Northeastern University

DS5020 - Introduction to Linear Algebra and Probability for Data Science

Assignment 5

1. {20 pts} Suppose

$$\mathbf{A} = \begin{bmatrix} 3 & -3 \\ 4 & -4 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$$

- **a.** Find the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Recall that least squares solution is the solution to $\mathbf{A}^{\mathrm{T}}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$. Find the error vector $\mathbf{e} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$ and show that it is orthogonal to $\mathbf{A}\hat{\mathbf{x}}$.
- **b.** Using Gram-Schmidt process on columns of **A**, find two orthonormal vectors \mathbf{q}_1 and \mathbf{q}_2 to form orthonormal matrix $\mathbf{Q} = [\mathbf{q}_1 \quad \mathbf{q}_2]$. Double-check that the matrix you found is correct by showing $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$.
- c. Find QR-decomposition of A, A = QR. Recall the general formula for QR-decomposition:

$$\begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{vmatrix} = \underbrace{\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ \end{bmatrix}}_{\mathbf{Q}_1} \underbrace{\begin{bmatrix} (\mathbf{q}_1^T \mathbf{c}_1) & (\mathbf{q}_1^T \mathbf{c}_2) & \cdots & (\mathbf{q}_1^T \mathbf{c}_n) \\ 0 & (\mathbf{q}_2^T \mathbf{c}_2) & \cdots & (\mathbf{q}_2^T \mathbf{c}_n) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (\mathbf{q}_n^T \mathbf{c}_n) \end{bmatrix}}_{\mathbf{R}}$$

Hint: Note that you already found \mathbf{Q} in part \mathbf{b} . You are now asked to find the terms $\mathbf{q}_i^{\mathrm{T}} \mathbf{c}_i$ to form the upper triangular matrix \mathbf{R} .

- **d.** Plug $\mathbf{A} = \mathbf{Q}\mathbf{R}$ in least squares system of equations $\mathbf{A}^T\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^T\mathbf{b}$, and multiply both sides from left with $(\mathbf{R}^T)^{-1}$ to get equivalent system of equations $\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^T\mathbf{b}$. Use generic letters \mathbf{Q} for orthonormal matrix and \mathbf{R} for upper triangular matrix instead of plugging in numbers from this particular example.
- **e.** Solve $\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^{\mathrm{T}}\mathbf{b}$ to find least squares solution $\hat{\mathbf{x}}$ using QR-decomposition of \mathbf{A} you found in part \mathbf{c} . Verify that this solution is the same as the solution in part \mathbf{a} .
- **2.** {20 pts} Suppose that an F1 pit crew measures the speed of the car at four times $\mathbf{t} = 1, 2, 3, 4$ and get the following readings: $\mathbf{s} = 163, 186, 195, 198$ km/h, respectively.
 - a. Suppose that the crew models the speed as a linear function of time first and tries to fit a line to the data points they read: $s_i = a + bt_i$. Using the least squares find the constants a and b that minimize the length of error vector $\mathbf{e} = \mathbf{s} \hat{\mathbf{s}}$, where $\hat{\mathbf{s}}$ is the least squares estimate of the speed $(\hat{s}_i = a + bt_i)$.
 - b. Find the error vector **e** for the line fit in part **a**.
 - c. Realizing that the error they found in part **b** is too high, the pit engineers go back and try to better model the speed as a function of time. This time, they try a logarithmic function fit: $s_i = a + b(1 e^{-t_i})$. The corresponding system of equations they need to solve then

becomes:

$$\begin{bmatrix} 1 & 0.63 \\ 1 & 0.86 \\ 1 & 0.95 \\ 1 & 0.98 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 163 \\ 186 \\ 195 \\ 198 \end{bmatrix} \tag{1}$$

Solve above system of equations using least squares to find a and b.

- **d.** Find the error vector \mathbf{e} for the logarithmic fit in part \mathbf{c} . If you find that this error vector is zero-vector, what does this mean in terms of existence of a solution to the system of equations shown in (1)?
- 3. {20 pts} Suppose the transition matrix T below describes the percentage of people moving from cities to suburbs and visa versa.

$$\mathbf{T} = \begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}$$

In words, 20% of city population moves to the suburbs and 10% of population in suburbs move to the city in unit time. Suppose that 1 million people live in the cities and 1 million people live in the suburbs at time t = 0, that is population distribution vector $\mathbf{p}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- **a.** Find the eigenvalues and eigenvectors of **T**.
- **b.** Find the population distribution vector at time t = 1, \mathbf{p}_1 .
- **c.** Find the population distribution vector at time t = 100, \mathbf{p}_{100} .

4. {20 pts}

- a. Prove that the two eigenvalues of a general 2x2 transition matrix $\mathbf{T} = \begin{bmatrix} \alpha & 1-\beta \\ 1-\alpha & \beta \end{bmatrix}$ are 1 and $\alpha + \beta 1$.
- **b.** Prove that vectors $\mathbf{v}_1 = \begin{bmatrix} \frac{1-\beta}{1-\alpha} \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are eigenvectors for transition matrix \mathbf{T} in part \mathbf{d} .
- c. Given that $0 < \alpha < 1$ and $0 < \beta < 1$, show that vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. This means that we can uniquely represent <u>any</u> population distribution vector \mathbf{p} as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{p} = c\mathbf{v}_1 + d\mathbf{v}_2$.
- d. For a starting population distribution vector $\mathbf{p}_0 = c\mathbf{v}_1 + d\mathbf{v}_2$, find the population distribution vector as time goes to infinity, \mathbf{p}_{∞} .

5. **{20 pts}** Suppose

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

- **a.** Find the eigenvalues of **A**.
- ${f b}$. Find the eigenvectors for each eigenvalue of ${f A}$.
- **c.** Is **A** diagonalizable, why?
- **d.** If your answer to part **c** is *yes* (and it should be), diagonalize **A**. That is find matrices **X** and Λ such that $\Lambda = \mathbf{X}^{-1}\mathbf{A}\mathbf{X}$.
- e. Find \mathbf{A}^{100} in terms of matrices \mathbf{X} and $\mathbf{\Lambda}$.