Parte 1: Sistemi Operativi

1. Processi e Gestione

Un processo è un'istanza di un programma in esecuzione, un concetto fondamentale che include non solo il codice eseguibile (text section), ma anche:

- Il program counter che indica la prossima istruzione
- Lo stack contenente dati temporanei
- La sezione dati contenente variabili globali
- L'heap per la memoria allocata dinamicamente

Durante il suo ciclo di vita, un processo attraversa diversi stati in una macchina a stati finiti:

1. New (Nuovo):

- Il processo viene creato
- Le strutture dati del sistema operativo vengono inizializzate
- Viene allocata la memoria necessaria

2. Ready (Pronto):

- Il processo attende di essere assegnato al processore
- É pronto per l'esecuzione ma attende il suo turno
- Viene inserito nella coda dei processi pronti

3. Running (In Esecuzione):

- Il processo sta effettivamente utilizzando la CPU
- Esegue le sue istruzioni
- Può essere interrotto (preempted) dal sistema operativo

4. Waiting (In Attesa):

- Il processo è bloccato in attesa di un evento
- Può attendere I/O, risorse, segnali
- Non può procedere finché l'evento non si verifica

5. Terminated (Terminato):

- Il processo ha completato la sua esecuzione
- Le risorse vengono rilasciate
- Le strutture dati vengono deallocate

2. Scheduling dei Processi

Lo scheduling è il meccanismo che decide quale processo deve essere eseguito quando. Gli algoritmi di scheduling principali sono:

FCFS (First Come First Served)/FIFO

- Il più semplice algoritmo di scheduling
- Non preemptive: un processo mantiene la CPU fino al completamento
- Vantaggi:
 - Implementazione semplice
 - Equo in termini di ordine di arrivo
- Svantaggi:
 - Convoglio effect: processi brevi bloccati dietro quelli lunghi
 - Tempo medio di attesa elevato
 - Non adatto per sistemi interattivi

SJF (Shortest Job First)

- Sceglie il processo con il tempo di esecuzione stimato più breve
- Può essere preemptive (SRTF Shortest Remaining Time First) o non preemptive
- Vantaggi:
 - Minimizza il tempo medio di attesa
 - Ottimo per batch processing
- Svantaggi:
 - Richiede di conoscere/stimare i tempi di esecuzione
 - Possibile starvation dei processi lunghi
 - Difficile implementazione pratica

Round Robin

- Assegna un quanto di tempo fisso (time quantum) a ogni processo
- Preemptive: il processo viene interrotto alla fine del quanto
- Vantaggi:
 - Equo per tutti i processi
 - Ottimo per sistemi time-sharing
 - Tempo di risposta prevedibile
- Svantaggi:
 - Performance dipende dalla scelta del quanto
 - Overhead per i context switch
 - Non considera priorità

3. Gestione della Memoria

La gestione della memoria è cruciale per:

- Proteggere i processi l'uno dall'altro
- Utilizzare efficentemente la memoria disponibile
- Fornire astrazione dalla memoria fisica

Paginazione

La paginazione è una tecnica che divide la memoria in frame di dimensione fissa:

1. Meccanismo Base:

- Memoria virtuale divisa in pagine
- Memoria fisica divisa in frame
- Page table per mappare pagine su frame

2. Page Table:

- Contiene mapping virtuale-fisico
- Entry tipiche includono:
 - Bit di validità
 - Bit di modifica (dirty)
 - Bit di riferimento
 - Permessi di accesso

3. Page Fault:

- Si verifica quando si accede a una pagina non in memoria
- Gestione:
 - Trap al sistema operativo
 - Salvataggio stato processo
 - Caricamento pagina richiesta
 - Aggiornamento page table
 - Ripresa esecuzione

Segmentazione

La segmentazione divide la memoria in segmenti di dimensione variabile:

1. Caratteristiche:

- Segmenti logici (codice, dati, stack)
- Dimensione variabile
- Protezione naturale tra segmenti

2. Vantaggi:

- Supporta condivisione codice
- Protezione a livello di segmento
- Organizzazione logica della memoria

3. Svantaggi:

- Frammentazione esterna
- Complessità di gestione
- Overhead per tabelle dei segmenti

Parte 2: Livello Fisico

1. Teoria dei Segnali

Caratteristiche Fondamentali

1. Ampiezza:

- Misura la forza del segnale
- Influenza la distanza di trasmissione
- Soggetta ad attenuazione
- Misurata in volt o decibel

2. Frequenza:

- Oscillazioni per unità di tempo
- Determina la banda occupata
- Influenza la capacità del canale
- Misurata in Hertz (Hz)

3. Fase:

- Posizione relativa dell'onda
- Importante per modulazioni complesse
- Usata in comunicazioni digitali
- Misurata in gradi o radianti

