(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-191339

(P2000-191339A)

(43)公開日 平成12年7月11日(2000.7.11)

(51) Int.Cl. ⁷		識別記号	F I デーマコート*(参考)
C 0 3 C	3/17		C 0 3 C 3/17 4 G 0 6 2
A01N	25/10		A 0 1 N 25/10 4 H 0 1 1
	59/16		59/16 Z 4 J O O 2
			Α
	59/26		59/26
		審查記	背求 未請求 請求項の数9 OL (全 11 頁) 最終頁に続く
(21)出願番号	寻	特願平10-372212	(71)出顧人 000162917 興亜硝子株式会社
(22)出顧日		平成10年12月28日(1998.12.28)	東京都江戸川区平井1丁目25番27号 (72)発明者 石井 雅夫 東京都江戸川区平井1-25-27 興亜硝子 株式会社内
c			(72)発明者 田中 賢一 東京都江戸川区平井 1 -25-27 興亜硝子 株式会社内
			(74)代理人 100086759 弁理士 渡辺 喜平 (外1名)
			最終頁に続く

(54) 【発明の名称】 溶解性ガラス、抗菌性樹脂組成物、および抗菌性成形品

(57)【要約】

【課題】 変色性(黄色)が少ないとともに、透明性に 優れた溶解性ガラス、抗菌性樹脂組成物、および抗菌性 成形品を提供する。

【解決手段】 Agイオンを溶出しうる溶解性ガラスにおいて、構成成分として<math>Ag, O, ZnOおよびP, O, を含み、かつ、当該溶解性ガラスの全体量を100重量%としたときに、Ag, Oの含有量を $0.2\sim5$ 重量%の範囲内の値、ZnOの含有量を $1\sim50$ 重量%の範囲内の値、およびP, O, の含有量を $30\sim80$ 重量%の範囲内の値とすることを特徴とする溶解性ガラス、それを用いた抗菌性樹脂組成物および抗菌性成形品。

【特許請求の範囲】

【請求項1】 Agイオンを溶出しうる溶解性ガラスに おいて、

1

構成成分としてAg、O、ZnOおよびP、O、を含み、かつ、当該溶解性ガラスの全体量を100重量%としたときに、Ag、Oの含有量を $0.2\sim5$ 重量%の範囲内の値、ZnOの含有量を $1\sim50$ 重量%の範囲内の値、およびP、O、の含有量を $30\sim80$ 重量%の範囲内の値とすることを特徴とする溶解性ガラス。

【請求項2】 請求項1 に記載の溶解性ガラスにおいて、ZnOの含有量/Ag、Oの含有量で表される重量比率を、 $1\sim50$ の範囲内の値とすることを特徴とする溶解性ガラス。

【請求項3】 請求項1または2に記載の溶解性ガラスにおいて、構成成分としてCaOを含み、かつ当該CaOの含有量を1~20重量%の範囲内の値とすることを特徴とする溶解性ガラス。

【請求項5】 請求項1~4のいずれか1項に記載の溶解性ガラスにおいて、当該溶解性ガラスの光透過率を50~100%の範囲内の値とすることを特徴とする溶解性ガラス。

【請求項6】 請求項1~5のいずれか1項に記載の溶解性ガラスにおいて、当該溶解性ガラスが粉末状であり、かつ、当該溶解性ガラスの平均粒子径を0.1~1000μmの範囲内の値とすることを特徴とする溶解性ガラス。

【請求項7】 請求項1~6のいずれか1項に記載の溶解性ガラスにおいて、当該溶解性ガラスが粉末状であり、かつ、当該溶解性ガラスの周囲に無機物および有機物あるいはいずれか一方を被覆するととを特徴とする溶解性ガラス。

【請求項8】 請求項1~7のいずれか1項に記載の溶解性ガラスを、樹脂中に混入してなる抗菌性樹脂組成物。

【請求項9】 請求項1~7のいずれか1項に記載の溶解性ガラスを、表面に積層してなる抗菌性成形品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、Agイオンを溶出 しうる溶解性ガラス、抗菌性樹脂組成物、および抗菌性 成形品に関し、より詳しくは、変色性(黄色)が少ない とともに、透明性に優れた溶解性ガラス、抗菌性樹脂組 成物、および抗菌性成形品に関する。

[0002]

【従来の技術】近年、建材、家電製品(TV、パソコ 多量に含んでいるためと思われるが、溶解性ガラスが白ン、携帯電話、ビデオカメラなど含む)、雑貨、包装用 50 濁しており(透明性に乏しい)、また、機械的強度も低

資材等に対して、抗菌効果を付与するために、溶解性ガラスを所定量樹脂中に混入させた抗菌性樹脂組成物が使用されている。

【0003】このような溶解性ガラスとして、Agイオンを溶出しうるガラス水処理剤が特開昭62-210098号公報に開示されている。このガラス水処理剤は、組成物中に一価のAgイオンをガラス100重量部あたり酸化銀換算で0.2~1.5重量部含有し、ガラス成分としてB,O,を20~70モル%含有する硼珪酸塩系の溶解性ガラスからなるものである。そして、より具体的には、当該特許公報の実施例2および3には、それぞれ、B,O,を20~30モル%、ZnOを40モル%、P,O,を30~40モル%およびAg,Oを1重量%からなる組成の溶解性ガラスを開示している。

【0004】また、特開平1-303150号公報には、Agイオンを溶出しうる溶解性ガラスを用いた抗菌性樹脂組成物として透質性フィルムが開示されている。この透質性フィルムは、銅イオン及び/又はAgイオンを含む透質性フィルムであり、実施例2において、B,O,:29重量%、SiO,:51重量%、Na,O:10重量%、ZnO:4重量%、Al,O,:1重量%、Ag,O:5重量%からなる溶解性ガラスを開示している。

