Name				
Vorname	_		Note	
Matrikelnummer		1	. 2	ı N
Studiengang	_	'		14
Hörsaal Reihe Platz	_ 1			
Unterschrift	_ 2			
Mit dieser Unterschrift bestätigt der/die Kandidat/-in die Richtigkeit der obigen Angabe	n 2			
	3			
Technische Universität München				
Fakultät für Mathematik	4			
Testklausur				
zur Analysis 1 für Physiker	5			
3. Februar 2014, 90 Minuten	6			
Prüfer: Prof. DrIng. R. Callies				
	7			
Hinweise	- 8			
ninweise				
Überprüfen Sie die Angabe:	9			
Es sind 9 Aufgaben auf den Seiten 1 bis 9.				
Ergebnisse ohne Rechenweg werden nicht gewertet. Ausnahme: Es wird explizit auf die Begründung verzichtet. Zum Bestehen der Klausur sind etwa 17 Punkte nötig.				
Jede Aufgabe ist in dem unmittelbar anschließenden Platz zu bearbeiten. Schreiben Sie die Ergebnisse in die eingerahmten Kästen, falls diese vorhanden sind!				
	Σ			
lur von der Aufsicht auszufüllen:	·			
lörsaal verlassen von bis		Er	stkorrektı	ır
orzeitig abgegeben um				
Bemerkungen:Nachkorre	ktur	Zv	veitkorrek	tur

Stellen Sie die folgenden komplexen Zahlen in der Form $\alpha+i\beta$ dar, mit $\alpha,\beta\in\mathbb{R}.$

a)

$$\frac{2}{1+3i} + \frac{4i}{3-i}$$

b)

$$\left(\frac{1+i}{1-i}\right)^{1000}$$

Bestimmen Sie alle komplexen Zahlen z in der Form $\alpha+i\beta$ mit $\alpha,\beta\in\mathbb{R},$ die den folgenden Bedingungen genügen:

c)

$$\operatorname{Re}(z \cdot \bar{w}) = 0, \quad w := 2 + i$$

d)

$$\frac{|z-i|}{|z+i|} = 1$$

a) Man bestimme alle $x \in \mathbb{R}$, für die gilt:

Seite 2

II

- ||x| 5| < 1
- b) Man berechne die Ableitung nach x an den Stellen, an denen die Funktion differenzierbar ist, von

$$f(x) := \cos(\sin(\cos(x^2)))$$

Aufgabe 3 (ca. 6 P)

Seite 3

II

Für $n\in\mathbb{N}$ definiert man

$$a_n := \frac{(-1)^n}{\sqrt{n+1}}, \quad b_n := -\frac{(-1)^n}{\sqrt{n}}$$

Man zeige, daß die Reihen $\sum_{n=0}^{\infty}a_n$ und $\sum_{n=1}^{\infty}b_n$ konvergieren, ihr Cauchy-Produkt aber nicht.

Aufgabe 4 (ca. 4 Punkte)

Seite 4

- - II

Ι

a) Betrachtet werde die rekursiv definierte Folge
$$\{a_n\}\subset \mathbb{R}$$
 mit

 $a_{n+1} := \frac{3+3a_n}{3+a_n}, \quad n = 1, 2, \dots, \qquad a_1 := 1.$

Unter der Annahme, daß die Folge konvergiert (diese Konvergenz muß nicht gezeigt werden), berechne man den Grenzwert $a=\lim_{n\to\infty}a_n$ und begründe die Wahl.

Grenzwert: a =

Lösung:

Begründung:

b) Man berechne den Grenzwert b der Folge $\{b_n\}_{n\in\mathbb{N}}$ für $n\to\infty$ (ohne l'Hospital) mit

$$b_n := 2n - 1 - \sqrt{4n^2 - 3n - 3}$$
.

Lösung:

 ${\it Grenzwert:} \quad b =$

Aufgabe 5 (ca. 6 P)

Seite 5

Gegeben sei für x > -3 die Funktion $f(x) := \ln \frac{(3+x)^2}{4}$.

II

a) Man zeige mit vollständiger Induktion: die k-te Ableitung von f(x) ist gegeben durch

$$f^{(k)}(x) = (-1)^{k-1} \cdot \frac{2(k-1)!}{(3+x)^k} , k \in \mathbb{N}.$$

b) Man gebe die Taylorreihe von f(x) um $x_0 = -1$ an und bestimme deren Konvergenzradius R.

Aufgabe 6 (ca. 4 P)

II

a) Gegeben sei die Reihe

$$S := \sum_{n=3}^{\infty} (-1)^n \frac{n^2}{2^n}.$$

Welche Aussage ist richtig? Bitte nur eine Antwort ankreuzen ohne Begründung.

- \square Die Reihe ist konvergent, aber nicht absolut konvergent.
- \square Die Reihe ist absolut konvergent.
- \square Die Reihe ist divergent.
- b) Gegeben sei die Folge $\{b_n\}_{n\in\mathbb{N}_0}$ und die Folge der Partialsummen $\{s_n\}_{n\in\mathbb{N}_0}$ mit

$$b_n := \left(\frac{1}{5}\right)^n, \quad s_n := \sum_{k=0}^n b_k .$$

Welche Aussage ist richtig? Bitte nur eine Antwort ankreuzen ohne Begründung.

- $\Box \quad \lim_{n \to \infty} s_n = 1.25$
- $\Box \quad \lim_{n \to \infty} s_n = 0.80$
- $\square \qquad s_n = \frac{1 \left(\frac{1}{5}\right)^{n+1}}{\frac{5}{4}}$
- c) Wie lautet der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} k^5 5^k x^k$? Begründen Sie Ihre Antwort.

A C 1	_	/		- \
Aufgabe	7 (ca.	4	P)

Seite 7

Bestimmen Sie den Wert des folgenden Integrals

$$\int_{0}^{1} \cos(\arcsin x) \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x.$$

Π

Aufgabe	8 1	(ca.	6	\mathbf{P})
Auigabe	o i	(ca.	U	ı,

- Seite 8
- I

a) Zeigen Sie, dass $\lim_{x\to 0+} (x\sin(\ln x)) = 0$ ist.

II

b) Berechnen Sie das Integral

$$\int_0^1 \sin(\ln x) \, dx \, .$$

tersuchen Sie das folgende Integral auf Konvergenz und berechnen Sie gegebenenfalls den enzwert: $\int_0^\infty e^{-5x} (3x+2) \mathrm{d}x.$	Aufgabe 9 (ca. 4 P)			Seite 9		
enzwert. $\int_0^\infty e^{-5x} (3x+2) \mathrm{d}x .$		ende Integral auf Konv	vergenz und bered	chnen Sie gegeb	enenfalls den	II
	renzwert:	$\int_{-\infty}^{\infty} e^{-5x}$	3x+2) dx			
		$\int_0^{\infty} e^{-c}$	m + 2j dx.			