

积分的奇技淫巧

Integration Hacks

作者: Monika

时间: October 18, 2025

版本: 0.1

目录

绪论	iii
第一章 基础知识	1
1.1 极限	1
1.2 导数	1
1.2.0.1 求导的法则	1
1.2.0.2 具体求导例子	2
1.2.0.3 双曲函数定义	5
1.2.0.4 性质与三角函数的深刻联系	5
1.3 洛必达法则	8
1.3.0.1 Stolz-Cesàro 定理—离散化的洛必达法则	9
1.4 泰勒展开	9
1.5 常用求极限方法	10
1.6 积分	10
1.6.1 积分的定义	10
1.6.2 什么叫积不出来?	10
1.6.3 不定上下限积分的求导公式	10
1.6.4 积分中值定理	10
1.6.5 基本不定积分方法	10
1.6.5.1 凑微分	10
1.6.5.2 分部积分	10
1.6.6 换元	10
1.6.6.1 万能代换	10
1.6.6.2 根式代换	10
1.6.6.3 倒代换	10
1.6.6.4 部分分式法	10
1.6.6.5 留数法	10
1.6.7 基本定积分方法	10
1.6.7.1 区间再现	10
1.6.7.2 点火	10
第二章 双元法	11
第三章 单元法	12
第四章 组合积分法	13
第五章 其他小方法	14
5.1 费曼求导法	14
5.2 循环法	14
5.3 先求递推, 再求特值	14
5.4 rullani (傅汝兰尼) 积分公式	14

	日氷
附录 A 版本更新历史	15
附录 B 补充证明 B.1 重要极限的证明	16 16
参考文献	17
附录 C 积分表	18

绪论

本书是是 LZU 数学协会举办的数学讲座的讲义,将会讲授一些在课不上不会讲授,但在某些情况有奇效的积分技巧,近年来 cmc 的试题中偶尔会出现此类题目

笔者水平有限,若有不足缺漏之处恳请读者更正,或在 Github 仓库处(点击即可跳转) 提交 PR 以更正

第一章 基础知识

在本章列举出关于微积分最基础的知识,读者应做到在看到本章的所有题目时能瞬间反应出答案来

1.1 极限

所谓的极限,就是 Approach,不断地逼进一个值,但是始终不会到达 用数学语言来讲就是

$$\lim_{x \to a} f(x) = A \iff \forall \epsilon > 0, \exists \delta > 0, \text{ (4.1)}$$

如果函数是多元函数,则定义为从任意路径趋近于该点的值都相同,注意是任意路径而不是任意角度,取所有斜率的直线并不能穷尽所有路径,比如下面这个

问题 1.1 $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$ 是否存在?

如果你取所有斜率的直线,比如 y=kx,而误以为直线能穷尽所有路径,就会得出极限为零的错误答案 $\lim_{(x,y)\to(0,0)}f(x,y)=\lim\frac{(kx^2)}{(1+k)x}=\lim_{x\to0}\frac{k}{(1+k)}x=0$

解 不存在,取路径 $y = -x + x^2$, $\lim_{(x,y)\to(0,0)} \frac{x(-x-x^2)}{x^2} = \lim_{x\to 0} (-1-x) = -1$ 这条路径得到的值和 y = kx 路径得到的值不同,所以极限不存在

1.2 导数

我们使用最朴素的导数理解方式,自变量发生微小变化后,因变量会随之发生一个微小变化,这两个变化的比值就是导数,也是斜率

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x_0} \equiv \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0} \frac{y(x) - y(x_0)}{x - x_0}$$
(1.2)

利用这个定义不难算出一些初等函数的导数

另外需要注意的是,在最开始学习微积分时,最好不要使用 y' 这种记号来表示一阶导,因为这不利于你最 开始的理解导数的计算法则,不过当你熟悉之后,随便怎么用都行,在开始阶段,最好使用 $\frac{dy}{dx}$ 这种记号,并且 直接将 dy, dx 当成普通的数来运算,可加可减可乘可除,这虽然略失严谨,但能帮助你快速入门

1.2.0.1 求导的法则

要得到;这个法则非常简单,我们将 Δx 视为一个有限的小量,而 dx 是将这个小量趋于零,所以每次你见到 d ,就已经暗示了这里有一个量会趋近于零

• 乘法,前导加后导

 $\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv = uv + u\Delta v + v\Delta u + \Delta u\Delta v - uv = u\Delta v + v\Delta u + \Delta u\Delta v$

