

Charles Kramer/ISYE 7406/April 2024

### Overview

- Campaign Analytics: Great but Expensive
- Answer: Target Voters Using Free Public Data
- Data Overview
- Methods
- Results
- Conclusions

# Campaign Analytics:

#### **Great but Expensive**

- · Campaign analytics help target campaign resources (ads, events, canvassing)
- But they aren't cheap, and down-ballot campaigns are not always well-funded
- These campaigns, i.e. state legislature, county board matter—education, health, taxes
- · Can we devise useful campaign targeting analytics using free public data?

## Voter Targeting with Free Public Data

- Need two components:
  - Voting data by precinct: Virginia Department of Elections
  - Demographic data by Census tract: American Community Survey
  - Merge voting to demographics using geospatial join (tract nearest precinct)
- Research question: which precincts are apt to flip parties, based on demographics?
  - -> focus efforts on voters in these precincts
  - Cost: \$0

#### Data

#### Virginia 2020 General Election

- Virginia: "Purple" state, not dominated by Republican or Democratic voters
- 2020 General Election: high turnout, high-interest election
- Precincts: 2424 precincts; measure party affiliation by total vote majority (R or D)
  - 4 categories: 2 flips: D->R, R->D; 2 not-flips: D->D, R->R
  - This is really 2 problems: Republican campaign wants to ID flippable Democratic precincts, vice versa
- Demographics: concepts shown to correlate with 'on the fence' voters (Pew)
  - Median age, % white, % male, % under poverty line, % foreign born, % eligible for Medicaid, % with broadband
- Cleaning: Keep precincts that exist both years, replace missing age with median, standardize demographics

# EDA: The Target

Flips from 2019 to 2020, All Precincts



## Flips are Uncommon

- First panel: P(2020=a & 2019=b)
- Second panel P(2020=a | 2019=b)
- This is the campaign's focus: flippables
- E.g. only 14.5 percent of R districts flipped D
- Unbalanced data; challenging for ML
- => rebalance using SMOTE

|      |   | Unconditional P(2020, 2019) |      |
|------|---|-----------------------------|------|
|      |   | 2020                        |      |
|      |   | D                           | R    |
| 2019 | D | 20.0                        | 18.5 |
|      | R | 8.9                         | 52.6 |
|      |   | Conditional P(2020   2019)  |      |
|      |   | 2020                        |      |
|      |   | D                           | R    |
| 2019 | D | 52.0                        | 48.0 |
|      | R | 14.5                        | 85.5 |

## Demographic Data

#### See Annex for other variables

- Distributions differ across flip category -> variables can identify category
- Consistent with studies that correlate race, etc with party lean
- Confirmed by K-sample Anderson-Darling tests; rejects equality null (Annex)
- True for all variables



### Method

- 2 sets of models: base-R (R in 2019) and base-D (D in 2019)
- For base in {base-D, base-R}:

Do 30 times: #Monte Carlo Cross Validation Loop
Split sample randomly into train/test (80/20)
Use SMOTE to generate balanced categories for training data

For model in {K Nearest Neighbors, Random Forest, ADABoost, SVM, Neural Net}:

Cross-validate parameters on training data (10 fold) (see Annex for parameters)

Re-fit model with best parameters, generate balanced accuracy on test

If balanced accuracy > previous results:

Save results as best model parameters

For model in {K Nearest Neighbors, Random Forest, ADABoost, SVM, Neural Net}: # Final evaluation
Retrieve parameters obtained from best results of above loop
Split sample randomly into train/test (80/20)
Use SMOTE to generate balanced categories for training data
Re-fit model to training data
Generate diagnostics (F1, Matthews correlation, balanced accuracy) on test (robust to unbalanced sample)

## CV Results (Balanced Accuracy)

Best model: Neural Net (Base-R), Random Forest (Base-D)
Confirmed by t-tests for difference in means vs next-best model (Annex)



# Model Diagnostics

#### **Estimated on New Train/Test Split**

| Model         | F1 score                                      | Matthews | Balanced Accuracy |
|---------------|-----------------------------------------------|----------|-------------------|
|               | Base-D model                                  |          |                   |
| KNN           | 0.780                                         | 0.561    | 0.7809            |
| Random Forest | 0.785                                         | 0.561    | 3 0.7806          |
| ADABoost      | 0.753                                         | 0.497    | 0.7485            |
| SVM           | 0.778                                         | 0.550    | 0.7753            |
| NN            | 0.725                                         | 0.432    | 0.7162            |
|               | Base-R model                                  |          |                   |
| KNN           | 0.705                                         | 0.655    | 0.8659            |
| Random Forest | 0.725                                         | 0.676    | 0.8475            |
| ADABoost      | 0.666                                         | 0.614    | 0.8616            |
| SVM           | 0.685                                         | 0.633    | 0.8601            |
| NN            | 0.660                                         | 0.600    | 0.8373            |
|               | Best results in each category are italicized. |          |                   |

