 <i>/</i>	/
	:

Numercical Integration

回

Newton - Cotes Formula:

- Definite integral,

$$I(f) = \int_{a}^{b} f(x) dx$$

$$\Rightarrow continuous \text{ overr } [a, b]$$

By definition an integral is an infinite sum. But when we integrate numerically, it is not possible to perform.

Replace f(z) by n degree polynomial that passes through (n+1) nodes x_0, x_1, \ldots, x_n

In
$$(f) = \int_{a}^{b} P_{n}(x) dx$$

$$= \int_{a}^{b} \sum_{k=0}^{m} \int_{k} (x) f(x_{k}) dx \qquad [Using lagrange basis]$$

$$= \int_{a}^{m} \int_{k=0}^{m} f(x_{k}) \int_{k}^{b} f(x_{k}) dx \qquad [using lagrange basis]$$

$$= \int_{k=0}^{m} f(x_{k}) \int_{a}^{b} \int_{k} (x) dx$$

$$= \int_{k=0}^{m} \int_{k=0}^{m} c_{k} f(x_{k}) \int_{a}^{b} f(x_{k}) dx$$

$$= \int_{a}^{m} f(x_{k}) \int_{a}^{m} f(x_{k}) dx$$

$$=$$

· If nodes are equidistant, this 15 Newton-Cotes foremula.

Newton- Cotes Formula

Closed Newton - Cotes

interval [a,b] such that

$$a=\chi_0 < \chi_1 < \ldots < \chi_{n-1} < \chi_n = b$$

$$x_1 = x_0 + h$$
 , $x_2 = x_1 + h$,...

Open Newton-Cotes

interval [a,b] such that

$$a < x_0 < x_1 < \dots < x_{n-1} < x_n < b$$

where.

$$x_i = a + (i+1)h$$
 ; $i=0,1,...,n$

and

$$h = \frac{b-a}{n+2}$$

width of function

Trapezium nule;

ane 2 nodes, xo=a, x1=b

$$h = \frac{b-a}{1} = b-a$$

$$P_i(x) = I_0(x) f(x_0) + I_1(x) f(x_1)$$

=
$$l_0(x) f(a) + l_1(x) f(b)$$

$$= \frac{\chi - \chi_1}{\chi_0 - \chi_1} f(a) + \frac{\chi - \chi_0}{\chi_1 - \chi_0} f(b)$$

Degree 1 polynomial in lagrange basis

$$= \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b)$$

Weight factors

$$\int_{a}^{b} \int_{a}^{b} \int_{a-b}^{b} \int_{a}^{b} \frac{x-b}{a-b} dx = \frac{1}{a-b} \int_{a}^{b} (x-b) dx$$

$$= \frac{1}{aba-b} \left[\frac{x^{2}}{2} - bx \right]_{a}^{b}$$

$$= \frac{1}{a-b} \left[\frac{b^{2}}{2} - b^{2} - a^{2} + ab \right]$$

$$= \frac{1}{a-b} \left[\frac{b^{2}}{2} - b^{2} - a^{2} + ab \right]$$

$$\frac{-(a-b)^{2}}{2(a-b)}$$

$$=\frac{-(a-b)^{2}}{2}$$

$$=\frac{b-a}{2}$$

$$G_1 = \int_a^b \int_1^b (x) dx = \int_a^b \frac{x-a}{b-a} dx$$

$$= \frac{1}{b-a} \int_{a}^{b} (x-a) dx$$

$$= \frac{1}{b-a} \left[\frac{b^{2}}{2} - b^{2} - ab - \frac{a^{2}}{2} + a^{2} \right]$$

$$= \frac{h}{2} \left(f(a) + f(b) \right) = \frac{h - a}{2} \left(f(x_0) + f(x_1) \right)$$

$$= \frac{h}{2} \left(f(x_0) + f(x_1) \right)$$

For
$$a = 0$$
, $b = 2$ & $f(x) = e^{x}$;

$$I_1 = \frac{2-0}{2} \left(e^0 + e^2 \right) = 8.389$$
 upto 4 s.f.

Exact mesult:
$$I = \int_{0}^{2} e^{x} dx = [e^{x}]_{0}^{2} = e^{2} - e^{0} = 6.389$$
 upto 4 s.f.

Actual relative
$$\pi$$
 ennor = $\left| \frac{J-J_n}{J} \right| \times 100\% = 31\%$

Too much ennon. We need higher order polynomial to neduce the entrore of numerical integration.