 $\Delta u \Delta v$ 是两个微小量相乘,比一个微小量更小,认为他是高阶小量,有几个微小量相乘就是几阶小量,这里 $\Delta u \Delta v$ 就是二阶小量,他和一阶小量 $v \Delta u + \Delta u$ 相比可以略去,于是得到 $\Delta (uv) \approx u \Delta v + v \Delta u$ 注意只有这一步才是约等于,因为略去了二阶小量

当我们取 $\Delta u, \Delta v$ 都趋近于零的时候,约等号就变成了等号,同时也把 Δ 换成 d

于是我们说 d(uv) = udv + vdu 我们管这个叫 前导加后导

上面阐释了求导数的基本方法, 再用相同的方法求除法

• 除法, 上导减下导

$$\Delta\left(\tfrac{u}{v}\right) = \tfrac{u + \Delta u}{v + \Delta v} - \tfrac{u}{v} = \tfrac{uv + v\Delta u - uv - u\Delta v}{v(v + \Delta v)} = \tfrac{v\Delta u - u\Delta v}{v(v + \Delta v)}$$

取极限 Δv , $\Delta u \rightarrow 0$

 $d(\frac{u}{v}) = \frac{v du - u dv}{v^2}$

- 求导是线性的 $d(u+v) = du + dv \implies \frac{d(u+v)}{dt} = \frac{du}{dt} + \frac{dv}{dt}$
- 链式法则,这一点将 dx 这种量整体看作是普通的数计算即可(说是整体是你不要干出 $\frac{dy}{dx}$ 把 d 给约去了这种事来),于是所谓链式就很简单了

以下是帮助你快速理解的, 而不是证明

 $\frac{dy}{dt}$ 这个式子乘以 $\frac{dx}{dx} = 1$ 后得到 $\frac{dy}{dt} \cdot \frac{dx}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

例 1.1

$$(e^{\sqrt{\sin^2 x + \cos x}})' = \frac{d(e^{\sqrt{\sin^2 x + \cos x}})}{d\sqrt{\sin^2 x + \cos x}} \cdot \frac{d\sqrt{\sin^2 x + \cos x}}{dx}$$

$$= e^{\sqrt{\sin^2 x + \cos x}} \cdot \frac{d\sqrt{\sin^2 x + \cos x}}{d\sin^2 x + \cos x} \cdot \frac{d(\sin^2 x + \cos x)}{dx}$$

$$= e^{\sqrt{\sin^2 x + \cos x}} \cdot \frac{1}{2\sqrt{(\sin^2 x + \cos x)}} \cdot (2\sin x \cos x - \sin x)$$
(1.3)

于是每一步,只要将其中的一大坨变量看作整体,就能机械地进行计算了,比如第一步就是将 $\sqrt{\sin^2 x + \cos x} = t$ 看作整体, $\frac{\mathrm{d}(e^{\sqrt{\sin^2 x + \cos x}})}{\mathrm{d}\sqrt{\sin^2 x + \cos x}}$ 自然就是 $\frac{\mathrm{d}e^t}{\mathrm{d}t} = e^t$

• 反函数

将 dy, dx 看作数, 立刻就有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} \tag{1.4}$$

即若 y = f(x) 的反函数是 x = g(y) , 则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} = \frac{1}{g'(y)} \tag{1.5}$$

• 对于多元函数,比如 z = f(x(t), y(t)) ,现在想求 z 对 t 的导数,从直觉上讲,当 t 有一微小变化 dt 后,x ,y 也会有相应的变化 dx ,然后这个 dx ,dy ,然后这个 dx ,可变化

如何具体求出呢? 你可以先令 y 不变, 那么 dy = 0, 再看看 dx 会怎么影响 z

于是
$$z(x+dx,y)-z(x,y)=dz|_{dy=0}=df=\frac{df}{dx}dx$$

在上面x变化的基础上,再让y变化 dy

$$dz = z(x + dx, y + dy) - z(x, y)$$

$$= z(x + dx, y + dy) - z(x, y + dy) + z(x, y + dy) - z(x, y)$$

$$= \frac{df}{dx}|_{(x,y+dy)}dx + \frac{df}{dy}|_{(x,y)}dy$$

$$= \frac{df}{dx}|_{(x,y)}dx + \frac{df}{dy}|_{(x,y)}dy$$
(1.6)

如果按照高数老师们的习惯,将 $\frac{df}{dx}$ 记作 f'_x (其中有几个撇代表是几阶导,而下标是对谁求导,也有人不 写撇)则是 $dz = f'_x dx + f'_x dy$

$$z_t' = f_x' x_t' + f_y' y_t' \tag{1.7}$$

1.2.0.2 具体求导例子

我们已经完全了解了抽象的求导的方法,下面再来具体算一些函数 当然我们能算出结果来的,一般都是初等函数 数学课上会告诉你严格的定义是

定义 1.1 (初等函数)

