

UNCLASSIFIED

AD NUMBER

AD067748

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; JUL 1955.
Other requests shall be referred to Air
Force Office of Scientific Research,
Arlington, VA 22203-1997.**

AUTHORITY

AFOSR ltr dtd 24 May 1966

THIS PAGE IS UNCLASSIFIED

AD 677748

Armed Services Technical Information Agency

**Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO**

Because of our limited supply, you are requested to
RETURN THIS COPY WHEN IT HAS SERVED YOUR PURPOSE
so that it may be made available to other requesters.
Your cooperation will be appreciated.

**NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.**

UNCLASSIFIED

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

July 1955

OSR-TN-55-142

AD No. 677748
ASTIA FILE COPY

TN-9

Transition-State Theory of the Linear Rate of
Decomposition of Ammonium Perchlorate*

by

Robert D. Schultz and Albert O. Dekker

FC

Aerojet-General Corporation

Azusa, California

* * * *

Abstract

The experimental data of Bircumshaw and Newman are analyzed in terms of a linear rate of progression of the interface between residue and undecomposed crystal. Linear decomposition rates corresponding to given temperatures are derived directly from the maximum rate portions of the sigmoid curves of product pressure versus time. It is proposed that in the temperature range 220°C to 280°C, the decom-

* This work was supported under Contract AF18(600)-1026 by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command OSR-TN-55-142.

position interface travels exclusively through the disordered material between the mosaic blocks of the crystal and does not penetrate the interior of these blocks. Absolute rate treatments in the manner of Laidler, Glasstone, and Eyring are presented for each of the two crystal forms (orthorhombic and cubic). These treatments are similar to those proposed for the sublimation of ionic solids and the vaporization of solid ammonium chloride, respectively.

Introduction

Bircumshaw and Newman¹ have recently summarized the results of an

¹ L. L. Bircumshaw and E. H. Newman, Proc. Roy. Soc. (London), A227,
115-132, 228-241 (1954).

exceptionally detailed investigation of the kinetics of decomposition
of ammonium perchlorate. The present writers sometime ago obtained a
report² of well over a hundred pages containing the excellent original

² L. L. Bircumshaw and E. H. Newman, Interim Report, March, 1951.

data which facilitated the following theoretical analysis. The present
paper is based upon a discussion³ originally presented in 1952 and re-

³ R. D. Schults and A. O. Dekker, "The Kinetics of Decomposition of
Ammonium Perchlorate" presented at the 122nd National Meeting,
American Chemical Society, Atlantic City, New York, September, 1952.

cently modified in the light of recent studies on the linear vaporiza-

sation rate of ammonium chloride^{4,5} and on the sublimation rates of

⁴ R. D. Schults and A. O. Dakker, "The Absolute Thermal Decomposition Rates of Solids. Part I," in the Fifth International Combustion Symposium (1954), Reinhold Publishing Company, New York, (1955).

⁵ R. D. Schults and A. O. Dakker, to be published. OSR-TN-55-141.

molecular⁶ and ionic crystals.⁷

⁶ R. D. Schults and A. O. Dakker, J. Chem. Phys. in press. OSR-TN-54-367.

⁷ R. D. Schults and A. O. Dakker, to be published. OSR-TN-55-138

By a series of excellent photomicrographs on individual crystals of ammonium perchlorate, Bircumshaw and Newman¹ demonstrated that the slow decomposition at 230°C proceeds by the formation of opaque spots (i.e., nuclei) on the crystal surface. These spots then grow in size and eventually coalesce to form a continuous opaque region whose boundary with the transparent region was observed to move uniformly inward toward the center of the crystal. When the boundary reaches the center of the crystal, decomposition ceases, leaving a porous pseudomorph which is still pure ammonium perchlorate but which has a density only 70% of that of the original crystal.

In the following discussion, it is shown that a single consistent treatment of the kinetic data can be made in terms of the linear rate of progression of the interface between partially decomposed and un-decomposed crystal. A modification of a treatment by Mott⁸ is used to

⁸ N. F. Mott, Proc. Roy. Soc. (London), A172, 325 (1939).

analyze the acceleratory (or nucleation) period, and a modification of a treatment by Topley and Hume⁹ is used to analyze the deceleratory (or

⁹ B. Topley and J. Hume, Proc. Roy. Soc. (London), A120, 211 (1929).

post-coalescence) period. An explanation for the observed cessation of the reaction at 30% completion is proposed on the basis of the concept of mosaic structure in crystals. The experimental linear rates derived by this analysis provide a basis for a transition-state absolute rate treatment in the manner of Glasstone, Laidler, and Eyring. These latter calculations suggest that the intermosaic material of the orthorhombic crystal decomposes below 250°C via a primary rate-controlling step requiring the attainment of nearly free rotation of the perchlorate ion. On the other hand, the intermosaic material of the cubic crystal appears to decompose above 250°C via a rate-controlling step which involves desorption of a loosely bound NH₃:HClO₄ complex from its physically adsorbed state at the decomposition interface.

