

Dr. S. M. Moosavi

Data Sets

Mathematics for Data Science

Dr. S. M. Moosavi

smohsenmoosavi2009@gmail.com

June 23, 2024

Dr. S. M Moosavi

Data Set

The following slides are arranged (with some modifications) based on the book "Math for Data Science" by "Omar Hijab".

You can follow me on <u>Linkedin</u>. Also, for course materials such as slides and the related python codes, see this <u>Github</u> repository.

Outline

Math for Data

Dr. S. M

Data Set

Data Sets

Outline

Math for Data

Dr. S. M

Data Sets

ntroduction

Averages and

Two Dimension

Carratan Norm

Complex Numbers

Mean and Covarian

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

What is a dataset

Definition 1.1

Geometrically, a dataset is a sample of N points x_1, x_2, \dots, x_N in d-dimensional space \mathbb{R}^d . Algebraically, a dataset is an $N \times d$ matrix.

Practically speaking, the following are all representations of datasets:

 $\mathsf{matrix} = \mathsf{CSV} \; \mathsf{file} = \mathsf{spreadsheet} = \mathsf{SQL} \; \mathsf{table} = \mathsf{array} = \mathsf{dataframe}$

Definition 1.2

Each point $x=(t_1,t_2,\cdots,t_d)$ in the dataset is a sample or an example, and the components t_1,t_2,\cdots,t_d of a sample point x are its features or attributes. As such, d-dimensional space \mathbb{R}^d is feature space.

Definition 1.3

Sometimes one of the features is separated out as the label. In this case, the dataset is a labelled dataset.

Math for Data

Dr. S. M.

Moosavi

Data Sets

Spaces

Fwo Dimensions

Complex Numbers

Mean and Covarian

ris dataset

The *Iris dataset* contains 150 examples of four features of Iris flowers, and there are three classes of Irises, *Setosa*, *Versicolor* and *Virginica*, with 50 samples from each class.

Math for Data Moosavi

The MNIST dataset consists of 60,000 images of hand-written digits. There are 10 classes of images, corresponding to each digit $0, 1, \dots, 9$. We seek to compress the images while preserving as much as possible of the images' characteristics.

Each image is a grayscale 28×28 pixel image. Since $28^2 = 784$, each image is a point in d=784 dimensions. Here there are N=60000samples and d = 784 features.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1															
2	۲	٦	ス	8	ð	2	7	2	γ	2	2	2	ላ	2	ス
3	۹)	3	3	3	3	3	3	გ	ŋ	3	\mathfrak{V}	3	3	3	3
4	4	٤	y	4	ታ	4	ን	#	4	4	4	9	ゞ	4	4
5	5	5	৸	5	5	5	5	5	5	5	S	4	5	3	5
6	G	Q	6	و	B	9	9	ø	V	6	6	ق	w	6	6
7	7	7	7	7	7	7	7	~	7	7	^	ø	7	7	7
8	8	8	8	8	8	8	8	8	8	8	Ø	8	8	8	8
9	૧	9	9	9	9	8	9	٩	P	9	9	9	9	9	9

Moosavi

Averages and Vector Spaces Two Dimensions Complex Numbers

Exercises

Exercise 1.1

Use sklearn to download Iris dataset.

Exercise 1.2

- From keras read the MNIST dataset.
- Let (train_X, train_y), (test_X, test_y) = mnist.load_data()
- Let pixels = train_X[1].
- Do for loops over i and j in range(28) and use scatter to plot points at location (i,j) with size given by pixels[i,j], then show the following image.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions Complex Numbers Mean and Covarian

ntroduction

Suppose we have a population of things (people, tables, numbers, vectors, images, etc.) and we have a sample of size N from this population:

$$1 = [x_1, x_2, \dots, x_N]$$

The total population is the *population* or the *sample space*.

