

Qualidade de Energia – ELT 448 Aula 9 – Harmônicos em sistema trifásicos

Victor Dardengo

Revisão da aula passada

- Inter-harmônicas;
- Componente simétrica;
- Harmônicos em sistemas equilibrados.
- Valor eficaz
- Valor eficaz verdadeiro (True rms)

Componentes simétricas aplicadas aos Harmônicos

- Qualquer sistema polifásico com N fasores desequilibrados pode ser expresso como uma soma de três conjuntos simétricos de N fasores equilibrados, denominados componentes simétricas.
- Apenas uma única componente de frequência é representada pelos fasores.
- A técnica de componentes simétricas pode ser estendida para harmônicos.

Componentes simétricas aplicadas aos Harmônicos

$$A = A^{+} + A^{-} + A^{0}$$

$$B = B^{+} + B^{-} + B^{0}$$

$$C = C^{+} + C^{-} + C^{0}$$

• Com a presença de cargas não lineares em SEP equilibrados, as componentes harmônicas apresentam sequencia positiva, negativa e

zero.

$$v_{a}(t) = V_{1}\cos(\omega_{1}t + \varphi_{1}) + V_{2}\cos(2\omega_{1}t + \varphi_{2}) + V_{3}\cos(3\omega_{1}t + \varphi_{3}) + V_{4}\cos(4\omega_{1}t + \varphi_{4}) + V_{5}\cos(5\omega_{1}t + \varphi_{5}) + V_{6}\cos(6\omega_{1}t + \varphi_{6}) + V_{7}\cos(7\omega_{1}t + \varphi_{7}) + \cdots$$

$$v_{b}(t) = V_{1}\cos(\omega_{1}t + \varphi_{1} - 120^{\circ}) + V_{2}\cos(2\omega_{1}t + \varphi_{2} + 120^{\circ}) + V_{3}\cos(3\omega_{1}t + \varphi_{3})$$

$$+V_{4}\cos(4\omega_{1}t + \varphi_{4} - 120^{\circ}) + V_{5}\cos(5\omega_{1}t + \varphi_{5} + 120^{\circ}) + V_{6}\cos(6\omega_{1}t + \varphi_{6})$$

$$+V_{7}\cos(7\omega_{1}t + \varphi_{7} - 120^{\circ}) + \cdots$$

$$v_{c}(t) = V_{1}\cos(\omega_{1}t + \varphi_{1} + 120^{\circ}) + V_{2}\cos(2\omega_{1}t + \varphi_{2} - 120^{\circ}) + V_{3}\cos(3\omega_{1}t + \varphi_{3})$$

$$+V_{4}\cos(4\omega_{1}t + \varphi_{4} + 120^{\circ}) + V_{5}\cos(5\omega_{1}t + \varphi_{5} - 120^{\circ}) + V_{6}\cos(6\omega_{1}t + \varphi_{6})$$

$$+V_{7}\cos(7\omega_{1}t + \varphi_{7} + 120^{\circ}) + \cdots$$

• Observa-se que a componente fundamental apresenta sequência ABC (positiva), a componente de 2ª ordem, sequência CBA (negativa); e a componente de 3ª ordem, sequência zero, repetindo-se o ciclo as harmônicas subsequentes.

