

SEQUENCE LISTING

<110> YEH, EDWARD T.H.

<120> USES FOR A NOVEL CELL-DEATH-PROTECTING PROTEIN

<130> UTSH:248US

<140> 09/484,964

<141> 2000-01-18

<150> 08/964,162

<151> 1997-11-04

<150> 60/030,302

<151> 1996-11-05

<160> 18

<170> PatentIn Ver. 2.0

<210> 1

<211> 1465

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (88)..(390)

<400> 1

cgggaaggat ttgtaaaccc cggagcgagg ttctgcttac ccgaggccgc tgctgtgcgg 60
agaccccccgg gtgaagccac cgtcattc atg tct gac cag gag gca aaa cct tca 114
Met Ser Asp Gln Glu Ala Lys Pro Ser

1 5

act gag gac ttg ggg gat aag aag caa ggt gaa tat att aaa ctc aaa 162
Thr Glu Asp Leu Gly Asp Lys Lys Gln Gly Glu Tyr Ile Lys Leu Lys
10 15 20 25

gtc att gga cag gat agc agt gag att cac ttc aaa gtg aaa atg aca 210
Val Ile Gly Gln Asp Ser Ser Glu Ile His Phe Lys Val Lys Met Thr
30 35 40

aca cat ctc aag aaa ctc aaa gaa tca tac tgt caa aga cag ggt gtt 258
Thr His Leu Lys Lys Leu Lys Glu Ser Tyr Cys Gln Arg Gln Gly Val
45 50 55

cca atg aat tca ctc agg ttt ctc ttt gag ggt cag aga att gct gat 306
Pro Met Asn Ser Leu Arg Phe Leu Phe Glu Gly Gln Arg Ile Ala Asp
60 65 70

aat cat act cca aaa gaa ctg gga atg gag gaa gaa gat gtg att gaa 354
Asn His Thr Pro Lys Glu Leu Gly Met Glu Glu Glu Asp Val Ile Glu
75 80 85

gtt tat cag gaa caa acg ggg ggt cat tca aca gtt tagatattct 400
Val Tyr Gln Glu Gln Thr Gly Gly His Ser Thr Val
90 95 100

ttttattttt tttctttcc ctcaatccctt ttttattttt aaaaatagtt cttttgtaat 460
gtgggttca aaacggaatt gaaaactggc accccatctc tttgaaacat ctggtaattt 520
gaattctagt gctcatttattt cattattgtt ttttttcattt gtgctgattt ttgggtatca 580
agcctcagtc cccttcatat taccctctcc tttttaaaaa ttacgtgtgc acagagaggt 640
caccttttc aggacattgc attttcaggc ttgtggtgat aaataagatc gaccatgca 700

agtgttcata atgactttcc aattggccct gatgttcagc atgtgattac ttcaactcctg 760
gactgtgact ttcagtggaa gatggaagtt tttcagagaa ctgaactgtg gaaaaatgac 820
cttccttaa cttgaagcta cttttaaaat ttgagggtct ggaccaaaag aagaggaata 880
tcaggttcaa gtcaagatga cagataaggt gagagtaatg actaactcca aagatggctt 940
cactgaagaa aaggcattt aagattttt aaaaatctt tcagaagatc ccagaaaaagt 1000
tctaattttc attagcaatt aataaagcta tacatgcaga aatgaataca acagaacact 1060
gctctttta gattttattt gtacttttg gcctggata tgggttttaa atggacattt 1120
tctgtaccag cttcattaaa ataaacaata tttgtcaaaa atcgtactaa tgcttatttt 1180
attttaattt tatagaaaaga aaaaaatgcc taaaataagg ttttcttgc taaataactgg 1240
aaattgcaca tggtacaaat ttttcttca ttactgtaca gggatgtatg taatgacttt 1300
ggagcactga aagttactga agtgccttct gaatcaagga tttaattaag gccacaatac 1360
cttttaata ctcagtgttc tttttttt aaaaacttga tattcccgta tggtgcatat 1420
ttgatacagg taccatatca ttttggataa atggcatgc cagcc 1465

