WireShark Aufgabe

Aufgabe 1 & 2

→ Einleitung

Aufgabe 3

- 1. Nennen Sie mindestens 5 Protokolle, die WireShark erkannt hat.
 - 1. HHTP
 - 2. TCP
 - 3. DNS
 - 4. TLS
 - 5. ARP
- 2. Wie lange hat es vom Senden des HTTP Requests (hWp://gaia.cs.umass.edu/wireshark-labs/

INTRO-wireshark-file1.html) bis zum Erhalt der HTTP Response gedauert?

```
540 HTTP/1.1 200 OK (text/html)
     61 3.258669
                        141.37.168.36
                                              128.119.245.12
                                                                               454 GET /wireshark-labs/HTTP-wireshark-file1.html HTTP/1.1
Y Frame 64: 540 bytes on wire (4320 bits), 540 bytes captured (4320 bits) on interface 0
  > Interface id: 0 (\Device\NPF {00634C18-0EE0-4C16-A3D9-1ADA734B3B15})
     Encapsulation type: Ethernet (1)
     Arrival Time: Oct 25, 2022 15:59:24.595532000 W. Europe Daylight Time
     [Time shift for this packet: 0.000000000 seconds]
     Epoch Time: 1666706364.595532000 seconds
     [Time delta from previous captured frame: 0.000715000 seconds]
     [Time delta from previous displayed frame: 0.106990000 seconds]
     [Time since reference or first frame: 3.365659000 seconds]
     Frame Number: 64
     Frame Length: 540 bytes (4320 bits)
     Capture Length: 540 bytes (4320 bits)
     [Frame is marked: False]
     [Frame is ignored: False]
     [Protocols in frame: eth:ethertype:ip:tcp:http:data-text-lines]
     [Coloring Rule Name: HTTP]
     [Coloring Rule String: http || tcp.port == 80 || http2]
| Ethernet II, Src: Dell_ce:82:c2 (54:bf:64:ce:82:c2), Dst: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)
| Internet Protocol Version 4, Src: 128.119.245.12, Dst: 141.37.168.36
  Transmission Control Protocol, Src Port: 80, Dst Port: 57019, Seq: 1, Ack: 401, Len: 486
 Hypertext Transfer Protocol
 Line-based text data: text/html (4 lines)
```

3. Was ist die Internet-Adresse ihres Rechners?

=> 141.37.168.36

Was ist die Ethernet-Adresse (MAC-Adresse,physikalische Adresse) ihres Rechners? => 90:1B:0E:F1:7B:62

Welches ist die Ziel-MAC-Adresse, zu der ihr Rechner Pakete sendet?

⇒ 34:17:EB:46:9E:02

```
67 3.489145
                     128.119.245.12
                                         141.37.168.36
                                                             HTTP
                                                                       538 HTTP/1.1 404 Not Found (text/html)
                                     128.119.245.12
     65 3.381428
                     141.37.168.36
                                                                       411 GET /favicon.ico HTTP/1.1
     64 3.365659
                     128.119.245.12
                                         141.37.168.36
                                                              HTTP
                                                                       540 HTTP/1.1 200 OK (text/html)
     61 3.258669 141.37.168.36 128.119.245.12 HTTP
                                                                       454 GET /wireshark-labs/HTTP-wireshark-file1.html HTTP/1.1
 Frame 61: 454 bytes on wire (3632 bits), 454 bytes captured (3632 bits) on interface 0
Y Ethernet II, Src: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62), Dst: Dell_46:9e:02 (34:17:eb:46:9e:02)
    Destination: Dell_46:9e:02 (34:17:eb:46:9e:02)
    Source: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)
    Type: IPv4 (0x0800)
> Internet Protocol Version 4, Src: 141.37.168.36, Dst: 128.119.245.12
 Transmission Control Protocol, Src Port: 57019, Dst Port: 80, Seq: 1, Ack: 1, Len: 400
 Hypertext Transfer Protocol
```

```
Ethernet adapter Ethernet:
  Connection-specific DNS Suffix .: htwg-konstanz.de
Description . . . . . . . . : Intel(R) Ethernet Connection (2) I219-LM
  Physical Address. . . . . . . : 90-1B-0E-F1-7B-62
  DHCP Enabled. . . . .
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address . . . . : fe80::dfa:de2e:9e27:4075%2(Preferred)
  Lease Obtained. . . . . . . . : Friday, 21 October 2022 11:31:27
  Lease Expires . . . . . . . . : Wednesday, 26 October 2022 15:45:46
  Default Gateway
                 . . . . . . . . : 141.37.168.1
  DHCP Server . . . . . . . . . . . . . . .
                                     141.37.10.96
  DHCPv6 IAID .
                                     42998542
  DHCPv6 Client DUID. . . . . . . :
                                    00-01-00-01-22-2A-EC-0C-90-1B-0E-F1-7B-62
  DNS Servers . . . . . . .
                                     141.37.0.1
                                     141.37.0.2
  NetBIOS over Tcpip. . . . . . : Enabled
```

