MEMULAI DENGAN IOT

Table of Contents

01	REVIEW TEKNOLOGI Review teknologi IoT
02	IOT DEVELOPMENT
	Langkah untuk memulai menguasai Aplikasi IoT
03	ESP32
	Development solusi IoT dengan ESP32
04	RASPBERRY PI

Raspberry pi praktis

O1 REVIEW TEKNOLOGI

Review teknologi IoT

IOT

Hari ini di era Industri 4.0 dan persiapan society 5.0, IoT menjadi enabling teknology

IOT

Dari sensor ke cloud, integrated circuits yang mampu secara akurat mengambil, memproses dan mengirim data sensor secara pintar.

2. IOT DEVELOPMENT

Langkah untuk memulai menguasai Aplikasi IoT

APLIKASI DARI IOT

BUILDING AND HOME AUTOMATION

Automasi gedung dan rumah Power management, AC, Deteksi gas bocor, Motion sensor, Smart Lock

SMART CITIES

Pengaturan konsumsi daya seperti pada lampu jalan, CCTV, menggunakan koneksi jarak jauh (LoRa/NB-IoT), biasanya dikontrol secara centralized

APLIKASI DARI IOT

SMART MANUFACTURING

Smart factory dan Industri 4.0, system yang membutuhkan desain security dan robust. Untuk mencapai lingkungan factory/pabrik yang smarter, safer, dan more efficient

AUTOMOTIVE

Teknology otomotif yang pintar, mulai dari OBC, Head unit, Telementry kontrol.

APLIKASI DARI IOT

WEARABLES
Ultra low power untuk wearable device

HEALTCARE

Revolusi kesehatan, monitoring pasien, telehealth system

AGRICULTURE

Mempercepat process dan
efisiensi pertanian. Transport,
drone/Survey, automasi

IOT ARCHITECTURE

- IoT devices Perangkat interkoneksi
- Networks Gateway yang memungkinkan koneksi ke Cloud
- Cloud Remote servers yang berada di data centre

PERTUMBUHAN IOT

Cisco merilis bahwa telah ada 31 billion connected devices di tahun 2020 dan akan menjadi 75 billion devices by 2025.

31,000,000,000 - 2020

1. EXPLORATION PHASE

Mengidentifikasi apa yang penting untuk hari ini

2. PROTOTYPING PHASE

Merubah ide menjadi protoype, experiment dengan kit sederhana seperti Raspberry pi dan arduino

STEP PENDEKATAN APLIKASI IOT

Penggunakan solusi IoT ke dalam lingkungan bisnis sesungguhnya. Perhatian terhadap kompetisi, pemilihan teknologi dan regulasi

TRANSFORMATION PHASE

Transformasi bisnis menjadi solusi Total/keseluruhan menggunakan cloud based IoT. Aspek bisnis sangat diperhatikan

EXPLORATION PHASE

Bertemu dengan expert dibidangnya dan team bisnis yang mengerti, kemudian tanyakan
Apa yang paling penting hari ini?
Apa yang memerlukan koneksi?
Untuk menemukan Ide

PROTOTYPING PHASE

POWER MANAGEMENT

Supply Daya menggunakan baterai, energy harvesting.

COMPLEXITY

Kemudahan desain dan development

CONNECTIVITY

Banyak standar koneksi yang biasa digunakan tergantung dari kebutuhan

SECURITY

Hardware security dan protokol yang aman/secure.

RAPID EVOLUTION

Flexibilitas bisa digunakan di berbagai aplikasi

Range

Typical power source

Throughput

Typical topology

PARAMETER CONNECTIVITY

Range Throughput Power source Topology

ESP32 BOARD DEV

PERBANDINGAN DEVELOPMENT BOARD

ESP32 STM32 ATMEL

	8051	PIC	AVR	ARM
Bus width	8-bit for standard core	8/16/32-bit	8/32-bit	32-bit mostly also available in 64- bit
Communication Protocols	UART, USART,SPI,I2C	PIC, UART, USART, LIN, CAN, Ethernet, SPI, I2S	UART, USART, SPI, I2C, (special purpose AVR support CAN, USB, Ethernet)	UART, USART, LIN, I2C, SPI, CAN, USB, Ethernet, I2S, DSP, SAI (serial audio interface), IrDA
Speed	12 Clock/instruction cycle	4 Clock/instruction cycle	1 clock/ instruction cycle	1 clock/ instruction cycle
Memory	ROM, SRAM, FLASH	SRAM, FLASH	Flash, SRAM, EEPROM	Flash, SDRAM, EEPROM
ISA	CLSC	Some feature of RISC	RISC	RISC
Memory Architecture	Von Neumann architecture	Harvard architecture	Modified	Modified Harvard architecture
Power Consumption	Average	Low	Low	Low
Families	8051 variants	PIC16,PIC17, PIC18, PIC24, PIC32	Tiny, Atmega, Xmega, special purpose AVR	ARMv4,5,6,7 and series
Community	Vast	Very Good	Very Good	Vast
Manufacturer	NXP, Atmel, Silicon Labs, Dallas, Cyprus, Infineon, etc.	Microchip Average	Atmel	Apple, Nvidia, Qualcomm, Samsung Electronics, and TI etc.
Cost (as compared to features provide)	Very Low	Average	Average	Low
Other Feature	Known for its Standard	Cheap	Cheap, effective	High speed operation Vast
Popular Microcontrollers	AT89C51, P89v51, etc.	PIC18fXX8, PIC16f88X, PIC32MXX	Atmega8, 16, 32, Arduino Community	LPC2148, ARM Cortex-M0 to ARM Cortex-M7, etc.

