Idea

As a user I want to add my nutritional values and preferred ingredients into the app and get a recipe suggestion based on my rating history.

Build a recipe suggestion for the user according to the individualdefined nutritional goals that fit the rating history and fulfill their requested ingredients.

recipe suggestion:

based on nutrition values: recipes with fitting nutrition (according to individual distribution) are recommended highest

based on ingredients: recipes with entered ingredients are recommended

based on rating: recipes that were rated high by users with similar rating history should be recommended

default nutritional distribution should be set when set

Technical Explanation

Prediction value fitting recipe of more than 75% fit

Baseline model

Recipe-percentage-fit: We assume that we can provide each request with a minimum of one recipe that satisfies the preset criteria. We assume that a user with a similar rating history shares a similar taste.

High protein model: We assume that the high protein model will predict better fits for a user that has chosen filter: high protein.

Low carb model: We assume that the Low Carb model will predict better fits for a user that has chosen filter: low carb.

Additional models

KNN for similar recipes/
Collaborative
Filtering

YouTube | Updated 05-02-2024 @ 15:37 GMT+01:00

Matrix Factorization Explore and run machine learning code with Kaggle Notebooks | Using data from Food.com - Recipes and analysis Cleaning of review data

Recipe preprocessing with focus on reviews Finding recipes

based on ingredient input according to rating

our possible filters The second seco

final filters: vegetarian vegan gluten-free lactose-free

		-		
	Recipeld	Authorld	Rating	
21	780	2312	5	
45	4366	2178	5	
130	3596	3794	5	
151	480	4036	5	
153	4807	2695	2	

uthorId	1533	1535	1634		1676	1792		
RecipeId								
44		9	0	0	9	9	1	
49		ð	0	0	9	ə		
54		9	0	0	9	9		
56		ð	0	0	9	9		
62		ð	0	0	9	9		
530645		ð	0	0	9	9		
533699		ð	0	0	9	9		
533997	(9	0	0	9	9		
534900		ð	9	0	9	9		
535779		9	0	0	9	9		
AuthorId	1891	2148	2178		2310	2312		
RecipeId								
44		ð	0	0	9	9		1
49		ð	0	0	9	9		
54		ð	0	0	9	9		
56		9	0	0	9	9		
62		ð	0	0	9	9		
530645		ð	0	0	9	9		
533699	(ð	0	0	9	9		
533997		9	0	0	9	9		
534900			0	0	9	9		
535779		9	0	0	9	9		

Next models:

Singular Value Decomposition (SVD) ? similar to NMF

K-nearest Neighbors (KNN)

potential model: using sentiment

Reserach paper how adjectives can be used for recommendation system!

------Sentiment Analysis on Amazon Reviews using TF-IDF Approach.

How to use Knn on movies + tags

in this fourth post, we'll be building a recommendations model - content-based and collaborative filtering - for a recommender engine.

How to use Knn on movies + tags

Keyword-based Movie Recommender Models

• 1-) A Gentle Introduction

Engines

Recommend

Add

of 5%

Ingradiants

