Slide Set 1 Nozioni Introduttive

Pietro Coretto

pcoretto@unisa.it

Corso di

Analisi e Visualizzazione dei Dati (Parte I)

Corso di Laurea in "Statistica per i Big Data" (L-41) Università degli Studi di Salerno

Versione: 22 febbraio 2022 (h10:14)

Pietro Coretto ©

Nozioni Introduttive

か q (P 1 / 19

Notes

Definizioni primitive

Dato

dal latino datum (dono, cosa data). È una descrizione elementare, generalmente codificata, dello stato di un oggetto fisico o astratto.

Informazione

Dal latino *informatio(-nis)* ("dare forma alla mente", "insegnare"). Si ottiene dal *significato* generato mettendo in relazione i *dati*.

Statistica

Branca della matematica (moderna) che si occupa della raccolta dei dati, e dell'estrazione dell'informazione

Informatica

Scienza che si occupa del trattamento dell'informazione mediante procedure automatizzate

Votes			
Notes			
Votes			
Votes			
Votes			
Notes			
Notes			
Notes			
Votes			
Votes			
Notes			

Popolazione

Insieme dei possibili eventi oggetto di studio. Si tratta spesso di insiemi astratti e di natura infinita. Esempi:

- insieme dei possibili colori di un pixel in una una foto digitale
- insieme dei possibili livelli del consumo nazionale
- insieme delle possibilità per il numero di esami superati da uno studente di UniSA

Campione

Un insieme finito di casi osservati dell'oggetto di studio. I dati sono la descrizione dei casi osservati, e vengono usati per estrarre informazione sulla popolazione. Esempi:

- su 4 studenti di UniSA rilevo il numero di esami superati
- misuro il consumo di beni in Italia dal 1980 ad oggi
- In una foto digitale scelgo 10 pixels e rilevo l'RGB

A Popolazione e campione non vanno confusi con l'insieme delle unità statistiche (vedi dopo)

Pietro Coretto ©

Nozioni Introduttive

か q C 3 / 19

Modello

Astrazione, mediante il linguaggio matematico, del funzionamento della popolazione.

Esempio 1: sia $C_t =$ consumo di beni nell'anno t, $Y_t =$ reddito nell'anno t, $R_t =$ risparmio nell'anno t, si consideri il modello

$$C_t = \alpha + \beta \, Y_t + \gamma R_{t-1} + \dots, +$$
altri fattori

Esempio 2: $C_t = f(Y_t, R_{t-1}, ...)$, dove f è una funziona continua con derivate parziali positive

⚠ Qualunque "preconcetto" sul funzionamento della popolazione è un modello. La sorgente di errore più comune è quello di analizzare i dati avendo un modello in mente senza saperlo.

I modelli vengono usati entro due paradigmi scientifici

- Predittivo
- Esplicativo

Notes			
Notes			

Campionamento

Metodi per decidere come scegliere i campioni in modo ottimale in funzione dell'informazione che si desidera estrarre

Inferenza

È un insieme di metodi *induttivi* attraverso i quali si usa l'informazione campionaria per *generalizzare* le caratteristiche della popolazione. L'inferenza si basa quasi sempre sulla formulazione di un *modello* (spesso anche quando non sappiamo di averne uno)

Analisi esplorativa dei dati (EDA)

Metodi numerici e grafici per estrarre informazione dai dati a prescindere dalla formalizzazione di modelli. L'EDA, nella maggior parte, dei casi precede la formalizzazione di modelli

