

OBJECT-ORIENTED PROGRAMMING 1

ACADEMIC YEAR 2024-2025

Degree	Bachelor of Science in Computer Science			
Qualification	Computer Science			
Professor	PhD Karen Petrosyan			
Distribution of hours	CM 13.5 h. TP 16.5 h. TPS 60 h. ECTS 3			

	EXPE	CTED LEARNING OUTCOMES OF THE COURSE
A- Knowledge		 A 1 knowledge of object-oriented paradigm in the Java programming language A 2 Object, data encapsulation, state invariants, specification of behaviors (pre/postconditions) A 3 Interaction between objects. Sequence and collaboration diagrams. A 4 Class, composition, instantiation. Class diagram. A 5 Inheritance and subtype, inheritance graph; notions of polymorphism, dynamic binding.
B-Skills	B1 - Skills to apply professional knowledge	B 1.1 Understand the fundamental concepts of computer science: structure of the computational process, algorithms and complexity of computation B 1.2 Summarize the strengths and weaknesses of Java programming and the basic concepts of object-oriented programming B 1.3 Write Java code using advanced Java features B 1.4 Understand the basic approaches to the design of software applications B 1.5 Understand the basic principles of creating Java applications B 1.6 Read and understand Java-based software code of medium-to-high complexity
	B2 - General (transversal) skills	B 2.1 Use standard and third party Java's API's when writing applications B 2.2 Apply the above to design using UML, implement and test a Java application consisting of multiple classes

KNOWLEDGE / SKILLS ASSESSMENT & EVALUATION				
Ongoing evaluation tasks	Midterm exam			
(max 1/3 of grade for the	(max 1/3 of grade for	Final exam		
total course)	the total course)			

Oral Written	oral Written	oral □ Written ⊠
Duration : XXX h. Criteria :	Group base: Yes 🗌 No 🗌	Group base: Yes ☐ No 🛛
Course project : Yes 🗌 No		
Presentation: Yes No		
	Duration : XXX h.	Duration: 1.5 h.
		Exam type : Summative
		Semestral Exam (written)
		/ Assignment /Practical
Tasks type & Weight : XXXXXX	E xam type : XXXXXX	Assignment

Assessment:

Assessment:

TEACHING METHODS & TOOLS

Students will be guided to develop problem-solving skills through interactive activities that are closely tailored to the lesson at hand. Students will be guided to discover activities that promote self-learning and help students develop critical thinking skills and retain knowledge that leads to self-actualization.

Practical Work Lecture Extramural/individual work Explanation Modeling Study of textbooks, Slideshow Exercises sources Presentation Self-study Individual work Demonstration Instruction with Problem solving demonstration Video-presentation learning

KNOWLEDGE & SKILLS PREREQUISITS

Sets and their operations, functions, relations, recurrence

COURSE DESCRIPTION /SYLLABUS / RESOURCES

TOPIC	HOURS	CORE RESOURCES 1	ADDITIONAL RESOURCES
General introduction	1.5hCM	Herbert Schild. Java	https://www.tutorialspoint.com/java/index.ht
• Different programming paradigms		Complete Reference.	m
■ Java features			
<pre>Application structure, execution platform, abstract machine</pre>			

Assessment:

arrays (singledimensional, multidimensional arrays)	14hTD	Complete Reference. pp. 100-336	<u>m</u>
 Classes and objects, data encapsulation in Java, class diagrams Classes in Java, methods, constructors, overloading, this Composition, class diagrams Inheritance and constructors, class diagrams Polymorphism Abstract classes and interfaces 		Y. Daniel Liang. Introduction to Java Programming and Data Structures pp. 7-129 K. Barclay, J. Savage. Object-Oriented Design with UML and Java pp. 34-182	

Herbert Schild. Java

https://www.tutorialsp

oint.com/java/index.ht

13.5hCM

PREPARATION

CORE REFERENCES

Control Statements,

- 1. Y. Daniel Liang. Introduction to Java Programming and Data Structures, 12th Edition - Pearson, 2020
- 2. Herbert Schild. Java Complete Reference, Eleventh Edition-Oracle, 2019
- 3. K. Barclay, J. Savage. Object-Oriented Design with UML and Java, Elsevier, 2004
- 4. Apprendre la Programmation Orientée Objet avec le langage Java, L. Gervais, 2020

ADDITIONAL REFERENCES

- 1. Cay S. Horstmann, Core Java, Volume I Fundamentals, 12th Edition-Oracle, 2021
- 2. Paul Deitel, Java How to program, Tenth Edision-Pearson, 2015.
- 3. David Flanagan. Java examples, Third Edition O'ReIlly, 2004.

WEB RESOURCES

- 1. https://www.tutorialspoint.com/java/index.htm
- 2. https://www.javatpoint.com/java-programs
- 3. https://www.w3resource.com/java-exercises/basic/index.php