

Synchronisation

Einleitung: µC – FPGA Kommunikation
Asynchrone Eingangssignale
MTBF bei Flipflops mit metastabilen Zuständen
Synchronisationsschaltung für lange Impulse
Synchronisationsschaltung für kurze Impulse

Kommunikation zwischen asynchronen Clock-Bereichen Vier-Phasen Handshake

CE-DS 4 Synchronisation

Prof. Dr. B. Schwarz

1

CE-Labor-System

Asynchrone Eingänge

FPGA-intern:

- > Synchrone Systeme mit einer Clock als Referenzsignal.
- Taktflankenereignis bestimmt die Datenaufnahme und die Ausgangsaktualisierung.
- ightharpoonup Bedingung: $T_{CLK} > T_{PD} + T_{LOGIK} + T_{SU}$

Externe Eingänge:

4

- Pegeländerungen treten unabhängig von der FPGA-Clock auf.
- μC-Clock ist kein ganzes Vielfaches der FPGA-Clock.
- > Phasenlage der Clocks ist unbestimmt.
- Variable Taktanzahl pro C-Anweisung.

CE-DS 4 Synchronisation

Asynchrone Kommunikation

Ereignisgesteuerte Effekte an den FPGA-Eingängen erfordern Ansatz ohne Abhängigkeit von einem gemeinsamen oder übertragenen Clock-Signal.

- Sender-Empfänger-Kommunikation mit einem Protokoll, das Signalisierungskonventionen nutzt.
- > Jede Komponente arbeitet mit der eigenen Taktrate.
- Nur für Interaktionen findet eine Kommunikation mit synchronisierten Abläufen statt.

5

CE-DS 4 Synchronisation

Handshake-Kommunikation

- Locally clocked globally delay-insensitive
- > Requester/Client/Master Provider/Server/Slave
- > Vier-Phasen-Handshake

Wechselseitige Abstimmung

- > Beide Seiten betreiben die Abstimmung mit einem Automaten.
- Zustandstransitionen zeigen den Fortschritt der abgestimmten Kommunikation an.

FPGA-Schnittstellen

Eingangssignale werden durch D-FFs auf den FPGA-Takt synchronisiert:

Pegel ändern sich gleichzeitig.

Weniger, kürzere Hazards in der Eingangslogik.

- Ausgangsregister liefern eine parallele Pegelaktualisierung zu den GPIOs des μC.
- D-FFs in den Input-Output-Blocks (IOBs) stehen für beide Richtungen zur Verfügung.
- Handshake-Signale (REQ, RW), die die getaktete Zustandssequenz in der FSM beeinflussen, sind einer speziellen Synchronisation zu unterziehen.

CE-DS 4 Synchronisation

9

Asynchrone Eingangssignale

Asynchron sind alle Eingangssignale eines synchronen RTL-Entwurfs, die nicht mit dem Systemtakt synchronisiert sind, deren Pegeländerung also irgendwann während des Taktzyklus erfolgen kann, also auch während des Entscheidungsintervalls t_E = t_S + t_h der abtastenden Clock.

Dazu gehören z.B.:

- Anforderungen externer Geräte: Tastatureingaben, Interrupts, serielle Schnittstellen, ...
- Der Datenaustausch zwischen zwei jeweils synchronen Systemen, die jedoch mit unterschiedlicher Frequenz betrieben werden: Rechnerkopplungen, USB-Interfaces zum FPGA-Prozessor.

CE-DS 4 Synchronisation

10

Metastabiler Zustand des D-FF Ausgangs

12

Metastabiler Zustand

- > Der metastabile Zustand liegt im Bereich zwischen dem Highund Low-Pegel bei "midsupply".
- > Es ist nicht vorhersehbar, welcher Logikpegel sich im Anschluss an die Auflösungszeit t, (resolution time) am D-FF Ausgang einstellt.
- > Alle asynchronen Eingangssignale, die auf Flipflop-, Zähler- FSModer Schieberegister-Eingänge geführt werden, sind speziell zu synchronisieren.
- > Dies soll sicher stellen, dass sich deren Eingangssignale nicht während des Entscheidungsintervalls $t_E = t_S + t_h$ verändert. Andernfalls können die Register- bzw. Zählerausgänge in den metastabilen Zustand gehen, der dann über das gesamte System verteilt wird.

CE-DS 4 Synchronisation

14

Synchronisationsschaltung für lange Impulse

An einem vorgeschalteten Synchronistions-FF selbst können die Setup- und Hold-Zeiten verletzt werden.

