Risk-Aware Sparse Predictive Control

Zhicheng Zhang and Yasumasa Fujisaki Graduate School of Information Science and Technology Osaka University

IFAC World Congress, 2023

Open Invited Track

July 10, 2023, Yokohama, Japan

Model Predictive Control: Receding Horizon Scheme

- MPC seems like playing chess and planning moves ahead

- Shift the motivation idea from chess principle to "control theory"
 - Finite rolling horizon control (RHC)
 - Take the first action only
 - Real-time (Online) optimization
- ♣ MPC = repeated open-loop control

[Rawlings & Mayne & Diehl (2017)]; picture from wiki

Control System Description

Uncertain Discrete Linear Time-invariant (LTI) System

Consider an uncertain discrete LTI system

$$x_{t+1} = A(\delta)x_t + B(\delta)u_t + Ew_t, \quad x_t \neq 0$$

- state $x_t \in \mathbb{R}^n$, control input $u_t \in \mathbb{R}^m$, disturbances $w_t \in \mathcal{W} \subseteq \mathbb{R}^{n_w}$
- matrices $A(\delta) \in \mathbb{R}^{n \times n}$, $B(\delta) \in \mathbb{R}^{n \times m}$ w.r.t. model uncertainty $\delta \in \Delta$

- Mild Assumptions

- The pair $(A(\delta), B(\delta))$ is stabilizable for any $\delta \in \Delta \subseteq \mathbb{R}^{n_{\delta}}$.
- ullet The sets Δ and ${\mathcal W}$ are bounded.
- The uncertainties δ and w_t are i.i.d., randomly extracting from the probability \mathbb{P}_{δ} on Δ (resp. \mathbb{P}_w on \mathcal{W}).

Predictive System: Modeling and Constraints

Prediction System Model

Given the state x_t observed at time t, the predicted state is modeled as

$$x_{j+1|t} = A(\delta)x_{j|t} + B(\delta)u_{j|t} + Ew_{j|t}, \quad x_{0|t} = x_t, \quad j = 0, 1, \dots, N-1$$

- subscript $\bullet_{i|t}$ is predictive instants for state x (resp. u, w).
- e.g., $x_{i|t}$ denotes the jth step forward prediction of the state at time t.

- "Soft State + Hard Input" Constraints

$$\mathbb{P}\left\{\theta\in\Theta: \frac{Cx_{j+1|t}}{c} \leq c, \ j=0,1,\ldots,N-1\right\} \geq 1-\epsilon \ , \quad \boxed{Du_{j|t}}$$

- matrix C w.r.t. vector c is with appropriate size (resp. D w.r.t. d)
- a desired level of accuracy or risk $\epsilon \in (0,1)$
- random variable $\theta \doteq (\delta, \bar{w}), \ \theta \in \Theta \doteq \Delta \times \mathcal{W}^N, \ \Theta \stackrel{\text{i.i.d.}}{\sim} \mathbb{P} \doteq \mathbb{P}_{\delta} \times \mathbb{P}^N_{\omega}$

Sparse Predictive Control: Minimum Control Effort

- MOTIVATION: Minimum pieces for a checkmate in chess.

Goal of Predictive Control

Find a "risk-aware" control sequence that steers the state from the initial state $x_{0|j}$ towards a prescribed terminal set causing a joint soft constraint

$$\mathbb{P}\left\{h(\bar{u},\theta)\leq 0\right\} \doteq \mathbb{P}\left\{\frac{C_f x_{N|t} \leq c_f}{C_f x_{N|t}} \leq c, \ j=0,1,\ldots,N-1\right\} \geq 1-\epsilon,$$

 $\operatorname{QUESTION}:$ Minimum control effort in control system.

• Sparsity-promoting for predictive control (SPC) \overline{u} $J(\overline{u}) = \sum_{j=0}^{N-1} \|u_{j|t}\|_1 = \|\overline{u}\|_1, \stackrel{\text{RHC}}{\Longrightarrow} u_t \doteq u_{0|t} = \underbrace{\begin{bmatrix}I_m & 0_{m \times (N-1)}\end{bmatrix}}_{F} \underbrace{\begin{bmatrix}u_{0|t} \\ \vdots \\ u_{N-1|t}\end{bmatrix}}_{F}$

[Nagahara & Østergaard & Quevedo (2016)]

Risk-Aware Sparse Predictive Control

Chance-Constrained Sparse Optimization Problem (CCSP)

Solving a risk-aware sparse predictive control for uncertain discrete LTI system amounts to a chance-constrained sparse optimization problem

$$\begin{split} \min_{\bar{x},\bar{u}} & & \|\bar{u}\|_1 \\ \text{s.t.} & & x_{j+1|t} = A(\delta)x_{j|t} + B(\delta)u_{j|t} + Ew_{j|t}, \\ & x_{0|t} = x_t, \quad j = 0, 1, \dots, N-1, \\ & & \mathbb{P}\{C_fx_{N|t} \leq c_f, \ Cx_{j+1|t} \leq c, \ j = 0, 1, \dots, N-1\} \geq 1-\epsilon, \\ & & Du_{j|t} \leq d, \quad j = 0, 1, \dots, N-1, \end{split}$$

- Pros: Problem is well-defined at hand.
- ullet Cons: Risk-aware (i.e., CCSP) solution $ar{u}^*_\epsilon$ is hard to calculate exactly.
- Oracle: Data-driven sampling/scenario approach.

