Curved Yang-Mills gauge theories

based on my preprint arXiv:2210.02924

Simon-Raphael Fischer

National Center for Theoretical Sciences

30 December 2022

Table of contents

- Infinitesimal curved Yang-Mills-Higgs gauge theories
 - Motivation and short introduction
- 2 Integration: Ansatz
 - Principal bundles based on Lie group bundle actions
 - Connections as parallel transport
- 3 Connection
 - Basic notions
 - Definitions
 - Gauge transformation
- Curvature
 - Compatibility conditions
 - Definition and properties
- 5 Curved Yang-Mills gauge theory
- 6 Conclusion

Motivation and short introduction

Infinitesimal gauge theory

Motivation and short introduction

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of E & E -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of $\nabla^0,$ and ∇ may not be flat.

	Classical	Curved
Infinitesimal	Lie algebra $\mathfrak g$	LAB g
Integrated	Lie group <i>G</i>	LGB¹ 𝒯

$$G \longrightarrow \mathscr{G}$$

Μ

 $^{^{1}\}mathsf{LGB} = \mathsf{Lie} \; \mathsf{group} \; \mathsf{bundle}$

Definition (LGB actions, simplified)

 $\mathscr{P} \stackrel{\pi}{\to} M$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_M \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p),\tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathcal{P}$ and $g, h \in \mathcal{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathcal{G}_{\pi(p)}$.

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- ullet Or by $\mathscr{G}\cong M\times G$, then also $\mathscr{P}*\mathscr{G}\cong \mathscr{P}\times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- Or by $\mathscr{G} \cong M \times G$, then also $\mathscr{P} * \mathscr{G} \cong \mathscr{P} \times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

⇒ Think of the "classical" theory as coming from a trivial LGB

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- Or by $\mathscr{G} \cong M \times G$, then also $\mathscr{P} * \mathscr{G} \cong \mathscr{P} \times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

 \Rightarrow Think of the "classical" theory as coming from a trivial LGB

Definition (Principal bundle)

Still a fibre bundle

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi}$$
 M

but with \mathscr{G} -action

$$\mathcal{P} * \mathcal{G} \rightarrow \mathcal{P}$$
 $\mathcal{P} * \mathcal{G}$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g:\mathscr{T}_{\mathsf{X}} o\mathscr{T}_{\mathsf{X}}$$
 $\mathrm{D}_{\mathsf{P}}r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g:\mathscr{P}_{\mathsf{X}} o\mathscr{P}_{\mathsf{X}}\ \mathrm{D}_p r_g$$
 only defined on vertical structure

Connection on \mathscr{P} : Idea

Use
$$\sigma \in \Gamma(\mathcal{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{x}$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT_{\alpha}^{\mathscr{P}}$ in \mathscr{P} :

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p\cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p)\cdot g$$

where $\alpha: I \to M$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}_{lpha}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{lpha}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{lpha}^{\mathscr{G}}(g)$$

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}_{lpha}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{lpha}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{lpha}^{\mathscr{G}}(g)$$

 \Rightarrow Introduce connection on \mathscr{G}

Classical situation: Differential of Lie group action

Remarks (Lie group G situation with Lie algebra \mathfrak{g})

In the case of a right G-action on \mathcal{P} , $\Phi: \mathcal{P} \times G \to \mathcal{P}$, we have

$$D_{(p,g)}\Phi(X,Y) = D_p r_g(X) + \overline{(\mu_G)_g(Y)}\Big|_{p\cdot g}$$

for all $p \in \mathcal{P}$, $g \in G$, $X \in T_p \mathcal{P}$ and $Y \in T_g G$, where

- $\overline{\nu}$ denotes the fundamental vector field on \mathscr{P} of $\nu \in \mathfrak{g}$,
- μ_G is the Maurer-Cartan form of G.

Definition (Fundamental vector fields)

Fundamental vector fields defined by

$$\overline{\nu}_{p} := \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (p \cdot \mathrm{e}^{t\nu_{x}})$$

for all $\nu \in \Gamma(q)$ and $p \in \mathcal{P}_{x}$, where q is the LAB^a of \mathcal{G} .

^aLie algebra bundle

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is given by

$$(\mu_{\mathscr{G}})_{\mathsf{g}} := \mathrm{D}_{\mathsf{g}} \mathsf{L}_{\mathsf{g}^{-1}} \circ \pi^{\mathsf{v}},$$

 π^{ν} the projection onto the vertical bundle.

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is given by

$$(\mu_{\mathscr{G}})_{g} := D_{g} L_{g^{-1}} \circ \pi^{v},$$

 π^{ν} the projection onto the vertical bundle.

Remarks

If \mathscr{G} a trivial LGB with canonical flat connection and if Lie group additionally a matrix group, then

$$\Delta \sigma = \sigma^{-1} d\sigma$$
.

Proposition (Differential of LGB action Φ , [S.-R. F.])

