Aufgabe 1.

- 1. Es sei V ein endlichdimensionaler reeller Vektorraum. Zeigen Sie, dass es für jeden diagonalisierbaren Endomorphismus $f\colon V\to V$ ein Skalarprodukt auf V gibt, bezüglich dessen f selbstadjungiert ist.
- 2. Wieso gilt die analoge Aussage für komplexe Vektorräume nicht?

Aufgabe 2.

- 1. Es sei V ein endlichdimensionalerunitärer Vektorraum und $f\colon V\to V$ ein selbstadjungierter Endomorphismus mit $\langle f(v),v\rangle=0$ für alle $v\in V$. Zeigen Sie, dass bereits f=0 gilt.
 - (*Hinweis*: Betrachten Sie die Eigenwerte von f.)
- 2. Zeigen Sie, dass die analoge Aussage im reellen im Allgemeinen nicht gilt.

Aufgabe 3.

Es sei $f: V \to V$ ein normaler Endomorphismus.

- 1. Zeigen Sie, dass $||f(v)|| = ||f^{ad}(v)||$ für alle $v \in V$ gilt.
- 2. Folgern Sie, dass ker $f = \ker f^{\text{ad}}$ gilt.
- 3. Zeigen Sie, dass für alle $\lambda \in \mathbb{K}$ auch $f \lambda \operatorname{id}_V$ normal ist.
- 4. Folgern Sie, dass für alle $\lambda \in \mathbb{K}$ die Gleichheit $V_{\lambda}(f) = V_{\overline{\lambda}}(f^{\mathrm{ad}})$ gilt.
- 5. Folgern Sie, dass $V_{\lambda}(f) \perp V_{\mu}(f)$ für alle $\lambda \neq \mu$ gilt.

Aufgabe 4.

Es sei V ein endlichdimensionaler unitärer Vektorraum und $f\colon V\to V$ ein Endomorphismus.

- 1. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:
 - a) Der Endomorphismus f ist antiselbstadjungiert, d.h. es gilt $f^{ad} = -f$.
 - b) Der Endomorphismus f ist normal, und alle Eigenwerte von f sind rein imaginär (d.h. aus $i\mathbb{R}$).
- 2. Zeigen Sie, dass $f id_V$ und $f + id_V$ Isomorphismen sind.
- 3. Zeigen Sie, dass $(f id_V)^{-1} \circ (f + id_V)$ eine Isometrie ist.

Aufgabe 5.

Es sei $A \in \mathcal{M}_n(\mathbb{R})$, so dass $p_A(t)$ in Linearfaktoren zerfällt.

- 1. Zeigen Sie, dass A diagonalisierbar ist, falls A normal ist.
- 2. Zeigen Sie, dass $A^2 = 1$ gilt, falls A orthogonal ist.

Aufgabe 6.

Es sei $A \in O(n)$ symmetrisch und positiv definit. Zeigen Sie, dass bereits A = 1 gilt.

Aufgabe 7.

Es sei V ein endlichdimensionaler Skalarproduktraum und $f,g\colon V\to V$ ein selbstadjungierte Endomorphismen.

- 1. Zeigen Sie, dass f = 0 gilt, falls f nilpotent ist
- 2. Zeigen Sie, dass $f^2 = id_V$ gilt, falls f orthogonal ist.
- 3. Zeigen Sie, dass f = g gilt, falls es ein $n \ge 0$ mit $(f g)^n = 0$ gibt.

Aufgabe 8.

Es sei $A \in U(n)$.

- 1. Zeigen Sie, dass $|\operatorname{Spur} A| \leq n$ gilt.
- 2. Zeigen Sie, dass genau dann Gleichheit gilt, wenn A ein Vielfaches von $\mathbb 1$ ist.

Aufgabe 9.

Es sei $A \in \mathrm{M}_n(\mathbb{C})$.

- 1. Zeigen Sie, dass es eindeutige hermitesche Matrizen $B, C \in M_n(\mathbb{C})$ mit A = B + iC gibt.
- 2. Zeigen Sie, dass A genau dann normal ist, wenn B und C kommutieren.
- 3. Zeigen Sie, dass es eine eindeutige hermitesche Matrix $D \in M_n(\mathbb{C})$ und schiefhermitesche Matrix $E \in M_n(\mathbb{C})$ (d.h. $E^* = -E$) mit A = D + E gibt.
- 4. Zeigen Sie, dass A genau dann normal ist, wenn D und E kommutieren.
- 5. Wie hängen die bedien Zerlegungen A = B + iC ud A = D + E zusammen?

Aufgabe 10. (Spiegelungen)

Es sei V ein euklidischer Vektorraum. Für jedes $\alpha \in V$ mit $\alpha \neq 0$ sei

$$s_{\alpha} \colon V \to V$$
, mit $s_{\alpha}(x) \coloneqq x - 2 \frac{\langle x, \alpha \rangle}{\|\alpha\|^2} \alpha$.

Ferner seien $L_{\alpha} := \mathbb{R}\alpha$ und $H_{\alpha} := L_{\alpha}^{\perp}$.

1. Zeigen Sie, dass $L_{\alpha} = V_{-1}(s_{\alpha})$ und $H_{\alpha} = V_{1}(s_{\alpha})$.

Also ist s_{α} die orthogonale Spiegelung an der Hyperebene H_{α} .

- 2. Zeigen Sie, dass s_{α} orthogonal ist.
- 3. Zeigen Sie, dass $ts_{\alpha}t^{-1} = s_{t(\alpha)}$ für alle $t \in O(V)$ gilt.

Aufgabe 11.

Es sei V ein endlichdimensionaler euklidischer Vektorraum und $f\colon V\to V$ ein Endomorphismus. Entscheiden Sie, weche Implikationen zwischen den folgenden Aussagen gelten:

- 1. Der Endomorphismus f ist selbstadjungiert mit positiven Eigenwerten.
- 2. Der Endomorphismus f ist orthogonal mit positiven Eigenwerten.
- 3. Der Endomorphismus f ist normal mit $\det f > 0$.
- 4. Der Endomorphismus f ist selbstadjungiert und orthogonal.

Aufgabe 12.

Bestimmen Sie alle Matrizen $A \in O(n)\mathbb{R}$, die obere Dreiecksmatrizen sind.

Aufgabe 13.

Es sei $A \in M_n(\mathbb{C})$ hermitesch und negativ semidefinit.

- 1. Zeigen Sie, dass es eine schiefhermitesche Matrix $B \in \mathcal{M}_n(\mathbb{C})$ mit $B^2 = A$ gibt.
- 2. Entscheiden Sie, ob B eindeutig ist.