Project: Exponential Smoothing

Many time series values give spiked results

This is difficult to develop a forecast on due to the erratic nature. Exponential smoothing can smooth this out so predictions are more stable:

Where alpha = 0.25

Or perhaps this model:

Where alpha = 0.5

Or perhaps this model:

Where alpha = 0.75

What do you believe will happen if alpha is equal to 1?

Formula for Exponential Modeling:

$$F_{t+1} = \alpha Y_t + (1 - \alpha) F_t$$

where

 F_{t+1} = forecast for time period t + 1

 Y_t = time series value

 F_{t} = forecast for time period t

 α = smoothing constant (between 0 and 1)

note : $F_1 = Y_1$

In this project your program will use the exponential smoothing to help you predict a value in the future. In addition your program should come up with the linear regression equation to predict the same value as was done in exponential smoothing.

Part 1: Obtain the stock price inform from www.nasdaq.com. In this part, go to www.nasdaq.com, choose a company to analyze, click the "historical quotes" link on the left side after picking a company. Pick the stock prices for at least 8 months picking one data point out of each month as close to the first of the month as possible. The x values will be from 1 to 8 (where 1 indicates the first month looked at) while the y values will be the stock price. For example:

	01/09/2014	189.02	189.5	186.55	187.38	4,321,330
	01/08/2014	189.33	189.4175	187.26	187.97	4,603,156
	01/07/2014	186.39	190.35	186.38	189.71	5,932,330
	01/06/2014	187.15	187.355	185.3	186	4,067,790
	01/03/2014	185.83	187.35	185.3	186.64	4,063,215
	01/02/2014	187.21	187.4	185.2	185.53	4,546,489
	12/31/2013	186.49	187.79	186.3	187.57	3,619,745
	12/30/2013	185.32	186.7	184.67	186.41	3,018,390

Would give the data point: x = 1, y = 187.21. For the second data point the list is scrolled to find to find the first historical quote for the next month:

	02/06/2014	173.97	174.85	173.79	174.67	4,292,241
	02/05/2014	172.19	174.97	172.19	174.24	4,712,296
	02/04/2014	173.53	173.75	172.36	172.84	4,349,776
	02/03/2014	176.02	176.02	172.72	172.9	7,186,803
	01/31/2014	176.11	177.835	175.34	176.68	5,193,390

Would give the data point: x = 2, y = 176.02. And so on. Keep in mind that the values for x (1, 2, ..., 8) DO NOT have to correspond to Jan, Feb, etc. x = 1 merely indicates the first month that you decided to analyze. From there the months should proceed sequentially. Once the data is gathered then you should have a list of values such as this example:

Time	1	2	3	4	5	6	7	8
period								
Value	31.25	32.35	34.15	33.12	37.25	30.19	42.13	44.17

This table should be presented in an Excel document explaining why the choice was made for the company chosen (why would a model based on the first of the month possible make sense) and the time frame.

Part 2: Write a Python program that asks the user for the information from part 1 and performs exponential smoothing based on it. The perfect program will allow the user to input alpha, display the graph of the original data and the "smoothed data" and have the user verify if this model is appropriate. If it is not then it should loop asking for new entries for alpha until the user indicates the model is appropriate. At this point, it should use the exponential smoothing model to predict time period 9 (x = 9). Read the explanation above closely to understand what exponential smoothing provides for the next month based on the previous month.

Part 3: In the same Python program, the information from NASDAQ should be used to develop a linear regression model that is used to predict time period 9. It should show the correlation coefficient to indicate the strength of the model. No other tool is necessary for this project to test the appropriateness of using a linear regression model.

Category	20 pts	15 pts	10 pts	5 pts	0 pts
Data Collection	All 4 criteria	Only 3	Only 2	Only 1	None of the
Criteria	met	criteria was	criteria was	criteria was	criteria was
- Company		met	met	met	met
Identified					
and Choice					
Explained					
- Each data					
value					
obtained					
from first					
entry for the					
month					
chosen					
- Data was					
collect from					
sequential					
months					
- Data was					
delivered in					
an Excel					
spreadsheet					
Exponential	Logic is	Logic is	Logic is	Logic is 25%	Logic does
Smoothing Logic	100%	75%	50% correct	correct	not follow
	correct	correct			the
					exponential
					smoothing
					formula

Visual Display of	Python	Python	Python	Python	No attempt
Smoothed Data	program	program	program	program	is made to
	prints the	does not	does not	does not	display the
	original data	print the	print the	print the	graphs.
	and the	graphs but	graphs but	graphs but	
	smoothed	writes the	outputs the	outputs the	
	data (not	R program	appropriate	data that can	
	necessarily	to a file	R lines of	be Edit-	
	in the same	which can	code that can	Copied and	
	graph)	then be	be Edit-	Edit-Pasted	
		opened into	Copied and	into R with	
		R and run.	Edit-Pasted	manual	
			into R for	reformatting	
			viewing for	of the data.	
			graph with	(ex:	
			no re-	5, 8, 7, 10	
			formatting	Which then	
			necessary in	has to be	
			R.	formatted in	
				R as x <-	
				c(5,8,7,10)	
Regression Logic	Logic is	Logic is	Logic is	Logic is 25%	Logic does
	100%	75%	50% correct	correct	not follow
	correct	correct			the
					regression
					logic from
					the last unit
					in the
					course.

Structure and	All 4 criteria	Only 3	Only 2	Only 1	None of the
Design	met	criteria was	criteria was	criteria was	criteria was
Criteria:		met	met	met	met
- The					
appropriate					
flow					
mechanism					
is used in the					
program					
(while loop,					
etc.) for ease					
of use of the					
user					
- Code is					
placed in a					
library for					
code re-use					
- Code is					
documented					
where					
appropriate.					
- Code is					
"readable"					
(appropriate					
variable					
names and					
structured					
programmin					
g techniques					
used).					

Deliverables

- Excel document with data and explanation of company choice
- Python program
- Python library (if a library is implemented)
- R programs (any appropriate R programs)