Discrete and Continuous Models for Concurrent Systems

2. Concurrent semantics of Petri nets

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

EWSCS 27. Viinistu. March 2025

Introduction

2. Concurrent semantics of Petri nets

Higher-Dimensional Automata

3. Languages of higher-dimensional aut.

4. Geometry of higher-dimensional aut.

- 1 Introduction
- 2 Petri Nets
- 3 Higher-Dimensional Automata
- 4 Concurrent Semantics of Petri Nets

Petri Nets

A Petri net (S, T, F):

- S set of places
- T set of transitions. $S \cap T = \emptyset$
- $F \subset S \times T \cup T \times S$ flow relation
- very useful for modeling distributed or concurrent systems
- invented in 1962; ubiquitous in modeling

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$

Petri Nets

00000

• $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$

Petri Nets

00000

- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: $t^{\bullet}(s) = F(t,s)$

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: t = F(s, t)
- postset of t: $t^{\bullet}(s) = F(t,s)$
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t^{\bullet}$$

only if *t < m

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: t = F(s, t)
- postset of t: $t^{\bullet}(s) = F(t,s)$
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$

• only if *t < m

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$

• only if t < m

Higher-Dimensional Automata

Ctil licts

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$

• only if $^{\bullet}t < m$

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$

• only if $^{\bullet}t < m$

Semantics of Petri nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Petri Nets

Semantics of Petri nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Petri Nets

Interleaved semantics (reachability graph) (V, E):

- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t < m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking \implies initial state; take reachable part

Semantics of Petri nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Petri Nets

Interleaved semantics (reachability graph) (V, E):

- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t < m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking ⇒ initial state; take reachable part

Concurrent step reachability graph (V, E'):

- $V = \mathbb{N}^S$
- $E' \subset V \times \mathbb{N}^T \times V$: multisets of transitions
- $E' = \{(m, U, m') \mid {}^{\bullet}U < m, m' = m {}^{\bullet}U + U^{\bullet}\}$

Another example

• after firing b, a is auto-concurrent

Petri Nets

00000

 p_4

• after firing b, a is auto-concurrent

Petri Nets

0000

- semantics misses some behavoir?
 - start a start b finish b start another a etc.

- after firing b, a is auto-concurrent
- semantics misses some behavoir?
 - start a start b finish b start another a etc.
- enter higher-dimensional automata
 - replace multi-transitions by squares

- 1 Introduction
- 2 Petri Nets

- 3 Higher-Dimensional Automata
- 4 Concurrent Semantics of Petri Nets

Petri Nets

Higher-dimensional automata

A conclist is a finite, totally ordered, Σ -labeled set.

(a list of labeled events)

A precubical set X consists of:

A set of cells X

(cubes)

• Every cell $x \in X$ has a conclist ev(x)

- (list of events active in x)
- We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U

(cells of type U)

- For every conclist U and $A \subseteq U$ there are:
 - upper face map $\delta^1_A:X[U]\to X[U\setminus A]$ lower face map $\delta^0_A: X[U] \to X[U \setminus A]$

(terminating events A) ("unstarting" events A)

• Precube identities: $\delta^{\mu}_{\mathbf{A}}\delta^{\nu}_{\mathbf{B}} = \delta^{\nu}_{\mathbf{B}}\delta^{\mu}_{\mathbf{A}}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)

Example

Introduction

Another one

Introduction

$$a \parallel (bc)^*$$

More examples

Introduction

no concurrency

two out of three

full concurrency

Higher-dimensional automata & concurrency theory

HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations / concurrently executing events
- two-dimensional automata \cong asynchronous transition systems
- Introduced in 1990
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)

1 Introduction

- 2 Petri Nets
- 3 Higher-Dimensional Automata
- 4 Concurrent Semantics of Petri Nets

Higher-Dimensional Automata

Concurrent semantics of Petri nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (V, E): $V = \mathbb{N}^S$; $E \subseteq V \times T \times V$

• $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m - {}^{\bullet}t + t^{\bullet}\}$

