MATEMÁTICAS CINVESTAV

Índice general

	I Algebra abstracta 5	
1	Grupos 7	
2	Homorfismos de grupo 13	
3	Anillos 15	
4	Dominios 17	
	II Algebra Lineal 19	
5	Espacios vectoriales, Isomorfismos 2:	1
6	Operadores lineales 23	
7	Funciones lineales 25	
8	Espacios duales 27	
9	Teorema de Caley-Hamilton 29	

10	Diagonalizacion 31	
11	Forma canónica de Jordan 33	
12	Vectores propios generalizados 35	
	III Ecuaciones difereciales 37	
13	Resolución de ecuaciones diferenciales 39	
14	Existencia y unicidad de la solución de una ED	41
15	Solución aproximada 43	
16	Relación entre soluciones aproximadas y exactas	45

4 GENERACIÓN 2014

Parte I Algebra abstracta

1

Grupos

Definición de grupo

Definiciò Un conjunto no vacio G en el que esta definida una operacion * tal que va a mapear el producto cartesiano y los va amandar.

$$*: G \times G \rightarrow G$$

.

$$(a,b) \rightarrow (a*b)$$

Propiedad

1.
$$a * b \in G \forall a, b \in G$$

2.
$$a * b(b * c) = (a * b) * c \forall a, b, c \in G$$

3. $\exists e \in G : a * e = e * a = a \forall e \in G "e"$ se le llama identidad o identidad de a

Ejemplo

1. Z

2. Los racionales Q con la suma

3. $\mathbb{Q}^* = \mathbb{Q}\{0\}$ con la multiplicación

4. $G = \{e\}$ con la opercaion $e * e = e \in G$

5.

6. El conjunto de Matrices $G(n, \mathbb{R})$ es un grupo NO CONMUTATIVO $A, b \in G(n, \mathbb{R})$

7. Son las matrices

Grupos Abelianos

Definicion Se dice que un grupo G es <u>Abeliano</u> si solo si a * b = b * a

Ejemplo El conjunto \mathbb{Z}/\mathbb{Z}_n (clase de equivalencia)

Ejercicios

- 1. Considere a \mathbb{Z} con el producto usual Es \mathbb{Z} un grupo?
- 2. Considere a $\mathbb{Z}^*(incluye0)$ con el producto usual es \mathbb{Z}^* ?
- 3. Sea $G = \mathbb{R} \setminus \{0\}$ si definimos $a \times b = a^2b$ G es un Grupo?

Definiciones Orden de un grupo es el numero de elementos que tiene dicho Grupo y se denota |G| Un Grupo G sera finito si tiene elementos finitos de elementos sea infinito

Ejemplos

Proposicion Si G es un grupo entonces

- 1. El elemento identidad es uinico
- 2. $\forall a \in Ga^{-1}$ es unico
- 3. $\forall a, b \in G(ab)^{-1} = b^{-1}a^{-1}$
- 4. En general $(a_1 \cdot a_2 \cdot \dots \cdot a_n)^{-1} = (a_n^{-1} \cdot a_{n-1}^{-1} \cdot \dots \cdot a_2^{-1} \cdot a_1^{-1}) \forall a \in G$

Proposicion Sea G un grupo $\forall a, b, c \in G$

- 1. $ab = ac \Rightarrow b = c$
- 2. $ba = ca \Rightarrow b = c$

Verificacion

1.
$$b = eb = (aa^{-1})b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c$$

2.
$$b = be = b(aa^{-1}) = (ba)a^{-1} = (ca)a^{-1} = c(aa^{-1}) = ce = c$$

Subgrupo

Definición Conjunto no vacio H de un grupo G, se llama Subgrupo si H mismo forma un grupo respecto a la operació de G. Cuando H es subgrupo de G se denota H < G ò G > H.

Observación Todo grupo tiene autòmaticamente dos subgrupos tribiales $G\&\{e\}$

Propociòn Un subconjunto no vaio $H \subset G$ es un subgrupo de G ssi H es cerrado respecto a la operación G & $a \in H \Rightarrow a^{-1} \in a^{-1} \in H$ \Rightarrow

Necesidad Como H es un subgrupo de G, H es un grupo y tiene inversa

 \Leftarrow

Suficiencia H es cerrado, no vacio & y el inverso esta en $H \forall a \in H =$ $aa^{-1}(Hescerrado) \Rightarrow aa^{-1} = e \in H$ Ademas para $a,b,c \in H$ a(bc) = (ab)c $H \in G$

Ejercicio Sea $G = \mathbb{Z}$ con la suma usual & sea H el conjunto de enteros pares.

$$H = \{2n/n \in \mathbb{Z}\}$$

H es un subgrupo?