田 Enron Calculation:

If a f(x) is interrpolated by degree n polynomial $P_n(x)$, Upper bound of interrpolation error,

cauchy's formula
$$\frac{f^{n+1}(\xi)}{(n+1)!} (x-x_0)(x-x_1) \cdots (x-x_n) \quad \text{where } \xi \in [a,b]$$

... Upper bound of error of numerical integration:

$$|I-I_n| <= \left| \frac{f^{n+1}(\xi)}{(n+1)!} \right|_{\max \xi \in [a,b]} \int_a^b \left| (x-x_0)(x-x_1) - (x-x_n) \right| dx$$

(?)

$$n=1$$
, $f(x)=e^{x}$, $a=0$, $b=2$

fore Trapezium reule example

$$\left|\frac{f^{m+1}(\xi)}{(m+1)!}\right|_{\max} \xi \xi + [a,b] = \left|\frac{f^{2}(\xi)}{2!}\right|_{\max} \xi \in [0,2]$$

$$= \left[\frac{1}{3}e^{\xi}\right]_{\text{max } \xi \in [0,2]}$$

$$\int_{a}^{b} |(x-a)(x-b)| dx = \int_{a}^{2} |(x^{2}-2x)| dx$$

$$= \left| \left[\frac{x^{3}}{3} - x^{2} \right]_{a}^{2} \right|$$

$$= \left| -\frac{4}{3} \right| = \frac{4}{3}$$

$$|1-1_n| \leq \frac{e^{\nu}}{2} \times \frac{4}{3}$$

$$\leq 4.926 \quad \text{upto} \quad 4.5.f.$$

更

Composite Newton-Cotes formula:

- Improves the result / decrease the error without increasing actual node numbers

Basic

Divide the interval $[a_1b]$ into m-subintervals of equal width. For each one, apply trapezoidal rule and add them up. The sum is denoted by $C_{1,m}(f) \Rightarrow composite newton-cotes formula.$

$$h = b - a$$
 for m - subinterval

: Trapezoidal rule for each interval,

$$I_{1,i} = \frac{h}{3} \left[f(x_i) + f(x_{i+1}) \right] ; i = 0, 1, 2, ..., (m-1)$$

$$C_{1,m}(f) = \sum_{i=0}^{m-1} I_{1,i}$$

$$= \frac{h}{3} \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{m-1}) + f(x_m) \right]$$

$$C_{1,m}(f) = \sum_{i=0}^{m-1} I_{1,i}$$

$$= \frac{h}{3} \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{m-1}) + f(x_m) \right]$$

$$C_{1,m}(f) = \sum_{i=0}^{m-1} I_{1,i}$$

$$C_{1,m}(f) = \sum_{i=0}^{m-1} I_{1,i$$

(?)

Fore Same example

$$h = \frac{b-a}{m} = 1$$
 , $a = x_0$, $x_1 = a+h$, $x_2 = b$

$$C_{1,2} = \frac{h}{2} \left[f(x_0) + 2 f(x_1) + f(x_2) \right]$$

for m=3:

$$h = \frac{b-a}{m} = \frac{2}{3}$$
, $a = x_0$, $x_1 = a+h$, $x_2 = x_1+h$, $x_3 = b$
 $\frac{1}{2}x_0 = 0$, $x_1 = \frac{4}{3}$, $x_2 = \frac{4}{3}$, $x_3 = 2$

$$C_{1,3} = \frac{b}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3) \right]$$

$$= \frac{1}{3} \left(e^0 + 4 2e^{2/3} + 2e^{4/3} + e^2 \right)$$

$$= 6.62395 \quad \text{opto} \quad 6 \text{ s.f.}$$

m ,	Kit and he th	(1)C _{1,m} (1)	(1) I - C1,m = 6.389 - C1,m
1	₹ \	8.389	3
4 #	mote being in the	6.913	• हरभ
3	2/3	6.624	0.435
4	1/2	6.24	0.133
8	0'25	6.422	0.033
16	0.14.2	6·397	0.008
32	0'0625	6.391	0.002

· Ermon 1 as m

· Herre, errorr decreases by a factor of 4 when we halve the h. > Quadratic convergence, O(hr)

囤

Exactness:

Upper bound of eniron,

$$\frac{\int_{(n+1)!}^{(n+1)!} (x-x_0)(x-x_1) \cdots (x-x_n)}{(n+1)!} \quad \text{where} \quad \xi \in [a,b]$$

If $f^{n+1}=0$, entron is zeno.

Newton-cotes formula will give exact answer. f(z) is an n-degree polynomial, $P_n(z)$.

• Trapezium rule. $I_1(f)$ is exact for all functions $f(x) = P_1(x)$.

