SD-TSIA204 Properties of Ordinary Least Squares

Ekhine Irurozki

Télécom Paris

Model I: The fixed design model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0, \operatorname{Var}(\epsilon) = \sigma^{2}$$

- $ightharpoonup x_i$ is deterministic
- $ightharpoonup \sigma^2$ is called the noise level

Example:

- ightharpoonup Physical experiment when the analyst is choosing the design e.g., temperature of the experiment
- ▶ Some features are not random e.g., time, location.

Model $\scriptstyle\rm I$ with Gaussian noise : The fixed design Gaussian model

$$y_i = \theta_0^* + \sum_{k=1}^p \theta_k^* x_{i,k} + \varepsilon_i$$
$$x_i^\top = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$
$$\varepsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \text{ for } i = 1, \dots, n$$

- Parametric model: specified by the two parameters (θ, σ)
- ► Strong assumption

Model II: The random design model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, x_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, x), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | x) = 0, \text{Var}(\varepsilon | x) = \sigma^{2}$$

 $\underline{\operatorname{Rem}}$: here, the features are modelled as random (they might also suffer from some noise)

The ordinary least squares (OLS) estimator

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \left(y_i - \theta_0 - \sum_{k=1}^{p} \theta_k x_{i,k} \right)^2$$

How to deal with these two models?

- ▶ The estimator is the same for both models
- ▶ The mathematics involved are different for each case
- ► The study of the fixed design case is easier as many closed formulas are available
- The two models lead to the same estimators of the variance σ^2

The OLS estimator, $\hat{\boldsymbol{\theta}} = (X^{\top}X)^{-1}X^{\top}Y$, how good it is?

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\theta} + (X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}$$

$$\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, \sigma^2(X^{\top}X)^{-1})$$
(1)

Its unbiased when $\mathbb{E}(\boldsymbol{\varepsilon}) = 0$

Its not very useful in practice since σ is not known

Exercise: Give the proof for Eq.(1). How is θ_i distributed?

Expectation and covariance

$$\mathbb{E}[\hat{\boldsymbol{\theta}}] = \mathbb{E}[\boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \boldsymbol{\varepsilon}]$$

$$= \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \mathbb{E}[\boldsymbol{\varepsilon}]$$

$$= \boldsymbol{\theta}^*$$
(2)

Under model I, whenever the matrix X has full rank, we have

I, whenever the matrix
$$X$$
 has full rank, we have
$$Cov(\hat{\boldsymbol{\theta}}) = Cov(\boldsymbol{\theta}^* + (X^\top X)^{-1}X^\top \boldsymbol{\varepsilon})$$

$$= Cov((X^\top X)^{-1}X^\top \boldsymbol{\varepsilon})$$

$$= ((X^\top X)^{-1}X^\top)Cov(\boldsymbol{\varepsilon})((X^\top X)^{-1}X^\top)^\top$$

$$= (X^\top X)^{-1}X^\top Cov(\boldsymbol{\varepsilon})X(X^\top X)^{-1}$$

$$= (X^\top X)^{-1}X^\top \sigma^2 IX(X^\top X)^{-1}$$

$$= \sigma^2 (X^\top X)^{-1}X^\top X^\top X(X^\top X)^{-1} = \sigma^2 (X^\top X)^{-1}$$

7/36

(3)

Bias

<u>Proposition</u>: Under model I, whenever the matrix X has full rank, the least squares estimator is unbiased, i.e.,

$$\mathbb{E}(\hat{oldsymbol{ heta}}) = oldsymbol{ heta}^{\star}$$

Proof:

$$B = \mathbb{E}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^*$$

$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \boldsymbol{\varepsilon})) - \boldsymbol{\theta}^*$$

$$B = (X^\top X)^{-1} X^\top X \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \mathbb{E}(\boldsymbol{\varepsilon}) - \boldsymbol{\theta}^* = 0$$

The trace of a matrix

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by tr(A):

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

Several properties:

