







DOC NUMBER:

569-DB7B-PRO-500-004

CLIENT NUMBER:

PRD-MEC-CLC-009

CLIENT: TAKEDA

PROJECT

**BURITI EPCMV PROJECT** 

# COOLING WATER SYSTEM CALCULATION

| 0   | 30JUL2021 | ISSUED FOR CONSTRUCTION | JRM  | LFF   | MSS    |
|-----|-----------|-------------------------|------|-------|--------|
| D   | 03MAY2021 | 90% DD ISSUE            | JRM  | CCO   | MSS    |
| С   | 16OCT2020 | FINAL BD ISSUE          | MPA  | LFF   | MSS    |
| В   | 28AUG202  | 90% BD ISSUE            | MPA  | LFF   | MSS    |
| Α   | 28AUG202  | 90% BD ISSUE            | MPA  | LFF   | MSS    |
| REV | DATE      | DESCRIPTION             | EXEC | CHECK | APPROV |









DOC NR: 569-DB7B-PRO-500-004 CLIE

CLIENT NR:

PRD-MEC-CLC-009

TITLE:

**COOLING WATER SYSTEM CALCULATION** 

SHEET 2 of 9

REV.:

0

| 1. | REVISION HISTORY        | 3 |
|----|-------------------------|---|
| 2. | PURPOSE                 | 3 |
| 3. | REFERENCE               | 3 |
| 4. | BASIC DATA AND PREMISES | 3 |
| 5. | CALCULATION             | 4 |
|    | 5.1 THERMAL LOAD        | 4 |
|    | 5.2 PUMPS               | 5 |
|    | 5.3 BALANCING VALVES    | 6 |
| 6. | RESULTS                 | 8 |
|    | 6.1 VISUAL REPORT       | 8 |
|    | 6.2 OUTPUT              | 8 |
|    | 6.3 PUMPS SELECTED      | 8 |









DOC NR: 569-DB7B-PRO-500-004 CLIENT NR: PRD-MEC-CLC-009

TITLE: SHEET 3 of 9

REV: 0

#### 1. REVISION HISTORY

| Rev | Reason for Change                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| Α   | 90% BD ISSUE                                                                                                                         |
| В   | 90% BD ISSUE                                                                                                                         |
| С   | FINAL BD ISSUE                                                                                                                       |
| D   | FLOWRATES AND DIAMETERS HAVE BEEN UPDATED. AS WELL AS CALCULATIONS AND EQUIPMENT, ALL DATA WERE UPDATED ACCORDING DETAILMENT DESIGN. |
| 0   | ANSWERING TAKEDA COMMENTS – SUBMITAL 222.0                                                                                           |

#### 2. PURPOSE

This document aims to establish the main characteristics for sizing the Cooling Water System for Building 7A (Final Drug Product), intended to Buriti Project, located at Hemobrás site in Goiana - Pernambuco state, Brazil.

The calculation will be adjusted according to the PID during detailed design.

#### 3. REFERENCE

The following documents were used as reference:

| Item | Item Number Title                                       |                                                      |  |  |  |
|------|---------------------------------------------------------|------------------------------------------------------|--|--|--|
| 1    | 7A-M-0-5-43                                             | Chilled Water Generation System (HVAC)               |  |  |  |
| 2    | 2 7A-M-0-5-45 Chilled Water Generation System (Process) |                                                      |  |  |  |
| 3    | 7A-M-0-5-81                                             | Compressed Air Generation System                     |  |  |  |
| 4    | 7A-Z-0-2-31                                             | Proc. Waste – Collect & Temp./ Lift Station, SK-8001 |  |  |  |

## 4. BASIC DATA AND PREMISES

The Cooling Water System supplies the Building 7A and this system includes 3 Cooling Towers (3 operating in parallel or two operating and the other stopped in case of maintenance) primary pumps (2 in operation and 1 stand by) all with variable speed.

For system sizing, the following conditions were considered:

- DESIGN CONDITION Sizing Criterion for Cooling Towers 100% of the capacity of all equipment and an oversizing of 20%. 2 Cooling Towers operating and 1 stand-by (maintenance).
- MAXIMUM OPERATING CONDITION 100% of the capacity of all equipment operating at the same time 2 Cooling Towers operating and 1 stand-by (maintenance).
- MINIMUM OPERATING CONDITION 100% of the capacity of all equipment operating at the same time 3 Cooling Towers operating at the same time (minimum pressure drop of the system).

This system supplies 3 HVAC Chillers (2 operating and the other stand-by), 2 Process Chillers (1 operating and the other stand-by), 1 Proc. Waste Sump Cooler and 2 Air Compressors.









