Automata Theory and Formal Language Lab Session 4

Carlos Gallardo Polanco mail@mail.com https://github.com/gpcarlos/TALFPractice March 27, 2018

1 Exercises

Given the $RE\ E = (((00) * + (00) * 0)10 + ((11) * + (11) * 1)10)*$

- 1. Build a $\mathcal{E}-NFA$ thats accepts exactly the same language, following the method explained in class to convert from RE to $\mathcal{E}-NFA$.
- 2. Generate the equivalent DFA
- 3. Implement it in a programming language (Python, C/C++, Java) following the table method.

2 Solutions

1. Build a $\mathcal{E}-NFA$ thats accepts exactly the same language, following the method explained in class to convert from RE to $\mathcal{E}-NFA$.

To convert a RE to an $\mathcal{E}-NFA$ we'll follow the following equivalences:

• Union. If E1=0 and E2=0 then $E1\cup E2$ (E1+E2):

• Concatenation. If E1 = 0 and E2 = 0 then E1E2:

• Closure. If E = 0 then E*:

We'll divide the main RE into smaller REs:

$$E = ((((00) * + (00) * 0)10 + ((11) * + (11) * 1)10) *$$

$$E1 E1 E2 E2 E2 E2 E2*$$

$$E3 E4 E4$$

$$E5 E6 E8$$

$$E9$$

$$E9 E9 = E$$

• E1 = 00

• E1* = (00)*

• E2 = 11

• E2* = (11)*

• E3 = (00) * 0

• E4 = (11) * 1

• E5 = (00) * + (00) * 0

• E6 = (11) * + (11) * 1

• E7 = ((00) * + (00) * 0)10

• E8 = ((11) * + (11) * 1)10

• E9 = (((00) * + (00) * 0)10 + ((11) * + (11) * 1)10)

• E9* = (((00)*+(00)*0)10+((11)*+(11)*1)10)* = E

2. Generate the equivalent DFA

To generate the equivalent DFA, we'll follow the **subset construction method**, so we'll need the equivalent NFA. In the table 1(a) we have the transition table of $\mathcal{E}-NFA$ and in the table 1(b) the closures.

Table 1: Transition Table of $\mathcal{E}\!-\!NFA$

(a) Transition Table of $\mathcal{E} - NFA$

,				
States	0	1	ε	
1			2 44	
2			3 23	
3			4 10	
4			5 9	
5	6			
6			7	
7	8			
8			9	
9			4 18	
10			11 15	
11	12			
12			13	
13	14			
14			15	
15			10 16	
16	17			
17			18	
18			19	
19		20		
20			21	
21	22			
22			43	
23			24 30	
24			25 29	
25		26		
26			27	
27		28	,	
28			29	
29			24 38	
30			31 35	
31		32		
32			33	
33		34		
34		<u> </u>	35	
35			30 36	
36		37	30 30	
37		ļ .	38	
38			39	
39		40	99	
40		10	41	
41	42		41	
42	112		43	
43			44	
44			1	
44			1	

(b) Closures of $\mathcal{E}-NFA$

		(b) Closures of C-NFA			
	States	es Closures			
* *	1				
	2	2 3 23 4 10 24 30 5 9 11 15 25 29 31 35 18 16 38 36 19 39			
	3	3 4 10 5 9 11 15 18 16 19			
	4	4 5 9 18 19			
	5	5			
	6	6 7			
	7	7			
	8	8 9 4 18 5 19			
	9	9 4 18 5 19			
	10	10 11 15 16			
	11	11			
	12	12 13			
	13	13			
	14	14 15 10 16 11			
	15	15 10 16 11			
	16	16			
	17	17 18 19			
	18	18 19			
	19	19			
	20	20 21			
	21	21			
*	22	22 43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36			
	23	23 24 25 29 38 39 30 31 35 36			
	24	24 25 29 38 39			
	25	25			
	26	26 27			
	27 27				
28 28 29 24 38 25 39					
	29	29 24 38 25 39 30 31 35 36			
	30	30 31 35 36			
	32	32 33			
	33	32 33			
	34	34 35 30 36 31			
	35	35 30 36 31			
	36	36			
	37	37 38 39			
	38	38 39			
	39	38 39			
	40	40 41			
	40	40 41			
*	41	41 42 43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39			
*	43	43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39			
*	44	44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39			
*	44	TT 1 2 0 20 T 10 2T 00 0 7 10 17 11 10 20 27 01 00 10 00 00 07			

Removing the \mathcal{E} -transition, we obtain the transition table 2 of NFA.

	States	0	1
$\rightarrow *$	1	6 12 17	20 26 32 37 40
	2	6 12 17	20 26 32 37 40
	3	6 12 17	20
	4	6	20
	5	6	
	6	8	
	7	8	
	8	6	20
	9	6	20
	10	12 17	
	11	12	
	12	14	
	13	14	
	14	12 17	
	15	12 17	
	16	17	
	17		20
	18		20
	19		20
	20	22	
	21	22	
*	22	6 12 17	20 26 32 37 40
	23		26 32 37 40
	24		26 40
	25		26
	26		28
	27		28
	28		26 40
	29		26 40
	30		32 37
	31		32
	32		34
	33		34
	34		32 37
	35		32 37
	36		37
	37		40
	38		40
	39		40
	40	42	
	41	42	
*	42	6 12 17	20 26 32 37 40
*	43	6 12 17	20 26 32 37 40
*	44	6 12 17	20 26 32 37 40

Table 2: Transition Table of NFA

And the NFA:

Following the **subset construction method**, we obtain the table 3(a) and we can rename the states like in the table 3(b).

Table 3: Transition Table of DFA

(a) Transition Table of DFA					
	States	0	1		
$\rightarrow * A$	1	6_12_17	20_26_32_37_40		
В	6_12_17	8_14	20		
$^{\rm C}$	20_26_32_37_40	22_42	28_34_40		
D	8_14	6_12_17	20		
\mathbf{E}	20	22	Dead		
*F	22_42	6_12_17	20_26_32_37_40		
G	28_34_40	42	26_40_32_37		
* H	22	6_12_17	20_26_32_37_40		
* I	42	6_12_17	20_26_32_37_40		
J	26_40_32_37	42	28_34_40		
	Dead	Dead	Dead		

(b) Transition Table of DFA (Renamed)					
	States	0	1		
$\rightarrow *$	A	В	С		
	В	D	E		
	С	F	G		
	D	В	E		
	E	H	Dead		
*	F	В	С		
	G	I	J		
*	Н	В	С		
*	I	В	С		
	J	I	G		
	Dead	Dead	Dead		

Following the state minimization algorithm for DFAs, we obtain the table 4 where X are all initial pairs of distinguishable states, X are all pairs of distinguishable states in the first round and O are all pairs of equivalent states.

Table 4: Minimization Table of DFA

The Minimum-state DFA is:

Table 5: Minimum-state Table of DFA

(a) Minimum-state Table of DFA

	States	0	1
$\rightarrow *$	A_I_H_F	B_D	C_J_G
	B_D	B_D	Е
	E	A_I_H_F	Dead
	C_J_G	A_I_H_F	C_J_G
	Dead	Dead	Dead

(b) Minimum-state Table of DFA (Renamed)

	States	0	1
$\rightarrow *$	A	В	С
	В	В	D
	D	A	Dead
	С	A	С
	Dead	Dead	Dead

3. Implement it in a programming language (Python, C/C++, Java) following the table method.