FG-homomorphisms

For groups and vector spaces, the 'structure-preserving' functions are, respectively, group homomorphisms and linear transformations. The analogous functions for FG-modules are called FG-homomorphisms, and we introduce these in this chapter.

FG-homomorphisms

7.1 Definition

Let V and W be FG-modules. A function θ : $V \to W$ is said to be an FG-homomorphism if θ is a linear transformation and

$$(vg)\vartheta = (v\vartheta)g$$
 for all $v \in V$, $g \in G$.

In other words, if θ sends v to w then it sends vg to wg.

Note that if G is a finite group and $\theta: V \to W$ is an FG-homomorphism, then for all $v \in V$ and $r = \sum_{g \in G} \lambda_g g \in FG$, we have

$$(\nu r)\vartheta = (\nu\vartheta)r$$

since

$$(\nu r)\vartheta = \sum_{g \in G} \lambda_g(\nu g)\vartheta = \sum_{g \in G} \lambda_g(\nu \vartheta)g = (\nu \vartheta)r.$$

The next result shows that FG-homomorphisms give rise to FG-submodules in a natural way.

7.2 Proposition

Let V and W be FG-modules and let $\vartheta: V \to W$ be an FG-homomorphism. Then $\operatorname{Ker} \vartheta$ is an FG-submodule of V, and $\operatorname{Im} \vartheta$ is an FG-submodule of W.

Proof First note that Ker ϑ is a subspace of V and Im ϑ is a subspace of W, since ϑ is a linear transformation.

Let $v \in \text{Ker } \theta$ and $g \in G$. Then

$$(vg)\theta = (v\theta)g = 0g = 0,$$

so $vg \in \text{Ker } \theta$. Therefore $\text{Ker } \theta$ is an FG-submodule of V.

Now let $w \in \text{Im } \theta$, so that $w = v\theta$ for some $v \in V$. For all $g \in G$,

$$wg = (v\vartheta)g = (vg)\vartheta \in \text{Im }\vartheta,$$

and so Im θ is an FG-submodule of W.

7.3 Examples

(1) If $\theta: V \to W$ is defined by $v\theta = 0$ for all $v \in V$, then θ is an FG-homomorphism, and $\text{Ker } \theta = V$, $\text{Im } \theta = \{0\}$.

(2) Let $\lambda \in F$, and define $\theta: V \to V$ by $v\theta = \lambda v$ for all $v \in V$. Then θ is an FG-homomorphism. Provided $\lambda \neq 0$, we have Ker $\theta = \{0\}$, Im $\theta = V$.

(3) Suppose that G is a subgroup of S_n . Let $V = \operatorname{sp}(v_1, \ldots, v_n)$ be the permutation module for G over F (see Definition 4.10), and let $W = \operatorname{sp}(w)$ be the trivial FG-module (see Definition 4.8). We construct an FG-homomorphism \mathcal{G} from V to W. Define

$$9: \sum_{i=1}^n \lambda_i \nu_i \to \left(\sum_{i=1}^n \lambda_i\right) w \quad (\lambda_i \in F).$$

Thus $v_i \theta = w$ for all i. Then θ is a linear transformation, and for all $v = \sum \lambda_i v_i \in V$ and all $g \in G$, we have

$$(\nu g)\vartheta = \left(\sum \lambda_i \nu_{ig}\right)\vartheta = \left(\sum \lambda_i\right)w,$$

and

$$(\nu \vartheta)g = \left(\sum \lambda_i\right) wg = \left(\sum \lambda_i\right) w.$$

Therefore θ is an FG-homomorphism. Here,

Ker
$$\vartheta = \left\{ \sum_{i=1}^{n} \lambda_i \nu_i : \sum_{i=1}^{n} \lambda_i = 0 \right\},$$
Im $\vartheta = W.$

By Proposition 7.2, Ker ϑ is an FG-submodule of the permutation module V.

Isomorphic FG-modules

7.4 Definition

Let V and W be FG-modules. We call a function ϑ : $V \to W$ an FG-isomorphism if ϑ is an FG-homomorphism and ϑ is invertible. If there is such an FG-isomorphism, then we say that V and W are isomorphic FG-modules and write $V \cong W$.

In the next result, we check that if $V \cong W$ then $W \cong V$.

7.5 Proposition

If $\theta: V \to W$ is an FG-isomorphism, then the inverse $\theta^{-1}: W \to V$ is also an FG-isomorphism.

