3계층의 역할과 개요

segment 간의 송수신 담당

- segment : router 사이의 범위 ⇔ 좁은 의미의 network와 동의어
 - 2계층은 segment 안에서의 송수신 담당
 - 3계층은 segment 간의(즉, router를 건너는 범위의) 송수신 담당

- network 내의 컴퓨터끼리는 2계층에 의해 연결됨
- network는 router에 의해 나눠짐
- switch, hub로는 나눠지지 않음

2계층까지 만의 기능으로는 큰 네트워크 구성할 수 없음

- : switch는 multi/broadcast, 아직 학습하지 않은 주소가 수신처인 frame을 flooding
- => network 내에 PC 수가 많으면 broadcast를 보냈을 때 모든 PC가 frame을 확인해야 하
- 기 때문에 처리해야 하는 작업 증가

Internetwork: 네트워크 간의 데이터 송수신

3계층에서는 router를 넘어서는 broadcast는 송신 X

- => network가 나뉘고, 같은 network 안의 PC들만 broadcast 수신
- => 3계층은 internetwork를 수행해서 broadcast 문제 해결

인터넷 프로토콜

Internetwork를 수행하기 위해선 addressing, routing이 필요

Address

- Physical address : 2계층에서 사용, 위치 정보(e.g. PC 1 in network A) X
- Logical address : 3계층에서 사용, 위치 정보 0

Routing : 수신처까지 어떤 경로로 갈지 결정

* Internetwork를 수행하기 위해 TCP/IP에서는 IP 사용, 데이터 + IP header = IP datagram

IPv4, IPv6은 서로 호환 X

IP header

IP datagram

IP header	Payload(상위 4계층 PDU)
20 B + (option)	0 ~ 8 KB

IP header

11 111	ii iieadei				
1	버전	4(bit)	IP의 버전		
2	header 길이	4	IP header 길이		
3	서비스 타입	8	packet의 우선도/중요도		
4	데이터 길이	16	IP header + payload의 길이		
5	ID	16	datagram의 식별번호		
6	flag	3	datagram을 분할했는지 판별		
7	fragment offset	13	분할한 경우 다시 합칠 때 사용		
8	TTL	8	packet의 생존시간		
9	protocol	8	상위 protocol 지정		
10	header checksum	16	IP header의 에러 체크용 코드		
11	송신처 IP	32	송신처의 논리 주소		
12	수신처 IP	32	수신처의 논리 주소		
13	option	n	특별한 설정을 할 때 사용		

IP 주소 1

계층형 주소: 세분화 기능(192.168. ...와 같이 주소 자체에 의미가 있음), 논리 주소의 특징

평면형 주소: 계층형 주소의 반대 e.g. MAC 주소

* 논리주소는 unicast, multicast, broadcast(anycast for IPv6)로 나누어짐 unicast의 네트워크 번호는 접속되어있는 모든 네트워크에서 유일해야 함!

IP 주소의 특징

- 계층형
- 네트워크 관리자가 컴퓨터에 할당 cf) MAC : 고정됨 => 소속된 네트워크가 바뀌거나 접속할 때마다 갱신됨 인터페이스가 2개 => 2개의 논리 주소를 가짐
- 소속된 네트워크에서 유일해야 함!
- 32bit, octet으로 구분됨(8/8/8/8)

IP 주소 2

Class

ICANN(The Internet Corporation for Assigned Names and Number)에서 network 규모에

따라 적절한 class의 IP 주소 할당

Class	1octet의 시작비트	네트워크 번호 octet	컴퓨터 번호 octet	네트워크 수	네트워크 1개의 IP 주소 수	규모
А	0xxxxxxx	1	2, 3, 4	128	16777216	정부, 연구기관, 대기업
В	10xxxxxx	1, 2	3, 4	16384	65536	대~중규모 기업
С	110xxxxx	1, 2, 3	4	2097152	256	중~소규모 기업 프로바이더
D	1110xxxx	multicast용				
Е	1111xxxx	연구용				

