MSc in Informatics Engineering

Dissertation Intermediate Report

Evaluate the robustness of the Cloud

Gonçalo Silva Pereira gsp@student.dei.uc.pt

Supervisor:

Raul Barbosa

Co-Supervisor:

Henrique Madeira

June 27, 2015

Acknowledgements

I would like to thank Thomas Corbat and professors Raul Barbosa and Henrique Madeira, who are role models, by their support and help to make good decisions.

Thank my girlfriend for her support, understanding and the fellowship along this path. To my friends and colleagues of Department of Informatics Engineering for the patience and for all the times they have given me support.

Last but certainly not least, I would like to thank to my family for the encouragement, love and all the unconditional and constant support that let me fulfill this dream. Obrigado!

Gonçalo Silva Pereira

66 Bridges are normally built on-time, on-budget, and do not fall down. On the other hand, software never comes in on-time or on-budget. In addition, it always breaks down.

 $Alfred\ Z.\ Spector,\ Google\ Research$

"

& I have no special talents. I am only passionately curious.

Albert Einstein

"

Contents

Ał	ostract	1
1	Introduction 1.1 Contextualization	2 2 2 2 3 3
2	State of the Art 2.1 Software Implemented Fault Injection of Software Faults 2.2 ODC Model	5 7 8
3	Research objectives and approach method 3.1 Cloud Computing	9 9 12
4	Fault Injector Development 4.1 Generate derivations	13 13 18
5	Work plan and implications 5.1 Analyze the effects	19 20
6	Conclusion6.1 Global Vision	21 21 23
A Re	Appendix A.1 Appendix A - Gantt diagrams	26 26 27 28
1/6	et ettees	30

List of Figures

1	Cloud computing overview	9
2	Cloud computing service models	11
3	Decision tree	19
4	Overview of the injection tool	20
5	First experiment	24
6	Second experiment	24
7	Third experiment	25
8	Fourth experiment	25
9	First and second semester gantt	26
10	Risks	27
List	of Tables	
1	Fault injection techniques and emulation environment	5
2	Fault emulation operators	13
3	Fault emulation contraints defined by João Durães	18
4	Other constraints	18
5	State of the operators and its constraints	21
6	State of the constraints	22
7	State of the other constraints	22

Abstract

O abstract começa com um âmbito demasiado abrangente, e até um pouco fora do tema principal da tese. Tem de ser re-escrito para ficar mais focado.

Nowadays, the Information and Communication Technologies are responsible for 2-4% of CO^2 emissions, but in the next five or ten years these will increase to $10\%^{[1]}$. Because of this, the next challenge is to reduce the costs of ICT and its impact in the environment while the IC services keep growing.

Cloud computing is a new paradigm that provides on-demand self-service resources (computing, network and storage). It also promises to reduce the costs of ICT, but isn't free of external disturbance like security attacks, power surges, workload faults and others.

Therefore, the theme of my dissertation is "Evaluate the robustness of the Cloud". I will design and implement a fault injector for software coded in C to evaluate the capacity of the cloud to recover from faults.

Breve contextualixação antes de dizer objetivo!!! This thesis/dissertation presents an ????

Keywords: Faults, Errors, Failures, Vulnerabilities, Fault Injection, Fault Tolerance, Security, Robustness.

1 Introduction

In the next subsections will be introduced the context and the scope of this project. 1,2 ou 3 paragrafos descritivos do problema

1.1 Contextualization

Logo aqui deve ficar claro que os bugs existem, vão sempre existir, e que testar a capacidade de qualquer sistema crítico para lidar com bugs existentes é fundamental. Daí todo o trabalho. Não é claro por que razão (ou razões) isto é específico para a Cloud. Não é igual fazer-se para a Cloud ou para programas stand-alone clássicos?

The present dissertation describes the work developed in the scope of Master of Science in Informatics Engineering. It is focused on "Evaluate the robustness of Cloud" and this is a very important issue nowadays, because of the increasing usage of this. It's characterized by the placement of data and software on remote infrastructure. Despite the numerous benefits, the reliability of these platforms hasn't kept the needs, and users trust on their applications to systems outside of personal control.

In this context, the problem of confidence in the entity that manages the platform where applications have been executed arises naturally. Any organization that put an application in the cloud (for example, Microsoft Azure or Amazon EC2) so should accept the assurances given by the service provider.