Proof Certainly g^{-1} is an invertible linear transformation, so we need only show that g^{-1} is an FG-homomorphism. For $w \in W$ and $g \in G$,

$$((w\vartheta^{-1})g)\vartheta = ((w\vartheta^{-1})\vartheta)g$$
 as ϑ is an FG -homomorphism
$$= wg$$

$$= ((wg)\vartheta^{-1})\vartheta.$$

Hence $(w9^{-1})$ $g = (wg)9^{-1}$, as required.

Suppose that $\theta: V \to W$ is an FG-isomorphism. Then we may use θ and θ^{-1} to translate back and forth between the isomorphic FG-modules V and W, and prove that V and W share the same structural properties. We list some examples below:

- (1) dim $V = \dim W$ (since v_1, \ldots, v_n is a basis of V if and only if $v_1 \theta, \ldots, v_n \theta$ is a basis of W);
- (2) V is irreducible if and only if W is irreducible (since X is an FG-submodule of V if and only if $X\mathcal{P}$ is an FG-submodule of W);
- (3) V contains a trivial FG-submodule if and only if W contains a trivial FG-submodule (since X is a trivial FG-submodule of V if and only if $X\mathcal{P}$ is a trivial FG-submodule of W).

Just as we often regard isomorphic groups as being identical, we frequently disdain to distinguish between isomorphic FG-modules. For the moment, though, we continue simply to emphasize the similarity between isomorphic FG-modules. In the next result, we show that isomorphic FG-modules correspond to equivalent representations.

7.6 Theorem

Suppose that V is an FG-module with basis \mathcal{B} , and W is an FG-module with basis \mathcal{B}' . Then V and W are isomorphic if and only if the representations

$$\rho: g \to [g]_{\mathscr{B}}$$
 and $\sigma: g \to [g]_{\mathscr{B}'}$

are equivalent.

Proof We first establish the following fact:

(7.7) The FG-modules V and W are isomorphic if and only if there are a basis \mathcal{B}_1 of V and a basis \mathcal{B}_2 of W such that

$$[g]_{\mathcal{B}_1} = [g]_{\mathcal{B}_2}$$
 for all $g \in G$.

To see this, suppose first that ϑ is an FG-isomorphism from V to W, and let v_1, \ldots, v_n be a basis \mathcal{B}_1 of V; then $v_1 \vartheta, \ldots, v_n \vartheta$ is a basis \mathcal{B}_2 of W. Let $g \in G$. Since $(v_i g) \vartheta = (v_i \vartheta) g$ for each i, it follows that $[g]_{\mathcal{B}_1} = [g]_{\mathcal{B}_2}$.

Conversely, suppose that v_1, \ldots, v_n is a basis \mathcal{B}_1 of V and w_1, \ldots, w_n is a basis \mathcal{B}_2 of W such that $[g]_{\mathcal{B}_1} = [g]_{\mathcal{B}_2}$ for all $g \in G$. Let θ be the invertible linear transformation from V to W for which $v_i\theta = w_i$ for all i. Let $g \in G$. Since $[g]_{\mathcal{B}_1} = [g]_{\mathcal{B}_2}$, we deduce that $(v_ig)\theta = (v_i\theta)g$ for all i, and hence θ is an FG-isomorphism. This completes the proof of (7.7).

Now assume that V and W are isomorphic FG-modules. By (7.7), there are a basis \mathcal{B}_1 of V and a basis \mathcal{B}_2 of W such that $[g]_{\mathcal{B}_1} = [g]_{\mathcal{B}_2}$ for all $g \in G$. Define a representation ϕ of G by $\phi: g \to [g]_{\mathcal{B}_1}$. Then by Theorem 4.12(1), ϕ is equivalent to both ρ and σ . Hence ρ and σ are equivalent.

Conversely, suppose that ρ and σ are equivalent. Then by Theorem 4.12(2), there is a basis \mathcal{B}'' of V such that $g\sigma = [g]_{\mathcal{B}''}$ for all $g \in G$; that is, $[g]_{\mathcal{B}'} = [g]_{\mathcal{B}''}$ for all $g \in G$. Therefore V and W are isomorphic FG-modules, by (7.7).

