Construction of Sparse Suffix Trees and LCE Indexes in Optimal Time and Space

Dmitry Kosolobov Nikita Sivukhin

Ural Federal University, Ekaterinburg, Russia

► Problems: small-space LCE indexes and sparse suffix trees

- ► Problems: small-space LCE indexes and sparse suffix trees
- ► New and known results: deterministic and randomized

- ► Problems: small-space LCE indexes and sparse suffix trees
- New and known results: deterministic and randomized
- Known reduction to a locally consistent parsing

- Problems: small-space LCE indexes and sparse suffix trees
- New and known results: deterministic and randomized
- Known reduction to a locally consistent parsing
- Deterministic locally consistent parsing in small space

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

▶ Sparse suffix tree (SST) is a compacted trie containing only specified b suffixes $s[i_1..n], s[i_2..n], ..., s[i_b..n]$

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

- Sparse suffix tree (SST) is a compacted trie containing only specified b suffixes $s[i_1..n], s[i_2..n], ..., s[i_b..n]$
- ▶ Longest common extension (LCE) index supports the queries $LCE(p,q) = \max\{\ell : s[p..p+\ell) = s[q..q+\ell)\}$

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

- Sparse suffix tree (SST) is a compacted trie containing only specified b suffixes $s[i_1..n], s[i_2..n], ..., s[i_b..n]$
- Longest common extension (LCE) index supports the queries $LCE(p,q) = \max\{\ell \colon s[p\mathinner{\ldotp\ldotp} p+\ell) = s[q\mathinner{\ldotp\ldotp} q+\ell)\}$

SST takes O(b) space (in machine words) on top of s itself

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

- Sparse suffix tree (SST) is a compacted trie containing only specified b suffixes $s[i_1..n], s[i_2..n], ..., s[i_b..n]$
- Longest common extension (LCE) index supports the queries $LCE(p,q) = \max\{\ell : s[p..p+\ell) = s[q..q+\ell)\}$

SST takes O(b) space (in machine words) on top of s itself LCE index with O(b) space has $O(\frac{n}{b})$ -time queries [Bille et al. 15] (optimal trade-off, at least for $b \geq \Omega(n/\log n)$ [Kosolobov 17])

Given a read-only length-n string s over the alphabet $\{0,\ldots,n^{O(1)}\}$

- Sparse suffix tree (SST) is a compacted trie containing only specified b suffixes $s[i_1..n], s[i_2..n], ..., s[i_b..n]$
- Longest common extension (LCE) index supports the queries $LCE(p,q) = \max\{\ell : s[p..p+\ell) = s[q..q+\ell)\}$

SST takes O(b) space (in machine words) on top of s itself LCE index with O(b) space has $O(\frac{n}{b})$ -time queries [Bille et al. 15] (optimal trade-off, at least for $b \geq \Omega(n/\log n)$ [Kosolobov 17])

Construct LCE index and SST in O(b) space and O(n) time?

SST construction algorithm $\mid O(b)$ space build

SST construction algorithm	O(b) space build
[Gawrychowsky, Kociumaka 17]	$O(n)^*$

^{*}randomized Monte-Carlo

SST construction algorithm	O(b) space build
[Gawrychowsky, Kociumaka 17] [Birenzwige et al. 20]	

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build
[Gawrychowsky, Kociumaka 17] [Birenzwige et al. 20] [Birenzwige et al. 20]	$O(n)^*$ $O(n)^{**}$ $O(n \log \frac{n}{h})$

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build
[Gawrychowsky, Kociumaka 17]	O(n)*
[Birenzwige et al. 20]	$O(n)^{**}$
[Birenzwige et al. 20]	$O(n \log \frac{n}{b})$
ours	$O(n \log_b n)$

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build
[Gawrychowsky, Kociumaka 17]	O(n)*
[Birenzwige et al. 20]	$O(n)^{**}$
[Birenzwige et al. 20]	$O(n \log \frac{n}{b})$
ours	$O(n \log_b n)$

