

Proba de Avaliación do Bacharelato para o Acceso á Universidade Convocatoria ordinaria 2023

Código: 24

QUÍMICA

O exame consta de 8 preguntas de 2 puntos, das que poderá responder un <u>MÁXIMO DE 5</u>, combinadas como queira. Cada pregunta **vale 2 puntos (1 punto por apartado)**. Se responde máis preguntas das permitidas, <u>só se corrixirán as 5 primeiras respondidas.</u>

PREGUNTA 1.

- 1.1. Aplicando a teoría de repulsión dos pares de electróns da capa de valencia (TRPECV) deduza **razoadamente** a xeometría electrónica e molecular da molécula de tricloruro de fósforo, indicando cal sería o valor aproximado do ángulo de enlace.
- 1.2. Sabendo que a xeometría electrónica na molécula de SiF₄ é tetraédrica, discuta **razoadamente** que tipo de orbitais híbridos empregaría o átomo de silicio para formar os enlaces correspondentes, como se forman os ditos orbitais híbridos e a distribución de electróns nestes.

PREGUNTA 2.

- <u>2.1.</u> **Razoe** se a seguinte afirmación é verdadeira ou falsa: «o cloruro de potasio en estado sólido non conduce a electricidade, pero si é un bo condutor cando está disolto en auga».
- 2.2. A ecuación da velocidade dunha reacción é $v = k \cdot [A]^2 \cdot [B]$: indique a orde de reacción con respecto a cada reactivo e **xustifique** se ó duplicar as concentracións de A e de B, en igualdade de condicións, a velocidade de reacción será oito veces maior.

PREGUNTA 3.

- 3.1. **Xustifique** se a seguinte afirmación é verdadeira ou falsa: «o CH₃-CH=CH-CH₃ reacciona con HCl para dar un composto que non presenta isomería óptica».
- 3.2. Escriba as fórmulas semidesenvolvidas e nomee os isómeros xeométricos do 2,3-dibromobut-2-eno.

PREGUNTA 4.

Dada a seguinte reacción: $HCl(ac) + K_2Cr_2O_7(ac) + NaNO_2(ac) \rightarrow NaNO_3(ac) + CrCl_3(ac) + KCl(ac) + H_2O(l)$

- 4.1. Axuste as ecuacións iónica e molecular polo método do ión-electrón.
- **4.2.** Calcule o volume de dicromato de potasio 2,0 M necesario para oxidar 20 g de nitrito de sodio.

PREGUNTA 5.

Unha disolución 0,03 M de amoníaco está disociada nun 2,42 %. Calcule:

- **5.1.** O valor da constante K_b do amoníaco.
- **5.2.** O pH da disolución e o valor da constante K_a do ácido conxugado.

PREGUNTA 6.

Nun reactor de 5 L introdúcense 15,3 g de CS_2 e 0,82 g de H_2 . Ao elevar a temperatura ata 300 °C alcánzase o seguinte equilibrio: $CS_2(g) + 4 H_2(g) \rightleftharpoons 2 H_2S(g) + CH_4(g)$, onde a concentración de metano no equilibrio é de 0,01 mol/L.

- **6.1.** Calcule as concentracións molares das especies $CS_2(g)$, $H_2(g)$ e $H_2S(g)$ no equilibrio.
- **6.2.** Determine o valor de K_c e discuta razoadamente que lle sucederá ó sistema en equilibrio se engadimos máis cantidade de $CS_2(g)$ mantendo o volume e a temperatura constantes.

PREGUNTA 7.

- **7.1.** Xustifique que reacción terá lugar nunha pila galvánica formada por un eléctrodo de cobre e outro de cadmio en condicións estándar, indicando as reaccións que teñen lugar no ánodo e no cátodo. Calcule a forza electromotriz da pila nestas condicións.
- **7.2.** Faga un esquema da montaxe da pila no laboratorio, detallando o material e os reactivos necesarios e sinalando o sentido de circulación dos electróns.

PREGUNTA 8.

Para neutralizar 150 mL dunha disolución de ácido nítrico 0,010 M gastáronse 15 mL dunha disolución de hidróxido de calcio de concentración descoñecida.

