CompSci 161
Spring 2021 Lecture 06:
Divide and Conquer II:
QuickSort and Order Statistics

- QuickSort Step 1: Partition
 - 85 24 63 45 17 31 96 50
 - 1. Choose a pivot. } o()
 - 2. Place that pivot in the right spot. O(n)
 - 3. Pivot the rest of the array. o(n)

How fast is QuickSort?

- $ightharpoonup T(n) = T(lower) + T(upper) + \Theta(n)$
- ▶ If lower and upper are both size n/2?

$$T(n) = 2T(n/2) + \theta(n) \Rightarrow \theta(n|gn)$$

- ▶ What if we select a pivot uniformly at random?
- ▶ What if we could find a median in $\Theta(n)$...

Average Case Analysis of QuickSort

Suppose

- ► All permutations equally likely
- ► All *n* values are distinct (for simplicity)
- ▶ Define $S_1, S_2, ... S_n$ as sorted order.

Let $P_{i,j}$ be probability we compare S_i and S_j .

must be chosen as pivot before
$$\sum_{i,j} = \frac{\text{Hyes}}{\text{Hotal}} = \frac{2}{j-i+1}$$
The since the s

Expected number of comparisons

$$X_{i,j} = 1 \cdot R \cdot Y_{i,j} \quad \text{get compared ?}$$

$$E\left(\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i,j}\right) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E(X_{i,j})$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{i}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$< \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k} = 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k}$$

$$O(n \log n)$$

The Selection Problem

- Given a list S and numeric k
- ▶ Want: if we sorted S, what is S_k ? <
- ► Brute force:
 - ▶ Sort S in $\Theta(n \log n)$
 - Return S_k
- ► Can we do better?

Randomized Selection

Randomized Selection

- ▶ What is the worst-case running time?
- What would cause that bad time?
- Estimate the *expected* running time? Hint: on average, the pivot is the median.

$$T(n) = T(n/2) + \Theta(n)$$
 is $\Theta(n)$

Deterministic Selection

- Instead of picking x at random:
 - ▶ Divide *S* into $g = \lceil n/5 \rceil$ groups

 - Each group has 5 elements (except maybe g^{th})

 Find median of each group of 5 \rightarrow 0 (1) (ach $\times \theta$ (n)
 - Find median of those medians $\longrightarrow \top (1/5)$
 - Let x be that median.
- Let's talk about that pivot.
 - Could it be the smallest?
 - Could it be the largest?
 - How close to median is it?
- ▶ Set up a recurrence for this version of selection.

Deterministic Selection

Let's visualize: how does pivot compare to list?

Deterministic Selection

- ► How few elements *must be* smaller than pivot? $3n/p_0$
- ► How few *must be* non-smaller than pivot? 3n / 10
- ▶ How many could be in either group?

$$T(n)=T(n|s)+T(\frac{7n|n}{10})+O(n)$$
is $O(n)$