所谓初等函数就是幂函数,指数函数,对数函数,三角函数,反三角函数通过有限次的加减乘除,有限次的复合运算所得的函数

对我们而言,你自高中起就熟悉的各种函数的有限次组合,就叫初等函数 以 x^n 和 $\sin x$, $\cos x$, e^x 的导数为例,具体推导其导数形式

例 1.2

$$(x^{n})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x^{n} + nx^{n-1}\Delta x + o(\Delta x)) - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{nx^{n-1}\Delta x + o(\Delta x)}{\Delta x}$$

$$= nx^{n-1}$$
(1.8)

例 1.3

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \cos x \sin \Delta x - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin x (\cos \Delta x - 1) + \cos x \sin \Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(\sin x \cdot \frac{\cos \Delta x - 1}{\Delta x} + \cos x \cdot \frac{\sin \Delta x}{\Delta x} \right)$$

$$= \sin x \cdot 0 + \cos x \cdot 1$$

$$= \cos x$$

$$(1.9)$$

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos x \cos \Delta x - \sin x \sin \Delta x - \cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos x (\cos \Delta x - 1) - \sin x \sin \Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(\cos x \cdot \frac{\cos \Delta x - 1}{\Delta x} - \sin x \cdot \frac{\sin \Delta x}{\Delta x}\right)$$

$$= \cos x \cdot 0 - \sin x \cdot 1$$

$$= -\sin x$$

$$(1.10)$$

例 1.4 对于指数函数 e^x 的导数,我们首先需要引入一个与常数 e 的定义相关的重要极限,关于这个重要极限的证明我们放在文末 B.1

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1 \tag{1.11}$$

这个极限的几何意义是函数 $y = e^x$ 在点 (0,1) 处的切线斜率为 1。基于这个基本极限,我们可以推导 e^x 在任意

点x处的导数。

$$(e^{x})' = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{e^{x} e^{\Delta x} - e^{x}}{\Delta x}$$

$$= e^{x} \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

$$= e^{x} \cdot 1$$

$$= e^{x}$$

$$= e^{x}$$
(1.12)

这个结果表明, e^x 是一个导数等于其自身的函数

如果你将求导看作是一个函数,或者说算子 D,那么 $D(e^x) = e^x$,也可称 e^x 是求导的不动点(不动点的 定义就是 f(x) = x 的解),这个想法在日后用微分算子法快速解微分方程时有用

例 1.5 下面求对数函数的导数。我们首先求自然对数函数 $y = \ln x$ 的导数。根据定义, $\ln x$ 是指数函数 e^x 的反函 数。

$$y = \ln x \iff x = e^y \tag{1.13}$$

我们可以利用反函数求导法则。对方程 $x = e^y$ 两边同时对x求导:

$$\frac{d}{dx}(x) = \frac{d}{dx}(e^{y})$$

$$1 = e^{y} \cdot \frac{dy}{dx} \quad (根据链式法则)$$
(1.14)

从中解出 $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{1}{e^y} \tag{1.15}$$

因为 $x = e^y$, 所以我们得到:

$$(\ln x)' = \frac{1}{x} \tag{1.16}$$

对于更一般的对数函数 $y = \log_a x$,我们可以使用换底公式将其转换为自然对数:

$$y = \log_a x = \frac{\ln x}{\ln a} \tag{1.17}$$

由于 🗓 是一个常数, 所以:

$$(\log_a x)' = \frac{d}{dx} \left(\frac{\ln x}{\ln a} \right) = \frac{1}{\ln a} \cdot (\ln x)' = \frac{1}{x \ln a}$$
 (1.18)

例 1.6 反三角函数的导数,如 arcsin x, arccos x, arctan x,可以使用反函数求导法则简便地求出。

- 求 $(\arcsin x)'$: 设 $y = \arcsin x$, 则 $x = \sin y$, 其中 $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ 。根据反函数求导法则, $(\arcsin x)' = \frac{dy}{dx} = \frac{1}{\frac{dx}{2}}$ $\frac{1}{(\sin y)'} = \frac{1}{\cos y}$ 。由于 $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $\cos y \ge 0$,因此 $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$ 。所以, $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ 。
- \dot{x} (arccos x)': $\ddot{y} = \arccos x$, $y = \cos y$, y = $\sin y \ge 0$, 因此 $\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$ 。所以, $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$
- 求 (arctan x)': 设 $y = \arctan x$, 则 $x = \tan y$, 其中 $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 。 (arctan x)' = $\frac{1}{(\tan y)'} = \frac{1}{\sec^2 y}$ 。利用恒等式 $\sec^2 y = 1 + \tan^2 y = 1 + x^2$ 。所以, $(\arctan x)' = \frac{1}{1 + x^2}$ 。 一个有趣的关系是 $(\arcsin x)' + (\arccos x)' = 0$,这与恒等式 $\arcsin x + \arccos x = \frac{\pi}{2}$ 两边求导的结果是一致的。

