How can graph theory, gradient descent and partial derivatives be used to develop a letter recognising neural network?

Subject: Mathematics

Word count: 3997

Introduction:	2
Body	2
Representing images mathematically:	2
Creating a training dataset:	5
Introduction to graph theory:	6
Using a graph as our neural network:	g
Representing the forward propagation behind the network:	10
Activation function:	13
Softmax function:	14
Backwards propagation:	15
Avoiding overfitting to the dataset:	21
Conclusion	22
Does it work?:	22
Limitations:	25
Potential improvements:	26
Works cited:	27
Appendix:	28

Introduction:

My handwriting is atrocious, most people have to ask me what I have written every few words. I personally believe that they are exaggerating and can actually read my handwriting. To prove that my handwriting is genuinely legible, I will use graph theory and forward/backward propagation to train a neural network to read letters written by me and others. A neural network is a mathematical object that mimics the way a human brain learns, in this case, learning how to read letters accurately.

In this essay I will answer the question "How can graph theory, gradient descent and partial derivatives be used to develop a letter recognising neural network?" Firstly, I will introduce how visual images of letters can be represented by numbers. Followed by an introduction to graph theory and how it is helpful in the representation of neural networks. I will also use a methodology known as gradient descent of which includes the usage of partial derivatives to minimize the error of the neural network.

The aim of this essay is to create a neural network that can accurately 'read' the letters that I draw, to prove that people exaggerate how illegible my handwriting really is.

A variety of sources were used in my research including videos by Stanford university of engineering (8), Grant Sanderson (3Blue1Brown) (6)(7), the book Graph Theory by Robin J Wilson (10) and a dataset provided by Kaggle (5).

Body

Representing images mathematically:

Our neural network will need to 'read' images, unfortunately our neural network wasn't born with eyes, so we will need to convert images into some form of mathematical representation to input into our neural network.

Images can be represented as an x by y by z matrix, where x and y are the dimensions of the image, and z is the number of datapoints per pixel. In most cases, the image has 3 data points per pixel, the amount of red, green and blue in the pixel, also known as RGB values. RGB values are integers and can range from 0 to 255.

For example, this image of a landscape can also be represented as a matrix.

Fig 1. An image of a landscape with the dimensions of 1000×667 . (9)

[48 65 49][43 60 44][43 60 44][45 62 46][48 66 50][58 76 60][63 81 65][61 79 63][41 62 45][43 64 47][48 69 52][75 96 79][70 91 74][54 75 58]
[42 58 45][46 56 43][46 64 51][49 65 42][41 94 51][49 40][47 65 51][61 76 65][66 84 68][31 52 37][48 69 52][57 78 61][62 83 66][63 84 67][53 74 57]]
[43 59 48][42 58 43][40 56 43][44 60 47][42 59 43][52 95 53][68 86 70][63 82 63][37 55 39][53 72 53][67 88 69][65 87 68][57 78 69][57 78 69][63 84 67][58 74 57][68 85 22][58 78 64][41 57 44][39 55 42][48 65 47][48 65 47][46 63 47][46 63 47][46 63 47][46 63 47][46 63 47][47 86 67][58 75 55][58 77 55][58 77 55][59 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 77 58][52 74 53][57 75 59][52 74 54][57 75 59][52 74 54][57 75 54][52 74 54][57 75 59][52 74

Fig 2. The same image of the landscape represented as a matrix $M(1000, 667, 3)\{M_{x,y,z} \in \mathbb{Z} | 0 \le M_{x,y,z} \le 255\}$. \mathbb{Z} is the set of integers.

These matrices will act as the input to our neural network, and will be like the neural network 'reading' the image of the letter. In order to make the neural network more applicable, pictures of letters have been grayscaled, so the neural network can perceive any colour used to write the letter. Matrices of grayscale images use the percentage brightness rather than the 0-255 system RGB uses. 0% or 0 would be black and 100% or 1 would be white. Images will also all be resized to 28×28 pixels as constant dimensions are crucial for the neural network. 28×28 pixels was chosen as it doesn't sacrifice too much detail while also keeping computational time relatively low.

Fig 3. A grayscale image of the letter 'M' with the dimensions of 28×28 .

Fig 4. The same image of the letter 'M' represented as a matrix. $M(28)\{M_{x,y} \in \mathbb{R} | 0 \le M_{x,y} \le 1\}$.

Creating a training dataset:

We can begin preparing images for our neural network to look at and learn. The more images the more it can learn and adapt to be able to read letters more accurately. The US National Institute of Standards and Technology provides 372450 different matrices of all 26 capital letters in the English alphabet (5). In order to not add dimensional complexity to the project, the dimensions of each matrix containing image data is flattened from 28×28 to 1×784 . In other words, the next row in the matrix is appended to the back of the first row. Once each image data matrix is flattened, it is added to the large dataset matrix resulting in a 784×372450 matrix. The dataset matrix can be thought of as 372450 examples of pictures containing 784 pixels.

Lastly, one row will be added to indicate the actual letter that was written, this will be used to correct the neural network. (Resulting in 785×372450 matrix). Pixel numbers go from left to right, top to bottom. (Top left is 1, top right is 28, bottom left is 757, bottom right is 784).

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

Fig 5. An example matrix on the left with dimensions 3×3 is 'flattened' to the matrix on the right. Resulting in a matrix of dimensions 1×9 .

	Letter(L) (Index in alphabet)(Indexing begins with 0, 'A'=0) $\{L \in \mathbb{Z} 0 \le L \le 25\}$:	Pixel 1 (P_1) grayscale value $\{P_1 \in \mathbb{R} 0 \le P_1 \le 1\}$:	Pixel 2 (P_2) grayscale value $\{P_2 \in \mathbb{R} 0 \le P_2 \le 1\}$:		Pixel 784 (P_{784}) grayscale value $\{P_{784} \in \mathbb{R} 0 \le P_{784} \le 1\}$:
Image 1	12	0.36	0.00		0.48
Image 2	4	0.18	0.27	•••	1.00
Image 372449	9	0.00	0.00		0.00
Image 372450	25	0.33	0.00		0.00

Figure 6. A preview of the data set.

Introduction to graph theory:

It is time to begin making the neural network itself. The neural network is an example of a graph from graph theory. Graph theory is the branch of mathematics where graphs are used to represent different mathematical structures such as paths, networks and friendships (10). Graph theory allows computers to interpret different datapoints with differing importance, allowing computers to decide what information is relevant. Below is an example where graph theory might be used to represent the relationship between 5 friends.

Consider a group of 5 friends at a party. Each friend can be represented as a node. Nodes can also represent numbers.

Fig 6.1. A graph of 5 people/nodes.

Joe and George begin to talk and form a relationship, this is known as an edge. Dick, Felix and Sam also form a relationship.

Fig 6.2. A graph with an edge between Joe and George, Felix and Sam, Felix and Dick and Dick and Sam.

Dick becomes very fond of Sam and they get along well, however Dick and Felix struggle to get it off. We can add a value to the edge to represent the strength of their relationship. This is known as the weight of the edge. In this case the weight will be a numerical percentage, where 1 means a great relationship and 0 means a terrible one.

Fig 6.3. Dick-Sam edge has a weight of 0.7, whereas Dick-Felix edge has a weight of 0.2.

After a night of fun mingling, the graph may look like this. (Weights shown by boldness rather than number for visual clarity).

Fig 6.4. The different weights between friends (Bolder = 1, Thinner = 0).

Our neural network will be similar to this graph of 5 friends, where each pixel of the image will be given a different weight for each letter, this will allow the neural network to see what relationship a certain pixel's brightness has with different letters.

Using a graph as our neural network:

Our neural network graph will have 3 different layers, each layer will have a number of nodes connected to its neighboring layer, nodes of the same layer will not have an edge as they do not have a relation. The first layer, or the input layer will have 784 nodes, each node will correspond to a grayscale value of a pixel in the image of the letter. The output layer will include 26 nodes (Each node belongs to an English letter) where each value of the node is an abstract score given by the neural network to decide how sure it is that the image it is 'reading' corresponds to that letter. A 'hidden' layer will consist of 26 nodes between the input and output layer, it has no real concrete purpose other than acting as a chance to add more weights and increase accuracy. We are representing our neural network as a graph as it will allow us to find the relationship between a certain pixel's

value and a certain English letter in the form of the value of the edges between the 2 nodes. The neural network will tune each weight until it has the correct edge values for each input and output node. (1)(3)(11)

Fig 7. The neural network is represented as a graph.

For example, if the central pixel of the image were fully white, it would most likely be a 'T' or 'I' rather than an 'O' (As the center of 'T' and 'I' are coloured in, whereas 'O' isn't). For this reason the central image node will have a higher weight with the hidden nodes that have a higher weight with 'T' and 'I' output nodes. On the other hand, the central image node will have a low weight with the hidden nodes that have a high weight with 'O'. (1)(3)(11)

Representing the forward propagation behind the network:

The forward propagation of the network is the mathematical operations used to convert the data from the image to a chosen letter. Forward propagation can also be thought of as the computation of each of the node and edge values of the neural network. The dot product is used as it has the unique property of multiplying each input node by each individual weight and then condensing this into a vector. This can be seen as multiplying each input node by their respective weight to the first hidden node and setting the first hidden node to the sum of this value, then continuing this process until the last hidden node. (1)(3)(4)(7)(11)

We will begin by having the input X(784, 372450) be our entire dataset excluding the column with the correct answer.

