AL/2017/02/E-I,II

(r)

(m)

0

0

Z

4

6

0

Z

(3)

9

0

0

(5)

4

(m)

0

6

9

0

0

4

0

(3)

ĕ

0

0

(47)

8

9

பொறுட்குவை பல்கலைக்கழுக பொறியியற் பீட தமிழ் மானாவர்கள் நடாத்தும் ககியாத உயர்தர மானாவர்களுக்கான s 🐄 பல்கேர்வ வினா விடைகள் / Chemistry M C O Answers முன்னோரவ் பரீட்சை - 2017 Smarn sonoffino

C. C	Prepared by	DIAS B.Sc(Hons)Spl in Ch
	02	
	EMISTRY	

1/5	ı	
#	ı	
100	ı	
	ı	
5	ı	
	ı	
,	ı	
	ı	
	ı	
5	ı	
	ı	
	ı	
5	ı	
ide/suou)-	ı	
1	ı	
	ı	
	ı	
-	ı	
2	ı	
,	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	

4 (2) 3 4 Rn (1) (2) (2) (A)

(41) D (5) 000

4 (m) (2) è 0 (2) 0 (3)

(0) (m) (2) (3)

2

4

(0)

4

(C)

(4)

(m)

(2)

0

8

33

(2)

4

(m)

(3)

(v)

4

(2)

0

(43)

(v)

(m)

(2)

0

33

Θ

1

(2)

(m)

(2)

ĕ

E

(0)

0

0

0

033

(in)

4

(m)

(3) 4

3

(3) 9

0

0

8

(S)

4

0

0

4

3

4

0

0

g

(m)

0

(25)

(3)

(A)

3

(5)

4

(m)

0

8

(32) (5)

(m)

@

Θ

197

4

0

000

90

8

4

(m)

0 9

(5)

98

(m)

(3)

0

27

(2)

9

00

12

(3)

4

0

0

60

33 8

000 (2) 0 66

(5)

9

0

0

88

(2)

0

000

180

9

4

0

0

8

(5)

9

(m)

0

63

(2)

4

0

0

(61)

4

(m)

0

0

6

9 4 (m) (2)

(5) (3)

(49)

(5) 4 4 (m)

8

(5)

(2)

(m)

(2)

0

S

4

(m)

(2)

0

60

4

(m)

(2)

0

8

(5)

(m)

3

0

8

(2)

(m)

0

0

6

Committee

Examination

2019

E-Tamils Mora

Un. Colo Un. state (SE)

Subject and Subject No.

பகுதி A – அமைப்புக் கட்டுரை

01. (a) பின்வருவனவற்றை அடைப்புக்குறிக்குள் குறிக்கப்பட்டுள்ள இயல்புகள் அதிகரிக்கும் வரிசையில் ஒழுங்குபடுத்துக.

i. S,C,H,Br (மின்னெதிர் இயல்பு) H < C < S <

ii. $Ag^+, Mg^{2+}, Zn^{2+}, Fe^{2+}$ (நீர்க்கரைசலில் ஒட்சியேற்றும் கருவியாகத் தொழிற்படும் ஆற்றல்) $Mg^{2+} < Zn^{2+} < Fe^{2+} < Ag^+$

- iii. AgI, AgBr, AgCl, AgF (பங்கீட்டுச் சிறப்பியல்பு) AgF < AgCl < AgBr < AgI
- iv. CH_4 , HCl, PH_3 , H_2S (கொதிநிலை) CH_4 < PH_3 < HCl < H_2S
- v. $SOCl_2$, XeF_2 , ICl_4 , CO_3^{2-} (மைய அணுவைச் சூழவுள்ள தள்ளுகை அலகுகளின் எண்ணிக்கை)

 CO_3^{2-} < $SOCl_2$ < XeF_2 < ICl_4 [04 marks x 5 = 20marks] [1(a): 20 Marks]

(b) மூலகங்கள் P,Q,R,S என்பன அணு எண் 20 இலும் குறைந்த அலோக மூலகங்கள் ஆகும். இவை உறுதி உயர் வலுவளவாக முறையே 7,6,4,5 இனைப் பெறுகின்றன. R,S என்பன அவற்றிற்குரித்தான கூட்டங்களில் அதி உயர் மின்னெதிர்த்தன்மையைக் கொண்ட மூலகங்கள் ஆகும். இம் மூலகங்களினால் உருவாக்கப்படும் மூலக்கூறு H₂RQPSO₃ இன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

- i. P, Q, R, S ஆகிய மூலகங்களை இனங்காண்க.
 - P -Cl/Chlorine Q -S/ Sulphur R -C/ Carbon S - N/Nitrogen

 $[02marks \times 4 = 08marks]$

ii. இம் மூலக்கூறுக்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூயிக் கட்டமைப்பை வரைக.

08marks

iii. இம் மூலக்கூறுக்கு ஆறு பரிவுக்கட்டமைப்புகளை வரைக. (மேலே (ii) இல் வரையப்பட்ட

மேலே (ii) இல் வரைந்த லூயிக் கட்டமைப்பின் அடிப்படையில் கீழே தரப்பட்டுள்ள அட்டவணையில் Q,R,S ஆகிய அணுக்களின்

- அணுவைச் சூழவுள்ள இலத்திரன் சோடிக் கேத்திரகணிதம் (இலத்திரன் சோடிகளின் ஒழுங்கமைப்பு)
- அணுவைச் சூழவுள்ள வடிவம்.
- அணுவின் கலப்பாக்கம்.
- 4. அணுவைச் சூழவுள்ள பிணைப்புக் கோணத்தின் அண்ணளவான பெறுமானம் என்பவற்றைக் குறிப்பிடுக.

		Q	R	S
1.	இலத்திரன் சோடிக் கேத்திர கணிதம்	நான்முகி	தளமுக் கோணம்	நான்முகி
2.	வடிவம்	நான்முகி	தளமுக்கோ ணம்	முக்கோணம் கூம்பகம்
3.	கலப்பாக்கம்	sp^3	sp ²	sp^3
4.	பிணைப்புக் கோணம்	108^{0} - 110^{0}	1190-1210	106^{0} - 108^{0}

[01 marks x12 = 12 marks]

iv. மேலே பகுதி (ii) இல் வரைந்த லூயி கட்டமைப்பில் பின்வரும் σ - பிணைப்புகளின் உருவாக்கத்துடன் சம்பந்தப்பட்ட அணு/ கலப்பின் ஒபிற்றல்களை இனங்காண்க.

P - Q: P 3p(a.o) Q sp3(h.o) Q - R: Q sp³(h.o) R sp3(h.o) R - S: $R sp^2(h.o)$ S sp³(h.o)

 $[01marks \times 6 = 6marks]$

 ${
m v.}$ 1. மேற்படி மூலக்கூறில் மூலகங்கள் ${
m Q,R}$ இல் உயர் மின்னெதிர்த்தன்மை உடையது எது?

Sulphur(S) / Q [04 Marks]

2. மூலக்கூறு ஒன்றில் உள்ள மூலக அணுவொன்றின் மின்னெதிர் இயல்பைத் தீர்மானிக்கும் பிரதான காரணிகள் 2 ஐக் குறிப்பிடுக.

