Homework 1

Jiangyan Feng (NetID: jf8)

Exercise 1 a)

Table 1 Basic Statistical Measures for Area Based on All Data

Basic Sta	Basic Statistical Measures					
Location	Location Variability					
Mean	14.84752	Std Deviation 2.90970				
Median	14.35500	Variance	8.46635			
Mode	11.23000	Range 10.59000				
		Interquartile Range	5.06000			

Table 2 Moments for Area Based on All Data

Moments	Moments						
N	210	Sum Weights	210				
Mean	14.8475238	Sum Observations	3117.98				
Std Deviation	2.90969943	Variance	8.46635078				
Skewness	0.39988919	Kurtosis	-1.0842659				
Uncorrected SS	48063.7496	Corrected SS	1769.46731				
Coeff Variation	19.5972033	Std Error Mean	0.20078834				

The basic descriptive statistics for area for all of the data are shown as in Table 1.

Based on Table 1, the mean and median is very similar. The typical value is 14.85 in terms of mean and it is 14.36 in terms of median.

From Table 2, we observe the skewness is \sim 0.4, which is quite different from 0. This suggests that the data may be right skewed with long tail on the right side. This is consistent with the observation that mean is larger than median from Table 1.

From Table 1, we note that range is 10.59. This suggests the difference between maximum and minimum area is around 10.59. The difference is relatively large considering the mean and median value of the area.

b)

variety=Canadian

Moments	Moments						
N	70	Sum Weights	70				
Mean	11.8738571	Sum Observations	831.17				
Std Deviation	0.72300358	Variance	0.52273418				
Skewness	0.23447131	Kurtosis	-0.8711666				
Uncorrected SS	9905.2625	Corrected SS	36.0686586				
Coeff Variation	6.08903724	Std Error Mean	0.08641546				

Basic Sta	Basic Statistical Measures					
Location	Location Variability					
Mean	11.87386	Std Deviation 0.72300				
Median	11.83500	Variance	0.52273			
Mode	11.18000	Range 2.78000				
		Interquartile Range	1.18000			

Moments						
N	70	Sum Weights	70			
Mean	14.3344286	Sum Observations	1003.41			
Std Deviation	1.21570357	Variance	1.47793518			
Skewness	-0.2356035	Kurtosis	0.06817022			
Uncorrected SS	14485.2865	Corrected SS	101.977527			
Coeff Variation	8.48100478	Std Error Mean	0.14530437			

Basic Statistical Measures					
Location Variability					
Mean	14.33443	Std Deviation 1.21570			
Median	14.35500	Variance 1.477			
Mode	14.11000	Range	5.85000		
		Interquartile Range	1.31000		

Moments	Moments						
N	70	Sum Weights	70				
Mean	18.3342857	Sum Observations	1283.4				
Std Deviation	1.43949626	Variance	2.07214948				
Skewness	-0.3618779	Kurtosis	-0.4397939				
Uncorrected SS	23673.2006	Corrected SS	142.978314				
Coeff Variation	7.85138992	Std Error Mean	0.17205271				

Basic Sta	Basic Statistical Measures					
Location	Location Variability					
Mean	18.33429	Std Deviation 1.43950				
Median	18.72000	Variance	2.07215			
Mode	15.38000	Range 5.80000				
		Interquartile Range	1.82000			

The basic descriptive statistics for area for 3 different varieties are shown as above.

Similarities:

- 1. Compared with the range and variance we observed when using all data, we observe the range decreases when considering different varieties. The similar range value suggests that the variability within each variety is similar.
- 2. We observe that mean is similar to median in all 3 varieties. However, the skewness data for all three varieties is slightly away from 0, suggesting the existence of skewness in all three varieties.

Differences:

- 1. Based on the mean and median value, we note that the typical values are very different. Specifically, Canadian < Kama < Rosa.
- 2. Based on the skewness data, the skewness for variety = Canadian is positive, suggesting a right skewed distribution. However, the skewness for variety = Kama and variety = Rosa is negative, suggesting left skewed distribution.

Variable: area

Tests for Normality						
Test	Test Statistic p Value					
Shapiro-Wilk	W	0.932594	Pr < W	<0.0001		
Kolmogorov-Smirnov	D	0.106806	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	0.658401	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	4.448231	Pr > A-Sq	< 0.0050		

Visually:

From the histogram, we note the distribution of area data is not normal. Instead, it seems that the distribution is right skewed.

