# Combinational circuit

### Vikas Dhiman for ECE275

September 7, 2022

# 1 Learning objectives

- 1. Representing digital circuits
- 2. Converting between different notations: Boolean expression, logic networks and switching circuits
- 3. Converting between different logic network specifications: truth table, minterm, maxterms, product of sums canonical form and sum of product canonical form.

| (The C book 21.                              |                                                      |
|----------------------------------------------|------------------------------------------------------|
| SystemVerilog                                | L= 711 & 22                                          |
| 0 = fulse $1 = true$ $0$ $0$ $0$ $1$ $1$ $1$ | Touth table  7 Thuth table  7 = Bluberry  72 = Pecon |
| Venn Diagram                                 | 1 21 2 12 12 12 12 12 12 12 12 12 12 12              |

So, 
$$1^3$$
 $+ = 0R$  gate

 $0+0=0$ 
 $0+0=0$ 
 $0+0=1$ 
 $1+0=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+1=1$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+0=0$ 
 $1+$ 



# 2 Basic Gates and notations summary

| Venn diagram      |                                                                                                                   | x $+$ $x$ | $x_1$ $x_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ANSI) symbol     | $x_1$                                                                                                             | $x_1 \longrightarrow L(x_1, x_2)$ $x_2 \longrightarrow (x_1, x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x_1 = \sum_{i=1}^{n} \frac{L(x_1)}{x_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Switching circuit | Power Supply T                                                                                                    | Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power Why The Supply T |
| Truth Table       | $\begin{array}{c cccc} x_1 & x_2 & x_1 \cdot x_2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $egin{array}{c c} x_1 & ar{x}_1 \ \hline 0 & 0 \ 0 & 1 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Boolean expr.     | $L = x_1 \cdot x_2 = x_1 x_2$                                                                                     | $L = x_1 + x_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $L=\bar{x}_1=x_1'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C/Verilog         | L = x1 & x2                                                                                                       | L = x1   x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>~<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Name              | AND Gate                                                                                                          | OR Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOT Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## 3 Digital circuits or networks

$$Y = F(A, B, C)$$
  $Z = G(A, B, C)$ 

## 4 Two input networks

**Example 1.** Convert the following (ANSI) network into a Boolean expression, a truth table and a Venn diagram.



**Example 2.** Convert the following Boolean expression into a (ANSI) network, a truth table and a Venn diagram:

$$f = \overline{x_1 + x_2}$$

**Problem 1.** Convert the following (ANSI) network into a Boolean expression, a truth table and a Venn diagram.

3



**Example 3.** Convert the following Boolean expression into a network, a truth table and a Venn diagram:

$$f = x_1 \bar{x}_2 + \bar{x}_1 x_2$$

**Problem 2.** Can two different circuits have the same truth table? Can two different truth tables have the same circuit? Consider the following two circuits for example

$$A \longrightarrow Y$$



How about Venn digrams?

**Remark 1.** Truth tables and Venn diagrams define what the combinational circuit should do. Truth tables define output for every input. Boolean expression and networks define how to achieve the desired input output relationship.

# 5 Multi-input networks

**Problem 3.** Convert the following (ANSI) network into a Boolean expression and a truth table.



**Problem 4.** Convert the following (ANSI) network into a Boolean expression and a truth table.



### 6 Minterms and Maxterms

#### 6.1 Minterms

Minterm is a product involving all inputs (or complements) to a function. Every row of a truth table has a corresponding minterm. Minterm is true if and only if the corresponding row in the table is active.

Minterms defined as follows for each row of a two input truth table:

| A | В | minterm      | minterm |
|---|---|--------------|---------|
|   |   |              | name    |
| 0 | 0 | $ar{A}ar{B}$ | $m_0$   |
| 0 | 1 | $ar{A}B$     | $m_1$   |
| 1 | 0 | $Aar{B}$     | $m_2$   |
| 1 | 1 | AB           | $m_3$   |

Consider a two input circuit whose output Y is given by the truth table:

| A | В | Y | $\min term$  | minterm          |
|---|---|---|--------------|------------------|
|   |   |   |              | name             |
| 0 | 0 | 0 | $ar{A}ar{B}$ | $\overline{m_0}$ |
| 0 | 1 | 1 | $ar{A}B$     | $m_1$            |
| 1 | 0 | 0 | $Aar{B}$     | $m_2$            |
| 1 | 1 | 1 | AB           | $m_3$            |

then  $Y = \bar{A}B + AB = m_1 + m_3 = \sum (1,3)$ .