Sean
$$a,b \in H$$
 $a = 2q$, $q \in \mathbb{Z}$ $b = 2q$ $q \in \mathbb{Z}$ $a + b = 2q + 2q = 2(q + q') = 2q''$

Subgrupo Normal

Definición 1. *Un grupo N de G se dice que es un Subgrupo Normal de G denotado por:*

$$N\triangle G$$

 $si \forall g \in G \ y \ \forall n \in N$, se tiene que:

$$gng^{-1} \in N \tag{1.1}$$

Lema 1. N es un subgrupo de G, si y solo si:

$$gNg^{-1} = N \quad \forall g \in G \tag{1.2}$$

Demostración. I Si $gNg^{-1} = N \quad \forall g \in G$, entonces en particular:

$$gNg^{-1} \subseteq N$$

por lo que $gNg^{-1} \in N \quad \forall n \in N$, por lo tanto:

$$N\triangle G$$

II Si *N* es un subgrupo normal de *G*, entonces:

$$gNg^{-1} \in N$$

Si $g \in G$ $\forall n \in N$, entonces $gNg^{-1} \subseteq N$.

Por otro lado $g^{-1}Ng = g^{-1}N(g^{-1})^{-1} \subseteq N$, ademas:

$$N = eNe = g(g^{-1}Ng)g^{-1} = gNg^{-1}$$

por lo tanto:

$$gNg^{-1} = N$$

Lema 2. El subgrupo N de G es un subgrupo normal de G $(N\triangle G)$, si y solo si, toda clase lateral izquierda de N en G es una clase lateral derecha de N en G.

Demostración. Sea $aH = \{ah | h \in H\}$ la clase lateral izquierda.

I Si N es un subgrupo normal de G $\forall g \in G$ $\forall n \in N$

$$gNg^{-1} = N$$

entonces, podemos hacer lo siguiente:

$$gN = gNe = gN\left(g^{-1}g\right) = \left(gNg^{-1}\right)g = Ng$$

entonces, toda clase lateral izquierda coincide con la clase lateral derecha.

II Ahora supongamos que las clases laterales coinciden, entonces:

$$gNg^{-1} = (gN)g^{-1} = Ngg^{-1} = N$$

por lo que podemos concluir que se trata de un subgrupo normal.

Definición 2. Denotaremos G/N al conjunto de las clases laterales derechas de N en G

$$G/N = \{Na|a \in G\} \tag{1.3}$$

Teorema 1. Si G es un grupo y N es un subgrupo normal de G, entonces G/N es tambien un grupo y se le denomina grupo cociente.

Demostración. I Cerradura

Prueba asignada a tarea

II Asociatividad

Prueba asignada a tarea

III Identidad

$$N = Ne (1.4)$$

Verificamos para un elemento $x \in G/N \implies x = Na$, $a \in G$

$$xN = NaN = NNa = Na = x$$

$$Nx = NNa = Na = x \tag{1.5}$$

IV Inverso Sea $x \in G/N$ y sea $Na^{-1} \in G/N$, por verificar que $x^{-1} = Na^{-1}$, es el inverso de x = Na

$$xx^{-1} = NaNa^{-1} = NNaa^{-1} = Ne = N$$
 (1.6)

$$x^{-1}x = Na^{-1}Na = NNa^{-1}a = Ne = N$$
 (1.7)

por lo tanto $Na^{-1}=x^{-1}$ es el inverso de x, por lo que podemos concluir que G/N es un grupo.

Definiciòn

Un mapeo ϕ de un grupo G en un grupo \bar{G} se dice ser un homomorfismo si para todo $a,b\in G, \phi(a,b)=\phi(a)\phi(b)$

Proposiciòn Sea $\varepsilon:G\to \acute{G}$ homomorfismo. Entonces ε es un monomorfismo ssi $ker\varepsilon=\{0\}(e=0\in G)$

Verificaciòn ←

Supongamos que Ker $\varepsilon = \{0\}$ por verificar que ε es monomorfismo

Supongamos que $\varepsilon(x_1) = \varepsilon(x_2)$

3 Anillos

4 Dominios

Parte II Algebra Lineal

5 Espacios vectoriales, Isomorfismos

Operadores lineales

7 Funciones lineales

Espacios duales

11 Forma canónica de Jordan

Parte III Ecuaciones difereciales

13 Resolución de ecuaciones diferenciales

15 Solución aproximada