- -Algorithm analysis Analysis of complexity of algorithms & finding most efficient algorithm to solve a problem
- -Big-O Notation Statistical measure, used to describe the algorithm complexity.
 - -- Measured in BEST case, AVERAGE case, & WORST case
 - -- Always Pick WORST CASE

FROM FASTEST TO SLOWEST	
<u>O(1)</u>	constant (or O(k) for constant k)
O(log n)	<u>logarithmic</u>
<u>O(n)</u>	linear
O(n log n)	<u>"n log n"</u>
O(n ²)	<u>quadratic</u>
<u>O(n³)</u>	<u>cubic</u>
<u>O(n^k)</u>	polynomial (where is k is constant)
O(k ⁿ)	exponential (where constant k > 1)
O(n!)	<u>factorial</u>

TO FIND BIG O NOTATION

1 Find Fastest Growing Term

EX.)
$$T = an + b$$
 $an = Fastest Growing Term$

2 Take out the Coefficient

EX.)
$$an = n \rightarrow O(n)$$

EX.2)
$$T = cn^2 + dn + e$$

--
$$n^2$$
 = No Coefficient

$$-- O(n^2)$$