Autómatas y Lenguajes formales Ejercicio Semanal 8

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

5 de abril del 2019

- 1. Dado el siguiente lenguaje: $L = \{w \in \{a,b\}^* | \eta_a(w) = \eta_b(w)\}$ es decir el lenguaje que tiene el mismo número de a's que de b's
 - (a) Demuestra que el lenguaje no es regular con el lema del bombeo.

El lema del Bombeo dice que si L es un lenguaje regular infinito entonces existe un número $n \in \mathbb{N}$, llamado constante de bombeo para L, tal que para cualquier cadena $w \in L$ con $|w| \ge n$ existen cadenas u,v,x tales que:

- i. w = uvx
- ii. $|uv| \leq n$
- iii. $v \neq \epsilon$
- iv. $\forall m \in \mathbb{N}(uv^m x \in L)$

Vamos a demostrar por contradicción:

Supongamos que L es un lenguaje regular y que n es la constante de bombeo tal que cualquier cadena $w \in L$, $|w| \ge n$. Tomemos una w que claramente está en L y tiene longitud mayor a n: $w = a^n b^n$, |w| = 2n. Por hipótesis, w = uvx, con $|uv| \le n$. Y cómo los primeros n caracteres de w son a's, tenemos que $uv = a^s$, $s \le n$. Entonces, tenemos que

$$u = a^k$$
, $v = a^j$, $k > 0$, $j > 1$, $k + j = s$

Pues $v \neq \epsilon$. Y como $w = a^n b^n$, tenemos que $x = a^{n-k-j} b^n$

Si tomamos m=4, por el lema del bombeo, se debe cumplir que $uv^4x \in L$.

Pero tenemos que $uv^4x = a^ka^ja^ja^ja^ja^ja^{n-k-j}b^n = a^{n+3j}b^n$, que estaría el L únicamente cuando j=0, pero $j \ge 1$. Entonces esta cadena no está el L, que es una contradicción al lema del bombeo.

Por lo tanto, L no es un lenguaje regular ■

(b) Demuestra que el lenguaje no es regular usando el conjunto estafador.

Un conjunto infinito $S \subseteq \Sigma^*$ es un conjunto estafador para L si y sólo si $\forall x, y \in S(x \not\equiv_L y)$.

Sea $S = \{a^i | i \in \mathbb{N}\}$, veamos que S es un conjunto estafador: Sean $a^m, a^n \in S$ con $n \neq m$

Por un lado tenemos $a^m b^m \in L$

Por otra parte tenemos $a^nb^m \not\in L$

Por lo tanto $a^m \not\equiv_L a^n$ y S es un conjunto estafador de L.

Como pudimos encontrar un conjunto estafador de L, concluimos que L no es regular.