Timed automata

Introduction

- Automata allow action sequences, loops, and choices to be specified
- But they do not allow the quantified time constraints of real-time systems to be modeled
 - Example 1: if the mouse is clicked twice within less than 50 ms then this is a double click
 - Example 2: the barrier of the railroad crossing lowers between 1 min and 45 s before the train arrival
- In this lecture: timed extension of automata to model this type of constraints

Modeling time elapsing (1/2)

2 representations are possible:

- Discrete time: measured at regular intervals (clock ticks as in electronic circuits)
 - \Rightarrow the time domain is a discrete set (e.g., N)
 - ⇒ verification techniques are based on discrete maths
- Dense time: measured with (quasi) illimited precision
 - \Rightarrow the time domain is a dense set (e.g., \mathbb{Q}^+ or \mathbb{R}^+)
 - ⇒ verification techniques are based on continuous maths

Modeling time elapsing (2/2)

One may want to measure:

- Relative time: the time that elapses between two successive actions
 - Example: 5 to 8 seconds elapse between pressing the door opening button and actual door opening
- Absolute time: the occurrence dates of actions
 Example: the door opened at 22 minutes (after the system start)
- The duration of actions
 Example: the door opening lasted 3 seconds

Timed transition system (1/2)

- Conceptual model / low level / infinite to introduce the notion of time and define the semantics of higher-level models
- Continuous-time model
 - Discrete-time can still be modeled ($\mathbb{N} \subseteq \mathbb{Q}^+ \subseteq \mathbb{R}^+$)
 - Enables methods without equivalent in discrete maths
- Relative-time model
 - Absolute time can be obtained by simulation (sum)
 - A lasting action can be modeled as two instantaneous begin/end actions and a relative-time constraints
 Example: 3 s elapse between begin_open and end_open

Timed transition system (2/2)

- Extension of the STE model
- A TTS is a 6-tuple (S, A, \triangle , T, Θ , s₀) such that
 - S is a set of states
 - A is a set of discrete (instantaneous) actions, whose elements are written a, a_0 , a_1 , ..., a'
 - $T \subseteq S \times A \times S$ is a set of discrete transitions
 - s₀ is the initial state
 - Δ is a dense time domain (Q or \mathbb{R}), whose elements are written t, t₀, t₁, ..., t', ...
 - $\Theta \subseteq S \times \Delta \times S$ is a set of timed transitions, representing time elapsing

Linear properties of time

must satisfy two fundamental properties:

 Time determinism: time elapsing alone cannot lead to distinct states

if s -t->
$$s_1$$
 and s -t-> s_2 then $s_1 = s_2$

Time additivity: delays can be added

if
$$s_1 - t_1 - s_2$$
 and $s_2 - t_2 - s_3$ then $s_1 - t_1 + t_2 - s_3$

 Θ is thus generally an infinite and even *non-enumerable set*

Timed automata (TA)

- It is not possible to describe a system directly as a TTS: a symbolic, finite representation is needed
- A popular formalism: timed automata (TA) [Alur-Dill-90]
 - Extension of CA
 - Add the notion of clocks: variables whose values evolve continuously in states, all at the same speed, and can be tested or reset
 - Software support: Uppaal <u>www.uppaal.org</u>

Example of timed automaton: light switch

 If the button is pushed twice then, depending on time, the light may either get more intense or switch off

- Conditions and resets on clock x describe the time constraints
- State of the TTS = state of the TA + clock values

Clock conditions

- Boolean conditions that depend on clock values
- Two types of conditions:
 - Timed guards: associated to a transition, must be true for the transition to be fireable
 - Timed invariant: associated to a state, must be true whenever the system is in that state
- Syntax:

$$\Psi ::= x \text{ op } c \mid x - x' \text{ op } c \mid \Psi \wedge \Psi \mid \Psi \vee \Psi \mid \neg \Psi$$
 where x, x' are clocks $c \text{ is an integer constant (time units TU)}$ $op \in \{ <, \le, >, \ge, = \}$

Timed automaton: formal definition

A TA is a 6-tuple (S, X, A, T, Inv, s_0) such that:

- S is a finite set of control states, s₀ initial state
- X is a finite set of clocks
- A is a finite set of actions
- $T \subseteq S \times A \times \Psi \times 2^X \times S$ is a finite set of transitions of the form (s, a, g, r, s') such that:
 - (s, a, s') is the same as in an LTS
 - $g \in \Psi$ is a timed guard such that vars $(g) \subseteq X$
 - $r \subseteq X$ is a set of clocks to be reset after the transition has been fired
- Inv: $S \to \Psi$ is a mapping that associates to each state s an invariant f_s such that vars $(f_s) \subseteq X$

