Statistics

Texas A&M University Interview Fatemeh Asgarinejad

Announcements + schedule + links (in an actual class)

- Lectures
 In person, SCHEDULE
- Discussions
 In person, SCHEDULE
- Office Hours
 SCHEDULES
- Course website | Piazza (Q&A) | Canvas (recordings + quizzes) |
 GradeScope (HW submission) | GitHub (code + notebooks)
- HWs, HW solutions, due dates and exams.

Course Plan: Where We Are Now (in an actual class)

Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
1 Aug 5 - Aug 11	Lec 1+ Exit Ticket 1 HW1 release	Lec 2+ Exit Ticket 2 DI1	Lec 3+ Exit Ticket 3	Lec 4+ Exit Ticket 4 DI2	Test1	HW1due	HW1 late due HW2 release
2 Aug 12 - Aug 18	Lec 5+ Exit Ticket 5	Lec 6+ Exit Ticket 6 DI3 Review quiz1	Lec 7+ Exit Ticket 7	Lec 8+ Exit Ticket 8 DI4	Test2	HW2due	HW2 late due HW3 release
3 Aug 19 - Aug 25	Lec 9 + Exit Ticket 9	Lec 10+ Exit Ticket 10 Midterm DI5	Lec 11+ Exit Ticket 11	Lec 12+ Exit Ticket 12 DI6	Test3	HW3due	HW3 late due HW4 release
4 Aug 26 - Sep 1	Lec 13 + Exit Ticket 13	Lec 14+ Exit Ticket 14 DI7 Review quiz2	Lec 15 + Exit Ticket 15	Lec 16 + Exit Ticket 16 DI8	Test4	HW4due	HW4 late due HW5 release
5 Sep 1 - Sep 8	Lec 17+ Exit Ticket 17	DI9 Lec 18 + Exit Ticket 18	HW5 due Lec 19 + Exit Ticket 19	Lec 20 + Exit Ticket 20 DI10	Final		

Today's Learning Goals

- Review [Statistics]
- Hypothesis Testing (Using statistics to evaluate some hypothesis about a population)
 - What is a Hypothesis?
 - Null and Alternative Hypothesis
 - Test Statistics
 - Type I error
 - Accept or reject Null Hypothesis
 - p-value

Review: What We've Covered So Far

When do we use statistics?

image source: https://teachingstatisticsandprobability.wordpress.com/

Practical Use Cases of Statistics (Election)

Predicting which of the USA presidency candidates will win the election.

We ask a sample of the population and estimate which candidate is likely to win based on their opinions.

President Trump Supporters assume he will earn more electoral votes.

Former Vise-President Harris's supporter assume she will earn more electoral votes.

Sample (here polls) can give us a good estimate about who is more probable to win the election.

images sources: first; second

Hypothesis

A **hypothesis** is an assumption (statement) about parameters of a population or distribution that can be True or Not True.

Note: parameter is a numerical or measurable characteristic of a population, e.g., average (μ) , variance (σ^2) , min, max, range, etc.

Discuss other real-life hypotheses with your friends.

Example: If we have a collection of individuals, hypothesis the max, average, etc. (e.g.

average height of Americans is more than 5 feet 8 inches).

Example: We can have an assumption that the average GPA of first year students is > 3.0.

Example: We can hypothesis that men play more video games than women.

Example: We have a coin and our hypothesis is that it is unbiased $(P(Head) = \frac{1}{2})$.

Null and Alternative Hypothesis

We aim to evaluate the effectiveness of a medicine on a group of patients (population) using a randomized clinical trial. We give the actual medicine to half of the participants, while the other half receive a placebo.

6 people
Took medicine

6 people Took placebo

- There will not be any difference between two groups (medicine is not impactful). Null Hypothesis (H_0)
- There will be a difference between two groups of people (e.g., more people will be cured in the group who took the medicine) Alternative Hypothesis (H_a or H_1)

The assumption that is often believed to be true is called **Null Hypothesis** (H_0) . The complementary (often) view is called **Alternative Hypothesis** $(H_a \text{ or } H_1)$.

Null and Alternative Hypothesis

Null Hypothesis (H_0): The assumption that is often believed to be true.

Alternative Hypothesis (H_a or H_1): The complementary (often) view of Null hypothesis.

Discuss the null and alternative hypotheses in real-life scenarios.

Example: Null hypothesis (H_0) : Men play more video games than women.

Alternative hypothesis (H_a) : Women play more video games than men.

Example: Null Hypothesis (H_0) : People like Rock and pop music equally.

Alternative hypothesis (H_a): More than 50% of people prefer Rock music over Pop.

Example: Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$.