This internship deals with the challenge of assessing the robustness of cloud platforms. The computing service provider uses virtualization to manage and allocate computing power to meet present needs of the application. Although, there are solid virtualization platforms, fault tolerance is still a research problem.

resilience

1.2 The project

This project is based mainly in inject software faults. It was decided since there are already other people involved in the part of hardware faults.

1.3 Objectives

The main objective of this work is to evaluate the robustness of the cloud. To do that, I will design and implement a tool to inject software faults in source code of some applications.

Nevertheless, this objective is divided in some other goals:

Esta parte está bem, mas o passo de "evaluate the robustness of the cloud" para estes 3 objetivos é demasiado grande. Deve explicar-se um pouco mais, partindo de um objetivo grande, e progressivamente estabelecer o que aqui se chama "goals".

- Generate derivations of main code of selected programs;
- Verify and analyze the effect of produced faults;
- Compile the programs with injected faults, by using make file.

1.4 Document Structure

In this document are specified all the related subjects with the project.

The second section presents the state-of-the-art in the related areas with particular emphasis to Cloud Computing and Fault Injection.

The third section is an important section of this report, because of the research involved in the execution of this work. It was necessary to take some important decisions based in research results, knowledge and my own experience.

The fourth section describes the work that has been done in Fault Injector, and the work that should be done in the next semester.

The fifth section explains other modules that need to be executed in this project to observe and evaluate the results of the fault injector.

In the last section, I will do an overview analyses of my work, in general the operators and the constraints developed. I will also talk about the work to be done in the next semester.

1.5 Management

In this section is described the planning of work developed in this dissertation.

1.5.1 Meetings

About the meetings, the supervisor Raul Barbosa and I agreed that meeting once every week was the best option. Moreover they happened, with one or another change of schedule to reconcile with the other activities from both. In addition, I attended some general meetings of the project. In them, we could discuss concepts and the direction of the project with colleagues and teachers, among them: Raul Barbosa (supervisor), Henrique Madeira (co-supervisor), João Durães and João André Ferro.

1.5.2 Risks

As any other projects, this project have risks too. Risks related to the planning and execution of this dissertation. Some of the risks are related to equipment failure and data lost and to prevent that this happen I use *Github* to backup the source developed to the project and this report. This backups are done in all days that I do some improvements to this project.

The particularity of this project be in investigation nowadays, bring other risk to this project, associated to the publication of similar research, to reduce this risk, I will check with regularity electronic publications, and if similar research was published, I will modify the project to assure that adds value and it's not just like any other.

Moreover, I can have personal issues interfering with the progress of this project or lose the interest, and to prevent this I have selected a motivating topic at the beginning and I talk to the supervisor always that I have doubts.

This risks, the preventative measures and the recovery measures can be seen at Appendix A.2 in other perspective.

1.5.3 Planning and Tracking

In Appendix A.1, is showed the Gantt diagram with the tasks that have been done during the first semester. As I postponed this dissertation for six months so, the scope and the context have changed. Now the two Gantt diagrams are incomparable.

About the development of this project, I have used an *Agile Life Cycle* based in an *Incremental Model*.porque? ajuda? com que objectivo? foi uma boa opção? quais eram as alternativas? em que falhavam? porque nao foram escolhidas? What are the requirements of this project???

2 State of the Art

Nowadays, people use many services based in the cloud and many companies choose to use them too. By doing that, companies reduce the costs of IT infrastructure and not even need to buy "physical storage", neither care where the data is. The cloud service provides that the data is secure. However, like any system, the cloud has problems such any other computer system, software and hardware faults. The resilience of the cloud is very important too. Estas frases exemplificam um argumento pouco claro. Existe um "but" a unir as locuções, mas no entanto não há qualquer relação entre elas. Como resultado, é pouco claro o que se pretende dizer he increased use of cloud is related to a low usage of many dedicated servers, lower voltage levels, reduction of noise margins and increasing clock rates. The cloud provider offer resources ready to deliver^[1].

There are many studies showing that the software faults^[2] are the main cause of computer failures. But, the number of faults that can be emulated is directly related to the technique used.

	Software	Hardware
Hardware		HWIFI
Software	SWIFI	SWIFI

Table 1: Fault injection techniques and emulation environment.

In the Table 1, it is possible to view that can be used SWIFI technique to take software to emulate software and hardware faults, and can be user HWIFI technique to emulate hardware faults throught hardware.

