2024 年全国青少年信息学奥林匹克联赛 CQBZ

时间: 2024 年 11 月 15 日 08:00 ~ 12:00

题目名称	数字	加训	排序	改造
题目类型	传统型	传统型	传统型	传统型
目录	number	train	sort	modification
可执行文件名	number	train	sort	modification
输入文件名	number.in	train.in	sort.in	modification.in
输出文件名	number.out	train.out	sort.out	modification.out
每个测试点时限	1.0 秒	2.0 秒	3.0 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点数目	10	20	20	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言 number.cpp	train.cpp	sort.cpp	modification.cpp
----------------------	-----------	----------	------------------

编译选项

注意事项与提醒(请选手务必仔细阅读)

- 1. 选手请直接提交源程序至 becoder.com.cn 上的对应比赛。
- 2. 输入输出文件名必须使用英文小写。
- 3. 选手提交的源程序必须存放在**已建立**好的,且**带有样例文件和下发文件**的文件 夹中,文件夹名称与对应试题英文名一致。
 - 4. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
 - 5. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
 - 6. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
 - 7. 程序可使用的栈空间大小与该题内存空间限制一致。
- 8. 在终端中执行命令 ulimit -s unlimited 可将当前终端下的栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
 - 9. 每道题目所提交的代码文件大小限制为 100KB。
- 10. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。

- 11. 输入文件中可能存在行末空格,请选手使用更完善的读入方式 (例如 scanf 函数)避免出错。
- 12. 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。
 - 13. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 14. 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外不允许在程序中手动开启其他编译选项,一经发现,本题成绩以 0 分处理。15. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。

数字 (number)

【题目描述】

小 P 终于学会了自然数! 他欣喜地向阳光幼儿园的好朋友小 L 炫耀, 小 L 却不以为意, 头也不抬的说"好吧, 我考考你, 不超过自然数 n 的自然数一共有多少个?"。小 P 对小 L 的羞辱感到愤怒, 还没开口, 小 L 就继续问道"不超过自然数 n 的自然数中, 不含数字 6 一共有多少个?"这不也是简单题, 吗?

小 P 自然是不会了,但是你要解决的当然不是这样简单的问题。现在请你回答不超过自然数 n 的自然数中,不含 $\{a_m\}$ 中数字的一共有多少个。 $(a_i \in [0,9])$

【输入格式】

从文件 number.in 中读入数据。

第一行一个整数 T,表示数据组数。

接下来的每组数据共两行。

第一行两个整数 n, m,分别表示给定的自然数,以及集合 $\{a_m\}$ 的大小。

第二行 m 个整数, 第 i 个元素为 a_i 。

【输出格式】

输出到文件 number.out 中。

共T行,每行一个整数,表示该组数据的答案。

【样例1输入】

【样例1输出】

```
1 11
2 9
```

【样例1解释】

对于第一组数据,不超过 12 且不含 3,5 的自然数有 $\{0,1,2,4,6,7,8,9,10,11,12\}$, 共 11 个。

对于第二组数据,不超过 10 且不含 0 的自然数有 {1,2,3,4,5,6,7,8,9}, 共 9 个。

【样例 2 输入】

```
1 5
2 92 2
3 7 9
4 16 1
5 9
6 41 1
7 6
8 6 1
9 1
10 78 3
11 4 9
```

【样例2输出】

```
1 64
2 16
3 38
4 6
5 42
```

【样例 3】

见附加文件中的 number/ex_number3.in 与 number/ex_number3.ans, 该组样例满足测试点 2 的条件。

【样例 4】

见附加文件中的 number/ex_number4.in 与 number/ex_number4.ans, 该组样例满足测试点 6 的条件。

【样例 5】

见附加文件中的 number/ex_number5.in 与 number/ex_number5.ans, 该组样例满足测试点 10 的条件。

【数据范围】

对于所有数据,保证 $1 \le T \le 1 \times 10^5$, $0 \le n \le 10^{18}$, $1 \le m \le 9$, $0 \le a_i \le 9$.