7.8 Example

Let $G = \langle a: a^3 = 1 \rangle$, a cyclic group of order 3, and let W denote the regular FG-module. Then 1, a, a^2 is a basis of W; call it \mathscr{B}' . We have

$$[1]_{\mathcal{B}'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, [a]_{\mathcal{B}'} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

$$[a^2]_{\mathcal{B}'} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Compare the FG-module V defined in Example 4.11, with basis v_1 , v_2 , v_3 such that

$$v_1 a = v_2, v_2 a = v_3, v_3 a = v_1.$$

Writing \mathcal{B} for the basis v_1 , v_2 , v_3 of V, we have

$$[g]_{\mathcal{B}} = [g]_{\mathcal{B}'}$$
 for all $g \in G$.

According to (7.7), the FG-modules V and W are therefore isomorphic. Indeed, the function

9:
$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 \rightarrow \lambda_1 1 + \lambda_2 a + \lambda_3 a^2 \quad (\lambda_i \in F)$$

is an FG-isomorphism from V to W.

7.9 Example

Let $G = D_8 = \langle a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. In Example 3.4(1) we encountered two equivalent representations ρ and σ of G, where

$$a\rho = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, b\rho = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and

$$a\sigma = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, b\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Let V be the $\mathbb{C}G$ -module with basis v_1 , v_2 for which

$$v_1 a = v_2, v_1 b = v_1,$$

 $v_2 a = -v_1, v_2 b = -v_2$

(see Example 4.5(1)), and, in a similar way, let W be the $\mathbb{C}G$ -module with basis w_1, w_2 for which

$$w_1 a = i w_1,$$
 $w_1 b = w_2,$
 $w_2 a = -i w_2,$ $w_2 b = w_1$

Thus, if we write \mathscr{B} for the basis v_1 , v_2 of V and \mathscr{B}' for the basis w_1 , w_2 of W, then for all $g \in G$ we have

$$\rho: g \to [g]_{\mathscr{B}} \text{ and } \sigma: g \to [g]_{\mathscr{B}'}.$$

According to Theorem 7.6, the $\mathbb{C}G$ -modules V and W are isomorphic, since ρ and σ are equivalent. To verify this directly, let $\theta: V \to W$ be the invertible linear transformation such that

$$9: v_1 \to w_1 + w_2,$$

 $v_2 \to iw_1 - iw_2.$

Then $(v_j a)\theta = (v_j \theta)a$ and $(v_j b)\theta = (v_j \theta)b$ for j = 1, 2, and hence θ is a $\mathbb{C}G$ isomorphism from V to W. (Compare Example 3.4(1).)

Direct sums

We conclude the chapter with a discussion of direct sums of FG-modules, and we show that these give rise to FG-homomorphisms.

Let *V* be an *FG*-module, and suppose that

$$V = U \oplus W$$
.

where U and W are FG-submodules of V. Let u_1, \ldots, u_m be a basis \mathcal{B}_1 of U, and w_1, \ldots, w_n be a basis \mathcal{B}_2 of W. Then by (2.9), $u_1, \ldots, u_m, w_1, \ldots, w_n$ is a basis \mathcal{B} of V, and for $g \in G$,

$$[g]_{\mathscr{B}} = \left(\begin{array}{c|c} [g]_{\mathscr{B}_1} & 0 \\ \hline 0 & [g]_{\mathscr{B}_2} \end{array} \right).$$

More generally, if $V = U_1 \oplus \ldots \oplus U_r$, a direct sum of FG-submodules U_i , and \mathcal{B}_i is a basis of U_i , then we can amalgamate $\mathcal{B}_1, \ldots, \mathcal{B}_r$ to obtain a basis \mathcal{B} of V, and for $g \in G$,

$$[g]_{\mathscr{B}} = \begin{pmatrix} [g]_{\mathscr{B}_1} & 0 \\ & \ddots & \\ 0 & [g]_{\mathscr{B}_r} \end{pmatrix}.$$

The next result shows that direct sums give rise naturally to FG-homomorphisms.

7.11 Proposition

Let V be an FG-module, and suppose that

$$V = U_1 \oplus \ldots \oplus U_r$$

where each U_i is an FG-submodule of V. For $v \in V$, we have $v = u_1 + ... + u_r$ for unique vectors $u_i \in U_i$, and we define π_i : $V \to V$ $(1 \le i \le r)$ by setting

$$\nu \pi_i = u_i$$
.

Then each π_i is an FG-homomorphism, and is also a projection of V.

