Johns Hopkins Engineering

625.464 Computational Statistics

Bootstrap Confidence Intervals

Module 9 Lecture 9C

Bootstrap Confidence Intervals - The Percentile Method

Perantile Method -> read percentiles off the histogram of O values produced by Bootstropping.

\mathcal{X}^*	$\widehat{\theta}^*$	$P^*\left[\widehat{\theta}^*\right]$
111	3/3	1/27
112	4/3	3/27
1 2 2	5/3	3/27
2 2 2	6/3	1/27
116	8/3	3/27
126	9/3	6/27
226	10/3	3/27
166	13/3	3/27
266	14/3	3/27
666	18/3	1/27

95% confident. Interval for 0 15 (-.21, -.17)

Justification for the Percentile Method

Consider a strictly increasing continuous transformation of and a distribution function H that is continuous and symmetric. (H(z) = 1 - H(z)) with the property Where has the a-quantile of H

Percentile Method

Justification for the Percentile Method

Justification for the Percentile Method

$$\frac{\partial^{-1}(h_{x})}{\partial h_{x}} + \phi(\hat{\theta}) \approx \frac{2}{4} \int_{0}^{1} \frac{\partial^{-1}(h_{x})}{\partial h_{x}} +$$

Pivoting and the Bootstrap to

The bootstrapped Statistic Should
be protal, it it's distribution should
not depond on Θ .

If a is our standard var. stabilizing transformation, then all is pivotal.

The Bootstrap t

$$\begin{array}{ll}
\Theta = T(F) & \Theta = + (f) \\
\text{Poststrap} & V(G) = V(f) \\
P(X,F) = T(F) - T(F) = \Theta - G \\
\hline
V(F) & V(F)
\end{array}$$
buststrap $R(X,F)$ by $R(X,F)$.

The Bootstrap t Let Gbethe Dist R(X, F) and Lot G be the List of R(X*, F) [-X = P[=x(6) = R(X,F) = 21-x(6)] $= P\left[\frac{2}{\sqrt{16}}\right]^{2} = \frac{1}{\sqrt{16}} \leq \frac{1$ 6 roughly equal to Bootstrap t CI () - TV(P E, - / ()) = - () Eaz ())