- 8.1. Escriba a reacción que ten lugar e calcule a molaridade da disolución do hidróxido de calcio.
- **8.2.** Indique o material que empregaría e explique o procedemento experimental para realizar a valoración. Datos: R = 8,31 J/(K·mol) = 0,082 atm·L/(K·mol); 1 atm = 101,3 kPa; $K_w = 1,0 \cdot 10^{-14}$; $E^{\circ}(Cu^{2+}/Cu) = +0,34 \text{ V}$; $E^{\circ}(Cd^{2+}/Cd) = -0,40 \text{ V}$.

Solucións

- a) Aplicando a teoría de repulsión dos pares de electróns da capa de valencia (TRPECV) deduce razoadamente a xeometría electrónica e molecular da molécula de tricloruro de fósforo, indicando cal sería o valor aproximado do ángulo de enlace.
- 0
- b) Sabendo que a xeometría electrónica na molécula de SiF_4 é tetraédrica, discute razoadamente que tipo de orbitais híbridos empregaría o átomo de silicio para formar os enlaces correspondentes, como se forman os ditos orbitais híbridos e a distribución de electróns nestes.

(A.B.A.U. ord. 23)

Solución:

a) Molécula de tricloruro de fósforo: PCl₃.

A teoría de repulsión de pares de electróns da capa de valencia (TRPECV) supón que os electróns de valencia, xunto cos dos átomos que forman enlace con el, rodean a un átomo formando parellas, nas que a repulsión entre os electróns de cada parella é pequena, debido a que teñen spin contrario, e só hai que ter en conta a repulsión electrostática clásica entre os pares enlazantes (excepto os π) e entre os pares enlazantes e os pares non enlazantes, de forma que se dispoñan o máis afastados posible.

Esta teoría é a que dá unha xustificación máis sinxela dos ángulos de enlace. A repulsión de dous pares dá unha disposición lineal con ángulos de 180°, tres pares dan unha distribución triangular con ángulos de 120° e catro pares diríxense cara aos vértices dun tetraedro con ángulos de 109,5°.

O átomo central é o fósforo, que ten 5 electróns na súa capa de valencia. A configuración electrónica do átomo de fósforo (Z=15) no estado fundamental é: [Ne] $3s^2 3p_x^1 3p_y^1 3p_z^1$. Tres destes electróns forman enlaces covalentes cos tres átomos de cloro, mentres que os outros dous permanecen como un par solitario non enlazante, como se ve no diagrama electrón-punto de Lewis:

Segundo a TRPECV, a xeometría electrónica de 4 pares de electróns é tetraédrica.

A forma da molécula determínase a partir da posición dos átomos (sen ter en conta os pares non enlazantes). O átomo de fósforo está no centro do tetraedro e os tres átomos de cloro están dispostos en tres vértices, pero no cuarto vértice hai un par non enlazante que non se «ve».

e, a re- Cl

A forma da molécula de PCl₃ é piramidal aplanada.

Dado que o par non enlazante está máis preto do átomo de fósforo que os pares de enlace, a repulsión entre o par non enlazante e os pares de enlace é maior que entre os pares de enlace e entre si, e fará que os átomos de cloro se acheguen un pouco máis. O ángulo de enlace Cl-P-Cl sería algo inferior a 109.5°.

(Segundo a Wikipedia o ángulo na molécula de PCl₃ é de 100°).

b) Molécula de fluoruro de silicio: SiF₄.

À xeometría electrónica da molécula de SiF_4 é tetraédrica, o que implica que o átomo de silicio utiliza orbitais híbridos sp^3 para formar enlaces co flúor.

Na teoría da hibridación, os orbitais s, p_x , p_y e p_z , solucións da ecuación de onda para certas condicións rexidas polos números cuánticos n, l e m, poden substituírse por certas combinacións lineais deles chamadas orbitais híbridos.

Combinando os orbitais s e p pódense formar tres tipos de orbitais híbridos:

• 2 orbitais sp, formados pola hibridación do orbital s e un orbital p. Están dirixidos en sentidos opostos dunha liña recta, formando un ángulo de 180°.

(Quedan dous orbitais p sen hibridar, que poderían formar parte de enlaces π).