- **Software Implemented Fault Injection (SWIFI)** the goal of this technique is to emulate errors at software level that happen during the execution environment, in hardware or software; Examples: Data corruption in registers, memory or hard drive; Communication problems in network or NoC; Software faults in binary code, in object files or in source code.
- Hardware Implemented Fault Injection (HWIFI) this technique is related to the fault injections in the final system hardware. Examples: Electromagnetic pulse (EMP), radiation.

SWIFI are an attractive technique because won't require additional hardware (increase the cost of test). The targets of this technique are the applications and the operating systems, but, this technique don't have only advantages, can't inject faults in inaccessible areas of software and may disrupt or change the workload of the testing software. This technique can be used at:

• **Compilation time (object code level)** - Modify the structure of the program before the creation of executable file;

- Execution environment (binary code level) Changing the binary code activated by a timeout, an exception or a trap. At this level, less than seventy percent of the software faults can be emulated^[3].
- **Before compile time (source code level)** Derivate the source code by removing, replacing or inserting some simple code before the compilation of program;

With this work, I pretend to inject software faults and analyze how the system reacts to them.

O estilo continua com frases soltas, e pouco articuladas. Não sei se a maior parte das avarias são causadas por falhas de software. Há estudos que indicam que erros de operador são igualmente muito comuns. Por que razão é que "less than 70% of the software faults can be emulated!?" Podem ser todas emuladas. Algumas técnicas, p.ex. injeção no binário executável, é que podem não permitir injetar algumas falhas. No entanto, ao nível do código fonte, 100% das software faults são emuláveis.

I had the opportunity to access to the application (executable only) of Robert Natella, named SAFE, that injects software faults, as I also intended to do (I will describe it in next section).

2.1 Software Implemented Fault Injection of Software Faults

Above, I will describe some tools that use SWIFI technique and made some improvements in the area of this research.

2.1.1 JACA Tool

JACA^[4] is a tool that has been made to validate Java applications. It injects high-level software faults and is based on computational reflection to inject interface faults in Java applications^[5].

2.1.2 **J-SWFIT**

Java Software Fault Injection Tool^[6] is a tool that doesn't need the source code to perform the injection, the mutation of the code is performed directly at byte-code level.

2.1.3 SAFE by Robert Natella

Safe is an application to inject realistic software faults in programs coded in C and C++. This tool uses MCPP as parser, to get the tree of code. The decision of using MCPP instead of GCC parser was a workaround for some of the shortcomings of the GCC's C preprocessor.

After that, write some files, variations of original files (code with simple mutations) with operators applied. Robert Natella implemented thirteen operators in SAFE, same as João Durães^[7], but with the difference that Robert implemented at source code level, and João at binary level.

2.2 ODC Model

Orthogonal Defect Classification ^[8] Model is a framework developed by IBM ^[9], created to improve the level of technology available to assist the decisions of a software engineer, via measurement and analysis. ODC can be used to classify and analyze defects during software development.

For that, this model has eight categories:

- **Function** This defect affects significant capability, end-user features, product Application Programming Interface, interface with hardware architecture, or global structure(s). It would require a formal design change.
- **Assignment** Typically an assignment defect indicates an initialization of control blocks or a data structure.
- **Interface** Problems in the interaction with other components, modules, device drivers, call statements, control blocks, or parameter lists.
- **Checking** Based on the program logic that is checked and failed to validate data and values before the usage, loop conditions, etc.
- **Timing/serialization** Errors that happen in shared and real-time resources.
- **Build/package/merge** Errors that occur in the integration of library systems, management of changes, or in version control.
- **Documentation** Errors in the documentation, that can be propagated to publications and maintenance notes.
- **Algorithm** Problems that can be fixed by re-implementing an algorithm or local data structure, include efficiency or correctness that affect the task.

3 Research objectives and approach method

In this section are discussed the main aspects in study.

3.1 Cloud Computing

To understand a little more what the Cloud Computing means:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." [10].

Cloud Computing is a new way to delivery IT services on-demand (utility-oriented and Internet-centric). This services include all the computational power, from hardware infrastructure as a set of virtual machines to software services as development platforms and distributed applications.

Figure 1: Cloud computing overview.

Below, I will describe it in relation to characteristics, deployment models and service models^[11].

The characteristics of Cloud Computing are:

- On demand self-service The users can request and manage their cloud computing resources without requiring human interaction, through a webbased self-service portal.
- **Broad network access** Provide access over the network and using standard way through by several clients (e.g., mobile phones, tablets, laptops and workstations).
- **Resource pooling** The computer resources are pooled to serve multiple customers through the safe separation of the resources at logical level.

