Floyd-Warshall!

Time Limit: 1 Second Memory Limit: 256 MB

Given a directed graph G with n vertices and m edges $(1 \le n \le 400, 0 \le m \le \frac{n(n-1)}{2})$. For every pair on vertices $u, v \in [1, n]$, calculate the distance from vertex u to v. If v is not reachable from u, output -1.

Input

The first line of input contains a single integer n $(1 \le n \le 400)$ - the number of vertices.

The next n lines describe the edges with an adjacent matrix. The i-th line contains n integers $a_{i,1}, \ldots a_{i,n}$ $(0 \le a_{i,j} \le 10^5)$. The j-th entry $a_{i,j}$ denotes that there is an directed edge from i to j with weight $a_{i,j}$, where $a_{i,j} = 0$ denotes that such edge doesn't exist. It is guaranteed that $\forall i \in [1, n], a_{i,i} = 0$.

Output

1 2 0

Output an $n \times n$ matrix d where $d_{i,j}$ denotes the distance from vertex i to vertex j. If j is not reachable from i, set $d_{i,j} = -1$.

Sample Inputs	Sample Outputs
3	0 1 2
0 1 2	1 0 2
1 0 2	1 2 0