13 Fonction exponentielle

I – Définition et premières propriétés

Nous pouvons généraliser la démarche qui nous a permis d'introduire dans le chapitre précédent le nombre e. Il suffit de remplacer le nombre 1 par un nombre réel a quelconque : il existe un unique nombre réel b tel que $\ln(b) = a$.

Ainsi, pour a = 1, on trouve b = e. Pour a = 2, on trouve $b = e^2$. Pour a = 3, on trouve $b = e^3$. Pour a = -1, on trouve $b = e^{-1}$. Et pour a = n, où n est un entier relatif, on trouve $b = e^n$.

Définition 13.1 – Le nombre b tel que $\ln(b) = a$ est appelé **exponentielle de** a et est noté e^a .

Nous définissons ainsi une nouvelle fonction, appelée **fonction exponentielle**, notée exp, définie sur **R** et prenant ses valeurs dans $]0; +\infty[$. Pour des raisons évidentes, nous noterons le plus souvent $\exp(x) = e^x$.

$$]0; +\infty[\xrightarrow{ln} \mathbf{R}$$
 et en sens inverse $]0; +\infty[\xleftarrow{exp} \mathbf{R}.$

Proposition 13.2

- Pour tout réel $x \in \mathbb{R}$, $e^x > 0$.
- Pour tout réel $x \in \mathbf{R}$ et pour tout réel y > 0, $y = e^x \iff x = \ln(y)$.
- Pour tout réel $x \in \mathbf{R}$, $\ln(e^x) = x$.
- Pour tout réel x > 0, $e^{\ln(x)} = x$.

Remarque 13.3 - On a

$$ln(1) = 0 \iff e^0 = 1.$$

Exemple 13.4 – Résoudre dans **R** les équations suivantes.

•
$$e^x = 1$$

 $e^x = 1 \iff x = \ln(1) \iff x = 0.$

•
$$e^{2t-1} = 1$$

 $e^{2t-1} = 1 \iff 2t-1 = \ln(1) = 0$
 $\iff 2t = 1 \iff t = \frac{1}{2}$.

•
$$ln(x) = 2$$

 $ln(x) = 2 \iff x = e^2$.

•
$$\ln(3x) = \frac{1}{2}$$

 $\ln(3x) = \frac{1}{2} \iff 3x = e^{\frac{1}{2}} \iff x = \frac{e^{\frac{1}{2}}}{3}$

Proposition 13.5

Pour tous réels a et b,

$$e^{a+b} = e^a \times e^b$$
.

Comme pour la fonction logarithme népérien, on peut tirer plusieurs conséquences de cette propriété fondamentale de la fonction exponentielle.

Proposition 13.6

- Pour tout réel $a \in \mathbf{R}$, $e^{-a} = \frac{1}{e^a}$.
- Pour tous réels a et b dans \mathbf{R} , $e^{a-b} = \frac{e^a}{e^b}$.
- Pour tout réel $a \in \mathbf{R}$ et pour tout entier relatif $n \in \mathbf{N}$, $e^{na} = (e^a)^n$.

Démonstration.

•
$$e^a \times e^{-a} = e^0 = 1$$
 donc $e^{-a} = \frac{1}{e^a}$.

•
$$e^{a-b} = e^a \times e^{-b} = e^a \times \frac{1}{e^b} = \frac{e^a}{e^b}$$
.

•
$$e^{na} = \exp\left(\underbrace{a + a + \dots + a}_{n \text{ fois}}\right) = \underbrace{e^a \times e^a \times \dots e^a}_{n \text{ fois}} = (e^a)^n.$$

Exemple 13.7 – Soient *x* et *y* deux réels. Simplifier le plus possible les expressions suivantes.

1.
$$\frac{e^{2x}}{e^x} = e^{2x-x} = e^x$$
.

4.
$$(e^{2x})^3 \times (e^{-x})^2 = e^{6x} \times e^{-2x} = e^{6x-2x} = e^{4x}$$
.

2.
$$\frac{(e^x)^2}{e^x} = \frac{e^{2x}}{e^x} = e^{2x-x} = e^x$$
.