- **Rapid elasticity** Capability of resources to be elastically provisioned and released. Making sure that the application will have exactly the capacity that it needs at any point of time.
- **Measured service** The service is monitored, measured, and reported transparently based on the usage. The clients pay in accordance with the service spent.

Four models of deployment:

- **Private Cloud** It is a single-tenant cloud solution utilizing client hardware and software, is located inside the client firewall or even data center. The sensitive information is maintained inside of organization. It has the disadvantage of not having ability to scale on demand.
- Community Cloud It is shared by organizations with similar interests, supported by a specific community, sharing the same mission, security requirements, etc.
- **Public Cloud** It is available to the general public or to a group of a big company. It is a multi-tenant cloud solution owned by cloud service provider, that delivers shared hardware and software to clients private network (mostly the Internet) and data centers.
- **Hybrid Cloud** Composed by two or more services (private, community or public), together by standard technologies or proprietary that allows portability. Takes advantages from the best of private and public. Example: A client can implement a private cloud for applications with sensitive data and a public cloud for other data, non-sensitive.

Four levels of Cloud Computing Service Models:

- Infrastructure-as-a-Service As the name suggests, provides a computing infrastructure, such as virtual machines, firewalls, load balancers, IP addresses, virtual local area networks and others. Examples: Amazon EC2, Windows Azure.
- Platform-as-a-Service Provides a computing platform, normally includes operating system, programming language execution environment, database, web server and others. Examples: AWS Elastic Beanstalk, Windows Azure, Heroku.
- **Software-as-a-Service** Provides access to application softwares often referred as *on-demand self-service* software. Use it without install, setup, and run the application. Service provider does all those things for you. Examples: Google Apps, Microsoft Office 365.

Figure 2: Cloud computing service models.

 Business-Process-as-a-Service - This model provides an entire horizontal or vertical business process and builds on top of any of services previously described.

Nevertheless, such as any computer system, cloud computing isn't free of external disturbances $^{[1]}$, the most important are:

- Security attacks any try to gain unauthorized access;
- Accidents an unplanned event;
- Power surges an interruption of the flow of electricity;
- **Malfunction** bugs cause function wrongly, or not function at all;
- Worms malware computer program;
- **Distributed Denial of Service attacks** a try to make an network resource unavailable.

3.2 Tools

In the beginning of planning the basic software without any user interface, it was necessary to research the best applications, as the best way for using them to obtain panned results (fault injector). For that, I thought that I could use the same tools that I have used in Compilers course, Lex and Yacc.

3.2.1 Bison/Yacc

3.2.2 Eclipse CDT

Eclipse CDT, as the name suggests, is a plugin for Eclipse that provides a fully functional C and C++ Integrated Development Environment. Some of the features included in this plugin that are interesting for this project are:

- Source navigation;
- Code editor with syntax highlighting;
- Source code refactoring and code generation.

It's possible to use this plugin in standalone mode, importing .jar files to the project. Using it, I can code Fault Injector in Java, making the software more maintainable and easy to use, write, compile and debug.

3.2.3 GCC Parser

Nowadays, GCC use a hand-written parser to improve syntactic error diagnostics, giving people meaningful messages on syntax errors.

3.2.4 MCPP

In the end, I selected Eclipse CDT Plugin as standalone (only import libraries to project), because of my abilities in programming in Java Language, the maintainability of software, the low learning level than the developers need to modify it

4 Fault Injector Development

The Fault Injector currently in development is coded in Java using Eclipse CDT, and it will have thirteen operators (can be seen in Table 2)^[12]. However, the fault injector can have two schema's of trigger the faults: spatial and temporal. In the temporal way, the insertion of the fault is given by the time associate with the execution in system. Whereas, in the spatial way, the fault is injected when reaches the specified zone where the particular operator can be applied.

Fault Type	Description	
MFC	Missing function call	
MIA	Missing if construct around statements	
MIEB	Missing if construct plus statements plus else before statements	
MIFS	Missing if construct and surrounded statements	
MLAC	Missing and sub-expr. in logical expression used in branch condition	
MLOC	Missing or sub-expr. in logical expression used in branch condition	
MLPA	Missing localized part of the algorithm	
MVAE	Missing variable assignment with an expression	
MVAV	Missing variable assignment with a value	
MVIV	Missing variable initialization with a value	
WAEP	Wrong arithmetic expression in parameters of function call	
WPFV	Wrong variable used in parameter of function call	
WVAV	Wrong value assigned to a variable	

Table 2: Fault emulation operators.

