

Department of Computer Science and Engineering (CSM & CSD)

AS22-66PC03- Design and Analysis of Algorithm

Question Bank

St. Peter's Engine		U .	omous)Dulla	apally	<i>y</i> (P), Medchal,	Dept.	:	CSM,CSD, CSC	
Hyderabad – 500100. QUESTION BANK					Academ 2025					
Subject Code	:	AS22-66PC03	Subject		:	Design and A	n and Analysis of Algorithm			
Class/Section	:	B. Tech.	Year		:	III	Semester	:	I	

BLOOMS LEVEL							
Remember	L1	Understand	L2	Apply	L3		
Analyze	L4	Evaluate	L5	Create	L6		

UNIT-I

Q. No	Question (s)	Marks	BL	СО				
	PART-A							
1	What is an algorithm?	1M	BL1	C311.1,				
1		11V1		C311.2				
2	Define time complexity.	1M	BL2	C311.1,				
<u> </u>				C311.2				
3	Define space complexity.	1M	BL1	C311.1,				
<i>J</i>				C311.2				
4	What is Big-O notation used for?	1M	BL2	C311.1,				
Т				C311.2				
5	Give the worst-case time complexity of Merge Sort.	1M	BL3	C311.1,				
3				C311.2				
6	Name the divide and conquer strategy used in Quick	1M	BL3	C311.1,				
U	Sort.			C311.2				
7	What is Theta (θ) notation?	1M	BL3	C311.1,				
,				C311.2				
8	State the best-case time complexity of Binary Search.	1M	BL2	C311.1,				
0				C311.2				
9	Mention any one application of Strassen's matrix	1M	BL1	C311.1,				
,	multiplication.			C311.2				
10	Define little-oh (o) notation.	1M	BL2	C311.1,				
10				C311.2				
	PART- B							
	Sort the records with the following index values in the		BL2	C311.1,				
1	ascending order using quick sort algorithm 30, 20, 10,50, 60, 40.	5M		C311.2				

	Write the procedure for Strassen's Matrix	5M	BL4	C311.1,
2	multiplication?			C311.2
3	Using Merge sort algorithm sort the given	5M	BL3	C311.1,
3	list:7,5,2,4,1,6,3,0.			C311.2
4	Describe about Asymptotic Notations.	5M	BL3	C311.1,
T				C311.2
5	Explain about Divide and Conquer technique in	5M	BL2	C311.1,
<i>J</i>	algorithm design and write its applications?			C311.2
6	Explain the differences between Big-O, Big- Ω , and	5M	BL3	C311.1,
0	Big-Θ notations with suitable examples.			C311.2
7	Illustrate how Binary Search follows the divide and	5M	BL5	C311.1,
/	conquer paradigm.			C311.2
8	Write and explain the recurrence relation for Merge	5M	BL4	C311.1,
0	Sort. Derive its time complexity.			C311.2
9	Analyze the best, average, and worst-case time	5M	BL2	C311.1,
9	complexities of Quick Sort.			C311.2
	Compare and contrast Quick Sort and Merge Sort in	5M	BL4	C311.1,
10	terms of algorithm design, time complexity, and space			C311.2
	usage.			
	Sort the records with the following index values in the		BL5	
11	ascending order using Quick Sort algorithm 2, 3, 8, 5,	10M		C311.1,
11	4, 7, 6, 9, 1.			C311.2
	W. C. A. C. M. C. A. A. A.	103.6	DI 5	G211 1
12	Write an algorithm for Merge Sort and the	10M	BL5	C311.1,
	complexity of the algorithm with an example?	10) (DI 4	C311.2
	Explain Strassen's Matrix multiplication with one	10M	BL4	C311.1,
13	example? What is the time complexity of this			C311.2
	algorithm?			
	Design and implement Merge Sort using the divide	10M	BL3	C311.1,
14	and conquer approach. Explain its time and space			C311.2
-	complexity with the help of a recurrence relation and			
	recursion tree.			
<u> </u>	Write the algorithm for Quick Sort. Analyze its	10M	BL3	C311.1,
15	performance in the best, average, and worst cases.			C311.2
	Include pivot choice impact in your discussion.	103.5	77.4	62111
	Critically evaluate the differences between all four	10M	BL4	C311.1,
16	asymptotic notations: Big-O, Big-Ω, Big-Θ, and			C311.2
	little-o, using graphs and examples.	103.5	77.0	6211.1
	Explain Strassen's matrix multiplication algorithm in	10M	BL3	C311.1,
17	detail. Compare its computational complexity with			C311.2
	standard matrix multiplication and analyze the space-			
	time tradeoffs.	103.5		G211 :
1.0	Apply Merge Sort on the array [38, 27, 43, 3, 9, 82, 10]	10M	BL4	C311.1,
18	and show all intermediate steps including the merging			C311.2
	process.	103.5	DI A	G211.1
19	Explain the divide and conquer approach used in	10M	BL3	C311.1,
	Binary Search.			C311.2
20	Write pseudocode for Binary Search (both recursive	10M	BL2	C311.1,
_ <u> </u>	and iterative versions).			C311.2

