Praxisprojekt

Half-Edge Mesh für Unity3D

Erstellt von: Yannick Dittmar Studiengang: Allgemeine Informatik Matrikelnummer: 11117676

Datum der Abgabe: xx.xx.xxxx

Betreuung: Dennis Buderus

Technische Hochschule Köln Fakultät für Informatik und Ingenieurswissenschaften

1 Einleitung

In der Computergrafik werden dreidimensionale Modelle als Polygonen-Netz (Polygonal Mesh) dargestellt, um diese auf einem zweidimensionalen Bildschirm darzustellen. Die Oberfläche eines Modells wird dabei mit Hilfe von Polygonen angenähert. Häufig werden dafür Dreiecks-Netze (Triangle Mesh) verwendet, wobei die Flächen mit Dreiecken nachmodelliert werden, siehe Abbildung 1.

Ein solches Netz besteht aus den Eckpunkten der einzelnen Dreiecke, den Vertices. Diese werden durch Kanten (Edges) verbunden und bilden damit die Polygonalflächen, auch Faces genannt.

Abbildung 1: Beispiel eines Dreiecks-Polygonen-Netz, von [Wik]

2 Unity

Unity ist eine Spiele-Engine mit eingebauter Entwicklungsumgebung für 2D-, 3D- und VR-Spiele/-Simulationen. Die Engine kommt mit einem eigenen Editor, in welchem diverse Szenarien erstellt und bearbeitet werden können. Des Weiteren unterstützt Unity selbst programmierte Scripte auf der Grundlage von C#.

2.1 Meshes in Unity

Unity bietet die Möglichkeit, mit Hilfe von selbstgeschriebenen Scripten eigene 3D-Modelle zur Laufzeit erstellen zu lassen. Dafür stellt Unity ein eigenes Mesh-System zur Verfügung, basierend auf Dreiecksnetzen, die *UnityEngine.Mesh-*Klasse. Damit diese ein Mesh rendern kann, erwartet das Mesh ein *UnityEngine.Vector3-*Array für die Vertices, wobei ein *Vector3* einen Punkt im dreidimensionalen Raum darstellt und ein *int-*Array, das die Reihenfolge der Vertices für die Dreiecke festlegt.

Der folgende Code zeigt beispielhaft, wie ein Unity-Mesh erzeugt werden kann:

```
public void CreateMesh()
1
  {
2
     //-- Der Vollstaendigkeit halber vorhanden
3
     meshFilter = gameObject.GetComponent<MeshFilter >();
     if (meshFilter = null)
5
       meshFilter = gameObject.AddComponent<MeshFilter >();
6
     //-- vom MeshFilter zum Mesh
     mesh = meshFilter.sharedMesh;
     if (mesh = null)
10
       mesh = new Mesh { name = "Quad" };
11
12
     //-- MeshRenderer holen
13
     meshRenderer = this.gameObject.GetComponent < MeshRenderer > ();
14
     if (meshRenderer == null)
15
       meshRenderer = gameObject.AddComponent<MeshRenderer > ();
17
     //-- Mesh zusammenstellen
18
     //--- Vertices/Points
19
     var P0 = new Vector3(0, 0, 0);
20
     var P1 = new \ Vector3(0, 1, 0);
21
     var P2 = new \ Vector3(1, 0, 0);
22
     var P3 = new Vector3(1, 1, 0);
23
24
     var verticies = new List < Vector3 > { P0, P1, P2, P3 };
25
26
     //--- Triangles
27
     var triangles = new List < int > ();
29
     triangles.Add(0);
30
     triangles.Add(1);
31
     triangles.Add(2);
32
     triangles.Add(2);
33
     triangles.Add(1);
34
     triangles.Add(3);
35
36
     //-- Mesh befuellen
37
     mesh. Clear();
38
     //-- Vertices zuweisen
     mesh.vertices = verticies.ToArray();
     //-- Triangles zuweisen
41
     mesh.triangles = triangles.ToArray();
42
     //-- Mesh dem MeshFilter zuweisen
43
     meshFilter.sharedMesh = mesh;
44
```

Und erzeugt folgendes Ergebnis:

Abbildung 2: Die Wireframeansicht des erstellten Meshes, um die erzeugten Kanten und Flächen zu erkennen.

Literatur

Literatur

 $[{\rm Wik}]$ the free encyclopedia Wikipedia. Polygon mesh, 2007. [Online; zuletzt besucht am 04.12.2019].