Legendre Segment Finder Status

T. Alexopoulos

M. Bachtis

E. Gazis

G. Tsipolitis

National Technical University of Athens

Muon Week 11/6/07

Outline

- · Legendre Transform
- Legendre Segment Finder in Athena (very preliminary...)

Legendre Transform (LT) of Convex Functions

$$\frac{\mathrm{d}^2 f}{\mathrm{d}^2 x} > 0 \quad \text{convex function}$$

 $f(x) \stackrel{LT}{\longleftrightarrow} F(p)$ Legendre transform pairs

$$F(p) = \sup_{x} [px - f(x)] = -\inf_{x} [f(x) - px]$$

Calculate LT at a point x_0 :

$$p = \frac{df}{dx}\Big|_{x=x_0} \implies x_0 = X(p)$$

$$F(p) = px_0 - f(x_0)$$
$$= pX(p) - f(X(p))$$

Legendre Transform (LT) of a Circle (1)

$$f(x) = \begin{cases} y_0 + \sqrt{R^2 - (x - x_0)^2} & \text{concave part} \\ y_0 - \sqrt{R^2 - (x - x_0)^2} & \text{convex part} \end{cases}$$

$$F(p) = \begin{cases} +y_0 - x_0 p + R\sqrt{p^2 + 1} & \text{concave part} \\ -y_0 + x_0 p + R\sqrt{p^2 + 1} & \text{convex part} \\ -y_0 + x_0 p + R\sqrt{p^2 + 1} & \text{convex part} \end{cases}$$

Legendre Transform (LT) of a Circle (2)

$$f(x) \stackrel{LT}{\longleftrightarrow} F(p) = \begin{cases} r = x_0 \cos \theta + y_0 \cos \theta + R \\ r = x_0 \cos \theta + y_0 \cos \theta - R \end{cases}$$

Legendre Transform for Tracking

- · To each circle corresponds a couple of sinograms in the Legendre Space.
- · The point with the maximum intensity defines the common tangent of all circles

Performance of Legendre Algorithm - Multi Track Events

Study the Legendre method in the Athena framework (Thanks Niels!)

2 GeV

Fake Segments

--- MoMu

Legendre

eff: 72.1% / 69.3%

fake: 11.1% / 8.2%

Hits On Segment(matched)

Hits On Segment(fakes)

$$eff = \frac{rec. segm.}{sim. segm.}$$

$$fake = \frac{fake \text{ segm.}}{rec. \text{ segm.}}$$

2 GeV

--- MoMu

Legendre

Eff: 72.1% / 69.3%

Fake: 11.1% / 8.2%

20 GeV

20 GeV

--- MoMu

Legendre

Eff: 97.6% / 96.3%

Fake: 12.7% / 7.8%

100 GeV

Hits On Segment(matched)

Hits On Segment(fakes)

— MoMu

---- Legendre

Eff: 97.3% / 94.5%

Fake: 52.3% / 37.1%

100 GeV

--- MoMu

Legendre

Eff: 97.3% / 94.5%

Fake: 52.3% / 37.1%

100 GeV w/ bkg Safetyfactor=5

Fake: 941% / 525%

Timing & Memory studies

