ELECTRONICS 1
ELECTRONICS FOR INTERACTIVE MEDIA DESIGN
LES5

MOTORS

WHAT MAKES MOTORS MOVE?

ELECTROMAGNETISM

To create a magnet or magnetic field: current through a wire.

ELECTROMAGNET

ELECTROMAGNET

KINDS OF MOTORS

DC Brush Motors
DC Brushless Motors
Servo motor
Stepper Motor Bipolar
Stepper Motor Unipolr

DC BRUSHED MOTOR

DC BRUSHED MOTOR

DC BRUSHED MOTOR

DC Motors - Brushed VS Brushless

BRUSHLESS MOTOR

BRUSHLESS MOTOR

SERVO MOTOR

SERVO MOTOR

DC Motor (BRUSHED) - SCHEMATIC - WRONG

DC Motor (BRUSHED) - SCHEMATIC - WRONG

DC Motor (BRUSHED) - SCHEMATIC

THREE TERMINALS: SOURCE GATE DRAIN

MOSFET N-CHANNEL

IF VGS = 0V
=> OPEN LOOP, NO CURRENT

IF VGS = 5V
=> CLOSE LOOP, CURRENT

DC Motor (BRUSHED) - SCHEMATIC

DC Motor (Brushed) - Sketch

```
dc_motor
Dc Motor
Emma Pareschi
November 2017
int motorControl = 11;
void setup() {
 // put your setup code here, to run once:
  pinMode(motorControl, OUTPUT);
void loop()
 // put your main code here, to run repeatedly:
  for(int x = 0; x \le 255; x+=5){
      analogWrite(motorControl, x);
      delay(50);
    for(int x = 255; x >= 0; x-=5){
      analogWrite(motorControl, x);
      delay(50);
}
```

DC Motor (BRUSHED) - SCHEMATIC

TIME TO SOLDER AND MAKE YOUR FIRST SHIELD

SOLDERING

Do: Touch the iron to the component leg and metal ring at the same time.

Do: While continuing to hold the iron in contact with the leg and metal ring, feed solder into the joint.

Don't: Glob the solder straight onto the iron and try to apply the solder with the iron.

Do: Use a sponge to clean your iron whenever black oxidization builds up on the tip.

A

Solder flows around the leg and fills the hole - forming a volcano-shaped mound of solder.

В

Error: Solder balls up on the leg, not connecting the leg to the metal ring. Solution: Add flux, then touch up with iron.

C

Error: Bad Connection (i.e. it doesn't look like a volcano)
Solution: Flux then add solder.

D

Error: Bad Connection...and ugly...oh so ugly. Solution: Flux then add solder.

Ε

Error: Too much solder connecting adjacent legs (aka a solder jumper).
Solution: Wick off excess solder.

SOLDERING

DC Motor (BRUSHED) - SCHEMATIC

ASSIGNMENT

- ADD A SWITCH, OR ANY OTHER SENSOR, TO THE SHIELD.
- PROGRAM THE BOARD SO THE MOTOR REACT BASED ON THE READING FROM THE SENSOR
- MAKE A SYSTEM THAT USE THE ARDUINO+SHIELD TO OPERATE, FOR EXAMPLE: A BOX, A MOTORIZED PINWHEEL, A GEAR SYSTEM.
- DOCUMENT THE PROCESS AND THE RESULT

SOURCES AND LICENCE

Motors

https://learn.sparkfun.com/tutorials/motors-and-selecting-the-right-one

https://learn.sparkfun.com/tutorials/hobby-servo-tutorial

LICENCE

EXCEPT WHERE OTHERWISE NOTED, THIS WORK IS LICENSED UNDER: https://creativecommons.org/licenses/by/4.0/