* Definition:

The degree of exactness of a quadrature formula is the largest integer n for which the formula is exact for all polynomial $p_n(x)$.

Meaning

If we replace f(x) by $P_n(x)$ and compute the exact g numerical result, the error will be zero when both the results are would be equal. So what is the largest integer g for which this equality holds.

Degree of exactness

· Check-points:

•
$$n=1$$
 \Rightarrow Trapezoidal trule : $\frac{b-a}{2}$ [f(a) + f(b)]

•
$$n=2$$
 \Rightarrow Simpson's roule: $\frac{b-a}{6} \left[f(a) + 4f\left(\frac{1+b}{2}\right) + f(b) \right]$

For n=2, newton-cotes formula.

$$I_{2}(f) = \sum_{k=0}^{2} \mathscr{S}_{k} f(x_{k})$$

Here, $x_0 = a$, $x_1 = m$, $x_2 = b$

as it is a

closed form, m mux,

must be in the middle

$$m-a=b-m$$

$$\Rightarrow m = \underbrace{a+b}_{2}$$

weight factors,

$$\mathcal{L}_0 = \int_a^b \mathcal{L}_0(x) dx = \int_a^b \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} dx$$

$$= \int_a^b \frac{(x-m)(x-b)}{(a-m)(a-b)} dx$$

$$= \frac{1}{(a-m)(a-b)} \int_a^b (x-b) (x-m) dx$$

$$\sigma_{i} = \int_{a}^{b} l_{i}(x) dx$$

$$\int_{a}^{b} \frac{(x-a)(x-b)}{(m-a)(m-b)} dx$$

$$= \frac{1}{(m-a)(m-b)} \int_a^b (x-a)(x-b) dx$$

$$= \frac{2}{3}(b-a)$$

$$\mathcal{G}_2 = \int_a^b l_2(x) dx$$

$$= \int_{a}^{b} \frac{(x-a)(x-m)}{(b-a)(b-m)} dx$$

$$=\frac{1}{(b-a)(b-m)}\int_a^b(x-a)(x-m) dx$$

$$= \frac{1}{6} (b-a)$$

$$I_{2}(f) = \sigma_{0} f(x_{0}) + \sigma_{1} f(x_{1}) + \sigma_{2} f(x_{2})$$

=
$$6_0 f(a) + 6_1 f(m) + 6_2 f(b)$$

$$= \frac{1}{6} (b-a) f(a) + \frac{2}{3} (b-a) f(m) + \frac{1}{6} (b-a) f(b)$$

$$= \frac{b-a}{6} \left[f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right]$$

(2) Function Degree of polynomial Exact Newton-Cotes [simpson's nule]

OI
$$f(x) = 1$$
 Zeno $I(f) = I(1)$ $I_{L}(1) = \frac{b-a}{6} (1+y+1)$ Equal $= b-a$ $= b-a$

One $I(f) = I(x) = \int_{a}^{b} x \, dx$ $I_{2}(x) = \frac{b-a}{6} (a+y+1)$ Equal $= \frac{1}{2}(b^{x}-a^{x})$ $= \frac{1}{4}(b^{x}-a^{x})$ Equal $= \frac{1}{3}(b^{3}-a^{3})$ $= \frac{1}{3}(b^{3}-a^{3})$ $= \frac{b-a}{6}[a^{x}+y^{2}+b^{x}]$ $= \frac{1}{4}(b^{x}-a^{x})$ $= \frac{b-a}{12}[2a^{2}+(a+b)^{3}+7b^{3}]$ $= \frac{b-a}{12}[2a^{2}+(a+b)^{3}+7b^{3}]$ $= \frac{b-a}{12}[2a^{2}+(a+b)^{3}+7b^{3}]$ $= \frac{b-a}{12}[2a^{2}+(a+b)^{3}+7b^{3}]$ $= \frac{b-a}{12}[a^{2}+(a+b)^{3}+7b^{3}]$ $= \frac{b-a}{12}[a^{2}+(a+b)^{3}+7b$

Result $\frac{b-a}{6} \left[a^4 + 4 \left(\frac{a+b}{2} \right)^{\frac{4}{3}} \right]$
$\frac{b-a}{6}$ $\left[a^4+4\left(\frac{a+b}{2}\right)^9\right]$
$\frac{b-a}{24} [40^4 + (a+b)^4 + Equal$ $\frac{b-a}{24} [40^4 + (a+b)^4 + Equal$
upto degnee 3 polynomial
ee four & higher. Trule = 3 (exactly)

.