Theory of the Nucleation Process in the Acceleratory Period

Bircumshaw and Newman^{1,2} have suggested that the formation of centers of decomposition on the crystal surface may be associated with the formation of free adsorbed perchloric acid. To support this hypothesis, they have demonstrated that the induction period for decomposition is considerably shortened by crystallizing some of the salt with perchloric acid as a 2% impurity. Moreover, they find that the induction period is considerably lengthened by a small pressure of ammonia over the salt, presumably caused by the neutralization of adsorbed perchloric acid. Accordingly, the following mechanism is assumed for the nucleation process:

state
symbol (ss) (ad) (g) (ad)

Let ds/dt be the rate of escape of NH_3 (g) from the surface of the crystal in molecules $\text{sec}^{-1} \text{cm}^{-2}$. As a first approximation, the back reactions (1b) and (1d) are neglected and reaction (1c) is assumed to be rate controlling, so that

$$\frac{ds}{dt} = k_c (\text{NH}_3 : \text{HClO}_4)_{\text{ad}} = k_s \quad (2)$$

where k_c is the specific rate constant for reaction (1c) and where k_s

is a combination constant. (The alternate assumption that reaction (1a) is rate-controlling will not affect the mathematical form of the decomposition pressure-time relationship (13) below.) Assume in this first approximation that the rate of escape of perchloric acid from the surface is negligible. Assume also that the time required to attain temperature equilibrium is negligible compared to the duration of the nucleation period. At time t after start of heating, the concentration of perchloric acid in the surface is

$$(\text{HClO}_4)_{\text{ad}} = s = K_s t \quad (3)$$

provided that no adsorbed HClO_4 or NH_3 is present prior to $t = 0$. A nucleus will be considered to be in existence when a certain number, j , of HClO_4 (ad) molecules have migrated to a potential nucleus site (i.e., surface discontinuity) and have decomposed to leave a surface hole. The mobility of the adsorbed perchloric acid could be the result of a surface lattice migration process of a type discussed by Macdonald.¹⁰ For

¹⁰ J. Y. Macdonald, Trans. Far. Soc., 47, 860-863 (1951).

NH_4ClO_4 the migration process might be visualized as

The formation of an empty space in the surface lattice caused by a decomposition reaction of j molecules of HClO_4 at a potential nucleus site should loosen the lattice restraints on the immediately adjacent ions, thereby permitting them to enter decomposition reactions. (This situation is comparable to the calcium carbonate decomposition discussed by Langmuir.¹¹ The latter used the phase rule to show that the

¹¹ I. Langmuir, J. Am. Chem. Soc., 38, 2263-2267 (1916).

lattice vacancy left by the removal of a CO_2 group weakens the bonds by which adjacent groups are held.) The rate of nuclei formation per unit area of crystal is then

$$\frac{dn}{dt} = k_n \gamma s^j = k_n \gamma K_s j_t j \quad (5)$$

where γ is the number of potential nucleus sites per unit area and k_n is the specific rate constant of the nucleation process.

It has been observed in many crystal decompositions that the radial growth rate (dr/dt) of a nucleus is constant under isothermal conditions and varies with temperature T according to the equation

$$B = dr/dt = B_0 \exp (-E/RT) \quad (6)$$

At the time τ' , the radius of a nucleus born at time t is

$$r = B (\tau' - t) \quad (7)$$

Both τ' and t are measured from the commencement of heating.

The volume of a hemispherical nucleus is

$$V = (2/3) \pi r^3 (\tau' - t)^3 \quad (8)$$

and the total volume V_n of all n nuclei existing at anytime τ' before coalescence (i.e., before appreciable interference of decomposition zones occurs) is

$$V_n = \int_0^n (2/3) \pi r^3 (\tau' - t)^3 dt \quad (9)$$

where dt is given by equation (5). Hence

$$V_n = \int_0^{\tau'} (2/3) \pi B^3 k_n r K_s^j t^j (\tau' - t)^3 dt \quad (10)$$

Integration gives

$$V_n = \frac{4\pi B^3 k_n r K_s^j}{(j+1)(j+2)(j+3)(j+4)} \tau'^{j+4} \quad (11)$$

If it is assumed that perchloric acid decomposes by a bimolecular reaction at a potential nucleus site, $j = 2$, so that

$$v_n = (\pi r^3 k_n \gamma R^2 / 90) T^6 \quad (12)$$

In the absence of secondary reactions at time (t), the pressure (p) of decomposition products above the salt is proportional to v_n , so that

$$p = (C \pi r^3 k_n \gamma R^2 / 90) T^6 \quad (13)$$

where C is a constant of proportionality. Equation (13) is identical in form to the power expression, $p = kt^x$ (where $x = 6.2 \pm 0.5$) which Bircumshaw and Newman² found to hold for the acceleratory period at $220 \sim 275^\circ\text{C}$. Secondary reactions in the gaseous decomposition products which involve volume changes will not affect the experimental value of the exponent x provided that the final decomposition is attained in a time which is either very small or very large compared to the duration of the acceleratory period.