- $ightharpoonup \operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $ightharpoonup \operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^2 := ||A||_F^2$
- For any $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- ▶ $tr(PAP^{-1}) = tr(A)$, hence if A is diagonalisable, the trace is the sum of the eigenvalues
- ▶ If H is an orthogonal projector tr(H) = rank(H)

Estimation risk $R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\underline{\text{Proof}}$$
:

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon})$$

$$= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(\boldsymbol{u}^{\top}\boldsymbol{u}) = \boldsymbol{u}^{\top}\boldsymbol{u})$$

$$= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}\right]\right)$$

$$= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})X(X^{\top}X)^{-1}\right]$$

$$= \sigma^{2}\operatorname{tr}((X^{\top}X)^{-1})$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2 / n$ Under model I, whenever the matrix X has full rank, we have

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} \left(\frac{X^{\top} X}{n} \right) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) \right] = \sigma^{2} \frac{\text{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

Proof: As before

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X) (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H \boldsymbol{\varepsilon})] = \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H^{\top} H \boldsymbol{\varepsilon})]$$

$$= \text{tr}[\mathbb{E}(H \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} H^{\top})] = \text{tr}(H \mathbb{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) H^{\top})$$

$$= \sigma^{2} \text{tr}(H) = \sigma^{2} \text{rank}(H) = \sigma^{2} \text{rank}(X)$$

Best linear unbiased estimator

Under the fixed design model, among all the unbiased linear estimators AY, $\hat{\theta}_n$ is the one with minimal variance, i.e.,

$$cov(\hat{\theta}_n) \leq cov(AY),$$

with equality if and only if $A = (X^T X)^{-1} X^T$.

proof First note that AY is unbiased if and only if $(A - (X^T X)^{-1} X^T) X \theta^* = 0$ for all θ^* , equivalently, BX = 0 with $B = (A - (X^T X)^{-1} X^T)$. Consequently, using that $E[\epsilon \epsilon^T] = \sigma^2 I_n$, $\operatorname{cov}(BY, \hat{\theta}_n) = 0$. Then, just write $\operatorname{cov}(AY) = \operatorname{cov}(BY + \hat{\theta}_n)$ $= \operatorname{cov}(BY) + \operatorname{cov}(\hat{\theta}_n)$ $= \sigma^2 B B^T + \operatorname{cov}(\hat{\theta}_n) \geqslant \operatorname{cov}(\hat{\theta}_n).$

The previous inequality is an equality if and only if B = 0.

Maximum Likelihood Estimation (MLE)

Explanation of the principle of maximum likelihood:

- ▶ Maximum Likelihood Estimation (MLE) is a widely used method to estimate unknown parameters.
- ▶ It is based on the idea of finding the parameter values that make the observed data most probable under a given statistical model.

Illustration of Maximum Likelihood Estimation (MLE)

MLE as finding the parameter value that maximizes likelihood:

- Consider a statistical model with unknown parameter θ and observed data X.
- The likelihood function $L(\theta; X)$ measures how probable the data is under the parameter θ as a product of their densities, $L(\theta; X) = \prod_{k=1}^{n} p(X_k; \theta)$.
- ▶ MLE seeks to find $\hat{\theta}$ that maximizes $L(\theta; X)$: $\hat{\theta} = \arg\max_{\theta} L(\theta; X)$

Example: MLE for Coin Flip Model

Coin Flip Model: Probability of getting heads in a coin flip

- ► Model : Bernoulli
- ▶ Parameter : p_H (probability of getting heads, $0 \le p_H \le 1$)
- Fair coin : $p_H = 0.5$

Observations: "HH" (two heads in a row)

Likelihood for $p_H = 0.5$: $L(p_H = 0.5 \mid HH) = 0.5^2 = 0.25$

Likelihood for $p_H = 0.3$: $L(p_H = 0.3 \mid HH) = 0.3^2 = 0.09$

General Observation : For each observed value $s \in S$, we can calculate the corresponding likelihood as $\prod_{s \in S} p(s; \theta)$.

Note: Likelihoods need not integrate or sum to one over the parameter space.