• 3 orbitais sp², formados pola hibridación do orbital s e dous orbitais p. Están dirixidos cara aos vértices dun triángulo equilátero, formando ángulos de 120°.

(Queda un orbital p sen hibridar que podería ser parte dun enlace π).

• 4 orbitais sp³, formados pola hibridación do orbital s e os tres orbitais p. Están dirixidos cara aos vértices dun tetraedro, formando ángulos de 109,5°.

2 híbridos sp

3 híbridos sp²

4 híbridos sp³

A configuración electrónica do átomo de silicio (Z=14) no estado fundamental é [Ne] $3s^2\ 3p_x^1\ 3p_y^1$, pero ten a posibilidade de enlazarse con catro átomos de flúor. Para iso, ten que separar, («desaparear») os dous electróns 3s, elevando un deles ao orbital 3p baleiro. O custo de enerxía de excitación compénsase coa enerxía dos enlaces que se van a formar.

A configuración electrónica do átomo de silicio excitado é [Ne] 3s¹ 3px¹ 3px¹ 3px¹.

Cando se hibridan, fórmanse 4 orbitais sp³, cada un contén un electrón non apareado. Cada un destes orbitais híbridos se solapa cun orbital 2p dun átomo de flúor para formar o enlace σ que albergará dous electróns, un de cada átomo.

2.1 Razoa se a seguinte afirmación é verdadeira ou falsa:

O cloruro de potasio en estado sólido non conduce a electricidade, pero si é un bo condutor cando está disolto en auga.

- (A.B.A.U. ord. 23)
- 2.2 A ecuación da velocidade dunha reacción é $v = k \cdot [A]^2 \cdot [B]$. Indica a orde de reacción con respecto a cada reactivo e xustifica se ó duplicar as concentracións de A e de B, en igualdade de condicións, a velocidade de reacción será oito veces maior.

(A.B.A.U. ord. 23)

Solución:

A orde de reacción con respecto a cada reactivo indica como varía a velocidade da reacción cando varía a concentración dese reactivo. Neste caso, a ecuación da velocidade é

$$v = k \cdot [A]^2 \cdot [B]$$

A orde de reacción con respecto a A é 2 e a orde de reacción con respecto a B é 1. Se duplicamos as concentracións de A e de B, en igualdade de condicións, a velocidade da reacción será

$$v' = k \cdot (2[A])^2 \cdot (2[B]) = k \cdot 4[A]^2 \cdot 2[B] = 8(k \cdot [A]^2 \cdot [B]) = 8 v.$$

Polo tanto, ó duplicar as concentracións de A e de B, a velocidade da reacción será oito veces maior.

3. a) Xustifica se a seguinte afirmación é verdadeira ou falsa:

O CH₃-CH=CH-CH₃ reacciona con HCl para dar un composto que non presenta isomería óptica. b) Escribe as fórmulas semidesenvolvidas e nomea os isómeros xeométricos do 2,3-dibromobut-2-eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

O composto CH_3 -CH=CH- CH_3 é o 2-buteno, que pode reaccionar con HCl para dar 2-clorobutano (CH_3 -CHCl- CH_2 - CH_3) seguindo a regra de Markovnikov. Trátase dunha reacción de adición.

$$CH_3\text{-}CH=CH\text{-}CH_3 + HCI \longrightarrow CH_3\text{-}C\text{-}CH_2\text{-}CH_3$$

O 2-clorobutano presenta isomería óptica porque o carbono 2 é un carbono asimétrico (quiral). Está unido a catro substituíntes diferentes: metilo (CH_3-) , hidróxeno (H-), cloro (CI-) e etilo (CH_3-CH_2-) . Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

3

b) O 2,3-dibromobut-2-eno ten isomería xeométrica porque cada un dos carbonos do dobre enlace están unidos a grupos diferentes (bromo e metilo). Os seus isómeros poden chamarse cis e trans ou Z e E.

- 4. Dada a seguinte reacción:
 - $HCl(ac) + K_2Cr_2O_7(ac) + NaNO_2(ac) \rightarrow NaNO_3(ac) + CrCl_3(ac) + KCl(ac) + H_2O(l)$
 - a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
 - b) Calcula o volume de dicromato de potasio de concentración 2,0 mol/dm³ necesario para oxidar 20 g de nitrito de sodio.

