Heat Transfer - Zak Olech - 9/26/2019

General Information

Conversion Factors

Process

- 1 Assumptions2 Properties3 Analysis

Assumptions

Metric Prefix

SI Prefixes

Multiplication Factor	Prefix [†]	Symbol
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	T
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto!	h
$10 = 10^{1}$	deka‡	da
$0.1 = 10^{-1}$	deci‡	d
$0.01 = 10^{-2}$	centi‡	c
$0.001 = 10^{-3}$	milli	m
$0.000\ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	n
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	р
$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	p f
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a

Variables (Alphbetical By Variable)	
A	area, m ²
A_b	area of prime (unfinned) surface, m ²
A_c	cross-sectional area, m ²
A_p	fin profile area, m ²
A_r	nozzle area ratio
а р :	acceleration, m/s ² ; speed of sound, m/s
Bi Bo	Biot number Bond number
<i>Бо</i> С	molar concentration, kmol/m ³ ; heat capacity
C	rate, W/K
C_D	drag coefficient
C_f	friction coefficient
C_t	thermal capacitance, J/K
Co	Confinement number
С	specific heat, J/kg · K; speed of light, m/s
C_p	specific heat at constant pressure, J/kg · K
c_v	specific heat at constant volume, J/kg·K
D	diameter, m
D_{AB}	binary mass diffusivity, m ² /s
D_b	bubble diameter, m
D_h	hydraulic diameter, m
d E	diameter of gas molecule, nm
L	thermal plus mechanical energy, J; electric potential, V; emissive power, W/m ²
E^{tot}	total energy, J
Ec	Eckert number
\dot{E}_{g}	rate of energy generation, W
$E_{\rm in}$	rate of energy transfer into a control volume, W
$\dot{E}_{ m out}$	rate of energy transfer out of control volume, W
$E_{ m st}$	rate of increase of energy stored within a control volume, W
e	thermal internal energy per unit mass, J/kg;
E	surface roughness, m
F	force, N; fraction of blackbody radiation in a

wavelength band; view factor

Fo	Fourier number
Fr	Froude number
f	friction factor; similarity variable
$\overset{J}{G}$	irradiation, W/m ² ; mass velocity, kg/s·m ²
Gr	Grashof number
G_{Z}	Graetz number
	gravitational acceleration, m/s ²
д Н	nozzle height, m; Henry's constant, bars
h	convection heat transfer coefficient, $W/m^2 \cdot K$;
n	Planck's constant, J·s
h	,
h_{fg}	latent heat of vaporization, J/kg
h_{fg}'	modified heat of vaporization, J/kg
h_{sf}	latent heat of fusion, J/kg
h_m	convection mass transfer coefficient, m/s
h_{rad}	radiation heat transfer coefficient, W/m ² · K
<i>I</i>	electric current, A; radiation intensity, W/m ² · sr
i	electric current density, A/m ² ; enthalpy per unit mass, J/kg
J	radiosity, W/m ²
Ja	Jakob number
J_i^*	diffusive molar flux of species i relative to the
•	mixture molar average velocity, kmol/s · m ²
j_i	diffusive mass flux of species i relative to the
• •	mixture mass average velocity, kg/s·m ²
j_H	Colburn <i>j</i> factor for heat transfer
j_m	Colburn <i>j</i> factor for mass transfer
k	thermal conductivity, W/m·K
k_B	Boltzmann's constant, J/K
k_0	zero-order, homogeneous reaction rate constant, kmol/s·m ³
1.	
k_1	first-order, homogeneous reaction rate constant, s ⁻¹
k_1''	first-order, surface reaction rate constant, m/s
L	length, m
Le	Lewis number

