Национальный исследовательский университет — Высшая школа экономики Факультет бизнес-информатики, отделение программной инженерии

УТВЕРЖДЕНО	
Заведующий кафедрой «	Управление
разработкой программно	ого обеспечения»
	/ Авдошин С.М./
«»_	2012 г

КОМПОНЕНТНАЯ МОДЕЛЬ С ДЕКЛАРАТИВНЫМ ОПИСАНИЕМ СОСТАВНЫХ ТИПОВ: ПАРСЕРЫ

Пояснительная записка

ЛИСТ УТВЕРЖДЕНИЯ

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	Руководитель работы/ Гринкруг Е.М./ «»
Подп. и дата	« <u>»</u> 2012 г.
Инв. № подп.	

Национальный исследовательский университет — Высшая школа экономики Факультет бизнес-информатики, отделение программной инженерии

УТВЕРЖДЕНО

КОМПОНЕНТНАЯ МОДЕЛЬ С ДЕКЛАРАТИВНЫМ ОПИСАНИЕМ СОСТАВНЫХ ТИПОВ: ПАРСЕРЫ

Пояснительная записка

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подп.	

Листов 13

Содержание

C	одержание	2
1.	. Введение	3
	1.1. Общие сведения о программе	
	1.2. Основания для разработки	3
	1.2.1. Цель разработки	3
	1.2.2. Заказчик проекта	3
2.	. Назначение разработки	3
	2.1. Назначение программы	3
	2.2. Область применения программы	3
3.	. Технические характеристики	4
	3.1. Постановка задачи	4
	3.2. Используемые алгоритмы	4
	3.3. Метод организации входных и выходных данных	5
	3.3.1. Входные данные	5
	3.3.2. Выходные данные	5
	3.4. Состав технических и программных средств	5
	3.4.1. Технические средства	5
	3.4.2. Программные средства	5
4.	. Ожидаемые технико-экономические показатели	6
5.	. Источники, используемые при разработке	6
6.	. Приложение А. Описание и функциональное назначение классов и структур	7
	6.1. Библиотека парсеров	7
	6.2. Библиотека средств генерации кода	7
	6.3. Стандартные узлы и типы данных VRML/X3D	7
7.	. Приложение Б. Описание и функциональное назначение методов, полей и свойств	8
	7.1. Библиотека парсеров	8
	7.1.1. Абстрактный класс Parser	8
	7.1.2. Класс VRMLParser	10
	7.1.3. Класс X3DParser	11
	7.2. Библиотека средств генерации кода	12
	7.2.1. Абстрактный класс CodeGenerator	12
	7.2.2. Класс VRMLCodeGenerator	12
	7.2.3. Класс X3DCodeGenerator	13
	7.3. Стандартные узлы VRML/X3D	13
	7.3.1. Абстрактный базовый класс Node	13
	7.3.2. Стандартные и сторонние классы-узлы	13

1. Введение

1.1. Общие сведения о программе

Наименование программы: Библиотека парсеров декларативного описания компонентных моделей.

Библиотека состоит из двух компонент:

- Первая компонента набор средств для синтаксического анализа (парсинга) декларативного описания компонентных моделей;
- Вторая компонента набор средств для генерации декларативного описания компонентных моделей.

1.2. Основания для разработки

1.2.1. Цель разработки

Разработка осуществляется соответственно следующим документам:

- «Список тем курсовых работ студентов отделения программной инженерии факультета бизнес-информатики 2 курс».
- Техническое задание

Целью разработки является создание библиотеки средств парсинга и кодогенерации для ее внедрения в программу визуализации архитектуры компонентных моделей на основе их декларативного описания.

1.2.2. Заказчик проекта

Заказчиком проекта является НИУ-ВШЭ, отделение программной инженерии факультета бизнес-информатики, кафедра «Управление разработкой программного обеспечения».

2. Назначение разработки

2.1. Назначение программы

Программный комплекс предназначен для построения компонентных моделей на основе их описания на одном из поддерживаемых декларативных языков (VRML/X3D), а также для генерации декларативного описания уже существующих моделей. Библиотека предназначена для использования сторонними разработчиками при разработке ими других приложений.

