Solution to Q1 on Homework 1

Emma Knight

February 1, 2021

There were a bunch of questions about question one, so I'm going to post my solution to this question.

Problem 1. Let $R = \mathbb{C}[x,y]$. R is a unique factorization domain but not a PID; this problem is about showing that basically everything in the argument for classification of modules over PIDs goes wrong for modules over R.

- (a) Show that there are torsion modules generated by one element over R that are not of the form R/(f) for some element $f \in R$.
- (b) Show that there are fintie torsion modules over R that are not of the form $\oplus R/I$.
- (c) Show that there are finite torsion-free modules over R that are not free.
- (d) Give an example of two finite modules M, N over R, with N torsion-free, together with a surjection M oup N that doesn't admit a section (i.e. a map N oup M such that the composition N oup M oup N is the identity).

Answer 1. Each part demands only one example, so I will do so. It is not too hard to see how to produce a bevy of examples from the ones I give though.

- (a) This question is basically "give an example of an ideal that isn't principal." It is pretty straightforward to see that R/(x,y) works for this.
- (b) Let $I=(x,y),\ J=(x^3,x^2y,xy^2,y^3)$, and M=I/J. This module is just the positive degree elements modulo the elements of degree three or more. Notice that $M=M_1\oplus M_2$ where M_1 is the elements of degree 1 and M_2 is the elements of degree two. Additionally, notice that $\dim_{\mathbb{C}}(M)=5$, with $\dim_{\mathbb{C}}(M_1)=2$ and $\dim_{\mathbb{C}}(M_2)=3$.

Assume that $M \cong \oplus R/I_i$ for some set of ideals I_i . Write e_i for the element that is 1 in R/I_i and 0 elsewhere. Let α_i be the image of e_i in M. I will show that there are both at least two e_i s such that $(\alpha_i)_1 \neq 0$ and at most one with the same property.

Notice that, if $(\alpha_i)_1 \neq 0$, then α_i , $x\alpha_i$, and $y\alpha_i$ are linearly independent over \mathbb{C} , so one must have $\dim_{\mathbb{C}}(R/I_i) \geq 3$ (in fact it equals 3 but is at least 3 is enough). Since $\dim_{\mathbb{C}}(M) = 5$, there can't be two or more such e_i s.

However, one must have that $\{(\alpha_i)_1\}$ span M_1 as a \mathbb{C} -vector space. Since $\dim_{\mathbb{C}}(M_1) = 2$, there must be at least two α_i s such that $(\alpha_i)_1 \neq 0$.

This contradiction shows that M is not isomorphic to such a direct sum.

- (c) Again, this basically comes down to "write down an ideal that isn't principal." In this case, again, (x, y) works.
- (d) Consider the map $R^2 \to (x, y)$ given by sending (r_1, r_2) to $xr_1 + yr_2$. This map is almost by definition surjective.

Assume there is a section $s:(x,y)\to R^2$. One must have that s(x)=(1+yf(x,y),-xf(x,y)) for some polynomial $f(x,y)\in R$, and similarly, one must have s(y)=(-yg(x,y),1+xg(x,y)) for some $g(x,y)\in R$.

Now, xs(y) = s(xy) = ys(x), so we may compare the first coordinate of these two. One gets $y + y^2 f(x, y) = -xyg(x, y)$. However, the left hand side has nontrivial degree 1 component, wherease the right hand side is made up only of degree 2 and higher terms. This contradiction shows that there cannot be a section.