Assessing Cardiovascular Risk

Dr Bernard Prendergast DM FRCP
The John Radcliffe Hospital, Oxford, UK

Case History

- 44 year old plumber
- No cardiac symptoms/history
- Non-smoker
- BP 138/78
- FH é BP, é lipids
- Total cholesterol 5.9mmol/L
- Seeking professional advice

CLINICAL EFFECTS OF ATHEROMA

Retinal arteries

impaired vision

Renal arteries

hypertension

Mesenteric arteries

mesenteric 'ischaemia

Cerebral/carotid arteries

transient ischaemic attacks strokes

Coronary arteries

ischaemic heart disease

Aorta/iliac arteries

intermittent claudication gangrene

Femoral arteries

claudication gangrene

Modified from: *Common Diseases*, 5th edition. Fry J, Sandler G. Kluwer Academic Publishers, Dordrecht. 1993.

Atherosclerosis: When does it begin?

Data from 262 heart transplant donors. Sites with intimal thickness =0.5 mm were defined as atherosclerotic.

Tuzcu EM, et al.. Circulation. 2001;103:2705-2710.

OUTCOMES IN PATIENTS WITH VASCULAR DISEASE (1)

No room for complacency

- Myocardial infarction (MI)
 - 24% of males and 42% of females die within 1 year post-MI
 - 21% of males and 33% of females suffer reinfarction within 6
 years and similar numbers are disabled by heart failure
 - 9% of males and 13% of females have a stroke within 6 years
 - In the UK, almost one-third of MI patients are dead at 3 years
- Transient ischaemic attack (TIA)
 - Trial data suggest that 5% of untreated patients per year (pa) with TIA's will suffer a permanent stroke
 - Overall mortality is approximately 5% pa with >50% deaths due to coronary artery disease

OUTCOMES IN PATIENTS WITH VASCULAR DISEASE (2)

No room for complacency

Stroke

- 29% of stroke patients die within 1 year of initial stroke (these rates are higher in the elderly)
- >50% of all stroke patients die within 8 years (long-term survival is worse in men)

• Peripheral arterial disease (PAD)

- Approximately 30% of men with lower extremity occlusive disease will have life-threatening coronary atherosclerosis
- In men with intermittent claudication (IC) 5-year mortality is 30% and 10-year mortality, 47% (versus 6% and 14% for men with no IC)

The Heart Protection Study (HPS)

Collins et al, AHA, November 2001

- 1 20,000 volunters, 40-80 years
- High CHD risk but no direct evidence of benefit
- Average/below average total cholesterol
 - > 3.5mmol/l: 42%, 3.0-3.5mmol/l: 25%, <3.0mmol/l: 33%
- Included women, >70 yrs, DM, non coronary disease
- Simvastatin 40mg od vs. placebo for 5.5 yrs
- Subgroups received vitamin C, vitamin E, b-carotene
- Standard care: aspirin, b-blockers, nitrates, ACEI
- 1 66% compliance, 16% crossover in placebo group

SIMVASTATIN: CAUSE-SPECIFIC MORTALITY

Cause of death	STATIN (10269)	PLACEBO (10267)		and 95% CI STATIN worse
CHD	577	701		
Other vascular	214	242	_	-
ALL VASCULAR	791 (7.7%)	943 (9.2%)	•	17% SE 4.4 reduction (2P<0.0002)
Neoplastic	352	337	_	(21 (3.3332)
Respiratory	93	111		_
Other medical	76	91		_
Non-medical	16	21		
ALL NON-VASCULAR	537 (5.2%)	560 (5.5%)		5% SE 5.9 reduction
ALL CAUSES	1328 (12.9%)	1503 (14.6%)	•	12% SE 3.5 reduction (2P<0.001)
		0	.4 0.6 0.8 1	.0 1.2 1.4

SIMVASTATIN: STROKE by AETIOLOGY

Stroke aetiology	STATIN (10269)	PLACEBO (10267)	Risk ratio and 95% CI STATIN better STATIN worse
Ischaemic	242	376	
Haemorrhagic	45	53	
Subarachnoid	12	10	─
Unknown	69	100	
Unadjudicated	136	146	
ALL STROKE	456 (4.4%)	613 (6.0%) 0	27% SE 5.3 reduction (2P<0.00001) 4 0.6 0.8 1.0 1.2 1.4

SIMVASTATIN: MAJOR VASCULAR EVENTS

Vascular	STATIN	PLACEBO	Risk ratio and 95% CI
event	(10269)	(10267)	STATIN better STATIN worse
Total CHD	914	1234	
Total stroke	456	613	
Revascularisation	926	1185	
ANY OF ABOVE	2042 (19.9%)	2606 (25.4%) 0	24% SE 2.6 reduction (2P<0.00001) .4 0.6 0.8 1.0 1.2 1.4

SIMVASTATIN: VASCULAR EVENT by FOLLOW-UP DURATION

SIMVASTATIN: VASCULAR EVENT by AGE & SEX

SIMVASTATIN: VASCULAR EVENT by PRIOR LIPID LEVELS

Baseline	STATIN	PLACEBO	Risk ratio and 95% CI	
feature	(10269)	(10267)	STATIN better STATIN worse	
I DI (mmal/I)				
LDL (mmol/I)				
< 3.0 (116 mg/dl)	602	761		
3.0 < 3.5	483	655	Het $\frac{^{2}}{_{2}} = 3.0$)
3.5 (135 mg/dl)	957	1190		
Total cholesterol (mr	mol/I)			
<5.0 (193 mg/dl)	361	476		
5.0 < 6.0	746	965	Het $\frac{^{2}}{_{2}} = 0.5$	5
6.0 (232 mg/dl)	935	1165		
ALL PATIENTS	2042	2606	24%SE 2.6	
	(19.9%)	(25.4%)	reduction (2P<0.0000	
		0.		