Example 1.1

The sample space consists of all real numbers and we take ${\cal N}=5$ samples from

$$1 = [3.95, 3.20, 3.10, 5.55, 6.93]$$

Example 1.2

The sample space consists of all integers and we take ${\cal N}=5$ samples from

$$1 = [35, -32, -8, 45, -8]$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions

ntroduction

Example 1.3

The sample space consists of all Python strings and we take ${\cal N}=5$ samples from

```
1 = ['a2e?','#%T','7y5,','kkk>><</','[[)*+']
```

Example 1.4

The sample space consists of all HTML colors and we take ${\cal N}=5$ samples from

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions

Let 1 be a list as above. The goal is to compute the sample *average* or *mean* of the list, which is

$$mean = average = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

In the Example (1.1), the average is

$$\frac{3.95 + 3.20 + 3.10 + 5.55 + 6.93}{5} = 4.546.$$

Example 1.5

```
import numpy as np

dataset = np.array([3.95, 3.20, 3.10, 5.55, 6.93])
print(np.mean(dataset))

output: 4.546
```

In the Example (1.2), the average is $\frac{32}{5}$. In the Example (1.3), while we can add strings, we can't divide them by 5, so the average is undefined. Similarly for colors: the average is undefined.

Dr. S. M Moosavi

Data Sets Introduction Averages and Vector Spaces

Two Dimensions
Complex Numbers
Mean and Covarian

Vector space

A sample space or population V is called a $vector\ space$ if, roughly speaking, one can compute means or averages in V. In this case, we call the members of the population "vectors".

Definition 1.4 (Vector space)

Let V be a set. V is a vector space (over $\mathbb R$) if for every $u,v,w\in V$ and $r,s\in \mathbb R$:

- 1 vectors can be added (and the sum v + w is back in V);
- 2 vector addition is commutative v + w = w + v
- 3 vector addition is associative u + (v + w) = (u + v) + w;
- 4 there is a zero vector 0 (0 + v = v);
- **5** vectors v have negatives (or opposites) -v (v + (-v) = 0);
- 5 vectors can be multiplied by real numbers (and the product v is back in V);
- 7 multiplication is distributive over addition (r+s)v = rv + sv and r(u+v) = ru + rv;
- 8 1v = v and 0v = 0;
- r(sv) = (rs)v.

Math for Data

Dr. S. M.

Moosavi

Introduction

Averages and Vector
Spaces

Two Dimensions

Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

Centered dataset

Definition 1.5 (Centered Versus Non-Centered)

If x_1, x_2, \cdots, x_N is a dataset of points with mean m and

$$v_1 = x_1 - m, v_2 = x_2 - m, \dots, v_N = x_N - m,$$

then v_1, v_2, \cdots, v_N is a centered dataset of vectors where its mean is zero.

Dr. S. M Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covarianc

Some notes

- When we work with vector spaces, numbers are referred to as *scalars*.
- When we multiply a vector v by a scalar r to get the scaled vector rv, we call it scalar multiplication.
- ullet The set of all real numbers $\mathbb R$ is a vector space.
- ullet The set of all integers $\mathbb Z$ is not a vector space.
- ullet The set of all rational numbers $\mathbb Q$ is a vector space.
- The set of all Python strings is not a vector space.
- Usually, we can't take sample means from a population, we instead take the sample mean of a statistic associated to the population. A statistic is an assignment of a number f(item) to each item in the population. For example, the human population on Earth is not a vector space (they can't be added), but their heights is a vector space (heights can be added). For the Python strings, a statistic might be the length of the strings. For the HTML colors, a statistic is the HTML code of the color.

Statisti

Math for Data

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

In general, a statistic need not be a number. A statistic can be anything that "behaves like a number". For example, f(item) can be a vector or a matrix. More generally, a statistic's values may be anything that lives in a vector space V.

Math for Data

Dr. S. M.

Moosavi

Data Sets Introduction Averages and V Spaces Two Dimension

artesian plane

The *cartesian plane* \mathbb{R}^2 , also called 2-dimensional real space is a vector space.

For $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$ and $t\in\mathbb{R}$ define

- $\mathbf{v}_1 + \mathbf{v}_2 = (x_1 + x_2, y_1 + y_2)$ (Addition).
- $\mathbf{0} = (0,0)$ (Zero).
- $t\mathbf{v}_1 = (tx_1, ty_1)$ (Scaling).
- $-\mathbf{v}_1 = (-1)\mathbf{v}_1$ (Negative).
- $\mathbf{v}_1 \mathbf{v}_2 = \mathbf{v}_1 + (-\mathbf{v}_2) = (x_1 x_2, y_1 y_2)$ (Subtraction).

