Herbst 24 Themennummer 1 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei das Anfangswertproblem

$$y'(t) = \frac{ty(t)}{\sqrt{1 + y(t)^2}}, \quad y(0) = 1,$$
(1)

gegeben.

Hinweis: Zur Lösung dieser Aufgabe brauchen Sie die Lösung von (1) nicht explizit zu berechnen.

- a) Zeigen Sie: Das Anfangswertproblem (1) besitzt eine eindeutige, maximale Lösung $y: \mathbb{R} \to \mathbb{R}$.
- b) Zeigen Sie: Es gilt $y(t) \in [1, 1 + \frac{t^2}{2}]$ für alle $t \ge 0$. Hinweis: Es kann hilfreich sein, zunächst $0 \le y'(t) \le t$ für alle $t \ge 0$ zu zeigen.

Lösungsvorschlag:

a) Die auf \mathbb{R}^2 definierte Strukturfunktion des AWP hat die Form $f(t,x) = \frac{tx}{\sqrt{1+x^2}}$. Wegen $1+x^2 \geq 1 > 0$ ist $\sqrt{1+x^2}$ stetig differenzierbar und ≥ 1 , die Funktion f ist demnach stetig nach x differenzierbar, also lokal Lipschitzstetig bezöglich x. Außerdem ist sie stetig bezüglich t. Nach dem Satz von Picard-Lindelöf besitzt das AWP (1) eine eindeutige maximale Lösung. Wir müssen noch zeigen, dass diese auf der ganzen reelle Achse definiert ist. Dafür schätzen wir ab und zeigen $|f(t,x)| \leq |t|$. Für x=0 ist diese Ungleichung trivial $(0 \leq |t|)$. Für $x \neq 0$ erhalten wir

$$|f(t,x)| = |t| \frac{|x|}{\sqrt{1+x^2}} \le |t| \frac{|x|}{\sqrt{x^2}} = |t| \frac{|x|}{|x|} = |t|.$$

Damit existiert die maximale Lösung global auf \mathbb{R} .

b) Wir zeigen zunächst die Ungleichung aus dem Hinweis. Die Funktion $z: \mathbb{R} \to \mathbb{R}, z \equiv 0$ ist eine Lösung des AWP y' = f(t,y), y(0) = 0. Die Lösung y darf z nicht schneiden (f ist lokal Lipschitzstetig) und muss wegen y(0) = 1 > 0 daher immer strikt positiv sein. Für $t \geq 0$ erhalten wir damit $y'(t) = f(t,y(t)) = \frac{ty(t)}{\sqrt{1+y(t)^2}} \geq 0$, da Zähler und Nenner nicht negativ sind. Mit der Ungleichung aus a) folgt $y'(t) = |y'(t)| = |f(t,y(t))| \leq |t| = t$ für alle $t \geq 0$, insgesamt also $0 \leq y'(t) \leq t$ für alle $t \geq 0$. Nun zur eigentlichen Aufgabe: Für $t \geq 0$ ist $y'(t) \geq 0$, also y monoton wachsend. Damit folgt für $t \geq 0$ auch $y(t) \geq y(0) = 1$. Wir betrachten jetzt die Hilfsfunktion $g: \mathbb{R} \to \mathbb{R}, \ g(t) = y(t) - 1 - \frac{t^2}{2}$. Es gilt g(0) = 0 und $g'(t) = y'(t) - t \leq 0$, für alle $t \geq 0$ d. h. g fällt monoton auf $[0, \infty)$ und erfüllt daher $g(t) \leq g(0) = 0$. Umstellen liefert $y(t) \leq 1 + \frac{t^2}{2}$, insgesamt also $1 \leq y(t) \leq 1 + \frac{t^2}{2}$ für alle $t \geq 0$, was wiederum die Aussage $y(t) \in [1, 1 + \frac{t^2}{2}]$ für alle $t \geq 0$ beweist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$