SIMVASTATIN: Safety monitoring

Blood enzymes STATIN PLACEBO (x upper limit of normal) (10,269) (10,267)

Liver: ALT>3xULN 77 (0.8%) 65 (0.6%)

Muscle: CK >10xULN 9 (0.09%) 5 (0.05%)

JOINT NATIONAL COMMITTEE CLASSIFICATION OF HYPERTENSION

Category	Systolic (mmHg)	Diastolic (mmHg)
Normal	<130	<85
High normal	130 - 139	85-89
Hypertension		
Stage 1 (mild)	140 - 159	90 — 99
Stage 2 (moderate)	160 — 179	100 — 109
Stage 3 (severe)	180 - 209	110 - 119
Stage 4 (very severe)	<u>></u> 210	<u>≥</u> 120

The British Hypertension Society recommendations for combining Blood Pressure Lowering drugs

A: AllA or ACE inhibitor

C: Calcium channel blocker

B: β - blocker

D: Diuretic (thiazide)

Adapted from: 'Better blood pressure control: how to combine drugs' Journal of Human Hypertension (2003) 17, 81-86

^{*} Combination therapy involving B and D may induce more new onset diabetes compared with other combination therapies

Primary Outcome Death from cardiovascular causes, MI and stroke

DIABETES AND HIGH VASCULAR RISK

Adapted from: Coronary Artery Dis 1999; 10: 23-30.

Type II diabetics are a high cardiovascular risk group

⁻ MI = no prior myocardial infarction; + MI = prior myocardial infarction. Haffner SM et al. N Engl J Med. 1998;339:229-234.

Disease Reversal – Fact or Fantasy?

REVERSAL: Why was IVUS used?

Case History

- 43 year old female
- Non-smoker
- BP 140/70
- Normal glucose
- Total cholesterol 4.2 mmol/L
- Chest pain at local bingo hall
- Evolving anterior STEMI

MIRACL

- Effects of early-initiated atorvastatin 80mg after an acute coronary syndrome on death and recurrent ischaemic events
- Randomised, double-blind, placebo-controlled trial
- Patients were assigned to atorvastatin 80mg or placebo 24–96 hours after hospital admission for ACS

Primary endpoint*

^{*} Primary endpoint=death, non-fatal acute MI, cardiac arrest with resuscitation, or recurrent symptomatic myocardial ischaemia with objective evidence and requiring emergency rehospitalisation

Conclusion: Comparison with other trials

Modified from Kastelein JJP. Atherosclerosis 1999; **143** (suppl 1): S17-S21 & LaRosa JC et al. N Eng J Med 2005; **352**: 1425-1435

Cholesterol —How low is low?

National Service Framework(NSF) for Cardiology

cholesterol < 5 mmol/lt or a 25% reduction whichever greater

LDL < 3 mmol/lt or a 30% reduction whichever greater

British Joint Society Guidelines

cholesterol < 4 mmol/lt or a 25% reduction

LDL < 2 mmol/lt or a 30% reduction

Lipid modification

Implementing NICE guidance

2008

Primary prevention: identifying high risk

Adopt a systematic strategy

Identify people aged 40-74 without diabetes or known CVD

Estimate risk using factors already recorded in primary care electronic medical records

Prioritise people with estimated 10-year risk = 20%

Discuss risk assessment, including option to decline

Primary prevention: full formal risk assessment

Use Framingham 1991 10-year risk equations to assess CVD risk:

CVD risk =

10-year risk of fatal and non-fatal stroke, including transient ischaemic attack

10-year risk of coronary heart disease (CHD)

Primary prevention: lipid modification therapy

Before offering lipid modification therapy consider all other modifiable CVD risk factors and optimise if possible:

- smoking status
- BMI/obesity
- alcohol intake
- cholesterol
- blood pressure

Primary prevention: statin therapy

- Offer statin therapy for adults who have a 20% or greater 10-year risk of developing CVD
- Initiate treatment with simvastatin 40 mg
- If simvastatin 40 mg is contraindicated, offer a lower dose or alternative preparation (such as pravastatin)
- A target for total or LDL cholesterol is not recommended

Secondary prevention: statin therapy

- Offer statin therapy to adults with clinical evidence of CVD
- Offer higher intensity statin to people with acute coronary syndrome, taking into account:

the patient's informed preference comorbidities multiple drug therapy, and the benefits and risks of treatment

Secondary prevention: statin therapy continued

- Treatment should be initiated with simvastatin
 40 mg
- If simvastatin 40 mg is contraindicated, offer a lower dose or alternative preparation (such as pravastatin)
- If total cholesterol of < 4 mmol/litre or LDL cholesterol of < 2 mmol/litre is not attained consider simvastatin 80 mg (or similar)

Benefits and savings

When fully implemented the guideline could lead to:

- 14,800 CVD events being avoided nationally per year
- at least £50 million saved annually

Case History

- 44 year old plumber
- No cardiac symptoms/history
- Non-smoker
- BP 138/78
- FH é BP, é lipids
- Total cholesterol 5.9mmol/L
- Seeking professional advice

Atherosclerosis: When does it begin?

Data from 262 heart transplant donors. Sites with intimal thickness =0.5 mm were defined as atherosclerotic.

Tuzcu EM, et al.. Circulation. 2001;103:2705-2710.