The above calculations suggest that some kind of bimolecular reaction is responsible for the formation of a nucleus but it is by no means certain that the reaction involves perchloric acid. An alternative assumption that a nucleus is formed by two holes (or even two charged particles) which migrate through the crystal lattice and coalesce at a discontinuity in the crystal would lead to a mathematical expression of the same form as equation (13). (See H. F. Mott⁸.)

The Maximum Rate Period

Once coalescence of the growing nuclei has occurred so that the surface is completely covered by a layer of residue, equation (13) is no longer valid. At this time, the reaction interfaces no longer increase in area. Instead, the resulting single interface decreases in area as it progresses toward the center of the crystal. Let the shape of a given crystal at coalescence time t_y be approximated as a sphere of radius r_y . The volume V_y of undecomposed crystal inside this sphere at time t_y is

$$V_y = (4/3)\pi r_y^3 \quad (14)$$

At the later time t , the volume V_t of undecomposed crystal is

$$V_t = (4/3)\pi \left[r_y - B(t - t_y) \right]^3 \quad (15)$$

Differentiation gives

$$\frac{dV_t}{dt} = -4\pi B \left[r_y - B(t - t_y) \right]^2 \quad (16)$$

The rate of increase of decomposition product pressure dp/dt is proportional to the rate of volume decrease $-dV_t/dt$ and to Q the number

of crystals assumed uniform in size and shape, so that

$$\frac{dp}{dt} = 4\pi QCG \left[r_y - R(t - t_y) \right]^2 \quad (17)$$

where G is a proportionality constant. The maximum rate occurs at the time $t = t_y$ so that

$$(dp/dt)_y = 4\pi QCG r_y^2 \quad (18)$$

The number of crystals Q in a fixed initial weight W of uniform NH_4ClO_4 crystals (assumed spherical in shape) is

$$Q = \frac{3W}{4\pi r_0^3 \rho} \quad (19)$$

where r_0 is the initial crystal radius and ρ its density.

Insertion of (19) into (18) gives

$$(dp/dt)_y = 3 \frac{WCG}{\rho} \frac{r_y^2}{r_0^3} \quad (20)$$

Let the difference between the initial radius of the crystal and the radius of the spherical reaction interface at coalescence be δ so

that

$$r_y = r_0 - \delta \quad (21)$$

and

$$(dp/dt)_y \propto (r_0 - \delta)^2 / r_0^3 \propto (r_0^2 - 2r_0\delta + \delta^2) / r_0^3 \quad (22) \propto = \text{proportional to}$$

For large crystals, δ is small compared to r_0 so that

$$(dp/dt)_y \propto 1/r_0 \quad (23)$$

Thus, the maximum rate for a given mass of large NH_4ClO_4 crystals should vary inversely as the initial crystal radius. Indeed, this is nearly the relationship observed by Bircumshaw and Newman² for crystals greater than 0.004 inches in diameter. Below this size, the maximum rate was found to decrease with decrease in diameter. This results from the fact that coalescence occurs at greater percentages of decomposition for the smaller particles (i.e., δ is no longer small compared to r_0). Mampel¹²

12 K. L. Mampel, Z. Physik. Chem., A187, 43-57, 235-249 (1940).

reached a similar conclusion about the effect of decreased particle size on the rate of solid decomposition.

For a given batch of uniform crystals, the point of inflection of the commonly observed sigmoid decomposition pressure-time curves correspond approximately to t_y , the time of coalescence of the nuclei on the surface of the crystal. At time $t = t_y$ the decomposition rate, in terms of fraction of original crystal volume V_0 , is from equation (16)

$$\left(\frac{dV_t/V_0}{dt} \right)_y = -3B \frac{r_y^2}{r_0^3} \quad (24)$$

But V_0 is proportional to p_f , the final decomposition pressure, so that (24) becomes

$$\left(\frac{dp/p_f}{dt} \right)_y = 3B \frac{r_y^2}{r_0^3} \quad (25)$$

The ratio of the volume V_y of undecomposed crystal to the original volume V_0 is at time t_y

$$\frac{V_y}{V_0} = \frac{r_y^3}{r_0^3} = \frac{p_f - p_y}{p_f} \quad (26)$$

The radius of the decomposition interface at time t_y is, therefore,

$$r_y = r_0 (p_f - p_y)^{1/3} p_f^{-1/3} \quad (27)$$

The maximum rate of linear progression of the decomposition interface,

$B = dr_y/dt$, at time t_y is

$$B = \frac{r_0 (dp/dt)_y}{3p_f^{1/3} (p_f - p_y)^{2/3}} \text{ cm sec}^{-1} \quad (28)$$

where r_0 = initial crystal radius cm

$(dp/dt)_y$ = slope at the point of inflection of
sigmoid decomposition product
pressure - time curve mm Hg sec⁻¹

p_y = decomposition product pressure at
point of inflection mm Hg

p_f = final product pressure (assuming
no change in volume of system
during run) mm Hg

