PUM raport 1 - Klątwa wymiaru

Piotr Zawiślan

24 Marzec 2022

1 Wybrane parametry i otrzymane zbiory danych

Z hipersześcianów o wymiarze $d, d \in \{2, 3, ..., 60\}$ i krawędzi o długości 1 wylosowałem po 10000 punktów.

Następnie wygenerowałem trzy zbiory danych przy użyciu Numpy:

- Zbiór kątów między dwoma wylosowanymi wektorami
- \bullet Zbi
ór ułamków postaci: liczba punktów mieszczących się w wylosowanej sferze / liczba wszystkich punktów
- Zbiór ułamków postaci: różnica odległości od losowego punktu A do dwóch wylosowanych punktów B i C / średnia z tych dwóch odległości

Każdy z nich jest macierzą postaci 59×10000 (oś 0 - liczba wymiarów, oś 1 - numer przykładu).

2 Wykresy i obserwacje

Do rysowania wykresów użyłem bibliotek Seaborn i Matplotlib.

2.1 Kąty

Rysunek 1: Wykres pudełkowy katów ze zbioru 1 (wraz z rozstępem międzykwartylowym)

Rysunek 2: Wykres słupkowy kątów ze zbioru 1 (wraz z odchyleniem standardowym)

Rysunek 3: Histogram kątów ze zbioru 1 $(d=5)\,$

Rysunek 4: Histogram kątów ze zbioru 1 (d = 60)

Po przeprowadzeniu pierwszego eksperymetu możemy zauważyć:

- Średni kąt dla każdego badanego wymiaru wynosi $\theta \approx \frac{\pi}{2} = 90^o$
- Odchylenie standardowe maleje wraz z wzrostem wymiaru
- Rozkłady kątów dla wybranych wymiarów (5 i 60) przypominają rozkłady normalne

2.2 Sfera

Rysunek 5: Wykres pudełkowy ułamków ze zbioru 2 (wraz z rozstępem międzykwartylowym)

Rysunek 6: Wykres słupkowy ułamków ze zbioru 2 (wraz z odchyleniem standardowym)

Po przeprowadzeniu drugiego eksperymetu możemy zauważyć:

- Średni ułamek 'zawierania się w sferze' wynosi 0.5
- Odchylenie standardowe jest podobne dla każdego wymiaru

2.3 Różnica / średnia odległości

Rysunek 7: Wykres pudełkowy ułamków ze zbioru 3 (wraz z rozstępem międzykwartylowym)

Rysunek 8: Wykres słupkowy ułamków ze zbioru 3 (wraz z odchyleniem standardowym)

Po przeprowadzeniu trzeciego eksperymetu możemy zauważyć:

- Średni ułamek maleje na początku szybko, potem nieco się stabilizuje, ale dalej maleje
- Odchylenie standardowe maleje wraz z wzrostem wymiaru
- $\bullet\,$ Różnica odległości dąży do 0 z tego wynika, że odległości są coraz bardziej podobne