Creation of Intensive Care Unit (ICU) Dictionary and LLM Prototype

Overview

Hi, In this repo you'll find:

- README.md → The explanation of the specific approach to build an ICU identifier dictionary and a General Methodology to ensure robust identifier building.
- icu_data_dict_granular.json → , A structured dictionary for Intensive Care Unit (ICU) data, currently under construction. It already includes a few key identifiers built following the outlined methodology.
- Identifier_Builder.ipynb → Notebook documenting my reasoning behind each identifier.
- generate_random_documents.ipynb → Generates synthetic documents to apply LLM classification for testing.
- DLP_Product_Prototype.ipynb → Implements an LLM-based classification system to identify sensitive data in documents, apply watermarking as a psychological deterrent, and label document metadata for enhanced security tracking.

Specific Method to ICU Identifiers

Consulting an ICU Expert for Real-World Validation

- Recognizing that source documentation alone cannot always be trusted, I took
 the additional step of consulting an experienced ICU surgeon to identify the
 most high-risk and relevant patient data points in Brazil.
- This ensured that the dataset had the highest level of completeness and correctness before implementing detection logic. Here are the most relevant datapoints to be considered:

DLP Classification

Category	Data Points (Brazilian_ Portuguese)	DLP Sensitivity Level	Potential Risks
Patient Identifiers (PHI)	Nome, Nº Atendimento, Nº Prontuário, Data Nascimento	High (PII/PHI)	Identity theft, unauthorized access
Hospitalization Data	DIH (Data da Internação Hospitalar), DUTI (Data da Admissão na UTI), LEITO	Medium	Exposure of admission dates could violate privacy
Insurance & Financial Data	Convênio, Seguro de saúde	High	Insurance fraud, financial abuse
Clinical & Medical Data	Diagnósticos, História Clínica, Ex Físico, Impressão Evolutiva	High (Sensitive PHI)	Misuse of medical history, blackmail risks
Medication & Treatment	Prescrição, Antibióticos, Drogas em BIC	High (PHI)	Prescription data leaks (e.g., opioids, controlled substances)
Vital Signs & Monitoring	Sinais Vitais, Parâmetros Ventilatórios	Medium	Exposure could lead to manipulation of health status data
Medical Devices & Procedures	Dispositivos Invasivos	Medium	Security risk if combined with patient identifiers
Medical Actions & Notes	Condutas	Medium	Internal procedures could reveal treatment plans
Laboratory Data	Labs	High (PHI)	Lab results often contain highly sensitive health markers
Dietary Information	Dieta	Low	Less critical but still part of patient records

Cross-Checking with Standardized Medical Taxonomies

To enhance accuracy and interoperability, I systematically started to review the ICU dictionary against international standards. This approach ensures scalability in case the dictionary needs to be adapted for multilingual or cross-border use.

- LOINC (Logical Observation Identifiers Names and Codes) → Standardized system for lab results & observations.
- ICD (International Classification of Diseases) → Universal classification of medical diagnoses.
- CPT Codes (Current Procedural Terminology) → Standardized list of medical procedures & ICU treatments.
- SNOMED-CT (Systematized Nomenclature of Medicine Clinical Terms) → Comprehensive terminology for diagnostics & procedures.
- Additionally, I consulted **Pubmed** and other sources to understand the most common ICU cases.

3 Dual-Level Detection: Field-Based & Value-Based

To improve **structured and unstructured detection**, the system operates at two levels:

- Field Identifier → Detects whether a certain tag/field is present in the dataset.
- Value Identifier → Identifies possible values that the field can assume.

This ensures compatibility with both **structured formats** (e.g., JSON, XML, relational databases) and **unstructured text** (e.g., free-text clinical notes).

 The Value Identifier can be progressively expanded by integrating taxonomybased detection.

Prototype for Data-at-Rest Protection

To **apply** the ICU dictionary in a real-world setting, I developed a prototype that performs **data-at-rest scanning**.

Traversing the Database with DFS

- The system recursively scans **all folders and files** (including subdirectories) using **Depth-First Search (DFS)** to efficiently locate **documents of interest**.
- It processes PDF, DOCX, and CSV files, extracting their contents for analysis.

2 Detecting & Marking Sensitive Data

If sensitive data is identified, the system immediately applies two protective measures:

- Watermarking → Embeds a "Sensitive" watermark in documents, acting as a psychological deterrent to prevent accidental leaks or mishandling.
- Metadata Tagging → Adds a "Sensitive" flag to document metadata for enhanced tracking (e.g., if the file is copied, altered, uploaded, downloaded, or shared).

General Methodology

This sections covers the steps that should be taken to guarantee the effective engineering of identifiers.

Linguistics-First Approach

Before implementing detection logic, the identifier must be **linguistically robust**. The methodology ensures that it accounts for **morphological structures, domain-specific terminology, and variations**.

