(a)

u	v	Path	b(P)
а	b	aceb	4
а	С	ac	4
а	d	acd	4
а	е	ace	4
b	С	bec	5
b	d	becd	5
b	е	be	7
С	d	cd	6
С	е	ce	5
d	е	dce	5

(b)

Blackened edges form a maximum spanning tree. We modify Prim's algorithm:

and keep(v, z) as metadata

return T

$$//$$
 m = # edges

Alternate approach: Run a pre-processing step to negate weights of all edges. Resulting tree would be maximum spanning tree for original input.

Runtime

$$O(n \log n + m \log n) = O(m \log n)$$
 as $m > n$

Correctness

Prove Prim outputs a spanning tree

Proof: At each iteration i, $T_{prim.i}$ spans L_i AND is acyclic.

By induction: Holds for base case s

Ind Hyp. $T_{prim,k}$ spans L_k and is acyclic.

Prim picks the max edge (u, v) from $L_k to R_k$.

By IH: u has a path to every vertex in L_k and vice versa

=> with addition of (u, v), v has a path to every vertex L_k and vice versa

 $\Rightarrow T_{prim,k+1}$ is spanning.

 $T_{prim,k+1}$ is acyclic because (u, v) is the first edge from L_k to R_k (by the lonely edge corollary).

Prove T_{prim} is a MST

Using MST Cut Property:

Prim looks at n-1 different cuts. Add n-1 edges that every MST includes.

Since any spanning tree includes n-1 edges, T_{prim} is the MST

(with distinct edge weights this proof also proves the uniqueness of MST).

(c)

Assumption: Graph remains connected after removing edge e.

Case 1. e was not in MST. We don't need to do anything here.

Case 2. e was in MST. For the two vertices connected by u and v, we can find another edge with max weight that connects u and v which does not yield a cycle. We simply need to loop over all edges to find the new edge.

Runtime

O(|E|) as it simply involves looping over all edges.

Correctness

Case 1. We already have the optimal MST solution of which e is not a part. Removing e would not affect our solution.

Case 2. Since we choose the max weight edge between u and v, we should end up with an MST.

(a)

- 1. Construct a new graph G with vertices V and edges from all paths.
- 2. Use Dijkstra's algorithm on G with given s and t to find the shortest path.

(b)

Memory

- P[i,j]: length of shortest single s-t path that exists in graphs $G_i \dots G_j$.
- C[i,j]: cost of shortest path for graphs $G_i \dots G_j$ with the last switch of path at G_j and G_{j+1} .

Base Case

- P[i,j] = length(partA(i,j)) # store None if path doesn't exist
- C[1..k, 0] = P[1, 1..k]

Recurrence

```
C[i,j] = \min(C[0..j,j] + (i-j) * P[j+1,i]) + \lambda \text{ for switch}
for i > j
```

Complexity

- To generate table P: two nested loops with Dijkstra's $O(E \log V)$ complexity. Total: $O(k^2 * O(E \log V))$
- Recurrence: $O(k^3)$
- Total complexity: $O(k^2 * O(E \log V) + k^3)$

Correctness

If a switch occurs between i and i+1, we know G_{i+1} to G_k are the same path. For < i, we solve the subproblem. We add λ for each switch.

And thus we're able to find the sequence of paths with minimal cost.

(a)

MAXCUT-DECISION instance

An undirected graph G = (V, E) where each edge e = uv has a positive integer weight w(uv), and a target T.

Return YES if a partition V_1 and V_2 of V exists with sum of all w(uv) where u is in V_1 and v is in $V_2 \ge T$.

MAXCUT-DECISION is in NP

Looping through all edges is complexity O(E). Therefore there can be a way to verify the certificate (solution) in polynomial time.

```
verify-MCD-cert(V1, V2, T):
    sum = 0
    for u in V1:
        for v in V2:
            sum += w(uv)

if sum >= T:
    return YES
    else:
        return NO
```

Therefore MAXCUT-DECISION is in NP.

(b)

We can find largest T (in range) in polynomial time by doing binary search using MAXCUT-DECISION and different values of T (given solution for MAXCUT-DECISION can be found in polynomial time). Given a T, we can find partitions V_1 and V_2 in polynomial time. For every edge in G, we remove it and pass G through MAXCUT-DECISION to see if the result changes. If it doesn't, the edge was not a part of the partition. If it does, the edge was a part of the partition and we put the vertices in different sets.

Therefore MAXCUT can be solved in polynomial time if MAXCUT-DECISION can be.

(a)

Meeting Scheduling is NP since the certificate (solution) can be verified in polynomial time to see if it satisfies the problem.

Following is a reduction from NAE-3SAT to Meeting Scheduling to show it is NP-complete (NAE-3SAT is NP-complete). Let S be the family of subsets $S_1, ..., S_l$.

NAE-3SAT consists of m clauses $\{C_1, ..., C_m\}$ over n variables $\{x_1, ..., x_n\}$. We create our instance (S, M, K_1, K_2) . (We only consider two values for $K = \{1, 2\}$ as it suffices.)

Let:

 $M = \{x_1, \dots, x_n, \sim x_1, \dots, \sim x_n\}$ # All variables and their negations. \sim denotes a negation S consist of two sub-collections:

- 1. $\{\{x_1, \sim x_1\}, ..., \{x_n, \sim x_n\}\}$ # Collection of sets of all variables each with their negation
- 2. {{Literals in C_1 }, ..., {Literals in C_m }} # Collection of literals from every clause

 $\it M$ can be split in the required way iff the NAE-3SAT problem has an assignment that makes it yield true.

There exists a partition of M into two subsets K_1 , K_2 such that all S_1 , ..., S_l are split by this partition. Let K_1 correspond to variables in NAE-3SAT problem that are true and K_2 to ones that are false.

Therefore the Meeting Scheduling problem is NP-complete.

(b)

Since we reduced NAE-3SAT to Meeting Scheduling in Part 1, we can reduce 3SAT to NAE-3SAT to show Meeting Scheduling is NP-complete (3SAT is NP-complete).

3SAT consists of m clauses $\{C_1, ..., C_m\}$. For each clause $(x_i \ or \ x_j \ or \ x_k)$, have a variable c_l and add two clauses to our instance as follows:

$$(x_i \text{ or } x_j \text{ or } c_l)$$
 and $(x_k \text{ or } \sim c_l \text{ or } F)$
where F = False

If x_i or x_j are true, then c_l can be false and $\sim c_l$ will make the second clause true. If x_k was true, then c_l can be true. If all of x_i, x_j, x_k , are true, then c_l can be false.

To replace constant F with a variable, define x_T and x_F and add another clause: $(x_T \ or \ x_T \ or \ x_F)$ where one of $\{x_T, \ x_F\} = F$ and $x_T \neq x_F$.

This yields an acceptable NAE-3SAT solution and therefore NAE-3SAT is NP-complete. Thus, Meeting Schedule is NP-complete.