	Silica Sand Soda Ash Sodium (1300°C) Fusion (1300°C) Well Drilling Process Sodium Silicate Cullet Cullet Ullet Screening Processed Gravel & Sand Chlor-alkall Processed Gravel & Sand MIXING & CASTING Geopolymer Concrete
	Life Cycle Inventory Analysis
In [3]:	<pre>geopolymer_data = pd.read_csv('geopolymer.csv') print("The testing matrix has been taken from experimental work by us in the lab") geopolymer_data The testing matrix has been taken from experimental work by us in the lab</pre>
Out[3]:	in/out flow amount units 0 in Fly ash 480 Kg 1 in GGBFS 120 Kg
	 in Sand 600 Kg in Gravel 900 Kg in NaOH 80 Kg
	 5 in Sodium Silicate 160 Kg 6 in Mixing 2 kWh 7 out Geopolymer 1 m3
In [4]:	pip install -U olca-ipc Requirement already satisfied: olca-ipc in c:\users\hp\anaconda3\lib\site-packages (0.0.12) Requirement already satisfied: requests in c:\users\hp\anaconda3\lib\site-packages (from olca-ipc) (2.27.1) Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\hp\anaconda3\lib\site-packages (from requests->olca-ipc) (2.0.4)
	Requirement already satisfied: certifi>=2017.4.17 in c:\users\hp\anaconda3\lib\site-packages (from requests->olca-ipc) (2021.10.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\hp\anaconda3\lib\site-packages (from requests->olca-ipc) (1.26.9) Requirement already satisfied: idna<4,>=2.5 in c:\users\hp\anaconda3\lib\site-packages (from requests->olca-ipc) (3.3) Note: you may need to restart the kernel to use updated packages.
	<pre>cd C:\Users\HP\Downloads\olca-ipc.py-master C:\Users\HP\Downloads\olca-ipc.py-master import olca</pre>
	<pre>params = {'mathtext.default': 'regular' } client = olca.Client(8080) client</pre>
Out[6]: In [7]:	<pre><olca.ipc.client 0x255e1b543d0="" at=""> dt_object = datetime.fromtimestamp(datetime.timestamp(datetime.now()))</olca.ipc.client></pre>
In [8]:	<pre>#creating flows volume = client.find(olca.FlowProperty, 'Volume') geopolymer = olca.product_flow_of('geopolymer', volume) geopolymer geopolymer.description = '1 m3 Geopolymer concrete added via olca-ipc on %s.' % (dt_object)</pre>
Out[8]:	<pre>client.insert(geopolymer) 'ok'</pre>
In [9]: Out[9]:	"@id": "63eb19b1-88ed-40c3-a4f4-8f65c81a28ab",
	"@type": "Flow", "description": "1 m3 Geopolymer concrete added via olca-ipc on 2023-01-08 01:11:56.159817.", "flowProperties": [{ "@id": "",
	"@type": "FlowPropertyFactor", "conversionFactor": 1.0, "flowProperty": { "@id": "93a60a56-a3c8-22da-a746-0800200c9a66",
	<pre>"@type": "FlowProperty", "name": "Volume" }, "referenceFlowProperty": true }</pre>
], "flowType": "PRODUCT_FLOW", "lastChange": "2023-01-07T20:11:56.608458Z", "name": "geopolymer", "version": "00.00.000"
	<pre>mass = client.find(olca.FlowProperty, 'Mass') x = [0,1,2,3,4,5]</pre>
	<pre>for a in x: flow_name = geopolymer_data['flow'][a] print(flow_name) flow_name = olca.product_flow_of(geopolymer_data['flow'][a], volume) flow_name.description = 'flow for', geopolymer_data['flow'][a],'added via olca-ipc on %s.' % (dt_object)</pre>
	client.insert(flow_name) flow_name Fly ash GGBFS
	Sand Gravel NaOH Sodium Silicate
out[10].	"@id": "1123a426-5ddd-4a5c-b8fa-07e30ed02318", "@type": "Flow", "description": ["flow for", "Sodium Silicate",
	"added via olca-ipc on 2023-01-08 01:11:56.159817."], "flowProperties": [{
	"@id": "", "@type": "FlowPropertyFactor", "conversionFactor": 1.0, "flowProperty": { "@id": "93a60a56-a3c8-22da-a746-0800200c9a66",
