

정 세 윤 교수

오늘의 목표

- 3차원 공간에서 평면과 직선을 이해한다.
- 정사영의 정의와 활용법을 이해한다.
- 공간좌표와 두 점 사이의 거리를 이해한다.
- 구의 정의를 이해하고 방정식을 작성한다.

목차

- 1. 공간도형
 - 1) 3차원 공간에서 평면과 직선
 - 2) 정사영의 개념
- 2. 공간좌표
 - 1) 3차원 공간에서 두 점 사이의 거리
 - 2) 내분점과 외분점
- 3. 구의 방정식
 - 1) 구의 정의와 방정식
 - 2) 구의 방정식 활용

1. 배경: 차원과 공간

- ◆차원(dimension)의 개념
 - □ 차원: 관계식에서 자유 변수(free variable)의 개수
 - 직선(축): 직선 방향을 따라 무수히 많은 값을 가지므로 1차원
 - $x_1 + x_2 = 3 \Rightarrow (-1, 4), (0, 3), (1, 2), (2, 1), (3, 0), \cdots$
 - $x_1 x_2 = 6 \Rightarrow (6,0), (5,-1), (4,-2), (3,-3), (2,-4), \cdots$
 - 평면: 평행하지 않은 두 방향(수평·수직) 자유 변수 2차원
 - **■** z = 0(xy-평면) $\Rightarrow (2,4,0), (-1,3,0), (-1,-2,0), (2,-1,0), \cdots$
 - $x + y + z = 3 \Rightarrow (3,0,0), (3,1,-1), (3,-1,1), (2,2,-1), \cdots$
 - 공간: 선형독립인 세 방향(가로·세로·높이) 자유 변수 3차원
 - \mathbb{R}^3 : x축, y축, z축으로 이루어진 3차원 공간의 직교좌표계

- ◆ 3차원 공간에서 평면의 결정조건
 - □ 같은 직선 위에 있지 않은 세 점
 - □ 한 직선과 그 직선 위에 있지 않은 한 점
 - □ 만나는 두 직선
 - □ 평행한 두 직선

- ◆ 3차원 공간에서 두 평면의 위치 관계
 - □ 두 평면이 서로 만남 (교선 존재)
 - □ 두 평면이 서로 평행 (만나지 않음)

- ◆ 3차원 공간에서 평면과 직선의 위치 관계
 - □ 직선이 평면에 포함 (직선 = 교선)
 - □ 직선과 평면이 한 점에서 만남(교점 존재)
 - □ 직선과 평면이 평행 (만나지 않음)

- ◆ 3차원 공간에서 두 직선의 위치 관계
 - □ 두 직선이 만남 (같은 평면에 존재)
 - □ 두 직선이 평행 (같은 평면에 존재)
 - □ 꼬인 위치 (만나지도 평행하지 않음)

평면과 직선 예제

- □ 오른쪽 직육면체에서 확인되는 평면, 직선
 - 만나는 평면
 - 평행한 평면
 - 평면에 포함된 직선
 - 평면과 만나는 직선
 - 평면과 평행한 직선
 - 만나는 두 직선
 - 평행한 두 직선
 - 꼬인 위치에 있는 두 직선

- ◆ 평면과 직선이 이루는 각
 - □ 평면과 직선의 수직
 - 정의: 직선이 평면 위의 모든 직선과 수직
 - 충분조건: 직선이 평면 위의 평행하지 않은 서로 다른 두 직선과 수직
 - □ 평면과 직선이 이루는 각의 크기
 - 직선과 평면의 교점(0)이 아닌 임의의 점(A)에서 평면에 내린 수선의 발(B)에 대하여 직선 0A와 직선 0B가 이루는 각 A0B의 크기

- ◆ 평면과 평면이 이루는 각
 - □ 두 평면의 위치 관계: 만난다 vs. 평행하다
 - □ 만나는 두 평면이 이루는 각
 - 두 평면(α 와 β)이 만날 때 생기는 교선 위의 임의의 한 점(θ)에서 그은 교선과 수직이면서 α 에 포함된 직선 위의 한 점(A)과 교선과 수직이면서 β 에 포함된 직선 위의 한 점(B)이 이루는 각

◆삼수선의 정리

- $\blacksquare \overline{PM} \perp \pi, \overline{MN} \perp a \Rightarrow \overline{PN} \perp a$
- $\blacksquare \overline{PM} \perp \pi, \overline{PN} \perp a \Rightarrow \overline{MN} \perp a$
- $\blacksquare \overline{PN} \perp a, \overline{MN} \perp a \Rightarrow \overline{PM} \perp \pi$

- ◆ 정사영(orthogonal projection)의 정의
 - □ 공간에 어떤 도형과 그 도형의 상(像)이 그려질 투영면 존재
 - □ 투영면에 수직인 빛을 도형에 비췄을 때
 - □ 투영면에 생기는 도형의 그림자
 - \square 선분 \overline{AB} 의 평면 α 위로 정사영을 A'B', 선분 \overline{AB} 와 평면 α 가 이루는 예각의 크기 θ $\overline{A'B'} = \overline{AB}\cos\theta$
 - 평면 β 위의 넓이가 S인 도형의 평면 α 위로 정사영 넓이 S' $S' = S \cos \theta$

정사영 예제

- □ 반지름의 길이가 r인 밑면의 중심을 지나도록 원기둥을 평면으로 자를 때 단면의 넓이는?
 - 30°

■ 45°

■ 60°

2. 배경: 공간에서 직교좌표

- ◆ "오른손 법칙"과 직교좌표계
 - □ 평면에서 직교좌표계
 - x축의 반시계방향 90° 방향으로 y축이 위치
 - □ 3차원 공간의 직교좌표계
 - *x*축과 *y*축이 직교좌표를 이룬 상황에서
 - x축과 y축에 모두 수직은 방향으로 z축이 위치