TITLE:

SHEET
4 of 9

REV:

## **COOLING WATER SYSTEM CALCULATION**

0

The pressure drop required for the cooling water is 0.22 bar, according to the tower manufacturer's information.

To guarantee a balancing and a good distribution, static balancing valves were considered throughout the system as indicated in the PID's.

The chemical dosing is carried out directly in the cooling towers basin.

## 5. CALCULATION

#### 5.1 Thermal load

The Cooling Water System has the following consumers in the Building 7A for the Maximum Operating Condition:

| Item | Equipment                          | Tag       | Diversity | Volumetric<br>Flowrate |         | Mass<br>Flowrate | Temp<br>Inicial | Temp<br>Final |
|------|------------------------------------|-----------|-----------|------------------------|---------|------------------|-----------------|---------------|
|      |                                    |           |           | (m³/h)                 | (lpm)   | (kg/h)           | (°C)            | (°C)          |
| 1    | HVAC Chiller                       | CH-7A-1   | Υ         | 365.0                  | 6,083.3 | 363,286.9        | 31.5            | 37.0          |
| 2    | HVAC (stand-by)                    | CH-7A-2   | N         | -                      | -       | -                | 31.5            | 37.0          |
| 3    | HVAC Chiller                       | CH-7A-3   | Y         | 365.0                  | 6,083.3 | 363,286.9        | 31.5            | 37.0          |
| 4    | Process Chiller                    | PCH-7A-1  | Y         | 104.0                  | 1,733.3 | 103,511.9        | 31.5            | 37.0          |
| 5    | Process Chiller (stand-by)         | PCH-7A-2  | N         | -                      | -       | -                | 31.5            | 37.0          |
| 3    | Process Waste<br>Sump Lift Station | TC-8001   | Υ         | 114.6                  | 1,910.0 | 114,062.1        | 31.5            | 37.0          |
| 4    | Compressor                         | COMP-7A-1 | Y         | 5.4                    | 90.0    | 5,374.7          | 31.5            | 41.5          |
| 5    | Compressor                         | COMP-7A-2 | Y         | 5.4                    | 90.0    | 5,374.7          | 31.5            | 31.5          |
|      | ТОТ                                | 959.4     | 15,990.0  | 954,897.2              | 31.5    | 36.99            |                 |               |

#### Notes:

1. Compressor – stand-by the cooling water is kept recirculating without thermal load.

Maximum Thermal Load Required = 5,246,560 kcal/h

Design Condition: Based on the Maximum Operating Condition, the manufacturer have selected 3 cooling towers operating at the same time, but in case of maintenance, two of them have the capacity to operate with the same required thermal load.

Cooling Towers Selected:

| Cooling<br>Tower | Flowrate<br>m³/h | Flowrate<br>(lpm) | Thermal Load |
|------------------|------------------|-------------------|--------------|
| 1                | 495.0            | 8,250.0           | 2,718,608.0  |
| 2                | 990.0            | 16,500.0          | 5,437,215.0  |
| 3                | 1485.0           | 24,750.0          | 8,155,823.0  |









TITLE:

SHEET 5 of 9

REV.:

0

#### **COOLING WATER SYSTEM CALCULATION**

Each cooling tower has the thermal load of 2,718,608 kcal/h, with a flow rate of 495 m<sup>3</sup>/h.

Two cooling towers operating at the same time, the thermal load is 5,437,215.3 kcal/h, with a flow rate of 990 m<sup>3</sup>/h.

At the maximum operating condition, the thermal load required is 5,246,560 kcal/h, with a flow rate of 959.4 m<sup>3</sup>/h.

For design condition, the total flow rate is 990 m<sup>3</sup>/h. The flow rate in excess (30.6 m<sup>3</sup>/h) is diverted to tie-in (future expansion).

## 5.2 Pumps

The pumps were sized for the Design Condition, Maximum Operating Condition and Minimum Operating Condition, according to the tables shown below.

a) Design Condition – 2 Cooling Towers and 2 Pumps are operating at the same time.