fundamental

$$V_1 \cos(\omega_1 t + \varphi_1)$$

$$V_{\rm I}\cos\left(\omega_{\rm I}t+\varphi_{\rm I}-120^{\rm o}\right)$$

$$V_1 \cos(\omega_1 t + \varphi_1 + 120^\circ)$$

2ª harmônica

$$V_2 \cos(2\omega_1 t + \varphi_2)$$

$$V_2\cos\left(2\omega_1t+\varphi_2+120^{\circ}\right)$$

$$V_2\cos(2\omega_1t+\varphi_2-120^\circ)$$

3ª harmônica

$$V_3 \cos(3\omega_1 t + \varphi_3)$$

$$V_3 \cos(3\omega_1 t + \varphi_3)$$

$$V_3 \cos(3\omega_1 t + \varphi_3)$$

• Sequência de fase dos harmônicos em um sistema trifásico equilibrado

h Seq.	1	2	3	4 +	5	6 0	7 +	8	9	10 +	11	12 0	13 +	14	15 0
h Seq.	16 +	17	18 0	19 +	20	21 0	22 +	23	24 0	25 +	26 -	27 0	28 +	29	30 0
h Seq.	31 +	-32	33	34 +	35	36 0	37 +	38 -	39 0	40 +	41	42 0	43 +	44	45 0
h Seq.	46 +	47	48 0	49 +	50 -	51 - 0	52 +	53 -	54 0	55 +	56 -	57 0	58 +	59 -	60 0

• Os sinais harmônicos são classificados quanto à sua ordem (h), frequência e sequência:

$$(f = h \cdot f_I)$$
 $(s_{+,-,0} = h_{+,-,0} + 3)$

- As harmônicas da 3ª à 25ª ordem são as mais comuns em sistemas de distribuição.
- Os equipamentos modernos de medição e teste de harmônicos medem, em geral, até a 63^a ordem.

• Calculando-se a tensão de linha v_{ab} , v_{bc} e v_{ca} , verifica-se que as componentes triplas desaparecem nas tensões de linha.

$$v_{ab}(t) = v_a(t) - v_b(t)$$

$$v_{a}(t) = V_{1}\cos(\omega_{1}t + \varphi_{1}) + V_{2}\cos(2\omega_{1}t + \varphi_{2}) + V_{3}\cos(3\omega_{1}t + \varphi_{3})$$

$$+V_{4}\cos(4\omega_{1}t + \varphi_{4}) + V_{5}\cos(5\omega_{1}t + \varphi_{5}) + V_{6}\cos(6\omega_{1}t + \varphi_{6})$$

$$+V_{7}\cos(7\omega_{1}t + \varphi_{7}) + \cdots$$

$$v_{b}(t) = V_{1}\cos(\omega_{1}t + \varphi_{1} - 120^{\circ}) + V_{2}\cos(2\omega_{1}t + \varphi_{2} + 120^{\circ}) + V_{3}\cos(3\omega_{1}t + \varphi_{3})$$

$$+V_{4}\cos(4\omega_{1}t + \varphi_{4} - 120^{\circ}) + V_{5}\cos(5\omega_{1}t + \varphi_{5} + 120^{\circ}) + V_{6}\cos(6\omega_{1}t + \varphi_{6})$$

$$+V_{7}\cos(7\omega_{1}t + \varphi_{7} - 120^{\circ}) + \cdots$$

$$+V_{7}\cos(7\omega_{1}t + \varphi_{7} - 120^{\circ}) + \cdots$$

$$v_{ab}(t) = v_a(t) - v_b(t)$$

$$= \sqrt{3} \Big[V_1 \cos(\omega_1 + \varphi_1 + 30^\circ) + V_2 \cos(2\omega_1 + \varphi_2 - 30^\circ) + 0$$

$$+ V_4 \cos(4\omega_1 + \varphi_4 + 30^\circ) + V_5 \cos(5\omega_1 + \varphi_5 - 30^\circ) + 0$$

$$+ V_7 \cos(7\omega_1 + \varphi_7 + 30^\circ) + \cdots \Big]$$

$$v_{bc}(t) = v_{b}(t) - v_{c}(t)$$

$$= \sqrt{3} \Big[V_{1} \cos(\omega_{1} + \varphi_{1} - 90^{\circ}) + V_{2} \cos(2\omega_{1} + \varphi_{2} + 90^{\circ}) + 0$$

$$+ V_{4} \cos(4\omega_{1} + \varphi_{4} - 90^{\circ}) + V_{5} \cos(5\omega_{1} + \varphi_{5} + 90^{\circ}) + 0$$

$$+ V_{7} \cos(7\omega_{1} + \varphi_{7} - 90^{\circ}) + \cdots \Big]$$

$$v_{ca}(t) = v_{c}(t) - v_{a}(t)$$

$$= \sqrt{3} \left[V_{1} \cos(\omega_{1} + \varphi_{1} + 150^{\circ}) + V_{2} \cos(2\omega_{1} + \varphi_{2} - 150^{\circ}) + 0 + V_{4} \cos(4\omega_{1} + \varphi_{4} + 150^{\circ}) + V_{5} \cos(5\omega_{1} + \varphi_{5} - 150^{\circ}) + 0 + V_{7} \cos(7\omega_{1} + \varphi_{7} + 150^{\circ}) + \cdots \right]$$

