COMP 33II DATABASE MANAGEMENT SYSTEMS

LECTURE 6 EXERCISES RELATIONAL ALGEBRA

EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

What is the E-R schema for this relational schema?

What about this schema?

Reserves(*sailorId*, *boatId*, rDate)

A sailor can reserve a given boat at most once!

What do we get if we reduce Reserves?

rDate is not part of the key in the reduction!

EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

What about this schema?

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

What kind of entity is Reserves? ⇒ Weak entity.

On which entity is Reserves dependent? \Rightarrow Both Sailor and Boat!

Is rDate a discriminator for Reserves? ⇒ **Yes**

What should be the cardinality constraints for Makes? \Rightarrow 1:N

What should be the participation constraints for Makes? ⇒ Sailor - partial; Reserves - total

What should be the cardinality constraints for Has? $\Rightarrow 1:N$

What should be the participation constraints for Has?

Boat - partial; Reserves - total

EXAMPLE RELATIONAL SCHEMA AND DATABASE

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

Attribute names in italics are foreign key attributes.

Sailor

<u>sailorld</u>	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves

<u>salioria</u>	<u> poatid</u>	<u>rbate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat

<u>boatId</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

11 tuples

EXERCISE 1

Find the ids of sailors who have reserved boat 103.

22, 31, 74

1. Is this a solution?

74

2. Is this a solution?

$\sigma_{boatId=103}$ Reserves					
sailorId	boatld	rDate			
22	103	08/10/17			
31	103	06/11/17			
74	103	08/09/17			

sailorld
22
31
74

EXERCISE 2

Find the <u>names</u> of sailors who have reserved boat 103.

Dustin, Lubber, Horatio

1. Is this a solution?

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId=Sailor.sailorId} \land \text{boatId=103}}(\text{Reserves X Sailor}))$

2. Is this a solution?

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}} = Sailor.sailorId}((\sigma_{\text{boatId}=103} \text{Reserves}) \times Sailor))$

EXERCISE 2: SOLUTION I

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId=Sailor.sailorId} \land \text{boatId=103}}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

Reserves

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

11 tuples

How many tuples in the result? $11 \times 11 = 121$ tuples!

Χ

EXERCISE 2: SOLUTION I

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

	Reserves X Sailor					
Reserves.sailorId	boatld	rDate	Sailor.sailorId	sName	rating	age
22	101	10/10/17	22	Dustin	7	45
22	101	10/10/17	29	Brutus	1	33
22	101	10/10/17	31	Lubber	8	55
22	101	10/10/17	32	Andy	8	25
22	101	10/10/17	58	Rusty	10	35
22	101	10/10/17	64	Horatio	7	35
22	101	10/10/17	71	Zorba	10	16
22	101	10/10/17	74	Horatio	9	35
22	101	10/10/17	85	Art	3	25
22	101	10/10/17	95	Bob	3	63
22	101	10/10/17	99	Chris	10	30
22	102	10/10/17	22	Dustin	7	45
22	102	10/10/17	29	Brutus	1	33
:	i:	i i	:	:	:	÷

EXERCISE 2: SOLUTION I

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId=Sailor.sailorId} \land \text{boatId=103}}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

σ _{Reserves.sailorId=Sailor.sailorId ∧ boatId=103} (Reserves X Sailor)						
Reserves.sailorld boatld rDate Sailor.sailorld sName rating age					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

SName
Dustin
Lubber
Horatio

EXERCISE 2: SOLUTION 2

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

X

$\sigma_{boatId=103}$ Reserves				
sailorId	boatld	rDate		
22	103	08/10/17		
31	103	06/11/17		
74	103	08/09/17		

Sailor

sailorld	name	rating	age	
22	Dustin	7	45	
29	Brutus	1	33	
31	Lubber	8	55	
32	Andy	8	25	
58	Rusty	10	35	
64	Horatio	7	35	
71	Zorba	10	16	
74	Horatio	9	35	
85	Art	3	25	
95	Bob	3	63	
99	Chris	10	30	

11 tuples

How many tuples in the result? $3 \times 11 = 33$ tuples!