2.1 3차원 공간에서 두 점 사이의 거리

- ◆ 공간좌표에서 점의 좌표
 - □ 3차원 공간의 직교좌표계
 - 점 *P*(*a*, *b*, *c*)의 위치
 - 점 P(a,b,c)에서 축에 내린 수선의 발
 - **■** *x*축
 - *y*축
 - *z*축
 - 점 P(a,b,c)에서 평면에 내린 수선의 발
 - *xy*-평면
 - *yz*-평면
 - *zx*-평면

2.1 3차원 공간에서 두 점 사이의 거리

◆두점 사이의 거리

- □ 평면좌표에서 두 점 사이의 거리
 - 점 $A(x_1, y_1)$ 와 점 $B(x_2, y_2)$ 사이의 거리 $\overline{AB} = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- □ 공간좌표에서 두 점 사이의 거리
 - 점 $A(x_1, y_1, z_1)$ 와 점 $B(x_2, y_2, z_2)$ 사이의 거리

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

2.1 3차원 공간에서 두 점 사이의 거리

두 점 사이의 거리 예제

 \Box 두 점 P(1,2,3)와 Q(-1,3,6) 사이의 거리

■ 세 점 O(0,0,0), A(1,2,1), B(-1,0,1)에서 같은 거리에 있는 yz-평면 점의 좌표

2.2 내분점과 외분점

- ◆ 내분점과 외분점 공식
 - 평면좌표에서 점 $A(x_1, y_1)$ 와 점 $B(x_2, y_2)$ 의 m: n 내분점 P와 외분점 Q

$$P = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right), Q = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right)$$

□ 공간좌표에서 점 $A(x_1, y_1, z_1)$ 와 점 $B(x_2, y_2, z_2)$ 의 m: n 내분점 P와 외분점 Q

$$P = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right)$$

$$Q = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}, \frac{mz_2 - nz_1}{m - n}\right)$$

2.2 내분점과 외분점

- 내분점과 외분점 예제
- \Box 두 점 P(1,2,3)와 Q(-2,5,6)
 - 1:2 내분점

■ 2:1 외분점

3.1 구의 정의와 방정식

- ◆원의 정의와 원의 방정식
 - □ 원의 정의
 - <mark>평면</mark> 위의 한 정점(중심)으로부터 일정한 거리(반지름)만큼 떨어진 점의 집합
 - □ 원을 정의하려면?
 - 중심과 반지름 필요
 - 삼각형의 외접원은 유일 → 같은 직선 위에 있지 않은 세 점 필요
 - □ 원의 방정식

$$\sqrt{(x-a)^2 + (y-b)^2} = r \rightarrow (x-a)^2 + (y-b)^2 = r^2$$

$$x^2 + y^2 + Ax + By + C = 0$$

3.1 구의 정의와 방정식

- ◆ 구의 정의와 구의 방정식
 - □ 구의 정의
 - <mark>공간</mark> 위의 한 정점(중심)으로부터 일정한 거리(반지름)만큼 떨어진 점의 집합
 - □ 구를 정의하려면?
 - 중심과 반지름 필요
 - 한 평면 위에 있지 않은 네 점이 주어질 때
 - □ 구의 방정식
 - $\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} = r$ $\rightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$
 - $x^2 + y^2 + z^2 + Ax + By + Cz + D = 0$

3.1 구의 정의와 방정식

- 구의 방정식 예제
- □ 중심이 (0,2,0)이고 반지름이 3인 구의 방정식

□ 네 점 (0,0,0), (1,0,1), (0,1,1), (-1,0,1)을 지나는 구

3.2 구의 방정식 활용

- ◆ 평면 또는 축에 접하는 구의 방정식
 - □ 좌표평면에서 축에 접하는 원의 방정식
 - x축에 접하는 원의 방정식 $(x a)^2 + (y \pm b)^2 = b^2$
 - y축에 접하는 원의 방정식 $(x \pm a)^2 + (y b)^2 = a^2$
 - x축, y축에 동시에 접하는 원의 방정식 $(x \pm r)^2 + (y \pm r)^2 = r^2$

3.2 구의 방정식 활용

- ◆ 평면도는 축에 접하는 구의 방정식 (계속)
 - □ 좌표공간에서 평면에 접하는 구의 방정식
 - xy-평면에 접하는 구의 방정식 $(x-a)^2 + (y-b)^2 + (z \pm c)^2 = c^2$
 - yz-평면에 접하는 구의 방정식 $(x \pm a)^2 + (y b)^2 + (z c)^2 = a^2$
 - zx -평면에 접하는 구의 방정식 $(x-a)^2 + (y \pm b)^2 + (z-c)^2 = b^2$
 - □ 좌표공간에서 축에 접하는 구의 방정식
 - x축에 접하는 구의 방정식 $(x-a)^2 + (y-b)^2 + (z-c)^2 = b^2 + c^2$
 - y축에 접하는 구의 방정식 $(x-a)^2 + (y-b)^2 + (z-c)^2 = c^2 + a^2$
 - z축에 접하는 구의 방정식 $(x-a)^2 + (y-b)^2 + (z-c)^2 = a^2 + b^2$

3.2 구의 방정식 활용

구의 방정식 활용 예제

□ 두 점 (1,1,1), (1,1,3)을 지나고 yz-, zx-평면에 접하는 구의 방정식

정리하기

- 평면과 다른 공간에서 위치 관계
- 정사영은 투사면에 수직인 그림자
- 공간에서 거리는 평면 거리의 확장
- 구의 정의, 방정식, 단면의 모양

강의를 마쳤습니다.

수고하셨습니다.