Metric based classification

ограничение по времени на тест: 20 секунд ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Задача

Требуется построить метрический классификатор на обучающем наборе данных с известными классами и классифицировать с его помощью тестовый набор данных с неизвестными классами. Ваш классификатор должен содержать несколько метрик, сглаживающих ядер и стратегий выбора ширины окна ядра (числа ближайших соседей). Требуется выбрать оптимальную комбинацию гипер-параметров для каждого отдельного набора данных.

Входные данные

Первая строка содержит целое число M (5 \leq M \leq 200) — число признаков у объектов исключая класс.

Вторая строка содержит целое число K (2 $\leq K \leq$ 25) — число классов.

Третья строка содержит целое число N (50 ≤ N ≤ 400) — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта **M**+1 целых чисел: первые **M** чисел $A_{i,j}$ ($A_{i,j} \le 10^9$) — признаки объекта, последнее число C_i ($1 \le C_i \le K$) — его класс.

Следующая строка содержит целое число \mathbf{Q} (50 $\leq \mathbf{Q} \leq$ 400) — число объектов в тестовом множестве.

Следующие Q строк содержат описание объектов. t-тая из этих строк содержит описание t-того объекта: M целых чисел $A_{t,j}$ ($|A_{t,j}| \le 10^9$) — признаки объекта.

Выходные данные

Выведите Q строк. Каждая t-тая строка из них должна содержать результат классификации t-того объекта из тестового множества: целое число S_t ($1 \le S_t \le 20$) — число соседей классифицируемого объекта, затем следует S_t пар чисел i и w ($1 \le i \le N$, $0 \le w \le 10^6$), где i — целое число, индекс объекта из тренировочного множества, а w — вещественное число с плавающей точкой, вес с которым учитывается этот объект. Числа S_t не обязательно должны быть одинаковыми для всех объектов.

Система оценки

Для каждого объекта t будет рассчитан его предсказанный класс p_t = argmax($\sum w \cdot [C_i = c]$) исходя из соответствующего множества пар (i,w), в случае неопределённости класс выбирается псевдослучайно. Далее на основании предсказанных и реальных классов вычисляется усреднённая по классам микро F мера. Тест считается пройденным, если эта F мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового метрического классификатора.

Пример

Входные данные	Выходные данные
2 2 4 2 2 1 6 2 1 4 1 2 4 3 2 2 1 2 5 2	3 1 0.75 3 0.21 4 0.21 3 2 0.75 3 0.65 4 0.65

Иллюстрация примера

Пояснение

Обратите внимание, что экземпляр задачи из данного примера не подходит под нижние ограничения на число объектов и признаков!

В данном примере в качестве метрики используется Евклидово расстояние, а в качестве взвешивающей функции Треугольное ядро. Используется три ближайших соседа с шириной окна 4.

Для первого запроса:

Номер объекта: 1 3 4

Расстояние: 1 $\sqrt{10}$ $\sqrt{10}$

Полученный вес: 0.75 0.21 0.21

Класс: 1 2 2

Суммарный вес первого класса 0.75, второго 0.42.

Для второго запроса:

Номер объекта: 2 3 4

Pасстояние: $1 \sqrt{2} \sqrt{2}$

Полученный вес: 0.75 0.65 0.65

Класс: 1 2 2

Суммарный вес первого класса 0.75, второго 1.3.

SVM

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный вывод вывод: стандартный вывод

Задача

Дан набор данных для бинарной классификации. Требуется построить разделяющие правило опирающиеся на объекты из заданного набора.

Входные данные

Первая строка содержит целое число M ($2 \le M \le 10$) — число признаков у объектов исключая класс.

Вторая строка содержит целое число $N (M \le N \le 100)$ — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта: **M** целых чисел $\mathbf{D}_{i,j}$ ($|\mathbf{D}_{i,j}| \le 10^5$) — признаки объекта и его класс ('+' если объект положительный class(\mathbf{D}_i) = +1 и '-' если он отрицательный class(\mathbf{D}_i) = -1).

Выходные данные

Выведите решающие правило формата:

$$class(Q) = sign((\sum \lambda_i \cdot class(\mathbf{D}_i) \cdot f(\mathbf{D}_i, Q)) - b)$$

В первой строке выведите симметричную функцию ядра $f: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$, состоящую из не более чем 1000 символов. Данная функция должна удовлетворять грамматике:

- $E \rightarrow pow(E,E)$, где $pow(a,b) = a^b$
- **E** → sub(**E**,**E**), где sub(a,b) = a b
- $E \rightarrow sum(E,E,...,E)$, где sum(a,b,...z) = a + b + ... + z
- $E \rightarrow \text{prod}(E, E, ..., E)$, где $\text{prod}(a, b, ... z) = a \times b \times ... \times z$
- $E \rightarrow A0 \mid A1 \mid ... \mid A9$, где Ai значение i-той координаты первого вектора $(0 \le i < M$, координаты нумеруются с нуля).
- $E \rightarrow B0 \mid B1 \mid ... \mid B9$, где Bi значение i-той координаты второго вектора.
- Е → число с плавающей точкой.

Запрещено использовать пробелы и иные символы. E, E, ..., E — это непустое перечисление через запятую.

В следующих **N** строках выведите **N** вещественных чисел λ_i ($0 \le \lambda_i \le 10^6$, $\sum \lambda_i$:class(\mathbf{D}_i)=0) — веса объектов в порядке их перечисления во входных данных.

В последней строке выведете одно вещественное число b — коэффицент сдвига.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F-мера. Тест считается пройденным, если эта F-мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового решения.

Пример

Входные данные	Выходные данные
2 12 1 2 - 1 3 - 1 4 - 2 1 + 2 3 - 2 4 - 3 1 + 3 2 + 3 4 - 4 1 + 4 2 + 4 3 +	<pre>pow(sum(0.0,prod(sub(A0,2.5),sub(B0,2.5),0.73) ,prod(sub(A1,2.5),sub(B1,2.5),0.3)),1.0) 0.3823 0 0 0.3823 1.0 0 0 0.3823 0 0 0.3823 0 0</pre>

Linear regression

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Задача

Найдите уравнения прямой аппроксимирующей положение объектов из заданного набора данных.

Входные данные

Первая строка содержит целое число M (1 $\leq M \leq$ 1000) — число признаков у объектов исключая зависимую переменную.

Вторая строка содержит целое число $N (M \le N \le 10000)$ — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта, **M** целых чисел: $\mathbf{X}_{i,j}$ ($|\mathbf{X}_{i,j}| \le 10^9$) — признаки объекта и \mathbf{Y}_i ($|\mathbf{Y}_i| \le 10^9$) — значение его зависимой переменной.

Выходные данные

Выведите M + 1 вещественных чисел с плавающей точкой A_j — коэффициенты прямой из уравнения $y = a_0 \cdot x_0 + a_1 \cdot x_1 + ... + a_{M-1} \cdot x_{M-1} + a_M$

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных значений \mathbf{Y}_t и реальных \mathbf{Y}_t вычисляется ошибка предсказания — нормированная сумма квадратов $\mathbf{E} = \sum (\mathbf{Y}_t' - \mathbf{Y}_t)^2 / D(\mathbf{Y})$, где $D(\mathbf{Y})$ — это дисперсия зависимой величины. Решение засчитывается если полученная ошибка \mathbf{E} отличается от ошибки полученной базовым решением не более чем на 0.01

Пример

Входные данные	Выходные данные
1	2
4	-1
1 0	
1 2	
2 2	
2 4	
3 4	
3 6	
4 6	
4 8	