EXERCISE 2: SOLUTION 2

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

	(o _{boatId=103} Reserves) X Sailor					
Reserves.sailorId	boatld	rDate	Sailor.sailorId	sName	rating	age
22	103	08/10/17	22	Dustin	7	45
22	103	08/10/17	29	Brutus	1	33
22	103	08/10/17	31	Lubber	8	55
22	103	08/10/17	32	Andy	8	25
22	103	08/10/17	58	Rusty	10	35
22	103	08/10/17	64	Horatio	7	35
22	103	08/10/17	71	Zorba	10	16
22	103	08/10/17	74	Horatio	9	35
22	103	08/10/17	85	Art	3	25
22	103	08/10/17	95	Bob	3	63
22	103	08/10/17	99	Chris	10	30
31	103	06/11/17	22	Dustin	7	45
31	103	06/11/17	29	Brutus	1	33
31	103	06/11/17	31	Lubber	8	55
:	:	:	:	:	:	

EXERCISE 2: SOLUTION 2

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

σ _{Reserves.sailorId=Sailor.sailorId} ((σ _{boatId=103} Reserves) X Sailor)						
Reserves.sailorId boatId rDate Sailor.sailorId sName rating age						age
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

SName
Dustin
Lubber
Horatio

EXERCISE 2: SOLUTION 3

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103}\text{Reserves}) \text{ JOIN Sailor})$

Dustin, Lubber, Horatio

$\sigma_{\text{boatId}=103}$ Reserves				
sailorld boatld rDate				
22	103	08/10/17		
31	31 103			
74	103	08/09/17		

JOIN

Sailor

sailorId	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

How many tuples in the result? 3 tuples!

EXERCISE 2: SOLUTION 3

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103}\text{Reserves}) \text{ JOIN Sailor})$

Dustin, Lubber, Horatio

($\sigma_{boatId=103}$ Reserves) JOIN Sailor						
Reserves.sailorId boatId rDate Sailor.sailorId sName rating age					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

SName
Dustin
Lubber
Horatio

EXERCISE 2: SUMMARY

Find the <u>names</u> of sailors who have reserved boat 103.

All three queries get the correct answer, BUT ...

1. Is this a solution? ✓

$$\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}} \land \text{boatId}=103}(\text{Reserves} \times \text{Sailor}))$$

Initial result: 121 tuples

2. Is this a solution? ✓

$$\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}} = Sailor.sailorId}((\sigma_{\text{boatId}=103} \text{Reserves}) \times Sailor))$$

Initial result: 33 tuples

3. Is this a solution? ✓

$$\pi_{\text{SName}}((\sigma_{\text{boatId}=103}\text{Reserves}) \text{ JOIN Sailor})$$

Initial result: 3 tuples

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

15

EXERCISE 3: SOLUTION I

Find the names of sailors who have reserved a red boat.

Dustin, Lubber, Horatio, Chris

Is this a solution?

COMP 3311

 $\pi_{\text{SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

σ _{color='red'} Boat				
boatld bName color				
102	Interlake	red		
104	Marine	red		

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 5 columns!

Reserves

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	=
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

EXERCISE 3: SOLUTION I

 $\pi_{SName}((\sigma_{color='red'}Boat) JOIN Reserves JOIN Sailor)$

Dustin, Lubber, Horatio, Chris

(ocolor='red'Boat) JOIN Reserves					
bName	color	sailorId	boatld	rDate	
Interlake	red	22	102	10/10/17	
Marine	red	22	104	07/10/17	
Interlake	red	31	102	10/11/17	
Marine	red	31	104	12/11/17	
Interlake	red	64	102	08/09/17	
Marine	red	99	104	08/08/17	

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 8 columns!

Sailor

sailorId	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

=

EXERCISE 3: SOLUTION I

 $\pi_{\text{SName}}((\sigma_{\text{color}='\text{red}'}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

	(ocolor='red'Boat) JOIN Reserves JOIN Sailor						
bName	color	sailorId	boatld	rDate	sName	rating	age
Interlake	red	22	102	10/10/17	Dustin	7	45
Marine	red	22	104	07/10/17	Dustin	7	45
Interlake	red	31	102	10/11/17	Lubber	8	55
Marine	red	31	104	12/11/17	Lubber	8	55
Interlake	red	64	102	08/09/17	Horatio	7	35
Marine	red	99	104	08/08/17	Chris	10	30

Apply π_{sName} to above result:

sName Dustin Lubber Horatio Chris

EXERCISE 3: SOLUTION 2

Find the names of sailors who have reserved a red boat.

Dustin, Lubber, Horatio, Chris

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves JOIN } \text{Sailor})$

Can you give a more efficient solution in terms of result size?

