Laboratorio 3

Este laboratorio implementa y analiza distintos métodos de optimización basados en descenso por gradiente, incluyendo variantes deterministas, estocásticas y de segundo orden, así como su aplicación en problemas de funciones de prueba, búsqueda de múltiples mínimos y ajuste de modelos de regresión regularizada.

Integrantes

- Abby Donis
- · Cindy Gualim
- Josué Say

Enlaces

• Repositorio

Problema 1

Implementar los siguientes métodos de descenso gradiente (na $\ddot{}$ ve = tama $\ddot{}$ o de paso α constante):

- Descenso gradiente naïve con dirección de descenso aleatoria
- Descenso máximo naïve
- Descenso gradiente de Newton, con Hessiano exacto
- Un método de gradiente conjugado (Fletcher-Reeves, Hestenes-Stiefel, Polak-Ribière)
- · Método BFGS.

En cada uno de los métodos, su función debe recibir los siguientes argumentos:

- La función objetivo f.
- El gradiente de la función objetivo df.
- El hessiano ddf (cuando sea necesario).
- Un punto inicial $x_0 \in \mathbb{R}^n$.
- El tamaño de paso $\alpha > 0$.
- El número máximo de iteraciones maxIter.
- La tolerancia arepsilon, así como un criterio de paro.

Como resultado, sus algoritmos deben devolver: la mejor solución encontrada best (la última de las aproximaciones calculadas); la secuencia de iteraciones x_k ; la

secuencia de valores $f(x_k)$; la secuencia de errores en cada paso (según el error de su criterio de paro).

Además, es deseable indicar el número de iteraciones efectuadas por el algoritmo, y si se obtuvo o no convergencia del método.

Funciones auxiliares

Función norm(...)

Esta función la usaremos para calcular errores con norma midiendo la longitud del vector en un espacio vectorial.

Función projOrth(...)

Dado que tenemos el gradiente, debemos ir al negativo ($-\nabla f(x)$) de este para encontrar una válida dirección de descenso, pero también podemos tomar otras direccioens siempre que formen un ángulo menor de 90° con el gradiente.

Entonces para generar otras direcciones, se necesita un vector ortogonal al gradiente y combinarlo con un angulo ϕ . Esta es la principal función de proj0rth, con esta función vamos a recibir:

- u: punto de partida que luego se proyectará (vector).
- b_orth: esto es un vector al que se quiere ser ortogonal.

En caso que b tenga un valor de 1, indica que es un vector; si es mayor será una colección de vectores y queremos proyectar u a esto para que sea ortogonal a todos.

El proceso es que se normalizará del vector b_orth obteniendo un vector unitario b luego restamos al vector enviado a su proyección sobre b para asegurar que v sea ortogonal a b:

$$v \leftarrow v - (v \cdot b)b$$

Por último, debemos devolver un vector unitario ortogonal al b_orth pero si el vector u estaba casi alineado con b_orth, entonces al quitarle la proyección se queda en algo casi nulo ($\|v\|\approx 0$), y al normalizar esto ocurrirá un error numérica ($v/\|v\|$), por lo que debemos hacer una validación previa para retornar el vector:

• Si \$ |v| ≈0\$: devolvemos v sin normalizar (es decir, un vector casi nulo, aunque no sea unitario).

• Si \$ |v| > 0\$: podemos normalizar con seguridad y devolvemos el vector unitario $v/\|v\|$.

Nota: v es una copia del vector de partida u para no modificar el valor original enviado.

Esto lo utilizamos ya que las direcciones de descenso distintas al gradiente podemos tomar una dirección que forme un ángulo con el gradiente y para esto necesitamos:

$$d = \cos(\phi)(-\hat{q}) + \sin(\phi)v$$

donde:

- ullet $-\hat{g}$ es el gradiente negativo unitario.
- $oldsymbol{\cdot}$ v es un vector unitario ortogonal al gradiente.

Parámetros de entrada

- 1. **f** Función objetivo $f:\mathbb{R}^n \to \mathbb{R}$. Debe aceptar np.array y devolver escalar.
- 2. **df** Gradiente $\nabla f(x)$. Debe devolver np.array de shape (n,).
- 3. x0 Punto inicial np.array de shape (n,) (tipo float).
- 4. alpha Tamaño de paso constante $\alpha>0$. Grande \Rightarrow riesgo de divergencia; pequeño \Rightarrow lento.
- 5. maxIter Máximo de iteraciones (paro "duro").
- 6. **tol** Tolerancia $\varepsilon > 0$ (paro por precisión según stopCrit).
- 7. stopCrit Criterio de paro por tolerancia:
 - "grad": $\|\nabla f(x_k)\| \le \varepsilon$
 - "fx": $|f(x_k) f(x_{k-1})| \le \varepsilon$
 - "xAbs": $\|x_k x_{k-1}\| \le \varepsilon$
 - "xRel": $||x_k x_{k-1}|| / \max(1, ||x_k||) \le \varepsilon$
- 8. normOrder Norma para medir gradiente/pasos/errores: 1, 2 (default) o np.inf.
- 9. isPlottable True \rightarrow si n=2 guarda trayectoria para graficar.
- 10. randomState Semilla para reproducibilidad (afecta la dirección aleatoria y el muestreo de ángulos).
- 11. **verbose** True \rightarrow imprime resumen por iteración (k, f(x_k), $\|\nabla f\|$, $\|step\|$, error, phi).

