Problem Set 9

1. (#2 in 6.5) Prove the general form of Theorem 6.5.3: If A_{γ} is a connected subspace of X_{τ} for every $\gamma \in \Lambda$ and if $\bigcap_{\gamma \in \Lambda} A_{\gamma} \neq \emptyset$, then $\bigcup_{\gamma \in \Lambda} A_{\gamma}$ is connected as a subspace of X.

Proof: Let A_{γ} be a connected subspace of X_{τ} for every $\gamma \in \Lambda$ and assume that $\bigcap_{\gamma \in \Lambda} A_{\gamma} \neq \emptyset$. Suppose by way of contradiction that $\bigcup_{\gamma \in \Lambda} A_{\gamma}$ is disconnected. Then for two disjoint $\tau_{\bigcup_{\gamma \in \Lambda} A_{\gamma}}$ open sets U and V, $\bigcup_{\gamma \in \Lambda} A_{\gamma} = U \cup V$.

Suppose that $U \cap (\bigcup_{\gamma \in \Lambda} A_{\gamma})$ and $V \cap (\bigcup_{\gamma \in \Lambda} A_{\gamma})$ are non-empty. For every $\gamma \in \Lambda$, $U \cap A_{\gamma}$ and $V \cap A_{\gamma}$ are nonempty. Well, since A_{γ} is connected for every $\gamma \in \Lambda$, we have that $U \cap A_{\gamma}$ or $V \cap A_{\gamma}$ is empty, or $U \cap A_{\gamma}$ is empty for all $\gamma \in \Lambda$.

Suppose $U \cap A_{\gamma}$ is empty for $\gamma \in \Gamma \subseteq \Lambda$.

For some $\gamma' \in \Lambda \setminus \Gamma$, we have $V \cap A_{\gamma'}$ is empty. Then since $\bigcap_{\gamma \in \Lambda} A_{\gamma} \neq \emptyset$, we have that there must exist a point $x \in \bigcap_{\gamma \in \Lambda} A_{\gamma}$ that is neither in U nor V. But since $U \cup V$ was assumed to be equal to $\bigcup_{\gamma \in \Lambda} A_{\gamma}$, we have a contradiction.

Now suppose that $U \cap A_{\gamma}$ is empty for all $\gamma \in \Lambda$. Since we have $\bigcap_{\gamma \in \Lambda} A_{\gamma} \neq \emptyset$, and $\bigcup_{\gamma \in \Lambda} A_{\gamma} = U \cup V$, and $U \cap A_{\gamma}$ is empty, U and $\bigcup_{\gamma \in \Lambda} A_{\gamma}$ are disjoint. Then we must have $U = \emptyset$, and $\bigcup_{\gamma \in \Lambda} A_{\gamma} = V$. Equivalently, there does not exist a disconnection for $\bigcup_{\gamma \in \Lambda} A_{\gamma}$ for this case.

So $\cup_{\gamma \in \Lambda} A_{\gamma}$ is connected for A_{γ} a connected subspace of X_{τ} for every $\gamma \in \Lambda$.

2. (#2 in 7.2) Prove Corollary 7.2.2: (i) If X_{τ} is compact and τ' is any topology on X that is coarser than τ , then $X_{\tau'}$ is also compact. (ii) If Y_{ν} is not compact and ν' is any topology on Y that is finer than ν , then $Y_{\nu'}$ is not compact. (Hint: use the identity maps on X and Y).

Proof of (i): Let X_{τ} be a compact space and let $\tau' \subseteq \tau$ be a topology on X. Since $\tau' \subseteq \tau$, we have that $i_x : X_{\tau} \to X_{\tau'}$ the identity map is continuous. Since $\text{Im}(i_x) = X$ and compactness is a strong topological property, we have that $X_{\tau'}$ is compact.

Proof of (ii): Let Y_{ν} be not compact and let $\nu \subseteq \nu'$ be a topology on Y. Suppose by way of contradiction that $Y_{\nu'}$ is compact. Notice since $\nu \subseteq \nu'$, we have that $i_y : Y_{\nu'} \to Y_{\nu}$, the identity map, is continuous. Then since compactness is a strong topological property and $\operatorname{Im}(i_y) = Y$, we have that Y_{ν} is compact, a contradiction. Thus, if Y_{ν} is not compact, and $\nu \subseteq \nu'$, then $Y_{\nu'}$ is not compact.

3. (#6 in 7.2) Show from the definition that $\mathbb{R}^2_{\mathcal{U}^2}$ is not compact.

Proof: Let $C = \bigcup_{n \in \mathbb{N}} \{(-n, n) \times (-n, n)\}$ be a cover for $\mathbb{R}^2_{\mathcal{U}^2}$ where \times denotes the Cartesian product. Observe that C does not have a finite subcover:

Suppose C did have a finite subcover. Then for some $k \in \mathbb{N}$, $\mathbb{R}^2 = \bigcup_{n=1}^k \{(-n,n) \times (-n,n)\}$. Notice that this is a union of nested intervals. That is, $\bigcup_{n=1}^k \{(-n,n) \times (-n,n)\} = (-k,k) \times (-k,k)$. But then for k+1

$$(-k, k) \times (-k, k) \subset (-k - 1, k + 1) \times (-k - 1, k + 1) \subset \mathbb{R}^2$$

So C does not have a finite subcover.

so by definition of compactness, $\mathbb{R}^2_{\mathcal{U}^2}$ is not compact.

