Exercise 5 - Computational Models - Spring 2019

The languages considered below are with respect some fix alphabet Σ .

- 1. Let A, B and C languages over Σ . Prove/disprove:
 - (a) If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.
 - (b) If $A \leq_m B$ and $B \leq_m A$ then A = B.
 - (c) If $A \subseteq B$ then $A \leq_m B$.
 - (d) For every A and B, either $A \leq_m B$ or $B \leq_m A$.
 - (e) If A is not trivial and context-free then $A \leq_m H_{TM}$.
- 2. Let \mathcal{CFG} be the set of context-free languages. Prove/disprove:
 - For every $A \in \mathcal{CFG}$, $L_A = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = A\} \in \mathcal{R}$
 - For every $C \subsetneq \mathcal{CFG}$ with |C| > 1, $L_{\mathcal{C}} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) \in \mathcal{C}\} \not\in \mathcal{R}$
- 3. For each of the following languages, find a minimal (relative to inclusion) class it belongs to (if any) between $\mathcal{R}/\mathcal{RE}/\text{co-}\mathcal{RE}/\text{not}$ in $\mathcal{RE}\cup\text{co-}\mathcal{RE}$. Prove your answer.
 - (a) $L = \{\langle M \rangle \mid M \text{ is a TM and } 010 \notin L(M)\}$
 - (b) $L = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = 010\}$
 - (c) $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \subseteq L(0(1 \cup 0)^*) \}$
 - (d) $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = L(0(1 \cup 0)^*) \}$
- 4. For each of the following languages, find a minimal (relative to inclusion) class it belongs to (if any) between $\mathcal{R}/\mathcal{RE}/\text{co-}\mathcal{RE}/\text{not}$ in $\mathcal{RE}\cup\text{co-}\mathcal{RE}$. Prove your answer.
 - (a) $L = \{ \langle M \rangle \mid \exists x \ s.t. \ M \ halt \ on \ x \}$
 - (b) $L = \{\langle M \rangle \mid M \text{ is a TM and there exists an input that the TM } M \text{ accepts in less than 50 steps}\}$

- (c) $L = \{ \langle M \rangle \mid | M \text{ is a TM and } L(M) \cup H_{TM} \in \mathcal{RE} \}$
- 5. For $L \subseteq \Sigma^*$ let $A(L) = \{0w \colon w \in L\} \cup \{1w \mid w \not\in L\}$
 - (a) Prove that if $L \notin R$ then $A(L) \notin \mathcal{RE}$
 - (b) Prove or contradict: $\forall L \subseteq \Sigma^* \text{ if } L \leq_M \bar{L} \text{ then } L \in \mathcal{R}$ **Hint:** use A(L) as $L \notin \mathcal{R}$