#### Fakultät Informatik INF Studiengang Informatik

Prof. Dr.-Ing. Holger Stahl

Aufgabe

**Erreichte Punktzahl**  2

3

4

5

6

7

8

9

Verständnistests



# Probeklausur Technische Grundlagen der Informatik

Version A - Semester: INF-B 1

| Datum:                | 20. Uranus 2030                                                                                      | ), 14:00 Uhr                        | N                              | lachnar                     | ne:                    |                                   |                         |                                    |           |
|-----------------------|------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-----------------------------|------------------------|-----------------------------------|-------------------------|------------------------------------|-----------|
| Dauer:                | 90 min                                                                                               |                                     | V                              | orname                      | e:                     |                                   |                         |                                    |           |
| Prüfer:               | Prof. DrIng. He                                                                                      | olger Stahl                         | N                              | IatrNı                      | ·::                    |                                   |                         |                                    |           |
| Ergä  Mob  Teila      | classene Hilfsmitt<br>inzungen, sowie T<br>iltelefone (auch soufgaben, zu dere<br>derlich sind, wurd | Gaschenrechnog. Smartphoen Lösung E | er<br>ones und -<br>Ergebnisse | watches                     | s) sind a              | a <mark>bzuscha</mark><br>angenei | alten un                | d wegzupacke                       | en!       |
| • Erge                | • Ergebnisse können nur dann gewertet werden, wenn der Rechenweg klar erkennbar ist.                 |                                     |                                |                             |                        |                                   |                         |                                    |           |
| • In Di               | agrammen müsse                                                                                       | en <u>beide Ach</u>                 | sen besch                      | riftet se                   | in.                    |                                   |                         |                                    |           |
| • Ergä                | Ergänzen Sie unvollständige Angaben durch eigene, plausible Annahmen.                                |                                     |                                |                             |                        |                                   |                         |                                    |           |
| • Rots                | Rotstift darf nicht verwendet werden.                                                                |                                     |                                |                             |                        |                                   |                         |                                    |           |
| • Das                 | Öffnen der seitlic                                                                                   | hen Klamme                          | rn wird al                     | s Unter                     | schleif g              | gewertet                          | t.                      |                                    |           |
| • Diese               | es Aufgabenheft ı                                                                                    | umfasst 10 Se                       | eiten. Max                     | imal si                     | nd 90 P                | unkte er                          | reichba                 | r.                                 |           |
|                       |                                                                                                      |                                     |                                |                             |                        |                                   |                         |                                    |           |
| Überhang<br>Durchführ | ch zu diesen 90 Pr<br>punkte für die aktive<br>ung der praktischen Ü                                 | e Teilnahme an  Jbungen gab es in   | der Vorlesinsgesamt 4 ·        | ı <b>ng:</b> Für<br>2½ zusä | die Vorbe<br>zliche Bo | ereitung de<br>onuspunkt          | er Praktik<br>e. Außerd | umsversuche, sov<br>lem wurden zum | Abschluss |
| konnten. Iı           | ungskapitel 2 und 5 Vasgesamt waren somit r eine spätere Teilnah                                     | t 12 Punkte erzie                   | lbar. Dieser                   | zusätzlic                   | he Überh               | ang wird                          | Ihnen auc               | h für eventuelle '                 |           |
| Bewertu               | ng (vom Prüfer a                                                                                     | uszufüllen):                        |                                |                             |                        |                                   | 1                       |                                    |           |
| A C I                 | 1 2                                                                                                  | 2 4                                 | _                              | 6                           | 7                      | 0                                 | 0                       | Überhang                           |           |

#### TEIL I: GRUNDLAGEN DER ELEKTROTECHNIK

## 1. Aufgabe: Parallel- und Reihenschaltung (15 Punkte)

Ein Student möchte seine Modelleisenbahn beleuchten. Er besitzt 8 Glühlämpchen, welche jeweils die Aufschrift 2,4 V/1 W tragen. Die Lämpchen sollen <u>mit Nennleistung</u> betrieben werden.

a)\* Zunächst speist er die Lampen mit 1,2-V-Akkus (Annahme: Ideale Spannungsquellen):



Ergänzen Sie obiges Schaltbild – es gibt mehrere korrekte Lösungen!

b)\* Welche Leistung geben die Akkus <u>insgesamt</u> ab?

c) Wie lange halten die Akkus durch, wenn diese jeweils eine Kapazität von 1000 mAh haben?



d)\* Als die Akkus verbraucht sind, fällt dem Studenten ein, dass er auch den Netztransformator der Eisenbahn zur Speisung der Beleuchtung verwenden kann. Der Trafo liefert sekundärseitig eine Wechselspannung von 18 V (effektiv) und wird als <u>ideale Spannungsquelle</u> angenommen.