[Tempo & Calafiore & Dabbene (2013); Campi & Garatti (2018)]

Data-Driven Sparse Predictive Control

 \bigstar Data-driven sampling: generate scenarios $\{\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}\} \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$

Random Convex Program (RCP)

Using data-driven sampling, a risk-aware SPC reduces to data-driven SPC, which is a random convex program (resp. CCSP)

$$\begin{split} \min_{\bar{x},\bar{u}} & & \|\bar{u}\|_{1} \\ \text{s.t.} & & x_{j+1|t}^{(i)} = A(\delta^{(i)})x_{j|t}^{(i)} + B(\delta^{(i)})u_{j|t} + Ew_{j|t}^{(i)}, \\ & & x_{0|t}^{(i)} = x_{t}, \quad j = 0, 1, \dots, N-1, \ i = 1, 2, \dots, K, \\ & & C_{f}x_{N|t}^{(i)} \leq c_{f}, \quad Cx_{j|t}^{(i)} \leq c, \quad j = 0, 1, \dots, N-1, \ i = 1, 2, \dots, K, \\ & & Du_{j|t} \leq d, \quad j = 0, 1, \dots, N-1, \end{split}$$

- ullet Q: Is data-driven solution $ar{u}_K^*$ a good approximation for solution $ar{u}_\epsilon^*$?
- Q: How about sample complexity K?

Main Result

Theorem (Probabilistic Robustness Guarantee)

Given a convex uncertain function $h(\bar{u}, \theta)$. Let $\Theta^K \doteq \{\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}\}$ be a multi-sample of θ collected from probability \mathbb{P} , where K satisfies

$$\sum_{i=0}^{mN-1} {\binom{K}{i}} \epsilon^{i} (1-\epsilon)^{K-i} \leq \beta$$

for specified risk $\epsilon \in (0,1)$ and confidence $\beta \in (0,1)$. For RCP, we have

$$egin{aligned} ar{u}_{K}^{*} &= \arg\min_{ar{u}} & \|ar{u}\|_{1} \\ & ext{s.t.} & h(ar{u}, heta^{(i)}) \leq 0, \quad i = 1, 2, \dots, K, \\ & Du_{i|t} \leq d, \quad j = 0, 1, \dots, N-1. \end{aligned}$$

Then, with confidence $1 - \beta$, a probabilistic robustness guarantee

$$\mathbb{P}^{K}\{h(\bar{u}_{K}^{*},\theta)\leq 0\}\geq 1-\epsilon$$

holds true for obtained optimal input \bar{u}_{K}^{*} .

Finite Sample Complexity

Sample complexity K can be defined as [Alamo & Tempo & Luque (2010)]

$$\mathcal{K} \geq \frac{\textit{mN} - 1 + \ln(1/\beta) + \sqrt{2(\textit{mN} - 1)\ln(1/\beta)}}{\epsilon} \doteq \mathcal{K}(\textit{mN}, \epsilon, \beta).$$

Corollary (Finite Receding Horizon Risk-Aware SPC)

Let $K \geq \mathcal{K}(mN, \epsilon, \beta)$ and \bar{u}_K^* be optimal control for RCP. If $u_{j|t}^*$ is applied to the uncertain LTI dynamics with a finite prediction horizon N, then, w.p. $1 - \beta$, the risk-aware SPC is achieved for $j = 0, 1, \ldots, N - 1$.

- **♣** Role of Probability \mathbb{P} , confidence β , and risk ϵ :
 - Probability \mathbb{P} is distribution-free.
 - ullet For practical method, confidence eta should take small.
 - ullet As scenarios K tends to infinity, the risk ϵ tends to zero.

Numerical Experiments

Consider a discretized uncertain two-mass-spring system modeled as

$$A(\delta) = \begin{bmatrix} 1 & 0 & t_s & 0 \\ 0 & 1 & 0 & t_s \\ -\frac{k_s t_s}{m_1} & \frac{k_s t_s}{m_1} & 1 & 0 \\ \frac{k_s t_s}{m_2} & -\frac{k_s t_s}{m_2} & 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 0 \\ \frac{t_s}{m_1} \\ 0 \end{bmatrix}, \ E = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{t_s}{m_1} & 0 \\ 0 & \frac{t_s}{m_2} \end{bmatrix}, \ x_t = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \ w_t = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

- ullet masses: $m_1=m_2=1$, $t_s=0.1$. [Kothare et.al (1996)]
- disturbances: $w \sim N(0, \Sigma_w)$ with covariance $\Sigma_w = \text{diag}(0.02^2, 0.02^2)$.
- parametric uncertainty: $k_s \sim \text{Unif}([0.5, 2.0])$.
- ullet initial state $x_0^ op = egin{bmatrix} 0.15 & 0.15 & -0.15 & -0.1 \end{bmatrix}$, N=6, and t=50.
- risk $\epsilon = 0.05$, confidence $\beta = 10^{-6}$, and scenarios K = 695.

Numerical Experiments

- Constraints: $|x_3| \le 0.15$, $|x_4| \le 0.15$, and $|u| \le 1$.
- SPC promotes more zero inputs than quadratic MPC.
- State trajectories are near to the prescribed terminal set.
- Data-driven SPC enjoys a good robustness.

Conclusions

So far: A data-driven sampling approach for risk-aware sparse predictive control for uncertain discrete LTI system.

The Take Home Messages

- \bullet Risk-aware solution \bar{u}_{ϵ}^* is approximated by data-driven solution \bar{u}_K^* .
- Provide probabilistic robustness and sample complexity guarantees.

Outlook

- Recursive feasibility and stability for risk-aware SPC.
- Model-free framework for sparse predictive control.

Thank You for Your Attention!

Suggestions & Comments are Welcome!