

1 cup with 6 coins in it. 2 of the coins are marked.

- shake the cup then quarry 1 coin, is it Marked? - NO

- shake the cup then quarry 1 coin, is it Marked? - NO - shake the cup then quarry 1 coin, is it Marked? - NO

record the number of shakes, repeat the entire process again

- shake the cup then quarry 1 coin, is it Marked? - Yes \rightarrow STOP record the number of flips. We repeat the experiment

The cup can be viewed as a single entity capable to deliver a marked coin with the probability of 1/3. It is as if we

had a single 'unfair coin' with probability of Heads = 1/3.

We keep flipping this 'unfair coin' until we get Heads. We

Thus a single trial means that we keep conducting iid Bernoulli experiments over and over until we get the first

success which is the 'stopping time' for each trial.

 $X \sim Bernoulli (1/3) := \begin{cases} 1 & wp 1/3 \text{ (Heads = marked coin)} \\ 0 & wp 2/3 \end{cases}$

Cuctom rys? Ever wondered how to build custom rys?

	ck. Payout is 1:1 (bet \$1 wi w.p. $^{18}/_{38}$ r.v. model of the payou.p. $^{20}/_{38}$		Roulette in U.S. total of 38 pockets: 18 black 18 red 2 green 0 , 00		
what is the	expectation ?				
meanin	x p(x) = \$1·p(\$1) + (-\$1)·p = \$1·18/ ₃₈ + (-\$1)·2 = - \$0.053 g if you play many times on average loosing ≈5.3 cents (per play)	⁰ / ₃₈ the mo you loo loose e	re you play the more se in a long run you'll verything – you can't	X_1 , X_2 ,, $X_n \stackrel{iid}{\sim} \begin{cases} \$1 \text{ w.p.} \\ -\$1 \text{ w.p.} \end{cases}$ $\underset{n \to \infty}{\text{Lim}} T_n = -\infty$. ¹⁸ / ₃₈
	cky' # 7. Payout is 35:1 (between $^{1}/_{38}$ r.v. model of the payous $^{37}/_{38}$		Roulette in U.S. total of 38 pockets: 18 black 18 red 2 green 0,00	· ·	g term' property and it en you have only few ran
what is the	expectation ?				
$E[X] = \sum_{x \in Suppl}$	$\begin{array}{rcl} x & p(x) & = $35 \cdot p(\$35) + (-\$1) \\ & & = $35 \cdot 1/_{38} + (-\$1) \cdot 3 \\ & & = -\$0.053 \end{array}$)·p(-\$1) ⁷ / ₃₈		hint: – play video dra – black jack you	uw poker duces wild u loose 0.5% on average
	zen' # 112 Payout is 2:1 (w.p. $^{12}/_{38}$ w.p. $^{26}/_{38}$ r.v. model of the payout		Roulette in U.S. total of 38 pockets: 18 black 18 red 2 green 0,00		
what is the	expectation ?				
$E[X] = \sum_{x \in Supp }$	$ \begin{array}{rcl} $	6/ ₃₈			
	zen' # 112 Payout is 2:1 (w.p. $^{12}/_{37}$ w.p. $^{25}/_{37}$ r.v. model of the payout		Roulette in Europe total of 37 pockets: 18 black 18 red 1 green 0		
	expectation ? x p(x) = \$2·p(\$2) + (-\$1)·p = \$2·12/ ₃₇ + (-\$1)·25 = - \$0.027	loose playin	ong run you will half the money g the European tte over the US n.		
if X mo	odels a payout of a game, "F	air Game" is if E	[X] = 0		
	Basic r.v. transportation - U	Jber example			
P(traffic		If there is traffic on - route A is 7min	route A, take route B.		

- route B is 12min

– on average in all my trips the time spend in the taxi is ≈8.5 min

- this exact value pertains to an infinite amount of trips

7min w.p. 0.7

12min w.p. 0.3 not a Bernoulli b/c Supp[X] ≠ {0,1}

= 8.5 min

 $E[W] = \sum x p(x) = 7\min \cdot p(7\min) + 12\min \cdot p(12\min)$

 $= 7\min \cdot 0.7 + 12\min \cdot 0.3$