Replication Instructions

Environment Setup

- 1. Install required software:
 - o Python 3.8 or higher
 - All dependencies listed in requirements.pdf
- 2. Clone the repository or unzip the provided code package:

Dataset Preparation

- 1. Download the datasets
- 2. Place datasets in the correct structure:

- 3. Verify dataset format:
 - Each CSV file should contain configuration options as columns
 - o The last column must be the performance metric

Running the Experiment

1. Execute the main script:

```
python deep.py
```

Alternatively, run all cells in the deep.ipynb jupyter notebook

- 2. For full experiment replication:
 - Ensure all nine systems are included in the systems list
 - Set num_repeats = 10 for statistical significance
 - Use train_frac = 0.7 for the training/testing split
 - Maintain the default neural network parameters

Statistical Analysis

To replicate the statistical significance analysis:

- 1. Examine the output files:
 - results/data/all_results.csv: Contains average metrics
 - results/data/all_results_detailed.csv: Contains per-repeat metrics
- 2. Verify Wilcoxon signed-rank test results:
 - $\circ~$ The p-values are reported in the $\ensuremath{\,^*_p_value}$ columns in the results CSV
 - \circ p < 0.05 indicates a statistically significant difference

Expected Results

The deep learning approach should show:

- 1. Performance improvements:
 - ${\color{gray} \bullet} \quad \text{Average MAPE improvement: \sim48\% over linear regression} \\$
 - Average MAE improvement: ~39% over linear regression
 - Average RMSE improvement: ~30% over linear regression
 - Average R2 improvement: ~13% over linear regression
- 2. System-specific variations:
 - o Better improvements on systems with more complex configurations
 - Some systems may show minimal improvements
- 3. Statistical significance:

∘ Significant improvements (p < 0.05) in ~80% of the datasets

Visualizing Results

To create visualization of the results, run the visualize.ipynb jupyter notebook