<u>CM1604</u> <u>Computer Systems Fundamentals</u>

Process Management File Management Disk Scheduling

In this week lecture...

- Process Management
 - Process states
 - CPU Scheduling
- File Management
- Disk Scheduling

By the end of this lecture, you will:

- Understand different states of process
- Compare and contrast different CPU scheduling techniques
- Describe how the file management is done in OSs
- Compare and Contrast different disk scheduling algorithms

Process Management & CPU Scheduling

Process Management

- Process
 - Instance of a computer program in execution
 - Yet, single program can have multiple processes
- When a program is going to be executed
 - The program (machine code) gets loaded to the main memory from a storage device
 - Uses the CPU cycles to execute

Process Management ...

- OS need to keep track of
 - What processes are running
 - What processes are in the memory
 - Method of scheduling the execution
- Therefore, each process store following information
 - **Process Identification**
 - **Process State Information**
 - **Process Control Information**
- This information is stored in a data structure called Process Control Block (PCB)

Process States

Process States

New

A fresh new process that being created No resources are allocated

Ready

All the resources are allocated Waiting for a chance to use the CPU

Running

Currently being executed (fetch-execute cycle) Only one process can be running in a processor

Process States ...

Waiting

Waiting for resources other than CPU (input/output, memory page, a signal from another process)

Terminated

A completed process

No need to keep track of resource allocation any more

<u>CPU / Process Scheduling</u>

- Process of determining which of the process in ready state to be moved to running state
 - There are multiple process in ready state
 - Only one process can be in running state
- Scheduling techniques may be ...
 - Nonpreemptive Scheduling
 The current executing process leaves the CPU voluntarily
 - Preemptive Scheduling
 The OS decides to put another process into 'running' state before the currently executing process finishes

CPU Scheduling

Turnaround Time (TAT)

Time interval from the time of submission of a process (first time the process enter the ready state) to the time of the completion of the process.

Burst Time (BT)

This is the time required by the process for its execution.

Waiting Time (WT)

The time spent by a process waiting in the ready queue for getting the CPU.

$$TAT = BT + WT$$

CPU Scheduling Algorithms

First-Come, First-Served

Processes are executed in the order in which they arrive into the ready state

Shortest Job Next

Process with shortest estimated running time in the ready state is executed first

Round Robin

Each process runs for a specified time slice and moves from the running state to the ready state to await till its next turn if not finished

CPU Scheduling

Process	Service time
P1	80
P2	160
Р3	100
P4	30
P5	40
P6	110

First Come First Served

Process	Service time
P1	80
P2	160
Р3	100
P4	30
P5	40
P6	110

FCFS		
Process	Service time	
P1	80	
P2	160	
Р3	100	
P4	30	
P5	40	
P6	110	

Shortest Job Next

Process	Service time
P1	80
P2	160
Р3	100
P4	30
P5	40
P6	110

SJN		
Process	Service time	
P4	30	
P5	40	
P1	80	
Р3	100	
P6	110	
P2	160	

Round Robin

	FCFS
Process	Service time
P1	80
P2	160
Р3	100
P4	30
P5	40
P6	110

File Management

File Systems

Main memory

Active programs and data are stored while it is used But volatile - lost when the power is turned off

Secondary memory

Non-volatile

Used as the permanent storage to store data

Commonly used secondary storage - magnetic disk drive

File Systems...

File

Named collection of related data that is used to organize secondary memory

The smallest amount of data can be stored in the secondary memory -user view

File System

The way how the secondary memory is organized

OS's logical view of the files that it manages

Directory

Named collection of files organized in a logical manner

File Classification

Text file

File contain only characters (ASCII or Unicode character set)
Formatted as chunks of 8/16 bits and interpreted as characters

Binary file

File that contains data in specific format.

Requires special interpretation - needs specific application

Yet, all the information is sorted as binary in a computer

File Types

File Type

Specific type of information stored in a file

Eg: JPEG, PDF, MP3

File Extension

Part of file name that indicates the file type

Separated by a '.' from the file name

File Types

-OS8e

mory

collab-reco

rding

logical_me moryVSphy sical mem

of 2

Earlier this month (14)

Research Papers

Tutorial for Group G

Last month (3)

winrar-x64-591 (1) 591

PDF 7z1900-x64 Week 02 Lecture 1 Lecture 1 unnamed Part 2 of 2 Part_1_of_2 Final MICROSOF T.OFFICE.2 010.X86-X6 4.ProPlus...

