# MOTION CONTROL OF A CAR-TYPE ROBOT, SEEKING TO REACH A GIVEN POSITION

KAPITONOV A.A. (CONTROL SYSTEMS AND INFORMATICS DEPARTMENT, PhD)

ARTEMOV K.A., ANTONOV E.S. (P4235)

SUZDALEV O.D., AL-NAIM R.I., KARAVAEV A.A., ZAMOTAEV E.V. (P3235-36)

### TASK DEFINITION

For a mobile robot with a structure ressembling that of a car:

- implement a motion control system that allows the robot to reach a given goal without colliding with any foreign object
- implement a computer vision system that determines the position of the surrounding objects and the robot itself
- implement a graphical user interface allowing to set the desired position of the robot and monitor its movement as it moves towards it

### **USED ROBOT**



Fig. 1 Front view of the robot



Fig. 2 View from above

### MATHEMATICAL MODEL OF THE ROBOT



Fig. 3 Explanatory drawing

$$\begin{cases} \dot{x} = v \cdot \cos \theta \\ \dot{y} = v \cdot \sin \theta \\ \dot{\theta} = \omega = \frac{v}{L} \tan \overline{\psi} \end{cases}$$

#### Few flacets:

Exofors  $Ox_1y_1$  for t=0; and  $\omega$  in pats; for  $v \ge f$  forward and in pats; for  $v \le f$  acknowledge of the point f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are

steering angle

### Physicial tale and the salue:

x, y -coordinates of point for hiddle of the race;  $\theta$  -rotation angle of the robot;  $\psi$  -projection of electrocity of the point  $\theta$  on the  $\theta$  angular velocity of the robot;  $\theta$  -antendary  $\theta$  -a

4/19

### MOTION CONTROL SYSTEM

Trajectory controller



Fig. 4 General scheme of the robot motion control system

## (Wo)tage brought in the the hard mention (steening) வாழ் நாக்கள் மாக கள்ளை of the person trage of the person trage of the maximum voltage;

 $\overline{\varphi}$  -three amgle of filther shaft host state is the isometric engine;

\*\* Cobirdinates dinate the irbboth furst have at a girloring in the desired desired path; — desired value of X

— desired value of X

### **VELOCITY CONTROLLER**

Velocity controller



Fig. 5 Strucure scheme of the velocity controller for the robot

### **VELOCITY CONTROLLER**



Fig. 6 Step response of the linear velocity controller



Fig. 7 Step response of the angular velocity controller

### TRAJECTORY CONTROL

Linearization of the robot's mathematical model and control law

$$\begin{cases}
\dot{x} = v \cos \theta \\
\dot{y} = v \sin \theta \\
\dot{\theta} = \omega
\end{cases}$$

$$\begin{cases}
\dot{\xi} = u_1 \cos \theta + u_2 \sin \theta \\
v = \xi \\
\omega = \frac{-u_1 \sin \theta + u_2 \cos \theta}{\xi}
\end{cases}$$

$$\begin{cases}
\ddot{x} = u_1 \\
\ddot{y} = u_2
\end{cases}$$

$$\begin{cases}
u_1 = \ddot{x_r} + k_{p1}(x_r - x) + k_{d1}(\dot{x}_r - \dot{x}), \\
u_2 = \ddot{y}_r + k_{p2}(y_r - y) + k_{d2}(\dot{y}_r - \dot{y})
\end{cases}$$

Formulas in practical implementation

$$\begin{cases} \dot{\xi} = u_1 \cos \theta + u_2 \sin \theta , \\ v_{des} = \bar{\xi}, \\ \omega_{des} = \bar{\omega}_{des}, \end{cases}$$