By means of equation (28), experimental values of B (plotted in Figure 1 as $\log_{10} B$ versus $1/T$) were derived directly from the sigmoid p-t curves of the original Bircumshaw and Newman data² using their estimated mean value of $r_0 = 1.98 \times 10^{-2}$ cm. Below 513°K the linear decomposition rate of the intermosaic material of the orthorhombic NH_4ClO_4 crystal is given by

$$B_{\text{NH}_4\text{ClO}_4 \text{ (orthorhombic)}} = 1.5 \times 10^8 \exp(-31,600/RT) \text{ cm sec}^{-1} \quad (29)$$

At 513°K , the crystal of NH_4ClO_4 assumes the cubic NaCl type lattice. Above this temperature, the linear decomposition rate of the intermoxic material of the cubic NH_4ClO_4 crystal is

$$B_{\text{NH}_4\text{ClO}_4 \text{ (cubic)}} = 2.4 \times 10^1 \exp(-16,200/RT) \quad \text{cm sec}^{-1} \quad (30)$$

It is of interest to compare equation (29) with an equation⁷ recently estimated for the maximum linear rate of advance in vacuo of the decomposition interface between CaCO_3 and CaO

$$B_{\text{CaCO}_3:\text{CaO}} = 7.7 \times 10^7 \exp(-37,600/RT) \quad \text{cm sec}^{-1} \quad (31)$$

It is also of interest to compare equation (30) with the equation for the linear rate of vaporization of ammonium chloride obtained by an analysis¹⁴ of the experimental data of H. Spingler.¹³

¹³ H. Spingler, Z. Physik. Chem., B52, 90-106 (1942).

$$B_{\text{NH}_4\text{Cl}} = 1.2 \times 10^2 \exp(-13,500/RT) \quad \text{cm sec}^{-1} \quad (32)$$

The Deceleratory Period

It follows from the previous mathematical analysis that the equation of the deceleratory portion of the sigmoid $p - t$ curve is

$$\frac{p_f - p}{p_y} = \frac{[r_y - B(t - t_y)]^3}{r_o^3} \quad (33)$$

where r_y is given by equation (27). Figures 2, 3, and 4 compare the deceleratory curves derived by equation (33) with the experimental curves. At 215°C , the agreement is excellent but becomes progressively poor with increasing temperature. The discrepancy at higher temperatures may be the result of an increase in the vaporization rate of the salt without oxidization-reduction reactions in the gas phase or perhaps may be the result of an impedance or hindering effect of the layer of residue on the escape of gaseous products from the decomposition interface.

The Thermodynamics of the Simple Dissociation Process

An enthalpy balance for the dissociation of orthorhombic ammonium

perchlorate to gaseous ammonia and perchloric acid may be written as

14 National Bureau of Standards, Circular 500 (1952).

A value of 8.8 koal g-mole⁻¹ for the enthalpy of vaporization of anhydrous perchloric acid was estimated from vapor pressure data¹⁵ by

15 J. W. Mallor, "Comprehensive Treatise on Inorganic and Theoretical Chemistry," Longmans, Green and Company, (London), Vol. II, p. 377.

use of the Clausius-Clapeyron equation. This enthalpy of vaporization was added to the -11.1 koal g-mole⁻¹ heat of formation of HClO_4 (liq) (Reference 14) to obtain the estimated value $\Delta H_f^\circ(298^\circ\text{K}) \text{ HClO}_4 \text{ (gas)} \approx -2.3$ koal g-mole⁻¹. Reaction (34), as written, is endothermic to the extent of about 56 koal g-mole⁻¹. This value is somewhat uncertain

because the heat of aqueous solution of HClO_4 (liq) is not known accurately.¹⁶ Since the endothermicity of the simple dissociation process

¹⁶ C. F. Goodeve and A. E. Le Marsh, J. Chem. Soc., 1516 (1937).

(3b) is much higher than the observed activation energies for the vaporization process, it follows that the latter must occur in stages rather than as a single step.

The Nature of the Residue

Garner and Hailes¹⁷ have suggested that, in certain cases, solid

¹⁷ W. E. Garner and H. R. Hailes, Proc. Roy. Soc. (London), A139, 576-595 (1933).

decomposition might proceed preferentially along the boundaries of the mosaic blocks comprising a crystal. If the decomposition paths at 215 to 280°C travel exclusively through the strained intermosaic lattice in NH_4ClO_4 crystals and do not penetrate the interior of the mosaic blocks, the formation of a residue stable at these temperatures is understandable. The minimum size of the mosaic blocks in ammonium perchlorate may be estimated on the assumption that the thickness of the strained transition lattice is about equal to the side of a unit cell of the cubic lattice,

If the residue consists mainly of the original mosaic blocks with the intermosaic material removed, it follows that

$$\frac{\text{Mass residue}}{\text{Mass original crystal}} = \left[\frac{D}{D+d} \right]^3 = 0.7 \quad (35)$$

where D is the side dimension of the mosaic block
 d is the thickness of the intermosaic layer
 0.7 is the fraction of the original mass remaining
 after cessation of decomposition.

