

Sri Lanka Institute of Information Technology

Assignment 2

Data Warehouse & Business Intelligence 2022

Submitted by:

Wickramaarachchi W.A.K.M IT20073428

Table of Contents

1.	Data	a Source Introduction	3
2.	Cub	pe Implementtion	6
2	2.1.	Data Source Creation	6
2	2.2.	Data Source Views Creation	8
2	2.3.	Cube Creation	9
,	2.4.	Hierarchies Creation	10
,	2.5.	Deploy the Cube	11
3.	Den	nonstration of OLAP Operations	12
	3.1.	Cube Connection	12
	3.2.	Roll Up	14
	3.3.	Drill Down	15
	3.4.	Slice	16
	3.5.	Dice	17
	3.6.	Pivot Chart	18
4.	SQI	Server Reporting Service Reports	19
4	4.1.	Basic Steps of Report Builder	20
4	4.2.	Report with a matrix	21
4	4.3.	Report with more than one parameter	23
4	4.4.	Drill Down Report	25
4	4.5.	Drill-through Report	27

1. Data Source Introduction

The 'AmExpert Datawarehouse', which is the data warehouse I developed on assignment one, is the data source here. It contains 1.3 million sales records from 2012 to 2013. For assignment one, I made some adjustments to the data set derived from the source.

Using my scenario, I separated my data set into four dimension tables (including the Date dimension) and one fact table. My tables were DimCustomer, DimItem, DimItemCategory, DimDate, and FactTransaction, as previously stated.

I. Data Source – AmExpert_DW

II. ER Diagram

III. Snow-flake Schema

2. Cube Implementtion

The OLAP cube is a multi-dimensional data storage mechanism. This multi-dimensional cube is used to perform analysis. I used SQL Server Data Tools in this approach. A cube's fundamental components are its dimensions and measurements. There are two major facts to consider.

- **Dimensions:** Define the structure of the cube.
- **Measures:** Provide the end user with aggregated numerical values of interest.

2.1. Data Source Creation

The 'AmExpert' database was connected to the data source via SQL Server Management Studio using the service account for connecting to SQL Server Management Studio.

2.2. Data Source Views Creation

Right Click on the Data Source Views and select New Data Source View. And proceede with guiding

If you choose service account as connection type, this screen prompted. Enter your credentials and proceede forward

2.3. Cube Creation

The cube was created using data source view in this case. To build the cube, we can use an existing data source. FactTransaction is a fact table that provides all of the included metrics for the analysis process. FactTransaction is a measure group, while DimDate, DimCustomer, and DimItem are dimensions.

Page 9 of 28

2.4. Hierarchies Creation

Hierarchies are used reduce complexity and normalized tables. This will use to drill down behavior

• Date Hierarchy

• Address Hierarchy

2.5. Deploy the Cube

To be used for analysis, the cube must be deployed. When you try to deploy at this point, having proper connection details will take effect. SSAS Cube will be available for analysis under the SSAS database via SSMS once it has been deployed.

Cube after deployed into SSAS

3. Demonstration of OLAP Operations

Many Business Intelligence (BI) Applications use the technology of Online Analytical Processing (OLAP). This will also provide significant data mining and trend analysis capabilities. The capacity to archive "Fast access to exchange multidimensional information" has been termed as OLAP technology.

3.1. Cube Connection

Data → Get Data → From Database → From Analysis Services

Page **13** of **28**

3.2. Roll Up

To aggregate data, climb up a dimension hierarchy or reduce dimensions. This is also known as aggregation or consolidation.

According to my scenario I have used category wise total sales amount in different countries by cities

	Product Category Name 🔨					
Location	Alcohol	Bakery	Dairy, Juices & Snacks	Flowers & Plants	Fuel	Garden
Afghanistan	427.08	39254.08	26408.98	6352.44	1346332358	568.5
■ Albania	1342.52	12921.49	1651.71	1940.57	246971813.2	579.89
● Angola	594.14	12349.07	8175.02	2418.56	22606477.42	
■ Argentina	1918.48	32572.83	25068.05	5658.92	3284747067	5934.64
● Armenia		12996.62	1082.51		221639682.1	
■ Australia		8867.9	8233.53	3417.02	46485021.73	355.84
■ Bangladesh		3588.37	1404.87		341638514.4	
Belarus		6057.85		462.34	465743598.2	
■ Benin		5761.17	489.42		80196134.3	
■ Bolivia		1837.27			15751743.46	
■ Bosnia and Herzegovina		20625.98	9225.08	2027.12	1405895852	18214.64
⊕ Botswana 	1779.56	2386.85		355.84	20100761.79	

3.3. Drill Down

Stepping down a dimension's hierarchy allows for navigating across details. Data is broken down into smaller chunks. It's the opposite of the roll-up approach.

According to my scenario I have used category wise total sales amount in different countries by year

	Product Category Names	-					
Location	▼ Alcohol		akery	Dairy, Juices & Snacks	Flowers & Plants	Fuel	Garden G
■ Afghanistan		.08	39254.08	26408.98	6352.44	1346332358	568.5
Albania	1342	.52	12921.49		1940.57	246971813.2	579.89
■ Angola							
□ 2012							
January							
February			1281.96	399.65			
March			-0.36	262.88			
April				1510.63		6708425.98	
May			287.45	1379.45			
June			889.78	297.78	142.12		
July	131	.44	756.56	159.22	426.72		
August			627.97				
September			1103.15	60.2		7615836.21	
October			106.5	131.44		1488116.1	
November			497.62	163.53			
December			837.45	227.25	1565.48		
± 2013	46	2.7	5960.99	3582.99	284.24	6794099.13	
■ Argentina	1918		32572.83	25068.05	5658.92	3284747067	5934.64
m Accession			12006 62	1092 51		221620692.1	

3.4. Slice

An OLAP data cube slice represents two or more dimensional views. A slice is similar to a report or a query. Then we can ask for the information we require.

3.5. Dice

Choose two or more dimensions from a cube and create a new sub-cube by picking particular values on those dimensions. Dice operations are comparable to slice operations.

3.6. Pivot Chart

4. SQL Server Reporting Service Reports

The SQL Server Reporting Service (SSRS) is a reporting tool that lets you create structured tables reports with data, photos, diagrams, and charts. The reports are stored on a server and can be run at any time using user-defined settings. The web portal of a reporting services server is a web-based experience. The portal allows you to examine the report, mobile report, KPI, and element on your report server instance. You may also use the web interface to handle a single report server instance.

For this, I used the report builder application. The Report Builder is a standalone application that you or a system administrator installs on your computer. It can be downloaded through the Microsoft Download Center, from a reporting services SharePoint site.

4.1. Basic Steps of Report Builder

• Data source Creation

Right click on the Data Sources and follow the guiding

• Dataset Creation

Right click on the Dataset and follow the guiding

4.2. Report with a matrix

In SSRS, a matrix is similar to a table, except it is set up to display data organized by rows and columns, with statistical data at the intersection. This is the same as using a pivot table in a spreadsheet.

Query

SELECT

DimItem.AlternateItemID, DimItemCategory.CategoryName, DimCustomer.AlternateCustomerID, DimCustomer.FirstName, DimCustomer.LastName, DimCustomer.Country, DimCustomer.City, DimDate.MonthName, DimDate.[Year], FactTransaction.Quantity, FactTransaction.SellingPrice, FactTransaction.TotalDiscount, FactTransaction.TotalPrice, FactTransaction.TransactionID

FROM

DimItem

INNER JOIN DimItemCategory

ON DimItem.CategoryKey = DimItemCategory.CategorySK

INNER JOIN FactTransaction

ON DimItem.ItemSK = FactTransaction.ItemKey

INNER JOIN DimDate

ON FactTransaction.TransactionDateKey = DimDate.DateKey

INNER JOIN DimCustomer

ON FactTransaction.CustomerKey = DimCustomer.CustomerSK

Location and Category wise Sales Amount

Country				⊞ 2012 ⊞		±	2013	Total
					Total			
±	Afghanistan	Total		679834	481.0700	668148	3659.8400	1347983140.9100
+	Albania	Total		269235	674.2800	162989	9835.2100	432225509.4900
Ŧ	Angola	Total		164063	41.0700	710702	20.1000	23513361.1700
±	Argentina	Total		186565	3102.7000	183440	3287.5100	3700056390.2100
+	Armenia	Total		341816	.9900	22182	2660.0600	222164477.0500
+	Australia	Total		282709	07.0800	187689	958.9100	47039865.9900
±	Bangladesh	Total		107201	694.0100	23458	7875.0600	341789569.0700
±	Belarus	Total		285657	999.8600	195666	5110.3600	481324110.2200

4.3. Report with more than one parameter

We can transfer one or more than the input data to the report by using Multiparameter-values in SSRS. This one contains a "Select All" option, which allows you to choose all parameter values at any time.

Query

SELECT

DimCustomer.Country, DimCustomer.City, DimDate.[Year], DimDate.MonthName, DimItemCategory.CategoryName, FactTransaction.TotalPrice, DimItem.AlternateItemID

FROM

FactTransaction

INNER JOIN DimDate

ON FactTransaction.TransactionDateKey = DimDate.DateKey

INNER JOIN DimCustomer

ON FactTransaction.CustomerKey = DimCustomer.CustomerSK

INNER JOIN DimItem

ON FactTransaction.ItemKey = DimItem.ItemSK

INNER JOIN DimItemCategory

ON DimItem.CategoryKey = DimItemCategory.CategorySK

WHERE DimItemCategory.CategoryName = @ProductCategory and

DimDate.MonthName = @MonthName

Query for ProductCategory

SELECT CategorySk, AlternateCategoryID, CategoryName FROM DimItemCategory

Query for MonthName

SELECT DISTINCT(MonthName) FROM DimDate

Location, Date and Category wise Sales Amount

Product Category Flowers & Plants

	2012	2013	Total
⊞ Afghanistan	178.1000		178.1000
⊞ Australia	106.5000		106.5000
⊞ Belarus	284.6000		284.6000
☐ Bosnia and Herzegovina	248.9800		248.9800
Petkovci	248.9800		248.9800
⊞ Brazil	699.9300	88.6900	788.6200
■ Bulgaria		178.1000	178.1000
Strazhitsa		178.1000	178.1000
⊞ Cameroon	118.6100		118.6100
⊞ Canada		1406.6300	1406.6300
El al ·	5400 4500	2027.2522	2255 5222