ஓட்சியேற்றநிலை/ இணைந்துள்ள அணுக்களின் மின்னெதிர்தன்மை கலப்பு நிலை

அணுவில் உள்ள ஏற்றம்

(யாதாயினும் இரண்டு)

[02marks x2 = 04 marks]

1(b): 60Marks

- (c) அலசன் ஐதரைட்டுக்களான HCl, HBr, HI ஐக் கருதுக.
 - 1. கலைவு இடைஈர்ப்பு விசை (லண்டன் இடைக்கவர்ச்சிவிசை) வலிமை அதிகரிக்கும் ஒழுங்கைத் தருக.

HCl HBr HI

2. இருமுனைவு இருமுனைவு இடைக்கவர்ச்சிவிசை வலிமை அதிகரிக்கும் வரிசையைத் தருக.

HI HBr HCl

3. கொதிநிலை அதிகரிக்கும் ஒழுங்கைத் தருக.

HCl HBr HI

4. கொதிநிலை அதிகரிப்புக்கு எவ்வகை கவர்ச்சி விசை அதிக பங்களிப்பைச் செய்கிறது.

கலைவு இடைஈர்ப்பு / லண்டன் இடைக்கவர்ச்சிவிசை [05 Marks x4 = 20 Marks]

02.~a) S தொகுதி மூலகம் M ஆனது NaOH கரைசலில் கரைந்து கரைசல் A ஐயும் வாயு விளைவு Xஐயும் தருகிறது. கரைசல் ${f A}$ ற்குள் துளித்துளியாக ${f HCl}$ இனைச் சேர்த்த போது வெண்நிற வீழ்படிவு ${f B}$ இனைத் தரும் எனினும் இவ் வீழ்படிவு மிகை தாக்கு பொருளில் கரைந்து தெளிவான கரைசல் ${f C}$ ஐ உருவாக்குகிறது. M ஆனது உயர் வெப்பநிலையில் வாயு X உடன் தாக்கி வெண்நிறத் திண்மம் D ஐ விளைவிக்கின்றது. D ஆனது நீருடன் தாக்கி விளைவு B ஐயும் அதே வாயு விளைவு X ஐயும் தருகிறது.

i. முலகம் M ஐ இனங்காண்க?

Be / Beryllium

[05 Marks]

ii. சேர்வைகள் A,B,C,D மற்றும் வாயு X ஐயும் இனங்காண்க?

A- Na₂BeO₂

 $B - Be(OH)_2$

C- BeCl₂

D- BeH₂ X- H₂

 $[04Marks \times 5 = 20Marks)]$

iii. மேற்படி சேர்வைகள் A,B,C,D உருவாவதற்கான தாக்கங்களுக்குரிய சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக.

2Be + 2NaOH \rightarrow Na₂BeO₂ + H₂

 $Na_2BeO_2 + 2HCl$ \rightarrow 2NaCl + Be(OH)₂

 $Be(OH)_2 + 2HCl_{(aq)} \rightarrow BeCl_{2(aq)} + 2H_2O$

Be + $H_2 \rightarrow BeH_2$

 $[04Marks \times 4 = 16Marks)]$

iv. M ஆனது தனது கூட்ட அங்கத்தவர்களில் இருந்து வேறுபடும் மூன்று இயல்புகளைக் குறிப்பிடுக. ஈரியில்பு தன்மை / அமில, காரம் இரண்டுடனும் தாக்கமடையும் / கரையும் BeCl₂, BeH₂, பங்கீட்டு வலுச்சேர்வையை உருவாக்குகின்றது. BeH₂, BeCl₂ என்பன பல்பகுதியங்களாக காணப்படுத்தன்மை, திரவ நிலை நீருடன் தாக்கமடையாது

 BeF_2 நீரில் கரையும், உயர் அயனாக அழுத்தம்.

(யாதாயினும் மூன்று)

[03marks x3 = 9 Marks]

[2(a): 50Marks]

(b) (i) தரப்பட்ட சோதனைப் பொருள் போத்தல்களில் பின்வரும் திண்மங்கள்/ கரைசல்கள் அடங்கியுள்ளன.

Cr₂(SO₄)₃, Co(NO₃)₂, Na₂S₂O₃, (NH₄)₂Cr₂O₇, BiCl₃, Pb(CH₃COO)₂

பின்வரும் அவதானிப்புக்களுக்குப் பொருத்தமான சேர்வைகளை எதிரே தரப்பட்டுள்ள கூட்டில் எழுதுக.

 $A. \quad BaCl_2$ கரைசல் சேர்க்கப்பட்டதும் மஞ்சள் வீழ்படிவு பெறப்படுகிறது.

 $(NH_4)_2Cr_2O_7$

B. மிகை நீர் சேர்த்து ஐதாக்கி அவதானிக்கும் போது நீல ஊதாக் கரைசலைத் தருகின்றது.

 $Cr_2(SO_4)_3$

C. ஐதான HCl கரைசலுடன் வெண்மஞ்சள் கலங்கல் கரைசலை உருவாக்குகின்றது.

 $Na_2S_2O_3$

D. நீர் சேர்த்து ஐதாக்கும் போது தடித்த வெண்வீழ்படிவைத் தருகின்றது. இவ்வீழ்படிவு ஐதான HCl இல் கரைகிறது.

BiCl₃

செறிந்த HCl ஐ மிகையாகச் சேர்க்கும் போது நீலநிறக் கரைசல் பெறப்படுகிறது.

 $Co(NO_3)_2$

KI கரைசலைச் சேர்த்த போது வீழ்படிவு பெறப்படுவதுடன் சூடாக்கும் போது அவ்வீழ்படிவு கரைந்து தெளிந்த கரைசல் பெறப்படுகிறது.

 $Pb(CH_3COO)_2$

[04 Marks x 6 = 24 Marks]

(ii) A தொடக்கம் F வரையுமான அவதானிப்புக்களுக்குரிய தாக்கங்களின் சமன்செய்த இரசாயனச் சமன்பாடுகளைத் தருக.

