A linear transformation is a *mapping* (or a *function*) which preserves the structure of a vector space. It respects linearity (essentially, it takes "flat" objects to "flat" objects.)

Definition

Let V,W be vector spaces. A function $T:V\to W$ is said to be a linear transformation if

(i)
$$T(v+w) = T(v) + T(w), \forall v, w \in V$$

$$(ii) T(cv) = cT(v) \quad \forall v \in V, c \in \mathbb{R}$$

Coordinates with respect to a Basis

Definition

Suppose $\mathcal{B} = \{\underline{b_1, \ldots, b_n}\}$ is a basis for V and $x \in V$. The coordinates of x relative to \mathcal{B} (or the \mathcal{B} -coordinates of x) are the weights c_1, \ldots, c_n such that

$$x=c_1b_1+\ldots+c_nb_n.$$

The vector $(c_1, \ldots, c_n) \in \mathbb{R}^n$ is denoted by $[x]_{\mathcal{B}}$, and is called the coordinate vector of x relative to \mathcal{B} or the \mathcal{B} -coordinate vector of x. The mapping

$$x \to [x]_{\mathcal{B}}$$

is called the *coordinate mapping* (determined by \mathcal{B}).

Theorem

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for a vector space V. The coordinate mapping

coordinate mapping
$$x o [x]_{\mathcal{B}}$$

is an invertible linear transformation from V to \mathbb{R}^n .

Any linear transformation can be completely determined by what is does to a fixed basis, in the sense that,

Proposition

If $\mathcal{B} = \{b_1, \dots, b_n\}$ is a basis for a vector space V, and if $S, T: V \to W$ are linear transformations, then S = T iff

$$S(b_i) = T(b_i), \quad \forall i = 1, \ldots, n.$$

$$\begin{array}{c}
A_1 = A_1 \\
A_2 = A_2 \\
A_3 = A_4 \\
A_4 = A_4$$

Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. In other words, there exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

A is called the standard matrix for the linear transformation T.

$$\frac{A \times A}{A} = (\alpha_1, \dots, \alpha_n)$$

$$= \chi_1 \alpha_1 + \chi_2 \alpha_2 + \dots + \chi_n \alpha_n$$

 $M=\left(N_1,N_2,N_3\right)$ Port. - 7.1 + n2.5 + X3.R Define. A = [T(ex) T(ex) ... - T(en)]. Claim: Tan = An Ane R $\mathcal{U} = (\chi_1, \dots, \chi_N) \in \mathbb{R}^n.$ Since N= Nill + Nill + Nill + ... + unln

We apply Tou both sides to obtain $T(n) = T(n,e,+--- \perp nnen)$ $-\mathcal{H}_{1} + \mathcal{H}_{2} + \mathcal{H}_{2} + \cdots + \mathcal{H}_{n} + \mathcal{H}_{n}$ - \wedge γ

The Change-of-coordinate in \mathbb{R}^n

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . The matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \dots \quad \mathbf{b}_n] \qquad \longleftarrow$$

formed using the basis vectors $\mathbf{b}_1, \dots, \mathbf{b}_n$ as columns, is called the *change-of-coordinates* matrix from \mathcal{B} to the standard basis in \mathbb{R}^n .

The change-of-coordinates matrix takes a coordinate vector with respect to the \mathcal{B} basis and tranforms it to standard coordinates. So if \mathbf{x} is a vector in \mathbb{R}^n , then

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}.$$

$$\begin{cases} \begin{cases} \begin{cases} X \\ y \end{cases} = ((1, \dots, (n)) \\ X = (1, y) + (y, y) \end{cases} \end{cases}$$

 $\chi = (\mathcal{N}_1, \mathcal{N}_2) \in \mathbb{R}$ £ () (2) 5 tavaland 5 tavalandi 10 Standard justes. $\left[\mathcal{N} \right]_{\mathcal{B}} = 7$

 $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2)$

- (X, cord + X2 Smd) - X, 5md - (X2 cond)

$$T(x) = [x]_{\beta} [x]_{\beta} = [x]_{\beta}$$

Proposition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Let $\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^n$ be the coordinate transformation which sends

$$\mathsf{x} \mapsto [\mathsf{x}]_\mathcal{B}.$$

The change-of-coordinates matrix $P_{\mathcal{B}}$ is the standard matrix of the inverse \mathcal{T}^{-1} of the coordinate transformation.

The standard matrix of the coordinate transformation T is P_R^{-1} .

$$\boxed{ T(\chi) - P_{\beta} \chi . } = \chi$$

Mort: Let na IRM. Me Krow that $\mathcal{M} = \left[\mathcal{A} \right] \mathcal{A}$

for some zer. Siva y = (34) B M= PB(X)B The standard TY - PBY = PB is the standard watrix A T

Matrix of a Linear Transformation

Proposition (M)

Let V,W be vector spaces. Let $\mathcal{B}=\{v_1,\ldots,v_n\}$ be an ordered basis for V and $\mathcal{C}=\{w_1,\ldots,w_m\}$ be an ordered basis for W. Let $T:V\to W$ be a linear transformation. There exists a unique $m\times n$ matrix A such that

Further, we have
$$A = [[T(v_1)]_{\mathcal{C}} \xrightarrow{A} [v]_{\mathcal{B}}, \text{ for every } v \in V.$$

Particular Case: The *B*-matrix

Definition

Let $T: V \to V$ be a linear transformation from a vector space to itself. Let $\mathcal{B} = \{\underline{v_1, \dots, v_n}\}$ be an ordered basis for V. There is a unique matrix $[T]_{\mathcal{B}}$, which we call the \mathcal{B} -matrix of T such that

$$[T(v)]_{\mathcal{B}} = [T]_{\mathcal{B}}[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Further, $[T]_{\mathcal{B}}$ is obtained using the formula

$$[T]_{\mathcal{B}} = [[T(v_1)]_{\mathcal{B}} \quad \dots \quad [T(v_n)]_{\mathcal{B}}]$$

. $-) \left[\left(\begin{array}{c} \\ \\ \\ \end{array} \right) \right]_{\mathcal{B}} - - - \left[\begin{array}{c} \\ \\ \end{array} \right]_{\mathcal{C}} \right]$ $\left[-SMO, con \theta \right]$ con 0, swo ()occes angle d'axis

$$\beta = \{ v_1, v_2 \} \qquad \{ \beta = \{ v_1, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

$$[T] = \{ v_1, v_2 \} \qquad \{ \{ v_2, v_2 \} \}$$

- Cond sind Cond sind ond - sind cond

- 25 intoso 25 ind coso d 25 intoso sind-coso

 $-\frac{\cos 2\theta}{\sin 2\theta} - \cos 2\theta$

Proposition

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Let A be the standard matrix of T. Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be any ordered basis of \mathbb{R}^n . Let

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_n]$$

be the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Then the \mathcal{B} -matrix of T is $P_{\mathcal{B}}^{-1}AP_{\mathcal{B}}$.

Proof:

For every $\mathbf{x} \in \mathbb{R}^n$,

$$[T(\mathbf{x})]_{\mathcal{B}} = [A\mathbf{x}]_{\mathcal{B}}$$
$$= P_{\mathcal{B}}^{-1} A\mathbf{x}$$
$$= P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}.$$

