Team

Steve "Mr. TATA" Osazuwa

Ola "commandlinegirl" Zalcman

Naina "Remote" Thangaraj

Arkarachai "Chai" Fungtammasan

Problem

Doctor/Researcher/Scientist

What are the patients habits?

Smoker?

What are the patients habits?

Smoker?

Partier?

What are the patients habits?

Smoker?

Nah

Partier?

Yeah!

Given some information about the patient can we infer phenotypic or even genotypic data

Methods

Patient or Gene grouping based on expression profile

Data

Capture critical features

Variational autoencoder

https://jmetzen.github.io/

Genotypic Phenoty RNAseq FPKM Clinical

(Clemson's PanTCGA Expression Data)

Phenotypic Clinical observations

Patient or Gene grouping based on expression profile

Expected clustering

Label by phenotype

t-SNE dimensional reduction

Results

Reconstruct gene expression using autoencoder

Correlation between the original and reconstructed gene expression

The variational autoencoder reconstructs fairly faithfully gene expression values from the latent space

Clustering results (Realty)

Gene cluster

Patient cluster

Clustering results (Realty)

Patient cluster

Insights

VAE and t-SNE clustering

VAE

- Great with "-omic" data where we often lack truth/labels (unsupervised learning method for capturing meaningful features of the data)
- Latent encoding provides discoverable data structure
- Structure not always present in latent vector. Additional tuning required
- Random sampling approach requires more care with Cost function definition

t-SNE

Powerful method for embedding high-dimensional data in a low-dimensional space of two or three dimensions

- Efficient visualization of multi-dimensional space
- Very sensitive to certain parameters, e.g. perplexity, which is related to the number of nearest neighbors of other methods
- Requires careful evaluation and tuning