Spivak's Calculus Solutions

Sebastian Miles

Contents

1 Basic Properties of Numbers

5

4 CONTENTS

Chapter 1

Basic Properties of Numbers

1.1.

(i) Suppose that ax = a and $a \neq 0$, then there exists a number a^{-1} . Multiplying a^{-1} on both sides yields

$$(a^{-1}a) \cdot x = a^{-1}a$$
$$x = 1$$

as desired.

(ii) We use the distributive property on (x - y)(x + y), this can be done by letting a = x - y:

$$(x - y)(x + y) = a(x + y)$$

= $ax + ay = (x - y)x + (x - y)y$
= $x^2 - yx + xy - y^2 = x^2 - y^2$

- (iii) If we have $x^2 = y^2$ then we certainly have $x^2 y^2 = 0$. By (ii) we know that 0 = (x y)(x + y), this implies that x y = 0 or x + y = 0, this is equivalent to saying that x = y or x = -y.
- (iv) Same method as (ii):

$$a(x^{2} + xy + y^{2}) = ax^{2} + axy + ay^{2}$$

$$= (x - y)x^{2} + (x - y)xy + (x - y)y^{2}$$

$$= x^{3} - yx^{2} + x^{2}y - xy^{2} + xy^{2} - y^{3}$$

$$= x^{3} - y^{3}$$

(v) We prove this by induction, the base case n=2 is already proven in (ii). Suppose $x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})$ is true. Then we equivalently have $x^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})+y^n$. We now prove the n+1 case:

$$x^{n+1} - y^{n+1} = x \cdot x^n - y^{n+1}$$

$$= x(x-y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}) + xy^n - y^{n+1}$$

$$= (x-y)(x^n + x^{n-1}y + \dots + x^2y^{n-2} + xy^{n-1}) + (x-y)y^n$$

$$= (x-y)(x^n + x^{n-1}y + \dots + xy^{n-1} + y^n)$$

The resulting relation concludes the finite induction, thus $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}).$

- (vi) We know from (iv) that $a^3 b^3 = (a b)(a^2 + ab + b^2)$, by letting a = xandb = -y we get $x^3 + y^3 = (x + y)(x^2 xy + y^2)$.
- **1.2.** Multiplying by the multiplicative inverse of x y works only when $x y \neq 0$, that is $x \neq y$, however, the hypothesis explicitly states x = y. So it is not possible to find the multiplicative inverse of x y and thus the step is invalid.
- **1.3.** (i) Say we have $\frac{a}{b}$ and $b \neq 0$