Pietro Coretto ©

Nozioni Introduttive

ମରଙ 5 / 19

Notes

John W. Tukey (1977) "Exploratory Data Analysis", Addison-Wesley

Notes		
Notes		

Data set

Indicatori di Bilancio Imprese Italiane Settore Food & Beverage

#	INCORPORATION_DATE	STATUS	NUTS1	ROE	EMPL	ROA	CREDIT_DAYS	RISK
1	1961-01-27	Active	ITC - Northwest	3.21	26,234	1.99	46	н
2	1988-10-12	Active	ITH - Northeast	13.62	4,130	9.46	71	н
3	1983-10-17	Active	ITH - Northeast	0.32	6,842	0.02	30	М
4	1948-12-03	Active	ITC - Northwest	2.07	2,957	1.38	55	н
5	1988-02-24	Active	ITH - Northeast	3.15	5,240	1.22	42	Н
6	1982-05-04	Active	ITC - Northwest	18.35	730	8.07	45	L
7	1980-11-06	Active	ITC - Northwest	12.83	48	10.48	1	М
8	1998-11-27	Unknown	ITI - Centre	-0.36	NA	-0.23	54	L
9	1988-03-09	Active	ITH - Northeast	4.21	2,899	0.93	98	М
10	1913-12-04	Active	ITC - Northwest	9.08	3,485	1.90	95	М
11	1970-10-12	Active	ITH - Northeast	5.96	3,305	2.25	52	М
12	1998-01-29	Active	ITC - Northwest	10.35	1,895	6.40	38	Н
13	NA	liquidation	NA	NaN	18,081	-42.68	83	Н
14	1961-10-06	Active	ITC - Northwest	14.22	1,076	9.95	50	L
15	2002-01-25	Active	ITC - Northwest	10.15	1,664	7.08	36	н
16	1961-04-15	Dissolved	ITH - Northeast	6.77	2,415	1.70	67	н
17	1976-05-24	Active	ITH - Northeast	0.18	2,772	0.05	101	н
18	1951-04-10	Active	ITC - Northwest	11.64	820	8.17	56	L
19	1977-12-13	Active	ITH - Northeast	21.02	1,077	9.93	48	М
20	1991-07-18	Active	ITH - Northeast	4.21	170	0.86	70	М

Pietro Coretto (C)

Nozioni Introduttive

りQ
で 7 / 19

Unità campionarie e variabili

Unità statistica / Sample unit / Sample point

- è l'elemento reale/astratto sul quale rileviamo i dati Es: l'impresa XYZ selezionata per la rilevazione
- sia $i=1,2,\ldots,n$ un intero usato per indicizzare le unità statistiche Es: l'azienda i=10 riporta STATUS='active', ROE= 9.08, etc.

Variabili / Features

- fenomeno/caratteristica di interessse
 Es: STATUS=stato economico/giuridico dell'azienda, ROE=redditività del capitale proprio, etc
- solitamente si misurano più variabili/features su ogni unità statistica Sia X_k la k-ma variabile, per $k=1,2,\ldots,K$ Es. dati di bilancio: $X_1={\tt INCORPORATION}$ DATE, $X_2={\tt STATUS}$ $\ldots X_4={\tt ROE}$

Pietro [,]	Coretto	c)
---------------------	---------	----

Nozioni Introduttive

୬**५**℃ 8 / 19

Votes			
lotes			

Espressione di una variabile

Livello

Quando una variabile ha una rappresentazione *ordinabile*, si chiama *livello* la sua espressione

- Es: i livelli di X_4 =ROE sono -0.36, 0.18, 0.32,...
- Es: il livelli di X_8 =RISK sono L="low", M="medium", H="high"
- X_7 =CREDIT_DAYS ha un range di livelli [1, 101]

Label

Quando una variabile non ha una rappresentazione numerica, la sua espressione ha la forma di un attributo. Quest'ultimo si chiama *label*

- Es: i labels di $X_3 = \text{NUTS1}$ sono ITC-Northwest, ITH-NOrtheast, ...
- Es: i labels di X_2 =STATUS sono Active, Liquidation, ...

