- 1、对下面的文法 G[S]:
 - $S \rightarrow A$
 - A→AB | ε
 - B→Ba | b
 - (1)构造此文法的 LR(1)分析表
 - (2)给出输入串 baba#的分析过程
 - 答: 文法拓广这步可以不做,对产生式编号如下:
 - $(0) S \rightarrow A$
 - $(1) A \rightarrow AB$
 - (2) A→ε
 - (3) B→Ba
 - $(4) B \rightarrow b$

项目集规范族如下:

$$I_0: \\ S \rightarrow \bullet \ A, \# \\ A \rightarrow \bullet \ AB, b \mid \#$$

 $S \rightarrow A \cdot , #$

 I_1 :

 $B \rightarrow \bullet b$, $a \mid b \mid \#$

I3:

 I_2 :

$$B \rightarrow Ba \bullet$$
, $a \mid b \mid \#$

状态转移如下图

LR(1)分析表如下:

	ACTION			GOTO		
	a	ь	#	S	A	В
0		R2	R2		1	
1		S3	acc			2
2	S4	R1	R1			
3	R4	R4	R4			
4	R3	R3	R3			

输入串 baba#的分析过程如下:

步骤	符号栈	状态栈	输入串	动作
1	#	0	baba#	R2
2	#A	01	baba#	S3
3	#Ab	013	aba#	R4
4	#AB	012	aba#	S4
5	#ABa	0124	ba#	R3
6	#AB	012	ba#	R1
7	#A	01	ba#	S3
8	#Ab	013	a#	R4
9	#AB	012	a#	S4
10	#ABa	0124	#	R3
11	#AB	012	#	R1
12	#A	01	#	acc

2、证明下面文法 G[S]是 LL(1)文法, 但不是 SLR(1)文法:

S→AaAb | BbBa

Α→ε

В→ε

证明: 所有非终结符的 FIRST 集合和 FOLLOW 集合如下表:

非终结符	FIRST 集合	FOLLOW 集合
S	a,b	#
A	ε	a,b
В	ε	a,b

对于非终结符 S, 它的两个候选式:

 $FIRST(AaAb) \cap FIRST(BbBa) = \{a\} \cap \{b\} = \Phi$

非终结符 A 和 B 都没有多个候选式,但是其 FIRST 集合均包含 ε,因此求:

 $FIRST(A) \cap FOLLOW(A) = \{\epsilon\} \cap \{a,b\} = \Phi$

 $FIRST(B) \cap FOLLOW(B) = \{\epsilon\} \cap \{a,b\} = \Phi$

所以,这个文法是 LL(1)文法。

对文法进行拓广,并对产生式编号如下:

- $(0) S' \rightarrow S$
- (1) S→AaAb
- (2) S→BbBa
- (3) A→ε
- $(4) B \rightarrow \varepsilon$

项目集规范族如下:

状态转移图如下:

在状态 I_0 中,由于 $FOLLOW(A)=\{a,b\}$, $FOLLOW(B)=\{a,b\}$ 因此,会产生归约一归约的冲突,在分析表中,终结符 a,b 的 ACTION 表会出现多重入口。

3、证明下面文法 G[S]是 LALR(1)文法, 但不是 SLR(1)文法:

$$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$$

 $A \rightarrow d$
 $B \rightarrow d$

证明:

文法拓广并对产生式编号如下:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow Aa$
- (2) S→bAc
- $(3) S \rightarrow Bc$
- (4) S→bBa
- $(5) A \rightarrow d$
- $(6) B \rightarrow d$

SLR(1)项目集规范族如下:

在状态 I_5 中,由于 FOLLOW(A)= $\{a,c\}$,FOLLOW(B)= $\{a,c\}$ 因此,会产生归约 一归约的冲突,在分析表中,终结符 a,b 的 ACTION 表会出现多重入口。因此文 法不是 SLR(1)文法。

```
LR(1)项目集规范族如下:
```

```
I<sub>0</sub>:
      S' \rightarrow S, #
      S→ • Aa, #
      S→ • bAc, #
      S→ • Bc, #
      S→ • bBa, #
      A \rightarrow \cdot d, a
      B→ • d, c
I_1:
      S' \rightarrow S \cdot , #
I_2:
      S→A • a, #
I3:
      S→b • Ac, #
      S→b • Ba, #
      A \rightarrow \cdot d, c
      B \rightarrow \cdot d, a
I4:
      S→B • c, #
I<sub>5</sub>:
```

```
A \rightarrow d \cdot , a
      B→d•, c
I<sub>6</sub>:
      S→Aa • ,#
I7:
      S→bA • c, #
I<sub>8</sub>:
      S→bB • a, #
I9:
      A \rightarrow d \cdot , c
      B \rightarrow d \cdot , a
I_{10}:
      S→Bc • , #
I_{11}:
      S→bAc • , #
I_{12}:
      S→bBa•, #
```

如果合并同心集合 I_5 和 I_9 ,那么非终结符 A 和 B 的向前搜索符集合相交不为空,会产生归约一归约的冲突。

因此,上述文法不是 SLR(1)文法,也不是 LALR(1)文法,是 LR(1)文法。