2A - Automatique

Chapter 5

Control Science (AUT)

Frequency-domain approach, Design Methods, II

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Conclusions

September 2019

Romain Bourdais CentraleSupélec romain.bourdais@centralesupelec.fr

Preamble About this course

CentraleSupélec

Control Science (AUT)

Romain Bourdais

Course Outline

- · PID: The most famous control
- Feedforward Control
- Non trivial Feedback
- Parallel compensation

PID: The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation: tachometric feedback

Outline

1 Introduction

2 PID : The most famous control

3 Commande feedforward

4 Non trivial Feedback

5 Parallel compensation : tachometric feedback

6 Conclusions

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande

Non trivial Feedback

Parallel compensation : tachometric feedback

A few words about PID Definition

- Parallel compensation, but should be seen as a serial action!
- Three setting parameters : k, k_i, k_d
- (There is a fourth parameter often hidden ...)

$$C(p) = k + \frac{k_i}{p} + k_d p,$$
 $C(p) = K \left(1 + \frac{1}{T_i p} + T_d p \right)$

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Study according to the values of T_i and T_d

$$C(p) = K\left(1 + \frac{1}{T_i p} + T_d p\right) = K\left(\frac{1 + T_i p + T_i T_d p^2}{T_i p}\right)$$

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

A few words about PID Let us have a look in Matlab

• The fourth parameter is a filter (feasibility of the derived action)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

A few words about PID Let us have a look in Matlab

There are many advanced settings

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

A few words about PID Let us have a look in Matlab

- Importance of saturation: significant performance losses!
- Possibles strategies : anti wind-up, ...

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

The OLD-SCHOOL Zigler-Nichols method (https://fr.wikipedia.org)

Méthode de Ziegler-Nichols ¹			
Type de contrôle	K_p	K_i	K_d
P	K_u 2	-	-
PI	$K_u/2.2$	$K_p(T_u)$ 1.2	-
PID classique ²	$0.60K_u$	$2K_p/T_u$	$K_pT_u/8$
Pessen Integral Rule ²	$0.7K_u$	$2.5K_p/T_u$	$0.15K_pT_u$
quelques dépassements ²	$0.33K_u$	$2K_p/T_u$	$K_pT_u/3$
pas de dépassement ²	$0.2K_u$	$2K_p/T_u$	$K_pT_u/3$

- K_u: limit gain for closed-loop stability
- For this limit, oscillating behavior: T_u is the pseudo-period of these oscillations

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

The OLD-SCHOOL Zigler-Nichols method: let's try!

• What is the value of the limit gain K_u ?

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

The OLD-SCHOOL Zigler-Nichols method: let's see what happens!

Control Science (AUT)

Romain Bourdais

CentraleSupélec

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

The OLD-SCHOOL Zigler-Nichols method: let's do better!

Specifications: same rise time, but 20% overshoot.

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

A few words about PID Conclusion

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Conclusions

What to remember

- Most used industrial controller
- 3(4) setting parameters
- $T_i = 4T_d$
- · Can affect accuracy, speed and stability
- Existence of heuristics for tuning (not necessarily effective)

Outline

1 Introduction

2 PID : The most famous control

3 Commande feedforward

4 Non trivial Feedback

5 Parallel compensation : tachometric feedback

6 Conclusions

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Problem statement - example of a disturbance

• Knowledge of a disturbance, supposedly measured

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Problem statement - example of a disturbance

• Construction of a controller to anticipate this disturbance

• How to build G_{ff} ?

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Problem statement - example of a disturbance

How to build G_{ff}?

We have

$$Y(p) = G(p)U(p) + G_d(p)D(p)$$

· Which leads to:

$$G_{\rm ff}=-rac{G_d}{G}$$

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Problem statement - example of a disturbance

$$G_{ff} = -rac{G_d}{G}$$

1st remark: feasibility

- Be careful about the feasibility of the controller!
- Add filters if necessary

2nd remark: stability

- Be careful with the stability of the corrector!
- Do not add unstable poles
- Beware of the zeros of G(p)!

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Outline

Romain Bourdais CentraleSupélec

Control Science (AUT)

Introduction

PID: The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation: tachometric feedback

Conclusions

4 Non trivial Feedback

PID: The most famous control

Parallel compensation: tachometric feedback

Non trivial Feedback Closed-loop diagram

• In closed-loop, the transfer is :

$$\frac{Y}{Y^C} = \frac{L}{1 + RL} = \frac{\frac{L}{R}}{\frac{1}{R} + L}$$

How to use « THE APPROXIMATION » ?

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Non trivial Feedback Example in Matlab

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Non trivial Feedback Example in Matlab

- This is a generalization of the unit case!
- For stability analysis: Analysis with RL

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Outline

1 Introduction

2 PID: The most famous control

3 Commande feedforward

4 Non trivial Feedback

5 Parallel compensation : tachometric feedback

6 Conclusions

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

arallel ompensation :

A cascading structure : example

- · Requires additional sensors
- Case-by-case approach

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation :

A cascading structure : example

• Intersection points : $|C_1 G_1| = 1$

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Tachometric feedback

• Remark : equivalence with

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Tachometric feedback

• Example:

$$G = \frac{1}{(1 + \tau_1 p)(1 + \tau_2 p)}$$

 \bullet Specifications : 10% overshoot, cut-off pulsation at 0dB : 20 ${\rm rad.s}^{-1}$

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward Non trivial Feedback

Parallal

compensation :

Tachometric feedback

• Effect of λ : phase shift

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Tachometric feedback

- Determination of λ to have the desired phase margin at the desired pulse
- Then, adjustment of the gain k to get the right bandwidth

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

arallel ompensation :

Tachometric feedback

• Remark : it is just a particular case of parallel control

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Tachometric feedback

• The temporal behavior looks nice!

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Outline

2 Introduction

2 PID : The most famous control

3 Commande feedforward

4 Non trivial Feedback

5 Parallel compensation : tachometric feedback

6 Conclusions

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Conclusion At the end of this course

CentraleSupélec

Control Science (AUT)

Romain Bourdais

Introduction

PID : The most famous control

Commande feedforward

Non trivial Feedback

Parallel compensation : tachometric feedback

Carabasiana

Expected skills

- Understand the PID, its settings, the effect of the parameters
- Do not limit yourself to the single feedback: Tachometric feedback feedback, Feedforward
- Have the basics to analysis any type of correction