4. (#4 in 7.3) Prove that a subspace of a Hausdorff space is Hausdorff.

Proof: Let X_{τ} be Hausdorff and let A be a subspace of X. We wish to show that A_{τ_A} is also Hausdorff. Well, if A = X, then we're done. Suppose $A \subset X$, $\operatorname{Card}(A) \geq 2$, and let $a_1, a_2 \in A$. Then since $A \subset X$, $a_1, a_2 \in X$. And since X is Hausdorff, there exist disjoint τ -open sets U and V such that $a_1 \in U$ and $a_2 \in V$.

Notice that $A \cap U$ and $A \cap V$ are open in τ_A and that $a_1 \in A \cap U$ and $a_2 \in A \cap V$. We must show $A \cap U$ and $A \cap V$ are disjoint. Consider

$$(A \cap U) \cap (A \cap V) = A \cap U \cap A \cap V$$
$$= A \cap A \cap U \cap V$$
$$= A \cap (U \cap V)$$
$$= A \cap (\emptyset)$$
$$= \emptyset$$

That is, we have two disjoint τ_A open sets each containing one of a_1 and a_2 . Then by definition, A is a Hausdorff space.

5. (#6 in 7.3) Prove Theorem 7.3.2: Let X_{τ} be compact and Hausdorff. If τ' is any topology on X with τ' strictly finer than τ , then $X_{\tau'}$ is not compact. If τ'' is any topology on X with τ'' strictly coarser than τ , then $X_{\tau''}$ is not Hausdorff. (Hint: consider the hint for problem #5 in 7.3).

Proof: Let X_{τ} be compact and Hausdorff and suppose by way of contradiction that $X_{\tau'}$ is compact for $\tau \subset \tau'$. Since τ is coarser than τ' , we have that the identity map $i_x: X_{\tau'} \to X_{\tau}$ is continuous by theorem 3.5.1. Thus, i_x is a continuous bijection. So by theorem 7.3.3, we have that i_x is a homeomorphism between $X_{\tau'}$ and X_{τ} . But i_x can only be a homeomorphism if and only if $\tau = \tau'$, contradicting the fact that $\tau \subset \tau'$. Thus, if X_{τ} is compact and Hausdorff, $X_{\tau'}$ cannot be compact for $\tau \subset \tau'$.

Now let τ'' be a topology on X such that $\tau'' \subset \tau$. We wish to show $X_{\tau''}$ is not Hausdorff. Suppose by way of contradiction that $X_{\tau''}$ is Hausdorff. Well, since τ'' is coarser than τ , we have that $i_x: X_{\tau} \to X_{\tau''}$ is continuous by theorem 3.5.1. Thus, i_x is a continuous bijection between X_{τ} and $X_{\tau''}$. By theorem 7.3.3, we have that i_x is a homeomorphism between X_{τ} and $X_{\tau''}$. But i_x can only be a homeomorphism if and only if $\tau = \tau'$, which contradicts the fact that $\tau'' \subset \tau$. Thus, $X_{\tau''}$ is not Hausdorff.

6. (#2 in 7.5) Prove that any finite union of compact subsets of a topological space is compact.

Proof: Let $A_1, A_2 \subseteq X$ be compact where X_{τ} is a topological space. We wish to show that $A_1 \cup A_2$ is also compact. Well, let C be a cover for $A_1 \cup A_2$. Notice that $C \cap A_1$ is a cover for A_1 and $C \cap A_2$ is a cover for A_2 . Since A_1, A_2 are compact, we have that there exist finite subcovers $C_1, C_2 \subset C$ such that C_1 covers A_1 and C_2 covers A_2 .

Now $C' = C_1 \cup C_2 \subseteq C$ is a cover for $A_1 \cup A_2$. Since C_1, C_2 are finite, we have that C' is also finite. That is, we have a finite subcover of C. Hence, $A_1 \cup A_2$ is compact. To continue this argument, let $B = A_1 \cup A_2$ and $A_3 \subset X$ be compact. Following the same logic as above, we get that $B \cup A_3$ is compact. Continuing this argument up to some natural number n, we find that

$$\bigcup_{i=1}^{n} A_i$$

is compact for $A_i \subseteq X$ compact for every $1 \le i \le n$.

Bonus (#7 in 7.3) Prove the Closed Graph Theorem: If $f: X_{\tau} \to Y_{\nu}$ is continuous, with Y both compact and Hausdorff, then the graph

$$G_f = \{(x, y) \in X \times Y | y = f(x)\}$$

is closed in $X_{\tau} \times Y_{\nu}$.