Ocean and Biosphere Feedbacks

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #12: Monday, February 06 2023

Indirect Aerosol Effect

- ullet Aerosol particles o more, smaller droplets
- ullet Smaller droplets o greater albedo, longer lifetime
- ullet More droplets o greater albedo, more absorption

Indirect Aerosol Effect

Summary of Feedbacks

Summary of Feedbacks

- Ice-Albedo has been extensively studied:
 - It's known to be moderately positive.
- Water vapor has been studied:
 - It's known to be strongly positive (factor of 2).
- There is some uncertainty about clouds:
 - Most likely they're positive,
 - Strength is very uncertain

Planck Feedback

- The biggest feedback in the climate system is the Planck feedback
 - Also called the Stefan-Boltzmann feedback
- Stefan-Boltzmann equation: $I = \varepsilon \sigma T^4$
 - $lacksquare Q = Q_{\rm in} Q_{\rm out}$
 - lacktriangle Higher temperature ightarrow more heat out to space
 - \circ $Q_{
 m out}$ gets larger, so $\Delta Q < 0$
 - $lacksquare \Delta T > 0
 ightarrow \Delta Q < 0$
 - $f = \frac{\Delta Q}{\Delta T} < 0$: negative feedback
- Creates stable climate

Stability of the Climate

- Most feedbacks we've discussed are positive:
 - Ice-albedo
 - Water vapor
 - Clouds (mostly)
- Why don't these positive feedbacks make the climate unstable?
 - (e.g., runaway greenhouse)
 - They are smaller than the negative Planck feedback
 - o so the total feedback remains negative.
 - Positive feedbacks amplify warming:
 - More than we'd get with just Planck feedback,
 - But they are too small to destabilize the planet.
- Many scientists worry about a possible "tipping point":
 - Is there a temperature threshold where positive feedbacks become greater than Stefan-Boltzmann?
 - This would destabilize the climate.

El Niño/Southern Oscillation

Normal Conditions

El Niño

Schematic of ENSO Wind & Temperature

Multivariate El-Niño Index (MEI)

Climate Connection

- El Niño phase:
 - Hotter sea-surface
 - More evaporation
 - Bigger greenhouse effect
 - Higher global air temperatures

- La Niña phase:
 - Cooler sea-surface
 - Less water vapor
 - Smaller greenhouse effect
 - Cooler global air temperatures

Biosphere Feedbacks

Hydrological Cycle

- Transpiration in plants:
 - Roots take water from ground
 - Leaves emit water vapor
 - Evaporation cools the air
 - Can be an important source of water vapor

Image credit: NASA/JPL-Caltech https://climatekids.nasa.gov/heat-islands/

Transpiration and CO₂

- Transpiration occurs through "stomata" in leaves
- Tradeoff: stomata
 - Allow plant to get CO₂
 - Cause plant to lose water
- More CO₂ in atmosphere:
 - Fewer stomata
 - Less transpiration

Image credit

- Photo of stomata on duckweed: Micrographia http://www.micrographia.com/specbiol/plan/planaq/plaq0100/lemna-01.htm.
- Diagram of response to CO₂: University of California Museum of Paleontology's Understanding Evolution http://evolution.berkeley.edu.

Forests vs. Grasslands

Carbon Cycle Feedbacks

- Dead organic matter in ground (leaves, roots, etc.) stores carbon
- Warming temperatures accelerate decomposition
 - Bacterial/fungal metabolism
- Huge amounts of dead organic matter in arctic tundra & permafrost
 - Concerns about accelerated greenhouse gas emissions as ground thaws & warms
 - Amplifies global warming, but unlikely to run away uncontrollably.

