## Photogrammetry & Robotics Lab Machine Learning for Robotics and Computer Vision Tutorial

**More on Regression** 

**Jens Behley** 

## Topics of this week lecture



- Linear Regression (ML, MAP, Bayesian)
- Closed-form solutions! (not always possible)

## **Recap: Linear Regression**

 Under this assumptions, this leads to the following probabilistic formulation

$$P(y|\mathbf{x},\theta) = \mathcal{N}(y|f(\mathbf{x}),\sigma^2)$$

• In linear regression, we assume that parameters  $\theta$  appear **linearly** in our model

$$f(\mathbf{x}) = \mathbf{x}^T \theta + \theta_0$$

•  $\theta_0$  is called **intercept** (or **bias**) that enables us to have also functions that do not pass through the origin

## **Relation to Least Squares**

Maximum Likelihood:

$$\theta^* = \arg\min_{\theta} - \log\prod_{n=1}^N P(y_n|\mathbf{x}_n, \theta)$$

Showed that results in NLL:

$$\mathcal{L}( heta) := rac{1}{2\sigma^2} \sum_{n=1}^N \left( y_n - \mathbf{x}_n^T heta 
ight)^2$$

- NLL of Linear Regression is just Least Squares!
- (Losses are often denoted by  $\ell(y_n, \hat{y}_n)$ )

## **Recap: Non-linear Functions**

- Linear regression is linear in parameters
- We can apply non-linear transformation:

$$f(\mathbf{x}) = \mathbf{x}^T \theta \longrightarrow f(\mathbf{x}) = \phi(\mathbf{x})^T \theta$$

• Let  $\phi: \mathbb{R}^D o \mathbb{R}^K$  and define  $\mathbf{\Phi} \in \mathbb{R}^{N imes K}$  as

$$oldsymbol{\Phi} = \left( egin{array}{c} \phi(\mathbf{x}_1)^T \ dots \ \phi(\mathbf{x}_N)^T \end{array} 
ight) \in \mathbb{R}^{N imes K}$$

• Everything else stays the same! Use normal equation with  $\Phi$  instead of  ${\bf X}$ 

$$\theta = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

# **Example: Polynomial transformation**

 With polynomial transformation, we can fit polynomials of degree K

$$\phi_{\text{poly}}(\mathbf{x}_n) = \begin{pmatrix} 1 \\ x_1 \\ x_1^2 \\ \vdots \\ x_1^K \\ \vdots \end{pmatrix} \in \mathbb{R}^{DK+1}$$

With K=1 it's "vanilla" linear regression

## Recap: Example: Polynomial Fit



With a polynomial of degree 3, we get a good fit. But can we do better with higher degrees?

#### **Potential Problem**

$$\phi_{\text{poly}}(\mathbf{x}_n) = \begin{pmatrix} 1 \\ x_1 \\ x_1^2 \\ \vdots \\ x_1^K \\ \vdots \end{pmatrix} \in \mathbb{R}^{DK+1}$$

What happens when x = (10,103,1005) and we want K = 10?

#### **Potential Problem**

$$\phi_{\text{poly}}(\mathbf{x}_n) = \begin{pmatrix} 1 \\ x_1 \\ x_1^2 \\ \vdots \\ x_1^K \\ \vdots \end{pmatrix} \in \mathbb{R}^{DK+1}$$

- What happens when x = (10,103,1005) and we want K = 10?
  - $1005^{10} = 10.511.401.320.40.790.642.597.666.015.625$

# How can we avoid numerical overflow?

#### **Solution: Feature Normalization**

- Feature normalization ensures that polynomial transform get's not too large
  - Important: Same normalization to test samples
- Different options:
  - Divide by maximum value x = (10,103,1005)/(40,150,2000)  $\rightarrow$  (0.25, 0.69, 0.50) 0.69^10 = 0.0244
  - Standardization (especially with image data)
    - Divide by mean and variance of training data
- If you provide pre-trained models: provide normalization constants

## Recap: Example: Overfitting



- Increasing the degree, we will get better training error
- But function will have implausible shape

#### **Common Parameter Estimation**

Learning is finding parameters of

$$P(\theta|\mathbf{x}_{1:N}, y_{1:N}) \propto P(y_{1:N}|\mathbf{x}_{1:N}, \theta) \quad P(\theta)$$

- Paradigms for parameter estimation:
- 1. Point estimate with uniform prior
  - → Maximum Likelihood Estimation
- 2. Point estimate with given prior
  - → Maximum A posteriori Estimation (MAP)
- 3. Determine posterior over the parameters
  - → Bayesian Estimation

#### **NLL** with Prior

Assume Gaussian prior for parameters:

$$P(\theta) = \mathcal{N}(\theta|0, b^2\mathbf{Id})$$

NLL is then

$$\mathcal{L}_{MAP}(\theta) = -\log \prod_{n=1}^{N} P(y_n | \mathbf{x}_n, \theta) - \log P(\theta)$$

Inserting Gaussians results in

Squared Length

$$\mathcal{L}_{MAP}(\theta) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y_n - \phi(\mathbf{x}_n)^T \theta \right)^2 + \frac{1}{2b^2} \theta^T \theta + \text{const}$$
$$= \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{\Phi}\theta)^T (\mathbf{y} - \mathbf{\Phi}\theta) + \frac{1}{2b^2} \theta^T \theta + \text{const}$$

#### **NLL** with Prior

Assume Gaussian prior for parameters:

$$P(\theta) = \mathcal{N}(\theta|0, b^2 \mathbf{Id})$$

NLL is then

$$\mathcal{L}_{MAP}(\theta) = -\log \prod_{n=1}^{N} P(y_n | \mathbf{x}_n, \theta) - \log P(\theta)$$

Inserting Gaussians results in



Regularizer

### **Example: ML vs. MAP Estimate**



Smoother functions even at higher degrees!

## But there is a problem ...



Let's say y is in [1000, 1200]

## Any idea?

#### **Bias term**

$$= \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{\Phi}\theta)^T (\mathbf{y} - \mathbf{\Phi}\theta) + \lambda \theta^T \theta + \text{const}$$

- As also the bias term is regularized, but needs to be large...
- Solution: Exclude bias term in regularization (set  $(\theta^T \theta)_0 = 0$ )

## See you next week!