Department of Mathematics and Computing Mathematics I Tutorial Sheet-I

(Taylor's Series, Convexity and Concavity, Asymptotes, Curvature, Curve tracing)

1. Find the first four non-zero terms of the Taylor series generated by function f(x).

(i)
$$f(x) = \sqrt{3 + x^2}$$
 at $x = -1$ (ii) $f(x) = \frac{1}{1 - x}$ at $x = 2$ (iii) $f(x) = \frac{1}{1 + x}$ at $x = 3$

(iv)
$$f(x) = \frac{1}{x}$$
 at $x = a > 0$ (v) $f(x) = \frac{1}{1 + x^2}$ at $x = -2$ (vi) $f(x) = \sin x^2$ at $x = 1$

(vii)
$$f(x) = \log(1 - x^2)$$
 at $x = 2$ (viii) $f(x) = e^{-2x}$ at $x = \frac{1}{2}$ (ix) $f(x) = \cosh x$ at $x = 1$

(x)
$$f(x) = \tan x$$
 at $x = 1$.

2. Find the Maclaurin series for the following functions
(i)
$$f(x) = \frac{1}{1-2x}$$
 (ii) $f(x) = \frac{1}{1+x^3}$ (iii) $f(x) = \sin \pi x$ (iv) $f(x) = \sin \frac{2x}{3}$ (v) $f(x) = \cos(x^{5/2})$ (vi) $f(x) = \cos\sqrt{5x}$ (vii) $f(x) = e^{(\pi x/2)}$ (viii) $f(x) = e^{-x^2}$. (ix) $f(x) = \log(1+x)$ (x) $f(x) = \frac{1}{1+x^2}$ (xi) $f(x) = \sinh x$

$$(v) f(x) = \cos(x^{3/2})$$

$$(v) f(x) = \cos \sqrt{5x}$$

$$(v) f(x) = e^{\sin^2 x}$$

$$(v) f(x) = \sin x$$

$$(v) f(x) = \sin x$$

- 3. (i) Calculate e with an error of 10^{-6} .
 - (ii) For what values of x can we replace $\sin x$ by $x \left(\frac{x^3}{3!}\right)$ with an error of magnitude no greater than 3×10^{-4} ?
 - (iii) For approximately what values of x can you replace $\sin x$ by $x \left(\frac{x^3}{6}\right)$ with an error of magnitude no greater than 5×10^{-4} ? Give reasons for your answer.
 - (iv) How close is the approximation $\sin x = x$ when $|x| < 10^{-3}$? For which of these values of x is $x < \sin x$?
 - (v) The estimate $\sqrt{1+x}=1+\left(\frac{x}{2}\right)$ is used when x is small. Estimate the error when |x|<0.01.
 - (vi) The approximation $e^x = 1 + x + \left(\frac{x^2}{2}\right)$ when x is small. Use the Remainder Estimation Theorem to estimate the error when |x| < 0.1.
 - (vii) Estimate the error in the approximation $\sinh x = x + \left(\frac{x^3}{3!}\right)$ when |x| < 0.5. (Hint: R_4 not R_3).
 - (viii) When $0 \le h \le 0.01$, show that e^h may be replaced by 1 + h with an error of magnitude no greater than 0.6% of h. Use $e^{0.01} = 1.01$.
 - (ix) For what values of x can you replace $\ln(1+x)$ by x with an error of magnitude no greater than 1% of the value of x?
- 4. Find the point of inflection and the intervals in which the given curves are concave upward and concave

(i)
$$y = x^3 - 3x^2 + 6x + 5$$
 (ii) $y = \frac{1}{x - 3}$ (iii) $y = x^4 - x^3$ (iv) $y = \cot^{-1} x + x$ (v) $y = x^3 \ln(x), x \ge 0$ (vi) $y = (1 + x^2)e^x$.

5. Find the curvature and radius of curvature of the following curves at the indicated points. The constant a is positive.

(i)
$$x = a(t - \sin t), y = a(1 - \cos t)$$
 at $t = \pi$
(ii) $y = a \cosh(x/a)$ at $(0, a)$
(iii) $y = x^2 + \ln(x + \sqrt{1 + x^2})$ at $(0, 0)$
(iv) $x = a \ln(\sec t + \tan t), y = a \sec t$ at $t = 0$.

- 6. Determine the curvature of the parabola $y^2 = 2px$:
 - (a) at an arbitrary point M(x,y);
 - (b) at the point $M_1(0,0)$;
 - (c) at the point $M_2(\frac{p}{2}, p)$.
- 7. Find the equation of the envelope of the given family of the curves (p is a parameter).

(i)
$$y = px + 3/(2p)$$
 (ii) $(x - p)^2 + (y - p)^2 = p^2$ (iii) $x \tan p + y \sec p = 5$.

8. Find the envelope of all the ellipses
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, which have a constant area $A = \pi ab$.

9. Find all the asymptotes to the given curves.

(i)
$$y = e^{2/x} - 1$$

(ii)
$$y = \frac{x+1}{\sqrt{x^2}}$$

(iii)
$$(y-2)(x^2-1)$$

(ii) $y = \frac{x+1}{\sqrt{x^2-4}}$ (iv) The hyperbolic spiral $r = a/\theta$

(iii)
$$(y-2)(x^2-1) = 5$$

(v) $y = \frac{x-4}{x^2+4x+3}$

(vi)
$$x^5 + y^5 = 5ax^2y^2$$
.

10. Sketch the graph of the following curves.

(i)
$$y = x/(1+x^2)$$

(i)
$$y = x/(1+x^2)$$
 (ii) $y^2x = a^2(a-y)$

(iii)
$$y = \frac{(x-1)(x-3)}{x^2}$$

(iv)
$$r = a(1 + \cos \theta), a > 0$$
 (v) $y = x^4 - 6x^2$

(iii)
$$y = \frac{(x-1)(x-3)}{x^2}$$

(vi) $y^2 = (x-1)(x-2)^2$, (vii) $y = x^5 - 5x^4$.

 $\begin{array}{ll} \text{(viii)} \ x=a \ (t+\sin t), \ y=a \ (1-\cos t) \ \text{as} \ t \ \text{varies from} \ -\pi \ \text{to} \ \pi \\ \text{(ix)} \ r=a e^{\theta \cot \alpha} & \text{(x)} \ r=a \sin 3\theta, a>0 & \text{(xi)} \ y=\frac{5(x-2)(x+1)}{x^2+2x+4}. \end{array}$

(ix)
$$r = ae^{\theta \cot \alpha}$$

(x)
$$r = a \sin 3\theta, a > 0$$

(xi)
$$y = \frac{5(x-2)(x+1)}{x^2+2x+4}$$