חלק 1:

- .a שהוא הטיפוס של T1 מקבלת T2 כקלט ולא מקבלת G א. לא נכון,
 - .x מקבלת T2 מקבלת T2 מקבלת T2 מקבלת $^{\rm T2}$ שהוא הטיפוס של
- .T2 אומרת (() -> T2) זאת אומרת closure ג. לא נכון, הערך המוחזר מהביטוי הוא
- ד. נכון, x בתוך הlambda אינו פרמטר חופשי, ובפרט טיפוסו הוא T1 מכיוון שאינו תלוי בסביבה וגם הפרמטר הראשון בביטוי y נתון y מטיפוס (f x y ובפרט נקבל lambda חוקית, (f x y) חוקי, טיפוס המוחזר מה-lambda ווא [T1->T2].

(a) ((lambda (f x1) (f 1 x1)) + #t)

Stage 1: Rename Bound variables. ((lambda (f x1) (f 1 x1)) + #t) turn to ((lambda (f x) (f 1 x)) + #t)

Stage 2: Assign type variable for every sub expression:

Expression	Variable
((lambda (f x) (f 1 x)) + #t)	TO
(lambda (f x) (f 1 x))	T1
(f 1 x)	T2
f	Tf
х	Tx
+	TaddOp
#t	Ttrue

Stage 3: construct type equations

The equations for the sub-expression are:

Expression	Variable
((lambda (f x) (f 1 x)) + #t)	T1 = [TaddOp * Ttrue -> T0]
((lambda (f x) (f 1 x))	T1 = [Tf * Tx -> T2]
(f 1 x)	Tf = [Tnum1 * Tx -> T2]

The equations for the primitive are:

Expression	Variable
+	TaddOp = [Number * Number ->
	Number]
#t	Ttrue = Boolean

Stage 4: Solve the equations:

Equation	Substitution
1. T1 = [TaddOp * Ttrue -> T0]	{}
2. T1 = [Tf * Tx -> T2]	
3. Tf = [Tnum1 * Tx -> T2]	
4. TaddOp = [Number * Number -> Number]	
5. Ttrue = Boolean	

Step 1:

$$(T1 = [TaddOp * Ttrue \rightarrow T0]) \circ Substitution = (T1 = [TaddOp * Ttrue \rightarrow T0])$$
 and is a type-sub.

Substitution = Substitution \circ (T1 = [TaddOp * Ttrue -> T0]).

Equation	Substitution
2. T1 = [Tf * Tx -> T2]	${T1 := [[TaddOp * Ttrue -> T0]}$
3. Tf = [Tnum1 * Tx -> T2]	
4. TaddOp = [Number * Number -> Number]	
5. Ttrue = Boolean	

Step 2:
$$T1 = [Tf * Tx -> T2] \circ Substitution = ([TaddOp * Ttrue -> T0] = [Tf * Tx -> T2])$$

There is no type-sub since both sides of the equation are composite we split it into three equations (6,7,8) and remove equation 2.

Equation	Substitution
3. Tf = [Tnum1 * Tx -> T2]	$\{T1 := [[TaddOp * Ttrue -> T0]\}$
4. TaddOp = [Number * Number -> Number]	
5. Ttrue = Boolean	
6. Tf = TaddOp	
7. Tx = Ttrue	
8. T2 = T0	

Step 3:

 $(Tf = [Tnum1 * Tx -> T2]) \circ Substitution = (Tf = [Tnum1 * Tx -> T2]). \\ Substitution = Substitution \circ (Tf = [Tnum1 * Tx -> T2]).$

Equation	Substitution
4. TaddOp = [Number * Number -> Number]	{T1 := [[TaddOp * Ttrue -> T0], Tf := [Tnum1 * Tx -> T2]}
5. Ttrue = Boolean	
6. Tf = TaddOp	
7. Tx = Ttrue	
8. T2 = T0	

Step 4:

 $(TaddOp = [Number * Number -> Number]) \circ Substitution = (TaddOp = [Number * Number -> Number]). Substitution = Substitution <math>\circ$ (TaddOp = [Number * Number -> Number]).

Equation	Substitution
5. Ttrue = Boolean	{T1 := [[[Number * Number -> Number] * Ttrue -> T0], Tf := [Tnum1 * Tx -> T2], TaddOp := [Number * Number -> Number]}
6. Tf = TaddOp	
7. Tx = Ttrue	
8. T2 = T0	

Step 5:

 $(Ttrue = Boolean) \circ Substitution = (Ttrue = Boolean)$, is a type-sub. Substitution = Substitution \circ (Ttrue = Boolean).

Equation	Substitution
6. Tf = TaddOp	{T1 := [[[Number * Number -> Number] * Boolean -> T0], Tf := [Tnum1 * Tx -> T2], TaddOp := [Number * Number -> Number], Ttrue := Boolean }
7. Tx = Ttrue	
8. T2 = T0	

Step 6:

(Tf = TaddOp) \circ Substitution =[Tnum1 * Tx -> T2] = [Number * Number -> Number]) There is no a sub-type. We split the equation into three equations.

Tnum1 = Number, Tx = Number, T2 = Number.

