Optimised finite difference computation from symbolic equations

```
M. Lange^1 N. Kukreja^1 F. Luporini^1 M. Louboutin^2 C. Yount^3 J. Hückelheim^1 G. Gorman^1 June 13, 2017
```

¹Department of Earth Science and Engineering, Imperial College London, UK

²Seismic Lab. for Imaging and Modeling, The University of British Columbia, Canada

³Intel Corporation

Symbolic computation is a powerful tool

Solving simple PDEs is (kind of) easy...

First-order diffusion equation:

```
for ti in range(timesteps):
    t0 = ti % 2
    t1 = (ti + 1) % 2
    for i in range(1, nx-1):
        for j in range(1, ny-1):
            uxx = (u[t0, i+1, j] -2 * u[t0, i, j] + u[t0, i-1, j]) / dx2
            uyy = (u[t0, i, j+1] -2 * u[t0, i, j] + u[t0, i, j-1]) / dy2
            u[t1, i, j] = u[t0, i, j] + dt * a * (uxx + uyy)
```


Solving complicated PDEs is not easy!

12th-order acoustic wave equation:

```
for (int i4 = 0; i4<149; i4+=1) {
   for (int i1 = 6; i1 < 64; i1++) {
       for (int i2 = 6; i2 < 64; i2++) {
            for (int i3 = 6: i3<64: i3++) {
               ][i2][i3]-3.3264e+8F*m[i1][i2][i3]*u[i4-2][i1][i2][i3]+6.6528e+8F*m[i1][i2][
                            i3]*u[i4-1][i1][i2][i3]-2.12255421155556e+7F*u[i4-1][i1][i2][i3
                            1-1.42617283950617e+2F*u[i4-1][i1][i2][i3-6]+2.46442666666667e+3F*u[i4-1][i1
                            l[i2][i3-5]-2.11786666666666e+4F*n[i4-1][i1][i2][i3-4]+1.25503209876543e+5F*
                            i1][i2][i3-1]+4.066304e+6F*u[i4-1][i1][i2][i3+1]-6.3536e+5F*u[i4-1][i1][i2][
                            i3+2]+1.25503209876543e+5F*u[i4-1][i1][i2][i3+3]-2.11786666666667e+4F*u[i4
                            -11[i1][i2][i3+4]+2.4644266666667e+3F*u[i4-1][i1][i2][i3
                            +5]-1,42617283950617e+2F*n[i4-1][i1][i2][i3+6]-1,42617283950617e+2F*n[i4-1][
                            ill[i2-6][i3]+2.4644266666667e+3F*u[i4-1][i1][i2-5][i3]-2.11786666666667e+4
                            F*u[i4-1][i1][i2-4][i3]+1.25503209876543e+5F*u[i4-1][i1][i2-3][i3]-6.3536e+5
                            F*u[i4-1][i1][i2-2][i3]+4.066304e+6F*u[i4-1][i1][i2-1][i3]+4.066304e+6F*u[i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4-1][i4
                            -1][i1][i2+1][i3]-6.3536e+5F*u[i4-1][i1][i2+2][i3]+1.25503209876543e+5F*u[i4
                            -11[i1][i2+3][i3]-2.1178666666667e+4F*u[i4-1][i1][i2+4][i3
                            1+2.4644266666667e+3F*n[i4-1][i1][i2+5][i3]-1.42617283950617e+2F*n[i4-1][i1
                            ][i2+6][i3]-1.42617283950617e+2F*u[i4-1][i1-6][i2][i3]+2.46442666666666e+3F*
                            u[i4-1][i1-5][i2][i3]-2.1178666666667e+4F*u[i4-1][i1-4][i2][i3]
                            ]+1.25503209876543e+5F*u[i4-1][i1-3][i2][i3]-6.3536e+5F*u[i4-1][i1-2][i2][i3
                            1+4.066304e+6F*u[i4-1][i1-1][i2][i3]+4.066304e+6F*u[i4-1][i1+1][i2][i3]
                            1-6.3536e+5F*u[i4-1][i1+2][i2][i3]+1.25503209876543e+5F*u[i4-1][i1+3][i2][i3
                            ]-2.1178666666667e+4F*u[i4-1][i1+4][i2][i3]+2.4644266666667e+3F*u[i4-1][i1
                            +5| [i2] [i3] -1.42617283950617e+2F*u[i4-1] [i1+6] [i2] [i3]
                            damp[i1][i2][i3]+2*m[i1][i2][i3]):
                                                                                                                                                       London
```

Inversion problems for seismic imaging

We can solve PDEs symbolically...

