Clebsch-Gordan Coefficents

Addition of angular momenta

$$J_1$$
 J_2 $|\alpha_1 j_1 m_1\rangle = basis \ for \ J_1^2 \ and \ J_{1z}$ $|\alpha_2 j_2 m_2\rangle = basis \ for \ J_2^2 \ and \ J_{2z}$

The base vectors

$$\begin{aligned} \left|\alpha j_1 j_2 m_1 m_2\right\rangle &\equiv \left|\alpha_1 j_1 m_1\right\rangle \left|\alpha_2 j_2 m_2\right\rangle \\ &\alpha, j_1, j_2 \text{ fixed,} \\ &m_1, m_2 \text{ vary} & -j_1 \leq m_1 \leq j_1 \\ &-j_2 \leq m_2 \leq j_2 \end{aligned}$$

span the subspace $\xi(\alpha, j_1, j_2)$.

$$J^2 = (J_1 + J_2)^2$$
 and J_z act on $\xi(\alpha, j_1, j_2)$

Since J_1^2 and J_2^2 commute with J_2^2 and J_z , can also use the base

$$|\alpha j_1 j_2 jm\rangle$$
, α, j_1, j_2 fixed
 j, m vary
 $|j_1 - j_2| \le j \le (j_1 + j_2)$
 $-j \le m \le j$

to generate the same subspace $\xi(\alpha, j_1, j_2)$.

The two bases are related:

$$|\alpha j_1 j_2 jm\rangle = \sum_{m_2=-j_2}^{j_2} \sum_{m_1=-j_1}^{j_1} |\alpha j_1 j_2 m_1 m_2\rangle \langle j_1 j_2 m_1 m_2 | jm\rangle$$

$$\left|\alpha \ j_{1} \ j_{2} \ m_{1} \ m_{2}\right\rangle = \sum_{m=-j}^{j} \sum_{j=\left|j_{1}-j_{1}\right|}^{(j_{1}+j_{2})} \left|\alpha \ j_{1} \ j_{2} \ j \ m\right\rangle \left\langle j \ m \left|j_{1} \ j_{2} \ m_{1} \ m_{2}\right\rangle$$

$$\langle j_1 j_2 m_1 m_2 | j m \rangle = \langle j m | j_1 j_2 m_1 m_2 \rangle^* \equiv \text{Clebsch-Gordan coefficents}$$

Meaning of C.G. coeffs

- (i) relating two basis vectors (just like Fourier transform)
- (ii) $\langle j_1 j_2 m_1 m_2 | j m \rangle$ = probability amplitude of finding the state $|j_1 j_2 m_1 m_2\rangle$ when the system is in state $|jm\rangle$

Properties of C.G. coeffs

(1) Selection rule:

$$\langle \alpha j_1 j_2 m_1 m_2 | jm \rangle = 0$$
 unless
 $m_1 + m_2 = m$ and $|j_1 - j_2| \le j \le (j_1 + j_2)$

(2) Phase convention: require

$$\langle j_1 j_2 j_1 m_2 | j j \rangle$$
 real and ≥ 0
 $m_2 = j - j_1$
 $j = |j_1 - j_2|, |j_1 - j_2| + 1....$ $(j_1 + j_2)$

Note: When $m_1 = j_1$ and m = j, it does <u>not</u> necessarily imply $m_2 = j_2$ since $j \neq (j_1 + j_2)$ in general

(3) Reality: All C.G. coeffs can be obtained from

$$\langle j_1 j_2 j_1 m_2 | j j \rangle$$

: all C.G. coeffs are real

(4) Orthogonality

$$\sum_{m_1 m_2} \langle j_1 j_2 m_1 m_2 | j m \rangle \langle j_1 j_2 m_1 m_2 | j' m' \rangle = \delta_{jj'} \delta_{mm'}$$

$$\sum_{j=m} \langle j_1 j_2 m_1 m_2 | j m \rangle \langle j_1 j_2 m_1 m_2 | j m \rangle = \delta_{m_1 m_1} \delta_{m_2 m_2}$$

Wigner-Eckart theorem

In a standard representation $\{J^2, J_z\}$ whose basis vectors are denoted by $|\tau| jm\rangle$,

The matrix element $\langle \tau j m | T_{\rho}^{(k)} | \tau' j' m' \rangle$

of the qth standard component of a given kth order irreducible tensor operator, T^(k), is equal to the product of the Clebsch-Gordan coefficient.

$$\langle j'km'q|jm\rangle$$

by a quantity independent of m, m and q (q = -k, -k+1,+k)

$$(q = -k, -k+1, + k)$$

$$\left\langle \tau \, j \, m \middle| T_q^{(k)} \middle| \tau' j' m' \right\rangle = \frac{1}{\sqrt{2 \, j + 1}} \left\langle \tau \, j \, || \, T^{(k)} \, || \, \tau' j' \right\rangle \Box \left\langle j' k \, m' q \middle| j m \right\rangle$$

$$\langle \tau j || T^{(k)} || \tau j' \rangle$$
 = reduced matrix element

$$\langle j'km'q|jm\rangle$$
=Clebsch-Gordan coefficient

$$\neq 0$$
 only if $m = m' + q$ and $|j - j'| \le k \le j + j'$

For a scalar operator S $\langle \tau jm | s | \tau jm' \rangle = \delta_{ii} \delta_{mm} S_{\tau\tau}^{(j)}$