In the beginning of this project, Convém explicar e contextualizar tudo isto. Nas notas ao longo do semestre creio que há muitos argumentos que fomos colecionando.

4.1 Generate derivations

I chose to use a set of the most representative faults, previously specified by João Durães^[7] according to his data-field results, specified individually further down:

4.1.1 MFC

- Missing function call

The emulation of this operator is based in the remotion of a function call in a context where the returned value is not used. But, to do the remotion, the constraints below need to be validated.

- **C01** Return value of the function must **not** be used;
- C02 Call must **not be** the only statement in the block.

4.1.2 MIA

- Missing if construct around statements - Implemented

This operator simulate a missing if condition surrounding a set of statements. This causes that the statements are always executed and not only when the condition of if is true.

- C08 The if construct must **not be** associated to an else construct:
- **C09** Statements must **not include** more than five statements and not include loops.

4.1.3 MIEB

- Missing if construct plus statements plus else before statements - **Imple- mented**

This operator generates derivations of the source code of applications by removing the if construct plus statements plus else before statements. To apply this operator I need to verify the constraint above:

• C08n - The if construct must be associated to an else construct.

This constraint does not exists in João Durães specification, but as this operator cannot be applied in all situations, I specify and implement it.

4.1.4 MIFS

- Missing if construct and surrounded statements - Implemented

The application of this operator changes the source code with the remotion of one *if* construct and the statements surrounded by it. But, to do that, I need to verify the constraints above:

- **C02** Call must **not be** the only statement in the block;
- C08 The if construct must **not be** associated to an else construct;
- **C09** Statements must **not include** more than five statements and not include loops.

4.1.5 MLAC

- Missing and sub-expr. in logical expression used in branch condition - **Implemented**

This operator emulates the remotion of part of a logical expression used in a branch condition. To apply this operator, the code must have at least two branch conditions linked together with the logical operator AND. With an AND operator, if one of the sub-expressions is *false* all the expression will be *false* and the condition will fail.

• C12 - Must have at least two branch conditions.

4.1.6 MLOC

- Missing or sub-expr. in logical expression used in branch condition - **Implemented**

This operator emulate the remotion of part of a logical expression used in a branch condition. To apply this operator, the code must have at least two branch conditions linked together with the logical operator OR. It is only necessary that one of the sub-expressions be true to the entire expression are evaluated as true. This operator have only one constraint:

• C12 - Must have at least two branch conditions.

4.1.7 MLPA

- Missing localized part of the algorithm

As the name suggests, this operator emulate the omission of a small and localized part of the algorithm.

- **C02** Call must **not be** the only statement in the block;
- **C10** Statements are in the same block, **do not include** more than five statements, or loops.

The constraint **C02** guarantees that don't be removed all the statements in a block, because this would not correspond to a realistic fault. This type of faults never involved the remotion of *if* or *if-else* and loop constructs (the omitted statements were always function calls and assignments) guaranteed by constraint **C10**.

4.1.8 MVAE

- Missing variable assignment with an expression

This operator reproduces the omission of a given local variable with an expression. But not when is the first assignment to a variable, an initialization, guaranteed by the constraint **C07**.

- C02 Call must **not be** the only statement in the block;
- **C03** Variable must **be** inside stack frame;
- C06 Assignment must **not be** part of a for construct;
- **C07** Must **not be** the first assignment for that variable in the module.

4.1.9 MVAV

- Missing variable assignment with a value

Operator **MVAV** is similar to operator **MVAE**, with the difference that it emulate the remotion of the assignment of a given local variable with a constant value instead of a expression. The constraints related with this operator are the same of **MVAE**:

- **C02** Call must **not be** the only statement in the block;
- **C03** Variable must **be** inside stack frame;
- C06 Assignment must **not be** part of a for construct;
- **C07** Must **not be** the first assignment for that variable in the module.