- A- BaCl₂ + $(NH_4)_2 Cr_2O_7 + H_2O \rightarrow BaCrO_4 + (NH_4)_2 CrO_4 + 2HCl$
- B- $Cr^{3+} + 6H_2O \rightarrow [Cr(H_2O)_6]^{3+} / Cr(SO_4)_3 + 12H_2O \rightarrow [Cr(H_2O)_6]_2(SO_4)_3$
- C- $NO_2S_2O_3 + 2HCl \rightarrow 2NaCl + S + SO_2 + H_2O$
- D- BiCl₃ + H₂O \rightleftharpoons BiOCl + 2HCl
- E- $CO^{2+} + 4HCl^{-} \rightarrow [CoCl_{4}]^{2-} / CO(NO_{3})_{2} + 4HCl \rightarrow H_{2}[CoCl_{4}] + 2HNO_{3}$
- F- Pb $(CH_3COO)_2 + 2KI \rightarrow PbI_2 + 2CH_3COO \cdot K^+$ $pbI_2(s) \rightarrow PbI_2(aq)$ (2Marks)

[6Marks x4 = 24Marks] + (2Marks) 2(b) : 50 Marks

03. (a) A,B,C என்பன ஒன்றோடு ஒன்று முற்றாக கலக்கும்தகவுள்ள ஆவிப்பறப்புடைய திரவங்கள் ஆகும். இவற்றின் தூயநிலை ஆவி அமுக்கங்களும் நியம கொதிநிலைகளும் முறையே P^0_A, P^0_B, P^0_C யும் T^0_A, T^0_B, T^0_C யும் ஆகும். இங்கு $T^0_A < T^0_B < T^0_C$ ஆக அமைகின்றது. திரவங்களை ஒன்றுடன் ஒன்று கலப்பதன் மூலம் கரைசல் A-B, கரைசல் A-C, கரைசல் B-C என்பன பெறப்பட்டன. இவற்றின் ஆவி அமுக்கங்கள் முறையே P_{AB}, P_{AC}, P_{BC} ஆகும். இக்கரைசல்கள் மூன்றும் இரவோற்றின் விதிக்கு அமைய நடப்பன எனக் கருதி கணிக்கப்பட்ட ஆவி அமுக்கங்கள் முறையே x, y, z ஆகவும், அதே வெப்பநிலையில் அவதானிக்கப்பட்ட ஆவி அமுக்கங்கள் முறையே y, y, z ஆகவும் கணிக்கப்பட்ட, அவதானிக்கப்பட்ட ஆவி அமுக்கங்களுக்கு இடையேயான தொடர்பு y, y, z ஆக அமைந்தது.

- i. நிலைக்குத்து அச்சுகளில் $P^0_{\ A}, P^0_{\ B}, P^0_{\ C}$ என்பவற்றைக் குறிக்க.
- $ii.\ P_A, P_B, P_C$ இன் மாறல்களை அச்சுகளில் வரைந்து அவற்றைக் குறிக்க. (கரைசல்களில் P_{A^-} A யின் ஆவி அமுக்கம், P_B —B யின் ஆவி அமுக்கம், P_C C யின் ஆவி அமுக்கம்) $iii.\$ கரைசல்களின் மொத்த ஆவியமுக்கங்கள் P_{AB}, P_{AC}, P_{BC} இன் மாறல்களை அச்சுகளில் வரைந்து குறிக்க

ஆவியமுக்கம் ஆவியமுக்கம் ஆவியமுக்கம் ஆவியமுக்கம் ஆவியமுக்கம் ஆவியமுக்கம் P_{A^0} P_{AC} P_{B} P_{B0} P_{BC} P_{C^0} $P_{\text{B}} \\$ P_{C} 1 $X_A = 0$ 0 $X_B = 1$ 0 $X_A = 1$ 1 $X_B = 1$ $X_C = 0$ $X_C = 0$

> [6Marks x3 = 18Marks] **03(a):40 Marks**

iv. மேற்படி கரைசல்கள் தொடர்பான பின்வரும் அட்டவணையை பூர்த்தி செய்க

	கரைசல் A - B	கரைசல் A - C	கரைசல் $\mathbf{B}-\mathbf{C}$
கரைசலின் வகை	நேர்விலகல்	இலட்சியகரைசல்	எதிர்விலகல்
வெப்பநிலை மாற்றம்	குறையும்	மாற்றமில்லை	கூடும்/ அதிகரிக்கும்.

- ${
 m v.}$ திரவங்கள் ${
 m A}$ ஐயும் ${
 m C}$ ஐயும் மொத்த மூல் எண்ணிக்கை மாநாது இருக்கதக்க வகையில் கலந்து பெறப்பட்ட விளைவுக் கரைசல்கள் தொடர்பான
 - 1. அமைப்பு எதிர் வெப்ப உள்ளுறை மாற்றம்.
 - 2. அமைப்பு எதிர் எந்திரப்பி மாற்றம்.
 - 3. அமைப்பு எதிர் கிப்ஸின் சுயாதீன சக்தி மாற்றம் என்பவற்றை பின்வரும் அச்சுகளில் வரைக.

[03Marks + 03 Marks + 04 Marks = 10Marks]

03(a):40 Marks

(b)நியம் $Pt(s)/Cl_2(g), Cl_{(aq)}$ மின்வாயையும் நியம் $Ag(s), AgCl(s)/Cl_{(aq)}$ மின்வாயையும் பயன்படுத்தி வடிவமைக்கப்பட்ட கலம் ஒன்றின் வரைபடம் கீழே காட்டப்பட்டுள்ளது. கலத்தின் வெளிச்சுற்றின் ஊடான இலத்திரன் ஓட்டத்திசை வரைபடத்தில் காட்டப்பட்டுள்ளது

i. மேற்தரப்பட்ட நியம கலத்தில் A-F இனை இனங்காண்க. பொருத்தமான இடங்களில் பௌதிக நிலை, செறிவு, அமுக்கம் என்பவற்றை தருக.

 $A - Cl_2(g, 1atm)$

B - HCl (aq, 1moldm⁻³)

C – வோல்ற்மானி

D – KCl (ag, **நிரம்பிய**)

E - AgCl(s)

F - Pt(s)

G - Ag(s)

H- படிகம் / கண்ணாடி நார்ச்சந்தி

 $[02Marks \times 8 = 16Marks)]$

ii. இக்கலத்தில் நடைபெறும் கலத்தாக்கத்தை தருக? $2Ag(s) + Cl_2(g) \rightarrow 2AgCl(s)$

[08Marks]

iii. இக்கலத்திற்கு பொருத்தமான கலக்குறியீட்டை தருக?

Ag(s), AgCl(s)|Cl_(aq) Cl_{-(aq,1moldm-3)}, Cl_{2(g,1atm)}/, Pt(s) குறிப்பு :- இங்கு Ag_(s)AgCl(s)/ Cl_{-(aq)} மின்வாயில் KCl நிரம்பிய நிலையில் இருப்பதால் அதனை Ag(s), AgCl(s)/Cl_{-(aq),satu}) எனவும் எழுதலாம்

[08Marks]

- iv. இக்கலத்தின் நியம வெப்பவுள்ளுறை மாற்றம், நியம எந்திரபி மாற்றம் என்பன முறையே $-254 \mathrm{kJmol}^{-1}$, $-116 \mathrm{Jmol}^{-1} \mathrm{K}^{-1}$ ஆகும். இக்கலத்திற்குரிய நியம கிப்ஸ் சக்தி மாற்றம் (ΔG^{θ}) இற்கும் நியம மின் இயக்கவிசை ($E^{\theta}_{_{\mathrm{Boub}}}$) இற்கும் இடையேயான தொடர்பு $\Delta G^{\theta} = -nFE^{\theta}_{_{\mathrm{Boub}}}$ இனால் தரப்படும் இங்கு,
 - n சமப்படுத்தப்பட்ட சமன்பாட்டில் ஒட்சியேற்றம் அல்லது தாழ்த்தலில் ஈடுபடும் இலத்திரனின் மூல்களின் எண்ணிக்கை.
 - F பரடே மாறிலி (96500 Cmol⁻¹)

