Department of Mathematics, Bennett University EMAT102L, Tutorial Sheet 9 **Ordinary Differential Equations**

- 1. Determine the largest interval in which the given initial value problem is certain to have a unique solution.
 - (a) $x^2y'' + 4y = x$, y(1) = 1, y'(1) = 2.
 - (b) $(x-3)y'' 3xy' + 4y = \sin x$, y(-2) = 2, y'(-2) = 1.
- 2. Consider the differential equation $x^2y'' 4xy' + 6y = 0$.
 - (a) Verify that the functions $y_1(x) = x^3$ and $y_2(x) = x^2|x|$ are linearly independent solutions of the given differential equation on $(-\infty, \infty)$.
 - (b) Show that y_1 and y_2 are linearly dependent on $(-\infty, 0)$ and on $(0, \infty)$.
 - (c) Although y_1 and y_2 are linearly independent, show that $W(y_1, y_2) = 0$ for all $x \in (-\infty, \infty)$. Does this violate the fact that $W(y_1, y_2) = 0$ for every $x \in (-\infty, \infty)$ implies y_1 and y_2 are linearly dependent?
- 3. Verify that $y_1(x) = e^x$ and $y_2(x) = xe^x$ are solutions of y'' 2y' + y = 0 for $x \in \mathbb{R}$. Do they constitute a fundamental set of solutions?
- 4. If y_1 and y_2 are linearly independent solutions of $xy'' + 2y' + xe^xy = 0, x \in (0, \infty)$ and if $W(y_1, y_2)(1) = 2$, find the value of $W(y_1, y_2)(5)$.
- 5. Find the second linearly independent solution of the following problems using the method of reduction of order. Hence find the general solution.
 - (a) (2x+1)y'' 4(x+1)y' + 4y = 0, $y_1 = e^{2x}$
 - (b) 9y'' 12y' + 4y = 0, $y_1 = e^{\frac{2x}{3}}$
 - (c) $x^2y'' xy' + 2y = 0$, $y_1 = x\sin(\ln x)$.
 - (d) $(1-x^2)y'' + 2xy' = 0$, $y_1 = 1$.
 - (e) (x-1)y'' xy' + y = 0, $y_1 = e^x$.
- 6. Find the general solution of the following differential equations.

 - (a) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0.$ (b) $\frac{\breve{d}^5y}{dx^5} 2\frac{d^4y}{dx^4} + \frac{\dot{d}^3y}{dx^3} = 0.$
 - (c) $\frac{d^3y}{dx^3} \frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0.$
- 7. Find a linear differential equation with constant coefficients and of order 3 which admits the following solutions.

1

- (a) $\cos x$, $\sin x$ and e^{-3x}
- (b) e^x , e^{2x} , e^{3x}

- 8. Find the condition on λ for which all the solutions of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} \lambda y = 0$ tends to zero as $x \to \infty$.
- 9. Find the particular solution of the following differential equations using the method of undetermined coefficients and hence find the general solution.
 - (a) $y'' + 2y' + 2y = 4e^x \sin x$.
- (b) $y'' + y = 2\sin x + \sin 2x$.
- (c) $y''' y'' + y' y = x^2$.
- 10. By using the method of variation of parameters, find the general solution of the following differential equations.
 - (a) $y'' + y = \sec x$.

- (b) $y'' + 4y = 3\csc 2x$.
- (c) $y'' + 6y' + 9y = \frac{e^{-3x}}{x^3}$.