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build		
[Gawrychowsky, Kociumaka 17]	O(n)*		
[Birenzwige et al. 20]	$O(n)^{**}$		
[Birenzwige et al. 20]	$O(n \log \frac{n}{b})$		
ours	$O(n \log_b n)$		
LCE construction algorithm	LCE construction algorithm $\mid O(b)$ space build \mid Query time		

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build	
[Gawrychowsky, Kociumaka 17]	O(n)*	
[Birenzwige et al. 20]	$O(n)^{**}$	
[Birenzwige et al. 20]	$O(n \log \frac{n}{h})$	
ours	$O(n \log_b n)$	
LCE construction algorithm	O(b) space build	Query time
[Gawrychowsky, Kociumaka 17]	O(n)*	$O(\frac{n}{b})$
[Birenzwige et al. 20]	$O(n)^{**}$	$O(\frac{n}{b})$

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build	
[Gawrychowsky, Kociumaka 17]	O(n)*	
[Birenzwige et al. 20]	$O(n)^{**}$	
[Birenzwige et al. 20]	$O(n \log \frac{n}{h})$	
ours	$O(n \log_b n)$	
LCE construction algorithm	O(b) space build	Query time
LCE construction algorithm [Gawrychowsky, Kociumaka 17]	$O(b)$ space build $O(n)^*$	$\frac{\left \begin{array}{c}Query\ time\end{array}\right }{O\left(\frac{n}{b}\right)}$
		· · · · · · · · · · · · · · · · · · ·

^{*}randomized Monte-Carlo **randomized Las Vegas

SST construction algorithm	O(b) space build	
[Gawrychowsky, Kociumaka 17]	O(n)*	
[Birenzwige et al. 20]	$O(n)^{**}$	
[Birenzwige et al. 20]	$O(n \log \frac{n}{h})$	
ours	$O(n \log_b n)$	
LCE construction algorithm	O(b) space build	Query time
LCE construction algorithm [Gawrychowsky, Kociumaka 17]	$O(b)$ space build $O(n)^*$	$\frac{\left \begin{array}{c}Query\ time\end{array}\right }{O(\frac{n}{b})}$
-		
[Gawrychowsky, Kociumaka 17]	O(n)*	$O(\frac{n}{b})$

^{*}randomized Monte-Carlo **randomized Las Vegas

Ours: $\mathit{O}(\mathit{n})$ -time deterministic construction for $\mathit{b} > \mathit{n}^{\epsilon}$ with constant ϵ

SST construction algorithm	O(b) space build	
[Gawrychowsky, Kociumaka 17]	O(n)*	
[Birenzwige et al. 20]	$O(n)^{**}$	
[Birenzwige et al. 20]	$O(n \log \frac{n}{h})$	
ours	$O(n \log_b n)$	
LCE construction algorithm	O(b) space build $ $	Query time
[Gawrychowsky, Kociumaka 17]	O(n)*	$O(\frac{n}{b})$
[Birenzwige et al. 20]	$O(n)^{**}$	$O(\frac{n}{h})$
[Tanimura et al. 16]	$O(n \cdot \frac{n}{b})$	$O(\frac{n}{b}\log\frac{n}{b})$
[Birenzwige et al. 20]	$O(n\log\frac{n}{b})$	$O(\frac{n}{b}\sqrt{\log^* n})$
ours	$O(n\log_b n)$	$O(\frac{n}{b})$

^{*}randomized Monte-Carlo **randomized Las Vegas

For $1 \le \tau \le n$, a τ -partitioning set of s[1..n] is a subset of positions $\{1, \ldots, n\}$ with certain properties

For $1 \le \tau \le n$, a τ -partitioning set of s[1..n] is a subset of positions $\{1, \ldots, n\}$ with certain properties

[Birenzwige et al. 20]

Given a au-partitioning set of size O(b) with $au = \frac{n}{b}$, one can construct in O(n) time an LCE index with $O(\frac{n}{b})$ -time queries and an SST on any b suffixes using O(b) space on top of the input

For $1 \le \tau \le n$, a τ -partitioning set of s[1..n] is a subset of positions $\{1, \ldots, n\}$ with certain properties

[Birenzwige et al. 20]

Given a τ -partitioning set of size O(b) with $\tau = \frac{n}{b}$, one can construct in O(n) time an LCE index with $O(\frac{n}{b})$ -time queries and an SST on any b suffixes using O(b) space on top of the input

