

Boosted Sparse and Low-Rank Tensor Regression

Lifang He¹, Kun Chen², Wanwan Xu², Jiayu Zhou³, Fei Wang¹

¹Department of Healthcare Policy and Research, Weill Cornell Medicine

²Department of Statistics, University of Connecticut

³Department of Computer Science and Engineering, Michigan State University

ABSTRACT

With the advanced capabilities for data acquisition, massive multiway data emerge from neuroscience: multi-channel EEG, volumetric or functional MRI, etc. Tensors and low-rank tensor decomposition are very powerful and versatile tools in machine learning for their ability to express and exploit multi-way data, where they are employed to approach a diverse number of tasks. However, tensor regression, which aims to learn a model with multilinear parameters, is especially suitable for applications with multi-directional relatedness, but has not been fully examined. In this paper, we propose a sparse and low-rank tensor regression model to relate a univariate outcome to a feature tensor, and take a divide-and-conquer strategy to simplify the task into a set of sparse unit-rank tensor factorization/regression problems (SURF). We then present a boosted estimation procedure to efficiently trace out the entire solution path. The superior performance of our approach is demonstrated on various real-world and synthetic examples.

BACKGROUND

Vector to Tensor

Low-Rank Tensor Decomposition

Sparse and Low-rank Tensor Regression

Tensor Regression Problem

$$\min_{W} \frac{1}{M} \sum_{m=1}^{M} L(\langle \mathcal{X}^{m}, \mathcal{W} \rangle, y^{m}) + \lambda \Omega(\mathcal{W}).$$
$$y^{m} = \langle \mathcal{X}^{m}, \mathcal{W} \rangle + \varepsilon^{m}$$

 X^m : input tensor predictor; y^m : scalar response; W: weight tensor parameter.

L(.) and $\Omega(.)$: loss function and regularizer.

Formulation

$$\min_{\sigma_r, \mathbf{w}_r^{(n)}} \frac{1}{M} \sum_{m=1}^{M} (y^m - \langle \mathcal{X}^m, \sum_{r=1}^{R} \sigma_r \mathbf{w}_r^{(1)} \circ \cdots \circ \mathbf{w}_r^{(N)} \rangle)^2 + \sum_{r=1}^{R} \sum_{n=1}^{N} \lambda_{r,n} \|\mathbf{w}_r^{(n)}\|_1,$$
s.t.
$$\|\mathbf{w}_r^{(n)}\|_1 = 1, \ n = 1, \dots, N, \ r = 1, \dots, R.$$

Challenge:

- 1. CP rank R needs to be pre-specified;
- 2. Parameter identifiability issues;
- 3. Time-consuming for many parameters need to be adjusted.

Solution:

Divide-and-Conquer: Sequential pursue for sparse tensor regression.

Sparse Unit-Rank Tensor Factorization (SURF)

$$\widehat{\mathcal{W}}_r = \min_{W_r} \frac{1}{M} \sum_{m=1}^M (y_r^m - \langle \mathcal{X}^m, \mathcal{W}_r \rangle)^2 + \lambda_r \|\mathcal{W}_r\|_1,$$
s.t. $\operatorname{rank}(\mathcal{W}_r) \leq 1.$

Where y_r^m is the current residue of response with

$$y_r^m := \begin{cases} y^m, & \text{if } r = 1\\ y_{r-1}^m - \langle \mathcal{X}^m, \widehat{\mathcal{W}}_{r-1} \rangle, & \text{otherwise.} \end{cases}$$

Formulation

$$\widehat{\mathcal{W}} = \min_{W} \frac{1}{M} \sum_{m=1}^{M} (y^m - \langle \mathcal{X}^m, \mathcal{W} \rangle)^2 + \lambda \|\mathcal{W}\|_1 + \alpha \|\mathcal{W}\|_F^2,$$
 General s.t. $\operatorname{rank}(\mathcal{W}) \leq 1$. Version

