

Universidad Nacional de San Luis

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS Y NATURALES INGENIERÍA ELECTRÓNICA CON O.S.D.

Asignatura:

Comunicaciones I

Trabajo Practico Nº 2

"Multipath, interferencias, rudio - Señales y Procesos Aleatorios"

Estudiantes:

Marcos Lucero Nahuel Ramires Agustín Cappiello

Profesores Responsables:

Alejandro Marwan Geraiges Magrini. Roberto Kiessling.

Año:

2025

1. Actividad 1

a) Si las señales recibidas se suman en la antena receptora. ¿Cuál es el resultado de esto? Graficar.

Las señales recibidas se expresan de la siguiente manera:

$$y_1(t) = 0.9 \cdot 17\cos(2\pi f_1(t - \tau_1))$$

$$y_2(t) = 0.75 \cdot 17\cos(2\pi f_1(t - \tau_2))$$

donde los retardos temporales son calculados como:

$$\tau_1 = \frac{D_1}{c} = \frac{11000}{3 \times 10^8} = 36,67 \,\mu s$$

$$\tau_2 = \frac{D_2}{c} = \frac{14500}{3 \times 10^8} = 48,33 \,\mu s$$

La señal resultante es la suma de la señal transmitida por un camino directo y de la señal reflejada $y(t) = y_1(t) + y_2(t)$

Figura 1: Señal resultante a 532 kHz.

En la figura 1 se observa la señal cosenoidal trasmitida en su camino directo y reflejado, la suma de las dos es la que llega a la antena receptora. Como se observa, tienen diferente amplitud y fase debido a las atenuaciones y un retardo temporal por las diferentes distancias.

b) Suponer ahora que la frecuencia aumenta a 600 kHz. ¿Qué sucede? Graficar.

Hay dos trayectorias:

$$D_1 = 11 \,\mathrm{km}$$
 $D_2 = 14.5 \,\mathrm{km}$.

La diferencia es:

$$\Delta D = D_2 - D_1 = 3.5 \,\mathrm{km} = 3500 \,\mathrm{m}.$$

El retardo entre ambas:

$$\Delta \tau = \frac{\Delta D}{c} = \frac{3500}{3 \cdot 10^8} \approx 1,1667 \times 10^{-5} \,\mathrm{s}.$$

La diferencia de fase entre ellas es:

$$\Delta \varphi = 2\pi f \Delta \tau$$
.

Las dos señales quedan en fase cuando su diferencia de fase es un múltiplo entero de 2π :

$$\Delta \varphi = 2\pi n, \qquad n = 0, 1, 2, \dots$$

$$2\pi f \Delta \tau = 2\pi n \implies f = \frac{n}{\Delta \tau}.$$

Para $\Delta \tau = 1{,}1667 \times 10^{-5} \text{ s}$:

$$f_n = \frac{n}{1,1667 \times 10^{-5}}.$$

Para n = 7:

$$f_7 = \frac{7}{1,1667 \times 10^{-5}} = 600 \,\text{kHz}.$$

A $f = 600 \,\mathrm{kHz}$ la diferencia de fase es:

$$\Delta \varphi = 2\pi f \, \Delta \tau = 2\pi \cdot 600000 \cdot 1,1667 \times 10^{-5} = 2\pi \cdot 7 = 14\pi,$$

que es exactamente 7 ciclos completos de diferencia. Por lo tanto, las señales quedan en fase.

Figura 2: Señal resultante a 600 kHz.

2. Actividad 2

En un sistema determinado de comunicaciones, en el que una señal sinusoidal $x(t) = A\sin(2\pi f t)$ pasa a través de un filtro lineal de fase no constante. La respuesta en frecuencia del filtro es $H(f) = |H(f)| e^{j\beta(f)}$, donde $\beta(f) = -\alpha f$ es la fase dependiente de la frecuencia.

$$\tau_p = \frac{\beta(f)}{2\pi f} \qquad \tau_g = -\frac{1}{2\pi} \frac{d\beta(f)}{df}$$

a) Calcular el retardo de fase y retardo de grupo.

$$\tau_p = \frac{\beta(f)}{2\pi f} = \frac{-\alpha f}{2\pi f} = -\frac{\alpha}{2\pi}$$

$$\tau_g = -\frac{1}{2\pi} \frac{d\beta}{df} = -\frac{1}{2\pi} (-\alpha) = \frac{\alpha}{2\pi}$$

b) ¿El retardo de fase y el retardo de grupo es constante o depende de la frecuencia?

Ambos son constantes ya que son independientes de la frecuencia.

c) ¿Qué significa un retardo de grupo constante para la propagación de un paquete de ondas?

Un retardo de grupo constante significa que todas las componentes espectrales del paquete son retrasadas por la misma cantidad de tiempo.

d) ¿Cuál es la diferencia práctica entre el retardo de fase y el retardo de grupo en la transmisión de una señal modulada?

El retardo de fase se refiere al retraso o adelanto que sufre la fase de una componente sinusoidal de frecuencia.

El retardo de grupo determina el retraso de la envolvente o del paquete de señales, por lo tanto es el que importa para la transmisión de información modulada (la moduladora se transporta por la envolvente).

e) Si a la salida del sistema de comunicaciones se obtiene una señal compuesta por múltiples frecuencias, ¿por qué es importante el retardo de grupo para mantener la forma de la señal en la salida del sistema?

Es importante el retardo de grupo cuando una señal está compuesta por múltiples frecuencias porque garantiza que la forma de la señal compuesta (su envolvente) se conserve al pasar por el sistema. Si no es constante, se produce dispersión y distorsión temporal.

3

3. Actividad 5

En el trabajo práctico anterior se analizó espectralmente una señal compuesta por tres sinusoides de frecuencias 50 Hz, 120 Hz y 200 Hz, con diferentes amplitudes y fases (constantes).

a) Graficar la señal total en el dominio del tiempo y en el dominio de la frecuencia (mediante la Transformada Rápida de Fourier, FFT).

Figura 3: Señal total.

- b) Incorporar a la señal ruido blanco gaussiano en dos escenarios:
- Ruido bajo: el nivel de ruido no es suficiente para ocultar las componentes sinusoidales.
- Ruido alto: el nivel de ruido es suficiente para enmascarar las componentes de la señal.

Para cada caso, representar nuevamente la señal tanto en el tiempo como en el espectro de frecuencias y analizar cómo varían la visibilidad de las componentes espectrales.

Figura 4: Señal con rudio blanco gaussiano bajo.

Figura 5: Señal con rudio blanco gaussiano alto.

Al comparar la señal original con las versiones con ruido, se observa que en el dominio del tiempo la señal total sin ruido presenta una forma suave y definida, mientras que con ruido bajo aparecen pequeñas variaciones sin perder la forma general, y con ruido alto la forma original se pierde debido a las variaciones aleatorias. En el dominio de la frecuencia, la señal total sin ruido muestra tres picos en 50 Hz, 120 Hz y 200 Hz, con las frecuencias fuera de las mencionadas en casi cero. Al añadir ruido bajo los picos siguen visibles aunque surge un nivel de ruido en todo el espectro (piso de ruido). En cambio, con ruido alto ese piso aumenta y los picos se atenúan o se confunden con el ruido. Esto quiere decir que un ruido creciente degrada la forma temporal y espectral, dificultando identificar las componentes de la señal original.