4.1.10 MVIV

- Missing variable initialization with a value

As the name suggests, this operator represents the remotion of a given local variable initialization with a constant value. The fact that this operator only search for variable initialization induce that only the first occurrence of an assignment to a particular variable are readable to apply this type of fault, this is guaranteed by the constraint **C04**. The constraint **C05** verify if the assignment don't occurs inside a loop, because one assignment of this type occurs several times. But this operator has other associated constraints:

- C02 Call must **not be** the only statement in the block;
- **C03** Variable must **be** inside stack frame:
- **C04** Must **be** the first assignment for that variable in the module;
- **C05** Assignment must **not be** inside a loop;
- **C06** Assignment must **not be** part of a for construct.

4.1.11 WAEP

- Wrong arithmetic expression in parameters of function call This operator represents the

4.1.12 WPFV

- Wrong variable used in parameter of function call
- **C03** Variable must **be** inside stack frame;
- C11 There must be at least two variables in this module.

4.1.13 WVAV

- Wrong value assigned to a variable

As the name suggests, this operator simulate an assignment of a wrong value to a variable. To do that, the operator

- C03 Variable must be inside stack frame;
- ${\bf C04}$ Must ${\bf be}$ the first assignment for that variable in the module;
- C06 Assignment must **not be** part of a for construct.

The operators above will be applied to source code of applications and will generate modified files.

4.2 Constraints

As was discussed in the specification of the operators, the same can be applied in all the situations and need to be applied in accordance with the field-data study, that have been done by João Durães.

Constraints	Description	
C01	Return value of the function must not be used	
C02	Call must not be the only statement in the block	
C03	Variable must be inside stack frame	
C04	Must be the first assignment for that variable in the module	
C05	Assignment must not be inside a loop	
C06	Assignment must not be part of a for construct	
C07	Must not be the first assignment for that variable in the module	
C08	The if construct must not be associated to an else construct	
C09	Statements must not include more than five statements and not in-	
	clude loops	
C10	Statements are in the same block, do not include more than five state-	
	ments, or loops	
C11	There must be at least two variables in this module	

Table 3: Fault emulation contraints defined by João Durães.

The constraint C07 is similar to constraint C04, one is the negation of another. This happen too with the constraint C08 and C08n. Constraint c10 are the same as constraint C09, but with one additional restriction, the statements need to be contiguous and need to belong to the same code block.

When was implementing the operators **MIEB** and **MLOC**, it was necessary to define the constraints **C08n** and **C12**. The constraint **C08n** was created because of the operator **MIEB** cannot be applied to an *if* without an *else* construct and the constraint **C12** was created because the operator **MLOC** can't be emulated in a branch with only one condition.

Constraints	Description	
C08n	The if construct must be associated to an else construct	
C12	Must have at least two branch conditions	

Table 4: Other constraints.

This constraints can be modified during the implementation of the other operators that aren't yet implemented.

5 Work plan and implications

In the figure 3, can be seen an overview of the main decisions that I did during the first semester of this dissertation. Since the beginning of this project, it was expected to create a fault injector.

Figure 3: Decision tree.

Select five to ten programs to be tested. Justificar a utilização de patchs Built three separated modules:

Figure 4: Overview of the injection tool.

- Generate the derivations of main code of selected programs;
- Verify and analyze the effect of produced faults;
- Compile the programs with injected faults, by using make file.

Problems with the rewriting of tree Reflection

But I was forced to take decisions after that, for example, after creating the tree of code, I can go through the tree in the recursive way or using *Visitor Pattern*.

5.1 Analyze the effects

The fault injected results are equal to the real software faults? After the compilation and execution of the programs, the results need to be evaluated. To measure that, I will use the Koopman's $CRASH\ Scale^{[13]}$:

- Catastrophic Operating System crashed or multiple tasks affected;
- Restart Task or process hangs, requiring restart;
- **A**bort Task or process aborts abnormally (i.e. "code dump" or "segmentation violation");
- **S**ilent Test Process exits without an error code returned when one should exist;
- Hindering Test Process exits with an error code not relevant to the situation or incorrect error code returned;
- Pass The module exits properly, possibly with an appropriate error code.

This *CRASH Scale* is one way to show results of the effect of faults on an end-use system, mainly from the operating system perspective.

Esta parte é particularmente importante: a classificação dos efeitos. Creio que há mais a dizer, pois fará parte do plano futuro de desenvolvimento classificar o que cada programa defeituoso faz.

6 Conclusion

6.1 Global Vision

In table 5, it's possible to view at green color, the operators that were implemented in the first semester of this dissertation. As can be seen, I have implemented five of thirteen operators that João Durães specified. The first operator that I have implemented with sucess was the MIFS, and as the operators MIA and MIEB are similar and have some constraints in common, then I implemented them.