Version

Let $\mathcal{W} = \sigma \mathbf{w}^{(1)} \circ \cdots \circ \mathbf{w}^{(N)}$, $\mathbf{y} = [y^1, \cdots, y^M]$, and $\mathcal{X} = [\mathcal{X}^1, \cdots, \mathcal{X}^M]$.

$$\min_{\widehat{w}^{(n)}} \frac{1}{M} \| \mathbf{y}^{\mathrm{T}} - \mathbf{Z}^{(-n)\mathrm{T}} \widehat{\mathbf{w}}^{(n)} \|_{2}^{2} + \alpha \beta^{(-n)} \| \widehat{\mathbf{w}}^{(n)} \|_{2}^{2} + \lambda \| \widehat{\mathbf{w}}^{(n)} \|_{1},$$

where
$$\mathbf{Z}^{(-n)} = \mathcal{X} \times_1 \mathbf{w}^{(1)} \times_2 \cdots \times_{n-1} \mathbf{w}^{(n-1)} \times_{n+1} \cdots \times_N \mathbf{w}^{(N)}$$
, $\widehat{\mathbf{w}}^{(n)} = \sigma \mathbf{w}^{(n)}$ and $\bar{\beta}^{(-n)} = \prod_{l \neq n} \|\mathbf{w}^{(l)}\|_2^2$. Subproblem

$$\min_{\widehat{\mathbf{w}}^{(n)}} \underbrace{\frac{1}{M} \|\widehat{\mathbf{y}} - \widehat{\mathbf{Z}}^{(-n)} \widehat{\mathbf{w}}^{(n)}\|_2^2}_{J(\widehat{\mathbf{w}}^{(n)})} + \lambda \underbrace{\|\widehat{\mathbf{w}}^{(n)}\|_1}_{\Omega(\widehat{\mathbf{w}}^{(n)})}$$
where $\widehat{\mathbf{y}} = (\mathbf{y}, \mathbf{0})^{\mathrm{T}}$ and $\widehat{\mathbf{Z}}^{(-n)} = (\mathbf{Z}^{(-n)}, \sqrt{\alpha\beta^{(-n)}M}\mathbf{I})^{\mathrm{T}}$.

Fast Stagewise/Boosted Optimization

◆ The n-th Objective Function

$$\Gamma(\widehat{\mathbf{w}}^{(n)}; \lambda) = J(\widehat{\mathbf{w}}^{(n)}) + \lambda \Omega(\widehat{\mathbf{w}}^{(n)}).$$

Algorithm

Algorithm 1 Fast Stagewise Unit-Rank Tensor Factorization (SURF)

Input: Training data \mathcal{D} , a small stepsize $\epsilon > 0$ and a small tolerance parameter ξ^2 **Output:** Solution paths of $(\sigma, {\mathbf{w}}^{(n)})$.

1: Initialization: take a forward step with $(\{\hat{i}_1,\cdots,\hat{i}_N\},\hat{s}) = \underset{\{i_1,\cdots,i_N\},s=\pm\epsilon}{arg\,min} J(s\mathbf{1}_{i_1},\mathbf{1}_{i_2},\cdots,\mathbf{1}_{i_N})$, and

 $\sigma_0 = \epsilon, \mathbf{w}_0^{(1)} = sign(\widehat{s}) \mathbf{1}_{\widehat{i}_n}, \ \mathbf{w}_0^{(n)} = \mathbf{1}_{\widehat{i}_n} (n \neq 1), \ \lambda_0 = (J(\{\mathbf{0}\}) - J(\sigma_0, \{\mathbf{w}_0^{(n)}\})) / \epsilon.$ (11) Set the active index sets $I_0^{(n)} = \{\hat{i}_n\}$ for $n = 1, \dots, N$; t = 0.