Retornos

1. best

Última aproximación x_{k^st} .

• Tipo: np.array shape (n,).

2. **xs**

Secuencia de iterados $[x_0,\ldots,x_{k^*}]$.

• Tipo: np.array shape (k^*+1, n).

3. fxs

Valores de la función $[f(x_0), \dots, f(x_{k^*})]$.

• Tipo: np.array shape (k^*+1,).

4. errors

Errores por iteración según stopCrit (grad, fx, xAbs, xRel).

• Tipo: np.array shape (k^*,) - uno por paso realizado.

5. metrics (dict) - resumen para reporte/gráficas:

- · method: etiqueta del método usado.
- converged: True/False.
- stopReason: "tolerance" o "maxIter".
- iterations: k^* (número de pasos realizados).
- finalX: copia de best.
- finalFx: f(best).
- gradNorm: $\|\nabla f(best)\|$ con normOrder.
- stepNorm: $\|x_{k^*} x_{k^*-1}\|$ (si $k^* > 0$).
- approxError: último error (según stopCrit).
- alpha: tamaño de paso usado.
- timeSec: tiempo total (segundos).
- seed: randomState efectivo.
- history (sub-dict con series):
 - k: array de iteraciones $[1, \dots, k^*]$.
 - gradNorms: $\|\nabla f(x_k)\|$ para $k=0,\ldots,k^*$.
 - stepNorms: $\|x_k x_{k-1}\|$ para $k = 1, \dots, k^*$.

- approxErrors: copia de errors.
- angles: ángulo ϕ_k usado (si aplica).
- directions: directiones \boldsymbol{d}_k (si se guardan).
- xs2D: trayectoria 2D (si isPlottable y n=2).

Nota: $len(xs) = len(fxs) = k^*+1$, $len(errors) = len(stepNorms) = len(history['k']) = k^*$. Si el paro fue por tolerancia, converged=True y stopReason="tolerance"; si no, "maxIter".

Descenso gradiente naïve con dirección de descenso aleatoria y Descenso máximo naïve

Funcionamiento

Esta función implementa descenso por gradiente con paso constante (α) y dirección que puede ser:

- Steepest: $d_k = -\nabla f(x_k)$ (si phiMode="fixed", phi=0).
- Ángulo fijo: combina $-\hat{g}$ con un vector ortogonal (si phiMode="fixed", phi \neq 0).
- Aleatoria: toma $\phi \sim U(lo,hi)$ y combina $-\hat{g}$ con un ortogonal (si phi-Mode="random").

La actualización siempre es:

$$x_{k+1} = x_k + \alpha \, d_k$$

Flujo interno

- 1. Configurar modo/ángulo Fusiona extra con defaults. Si random, usará $\phi \in (lo,hi)$. Si fixed, usa $\phi = {\sf phiFixed}$.
- 2. Estado inicial
 - Normaliza formas, evalúa $f(x_0)$ y el gradiente $g_0 = \nabla f(x_0)$.
 - Guarda historia para métricas (para gráficas si n=2).
- 3. Bucle de iteraciones (k=1...maxIter)
 - a. Seleccionar ϕ (aleatorio o fijo).
 - b. Construir dirección d_k :
 - Si $\|g_k\|$ ~ 0 \rightarrow usar $d_k = -g_k$ (ya se está en crítico).
 - Si no:

-
$$\hat{g} = g_k/\|g_k\|$$
.

- $v = \text{projOrth}(z, \hat{g})$ (unitario y ortogonal a \hat{g}).
- $d_k = \cos \phi(-\hat{g}) + \sin \phi v$.

Esto implementa el "abanico" de direcciones de descenso: ángulo < 90° con $-\nabla f$.

- c. Paso naïve: $x_{k+1} = x_k + \alpha d_k$.
- d. Cálculo de error según stopCrit:
 - "grad": $\|\nabla f(x_{k+1})\|$
 - "fx": $|f(x_{k+1}) f(x_k)|$
 - "xAbs": $\|x_{k+1}-x_k\|$
 - "xRel": $\|x_{k+1} x_k\|/\max(1,\|x_{k+1}\|)$
- e. Registro & verbose: guarda x_{k+1} , f, errores, ϕ , $\|g\|$, $\|step\|$; imprime si verbose.
- f. Paro: si err \leq tol \rightarrow converged=True y sale; si no, continúa.
- 4. **Métricas finales** Construye metrics con etiqueta del método (según phiMode/phi), convergencia, iteraciones, $\|\nabla f\|$, tiempos e historia.

