Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Knoevenagel Condensation

Substrates:

- 1. Methyl acetoacetate available at Sigma-Aldrich
- 2. a,a,a-Trifluoro-p-tolualdehyde available at Sigma-Aldrich

Products:

1. 2-(4-trifluoromethylbenzylidene)acetoacetate methyl ester

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.1.2 Acid catalyzed transesterification

Substrates:

- 1. 2-(4-trifluoromethylbenzylidene)acetoacetate methyl ester
- 2. sorbic alcohol

Products:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C) = O$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

2.1.3 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C)=O$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Appel Reaction

Substrates:

1. sorbic alcohol

Products:

1. 1-brom-hexa-2,4-dien

 $\textbf{Typical conditions:} \ PPh 3. CBr 4$

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

2.2.2 Knoevenagel Condensation

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. Lithium acetoacetate - available at Sigma-Aldrich

Products:

1. CC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(=O)O

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

${f 2.2.3}$ Synthesis of esters from alkyl chlorides and carboxylic acids or thioacids

Substrates:

1. 1-brom-hexa-2,4-dien

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{Cc1ccc}(\mathrm{C}(\mathrm{F})(\mathrm{F})\mathrm{F})\mathrm{cc1})\mathrm{C}(=\mathrm{O})\mathrm{O}$

Products:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C) = O$

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2005.08.026 AND 10.1021/ol034655r (SI) AND 10.1039/C3RA41967C AND 10.1016/j.bmcl.2012.03.093

Retrosynthesis ID: 14685

2.2.4 Diels-Alder

Substrates:

$$1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C) = O$$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.3 Path 3

Score: 76.25

Figure 3: Outline of path 3

2.3.1 Reaction of alcohols with diketene

Substrates:

- 1. diketene available at Sigma-Aldrich
- 2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)CC(C)=O

Typical conditions: DCM.heat

Protections: none

Reference: WO2012/31028 A2 (p.39) AND 10.1021/ol051945u AND

10.1021/ol0069756 AND 10.1002/adsc.200800532

2.3.2 Knoevenagel Condensation

Substrates:

1. CC=CC=CCOC(=O)CC(C)=O

2. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C)=O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.3.3 Diels-Alder

Substrates:

1. CC=CC=CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C)=O

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.4 Path 4

Score: 76.25

Figure 4: Outline of path 4

2.4.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

1. trans-Propenylboronic acid - available at Sigma-Aldrich

2. 3-bromo-2,5-dihydrofuran-2-one - available at Sigma-Aldrich

Products:

1. C/C=C/C1=CCOC1=O

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24937

2.4.2 Diels-Alder

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

 $2. \hspace{0.1cm} \text{C/C=C/C1=CCOC1=O}$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

 $\textbf{Typical conditions:} \ H2O. MeOH. EtOH. is ooct ane$

Protections: none

Reference: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-

Z

2.4.3 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- 2. CC1C=CC2COC(=O)C2=C1
- 3. 4-Iodobenzotrifluoride available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND 10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.5 Path 5

Score: 84.06

Figure 5: Outline of path 5

2.5.1 Steglich Esterification

Substrates:

- 1. 2-oxo-3-[4-(trifluoromethyl)phenyl]propanoic acid available at Sigma-Aldrich
- 2. sorbic alcohol

Products:

 $1. \ CC{=}CC{=}CCOC({=}O)C({=}O)Cc1ccc(C(F)(F)F)cc1 \\$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.5.2 Corey-Seebach

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=O)Cc1ccc(C(F)(F)F)cc1$

2. 2-Methyl-1,3-dithiane - available at Sigma-Aldrich

Products:

 $1. \ CC{=}CC{=}CCOC({=}O)C(O)(Cc1ccc(C(F)(F)F)cc1)C(C){=}O$

Typical conditions: BuLi.THF.-30C.HgO.H2O.THF

Protections: none

Reference: 10.1055/s-1977-24412

Retrosynthesis ID: 11199

2.5.3 Elimination of tertiary alcohols

Substrates:

 $1. \ CC{=}CC{=}CCOC({=}O)C(O)(Cc1ccc(C(F)(F)F)cc1)C(C){=}O$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C)=O$

Typical conditions: TsOH.toluene.reflux

Protections: none

Reference: 10.1016/j.bmc.2008.07.050 and 10.1155/2010/604549 and

10.1016/j.steroids.2004.11.008

Retrosynthesis ID: 24119

2.5.4 Diels-Alder

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccc(C(F)(F)F)cc1)C(C) = O$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t