## IN THE CLAIMS

Please amend the claims as follows:

Claims 1-14 (Canceled).

Claim 15 (New): A process for hydroformylating olefins, comprising the reaction of a monoolefin or a monoolefin mixture having from 2 to 25 carbon atoms with a mixture of carbon monoxide and hydrogen in the presence of a heteroacylphosphite of general formula (1) or a corresponding complex with one or more metals of groups 4 to 10 of the Periodic Table of the Elements

$$R^2$$
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 

(1)

where  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I,  $-CF_3$ ,  $-CH_2(CF_2)_jCF_3$  where j=0.9,  $-OR^5$ ,  $-CO_2R^5$ ,  $-CO_2M$ ,  $-SiR^5_3$ ,  $-SR^5$ ,  $-SO_2R^5$ ,  $-SO_3R^5$ ,  $-SO_3M$ ,  $-SO_2NR^5R^6$ ,  $-NR^5R^6$ ,  $-N=CR^5R^6$ , where  $R^5$  and  $R^6$  are the same or different and are each as defined for  $R^1$ , and M is an alkali metal, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently O,  $NR^7$ , S, where  $R^7$  is as defined for Q, and Q, Q are not simultaneously Q, with the proviso that when Q is a radical which has a structural formula (6c)

Docket No. 296473US Preliminary Amendment

$$R^{2}$$

$$R^{3}$$

$$X^{1}$$

$$Y^{1}$$

$$Z^{1}$$

$$Z^{1$$

where the  $R^1$  to  $R^4$  radicals are each as defined for formula (1),  $x^1$ ,  $y^1$ ,  $z^1$  are each independently O,  $NR^7$ , S, where  $R^7$  is as defined for q, T is an oxygen or an  $NR^{30}$  radical, where  $R^{30}$  is as defined for q, and the a position serves as the attachment point,

x and  $x^1$  must not simultaneously be N and x must not be N when T is  $NR^{30}$ .

Claim 16 (New): The process as claimed in claim 15, characterized in that

the R<sup>1</sup> and R<sup>2</sup>, R<sup>2</sup> and R<sup>3</sup> and/or R<sup>3</sup> and R<sup>4</sup> radicals form a fused substituted or unsubstituted aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 17 (New): The process as claimed in claim 15, characterized in that

the q radical consists of the W-R radicals where W is a divalent substituted or unsubstituted aliphatic, alicyclic, mixed aliphatic-alicyclic, heterocyclic, mixed aliphatic-heterocyclic, aromatic, heteroaromatic, mixed aliphatic-aromatic hydrocarbon radical having from 1 to 50 carbon atoms, and the R radical is -OR<sup>5</sup>, -NR<sup>5</sup>R<sup>6</sup>, phosphite, phosphonite, phosphinite, phosphine or heteroacylphosphite of formula (6c), where R<sup>5</sup> and R<sup>6</sup> are the same or different and are as defined for R<sup>1</sup>.

Claim 18 (New): The process as claimed in claim 17,

characterized in that

W is a radical of general formula (2)

$$R^{9}$$
 $R^{10}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{13}$ 
 $R^{14}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 
 $R^{15}$ 

where  $R^8$ ,  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$  and  $R^{15}$  are the same or different and are each as defined for  $R^1$ ,

t is a divalent  $CR^{16}R^{17}$ ,  $SiR^{16}R^{17}$ ,  $NR^{16}$ , O or S radical, and  $R^{16}$  and  $R^{17}$  are each as defined for  $R^5$  and  $R^6$ , n = 0 or 1 and the a and b positions serve as attachment points.

Claim 19 (New): The process as claimed in claim 18,

characterized in that

in each case two adjacent  $R^9$  to  $R^{15}$  radicals together form a fused substituted or unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 20 (New): The process as claimed in claim 18,

characterized in that

W is a radical of general formula (3):

$$R^{19}$$
 $R^{18}$ 
 $R^{18}$ 
 $R^{20}$ 
 $R^{21}$ 
 $R^{22}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 

where  $R^{18}$ ,  $R^{19}$ ,  $R^{20}$ ,  $R^{21}$ ,  $R^{22}$  and  $R^{23}$  are the same or different and are each as defined for  $R^1$ , t is a divalent  $CR^{16}R^{17}$ ,  $SiR^{16}R^{17}$ ,  $NR^{16}$ , O or S radical, and  $R^{16}$  and  $R^{17}$  are each as defined for  $R^5$  and  $R^6$ , n=0 or 1 and the a and b positions serve as attachment points.

Claim 21 (New): The process as claimed in claim 20, characterized in that

in each case two adjacent  $R^{18}$  to  $R^{23}$  radicals together form a fused substituted or unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 22 (New): The process as claimed in claim 17,

characterized in that

W is a radical of general formula (4):

where u is a divalent group selected from radicals of formulae (5a), (5b) and (5c)

$$R^{24}$$
  $R^{25}$   $R^{26}$   $R^{27}$   $R^{24}$   $R^{25}$   $R^{24}$   $R^{25}$   $R^{24}$   $R^{25}$   $R^{24}$   $R^{25}$   $R^{27}$   $R^{27}$   $R^{27}$   $R^{29}$   $R$ 

in which  $R^{24}$ ,  $R^{25}$ ,  $R^{26}$  and  $R^{27}$  are the same or different and are each as defined for  $R^1$ , and the a and b positions serve as attachment points.