	"@type": "FlowProperty", "name": "Volume" }, "referenceFlowProperty": true
], "flowType": "PRODUCT_FLOW", "lastChange": "2023-01-07T20:11:57.163476Z", "name": "Sodium Silicate",
In [11]:	<pre>"version": "00.00.000" } #Creating Processes dt_object = datetime.fromtimestamp(datetime.timestamp(datetime.now()))</pre>
	<pre>for a in x: process_name = geopolymer_data['flow'][a] print(process_name)</pre>
	<pre>process_name = olca.process_of(geopolymer_data['flow'][a]) process_name.description = 'Added via olca-ipc on %s.' % (dt_object) client.insert(process_name) process_name</pre>
	Fly ash GGBFS Sand Gravel NaOH
	"@id": "e734854c-6d46-4506-9750-b3867e95279a",
	"@type": "Process", "description": "Added via olca-ipc on 2023-01-08 01:11:57.205133.", "lastChange": "2023-01-07T20:11:57.466676Z", "name": "Geopolymer", "processType": "UNIT_PROCESS",
In [12]:	"version": "00.00.000" } #adding input/output flows in the geopolymer process
	<pre>target_refs = [] for a in x: all_obj = client.get_descriptors(olca.Flow)</pre>
	<pre>cache = [obj for obj in all_obj if geopolymer_data['flow'][a] == obj.name] target_refs.append(cache) process_descriptor = client.get_descriptors(olca.Process) process_list = []</pre>
	<pre>id_list = [] for process in process_descriptor: process_list.append(process.name) id_list.append(process.id)</pre>
	<pre>processes_df = pd.DataFrame(list(zip(process_list,</pre>
Out[13]:	name id heat and power co-generation, biogas, gas engi 16f38842-59a3-3a40-a49b-f23b20175b0b heat and power co-generation, biogas, gas engi be8cc65b-d612-3dea-84c4-00a43d0922ed
	market for land tenure, arable land, measured e3f589d2-dbe7-32f1-accb-19de6b323b5c fluorescent whitening agent production, distyr 6e57e177-1a06-36bb-aad8-b79c7bc61105 electricity voltage transformation from medium 7bba9abd-7e6a-36bc-97f5-93432dcfb42f
	19579 Gravel 8345f6eb-49e9-4713-8baa-6b3135965384 19580 NaOH fd4fc39f-52ed-457a-a8f4-e885ea4405ff 19581 Sodium Silicate 618cd595-5855-4b93-a4ea-9a3f8c3dab37
	19582 Mixing 828a510b-0975-4575-9e01-46cbdd9e2298 19583 Geopolymer e734854c-6d46-4506-9750-b3867e95279a
	<pre>#creating product systems product_system = client.create_product_system(processes_df['id'][processes_df.last_valid_index()],</pre>
In [15]:	<pre>preferred_type='UNIT_PROCESS')</pre> psID = product_system.id psID
Out[15]:	Life Cycle Impact Assessments
In [16]:	The LCIA can be performed by clicking "quick calculations" button in OpenLCA, available on the product system that has been created with jupyter
	C:\Users\HP LCIA_results= pd.read_csv('LCIA.csv') LCIA_results
Out[17]:	Impact Category Unit Value Ecosystem Human Health Resources 0 Climate Change kg CO2-Eq 121.98000 36.594000 42.693000 28.055400 1 Ozone Depletion kg CFC-11-Eq 0.00005 0.000017 0.000016
	2 Schole Septetion kg Cl ST Eq Closes School Closes School 2 Particulate Matter Formation kg PM10-Eq 0.15340 0.030700 0.049088 0.000000 3 Acidification kg SO2-Eq 0.95800 0.287400 0.000000 0.000000 4 Eutrophication kg P-Eq 2.77900 1.11600 0.833700 0.000000
In [18]: Out[18]:	process_contributions= pd.read_csv('process_contribution.csv') process_contributions Flow GHG Ozone Depeltion Particulate Matter Acidification Eutrophication
-wc[TO];	Flow GHG Ozone Depetition Particulate Matter Actification 0 Gravel 6.50 1.12 4 0.50 1 1 Sand 2.32 1.00 2 0.30 2 2 Fly Ash 11.97 2.12 84 63.00 11
	3 GGBFS 15.17 40.42 6 13.50 9 4 SS 25.66 25.00 1 1.04 45 5 SH 38.00 29.00 1 20.80 32
	Interpretation/Visualization

