目录

第一部分 创作中

第一章 创作中

一阶齐次线性微分方程[3]

第二章 修改审阅中

常微分方程^[6] 一元函数的微分^[7] 积分表^[8] 质心 质心系^[13] 二体系统^[15] 受阻落体^[17] 本书编写规范^[19]

第一部分 创作中

第一章

创作中

第一章 创作中 3

一阶齐次线性微分方程

预备知识 常微分方程[6]

具有以下形式的微分方程叫做一阶线性微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = f(x) \tag{1}$$

一般地,未知函数及其各阶导数都各占一项时,方程就是**线性**的. 另外,如果 f(x) 项不出现,方程就是**齐次**的,否则就是**非齐次**的. 我们先来看以上方程对 应的齐次方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = 0 \tag{2}$$

这是一个可分离变量的方程, 分离变量得

$$\frac{\mathrm{d}y}{y} = -p(x)\,\mathrm{d}x\tag{3}$$

两边积分得

$$ln |y| = -\int p(x)dx + C$$
(4)

两边取自然指数得

$$y = \pm e^C e^{-\int p(x) \, \mathrm{d}x} \tag{5}$$

把 $\pm e^C$ 整体看做一个任意常数 C, 上式变为.

$$y = Ce^{-\int p(x) \, \mathrm{d}x} \tag{6}$$

这就是一阶线性齐次微分方程式2的通解,也叫式1的齐次解.

常数变易法

现在我们用所谓的**常数变易法**来解非齐次方程式 1. 为书写方便,式 6 中令 $y_0(x) = \exp(-\int p(x) dx)$. 假设上式中的 C 是一个函数 C(x) 而不是常数,代入式 1 得

$$C'y_0 + C[y_0' + p(x)y_0] = f(x)$$
(7)

第一章 创作中 4

由于 y₀ 是齐次解,上式方括号中求和为 0,分离变量得

$$dC = \frac{f(x)}{y_0} dx \tag{8}$$

两边积分得

$$C(x) = \int \frac{f(x)}{y_0} \, \mathrm{d}x \tag{9}$$

所以一阶线性非齐次微分方程的通解为

$$y = y_0 \int \frac{f(x)}{y_0} \, \mathrm{d}x \tag{10}$$

其中

$$y_0(x) = e^{-\int p(x) \, \mathrm{d}x} \tag{11}$$

注意待定常数包含在式 10 的不定积分中,式 11 中的不定积分产生的待定常数 在代入式 10 后可消去.

第二章 修改审阅中

常微分方程

预备知识 简谐振子[??]

作为一个引入的例子,我们首先看"简谐振子^[??]"中的**??**。一般来说,含有函数 y(x) 及其高阶导数 $y^{(n)}$,和自变量 x 的等式叫做**常微分方程**(简称微分方程¹),即

$$f(y^{(N)}, y^{(N-1)}, \dots, y, x) = 0$$
(1)

上式中的最高阶导数为 N 阶,所以可以把上式叫做 N 阶微分方程。注意方程中必须出现 $y^{(N)}$,剩下的 $y^{(N-1)},\ldots,y,x$ 可以只出现部分或不出现。所有能使微分方程成立的函数 f(x) 都是方程的解,如果能找到含有参数的函数 $f(x,C_1,\ldots,C_N)$,使所有可能的解都可以通过给 C_i 赋值来表示,那么这就是函数的**通解**。

有一些微分方程的解法是显然的,例如描述自由落体运动^[??] 的微分方程为 $d^2y/dt^2=g$ (假设 y 轴竖直向下)。要解这个方程,只需对等式两边进行两次不定积分即可得到通解为 $y=C_1+C_2t+gt^2/2$ 。一般来说,如果 N 阶微分方程具有 $y^{(N)}=f(x)$ 的形式,只需进行 N 次积分即可得到通解。

另一些方程是**可以分离变量**的,我们来看"受阻落体^[17]"这个例子。若方程可分离变量,只需先分离变量,再对等式两边求不定积分即可找到通解。

一阶线性微分方程

二阶线性微分方程

¹这里的"常"强调未知函数只有一个因变量,用于区别多元微积分中的"偏微分方程"。

一元函数的微分

预备知识 导数[??]

