

# Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP2 – 1º semestre de 2018 – GABARITO



Os números entre parênteses são os identificadores de cada enlace. Considere que, em um dado momento, as tabelas de encaminhamento dos switches sejam as seguintes:

| Tabela de S1 |           |  |  |  |
|--------------|-----------|--|--|--|
| Destino      | Interface |  |  |  |
| h2           | 1         |  |  |  |
| h7           | 8         |  |  |  |
| h3           | 4         |  |  |  |
| h1           | 1         |  |  |  |

| Tabela  | Tabela de S2 |  |  |  |  |  |
|---------|--------------|--|--|--|--|--|
| Destino | Interface    |  |  |  |  |  |
| h2      | 3            |  |  |  |  |  |
| h7      | 1            |  |  |  |  |  |
| h3      | 1            |  |  |  |  |  |
| h1      | 2            |  |  |  |  |  |

| Tabela de S3 |           |  |  |  |
|--------------|-----------|--|--|--|
| Destino      | Interface |  |  |  |
| h2           | 4         |  |  |  |
| h3           | 5         |  |  |  |
| h1           | 4         |  |  |  |

| Tabela de S4 |           |  |  |  |
|--------------|-----------|--|--|--|
| Destino      | Interface |  |  |  |
| h2           | 8         |  |  |  |
| h7           | 10        |  |  |  |
| h3           | 8         |  |  |  |
| h1           | 8         |  |  |  |

(a) Se a estação h1 enviar um quadro para a estação h2, por quais enlaces esse quadro será transmitido?

## Resposta:

O quadro será transmitido pelos enlaces 2 e 3.

(b) Durante a transmissão deste quadro, algum dos switches desta rede irá adicionar alguma entrada em sua tabela de encaminhamento? Se sim, quais switches e quais entradas?



## Resposta:

Nenhum switch irá adicionar entradas em sua tabela de encaminhamento



Considere um datagrama IP que é enviado de h1 com destino a h2.

(a) Lembrando que o campo TTL (*Time to Live*) do cabeçalho IP é diminuído de uma unidade a cada salto, suponha que o datagrama é enviado com TTL inicial de 32. Para cada um dos 5 enlaces que o datagrama irá atravessar, determine o endereço origem, o endereço destino e o valor de TTL registrados no cabeçalho deste datagrama quando ele atravessa o enlace.



(b) Suponha que todas as tabelas ARP envolvidas estão devidamente preenchidas. Para cada um dos 5 enlaces, determine o endereço origem e o endereço destino dos quadros Ethernet que irão encapsular este datagrama quando ele atravessa o enlace.



Na tabela abaixo, são apresentados, nas colunas, diversos protocolos de acesso a um meio de transmissão compartilhado, e nas linhas, diversas características destes protocolos. Preencha cada célula da tabela indicando se o protocolo possui ou não a característica apresentada. Considere que, exceto em afirmação contrária, a quantidade de estações que possuem acesso ao meio em questão é constante (isto é, estações não entram e saem da rede), mas que nem todas as estações desejam transmitir a todo instante.



|                                    | CSMA | FDMA | CDMA | ALOHA |
|------------------------------------|------|------|------|-------|
| permite acesso simultâneo sem co-  | ×    | ✓    | ✓    | ×     |
| lisão ao meio                      |      |      |      |       |
| livre de colisões                  | ×    | ✓    | ✓    | ×     |
| protocolo de acesso aleatório      | ✓    | ×    | ×    | ✓     |
| não permite que uma estação de-    | ✓    | ✓    | ✓    | ✓     |
| tecte uma colisão e interrompa sua |      |      |      |       |
| transmissão                        |      |      |      |       |
| a adição de uma estação adicional  | ✓    | ✓    | ✓    | ✓     |
| que não transmite não reduz a uti- |      |      |      |       |
| lização do meio                    |      |      |      |       |

Considere um conjunto de estações se comunicando por uma rede sem fio *ad hoc*. Considere que as estações não são terminais móveis e se encontram a uma distância fixa umas das outras conforme a tabela abaixo:

|   | A     | В     | С     | D     | E     | F     | G     | Н                |
|---|-------|-------|-------|-------|-------|-------|-------|------------------|
| A |       | 2.0 m | 6.7 m | 8.8 m | 7.0 m | 7.5 m | 4.8 m | 2.4 m            |
| В | 2.0 m |       | 4.8 m | 7.4 m | 6.2 m | 7.4 m | 5.7 m | 4.1 m            |
| С | 6.7 m | 4.8 m |       | 5.4 m | 6.6 m | 9.1 m | 9.2 m | 8.6 m            |
| D | 8.8 m | 7.4 m | 5.4 m |       | 3.2 m | 6.0 m | 8.1 m | 9.4 m            |
| E | 7.0 m | 6.2 m | 6.6 m | 3.2 m |       | 2.9 m | 5.1 m | 7.0 m            |
| F | 7.5 m | 7.4 m | 9.1 m | 6.0 m | 2.9 m |       | 3.6 m | $6.5 \mathrm{m}$ |
| G | 4.8 m | 5.7 m | 9.2 m | 8.1 m | 5.1 m | 3.6 m |       | 3.1 m            |
| Н | 2.4 m | 4.1 m | 8.6 m | 9.4 m | 7.0 m | 6.5 m | 3.1 m |                  |

