武汉大学资源与环境科学学院答题纸

年级 _	22	学号	_2022282140108 姓名 _ 叶小川									
专业 _	资源与	环境		课程名称					测绘工程案例			
成 绩	总分			三	四	五.	六	七	八	九	+	
01 从工程	置管理角度看	膏,一 〕	页测绘	工程》	舌动的	全生命	周期	包括哪	些环节	节? 在	每个	
环节,分别需要攥写哪些文档?文档核心内容是什么?												
包括招投标环节,勘测设计环节、技术设计环节、技术总结环节等。												
招投标环节: 投标文件,核心内容是资格证明材料、项目实施方案,项目工作组												
织计划,项目技术设计方案等。												
勘测设计环节:踏勘报告,核心内容是作业区的地理交通供给情况,作业区划分。												
技术设计环节: 技术方案文档,核心内容是设计方案包括技术路线和质量保证措												
施和要求。												
技术总结环节: 技术总结文档,核心内容是技术设计执行情况,成果质量说明和												
评价,上交和归档的成果及其他资料清单。												
02 全空间三维建模的概念内涵和外延是什么?需要克服那些关键技术?结合自												
己兴趣,	选择一个关	键技术	,构建	建和描	述其应	过用场:	景。					
概念内涵:	: 涵盖空中	、地上	、地表	長、地	下等范	5围的	三维建	模				
外延:能	够提供全空	间数据	的一句	本化组	织、可	「视化、	、分析	于共马	享服务	0		
克服关键技术: 多种数据结构的存储与组织以及进行高效查询等关键技术												

选择关键技术: 大规模场景点云数据的分布式存储与计算

三维激光扫描技术作为一项成熟技术在很多领域被广泛 应用,能够快速采集复杂、大型物体外表面数据,这些数据是由离散矢量距离点构成,俗称点云数据。在一个大规模的城市场景中,通过三维激光扫描可以采集大量的点云数据,这种数据体量庞大,难以存储和查询。因此有必要构建针对大规模场景的点云数据的分布式存储计算集群,通过构建八叉树 kd 树等空间索引,对没有索引建构的离散点云进行分层、编号操作,再通过非关系型数据库如 mongodb 和 hbase 等对多维度的点云数据存储到分布集群上,可以大大减轻单台运算节点的负担,有一定的容灾能力,并且可以根据实际运算需要,动态的增加或者减少计算节点。接着通过 mapReduce 的"映射"和"规约"过程对其临近点进行查询操作,能够有效解决大规模点云数据的存储难和查询慢等问题,能够有效的对海量点云数据进行存储,方便用于全三维建模等后续的操作。

03 在新组建的国家自然资源部背景下,传统的测绘工程活动(测量、制图)会面临怎样的挑战?为应对这些挑战,你认为的策略是什么?

国家自然资源部的组建:

2018年13届全国人大将国土资源部的职责,国家发展和改革委员会的组织编制主体功能区规划职责,住房和城乡建设部的城乡规划管理职责,水利部的水资源调查和确权登记管理职责,农业部的草原资源调查和确权登记管理职责,国家林业局的森林、湿地等资源调查和确权登记管理职责,国家海洋局的职责,国家测绘地理信息局的职责整合,组建自然资源部。

自然资源部的组建,事实上解决了不同自然资源之前调查登记多个部门职权交叉的问题。自然资源部整合了土地、矿产、海域、水、森林、草原等主要自然资源的管理于一身,这对测绘业务而言,比以前要扩展了,扩大了测绘业务的范围。管辖对象包括土地、矿产、河流、湖泊、湿地、森林、草原、海洋八大自然资源。同时,自然资源部在职能上要实现"五统一",即统一调查评价、统一确权登记、统一用途管制、统一监测监管、统一整治修复。

测绘工程的挑战:

1、由于于涉足自然资源八大领域,这就要求测绘从业人员丰富知识面,不仅懂测

- 绘,还要掌握山水林田湖草海矿八大领域的知识。更好进行自然资源的调查和登记。 记。
- 2、由于之前的自然资源隶属于不同的部分,数据也各成体系,数据的坐标系、规划的标准也不尽相同。比如底图的比例尺和坐标框架等都需要进行统一。
- 3、同时,想要助力自然资源部实现"五统一",现有的测绘技术已不能满足实际的需要,需要不断改进和创新测绘技术和测绘方法,比如在卫星遥感、地理信息系统方面,通过多种方式的测量手段构建空间信息

04 围绕时空信息云平台,回答下述问题:

(1) "平台"的含义是什么?包括哪些建设内容?典型技术架构是什么?

含义是数据汇集、提供服务的中心

建设内容包括: 1. 统一时空基准 2. 丰富时空大数据 3. 构建云平台 4. 搭建云支撑环境 5. 开展智慧应用

典型技术架构: 平台技术架构分为五层,分别是应用层、平台层、数据层、云平台层和设施层

设施层进行原始时空信息数据的采集

云平台层主要是分布式云原生云服务

数据层主要是数据的索引,例如分布式异构数据库

平台层主要是时空大数据的管理与分析

应用层主要是面向管理员和用户的统一门户

(2) 平台中的地理信息 "GI"和 ICT 中的人工智能 "AI", 你怎样理解两者之间的互相赋能? 举例解释一方对另一方有哪些赋能点?

地理信息在飞速发展的同时,对现实世界的地理问题的空间分析能力不足,成为 遏制其发展的一个首要因素,通过人工智能的算法,针对于不同的场景进行分析 能够对地理信息进行更好的空间分析,量化呈现到不同的数据中,为各行各业 的决策提供参考。

例如在高精度地图的生产过程中,通过高精度地图采集车的激光雷达、摄像头、 IMU 设备、定位设备、轮式里程计设备进行数据的采集得到原始的高精度地图数

据。根据这些原始数据,例如激光雷达构建的点云位置、颜色信息数据,可以通。
过基于 pointnet 的深度学习框架,对点云数据进行实例分割和语义分割,将地
图数据分割成能被地理信息系统所识别的真实的现实物体,能够帮助更好构建有
着丰富语义和实例信息的,可以用于城市三维建模和自动驾驶决策参考等。
通过这种方式 ICT 中的人工智能可以对时空信息云平台进行更好的赋能,减少人
工重复操作,增强数据处理能力,更好的为各行各业进行服务。