Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados

Regressão Linear Métodos Quantitativos Aplicados à Ciência Política

Frederico Bertholini

14.dez.2020

Regressão Linear Frederico Bertholini

1 Modelos Lineares Multivariados

Conceitos

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

Modelos de regressão estabelecem relações entre variáveis.

Isso é feito através de uma equação que expressa uma variável **dependente** em termos de uma ou mais variáveis **independentes**.

Visualizando relações entre variáveis

Regressão Linear Frederico Bertholini

```
legenda %>% ggplot(aes(x = DOAPFIS, y = VOTLEG)) +
geom_point() + # Adiciona os pontos
geom_smooth(method = "lm",se=F) + # Adiciona a curva, estimada por um modelo linear
labs(x="",y="")
```


Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados

Tendência geral: $VOTLEG = \beta_0 + \beta_1 DOAPFIS$

4 perguntas importantes:

Quem é a varável dependente?

Quem é a independente?

Qual é o significado de β_1 ?

Qual é o significado de β_0 ?

Regressão Linear Frederico Bertholini

Modelos Lineares X e Y estão relacionadas. Esta relação ocorre para todos os X´s e Y´s.

Nós coletamos alguns dados e possuímos apenas uma amostra de toda a população de X e Y. Observando a relação entre os X's e Y's da nossa amostra, nós tentamos estimar a relação entre X e Y na população.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\varepsilon}_i$$

$$\hat{Y}=b_0+b_1X$$

O que estamos testando? (e se $\beta_1 = 0$)

Significância e valor-p da regressão

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

$$\begin{cases}
H_0: \beta_1 = 0 \\
H_A: \beta_1 \neq 0
\end{cases}$$

Teste da significância de β_1 :

Valor-p < o que considerarmos adequado (0,05?) : Rejeita H_0

-> A relação entre X e Y é **significante**, ou seja, tem significância do ponto de vista estatístico.

ps.: Significante é o mesmo que significativo?

Estimativas

36142.3

329.5

```
Regressão
Linear
Frederico
Bertholini
```

```
(meu_modelo <- legenda %>% lm(VOTLEG ~ DOAPFIS, data = .))

Call:
lm(formula = VOTLEG ~ DOAPFIS, data = .)

Coefficients:
(Intercept) DOAPFIS
```

Regressão Linear

Frederico Bertholini

Resíduos com sjPlot

Regressão Linear Frederico Bertholini

Quais são as características ideais da nossa reta?

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

Resíduo esperado é zero: E(e) = 0

Erra igualmente para ambos os lados

Erra o mínimo possível

Método dos mínimos quadrados

Regressão Linear Frederico Bertholini

Modelos Lineares MultivariaEscolhe uma reta de forma que a soma dos erros ao quadrado seja a menor possível.

Encontrar os valores de b_0 e b_1 para o qual é o menor possível.

MMQ ou OLS ...

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados Encontrar os valores de b_0 e b_1 que minimizem

$$S = \sum_{i} [Y_i - (b_0 + b_1 X)]^2$$

Obtemos isso calculando b_0 e b_1 tais que

$$\frac{\partial S}{\partial b_0} = 0 \quad \frac{\partial S}{\partial b_1} = 0$$

Resolvendo, chega-se a:

$$b_1 = \frac{n \sum_i X_i Y_i - \left(\sum_i X_i\right) \left(\sum_i Y_i\right)}{n \sum_i X_i^2 - \left(\sum_i X_i\right)^2}$$

$$b_0 = \frac{\left(\sum_i Y_i\right)\left(\sum_i X_i^2\right) - \left(\sum_i X_i\right)\left(\sum_i X_i Y_i\right)}{n\sum_i X_i^2 - \left(\sum_i X_i\right)^2}$$

... continua

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados

Que pode ser escrito como

$$b_1 = \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}$$

$$\bar{Y}=b_0+b_1\bar{X}$$

Sob certas premissas, é possível provar que

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

$$rac{b_1}{s_{b_1}} \sim t_{n-2}$$

Onde

$$s_{b_1}^2 = \frac{s^2}{\sum_i (X_i - \bar{X})^2} \quad s_e^2 = \frac{\sum_i e_i^2}{n - 2}$$

Isto permite:

- realizar teste de hipóteses com b1, como, por exemplo, testar sua significância
- Construir intervalos de confiança e de predição para Y em um valor de X qualquer

Premissas

Regressão Linear Frederico Bertholini

Modelos Lineares Multivaria-

Os resíduos devem ser normais, homoscedásticos e independentes.

Normalidade

Regressão Linear Frederico Bertholini

Normalidade

Regressão Linear

Frederico Bertholini

Homocedasticidade

Regressão Linear

Frederico Bertholini

Independência

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados

Padrão de formação de resíduos

Regressão Linear Frederico Bertholini

Modelos explicativos e preditivos

Regressão Linear Frederico

Modelos Lineares Multivaria

Modelos de regressão podem servir para explicar ou para prever.

