Introduction to Analysis I HW3

B13902024 張沂魁

September 22, 2025

Problem 0.0.1. Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space (X,d), and let $L \in X$. Show that if L is a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$, then L is an adherent point of the set

$$S = \{x^{(n)} : n \ge m\}.$$

Is the converse true?

Problem 0.0.2. The following construction generalizes the construction of the reals from the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, we introduce the formal limit

$$\lim_{n\to\infty} x_n$$
.

We say that two formal limits $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal if

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e. that it is an equivalence relation.

(b) Let \overline{X} be the space of all formal limits of Cauchy sequences in X, modulo the above equivalence relation. Define a metric $d_{\overline{X}}: \overline{X} \times \overline{X} \to [0, \infty)$ by

$$d_{\overline{X}}(LIM_{n\to\infty} x_n, LIM_{n\to\infty} y_n) := \lim_{n\to\infty} d(x_n, y_n).$$

Show that this function is well-defined (the limit exists and does not depend on the choice of representatives) and that it satisfies the axioms of a metric. Thus $(\overline{X}, d_{\overline{X}})$ is a metric space.

- (c) Show that the metric space $(\overline{X}, d_{\overline{X}})$ is complete.
- (d) We identify an element $x \in X$ with the corresponding constant Cauchy sequence (x, x, x, ...), i.e. with the formal limit $\text{LIM}_{n\to\infty} x$. Show that this is legitimate: for $x,y\in X$,

$$x = y \iff \operatorname{LIM}_{n \to \infty} x = \operatorname{LIM}_{n \to \infty} y.$$

With this identification, show that

$$d(x,y) = d_{\overline{X}}(x,y),$$

and thus (X,d) can be thought of as a subspace of $(\overline{X},d_{\overline{X}})$.

- (e) Show that the closure of X in \overline{X} is \overline{X} itself. (This explains the choice of notation.)
- (f) Finally, show that the formal limit agrees with the actual limit: if $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X that converges in X, then

$$\lim_{n \to \infty} x_n = LIM_{n \to \infty} x_n \quad \text{in } \overline{X}.$$

- **a.** We verify the following properties:
 - Reflexive: $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} x_n$ are equal since d is metric, so $\forall n, d(x_n, x_n) = 0$.
 - Symmetry: If $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal, this mean $\lim_{n\to\infty} d(x_n, y_n) = 0$. And since d is metric, so $\lim_{n\to\infty} d(y_n, x_n) = 0$, hence $LIM_{n\to\infty} y_n$ and $LIM_{n\to\infty} x_n$ are equal.
 - Transitive: If $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ are equal and $\lim_{n\to\infty} y_n$ and $\lim_{n\to\infty} z_n$ are equal, then we have $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,z_n) = 0$. By definition, there exists $N_1,N_2>0$ s.t. for all $n\geq N_1$, we have $d(x_n,y_n)<\frac{\varepsilon}{2}$ and for all $n\geq N_2$ we have $d(y_n,z_n)<\frac{\varepsilon}{2}$.

Thus, for all $n \ge \max\{N_1, N_2\}$, we have

$$d(x_n,z_n) \leq d(x_n,y_n) + d(y_n,z_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which means $\lim_{n\to\infty} d(x_n, z_n) = 0$, and thus $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$.

b. We first show that the limit exists. Note that $\lim_{n\to\infty}d(x_n,y_n)\in\mathbb{R}_{\geq 0}$ for all Cauchy sequence $\{x_n\}_{n=1}^\infty$, $\{y_n\}_{n=1}^\infty$ in X. We already know $(\mathbb{R},|\cdot|)$ is complete, so we know $(\mathbb{R}_{\geq 0},|\cdot|)$ is also complete as it is a closed subspace of $(\mathbb{R},|\cdot|)$. Now we define $u_n:=d(x_n,y_n)$ for all $n\geq 1$, then we want to show that $\{u_n\}_{n=1}^\infty$ is Cauchy in $\mathbb{R}_{\geq 0}$, and then we can conclude that $\{u_n\}_{n=1}^\infty$ converges in $\mathbb{R}_{\geq 0}$, and thus $\lim_{n\to\infty}d(x_n,y_n)$ exists.

Claim 0.0.1. Suppose (X, d) is a metric space, then for all $a, b, c, d \in X$ we have

$$|d(a,b) - d(c,d)| \le d(a,c) + d(b,d)$$

Proof. Since

$$\begin{cases} d(a,b) \le d(a,c) + d(c,b) \le d(a,c) + d(c,d) + d(d,b) \\ d(c,d) \le d(c,a) + d(a,d) \le d(c,a) + d(a,b) + d(b,d), \end{cases}$$

so we have

$$\begin{cases} d(a,b) - d(c,d) \ge d(a,c) + d(d,b) \\ -d(c,a) - d(b,d) \le d(a,b) - d(c,d), \end{cases}$$

so we can conbine these two equations and get the result.

By Claim 0.0.1, we know for all $p, q \ge 1$, we have

$$|u_p - u_q| = |d(x_p, y_p) - d(x_q, y_q)| \le d(x_p, x_q) + d(y_p, y_q).$$

Now since $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy, so for every $\varepsilon > 0$, there exists $N_1, N_2 > 0$ s.t.

$$\begin{cases} d(x_p, x_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_1 \\ d(y_p, y_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_2. \end{cases}$$

Thus, for all $p, q \ge \max\{N_1, N_2\}$, we know

$$|u_p - u_q| \leq d(x_p, x_q) + d(y_p, y_q) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, we know $\{u_n\}_{n=1}^{\infty}$ is Cauchy in $\mathbb{R}_{\geq 0}$, $|\cdot|$.