考察一个连续光滑的函数 y = f(x), 在 x 处函数值为 y, 若此时函数增加一个无穷小量 dx, 函数值会相应增加无穷小量 dy. 根据导数的定义[??] f'(x) = dy/dx, 我们将 dy 与 dx 的关系记为

$$dy = f'(x) dx (1)$$

这就是一元函数的**微分**. 注意一元函数的求导和微分除了表达方式不同外并无太大区别. 从形式上来看, 微分是微小变化量之间的线性关系, 而导数则强调变化率.

微分近似

严格来说,类似式 1 的微分关系式默认取极限 $\mathbf{d}x \to 0$ 才能使等号成立,但只要在一定范围 Δx 内导函数 f'(x) 的变化非常小,就可以将函数值的变化 量 $\Delta y = f(x + \Delta x) - f(x)$ 近似为

$$\Delta y \approx f'(x)\Delta x \tag{2}$$

注意在近似式中不能出现微分符号 d, 也不能使用等号.

例1 测量误差

若测得立方体的边长为a,测量的最大可能误差为 σ_a (可以假设 $\sigma_a \ll a$),估计立方体体积的最大误差 σ_V .

立方体的体积与边长的关系为 $V(a)=a^3$,根据微分近似,有

$$\sigma_V \approx V'(a)\sigma_a = 3a^2\sigma_x \tag{3}$$

积分表

预备知识 不定积分[??]

这里给出一个基本积分表和一个常用积分表,前者建议熟记.部分积分有的给出计算步骤,没有给出则是由基本初等函数的导数^[??]直接逆向得出.所有的不定积分公式都可以通过求导验证.

应用换元积分法[??],表中任何积分都可以拓展为

$$\int f(ax+b) \, \mathrm{d}x = \frac{1}{a} F(ax+b) \tag{1}$$

基本积分表

$$\int x^a \, \mathrm{d}x = \frac{1}{a+1} x^{a+1} + C \quad (a \in R, a \neq -1)$$
 (2)

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C \quad (6) \quad (3)$$

$$\int \cos x \, \mathrm{d}x = \sin x + C \tag{4}$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C \tag{5}$$

$$\int \tan x \, \mathrm{d}x = -\ln|\cos x| + C \quad (\emptyset \ 2) \tag{6}$$

$$\int \cot x \, \mathrm{d}x = \ln|\sin x| + C \quad (5) \quad (7)$$

$$\int \frac{1}{\cos^2 x} \, \mathrm{d}x = \tan x + C \tag{8}$$

$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \arctan x + C \tag{9}$$

$$\int e^x \, \mathrm{d}x = e^x + C \tag{10}$$

$$\int x e^x dx = e^x (x - 1) + C \quad (6) 7) \tag{11}$$

$$\int a^x \, \mathrm{d}x = \frac{1}{\ln a} a^x + C \quad (5) \quad 1) \tag{12}$$

常用积分表

$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x) + C \quad (64)$$
(13)

$$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x) + C \quad (5)$$
 (14)

$$\int \sec x \, \mathrm{d}x = \ln|\tan x + \sec x| + C \quad (6) \quad 10) \tag{15}$$

$$\int \ln x \, \mathrm{d}x = x \ln x - x + C \quad (\emptyset 8) \tag{16}$$

$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin(x) + C \quad (699)$$

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x = \ln\left(1 + \sqrt{1+x^2}\right) = \sinh^{-1}(x) + C \quad (\emptyset \ 11)$$
 (18)

例1

$$\int a^x \, \mathrm{d}x \tag{19}$$

我们已经知道如何算 e^x 的积分,而 $a = e^{\ln a}$,再根据式 1 就有

$$\int e^{\ln(a)x} dx = \frac{1}{\ln a} e^{\ln(a)x} + C = \frac{1}{\ln a} a^x + C$$
 (20)

例 2

$$\int \tan x \, \mathrm{d}x \tag{21}$$

这个积分用第一类换元积分法 (??[??])