Setting d equal to 7.64 Å, the side dimension of the unit cell in cubic NH_4ClO_4 (Reference 18), gives a minimum average value of about 62 Å for

18 K. Herrmann and W. Illge, Z. Krist., 75, 41-66 (1931).

the side dimension of a mosaic block or about 69 Å for the spacing of successive intermosaic layers.

Transition State Decomposition Rate Theory for
Intermosaic Cubic NH_4ClO_4

Assume that the final stages of the mechanism of decomposition of the intermosaic material in the cubic form of ammonium perchlorate is

where S_2 is a dual adsorption site and where the reaction intermediate is a loose $NH_3 : HClO_4$ complex which is physically adsorbed at the decomposition interface. Reactions (36a) and (36b) are similar to those assumed in a recently revised absolute rate treatment⁵ of the ammonium chloride decomposition $NH_4 Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$. A possibility exists, therefore, of analyzing the reverse reaction (36b) by a straightforward application of the absolute rate treatment formulated by Laidler, Glasstone, and Eyring¹⁹ for a bimolecular surface reaction

¹⁹ See K. J. Laidler, "The Absolute Rates of Surface Reactions" in

Catalysis, Vol. I, Part 1, 195-243 (1954); P. H. Emmet, editor.

Reinhold Publishing Co., New York. See particularly pp. 214-217.

proceeding by Langmuir-Hinshelwood mechanism. By analogy with the treatment for $NH_4 Cl$, the maximum exchange rate, reaction (36b), should be equal to the maximum forward rate of reaction (36a). Assuming the latter to be rate-controlling, the maximum decomposition rate of the

intermosaic material of the cubic form of ammonium perchlorate should correspond to the equation

$$\frac{-d(\text{NH}_4\text{ClO}_4)}{dt} = \left[\text{NH}_3 \right]_{\text{g}} \left[\text{HCl} \right]_{\text{g}} C_{S_2} \frac{kT}{h} \frac{P^*}{P_{\text{NH}_3(\text{g})} P_{\text{HCl}(\text{g})} P_{S_2}} e^{-E_0/RT} \quad (38)$$

ion-pairs
 $\text{cm}^{-2} \text{ sec}^{-1}$

where

- $-\frac{d(\text{NH}_4\text{ClO}_4)}{dt}$ = the decomposition rate per unit area of exposed surface of intermosaic material ion-pairs $\text{cm}^{-2} \text{ sec}^{-1}$
- $[\text{NH}_3]_{\text{g}}$ = steady state gas phase concentration of ammonia in contact with the reaction interface molecules cm^{-3}
- $[\text{HClO}_4]_{\text{g}}$ = steady state gas phase concentration of perchloric acid in contact with the reaction interface molecules cm^{-3}
- C_{S_2} = concentration of bare dual adsorption sites cm^{-2}
- P^* = partition function of activated complex over all degrees of freedom except the vibrational mode included in kT/h

$f_{\text{NH}_3(g)}$	= partition function of ammonia per unit volume of gas phase	
$f_{\text{HClO}_4(g)}$	= partition function of perchloric acid per unit volume of gas phases	
f_{S_2}	= partition function of a bare dual adsorption site	
E_0	= activation energy of surface reaction	calories g-mole ⁻¹
kT/h	= Eyring frequency for passage over potential energy barrier	sec ⁻¹

By a procedure nearly identical to that used for ammonium chloride⁵ equation (38) may be simplified to

$$B_{\text{NH}_4\text{ClO}_4 \text{ (cubic)}} = \left(\frac{\rho}{M} \right)^{1/3} \frac{kT}{h} \frac{f^*(\text{trans})}{f(\text{NH}_3) f(\text{HClO}_4)} \cdot \left(\frac{E + E_{\text{NH}_3} + E_{\text{HClO}_4}}{RT} \right)^{1/2} \quad (39)$$

where

kT/h	= Eyring transition-state frequency for passage over a potential energy barrier	sec ⁻¹
M	= formula weight of NH_4ClO_4	g g-mole ⁻¹
ρ	= density of NH_4ClO_4 (cubic) ≈ 1.95	g cm ⁻³
N	= Avogadro's number	molecules g-mole ⁻¹

$f^*(\text{trans})$ = partition function for a one-dimensional translation motion of the center of gravity of the complex in the plane of the crystal surface.

As an approximation $f^*(\text{trans}) \approx 1$

$f(\nu)$ = single mode vibrational partition function of the form $\left[1-\exp(-h\nu/kT)\right]^{-1}$. As an approximation $f(\nu) \approx kT/h$

ν_{NH_3}
 ν_{HClO_4}

= frequencies for translational oscillation of physically adsorbed ammonia and hydrogen chloride in the plane of the adsorbed layer at the decomposition interface

E_0 = activation energy for surface reaction

sec^{-1}

E_{NH_3} = energy of adsorption of ammonia

$\text{calories g-mole}^{-1}$

E_{HClO_4} = energy of adsorption of perchloric acid

$\text{calories g-mole}^{-1}$

Implicit in equation (39) is the assumption that the rotational oscillation of physically adsorbed HClO_4 is nearly free gas-type rotation.

