5.2

\mathbf{G}

```
Sei G gegeben als G = (V, \Sigma, P, S) mit V = S, \Sigma = a,b,c,d und P = \{ (S, \varepsilon), (S, (aSa)), (S, (bSb)), (S, (cSc)), (S, (dSd)), (S,a), (S,b), (S,c), (S,d) \}
```

Kontextfrei

Dies gilt, da für alle $(\alpha, \beta) \in P$ gilt, dass $\alpha \in V$ ist. Dementsprechend ist die Grammatik Kontextfrei. Jede der Regeln hat die Form $A \to \alpha$ daher ist G kontextfrei.

$$L = L(G)$$

Dies zeigen wir, indem wir zeigen, dass alle $w' \in L(G)$ exakt die Bedingung von L erfüllen.

Sei $w \in L$ beliebig, so gilt für die Induktion:

```
|w| = 1
```

In diesem Fall kann für w lediglich gelten $w \in (\{\emptyset, \varepsilon\} \cup \Sigma)$. Von $w = \emptyset$ oder $w = \varepsilon$ gilt sowohl, dass sie in L sind, als auch das sie in L(G) sind, denn diese sind in jeder Grammatik. ($\mathbf{i} = ?????$ Don't know just guessed) Für $w \in \Sigma$ gilt dass diese in L sind, da ein Buchstabe umgedreht weiterhin der selbe ist. Zudem gilt, dass dieser in L(G) ist, da für $(S, X) \in P$ gilt, dass jedes Element aus Σ in X ist. Dementsprechend gilt dies für solche w.

Induktionsvoraussetzung: |w| = n

 $\forall w \in L(G) : w \in L \text{ (Ist das die richtige Behauptung?)}$

Induktionsschritt: |w| = n + 1

zu Zeigen

- **5.3**
- **5.4**