1.	. Given the 2-itemsets $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{2, 5\}$, $\{3, 5\}$, when generating 3-itemset we will:		
	☐ a. ☐ b. ☐ c. ☐ d. pr	Have 4 3-itemsets after the join and 4 3-itemsets after the prune Have 4 3-itemsets after the join and 2 3-itemsets after the prune Have 3 3-itemsets after the join and 3 3-itemsets after the prune Have 2 3-itemsets after the join and 2 3-itemsets after the une	
2.		e following transactions {milk, bread}, {eggs, bread}, {milk, eggs, eggs}, {milk, eggs}, {milk}	
	□ a.□ b.□ c.□ d.	bread⇒milk has support 1/3 and confidence 2/3 eggs⇒milk has support 1/3 and confidence 2/3 milk⇒bread has support 1/3 and confidence 2/3 milk⇒eggs has support 1/3 and confidence 2/3	
3.		e a graph with nodes $\{1, 2, 3, 4\}$ and edges $\{1\rightarrow 2, 1\rightarrow 3, 1\rightarrow 4, 2\rightarrow 3\}$ authority values, without normalization, are:	
	b. c.	$(0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ $(\frac{3}{4}, \frac{1}{4}, 0, 0)$ $(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ $(\frac{1}{2}, \frac{1}{2}, 0, 0)$	
4.	If milk⇒{ then:	bread, eggs} has confidence c1 and milk⇒bread has confidence c2,	
	c.	c1 <= c2 c2 <= c1 c1 < c2 and c2 < c1 are possible c1 = c2	
5.	Given the	e following matrix for teleporting in a random walker model:	
		[0 0 1] 0 ½ 0 [1 ½ 0]	

	Which of the following is true (independent of how the link matrix is given a. A random walker can always reach node 2 b. A random walker can always reach any node c. A random walker can always leave node 2 d. A random walker can never reach node 2	en):	
6.	Which of the following statements concerning compression of adjacency lists for link indexing is wrong:		
	 a. Compression can exploit the fact that most links of a page pote the page itself b. Compression can exploit the fact that pages with similar URL typically have also many outgoing links in common c. Exploiting similarity among different adjacency lists will always decrease the cost of encoding of adjacency lists d. Compression works well, even if we consider similarity of adjlists only for a fraction of neighbouring URLs in the lexicographic order 	_s jacency	
7.	Given the graph $1\rightarrow 2$, $1\rightarrow 3$, $2\rightarrow 3$, $3\rightarrow 2$, the <i>PageRank</i> value of this g (without random jumps)	raph is	
	☐ a. (0, 1, 1) ☐ b. (0, ½, ½) ☐ c. (½, ½, ½) ☐ d. (1, 0, 0)		
8.	When computing PageRank iteratively the computation ends when		
	 a. The norm of the rank vector exceeds a predefined threshold b. All nodes of the graph have been visited a predefined number times 	er of	
	☐ c. The norm of the difference of rank vectors of two subsections.	quent	
	 iterations falls below a predefined threshold d. The difference among the Eigenvalues of two subsequent ite falls below a predefined threshold 	erations	