 E^{θ} $\mathcal{C}l_{2(g)}$ / $\mathcal{C}l_{(aq)}^{-}=+1.36\mathrm{V}$ எனின் $E^{\theta}_{\mathrm{Ag(s),AgCl(s)/Cl}(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை காண்க.

$$\begin{split} \Delta G^{\theta} &= \Delta H^{\theta} - T \Delta S^{\theta} \\ &= -254 \text{ x} 103 \text{Jmol}^{-1} - (298 \text{K x} - 116 \text{Jmol}^{-1} \text{K}^{-1}) \\ &= -219 \text{ 432 Jmol}^{-1} \\ \Delta G^{\theta} &= -n \text{FE}^{\theta} \\ -219 \text{ 432 Jmol}^{-1} &= -2 \text{ x} 96500 \text{Cmol}^{-1} \text{ x} \text{ E}^{\theta} \\ E^{\theta}_{\text{Cell}} &= 1.13 \text{V} \\ E^{\theta}_{\text{cell}} &= E^{\theta}_{\text{Cathode}} - E^{\theta}_{\text{Anode}} \\ 1.13 \text{V} &= 1.36 \text{V} - E^{\theta}_{\text{anode}} \\ E^{\theta}_{\text{Anode}} &= (1.36 - 1.13 \text{V}) \\ &= 0.23 \text{ V} \end{split}$$

[04Marks x 7 = 28marks]

(03(b) : 60marks

- 04.(a) A,B,C,D என்பன $C_5H_{11}Cl$ இன் நான்கு கட்டமைப்பு சமபகுதியங்கள் ஆகும். B, C, D என்பன தளமுனைவாக்கப்பட்ட ஒளியின் தளத்தை சுழற்றும் ஆற்றல் உடையன. A ஆனது $NaOH_{(aq)}$ உடன் தாக்கமுற்று உருவாகும் விளைவு E ஆனது நீரற்ற $ZnCl_2/Con.HCl$ உடன் உடனடி கலங்கலை தரும். B,C,D என்பவற்றை C_2H_5OH/KOH உடன் தாக்கமுறச் செய்த போது முறையே விளைவுகள் F,G,H என்பன பெறப்பட்டன. H ஆனது கேத்திர கணித சமபகுதியத் தன்மையை வெளிக்காட்டுகிறது. B ஐ $NaOH_{(aq)}$ உடன் தாக்கமுறச் செய்து பின்னர் PCC/CH_2Cl_2 இனால் ஒட்சியேற்றும் போது பெறப்படும் விளைவு I ஆனது தொலனின் சோதனைப் பொருளை தாழ்த்துகிறது.
 - i. A, B, C, D, E, F, G, H, I ஆகியவற்றின் கட்டமைப்புக்களை கீழே தரப்பட்ட பெட்டிகளில் வரைக. (திண்மத் தோற்ற சமபகுதியத்திற்குரிய நிலைகளை வரைய வேண்டியதில்லை)

$$CH_3$$

$$CH_3 - C - Cl$$

$$CH_2CH_3$$

CI $CH_3 - CH - CH - CH_3$ CH_3

 \mathbf{C}

D

 CH_3 $CH_3 - C - OH$ CH_2CH_3

 $CH_3CH_2 - C = CH_2$ CH_3

CH₃ – C = CH – CH₃ CH₃

G

$$CH_3CH_2CH = CH - CH_3$$

Н

(09x 5 = 45 Marks)

ii. H இன் திண்மத்தோற்ற சமபகுதியங்களை கீழே தரப்பட்ட பெட்டிகளில் வரைந்து காட்டுக.

$$CH_3 \qquad C_2H_5$$

$$C = C$$

$$H \qquad H$$

$$CH_3 \qquad H$$

$$C = C$$

$$H \qquad C_2H_5$$

 $(05 \text{ Marks } \times 2 = 10 \text{Marks})$

iii. F ஆனது HBr உடன் தாக்கமுற்று பெறப்படும் விளைவுகள் எவை?

	Н
	$CH_3CH_2 - C - CH_2Br$
$\overset{L}{CH}_2$	CH₃

iv. (iii) இல் குறிப்பிட்ட விளைவுகளுள் எது பெருமளவு விளைவாக பெறப்படுகிறது எனக் குறிப்பிட்டு அவ்விளைவு பெறப்படுவதற்கான பொறிநுட்பத்தையும் தருக.

CH ₃ – C – CH ₂ CH ₃		
CH ₃		
$CH_3 - CH_2 - C = CH_2$		
CH ₃		

$CH_3 - CH_2$	$-C^+ \ge CH_3$
	Γ CH ₃
•	3r
CH ₃ – CH ₂ – C	C – CH₃
	 CH2

1Mark x11 = 11 Marks

(b) கீழேயுள்ள அட்டவணையில் தரப்பட்ட தாக்கங்களின் பிரதான விளைபொருட்களின் கட்டமைப்புக்களை வரைக. தரப்பட்டுள்ள தாக்கங்களை கருநாட்டக் கூட்டல் (A_N) , இலத்திரன் நாட்டக்கூட்டல் (A_E) , கருநாட்டப் பிரதியீடு (S_N) , இலத்திரன் நாட்டப்பிரதியீடு (S_E) , நீக்கல் (E), வேறு வகை (Mo) என வகைப்படுத்தி $A_{N},\,A_{E},\,S_{N},\,S_{E},\,\,E,\,Mo$ எனப் பொருத்தமான கூட்டில் எழுதுக.

தாக்க இலக்கம்	தாக்கி	சோதனைப் பொருள்	பிரதான விளைபொருள்	தாக்க வகை
1	$CH = CH_2$	Br ₂ /CCl ₄	$ \begin{array}{c} \operatorname{Br} & \operatorname{Br} \\ \operatorname{CH} = \operatorname{CH}_2 \end{array} $	\mathbf{A}_{E}
2	O CH ₃ CH ₂ –C – CH ₃	KCN/ Dil H ₂ SO ₄	OH CH₃CH₂ −C − CH₃ CN	A_{N}
3	$CH_3 - CH = CH_2$	HBr/ (CH ₃) ₂ O ₂	CH₃CH₂CH₂Br	Мо
4	Q C-CH ₃	2-4-DNPH CH	$3 - C = N - NH$ NO_2	AN+E
5	ÇH₂I ◯	$H - C \equiv C \cdot Na^{+}$	$CH_2C \equiv C - H$	SN
6	СООН	C.HNO ₃ / C. H ₂ SO ₄	ÇOOH NO ₂	SE

12 x 2Marks = 24Marks

05. (a) i.
$$V\alpha n [T][[P]]$$

$$,q;FV_A=V_X=V_{Ne}$$

ച്ചുക്ഖേ
$$n_A = n_X = n_{Ne}$$

மூல் பின்னம்
$$X_A = X_X = = X_{Ne} = 1/3$$

$$P_A = P_X = P_{Ne} = 1/3 \times 3.6 \times 10^5 Pa = 1.2 \times 10^5 Pa$$

பிரிகையின் பின்

300K இல்

$$2A(g) \rightleftharpoons B(g) + C(g)$$

ஆரம்ப அமுக்கம் 1.2 x10⁵Pa

சமனிலையில் 4 х10⁴Ра 4x10⁴Pa

4x10⁴Pa

P αn [V] [T]

கூட்டற்பிரிகையளவு
$$=\frac{8\times10^4\,Pa}{12\times10^4\,Pa}=\frac{2}{3}=0.67$$

ii.
$$Kp = \frac{P_{B(g)} \times P_{C(g)}}{P_A^2}$$
$$= \frac{4 \times 10^4 Pa \times 4 \times 10^4 Pa}{(4 \times 10^4 Pa)^2}$$

iii. இச்சமனிலைத்தாக்கம் மூல் எண்ணிக்கை மாற்றம் இல்லாது நடைபெறும் தாக்கமாகும் சமனிலைமாற்றம் அமுக்கத்தை பாதிக்காது

ஆகவே $P\alpha$ T ஆக அமையும்.