Cradle-to-Gate Life Cycle Assessment for Geopolymer Concrete

1- identify the most critical process (that has principal contribution in more impact categories) with less effort, less time and more accuracy, as compared to traditional stacked bar charts

Coal Fired

Power Generation

2- Coalesce midpoint, endpoint LCA's, and process contributions in a visually appealing way to summarize LCA results (also usefull for posters and graphical abstracts of scientific publications)

The goal of this LCA is to identify the most critical process contributing to the environmental impacts of geopolymer concrete. The functional unit is 1m3 of concrete. The cradle-to-gate system boundary is selected and is presented in

Iron Production

The purpose of this LCA is to

from datetime import datetime

import matplotlib.mlab as mlab from matplotlib import rcParams

import plotly.express as px import plotly.io as pio

Goal and Scope

import seaborn as sns

import pandas as pd %matplotlib inline

figure below.

img

Out[2]:

In [2]: **from** PIL **import** Image

from matplotlib import pyplot as plt

import matplotlib.patches as mpatches

import plotly.graph_objects as go

img = Image.open('Sys Boundary.jpg')

pio.renderers.default = "plotly_mimetype+notebook"

ELECTRICITY

Sand/

In [1]: **import** pandas **as** pd import uuid import math

Visualization 1: This visualization indicates the most critical process (that has prinicpal contribution in more impact categories) The traditional stacked bar chats used in LCA visualization are intricate to analyze the most critical product and more often than not, the conclusions drawn are not accuate. For example, previously it was concluded that activators are the most critical process in impacts of geopolymer concrete, whereas this visualization indicates that both activators and fly ash are principal contributors in 3 imapet categoies, and therefore both should be deemed as critical processes In [19]: label = ["Activator", "GGBFS", "Fly Ash", "Activator", "GGBFS", "Fly Ash", "GGBFS", "Fly Ash", "GGBFS", "Fly Ash", "Activator", "GGBFS", "Activator", "Activator, "Act source = [0,0,0, 1,1,1, 2,2,2, 3,3,3, 4,4,4, 5,5,5, 6,6,6, 7,7,7, 8,8,8, 9,9,9, 10,10,10, 11,11,11, 12,12,12, 13,13,13, 14,14,14] #3 source nodes target = [3,4,5, 3,4,5, 3,4,5, 6,7,8, 6,7,8, 6,7,8, 9,10,11, 9,10,11, 12,13,14, 12,13,14, 12,13,14, 15,16,17, 15,16,17, 15,16,17] # 4 target nodesvalue = [1,0,0, 0,1,0, 0,0,1, 1,0,0, 0,0,1, 0,1,0, 0,0,1, 1,0,0, 0,1,0, 1,0,0, 0,0,1, 0,1,0, 0,1,0, 1,0,0, 0,0,1]data= go.Sankey(link=link, node=node) fig = go.Figure(data) fig.update_layout(hovermode = 'x', font=dict(size = 10, color = 'black') fig.add_annotation(x = 0.1,y=1.065, text = "Climate Change", font=dict(size = 12, color = 'black') fig.add_annotation(x = 0.25, y=1.065, text = "Ionizing Radiation", font=dict(size = 12, color = 'black') fig.add_annotation(x = 0.4,y=1.065, text = "Ozone Depletion", font=dict(size = 12, color = 'black') fig.add_annotation(x = 0.55,y=1.065, text = "Particulate Matter", font=dict(size = 12, color = 'black')

