- 1) Find the congle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^3 + y^3 = 3$
- (a) Find the directional derivative of $4\pi z^3 3\pi^2 y^2 z$ at (2, -1, 2) along
 - 3 Find $\nabla \phi$ or grad ϕ in the following: $3x^2y y^3z^2$ at point [1,-2,-i]
- (4) (a) Find div \vec{f} and curl \vec{f} \vec{y} $\vec{f} = \text{grad}(xy^3z^2)$
 - (b) Find div f and curl f if f = grad (x3+y3+z3 3xyz)
 - O I f = (x+y+1)i+j-(x+y) k, prove that f. curl f = D.
- (5) (a) Show that $f = \frac{\chi \hat{i} + y\hat{j}}{\chi^2 + y^2}$ vis both solenoidal firstational.
- 6 a Serow mat $\vec{f} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ vis irrotational. Also find The scalar function ϕ such that $\vec{f} = \nabla \phi$.
 - (h) Find the constants a,b,c if the vector $\vec{f} = (x+y+az)\hat{i} + (bx+2y-z)\hat{j} + (x+cy+2z)\hat{k}$ is irrotational. Hence find scalar potential ϕ such that $\vec{f} = q$ -rad ϕ .
 - © Find the constant a such that the vector field $\vec{f} = (axy z^3)\vec{i} + (a-2)\vec{j} + (1-a)xz^2\hat{k}$ is irrotational. Hence find the scalar potential ϕ such that $\vec{f} = grad.\phi$

- (7) @ Prove that cylindrical and spherical coordinate systems are perthogonal.
- B Represent F = zî 2nj + yk in cylindrical coordinates. Also determine Fp, Fo, Fz.
- © Express the following vectors in:

 (i) Cylindrical coordinates $\rightarrow F = 3yi + n^2j z^2k$
 - (i) Spherical coordinates -> F = dyî zî +3xk.
- (8) If $\vec{F} = (3x^2+6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0,0,0) to (1,1,1) along the rusue C given by x=t, $y=t^2$, $z=t^3$