Parámetros de entrada

- 1. extra (solo en gradientDescentNaive los wrappers lo fijan internamente)
 - "phiMode": "random" (default) o "fixed".
 - "phi": ángulo fijo (radianes) si "fixed"; 0.0 ≡ steepest descent.
 - "phiRange": (lo, hi) en radianes para "random". Recom.: dentro de $(-\pi/2,\pi/2)$ para garantizar descenso.

Nota: Los wrappers

- gradientDescentRandom(...) fija extra={"phiMode":"random"} y no exponen extra.
- steepestDescent(...) fija extra={"phiMode":"fixed","phi":0.0} y no exponen extra. Ambos reciben el resto de parámetros (alpha, maxIter, tol, stopCrit, normOrder, isPlottable, randomState, verbose).

Retornos

- metrics.method:
 - "Steepest Descent (naive)" (si phiMode="fixed", phi=0)
 - "Gradient Descent (random direction naive)" (si phiMode="random")
 - "Gradient Descent (fixed-angle naive)" (si phiMode="fixed", phi≠0)

- metrics.history.angles: array con ϕ_k por iteración.
- · Lo demás: usa los retornos comunes.

Descenso gradiente de Newton, con Hessiano exacto

Funcionamiento

El método de Newton minimiza f usando un*modelo cuadrático local en x_k :

$$m_k(d) = f(x_k) + \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d.$$

Minimizar \boldsymbol{m}_k da la dirección de Newton como solución del sistema

$$\nabla^2 f(x_k) \, d_k = -\nabla f(x_k).$$

Luego se actualiza con paso constante α (típicamente $\alpha=1$):

$$x_{k+1} = x_k + \alpha \, d_k.$$

- Si el Hessiano es definido positivo (PD) en el entorno del mínimo, d_k suele ser dirección de descenso ($\nabla f(x_k)^{\top}d_k < 0$) y la convergencia cerca de la solución es cuadrática.
- Si el Hessiano es indefinido/mal condicionado, d_k puede no ser de descenso; en ese caso se verifica $g^\top d < 0$ y, si falla, se cambia a d = -g (steepest) como respaldo para asegurar descenso.
- La dirección se obtiene resolviendo el sistema lineal; no se invierte la matriz salvo que se pida explícitamente.

Flujo interno

1. Validaciones de extra

- Requiere extra["ddf"]: ddf(x) o matriz constante $n \times n$.
- solveSystem{"solve", "inv"} (por defecto "solve").

2. Estado inicial

- Convierte x0 a vector float de shape (n,).
- Evalúa $f(x_0)$ y $g_0 = \nabla f(x_0)$.
- Inicializa contenedores de historia (para métricas y, si n=2, trayectoria 2D).
- verbose imprime resumen de k=0.

3. Bucle (k = 1...maxIter)

- a. Hessiano: $H_k = \mathrm{ddf}(\mathbf{x})$ (o matriz fija).
- b. Dirección de Newton: resuelve $H_k d = -g_k$.
 - Si solveSystem="solve" usa np.linalg.solve.
 - Si falla (singular/indefinida), usa pseudo-inversa como respaldo.
- c. Chequeo de descenso: calcula $g_k^{ op}d$.
 - Si no es finito o ≥ 0 , cambia a $d=-g_k$.
- d. Actualización: $x_new = x + alpha*d$, $fx_new = f(x_new)$, $step = x_new x$.
- e. Error según stopCrit:
- "grad": $\|\nabla f(x_{k+1})\|$
- "fx": $|f(x_{k+1}) f(x_k)|$
- "xAbs": $||x_{k+1} x_k||$
- "xRel": $||x_{k+1} x_k|| / \max(1, ||x_{k+1}||)$
- f. Registro & verbose: guarda series (gradNorms, stepNorms, errors, directions, ...) e imprime si verbose.
- g. Paro por tolerancia: si err ≤ tol, marca converged=True y termina.
- h. Avance: asigna $x \leftarrow x_{new}$, $g \leftarrow df(x_{new})$ y continúa.

4. Cierre y métricas

• Calcula tiempo total, número de iteraciones k^* y arma metrics con: method="Newton (exact Hessian, naive step)", converged, stopReason, iterations, finalX, finalFx, gradNorm, stepNorm, approxError, alpha, timeSec, seed, solveSystem, e history (sin ángulos: angles=None).

Parámetros de entrada

1. extra

- ddf (requerido): Hessiano exacto. Puede ser:
 - callable $ddf(x) \rightarrow retorna\ matriz\ n \times n$.
 - Matriz fija np.ndarray $n \times n$ (solo si es constante).
- solveSystem: "solve" (default) | "inv".
 - "solve" usa np.linalg.solve(H, -g) (mejor numéricamente).
 - "inv" usa $d=-H^{-1}g$ (menos recomendado).

Notas:

- La implementación verifica $g^{ op}d < 0$; si no se cumple (Hessiano no PD o mal condicionado), cambia a d=-g como respaldo para asegurar dirección de descenso.
- ullet Si el sistema con H falla, se usa pseudo-inversa como fallback.