Main result

For $\tau = \frac{n}{b}$, a τ -partitioning set of size O(b) can be constructed in $O(n \log_b n)$ time using O(b) space on top of the string s[1..n]

A set $S \subseteq [1..n]$ is τ -partitioning for a string s[1..n] if:

(a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)

- (a) if $s[i-\tau..i+\tau]=s[j-\tau..j+\tau]$, then $i\in S\Leftrightarrow j\in S$ (locally consistent)

A set $S \subseteq [1..n]$ is au-partitioning for a string s[1..n] if:

(a) if $s[i-\tau..i+\tau]=s[j-\tau..j+\tau]$, then $i\in S\Leftrightarrow j\in S$ (locally consistent)

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized)

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i...i+\ell] = s[j...j+\ell]$ for $i, j \in S$, then
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized) ...

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- $\ldots \overbrace{j}$
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized) ...

A set $S \subseteq [1..n]$ is τ -partitioning for a string s[1..n] if:

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized) $\cdots \overbrace{i}$
- (c) if $i, j \in S \cup \{1, n\}$ with $j-i > \tau$ and $(i..j) \cap S = \emptyset$, then the period of s[i..j] is at most $\tau/4$ (dense)

A set $S \subseteq [1..n]$ is τ -partitioning for a string s[1..n] if:

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized) ...
- (c) if $i, j \in S \cup \{1, n\}$ with $j-i > \tau$ and $(i..j) \cap S = \emptyset$, then the period of s[i..j] is at most $\tau/4$ (dense)

A set $S \subseteq [1..n]$ is τ -partitioning for a string s[1..n] if:

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized)
- (c) if $i, j \in S \cup \{1, n\}$ with $j-i > \tau$ and $(i..j) \cap S = \emptyset$, then the period of s[i..j] is at most $\tau/4$ (dense)

Note: often we have $|S| \geq \Omega(\frac{n}{\tau}) = \Omega(b)$ due to (c)

A set $S \subseteq [1..n]$ is τ -partitioning for a string s[1..n] if:

- (a) if $s[i-\tau..i+\tau] = s[j-\tau..j+\tau]$, then $i \in S \Leftrightarrow j \in S$ (locally consistent)
- (b) if $s[i..i+\ell] = s[j..j+\ell]$ for $i,j \in S$, then for each $d \in [0..\ell-\tau)$, $i+d \in S$ iff $j+d \in S$ (forward synchronized)
- (c) if $i, j \in S \cup \{1, n\}$ with $j-i > \tau$ and $(i...j) \cap S = \emptyset$, then the period of s[i...j] is at most $\tau/4$ (dense)

Note: often we have $|S| \ge \Omega(\frac{n}{\tau}) = \Omega(b)$ due to (c) Related: synchronizing sets, minimizers, locally consistent parsing...

1. Produce a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n) = O(b\log^* n)$ using a variant of deterministic coin tossing [Cole, Vishkin 86], [Mehlhorn et al. 97]

- 1. Produce a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n) = O(b\log^* n)$ using a variant of deterministic coin tossing [Cole, Vishkin 86], [Mehlhorn et al. 97]
- 2. Store it in $O(\frac{n}{\tau})$ space in a packed form (losing some info)

- 1. Produce a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n) = O(b\log^* n)$ using a variant of deterministic coin tossing [Cole, Vishkin 86], [Mehlhorn et al. 97]
- 2. Store it in $O(\frac{n}{\tau})$ space in a packed form (losing some info)
- 3. Sparsify it to size $O(\frac{n}{\tau})$ using recompression [Jez 15]

- 1. Produce a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n) = O(b\log^* n)$ using a variant of deterministic coin tossing [Cole, Vishkin 86], [Mehlhorn et al. 97]
- 2. Store it in $O(\frac{n}{\tau})$ space in a packed form (losing some info)
- 3. Sparsify it to size $O(\frac{n}{\tau})$ using recompression [Jeż 15]
- 4. Run 1 again retaining only positions remaining after the sparsification