Proof Clearly π_i is a linear transformation; and π_i is an FG-homomorphism, since for $v \in V$ with $v = u_1 + \ldots + u_r$ ($u_j \in U_j$ for all j), and $g \in G$, we have

$$(vg)\pi_i = (u_1g + \ldots + u_rg)\pi_i = u_ig = (v\pi_i)g.$$

Also,

$$\nu \pi_i^2 = u_i \pi_i = u_i = \nu \pi_i,$$

so $\pi_i^2 = \pi_i$. Thus π_i is a projection (see Definition 2.30).

We now present a technical result concerning sums of irreducible FG-modules which will be used at a later stage.

7.12 Proposition

Let V be an FG-module, and suppose that

$$V = U_1 + \ldots + U_r$$

where each U_i is an irreducible FG-submodule of V. Then V is a direct sum of some of the FG-submodules U_i .

Proof The idea is to choose as many as we can of the FG-submodules U_1, \ldots , U_r so that the sum of our chosen FG-submodules is direct. To this end, choose a subset $Y = \{W_1, \ldots, W_s\}$ of $\{U_1, \ldots, U_r\}$ which has the properties that

$$W_1 + \ldots + W_s$$
 is direct (i.e. equal to $W_1 \oplus \ldots \oplus W_s$), but $W_1 + \ldots + W_s + U_i$ is not direct, if $U_i \notin Y$.

Let

$$W = W_1 + \ldots + W_s$$
.

We claim that $U_i \subseteq W$ for all i. If $U_i \subseteq Y$ this is clear, so assume that $U_i \notin Y$. Then $W + U_i$ is not a direct sum, so $W \cap U_i \neq \{0\}$. But $W \cap U_i$ is an FG-submodule of U_i , and U_i is irreducible; therefore $W \cap U_i = U_i$, and so $U_i \subseteq W$, as claimed.

Since $U_i \subseteq W$ for all i with $1 \le i \le r$, we have $V = W = W_1 \oplus \cdots \oplus W_s$, as required.

Finally, we remark that if V_1, \dots, V_r are FG-modules, then we can make the external direct sum $V_1 \oplus \dots \oplus V_r$ (see Chapter 2) into an FG-module by defining

$$(v_1,\ldots,v_r)g=(v_1g,\ldots,v_rg)$$

for all $v_i \in V_i$ $(1 \le i \le r)$ and all $g \in G$.

Summary of Chapter 7

1. If V and W are FG-modules and $\vartheta: V \to W$ is a linear transformation which satisfies

$$(\nu g)\vartheta = (\nu \vartheta)g$$

for all $v \in V$, $g \in G$, then θ is an FG-homomorphism.

- 2. Kernels and images of FG-homomorphisms are FG-modules.
- 3. Isomorphic FG-modules correspond to equivalent representations.

Exercises for Chapter 7

- 1. Let U, V and W be FG-modules, and let θ : $U \to V$ and ϕ : $V \to W$ be FG-homomorphisms. Prove that $\theta \phi$: $U \to W$ is an FG-homomorphism.
- 2. Let G be the subgroup of S_5 which is generated by (1 2 3 4 5). Prove that the permutation module for G over F is isomorphic to the regular FG-

module.

3. Assume that V is an FG-module. Prove that the subset

$$V_0 = \{ v \in V : vg = v \text{ for all } g \in G \}$$

is an FG-submodule of V. Show that the function

$$\vartheta: v \to \sum_{g \in G} vg \quad (v \in V)$$

is an FG-homomorphism from V to V_0 . Is it necessarily surjective?

- 4. Suppose that V and W are isomorphic FG-modules. Define the FG-submodules V_0 and W_0 of V and W as in Exercise 3. Prove that V_0 and W_0 are isomorphic FG-modules.
- 5. Let G be the subgroup of S_4 which is generated by (1 2) and (3 4). Is the permutation module for G over F isomorphic to the regular FG-module?
- 6. Let $G = C_2 = \langle x : x^2 = 1 \rangle$.
 - (a) Show that the function

$$\theta: \alpha 1 + \beta x \to (\alpha - \beta)(1 - x) \quad (\alpha, \beta \in F)$$

is an FG-homomorphism from the regular FG-module to itself.

- (b) Prove that $\theta^2 = 2\theta$.
- (c) Find a basis \mathcal{B} of FG such that

$$[\vartheta]_{\mathscr{B}} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}.$$