Retornos

- metrics.method: Newton (exact Hessian, naive step).
- metrics.solveSystem: solve o inv (cómo se resolvió Hd=-g).
- metrics.history.angles: None (Newton no usa ángulos).
- · Lo demás: usa los retornos comunes.

Gradiente Conjugado (FR / PR / PR+ / HS)

Funcionamiento

El Gradiente Conjugado no lineal (GC) acelera el descenso usando direcciones que combinan la información actual y la pasada:

$$d_k = -g_k + \beta_k d_{k-1}, \quad g_k = \nabla f(x_k).$$

Luego actualiza con paso constante (naïve):

$$x_{k+1} = x_k + \alpha \, d_k.$$

La elección de eta_k define la variante:

- FR (Fletcher-Reeves): $eta_{k+1}^{FR} = rac{\langle g_{k+1}, g_{k+1}
 angle}{\langle g_k, g_k
 angle}.$
- $\begin{array}{l} \bullet \text{ PR (Polak-Ribiere): } \beta_{k+1}^{PR} = \frac{\langle g_{k+1}, g_{k+1} g_k \rangle}{\langle g_k, g_k \rangle}. \\ \bullet \text{ PR+ (recortado): } \beta_{k+1}^{PR+} = \max\{0, \beta_{k+1}^{PR}\}. \end{array}$
- HS (Hestenes-Stiefel): $\beta_{k+1}^{HS}=rac{\langle g_{k+1},\,y_k
 angle}{\langle d_k,\,y_k
 angle}$, $y_k=g_{k+1}-g_k$.

Flujo interno

1. Inicialización:

$$x_0$$
 dado, $g_0 = \nabla f(x_0)$, $d_0 = -g_0$. Registrar historia.

- 2. Iteración k=1,...:
 - a. Paso naı̈ve: $x_k = x_{k-1} + \alpha \, d_{k-1}$.

- b. Evaluar: $f(x_k)$, $g_k = \nabla f(x_k)$ y el error según stopCrit.
- c. Paro por tolerancia: si err ≤ tol, detener.
- d. Cálculo de β : FR/PR/PR+/HS (con estabilizador en denominadores).
- e. Reinicio opcional: cada restart Every pasos \Rightarrow $\beta=0$ (dirección = $-g_k$).
- f. Asegurar descenso (opcional): si g_k^T d_k \geqslant 0 \Rightarrow reiniciar $d_k = -g_k$.

Parámetros de entrada

En extra:

- betaRule: "FR" (default) | "PR" | "PR+" | "HS".
- restartEvery: int o None. Si es entero m>0, reinicia cada m pasos (pone d=-g).
- denomEps: float (default 1e-15). Pequeño ϵ para evitar divisiones numéricamente inestables.
- ensureDescent: bool (default True). Si $g^{\top}d \geq 0$, fuerza reinicio a d=-g. El resto de entradas (f, df, x0, alpha, maxIter, tol, stopCrit, normOrder, isPlottable, randomState, verbose) son comunes.

Retornos

Usa los retornos comunes y añade:

- metrics.method: "Nonlinear Conjugate Gradient (naive, {betaRule})".
- metrics.betaRule: regla seleccionada.
- metrics.restartEvery: valor usado (o None).
- metrics.restarts: número de reinicios efectuados.
- metrics.ensureDescent: True/False.
- metrics.history.betas: serie de β_k .
- metrics.history.angles: None (GC no usa ángulos).
- ullet metrics.history.directions: directiones d_k registradas.

Método BFGS (cuasi-Newton)

Funcionamiento

BFGS aproxima iterativamente la inversa del Hessiano $H_k pprox \nabla^2 f(x_k)^{-1}$ para construir una dirección tipo Newton sin calcular $\nabla^2 f$ explícito:

$$d_k = -H_k\,g_k, \quad g_k =
abla f(x_k), \qquad x_{k+1} = x_k + \alpha\,d_k \quad (\alpha > 0 \text{ constante, na\"ive})$$

Tras el paso, actualiza ${\cal H}_k$ usando solo primeras derivadas con el par

$$s_k = x_{k+1} - x_k, \quad y_k = g_{k+1} - g_k,$$

aplicando la fórmula BFGS (garantiza H_{k+1} simétrica y, si $s_k^{ op}y_k>0$, definida positiva):

$$H_{k+1} = (I - \rho_k s_k y_k^\intercal) H_k (I - \rho_k y_k s_k^\intercal) + \rho_k \, s_k s_k^\intercal, \quad \rho_k = \frac{1}{y_k^\intercal s_k}.$$

Flujo interno

1. Inicialización

 x_0 dado, $H_0=I$ (o matriz SPD provista), $g_0=\nabla f(x_0)$.

2. Dirección

 $d_k = -H_k g_k$. (Opcional: si $g_k^\top d_k \geq 0$, forzar $d_k = -g_k$ para asegurar descenso).

3. Paso (naive)

$$x_{k+1} = x_k + \alpha d_k$$
.

