Facteur de correction moyen lors de l'utilisation de charges inductives (sans système de réduction d'arc)

Pointes de courant des câbles auto-régulants

Il s'agit ici d'un effet complètement différent des surtensions et surintensités transitoires dues à l'interaction des contacts avec la charge.

Cette surintensité est due à la conception des câbles autorégulants à coefficient de température positif et cette surintensité peut prendre plusieurs minutes à se dissiper.

Souvent le câble chauffant est à une température relativement basse (et donc sa résistance électrique est faible) lorsqu'il est mis sous tension. Sa faible résistance produira un fort courant de démarrage, inversement proportionnel à la température ambiante. Cette surintensité peut atteindre 2 fois la valeur nominale à 25 ° C donnée par le fabricant . Se référer aux notices des constructeurs de câbles pour en connaître la valeur.

Valeur indicative moyenne des coefficients de réduction des pouvoirs de coupure en courant alternatif

Charge résistive	Lampe à incandescence**	Bobine électromagnétique	Transformateur	Moteur monophasé	Moteur triphasé	Câbles chauffants autorégulants*
1	0.8	0.5	0.5	0.12/0.24	0.18/0.33	0.6

^{*} Valeur moyenne, variable selon la température ambiante des câbles au démarrage, voir les notices des constructeurs et la norme CEI60898

^{*} avec filament chaud

