0

UNIT-3 DIGITAL ELECTROHICS

= AOB A DB A B Y : XHOR OR MOR O if solm Y= AB + AB Y= AB+ AB NOT odd for gate AND Y= AB+ AB MAHD Day AB

* Principle of duality: O with 1, I with 0, + with.

LAWS

NOR

* Distributive Law : A+ BC = (A+B)(A+C)

* De Mogais Theden: A+B = A·B A+B+c = A.B.C

A+B

dual: A.(A+B) = A * Absolption Theolem: A+AB = A

A + AB = A+ B

 $A(\overline{A}+B) = A \cdot B$

* Consensus Theorem: AB + AC + B.C.

Po S SOP make f = 0 make f=1. and take them

OR-AND AND - OR

f= TM () f = \(\)

nax terms min-terms To convert to POS To convert to SOP

eg: F = (x'+y)(x+z)(4+2) eg F= A + B.C

F=(x+y+0)(x+0+2) (0+y+2) F = (x'+y+zz')(z+yy'+z)(xx'+y+z) E = 4.1.1 + B.C.1 F = A(B+B)(c+E)+(A+A)BC

Inputs			Outputs	
X	Y		Carry	Sun
0	0		0	0
0	1	2.4	· • • • • • • • • • • • • • • • • • • •	i
- (0		٥	ž
l	1	ļ	l	D
111.				

Sum =
$$\overline{X} \cdot \overline{Y} + X\overline{Y} = X \oplus Y (X \times XO) Y$$

Carry = $X \cdot Y$
Using MAHD only | LXOR foll Sum

INAND & COLY : I AND for Corry 4MAND 60 SUM

Full Addes

Sum =
$$\overline{X}\overline{Y}Z + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z$$

= $X \oplus Y \oplus Z$
Cosby = $(X \oplus Y)Z + X \cdot Y = XY + YZ + XZ$

Multiplexes (MUX)

Yo = 5'D Y, = 5D Yo=((S'D)') Y=(SB)') ->4 HAND

$$\frac{S}{I_{1}} = \frac{Y}{I_{2}} = \frac{S}{I_{2}} = \frac{S}{I_{3}} =$$

$$\rightarrow 4:1 \text{ MUX}$$

$$Y = ((s'I_0)' \cdot (SI_1)')' \xrightarrow{} 4\text{MMND}$$

$$T_1 \xrightarrow{} 4:1 \xrightarrow{} 7\text{Y}$$

$$T_2 \xrightarrow{} 1 \xrightarrow{} 4:1 \xrightarrow{} 7\text{Y}$$

$$S_1 \xrightarrow{} S_0 \xrightarrow{} Y$$

$$S_1 \xrightarrow{} Y$$

$$S_1 \xrightarrow{} S_0 \xrightarrow{} Y$$

$$S_1 \xrightarrow{} Y$$

$$S_1 \xrightarrow{} S_0 \xrightarrow{} Y$$

$$S_1 \xrightarrow$$

- tel

= TOQ