- Em modelos explicativos, o que importa é ter fortes razões para crer que as variáveis explicativas influenciam a variável explicada. Isso é medido por um valor-p baixo.
- Em modelos preditivos, o que importa é ter um bom ajuste da reta aos dados. Isso é medido por um R² alto.

Modelo preditivo: Previsão eleitoral (electoral forecasting)

Modelo explicativo: total de votos de legenda para deputado federal (VOTLEG) **explicado por** número de doações de pessoas físicas (DOAPFIS)

Eliminando outliers

Coefficients:
(Intercept)

-6439.4

DOAPFIS

304.1

```
Regressão
Linear
Frederico
Bertholini
```

```
legenda %<>% dplyr::filter(DOAPFIS<5000, VOTLEG<2000000)
(meu_modelo <- legenda %>% lm(VOTLEG ~ DOAPFIS, data = .))

Call:
lm(formula = VOTLEG ~ DOAPFIS, data = .)
```

Usando tidy

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

tidy(meu_modelo)

```
# A tibble: 2 x 5
             estimate std.error statistic
                                               p.value
  term
  <chr>
                <dbl>
                          <dbl>
                                   <dbl>
                                                 <dbl>
1 (Intercept)
               -6439.
                        58572.
                                  -0.110 0.913
2 DOAPFIS
                           35.9
                 304.
                                   8.47 0.0000000325
```

Usando glance

```
Regressão
Linear
Frederico
Bertholini
```

```
glance(meu_modelo)
```

Resíduos com sjPlot

Regressão Linear Frederico Bertholini

Inferência

```
Regressão
Linear
Frederico
Bertholini
```

```
NC = 95\%
confint(meu_modelo, level = 0.95)
                 2.5 % 97.5 %
(Intercept) -126418.782 113539.9612
DOAPFIS
               230.576
                          377.5736
NC = 90\%
confint(meu_modelo, level = 0.90)
                     5 %
                             95 %
(Intercept) -106078.1080 93199.288
DOAPFIS
               243.0366
                          365.113
```

É possível salvar o output da função summary

```
Regressão
         (resumo <- summary(meu modelo))</pre>
 Linear
Frederico
Rertholini
        Call:
         lm(formula = VOTLEG ~ DOAPFIS, data = .)
Modelos
        Residuals:
            Min
                     10 Median 30
                                           Max
         -531447 -56292 -8653 27238 472375
         Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
         (Intercept) -6439.41 58572.03 -0.110 0.913
         DOAPFIS
                      304.07
                                  35.88 8.475 3.25e-09 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 215600 on 28 degrees of freedom
         Multiple R-squared: 0.7195, Adjusted R-squared: 0.7095
        F-statistic: 71.82 on 1 and 28 DF, p-value: 3.249e-09
```

Obtendo resultados detalhados

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

```
meu_modelo$coefficients
```

(Intercept) DOAPFIS -6439.4103 304.0748

Outras informações salvas dentro do objeto podem ser vistas com names:

Regressão Linear Frederico Bertholini

Modelos Lineares Multivariados

```
names(meu_modelo)
```

```
[1] "coefficients" "residuals" "effects" "rank"
```

- [5] "fitted.values" "assign" "qr" "df.residual"
- [9] "xlevels" "call" "terms" "model"

 R^2

resumo\$r.squared

[1] 0.7194894

Frederico Bertholini

Diagnósticos

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados GGally::ggnostic(meu_modelo)

Regressão Linear

Frederico Bertholini

```
get_regression_points(meu_modelo) %>% mutate(residual=scale(residual)) %>%
    ggplot(aes(x = residual)) +
    geom_histogram(binwidth = .25,color = "white") +
    labs(x = "Residuos")
```


Regressão Linear

Frederico Bertholini

```
get_regression_points(meu_modelo) %>% mutate(residual=scale(residual)) %>%
    ggplot(aes(x = DOAPFIS, y = residual)) +
    geom_point() + labs(x = "Doações", y = "Residuos") +
    geom_hline(yintercept = 0, col = "blue", size = 1)
```


Frederico Bertholini

Frederico Bertholini

Theoretical Quantiles Im(VOTLEG ~ DOAPFIS)

Bertholini

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivariados

Im(VOTLEG ~ DOAPFIS)

Regressão Linear

Frederico Bertholini

Modelos Lineares Multivaria-

Modelo linear com dois preditores

```
Regressão
Linear
Frederico
Bertholini
```

```
(meu_modelo2 <- legenda %>% lm(VOTLEG ~ DOAPFIS + NUMCAND, data = .))
Call:
lm(formula = VOTLEG ~ DOAPFIS + NUMCAND, data = .)
```

```
Coefficients:
```

```
(Intercept) DOAPFIS NUMCAND -148413.4 224.1 1685.9
```

Obtendo resultados simplificados com arm

Regressão Linear Frederico Bertholini

```
display(meu_modelo2)
```

Interpretando resultados com gráficos

Regressão Linear Frederico Bertholini

Interpretando resultados com gráficos

Regressão Linear Frederico Bertholini

Frederico Bertholini

Modelos Lineares Multivariados

sjPlot::plot_residuals(meu_modelo2)

