Relational Algebra

- SQL is based on Relational Algebra
- SQL is "syntactically sugared" expressions of Relational Algebra
- The need for a query language
 - Simple
 - Can be optimized
 - Independent of programming languages

Algebra Vs Relational Algebra

- Algebra
 - Operands
 - Operators
 - Expressions
- Relational Algebra
 - Variables (Relations)
 - Constants (Finite Relations)
 - Operations
 - Set Operations (Union, Intersection, Difference)
 - Selection and Projection
 - Combining relations
 - Renaming relations

Set operations

- If R and S are two relations,
 - Union is denoted by R U S
 - Intersection is denoted by $R \cap S$
 - Difference is denoted by R S
- Conditions on R and S to apply set operations
 - R and S must have the same attributes that belong to the same domains.
 - Order of the attributes must be the same.

RUS

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88

Relation R

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
	789 Palm Dr., Beverly Hills	M	7/7/77

Relation S

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
	456 Oak Rd., Brentwood		8/8/88

Relation R

name	address	gender	birthdate
	123 Maple St., Hollywood		9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

Relation 5

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99

R-S

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
	456 Oak Rd., Brentwood		8/8/88

Relation R

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

Relation 5

name	address	gender	birthdate
Mark Hamill	456 Oak Rd., Brentwood	o M rseSmi	8/8/88

Projection

- Use projection to create a new relation with selected columns from a relation
- Analogous to SELECT in SQL
- Represented as $\prod_{a1, a2, ...}$ (R)

title	year	length	genre 708	3studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

Figure 2.13: The relation Movies

title	year	length
Star Wars	1977	124
Galaxy Quest	1999	104
Wayne's World	1992	95

Selection

- Selection operator returns the tuples that meet a condition.
- Analogous to WHERE in SQL
- Represented by $\sigma_c(R)$, where c is the condition (σ is pronounced sigma)

title	year	length	genre 708	3 studio Name	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

Figure 2.13: The relation Movies

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890

Cartesian Product

- The Cartesian product (or cross-product, or just product) of two sets R and S is the set of pairs that can be formed by choosing the first element of the pair to be any element of R and the second any element of S.
- Denoted by R X S
- Notice the use of qualifier

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

(b) Relation S

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

(c) Result $R \times S$

Natural Join

- The simplest sort of match is the natural join of two relations R and S, denoted R ⋈ S, in which we pair only those tuples from R and S that agree in whatever attributes are common to the schemas of R and S.
- Same as inner join in SQL.
- The two relations may have more than one attribute in common.

A	B	C	D
1	2	5	6
3	4	7	8

$$R \bowtie S$$

A	B
1	2
3	4

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

(b) Relation S

Theta Join

- The natural join forces us to pair tuples using one specific condition.
- Theta join allows you to pair tuples from two relations on some other basis.
- Denoted by R ⋈_c S
- Theta Join
 - Take the product of R and S.
 - Select from the product only those tuples that satisfy the condition C.

Theta Join Example - 1

A	B	C
1	2	3
6	7	8
9	7	8

(a) Relation U

B	C	D
2	3	4
2	3	5
7	8	10

(b) Relation V

A	U.B	U.C	V.B	V.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

Figure 2.17: Result of $U\bowtie_{A< D} V$

Theta Join Example - 2

A	U.B	U.C	V.B	V.C	D
1	2	3	7	8	10

 $U\bowtie_{A< D} \text{ and } _{U.B\neq V.B} V$

A	B	C
1	2	3
6	7	8
9	7	8

(a) Relation U

B	C	D
2	3	4
2	3	5
7	8	10

(b) Relation V

Expression Trees

- Combine expressions to solve problems
- Visualize using an expression tree

Example: What are the titles and years of movies made by Fox that are at least 100 minutes long?

Alternate forms of expressions

$$\pi_{title,year}\Big(\sigma_{length \geq 100}(\texttt{Movies}) \cap \sigma_{studioName="\texttt{'Fox'}}(\texttt{Movies})\Big)$$

$$\pi_{title,year}\left(\sigma_{length \ge 100 \text{ AND } studioName="Fox"}, (Movies)\right)$$

Naming and Renaming

- Attributes or relations can be renamed to avoid name conflicts and to simplify expressions.
- Denoted by $\rho_S(R)$ (ρ is pronounced rho)
- S is the name of the new relation

A	B	X	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Figure 2.19: $R \times \rho_{S(X,C,D)}(S)$

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

(b) Relation S

$$\rho_{RS(A,B,X,C,D)}(R \times S)$$
 Alternate form

Relationships among operations

- Intersection can be expressed as difference $R \cap S = R (R S)$
- Theta join can be expressed by product

and selection

$$R \bowtie_C S = \sigma_C(R \times S)$$

 The natural join of R and S can be expressed by starting with the product R X S, then applying the selection operator with a condition C and L is the list of attributes

$$R \bowtie S = \pi_L \Big(\sigma_C(R \times S) \Big)$$

Linear notation

- Another type of notation like the trees
- Invent names for the temporary relations that correspond to the interior nodes of the tree and write a sequence of assignments that create a value for each.
- Notation:
 - A relation name and parenthesized list of attributes for that relation
 - The assignment symbol : = .
 - Any algebraic expression on the right.

```
\begin{array}{l} \mathtt{R}(\mathtt{t},\mathtt{y},\mathtt{l},\mathtt{i},\mathtt{s},\mathtt{p}) := \sigma_{length \geq 100}(\mathtt{Movies}) \\ \mathtt{S}(\mathtt{t},\mathtt{y},\mathtt{l},\mathtt{i},\mathtt{s},\mathtt{p}) := \sigma_{studioName='Fox'}(\mathtt{Movies}) \\ \mathtt{T}(\mathtt{t},\mathtt{y},\mathtt{l},\mathtt{i},\mathtt{s},\mathtt{p}) := \mathtt{R} \cap \mathtt{S} \\ \mathtt{Answer}(\mathtt{title},\,\mathtt{year}) := \pi_{t,y}(\mathtt{T}) \\ \end{array} \\ \begin{array}{l} \mathtt{R}(\mathtt{t},\mathtt{y},\mathtt{l},\mathtt{i},\mathtt{s},\mathtt{p}) := \sigma_{length \geq 100}(\mathtt{Movies}) \\ \mathtt{S}(\mathtt{t},\mathtt{y},\mathtt{l},\mathtt{i},\mathtt{s},\mathtt{p}) := \sigma_{studioName='Fox'}(\mathtt{Movies}) \\ \mathtt{Answer}(\mathtt{title},\,\mathtt{year}) := \pi_{t,y}(\mathtt{R} \cap \mathtt{S}) \end{array}
```