- Sofern das 1. Synchronisations-D-FF in den metastabilen Zustand übergegangen ist, kann dieser Zustand sich jedoch im Laufe der Taktperiode auflösen (t_r < T_{CLK}) und damit das 2. D-FF einen korrekten Logikpegel Q_INT übernehmen.
- Damit wäre die Wahrscheinlichkeit reduziert, dass angeschlossene FSMs und Datenpfade mit undefinierten Pegeln angesteuert werden.

CE-DS 4 Synchronisation

Auflösungszeit

- Das Signal E wird durch die Synchronisation um bis zu zwei Takte verzögert!
- Die Wahrscheinlichkeit für das Auftreten eines Fehlers wird durch eine mittlere Zeit zwischen auftretenden Fehlern MTBF (mean time between failure) beschrieben.

Abschätzung der Fehlerhäufigkeit von D-FFs

- Synchronisationsfehler treten auf, wenn der metastabile Zustand länger andauert, als die vom Hersteller angegeben Auflösungszeit tr.
- Die mittlere Zeit MTBF zwischen zwei Synchronisationsfehlern ist abhängig von:
- f: Taktfrequenz mit der die Flipflops betrieben werden.
- a: Frequenz mit der sich das asynchrone Signal ändert.
- T0: D-FF Konstante gibt das Zeitfenster an, in dem Pegelwechsel einen Fehler erzeugen.
- τ: D-FF Konstante des Übergangsverhaltens von metastabilen Zuständen

CE-DS 4 Synchronisation

16

MTBF

$$MTBF(tr) = \frac{\exp(tr/\tau)}{T0 \cdot f \cdot a}$$

Familie	τ/ns	T0/s	tr/ns	t _{SU} /ns
74LS74	1.5	4.0•10-1	77.71	20
74HCxx	1.82	1.5•10-6	71.55	25
XC95108-20	0.17	9.6•10-18	2.3	10

Vgl. J. F. Wakerly: Digital Design. Principles and Practices. Pearson 4th ed 2006

17

CE-DS 4 Synchronisation

18

Beispiel: MTBF

- Das Interruptsignal eines Mikroprozessor, der mit f = 10 MHz Taktfrequenz arbeitet wird mit zwei 74LS74 D-FFs synchronisiert.
- ➤ Der asynchrone Interrupt tritt mit einer Rate von 10⁵ 1/s auf.
- Die verfügbare Zeit zum Abklingen des metastabilen Zustands ist tr = 1/f - t_{SU} = 80ns.
- Fehler treten auf mit MTBF(80 ns) = 3.6•10¹¹ s, sodass fehlerhafte Übergänge etwa alle 114 Jahrhunderte auftreten!
- Falls der Prozessor jedoch mit 16MHz getaktet werden soll, ergibt sich:

 $tr = 42.5 \text{ ns} \rightarrow MTBF(42.5 \text{ ns}) = 3.1 \text{ s}.$ Nich takzeptabel!

Berechnen Sie die MTBF für den Baustein XC95108-20 jeweils bei f = 16MHz und f = 50MHz!

CE-DS 4 Synchronisation

Synchronisationsschaltung für kurze Impulse

- Das asynchrone Eingangssignal E liegt am Takteingang des ersten Synchronisations-Flipflops.
- Das erste D-FF wird durch das zweite Flipflop asynchron zurückgesetzt.
- Unabhängig von der Impulsdauer des Signals E erzeugt die Schaltung immer einen Puls Q1 für die Länge eines Taktes (T_{CLK})!
- Der Ausgang Q1 ist nicht frei von metastabilen Zuständen, ggf. muss die Schaltung um ein weiteres Flipflop ergänzt werden.

Aufforderungs- und Bestätigungssequenz

- > Phase 1: Talker aktiviert req = 1 (A)
- Phase 2: Listener aktiviert ack = 1 (B, A)
- Phase 3: Talker deaktiviert req = 0 (B, A)
- Phase 4: Listener deaktiviert ack = 0 (B)
- > Talker kann neuen Request starten

CE-DS 4 Synchronisation

23

Synchronisation erforderlich für Talker und Listener in unterschiedlichen Clock Domains

aus P. P. Chu: RTL Hardware Design Using VHDL, Wiley 2006 24

CE-DS 4 Synchronisation

μC – FPGA Interface

CE-DS 4 Synchronisation

26

25

27

Datentransfer-Phasen im Handshake-Zyklus (2)

