Schubert calculus and K-theoretic Catalan functions

George H. Seelinger (joint with J. Blasiak and J. Morse)

UVA Graduate Seminar ghs9ae@virginia.edu

31 January 2020

Overview

- An overview of Schubert calculus
- Catalan functions: shedding new light on old problems
- **3** K-theoretic Catalan functions

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

1

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

1

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^*(X)$ with property $\sigma_{\lambda}\cup\sigma_{\mu}=\sum_{\nu}c_{\lambda\mu}^{\nu}\sigma_{\nu}$

Representatives

Special basis of polynomials $\{f_{\lambda}\}$ such that $f_{\lambda}\cdot f_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}f_{
u}$

Combinatorial study of $\{f_{\lambda}\}$ enlightens the geometry (and cohomology).

Overview of Schubert Calculus Combinatorics (cont.)

Combinatorial study of $\{f_{\lambda}\}$ enlightens the geometry (and cohomology).

Goal

Identify $\{f_{\lambda}\}$ in explicit (simple) terms amenable to calculation and proofs.

$$X = Gr_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$$

$$X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$$
 Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}) = (n^m).$

$$X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$$
 Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}) = (n^m).$

$$X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$$
 Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}_m) = (n^m).$

•
$$H^*(\mathsf{Gr}_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z} \sigma_\lambda$$
 as \mathbb{Z} -modules

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$ Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}_m) = (n^m).$

- $H^*(\mathrm{Gr}_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subset (n^m)} \mathbb{Z} \sigma_\lambda$ as \mathbb{Z} -modules
- $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

$$X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$$
 Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}_m) = (n^m).$

- $H^*(Gr_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$ as \mathbb{Z} -modules
- $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

 $c_{\lambda\mu}^{
u}=$ number of points in intersection of Schubert varieties.

$$X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{\text{all } m\text{-dimensional subspaces of } \mathbb{C}^{n+m}\}.$$
 Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n,\ldots,n}_m) = (n^m).$

- $H^*(Gr_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$ as \mathbb{Z} -modules
- $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

 $c_{\lambda\mu}^{\nu}$ =number of points in intersection of Schubert varieties. What are the structure constants $c_{\lambda\mu}^{\nu}$?

Classical Example (cont.)

 $\Lambda_m = \mathbb{C}[x_1, \dots, x_m]^{S_m}$ is the ring of symmetric polynomials in m variables and has bases indexed by partitions.

$$\underbrace{12x_1^2 + 12x_2^2 - 7x_1x_2}_{\text{symmetric}} \underbrace{5x_1^2 + 12x_2^2 - 7x_1x_2}_{\text{not symmetric}}$$

$$\underbrace{5x_1^2 + 12x_2^2 - 7x_1x}_{\text{not symmetric}}$$

Classical Example (cont.)

 $\Lambda_m = \mathbb{C}[x_1,\ldots,x_m]^{S_m}$ is the ring of symmetric polynomials in m variables and has bases indexed by partitions.

$$\underbrace{12x_{1}^{2} + 12x_{2}^{2} - 7x_{1}x_{2}}_{\text{symmetric}} \qquad \underbrace{5x_{1}^{2} + 12x_{2}^{2} - 7x_{1}x_{2}}_{\text{not symmetric}}$$

There exists a basis of Λ_m denoted $\{s_{\lambda}\}_{\lambda}$ and a surjection of rings such that

$$\Lambda_m o H^*(\mathsf{Gr}(m,n))$$
 $s_\lambda \mapsto egin{cases} \sigma_\lambda & \lambda \subseteq (n^m) \ 0 & \mathsf{otherwise}. \end{cases}$

Classical Example (cont.)

Cohomology structure: $\sigma_{\lambda} \leftrightarrow s_{\lambda}$ when $\lambda \subseteq (n^m)$.

$$s_{\lambda}s_{\mu} = \sum_{\nu \subseteq (n^{m})} c_{\lambda\mu}^{\nu} s_{\nu} + \sum_{\nu \not\subseteq (n^{m})} c_{\lambda\mu}^{\nu} s_{\nu} \leftrightarrow \sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu \subseteq (n^{m})} c_{\lambda\mu}^{\nu} \sigma_{\nu}$$

Schur functions s_{λ}

Example

Semistandard tableaux: columns increasing and rows non-decreasing.