| EQUIPMENT                       | TAG       | DIVERSITY<br>(Y/N) | SIMULT.<br>FLOWRATE<br>(m³/h) | SIMULT.<br>FLOWRATE<br>(Ipm) | SIMULT.<br>FLOWRATE<br>(kg/h) | NOTES |
|---------------------------------|-----------|--------------------|-------------------------------|------------------------------|-------------------------------|-------|
| HVAC Chiller                    | CH 7A 1   | Y                  |                               |                              |                               |       |
|                                 | CH-7A-1   | ĭ                  | 365.0                         | 6,083.3                      | 363,286.9                     |       |
| HVAC (stand-by)                 | CH-7A-2   | N                  | -                             | -                            | -                             |       |
| HVAC Chiller                    | CH-7A-3   | Υ                  | 365.0                         | 6,083.3                      | 363,286.9                     |       |
| Process Chiller                 | PCH-7A-1  | Υ                  | 104.0                         | 1,733.3                      | 103,511.9                     |       |
| Process Chiller (stand-by)      | PCH-7A-2  | N                  | -                             | -                            | -                             |       |
| Process Waste Sump Lift Station | TC-8001   | Υ                  | 114.6                         | 1,910.0                      | 114,062.1                     |       |
| Compressor                      | COMP-7A-1 | Υ                  | 5.4                           | 90.0                         | 5,374.7                       |       |
| Compressor                      | COMP-7A-2 | Y                  | 5.4                           | 90.0                         | 5,374.7                       |       |
| Tie-in                          | -         | Υ                  | 30.6                          | 510.0                        | 30,456.3                      |       |
| TOTAL                           |           | -                  | 990.0                         | 16,500.0                     | 985,353.5                     |       |

b) Maximum Operating Condition – 2 Cooling Towers and 2 Pumps are operating at the same time without the future expansion. See table below:

| EQUIPMENT                  | TAG      | DIVERSITY<br>(Y/N) | SIMULT.<br>FLOWRATE<br>(m³/h) | SIMULT.<br>FLOWRATE<br>(lpm) | SIMULT.<br>FLOWRATE<br>(kg/h) | NOTES |
|----------------------------|----------|--------------------|-------------------------------|------------------------------|-------------------------------|-------|
| HVAC Chiller               | CH-7A-1  | Υ                  | 365.0                         | 6,083.3                      | 363,286.9                     |       |
| HVAC (stand-by)            | CH-7A-2  | N                  | -                             | -                            | -                             |       |
| HVAC Chiller               | CH-7A-3  | Υ                  | 365.0                         | 6,083.3                      | 363,286.9                     |       |
| Process Chiller            | PCH-7A-1 | Υ                  | 104.0                         | 1,733.3                      | 103,511.9                     |       |
| Process Chiller (stand-by) | PCH-7A-2 | N                  | -                             | -                            | -                             |       |









TITLE:

## **COOLING WATER SYSTEM CALCULATION**

6 of 9

SHEET

| EQUIPMENT                       | TAG       | DIVERSITY<br>(Y/N) | SIMULT.<br>FLOWRATE<br>(m³/h) | SIMULT.<br>FLOWRATE<br>(lpm) | SIMULT.<br>FLOWRATE<br>(kg/h) | NOTES |
|---------------------------------|-----------|--------------------|-------------------------------|------------------------------|-------------------------------|-------|
| Process Waste Sump Lift Station | TC-8001   | Y                  | 114.6                         | 1,910.0                      | 114,062.1                     |       |
| Compressor                      | COMP-7A-1 | Υ                  | 5.4                           | 90.0                         | 5,374.7                       |       |
| Compressor                      | COMP-7A-2 | Y                  | 5.4                           | 90.0                         | 5,374.7                       |       |
| Tie-in                          | -         | N                  | -                             | -                            | -                             |       |
| TOTAL                           | -         | 959.4              | 15,990.0                      | 954,897.2                    |                               |       |

#### Notes:

1. 2 Cooling Towers operating and 1 stand-by (maintenance).

## c) Minimum Operating Condition

For Minimum Operating Condition, the pumps are operating with 3 cooling towers (minimum pressure drop of the system) and without the future expansion.

| EQUIPMENT                       | TAG       | DIVERSITY | SIMULT.<br>FLOWRATE | SIMULT.<br>FLOWRATE | SIMULT.<br>FLOWRATE | NOTES |
|---------------------------------|-----------|-----------|---------------------|---------------------|---------------------|-------|
|                                 |           | (Y/N)     | (m³/h)              | (lpm)               | (kg/h)              |       |
| HVAC Chiller                    | CH-7A-1   | Υ         | 365.0               | 6,083.3             | 363,286.9           |       |
| HVAC (stand-by)                 | CH-7A-2   | N         | -                   | -                   | -                   |       |
| HVAC Chiller                    | CH-7A-3   | Υ         | 365.0               | 6,083.3             | 363,286.9           |       |
| Process Chiller                 | PCH-7A-1  | Υ         | 104.0               | 1,733.3             | 103,511.9           |       |
| Process Chiller (stand-by)      | PCH-7A-2  | N         | -                   | -                   | -                   |       |
| Process Waste Sump Lift Station | TC-8001   | Y         | 114.6               | 1,910.0             | 114,062.1           |       |
| Compressor                      | COMP-7A-1 | Υ         | 5.4                 | 90.0                | 5,374.7             |       |
| Compressor                      | COMP-7A-2 | Y         | 5.4                 | 90.0                | 5,374.7             |       |
| Tie-in                          | -         | N         | -                   | -                   | -                   |       |
| TOTAL                           |           | -         | 959.4               | 15,990.0            | 954,897.2           |       |

#### Notes:

1. 3 Cooling Towers operating at the same time.

