```
import matplotlib.pyplot as plt
```

```
## Line plot
x_values = [0,1,2,3,4,5]
squares = [0,1,4,9,16,25]
plt.plot(x_values, squares)
plt.savefig("testimage.jpg")

## plot a line with details
x = [5,2,7]
y = [2,16,4]
plt.plot(x,y)

plt.title("info")
plt.ylabel("Y axis")
plt.xlabel("X axis")
```



```
# plot multiple lines
x = [1,2,3,4,5]
y = [50,40,70,80,20]
y2 = [80,20,20,50,60]
y3 = [70,20,60,40,60]
y4 = [80,20,20,50,60]

plt.plot(x,y,'g', label = 'Enfield', linewidth=5)
plt.plot(x, y2,label='Honda', linewidth=5)
```

```
plt.plot(x,y3,'k',label='Yahama',linewidth=5)
plt.plot(x, y4, 'y',label='KTM', linewidth=5)
plt.title('bikr details in line plot')
plt.ylabel('Distance in kms')
plt.xlabel('Days')
plt.legend()
```

<matplotlib.legend.Legend at 0x219eafedbe0>

BAR PLOT

```
## plot a bar chart
x_values = [5,6,3,7,2]
y_values = ["A","B","C","D","E"]
plt.bar(y_values, x_values, color = "pink")
plt.show()
```



```
## multiple bar plot
## Example-1
plt.bar([0.25,1.25,2.25,3.25,4.25],[50,40,70,80,20],
label="Enfield",width=.5)
plt.bar([0.26,1.25,2.25,3.25,4.25],[80,20,20,50,60],
label="Honda", color='r',width=.5)
plt.bar([0.31,1.5,2.5,3.5,4.5],[70,20,60,40,60],
label="Yamaha", color='y',width=.5)
plt.bar([.75,1.75,2.75,3.75,4.75],[80,20,20,50,60],
label="KTM", color='g',width=.5)
plt.legend()
plt.xlabel('Days')
plt.ylabel('Days')
plt.ylabel('Distance (kms)')
plt.title('Bikes details in BAR PLOTTING')
```

Text(0.5, 1.0, 'Bikes details in BAR PLOTTING')

Bikes details in BAR PLOTTING


```
#Example 2
#from matplotlib import pyplot as plt
plt.bar([0.25,1.25,2.25,3.25,4.25],[50,40,70,80,20], label="BMW",
color='r')
plt.bar([.75,1.75,2.75,3.75,4.75],[80,20,20,50,60], label="Audi",
color='y')
plt.legend()
plt.xlabel('Days')
plt.ylabel('Distance (kms)')
plt.title('Information')
plt.show()
```



```
## Horizontal Plot
x_values = [5,6,3,7,2]
y_val = ["A", "B", "C", "D", "E"]
plt.barh(y_val,x_values, color ="yellowgreen")
# Adding an "h" after bar will flip the graph
plt.show()
```



```
## Scattered Plot
## Scattered Plot without details
x = [5, 2, 9, 4, 7] # x-axis values
y = [10, 5, 8, 4, 2] # Y-axis values
plt.scatter(x, y) # Function to plot scatter
plt.show() # function to show the plot
```



```
# Multiple scattered Plot
x = [1,1.5,2,2.5,3,3.5,3.6]
y = [7.5,8,8.5,9,9.5,10,10.5]
x1=[8,8.5,9,9.5,10,10.5,11]
y1=[3,3.5,3.7,4,4.5,5,5.2]
plt.scatter(x,y, label='high income low saving',color='r')
plt.scatter(x1,y1,label='low income high savings',color='b')
plt.xlabel('saving*100')
plt.ylabel('income*1000')
plt.title('Scatter Plot')
plt.legend()
#plt.show()
plt.grid()
```



```
## 4 pie plot
days = [1,2,3,4,5]
Enfield =[50,40,70,80,20]
Honda = [80,20,20,50,60]
Yahama =[70,20,60,40,60]
KTM = [80,20,20,50,60]
slices = [8,5,5,6]
activities = ['Enfield','Honda','Yahama','KTM']
cols = ['r','g','y','b']
plt.pie(slices, labels=activities, colors=cols, startangle=90, shadow=
True,explode=(0,0.1,0.2,0.3))
plt.title('Bike details in Pie Plot')
```

Text(0.5, 1.0, 'Bike details in Pie Plot')