5			
3	4		
2	3		
1	2	2	5

standard = no repeated letters

Schur functions s_{λ}

Example

Semistandard tableaux: columns increasing and rows non-decreasing.

Schur function s_{λ} is a "weight generating function" of semistandard tableaux:

$$s_{\square}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 \text{ or } 0) s_
u$$

$$s_{\Box}s_{\Box} = s_{\Box} + s_{\Box} + s_{\Box}$$

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 \text{ or } 0) s_\nu$$

$$s_{\square}s_{\square} = s_{\square} + s_{\square} + s_{\square}$$

Iterate Pieri rule

$$s_{\mu_1}\cdots s_{\mu_r}s_{\lambda}=\sum (\#$$
 known tableaux $)s_{
u}$

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 \text{ or } 0) s_\nu$$

$$s_{\square}s_{\square} = s_{\square} + s_{\square} + s_{\square}$$

Iterate Pieri rule

$$s_{\mu_1}\cdots s_{\mu_r}s_{\lambda}=\sum (\#$$
 known tableaux $)s_{
u}$

Since $s_{\mu_1}\cdots s_{\mu_r}=s_{(\mu_1,\dots,\mu_r)}+$ lower order terms, subtract to get

$$s_{(\mu_1,...,\mu_r)}s_{\lambda}=\sum c^{
u}_{\lambda\mu}s_{
u}$$

for well-understood Littlewood-Richardson coefficients $c_{\lambda\mu}^{
u}$.

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of Schubert varieties in variety $X=\operatorname{Gr}(m,n).$

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of Schubert varieties in variety $X={\rm Gr}(m,n).$

Cohomology

Schubert basis $\{\sigma_\lambda\}_{\lambda\subseteq (n^m)}$ for $H^*(X)$ with property $\sigma_\lambda\cup\sigma_\mu=\sum_\nu c_{\lambda\mu}^\nu\sigma_\nu$

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu}=\#$ of points in intersection of Schubert varieties in variety $X=\operatorname{Gr}(m,n).$

Cohomology

Schubert basis $\{\sigma_{\lambda}\}_{\lambda\subseteq(n^m)}$ for $H^*(X)$ with property $\sigma_{\lambda}\cup\sigma_{\mu}=\sum_{\nu}c_{\lambda\mu}^{\nu}\sigma_{\nu}$

Representatives

Special basis of Schur polynomials $\{s_{\lambda}\}$ such that $s_{\lambda}\cdot s_{\mu}=\sum_{\nu}c_{\lambda\mu}^{\nu}s_{\nu}$ for Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$.

•
$$X = FI_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$$

- $X = FI_n(\mathbb{C}) = \{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i \}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.

- $X = FI_n(\mathbb{C}) = \{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i \}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- $H^*(FI_n(\mathbb{C}))$ supported by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1,\ldots,x_n]$.

- $X = FI_n(\mathbb{C}) = \{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i \}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- $H^*(FI_n(\mathbb{C}))$ supported by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, \dots, x_n]$.
- Structure constants $\mathfrak{S}_w \mathfrak{S}_u = c_{wu}^v \mathfrak{S}_v$ are combinatorially unknown.

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

f_{λ} functions
functions
polynomimals
n Schuberts
nd Q functions
chur functions
ck polynomials
ur functions

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_{λ}		
(Co)homology of Grassmannian	Schur functions		
(Co)homology of flag variety	Schubert polynomimals		
Quantum cohomology of flag variety	Quantum Schuberts		
(Co)homology of Types BCD Grassmannian	Schur- P and Q functions		
(Co)homology of affine Grassmannian	(dual) k-Schur functions		
K-theory of Grassmannian	Grothendieck polynomials		
K-homology of affine Grassmannian	K-k-Schur functions		
A I			

And many more!