【0005】さらに、特開平1-313531号公報には、抗菌性樹脂組成物として、樹脂中に溶解性ガラスを含む合成樹脂成型体が開示されている。当該合成樹脂成型体は、具体的に、 SiO_x 、 B_xO_y 、 P_xO_y の1種もしくは2種以上の網目形成酸化物と、 Na_xO_x K、 O_x CaO、 Z_x CoO1種もしくは2種以上の網目修飾酸化物とからなるガラス固形物100重量部中に、一価のAgとして、 A_x Oを0.1~20重量部含有した溶解性ガラスを樹脂中に含んだ構成としてあり、実施例において、 SiO_x :40モル%、 B_x O,:50モル%、 Na_x O:10モル%からなる混合物100重量部に対して、 A_x Oを2重量部添加した溶解性ガラスを開示している。

[0006]

【発明が解決しようとする課題】しかしながら、特開昭 62-210098号公報に開示された溶解性ガラス は、B、O、を20~70モル%含んでいるためと思われるが、溶解性ガラスが白濁して、透明性に乏しいという問題が見られた。したがって、かかる透明性に乏しい溶解性ガラスを、樹脂に混入したり、あるいは樹脂成形品の表面に積層したりすると、樹脂自身の有する色や透明性を損なうという問題が見られた。

【0007】また、特開平1-303150号公報に開示されている溶解性ガラスは、特開昭62-210098号公報に開示された溶解性ガラスと同様にB、O、を多量に含んでいるためと思われるが、溶解性ガラスが白濁しており(透明性に乏しい)、また、機械的強度も低

10

いという問題が見られた。そして、当該公報に開示され ている溶解性ガラスは、ZnOの使用量が少ないためと 思われるが、経時変化により容易に黄変しやすいという 問題が見られた。

【0008】さらに、特開平1-313531号公報に 開示されている溶解性ガラスは、B、O、を主成分とし て用いており、また、網目形成酸化物と、網目修飾酸化 物との配合量が最適化されておらず、溶解性ガラスの透 明性が低下したり、組成物の構成が複雑になったり、あ るいは製造時間が長くなるなどの問題が見られた。

【0009】そとで、本発明者は、鋭意検討した結果、 黄変の原因の一つとなっているB₂O₃を使用すること なく溶解性ガラスの黄変等を防止することができること を見出したものである。すなわち、Ag、〇が主原因と して溶解性ガラスが黄変する場合があるものの、Ag、 O、ZnOおよびP、O、が相互に影響し合っており、 ZnOおよびP、O、を所定範囲内で添加することによ り当該黄変を効率的に防止することができ、しかも、溶 解性ガラスの透明性や機械的強度も改善できるととを見 出し、本発明を完成させたものである。

[0010]

【課題を解決するための手段】本発明は、Agイオンを 溶出しうる溶解性ガラスであって、構成成分としてAg , O、ZnOおよびP, O, を含み、かつ、当該溶解性 ガラスの全体量を100重量%としたときに、Ag、O の含有量を0.2~5重量%の範囲内の値、2n0の含 有量を1~50重量%の範囲内の値、およびP,O,の 含有量を30~80重量%の範囲内の値とすることを特 徴とする。ただし、Ag, O、ZnOおよびP, O, の 合計量が100重量%に満たない場合には、これら以外 の成分、例えばCaO、Al、O、やMgO等で充足す ることになる。このように溶解性ガラスを構成すること により、B、O、を使用することなく、溶解性ガラスの 透明性や機械的強度を改善し、しかも溶解性ガラスの黄 変を有効に防止することができる。また、P、O、の含 有量も適当であるため、周囲の水分により容易に溶解し てAgイオンを均一に溶出させることができ、しかも、 当該溶解性ガラスの透明性や機械的強度を改善すること ができる。

【0011】また、本発明の溶解性ガラスを構成するに あたり、ZnOの含有量/Ag、Oの含有量で表される 重量比率を、1~50の範囲内の値とすることが好まし い。溶解性ガラスの黄変は、主としてAg、〇が関与し ているため、このようにAg、Oの含有量を基準にし て、乙n〇の含有量を定めることにより、溶解性ガラス の黄変をより効率的に防止することができる。

【0012】また、本発明の溶解性ガラスを構成するに あたり、構成成分としてCaOを含み、かつ当該CaO の含有量を1~20重量%の範囲内の値とすることが好 ましい。このようにCaOを含んで溶解性ガラスを構成 50 菌効果を発揮することができる。また、かかる抗菌性樹

することにより、ZnOとの相互作用を発揮して、溶解 性ガラスの黄変をより効率的に防止することができる。 【0013】また、本発明の溶解性ガラスを構成するに あたり、構成成分としてCeO。を含み、かつ当該Ce O, の含有量を0. 1~5 重量%の範囲内の値とするこ とが好ましい。このように溶解性ガラスを構成すること により、溶解性ガラスの透明性や機械的強度を改善する ことができ、さらには、電子線が照射された場合に、当 該溶解性ガラスが変色(黒系、茶系)するのを有効に防 止することができる。

【0014】また、本発明の溶解性ガラスを構成するに あたり、当該溶解性ガラスの光透過率を50~100% の範囲内の値とすることが好ましい。このように溶解性 ガラスを構成することにより、樹脂自身の有する色や透 明性を損なうおそれがより少なくなり、さらには、溶解 性ガラスを比較的多量に添加することができるため、よ り長期間に亘って、容易に抗菌性の制御をすることがで きる。したがって、溶解性ガラスを樹脂等に混入させた 時の透明性をより向上させ、添加量(使用量)を多くす 20 ることができる観点から、当該溶解性ガラスの光透過率 を70~100%の範囲内の値とすることがより好まし く、最適には80~100%の範囲内の値とすることで ある。なお、溶解性ガラスの光透過率は、当該溶解性ガ ラスを一例として3mmの厚さの板状に加工し、この板 状ガラスに波長400nm~700nmの可視光を透過 させたときの光透過量を、吸光光度計を用いて測定する ことにより算出することができる。

