${\rm MAE}0514$ - Introducão a Análise de Sobrevivência - Lista 2

Bruno de Castro Paul Schultze¹ Rubens Santos Andrade Filho²

Maio de 2021

Sumário

Questão 1	•							 •	•			•	•			•	•					٠		•	 •	2
Questão 2																					 				 	2
Questão 3																					 				 	2
Questão 4																					 				 	7
Questão 5										•			•						•		 			•	 	7
Questão 6																					 					7
Questão 7										•									•		 			•	 	7
Questão 8																					 				 	7

 $^{^1\}mathrm{N\'umero}$ USP: 10736862

 $^{^2}$ Número USP: 10370336

Questão 1

a)

A variável do estudo é o tempo compreendido da exposição a um material cancerígeno até o desenvolvimento do tumor de um tamanho determinado nos ratos. Nesse caso, a origem é a exposição a um material cancerígeno e o evento de interesse é o desenvolvimento do tumor de um tamanho determinado.

b)

Para os rato A, B e C foram observados os tempos de falha, isto é, os tempos até os ratos desenvolverem o tumor de determinado tamanho.

Para o rato D foi observado uma censura aleatória à direita na vigésima semana, sua morte. Até a semana 20 o rato não tinha desenvolvido o tumor de um tamanho determinado.

Para os ratos E e F foram observados censuras à direita do tipo I na semana 30 por ser a do estudo. Entretanto no enunciado não está claro se todos os ratos foram expostos ao material cancerígeno ao mesmo tempo para dizermos se a censura é generalizada ou não.

Questão 2

Questão 3

Em um estudo clínico realizado com pacientes com câncer gástrico avançado (com metástase linfodonal), uma quimioterapia com Xeloda (capecipabina) e oxaliplatina foi administrada antes da cirurgia de 48 pacientes. Nesse tipo de ensaio clínico, é de interesse estudar e avaliar o tempo livre da doença, que é o tempo que o paciente fica bem, vivo e sem a doença. Assim, um dos objetivos é estudar o tempo decorrido entre o início do tratamento e óbito ou progressão da doença (o que ocorrer primeiro). Os dados do tempo livre da doença (em semanas) dos 48 pacientes estão disponíveis no arquivo Lista2-Xelox.csv, sendo que a variável delta é codificada como sendo 1 se o evento ocorreu e 0 se a observação é censurada.

(a) Calculamos o estimador da tábua de vida, considerando as seguintes faixas de tempo:

```
Faixa 1: 8 semanas (inclusive) ou menos
Faixa 2: de 8 a 16 semanas (inclusive)
Faixa 3: de 16 a 24 semanas (inclusive)
Faixa 4: de 24 a 32 semanas (inclusive)
Faixa 5: de 32 a 44 semanas (inclusive)
Faixa 6: de 44 a 56 semanas (inclusive)
Faixa 7: mais de 56 semanas
```

Dessa forma, consideramos os intervalos fechados à direita.

```
library(readr)
library(dplyr)
```

```
dados_raw <- readr::read_csv2('data/Lista2-Xelox.csv')</pre>
# limites dos intervalos
breaks \leftarrow c(0,8,16,24,32,44,56, Inf)
dados <- dados raw %>%
 mutate(
   # define as faixas
   intervalo = cut(timeWeeks, breaks=breaks, right=TRUE),
   j = as.integer(intervalo)
  )
tabua <- dados %>%
  group_by(intervalo, j) %>%
  summarise(
   # numero de falhas no intervalo
   d = sum(delta),
   # numero de censuras no intervalo
   w = sum(delta==0)
  ) %>%
  ungroup() %>%
  mutate(
   # numero de obs em risco, que nao falharam até o fim do intervalo anterior
   n_{estrela} = sum(d+w) - cumsum(d+w) + w+d,
   # corrigindo o numero de ind. em risco
   n = n_{estrela} - w/2,
   # prop. de falhas no intervalo
   q_hat = d/n,
   p_{hat} = 1 - q_{hat}
   # na tabua de vida, a estimativa de S do 1o intervalo = 1
   # depois o produtorio acumulado dos p_i
   s_{hat} = c(1, cumprod(p_hat)[-n()])
tabua
## # A tibble: 7 x 9
## intervalo j d w n_estrela n q_hat p_hat s_hat
##
   <fct> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 (0,8]
               1 4 0
                                    48 48 0.0833 0.917 1
## 2 (8,16]
                2
                     6
                            0
                                     44 44 0.136 0.864 0.917
                    6
## 3 (16,24]
                 3
                           0
                                    38 38
                                             0.158 0.842 0.792
                           0
                                    32 32 0.125 0.875 0.667
## 4 (24,32]
                 4 4
## 5 (32,44]
                5 4
                            1
                                    28 27.5 0.145 0.855 0.583
                 6
                       2
                                     23 21 0.0952 0.905 0.498
## 6 (44,56]
                            4
                      6 11
                                     17 11.5 0.522 0.478 0.451
## 7 (56, Inf]
# library(KMsurv)
# fitlt = lifetab(breaks, 48, nlost = tab$w , nevent = tab$d)
x = rep(breaks, each=2)[2:15]
x[length(x)] <- 100 # substitui infinito
y = rep(tabua$s_hat, each=2)
```

