Homework 10: independent sequences and Cantor-Bendixson rank

Advanced Model Theory

Due May 12, 2022

There are 5 problems.

1. Work in a stable theory. Suppose the sequence (a_1, \ldots, a_n) (of length n) is independent over \varnothing . Suppose the sequence (b_1, \ldots, b_m) is independent over \varnothing . Suppose

$$\{a_1,\ldots,a_n\} \bigcup_{\varnothing} \{b_1,\ldots,b_m\}.$$

Show that the concatenated sequence $(a_1, \ldots, a_n, b_1, \ldots, b_m)$ is independent over \varnothing .

The remaining problems are about Cantor-Bendixson rank. For fixed $A \subseteq M$ and $n < \omega$, the Cantor-Bendixson rank of an A-definable set $D \subseteq M^n$ is an ordinal or $\pm \infty$ characterized as follows:

- $R(D) \ge 0$ iff $D \ne \emptyset$.
- $R(D) \ge \alpha + 1$ iff there are pairwise disjoint A-definable subsets $D_1, D_2, \ldots \subseteq D$ such that $R(D_i) \ge \alpha$.
- If β is a limit ordinal, then $R(D) \ge \beta$ iff $R(D) \ge \alpha$ for all $\alpha < \beta$.

It may help to look ahead at Section 6 in the May 5–7 notes for examples of how to use this characterization.

- 2. If $T = \text{Th}(\mathbb{R}, \leq)$ and $A = \mathbb{R}$ and n = 1, show that $R(\mathbb{R}) \geq 3$, i.e., $R(S_1(\mathbb{R})) \geq 3$. Hint: you can show that $R(U) \geq \alpha$ for any open interval $U = (a, b) \subseteq \mathbb{R}$ and any ordinal α .
- 3. If $T = \text{Th}(\mathbb{Z}, +)$ and $A = \emptyset$ and n = 1, show that the definable set \mathbb{Z} has Cantor-Bendixson rank ∞ , or equivalently, that $R(S_1(\emptyset)) = \infty$. *Hint:* unlike the other problems, this problem is most easily done using a fact we proved in class, rather than the direct definition of Cantor-Bendixson rank given above.

4. If $T = ACF_0 = \text{Th}(\mathbb{C}, +, \cdot)$, and $A = \mathbb{C}$ and n = 3, show that the definable set

$$D = \{(x, y, z) \in \mathbb{C}^3 : x + y + z = 0\}$$

- has Cantor-Bendixson rank at least 2. Hint : this can be proven using the definition of R(D) given above.
- 5. Let (M, \approx) be a set M with an equivalence relation \approx , such that each equivalence class is infinite and there are infinitely many equivalence classes. Show that $S_1(M)$ has Cantor-Bendixson rank at least 2. *Hint:* this can be proven using the definition of R(D) given above.