The first set of weights will be $W_1(26,784)$ a matrix, containing each of the 784 input node's weight for each of the 26 hidden layer nodes. We will take the dot product between W_1 and X to start propagating the information of the image into a chosen letter. In order to provide as much accuracy as possible, we will also add a matrix $b_1(26,1)$ to W_1X . b_1 is known as the bias and is used to give the function an additional transformation, and allow a full range of outputs, and will model in a linear fashion similar to y=mx+c. I have chosen to use a linear function due to its quick computation, other polynomial functions can also work. (Given the matrices can be multiplied).

Our first propagation can be written as:

$$Z_{_{1}} = W_{_{1}}X + b_{_{1}}$$

Where:

 $X = \text{Input matrix}(784,\ 372450)\{X \in \mathbb{R} | 0 \le X \le 1\} \text{(Grayscale values as numerical percentages)}$ $W_1 = \text{First matrix of randomized weights}(26,\ 784)\{W_1 \in \mathbb{R} | -0.5 \le W_1 \le 0.5\}$

 $\boldsymbol{b}_1 = \text{First matrix of randomized bias (26, 1)} \{\boldsymbol{b}_1 \in \mathbb{R}| \ -\ 0.\ 5 \le \boldsymbol{b}_1 \le 0.\ 5\}$

 $Z_1=$ Output matrix of first layer (26, 372450) $\{Z_1\in\mathbb{R}\}$ or the value of the hidden nodes for each of the 372450 images.

See Appendix 1. For the code of the creation of these random biases and weights.

We will then repeat this process to add an extra layer of propagation in order to increase accuracy and allow the neural network as many chances as possible to tweak values. In this case $Z_1(26,1)$ will be our input matrix where each value corresponds to each node in the hidden layer. $W_1(26,26)$ a matrix of weights corresponding to the edge weights between each hidden node and each of the 26 output nodes, and $b_2(26,1)$ serving the same purpose as b_1 in the previous function. (1)(3)(4)(7)(11)

Our second propagation can be written as:

$$Z_2 = W_2 Z_1 + b_2$$

Where:

 $\boldsymbol{Z}_{_{1}} = \text{Input matrix}(26,372450) \ \{\boldsymbol{Z}_{_{1}} \in \ \mathbb{R}\}$

 $W_2 = \text{First matrix of randomized weights}(26, 26) \{W_2 \in \mathbb{R} | -0.5 \le W_2 \le 0.5\}$

 $\boldsymbol{b}_{2}=\text{First matrix of randomized bias (26, 1)}\{\boldsymbol{b}_{2}\in\mathbb{R}\,-\,0.\,5\,\leq\boldsymbol{b}_{2}\leq\,0.\,5\}$

 $Z_2=$ Output matrix of first layer (26, 372450) $\{Z_2\in\mathbb{R}\}$ or the value of each letter in the alphabet for each of the 372450 images. The greater the value of each letter the more the neural network believes the image corresponds to that letter.

See appendix 2. For these 2 functions written in python.

The matrix \boldsymbol{Z}_2 is the output and the final weighing of each 26 letters for each image in the dataset.

Fig 8. The red edges in our neural network indicate the first propagation, and the blue edges indicate the second propagation.

Activation function:

Keen readers may have realized that the 2 propagations can be written as one large linear function rather than 2.

$$Z_2 = W_2 Z_1 + b_2$$

$$Z_{1} = W_{1}X + b_{1}$$

$$Z_{2} = W_{2}(W_{1}X + b_{1}) + b_{2}$$

$$Z_{2} = W_{2}W_{1}X + (W_{2}b_{1} + b_{2})$$

This would count as one propagation rather than 2. This propagation written in the form y=mx+c, will have m= the constant W_2W_1 and c= the constant $W_2b_1+b_2$. In order to remove linearity between the 2 propagations and keep them separate, an extra transformation will be added. The activation function has to just be an non-linear transformation applied between Z_1 and Z_2 . The activation function I have chosen is the ReLU (Rectified Linear Unit) denoted as ReLU(x) due to its quick computation and simple derivative which will be helpful later on, however many other non-linear activations can be used such as the sigmoid or tanh(x) (1)(3)(11). To clarify, the adding of the activation function assures the hidden layer still exists, and makes sure there can be as many weights as possible between nodes and more weights allow for more possible transformations, resulting in greater accuracy.

Figure 10. The rectified linear unit activation function.

See Appendix 3. For the ReLU function coded in python.

Softmax function:

The neural network will output 26 values. As the neural network can output anywhere from $-\infty$ to ∞ , it might be helpful to standardize each of its 26 output values relative to the other output values in the form of a numerical percentage ranging from 0 to 1. Not only for human legibility when reading the neural network's output, but also to easily compare output values between different images. To do this we will use the softmax function. The softmax function converts each component in a vector to a percentage, relative to the sum of the vector. We can think of each of the 26 output values as components in a vector. By using the softmax function, each value for each letter will be converted to a percentage. This percentage can be thought of as how certain the neural network believes the image is of a certain letter. The usage of the softmax function (compared to simply taking the normal percentage without exponents) avoids any issues if the matrix includes a negative number as the range for the softmax function will always be 0 < y due to the usage of exponents. (1)(3)(11)

$$\sigma(z) = \frac{e^{z_i}}{\sum e^{z_i}}$$

Where:

 $\sigma = Softmax function$

 $\vec{Z} = \text{Input vector}$

 $Z_{_{\it i}}=$ Each value of the input vector

$$\sigma\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}\right) = \begin{bmatrix} 0.09\\0.25\\0.66 \end{bmatrix} \text{ or } \begin{bmatrix} \frac{e}{e+e^2+e^3}\\ \frac{e^2}{e+e^2+e^3}\\ \frac{e^3}{e+e^2+e^3} \end{bmatrix}$$

Figure 9. Example of the softmax function, where the output as both numerical percentages and written algebraically.

Finally the forward propagation will look like:

$$\begin{split} Z_1 &= W_1 X + b_1 \\ A_1 &= ReLU(Z_1) \\ Z_2 &= W_2(A_1) + b_2 \\ A_2 &= \sigma(Z_2) \end{split}$$

See Appendix 4. For the softmax function coded in python. See Appendix 5. For the entirety of the forward propagation.

Backwards propagation:

Backwards propagation is the process done to find how much we should adjust the weights and biases (originally randomly generated) and in what way in order to minimize the error of the neural network. To do this we will define a 'Cost Function', the cost function is simply representative of the error of the neural network, the value of the cost function will be the specific error of a specific guess by the neural network. (6)

In order to find the attributable error of the final matrix we need to find how accurate the final output layer (A_2) is compared to the correct answer. This can be easily done by subtracting A_2 from the correct letter of the image. However, as the correct answers are represented by the index of the letter in the alphabet, later letters such as 'Z' would be far more punishing as it would subtract 25 rather than 'A' that would subtract 0. (Indexing begins with 'A'=0 rather than 1). This challenge initially seems detrimental but can quickly be solved using one hot encoding. One hot encoding is the act of storing a vector of numbers as a binary matrix where the value is corresponding to its index rather than the number directly in the cell. (11)

$$x = \begin{bmatrix} 24\\12\\25\\0 \end{bmatrix}$$

$$ohe(x) = \begin{bmatrix} 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Fig 10. An example of matrix x(1,4) containing indices for the letters 'Y', 'M', 'Z' and 'A' being converted to being one hot encoded(ohe). ohe(x) has dimensions 26, 4. Each column is corresponding to a letter in the alphabet.

Now that we have the issue of some letters being more punishing out of the way, we can make an arbitrary cost function $\mathcal{C}(A)$ which represents the error of the neural network. However, this cost function is technically useless, what is important is minimizing the cost function or minimizing the error. For this reason we will simply define the derivative of this arbitrary cost function to be the neural networks output subtracted from the actual letter's one hot encoded value and not worry about the actual function itself.

$$\frac{\partial C}{\partial A_2} = A_2 - Y$$

$$\begin{array}{ccc}
A_2 & Y & \frac{dC}{dA_2} \\
0.253 \\
0.06 \\
... \\
0.02 \\
0.006
\end{array} - \begin{bmatrix} 1 \\ 0 \\ ... \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.747 \\ 0.06 \\ ... \\ 0.02 \\ 0.006 \end{bmatrix}$$

$$\begin{bmatrix} 0.992 \\ 0 \\ \dots \\ 0.003 \\ 0.002 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.002 \\ 0 \\ \dots \\ 0.003 \\ 0.002 \end{bmatrix}$$

Fig 11. An example of $\frac{dC}{dA_2}$ being found for 2 different outputs. Note: the matrices have been reduced to be for just one image of the letter 'A' rather than the entire database for clarity. It can be seen that when the output of the neural network (A_2) is closer to the correct answer (Y), $\frac{dC}{dA_2}$ approaches 0 (the local minima of the cost function or the error of the neural network)

See appendix 6. For one hot encoding done in python.