- Examinando as equações das tensões de fase e de linha, verificase que:
- A componente fundamental é simétrica, com mesma magnitude, ângulo de defasagem de 120° entre as fases e sequência de fase positiva ou direta, ABC;
- As harmônicas de 2^a ordem são equilibradas e com sequência de fase negativa ou inversa, CBA;
- As harmônicas de 3^a ordem apresentam a mesma magnitude e o mesmo ângulo de fase, com a mesma direção, tendo, portanto, sequência nula.

- A fundamental e as harmônicas de ordem 4, 7, ..., com lei de formação (3k+1, k=1, 2, 3, ...) têm sequência positiva;
- As harmônicas h = 2, 5, ... (3k-1, k=1, 2, 3, ...) têm sequência negativa;
- As harmônicas múltiplas de três ou triplas (3k, k =1, 2, 3, ...) têm sequência zero;
- As harmônicas triplas (sequência zero) não estão presentes nas tensões de linha.

- Deve ser observado que:
- Se harmônicos estão presentes, então componentes harmônicas de sequência positiva, negativa e zero podem existir, mesmo que o sistema seja equilibrado.
- A regra tradicional de que sistemas de potência balanceados são apresentam componentes de sequência zero ou componentes de sequência negativa não é valida quando harmônicos estão presentes.

• Em um sistema trifásico tetrafilar com tensão e corrente senoidais (sem harmônicos), **perfeitamente equilibrado**, as correntes de fase se cancelam, e não há circulação de corrente de neutro.

$$I_N = I_A + I_B + I_C = 0$$

$$Z_A = Z_B = Z_C$$

• Devido ao **desequilíbrio na carga** ou no sistema de suprimento, é normal a circulação de corrente no neutro, que em geral, é bem menor do que a corrente individual em cada fase do circuito.

$$Z_A \neq Z_B \neq Z_C$$

Sistema trifásico deseguilibrado

• Em uma instalação contendo muitas cargas não lineares — caso típico de edifícios comerciais com grande quantidade de cargas de iluminação e computadores, a corrente no neutro nos circuitos de distribuição a quatro fios, mesmo havendo um equilíbrio razoável entre as cargas, é superior a corrente de desequilíbrio.

• A corrente no neutro é calculada pela soma das correntes de linha:

$$\begin{split} I_{N} &= I_{a} + I_{b} + I_{c} \\ &= I_{a1} \cos(\omega_{1}t + \delta_{1}) + I_{b1} \cos(\omega_{1}t + \delta_{1} - 120^{\circ}) + I_{c1} \cos(\omega_{1}t + \delta_{1} + 120^{\circ}) \\ &+ I_{a2} \cos(2\omega_{1}t + \delta_{2}) + I_{b2} \cos(2\omega_{1}t + \delta_{2} + 120^{\circ}) + I_{c2} \cos(2\omega_{1}t + \delta_{2} - 120^{\circ}) \\ &+ I_{a3} \cos(3\omega_{1}t + \delta_{3}) + I_{b3} \cos(3\omega_{1}t + \delta_{3}) + I_{c3} \cos(3\omega_{1}t + \delta_{3}) + \cdots \end{split}$$

