MOP Reference Manual 0.1.0

Michael Carley m.j.carley@bath.ac.uk

Contents

MOP File Index			
	1.1	MOP File List	1
2 MOP File Documentation		P File Documentation	3
	2.1	mop.c File Reference	3

Chapter 1

MOP File Index

1	1	M	OP	File	List	1
•		IVI	\ / /	rie		1

ere is a list of all documented files with brief descriptions:							
mop.c	3						

2 MOP File Index

Chapter 2

MOP File Documentation

2.1 mop.c File Reference

Functions

- gint mop_number_of_terms (gint dim, gint order)
- mop_polynomial * mop_polynomial_alloc (gint np, gint dim, gint order)
- gint mop_polynomial_free (mop_polynomial *p)
- mop_polynomial_workspace * mop_polynomial_workspace_alloc (gint np, gint dim, gint order)
- gint mop_polynomial_workspace_free (mop_polynomial_workspace *w)
- gint mop_polynomial_set_points (mop_polynomial *p, gdouble *x, gdouble *w, gint n)
- gint mop_polynomial_write (mop_polynomial *p, FILE *f)
- gint **mop_polynomial_basis_power** (mop_polynomial *p, gint order, gdouble tol, mop_polynomial_workspace *w)
- gint **mop_polynomial_basis_points** (mop_polynomial *p, gint order, gdouble tol, mop_polynomial_workspace *w)
- gint mop_polynomial_make (mop_polynomial *p, mop_polynomial_workspace *w)
- gint mop_polynomial_write_latex (mop_polynomial *p, FILE *f)
- gint mop_polynomial_normalize (mop_polynomial *p, mop_polynomial_workspace *w)
- gint mop_polynomial_eval (mop_polynomial *p, gdouble *x, gdouble *P)
- gint mop_polynomial_eval_base (mop_polynomial *p, gdouble *P)
- gint **mop_polynomial_transform** (mop_polynomial *p, gdouble *f, gint n, gdouble *c, mop_polynomial_workspace *w)
- gint mop_interpolate (mop_polynomial *p, gdouble *c, gint n, gdouble *x, gdouble *f)
- gint **mop_interpolation_weights** (mop_polynomial *p, gdouble *x, gdouble *v, mop_polynomial_workspace *w)
- gint mop_polynomial_differentiate (mop_polynomial *p, gdouble *x, gint *d, gdouble *P)
- gint **mop_differentiation_weights** (mop_polynomial *p, gdouble *x, gint *d, gdouble *v, mop_polynomial_workspace *w)

2.1.1 Detailed Description

Author:

Michael Carley

Date:

Wed Nov 14 17:53:17 2007

2.1.2 Function Documentation

```
gint mop_differentiation_weights (mop_polynomial *p, gdouble *x, gint *d, gdouble *v, mop_polynomial_workspace *w)
```

Compute the weights for direct differentiation at a point, based on values at the base points of a system of orthogonal polynomials, so that $\partial^{d_1+d_2+\cdots}f(\mathbf{x})/\partial x_1^{d_1}x_2^{d_2}\ldots\approx\sum v_if_i$. Remember to use moppolynomial_index to map base points to real points.

Parameters:

```
p a mop_polynomial;
```

- x interpolation point;
- d array of derivative orders;
- v differentiation weights;
- w a suitably sized mop_polynomial_workspace.

Returns:

0 on success.

```
gint mop_interpolate (mop_polynomial *p, gdouble *c, gint n, gdouble *x, gdouble *f)
```

Evaluate a function expanded in orthogonal polynomials, $f \approx \sum_i c_i P_i(\mathbf{x})$.

Parameters:

```
p mop_polynomial for the expansion;
c coefficients of the expansion, from mop_polynomial_transform (p. 8);
n number of function values, as in mop_polynomial_transform (p. 8);
```

 \boldsymbol{x} coordinates of evaluation point;

f value(s) of function(s).

Returns:

0 on success.

```
gint mop_interpolation_weights (mop_polynomial *p, gdouble *x, gdouble *x, mop_polynomial_workspace *w)
```

Compute the weights for direct interpolation at a point, based on values at the base points of a system of orthogonal polynomials, so that $f(\mathbf{x}) \approx \sum v_i f_i$. Remember to use mop_polynomial_index to map base points to real points.

Parameters:

```
p a mop_polynomial;
```

- x interpolation point;
- v interpolation weights;
- w a suitably sized mop polynomial workspace.

Returns:

0 on success.

gint mop_number_of_terms (gint dim, gint order)

The number of monomials required for a multi-variable polynomial of a given order.

Parameters:

```
dim dimension of system;order order of polynomial.
```

Returns:

number of terms in general polynomial of order order in dim dimensions.

mop_polynomial* mop_polynomial_alloc (gint np, gint dim, gint order)

Allocate a mop_polynomial.

Parameters:

```
np (maximum) number of points in basis;dim dimension of system;order maximum order of polynomial to be generated.
```

Returns:

pointer to new mop_polynomial.

```
gint mop_polynomial_basis_points (mop_polynomial * p, gint order, gdouble tol, mop_polynomial_workspace * w)
```

Generate the basis for a mop_polynomial by selecting sufficient points to match the number of monomial powers supplied.