ஆகவே P = 24 x10⁴Pa

$$2A(g) \rightleftharpoons B(g) + C(g)$$

 $10x10^4$ Pa சமநிலை அமுக்கம் $4 \times 10^4 Pa$ $10 \times 10^{4} Pa$

$$Kp = \frac{(10 \times 10^4 Pa)(10 \times 10^4 Pa)}{(4 \times 10^4 Pa)^2}$$

$$=\frac{25}{4}=6.25$$

iv. **அகவெப்பத்தாக்கம்**

kp(600K) > Kp(300K)

சமநிலை முன்னோக்கி தள்ளப்படுகிறது.

Lechatelicr இன் தத்துவப்படி அகவெப்பமாகும்.

v. **தற்பொழுது** P_{Ne} = 12 x10⁴Pa x 2 = 24 x10⁴Pa முதலாவது சமநிலைக்கூறுகளின் அமுக்கம் = $24 \times 10^4 \text{Pa}$

ஆகவே இரண்டாவது சமநிலைக்கூறுகளின் அமுக்கம்

$$= 78 \times 10^{4} Pa - (24 \times 10^{4} Pa + 24 \times 10^{4} Pa)$$

$$= 30 \times 10^{4} Pa$$

$$2X(g)$$
 \rightleftharpoons $2Y(g) + Z(g)$ ஆரம்ப அமுக்கம் $24 \times 10^4 \text{Pa}$ சமநிலையில் $(24 \times 10^4 \text{Pa} - 2 \times 1)$ $2 \times 10^4 \text{Pa}$

$$24 \times 10^{4} Pa + x = 30 \times 10^{4} Pa$$

 $x = 6 \times 10^{4} Pa$

ஆகவே கூட்டற்பிரிகையளவு
$$= \frac{12 \times 10^4 \, Pa}{24 \times 10^4 \, Pa} = 0.5$$

vi.
$$Kp = \frac{(P_{Y(g)})^2 \times P_{Z(g)}}{(P_{X(g)})^2}$$
$$= \frac{(12 \times 10^4 Pa)^2 \times 6 \times 10^4 Pa}{(12 \times 10^4 Pa)^2}$$
$$= 6 \times 10^4 Pa$$

vii.
$$n_{Ne}: n_{Ar} = \frac{W}{20gmol^{-1}}: \frac{W}{40gmol^{-1}} = 2:1$$

$$P_{Ar} = 12 \times 10^4 Pa$$

Ar ஒரு விழுமிய வாயு சமநிலையில் பாதிப்பை ஏற்படுத்தாது

$$P_T = 78 \times 10^4 Pa + 12 \times 10^4 Pa$$

= 9 x 10⁵ Pa

$$\begin{array}{ll} P_B = P_C = 1 x 10^5 Pa & P_Z = 6 x 10^4 Pa \\ P_A = 4 x 10^4 Pa & P_{Ar} = 12 x 10^4 Pa \\ P_X = P_y = 12 x 10^4 Pa & P_{Ne} = 24 x 10^4 Pa \end{array}$$

05 (a): 80 marks

(b) i.
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_{2(g)}$$
 $\Delta H^{\theta} = -284 \text{kJmol}^{-1}$ (1)
 $2NO(g) + 2CO(g) \rightarrow N_{2(g)} + 2CO_{2(g)}$ $\Delta H^{\theta} = -748 \text{kJmol}^{-1}$ (2)

$$\begin{array}{l} \text{(1) X } 2-\text{(2)} \Longrightarrow \\ N_2(g) + O_2(g) \to 2NO(g) \\ \text{2.5 Gol} \ \Delta H_f^{\,\theta}(\text{NO}(g) \ \text{x} \ 2 = 2\text{x} \ \text{-}284\text{kJmol}^{-1} \ (\text{-}748\text{kJmol}^{-1}) \\ &= 180\text{kJmol}^{-1} \\ \Delta H_f^{\,\theta}(\text{NO}(g) = 90\text{KJmol}^{-1} \\ \Delta H_R^{\,\theta} = \sum \Delta H_f^{\,\theta}(\text{Products}) - \sum \Delta H_f^{\,\theta}(\text{reactants}) \\ &= \{(\text{+}90\text{kJmol}^{-1} \ \text{x4}) + (\text{-}242\text{kJmol}^{-1} \ \text{x} \ 6)\} - \{\text{-}46\text{kJmol}^{-1}\text{x4}) + 0.00\text{kJmol}^{-1}\} \\ &= -908\text{KJmol}^{-1} \end{array}$$

$$\begin{split} &ii.\Delta S^{\theta} = \sum S^{\theta}_{\text{(product)}} - \sum S^{\theta}_{\text{(reactants)}} \\ &= \{211 \text{Jmol}^{-1} \text{K}^{-1} \times 4) + (189 \text{Jmol}^{-1} \text{K}^{-1} \times 6) \} - \{\ 193 \text{Jmol}^{-1} \text{K}^{-1} \times 4) + (205 \text{Jmol}^{-1} \text{K}^{-1} \times 5) \} \\ &= 181 \text{Jmol}^{-1} \text{K}^{-1} \end{split}$$

iii.
$$\Delta G^{\theta} = \Delta H_{R}^{\theta} - T\Delta S^{\theta}$$

= -908kJmol⁻¹ - (298Kx 181 x10⁻³kJmol⁻¹K⁻¹)
= -961.9kJmol⁻¹

v. $\Delta G < 0$ ஆக அமைவதனால் 25° C இல் இத்தாக்கம் சுயமானது

05 (b): 70 marks

06. (a) i.
$$NH_4Cl_{(aq)} \rightarrow NH_4^+(aq) + Cl^-(aq)$$

 $[NH_4^+(aq)] = [NH_4Cl(aq)] = Cmoldm^{-3}$
 $NH_4^+(aq) + H_2O_{(l)} \rightleftharpoons NH_4OH(aq) + H^+_{(aq)}$

