Breve histórico do estudo de variação

'Modularidade: Conectando padrões e processos em evolução multivariada'

Monique N. Simon IB – USP monique.simon@usp.br

Why study variation in biology?

Why study variation in biology?

Where does variation comes from?

How is variation organized in populations?

What are the evolutionary consequences of a particular organization of variation?

VARIATION

A CENTRAL CONCEPT IN BIOLOGY

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

OR THE

PRESERVATION OF FAVOURED RACES IN THE STRUGGLE FOR LIFE.

By CHARLES DARWIN, M.A.,

FELLOW OF THE ROYAL, GEOLOGICAL, LINNÆAN, ETC., SOCIETIES;
AUTHOR OF 'JOURNAL OF RESEARCHES DURING H. M. S. BEAGLE'S VOYAGE
ROUND THE WORLD.'

LONDON:
JOHN MURRAY, ALBEMARLE STREET.
1859.

The right of Translation is reserved.

38

CONTENTS.

Additions and Corrections, to the Sixth Edition ... Page ix Historical Sketch xiii Introduction 1

CHAPTER L.

VARIATION UNDER DOMESTICATION.

CHAPTER IL.

VARIATION UNDER NATURE.

Breeds of Pig

LES VACHES / COWS

PART CHAPMEN WHEN CHEEDSHIFT OF COME. THE CLASS SAFERS

Wide Switcher Days School Relation Of the ARM SW

Darwin and Variation

"Great as are the differences between the breeds of pigeons, I am fully convinced that all are descended from the rock pigeon, Columbia livia."

Fig. 24.—Skulls of Pigeons viewed laterally, of natural size. A. Wild Rock-pigeon, Columba livia. B. Short-faced Tumbler. C. English Carrier. D. Bagadotten Carrier.

HAECKEL'S EMBRYOS

Wallace and Variation

On the Phenomena of Variation and Geographical Distribution as illustrated by the Papilionidæ of the Malayan Region. 1864

"I find as a general rule that the constancy of species is in an inverse ratio to their range. (...) When they extend to many islands, considerable variability appears; and when they have an extensive range over a large part of the Archipelago, the amount of unstable variation is very large".

Bateson and Origin of Variation (1890)

Developmental rearrangements

De Vries and Origin of Variation (1894)

Coined the term 'mutation' and thought that drastic mutations could lead to new species in a single generation.

T.H. Morgan and Origin of Variation

T.H. Morgan and Origin of Variation

Y chromosome

X chromosome with white-eye gene

Parents

Female

X chromosome with red-eye gene

X-linked inheritance of eye color in Drosophila: mutation and genes are in chromosomes.

Origin of Variation: use and disuse

Diagram showing elongation of neck in giraffe according to Lamarck.

Weisman and Origin of Variation (1893)

No feedback from development to the germ-plasm.

The germ-plasm; a theory of heredity

August Weismann

Galton and the Biometricians

Quantitative Genetics

Phenotypic resemblance between parents and offspring reveals heritable variation

Weldon and Variation in Natural Populations subjected to Selection

"Such selection is, of course, indirect,' that is to say, the life or death of the individual is determined in each case by the value of a (probably large) number of correlated characters, of which the length of the peripheral radius is only one."

Pearson and statistical thinking in evolution

Redescovery of Mendelian Genetics (1900)

Discontinous variation and Independent segregation

Biometricians X Mendelians or Selectionists X Mutationists

Fisher and Multiple Loci of Small Effect (1930)

Fisher and Variance Partitioning

$$V_P = V_G + V_E$$

$$V_G = V_A + V_D + V_I$$

Aditive variance

Variance in breeding values

_

Sum of allele's mean effects

Heritable variance

Fisher's fundamental theorem of natural selection

'The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time'

'The rate of increase in fitness of any species is equal to its genetic variance in fitness'

Haldane and the Pepper moths

Haldane and
Natural
Selection
on discrete
variation

Percent of Moths on Dark Trees (5 Years)

EVOLUTION IN MENDELIAN POPULATIONS

EVOLUTION IN MENDELIAN POPULATIONS

SEWALL WRIGHT

University of Chicago, Chicago, Illinois

Received January 20, 1930

TABLE OF CONTENTS

m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAGE
Theories of evolution	
Variation of gene frequency	100000000000000000000000000000000000000
Simple Mendelian equilibrium	
Mutation pressure.	
Migration pressure	
Selection pressure	. 101
Equilibrium under selection	. 102
Multiple allelomorphs	. 104
Random variation of gene frequency	. 106
Rate of decrease in heterozygosis	. 107
The population number	. 110
The distribution of gene frequencies and its immediate consequences	. 111
No mutation, migration or selection	
Nonrecurrent mutation	
Reversible recurrent mutation	. 121
Migration	3.55
Irreversible recurrent mutation.	
Selection	
General formula	
The distribution curves	
Dominance ratio.	
The mean and variability of characters.	
The evolution of Mendelian systems	
Classification of the factors of evolution	
Lability as the condition for evolution	
Control of evolution	
Agreement with data of evolution	0 1555
"Creative" and "emergent" evolution	
SUMMARY	. 155
LITERATURE CITED	. 158

THEORIES OF EVOLUTION

One of the major incentives in the pioneer studies of heredity and variation which led to modern genetics was the hope of obtaining a deeper insight into the evolutionary process. Following the rediscovery of the Mendelian mechanism, there came a feeling that the solution of problems of evolution and of the control of the process, in animal and plant breeding

Wright and Epistasis

Waddington and the Epigenetic Landscape (1942)

Canalized developmental pathways

"... each developmental pathway depends on the interaction of a certain set of genes."

The theory of Morphological Integration/Modularity (1958, 1960)

noto by Ruth O. Hotton

Raissa Berg

Pmitt P.O load

Olson and Vertebrate Paleontology

Phenotypic Correlations = relations among traits

Olsson and Miller (1958)

Integration within sets

"It seemed evident . . . that character changes occurring in evolution of species could not be considered to be independent of each other and that studies which did not consider this dependency ignored a significant aspect of change . . ."

(Olson and Miller, 1958).

Berg and independence among Correlation Pleiads

Modularity: semi-independence between sets

'In all the instances of existence of pleiades it was the flower that had become free of the correlation interdependences within the plant organism'.

(Berg 1960)

Cheverud 1982: Cayo rhesus macaques

Functional sets

TABLE 5. Average phenotypic, genetic, and environmental correlations and squared correlations within and between F-sets.

Correlation	Within F-set r	Between F -set r	Within F -set r^2	Between F -set r^2
Phenotypic	0.269	0.105	0.127	0.023
Environmental	0.281	0.093	0.228	0.092
Genetic	0.270	0.138	0.385	0.248
Genetic (neuro.)	0.370	0.110	0.517	0.159
Genetic (facial)	0.123	-0.042	0.190	0.264

'Individual phenotypic characters and genes only evolve within the larger context of the organism in which they occur. Therefore, the organisms are the integrated functional units which evolve.'

Lewontin 1974

$$E(P_1) \xrightarrow{T} E(P_1^*)$$

Modular Genotype – Phenotype Map

Ernst Mayr

'In short, variation is an endless source of challenging questions'

Quiz

Cite uma diferenca entre a genetica mendeliana e a genetica quantitativa.