Math 425 Computation Linear Algebra

HW2, Part A

Brent A. Thorne

brentathorne@gmail.com

Linear independence, Span, and Vector spaces.

```
In [1]: # environment setup
import numpy as np # nice arrays and other stuff

#from sympy import * # import the entire namespace of sympy at root,
NOT the best of practices
import sympy as sym # make is clear which lib I'm using for what
from sympy.matrices import Matrix # Include this in case we want som
e pretty matrices
from sympy.solvers.solveset import linsolve

from IPython.display import display, Math, Latex # used to display f
ormatted results
sym.init_printing() # initialize pretty printing
```

1. List five vectors in $span\{v_1,v_2\}$. For each vector, show the weights on v_1,v_2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

$$v_1 = egin{bmatrix} 3 \ 0 \ 2 \end{bmatrix}, v_2 = egin{bmatrix} -2 \ 0 \ 3 \end{bmatrix}$$

In [2]: # our varibles a = [1,1,1,1,1]b = [1,0,-1,1],-1] # "You may say I'm a dreamer", Imagine by The B eatles #our vectors $v_1 = Matrix([3, 0, 2])$ $v^{2} = Matrix([-2, 0, 3])$ display(Latex(f'Five vectors in the \$span({sym.latex(v_1)},{sym.late x(v 2)) are: ')) $[display(Math(f'({a[i]})v_1 + ({b[i]})v_2 = {sym.latex(a[i] * v_1 + ({b[i]})v_2 = {sym.latex(a[i] * v_2 +$ b[i] * v_2)}')) **for** i **in** range(len(a))] display(Latex('Sweet!!! We have \$\LaTeX\$ formating to working. This will come in handy later.')) Five vectors in the $span(\left|\begin{array}{c}3\\0\\2\end{array}\right|,\left|\begin{array}{c}-2\\0\\3\end{array}\right|)$ are: $(1)v_1+(1)v_2=egin{bmatrix}1\0\5\end{bmatrix}$ $(1)v_1+(0)v_2=egin{bmatrix} 3\ 0\ 2 \end{bmatrix}$ $(1)v_1+(-1)v_2=\left[egin{array}{c}5\0\-1\end{array}
ight]$ $(1)v_1+(1j)v_2=egin{bmatrix} 3-2.0i\ 0\ 2+3.0i \end{bmatrix}$ $(1)v_1+((-0-1j))v_2=egin{bmatrix} 3+2.0i\ 0\ 2-3.0i \end{bmatrix}$

Sweet!!! We have $L\!\!\!/T_E\!\!\!/X$ formating to working. This will come in handy later.

2. Decide whether the following sets of vectors are linearly independent or linearly dependent. Give reasons for your choices.

2.17 **Definition** linearly independent

- A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- The empty list () is also declared to be linearly independent.

2.19 **Definition** linearly dependent

- A list of vectors in V is called *linearly dependent* if it is not linearly independent.
- In other words, a list v_1, \ldots, v_m of vectors in V is linearly dependent if there exist $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.

2.21 Linear Dependence Lemma

Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $j \in \{1, 2, \ldots, m\}$ such that the following hold:

- (a) $v_j \in \operatorname{span}(v_1, \dots, v_{j-1});$
- (b) if the j^{th} term is removed from v_1, \ldots, v_m , the span of the remaining list equals span (v_1, \ldots, v_m) .
- Def and Lemma from 'Linear Algebra Done Right', By Sheldon Axler

a)
$$\left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix} \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix} \right\}$$

Drawing upon the previous question, our assumption is that these vectors form the coefficient column Matrix

$$A = egin{bmatrix} 1 & -3 & 2 \ 0 & 2 & -11 \ 3 & -7 & -8 \end{bmatrix}$$
 $A.\ rref = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$

a) is indeed linearly independent, and spans \mathbb{R}^3 .

