Title: Searching in a 20 souted Matrix using Binary Search.

Introduction: Searching for an element in a souted data stracture is a jundamental problem m computer science. Binary search is one of the most efficient techniques for searching en a souted away, reducing the time complexety to logarithmic order.

problem Statement:

Given an MXN enter matrix where;

1. Each now is sorted in ascending order.

2. The first element of each row is greater than the last element of the previous row.

The task is to determine whethere a given target

Value exists within the matrix.

for example, consider the following matrix:

[[1, 3, 5, 7],

[10,11,16,20],

[23, 30, 34, 60],

If the target value is 3, the Janchon Should setuen true. If the target value is 13, it should seturn

Brute Force Approach: The most Straight forward approach is to iterate through each element in the matrix and check if the matches the target value. This approach has a time complexity of O(M*N), which is inefficient for large

Improved approach; Row-wire Binary Search
Improved of pproach; Row-wire Binary Search Since each row is sorted, we can perform a binary, bearch on each row reparately. The steps are as follows:
on each low reparately. The such see as follows.
1. Iterate over each low.
9. Apply himmy search on the low.
3. It the target is found, set win true; Oth Maiss,
the next row.
the next now. The time complexity of this approach is 10 (M* log N), as we perform binary search (O (rog N)) on each of the
M NOWS.
Binary Search Algorithm:
• Initialize low = 0 and high = M* N-1.
· while low < = high :
e) letrieve matrix [row][col] using the mapping above.
o) If matrix [row][col] matches the target, return true.
o) Compute mid = (low + high)/2. o) Retrieve matrix [row][col] using the mapping above. o) If matrix [row][col] matches the target, return true. o) If matrix [row][col] is less than the target, adjust
low = mid + 1.
low = mid + 1. ") If matrix [row][col] is greater than the target, adjust
high = mid-1. The no match is found, return false. Conclusion:
- If no match is going,
Conclusion:
The problem of searching for an element in a 20 Souted matrix can be solved in different ways:
2 Day of a Ricary Search : O CM (317)
3. Optimized windry mention Charles
Among there the optimized Binary Search approach is The
most efficient, leveraging the sorted structure of the matrix to achieve logarithmic time complexity.
matrix to achieve logarithmic time complexity.