Red Wine Quality Classification using Decision Tree

1. Data Pre-processing :

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
In [2]: # Import Dataset

df = pd.read_csv('winequality-red.csv')
df
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
	C1 1 (4 (4 4)	(4)	

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [4]: df.head()

Out[4]:

;	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

In [5]: df.tail()

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

In [6]: # Divide the Dataset into Dependent and Independent Variables

```
X = df.drop('quality', axis=1)
Y = df['quality']
```

2. Training the Model:

```
In [8]: from sklearn.tree import DecisionTreeClassifier, plot_tree
```

```
In [9]: classifier = DecisionTreeClassifier(criterion='entropy', random_state=0)
model = classifier.fit(x_train, y_train)
```

3. Predict the Result:

```
In [10]: y_pred = classifier.predict(x_test)
```

```
In [11]: pd.DataFrame({'Actual':y_test, 'Predicted':y_pred})
```

Out[11]:

	Actual	Predicted
803	6	5
124	5	6
350	6	5
682	5	4
1326	6	6
1259	6	6
1295	5	5
1155	5	5
963	6	6
704	4	5

320 rows × 2 columns

4. Model Evaluation:

```
In [12]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
```

```
In [13]: score = accuracy_score(y_test, y_pred)
print(score)
```

```
In [14]: report = classification_report(y_test, y_pred)
         print(report)
                        precision
                                     recall f1-score
                                                        support
                    3
                                       0.00
                             0.00
                                                 0.00
                                                              1
                    4
                             0.00
                                       0.00
                                                 0.00
                                                             10
                    5
                            0.66
                                       0.70
                                                 0.68
                                                            130
                            0.59
                                       0.54
                                                 0.56
                    6
                                                            132
                    7
                            0.44
                                       0.52
                                                 0.48
                                                             42
                    8
                            0.00
                                       0.00
                                                 0.00
                                                              5
             accuracy
                                                 0.57
                                                            320
                            0.28
                                       0.29
                                                 0.29
                                                            320
            macro avg
                                                 0.57
                                                            320
         weighted avg
                            0.57
                                       0.57
In [15]: | mat = confusion_matrix(y_test, y_pred)
         print(mat)
         [[001000]
          [006310]
          [1 5 91 28 5 0]
          [ 0 2 36 71 20 3]
          [0 1 3 15 22 1]
          [0 0 0 3 2 0]]
         5. Plot the Decision Tree:
In [16]: from sklearn import tree
         plt.figure(figsize=(15, 15))
In [17]:
         tree.plot tree(model, filled=True)
          Text(0.1489543320529236, 0.46, 'entropy = 0.0 \nsamples = 2 \nvalue = [0, 2, 0, 0, 0, 0, 0]
         0]'),
          Text(0.15578318395219803, 0.46, 'entropy = 0.0\nsamples = 4\nvalue = [0, 0, 4, 0, 0, 0]
         0]'),
          Text(0.1506615450277422, 0.54, 'entropy = 0.0\nsamples = 7\nvalue = [0, 0, 7, 0, 0, 0]
         0]'),
          Text(0.1694408877507469, 0.62, 'x[7] \le 0.995 \nentropy = 1.146 \nsamples = 34 \nvalue
         = [0, 1, 14, 19, 0, 0]'),
          Text(0.1660264618011097, 0.58, 'entropy = 0.0\nsamples = 6\nvalue = [0, 0, 0, 6, 0, 6]
         0]'),
          Text(0.17285531370038412, 0.58, 'x[6] <= 54.5\nentropy = 1.186\nsamples = 28\nvalue
         = [0, 1, 14, 13, 0, 0]'),
          Text(0.16261203585147246, 0.54, 'x[9] <= 0.545 \setminus entropy = 0.9 \setminus entropy = 10 
         [0, 0, 13, 6, 0, 0]'),
          Text(0.15919760990183526, 0.5, 'entropy = 0.0\nsamples = 6\nvalue = [0, 0, 6, 0, 0, 0]
         0]'),
          Text(0.1660264618011097, 0.5, 'x[2] <= 0.34\nentropy = 0.996\nsamples = 13\nvalue =
         [0, 0, 7, 6, 0, 0]),
          Text(0.16261203585147246, 0.46, 'x[4] <= 0.082\nentropy = 0.971\nsamples = 10\nvalue
         = [0, 0, 4, 6, 0, 0]'),
```

```
In [18]: plt.figure(figsize=(20, 10))
         plot_tree(classifier, filled=True, feature_names=X.columns, class_names=['3', '4', '5',
         plt.show()
```


Decision Tree for IRIS Dataset

1. Data Pre-processing :

```
In [19]: | df = pd.read_csv("IRIS.csv")
In [20]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 5 columns):
              Column
                            Non-Null Count Dtype
              sepal_length 150 non-null
                                            float64
              sepal width
                            150 non-null
                                            float64
              petal_length 150 non-null
                                            float64
                            150 non-null
                                            float64
          3
              petal width
              species
                            150 non-null
                                            object
         dtypes: float64(4), object(1)
         memory usage: 6.0+ KB
In [21]: # Get unique values in Obejct data type column
         df['species'].unique()
Out[21]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