We can further see from the empty nullspace ($A.\ nullspace=[]$) and full rank ($A.\ rank=3$) that this set Spans \mathbb{R}^3

b)
$$\left\{ \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix} \right\}$$
 *Not multiples, so we know it's Independent.

In [4]: display(Latex('Again, our method is to compute the nullspace of a th e matrix created from the vectors and compare it to the column spac e.'))
v_1 = Matrix([-3,2,-7])
v_2 = Matrix([2,-11,-8])
x_1,x_2 = sym.symbols('x_1 x_2')

B = Matrix([v_1.T,v_2.T]).T
display(Latex(f'\$B={sym.latex(B.rref(pivots=False))}\$'))
display(Latex(f'\$B.rref={sym.latex(B.rref(pivots=False))}\$'))
display(Latex(b) is indeed a linearly idependent in \$\mathbb{R}^2\$, and spans \$\mathbb{R}^2\$.\$'))
display(Latex(f"We can further see from the empty nullspace (\$B.null space={sym.latex(B.nullspace())}\$) and rank (\$B.rank={sym.latex(B.rank())}\$) that these vectors Span %s" %'\$\mathbb{R}^2\$\$,'))
B, B.rank(), B.nullspace()

Again, our method is to compute the nullspace of a the matrix created from the vectors and compare it to the column space.

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B.\,rref = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{bmatrix}$$

b) is indeed a linearly idependent in \mathbb{R}^2 , and spans \mathbb{R}^2 .

We can further see from the empty nullspace ($B.\ nullspace=[]$) and rank ($B.\ rank=2$) that these vectors Span \mathbb{R}^2

Out[4]:
$$\left(\begin{bmatrix} -3 & 2 \\ 2 & -11 \\ -7 & -8 \end{bmatrix}, 2, []\right)$$

$$\mathbf{c}, \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix}, \begin{bmatrix} 9\\12\\13 \end{bmatrix} \right\}$$

In [5]: display(Latex('Drawing upon the previous question, our assumption is
 that these vectors form the coefficient column Matrix '))
 v_1 = Matrix([1,0,3])
 v_2 = Matrix([-3,2,-7])
 v_3 = Matrix([2,-11,-8])
 v_4 = Matrix([9,12,13])

C = Matrix([v_1.T, v_2.T, v_3.T, v_4.T]).T # form a coefficient matrix
 display(Math(f'\$C={sym.latex(C)}'))
 display(Math(f'C.rref={ sym.latex(C.rref(pivots=False))}'))
 display(Latex('c) is linearly dependent, and a subspace of \$\mathref{mathbb}{R^4}\$.'))
 display(Latex(f"We can further see from the empty nullspace (\$C.null space={sym.latex(C.nullspace())}\$) and rank (\$C.rank={sym.latex(C.rank())}\$) that this set forms a subspace of \$\mathref{s}\mathref{s}\mathref{mathbb}{R^4}\$}'))

Drawing upon the previous question, our assumption is that these vectors form the coefficient column Matrix

$$C = egin{bmatrix} 1 & -3 & 2 & 9 \ 0 & 2 & -11 & 12 \ 3 & -7 & -8 & 13 \end{bmatrix} \ C. \, rref = egin{bmatrix} 1 & 0 & 0 & rac{458}{3} \ 0 & 1 & 0 & rac{161}{3} \ 0 & 0 & 1 & rac{26}{3} \end{bmatrix}$$

c) is linearly dependent, and a subspace of \mathbb{R}^4 .

We can further see from the empty nullspace ($C.~nullspace = \left[egin{array}{c} -rac{160}{3} \\ -rac{161}{3} \\ -rac{26}{3} \\ 1 \end{array}
ight]$) and rank (

 $C.\,rank=3$) that this set forms a subspace of \mathbb{R}^4

$$\mathbf{d} \left\{ \begin{bmatrix} 1\\4\\9\\10 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\7\\1\\0 \end{bmatrix} \right\}$$

In [6]: display(Latex('Drawing upon the previous question, our assumption is that these vectors form the coefficient column Matrix '))
v_1 = Matrix([1,4,9,10])
v_2 = Matrix([0,0,0,0])
v_3 = Matrix([5,7,1,0])

D = Matrix([v_1.T, v_2.T, v_3.T]).T # form a coefficient matrix display(Math(f'\$D={sym.latex(D)}')) display(Math(f'D.rref={ sym.latex(D.rref(pivots=False))}')) display(Latex('d) is linearly dependent, and a subspace of \$\mathbole{k}^3\stacks.')) display(Latex(f"We can further see from the empty nullspace (\$D.null space={sym.latex(D.nullspace())}\stacks) and rank (\$D.rank={sym.latex(D.rank())}\stacks) that this set forms a subspace of %s" %'\$\mathbole{k}^3\stacks')) display(Latex('Note zero vector, makes this dependent.'))

Drawing upon the previous question, our assumption is that these vectors form the coefficient column Matrix

$$D = \begin{bmatrix} 1 & 0 & 5 \\ 4 & 0 & 7 \\ 9 & 0 & 1 \\ 10 & 0 & 0 \end{bmatrix}$$

$$D.\,rref = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

d) is linearly dependent, and a subspace of \mathbb{R}^3 .

We can further see from the empty nullspace ($D.\ nullspace = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$) and rank (

 $D.\,rank=2$) that this set forms a subspace of \mathbb{R}^3

Note zero vector, makes this dependent.

Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is *not* a pivot column—that is, if and only if an echelon form of the augmented matrix has *no* row of the form

$$[0 \cdots 0 b]$$
 with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no free variables, or (ii) infinitely many solutions, when there is at least one free variable.

3. Determine if the columns of the matrix form a linearly independent set. Justify each answer.

a)
$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$

nk()) that this set forms a subspace of %s" %'\$\mathbb{R^3}\$'))

$$A = egin{bmatrix} -4 & -3 & 0 \ 0 & -1 & 4 \ 1 & 0 & 3 \ 5 & 4 & 6 \end{bmatrix}$$

$$A.\,rref = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

a) is linearly independant as there is are pivots in each column). Note this is R^3 subspace.

We can further see from the empty nullspace ($A.\,nullspace=[]$) and rank ($A.\,rank=3$) that this set forms a subspace of \mathbb{R}^3

$$\mathbf{b)} \begin{bmatrix} 1 & -3 & 3 & 2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3 \end{bmatrix}$$

$$B = egin{bmatrix} 1 & -3 & 3 & 2 \ -3 & 7 & -1 & 2 \ 0 & 1 & -4 & 3 \end{bmatrix} \ B. \, rref = egin{bmatrix} 1 & 0 & -9 & 0 \ 0 & 1 & -4 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

b) is linearly dependent, and an inconsistent subspace of \mathbb{R}^4 .

We can further see from the empty nullspace ($B.\ nullspace = egin{bmatrix} 9 \\ 4 \\ 1 \\ 0 \end{bmatrix}$) and rank (

 $B.\,rank=3$) that this set forms a subspace of \mathbb{R}^4

4. Let
$$v_1=egin{bmatrix}1\\-5\\-3\end{bmatrix}, v_2=egin{bmatrix}-2\\10\\6\end{bmatrix}, v_3=egin{bmatrix}2\\9\\h\end{bmatrix}$$

a) For what values of h is v_3 in $Span\{v_1,v_2\}$

```
In [9]: x_1, x_2, x_3, h = sym.symbols('x_1 x_2 x_3 h')
        v 1 = Matrix([1, -5, -3])
        v_2 = Matrix([-2,10,6])
        v 3 = Matrix([2, -9, h])
        display(Latex('a) $v_1$ and $v_2$ are multiples of each other so the
        re is no multiple of $v 3$ in that subspace.'))
       lactation = sym.latex(v_3) + 'not^{*} \in Span^{**} (v_3) + sym.latex(v_3)
        + '\}'
        display(Latex('No value of h puts v_3 in Span\{v_1,v_2\}, or r
        ather $%s$.' %lactation))
        display(Latex("* \$\\notin\$ isn't rendered in sympy.latex(), file b
        ug report as there are lot of standard notation messing."))
        display(Latex('** Ask about about this and learn the correct Maths t
        erminology. Maybe I already know it. How much do any of us know an
        vwav?'))
        display(Latex('*** Ask your Mathematician if ${subspaces}$ are right
        for you.'))
```

a) v_1 and v_2 are multiples of each other so there is no multiple of v_3 in that subspace.

No value of h puts v_3 in $Span\{v_1,v_2\}$, or rather

$$egin{bmatrix} 2 \ -9 \ h \end{bmatrix} not^* \in Span^{**} \{ egin{bmatrix} 1 \ -5 \ -3 \end{bmatrix} egin{bmatrix} -2 \ 10 \ 6 \end{bmatrix} \} \Leftrightarrow Span \{ egin{bmatrix} 1 \ -5 \ -3 \end{bmatrix} \}.$$

- * \$\notin\$ isn't rendered in sympy.latex(), file bug report as there are lot of standard notation messing.
- ** Ask about about this and learn the correct Maths terminology. Maybe I already know it. How much do any of us know anyway?
- *** Ask your Mathematician if subspaces are right for you.
- b) For what values of h is v_1, v_2, v_3 lineraly dependent?

Thus our Linear system is
$$A=egin{bmatrix}1&-2&2\\-5&10&-9\\-3&6&h\end{bmatrix}$$

Row reduction results in
$$A.\ rref = \left(egin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},\ (0,\ 2)
ight)$$
 This system

inconsistant no value of h is going to help this system.

5. Given
$$A=egin{bmatrix} 4&1&6\\-7&5&3\\9&-3&3 \end{bmatrix}$$
 , observe that the first column plus twice

the second column equals the third column. Find a nontrivial solution of Ax=0.

In [11]: A = Matrix([[4,1,6], [-7,5,3], [9,-3,3]])
 display(Math(f'A.rref={sym.latex(A.rref(pivots=False))}'))
 display(Latex('Okay, looks like we have \$x_1+x_3 =0\$ and \$x_2+2x_3=0
\$.'))
 x_1,x_2,x_3 = sym.symbols('x_1 x_2 x_3')
 x = Matrix([-x_3,-2*x_3,x_3])
 display(Latex(f"Thus, our non-trival solution is \$x={sym.latex(x)}\$"
))
 display(Latex(f"Also, note how the nullspace is related to this solution, \$N={sym.latex(A.nullspace())}\$"))

$$A.\,rref = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 0 \end{bmatrix}$$

Okay, looks like we have $x_1 + x_3 = 0$ and $x_2 + 2x_3 = 0$.

Thus, our non-trival solution is $x=egin{bmatrix} -x_3 \\ -2x_3 \\ x_3 \end{bmatrix}$

Also, note how the nullspace is related to this solution, $N = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$

Now do it symbolically, as we are questing for a deeper understanding.

 $x = [(-x_3, -2x_3, x_3)]$, confirming our results from above.

6. Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m?

In [13]: display(Latex("No, we'll need at least 4 independent vector to span \mathbb{R}^4 . Like I was saying, we need n independent vector s, $n \geq m$ to span \mathbb{R}^m . Otherwise we'll just have a s ubspace of m and won't be able to reach every point."))

No, we'll need at least 4 independent vector to span \mathbb{R}^4 . Like I was saying, we need n independent vectors, $n \geq m$ to span \mathbb{R}^m . Otherwise we'll just have a subspace of \mathbb{R}^n and won't be able to reach every point.

7. Let
$$u=egin{bmatrix}2\\-3\\2\end{bmatrix}$$
 and $A=egin{bmatrix}5&8&7\\0&1&-1\\1&3&0\end{bmatrix}$. Is u in the subset of \mathbb{R}^3

spanned by the columns of A? Why or not?