- Para um sistema trifásico equilibrado, o cancelamento de componentes de corrente no neutro é completo para **correntes harmônicas de sequência positiva e negativa.**
- As componentes harmônicas de ordem tripla da corrente na fase *a* estão em fase com as respectivas componentes harmônicas triplas das fases *b* e *c* e se somam no neutro.
- A corrente no neutro é então:

$$I_{N} = 3 \Big[I_{a3} \cos(3\omega_{1} + \delta_{3}) + I_{a6} \cos(6\omega_{1} + \delta_{6}) + I_{a9} \cos(9\omega_{1} + \delta_{9}) + \cdots \Big]$$

$$= 3 \sum_{b \in \{3,6,9,\cdots\}} I_{b} \cos(b\omega_{1}t + \delta_{n})$$

• O valor eficaz da corrente no neutro é dado por:

$$I_{rms,N} = 3\sqrt{\left(I_{rms,3}^2 + I_{rms,6}^2 + I_{rms,9}^2 + \cdots\right)} = 3\sqrt{\sum_{h \in \{3,6,9,\cdots\}} I_{rms,h}^2}$$

- Isso implica que, pelo condutor neutro, pode circular um valor de corrente que é três vezes maior do que a corrente tripla que percorre cada condutor fase.
- Pode-se deduzir que quando a participação da terceira harmônica é de 33% da fundamental, a corrente no neutro é igual ou maior que a corrente de fase.

• Corrente no neutro em sistema trifásico equilibrado com componente harmônica de terceira ordem.

• Pode-se então dizer:

- Carga não linear equilibrada pode apresentar corrente no neutro;
- Pelo neutro de uma carga não linear equilibrada fluem apenas harmônicos de ordem tripla.

• A Figura abaixo apresenta formas de onda de tensão e corrente medidas em um quadro de distribuição que alimenta cargas não lineares.

Formas de onda de tensão e corrente em quadro de distribuição com cargas não lineares.

- A Figura ao lado apresenta formas de onda de tensão e corrente medidas em um quadro de distribuição que alimenta cargas não lineares. A maior parte das cargas eletrônicas monofásicas conduz corrente somente durante o pico de tensão. A principal componente harmônica dessa corrente é a 3ª.
- O risco de sobrecarga no neutro é bem real, já que o condutor neutro pode ter sido projetado para ter a mesma bitola ou até menor do que a do condutor fase.

Formas de onda de tensão e corrente em quadro de distribuição com cargas não lineares.

- A medição de corrente em um quadro de distribuição que alimenta cargas equilibradas e não senoidais;
- Pode-se observar que:
 - Um consumo similar nas três fases com valor eficaz total de corrente igual a 1,698 A;
 - A componente de 3ª harmônica é cerca de 81% da fundamental;
 - A corrente de neutro é 1,73 vezes a corrente de fase **neutro em sobrecarga**

Corrente eficaz de fase e no neutro.

Ordem h	Corrente Fase A, B, C (rms)	Corrente no Neutro (rms)				
1	1,201	0,000				
3	0,977	2,931 0,000 0,000 0,204 0,000 0,000 0,087				
5	0,620					
7	0,264					
9	0,068					
11	0,114					
13	0,089					
15	0,029					
17	0,042	0,000				
19	0,044	0,000				
21	0,019	0,057				
23	0,020	0,000				
Total	1,698 A (100%)	2,940 A (173%)				

• Uma vez que o condutor neutro pode estar sujeito a aproximadamente 1,73 vezes a corrente *rms* do condutor de fase, o que pode causa sobreaquecimento no próprio condutor neutro e em partes da instalação onde isso não foi levado em consideração, uma capacidade nominal de 200% para o neutro e demais equipamentos, como barra, terminais de conexão é prática recomendada pelo IEEE.

• A medida que aumenta a participação de cargas eletrônicas cresce o risco de sobrecarga no neutro.

• Quando aproximadamente 65% da carga total de um circuito trifásico é composta por cargas eletrônicas, a corrente no neutro é equivalente a corrente de fase.

Estimativa do percentual de corrente no neutro em relação ao rms da corrente de fase em função do percentual de cargas eletrônicas presentes no circuito.

