

Employee Churn Analysis

USING MACHINE LEARNING

DMPA LAB PROJECT

• Analysis of dataset

Overview

Variables

Distinct count	92
Unique (%)	0.6%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	0.6128335222348156
Minimum	0.09
Maximum	1.0
Zeros	0
Zeros (%)	0.0%
Memory size	117.2 KiB

Toggle details

last	evaluation
Real	number (Rsa)

Distinct count	65
Unique (%)	0.4%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	0.7161017401160078
Minimum	0.36
Maximum	1.0
Zeros	0
Zeros (%)	0.0%
Memory size	117.2 KiB

Toggle details

number_project
Real number (R₂₀)

Distinct count	6
Unique (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	3.80305353690246
Minimum	2
Maximum	7
Zeros	0
Zeros (%)	0.0%
Memory size	117.2 KiB

Toggle details

average_montly_hours

Real number $(\mathbb{R}_{\geq 0})$

Distinct count	215
Unique (%)	1.4%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	201.0503366891126
Minimum	96
Maximum	310
Zeros	0
Zeros (%)	0.0%
Memory size	117.2 KiB

Toggle details

 $\begin{array}{l} time_spend_company \\ \text{Real number } (\mathbb{R}_{\geq 0}) \end{array}$

Distinct count	8
Unique (%)	0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	3.498233215547703
Minimum	2
Maximum	10
Zeros	0
Zeros (%)	0.0%
Memory size	117.2 KiB

Toggle details

Work_accident
Boolean

Distinct count	2
Unique (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	117.2 KiB

Toggle details

• ANALYSIS OF CATEGORICAL FEATURES

• COMPARISON OF ALGORITHMS USED

1. Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
# Training the Decision Tree Classification model on the Training set
model=DecisionTreeClassifier()
model=model.fit(X_train,y_train)
# Prediction
y pred=model.predict(X test)
# Accuracy
print("\nAccuracy (Decision Tree Classifier Model):",metrics.accuracy_score(y_test, y_pred))
Accuracy (Decision Tree Classifier Model): 0.981
C→
             crit
                 gini
            split
           depth (
        min split (
        min_leaf ()
    Decision Tree Training Accuracy: 0.820
    Decision Tree Test Accuracy: 0.823
                 satisfaction_level <= 0.465
                         gini = 0.363
                      samples = 11999
                    value = [9142, 2857]
                           class = 0
                  True
                                       False
           gini = 0.479
                                       gini = 0.174
         samples = 3359
                                     samples = 8640
      value = [1332, 2027]
                                   value = [7810, 830]
             class = 1
                                         class = 0
    DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                            max_depth=1, max_features=None, max_leaf_nodes=None,
                            min_impurity_decrease=0.0, min_impurity_split=None,
                            min_samples_leaf=1, min_samples_split=2,
                            min_weight_fraction_leaf=0.0, presort='deprecated',
                            random_state=0, splitter='best')
```

Widget for analysis of Decision Tree

2. Random Forest

```
[21] # Training the Random Forest Classification model on the Training set

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)

# Prediction
y_pred = classifier.predict(X_test)

# Accuracy
print("\nAccuracy (Random Forest Classifier Model):",metrics.accuracy_score(y_test, y_pred))

Accuracy (Random Forest Classifier Model): 0.988
```


Widget for analysis of Random Forest

3. KNN

4. Logistic Regression

• Relative Importance of Features

For complete analysis, graphs and code visit the following link:

 $\underline{https://github.com/apoorv-mit2o21/Employee-Churn-Analysiss}$