Q. No	Question (s)	Marks	BL	СО
	PART-A		1	1
1	What is a disjoint set?	1M	BL2	C311.2, C311.3
2	Name two operations performed on disjoint sets.	1M	BL2	C311.2,
	Define the 'find' operation in a disjoint set.		BL2	C311.3 C311.2,
3		1M		C311.3
4	State one application of union-find.	1M	BL1	C311.2, C311.3
5	What is backtracking?	1M	BL2	C311.2,
6	Which data structure is commonly used in the union-	1M	BL2	C311.3 C311.2,
	find algorithm? What is the base condition for the N-Queens problem?		BL2	C311.3 C311.2,
7		1M		C311.3
8	List any one application of backtracking.	1M	BL3	C311.2, C311.3
9	Which graph problem can be solved using backtracking?	1M	BL2	C311.2, C311.3
10	What is the output of find(5) in a set where $5 \rightarrow 3 \rightarrow$	1M	BL3	C311.2,
	1? PART- B			C311.3
	Explain the union and find operations with an		BL5	C311.2,
1	example.	5M	BL3	C311.2,
2	Write pseudocode for the 'find' operation using path compression.	5M	BL2	C311.2, C311.3
3	Explain the working of 4-Queen problem with a simple example.	5M	BL4	C311.2, C311.3
4	Describe the steps of solving the N-Queens problem using backtracking.	5M	BL3	C311.2, C311.3
5	Write the backtracking algorithm for the Subset Sum problem.	5M	BL4	C311.2, C311.3
6	Explain the working of 8-Queen problem with a simple example.	5M	BL3	C311.2, C311.3
7	Explain how disjoint sets can be used to detect cycles in an undirected graph.	5M	BL4	C311.2, C311.3
8	Analyze the time complexity of union-find with path	5M	BL5	C311.2,
9	compression. Discuss the recursive nature of the backtracking	5M	BL4	C311.3 C311.2,
10	method. Trace the solution tree of $N = 4$ in the N-Queens	5M	BL5	C311.3 C311.2,
11	problem. Design and implement a disjoint set data structure	10M	BL6	C311.3 C311.2,
12	with union-by-rank and path compression. Solve the Graph Coloring problem using backtracking	10M	BL5	C311.3 C311.2,
12	for a given graph and explain your steps.			C311.3

13	Implement the Sum of Subsets problem using backtracking and analyze the time complexity.	10M	B15	C311.2, C311.3
14	Evaluate the advantages and limitations of backtracking in solving constraint satisfaction problems.	10M	BL4	C311.2, C311.3
15	Implement 4 Queen and 8 Queen problem using backtracking.	10M	BL3	C311.2, C311.3
16	Given a constraint-based puzzle (like Sudoku), frame it as a backtracking problem and outline your solution.	10M	BL3	C311.2, C311.3
17	Compare and contrast Disjoint Set Union-Find with other dynamic connectivity algorithms.	10M	BL4	C311.2, C311.3
18	Apply the backtracking algorithm to solve the following instance of the sum of subsets problem $S=\{1,3,4,5\}$ and $m=8$.	10M	BL3	C311.2, C311.3
19	Create a program to solve the N-Queens problem for N=8 using both recursion and backtracking. Show the full output.	10M	BL3	C311.2, C311.3
20	Critically analyze the difference between brute-force and backtracking strategies with suitable examples.	10M	BL4	C311.2, C311.3

