

Universidade de São Paulo Instituto de Física de São Carlos

Relatório 1

Stefan Taiguara Couperus Leal 10414866

Sumário

Fate	oriais e a aproximação de Stirling	1
1.1	Fatoriais e sua respectiva precisão	1
1.2	Logaritmo e Fatorial	1
1.3	Aproximação de Stirling	2
1.4	Comparação	3
Séri	ie de Taylor para o cosseno	5
2.1	Calculo do $\cos(x)$ com taylor	5
Val	ores médios e desvio padrão	5
3.1	Qual o candidato foi eleito?	5
3.2	Desvio padrão da amostra como um todo	5
3.4	Variações da Amostragem em 10^n	6
Org	ganize uma lista	6
4.1	Procure o maior numero no arquivo	6
Aut	tovalor e Autovetor	7
	1.1 1.2 1.3 1.4 Séri 2.1 Valo 3.1 3.2 3.3 3.4 Org	1.2 Logaritmo e Fatorial

Esse projeto apresenta tarefas básicas para o treinamento em programação científica utilizando-se FORTRAN onde se faz necessário o uso de funções intrínsecas (LOG, COS, SQRT, ...), comandos (DO, IF, DO WHILE, ...), e operações básicas com vetores e matrizes

1 Fatoriais e a aproximação de Stirling

1.1 Fatoriais e sua respectiva precisão

Escreva um programa que imprima em um arquivo uma tabela com os fatoriais de todos os inteiros entre 1 e 30. Verifique e discuta a precisão de seus resultados

n	Fatorial
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880000
10	3628800
11	39916800
12	479001600
13	6,23E+9
14	8,72E+10
15	1,31E+12
16	2,09E+13
17	3,56E+14
18	6,40E+15
19	1,22E+17
20	2,43E+18

1.2 Logaritmo e Fatorial

Escreva agora um programa que imprima em um arquivo uma tabela com os logaritmo dos fatoriais de todos os inteiros entre 2 e 30. Novamente, verifique e discuta seus resultados.

n	Ln(n!)	n	Ln(n!)
2	0.693147182	16	30.6718597
3	1.79175949	17	33.5050735
4	3.17805386	18	36.3954468
5	4.78749180	19	39.3398857
6	6.57925129	20	42.3356171
7	8.52516174	21	45.3801384
8	10.6046028	22	48.4711800
9	12.8018274	23	51.6066742
10	15.1044130	24	54.7847290
11	17.5023079	25	58.0036049
12	19.9872150	26	61.2617035
13	22.5521641	27	64.5575409
14	25.1912212	28	67.8897400
15	27.8992710	29	71.2570419
		30	74.6582336

1.3 Aproximação de Stirling

Compare os resultados do item 1.2 com a aproximação de Stirling

$$ln(n!) \approx n \, ln(n) - n + \frac{1}{2} \, ln(2\pi n)$$

n	$\operatorname{Ln}(n!)$	n	Stirling
2	0.693147182	2	0.651806474
3	1.79175949	3	1.76408160
4	3.17805386	4	3.15726328
5	4.78749180	5	4.77084732
6	6.57925129	6	6.56537533
7	8.52516174	7	8.51326370
8	10.6046028	8	10.5941916
9	12.8018274	9	12.7925711
10	15.1044130	10	15.0960836
11	17.5023079	11	17.4947338
12	19.9872150	12	19.9802723
13	22.5521641	13	22.5457535
14	25.1912212	14	25.1852722
15	27.8992710	15	27.8937187
16	30.6718597	16	30.6666527
17	33.5050735	17	33.5001717
18	36.3954468	18	36.3908157
19	39.3398857	19	39.3354988
20	42.3356171	20	42.3314514
21	45.3801384	21	45.3761749
22	48.4711800	22	48.4673958
23	51.6066742	23	51.6030502
24	54.7847290	24	54.7812576
25	58.0036049	25	58.0002708
26	61.2617035	26	61.2584953
27	64.5575409	27	64.5544510
28	67.8897400	28	67.8867645
29	71.2570419	29	71.2541580
30	74.6582336	30	74.6554565

Como pode ser visto há uma diferença entre o $\ln n!$ e a aproximação de Stirling, mas a medida que o número vai aumentando percebe-se que a diferença entre um e outro diminui.

1.4 Comparação

Especificamente, imprima novamente uma tabela com quatro colunas: n, $\ln n!$, S e $\frac{\ln n! - S}{\ln n!}$. Discuta seus resultados.

