Package 'humidity'

October 13, 2022

Type Package

Title Calculate Water Vapor Measures from Temperature and Dew Point
Version 0.1.5
Date 2019-11-10
Maintainer Jun Cai <cai-j12@mails.tsinghua.edu.cn></cai-j12@mails.tsinghua.edu.cn>
Vapor pressure, relative humidity, absolute humidity, specific humidity, and mixing ratio are commonly used water vapor measures in meteorology. This R package provides functions for calculating saturation vapor pressure (hPa), partial water vapor pressure (Pa), relative humidity (%), ab solute humidity (kg/m^3), specific humidity (kg/kg), and mixing ratio (kg/kg) from temperature (K) and dew point (K). Conversion functions between humidity measures are also provided.
Depends R (>= 2.10)
Suggests dplyr, knitr
License GPL-3
URL https://github.com/caijun/humidity
BugReports https://github.com/caijun/humidity/issues
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Jun Cai [aut, cre] (https://orcid.org/0000-0001-9495-1226)
Repository CRAN
Date/Publication 2019-11-10 07:20:03 UTC
R topics documented:
AH

2 AH

	Es.T0	4
	ivs	4
	ivt	5
	K2C	5
	L	6
	Md	6
	MR	7
	Mw	7
	RH	8
	Rw	9
	SH	9
	SH2RH	10
	SVP	11
	SVP.ClaCla	12
	SVP.Murray	13
	T0	14
	WVP1	14
	WVP2	15
Index		16

ΑН

calculate absolute humidity

Description

calculate absolute humidity ρ_w based on partial water vapor pressure e at temperature t

Usage

```
AH(e, t, isK = TRUE)
```

Arguments

e partial water vapor pressure in Pascal (Pa)

t temperature in Kelvin (K) or in degree Celsius (°C)

is K logical indicator whether temperature is in Kelvin (K). The default value is

TRUE.

Value

numeric absolute humidity $\rho_w~(kg/m^3)$

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

C2K 3

See Also

```
WVP1, WVP2, RH, SH.
```

Examples

```
t <- 273.15
Es <- SVP(t)
e <- WVP2(70, Es)
AH(e, t)
```

C2K

Celsius to Kelvin conversion

Description

convert temperature in degree Celsius (°C) into Kelvin (K)

Usage

C2K(C)

Arguments

С

temperature in degree Celsius (°C)

Value

numeric temperature in Kelvin (K)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

K2C.

```
T0 # absolute zero in Kelvin (K) C2K(T0)
```

4 ivs

Es.T0

Saturation vapor pressure at absolute zero (hPa)

Description

 $e_s(T_0) = 6.11 hPa$ is the saturation vapor pressure at the absolute zero $T_0 = 273.15 K$.

Usage

Es.T0

Format

An object of class numeric of length 1.

See Also

T0

ivs

Viability of influenza A virus for 1 hour after spraying

Description

A dataset containing airborne virus particles of influenza A for viable survival in the dark at controlled temperature and relative humidity for 1 hour after spraying.

Usage

ivs

Format

A data frame with 11 rows and 3 variables:

- T: temperature in degree Celsius (7.5–32.0)
- RH: relative humidity in percentage (20–82)
- PV: percentage of viable virus (6.6–78.0)

Source

Harper, G. J. (1961). Airborne micro-organisms: survival tests with four viruses. Journal of Hygiene, 59(04), 479-486.

ivt 5

ivt Aerosol transmission efficiency of influenza A virus from guinea pigs to guinea pigs

Description

A dataset containing aerosol transmission efficiency of influenza A virus from four infected guinea pigs to four exposed guinea pigs under conditions of controlled temperature and relative humidity.

Usage

ivt

Format

A data frame with 24 rows and 4 variables:

- T: temperature in degree Celsius (5–30)
- RH: relative humidity in percentage (20–80)
- PT: transmission efficiency in percentage (0–100)
- source: data source

Source

Lowen, A. C., Mubareka, S., Steel, J., & Palese, P. (2007). *Influenza virus transmission is dependent on relative humidity and temperature*. PLoS pathogens, 3(10), e151.

