

Dargier Antoine

Ponchon Martin

06/02/2023

Introduction, Motivation & Related Work

Methodology

Dataset

French Single Speaker Speech Dataset: 8,600 audios of Les Misérables and Arsène Lupin contre Herlock Sholmes and their transcripts in French

Metric

$$WER = \frac{S + D + I}{N}$$

where:

- S = number of substitutions (word replaced by another)
- D = number of deletions (word removed)
- I = number of insertions (word added)
- N = number of words in the reference

Traditional ASR pipeline

Acoustic Model: audio to phonemes

Pronunciation Model: phonemes to word

HH AH L OW Hello

Language Model: Word to sentence

Hello

The CNN model

Preprocessing

Compute Melfrequency cepstral coefficients (MFCC) features on audios: short term power spectrum of a sound Building the train/test sets

Build input and output of the model computing the MFCC and converting vectors into binary matrix

Building the CNN model

Conv2D –
MaxPooling2D –
Conv2D –
MaxPooling2D –
Flatten – Dense –
Dropout – Dense

Validation

8 hours of training on 2,000 audios of Kaggle dataset

Results

Results not usable because the learning time was too limited

WER > 20% in the literature

The CTC model

Characteristics:

- Trained on labelled data (i.e. transcribed audio)
- Implemented as a grapheme based model, i.e. working with characters directly instead of phonemes
- Solves the issue of different lengths between input and output transcription (using blank characters)

Idea:

- Pre-process raw audio to obtain a simple **spectrogram** (FFT of small windows of waveform) to get frequency content
- Use RNN, whose output neurons encode a **distribution over symbols** $c \in \{A, B, ..., space, blank\}$
- Define a **mapping** encoding $c \mapsto y$ word: the transcription is obtained by removing duplicates and blank characters: HHH_EE_LL_LO \mapsto HELLO

Network parameters are updated with **backpropagation** and gradient descent to **maximize likelihood of choosing the correct label**: $L(\theta) = \log \mathbb{P}(y^{*(i)}|x^{(i)}) = CTC(c^{(i)}, y^{*(i)})$

Results

Results not usable because insufficient processing power

WER = 16% in the literature

Wav2Vec2.0

Developed by Meta in 2019

Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli

Advantages:

- **Self-supervised learning** so train without labelled data, low-resource: trained with 53k hours of unlabelled data, and just 10 minutes of labelled data. Trained on CommonVoice
- Easy-implementation with HuggingSound
- Used for several languages even without a lot of transcribed audios

Architecture:

CNN with 7 layers to learn the latent speech representations Z

Quantization: try to match the Z with codebooks, sort of $\frac{Context}{representations}$ $\mathcal C$ phonemes

Transformers to learn contextual representations

Feature encoder: temporal convolution followed by a GELU activation function

Training: add noise to the audios so that the model learns to distinguish the voice

Decoder: 2 language models: 4-gram and transformer

Results

Announced: **WER=1.8** on clear data, **WER=3.3** on others

Our test: on 582 audios of 10s, **WER=21.7%** (because of the punctuation)

Conclusion

- Construct and test our own models
- Familiarize ourselves with traditional ASR
- Understand state-of-the-art algorithm

- Not usable results because insufficient processing power
- Transcriptions are very slow (Real Time Factor = 1)