Pietro Coretto ©

Nozioni Introduttive

୬୧୯ 9/19

Elementi di un data set

Data set univariato

Si osserva una sola variabile, sia essa X. Tipicamente indichiamo con x_i l'espressione del livello/label di X sulla i-ma unità campionaria

Es: si rileva X="altezza in cm", x_2 =altezza espressa in cm misurata sul individuo i=2 del campione

Data set multivariato

Si misurano K variabili (X_1,X_2,\ldots,X_k) su ciascun individuo del campione. Sia x_{ik} l'espressione del livello/label della variabile X_k rilevato sull'i-ma unità campionaria

Es. Indicatori di Bilancio: si misurano K=8 variabili su n=20 imprese. In questo caso $X_1={\tt INCORPORATION}$ DATE, $X_2={\tt STATUS}$ In questo caso $x_{14,2}=$ "active" è il label dello STATUS per l'impresa i=14 nel campione

Pietro Coretto ©

Nozioni Introduttive

lotes			
lotes			

Classificazione: variabili vs espressione

Quantitative (numeriche)

I livelli sono numerici, ordinabili, ed hanno un'interpretazione "metrica". Una variabile numerica può essere

- discreta: i livelli sono numeri interi (Es: $X_7 = CREDIT_DAYS$)
- **continua**: i livelli sono numeri reali (Es: X_4 =R0E)

Ordinali

I livelli possono essere alfanumerici, e sono ordinabili, tuttavia non hanno un'interpretazione "metrica".

- Es 1: $X_8 = \mathtt{RISK}$, si puo' dire che: L precede M, che a sua volta precede H. Tuttavia possiamo dire se H M sia più o meno grande di M L? Cosa significa $2 \times \mathtt{L}$?
- Es 2: anche ricorrendo alla *codifica* { L=1, M=2, H=3}, non cambierebbe niente.

Pietro Coretto ©

Nozioni Introduttive

クQで 11 / 19

Notes

Categoriali (nominali)

I livelli possono essere alfanumerici, non sono ordinabili, e non hanno un'interpretazione "metrica".

- Es 1: $X_3 = \text{NUST1}$, si puo' dire che: ITC-Northwest precede ITH-Northeast?
- Es 2: $X_2 = \mathtt{STATUS}$ la differenza Active Dissolved avrebbe un significato?

Notes		
Notes		

Classificazione rispetto al ruolo delle unità statistiche

Cross-section

Si misura l'espressione di una o più variabili su un insieme di unità di rilevazione nello stesso instante temporale. Consentono di catturare variazioni statiche, ovvero variazioni tra unità nello stesso instante temporale.

Es: si rilevano le variabili (R_i, C_i, I_i) =(Reddito, Consumo, Investimenti) riferite all'individuo i al 2019, fissato i = 6, c₆ =consumi dell'individuo i = 6 al 2019.

Nota bene: gli indici delle unità statistiche si possono *scambiare*, senza produrre alterazione dell'informazione campionaria. Infatti, nell'esempio precedente scambiando (r_6, c_6, i_6) con $(r_{100}, c_{100}, i_{100})$, l'informazione sullo stato dell'economia al 2019 non cambierebbe

Pietro Coretto (C)

Nozioni Introduttive

Serie Storiche

Si misura l'espressione di una o più variabili su una data unità in istanti temporali successivi. Consentono di catturare variazioni dinamiche, ovvero variazioni intervenute sulla stessa unità per effetto del trascorrere del tempo.

Es: si rilevano le variabili (R_t, C_t, I_t) =(Reddito, Consumo, Investimenti) per l'economia italiana misurati nell'anno t.

Nota bene: gli indici temporali delle unità statistiche non si possono *scambiare*, altrimenti vi sarebbe la perdita di informazione campionaria. Infatti, nell'esempio precedente scambiando $(r_{1900}, c_{1900}, i_{1900})$ con $(r_{2000}, c_{2000}, i_{2000})$, l'informazione sulle trasformazioni dello stato dell'economia tra il 1900 ed il 2000 andrebbe completamente persa

Nozioni Introduttive

少 Q (~ 14 / 19

Notes				
Notes				

Serie Spaziali

Si misura l'espressione di una o più variabili su una data unità in locazioni diverse allo stesso instante temporale. Consentono di catturare variazioni spaziali, ovvero variazioni intervenute sulla stessa unità per effetto della dislocazione geografica

Es: si rilevano le variabili $(P_{\mathsf{lat,lon}}, T_{\mathsf{lat,lon}}, R_{\mathsf{lat,lon}}) = (\mathsf{Pressione}, \mathsf{Temperatura}, \mathsf{Pioggia})$, dove $P_{\mathsf{lat,lon}}$ è la pressione misurata alla longitudine=lon e latitudine=lat.