Vergleichen Sie die Ziel-MAC-Adresse für verschiedene Ziel-IP-Adressen. Welchem Netzknoten können Sie die Ziel-MAC-Adresse zuordnen?

```
Protocol | Length | Info
                                           128.119.245.12
FujitsuT_f1:7b:62
                                                                                                                        TCP
ARP
                                                                                                                                             66 80 \rightarrow 57019 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1380 SACK_PERM=1 WS=128 42 Who has 141.37.168.32? Tell 141.37.168.36
            59 3.258097
                                                                                  141.37.168.36
            58 3.178619
                                                                                  Broadcast
            57 3.152548
                                           141.37.168.36
                                                                                 128,119,245,12
                                                                                                                        TCP
                                                                                                                                             66 57019 \rightarrow 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1 60 Who has 141.37.168.32? Tell 141.37.168.40
  > Frame 64: 540 bytes on wire (4320 bits), 540 bytes captured (4320 bits) on interface 0
     Ethernet II, Src: Dell_ce:82:c2 (54:bf:64:ce:82:c2), Dst: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)

> Destination: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)
       > Source: Dell_ce:82:c2 (54:bf:64:ce:82:c2)
           Type: IPv4 (0x0800)

    4581 13.610377
    185.172.148.128
    141.37.168.36
    TLSv1.3
    393 Application Data

    4582 13.610418
    141.37.168.36
    185.172.148.128
    TCP
    54 57346 → 443 [AcK] Seq=5052 Ack=494148 Win=262144 Len=0

    4583 13.615045
    185.172.148.128
    141.37.168.36
    TCP
    143 443 + 37346 [AcK] Seq=494148 Ack=4884 Win=42496 Len=1380 [TCP segment of a reassembled PDU]

    4584 13.615046
    185.172.148.128
    141.37.168.36
    TLSv1.3
    1206 Application Data

                                                                                                                                 54 57346 + 443 [ACK] Seq=5052 Ack=496680 Win=262144 Len=0
1434 443 + 57346 [ACK] Seq=496680 Ack=4968 Win=2496 Len=1380 [TCP segment of a reassembled PDU]
1434 443 + 57346 [ACK] Seq=498060 Ack=4968 Win=2496 Len=1380 [TCP segment of a reassembled PDU]
1434 443 + 57346 [ACK] Seq=499440 Ack=4968 Win=2496 Len=1380 [TCP segment of a reassembled PDU]
                                                                                                                  TCP
TCP
TCP
        4585 13.615119
                                        141.37.168.36
                                                                             185.172.148.128
        4586 13.615692
4587 13.615694
                                       185.172.148.128
185.172.148.128
                                                                             141.37.168.36
141.37.168.36
                                     185.172.148.128
                                                                             141.37.168.36
        4588 13.615695
       4589 13.615695
                                       185.172.148.128
                                                                            141.37.168.36
                                                                                                                 TLSv1.3 702 Application Data
 > Frame 4581: 393 bytes on wire (3144 bits), 393 bytes captured (3144 bits) on interface 0

Ethernet II, Src: Dell_ce:82:c2 (54:bf:64:ce:82:c2), Dst: FujitsuT_f1:7b:62 (90:lb:0e:f1:7b:62)
      > Destination: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)
> Source: Dell_ce:82:c2 (54:bf:64:ce:82:c2)
Type: IPv4 (0x0800)
    Internet Protocol Version 4, Src: 185.172.148.128, Dst: 141.37.168.36
     Transmission Control Protocol, Src Port: 443, Dst Port: 57346, Seq: 493809, Ack: 4800, Len: 339 [3 Reassembled TCP Segments (3099 bytes): #4579(1380), #4580(1380), #4581(339)]
Transport Layer Security
```

⇒ Netzknoten: Dell ce (siehe Bilder)

