PATENT ABSTRACTS OF JAPAN

(11) Publication number:

04-088619

(43) Date of publication of application: 23.03.1992

(51)Int.CI.

H01G 9/00

(21)Application number : 02-203288

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

31.07.1990

(72)Inventor: IMOTO KIYOAKI

YOSHIDA AKIHIKO

(54) ELECTRIC DOUBLE-LAYER CAPACITOR

(57)Abstract:

PURPOSE: To obtain the title capacitor of high breakdown voltage and low internal resistance by a method wherein the capacitor is composed of polarizable electrodes, which are formed using polysaccharides and their derivatives as a binding agent and arranged through a separator, and an electrolyte. CONSTITUTION: Activated charcoal powder 6, a conductivity-giving agent 8 and carboxymethyl cellulose are dissolved into water, the dissolved material is applied on the aluminum foil which is roughened by a chemical etching method, and a polarizable electrode body 1 is formed. A pair of the polarizable electrode bodies 1 obtained as above are wound through the intermediary of a separator. The mixture obtained by dissolving tetraethylammonium tetrafluoroborate into propylene carbonate is used as an electrolyte, an aluminum lead 4, which is

connected to the polarizable electrode 1 through the intermediary of a rubber packing 3, is led out and a housing is completed using an aluminum case 5 and a rubber packing 3. As a result, the distance between the activated charcoal powders in the polarizable electrode 1, in which activated charcoal and polysaccharides and their derivatives are used as a binding agent, becomes one-third or smaller of the conventional articles, the conductivity of the polarizable electrode is excellent and

its resistance is small.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑩ 公 開 特 許 公 報(A) 平4-88619

@Int.Cl.5

識別記号

庁内整理番号

43公開 平成4年(1992)3月23日

H 01 G 9/00 301

7924-5E

塞香請求 未請求 請求項の数 4 (全4頁)

60発明の名称

頭

理

つ出

個代

電気二重層コンデンサ

願 平2-203288 创特

22出 爾 平2(1990)7月31日

元 明者 井 個発

明:

大阪府門真市大字門真1006番地

松下電器產業株式会社内 松下電器產業株式会社内

@発 明 者 吉 \mathbf{H} 人

彦

大阪府門寬市大字門真1006番地 大阪府門真市大字門真1006番地

松下電器産業株式会社

重孝 弁理士 栗野 外1名

期期存

- 1. 発明の名称 電気二重層コンデンサ
- ・2. 特許請求の範囲
- (1) 分極性電極が活性炭と結着剤として多糖類お よびその誘導体のうち少なくとも一つ以上を含 む電気二重層コンデンサ。
- (2) 多糖類 またはその誘導体が水溶性である請 東項1記載の電気二重層コンデンサ。
- (3) 分極性電極が導電性付与剤を含む請求項 1 記 截の賃赁二重層コンデンサ。
- (4) 活性炭が粉末状 繊維状 チョップ状 固形 **状のいずれかひとつ以上である請求項1記載の** 電気二重層コンデンもご
- 3. 発明の詳細な説明

産業上の利用分野

本発明は活性炭を分極性電極に用いる電気二重 層コンデンサに関し、 どくにその担成に関する。 従来の技術

電気二重層コンデンサは分極性電極として活性

炭を用い 活性炭と電解液との界面電気工重層に 蓄積される電気二重滯容量を利用した大容量コン デンサである。 このような電気二重層コンデンサ には従来大別して次の2種類が存在する。 すなわ ち硫酸水溶液のような水溶液系電解液を用いたも のと プロピレンガーポネートのような有機溶媒 に電解質を添加した有機溶液系電解液を用いたも のである 第5図 第6′図は それぞれ両者の代 麦例の構成を示すものである。 水格液系電解液を 用いたものは第5図に示すように セパレータ1 0を介して、活性炭粉末からなる分種性電極 1 1 が対向し 分極性電極11に接続したアルミニウ ムリード12をゴムパッキング13を介して導出 し、セパレータ10を介して捲回された2枚の分 極性電極!!はゴムパッキング13を介してアル ミニウムケース14中に密封されている。

活性炭粉末からなる分極性電極11は活性炭粉 末を護硫酸水溶液でペレット状に成型したもので 硫酸水溶液はパインダの役目もする。 一方 有機 電解液系コンデンサは第8図に示す機成を有する 活性炭粉末 弗米ポリマー、メチルアルコールからなるペーストをアルミニウムネット上に整布した活性炭粉末からなる分極性電極21をセパレータ22を介して捲回する。これにプロピレンカーボネートとテトラエチルアンモニウムパークロレートとの混合溶液を含度を設立してハウンクする。23は導電電板 24は難撃コンデンの分極性電極の断面図を示す。第4図に従来の電気工重層コンデンの分極性電極の断面図を示す。第4図において6bは活性炭 7bは結着剤 8bは導電性付与剤である。

