Isoentropic efficiencies of steady-flow devices

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Previously: Work in Reversible Steady Flow

How to compare real against ideal efficiency?

- Carnot cycle & irreversibilities
- How to extend such measures to flow devices?
- Adiabatic operation and isoentropic analysis

Isoentropic efficiency of turbines

$$\eta_T = \frac{\text{Actual turbine work}}{\text{Isentropic turbine work}} = \frac{w_a}{w_s}$$

$$\eta_T \cong \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

• η_{T} 90% (70%) for large (small) turbines

Isoentropic efficiency of compressors & pumps

$$\eta_C = \frac{\text{Isentropic compressor work}}{\text{Actual compressor work}} = \frac{w_s}{w_a}$$

$$\eta_C \cong \frac{h_{2s} - h_1}{h_{2a} - h_1}$$

$$\eta_P = \frac{w_s}{w_a} = \frac{V(P_2 - P_1)}{h_{2a} - h_1}$$
 For a pump

Cooling to decrease specific volume

$$\eta_C = \frac{w_t}{w_a}$$
 Isothermal efficiency based on reversible isothermal work w_t

Isoentropic efficiency of nozzles

$$\eta_N = \frac{\text{Actual KE at nozzle exit}}{\text{Isentropic KE at nozzle exit}} = \frac{V_{2a}^2}{V_{2s}^2}$$

$$h_1 = h_{2a} + \frac{V_{2a}^2}{2}$$

$$\eta_T \cong \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

• $\eta_{N} \sim 90\%$

What's next?

• Entropy balance & generation