例 1.7 双曲函数虽然名字里带个"双曲",听起来很吓人,但它们本质上就是指数函数 e^x 的简单组合。它们与三 角函数有很多相似的性质, 因此学起来并不难。

1.2.0.3 双曲函数定义

最基本的两个双曲函数是双曲正弦 (sinh) 和双曲余弦 (cosh):

$$\sinh x = \frac{e^x - e^{-x}}{2} \tag{1.19}$$

$$cosh x = \frac{e^x + e^{-x}}{2}$$
(1.20)

其他的双曲函数也和三角函数类似,由这两个基本函数组合而成:

$$tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{1}{\tanh x}, \quad \operatorname{sech} x = \frac{1}{\cosh x}, \quad \operatorname{csch} x = \frac{1}{\sinh x}$$
(1.21)

1.2.0.4 性质与三角函数的深刻联系

为什么叫它们"双曲"函数呢?因为它们和双曲线有关。我们知道三角函数 $(\cos t, \sin t)$ 构成了单位圆 $x^2+y^2=1$ 上的点,而双曲函数 $(\cosh t, \sinh t)$ 则构成了单位双曲线 $x^2-y^2=1$ 上的点。我们可以很容易地验证这个核心性质:

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} \\
= \frac{1}{4} \left((e^{2x} + 2 + e^{-2x}) - (e^{2x} - 2 + e^{-2x}) \right) \\
= \frac{1}{4} (4) = 1$$
(1.22)

这个恒等式 $\cosh^2 x - \sinh^2 x = 1$ 是双曲函数最重要的性质。但它和三角函数的 $\cos^2 x + \sin^2 x = 1$ 之间有什么联系呢?答案藏在复数域里。

根据欧拉公式 $e^{i\theta} = \cos \theta + i \sin \theta$, 我们可以得到:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{1.23}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \tag{1.24}$$

现在, 我们把自变量从实数 x 换成纯虚数 ix:

$$\cosh(ix) = \frac{e^{ix} + e^{-ix}}{2} = \cos x \tag{1.25}$$

$$\sinh(ix) = \frac{e^{ix} - e^{-ix}}{2} = i \cdot \frac{e^{ix} - e^{-ix}}{2i} = i \sin x \tag{1.26}$$

反过来,我们也可以得到:

$$\cos(ix) = \frac{e^{i(ix)} + e^{-i(ix)}}{2} = \frac{e^{-x} + e^x}{2} = \cosh x \tag{1.27}$$

$$\sin(ix) = \frac{e^{i(ix)} - e^{-i(ix)}}{2i} = \frac{e^{-x} - e^{x}}{2i} = \frac{-(e^{x} - e^{-x})}{2i} = i \cdot \frac{e^{x} - e^{-x}}{2} = i \sinh x$$
 (1.28)

这两个关系 $\cos(ix) = \cosh x$ 和 $\sin(ix) = i \sinh x$ 是连接三角函数与双曲函数的桥梁。利用它们,我们可以把任何一个三角函数的恒等式"翻译"成双曲函数的恒等式。

例如,我们从 $\cos^2 x + \sin^2 x = 1$ 出发,将 x 替换为 ix:

$$\cos^2(ix) + \sin^2(ix) = 1 \implies (\cosh x)^2 + (i\sinh x)^2 = 1 \implies \cosh^2 x - \sinh^2 x = 1$$
 (1.29)

这样,我们得到了双曲函数的基本恒等式。

再比如和角公式 $\cos(x+y) = \cos x \cos y - \sin x \sin y$, 我们把 x, y 分别换成 ix, iy:

$$\cos(ix + iy) = \cos(ix)\cos(iy) - \sin(ix)\sin(iy)$$

$$\cosh(x + y) = (\cosh x)(\cosh y) - (i\sinh x)(i\sinh y)$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

这提供了一个从三角函数公式推导双曲函数公式的绝佳方法,比死记硬背优雅得多。

1.2.0.4.1 快速翻译法则 用三角恒等式快速"翻译"出双曲恒等式的经验法则:

- $\Re \sin \rightarrow \sinh, \cos \rightarrow \cosh;$
- 若出现"两个 sinh 相乘"的项(如 $sinh^2 x$ 、sinh x sinh y),则把该项的符号取反 实际上就是

$$\begin{cases} \sin ix \to i \sinh x, \\ \cos ix \to \cosh x, \\ \tan ix = i \tanh x \end{cases}$$
 (1.30)