Morphological Analysis

- Word Stem → Identifies the fixed root of words, utilizing etymological understanding and NLP lemmatization tools.
- Prefixes, Postfixes & Inflections → Examines how words change endings in different contexts (e.g., declension, conjugation, gender, case variations).
- Domain-Specific Usage → Recognizes ICU-specific jargon, abbreviations, and medical terminology.
- Synonyms & Equivalent Concepts → Accounts for alternative terms that may express the same underlying meaning.

Translation into Symbolic Language (Regex, NLP, Encoding)

Once the linguistic patterns are understood, the next step is converting them into **structured identifiers**.

Handling Variations & Anomalies

- Typo & Variation Handling → Implements Regex-based typo correction and fuzzy matching algorithms (Levenshtein distance, cosine similarity, etc.).
- Encoding Challenges → Accounts for special character removal (e.g., "ação"
 → "acao") to ensure ASCII compatibility.
- Whitespace Sensitivity → Ensures detection is robust against spacing inconsistencies (e.g., "NomePaciente" vs. "Nome Paciente").

Balancing Generalization & Precision

- The key principle: "As general as possible, as specific as necessary."
- This prevents overfitting to ICU-specific language while maintaining high precision.

3 Iterative Refinement

- Regex Prototyping & Debugging → Live-testing with Regex101 to fine-tune pattern structure.
- LLM-Augmented Review → Although LLMs struggle with low-level character recognition, they are valuable for spotting inconsistencies and suggesting missing cases.

Stress-Testing the Identifier

The goal is to **expose the identifier's limitations and strengths** through a **multifaceted stress-testing approach**.

Positive Stress-Test (PST)

- Goal: Ensure the identifier is general enough.
- Method: Generate a large, randomized dataset with valid names, terms, and patterns. Test against the identifier and verify successful matches.

Negative Stress-Test (NST)

- Goal: Ensure the identifier is specific enough.
- Method: Generate a dataset of false positives—texts that should NOT match the pattern. Run tests to eliminate false detections.

Moriarty Stress-Test (MST)

- Goal: Simulate adversarial evasion attempts.
- **Method:** Take a step back and ask:

"If I wanted to bypass this detection, how would I do it?"

Actively attempt to break the identifier. This can involve:

- Creative obfuscation techniques
- ▼ Pattern manipulation (spacing, special characters, typos)
- Unstructured or fragmented text formatting

The best improvements often go beyond Regex alone—leading to enhanced hybrid detection strategies.

Time Stress-Test (TST)

- Goal: Ensure the identifier remains valid over time.
- Method:
- Tag each identifier with a **time sensitivity level** (e.g., "Stable", "Likely to Change", "Requires Review").
- Implement a scheduled review process to reassess identifiers flagged as unstable or evolving.
- Use automated monitoring to detect changes in medical taxonomies (ICD, LOINC, etc.).

Regex Usage & Implementation

Regex is a core component of structured pattern detection, but its application requires **deliberate selection of functions and syntax** depending on the context.

- 1 Understand the available methods:
 - o findall() → Extracts **all** matches in a given text.
 - search() → Finds the first match, useful for presence checks.
 - match() → Checks only at the start of the string.
 - fullmatch() → Ensures the entire string matches the pattern.
 - compile() → Pre-compiles the regex for **optimized reuse**.
- **2** Cross-check regex behavior across different languages:
 - Python, Go, and JavaScript each have slight variations in regex handling.
 - Some engines allow **lookbehind assertions**, while others don't.
 - Always test for edge cases where regex might fail due to compilation quirks.

Preventive Alignment with Client's DLP Readiness

Depending on how well the organization enforces DLP policies, there may be pre-existing structures that can enhance detection accuracy.

- ✓ Fixed Identifier Standards → If certain IDs (e.g., patient IDs, case numbers) follow a strict numeric or alphanumeric structure, regex rules can be optimized to enforce expected formats only.
- Standard Document Titles & Tags → If policies require sensitive documents to be explicitly labeled, DLP detection can leverage these fields instead of relying solely on content analysis.
- ✓ Proactive Policy Integration → Work with the client's compliance team to align detection with existing data governance policies (e.g., ensuring system-generated reports include structured metadata).

By aligning preventive strategies with automated detection, we can reduce false positives while reinforcing security at the source.

Next Steps & Future Considerations

 Expand Taxonomy Matching → Integrate with ICD-10, LOINC, and SNOMED-CT databases for automated cross-referencing.

- Enhance Contextual Classification → Fine-tune LLM-assisted detection to classify sensitive data beyond simple keyword matching.
- Optimize Computational Performance → Reduce false positives & negatives while maintaining high efficiency for large-scale data scanning.

Final Thoughts

This methodology **ensures a rigorous, linguistically-grounded approach** to ICU data classification. By **combining domain expertise, structured taxonomies, and hybrid detection techniques**, the project lays a **strong foundation for robust DLP solutions** in healthcare.

Excited to refine this further based on feedback!