AE 242 Aerospace Measurements Laboratory End Semester Exam 30th April 2018 8:30-10:30 Marks 35 Roll Number 1600100 8 Instructions: 1) Use of mobile phone is strictly prohibited. 2) Sharing of calculators is not allowed

- Q1) How many GPS satellites are required for position calculation? Derive receiver position estimation using pseudorange measurements in satellite navigation like GPS? (6)
- Q2) How many sun sensors are required to determine orientation with respect to sun vector. Derive the expression for determination of orientation from sun sensor measurement. (3)
- Q3) Explain how a pressure sensor connected by a tube is modeled when pressure variation is slow and fluid is heavily damped. (5)
- Q4) Using block diagram of low pass filter and high pass filter create a) band pass filter b) band reject filter. (3)
- Q5) Show the output when the given signal is passed through a) low pass filter b) high pass filter (1+1)

Q6) Fill the table for the recorded accelerometer output. Assume initial condition as zero. (6)

Time (sec)	Acceleration	Velocity	Distance
0	0	0	0
0.01	0.1	0	Ò
0.02	0.15	0.001	0
0.03	0.2	0.0025	1×10-5

Q7) What was latitude and longitude recorded by you during the GPS experiment? (1)

Q8) Input and clock signal to a positive edge triggered D-Type flip-flop is shown below. Show the output of the flip flop.

Q9) Figure given below shows a voltage changing with time. This voltage is given as input to a four channel analog to digital conversion device consisting of One multiplexer + One sample and hold + one ADC Draw the block diagram and give justification for your answer. (4)

Time	Voltage	ADC1	ADC2	ADC3	ADC4
0	0	0	0	0	0
0.1	0.1	1.0	0	0	D
0.2	0.2	0.2	0.4	0	O
0.3	0.3	0.3	0.2	0.1	b
0.4	0.4	0.4	0.3	0.5	0-1
0.5	0.5	7.0	0.4	0-3	0.2
0.6	0.4	0.4	0.5	04	6.3
0.7	0.3	0.3	0.4	2.0	0.4
0.8	0.2	0 · 2.	0.3	0.4	0.5
0.9	0.1	0.1	0.5	0.3	0-4
1	0	O	1,0	0.2	0.3
1.1	-0.1	-0.1	0	0 · /	0.2
1.2	-0.2	-0.5	-0·1	0	0-1
1.3	-0.3	-0.3	-0.2	-0.1	σ
1.4	-0.4	-0.4	-0.3	-0·L	-0.1
1.5	0.5	-0.7	-0.4	-0.3	-0.5

XXXXXXXXXXXXX-------XXXXXXXXXXXXX