In [14]: u = Matrix([2, -3, 2])A = Matrix([[5,8,7],[0,1,-1],[1,3,0]])display(Latex(f'\$A={sym.latex(A)}\$')) display(Math(f'A.ref={sym.latex(A.rref(pivots=False))}, A.rank={sym. latex(A.rank())}')) display(Latex("Now append \$u\$ to A and see how our span and rank cha nges.")) Au=A.col insert(3,u) # right? display(Latex(f'\$Au={sym.latex(Au)}\$')) display(Math(f'Au.ref={sym.latex(Au.rref(pivots=False))}, Au.rank= {sym.latex(Au.rank())}')) display(Latex("Now by inspection\$^{*}\$ we can clearly see that \$u\$ i s not in the subspace formed by \$A\$.")) display(Latex("* engineers are rather lazy like this, physicists are even worst, and don't even ask about artists.")) display(Latex("Anyway, no \$u\$ is not in the \$span(A)\$ by the aforeme ntioned obserations\$^{**}\$ of rank and span.\n")) display(Latex("** Honestly, it really is at lot of fun to play with Linear Algebra in this way."))

$$A = egin{bmatrix} 5 & 8 & 7 \ 0 & 1 & -1 \ 1 & 3 & 0 \end{bmatrix} \ A. \, ref = egin{bmatrix} 1 & 0 & 3 \ 0 & 1 & -1 \ 0 & 0 & 0 \end{bmatrix}, A. \, rank = 2 \ .$$

Now append u to A and see how our span and rank changes.

$$Au = egin{bmatrix} 5 & 8 & 7 & 2 \ 0 & 1 & -1 & -3 \ 1 & 3 & 0 & 2 \end{bmatrix} \ Au.\,ref = egin{bmatrix} 1 & 0 & 3 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}, Au.\,rank = 3$$

Now by inspection st we can clearly see that u is not in the subspace formed by A.

Anyway, no u is not in the span(A) by the aforementioned obserations** of rank and span.

^{*} engineers are rather lazy like this, physicists are even worst, and don't even ask about artists.

^{**} Honestly, it really is at lot of fun to play with Linear Algebra in this way.

8. Let
$$A=egin{bmatrix}1&-3&-4\\-3&2&6\\5&-1&-8\end{bmatrix}$$
 and $b=egin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}$. Show that the equation

Ax=b does not have a solution for all possible b, and describe the set of b for which Ax=b does have a solution.

FIXME!!! Discribe set of b where eq has solution

$$A.\,rref = \left(egin{bmatrix} 1 & 0 & -rac{10}{7} \ 0 & 1 & rac{6}{7} \ 0 & 0 & 0 \end{bmatrix}, \; (0,\; 1)
ight)$$

By inspection we can see the rank of A is 2, thus A a subspace of \mathbb{R}^3 . This means we can only 'reach' into the $span\{A\}$ where $b_3=0$.

This system is only consistent if b3 = 0.

The counter example of b=[1,1,1] is inconsistant.

9.Let
$$B=egin{bmatrix}1&3&-2&2\\0&1&1&-5\\1&2&-3&7\\-2&-8&2&-1\end{bmatrix}$$
 .

Do the columns of B span \mathbb{R}^4 ?

Does the equation Bx=y have a solution for each $y\in\mathbb{R}^4$?

In [16]: display(Latex("Now that I've got this hammer everything looks a nail
 s."))
 B = Matrix([[1,3,-2,2],[0,1,1,-5],[1,2,-3,7],[-2,-8,2,-1]])
 display(Math(f"B={sym.latex(B)}, B.rref={sym.latex(B.rref(pivots=False))}, B.rank={sym.latex(B.rank())}"))
 display(Latex("Nope, \$B\$ doesn't span{\$\mathbb{R^4}\$}, as evident by it's rank."))
 display(Latex("No, \$Bx=y\$ only has solution where \$x_4=0\$, so this system is inconsistent"))
 display(Latex(f"Looking at \$B.nullspace={sym.latex(B.nullspace())}\$,
 provides further evience of the conclusion."))

Now that I've got this hammer everything looks a nails.

$$B = egin{bmatrix} 1 & 3 & -2 & 2 \ 0 & 1 & 1 & -5 \ 1 & 2 & -3 & 7 \ -2 & -8 & 2 & -1 \end{bmatrix}, B. \, rref = egin{bmatrix} 1 & 0 & -5 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix}, B. \, rank = 3$$

Nope, B doesn't span{ \mathbb{R}^4 }, as evident by it's rank.

No, Bx=y only has solution where $x_4=0$, so this system is inconsistent

Looking at
$$B.\,nullspace = egin{bmatrix} 5 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
 , provides further evience of the conclusion.

Appendix 1. Playing with displaying with LaTex

Appendix 2. Exploring the Nullspace and Span relationships

```
In [19]: A=Matrix([[1,1,1,-1],[2,4,5,6],[3,9,5,4]])
               display(Math(f'A={sym.latex(A)}'))
               display(Math(f'A.rref={sym.latex(A.rref(pivots=False))}'))
               lactation = sym.latex(A.nullspace()) # Milk it, like a cow!
              x_1, x_2, x_3, x_4 = sym.symbols('x_1, x_2, x_3, x_4') # Sprinkle some
                sugar.
              x = Matrix([x_1, x_2, x_3, x_4]) # X marks the spot.
               display(Math(f'{sym.latex(x)}=x 4*{sym.latex(A.rref(pivots=False).co
               l(3))} '))
               display(Math(f'N(A)=Span{lactation}') ) # Moo!
              n = A.shape[1]
               rank = A.rank()
               nullity = n - rank
              print("Nullity: ", nullity)
              print("Rank: ", rank)
              A = egin{bmatrix} 1 & 1 & 1 & -1 \ 2 & 4 & 5 & 6 \ 3 & 9 & 5 & 4 \end{bmatrix}
              A.\,rref = egin{bmatrix} 1 & 0 & 0 & -rac{53}{14} \ 0 & 1 & 0 & rac{5}{14} \ 0 & 0 & 1 & rac{17}{7} \end{bmatrix}
               \left| egin{array}{c} x_1 \ x_2 \ x_3 \end{array} 
ight| = x_4 * \left| egin{array}{c} -rac{53}{14} \ rac{5}{14} \ rac{17}{7} \end{array} 
ight|
              N(A) = Span \left | \left | egin{array}{c} rac{5}{14} \ -rac{5}{14} \ -rac{17}{7} \end{array} 
ight | 
ight |
```

Nullity: 1 Rank: 3

Appendix 3. Eigeness

In [20]: display(Latex("Let's explore the Eigeness of this all.")) # show ver bose way
 lambda_ = sym.symbols('lambda_')
 A = Matrix([[4,1,6], [-7,5,3], [9,-3,3]])
 P = sym.det(A-lambda_*sym.eye(3))
 P_ = sym.factor(sym.Eq(P,0))
 display(Latex("Discuss results below and get Mathmatical."))
 display(Latex("We ought to discuss change of basis\$^*\$ and the like, but there is so much that we've forgotten!"))
 display(Latex(" *This is out of scope for this problem."))
 A, A.rref(), A.rank(), P, P_, sym.solve(P_, lambda_) # chararteristic polynomial and roots

Let's explore the Eigeness of this all.

Discuss results below and get Mathmatical.

We ought to discuss change of basis* and the like, but there is so much that we've forgotten!

*This is out of scope for this problem.

$$\begin{array}{c} \texttt{Out[20]:} & \left(\begin{bmatrix} 4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3 \end{bmatrix}, \; \left(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \; (0, \, 1) \right), \; 2, \; -\lambda^3 + 12\lambda^2 - 9\lambda, \; -\lambda^3 + 12\lambda^2 - 3\lambda, \; -\lambda^3 + 12\lambda^2 - 3\lambda^2 - 3\lambda^$$