Zadanie 1. Jakie jest prawdopodobieństwo, że w dobrze potasowanej talii (52 kart) wszystkie 4 asy sąsiadują ze sobą (nie są rozdzielone innymi kartami)?

- (A) $\binom{52}{4}^{-1}$
- (B) $\left(\begin{array}{c} 52\\3 \end{array}\right)^{-1}$
- (C) $\frac{4}{52}$
- (D) $\frac{4!}{52 \cdot 51 \cdot 50}$
- (E) $\frac{1}{48!}$

Zadanie 2. Niech X_1, X_2, \ldots, X_8 będzie próbą z rozkładu jednostajnego na przedziale $(0, \theta)$, gdzie $\theta > 0$ jest nieznanym parametrem. Znajdź najmniejszą liczbę c taką żeby przedział:

$$[\max\{X_1, X_2, ..., X_8\}, c \cdot \max\{X_1, X_2, ..., X_8\}]$$

Był przedziałem ufności dla θ na poziomie 0.9375

- (A) 2.0000
- (B) 1.0667
- (C) 1.4142
- (D) 1.0625
- 1.1250

Zadanie 3. Niech N_1 i N_2 będą niezależnymi zmiennymi losowymi o rozkładach Poissona z wartościami oczekiwanymi odpowiednio: $E(N_1) = 20$, $E(N_2) = 30$. $VAR(N_1|N_1+N_2=50)$ wynosi:

- (A) 0
- (B) 10
- (C) 20
- (D) 12
- (E) 50

Zadanie 4. Rozpatrzmy zmienne losowe X i Y o łącznym rozkładzie normalnym.

Wiadomo, że:

$$VAR(Y) = 9$$

$$E(Y|X) = \frac{1}{2}X + 7$$

$$VAR(Y|X) = 8$$

Wobec tego COV(X,Y) wynosi:

- $(A) \qquad \frac{1}{3}$
- (B) $-\frac{1}{3}$
- (C) 2
- (D) $\frac{1}{2}$
- (E) 1

Zadanie 5. Niech $X_1, X_2, ..., X_n$ będzie próbą prostą z rozkładu $N(0, 2^2)$.

Rozważmy najmocniejszy test hipotezy:

 H_0 : $\mu = 0$ przeciw alternatywie:

 $H_1: \mu = 1$,

na poziomie istotności $\alpha = 0.01$. Ile obserwacji potrzeba (jak duże musi być n), żeby moc testu była większa niż 0.9?

- (A) Potrzeba przynajmniej n = 75 obserwacji
- (B) Potrzeba przynajmniej n = 14 obserwacji
- (C) Potrzeba przynajmniej n = 100 obserwacji
- (D) Wystarczą n = 4 obserwacje
- (E) Potrzeba przynajmniej n = 53 obserwacji

Zadanie 6. Zmienne losowe *X* i *Y* mają łączny rozkład prawdopodobieństwa o gęstości:

$$f(x,y) = \begin{cases} e^{-y+x} & dla & 0 < x < 1 & i & y > x \\ 0 & w & przeciwnym & przypadku \end{cases}$$

Wartość oczekiwana E(X+Y) jest równa:

- (A) e = 2.718...
- (B) 1.5
- (C) 0.5
- (D) 1
- (E) 2

Zadanie 7. Niech *X* będzie zmienną losową o rozkładzie geometrycznym:

$$f_{\theta}(x) = \Pr_{\theta}(X = x) = \theta^{x} \cdot (1 - \theta)$$
 $x = 0, 1, 2, ...$

Załóżmy, że nieznany parametr θ jest realizacją zmiennej losowej Θ , która ma gęstość (a priori):

$$\pi(\theta) = \begin{cases} 3\theta^2 & dla \quad 0 < \theta < 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Wartość Bayes'owskiego estymatora parametru θ obliczona na podstawie zaobserwowanej wartości X=0, czyli $E(\Theta|X=0)$ wynosi:

- (A) 0.1
- (B) 0.2
- (C) 0.6
- (D) 0.5
- (E) 0.8

Zadanie 8. Niech $X_1, X_2, \dots, X_8, X_9$ będą niezależnymi zmiennymi losowymi, przy tym gęstość X_i jest dana wzorem:

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda \cdot x} & dla \quad x > 0 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$
 $dla \quad i = 1, 2, ..., 8.$

Zmienna X_9 ma inny rozkład, o gęstości:

$$g(x) = \begin{cases} \lambda^2 \cdot x \cdot e^{-\lambda \cdot x} & dla \quad x > 0 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Estymator największej wiarygodności nieznanego parametru λ ma postać:

$$(A) \qquad \hat{\lambda} = \frac{9}{\sum_{i=1}^{9} X_i}$$

(B)
$$\hat{\lambda} = \left(\sum_{i=1}^{8} X_i + \frac{1}{2} \cdot X_9\right)^{-1}$$

(C)
$$\hat{\lambda} = \left(\frac{1}{8} \cdot \sum_{i=1}^{8} X_i + \frac{1}{2} \cdot X_9\right)^{-1}$$

(D)
$$\hat{\lambda} = \frac{10}{\sum_{i=1}^{9} X_i}$$

(E)
$$\hat{\lambda} = \left(\frac{1}{8} \cdot \sum_{i=1}^{8} X_i + X_9\right)^{-1}$$

Zadanie 9. Niech x_1, x_2, \ldots, x_{25} będzie próbą losową z rozkładu $N(\mu, \sigma^2)$, zaś $x_{26}, x_{27}, \ldots, x_{50}$ - próbą losową z rozkładu $N(v, \tau^2)$, gdzie μ, v, σ, τ są nieznanymi parametrami. Wiemy, że:

$$\overline{x}_{25} = \frac{1}{25} \cdot \sum_{i=1}^{25} x_i = 10.4$$

$$\overline{x}_{50} = \frac{1}{50} \cdot \sum_{i=1}^{50} x_i = 10.0$$

$$s_{25}^2 = \frac{1}{24} \cdot \sum_{i=1}^{25} (x_i - \bar{x}_{25})^2 = 3.333,$$

$$s_{50}^2 = \frac{1}{49} \cdot \sum_{i=1}^{50} (x_i - \overline{x}_{50})^2 = 2.000.$$

Czy na podstawie tych danych można policzyć wartość nieobciążonego estymatora $\hat{\tau}^2$ wariancji τ^2 ?

- (A) TAK, $\hat{\tau}^2 = 1.333$
- (B) TAK, $\hat{\tau}^2 = 0.400$
- (C) TAK, $\hat{\tau}^2 = 2.666$
- (D) TAK, $\hat{\tau}^2 = 0.417$
- (E) NIE

Zadanie 10. W urnie I znajdują się dwie kule i w urnie II znajdują się dwie kule. Na te cztery kule w sumie składają się dwie kule białe i dwie czarne. Przeprowadzamy następujące doświadczenie losowe:

- a) najpierw losujemy jedną kulę z urny I i przekładamy ją do urny II,
- b) następnie losujemy jedną kulę z urny II i przekładamy ją do urny I.

Sekwencję dwóch losowań a) i b) powtarzamy wielokrotnie. Przed każdym losowaniem dokładnie mieszamy kule w urnie. Niech $p_n(1)$ oznacza prawdopodobieństwo tego, że po n powtórzeniach (czyli po 2n losowaniach) w urnie I znajduje się jedna biała i jedna czarna kula. Prawdą jest, że:

(A)
$$\lim_{n\to\infty} p_n(1) = \frac{2}{3}$$

(B)
$$\lim_{n\to\infty} p_n(1) = \frac{1}{2}$$

(C)
$$\lim_{n\to\infty} p_n(1) = \frac{1}{3}$$

(D)
$$\lim_{n\to\infty} p_n(1) = \frac{1}{4}$$

(E) granica $\lim_{n\to\infty} p_n(1)$ zależy od tego, ile kul białych było w I urnie na początku

Egzamin dla Aktuariuszy z 21 czerwca 1997 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	D	
2	С	
3	D	
4	С	
5	E	
6	Е	
7	С	
8	D	
9	D	
10	A	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.