# Implementing an O(n<sup>3</sup>/log(n)) RNA Folding Algorithm

Sophia Chang, David Dang, David Hsiao

# RNA Folding

- Nussinov Algorithm
  - 4 Rules
  - $\circ$   $O(n^3)$
- Reordering: Alternative Algorithm
  - $\circ$   $O(n^3)$
- Four-Russians Speedup
  - Pre-computing & reusing values
  - $\circ$  O(n<sup>3</sup>/log(n))

# Nussinov Algorithm

```
Initialization:
```

```
S[i,i] = 0; i = {0 to n-1}
S[i, i-1] = 0; i = {1 to n-1}
```

#### Recursion:

**Cost**: O(n^3)

```
S[i,j] = max {
        S[i+1,j-1] + B(i,j) Rule A
        S[i+1,j] Rule B
        S[i,j-1] Rule C
        max (S[i,k] + S[k+1,j]) where i<k<j Rule D
}</pre>
```



#### Nussinov: Rule A



Rule A: i,j pair

#### Nussinov: Rule B



Rule B: i unpaired

### Nussinov: Rule C



Rule C: j unpaired

#### Nussinov: Rule D



Rule D: bifurcation



# Alternative Algorithm

```
Recursion:
    for j = 1 to n:
         for i = 0 to j:
              S[i,j] = \max(S[i+1,j-1] + B[i,j], S[i,j-1]) Rule A and B
         for i = j-1 to 0:
              S[i,j] = \max(S[i+1,j], S[i,j]) Rule C
              for k = j-1 to i:
                   S[i,j] = \max(S[i,j], S[i,k-1] + S[k,j]) Rule D
Cost: O(n^3)
```

# Speeding Up RNA Folding

- Speeding up Rule D will lower the algorithm's complexity
- Splitting the matrix into columns and rows of size q (C group and R group) to form blocks
- R table
- Binary vectors









# Using the Four-Russians Technique

```
for j = 1 to n:
      for i = 0 to j:
             Do Rule A and B
      for i = j-1 to 0:
             for q = (j-1)/q to i/q:
                    if i >= g*q: // Is Row i a part of the R Group g
                          Do Rule C and D
                    else:
                          Find optimal k for using the R Table and Binary Vector g
                           Apply k to Rule D
             if (i mod q) == 0: // Is Row i the last row in a R Group
                    Find the Binary Vector q and save it
      if (j+2 mod q) == 0: // Is Column j the last column in a C Group
             for all binary vectors possible of size q-1: // There are 2^{(q-1)} vectors
                    for i = 0 to j-2
                          Precompute the R Table for the current C Group by finding
                           the optimal k given the binary vector
```

# Four-Russians Algorithm

## Example

- o 9 X 9 table
- $\circ$  q = 3
- o column j
- o row i











## Performance

#### Performance Reported by the Paper



| N    | Original | Four Russian |
|------|----------|--------------|
| 1000 | 3        | 1            |
| 2000 | 28       | 8            |
| 3000 | 95       | 27           |
| 4000 | 241      | 55           |
| 5000 | 480      | 98           |
| 6000 | 823      | 157          |

## Performance

#### Java Implementation Performance



| N    | Original | Alternative | Four Russian |
|------|----------|-------------|--------------|
| 1000 | 1        | 1           | 1            |
| 2000 | 17       | 14          | 7            |
| 3000 | 68       | 58          | 30           |
| 4000 | 205      | 183         | 68           |
| 5000 | 438      | 407         | 128          |
| 6000 | 853      | 807         | 248          |

Alternative

Russian