15 / 43

Operations

Math for Data

Dr. S. M

Data Set

Introduction
Averages and Vector

Spaces Two Dimensions

Complex Numbers

2d example

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction

Two Dimensions
Complex Numbers

```
import numpy as np
   v1 = (1.2)
4 v2 = (3,4)
   print(v1 + v2 == (1+3,2+4)) # returns False
6
   v1 = [1,2]
   v2 = [3.4]
9
   print(v1 + v2 == [1+3,2+4]) # returns False
10
11
   v1 = np.array([1,2])
12
   v2 = np.array([3,4])
13
   print(v1 + v2 == np.array([1+3,2+4]))
14
   # returns [ True True]
15
   print(3*v1 == np.array([3,6]))
16
   # returns [ True True]
17
   print(-v1 == np.array([-1,-2]))
18
   # returns [ True True]
19
   print(v1 - v2 == np.array([1-3,2-4]))
20
   # returns [ True True]
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and Ver

Two Dimensions
Complex Numbers

2d example

For the two-dimensional dataset

$$\mathbf{x}_1 = (1, 2), \mathbf{x}_2 = (3, 4), \mathbf{x}_3 = (-2, 11), \mathbf{x}_4 = (0, 66),$$

or, equivalently,

$$\mathbf{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ -2 & 11 \\ 0 & 66 \end{pmatrix},$$

the average is

$$\frac{(1,2) + (3,4) + (-2,11) + (0,66)}{4} = (0.5, 20.75).$$

```
import numpy as np
dataset = np.array([[1,2], [3,4], [-2,11], [0,66]])
print(np.mean(dataset, axis=0))
# returns [ 0.5 , 20.75]
```


Dr. S. M.

Data Sets
Introduction
Averages and V

Two Dimensions

Complex Numbers Mean and Covarian

2d example

Example 1.8

Generate a 2 dimensional dataset of random points and their mean

```
import numpy as np
   from numpy.random import random as rd
   import matplotlib.pyplot as plt
   N = 20
   dataset = np.array([[rd(), rd()] for _ in range(N)])
6
   mean = np.mean(dataset,axis=0)
   plt.grid()
8
   X, Y = dataset[:,0], dataset[:,1]
   plt.scatter(X,Y)
10
   plt.scatter(*mean)
11
   plt.annotate('$m$', xy=mean+0.01)
12
   plt.show()
                                1.0
                                0.8
```


Dr. S. M. Moosavi

Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers

Magnitude

Definition 1.6 (Distance Formula)

If $\mathbf{v}_1=(x_1,y_1)$ and $\mathbf{v}_2=(x_2,y_2)$, then the distance between \mathbf{v}_1 and \mathbf{v}_2 is

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

The distance of ${\bf v}=(x,y)$ to the origin ${\bf 0}=(0,0)$ is its magnitude or norm or length

$$r = |\mathbf{v}| = |\mathbf{v} - \mathbf{0}| = \sqrt{x^2 + y^2}.$$

Example 1.9

For $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$

$$|\mathbf{v}_1| = \sqrt{1^2 + 2^2} = \sqrt{5} \simeq 2.236,$$

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(1-3)^2 + (2-4)^2} = \sqrt{4+4} = \sqrt{8} \simeq 2.828.$$

```
1  import numpy as np
2  
3  v1 = np.array([1,2])
4  v2 = np.array([3,4])
5  print(np.linalg.norm(v1)) #returns 2.23606797749979
6  print(np.linalg.norm(v1-v2)) #returns 2.
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vec
Spaces
Two Dimensions
Complex Number
Mean and Covaria

Polar representation

In terms of r and θ , the polar representation of (x,y) is

$$x = r\cos\theta, \quad y = r\sin\theta.$$

The *unit circle* consists of the vectors which are distance 1 from the origin $\mathbf{0}$. When \mathbf{v} is on the unit circle, the magnitude of \mathbf{v} is 1, and we say \mathbf{v} is a *unit vector*. In this case, the line formed by the scalings of \mathbf{v} intersects the unit circle at $\pm \mathbf{v}$.