$$\int f[u(x)]u'(x) dx = F[u(x)] + C$$
(22)

首先 $\tan x = \sin x/\cos x$,令 $u(x) = \cos x$,则 $\sin x = -u'(x)$,对比得 f(x) = -1/x 其原函数为 $F(x) = -\ln |x|$,所以

$$\int \tan x \, dx = \int f[u(x)]u'(x) \, dx = F[u(x)] + C = -\ln|\cos x| + C$$
 (23)

例 3

类似例 2, $\cot x = \cos x/\sin x$, 令 $u(x) = \sin x$, 则 $\cos x = u'(x)$, 对比得 f(x) = 1/x, 原函数为 $F(x) = \ln |x|$ (式 3),所以

$$\int \cot x \, \mathrm{d}x = F[u(x)] + C = \ln|\sin x| + C \tag{24}$$

例 4

$$\int \sin^2 x \, \mathrm{d}x \tag{25}$$

用降幂公式 $(??^{[??]})$ 和不定积分的线性 $(??^{[??]})$ 把上式变为常数的积分和 $\cos 2x$ 的积分,再利用式 4 和式 1 计算后者即可

$$\int \sin^2 x \, dx = \int \frac{1}{2} \, dx - \frac{1}{2} \int \cos 2x \, dx$$

$$= \frac{x}{2} - \frac{1}{4} \sin(2x) = \frac{1}{2} (x - \sin x \cos x) + C$$
(26)

例 5

$$\int \cos^2(x) \, \mathrm{d}x \tag{27}$$

与例 4 类似,用三角恒等式 $\cos^2(x) = [1 + \cos(2x)]/2$ 得

$$\int \cos^2 x \, dx = \int \frac{1}{2} \, dx + \frac{1}{2} \int \cos(2x) \, dx$$

$$= \frac{x}{2} + \frac{1}{4} \sin(2x) = \frac{1}{2} (x + \sin x \cos x) + C$$
(28)

例 6

$$\int \frac{1}{x} \, \mathrm{d}x \tag{29}$$

首先在区间 $(0,+\infty)$ 内,由于 $\ln x$ 的导数是 1/x,所以积分结果为 $\ln x + C$ 。现在再来考虑区间 $(-\infty,0)$,注意 $\ln x$ 在这里没有定义,不妨看看 $\ln(-x)$,由复合函数求导,其导数恰好为 1/x。所以在除去原点的实数范围内,有

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C \tag{30}$$

事实上,由于1/x在x=0没有定义,更广义的原函数可以取

$$\int \frac{1}{x} dx = \begin{cases} \ln x + C_1 & (x > 0) \\ \ln(-x) + C_2 & (x < 0) \end{cases}$$
 (31)

其中 C_1 和 C_2 是两个不相同的待定常数。

例 7

$$\int x e^x dx \tag{32}$$

使用用分部积分??[??]

$$\int F(x)g(x) dx = F(x)G(x) - \int f(x)G(x) dx$$
(33)

令 F(x)=x, 求导得 f(x)=1, 令 $g(x)=\mathrm{e}^x$, 由式 10, $G(x)=\mathrm{e}^x$. 代入分部 积分得

$$\int x e^x dx = x e^x - \int 1 \cdot e^x dx = e^x (x - 1) + C$$
(34)

例 8

$$\int \ln x \, \mathrm{d}x \tag{35}$$

方法一: 使用第二类换元法??[??]

$$\int f(x) dx = \int f[x(t)] d[x(t)] = \int f[x(t)]x'(t) dt$$
(36)

令 $^2 x = e^t$, 求导得 $x'(t) = e^t$, 换元得

$$\int \ln x \, \mathrm{d}x = \int \ln(\mathrm{e}^t) \mathrm{e}^t \, \mathrm{d}t = \int t \mathrm{e}^t \, \mathrm{d}t \tag{37}$$

由例7中的分部积分得

$$\int \ln x \, dx = e^t(t-1) + C = e^{\ln x}(\ln x - 1) + C = x(\ln x - 1) + C$$
 (38)

方法二: 直接使用分部积分法 $??^{[2?]}$, 对常数1积分, 对 $\ln x$ 求导, 得

$$\int \ln x \, \mathrm{d}x = x \ln x - \int x \cdot \frac{1}{x} \, \mathrm{d}x = x \ln x - x + C \tag{39}$$

 $^{^{2}}$ 注意被积函数只在 x > 0 区间有定义,否则使用 $x = e^{t}$ 将会自动忽略 x < 0 的情况.

