In [13]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [14]:

```
df=pd.read_csv(r"C:\Users\krish\Downloads\loan1 (1).csv")
df
```

Out[14]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [15]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 448.0+ bytes

```
In [16]:
```

```
df['Marital Status'].value_counts()
```

Out[16]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [17]:

```
df['Annual Income'].value_counts()
```

Out[17]:

Name: count, dtype: int64

In [18]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[18]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In []:

```
In [21]:
x=["Home Owner","Annual Income"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
In [29]:
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.3)
In [30]:
clf=DecisionTreeClassifier(random_state=0)
In [31]:
clf.fit(x_train,y_train)
Out[31]:
         DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
In [32]:
score=clf.score(x_test,y_test)
print(score)
0.0
```