発明が解決しようとする課題

従来の二つの電解液系の電気二重層コンデンサにはそれぞれ次のような特徴(長所と短所)がある。 水溶液系の長所は電解液の電気抵抗が低く対電流負荷放電に適することであり、 短所は電解での分解電圧に左右され、 コンデンサの使用耐電圧が高々1.0Vまでしか得られないことである。 高電圧の使用の時は多くのコンデンサの直列接続を余儀なくされ、 長期の使用での情頼性の点で問題

間の距離が従来品の1/3以下であり分極性電極の導電性がよく抵抗が小さい。また集電体との電気接触性に優れている。さらに同じ容積中への活性炭の充壌量が多くなる。

実施例

以下本発明の一実施例の電気二重層コンデンサ について図面を基にして説明する。

がある。一方有機溶液系の長所は電解液の耐電圧 が高い(~ 3 V) ために水溶液系のものよりも高 電圧使用が可能である。 短所は コンデンサの内 部抵抗が水溶液系のそれと比較して 5 - 1 0 倍に なり大電流負荷の用途での使用は困難であった。

また 大電流用途には電気二重層コンデンサの 単位容積当たりの容量をさらに上げることが望ま しい。本発明はこのような課題を解決するもので 高耐電圧 低内部抵抗を有する電気二重層コンデ ンサを提供することを目的とする。

課題を解決するための手段

この課題を解決するため本発明の電気二重層コンデンサは、結着剤として多糖類およびその誘導体を用いた分極性電極をセパレータを介して対向して配置したものと電解液とから構成するものである。

作用

この構成により本発明の電気二重層コンデシサ は、 括性炭と結着剤として多糖類およびその誘導 体を用いた分極性電極の分極性電極中での括性炭

レイトを 1 mol/1を溶解したものを使用し、ゴムバッキング 3 を介して分極性電極 1 に接続したアルミニウムリード 4 を導出して、アルミニウムケース 5、ゴムパッキング 3 でハウジングを完成する。なお、電解液としてプロピレンカーボネイトにテトラエチルアンモニウムテトラフルオロボレイトを 1 mol/1を溶解したものを使用したが、これに限定されるものではない。また、結着剤としてカルボキシメチルセルロースを使用したがこれに限

また 括性炭として粉末を使用したがこれに膜 定されるものではない。

定されるものではない。

(実施例-2) 活性炭粉末 (比表面積 2 0 0 0 cm²/8) 1 0 8 と水溶性キチン 2 8 を水 1 5 0 m 1 に溶解し表面を化学エッチング法によって粗面化したアルミニウム板上にペレット状に固形化する。 第 3 図に示すようにこの活性炭ペレットからなる分極性電極 1 a をセパレータ 2 a を介して対向して配置する。 電解液としてプロピレンカーボネイトにテトラエチルアンモニウムテトラフルオ

ロポレイトを 1 mol/lを溶解したものを使用し、絶 観性樹脂 9 でハウジングを完成する

なね 電解液としてプロピレンカーボネイトに テトラエチルアンモニウムテトラフルオロボレイ トを 1 mol/1を溶解したものを使用したが これに 限定されるものではない また 結着剤としてカ ルポキシメチルセルロースを使用したがこれに限 定されるものではない

また。 活性炭として粉末を使用したがこれに限まされるものではない。

(実施例-3) 実施例 1 と同じ構成で、導電性付与列 8 を除いた。

(実施例-4) 実施例 2 と同じ構成で、活性炭粉末の代わりにフェノール樹脂系活性炭繊維のチョップ (繊維径 1 0 μm で、平均チョップ長さ 0.05 mm、比表面積 2 3 0 0 cm*/g) を使用した。

発明の効果

以上の実施例の説明で明らかなように 本発明の電気二重層コンデンサによれば有機電解液系の

1 ····分極性電極 6 ····活性炭 7 ····結若 剤 8 ····導電性付与剤

代理人の氏名 弁理士 栗野重孝 ほか1名

特徴である耐電圧を高く保持しながら水溶液系電解液を用いた電気二重層コンデンサと同等以上の内部抵抗(直流抵抗、インピーダンス)と放電特性を得ることができ、インピーダンスの周波数依存性が非常に小さくなり、その工業的価値きわめて大なるものである。

4. 図面の簡単な説明

第1図は本発明の実施例1の電気二重層コンデンサに使用されている分極性電極の断面図

第2図は本発明の実施例1 および実施例3の電気二重層コンデンサの構成を一部切り欠いて示す 斜視図

第3図は本発明の実施例2および実施例4の電気二重層コンデンサの構成を示す斜視図

第4図は従来の電気二重層コンデンサに使用している分極性電極の断面図

第 5 図は従来の水溶液電解液を用いた電気二重 層コンデンサの構成を一部切り欠いて示す斜視図 第 6 図は従来の有機溶液系電解液を用いた電気 二重層コンデンサの構成を示す斜視図である。

新1図

6 … 洛 推 荥 7 … 裕 着 削 8 … 導 電 性 行 手削

第2图

^@@@□HO ~#• +M_-127-@@@@□HO ~#• +M_0-XO=2 @@□@D@@@@

第 3 図

加…分極性電極

第 4 図

第 5 図

第 6 図