(A.B.A.U. ord. 23)

Rta.:
$$3 (NO_2)^- + (Cr_2O_7)^{2-} + 8 H^+ \rightarrow 3 (NO_3)^- + 2 Cr^{3+} + 4 H_2O;$$

 $3 NaNO_2 + K_2Cr_2O_7 + 8 HCl \rightarrow 3 NaNO_3 + 2 CrCl_3 + 2 KCl + 4 H_2O; b) V = 48,3 cm^3 (D)$

Datos Cifras significativas: 3

Concentración da disolución de dicromato de potasio $[K_2Cr_2O_7] = 2,00 \text{ mol/dm}^3$

Masa de nitrito de sodio $m = 20,0 \text{ g NaNO}_2$

Masa molar de nitrito de sodio $M(NaNO_2) = 69.0 \text{ g/mol}$

Incógnitas

Volume de disolución de dicromato de potasio V

Outros símbolos

Cantidade de substancia (número de moles) n

Solución:

a) Escríbense as semirreaccións iónicas:

Oxidación: $(NO_2)^- + H_2O - 2 e^- \rightarrow (NO_3)^- + 2 H^+$ Redución: $Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightarrow 2 Cr^{3+} + 7 H_2O$

Multiplicando a primeira semirreacción por 3 e sumando, obtense a reacción iónica axustada:

$$3 (NO_2)^-(aq) + (Cr_2O_7)^{2-}(aq) + 8 H^+(aq) \rightarrow 3 (NO_3)^-(aq) + 2 Cr^{3+}(aq) + 4 H_2O(l)$$

Para obter a ecuación global, súmase a cada lado 3 Na⁺, 2 K⁺ e 8 Cl⁻, e combinanse os ións para formar os compostos:

$$3 \text{ NaNO}_2(aq) + \text{K}_2\text{Cr}_2\text{O}_7(aq) + 8 \text{ HCl}(aq) \rightarrow 3 \text{ NaNO}_3(aq) + 2 \text{ CrCl}_3(aq) + 2 \text{ KCl}(aq) + 4 \text{ H}_2\text{O}(1)$$

b) Calcúlase a cantidade de nitrito de sodio que hai en 20,0 g:

$$n = 20.0 \text{ g NaNO}_2 \cdot 1 \text{ mol} / 69.0 \text{ g NaNO}_2 = 0.290 \text{ mol NaNO}_2$$

Cada mol de dicromato de potasio contén un mol de ión dicromato.

$$K_2Cr_2O_7(aq) \rightarrow (Cr_2O_7)^{2-}(aq) + 2 K^+(aq)$$

Cada mol de nitrito de sodio contén un mol de ión nitrito.

$$NaNO_2(aq) \rightarrow (NO_2)^-(aq) + Na^+(aq)$$

Calcúlase a cantidade necesaria de dicromato de potasio, mirando a ecuación axustada da reacción:

4

$$n=0,290 \text{ mol NaNO}_2 \frac{1 \text{ mol NO}_2^-}{1 \text{ mol NaNO}_2} \frac{1 \text{ mol Cr}_2 \text{O}_7^{2-}}{3 \text{ mol NO}_2^-} \frac{1 \text{ mol K}_2 \text{Cr}_2 \text{O}_7}{1 \text{ mol Cr}_2 \text{O}_7^{2-}} = 0,096 \text{ 6mol K}_2 \text{Cr}_2 \text{O}_7$$

Calcúlase o volume de disolución de dicromato de potasio de concentración 2,0 mol/dm³ que contén esa cantidade:

$$V = 0,096 \text{ 6mol } K_2Cr_2O_7 \frac{1 \text{ dm}^3 D K_2Cr_2O_7}{2 \text{ mol } K_2Cr_2O_7} = 0,048 \text{ 3dm}^3 = 48,3 \text{ dm}^3(D) K_2Cr_2O_7$$

- 5. Unha disolución de amoníaco de concentración 0,03 mol/dm³ está disociada nun 2,42 %. Calcula:
 - a) O valor da constante K_b do amoníaco.
 - b) O pH da disolución e o valor da constante K_a do ácido conxugado.