UNIT-III

Q. No	Question (s)	Marks	BL	CO				
	PART-A							
1	Define dynamic programming.	1M	BL1	C311.1,				
1		1101		C311.3				
2	What is the principle of optimality?	1M	BL2	C311.1,				
		1171		C311.3				
3	What is the time complexity of the 0/1 knapsack	1M	BL1	C311.1,				
3	problem using dynamic programming?	1171		C311.3				
4	Name any two applications of dynamic	1M	BL3	C311.1,				
	programming.			C311.3				
5	State one advantage of dynamic programming over	1M	BL1	C311.1,				
3	divide and conquer.			C311.3				
6	In Optimal Binary Search Tree, what does w(i,j)	1M	BL3	C311.1,				
0	represent?			C311.3				
7	What is the goal of the Travelling Salesperson	1M	BL2	C311.1,				
	Problem (TSP)?			C311.3				
8	What type of graph is used in the All-Pairs	1M	BL2	C311.1,				
0	Shortest Path problem?			C311.3				
9	In the 0/1 knapsack problem, can items be	1M	BL2	C311.1,				
,	divided?	1111		C311.3				
10	What is meant by reliability in system design?	1M	BL3	C311.1,				
10				C311.3				

	PART- B			
1	Explain the general method of dynamic	5M	BL2	C311.1,
1	programming with an example.	SIVI		C311.3
	Given $n = 4$, weights = $\{2, 3, 4, 5\}$, values = $\{3, 4, 5, 5\}$	5M	BL3	C311.1,
2	6 } and capacity = 5, solve the $0/1$ Knapsack problem			C311.3
	using dynamic programming.			
3	Explain the construction of Optimal Binary Search	5M	BL3	C311.1,
3	Trees with a small example.			C311.3
4	Describe the Floyd-Warshall algorithm and its	5M	BL3	C311.1,
4	working for the All-Pairs Shortest Path problem.			C311.3
5	Explain how dynamic programming is used to	5M	Bl4	C311.1,
3	solve the Travelling Salesperson Problem.			C311.3
6	Compare the greedy method and dynamic	5M	BL4	C311.1,
U	programming with a relevant example.			C311.3
7	Analyze the time and space complexity of the 0/1	5M	BL4	C311.1,
/	Knapsack dynamic programming solution.			C311.3
8	Identify overlapping subproblems in the computation	5M	BL3	C311.1,
0	of Fibonacci numbers.			C311.3
	Construct the cost matrix and explain the DP	5M	BL3	C311.1,
9	approach to solve the All-Pairs Shortest Path			C311.3
	problem.			
10	Analyze how system reliability is computed using	5M	BL2	C311.1,
10	dynamic programming in reliability design.			C311.3
	Design a dynamic programming algorithm to solve		BL3	C311.1,
	the 0/1 Knapsack problem and explain the steps with			C311.3
11	time complexity analysis.	10M		
	Item weight $(2,3,4,5)$ with profit as $(3,4,5,6)$ with bag			
	capacity as w= 5			
	Discuss the dynamic programming approach to	10M	BL2	C311.1,
12	construct Optimal Binary Search Trees. Provide a			C311.3
	full worked-out example.			85111
	Write and explain the dynamic programming	10M	BL3	C311.1,
	solution for the All-Pairs Shortest Path problem			C311.3
	using the Floyd-Warshall algorithm.			
	@ ¹⁰ - @			
13	70 -0			
15	50 40 20			
	© 50 40 20			
	60 0-0			
	30			
	Develop a dynamic programming solution to the	10M	BL3	C311.1,
1.4	Travelling Salesperson Problem (TSP). Analyze			C311.3
14	its time complexity.			
				<u> </u>
	Describe a dynamic programming approach for	10M	BL3	C311.1,
15	Describe a dynamic programming approach for system reliability design. How does it differ from	10M	BL3	C311.1, C311.3

