INNO	Sr. No. NOVATION >>>> Note <====================================	Dated
	Section - B	
	Vectors	
	Using vector algebra, find the area of a parallelogram / triangle. Also derive the or analytically and verify the same.	rla
	A Product Teacher's Signature:	

		Sr. No.	
NNOVATION	->>>		***

→>> Note <<<

	Dated	
->>>		****

Vector Area of a Triangle

Let Δ be the area of triangle ABC. Let \tilde{h} be a unit vector perperhendicular to plane of the triangle considered in anticlockwise direction from \tilde{AB} to \tilde{AC} .

Now, AB, AC, A form a vector triad in a right handed system. Then vector area of the triangle is $\Delta \hat{n}$

Δ = area of triangle ABC = 1 bc sin A = 1 cb sin A

= 1 JAB JAC sin A

· Vector area of triangle ABC

 $= \Delta \hat{n} = \frac{1}{2} |AB| |AC| \sin A \hat{n}$

 $= \pm (\overrightarrow{AB} \times \overrightarrow{AC})$

A A Product

Teacher's Signature :_

INNOVATION SHOW THE PROPERTY OF THE PROPERTY O	Sr. No. Note W	Dated → → →
If yertu Vectors Then,	is one represented by: \$\overline{a}, \overline{b}, \overline{cturely}.	their position
	Vector area of DAR = 1 (AB × AC)	36
	$= \frac{1}{2} \left(\overrightarrow{B} - \overrightarrow{a} \right) \times \left(\overrightarrow{C} \right) - \overrightarrow{a}$	
	$= \frac{1}{2} \left[\overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{b} \times \overrightarrow{\alpha} - \overrightarrow{0} \right]$; x Z]
	$\Delta = \frac{1}{2} \left[\overrightarrow{D} \times \overrightarrow{C} + \overrightarrow{C} \times \overrightarrow{C} \right]$	$\vec{a} + \vec{a} \times \vec{b}$
A A Product	Teacher's Sig	gnature :

		Sr. No.	
INNOVATION	->>>		***

->>> Note <<<

	Dated	
->>>		***

Verification

If vectors a and b resprent two adjacent sides of a Triangle, then its area = 1 1 a x b'

Let vector à and b' represent two adjacent rides of the Triangle ABC, from C draw a CX perpendi -cular to AB and let L CAX = 0

From right angled ACAX

$$AC$$
 $|B|$ $= CX$ $= CX$ AC $|B|$ $|B|$

=> CX = 18 sin 0

Area of Triangle ABC = 1 (base) x height

= 1 AB · CX

$$= ||\vec{a}||\vec{b}| \sin \theta = ||\vec{a}| \times |\vec{b}||$$

A A Product

Teacher's Signature :.

INN	Sr. No. Dated Note Note
	Vector Axea of a Paxallelogxam
•	
	Let OABCB be a parallelogram Let OA = a OB = B Let r be the unit vector perpendicular to
	the plane of a and B so that a', B', n form a vector triad in a right hand system
	: Area of triangle OAB = 1 OA × OB
	= 1 a × b : Area of pallelogram OACB =
	$2 \times \text{Area of triangle OAB}$ $= 2 \times 1 \overline{a}^7 \times \overline{b} = \overline{a}^7 \times \overline{b}^7 $
	Area of parallelogram = $ \bar{a}^7 \times \bar{b}^1 $
	A Product Teacher's Signature:

	74.	Sr. No.	11.
INNOVATION	->>>		***

->>> Note <<<-

	Dated	
->>>		***

If the diagnols of the parallelogram are given,

Let $\overrightarrow{AB} = \overrightarrow{a} | \overrightarrow{AD} = \overrightarrow{b} | \overrightarrow{AC} = \overrightarrow{d} | \overrightarrow{BD} = \overrightarrow{d}$

Since, diagnols of a parallelogram bisect each other,

$$\overrightarrow{AO} = \overrightarrow{1} \overrightarrow{d}, \overrightarrow{BO} = \overrightarrow{1} \overrightarrow{d}$$

Now, by triangle law of vector addition $\vec{a} = \vec{A}\vec{B}' = \vec{A}\vec{O}' + \vec{O}\vec{B}' = \vec{A}\vec{O}' - \vec{C}\vec{O}'$

$$\overrightarrow{b} = \overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD} = \frac{1}{2} (\overrightarrow{a}_1 + \overrightarrow{a}_2)$$

Area of parallelogram ABCD = |a x B|

$$= \left| \frac{1}{2} \left(\overline{a_1} - \overline{a_2} \right) \times \frac{1}{2} \left(\overline{a_1} + \overline{a_2} \right) \right|$$

Area =
$$\frac{1}{2} |\vec{a_1} \times \vec{a_2}|$$

A A Product

Teacher's Signature :

INN	Sr. No. NOVATION NOVATION NOVE (***)
	Verification
	of a parallelogram, then its area = $1\overline{a} \times \overline{b}$
•	A X & B
	AB and AD of the parallelogram ABCD. From D, draw Dx perpendicular to AB and let LDAX = 0
	From Right angled ADAX
•	$\Delta in O = 20000000000000000000000000000000000$
	Area of parallogram = Base x treight = AB·DX = a b sin 0
	$= \vec{a} \times \vec{b} $
	A Product Teacher's Signature: