EBOOKBKMT.COM Hỗ TRỢ TÀI LIỆU HỌC TẬP

AN TOÀN VÀ BẢO MẬT THÔNG TIN

BÀI TẬP MÃ HOÁ VÀ GIẢI MÃ CƠ BẢN

PHẦN 1: CÁC PHƯƠNG PHÁP MÃ HOÁ CỔ ĐIỂN

Mã hóa dịch vòng Caesar

$$P = C = K = Z_n$$

$$e_k(x) = (x+k) \bmod n$$

$$d_k(y) = (y-k) \bmod n$$

Câu 1: Cho k=17, X = ATTACK. Hãy thực hiện mã hóa bằng Caesar theo \mathbb{Z}_{26} .

$$X = ATTACK = (0, 19, 19, 0, 2, 10)$$
 $K = 17$

$$\begin{aligned} y_1 &= e_k(x_1) = (x_1 + k) \text{ mod } n = (0 + 17) \text{ mod } 26 = 17 & y_4 &= y_1 = 17 \\ y_2 &= (19 + 17) \text{ mod } 26 = 10 & y_5 &= (2 + 17) \text{ mod } 26 = 19 \\ y_3 &= y_2 &= 10 & y_6 &= (10 + 17) \text{ mod } 26 = 1 \\ \text{Bản mã: } Y &= (y_1, y_2, y_3, y_4, y_5, y_6) = (17, 10, 10, 17, 19, 1) = RKKRTB \end{aligned}$$

Câu 2: Cho K = 12, cho bản mã Y = ZAFTUZSUYBAEEUNXQ. Giải mã dữ liệu và cho ra bản rõ theo mã dịch vòng Caesar

Giải mã: Ta có $x = d_k(y) = (y-k) \mod n$

$x_1 = d_k(y_1) = (y_1-k) \text{ mod } n = (25 -12) \text{ mod } 26$ = 13 => N	$x_9 = (24 - 12) \mod 26 = 12 => M$ $x_{10} = (1 - 12) \mod 26 = 15 => P$
$x_2 = (0 - 12) \mod 26 = 14 \Longrightarrow O$	$x_{11} = (0 - 12) \mod 26 = 14 \Longrightarrow 0$
$x_3 = (5 - 12) \mod 26 = 19 \Longrightarrow T$	$x_{12} = (4 - 12) \mod 26 = 18 \Longrightarrow S$
$x_4 = (19 - 12) \mod 26 = 7 => H$	$x_{13} = (4 - 12) \mod 26 = 18 => S$
$x_5 = (20 - 12) \mod 26 = 8 => I$	$x_{14} = (20 - 12) \mod 26 = 8 \Longrightarrow I$
$x_6 = (25 - 12) \mod 26 = 13 => N$	$x_{15} = (13 - 12) \mod 26 = 1 \Longrightarrow B$
$x_7 = (18 - 12) \mod 26 = 6 => G$	$x_{16} = (23 - 12) \mod 26 = 11 => L$
$x_8 = (20 - 12) \mod 26 = 8 => I$	$x_{17} = (16 - 12) \mod 26 = 4 \Longrightarrow E$

Bån rõ: X = NOTHING IMPOSSIBLE

Câu 3: Phá mã bản mã sau (Caesar): Y = CSYEVIXIVQMREXIH Z₂₆

Theo mã hóa Caesar có phương pháp mã hóa và giải mã là phép cộng trừ modulo 26. Ta có thể thử tất cả 25 trường hợp của k như sau:

K	PlainText	K	PlainText
1	BRXDUHWHUPLQDWHG	14	OEKQHUJUHCYDQJUT
2	AQWCTGVGTOKPCVGF	15	NDJPGTITGBXCPITS
3	ZPVBSFUFSNJOBUFE	16	MCIOFSHSFAWBOHSR
4	YOUARETERMINATED	17	LBHNERGREZVANGRQ
5	XNTZQDSDQLHMZSDC	18	KAGMDQFQDYUZMFQP
6	WMSYPCRCPKGLYRCB	19	JZFLCPEPCXTYLEPO
7	VLRXOBQBOJFKXQBA	20	IYEKBODOBWSXKDON
8	UKQWNAPANIEJWPAZ	21	HXDJANCNAVRWJCNM
9	TJPVMZOZMHDIVOZY	22	GWCIZMBMZUQVIBML
10	SIOULYNYLGCHUNYX	23	FVBHYLALYTPUHALK
11	RHNTKXMXKFBGTMXW	24	EUAGXKZKXSOTGZKJ
12	QGMSJWLWJEAFSLWV	25	DTZFWJYJWRNSFYJI
13	PFLRIVKVIDZERKVU		

Trong 25 trường hợp trên, chỉ có trường hợp k=4 thì bản giải mã tương ứng là có ý nghĩa. Do đó bản rõ ban đầu là: *YOUARETERMINATED*

Câu 4: Bản rõ "HELPME" được mã hóa thành bản mã "DAHLIA". Hãy tìm K biết bản mã được hình thành theo Caesar thuộc \mathbb{Z}_{26}

$$X = HELPME = (7, 4, 11, 15, 12, 4)$$
 $Y = DAHLIA = (3, 0, 7, 11, 8, 0)$

Theo hàm mã hóa có:

$$y_1 = e(x_1) = (x_1 + k) \mod 26$$

=> 3 = (7 + k) mod 26 \Leftrightarrow (7+k) = i*26 + 3 (i\in N, k = 1..25)
=> k = 22

Mã hóa Affine

Cho
$$P = C = Z_n$$
, $K = \{(a, b), thuôc Z_n * Z_n với $GCD(a,n) = 1\}$$

$$e_k(x) = (ax + b) \mod n$$

$$d_k(y) = (a^{-1}*(y-b)) \bmod n$$

Điều kiện: e_k phải là song ánh: $\forall y \in Z_n, \exists! x \in Z_n, ax + b \equiv y \pmod{n}$

a và n là 2 số nguyên tố cùng nhau: GCD (a, n) = 1

Chú ý: Khi a=1 ta có mã dịch vòng Caesar

 $V\acute{o}i \ n=26, \ a=\{3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$

Câu 1: Cho bản rõ X = ATTACK, mã hóa Affine trên Z_{26} với K = (5, 3)

$$X = ATTACK = (0, 19, 19, 0, 2, 10), K = (a, b) = (5, 3), n=26$$

Mã hóa:

$$y_1 = e_k(x_1) = (ax_1+b) \mod n = (5*0+3) \mod 26 = 3$$

$$y_2 = e_k(x_2) = (ax_2+b) \mod n = (5*19+3) \mod 26 = 20$$

$$y_3 = e_k(x_3) = (ax_3+b) \mod n = (5*19+3) \mod 26 = 20$$

$$y_4 = e_k(x_4) = (ax_4+b) \mod n = (5*0+3) \mod 26 = 3$$

$$y_5 = e_k(x_5) = (ax_5 + b) \mod n = (5*2+3) \mod 26 = 13$$

$$y_6 = e_k(x_6) = (ax_6+b) \mod n = (5*10+3) \mod 26 = 1$$

Bản mã: $Y = (y_1, y_2, y_3, y_4, y_5, y_6) = (3, 20, 20, 3, 13, 1) = DUUDNB$

Câu 2: Hãy giải mã thông điệp "AXG" bằng hệ mã Affine với K = (a, b) = (7, 3) trên \mathbb{Z}_{26}

$$Y = AXG = (0, 23, 6)$$
 $K = (a, b) = (7, 3),$ $n = 26$

Giải mã:

$$x_1 = d_k(y_1) = a^{-1}(y_1 - b) \mod n = 7^{-1}(0 - 3) \mod 26$$

= $(7^{-1} \mod 26 * (-3) \mod 26) \mod 26 = (15*23) \mod 26 = 7$

$$x_2 = d_k(y_2) = a^{-1}(y_2 - b) \mod n = 7^{-1}(23 - 3) \mod 26$$

= $(7^{-1} \mod 26 * 20 \mod 26) \mod 26 = (15*20) \mod 26 = 14$

$$x_3 = d_k(y_3) = a^{-1}(y_3 - b) \mod n = 7^{-1}(6 - 3) \mod 26$$

= $(7^{-1} \mod 26 * 3 \mod 26) \mod 26 = (15*3) \mod 26 = 19$

Bản rõ:
$$X = (x_1, x_2, x_3) = (7, 14, 19) = HOT$$

Tính 7⁻¹ mod 26

Cho
$$r_0 = 26$$
, $r_1 = 7$, $r_i = r_{i+1} * q_{i+1} + r_{i+2}$

$$s_0 = 1$$
, $s_1 = 0$, $s_i = s_{i-2} - q_{i-1} * s_{i-1}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1} * t_{i-1}$

Thuật toán Euclide mở rộng được biểu diễn qua bảng sau:

Bước	ri	q _{i+1}	\mathbf{r}_{i+1}	\mathbf{r}_{i+2}	Si	t _i
0	26	3	7	5	1	0
1	7	1	5	2	0	1
2	5	2	2	1	1	-3
3	2	2	1	0	-1	4
4					3	-11

Kiểm tra:
$$r_0$$
*s + r_1 *t = GCD(r_0 , r_1) = 1

$$=>7^{-1} \mod 26 = (-11) \mod 26 = -11 + 26 = 15$$

Hệ mã hóa Vigenere

Cho m là một số nguyên dương cố định nào đó. Định nghĩa $P = C = K = (Z_n)^m$. Với khoá $K = (k_1, k_2, \dots, k_m)$ ta xác định :

$$e_K(x_1, x_2, ..., x_m) = \{(x_1+k_1) \bmod n, ..., (x_m+k_m) \bmod n\}$$

$$d_K(y_1, y_2, ..., y_m) = \{(y_1-k_1) \bmod n, ..., (y_m-k_m) \bmod n\}$$

 $V\acute{o}i \ x, \ y \ thuộc \ (Z_n)^m$

Câu 1: Giả sử m = 6 và từ khoá là CIPHER. Từ khoá này tương ứng với dãy số K = (2,8,15,4,17). Giả sử bản rõ là xâu: "this cryptosystemis not secure"

						1					
19 2	7 8	8 15	18 7	2 4	17 17		15 8	19 15	14 7	18 4	24 17
21	15	23	25	6	8	0	23	8	21	22	15
18 2	19 8	4 15	12 7	8	18 17	13 2	14 8	19 15	18 7	4 4	2 17
20	1	19	19	12	9	15	22	8	15	8	19
	20 2	17 8	4 15								
	22	25	19								

Bởi vậy, dãy ký tự tương ứng của xâu bản mã sẽ là:

V P X Z G I A X I V W P U B T T M J P W I Z I T W Z T

Câu 2: Giải mã bản mã sau, giả sử mã hóa Vigenere được sử dụng với từ khóa là LEG: Y = "PBVWEOYEZTST"

Y = "PBVWEOYEZTST" = (15, 1, 21, 22, 4, 14, 24, 4, 25, 19, 18, 19)

K = "LEG" = (11, 4, 6)

	15	1	21	22	4	14
	11	4	6	11	4	6
_	4	23	15	11	0	8
_	E	X	P	L	A	I
	24	4	25	19	18	19
_	11	4	6	11	4	6
	13	0	19	8	14	13
	N	A	T	I	0	N

Bån rõ X = EXPLAINATION

Câu 3: Xét phương pháp Vigenere. Biết bản mã "PVRLHFMJCRNFKKW" có bản rõ tương ứng là "networksecurity". Hãy tìm khóa K.

X = networksecurity = (13, 4, 19, 22, 14, 17, 10, 18, 4, 2, 20, 17, 8, 19, 24)

Y = PVRLHFMJCRNFKKW = (15, 21, 17, 11, 7, 5, 12, 9, 2, 17, 13, 5, 10, 10, 22)

Theo thuật toán Vigenere trên Z_{26} ta có hàm mã hóa:

 $y_i = e_K(x_i) = (x_i + k_i) \text{ mod } 26 => k_i = (y_i - x_i) \text{ mod } 26 \text{ Ta c\'o bảng:}$

Phương pháp mã hóa HILL

Cho m là một số nguyên dương cố định. Cho $P = C = (Z_n)^m$ và K là tập hợp các ma trận khả nghịch $m_x m$, với một khóa $k \in K$ ta xác định:

$$e_k(x) = x*K$$

$$d_k(y) = yK^{-1}$$

*Cách tìm ma trận nghịch đảo K⁻¹ (với m=2)

- Tính det(K) = |a b c d| = ad bc
- Tìm phần bù ma trận K: $P_K = (d b c a)$
- Tính ma trận nghịch đảo: $K^{-1} = (det(K))^{-1} * P_K$

Với m bất kỳ:

- Tính det(K): Tổng các tích chéo chính trừ tổng tích chéo phụ.
- Tìm bù: Sử dụng phụ đại số \mathbf{C}^{T}

Câu 1: Hệ mã hóa Hill, m=2, \mathbb{Z}_{26} . Mã hóa xâu \mathbb{P} = "HELP" với \mathbb{K} = (3 3 2 5)

- Mã hóa:

$$P = HELP = \{P_1 = HE = (7,4) P_2 = LP = (11,15)$$

$$C_1 = e_k(P_1) = P_1 \times K = (74)(3325) = (315) = DP$$

$$C_2 = e_k(P_2) = P_2 \times K = (1115)(3325) = (114) = LE$$

=> Bản mã: C = DPLE

Câu 2: Cho hệ mã hóa Hill có m=2 vành \mathbb{Z}_{26} , ma trận khóa K = (12 5 3 7). Hãy giải mã xâu C = "GJFC"

- Giải mã:

$$C = GJFC = \{C_1 = GJ = (6,9) C_2 = FC = (5,2)\}$$

- * Tìm ma trận nghịch đảo K^{-1} với K = (12537)
- Ta có $det(K) = (12*7 5*3) \mod 26 = 17$

- Do GCD(17, 26) = 1 nên theo thuật toán Euclide mở rộng ta tính $det(K)^{-1} = 23$ theo bảng sau:

Tính 17⁻¹ mod 26

Cho
$$r_0 = 26$$
, $r_1 = 17$, $r_i = r_{i+1} * q_{i+1} + r_{i+2}$

$$s_0=1,\,s_1=0,\,s_i=s_{i\text{-}2}-q_{i\text{-}1}*s_{i\text{-}1},\,t_0=0,\,t_1=1,\,t_i=t_{i\text{-}2}-q_{i\text{-}1}*t_{i\text{-}1}$$

Thuật toán Euclide mở rộng được biểu diễn qua bảng sau:

Bước	\mathbf{r}_{i}	q_{i+1}	r_{i+1}	r _{i+2}	Si	t_{i}
0	26	1	17	9	1	0
1	17	1	9	8	0	1
2	9	1	8	1	1	-1
3	8	8	1	0	-1	2
4					2	-3

Kiểm tra: r_0 *s + r_1 *t = GCD(r_0 , r_1) = 1

$$=>17^{-1} \mod 26 = (-3) \mod 26 = -3 + 26 = 23$$

- Phần bù ma trận K:
$$P_K = (7 - 5 - 312)$$

- Khóa nghịch đảo:
$$K^{-1} = Det(K)^{-1} \times P_K = 23 \times (7 - 5 - 312) = (515916) mod 26$$

$$P_1 = e_k(C_1) = C_1 \times K = (69)(515916) = (70) = HA$$

$$P_2 = e_k(C_2) = C_2 \times K = (5\ 2\)(5\ 15\ 9\ 16\) = (17\ 3\) = RD$$

=> Bản rõ: P = HARD

Hệ mã hóa dòng (Stream Cipher)

Mật mã dòng là một bộ (P,C,K,L,F,E,D) thoả mãn dược các điều kiện sau:

- 1. P là một tập hữu han các bản rõ có thể.
- 2. C là tập hữu hạn các bản mã có thể.
- 3. K là tập hữu hạn các khoá có thể (không gian khoá)
- 4. L là tập hữu hạn các bộ chữ của dòng khoá.
- 5. $F = (f1 \ f2...)$ là bộ tạo dòng khoá. Với $i \ge 1$, $fi : K \times P \ i 1 \rightarrow L$
- 6. Với mỗi z ∈L có một quy tắc mã ez ∈ E và một quy tắc giải mã tương ứng dz ∈D. ez : P →C và dz : C →P là các hàm thoả mãn dz(ez(x)) = x với mọi bản rõ x ∈ P.

Các mã dòng thường được mô tả trong các bộ chữ nhị phân tức là $P = C = L = Z_2$. Trong trường hợp này, các phép toán mã và giải mã là phép cộng theo modulo 2.

$$y_i = e_{zi}(x_i) = x_i + z_i \mod 2$$

 $x_i = d_{zi}(x_i) = y_i + z_i \mod 2$

Câu 1: Mã hóa ký tự 'A' bởi Alice

Ký tự 'A' trong bảng mã ASCII được tướng ứng với mã 65_{10} = 1000001_2 được mã hóa bởi hệ khóa $z_1,...,z_7$ =0101101

Hàm mã hóa:

Plaintext x _i	1000001 = 'A' (ASCII symbol)
Key stream z _i	0101101
Ciphertext y _i	1101100 = 'I' (ASCII symbol)

Hàm giải mã:

Ciphertext y _i	1101100	= 'I' (ASCII symbol)
Key stream z _i	0101101	
Plaintext x _i	1000001	= 'A' (ASCII symbol)

Mã hóa One-Time Pad (OTP)

Trong hệ mã hóa OTP ta có: $|\mathbf{P}| = |\mathbf{C}| = |\mathbf{K}| \mathbf{với} x_i, y_i, k_i \in \{0, 1\}$

Encrypt: $e_{ki}(x_i) = x_i + k_i \mod 2$

Decrypt: $d_{ki}(y_i) = y_i + k_i \mod 2$

Để có thể đạt được mức độ bảo mật của OTP, tất cả những điều kiện sau phải được thỏa mãn:

- ✔ Độ dài của chìa khóa phải đúng bằng độ dài văn bản cần mã hóa.
- ✔ Chìa khóa chỉ được dùng một lần.
- ✔ Chìa khóa phải là một số ngẫu nhiên thực.