例 9

$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x \tag{40}$$

使用第二类换元法??^[??],令 $x = \sin t$ 得

$$\int \frac{1}{\sqrt{1-\sin^2 t}} \, \mathrm{d}(\sin t) = \int \mathrm{d}t = t + C = \arcsin x + C \tag{41}$$

例 10

$$\int \sec x \, \mathrm{d}x \tag{42}$$

分子分母同时乘以 $\sec x + \tan x$,可以发现分子是分母的导数。再用第一类换元积分法(??^[??]),令 $u(x) = \sec x + \tan x$,再使用式 3 即可

$$\int \sec x \, dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx = \int \frac{u'(x)}{u} \, dx = \int \frac{1}{u} \, du$$

$$= \ln|u| + C = \ln|\sec x + \tan x| + C$$
(43)

例 11

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x \tag{44}$$

使用第二类换元法 $??^{[??]}$, 令 $x = \tan t$, 再利用三角恒等式 $??^{[??]}$ 和式 3 得

$$\int \frac{1}{\sqrt{1+\tan^2 t}} d(\tan t) = \int \frac{1}{\sec t} \sec^2 t dt = \ln|\tan t + \sec t| + C \qquad (45)$$

由同一三角恒等式, $\sec t = \sqrt{1 + \tan^2 t} = \sqrt{1 + x^2}$, 所以

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x = \ln\left(x + \sqrt{1+x^2}\right) + C \tag{46}$$

注意上式中 \ln 后面的绝对值符号消失是因为 $x+\sqrt{1+x^2}\geq 0$ 恒成立。另外由 $\sinh^{-1}x$ 函数的定义可知上式又等于 $\sinh^{-1}x+C$ 。

质心 质心系

预备知识 体积分

质心的定义

对质点系,令第i个质点质量为 m_i ,位置为 \mathbf{r}_i ,总质量为 $M = \sum_i m_i$,则该质点系的**质心**定义为

$$\mathbf{r}_c = \frac{1}{M} \sum_i m_i \mathbf{r}_i \tag{1}$$

对连续质量分布,令密度关于位置的函数为 $\rho(\mathbf{r})$,总质量为密度的体积分

$$M = \int \rho(\mathbf{r}) \, \mathrm{d}V \tag{2}$$

质心定义为

$$\mathbf{r}_c = \frac{1}{M} \int \mathbf{r} \rho(\mathbf{r}) \, \mathrm{d}V \tag{3}$$

以下的讨论都对质点系进行,连续质量分布可看做由许多体积微元组成,也可看做质点系.

质心的唯一性

既然质心的定义取决于参考系(因为 \mathbf{r}_i 取决于参考系),那么不同参考系中计算出的质心是否是空间中的同一点呢?我们只需要证明,在 A 坐标系中得到的质心 \mathbf{r}_{Ac} 与 B 坐标系中得到的质心 \mathbf{r}_{Bc} 满足关系

$$\mathbf{r}_{Ac} = \mathbf{r}_{AB} + \mathbf{r}_{Bc} \tag{4}$$

首先根据定义

$$\mathbf{r}_{Ac} = \frac{1}{M} \sum_{i} m_i \mathbf{r}_{Ai} \qquad \mathbf{r}_{Bc} = \frac{1}{M} \sum_{i} m_i \mathbf{r}_{Bi}$$
 (5)

