Gotoh-Algorithm

Motivation

- Obervation: In nature are a few long gaps much more likelier as lot of short gabs
- Needleman-Wunsch is ignoring this

 New scoring system: gap penalty g(x) have to subadditive:

$$g(x+y) \le g(x) + g(y)$$

- "Cheaper to insert a existing gap as to insert a new one"
- g(x) have to be affine:

$$g(x) = \alpha + \beta * x$$

- Algorithm of Smith-Waterman-Beyer is exact but needs a runtime of O(n³)
- Use a better approach instead —> Gotoh's algorithm

Gotoh's algorithm

- Works similar to Needleman-Wunsch
- Uses three matrices:
 - D: The cost for the alignment like in N-W
 - P: The cost if the alignment ends with an gap in b
 - Q: The cost if the alignment ends with an gap in a

Gotoh's algorithm

Recursion:

• First matrix D:
$$D_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j-1} + w(a_i,b_j) \\ P_{i,j} \\ Q_{i,j} \end{array} \right.$$

• Second matrix P: $P_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j} + g(1) \\ P_{i-1,j} + \beta \end{array} \right.$

• Third matrix Q:
$$Q_{i,j} = \min \left\{ \begin{array}{ll} D_{i,j-1} + g(1) \\ Q_{i,j-1} + \beta \end{array} \right.$$

Gotoh's algorithm

 $D_{0,0} = 0$

for i = 1 to n

 $D_{0,j} = g(j)$

for j = 1 to n

 $D_{i,0}=g(i)$

 $P_{i,i}$

 $P_{i,0}$ = not used

 $Q_{i,j}$

 $P_{0,j} = infinite$

 $D_{i,j}$

 $Q_{i,0} = ininite$

end

 $Q_{0,j}$ = not used

end

Example

		ϵ	Α	С
	ϵ	0	3	4
D	Α	3	0	3
	G	4	3	1
	С	5	4	3

$$w(a,b) = \begin{cases} 0, \ a = b \\ 1, \ a \neq b \end{cases}$$
 $g(k) = 2 + 1k$

$$D_{i,j} = \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) \\ P_{i,j} \\ Q_{i,j} \end{cases}$$
 $Q_{i,j} = \min \begin{cases} D_{i,j-1} + g(1) \\ Q_{i,j-1} + \beta \end{cases}$

$$P_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j} + g(1) \\ P_{i-1,j} + \beta \end{array} \right.$$

Formulas from [1]

		ϵ	Α	С
	ϵ	0	3	4
D	А	3	0	3
	G	4	3	, 1
	С	5	4	3

		ϵ	A	С
	ϵ	-	-	_
Q	Α	inf	6	3
	G	inf	7	6
	С	inf	8	7

$$D_{i,j} = D_{i-1,j-1} + w(a_i, b_j)$$

$$D_{i,j} = Q_{i,j},$$

$$D_{i,j} = P_{i,j};$$

$$D_{3,2} = 3 == D_{3-1,2-1} + w(C, C) =$$

$$3+0 = 3$$

$$D_{3,2} = 3 != P_{3,2} = 4$$

$$D_{3,2} = 3 != Q_{3,2} = 7$$

		ϵ	Α	С
	ϵ	0	3	4
D	Α	3	0	3
	G	4	3	1
	С	5	4	3

		ϵ	A	С
	ϵ	-	-	-
Q	Α	inf	6	3
	G	inf	7	6
	С	inf	8	7

$$D_{i,j} = D_{i-1,j-1} + w(a_i, b_j)$$

 $D_{i,j} = Q_{i,j},$
 $D_{i,j} = P_{i,j};$
 $D_{2,2} = 3 == D_{2-1,2-1} + w(G, A)$
 $= 3+1 = 4$
 $D_{2,2} = 3 == P_{2,2} = 3$
 $D_{2,2} = 3 != Q_{2,2} = 7$

		ϵ	Α	С
	ϵ	0	3	4
D	Α	3	0	9
	G	4	3	, 1
	С	5	4	3

	ϵ	A	С
ϵ	-	_	-
Α	inf	6	3
G	inf	7	6
С	inf	8	7

	ϵ	Α	С
ϵ	-	inf	inf
Α	-	6	7
G	_	3	6
С	-	4	4
	A	ε - A - G -	€ - infA - 6G - 3

$$P_{i,j} = P_{i-1,j} + \beta,$$

 $P_{i,j} = D_{i-1,j} + g(1)$

$$P_{2,2} = 3 != P_{2-1,2} + 1 = 6 + 1 = 7$$

 $P_{2,2} = 3 == D_{2-1,2} + g(1) = 0 + 3$

		ϵ	A	С
	ϵ	0	3	4
D	А	3	0	1-3
	G	4	3	, 1
	С	5	4	3

		ϵ	Α	С
	ϵ	-	inf	inf
Р	Α	-	6	7
	G	_	3	6
	С	-	4	4

		ϵ	Α	С
_	ϵ	_	_	-
Q	Α	inf	6	3
	G	inf	7	6
	С	inf	8	7

$$D_{i,j} = D_{i-1,j-1} + w(a_i, b_j)$$

$$D_{i,j} = Q_{i,j},$$

$$D_{i,j} = P_{i,j};$$

$$D_{1,1} = 0 == D_{1-1,1-1} + w(A, A) = 0$$

$$0+0 = 0$$

$$D_{1,1} = 0 != P_{1,1} = 6$$

$$D_{1,1} = 0 != Q_{1,1} = 6$$

		ϵ	A	С
	ϵ	0	3	4
D	Α	3	0	1-3
	G	4	3	1
	С	5	4	3

		ϵ	Α	С
Q	ϵ	-	-	_
	А	inf	6	3
	G	inf	7	6
	С	inf	8	7

		ϵ	Α	С
	ϵ	-	inf	inf
Р	А	-	6	7
	G	-	3	6
	С	<u>-</u>	4	4

$$P \uparrow \in \operatorname{tr}_{i,j}^{P} \Leftrightarrow P_{i,j} = P_{i-1,j} + \beta,$$
 $P \uparrow \in \operatorname{tr}_{i,j}^{P} \Leftrightarrow P_{i,j} = D_{i-1,j} + g(1);$
 $Q \leftarrow \in \operatorname{tr}_{i,j}^{Q} \Leftrightarrow Q_{i,j} = Q_{i,j-1} + \beta,$
 $Q \leftarrow \in \operatorname{tr}_{i,j}^{Q} \Leftrightarrow Q_{i,j} = D_{i,j-1} + g(1)$

Example - Alignment

If you want insert gaps in:

- a: Arrow to the left: gap
- b: Arrow to the up: gap

Else: use character from a respectively b

- Point: Just change the matrix.
- Iterate over the list in reverse order

List of references

 [1] Lecture "Sequence Alignment - Gap Penalties, Gotoh's Algorithm and Smith/Waterman's Local Alignment" Bioinformatics I, Prof. Backofen

URL: http://www.bioinf.uni-freiburg.de//Lehre/ Courses/2014_SS/V_Bioinformatik_1/gap-penalty-gotoh.pdf, visited: 13/11/2014