```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

df_aerofit = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/asset

df_aerofit.head()
```

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Mile
0	KP281	18	Male	14	Single	3	4	29562	11:
1	KP281	19	Male	15	Single	2	3	31836	7
2	KP281	19	Female	14	Partnered	4	3	30699	6
3	KP281	19	Male	12	Single	3	3	32973	8
4	KP281	20	Male	13	Partnered	4	2	35247	4 ⁻

df_aerofit.isnull().sum()

Product	0
Age	0
Gender	0
Education	0
MaritalStatus	0
Usage	0
Fitness	0
Income	0
Miles	0
dtype: int64	

df_aerofit.isna().sum()

```
Product 0
Age 0
Gender 0
Education 0
MaritalStatus 0
Usage 0
Fitness 0
Income 0
Miles 0
dtype: int64
```

df_aerofit.describe()

	Age	Education	Usage	Fitness	Income	Miles	
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444	
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605	
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000	
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000	
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000	
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000	
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000	

df aerofit.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

df_aerofit.nunique()

Product 3 Age 32 2 Gender Education 8 MaritalStatus 2 6 Usage Fitness 5 Income 62 Miles 37 dtype: int64

df aerofit.columns

```
df_aerofit["Product"].value_counts()
```

KP281 80
KP481 60
KP781 40

Name: Product, dtype: int64

df_aerofit["Usage"].value_counts()

- 3 69 4 52
- 233517
- 6 7
- 7 2

Name: Usage, dtype: int64

df_aerofit["Fitness"].value_counts()

- 3 975 312 26
- 2424
- 1 2

Name: Fitness, dtype: int64

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Income"],hue=df_aerofit["MaritalS
plt.plot()

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Usage"],hue=df_aerofit["MaritalSt
plt.plot()

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Miles"],hue=df_aerofit["MaritalSt
plt.plot()

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Miles"],hue=df_aerofit["Gender"],
plt.plot()

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Income"],hue=df_aerofit["Gender"]
plt.plot()

sns.boxplot(x=df_aerofit["Product"],y=df_aerofit["Usage"],hue=df_aerofit["Gender"],
plt.plot()


```
sns.barplot(x=df_aerofit["Usage"],y=df_aerofit["Fitness"])
plt.plot()
```


Usage

sns.barplot(x=df_aerofit["Product"],y=df_aerofit["Miles"])
plt.plot()

df_aerofit.corr()

	Age	Education	Usage	Fitness	Income	Miles
Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

df_aerofit.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Mile
0	KP281	18	Male	14	Single	3	4	29562	11:
1	KP281	19	Male	15	Single	2	3	31836	7:
2	KP281	19	Female	14	Partnered	4	3	30699	6
3	KP281	19	Male	12	Single	3	3	32973	8
4	KP281	20	Male	13	Partnered	4	2	35247	4

sns.countplot(x="Gender",data=df_aerofit)
plt.plot()

sns.countplot(x="MaritalStatus",data=df_aerofit)
plt.plot()

sns.histplot(data=df_aerofit["Income"],bins=10)
plt.plot()

sns.histplot(data=df_aerofit["Age"],bins=10)
plt.plot()

pd.crosstab(index=df_aerofit["Product"],columns=df_aerofit["Usage"],margins=True)

	Usage	2	3	4	5	6	7	All	1
P	roduct								
	KP281	19	37	22	2	0	0	80	
	KP481	14	31	12	3	0	0	60	
	KP781	0	1	18	12	7	2	40	
	AII	33	69	52	17	7	2	180	

pd.crosstab(index=df_aerofit["Product"],columns=df_aerofit["Fitness"],margins=True)

Fitness	1	2	3	4	5	All	1
Product							
KP281	1	14	54	9	2	80	
KP481	1	12	39	8	0	60	
KP781	0	0	4	7	29	40	
All	2	26	97	24	31	180	

pd.crosstab(index=df_aerofit["Product"],columns=df_aerofit["Gender"],margins=True)

Gender	Female	Male	All	7
Product				
KP281	40	40	80	
KP481	29	31	60	
KP781	7	33	40	
All	76	104	180	

 $\verb|pd.crosstab| (index=df_aerofit["Product"], columns=df_aerofit["MaritalStatus"], margins | (index=df_aerofit["Product"), columns=df_aerofit["MaritalStatus"], margins | (index=df_aerofit["MaritalStatus"), margins | (index=df_aerofit["MaritalStatus"),$

MaritalStatus	Partnered	Single	All	10+
Product				
KP281	48	32	80	
KP481	36	24	60	
KP781	23	17	40	
All	107	73	180	

df_aerofit[df_aerofit["Product"] == "KP281"].shape[0]/df_aerofit.shape[0]

sns.heatmap(data=df_aerofit.corr(),annot=True,cmap="Blues")
plt.plot()

sns.pairplot(data=df_aerofit)
plt.plot()

Г⇒

Colab paid products - Cancel contracts here

✓ 0s completed at 9:05 PM

×