由位矢的坐标系变换, $\mathbf{r}_{Ai} = \mathbf{r}_{AB} + \mathbf{r}_{Bi}$,所以

$$\mathbf{r}_{Ac} = \frac{1}{M} \sum_{i} m_i (\mathbf{r}_{AB} + \mathbf{r}_{Bi}) = \mathbf{r}_{AB} + \frac{1}{M} \sum_{i} m_i \mathbf{r}_{Bi} = \mathbf{r}_{AB} + \mathbf{r}_{Bc}$$
 (6)

质心系

定义质点系的**质心系**为原点固定在质心上且没有转动的参考系(平动参考系). 根据质心的唯一性(式 4), 在质心系中计算质心(式 1)仍然落在原点,即

$$\sum_{i} m_{i} \mathbf{r}_{ci} = \mathbf{0} \tag{7}$$

其中 \mathbf{r}_{ci} 是质心系中质点 i 的位矢.

注意质心系并不一定是惯性系,只有当合外力为零质心做匀速直线运动,质心系才是惯性系,在非惯性系中,每个质点受惯性力.

质心系中总动量

把式7两边对时间求导,得

$$\sum_{i} m_i \mathbf{v}_{ci} = \mathbf{0} \tag{8}$$

注意到等式左边恰好为质心系中质点系的总动量, 所以我们得到质心系的一个重要特点, 质心系中总动量为零.

二体系统

预备知识 质心质心系[13]

我们现在考虑两个仅受相互作用的质点 A 和 B,它们的质量分别为 m_A 和 m_B . 由于不受系统外力,在任何惯性系中他们的质心都会做匀速直线运动.

现在定义他们的相对位矢(也叫相对坐标)为点 A 指向点 B 的矢量

$$\mathbf{R} = \mathbf{r}_B - \mathbf{r}_A \tag{1}$$

且定义相对速度和相对加速度分别为 \mathbf{R} 的导数 $\dot{\mathbf{R}}$ 和二阶导数 $\ddot{\mathbf{R}}$. 在质心系中观察,由于质心始终处于原点,两质点的位矢 \mathbf{r}_A 和 \mathbf{r}_B 满足

$$m_A \mathbf{r}_A + m_B \mathbf{r}_B = \mathbf{0} \tag{2}$$

联立式 1 和式 2 可以发现在质心系中 \mathbf{R} , \mathbf{r}_A , \mathbf{r}_B 间始终存在一一对应的关系,所以不受外力的二体系统只有三个自由度

$$\mathbf{r}_A = \frac{m_B}{m_A + m_B} \mathbf{R} \qquad \mathbf{r}_B = \frac{m_A}{m_A + m_B} \mathbf{R} \tag{3}$$

运动方程

现在令质点 A 对 B 的作用力为 \mathbf{F} (与 \mathbf{R} 同向),则由牛顿第三定律,B 对 A 有反作用力 $-\mathbf{F}$. 两质点加速度分别为(牛顿第二定律) $\mathbf{a}_A = -\mathbf{F}/m_A$, $\mathbf{a}_B = \mathbf{F}/m_B$. 所以相对加速度为

$$\ddot{\mathbf{R}} = \ddot{\mathbf{r}}_B - \ddot{\mathbf{r}}_A = \frac{m_A + m_B}{m_A m_B} \mathbf{F} \tag{4}$$

若定义两质点的约化质量为

$$\mu = \frac{m_A m_B}{m_A + m_B} \tag{5}$$

且将上式两边同乘约化质量,我们得到相对位矢的牛顿第二定律

$$\mathbf{F} = \mu \ddot{\mathbf{R}} \tag{6}$$

也就是说,在质心系中使用相对位矢,二体系统的运动规律就相当于单个质量为 μ ,位矢为 \mathbf{R} 的质点的运动规律,我们姑且将其称为**等效质点**. 而 A 对 B 的作用力可以看成原点对等效质点的有心力.

机械能守恒

再来看系统的动能. 使用式 3 把系统在质心系中的总动能用相对位矢表示得

$$E_k = \frac{1}{2}(m_A \dot{\mathbf{r}}_A^2 + m_B \dot{\mathbf{r}}_B^2) = \frac{1}{2} \frac{m_A m_B}{m_A + m_B} \dot{\mathbf{R}}^2 = \frac{1}{2} \mu \dot{\mathbf{R}}^2$$
 (7)

这恰好是等效质点动能.