- 네트워크 수와 컴퓨터 번호의 수는 반비례
- Classful addressing : class로 나누어 IP를 할당하는 방식

예약 완료 주소

host 번호 : 네트워크 번호가 할당된 후 네트워크 관리자가 할당해주는 컴퓨터 번호

Network address : host 번호의 bit가 모두 0인 주소 Broadcast address : host 번호의 bit가 모두 1인 주소

e.g.

class C의 경우, network 번호가 192.168.10이면,

network address: 192.168.10.0, broadcast address: 192.168.10.255

Subnetting

- host 번호를 subnet 번호와 host 번호로 분할하는 것
 - => 네트워크를 몇 개의 subnet으로 분할
 - * Class B 네트워크, subnet에 6 bit를 사용, subnet 1번, host 1번은 xxx.xxx.4.1임!
 - : octet 3에서 00000100이기 때문
- subnet은 그 network 내부에서만 유효
- class와 마찬가지로 subnet과 host 개수는 반비례
- subnet mask : IP 중 어느 bit까지가 subnet인지 나타냄 네트워크 번호, subnet 번호 자리를 1, 나머지(host)를 0으로 표시
 - => class로 네트워크 번호와 subnet 번호 구분 가능
- IP와 subnet mask는 반드시 함께 표시

Classless addressing

class 구분을 없앤 addressing

* classful addressing의 문제점

필요한 네트워크 수가 class에 정확히 맞지 않으면 낭비되는 IP가 생김

1000개의 IP가 필요한 네트워크 => class C : IP 256개 => 부족 class B : IP 65536개 => 남음

=> classless addressing은 필요한 IP의 개수로부터 network 번호 결정

Supernetwork

네트워크를 통합해서 사용(classful address를 사용하는 네트워크가 해당됨) e.g.

class C를 예로 들면, 2000개의 IP가 필요한 네트워크가 있을 때,

원래 3octet까지 모두 network 번호로 사용하지만, supernet의 경우 class C network 몇 개를 통합해서 사용(24bit 중 앞 21bit만 network번호로 사용)

=> host번호에 3bit 추가 -> 256*8=2048개의 IP 사용 가능

Prefix-Length

network 번호의 bit 수를 나타내는 값(subnetmask와 목적은 동일) IP 뒤에 /와 함께 사용

e.g. 192.168.0.1/21 : 앞 21bit가 network 번호

=> subnetmask를 쓰기도 하고 prefix-length를 사용하기도 함

※ classful addressing(낭비가 심함) -> classless addressing(subnetting, supernetting)

subnetting : 원래의 classful에서 class보다 작은 network들로 나누는 것

supernetting : 원래의 class들을 합쳐 더 큰 network로 합치는 것

DHCP

- * 3계층에서는 IP, 2계층에서는 MAC address 사용
- => 총 4개의 주소 필요(송/수신처 IP, MAC 주소)
- 송신처 MAC : interface MAC 주소 사용
- 송신처 IP : interface에 설정되어 있는 IP 사용
 - 정적 IP : 수동으로 IP 설정
 - 동적 IP: DHCP(Dynamic Host Configuration Protocol) 이용

DHCP는 DHCP server, DHCP client로 이루어짐

- DHCP server : 할당할 IP 관리, 할당
 - 사전에 IP의 대여기간 설정
 - => host가 이동하거나 고장난 경우에 IP 다시 받기 위함
 - IP가 client끼리 중복되지 않도록 IP address pool 내에서 할당
- DHCP client : 할당받는 client
- IP address pool : 관리자가 결정한 할당할 주소의 범위 e.g. 네트워크가 192.168.0.1이라면 192.168.1.1 ~ 192.168.1.254와 같이.
- client가 IP 취득 요청 -> IP 주소 풀에서 사용되고 있지 않은 주소 선택, 할당