测试点编号	n	特殊性质
1	≤ 200	无
$2 \sim 3$	$\leq 1 \times 10^{18}$	ABC
4	$\leq 1 \times 10^{18}$	AC
5	$\leq 1 \times 10^{18}$	ВС
6	$\leq 1 \times 10^{18}$	AB
7	$\leq 1 \times 10^{18}$	С
8	$\leq 1 \times 10^{18}$	A
9	$\leq 1 \times 10^{18}$	В
10	$\leq 1 \times 10^{18}$	无

特殊性质 A: $1 \le a_i \le 9$ 。

特殊性质 B: m = 1。

特殊性质 C: 保证 n 中不含 a_i 。

建议使用较快的输入输出方式。

加训 (train)

【题目描述】

小 P 为了准备接下来的一次比赛,给自己安排了详细的训练计划,但是由于种种不可抗因素,它的计划全部都泡汤了,最后只能在家中狭小的区域进行训练。

为了合理的利用空间,小 P 将自己的家从左往右依次分为了 n 个区域,并在每一个区域中写上了 L,R,O 中的一种字符,表示当前这个区域的状态。具体来说,若为 L,下一步应该向左移动;若为 R,下一步应该向右移动;若为 O,训练结束。

但小 P 发现自己可能会一直移动,永远无法停止,所以进行了一些修改,当从一个区域离开时,该区域上的字符翻转(即 L 变为 R, R 变为 L)。同时,小 P 也保证了第一个区域和第 n 个区域为 O。

虽然小 P 是不会感到疲惫的,但它还是想知道从每一个区域出发,走多少步之后会结束。

注意: 从每一个区域出发的答案独立。

【输入格式】

从文件 train.in 中读入数据。

第一行一个正整数 n, 表示区域个数。

第二行一个长度为n的字符串,表示初始序列。

【输出格式】

输出到文件 train.out 中。

共一行, 第 i 个数字表示从区域 i 出发时走多少步会结束训练。

【样例1输入】

1 5

2 ORLLO

【样例1输出】

1 0 3 6 5 0

【样例1解释】

从五个区域出发的路径分别为:

1

 $2 \rightarrow 3 \rightarrow 2 \rightarrow 1$

 $3 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$

$$\begin{array}{c} 4 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \\ 5 \end{array}$$

【样例 2 输入】

- **1** 12
- 2 OLLLRRLRRRLO

【样例2输出】

1 0 1 2 3 8 19 19 14 9 6 3 0

【样例 3】

见附加文件中的 train/ex_train3.in 与 train/ex_train3.ans,该组样例满足测试点10 的条件。

【样例 4】

见附加文件中的 train/ex_train4.in 与 train/ex_train4.ans,该组样例满足测试点17 的条件。

【数据范围】

对于所有数据,保证 $1 \le n \le 5 \times 10^5$ 。

测试点编号	n	特殊性质
$1 \sim 3$	$\leq 5 \times 10^2$	无
$4 \sim 6$	$\leq 1 \times 10^5$	保证 R 的数量不超过 20
$7 \sim 9$	$\leq 1 \times 10^5$	不存在连续的 L 和连续的 R
$10 \sim 13$	$\leq 1 \times 10^5$	只有首尾有 O, 且 R 均在 L 左侧
$14 \sim 16$	$\leq 5 \times 10^3$	无
$17 \sim 18$	$\leq 1 \times 10^5$	无
$19 \sim 20$	$\leq 5 \times 10^5$	无

排序 (sort)

【题目描述】

小 L 有一个长度为 n 的排列(其中 n 为偶数),下面小 L 会对这个序列进行若干次变换。每次变换如下:

```
cnt = 0
 1
   j = n / 2 + 1
3
   for i from 1 to n / 2:
 4
       while j \le n and a[j] < a[i]:
 5
            newa[++cnt] = a[j]
6
            j++
 7
       newa[++cnt] = a[i]
8
9
10
   while j \le n:
       newa[++cnt] = a[j]
11
12
       j++
```