2.2. Область применения программы

- Построение редакторов компонентных моделей;
- Анализ ошибок в коде декларативного описания (например, в специальных текстовых редакторах)
- Программы визуализации компонентных моделей (например, в виде 3D-сцен);

• Конвертирование между представлениями одной и той же модели на разных декларативных языках.

3. Технические характеристики

3.1. Постановка задачи

Библиотека парсеров должна осуществлять синтаксический анализ подаваемых ей на вход исходных файлов формата VRML или X3D, проверять их на наличие лексических, синтаксических или семантических ошибок и в случае их отсутствия строить модель прочитанной сцены — направленный ациклический граф. Граф строится в виде специального внутреннего представления с помощью определенных в библиотеке Java-классов, представляющих его узлы; это представление затем может быть использовано для траверсирования этого графа, и, таким образом, для использования результата синтаксического анализа в других приложениях.

Библиотека средств генерации кода должна выполнять обратную операцию: на основе внутреннего представления графа генерировать код на языках VRML или X3D. Таким образом, вместе с парсерами эта часть библиотеки должна позволять осуществлять конвертацию из классического VRML-формата в более новый XML-подобный формат X3D и наоборот.

Предполагается внедрение библиотеки в программу-редактор архитектуры компонентных моделей. Описанные выше функции должны обеспечивать загрузку моделей из файлов (содержащих их декларативное описание) и последующее сохранение этих моделей в файл.

3.2. Используемые алгоритмы

Парсер языка VRML строится на основе формальной грамматики языка (данная грамматика является контекстно-свободной и описана в стандарте ISO [5]) с помощью метода рекурсивного спуска (recursive-descent parsing [1]). В таком парсере каждому из продукций грамматики в коде соответствует специальный метод. Это позволяет довольно строго организовать код парсера, повысить его читаемость и поддерживаемость, однако приводит к большому числу рекурсивных вызовов при анализе исходных файлов с высоким уровнем вложенности узлов.

Важно отметить, что грамматика языка VRML является *неоднозначной (ambiguous)*: на основе ее одной невозможно осуществлять анализ кода, так как, например, на момент считывания значений полей узлов тип их неизвестен. Для решения этой проблемы активно используется реализованный в библиотеках Java механизм *рефлексии* ([2, 3]): во время считывания описания определенного узла исследуется код соответствующего этому узлу Java-класса (описанного в библиотеке или сторонним разработчиком) и определяется, значения каких типов могут храниться в его полях.

Отличительной деталью парсера является реализованная в нем возможность довольно детальной диагностики ошибок в исходных файлах. Так, лексические ошибки распознаются при неверном написании названий полей и узлов; использование рефлексии при этом позволяет получать список идентификаторов, возможных на месте неверного, и предлагать программисту на основе этого списка наиболее вероятное исправление. Синтаксические ошибки имеют место, например, при отсутствии в нужных местах открывающих/закрывающих фигурных скобок. Встречая такие ошибки, парсер способен восстанавливаться, используя так называемый *крежим паники* (panic-mode recovery [1]), что позволяет ему продолжать чтение исходного файла и, таким образом, сообщать о как можно большем числе ошибок за один проход.

Язык X3D является XML-подобным языком ([6]), поэтому его парсер строится с помощью методологии SAX (Simple API for XML [4]). Этот парсер является событийным: в основе его работы — отслеживание ограниченного ряда событий (таких, как наличие открывающего тега, атрибута и др.) в ходе прохода по файлу и соответствующая их обработка. Аналогично VRML-парсеру этот парсер также использует рефлексию.

Оба парсера работают за время O(n), где n – число символов во входном файле. Для лексического анализа исходных файлов (разбиения их на лексемы) используется реализованный в библиотеке Java лексический анализатор StreamTokenizer.

Генерация кода осуществляется в ходе *траверсирования* графа ([8]): оно основано на проходе по всем дочерним узлам каждого из узлов графа и реализовано рекурсивно.