BA Email Address.xlsx CH 07 -0S8e.pptx ChromeSetup.exe collab-recording.mp4 CSF Tutorial for Group G 09-10-2020.csv CSF_Lecture2_Part_2 of 2.html Lecture_1_Part_1_of_2.pdf Lecture 1 Part 2 of 2.pdf logical memoryVSphysical mem.jpg MICROSOFT.OFFICE.2010.X86-X64.ProPlus.PurEvil New MSc BDA students -04-10-2020 - list2 (1).xlsx New MSc BDA students -04-10-2020 - list2.xlsx OfficeSetup.exe Research Papers.docx sp75249.exe TeamViewer Setup.exe unnamed.jpg virtual-memory.png Week 02 Final.pptx winrar-x64-591 (1).exe

winrar-x64-591.exe

File Operations

- File operations performed on files:
 - create, delete, open, close, read, write, append, truncate, relocate, rename, copy
- OS provide mechanisms to perform the operations

File Protection

- In multi-user system, multiple users store the files in the disk
- OS must ensure only the authorized users are allowed to access/do the file operation on files.

Directories

- Used to organize the files on disk
- Represented as a file in OS
- Contains the meta information about the files stored
- Can be nested to have a hierarchical file structure easy to organize
- To visualize, file system is viewed as directory tree
- Directory at the highest level root directory
- Subdirectory currently working working directory

- Local Disk (C:)
 - Intel
 - PerfLogs
- Program Files
 - 7-Zip
 - Broadcom
 - Common Files
 - DESIGNER
 - microsoft shared
 - ClickToRun
 - backup

Path names

Path

Location of a file in the file system indicated using text

Absolute path

Path that begins from the root directory

Relative path

Path that begins at the current working directory

Date n

11/01/

Path Names

Absolute path

C:\Program Files\Microsoft

Office\MEDIA\CAGCAT10\1033

Relative path from "MEDIA"

CAGCAT10\1033

Disk Scheduling

Disk scheduling

- Most important storage device in a computer is the magnetic disk
- For input/output the computer need to access the disk.
- This is the slowest operation in the computer.
- Therefore, need to decide on which request to cater in a way to make the task efficient.
- This process is called

Disk Scheduling / I/O scheduling

Disk Anatomy

Disk Scheduling ...

- Ways of moving the arm efficiently
- Goals:

Fairness

High throughout

Minimal travelling head time

Eg: Disk has 100 tracks. Pointer is at 50.

Order of request: 90, 30, 55, 4, 81, 46, 87, 13

First-Come First-Served (FCFS)

- Request served in the order they arrived
- Total seek time = (90-50) + (90-30) + (55-30) + (55-4) + (81-4)

- All get a fair opportunity
- No seek time optimization

	Α	90
	В	30
	С	55
	D	4
	ш	81
	IL	46
	G	87
	Ι	13
2		

Shortest-Seek Time First (SSTF)

- Request with shortest seek time is executed each time
- Seek time = (50-46) + (55-46) + (55-30) + (30-13) + (13-4) + (81-4) +(87-81) + (90-87)
- Average response time decreases
- Overhead of calculation
- Starvation

SCAN

- Works as an elevator
- Arm moves in one direction upto the end and caters all the requests, then reverse the direction till the other end and service

the requests

- Seek time = (50-0) + (90-0)
- requests at the middle are favoured

C-SCAN

- Same as SCAN, but service the request only in one direction
- Seek time = (50-0) + (99-0) + (99-55)

LOOK

- Same as SCAN, but does not reach the ends but till the last request
- Seek time = (50-4) + (90-4)

Extra cost of reaching the edges is reduce

C-LOOK

- LOOK version of C-SCAN.
- Seek time = (50-4) + (90-4) + (90-55)

REFERENCE

- Dale, N.B. and Lewis, J., 2007. Computer science illuminated. Jones
 & Bartlett Learning.
- Disk Scheduling operating system tutorial https://geektech1717.blogspot.com/2020/05/disk-schedulingoperating-system.html

READING

Chapter # 10 and 11

Computer science illuminated. Jones & Bartlett Learning.