Docket No. 296473US Preliminary Amendment

Claim 23 (New): The process as claimed in claim 22,

characterized in that

two adjacent  $R^{24}$  to  $R^{27}$  radicals together form a fused substituted or unsubstituted, aromatic, heteroaromatic, aliphatic, mixed aromatic-aliphatic or mixed heteroaromatic-aliphatic ring system.

Claim 24 (New): The process as claimed in claim 17,

characterized in that

R represents radicals of general formulae (6a), (6b) and (6c):

where  $R^{28}$  and  $R^{29}$  are the same or different and are each as defined for  $R^{1}$ ,

x, y, z and W are each defined as specified and

$$m = 0$$
 or 1,  $n = 0$  or 1,  $k = 0$  or 1,  $l = 0$  or 1,

and the position a serves as the attachment point.

Claim 25 (New): The process as claimed in claim 15,

characterized in that

the metal of groups 4 to 10 of the Periodic Table is selected from the group consisting of rhodium, platinum, palladium, cobalt and ruthenium.

Claim 26 (New): The process as claimed in claim 15,

characterized in that

further phosphorus ligands are present.

Claim 27 (New): A process for hydrocyanation, isomerization of olefins or amidocarbonylation in the presence of heteroacylphosphines of formula (1)

$$R^2$$
 $R^3$ 
 $X$ 
 $Y$ 
 $Z$ 
 $Q$ 
 $Z$ 
 $Q$ 

or metal complexes thereof,

where  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I, -CF<sub>3</sub>, -CH<sub>2</sub>(CF<sub>2</sub>)<sub>j</sub>CF<sub>3</sub> where j = 0-9, -OR<sup>5</sup>, -COR<sup>5</sup>, -CO<sub>2</sub>R<sup>5</sup>, -CO<sub>2</sub>M, -SiR<sup>5</sup><sub>3</sub>, -SR<sup>5</sup>, -SO<sub>2</sub>R<sup>5</sup>, -SOR<sup>5</sup>, -SO<sub>3</sub>R<sup>5</sup>, -SO<sub>3</sub>M, -SO<sub>2</sub>NR<sup>5</sup>R<sup>6</sup>, -NR<sup>5</sup>R<sup>6</sup>, -N=CR<sup>5</sup>R<sup>6</sup>, where R<sup>5</sup> and R<sup>6</sup> are the same or different and are each as defined for R<sup>1</sup>, and M is an alkali metal ion, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently O, NR<sup>7</sup>, S, where R<sup>7</sup> is as defined for R<sup>1</sup>.

(1)

Claim 28 (New): A process for carbonylation in the presence of a heteroacylphosphite of formula (1)

$$R^2$$
 $R^3$ 
 $R^4$ 
 $R^4$ 

or metal complexes thereof,

where  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and q are the same or different and are each a substituted or unsubstituted aliphatic, alicyclic, aromatic, heteroaromatic, mixed aliphatic-alicyclic, mixed aliphatic-aromatic, heterocyclic, mixed aliphatic-heterocyclic hydrocarbon radical having from 1 to 70 carbon atoms, H, F, Cl, Br, I, -CF<sub>3</sub>, -CH<sub>2</sub>(CF<sub>2</sub>)<sub>j</sub>CF<sub>3</sub> where j = 0.9, -OR<sup>5</sup>, -COR<sup>5</sup>, -CO<sub>2</sub>R<sup>5</sup>, -CO<sub>2</sub>M, -SiR<sup>5</sup><sub>3</sub>, -SR<sup>5</sup>, -SO<sub>2</sub>R<sup>5</sup>, -SOR<sup>5</sup>, -SO<sub>3</sub>R<sup>5</sup>, -SO<sub>3</sub>M, -SO<sub>2</sub>NR<sup>5</sup>R<sup>6</sup>, -NR<sup>5</sup>R<sup>6</sup>, -N=CR<sup>5</sup>R<sup>6</sup>, where R<sup>5</sup> and R<sup>6</sup> are the same or different and are each as defined for R<sup>1</sup>, and M is an alkali metal ion, formally half an alkaline earth metal ion, an ammonium or phosphonium ion, x, y, z are each independently 0, NR<sup>7</sup>, S, where R<sup>7</sup> is as defined for q, and x, y, z are not simultaneously 0, with the proviso that when q has a radical which has a structural formula (6c)

$$R^2$$
 $R^3$ 
 $R^4$ 
 $Y^1$ 
 $Y^2$ 
 $Y^3$ 
 $Y^4$ 
 $Y^4$ 

Docket No. 296473US Preliminary Amendment

where the  $R^1$  to  $R^4$  radicals are each as defined for formula (1),  $x^1$ ,  $y^1$ ,  $z^1$  are each independently O,  $NR^7$ , S, where  $R^7$  is as defined for q, T is an oxygen or an  $NR^{30}$  radical, where  $R^{30}$  is as defined for q, and the a position serves as the attachment point, x and  $x^1$  must not simultaneously be N and

x must not be N when T is NR<sup>30</sup>.