- Domain-specific languages provide high levels of abstraction
- Separation of concerns between scientists and computational experts

For high-performance kernels in seismic imaging

Large scale inversion problems

- · Very large amounts of data, huge amount of compute
- HPC architectures, often with accelerators (eg. Intel[®] Xeon Phi)
- · Requires highly optimised solver code

Most algorithms use finite difference operators

- Different high-order formulations of wave equations
- Unknown topology and high wave frequencies
- Large, complicated stencils, often written by hand!

Symbolic computation is a powerful tool

SymPy: Symbolic computer algebra system in pure Python¹

Enables automation of stencil generation

- Complex symbolic expressions as Python object trees
- · Symbolic manipulation routines and interfaces
- · Convert symbolic expressions to numeric functions
 - Python (NumPy) functions; C or Fortran kernels
- For a great overview see A. Meurer's talk at SciPy 2016

For specialised domains generating C code is not enough!

- Compiler-level optimimizaton to leverage performance
- Stencil optimization is a research field of its own

London

¹A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Mood T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F<u>. Padrosa</u>

Devito - Automated finite difference propagators

Devito: Finite difference DSL based on SymPy

Devito generates highly optimized stencil code...

- OpenMP threading and vectorisation pragmas
- Cache blocking and auto-tuning
- Symbolic stencil optimisation

... from concise mathematical syntax

Example: acoustic wave equation with dampening

$$m\frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \nabla u = 0$$

can be written as

eqn =
$$m * u.dt2 + eta * u.dt - u.laplace$$

Computational Fluid Dynamics examples:

CFD Python: Step 5 - Linear convection

Governing equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} + c \frac{\partial u}{\partial y} = 0$$

Discretized:

$$u_{i,j}^{n+1} = u_{i,j}^{n} - c \frac{\Delta t}{\Delta x} (u_{i,j}^{n} - u_{i-1,j}^{n}) - c \frac{\Delta t}{\Delta y} (u_{i,j}^{n} - u_{i,j-1}^{n})$$

SymPy stencil (assume $\Delta t = s$, $\Delta x = \Delta y = h$):

CFD Python: Step 5 - Linear convection

Simple advection example:

```
op = Operator(Eq(u.forward, stencil), subs={h: dx, s:dt})
# Set initial condition as a smooth bump
init_smooth(u.data, dx, dy)
op(u=u, time=100) # Apply for 100 timesteps
```


http://nbviewer.jupyter.org/github/barbagroup/CFDPython/blob/master/lessons/07_Step_5.ipynb

CFD Python: Step 9 - Laplace equation

Governing equation:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} = 0$$

Discretized:

$$p_{i,j}^{n} = \frac{\Delta y^{2}(p_{i+1,j}^{n} + p_{i-1,j}^{n}) + \Delta x^{2}(p_{i,j+1}^{n} + p_{i,j-1}^{n})}{2(\Delta x^{2} + \Delta y^{2})}$$

```
SymPy stencil (assume \Delta t = s, \Delta x = \Delta y = h):
```

```
# Create two separate symbols with space dimensions
p = DenseData(name='p', shape=(nx, ny), space_order=2)
pn = DenseData(name='pn', shape=(nx, ny), space_order=2)
# Define equation and solve for center point in 'pn'
eq = Eq(pn.dx2 + pn.dy2)
stencil = solve(eq, pn)[0]
# The update expression to populate buffer 'p'
eq_stencil = Eq(p, stencil)
```

CFD Python: Step 9 - Laplace equation

Boundary conditions:

$$p = 0$$
 at $x = 0$
 $p = y$ at $x = 2$
 $\frac{\partial p}{\partial y} = 0$ at $y = 0, 1$

Explicit BCs via expressions:

op = Operator([eq_stencil] + bc, subs={h: dx, a: 1.})

CFD Python: Step 9 - Laplace equation

Convergence loop:

http://nbviewer.jupyter.org/github/barbagroup/CFDPython/blob/master/lessons/12_Step_9.ipynb