The frequencies ν_{NH_3} and ν_{HClO_4} may be estimated in the manner of Hill²⁰

²⁰ T. L. Hill, J. Chem. Phys., 16, 181-189 (1948).

and Drenan and Hill²¹ by use of the equation

²¹ J. W. Drenan and T. L. Hill, J. Chem. Phys., 17, 775-781 (1949).

$$\nu = (v_0/m s^2)^{1/2} = 1.025 \times 10^{13} (v_0/m s^2)^{1/2} \text{ sec}^{-1} \quad (39)$$

where

$\nu_x = \nu_y = \nu$ = translational oscillation frequency in the x
or y directions in the plane of the physi-
cally adsorbed layer

v_0 = maximum potential energy barrier to trans-
lation in x or y direction

ergs

m = mass of adsorbed molecule

g

s = distance between potential minima along x or
y axis of surface lattice (assumed simple
cubic)

cm

v_0 = same as v_0 except for unit

kcal g-mole⁻¹

M = molecular weight of adsorbed molecule

g g-mole⁻¹

S = same as s except for unit

Å

Hill²⁰ has estimated the potential barrier v_0 to be about 0.3 - 1.0
kcal g-mole. If HClO_4 is adsorbed preferentially on a NH_4^+ ion and

NH_3 is adsorbed preferentially on a ClO_4^- ion, the distance S should be about equal to the 7.64 \AA side dimension of the unit cell in cubic NH_4ClO_4 . Thus, the estimated frequencies are

$$\nu_{\text{NH}_3} \approx 1.8 \text{ to } 3.3 \times 10^{11} \text{ sec}^{-1} \text{ (40)}$$

$$\nu_{\text{HClO}_4} \approx 0.7 \text{ to } 1.3 \times 10^{11} \text{ sec}^{-1} \text{ (41)}$$

As in the treatment for ammonium chloride

$$E_0 \approx 2v_0 \approx 600 \text{ to } 2000 \text{ calories g-mole}^{-1} \text{ (42)}$$

$$E_{\text{NH}_3} \approx \Delta H_{\text{cg}} \text{ NH}_3 - RT_{\text{cg}} \approx 6,60 \text{ calories g-mole}^{-1} \text{ (43)}$$

$$E_{\text{HClO}_4} \approx \Delta H_{\text{cg}} \text{ HClO}_4 - RT_{\text{cg}} \approx 10,700 \text{ calories g-mole}^{-1} \text{ (44)}$$

where ΔH_{cg} signifies an enthalpy of sublimation measured at the temperature T_{cg} . Therefore, the theoretical value of $E_{\text{NH}_4\text{ClO}_4}$ (cubic) at $T_{\text{average}} = 532^\circ\text{K}$ is between

$$E_{\text{NH}_4\text{ClO}_4(\text{cubic})} = 5.5 \times 10^7 \exp(-17,800/RT) \text{ cm sec}^{-1} \text{ (45)}$$

Theory (v_0 assumed to be $0.3 \text{ kcal g-mole}^{-1}$)

and

$$E_{\text{NH}_4\text{ClO}_4(\text{cubic})} = 1.6 \times 10^2 \exp(-19,200/RT) \quad \text{cm sec}^{-1} \quad (46)$$

Theory (v_0 assumed to be 1.0 kcal g-mole⁻¹)

in fair agreement with the experimentally derived value

$$E_{\text{NH}_4\text{ClO}_4(\text{cubic})} = 2.4 \times 10^1 \exp(-16,200/RT) \quad \text{cm sec}^{-1} \quad (47)$$

Experiment

Use of energies of liquefaction instead of energies of sublimation to approximate E_{NH_3} and E_{HClO_4} would have given an activation energy of 13,900 to 15,500 calories g-mole⁻¹ also in fair agreement with the experimental value. In these calculations the enthalpies of sublimation and liquefaction of ammonia were taken from a compilation by the U. S. Bureau of Standards.²² The enthalpy of fusion of perchloric

²² U. S. Bureau of Standards, Circular 500 (1952).

acid was estimated to be about 2.5 kcal g-mole⁻¹ by comparison with nitric, sulfuric, and phosphoric acid. The enthalpy of vaporization of perchloric acid was estimated above to be 8.8 kcal g-mole⁻¹ from vapor pressure data at 16 and 39°C.

