数字电路学习笔记(一):前言

JoshCena

决定写一系列关于数字电路的文章,整理一下过去几个月内本人自学的相关知识,从一个高中生的角度讲讲我对知识点的理解,算是一种巩固练习。限于知识水平,许多内容可能没有真正理解,如果有大佬路过,也欢迎提出改进意见,谢谢!

一、什么是数字电路?

我们从一道经典的初中物理题开始:

某档案室有三把钥匙,分别由主任与两个保管员保管。主任的钥匙可以直接开门,而两个保管员的钥匙则只有同时插入才能开门。档案室大门还有一个防盗装置,激活时无论什么钥匙都无法开门。试画出电路图,用电键表示钥匙孔与防盗装置,马达表示门锁。

当然,题目本身并没什么难度,任何一个受过良好的九年义务教育的同学都应该能完成:

但是,这道题目看似沙雕,实则暗含了数字电路的思想!我们重新审视一下这道题:

当 "主任的钥匙插入"或者 "'档案保管员 A 的钥匙插入'而且 '档案保管员 B 的钥匙插入'"而且 "防盗装置未开启时,门锁打开

我们把所有可能的情况列出来看看:

主任	保管员 A	保管员 B	防盗装置	门锁
未就位	未就位	未就位	关闭	关闭
未就位	未就位	未就位	开启	关闭
未就位	未就位	就位	关闭	关闭
未就位	未就位	就位	开启	关闭
未就位	就位	未就位	关闭	关闭
未就位	就位	未就位	开启	关闭
未就位	就位	就位	关闭	开启
未就位	就位	就位	开启	关闭
就位	未就位	未就位	关闭	开启
就位	未就位	未就位	开启	关闭
就位	未就位	就位	关闭	开启
就位	未就位	就位	开启	关闭
就位	就位	未就位	关闭	开启
就位	就位	未就位	开启	关闭
就位	就位	就位	关闭	开启
就位	就位	就位	开启	关闭

进一步抽象化,注意到这个逻辑中包含了四个"自变量"事件,可以分别用 $A \setminus B \setminus C \setminus D$ 表示;而它们则操纵着一个"因变量"事件,用 X 表示;再定义"1"为开关闭合或马达运转,"0"则相反:

A	B	C	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

到这里,我们已经列出了一个叫"真值表"的东西。其实,它还可以被化为更加抽象的函数形式——类似 $(A+BC)\cdot D'$ 这样——在以后,会看到它是如何在电路设计中起到关键作用的。

总结一下,首先有四个数字输入信号(它们的幅值和时间都是离散的),通过一系列"黑箱操作"逻辑或运算规则,把四个自变量进行运算,得出了一个因变量——事实上,这就是数字电路。

二、为什么要有数字电路?

数字电路,实际上就是计算机的基础——计算机本质上,就是通过对一系列由 0 和 1 组合的量进行运算,得出结果的。而再弱化一点,哪怕是对几个指示灯的控制,或者简单的饮料机,也会用到逻辑电路。

从古至今,人类都面临着一个相同的问题:懒惰。人类几乎是天生地不想去做重复的工作,因而发明了各种各样的工具替代我们完成这些任务——比如印刷术,比如交通工具,比如水轮磨坊。这些不仅将人们从低价值的劳动中解放出来,还极大提高了社会生产效率。可以说,是懒惰促进了社会的进步。(误)

而数字电路,则就是人类大脑的扩展。在刚才的例子中,我们完全可以派一个尽心尽责的保安 大叔在门口负责大门开闭——但谁能保证,他就不会出错呢?或者退一步讲,任何一个人日复一日 地干这样无聊的工作,效率肯定不会高吧?因此,数字电路就代替了这些人脑的机械的逻辑运算。 无论是几百根管的真空管电路,还是上千万门级别的集成电路,归根结底都是起着类似的作用。而 数字电路做成的小元件以一定的方式组合,就成了计算机的雏形。

但是,由于本人并不精于微电子,许多关于电路设计的理论都仅限于纸上谈兵,对于硬件的了解非常有限,因此也无法对电路本身的性能作出负责的评价。对于数字信号与模拟信号也未做太多说明,留至 A-D 转换部分(如果我坚持的到的话)再写。

三、为什么我要自学数电?

惭愧的是,我一开始学习数电的目的,竟然是为了打游戏...

奋战两个月的成果

Minecraft 中提供了红石线与红石火把两种最基础的元件,分别可以作为或门和非门使用;而这两个门就可以组合出所有逻辑门,进而搭建出计算器、控制器之类的大型电路。因此,如果要在Minecraft 中完全掌握红石技术,数字电路知识是必不可少的。

当然,随着我接触编程,渐渐意识到了计算机方面的基础知识(数电模电、组成原理、编译原理)对语言理解的必要性,因此更加需要学习。

那么,前言部分就这么结束了,让我们赶快进入正文。

最后的最后,既然来都来了,就捧个场呗?