CS & IT

ENGINEERING

DISCRETE MATHS
SET THEORY

Lecture No.

By-SATISH YADAV SIR

01 Basics of Functions

02 Terms in Functions

03 Number of Functions

04 Types of Functions

05 Various Examples in Functions

Function/assignment/mapping/transformation.

Set 1 -> set 2.

f : set1-) set2.

Codomain.

$$f(n)=n^2$$

$$f(2)=1$$

f: A -> B

A. B are non empty set

- all elements of A must point to some elements of B
- > one element of left side must not point to an more elements at same time.

Range: {my?] Codemain: {n,y,z?

Range:

collection of images.

Total no of functions = Total diffi arrows represent

$$\frac{2 \cdot 2 \cdot 2}{3} = \frac{3}{2}$$

$$= (R.S)$$

$$= (R.S)$$

()
$$|X| = 97$$
 $|Y| = 97. (97) = 97$