• $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \to 0)$.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \to 0)$.
- ullet Supported by quantum Schubert polynomials \mathfrak{S}_w^Q .

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \to 0)$.
- Supported by quantum Schubert polynomials \mathfrak{S}_w^Q .
- Peterson isomorphism

$$\Psi \colon \mathit{QH}^*(\mathit{Fl}_{k+1}) \to \mathit{H}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{loc}$$

$$\mathfrak{S}_w^\mathit{Q} \mapsto \frac{\mathit{s}_\lambda^{(k)}}{\prod_{i \in \mathit{Des}(w)} \tau_i}$$

where $s_{\lambda}^{(k)}$ is a k-Schur function.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \to 0)$.
- Supported by quantum Schubert polynomials \mathfrak{S}_w^Q .
- Peterson isomorphism

$$\Psi \colon QH^*(Fl_{k+1}) \to H_*(Gr_{SL_{k+1}})_{loc}$$

$$\mathfrak{S}_w^Q \mapsto \frac{s_\lambda^{(k)}}{\prod_{i \in Des(w)} \tau_i}$$

where $s_{\lambda}^{(k)}$ is a k-Schur function.

Upshot

Computations for Schubert polynomials can be moved into symmetric functions.

• $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{\nu+1}}$.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\parallel}^{(2)} = \underbrace{s_{\parallel}}_{s_{\parallel}^{(3)}} + \underbrace{s_{\parallel}}_{s_{\parallel}^{(3)}} + \underbrace{s_{\parallel}}_{s_{\parallel}^{(3)}}$$

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

• $s_{\lambda}^{(k)} = s_{\lambda}$ as $k \to \infty$.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

- $s_{\lambda}^{(k)} = s_{\lambda}$ as $k \to \infty$.
- Has geometric meaning for embedding of affine Grassmannians.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

- $s_{\lambda}^{(k)} = s_{\lambda}$ as $k \to \infty$.
- Has geometric meaning for embedding of affine Grassmannians.
- Definition with t important for Macdonald polynomials.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{\nu+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

- $s_{\lambda}^{(k)} = s_{\lambda}$ as $k \to \infty$.
- Has geometric meaning for embedding of affine Grassmannians.
- Definition with *t* important for Macdonald polynomials.
- Many definitions. A new one makes proofs easier!

• Raising operators $R_{i,j}$ act on diagrams

• Raising operators $R_{i,j}$ act on diagrams

• Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i - \epsilon_j}$.

• Raising operators $R_{i,j}$ act on diagrams

- Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i \epsilon_j}$.
- For $h_{\lambda} = s_{\lambda_1} \cdots s_{\lambda_r}$, we have the *Jacobi-Trudi identity*

$$s_{\lambda} = \prod_{i < j} (1 - R_{ij}) h_{\lambda}$$

• Raising operators $R_{i,j}$ act on diagrams

$$R_{1,3}$$
 $\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \left(\begin{array}{c} \\ \\ \end{array}\right) = \left(\begin{array}{c} \\ \\ \end{array}\right)$

- Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i \epsilon_j}$.
- For $h_{\lambda} = s_{\lambda_1} \cdots s_{\lambda_r}$, we have the *Jacobi-Trudi identity*

$$s_{\lambda} = \prod_{i < j} (1 - R_{ij}) h_{\lambda}$$

$$s_{22} = (1 - R_{12})h_{22} = h_{22} - h_{31}$$

$$s_{211} = (1 - R_{12})(1 - R_{23})(1 - R_{13})h_{211}$$

$$= h_{211} - h_{301} - h_{220} - h_{310} + h_{310} + h_{32-1} + h_{400} - h_{41-1}$$

Advantage: gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$.

