Лабораторна робота №7

ДОСЛІДЖЕННЯ МУРАШИНИХ АЛГОРИТМІВ

Mema роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися дослідити метод мурашиних колоній.

Хід роботи:

Завдання 2.1. Дослідження мурашиного алгоритму на прикладі рішення задачі комівояжера.

У файлі *Відстані між обласними центрами України. Міста* пронумеровані по алфавіту. Ваш номер за журналом групи (або номер за табличкою у рейтингу) повинен відповідати місту з якого ви будете починати виїзд. Наприклад: за рейтинговою таблицею - № 6 Драк Тарас Сергійович починає з № 6. Івано-Франківськ. Виїзд починається і закінчується в цьому місті.

Використовуючи мову Python, розробити програму, що реалізує метод мурашиних колоній, для рішення задачі комівояжера, який їздить по містах України.

Таблиця №1

Варіант №	Місто
6	Івано-Франківськ

Лістинг програми:

					ЖИТОМИРСЬКА ПОЛІТЕХН	IIKA.23.	121.6.0	00 — Лр.7	
Змн.	Арк.	№ докум.	Підпис	Дата	<u> </u>				
Розр	юб.	Груницький Д.С.			Звіт з лабораторної	/lim.	Арк.	Аркушів	
Пере	вір.	Голенко М.Ю.				7			
Реце	НЗ.								
Н. Контр.					ροδοπυ №7 ΦΙΚΤ . ερ		Т, гр. і	<i>.IП</i> 3-20-3	
3ав.кс	ιф.						, I		

```
distance = [
[471, 343, 611, 677, 377, 747, 490, 174, 857, 780, 850, 0, 120, 420, 864, 282, 681, 754, 999, 556, 51, 590, 300, 642, 640], [428, 468, 731, 557, 497, 627, 489, 294, 977, 856, 970, 120, 0, 540, 741, 392, 800, 660, 1009, 831, 171, 548, 420, 515, 529], [593, 196, 390, 468, 270, 898, 337, 246, 474, 725, 891, 420, 540, 0, 665, 635, 261, 825, 1149, 141, 471, 653, 279, 892, 477], [311, 957, 1045, 187, 925, 296, 318, 627, 1129, 70, 232, 864, 741, 665, 0, 1157, 664, 162, 484, 805, 834, 193,
```

		Груницький Д.С.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
420, 1036, 608],
[521, 376, 560, 624, 297, 798, 551, 225, 806, 869, 1141, 51, 171, 471, 834, 221, 732, 831, 1065, 576, 0, 641, 351, 713, 691], [120, 765, 988, 185, 875, 246, 315, 435, 1177, 263, 240, 590, 548, 653, 193, 964, 662, 112, 455, 854, 641, 0, 463, 190, 455], [343, 324, 547, 321, 405, 709, 190, 126, 706, 578, 740, 300, 420, 279, 508, 696, 540, 575, 984, 420, 351, 463,
                   probabilities = []
dex(city)] # Відстань між поточним та наступним містом
                            probabilities.append(probability)
```

		Груницький Д.С.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
current_city_index = self.colony.cities.index(self.visited cities[-2])
initial pheromone):
    def update pheromones(self):
ant.total distance # Додавання феромонів
```

		Груницький Д.С.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
\overline{alpha} = 1
beta = 2
evaporation_rate = 0.5
initial_pheromone = 1
ant colony = AntColony(distance, cities, n ants, alpha, beta, evaporation rate,
initial pheromone)
ant_colony.run(n_iterations=70, name_city='| Івано-Франківськ') print('\nDistance:', ant_colony.best_distance) # Вивід найкращої відстані
print('\nBest path:', ' -> '.join(ant_colony.best_path)) # Вивід найкращого шляху
plt.figure(figsize=(12, 6))
plt.xticks([i for i in range(len(ant colony.best path))])
plt.yticks(range(len(cities)), cities)
plt.xlabel("Номери міст")
plt.ylabel("Назви міст")
plt.title("Маршрут пройдений комівояжером")
plt.plot([i for i in range(len(ant_colony.best_path))], [cities.index(path) for
path in ant colony.best path], ms=10, marker='o', mfc='r')
plt.grid()
plt.tight layout()
plt.show()
```

Результат виконання програми:

Рис. 2.1.1 – Результат виконання завдання (графік 1).

		Груницький Д.С.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Distance: 5850

Best path: Івано-Франківськ -> Чернівці -> Вінниця -> Хмельницький -> Тернопіль -> Луцьк -> Рівне -> Черкаси -> Кропивницький -> Херсон -> Миколаїв -> Одеса -> Сімферополь -> Дніпро -> Запоріжжя -> Донецьк -> Луганськ -> Суми -> Полтава -> Харків -> Київ -> Чернігів -> Житомир -> Ужгород -> Львів -> Івано-Франківськ

Рис. 2.1.2 – Результат виконання завдання.

Рис. 2.1.3 – Результат виконання завдання (графік 2).

```
Distance: 5488

Best path: Івано-Франківськ -> Чернівці -> Тернопіль -> Хмельницький -> Рівне -> Луцьк -> Житомир -> Київ -> Черкаси -> Чернігів -> Суми -> Луганськ -> Донецьк -> Запоріжжя -> Дніпро -> Харків -> Полтава -> Кропивницький -> Миколаїв -> Херсон -> Сімферополь -> Одеса -> Вінниця -> Ужгород -> Львів ->
```

Рис. 2.1.4 – Результат виконання завдання.

		Груницький Д.С.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 2.1.5 – Результат виконання завдання (графік 3).

```
Distance: 5723

Best path: Івано-Франківськ -> Тернопіль -> Луцьк -> Рівне -> Хмельницький -> Вінниця -> Житомир -> Чернігів -> Київ -> Полтава -> Харків -> Суми -> Луганськ -> Донецьк -> Запоріжжя -> Дніпро -> Херсон -> Миколаїв -> Одеса -> Сімферополь -> Кропивницький -> Черкаси -> Чернівці -> Ужгород -> Львів -> Івано-Франківськ
```

Рис. 2.1.6 – Результат виконання завдання.

Висновок

Алгоритм мурашиних колоній, застосований до задачі комівояжера для подорожі по містах України, показав на кожній ітерації покращення визначеного маршруту. Проходження мурахами різних маршрутів і взаємодія їхніх феромонів призвело до знаходження оптимального маршруту з найменшою відстанню.

Посилання на репозиторій: https://github.com/dmytrohrunytskyi/Lab7_AI.git

Висновки по лабораторній роботі: в ході виконання лабораторної роботи використовуючи спеціалізовані бібліотеки та мову програмування Python навчився досліджувати метод мурашиних колоній.

Арк.

		Груницький Д.С.			
		Голенко М.Ю.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.121.6.000 — Лр.7
Змн.	Арк.	№ докум.	Підпис	Дата	•