Alternative hypothesis (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

Hypothesis Testing

6 people Took medicine 6 people Took placebo

There will not be any difference between two groups (medicine is not impactful). Null hypothesis (H_0)

There will be a difference between two groups of people (e.g., more people will be cured in the group who took the medicine) Alternative Hypothesis (H_a or H_1)

Hypothesis Testing: After collecting data, if the data is consistent with the null hypothesis, we accept the null hypothesis (H_0).

Otherwise, if we have an strong evidence for the alternative hypothesis we reject the Null Hypothesis and accept the Alternative Hypothesis.

Test Statistics

6 people
Took medicine

6 people Took placebo

4 cured, 2 not cured

1 cured, 5 not cured

There will not be any difference between two groups (Null hypothesis (H_0)).

There will be a difference between two groups (Alternative Hypothesis (H_a or H_1)).

Which characteristic(s) should we study to measure the medicine's impact?

Test Statistics

4 cured, 2 not cured

6 people
Took medicine

6 people Took placebo

1 cured, 5 not cured

Which characteristic(s) should we study to measure the medicine's impact?

We want to identify some measurable factors for evaluating the medicine's effectiveness **Test statistics** is a function (mean, standard deviation, count, etc.) that helps us
determine whether we should reject the Null Hypothesis or not. Here, test statistics
can be number of cured patients in a group.

after 1 month

Significance Level

4 cured, 2 not cured

6 people Took medicine

6 people Took placebo

1 cured, 5 not cured

Should we allow the pharmaceutical company to release the medicine?

Should we set a threshold for rejecting the Null Hypothesis (H_0) (the medicine is not effective)?

What this threshold should be?

Significance Level

4 cured, 2 not cured

6 people Took medicine 6 people Took placebo

1 cured, 5 not cured

We set a threshold for test statistics to reject H_0 with **some confidence** (e.g. 95% or 99% confidence). This confidence is denoted as $1 - \alpha$ where α is significance level.

significance level (α) is the probability of mistakenly rejecting H_0 (when it is actually true, here the medicine is not impactful) (Often 1% or 5%)

Significance Level and Type I error

4 cured, 2 not cured

6 people Took medicine 6 people Took placebo

1 cured, 5 not cured

← after 1 month ← → →

significance level (α) is the probability of mistakenly rejecting H_0 (when it is actually true, here the medicine is not impactful) (Often 1% or 5%)

P(Mistakenly rejecting H₀ given the test statistics $|H_0\rangle <= \alpha$ Type I error

If: P(Mistakenly approving medicine|medicine was not impactful) <= 5%

Then: with 95% confidence we can reject Null Hypothesis (H_0) in favor of H_a

Significance Level and Type I error

4 cured, 2 not cured

6 people Took medicine 6 people Took placebo

1 cured, 5 not cured

after 1 month -

 $P(Mistakenly rejecting H_0 based on test statistics | H_0)$

large: H_0 is consistent with the data so we do not reject it. There's a higher risk of rejecting H_0 .

small: H_0 is inconsistent with the data so we reject it in favor of H_a . There's a lower risk of rejecting H_0 .

P-Value

4 cured, 2 not cured

6 people Took medicine 6 people Took placebo

1 cured, 5 not cured

What can we say about a large and small value of:

after 1 month -

 $P(Mistakenly rejecting H_0 based on test statistics | H_0)$

 $P(X \ge x \mid H_0) \le \alpha$ $P(X \ge x \mid H_0)$ is called Probability value or p-value example:

x (#cured)= 5 -> $P(X \ge 5 \mid H_0)$ might be very small. So, we can conclude with 1- α certainty that H_0 is accepted. Cont. Next session: Fisher Exact Test

Testing the Hypothesis - P-value

Null Hypothesis (H₀): The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$.

Alternative hypothesis (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

Experiment: we flip the coin 20 times

Test Statistic: Number of heads (we show it with variable X)

Intuitively we might say if $5 \le X \le 15$, we do not reject the **Null hypothesis** (H_0) and we can conclude that the coin is not biased and otherwise we reject the H_0 in favor of H_a

What range of X confirms the coin is unbiased?

Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$. **Alternative hypothesis** (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

#Heads (X)	$P_{H_0}(X=x) = P(X=x H_0)$	$P_{H_0}(X \ge x)$
20		
19		
18		
17		
16		
15		
14		

Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$. **Alternative hypothesis** (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

#Heads (X)	$P_{H_0}(X=x) = P(X=x H_0)$	$P_{H_0}(X \geq x)$
20	$\binom{20}{20} * \frac{1}{2^{20}} = 0.0001\%$	0.0001%
19	$\binom{20}{19} * \frac{1}{2^{20}} = 0.0019\%$	0.002%
18	$\binom{20}{18} * \frac{1}{2^{20}} = 0.0181\%$	0.0201%
17	$\binom{20}{17} * \frac{1}{2^{20}} = 0.1087\%$	0.1288%
16	$\binom{20}{16} * \frac{1}{2^{20}} = 0.4621\%$	0.5909%
15	$\binom{20}{15} * \frac{1}{2^{20}} = 1.4786\%$	2.0695%
14	$\binom{20}{14} * \frac{1}{2^{20}} = 3.6964\%$	5.7659%

Significance value = 5%

$$P_{H_0}(X \ge x) \le 5\%$$

what is the largest x? 15 what is the smallest x? (if we draw the whole table, hint: use symmetry identity $\binom{a}{b} = \binom{a}{a-b}$) 5

Conclusion: If
$$5 \le X \le 15$$
, we

Conclusion: If $5 \le X \le 15$, we accept the null hypothesis. Otherwise, we reject it.

Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$. **Alternative hypothesis** (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

#Heads (X)	$P_{H_0}(X=x)=P(X=x H_0)$	$P_{H_0}(X \geq x)$
20	$\binom{20}{20} * \frac{1}{2^{20}} = 0.0001\%$	0.0001%
19	$\binom{20}{19} * \frac{1}{2^{20}} = 0.0019\%$	0.002%
18	$\binom{20}{18} * \frac{1}{2^{20}} = 0.0181\%$	0.0201%
17	$\binom{20}{17} * \frac{1}{2^{20}} = 0.1087\%$	0.1288%
16	$\binom{20}{16} * \frac{1}{2^{20}} = 0.4621\%$	0.5909%
15	$\binom{20}{15} * \frac{1}{2^{20}} = 1.4786\%$	2.0695%
14	$\binom{20}{14} * \frac{1}{2^{20}} = 3.6964\%$	5.7659%

 $P_{H_0}(X \ge x)$ is called P-value of x (probability value) and is the probability of observing value x or more extreme values of x when H_0 holds.

Distribution of #Heads when H₀ holds

Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$. **Alternative hypothesis** (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

#Heads (X)	$P_{H_0}(X \ge x)$	
20	0.0001%	
19	0.002%	
18	0.0201%	
17	0.1288%	
16	0.5909%	
15	2.0695%	
14	5.7659%	

 $P_{H_0}(X \ge x) = P(X \ge x \mid H_0)$ is called P-value of x (probability value) and is the probability of observing value x or more extreme values of x when H_0 ho

Distribution of #Heads when H₀ holds

Example: If p-value is 0.2 it means that you could observe 15 Heads with a 20% probability so we cannot very easily reject the null hypothesis with X=15.

Null Hypothesis (H_0) : The coin used by judge in Soccer games is unbiased $(P(Head) = \frac{1}{2})$. **Alternative hypothesis** (H_a) : The coin is biased $(P(Head) \neq \frac{1}{2})$.

$P_{H_0}(X \geq x)$		
0.0001%		
0.002%		
0.0201%		
0.1288%		
0.5909%		
2.0695%		
5.7659%		

 $P_{H_0}(X \ge x) = P(X \ge x \mid H_0)$ is called P-value of x (probability value) and is the probability of observing value x or more extreme values of x when H_0 holds.

Note: If significance level is 5% and P-value is less than that, i.e., $P_{H_0}(X \ge x) < 5\%$, we can claim our results as significant results and can reject H_0 .

Exit Ticket – Due Sunday 23:59

Or submit the quiz in Canvas quizzes

fasgarinejad@ucsd.edu January 3, 2025

HW bonus question: Testing a hypothesis about a population

Choose a Null Hypothesis and prove/disprove it.

Example: election

Null Hypothesis (H_0) : Harris will win the election (will get more votes).

Alternative Hypothesis (H_a or H_1): Trump will win the election.

Steps for testing a hypothesis:

- 1) Design an experiment (Test)
- 2) Define numerical outcomes (Test statistics to measure election outcomes) (e.g., the number of votes for each candidate, the ratio of votes (e.g. >51%))
- 3) Gather data (sample of population, please submit you hypothesis by tonight so we can gather data from your classmates)
- 4) Data consistent with null hypothesis or not?
 - A. Calculate P(T=test statistics $|H_0| \le \text{significance value (often 5\%, 1\%, etc.)}$

Yes. H_0 is inconsistent with data (reject Null)

No. H_0 is consistent with data (accept Null)

HW bonus question example Practical Use Cases of Hypothesis Testing (A/B Test)

We want to determine which version of our software performs better. We test a sample of users and estimate the preferred version based on their behavior or feedback before the final release.

Null Hypothesis (H_0) : Version A of the software performs better than Version B.

Alternative Hypothesis (H_a or H_1): Version B of the software performs better than Version A

fasgarinejad@ucsd.edu January 3, 2025

Next Session

- Today's follow-up: hypothesis testing using Fisher exact test
- Today's follow-up: simple vs complex hypothesis
- Z test
- T test
- Type II error
- Sensitivity
- Specificity