16	Using OBST compute $w(i,j),r(i,j),c(i,j),0 < i < = j < = 4$ for the identifier set $(a1,a2,a3,a4) = (end,goto,print,stop)$ with $p(0.1,0.2,0.4,0.3)$. Using $r(i,j)$ construct the optimal binary search tree	10M	BL2	C311.1, C311.3
17	Create a comparative analysis of dynamic programming applications in knapsack, TSP, and OBST.	10M	BL3	C311.1, C311.3
18	Explain about 0/1 Knapsack problem in Dynamic programming and hence solve the following 0/1 knapsack problem for n=4, (W1, W2, W3,W4) = (2, 4, 6,9), (P1, P2, P3,P4) = (10,10,12,18) and m=15.	10M	BL3	C311.1, C311.3
19	Explain about 0/1 Knapsack problem in Dynamic programming and hence solve the following 0/1 knapsack problem for n=3, (W1, W2, W3) = (2, 3,4), (P1, P2, P3) = (1,2,5) and m=6.	10M	BL3	C311.1, C311.3
20	Using OBST compute $w(i,j),r(i,j),c(i,j),0 < i < = j < = 4$ for the identifier set $(a1,a2,a3,a4) = (end,goto,print,stop)$ with p $(0.15, 0.25, 0.35, 0.25)$. Using $r(i,j)$ construct the optimal binary search tree	10M	BL4	C311.1, C311.3

UNIT-IV

Q. No	Question (s)	Marks	BL	CO				
	PART-A							
1	Define the greedy method.	1M	BL2	C311.4, C311.5				
2	What is the main characteristic of a greedy algorithm?	1M	BL2	C311.4, C311.5				
3	Does the greedy approach guarantee an optimal solution for all problems?	1M	BL2	C311.4, C311.5				
4	What is the objective of the job sequencing with deadlines problem?	1M	BL2	C311.4, C311.5				
5	In which scenario does greedy method fail for the knapsack problem?	1M	BL2	C311.4, C311.5				
6	What is the difference between 0/1 knapsack and fractional knapsack?	1M	BL2	C311.4, C311.5				
7	Name any one greedy algorithm used for finding Minimum Cost Spanning Trees.	1M	BL3	C311.4, C311.5				
8	What is the time complexity of Kruskal's algorithm?	1M	BL2	C311.4, C311.5				
9	Which data structure is typically used in Prim's algorithm?	1M	BL2	C311.4, C311.5				
10	What is the output of Dijkstra's algorithm?	1M	BL1	C311.4, C311.5				
PART- B								
1	Explain the general method of the greedy approach with a real-world example.	5M	BL3	C311.4, C311.5				