Digitalizzazione

Il processo di conversione analogico-digitale include:

1. Campionamento:

- Acquisizione periodica del segnale
- Frequenza secondo Nyquist
- Aliasing e suoi effetti
- Tecniche di anti-aliasing

2. Quantizzazione:

- Discretizzazione dei valori
- Errore di quantizzazione
- Numero di livelli
- Rapporto segnale/rumore

3. Codifica:

- Rappresentazione binaria
- Codici a lunghezza fissa/variabile
- Tecniche di compressione
- Correzione errori

2. Mezzi Trasmissivi

1. Doppino

Il doppino intrecciato rappresenta una delle soluzioni più diffuse per il cablaggio delle reti locali. La sua struttura consiste in coppie di conduttori intrecciati per ridurre le interferenze elettromagnetiche.

Categorie principali:

- Cat5e: Supporta fino a 1 Gbps, frequenza fino a 100 MHz
- Cat6: Supporta fino a 10 Gbps su distanze brevi, frequenza fino a 250 MHz
- Cat6a: Supporta 10 Gbps su 100m, frequenza fino a 500 MHz
- Cat7: Supporta 10 Gbps e oltre, frequenza fino a 600 MHz

Tipi di schermatura:

- UTP (Unshielded Twisted Pair): Nessuna schermatura, economico ma sensibile a interferenze
- FTP (Foiled Twisted Pair): Schermatura generale con foglio di alluminio
- STP (Shielded Twisted Pair): Schermatura individuale delle coppie
- S/FTP (Screened Foiled Twisted Pair): Combinazione di schermature

Caratteristiche trasmissive:

- Impedenza caratteristica: 100 Ohm
- Attenuazione: Aumenta con frequenza e distanza
- Diafonia (crosstalk): Ridotta dall'intreccio dei conduttori
- Lunghezza massima: Tipicamente 100 metri

2. Cavo Coassiale:

- Struttura concentrica
- Impedenza caratteristica
- Tipi (RG-58, RG-6)
- Applicazioni (TV, reti)

2. Cavo Coassiale

Il cavo coassiale offre una migliore immunità ai disturbi grazie alla sua struttura concentrica.

Struttura:

- Conduttore centrale: Rame pieno o intrecciato
- Dielettrico: Isolante (tipicamente polietilene)
- Schermo metallico: Treccia di rame o foglio di alluminio

Guaina esterna: Protezione meccanica

Tipi principali:

RG-58: Thin Ethernet, 50 Ohm, reti legacy

RG-59: Video analogico, 75 Ohm

RG-6: TV digitale e satellite, 75 Ohm

RG-11: Dorsali lunghe, 75 Ohm

Prestazioni:

Banda passante: Fino a qualche GHz

Attenuazione: Inferiore al doppino

Immunità EMI: Eccellente

Distanze: Centinaia di metri

3. Fibra Ottica

La fibra ottica rappresenta il mezzo trasmissivo più avanzato, utilizzando la luce per la trasmissione dei dati.

Struttura fisica:

Core: Nucleo in vetro/silice

Cladding: Rivestimento ottico

Buffer: Protezione primaria

Jacket: Guaina esterna

Tipologie:

1. Multimodale:

- Core più largo (50 o 62.5 μm)
- Distanze brevi/medie (fino a 2 km)
- LED come sorgente luminosa
- Minor costo

2. Monomodale:

- Core sottile (9 µm)
- Lunghe distanze (100+ km)
- Laser come sorgente
- Prestazioni superiori

Caratteristiche trasmissive:

Attenuazione: 0.2-0.5 dB/km

Banda: Teoricamente illimitata

- Immunità totale EMI/RFI
- No problemi di massa/terra

1. Caratteristiche:

- Frequenze utilizzate
- Portata e copertura
- Interferenze
- Sicurezza

2. Standard:

- WiFi (IEEE 802.11)
- Bluetooth
- Cellular (4G, 5G)
- Satellite

4. Problematiche di Trasmissione

Attenuazione

- Riduzione potenza segnale
- Dipendenza dalla distanza
- Effetti della frequenza
- Tecniche di compensazione

Distorsione

- Alterazione forma d'onda
- Distorsione di ampiezza
- Distorsione di fase
- Equalizzazione

4. Topologie e Tipi

Le topologie di rete rappresentano l'organizzazione fisica e logica dei dispositivi nella rete (forma). Ogni topologia presenta caratteristiche uniche che la rendono adatta a specifici scenari di utilizzo.

Topologia a Bus

In una topologia a bus, tutti i dispositivi sono collegati a un unico cavo di comunicazione principale. Questa configurazione era molto comune nelle prime reti Ethernet.