Parameters:

```
    p a mop_polynomial, which should have been initialized by a call to mop_polynomial_set_points (p. 8);
    order maximum order of monomial to employed;
    tol tolerance to be used in determining rank of basis matrix;
    w suitably sized mop_polynomial_workspace.
```

Returns:

0 on success

```
gint mop_polynomial_basis_power (mop_polynomial * p, gint order, gdouble tol, mop_polynomial_workspace * w)
```

Generate the basis for a mop_polynomial by selecting sufficient monomial powers to match the number of points in the mop_polynomial, using the method of Xu, Yuan, 2004, 'On discrete orthogonal polynomials of several variables', Advances in Applied Mathematics, 33:615–632, doi:10.1016/j.aam.2004.03.002.

6 MOP File Documentation

Parameters:

```
p a mop_polynomial, which should have been initialized by a call to mop_polynomial_set_points (p. 8);
```

order maximum order of monomial to employed;

tol tolerance to be used in determining rank of basis matrix;

w suitably sized mop polynomial workspace.

Returns:

0 on success

gint mop_polynomial_differentiate (mop_polynomial *p, gdouble *x, gint *d, gdouble *P)

Evaluate derivatives of a mop_polynomial at a point x.

Parameters:

- p mop_polynomial to evaluate;
- x coordinates of evaluation point;
- **d** orders of differentiation for each dimension;
- P array containing values of p at x.

Returns:

0 on success.

gint mop_polynomial_eval (mop_polynomial *p, gdouble *x, gdouble *P)

Evaluate a mop_polynomial at a point x.

Parameters:

- p mop_polynomial to evaluate;
- \boldsymbol{x} coordinates of evaluation point;
- P array containing values of p at x.

Returns:

0 on success.

gint mop_polynomial_eval_base (mop_polynomial *p, gdouble *P)

Evaluate a mop_polynomial at its base points. Note that the base points used are those in the index list of p and they are used in the order in that list. To connect a given value of orthogonal polynomial to a particular base point, use mop_polynomial_index.

Parameters:

p mop_polynomial to evaluate;

P array of p evaluated at its base points so that $P_i(x_i)$ is P[j*mop_polynomial_nterms(p)+i].

Returns:

0 on success.

gint mop_polynomial_free (mop_polynomial * p)

Free a mop_polynomial and associated memory

Parameters:

p mop_polynomial to free.

Returns:

0 on success.

gint mop_polynomial_make (mop_polynomial *p, mop_polynomial_workspace *w)

Generate the discrete orthogonal polynomials associated with *p*, using the method of Xu, Yuan, 2004, 'On discrete orthogonal polynomials of several variables', Advances in Applied Mathematics, 33:615–632, doi:10.1016/j.aam.2004.03.002.

Parameters:

```
p a mop_polynomial, which should have been initialized by a call to mop_polynomial_basis_power(p. 5) or mop_polynomial_basis_points (p. 5);
```

w a suitably sized mop_polynomial_workspace, generated by mop_polynomial_workspace_alloc (p. 8).

Returns:

0 on success.

gint mop_polynomial_normalize (mop_polynomial * p, mop_polynomial_workspace * w)

Scale the coefficients of a mop_polynomial to give unit inner product, $\sum_i P_i^2(x_i)w_i \equiv 1$.

Parameters:

```
p mop_polynomial to normalize;
```

w a mop_polynomial_workspace of appropriate size.

Returns:

0 on success.

8 MOP File Documentation

```
gint mop_polynomial_set_points (mop_polynomial *p, gdouble *x, gdouble *w, gint n)
```

Set points and weights to be used in generating sets of orthogonal polynomials. The data are copied into p so the arrays can be reused.

Parameters:

```
p a mop_polynomial of appropriate size;
```

- x array of points of the same dimension as p;
- w array of weights, one for each x;
- *n* number of points.

Returns:

0 on success.

```
gint mop_polynomial_transform (mop_polynomial *p, gdouble *f, gint n, gdouble *c, mop_polynomial_workspace *w)
```

Calculate the coefficients of an expansion of a function f in the polynomial p.

Parameters:

```
p mop_polynomial for the expansion;
```

f value(s) of function(s) at base points of p;

n number of values at each base point;

- **c** coefficients of expansion, $f \approx \sum_i c_i P_i(\mathbf{x})$;
- w a mop_polynomial_workspace of appropriate size.

Returns:

0 on success.

```
mop_polynomial_workspace* mop_polynomial_workspace_alloc (gint np, gint dim, gint order)
```

Allocate a mop_polynomial_workspace for use in generating orthogonal polynomials.

Parameters:

```
np (maximum) number of points in basis;
```

dim dimension of system;

order maximum order of polynomial to be generated.

Returns:

pointer to new mop_polynomial_workspace.

```
gint mop_polynomial_workspace_free (mop_polynomial_workspace * w)
Free a mop_polynomial_workspace and associated memory
```

Parameters:

```
w mop_polynomial_workspace to free.
```

Returns:

0 on success.

```
gint mop_polynomial_write (mop_polynomial * p, FILE * f)
```

Write a mop_polynomial to a file.

Parameters:

```
p mop_polynomial to write;f file pointer.
```

Returns:

0 on success.

```
gint mop_polynomial_write_latex (mop_polynomial *p, FILE *f)
```

Write a mop_polynomial as a fragment of LaTeX code.

Parameters:

```
p mop_polynomial to write;f file pointer to write to.
```

Returns:

0 on success.