#matplotlib plots on NBA data set
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv(r'C:\Users\GLAU\Downloads\nba.csv') df

Name	Team	Number	Position	Age	Height
Weight \					
<pre>0 Avery Bradley</pre>	Boston Celtics	0.0	PG	25.0	6-2
180.0					
<pre>1 Jae Crowder</pre>	Boston Celtics	99.0	SF	25.0	6-6
235.0					
	Boston Celtics	30.0	SG	27.0	6-5
205.0					
	Boston Celtics	28.0	SG	22.0	6-5
185.0					
	Boston Celtics	8.0	PF	29.0	6 - 10
231.0					
• • • • • • • • • • • • • • • • • • • •					
453 Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3
203.0	ocan sazz	0.0		20.0	0 5
454 Raul Neto	Utah Jazz	25.0	PG	24.0	6-1
179.0					-
455 Tibor Pleiss	Utah Jazz	21.0	C	26.0	7-3
256.0					
456 Jeff Withey	Utah Jazz	24.0	C	26.0	7 - 0
231.0					
457 NaN	NaN	NaN	NaN	NaN	NaN
NaN					

```
College
                            Salary
                 Texas
                         7730337.0
0
1
             Marquette
                         6796117.0
2
     Boston University
                               NaN
3
         Georgia State
                         1148640.0
4
                         5000000.0
                    NaN
453
                Butler
                         2433333.0
454
                    NaN
                          900000.0
455
                    NaN
                         2900000.0
456
                          947276.0
                Kansas
457
                    NaN
                               NaN
[458 rows x 9 columns]
## BAR GRAPH
#Example 1
y_values = df['Salary']
x_values = df['Age']
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
#To plot a bar graph plt.bar() command is used
#This plots a bar graph between Age and Salaries of NBA players
plt.bar(x values,y values,color = "purple")
```


plt.show()

```
# Example 2
y_values = df['Salary']
x_values = df['Age']
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
# Making changes in the color field changes the colour of the graph
plt.bar(x_values,y_values,color = "khaki")
plt.show()
```



```
## Horizontal bar graph
y_values = df['Salary']
x_values = df['Age']
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
plt.barh(x_values,y_values,color = "indianred")
plt.show()
```



```
## Scattered Plot
## Example-1
y_value=df['Salary']
x_values=df['Age']
#To display a scatter plot we use plt.scatter() command
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
#This displays a scatter plot between Age and Salaries of NBA players
plt.scatter(x_values,y_values)
```

<matplotlib.collections.PathCollection at 0x219ec3a0310>


```
#Example 2
y_value=df['Salary']
x_values=df['Age']
plt.xlabel('Age')
plt.ylabel('Salary (in millions)')
#We can also change the type and colors of scatter plot as shown
plt.scatter(x_values,y_values, color = "slategrey", marker = "x")
<matplotlib.collections.PathCollection at 0x219ec9096d0>
```


LINEAR REGRESSION USING MULTIPLE VARIABLES

```
import pandas as pd
import numpy as np
from sklearn import linear_model
df = pd.read_csv(r'C:\Users\GLAU\Downloads\homeprices.csv')
df
```

	area	bedrooms	age	price
0	2600	3.0	20	550000
1	3000	4.0	15	565000
2	3200	NaN	18	610000
3	3600	3.0	30	595000
4	4000	5.0	8	760000
5	4100	6.0	8	810000

df.bedrooms.median()

4.0

df.bedrooms = df.bedrooms.fillna(df.bedrooms.median())
df

	area	bedrooms	age	price
0	2600	3.0	20	550000
1	3000	4.0	15	565000
2	3200	4.0	18	610000
3	3600	3.0	30	595000
4	4000	5.0	8	760000
5	4100	6.0	8	810000

```
reg = linear model.LinearRegression()
reg.fit(df.drop('price',axis='columns'),df.price)
LinearRegression()
reg.coef_
array([ 112.06244194, 23388.88007794, -3231.71790863])
reg.intercept
221323.00186540408
## Find price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
reg.predict([[3000, 3, 40]])
array([498408.25158031])
112.06244194*3000 + 23388.88007794*3 + -3231.71790863*40 +
221323.00186540384
498408.25157402386
## Find price of home with 2500 sqr ft area, 4 bedrooms, 5 year old
reg.predict([[2500, 4, 5]])
array([578876.03748933])
```