HW 3

Q7 - Q11

Joo Hyun Lee

jhl504@nyu.edu NYUCSBR Summer 24-week

Question 7

Exercise 3.1.1

$$A = \{x \in \mathbb{Z}; x \text{ is an integer multiple of 3}\}$$

$$B = \{x \in \mathbb{Z}; x \text{ is a perfect square}\}$$

$$C = \{4, 5, 9, 10\}$$

$$D = \{2, 4, 11, 14\}$$

$$F = \{4, 6, 16\}$$

(a) $27 \in A$

True. 27 is an integer multiple of 3. Therefore, 27 is an element of set A.

- **(b)** $27 \in B$ False. 27 is not a perfect square of an integer. Therefore, 27 is not an element of set B.
- (c) $100 \in B$ True. 100 is a perfect square of 10. Therefore, 100 is an element of set B.
- (d) $E \subseteq C$ or $C \subseteq E$ False. $6 \notin C$ but $6 \in E$. Therefore, $E \nsubseteq C$. Also, $10 \notin E$ but $10 \in C$. Therefore, $C \nsubseteq E$.
- (e) $E\subseteq A$ True. 3, 6, and 9 are integer multiples of 3. Therefore, $3\in A$, $6\in A$, and $9\in A$.
- **(f)** $A \subset E$ False. $12 \in A$ but $12 \notin A$. Therefore, $A \not\subset E$
- (g) $E \in A$ False. E is a set, not an element.

Exercise 3.1.2

$$A = \{x \in \mathbb{Z}; x \text{ is an integer multiple of 3}\}$$

$$B = \{x \in \mathbb{Z}; x \text{ is a perfect square}\}$$

$$C = \{4, 5, 9, 10\}$$

$$D = \{2, 4, 11, 14\}$$

$$F = \{4, 6, 16\}$$

(a) $15 \subset A$

False. 15 is not a set, but an element.

(b) $\{15\} \subset A$

True. 15 is a integer multiple of 3. $15 \in A$, so $\{15\} \subseteq A$. Also, $3 \notin \{15\}$ but $3 \in A$. Therefore, $\{15\}$ is a proper subset of A.

(c) $\emptyset \subset C$

True. \emptyset , an empty set, is a subset of C. $4 \in C$ but $4 \notin \emptyset$. Therefore, \emptyset is a proper subset of C.

(d) $D \subseteq D$

True. D = D. Therefore, $D \subseteq D$.

(e) $\emptyset \in B$

False. Ø is a set, not an element.

Exercise 3.1.5

(b) {3, 6, 9, 12,}

 $A=\{x\in\mathbb{N}^+;x\text{ is an integer multiple of 3}\}$ Set A is infinite.

(d) {0, 10, 20, 30, ..., 1000}

 $B = \{x \in \mathbb{N}; x \text{ is a integer multiple of 10 where } x \leq 1000\}$ Set B is finite. Its cardinality is 101.

Exercise 3.2.1

(a) $2 \in X$

True. 2 is an element of the set X.

(b) $\{2\} \subseteq X$

True. 2 is an element of the set X, so the subset, {2} is one of the subsets of X.

(c) $\{2\} \in X$

False. the subset {2} is not an element of the set X.

(d) $3 \in X$

False. 3 is not an element of the set X.

(e) $\{1,2\} \in X$

True. $\{1, 2\}$ is an element of the set X.

(f) $\{1, 2\} \subseteq X$

True. Since $1 \in X$ and $2 \in X$, $\{1, 2\}$ is a subset of the set X.

(g) $\{2,4\} \subseteq X$

True. Since $2 \in X$ and $4 \in X$, $\{2, 4\}$ is a subset of the set X.

(h) $\{2,4\} \in X$

False. $\{2,4\}$ is not an element of the set X.

(i) $\{2,3\} \subseteq X$

False. Although 2 is an element of the set X, 3 is not. Therefore, $\{2,3\}$ is not a subset of the set X.

(j) $\{2,3\} \in X$

False. Although 2 and 3 are elements of the set X, $\{2,3\}$ is not an element of the set, but a subset. Therefore, $\{2,3\} \in X$ is not true.

(k) |X|=7

False. Since there are 6 elements in the set X, 1, $\{1\}$, $\{1,2\}$, 2, $\{3\}$, and 4, the cardinality of the set X is 6.