Figure – Likelihood function for different p_H values when we observe HHT

Definition of Likelihood Function and Log-Likelihood Function Likelihood Function:

- Measures how well the observed data fit the model parameterized by θ .
- Denoted by $L(\theta; X)$, where θ is the parameter and X is the observed data.
- ▶ Provides a probability distribution for the observed data given the parameter.
- ► For independent and identically distributed random variables, it will be the product of univariate density functions :

$$L(\theta;X) = \prod_{k=1}^{n} p(X_k;\theta) .$$

Log-Likelihood Function:

- Definition : $\mathcal{L}(\theta; X) = \log L(\theta; X)$.
- ▶ Log-transform simplifies calculations and often leads to mathematical convenience.
- ▶ Useful for optimization techniques to find the MLE.
- ▶ The MLE can be found by maximizing the log-likelihood.

Log-Likelihood and Maximum

In practice, it is often convenient to work with the natural logarithm of the likelihood function, called the log-likelihood :

$$\mathcal{L}(\theta; \mathbf{y}) = \ln L_n(\theta; \mathbf{y}).$$

Since the logarithm is a monotonic function, the maximum of $\mathcal{L}(\theta; \mathbf{y})$ occurs at the same value of θ as does the maximum of \mathcal{L}_n . If $\mathcal{L}(\theta; \mathbf{y})$ is differentiable in Θ , the necessary conditions for the occurrence of a maximum (or a minimum) are:

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = 0, \quad \frac{\partial \mathcal{L}}{\partial \theta_2} = 0, \quad \dots, \quad \frac{\partial \mathcal{L}}{\partial \theta_k} = 0.$$

MLE for Different Distributions. Exercise: give the proofs

Bernoulli Distribution : MLE for success probability p:

$$\hat{p} = \frac{\text{number of successes}}{\text{total trials}}$$

Normal Distribution : MLE for mean μ and variance σ^2 :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Poisson Distribution : MLE for rate parameter $\lambda : \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Exponential Distribution : MLE for rate parameter $\lambda : \hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i}$

Multinomial Distribution : MLE for probabilities p_1, p_2, \ldots, p_k of k categories in n trials : $\hat{p}_i = \frac{n_i}{n}$, where n_i is the count of category i

Poisson and Exponential Distributions

Poisson Distribution

- ▶ Discrete probability distribution.
- ► Models the number of rare events in a fixed interval.
- Parameter : λ (average rate of events).
- ▶ Probability mass function (PMF) :

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Mean : λ
- Variance : λ

Exponential Distribution

- ► Continuous probability distribution.
- ► Models the time between rare events.
- Parameter : λ (rate parameter).
- ► Probability density function (PDF) :

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

- Mean : $\frac{1}{\lambda}$
- Variance : $\frac{1}{\lambda^2}$

Estimation of the noise level

• An estimator of the noise level σ^2 is given by

$$\boxed{\frac{1}{n} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2}$$

▶ Another estimator which is unbiased is defined by

$$\hat{\sigma}^2 = \frac{1}{n - \text{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

To show that this estimator is unbiased we need to give more properties of the Hat matrix and Cochran's lemma

Properties of the Hat matrix

Rem: the Hat matrix is defined as $H = X(X^{T}X)^{-1}X^{T}$

Proposition:

- 1. H is an orthogonal projection matrix
- 2. (I-H) is an orthogonal projection matrix
- 3. HX = X
- 4. (I H)X = 0

Statistical background, χ_k^2 distribution

Let $Z \sim \mathcal{N}(0,1)$, then the sum of their squares, $Q = \sum_{i=1}^k Z_i^2$, is distributed according to the chi-squared distribution with k degrees of freedom. This is denoted as $Q \sim \chi_k^2$. The chi-squared distribution has one parameter : a positive integer k that specifies the number of degrees of freedom (the number of random variables being summed, is).