In order to find the attributable error, we will partially differentiate C with respect to each weight and bias, W_1 , W_2 , b_1 , b_2 . This will tell us the rate of change that each of these variables has on C or in other words, which variable is causing the most error. If the derivative is negative, the weights and biases move to the right (greater) and vice versa for a positive derivative, furthermore, the change is dependent on the magnitude of each derivative on top of its direction (As a greater magnitude suggests the minimum is further away). The finding of the minimum cost function is known as gradient descent. (2)(6)(8)

In order to find the error attributable to each weight and bias we must use the chain rule, which essentially computes the rate of change caused by one variable to another, that when multiplied results in the total rate of change of the equation. (2)(6)(8)

Lets begin with partially differentiating the functions with respect to weights and biases by using the chain rule. As the softmax function doesn't change the ratio between the outputs of the neural network as it simply converts each value into a percentage we will be ignoring it as it has no impact on the error of the neural network. It will be substituted for 1.

Finding error attributable to $W_{\underline{2}}$:

$$\frac{\partial C}{\partial A_2} = A_2 - Y$$

$$A_2 = \sigma(Z_2)$$

$$Z_2 = W_2(A_1) + b_2$$

$$\frac{\partial C}{\partial W_2} = \frac{\partial Z_2}{\partial W_2} \frac{\partial A_2}{\partial Z_2} \frac{\partial C}{\partial A_2}$$

$$\frac{\partial C}{\partial W_2} = (A_1^T)(1)(A_2 - Y)$$

 A_1 is transposed (denoted by M^T) simply to assure a dot product can be performed.

$$\frac{\partial C}{\partial W_2} = \frac{1}{m} (A_1^T) (A_2 - Y)$$

The derivative is averaged out across all 372450 (m) images in the dataset, this is so the dataset doesn't overfit to certain more common letters in the dataset, and treats each of the images in the dataset equally.

Finding error attributable to \boldsymbol{b}_{2} :

$$\frac{\partial C}{\partial b_2} = \frac{\partial Z_2}{\partial b_2} \frac{\partial A_2}{\partial Z_2} \frac{\partial C}{\partial A_2}$$

$$\frac{\partial C}{\partial b_2} = (1)(1)(A_2 - Y)$$

$$\frac{\partial C}{\partial b_2} = \frac{1}{m} \sum_{1}^{m} (A_2 - Y)$$

As we are averaging across the dataset all the values are added before dividing, this step won't have to be done with $W_1 \& W_2$ as they are already added during the dot product.

Finding error attributable to Z_1 in order to find $\frac{dC}{dW_1}$ and $\frac{dC}{db_1}$.

$$\begin{split} A_1 &= ReLU(Z_1) \\ Z_2 &= W_2(ReLU(Z_1)) + b_2 \\ Z_2 &= W_2(A_1) + b_2 \\ \\ \frac{\partial C}{\partial Z_1} &= \frac{\partial Z_2}{\partial ReLU(Z_1)} \frac{\partial C}{\partial A_2} \frac{\partial A_2}{\partial Z_2} \frac{\partial ReLU(Z_1)}{\partial Z_1} \ or \ \frac{\partial Z_2}{\partial A_1} \frac{\partial C}{\partial A_2} \frac{\partial A_2}{\partial Z_2} \frac{\partial A_1}{\partial Z_1} \\ \\ \frac{\partial C}{\partial Z_1} &= (W_2^T)(A_2 - Y)(1) \bullet ReLU'(Z_1) \\ \\ \frac{\partial C}{\partial Z_1} &= (W_2^T)(A_2 - Y) \bullet ReLU'(Z_1) \end{split}$$

Finding error attributable to $\boldsymbol{W}_{\scriptscriptstyle{1}}$:

$$\begin{split} Z_1 &= W_1 X + b_1 \\ &\frac{\partial C}{\partial W_1} = \frac{\partial Z_1}{\partial W_1} \frac{\partial C}{\partial Z_1} \\ &\frac{\partial C}{\partial W_1} = \frac{1}{m} (X^T) (W_2^T) (A_2 - Y) \bullet ReLU'(Z_1) \end{split}$$

Finding error attributable to \boldsymbol{b}_1 :

$$Z_{1} = W_{1}X + b_{1}$$

$$\frac{\partial C}{\partial b_{1}} = \frac{\partial Z_{1}}{\partial b_{1}} \frac{\partial C}{\partial Z_{1}}$$

$$\frac{\partial C}{\partial W_1} = (1)(W_2^T)(A_2 - Y) \cdot ReLU'(Z_1)$$

$$\frac{\partial C}{\partial b_1} = \frac{1}{m} \sum_{1}^{m} (W_2^T) (A_2 - Y) \cdot ReLU'(Z_1)$$

Finally the entire backward propagation will look like:

$$\frac{\partial C}{\partial W_2} = \frac{1}{m} (A_1^T) (A_2 - Y)$$

$$\frac{\partial C}{\partial b_2} = \frac{1}{m} \sum_{1}^{m} (A_2 - Y)$$

$$\frac{\partial C}{\partial Z_1} = (W_2^T) (A_2 - Y) \cdot ReLU'(Z_1)$$

$$\frac{\partial C}{\partial W_1} = \frac{1}{m} (X^T) (W_2^T) (A_2 - Y) \cdot ReLU'(Z_1)$$

$$\frac{\partial C}{\partial b_1} = \frac{1}{m} \sum_{1}^{m} (W_2^T) (A_2 - Y) \cdot ReLU'(Z_1)$$

See appendix 7, for derivative of ReLU(x) written in python.

See appendix 8. Backwards propagation written in python.

A summed up version of all this math can be thought of if we consider the cost function and forward propagation to be a simple function with 784 inputs (each of the pixels of the image). $f(x_1, x_2, x_3, x_{784}, x_{784})$. This function is equal to the amount of error of the forward propagation. If we wish to minimize the error of the forward propagation we just equate the derivative of f'(x) to 0. As f(x) is a 785 dimension function; it is simply too complex to calculate its derivative. Instead we take the partial derivatives of f(x) or the rate that f(x) changes with respect to different values within f(x) and follow these derivatives to the nearest local

minima. (As the derivative of a function can act as a guide to the nearest local minima). This is why it is known as gradient descent. We are finding the gradient and 'descending' it to find the local minima.

Updating parameters:

Once we know the error amount for each weight and bias, we can slowly tune them, the learning rate is the rate at which the weights and biases are changed and is usually set to either 10^0 , 10^{-1} , 10^{-2} and is represented with α . The greater the learning rate the faster the neural network will take to increase its accuracy at the start but will take longer to 'perfect' its weights. Whereas the opposite applies for the smaller learning rates. I have chosen the Goldilocks between the 3 and will use 10^{-1} as my learning rate as it allows for relatively fast learning throughout the tuning of the weights. (11)

$$\begin{aligned} \boldsymbol{W}_{1} &:= \boldsymbol{W}_{1} - \alpha \frac{\partial \boldsymbol{C}}{\partial \boldsymbol{W}_{2}} \\ \boldsymbol{b}_{1} &:= \boldsymbol{b}_{1} - \alpha \frac{\partial \boldsymbol{C}}{\partial \boldsymbol{b}_{1}} \\ \boldsymbol{W}_{2} &:= \boldsymbol{W}_{2} - \alpha \frac{\partial \boldsymbol{C}}{\partial \boldsymbol{W}_{2}} \\ \boldsymbol{b}_{2} &:= \boldsymbol{b}_{2} - \alpha \frac{\partial \boldsymbol{C}}{\partial \boldsymbol{b}_{2}} \end{aligned}$$

See appendix 9. For updating parameters in python.

Avoiding overfitting to the dataset:

When iterating several times over the same dataset the neural network may adjust its weights to be perfect for the dataset but suffer when given an image outside of the data set. In order to not overfit the weights to the dataset several measures can be used, such as a greater dataset, going through different parts of the dataset then updating parameters rather than only once the entire dataset has been analyzed (Known as scholastic gradient descent (8)) and lastly decreasing iterations. Decreasing iterations is the easiest option but does sacrifice accuracy and a middle ground has to be reached. I have chosen to use iterations between

100-1000 (37,245,000-372,450,000 letters analyzed) in order to achieve a range of accuracy and 'overifttedness'. (11)

Conclusion

Does it work?:

I have chosen to use 3 iterations that will be trained 3 different times: 100, 500 and 1000. Once trained I will write each letter of the alphabet once with my own handwriting and see whether the neural network can recognise my handwriting.