若两质点间的相互作用力的大小只是二者距离 $R = |\mathbf{R}|$ 的函数,我们可以用一个标量函数 F(R) 来表示力与距离的关系,即

$$\mathbf{F}(\mathbf{R}) = F(R)\hat{\mathbf{R}} \tag{8}$$

注意 F(R) > 0 时两质点存在斥力, F(R) < 0 时存在引力.

根据"势能^[??]"中的**??**,我们可以定义势能函数 V(R) 为 F(R) 的一个负原函数.现在写出二体系统在质心系中的机械能为

$$E = \frac{1}{2}\mu\dot{\mathbf{R}}^2 + V(R) \tag{9}$$

由于系统不受外力,机械能守恒.

受阻落体

预备知识 匀加速运动[??]

在自由落体的基础上,若假设质点受到的空气阻力的大小与其速度成正 比,比例系数为 α ,那么根据牛顿第二定律 $[^{22}]$ 可以列出动力学方程(假设向下 为正方向)

$$ma = F = mg - \alpha v \tag{1}$$

考虑到加速度是速度的导数,上式变为

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{\alpha}{m}v\tag{2}$$

这是速度关于时间的函数 v(t) 与其一阶导数 $\dot{v}(t)$ 的关系式,即微分方程^[6]. 与自由落体问题不同的是,这个方程的右边含有未知函数 v(t),所以不可能直接将等式两边积分解得 v(t). 我们可以根据微分与导数的关系,将上式两边同乘 dt 并整理得

$$\frac{1}{q - \alpha v/m} \, \mathrm{d}v = \, \mathrm{d}t \tag{3}$$

这样我们就得到了v 和t 的微分[7] 关系,即每当t 增加一个微小量时,如何求v 对应增加的微小量. 注意等式左边仅含v,右边仅含t,所以这一步叫做**分离变量**,我们称式 2 为**可分离变量**的微分方程. 假设v 和t 之间的关系可以表示为

$$F(v) = G(t) \tag{4}$$

那么对等式两边微分即可得到式 3 的形式. 令 f(v) 和 g(t) 分别为 F(v) 和 G(t) 的导函数,有

$$f(v) dv = g(t) dt (5)$$

对比式 3 可得 $f(v) = 1/(g - \alpha v/m)$ 和 g(t) = 1,把二者做不定积分得原函数. 首先显然 $G(t) = t + C_1$. 对 f(v) 积分可用"积分表^[8]"中的式 1 和 式 3 得

$$F(v) = -\frac{m}{\alpha} \ln \left| g - \frac{\alpha}{m} v \right| + C_2 = -\frac{m}{\alpha} \ln \left(g - \frac{\alpha}{m} v \right) + C_2 \tag{6}$$

上式中绝对值符号可去掉是因为在式 2 中根据物理情景可知 dv/dt 始终大于零. 把两原函数代回式 4 (这时可以把 C_1 和 C_2 合并为一个待定常数 C),整理可得

$$v = \frac{m}{\alpha} \left(g - e^{-\alpha C/m} e^{-\alpha t/m} \right) \tag{7}$$

这就是微分方程式 2 的通解,可代入原微分方程以验证是否成立. 以后我们把以上这种由?? 形式求式 4 形式的步骤简称为"对方程两边积分". 由于方程阶数为 1,通解仅含有一个待定常数. 为了确定这个待定常数,我们用题目给出的初值条件,即 t=0 时 v=0,代入通解可解得 C,再把 C 代回通解得满足初始条件的特解

$$v(t) = \frac{mg}{\alpha} \left(1 - e^{-\alpha t/m} \right) \tag{8}$$

从该式可以看出,当 t=0 时,质点速度为 0,符合初始条件,而当 $t\to +\infty$ 时, $v(t)\to mg/\alpha$. 可见质点的速度会无限趋近一个最大值,而这个最大值恰好可以使阻力 αv 等于重力 mg. 利用这一条件,即使不解微分方程,也可以很快算出质点的末速度.

