Numerical Analysis – Lecture 7

5 Linear least squares

5.1 Statement of the problem

Suppose that an $m \times n$ matrix A and a vector $\mathbf{b} \in \mathbb{R}^m$ are given. The equation $A\mathbf{x} = \mathbf{b}$ has in general no solution (if m > n) or an infinity of solutions (if m < n). 'Equations' of this form occur frequently when we collect m observations (which, typically, are prone to measurement error) and wish to exploit them to form an n-variable linear model, whereby $n \ll m$. (In statistics, this is called *linear regression*.) Bearing in mind the likely presence of errors in A and \mathbf{b} , we seek $\mathbf{x} \in \mathbb{R}^n$ that minimizes the Euclidean length $||A\mathbf{x} - \mathbf{b}||$ – the *least squares problem*.

Theorem $x \in \mathbb{R}^n$ is a solution of the least squares problem iff $A^{\mathrm{T}}(Ax - b) = 0$. **Proof.** If x is a solution then it minimizes

$$f(x) := ||Ax - b||^2 = \langle Ax - b, Ax - b \rangle = x^{\mathrm{T}} A^{\mathrm{T}} Ax - 2x^{\mathrm{T}} A^{\mathrm{T}} b + b^{\mathrm{T}} b.$$

Hence $\nabla f(\boldsymbol{x}) = \boldsymbol{0}$. But $\frac{1}{2}\nabla f(\boldsymbol{x}) = A^{\mathrm{T}}A\boldsymbol{x} - A^{\mathrm{T}}\boldsymbol{b}$, hence $A^{\mathrm{T}}(A\boldsymbol{x} - \boldsymbol{b}) = \boldsymbol{0}$. Conversely, suppose that $A^{\mathrm{T}}(A\boldsymbol{x} - \boldsymbol{b}) = \boldsymbol{0}$ and let $\boldsymbol{u} \in \mathbb{R}^n$. Hence, letting $\boldsymbol{y} = \boldsymbol{u} - \boldsymbol{x}$,

$$||A\boldsymbol{u} - \boldsymbol{b}||^2 = \langle A\boldsymbol{x} + A\boldsymbol{y} - \boldsymbol{b}, A\boldsymbol{x} + A\boldsymbol{y} - \boldsymbol{b} \rangle = \langle A\boldsymbol{x} - \boldsymbol{b}, A\boldsymbol{x} - \boldsymbol{b} \rangle + 2\boldsymbol{y}^{\mathrm{T}}A^{\mathrm{T}}(A\boldsymbol{x} - \boldsymbol{b}) + \langle A\boldsymbol{y}, A\boldsymbol{y} \rangle = ||A\boldsymbol{x} - \boldsymbol{b}||^2 + ||A\boldsymbol{y}||^2 \ge ||A\boldsymbol{x} - \boldsymbol{b}||^2$$

and x is indeed optimal.

Corollary Optimality of $x \Leftrightarrow Ax - b$ is orthogonal to all columns of A.

5.2 Normal equations

One way of finding optimal x is by solving the $n \times n$ linear system $A^{T}Ax = A^{T}b$ – the normal equations. This approach is popular in many applications. However, there are three disadvantages. Firstly, $A^{T}A$ might be singular, secondly sparse A might be replaced by a dense $A^{T}A$ and, finally, forming $A^{T}A$ might lead to loss of accuracy. Thus, suppose that our computer works in the IEEE arithmetic standard (≈ 15 significant digits) and let

$$A = \left[\begin{array}{cc} 10^8 & -10^8 \\ 1 & 1 \end{array} \right] \qquad \Longrightarrow \qquad A^{\mathrm{T}}A = \left[\begin{array}{cc} 10^{16} + 1 & -10^{16} + 1 \\ -10^{16} + 1 & 10^{16} + 1 \end{array} \right] \approx 10^{16} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right].$$

Given $\mathbf{b} = [0, 2]^{\mathrm{T}}$ the solution of $A\mathbf{x} = \mathbf{b}$ is $[1, 1]^{\mathrm{T}}$, as can be easily found by Gaussian elimination. However, our computer 'believes' that $A^{\mathrm{T}}A$ is singular!

