T G G T 5 Ξ 5 N N 0 0 0 5 0 G T G T **5** Ξ 5 N N 0 0 5 0 0 T G T G 5 Ξ 5

SCR, xeS

- 1. LUB Axiom if set S is bound from above, then it has a Supremum
- 2. GLB Axion if set S is bound from below, then it has an Infinum.

The Intermediate Value Theorem

If f(x) is continuous on [a,b], then for any KER, f(a) < K < f(b) there exists at least one $C \in (a_1b)$ such that f(c) = K.

Lemma

If f(x) is continuous on [a,b] and f(a) < 0 < f(b) then there exists at least one number CE(a1b) such that f(c) = 0. (when k = 0)

Lemma Proof:

$$f(x)$$
 is continuous on $[a,b]$ then there exists such

 $f(a) < 0$, $f(b) > 0$
 $f(x)$ is negative on $[a,\xi] = S$

Set S is bounded from above by b, so it has a supremum. (by LUB Axiom)

Assume Sup S = C (c + b, because f(b) > 0 and f(x) < 0 on set S, so c < b)

$$f(c)>0$$
 (not possible because $f(x)<0$ on set S)

f(c) < 0 (not possible because if f(c) < 0 then there exists such number t that f(x) is negative on Ca,t)

$$|f(x)| = - + - + - - |f(x)| = 0$$

But if f(x) <0 on [a,t) then t= SupS, which contradicts our definition of Sups.)

f(c) = 0

Therefore f(c) = 0

IVT Proof:

Introduce
$$g(x) = f(x) - K$$
, $\forall K \in (f(a), f(b))$
 $g(b) = f(b) - k > 0$ by lemma, there exists such $g(a) = f(a) - k < 0$ number $c \in (a, b)$ that $g(c) = 0$

QED

Corollary for IVT:

f(x) can change sign at a discontinuity.

Example:

1. Show that $f(x) = x^3 - x - 1$ has a root on interval [1.2].

f(x) has a root on [1,2] means that there exists such number $c \in (1,2)$ that f(c)=0. To prove this, we can use FVT.

 $f(x) = x^3 - x - 1$ must satisfy all the conditions of IVT.

- (1) f(x) is continuous on [1,2] because we proved that cubic and linear functions are continuous on their domains.
- $\begin{array}{c|c}
 (2) & f(1) = |-|-| = -| < 0 \\
 \hline
 f(2) = 8-2-1 = 5>0
 \end{array}
 \Rightarrow -| < f(x) < 5$

Therefore by IVT there exists such number $C \in (1,2)$ that f(c) = 0, so X = C is the root of f(x) on the interval [1,2].

Method of bisections

1st Approximation

$$C_1 = 1 + \frac{2-1}{2} = 1.5$$
, $f(1) < 0$ and $f(1.5) > 0$, so root is between land (.5 (1,1.5)

2nd Approximation

$$C_2 = 1 + \frac{1.5-1}{2} = 1.25$$
, $f(1) = -1 < 0$ and $f(1.25) = -0.296 < 0$, so root is in (1.25, 1.5)

3rd Approximation

$$C_3 = 1.25 + \frac{1.5 - 1.25}{2} = 1.375$$
, $f(1.375) = 0.224 > 0$ and $f(1.25) = -0.296 < 0$

4th Approximation

$$C_4 = 1.25 + \frac{(.375 - 1.25)}{2} = 1.3125$$
, $f(1.3125) = -0.05151 < 0$ and $f(1.375) = 0.224 > 0$.

We can choose C5 = 1.313 + \frac{1.375 - 1.313}{2} = 1.344 or we can

Continue the algorithm as

long as we need to

obtain a higher accuracy.

Continued...

2. Prove $f(x) = \frac{1}{\sqrt{x}}$ is continuous on its domain.

This means that lim 1/x = 1/x ; Oom f(x) = (0,00)

Vε>0 36>0 s.t. |x-a|<δ ⇒ | √x - √a | <ε Aside:

$$\left| \frac{1}{1} \frac{1}{1} \frac{1}{1} \right| = \left| \frac{1}{1} \frac$$

Proof:

Given $\varepsilon > 0$, choose $\delta = \min \left\{ \frac{|a|}{2}, \frac{\sqrt{\Delta^3}}{\sqrt{2}} \varepsilon \right\}$. Then if $|x-a| < \delta$ we have:

$$\left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{a}} \right| \dots = \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \left(\frac{\sqrt{x} + \sqrt{a}}{\sqrt{a}} \right) < \frac{8 \cdot \sqrt{x}}{\sqrt{a^{2}}} = \frac{1}{\sqrt{a^{2}}} \frac{1}{\sqrt{a^{2}}}}$$

= 8

QED

 $<\frac{\delta}{\sqrt{a}} \cdot \frac{\sqrt{2}}{\sqrt{a}} \cdot \frac{1}{\sqrt{a}} = \frac{\sqrt{2} \cdot \delta}{\sqrt{a^3}}$ We do not want to

Choose a delta that $\delta = \frac{\sqrt{a^3} \cdot \epsilon}{\sqrt{2}}$ (rosses over to asymptote

To estimate $\frac{1}{\sqrt{x}}$, let $\delta \leq \frac{|a|}{2}$ $|a-x| = |x-a| < \frac{|a|}{2}$ $-\frac{|a|}{2} < x - a < \frac{|a|}{2}$ $a - \frac{a}{2} < x < \frac{a}{2} + a$ $a > \frac{1}{2} < x < \frac{3}{2}$ To estimate $\frac{1}{\sqrt{x}} + \sqrt{x}$ $\frac{|a|}{\sqrt{x}} < \sqrt{x} < \frac{3}{2}$ $\frac{1}{\sqrt{x}} < \sqrt{x}$ $\frac{1}{\sqrt{x}} < \sqrt{\frac{2}{a}}$

WRONG $\delta \leq |a|$ -|a| < x-a < |a|
a-a < x < a+a
0 < x < 2a
0 < \sqrt{x} < \sqrt{2a}
\frac{1}{\sqrt{x}} < \frac{1}{\sqrt{2a}}