It does!:

Number of iterations	100			500			1000		
Trial:	1	2	3	1	2	3	1	2	3
Accuracy tested against dataset	45.05%	48.56%	54.31%	76.09%	75.46%	75.68%	80.29%	80.81%	81.41%
А	[(array([[0.31742 218]]), 'M'), (array([[0.19339 505]]), 'T'), (array([[0.11764 87]]), 'R')]	[(array([[0 .2392430 1]]), 'P'), (array([[0 .0971505 5]]), 'T'), (array([[0 .0894916 1]]), 'A')]	[(array([[0.560532 75]]), 'R'), (array([[0 .1062597 9]]), 'N'), (array([[0 .0896066 1]]), 'A')]), 'R'), (array([[0.3 6361177]]), 'K'), (array([[0.0 2543991]]),	[(array([[0.4 0832837]]), 'A'), (array([[0.26 663318]]), 'R'), (array([[0.12 260464]]), 'Z')]	0.47457 226]]), 'R'), (array([[0.18011	[(array([[0.5 23526]]), 'R'), (array([[0.2 1973785]]), 'A'), (array([[0.1 1254757]]), 'E')]	[(array([[0.8 2776862]]), 'R'), (array([[0.1 2435686]]), 'K'), (array([[0.0 3306185]]), 'N')]	[(array([[0.5 23526]]), 'P'), (array([[0.2 1973785]]), 'A'), (array([[0.1 1254757]]), 'E')]
В	[(array([[0.16705 517]]), 'M'), (array([[0.16365 269]]), 'J'), (array([[0.16077 417]]), 'T')]	[(array([[0 .2714353 6]]), 'T'), (array([[0 .1375626 7]]), 'W'), (array([[0 .0914692 4]]), 'S')]	[(array([[0.337671 62]]), 'C'), (array([[0 .1593270 3]]), 'E'), (array([[0 .1228226 9]]), 'L')]	[(array([[0. 25373518]]), 'A'), (array([[0.2 3350284]]), 'B'), (array([[0.1 0871818]]), 'E')]	[(array([[0.4 5871551]]), 'E'), (array([[0.06 701903]]), 'N'), (array([[0.06 574791]]), 'S')]	(array([[0.11438	[(array([[0.7 0394109]]), 'E'), (array([[0.1 1359101]]), 'S'), (array([[0.0 6915111]]), 'Z')]	[(array([[0.5 2279352]]), 'B'), (array([[0.1 8424885]]), 'E'), (array([[0.1 3473017]]), 'D')]	[(array([[0.3 886695]]), 'E'), (array([[0.3 2931688]]), 'Z'), (array([[0.1 3484859]]), 'R')]
Average accuracy of first guess when reading my handwriting		•	9.19%			33.33%			53.85%
Average accuracy of top 2 guesses when reading my handwriting	20.51%			47.44%			74.36%		
Average accuracy of top 3 guesses when reading my handwriting			34.62%	58.97%			80.77%		

Fig 12. A preview of the neural networks outputs across all 3 trials and all 3 iterations for the letters 'A' and 'B'.

If the square is green the neural network's first guess was correct, if it's yellow the second guess was correct, if

it's red the third guess is correct. If there is no color the neural network's guess was wrong. Each guessed letter also has the guessed probability stated before it but this was not considered during testing.

See Appendix 10. For full data table.

The neural network can read my handwriting! (For the most part). This means that **graph theory, gradient descent and partial derivatives can be used to develop a letter recognising neural network.** The neural network had some success with guessing what I had written in its first attempt, getting an average of 53.85% correct after 1000 iterations, 33.33% after 500 iterations and only 9.19% after 100 iterations. It is clear that 100 iterations is nowhere near enough, and 500 iterations also falls a bit flat. This implies that for my neural network to be properly applied in a real world context it would need significantly more iterations to train from. This of course would take up a lot of computational time.

The neural network succeeds most when the top 3 results are considered rather than only the first. When using this metric, the 100 iteration trials had an average of 34.62% compared to 500's 58.97% and 1000's 80.77%.

The least recognised letters were '1' and 'F" which each got recognised 0 times within the first guess. Whereas 'C' and 'S' were recognised 6 and 5 times out of the 9 trials respectively. This correlates directly to the quantity of images of each letter in the dataset. The lack of data is responsible for the neural networks' decreased understanding.

Fig 12, a graph displaying the frequency of each letter in the 372450 letter dataset (5).

With this data we can also subtract the accuracy of the neural network when compared to the data set from the accuracy of recognising my handwriting to find how overfitted each of the iterations are. Interestingly, iterations 100 and 500 feature similar average 'overfitting ratings' of around 40% whereas the 1000 iteration trials had an average of only 26%, this may suggest that there are multiple 'waves' of overfitting, and they appear before 100 and 500 iterations and after 1000.

Limitations:

The dataset chosen provides grayscale 28 by 28 pixel images of capital english letters that have been centered to a 20x20 central square within the image. This raises many limitations for the neural network, firstly, as every image is shrunk to a 28x28 picture many details may be lost when using real pictures, these details can make the difference between an 'O' and a 'Q' or between a 'D' and a 'B' differences that seem clear but may dissipate when scaled down. Secondly, while grayscale does allow the neural network to work faster and process several color letters, what happens if a letter is written in black on a white background (The opposite of what the neural network is used to). The network can also only identify english letters written a certain way, as the dataset includes only capital letters the neural network struggles to identify lower case or alternatively written letters. Additionally in my testing each letter would be written differently, this means if for one trial my hand might have slipped it may have misrepresented the neural network for that specific trial and iteration, instead I should use the same 26 images of letters written by me across all trials. Lastly, as the neural network is used to the letters being centralized for them within the 20x20 square of the image, the neural network struggles to identify clear letters that are not centralized.

Fig 18. A non-centralised 'O' being recognised as a 'T', 'P' and 'F' by the neural network.

Potential improvements:

The neural network isn't perfect and still has many flaws and limitations. However there are several potential improvements that can be done to improve the accuracy.

Adding another hidden layer:

Adding another layer of weights to our neural network will allow it to gain an extra layer of complexity and can make the difference between differentiating similar letters that couldn't be distinguished with only 2 matrices.

To assure non-linearity is kept, another activation function will need to be added between layer 1 and 2.

Adding a layer will also increase computational time.

Changing the activation function:

Different activation functions can be more useful for different tasks. While it is difficult to predict which activation function will be the best for which task, there is no pain in testing and seeing the results. Other functions include the sigmoid function and tanh.

Too small image size:

In order to keep smaller potentially crucial details in letters, a greater image size can be used, however this will result in the need to train a new neural network with a different number of input nodes. The greater number of input nodes will result in more dot product multiplication increasing computation time. Furthermore, a new dataset will need to be used, one that produces data to the wanted image size.

Adding more hidden nodes:

Adding more hidden nodes will increase the number of weights and biases that the neural network can adjust. This will give it more liberty and allow it to minimize error even further. Adding hidden nodes will also increase computational time and should be done in moderation.

Other improvements can include adding a centralizing algorithm to automatically center a letter or adding an algorithm to automatically change every image to be white letter on black background, so the network can become more universal.

Works cited:

- Cornelisse, Daphne Cornelisse. "How to Build a Three-Layer Neural Network from Scratch."
 FreeCodeCamp.org, FreeCodeCamp.org, 13 Feb. 2018,
 https://www.freecodecamp.org/news/building-a-3-layer-neural-network-from-scratch-99239c4af5d3/.
- 2. Kostadinov, Simeon. "Understanding Backpropagation Algorithm." *Medium*, Towards Data Science, 12 Aug. 2019, https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd.
- 3. Mesquita, Déborah. "Python Ai: How to Build A Neural Network & Make Predictions." *Real Python*, Real Python, 27 Feb. 2021, https://realpython.com/python-ai-neural-network/.
- 4. "NumPy Documentation." NumPy Developers, Apr. 2022.
- Patel, Sachin. A-Z Handwritten Alphabets in .Csv Format, Kaggle, 2018,
 https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format. Accessed 13
 Aug. 2022.
- 6. Sanderson, Grant, director. *Backpropagation Calculus | Chapter 4, Deep Learning. YouTube*, YouTube, 3 Nov. 2017, https://www.youtube.com/watch?v=tleHLnjs5U8. Accessed 13 Aug. 2022.
- 7. Sanderson, Grant. "The Determinant | Chapter 6, Essence of Linear Algebra." *YouTube*, YouTube, 10 Aug. 2016, https://www.youtube.com/watch?v=lp3X9LOh2dk.

8. Socher, Richard, director. *Lecture 5: Backpropagation and Project Advice. YouTube*, Stanford University School of Engineering, 3 Apr. 2017,

https://www.youtube.com/watch?v=isPiE-DBagM&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6.
Accessed 14 Aug. 2022.

Sutton, Jeffrey L. "Spring Sunset in the Blue Ridge Mountain in Western North Carolina." Reddit.com, 4
 Sept. 2017,

https://www.reddit.com/r/EarthPorn/comments/6i7kyk/spring_sunset_in_the_blue_ridge_mountain_in/?utm_source=ifttt. Accessed 23 Oct. 2022.

