Unit 2 Sorting Algorithms

2.1 Local sorting algorithms

InsertSort

The idea of InsertSort consists of having the i-1 first elements of the array sorted at the beginning of iteration i.

During iteration I, element σ(i) is inserted in in the right place (in a position between index 1 and i) so that the first i elements of the array are sorted among them.

InsertSort

```
InsertSort(array T, ind F, ind L) for i= F+1 to L; A=T[i]; \\ j=i-1; \\ while (j \ge F \&\& T[j]>A); \\ T[j+1]=T[j]; \\ j--; \\ T[j+1]=A;
```

Observations:

- The work of the innermost loop depends on the input
- \square The work on an input σ is:

$$n_{IS}(\sigma) = \sum_{i=2}^{N} n_{IS}(\sigma, i)$$

□ Furthermore: 1≤n_{is}(σ,i)≤i-1

InsertSort: worst and best cases

■ Since $1 \le n_{IS}(\sigma,i) \le i-1$, then $\forall \sigma \in \Sigma_N$:

$$\sum_{i=2}^{N} 1 \le \sum_{i=2}^{N} n_{IS}(\sigma, i) \le \sum_{i=2}^{N} (i - 1) \Rightarrow N - 1 \le n_{IS}(\sigma) \le \frac{N(N - 1)}{2}$$

- Worst case
 - □ Step 1: Considering the above, $\forall \sigma \in \Sigma_{N, n_{lS}}(\sigma) \leq N(N-1)/2$
 - □ Step 2: $n_{IS}([N,N-1,N-2,....,1]) = N(N-1)/2$ $\Rightarrow W_{IS}(N) = N(N-1)/2$
- Best case
 - □ Step 1: Considering the above, $\forall \sigma \in \Sigma_{N}$, $n_{IS}(\sigma) \ge N-1$
 - □ Step 2: $n_{IS}([1,2,3,....,N]) = N-1$ $\Rightarrow B_{IS}(N)=N-1$

InsertSort: average case I

Using the definition of average case:

$$A_{IS}(N) = \sum_{\sigma \in \Sigma_N} p(\sigma) n_{IS}(\sigma) = \frac{1}{N!} \sum_{\sigma \in \Sigma_N} n_{IS}(\sigma) = \frac{1}{N!} \sum_{\sigma \in \Sigma_N} \sum_{i=2}^N n_{IS}(\sigma, i) = \frac{1}{N!} \sum_{\sigma \in \Sigma_N} \sum$$

$$=\sum_{i=2}^{N}\frac{1}{N!}\sum_{\sigma\in\Sigma_{N}}n_{IS}(\sigma,i)=\sum_{i=2}^{N}A_{IS}(N,i)$$

Average number of operations of IS in iteration i

Status of the array in iteration i:

InsertSort: average case II

 Observation: when IS considers σ(i), this element can end up in positions

requiring

key comparisons (KCs), respectively

Final position	"Lost" KCs (σ(i)<σ(j))	"Won" KCs $(\sigma(i)>\sigma(j))$	Total KCs
i	0	1 (σ(i)>σ(i-1))	1=i-i+1
i-1	1 (σ(i)<σ(i-1))	1 (σ(i)>σ(i-2))	2=i-(i-1)+1
i-2	2 ($\sigma(\mathbf{i})$ < $\sigma(\mathbf{i}$ -1), $\sigma(\mathbf{i})$ < $\sigma(\mathbf{i}$ -2))	1 (σ(i)>σ(i-3))	3=i-(i-2)+1
j	i-j	1 (σ(i)>σ(j-1)	i–j+1
3	i-3 (σ (i)< σ (i-1),, σ (i)< σ (3))	1 (σ(i)>σ(2))	i-2=i-3+1
2	i-2 ($\sigma(\mathbf{i})$ < $\sigma(\mathbf{i}$ -1),, $\sigma(\mathbf{i})$ < $\sigma(2)$)	1 (σ(i)>σ(1))	i-1=i-2+1
1	i-1 $(\sigma(\mathbf{i})<\sigma(\mathbf{i}-1),,\sigma(\mathbf{i})<\sigma(1))$	0	i-1

InsertSort: average case III

- Thus, n_{IS}(i→j)=i-j+1 when 1<j≤i and n_{IS}(i→1)=i-1, where n_{IS}(i→j) is the number of KCs needed to insert element σ(i) in the j-th position.
- An alternative expression for the average case in iteration i

$$A_{IS}(N,i) = \sum_{j=1}^{i} p(j)n_{IS}(i \to j)$$

 Question: what is the probability that σ(i) ends up in position j?