This also gives the sum of products canonical form.

**Example 4.** Convert the following 4-input truth table into sum of minterms and sum of products canonical form.

| $\frac{canonical join}{minterm}$ | A | В | C | D        | f |
|----------------------------------|---|---|---|----------|---|
| name                             |   |   |   |          |   |
| $m_0$                            | 0 | 0 | 0 | 0        | 0 |
| $m_1$                            | 0 | 0 | 0 | 1        | 1 |
| $m_2$                            | 0 | 0 | 1 | 0        | 0 |
| $m_3$                            | 0 | 0 | 1 | 1        | 0 |
| $m_4$                            | 0 | 1 | 0 | 0        | 0 |
| $m_5$                            | 0 | 1 | 0 | 1        | 1 |
| $m_6$                            | 0 | 1 | 1 | 0        | 0 |
| $m_7$                            | 0 | 1 | 1 | 1        | 0 |
| $m_8$                            | 1 | 0 | 0 | 0        | 0 |
| $m_9$                            | 1 | 0 | 0 | 1        | 0 |
| $m_{10}$                         | 1 | 0 | 1 | 0        | 0 |
| $m_{11}$                         | 1 | 0 | 1 | 1        | 0 |
| $m_{12}$                         | 1 | 1 | 0 | 0        | 0 |
| $m_{13}$                         | 1 | 1 | 0 | 1        | 1 |
| $m_{14}$                         | 1 | 1 | 1 | $\theta$ | 0 |
| $m_{15}$                         | 1 | 1 | 1 | 1        | 0 |

**Problem 5.** Convert the following 4-input truth table into sum of minterms and sum of products canonical form.

| minterm  | A | B | C | D | f |
|----------|---|---|---|---|---|
| name     |   |   |   |   |   |
| $m_0$    | 0 | 0 | 0 | 0 | 0 |
| $m_1$    | 0 | 0 | 0 | 1 | 0 |
| $m_2$    | 0 | 0 | 1 | 0 | 0 |
| $m_3$    | 0 | 0 | 1 | 1 | 1 |
| $m_4$    | 0 | 1 | 0 | 0 | 0 |
| $m_5$    | 0 | 1 | 0 | 1 | 0 |
| $m_6$    | 0 | 1 | 1 | 0 | 0 |
| $m_7$    | 0 | 1 | 1 | 1 | 1 |
| $m_8$    | 1 | 0 | 0 | 0 | 0 |
| $m_9$    | 1 | 0 | 0 | 1 | 0 |
| $m_{10}$ | 1 | 0 | 1 | 0 | 0 |
| $m_{11}$ | 1 | 0 | 1 | 1 | 1 |
| $m_{12}$ | 1 | 1 | 0 | 0 | 0 |
| $m_{13}$ | 1 | 1 | 0 | 1 | 1 |
| $m_{14}$ | 1 | 1 | 1 | 0 | 1 |
| $m_{15}$ | 1 | 1 | 1 | 1 | 0 |

#### 6.2 Maxterms

Maxterm is a sum involving all inputs (or complements) to a function. Every row of a truth table has a corresponding maxterm. Minterm is false if and only if the corresponding row in the table is active.

Maxterms are defined as follows for each row of a two input truth table:

| A | В | $\max term$         | $\max$ term |
|---|---|---------------------|-------------|
|   |   |                     | name        |
| 0 | 0 | A + B               | $M_0$       |
| 0 | 1 | $A + \bar{B}$       | $M_1$       |
| 1 | 0 | $\bar{A} + B$       | $M_2$       |
| 1 | 1 | $\bar{A} + \bar{B}$ | $M_3$       |

Consider a two input circuit whose output Y is given by the truth table:

| A | В | Y | maxterm             | maxterm          |
|---|---|---|---------------------|------------------|
|   |   |   |                     | name             |
| 0 | 0 | 0 | A + B               | $\overline{M_0}$ |
| 0 | 1 | 1 | $A + \bar{B}$       | $M_1$            |
| 1 | 0 | 0 | $\bar{A} + B$       | $M_2$            |
| 1 | 1 | 1 | $\bar{A} + \bar{B}$ | $M_3$            |

then  $Y = (A + B)(\bar{A} + B) = M_0 M_2$ .

