

MULTI-CUT REBAR(9)

Advisor: Prof. K.C.Chang

Presenters: You-Ran Nai

Mode Pushover

Sway Special

(w) (v)

The design shear force is then given by (ACI 21.3.4.1, IBC 2003)

$$V_u = \max\{V_{e1}, V_{e2}\}$$

(ACI 21.3.4.1, Fig R21.3.4)

$$V_{e1} = V_{p1} + V_{D+L}$$

(ACI 21.3.4.1, Fig R21.3.4)

$$V_{e2} = V_{p2} + V_{D+L}$$

(ACI 21.3.4.1, Fig R21.3.4)

Shear Design

Sway Special Consider Vp

Sway Ordinary No Consider Vp

Shear Design

5 MULTI CUT

主筋						長度				
	左1	左2	中	右2	右1	左1	左2	中	右2	右1
上層第一排	2-#7	2-#7	3-#7	3-#7	3-#7	50	307	49	10	49
上層第二排	0	0	0	0	0					
下層第二排	0	0	0	0	0					
下層第一排	2-#7	2-#7	2-#7	2-#7	2-#7	50	10	346	10	49
上層第一排	3-#7	3-#7	3-#7	2-#7	2-#7	60	80	350	10	60
上層第二排	0	0	0	0	0					
下層第二排	0	0	0	0	0					
下層第一排	2-#7	2-#7	2-#7	2-#7	2-#7	60	10	420	10	60

Nonlinear Simple Model

T=0.345 No Nonlinear Beam Hinge

T=0.752 Nonlinear Beam Hinge

Nonlinear Simple Model

P-Delta

Non-iterative Based on Mass, in which load is automatically computed from the mass at each level. The
providing for faster computation. P-Delta is considered by treating the structure as a simplified stick mode.
Local buckling is not captured as effectively.

The benefit of this non-iterative method is that P-Delta may be considered in load cases which do not so Iterative Based on Load Cases method.

2. Iterative Based on Load Cases, in which load is computed from a specified combination of static load which considers P-Delta on an element-by-element basis. Local buckling is captured more effectively. A fraction of a live load case.

Local Buckling

Normal Nonlinear Hinge

Multi Nonlinear Hinge

Multi Nonlinear Hinge

PGA vs First Mode

Normal vs Multi

Next to Do

Roadmap