PHẦN 2: HỆ MÃ HOÁ KHOÁ CÔNG KHAI

Hệ mã hóa công khai RSA

Bước 1: Tạo khóa

- 1. Chọn 2 số nguyên tố lớn ngẫu nhiên p và q và tính n = pq. Cần chọn p và q sao cho $M < 2^{i-1} < n < 2^i$. Với i = 1024 thì n là một số nguyên khoảng 309 chữ số.
- 2. Tính số làm modulo hệ thống: $n = pq \ va \ \phi(n) = (p-1)(q-1) = \phi(pq)$
- 3. Chọn ngẫu nhiên khóa mã hóa b: $\{1 < b < \phi(n) \ GCD(b, \ \phi(n) = 1 \}$
- 4. Giải phương trình để tìm khóa giải mã a: $a = b^{-1} \mod \phi(n) -$ Euclide mở rộng. Tức $b * a = 1 \mod \phi(n)$ với $0 \le a \le \phi(n)$
 - 5. Khóa công khai (mã hóa): $K_{publish} = \{b, n\}$
 - 6. Khóa bí mật (giải mã): $K_{private} = \{a, p, q\}$

Bước 2: Mã hóa với $K_{publish} = \{b, n\}$

$$y = e_{Kpub}(x) = x^b \mod n$$
$$x \in Z_n = \{0, 1, ..., n-1\}$$

Bước 3: Giải mã với $K_{private} = \{a, p, q\}$

$$x = d_{K_{pri}}(y) = y^a \bmod n$$

Alice gửi dữ liệu cho	Bob
	1. Choose $p=3$, $q=11$
	2. <i>n</i> = <i>pq</i> =33, <i>N</i> =20
	3. Choose $b=3$, $GCD(20,3)=1$
$x=4$ / $Kpu=\{b,n\}=\{3,33\}<=Bob$	4. $a = b^{-1} \mod N = 3^{-1} \mod 20 = 7 = > K_{pri}$
$y = x^b mod \ n = 4^3 mod 33 = 31$	$A => y = 31$ / $K_{pri} = \{a, p, q\} = \{7, 3, 11\}$
	$x = y^a \mod n = 31^7 \mod 33 = 4$

Câu 1: Cho hệ mã hóa RSA với p=5, q=7, b=5

- a. Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri}
- b. Hãy thực hiện mã háo chuỗi "secure" và giải mã ngược lại bản mã có được.

a. Tạo khoá

- 1. p = 5, q = 7, b = 5
- 2. Modulo hệ thống n = pq = 5*7 = 35. $\phi(n) = \phi(pq) = (p-1)(q-1) = 24$
- 3. Tim $a = b^{-1} \mod \phi(n) = 5^{-1} \mod 24 = 5$
- 4. $K_{pub} = \{b, n\} = \{5, 35\}$
- 5. $K_{pri} = \{a, p, q\} = \{5, 5, 7\}$

<u>b. Mã hóa X = "Secure" với $K_{pub} = \{b, n\} = \{5,35\}$ </u>

$$x_1 = S = 18 = y_1 = e_{Kpub}(x_1) = x_1^b \mod n = 18^5 \mod 35 = 23$$
 (Bình phương & nhân)

$$x_2 = E = 4 \implies y_2 = x_2^b \mod n = 4^5 \mod 35 = 9$$

$$x_3 = C = 2 \implies y_3 = 2^5 \mod 35 = 32$$

$$x_4 = U = 20 \implies y_4 = 20^5 \mod 35 = 20$$

$$x_5 = R = 17 \implies y_5 = 17^5 \mod 35 = 12$$

$$x_6 = E = 4 \implies y_6 = 4^5 \mod 35 = 9$$

c. Giải mã Y = "XJGUMJ" =
$$\{23, 9, 32, 20, 12, 9\}$$
 với $K_{pri} = \{a, p, q\} = \{5, 5, 7\}$

$$n = pq = 35$$

$$x_1 = d_{Kpri}(y_1) = y_1^a \mod n = 23^5 \mod 35 = 18$$
 $x_4 = 20^5 \mod 35 = 20$

$$x_2 = 9^5 \mod 35 = 4$$
 $x_5 = 12^5 \mod 35 = 17$

$$x_3 = 32^5 \mod 35 = 2$$
 $x_6 = 9^5 \mod 35 = 4$

=> Bản rõ X = "SECURE"

Câu 2: Cho hệ mã hóa RSA có p=103, q=113, b=71. Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri} của hệ mã trên. Sau đó mã hóa thông điệp X=1102 và giải mã ngược lại kết quả nhận được.