From the probability plot, we note that the line is not straight enough. It slowly grows in the very beginning. Then, the slope increases dramatically and then decreases dramatically. This may suggest a right skewed distribution. Therefore, the assumption of normality may not be reasonable.

Quantitatively:

According to Shapiro-Wilk test, p Value is very small (< 0.0001) compared with 0.05. So we conclude that it is unlikely the area distribution is normal. Therefore, the normality assumption is not reasonable.

b)

Variable: area

variety=Canadian

Tests for Normality						
Test	est Statistic p Value					
Shapiro-Wilk	W	0.966281	Pr < W	0.0562		
Kolmogorov-Smirnov	D	0.102263	Pr > D	0.0698		
Cramer-von Mises	W-Sq	0.11633	Pr > W-Sq	0.0701		
Anderson-Darling	A-Sq	0.695368	Pr > A-Sq	0.0702		

variety=Canadian

variety=Canadian

Variable: area

Tests for Normality						
Test	Test Statistic p Value					
Shapiro-Wilk	W	0.990077	Pr < W	0.8581		
Kolmogorov-Smirnov	D	0.069578	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.039198	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.234289	Pr > A-Sq	>0.2500		

variety=Kama

Variable: area

variety=Rosa

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.959688	Pr < W	0.0241		
Kolmogorov-Smirnov	D	0.119917	Pr > D	0.0139		
Cramer-von Mises	W-Sq	0.214445	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	1.103965	Pr > A-Sq	0.0067		

The normality test results, histogram, and probability plot for all three varieties are shown as above.

According to Shapiro-Wilk test, W value for variety = Canadian, Kama, and Rosa is: 0.966281, 0.990077, 0.959688, respectively. Since the closer the W value towards 1, the more normal is the distribution, we note that seeds of Rosa may deviate from normality the most. Next, p value for variety = Canadian, Kama, and Rosa is: 0.0562, 0.8581, 0.0241, respectively. Only p value for Rosa is less than 0.05, whereas the p value for the other two varieties is larger than 0.05. This suggests that there is significant evidence against the null hypothesis that is the area distribution is normal for Rosa. In other words, the wheat seeds of Rosa show significant differences from normality in their area.

Exercise 3

a)

Variable: area

Tests for Location: Mu0=14						
Test Statistic p Value						
Student's t	t	4.220981	Pr > t	<.0001		
Sign	$\mathbf{M} \qquad 11 \qquad \mathbf{Pr} >= \mathbf{M} $		0.1471			
Signed Rank	S	2790.5	Pr >= S	0.0014		

From Exercise 2, we find that the area distribution of all data is not normal and not symmetric. Therefore, we obtain conclusion based on the Sign test. According to Sign test, p Value is 0.1471, which is greater than 0.05. This suggests that the median of area data should be around 14.

b)

Wilcoxon Scores (Rank Sums) for Variable area Classified by Variable variety					
variety	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
Kama	70	2569.0	4935.0	239.944238	36.70
Rosa	70	7301.0	4935.0	239.944238	104.30
Average scores were used for ties.					

Wilcoxon Two-Sample Test					
			t Approximation		
Statistic	Z	Pr < Z	Pr > Z	Pr < Z	Pr > Z
2569.000	-9.8585	<.0001	<.0001	<.0001	<.0001
Z includes a continuity correction of 0.5.					

From Exercise 2, we find that the area distribution of Rosa is not normal. Therefore, we use the Wilcoxon rank sum test. Visually, from the above distribution plot, the area for Rosa is clearly larger than Kama. Quantitatively based on the two-sided result that is Pr > IZI is < 0.0001, this value is smaller than 0.05, suggesting that the median of these two is very different. From the one-sided result that is Pr < Z is < 0.0001, we conclude that it is unlikely for the area value of Rosa to be smaller than Kama. Taken together, we conclude that the claim that Rosa seeds have smaller area than Kama seeds is wrong.

Exercise 4 a)

Pearson Correlation Coefficients, N = 210 Prob > r under H0: Rho=0					
area compactness width					
area	1.00000	0.60829 <.0001	0.97077 <.0001		
compactness	0.60829 <.0001	1.00000	0.76163 <.0001		
width	0.97077 <.0001	0.76163 <.0001	1.00000		

Spearman Correlation Coefficients, N = 210 Prob > r under H0: Rho=0				
	area	compactness	width	
area	1.00000	0.63850 <.0001	0.97489 <.0001	
compactness	0.63850 <.0001	1.00000	0.76273 <.0001	
width	0.97489 <.0001	0.76273 <.0001	1.00000	

To check the correlation among area, compactness, and width, we performed both Pearson and Spearman correlation analysis. The results from these two tests are similar.