Dato: $K_{\rm w} = 1.0 \cdot 10^{-14}$

(A.B.A.U. ord. 23)

Rta.: a) $K_b = 1,80 \cdot 10^{-5}$; b) pH = 10,86; $K_a = 5,55 \cdot 10^{-10}$

Datos	Cifras significativas: 3
Concentración da disolución de amoníaco	$[NH_3]_0 = 0.0300 \text{ mol/dm}^3$
Grao de ionización do NH₃ na disolución	α = 2,42 % = 0,0242
Produto iónico da auga	$K_{\rm w} = 1,00 \cdot 10^{-14}$
Incógnitas	
Constante de basicidade do NH ₃	$K_{\mathtt{b}}$
pH da disolución	pН
Constante do ácido conxugado	K_{a}
Outros símbolos	
Disolución	D
Concentración (mol/dm³) de base débil que se disocia	x
Cantidade da substancia X	n(X)

Ecuacións

Cantidade disociada

Concentración da substancia X

Cantidade inicial

Constante de basicidade da base: $B(OH)_b(aq) \rightleftharpoons B^{b+}(aq) + b OH^-(aq)$	$K_{b} = \frac{\left[B^{b+}\right]_{e} \cdot \left[OH^{-}\right]_{e}^{b}}{\left[B\left(OH\right)_{b}\right]_{e}}$
pH	$pH = -log[H^+]$
рОН	$pOH = -log[OH^{-}]$
Produto iónico da auga	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$
Grao de disociación	$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{[s]_{\rm d}}{[s]_{\rm o}}$

 $n_{\rm d}$

 n_0

[X]

Solución:

a) Como o amoníaco é unha base débil, disociarase en auga segundo a ecuación:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

O grao de disociación α é:

$$\alpha = \frac{[\mathrm{NH_3}]_\mathrm{d}}{[\mathrm{NH_3}]_\mathrm{0}}$$

Do grao de ionización calcúlase a concentración de amoníaco disociado:

$$[NH_3]_d = \alpha \cdot [NH_3]_0 = 0.0242 \cdot 0.0300 \text{ mol/dm}^3 = 7.26 \cdot 10^{-4} \text{ mol/dm}^3$$

A concentración do amoníaco no equilibrio é:

$$[NH_3]_e = [NH_3]_0 - [NH_3]_d = 0,0300 \text{ mol/dm}^3 - 7,26 \cdot 10^{-4} \text{ mol/dm}^3 = 0,0293 \text{ mol/dm}^3$$

A constante de equilibrio K_b é:

$$K_{\rm b} = \frac{[{\rm NH_4^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e}}{[{\rm NH_3}]_{\rm e}} = \frac{7,26 \cdot 10^{-4} \cdot 7,26 \cdot 10^{-4}}{0,029 \ 3} = 1,80 \cdot 10^{-5}$$

b) Da estequiometría da reacción, pódese calcular a concentración de ións amonio e hidróxido.

$$[OH^{-}]_{e} = [NH_{4}^{+}]_{e} = [NH_{3}]_{d} = 7,26 \cdot 10^{-4} \text{ mol/dm}^{3}$$

A concentración de ións hidróxeno calcúlase do produto iónico da auga:

$$[H^+]_e = \frac{K_w}{[OH^-]_e} = \frac{1,00 \cdot 10^{-14}}{7,26 \cdot 10^{-4}} = 1,38 \cdot 10^{-11} \text{ mol/dm}^3$$

O pH valerá:

$$pH = -\log[H^+] = -\log(1.38 \cdot 10^{-11}) = 10.86$$

Análise: Este pH é consistente co esperado. Se o amoníaco fose unha base forte, o pH dunha disolución de concentración $0,03 \text{ mol/dm}^3$ sería pH $\approx 14 + \log 0,03 = 12,5$. Unha base débil terá un pH menos básico, máis próximo a 7.

b) O ácido conxugado do amoníaco é o ión amonio, que é un ácido porque en disolución acuosa cedería hidroxenións á auga:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