例如: $\cos(x+y) = \cos x \cos y - \sin x \sin y$ 按规则得到 $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

	双曲函数
$\cos^2 x + \sin^2 x = 1$	$\cosh^2 x - \sinh^2 x = 1$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$
$\cos 2x = \cos^2 x - \sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$
$\sin 2x = 2\sin x \cos x$	$\sinh 2x = 2\sinh x \cosh x$
$(\cos x)' = -\sin x$	$(\cosh x)' = \sinh x$
$(\sin x)' = \cos x$	$(\sinh x)' = \cosh x$

1.2.0.4.2 三角-双曲性质对比表格

1.2.0.4.3 倍角公式(显式写出) 由和角公式取y = x(或直接由指数定义)可得:

$$\cosh(2x) = \cosh^2 x + \sinh^2 x = 1 + 2\sinh^2 x = 2\cosh^2 x - 1,$$
(1.31)

$$\sinh(2x) = 2\sinh x \cosh x,\tag{1.32}$$

$$\tanh(2x) = \frac{2\tanh x}{1 + \tanh^2 x} = \frac{2\sinh x \cosh x}{\cosh^2 x + \sinh^2 x}.$$
 (1.33)

说这么多,到底是用来干什么的呢?在积分的时候,他换元很有用,比如 $\sqrt{1+x^2}$ 的积分用双曲函数换元就会方便很多, $\sinh\theta=x,\cosh\theta=\sqrt{1+x^2}$

$$\int \sqrt{1+x^2} dx = \int \cosh\theta d(\sinh\theta)$$

$$= \int \cosh^2\theta d\theta$$

$$= \int \frac{(1+\cosh 2\theta)}{2} d\theta$$

$$= \frac{1}{2}\theta + \frac{1}{4}\sinh 2\theta + c$$

$$= \frac{1}{2}\operatorname{arcosh} x + \frac{1}{4}2\sinh\theta \cosh\theta$$

$$= \frac{1}{2}\ln(x+\sqrt{1+x^2}) + \frac{1}{2}x\sqrt{1+x^2} + C$$
(1.34)

例 1.8

反双曲函数就是把 sinh, cosh, tanh 那些拿来求"反解"。比如 sinh $\theta = x$ 想要 θ ,我们就写成 $\theta = \operatorname{arsinh} x$ 。从图像上看,arsinh 是 sinh 的"左右翻转",定义域是全体实数,值域也还是全体实数;arcosh 则只能从 $\cosh x \ge 1$ 的那一截翻上去,值域限制在 $[0, +\infty)$ 。artanh 对应的是 tanh 在 (-1, 1) 上的单调部分。

用指数函数去解方程可以得到它们和对数的关系:

$$\operatorname{arsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right) \qquad (x \in \mathbb{R}), \tag{1.35}$$

$$\operatorname{arcosh} x = \ln\left(x + \sqrt{x^2 - 1}\right) \qquad (x \ge 1), \tag{1.36}$$

$$\operatorname{artanh} x = \frac{1}{2} \ln \frac{1+x}{1-x} \qquad (|x| < 1). \tag{1.37}$$

以 arsinh 为例,把"反解"的步骤详细写出来就是:

$$y = \operatorname{arsinh} x \iff \sinh y = x,$$

$$\sinh y = \frac{e^y - e^{-y}}{2} = x,$$

$$e^{2y} - 2xe^y - 1 = 0 \quad (把等式两边乘 e^y, 凑成一元二次),$$

$$e^y = x + \sqrt{x^2 + 1} \quad (只取正根,因为 e^y > 0),$$

$$y = \ln(x + \sqrt{x^2 + 1}).$$

看清这一步后,arcosh、artanh 完全一样照做,只是换成各自的指数表达式。这些公式的推导和三角反函数类似: 先把定义式写成指数形式,再凑成一个对数。它们一方面告诉我们反双曲函数可以用初等函数表示,另一方面 也便于做极限或者积分。

还记得前面那句 $\sin(ix) = i \sinh x$ 吗?可以不用任何对数公式,直接由"反函数"的唯一性得到关系式。令

$$\sin ix = i \sinh x$$

$$\sin(\arcsin ix) = ix$$

$$\sin(i(-i)\arcsin ix) = ix$$

$$i \sinh((-i) \arcsin ix) = ix$$
 (1.38)

$$sinh((-i) \arcsin ix) = x$$

$$sinh(arsinh x) = x$$

$$\implies$$
 $(-i) \arcsin ix = \operatorname{arsinh} x$

$$\implies$$
 arcsin $ix = i$ arsinh x .