4.4. Drill Down Report

Drill Down in SSRS simply allows users to display or hide column records by displaying plus and minus signs on a text field (in other words, allowing the user to interact).

Query

SELECT

DimCustomer.Country, DimCustomer.City, DimDate.[Year], DimDate.MonthName, DimItemCategory.CategoryName, FactTransaction.TotalPrice, DimItem.AlternateItemID

FROM

FactTransaction

INNER JOIN DimDate

ON FactTransaction.TransactionDateKey = DimDate.DateKey

INNER JOIN DimCustomer

ON FactTransaction.CustomerKey = DimCustomer.CustomerSK

INNER JOIN DimItem

ON FactTransaction.ItemKey = DimItem.ItemSK

INNER JOIN DimItemCategory

ON DimItem.CategoryKey = DimItemCategory.CategorySK

Location and Category wise Sales Amount

Country	City	Alcohol	Bakery	Dairy, Juices & Snacks	Flowers & Plants	Fuel	Garden	Grocery	Meat
⊞ Afghanistan		427.0800	39254.0800	26408.9800	6352.4400	1346332357.63 00	568.5000	1020562.3900	49318.7200
⊞ Albania		1342.5200	12921.4900	1651.7100	1940.5700	246971813.230 0	579.8900	271097.0700	22853.3900
⊞ Angola		594.1400	12349.0700	8175.0200	2418.5600	22606477.4200		504457.4600	37552.0400
⊞ Argentina		1918.4800	32572.8300	25068.0500	5658.9200	3284747067.35 00	5934.6400	1438899.8300	53300.5700
⊞ Armenia			12996.6200	1082.5100		221639682.130 0		243126.5200	9388.7000
⊞ Australia			8867.9000	8233.5300	3417.0200	46485021.7300	355.8400	347290.3000	23228.1300
⊞Bangladesh			3588.3700	1404.8700		341638514.380 0		95189.0200	1503.5300
⊞ Belarus			6057.8500	9044.1600	462.3400	465743598.150 0		271216.4100	27421.3100

Location and Category wise Sales Amoun

Country	City	Alcohol	Bakery	Dairy, Juices & Snacks	Flowers & Plants	Fuel	Garden	Grocery
	Āsmār		498.3200	14279.3300		4277212.1400		91449.6600
	Bürkah		6138.7600	2888.7500	480.1500	275169856.740 0		263996.6700
	Deh-e Now	213.3600	720.2800	8146.2800	533.5800	92853071.4800		97268.3800
⊟Afghanistan	Farah		10900.0000	307.0700		102979668.240 0		132664.7100
	Injīl		15195.3600	606.9500	4626.6700	146845584.330 0		226802.8600
	Qarāwul	213.7200	5801.3600	180.6000	712.0400	724206964.700 0	568.5000	208380.1100
⊞ Albania		1342.5200	12921.4900	1651.7100	1940.5700	246971813.230 0	579.8900	271097.0700
⊞ Angola		594.1400	12349.0700	8175.0200	2418.5600	22606477.4200		504457.4600
⊞Argentina		1918.4800	32572.8300	25068.0500	5658.9200	3284747067.35 00	5934.6400	1438899.8300

4.5. Drill-through Report

Main Query

SELECT

DimDate.[Year], DimDate.MonthName, DimItem.AlternateItemID, DimItemCategory.CategoryName, FactTransaction.Quantity

FROM

DimItem

INNER JOIN DimItemCategory

ON DimItem.CategoryKey = DimItemCategory.CategorySK

INNER JOIN FactTransaction

ON DimItem.ItemSK = FactTransaction.ItemKey

INNER JOIN DimDate

ON FactTransaction.TransactionDateKey = DimDate.DateKey

Sub Query

SELECT

DimDate.[Year], DimDate.MonthName, DimItem.AlternateItemID, DimItemCategory.CategoryName, FactTransaction.Quantity

FROM

DimItem

INNER JOIN DimItemCategory

ON DimItem.CategoryKey = DimItemCategory.CategorySK

INNER JOIN FactTransaction

ON DimItem.ItemSK = FactTransaction.ItemKey

INNER JOIN DimDate

ON FactTransaction.TransactionDateKey = DimDate.DateKey

WHERE DimDate.[Year] = @Year

Year and Category wise Sales Quantity

Month and Category wise Sales Quantity

