Optimization for Deep Learning

Lecture 1-3: Introduction

Kun Yuan

Peking University

Main contents in the class

• Part I: Fundamental algorithms for optimization

Gradient descent; projected gradient descent; proximal gradient descent; Nesterov acceleration; quasi-Newton algorithms; zeroth-order methods

• Part II: Fundamental algorithms for deep learning

Stochastic gradient descent (SGD); SGD stability; momentum SGD; adaptive SGD; variance reduction

Part III: Advanced algorithms for deep learning

Mixed precision training; gradient clipping; adversarial learning; multi-task learning; meta learning; bilevel optimization

Part IV: Distributed algorithm for deep learning

Communication compression; federated learning; decentralized learning; asynchronous SGD; Byzantine learning;

Mixed precision training

- Efficient DNN training relies on using lower precision data types
- Float16 matrix multiplication is 16× faster than float32 in A100
- Using lower precision can save memory
- Training large DNN is infeasible without using mixed precision

Mixed precision training

• Mixed precision training:

$$x_{k+1} = x_k - \gamma Q(\nabla F(x_k, \xi_k))$$

where $Q(\cdot)$ is a quantization operator using lower precision

- Our lecture will explore the following questions:
 - o Can the algorithm converge to the desired solution?
 - \circ How does $Q(\cdot)$ influence the convergence rate?
 - How to design $Q(\cdot)$?
 - How to use mixed precision for momentum SGD or adaptive SGD?

Gradient clipping: recurrent neural network (RNN)

• RNN has the following recursion:

$$h_t = f(x_t, h_{t-1}; \theta_h)$$
$$\hat{y}_t = g(h_t; \theta_o)$$

where θ_h and θ_o are the parameters of $f(\cdot)$ and $g(\cdot)$, respectively, and h_0 can be initialized to arbitrary values.

Gradient clipping: vanishing and exploding gradients

• The gradient in linear RNN is:

$$\frac{\partial F}{\partial W_x} = \frac{1}{T} \sum_{t=1}^T \sum_{i=1}^t \left(W_h^{\mathsf{T}} \right)^{t-i} W_o^{\mathsf{T}} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}_t} x_i^{\mathsf{T}} \in \mathbb{R}^{n \times d}.$$

- $(W_h^{\mathsf{T}})^t$ will cause a significant numerical issue in $\partial F/\partial W_x$
- If the largest magnitude of the eigenvalue is less than 1, i.e., $|\lambda(W_h^{\mathsf{T}})| < 1$, it holds that $(W_h^{\mathsf{T}})^{t-i} \to 0$ as t (or T) gets large; Gradient vanishing!
- If the largest magnitude of the eigenvalue is greater than 1, i.e., $|\lambda(W_h^\intercal)| > 1$, it holds that $(W_h^\intercal)^t \to +\infty$ as t (or T) gets large; Gradient exploding!
- Activation functions may also amplify gradient vanishing and exploding

Gradient clipping: algorithm

Consider the following non-convex optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

• The gradient clipping algorithm iterate as follows

$$x_t = x_t - \gamma g_t$$
 where $g_t = \text{clip}(\nabla f(x_t), c)$

for some positive constant c > 0.

• The clipping operator is defined as

$$\begin{aligned} \mathrm{clip}(u,c) &= \min\{1, \frac{c}{\|u\|}\} u \quad \forall u \in \mathbb{R}^d \\ &= \left\{ \begin{array}{cc} u & \text{if } \|u\| \leq c \\ \frac{c}{\|u\|} u & \text{if } \|u\| > c \end{array} \right. \end{aligned}$$

where $\|\cdot\|$ is an ℓ_2 -norm.

Gradient clipping: resolving gradient exploding

- Clipping operator does not change the gradient direction; just scales gradient.
- Clipping operator sequeezes large gradient when $\|\nabla f(x)\| > c$, but does nothing to small gradient.
- After clipping, it is guaranteed that $||u|| \le c$ for any $u \in \mathbb{R}^d$.
- Our lectures will explore the following questions:
 - o Can gradient clipping converge to the desired solution?
 - Under what conditions can gradient clipping perform better than GD?

Adversarial learning: DNN is fragile to adversarial attacks

Figure: A demonstration of the adversarial example [Goodfellow et.al., 2015].

Adversarial learning: Adversarial stop sign

Adversarial learning: Adversarial T-shirt

Adversarial learning: Adversarial attacks in NLP

Original top caption

A man holding a tennis racquet on a tennis court

Adversarial top caption

A woman brushing her teeth in a bathroom

Original top caption

A cake that is sitting on a table

Adversarial top caption

A dog and a cat are playing with a Frishee

Adversarial keywords:

"dog", "cat" and "Frisbee"

Adversarial learning: Adversarial attacks in NLP

Original Input	Connoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Positive (77%)
Adversarial example [Visually similar]	Aonnoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (52%)
Adversarial example [Semantically similar]	Connoisseurs of Chinese <u>footage</u> will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (54%)

How to construct adversarial examples?

