

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

Unit 3: Memory

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 1: Basic Processor Architecture and Design

Unit 2: Pipelined Processor and Design

Unit 3: Memory

Unit 4: Input/Output Device Design

Unit 5: Advanced Architecture

Memory

Memory

Processor Vs Memory

Data

Request

Processor Vs Memory

- Program is stored in Memory.
- Data required by Program stored in Memory.
- Executing Program on Processor is relatively faster than Accessing, Instruction and Data from Memory.
- CPU performance improves by 55% per year
- Memory performance improves by 7% per year
- Gap between CPU performance and memory performance increases year on year
- Fast memory technology is more expensive per bit than slower memory

Memory Performance Gap

One Reason!!!!!

Jargons

Memory Latency is the time it takes to transfer a word of data to or from memory

Memory Bandwidth is the number of bits or bytes that can be transferred in one second.

Speed vs Size vs Cost

Requirement of Programmers

Programmers want unlimited amounts of memory with low latency

Big challenge

If Size Increases, then Speed Decreases

Funny is

If Size Decreases, then Cost Increases

Expected by Designers

To provide a sufficiently large memory, with a reasonable speed at an affordable cost.

Microprocessor & Computer Architecture (µpCA) Memory Hierarchy

- Organize memory system into a hierarchy
 - Entire addressable memory space available in largest, slowest memory
 - Incrementally smaller and faster memories, each containing a subset of the memory below it, proceed in steps up toward the processor

Memory Hierarchy

Cache

•Cache memory is an architectural arrangement which makes the main memory appear faster to the processor than it really is.

General Cache Mechanics

General Cache Requirement

Four Questions in Cache Design

Cache Design is controlled by Four Questions:

Q1: Where can a block be placed in the cache?

- Block Placement

Q2: How is a block found if it is in the cache?

- Block Identification.

Q3: Which block should be replaced on a miss?

- Block Replacement.

Q4: What happens on a write?

- Write Strategy.

Next Session

Cache Design Principles

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu

9829935135