Примеры

Дифферененциальные операции 1 и 2 порядков

Пример 1.

Доказать следующие равенства дифференциальных операций второго порядка, используя оператор «набла»,

- **1.1** $rotgradf(M) = \overline{0};$
- **1.2** $divrot\bar{a}(M) = 0$;

Решение 1.1:

$$rotgradf(M) = \nabla \times (\nabla f(M) = (\nabla \times \nabla)f(M) = [\mathrm{T.\,K.\,} \ \overline{a} \times \overline{a} = \overline{0}] = \overline{0},$$
 т.е. $rotgradf(M) = \overline{0}$ или $\nabla \times (\nabla f(M) = \overline{0}.$

Решение 1.2:

 $divrot \bar{a}(M) = \nabla (\nabla \times \bar{a}(M)) = 0$, т.к. смешанное произведение трех векторов, из которых два одинаковые, равно нулю.

Пример 2.

Доказать равенство, используя оператор «набла»,

$$rotrot\bar{a}(M) = graddiv\bar{a}(M) - \Delta\bar{a}(M)$$

Решение:

T. e.
$$rotrot\bar{a}(M) = graddiv\bar{a}(M) - \Delta\bar{a}(M)$$

или

$$\nabla \times (\nabla \times \bar{a}(M) = graddiv\bar{a}(M) - \Delta \bar{a}(M).$$

Пример 3.

Доказать равенство, используя оператор «набла»,

 $graddiv\bar{a}(M) =$

$$= \left(\frac{\partial^{2} P}{\partial x^{2}} + \frac{\partial^{2} Q}{\partial x \partial y} + \frac{\partial^{2} R}{\partial z \partial x}\right) \bar{\iota} + \left(\frac{\partial^{2} P}{\partial x \partial y} + \frac{\partial^{2} Q}{\partial y^{2}} + \frac{\partial^{2} R}{\partial z \partial y}\right) \bar{\jmath}$$

$$+ \left(\frac{\partial^{2} P}{\partial x \partial z} + \frac{\partial^{2} Q}{\partial z \partial y} + \frac{\partial^{2} R}{\partial z^{2}}\right) \bar{k}$$

Решение:

$$graddiv\bar{a}(M) = \nabla \left(\nabla \bar{a}(M)\right) = \frac{\partial}{\partial x} div\bar{a}(M)\bar{\iota} + \frac{\partial}{\partial y} div\bar{a}(M)\bar{\jmath} + \frac{\partial}{\partial z} div\bar{a}(M)\bar{k} =$$

$$= \left(\frac{\partial^{2} P}{\partial x^{2}} + \frac{\partial^{2} Q}{\partial x \partial y} + \frac{\partial^{2} R}{\partial z \partial x}\right) \bar{\iota} + \left(\frac{\partial^{2} P}{\partial x \partial y} + \frac{\partial^{2} Q}{\partial y^{2}} + \frac{\partial^{2} R}{\partial z \partial y}\right) \bar{J}$$
$$+ \left(\frac{\partial^{2} P}{\partial x \partial z} + \frac{\partial^{2} Q}{\partial z \partial y} + \frac{\partial^{2} R}{\partial z^{2}}\right) \bar{k}$$

Пример 4.

Доказать равенство, используя оператор «набла»,

$$div(u\bar{a}) = udiv\bar{a} + \bar{a} \cdot gradu,$$

где u — скалярная функция, \bar{a} — векторная функция.

Решение:

В символьной форме записи

$$div(u\bar{a}) = \nabla \cdot (u\bar{a}).$$

Учитывая сначала дифференциальный характер ∇ , мы должны написать

$$\nabla \cdot (u\bar{a}) = u(\nabla \cdot \bar{a}) + \bar{a} \cdot \nabla u$$

В результате получаем формулу

$$div(u\bar{a}) = \nabla \cdot (u\bar{a}) = u(\nabla \cdot \bar{a}) + \bar{a} \cdot \nabla u = udiv\bar{a} + \bar{a} \cdot gradu.$$