M	mass, kg
\dot{M}_i	rate of transfer of mass for species, i, kg/s
$\dot{M}_{i,\varrho}$	rate of increase of mass of species i due to
	chemical reactions, kg/s
$\dot{M}_{ m in}$	rate at which mass enters a control volume, kg/s
$\dot{M}_{ m out}$	rate at which mass leaves a control
	volume, kg/s
$\dot{M}_{ m st}$	rate of increase of mass stored within a
	control volume, kg/s
\mathcal{M}_i	molecular weight of species i, kg/kmol
Ma	Mach number
m	mass, kg
\dot{m}	mass flow rate, kg/s
m_i	mass fraction of species i , ρ_i/ρ
N	integer number
N_L , N_T	number of tubes in longitudinal and
	transverse directions
Nu	Nusselt number
NTU	number of transfer units
N_i	molar transfer rate of species i relative to
	fixed coordinates, kmol/s
N_i''	molar flux of species i relative to fixed
	coordinates, kmol/s · m ²
\dot{N}_i	molar rate of increase of species i per unit
	volume due to chemical reactions,
	kmol/s·m ³
N_i''	surface reaction rate of species i,
	kmol/s·m ²
N,	Avogadro's number
n_i''	mass flux of species i relative to fixed
	coordinates, kg/s·m ²
\dot{n}_i	mass rate of increase of species i per unit
	volume due to chemical reactions,

 $kg/s \cdot m^3$

D	W.
P	power, W; perimeter, m
P_L, P_T	dimensionless longitudinal and transverse
	pitch of a tube bank
Pe	Peclet number
Pr	Prandtl number
p	pressure, N/m ²
Q	energy transfer, J
q	heat transfer rate, W
$\stackrel{q}{\dot{q}}$	rate of energy generation per unit
	volume, W/m ³
q'	heat transfer rate per unit length, W/m
q''	heat flux, W/m ²
q^*	dimensionless conduction heat rate
R	cylinder radius, m; gas constant, J/kg·K
${\mathfrak R}$	universal gas constant, J/kmol·K
Ra	Rayleigh number
Re	Reynolds number
R_e	electric resistance, Ω
R_f	fouling factor, m ² · K/W
R_m	mass transfer resistance, s/m ³
$R_{m,n}$	residual for the m , n nodal point
R_t	thermal resistance, K/W
$R_{t,c}$	thermal contact resistance, K/W
$R_{t,f}$	fin thermal resistance, K/W

D	thermal resistance of for array V/W/
$R_{t,o}$	thermal resistance of fin array, K/W
r_o	cylinder or sphere radius, m
r, ϕ, z	cylindrical coordinates
r, θ, ϕ	spherical coordinates
S	solubility, kmol/m ³ · atm; shape factor for
	two-dimensional conduction, m; nozzle
	pitch, m; plate spacing, m; Seebeck
_	coefficient, V/K
S_c	solar constant, W/m ²
S_D, S_L, S_T	diagonal, longitudinal, and transverse pitch of a tube bank, m
Sc	Schmidt number
Sh	Sherwood number
St	Stanton number
T	temperature, K
t	time, s
U	overall heat transfer coefficient, $W/m^2 \cdot K$;
	internal energy, J
и, v, w	mass average fluid velocity components, m/s
u*, v*, w*	· 1
V	volume, m ³ ; fluid velocity, m/s
v	specific volume, m ³ /kg
$\overset{W}{\cdot}$	width of a slot nozzle, m
W	rate at which work is performed, W
We	Weber number
X	vapor quality
X_{tt}	Martinelli parameter
<i>X</i> , <i>Y</i> , <i>Z</i>	components of the body force per unit volume, N/m ³
<i>x</i> , <i>y</i> , <i>z</i>	rectangular coordinates, m
\mathcal{X}_{c}	critical location for transition to turbulence, m
$x_{\mathrm{fd},c}$	concentration entry length, m
$x_{\mathrm{fd},h}$	hydrodynamic entry length, m
$x_{\mathrm{fd},t}$	thermal entry length, m
x_i	mole fraction of species i , C_i/C
Z	thermoelectric material property, K ⁻¹

