大学院情報理工学研究科 博士前期課程一般入試 入学試験問題 (2019年8月16日実施)

【情報・ネットワーク工学専攻】

専門科目: [必須問題]

※注意事項

- 1. 試験開始の合図があるまで問題冊子を開いてはいけない。
- 2. 必須問題の冊子はこの注意事項を含めて3枚、解答用紙は2枚である。
- 3. 試験開始の合図の後、全ての解答用紙に受験番号を記入すること。
- 4. 必須問題の試験時間は90分である。
- 5. 必須問題は2問である。すべての問題を解答すること。
- 6. 解答は、指定された解答用紙を使用すること。 必要なら裏面を使用してもよいが、その場合は表面下に「裏面へ続く」と記入すること。
- 7. 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて監督者に知らせること。
- 8. 試験終了後、この問題冊子は持ち帰ること。
- 9. 解答は英語でもよい。

大学院情報理工学研究科 博士前期課程:一般入試(2019年8月16日実施)

必須問題

情報・ネットワーク工学専攻

「線形代数」

1

a を実数とし、3 次正方行列 A, E と \mathbb{R}^3 のベクトル v_1, v_2 を

$$A = \begin{bmatrix} a & -2 & 4 \\ 3 & -6 & 6 \\ 3 & -3 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

とする. さらに、 \mathbb{R}^3 の 部分空間 $\langle v_1, v_2
angle$ を

$$\langle v_1, v_2 \rangle = \{ c_1 v_1 + c_2 v_2 \in \mathbb{R}^3 \mid c_1, c_2 \in \mathbb{R} \}$$

で定義し、線形変換 $f: \mathbb{R}^3 \to \mathbb{R}^3$ を f(v) = Av $(v \in \mathbb{R}^3)$ と定める. このとき、以下の問いに答えよ.

- (1) $f(v_1) \in \langle v_1, v_2 \rangle$ となるように a の値を定めよ.
- (2) 行列式 $\det A$ の値が -6 となるときの a の値を求めよ.

以下では、aは(2)で求めた値とする.

- (3) 線形変換 $g: \mathbb{R}^3 \to \mathbb{R}^3$ を g(v) = (A+E)v $(v \in \mathbb{R}^3)$ と定めるとき、g の 核 Ker g の 基底 を求めよ.
- (4) f の <u>固有値</u> をすべて求めよ.
- (5) ƒ の各固有値に対する 固有空間 の基底を求めよ.

部分空間: subspace, 線形変換: linear transformation, 行列式: determinant,

核: kernel,基底: basis,固有值: eigenvalue,固有空間: eigenspace

大学院情報理工学研究科 博士前期課程:一般入試(2019年8月16日実施)

必須問題

情報・ネットワーク工学専攻

「微分積分」

2

以下の各問いに答えよ.

- (1) 関数 $f(x,y) = 2x^3 y^3 + 4xy + 1$ に対して、次の問いに答えよ.
 - (i) $f_x(1,-1)$, $f_y(1,-1)$ の値を求めよ.
 - (ii) f(x,y) = 0 上の点 (1,-1) の近くでは, f(x,y) = 0 の <u>陰関数</u> $y = \varphi(x)$ が 存在する. このとき, $\varphi(1)$, $\varphi'(1)$, $\varphi''(1)$ の値を求めよ.
- (2) 次の 重積分2 I を求めよ.

$$I = \iint_{D} \frac{y}{\sqrt{1+x^3}} dxdy, \qquad D = \{(x,y) : 0 \le x \le 1, 0 \le y \le x\}$$

(3) 次の \mathbb{R}^3 内の領域 3 D の 体積 4 V を求めよ.

 $D = \{(x, y, z) : 0 \le x + y \le 1, \ 0 \le y + z \le 2, \ 0 \le z + x \le 3\}$

¹陰関数: implicit function ²重積分: double integral

³領域: domain ⁴体積: volume