Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Test 17

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{63} - \sqrt{28} - \sqrt{7} \left(\sqrt{7} + 1 \right) + \sqrt{81} = 3\sqrt{7} - 2\sqrt{7} - 7 - \sqrt{7} + 9 =$	3 p
	=9-7=2	2p
2.	$f(x) = g(x) \Leftrightarrow 2x + 1 = 5 - 2x \Leftrightarrow 4x = 4$	3 p
	x = 1 și $y = f(1) = 3$	2 p
3.	$\log_5(x-5) = \log_5 2 \Rightarrow x-5 = 2$	3 p
	x = 7, care convine	2p
4.	Cifra unităților poate fi aleasă în 3 moduri	3 p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 6 moduri, deci se pot forma $3.6 = 18$ numere	2p
5.	Mijlocul segmentului AC are coordonatele $\frac{x_A + x_C}{2} = 4$ și $\frac{y_A + y_C}{2} = 0$	2p
	Mijlocul segmentului <i>OB</i> are coordonatele $\frac{x_O + x_B}{2} = 4$ și $\frac{y_O + y_B}{2} = 0 \Rightarrow AC$ și <i>OB</i> au același mijloc, deci <i>AOCB</i> este paralelogram și, cum $AO = OC$, obținem <i>AOCB</i> romb	3p
6.	$\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$	3p
	$\sin 30^{\circ} - \sin 45^{\circ} \cdot \cos 45^{\circ} = \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} - \frac{1}{2} = 0$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-10)*10 = (-10)+10+(-10)\cdot 10 =$	3 p
	=-10+10-100=-100	2 p
2.	(x*y)*z = (x+y+xy)*z = (x+y+xy)+z+(x+y+xy)z = x+y+z+xy+xz+yz+xyz, pentru orice numere reale x , y și z	2 p
	x*(y*z) = x*(y+z+yz) = x+(y+z+yz)+x(y+z+yz)=x+y+z+xy+xz+yz+xyz= = $(x*y)*z$, pentru orice numere reale x , y şi z , deci legea de compoziție "*" este asociativă	3p
3.	$x*0 = x+0+x\cdot 0 = x$, pentru orice număr real x	2p
	$0*x = 0 + x + 0 \cdot x = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$x * x = x + x + x \cdot x = 2x + x^2 =$	3 p
	$= x^{2} + 2x + 1 - 1 = (x + 1)^{2} - 1$, pentru orice număr real x	2 p
5.	$(x*x)*(x*x) = (x+1)^4 - 1$, pentru orice număr real x	3p
	$(x+1)^4 = 1 \Leftrightarrow x = -2 \text{ sau } x = 0$	2p

6.	$x*(x+1)-x = x+(x+1)+x(x+1)-x = x^2+2x+1=$	3 p
	$=(x+1)^2 \ge 0$, deci $x*(x+1) \ge x$, pentru orice număr real x	2 p

SUBIECTUL al III-lea (30 de puncte)

	` 1	,
1.	$A(0) = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} = 0 \cdot 1 - 1 \cdot 2 =$	3p
	=0-2=-2	2p
	$det(A(a)) = \begin{vmatrix} a & 2 \\ 1 & a+1 \end{vmatrix} = a^2 + a - 2, \text{ pentru orice număr real } a$	3 p
	$a^2 + a - 2 = 0 \Leftrightarrow a = -2 \text{ sau } a = 1$	2p
3.	$a^{2} + a - 2 = 0 \Leftrightarrow a = -2 \text{ sau } a = 1$ $(2a+1)A(a) = \begin{pmatrix} 2a^{2} + a & 4a + 2 \\ 2a+1 & 2a^{2} + 3a + 1 \end{pmatrix}, A(a) \cdot A(a) = \begin{pmatrix} a^{2} + 2 & 4a + 2 \\ 2a+1 & a^{2} + 2a + 3 \end{pmatrix}, \text{ pentru orice}$	2 p
	număr real a	
	$(2a+1)A(a)-A(a)\cdot A(a) = \begin{pmatrix} a^2+a-2 & 0 \\ 0 & a^2+a-2 \end{pmatrix} = (a^2+a-2)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (a^2+a-2)I_2,$	3 p
	pentru orice număr real a	
4.	$A(5a-1) = \begin{pmatrix} 5a-1 & 2 \\ 1 & 5a \end{pmatrix}, A(5a+1) = \begin{pmatrix} 5a+1 & 2 \\ 1 & 5a+2 \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$A(5a-1) + A(5a+1) = \begin{pmatrix} 10a & 4 \\ 2 & 10a+2 \end{pmatrix} = 2\begin{pmatrix} 5a & 2 \\ 1 & 5a+1 \end{pmatrix} = 2A(5a)$, pentru orice număr real a	3 p
5.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 2 \\ 1 & a \end{pmatrix} \Rightarrow \det(A(a) - I_2) = a^2 - a - 2$, pentru orice număr real a	2 p
	$a^2 - a - 2 < 0 \Leftrightarrow a \in (-1, 2)$	3 p
6.	$\det(A(n)) = n^2 + n - 2 = n(n+1) - 2$, pentru orice număr natural nenul n	2p
	Pentru orice număr natural nenul n , numărul $n(n+1)$ este par, deoarece numerele naturale	
	nenule n și $n+1$ sunt consecutive, deci numărul natural $\det(A(n))$ este par	3 p