Introduction to Algorithms

Greedy: Interval Scheduling / Partitioning

Interval Scheduling

Interval Scheduling

- Job j starts at s (j) and finishes at f (j).
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

Main question:

- What order?
- Does it give the Optimum answer?
- Why?

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s_i.

[Earliest finish time] Consider jobs in ascending order of finish time f_j.

[Shortest interval] Consider jobs in ascending order of interval length f_j - s_j .

[Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f(1) \le f(2) \le \ldots \le f(n). A \leftarrow \emptyset for j = 1 to n \ \{ if (job j compatible with A) A \leftarrow A \cup \{j\} } return A
```

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s(j) \ge f(j^*)^*$.

Greedy Alg: Example

Correctness

Theorem: Greedy algorithm is optimal.

Pf: (technique: "Greedy stays ahead")

Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some optimal solution in order.

We show $f(i_r) \le f(j_r)$ for all r, by induction on r.

Base Case: i1 chosen to have min finish time, so $f(i_1) \le f(j_1)$.

IH: $f(i_r) \le f(j_r)$ for some r

IS: Since $f(i_r) \le f(j_r) \le s(j_{r+1})$, j_{r+1} is among the candidates considered by greedy when it picked i_{r+1} , & it picks min finish, so $f(i_{r+1}) \le f(j_{r+1})$

Observe that we must have $k \ge m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}

Interval Partitioning Technique: Structural

Interval Partitioning

Lecture j starts at s(j) and finishes at f(j).

Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are simpler.

A Better Schedule

This one uses only 3 classrooms

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = $3 \Rightarrow$ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Implementation: Exercise!

Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Pf (exploit structural property).

Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time $s(j) + \epsilon$, i.e. depth \geq d

"OPT Observation" ⇒ all schedules use ≥ depth classrooms, so d = depth and greedy is optimal •

16

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph G = (V, E) with real-valued edge weights c_e , an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Applications

Network design:

telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems:

traveling salesperson problem, Steiner tree

Indirect applications:

- Graph clustering
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network

Cuts

In a graph G = (V, E) a cut is a bipartition of V into sets S, V - S for some $S \subseteq V$. We show it by (S, V - S)

An edge $e = \{u, v\}$ is in the cut (S, V - S) if exactly one of u,v is in S.

Properties of the OPT

Simplifying assumption: All edge costs ce are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST

Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)

Cut Property: Proof

Simplifying assumption: All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the T* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^* .

Adding e to T* creates a cycle C in T*.

There is a path from u to v in $T^* \Rightarrow$ there exists another edge, say f, that leaves S.

 $T = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since Ce < Cf, $cost(T) < cost(T^*)$.

This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs ce are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)

Suppose f belongs to T*.

Deleting f from T* cuts T* into two connected components.

There exists another edge, say e, that is in the cycle and connects the components.

 $T = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since Ce < Cf, $cost(T) < cost(T^*)$.

This is a contradiction.