Writing a functional specification in terms of minterms is also called product of sums canonical form.

**Example 5.** Convert the following 4-input truth table into product of maxterms and product of sums canonical form.

| maxterm  | A | В | C | D | f |
|----------|---|---|---|---|---|
| name     |   |   |   |   |   |
| $M_0$    | 0 | 0 | 0 | 0 | 0 |
| $M_1$    | 0 | 0 | 0 | 1 | 0 |
| $M_2$    | 0 | 0 | 1 | 0 | 0 |
| $M_3$    | 0 | 0 | 1 | 1 | 1 |
| $M_4$    | 0 | 1 | 0 | 0 | 0 |
| $M_5$    | 0 | 1 | 0 | 1 | 0 |
| $M_6$    | 0 | 1 | 1 | 0 | 0 |
| $M_7$    | 0 | 1 | 1 | 1 | 1 |
| $M_8$    | 1 | 0 | 0 | 0 | 0 |
| $M_9$    | 1 | 0 | 0 | 1 | 0 |
| $M_{10}$ | 1 | 0 | 1 | 0 | 0 |
| $M_{11}$ | 1 | 0 | 1 | 1 | 1 |
| $M_{12}$ | 1 | 1 | 0 | 0 | 0 |
| $M_{13}$ | 1 | 1 | 0 | 1 | 1 |
| $M_{14}$ | 1 | 1 | 1 | 0 | 1 |
| $M_{15}$ | 1 | 1 | 1 | 1 | 0 |

### Example 6.

**Problem 6.** Convert the following 4-input truth table into product of maxterns and products of sums canonical form.

| maxterm  | A | В | C | D | f |
|----------|---|---|---|---|---|
| name     |   |   |   |   |   |
| $M_0$    | 0 | 0 | 0 | 0 | 0 |
| $M_1$    | 0 | 0 | 0 | 1 | 1 |
| $M_2$    | 0 | 0 | 1 | 0 | 1 |
| $M_3$    | 0 | 0 | 1 | 1 | 1 |
| $M_4$    | 0 | 1 | 0 | 0 | 1 |
| $M_5$    | 0 | 1 | 0 | 1 | 0 |
| $M_6$    | 0 | 1 | 1 | 0 | 1 |
| $M_7$    | 0 | 1 | 1 | 1 | 1 |
| $M_8$    | 1 | 0 | 0 | 0 | 0 |
| $M_9$    | 1 | 0 | 0 | 1 | 1 |
| $M_{10}$ | 1 | 0 | 1 | 0 | 1 |
| $M_{11}$ | 1 | 0 | 1 | 1 | 1 |
| $M_{12}$ | 1 | 1 | 0 | 0 | 0 |
| $M_{13}$ | 1 | 1 | 0 | 1 | 1 |
| $M_{14}$ | 1 | 1 | 1 | 0 | 1 |
| $M_{15}$ | 1 | 1 | 1 | 1 | 0 |

# 7 Karnaugh maps

### 7.1 Two input K-maps

| B A | 0     | 1     |
|-----|-------|-------|
| 0   | $m_0$ | $m_2$ |
| 1   | $m_1$ | $m_3$ |

## 7.2 Three input K-maps

| $^{\rm A}$ | B <sub>00</sub> | 01    | 11    | 10    |
|------------|-----------------|-------|-------|-------|
| 0          | $m_0$           | $m_2$ | $m_6$ | $m_4$ |
| 1          | $m_1$           | $m_3$ | $m_7$ | $m_5$ |

### 7.3 Four input K-maps

| CDA | B <sub>00</sub> | 01    | 11       | 10       |
|-----|-----------------|-------|----------|----------|
| 00  | $m_0$           | $m_4$ | $m_{12}$ | $m_8$    |
| 01  | $m_1$           | $m_5$ | $m_{13}$ | $m_9$    |
| 11  | $m_3$           | $m_7$ | $m_{15}$ | $m_{11}$ |
| 10  | $m_2$           | $m_6$ | $m_{14}$ | $m_{10}$ |

### 7.4 Five input K-maps