- 10. Wilson, Robin J. Introduction to Graph Theory. Prentice Hall, 1995.
- 11. Zhang, Samson, director. *Building a Neural Network FROM SCRATCH (No Tensorflow/Pytorch, Just Numpy & Math)*. *YouTube*, YouTube, 24 Nov. 2020, https://www.youtube.com/watch?v=w8yWXqWQYmU. Accessed 13 Aug. 2022.

Appendix:

1. Initial creation of these random biases and weights:

```
W1 = np.random.rand(26, 784) - 0.5
b1 = np.random.rand(26, 1) - 0.5
W2 = np.random.rand(26, 26) - 0.5
b2 = np.random.rand(26, 1) - 0.5
```

2. Z_1 and Z_2 written in python.

```
Z1 = W1.dot(X) + b1
Z2 = W2.dot(Z1) + b2
```

3. ReLU Function

```
def ReLU(Z):
    return np.maximum(Z, 0)
```

4. Softmax function

```
def softmax(Z):
    A = np.exp(Z) / sum(np.exp(Z))
    return A
```

5. Forward propagation

a.

```
Z1 = W1.dot(X) + b1

A1 = ReLU(Z1)

Z2 = W2.dot(A1) + b2

A2 = softmax(Z2)
```

6. One hot encoding function

```
def one_hot_encode(Y):
    one_hot_encoded_Y = np.zeros((Y.size, Y.max() + 1))
    one_hot_encoded_Y[np.arange(Y.size), Y] = 1
    one_hot_encoded_Y = one_hot_encoded_Y.T
    return one_hot_encoded_Y
```

7. Derivative of ReLU(x):

a.

a.

```
def ReLU_derivative(Z):
    return Z > 0
```

8. Backwards propagation:

```
one_hot_Y = one_hot_encode(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1/m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * ReLU_derivative(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
```

9. Updating parameters

a.

```
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
```

10. Testing results/data

	100			500			1000			
Trial:	1	2	3	1	2	3	1	2	3	
Accuracy tested against dataset	45.05%	48.56%	54.31%	76.09%	75.46%	75.68%	80.29%	80.81%	81.41%	
Time taken to train (minutes)	1.35	1.366666667	1.483333333	6.86666667	6.716666667	6.8	13.55	14.06666667	13.11666667	
А	2218]]), 'M'), (array([[0.1933 9505]]), 'T'),	[(array([[0.2392 4301]]), 'P'), (array([[0.0971 5055]]), 'T'), (array([[0.0894 9161]]), 'A')]	[(array([[0.5605 3275]]), 'R'), (array([[0.1062 5979]]), 'N'), (array([[0.0896 0661]]), 'A')]	[(array([[0.5476 5309]]), 'R'), (array([[0.3636 1177]]), 'K'), (array([[0.0254 3991]]), 'F')]	[(array([[0.4083 2837]]), 'A'), (array([[0.2666 3318]]), 'R'), (array([[0.1226 0464]]), 'Z')]	[(array([[0.4745 7226]]), 'R'), (array([[0.18011 21]]), 'F'), (array([[0.1057 0351]]), 'K')]	[(array([[0.5235 26]]), 'R'), (array([[0.2197 3785]]), 'A'), (array([[0.11254 757]]), 'E')]	[(array([[0.8277 6862]]), 'R'), (array([[0.1243 5686]]), 'K'), (array([[0.0330 6185]]), 'N')]	[(array([[0.5235 26]]), 'P'), (array([[0.2197 3785]]), 'A'), (array([[0.11254 757]]), 'E')]	
В	[(array([[0.1670 5517]]), 'M'), (array([[0.1636 5269]]), 'J'), (array([[0.1607 7417]]), 'T')]	[(array([[0.2714 3536]]), 'T'), (array([[0.1375 6267]]), 'W'), (array([[0.0914 6924]]), 'S')]	[(array([[0.3376 7162]]), 'C'), (array([[0.1593 2703]]), 'E'), (array([[0.1228 2269]]), 'L')]	[(array([[0.2537 3518]]), 'A'), (array([[0.2335 0284]]), 'B'), (array([[0.1087 1818]]), 'E')]	[(array([[0.4587 1551]]), 'E'), (array([[0.0670 1903]]), 'N'), (array([[0.0657 4791]]), 'S')]	1813]]), 'K'),	[(array([[0.7039 4109]]), 'E'), (array([[0.11359 101]]), 'S'), (array([[0.0691 5111]]), 'Z')]	9352]]), 'B'),	[(array([[0.3886 695]]), 'E'), (array([[0.3293 1688]]), 'Z'), (array([[0.1348 4859]]), 'R')]	
С	[(array([[0.1827 3361]]), 'D'), (array([[0.0932 1293]]), 'Z'), (array([[0.0876 644]]), 'S')]	[(array([[0.2903 036]]), 'S'), (array([[0.0889 0185]]), 'B'), (array([[0.0750 2079]]), 'C')]	[(array([[0.3970 9027]]), 'C'), (array([[0.2204 6499]]), 'L'), (array([[0.1436 615]]), 'G')]	[(array([[0.9493 487]]), 'C'), (array([[0.0146 5304]]), 'G'), (array([[0.0138 391]]), 'E')]	[(array([[0.5802 6678]]), 'L'), (array([[0.2810 4793]]), 'Z'), (array([[0.0494 5776]]), 'J')]	[(array([[0.9915 6655]]), 'C'), (array([[0.0056 5181]]), 'E'), (array([[0.0009 8138]]), 'J')]	[(array([[0.8884 9628]]), 'C'), (array([[0.0554 2512]]), 'E'), (array([[0.0197 4642]]), 'R')]	[(array([[0.9651 8937]]), 'C'), (array([[0.01149 096]]), 'O'), (array([[0.0095 3962]]), 'J')]	[(array([[0.8947 5375]]), 'C'), (array([[0.0651 964]]), 'E'), (array([[0.01102 572]]), 'R')]	