Estimativa da função de sobrevivência pela tábua de vida

Chama a a tenção o fato da estimativa da função de sobrevivência não se aproximar de 0 à medida que aumentam o número de semanas. Isso acontece principalmente devido às 11 observações censuradas no último intervalo.

(b) Calcule o estimador Kaplan-Meier para os dados (você pode utilizar um software).

```
library(survival)
sfit <- survfit(Surv(dados$timeWeeks, dados$delta)~1, data=dados)
summary(sfit)</pre>
```

```
## Call: survfit(formula = Surv(dados$timeWeeks, dados$delta) ~ 1, data = dados)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       4
             48
                       1
                            0.979 0.0206
                                                  0.940
                                                                1.000
##
       8
             47
                       3
                            0.917 0.0399
                                                  0.842
                                                                0.998
       9
##
             44
                       1
                            0.896 0.0441
                                                  0.813
                                                                0.987
##
      11
             43
                       1
                            0.875
                                  0.0477
                                                  0.786
                                                                0.974
                                                  0.760
      12
                            0.854
                                  0.0509
                                                                0.960
##
             42
                       1
```

##	13	41	1	0.833	0.0538	0.734	0.946
##	16	40	2	0.792	0.0586	0.685	0.915
##	17	38	2	0.750	0.0625	0.637	0.883
##	19	36	1	0.729	0.0641	0.614	0.866
##	21	35	1	0.708	0.0656	0.591	0.849
##	24	34	2	0.667	0.0680	0.546	0.814
##	25	32	1	0.646	0.0690	0.524	0.796
##	28	31	2	0.604	0.0706	0.481	0.760
##	30	29	1	0.583	0.0712	0.459	0.741
##	37	28	2	0.542	0.0719	0.418	0.703
##	42	26	1	0.521	0.0721	0.397	0.683
##	43	25	1	0.500	0.0722	0.377	0.663
##	46	23	1	0.478	0.0722	0.356	0.643
##	53	19	1	0.453	0.0727	0.331	0.620
##	59	16	1	0.425	0.0735	0.303	0.596
##	60	14	1	0.394	0.0742	0.273	0.570
##	64	13	1	0.364	0.0744	0.244	0.544
##	66	12	1	0.334	0.0742	0.216	0.516
##	76	11	1	0.303	0.0734	0.189	0.487
##	78	10	1	0.273	0.0720	0.163	0.458

plot(sfit,xmax=100, main="Estimativa da função de sobrevivência por Kaplan-Meier")

Estimativa da função de sobrevivência por Kaplan-Meier

(c) Coloque em um mesmo gráfico as duas curvas estimadas nos itens anteriores. Compare as curvas e comente.

Estimativas da função de sobrevivência

O método de Kaplan-Meier melhora visualmente a estimativa da curva da função de sobrevivencia, principalmente nas semanas >=56, onde o número de censuras é maior. Além disso, enquanto que a tábua de vida

```
kmeier <- dados_raw %>%
  group_by(t=timeWeeks) %>%
# numero de eventos e censuras em cada t
  summarise(d = sum(delta), w=sum(delta==0)) %>%
  ungroup() %>%
mutate(
  # numero de individuos vivos até antes de cada instante t
  Y = sum(d+w) - (cumsum(d+w) - (d+w)),
  # estimate of the conditional probability that an individual who survives
  # to just prior to time ti experiences the event at time ti
  q = d/Y,
  # estimate of surv function
  s_hat = cumprod(1 - q)
) %>%
filter(d!=0)
```

Estimativa da função de sobrevivência por Kaplan-Meier

Questão 4

Questão 5

Questão 6

Questão 7

Questão 8