3.3. Метод организации входных и выходных данных

3.3.1. Входные данные

Входными данными для парсеров VRML и X3D являются текстовые файлы, содержащие декларативное описание сцены на этих языках в соответствии со стандартом ([5] и [6]). Число узлов, которые могут быть описаны в этих файлах, также ограничено стандартом, однако может быть расширено программистом с помощью реализации соответствующих Java-классов и регистрации их перед использованием парсера.

3.3.2. Выходные данные

Выходные данные парсера — направленный ациклический граф сцены, представленный в виде массива корневых узлов. Каждый же узел представляет собой экземпляр специального класса, соответствующего определенному типу узла и являющегося наследником определенного в библиотеке класса *Node*. Каждый из таких классов должен быть реализован в соответствии со стандартом JavaBeans [7], что позволяет выполнять их *интроспекцию* ([3]) с помощью механизма рефлексии ([2]). Так, ссылки на дочерние узлы содержатся в getter'ах узлов и легко могут быть получены в ходе обхода графа.

Выходные данные парсеров являются входными данными для средства кодогенерации; входные для парсеров, соответственно, выходными для генераторов кода.

3.4. Состав технических и программных средств

3.4.1. Технические средства

Основным средством распространения программного комплекса является веб-сервис для хостинга открытых проектов GitHub (https://github.com/msdubov/Component-model), что продиктовано возможностью использования исходного кода в других программных продуктах. Альтернативным способом распространения программного комплекса является распространение на носителях типа CD-ROM.

3.4.2. Программные средства

Для работы библиотеки необходима реализация виртуальной машины Java версии не ниже 6 (например, Java Runtime Environment). При использовании библиотека в ходе разработки других программных продуктов необходимо также наличие средств Java Development Kit.

4. Ожидаемые технико-экономические показатели

Представленный в библиотеке VRML-парсер является одним из наиболее развитых с точки зрения диагностики ошибок в исходных файлах. Синтаксический анализатор способен распознавать лексические, синтаксические и семантические ошибки в исходном коде, восстанавливаться при наличии таких ошибок и продолжать анализ исходного текста, обрабатывая, таким образом, максимально возможное число ошибок за один проход. Это позволяет успешно использовать его при создании интегрированных средств разработки на VRML в составе текстовых редакторов с возможностью подчеркивания ошибок в исходном коде.

В настоящее время на смену стандарту трехмерной векторной графики VRML приходит более современный стандарт X3D, вводящий, в том числе, и новый XML-подобный формат кодирования сцен. С этим может быть связана необходимость конвертировать уже существующие декларативные описания сцен из классического VRML-формата в новый XML-формат. Наличие в библиотеке соответствующих парсеров и средств кодогенерации позволяет выполнять как эту, так и обратную к ней конвертацию.

5. Источники, используемые при разработке

- [1] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: principles, techniques, and tools, 2nd ed. MA: Prentice Hall, 2006.
- [2] C. S. Horstmann and G. Cornell, Core Java, 8th ed., vol. 1: Fundamentals. MA: Prentice Hall, 2007.
- [3] C. S. Horstmann and G. Cornell, Core Java, 8th ed., vol. 2: Advanced features. MA: Prentice Hall, 2008.
- [4] http://en.wikipedia.org/wiki/Simple_API_for_XML
- [5] ISO/IEC 14772-1:1997 and ISO/IEC 14772-2:2004 Virtual Reality Modeling Language (VRML).
- [6] ISO/IEC 19775 X3D.
- [7] Sun Microsystems, JavaBeans Specification v1.0.1, July 1997. http://java.sun.com/products/javabeans/docs/spec.html
- [8] R. Sedgewick, Algorithms in Java, 4th ed., CA: Addison-Wesley Educational Publishers Inc., 2010.