Graphical representation

• Transition (s, a, g, r, s') with $f_s = Inv(s)$, $f_{s'} = Inv(s')$ and $r = \{X_1, ..., X_n\}$ is represented as follows:

- a may be absent (transition without label)
- If f_s , $f_{s'}$ or g are absent: condition always true
- / and : are optional if clear from context
- initial state represented by a double line

Example: Transition with guard

- No invariant: the system can stay indefinitely in s₁
- The transition can be fired only if the clocks x and y verify

$$x >= 2 \text{ and } y < 3$$

 After the transition, clock x is reset

Example: transition with guard and state with invariant

- The system can stay in s₁ only while y < 3
- The remainder is as in the previous slide

Exercise: communication medium with timeout

Complete the following CA to make a TA such that:

- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU

Solution

Complete the following CA to make a TA such that:

- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU

Exercise

Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks

Solution

Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks

TTS semantics of TA (1/4)

- Clock valuation v: $X \to \Re^+$
 - Total function mapping each clock to a real value
 - The initial valuation v_0 is defined by $(\forall x \in X) v_0(x) = 0$
 - v+t defines the valuation v' st $(\forall x \in X)$ v' (x) = v(x) + t
 - reset (v, r) defines the valuation v' st $(\forall x \in r)$ v' (x) = 0 and $(\forall x \in X \setminus r)$ v' (x) = v (x)
- sat (v, Ψ) : valuation v satisfies constraint Ψ

sat
$$(v, x \circ p \circ c)$$
 iff $v(x) \circ p \circ c$
sat $(v, x - x' \circ p \circ c)$ iff $v(x) - v(x') \circ p \circ c$ op $\in \{ <, \le, = \}$
sat $(v, \Psi \wedge \Psi')$ iff sat $(v, \Psi) \wedge sat(v, \Psi')$
sat $(v, \neg \Psi)$ iff $\neg sat(v, \Psi)$

TTS semantics of TA (2/4)

The semantics of the TA (S, X, A, T, Inv, s_0) is defined by the TTS (S', A, \Re^+ , T', Θ , s_0 '), where:

 Each TTS state (also called configuration) is made of a TA control state and a valuation:

$$S' = S \times (X \rightarrow \Re^+)$$

• The TTS initial state (or configuration) is made of the TA initial state and the initial valuation:

$$s_0' = (s_0, v_0)$$

• ...

TTS semantics of TA (3/4)

The semantics of the TA (S, X, A, T, Inv, s_0) is defined by the TTS (S', A, \Re^+ , T', Θ , s_0 '), where:

- ...
- Discrete transitions: T' is the set of transitions of the form (s, v) -a-> (s', v') such that:
 - There exists a TA transition: (s, a, g, r, s') ∈ T
 - The guard g is satisfied: sat (v, g) is true
 - The clocks in r are reset: v' = reset (v, r)
 - The invariant is satisfied in the target state: sat (v', Inv (s')) is true

• ...

TTS semantics of TA (4/4)

The semantics of the TA (S, X, A, T, Inv, s_0) is defined by the TTS (S', A, \Re^+ , T', Θ , s_0 '), where:

- •
- Timed transitions: Θ is the set of transitions of the form (s, v) -t-> (s, v+t) such that the invariant of s is satisfied in every intermediate configuration: (∀ 0 ≤ t' ≤ t) sat (v+t', Inv (s))

This TTS satisfies the linear properties of time

Example without invariant

$$(s, x = 0)$$
 -2.5-> $(s, x = 2.5)$ -a-> $(s, x = 0)$ -2.21-> $(s, x = 2.21)$ -a-> $(s, x = 0)$ -10.678-> $(s, x = 10.678)$...

The discrete transition cannot be fired anymore

Example with invariant

$$(s, x = 0)$$
 -2.5-> $(s, x = 2.5)$ -a-> $(s, x = 0)$
-2.21-> $(s, x = 2.21)$ -a-> $(s, x = 0)$
-2.52-> $(s, x = 2.52)$...