4. Actualización de memoria

$$s_k = x_{k+1} - x_k$$
 , $y_k = g_{k+1} - g_k$.

- Curvatura: si $y_k^{\top}s_k \leq \varepsilon$ (muy pequeño/no positivo) se omite la actualización para evitar perder SPD.
- Si pasa el umbral: aplicar fórmula BFGS y simetrizar numéricamente $H_{k+1} \leftarrow \frac{1}{2}(H_{k+1} + H_{k+1}^{\top})$.

5. Criterios de paro

Según stopCrit (norma del gradiente, cambio en f, o en x), o por maxIter.

Parámetros de entrada

- **HO**: inversa-Hessiana inicial $(n \times n)$. Default: I.
- skipUpdateIf: umbral para $y_k^{\intercal}s_k$ (p.ej. 1e-12). Si \leq umbral, no se actualiza H .
- ensureDescent (True/False): si $g_k^{\intercal}d_k \geq 0$, usar $d_k = -g_k$ (respaldo de descenso).

El resto (f, df, x0, alpha, maxIter, tol, stopCrit, normOrder, isPlottable, randomState, verbose) son **comunes**.

Retornos

Usa los retornos comunes y añade:

- metrics.method: "BFGS (naive step)".
- metrics.skipUpdateIf, metrics.ensureDescent.
- metrics.history.directions: directiones d_k .
- metrics.history.angles: None (no usa ángulos).

Problema 2

Metodología

- Implementación unificada de métodos. Se programó GD aleatorio/steepest, Newton (Hessiano exacto), NCG (FR/PR/PR+/HS) y BFGS que retornaba (best, xs, fxs, errors, metrics); metrics.history guardaba series ($||\nabla f||$, pasos, errores, direcciones, etc.).
- Ejecuciones por caso (A/B/C). Para cada método se crearon funciones de tipo collect*Results(...) que ejecutaban todas las funciones con sus hiperparámetros y devolvían un diccionario por caso.
- Trazabilidad y reproducibilidad. Se serializaron los resultados con writeIndividualLogs(...) a .log (JSON) por método y caso en log/, usando semilla fija 22801.
- **Visualización 2D.** Con plotConvergencePath(...) se generaron curvas de nivel y trayectorias para los casos 2D (A y B).
- Gráficas comparativas. Con extractSeries, plotCaseMetric y plotAllComparisons se construyeron, por caso, comparativas de tres métricas: $|x_k-x^\star|$ (error de aproximación), $|\nabla f(x_k)|$ (criterio de paro) y $|f(x_k)-f^\star|$ (brecha de función), que se guardaron en plots/.
- Tablas de resultados. Con tabulate y buildCaseTable se elaboraron tablas dentro de un .md por caso con:
 - convergencia
 - iteraciones
 - $-\alpha$
 - técnica/notas
 - solución
 - error
 - $-||\nabla f||$

- final
- f(best)
- tiempo
- Selección de parámetros. Se ajustaron manualmente α , tolerancias y max-Iter para observar convergencia o estancamiento bajo paso constante y stopCrit="grad".
- Estructura de artefactos. Las imágenes por método (para trazas puntuales), gráficas comparativas (cuerpo del reporte) y logs (anexo) se organizaron según el árbol mostrado.

Testar sus algoritmos del Ejercicio 1 con las siguientes funciones:

Inciso a

La función $f:\mathbb{R}^2 \to \mathbb{R}$, dada por

$$f(x,y) = x^4 + y^4 - 4xy + \frac{1}{2}y + 1.$$

Punto inicial: $x_0 = (-3,1)^T$, Óptimo: $x^* = (-1.01463, -1.04453)^T$, $f(x^*) = -1.51132$.

Descenso gradiente naïve con dirección de descenso aleatoria

Descenso máximo naïve

Descenso gradiente de Newton, con Hessiano exacto

α = 1.0

 α = 0.1

Método de gradiente conjugado (Fletcher-Reeves)

Método BFGS

Inciso b

La función de Rosembrock 2-dimensional $f:\mathbb{R}^2 o \mathbb{R}$, dada por

$$f(x_1,x_2) = 100(x_2-x_1^2)^2 + (1-x_1)^2.$$

Punto inicial: $x_0=(-1.2,1)^T$, Óptimo: $x^*=(1,1)^T,\; f(x^*)=0$.

Descenso gradiente naïve con dirección de descenso aleatoria

Descenso máximo naïve

Descenso gradiente de Newton, con Hessiano exacto

α = 1.0

 α = 0.1

Método de gradiente conjugado (Fletcher-Reeves)

Método BFGS

Inciso c

La función de Rosembrock 7-dimensional $f:\mathbb{R}^7 o \mathbb{R}$, dada por

$$f(x) = \sum_{i=1}^6 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2.$$

Punto inicial: $x_0 = (-1.2, 1, 1, 1, 1, -1.2, 1)^T$, Óptimo: $x^* = (1, 1, \dots, 1)^T, \ f(x^*) = 0$.