Fault Type	Description		
MFC	Missing function call		
MIA	Missing if construct around statements		
MIEB	Missing if construct plus statements plus else before statements		
MIFS	Missing if construct and surrounded statements		
MLAC	Missing and sub-expr. in logical expression used in branch condition		
MLOC	Missing or sub-expr. in logical expression used in branch condition		
MLPA	Missing localized part of the algorithm		
MVAE	Missing variable assignment with an expression		
MVAV	Missing variable assignment with a value		
MVIV	Missing variable initialization with a value		
WAEP	Wrong arithmetic expression in parameters of function call		
WPFV	Wrong variable used in parameter of function call		
WVAV	Wrong value assigned to a variable		

Table 5: *State of the operators and its constraints.*

In table 6, is also possible to check that I have implemented three of eleven constraints related to the thirteen operators, represented at green color.

Constraints	Description	
C01	Return value of the function must not be used	
C02	Call must not be the only statement in the block	
C03	Variable must be inside stack frame	
C04	Must be the first assignment for that variable in the module	
C05	Assignment must not be inside a loop	
C06	Assignment must not be part of a for construct	
C07	Must not be the first assignment for that variable in the module	
C08	The if construct must not be associated to an else construct	
C09	Statements must not include more than five statements and not in-	
	clude loops	
C10	Statements are in the same block, do not include more than five state-	
	ments, or loops	
C11	There must be at least two variables in this module	

Table 6: *State of the constraints.*

Constraints Description	
C08n	The if construct must be associated to an else construct
C12	Must have at least two branch conditions

 $Table \ 7: \textit{State of the other constraints}.$

6.2 Future Work

Mais do que "future work" é necessário um plano para o segundo semestre, relativamente detalhado.

Globalmente há várias coisas que não estão suficientemente bem explicadas:

- exatamente quais são as características novas da cloud, que devem ser avaliadas por injeção de falhas (podemos conversar sobre isto)
- qual a razão para se desenvolver algo novo, quando a ferramenta do Natella já faz muito (lembro-me que colecionámos muitos argumentos que estão anotados)
- como é que se vai dar uso ao que está implementado? far-se-ão experiências, os resultados serão classificados e analisados certamente
- o estado da arte deveria ponderar os prós e os contras de todas as técnicas para injeção de falhas de software (binário, instrumentação, source code, runtime, etc.)
- o texto deve ser clarificado, mas essencialmente é no plano das ideias que muitas vezes está pouco claro: por que razão se está a fazer isto?
 - quais são as alternativas? como é feito? exatamente o que é feito

In the future, I have planned to implement the other operators and constraints. In addition, apply this software in testing of open source software's that I will select.

I will use regression testing to verify if when I coded one new operator or constraint I didn't mess with the operators and constraints previous implemented. From version to version, I use a regression testing to test the fault injector to guarantee that application doesn't regarded.

"The purpose of regression testing is to ensure that changes made to software, such as adding new features or modifying existing features, have not adversely affected features of the software that should not change. Regression testing is usually performed by running some, or all, of the test cases created to test modifications in previous versions of the software."

Regression Testing System testing Unit tests Performance analyses

6.2.1 Experiments

Figure 5: First experiment.

Figure 6: Second experiment.

Figure 7: Third experiment.

Figure 8: Fourth experiment.

Fault

A Appendix

A.1 Appendix A - Gantt diagrams

Figure 9: First and second semester gantt.

A.2 Appendix B - Risks table

Risc Area	Preventative Measures	Recovery Measures	
	Ensure regular maintenance is undertaken	Use alternative sources/type of equipment as	
Equipment Failure	Allow for sufficient funding for repairs	appropriate	
	Indentify alternative sources/type of equipment		
Data lost	Back-up data regularly		
	Regularly search electronic publications databases		
Publication of similar research	Continue literature review throughout candidature	Modify project	
	Ensure timely submission		
	Take leave of absence (unless for sickness or bereavement)		
Personal issues interfere with progress	Take annual leave	Re-apply for admission when able to commit	
r ersonarissoes interiere with progress	Take sick leave	Re-apply for admission when able to commit	
	Communicate with supervisor		
	Select motivating topic at the start		
	Enrolling area ensures a dynamic research culture		
Student loses interest	Improve communication between student and supervisor		
Student loses interest	Look for warning signs		
	Register for support programs/seminars		
	Talk to fellow students in research area		
Discuss between the desired accounting	Understand each other's roles and expectations		
Dispute between student and supervisor	Agree on dispute resolution process when initiating relationship		
	Supervisor to plan out workload		
Supervisor takes excessive time to check final drafts	Student plan ahead to ensure supervisor will be available		
uiais	Student/Supervisor to review chapters/sections at regular intervals		
Student wants to submit thesis without supervisor	Student to be counselled regarding implications - a recomendation of fail	Review of thesis by alternative person within	
approval	or major revision from examiners likely if thesis below standard	University recommended	

Figure 10: Risks.