## 5.3 Balancing Valves

To ensure the correct flow distribution in the installation, the following balancing valves were installed.

a) Static Balancing valves at the pump discharge

Static balancing valves were considered at the pump discharge, as shown in the table below:









TITLE:

SHEET 7 of 9

### **COOLING WATER SYSTEM CALCULATION**

REV.:

| ITEM | VALVE     | PUMP    | FLOW<br>(m³/h) | VRATE   | P in<br>(barG) | P out<br>(barG) | ΔP<br>(bar) | CV<br>(Calculated) |
|------|-----------|---------|----------------|---------|----------------|-----------------|-------------|--------------------|
| 21   | BV-940049 | PC-7A-3 | 494.6          | 8,244.0 | 2.4            | 2.3             | 0.12        | 1,641.7            |
| x24  | BV-940050 | PC-7A-2 | 494.6          | 8,244.0 | 2.5            | 2.4             | 0.12        | 1,641.7            |
| 27   | BV-940051 | PC-7A-1 | 495.4          | 8,256.0 | 2.4            | 2.3             | 0.12        | 1,641.7            |

## b) Static Balancing valves at the cooling water return (inlet of each tower)

Static balancing valves were considered at the inlet of each Tower, as shown in the table below:

| ITEM | VALVE     | COLLING<br>TOWER | FLOWRATE |         | P in   | P out  | ΔΡ    | CV           |
|------|-----------|------------------|----------|---------|--------|--------|-------|--------------|
|      |           |                  | (m³/h)   | (LPM)   | (barG) | (barG) | (bar) | (Calculated) |
| 63   | BV-940072 | CT-7A-1          | 495.9    | 8,265.5 | 0.3    | 0.3    | 0.06  | 2,341.0      |
| x65  | BV-940073 | CT-7A-2          | 495.9    | 8,265.5 | 0.3    | 0.3    | 0.03  | 3,302.0      |
| 67   | BV-940074 | CT-7A-3          | 495.9    | 8,265.5 | 0.3    | 0.3    | 0.04  | 2,940.5      |

## c) Static Balancing valves at the inlet/ outlet of Equipment

Static balancing valves were considered for each Equipment, as shown in the table below:

| ITEM | VALVE     | EQUIPMENT | FLOWRATE (m³/h) (LPM) |         | P in   | P out  | ΔΡ    | cv           |
|------|-----------|-----------|-----------------------|---------|--------|--------|-------|--------------|
|      |           |           |                       |         | (barG) | (barG) | (bar) | (Calculated) |
| 108  | BV-980056 | PCH-7A-1  | 104.2                 | 1,736.7 | 1.1    | 0.8    | 0.26  | 233.7        |
| x111 | BV-980057 | PCH-7A-2  | 104.2                 | 1,736.7 | 1.1    | 0.8    | 0.25  | 240.9        |
| 209  | BV-960062 | CH-7A-1   | 365.7                 | 6,094.8 | 1.2    | 0.9    | 0.30  | 772.6        |
| x212 | BV-960064 | CH-7A-2   | 365.7                 | 6,094.8 | 1.2    | 0.9    | 0.27  | 817.6        |
| 215  | BV-960066 | CH-7A-3   | 365.7                 | 6,094.8 | 1.2    | 0.9    | 0.27  | 808.2        |
| 305  | BV-840018 | COMP-7A-2 | 5.4                   | 90.0    | 3.6    | 3.5    | 0.05  | 27.3         |
| 308  | BV-840017 | COMP-7A-1 | 5.4                   | 90.0    | 3.6    | 3.5    | 0.05  | 27.1         |
| 311  | BV-940091 | TC-8001   | 114.6                 | 1,910.0 | 3.6    | 3.5    | 0.09  | 447.5        |

The Cooling Water System was sized based on flowrate and diversity indicated above, using the software Fathom version 10.0 and PID 7A-M-0-5-42 for this system was elaborated based on these calculations.









