Predicting the fraud in self-checkout stores

STAT/MATH 8456 - CONTEST #3

🩋 Hi, my name is Bikram Maharjan

Presentation Topic: Predicting the fraud in self-checkout stores

Date: Thursday, May 5th 2020

Time: 4:00 PM

The goal of the presentation

- Steps I took to predict the fraud in self-checkout stores or the fraudulent purchases
- Various Machine Learning Models
- The optimal solution I came up with using 3 different models

Model [design] Matrix

- The data was ready to be modeled I did not introduce new variables
- There were no NA values

```
# Read train and Test dataset
train <- read.csv('../input/train.csv')
test <- read.csv('../input/test.csv')

sum(is.na(train)) + sum(is.na(test))

0</pre>
```

I used all the available predictors except for id

Model Selection

- I attempted to find the best prediction using the following 3 models
 - Support Vector Matrix
 - Random Forest
 - XGBoost
- The optimal prediction was given by XGBoost, followed by Random Forest and then Support Vector Matrix
- The score also was also dependent on the time I kept on each model
 - Such as parameter tuning and feature selections

Model Selection: Random Forest

- This is the first model I used
- Gave an prediction accuracy of **0.97690**

Parameter Tuning

- mtry = 4

- **Ntree** = 750

Kaggle Public Score: 0.97690

Model Selection: Support Vector Matrix

- AKA SVM
- Didn't put a lot of time on it
- Mostly experimenting it

Parameter Tuning

- kernel = "polynomial"
- **cost** = 5

Kaggle Public Score: **0.6321**

Prediction Accuracy was 0.6321

The amazing - XGBoost

- XGBoost stands for eXtreme Gradient Boosting
- Most of the time was spent using XGBoost
- Highest score:

- Public Leaderboard: **0.99083**

- Private Leaderboard: 0.99053

Highest score (after presentation)

Public Leaderboard: 0.99221

Private Leaderboard: 0.99231

The amazing - XGBoost

- Why use XGBoost?
- Used for both Regression and Classification problems
- Works really fast Speed and Execution
 - Memory optimization
 - Cache optimization
 - In comparison with Random Forest
 - Very Fast

XGBoost - Data Preparation

XGBoost

Step#1

```
# Read Train and Test dataset
train <- read.csv('../input/train.csv')
test <- read.csv('../input/test.csv')</pre>
```

Step#2

```
# - Convert categorical data into factor
# - XGBoost only accepts numerical data

train$credit <- as.factor(train$credit)
test$credit <- as.factor(test$credit)</pre>
```

XGBoost - Cross Validation

Step#3

```
# - Use Cross Validation with the Train data
# - Partation the data

split_data <- sample(2, nrow(train), replace = T, prob = c(0.8, 0.2))

trainCV <- train[split_data==1,]

testCV <- train[split_data==2,]</pre>
```

Step #4 [One Hot Encoding - Train / Test]

XGBoost - Cross Validation

Step #5

```
# - Number of class
# - Parameters
nc <- length(unique(train_label))</pre>
```

```
# - Best parameter for XGBoost
# - score: 0.99221 [Private Leaderboard]
xgb <- xgboost(data = train_matrix,
    label = train_label,
    eta = 1,
    max_depth = 3,
    nround=600,
    subsample = 1,
    colsample_bytree = 1,
    eval_metric = "mlogloss",
    objective = "multi:softprob",
    num_class = nc,
    nthread = 5)</pre>
# Put the evaluation_log into e to plot the numeric data
e <- data.frame(xgb$evaluation_log)
```


XGBoost - Prediction / Confusion Matrix

Step #6 - Final Step

0.993725724529429

XGBoost - Parameter Tuning

- With the information from the Model Validation
- Tested on the entire test dataset
- The best parameter tuning was relevant on the following:

```
# - Best parameter for XGBoost
# - score: 0.99221 [Private Leaderboard]
xgb <- xgboost(data = train_matrix,
   label = train_label,
   eta = 1,
   max_depth = 3,
   nround=600,
   subsample = 1,
   colsample_bytree = 1,
   eval_metric = "mlogloss",
   objective = "multi:softprob",
   num_class = nc,
   nthread = 5)
# Put the evaluation_log into e to plot the numeric data
e <- data.frame(xgb$evaluation_log)
```

XGBoost - Parameter Tuning

- Focus parameters

Tree Booster

- eta (default=0.3)
 - Controls the learning rate, the rate at which our model learns the pattern
- nrounds[default=100]
 - Number of iteration for classification, it's similar to the number of tree to grow
- max_depth[default=6]
 - Controls the depth of the tree, larger depth, more complex model, high overfitting
- subsample[default=1]
 - Controls number of samples observation to the tree
- colsample_bytree(default=1)
 - Controls the number of features variables supplied to the tree

Model Result

XGBoost Public Leaderboard: 0.99083

Thank you for your time, I look forward to any questions you have, and hearing other presentations.