CE-DS 4 Synchronisation

Security Board Interface

CE-DS 4 Synchronisation

32

31

Transfersteuerung µC - FPGA

Schreibvorgang: B -> A

CE-DS 4 Synchronisation

Transfersteuerung FPGA - μC

Lesevorgang: A -> B

33

CE-DS 4 Synchronisation

34

Write - Sequenz in ISR

```
// Macro-Definitionen in hwconfig.h
                      /** LPC-2468 Write to FPGA **/
PSI_ENABLE_WRITE;
                      /* Datenflussrichtung: B -> A */
PSI_SET_REQ;
                      /* 1. Phase: Anforderung */
                      /* 2. Phase: Bestätigung */
PSI WAIT ACK SET;
PSI_WRITE_DATA( outdata ); /* 10 Bit Datum schreiben*/
PSI_CLR_REQ;
                      /* 3. Phase */
                      /* 4. Phase; ACK = '0' Polling */
PSI_WAIT_ACK_CLR;
                     CE-DS 4 Synchronisation
```


Read – Sequenz in ISR

```
/** LPC-2468 Read from FPGA **/
PSI_WAIT_RESULT_SET; /* Ergebnisse verfügbar ?*/

PSI_ENABLE_READ; /* Datenflussrichtung: A -> B */
PSI_SET_REQ; /* 1. Phase: FPGA schreibt */
PSI_WAIT_ACK_SET; /* 2. Phase */
PSI_READ_DATA( *indata ); /* 10 Bit Datum lesen */
PSI_CLR_REQ; /* 3. Phase: Lesebestätigung */
PSI_WAIT_ACK_CLR; /* 4. Phase: Lesesequenz beendet */
/* Datenausgabe an DAC und PWM */
```

CE-DS 4 Synchronisation

35

Pin-Belegung

	Daten-/Steuersignale			Development Boards						
Name	Тур	Anmerkung	Transfer	TI-LPC	SECUR	RITYv2.1		NEXYS2		
				uC	Bustreiber	Connector		FPGA		Connector
				Port[Pin]		Тур	Pin	Signal	Pin	FX2-100
										Port-Pin
PSI_REQ	S	Auftrag	unidirektional	P1[12]	IOB4	X2	24	IOB4<3>	F11	J1A-34
PSI_ACK	S	Auftragsbestätigung	unidirektional	P1[8]	IOB5	X2	25	IOB5<2>	C14	J1A-41
PSI_RW	S	Schreiben/Lesen	unidirektional	P1[11]	IOB4	X2	23	IOB4<3>	F11	J1A-34
PSI_RESULT	S	Auftragsfertigstellung	unidirektional	P2[12]	IOB5	Х3	9	IOB5<1>	A14	J1A-40
PSI_ADDR[0]	S	Adresse des	unidirektional	P1[15]	IOB4	X2	33	IOB4<0>	B11	JA1-31
PSI_ADDR[1]		Prozessorelements		P1[14]			34	IOB4<1>	C11	JA1-32
PSI_ADDR[2]				P1[13]			29	IOB4<2>	E11	JA1-33
PSI_DATA[0]	D	Datum	bidirektional	P0[5]	IOB1	Х3	36	IOB1<0>	A4	J1A-07
PSI_DATA[1]				P1[10]		X2	26	IOB1<1>	C3	J1A-08
PSI_DATA[2]				P0[13]			5	IOB1<2>	C4	J1A-09
PSI_DATA[3]				P0[14]			7	IOB1<3>	В6	J1A-10
PSI_DATA[4]				P0[19]		ХЗ	15	IOB1<4>	D5	J1A-11
PSI_DATA[5]				P0[20]			14	IOB1<5>	C5	J1A-12
PSI_DATA[6]				P0[21]		X2	19	IOB1<6>	F7	J1A-13
PSI_DATA[7]				P0[22]			18	IOB1<7>	E7	J1A-14
PSI_DATA[8]				P0[29]	IOB2		6	IOB2<0>	A6	J1A-15
PSI_DATA[9]				P0[30]			15	IOB2<1>	C7	J1A-16
IOB1_DIR	S	Transferrichtung IOB1- PSI-DATA[7:0]	unidirektional	P2[3]	IOB1	Х3	32			
IOB2_DIR36	S	Transferrichtung IOB2- PSI DATA[9,8]	@nidirektionalyi	C₹If bnisat	ion IOB2	ХЗ	33		>-	


```
PSI_WRITE_DATA( outdata );

/* 10 Bit Datum schreiben*/

//Daten Ein- und Ausgabe

#define PSI_WRITE_DATA(d) FIO0MASK = ~PSI_DATA_PINS_PORTO;

\
FIO0PIN = (d & (3<<8))<<(29-8) | (d & (0xf<<4))<<(19-4) | (d & 0xc)<<11 | (d &1)<<5;

\
FIO1MASK = ~PSI_DATA_PINS_PORT1;

\
FIO1PIN = (d & 2)<<9;

\
FIO1MASK = 0;
```