本书编写规范

预备知识 本书格式规范[19]

蓝色的小标题

本书使用 TeXLive2016 软件中的 XeLaTeX 进行编译. 如果 Windows 中编译卡在 eullmr.fd 上的时间较长,说明 font config 有问题,在 Windows 的控制行运行 "fc-cache -fv",重启 TeXLive,多试几次即可. TeXWork 编辑器中 Ctrl+T编译, Ctrl+单击跳转到对应的 pdf 或代码,在 pdf 中 Alt+左箭头返回上一个位置. 代码中\beq+Tab 生成公式环境,\sub+Tab 生成 subsection. Ctrl+F 进行查找,Ctrl+G 查找下一个. 菜单中的 Edit>Preference 设置默认字体为 Microsoft YaHei UI(11pt),默认编译器为 XeLaTeX,编码选择 UTF-8.

搜索文件夹内所有文档的内容用 FileSeek 软件,搜索空格用"\空格",搜索"\$"用"\\$",以此类推.对比两个文档或文件夹用 WinMerge 软件.

画图用 Adobe Illustrator 和 Autodesk Graphics,用 MathType 在图中添加公式,希腊字母粗体正体矢量用从 Symbol 字体中插入,更简单的方法是,先输入希腊字母,选中,然后在 Style 里面选 Vector-Matrix.

黑色的小标题

词条标签必须限制在 6 个字符内,必须记录在"词条标签对照表"中,如果不是超纲词条,在主文件中用 entry 命令,否则用 Entry 命令。词条的文件名和标签名相同。词条文件的首行必须注释词条的中文名,非超纲词条放在 contents 文件夹,超纲词条放在 contents 文件夹。引用词条用 upref 命令,"预备知识"用 pentry 命令,"应用实例"用 eentry 命令,拓展阅读用 rentry 命令。总文件 PhysWiki.tex 编译较慢,可以先使用 debug.tex 编译,然后再把 entry 或Entry 指令复制到 PhysWiki.tex 中。注意 PhysWiki.tex 中 entry 命令的后面可以用 newpage 命令强制换页,但为了排版紧凑不推荐这么做。

正文必须使用中文的括号, 逗号, 引号, 冒号, 分号, 问号, 感叹号, 以及全角实心的句号. 所有的标点符号前面不能有空格, 后面要有空格. 行内公

式用单个美元符号,且两边要有空格,例如 $a^2 + b^2 = c^2$,后面有标点符号的除外. 方便的办法是先全部使用中文标点,最后再把所有空心句号替换成全角实心句号.

公式的 label 必须要按照"词条标签 _eq 编号"的格式,只有需要引用的公式才加标签,编号尽量与显示的编号一致,但原则上不重复即可. 图表的标签分别把 eq 改成 fig 和 tab 即可,例题用 ex. 但凡是有 caption 命令的,label 需要紧接其后.

$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i} \quad (n 为整数)$$
 (1)

引用公式和图表都统一使用 autoref 命令,注意前面不加空格后面要加空格,例 如式 1. 如果要引用其他词条中的公式,可以引用"其他词条^[19]"的式 1 也可以用"式 1^[19]",为了方便在纸质书上使用,词条页码是不能忽略的.

公式中的空格从小到大如 abc d e,微分符号如 dx,自然对数底如 e,双重极限如

$$\lim_{\substack{\Delta x_i \to 0 \\ \Delta y_i \to 0}} \sum_{i,j} f(x_i, y_i) \Delta x_i \Delta y_j \tag{2}$$

导数和偏导尽量用 Physics 宏包里面的

$$\frac{\mathrm{d}}{\mathrm{d}x} \quad \frac{\mathrm{d}f}{\mathrm{d}x} \quad \frac{\mathrm{d}^2f}{\mathrm{d}x^2} \quad \mathrm{d}^2f/\mathrm{d}x^2 \quad \frac{\partial}{\partial x} \quad \frac{\partial f}{\partial x} \quad \frac{\partial^2f}{\partial x^2} \quad \partial^2f/\partial x^2 \tag{3}$$