strategy for the following: m = 3, weights = {10, 20, 30}, values = {60, 100, 120}, capacity = 50 SExplain Kruskal's algorithms with example. Describe the job sequencing with deadlines problem and its greedy solution. Compare and contrast Prim's and Kruskal's algorithms. Compare and contrast Prim's and Kruskal's algorithms. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. Mate conditions must a problem satisfy to be solved using a greedy approach? Analyze why greedy algorithms give optimal results for fractional knapsack but not 0/1 knapsack. Explain how greedy method differs from dynamic programming with examples. BL3 C311.4, C311.5 BL4 C311.4, C311.5 Explain how greedy method differs from dynamic programming with examples. BL3 C311.4, C311.5 BL3 C311.4, C311.5 Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M BL4 C311.4, C311.5		Solve the fractional knapsack problem using greedy	5M	BL3	C311.4,
Sol. values (60, 100, 120), capacity = 50	2		01.1	220	-
Explain Kruskal's algorithms with example. Describe the job sequencing with deadlines problem and its greedy solution. Compare and contrast Prim's and Kruskal's algorithms. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. What conditions must a problem satisfy to be solved using a greedy approach? Apalyze why greedy algorithms give optimal results for fractional knapsack but not 0/1 knapsack. Explain how greedy method differs from dynamic programming with examples. Beaplain how greedy method differs from dynamic programming with examples. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline(] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the O/A knapsack, Litem weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w=5 Find the optimal solution of the Knapsack problem 10M BL4 C311.4, C311.5 Evaluate the limitations of greedy algorithms. C311.5					
Describe the job sequencing with deadlines problem and its greedy solution. Compare and contrast Prim's and Kruskal's algorithms. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. What conditions must a problem satisfy to be solved using a greedy approach? Replain how greedy algorithms give optimal results for fractional knapsack but not 0/1 knapsack. Explain how greedy method differs from dynamic programming with examples. BL3 C311.4, C311.5 Explain how greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the O/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M BL4 C311.4, C311.5	2		5M	BL4	C311.4,
and its greedy solution. Compare and contrast Prim's and Kruskal's algorithms. Compare the shortest paths. Compare the shortest paths. Compare the shortest paths. Compare the shortest paths. Compare them with dynamic programming using the optimal results for fractional knapsack but not 071 knapsack. Compare them with dynamic programming using the optimal programming with examples. Compare them with dynamic programming using the optimal programming using the deadline. Show stepwise programs. Evaluate the limitations of greedy algorithms. Evaluate the limitations of greedy algorith	3				,
and its greedy solution. Compare and contrast Prim's and Kruskal's algorithms. Compare the shortest paths. Compare the shortest paths. Compare the shortest paths. Compare the shortest paths. Compare them with dynamic programming using the optimal results for fractional knapsack but not 071 knapsack. Compare them with dynamic programming using the optimal programming with examples. Compare them with dynamic programming using the optimal programming using the deadline. Show stepwise programs. Evaluate the limitations of greedy algorithms. Evaluate the limitations of greedy algorith	4	Describe the job sequencing with deadlines problem	5M	BL3	C311.4,
algorithms. Apply Dijkstra's algorithm on a given graph and compute the shortest paths. What conditions must a problem satisfy to be solved using a greedy approach? Analyze why greedy algorithms give optimal results for fractional knapsack but not 0/1 knapsack. Explain how greedy method differs from dynamic programming with examples. BL4 C311.4, C311.5 Explain how greedy method differs from dynamic programming with examples. BL3 C311.5 Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	4				C311.5
6 Apply Dijkstra's algorithm on a given graph and compute the shortest paths. 7 What conditions must a problem satisfy to be solved using a greedy approach? 8 Analyze why greedy algorithms give optimal results for fractional knapsack but not 0/1 knapsack. 9 Explain how greedy method differs from dynamic programming with examples. 10 Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis, where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) 12 Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. 13 Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. 14 Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. 15 One of the compare them with dynamic programming using the of 1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) = 10 Illustrate how the minimum cost spanning tree is obtained using Greedy method where n=4, m=15, (p1-p4) =	_	Compare and contrast Prim's and Kruskal's	5M	BL5	C311.4,
compute the shortest paths. C311.5	3	algorithms.			C311.5
compute the shortest paths. Compute the shortest paths Compute the shortest paths	6	Apply Dijkstra's algorithm on a given graph and	5M	BL4	C311.4,
Second compared complexity analysis where n=4, n=5, norminimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity.	O	compute the shortest paths.			C311.5
Sample greedy approach? Sample Sa	7	What conditions must a problem satisfy to be solved	5M	BL3	C311.4,
