Lecture 2: Introduction to Markov Decision Process

Yasuyuki Sawada, Yaolang Zhong

University of Tokyo

October 8, 2025

The Markov Process

- ▶ Definition: A Markov chain (or Markov process) is a stochastic process $\{s_t\}_{t\geqslant 0}=(s_0,s_1,\dots)\in\mathcal{S}$ describing a sequence of random variables in which the outcome in the next period depends only on the state in the current period.
- (memorylessness) Mathematically, for all measurable subsets $\bar{\mathcal{S}} \subseteq \mathcal{S}$,

$$\Pr(s_{t+1} \in \bar{\mathcal{S}} \mid s_t, s_{t-1}, \dots) = \Pr(s_{t+1} \in \bar{\mathcal{S}} \mid s_t).$$

- Key Concepts:
 - **Environment/Dynamic system:** An exogenous system evolving in discrete time $t=0,1,2,\ldots$
 - ▶ State $s_t \in S$: The minimal information from the past needed to predict the future.
 - ▶ Transition function/Transition kernel/Stochastic matrix: $P_t(s' \mid s) = \Pr(s_{t+1} = s' \mid s_t = s)$. In the time-homogeneous case, this simplifies to $P(s' \mid s)$.
 - ▶ Initial distribution: $\mu(s_0)$

Examples of the Markov Process

- ▶ Example 2.1: Days of the Week. $S = \{\text{Mon}, \dots, \text{Sun}\}$. The next day depends only on today, so $\{s_t\}$ is a *deterministic, time-homogeneous* Markov chain. It is periodic with period 7.
- **Example 2.2:** Weather States. $S = \{Sunny, Cloudy, Rainy\}$. Suppose tomorrow's weather depends only on today's weather, with transition matrix

$$P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}, \quad P_{ij} = \Pr(s_{t+1} = j \mid s_t = i).$$

Then $\{s_t\}$ is a stochastic, finite-state, time-homogeneous Markov chain.

► Example 2.3: AR(1) Process.

$$s_{t+1} = \rho s_t + \varepsilon_{t+1}, \qquad \varepsilon_{t+1} \sim \text{i.i.d. } (0, \sigma^2), \ |\rho| < 1.$$

The next value depends only on the current state, so $\{s_t\}$ is a *stochastic, continuous-state* Markov process.

Examples of the Markov Process (continued)

Example 2.4: Employment and Unemployment Transitions (Sargent et al., 2020)

- A worker is either unemployed $(s_t = 0)$ or employed $(s_t = 1)$. Each month:
 - An unemployed worker finds a job with probability $\alpha \in (0,1)$.
 - An employed worker loses a job with probability $\beta \in (0,1)$.
- ▶ The Markov representation:

$$S = \{0, 1\}, \quad P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

- Once α and β are specified, we can ask:
 - What is the average duration of unemployment?
 - Over the long run, what fraction of time does a worker spend unemployed?
 - Conditional on employment, what is the probability of becoming unemployed at least once over the next 12 months?

Examples of the Markov Process (continued)

Example 2.5: U.S. Business Cycle Transitions (Hamilton, 2005)

▶ Based on monthly U.S. unemployment data, Hamilton (2005) estimated the transition matrix

$$P = \begin{pmatrix} 0.971 & 0.029 & 0\\ 0.145 & 0.778 & 0.077\\ 0 & 0.508 & 0.492 \end{pmatrix},$$

where the states represent:

- Normal growth (ng), Mild recession (mr), Severe recession (sr).
- Large diagonal entries indicate high persistence in the Markov process $\{s_t\}$, meaning each regime tends to last for several periods before switching.

Markov Processes: Fundamental Properties (all stochastic P)

- Finite-state representation: When $S = \{1, \ldots, S\}$, the process is represented by a row-stochastic matrix P with elements $P_{ij} = \Pr(s_{t+1} = j \mid s_t = i)$ and $\sum_j P_{ij} = 1$.
- **Expectation update**: For any function $g: \mathcal{S} \to \mathbb{R}$,

$$\mathbb{E}[g(s_{t+1}) \mid s_t = i] = \sum_j P_{ij}g(j).$$

- n-step transitions: The probability of moving from i to j in n steps is $\Pr(s_{t+n} = j \mid s_t = i) = (P^n)_{ij}$.
- ▶ Chapman–Kolmogorov equation: For a time-homogeneous process, $P^{n+m} = P^n P^m$.

