## Galaxy Spectra

- Galaxy spectra
  - Continuum
  - Absorption Lines
  - Emission Lines
  - Typical Spectra
    - Elliptical
    - Spiral
    - Irregular
- Galaxy motion
  - Radial velocity
  - Redshift
  - Redshift → distance
  - Peculiar velocities
- Galaxy inclination
- Gas, dust and stars



### Continuum

- The combination of many Black-Body spectra spanning a range in temperatures
- This produces a fairly flat overall spectrum



The main feature is the 4000A-break

#### The 4000A-break

#### Caused by:

blanket absorption of high energy radiation from metals in the stellar atmospheres



the lack of hot blue stars

#### Hence:

Ellipticals => A strong 4000A-Break



– Spirals => A weak 4000A-Break

— Irregulars => No 4000A-Break

## Absorption Lines

Mainly caused by Atoms/Molecules in a star's atmosphere that absorb specific wavelengths



 Can also be due to COLD gas in the interstellar medium which can EXTRACT energy from the passing radiation

### **Emission Lines**

Caused by gas being ionized and heated and then re-radiating at specific allowed wavelengths



- Stars form from gas so are often embedded
- Young stars ionise gas which releases radiation at a specific wavelength as it recombines

# M101

Emission nebulae (HII regions) in spiral arms





# Absorption / Emission Lines

#### Absorption Lines

 Need metals in stellar atmospheres or cold gas in the interstellar medium

#### Implies

Old stellar population = old galaxy

#### From

- Ellipticals
- Spiral Bulges

#### Emission Lines

Need very hot gas and O and B type stars

#### Implies

Newly formed stars = starforming/young galaxy

#### From

- Spiral Disks
- Irregulars

# Typical Spectral features

#### Absorption

- Ca(H) = 3933.7A
- Ca(K) = 3968.5A
- G-band = 4304.4A
- Mg = 5175.3A
- Na = 5894.0 A

#### Emission

- [OII] = 3727.3A
- $H\delta = 4102.8A$
- $H_{\gamma} = 4340.0A$
- $H\beta = 4861.3A$
- [OIII] = 4959.0A
- [OIII] = 5006.8A
- $H\alpha = 6562.8A$
- $-S_2 = 6716.0A$



### Example Spectrum: Elliptical



## Example Spectrum: Spiral



## Example Spectrum: Irregular



#### Radial Velocities

- Most galaxy spectra are REDSHIFTED, which means their spectral features are offset compared to those measured for gasses in the lab
- i.e., characteristic combinations of lines are systematically offset to longer wavelengths
- This is interpreted as a DOPPLER shift and implies that galaxies are moving away
- Positive velocities: RECEEDING
- Negative velocities: APPROACHING

$$\frac{\Delta \lambda}{\lambda} = \frac{\Delta v}{c}$$
 or  $\frac{\lambda_{OBSERVED}}{\lambda_{CALIBRATION}} = \frac{v + c}{c}$ 

### Example Radial Velocity



OII is at 4000A

$$v = c(\frac{\lambda_{OBS} - \lambda_{CAL}}{\lambda_{CAL}}) = c(\frac{4000 - 3727}{3727}) = 21,974 \text{km/s}$$

Ha is at 7030A

$$v = c(\frac{467}{6563}) = 21,500 \text{km/s}$$

**GALAXY IS MOVING AWAY AT ABOUT 21,750 km/s** 









#### Reminder: Cepheid P-L relation

- Well studied stellar objects
- Very bright  $(M_v \sim -2)$
- Pulsate regularly (~ few days)
- Pulsation period depends on luminosity
- P-L relation calibrated to 220 stars via Hipparcos parallax distances (1997)

10000

1000

100

10

Luminosity (solar units)

• Measuring the pulsation and apparent magnitude for a distant Cepheid provides a direct distance measurement given a known P-L relation.





Pulsation period (days)

#### Redshift

- We now know the Universe is expanding (see later lectures)
- An expansion implies a <u>stretching</u> of space-time.
- The more space-time there is between you and an object the faster it will appear to be moving away.
- It is the expansion which causes a galaxy's spectrum to be REDSHIFTED:





REDSHIFT IS NOT THE SAME AS DOPPLER SHIFT

### Redshift

A useful parameter for cosmology is the redshift:

$$z = \frac{\lambda - \lambda_o}{\lambda_o} = \frac{\Delta \lambda}{\lambda_o}$$

- This is analogous to the definition of Doppler shift such that:
  - from which follows:

$$z \equiv \frac{\mathbf{V}}{c}$$

$$d = \frac{zc}{H_o}$$
Hubble constant

- Although this is the wrong interpretation of redshift it is a good approximation for low-z (z < 0.1)
- Hubble constant = rate of expansion in units of (km/s)/Mpc
  - Current value ~75 km/s/Mpc