Nota: Esta función no se puede graficar pero se adjunta en el jupyter notebook datos para observar que ocurrio con esta función.

Análisis

Tabla comparativa

Caso A (f_a)	_											
	C	N- 14		T(: / N-4	Solución (best)	Francis (IV file	abla f final	f(best)	T:-			
Algoritmo de optimización	Convergencia	No. Iter.		Técnica / Notas	· · ·	Error ($ \nabla f $)		· · ·	-	mpo (s	9	
Descenso de Newton ($lpha=1.0$)	Sí	16	-	solve=solve	[0.983, 0.950]	9.548e-13	9.548e-13	-0.5121			4	
Fletcher-Reeves (NCG)	Sí	48	0.02	β=FR, restartEvery=50, ensureDescent=✓	[-1.015, -1.045]	7.263e-07	7.263e-07	-1.5113	2 0.0	01	_	
Descenso de Newton ($lpha=0.1$)	Sí	306	0.1	solve=solve	[-1.015, -1.045]	9.89e-07	9.89e-07	-1.5113	2 0.0	07	_	
BFGS	Sí	770	0.02	skipUpdateIf=1e-12, ensureDescent=√	[-1.015, -1.045]	9.897e-07	9.897e-07	-1.5113	2 0.0	15	_	
Descenso gradiente aleatorio	No	2000	0.01	dirección ∠ aleatorio; seed=22801	[-1.014, -1.053]	0.1291	0.1291	-1.5107	6 0.0	49	╛	
Descenso máximo (steepest)	No	5000	0.01	<i>φ</i> =0	[-1.018, -1.041]	0.07536	0.07536	-1.5111	15 0.112			
Caso B (Rosenbrock 2D) Algoritmo de optimización) Convergencia	No. Iter.	α	Técnica / Notas	Solución (best)	Error ($ abla f $)	abla f final	final f(best)		Tiempo (s)		
Descenso de Newton ($lpha=1.0$)	Sí	6	1	solve=solve	[1.000, 1.000]	8.286e-09	8.286e-09	3.432	43265e-20 0			
Descenso de Newton ($lpha=0.1$)	Sí	6	1	solve=solve	[1.000, 1.000]	8.286e-09	8.286e-09	3.432	3.43265e-20 0			
Fletcher-Reeves (NCG)	Sí	1483	0.001	β=FR, restartEvery=50, ensureDescent=√	[1.000, 1.000]	9.993e-07	9.993e-07	1.24997e-12		0.021		
BFGS	Sí	27602	0.001	skipUpdateIf=1e-12, ensureDescent=√	[1.000, 1.000]	9.978e-07	9.978e-07	2.24542e-13		13 0.547		
Descenso gradiente aleatorio	No	2500	0.01	dirección ∠ aleatorio; seed=22801	[0.982, 0.950]	6.696	6.696	0.0235923		0.059		
Descenso máximo (steepest)	No	8000	0.01	φ =0	[0.994, 0.978]	4.93	4.93	0.0123464 0		0.187		
Caso C (Rosenbrock 7D) Algoritmo de optimización Convergencia No. Iter. α Técnica / Notas Solución (best) Error ($\ \nabla f\ $) $\ \nabla f\ $ final f(best) Tiempo (s												
Descenso de Newton ($lpha=1.0$)	Sí	12	1	solve=solve	- `	0.992, 0.987,, 0.905] 9.4					3.9836	0.001
Descenso de Newton ($lpha=0.1$)	sí	12	1	solve=solve	+	92, 0.994, 0.992, 0.987,, 0.905]		e-07 9.498			3.9836	0
Fletcher-Reeves (NCG)	Sí	2190	0.0005	β=FR, restartEvery=50, ensureDescent=v	[-0.992, 0.994, 0.992, 0.987,, 0.905]			07 9.908e-l			3.9836	0.059
Descenso gradiente aleatorio	No	3000	0.01	dirección ∠ aleatorio; seed=22801	[-0.994, 0.989, 0.982, 0.957,, 0.709]			1 7.2			4.02347	0.117
Descenso máximo (steepest)	No	6000	0.01	φ=0	[-0.992, 0.991, 0.993, 0.981,, 0.886]		86] 8.413	13 8.			4.00478	0.22
BFGS	No	30000	0.0005	skipUpdateIf=1e-12, ensureDescent=✓	[-0.992, 0.994,	[-0.992, 0.994, 0.992, 0.987,, 0.905]		9.255e-05		-05	3.9836	1.018

En conjunto, los resultados reflejan claramente lo que se esperaría según la geometría de las funciones y la naturaleza de cada método con paso constante:

- **Newton:** destaca tanto en número de iteraciones como en tiempo porque aprovecha información de curvatura.
 - En A, Newton converge rápido, pero con $\alpha=1$ puede desviarse hacia otra cuenca de atracción y quedarse en un mínimo distinto del teórico (aproximadamente [0.983,0.950], $f\approx -0.512$). Al reducir el paso ($\alpha=0.1$), la secuencia se mantiene en la cuenca correcta y alcanza el óptimo esperado.
 - En **B**, cerca de (1,1), la función se comporta casi como cuadrática, lo que permite que Newton, con $\alpha=1$ o 0.1, llegue al mínimo en apenas 6 pasos.
 - En ${\bf C}$, el valle tipo Rosenbrock de alta dimensión es muy mal condicionado: incluso con gradientes pequeños, el descenso en f es lento y se observan estancamientos en valores que no son mínimos, lo que refleja una topografía prácticamente plana en algunas direcciones.
- Gradiente (steepest y dirección aleatoria): con parámetros constantes, no logra converger dentro del límite de iteraciones.
 - Con lpha=0.01, el método oscila por el valle, manteniendo errores entre

 $10^{-1} \text{ y } 10^{0} \text{ en A/B/C.}$

- Reducir aún más α permite avanzar, pero la norma del gradiente disminuye tan lentamente que se agota el número máximo de iteraciones sin alcanzar la tolerancia.

· Conjugado no lineal:

- La variante **FR** es la única que converge de manera estable en los tres casos con α fijo, porque su β depende solo de las normas de gradiente y no se ve afectada por la falta de búsqueda en línea.
- Por el contrario, $\operatorname{PR/PR^+/HS}$, que dependen de diferencias $g_{k+1}-g_k$ y productos $d_k^\top y_k$, son muy sensibles al tamaño del paso y a la curvatura del valle tipo Rosenbrock. Esto puede generar signos o denominadores adversos que rompen la dirección de descenso y provocan reinicios frecuentes. Por eso, en tus pruebas solo PR logró converger en f_a , mientras que FR funcionó en los tres casos.

• **BFGS:** muestra sus limitaciones con α constante:

- Cuando $y_k^{\intercal} s_k$ es pequeño (valles planos), la actualización se omite para mantener H_k positiva definida.
- Al no captar bien la curvatura, ${\cal H}_k$ queda cerca de la identidad y el método se comporta como un gradiente mal preacondicionado.
- En A/B, eventualmente converge, pero requiere miles de pasos; en C, se estanca y no alcanza la tolerancia pese a $30{,}000$ iteraciones, lo que coincide con un $y_k^{\top}s_k$ casi nulo a lo largo del recorrido.

Gráficas de errores

La pendiente de las curvas indica la **tasa de convergencia**, mientras que los cruces muestran qué método domina en cada tramo. Las tres métricas $-|x_k-x^\star|$, $|\nabla f(x_k)|$ y $|f(x_k)-f^\star|$ — se corroboran entre sí: cuando las dos primeras disminuyen rápidamente, la tercera también lo hace, salvo en los casos donde el método se estaciona fuera del óptimo.

Caso A (f_a)

Brecha de función vs iteración — Caso A (f_a)

1. Newton ($\alpha=0.1$) y NCG (FR)

- Presentan caídas casi verticales en las tres métricas.
- Alcanzan el óptimo con $|x_k x^\star| \sim 10^{-6}$ (curvas moradas/rojas).

2. Newton ($\alpha=1$)

- Reduce rápidamente $|\nabla f|$ y $|f-f^{\star}|$.
- Sin embargo, el **error en** x no disminuye de la misma forma; converge a un crítico distinto del teórico (curva verde no coincide en $|x_k-x^\star|$).

3. **BFGS**

 Desciende de manera casi lineal en escala logarítmica (curva marrón), pero más lentamente que Newton y NCG.

4. Steepest y GD aleatorio

- Se aplanan pronto y oscilan cerca del valle.
- Se observan mesetas en $|\nabla f|$ y $|x_k-x^\star|$.

Caso B (Rosenbrock 2D)

Brecha de función vs iteración — Caso B (Rosenbrock 2D)

Norma del gradiente vs iteración — Caso B (Rosenbrock 2D)

1. Newton

 10^{-10}

• Domina claramente, alcanzando precisión de máquina en aproximadamente 6 iteraciones para $|f-f^\star|$, $|\nabla f|$ y $|x_k-x^\star|$.

Iteración

15000

20000

25000

2. NCG (FR)

- Presenta un descenso monótono con pendiente constante en escala logarítmica.
- Llega a $|x_k x^\star| \sim 10^{-6}$ alrededor de 1.5×10^3 iteraciones.

10000

3. **BFGS**

• Reduce todas las métricas lentamente; se observan tramos casi planos en $|\nabla f|$.

4. Steepest y GD aleatorio

• Se estancan en un rango de $\sim 10^{-2}$ a $10^0 \mbox{.}$

5000

Caso C (Rosenbrock 7D)

Brecha de función vs iteración — Caso C (Rosenbrock 7D)

Norma del gradiente vs iteración — Caso C (Rosenbrock 7D)

Error de aproximación vs iteración — Caso C (Rosenbrock 7D)

1. Newton ($\alpha=0.1$) y NCG (FR)

- Norma del gradiente $|\nabla f|$ cae a 10^{-8} .
- Sin embargo, $|f-f^\star|$ se estanca alrededor de 4 y $|x_k-x^\star|$ no baja de ~2.
- Esto indica que ambos métodos alcanzan una **zona casi estacionaria** lejos del óptimo, consistente con un valle plano y muy mal condicionado.
- El paro por norma de gradiente explica esta situación.

