero, we will get the condition for minimum error.

$$\frac{dq}{da_1} = -2\sum \{y_i - (a_1 + a_2x_1 + a_3x_2)\} = 0$$

$$a_1 n + a_2\sum x_{1i} + a_3\sum x_{2i} = \sum y_i$$

$$\frac{dq}{da_2} = -2\sum \{y_i - (a_1 + a_2 x_{1i} + a_3 x_{2i}) x_{1i}\} = 0$$

$$a_1 \sum x_{1i} + a_2 \sum x_{2i}^2 + a_3 \sum x_{1i} x_{2i} = \sum x_{1i} y_i$$

$$\frac{dq}{da_3} = -2\sum \{y_i - (a_1 + a_2x_i + cz_i)z_i\} = 0$$

$$a_1 \sum x_{2i} + a_2 \sum x_{1i}x_{2i} + a_3 \sum x_{2i}^2 = \sum x_{2i}y_i$$

SO the simultaneous equations are:

$$a_{1} n + a_{2} \sum x_{1i} + a_{3} \sum x_{2i} = \sum y_{i}$$

$$a_{1} \sum x_{1i} + a_{2} \sum x_{1i}^{2} + a_{3} \sum x_{1i} x_{2i} = \sum x_{1i} y_{i}$$

$$a_{1} \sum x_{2i} + a_{2} \sum x_{1i} x_{2i} + a_{3} \sum x_{2i}^{2} = \sum x_{2i} y_{i}$$

x_1	x_2	у	x_{1}^{2}	x_2^2	x_1x_2	x_1y	x_2y
1	4	18	1	16	4	18	72
2	3	16	4	9	6	32	48
3	2	16	9	4	6	48	32
4	1	12	16	1	4	48	12
5	0	10	25	0	0	50	0
∑15	∑10	∑72	∑55	∑30	∑20	∑196	∑164

So, three simultaneous equations will be:

$$5a_1 + 15a_2 + 10a_3 = 72$$
 (i)
 $15a_1 + 55a_2 + 20a_3 = 196$ (ii)
 $10a_1 + 20a_2 + 30a_3 = 164$ (iii)

On solving equations using Gauss Elimination we can get the values of unknowns.

$$a_1 = 20.4$$

$$a_2 = -2$$

$$a_3 = 0$$

Thus the regression function is: $y = 20.4 - 2x_1$