If
$$a \sim \chi_k^2$$
 then $\mathbb{E}[a] = k$ and $Var(a) = 2k$

Cochran's lemma

Let
$$\varepsilon \sim N(0, \sigma^2 I)$$
 and $\hat{\sigma}^2 = \frac{1}{n-p-1} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$ and X full rank. Then $\hat{\theta}_n$ and $\hat{\sigma}_n^2$ are independent,
$$\hat{\theta}_n \sim N\left(\theta^\star, \sigma^2 (X^T X)^{-1}\right),$$

$$(n-p-1)\left(\frac{\hat{\sigma}_n^2}{\sigma^2}\right) \sim \chi_{n-p-1}^2.$$
 (4)

Estimation of the noise level, $\hat{\sigma}^2$ is unbiased

Under model I, whenever the matrix X has full rank, we have

$$\mathbb{E}\hat{\sigma}^2 = \sigma^2$$

$\underline{\text{Proof sketch}}$:

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 = \mathbf{y}^{\top} (\mathrm{Id}_n - H) \mathbf{y} = \boldsymbol{\varepsilon}^{\top} (\mathrm{Id}_n - H) \boldsymbol{\varepsilon}$$

Gaussian case : if $\boldsymbol{\varepsilon}_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, then $\|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 \sim \chi^2$ à n - rank(X) degrés de liberté

Exercise: Complete the proof

Heteroscedasticity

Model I and Model II are homoscedastic models, i.e., we assume that the noise level σ^2 does not depend on x_i

<u>Heteroscedastic Model</u>: we allow σ^2 to change with the observation i, we denote by $\sigma_i^2 > 0$ the associated variance

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\frac{y_i - \langle \boldsymbol{\theta}, x_i \rangle}{\sigma_i} \right)^2 = \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} (y - X\boldsymbol{\theta})^{\top} \Omega (y - X\boldsymbol{\theta})$$
with $\Omega = \operatorname{diag}(\frac{1}{\sigma^2}, \dots, \frac{1}{\sigma^2})$

Exercise: give a closed formula for $\hat{\boldsymbol{\theta}}$ when $X^{\top}\Omega X$ has full rank

Exercise: give a necessary and sufficient condition for $X^{\top}\Omega X$ to be invertible

Bias and variance

<u>Proposition</u>: Under model II, whenever the matrix $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$ has full rank, we have

$$\mathbb{E}(\hat{\boldsymbol{\theta}} \mid X) = \boldsymbol{\theta}^{\star}$$
$$\operatorname{Var}(\hat{\boldsymbol{\theta}} \mid X) = (X^{\top}X)^{-1}\sigma^{2}$$

<u>Proof</u>: The same as in the case of fixed design with the conditional expectation

Rem: We cannot compute the $\mathbb{E}(\hat{\boldsymbol{\theta}})$ nor $\text{Var}(\hat{\boldsymbol{\theta}})$ because the matrix X has full rank is now random!

Rem:One solution is to rely on asymptotic convergence

Asymptotics of $\hat{\boldsymbol{\theta}}$

Under model II, whenever the covariance matrix cov(X) has full rank, we have $\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2 S^{-1})$

with $S = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]$

Outline of the proof: It could happen that $\hat{\boldsymbol{\theta}}$ is not uniquely defined, so we put $\hat{\boldsymbol{\theta}} = \left(X^{\top}X\right)^{+}X^{\top}Y$

where A^+ is the generalized inverse of A

▶ With high probability, we have that $X^{\top}X$ is invertible because $\frac{X^{\top}X}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$ goes to S

Asymptotics

Outline of the proof:

As a consequence, in the asymptotics we can replace $(X^{\top}X)^+$ by $(X^{\top}X)^{-1}$ (that we shall admit)

Then we use that

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) = \left(\frac{X^{\top}X}{n}\right)^{-1} \left(\frac{X^{\top}\epsilon}{\sqrt{n}}\right)$$

- ▶ The term on the right $\frac{X^{\top} \varepsilon}{\sqrt{n}}$ converges to $\mathcal{N}(0, \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]\sigma^2)$ in distribution
- ▶ The term on the left $\left(\frac{X^{\top}X}{n}\right)^{-1}$ goes to S^{-1} in probability

Asymptotics

▶ In the random design model, since closed formulas for the bias and variance of θ are lacking; Asymptotics is used to validate the procedure and to build-up the variance estimator