<210> 2
<211> 101
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Asp Gln Glu Ala Lys Pro Ser Thr Glu Asp Leu Gly Asp Lys
1 5 10 15
Lys Gln Gly Glu Tyr Ile Lys Leu Lys Val Ile Gly Gln Asp Ser Ser
20 25 30
Glu Ile His Phe Lys Val Lys Met Thr Thr His Leu Lys Lys Leu Lys
35 40 45
Glu Ser Tyr Cys Gln Arg Gln Gly Val Pro Met Asn Ser Leu Arg Phe
50 55 60
Leu Phe Glu Gly Gln Arg Ile Ala Asp Asn His Thr Pro Lys Glu Leu
65 70 75 80
Gly Met Glu Glu Glu Asp Val Ile Glu Val Tyr Gln Glu Gln Thr Gly
85 90 95
Gly His Ser Thr Val
100

<210> 3
<211> 774
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (53)
<223> Y = C or T
<220>
<221> modified_base
<222> (689)
<223> N = A, C, G or T
<220>
<221> modified_base
<222> (739)
<223> N = A, C, G or T
<220>
<221> modified_base
<222> (744)
<223> N = A, C, G or T

<400> 3

cggcacgagg gtgctgctt tggcgtcgac ctggcaccc tcgttgcgtttt 60
gcggcagctg aggagactcc ggcgtcgcc atggccgacg aaaagccaa ggaaggagtc 120
aagactgaga acaacgatca tattaattt aagggtggcg ggcaggatgg ttctgtgg 180
cagttttaaga ttaagaggca tacaccactt agttaactaa tgaaagccta ttgtgaacga 240
cagggattgt caatgaggca gatcagattc cgatttgacg ggcaaccaat caatgaaaaca 300
gacacacctg cacagtggaa aatggaggat gaagatacaa ttgatgtgtt ccaacagcag 360
acgggaggtg tctactgaaa agggAACCTG CTTCTTACT CCAGAACTCT GTTCTTAAA 420
gaccaagatt acattctcaa ttagaaaact gcaatttggt tccaccacat cctgactact 480
accgtatagt ttctcttatt ctccatttc ccccttcccc attcctttat tgtacataaa 540
gttaactggta tatgtgcaca agcatattgc atttttttt ttttaacta aacagccaa 600
ggtatgtttt gattgacate caagtggaga cggggatggg gaaaaatact gattctgtgg 660
aaaatacccc ctttctccc attagtggnc atgctccatt cagcccttaa acctttataa 720
tcccaggtaa ggtaatttng cccncaccgg ttttacccaa aaaaaaaaaa actt 774

<210> 4
<211> 95
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Asp Glu Lys Pro Lys Glu Gly Val Lys Thr Glu Asn Asn Asp
1 5 10 15
His Ile Asn Leu Lys Val Ala Gly Gln Asp Gly Ser Val Val Gln Phe
20 25 30
Lys Ile Lys Arg His Thr Pro Leu Ser Lys Leu Met Lys Ala Tyr Cys
35 40 45
Glu Arg Gln Gly Leu Ser Met Arg Gln Ile Arg Phe Arg Phe Asp Gly
50 55 60
Gln Pro Ile Asn Glu Thr Asp Thr Pro Ala Gln Leu Glu Met Glu Asp
65 70 75 80
Glu Asp Thr Ile Asp Val Phe Gln Gln Thr Gly Gly Val Tyr
85 90 95

<210> 5
<211> 1733
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (19)
<223> N = A, C, G or T