A expresión da constante de acidez do ácido conxugado do amoníaco é:

$$K_{a} = \frac{[\mathrm{NH}_{3}]_{\mathrm{e}} \cdot [\mathrm{H}^{+}]_{\mathrm{e}}}{[\mathrm{NH}_{4}^{+}]_{\mathrm{e}}}$$

Se se multiplica a constante de basicidade do amoníaco pola constante de acidez do seu ácido conxugado obtense a constante de ionización da auga que vale $K_{\rm w}=1\cdot10^{-14}$.

$$K_{b} \cdot K_{a} = \frac{[NH_{4}^{+}]_{e} \cdot [OH]_{e}}{[NH_{3}]_{e}} \cdot \frac{[NH_{3}]_{e} \cdot [H^{+}]_{e}}{[NH_{4}^{+}]_{e}} = [OH]_{e} \cdot [H^{+}]_{e} = K_{w}$$

Despexando a constante de acidez, obtense o seu valor:

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1,00 \cdot 10^{-14}}{1,80 \cdot 10^{-15}} = 5,55 \cdot 10^{-10}$$

- 6. Nun reactor de 5 dm³ introdúcense 15,3 g de CS_2 e 0,82 g de H_2 . Ao elevar a temperatura ata 300 °C alcánzase o seguinte equilibrio: $CS_2(g) + 4 H_2(g) \rightleftharpoons 2 H_2S(g) + CH_4(g)$, onde a concentración de metano no equilibrio é de 0,01 mol/dm³.
 - a) Calcula as concentracións molares das especies $\mathsf{CS_2}(g),\,\mathsf{H_2}(g)$ e $\mathsf{H_2S}(g)$ no equilibrio.
 - b) Determina o valor de K_c e discute razoadamente que lle sucederá ó sistema en equilibrio se engadimos máis cantidade de $CS_2(g)$ mantendo o volume e a temperatura constantes.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. (A.B.A.U. ord. 23)

Rta.: a) $[CS_2] = 0.0302$; $[H_2] = 0.0413$; $[H_2S] = 0.0200 \text{ mol/dm}^3$; b) $K_c = 45.3$; Desprázase cara á dereita.

0

Datos Cifras significativas: 3

Gas: volume $V = 5,00 \text{ dm}^3$

temperatura $T = 300 \text{ }^{\circ}\text{C} = 573 \text{ K}$

Masa inicial: disulfuro de carbono $m_0(CS_2) = 15.3 \text{ g}$

Datos

Cifras significativas: 3

hidróxeno $m_0(H_2) = 0.820 \text{ g}$

Concentración de metano no equilibrio $[CH_4]_e = 0,0100 \text{ mol/dm}^3$

Masa molar: disulfuro de carbono $M(CS_2) = 76.1 \text{ g/mol}$

hidróxeno $M(H_2) = 2,02 \text{ g/mol}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración molar de cada especie no equilibrio $[CS_2]_e$, $[H_2]_e$, $[H_2S]_e$

Constante de equilibrio das concentracións K_c

Outros símbolos

Concentración dunha especie X [X]Cantidade da substancia X no equilibrio $n_e(X)$

Ecuacións

Concentración da substancia X [X] = n(X) / V Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a \, A + b \, B \Longrightarrow c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^d \cdot \left[B\right]_e^b}$

Solución:

a) As cantidades iniciais de CS₂ e H₂ son:

$$n_0(CS_2) = \frac{15,3 \text{ g}}{76,1 \text{ g/mol}} = 0,201 \text{ mol } CS_2$$

$$n_0(H_2) = \frac{0.820 \text{ g}}{2.02 \text{ g/mol}} = 0.407 \text{ mol } H_2$$

Se no equilibrio hai 0,0100 mol/dm³ de CH4, a cantidade deste que se formou foi:

$$n_e(CH_4) = 0.0100 \text{ mol/dm}^3 \cdot 5.00 \text{ dm}^3 = 0.0500 \text{ mol}$$

Faise unha táboa coas cantidades de cada gas e, da estequiometría da reacción, calcúlanse as restantes cantidades no equilibrio.