Now we show that $d_{\overline{X}}$ is well-defined. In other words, if $LIM_{n\to\infty}x_n = LIM_{n\to\infty}z_n$, then we want to show

$$d_{\overline{X}}\left(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}y_n\right) = d_{\overline{X}}\left(\mathrm{LIM}_{n\to\infty}z_n,\mathrm{LIM}_{n\to\infty}y_n\right) \quad \forall \text{ Cauchy } \left\{y_n\right\}_{n=1}^{\infty} \text{ in } (X,d).$$

Equivalently, we want to show $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(z_n,y_n)$. Note that we have

$$\lim_{n \to \infty} d(x_n, z_n) = 0 \text{ and } d(x_n, y_n) \le d(x_n, z_n) + d(z_n, y_n),$$

so we know

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x_n, z_n) + \lim_{n \to \infty} d(z_n, y_n) = \lim_{n \to \infty} d(z_n, y_n).$$

Also, we have $d(z_n, y_n) \leq d(z_n, x_n) + d(x_n, y_n)$, so we know

$$\lim_{n \to \infty} d(z_n, y_n) \le \lim_{n \to \infty} d(z_n, x_n) + \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x_n, y_n),$$

and thus we can conclude that $\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(z_n, y_n)$. Finally, we want to show that $(\overline{X}, d_{\overline{X}})$ is a metric space.

- \forall Cauchy $\{x_n\}_{n=1}^{\infty} \in X$, $d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}x_n) = \lim_{n\to\infty} d(x_n, x_n) = 0$.
- \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \in X$,

$$d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) = \lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(y_n, x_n)$$
$$= d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n, \mathrm{LIM}_{n\to\infty}x_n)$$

• \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty} \in X$,

$$\begin{split} d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}z_n) &= \lim_{n\to\infty} d(x_n, z_n) \\ &\leq \lim_{n\to\infty} (d(x_n, y_n) + d(y_n, z_n)) = \lim_{n\to\infty} d(x_n, y_n) + \lim_{n\to\infty} d(y_n, z_n) \\ &= d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) + d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n, \mathrm{LIM}_{n\to\infty}z_n) \end{split}$$

Hence, we know $(\overline{X}, d_{\overline{X}})$ is a metric space.

C.

Problem 0.0.3. In the following, all the sets are subsets of a metric space (X, d).

(a) If $\overline{A} \cap \overline{B} = \emptyset$, then

$$\partial(A \cup B) = \partial A \cup \partial B.$$

(b) For a finite family $\{A_i\}_{i=1}^n \subseteq X$, show that

$$\operatorname{int}\left(\bigcap_{i=1}^{n} A_{i}\right) = \bigcap_{i=1}^{n} \operatorname{int}(A_{i}).$$

(c) For an arbitrary (possibly infinite) family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq X$, prove that

$$\operatorname{int}\left(\bigcap_{\alpha\in F}A_{\alpha}\right)\subseteq\bigcap_{\alpha\in F}\operatorname{int}(A_{\alpha}).$$

- (d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).
- (e) For any family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq M$, prove that

$$\bigcup_{\alpha \in F} \operatorname{int}(A_{\alpha}) \subseteq \operatorname{int}\left(\bigcup_{\alpha \in F} A_{\alpha}\right).$$

(f) Give an example of a finite collection F in which equality does not hold in part (e).

Problem 0.0.4. Let (X, d) be a metric space and $Y \subset X$ be an open subset. For any subset $A \subset Y$, show that A is open in Y if and only if it is open in X.

Problem 0.0.5. On the space (0,1], we may consider the topology induced by the metric space (\mathbb{R},d) defined by d(x,y)=|x-y|. Alternatively, we may also define a distance d' on (0,1], given by

$$d'(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0,1].$$

(a) Show that d' is a metric on (0,1]

(b) Let $x \in (0,1]$ and $\varepsilon > 0$. Let $B = B_d(x,\varepsilon) = \{y | |y-x| < \varepsilon\} \cap (0,1]$ be the open ball centered at x of radius ε for the metric d in (0,1]. Show that for any $y \in B$, we may find $\varepsilon' > 0$ such that

$$B_{d'}(y,\varepsilon')\subseteq B=B_d(x,\varepsilon).$$

- (c) Show that an open ball in ((0,1], d') is also an open ball in ((0,1], d).
- (d) Conclude that the metric spaces ((0,1],d) and ((0,1],d') are topologically equivalent, that is, a set A is open in one space if and only if it is also open in the other one.
- (e) Is ((0,1], d') a complete metric space? How about ((0,1], d)?

Problem 0.0.6. (a) We say that a family of closed balls

$$(\overline{B}(x_n, r_n))_{n\geq 1}$$

is a decreasing sequence of closed balls if the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric space with empty intersection.

(b) We say that a family of closed balls

$$(\overline{B}(x_n,r_n))_{n\geq 1}$$

is a decreasing sequence of closed balls with radii tending to zero if

$$r_n \to 0 \quad \text{as } n \to \infty,$$

and the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Show that a metric space (M,d) is complete if and only if every decreasing sequence of closed balls with radii going to zero has a nonempty intersection.