<400> 5
ttcggcacag gcgggaganc ggcggggccg aagcgtgaac tcgcccgtc cggcttgctt 60
cccccgcccc gcctccccgc gcccgtcgga agccatgtcc gaggagaagc ccaaggaggg 120
tgtgaagaca gagaatgacc acatcaacct gaagggtggcc gggcaggacg gctccgtgg 180
gcagttcaag atcaagaggc acacgtcgct gagcaagctg atgaaggcct actgcgagag 240
gcagggctg tcaatgaggc agatcagatt cagggtcgac gggcagccaa tcaatgaaac 300
tgacactcca gcacagctga gaatggagga cgaggacacc atcgcacgtt tccagcagca 360
gacgggaggt gtgccggaga gcagcctggc agggcacagt ttctagaggg cccgtcccc 420
gccccggccg tccatcctcg cattgtgtt gaatggtgag cacgtgacca tgccgaccac 480
aaagggtgtct gcggaaaactc gaggacattc accacgatga tttccctctc tttgatgtac 540
ttcaagtgca actcaaaaact atatctgcag ggtgaatct gtaacttaaa ttgggccaat 600
cagaattttt atctttgttc agttaaaaatg agttgcaaga tattgtgggt actttgtgt 660
gctcatttgtt gtttcccccc cctcctacaa cattttta accccaaaat tatagcctga 720
atgttcgtttt tagtctggc cagggatctg actcctgagt tggttcgtc tccctgtc 780
actccagtca catagagaat tggtgtttcc cgcaatgggg attgcagctg ttggacaggt 840

attggggca aggtggtag ggaggacaga ctgtcacttg ctgttacagg cacaggtat 900
taaaatgcta aatattgcaa atttaagctt tgtcagtata tggaaaagtt gaagggaaaa 960
tactggaatg cttctcaaa gttaaaaaaaa taaccgagtc ttttggtaat ttgaccccac 1020
gtgctctctg gccctcaagc atgtaaccc tcgggtcttag gcccaggacc caccggctg 1080
ccacccctcc caccggactc cctgctcagt acctggcggtt ggtacacagg caaggattgg 1140
cacaaccaa attggcctt ttctccctt taatattgaa gaaattccca catttctcat 1200
ttggtaatgg tgggtggcc tcagatttct tctagtttt gcttctgtat aatgattatg 1260
gtctatacat aaaaaagtaa gactaagtat tgctgaattt gcagttatgt tgtcgtgtat 1320
aagagctact tccaagtgtg gttacaaatg aaccatgga atgatgactt catgttcttc 1380
tcgtgggtt gtgcgtgtc gcttccaaa tagttattga atttatgtat tagtctggtg 1440
atttcagttc tggaaatat tttggatct ataccaatta aacatttca tagttctgcc 1500
tattgtcctt ccctgaggct ccattgctgc ttggggcca ttctctgcct ttttacagtc 1560
acctgaacaa tgaccatca tctttgctt gcttggaaatc ttgtgaaat gttctcattt 1620
cctgtttgct gtatgggctc gggtggatg tttgttgct ctgttggtt tattcaccaa 1680
tttgtacatt atttgttgc cttaactact gtaaacagta aatatagttt ggt 1733

<210> 6
<211> 103
<212> PRT
<213> Homo sapiens

<400> 6
Met Ser Glu Glu Lys Pro Lys Glu Gly Val Lys Thr Glu Asn Asp His
1 5 10 15
Ile Asn Leu Lys Val Ala Gly Gln Asp Gly Ser Val Val Gln Phe Lys
20 25 30
Ile Lys Arg His Thr Ser Leu Ser Lys Leu Met Lys Ala Tyr Cys Glu
35 40 45
Arg Gln Gly Leu Ser Met Arg Gln Ile Arg Phe Arg Phe Asp Gly Gln
50 55 60
Pro Ile Asn Glu Thr Asp Thr Pro Ala Gln Leu Arg Met Glu Asp Glu
65 70 75 80
Asp Thr Ile Asp Val Phe Gln Gln Gln Thr Gly Gly Val Pro Glu Ser
85 90 95
Ser Leu Ala Gly His Ser Phe
100