$$(\widehat{n}, \widehat{i}_{\widehat{n}}) := \arg \min_{n, i_n \in I_t^{(n)}} J(\widehat{\mathbf{w}}_t^{(n)} + s_{i_n} \mathbf{1}_{i_n}), \text{ where } s_{i_n} = -sign(\widehat{w}_{ti_n}^{(n)}) \epsilon.$$
 (1)

if $\Gamma(\widehat{\mathbf{w}}_t^{(\widehat{n})} + s_{\widehat{i}_{\widehat{n}}} \mathbf{1}_{\widehat{i}_{\widehat{n}}}; \lambda_t) - \Gamma(\widehat{\mathbf{w}}_t^{(\widehat{n})}; \lambda_t) \leq -\xi$, then

$$\sigma_{t+1} = \|\widehat{\mathbf{w}}_{t}^{(\widehat{n})} + s_{\widehat{i}_{\widehat{n}}} \mathbf{1}_{\widehat{i}_{\widehat{n}}} \|_{1}, \ \mathbf{w}_{t+1}^{(\widehat{n})} = (\widehat{\mathbf{w}}_{t}^{(\widehat{n})} + s_{\widehat{i}_{\widehat{n}}}) / \sigma_{t+1}, \ \mathbf{w}_{t+1}^{(-\widehat{n})} = \mathbf{w}_{t}^{(-\widehat{n})},$$

$$\lambda_{t+1} = \lambda_{t}, \quad I_{t+1}^{(n)} := \begin{cases} I_{t}^{(\widehat{n})} \setminus \{\widehat{i}_{\widehat{n}}\}, & \text{if } w_{(t+1)\widehat{i}_{\widehat{n}}}^{(\widehat{n})} = 0\\ I_{t}^{(n)}, & \text{otherwise.} \end{cases}$$

else Forward step:

$$(\widehat{n}, \widehat{i}_{\widehat{n}}, \widehat{s}_{\widehat{i}_{\widehat{n}}}) := \arg\min_{n, i_{n}, s = \pm \epsilon} J(\widehat{\mathbf{w}}_{t}^{(n)} + s_{i_{n}} \mathbf{1}_{i_{n}}),$$

$$\sigma_{t+1} = \|\widehat{\mathbf{w}}_{t}^{(\widehat{n})} + \widehat{s}_{\widehat{i}_{\widehat{n}}} \mathbf{1}_{\widehat{i}_{\widehat{n}}} \|_{1}, \ \mathbf{w}_{t+1}^{(\widehat{n})} = (\widehat{\mathbf{w}}_{t}^{(\widehat{n})} + \widehat{s}_{\widehat{i}_{\widehat{n}}}) / \sigma_{t+1}, \ \mathbf{w}_{t+1}^{(-\widehat{n})} = \mathbf{w}_{t}^{(-\widehat{n})},$$

$$\lambda_{t+1} = \min[\lambda_{t}, \frac{J(\sigma_{t}, \{\mathbf{w}_{t}^{(n)}\}) - J(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \xi}{\Omega(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \Omega(\sigma_{t}, \{\mathbf{w}_{t}^{(n)}\})}], \quad I_{t+1}^{(n)} := \begin{cases} I_{t}^{(n)} \cup \{\widehat{i}_{n}\}, & \text{if } n = \widehat{n} \\ I_{t}^{(n)}, & \text{otherwise.} \end{cases}$$
5: Set $t = t + 1$.
6: until $\lambda_{t} < 0$

Forward Step

The solution at each forward step is

$$\begin{split} &(\widehat{n}, \widehat{i}_{\widehat{n}}) := \underset{n, i_n}{arg\, max} \, 2|\widehat{\mathbf{e}}^{(n)\mathrm{T}}\widehat{\mathbf{Z}}^{(-n)}\mathbf{1}_{i_n}| - \epsilon Diag(\widehat{\mathbf{Z}}^{(-n)\mathrm{T}}\widehat{\mathbf{Z}}^{(-n)})^{\mathrm{T}}\mathbf{1}_{i_n}, \\ &\widehat{s} = sign(\widehat{\mathbf{e}}^{(n)\mathrm{T}}\widehat{\mathbf{Z}}^{(-\widehat{n})}\mathbf{1}_{\widehat{i}_{\widehat{n}}})\epsilon, \end{split}$$

where $\widehat{\mathbf{e}}^{(n)} = \widehat{\mathbf{y}} - \widehat{\mathbf{Z}}^{(-n)}\widehat{\mathbf{w}}^{(n)}$ is a constant at each iteration.