同理有(主值, $x \in \mathbb{R}$)

$$\begin{cases} \arcsin(ix) = i \operatorname{arsinh} x, \\ \arctan(ix) = i \operatorname{artanh} x, \\ \arccos(ix) = \frac{\pi}{2} - i \operatorname{arsinh} x. \end{cases}$$
(1.39)

其中第三条也可以和 arcosh 发生联系。注意到对任意实数 x, 有

$$\operatorname{arcosh}\left(\sqrt{1+x^2}\right) = \ln\left(\sqrt{1+x^2} + |x|\right) = |\operatorname{arsinh} x|,$$

因而可写成

$$\arccos(ix) = \frac{\pi}{2} - i \operatorname{sgn}(x) \operatorname{arcosh}(\sqrt{1+x^2}), \quad \operatorname{sgn}(0) = 0.$$

特别地, 当 $x \ge 0$ 时, 有简洁形式

$$\arccos(ix) = \frac{\pi}{2} - i \operatorname{arcosh}(\sqrt{1 + x^2}).$$

上式的来龙去脉可以简述如下: 令 $a = \operatorname{arsinh} x$ (即 $\sinh a = x$), 则

$$\sin(ia) = i \sinh a = ix,$$
 $\cos\left(\frac{\pi}{2} - ia\right) = \sin(ia) = ix,$

因此满足 $\cos z = ix$ 的主值解是 $z = \frac{\pi}{2} - i \operatorname{arsinh} x$,即

$$\arccos(ix) = \frac{\pi}{2} - i \operatorname{arsinh} x.$$

又因为 arcosh 的主值恒非负,且

$$\operatorname{arcosh}(\sqrt{1+x^2}) = \ln(\sqrt{1+x^2} + |x|) = |\operatorname{arsinh} x|,$$

所以 $\operatorname{arsinh} x = \operatorname{sgn}(x) \operatorname{arcosh}(\sqrt{1+x^2})$,从而得到上面的等式。其中 $\operatorname{sgn}(x)$ 是符号函数: $\operatorname{sgn}(x) = 1$ (x > 0), $\operatorname{sgn}(x) = 0$ (x = 0), $\operatorname{sgn}(x) = -1$ (x < 0)。

导数从反函数求导公式出发就能搞定。因为 sinh(arsinh x) = x, 两边对 x 求导得到

$$\cosh(\operatorname{arsinh} x) \cdot \frac{d}{dx} \operatorname{arsinh} x = 1.$$

注意到 $\cosh^2 t - \sinh^2 t = 1$, 把 $t = \operatorname{arsinh} x$ 代进去有 $\cosh(\operatorname{arsinh} x) = \sqrt{x^2 + 1}$, 于是

$$\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{arsinh} x = \frac{1}{\sqrt{x^2 + 1}}$$
.

同理可以得到

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{arcosh} x = \frac{1}{\sqrt{x-1}\sqrt{x+1}}, \qquad \frac{\mathrm{d}}{\mathrm{d}x}\operatorname{artanh} x = \frac{1}{1-x^2}.$$

它们的反过来积分公式就顺理成章:

$$\int \frac{1}{\sqrt{x^2 + 1}} \, \mathrm{d}x = \operatorname{arsinh} x + C,\tag{1.40}$$

$$\int \frac{1}{\sqrt{x-1}\sqrt{x+1}} \, \mathrm{d}x = \operatorname{arcosh} x + C,\tag{1.41}$$

$$\int \frac{1}{1 - x^2} dx = \operatorname{artanh} x + C. \tag{1.42}$$

遇到 $\sqrt{x^2+1}$ 这类根式时,直接用 sinh 换元往往比硬用三角函数更干脆,这些反双曲函数就是最后写答案时的 "收尾动作"。

•
$$(x^n)' = nx^{n-1}, (e^{ax})' = ae^x, (a^x)' = (e^{x \ln a})' = \ln a \cdot a^x$$
in $\mathbb{E}[1.2 (x^x)' = ?, (x^{x^x})' = ?]$

$$\mathbb{H} x^x = e^{\ln(x^x)} = e^{x \ln x}, (x^x)' = e^{x \ln x} (\ln x + x \cdot \frac{1}{x}) = x^x (\ln x + 1)$$

在继续看下去之前,确保你比自己的名字还熟悉以下函数的导数,因为这非常有利于你后面凑微分

• 幂指对

$$(x^n)' = nx^{n-1}$$
 $(\ln x)' = \frac{1}{x}$
 $(e^{ax})' = ae^{ax}$ $(a^x)' = (e^{x \ln a})' = a^x \ln a$ (1.43)
 $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$