Exercise 3.2.4

(b) Let
$$A=\{1,2,3\}$$
. What is $\{X\in P(A):2\in X\}$?
$$P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\} \text{ the elements of P(A) that contains 2 are } \{2\},\{1,2\},\{2,3\},\text{ and } \{1,2,3\}.$$

$$X=\{\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$$

Exercise 3.3.1

$$A = \{-3, 0, 1, 417\}$$

$$B = \{-12, -5, 1, 4, 6\}$$

$$C = \{x \in \mathbb{Z} : x \text{ is odd}\}$$

$$D = \{x \in \mathbb{Z} : x \text{ is positive}\}$$

- (c) $A \cap C = \{-3, 1, 17\}$
- (d) $A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$
- (e) $A \cap B \cap C = \{1\}$

Exercise 3.3.3

$$\begin{aligned} A_i &= \left\{i^0, i^1, i^2\right\} \\ B_i &= \left\{x \in \mathbb{R}: -i \leq x \leq \frac{1}{i}\right\} \\ C_i &= \left\{x \in \mathbb{R}: -\frac{1}{i} \leq x \leq \frac{1}{i}\right\} \end{aligned}$$

(a)
$$\bigcap_{i=2}^{5} A_i$$

 $A_2 = \{1,2,4\}$ $A_3 = \{1,3,9\}$ $A_4 = \{1,4,16\}$ $A_5 = \{1,5,25\}$
 $\bigcap_{i=2}^{5} A_i = \{1,2,4\} \cap \{1,3,9\} \cap \{1,4,16\} \cap \{1,5,25\}$
 $= \{1\}$

(b)
$$\bigcup_{i=2}^{5} A_i$$
 $A_2 = \{1, 2, 4\}$ $A_3 = \{1, 3, 9\}$ $A_4 = \{1, 4, 16\}$ $A_5 = \{1, 5, 25\}$ $\bigcup_{i=2}^{5} A_i = \{1, 2, 4\} \cup \{1, 3, 9\} \cup \{1, 4, 16\} \cup \{1, 5, 25\}$ $= \{1, 2, 3, 4, 5, 9, 16, 25\}$

$$\begin{array}{l} \text{(e)} \bigcap_{i=1}^{100} C_i \\ \text{ when } i=1, C_1=\{x\in\mathbb{R}: -1\leq x\leq 1\} \\ \text{ when } i=100, C_{100}=\big\{x\in\mathbb{R}: -\frac{1}{100}\leq x\leq \frac{1}{100}\big\} \\ \bigcap_{i=1}^{100} C_i=C_1\cap C_2\cap C_3\cap\ldots\cap C_{100} \\ =C_{100} \\ =\big\{x\in\mathbb{R}: -\frac{1}{100}\leq x\leq \frac{1}{100}\big\} \end{array}$$

$$\begin{split} \text{(f)} & \bigcup_{i=1}^{100} C_i \\ & \text{when } i=1, C_1 = \{x \in \mathbb{R}: -1 \leq x \leq 1\} \\ & \text{when } i=100, C_{100} = \big\{x \in \mathbb{R}: -\frac{1}{100} \leq x \leq \frac{1}{100}\big\} \\ & \bigcup_{i=1}^{100} C_i = C_1 \cup C_2 \cup C_3 \cup \ldots \cup C_{100} \\ & = C_1 \\ & = \{x \in \mathbb{R}: -1 \leq x \leq 1\} \end{split}$$

Exercise 3.3.4

$$A = \{a, b\}$$
$$B = \{b, c\}$$

(b)
$$P(A \cup B)$$

$$A \cup B = \{a, b, c\}$$

$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$$

$$\begin{split} \textbf{(d)} \ P(A) \cup P(B) \\ P(A) &= \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \\ P(B) &= \{\emptyset, \{b\}, \{c\}, \{b, c\}\} \\ P(A) \cup P(B) &= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\} \end{split}$$

Exercise 3.5.1

- **(b)** $B \times A \times C$ $B \times A \times C =$ (foam, tall, non-fat)
- (c) $B \times C$

	foam	no-foam
non-fat	(foam, non-fat)	(no-foam, non-fat)
whole	(foam, whole)	(no-foam, whole)

 $B \times C = \{(foam, non-fat), (no-foam, non-fat), (foam, whole), (no-foam, whole)\}$

Exercise 3.5.3

(b) $\mathbb{Z}^2 \subset \mathbb{R}^2$

True. Since $\mathbb{Z}\subseteq\mathbb{R}$, if $x\in Z$ and $y\in Z$, then $x\in R$ and $y\in R$. So, if $(x,y)\in\mathbb{Z}^2$, then $(x,y)\in\mathbb{R}^2$

(c) $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$

True. \mathbb{Z}^2 is a set of ordered pairs of integers and \mathbb{Z}^3 is a set of ordered triple of integers. So, the two sets do not have elements in common.