We have

$$\mathrm{D}_{(p,g)}\Phi(X,Y)=\mathrm{D}_pr_\sigma(X)-\left.\overline{(\pi^!\Delta\sigma)|_p(X)}\right|_{p\cdot g}+\left.\overline{(\mu_{\mathcal{G}})_g(Y)}\right|_{p\cdot g}$$

for all $(p,g) \in \mathscr{P}_{\mathsf{X}} \times \mathscr{G}_{\mathsf{X}}$, $(X,Y) \in \mathrm{T}_{(p,g)}(\mathscr{P} * \mathscr{G})$, where σ is any section of \mathscr{G} with $\sigma_{\mathsf{x}} = \mathsf{g}$.

Proposition (Differential of LGB action Φ , [S.-R. F.])

We have

$$\mathrm{D}_{(p,g)}\Phi(X,Y)=\mathrm{D}_pr_\sigma(X)-\left.\overline{\left(\pi^!\Delta\sigma\right)|_p(X)}\right|_{p\cdot g}+\left.\overline{\left(\mu_\mathscr{G}\right)_g(Y)}\right|_{p\cdot g}$$

for all $(p,g) \in \mathscr{P}_{\mathsf{X}} \times \mathscr{G}_{\mathsf{X}}$, $(X,Y) \in \mathrm{T}_{(p,g)}(\mathscr{P} * \mathscr{G})$, where σ is any section of \mathscr{G} with $\sigma_{\mathsf{x}} = \mathsf{g}$.

Definition (Modified right-pushforward, [S.-R. F.])

$$\begin{split} \mathscr{V}_{g*}(X) &:= \mathrm{D}_p r_\sigma(X) - \left. \overline{(\pi^! \Delta \sigma)|_p(X)} \right|_{p \cdot g}, \\ \mathscr{V}_{\sigma*}(X) &:= \mathscr{V}_{\sigma_{x}*}(X). \end{split}$$

Proposition (Well-defined isomorphism, [S.-R. F.])

We have that

$$\mathrm{T}\mathscr{P}|_{\mathscr{P}_{\!\scriptscriptstyle X}} o \mathrm{T}\mathscr{P}|_{\mathscr{P}_{\!\scriptscriptstyle X}}, \ X \mapsto r_{\mathsf{g}*}(X),$$

is a well-defined automorphism over r_g . Similarly,

$$T\mathscr{P} \to T\mathscr{P},$$
 $X \mapsto r_{\sigma*}(X),$

is an automorphism over r_{σ} .

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\mathscr{V}_{g*}(H_p) = H_{p \cdot g}$$

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\gamma_{g*}(H_p) = H_{p\cdot g}$$

Definition (Connection 1-form, [S.-R. F.])

 $A \in \Omega^1(\mathscr{P}; \pi^*_{\mathscr{Q}})$ with

$$r_{\sigma}^{!}A = \mathrm{Ad}_{\sigma^{-1}} \circ A,$$

$$A(\overline{\nu}) = \pi^{*}\nu$$

for all $\sigma \in \Gamma(\mathcal{G})$ and $\nu \in \Gamma(\mathcal{Q})$.

Remarks

$$\left(r_{\sigma}^{!}A\right)_{p}(X)=A_{p\sigma_{X}}\left(r_{\sigma*}(X)\right).$$

Theorem (Equivalence of both definitions, [S.-R. F.])

There is the usual 1:1 correspondence between both definitions:

Given H, define A by

$$A_p(\overline{\nu}_p + X) := (\pi^* \nu)_p,$$

where $X \in H_p$.

Given A, define H by

$$H_p := \operatorname{Ker}(A_p).$$

Theorem (Gauge transformation, [S.-R. F.])

Let s_i , s_i be two sections of \mathcal{P} over U_i and U_i , respectively, which are open subsets of M with $U_i \cap U_i \neq \emptyset$. Then over $U_i \cap U_i$

$$A_{s_i} = \operatorname{Ad}_{\sigma_{ji}^{-1}} \circ A_{s_j} + \Delta \sigma_{ji},$$

where $A_{s_i} := s_i! A$ and σ_{ii} a section of \mathscr{G} with $s_i = s_i \cdot \sigma_{ii}$.

Proposition (Connection on q, [S.-R. F.])

We have an induced vector bundle connection on q given by

$$\nabla^{\mathscr{G}}\nu := \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \Delta \mathrm{e}^{t\nu}.$$

Definition (Compatibility conditions, [S.-R. F.])