【0015】また、本発明の溶解性ガラスを構成するに あたり、当該溶解性ガラスが粉末状であって、当該溶解 30 性ガラスの平均粒子径を0.1~1000 µmの範囲内 の値とすることが好ましい。このような平均粒子径を有 する溶解性ガラスを用いると、樹脂中への混入が容易と なり、また抗菌性樹脂組成物を成型し、成型品とした場 合にも、優れた表面平滑性が得られる。なお、溶解性ガ - ラスの平均粒子径は、粉砕法や分級法を組み合わせるこ とにより、容易に制御することができる。

【0016】また、本発明の溶解性ガラスを構成するに あたり、当該溶解性ガラスが粉末状であって、当該溶解 性ガラスの周囲に無機物および有機物あるいはいずれか 一方を被覆することが好ましい。このように溶解性ガラ スを構成することにより、Agイオンの溶出速度を容易 に制御して、長期間に亘って抗菌性を持続することがで きる。また、溶解性ガラスの分散性を改良して、樹脂中 への混入をより容易とすることができる。

【0017】また、本発明の別な態様は、抗菌性樹脂組 成物であって、上記溶解性ガラスを、樹脂中に混入させ てなることを特徴とする。このようにして構成した抗菌 性樹脂組成物は、周囲の水分を利用して、適量のAgイ オンを溶出することができ、長期間にわたって優れた抗

脂組成物は、透明性が高いという特徴も有している。 【0018】また、本発明の別な態様は、抗菌性成形品 であって、上記溶解性ガラスを、成型品の表面に積層し てなることを特徴とする。なお、成型品は一定形状を保 持できるものであれば、特に制限されるものではない が、例えば樹脂からなる成型品であっても良く、あるい は、金属、セラミック、ガラス、木、紙、布等からなる 成型品であっても良い。

[0019]

びそれを用いた抗菌性樹脂組成物における実施の形態を 具体的に説明する。

【0020】[第1の実施形態]本発明の第1の実施形 態は、溶解性ガラスであって、Ag、O、ZnOおよび P, O, を構成成分として所定量含むものである。以 下、本発明の溶解性ガラスを構成するための成分等につ いて具体的に説明する。

[0021] 1. Ag₂O

Ag、〇は、本発明の溶解性ガラスにおける必須構成成 解性ガラスを抗菌性ガラスとすることができる。ここ で、Ag、Oの含有量を0.2~5重量%の範囲内の値 とするのは、Ag, Oの含有量が0.2重量%未満とな ると、溶解性ガラスの抗菌性が不十分となるためであ り、所定の抗菌効果を得るために、多量の溶解性ガラス が必要となるためである。一方、Ag, Oの含有量が5 重量%を超えると、溶解性ガラスがより変色しやすくな り、また、コストが高くなり経済的に不利となるためで ある。したがって、溶解性ガラスの抗菌性および変色防 止性等のバランスがより良好な観点から、Ag、Oの含 有量を1~4重量%の範囲内の値とするのがより好まし く、さらに好ましくは、1.5~3重量%の範囲内の値 とすることである。

[0022]2. ZnO

ZnOは、本発明の溶解性ガラスにおける必須構成成分 であり、基本的に網目修飾酸化物としての機能を果たし ている。但し、その他に、ZnOは本発明においては溶 解性ガラスの黄変を防止するための機能も有している。 とこで、ZnOの含有量を1~50重量%の範囲内の値 とするのは、Zn〇の含有量が1重量%未満となると、 黄変防止効果が不十分となるためであり、一方、ZnO の含有量が50重量%を超えると、溶解性ガラスの透明 性が低下したり、機械的強度が乏しくなるためである。 したがって、溶解性ガラスの変色防止性および透明性等 のバランスがより良好な観点から、2n0の含有量を2 ~30重量%の範囲内の値とするのがより好ましく、最 適には3~20重量%の範囲内の値とすることである。 【0023】また、ZnOの含有量を、Ag,Oの含有 量を考慮して定めることが好ましい。具体的には、Zn Oの含有量/Ag、Oの含有量で表される重量比率を、

1~50の範囲内の値とすることが好ましい。この理由 は、かかる重量比率が1.0未満となると、溶解性ガラ スの黄変を効率的に防止することができない場合があ り、一方、かかる重量比率が50を超えると、溶解性ガ ラスが白濁したり、あるいは、逆に、黄変する場合があ るためである。したがって、かかる重量比率を1.5~ 30の範囲内の値とすることがより好ましく、2~10 の範囲内の値とすることがさらに好ましい。

[0024]3. P₂O₅

【発明の実施の形態】以下、本発明の溶解性ガラスおよ 10 P, O, は、本発明の溶解性ガラスにおける必須構成成 分であり、基本的に網目形成酸化物としての機能を果た すが、その他に、本発明においては溶解性ガラスの透明 性改善機能やAgイオンの均一な放出性にも関与する。 とこで、P, O, の含有量を30~80重量%の範囲内 の値が好ましいとする理由は、当該P、O、の含有量が 30重量%未満となると、溶解性ガラスの透明性が低下 したり、あるいはAgイオンの均一な放出性や機械的強 度が乏しくなるおそれがあるためであり、一方、P、O 、の含有量が80重量%を超えると、溶解性ガラスが黄 分であり、Agイオンを溶出させることにより、当該溶 20 変しやすくなったり、また硬化性に乏しくなり機械的強 度が低下するおそれがある。したがって、溶解性ガラス の透明性および変色防止性等のバランスがより良好な観 点から、P,O,の含有量を30~75重量%の範囲内 の値とするのがより好ましく、最適には30~70重量 %の範囲内の値とすることである。