- Tạo khóa:

- 1. Hai số nguyên tố: p = 103, q = 113 (TM)
- 2. Modulo hệ thống: n = pq = 103*113 = 11639,

$$\phi(n) = \phi(pq) = (p-1)(q-1) = (103-1)(113-1) = 11424$$

- 3. Khóa mã hóa b = 71 thỏa mãn: $\{1 < b < \phi(n) \ (TM) \ GCD(b, \ \phi(n) = 1 \ (TM) \}$
- 4. Tìm khóa giải mã: $a = b^{-1} \mod \phi(n) = 71^{-1} \mod 11424 = 9815$

Theo thuật toán Euclide mở rộng tính 71^{-1} mod 11424 với $r_0 = 11424$, $r_1 = 71$, $r_i = r_{i+1}*q_{i+1} + r_{i+2}$, $s_0 = 1$, $s_1 = 0$, $s_i = s_{i-2} - q_{i-1}*s_{i-1}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1}*t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	ri	q_{i+1}	r_{i+1}	r _{i+2}	Si	t _i
0	11424	160	71	64	1	0
1	71	1	64	7	0	1
2	64	9	7	1	1	-160
3	7	7	1	0	-1	161
4	1				10	-1609

Vậy $71^{-1} \mod 11424 \equiv (-1609) \mod 11424 = -1609 + 11424 = 9815$

- 5. Khóa công khai $K_{pub} = \{b, n\} = \{71, 11639\}$
- 6. Khóa bí mật $K_{pri} = \{a, p, q\} = \{9815, 103, 113\}$
- Mã hóa X = 1102 với K_{pub} = {b, n} = {71, 11639}

$$x = 1102 \implies y = e_{Kpub}(x) = x^b \mod n = 1102^{71} \mod 11639 = 2345$$

=> Bản mã Y = 2345

Theo thuật toán Bình phương và nhân tính 1102^{71} mod 11639 = 2345 với x = 1102, k = 71 = 1000111, n = 11639. Khởi tạo p = 1 thuật toán được biểu diễn qua bảng:

b[i]	p=p*p	p(mod n)	p=p*x	p(mod n)
1	1	1	1102	1102
0	1214404	3948	ı	3948
0	15586704	2083	1	2083
0	4338889	9181	ı	9181
1	84290761	1123	1237546	3812
1	14531344	5872	6470944	11299
1			1195559	
1	127667401	10849	8	2345

- Giải mã Y=2345 với $K_{pri}=\{a,p,q\}=\{9815,103,113\}$. Tính n=pq=11639 $x=d_{Kpri}(y)=y^a \bmod n=2345^{9815} \bmod 11639=1102$ => Bản rõ X=1102

Theo thuật toán Bình phương và nhân tính 2345^{9815} mod 11639 = 1102 với x = 2345, k = 11639 = 10011001010111, n = 11639. Khởi tạo p = 1 thuật toán được biểu diễn qua bảng sau:

b[i]	p=p*p	p(mod n)	p=p*x	p(mod n)
1	1	1	2345	2345
0	5499025	5417	-	5417
0	29343889	1970	1	1970
1	3880900	5113	11989985	1815
1	3294225	388	909860	2018
0	4072324	10313	-	10313
0	106357969	787	1	787
1	619369	2502	5867190	1134
0	1285956	5666	1	5666
1	32103556	3194	7489930	6053
0	36638809	10876	1	10876
1	118287376	219	513555	1439
1	2070721	10618	24899210	3389
1	11485321	9267	21731115	1102

Hệ mật mã ElGamal

Bước 1: Tạo khóa

- Cho p là một số nguyên tố sao cho bài toán logarit rời rạc trong Zp là khó giải.
- Chon phần tử nguyên thủy $\alpha \in \mathbb{Z}p^*$
- Chọn $a \in \{2, 3, ..., p-2\}$ là khóa bí mật thứ nhất (Khóa người nhận, giải mã)
- $Tinh \beta = \alpha^a \bmod p.$
- Khi đó: $K_{pub} = (p, \alpha, \beta)$ gọi là khóa công khai, và $K_{pri} = (a)$ là khóa bí mật.

Bước 2: Xây dựng hàm mã hóa dữ liệu

- Chọn 1 số ngẫu nhiên bí mật $k \in \mathbb{Z}_{p-1}$, Ta xác định: $k \in \mathbb{Z}_{p-1} = \{0, 1, ..., p-2\}$
- Định nghĩa: $e_{K_{pub}}(x,k) = (y_1,y_2)$ với $y_1 = \alpha^k \mod p$ và $y_2 = x\beta^k \mod p$

Bước 3: Giải mã

Với $y_1, y_2 \in \mathbb{Z}p^*$ ta xác định: $d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$

A (gửi)	B (nhận)
Choose private key $K_{priA} = \alpha_A$	Choose private key $K_{priB} = \alpha_B$
Compute $K_{pubA} = \alpha^{aA} \mod p = bA$	$K_{\text{pubB}} = \alpha^{aB} \mod p = bB$
bB<==B	A==>bA
$k_{AB} = bB^{aA} = \alpha^{aA*aB} \bmod p$	$k_{AB} = bA^{aB} = \alpha^{aB*aA} \mod p$
$y = x * k_{AB} \mod p$	A==>y
	$x = y * k_{AB}^{-1} \bmod p$

Bài tập 1: Trong hệ mật mã Elgamal, lấy p = 5987, $\alpha = 2$, a = 913, k = 1647. Hãy mã hóa bản rõ x = 122 và giải mã ngược lại kết quả đó.