Backward Step

The solution at each backward step is

$$(\widehat{n}, \widehat{i}_{\widehat{n}}) := \underset{n, i_n \in I^{(n)}}{arg \min} \ 2sign(\widehat{w}_{i_n}^{(n)}) \widehat{\mathbf{e}}^{\mathrm{T}} \widehat{\mathbf{Z}}^{(-n)} \mathbf{1}_{i_n} + \epsilon Diag(\widehat{\mathbf{Z}}^{(-n)\mathrm{T}} \widehat{\mathbf{Z}}^{(-n)})^{\mathrm{T}} \mathbf{1}_{i_n}.$$

Computation Analysis

At each iteration, $\mathbf{Z}^{(-n)}$ $(n \neq \hat{n})$ can be updated by

$$\mathbf{Z}_{t+1}^{(-n)} = \frac{1}{\sigma_{t+1}} (\sigma_t \mathbf{Z}_t^{(-n)} + \mathbf{Z}_t^{(-n,-\hat{n})} \times_{\hat{n}} \widehat{s}_{\hat{i}_{\widehat{n}}} \mathbf{1}_{\hat{i}_{\widehat{n}}}),$$

where $(-n, -\hat{n})$ denotes every mode except n and \hat{n} .

The computational complexity of our approach per iteration is

$$O(M \sum_{n \neq \hat{n}}^{N} (\prod_{s \neq n, \hat{n}} I_s + 5I_n) + 2MI_{\hat{n}})$$

In contrast, the ACS algorithm has to be run for each fixed λ , and within each of suchproblems, each iteration requires

$$O(M \prod_{n=1}^{N} I_n)$$

Convergence Analysis

Lemma 1: For any t with $\lambda_{t+1} = \lambda_t$, we have $\Gamma(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}; \lambda_{t+1}) \leq \Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_{t+1}) - \xi.$ Lemma 2: For any t with $\lambda_{t+1} < \lambda_t$, we have $\Gamma(\hat{\mathbf{w}}_t^{(n)} +$ $s_{i_n} \mathbf{1}_{i_n}; \lambda_t) > \Gamma(\hat{\mathbf{w}}_t^{(n)}; \lambda_t) - \xi.$

Lemma 1 and Lemma 2 proves the following convergence theorem. Theorem 1: For any t such that $\lambda_{t+1} < \lambda_t$, we have $(\sigma_t, \{\mathbf{w}_t^{(n)}\}) \rightarrow (\sigma(\lambda_t), \{\widetilde{\mathbf{w}}^{(n)}(\lambda_t)\})$ as $\epsilon, \xi \rightarrow 0$, where $(\sigma(\lambda_t), \{\widetilde{\mathbf{w}}^{(n)}(\lambda_t)\})$ denotes a coordinate-wise minimum point of the SURF problem.

Experiments

Summarization of Compared Methods

	Table 1: Compared methods. α and λ are regularized parameters; R is the CP rank.										
ш	Methods	LASSO	ENet	Remurs	orTRR	GLTRM	ACS	SURF			
ш	Input Data Type	Vector	Vector	Tensor	Tensor	Tensor	Tensor	Tensor			
	Regularization	ℓ_1 (w)	ℓ_1/ℓ_2 (w)	Nuclear/ ℓ_1 (W)	$\ell_2\left(\mathbf{W}^{(n)}\right)$	$\ell_1/\ell_2 \left(\mathbf{W}^{(n)}\right)$	$\ell_1/\ell_2 \left(\mathcal{W}_r \right)$	$\ell_1/\ell_2\left(\mathcal{W}_r\right)$			
	Rank Explored				Optimized	Fixed	Increased	Increased			
	Hyperparameters	λ	α, λ	λ_1, λ_2	α, R	α, λ, R	α, λ, R	α, λ, R			

Empirical Analysis on Synthetic Data

Figure 1: Comparison of solution paths of SURF (solid line) and ACS (dashed line) with different step sizes on synthetic data. The path of estimates W for each λ is treated as a function of $t = \|W\|_1$

Figure 2: Results with increasing number of features on synthetic 2D data (a)-(b), and (c) real 3D MRI data of features $240 \times 175 \times 176$ with fixed hyperparameters (without cross validation).

