EAST WEST UNIVERSITY

Department of Computer Science and Engineering B.Sc. in Computer Science and Engineering Program Mid Term I Examination, Fall-2021

Course: CSE 251 – Electronic Circuits, Section-5

Instructor: Surajit Das Barman, Senior Lecturer, CSE Department

Full Marks: 20

Time: 1 Hour and 25 Minutes

Note: There are SIX questions, answer ALL of them. Course outcomes (CO), cognitive levels and marks of each question are mentioned at the right margin.

1. **Determine** the value of resistor for a voltage regulator circuit in Fig. 1, where each of diode D1 and D2 has a voltage drop of 0.7 V at a current of 10 mA. The analysis should include the operating conditions of the diodes.

C2,

Mark: 3]

Fig. 1

2. For the input voltage $v_i = 100 \sin \omega t$ and the network in Fig. 2, **sketch** the output voltage v_0 and also **calculate** the average value of the output voltage.

[CO2, C3, EP1,

Mark: 3]

Fig. 2

3. Sketch the waveform of output v_o for the network in Fig. 3. Assume, the input voltage v_i is a pure triangular signal having peak-to-peak 24 V and the diodes are silicon diodes.

[CO2, C4, EP1, Mark: 5]

rig. J

4. Assuming that the diodes in the circuits of Fig. 4 are ideal, **find** the values of the labeled voltages and currents.

[CO1, C3, EP1, Mark: 3]

Fig. 4

5. Let $i_C = 2mA$, $v_{BE} = 0.7V$ and $\alpha = 0.8$ for a *npn* transistor. **Determine** the value of I_S , i_B , i_E and β .

Mark: 2] f [CO2, C4, EP1, Mark: 4]

[CO1,

C2,

6. Design the circuit in Fig. 5 to establish a current of $0.5 \, mA$ in the emitter and a voltage of $-0.5 \, V$ at the collector. The transistor $v_{EB} = 0.64 \, V$ at $I_E = 0.1 \, mA$ and $\beta = 100$.

Fig. 5