0

DOC NR: 569-DB7B-PRO-500-004 CLIENT NR: PRD-MEC-CLC-009

TITLE:

SHEET
8 of 9
REV:

## **COOLING WATER SYSTEM CALCULATION**

## 6. RESULTS

## 6.1 VISUAL REPORT

**Design Condition** 

Maximum Operating Condition

Minimum Operating Condition



Visual Report -Design Condition.pd



Visual Report -Maximum Operating



Visual Report -Minimum Operating

## 6.2 OUTPUT

**Design Condition** 

**Maximum Operating Condition** 

Minimum Operating Condition







Output - Minimum Operating Condition

## **6.3 PUMPS SELECTED**

## a) DESIGN CONDITION

| Jct | Results<br>Diagram      | Vol.<br>Flow<br>(m3/hr) | dH<br>(meters) | Ideal<br>Power<br>(hp) | Overall<br>Efficiency<br>(Percent) | Overall<br>Power<br>(hp) | Speed<br>(Percent) | NPSHA<br>(meters) | P Static<br>Suction<br>(barG) | P Static<br>Disc.<br>(barG) | dP<br>(bar) |
|-----|-------------------------|-------------------------|----------------|------------------------|------------------------------------|--------------------------|--------------------|-------------------|-------------------------------|-----------------------------|-------------|
| 20  | Show PC-7A-3            | 495                     | 25,6           | 46,1                   | 86,4                               | 53,4                     | 100                | 10,5              | 0,0518                        | 2,50                        | 2,50        |
| X23 | Show PC-7A-2 (Stand-by) | 0                       | N/A            | N/A                    | N/A                                | N/A                      | 0                  | N/A               | N/A                           | N/A                         | N/A         |
| 26  | Show PC-7A-1            | 495                     | 25,6           | 46,1                   | 86,4                               | 53,4                     | 100                | 10,6              | 0,0542                        | 2,50                        | 2,50        |

PC-7A-1/2/3 – The pump head will be rounded to 26 mlc.

## b) MAXIMUM OPERATING CONDITION

| Jct | Results<br>Diagram      | Vol.<br>Flow<br>(m3/hr) | dH<br>(meters) | Ideal<br>Power<br>(hp) | Overall<br>Efficiency<br>(Percent) | Overall<br>Power<br>(hp) | Speed<br>(Percent) | NPSHA<br>(meters) | P Static<br>Suction<br>(barG) | P Static<br>Disc.<br>(barG) | dP<br>(bar) |
|-----|-------------------------|-------------------------|----------------|------------------------|------------------------------------|--------------------------|--------------------|-------------------|-------------------------------|-----------------------------|-------------|
| 20  | Show PC-7A-3            | 479,7                   | 25,46          | 44,40                  | 86,30                              | 51,45                    | 99,03              | 10,59             | 0,05704                       | 2,487                       | 2,485       |
| X23 | Show PC-7A-2 (Stand-by) | 0,0                     | N/A            | N/A                    | N/A                                | N/A                      | 0,00               | N/A               | N/A                           | N/A                         | N/A         |
| 26  | Show PC-7A-1            | 479,7                   | 25,44          | 44,36                  | 86,30                              | 51,40                    | 99,00              | 10,62             | 0,05942                       | 2,487                       | 2,483       |

## c) MINIMUM OPERATING CONDITION

| Jct | Results<br>Diagram | Name               | Vol.<br>Flow<br>(m3/hr) | dH<br>(meters) | Ideal<br>Power<br>(hp) | Overall<br>Efficiency<br>(Percent) | Overall<br>Power<br>(hp) | Speed<br>(Percent) | NPSHA<br>(meters) | P Static<br>Suction<br>(barG) | P Static<br>Disc.<br>(barG) | dP<br>(bar) |
|-----|--------------------|--------------------|-------------------------|----------------|------------------------|------------------------------------|--------------------------|--------------------|-------------------|-------------------------------|-----------------------------|-------------|
| 20  | Show               | PC-7A-3            | 479,7                   | 24,91          | 43,44                  | 86,33                              | 50,31                    | 98,51              | 10,79             | 0,07617                       | 2,452                       | 2,431       |
| 23  | Show               | PC-7A-2 (Stand-by) | 479,7                   | 24,94          | 43,49                  | 86,33                              | 50,38                    | 98,56              | 10,89             | 0,08563                       | 2,464                       | 2,434       |
| X26 | Show               | PC-7A-1            | 0,0                     | N/A            | N/A                    | N/A                                | N/A                      | 0,00               | N/A               | N/A                           | N/A                         | N/A         |









TITLE:

SHEET 9 of 9

REV.:

0

## **COOLING WATER SYSTEM CALCULATION**

Pumps (PC-7A-1, PC-7A-2 and PC-7A-3)

Meganorm 200-150-250, 1750 rpm

