Содержание

1	Основные алгебраические структуры		2
	1.1	Бинарные операции и их свойства	2
	1.2	Алгебраические структуры с одной бинарной операцией	3

1. Основные алгебраические структуры

1.1. Бинарные операции и их свойства

Определение 1.1. Пусть A - множество. Бинарной операцией на множестве A называется отображение:

$$f: A^2 \to A \quad (f: A \times A \to A)$$
 (1)

Замечание 1.2. Если f - бинарная операция на A и пара $(a,b) \in A^2$, то образ пары (a,b) при отображении f называется значением операции f на элементах a и b (результатом применения операции f κ элементам a и b) и обозначается f(a,b) или afb.

Пример 1.3. Примеры бинарных операций

- 1) Сложение и усножение на множествах N, N_0, Z, Q, R .
- 2) Вычитание на Z, Q, R определеноб N, N_0 не определено.
- 3) Пусть f_1, f_2 такие, что $f_1: (1,n)^2 \to (\overline{1,n}), f_2: (\overline{1,n})^2 \to (1,n)$ при этом

$$f_1(a,b) = \max\{a,b\}, \quad f_2(a,b) = \min\{a,b\}$$
 (2)

Так как $\forall a,b \in \overline{1,n}$ max и min однозначно определены и содержатся во множестве от $\overline{1,n}$, то отображения f_1,f_2 являются бинарными операциями на множестве $\overline{1,n}$.

4) M - множество, P(M) - множество всех подмножеств, тогда пересечение и объединение $\forall A, B \in P(M)$ является бинарными операциями на множестве P(M).

Определение 1.4. Бинарная операция * на множестве M называется ассоциативной, если $\forall a, b \in M$ выполняется условие (a*b)*c = a*(b*c). Примерами ассоциативных операций могут служить бинарные операции из примера 1.3.

Определение 1.5. Бинарная операция * на множестве M называется коммутативной, если $\forall a, b \in M$ выполняется условие

$$a * b = b * a \tag{3}$$

Пример 1.6. Примеры коммутативных и некоммутативных операций:

- 1) Коммутативные пункты 1, 3, 4 из 1.3.
- 2) Некоммутативная пункт 2 из 1.3, декартово произведение, композиция.

Замечание 1.7. Для отдельных элементов $a, b \in M$ равенство a * b =b*a может выполняться в том случае, если операция * не коммутативна. Такие элементы называются перестановочными (коммутирующими) друг с другом

Пример 1.8.
$$a = 0, b = 0$$
: $a - b = b - a$

Замечание 1.9. Свойства ассоциативности и коммутативности операции независимы. пример коммутативной но не ассоциативной опеpauuu:

$$a * b = \frac{a+b}{2} \tag{4}$$

Определение 1.10. Бинарная операция * на множестве M называется леводистрибутивной (праводистрибутивной) относительно операции о если $\forall a, b, c \in M$ выполнено условие:

$$a*(b\circ c)=(a*b)\circ (a*c)$$
 - леводистрибутивная (5) $(b\circ c)*a=(b*a)\circ (c*a)$ - праводистрибутивная (6)

$$(b \circ c) * a = (b * a) \circ (c * a)$$
 - праводистрибутивная (6)

если выполняются оба этих равенства, то говорят, что * дистрибутивна относительно операции о. Например умножение дистрибутивна к сложению.

1.2. Алгебраические структуры с одной бинарной операцией

Определение 1.11. Алгебраической структурой (алгеброй) называется множество с системой операций.

Определение 1.12. Множество G с одной бинарной операцией называют группоидом, обозначают (G,*).

Замечание 1.13. Из определения группоида следует, что если множество G - конечно, то правило по которому можно найти значение операции *. $\forall a,b \in G$, можно записать в таблицу $G = \{a_1,\ldots,a_n\}$ - m.к. G - конечно.

$$\begin{pmatrix} * & a_1 & \dots & a_j & \dots & a_n \\ a_1 & a_1 * a_1 & \dots & a_1 * a_j & \dots & a_1 * a_n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_i & a_i * a_1 & \dots & a_i * a_j & \dots & a_i * a_n \\ \dots & \dots & \dots & \dots & \dots \\ a_n & a_n * a_1 & \dots & a_n * a_j & \dots & a_n * a_n \end{pmatrix}$$

Определение 1.14. Пусть $G_1 \subset G$, $\exists (G,*)$, G_1 называют замкнутым относительно операции *, если выполнены условия $\forall a,b \in G: ab \in G_1$. В этом случае группоид $(G_1,*)$ называют подгруппоидом группоида (G,*).

Определение 1.15. Элемент Λ группоида (G,*) называют нейтральным, если $\forall a \in G$ выполнено:

$$\Lambda * a = a \tag{7}$$

Пример 1.16. [

- 1) $(N_0, +)(Q, +)$ 0-нейтральные
- 2) $(N_0, \bullet)(Q, \bullet)$ 1-нейтральные
- 3) (N, +)(Z, +) не имеют нейтрального элемента

Утверждение 1.17. Если в группоиде (G, *) существует нейтральный элемент, то он единственный.

Доказательство. пусть это не так, тогда Λ_1, Λ_2 - нейтральные элементы группоида (G,*). Т.к. Λ_1 - нейтральный, то $\Lambda_1*\Lambda_2=\Lambda_2$, а т.к. Λ_2 - нейтральный, то $\Lambda_1*\Lambda_2=\Lambda_1$.

Тогда
$$\Lambda_1 = \Lambda_2$$
.