InsertSort: average case IV

- If all σ are equiprobable, it is reasonable to assume that $P(\sigma(i))$ ends up in j) is also equiprobable.
- That is, P(σ(i) ends up in j) = 1/i for all j between 1 and i.
- Hence we can deduce that the mean work
 A_{IS} (N, i) of IS on the i-th input of an array of
 N elements is i/2 + O(1)
- And thus $A_{/S}(N) = N^2/4 + O(N)$
- In more detail...

- Recalling that $A_{IS}(N,i) = \sum_{j=1}^{r} p(j)n_{IS}(i \rightarrow j)$ where p(j) is the probability that element $\sigma(i)$ ends up in position j.
- We assume equiprobability so that p(j) = 1/i (j=1,2,...i), and thus we have:

$$A_{IS}(N,i) = \frac{1}{i} \sum_{j=1}^{i} n_{IS}(i \to j) = \frac{1}{i} \left[\left(\sum_{j=1}^{i-1} (i-j) \right) + (i-1) \right] = \frac{i-1}{2} + \frac{i-1}{i}$$

Since $A_{IS}(N) = \sum_{i=2}^{N} A_{IS}(N,i)$, substituting the above yields:

$$A_{IS}(N) = \sum_{i=2}^{N} \left(\frac{i-1}{2} + \frac{i-1}{i} \right) = \frac{1}{2} \sum_{i=1}^{N-1} i + \sum_{i=1}^{N-1} \frac{i-1}{i} = \frac{N^2}{4} + O(N)$$

Summarizing InsertSort

We know that

$$W_{IS}(N) = N^2/2 + O(N)$$

 $A_{IS}(N) = N^2/4 + O(N)$

- Conclusion: IS is a little bit better than SS and BS, but not too much in the average case and the same in the worst case.
- Question: Have we reached a limit in efficacy for sorting?

Abstract runtime lower bounds

- How much can we improve a key-comparison based sorting algorithm?
- Obviously, we know that $n_A(\sigma) \ge N$, and thus $n_A(\sigma) = Ω(N)$.
- But, is there a universal f(N) such that n_A(σ)≥f(N) for any A?
- Is there any algorithm that reaches that lower bound?
- If it exists, how is this algorithm and in what conditions reaches the lower bound?
- Tool: a measure of disorder in an array.

How to measure disorder in an array?

- The operations that an algorithm performs depend on the order of the array.
- How to measure the order or disorder in an array?
- Definition:
 - \square We say that two indexes i<j form an **inversion** if σ (i)> σ (j)
- Example: σ=(3 2 1 5 4)
 1 2 3 4 5
 - □ Inversion in σ =((1,2),(1,3),(2,3),(4,5)) => 4 inversions.
 - \square Inv(σ)=4
- In practice, we say that "3 forms an inversion with 2" instead that "the indexes 1 and 2 form an inversion".
- That is, $\sigma(i)$ forms an inversion with $\sigma(j)$ if $\sigma(i)>\sigma(j)$ but i<j

How to measure disorder in an array?

Observations:

- 1. inv([1,2,3,...,N-1,N])=0
- 2. inv([5,4,3,2,1])=10
- 3. $inv([N,N-1,N-2,...,2,1])=(N-1)+...+2+1=N^2/2-N/2$

Obs: There cannot be any permutation with more inversions than σ = [N,N-1,N-2,...,2,1] since

Lower bounds for local sorting algorithms

- Definition: A sorting algorithm that uses key comparisons (KC) is local if for each KC that the algorithm performs it fixes at most one inversion.
- InsertSort, BubbleSort and (morally) SelectSort are local.
- **Obs:** If A is a local algorithm, the minimum number of KC that A performs is the number of inversions in the array σ to be sorted, i.e., $n_A(\sigma)$ ≥inv(σ).
- Worst case: If A is local, $W_A(N) \ge N^2/2 N/2$

$$W_A(N) \ge n_A([N,N-1,N-2,...,2,1]) \ge inv([N,N-1,N-2,...,2,1]) = N^2/2-N/2$$

Thus: IS, BS y SS are optimal in the worst case among local sorting algorithms.

Lower bound for the average case

- **Definition:** If $\sigma \in \Sigma_N$ we define its transpose, σ^t , as $\sigma^t(i) = \sigma(N-i+1)$.
- Example σ =[3,2,1,5,4] then σ ^t=[4,5,1,2,3]
- Observations:

 - inv([3,2,1,5,4])+inv([4,5,1,2,3])=4+6=10=(5*4)/2
 - inv([5,4,3,2,1])+inv([1,2,3,4,5])=10+0=10=(5*4)/2
- Proposition: If $\sigma \in \Sigma_N$ $inv(\sigma) + inv(\sigma^t) = N(N-1)/2$

Demo: If $1 \le i < j \le N$, either (i,j) is in inversion in σ or (N-j+1, N-i+1) is in inversion in $\sigma^t =>$ each pair (i,j) adds 1 to $inv(\sigma)+inv(\sigma^t)$ and there are N(N-1)/2 such pairs.

Lower bound for the average case

■ If A is local $A_A(N) \ge N^2/4 + O(N)$

$$A_{A}(N) = \frac{1}{N!} \sum_{\sigma \in \Sigma_{N}} n_{A}(\sigma) \ge \frac{1}{N!} \sum_{\sigma \in \Sigma_{N}} inv(\sigma) = \frac{1}{N!} \sum_{\sigma, \sigma^{t}} \left(inv(\sigma) + inv(\sigma^{t}) \right) =$$

$$= \frac{1}{N!} \frac{N(N-1)}{2} \sum_{\sigma, \sigma^{t}} 1 = \frac{1}{N!} \frac{N(N-1)}{2} \frac{N!}{2} = \frac{N^{2}}{4} + O(N)$$

InsertSort is optimal for the average case among local sorting algorithms.

Local sorting algorithms are rather inneficcient.

In this section we have learnt...

- How InsertSort works, and the estimation of its best, worst and average cases.
- The concept of local sorting algorithms, and their lower bounds for the worst and average cases.

Tools and techniques to work on...

- InsertSort evolution on tables.
- Local algorithms' evolution on input arrays.
- Best, worst and average cases of InsertSort and similar algorithms and variants.
- Identification and counting of permutation inversions.
- Lower bound for the runtime of local algorithms on specific permutations.
- Exercises to solver (at least !!!): those recommended in sections 3, 4 y 5.

2.2 Recursive Sorting Algorithms

Divide and Conquer Methods (D&C)

- The idea of divide and conquer sorting methods is the following:
 - \square Divide the array/table T in two subarrays T₁ y T₂
 - □ Sort T_1 and T_2 recursively.
 - \square Combine the already sorted T_1 and T_2 in an also sorted T_2 .
- General pseudocode of a D&C algorithm

```
D&CSort(table T)

if dim(T)≤Mindim:

directSort(T);

else:

Divide(T,T<sub>1</sub>,T<sub>2</sub>);

D&CSort(T1);

D&CSort(T2);

Combine(T,T<sub>1</sub>,T<sub>2</sub>);
```

- A first option could consist in implementing a simple
 Divide function and a complex Combine routine.
- Result: MergeSort.

MergeSort

```
status MergeSort(array T, ind F, ind L)
  if F>L:
    return ERROR;
  if F==L: //array with only one element
    return OK;
 else:
    M=\lfloor (F+L)/2 \rfloor;
                   // "divide"
    MergeSort(T,F,M);
    MergeSort(T,M+1,L);
    return Combine(T,F,M,L)
```

This requires dynamic memory

MergeSort

Example

MergeSort: Combine

```
status Combine(array T, ind F, ind M, ind L)
                  T'=AuxTable(F,L); \leftarrow
                                                             — Auxiliary table with
                                                                 indexes F to L
                  If T'==NULL: return Error;
                  i=F; j=M+1; k=F;
                  while i≤M and j≤L:
                   → if T[i]<T[j]: T'[k]=T[i];i++;
                      else: T'[k]=T[j];j++;
Basic operation
in Combine
                      k++:
and also
                  if i>M: // copy the rest of the right subtable
in MS
                      while j≤L:
                        T'[k]=T[j];j++;k++;
                  else if: j>L: // copy the rest of the left subtable
                      while i≤M:
                        T'[k]=T[i];i++;k++;
                                                   Copy T' on T
                  Copy(T',T,P,L); ←
                                                   between indexes F and L
                   Free(T');
                  return T;
```


Combine: Example

MergeSort: Runtime

- Observations
 - BO: in Combine T[i]<T[j]
 - 2. $n_{MS}(\sigma) = n_{MS}(\sigma_l) + n_{MS}(\sigma_r) + n_{Combine}(\sigma, \sigma_l, \sigma_r)$
 - 3. $\operatorname{size}(\sigma_l) = \lceil N/2 \rceil$; $\operatorname{size}(\sigma_r) = \lfloor N/2 \rfloor$
 - 4. $\lfloor N/2 \rfloor \leq n_{Combine}(\sigma, \sigma_l, \sigma_r) \leq N-1$
- With this observations we have:

$$W_{MS}(N) \le W_{MS}(\lceil N/2 \rceil) + W_{MS}(\lceil N/2 \rfloor) + N-1;$$

 $W_{MS}(1)=0.$

First example of recurrent inequality

Recursive case: $T(N) \le T(N_1) + T(N_2) + \dots + T(N_k) + f(N)$, with $N_k < N$

Base case: T(1)=X (X constant).

MergeSort: abstract runtime, worst case

- How to solve a recurrent inequality?
 - Step 1: We obtain a solution for a special case, e.g., a case that is particularly easy to calculate.
 - □ For example, for MS, we can consider N=2^k
 - In MergeSort with N=2^k we have the following recurrent inequality:

$$W_{MS}(N) \le 2W_{MS}(N/2) + N-1 \text{ and } W_{MS}(1) = 0$$

- By repeated substitution we have: $W_{MS}(N) \leq Nlg(N) + O(N)$.
- Step 2: We demonstrate that the expression obtained in Step 1 is valid for all N by induction.

Note: It is important to follow the steps that lead to the solution during the class or in the course notes.

MergeSort: Runtime, best and average cases

With a similar reasoning we have:

$$B_{MS}(N) \ge B_{MS}(\lceil N/2 \rceil) + B_{MS}(\lfloor N/2 \rfloor) + \lfloor N/2 \rfloor$$
 and $B_{MS}(1)=0$

- Considering again N=2^k we obtain the recurrent inequality: $B_{MS}(N) \ge 2B_{MS}(N/2) + N/2$ and $B_{MS}(1) = 0$
- Solving the above inequality: B_{MS}(N) ≥ (1/2)NIg(N)
- To estimate the average case we can observe that:

$$(1/2)NIg(N) \le B_{MS}(N) \le A_{MS}(N) \le W_{MS}(N) \le NIg(N) + O(N)$$
, so that: $A_{MS}(N) = \Theta(NIg(N))$

The runtime is good, but the algorithm needs dynamic memory and also has extra costs because of the recursive approach.

QuickSort

- In Quicksort (QS), we use a **Divide** function that deals with the sorting and makes the function **Combine** unnecessary.
- The idea of **Divide** in QS consists in choosing and element M=T[m] in the array to be sorted (pivot).
- After Divide, elements in the array are sorted with respect to M=>no need for Combine.

QuickSort: pseudocodes

```
status QS(array T, ind F, ind L)
 si F>L:
    return ERROR;
 if F==L:
    return OK;
 else:
    M=Divide(T,F,L);
    if F<M-1:
      QS(T,F,M-1);
    if M+1 < L:
      QS(T,M+1,L);
 return OK;
```

```
ind Divide(array T, ind F, ind L)
 M=Mid(T,F,L);
                          Pivot
 k=T[M];
 swap(T[F],T[M]);
 M=F:
 for i=F+1 to L:
   if T[i]<k:
      M++;
      swap(T[i],T[M]);
 swap(T[F],T[M]);
 return M;
```


QuickSort: pivot selection

- There are several options to choose the pivot:
 - The first element in the array (return F).
 - The last element (return L).
 - The position in the middle of the table (return (P+U)/2).
 - A random position between the first and the last element in the array (return rand(P,U)).
- It is not guaranteed that the value of the pivot is approximately the middle value of the array.

Example

<

QS: Abstract runtime in the worst case

- Observations
 - BO: in Divide "if T[i]<k"
 - 2. $n_{QS}(\sigma) = n_{QS}(\sigma_l) + n_{QS}(\sigma_r) + n_{Divide}(\sigma)$
 - 3. $n_{Divide}(\sigma)=N-1$ (If Mid returns P, $n_{Mid}(\sigma)=0$)
- Thus, if σ_l has k elements, σ_r has N-1-k elements and then n_{QS}(σ) ≤ N-1+ W (k) + W(N-1-k)
 ≤ N-1+ max_{k = 1,..., N-1} { W(k) + W(N-1-k) }
- So,

$$W(N) \le N-1 + \max_{k=1, \dots, N-1} \{ W(k) + W(N-1-k) \}$$

And we can demonstrate by induction that

$$W(N) \leq N^2/2 - N/2$$

QS: Abstract runtime in the worst case

And also $W_{OS}(N) \ge N^2/2 - N/2$.

Thus, we have:

$$n_{QS}([1,2,3,...,N])=$$

(N-1)+(N-2)+....+1=
N²/2-N/2

Then $W_{QS}(N) = N^2/2 - N/2$

QS: Average case

- Again we have $n_{QS}(\sigma) = n_{QS}(\sigma_l) + n_{QS}(\sigma_r) + N-1$.
- We approximate $n_{QS}(\sigma_l) \cong A_{QS}(i-1)$ and $n_{QS}(\sigma_r) \cong A_{QS}(N-i)$ Then we have $n_{QS}(\sigma) \cong A_{QS}(i-1) + A_{QS}(N-i) + N-1$.
- We obtain the following approximate recurrent expression:

$$A_{QS}(N) = (N-1) + \frac{1}{N} \sum_{i=1}^{N} [A_{QS}(i-1) + A_{QS}(N-i)]$$

$$A(1) = 0$$

It can be demonstrated that

$$A_{QS}(N) = 2N \log(N) + O(N)$$

Note: It is important to follow the steps that lead to the solution during the class or in the course notes.

In this section we have learnt...

- Quick and MergeSort divide & conquer algorithms.
- Their runtime equations in the worst and in the average cases.
- How to solve such equations.
- How to write the abstract runtime equations of recursive algorithms.
- How to estimate the solution of recurrent equations:
 - Estimating a solution for a special case by repeated substitution.
 - Obtaining a solution for all cases by induction.

Tools and techniques to work on...

- Operation of MergeSort and QuickSort.
- Worst, average and best cases of MS, QS and associated variants.
- Estimation of growth function in recurrent inequalities.
- Writing abstract runtime equations of recurrent algorithms and solving them.
- Problems to solve (at least !!!): Those recommended in sections 6, 7 y 8.

2.3 HeapSort

HeapSort

Definition: A heap is an almost complete binary (i.e., it has only room at the rightmost elements in the last level).

Definition: A Max-heap is a heap such that ∀ subtree T' of T: info(T')>info(T'₁), info(T'₁)

Observation: A max-heap is easy to sort.

Sorting a max-heap.

- 1. Swap the root node with the last node in the heap (lowest rightmost node).
- 2. Heapify the new root node to keep the max-heap condition.

HeapSort: sorting in arrays

- Observations:
 - If we go over a maxheap from top-down and left-to-right we have a sorted array.
 - The nodes of a maxheap can be placed in an array so that the sorting method is in-place.

HeapSort: Maxheap array representation

Parent → Left child and Parent → Right child

Р	C	C_{r}
0	1	2
1	3	4
2	5	6

Parent	Left child	Right child
j	2j+1	2j+2

Child → Parent

С	Р	
1	0	
2	0	
3	1	
4	1	
5	2	
6	2	

Child	Parent
j	Ĺ(j-1)/2⅃

HeapSort: Creating the max heap

- The discussed process allows sorting a maxheap.
- How can we create a maxheap from a given array?
 - We keep the maxheap condition in all internal nodes (nodes that have at least one children) from right to left and from bottom to top.

Example:

HeapSort: Pseudocode

```
— CreateMaxHeap
CreateMaxHeap(array T, int N)
if N==1:
return;
for i = ⌊N/2⌋-1 to 0:
heapify(T,N,i);
```

```
SortMaxHeap

SortMaxHeap(array T, int N)

for i=N-1 to 1 :

swap(T[0],T[i]);

heapify(T,i,0);
```

```
heapify
heapify(array T, int N, ind i)
while (2*i+2 ≤ N):
ind=max(T, N, i, 2*i+1, 2*i+2);
if (ind ≠ i):
swap( T[i], T[ind] );
i = ind;
else:
return;
```

where routine

max(T, N, i, 2*i+1,2*i+2)
Returns the index of the element in array
T which contains the larger value in
i, 2*i+1,2*i+2 (parent, left and right children)

Height of maxheaps

# of nodes N	Heap example	Height
1	•	0
2, 3		1
4, 5, 6, 7		2

HeapSort: abstract runtime

- **Observations:**
 - $n_{\text{HeapSort}}(T) = n_{\text{CreateHeap}}(T) + n_{\text{SortHeap}}(T)$
 - The maximum number of key comparisons that CreateHeap and SortHeap perform on a node is Height(T).
 - Height(T)= $\lfloor \log(N) \rfloor$ since T is almost complete.
- $n_{CreateHeap}(T) \le N \lfloor log(N) \rfloor y n_{SortHeap}(T) \le N \lfloor log(N) \rfloor$
- $W_{HS}(N)=O(Nlog(N))$
- $n_{CreateHeap}$ ([1,2,...,N])=Nlog(N)
- This method is non-recursive.
- It is the most efficient sorting method so far in our analysis!

In this section we have learnt...

- The concept of Maxheap and how to build it.
- The HeapSort algorithm and its abstract runtime.

Tools and techniques to work on

- Maxheap construction
- Application of the HeapSort algorithm
- Problems to solve (at least !!!): those recommended in section 9.

2.4 Decision trees for sorting algorithms

Lower bounds for sorting algorithms that use key comparisons

- So far the best sorting algorithm that uses key comparisons is HeapSort.
- No sorting algorithm can have an abstract runtime better than $\Theta(N)$.
- Question: Is there any sorting algorithm whose abstract runtime is better than ⊕(Nlog(N))?
- Answer: NO , if it works with key comparisons.
- Tool to proof this: decision trees.

Decision tree. Example: InsertSort

Decision tree: definition

- If **A** is a comparison based sorting algorithm and **N** is the size of the array, its **decision tree** T_A^N can be built over Σ_N with the following 4 rules:
 - 1. The tree contains nodes in the form <code>i:j</code>(i<j) which indicate the key comparison between the elements **initially** in positions **i** and **j**.
 - The left subtree of i:j in T_A^N contains the key comparisons that A performs if i < j.
 - The right subtree of i:j in T_A^N contains the key comparisons that A performs if i > j.
 - 4. Each input $\sigma \in \Sigma_N$ is associate with a unique leaf L_σ in $T_A{}^N$ and the nodes between the root and the leaf H_σ represent the successive key comparisons that algorithm **A** performs to sort permutation σ .

Decision tree. Example: BubbleSort

Recalling: tree height and depth

- Height of a node in a tree is the # of edges on the longest path from the node to a leaf.
- Depth of a node in a tree is the # of edges from the node to the root node.
- Height of a tree is height of root node
- Depth of a tree is depth of deepest node
- Height and depth of a tree are the same, typically the use of height is more common.

Decision tree: observations

- 1. The number of leaves in T_A^N is $N! = |\sum_N|$.
- 2. $n_A(\sigma) = \#$ of key comparisons = depth of the leaf L_{σ} in $\mathbf{T_A^N}$

$$n_{A}(\sigma) = depth_{T_{A}^{N}}(L_{\sigma})$$

3. Thus,

$$W_{A}(N) = \max_{\sigma \in \Sigma_{N}} n_{A}(\sigma) = \max_{\sigma \in \Sigma_{N}} depth_{T_{A}^{N}}(L_{\sigma})$$

Lower bound in the worst case I

What is the minimum height of a binary tree with L leaves?

# of leaves L	BTMinimum(L)	Height
1	•	0
2		1
3		2
4		2

Lower bound in the worst case II

- It seems that the minimum height of a binary tree with L leaves is \[\log(L) \]
- For the worst case we have:

$$\begin{aligned} W_A(N) &= \max_{\sigma \in \Sigma_N} depth_{T_A^N}(L_{\sigma}) \geq \min height \text{ with N! leaves} \\ &= \lceil \lg(N!) \rceil \end{aligned}$$

- Since we know that $lg(N!)=\Theta(Nlog(N))=\Theta(Nlg(N))$, then $W_A(N)=\Omega(Nlg(N))$.
- HeapSort and MergeSort are optimal for the worst case.

Lower bound for the average case I

From the definition of average case:

$$A_{A}(N) = \frac{1}{N!} \sum_{\sigma \in \Sigma_{N}} n_{A}(\sigma) = \frac{1}{N!} \sum_{L \in T_{A}^{N}} depth_{T_{A}^{N}}(L)$$

Then, $A_A(N)$ ≥minimum average depth(N!) (AD_{min}) where

 $AD_{min}(k) = min \{aver. depth(T): T BT with k leaves\}$

- And $aver. depth(T) = \frac{1}{k} \sum_{L \in leaves \text{ in T}} depth(L) = \frac{1}{k} EPL(T)$
- EPL: External path length (leaf path length)

Lower bound in the average case II

Sum of the lengths of all paths from the root to a leaf=EPL (external path length)

Thus,

$$A_A(N) \ge \frac{1}{N!} EPL_{\min}(N!)$$
 with

$$EPL_{\min}(k) = \min \{EPL(T): \text{ T with k leaves}\}$$

Lower bound for the average case III

Estimating EPL_{min}(k)

	<u> </u>	
k	T Optimal	EPL _{min} (k)
1	•	0
2		2(1+1)
3		5(2+2+1)
4		8(2+2+2+2)
5		12(3+3+2+2+2)

Lower bound in the average case IV

- It can be shown (see class notes) that EPL_{min}(k)=k Ig(k) +k-2 Ig(k)
- Since

$$A_A(N) \ge \frac{1}{N!} EPL_{\min}(N!) =$$

$$\frac{1}{N!} \left(N! \lceil \lg(N!) \rceil + N! - 2^{\lceil \lg(N!) \rceil} \right) = \lceil \lg(N!) \rceil + 1 - \frac{2^{\lceil \lg(N!) \rceil}}{N!} = \frac{1}{N!} \left(N! \right) \left$$

$$\lceil \lg(N!) \rceil = \Omega(N \lg(N))$$

Thus,

$$A_A(N) = \Omega(N \lg(N))$$

MS, QS and HS are optimal in the average case.

In this section we have learnt...

- The concept of decision tree for a sorting algorithm that uses key comparisons.
- To build a decision tree for a sorting algorithm based on key comparisons.
- The lower bounds for sorting algorithms based on key comparisons.
- How these lower bounds are estimated from the use of decision trees.

Tools and techniques to work on

- The construction of decision trees for arrays of three elements.
- The construction of partial decision trees for tables of four elements.
- Problems to solve (at least !!!): those recommended for section 10.