#### **Conditional on Base-year Party Majority**



# Large Gain in Accuracy for D->R

#### **Smaller for R->D**

|      | Raw Data<br>P( flip   2019) | Modeled<br>P(fliplflip label) | Gain |
|------|-----------------------------|-------------------------------|------|
| R->D | 15%                         | 58%                           | 43%  |
| D->R | 48%                         | 78%                           | 30%  |

### Conclusions

- Substantial improvements in accuracy using public Census data to predict flips:
  - Republican->Democratic precincts: 43 percentage point gain
  - Democratic->Republican precincts: 30 percentage point gain
- Future research:
  - Additional election cycles
  - More focused elections (look at one office vs all offices together)
  - Causal analysis: measure campaign effort
- Code: <a href="https://github.com/Charlie-Kramer/precinct\_flips">https://github.com/Charlie-Kramer/precinct\_flips</a>

#### Annex Slides

- Distribution of Demographic Variables by Flip Category
- Parameters Chosen by Cross-Validation
- Full Set of Confusion Matrices

# Demographic Variables by Category



# Demographic Variables by Category



## Demographic Variables by Category



# Parameters Chosen by CV

| Model         | Key Parameters (CV grid; bold = parameter chosen by 10x10-fold CV)                                                                                                                  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Submodel      | Base-D model                                                                                                                                                                        |
| KNN           | Number of neighbors (1-20; 17); P-exponent on distance metric (1, 2); weights (uniform, distance)                                                                                   |
| Random Forest | Number of estimators (20, 30,,200; <b>120</b> ), criterion (gini, <b>entropy</b> , log_loss), minimum samples for split ( <b>2</b> ,4,6), minimum samples per leaf (1,3, <b>5</b> ) |
| ADABoost      | Number of estimators (5, 10, 15,,100; <b>55</b> ), learning rate (.25, .75, <b>1</b> , 2, 4),                                                                                       |
| SVM           | C (.5,1,2), kernel (linear, poly, rbf, sigmoid), gamma (scale, auto)                                                                                                                |
| NN            | Activation(tanh, relu), hidden layer sizes(50,100,200), learning_rate(constant, adaptive)                                                                                           |
| Submodel      | Base-R model                                                                                                                                                                        |
| KNN           | Number of neighbors (1-20, 4); P-exponent on distance metric (1, 2); weights (uniform, distance)                                                                                    |
| Random Forest | Number of estimators (20, 30,,200; <b>140</b> ), criterion (gini, <b>entropy</b> , log_loss), minimum samples for split ( <b>2</b> ,4,6), minimum samples per leaf ( <b>1</b> ,3,5) |
| ADABoost      | Number of estimators (5, 10,,100; <b>90</b> ), learning rate (.25, .75, <b>1</b> , 2, 4).                                                                                           |
| SVM           | C (.5,1,2), kernel (linear, poly, <b>rbf</b> , sigmoid), gamma (scale, <b>auto</b> )                                                                                                |
| NN            | Activation(tanh, relu), hidden layer sizes(50, 100, 200), learning_rate(constant, adaptive)                                                                                         |

#### **Base-R: Neural Net**





Base-R: SVM





#### **Base-R: ADABoost**





#### **Base-R: Random Forest**





#### Base-R: KNN





#### **Base-D: Neural Net**





**Base-D: SVM** 





#### **Base-D: ADABoost**





#### **Base-D: Random Forest**





#### Base-D: KNN





### Miscellaneous Statistical Tests

|        | Join count tests                                                                                                                                         |      |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|        | "BB"                                                                                                                                                     | "BW" |  |
| base-D | 0.001                                                                                                                                                    | 1.0  |  |
| base-R | 0.001 1.0                                                                                                                                                |      |  |
|        | "BB" tests the null that the number of similarly labeled neighbors is not statistically different from random assignment ("BW" for differently labeled). |      |  |

#### **CV**: equality of means tests

| Base D: RF-KNN | 4.112  | 0.0001 |
|----------------|--------|--------|
| Base R: NN-RF  | 13.113 | 0.0000 |
|                |        |        |
|                |        |        |

|            | K-sample Anderson-Darling Tests for Similarity of Distributions |         |  |
|------------|-----------------------------------------------------------------|---------|--|
| Variable   | Statistic                                                       | P-value |  |
| % Male     | 14.9                                                            | 0.001   |  |
| % White    | 336.0                                                           | 0.001   |  |
| % Foreign  | 190.0                                                           | 0.001   |  |
| % Poverty  | 38.7                                                            | 0.001   |  |
| %Broadband | 26.8                                                            | 0.001   |  |
| % Medicaid | 24.1                                                            | 0.001   |  |