6. Приложение А. Описание и функциональное назначение классов и структур

6.1. Библиотека парсеров

Имя класса/структуры	Описание
Parser	Абстрактный базовый класс, реализующий общую
	функциональность парсеров VRML и X3D.
VRMLParser	Парсер VRML.
X3DParser	Парсер ХЗД.
ParsingError	Абстрактный класс-наследник стандартного класса Error,
	реализующий некоторую общую логику обработки ошибок
	синтасического анализа.
SyntaxError	Класс-наследник ParsingError, экземпляры которого содержат
	информацию о синтаксической ошибке в исходном файле.
LexicalError	Класс-наследник ParsingError, экземпляры которого содержат
	информацию о лексической ошибке в исходном файле.
TypeMismatchError	Класс-наследник ParsingError, экземпляры которого содержат
	информацию об ошибке несоответствия типов в исходном
	файле.
Warning	Класс-наследник ParsingError, экземпляры которого содержат
	информацию о предупреждениях (некритичных ошибках) в
	исходном файле.

6.2. Библиотека средств генерации кода

Имя класса/структуры	Описание
CodeGenerator	Абстрактный базовый класс, реализующий общую
	функциональность генераторов кода VRML и X3D.
VRMLCodeGenerator	Генератор кода VRML.
X3DCodeGenerator	Генератор кода X3D.

6.3. Стандартные узлы и типы данных VRML/X3D

Имя класса/структуры	Описание
VRMLType	Абстрактный базовый класс для Node и ValueType.
Node	Абстрактный базовый класс для всех классов,
	представляющих узлы VRML/X3D.
Appearance	Узел, отвечающий за параметры рендеринга объекта.
Box	Узел, представляющий прямоугольный параллелепипед.
Geometry	Абстрактный тип узла, представляющего некоторый
	геометрический объект.
Group	Узел, группирующий другие объекты
Material	Узел, отвечающий за текстуру объекта.
Shape	Узел, представляющий некоторую геометрическую
	фигуру.
Sphere	Узел, представляющий сферу.
Text	Узел, представляющий текст.
ValueType	Абстрактный базовый класс для типов значений полей

	узлов VRML/X3D.
SFBool	Стандартный булев тип.
SFFloat	Стандартный вещественный тип.
SFInt32	Стандартный целочисленный тип.
SFString	Стандартный строковый тип.
SFColor	Тип "цвет", представляет собой тройку значений SFFloat.
MFType	Абстрактный тип, поддерживающий множественные
	значения.
MFValueType	Абстрактный множественный тип для типов-значений.
MFBool	Множественный тип для булевых значений.
MFFloat	Множественный тип для вещественных значений.
MFInt32	Множественный тип для целочисленных значений.
MFNode	Множественный тип для типов-узлов.
MFString	Множественный тип для строковых значений.

7. Приложение Б. Описание и функциональное назначение методов, полей и свойств

7.1. Библиотека парсеров

7.1.1. Абстрактный класс Parser

Имя	Модифика- торы	Тип	Аргументы	Описание
		Мет	оды	
parse	public	ArrayList <node></node>	InputStream Reader	Принимает на вход строковый поток и возвращает граф сцены, либо null в случае наличия ошибок в исходном тексте.
setUp Tokenizer	protected	void	-	Настраивает лексический анализатор.
init	protected abstract	void	-	Инициализирует парсер, читает первую лексему из потока.
parseScene	protected abstract	void	-	Формирует граф сцены на основе синтаксического анализа входного файла.
parseChild Node	public abstract	Node	-	Читает из входного потока следующий узел и возвращает экземпляр соответствующего класса.
parseValue Type	protected	Object	Class	Читает из входного потока значение заданного типа.
tokenizer	public	Stream Tokenizer	-	Возвращает объект, представляющий лексический анализатор.