- 1. Produce a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n) = O(b\log^* n)$ using a variant of deterministic coin tossing [Cole, Vishkin 86], [Mehlhorn et al. 97]
- 2. Store it in $O(\frac{n}{\tau})$ space in a packed form (losing some info)
- 3. Sparsify it to size $O(\frac{n}{\tau})$ using recompression [Jeż 15]
- 4. Run 1 again retaining only positions remaining after the sparsification

Iteratively, for $k=0,\ldots,\log\frac{\tau}{\log^* n}$, given a $(2^k\log^* n)$ -partitioning set S_k of size $O(\frac{n}{2^k})$, sparsify it to make a $(2^{k+1}\log^* n)$ -partitioning set $S_{k+1}\subseteq S_k$ as follows (initial $S_0=\{1,\ldots,n\}$):

▶ Let $S_k = \{j_1 < \dots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \dots$ as $O(\log n)$ -bit sequences

- Let $S_k = \{j_1 < \cdots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \ldots$ as $O(\log n)$ -bit sequences
- ▶ Given $j_h \in S_k$:

- Let $S_k = \{j_1 < \cdots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \ldots$ as $O(\log n)$ -bit sequences
- ▶ Given $j_h \in S_k$:
 - ▶ if $j_h j_{h-1} > 2^k$ or $v_{h-1} = v_h$ or $v_{h-1} = \infty$, assign $v_h = \infty$

- ▶ Let $S_k = \{j_1 < \dots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \dots$ as $O(\log n)$ -bit sequences
- ▶ Given $j_h \in S_k$:
 - ▶ if $j_h j_{h-1} > 2^k$ or $v_{h-1} = v_h$ or $v_{h-1} = \infty$, assign $v_h = \infty$
 - otherwise, assign $v_h = \text{vbit}(v_{h-1}, v_h)$ where vbit is the Vishkin–Cole magic reducing the bit length logarithmically

- ▶ Let $S_k = \{j_1 < \cdots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \ldots$ as $O(\log n)$ -bit sequences
- ▶ Given $j_h \in S_k$:
 - ▶ if $j_h j_{h-1} > 2^k$ or $v_{h-1} = v_h$ or $v_{h-1} = \infty$, assign $v_h = \infty$
 - otherwise, assign $v_h = \text{vbit}(v_{h-1}, v_h)$ where vbit is the Vishkin–Cole magic reducing the bit length logarithmically

- ▶ Let $S_k = \{j_1 < \cdots < j_{|S_k|}\}$. For $j_h \in S_k$, assign BIG number v_h whose bit representation is the bit string $s[j_h...j_h+2^{k+1}]$, interpreting letters $s[j_h], s[j_h+1], \ldots$ as $O(\log n)$ -bit sequences
- ▶ Given $j_h \in S_k$:
 - ▶ if $j_h j_{h-1} > 2^k$ or $v_{h-1} = v_h$ or $v_{h-1} = \infty$, assign $v_h = \infty$
 - otherwise, assign $v_h = \text{vbit}(v_{h-1}, v_h)$ where vbit is the Vishkin–Cole magic reducing the bit length logarithmically
- ightharpoonup Do $O(\log^* n)$ reductions until v_h is O(1) or ∞ for all h

Put into S_{k+1} all j_h such that $j_h - j_{h-1} > 2^k$ or $j_{h+1} - j_h > 2^k$ or $\infty > \nu_{h-1} > \nu_h < \nu_{h+1}$ (local minima ν_h)

Put into S_{k+1} all j_h such that $j_h - j_{h-1} > 2^k$ or $j_{h+1} - j_h > 2^k$ or $\infty > \nu_{h-1} > \nu_h < \nu_{h+1}$ (local minima ν_h)

(Exact conditions are more complicated...)

Put into S_{k+1} all j_h such that $j_h - j_{h-1} > 2^k$ or $j_{h+1} - j_h > 2^k$ or $\infty > \nu_{h-1} > \nu_h < \nu_{h+1}$ (local minima ν_h)

(Exact conditions are more complicated...)