D	[(array([[0.3751 112]]), 'O'), (array([[0.2546 3229]]), 'U'), (array([[0.11869 346]]), 'D')]	[(array([[0.6374 4893]]), 'D'), (array([[0.1346 4416]]), 'V'), (array([[0.0663 1764]]), 'O')]	[(array([[0.1625 0735]]), 'S'), (array([[0.1573 2894]]), 'B'), (array([[0.1516 7319]]), 'Q')]	[(array([[0.5129 512]]), 'D'), (array([[0.3714 7735]]), 'O'), (array([[0.0597 4166]]), 'Q')]	[(array([[0.6214 2589]]), 'U'), (array([[0.2620 9454]]), 'D'), (array([[0.0586 4251]]), 'O')]	[(array([[0.5177 7581]]), 'O'), (array([[0.2573 3417]]), 'U'), (array([[0.1242 636]]), 'D')]	[(array([[0.7764 3009]]), 'D'), (array([[0.1623 0296]]), 'O'), (array([[0.0236 4741]]), 'Q')]	[(array([[0.7148 6437]]), 'D'), (array([[0.2073 7649]]), 'O'), (array([[0.0378 3788]]), 'B')]	[(array([[0.6086 5098]]), 'D'), (array([[0.2354 2376]]), 'O'), (array([[0.0720 3405]]), 'U')]	
E	[(array([[0.1645 7691]]), 'D'), (array([[0.1079 8804]]), 'Z'), (array([[0.0840 3955]]), 'E')]	[(array([[0.2369 6965]]), 'S'), (array([[0.1276 7179]]), 'W'), (array([[0.0762 674]]), 'Y')]	[(array([[0.4499 1005]]), 'C'), (array([[0.1595 7992]]), 'E'), (array([[0.0932 1765]]), 'O')]	[(array([[0.5385 9622]]), 'E'), (array([[0.3556 0268]]), 'L'), (array([[0.0748 6855]]), 'C')]	[(array([[0.2331 4956]]), 'E'), (array([[0.2215 0726]]), 'B'), (array([[0.1828 6349]]), 'R')]	[(array([[0.5129 5146]]), 'P'), (array([[0.3268 541]]), 'T'), (array([[0.1014 166]]), 'R')]	[(array([[0.3459 6983]]), 'L'), (array([[0.2624 7181]]), 'E'), (array([[0.1891 3398]]), 'K')]	[(array([[0.3699 6614]]), 'P'), (array([[0.1424 7084]]), 'R'), (array([[0.0808 2039]]), 'K')]	[(array([[0.6740 4066]]), 'E'), (array([[0.2607 3035]]), 'B'), (array([[0.0194 6532]]), 'P')]	
F	[(array([[0.6846 7703]]), 'P'), (array([[0.0943 61]]), 'A'), (array([[0.0841 904]]), 'E')]	[(array([[0.4163 2357]]), 'T'), (array([[0.1062 0321]]), 'P'), (array([[0.0714 6522]]), 'Y')]	[(array([[0.6265 4596]]), 'P'), (array([[0.1515 3498]]), 'T'), (array([[0.0751 5063]]), 'E')]	[(array([[0.6252 3186]]), 'P'), (array([[0.2842 8018]]), 'T'), (array([[0.0631 2221]]), 'R')]	[(array([[0.5745 6309]]), 'T'), (array([[0.2869 7463]]), 'P'), (array([[0.0462 5429]]), 'F')]	[(array([[0.4172 7139]]), 'E'), (array([[0.2724 6963]]), 'R'), (array([[0.2004 1238]]), 'F')]	array([[0.53203 877]]), 'R'), (array([[0.2178 2765]]), 'F'), (array([[0.0776 2281]]), 'E')]	[(array([[0.5852 8917]]), 'P'), (array([[0.2607 291]]), 'R'), (array([[0.0706 6792]]), 'F')]	[(array([[0.7697 0466]]), 'P'), (array([[0.0639 1688]]), 'E'), (array([[0.0521 3051]]), 'Y')]	
G	[(array([[0.3575 5134]]), 'S'), (array([[0.1210 5183]]), 'O'), (array([[0.0824 7253]]), 'B')]	283]]), 'U'), (array([[0.11682 976]]), 'C'),	[(array([[0.3767 7825]]), 'S'), (array([[0.1378 2837]]), 'C'), (array([[0.0914 2178]]), 'G')]	[(array([[0.2885 877]]), 'N'), (array([[0.2131 6494]]), 'M'), (array([[0.11554 839]]), 'W')]	4566]]), 'S'), (array([[0.1508 4622]]), 'U'),	[(array([[0.5155 1922]]), 'G'), (array([[0.4033 1797]]), 'S'), (array([[0.0225 5422]]), 'E')]	[(array([[0.5398 0727]]), 'G'), (array([[0.4481 6489]]), 'S'), (array([[0.0056 0835]]), 'Q')]	[(array([[0.5523 1839]]), 'G'), (array([[0.1892 528]]), 'U'), (array([[0.1401 9909]]), 'Q')]	[(array([[0.4605 7615]]), 'C'), (array([[0.2137 0399]]), 'S'), (array([[0.11205 175]]), 'G')]	
н	[(array([[0.1992 6396]]), 'L'), (array([[0.1496 0627]]), 'F'), (array([[0.11751 083]]), 'M')]	[(array([[0.2496 0486]]), 'U'), (array([[0.0924 1769]]), 'B'), (array([[0.0881 5236]]), 'S')]	[(array([[0.4583 7292]]), 'U'), (array([[0.3093 0686]]), 'N'), (array([[0.0723 1526]]), 'A')]	[(array([[0.3051 8188]]), 'N'), (array([[0.2783 2293]]), 'H'), (array([[0.1340 1562]]), 'E')]	[(array([[0.6240 6195]]), 'Y'), (array([[0.1218 5079]]), 'X'), (array([[0.1021 6659]]), 'T')]	9785]]), 'V'), (array([[0.2802 7701]]), 'R'), (array([[0.0814 4919]]), 'U')]	[(array([[0.5671 6934]]), 'H'), (array([[0.2242 6828]]), 'A'), (array([[0.1499 8542]]), 'N')]	[(array([[0.4039 3601]]), 'Y'), (array([[0.3325 6225]]), 'X'), (array([[0.1699 3852]]), 'R')]	[(array([[0.4735 7902]]), 'H'), (array([[0.3351 869]]), 'M'), (array([[0.1066 5452]]), 'B')]	
1	[(array([[0.2322 0774]]), 'T'), (array([[0.1352 0816]]), 'J'), (array([[0.1298 1734]]), 'D')]	[(array([[0.1888 8608]]), 'S'), (array([[0.0835 0693]]), 'D'), (array([[0.07118 386]]), 'R')]	[(array([[0.2582 1869]]), 'E'), (array([[0.2045 3003]]), 'P'), (array([[0.1306 3372]]), 'T')]	[(array([[0.1571 6249]]), 'E'), (array([[0.1529 0641]]), 'B'), (array([[0.1325 947]]), 'D')]	[(array([[0.3962 686]]), 'T'), (array([[0.1840 918]]), 'Y'), (array([[0.1260 4861]]), 'Z')]	[(array([[0.7173 2806]]), 'D'), (array([[0.1555 9551]]), 'I'), (array([[0.0440 0126]]), 'B')]	[(array([[0.3702 5253]]), 'S'), (array([[0.1842 7187]]), 'I'), (array([[0.1328 6502]]), 'J')]	[(array([[0.4808 8602]]), 'T'), (array([[0.2068 2582]]), 'I'), (array([[0.0722 75]]), 'E')]	[(array([[0.3490 5226]]), 'S'), (array([[0.3128 8702]]), 'T'), (array([[0.2615 1678]]), 'J')]	