Greek L	Greek Letters	
α	thermal diffusivity, m ² /s; accommodation	
	coefficient; absorptivity	
β	volumetric thermal expansion coefficient, K ⁻¹	
Г	mass flow rate per unit width in film	
1	*	
	condensation, kg/s·m	
γ	ratio of specific heats	
δ	hydrodynamic boundary layer thickness, m	
$oldsymbol{\delta}_c$	concentration boundary layer thickness, m	
$oldsymbol{\delta}_p$	thermal penetration depth, m	
δ_t	thermal boundary layer thickness, m	
arepsilon	emissivity; porosity; heat exchanger	
	effectiveness	
c	fin effectiveness	
$oldsymbol{arepsilon}_f$		
η	thermodynamic efficiency; similarity variable	
$oldsymbol{\eta}_f$	fin efficiency	
$oldsymbol{\eta}_o$	overall efficiency of fin array	
heta	zenith angle, rad; temperature difference, K	
κ	absorption coefficient, m ⁻¹	
λ	wavelength, μ m	
$\lambda_{ ext{mfp}}$	mean free path length, nm	
mip		
$_{ u}^{\mu}$	viscosity, kg/s·m kinematic viscosity, m ² /s; frequency of	
ν	kinematic viscosity, m ² /s; frequency of radiation, s ⁻¹	
	kinematic viscosity, m ² /s; frequency of radiation, s ⁻¹ mass density, kg/m ³ ; reflectivity electric resistivity. Ω/m	
$ u $ $ \rho $	kinematic viscosity, m²/s; frequency of radiation, s ⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan–Boltzmann constant, W/m²·K⁴; electrical	
$ u $ $ ho $ $ ho_e $ $ \sigma $	kinematic viscosity, m²/s; frequency of radiation, s ⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m² · K⁴; electrical conductivity, 1/Ω · m; normal viscous stress, N/m²; surface tension, N/m	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m² · K⁴; electrical conductivity, 1/Ω · m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻²	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$	kinematic viscosity, m²/s; frequency of radiation, s $^{-1}$ mass density, kg/m³; reflectivity electric resistivity, Ω /m Stefan—Boltzmann constant, W/m² · K⁴; electrical conductivity, 1/ Ω · m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s $^{-2}$ volume fraction azimuthal angle, rad	
ν ρ ρ _e σ Φ φ ψ	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$	kinematic viscosity, m²/s; frequency of radiation, s $^{-1}$ mass density, kg/m³; reflectivity electric resistivity, Ω /m Stefan—Boltzmann constant, W/m² · K⁴; electrical conductivity, 1/ Ω · m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s $^{-2}$ volume fraction azimuthal angle, rad	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$	kinematic viscosity, m²/s; frequency of radiation, s $^{-1}$ mass density, kg/m³; reflectivity electric resistivity, Ω /m Stefan—Boltzmann constant, W/m² · K⁴; electrical conductivity, $1/\Omega$ · m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s $^{-2}$ volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s $^{-1}$	
ν ρ ρ_e σ Φ φ ψ τ ω Subscription A. B	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \psi$ $ \tau$ $ \omega$ Subscrip	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs am atm	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscript A, B abs am	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs am atm $ b$ $ C$ $ C$	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscript A, B abs am atm $ b$ $ C$	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan–Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs am atm b C c cr cond conv	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan–Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscription A. B. abs. am. atm. b. C. c. c. c. cond. c.	kinematic viscosity, m^2/s ; frequency of radiation, s^{-1} mass density, kg/m^3 ; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, $W/m^2 \cdot K^4$; electrical conductivity, $1/\Omega \cdot m$; normal viscous stress, N/m^2 ; surface tension, N/m viscous dissipation function, s^{-2} volume fraction azimuthal angle, rad stream function, m^2/s shear stress, N/m^2 ; transmissivity solid angle, sr; perfusion rate, s^{-1} pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection convection diameter; drag	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs and attent b C C C C C C C C C C C C C C C C C C C	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection counterflow diameter; drag diffusion	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscription A. B. abs. am. atm. b. C. c. c. c. cond. c.	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction counterflow diameter; drag diffusion excess; emission; electron evaporation	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs am atm b C C C C C C C C C C C C C C C C C C	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection convection conterflow diameter; drag diffusion excess; emission; electron evaporation fluid properties; fin conditions; saturated liquid	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscrip A, B abs am atm b C C c c c c c c d d f e e e y a f f f	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection counterflow diameter; drag diffusion excess; emission; electron evaporation fluid properties; fin conditions; saturated liquid conditions forced convection	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \psi$ $ \tau$ $ \omega$ Subscription A, B abs am atm b C c c credit convects CF D difference evap f fc fd	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection counterflow diameter; drag diffusion excess; emission; electron evaporation fluid properties; fin conditions; saturated liquid conditions forced convection fully developed conditions	
$ u$ $ \rho$ $ \rho_e$ $ \sigma$ $ \Phi$ $ \varphi$ $ \phi$ $ \psi$ $ \tau$ $ \omega$ Subscrip A, B abs am atm b C C c c c c c c d d f e e e y a f f f	kinematic viscosity, m²/s; frequency of radiation, s⁻¹ mass density, kg/m³; reflectivity electric resistivity, Ω/m Stefan—Boltzmann constant, W/m²·K⁴; electrical conductivity, 1/Ω·m; normal viscous stress, N/m²; surface tension, N/m viscous dissipation function, s⁻² volume fraction azimuthal angle, rad stream function, m²/s shear stress, N/m²; transmissivity solid angle, sr; perfusion rate, s⁻¹ pts species in a binary mixture absorbed arithmetic mean atmospheric base of an extended surface; blackbody carnot cross-sectional; concentration; cold fluid; critical critical insulation thickness conduction convection counterflow diameter; drag diffusion excess; emission; electron evaporation fluid properties; fin conditions; saturated liquid conditions forced convection	