The aim: Derive image of the earth's sub-surface

Solve a PDE-constrained optimization problem

- Using wave propagation operators and their adjoints
- Wave is inserted and read at unaligned points Inject sparse point interpolation into kernels!


```
def forward(model, m, eta, src, rec, order=2):
    # Create the wavefeld function
    u = TimeData(name='u', shape=model.shape
                 time_order=2, space_order=order)
    # Derive stencil from symbolic equation
    egn = m * u.dt2 - u.laplace + eta * u.dt
    stencil = solve(eqn, u.forward)[0]
    update_u = [Eq(u.forward, stencil)]
    # Inject wave as source term
    src term = src.inject(field=u, expr=src * dt**2 / m)
    # Interpolate wavefield onto receivers
    rec_term = rec.interpolate(expr=u)
    # Create operator with source and receiver terms
    return Operator(update_u + src_term + rec_term,
                    subs={s: dt, h: model.spacing})
```

```
def forward(model, m, eta, src, rec, order=2):
    # Create the wavefeld function
    u = TimeData(name='u', shape=model.shape
                 time_order=2, space_order=order)
    # Derive stencil from symbolic equation
    eqn = m * u.dt2 - u.laplace + eta * u.dt
    stencil = solve(eqn, u.forward)[0]
    update_u = [Eq(u.forward, stencil)]
    # Inject wave as source term
    src_term = src.inject(field=u, expr=src * dt**2 / m)
    # Interpolate wavefield onto receivers
    rec_term = rec.interpolate(expr=u)
    # Create operator with source and receiver terms
    return Operator(update_u + src_term + rec_term,
                    subs={s: dt, h: model.spacing})
```

```
def gradient(model, m, eta, srca, rec, order=2):
    # Create the adjoint wavefeld function
    v = TimeData(name='v', shape=model.shape,
                 time_order=2, space_order=order)
    # Derive stencil from symbolic equation
    eqn = m * v.dt2 - v.laplace - eta * v.dt
    stencil = solve(eqn, u.forward)[0]
    update v = [Eq(v.backward, stencil)]
    # Inject the previous receiver readings
    rec_term = rec.inject(field=v, expr=rec * dt**2 / m)
    # Gradient update terms
    grad = DenseData(name='grad', shape=model.shape)
    grad_update = Eq(grad. grad - u.dt2 * v)
    # Create operator with source and receiver terms
    return Operator(update_v + [grad_update] + rec_term
                    subs={s: dt, h: model.spacing},
                    time_axis=Backward)
```

Reverse Time Migration

- Synthetic "true" model and a smoothed boundary to invert for
- Use forward on synthetic and smooth data to compute residual
- Compute gradient to form image

Inverted subsurface image

Performance benchmark:

- Second order in time with boundary dampening
- 3D domain (512 \times 512 \times 512), grid spacing = 20.
- Varying space order (SO)
- Xeon E5-2620 v4 2.1Ghz (Broadwell) 8 cores @ 2.1GHz, single socket

Devito - Automated code optimisations

Devito Symbolic Engine (DSE)

- Common sub-expession elemination (CSE)
- · Factorization and time invariant hoisting
- Alias detection (WIP)

Devito Loop Engine (DLE)

- · OpenMP and vectorisation via pragmas
- Loop blocking and auto-tuning for block size

YASK integration (ongoing):

- · Yet Another Stencil Kernel
- Superior performance!
 - · Stencil folding
 - Nested OpenMP and MPI support
- Integrated with DLE as alternative backend

Summary

- Devito: High-performance finite difference DSL
 - Symbolic finite difference stencils via SymPy
 - Fully executable via JIT compilation
 - Increased productivity through high-level API
- Fast wave propagators for inversion problems
 - Seismic inversion operators in < 20 lines
 - Complete problem setups in 200 lines
 - Automated performance optimisation!

Thank You

Useful links:

- http://www.opesci.org
- https://github.com/opesci/devito
- http://www.sympy.org

Tutorials:

- The original CFD Python tutorial: http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
- Devito implementation: http://www.opesci.org/devito/tutorials.html

Engineering and Physical Sciences Research Council

Part of this work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics and Computer Science programs under contract number DE-ACQ2.06C411357