FACEBOOK A

Riemannian Continuous Normalizing Flows

Emile Mathieu[†], Maximilian Nickel[‡]

†Department of Statistics, University of Oxford, United Kingdom, ‡Facebook Artificial Intelligence Research, New York, USA

Overview

► We build on continuous normalizing flows [1] and introduce Riemannian continuous normalizing flows, a model which admits the parametrization of flexible probability measures on smooth manifolds by defining flows as the solution to ordinary differential equations.

Motivation

- ► Normalizing flows (NFs) have shown great promise for modelling flexible probability distributions.
- ► Data is often naturally described on Riemannian manifolds such as spheres, tori, and hyperbolics pace.
- ► Most NFs implicitly assume a **flat geometry**, making them either **misspecified or ill-suited** in these situations.

Contributions

- ► We give **sufficient conditions** for a **vector field** to generate a **diffeomorphic flow** mapping a manifold onto itself.
- ► We derive the continuous change of variables for manifold-valued random variables.
- ► We propose a **neural network architecture** that outputs vector fields decomposed on the **coordinates vector fields**.
- ➤ We empirically demonstrate the advantages of our method on constant curvature manifolds ie., the Poincaré disk and the sphere compared to non-Riemannian and projected method.

Vector flows

▶ We parametrize flows through the time-evolution of manifold-valued particles z, as described by the ordinary differential equation (ODE)

$$\frac{d\mathbf{z}(t)}{dt} = \mathbf{f}_{\theta}(\mathbf{z}(t), t) \tag{1}$$

where f_{θ} denotes a *vector field*.

Figure 1: Trajectories generated on the sphere to model volcano eruptions.

Proposition 1: Vector flows

Let \mathcal{M} be a *smooth* complete manifold. Furthermore, let f_{θ} be a C^1 -bounded time-dependent *vector field*. Then there exists a *global flow* $\phi: \mathcal{M} \times \mathbb{R} \mapsto \mathcal{M}$ such that for each $t \in \mathbb{R}$, the map $\phi(\cdot, t): \mathcal{M} \mapsto \mathcal{M}$ is a C^1 -diffeomorphism (i.e. C^1 bijection with C^1 inverse).

Likelihood computation

Proposition 2: Instantaneous change of variables

Let z(t) be a continuous manifold-valued random variable given in local coordinates, which is described by the ODE from Eq. (1) with probability density $p_{\theta}(z(t))$. The change in log-probability then also follows a differential equation given by

$$\frac{\partial \log p_{\theta}(\boldsymbol{z}(t))}{\partial t} = -\operatorname{div}(\boldsymbol{f}_{\theta}(\boldsymbol{z}(t),t)) = -|\boldsymbol{G}(\boldsymbol{z}(t))|^{-\frac{1}{2}} \operatorname{tr}\left(\frac{\partial \sqrt{|\boldsymbol{G}(\boldsymbol{z}(t))|}\boldsymbol{f}_{\theta}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}}\right). \tag{2}$$

► This can efficiently be estimated with Hutchinson's trace estimator, as

$$\operatorname{div}(\boldsymbol{f}_{\theta}(\boldsymbol{z}(t),t)) = |\boldsymbol{G}(\boldsymbol{z}(t))|^{-\frac{1}{2}} \mathbb{E}_{p(\epsilon)} \left[\epsilon^{\mathsf{T}} \frac{\partial \sqrt{|\boldsymbol{G}(\boldsymbol{z}(t))|} \boldsymbol{f}_{\theta}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}} \epsilon \right]. \tag{3}$$

Hyperbolic geometry and limits of standard and wrapped methods

- ► Standard NFs are unaware of the underlying geometry or border of the manifold.
- The *wrapped* model defined as $\exp_{\mu\sharp} P$ with P a standard NF on \mathbb{R}^2 , is competitive but struggles when the target is located far from the origin.

Unscaled
Rescaled

Negative log-likelihood

Figure 2: Probability densities on \mathbb{B}^2 (zoomed). Models have been trained by maximum likelihood to fit $\mathcal{N}^W(\exp_{\mathbf{0}}(2 \partial x), \Sigma)$.

Figure 3: Ablation study of the vector field architecture for the *Riemannian* model.

Spherical geometry and limits of the stereographic projection

- ► Stereographic model: $P_{\theta}^{S} = \rho_{t}^{-1}P$ with ρ the stereographic projection [2].
- ► We investigate the failure point of the *stereographic* model by targeting a simple and unimodal distribution: a von Mises-Fisher distribution.

Figure 4: Probability distributions on S². Models

trained to fit a vMF($\mu = -\mu_0, \kappa = 10$).

	model	Stereographic	Riemannian
Loss	κ		
	100	$63.60_{\pm 3.56}$	-1.78 _{±0.01}
\mathcal{L}^{Like}	50	$32.68_{\pm 3.15}$	$-1.09_{\pm 0.01}$
	10	$6.45_{\pm 2.42}$	$0.52_{\pm 0.01}$
	100	$1.56_{\pm 0.34}$	$0.04_{\pm 0.02}$
\mathcal{L}^{KL}	50	$0.68_{\pm 0.16}$	$0.03_{\pm 0.02}$
	10	$0.12_{\pm 0.01}$	$0.01_{\pm 0.00}$
			(1

Table 1: Performance of continuous flows on \mathbb{S}^2 with $vMF(\mu = -\mu_0, \kappa)$ targets (the smaller the better).

Density estimation of spherical data

► We assess the modelling capacity of our model against its stereographic counterpart and a mixture of vMF distributions.

Table 2: Negative test log-likelihood of spherical continuous normalizing flows on real spherical earth science data.

	Volcano	Earthquake	Flood	Fire
Mixture vMF	$-0.31_{\pm 0.07}$	$0.59_{\pm 0.01}$	$1.09_{\pm 0.01}$	$-0.23_{\pm 0.02}$
Stereographic	$-0.64_{\pm 0.20}$	$0.43_{\pm0.04}$	$0.99_{\pm0.04}$	$-0.40_{\pm 0.06}$
Riemannian	$-0.97_{\pm 0.15}$	$0.19_{\pm 0.04}$	$0.90_{\pm 0.03}$	$-0.66_{\pm 0.05}$
Learning curves	3- 2- 1- 0- -1- 0 1000 2000 3000 epochs	2- 1- 0 500 1000 epochs	2- 1- 0 500 1000 epochs	2- 1- 0- 0 500 1000 epochs
Data size	829	6124	4877	12810

Figure 5: Blue and red dots represent training and testing datapoints, respectively. Heatmaps depict the log-likelihood of the trained models.

Future work and limitations

- Currently rely on a choice of local coordinates, e.g. (θ, ϕ) for \mathbb{S}^2 , which are not defined on the full manifold.
- ► As a consequence, the stochastic estimator from Eq. (3) exhibits high variance in the spherical setting.
- ➤ Can bypass coordinates vector fields thanks to the existence of a family of divergence-free vector fields spanning the tangent bundle for homogeneous spaces.

References

- [1] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible generative models with free-form continuous dynamics. In *International Conference on Learning Representations*, 2019.
- [2] Mevlana C. Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing Flows on Riemannian Manifolds. arXiv:1611.02304 [cs, math, stat], November 2016.