Transition-State Decomposition Rate Theory for
Intermosaic Orthorhombic NH_4ClO_4

For the linear decomposition of the intermosaic material in orthorhombic NH_4ClO_4 , the experimentally derived pre-exponential factor of $1.5 \times 10^8 \text{ cm sec}^{-1}$ is about the same as for sublimation of simple ionic crystals and for the decomposition of calcium carbonate.⁷ In these cases, the chief statistical difference between the initial and activated states appears to be that rotation or nearly free rotation is possible only in the activated state. Accordingly, it will be assumed that the formation of the activated complex for the decomposition of intermosaic orthorhombic NH_4ClO_4 requires the attainment of an almost free rotational motion of the ClO_4^- ion at the decomposition interface. A reasonable estimate of the initial state torsional oscillation frequency of the ClO_4^- ion is about $7.5 \times 10^{12} \text{ sec}^{-1}$ corresponding to a characteristic temperature $\Theta = h\nu/k = 360^\circ\text{K}$. It will be assumed, in accordance with a suggestion by Bircumshaw and Newman,¹ that the ammonium ion is rotating almost freely in the initial state in both orthorhombic and cubic NH_4ClO_4 . Apropos of this assumption, the neutron diffraction experiments of Levy and Peterson,²³ the infrared spectra

23 H. A. Levy and S. W. Peterson, J. Chem. Phys., 21, 366 (1953);

J. Am. Chem. Soc., 75, 1536-1542 (1953).

studies of Plumb and Hornig,²⁴ and the Raman spectra studies of Couture-

²⁴ R. C. Plumb and B. F. Hornig, J. Chem. Phys., 21, 366-367 and 1113
(1953).

Mathieu and Mathieu²⁵ provide evidence that one-dimensional rotation of

²⁵ Le Couture-Mathieu and J. P. Mathieu, J. Chem. Phys., 49, 226 (1952).

the NH_4^+ ion is possible in the ammonium halides (i.e., ND_4Br , ND_4I , NH_4I) possessing the NaCl-type structure. Moreover, the neutron dif-
fraction experiments²³ provide evidence for appreciable rotatory oscil-
lation of the NH_4^+ ion in ND_4Br . The fact that ClO_4^- is larger than either
the Br^- or I^- ion makes nearly free rotation of NH_4^+ ion in crystalline
 NH_4ClO_4 a distinct possibility.

The attainment of the activated complex for decomposition probably
also involves a translational motion of the ClO_4^- ion. In a manner analo-
gous to that used for the escape velocity during sublimation,^{6,7} the
activated state translational motion of the ClO_4^- ion is divided into three
components. The partition function for one of these components is in-
cluded in the kT/h factor of the Eyring formulation of transition state
theory. The other two components are assumed to be normal-state trans-
lational lattice vibrations. It is further assumed that the translational
lattice vibrations of the NH_4^+ ion remain unaltered during the formation
of the activated state.

It is now possible to write an absolute rate expression for the pre-exponential linear decomposition rate factor of intermolecular orthorhombic NH_4ClO_4 , identical in form to that used for sublimation of a non-linear molecule, namely

$$B_0 \text{ NH}_4\text{ClO}_4 = \left(\frac{\rho}{C^2 I} \right)^{1/3} \frac{kT}{h} \frac{\pi^{1/2} (8\pi^2 kT)^{3/2}}{\sigma \left[1 - \exp(-\theta/T) \right]^{-1}} \text{ cm sec}^{-1} \quad (48)$$

orthorhombic

where ρ = density of NH_4ClO_4 (orthorhombic) $\approx 1.95 \text{ g cm}^{-3}$

θ = characteristic temperature for lattice vibration frequency, assuming equal frequencies for translational and torsional oscillation ≈ 350 $^{\circ}\text{K}$

σ = 12 = symmetry number of ClO_4^- ion

I = moment of inertia of ClO_4^- ion = 1.57×10^{-38} g cm^{-2}

T = average temperature = 501 $^{\circ}\text{K}$

Insertion of the above numerical constants into equation (48) yields

$$B_0 \text{ NH}_4\text{ClO}_4 \text{ (orthorhombic)} = 4 \times 10^7 \text{ cm sec}^{-1} \quad (49)$$

Theory

in reasonable agreement with the experimentally derived value of $1.5 \times 10^8 \text{ cm sec}^{-1}$.

A theoretical calculation of the activation energy for the linear decomposition of intermosaic orthorhombic NH_4ClO_4 is not possible on the basis of present knowledge.

Acknowledgment

The authors are indebted to Mr. Richard D. Gackler and Dr. S. C. Burkett of this laboratory, and to Professor S. S. Penner of the California Institute of Technology for valuable criticism in connection with an early version of this paper. Sylvia Davison assisted in the calculations.

