MA 101 (Mathematics I)

Multivariable Calculus: Practice Problem Set - 3

- 1. If $f(x,y) = e^x(x\cos y y\sin y)$ for all $(x,y) \in \mathbb{R}^2$, then show that $f_{xx}(x,y) + f_{yy}(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$.
- 2. If $f(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right)$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R} : x \neq 0\}$, then find $\frac{\partial^2 f}{\partial x \partial y}(1,1)$.
- 3. If $f(x,y,z) = \frac{1}{\sqrt{x^2+y^2+z^2}}$ for all $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, then show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ at each point of $\mathbb{R}^3 \setminus \{(0,0,0)\}.$
- 4. Find all $\mathbf{u} \in \mathbb{R}^2$ with $\|\mathbf{u}\| = 1$ for which the directional derivative $D_{\mathbf{u}}f(0,0)$ exists, if for all $(x,y) \in \mathbb{R}^2$,
 - (a) $f(x,y) = \sqrt{|x^2 y^2|}$

 - (a) f(x,y) = |x| |y| |x| |y|. (b) f(x,y) = |x| |y| |x| |y|. (c) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (d) $f(x,y) = \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$
- 5. State TRUE or FALSE with justification for each of the following statements.
 - (a) If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous such that $f_x(0,0)$ exists (in \mathbb{R}), then $f_y(0,0)$ must exist (in \mathbb{R}).
 - (b) If $f: \mathbb{R}^2 \to \mathbb{R}$ is such that for each $\mathbf{u} \in \mathbb{R}^2$ with $\|\mathbf{u}\| = 1$, the directional derivative of f at (0,0) along **u** is 0, then f must be continuous at (0,0).
- 6. Let the height H(x,y) of a hill from the ground (considered as the xy-plane) at the point (x,y)be given by $H(x,y) = 1000 - 0.005x^2 - 0.01y^2$. We assume that the positive x-axis points east and the positive y-axis points north. Consider a person situated at the point (60, 40, 966) on the hill.
 - (a) If the person starts walking due south, then will (s)he start to ascend or descend the hill?
 - (b) If the person starts walking north-west, then will (s)he start to ascend or descend the hill?
 - (c) If the person starts climbing further, in which direction will (s)he find it most difficult to climb?
- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{x^2y(x-y)}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$.
- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Determine all the points of \mathbb{R}^2 where $f_{xy}: \mathbb{R}^2 \to \mathbb{R}$ and $f_{yx}: \mathbb{R}^2 \to \mathbb{R}$ are continuous.

- 9. Let $f(x,y) = x + y^2 + xy$ for all $(x,y) \in \mathbb{R}^2$. Using directly the definition of differentiability, show that $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and also find $f'(x_0, y_0)$, where $(x_0, y_0) \in \mathbb{R}^2$.
- 10. Let S be a nonempty open subset of \mathbb{R}^m and let $g: S \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in S$. If $f: S \to \mathbb{R}$ is such that $f(\mathbf{x}) - f(\mathbf{x}_0) = g(\mathbf{x}) \cdot (\mathbf{x} - \mathbf{x}_0)$ for all $\mathbf{x} \in S$, then show that f is differentiable at \mathbf{x}_0 .
- 11. The directional derivatives of a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0) in the directions of $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ and $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$ are 1 and 2 respectively. Find $f_x(0,0)$ and $f_y(0,0)$.
- 12. Examine the differentiability of f at $\mathbf{0}$, where
 - (a) $f: \mathbb{R}^m \to \mathbb{R}$ satisfies $|f(\mathbf{x})| < ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (b) $f: \mathbb{R}^m \to \mathbb{R}$ is defined by $f(\mathbf{x}) = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$.
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by f(x,y) = ||x| |y|| |x| |y| for all $(x,y) \in \mathbb{R}^2$.

 - (d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \left| |x| |y| \left| |x| |y| \right| \text{ for all } (e)$ $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (f) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$ (g) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{if } y > 0, \\ x & \text{if } y = 0, \\ -\sqrt{x^2 + y^2} & \text{if } y < 0. \end{cases}$ (h) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$ (i) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} x & \text{if } |x| < |y|, \\ -x & \text{if } |x| \geq |y|. \end{cases}$ (j) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{\sin(x^2y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (k) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{\sin^2 x + x^2 \sin \frac{1}{x}}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
- 13. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that f is differentiable at (0,0) although neither $f_x: \mathbb{R}^2 \to \mathbb{R}$ nor $f_y: \mathbb{R}^2 \to \mathbb{R}$ is contin-

uous at (0,0).

14. Let $f(x,y) = \begin{cases} (x^2 + y^2) \cos\left(\frac{1}{x^2 + y^2}\right) & \text{if } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable.

15. Let $\alpha \in \mathbb{R}$ and $\alpha > 0$. If $f(x,y) = |xy|^{\alpha}$ for all $(x,y) \in \mathbb{R}^2$, then determine all values of α for which $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

- 16. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, where for all $(x,y) \in \mathbb{R}^2$,
- (c) $f(x,y) = |x|\sin(x^2 + y^2)$
- (a) f(x,y) = |xy| (b) $f(x,y) = (xy)^{\frac{2}{3}}$ (d) $f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x, y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$
- 17. State TRUE or FALSE with justification for each of the following statements.
 - (a) If $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and if f(x,y) = |xy| for all $(x,y) \in S$, then $f: S \to \mathbb{R}$ is differentiable.
 - (b) There exists a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is differentiable only at (1,0).
- 18. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at (0,0) and let $\lim_{x\to 0} \frac{f(x,x)-f(x,-x)}{x} = 1$. Find $f_y(0,0)$.
- 19. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at **0** and let $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$ and for all $\alpha \in \mathbb{R}$. Show that $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$.
- 20. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at **0** and $f(\mathbf{0}) = 0$. Show that there exist $\alpha > 0$ and r > 0such that $|f(\mathbf{x})| \leq \alpha ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^m$ with $||\mathbf{x}|| < r$.
- 21. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f_x exists (in \mathbb{R}) at all points of $B_{\delta}((x_0, y_0))$ for some $(x_0, y_0) \in \mathbb{R}^2$ and $\delta > 0$, f_x is continuous at (x_0, y_0) and $f_y(x_0, y_0)$ exists (in \mathbb{R}). Show that f is differentiable at (x_0, y_0) .
- 22. Let $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in S^0$. Show that
 - (a) $f + g : S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla (f + g)(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) + \nabla g(\mathbf{x}_0)$.
 - (b) $fg: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla (fg)(\mathbf{x}_0) = g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) + f(\mathbf{x}_0)\nabla g(\mathbf{x}_0)$.
 - (c) if $g(\mathbf{x}_0) \neq 0$, then $\frac{f}{g}: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla \left(\frac{f}{g}\right)(\mathbf{x}_0) = \frac{g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) f(\mathbf{x}_0)\nabla g(\mathbf{x}_0)}{g(\mathbf{x}_0)^2}$.
- 23. Using the linearization of a suitable function at a suitable point, find an approximate value of $\left((3.8)^2 + 2(2.1)^3 \right)^{\frac{1}{5}}.$
- 24. Show that the maximum error in calculating the volume of a right circular cylinder is approximately $\pm 8\%$ if its radius can be measured with a maximum error of $\pm 3\%$ and its height can be measured with a maximum error of $\pm 2\%$.