2. **BFGS**

- · Desciende muy lentamente en las tres métricas.
- · No logra acercarse a la vecindad del óptimo.

3. Steepest y GD aleatorio

 Quedan rápidamente en mesetas altas, lejos de cualquier mínimo significativo.

Resumen

· Caso A:

- Más efectivos: Newton ($\alpha=0.1$) y NCG (FR).
- Newton (lpha=1) converge a otro crítico distinto.

• Caso B:

- Método claramente superior: Newton.
- Segundo lugar: NCG (FR).
- BFGS llega al óptimo, pero más lentamente.

• Caso C:

- Ningún método alcanza el óptimo.
- Newton ($\alpha=0.1$) y NCG (FR) minimizan la norma del gradiente, pero quedan atrapados lejos en valor de f y distancia a x^{\star} .

Problema 4

Considere el siguiente conjunto de datos que se incluye en el archivo datos_lab3.csv. Estos datos corresponden a una serie de tiempo.

Se quiere realizar un modelo de regresión de la forma

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 \sin(7x) + \beta_4 \sin(13x),$$

que explique la relación entre las variables x y y.

Para ello, vamos a formular un problema de optimización en la variable vectorial

$$\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4) \in \mathbb{R}^5.$$

Hallar el modelo de regresión corresponde a hallar el vector β que minimiza la función de error regularizada

$$E_{\lambda}(\beta) = \sum_{i=1}^{n} \left(f(x_i) - y_i \right)^2 + \lambda \sum_{i=1}^{n-1} \left(f(x_{i+1}) - f(x_i) \right)^2.$$

Implementamos en Python un algoritmo de optimización para resolver el problema de regresión en los siguientes 3 casos:

Detalles de implementación comunes

- Lectura de datos: pandas.read_csv("datos_lab3.csv") para obtener vectores x
 y y.
- Matriz de diseño: construimos $X \in \mathbb{R}^{n \times 5}$ con columnas $[1,\;x,\;x^2,\;\sin(7x),\;\sin(13x)]$.
- Ordenamiento por tiempo: como el término de suavidad usa diferencias $f(x_{i+1})-f(x_i)$, aseguramos que los datos estén ordenados por x (series de tiempo) antes de formar la matriz de diferencias D.

- Estabilidad numérica: cuando resolvimos sistemas, preferimos resolver con np.linalg.solve(A, b) o np.linalg.pinv(A) @ b sobre invertir matrices explícitamente.
- **Gráficas:** comparamos datos originales vs. predicciones para cada λ en la misma figura.

Inciso a: $\lambda = 0$

En este caso no hay regularización, por lo que la solución corresponde a una regresión lineal múltiple clásica.

Se resolvió el sistema utilizando la ecuación normal:

$$\beta = (X^T X)^{-1} X^T y,$$

donde X es la matriz de diseño con las columnas correspondientes a 1, x, x^2 , $\sin(7x)$ y $\sin(13x)$.

Resultado gráfico:

Se observa que el modelo se ajusta mucho a los datos, pero también sigue el ruido, lo cual representa un **sobreajuste**.

Inciso b: $\lambda = 100$

Aquí se introduce la regularización de Tychonoff, añadiendo el término:

$$\lambda \sum_{i=1}^{n-1} (f(x_{i+1}) - f(x_i))^2,$$

que penaliza variaciones bruscas en las predicciones.

Se implementó creando una matriz de diferencias D para medir las variaciones entre puntos consecutivos, y se resolvió:

$$\beta = (X^T X + \lambda (DX)^T (DX))^{-1} X^T y.$$

Resultado gráfico:

La curva azul muestra un ajuste más **suave**, que reduce el sobreajuste y capta mejor la tendencia general de los datos.

Inciso c: $\lambda = 500$

Se repitió el procedimiento anterior con un valor mayor de λ , lo que impone un mayor peso a la suavidad en comparación con el ajuste exacto a los datos.

Resultado gráfico con los tres casos:

En verde, el modelo con $\lambda=500$ es aún más **suave**, perdiendo detalle de las oscilaciones, pero mostrando claramente la tendencia global.

Conclusiones

- La constante de regularización λ controla el balance entre el ajuste a los datos y la suavidad del modelo.
- $\lambda=0$: el modelo se ajusta exactamente a los datos, pero también al ruido (sobreajuste).
- $\lambda=100$: se obtiene un buen compromiso entre ajuste y suavidad, capturando la tendencia de los datos sin oscilar demasiado.
- $\lambda=500$: el modelo prioriza la suavidad, pierde detalle fino, pero evita el sobreajuste y sigue la tendencia global.

En problemas reales de series de tiempo, elegir un valor intermedio de λ es recomendable para **generalizar mejor** y no depender del ruido de los datos.