5.3 QR and least squares

Lemma Let A be any $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$. The vector $\mathbf{x} \in \mathbb{R}^n$ minimizes $||A\mathbf{x} - \mathbf{b}||$ iff it minimizes $||\Omega A\mathbf{x} - \Omega \mathbf{b}||$ for an arbitrary $m \times m$ orthogonal matrix Ω .

Proof. Follows at once from the identity

$$\|\Omega A \boldsymbol{x} - \Omega \boldsymbol{b}\|^2 = (\Omega A \boldsymbol{x} - \Omega \boldsymbol{b})^{\mathrm{T}} (\Omega A \boldsymbol{x} - \Omega \boldsymbol{b}) = (A \boldsymbol{x} - \boldsymbol{b})^{\mathrm{T}} \Omega^{\mathrm{T}} \Omega (A \boldsymbol{x} - \boldsymbol{b}) = \|A \boldsymbol{x} - \boldsymbol{b}\|^2.$$

An irrelevant, yet important remark The property that orthogonal matrices leave the Euclidean distance intact is called *isometry* and it has many important ramifications throughout mathematics and mathematical physics.

Method of solution Suppose that A = QR, a QR factorization with R in a standard form. Because of the lemma, we let $\Omega := Q^{\mathrm{T}}$, hence seek \boldsymbol{x} that minimizes $\|R\boldsymbol{x} - Q^{\mathrm{T}}\boldsymbol{b}\|$. In general (m > n) many rows of R consist of zeros. Suppose for simplicity that rank $R = \operatorname{rank} A = n$. Then the bottom m - n rows of R are zero. Therefore we find \boldsymbol{x} by solving the (nonsingular) linear system given by the first n equations of $R\boldsymbol{x} = Q^{\mathrm{T}}\boldsymbol{b}$. Similar (although more complicated) algorithm applies when $\operatorname{rank} R \leq n - 1$. Note, recalling our former remark, that we don't require Q explicitly and need to evaluate only $Q^{\mathrm{T}}\boldsymbol{b}$.

6 Polynomial interpolation

6.1 The interpolation problem

Given n+1 distinct real points x_0, x_1, \ldots, x_n and real numbers f_0, f_1, \ldots, f_n , we seek a function $p: \mathbb{R} \to \mathbb{R}$ such that $p(x_i) = f_i, i = 0, 1, \ldots, n$. Such a function is called an *interpolant*. We denote by $\mathbb{P}_n[x]$ the set of all real polynomials of degree at most n and observe that each $p \in \mathbb{P}_n[x]$ is uniquely defined by its n+1 coefficients. This, intuitively, justifies seeking an interpolant from $\mathbb{P}_n[x]$.

6.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n+1 unknowns to determine a polynomial interpolant, this can be accomplished more easily by using the explicit *Lagrange formula*. We claim that

$$p(x) = \sum_{k=0}^{n} f_k \prod_{\substack{\ell=0\\\ell\neq k}}^{n} \frac{x - x_{\ell}}{x_k - x_{\ell}}, \qquad x \in \mathbb{R}.$$

Note that $p \in \mathbb{P}_n[x]$, as required. We wish to show that it interpolates the data. Define $L_j(x) := \prod_{\ell=0, \ \ell\neq j}^n (x-x_\ell)/(x_j-x_\ell)$, $j=0,1,\ldots,n$ (Lagrange cardinal polynomials). It is trivial to verify that $L_j(x_j)=1$ and $L_j(x_k)=0$ for $k\neq j$, hence $p(x_j)=\sum_{k=0}^n f_k L_k(x_j)=f_j$, $j=0,1,\ldots,n$.

Uniqueness Suppose that both $p \in \mathbb{P}_n[x]$ and $q \in \mathbb{P}_n[x]$ interpolate to the same n+1 data. Then the *n*th degree polynomial p-q vanishes at n+1 distinct points. Hence it is identically zero, $p \equiv q$ and the interpolating polynomial is unique.