1							
		CS ₂	4 H ₂	\rightleftharpoons	$2 H_2S$	CH ₄	
Cantidade inicial	n_0	0,201	0,407		0	0	mol
Cantidade que reacciona	n_{r}	0,0500	0,200	\rightarrow	0,100	0,0500	mol
Cantidade no equilibrio	$n_{\rm e}$	0,201 - 0,0500 = 0,151	0,407 - 0,200 = 0,207		0,100	0,0500	mol

As concentracións no equilibrio serán:

$$[CS_2]_e = 00.151 \text{ mol } CS_2 / 5.00 \text{ dm}^3 = 0.0302 \text{ mol } / \text{ dm}^3$$

 $[H_2]_e = 0.207 \text{ mol } / 5.00 \text{ dm}^3 = 0.0413 \text{ mol } / \text{ dm}^3$
 $[H_2S]_e = 0.100 \text{ mol } / 5.00 \text{ dm}^3 = 0.0200 \text{ mol } / \text{ dm}^3$

b) A constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{\left[H_{2}S\right]_{e}^{2} \cdot \left[CH_{4}\right]_{e}}{\left[CS_{2}\right]_{e} \cdot \left[H_{2}\right]_{e}^{4}} = \frac{\left(0,020\ \ \right)^{2} \cdot 0,010\ \ 0}{0,030\ \ 2\left(0,041\ \ \right)^{4}} = 45,3 = 0,016\ \ 8 \ \text{(concentracións en mol/dm³)}$$

Segundo o principio de Le Chatelier, se engadimos máis CS_2 ao sistema en equilibrio mantendo o volume e a temperatura constantes, o sistema reaxustarase para minimizar o efecto desta perturbación. Neste caso, consumirase máis CS_2 e H_2 para formar máis H_2S e CH_4 ata que se alcance un novo estado de equilibrio.

Polo tanto, as concentracións de CS₂ e H₂ diminuirán mentres que as concentracións de H₂S e CH₄ aumentarán.

- a) Xustifica que reacción terá lugar nunha pila galvánica formada por un eléctrodo de cobre e outro de cadmio en condicións estándar, indicando as reaccións que teñen lugar no ánodo e no cátodo. Calcula a forza electromotriz da pila nestas condicións.
- b) Fai un esquema da montaxe da pila no laboratorio, detallando o material e os reactivos necesarios e sinalando o sentido de circulación dos electróns.

 $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}; E^{\circ}(Cd^{2+}/Cd) = -0.40 \text{ V}.$

Rta.: a) $E^{\circ} = +0.74 \text{ V}$

(A.B.A.U. ord. 23)

Solución:

a) Nunha pila galvánica formada por un eléctrodo de cobre e outro de cadmio en condicións estándar, a reacción que terá lugar é a oxidación do cadmio e a redución do ión cobre(II).

 $E^{\circ} = +0.40 \text{ V}$ Oxidación: Cd(s) \rightarrow Cd²⁺(ac) + 2 e⁻ (Ánodo –) Redución: $Cu^{2+}(ac) + 2e^{-}$ \rightarrow Cu(s) $E^{\circ} = +0.34 \text{ V}$ (Cátodo +) Reacción global: $Cd(s) + Cu^{2+}(ac) \rightarrow Cd^{2+}(ac) + Cu(s)$

O criterio para indicar se unha reacción é espontánea é que a variación de enerxía libre de Gibbs sexa negativa. A reacción é espontánea porque a relación entre a enerxía libre de Gibbs e o potencial de reacción é:

$$\Delta G = -z F E = -2 \cdot F \cdot (+0.74) < 0$$

b) Material: Dous vasos de precipitados de 100 cm³, un tubo de vidro en forma de U, un voltímetro de corrente continua, cables e pinzas metálicas.

Reactivos: láminas de cobre e cadmio puídas, disolucións de sulfato de cadmio, CdSO₄, de concentración 1 mol/dm³ e sulfato de cobre(II), CuSO₄, de concentración 1 mol/dm³. Disolución de sulfato de sodio, Na₂SO₄, para a ponte salina.

