Density-based clustering

Spherical-shape clusters

Arbitrary-shape clusters

Density-based clustering

Spherical-shape clusters

Arbitrary-shape clusters

k-Means Vs. density-based clustering

- k-Means assigns all points to a cluster even if they do not belong in any
- Density-based Clustering locates regions of high density, and separates outliers

DBSCAN for class identification

DBSCAN for class identification

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

R (Radius of neighborhood)

M (Min number of neighbors)

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Is one of the most common clustering algorithms
 - Works based on density of objects

R (Radius of neighborhood)

M (Min number of neighbors)

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Is one of the most common clustering algorithms
 - Works based on density of objects
- R (Radius of neighborhood)
 - Radius (R) that if includes enough number of points within, we call it a dense area

M (Min number of neighbors)

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Is one of the most common clustering algorithms.
 - Works based on density of objects
- R (Radius of neighborhood)
 - Radius (R) that if includes enough number of points within, we call it a dense area
- M (Min number of neighbors)
 - The minimum number of data points we want in a neighborhood to define a cluster

How DBSCAN works

How DBSCAN works

Each point is either:

- core point
- border point
- outlier point

DBSCAN algorithm - core point?

DBSCAN algorithm - core point

DBSCAN algorithm - border points?

DBSCAN algorithm - border points?

DBSCAN algorithm - border points?

DBSCAN algorithm - core point

DBSCAN algorithm - next core point

DBSCAN algorithm - outliers

DBSCAN algorithm - outliers

DBSCAN algorithm - identify all points

DBSCAN algorithm – clusters?

Advantages of DBSCAN

Advantages of DBSCAN

- Arbitrarily shaped clusters
- Robust to outliers
- Does not require specification of the number of clusters