									55
J	[(array([[0.2682 0761]]), 'P'), (array([[0.1397 0898]]), 'Z'), (array([[0.1034 6897]]), 'S')]	[(array([[0.2829 0943]]), 'S'), (array([[0.1288 6785]]), 'J'), (array([[0.0854 4854]]), 'B')]	[(array([[0.2476 936]]), 'E'), (array([[0.1548 9077]]), 'C'), (array([[0.1532 6895]]), 'T')]	[(array([[0.7666 1407]]), 'T'), (array([[0.2268 4737]]), 'P'), (array([[0.0041 2821]]), 'R')]	[(array([[0.9785 0854]]), 'T'), (array([[0.0088 5968]]), 'P'), (array([[0.0071 2779]]), 'Y')]	[(array([[0.8474 0765]]), 'T'), (array([[0.0607 4884]]), 'P'), (array([[0.0129 5237]]), 'Q')]	[(array([[0.9385 0671]]), 'S'), (array([[0.0470 6996]]), 'J'), (array([[0.0033 3332]]), 'G')]	[(array([[0.3733 3331]]), 'T'), (array([[0.31141 594]]), 'J'), (array([[0.1389 471]]), 'C')]	[(array([[0.6953 5829]]), 'J'), (array([[0.2360 3332]]), 'S'), (array([[0.0159 7164]]), 'O')]
К	[(array([[0.1936 4099]]), 'R'), (array([[0.1899 1248]]), 'T'), (array([[0.0809 4462]]), 'N')]	[(array([[0.4245 6516]]), 'T'), (array([[0.2143 7703]]), 'C'), (array([[0.0817 546]]), 'E')]		[(array([[0.2224 28]]), 'K'),	[(array([[0.7297 8242]]), 'C'), (array([[0.0746 1774]]), 'T'), (array([[0.0408 2267]]), 'N')]	[(array([[0.2811 3457]]), 'F'), (array([[0.2530 4091]]), 'K'), (array([[0.1759 2407]]), 'R')]		[(array([[0.7397 7537]]), 'E'), (array([[0.1005 8162]]), 'K'), (array([[0.1004 3079]]), 'R')]	
L	[(array([[0.4821 5918]]), 'O'), (array([[0.0914 7128]]), 'U'), (array([[0.0723 5455]]), 'Z')]	[(array([[0.1198 1601]]), 'C'), (array([[0.11684 341]]), 'V'), (array([[0.0662 4987]]), 'G')]	[(array([[0.4073 0742]]), 'L'), (array([[0.1444 9345]]), 'G'), (array([[0.1090 8025]]), 'C')]	[(array([[0.2177 385]]), 'L'), (array([[0.1701 6629]]), 'E'), (array([[0.1652 9096]]), 'K')]	[(array([[0.2995 9074]]), 'K'), (array([[0.2185 8926]]), 'V'), (array([[0.1332 4593]]), 'Z')]	[(array([[0.5293 9934]]), 'E'), (array([[0.2943 8483]]), 'C'), (array([[0.0883 4715]]), 'Z')]	[(array([[0.9832 6652]]), 'L'), (array([[0.0093 178]]), 'U'), (array([[0.0026 4768]]), 'K')]	[(array([[0.4729 4601]]), 'L'), (array([[0.3157 1594]]), 'C'), (array([[0.1617 4568]]), 'D')]	[(array([[0.9282 9579]]), 'C'), (array([[0.0298 9508]]), 'O'), (array([[0.0274 9703]]), 'E')]
М	[(array([[0.1368 2682]]), 'R'), (array([[0.1207 0182]]), 'M'), (array([[0.0886 5266]]), 'U')]	[(array([[0.1572 7752]]), 'O'), (array([[0.1497 2735]]), 'A'), (array([[0.11739 098]]), 'B')]	4433]]), 'D'), (array([[0.0927 3067]]), 'M'),	[(array([[0.6575 8286]]), 'H'), (array([[0.1591 3456]]), 'K'), (array([[0.0424 8033]]), 'A')]	[(array([[0.5079 1359]]), 'R'), (array([[0.1862 545]]), 'M'), (array([[0.0701 8608]]), 'A')]	[(array([[0.5054 1107]]), 'M'), (array([[0.2860 363]]), 'C'), (array([[0.0540 8807]]), 'U')]	[(array([[0.4490 3138]]), 'Q'), (array([[0.13118 601]]), 'S'), (array([[0.1200 5343]]), 'Y')]	[(array([[0.9958 6271]]), 'M'), (array([[0.0014 5136]]), 'H'), (array([[0.0009 3842]]), 'N')]	[(array([[0.4635 5961]]), 'A'), (array([[0.2322 4125]]), 'M'), (array([[0.11057 115]]), 'P')]
N	[(array([[0.3664 1113]]), 'O'), (array([[0.2001 8011]]), 'U'), (array([[0.0522 6518]]), 'B')]	[(array([[0.4728 3305]]), 'U'), (array([[0.1566 8521]]), 'H'), (array([[0.1246 6162]]), 'V')]	[(array([[0.5976 4105]]), 'W'), (array([[0.11034 388]]), 'U'), (array([[0.0663 9637]]), 'N')]	2714]]), 'N'),	[(array([[0.6016 8177]]), 'N'), (array([[0.2650 5742]]), 'R'), (array([[0.0333 9391]]), 'Q')]	[(array([[0.6310 5898]]), 'K'), (array([[0.1563 2094]]), 'R'), (array([[0.0523 9216]]), 'E')]	[(array([[0.3740 6951]]), 'N'), (array([[0.2528 9893]]), 'Y'), (array([[0.1699 0982]]), 'X')]	[(array([[0.3753 6629]]), 'R'), (array([[0.2905 6448]]), 'K'), (array([[0.0881 4506]]), 'M')]	[(array([[0.2698 4054]]), 'X'), (array([[0.2137 6911]]), 'H'), (array([[0.1861 5968]]), 'N')]
0	[(array([[0.2234 0769]]), 'U'), (array([[0.1727 9556]]), 'L'), (array([[0.0941 2036]]), 'O')]	[(array([[0.3822 5552]]), 'O'), (array([[0.3594 4113]]), 'C'), (array([[0.0543 9953]]), 'E')]	[(array([[0.5505 0568]]), 'O'), (array([[0.2479 266]]), 'C'), (array([[0.0777 7696]]), 'U')]	[(array([[0.4080 7463]]), 'P'), (array([[0.1570 1126]]), 'R'), (array([[0.11473 503]]), 'M')]	[(array([[0.3326 0492]]), 'S'), (array([[0.2653 253]]), 'C'), (array([[0.1596 783]]), 'Z')]	[(array([[0.9554 3685]]), 'O'), (array([[0.0194 8414]]), 'C'), (array([[0.0189 5675]]), 'D')]	[(array([[0.9046 1061]]), 'O'), (array([[0.0849 4297]]), 'D'), (array([[0.0042 6133]]), 'J')]	[(array([[0.9035 9414]]), 'O'), (array([[0.0560 2485]]), 'Q'), (array([[0.0317 4919]]), 'D')]	[(array([[0.7718 0826]]), 'O'), (array([[0.2024 8421]]), 'Q'), (array([[0.0103 4152]]), 'C')]
P	[(array([[0.2048 0246]]), 'X'), (array([[0.1729 6983]]), 'D'), (array([[0.1341 7921]]), 'Z')]	[(array([[0.1853 9513]]), 'T'), (array([[0.1816 8018]]), 'A'), (array([[0.1472 4842]]), 'D')]	[(array([[0.7952 3005]]), 'P'), (array([[0.0633 2382]]), 'D'), (array([[0.0520 2114]]), 'E')]	[(array([[0.9275 946]]), 'P'), (array([[0.0368 6291]]), 'Y'), (array([[0.0126 3731]]), 'R')]	[(array([[0.4646 5497]]), 'T'), (array([[0.2685 8847]]), 'C'), (array([[0.2249 8955]]), 'Y')]	[(array([[0.6034 389]]), 'P'), (array([[0.3625 8818]]), 'T'), (array([[0.0153 5728]]), 'O')]	[(array([[0.9542 1253]]), 'P'), (array([[0.0383 9544]]), 'T'), (array([[0.0035 7152]]), 'Y')]	[(array([[0.9976 3213]]), 'P'), (array([[0.0010 738]]), 'R'), (array([[0.0008 581]]), 'F')]	[(array([[0.5191 3991]]), 'P'), (array([[0.2353 7872]]), 'T'), (array([[0.0869 5891]]), 'E')]
Q	[(array([[0.2653 574]]), 'D'), (array([[0.1493 9204]]), 'C'), (array([[0.11005 514]]), 'A')]	[(array([[0.2143 2278]]), 'G'), (array([[0.2013 6936]]), 'A'), (array([[0.1437 5177]]), 'Q')]	[(array([[0.4305 5201]]), 'U'), (array([[0.3756 4388]]), 'S'), (array([[0.0445 5739]]), 'D')]	[(array([[0.6830 055]]), 'Q'), (array([[0.1785 1005]]), 'D'), (array([[0.0785 9211]]), 'O')]	[(array([[0.3737 6709]]), 'D'), (array([[0.3009 0737]]), 'A'), (array([[0.2031 6846]]), 'Q')]	8554]]), 'W'), (array([[0.3171 9511]]), 'Q'),	[(array([[0.9752 0525]]), 'D'), (array([[0.0180 5604]]), 'J'), (array([[0.0063 7292]]), 'O')]	[(array([[0.5714 8608]]), 'Q'), (array([[0.1785 7267]]), 'O'), (array([[0.1438 4545]]), 'D')]	[(array([[0.5596 256]]), 'Q'), (array([[0.4249 6919]]), 'G'), (array([[0.0103 8113]]), 'O')]
R	[(array([[0.1262 7457]]), 'Q'), (array([[0.1022 7341]]), 'A'), (array([[0.0893 8058]]), 'T')]	[(array([[0.1844 1148]]), 'N'), (array([[0.1567 6669]]), 'L'), (array([[0.1296 8311]]), 'A')]	[(array([[0.5206 2228]]), 'P'), (array([[0.0900 7961]]), 'E'), (array([[0.0719 5204]]), 'D')]	[(array([[0.3951 8993]]), 'K'), (array([[0.2000 5926]]), 'R'), (array([[0.1381 9798]]), 'N')]	[(array([[0.3178 6282]]), 'B'), (array([[0.1234 0447]]), 'E'), (array([[0.11819 098]]), 'Z')]	2521]]), 'E'), (array([[0.1600 2932]]), 'F'),	[(array([[0.7324 0937]]), 'K'), (array([[0.0905 7887]]), 'R'), (array([[0.0742 6303]]), 'N')]	[(array([[0.2855 7082]]), 'Z'), (array([[0.2395 7307]]), 'D'), (array([[0.2029 7703]]), 'I')]	[(array([[0.6181 4922]]), 'R'), (array([[0.2998 5633]]), 'K'), (array([[0.0453 5839]]), 'E')]
s	[(array([[0.5781 9805]]), 'D'), (array([[0.0875 6216]]), 'Z'), (array([[0.0747 8275]]), 'S')]	[(array([[0.4983 6381]]), 'S'), (array([[0.11076 356]]), 'V'), (array([[0.0480 4533]]), 'I')]	7209]]), 'T'), (array([[0.1582 1029]]), 'S'), (array([[0.1427 065]]), 'Q')]	2025]]), 'W'), (array([[0.2698 6731]]), 'K'), (array([[0.1256 0686]]), 'L')]	[(array([[0.9293 2428]]), 'S'), (array([[0.0294 5409]]), 'G'), (array([[0.0120 0218]]), 'B')]	[(array([[0.9160 4603]]), 'S'), (array([[0.03118 95]]), 'Q'), (array([[0.0196 3448]]), 'G')]	134]]), 'S'),	[(array([[0.9734 6416]]), 'B'), (array([[0.0197 4061]]), 'S'), (array([[0.0033 9783]]), 'Z')]	[(array([[0.8438 0987]]), 'S'), (array([[0.0584 1573]]), 'B'), (array([[0.0367 5649]]), 'E')]
Т	[(array([[0.6509 1843]]), 'T'), (array([[0.0840 724]]), 'S'), (array([[0.0795 7313]]), 'J')]	[(array([[0.1856 369]]), 'R'), (array([[0.17011 928]]), 'T'), (array([[0.0870 0397]]), 'J')]	4582]]), 'S'),	[(array([[0.3958 5813]]), 'S'), (array([[0.3727 9888]]), 'T'), (array([[0.0803 7228]]), 'E')]	[(array([[0.9733 4062]]), 'T'), (array([[0.0243 1528]]), 'Y'), (array([[0.0009 6166]]), 'J')]	[(array([[0.9947 697]]), 'T'), (array([[0.0040 1177]]), 'P'), (array([[0.0003 9137]]), 'I')]	[(array([[0.7547 3856]]), 'T'), (array([[0.2399 4683]]), 'P'), (array([[0.0042 7597]]), 'Y')]	[(array([[0.9254 1834]]), 'T'), (array([[0.0448 4739]]), 'I'), (array([[0.0089 2502]]), 'Q')]	[(array([[0.9913 7672]]), 'T'), (array([[0.0081 9874]]), 'P'), (array([[0.0001 5306]]), 'F')]