link = dict(source=source, target=target, value=value, color = ['rgba(230, 126, 34,0.5)', 'rgba(230, 126, 34,0.5)', 'rgba(230, 126, 34,0.5)', 'rgba(230, 126, 34,0.5)', 'rgba(230, 126, 34,0.5)', 'rgba(34, 153, 84,0.5)', 'r 'rgba(230, 126, 34,0.5)','rgba(230, 126, 34,0.5)','rgba(230, 126, 34,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(34, 153, 84,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5)','rgba(230, 126, 34,0.5)','rgba(34, 153, 84,0.5)','rgba(52, 152, 219,0.5)','rgba(52, 152, 219,0.5) fig.add_annotation(x = 0.7, y=1.065, text = "Acidification", font=dict(size = 12, color = 'black') fig.add_annotation(x = 0.85,y=1.065, text = "Eutrophication", font=dict(size = 12, color = 'black') fig.show() Climate Change Acidification Ionizing Radiation Ozone Depletion Particulate Matter Eutrophication Fly Ash Fly Ash Fly Ash Activator Activator Activator GGBFS GGBFS Fly Ash GGBFS Fly Ash GGBFS GGBFS Fly Ash GGBFS Activator Visualization 2: This visualization coalesce midpoint lca, endpoint lca and process contributions in a visually appealing way to summarize lca in one figure (also usefull in posters and graphical abstracts of scientific publications) In [20]: label = ["Gravel", "Sand", "Fly ash", "GGBFS", "Sodium Silicate", "Sodium Hydroxide", "Ozone Depletion", "Particulate Matter Formation", "Acidification", "Ecosystem Qualit source = [0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6, 7,7,7, 8,8,8, 9,9,9] #3 source nodes target = [6,7,8,9, 6,7,8,9, 6,7,8,9, 6,7,8,9, 6,7,8,9, 6,7,8,9, 10,11,12, 10,11,12, 10,11,12, 10,11,12] # 4 target nodesvalue = [6,2,4,0.5, 3,1,2,0.3, 12,3,84,63, 15,40,6,13, 26,25,1,1, 38,29,1,20, 30,35,23, 12,35,32, 20,32,0, 30,0,0] link = dict(source=source, target=target, value=value) node = dict(label=label, pad = 35, thickness = 50) data= go.Sankey(link=link, node=node) In [21]: fig = go.Figure(data) fig.update_layout(hovermode = 'x', font=dict(size = 12, color = 'black') fig.add_annotation(x = 0.03,y=1, text = "Processes", font=dict(size = 15, color = 'black') fig.add_annotation(x = 0.5,y=0.82, text = "Midpoint LCA", font=dict(size = 15, color = 'black') fig.add_annotation(x = 0.97y=0.62, text = "Endpoint LCA", font=dict(size = 15, color = 'black')

Midpoint LCA

Acidification

Climate Change

Ozone Depletion

Particulate Matter Formation

Endpoint LCA

Ecosystem Quality

Human Health

Resources

fig.show()

Processes

Fly ash

GGBFS

Sodium Silicate

I am gratefull to open LCA for providing open source software license

I thank ecoinvent for providing academic license of ecoinvent database

I would like to thank Mr. Julian Rickert for his amazing tutorials in integrating open LCA and Jupyter Notebooks

Acknowledgments

Sodium Hydroxide