

Wyższa Szkoła Oficerska Sił Powietrznych

Podstawy Automatyki					
Rok akademicki	Rok studiów	Kierunek	Grupa		
2010/2011	2	Lotnictwo i Kosmonautyka	C9D2		
Sprawozdanie nr 4					
Nr 10 Łukasz Kusek					

Spis treści

1	Transmitancja				
2	Odpowiedź skokowa dla $\zeta = 2$				
	2.1 Model				
	2.2 Zapis wyników				
	2.3 Wygenerowanie wykresu				
	2.4 Obliczenie okresu i częstotliwości				
3	Odpowiedź skokowa dla $\zeta = 0.01$				
	3.1 Model				
	3.2 Zapis wyników				
	3.3 Wygenerowanie wykresu				
	3.4 Obliczenie okresu i częstotliwości				
4	Odpowiedź skokowa dla $\zeta = 0,0001$				
	4.1 Model				
	4.2 Zapis wyników				
	4.3 Wygenerowanie wykresu				
	4.4 Obliczenie okresu i częstotliwości				
	4.4 Obliczenie okresu i częstotniwości				
5	Odpowiedź skokowa dla $\zeta=0$				
	5.1 Model				
	5.2 Zapis wyników				
	5.3 Wygenerowanie wykresu				
	5.4 Obliczenie okresu i czestotliwości				

1 Transmitancja

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

gdzie

- $\bullet \ \omega_n = 10 \cdot 5 = 50$
- $\bullet \ \zeta \in \{2, \ 0, 01, \ 0, 0001, \ 0\}$

$$G(s) \ = \ \frac{2500}{s^2 + 100\zeta s + 2500}$$

2 Odpowiedź skokowa dla $\zeta = 2$

$$G(s) = \frac{2500}{s^2 + 200s + 2500}$$

2.1 Model

2.2 Zapis wyników

```
wyniki1 = [tout wyniki1_ascii]
save wyniki1_ascii wyniki1 -ascii
```

```
clear
close all
load wyniki1_ascii -ascii

ta = wyniki1_ascii(:,1)
ua = wyniki1_ascii(:,2)
ya = wyniki1_ascii(:,3)

load wyniki1_bin

tb = wyniki1_bin(1,:)
ub = wyniki1_bin(2,:)
yb = wyniki1_bin(3,:)

figure(1)
plot( ta, ua, 'b:', ta, ya, 'b-', tb, ub, 'k:', tb, yb, 'k-')
xlabel('t [s]')
ylabel('y(t)')
title('Odpowiedź skokowa układu II rzędu')
```


Obliczenie okresu i częstotliwości nie jest możliwe, gdyż odpowiedź nie jest okresowa.

3 Odpowiedź skokowa dla $\zeta = 0,01$

$$G(s) = \frac{2500}{s^2 + s + 2500}$$

3.1 Model

3.2 Zapis wyników

wyniki2 = [tout wyniki2_ascii]
save wyniki2_ascii wyniki2 -ascii

```
clear
close all
load wyniki2_ascii -ascii

ta = wyniki2_ascii(:,1)
ua = wyniki2_ascii(:,2)
ya = wyniki2_ascii(:,3)

load wyniki2_bin

tb = wyniki2_bin(1,:)
ub = wyniki2_bin(2,:)
yb = wyniki2_bin(3,:)

figure(1)
plot( ta, ua, 'b:', ta, ya, 'b-', tb, ub, 'k:', tb, yb, 'k-')
xlabel('t [s]')
ylabel('y(t)')
title('Odpowiedź skokowa układu II rzędu')
```


$$T = 0,126s$$

$$f = 7,96Hz$$

4 Odpowiedź skokowa dla $\zeta = 0,0001$

$$G(s) = \frac{2500}{s^2 + 0,01s + 2500}$$

4.1 Model

4.2 Zapis wyników

wyniki3 = [tout wyniki3_ascii]
save wyniki3_ascii wyniki3 -ascii

```
clear
close all
load wyniki3_ascii -ascii

ta = wyniki3_ascii(:,1)
ua = wyniki3_ascii(:,2)
ya = wyniki3_ascii(:,3)

load wyniki3_bin

tb = wyniki3_bin(1,:)
ub = wyniki3_bin(2,:)
yb = wyniki3_bin(3,:)

figure(1)
plot( ta, ua, 'b:', ta, ya, 'b-', tb, ub, 'k:', tb, yb, 'k-')
xlabel('t [s]')
ylabel('y(t)')
title('Odpowiedź skokowa układu II rzędu')
```


$$T = 0,126s$$

$$f = 7,96Hz$$

5 Odpowiedź skokowa dla $\zeta = 0$

$$G(s) = \frac{2500}{s^2 + 2500}$$

5.1 Model

5.2 Zapis wyników

```
wyniki4 = [tout wyniki4_ascii]
save wyniki4_ascii wyniki4 -ascii
```

```
clear
close all
load wyniki4_ascii -ascii

ta = wyniki4_ascii(:,1)
ua = wyniki4_ascii(:,2)
ya = wyniki4_ascii(:,3)

load wyniki4_bin

tb = wyniki4_bin(1,:)
ub = wyniki4_bin(2,:)
yb = wyniki4_bin(3,:)

figure(1)
plot( ta, ua, 'b:', ta, ya, 'b-', tb, ub, 'k:', tb, yb, 'k-')
xlabel('t [s]')
ylabel('y(t)')
title('Odpowiedź skokowa układu II rzędu')
```


$$T = 0,126s$$

$$f = 7,96Hz$$