Based on the above results, we observe that the correlation coefficients are all positive and the p values are all smaller than 0.05. Therefore, it indicates that all three variables are positively correlated. We also observe that the correlation coefficients are different for each pair of variables. Based on the magnitude, we conclude that the pairwise correlation strength can be ordered as: area vs. width > compactness vs. width > area vs. compactness.

For the population it was sampled from, we may expect similar correlations. We might infer that the area and width of the population would be strongly positively correlated. We might also expect that there is positive correlation between width and compactness. There might be positive correlation between area and compactness too, but this correlation is much weaker compared with the previous two.

b) variety=Canadian

Pearson Correlation Coefficients, N = 70 Prob > r under H0: Rho=0						
	area compactness width					
area	1.00000	0.54676 <.0001	0.86382 <.0001			
compactness	0.54676 <.0001	1.00000	0.86131 <.0001			
width	0.86382 <.0001	0.86131 <.0001	1.00000			

Spearman Correlation Coefficients, N = 70 Prob > r under H0: Rho=0					
	area	compactness	width		
area	1.00000	0.53005 <.0001	0.85455 <.0001		
compactness	0.53005 <.0001	1.00000	0.85218 <.0001		
width	0.85455 <.0001	0.85218 <.0001	1.00000		

Pearson Correlation Coefficients, N = 70 Prob > r under H0: Rho=0						
	area compactness width					
area	1.00000	0.37104 0.0016	0.90007 <.0001			
compactness	0.37104 0.0016	1.00000	0.66657 <.0001			
width	0.90007 <.0001	0.66657 <.0001	1.00000			

Spearman Correlation Coefficients, N = 70 Prob > r under H0: Rho=0					
area compactness width					
area	1.00000	0.34061 0.0039	0.86749 <.0001		
compactness	0.34061 0.0039	1.00000	0.68059 <.0001		
width	0.86749 <.0001	0.68059 <.0001	1.00000		

Pearson Correlation Coefficients, N = 70 Prob > r under H0: Rho=0						
	area compactness width					
area	1.00000	0.27263 0.0224	0.88049 <.0001			
compactness	0.27263 0.0224	1.00000	0.64373 <.0001			
width	0.88049 <.0001	0.64373 <.0001	1.00000			

Spearman Correlation Coefficients, N = 70 Prob > r under H0: Rho=0						
	area compactness width					
area	1.00000	0.19515 0.1055	0.83561 <.0001			
compactness	0.19515 0.1055	1.00000	0.62171 <.0001			
width	0.83561 <.0001	0.62171 <.0001	1.00000			

To check the correlation among area, compactness, and width, we performed both Pearson and Spearman correlation analysis for all three varieties separately.

For variety = Canadian, the results between Pearson and Spearman is similar. Based on the correlation coefficients and p values, we conclude that there is positive correlation between each pair of the three measures. Specifically, the correlation strength can be ordered as: area vs. width > compactness vs. width > area vs. compactness. Difference between part a, the correlation strength between area and width is similar with the correlation between compactness and width.

For variety = Kama, the results between Pearson and Spearman is similar. Based on the correlation coefficients and p values, we conclude that there is positive correlation between each pair of the three measures. Specifically, the correlation strength can be ordered as: area vs. width > compactness vs. width > area vs. compactness. However, the correlation between area and compactness is very weak since the correlation coefficient is \sim 0.37. In contrast, the correlation between area and width is very strong with the coefficient \sim 0.90.

For variety = Rosa, the results between Pearson and Spearman is different. Since Rosa area data is not normal as shown previously, we will focus on the Spearman results. Based on the correlation coefficients and p values, we conclude that there is no

correlation between area and compactness; whereas there is positive correlation between area vs. width and compactness vs. width. Similar with two other varieties, the correlation between area and width is stronger than the correlation between compactness and width.

Compared with the results in part a, there are the following differences:

- (1) The correlation coefficient between area and width for each variety is smaller compared the one with all data.
- (2) The correlation between area and compactness does not exist for variety = Rosa whereas there is strong positive correlation in all data.