Caratteristiche principali:

Il segnale si propaga lungo tutto il bus e raggiunge tutti i nodi

- Richiede terminatori alle estremità per evitare riflessioni del segnale
- Utilizza il protocollo CSMA/CD per gestire le collisioni
- Ogni dispositivo ha un indirizzo univoco per identificare il destinatario

Vantaggi e svantaggi:

- Semplice da implementare e poco costosa
- Problematica per reti grandi (collisioni frequenti)
- Un guasto sul bus interrompe tutta la rete
- Limitata in termini di prestazioni con molti dispositivi

Topologia a Stella

La topologia a stella è attualmente la più diffusa nelle reti locali moderne. Tutti i dispositivi sono collegati direttamente a un nodo centrale (hub o switch).

Caratteristiche principali:

- Comunicazione passa sempre attraverso il dispositivo centrale
- Switch moderni permettono comunicazioni simultanee tra coppie di dispositivi
- Facilità di aggiunta/rimozione dispositivi
- Cablaggio punto-punto per ogni dispositivo

Vantaggi e svantaggi:

- Elevata affidabilità (un guasto su un ramo non influenza gli altri)
- · Facile gestione e troubleshooting
- Il nodo centrale rappresenta un single point of failure
- Costi maggiori per il cablaggio

Topologia ad Anello

Nell'anello, ogni dispositivo è collegato a due vicini, formando un percorso circolare per i dati.

Caratteristiche principali:

- Utilizzo del token passing per controllo accesso
- Flusso dati unidirezionale (o bidirezionale in dual ring)
- Ogni nodo agisce come ripetitore del segnale
- Implementazione comune in reti FDDI e Token Ring

Vantaggi e svantaggi:

Prestazioni deterministiche (tempo massimo di accesso garantito)

- Buona gestione del traffico pesante
- Vulnerabile a singole interruzioni (risolto con dual ring)
- Latenza proporzionale al numero di nodi

Topologia a Maglia

La topologia a maglia prevede collegamenti ridondanti tra i nodi, creando percorsi multipli per i dati.

Caratteristiche principali:

- Può essere parziale (alcuni nodi) o completa (tutti i nodi)
- Richiede protocolli di routing dinamico
- Alta tolleranza ai guasti
- Utilizzata principalmente in reti backbone e WAN

Vantaggi e svantaggi:

- Massima affidabilità e ridondanza
- Eccellente bilanciamento del carico
- Complessità di gestione elevata
- Costi significativi per l'implementazione

Dimensioni di Rete

Le reti si classificano in base alla loro estensione geografica, con caratteristiche e requisiti specifici per ogni categoria.

LAN (Local Area Network)

Le LAN operano in un'area geograficamente limitata, tipicamente un edificio o un campus.

Caratteristiche principali:

- Alta velocità (da 100 Mbps a 10 Gbps)
- Bassa latenza (< 1ms)
- Controllo centralizzato
- Tecnologie dominanti: Ethernet, Wi-Fi

Applicazioni tipiche:

- Reti aziendali
- Laboratori informatici
- Reti domestiche
- Piccole organizzazioni

MAN (Metropolitan Area Network)

Le MAN coprono l'area di una città o di un grande campus.

Caratteristiche principali:

- Velocità medio-alte (10 Mbps 10 Gbps)
- Latenza media (1-10ms)
- Spesso utilizzano fibra ottica
- Possono interconnettere multiple LAN

Applicazioni tipiche:

- Reti universitarie
- Reti cittadine
- Servizi municipali
- Dorsali metropolitane

WAN (Wide Area Network)

Le WAN coprono aree geografiche estese, come nazioni o continenti.

Caratteristiche principali:

- Velocità variabili (da alcuni Mbps a Tbps sulle dorsali)
- Latenza significativa (> 10ms)
- Utilizzano infrastrutture di telecomunicazione
- Protocolli di routing complessi

Applicazioni tipiche:

- Internet
- Reti aziendali multinazionali
- Backbone provider
- Servizi cloud distribuiti

Interconnessione tra Dimensioni

Le diverse dimensioni di rete si interconnettono creando una gerarchia di comunicazione:

- Accesso locale: Dispositivi si collegano alla LAN
- Aggregazione: LAN si collegano a MAN
- 3. Backbone: MAN si collegano attraverso WAN
- 4. Internet: Interconnessione globale di tutte le reti

Questa struttura gerarchica permette:

- Scalabilità efficiente
- · Gestione del traffico ottimizzata
- Isolamento dei problemi
- Prestazioni appropriate per ogni livello

Un esempio pratico di questa interconnessione è il percorso che un pacchetto segue per raggiungere un server web:

- 1. Dal PC attraverso la LAN aziendale
- 2. Dalla LAN alla MAN del provider
- 3. Dalla MAN alla WAN internazionale
- 4. Attraverso multiple WAN fino al server di destinazione