We remove the equation number 6.

Equation	Substitution
7. Tx = Ttrue	{T1 := [[[Number * Number -> Number] * Boolean -> T0], Tf := [Tnum1 * Tx -> T2], TaddOp := [Number * Number -> Number], Ttrue := Boolean }
8. T2 = T0	
9. Tnum1 = Number	
10. Tx = Number	
11. T2 = Number	

Step 7:

 $(Tx = Ttrue) \circ Substitution = ([Tx = Boolean]), type-sub. Substitution = Substitution <math>\circ$ ([Tx = Boolean]).

Equation	Substitution
8. T2 = T0	{T1 := [[[Number * Number -> Number] * Boolean -> T0], Tf := [Tnum1 * Boolean -> T2], Tx = Ttrue, TaddOp := [Number * Number -> Number], Ttrue := Boolean }
9. Tnum1 = Number	
10. Tx = Number	
11. T2 = Number	

Step 8:

(T2 = T0)
$$\circ$$
 Substitution = (T2 = T0), type-sub. Substitution = Substitution \circ (T2 = T0).

Equation	Substitution
9. Tnum1 = Number	{T1 := [[[Number * Number -> Number] * Boolean -> T0], Tf := [Tnum1 * Boolean -> T2], Tx = Ttrue, TaddOp := [Number * Number -> Number], Ttrue := Boolean, T2:= T0 }
10. Tx = Number	
11. T2 = Number	

Step 9: (Tnum1 = Number) \circ Substitution = (Number = Number) always true.

Equation	Substitution
10. Tx = Number	{T1 := [[[Number * Number -> Number] * Boolean -> T0], Tf := [Tnum1 * Boolean -> T2], Tx = Ttrue, TaddOp := [Number * Number -> Number], Ttrue := Boolean, T2:= T0,Tnum1 = Number }
11. T2 = Number	

Step 10:

 $(Tx = Number) \circ Substitution = (Tx = Number)$, here we have a conflict because we got that Number = Tx = Ttrue = Boolean, therefore we can say that the expression is not well typed. FAILED!

(b) ((lambda (f1 x1) (f1 x1 1)) + *)

Stage 1: Rename Bound variables.

((lambda (f1 x1) (f1 x1 1)) + *) turn to ((lambda (f x) (f x 1)) + *)

Stage 2: Assign type variable for every sub expression:

Expression	Variable
((lambda (f x) (f x 1)) + *)	ТО
(lambda (f x) (f x 1))	T1
(f x 1)	T2
f	Tf
Х	Tx
1	Tnum1
+	TaddOp
*	TmulOp

Stage 3: construct type equations

The equations for the sub-expression are:

Expression	Variable
((lambda (f x) (f x 1)) + *)	T1 = [TaddOp * TmulOp -> T0]
(lambda (f x) (f x 1))	T1 = [Tf * Tx -> T2]
(f x 1)	Tf = [Tx * Tnum1 -> T2]

The equations for the primitive are:

Expression	Variable
1	Tnum1 = Number
+	TaddOp = [Number * Number ->
	Number]
*	TmulOp = [Number * Number ->
	Number]

Stage 4: Solve the equations:

Equation	Substitution
1. T1 = [TaddOp * TmulOp -> T0]	8
2. T1 = [Tf * Tx -> T2]	
3. Tf = [Tx * Tnum1 -> T2]	
4. TaddOp = [Number * Number -> Number]	
5. Tnum1 = Number	
6. TmulOp = [Number * Number -> Number]	

 $(T1 = [TaddOp * TmulOp -> T0] \circ Substitution = (T1 = [TaddOp * TmulOp -> T0]), type-sub.$

Substitution = Substitution \circ (T1 = [TaddOp * TmulOp -> T0]).

Equation	Substitution
2. T1 = [Tf * Tx -> T2]	{ T1 := [TaddOp * TmulOp -> T0] }
3. Tf = [Tx * Tnum1 -> T2]	
4. TaddOp = [Number * Number -> Number]	
5. Tum1 = Number	
6. TmulOp = [Number * Number -> Number]	

Step 2:

$$(T1 = [Tf * Tx \rightarrow T2]) \circ Substitution = ([Tf * Tx \rightarrow T2] = [TaddOp * TmulOp \rightarrow T0])$$

There is no type-sub. We split the equation to

- Tf = TaddOp,
- Tx = TmulOp,
- T2 = T0

We add them to the equations (7,8,9) and remove equation 2.

Equation	Substitution
3. Tf = [Tx * Tnum1 -> T2]	{ T1 := [TaddOp * TmulOp -> T0] }
4. TaddOp = [Number * Number -> Number]	
5. Tum1 = Number	
6. TmulOp = [Number * Number -> Number]	
7. Tf = TaddOp	
8. Tx = TmulOp	
9. T2 = T0	

Step 3:

 $\begin{array}{l} (Tf = [Tx*Tnum1 -> T2] \ \circ \ Substitution = (Tf = [Tx*Tnum1 -> T2]) \ , \ type-sub. \\ Substitution = Substitution \ \circ \ (Tf = [Tx*Tnum1 -> T2]). \end{array}$

Equation	Substitution
4. TaddOp = [Number * Number -> Number]	{ T1 := [TaddOp * TmulOp -> T0], Tf := [Tx * Tnum1 -> T2] }
5. Tum1 = Number	
6. TmulOp = [Number * Number -> Number]	
7. Tf = TaddOp	
8. Tx = TmulOp	
9. T2 = T0	

Step 4: (TaddOp = [Number * Number -> Number]) o Substitution = (TaddOp = [Number * Number -> Number]), type-Sub.