5.
$$e^0 \times e^{-x} \times (e^x)^2 = 1 \times e^{-x} \times e^{2x} = e^{-x+2x} = e^x$$
.

3.
$$\frac{e^x}{e^{-x}} = e^{x+x} = e^{2x}$$
.

6.
$$\frac{e^x}{e^y} \times e^{y-x} = e^{x-y} \times e^{y-x} = e^{x-y+y-x} = e^0 = 1$$
.

II - Étude de la fonction exponentielle

1 – <u>Dérivée et sens de variation</u>

Proposition 13.8

La fonction exponentielle est dérivable sur **R** et $(\exp(x))' = \exp(x)$.

Démonstration. On considère la fonction f définie sur \mathbf{R} par $f(x) = \ln(\exp(x))$.

On a $f'(x) = \frac{\left(\exp(x)\right)'}{\exp(x)}$. Mais on sait par ailleurs que $\ln\left(\exp(x)\right) = x$ et donc que f(x) = x. Donc on a également f'(x) = 1. Ainsi

$$1 = \frac{\left(\exp(x)\right)'}{\exp(x)} \text{ et donc } \left(\exp(x)\right)' = \exp(x).$$

Proposition 13.9 —

La fonction exponentielle est strictement croissante sur R.

Démonstration. Pour tout réel x, on a $\left(\exp(x)\right)' = \exp(x) > 0$. Donc la fonction exponentielle est strictement croissante sur \mathbf{R} .

On déduit de ce théorème les propriétés suivantes.

Proposition 13.10

Pour tous réels a et b,

- $e^a = e^b$ si et seulement si a = b,
- $e^a > e^b$ si et seulement si a = b.

Exemple 13.11 – Résoudre dans R les équations et inéquations suivantes.

1.
$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1}$$

$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1} \iff e^{5x+2} = e^{2x^2-1} \iff 5x+2 = 2x^2-1 \iff 2x^2-5x+1 = 0.$$

On calcule le discriminant $\Delta = (-5)^2 - 4 \times 2 \times 1 = 25 - 8 = 17$. Il y a donc deux racines

$$x_1 = \frac{5 - \sqrt{17}}{4}$$
 et $x_2 = \frac{5 + \sqrt{17}}{4}$.

2.
$$e^{x^2+x-1}=1$$

$$e^{x^2+x-1} = 1 \iff e^{x^2+x-1} = e^0 \iff x^2+x-1 = 0.$$

On calcule le discriminant $\Delta = 1 + 4 = 5$. Il y a donc deux racines

$$x_1 = \frac{-1 - \sqrt{5}}{2}$$
 et $x_2 = \frac{1 + \sqrt{5}}{2}$.

3.
$$e^{2x} \le e^x$$

$$e^{2x} \le e^x \iff 2x \le x \iff x \le 0.$$

Donc $\mathcal{S} =]-\infty;0].$

4.
$$e^{2x}e^{x^2} < 1$$

$$e^{2x}e^{x^2} < 1 \iff e^{2x+x^2} < e^0 \iff 2x+x^2 < 0.$$

Les racines de ce polynôme de degré 2 sont 0 et -2. On en déduit le tableau de signe suivant.

x	-∞		-2		0		+∞
$x^2 + 2x$		+	0	_	0	+	

Et donc $\mathcal{S} =]-2;0[$.

2 - Limites

Proposition 13.12

La fonction exponentielle a pour limite $+\infty$ en $+\infty$:

$$\lim_{x \to +\infty} e^x = +\infty.$$

Proposition 13.13

La fonction exponentielle a pour limite 0 en $-\infty$:

$$\lim_{x\to-\infty}e^x=0.$$

L'axe des abscisses est asymptote horizontale à la courbe d'équation $y = e^x$ en $-\infty$.

Exemple 13.14 - Calculer les limites suivantes.

