Virtual Network Embedding with Collocation Benefits and Limitations of Pre-Clustering

Carlo Fürst¹ , Stefan Schmid², Anja Feldmann¹

1: TU Berlin 2: TU Berlin & Telekom Innovation Laboratories

November 12, 2013

Today's Datacenters...

- Multi-tenant virtualized
- Tenants typically pay for host resources
- Connectivity is guaranteed

Today's Datacenters...

- Multi-tenant virtualized
- Tenants typically pay for host resources
- Connectivity is guaranteed

Problem [Ballani'11]:

Studies have shown that the intra-cloud bandwidth can vary by an order of magnitude.

⇒ Unpredictable application performance

Remove the uncertainty

Remove the uncertainty

Outline

- Explain model and problem
- Identify the impact of the collocation option on embedding algorithms
- Introduce *Pre-Clustering* a technique to enable any existing algorithm to generate collocated embeddings

What is a 'good' mapping?

What is a 'good' mapping?

Existing Solutions

Many existing mapping algorithms

- ViNE [CHOWDHURY, Infocom 2009]
- SecondNet [GUO, Co-NEXT 2010]
- Oktopus [BALLANI, Sigcomm 2011]
- Isomorphism Detection [LISCHKA, Sigcomm 2009]
- Various Mixed-Integer-Programs
- . . .

Existing Solutions

Existing Solutions

Collocated Mappings

Collocated Mappings

- Backtrack on failure
- Backtrack only over possible start nodes
- Graph exploration is directed by node / link resource requests
- Avoid Backtracking by forward checking

Add Requests
Until:
Sum of requested node
resources = Sum of substrate
node resources

Measure node utilization

Increase time until a Request expires

Add Requests Until: ...

Substrate Topologies

FatTree

Impact of the collocation option

Slight Impact

Impact of the collocation option

Impact of the collocation option

Can we leverage the benefits of

collocation with the existing algorithms?

We use:

- Farhat
- LoCo
- OptCut (runtime optimized MIP)

LoCo Preclustering

LoCo Preclustering

LoCo Preclustering

OptCut

- Generates an optimal (w.r.t. the amount of link resources between the merged nodes) Pre-Clustering
- Substrate is represented by two numbers:
 - \blacktriangleright MAX_V: The estimated host resources of a node
 - ► MAX_E: The estimated link resources attached to a node
 - ⇒ run time independent of substrate size and topology
- Removes symmetry from the problem to speed up the solution process

OptCut

Evaluation Parameters

Objective: Embed as many virtual resources as possible

Substrate

DC topologies (default FatTree with 432 hosts)

Each physical element has 4 resource units

Requests

Randomized topologies (2-10 nodes, connection probability 0.15)

Exponentially distributed duration with mean 10

Resource sum of all requests \approx available substrate resources

All Per-Clustering approaches are combined with SecondNet

Experimental Pipeline

Performance Analysis

Performance Analysis

All Pre-Clustering approaches improve the performance of Secondnet by factors $> 1.5\,$

But why is standalone LoCo in this scenario more preformant?

Reason II: Fragmented Residual Resources

• Description of the MetaTree Framework

- Description of the MetaTree Framework
- Detailed description of LoCo

```
Require: VNet G = (V, E), M = \{s\} for some s \in V(G), P = (\Gamma(s)) while |P| > 0 do sort P (* decreasing link capacities *) choose u = P[0] (* next node to map *) map u (* forward checking *) map \{u, v\} \ \forall \ v \in M, where \{u, v\} \in E(G) M = M \cup \{u\} and P = P \setminus \{u\} end while if (embedding failed), backtrack on s
```

- Description of the MetaTree Framework
- Detailed description of LoCo
- Concrete MIP formulations and evaluation
 - Runtime comparison
 - ▶ Impact of MAX_E and MAX_V

Constants:

Set of nodes:	V	((1))
---------------	---	---	-----	---

Set of edges:
$$E \subset V \times V$$
 (2)

Weights:
$$W: V \cup E \to \mathbb{R}^{\geq 0}$$
 (3)

Maximal node resources:
$$MAX_V$$
 (4)

Maximal link resources:
$$MAX_E$$
 (5)

Larger nodes:
$$\rho: V \to 2^V$$

(6)

Variables:

PC

Node mapping: alloc_V :
$$V \times V \rightarrow \{0,1\}$$

Auxiliary variable:
$$x : E \times V \to \mathbb{R}^{\geq 0}$$
 (8)

. . .

(7)

- Description of the MetaTree Framework
- Detailed description of LoCo
- Concrete MIP formulations and evaluation
 - Runtime comparison
 - ▶ Impact of MAX_E and MAX_V