SI231b: Matrix Computations

Lecture 16: Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 09, 2021

MIT Lab, Yue Qiu

Simultaneous Iteration

Power Iterations for a Set of Vectors

From the Power Iteration, we know that

- ► A^kq₀ converges to the eigenvector associated with the largest eigenvalue in magnititude.
- ▶ if we start with a set of linearly independent vectors $\{q_1, q_2, \cdots, q_r\}$, then $A^k\{q_1, q_2, \cdots, q_r\}$ should converge (under suitable assumptions) to a subspace spanned by eigenvectors of A associated with r largest eigenvalues in magnititude.

Simultaneous Iteration: applying power iteration to several vectors at once. Sometimes it is called **block power iteration**.

Unnormalized Simultaneous Iteration

Define $V^{(0)}$ to be the $n \times r$ matrix,

$$V^{(0)} = \begin{bmatrix} v_1^{(0)} & v_2^{(0)} & \cdots & v_r^{(0)} \end{bmatrix}.$$

After k steps of applying A, we obtain

$$V^{(k)} = A^k V^{(0)} = \begin{bmatrix} v_1^{(k)} & v_2^{(k)} & \cdots & v_r^{(k)} \end{bmatrix}.$$

Assume

1. The leading r + 1 eigenvalues are distinct in absolute value;

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_r| > |\lambda_{r+1}| \ge |\lambda_{r+2}| \ge \cdots |\lambda_n|$$

- 2. All the leading principle sub-matrices $Q^TV^{(0)}$ are nonsingular.
 - Q is the matrix with q_1, q_2, \dots, q_r as columns;
 - q_1, q_2, \dots, q_r are eigenvectors associated with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$.

Unnormalized Simultaneous Iteration

choose $V^{(0)}$ with r linear independent columns

for
$$k=1,\ 2,\ \cdots$$

$$V^{(k)}=AV^{(k-1)}$$

$$Q^{(k)}R^{(k)}=V^{(k)} \quad \text{reduced QR factorization}$$

end

Under the assumptions, we have as $k \to \infty$,

For real symmetric matrix A (Q has orthonormal columns)

$$\|\mathsf{q}_{i}^{(k)}-(\pm q_{i})\|=\mathcal{O}(C^{k}),$$

for $1 \le j \le r$, where C < 1 is the constant

$$C = \max_{1 \le k \le r} \frac{|\lambda_{k+1}|}{|\lambda_k|}$$

► For unsymmetric matrix A (Q does not have orthonormal columns)

$$\mathcal{R}(\mathsf{Q}^{(k)}) o \mathcal{R}(\mathsf{Q})$$

Simultaneous Iteration

For Unnormalized Simultaneous Iteration, as $k \to \infty$, the vectors $q^{(1)}, q^{(2)}, \cdots$, $\mathbf{q}^{(r)}$ all converge to multiples of the same dominant eigenvector $\mathbf{q}_1.$ Therefore, they form an ill-conditioned basis of span $\{q^{(1)}, q^{(2)}, \dots, q^{(r)}\}$.

The remedy is simple, we should build orthonormal basis at each iteration \rightsquigarrow Simultaneous Iteration/Subspace Iteration

Subspace Iteration:

random selection $Q^{(0)}$ with orthonormal columns for $k=1, 2, \cdots$ $Z_{\nu} = AQ^{(k-1)}$ $Z_k = Q^{(k)}R^{(k)}$ reduced QR factorization end

- \triangleright Z_k and $Q^{(k)}$ has the same column space
- \triangleright equal to the column space of $A^kQ^{(0)}$

Subspace Iteration

- $ightharpoonup \mathcal{R}(Q^{(k)})$ converge to subspace associated with r largest eigenvalues in magnititude (dominant invariant subspace).
- $\blacktriangleright \lambda \left(\left(Q^{(k)} \right)^H A Q^{(k)} \right) \rightarrow \{\lambda_1, \ \lambda_2, \ \cdots, \lambda_r \}$
- $\left| \lambda_i^{(k)} \lambda_i \right| = \mathcal{O}\left(\left| \frac{\lambda_{r+1}}{\lambda_i} \right|^k \right), \ i = 1, \ 2, \ \cdots, \ r$
- ▶ also called simultaneously iteration or orthogonal iteration
- ightharpoonup when r = n, it coincides with QR iteration

MIT Lab, Yue Qiu

QR Iteration:

$$\mathsf{A}^{(0)}=\mathsf{A}$$
 for $k=1,\ 2,\ \cdots$
$$\mathsf{Q}^{(k)}\mathsf{R}^{(k)}=\mathsf{A}^{(k-1)}\quad \mathtt{QR} \text{ factorization of } \mathsf{A}^{(k-1)}$$

$$\mathsf{A}^{(k)}=\mathsf{R}^{(k)}\mathsf{Q}^{(k)}$$
 end

Facts:

- $ightharpoonup A^{(k)}$ is similar to A
- ightharpoonup Eigenvalues of $A^{(k)}$ should be easier to compute than that of A.
- ► A^(k) should converge fast (expected) to a form whose eigenvalues are easily computed.
 - upper triangular form

Challenges of QR Iteration

For an $n \times n$ matrix A, each iteration requires $\mathcal{O}(n^3)$ flops to compute the QR factorization.

► too computationally expensive!

Improvement:

Perform a similarity transform A to obtain a form $A^{(0)} = (Q^{(0)})^H A Q^{(0)}$

- ▶ the QR decomposition of A⁽⁰⁾ should be computationally cheap
- ▶ $A^{(k)}$ ($k = 1, 2, \cdots$) should have similar structure with $A^{(0)}$ so that the QR decomposition at each iteration is computationally cheap

Motivation: perform similarity transform A to an upper Hessenberg form (zeros below the first subdiagonal), i.e., $Q^HAQ = H$ where

Advantage: QR factorization of an upper Hessenberg matrix requires $\mathcal{O}(n^2)$ flops (how?).

▶ by using Givens rotations

QR Iteration with Hessenberg Reduction:

$$A=Q^HHQ$$
, $A^{(0)}=H$, H is upper Hessenberg for $k=1,\ 2,\ \cdots$
$$Q^{(k)}R^{(k)}=A^{(k-1)} \quad \text{QR factorization of } A^{(k-1)}$$

$$A^{(k)}=R^{(k)}Q^{(k)}$$
 end

Key: $A^{(k)}$ is of upper Hessenberg form (how to preserve?)

by using Givens rotations to compute the QR factorization (how to prove?)

Benefit: $\mathcal{O}(n^2)$ flops for QR factorization.

For an $n \times n$ matrix $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$.

A Naive Try

Let Q_1 be the Householder reflection matrix that reflects a_1 to $-\text{sign}(a_1(1))\|a_1\|_2e_1$,

Mission failed!

MIT Lab, Yue Qiu

Less Ambitious Try

Let $\tilde{\mathbf{a}}_1 = \mathsf{A}(2:n,1)$ and Q_1 be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $-\mathsf{sign}(\tilde{\mathbf{a}}_1(1))\|\tilde{\mathbf{a}}_1\|_2\mathsf{e}_1$,

Repeat the above procedure to the 2nd column of $Q_1AQ_1^H \cdots$

Given an $n \times n$ matrix A, the following algorithm reduces A to an upper Hessenberg form.

Hessenberg Reduction:

```
for k = 1: n - 2

x = A(k+1:n, k)

v_k = sign(x(1))||x||_2e_1 + x

v_k = \frac{v_k}{||v_k||_2}

A(k+1:n, k:n) = A(k+1:n, k:n) - 2v_k(v_k^H A(k+1:n, k:n))

A(1:n, k+1:n) = A(1:n, k+1:n) - 2(A(1:n, k+1:n)v_k)v_k^H

end
```

Readings

You are supposed to read

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, SIAM, 1997.

Lecture 26, 28

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Johns Hopkins University Press, 2013.

Chapter 7.3 – 7.4