Suponha que duas estações conseguem se comunicar diretamente se, e somente se, elas encontram-se no máximo a uma distância de 7.4 m.

(a) Esta restrição na comunicação é ocasionada por qual fenômeno observado em redes sem fio? Explique como ele ocorre.

## Resposta:

É ocasionada pelo desvanecimento do sinal em redes sem fio: ao contrário de redes cabeadas, em que o sinal é propagado por impulsos elétricos, em redes sem fio o meio de propagação das ondas de sinal causa uma grande queda na potência do sinal conforme ele se propaga.

(b) O grafo de conectividade desta rede é um grafo no qual os vértices são as estações, e existe uma aresta entre duas estações se e somente se elas são capazes de ouvir a transmissão uma da outra. Construa o grafo de conectividade desta rede.





(c) Considere o cenário em que ocorrem simultaneamente transmissões de quadros de G para E e de A para C. As estações destino desses quadros irão receber os respectivos quadros com sucesso?

## Resposta:

Enão recebe a transmissão de G com sucesso pois recebe ambas as transmissões, o que significa que houve colisão. Já C recebe a transmissão de A com sucesso.

(d) Repita o item anterior para o cenário em que ocorrem simultaneamente transmissões de quadros de B para E e de D para F.

## Resposta:

Tanto E quanto F recebem ambas as transmissões, ocasionando colisão. Logo, nenhuma das transmissões é recebida com sucesso.



Suponha que o cliente utilize o seguinte mecanismo de bufferização: todos os pacotes são bufferizados assim que chegam e o cliente começa a reproduzir o vídeo somente ao receber o  $1^{\rm o}$  pacote, considerando como perdidos todos os pacotes que não chegarem a tempo de serem reproduzidos.

- (a) Determine o instante de recepção de cada um dos pacotes.
- (b) Determine o instante de reprodução escalonado para cada um dos pacotes.



```
Resposta:
PKT1 Recepção em t = 3.0 s, reprodução escalonada para t = 3.0 s
PKT2 Recepção em t = 4.0 s, reprodução escalonada para t = 4.0 s
PKT3 Recepção em t = 6.0 s, reprodução escalonada para t = 5.0 s
PKT4 Recepção em t = 6.0 s, reprodução escalonada para t = 6.0 s
PKT5 Recepção em t = 7.5 s, reprodução escalonada para t = 7.0 s
PKT6 Recepção em t = 8.5 s, reprodução escalonada para t = 8.0 s
PKT7 Recepção em t = 9.5 s, reprodução escalonada para t = 9.0 s
PKT8 Recepção em t = 10.5 s, reprodução escalonada para t = 10.0 s
PKT9 Recepção em t = 11.0 s, reprodução escalonada para t = 11.0 s
PKT10 Recepção em t = 12.5 s, reprodução escalonada para t = 12.0 s
PKT11 Recepção em t = 13.0 s, reprodução escalonada para t = 13.0 s
PKT12 Recepção em t = 14.0 s, reprodução escalonada para t = 14.0 s
PKT13 Recepção em t = 16.0 s, reprodução escalonada para t = 15.0 s
PKT14 Recepção em t = 16.0 s, reprodução escalonada para t = 16.0 s
PKT15 Recepção em t = 17.0 s, reprodução escalonada para t = 17.0 s
PKT16 Recepção em t = 19.0 s, reprodução escalonada para t = 18.0 s
PKT17 Recepção em t = 21.0 s, reprodução escalonada para t = 19.0 s
PKT18 Recepção em t = 23.0 s, reprodução escalonada para t = 20.0 s
PKT19 Recepção em t = 24.0 s, reprodução escalonada para t = 21.0 s
```

(c) Algum pacote não será reproduzido com sucesso? Se sim, determine quais.

#### Resposta:

Sim, os pacotes 3, 5, 6, 7, 8, 10, 13, 16, 17, 18 e 19 não serão reproduzidos com sucesso.

(d) Calcule a fração de pacotes perdidos para esta transmissão.

## Resposta:

A fração de pacotes perdidos é dada pela quantidade de pacotes perdidos, dividida pelo total de pacotes transmitidos, resultando em uma perda de 11/19 = 57.9%.