(e) for any three sets, A, B, and C, if $A \subseteq B$, then $A \times C \subseteq B \times C$

True. If $(a,b) \in A$, then $(a,b) \in B$. Therefore, if $(x,y) \in A \times C$, then $(x,y) \in B \times C$.

Exercise 3.5.6

(d) $\{xy : \text{where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\}$

$$\{0\} \cup \{0\}^2 = \{0,00\}$$

$$\{1\} \cup \{1\}^2 = \{1, 11\}$$

Let
$$A = \{xy : \text{where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\}$$

 $A = \{01, 011, 001, 0011\}$

(e) $\{xy : x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

$${a} \cup {a}^2 = {a, aa}$$

let
$$B = \{xy : x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$$

 $B = \{aaa, aba, aaaa, abaa\}$

Exercise 3.5.7

$$A = \{a\}$$
$$B = \{b, c\}$$
$$C = \{a, b, d\}$$

(c)
$$(A \times B) \cup (A \times C)$$

 $A \times B = \{ab, ac\}$
 $A \times C = \{aa, ab, ad\}$
 $(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$

(f)
$$P(A \times B)$$

 $A \times B = \{ab, ac\}$
 $P(A \times B) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}$

$$\begin{split} \textbf{(g)} \ P(A) \times P(B) \\ P(A) &= \{\emptyset, \{a\}\} \\ P(B) &= \{\emptyset, \{b\}, \{c\}, \{b, c\}\} \end{split}$$

	Ø	$\{a\}$
Ø	(\emptyset,\emptyset)	$(\{a\},\emptyset)$
{b}	$(\emptyset,\{b\})$	$(\{a\},\{b\})$
$\{c\}$	$(\emptyset,\{c\})$	$(\{a\},\{c\})$
$\{b,c\}$	$(\emptyset,\{b,c\})$	$(\{a\},\{b,c\})$

$$P(A) \times P(B) = \{(\emptyset,\emptyset), (\{a\},\emptyset), (\emptyset,\{b\}), (\{a\},\{b\}), (\emptyset,\{c\}), (\{a\},\{b\}), (\emptyset,\{c\}), (\{a\},\{c\}), (\{a\},\{b,c\}), (\{a\},\{b,c\})\}$$

Exercise 3.6.2

(b)
$$(B \cup A) \cap \left(\overline{B} \cup A\right) = A$$

1	$(B \cup A) \cap \left(\overline{B} \cup A\right)$	
2	$A \cup \left(B \cap \overline{B}\right)$	Distributive law, 1
3	$A \cup \emptyset$	Complement law, 2
4	A	Identity Law, 3

(c)
$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

1	$\overline{A \cap \overline{B}} = \overline{A} \cup B$	
2	$\overline{\overline{A}} \cup \overline{\overline{\overline{B}}}$	De Morgan's law, 1
3	$\overline{A} \cup B$	Double complement law, 2

Exercise 3.6.3

(b)
$$A-(B\cap A)=A$$

 Let $A=\{1,2,3\}$ and $B=\{1,2\}$. $A\cap B=\{1,2\}$ $A-(A\cap B)=\{3\}\neq A$

(d)
$$(B-A) \cup A = A$$

Let $A = \{2,3\}$ and $B = \{1,2\}$.
 $B-A = \{1\}$
 $(B-A) \cup A = \{1,2,3\} \neq A$

Exercise 3.6.4

(b)
$$A \cap (B-A) = \emptyset$$

1	$A\cap (B-A)$	
2	$A\cap \left(B\cap \overline{A}\right)$	Set Subtraction law, 1
3	$(A \cap \overline{A} \cap B)$	Associative law, 2
4	$\emptyset \cap B$	Complement Law, 3
4	Ø	Domination law, 4

(c) $A \cup (B-A) = A \cup B$

1	$A \cup (B-A) = A \cup B$	
2	$A \cup \left(B \cap \overline{A}\right)$	Set subtraction law, 1
3	$(A \cup B) \cap \left(A \cup \overline{A}\right)$	Distributive law, 2
4	$(A \cup B) \cap U$	Complement law, 3
5	$A \cup B$	Identity law, 4