```
In [22]: # Encoding the String values from the 'Species' column
         df['species'] = df['species'].map({'Iris-setosa':1, 'Iris-versicolor':2, 'Iris-virginica'
In [23]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 5 columns):
          # Column
                            Non-Null Count Dtype
         ---
                            -----
              sepal length 150 non-null
                                            float64
              sepal_width 150 non-null
                                            float64
          1
              petal length 150 non-null
          2
                                            float64
              petal_width 150 non-null
                                            float64
                            150 non-null
                                            int64
              species
         dtypes: float64(4), int64(1)
         memory usage: 6.0 KB
In [24]: # Divide dataset in dependent and independent variables
         X = df.drop('species', axis=1)
         Y = df['species']
In [25]: from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, random_state=42
         2. Training the Model:
In [26]: from sklearn.tree import DecisionTreeClassifier
In [27]:
         classifier = DecisionTreeClassifier()
         model = classifier.fit(x_train, y_train)
         3. Predict the Output:
In [28]: y_pred = classifier.predict(x_test)
         4. Model Evaluation Techniques:
In [29]: from sklearn.metrics import classification report, accuracy score, confusion matrix
```

```
In [30]: rp = classification_report(y_test, y_pred)
         print(rp)
                       precision
                                    recall f1-score
                                                       support
                    1
                            1.00
                                      1.00
                                                1.00
                                                            10
                    2
                            1.00
                                      1.00
                                                1.00
                                                             9
                    3
                            1.00
                                      1.00
                                                1.00
                                                            11
                                                1.00
                                                            30
             accuracy
            macro avg
                            1.00
                                      1.00
                                                1.00
                                                            30
         weighted avg
                            1.00
                                      1.00
                                                1.00
                                                            30
In [31]: | score = accuracy_score(y_test, y_pred)
         print(score)
         1.0
In [32]: |mat = confusion_matrix(y_test, y_pred)
         print(mat)
         [[10 0 0]
          [0 9 0]
          [ 0 0 11]]
         5. Plot the Decision Tree:
```

In [33]: from sklearn import tree

```
tree.plot tree(model, filled=True)
Out[34]: [Text(0.3076923076923077, 0.9285714285714286, 'x[3] <= 0.8 \ngini = 0.667 \nsamples = 120
         \nvalue = [40, 41, 39]'),
          Text(0.23076923076923078, 0.7857142857142857, 'gini = 0.0\nsamples = 40\nvalue = [40,
         0, 0]'),
          Text(0.38461538461538464, 0.7857142857142857, 'x[2] <= 4.75 \ngini = 0.5 \nsamples = 80 \n
         value = [0, 41, 39]'),
          Text(0.15384615384615385, 0.6428571428571429, 'x[3] <= 1.65 \ngini = 0.053 \nsamples = 37
         \nvalue = [0, 36, 1]'),
          Text(0.07692307692307693, 0.5, 'gini = 0.0\nsamples = 36\nvalue = [0, 36, 0]'),
          Text(0.23076923076923078, 0.5, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]'),
          \nvalue = [0, 5, 38]'),
          Text(0.38461538461538464, 0.5, 'x[2] <= 4.95\ngini = 0.5\nsamples = 8\nvalue = [0, 4,
          Text(0.3076923076923077, 0.35714285714285715, 'gini = 0.0\nsamples = 2\nvalue = [0, 2, 1]
         0]'),
          Text(0.46153846153846156, 0.35714285714285715, 'x[3] <= 1.55\ngini = 0.444\nsamples = 6
         \nvalue = [0, 2, 4]'),
          Text(0.38461538461538464, 0.21428571428571427, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
         3]'),
          Text(0.5384615384615384, 0.21428571428571427, 'x[0] <= 6.95 \setminus i = 0.444\nsamples = 3
         \nvalue = [0, 2, 1]'),
         Text(0.46153846153846156, 0.07142857142857142, 'gini = 0.0\nsamples = 2\nvalue = [0, 2, 1]
         0]'),
          Text(0.6153846153846154, 0.07142857142857142, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
         1]'),
          Text(0.8461538461538461, 0.5, 'x[2] <= 4.85\ngini = 0.056\nsamples = 35\nvalue = [0, 1,
         34]'),
          Text(0.7692307692307693, 0.35714285714285715, 'x[1] <= 3.1\ngini = 0.444\nsamples = 3\n
         value = [0, 1, 2]'),
          Text(0.6923076923076923, 0.21428571428571427, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, 0]
          Text(0.8461538461538461, 0.21428571428571427, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
         0]'),
          Text(0.9230769230769231, 0.35714285714285715, 'gini = 0.0\nsamples = 32\nvalue = [0, 0, 0]
```

In [34]:

32]')]

plt.figure(figsize=(15, 10))

In []: