DATA SELECTION VIA OPTIMAL CONTROL FOR LANGUAGE MODELS

Yuxian Gu^{1,2}*, Li Dong², Hongning Wang¹ Yaru Hao², Qingxiu Dong³*, Furu Wei², Minlie Huang^{1†}

¹The CoAl Group, Tsinghua University ²Microsoft Research ³Peking University

Why do we need data selection?

- **Efficiency**: Reduce the computational cost during pre-training
- Effective: Training on the highest quality data can lead to stronger performance[1]

Why do we need data selection?

- **Efficiency**: Reduce the computational cost during pre-training
- Effective: Training on the highest quality data can lead to stronger performance[1]

How to define and measure data quality?

How to select data based on such quality measurements?

How this work approaches these questions...

Map data selection as discrete optimal control problem

What is optimal control theory?

"a branch of control theory that deals with finding a **control** for a **dynamical system** over a period of time such that an **objective function** is optimized."

Brachistochrone problem(1696)

Lev Pontryagin
Pontryagin's Maximum
Principle

Richard BellmanDynamic programming

Formulation of optimal control problem

Optimal control VS Reinforcement learning(bonus slide)

Optimal control emphasizes mathematical models and assumes known dynamics (model -> action)

Reinforcement learning adapts online, making it flexible under unknown or changing environments (data -> action)

Problem formulation for data selection

Data quality score
$$\boldsymbol{\gamma} = \begin{bmatrix} \gamma_1, \gamma_2, \cdots, \gamma_{|\mathcal{D}|} \end{bmatrix}^\top \quad \begin{array}{l} \text{Intuition: higher quality score indicates the corresponding sample is more helpful to reduce J} \\ U = \left\{ \begin{bmatrix} \gamma_1, \gamma_2, \cdots, \gamma_{|\mathcal{D}|} \end{bmatrix}^\top \middle| \sum_{n=1}^{|\mathcal{D}|} \gamma_n = 1 \text{ and } \gamma_n \geq 0 \text{ for } 1 \leq n \leq |\mathcal{D}| \right\} \\ \end{array}$$

Pretraining loss

$$L(\boldsymbol{\theta}, \boldsymbol{\gamma}) = \sum_{n=1}^{|\mathcal{D}|} \gamma_n l(x_n, \boldsymbol{\theta}) - l(x_n, \boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(x_n)$$

Parameter update in GD

$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta
abla L(oldsymbol{ heta}_t, oldsymbol{\gamma})$$

Optimization goal

$$\min_{m{\gamma}} \ \sum_{t=1}^T J(m{ heta}_t), \ ext{Minimize the area under curve} \ ext{downstream task loss J}$$

s.t.
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \nabla L(\boldsymbol{\theta}_t, \boldsymbol{\gamma}), \ \boldsymbol{\gamma} \in U.$$

How to map data selection to optimal control theory

Data selection

 \bigvee

Control variables

LM pre-training

Dynamic systems

LM's downstream performance

Objective

Formulation for **optimal control**

 $\min_{oldsymbol{\gamma}_t} \sum_{t=0}^{T-1} \mathcal{J}(oldsymbol{ heta}_t,oldsymbol{\gamma}_t) + J(oldsymbol{ heta}_T),$

s.t. $\theta_{t+1} = f(\theta_t, \gamma_t), \quad \gamma_t \in U,$

Formulation for data selection

$$\min_{\gamma} \sum_{t=1}^{T} J(\boldsymbol{\theta}_t),$$

s.t.
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \nabla L(\boldsymbol{\theta}_t, \boldsymbol{\gamma}), \quad \boldsymbol{\gamma} \in U.$$

Pontryagin's maximum principle

- Just the first order necessary conditions for an optimum deterministic (discrete) optimal control problem
- Plug in the Hamilton function into the lagrangian and take derivatives

 Although it's a necessary condition, the authors claim that previous studies have show PMP can successfully lead to fairly good solutions Problem formulation:

$$\min_{\boldsymbol{\gamma}_t} \sum_{t=0}^{T-1} \mathcal{J}(\boldsymbol{\theta}_t, \boldsymbol{\gamma}_t) + J(\boldsymbol{\theta}_T),$$
s.t. $\boldsymbol{\theta}_{t+1} = f(\boldsymbol{\theta}_t, \boldsymbol{\gamma}_t), \ \boldsymbol{\gamma}_t \in U,$

Optimal solution:

$$\begin{aligned} \boldsymbol{\theta}_{t+1}^* &= \nabla_{\boldsymbol{\lambda}} H(\boldsymbol{\theta}_t^*, \boldsymbol{\lambda}_{t+1}^*, \boldsymbol{\gamma}_t^*), \ \boldsymbol{\theta}_0^* = \boldsymbol{\theta}_0, \\ \boldsymbol{\lambda}_t^* &= \nabla_{\boldsymbol{\theta}} H(\boldsymbol{\theta}_t^*, \boldsymbol{\lambda}_{t+1}^*, \boldsymbol{\gamma}_t^*), \ \boldsymbol{\lambda}_T^* = \nabla J(\boldsymbol{\theta}_T), \\ \boldsymbol{\gamma}_t^* &= \arg\min_{\boldsymbol{\gamma}_t} H(\boldsymbol{\theta}_t^*, \boldsymbol{\lambda}_{t+1}^*, \boldsymbol{\gamma}_t), \ \boldsymbol{\gamma}_t \in U, \\ H(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\gamma}) &= \mathcal{J}(\boldsymbol{\theta}, \boldsymbol{\gamma}) + \boldsymbol{\lambda}^\top f(\boldsymbol{\theta}, \boldsymbol{\gamma}). \end{aligned}$$

Derived by plugging Hamiltonian into Lagrangian with some arithmetic trick

Data selection as optimal control

Theorem 2.1 (PMP Conditions for Data Selection). Let γ^* solve the problem in Eq. (3), and θ_t^* denote the LM parameters trained with γ^* . For $0 \le t < T$, there exists a vector $\lambda_t^* \in \mathbb{R}^N$ such that

$$\boldsymbol{\theta}_{t+1}^* = \boldsymbol{\theta}_t^* - \eta \nabla L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*), \ \boldsymbol{\theta}_0^* = \boldsymbol{\theta}_0, \tag{4}$$

$$\boldsymbol{\lambda}_{t}^{*} = \boldsymbol{\lambda}_{t+1}^{*} + \nabla J(\boldsymbol{\theta}_{t}^{*}) - \eta \nabla^{2} L(\boldsymbol{\theta}_{t}^{*}, \boldsymbol{\gamma}^{*}) \boldsymbol{\lambda}_{t+1}^{*}, \quad \boldsymbol{\lambda}_{T}^{*} = \nabla J(\boldsymbol{\theta}_{T}^{*}), \tag{5}$$

$$\boxed{\boldsymbol{\gamma}^*} = \arg\max_{\boldsymbol{\gamma}} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \top \nabla l(x_n, \boldsymbol{\theta}_t^*) \right], \quad \boldsymbol{\gamma} \in U,$$
We get the optimal data score here

where $\nabla^2 L(\theta_t^*, \gamma^*)$ denotes the Hessian matrix of $L(\theta, \gamma^*)$ with respect to θ evaluated at $\theta = \theta_t^*$.

Note: Due to the offline nature of data selection, data selection problem need to add additional invariant constraints to control variables, i.e. $\gamma_0 = \gamma_1 = \cdots = \gamma_{T-1}$

Understand PMP condition for data selection

(1)
$$\theta_{t+1}^* = \theta_t^* - \eta \nabla L(\theta_t^*, \gamma^*), \quad \theta_0^* = \theta_0,$$

Model Parameters (Optimal) Data Quality Scores

 The first equation is exactly the parameter updating policy of training LMs

- Constrains the <u>parameters</u> θ_t^* are still reachable with GD under the optimal data selection
 - (or Adam, see Appendix C in out paper for derivations)

Understand PMP condition for data selection

Information of the downstream loss

$$\textbf{(2)} \left[\boldsymbol{\lambda}_t^* \right] = \boldsymbol{\lambda}_{t+1}^* + \left[\nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*, \ \boldsymbol{\lambda}_T^* = \nabla J(\boldsymbol{\theta}_T^*), \right]$$

Target gradient direction

Information of learning dynamics of LMs

- The second equation defines λ_t, the "target"
 gradient direction of the high-quality data points.
 - Same size of the model parameters.
 - "Compass" for high-quality data.
- Target gradient direction includes information of downstream loss and LM's learning dynamics.

Derived from PMP

Understand PMP condition for data selection

(3)
$$\gamma^* = \arg\max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \begin{bmatrix} \sum_{t=0}^{T-1} \lambda_{t+1}^* & \nabla l(x_n, \boldsymbol{\theta}_t^*) \end{bmatrix}, \quad \gamma \in U,$$
Data Quality Scores

Target gradient direction $\boldsymbol{\mathring{\phi}}$

 The third equation indicates that examples with closer gradients to λ_t should have higher scores.