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color}='\text{red'}}\text{Boat})) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

_{σcolor='red'} Boat				
boatld	bName	color		
102	Interlake	red		
104	Marine	red		

After selecting red boats, first project onto boatld before doing the join since the name and color of the boat is not needed for the query.

Thus, only the boatld is "carried" when evaluating the rest of the query.

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color}='\text{red'}}\text{Boat})) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

Dustin, Lubber, Horatio, Chris

JOIN

Reserves

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	=
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

How many tuples in the result? 6 tuples!

How many columns in the result? 3 columns!

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

(π_{hoatId}	(ocolor='red'Boat)	JOIN	Reserves
١,	, •boatid (Color= Led Doary	JOHN	110301103

sailorId	boatld	rDate
22	102	10/10/17
22	104	07/10/17
31	102	10/11/17
31	104	12/11/17
64	102	08/09/17
99	104	08/08/17

JOIN

Sailor

sailorld	sName	rating	age	
22	Dustin	7	45	
29	Brutus	1	33	
31	Lubber	8	55	
32	Andy	8	25	
58	Rusty	10	35	
64	Horatio	7	35	
71	Zorba	10	16	
74	Horatio	9	35	
85	Art	3	25	
95	Bob	3	63	
99	Chris	10	30	

How many tuples in the result? 6 tuples!

How many columns in the result? 6 columns!

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color}='\text{red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor								
sailorld	boatld	rDate	sName	rating	age			
22	102	10/10/17	Dustin	7	45			
22	104	07/10/17	Dustin	7	45			
31	102	10/11/17	Lubber	8	55			
31	104	12/11/17	Lubber	8	55			
64	102	08/09/17	Horatio	7	35			
99	104	08/08/17	Chris	10	30			

Apply π_{SName} to above result:

Solution 1

 $\pi_{\text{SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

(6 tuples, 5 columns) + (6 tuples, 8 columns)

Solution 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

(6 tuples, 3 columns) + (6 tuples, 6 columns)

Solution 2 is more efficient in terms of tuple size.

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

EXERCISE 4

Find the names of sailors who have reserved either a red or a green boat.

Dustin (22), Lubber (31), Horatio (64), Horatio (74), Chris (99)

 $\pi_{\text{SName}}(\pi_{\text{boatId}}(\sigma_{\text{color='red'} \vee \text{color='green'}} \text{Boat)}) \text{ JOIN Reserves JOIN Sailor)}$

Identify all red or green boats ($\sigma_{color='red' \lor color='green'}$ Boat), then find sailors who have reserved one of these boats (... JOIN Reserves JOIN Sailor).

 π_{boatld} is a nice optimization but is not strictly needed to answer the query.

EXERCISE 5: SOLUTION I

Is this a solution?

Find the names of sailors who have reserved both a red and a green boat.

Dustin (22), Lubber (31)

 $\pi_{\text{SName}}((\sigma_{\text{color='red'} \land \text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	cyan

No! Why?

Nothing is selected! Why?

The condition color='red' \(\scales \text{color} = 'green' \text{ can } \frac{never}{} \text{ be satisfied!} \)

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 2

Is this a solution?

 $\pi_{\text{SName}}((\sigma_{\text{color='red'} \lor \text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin (22), Lubber (31)

What's	· ·	(ocolor='red' ∨ color='green'Boat) JOIN Reserves JOIN Sailor									
	the		rating	sName	rDate	boatld	sailorld	color	bName		
oblem?	problem?		7	Dustin	10/10/17	102	22	red	Interlake		
sName		45	7	Dustin	07/10/17	104	22	red	Marine		
Dustin		55	8	Lubber	10/11/17	102	31	red	Interlake		
يرم مامان يا	π_{sName}	55	8	Lubber	12/11/17	104	31	red	Marine		
Horatio X		35	7	Horatio	08/09/17	102	64	red	Interlake		
Chris		30	10	Chris	08/08/17	104	99	red	Marine		
01110		45	7	Dustin	08/10/17	103	22	green	Clipper		
		55	8	Lubber	06/11/17	103	31	green	Clipper		
		35	7	Horatio	08/09/17	103	74	green	Clipper		

The condition color='red' \times color='green' includes sailors who have reserved only a red or only a green boat, as well as both a red and a green boat!

Must identify sailors who have reserved red boats, sailors who have reserved green boats, then find the intersection.

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 3

Is this a solution?