				Chopywhoot townware
	1.11	, ,	G. ·	Сравнивает текущую
lookahead	public	boolean	String	лексему в потоке с
				аргументом.
lookahead	public	String	_	Возвращает текущую
10011411444		Sums		лексему в потоке.
nextToken	public	boolean	_	Считывает следующую
Heat I onen	abstract	boolean		лексему из потока.
				Сопоставляет текущую
match	public	boolean	String	лексему с аргументом и
match	paone	boolean	Sumg	генерирует ошибку в
				случае несоответствия.
				Сопоставляет текущую
				лексему с аргументом;
tryMatch	public	boolean	String	запоминает возможную
				ошибку в случае
				несоответствия.
registerError	public	boolean	Error	Регистрирует ошибку
registerError	public	Doolean	Entor	парсинга.
				После неудачной попытки
getParsing	public	ArrayList		парсинга возвращает
Errors	public	<error></error>	_	сформированный список
				ошибок.
				Осуществляет поиск
classFor NodeName	protected		String	класса-узла по имени в
		Class		одном из
Nouename				зарегистрированных
				пакетов с классами-узлами.
create	protected	Node	String	Возвращает объект класса-
Instance	protected	Node	Sumg	узла по его имени.
registerNode	public	void	String	Регистрирует пакет с
Package	public	Void	Sumg	классами-узлами.
		По	ЛЯ	
tokenizer	protected	Stream		Лексический анализатор.
tokemzer	protected	Tokenizer		лексический анализатор.
		ArrayList		Граф сцены,
sceneGraph	protected	<node></node>		представляемый в виде
		\1\UUC>		списка корневых узлов.
parsing	protected	ArrayList		Список ошибок парсинга.
Errors	protected	<error></error>		список ошиоок парсинга.
possibleError				Возможная ошибка,
	protected	Error		зарегистрированная в
				tryXxx методе.
		ArrayList		Список
nodePackages	protected	<string></string>		зарегистрированных
		<sumg></sumg>		пакетов с классами-узлами.

7.1.2. Kласс VRMLParser

Имя	Модифика- торы	Тип	Аргументы	Описание
		Me	годы	
setUp Tokenizer	protected	void	-	Настраивает лексический анализатор.
init	protected	void	-	Инициализирует парсер, читает первую лексему из потока.
parseScene	protected	void	-	Формирует граф сцены на основе синтаксического анализа входного файла.
parseXxx []	public	boolean	-	Один из методов, соответствующих продукциям грамматики VRML.
nextToken	public	boolean	-	Считывает следующую лексему из потока.
lookahead IsId	private	boolean	-	Определяет, является ли текущая лексема идентификатором.
lookahead IsFieldName	private	boolean	-	Определяет, является ли текущая лексема названием одного из полей текущего узла.
tryMatch FieldId	private	boolean	-	Осуществляет попытку сопоставления текущей лексемы с названием поля текущего узла.
tryMatch TypeId	private	boolean	-	Осуществляет попытку сопоставления текущей лексемы с именем узла.
panicMode Recovery	private	boolean	-	Восстановление после ошибок парсинга в «режиме паники».
instantiate Node	private	boolean	-	Инстанциирует узел по его типу.
instantiate NodeById	private	boolean	-	Инстанциирует узел по его ID с помощью хэш- таблицы узлов.
addRootNode	private	boolean	-	Добавляет текущий узел на первый уровень графа
matchField ValueAnd SetField	private	boolean	-	Считывает значение поля и записывает его в объект- узел.
initFields	private	void	-	Инициализирует private- поля класса.

Поля				
defNodes Table	private	HashMap <string, Node></string, 		Хэш-таблица DEF-узлов (узлов с ID).
lookahead	protected	String		Текущая лексема.
currentId	private	String		Текущий ID.
currentType	private	String		Тип текущего узла.
currentNodes	private	Stack <node></node>		Стек обрабатываемых узлов.
currentField	private	Stack <string></string>		Стек считываемых полей.