ஆரம்பச் செறிவு Cmoldm⁻³ சமநிலை செறிவு (C-x) moldm⁻³

x moldm⁻³ xmoldm⁻³

சமநிலை விதிப்படி

$$ka = \frac{[NH_4OH_{(aq)}][H^+_{(aq)}]}{[NH_4^+_{(aq)}]}$$

இங்கு [NH₄OH(aq)] = [H⁺(aq)] ஆகவே

$$ka = \frac{[H_{(aq)}^{+}]^{2}}{[NH_{4}^{+}(aq)]}$$

$$[H_{(aq)}^{+}] = \sqrt{ka(NH_{4}^{+}(aq))}$$

$$= \sqrt{ka \times (C - x) moldm^{-3}}$$
x <<< C

ஆகவே
$$[H_{(aq)}^{+}]=\sqrt{kaC}$$

ஆனால் kakb =kw

$$[H_{(aq)}^{+}] = \sqrt{\frac{kw}{kb} \times C}$$

$$pH = -\log[H_{(aq)}^{+}]$$

$$= -\log\sqrt{\frac{kw \times c}{kb}}$$

$$= -1/2 \log kw - \frac{1}{2} \log c - (-\frac{1}{2} \log kb)$$

$$pH = \frac{1}{2} pkw - \frac{1}{2} pkb - \frac{1}{2} \log c$$

[20 marks]

ii.
$$n[NH_4]_2 SO_4 = \frac{0.66g}{132gmol^{-1}} = 0.005mol$$

$$[NH_{4(aq)}^+] = \frac{0.005mol \times 2}{0.5dm^3}$$

$$= 0.02 \text{moldm}^{-3}$$

$$p^{\text{H}} = \frac{1}{2} p^{\text{kw}} - \frac{1}{2} p^{\text{kb}} - \frac{1}{2} \log C$$

=
$$\frac{1}{2}$$
 x 14 - $\frac{1}{2}$ x5 - $\frac{1}{2}$ log 2 x10⁻²
=7-2.5 + 1 - $\frac{1}{2}$ x 0.3010
=5.3495

[08 marks]

iii. விளைவுக்கரைசல் தாங்கற் கரைசல்

$$[NH_{4_{(aq)}}^{+}] = \frac{0.005mol \times 2}{1dm^{3}}$$

$$= 1x10^{-2} \text{moldm}^{-3}$$

$$pOH = pkb + \log 0 \frac{[salt]}{[base]}$$

$$= 5 + \log \frac{1 \times 10^{-2} \, moldm^{-3}}{0.1 moldm^{3}}$$

$$= 5 - 1$$

$$= 4$$

$$pH + pOH = pkw$$

$$pH = 14 - 4 = 10$$

[08 marks]

iv. $[OH^{-}_{(aq)}] = 1x10^{-4} \text{moldm}^{-3}$

வீழ்படிவாவதற்கு $[N^{2+}_{(aq)}][OH^{-}_{(aq)}]^2 \ge 1x10^{-10}mol^3dm^{-9}$

$$[N_{(aq)}^{2+}] \ge \frac{1 \times 10^{-10}}{1 \times 10^{-8}} moldm^{-3}$$

$$[N^{2+}_{(aq)}] \ge 1 \times 10^{-2} moldm^{-3}$$
min nN(NO₃)₂ = 1x10⁻²mol

[10 marks]

v. $IP = [M^{2+}_{(aq)}][OH^{-}_{(aq)}]^2$ $= 0.01 \text{moldm}^{-3} \text{ x } (1 \text{x} 10^{-4} \text{moldm}^{-3})^2 = 1 \text{x} 10^{-10} \text{mol}^3 \text{dm}^{-9}$ $4x10^{-11}$ mol 3 dm $^{-9}$ = Ksp(M(OH) $_{2}$) < IP(M(OH) $_{2}$) ஆகவே வீழ்படிவாதல் அவதானிக்கப்படும்.

[04marks]

06 (b): 50 marks

(b) i. NaOH(aq) + HA(aq)
$$\rightarrow$$
 NaA(aq) + H₂O(l)
nNaOH(aq) = 0.1moldm⁻³ x 50 x10⁻³dm³ = 5x10⁻³mol
nHA: nNaOH = 1:1
ஆகவே nHA = 5x10⁻³mol

$$[HA] = \frac{5 \times 10^{-3} \, mol}{25 \times 10^{-3} \, dm^3} = 0.2 moldm^{-3}$$

ii. புள்ளி B இல் 50% நடுநிலையாக்கம் [HA(aq)] = [NaA(aq)]விளைவுக்கரைசல் தாங்கற் கரைசல்

ஆகவே
$$pH = Pka + \log \frac{[Salt]}{[Acid]}$$

$$pH = pka$$

-log ka = 5
ka = 1x10⁻⁵moldm⁻³

$$A_{(aq)} + H_2O(1) \rightleftharpoons HA_{(aq)} + OH^{-}(aq)$$

$$ka = \frac{[HA_{(aq)}][OH^{-}_{(aq)}]}{[A_{(aq)}^{-}]}$$

$$\left[A_{(aq)}^{-}\right] = \frac{5 \times 10^{-3} \, mol}{75 \times 10^{-3} \, dm^{3}} = \frac{2}{30} \, moldm^{-3}$$

$$kb = \frac{kw}{ka} = \frac{1 \times 10^{-14} \, mol^2 \, dm^{-6}}{1 \times 10^{-5} \, mol \, dm^{-3}} = 1 \times 10^{-9} \, mol \, dm^{-3}$$

கரைசலில் [HA(aq)] =[OH-(aq)]

ஆகவே $[OH^{-}(aq)]^2 = kb \times [A^{-}(aq)]$

$$[OH_{(aq)}^{-}] = \sqrt{1 \times 10^{-9} \, moldm^{-3}} \times \frac{2}{30} \, moldm^{-3}$$

$$=\sqrt{\frac{2}{3}\times10^{-10}mol^2dm^{-6}}$$

$$pOH = -\log \sqrt{\frac{2}{3} \times 10^{-10} mol^{2} dm^{-6}}$$

$$= -\frac{1}{2} \log 2 + \frac{1}{2} \log 3 + 5$$

$$pH + pOH = pkw$$

$$pH = 14 + \frac{1}{2} \times 0.3010 - \frac{1}{2} \times 0.4771$$

$$= 8.911$$

iv. குறைவடையும்

NaOH சேர்க்கும் போது $HA + OH^- \rightarrow A^- + H_2O$

A- இன் செறிவு கரைசலில் அதிகரிக்கிறது விளைவுக்கரைசலில் $HA_{(aq)} \rightleftharpoons H^+_{(aq)} + A^-$ (aq) சமநிலை பின்னோக்கி நகரும்.

v. பினோப்தலின்

06 (b): 50 marks

(c) i.
$$A(g) \rightarrow B(g) + C(g) + D(g)$$

 $t=0$ $400kPa$ -- -- ---
 $t=400s$ $400kPa - P + P + P + P = 800kPa$
 $P=200k Pa$

$$A(g) \rightarrow B(g) + C(g) + D(g)$$

t=800s 200kPa-P₁ 200+P₁ 200+P₁ 200+P₁

 $800k Pa + P_1 = 1000kPa$

 $P_1 = 100 kPa$

PV = nRT

P = (n/V) RT

P=CRT

T மாறாதிருக்க $P\alpha C$

அதாவது A இன் செறிவு அரைப்பங்காக மாறும் பொது A இன் பகுதியமுக்கம் அரைப்பங்காக மாறும் இது 400s ஆக மாறாது காணப்படுவதால் A இன் தாக்க வரிசை =1