Greek Letters

h	hydrodynamic; hot fluid; helical
i	general species designation; inner surface of
	annulus; initial condition; tube inlet
	condition; incident radiation
L	based on characteristic length
l	saturated liquid conditions
lat	latent energy
lm	log mean condition
m	mean value over a tube cross section
max	maximum
0	center or midplane condition; tube outlet
	condition; outer
P	momentum
ph	phonon
R	reradiating surface
r, ref	reflected radiation
rad	radiation
S	solar conditions
S	surface conditions; solid properties;
	saturated solid conditions
sat	saturated conditions
sens	sensible energy
sky	sky conditions
SS	steady state
sur	surroundings
t	thermal
tr	transmitted
v	saturated vapor conditions
\mathcal{X}	local conditions on a surface
λ	spectral
∞	free stream conditions
Supersor	ipts
**	molar average; dimensionless quantity
Overbar	
_	surface average conditions; time mean
	,

Chapter 1 - Introduction

- 1 What and how
- 2 Physical Origins and Rate Equations
- 3 Relationship to Thermodynamics

Chapter 2 - Introduction to Conduction

- 1 The Conduction Rate Equation
- 2 The Thermal Properties of Matter
- 3 The Heat Diffusion Equation
- 4 Boundary and Initial Conditions

Chapter 3 - One-Dimensional **Steady-State Conduction**

- 1 The Plane Wall
- 2 An Alternative Conduction Analysis
- 3 Radial Systems
- 4 Summary of One-Dimensional **Conduction Results**
- 5 Conduction with Thermal Energy Generation

Ohmic heating

$$\dot{q} = \frac{\dot{E}_g}{\forall} = \frac{I^2 R_e}{\forall} \tag{1}$$

Absorption of Radiation

The Plane Wall

Heat Equation

$$\frac{d}{dx}(k\frac{dT}{dx}) + \dot{q} = 0 \rightarrow \frac{d^2T}{dx^2} + \frac{\dot{q}}{k} = 0 \tag{2}$$

General Solution Symmetric Surface Conditions

- Temperature Distribution

- Overall Energy Balance

Radial Systems

Cylindrical (Tube) Wall

Solid Cylinder (Circular Rod)

- Heat Equation (Cylindrical)

Spherical Wall (Shell)

Solid Sphere

- Heat Equation (Spherical)

6 - Extended Surfaces

Appendix

Appendix C.