【0025】4、その他の溶解性ガラスにおける構成成

(1) CaO

CaOは、本発明の溶解性ガラスにおける任意構成成分 であり、本発明に用いた場合には、基本的に網目修飾酸 化物としての機能を果たす。但し、CaOはその他に、 本発明においては溶解性ガラスを作成する際の、加熱温 度を低下させる等の機能を発揮することができる。ここ で、СаОの含有量を1~20重量%の範囲内の値とす るのが好ましい。その理由は、当該CaOの含有量が1 重量%未満となると添加効果(溶融温度低下効果)が発 揮されないおそれがあるためであり、一方、CaOの含 有量が20重量%を超えると、溶解性ガラスの透明性が 低下するおそれがあるためである。したがって、溶解性 40 ガラスの溶融温度低下効果および透明性等のバランスが より良好な観点から、CaOの含有量を2~15重量% の範囲内の値とするのがより好ましく、最適には3~1 2重量の範囲内の値とすることである。

[0026] (2) CeO,

CeO。は、本発明の溶解性ガラスにおける任意構成成 分であり、基本的に網目修飾酸化物としての機能を果た す。但し、CeO、はその他に、本発明において用いた 場合には溶解性ガラスの透明性改善機能も発揮する。ま た、CeO、を添加することで、電子線に対する変色性 50 を向上させることもできる。ここで、СеО」の含有量

を、0.1~5重量%の範囲内の値とするのが好まし い。その理由は、当該CeO,の含有量が0.1重量% 未満となると添加効果 (透明性改善機能) が発揮されな い場合があるためであり、一方、СеО, の含有量が5 重量%を超えると、コストが高くなり経済的に不利とな る場合があるためである。したがって、溶解性ガラスの 経済性および変色防止性等のバランスがより良好な観点 から、СеО。の含有量を0.2~3重量%の範囲内の 値とするのがより好ましく、最適には0.3~2重量% の範囲内の値とすることである。

[0027] (3) MgO

Mg〇は、本発明の溶解性ガラスにおける任意構成成分 であり、基本的に網目修飾酸化物としての機能を果た す。但し、MgOはその他に、本発明において用いた場 合には溶解性ガラスの透明性改善機能も発揮する。とと で、MgOの含有量を、0.1~15重量%の範囲内の 値とするのが好ましい。その理由は、当該MgOの含有 量が0.1重量%未満となると添加効果(透明性改善機 能) が発揮されないおそれがあるためであり、一方、M g〇の含有量が15重量%を超えると、コストが高くな り経済的に不利となるおそれがあるためである。したが って、溶解性ガラスの経済性および変色防止性等のバラ ンスがより良好な観点から、Mg Oの含有量を0.5~ 12重量%の範囲内の値とするのがより好ましく、最適 には1~10重量%の範囲内の値とすることである。

[0028] (4) Na₂O

Na、Oは、本発明の溶解性ガラスにおける任意構成成 分であり、本発明に用いた場合には、基本的に網目修飾 酸化物としての機能を果たす。但し、Na、Oはその他 に、本発明においては溶解性ガラスの透明性改善機能等 も発揮する。とこで、Na, Oの含有量を0.1~10 重量%の範囲内の値とするのが好ましい。その理由は、 当該Na, Oの含有量が0.1重量%未満となると添加 効果(透明性改善機能)が発揮されないおそれがあるた めであり、一方、Na、〇の含有量が10重量%を超え ると、溶解性ガラスの透明性が低下するおそれがあるた めである。したがって、溶解性ガラスの透明性および変 色防止性等のバランスがより良好な観点から、Na、O の含有量を0.2~5重量%の範囲内の値とするのがよ り好ましく、最適には0.5~3重量の範囲内の値とす 40 るととである。

$[0029](5)Al_{2}O_{3}$

Al、O、は、本発明の溶解性ガラスにおける任意構成 成分であり、本発明に用いた場合には、基本的に網目形 成酸化物としての機能を果たしている。但し、その他に Al,O,は、本発明においては溶解性ガラスの機械的 強度や透明性の改善機能も発揮することができる。ここ で、A1, O, の含有量を0. 1~20重量%の範囲内 の値とするのが好ましい。その理由は、当該AI、O, の含有量が0.1重量%未満となると添加効果(透明性 50 解性ガラスの黄変性を可及的に少なくできる観点から好

改善機能)が発揮されないおそれがあるためであり、一 方、A1,〇、の含有量が20重量%を超えると、溶解 性ガラスの透明性が低下するおそれがあるためである。 したがって、溶解性ガラスの機械的強度や透明性のバラ ンスが良好な観点から、A 1, O, の含有量を1~15 · 重量%の範囲内の値とするのが好ましく、より好ましく は、2~10重量%の範囲内の値とすることである。 【0030】(6)その他の構成成分

網目修飾成分としてK、O、SiO、BaO等を本発 明の目的の範囲内で所定量添加することも可能である。 10

【0031】5. 溶解性ガラスの形態 溶解性ガラスの形態については、特に制限されるもので なく、例えば、粒子状、粉末状、塊状、矩形状、円柱 状、多角形状、偏平状等の形態とすることができる。 また、溶解性ガラスの形態に関し、溶解性ガラスの平均 粒子径を0.1~1000μmの範囲内の値とすること が好ましい。このような平均粒子径を有する溶解性ガラ スを用いると、樹脂中への混入が容易となり、取り扱い が容易となる。また抗菌性樹脂組成物や抗菌性成形品と した場合にも、優れた表面平滑性を得ることができる。 なお、溶解性ガラスの平均粒子径は、粉砕法や分級法を 組み合わせるととにより、容易に制御するととができ