(intersect join result)

 $\pi_{\text{SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves JOIN } \text{Sailor})$

(ocolor='green' Boat) JOIN Reserves JOIN Sailor)

Dustin (22), Lubber (31)

	(ocolor=red Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorId	boatld	rDate	sName	rating	age		
Interlake	red	22	102	10/10/17	Dustin	7	45		
Marine	red	22	104	07/10/17	Dustin	7	45		
Interlake	red	31	102	10/11/17	Lubber	8	55		
Marine	red	31	104	12/11/17	Lubber	8	55		
Interlake	red	64	102	08/09/17	Horatio	7	35		
Marine	red	99	104	08/08/17	Chris	10	30		

 \bigcap

	(σ _{color='green'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorId	boatld	rDate	sName	rating	age	
Clipper	green	22	103	08/10/17	Dustin	7	45	
Clipper	green	31	103	06/11/17	Lubber	8	55	
Clipper	green	74	103	08/09/17	Horatio	7	35	

The result is empty!

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 4

Is this a solution?

(intersect on sName)

 $\pi_{\text{SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

 $\pi_{\text{SName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin (22), Lubber (31)

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorId	boatld	rDate	sName	rating	age	
Interlake	red	22	102	10/10/17	Dustin	7	45	
Marine	red	22	104	07/10/17	Dustin	7	45	
Interlake	red	31	102	10/11/17	Lubber	8	55	
Marine	red	31	104	12/11/17	Lubber	8	55	
Interlake	red	64	102	08/09/17	Horatio	7	35	
Marine	red	99	104	08/08/17	Chris	10	30	

sName π_{sName} Dustin Lubber Horatio **Chris**

Since sName is not unique, there may be incorrect tuples in the intersection (i.e., Horatio is not unique).

 π_{sName}

sName Dus Lub Hora

stin	,
ber	4
atio	

	(ocolor='green'Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorId	boatld	rDate	sName	rating	age		
Clipper	green	22	103	08/10/17	Dustin	7	45		
Clipper	green	31	103	06/11/17	Lubber	8	55		
Clipper	green	74	103	08/09/17	Horatio	7	35		

sName Dustin Lubber Horatio

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 5

Is this a solution?

(intersect on sailorld, sName)

 $\pi_{\text{SName}}(\pi_{\text{SailorId, SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$ $\pi_{\text{SailorId, SName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor}))$

Dustin (22), Lubber (31)

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor									
bName	color	sailorId	boatld	rDate	sName	rating	age			
Interlake	red	22	102	10/10/17	Dustin	7	45			
Marine	red	22	104	07/10/17	Dustin	7	45			
Interlake	red	31	102	10/11/17	Lubber	8	55			
Marine	red	31	104	12/11/17	Lubber	8	55			
Interlake	red	64	102	08/09/17	Horatio	7	35			
Marine	red	99	104	08/08/17	Chris	10	30			

 π_{sailorId} , sName

sailorId	sName
22	Dustin
31	Lubber
64	Horatio
99	Chris

sName
Dustin
Lubber

(σ _{color='green'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorId	boatld	rDate	sName	rating	age
Clipper	green	22	103	08/10/17	Dustin	7	45
Clipper	green	31	103	06/11/17	Lubber	8	55

103

08/09/17

35

sailorld	sName
22	Dustin
31	Lubber
74	Horatio

Horatio

green

74

Clipper

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 6

Is this a solution?

(join on sName)

 $\pi_{\text{SName}}(\pi_{\text{SailorId, SName}}(\sigma_{\text{color='red'}}Boat) \text{ JOIN Reserves JOIN Sailor)}$ JOIN_{sName} $\pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor)})$

Dustin (22), Lubber (31)

Since sName is not unique, there may be incorrect tuples in the join (i.e., there are two different sailors with the same name, Horatio).

R1.sailorId	sName	R2.sailorId	
22	Dustin	22	
31	Lubber	31	
64	Horatio	74	

L6: EXERCISES 30 Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 7

Is this a solution?

(join on sailorld)

 $\begin{array}{c} \pi_{\text{SName}}(\pi_{\text{sailorId, sName}}((\sigma_{\text{color='red'}}\text{Boat}) \, \text{JOIN Reserves JOIN Sailor}) \\ \qquad \qquad \qquad \text{JOIN}_{\text{sailorId}} \\ \pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) \, \text{JOIN Reserves JOIN Sailor})) \end{array}$

Dustin (22), Lubber (31)

COMP 3311 ©2020 L6: EXERCISES 31

EXERCISE 6: SOLUTION I

Find the ids of sailors who have made at least two reservations on the same date.