். தாக்கத்தின் தாக்க வரிசை = 1

ii A இன் அரைவாழ்வுக்காலம் 400s ஆகும்.

$$A(g) \rightarrow B(g) + C(g) + D(g)$$

t=1200s

50k Pa 350 k Pa 350 k Pa 350 k Pa

 $P_{Total} = 50kPa + 350kPa + 350kPa + 350kPa$ = 1200kPa

iii.
$$\frac{25kPa}{400kPa} = \frac{1}{16} = \left(\frac{1}{2}\right)^4$$

எடுத்தகாலம் = 4x400s = 1600s

06 (c): 50 marks

(b)
$$R_1 = LiAlH_4$$

 $R_2 - H_2O$

 $R_3 - ConH_2SO_4 / 170^{\circ}C$

R₄ – HBr Or HCl

 $R_5 - Mg/$ உலர் ஈதர்

 $R_6 - H^+/ KMnO_4[DilH_2SO_4/KMnO_4]$

R₇- PCl₅ Or PBr₃

$$P_1$$
 - CH_2CH_2OH

$$P_2 - \bigcirc CH = CH_2$$

$$P_{2} - \bigcirc CH = CH_{2}$$

$$P_{3} - \bigcirc CH - CH_{3}$$

$$P_{3} - \bigcirc Br \quad Or \quad \bigcirc CH - CH_{3}$$

$$P_5 - \bigcap CH_2OH$$

$$P_8 - \bigcirc \begin{matrix} OH \ CH_3 \\ C - CH - \bigcirc \\ CH - CH_3 \end{matrix}$$

07 (b): 60 marks

(c) i.
$$CH_3 - \overset{0}{C} - O - C_6H_5$$
, $CH_3 - \overset{0}{C} - O - CH_3$

ii. CH₃O

 $C_6H_5O^-$ இல் உள்ள தனிச்சோடி பென்சீன் வளையத்துடன் பரிவுறுகின்றது. ஆனால் மெதையில் கூட்டத்தின் இலத்திரன் தள்ளும் இயல்பினால் CH_3O இல் உள்ள ஒட்சிசனின் இலத்திரன் அடர்த்தி அதிகம் எனவே CH₃O இன் தனிச்சோடி வழங்கும் ஆற்றல் C_6H_5O ஜ விட அதிகம். அதனால் CH₃O- கருநாடியாக செயற்படும் ஆற்றல் அதிகம்

iii.
$$O_{A_3}^{\delta_{-}} - C - Cl \longrightarrow CH_3 - C - Cl \longrightarrow CH_3 - C - O - O$$

$$O_{A_3} - C - Cl \longrightarrow CH_3 - C - O - O$$

$$O_{A_3} - C - O - O$$

Part (ii) C

08. i.
$$A - Ba$$
 $E - SO_2$ $B - S$ $F - H_2O$ $C - BaS$ $G - BaSO_4$ $D - H_2S$

ii. Na₂S, Na₂S₂O₃, H₂O $3S + 6NaOH \rightarrow 2Na_2S + Na_2SO_3 + 3H_2O$ $4S + 6NaOH \rightarrow 2Na_2S + Na_2S_2O_3 + 2H_2O$

08 (a): 50 marks

(b) i. Ag₂CO₃, PbCO₃

ii.
$$P_1 - Ag_2O$$

$$P_2 - PbCrO_4 \qquad P_3 - PbCl_2$$

iii. அமிலம் சேர்க்க வெளிவரும் வாயுவை சுண்ணாம்பு நீரினுள் செலுத்த பால்நிறம் உருவாகும் தொடர்ந்து செலுத்த பால்நிறம் அற்றுப் போகும்.

08 (b): 40 marks

(c) நடைமுறை I இல்

 $nEDTA = 0.1 moldm^{-3} \times 22 \times 10^{-3} dm^3 = 2.2 \times 10^{-3} mol$

nEDTA = 0.1moldin = 7.2 nEDTA : nMIn = 1:1 nIn : nM²⁺ = 1:1 nM²⁺ = 2.2 x10⁻³ = 1:1 $\frac{1}{2}$ 2.2×10⁻³ mo

$$[M^{2+}] = \frac{2.2 \times 10^{-3} \, mol}{50 \times 10^{-3} \, dm^3}$$
$$= 0.044 \, \text{moldm}^{-3}$$

நடைமுறை III இல்

 $\mathrm{KIO_3} + 5\mathrm{KI} + 6\mathrm{HCl} \rightarrow 3\mathrm{I_2} + 3\mathrm{H_2O}$

 $I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$

 $nNa_2S_2O_3 = 0.04moldm^{-3} \times 25 \times 10^{-3}dm^3 = 1\times 10^{-3}mol$

 $nNa_2S_2O_3 : nI_2 = 2:1$

 $nI_2 : nHCl = 1:2$

តសាខា nNa₂S₂O₃: nHCl = 1:1

 $nHCl = 1x10^{-3}mol$

$$[HCl] = \frac{1 \times 10^{-3} \, mol}{20 \times 10^{-3} \, dm^3} = 0.05 \, mol \, dm^{-3}$$

நடைமுறை II இல்

 $M(HCO_3)_2 + 2HCl \rightarrow 2H_2O + 2CO_2 + 2Cl^{-1}$

 $nHCl = 0.05 moldm^{-3} \times 30 \times 10^{-3} dm^3 = 1.5 \times 10^{-3} mol$

 $nHCl: nM(HCO_3)_2 = 2:1$

 $n_{M(HCO3)2} = 1.5/2 \text{ x} 10^{-3} = 0.75 \text{ x} 10^{-3} \text{ mol}$

$$[M_{(HCO_3)_2}] = \frac{0.75 \times 10^{-3} \, mol}{25 \times 10^{-3} \, dm^3} = 0.03 \, moldm^{-3}$$

நிலையில் வன்மைக்கு காரணமான $M^{2+}_{(aq)}$,இன் செறிவு = 0.03moldm^{-3}

நிலையான வன்மைக்கு காரணமான $M^2+_{(aq)}$,இன் செறிவு = $0.044 \text{ moldm}^{-3} - 0.03 \text{moldm}^{-3}$

 $= 0.014 \text{moldm}^{-3}$

நிலையான வன்மை = 0.014moldm⁻³ x 100 x10³mg

 $= 1.4 \times 10^{3} \text{mgdm}^{-3} \text{CaCO}_{3}$

08 (c): 60 marks

 R_3 – நீர் R_4 – வளி.

$$iii.$$
 I_1 – ஏபர் முறை I_2 – சோல்வே முறை I_3 – யூரியா உற்பத்தி.

iv.
$$P_1 - NaCl$$
 $P_2 - H_2$ $P_3 - Cl_2$ $P_4 - NaOH$ $P_5 - N_2$ $P_6 - NH_3$ $P_7 - CO_2$ $P_8 - CaO$ $P_9 - Ca(OH)_2$ $P_{10} - NaHCO_3$ $P_{11} - NH_4Cl$ $P_{12} - Na_2CO_3$ $P_{13} - CO(NH_2)_2$

v.
$$P_2: N_2(g) + 3H_2(g) \rightleftharpoons 2NH_{3(g)}$$

நிபந்தனைகள் :- 250atm அமுக்கம்

450°C வெப்பநிலை.

$$P_3$$
: $2NH_{3(1)} + CO_{2(1)} \rightleftharpoons NH_2COONH_4(s)$

நிபந்தனைகள் :- 130 – 1500C வெப்பநிலை.