【0032】また、溶解性ガラスの形態に関し、一部前 述したように、溶解性ガラスが粉末状であって、当該溶 解性ガラスの周囲に無機物および有機物あるいはいずれ か一方を被覆した形態とすることも好ましい。このよう に溶解性ガラスを構成することにより、Agイオンの溶 出速度の制御を容易にし、また、溶解性ガラスの分散性 を改良することができる。なお、溶解性ガラスを被覆す る無機物としては、酸化チタンやセラミック粒子等が好 ましく、同様に有機物としては、アクリル粒子等が好ま しい。

【0033】6. 溶解性ガラスの製造方法

- 第1の実施形態における溶解性ガラスの製造方法は、特 に制限されるものではないが、具体的に、以下に示す工 ... 程により製造することができる。

【0034】(1)ガラス原材料混合工程

Ag、O、ZnOおよびP、O、等のガラス原材料を正 確に秤量した後、均一に混合する工程である。混合する に際して、アルミナ磁器潰らい機、ボールミル、プロペ ラミキサ等の混合機械(ミキサ)を使用することが好ま しい。

【0035】(2)ガラス原材料溶融工程

均一に混合したガラス原材料を、ガラス溶融炉等を用い て、溶融させて、溶融ガラスを作成する工程である。な お、溶融温度としては600~1500℃の条件、溶融 時間としては、0.1~24時間の条件を採用すること が、生産効率を高める観点から、また製造時における溶 (6)

ましい。

【0036】(3)溶解性ガラス粉砕工程

得られた溶融ガラスを、粉砕し、微粒子、すなわち本発明の溶解性ガラスとする工程である。具体的には、粗粉砕(水粉砕を含む。) および微粉砕を行うことが、均一な粒子径を有するガラス粒子が効率的に得られる点で好ましい。ただし、用途によっては、かかる工程の後、分級工程を実施するととも好ましい。一方、別の用途によっては、かかる工程を省略することもできる。その場合、(2)の工程終了後に得られる溶解性ガラスを、抗 10 菌性ガラスとしてそのまま使用することができる。

9

【0037】[第2の実施形態]第2の実施形態である 抗菌性樹脂組成物は、第1の実施形態であるAg,O、 ZnOおよびP,O,を構成成分として含む溶解性ガラ スを、以下に示す樹脂(透明または不透明樹脂)中に、 所定量混入させたものである。

【0038】1. 透明樹脂

本発明の抗菌性樹脂組成物を作成するにあたり、溶解性ガラスを以下に示す透明樹脂中に混入させることが可能である。好ましい透明樹脂としては、ポリエチレン樹脂 20 (PE)、ポリプロピレン樹脂 (PP)、ポリエチレンテレフタレート樹脂 (PET)、ポリブチレンテレフタレート樹脂 (PBT)、ポリカーボネート樹脂 (PC)、スチレン系樹脂 (PS)、塩化ビニリデン樹脂、酢酸ビニル系樹脂

、ポリビニルアルコール樹脂、フッ素系樹脂、ポリアリーレン樹脂、アクリル系樹脂、エポキシ系樹脂、透明塩化ビニール樹脂、アイオノマー樹脂、ポリアミド系樹脂、ポリアセタール系樹脂等の1種または2種以上を挙げることができる。なお、このような種類の透明樹脂を使用する場合、具体的に50~100%の範囲内の下記式で定義される光透過率を有するものを使用するのが好ましく、より好ましくは、80~100%の範囲内の光透過率を有するものを使用することである。また、透過光量および入射光量は吸光光度計や光量計(パワーメータ)を用いて測定することができる。その測定の際、透明樹脂は、例えば厚さ1mmの板状としたものを使用することができる。

光透過率(%) = 透過光量/入射光量×100 【0039】2. 不透明樹脂

また、本発明の抗菌性樹脂組成物を作成するにあたり、溶解性ガラスを不透明樹脂中に混入させることも可能である。好ましい不透明樹脂として以下のものを挙げることができる。例えば、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂(PBT)、ポリカーボネート樹脂(PC)、スチレン系樹脂(PS)、塩化ビニリデン樹脂、酢酸ビニル系樹脂、ポリビニルアルコール樹脂、フッ素系樹脂、ポリアリー

ビニール樹脂、アイオノマー樹脂、ポリアミド系樹脂、ポリアセタール系樹脂等の透明樹脂に対して、顔料、塗料、染料等を所定量添加して不透明とした樹脂や、それ自体で不透明なフェノール樹脂、メラミン樹脂等の1種または2種以上を挙げることができる。なお、このような種類の不透明樹脂を使用する場合、具体的に0~50%の範囲内、より好ましくは、0~30%の範囲内の上記式で定義される光透過率を有するものを使用することが好ましい。

【0040】3. 溶解性ガラスの混入量(添加量)本発明の抗菌性樹脂組成物を作成するにあたり、樹脂100重量部あたり、溶解性ガラスの混入量を、0.01~10重量部の範囲内の値とするのが好ましい。この理由は、溶解性ガラスの混入量が0.01重量部未満となると、抗菌性が低下する場合があり、一方、溶解性ガラスの混入量が10重量部を超えると、抗菌性樹脂組成物の機械的強度が低下したり、混入が困難となったり、あるいは抗菌性樹脂組成物の透明性が低下する場合が生じるためである。したがって、かかる抗菌性樹脂組成物における抗菌性と機械的強度等とのバランスがより好ましい観点から、樹脂100重量部あたり、溶解性ガラスの混入量を、0.1~5重量部の範囲内の値とするのがより好ましく、最適には、0.3~3重量部の範囲内の値とすることである。