When **v** is a unit vector, then r = 1 and $\mathbf{v} = (x, y) = (\cos \theta, \sin \theta)$.

Dr. S. M.

Data Sets
Introduction
Averages and V

Two Dimensions
Complex Numbers
Mean and Covarian

Polar representation

By the distance formula, a vector $\mathbf{v} = (x, y)$ is a unit vector when

$$x^2 + y^2 = 1.$$

More generally, any circle with $\mathit{center}\ (a,b)$ and radius r consists of vectors $\mathbf{v}=(x,y)$ satisfying

$$(x-a)^2 + (y-b)^2 = r^2.$$

Let R be a point on the unit circle, and let t>0. The scaled point tR is on the circle with center (0,0) and radius t. Moreover, if Q is any point, Q+tR is on the circle with center Q and radius t. It is easy to check that $|t\mathbf{v}|=|t||\mathbf{v}|$ for any real number t and vector \mathbf{v} .

From this, if a vector \mathbf{v} is unit and r > 0, then $r\mathbf{v}$ has magnitude r. If \mathbf{v} is any vector not equal to the zero vector, then $r = |\mathbf{v}|$ is positive, and

$$\left|\frac{1}{r}\mathbf{v}\right| = \frac{1}{r}|\mathbf{v}| = \frac{1}{r}r = 1$$

so \mathbf{v}/r is a unit vector.

Math for Data

Dr. S. M.

Moosavi

Introduction
Averages and Vec
Spaces
Two Dimensions

Two Dimensions
Complex Numbers
Mean and Covarian

nner product

Definition 1.7

Let $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$. The inner product or the dot product of \mathbf{v}_1 and \mathbf{v}_2 is given algebraically as

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1 x_2 + y_1 y_2.$$

From the geometric view, we have:

Theorem 1.1 (Dot Product Identity)

$$x_1x_2 + y_1y_2 = \mathbf{v}_1 \cdot \mathbf{v}_2 = |\mathbf{v}_1||\mathbf{v}_2|\cos\theta,$$

where θ is the angle between \mathbf{v}_1 and \mathbf{v}_1 .

Exercise 1.3

Prove the "Dot Product Identity", Theorem (1.1). Hint: Use Pythagoras' theorem for general triangles.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vec

Two Dimensions
Complex Numbers

The angle between two vectors

In Python, the dot product is given by numpy.dot and as a consequence of the dot product identity, we have the code for the angle between two vectors:

$$\theta_{\mathbf{v}_1,\mathbf{v}_2} = \arccos\left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1||\mathbf{v}_2|}\right).$$

Example 1.10

Find the angle between the vectors $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$.

```
import numpy as np

def angle(u,v):
    a = np.dot(u,v)
    b = np.dot(u,u)
    c = np.dot(v,v)
    theta = np.arccos(a / np.sqrt(b*c))
    return np.degrees(theta)

v1 = np.array([1,2])
v2 = np.array([3,4])
print(angle(v1,v2)) #returns 10.304846468766044 in degree
```


Dr. S. M. Moosavi

Data Sets
Introduction
Averages and

Two Dimensions
Complex Numbers
Mean and Covarian

Cauchy-Schwarz Inequality

Recall that $-1 \le \cos \theta \le 1$. Using the dot product identity, we obtain the important inequality:

Theorem 1.2 (Cauchy-Schwarz Inequality)

If u and v are any two vectors, then

$$-|u||v| \le u \cdot v \le |u||v|.$$

Exercise 1.4

Prove the "Cauchy-Schwarz Inequality".

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Ve

Two Dimensions
Complex Numbers
Mean and Covaria

2d linear equations system

Consider the homogeneous system

$$\begin{cases}
ax + by = 0 \\
cx + dy = 0
\end{cases}$$
(1.1)

and let A be the 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \tag{1.2}$$

(x,y)=(-b,a) is a solution of the first equation in (1.1). If we want this to be a solution of the second equation as well, we must have cx+dy=ad-bc=0.

Definition 1.8 (Determinant)

The determinant of A is

$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

2d linear equations system

Dr. S. M.