<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 7
Arg Gly Ser His His His His His
1 5

<210> 8
<211> 30
<212> DNA
<213> Homo sapiens

<400> 8
cttaggatcc atggcctcg aagacattgc

<210> 9
<211> 30
<212> DNA
<213> Homo sapiens

<400> 9
gtgtgaattc tagaccttgt acagcgctcg 30

<210> 10
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 10
Arg Gly Ser His His His His
1 5

<210> 11
<211> 9
<212> PRT
<213> Influenza virus

<400> 11
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 12
<211> 4
<212> PRT
<213> Homo sapiens

<400> 12
His Ser Thr Val
1

<210> 13
<211> 101
<212> PRT
<213> Saccharomyces cerevisiae

<400> 13
Met Ser Asp Ser Glu Val Asn Gln Glu Ala Lys Pro Glu Val Lys Pro
1 5 10 15
Glu Val Lys Pro Glu Thr His Ile Asn Leu Lys Val Ser Asp Gly Ser
20 25 30
Ser Glu Ile Phe Phe Lys Ile Lys Lys Thr Thr Pro Leu Arg Arg Leu
35 40 45
Met Glu Ala Phe Ala Lys Arg Gln Gly Lys Glu Met Asp Ser Leu Arg
50 55 60
Phe Leu Tyr Asp Gly Ile Arg Ile Gln Ala Asp Gln Thr Pro Glu Asp
65 70 75 80
Leu Asp Met Glu Asp Asn Asp Ile Ile Glu Ala His Arg Glu Gln Ile
85 90 95

Gly Gly Ala Thr Tyr
100

<210> 14
<211> 80
<212> PRT
<213> Homo sapiens

<400> 14
Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
1 5 10 15
Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
20 25 30
Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
35 40 45
Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
50 55 60
Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Gly Leu Arg
65 70 75 80

<210> 15
<211> 76
<212> PRT
<213> Homo sapiens

<400> 15
Met Leu Ile Lys Val Lys Thr Leu Thr Gly Lys Glu Ile Glu Ile Asp
1 5 10 15
Ile Glu Pro Thr Asp Lys Val Glu Arg Ile Lys Glu Arg Val Glu Glu
20 25 30
Lys Glu Gly Ile Pro Pro Gln Gln Arg Leu Ile Tyr Ser Gly Lys
35 40 45
Gln Met Asn Asp Glu Lys Thr Ala Ala Asp Tyr Lys Ile Leu Gly Gly
50 55 60
Ser Val Leu His Leu Val Leu Ala Leu Arg Gly Gly
65 70 75

<210> 16
<211> 30
<212> PRT
<213> Homo sapiens

<400> 16
Val Gln Asp Leu Ala Gln Leu Val Glu Glu Ala Thr Gly Val Pro Leu
1 5 10 15
Pro Phe Gln Lys Leu Ile Phe Lys Gly Lys Ser Leu Lys Glu
20 25 30

<210> 17
<211> 1518
<212> DNA
<213> Homo sapiens

<220>

<221> CDS
<222> (136) .. (438)