【0041】4. 抗菌性樹脂組成物の製造方法 第2の実施形態における抗菌性樹脂組成物の製造方法 は、特に制限されるものではないが、具体的に、以下に 示す工程により製造することができる。

【0042】(1)溶解性ガラスの製造

30 第1の実施形態において、既に説明したとおり、ガラス原材料混合工程、ガラス原材料溶融工程、溶解性ガラス粉砕工程により、溶解性ガラスを製造することができる。

【0043】(2)抗菌性樹脂組成物の製造溶解性ガラスを正確に秤量した後、樹脂に対して均一に混合する工程である。具体的には、撹拌混合法、糠り込み法、塗布法、拡散法等を採ることができ、例えば、撹拌混合法の場合、室温(25℃)にて、10分~24時間撹拌混合することが好ましい。また、混合するのに、

アルミナ磁器潰らい機、ボールミル、プロペラミキサ、 三本ロール、Vブレンダ等の混合機械(ミキサ)を使用 し、さらには、有機溶剤や潤滑剤を添加して、樹脂の粘 度調製をすることが好ましい。

【0044】[第3の実施形態]第3の実施形態である 抗菌性成形品は、第1の実施形態である溶解性ガラスを 成型品の表面に積層して構成することができる。

【0045】1. 抗菌性成形品

脂(PS)、塩化ビニリデン樹脂、酢酸ビニル系樹脂、 抗菌性成形品の形態は特に制限されるものではなく、抗ポリビニルアルコール樹脂、フッ素系樹脂、ポリアリー 菌性樹脂組成物を成型品の表面に積層してなるものであレン樹脂、アクリル系樹脂、エポキシ系樹脂、透明塩化 50 れば良い。また、抗菌性樹脂組成物自身を所定形状に加

工し、抗菌性樹脂組成物を成型品の表面に積層した抗菌性成型品とすることもできる。なお、抗菌性成形品の形態は、用途に応じて適宜採用することができ、例えば、バッグ、靴、玩具、衣服、下着、靴下、ふろおけ等の成形品の表面に抗菌性樹脂組成物を積層してなるものであれば良い。また、抗菌性樹脂組成物自身を加工して抗菌性成型品とした場合、板状、フィルム状、長方体状、正方体状、球状、棒状、あるいは異形体状とすることが好ましい。

【0046】2. 抗菌性成形品の製造方法 第3の実施形態における抗菌性成形品の製造方法は、特 に制限されるものではないが、具体的に、以下に示す工 程により製造することができる。

【0047】(1)溶解性ガラスの製造

第1の実施形態において、既に説明したとおり、ガラス原材料混合工程、ガラス原材料溶融工程、溶解性ガラス粉砕工程により、溶解性ガラスを製造することができる。

【0048】(2)抗菌性樹脂組成物の製造 第2の実施形態において、既に説明したとおり、溶解性 ガラスを正確に秤量した後、樹脂に対して均一に撹拌混 合することにより、抗菌性樹脂組成物を製造することが できる

【0049】(3)抗菌性成形品の製造

成形品の表面に抗菌性樹脂組成物を積層してなるものであれば良い。かかる積層の方法は特に制限されるものではないが、バーコート法、スプレーコート法、ナイフコート法、グラビアコート法、浸漬法等を採ることができる。その際、成形品の表面に抗菌性樹脂組成物を、 $1\sim1000\mu$ mの厚さに積層することが好ましい。この理 30 由は、抗菌性樹脂組成物の厚さが 1μ m未満となると、成形品の表面に対する密着力が低下する場合があり、一方、厚さが 1000μ mを超えると、均一に積層することが困難となったり、あるいは、成形品の表面から脱離する場合があるためである。したがって、抗菌性樹脂組成物の厚さを $3\sim500\mu$ mの範囲内の値とするのがより好ましく、 $5\sim100\mu$ mの範囲内の値とするのがさらに好ましい。

【0050】また、抗菌性樹脂組成物自身を所定形状に加工する場合には、金型を用いた射出成形により、抗菌 40性樹脂組成物を容易に加工することができる。その場合、樹脂の分解温度以下で射出成形を行うことが望ましいが、本発明の溶解性ガラスは、樹脂の分解温度程度では変色することがなく、結果として、高い透明性を有する抗菌性成形品を得ることができる。

[0051]

【実施例】以下、本発明を実施例によってさらに詳細に 説明する。但し、以下の説明は本発明を例示的に示すも のであり、本発明はこれらの記載に制限されるものでは ない。 [0052] [実施例1]

(溶解性ガラスの作成)溶解性ガラスの全体量を100 重量%としたときに、P、O,の組成比が68重量%、 CaOの組成比が10重量%、MgOの組成比が8重量 %、ZnOの組成比が5重量%、Al,O,の組成比が 5重量%、Ag, Oの組成比が3重量%、Na, Oの組 成比が0.5重量%、СеО,の組成比が0.5重量% となるように、それぞれのガラス原料を、アルミナ磁器 潰らい機を用いて、ルツボ内で均一に混合した。次い 10 で、ガラス溶融炉を用いて、1 1 0 0 ℃、1 時間の条件 でガラス原料を加熱し、溶融ガラスを作成した。その 後、ガラス溶融炉から取り出した溶融ガラスを水中に流 し込むことにより大まかに水砕した。それから、さらに 乳鉢を用いて粗粉砕(平均粒子径約100μm)した 後、顕微鏡で確認しながら振動ボールミルを用いて微粉 砕し(平均粒子径約5μm)、本発明の溶解性ガラス (微粒子) とした。