A montaxe da pila no laboratorio consistiría en dous recipientes, por exemplo dous vasos de precipitados, conectados por unha ponte salina. Un recipiente contería unha solución de sulfato de cadmio e un eléctrodo de cadmio metálico, mentres que o outro contería unha solución de sulfato de cobre(II) e un eléctrodo de cobre metálico.

Os dous eléctrodos estarían conectados, mediante cables, a un voltímetro para medir a f.e.m. da pila.

O sentido de circulación dos electróns será desde o polo negativo (ánodo Cu) cara ao polo positivo (cátodo Cd) mentres que os ións fluirán pola ponte salina para manter a neutralidade eléctrica.

- Para neutralizar 150 cm³ dunha disolución de ácido nítrico de concentración 0,010 mol/dm³ gastáronse 15 cm³ dunha disolución de hidróxido de calcio de concentración descoñecida.
 - a) Escribe a reacción que ten lugar e calcula a concentración molar da disolución do hidróxido de
 - b) Indica o material que empregaría e explica o procedemento experimental para realizar a valoración.

(A.B.A.U. ord. 23)

Rta.: $[Ca(OH)_2] = 0.050 \text{ mol/dm}^3 (D).$

Solución:

a) A reacción axustada é:

$$2 \text{ HNO}_3(ac) + \text{Ca}(OH)_2(ac) \rightarrow \text{Ca}(NO_3)_2(ac) + 2 \text{ H}_2O(I)$$

Cálculos previos á valoración: Os moles de hidróxido de calcio necesarios para neutralizar 150 cm³ de ácido nítrico de concentración 0,010 mol/dm³ son:

$$n=150 \text{ cm}^3 \text{ D HNO}_3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \cdot \frac{0,010 \text{ mol HNO}_3}{1 \text{ dm}^3 \text{ D HNO}_3} \cdot \frac{1 \text{ mol Ca}(\text{OH})_2}{2 \text{ mol HNO}_3} = 7,5 \cdot 10^{-4} \text{ mol D Ca}(\text{OH})_2$$

A concentración molar da disolución do hidróxido de calcio será:

$$[Ca(OH)_2] = \frac{7.5 \cdot 10^{-4} \text{ mol D } Ca(OH)_2}{15 \text{ cm}^3 \text{ D}} \frac{10^3 \text{ cm}^3}{1 \text{ dm}^3} = 0,050 \text{ mol } Ca(OH)_2/\text{dm}^3 \text{ D}$$

Procedemento de valoración: Cunha pipeta mídense 150 cm³ de disolución de ácido nítrico e vértense nun matraz erlenmeyer de 250 cm³. Engádense dúas pingas de fenolftaleína e a disolución permanecerá incolora. Énchese unha bureta de 25 cm³ con disolución de hidróxido de calcio, de concentración descoñecida, por enriba do cero. Ábrese a chave ata que o pico da bureta estea cheo e o nivel en cero. Déixanse caer uns 12 cm³ sobre o erlenmeyer e axítase. Ábrese a chave da bureta para deixar caer a disolución de hidróxido de calcio en pequenos chorros mentres se imprime un movemento circular ao erlenmeyer ata que o contido do erlenmeyer adquira unha cor rosada. Anótase o volume de hidróxido de calcio gastado (p. ex. 15,2 cm³) e tírase o contido do erlenmeyer e lávase o matraz. Vólvese a encher a bureta con hidróxido de calcio ata o cero. Mídense outros 150 cm³ de ácido nítrico coa pipeta, vértense no erlenmeyer (lavado pero non necesariamente seco) e engádense dúas pingas de fenolftaleína. Colócase o erlenmeyer baixo a bureta e ábrese a chave ata deixar caer case todo o volume medido antes (p. ex. 14,5 cm³). Agora déixase caer a disolución de hidróxido de calcio pinga a pinga mentres se fai rotar o erlenmeyer, ata que a fenolftaleína cambie de cor. Anótase este valor. Repítese outras dúas veces e tómase como volume correcto o valor medio das medidas que máis se aproximan.

<u>Material</u>: Bureta (1) de 25 cm³ (graduada en 0,1 cm³), pipeta (1) de 200 cm³ con aspirador, matraz erlenmeyer (1) de 250 cm³, disolución de fenolftaleína.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 17/07/24