• 三角函数

$$(\sin x)' = \cos x \quad (\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x} \quad (\cot x = \frac{1}{\tan x})' = -\frac{1}{\sin^2 x}$$
(1.44)

反三角

$$(\arctan x)' = \frac{1}{1+x^2} \quad (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$(\arccos x)' = (\frac{\pi}{2} - \arcsin x)' = -\frac{1}{\sqrt{1-x^2}}$$
(1.45)

1.3 洛必达法则

若
$$f(x_0) = 0$$
, $g(x_0) = 0$, $g'(x_0) = 0$ 则

$$\lim_{x, \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)} \tag{1.46}$$

可以这样来简单理解:

在 x_0 的足够小邻域内, 任何函数 f(x) 都可以近似成一条直线, 这条直线的斜率显然就是其导数 $f'(x_0)$, 那 么

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

$$g(x) \approx g(x_0) + g'(x_0)(x - x_0)$$
(1.47)

而此时 $f(x_0) = 0, g(x_0) = 0$

显然

$$\lim_{x, \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)(x - x_0)}{g'(x_0)(x - x_0)} = \frac{f'(x_0)}{g'(x_0)}$$
(1.48)

用洛必达我们可以验证一些极限, 比如

例 1.9

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{x'} = \lim_{x \to 0} \frac{\cos x}{1}$$
 (1.49)

1.3.0.1 Stolz-Cesàro 定理-离散化的洛必达法则

Stolz 定理是处理数列不定式极限的有力工具,可以看作是数列版本的洛必达法则。

- * 型: 若 { y_n } 严格单增趋于 + ∞ ,且 $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=L$,则 $\lim_{n\to\infty}\frac{x_n}{y_n}=L$ 。
 $\frac{0}{0}$ 型: 若 { x_n }, { y_n } 均趋于 0,{ y_n } 严格单减,且 $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=L$,则 $\lim_{n\to\infty}\frac{x_n}{y_n}=L$ 。

问题 1.3CMC 真题 设数列 $\{a_n\}$ 满足 $a_1 > 0$, $a_{n+1} = a_n + \frac{1}{a_n}$, $n \ge 1$. 证明: $\lim_{n \to \infty} \frac{a_n}{\sqrt{2n}} = 1$.

解显然 $\{a_n\}$ 是严格单增正数列。若 $\lim_{n\to\infty}a_n=A$ (有限),则 $A=A+\frac{1}{A}$,导出 1/A=0 矛盾。故 $\lim_{n\to\infty}a_n=+\infty$ 。 考虑 $\lim_{n \to \infty} \frac{a_n^2}{2n}$,这是一个 $\frac{\infty}{\infty}$ 型,适用 Stolz 定理。

$$\lim_{n \to \infty} \frac{a_n^2}{2n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{2(n+1) - 2n} = \frac{1}{2} \lim_{n \to \infty} \left((a_n + \frac{1}{a_n})^2 - a_n^2 \right) = \frac{1}{2} \lim_{n \to \infty} (2 + \frac{1}{a_n^2}) = 1$$

因此 $\lim_{n\to\infty} \frac{a_n}{\sqrt{2n}} = 1$ 。

1.4 泰勒展开

利用泰勒展开,可以将绝大部分性质良好的函数展开成级数的形式

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \frac{f'''(x_0)}{6} (x - x_0)^3 + \cdots$$
(1.50)

如何理解此式?简单的想法是,当我们的x的取值始终在 x_0 附近时, $(x-x_0)$ 是一个小量, $(x-x_0)^n$ 就是n阶小 量在这个式子两边同时求导,然后忽略掉高阶小量,只留下量级最大的项

$$f(x) = f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2}(\Delta x)^2 + \frac{f'''(x_0)}{6}(\Delta x)^3 + \dots \approx f(x_0)$$

$$f'(x) = f'(x_0) + f''(x_0)\Delta x_0 + \frac{f'''(x_0)}{2}(\Delta x)^2 + \dots \approx f'(x_0)$$
 (1.51)

上面的约等号在取 $\Delta x \rightarrow 0$ 时变成等号

这可以使我们相信 $f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ 这个等式在 f(x) 的任意阶导数都成立

下面列举一些常用导数的泰勒展开,其中 $O(x^n)$ 表示还剩下一些项,这些项都是 x^n 的高阶小量,我们加上 $O(x^n)$ 用来提醒自己这样估算的误差量级大概有多大

• e^x,12345 的阶乘

$$e^{x} = \sum \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + O(x^{3})$$
 (1.52)

• 三角函数, $\sin x$ 奇数阶, $\cos x$ 偶数阶,

$$\sin x = \tag{1.53}$$

1.5 常用求极限方法

(1) 利用基本极限; (2) 利用无穷小替换; (3) 利用 L' Hospital (洛必达) 法则; (4) 利用四抖。r (泰勒) 公式; (5) 利用导数的定义.

