CentraleSupélec
M.Sc. of DataScience
Part 1

Exercise 1 (Unbiased estimation). Let $(X_1, ..., X_n)$ i.i.d random variables drawn from a Poisson distribution with parameter $\theta > 0$. We are interested in estimating $P_{\theta}(X_1 = 0)$ from $(X_1, ..., X_n)$.

- 1) Prove that this model belongs to the exponential family and determine the canonic statistic S. Give the important properties of S, and derive its distribution.
- 2) By using the Law of Large Numbers, propose a naturel estimator for $P_{\theta}(X_1 = 0)$. Is this empirical estimator unbiased?
- 3) Prove that the conditional distribution of X_k conditionally to S = s is a binomial distribution with parameters $(\frac{1}{n}, s)$, for all $k \in \{1, ..., n\}$.
- 4) Deduce from previous question that $\delta_S = (1 \frac{1}{n})^S$ is the optimal estimator of $P_{\theta}(X_1 = 0)$.
- 5) Prove that δ_S converges (almost surely) towards $\mathsf{P}_{\theta}(X_1=0)$ when n tends to infinity.
- 6*) Compute the score function and the Fisher information.
- 7*) Deduce the Cramér-Rao bound when estimating $P_{\theta}(X_1 = 0)$. Does δ_S achieve this bound?

Exercise 2 (Confidence Interval – Estimation). \acute{e} Let $(X_n)_{n\geq 1}$ a sequence of random variables, i.i.d that follows a Gaussian distribution $\mathcal{N}(\theta,\theta)$, with $\theta>0$. The objective of this exercise is to present a method to estimate θ as well as to give a (good) confidence interval for this estimation. Let us denote

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 and $V_n = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$.

- 1) What is the distribution of \bar{X}_n , its expectation and its variance? Give the limiting distribution of $(\sqrt{n}(\bar{X}_n \theta))_{n \geq 1}$.
- 2) What is the distribution of V_n , its expectation and its variance? Give the limiting distribution of $(V_n)_{n\geq 2}$.
- 3) What is the distribution of (\bar{X}_n, V_n) . Give the limit of $(\bar{X}_n, V_n)_{n \geq 2}$.
- 4) Let us consider the class of random variables T_n^{λ} defined as

$$T_n^{\lambda} = \lambda \bar{X}_n + (1 - \lambda) V_n, \quad \lambda \in \mathbb{R}.$$

Compute the expectation and the variance of T_n^{λ} and derive the (almost sure) convergence of $(T_n^{\lambda})_{n\geq 2}$.

- 5) Analyze the convergence (in distribution) of $(\sqrt{n}(\bar{X}_n \theta))_{n>1}$.
- 6) Analyze the convergence (in distribution) of $(\sqrt{n}(V_n \theta))_{n \geq 2}$.
- 7) Analyze the convergence (in distribution) of $(\sqrt{n}(\bar{X}_n \theta, V_n \theta))_{n \ge 2}$.
- 8) Analyze the convergence (in distribution) of $(\sqrt{n}(T_n^{\lambda} \theta))_{n \geq 2}$.
- 9) Let $\sigma = \sqrt{\lambda^2 \theta + 2(1-\lambda)^2 \theta^2}$. From T_n^{λ} , σ and n, build an asymptotic 95%-confidence interval for θ . In other words, find a random interval, depending on T_n^{λ} , σ and n, that contains θ with an asymptotic probability of 95%.
- 10) Since σ is unknown, we estimate it as follows: $\tilde{\sigma}_n = \sqrt{\lambda^2 T_n^{\lambda} + 2(1-\lambda)^2 (T_n^{\lambda})^2}$ and we replace σ by $\tilde{\sigma}_n$ in I_n . Prove that the resulting interval \tilde{I}_n is still 95%-confidence interval for θ . Compute \tilde{I}_n for the following observations $\lambda = 0, 5, n = 100, \bar{x}_n = 4, 18$ et $v_n = 3, 84$.
- 11*) Verifies that there exists a unique real number $\lambda^* \in [0, 1]$, depending on θ , that minimizes the length of I_n . Now, let us consider the random variable $\lambda_n^* = \frac{2V_n}{1+2V_n}$. Prove that $(\lambda_n^*)_{n\geq 2}$ converges (almost surely) towards λ^* .
- 12*) Analyze the convergence (in distribution) of $(\sqrt{n}(T_n^{\lambda_n^{\star}} \theta))_{n \geq 2}$. Then, deduce a 95%-confidence interval denoted \tilde{I}_n^{\star} for θ . Compute \tilde{I}_n^{\star} for the previous values of the observations.