Data Compression

44

Compressing data

via dimensionality reduction

Potential Benefits

- Summarize & Visualize
- Reduce storage size
- Speedup learning algorithm
- Prevent overfitting

Types of Data Compression

Feature Selection

Select the most important features

Feature Extraction

Transform data into a new feature subspace

Types of Data Compression

Feature Selection

Select the most important features

Feature Extraction

Transform data into a new feature subspace

TODAY

Feature Extraction

Feature Extraction

$$W=\left[egin{array}{c}1\2\end{array}
ight]$$

$$=\left[rac{2.5}{2}
ight]$$

Types of Feature Extraction

	Linear Transformation	Non-Linear Transformation
Unsupervised	PCA	KPCA
Supervised	LDA	KDA

Principal Component

Analysis (PCA)

Principal Component

New feature axe that maximizes variance

Principal Component

New feature axe that minimize reconstruction error

Maximize Variance <=>
Minimize Reconstruction Error

Basic Math Review

(Before starting finding Principal Component)

Covariance

COVARIANCE

$$\sigma(x,y) = rac{\sum (x-ar{x})(y-ar{y})}{(n-1)}$$

Covariance Matrix

$$\Sigma = \begin{bmatrix} \sigma(x, x) & \sigma(x, y) \\ \sigma(y, x) & \sigma(y, y) \end{bmatrix}$$

Eigenvectors & Eigenvalues

$$A\mathbf{v}=\lambda\mathbf{v}$$

Let's Find Principal Component!

Example: 2 features -> 1 feature

 $\begin{bmatrix} 1.07 & 0.63 \\ 0.63 & 0.64 \end{bmatrix}$

Find eigenvalues & eigenvectors from the covariance matrix

eigenvectors: $\begin{bmatrix} 0.81 \\ 0.58 \end{bmatrix} \begin{bmatrix} -0.58 \\ 0.81 \end{bmatrix}$

eigenvalues: 1.52 0.19

Select the eigenvector with largest eigenvalue

eigenvectors: $\begin{bmatrix} 0.81 \\ 0.58 \end{bmatrix} \begin{bmatrix} -0.58 \\ 0.81 \end{bmatrix}$

PC

eigenvalues: 1.52 0.19

Transform the data

$$x^{'}=\left[egin{array}{cc} x & y \end{array}
ight] \left[egin{array}{cc} 0.81 \ 0.58 \end{array}
ight] = 0.81 x + 0.58 y$$

Proof:

https://goo.gl/STgLp4

Principal Component Analysis in General

Principal Component Analysis explained visually

Target: find the $d \times k$ transformation matrix

$$\mathbf{x} = [x_1, x_2, \dots, x_d], \quad \mathbf{x} \in \mathbb{R}^d$$

$$\downarrow xW, W \in \mathbb{R}^{d \times k}$$

$$\mathbf{z} = [z_1, z_2, \dots, z_k], \quad \mathbf{z} \in \mathbb{R}^k$$

1. Standardize the dataset

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

2. Construct the covariance matrix

$$\Sigma = egin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1d} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2d} \ dots & dots & \ddots & dots \ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{dd} \end{bmatrix} \quad \sigma_{jk} = rac{1}{(n-1)} \sum_{i=1}^n x_j^{(i)} x_k^{(i)}$$

$$\sigma_{jk} = rac{1}{(n-1)} \sum_{i=1}^n x_j^{(i)} x_k^{(i)}$$

2. Construct the covariance matrix

$$\Sigma = \sum_{i=1}^{n} (x^{(i)})^T x^{(i)}$$

3. Find eigenvalues & eigenvectors from covariance matrix

eigenvectors: v_1 v_2 \cdots v_d

eigenvalues: λ_1 λ_2 \cdots λ_d

4. Select eigenvectors correspond to largest k eigenvalues

5. Construct the transformation matrix from the top k eigenvectors

$$W = [PC_1 \quad PC_2 \quad \cdots \quad PC_k]$$

6. Transform the data

$$\mathbf{x} = [x_1, x_2, \dots, x_d], \quad \mathbf{x} \in \mathbb{R}^d$$

$$\downarrow xW, W \in \mathbb{R}^{d \times k}$$

$$\mathbf{z} = [z_1, z_2, \dots, z_k], \quad \mathbf{z} \in \mathbb{R}^k$$

PCA Application Example

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis

Maximizes class separability

LDA Objectives

1. Maximize distance between means

LDA Objectives

2. Minimize in-class scatter

Maximize (distance between means in-class scatter

Two-classes LDA Example

Example Dataset

- Samples for class $\mathbf{\omega_1}$: $\mathbf{X_1} = (\mathbf{x_1}, \mathbf{x_2}) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
- Sample for class $\boldsymbol{\omega_2}$: $\mathbf{X_2} = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

Calculate mean vector of each class

Calculate between-class matrix

$$S_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix} \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}^{T}$$

$$= \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix} (-5.4 - 3.8)$$

$$= \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix}$$

Calculate scatter matrix of each class

$$S_{w} = S_{1} + S_{2} = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$
$$= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}$$

eigenvalues: 0 12.2

eigenvalues: 0 12.2

Transform the data

The projection vector corresponding to the highest eigen value LDA projection vector with the highest eigen value = 12.2007

$$x^{'}=\left[egin{array}{cc} x_1 & x_2 \end{array}
ight] \left[egin{array}{cc} 0.91 \ 0.42 \end{array}
ight] = 0.91 x_1 + 0.42 x_2$$

Proof:

https://goo.gl/4hUajb

Linear Discriminant Analysis

in General

Objective: For C-classes dataset, d features -> k features

Target: find the $d \times k$ transformation matrix

- 1. Standardize the dataset
- 2. Calculate mean vector of each class
- 3. Construct between within-class matrix S_w and between-class matrix S_B
- 4. Find eigenvalues & eigenvectors of $S_W^{-1}S_B$
- 5. Select eigenvectors correspond to largest k eigenvalues and construct transformation matrix
- 6. Transform the data

PCA vs LDA

LDA

- Only most C-1
 features to
 transformation for
 C-classes
- May not be good for non-normal distribution data

PCA

 Not optimal for classification

PCA vs LDA

PCA vs LDA

Martínez, A. M., & Kak, A. C. (2001). Pca versus lda. IEEE transactions on pattern analysis and machine intelligence, 23(2), 228-233.

Small Training Data Sets

Small Training Data Sets

Method	f = 1	f = 2	f = 3	f = 4	f = 5	f = 6	f = 7	f = 8	f = 9	f = 10
PCA	6	9	13	9	9	9	7	4	4	3
PCA w/o 3	4	1	0	0	0	0	0	0	0	0
LDA	11	11	8	12	12	12	14	17	17	18

Method	f = 20	f = 30	f = 40
PCA	3	2	2
PCA w/o 3	0	0	0
LDA	18	19	19

Small Training Data Sets

Method	PC	CA	LDA			
f	10	80	10	40		
accuracy	28%-58%	44%-75%	31%-68%	41%-82%		

Small Training Data Sets

Large Training Data Sets