- $\lim_{x \to +\infty} \exp\left(\frac{1}{x}\right)$ On a $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to 0} e^{x} = 1$. Donc par composition, $\lim_{x \to +\infty} \exp\left(\frac{1}{x}\right) = 1$.
- $\lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right)$ On a $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ et $\lim_{X \to -\infty} e^{X} = 0$. Donc par composition, $\lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right) = 0$.
- $\lim_{x\to 0^+} \exp\left(\frac{1}{x}\right)$ On a $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ et $\lim_{X\to +\infty} e^X = +\infty$. Donc par composition, $\lim_{x\to 0^+} \exp\left(\frac{1}{x}\right) = +\infty$.

3 - Courbe représentative

- $\lim_{x\to-\infty} e^x = 0$ donc l'axe des abscisses est asymptote à la courbe représentative de la fonction exponentielle en $-\infty$.
- La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien.
 Dans un repère orthonormé, leurs courbes représentatives sont symétriques par rapport à la droite D d'équation y = x.

4 - Croissance comparée

Proposition 13.15

Pour tout entier n supérieur ou égal à 1, on a les limites suivantes :

$$\lim_{x \to -\infty} x^n e^x = 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

En particulier, lorsque n = 1,

$$\lim_{x \to -\infty} x e^x = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

Remarque 13.16 – Ces limites sont normalement des formes indéterminées. Pour lever de telles indéterminations, on applique les résultats de croissance comparée.

On retient que l'exponentielle "l'emporte" sur les puissances de *x*.

Exemple 13.17 - •
$$\lim_{x \to -\infty} x^2 e^x = 0$$
. • $\lim_{x \to +\infty} e^x - x = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) = +\infty$.

III – Étude d'une fonction de la forme exp(u)

Proposition 13.18

Soit u une fonction dérivable sur un intervalle I, alors la fonction composée $f = e^u$ est dérivable sur I et

$$\forall x \in I, \quad f'(x) = u'(x)e^{u(x)}.$$

On note en abrégé

$$(e^u)' = u'e^u.$$

Exemple 13.19 – Soit f la fonction définie sur \mathbf{R} par $f(x) = e^{x^3 - 4x^2 + 2x - 3}$. Calculer f'(x).

Posons $u(x) = x^3 - 4x^2 + 2x - 3$. On a $u'(x) = 3x^2 - 8x + 2$. Donc

$$f'(x) = u'(x)e^{u(x)} = (3x^2 - 8x + 2)e^{x^3 - 4x^2 + 2x - 3}.$$

Exemple 13.20 – Soit *f* la fonction définie sur **R** par $f(x) = e^{2x^3 - 15x^2 + 36x - 25}$.

1. Calculer les limites de f en $-\infty$ et $+\infty$.

$$\lim_{x \to -\infty} 2x^3 - 15x^2 + 36x - 25 = \lim_{x \to -\infty} x^3 = -\infty \quad \text{et} \quad \lim_{x \to -\infty} e^X = 0,$$

donc par composition,

$$\lim_{x \to -\infty} e^{2x^3 - 15x^2 + 26x - 25} = 0.$$

$$\lim_{x \to +\infty} 2x^3 - 15x^2 + 36x - 25 = \lim_{x \to +\infty} x^3 + -\infty \quad \text{et} \quad \lim_{x \to +\infty} e^X = +\infty,$$

donc par composition,

$$\lim_{x \to +\infty} e^{2x^3 - 15x^2 + 26x - 25} = +\infty.$$

2. Étudier les variations de la fonction f.

Posons $u(x) = 2x^3 - 15x^2 + 36x - 25$. Alors $u'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6)$. Donc

$$f'(x) = u'(x)e^{u(x)} = 6(x^2 - 5x + 6)e^{2x^3 - 15x^2 + 36x - 25}.$$

Une exponentielle est toujours positive. Il ne nous reste donc qu'à étudier le signe de $x^2 - 5x + 6$. On a $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

On en déduit le tableau de signe de f'(x) et ainsi le tableau de variation de f.

x	-∞	2		3		+∞
$6(x^2 - 5x + 6)$	+	0	-	0	+	
$e^{2x^3 - 15x^2 + 36x - 25}$	+		+		+	
f'(x)	+	0	-	0	+	
f	0	e^3		e^2		+∞