ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

14. Oblicz pole płata powierzchiowego wyciętego walcem $x^2 + y^2 = a^2$ ze sfery $x^2 + y^2 + z^2 = R^2$, $(a \le R)$.

Dane wejściowe:

-
$$(x^2+y^2=a^2)$$
 — równanie cylindra - $(x^2+y^2+z^2=R^2)$ — równanie sfery - $a\leq R$

Szukamy powierzchni przeciecia walca i sfery.

Ogólny wzór powierzchni krażka sferycznego:

$$S=2\pi Rh$$

Rozmiar h (wysokość krażka sferycznego) jest połowa odległości pomiedzy punktami przeciecia na osi z:

$$h = R - \sqrt{R^2 - a^2}$$

Podstawienie wzoru h do wzoru na S:

$$S = 2\pi R \left(R - \sqrt{R^2 - a^2} \right)$$

Obliczenia krok po kroku:

1. Oblicz $\sqrt{R^2-a^2}$ 2. Podstaw wyniki do $S=2\pi R\left(R-\sqrt{R^2-a^2}\right)$

$$S = 2\pi R(R - \sqrt{R^2 - a^2})$$

Wynik końcowy:

$$S = 2\pi R(R - \sqrt{R^2 - a^2})$$