## Calculating distances

 Using Hubble's Law (which we'll discuss more later) we can easily estimate distances from a galaxy's measured redshift.

e.g., If  $H_0$  = 75 km/s/Mpc and the redshift is measured to be 0.1 what is its distance ?

$$d = \frac{zc}{H_o} = \frac{0.1 \times 3 \times 10^5}{75} = 400 Mpc$$

This implies that for example its [OII] line, normally at 3727A, occurred at 4100A



### **Peculiar Velocities**

- Gravitational attraction between galaxies and larger objects (clusters, groups, superclusters, filaments)
- Velocity we measure is not just the expansion of the universe

$$V_{\text{RADIAL}} = V_{\text{RECESSIONAL}} \pm V_{\text{PECULIAR}}$$

- For example the MW is falling into Virgo which in turn is falling into The Great Attractor.
- If we know a galaxy's peculiar velocity we can correct for this additional velocity component.

#### **Peculiar Velocities**

What we measure from spectra:

Vradial or Vline of Sight

Objects velocity w.r.t. our surroundings:

VPECULIAR OF VINFALL



VRECESSION OF VEXPANSION

$$V_{RADIAL} = V_{RECESSIONAL} \pm V_{PECULIAR}$$



**V**BULK

**V**RECESSION

**VIRGO** 

**V**BULK

VINFALL

## Example

- The MW is falling *towards* Coma at  $V_{infall} = 1000 \text{km/s}$ .
- Distance is 50 Mpc (from Cepheids)
- If the redshift, z = 0.01, what is  $H_0$ ?

$$z = \frac{V_{RADIAL}}{C} = \frac{V_{RECESSION} - V_{INFALL}}{C}$$

$$H_o = \frac{V_{RECESSION}}{d} = \frac{cz + V_{INFALL}}{d} = \frac{3000 + 1000}{50}$$

$$H_o = 80 \text{km/s/Mpc}$$

Note: Be very careful with the sign of Vinfall & Vpeculiar, it is intuitive Typically Vinfall is subtracted but for Vpeculiar it will depend on the direction of the peculiar velocity (towards us= -ve, away= +ve)

Galaxy Inclination





FACE-ON
Inclination=0°

Majority of galaxies are somewhere in between

EDGE-ON Inclination=90°



## Calculating the Inclination

- Assuming galaxies are circular:
- Inclination, *i*, is given by:







- $a=b, i=0^{\circ}$
- *b*=0, *i*=90<sup>o</sup>

NB: a is always measurable

## Line of sight velocity

• When we measure the rotational velocity from a spectral line we need to correct for inclination.



Hence if, i=90,  $V_{obs} = V_{rot}$ i=0,  $V_{obs} = 0$ 

$$V_{ROT} = \frac{V_{OBS}}{\sin(i)}$$

## Example

A long slit spectrum aligned along a galaxy's major axis indicates a variation in the [OII] line of 5A, The midpoint of the [OII] line is observed to be at 3900A and the major-to-minor axis ratio is 3. What is the rotational velocity of the outermost stars?

$$i = \cos^{-1}(1/3) = 70.5^{0}$$

Note:  $5/2$  A

 $V_{OBS} = \frac{\Delta \lambda}{\lambda} c = \frac{2.5}{3900} \times 3 \times 10^{5} = 192 km/s$ 
 $V_{ROT} = \frac{V_{OBS}}{\sin(i)} = 204 km/s$ 

Note:  $\lambda = 3900$  and not 3727 (as reference is to the galaxy centre)

# Stars, Dust and Gas in Galaxies

- Dust mass is negligible but can block up to 90% of the light and provides a good indication of where the fresh stars are
- Stars form from gas in galaxy
- In the high-density regions the gas is converted into Stars
  - Elliptical: very little gas content
     ~ all gas converted into stars
  - Spiral: some gas contentmost gas converted
  - Irregular: lots of gaslittle gas converted

$$\frac{\mathbf{M}_{HI}}{\mathbf{M}_{STARS}} = 0.01 - 0.1$$

$$\frac{\mathbf{M}_{HI}}{\mathbf{M}_{STARS}} = 0.1 - 1.0$$

$$\frac{\mathbf{M}_{HI}}{\mathbf{M}_{STARS}} \ge 1.0$$

$$\mathbf{M}_{STARS}$$



#### Warm dust and starlight in Antenae galaxy







NGC1512



#### Optical and radio image of NGC891



## Distribution of Gas and Stars