Solve PMP conditions

• PMP Conditions:

$$\begin{cases} \textbf{(1)} & \boldsymbol{\theta}_{t+1}^* = \boldsymbol{\theta}_t^* - \eta \nabla L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*), \quad \boldsymbol{\theta}_0^* = \boldsymbol{\theta}_0, \\ \textbf{(2)} & \boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*, \quad \boldsymbol{\lambda}_T^* = \nabla J(\boldsymbol{\theta}_T^*), \\ \textbf{(3)} & \boldsymbol{\gamma}^* = \arg\max_{\boldsymbol{\gamma}} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \nabla l(x_n, \boldsymbol{\theta}_t^*) \right], \quad \boldsymbol{\gamma} \in U, \\ \textbf{Data Quality Scores} & \textbf{Target gradient direction} & \boldsymbol{\hat{\boldsymbol{\phi}}} \end{cases}$$

Efficient Implementation

- Forward and Reverse loops are computationally intensive
 - Training the full model. Hessian computation.
- Efficient "proxy to large" implementation

On downstream task (LIMA)

- Solve the data scores on a small model (e.g., 140M) and small data (e.g., 160M tokens)
- <u>Fit</u> the scores with a data scorer (e.g., a <u>140M</u> LM with a regression head)
- Infer data scores on the whole dataset (e.g., 100B tokens). Train large model (e.g., 1.7B).

Experiments

Can PDS fulfill our expectations on data selection techniques?

- Reduce the computational cost during pre-training
- Training on the highest quality data can lead to stronger performance

Investigate PDS performance under data constraints

Simulated setting when exact data quality score is attainable(skipped)

Ablation studies (skipped)

Experiment setup

- Training & evaluation
 - Pre-training LM from scratch
 - Evaluate zero-shot problem

Data setups

- Pre-training data: Commoncrawl from Redpajama (100B tokens)
- Downstream loss(used for PMP): loss on LIMA (1k instruction pairs)
- Evaluations: widely used NLP benchmarks

Model

- Mistral architecture: 160M, 470M, 1B, 1.7B
- Extend to larger sizes (400B) with scaling laws

Can we have better performance with PDS selected data?

- Select 50B tokens from 125B token corpus
- Match the total training steps with the baselines

	HS	LAMB	Wino.	OBQA	ARC-e	ARC-c	PIQA	SciQ	BoolQ	Avg.
×-				Model Si	ze = 470N	1				
Conventional	36.7	41.4	52.4	30.4	44.8	25.2	61.0	70.6	60.4	47.0
RHO-Loss	36.6	42.4	53.0	29.4	43.7	25.2	60.4	72.8	59.8	47.0
DSIR	36.4	42.6	51.7	29.8	46.0	24.7	61.0	72.0	55.8	46.7
IF-Score	36.6	41.8	53.4	29.6	44.7	25.1	60.8	68.8	58.7	46.6
PDS	37.9	44.6	52.3	29.8	46.5	25.8	61.8	73.8	61.4	48.2
5. -				Model 3	Size = 1B					
Conventional	39.9	47.6	52.4	30.6	49.3	26.4	63.1	73.7	60.9	49.3
RHO-Loss	39.8	47.0	53.0	30.8	48.0	26.4	62.9	71.1	61.0	48.9
DSIR	40.8	47.8	53.0	31.2	49.8	26.8	62.7	76.6	58.0	49.6
IF-Score	39.4	47.0	52.6	28.6	49.4	26.4	63.5	74.0	60.5	49.0
PDS	42.1	48.8	54.0	33.4	51.3	28.0	64.1	78.5	58.7	51.0

Can we reduce computational cost?

2.0x acceleration on 1.7B models

PDS is efficient and offline

		Complexity
PDS	Proxy γ -solver Data Scorer Data Selection	
Pre-Training		$\mid O(ND)$

	FLOPs ($\times 10^{20}$)	Actual Time
Proxy γ -solver	0.49	15.2 Hours
Data Scorer	0.063	1.50 Hours
Data Selection	0.0	10.2 Minutes
Pre-Training	5.1	144 Hours
	Data Scorer Data Selection	Proxy γ -solver 0.49 Data Scorer 0.063 Data Selection 0.0

Data Utilization Improvement

Performance improvement with limit data (50B tokens)

Pre-Training (w/o Data Selection)

Select 50% data, train for 2 epochs

Select 25% data, train for 4 epochs

Select 12.5% data, train for 8 epochs

Improves data utilization when high-quality web-crawled data run out

Extrapolation with Scaling Laws

~1.8x reduction of data use

Slide source: https://www.youtube.com/watch?v=sDeOJdI M-M

Conclusion

A novel perspective for Data selection: Optimal Control problem

- ◆ Good theoretical guarantees
- ◆ Efficient Implementation
- ◆ Sound empirical results

A rigorous, theory-driven alternative to the ad-hoc practices that currently dominate LM pre-training