A Book of Abstract Algebra (2nd Edition)

Chapter 16,	Problem 1EA
-------------	-------------

2 Bookmarks

Show all steps: ON

Problem

In each of the following, use the fundamental homomorphism theorem to prove that the two given groups are isomorphic. Then display their tables.

$$\mathbb{Z}_5$$
 and $\mathbb{Z}_{20}/\square 5\square$.

Step-by-step solution

Step 1 of 4

Consider the two groups Z_3 and $Z_6/\langle 3 \rangle$, where $\langle 3 \rangle$ denotes the subgroup generated by 3. Objective is to prove that these two groups are isomorphic by using the fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

$$H \cong G/K$$

Comment

Step 2 of 4

Consider the function $f: Z_6 \to Z_3$ given by

$$f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 0 & 1 & 2 \end{pmatrix}.$$

To show that this mapping f is homomorphism, one must show that

$$f(a+b) = f(a) + f(b)$$

for all choices of a and b in Z_6 .

Since both Z_6 and Z_3 are commutative, even that brute force approach needs lesser additions.

Observe that for all $a \in Z_6$,

$$a \cong f(a) \pmod{3}$$
.
According to congruence law, if $x \cong f(x) \pmod{3}$ and $y \cong f(y) \pmod{3}$, then

But, by the defined f,

$$x + y \cong f(x + y) \pmod{3}$$

 $x + y \cong f(x) + f(y) \pmod{3}$

Comment

Step 3 of 4

Since congruence relation is always transitive, it gives

$$f(x+y) \cong f(x) + f(y) \pmod{3}$$

Therefore, f preserves sums and is a homomorphism. Since each element of Z_3 has the preimage, so f is onto.

By the definition of f, only element 0, 3 of Z_6 maps to identity. Therefore, $\ker f = \{0, 3\}$, that is, kernel of f is generated by 3. So, $\ker f = \langle 3 \rangle$.

Hence, the map f is homomorphism from Z_6 onto Z_3 with kernel $\ker f = \langle 3 \rangle$.

The addition table of Z_3 will be:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Comment

Step 4 of 4

Hence, by the fundamental homomorphism theorem it concludes that

$$Z_3 \cong Z_6 / \langle 3 \rangle$$

Comment