UNIVERSITY OF SHEFFIELD

PMA101

PURE MATHEMATICS

Autumn Semester 2003-2004

2 hours

Pure Mathematics Core — Mock exam

Attempt all the questions. The allocation of marks is shown in brackets; Section A is worth 60 marks in total, and Section B is worth 30 marks.

A1 Convert the function $f(x) = \frac{4}{(x+1)(x^2-1)}$ to partial fraction form, and thus find $\int f(x) dx$. (6 marks)

A2 Let $f:(-1,1) \to (-1,1)$ be given by f(x) = (5x+4)/(4x+5). Find a formula for $f^{-1}(x)$. (You need not check anything about the domain or range of f or f^{-1} .)

(4 marks)

A3 Let a and b be constants, and define $f, g: \mathbb{R} \to \mathbb{R}$ by f(x) = a + x and g(x) = b - x. Find $f^{-1}(x)$, $g^{-1}(x)$ and $(g \circ f \circ g)(x)$. (6 marks)

A4 Simplify the expression $\log \left(\frac{e^a e^b}{(e^c)^d} \right)$. (2 marks)

A5 Sketch the graphs of the functions $\tan(\theta)$ and $\sin(\theta)$. Find an angle θ such that $\tan(\theta) = 1$ and $\sin(\theta) < 0$.

A6 Show that $8\cosh(x)^4 - 8\cosh(x)^2 + 1 = \cosh(4x)$. (5 marks)

A7 Let a, b and n be constants. Find f'(x), where $f(x) = \left(\frac{x-a}{x-b}\right)^n$.

(3 marks)

A8 Find $\frac{d}{dx}\cos\left(\left(\frac{x+1}{2}\right)^2\right)$. (2 marks)

A9 Find $\frac{d}{dx} \log(\cos(x))$. (2 marks)

PMA101 1 Turn Over

PMA101

A10 Let a, b, c and d be constants. Find
$$\frac{d}{dx} \left(\frac{ax + bx^{-1}}{cx + dx^{-1}} \right)$$
. (4 marks)

A11 If
$$y = \sqrt{2\pi}x^{x-1/2}e^{-x}$$
, show that $y'/y = \log(x) - 1/(2x)$. (4 marks)

A12 By putting
$$u = \log(x)$$
, find $\int \frac{(1 + \log(x))^2}{x} dx$. (4 marks)

A13 Find
$$\int (4x^2 + 2x + 1)e^{2x} dx$$
. (4 marks)

A14 Find the general solution of the following system of equations:

$$y + 2z = 1$$

$$-x + 3z = 2$$

$$-2x - 3y = 1$$

(6 marks)

A15 Find the determinant of the following matrix, simplifying your answer as much as possible.

$$\left[\begin{array}{ccc} t & a & b \\ a & t & c \\ b & c & t \end{array}\right]$$

(4 marks)

B1 Let $g:[0,\infty)\to\mathbb{R}$ be given by $g(x)=\sin(\pi e^{-x}/2)$. Find the range of g.

B2 Find
$$\int 8x \sin(x) \cos(x) dx$$
 (7 marks)

B3 By substituting
$$u = x^n$$
, find $\int \frac{dx}{x\sqrt{x^{-2n} - 1}}$. (7 marks)

B4 Find
$$\int \frac{x^5 - 1}{x^2(x - 1)} dx$$
. (6 marks)

B5 Find the inverse of the following matrix:

$$\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]$$

(6 marks)

End of Question Paper