Joan Bruna and Alex Nowak

Courant Institute of Mathematical Sciences

Center for Data Science

NYU

Motivation

We consider discrete geometric/algorithmic tasks:

139676498390 (- 139,676,498,390

Motivation

- Tasks with known optimal worst-case complexity (e.g. sorting): can we leverage data distribution to obtain faster algorithms?
- Tasks with unknown optimal complexity (e.g. multiplication): can we learn how to obtain the fastest algorithm?
- NP-hard tasks (e.g. TSP): can we learn efficient approximations?

Motivation

- Tasks with known optimal worst-case complexity (e.g. sorting): can we leverage data distribution to obtain faster algorithms?
- Tasks with unknown optimal complexity (e.g. multiplication): can we learn how to obtain the fastest algorithm?
- NP-hard tasks (e.g. TSP): can we learn efficient approximations?
- Goal: learn how to solve these tasks efficiently from only inputoutput examples.
 - Need to generalize relative to input size.

Optimizing for Accuracy and Complexity

 We want to add the computational complexity as part of the learning objective.

$$\mathcal{L}(\theta) = \mathcal{E}(\theta) + \lambda \mathcal{C}(\theta) \; .$$
 enforces solving the task with high accuracy
$$\begin{array}{c} & & \\ & \\ & \\ & \end{array}$$
 enforces solving the task with small complexity

• Q: How to parametrize dynamic computations?

Scale Invariant Algorithmic Tasks

- Many algorithmic and geometric tasks are self-similar across scales:
 - The solution can be expressed in terms of smaller input solutions.
 - This is the basis of dynamic programming and *recursive* algorithms.
 - Controlling the recursion = controlling computational complexity.

Scale Invariant Algorithmic Tasks

- Many algorithmic and geometric tasks are self-similar across scales:
 - The solution can be expressed in terms of smaller input solutions.
 - This is the basis of dynamic programming and *recursive* algorithms.
 - Controlling the recursion = controlling computational complexity.
- We propose Divide and Conquer Networks: a dynamic neural architecture that learns how to solve tasks using recursion.

- Consider general tasks $\mathcal T$ that map an input X to output $\mathcal T(X)$, input size |X|=n
- We consider a recursive decomposition of the task:

$$\mathcal{T}(X) = \mathcal{M}(\mathcal{T}(S_1(X)), \mathcal{T}(S_2(X)))$$
,
 $|S_i(X)| < n , X = S_1(X) \cup S_2(X)$.

- ullet Consider general tasks $\mathcal T$ that map an input X to output $\mathcal T(X)$ input size |X|=n
- We consider a recursive decomposition of the task:

$$\mathcal{T}(X) = \mathcal{M}(\mathcal{T}(S_1(X)), \mathcal{T}(S_2(X)))$$
,
 $|S_i(X)| < n , X = S_1(X) \cup S_2(X)$.

- ullet Rather than learning ${\mathcal T}$ directly with e.g. a sequence-to-sequence model, we learn two basic operations:
 - How to **split** a given input into two disjoint subsets:

$$X \longrightarrow \mathcal{S}_{\theta} \xrightarrow{X_0} X_1 \qquad X = X_0 \sqcup X_1$$

- How to **merge** two partially solved tasks into a larger one:

$$Y_0 \longrightarrow \mathcal{M}_\theta \longrightarrow Y$$

These blocks are applied recursively and dynamically:

- Each input generates a different "execution tree".

These blocks are applied recursively and dynamically:

- Each input generates a different "execution tree".
- Q: How to parametrize those operations?
- How to train the model end-to-end?

Split Model

- We consider split models that take as inputs either graphs or sets.
- For graphs, we consider Graph Neural Networks
 - First introduced in [Scarselli et al.'09], [Gori et al'05].
 - Later simplified in [Li et al.'15], [Duvenaud et al.'15] [Sukhbaatar et al.'16].

Intimately related to convolutional neural networks using Graph

Laplacians [Bruna et al.'16].

• For sets, we consider set2sumulus [viiiyais unamy, [Sukhbaatar et al.'16]

Merge Model

- Since solutions may be partially ordered, we use a seq2seq model with attention [Bahdanau et al].
 - Generic block with $\Theta(n^2)$ complexity, but can be modulated by regularization.
- In the case where outputs are subsets of input (e.g. convex hull, TSP, sorting), the model is the so-called *Pointer-net* [Fortunato, Vinyals, '15].

 In that case, cascading merge blocks produces a product of stochastic permutation matrices at each scale.

Training the Model

ullet Training set: $\{(X^l,Y^l)\}_{l\leq L}$

 $\mathcal{P}(X)$: partition tree associated to X

Accuracy loss:

 θ : split parameters

 ϕ : merge parameters

$$\mathcal{E}(\theta,\phi) = \frac{1}{L} \sum_{l \le L} \mathbb{E}_{\mathcal{P}(X) \sim S_{\theta}(X)} \log p_{\phi}(Y^{l} \mid \mathcal{P}(X^{l})) .$$

- Merge training:
 - -In a pointer network, $p(Y \mid X) = \Gamma X$, Γ : stochastic matrix.
 - In our case,

$$p(Y \mid X) = \left(\prod_{j=0}^{J} \Gamma_j\right) X, \Gamma_j$$
: parameter sharing across scales.

Training the Model

ullet Training set: $\{(X^l,Y^l)\}_{l\leq L}$

 $\mathcal{P}(X)$: partition tree associated to X

Accuracy loss:

 θ : split parameters

 ϕ : merge parameters

$$\mathcal{E}(\theta,\phi) = \frac{1}{L} \sum_{l \le L} \mathbb{E}_{\mathcal{P}(X) \sim S_{\theta}(X)} \log p_{\phi}(Y^l \mid \mathcal{P}(X^l)) .$$

- Split training:
 - split parameters are separated from the output by sampling steps.
 - we use the policy gradient estimator:

$$\nabla_{\theta} \mathcal{E}(\theta, \phi) \approx \frac{1}{LK} \sum_{l \leq L} \sum_{\mathcal{P}(X^l)^{(k)} \sim S_{\theta}(X^l)} \log p_{\phi}(Y^l \mid \mathcal{P}(X^l)^{(k)}) \nabla_{\phi} \log p_{\theta}(\mathcal{P}(X^l)^{(k)} \mid X^l)$$

- variance is reduced thanks again to parameter sharing across scales.
- although other options (e.g relaxing sampling with softmax) possible too.

Computational Complexity as Regularization

• The average case complexity of splitting in our model is

$$C_S(n) = C_S(\alpha_S n) + C_S((1 - \alpha_S)n) + \Theta(n)$$
, α_S : average fraction of elements sent to each split output.

$$ullet$$
 We verify that $C_S(n) \simeq rac{n \log n}{\log lpha_S^{-1}}$.

Computational Complexity as Regularization

The average case complexity of splitting in our model is

$$C_S(n) = C_S(\alpha_S n) + C_S((1 - \alpha_S)n) + \Theta(n) ,$$

 α_S : average fraction of elements sent to each split output.

$$ullet$$
 We verify that $C_S(n) \simeq rac{n \log n}{\log lpha_S^{-1}}$.

• Thus computational complexity is controlled by pushing α_S close to 0.5:

$$C(\theta) = \left(n^{-1} \sum_{i \le n} p_{\theta}(z_i \mid X) - \frac{1}{2}\right)^2.$$

Experiments

Sorting

• Convex Hull

Clustering

- Community Detection on Networks
 - with L. Li (UC Berkeley)
- Quadratic Assignment Problem and TSP
 - with A. Nowak, S. Villar and A. Bandeira (NYU).

Sorting Real Numbers

- Toy-task to assess capacity of models.
- Baseline: Pointer Network applied directly to the input.
- DCN (no split). Fix split block to generate a balanced binary tree independent of X.
- DCN (no merge): Fix Merge block to the identity.
- DCN (Joint): Train both blocks.
- We use weak supervision and computational regularization. Train for n=8,16. Test results:

		Baseline	DCN	DCN	DCN
			(no Split)	(no Merge)	(Joint)
Ì	n=8	80.1	90	100	100
	n=16	31	67	100	100
	n=64	0	0	99	0

-Joint model does not generalize because merge block does not have the appropriate complexity for this task $(\Theta(n^2) \text{ vs } \Theta(n \log n))$.

Convex Hull

- ullet Given n points in \mathbb{R}^d , find the extremal set of points of the polytope of minimum area that contains them all.
 - Task can be solved efficiently in $o(n\log n)$ in the plane

	n=25	n=50	n=100	n=200
Baseline	81.3	65.6	41.5	13.5
DCN Random Split	59.8	37.0	23.5	10.29
DCN	88.1	83.7	73.7	52.0
DCN + Split Reg	89.8	87.0	80.0	67.2

Baseline: seq-2-seq model (PtrNet)

Convex Hull

• 2 Scales (Random Split):

• 2 Scales (Learnt Split):

Euclidean K-Means

ullet Given n points of \mathbb{R}^d , solve the following combinatorial optimization problem:

$$\min_{\mathcal{P}(X)} \sum_{i \in \mathcal{P}(X)} n_i \sigma_i^2$$

 σ_i^2 : variance of subset i of partition projected on an (unknown) subspace.

 n_i : cardinality of subset i.

Euclidean K-Means

ullet Given n points of \mathbb{R}^d , solve the following combinatorial optimization problem:

$$\min_{\mathcal{P}(X)} \sum_{i \in \mathcal{P}(X)} n_i \sigma_i^2$$

 σ_i^2 : variance of subset i of partition projected on an (unknown) subspace.

 n_i : cardinality of subset i.

Here the output is only specified with split parameters.

	k=4, n=40	k=8, n=80	k=16, n=160
Baseline	0.35	4.62	16.08
DCN	0.85	0.86	0.86

baseline: train a direct policy (J=1)

Euclidean K-Means

• Baseline, k=8 and n=80.

• DCN, k=8 and n=80.

Summary So Far

- So far, we have shown a general trainable architecture to exploit scale invariance in algorithmic/ geometric tasks.
 - Significant gains over baselines agonistic to recursion.
 - Computational and Accuracy Tradeoffs by gradient descent.
 - Shown on tasks where we currently have optimal, efficient algorithmic solutions.

Summary So Far

- So far, we have shown a general trainable architecture to exploit scale invariance in algorithmic/ geometric tasks.
 - Significant gains over baselines agonistic to recursion.
 - Computational and Accuracy Tradeoffs by gradient descent.
 - Shown on tasks where we currently have optimal, efficient algorithmic solutions.
- Current work: use this machinery on tasks that are computationally and statistically hard, or where no optimal algorithm is known.
 - Community Detection in Noisy Graphs.
 - Quadratic Assignment Problem
 - * Travelling Salesman Problem
 - Matrix Multiplication.

Quadratic Assignment Problem

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

• Find an assignment that optimizes the transportation cost between two graphs: $\min_{X\in\Pi_n} \mathrm{Tr}(A_1XA_2X^T) \;.$

 Π_n : space of $n \times n$ permutation matrices.

- NP-hard
- Contains the TSP as a particular instance.
- Relaxations using SDP and Spectral Approaches.

Quadratic Assignment Problem

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

 We learn approximate solutions using siamese graph neural networks;

• We train the model to predict the correct permutation matrix on a dataset of the form $G_1 = PG_2 + N$

 $N \sim \text{Erdos-Renyi}$

- $_{-}G_2 \sim \text{Erdos-Renyi}$
- $_{-}G_2 \sim \text{Random Regular}$

Quadratic Assignment Problem

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

0.00

0.01

0.02

0.03

Noise

0.04

0.05

- ullet Our model runs in $o(n^2)$
- LowRankAlign is $o(n^3)$
- ullet SDP runs in $o(n^4)$

Travelling Salesman Problem

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

A particular case of the QAP is the Travelling salesman Problem:

$$\min_{X \in \Pi_n} \operatorname{Tr}(A_1 X A_2 X^T) .$$

 A_1 : dense pairwise distance matrix

 A_2 : n-cycle adjacency matrix

We obtain preliminary good results

Predicted: 3.763

- Not yet like best Heuristics in the planar case (Christofides algorithm).
- Ongoing work.

Conclusions

- Neural Networks and Dynamic Programming.
 - Many tasks in real life contain some form of scale invariance (e.g. navigation, planning, scheduling, ranking, ...).
 - Real need for accuracy-complexity tradeoffs.
 - Our architecture is a step towards end-to-end learning that exploits such structure.
 - Challenges ahead: more flexible models allowing wider range of accuracy-complexity tradeoffs.
- Neural Networks and Complexity.
 - Surprising, Intriguing ability to reach detection thresholds known to be hard on the community detection.
 - Very efficient data-driven alternative to attack hard combinatorial optimization problems.
 - Challenges ahead: understand what are the fundamental limits of datadriven

Thank you!

References:

"Divide and Conquer Networks", A. Nowak and J. Bruna, submitted. (https://arxiv.org/abs/1611.02401)

"Community Detection with Graph Neural Networks", J. Bruna and L. Li (<u>https://arxiv.org/abs/1705.08415</u>)

"A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks", A. Nowak, S. Villar, A. Bandeira, J. Bruna, submitted.