复数如 u+iv,复共轭如 a^* ,行内公式如 a/b,不允许行内用立体分式. 公式中的绝对值如 |a|,矢量如 \mathbf{a} ,单位矢量如 $\hat{\mathbf{a}}$,矢量点乘如 $\mathbf{A} \cdot \mathbf{B}$ (不可省略),矢量叉乘如 $\mathbf{A} \times \mathbf{B}$. 量子力学算符如 \hat{a} , 狄拉克符号如 $\langle a|,|b\rangle,\langle a|b\rangle$. 梯度散度旋度拉普拉斯如 ∇V , $\nabla \cdot \mathbf{A}$, $\nabla \times \mathbf{A}$, $\nabla^2 V$,但最好用 ∇V , $\nabla \cdot \mathbf{A}$, $\nabla \times \mathbf{A}$, $\nabla^2 V$. 单独一个粗体的 ∇ 用 ∇ . 行列式,矩阵 \mathbf{A} ,转置 \mathbf{A}^{T} ,厄米共轭 \mathbf{A}^{T} 如

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{\mathsf{T}} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{\dagger} \tag{4}$$

行内的列矢量用行矢量的转置表示,如 $(1,2,3)^T$.

行间公式换行及对齐用 aligned 环境,或用自定义的 ali 命令

$$(a-b)^{2} = a^{2} + b^{2} - 2ab$$

$$= a^{2} + b^{2} + 2ab - 4ab$$

$$= (a+b)^{2} - 4ab$$
(5)

$$d+e+f=g$$

$$a+b=c$$
(6)

左大括号用自定义的 leftgroup 命令, 里面相当于 aligned 环境

$$\begin{cases} d+e+f=g\\ a+b=c \end{cases} \tag{7}$$

希腊字母如下

$$\alpha(a), \beta(b), \chi(c), \delta(d), \epsilon/\varepsilon(e), \phi(f), \gamma(g), \eta(h), \iota(i), \varphi(j), \kappa(k), \lambda(l), \mu(m), \\ \nu(n), o(o), \pi(p), \theta(q), \rho(r), \sigma(s), \tau(t), \upsilon(u), \varpi(v), \omega(w), \xi(x), \psi(y), \zeta(z)$$

$$(8)$$

以下是 script 字母,只有大写有效. 所谓大写 ϵ 其实是花体的 E.

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z (9) 另外,电介质常数一律用 ϵ 而不是 ϵ .

现在来引用一张图片,图片必须以 eps 以及 pdf 两种格式放在 figures 文件夹中,代码中使用 pdf 图片.图片宽度一律用 cm 为单位.在图 1 中, label 只

图 1: 例图

能放在 caption 的后面,否则编号会出错.由于图片是浮动的,避免使用"上图","下图"等词.

再来看一个表格,如表 1. 注意标签要放在 caption 后面,使用 tb 命名. 下面我们举一个例子并引用

例1 名称

在例子中, 我们的字体可以自定义, 包括公式的字号会保持与内容一致.

$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i} (n \, \text{hg } \, \text{gg})$$
 (10)

表 1: 极限 e 数值验证

x	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
$(1+x)^{1/x}$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

引用例子同样使用 autoref, 如例 1.

以下给出一段 Matlab 代码,代码必须有".m"和".tex"两个版本,放在 codes 文件夹中.

Matlab 代码

显示 Command Window 中的代码

```
>> 1.2/3.4 + (5.6+7.8)*9 -1
ans = 119.9529
>> 1/exp(1)
ans = 0.3679
>> exp(-1i*pi)+1
ans = 0
```

显示 m 文件中的代码

代码必须以.tex 文件格式放在 code 文件夹中的中,并用 input 命令导入正文。.tex 代码文件的命名与图片命名相同。禁止在正文中直接写代码。

```
11 disp('直接计算结果为')
12 format long % 显示全部小数位
13 disp((1+x)^u)
14 disp('求和结果为')
15 disp(result)
16 format short % 恢复默认显示
```

应用举例 本书格式规范[19]

拓展阅读 本书格式规范[19]