Nota bene: gli indici spaziali [nell'esempio (lat,lon)] delle unità statistiche non si possono *scambiare*, altrimenti vi sarebbe la perdita di informazione campionaria

Pietro Coretto (C)

Nozioni Introduttive

୬୧୯ 15 / 10

Notes

Serie spazio-temporali

Si misura l'espressione di una o più variabili in locazioni diverse ed in instanti temporali diversi. Consentono di catturare contemporaneamente variazioni

- spaziali, dovute alla dislocazione geografica
- dinamiche, dovute al trascorrere del tempo

Es: si rileva $P_{\rm lat,lon,t}$, ovvero è la pressione misurata alla longitudine=lon, latitudine=lat, e riferita all'istante t

Nota bene: gli indici spazio-temporali [nell'esempio (lat,lon,t)] non si possono scambiare, altrimenti vi sarebbe la perdita di informazione campionaria

Notes		

Dati panel / longitudinali

Si misura l'espressione di una o più variabili sullo stesso insieme di unità di rilevazione in istanti temporali successivi. Consentono di catturare contemporaneamente variazioni

- statiche: tra individui allo stesso istante
- dinamiche: nel tempo riferite ad uno stesso individuo

Es: si rilevano le variabili $(R_{i,t},C_{i,t},I_{i,t})$ =(Reddito, Consumo, Investimenti) misurati su n=100 individui tra il 1980 ed il 2019. $r_{6,1985}=$ reddito dell'individuo i=6 al 1985, $r_{6,2000}=$ reddito dello stesso individuo i=6 al 2000

Nota bene: lo scambio degli indici *temporali* delle unità statistiche produrrebbe una notevole perdita di informazione.

Pietro Coretto ©

Nozioni Introduttive

୬^९ (~ 17 / 19

Campionamento vs fattori di disturbo

Campioni sperimentali

Il campionamento è effettuato in condizioni piuttosto controllate, in tal modo è possibile eliminare fattori di *disturbo* per l'analisi. Questo tipo di studi è necessario quando si vogliono stabilire relazioni di causa-effetto

Es: si somministra una medicina a 10 topi sani scelti a caso, e 10 topi scelti a caso tra quelli affetti da una certa malattia. Durante il periodo di osservazione i topi sono tenuti tutti nelle stesse condizioni

Campioni osservazionali

Il campionamento è effettuato in condizioni poco controllate. Le variabili di interesse vengono misurate senza che lo sperimentatore possa interagire con le unità. Non è possibile eliminare tutti i fattori di *disturbo*. È difficile poter trovare relazioni di causa-effetto

Es: si scelgono a caso n individui e si misurano una serie di variabili di salute fisica, ed il consumo di farmaci per trattamenti cardiovascolari.

Pietro Coretto (C)

Nozioni Introduttive

୬^९ 0 18 / 19

Notes			
Votes			
Votes			
Votes			
Notes			
Votes			
Notes			

Componenti dell'EDA

- Data pre-processing: formattazione del data set Talvolta richiede abilità informatiche piuttosto sofisticate
- Caratterizzazione della distribuzione dei dati (tendenza centrale, dispersione, etc)
- Individuazione di dati contaminati (outliers, robustezza)
- Ricerca di patterns (correlazione, regressione, etc)
- Riduzione della dimensionalità (componenti principali, MDS, etc.)
- Riduzione della eterogeneità (classificazione, clustering, etc.)
- ...etc.

tro Coretto (C) Nozioni Introduttive 596 19

Notes			
Notes			