Queda de tensão no neutro

- Quando cargas eletrônicas estão presentes numa instalação, compartilhar o neutro pode causar problemas, como:
 - Sobrecarga e sobreaquecimeto no neutro;
 - Aumento da tensão neutro-terra;
 - Queda da tensão fase-neutro na carga:

$$V_{carga} = V_{FT} - (\Delta V_F + \Delta V_{N-T}).$$

• Perdas de dados devido à elevação de tensão neutro-terra.

Queda de tensão no neutro

- Quando a tensão neutro-terra é elevada, o desempenho de equipamentos eletrônicos sensíveis pode ser afetado.
- Um neutro com baixa impedância é essencial para minimizar a diferença de potencial neutro-terra na carga e reduzir o ruído de modo comum.
- Elevada corrente de neutro causada por desequilíbrio de fase e operação de carga não linear contribuem para esses problemas.

- Algumas especificações:
 - O condutor neutro de um circuito monofásico deve ter a mesma seção do condutor fase;
 - Quando, num circuito trifásico com neutro ou num circuito duas fases e neutro a taxa de terceira harmônica e seus múltiplos for superior a 15%, a seção do condutor neutro, não deve ser inferior à dos condutores de fase, podendo ser igual à dos condutores de fase se essa taxa não for superior a 33%. Tais níveis de correntes harmônicas são encontradas, por exemplo, em circuitos que alimentam luminárias com lâmpadas de descarga, incluindo fluorescentes.

• Algumas especificações:

- Num circuito trifásico com neutro e cujos condutores de cada fase tenham seção superior a 25 mm², a seção do condutor neutro pode ser inferior à dos condutores de fase, sem ser inferior as valores indicados na Tabela a seguir, em função da seção dos condutores de fase, quando as três seguintes condições forem simultaneamente atendidas:
 - o circuito for presumivelmente equilibrado, em serviço normal;
 - A corrente das fases não contiver uma taxa de terceira harmônica e múltiplos superior a 15%;
 - O condutor neutro for protegido contra sobrecorrente.

Seção do condutor neutro em função da bitola do condutor-fase.

Seção dos condutores de fase mm²	S ≤ 25	35	50	70	95	120	150	185	240	300	400
Seção reduzida do condutor neutro mm²	s	25	25	35	50	70	70	95	120	150	185

• A seção do condutor neutro, quando o conteúdo de 3ª harmônica das correntes de fase for superior a 33%, deve ser baseada no valor de corrente no neutro calculada como:

$$I_N = f_k \sqrt{\sum_{b=1}^N I_b^2}$$

- f_k é o fator de correção que depende do número de condutores no circuito e da participação da componente de 3^a ordem no valor eficaz verdadeiro da corrente.
- I_h são valores eficazes das componentes de corrente através do condutor.

Fator de correção para corrente no neutro.

Taxa de	Fator de Correção f _k						
3harmônica	Circuito trifásico com neutro	Circuito com duas fases e neutro					
33% a 35%	1,15	1,15					
36% a 40%	1,19	1,19					
41% a 45%	1,24	1,23					
46% a 50%	1,35	1,27					
51% a 55%	1,45	1,30					
56% a 60%	1,55	1,34					
61% a 65%	1,64	1,38					
≥ 66%	1,73	1,41					

• Na falta de uma estimativa mais precisa da taxa de 3^a harmônica esperada, recomenda-se a adoção de um f_k igual a 1,73 no caso de circuito trifásico e 1,41 no caso de circuito com duas fases e neutro.

Corrente de linha em carga com conexão Y não aterrado

- Nesta condição, as correntes triplas (sequência zero) não estão presente nas correntes de linha.
- Considere uma carga equilibrada não linear. Tem-se que:

$$I_a + I_b + I_c = I_N = 0$$

Corrente de linha em carga com conexão Y não aterrado

• Como as componentes de sequência positiva e de sequência negativa se anulam no neutro e as amplitudes das correntes são iguas em cada harmônico de ondem *h*, tem-se que:

$$I_N = 3I_{a3}\cos(3\omega_1 t + \delta_3) + 3I_{a6}\cos(3\omega_1 t + \delta_6) + 3I_{a9}\cos(9\omega_1 t + \delta_9) + \dots = 0$$

• Como não há circulação de corrente no neutro, isso significa dizer que as componentes harmônicas são nulas para equação acima. Para que I_N seja igual a zero, é preciso que I_h , h={2,6,9,...} seja nulo, o que significa dizer que as correntes triplas não circulam na linha em cargas sem conexão à terra.