Advantage: gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$. Amazingly:

$$s_{lpha} = \prod_{i < j} (1 - R_{ij}) h_{lpha} = egin{cases} \pm s_{\lambda} & ext{for a partition } \lambda \ 0 \end{cases}$$

For
$$\langle s_{1^r}^\perp s_\lambda, s_\mu
angle = \langle s_\lambda, s_{1^r} s_\mu
angle$$
,

$$s_{1^r}^{\perp} s_{\lambda} = \sum_{S \subseteq [1,\ell], |S| = r} s_{\lambda - \epsilon_S}$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.

Roots above Dyck path Non-roots below

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.

Roots above Dyck path Non-roots below

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^\ell$

$$H(\Psi; \gamma)(x) = \prod_{(i,j) \in \Delta^+_{\ell} \setminus \Psi} (1 - R_{ij}) h_{\gamma}(x)$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.

Roots above Dyck path Non-roots below

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^\ell$

$$H(\Psi; \gamma)(x) = \prod_{(i,j) \in \Delta^+_{\ell} \setminus \Psi} (1 - R_{ij}) h_{\gamma}(x)$$

•
$$\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.

Roots above Dyck path Non-roots below

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^\ell$

$$H(\Psi; \gamma)(x) = \prod_{(i,j) \in \Delta^+_{\ell} \setminus \Psi} (1 - R_{ij}) h_{\gamma}(x)$$

- $\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$
- $\Psi = \text{all roots} \Longrightarrow H(\Psi; \gamma) = h_{\gamma}$

Catalan functions (t=1)

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$
= root ideal with $k - \lambda_{i}$ non-roots in row i

Catalan functions (t=1)

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$
= root ideal with $k - \lambda_{i}$ non-roots in row i

$$\Delta^4(3,3,2,2,1,1) = \begin{array}{c} 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \end{array}$$
 \(\tau \text{row } i \text{ has } 4 - \lambda_i \text{ non-roots}

Catalan functions (t=1)

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$
= root ideal with $k - \lambda_{i}$ non-roots in row i

$$\Delta^4(3,3,2,2,1,1) = \begin{array}{c} 3 \\ \hline 3 \\ \hline 2 \\ \hline 2 \\ \hline \end{array} \quad \leftarrow \text{row } i \text{ has } 4 - \lambda_i \text{ non-roots}$$

• For partition λ with $\lambda_1 \leq k$, $s_{\lambda}^{(k)} = H(\Delta^k(\lambda); \lambda)$.

Key ingredient of branching proof:

Key ingredient of branching proof:

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1^{\ell}}^{\perp} f, g \rangle = \langle f, s_{1^{\ell}} g \rangle$.

Key ingredient of branching proof:

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1\ell}^{\perp} f, g \rangle = \langle f, s_{1\ell} g \rangle$.

$$\Delta^4(3,3,2,2,1,1) = \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{array}$$

$$\Delta^{5}(4,4,3,3,2,2) = \begin{array}{c} 3\\ 3\\ 2\\ 2\\ 2 \end{array}$$

Key ingredient of branching proof:

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 < k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1\ell}^{\perp} f, g \rangle = \langle f, s_{1\ell} g \rangle$.

$$\Delta^{5}(4,4,3,3,2,2) = \begin{array}{c} 4 & 4 & 4 \\ \hline & 3 & \\ \hline & 2 & \\ \hline & 2 & \\ \hline & 2 & \\ \end{array}$$

Branching is a special case of Pieri:

$$s_{\lambda}^{(k)} = s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)} = \sum_{\mu} a_{\lambda+1^{\ell},\mu} s_{\mu}^{(k+1)}$$

• Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

• $g_{\lambda} = \prod_{i < j} (1 - R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

$$g_{1^2}g_{3,2} = g_{43} + g_{421} + g_{331} - g_{42} - g_{33} - 2g_{321} + g_{31}$$

- $g_{\lambda} = \prod_{i < j} (1 R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .
- Dual to Grothendieck polynomials: Schubert representatives for $K^*(Gr(m,n))$

 \bullet Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} + \mbox{lower degree terms}$

- ullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} + \text{lower degree terms}$
- Satisfies Pieri rule on "affine set-valued strips"

- ullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

• Conjecture: $g_{\lambda}^{(k)}$ have branching into $g_{\mu}^{(k+1)}$.

- ullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

• Conjecture: $g_{\lambda}^{(k)}$ have branching into $g_{\mu}^{(k+1)}$.

Problem

No direct formula for $g_{\lambda}^{(k)}$

An Extra Ingredient: Lowering Operators

Lowering Operators $L_j(f_\lambda) = f_{\lambda - \epsilon_j}$

$$L_3$$
 $\left(\begin{array}{c} \\ \\ \end{array}\right) = \left(\begin{array}{c} \\ \\ \end{array}\right)$

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$\mathcal{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j) \in \mathcal{L}} (1-L_j) \prod_{(i,j) \in \Delta^+_\ell \setminus \Psi} (1-R_{ij}) k_\gamma$$

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$\mathcal{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j) \in \mathcal{L}} (1-L_j) \prod_{(i,j) \in \Delta^+_\ell \setminus \Psi} (1-R_{ij}) k_\gamma$$

Example

non-roots of Ψ , roots of \mathcal{L}

(12)	(13)	(14)	(15)
	(23)	(24)	(25)
		(34)	(35)
			(45)

$$K(\Psi; \mathcal{L}; 54332)$$

= $(1 - L_4)^2 (1 - L_5)^2$
 $\cdot (1 - R_{12})(1 - R_{34})(1 - R_{45})k_{54332}$

Answer (Blasiak-Morse-S., 2020)

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian,

 $f_{\lambda} = g_{\lambda}^{(k)} = K(\Delta^{(k)}(\lambda); \Delta^{(k+1)}(\lambda); \lambda)$ since this family satisfies the correct Pieri rule.

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian,

$$f_{\lambda} = g_{\lambda}^{(k)} = K(\Delta^{(k)}(\lambda); \Delta^{(k+1)}(\lambda); \lambda)$$
 since this family satisfies the correct Pieri rule.

Example

$$\Delta_6^+/\Delta^{(4)}(332111), \Delta^{(5)}(332111)$$

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

The
$$g_{\lambda}^{(k)}$$
 are "shift invariant", i.e. for $\ell = \ell(\lambda)$

$$G_{1^\ell}^\perp g_{\lambda+1^\ell}^{(k+1)} = g_\lambda^{(k)}$$

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

The $g_{\lambda}^{(k)}$ are "shift invariant", i.e. for $\ell=\ell(\lambda)$

$$G_{1^\ell}^\perp g_{\lambda+1^\ell}^{(k+1)} = g_\lambda^{(k)}$$

Theorem (Blasiak-Morse-S., 2020)

The branching coefficients in

$$g_{\lambda}^{(k)} = \sum_{\mu} a_{\lambda\mu} g_{\mu}^{(k+1)}$$

satisfy $(-1)^{|\lambda|-|\mu|}a_{\lambda\mu}\in\mathbb{Z}_{\geq 0}$.

$$\Phi \colon QK^*(Fl_{k+1}) \to K_*(Gr_{SL_{k+1}})_{loc}$$

$$\Phi \colon QK^*(Fl_{k+1}) \to K_*(Gr_{SL_{k+1}})_{loc}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}_w^Q a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}_{w}^{Q}) = \frac{\tilde{g}_{w}}{\prod_{i \in Des(w)} \tau_{i}}$$

$$\Phi \colon QK^*(Fl_{k+1}) \to K_*(Gr_{SL_{k+1}})_{loc}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}_w^Q a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}_{w}^{Q}) = \frac{\tilde{g}_{w}}{\prod_{i \in Des(w)} \tau_{i}}$$

satisfies $\tilde{g}_w = g_{\lambda}^{(k)} + \sum_{\mu} a_{\lambda\mu} g_{\mu}^{(k)}$ such that $(-1)^{|\lambda| - |\mu|} a_{\lambda\mu} \in \mathbb{Z}_{\geq 0}$.

$$\Phi\colon \mathit{QK}^*(\mathit{FI}_{k+1})\to \mathit{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}_w^Q a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}_{w}^{Q}) = \frac{\tilde{g}_{w}}{\prod_{i \in Des(w)} \tau_{i}}$$

satisfies $\tilde{g}_w = g_{\lambda}^{(k)} + \sum_{\mu} a_{\lambda\mu} g_{\mu}^{(k)}$ such that $(-1)^{|\lambda| - |\mu|} a_{\lambda\mu} \in \mathbb{Z}_{\geq 0}$.