Data Sets
Introduction

Two Dimensions
Complex Numbers
Mean and Covarian

Theorem 1.3 (Homogeneous System)

When $\det(A)=0$, the homogeneous system (1.1) has a nonzero solution, and all solutions are scalar multiples of (x,y)=(-b,a). When $\det(A)\neq 0$, the only solution is (x,y)=(0,0).

For the inhomogeneous case

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$
 (1.3)

we have

Theorem 1.4 (Inhomogeneous System)

When $det(A) \neq 0$, the inhomogeneous system (1.3) has the unique solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} de - bf \\ af - ce \end{pmatrix}.$$

When det(A) = 0, (1.3) has a solution iff ce = af and de = bf.

2d linear equations syster

Math for Data

Dr. S. M Moosavi

Data Sets
Introduction

Spaces
Two Dimensions

Complex Numbers
Mean and Covaria

When $a^2 + b^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} ae \\ be \end{pmatrix}.$$

When $c^2 + d^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{c^2 + d^2} \begin{pmatrix} cf \\ df \end{pmatrix}.$$

Any other solution differs from these solutions by a scalar multiple of the homogeneous solution (x,y)=(-b,a).

Exercise 1.5

Prove the Theorems (1.3) and (1.4).

Math for Data

Dr. S. M.

Moosavi

Introduction
Averages and Ver
Spaces
Two Dimensions

Two Dimensions

Complex Numbers

Mean and Covarian

Complex numbers

Roughly speaking, the set of all *complex numbers* is the set of all points in \mathbb{R}^2 with different multiplication rule.

Definition 1.9 (Complex numbers)

The complex numbers, \mathbb{C} , is the set

$$\mathbb{C} = \{(x, y) \in \mathbb{R}^2\}$$

with operations

- Addition: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
- Scalar Multiplication: t(x, y) = (tx, ty)
- Multiplication: $(x_1, y_1)(x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1)$.

Then, in \mathbb{C} , we have

- zero: 0 = (0, 0).
- opposite or additive inverse: -(x,y) = (-x,-y).
- one: 1 = (1, 0).

Dr. S. M Moosavi

Data S

Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers

Example

Example 1.11

- $\bullet (1,2) + (3,4) = (4,6).$
- \bullet (0,0) + (1,2) = (1,2).
- 3(1,2) = (3,6).
- (1,0)(1,2) = (1-0,2+0) = (1,2).
- (1,2)(3,4) = (3-8,4+6) = (-5,10).
- \bullet (x,0) + (y,0) = (x+y,0).
- (x,0)(y,0) = (xy,0).

Note. By the last two examples, we see that complex numbers with 0 as their second component act like real numbers in addition and multiplication. So, from now on, we set x = (x, 0).

- \bullet 0 = (0,0).
- 1 = (1, 0).
- \bullet -1 = (-1,0).

Dr. S. M Moosavi

Data Sets Introduction Averages and V Spaces Two Dimension

Imaginary number

Definition 1.10 (Imaginary number)

$$i = (0, 1).$$

Note. Python uses the symbol j for imaginary number.

Theorem 1.5

For each $z=(x,y)\in\mathbb{C}$, we can write

$$z = x + iy.$$

We call x as the real part of z, and y the imaginary part of z.

$$x = Re(z), \quad y = Im(z).$$

Proof.
$$x + iy = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0 - 0, 0 + y) = (x, y).$$

Theorem 1.6

$$i^2 = -1$$

Proof.
$$i^2 = (0,1)(0,1) = (0-1,0+0) = (-1,0) = -1.$$

Example

Math for Data

Dr. S. M Moosavi

Data S

Introduction
Averages and Ve
Spaces
Two Dimensions

Complex Numbers

Mean and Covarian

Example 1.13

In complex numbers:

- $\bullet \ \sqrt{-1} = i.$
- $\sqrt{-4} = 2i$.

•
$$(1,2)(3,4) = (1+2i)(3+4i)$$

= $3+4i+6i+8i^2$
= $3+10i-8$
= $-5+10i$
= $(-5,10)$.

•
$$(1,2)^3 = (1+2i)^3$$

= $(1)^3 + 3(1)^2(2i) + 3(1)(2i)^2 + (2i)^3$
= $1 + 6i + 12i^2 + 8i^3$
= $1 + 6i - 12 - 8i$
= $-11 - 2i$
= $-(11,2)$.