Markov Processes: Structural Properties (conditions on P)

▶ Irreducibility: Two states $s_i, s_j \in \mathcal{S}$ communicate if each can be reached from the other with positive probability in some finite number of steps:

$$\exists \, m,n\geqslant 1 \text{ such that } (P^m)_{ij}>0 \quad \text{and} \quad (P^n)_{ji}>0.$$

The chain (or matrix P) is *irreducible* if all states communicate— meaning that from any starting point, it is possible (eventually) to reach any other state. Intuitively, there are no isolated groups of states.

▶ Aperiodicity: A Markov chain is called *periodic* if it moves through states in a fixed, repeating cycle, and *aperiodic* otherwise. More formally, the *period* of a state *i* is the greatest common divisor of all possible return times:

$$D(i) := \{ n \geqslant 1 : (P^n)_{ii} > 0 \}, \qquad d(i) = \gcd(D(i)).$$
 For example, if $D(i) = \{3, 6, 9, \dots\}$, then $d(i) = 3$. A stochastic matrix is aperiodic if $d(i) = 1$ for all states, and periodic otherwise.

Markov Processes: Long-run Properties (conditions on P)

▶ Ergodicity (finite S): When the transition matrix P is *irreducible* and *aperiodic*, the Markov chain admits a unique *stationary distribution* π satisfying

$$\pi = \pi P, \qquad \sum_{i} \pi_i = 1.$$

Under these conditions,

$$P^n \to \mathbf{1}\pi$$
 as $n \to \infty$,

meaning that, regardless of the initial state, the distribution of the process converges to π .

Moreover, along any sufficiently long realization, the *time-average frequency* of visiting each state equals its stationary probability:

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{ s_t = i \} = \pi_i \quad \text{with probability 1.}$$

Hence, long-run empirical frequencies coincide with theoretical steady-state probabilities, ensuring that time averages and cross-sectional distributions are consistent.

From Markov Process to Markov Decision Process (MDP)

- A Markov Decision Process (MDP) extends the Markov chain by allowing an **agent** to influence the evolution of the state through **actions**. At each period t, the agent observes the current state s_t , chooses an action a_t , receives a reward, and transitions probabilistically to a new state s_{t+1} .
- Formally, an MDP is defined by the tuple

$$(\mathcal{S}, \mathcal{A}, P, r, \beta)$$

where:

- State space S: Possible system states.
- Action space A(s): Feasible actions when in state s.
- ▶ Transition kernel P(s' | s, a): Probability of moving from s to s' given action a.
- Reward function r(s, a): Instantaneous payoff from taking action a in state s. (Sometimes expressed as a cost r(s, a).)
- ▶ Discount factor $\beta \in (0,1)$: Weights future rewards relative to current ones.

Agent–Environment Interaction (MDP loop)

Figure 1: Agent-environment loop (adapted from Sutton and Barto (2018), Fig. 3.1).

MDP Taxonomy at a Glance

Axis	Option	Notes
Dynamics	Deterministic Stochastic	
Horizon	Finite	Episodes of length T : $t=0,\ldots,T-1$
	Infinite	$T \to \infty$.
State space ${\cal S}$	Discrete Continuous	$S = \{1, \dots, S\}$ $S \subseteq \mathbb{R}^n$
Action space ${\cal A}$	Discrete Continuous	$\mathcal{A}(S) \subseteq \{1, \dots, A\}$ $\mathcal{A}(S) \subseteq \mathbb{R}^m$
Stationarity	Time-homogeneous Time-varying	P(s' s, a), r(s, a) $P_t(s' s, a), r_t(s, a)$

Example 2.5: Maze Escape

State: current position

Action: Up, Low, Left, Right

▶ Reward: ?