Theorem (Blasiak-Morse-S., 2020)

If $\lambda \subseteq (d^{k+1-d})$ for some $1 \le d \le k$, then $g_{\lambda}^{(k)} = g_{\lambda} \Longrightarrow$ conjecture is true for w a Grassmannian permutation.

$$\Phi \colon QK^*(Fl_{k+1}) \to K_*(Gr_{SL_{k+1}})_{loc}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}_w^Q a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}_{w}^{Q}) = \frac{\tilde{g}_{w}}{\prod_{i \in Des(w)} \tau_{i}}$$

satisfies $\tilde{g}_w = g_\lambda^{(k)} + \sum_\mu a_{\lambda\mu} g_\mu^{(k)}$ such that $(-1)^{|\lambda| - |\mu|} a_{\lambda\mu} \in \mathbb{Z}_{\geq 0}$.

Theorem (Blasiak-Morse-S., 2020)

If $\lambda \subseteq (d^{k+1-d})$ for some $1 \le d \le k$, then $g_{\lambda}^{(k)} = g_{\lambda} \Longrightarrow$ conjecture is true for w a Grassmannian permutation.

Conjecture (Blasiak-Morse-S., 2020)

$$\tilde{g}_w = K(\Delta^k(\lambda); \Delta^k(\lambda); \lambda)$$

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),

Combinatorially describe dual Pieri rule:

$$G_{1r}^{\perp} g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k)} \iff G_{1r} G_{\mu}^{(k)} = \sum_{\lambda} ?? G_{\lambda}^{(k)}, \ 1 \leq r \leq k.$$

- Combinatorially describe dual Pieri rule: $G_{1r}^{\perp}g_{\lambda}^{(k)} = \sum_{u}??g_{u}^{(k)} \iff G_{1r}G_{u}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \leq r \leq k.$
- ② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{u} ?? g_{\mu}^{(k+1)}$.

- Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \leq r \leq k.$
- **2** Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.
- **3** Combinatorially describe $g_{\lambda}^{(k)} = \sum_{\mu} ?? s_{\mu}^{(k)}$.

- Combinatorially describe dual Pieri rule: $G_{1r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \leq r \leq k.$
- ② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.
- **3** Combinatorially describe $g_{\lambda}^{(k)} = \sum_{\mu} ?? s_{\mu}^{(k)}$.
- **①** Describe the image of \mathfrak{G}_{w}^{Q} under Peterson isomorphism for all $w \in S_{k+1}$.

References

Thank you!

Blasiak, Jonah, Jennifer Morse, Anna Pun, and Daniel Summers. 2019. *Catalan Functions and k-Schur Positivity*, J. Amer. Math. Soc. **32**, no. 4, 921–963.

Chen, Li-Chung. 2010. Skew-linked partitions and a representation theoretic model for k-Schur functions, Ph.D. thesis.

Ikeda, Takeshi, Shinsuke Iwao, and Toshiaki Maeno. 2018. *Peterson Isomorphism in K-theory and Relativistic Toda Lattice*, preprint. arXiv: 1703.08664.

Lam, Thomas, Anne Schilling, and Mark Shimozono. 2010. *K-theory Schubert calculus of the affine Grassmannian*, Compositio Math. **146**, 811–852.

Morse, Jennifer. 2011. Combinatorics of the K-theory of affine Grassmannians, Advances in Mathematics.

Panyushev, Dmitri I. 2010. Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles, Selecta Math. (N.S.) 16, no. 2, 315–342.