- Bước 1: Tao khóa

$$p = 5987, Z_p = \{0, ..., 5988\}; \alpha = 2 \in Zp^* (TM), a = 913 \in \{2, 3, ..., p-2\} (TM)$$

Tính $\beta=\alpha^a \mod p=2^{913} \mod 5987=4087$. Theo thuật toán bình phương và nhân có $x=2,\,k=913=1110010001,\,n=5987$ ta có bảng sau.

b[i]	p=p*p	p=p (mod n)	p=p * x	p=p (modn)
1	1	1	2	2
1	4	4	8	8
1	64	64	128	128
0	16384	4410	ı	4410
0	1944810			
U	0	2324	1	2324
1	5400976	702	1404	1404
0	1971216	1493	1	1493
0	2229049	1885	1	1885
0	3553225	2934	1	2934
1	8608356	5037	10074	4087

$$=> K_{pub} = (p, \alpha, \beta) = (5987, 2, 4087)$$
 $K_{pri} = (a) = (913)$

- Bước 2: Mã hóa bản rõ x = 122 với K_{pub} = (p, α, β) = (5987, 2, 4087) $k = 1647 \in Z_{p-1}$ (TM)

Ta có: $e_{K_{pub}}(x, k) = (y_1, y_2)$ với $y_1 y_2$ thỏa mãn:

 $y_1 = \alpha^k \mod p = 2^{1647} \mod 5987 = 955$ Theo thuật toán Bình phương và nhân với x=2, k=1647=11001101111, n=5987 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	$p = p \pmod{n}$
1	1	1	2	2
1	4	4	8	8
0	64	64	1	64
0	4096	4096	1	4096
1	16777216	1642	3284	3284
1	10784656	2069	4138	4138
0	17123044	224	1	224
1	50176	2280	4560	4560
1	20793600	749	1498	1498
1	2244004	4866	9732	3745
1	14025025	3471	6942	955

 $y_2 = x\beta^k \mod p = 122 * 4087^{1647} \mod 5987 = ((122 \mod 5987) * (4087^{1647} \mod 5987)) \mod 5987 = (122 * 129) \mod 5987 = 3764$

Theo thuật toán Bình phương và nhân tính 4087^{1647} mod 5987 với x=4087, k=1647=11001101111, n=5987 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	4087	4087
1	16703569	5826	23810862	563
0	316969	5645	-	5645
0	31866025	3211	-	3211
1	10310521	907	3706909	956
1	913936	3912	15988344	3054
0	9326916	5157	-	5157
1	26594649	395	1614365	3862
1	14915044	1427	5832149	811
1	657721	5138	20999006	2597
1	6744409	3047	12453089	129

Vậy bản mã $Y = (y_1, y_2) = (955, 3764)$

- Bước 3: Giải mã Y =
$$(y_1, y_2)$$
 = $(955, 3764)$ với K_{pri} = (a) = (913)

$$d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p = 3764 * (955^{913})^{-1} \mod 5987$$

=
$$(3764 \mod 5987 * (955^{913})^{-1} \mod 5987) \mod 5987$$

=
$$(3764 \mod 5987 * (955^{913} \mod 5987)^{-1} \mod 5987) \mod 5987$$

$$= (3764 * 129^{-1} \mod 5987) \mod 5987 = (3764*3388) \mod 5987 = 122$$

Theo thuật toán Bình phương và nhân tính 955^{913} mod 5987 = 129 với x=955, k=913, n=5987

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	955	955
1	912025	2001	1910955	1102
1	1214404	5030	4803650	2076
0	4309776	5123	-	5123
0	26245129	4108	ı	4108
1	16875664	4298	4104590	3495
0	12215025	1545	ı	1545
0	2387025	4199	ı	4199
0	17631601	5873	-	5873

1 34492129 1022 976010 129

Theo thuật toán Euclide mở rộng tính 129^{-1} mod 5987 với $r_0 = 5987$, $r_1 = 129$, $r_i = r_{i+1}*q_{i+1} + r_{i+2}$, $s_0 = 1$, $s_1 = 0$, $s_i = s_{i-2} - q_{i-1}*s_{i-1}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1}*t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	ri	q _{i+1}	r_{i+1}	r _{i+2}	Si	t _i
0	5987	46	129	53	1	0
1	129	2	53	23	0	1
2	53	2	23	7	1	-46
3	23	3	7	2	-2	93
4	7	3	2	1	5	-232
5	2	2	1	0	-17	789
6	1				56	-2599

 $=> 129^{-1} \mod 5987 = (-2599) \mod 5987 = -2599 + 5987 = 3388$

Bài tập 2: Cho hệ mật mã ElGramal có p = 83, α = 5 là một phần tử nguyên thủy của Zp^* , a = 71 (phần tử bí mật mà người nhận chọn). Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri} của hệ mã trên.