1.6 积分

- 1.6.1 积分的定义
- 1.6.2 什么叫积不出来?
- 1.6.3 不定上下限积分的求导公式
- 1.6.4 积分中值定理
- 1.6.5 基本不定积分方法
- 1.6.5.1 凑微分
- 1.6.5.2 分部积分
- 1.6.6 换元
- 1.6.6.1 万能代换
- 1.6.6.2 根式代换
- 1.6.6.3 倒代换
- 1.6.6.4 部分分式法
- 1.6.6.5 留数法
- 1.6.7 基本定积分方法
- 1.6.7.1 区间再现
- 1.6.7.2 点火

第二章 双元法

第三章 单元法

第四章 组合积分法

第五章 其他小方法

- 5.1 费曼求导法
- 5.2 循环法
- 5.3 先求递推,再求特值
- 5.4 rullani (傅汝兰尼) 积分公式

附录 A 版本更新历史

2025/10/17 更新: 编写第一章基础知识

附录 B 补充证明

B.1 重要极限的证明

证明 [重要极限的证明] 要严格证明 $\lim_{h\to 0} \frac{e^h-1}{h} = 1$,我们不能使用 $(e^x)' = e^x$ 本身,否则会陷入循环论证。一个严谨的初等证明可以依赖于常数 e 的另一个等价定义:

$$e = \lim_{k \to 0} (1+k)^{1/k} \tag{B.1}$$

我们的证明步骤如下:

- 1. 设 $k = e^h 1$ 。 当 $h \to 0$ 时,显然 $e^h \to e^0 = 1$,因此 $k \to 0$ 。
- 2. 从 $k = e^h 1$ 中解出 h。 我们得到 $e^h = 1 + k$,两边取自然对数,得 $h = \ln(1 + k)$ 。
- 3. 将 h 和 k 的表达式代入原极限式中:

$$\lim_{h \to 0} \frac{e^h - 1}{h} = \lim_{k \to 0} \frac{k}{\ln(1 + k)}$$
(B.2)

4. 利用对数的性质 $\ln(a^b) = b \ln a$, 对分母进行变形:

$$\lim_{k \to 0} \frac{1}{\frac{1}{k} \ln(1+k)} = \lim_{k \to 0} \frac{1}{\ln\left((1+k)^{1/k}\right)}$$
 (B.3)

5. 由于自然对数函数 ln(x) 是一个连续函数, 我们可以将极限符号移到函数内部:

$$\frac{1}{\ln\left(\lim_{k\to 0} (1+k)^{1/k}\right)}$$
 (B.4)

6. 根据我们引用的 e 的定义, 括号内的极限正是 e。因此, 上式变为:

$$\frac{1}{\ln(e)} = \frac{1}{1} = 1 \tag{B.5}$$

至此,证明完毕。这个证明虽然绕道使用了对数函数,但它依赖的是对数函数的连续性和代数性质,而非其导数,因此是有效的。

参考文献

- [1] Charles T Carlstrom and Timothy S Fuerst. "Agency Costs, Net Worth, and Business Fluctuations: A Computable General Equilibrium Analysis". In: *The American Economic Review* (1997), pp. 893–910. ISSN: 0002-8282.
- [2] 方军雄. "所有制、制度环境与信贷资金配置". In: 经济研究 12 (2007), pp. 82-92. ISSN: 0577-9154.
- [3] Qiang Li, Liwen Chen, and Yong Zeng. "The Mechanism and Effectiveness of Credit Scoring of P2P Lending Platform: Evidence from Renrendai.com". In: *China Finance Review International* 8.3 (2018), pp. 256–274.
- [4] 刘凤良, 章潇萌, and 于泽. "高投资、结构失衡与价格指数二元分化". In: 金融研究 02 (2017), pp. 54–69. ISSN: 1002-7246.
- [5] 吕捷 and 王高望. "CPI 与 PPI "背离"的结构性解释". In: 经济研究 50.04 (2015), pp. 136–149. ISSN: 0577-9154.
- [6] Vincenzo Quadrini. "Financial Frictions in Macroeconomic Fluctuations". In: *FRB Richmond Economic Quarterly* 97.3 (2011), pp. 209–254.

参考文献尚未编排,此处使用的是模板的默认参考文献,作废

附录 C 积分表