BITBOT Architecture

CSCE 312: Computer Organization

Overview

- While HACK is a great introduction to assembly language, it does not reflect popular assembly languages used in 2023
- Introducing BITBOT, a simplified RISC CPU architecture modelled heavily after MIPS/ARM
- BITBOT computer contains 3 parts:
 - o ROM32K
 - o CPU
 - Data Memory

Overview

ROM32K

- BUILT-IN chip
- No need to do anything beside connecting it to the computer

CPU

- Extension of TOY CPU to support a wider range of instructions
- 16-bit architecture (i.e. a word is defined as 16 bits)
- 8 General Purpose Registers, 16-bit

Data Memory

- 40K+1 16-bit data words
- Divided into 3 regions
 - 32K words for holding data (RAM)
 - 8K words for memory-mapped screen output
 - o 1 word for memory-mapped keyboard input device

Computer

- Combine 3 parts together
- Only for wiring parts, no additional logic required

Further details

- The recommended order of implementation:
 - Data Memory
 - o CPU
 - Computer

Further details: Memory

- Built-in chips: RAM32K(in=, load=, address=, out=), Screen(in=, load=, address=, out=), Keyboard(out=)
 - RAM32K: only bit 14 to 0 are used (2^15 = 32K), thus must check address[15] = 0 and load = 1 before accessing the RAM
 - Screen: use address[13..15] for loading (load if it is 100), address[0..12] is for the mapped memory positions on the screen
 - Keyboard: should be self-explanatory
 - Use a Mux8Way16 to glue everything together, use the hint above to figure out the correct selector bits

Further details: CPU

- Schematic mostly given for datapath
- Recommended strategy for controlpath:
 - Go through each instruction (start with a set of instructions)
 - Register control (whenever register is written to)
 - Arithmetic (ALU)
 - Memory read/write (addressM, writeM, toM, and Screen)
 - Branching (control the PC)

Let's look at designing the controlpath for register control

Arithmetic EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8] In[7] In[6]	In[5] In[4] In[3] In[2] ln[1] ln[0]				
	EXAMPLE	OPCODE		OPTYPE		DEST REGISTER	SRC1 REGISTER	SRC2 REGISTER				
ADD	ADD R0, R1, R2 (i.e. R0 = R1 + R2)		0	0	0			Any Reg: 000-111				
ADDI	ADDI R0, R1, 8 (i.e. R0 = R1 + 8)	0		0	1	Any Reg: 000 to 111	Any Reg: 000 to 111	Six Bit Immediate Value (0-63)				
SUB	SUB R0, R1, R2 (i.e. R0 =R1 - R2)			1	0		Any Reg. 000 to 111	Any Reg: 000-111				
SUBI	SUBI RO, R1, 8 (i.e. R0 = R1 - 8)			1	1			Six Bit Immediate Value (0-63)				
Logical	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8] In[7] In[6]	In[5] In[4] In[3] In[2] In[1] In[0]			
Logical	EXAMPLE	OPCODE		OPTYPE		DEST REGISTER	SRC1 REGISTER	SRC2 REGISTER	UNUSED			
NAND	NAND R0, R1, R2 (i.e. R0 = R1 NAND R2)	0	1	0		Any Reg: 000 to 111						
NOR	NOR RO, R1, R2 (i.e. R0 = R1 NAND R2)	U		1		Ally Reg. 000 to 111	Any Reg: 000 to 111	Any Reg: 000 to 111				
Memory	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8] In[7] In[6]	In[5] In[4] In[3] In[2] ln[1] ln[0]			
Welliory		OPCODE		OPTYPE		LEFT SIDE	RIGHT SIDE		·			
READ	READ RO, R1 (i.e. R0 = MEM[R1])	1	0	0	0	DEST REGISTER	SRC PTR REGISTER					
WRITE	WRITE RO, R1 (i.e. MEM[R0] = R1)	1	U	1	0	DEST PTR REGISTER	SRC REGISTER					
Branch	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8] In[7] In[6]	In[5] In[4] In[3] In[2] ln[1] ln[0]			
Diancii	EXAMPLE	OPCODE		OPTYPE		TARGET ADDRESS	SRC REGISTER					
JMP	JMP R0 (i.e. PCOut = R0)	1	0	1	1	Any Reg: 000 to 111						
BEQ	BEQ R0, R1 (i.e. PCOut = R0 if R1==0)	1		0	1	Ally Reg. 000 to 111	Any Reg: 000 to 111					
INPUT/OUTPUT	EVANABLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8] In[7] In[6]	In[5] In[4] In[3] In[2] ln[1] ln[0]			
INPUT/OUTPUT	EXAMPLE	OPO	CODE	OP	TYPE	TARGET ADDRESS	SRC REGISTER					
INP	INP R0 (i.e. R0 = MEM[KEYBOARD])	1	1	1	0	Any Pog. 000 to 111						
OUT	OUT R0, R1 (i.e. SCREEN[R0] = R1)] 1		0	0	Any Reg: 000 to 111	Any Reg: 000 to 111					

