2ª parte. Prova com consulta. Duração: 90m. Cotação 14 valores.

Exame Época Normal

Nome do estudante	 Ν°	
wille up estudante.	 17	

A consulta permitida inclui slides das aulas teóricas, livros e outros materiais impressos! Anotações são permitidas apenas nestes materiais! Não são permitidas folhas manuscritas avulsas de qualquer tipo ou acesso à Internet (tablets, portáteis, etc). Telemóveis deverão permanecer **DESLIGADOS** durante a duração do exame. Deve responder às questões 1+2 e 3+4 em folhas separadas. Não são esclarecidas dúvidas durante o exame (se necessário, indique os pressupostos que assumiu).

- 1. [4 valores] Considere que está a viajar de canoa num rio e que existem n postos de aluguer de canoas ao longo do caminho. Antes de iniciar a viagem, é-lhe disponibilizada, para cada $1 \le i < j \le n$, o custo $f_{i,j}$ de aluguer de uma canoa do posto i para o posto j. Estes custos são arbitrários, ou seja, é possível que $f_{1,3}$ =10 e $f_{1,4}$ =5. Considere que começa no posto de aluguer 1 e tem de terminar no posto de aluguer n (usando canoas alugadas). O seu objetivo é minimizar o custo total do aluguer.
 - a) [2 valores] Indique qual a fórmula de recorrência m(i), em que m(i) devolve o custo de aluguer óptimo entre o ponto de aluguer i e o ponto de aluguer n, e que segmenta este problema em sub-problemas de resolução recorrente.

```
Resolução: m(i) = \begin{cases} 0, & i = n \\ \min_{j=i+1,\dots,n} \left( f_{i,j} + m(j) \right), 1 \le i < n \end{cases}
```

b) [2 valores] Usando programação dinâmica, elabore o algoritmo que obtém a solução óptima, indicando a ordem de complexidade temporal e espacial do mesmo.

```
Resolução:
```

Algoritmo em pseudo-código (cálculo de m(i) da direita para a esquerda):

```
m[n] = 0;
for (int i = n-1; i >= 1; i--) {
    m[i] = f[i][n];
    for (int j = i+1; j < n; j++)
        m[i] = min(m[i], m[j] + f[i][j]);
}</pre>
```

return m[1];

Complexidade temporal: $O(n^2)$, por ter um ciclo dentro de outos, ambos com n° de iterações O(n).

Complexidade espacial: O(n) (memória auxiliar usada, sem contar com dados de entrada).

2. [3.5 valores] Considere um tabuleiro com n x m quadrículas (com n>1 e m>1), em que cada quadrícula contém um número, como nos seguintes dois exemplos (3x4) e (2x3):

0	4	3	6
7	8	6	8
2	3	1	8

0	4	6
7	8	8

2ª parte. Prova com consulta. Duração: 90m. Cotação 14 valores.

Exame Época Normal

O objetivo do jogo consiste em deslocar um peão desde o canto superior esquerdo até ao canto inferior direito, através de uma sequência de movimentos em qualquer direção (para a direita, para baixo, para cima ou para a esquerda), de forma a minimizar o somatório dos pontos correspondentes às quadrículas por onde passou (incluindo a primeira e última).

- a) [1 valor] Formule este problema como um problema de caminho mais curto em grafos, indicando o grafo correspondente ao 2º exemplo acima (2 x 3).
- b) [1.5 valores] Resolva o problema para o 2º exemplo acima utilizando o algoritmo de Dijkstra, indicando os vários passos do algoritmo.
- c) [1 valor] Suponha agora que s\u00e3o permitidos movimentos apenas para a direita e para baixo. Que algoritmo pode ser usado para resolver o problema eficientemente? Qual a sua complexidade temporal? Justifique.
- 3. [3.5 valores] Uma empresa petrolífera importa crude (petróleo em bruto), que chega em navios-tanque, nos portos $A \in B$. A empresa utiliza uma rede de oleodutos para transportar o crude de $A \in B$ até às refinarias localizadas em $G \in H$. Os números indicam as respetivas capacidades de transporte de cada arco da rede, em unidades de volume/hora.

- a) [1.5 valores] Utilize o algoritmo de Ford-Fulkerson e calcule, passo-a-passo, o fluxo máximo que é possível transportar através da rede.
- b) [1 valor] Se a refinaria em G for encerrada, e G for ligado a H, com a mesma capacidade do arco $E \rightarrow G$, qual será o fluxo máximo resultante? Justifique.
- c) [1 valor] Se o arco D→C, na rede original, for obstruído, passando a suportar apenas a metade da sua capacidade, qual será o fluxo máximo resultante? Justifique.
- **4.** [3 valores] Um rally envolve um conjunto de n troços, em que cada troço i tem um ponto de partida s_i e um ponto de chegada t_i pré-definidos. Os organizadores querem decidir qual a melhor sequência por que devem ser realizados os vários troços, por forma a minimizar a distância total de ligação entre os troços (isto é, entre o ponto de chegada de um troço e o ponto de partida do troço seguinte). Podem existir no entanto

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2° Ano

EICO110 | CONCEPÇÃO E ANÁLISE DE ALGORITMOS | 2017-2018 - 2° SEMESTRE

2ª parte. Prova com consulta. Duração: 90m. Cotação 14 valores.

Exame Época Normal

algumas restrições de ordenação, na forma de pares (i, j), significando que o troço i tem de decorrer sempre antes do troço j. São conhecidas as distâncias mínimas (inteiras) entre todos os pontos envolvidos.

- a) [1 valor] Reformule este problema como um problema de decisão. Formalize o problema.
- b) [2 valores] É possível resolver este problema em tempo polinomial (função de n)? Justifique.

<u>Sugestão:</u> Caso necessário, pode utilizar as definições de problemas NP-completos abordados nas aulas.

Bom Exame!