At most 3 TU elapse at each timed transition

Pathological case: timelock

The use of invariants can lead to timelock

Example:

after 3 TU, time cannot elapse anymore because x is never reset

- This behaviour is the result of a modeling error
- It can be detected by verification

Critical path and Zeno effect

There are infinite paths where time does not elapse

- Critical path: infinity of actions in zero time
 (s, ∅) -a-> (s, ∅) -a-> ...
- Zeno path: infinity of actions in bounded time (even if every discrete sub-sequence is finite)

$$(s, \varnothing)$$
 -a-> (s, \varnothing) -½-> (s, \varnothing) -a-> (s, \varnothing) -¼-> (s, \varnothing) -a-> ...

 Many correct TTS have these types of paths: these paradoxes are accepted

• Good property to be shown: time progress $(\exists t \in \mathbb{R}^{>0}, n \in \mathbb{N}^{>0})$ st in every configuration, at least one path of length \leq n exists on which \geq t time units elapse

Parallel composition of TA (1/2)

- As CA, TA can also be composed in parallel
- Fundamental principle: time elapses at the same speed in all the parallel components
- Let $M_1 = (S_1, X_1, A_1, T_1, Inv_1, s_{01})$ and $M_2 = (S_2, X_2, A_2, T_2, Inv_2, s_{02})$ two TA such that $X_1 \cap X_2 = \emptyset$
- The parallel composition of M_1 and M_2 synchronized by $L \subseteq A_1 \cap A_2$ is written $M_1 \otimes_L M_2$

Parallel composition of TA (2/2)

$$M_1 \otimes_L M_2 = (S_1 \times S_2, X_1 \cup X_2, A_1 \cup A_2, T, Inv, (s_{01}, s_{02}))$$

- Every parallel state invariant is the conjunction of the state invariants of the TA states:
 - $(\forall (s_1, s_2) \in S_1 \times S_2) \text{ Inv } (s_1, s_2) = \text{Inv}_1 (s_1) \wedge \text{Inv}_2 (s_2)$
- T is the set of transitions of the form ((s₁, s₂), a, g, r, (s₁', s₂')) such that, either:
 - $a \in L$, $(s_1, a, g_1, r_1, s_1') \in T_1$, $(s_2, a, g_2, r_2, q_2') \in T_2$, $g = g_1 \wedge g_2$, and $r = r_1 \cup r_2$ or
 - $a \in A_1 \setminus L$, $(s_1, a, g, r, s_1') \in T_1$, and $s_2' = s_2$ or
 - $a \in A_2 \setminus L$, $(s_2, a, g, r, s_2') \in T_2$, and $s_1' = s_1$

Exercise

Draw the parallel composition with synchronisation on SND of the following TA:

Solution

Example: the Fischer algorithm

Goal: guarantee the mutual exclusion of accesses to the resource

Fischer: Timed automata (1/2)

Automaton for process number « pid »

Fischer: Timed automata (2/2)

Fischer: Building the state space

System design / Models & languages for model checking

Verification methods

- TA have infinitely many states (not enumerable)
- Necessity to work on finite abstractions
- Example: Zones
 - Symbolic representation of sets of TTS states by a control state, linear constraints on clocks, and variable values
 - Example : $((i, d), [H2 \le D, H2 H1 \le 0, Id = 0])$
 - Symbolic transitions:

$$((i, d), [H2 \le D, H2 - H1 \le 0, Id = 0])$$

 $\rightarrow ((i, w), [H2 = 0, Id = 2])$
 $\rightarrow ((i, w), [H2 - H1 \le 0, Id = 2]) \rightarrow etc.$

Zones: from infinite to finite

configuration (m, x=3.12, y=2.5)

symbolic configuration $(m, 1 \le x \le 4, 1 \le y \le 3)$

Zone: conjunction of constraints of the form « x-y op c » and « x op c »

Example on a simplistic Fischer algorithm (without the demand state)

Initially: Id = 0

Simplistic Fischer

Without time constraints

Simplistic Fischer: zones

Taking into account time constraints

This transition requires $H_1 \leq T$

Other symbolic data structures

- Regions [Alur Dill]
- Numerical Decision Diagrams [Maler et al.]
- Clock Difference Diagrams [UPPAAL/CAV99]
- Difference Decision Diagrams [Møller, Lichtenberg]
- Polyedra [HyTech]
- Difference Bounded Matrices [UPPAAL]

• ...

TD Uppaal

- Uppaal (http://www.uppaal.org):
 - free for academics
 - Windows, Linux, and MacOS X versions
- subject of the next session in computer lab
- goal: manipulate timed automata