22

We need to use rename: p_{R1} (Reserves), p_{R2} (Reserves)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId \lt>R2.boatId}(\rho_{R1}(Reserves)))$

Or equivalently:

 $\pi_{R1.sailorId}(\rho_{R1}(Reserves)) = \pi_{R1.sailorId}(\rho_{R1}(Reserves)) = \pi_{R1.sailorId}(\rho_{R1}(Reser$

Find the ids of sailors who have made at least two reservations on the same date.

EXERCISE 6: SOLUTION I (CONTD)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}(R1 X R2))$

R1

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

Χ

R2

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

=

EXERCISE 6: SOLUTION I (CONTD)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}(R1 X R2))$

⊙ R1.sailorId=R2.sailorId ∧ R1.rDate=R2.rDate ∧ R1.boatId<>R2.boatId						
R1.sailorId	R1.boatId	R1.rDate	R2.sailorId	R2.boatId	R2.rDate	
22	101	10/10/17	22	101	10/10/17	
22	101	10/10/17	22	102	10/10/17	
22	101	10/10/17	22	103	08/10/17	
22	101	10/10/17	22	104	07/10/17	
22	101	10/10/17	31	102	10/11/17	
22	101	10/10/17	31	103	06/11/17	
22	101	10/10/17	31	104	12/11/17	
22	101	10/10/17	64	101	05/09/17	
22	101	10/10/17	64	102	08/09/17	
22	101	10/10/17	74	103	08/09/17	
22	101	10/10/17	99	104	08/08/17	
22	102	10/10/17	22	101	10/10/17	
22	102	10/10/17	22	102	10/10/17	
22	102	10/10/17	22	103	08/10/17	
22	102	10/10/17	22	104	07/10/17	
:	:	:	:	:	:	

sailorId 22

 $\pi_{R1.sailorld} =$

EXERCISE 6: SOLUTION I (CONTD)

What do we get if we omit R1.rDate=R2.rDate?

G-1						
▼R1.sailorId=R2.sailorId ∧ R1.boatId<>R2.boatId						
R1.sailorId	R1.boatId	R1.rDate	R2.sailorId	R2.boatId	R2.rDate	
22	101	10/10/17	22	102	10/10/17	
22	101	10/10/17	22	103	08/10/17	
22	101	10/10/17	22	104	07/10/17	
22	102	10/10/17	22	101	10/10/17	
22	102	10/10/17	22	103	08/10/17	
22	102	10/10/17	22	104	07/10/17	
22	103	08/10/17	22	101	10/10/17	
22	103	08/10/17	22	102	10/10/17	
22	103	08/10/17	22	104	07/10/17	
22	104	07/10/17	22	101	10/10/17	
22	104	07/10/17	22	102	10/10/17	
22	104	07/10/17	22	103	08/10/17	
31	102	10/11/17	31	103	06/11/17	
31	102	10/11/17	31	104	12/11/17	
31	103	06/11/17	31	102	10/11/17	
31	103	06/11/17	31	104	12/11/17	
	:	i	:	:	:	

COMP 3311

Sailors who have made more than one reservation.

 $\pi_{R1.sailorId} = \begin{bmatrix} sailorId \\ 22 \\ 31 \\ 64 \end{bmatrix}$

EXERCISE 6: SOLUTION I (CONTD)

What do we get if we omit R1.boatId<>R2.boatId?

▼R1.sailorId=R2.sailorId ∧ R1.rDate=R2.rDate						
R1.sailorId	R1.boatld	R1.rDate	R2.sailorId	R2.boatId	R2.rDate	
22	101	10/10/17	22	101	10/10/17	
22	101	10/10/17	22	102	10/10/17	
22	102	10/10/17	22	101	10/10/17	
22	102	10/10/17	22	102	10/10/17	
22	103	08/10/17	22	103	08/10/17	
22	104	07/10/17	22	104	07/10/17	
31	102	10/11/17	31	102	10/11/17	
31	103	06/11/17	31	103	06/11/17	
31	104	12/11/17	31	104	12/11/17	
64	101	05/09/17	64	101	05/09/17	
64	102	08/09/17	64	102	08/09/17	
74	103	08/09/17	74	103	08/09/17	
99	104	08/08/17	99	104	08/08/17	

Sailors who have made at least one reservation.

 $\pi_{R1.sailorId} =$

Salloriu
22
31
64
74
99

sailorId