Завдання 1. Розминка (складається з 4 непов'язаних між собою задач)

- 1. Різниця між тисками всередині і зовні гумової кульки виросла на α_1 %, при цьому радіус кульки збільшився на q_1 %. На скільки відсотків збільшиться радіус кульки, якщо різниця між тисками всередині та зовні кульки збільшиться на α_2 % ?
- 2. Підставку, на якій лежить тіло, що підвішене на пружині, починають опускати з прискоренням а. В початковий момент пружина не розтягнута. Через який час пружина відірветься від підставки? Маса тіла М, жорсткість пружини k.

3. Два плоских повітряних конденсатора з однаковими пластинами

- мають однакові заряди. Відстань між пластинами першого конденсатора в 2 рази більша, ніж у другого. Як зміниться енергія електричного поля системи, якщо другий конденсатор вставити між E_3 обкладками першого, як це показано на
- На горизонтальній поверхні льодової арени намальовано коло радіусом R=10 м. В центрі кола заєць має швидкість v₀ =2 м/с, а вовк має рухатися строго по колу так, аби відстань між обома

	E ₁	±
	E;	
	E ₃	
a)		
-,		
		+
	E ₁	
-		
	E:	
	<u>E;</u> .	
	E;	 -
6)		

гравцями весь час залишалась сталою. Заєць не змінює свою швидкість. До якої точки кола може дістатися другий гравець, не порушуючи правил гри? Коефіцієнт тертя μ =0,05. BOBK

малюнках а) та б)?

Звдання 2. Акваріум

Маємо прозору посудину з тонкими стінками у формі кулі радіуса R, заповнений прозорою рідиною, показник заломлення якої n. В посудині рівномірно опускається згори вниз маленька кулька зі швидкістю v відносно посудини.

Внаслідок заломлення світла видима глубина занурення кульки h (положення його зображення) буде відрізнятися від його дійсної глибини H.

Частина 1. Погляд вниз.

За рухом кульки спостерігають зверху з точки, що знаходиться на значній відстані від посудини

- **1.1** При якому положенні кульки її «уявна» глибина h буде співпадати з дійсною глибиною H, незалежно від показника заломлення рідини? Відповідь обґрунтуйте.
- **1.2** Знайдіть залежність h=f(H) при H < R;
- **1.3** Знайдіть залежність h=f(H) при H≥R;
- **1.4.** Побудуйте графік залежності уявної глибини кульки h від його дійсної глибини H. Даний графік побудуйте у відносних координатах y=h/R від x=H/R при двох значеннях $n_1=1,5$ і $n_2=2,5$.
- **1.5.** Знайдіть залежність уявної швидкості руху кульки від $\ddot{\mathbf{u}}$ дійсної глибини H.
- **1.6**. Побудуйте графіки отриманих в п. 5 залежностей при двох значеннях n_1 =1,5 і n_2 =2,5 в безрозмірних координатах $\aleph=\frac{u}{v}$ від $x=\frac{H}{R}$

Частина 2. Погляд збоку.

Око спостерігача знаходиться збоку на прямій, що проходить через центр кульки під кутом 45^{0} до вертикалі. Показник заломлення рідини рівний $n_{1}=1,5$.

2.1 Побудуйте вектор видимої швидкості руху кульки *и* при спостереженні сбоку, в момент часу, коли кулька проходить центр посудини. Знайдіть координати цього ветора в системі відліку, зображеній на рисунку.

Завдання 3. Заряджений стержень

Тонкий діелектричний стержень AB позитивний заряд в постійною лінійною густиною λ і знаходиться в вакуумі.

3.1 Розглянемо малу дільницю $FG = \Delta I$ стержня, яку видно из точки C простору під малим кутом $\Delta \varphi$, (див. рис.), причому $\Delta \varphi << \varphi$. Покажіть, що модуль ΔE напруженості електростатичного поля, що створено цією дільницею стержня в точці C, пропорційний величині кута $\Delta \varphi$, і може бути представлений у вигляді $\Delta E = k_1 \cdot \Delta \varphi$.

Знайдіть коефіцієнт пропорційності k_1 .

3.2 Доведіть, що вектор напруженості електростатичного поля, що створено т стержнем *AB*, направлений вздовж бісектриси *DC* кута *ACB*, (см. рис.). Даний результат ви можете

має

використовувати в подальших пунктах задачі, і в тому випадку, якщо не змогли его довести.

- **3.3** Обчисліть модуль E_C напруженості електростатичного поля, що створене стержнем AB в точці C на осі симетрії стержня.
- **3.4** Знайдіть вираз E(h) для модуля напруженості електростатичного поля, створеного зарядженим стержнем з постійною лінійною густиною λ , на відстані h від нього.

3.5 Два тонких нескінченних заряджених з постійною лінійною густиною $\lambda = 25$ нКл/м стержня схрещуються в просторі під прямим кутом (див. рис.). Відстань між найближчими точками стержнів h = 1,0м. Найдіть силу F електростатичного відштовхування стержнів.