Perbandingan Prosesor

Model	Clock	Flash	SRAM
ATMega328 (Arduino Nano)	16 Mhz	32 kB	2 kB
STM32F103C8T (Blue Pill)	72 Mhz	64 kB	20 kB
LPC1769 (LPCXpresso)	100 MHz	512 kB	64 kB
ESP32	240 MHz (600 MIPS)	External ~16 MB (tipikal 4 MB)	520 kB
ESP8266	80 ~ 160 MHz	External ~ 16 MiB	80 kB

4. RASPBERRY PI

RASPBERRY PI

Raspberry Pi Boards

Raspberry Pi 4 Model B

Raspberry Pi 2 Model B

Raspberry Pi 3 Model A+

Raspberry Pi 1 Model B+

Raspberry Pi 3 Model B+

Raspberry Pi 1 Model A+

Raspberry Pi Zero

Raspberry Pi 3 Model B

Raspberry Pi Zero W

RASPBERRY PI 3

4x USB Power micro usb HDMI display Camera interface Ethernet GPIO Mico sd

INSTALL SDCARD

- Download image
- Connect sdcard
- Find Raspberry pi *.img
- Flash

SETTING HEADLESS RPI

- ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev update_config=1 network={ ssid="YOUR_SSID" psk="YOUR_PASSWORD" }
- Set Open and edit wpa_supplicant.conf
- Scan ip
- Ssh using putty

```
C:\Users\estheim>nmap -PN 192.168.0.1/24

Starting Nmap 7.60 ( https://nmap.org ) at 2019-08-04 22:36 SE Asia Standard Time
Nmap scan report for 192.168.0.101

Host is up (0.013s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

22/tcp open ssh

5900/tcp open vnc

MAC Address: B8:27:EB:34:DB:6F (Raspberry Pi Foundation)
```

```
estheim@Machina:~$ ssh pi@192.168.0.101
pi@192.168.0.101's password:
Linux raspberrypi 4.14.79-v7+ #1159 SMP Sun Nov 4 17:50:20 GMT 2018 armv71

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Aug 4 22:40:41 2019 from 192.168.0.100
pi@raspberrypi:~ $ 1sb_release -a
No LSB modules are available.
Distributor ID: Raspbian
Description: Raspbian GNU/Linux 9.4 (stretch)
Release: 9.4
Codename: stretch
pi@raspberrypi:~ $
```

REMOTE DESKTOP VNC

Raspi-config

Sudo raspi-config

THINGSBOARD DASHBOARD

ThingsBoard is an open-source server-side platform yang memungkinkan untuk monitor dan control perangkat IoT. Gratis untuk digunakan secara personal dan commercial dan dapat digunakan dimana saja

FITUR DARI THINGSBOARD

- **Provision** perangkat, aset, dan pelanggan serta menentukan hubungan di antara mereka.
- Kumpulkan dan visualisasikan data dari perangkat dan aset.
- Menganalisis telemetri yang masuk dan memicu alarm dengan pemrosesan peristiwa yang kompleks.
- Kontrol perangkat Anda menggunakan remote produce call(RPC).
- Buat alur kerja berdasarkan life cycle perangkat, event, REST API, RPC request, dll
- Desain **dasbor** dinamis dan responsif serta telemetri perangkat atau aset dan wawasan terkini kepada pelanggan Anda
- Aktifkan fitur khusus kasus penggunaan menggunakan **rule-chain** yang dapat disesuaikan.
- Push data perangkat ke sistem lain.

KONEKSI ESP DENGAN THINGSBOARD

Add device dan copy access token pada demo.thingsboard.io
Sesuaikan access token dengan device node (esp32)
Cek koneksi pada telemetry
Buat dashboard dengan data sesuai datatelemetry

THANKS

Do you have any question? hasbiida@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**