Vervollständigen Sie das unten dargestellte Schaltbild! Leuchten die Lampen mit voller Helligkeit (Begründung)?



## **2. Aufgabe:** *Spannungsteiler* (14 Punkte)

Ein Smartphone soll behelfsmäßig über einen Spannungsteiler am Bordnetz eines Kraftfahrzeugs (Quelle mit  $U_{\rm Q}=12$  V) geladen werden. Das Smartphone benötigt eine Versorgungsspannung von  $U_{\rm L}=5$  V, und zieht beim Laden einen Strom von  $I_{\rm L}=500$  mA. Die Quelle soll maximal mit dem Strom  $I_{\rm Q}=2$  A belastet werden:

a)\* Berechnen Sie die Widerstände R<sub>1</sub> und R<sub>2</sub>, so dass sich die oben vorgegebenen Werte für die Spanungen und Ströme einstellen!



- b)\* Nach Abschluss des Ladevorgangs wird der Laststrom  $I_L$  zu Null. Wie groß wird die Leerlaufspannung  $U_L$  in diesem Fall, mit den aus Teilaufgabe a) berechneten Widerstandswerten?
  - <u>Hinweis:</u> Falls Sie die Widerstände des Spannungsteilers nicht berechnen konnten, verwenden Sie für die Teilaufgaben b) und c) die Werte  $R_1 = R_2 = 4 \Omega$ .
- c)\* Für welche Leistung müssen die beiden Widerstände jeweils ausgelegt sein?
- d)\* Wie groß ist der maximale Wirkungsgrad der Schaltung?



# 3. Aufgabe: Betrieb einer LED (4 Punkte)

In einer Rechnerschaltung soll eine blaue LED (Flussspannung  $U_{\rm F}=3,4$  V) das Vorhandensein der Betriebsspannung  $U_{\rm Q}=12$  V anzeigen. Die LED soll mit einem Strom von  $I_{\rm D}=15$  mA betrieben werden.

- a)\* Berechnen Sie den Vorwiderstand R.
- b) Wählen Sie den nächstliegenden Wert aus der E12-Reihe, mit dem gilt:  $I_{\rm D} \leq 15~{\rm mA!}$



Eventuell benötigter zusätzlicher Platz zur Lösung anderer Aufgaben dieser Prüfung:



## 4. Aufgabe: Gleichrichtung einer Wechselspannung (15 Punkte)

Eine Gleichrichterschaltung mit Siliziumdiode wird an einer sinusförmigen Wechselspannung  $u_0(t)$  der Frequenz f = 50 Hz und mit dem Effektivwert  $U_0 = 3,6$  V betrieben:



a)\* Wie groß ist der Scheitelwert  $\widehat{U}_{\mathbf{Q}}$  der Wechselspannung  $U_{\mathbf{Q}}$ ?



b)\* Skizzieren Sie den zeitlichen Verlauf der gleichgerichteten Spannung  $u_L(t)$  am Lastwiderstand R in nachfolgendes Diagramm:



c)\* Erklären Sie, warum die Scheitelspannung  $\widehat{U}_L$  etwas geringer ausfällt als  $\widehat{U}_Q$ . Wieviel beträgt diese Differenz in etwa?



Im Folgenden wird ein Siebkondensator mit  $C = 1000 \,\mu\text{F}$  parallel zum Lastwiderstand geschaltet:

d)\* Skizzieren Sie die Kapazität *C* <u>als Elektrolytkondensator</u> in die Schaltung ganz oben. Achten Sie darauf, die korrekte Polarität einzuzeichnen!

e)\* Berechnen Sie die Zeitkonstante  $\tau$  des RC-Gliedes aus Kondensator und Lastwiderstand.



f) Skizzieren Sie die Spannung  $u_{L,Sieb}(t)$ , die sich mit dem Siebkondensator ergibt, in obiges Diagramm für Teilaufgabe b). Zeichnen Sie diese Kurve in einer anderen Farbe (nicht rot!) ein.

#### TEIL II: SIGNALE UND SYSTEME

# 5. Aufgabe: Faltung (10 Punkte)

Ein zeitkontinuierliches LTI-System mit der Impulsantwort h(t) wird mit dem Eingangssignal x(t) beaufschlagt:







 $\Rightarrow$  Skizzieren Sie das Ausgangssignal y(t)!