Corrente de linha em carga com conexão delta

Corrente de linha em carga com conexão delta

• Considere as correntes de fase da carga com componentes harmônicas ímpares e equilibradas

$$\begin{split} I_{ab} &= I_{ab1} \cos(\omega_1 t + \delta_1) + I_{ab3} \cos(3\omega_1 t + \delta_3) \\ &+ I_{ab5} \cos(5\omega_1 t + \delta_5) + I_{ab7} \cos(7\omega_1 t + \delta_7) + \cdots \\ I_{bc} &= I_{bc1} \cos(\omega_1 t + \delta_1 - 120^\circ) + I_{bc3} \cos(3\omega_1 t + \delta_3) \\ &+ I_{bc5} \cos(5\omega_1 t + \delta_5 + 120^\circ) + I_{bc7} \cos(7\omega_1 t + \delta_7 - 120^\circ) + \cdots \\ I_{ca} &= I_{ca1} \cos(\omega_1 t + \delta_1 + 120^\circ) + I_{ca3} \cos(3\omega_1 t + \delta_3) \\ &+ I_{ca5} \cos(5\omega_1 t + \delta_5 - 120^\circ) + I_{ca7} \cos(7\omega_1 t + \delta_7 + 120^\circ) + \cdots \end{split}$$

• As correntes de linha são:

$$I_{a} = I_{ab} - I_{ca} = \sqrt{3}I_{ab1}\cos(\omega_{1}t + \delta_{1} - 30^{\circ}) + \sqrt{3}I_{ab5}\cos(\omega_{5}t + \delta_{5} + 30^{\circ}) + \cdots$$

$$I_{b} = I_{bc} - I_{ab} = \sqrt{3}I_{ab1}\cos(\omega_{1}t + \delta_{1} - 150^{\circ}) + \sqrt{3}I_{ab5}\cos(\omega_{5}t + \delta_{5} + 150^{\circ}) + \cdots$$

$$I_{c} = I_{ca} - I_{bc} = \sqrt{3}I_{ab1}\cos(\omega_{1}t + \delta_{1} + 90^{\circ}) + \sqrt{3}I_{ab5}\cos(\omega_{5}t + \delta_{5} - 90^{\circ}) + \cdots$$

Corrente de linha em carga com conexão delta

- Assim, pode-se afirmar que:
- As harmônicas de corrente de sequência zero {3, 6, 9, 12, ...} fluem somente em sistemas trifásicos tetrafilares e, porque estão em fase nas três fases, se somam no condutor neutro;
- As harmônicas de corrente de sequência zero não estão presentes na corrente de linha de uma carga não linear conectada em delta e Y sem retorno.
- Na corrente de linha de uma carga não linear equilibrada sem retorno (delta e Y) estão presentes apenas componentes de sequência positiva e negativa {1, 2, 4, 5, 7, ...}

Trabalho Final

- Entrega no formato de artigo (Idem trabalho 1) e apresentação. (01/08/2022).
 - Artigo, máximo 10 páginas;
 - Apresentação, 10 a 15 minutos.
- O primeiro trabalho foi focado mais no problema, o trabalho final deve ser focado na solução. Assim, além de apresentar um problema referente a qualidade de energia, aos grupos devem apresentar uma proposta real, isto é, uma proposta contendo o tipo de solução, os devidos equipamentos a serem usados e uma estimativa de preço da solução.

Dúvidas?!

Obrigado!

Victor Dardengo

GESEP - Gerência de Especialistas em Sistemas Elétricos de Potência E-mail: victor.dardengo@ufv.br