U	[(array([[0.3488 6562]]), 'D'), (array([[0.11102 243]]), 'O'), (array([[0.0983 6732]]), 'X')]	2757]]), 'T'),	[(array([[0.5068 5419]]), 'O'), (array([[0.11704 172]]), 'C'), (array([[0.1004 9582]]), 'U')]	[(array([[0.9092 9824]]), 'V'), (array([[0.0284 5439]]), 'W'), (array([[0.0280 2638]]), 'U')]	[(array([[0.9698 9214]]), 'U'), (array([[0.0100 3981]]), 'O'), (array([[0.0038 2128]]), 'G')]	[(array([[0.5408 9223]]), 'V'), (array([[0.2044 9585]]), 'W'), (array([[0.0688 6058]]), 'H')]	[(array([[0.4335 2842]]), 'Y'), (array([[0.2306 9702]]), 'N'), (array([[0.0946 4839]]), 'P')]	[(array([[0.8339 9539]]), 'U'), (array([[0.0660 916]]), 'D'), (array([[0.0409 9788]]), 'W')]	[(array([[0.8595 4814]]), 'U'), (array([[0.0447 089]]), 'V'), (array([[0.0274 4518]]), 'J')]
V	[(array([[0.2859 512]]), 'N'), (array([[0.2033 2509]]), 'R'), (array([[0.1436 052]]), 'H')]	[(array([[0.1764 0036]]), 'Y'), (array([[0.1275 6764]]), 'U'), (array([[0.1039 186]]), 'J')]	[(array([[0.2144 1988]]), 'H'), (array([[0.1082 9336]]), 'Q'), (array([[0.0996 8956]]), 'N')]	[(array([[0.8316 9306]]), 'V'), (array([[0.05811 176]]), 'Y'), (array([[0.0490 813]]), 'H')]	[(array([[0.7853 9065]]), 'V'), (array([[0.0747 3416]]), 'Y'), (array([[0.04011 519]]), 'U')]	6945]]), 'Y'), (array([[0.2160 0666]]), 'T'), (array([[0.0288 7128]]), 'X')]	[(array([[0.5329 8167]]), 'U'), (array([[0.4399 69]]), 'V'), (array([[0.0185 0015]]), 'J')]	[(array([[0.8447 1077]]), 'U'), (array([[0.0532 0468]]), 'C'), (array([[0.0377 5504]]), 'V')]	[(array([[0.9179 6556]]), 'V'), (array([[0.0288 0352]]), 'Y'), (array([[0.0137 6491]]), 'U')]
W	[(array([[0.2652 1746]]), 'U'), (array([[0.1344 968]]), 'N'), (array([[0.0720 1335]]), 'G')]	[(array([[0.4213 9429]]), 'A'), (array([[0.11830 299]]), 'T'), (array([[0.0807 0585]]), 'N')]	[(array([[0.3650 4798]]), 'L'), (array([[0.1583 5822]]), 'W'), (array([[0.11296 195]]), 'N')]	8857]]), 'W')]	4116]]), 'U'), (array([[0.0570 1397]]), 'N'), (array([[0.0253 4986]]), 'W')]	[(array([[0.3913 2588]]), 'V'), (array([[0.2974 1709]]), 'U'), (array([[0.2820 6326]]), 'W')]	[(array([[0.5200 6758]]), 'W'), (array([[0.4753 0983]]), 'U'), (array([[0.0037 7811]]), 'L')]	[(array([[0.9040 0168]]), 'U'), (array([[0.0330 3712]]), 'V'), (array([[0.0319 164]]), 'N')]	[(array([[0.9225 2012]]), 'W'), (array([[0.0666 9113]]), 'N'), (array([[0.0036 6553]]), 'U')]
X	[(array([[0.2339 4138]]), 'C'), (array([[0.1535 7837]]), 'D'), (array([[0.0857 8747]]), 'J')]	[(array([[0.2855 0051]]), 'T'), (array([[0.1324 7123]]), 'C'), (array([[0.0958 9432]]), 'L')]	[(array([[0.5207 0837]]), 'M'), (array([[0.1259 7466]]), 'W'), (array([[0.0780 2404]]), 'T')]	[(array([[0.4823 9206]]), 'R'), (array([[0.3666 7749]]), 'K'), (array([[0.0967 2772]]), 'N')]	[(array([[0.2451 1674]]), 'E'), (array([[0.1880 6269]]), 'K'), (array([[0.1034 5744]]), 'R')]	[(array([[0.1841 3498]]), 'R'), (array([[0.1519 0403]]), 'P'), (array([[0.1492 0299]]), 'I')]	[(array([[0.5074 2837]]), 'L'), (array([[0.1762 6057]]), 'X'), (array([[0.1232 8394]]), 'K')]	[(array([[0.8972 593]]), 'X'), (array([[0.0644 6068]]), 'K'), (array([[0.02211 627]]), 'Y')]	823]]), 'Y'), (array([[0.0261 8069]]), 'X'),
Y	[(array([[0.1820 8575]]), 'T'), (array([[0.1650 4798]]), 'S'), (array([[0.1308 2974]]), 'Q')]	[(array([[0.1458 3016]]), 'T'), (array([[0.11829 3]]), 'S'), (array([[0.0855 256]]), 'D')]	[(array([[0.3298 7962]]), 'X'), (array([[0.1972 0429]]), 'R'), (array([[0.1361 013]]), 'B')]	[(array([[0.9537 1121]]), 'Y'), (array([[0.0457 0236]]), 'X'), (array([[0.0002 2438]]), 'T')]	0041]]), 'P'), (array([[0.1249 1978]]), 'Y'),	[(array([[0.9746 7691]]), 'Y'), (array([[0.0141 6913]]), 'X'), (array([[0.0039 9637]]), 'I')]	[(array([[0.5959 7229]]), 'Y'), (array([[0.2082 1708]]), 'T'), (array([[0.11488 259]]), 'X')]	4881]]), 'Y'), (array([[0.0096 7525]]), 'I'),	[(array([[0.8814 7206]]), 'Y'), (array([[0.0425 7007]]), 'B'), (array([[0.0328 4772]]), 'X')]
Z	[(array([[0.1863 7554]]), 'D'), (array([[0.1628 8372]]), 'T'), (array([[0.1050 119]]), 'K')]	[(array([[0.1771 6357]]), 'T'), (array([[0.1317 7398]]), 'A'), (array([[0.0999 5405]]), 'D')]	[(array([[0.6984 6147]]), 'T'), (array([[0.0967 5195]]), 'Z'), (array([[0.0861 0298]]), 'Y')]	[(array([[0.4504 7587]]), 'J'), (array([[0.3749 1478]]), 'Z'), (array([[0.1249 5858]]), 'B')]	[(array([[0.5863 3704]]), 'J'), (array([[0.2071 8286]]), 'Q'), (array([[0.0868 3831]]), 'D')]	[(array([[0.5797 94]]), 'Z'), (array([[0.2206 0641]]), 'J'), (array([[0.1235 3063]]), 'L')]	[(array([[0.8387 4035]]), 'J'), (array([[0.1464 6194]]), 'S'), (array([[0.0083 4702]]), 'Q')]	[(array([[0.4212 9594]]), 'Z'), (array([[0.2772 6237]]), 'B'), (array([[0.1500 0329]]), 'I')]	[(array([[0.8432 0207]]), 'Z'), (array([[0.0760 809]]), 'B'), (array([[0.0270 8855]]), 'V')]
Accuracy of first guess when reading my handwriting	3.85%	8.33%	15.38%	38.46%	26.92%	34.62%	46.15%	53.85%	61.54%
Accuracy of top 2 guess when reading my handwriting	7.69%	19.23%	34.62%	57.69%	38.46%	0.4615384615	76.92%	69.23%	76.92%
Accuracy of top 3 guess when reading my handwriting	23.08%	30.77%	50.00%	65.38%	53.85%	57.69%	80.77%	76.92%	84.62%
Average accuracy of first guess when reading my handwriting	9.19%			33.33%			53.85%		
Average accuracy of top 2 guess when reading my handwriting	20.51%			47.44%			74.36%		
Average accuracy of top 3 guess when reading my handwriting	34.62%			58.97%			80.77%		

-									
Accuracy of dataset - accuracy of handwriting (top 1 guess)	-41.21%	-40.22%	-38.92%	-37.63%	-48.54%	-41.07%	-34.13%	-26.96%	-19.88%
Accuracy of dataset - accuracy of handwriting (top 2 guess)	-37.36%	-29.32%	-19.69%	-18.40%	-37.00%	-29.53%	-3.36%	-11.58%	-4.49%
Accuracy of dataset - accuracy of handwriting (top 3 guess)	-21.97%	-17.79%	-4.31%	-10.71%	-21.61%	-17.99%	0.48%	-3.88%	3.20%
Average accuracy of dataset - accuracy of handwriting (top 1 guess)	-40.12%			-42.41%			-26.99%		
Average accuracy of dataset - accuracy of handwriting (top 2 guess)	-28.79%			-28.31%			-6.48%		
Average accuracy of dataset - accuracy of handwriting (top 3 guess)	-14.69%			-16.77%			-0.07%		