## 6. Aufgabe: Eigenschaften von Signalen und Spektren (7 Punkte)

Ein reelles Signal x(t) sei periodisch, achsensymmetrisch und enthalte einen Gleichanteil.

a)\* Skizzieren Sie den Verlauf eines Signals, das die vier oben <u>unterstrichenen</u> Eigenschaften erfüllt! <u>Hinweis:</u> Es gibt unendlich viele korrekte Lösungen!



b)\* Welche Eigenschaften ergeben sich für das Spektrum  $\underline{X}(f) \bullet^{\mathsf{FT}} O x(t)$ ?

<u>Hinweis:</u> Lösen Sie diese Teilaufgabe unabhängig von Ihrer Lösung für Teilaufgabe a)!



Eventuell benötigter zusätzlicher Platz zur Lösung anderer Aufgaben dieser Prüfung:



#### **7. Aufgabe:** *Abtastung* (8 Punkte)

Im Demoprogramm **Abtastung.exe** wird ein Mikrofonsignal tiefpassgefiltert, abgetastet und anschließend wieder tiefpassgefiltert:



Kennzeichnen Sie die folgenden Aussagen mit **W** für "wahr", mit **f** für "falsch", oder mit **f** für "weiß ich nicht".

Jede **korrekt** beurteilte Aussage wird mit +1 **Punkt** bewertet, jede **nicht korrekt** beurteilte Aussage wird mit -1 **Punkt** bewertet. Ansonsten erhalten Sie 0 **Punkte** für die betreffende Aussage. Die Aufgabe wird mit mindestens 0 Punkten gewertet.

| Das Signal $x(t)$ ist periodisch.                                             |
|-------------------------------------------------------------------------------|
| Das Signal $x_S(t)$ ist periodisch.                                           |
| Die Abtastfrequenz beträgt $f_S = 1.3$ kHz.                                   |
| Das Signal $x(t)$ enthält die volle Information über das Mikrofonsignal.      |
| Die Rekonstruktionsbandbreite von 3 kHz verletzt das Abtasttheorem.           |
| Die Abtastimpulsfolge $s(t)$ ist <u>periodisch</u> .                          |
| Das Spektrum $ X_s(f) $ ist <u>periodisch mit 3 kHz</u> .                     |
| Das Signal $x_r(t)$ klingt bei der Wiedergabe genauso wie das Signal $x(t)$ . |

## **8. Aufgabe:** *Quantisierung* (12 Punkte)

Ein A/D(Analog/Digital)-Wandler implementiert die Quantisierung mit einer Wortbreite m=4 Bit. Der Wertebereich des Eingangssignals beträgt  $-1 < x \le 1$ .

- a)\* Auf wie viele diskrete Wertestufen M wird das Signal abgebildet?
- b) Skizzieren Sie die Quantisierungskennlinie. Achten Sie darauf, dass jede Quantisierungsstufe exakt den gleichen Wertebereich repräsentiert!
- c)\* Wie groß ist der Dynamikumfang  $D_{\text{max}}$  des Systems? Geben Sie diesen sowohl als Signal-zu-Rauschleistungs-Verhältnis an, als auch in der Pseudo-Einheit ,dB'!
- d)\* Skizzieren Sie das Ausgangssignal y(t) im Bereich -2 ms  $< t \le 4$  ms, wenn am Eingang das folgende Signal anliegt:  $x(t) = 0.1 \cdot \cos(\pi \cdot t/ms)$ .



## 9. Aufgabe: Spezielle Signale (5 Punkte)

Kennzeichnen Sie die folgenden Aussagen mit **W** für "wahr",

mit **f** für **"falsch"**, oder

mit für "weiß ich nicht".

Jede **korrekt** beurteilte Aussage wird mit +1 **Punkt** bewertet, jede **nicht korrekt** beurteilte Aussage wird mit -1 **Punkt** bewertet. Ansonsten erhalten Sie 0 **Punkte** für die betreffende Aussage. Die Aufgabe wird mit mindestens 0 Punkten gewertet.

Bewerten Sie folgende Gleichungen, die den **DIRAC'schen \delta-Impuls**  $\delta(t)$  und/oder die **Sprungfunktion**  $\sigma(t)$  enthalten:

- $[\delta(t-1s) + \delta(t+1s)] \cdot \cos(\pi \cdot t/s) = 0$

Eventuell benötigter zusätzlicher Platz zur Lösung anderer Aufgaben dieser Prüfung:

