Class 7: The Blockchain

Schedule

Wednesday, September 23: Checkup 2 (was originally scheduled for Monday, September 21) **Readings** (should be completed by Monday, September 21 at the latest; covered by Checkup 2):

- Satoshi Nakamoto, *Bitcoin: A Peer-to-Peer Electronic Cash System*, 2008. The is the original bitcoin paper, which is quite readable and historically interesting.
- Chapter 6: The Bitcoin Network and Chapter 7: The Blockchain from Andreas Antonopoulos' book.
- Chapter 2: How Bitcoin Achieves Decentralization and Chapter 5: Bitcoin Mining from Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder. Bitcoin and Cryptocurrency Technologies.

Blockchain in the News

Blockchain initiative backed by 9 large investment banks, Financial Times, 15 Sept 2015. Nine of the World's Biggest Banks Form Blockchain Partnership, Re/Code, 15 Sept 2015. Bitcoin Is Only The Beginning For Blockchain Technology, Forbes, 15 Sept 2015. Bitcoin's Shared Ledger Technology: Money's New Operating System, Forbes, 9 Sept 2015.

Trust

What are valid sources of trust?

What are potentially misleading sources of *trust*?

What mechanisms have humans evolved or constructed to enhance trust among strangers?

Distributed Consensus

How well does the 2-out-of-3 network consensus public ledger protocol work?

Proof-of-Work

Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail, CRYPTO 1992.

Pricing Function: (f) - moderately easy to compute - cannot be amortized - computing $f(m1), \ldots, f(ml)$ costs l times as much as computing f(mi). - easily verified: given x, y easy to check y = f(x).

Adam Back. Hash Cash Postage Implementation

Interactive Hashcash:

- 1. Sender to Receiver: Hello
- 2. Receiver to Sender: *r* (random nonce)
- 3. Sender to Receiver: x, Mail where x = f(r).
- 4. Receiver verifies x = f(r).

How well does this protocol work for sending mail?

How can we make this protocol non-interactive?

Bitcoin Mining

Proof-of-work: Find an x such that: SHA-256(SHA-256(r + x)) < T/d.

d is the "difficulty" (varies).

T is a fixed target (256-bit number).

r depends on hash of previous block, transactions, and other information.

What does it mean for the bitcoin difficulty to go down?