Dr. S. M Moosavi

Data S

Introduction
Averages and Verses
Spaces

Complex Number

Conjugate

Definition 1.11 (Conjugate)

For $z = (x, y) \in \mathbb{C}$, the conjugate is

$$\bar{z} = (x, -y) = x - iy \in \mathbb{C}.$$

Some properties.

- $z + \bar{z} = 2Re(z)$, $z \bar{z} = 2iIm(z)$.
- $z\bar{z} = Re(z)^2 + Im(z)^2$,

$$\Rightarrow |z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{z\overline{z}}$$
$$\Rightarrow |z|^2 = z\overline{z}.$$

Example 1.14

For $z = (4, -3) \in \mathbb{C}$:

- $\bar{z} = (4,3) = 4 + 3i$
- $z + \bar{z} = 2 \times 4 = 8$, $z \bar{z} = 2i \times (-3) = -6i$.
- $z\bar{z} = (4)^2 + (-3)^2 = 16 + 9 = 25 \Rightarrow |z| = \sqrt{25} = 5.$
- $z^2 = (4-3i)^2 = 7-24i.$
- $|z|^2 = 25$.

Inverse

Math for Data

Dr. S. M. Moosavi

Data Se

Averages and Vector Spaces Two Dimensions Complex Numbers

Theorem 1.7

For a non-zero $z \in \mathbb{C}$, the inverse of z is

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}.$$

Proof. Firstly, if z=(x,y) then $\frac{1}{z}\in\mathbb{C}$, because,

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) \in \mathbb{C}.$$

Secondly,

$$zz^{-1} = (x+iy)\left(\frac{x-iy}{x^2+y^2}\right) = \frac{x^2+y^2}{x^2+y^2} = 1.$$

Corollary 1.1 (Division)

For $z_1 \in \mathbb{C}$ and $0 \neq z_2 \in \mathbb{C}$

$$\frac{z_1}{z_2} = z_1 z_2^{-1}.$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers

Definitions

Definition 1.12 (Mean-squared distance)

Let x_1, x_2, \ldots, x_N be a dataset, say D, in \mathbb{R}^d , and let $x \in \mathbb{R}^d$. The mean-square distance of x to D is

$$MSD(x) = \frac{1}{N} \sum_{k=1}^{N} |x_k - x|^2.$$

Definition 1.13 (Mean)

Let x_1, x_2, \ldots, x_N be a dataset in \mathbb{R}^d . The mean or sample mean is

$$m = \bar{x}_N = \frac{1}{N} \sum_{k=1}^{N} x_k = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

Theorem 1.8 (Point of Best-fit)

The mean is the point of best-fit: The mean minimizes the mean-squared distance to the dataset.

Exercise 1.6

Prove the Theorem (1.8).

Point of Best-fit

Math for Data

Moosavi

Oata Sets
Introduction
Averages and Ve
Spaces

Mean and Covariance

```
import matplotlib.pyplot as plt
    import numpy as np
    np.random.seed(1)
    N = 20
    dataset = np.array([ [np.random.random(),np.random.random()]
                                        for _ in range(N) ])
    # Mean
    m = np.mean(dataset, axis=0)
    #Random point
10
    p = np.array([np.random.random(),np.random.random()])
11
12
    plt.grid()
13
    X, Y = dataset[:,0], dataset[:,1]
14
    plt.scatter(X,Y)
15
    for v in dataset:
      plt.plot([m[0],v[0]],[m[1],v[1]],c='green')
plt.plot([p[0],v[0]],[p[1],v[1]],c='red')
16
17
18
    plt.show()
19
20
    # Comparison of MSD of the mean and a random point
21
    MSD_m = np.sum(np.abs(dataset-m)**2)/N
22
    MSD_p = np.sum(np.abs(dataset-p)**2)/N
23
    print (MSD_m, MSD_p) # 0.160478187272121 0.5984208474157081
```


Point of Best-fi

Math for Data

Dr. S. M. Moosavi

Data Set

ntroduction Averages and Vect Spaces Ewo Dimensions

Moon and Coverien

Figure 1.1: MSD for the mean (green) versus MSD for a random point (red).