Figure 3: Results with increasing sparsity level (S%) of true **W** on synthetic 2D data (a)-(b), and (c) sparsity results of W versus step size for SURF.

Statistical Analysis on Real Data

Table 2: Results on different DTI datasets (mean \pm std.). Column 2 indicates the used metrics RMSE. Sparsity of Coefficients (SC) and CPU execution time (in mins).

Datasets	Metrics	Comparative Methods								
Datascis		LASSO	ENet	Remurs	orTRR	GLTRM	ACS	SURF		
	RMSE	2.94±0.34	2.92 ± 0.32	2.91 ± 0.32	3.48 ± 0.21	3.09 ± 0.35	2.81 ± 0.24	2.81 ± 0.23		
DTI_{fact}	Sparsity	0.99 ± 0.01	0.97 ± 0.01	0.66 ± 0.13	0.00 ± 0.00	0.90 ± 0.10	0.92 ± 0.02	0.95 ± 0.01		
	Time	6.4±0.3	46.6±4.6	161.3±9.3	27.9±5.6	874.8±29.6	60.8±24.4	1.7 ± 0.2		
	RMSE	3.18 ± 0.36	3.16 ± 0.42	2.97 ± 0.30	3.76 ± 0.44	3.26 ± 0.46	2.90±0.31	2.91 ± 0.32		
DTI_{rk2}	Sparsity	0.99 ± 0.01	0.95 ± 0.03	0.37 ± 0.09	0.00 ± 0.00	0.91 ± 0.06	0.93 ± 0.02	0.94 ± 0.01		
	Time	5.7±0.3	42.4±2.9	155.0 ± 10.7	10.2 ± 0.1	857.4±22.5	63.0±21.6	5.2 ± 0.8		
	RMSE	3.06 ± 0.34	2.99 ± 0.34	2.93 ± 0.27	3.56 ± 0.41	3.14±0.39	2.89 ± 0.38	2.87 ± 0.35		
DTI_{sl}	Sparsity	0.98 ± 0.01	0.95 ± 0.01	0.43 ± 0.17	0.00 ± 0.00	0.87 ± 0.03	0.90 ± 0.03	0.93 ± 0.02		
	Time	5.8 ± 0.3	45.0±1.0	163.6±9.0	7.5 ± 0.9	815.4±6.5	66.3±44.9	1.5 ± 0.1		
	RMSE	3.20 ± 0.40	3.21±0.59	2.84 ± 0.35	3.66 ± 0.35	3.12 ± 0.32	2.82 ± 0.33	2.83 ± 0.32		
DTI_{tl}	Sparsity	0.99 ± 0.01	0.96 ± 0.03	0.44 ± 0.13	0.00 ± 0.00	0.86 ± 0.03	0.90 ± 0.02	0.91 ± 0.02		
	Time	5.5 ± 0.2	42.3±1.4	159.6±7.6	26.6±3.1	835.8±9.9	96.7±43.2	3.8 ± 0.5		
	RMSE	3.02 ± 0.37	2.89 ± 0.41	2.81 ± 0.31	3.33 ± 0.27	3.26 ± 0.45	2.79 ± 0.31	2.78 ± 0.29		
Combined	Sparsity	0.99 ± 0.00	0.97 ± 0.01	0.34 ± 0.22	0.00 ± 0.00	0.91 ± 0.19	0.97 ± 0.01	0.99 ± 0.00		
	Time	8.8±0.6	71.9 ± 2.3	443.5 ± 235.7	48.4±8.0	1093.6±49.7	463.2±268.1	6.2 ± 0.5		

NOTE: The full paper and code are available at https://github.com/LifangHe/SURF. Email: lifanghescut@gmail.com