• 
$$\overline{\omega}_{des} = \begin{cases} \frac{-u_1 \sin \theta + u_{des} \cos \theta}{\overline{\xi}}, \overline{\xi} \neq 0\\ 0, \overline{\xi} = 0 \end{cases}$$

$$\bullet \quad \bar{\xi} = \begin{cases} \xi, \ \bar{\xi} \in (-v_{\max}, v_{\max}) \\ v_{\max}, \xi \ge v_{\max} \\ -v_{\max}, \ \bar{\xi} \le v_{\max} \end{cases}$$

### TRAJECTORY CONTROLLER



 $\begin{array}{c} 0.025 \\ 0.02 \\ 0.015 \\ 0.005 \\ 0.005 \\ -0.005 \\ 0.015 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ t, \\ S \end{array}$ 



Fig. 8 Test result of the robot for clothoid type trajectory

Fig. 9 Control errors



Fig. 10 Illustration of path-finding towards goal



Fig. 11 The result of the RRT algorithm



Puc. 12 The result of the RTR algorithm

$$\begin{cases} x_{in}(s) = \gamma \sqrt{\frac{\pi}{|\alpha|}} \cdot C_F \left( \sqrt{\frac{|\alpha|}{\pi}} s \right), \\ y_{in}(s) = \gamma \operatorname{sign} \alpha \sqrt{\frac{\pi}{|\alpha|}} \cdot S_F \left( \sqrt{\frac{|\alpha|}{\pi}} s \right) \end{cases}$$

$$\begin{cases} x_{out}(s) = -\gamma \sqrt{\frac{\pi}{|\alpha|}} \cdot C_F \left( \sqrt{\frac{|\alpha|}{\pi}} (2s_{end} - s) \right), \\ y_{out}(s) = \gamma \operatorname{sign}(\alpha) \sqrt{\frac{\pi}{|\alpha|}} \cdot S_F \left( \sqrt{\frac{|\alpha|}{\pi}} (2s_{end} - s) \right) \end{cases}$$



$$\begin{cases} C_F(x) = \int\limits_0^x \cos\left(\frac{\pi}{2}\mu^2\right) \, d\mu \approx \frac{1}{2} + f(x) \sin\left(\frac{\pi}{2}x^2\right) - g(x) \cos\left(\frac{\pi}{2}x^2\right), & \alpha = \frac{d\kappa}{ds} = const \\ S_F(x) = \int\limits_0^x \sin\left(\frac{\pi}{2}\mu^2\right) \, d\mu \approx \frac{1}{2} - f(x) \cos\left(\frac{\pi}{2}x^2\right) - g(x) \sin\left(\frac{\pi}{2}x^2\right), & \kappa = 1/\rho - \text{curvature} \\ f(x) = \frac{1 + 0.926x}{2 + 1.792x + 3.104x^2}, & g(x) = \frac{1}{2 + 4.142x + 3.492x^2 + 6.670x^3} & \gamma \in \{-1; 1\} \end{cases}$$

D. K. WILDE, "COMPUTING CLOTHOID SEGMENTS FOR TRAJECTORY GENERATION," 2009 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, ST. LOUIS, MO, 2009, PP. 2440-2445.

Fig. 13 Clothoid appearance



Рис. 14 Trajectory from eeS planner



Рис. 15 Trajectory from EES planner



Рис. 16 Trajectory from TTS planner



Рис. 17 Trajectory from TTS planner in reverse search direction

### **COMPUTER VISION SYSTEM**



Fig. 18 Result of the localization of the robot and obstacles by the computer vision algorithm

### GRAPHICAL USER INTERFACE



Fig. 19 Appearance of the developed application

### GRAPHICAL USER INTERFACE



Fig. 20 Global path visualization



Fig. 21 Visualization of path approximation

### CONCLUSION

- What we did
- Developed a robot motion control system
- Probably the first in the world to have implemented RTR and TTS planners on a real robot
- Developed a computer vision system that performs navigation tasks
- Developed a control application with GUI

- What can be done in the future
- Improve the quality of angular velocity control
- Improve acceleration and braking operations of the robot
- Increase stability of the system
- Convert to ROS



### THANK YOU



