Funções Vectoriais de Várias Variáveis

$$f: \mathbb{R}^n \to \mathbb{R}^p$$

$$x = (x_1, \dots, x_n) \hookrightarrow f(x) = (f_1(x_1, \dots, x_n), \dots, f_p(x_1, \dots, x_n))$$

Definição (Limite segundo Cauchy)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}$. Diz-se que f tende para b quando x tende para a ou que f tem limite b em a e escreve-se $\lim_{x\to a}f(x)=b$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \cap V_{\epsilon}(a) \Rightarrow f(x) \in V_{\delta}(b)$$

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land \|x - a\| < \epsilon \Rightarrow \|f(x) - b\| < \delta$$

Funções de Várias Variáveis

Teorema

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}.$ O limite de f quando x tende para a é $b=(b_1,\ldots,b_p)$ se e só se:

$$lim_{x\to a}f_i(x) = b_i, \forall i \in \{1,\dots,p\}$$

Exemplo

Teorema (Limite segundo Heine)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}$. Temos $\lim_{x\to a}f(x)=b$ se e só se para qualquer sucessão (x_m) de elementos de D a convergir para a, a sucessão $(f(x_m))$ converge para b.

Funções de Várias Variáveis - Outros limites

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e suponhamos que D é tal que faz sentido considerar $\|x\|$ tão grande quanto se queira. Diz-se que $\lim_{\|x\|\to+\infty}f(x)=b$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x|| > \epsilon \Rightarrow ||f(x) - b|| < \delta$$

Definição

Seja
$$f:D\subseteq\mathbb{R}^n o\mathbb{R}^p$$
 e $a\in\overline{D}.$ Diz-se que $\lim_{x o a}f(x)=\infty$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x - a|| < \epsilon \Rightarrow ||f(x)|| > \delta$$

Função Contínua

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in$. Diz-se que f é continua em a se existir $\lim_{x\to a}f(x)$.

Notas:

- Como consequência $\lim_{x\to a} f(x) = f(a)$.
- Se f não é contínua em $a \in D$ então f diz-se descontínua em a.

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $A\subseteq D$. Diz-se que f é contínua em A se f é contínua em todos os pontos de A.

Propriedades das Função Contínuas

Teorema

Sejam $f,g:\mathbb{R}^n\to\mathbb{R}^p$ funções contínuas em $a\in D_f\cap D_g$. Então f+g,f-g e f.g também são contínuas em a e se $g(a)\neq 0$ então $\frac{f}{g}$ também é contínua em a.

Teorema

Sejam $g:D_g\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $f:D_f\subseteq\mathbb{R}^p\to\mathbb{R}^q$ contínuas em $a\in D_g$ e em $g(a)\in D_f$, respectivamente. Então $f\circ g$ é contínua em a.

Exemplos: Projecções, constantes, polinómios,...

Prolongamento por continuidade

Definição

Sejam $f, \bar{f}: \mathbb{R}^n \to \mathbb{R}^p$ duas funções. Diz-se que \bar{f} é um prolongamento de f se:

- $D_f \subset D_{\bar{f}}$
- $\forall x \in D_f, \bar{f}(x) = f(x)$

Teorema

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^p$ e $a \in \mathbb{R}^n \setminus D$. A função f é prolongável por continuidade ao ponto a se e só se existir $\lim_{x\to a} f(x)$.

Exemplo

Descontinuidade removível

Definição

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^p$ uma função descontínua em $a \in D$. Diz-se que f tem uma descontinuidade removível no ponto a se existir uma função g, contínua em a, que apenas difere de f em a.