	-V.1.1015	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Arithmetic	EXAMPLE	OPCODE		OPTYPE		DEST REGISTER	SRC1 REGISTER			SRC2 REGISTER						
ADD	ADD R0, R1, R2 (i.e. R0 = R1 + R2)			0	0		Any Reg: 000 to 111			Any Reg: 000-111						
ADDI	ADDI RO, R1, 8 (i.e. R0 = R1 + 8)	1/ 0	0	0	1	A D 000 to 111					Six Bit	Immedi	ate Value (0-63)			
SUB	SUB RO, R1, R2 (i.e. R0 =R1 - R2)	0		1	0	Any Reg: 000 to 111				Any	Reg: 00	0-111				
SUBI	SUBI RO, R1, 8 (i.e. RO = R1 - 8)			1	1						Six Bit	Immedi	ediate Value (0-63)			
Logical	EXAMPLE	n[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Logical		OPCODE		OPTYPE		DEST REGISTER	SRC1 REGISTER			SRC2 REGISTER			UNUSED			
NAND	NAND R0, R1, R2 (i.e. R0 = R1 NAND R2)	0	1	0		Any Reg: 000 to 111										
NOR	NOR R0, R1, R2 (i.e. R0 = R1 NAND R2)	\ <u> </u>		1		Any Reg. 000 to 111	Any Reg: 000 to 111			Any Reg: 000 to 111						
Memory	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Wiemory		OPCODE		OPTYPE		LEFT SIDE	RIGHT SIDE									
READ	READ RO, R1 (i.e. RO = MEM[R1])	1	0	0	0	DEST REGISTER	SF	SRC PTR REGISTER								
WRITE	WRITE R0, R1 (i.e. MEM[R0] = R1)	1		1	0	DEST PTR REGISTER		SRC REGIS	STER							
Branch	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Branch		OPO	CODE	OPTYPE		TARGET ADDRESS	SRC REGISTER									
JMP	JMP R0 (i.e. PCOut = R0)	1	0	1	1	Any Reg: 000 to 111										
BEQ	BEQ R0, R1 (i.e. PCOut = R0 if R1==0)	1		0	1	Ally keg. 000 to 111	Any	Reg: 000	to 111							
INPUT/OUTPUT	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
INPUT/OUTPOT		OPO	CODE	OP	TYPE	TARGET ADDRESS		SRC REGIS	STER							
INP	INP R0 (i.e. R0 = MEM[KEYBOARD])		1	1	0	Any Reg: 000 to 111										
OUT	OUT R0, R1 (i.e. SCREEN[R0] = R1)	—	1	0	0	Ally Neg. 000 to 111	Any	Reg: 000	to 111							

Arithmetic	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Aritimetic	EXAMPLE	OPCODE		OPTYPE		DEST REGISTER	SRC1 REGISTER			SR	C2 REG	STER				
ADD	ADD R0, R1, R2 (i.e. R0 = R1 + R2)		0	0	0		Any Reg: 000 to 111			Any Reg: 000-111						
ADDI	ADDI RO, R1, 8 (i.e. RO = R1 + 8)	0		0	1	Any Reg: 000 to 111				Six Bit Immediate Value (0-63)						
SUB	SUB RO, R1, R2 (i.e. RO =R1 - R2)			1	0					Any Reg: 000-111						
SUBI	SUBI R0, R1, 8 (i.e. R0 = R1 - 8)			1	1						Six Bit	Immedia	ate Value (0-63)			
Logical	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Logical		OPCODE		OP	TYPE	DEST REGISTER	SRC1 REGISTER			SRC2 REGISTER			UNUSED			
NAND NOR	NAND R0, R1, R2 (i.e. R0 = R1 NAND R2) NOR R0, R1, R2 (i.e. R0 = R1 NAND R2)	0	1	0		Any Reg: 000 to 111	Any Reg: 000 to 111			Any Reg: 000 to 111						
	EVALUE E	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
Memory	EXAMPLE	OPO	CODE	OPTYPE		LEFT SIDE	RIGHT SIDE									
READ	READ RO, R1 (i.e. RO = MEM[R1])			0	0	DEST REGISTER	SF	SRC PTR REGISTER								
WRITE	WRITE RO, R1 (i.e. MEM[R0] = R1)	1	0	1	0	DEST PTR REGISTER	SRC REGISTER									
Branch	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
branch	EXAMPLE	OPO	OPCODE		TYPE	TARGET ADDRESS	SRC REGISTER									
JMP	JMP R0 (i.e. PCOut = R0)	1	0	1	1	Any Deg. 000 to 111										
BEQ	BEQ R0, R1 (i.e. PCOut = R0 if R1==0)	1		0	1	Any Reg: 000 to 111	Any Reg: 000 to 111									
INPUT/OUTPUT	EXAMPLE	In[15]	In[14]	In[13]	In[12]	In[11] In[10] In[9]	In[8]	In[7]	In[6]	In[5]	In[4]	In[3]	In[2]	In[1]	In[0]	
INFOI/OUTPUT		OPO	ODE	OPTYPE		TARGET ADDRESS		SRC REGI	STER							
INP	INP R0 (i.e. R0 = MEM[KEYBOARD])	1	1	1	0	Any Reg: 000 to 1/1				_						
OUT	OUT RO, R1 (i.e. SCREEN[RO] = R1)	1	1	0	0	Any neg. 000 to 111	Any	Reg: 00	0 to 111							

Further details: CPU

When design controlpath, ALWAYS look at the register sheet

Further details: Computer

- Instantiate the ROM32K
- That's it:)

Where to find additional information

- Provided resources
- The TOY CPU design presentations
- The HACK CPU lectures

Next week

Verifying the whole system + work week