Cho k = 47. Hãy mã hóa bản rõ x = 23 và giải mã ngược lại kết quả đó.

- Tao khóa:

p=83 là một số nguyên tố (TM), phần tử nguyên thủy $\alpha=5\in Zp^*$ (TM) $a=71\in\{2,3,...,p-2\}$ (TM) là phần tử bí mật thứ nhất mà người nhận chọn Tính $\beta=\alpha^a \bmod p=5^{71} \bmod 83=80$. Theo thuật toán bình phương và nhân có x=5, k=71=1000111, n=83, khởi tạo p=1 ta có bảng sau:

b[i]	p=p*p	p=p (mod n)	p=p * x	p=p (mod n)
1	1	1	5	5
0	25	25	-	25
0	625	44	-	44
0	1936	27	-	27
1	729	65	325	76
1	5776	49	245	79
1	6241	16	80	80

=> Khóa công khai K_{pub} = (p, α, β) = (83, 5, 80). Khóa bí mật K_{pri} = (a) = (71)

- Mã hóa dữ liệu X = 23 với $K_{pub} = (p, \alpha, \beta) = (83, 5, 80)$

Chọn
$$k = 47 \in \mathbb{Z}p-1 = \{0, 1, ..., p-1\}$$
 (TM)

Ta có: $e_{K_{pub}}(x, k) = (y_1, y_2)$ với $y_1 y_2$ thỏa mãn:

 $y_1 = \alpha^k \mod p = 5^{47} \mod 83 = 62$ Theo thuật toán Bình phương và nhân với x=5, k=47=101111, n=83 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	5	5
0	25	25	-	25
1	625	44	220	54
1	2916	11	55	55
1	3025	37	185	19
1	361	29	145	62

$$y_2 = x\beta^k \mod p = 23 * 80^{47} \mod 83 = ((23 \mod 83) * (80^{47} \mod 83)) \mod 83 = (23 * 18) \mod 83 = 82$$

Theo thuật toán Bình phương và nhân tính 80^{47} mod 83 = 18 với x=80, k=47=101111, n=83, khởi tạo p = 1 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	80	80
0	6400	9	-	9
1	81	81	6480	6
1	36	36	2880	58
1	3364	44	3520	34
1	1156	77	6160	18

Vậy bản mã $Y = (y_1, y_2) = (62, 82)$

- Giải mã Giải mã Y =
$$(y_1, y_2)$$
 = $(62, 82)$ với K_{pri} = (a) = (71)

$$d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p = 82 * (62^{71})^{-1} \mod 83$$

$$= (82 \mod 83 * (62^{71})^{-1} \mod 83) \mod 83$$

$$= (82 \mod 83 * (62^{71} \mod 83)^{-1} \mod 83) \mod 83$$

$$= (82 * 18^{-1} \mod 83) \mod 83 = (82*60) \mod 83 = 23$$

Theo thuật toán Bình phương và nhân tính 62^{71} mod 83 = 18 với x=62, k=71=1000111, n=83, khởi tạo p=1 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	62	62
0	3844	26	1	26
0	676	12	1	12
0	144	61	1	61
1	3721	69	4278	45
1	2025	33	2046	54
1	2916	11	682	18

Theo thuật toán Euclide mở rộng tính $18^{\text{-}1}$ mod $83 \equiv$ (-23) mod 83 = -23+83 = 60 với $r_0 = 83$, $r_1 = 18$, $r_i = r_{i+1} * q_{i+1} + r_{i+2}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1} * t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	r_{i}	q_{i+1}	r_{i+1}	r_{i+2}	t_{i}
0	83	4	18	11	0
1	18	1	11	7	1
2	11	1	7	4	-4
3	7	1	4	3	5
4	4	1	3	1	-9
5	3	3	1	0	14
6	1				-23

Vậy bản mã là X = 23

Bài kiểm tra

Đề 1:

Cho hệ RSA lấy p = 31, q = 41, b = 71.

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- b. Thông điệp được viết bằng tiếng anh, người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chứ số như sau:

A	В	C	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các số \in Zn. Hãy thực hiện mã hóa xâu P = "ACTION".

Đề 3:

Cho hệ mật mã ElGramal có p = 1187, $\alpha = 79$ là một phần tử nguyên thủy của Zp^* , a = 113 (phần tử bí mật mà người nhận chọn).

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- b. Thông điệp được viết bằng tiếng anh, người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chứ số như sau:

A	В	C	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các số \in Zn. Cho k=15, Hãy mã hóa bản rõ M= "SERIUS".