Bibliographical Control Sheet

1. Originating agency and monitoring agency:

O.A.: Aerojet-General Corporation, Azusa, California

M.A.: Western Division, Office of Scientific Research

2. Originating agency and monitoring agency report number:

O.A.: AGC TN-9

M.A.: OSR-TN-55-142

3. Title and classification of title:

TRANSITION-STATE THEORY OF THE LINEAR RATE OF DECOMPOSITION
OF AMMONIUM PERCHLORATE (UNCLASSIFIED)

4. Personal authors: R. D. Schultz and A. O. Dekker

5. Date of report: July 1955

6. Pages: 31

7. Illustrative material: 4 figures

8. Prepared for Contract No.: AFL8(600)-1026

9. Prepared for Project No.: OSR R-351-50-7

10. Security classifications: UNCLASSIFIED

11. Distribution limitations: None

12. Abstract: The experimental data of Bircumshaw and Newman are analyzed in terms of a linear rate of progression of the interface between residue and undecomposed crystal. Linear decomposition rates corresponding to given temperatures are derived directly from the maximum rate portions of the sigmoid curves of product pressure versus time. It is proposed that in the temperature range 220°C to 280°C, the decomposition interface travels exclusively through the disordered material between the mosaic blocks of the crystal and does not penetrate the interior of these blocks. Absolute rate treatments in the manner of Laidler, Glasstone, and Eyring are presented for each of the two crystal forms (orthorhombic and cubic). These treatments are similar to those proposed for the sublimation of ionic solids and the vaporization of solid ammonium chloride, respectively.

Rate of Linear Progression of Decomposition Interface in Ammonium Perchlorate as a Function of Temperature T

Figure 1

Ammonium Perchlorate Decomposition Curve (215°C)

Figure 2

Ammonium Perchlorate Decomposition Curve (250°C)

Figure 3

Ammonium Perchlorate Decomposition Curve (270°C)

Figure 4

DISTRIBUTION LIST

	<u>No. of Copies</u>
Commander Air Research and Development Command P. O. Box 1395 Baltimore 3, Maryland Attn: Chemistry Division - RDTRRC	2
Chief, Document Service Center Armed Services Tech. Info. Agency Knott Building Dayton 2, Ohio	5
Commander Air Research and Development Command P. O. Box 1395 Baltimore 3, Maryland Attn: RDTRRO	1
Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio Attn: Chemistry Research Branch WCRRRC	1
Chief of Naval Research Washington 25, D. C. Attn: Chemistry Branch	1
Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio Attn: Materials Laboratory WCRT	1
Chief, Western Division Air Research and Development Command Office of Scientific Research P. O. Box 2035 Pasadena, California	1
Dep. Chief of Plans and Research Research and Development Division Department of the Army Washington 25, D. C. Attn: Dr. W. T. Read	1

DISTRIBUTION LIST (cont.)

	<u>No. of Copies</u>
Officer-In-Charge Office of Naval Research (London) Navy No. 100, Fleet Post Office New York, New York	1
Office of Ordnance Research Box CM, Duke Station Durham, North Carolina Attn: Chemistry Branch	1
N.A.C.A. Lewis Flight Propulsion Laboratory Cleveland, Ohio Attn: Chemistry	1
Dean Henry Eyring Graduate School University of Utah Salt Lake City, Utah	1
Dr. Alvin Gordon Michelson Laboratory NOTS, Inyokern China Lake, California	1
Professor H. Austin Taylor Chemistry Department New York University University Heights Bronx, New York	1
European Office, ARDC c/o HQ United States Air Force APO 633, c/o Postmaster New York, New York MARK: "Hold for Pickup"	1
Officer-In-Charge Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California	1
Central Intelligence Agency 2430 E. Street, N.W. Washington 25, D. C.	1

DISTRIBUTION LIST (cont.)No. of Copies

N.A.C.A. Headquarters 1724 F. Street, N.W. Washington, D. C.	1
National Science Foundation 2144 California Street, N.W. Washington 25, D. C. Attn: Chemistry	1
Dr. Saul Gordon Pyrotechnics Chemical Research Laboratory Picatinny Arsenal Dover, New Jersey	1
Dr. John B. Fenn Technical Director, Project SQUID Forrestal Research Center Princeton University Princeton, New Jersey	1
Professor S. S. Penner California Institute of Technology Pasadena, California	1
Mrs. L. C. Flaherty Secretary, Chemical Kinetics Project Forrestal Research Laboratory Princeton University Princeton, New Jersey	1
Dr. P. A. van der Meulen Chemistry Department Rutgers University New Brunswick, New Jersey	1
Dr. A. G. Keenan Illinois Institute of Technology Chicago 16, Illinois	1
Dr. James E. LuValle Technical Operations, Inc. 6 Schouler Court Arlington 74, Massachusetts	1
Prof. Roberto Piontelli Polytechnic Inst. of Milan Milan, Italy	1

DISTRIBUTION LIST (cont.)No. of Copies

Dr. R. C. Anderson
Department of Chemistry
University of Texas
Austin 12, Texas

1

Professor F. C. Tompkins
Imperial College of Science of Technology
South Kensington
London S.W. 7, England

Professor L. L. Bircumshaw
University of Birmingham
Birmingham, England

Professor R. S. Bradley
Department of Inorganic and Physical Chemistry
University of Leeds
Leeds, England

VIA: Chief, European
Office, Air Research
and Development
Command, U. S. Air
Force, Shell Bldg.,
60 Rue Ravenstein,
Brussels, Belgium

Professor W. E. Garner
University of Bristol
Bristol, England

Dr. Gordon K. Adams
Explosives Research and Development Establishment
British Ministry of Supply
Waltham Abbey
Essex, England