Substitution = Substitution \circ (TaddOp = [Number * Number -> Number]).

Equation	Substitution
5. Tnum1 = Number	{ T1 := [[Number * Number -> Number]* TmulOp -> T0], Tf := [Tx * Tnum1 -> T2], TaddOp := [Number * Number -> Number] }
6. TmulOp = [Number * Number -> Number]	
7. Tf = TaddOp	
8. Tx = TmulOp	
9. T2 = T0	

Step 5: (Tnum1 = Number) o Substitution = (Tnum1 = Number), type-sub.

Substitution = Substitution ○ (Tnum1 = Number).

Equation	Substitution
6. TmulOp = [Number * Number -> Number]	{ T1 := [[Number * Number -> Number]* TmulOp -> T0], Tf := [Tx * Number -> T2], TaddOp := [Number * Number -> Number], Tnum1 := Number }
7. Tf = TaddOp	
8. Tx = TmulOp	
9. T2 = T0	

Step 6:

 $(TmulOp = [Number * Number -> Number]) \circ Substitution = (TmulOp = [Number * Number -> Number]) , type-sub. Substitution = Substitution <math>\circ$ (TmulOp = [Number * Number -> Number]).

	Equation	Substitution
7. Tf = TaddOp		{ T1 := [[Number * Number -> Number]* [Number * Number -> Number]-> T0], Tf := [Tx * Number -> T2], TaddOp := [Number * Number -> Number], Tnum1 := Number, TmulOp :=
	[Number * Number -> Number] }	

Equation	Substitution
8. $Tx = TmulOp$	
9. T2 = T0	

Step 7:

```
(Tf = TaddOp) \circ Substitution = ([Tx*Number -> T2] = [Number*Number-> Number])
```

There is no type-sub since both sides of the equation are composite, therefore we split the equation to two sub equations (10, 11) and remove equation 6. (no need to add Number = Number)

Equation	Substitution
8. Tx = TmulOp	{ T1 := [[Number * Number -> Number]* [Number * Number -> Number]-> T0], Tf := [Tx * Number -> T2], TaddOp := [Number * Number -> Number], Tnum1 := Number, TmulOp := [Number * Number -> Number], }
9. T2 = T0	
10. Tx = number	
11. T2 = Number	

Step 8:

$$(Tx = TmulOp) \circ Substitution = (Tx = TmulOp)$$
, type-sub. Substitution = Substitution $\circ (Tx = TmulOp)$.

Equation	Substitution
9. T2 = T0	{ T1 := [[Number * Number -> Number]* [Number * Number -> Number]-> T0], Tf := [[Number * Number -> Number]* Number -> T2],
	TaddOp := [Number * Number -> Number],
	Tnum1 := Number, TmulOp := [Number * Number -> Number],

Equation	Substitution
	Tx := [Number * Number -> Number] }
10. Tx = number	
11. T2 = Number	

Step 9:

(T2 = T0)
$$\circ$$
 Substitution = (T2 = T0) , type-sub. Substitution = Substitution \circ (T2 = T0).

Equation	Substitution
10. Tx = number	{ T1 := [[Number * Number -> Number]* [Number * Number -> Number]-> T0], Tf := [[Number * Number -> Number]* Number -> T2], TaddOp := [Number * Number -> Number], Tnum1 := Number, TmulOp := [Number * Number -> Number],
	Tx := [Number * Number -> Number], T0 = T2 }
11. T2 = Number	

Step 10:

 $(Tx = number) \circ Substitution = ([[Number * Number -> Number] = Number)$

We get the conflicting equation:

[Number * Number -> Number] = Number, and we can say that the expression is not well typed.

חלק 3:

Typing rule set!:
For every: type environment _Tenv, variable reference _x1
expressions _e1 and type expressions _S1:
If _Tenv |- _e1 : _S1 and Tenv |- _x1 : _S1_
Then _Tenv |- (set! _x1 _e1) : void

Typing rule lit:

For every: type environment _Tenv, variable reference _x1 expressions _e1 and type expressions _S1:

If Tenv | {_e1 : _S1 , _x1 : _S1}

Then _Tenv |- (lit _x1 _e1) : void

Typing rule define-type:

For every: type environment _Tenv, variable reference _x1 expressions _e1 and type expressions _S1:

If Tenv o {_x1 : _S1} |- _e1 : _S1

Then _Tenv |- (define-type _x1 _e1) : void

Typing rule type-case:
For every: type environment _Tenv,
variable reference _x1
expressions _e1 and
type expressions _S1:

If Tenv |- {_x1 : _S1} or Tenv |- {_e1 : _S1}

Then _Tenv |- (type-case _x1 _e1) : void