By the previous Proposition, the **variance** to estimate is

$$\sigma^2 S^{-1}$$

a natural "Plug-in" estimator is

$$\hat{\sigma}^2 \hat{S}_n^+$$

with
$$\hat{\sigma}^2 = \frac{1}{n - \text{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

<u>Rem</u>:It coincides with the estimator in the case of fixed design

Variance estimation

Noise level is conditionally unbiased: Under model II, whenever the matrix

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$$
 has full rank, we have

$$\mathbb{E}(\hat{\sigma}^2 \mid X) = \sigma^2$$

Exercise: Write the proof

Convergence of the variance estimator : Under model II, if the covariance matrix cov(X) has full rank, we have

$$\hat{\sigma}^2 \hat{S}_n^+ \to \sigma^2 S^{-1}$$

in probability

Qualitative variables

A variable is qualitative, when its state space is discrete (non-necessarily numeric)

Exemple : colors, gender, cities, etc.

<u>Classically</u> : "One-hot encoder" consists in representing a qualitative variable with several dummy variables (valued in $\{0,1\}$)

If each x_i is valued in a_1, \ldots, a_K , we define the following K explanatory variables: $\forall k \in [\![1,K]\!], \mathbbm{1}_{a_k} \in \mathbb{R}^n$ is given by

$$\forall i \in [1, n], \quad (\mathbb{1}_{a_k})_i = \begin{cases} 1, & \text{if } x_i = a_k \\ 0, & \text{else} \end{cases}$$

Examples

 $\underline{\text{Binary case}}$: M/F, yes/no, I like it/I don't.

Client	Gender	<i> </i>	$H\setminus$
1	Н		1
2	F		0
3	Н		1
4	F		0
5	F	$\setminus 1$	0 /

<u>General case</u>: colors, cities, etc.

Client	Colors	\longrightarrow	/Blue	Blanc	Red
1	Blue		1	0	0
2	Blanc		0	1	0
3	Red		0	0	1
4	Red		0	0	1
5	Blue		\ 1	0	0 /

Somme difficulties

Correlations: $\sum_{k=1}^{K} \mathbb{1}_{a_k} = \mathbb{1}_n!$ We can drop-off one modality $(e.g., drop_first=True \ dans \ get_dummies \ de pandas)$

Without intercept, with all modalities $X = [\mathbb{1}_{a_1}, \dots, \mathbb{1}_{a_K}]$. If $x_{n+1} = a_k$ then $\hat{y}_{n+1} = \hat{\theta}_k$

With intercept, with one less modality : $X = [\mathbf{1}_n, \mathbb{1}_{a_2}, \dots, \mathbb{1}_{a_K}]$, dropping-off the first modality

If
$$x_{n+1} = a_k$$
 then $\hat{y}_{n+1} = \begin{cases} \hat{\boldsymbol{\theta}}_0, & \text{if } k = 1\\ \hat{\boldsymbol{\theta}}_0 + \hat{\boldsymbol{\theta}}_k, & \text{else} \end{cases}$

<u>Rem</u>: might give null column in Cross-Validation (if a modality is not present in a CV-fold)

 $\underline{\operatorname{Rem}}:$ penalization might help (e.g.,Lasso, Ridge)

What if n < p?

Many of the things presented before need to be adapted

For instance : if rank(X) = n, then $H = \mathrm{Id}_n$ and $\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}} = \mathbf{y}$!

The vector space generated by the columns $[\mathbf{x}_0, \dots, \mathbf{x}_p]$ is \mathbb{R}^n , making the observed signal and predicted signal are **identical**

Rem: typical kind of problem in large dimension (when p is large)

 $\underline{Possible\ solution}$: variable selection, cf. Lasso and greedy methods (coming soon)

Web sites and books

- Python Packages for OLS:
 statsmodels
 sklearn.linear_model.LinearRegression
- ▶ McKinney (2012) about python for statistics
- ▶ Lejeune (2010) about the Linear Model
- ► Delyon (2015) Advanced course on regression https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf