What is claimed is:

- A field effect transiston comprising: 1. 1
- a substrate having a recess in a surface thereof, the recess having a 2
- bottom portion and substantially vertical sidewalls; 3
- a gate dielectric layer disposed superjacent the bottom portion of the 4
- recess and adjacent the substantially vertical sidewalls; 5
- a gate electrode overlying the gate dielectric layer; and 6
- source/drain terminals disposed in the substrate in alignment with a pair of 7
- laterally opposed gate electrode sidewalls; 8
- wherein the source/drain terminals have an extension which extends 9
- downwardly, from approximately the surface of the substrate, along the sidewalls 10
- of the recess. 11

~2

- The transistor of Claim 1,\further comprising a portion of the gate 2.
- electrode that overlies an inhermost portion of the source/drain extension: 2
- The structure of Claim 2, wherein the gate electrode conforms to the 3.
- recessed channel.

Subta

- A field effect transistor, comprising: 4.
- a substrate having a recess in a surface thereof, the recess having bottom 2
- portion and tapered sidewalls, the tapered sidewall surfaces forming an obtuse 3
- angle with respect to the bottom portions of the recess; 4

	5	a gate dielectric layer disposed superjacent the bottom portion of the
	6	recess and adjacent the tapered sidewalls;
	7	a gate electrode overlying the gate dielectric layer; and
	8	source/drain terminals disposed in the substrate in alignment with a pair of
	9	laterally opposed gate electrode sidewalls;
	10	wherein the source/drain terminals have an extension which extends
	11	downwardly, from approximately the surface of the substrate, along the sidewalls
	12	of the recess.
Sub	tC	4
Sub III	1	5. The transistor of Claim 4, wherein a portion of the gate electrode that
	2	overlies an innermost portion of the source/drain extension.
film film		
	1	6. The transistor of Claim 4, wherein the gate electrode conforms to the
·4	2 2003	recessed channel.
Subt	α^3	
	1	7. A field effect transistor, comprising:
	2	a substrate having a recess in a surface thereof, the recess having a
	3	curvilinear shape;
	4	a gate dielectric layer disposed superfacent the curvilinear recess;
	5	a gate electrode overlying the gate dielectric layer; and
	6	source/drain terminals disposed in the substrate in alignment with a pair of
	7	laterally opposed gate electrode sidewalls:

- wherein the source/drain terminals have an extension which extends
- 9 downwardly, from approximately the sunface of the substrate, along the
- 10 curvilinear sides of the recess.

subt C

- 1 8. The transistor of Claim 6, wherein a portion of the gate electrode that
- 2 overlies an innermost portion of the source/drain extension.
- 1 9. The transistor of Claim 6, wherein the gate electrode conforms to the
- 2 recessed channel.
- 1 10. A method of making a microelectronic device, comprising:
- 2 forming a first layer over a substrate;
- forming openings in the first layer, the openings exposing a portion of the
- 4 substrate, the openings having substantially vertical sidewalls;
- forming a first spacer adjacent the sidewalls of the first layer openings;
- forming a second spacer adjacent the first spacer;
- 7 etching a portion of the exposed substrate;
- 8 removing the second spacer;
- 9 forming a dielectric layer superjacent the exposed portions of the
- 10 substrate;
- forming an electrode superjacent the dielectric layer; and
- removing the first layer.

- 1 11. The method of Claim 10, wherein etching a portion of the exposed
- 2 substrate comprises isotropically etching the substrate.
- 1 12. The method of Claim 10, wherein etching a portion of the exposed
- 2 substrate comprises anisotropically etching the substrate.
- 1 13. The method of Claim 10, further comprising oxidizing the exposed
- 2 portions of the substrate, and wherein the etching a portion of the exposed
- 3 substrate comprises etching the oxidized portions of the substrate.
- 1 14. A method of forming a field effect transistor, comprising:
- depositing an etch stop layer and a damascene layer over a silicon
- 3 substrate;
- removing portions of the damascene and etch stop layers to expose
- 5 portions of the silicon, and form sidewalls in the damascene and etch stop
- 6 layers;
- forming a first spacer layer along the sidewalls of the damascene layer
- 8 and the etch stop layer;
- etching the exposed silicon;
- removing the second spacer; forming a gate dielectric layer superjacent
- the etched silicon; and depositing a gate electrode layer over the damascene
- and gate dielectric layers;
- planarizing the gate electrode layer so as to form a gate electrode;

- removing the damascene, second spacer, and etch stop layers; and forming source/drain terminals self-aligned to the gate electrode.
 - 1 15. The method of Claim 14, wherein planarizing the gate electrode layer
 - 2 comprises chemical mechanical polishing using the damascene layer as a polish
 - 3 stop.
 - 1 16. The method of Claim 14, further comprising implanting ions into the silicon
 - 2 substrate.
 - 1 17. The method of Claim 14, further comprising implanting ions into the silicon
 - substrate, after the first and second spacers are formed.
 - 1 18. The method of Claim 14, further comprising performing a channel implant
 - 2 into the silicon using the damascene, first spacer, and second spacer layers as
 - 3 implant masks.
 - 1 19. The method of Claim 14 wherein forming source/drain terminals
 - 2 comprises implanting ions of a first conductivity type into the silicon, adjacent to
 - 3 the gate electrode; forming third spacers adjacent to the gate electrode, and
 - 4 implanting ions of a first conductivity type into the silicon, adjacent to the third
 - 5 spacers.

- 1 20. The method of Claim 14, wherein etching the silicon comprises an
- 2 anisotropic etch.
- 1 21. The method of Claim 14, wherein etching the silicon comprises an
- 2 isotropic etch.
- 1 22. A method of forming a field effect transistor, comprising:
- depositing an etch stop layer and a damascene layer over a silicon substrate;
- removing portions of the damascene and etch stop layers to expose portions of the silicon, and form sidewalls in the damascene and etch stop layers;
- forming a first spacer layer along the sidewalls of the damascene layer and the etch stop layer, and a second spacer adjacent the first spacer layer;
- 9 oxidizing the exposed silicon;
- etching the exposed oxidized silicon;
- removing the second spacer; forming a gate dielectric layer superjacent
- the etched silicon; and depositing a gate electrode layer over the damascene
- and gate dielectric layers;
- planarizing the gate electrode layer so as to form a gate electrode;
- removing the damascene, second spacer, and etch stop layers; and
- forming source/drain terminals self-aligned to the gate electrode.