An adversarial example is a perturbation $\boldsymbol{\eta}$ to maximize misclassification

Given an input pair (ξ, y) , its adversarial example $\eta \in \mathbb{R}^d$ is defined as

$$\eta \in \arg\max_{\eta: \|\eta\| \leq \epsilon} L\Big(h(x^\star, \xi + \eta), y\Big)$$

where x^* is the optimal DNN model.

 ℓ_{∞} -norm is most commonly-used. Hard to perceive.

Adversarial learning: Construct adversarial examples

- \bullet An adversarial example is a perturbation η to maximize misclassification
- Given an input pair (ξ, y) , its adversarial example $\eta \in \mathbb{R}^d$ is defined as

$$\eta \in \arg\max_{\eta: \|\eta\| \leq \epsilon} L\Big(h(x^\star, \xi + \eta), y\Big)$$

where x^{\star} is the optimal DNN model.

• How to solve the above problem? We leave it to the main lecture

Adversarial learning

• Adversarial machine learning is to make models robust to attacks

$$\min_{x \in \mathbb{R}^d} \quad \frac{1}{m} \sum_{i=1}^m f_i(x) \quad \text{where} \quad f_i(x) = \max_{\eta: \|\eta\|_{\infty} \le \epsilon} L(h(x; \xi_i + \eta), y_i)$$

- ullet We maximize η to construct adversarial examples but minimize x to construct robust machine learning models; minimax optimization!
- How to solve the above problem? We leave it to the main lecture

- Deep learning algorithms have too many hyper-parameters
 - o learning rate, momentum coefficient, network architecture, etc.
- Manually tune the hyper-parameters is neither efficient nor effective
- Can we tune the hyper-parameter automatically? Yes! Meta learning!

- Suppose we have a collection of M tasks $\{\mathcal{T}_i\}_{i=1}^M$. Each task is associated with a dataset pair $(\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}})$.
- \bullet Let ϕ be the hyper-parameter to learn, which is common to all tasks.
- Let θ_i be the model for task i. Given an specific algorithm $\mathcal{A}lg$ (such as SGD), the hyper-parameter ϕ (such as the learning rate), and the training dataset $\mathcal{D}_i^{\mathrm{tr}}$, θ_i can be learned by

$$\theta_i = \mathcal{A}lg(\phi, \mathcal{D}_i^{\mathrm{tr}}) = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ \mathbb{E}_{\xi_i \sim \mathcal{D}_i^{\mathrm{tr}}} [F(\theta; \phi, \xi_i)] \right\}$$

ullet The hyper-parameter ϕ can be learned by the mata-learning problem

$$\phi^{\star} = \operatorname*{arg\,min}_{\phi \in \mathbb{R}^{s}} \left\{ \frac{1}{M} \sum_{i=1}^{M} L(\theta_{i}, \mathcal{D}_{i}^{\mathrm{test}}) \right\} \text{ where } \theta_{i} = \mathcal{A}lg(\phi, \mathcal{D}_{i}^{\mathrm{tr}})$$

• Meta learning is essentially a bi-level optimization problem:

$$\min_{x \in \mathbb{R}^p} \Phi(x) := f(x, y^\star(x)), \quad \text{where} \quad y^\star(x) = \arg\min_{y \in \mathbb{R}^q} \{g(x, y)\}$$

• How to solve bilevel optimizaiton? We leave it to the main lecture

Multi-task learning

- Multi-task learning solves many tasks simultaneously with one neural network
 - o Dataset of each task can be shared with each other
 - o More efficient than train each individual network independently
- One body with multiple heads

Multi-task learning

• Multi-task learning can be formulated as

$$\min_{u,\{v_i\}} \quad rac{1}{M} \sum_{i=1}^M f(u,v_i) \quad ext{where} \quad f(u,v_i) = \mathbb{E}[F(u,v_i,\xi_i)]$$

where u is the shared model while v_i is the specific model for task i.

• How to solve the above problem? We leave it to the main lecture

More advanced deep learning problems

- Large-batch learning
- Self-supervised learning
- Contrastive learning
- Multi-model learning

We will discuss them in lectures if time allows

Summary

- Many deep learning tasks can be formulated into more advanced optimization problems
- We previewed mixed precision learning, gradient clipping, adversarial learning, meta learning, and multi-task learning in this lecture