7.1.3. Knacc X3DParser

Имя	Модифика- торы	Тип	Аргументы	Описание		
	Методы					
setUp Tokenizer	protected	void	-	Настраивает лексический анализатор.		
init	protected	void	-	Инициализирует парсер, читает первую лексему из потока.		
parseScene	protected	void	-	Формирует граф сцены на основе синтаксического анализа входного файла.		
parseXML	private	void	-	Осуществляет чтение XML и вызов обработчиков SAX-событий.		
openingTag	private	void	String	Обработчик SAX-события «Открывающий тег»		
closingTag	private	void	String	Обработчик SAX-события «Закрывающий тег»		
attribute	private	void	String	Обработчик SAX-события «Атрибут»		
textNode	private	void	String	Обработчик SAX-события «Текстовый узел»		
nextToken	public	boolean	-	Считывает следующую лексему из потока.		
match AttributeId	private	boolean	-	Считывает текущую лексему, которая должна быть идентификатором.		
matchField ValueAnd SetField	private	boolean	String	Считывает значение поля и записывает его в объект- узел.		
initFields	private	void	-	Инициализирует private- поля класса.		
Поля						
defNodes Table	private	HashMap <string, Node></string, 		Хэш-таблица DEF-узлов (узлов с ID).		

lookahead	protected	String	Текущая лексема.
readingTag	private	boolean	Определяет, происходит ли в данный момент считывание тега.
current Attribute	private	String	Имя текущего атрибута.
currentNodes	private	Stack <node></node>	Стек обрабатываемых узлов.
currentTags	private	Stack <string></string>	Стек считываемых тегов.
fieldValue Name Attributes	private	Stack <string></string>	Вспомогательный стек для чтения значений типа MFNode.
fieldValue MFNodes	private	Stack <string></string>	Вспомогательный стек для чтения значений типа MFNode.

7.2. Библиотека средств генерации кода

7.2.1. Абстрактный класс CodeGenerator

Имя	Модифика- торы	Тип	Аргументы	Описание		
	Методы					
generate	public abstract	void	ArrayList <node>, PrintStream</node>	Генерирует декларативное описание графа сцены.		
VRMLtoX3D	public static	boolean	InputStream Reader, PrintStream	Конвертирует код на VRML в код на X3D.		
X3DtoVRML	public static	boolean	-	Конвертирует код на X3D в код на VRML.		

7.2.2. Класс VRMLCodeGenerator

Имя	Модифика- торы	Тип	Аргументы	Описание	
		Мет	оды		
generate	public	void	ArrayList <node>, PrintStream</node>	Генерирует декларативное описание графа сцены.	
process	private	void	Node	Обрабатывает один узел и рекурсивно все его дочерние узлы.	
Поля					
nodes	private	Stack <node></node>		Стек обрабатываемых узлов.	
output	private	PrintStream		Выходной поток.	
defNodes	private	HashSet <string></string>		Хэш-таблица встреченных именованных узлов.	

7.2.3. Класс X3DCodeGenerator

Имя	Модифика- торы	Тип	Аргументы	Описание		
	Методы					
generate	public	void	ArrayList <node>, PrintStream</node>	Генерирует декларативное описание графа сцены.		
process	private	void	Node	Обрабатывает один узел и рекурсивно все его дочерние узлы.		
Поля						
nodes	private	Stack <node></node>		Стек обрабатываемых узлов.		
output	private	PrintStream	_	Выходной поток.		
defNodes	private	HashSet <string></string>		Хэш-таблица встреченных именованных узлов.		

7.3. Стандартные узлы VRML/X3D

7.3.1. Абстрактный базовый класс Node

Имя	Модифика- торы	Тип	Аргументы	Описание	
		Мет	оды		
setId	public	void	String	Задает ID узла.	
getId	public	String	-	Возвращает ID узла.	
Node	public	-	-	Публичный конструктор без параметров.	
container Field	public abstract	string		Возвращает значение свойства containerField узла (необходимо для X3D-парсинга).	
Поля					
id	private	String		ID узла.	
serialVersion UID	private static final	long		Для сериализации узла.	

7.3.2. Стандартные и сторонние классы-узлы

Библиотека содержит набор стандартных VRML-узлов, реализованных в виде JavaBeans-компонент. Все эти узлы соответствуют набору требований:

- Реализуют public-конструктор без параметров;
- Обеспечивают доступ к полю ххх на чтение через метод getXxx();
- Обеспечивают доступ к полю ххх на запись через метод setXxx(T value).

Стандартная библиотека может быть расширена пользовательскими узлами, которые также должны быть построены в соответствии со стандартом JavaBeans.