n	n!	Ln(n!)	Stirling	Relação de Equivalência
2	2	0.693147182	0.651806474	4.13407087E-02
3	6	1.79175949	1.76408160	2.76778936E-02
4	24	3.17805386	3.15726328	2.07905769E-02
5	120	4.78749180	4.77084732	1.66444778E-02
6	720	6.57925129	6.56537533	1.38759613E-02
7	5040	8.52516174	8.51326370	1.18980408E-02
8	40320	10.6046028	10.5941916	1.04112625E-02
9	362880000	12.8018274	12.7925711	9.25636292E-03
10	3628800	15.1044130	15.0960836	8.32939148E-03
11	39916800	17.5023079	17.4947338	7.57408142E-03
12	479001600	19.9872150	19.9802723	6.94274902E-03
13	6227020800	22.5521641	22.5457535	6.41059875E-03
14	87178289200	25.1912212	25.1852722	5.94902039E-03
15	1307674280000	27.8992710	27.8937187	5.55229187E-03
16	20922788500000	30.6718597	30.6666527	5.20706177E-03
17	355687415000000	33.5050735	33.5001717	4.90188599E-03
18	6402373530000000	36.3954468	36.3908157	4.63104248E-03
19	1.21645096E+017	39.3398857	39.3354988	4.38690186E-03
20	2.43290202E+018	42.3356171	42.3314514	4.16564941E-03
21	5.10909408E+019	45.3801384	45.3761749	3.96347046E-03
22	1.12400072E+021	48.4711800	48.4673958	3.78417969E-03
23	2.58520174E+022	51.6066742	51.6030502	3.62396240E-03
24	6.20448455E+023	54.7847290	54.7812576	3.47137451E-03
25	1.55112111E+025	58.0036049	58.0002708	3.33404541E-03
26	4.032915E+026	61.2617035	61.2584953	3.20816040E-03
27	1.08888704E+028	64.5575409	64.5544510	3.08990479E-03
28	3.04888372E+029	67.8897400	67.8867645	2.97546387E-03
29	8.84176308E+030	71.2570419	71.2541580	2.88391113E-03
30	2.6525289E + 032	74.6582336	74.6554565	2.77709961E-03

Aqui pode se comparar as manipulações matemáticas que ocorrem com o n, assim como ter uma visão melhor da relação de equivalência entre o uso do Stirling ou do $Ln\ n!$. Fazendo esta comparação percebe-se que a relação de equivalência se aproxima para números maiores.

2 Série de Taylor para o cosseno

A expansão em série de Taylor de uma função f(x) ao redor de x_0 é dada por

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n = f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2!} f''(x_0) (x - x_0)^2 + \dots$$

2.1 Calculo do $\cos(x)$ com taylor

Escreva um programa FORTRAN que calcule o valor de cos(x) com acuracia absoluta e relativa de 10^{-6} por meio de sua série de Taylor ao redor de $x_0 = 0$.

3 Valores médios e desvio padrão

No arquivo votes. dat há uma uma população de $N=10^6$ números inteiros x_i , $i=1,\ldots,N$ que designam os votos válidos de uma eleição. Há apenas dois candidatos: 0 e 1.

3.1 Qual o candidato foi eleito?

Calcule a média aritmética da população $E[x] = \frac{1}{N} \sum_{i=1}^{N} x_i$. Qual o candidato eleito?

Afim de verificar o ganhador foi feito a média aritmética, para saber quem tinha ganhou é necessário ver se o valor: Se esta acima de 0.5 o candidato 0 ganhou, se esta abaixo o candidato 1 ganhou. Com isso, o candidato 0 ganhou com o valor de 0.348643988.

$$E[x] = 0.348643988$$

3.2 Desvio padrão da amostra como um todo

Calcule a média e o desvio padrão do arquivo inteiro.

$$E[x] = 0.348643988 \pm 0.476481855$$

3.3 Seleção aleatória de amostras

Foi selecionado 6 amostras aleatorias do arquivo "votes.dat" afim de analisar as diferenças.

Media	Desvio
0.3499999999999998	0.48066137096229522
0.370000000000000000	0.48665940218737574
0.41999999999999998	0.49783774891265969
0.3200000000000000001	0.46992799792342965
0.2999999999999999999999999999999999999	0.46155205885176470
0.3499999999999998	0.48066137096229539

3.4 Variações da Amostragem em 10^n

Varie o tamanho da amostra e analise as diferenças.

$$s_m = \frac{\sigma}{\sqrt{M}}$$

s_m	Magnitude	Media
15.599145086561631	10	0.2999999999999999999999999999999999999
4.4702043882497478	100	0.2700000000000000000000000000000000000
1.5023127220466526	1000	$0.343000000000000003 \pm 0.47507298738545606$
0.47775462690000353	10000	0.352399999999999999999999999999999999999
0.15080731222677329	100000	$0.349750000000000001 \pm 0.47689457434020116$

4 Organize uma lista

Todas as operações serão feitas num vetor, este vetor pegou os dados do arquivo "Rnumber.dat"

4.1 Procure o maior numero no arquivo

Foi colocado todos os dados do arquivo "Rnumber.dat" num vetor, depois foi percorrido o vetor a procura do maior valor do arquivo.

Maior Numero:

N = 0.99998464295640588

Dados	100,000
Operações	2,498,335,385

 Em seguida foi feito um program utilizando do bubble sort para organizar este vetor.

Linhas no arquivo: 100,000

Operações realizadas: 2,498,335,385

5 Autovalor e Autovetor

Método da potência para o cálculo do autovalor/autovetor dominante