for fractional knapsack but not 0/1 knapsack. Explain how greedy method differs from dynamic programming with examples. Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w=5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	/				C311.5
First tonal knapsack but not 0'l knapsack. Explain how greedy method differs from dynamic programming with examples. 10 Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	0	Analyze why greedy algorithms give optimal results	5M	BL4	C311.4,
programming with examples. C311.5 Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	8	for fractional knapsack but not 0/1 knapsack.			C311.5
Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =		Explain how greedy method differs from dynamic	5M	BL3	C311.4,
Illustrate how the minimum cost spanning tree is obtained using Kruskal's algorithm. Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2)	9	programming with examples.			C311.5
Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) 10M BL5 C311.4, C311.5 With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] 10M BL4 C311.4, C311.5 Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 10M BL4 C311.4, C311.5 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M BL4 C311.4, C311.5 C311			5M	BL3	C311.4
Design and explain a greedy algorithm to solve the fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	10		5141	BLS	
fractional knapsack problem. Include step-by-step execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =		<u> </u>		BL3	
execution and complexity analysis. where n=4, m=5, (p1-p4) = (12,10,20,15) And (w1-w4) = (2,1,3,2) With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =				BLS	
With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	11		10M		
With an example, explain the greedy strategy for job sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =					
sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 B					
sequencing with deadlines. Show how the schedule is created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 B		With an example, explain the greedy strategy for job	10M	BL5	C311.4,
created and compute the profit. deadline[] = [2, 1, 2, 1, 1], profit[] = [100, 19, 27, 25, 15] Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w = 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =					-
13 Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. BL4 C311.4, C311.5 C311.5 10M BL3 C311.4, C311.5	10				
Explain both Prim's and Kruskal's algorithms for minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. BL4 C311.4, C311.5 BL4 C311.4, C311.5 BL4 C311.4, C311.5 10M BL3 C311.4, C311.5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) =	12				
minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. BL4 C311.4, C311.5 BL4 C311.5 10M BL3 C311.4, C311.5 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = C311.5 BL4 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5					
minimum cost spanning tree. Provide pseudo-code, example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. BL4 C311.4, C311.5 BL4 C311.5 10M BL3 C311.4, C311.5 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = C311.5 BL4 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5 C311.5					
example graph, and analyze complexity. Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = BL4 C311.4, C311.4, C311.5		Explain both Prim's and Kruskal's algorithms for	10M	BL4	C311.4,
Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M BL4 C311.4, C311.5 C311.5 BL4 C311.4, C311.5 C311.5	13	minimum cost spanning tree. Provide pseudo-code,			C311.5
Using Dijkstra's algorithm, compute the shortest paths from a given source vertex. Include a table to show stepwise progress. 14 Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M BL4 C311.4, C311.5 C311.5 BL4 C311.4, C311.5 C311.5		example graph, and analyze complexity.			
paths from a given source vertex. Include a table to show stepwise progress. 14 B 3 10M Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = C311.5 C311.5 C311.5 C311.5				BL4	C311.4,
14 B T T B T T		paths from a given source vertex. Include a table to			C311.5
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M 10M BL3 C311.4, C311.5		show stepwise progress.			
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 10M 10M BL3 C311.4, C311.5		3 -			
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = Evaluate the limitations of greedy algorithms. 10M BL3 C311.4, C311.5	14		10M		
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = Evaluate the limitations of greedy algorithms. 10M BL3 C311.4, C311.5		4 / 8			
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = Evaluate the limitations of greedy algorithms. C311.4, C311.5		1 7			
Evaluate the limitations of greedy algorithms. Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = Evaluate the limitations of greedy algorithms. C311.4, C311.5		(A) (C) (E)			
Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = C311.5		8 3 3			<u> </u>
Compare them with dynamic programming using the 0/1 knapsack. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = C311.5		Evaluate the limitations of greedy algorithms.	10M	BL3	C311.4,
16 Rhapsack. Item Weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = 16 C311.4, C311.5	15	Compare them with dynamic programming using the			C311.5
as(3,4,5,6) with bag capacity as w= 5 Find the optimal solution of the Knapsack problem using Greedy method where n=4, m=15, (p1-p4) = BL4 C311.4, C311.5	13				
using Greedy method where n=4, m=15, $(p1-p4) =$ C311.5		as(3,4,5,6) with bag capacity as $w=5$			
			10M	$BL\overline{4}$	C311.4,
(10,10,12,18) And $(w1-w4) = (2,4,6,9)$	16				C311.5
		(10,10,12,18) And $(w1-w4) = (2,4,6,9)$			