Concurrent semantics as HDA:

$$\square = \square(T)$$
, $X = \mathbb{N}^S \times \square$, $\operatorname{ev}(m, \tau) = \tau$

• for $x = (m, \tau) \in X[\tau]$ with $\tau = (t_1, \dots, t_n)$:

$$\delta_{t_i}^0(x) = (m + {}^{\bullet}t_i, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$$

$$\delta_{t_i}^1(x) = (m + t_i^{\bullet}, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$$

- initial marking \implies initial cell; take reachable part
- (no accepting cells)

Event order

trouble with symmetry: have a cell $(0, \begin{bmatrix} a \\ b \end{bmatrix})$, but also $(0, \begin{bmatrix} b \\ a \end{bmatrix})$ (not shown)

Higher-Dimensional Automata

- solution: fix an arbitrary order \leq on T
- and use $\square=\left\{\left.\left[\begin{array}{c}t_1\\ \vdots\\ \end{array}\right]\;\middle|\; \forall i=1,\ldots,n-1:t_i\preccurlyeq t_{i+1}\right\}$ instead of $\Box(T)$
- here: lexicographic $a \prec b \prec \dots$

Example, complete

Computations of HDAs

Introduction

An HDA computes by starting and terminating events in sequence:

upstep $x \nearrow y$, starting $\begin{bmatrix} a \\ b \end{bmatrix}$:

downstep $x \setminus y$, terminating a:

Idea: Use this to define an automata-like operational semantics for HDAs

- an ST-automaton (def. next slide) has
 - transitions which start and terminate events
 - states which remember which events are currently running

ST-automata

- a starter (A, U): conclist U, subset $A \subseteq U$
- a terminator (U, B): conclist U, subset $B \subseteq U$
- starting A; terminating B: written $\Delta \uparrow U$ resp. $U \downarrow_{R}$
- Let ST denote the (infinite) set of starters and terminators

Higher-Dimensional Automata

An ST-automaton $(Q, \perp, \top, E, \lambda)$:

- Q set of states: \bot , $\top \subseteq Q$ initial resp. accepting states
- $E \subseteq Q \times ST \times Q$ transitions
- $\lambda: Q \to \square$ state labeling, such that for all $(p, x, q) \in E$:
 - if $x = A \uparrow U$, then $\lambda(p) = U \setminus A$ and $\lambda(q) = U$;
 - if $x = U \downarrow_{P}$, then $\lambda(p) = U$ and $\lambda(q) = U \setminus B$.

b

from HDA (X, \bot, \top) to ST-automaton $(Q, \bot, \top, E, \lambda)$:

•
$$Q = X$$
, $\lambda = \text{ev}$, $E = \{\delta_A^0(x) \xrightarrow{A \uparrow \text{ev}(x)} x \mid A \subseteq \text{ev}(x)\} \cup \{x \xrightarrow{\text{ev}(x) \downarrow_A} \delta_A^1(x) \mid A \subseteq \text{ev}(x)\}$

from ST-automata to HDAs: complicated; we've lost geometric information

 \boldsymbol{c}

One last example

Introduction

- initially, p_5 is a mutex place: it disables concurrency of a and b
- after c fires, p₅ holds two tokens, so a and b become concurrent
- semantically, a hollow cube without bottom face

• the five faces: front: $(p_3, [{a \atop c}])$, back:

 $(p_1, [\,_{c}^{b}\,]), \text{ right: } (p_2, [\,_{c}^{b}\,])$ left: $(0, [\frac{a}{b}])$ top:

Selected Bibliography

- J.Desel, W.Reisig. *Place/transition Petri nets*. Lectures on Petri nets, Springer 1998
- J.Esparza. Lecture notes on Petri nets. 2019
- R.J.van Glabbeek. On the expressiveness of higher dimensional automata.
 Theor.Comput.Sci. 2006
- A.Amrane, H.Bazille, U.F., L.Hélouët, P.Schlehuber-Caissier. Petri nets and higher-dimensional automata. arxiv 2025