 $\mu_{\mathscr{C}}$ a Yang-Mills connection (w.r.t. $\zeta \in \Omega^2(M; \mathscr{Q})$) if it satisfies the **compatibility conditions**:

- **1** $\mu_{\mathscr{C}}$ a connection 1-form on $\mathscr{C} \stackrel{\pi_{\mathscr{C}}}{\to} M$;
- **2** $\mu_{\mathscr{C}}$ satisfies the **generalised Maurer-Cartan equation**

$$\left. \left(\mathrm{d}^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \stackrel{\wedge}{,} \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{G}} \right) \right|_{g} = \mathrm{Ad}_{g^{-1}} \circ \pi_{\mathscr{G}}^! \zeta \Big|_{g} - \pi_{\mathscr{G}}^! \zeta \Big|_{g}$$

Proposition ($\nabla^{\mathcal{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{C} , then

$$\nabla^{\mathcal{G}}\Big(\big[\mu,\nu\big]_{\mathcal{Q}}\Big) = \Big[\nabla^{\mathcal{G}}\mu,\nu\Big]_{\mathcal{Q}} + \Big[\mu,\nabla^{\mathcal{G}}\nu\Big]_{\mathcal{Q}}.$$

Remarks

Recall, \mathcal{G} a principal \mathcal{G} -bundle.

Proposition ($\nabla^{\mathcal{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{C} , then

$$\nabla^{\mathscr{G}} \Big(\big[\mu, \nu \big]_{\mathscr{Q}} \Big) = \Big[\nabla^{\mathscr{G}} \mu, \nu \Big]_{\mathscr{Q}} + \Big[\mu, \nabla^{\mathscr{G}} \nu \Big]_{\mathscr{Q}}.$$

Remarks

Recall, \mathscr{G} a principal \mathscr{G} -bundle.

Theorem (Curvature of LAB connection exact, [S.-R. F.])

 $\mu_{\mathscr{C}}$ satisfies the generalized Maurer-Cartan equation w.r.t. ζ if and only if

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta.$$

Remarks

There is a simplicial differential on $\mathscr{G} \stackrel{\pi_{\mathscr{G}}}{\to} M$

$$\delta: \Omega^{\bullet}(\underbrace{\mathcal{G} * \ldots * \mathcal{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathcal{G} * \ldots * \mathcal{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the compatibility conditions are equivalent to

$$\delta \mu_{\mathscr{G}} = 0,$$

$$d^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \wedge \mu_{\mathscr{G}}]_{\pi_{\mathscr{D}\mathscr{Q}}^*} = \delta \zeta.$$

Definition (Generalized curvature/field strength F of A, [S.-R. F.])

 π^H denotes the projection onto $H \subset T\mathcal{P}$, then we define

$$F := \mathrm{d}^{\pi^* \nabla^{\mathscr{G}}} A \circ \left(\pi^{\mathrm{H}\mathscr{P}}, \pi^{\mathrm{H}\mathscr{P}} \right) + \pi^! \zeta.$$

Theorem (Structure equation, [S.-R.])

$$F = \mathrm{d}^{\pi^* \nabla^{\mathscr{G}}} A + \frac{1}{2} [A \wedge A]_{\pi^* \mathscr{Q}} + \pi^! \zeta.$$

Proposition (Properties of F, [S.-R. F.])

- $r_{\sigma}^! F = \operatorname{Ad}_{\sigma^{-1}} \circ F$,
- $F(X, \cdot) = 0$, if X vertical.

Proposition (Properties of F, [S.-R. F.])

- $r_{\sigma}^! F = \operatorname{Ad}_{\sigma^{-1}} \circ F$.
- $F(X, \cdot) = 0$, if X vertical.

Theorem (Gauge transformation, [S.-R. F.])

Let s_i , s_i be two sections of \mathcal{P} over U_i and U_i , respectively, which are open subsets of M with $U_i \cap U_i \neq \emptyset$. Then over $U_i \cap U_i$

$$F_{s_i} = \operatorname{Ad}_{\sigma_{ii}^{-1}} \circ F_{s_j},$$

where $F_{s_i} := s_i^! F$ and σ_{ii} a section of $\mathscr G$ with $s_i = s_i \cdot \sigma_{ii}$.

- κ be an Ad-invariant fibre metric on q,
- M a spacetime, and * its Hodge star operator,
- (*U_i*); open covering of M with subordinate gauges $s_i \in \Gamma(\mathscr{P}|_{U_i}).$

Then the Lagrangian $\mathfrak{L}_{CYM}[A]$, defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}[L^!A] = \mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms L.

Summary

	Locally	Globally
Curved Yang-Mills	Pre-classical	$\operatorname{ad}(\mathbb{S}^7 o \mathbb{S}^4)$ curved

Remarks (Integrated point of view)

This is probably linked to that an LGB is locally trivial

 \rightsquigarrow LGB action locally equivalent to a Lie group action

Hope: Structural Lie groupoids

Gauge theory	Structure
Yang-Mills	Lie group <i>G</i>
Curved Yang-Mills	Lie group bundle ${\mathscr G}$
Curved Yang-Mills-Higgs	Lie groupoid &?

Remarks

- Richer set of principal bundles, containing LGBs.
- May result into obstruction statements for curved Yang-Mills-Higgs gauge theories.

Thank you!