Note

Wayne Zheng intuitionofmind@gmail.com

September 16, 2017

1 Basic Construction

The Hamiltonian for t-J model is $H_{t-J} = H_t + H_J$ where

$$H_{t} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.),$$

$$H_{J} = J \sum_{\langle ij \rangle} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} n_{i} n_{j} \right).$$
(1)

Suppose the square lattice is formed with $N_x \cdot N_y = N$ sites and they have been numbered as $0, \dots, N-1$ in a certain way, for instance, a *snake*. With consideration of one hole doped case, a generic basis can be defined in such a one-dimensional way

$$c_{0\sigma_0}^{\dagger} \cdots c_{h-1\sigma_{h-1}}^{\dagger} c_{h+1\sigma_{h+1}}^{\dagger} \cdots c_{N-1\sigma_{N-1}}^{\dagger} |0\rangle = (-)^h c_{h\sigma_h} |s\rangle \equiv |h;s\rangle, \qquad (2)$$

where $|s\rangle \equiv c_{0\sigma_0}^\dagger \cdots c_{N-1\sigma_{N-1}}^\dagger |0\rangle$ is the half-filled spin background created by ordered fermionic operators. $|h;s\rangle$ thus can be represented as a bosonic configuration in computational program. Here our major task is to compute the vector multiplication required by the package ARPACKPP [Reuter et al.()Reuter, Gomes, and Sorensen]. H_J can be evaluated as same as the bosonic Heisenberg spin model as one diagonal block of the H_{t-J} matrix in our representation. For H_t , we would like to compute the hole's hopping term from site h to site h' (electron's hopping frome h' to h)

$$\sum_{\sigma} (c_{h\sigma}^{\dagger} c_{h'\sigma}) |h; s\rangle$$

$$= c_{h\sigma_{h'}}^{\dagger} c_{h'\sigma_{h'}} (-)^{h} c_{h\sigma_{h}} |s\rangle = c_{h'\sigma_{h'}} (-)^{h+1} (c_{h\sigma_{h'}}^{\dagger} c_{h\sigma_{h}}) |s\rangle$$

$$= (-)^{h-h'+1} (-)^{h'} c_{h'\sigma_{h'}} |s'\rangle,$$
(3)

where spin summation $\sum_{\sigma} c_{h'\sigma}$ should match $\sigma_{h'}$ of which $c_{h'\sigma_{h'}}^{\dagger}$ in $|s\rangle$ otherwise leads to zero. Note that what $|s'\rangle$ differs from $|s\rangle$ is that the fermionic creation

operator $c^{\dagger}_{h\sigma_h}$ in $|s\rangle$ is replaced by $c^{\dagger}_{h\sigma_{h'}}$ at site h. Its Hermatian conjugate part is similar. That is to say, in order to evaluate the non-zero matrix elements in terms of H_t which connects different bosonic Heisenberg sub-blocks of the total Hilbert space, despite considering the change of bosonic configuration in $|h';s'\rangle$, an extra fermionic sign $(-)^{h-h'+1}$ should be taken in to consideration.

References

[Reuter et al.()Reuter, Gomes, and Sorensen] M. Reuter, F. M. Gomes, and D. Sorensen, "BSD arpack++ package,".