Figure 2: An Maze Problem

Example 2.6: The Cart-Pole game GIF

- State:
 - ► Cart Position: [-4.8, 4.8]
 - Cart Velocity: [-Inf, Inf]
 - ▶ Pole Angle: [-24°, 24°]
 - ► Pole Angular Velocity: [-Inf, Inf]
- ► Action: 0 (Left) or 1 (Right)
- ▶ Reward: +1 for every step unless failed
- ▶ Horizon: infinite but set T = 200 in practice

Example 2.7: The Pendulum GIF

- State: continuous, $s_t = [\cos \theta, \sin \theta, \dot{\theta}]$
- Action: continuous torque $a_t \in [-2, 2]$
- ▶ Reward: negative cost of energy and deviation from upright:

$$r_t = -(\theta^2 + 0.1 \,\dot{\theta}^2 + 0.001 \,a_t^2)$$

- ▶ Goal: swing up and balance the pole in the upright position $(\theta = 0)$
- ▶ Horizon: typically finite (e.g., T = 200)

Example 2.8: McCall Job Search (Discrete Action, Infinite Horizon)

- State: employment status and current offer $S_t = (E_t, W_t)$
 - ▶ $E_t \in \{\text{Unemployed}, \text{Employed}\}$
 - If unemployed, wage offer $W_t \sim F$ arrives i.i.d.
- ▶ Action: $A_t \in \{Accept, Reject\}$ (only if unemployed)
- Reward:
 - Reject $\rightarrow R_t = b$ (benefit)
 - Accept at $w \to R_t = w$ each future period
- ► Transition:
 - Reject \rightarrow stay unemployed, draw new $W_{t+1} \sim F$
 - ightharpoonup Accept ightharpoonup employed at fixed wage w (absorbing)
- ▶ Spaces: $S = \{U, E(w)\} \times \text{supp}(F), \quad A(U) = \{Accept, Reject\}$

Example 2.9: Cake-Eating / Consumption—Savings (Continuous State & Action)

- State: cake/asset stock $S_t = K_t \in [0, \bar{K}]$
- Action: consumption $A_t = C_t \in [0, K_t]$ (continuous)
- Reward: instantaneous utility from consumption, e.g. $R_t = u(C_t)$ (commonly $u(c) = \log c$ or CRRA)
- ▶ Transition (no production, no shocks): $K_{t+1} = K_t C_t$ (resource constraint)
- ▶ Horizon: infinite; discount $\beta \in (0,1)$
- State space: $S = [0, \bar{K}]$ (continuous)
- Action space: A(K) = [0, K] (continuous, state-dependent feasible set)

Policy of the Agent / Decision Maker

- In an MDP, the policy (or *decision rule*) specifies how the agent chooses actions based on the current state.
- ▶ A (deterministic) policy is a mapping:

$$\sigma: \mathcal{S} \to \mathcal{A}, \qquad A_t = \sigma(S_t),$$

where $\sigma(s)$ gives the action taken when the system is in state s.

► A stochastic policy assigns probabilities to actions:

$$\sigma(a \mid s) = \Pr(A_t = a \mid S_t = s),$$

meaning the agent randomizes its choice in state s.

A stationary policy does not depend on time t:

$$\sigma_t = \sigma \quad \forall t.$$

By contrast, a *nonstationary policy* $\sigma_t(s)$ may vary with time.

References & Further Reading

- Dimitri P. Bertsekas, Reinforcement learning and optimal control (2025 Spring course at ASU), Lecture 1 and 2: https://web.mit.edu/dimitrib/www/RLbook.html
- Sutton and Barto, Reinforcement Learning: An Introduction, Chapter 1, 2, 3: https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

- **Hamilton, James D.**, *Regime-Switching Models in Economics and Finance*, Elsevier, 2005. Originally published work on Markov-switching models in macroeconomics.
- Sargent, Thomas J., John Stachurski, and the QuantEcon team, "QuantEcon: Lectures and Code for Economics, Finance, and Data Science," https://quantecon.org/ 2020. Open-source project for quantitative economics education.
- **Sutton, Richard S. and Andrew G. Barto**, Reinforcement Learning: An Introduction, 2nd ed., MIT Press, 2018.