DHCP message

주소, 옵션 등의 정보 기재

* OSI 7계층으로 만들어지는 패킷이 아니라 IP를 획득하는 과정에서 전송되는 패킷이기 때문에 UDP 형식임

DHCP message format

Ethernet header	IP header	UDP header	DHCP message

DHCP message

Drici message				
이름	octet(Byte)	설명		
operation code	1	client->server : 1 server->client : 2		
client IP(ciaddr)	4	client IP(재대여 시에만)		
your IP(yiaddr)	4	server가 할당한 주소		
server IP(siaddr)	4	server IP		
client MAC(chaddr)	16	client MAC		
option	가변	message type(DISCOVER, OFFER, REQUEST, ACK) client 설정(subnetmask, default gateway, DNS, 대여기간 등)		

- option을 통해서 DHCP message로 IP뿐만 아니라 위에서 나열한 것들을 같이 보낼 수 있으므로 동적 '호스트 설정' 프로토콜이라고 불림

DHCP의 동작

DISCOVER, OFFER, REQUEST, ACK, 총 4개의 DHCP message를 주고받음

1.	DHCP client		DHCP server	: client가 DHCP DISCOVER를
		DISCOVER		broadcast
2.				: DISCOVER를 받은 server는 IP
	DHCP client	OFFER	DHCP server	pool에서 주소 선택해서 client에게
				unicast(DHCP OFFER)
3.				: client가 수신한 OFFER의 IP가
	DHCP client	REQUEST	DHCP server	문제없으면 DHCP REQUEST를
L				server로 broadcast
4.			DHCP server	: REQUEST를 받은 server는 문제가
	DHCP client	ACK		없으면 DHCP ACK를 unicast
				이때 subnetmask 등의 옵션 설정도
				ACK에 넣어서 보냄

- client는 server가 어디인지 모르기 때문에 broadcast 사용

ARP

수신처 MAC은 수신처 IP가 결정된 다음 구함

즉, 수신처 IP가 결정된 상황에서 수신처 MAC을 구하는데 사용되는 것이 ARP(Address Resolution Protocol)

ARP table

- network 내 IP와 상응하는 MAC 주소가 저장된 table(PC마다 존재)
- ARP table의 내용은 일정 시간(보통 300s) 후에 파기됨 :: IP를 가진 PC의 interface가 바뀌어 MAC이 달라질 수 있음 파기되지 않을 경우 틀린 (IP, MAC)을 저장하고 잇을 수도 있음

ARP의 동작

- 1. 송신하는 PC에서 자신의 ARP table 참조
- 2. 수신처 MAC이 없을 경우 ARP Request를 broadcast(192.168.1.1의 MAC? 이런 식으로)
- 3. 수신받은 PC들은 ARP Request의 수신처가 자신일 경우 응답(MAC 보냄), 아닐 경우 파기
- 4. 수신처로부터 응답받으면 ARP table에 추가

DNS

수신처의 IP를 알아내는 방법

Domain name : 수신자의 이름(host name)

- IP는 접근성이 떨어지기 때문에 대신 사용
- ICANN이 관리
- unique 해야함!

DNS(Domain Name System)

- (이름, IP)를 저장한 DNS server에 요청해서 수신처의 IP를 알아내는 system
- 네트워크마다 dns서버가 있고, 각자 domain name만 관리
 - => 다른 네트워크의 ip가 필요하면 그 네트워크의 dns server에 물어봄
 - => 분산형 DB

※ 주소 검색

송신처 MAC : NIC 이용

송신처 IP: 수동 or DHCP 이용

수신처 IP: DNS + domain name(by 사용자) 이용

수신처 MAC : ARP 이용

dns로 ip알아냈을 때 다른 네트워크의 ip면 arp를 쓸 때 broadcast 어떻게 하는지?

(기억상으로는 3계층 주소(ip)가 절대주소고 2계층 주소(mac)이 상대주소라서 라우터의 mac 주소를 거쳐가면서 절대 주소의 mac 알아내는 것 같았음)

- 수신자 IP가 최종 수신처이고 수신자 MAC이 다음 수신처(hop) 역할, 즉 위에 쓴 내용이 맞음