即在归并排序中省略了向下递归的过程。现在,小 L 想知道,在经历了 t 次变换后, a_i 的值是多少。

【输入格式】

从文件 sort.in 中读入数据。

第一行两个整数 n,Q,分别表示序列长度和询问次数。

接下来一行 n 个整数 a_i ,表示初始排列。

接下来 Q 行,每行两个整数 t,i,表示询问经历了 t 次变换后 a_i 的值。

【输出格式】

输出到文件 sort.out 中。

共Q行,第i行为第i次询问的答案。

【样例1输入】

```
1 6 3

2 2 3 6 5 4 1

3 0 3

4 1 2

5 2 4
```

【样例1输出】

```
1 6
2 3
3 1
```

【样例1解释】

第 0 次变换后的序列 $\{2,3,6,5,4,1\}$ 。第 1 次变换后的序列 $\{2,3,5,4,1,6\}$ 。第 2 次变换后的序列 $\{2,3,4,1,5,6\}$ 。

【样例 2 输入】

【样例2输出】

```
1 | 8 | 2 | 8 | 3 | 1 | 4 | 6 | 5 | 3 | 6 | 2
```

【样例 3】

见附加文件中的 sort/ex_sort3.in 与 sort/ex_sort3.ans, 该组样例满足测试点 4 的条件。

【样例 4】

见附加文件中的 sort/ex_sort4.in 与 sort/ex_sort4.ans, 该组样例满足测试点 18 的条件。

【数据范围】

对于所有数据,保证 $1 \le n \le 2 \times 10^5, \ 1 \le Q \le 10^6, \ 0 \le t \le 10^9, \ 1 \le i \le n, \ n$ 为偶数,a 为排列。

测试点编号	n	特殊性质
$1 \sim 3$	$\leq 1 \times 10^3$	$t \le 1 \times 10^3$
$4 \sim 6$	$\leq 1 \times 10^3$	无
$7 \sim 9$	$\leq 1 \times 10^5$	$a_1 = 1, a_j = n + 2 - j(j > 1)$
$10 \sim 13$	$\leq 1 \times 10^5$	不同询问中 t 相同
$14 \sim 17$	$\leq 1 \times 10^5$	$Q \le 1 \times 10^5$
$18 \sim 20$	$\leq 2 \times 10^5$	无

改造 (modification)

【题目描述】

众所周知,机器人的基因可以表示为 01 序列。在这种意义下,小 L 也可以被视为一种广义机器人。为了让自己变得更加强大,小 L 决定对自己进行基因改造。

为了比较基因的强弱(这并不违反机器人的伦理),小 L 抽象出了「价值」这一概念,定义一个 01 基因序列的「价值」为它的**最长不下降子序列**。现在小 L 想知道,如果将自己的基因序列划分为 k 个子段并进行重排,可以获得的最大「价值」是多少。

这个问题自然就交给你啦!

【输入格式】

从文件 modification.in 中读入数据。

第一行一个正整数 n,表示小 L 的基因长度。

第二行一个长度为 n 的字符串,表示小 L 基因的 01 序列。

【输出格式】

输出到文件 modification.out 中。

共一行, 第 i 个数字表示 k = i 时的最大「价值」。

【样例1输入】

1 8

2 01100100

【样例1输出】

1 5 7 7 8 8 8 8 8

【样例 1 解释】

k=1 时划分为子段 01100100, 最长不下降子序列为 01100100。

k=2 时划分为子段 011,00100, 拼接为 00100011, 最长不下降子序列为 00100011。

k = 3 时划分为子段 011,001,00, 拼接为 00001011, 最长不下降子序列为 00001011.

k = 4 时划分为子段 011, 00, 1, 00, 拼接为 00000111, 最长不下降子序列为 00000111。

k > 4 时子段拼接结果与 k = 4 相同。注意上面展示的划分,拼接方案与最长不下降子序列都可能不是唯一的。

【样例 2 输入】

1 20

2 10110001010110001101

【样例2输出】

1 12 14 14 16 16 17 17 18 18 19 19 20 20 20 20 20 20 20 20 20 20

【样例 3】

见附加文件中的 modification/ex_modification3.in 与 modification/ex_modification3.ans, 该组样例满足测试点 7 的条件。

【数据范围】

对于所有数据,保证 $1 \le n \le 3 \times 10^5$ 。

测试点编号	n
$1 \sim 3$	≤ 8
$4 \sim 6$	≤ 20
$7 \sim 9$	≤ 200
$10 \sim 13$	$\leq 2 \times 10^3$
$14 \sim 17$	$\leq 8 \times 10^4$
$18 \sim 20$	$\leq 3 \times 10^5$