Wprowadzenie do Sztucznej Inteligencji Laboratorium 4

SVM oraz drzewa decyzyjne

1. Wstęp

Przedmiotem laboratorium były dwa algorytmy uczenia maszynowego – SVM oraz drzewa decyzyjne. Są one szeroko stosowane do zadania klasyfikacji. SVM najlepiej spełnia swoją rolę dla zadań liniowo separowalnych, jednakże przy użyciu funkcji jądra można go również skutecznie stosować dla pozostałego typu zadań. Drzewa decyzyjne najczęściej stosowane są dla danych nieliniowych i gdy istotne jest określenie ,która cecha wpłynęła na decyzję.

2. Zadanie

W laboratorium należało przeprowadzić serię eksperymentów, ucząc oba algorytmy na zbiorze danych z klasyfikacją irysów, ustawiając różne parametry. Dla SVM zmieniano siłę regularyzacji, funkcję jądra oraz maksymalną ilość iteracji. Dla drzewa decyzyjnego manipulowano kryterium oceny, techniką podziału węzła oraz maksymalną głębokością drzewa. Jako miary jakości klasyfikacji użyto accuracy, precision, recall oraz F1.

Wyniki 3.1. SVM

Siła regularyzacji

С	ACCURACY	PRECISSION	RECALL	F1
0.001	0.913	0.92	0.9133	0.9123
	± 0.0542	±0.0516	±0.0541	±0.0552
0.01	0.920	0.928	0.92	0.9191
	±0.0400	± 0.0373	± 0.04	±0.04
0.1	0.973	0.976	0.973	0.9732
	±0.0133	± 0.0121	± 0.013	± 0.0133
1	0.980	0.982	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.0164
10	0.973	0.979	0.973	0.9728
	±0.0389	±0.0301	±0.0389	±0.0397
100	0.967	0.971	0.967	0.966
	± 0.0422	±0.0353	±0.0422	±0.0428
1000	0.966	0.971	0.967	0.966
	± 0.0422	±0.0353	±0.0422	±0.0428

Funkcja jądra

KERNEL	ACCURACY	PRECISSION	RECALL	F1
linear	0.98	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637
poly	0.98	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637
Rbf	0.966	0.968	0.966	0.967
	±0.0211	± 0.0211	± 0.0210	± 0.0210
sigmoid	0.067	0.0318	0.066	0.0428
	± 0.0596	<u>+</u> 0.0247	±0.059	±0.0349

<u>Ilość iteracji</u>

ITERACJE	ACCURACY	PRECISSION	RECALL	F1
100	0.980	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637
1000	0.980	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637
10000	0.980	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637
100000	0.980	0.9818	0.980	0.979
	± 0.0163	±0.0148	±0.0163	±0.01637

3.2. Drzewo decyzyjne

Kryterium oceny

KRYTERIUM	ACCURACY	PRECISSION	RECALL	F1
entropy	0.953	0.955	0.953	0.953
	± 0.0340	±0.0337	<u>+</u> 0.0334	±0.0340
gini	0.958	0.959	0.957	0.957
	± 0.0331	±0.0327	<u>+</u> 0.033	±0.0331
log_loss	0.953	0.955	0.953	0.953
	± 0.0340	±0.0337	<u>+</u> 0.0334	±0.0340

Technika podziału węzłą

PODZIAŁ	ACCURACY	PRECISSION	RECALL	F1
best	0.953	0.9577	0.9577	0.9577
	± 0.0340	±0.0331	±0.0331	±0.0331
random	0.958	0.9511	0.951	0.951
	± 0.0331	±0.0269	±0.0269	±0.0274

Maksymalna głębokość drzewa

GŁĘBOKOŚĆ	ACCURACY	PRECISSION	RECALL	F1
10	0.957	0.95986	0.957	0.957
	± 0.0331	±0.0327	±0.0331	±0.0332
100	0.957	0.95986	0.957	0.957
	± 0.0331	<u>+</u> 0.0327	±0.0331	±0.0332
1000	0.957	0.95986	0.957	0.957
	± 0.0331	<u>+</u> 0.0327	±0.0331	±0.0332
10000	0.957	0.95986	0.957	0.957
	± 0.0331	<u>+</u> 0.0327	±0.0331	±0.0332