- * É outra característica importantíssima em Sistemas Distribuídos.
- * Indica que um sistema oferece serviços de acordo com regras padronizadas que descrevem de forma clara a sintaxe e a semântica dos serviços.

- * Vimos alguns exemplos de protocolos em na disciplinas de Redes de Computadores.
- * Protocolos estes que definem o formato e o conteúdo das mensagens. Dizemos que um protocolo padronizado e amplamente divulgado e livre para uso é um protocolo aberto.
- * Em sistemas distribuídos a abertura está atrelada às interfaces oferecidas pelos serviços.

- * Essas interfaces em geral são descritas através de uma linguagem de definição de interface (IDL Interface Definition Language).
- * Podemos pensar na definição de objetos em uma Linguagem de programação.
- * Elas definem nomes de função, tipos e quantidade de parâmetros, tipos de retorno e exceções. Neste caso estamos especificando a SINTAXE do serviço.

- * Um aspecto mais difícil de se obter é a especificação da semântica do serviço.
- * Em geral estas especificações são dadas de maneira informal através de comentários em linguagem natural.
- * A descrição da semântica permite que um sistema localize serviços que deseja utilizar.

- * A definição de uma interface permite que um processo se comunique com um outro que forneça uma determinada interface.
- * Permite que pessoas/empresas distintas implementem essas interfaces de maneira totalmente diferentes mas que funcionem do mesmo modo.

- * A definição de uma Interface de ser Completa e Neutra.
- * Completa: Define todo o que é necessário para que se possa fazer uma implementação totalmente funcional do serviço proposto.
- * Neutra: Pois uma definição não deve interferir na maneira como o serviço é implementado.

- Outras características importantes relacionadas à abertura de um sistema são:
 - * Interoperabilidade: é o fato de dois sistemas de fornecedores diferentes coexistirem e cooperarem com base na mera confiança mútua.
 - * Portabilidade: Diz respeito ao fato de uma aplicação desenvolvida para um sistema A, funcionar sem modificações em um sistema B.

- * Uma característica também desejável em um Sistema Aberto é a extensibilidade.
- * Por extensibilidade entendemos como sendo a possibilidade de se configurar componentes, possivelmente de outros fornecedores em um SD.
- * A introdução e remoção de componentes não afetam uns aos outros, obviamente se eles não possuem alguma dependência.

- * A escalabilidade diz respeito ao comportamento do sistema ao expandí-lo.
- * Podemos classificar a escalabilidade em de três maneiras, são elas...

- * Em relação ao tamanho: adição de usuários, novos componentes ou recursos.
- * Em termos geográficos: Comoponentes e usuários podem estar longe um do outro.
- * Em termos administrativos: Facilidade de administração do sistema mesmo que este abranja muitas organizações administrativas diferentes.

- * Obter um bom grau de escalabilidade em um sistema não é tarefa simples.
- * Vejamos agora alguns dos problemas existentes ao se tentar obter um bom grau de escalabilidade.

- * A adição de novos usuários e recursos nos leva a limitações relacionadas à sistemas centralizados, dados e algoritmos.
- * Um servidor neste caso pode não dar conta de todas as requisições.
- * Os links de comunicação não possuem largura de banda infinita.
- * De fato, em alguns casos é inevitável se ter um serviço centralizado.

- * No caso de algoritmos descentralizados devemos levar em consideração algumas premissas ao desenvolvê-los.
 - * Nenhuma máquina tem informações completas sobre o estado do sistemas.
 - * As máquinas tomam decisões tendo como base somente informações locais.
 - * A falha de uma máquina não arruína o algoritmo.
 - * Não há nenhuma premissa implícita quanto à existência de um relógio global.

- * Uma dos problemas que afetam diretamente a escalabilidade em termos geográficas é a utilização de comunicação síncrona, onde o cliente fica bloqueado a espera da resposta de um servidor.
- * Apesar de funcionar bem em LANs, esta abordagem em redes de abrangência muito grande não é interessante devido à alta latência da rede.
- * Requisições podem demorar muito e é interessante que as partes envolvidas não fiquem bloqueadas.

* Um outro problema com a escalabilidade geográfica é a falta de confiabilidade das redes de longa distância.

- * Por fim, expandir sistemas distribuídos por vários domínios administrativos independentes é também um fator de limitação.
- * Aqui podemos citar políticas de utilização diferentes, tarifação, gerenciamento e segurança.
- * Por exemplo, uma das organizações dão prioridades a usuários locais, ou desligam certos equipamentos por determinados períodos.

Técnicas para se atingir uma bom nível de escalabilidade.

Conseguindo Escalabilidade

- + Comunicação Assíncrona
- + Distribuição
- * Replicação

Comunicação Assíncrona

- * Manter um processo bloqueado enquanto ele espera por uma resposta do servidor deve ser evitado.
- * Em sistemas que dependem de redes de longas distância, por exemplo, podem levar muito tempo para obter uma resposta.
- * O interessante aqui é permitir que o processo continue a realizar algum tipo de tarefa enquanto aguardo por resposta.
 - * Exemplo: Formulários Ajax.

Distribuição

- * Esta técnica está ligada ao fato de quebrarmos um componente em sub-componentes e espalhá-los pelo sistema.
- * Um exemplo é o sistema DNS que é dividido em zonas, que por sua vez são utilizadas de maneira hierárquica.
- * A falta de um servidor de maneira alguma irá afetar a resolução de nomes na internet.

Replicação

- * A replicação tenta melhorar o desempenho de um sistema.
- * Ela tem como objetivos aumentar o desempenho, através do balancemanto de carga, e aumentar a disponibilidade do sistema.
- * Ter também um réplica de um recurso por perto pode reduzir o tempo de resposta do sistema, este tipo de replicação chamamos de Cache.

Cache x Replicação

- * O Cache em geral está sob administração do usuário de um recurso e é caracterizada pela cópia de um recurso na proximidade.
- * O Cache também costuma ocorrer sob demanda e a replicação com planejamento antecipado.

Replicação

- * O maior problema no uso de Replicas e Caches é a manutenção da consistência das cópias.
- * Devemos ter em mente o quanto que diferenças entre réplicas podem ser toleradas.
- * Além disso precisamos ter técnicas eficientes de atualização.
- * O uso de replicação e cache em um SD deve ser cuidadosamente planejada.

Ciladas

Ciladas

- * Abaixo algumas premissas que se consideradas podem arruinar a implementação de um SD.
 - * A rede é confiável.
 - + A rede é segura.
 - * A rede é homogênea.
 - * A topologia não muda.
 - + A latência é zero.
 - * A largura de banda é infinita.
 - + O custo do transporte é zero.
 - Há só um administrador.