35atm அமுக்கம

$$NH_2COONH_4(s) \rightleftharpoons CO(NH_2)_{2(aq)} + H_2O(l)$$

$$CO(NH_2)_{2(aq)}$$
 ஆவியாக்கல் $CO(NH_2)_{2(s)}$

vi.
$$CaO(s) + 2NH_4Cl_{(aq)} \rightarrow CaCl_{2(aq)} + 2NH_{3(aq)} + H_2O(l)$$

 P_8 P_{11}
 Or
 $Ca(OH)_{2(aq)} + 2NH_4Cl_{(aq)} \rightarrow CaCl_{2(aq)} + 2NH_{3(aq)} + 2H_2O_{(l)}$
 P_9 P_{11}

vii.
$$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$$

 $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$
 $4NO_{2(g)} + 2H_2O_{(1)} + O_{2(g)} \rightarrow 4HNO_{3(aq)}$

$$Viii.$$
 $P_2[H_2]: \to NH_3$ தொகுப்பு $\to HCl$ தயாரிப்பு

→சேதன சேர்வைகளின் தயாரிப்பு

→மாஜரின் தயாரிப்பு

→ஒட்சி ஜதரசன் சுவாலைக்கு பயன்படல்

→Mo,W போன்ற உலோகப்பிரித்தெடுப்பில் தாழ்த்தியாக பயன்படும்.

ightarrow ஜதரசன் பலூனில;

→சூழலை மாசுபடுத்தாத எரிபொருள்.

$$P_4[NaOH]: \rightarrow$$
 சவர்க்காரம் தயாரிப்பு

ightarrow வெளிற்றும் கருவிகளான NaOCl, $NaClO_3$, வெளிற்றும் தூள் தயாரிப்பு

ightarrow i

ightarrow காகிதகூழ் தயாரிப்பு

- 🕁 இறப்பர், புடவை, சாயங்களின் கைத்தொழிலில் பயன்படுத்தப்படும்
- ightarrow பெற்றோலிய சுத்திகரிப்பு
- \rightarrow HCOOH, $H_2C_2O_4$ தயாரிப்பு

 $P_{12}[Na_2CO_3]$:

- → சலவைச் சோடாவாக பயன்படுத்தப்படும்.
- → நீரின் நிரந்தர வன்மையை நீக்கப்பயன்படும்
- → சவர்க்காரம் தயாரிப்ப
- → கண்ணாடித் தயாரிப்பு
- → அழுக்ககற்றிகள் தயாரிப்பு
- → காகிதத் தயாரிப்பு

09 (a): 75 marks

- (b) i. CO₂, CFC, Hydrocarbon
 - ii. CO₂ இரும்பு பிரித்தெடுப்பு

உயிர்ச்சுவட்டு எரிபொருள் தகனம்

சுண்ணாம்புக் கைத்தொழில்

அன்றாட சமையல் நடவடிக்கை

CFC - குளிரூட்டிகளிலிருந்து கசிதல்

தெளிகருவிகளில் உந்துசக்தியாக பயன்படுத்துவதால்

நுரைகருவிகளில். வளிபதனாக்கிகள்

Hydrocarbon- வாகனங்களில் குறைதகனம்.

ஈரவலய பயிர்ச்செய்கை விலங்குப்பண்ணைகள்

முறையற்ற கழிவகற்றல்.

- iii. Hydrocarbons
- iv. PAN[Peroxyacetylnitrate], PBN [peroxybenzsyl nitrate] CH₃ONO₂ [Methyl nitrate] குறுகிய காபன் சங்கிலி Aldehydeகள்
- v. CFC Chloroflouro carbon

 ${
m vii.}$ இல்லை, ஏனெனின் ${
m CO}_2$ கரைந்த நிலையின் ${
m pH}$ ஆனது 5.1 -6.8 வீச்சை அணுகும்/ இதன் அமில வலிமை போதாது அமில மழையின் ${
m pH} < 5$ அமையும்.

09 (b): 75 marks

10. (a) i. AgBr (மெல்லிய) மஞ்சள்

ii. $X - [C_0(Br)_2 (H_2O)_4]Br$ Y- $[C_0(Br)(CH_2O)_5]Br_2$ $Z - [C_0(H_2O)_6]Br_3$

iii. Co இன் ஒட்சியேற்ற நிலை +3 ஆயின்

X : சிக்கலின் ஏற்றம் +1, ஒரு Br⁻

Y: சிக்கலின் ஏற்றம் +2, இரண்டு Br⁻

Z: சிக்கலின் ஏற்றம் +3 மூன்று Br⁻

எனவே, Co இன் ஒட்சியேற்ற நிலை +3

அல்லது

Co இன் ஒட்சியேற்ற நிலை +2 ஆயின்

X : சிக்கலின் ஏற்றம் 0, Br இல்லை

Y : சிக்கலின் ஏற்றம் +1, ஒரு Br^-

Z: சிக்கலின் ஏற்றம் +2, இரு Br⁻

ஆகவே, Co இன் ஒட்சியேற்ற நிலை +2 ஆக இருக்கமுடியாது இது +3 ஆகவே அமையவேண்டும்.

- iv. X tetraaquadibromidocobalt[iii] bromide
 - Y pentaaquabromidocoalt[iii] bromide
 - Z -hexaaquacobalt(iii) bromide

ஊதா

vi. $[Co(gl_y)_3]$

10 (b): 75 marks

iv. I -bpm of tane
$$193s \text{ a } 4x10^{-6}\text{mol} \qquad(1)$$

$$965 \text{ x } 60s \text{ a } \text{ne} \qquad(2)$$

$$\binom{2}{1} \Rightarrow \binom{ne}{4x10^{-6}mol} = \frac{965 \times 605}{1935}$$

$$\text{ne} = 300 \text{ x } 4x10^{-6}\text{mol}$$

$$= 1.2x10^{-3}\text{mol}$$

$$Mg^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightleftharpoons Mg(OH)_{2}(s)$$
 $nOH^{-}: nMg(OH)_{2} 2:1$
 $nMg(OH)_{2} = 0.6 \times 10^{-3} mol$
 $Mg(OH)_{2} \rightarrow MgO + H_{2}O$
 $nMg(OH)_{2}: nMgO = 1:1$
 $nMgO = 6\times 10^{-4} mol$
 $WMgO = 6\times 10^{-4} mol \times 40 gmol^{-1}$
 $= 24 mg$

09 (b): 75 marks