Dr. S. M Moosavi

Data Sets
Introduction
Averages and
Spaces

Mean and Covariano

ensor product

For simplicity, let u=(a,b) and v=(c,d,e) be two vectors.

Definition 1.14 (Tensor product)

The tensor product of u and v is the matrix

$$u \otimes v = \begin{pmatrix} ac & ad & ae \\ bc & bd & be \end{pmatrix} = \begin{pmatrix} cu & du & eu \end{pmatrix} = \begin{pmatrix} av \\ bv \end{pmatrix}$$

Definition 1.15 (Trace of a matrix)

The trace of a squared matrix A is the sum of the diagonal entries.

Note. For any vectors u, v and w:

•
$$v \otimes u = (u \otimes v)^t$$
.

In square case:

$$\bullet \det(u \otimes v) = 0.$$

•
$$trace(u \otimes v) = u \cdot v$$
.

•
$$trace(u \otimes u) = |u|^2$$
.

•
$$(u \otimes v)w = (v \cdot w)u$$
.

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Covariance

Let x_1, x_2, \ldots, x_N be a dataset in \mathbb{R}^d with m as its mean.

Definition 1.16 (1d Covariance)

When d = 1, the covariance q is a scalar

$$q = \frac{1}{N} \sum_{k=1}^{N} (x_k - m)^2 = MSD(m).$$

In the scalar case, the covariance is called the variance of the scalar dataset.

In general, the covariance is a symmetric $d \times d$ matrix Q. We can center the dataset as

$$v_1 = x_1 - m, v_2 = x_2 - m, \dots, v_N = x_N - m.$$

Then the *covariance matrix* is the $d \times d$ matrix Q as

$$Q = \frac{v_1 \otimes v_1 + v_2 \otimes v_2 + \ldots + v_N \otimes v_N}{N}. \tag{1.4}$$

Example

Math for Data

Dr. S. M. Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Example 1.16

Suppose ${\cal N}=5$ and

$$x_1 = (1, 2), \quad x_2 = (3, 4), \quad x_3 = (5, 6), \quad x_4 = (7, 8), \quad x_5 = (9, 10).$$

Then m = (5,6) and

$$v_1 = x_1 - m = (-4, -4), \quad v_2 = x_2 - m = (-2, -2),$$

 $v_3 = x_3 - m = (0, 0), \quad v_4 = x_4 - m = (2, 2), \quad v_5 = x_5 - m = (4, 4).$

Since

$$(\pm 4, \pm 4) \otimes (\pm 4, \pm 4) = \begin{pmatrix} 16 & 16 \\ 16 & 16 \end{pmatrix},$$
$$(\pm 2, \pm 2) \otimes (\pm 2, \pm 2) = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},$$
$$(0,0) \otimes (0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

then

$$Q = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}$$
.

Example

Math for Data

Dr. S. M

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

```
import numpy as np
   def tensor(u.v):
     return np.array([ [ a*b for b in v] for a in u ])
5
   np.random.seed(1)
   N = 20
   dataset = np.array([ [np.random.random(),np.random.
                                 random()] for _ in range(N
                                 ) 1)
   # mean
10
   m = np.mean(dataset,axis=0)
11
   # center dataset
12
   vectors = dataset - m
13
   # covariance
   Q = np.mean([ tensor(v,v) for v in vectors ],axis=0)
14
15
   print(Q)
```


Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vector

Two Dimensions
Complex Number

Standardized

Note. The covariance matrix as written in (1.4) is the *biased* covariance matrix. If the denominator is instead N-1, the matrix is the *unbiased covariance matrix*.

For datasets with large N, it doesn't matter, since N and N-1 are almost equal.

In numpy, the Python covariance constructor is

Dr. S. M Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Total variance

Definition 1.17 (Total variance)

From $trace(u \otimes u) = |u|^2$, if Q is the covariance matrix then

$$trace(Q) = \frac{1}{N} \sum_{k=1}^{N} |x_k - m|^2.$$
 (1.5)

We call (1.5) the total variance of the dataset. Thus the total variance equals MSD(m).