<400> 17
cgaggcgtac cgaaagttac tgcagccgctg gtgttgct gtcgggaagg ggaaggattt 60
gtaaaccccg gagcgagggtt ctgcttaccc gaggccgctg ctgtgcggag acccccgggt 120
gaagccaccg tcatac atg tct gac cag gag gca aaa cct tca act gag gac 171
Met Ser Asp Gln Glu Ala Lys Pro Ser Thr Glu Asp
1 5 10
ttg ggg gat aag aag caa ggt gaa tat att aaa ctc aaa gtc att gga 219
Leu Gly Asp Lys Lys Gln Gly Glu Tyr Ile Lys Leu Lys Val Ile Gly
15 20 25
cag gat agc agt gag att cac ttc aaa gtg aaa atg aca aca cat ctc 267
Gln Asp Ser Ser Glu Ile His Phe Lys Val Lys Met Thr Thr His Leu
30 35 40
aag aaa ctc aaa gaa tca tac tgt caa aga cag ggt gtt cca atg aat 315
Lys Lys Leu Lys Glu Ser Tyr Cys Gln Arg Gln Gly Val Pro Met Asn
45 50 55 60
tca ctc agg ttt ctc ttt gag ggt cag aga att gct gat aat cat act 363
Ser Leu Arg Phe Leu Phe Glu Gly Gln Arg Ile Ala Asp Asn His Thr
65 70 75
cca aaa gaa ctg gga atg gag gaa gaa gat gtg att gaa gtt tat cag 411
Pro Lys Glu Leu Gly Met Glu Glu Asp Val Ile Glu Val Tyr Gln
80 85 90
gaa caa acg ggg ggt cat tca aca gtt tagatattct ttttattttt 458
Glu Gln Thr Gly His Ser Thr Val
95 100
tttctttcc ctcaatcctt ttttattttt aaaaatagtt cttttgtaat gtgggtttca 518
aaacggaatt gaaaactggc accccatctc tttgaaacat ctggtaattt gaattctagt 578
gtcattatt cattattgtt tgtttcatt gtgctgattt ttgggtgatca agcctcagtc 638
cccttcatat taccctctcc ttttaaaaaa ttacgtgtgc acagagaggt caccttttc 698
aggacattgc atttcaggc ttgtggtgat aaataagatc gaccaatgca agtgttcata 758
atgactttcc aattggccct gatgttctag catgtgatta cttcactcct ggactgtgac 818
tttcagtggg agatggaagt tttcagaga actgaactgt ggaaaaatga ctttcctta 878
acttgaagct actttaaaaa ttttggggctt ctggacccaa agaagaggaa tatcagggtt 938
aagtcaagat gacagataag gtgagagtaa tgactaactc caaagatggc ttcactgaag 998
aaaaggcatt ttaagatttt ttaaaaatct tgcagaaga tccccagaaaa gttctaattt 1058
tcattagcaa ttaataaaagc tatacatgca gaaatgaata caacagaaca ctgctttt 1118

tgattttatt tgtacttttt ggccctgggat atgggtttta aatggacatt gtctgtacca 1178
gccttcattaa aataaaacaat atttgtcaaa aatcgacta atgcttattt tattttaaatt 1238
gtatagaaaag aaaaaaaatgc ctaaaataag gtttcttgc ataaatactg gaaattgcac 1298
atggtacaaa aaaaaaaatgc ctaaattact gtacagggat gatgttaatg actttggagc 1358
actgaaagtt actgaagtgc cttctgaatc aaggatttaa ttaaggccac aatacctttt 1418
taataactcag tgttctgttt tttttaaaaa cttgatattc ccgtatggtg catatttgat 1478
acaggtaccc aatcatgttg gataaaatggg catgccagcc 1518

<210> 18
<211> 101
<212> PRT
<213> Homo sapiens

<400> 18
Met Ser Asp Gln Glu Ala Lys Pro Ser Thr Glu Asp Leu Gly Asp Lys
1 5 10 15
Lys Gln Gly Glu Tyr Ile Lys Leu Lys Val Ile Gly Gln Asp Ser Ser
20 25 30
Glu Ile His Phe Lys Val Lys Met Thr Thr His Leu Lys Lys Leu Lys
35 40 45
Glu Ser Tyr Cys Gln Arg Gln Gly Val Pro Met Asn Ser Leu Arg Phe
50 55 60
Leu Phe Glu Gly Gln Arg Ile Ala Asp Asn His Thr Pro Lys Glu Leu
65 70 75 80
Gly Met Glu Glu Glu Asp Val Ile Glu Val Tyr Gln Glu Gln Thr Gly
85 90 95
Gly His Ser Thr Val
100