Lowen, A. C., Steel, J., Mubareka, S., & Palese, P. (2008). *High temperature* (30°C) blocks aerosol but not contact transmission of influenza virus. Journal of virology, 82(11), 5650-5652.

K2C

Kelvin to Celsius conversion

Description

convert temperature in Kelvin (K) into degree Celsius (°C)

Usage

K2C(K)

Arguments

Κ

temperature in Kelvin (K)

6 Md

Value

numeric temperature in degree Celsius (°C)

Author(s)

See Also

C2K.

Examples

K2C(0)

L

Latent heat of water vapor

Description

Latent heat of water vapor $L = 2.5 \times 10^6 J/kg$

Usage

L

Format

An object of class numeric of length 1.

Md

Molecular weight of dry air

Description

Molecular weight of dry air $M_d = 28.9634g/mol$

Usage

Md

Format

An object of class numeric of length 1.

See Also

Mw

MR 7

MR

calculate mixing ratio

Description

calculate mixing ratio ω based on specific humidity q

Usage

MR(q)

Arguments

q

specific humidity q (kg/kg)

Value

numeric mixing ratio $\omega (kg/kg)$

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

SH.

Examples

```
t <- 273.15
Es <- SVP(t)
e <- WVP2(70, Es)
q <- SH(e, p = 101325)
MR(q)
```

Mw

Molecular weight of water vapor

Description

Molecular weight of water vapor $M_w = 18.01528g/mol$

Usage

Mw

8 RH

Format

An object of class numeric of length 1.

See Also

Md

RH

calculate relative humidity

Description

calculate relative humidity ψ based on temperature t and dew point T_d

Usage

```
RH(t, Td, isK = TRUE)
```

Arguments

t temperature in Kelvin (K) or in degree Celsius ($^{\circ}$ C)

Td dew point in Kelvin (K) or in degree Celsius ($^{\circ}$ C)

isK logical indicator whether temperature is in Kelvin (K). The default value is TRUE.

Value

numeric relative humidity in

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

AH, SH.

```
RH(30, 15, isK = FALSE)
```

Rw

Rw

Specific gas constant of water vapor

Description

Specific gas constant of water vapor $R_w=\frac{1000R}{M_w}=461.52J/(kgK)$, where R=8.3144621J/(molK) is the molar gas constant and $M_w=18.01528g/mol$ is the molecular weight of water vapor.

Usage

Rw

Format

An object of class numeric of length 1.

See Also

Mw

SH

calculate specific humidity

Description

calculate specific humidity q based on partial water vapor pressure e under given atmospheric pressure p

Usage

```
SH(e, p = 101325)
```

Arguments

e partial water vapor pressure in Pascal (Pa)

p atmospheric pressure in Pascal (Pa). The default is standard atmospheric pressure of 101325Pa.

Value

numeric specific humidity q(kg/kg)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

10 SH2RH

See Also

```
WVP2, WVP2, AH, RH, MR.
```

Examples

```
t <- 273.15
Es <- SVP(t)
e <- WVP2(70, Es)
SH(e, p = 101325)
```

SH2RH

convert specific humidity into relative humidity

Description

Climate models usually provide specific humidity only; however, relative humidity is used to compute heat index that is really useful for health impacts studies. This function converts specific humidity q into relative humidity ψ at temperature t and under atmospheric pressure q.

Usage

```
SH2RH(q, t, p = 101325, isK = TRUE)
```

Arguments

q	specific humidity $q(kg/kg)$
t	temperature in Kelvin (K) or in degree Celsius (°C)
p	atmospheric pressure in Pascal (Pa). The default is standard atmospheric pressure of 101325Pa.
isK	logical indicator whether temperature is in Kelvin (K). The default value is TRUE.

Value

numeric relative humidity in

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

```
AH, SH.
```

```
SH2RH(0.005867353, 22.25, p = 101325, isK = FALSE)
```

SVP 11

SVP

calculate saturation vapor pressure

Description

calculate saturation vapor pressure E_s at temperature t, using the Clausius-Clapeyron equation or the Murray equation.

Usage

```
SVP(t, isK = TRUE, formula = c("Clausius-Clapeyron", "Murray"))
```

Arguments

t	temperature in Kelvin (K) or in degree Celsius (°C)
isK	logical indicator whether temperature is in Kelvin (K). The default value is TRUE.
formula	the formula is used for calculating saturation vapor pressure. By default the Clausius-Clapeyron equation is used.

