

Occupancy Grid Mapping

(자율주행 핵심기술 SLAM 단기강좌)

한양대학교

남해운

(hnam@hanyang.ac.kr)

Mapping

- Why maps?
 - Learning maps is one of the fundamental problems in mobile robotics
 - Maps allow robots to efficiently carry out their tasks and allow localization
 - Successful robot systems rely on maps for localization, path planning, activity planning etc.
- Mapping is to calculate the most likely map given the sensor data

$$m^* = \underset{m}{\operatorname{argmax}} p(m \mid z_{1:t}, u_{1:t})$$

Mapping and Localization

- So far we have learned
 - how to estimate the pose of the vehicle given the control and the measurement, and the map.
- Mapping involves to simultaneously estimate the pose of the vehicle and the map.
- How to calculate a map given we know the pose of the vehicle?

Problems in Mapping

- Sensor interpretation
 - How do we extract relevant information from raw sensor measurement?
 - How do we represent and integrate this information over time?
- Robot locations have to be estimated
 - How can we identify that we are at a previously visited place?
 - This problem is the so-called data association problem.

Problems in Mapping

Occupancy grid map

(a) Raw range data, position indexed by odometry.

(b) Occupancy grid map.

Mapping with Known Poses

Graphical model

Graphical model of mapping with known poses. The shaded variables are known. The goal of mapping is to recover the map.

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Discretize the world into cells
- Represent environment by grids
- Rigid grid structure
- Each cell is assumed to be occupied or empty
- Non-parametric model
- Require substantial memory resources
- Do not rely on a feature detector
- Represents the map as a field of random variables arranged in an evenly spaced grid

Occupancy Grid Maps

- Estimate the probability that a cell is occupied by an obstacle.
- Each cell is a binary random variable that models the occupancy of the cell
 - Cell is occupied $p(m_i) = 1$
 - Cell is empty $p(m_i) = 0$
 - Not sure $p(m_i) = 1/2$
- Key assumptions
 - Occupancy of individual grid cells is independent
 - Robot positions are known

Occupancy Grid Maps

The probability distribution of the map

$$p(m) = \prod_{i} p(m_i)$$

Example of 4x4 map

The probability of occupancy for each cell

0.7	0.2
0.6	0.1

The probability of this particular map

Estimating a Map from Data

Estimate the map given sensor data and the poses

$$p(m|z_{1:t}, x_{1:t}) = \prod_{i} p(m_i|z_{1:t}, x_{1:t})$$

- No control information and only observations are given.
- Static state binary Bayes filter

Binary random variable

Binary Bayes Filter

$$p(m_{i}|z_{1:t},x_{1:t}) = \frac{p(z_{t}|m_{i},z_{1:t-1},x_{1:t}) p(m_{i}|z_{1:t-1},x_{1:t})}{p(z_{t}|z_{1:t-1},x_{1:t})}$$

$$= \frac{p(z_{t}|m_{i},x_{t}) p(m_{i}|z_{1:t-1},x_{1:t-1})}{p(z_{t}|z_{1:t-1},x_{1:t})}$$

$$= \frac{p(m_{i}|z_{t},x_{t}) p(z_{t}|x_{t}) p(m_{i}|z_{1:t-1},x_{1:t-1})}{p(m_{i}|x_{t}) p(z_{t}|z_{1:t-1},x_{1:t})}$$

$$= \frac{p(m_{i}|z_{t},x_{t}) p(z_{t}|x_{t}) p(m_{i}|z_{1:t-1},x_{1:t-1})}{p(m_{i}) p(z_{t}|z_{1:t-1},x_{1:t-1})}$$

$$= \frac{p(m_{i}|z_{t},x_{t}) p(z_{t}|x_{t}) p(m_{i}|z_{1:t-1},x_{1:t-1})}{p(m_{i}) p(z_{t}|z_{1:t-1},x_{1:t})}$$
(Markov)

 $p(z_t|m_i, x_t) = \frac{p(z_t|x_t) p(m_i|z_t, x_t)}{p(m_i|x_t)}$

Binary Bayes Filter

Do the same for the opposite event

$$p(-m_i|z_{1:t},x_{1:t}) = \frac{p(-m_i|z_t,x_t)p(z_t|x_t)p(-m_i|z_{1:t-1},x_{1:t-1})}{p(-m_i)p(z_t|z_{1:t-1},x_{1:t})}$$

Compute the ratio between those two

$$\frac{p(m_{i}|z_{1:t},x_{1:t})}{p(-m_{i}|z_{1:t},x_{1:t})} = \frac{\frac{p(m_{i}|z_{t},x_{t})p(z_{t}|x_{t})p(m_{i}|z_{1:t-1},x_{1:t-1})}{p(m_{i})p(z_{t}|z_{1:t-1},x_{1:t})}}{\frac{p(m_{i})p(z_{t}|z_{1:t-1},x_{1:t})}{p(-m_{i})p(z_{t}|z_{1:t-1},x_{1:t})}}$$

$$= \frac{p(m_{i}|z_{t},x_{t})p(m_{i}|z_{1:t-1},x_{1:t-1})p(-m_{i})}{p(-m_{i}|z_{t},x_{t})p(-m_{i}|z_{1:t-1},x_{1:t-1})p(m_{i})}$$

$$= \frac{p(m_{i}|z_{t},x_{t})p(m_{i}|z_{1:t-1},x_{1:t-1})p(m_{i})}{1-p(m_{i}|z_{t},x_{t})} \underbrace{\frac{p(m_{i}|z_{1:t-1},x_{1:t-1})}{1-p(m_{i}|z_{1:t-1},x_{1:t-1})}} \underbrace{\frac{1-p(m_{i})}{p(m_{i})}}_{prior}$$
uses z_{t} recursive terms

Log Odds Notation

Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• p(x) is obtained as

$$p(x) = 1 - \frac{1}{1 + \exp l(x)}$$

Occupancy Mapping in Log Odds

The ratio can be written using log odds form as

$$l(m_i|z_{1:t},x_{1:t}) = \underbrace{l(m_i|z_t,x_t) + l(m_i|z_{1:t-1},x_{1:t-1}) - l(m_i)}_{\text{inverse}}$$
 recursive terms prior sensor model

In short

$$l_{t,i} = \text{inverse_sensor_model}(m_i, z_t, x_t) + l_{t-1,i} - l_0$$

inverse_sensor_model
$$(m_i, z_t, x_t) = \log \frac{p(m_i|z_t, x_t)}{1 - p(m_i|z_t, x_t)}$$


```
Algorithm occupancy_grid_mapping(\{l_{t-1,i}\}, x_t, z_t)

1: for all cells m_i do

2: if m_i in perceptual field of z_t, then

3: l_{t,i} = l_{t-1,i} + \text{inverse\_sensor\_model}(m_i, z_t, x_t) - l_0

4: else

5: l_{t,i} = l_{t-1,i}

6: end if

7: end for

8: return \{l_{t-1,i}\}
```


Inverse Sensor Model

In the following, consider the cells along the optical axis (red line)

Occupancy Value

For sonar sensors

Occupancy Value

For laser range finders

distance between sensor and cell under consideration

Incremental Update

Example

