MA30060 PS6: The logistic diagram and the Cantor set

Feedback hand-in: Friday 19 Nov 2021, 4:00pm

1. Invariant sets and symbolic dynamics

Consider the map $x_{n+1} = H(x_n)$ where H(x) is defined to be

$$H(x) = \begin{cases} 3x & 0 \le x \le \frac{1}{2} \\ 3x - 2 & \frac{1}{2} < x \le 1 \end{cases} \tag{1}$$

- i. Sketch the graph of H(x). Find the set Λ_1 of points that remain in [0,1] for (at least) one iteration. Find the set Λ_2 of points that remain in [0,1] for (at least) two iterations. Hence, outline an inductive construction for the set Λ_n of points that remain in [0,1] for (at least) $n \ge 1$ iterations. Deduce that set Λ of points that remain in [0,1] for infinitely many iterations is non-empty.
- ii. Describe Λ by considering the conditions base-3 expansions of points $x = 0 \cdot a_0 a_1 a_2 \cdots$, where $a_i \in \{0,1,2\}$ must satisfy to remain in [0,1] for infinitely many iterations.
- iii. Compute the point x that corresponds to the symbol sequence $0.002002002\cdots$ and verify, by iterating H, that this point lies on a 3-cycle.

2. The tent map and symbolic dynamics

The (full height) tent map $x_{n+1} = F(x_n)$ where $F: [0,1] \to [0,1]$ is defined by

$$F(x) = \begin{cases} 2x & 0 \le x \le \frac{1}{2} \\ 2(1-x) & \frac{1}{2} \le x \le 1 \end{cases}$$
 (2)

- a. Sketch the graph of F(x).
- b. Explain why the action of F on points $x \in [0,1]$ is equivalent to the action of the modified shift map $\hat{\sigma}$ on the symbol space Σ_2 , where $\hat{\sigma}$ is defined by

$$\hat{\sigma}(0 \cdot a_0 a_1 a_2 \cdots) = \begin{cases} 0 \cdot a_1 a_2 a_3 \cdots & \text{if } a_0 = 0 \\ 0 \cdot \bar{a}_1 \bar{a}_2 \bar{a}_3 \cdots & \text{if } a_0 = 1 \end{cases}$$
(3)

where $\bar{a}_i := 1 - a_i$.

c. By considering symbol sequences that are periodic under the action of $\hat{\sigma}$, which can switch the value of the binary digits as well as shifting left, find the two distinct 3-cycles of the tent map F.

3. Proof of Lemma in Chapter 11

Provide the proof to Lemma 11.2. That is, let I = [0,1] be the closed unit interval and $F(x) = \mu x(1-x)$ be the usual logistic map. Show that if $\mu > 2 + \sqrt{5}$ then there exists $\lambda > 1$ such that $|F'(x)| > \lambda$ for all $x \in I \cap F^{-1}(I)$.

4. Proof of Theorem in Chapter 11

1 2021-09-26

The Theorem 11.1 from the notes includes a fairly long and complicated proof. During lectures, we shall discuss the key ideas and the precise steps for Steps 1 and 2 of the proof (establishing the conjugacy map h and injectivity of h).

Follow the proof of Steps 3 (surjectivity) and 4 (continuity) and produce your own set of notes for these two steps.

2 2021-09-26