【0053】(溶解性ガラスの評価)

(1)評価1(透明性評価1)

第2の実施形態において、既に説明したとおり、溶解性 20 得られた溶解性ガラスの透明性を、顕微鏡を使用して、ガラスを正確に秤量した後、樹脂に対して均一に撹拌混 以下の基準で判断した。結果を表1に示す。

◎:無色透明である。

〇:一部不透明感ある。

△:一部白色感がある。

×:完全に白色である。

【0054】(2)評価2(透明性評価2)

下地として赤色のボリプロピレン板(厚さ2mm)を用い、この板上に得られた溶解性ガラスを均一に載置した。そして、顕微鏡を使用して、当該ボリプロピレン板の色が溶解性ガラスを通して認識できるか否かを以下の基準で判断した。結果を表1に示す。

◎:下地の色が完全に認識できる。

〇:下地の色がわずかにぼやける感がある。

△:下地の色が一部ぼやける感がある。

×:下地の色が完全に認識できない。

【0055】(3)評価3(黄変性評価1)

得られた溶解性ガラスに対して、紫外線照射装置(サンシャインウエザオメータ)を用いて連続的に紫外線(ブラックパネル温度:63℃、照度:波長300~700 nmの光において、255W/m²)を照射し、溶解性ガラスの黄変性を以下の基準で判断した。なお、溶解性ガラスの黄変性は、顕微鏡を使用して測定した。結果を表1に示す。

◎:100時間経過後に無色透明である。

〇:50時間経過後に無色透明である。

△:10時間経過後に無色透明である。

×:10時間経過後に黄変している。

【0056】(4)評価4(黄変性評価2)

得られた溶解性ガラスを、水道水(20℃)中に浸漬

50 し、溶解性ガラスの黄変性を以下の基準で判断した。な

12

お、溶解性ガラスの黄変性は、顕微鏡を使用して測定し た。結果を表1に示す。

◎:1000時間経過後に無色透明である。

〇:500時間経過後に無色透明である。

△:100時間経過後に無色透明である。

×:100時間経過後に黄変している。

【0057】(5)評価5~8(抗菌性評価)

得られた溶解性ガラスを、ポリプロピレン樹脂中にそれ ぞれ、0.2重量%および0.3重量%となるように混 入させ、合計6種類の溶解性ガラス入り樹脂を作成し た。一方、試験菌を、<u>Trypticase Soy</u> Agar (BBL) の寒天平板培地で、35℃、24時 間培養し、発育集落を1/500濃度の普通ブイヨン培 地(栄研化学(株)製)に懸濁させて、約1×10°C FU/mlになるように調製した。次いで、当該溶解性 ガラス入り樹脂を厚さ2mm、縦5cm、横5cmの試 験片にそれぞれ成型した。そして、得られた6種類の試 験片に、黄色ブドウ球菌(Staphylococcu s aureus IFO#12732)の懸濁液0. 5mlおよび大腸菌(Escherichia col 20 3では、ZnOおよびP, O, の添加量を調節してZn i ATCC#8739)の懸濁液0.5mlをそれぞ れ均一に接触させ、さらに、ポリエチレン製フィルム (減菌)を載せて、それぞれフィルムカバー法の測定サ ンプルとした。次いで、測定サンブルを、湿度95%、 温度35℃、24時間の条件で、恒温槽に載置し、試験 前の菌数(発育集落)と試験後の菌数(発育集落)とを それぞれ測定し、以下の基準で抗菌性を評価した。な お、試験前の菌数 (発育集落) は、黄色ブドウ球菌およ び大腸菌とも、それぞれ2.6×10°(個/試験片) であった。それぞれの結果を表1に示す。また、表1 中、評価5は、溶解性ガラスの添加量が0.2重量%、

試験菌が黄色ブドウ球菌の場合であり、評価6は、溶解 性ガラスの添加量が0.3重量、試験菌が黄色ブドウ球 菌の場合であり、評価7は、溶解性ガラスの添加量が 0. 2重量、試験菌が大腸菌の場合であり、評価8は、 溶解性ガラスの添加量が0.3重量、試験菌が大腸菌の 場合である。なお、表2においても、同様の評価および 記載である。

◎:試験後の菌数が、試験前の菌数の1/10000未 満である。

10 〇:試験後の菌数が、試験前の菌数の1/10000以 上~1/1000未満である。

△:試験後の菌数が、試験前の菌数の1/1000以上 ~1/100未満である。

×:試験後の菌数が、試験前の菌数の1/100以上で ある。

【0058】[実施例2~6]

(溶解性ガラスの作成) 実施例1と同様の作成条件で、 表1に示す組成となるように、溶解性ガラスをそれぞれ 作成した。なお、実施例1と比較して、実施例2および O/Ag, Oの比率を増加させ、実施例4では、比較的 高価であるMgOを使用せず、CaOおよびZnOの添 加量を増加させている。また、実施例5では、同様にM g〇を使用せず、Ca〇およびAl、O、の含有量を増 加させている。

【0059】(溶解性ガラスの評価)実施例1と同様の 評価条件で、得られた溶解性ガラスについて、それぞれ 黄変性等について評価した。結果を表1に示す(評価1 ~8).