A.3 Appendix C - Abbreviations

API Application Programming Interface

BPaaS Business-Process-as-a-Service

DDOS Distributed Denial of Service

EMP Electromagnetic pulse

HWIFI Hardware Implemented Fault Injection

IaaS Infrastructure-as-a-Service

ODC Orthogonal Defect Classification

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SWIFI Software Implemented Fault Injection

Operators

MFC missing function call

MIA missing if construct around statements

MIEB missing if construct plus statements plus else before statements

MIFS missing if construct and surrounded statements

MLAC missing and sub-expr. in logical expression used in branch condition

MLOC missing or sub-expr. in logical expression used in branch condition

MLPA missing localized part of the algorithm

MVAE missing variable assignment with an expression

MVAV missing variable assignment with a value

WAEP wrong arithmetic expression in parameters of function call

WPFV wrong variable used in parameter of function call

WVAV wrong value assigned to a variable

Constraints

- C01 return value of the function must not be used
- C02 call must **not be** the only statement in the block
- C03 variable must be inside stack frame
- C04 must be the first assignment for that variable in the module
- C05 assignment must not be inside a loop
- C06 assignment must **not be** part of a for construct
- **C07** must **not be** the first assignment for that variable in the module
- C08 the if construct must **not be** associated to an else construct
- C08n the if construct must be associated to an else construct
- C09 statements must **not include** more than five statements and not include loops
- C10 statements are in the same block, do not include more than five statements, or loops
- C11 there must be at least two variables in this module
- C12 must have at least two branch conditions

References

- [1] K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, *Resilience assessment and evaluation of computing systems.* Springer, 2012.
- [2] A. Avizzienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and taxonomy of dependable and secure computing."
- [3] H. Madeira, D. Costa, and M. Vieira, "On the emulation of software faults by software fault injection," in *Dependable Systems and Networks*, 2000. DSN 2000. Proceedings International Conference on. IEEE, 2000, pp. 417–426.
- [4] L. Regina, E. Martins *et al.*, "Jaca—a software fault injection tool," in *null*. IEEE, 2003, p. 667.
- [5] E. Martins, C. M. Rubira, and N. G. Leme, "Jaca: A reflective fault injection tool based on patterns," in *Dependable Systems and Networks*, 2002. DSN 2002. Proceedings. International Conference on. IEEE, 2002, pp. 483–487.
- [6] B. P. Sanches, T. Basso, and R. Moraes, "J-swfit: A java software fault injection tool," in *Dependable Computing (LADC)*, 2011 5th Latin-American Symposium on. IEEE, 2011, pp. 106–115.
- [7] J. A. Duraes and H. S. Madeira, "Emulation of software faults: A field data study and a practical approach," *Software Engineering, IEEE Transactions on*, vol. 32, no. 11, pp. 849–867, 2006.
- [8] N. Bridge and C. Miller, "Orthogonal defect classification using defect data to improve software development," *Software Quality*, vol. 3, no. 1, pp. 1–8, 1998.
- [9] R. Chillarege, *Orthogonal Defect Classification*. Handbook of Software Reliability Engineering, ed. Michael R. Lyu (Los Alamitos, CA: IEEE Computer Science Press, 2004.
- [10] P. Mell and T. Grance, "The nist definition of cloud computing," 2011.
- [11] E. Schouten, IBM® SmartCloud® Essentials. Packt Publishing Ltd, 2013.
- [12] J. A. Duraes, "Faultloads baseadas em falhas de software para testes padronizados de confiabilidade," *Thesis*, pp. 0–269, 2005.
- [13] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, "Comparing operating systems using robustness benchmarks," in *Reliable Distributed Systems*, 1997. Proceedings., The Sixteenth Symposium on. IEEE, 1997, pp. 72–79.