17	Solve the below Job sequencing with deadline problem using Greedy method n=4, Profits (p1, p2, p3,p4)=(100,10,15,27) deadlines(d1,d2,d3,d4)=(2,1,2,1)	10M	BL5	C311.4, C311.5
18	Explain KrushkalAlgorithamand solve the graph using it .	10M	BL3	C311.4, C311.5
19	Explain Prims Algorithamand solve the graph using it.	10M	BL4	C311.4, C311.5
20	Explain about single source shortest path problem in Greedymethod with a simple example. 50 10 20 60	10M	BL5	C311.4, C311.5

UNIT-V

Q. No.	Question (s)	Marks	BL	CO				
	PART-A							
1	What is the main idea of the branch and bound technique?	1M	BL2	C311.6				
2	Name two strategies used in branch and bound.	1M	BL2	C311.6				
3	What is the role of bounding in branch and bound?	1M	BL1	C311.6				
4	What is the difference between LC and FIFO branch and bound?	1M	BL2	C311.6				
5	Name one problem that can be solved using branch and bound.	1M	BL2	C311.6				
6	Define NP-Complete.	1M	BL3	C311.6				

7	Define NP-Hard.				1M	BL2	C311.6	
8	What does NP stand for?				1M	BL3	C311.6	
9	What is the significance of Cook's Theorem?					1M	BL3	C311.6
10	Give an example of an NP-Complete problem.					1M	BL2	C311.6
PART- B								
1	Explain the general method of solving problems using branch and bound.				5M	BL3	C311.6	
2			(Least Cost Knapsack p	5M	BL4	C311.6		
3	Explain 1	how FIFC	branch ar	5M	BL3	C311.6		
4	solve the 0/1 Knapsack problem. Describe the application of branch and bound in solving the Travelling Salesperson Problem.					5M	BL5	C311.6
5	Compare branch and bound with backtracking. In what way is it more efficient?					5M	BL4	C311.6
6	Differentiate between NP, NP-Hard, and NP-Complete with examples.					5M	BL4	C311.6
7	Analyze the significance of non-deterministic algorithms in NP problems.					5M	BL3	C311.6
8	Explain Cook's Theorem in brief and its role in computational complexity.				5M	BL4	C311.6	
9	Discuss the characteristics that make a problem NP-Complete.				5M	BL4	C311.6	
10	Why are NP-Complete problems considered intractable?				5M	BL5	C311.6	
11	Design and explain a branch and bound algorithm for the 0/1 Knapsack problem using LC strategy. Trace with an example. n=4, (p1,p2,p3,p4)					10M	BL3	C311.6
12	=(10,10,12,18), (W1,W2,W3,W4) = (2,4,6,9), m=15. Describe the working of FIFO branch and bound for the 0/1 Knapsack problem. Include tree structure and bound calculations. n=3, (p1,p2,p3)=(40,30,50), (W1,W2,W3)=(2,3,5), m=10					10M	BL4	C311.6
	Apply branch and bound to solve a given Travelling Salesperson Problem instance. Show matrix reduction and bounding steps.				10M	BL3	C311.6	
13		0	1	2	3			
	0	∞	10	15	20			
	1	10	∞	35	25			
	2	15	35	∞	30			
	3	20	25	30	∞			

14	Evaluate the efficiency of branch and bound in solving combinatorial optimization problems compared to greedy and dynamic programming methods.	10M	BL5	C311.6
15	Create a state-space tree for a given knapsack instance and explain the decisions made at each node in the LC branch and bound approach. Item weight(2,3,4,5) with profit as(3,4,5,6) with bag capacity as w= 5	10M	BL5	C311.6
16	Define and explain the classes P, NP, NP-Complete, and NP-Hard with suitable examples.	10M	BL3	C311.6
17	Describe in detail the significance of Cook's Theorem. How did it influence computational theory?	10M	BL4	C311.6
18	Evaluate different methods for showing that a problem is NP-Complete.Prove that 3-SAT is NP-Complete using polynomial-time reduction concepts.	10M	BL3	C311.6
19	Discuss the practical implications of NP-Complete problems in real-world computing. Suggest how approximation or heuristic methods are used as alternatives.	10M	BL4	C311.6
20	Design and explain a branch and bound algorithm for the 0/1 Knapsack problem using FIFO BB strategy for the knapsack instance n=4, (p1,p2,p3,p4)=(10,10,12,18), (W1,W2,W3,W4)=(2,4,6,9), m=15.	10M	BL4	C311.6