Put into S_{k+1} all j_h such that $j_h - j_{h-1} > 2^k$ or $j_{h+1} - j_h > 2^k$ or $\infty > \nu_{h-1} > \nu_h < \nu_{h+1}$ (local minima ν_h)

(Exact conditions are more complicated...) How to store the sets S_k ?

Put into S_{k+1} all j_h such that $j_h - j_{h-1} > 2^k$ or $j_{h+1} - j_h > 2^k$ or $\infty > \nu_{h-1} > \nu_h < \nu_{h+1}$ (local minima ν_h)

(Exact conditions are more complicated...) How to store the sets S_k ? Do we have to?

The decision to put $j \in S_k$ into S_{k+1} is "local". We process S_k left-to-right and feed the result to the same procedure processing S_{k+1} left-to-right. The "cascade" of procedures feeding each other:

The decision to put $j \in S_k$ into S_{k+1} is "local". We process S_k left-to-right and feed the result to the same procedure processing S_{k+1} left-to-right. The "cascade" of procedures feeding each other:

On the way, we build LCE indexes and SSTs for Vishkin-Cole magic

The decision to put $j \in S_k$ into S_{k+1} is "local". We process S_k left-to-right and feed the result to the same procedure processing S_{k+1} left-to-right. The "cascade" of procedures feeding each other:

On the way, we build LCE indexes and SSTs for Vishkin–Cole magic The last level receives a τ -partitioning set of size $O(\frac{n}{\tau}\log^* n)$

The resulting set S of size $O(\frac{n}{\tau}\log^* n)$ cannot be stored. Instead we make a string R of length |S| over a small alphabet which can be stored in $O(\frac{n}{\tau})$ machine words, such that any two letters of R corresponding to positions of S at a distance $\leq \frac{\tau}{2}$ are distinct.

The resulting set S of size $O(\frac{n}{\tau}\log^* n)$ cannot be stored. Instead we make a string R of length |S| over a small alphabet which can be stored in $O(\frac{n}{\tau})$ machine words, such that any two letters of R corresponding to positions of S at a distance $\leq \frac{\tau}{2}$ are distinct.

The resulting set S of size $O(\frac{n}{\tau}\log^* n)$ cannot be stored. Instead we make a string R of length |S| over a small alphabet which can be stored in $O(\frac{n}{\tau})$ machine words, such that any two letters of R corresponding to positions of S at a distance $\leq \frac{\tau}{2}$ are distinct.

How the letters of R are constructed?

The resulting set S of size $O(\frac{n}{\tau}\log^* n)$ cannot be stored. Instead we make a string R of length |S| over a small alphabet which can be stored in $O(\frac{n}{\tau})$ machine words, such that any two letters of R corresponding to positions of S at a distance $\leq \frac{\tau}{2}$ are distinct.

How the letters of R are constructed? Simple: interwined magic cascade of Vishkin–Cole magic!

The resulting set S of size $O(\frac{n}{\tau}\log^* n)$ cannot be stored. Instead we make a string R of length |S| over a small alphabet which can be stored in $O(\frac{n}{\tau})$ machine words, such that any two letters of R corresponding to positions of S at a distance $\leq \frac{\tau}{2}$ are distinct.

How the letters of R are constructed? Simple: interwined magic cascade of Vishkin–Cole magic! We store separately the approximate info about distances between positions of S sufficient to determine if $|j-j'|<\frac{\tau}{2}$ for $j,j'\in S$

► Collect statistics of occurrences of pairs R[i], R[i+1]

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

- ► Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

ab cdacbdbacdba

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

```
a b c d a c b d b a c d b a
```

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

- ► Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

a b c d a c b d b a c d b a

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

- ▶ Collect statistics of occurrences of pairs R[i], R[i+1]
- Mark alphabet letters with 0 and 1 so that the number of pairs R[i], R[i+1] marked 0, 1, respectively, is at least $\frac{1}{4}|R|$
- For each such pair, remove R[i] from R if the distance from the positions of S corresponding to R[i] and R[i+1] is $\leq \frac{\tau}{2}$
- ▶ Do this until $|R| \le O(\frac{n}{\tau})$

Generate the set S using Vishkin–Cole again, retaining only those positions that correspond to remaining letters of R

Thank you for your attention!