30 [0060]

【表1】

	実施例 1	実施例 2	実施例 3	実施例 4	実施例 5	実施例 6	実施例7
Ag,O	3. 0	3. 0	3. 0	3. 0	3. 0	2. 0	1. 0
ZnO	5. 0	10. 0	15. 0	9. 0	5. 0	9. 0	5. 0
P ₂ O ₅	68. O	63. 0	55. 0	68. 0	68. 0	69. 0	67. 0
CaO	10. 0	10. 0	14. 0	14. 0	14. 0	14. 0	14. 0
MgO	8. 0	8. 0	7. 0	0. 0	0. 0	0. 0	0. 0
A 1,0,	5. 0	5. 0	5. 0	5. 0	9. 0	5. 0	9. 0
Na _z O	0. 5	0. 5	0. 5	0. 5	0. 5	0. 5	0. 5
CeO,	0. 5	0. 5	0. 5	0. 5	0. 5	0. 5	0. 5
Zn0	1. 7	3. 3	5. 0	3. 0	1. 7	4. 5	5. 0
/Ag ₂ 0							
評価1	0	0	0	0	0	0	Δ
評価 2	0	0	0	©	0	0	Δ
評価 3	0	Δ	Δ	0	0	0	0
評価4	0	0	0	0	0	0	0
評価 5	0	0	0	0	0	Δ	Δ
評価6	0	0	0	0	0	0	0
評価7	0	0	0	0	0	0	Δ
評価 8	0	0	0	0	0	0	0

【0061】[比較例1~6]

(溶解性ガラスの作成)実施例1と同様に、表2に示す組成となるように溶解性ガラスをそれぞれ作成した。なお、実施例1と比較して、比較例1~3では、 B_2 O,を所定量添加するとともに、 Z_1 Oの含有量を多くしてあり($33\sim50$ 重量%)、また、比較例4~6では、 B_2 O,を所定量使用するとともに、 Z_1 Oが添加されていないか、あるいは添加量を少なくしてある($0\sim5$ 重量%)。

15

【0062】(溶解性ガラスの評価)実施例1と同様の評価条件で、比較例 $1\sim6$ において得られた溶解性ガラスについて、それぞれ黄変性等を評価した。結果を表2

に示す。

【0063】結果から明らかなように、比較例 $1\sim3$ は、B、O,を所定量含んでおり、また、ZnOの含有量が多すぎるためと思われるが、得られた溶解性ガラスが白濁して透明性に欠けることが確認された。

[0065]

【表2】

18

	比較例1	比較例 2	比較例3	比較例 4	比較例 5	比較例 6
Ag,O	1. 0	1. 0	1. 0	1. 0	3. 0	3. 0
ZnO	40. 0	50. 0	33. 0	0. 0	0. 0	0. 5
В,О,	15. 0	10. 0	30. 0	20. 0	20. 0	30. O
P ₂ O ₅	44. 0	39. 0	30. 0	50. 0	65. 0	64. 5
Na,O	0. 0	0. 0	1. 0	0. 0	9. 0	2. 0
CaO	0. 5	0. 0	5. 0	29. 0	20. 0	0. 0
Zn0	40. 0	50. 0	33. 0	0. 0	0. 0	0. 6
/Ag ₂ 0						
評価1	Δ	×	×	Δ	Δ	Δ
評価 2	×	×	×	Δ	Δ	×
評価3	0	0	0	×	×	Δ
評価 4	0	0	0	×	×	Δ
評価 5	0	0	0	0	0	0
評価6	0	0	0	0	0	0
評価7	0	0	0	0	0	0
評価8	0	0	0	0	0	0

[0066]

【発明の効果】以上説明したように、Ag、O、ZnO およびP、O、を所定範囲内で含有することにより、B、O、を使用することなく優れた抗菌性を示すことができるほか、溶解性ガラスの透明性や機械的強度が改善され、しかも溶解性ガラスの黄変を有効に防止することができるようになった。また、このような溶解性ガラスを樹脂中に混入させたり、成型品の表面に積層して抗菌性樹脂組成物や抗菌性成形品を作成しても、樹脂および成型品自身の有する色や透明性を損なうおそれが可及的に*

30米少なくなった。

【0067】また、かかる溶解性ガラスは、容易に一定形状に加工することができ、均一な平均粒子径を有する微粒子とすることができるようになった。したがって、分散性が良好となり、より均一に樹脂中に混入させることができるようになり、抗菌性樹脂組成物や抗菌性成形品の製造が容易となった。さらに、本発明の溶解性ガラス、抗菌性樹脂組成物および抗菌性成形品においては、抗菌性も向上させることができるようになった。

フロントページの続き

テーマコード(参考)	FΙ	識別記号	(51)Int.Cl.'
	C 0 3 C 3/19		C 0 3 C 3/19
	12/00		12/00
	14/90		14/00
	C 0 8 K 3/22		C 0 8 K 3/22
	3/40		3/40
	C 0 8 L 101/00		C08L 101/16

Fターム(参考) 4G062 AA10 AA15 BB09 DA01 DB03

DC01 DD05 DD06 DD07 DE03

DE04 DE05 DF01 EA01 EB02

EC01 ED01 ED02 ED03 EE03

EE04 EF01 EG01 FA01 FB01

FC01 FD01 FE01 FF01 FG01

FH01 F301 FK01 FL02 FL03

GA01 GA10 GB01 GC01 GD01

GE01 HH01 HH03 HH04 HH05

HH07 HH09 HH11 HH13 HH15

HH17 HH20 JJ01 JJ03 JJ05

JJ07 JJ10 KK01 KK03 KK05

KK07 KK10 MM40 NN01 NN40

PP14

4H011 AA02 BB18 BC18 BC19 DA02

DC03 DC05 DH02

4J002 AA011 AA021 BB031 BB121

BC031 BD031 BD101 BD121

BE021 BF021 BG051 CB001

CC041 CC181 CD001 CF061

CF071 CG001 CL001 DE096

DE107 DL008 GH00