4. Betrachten Sie ein HTTP Paket. Welche weiteren Protokolle werden genutzt, um ein http Paket zu übertragen? Welchen Schichten des TCP/IP-Schichtenmodells können Sie die Pakete zuordnen?

```
67 3.489145
                     128.119.245.12
                                          141.37.168.36
                                                              HTTP
                                                                        538 HTTP/1.1 404 Not Found (text/html)
     65 3.381428
                     141.37.168.36
                                          128.119.245.12
                                                              HTTP
                                                                        411 GET /favicon.ico HTTP/1.1
     64 3.365659
                  128.119.245.12 141.37.168.36
                                                              HTTP
                                                                        540 HTTP/1.1 200 OK (text/html)
     61 3.258669
                     141.37.168.36
                                         128.119.245.12
                                                              HTTP
                                                                        454 GET /wireshark-labs/HTTP-wireshark-file1.html HTTP/1.1
 Frame 64: 540 bytes on wire (4320 bits), 540 bytes captured (4320 bits) on interface 0
> Ethernet II, Src: Dell_ce:82:c2 (54:bf:64:ce:82:c2), Dst: FujitsuT_f1:7b:62 (90:1b:0e:f1:7b:62)
> Internet Protocol Version 4, Src: 128.119.245.12, Dst: 141.37.168.36
> Transmission Control Protocol, Src Port: 80, Dst Port: 57019, Seq: 1, Ack: 401, Len: 486
 Hypertext Transfer Protocol
> Line-based text data: text/html (4 lines)
```

⇒ TCP = Transportschicht [Application Layer]
 ⇒ IP = Netzwerkschicht [Network Layer]
 ⇒ Ethernet = Zugriffsschicht [Access Layer]

Aufgabe 4:

1. Markieren Sie im obigen Paket Ethernet, IP und TCP Header

2. Was sind die Quell- und Ziel-MAC-Adressen Adressen des dargestellten Pakets?

=> Ziel: 38-22-D6-67-19-00 => Quelle: 00-21-CC-63-82-2C

3. Was sind die Quell- und Ziel-IP-Adressen des dargestellten Pakets?

=> Ziel: 5B C6 AE C0 [91.198.174.192] => Quelle: 8D 25 1D 5D [141.37.29.93]

4. Was sind die verwendeten TCP-Ports des dargestellten Pakets?

=> Ziel: 00 50 [Port 80] => Quelle: E2 26 [Port 57.894]

	Ziel						Que	le							-		
0000	38	22	d6	67	19	00	00	21	CC	63	82	2c	08	00	45	00	8".g!.c.,E.
0010	02	9c	02	ed	40	00	80	06	40	66	8d	25	1d	5d	5b	c6	@@f.%.][.
0020	ae	CO	e2	26	00	50	4f	4c	29	24	72	се	ЗС	d4	50	18	&.POL) \$r.<.P.
0030	40	b0	62	e7	00	00	47	45	54	20	2f	77	69	6b	69	2f	@.bGET /wiki/
0040	53	69	6d	70	6C	65	5f	53	65	72	76	69	63	65	5f	44	Simple_Service_D
0050	69	73	63	6f	76	65	72	79	5f	50	72	6f	74	6f	63	6f	iscovery Protoco
0060	6c	20	48	54	54	50	2f	31	2e	31	0d	0a	48	6f	73	74	l HTTP/1.1Host
0070	3a	20	64	65	2e	77	69	6b	69	70	65	64	69	61	2e	6f	: de.wikipedia.o
0800	72	67	0d	0a	55	73	65	72	2d	41	67	65	6e	74	3a	20	rgUser-Agent:
0090	4d	6f	7a	69	6c	6c	61	2f	35	2e	30	20	28	57	69	6e	Mozilla/5.0 (Win
00a0	64	6f	77	73	20	4e	54	20	36	2e	31	3b	20	57	4f	57	dows NT 6.1; WOW
00b0	36	34	3b	20	72	76	За	33	32	2e	30	29	20	47	65	63	64; rv:32.0) Gec

Aufgabe 5

- 1. Wie lautet der Filter, mit dem Sie über den TCP Port http Verkehr filtern können?
 - => tcp.port == 80 && http
- 2. Erhalten Sie das gleiche Ergebnis wie bei dem Filter HTTP? Erklären Sie ihre Erkenntnis => Ja da Port 80 den HTTP Port darstellt
- 3. Was bewirkt der Filter: http && !(udp.port==1900)
 - => Es werden lediglich http Anfragen gefiltert die nicht über den UDP port 1900 laufen
 - => "UDP port 1900 besorgt einen unzuverlässigen Dienst und Datagramme können ohne Meldung verdoppelt, unzulässig kommen oder verschwinden. UDP port 1900 denkt, dass die Fehlernachprüfung und -korrektion nicht erforderlich ist oder in dieser Anwendung nicht vollgezogen wird, um das Overhead dieser Bearbeitung auf dem Netzwerkschnittstellniveau zu vermeiden" [Quelle: https://de.adminsub.net/tcp-udp-port-finder/1900]
- 4. Welcher Filter bewirkt, dass nur Pakete angezeigt, werden, die ihre eigene IP-Adresse als Ziel-Adresse haben?
 - => **ip.dst** == **141.37.168.36** (bzw. ip.dst == xxx.xxx.xxx.xxx wobei x = eigene IP)