Value

numeric saturation vapor pressure in hectopascal (hPa) or millibar (mb)

Author(s)

See Also

```
SVP.ClaCla, SVP.Murray.
```

```
SVP(273.15)
```

12 SVP.ClaCla

SVP.ClaCla

calculate saturation vapor pressure using the Clausius-Clapeyron equation

Description

calculate saturation vapor pressure E_s at temperature t, using the Clausius-Clapeyron equation.

Usage

```
SVP.ClaCla(t)
```

Arguments

t

temperature in Kelvin (K)

Value

numeric saturation vapor pressure in hectopascal (hPa) or millibar (mb)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

References

Shaman, J., & Kohn, M. (2009). *Absolute humidity modulates influenza survival, transmission, and seasonality*. Proceedings of the National Academy of Sciences, 106(9), 3243-3248.

Wallace, J. M., & Hobbs, P. V. (2006). *Atmospheric science: an introductory survey* (Vol. 92). Academic press.

See Also

```
SVP. Murray, SVP.
```

```
T0 # absolute zero in Kelvin (K) SVP.ClaCla(T0)
```

SVP.Murray 13

SVP.Murray

calculate saturation vapor pressure using the Murray equation

Description

calculate saturation vapor pressure E_s at temperature t, per the equation proposed by Murray (1967).

Usage

```
SVP.Murray(t)
```

Arguments

t

temperature in Kelvin (K)

Value

numeric saturation vapor pressure in hectopascal (hPa) or millibar (mb)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

References

Murray, F. W. (1967). On the Computation of Saturation Vapor Pressure. Journal of Applied Meteorology, 6(1), 203-204.

See Also

```
SVP.ClaCla, SVP.
```

```
T0 # absolute zero in Kelvin (K) SVP.Murray(T0)
```

14 WVP1

T0

Absolute zero

Description

Absolute zero in Kelvin T_0 (K)

Usage

T0

Format

An object of class numeric of length 1.

WVP1

calculate partial water vapor pressure given dew point

Description

calculate partial water vapor pressure e based on dew point T_d

Usage

```
WVP1(Td, isK = TRUE)
```

Arguments

Td dew point in Kelvin (K) or in degree Celsius (°C)

isK logical indicator whether temperature is in Kelvin (K). The default value is

TRUE.

Value

numeric partial vapor pressure in hectopascal (hPa) or millibar (mb)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

```
SVP, SVP.ClaCla.
```

WVP2 15

Examples

```
T0 # absolute zero in Kelvin (K) WVP1(T0)
```

WVP2

calculate partial water vapor pressure given relative humidity and saturation water vapor pressure

Description

calculate partial water vapor pressure e based on relative humdity ψ and saturation water vapor pressure at temperature t

Usage

```
WVP2(psi, Es)
```

Arguments

psi relative humidity ψ in percentage (%)

Es saturation vapor pressure $e_s(hPa)$ at temperature t, which can be calculated by

callling SVP function.

Value

numeric partial water vapor pressure in Pascal (Pa)

Author(s)

Jun Cai (<cai-j12@mails.tsinghua.edu.cn>), PhD candidate from Department of Earth System Science, Tsinghua University

See Also

```
SVP, SVP.ClaCla, SVP.Murray.
```

```
Es <- SVP(273.15)
WVP2(70, Es)
```

Index

```
\ast datasets
    Es.T0,4
     ivs, 4
     ivt, 5
     L, 6
     Md, 6
     Mw, 7
     Rw, 9
    T0, 14
AH, 2, 8, 10
C2K, 3, 6
Es.T0,4
ivs, 4
ivt, 5
K2C, 3, 5
L, 6
Md, 6, 8
MR, 7, 10
Mw, 6, 7, 9
RH, 3, 8, 10
Rw, 9
SH, 3, 7, 8, 9, 10
SH2RH, 10
SVP, 11, 12–15
SVP.ClaCla, 11, 12, 13–15
SVP.Murray, 11, 12, 13, 15
T0, 4, 14
WVP1, 3, 14
WVP2, 3, 10, 15
```