1 Lista 7, Zadanie 6

Myślę, że będzie szybciej i czytelniej gdy rysunek do tego zadania wykonam na papierze i zdjęcie umieszczę w pdf.

1.1 Główny pomysł

Spróbujemy podzielić graf $G=(V,E), \quad |V|=n, \quad n-parzyste$ na dwa **niepołączone** podgrafy.

Weźmy wierzchołek v, przy czym $deg(v) \geq \frac{n}{2}$. Niech v wyląduje w lewej grupie — L. Jeżeli ma zachować własność $deg(v) \geq \frac{n}{2}$, oprócz niego w grupie musi być przynajmniej (najskąpiej) $\frac{n}{2}$ wierzchołków.

Czyli razem w grupie L jest $\frac{n}{2}+1$ wierzchołków (nie interesują nas pozostałe). To znaczy, że dla grupy P pozostało $n-(\frac{n}{2}+1)=\frac{n}{2}-1$. Czyli zdecydowanie za mało, aby każdy wierzchołek z P mógł spełniać $deg(v)\geq \frac{n}{2}$.

1.2 Agitacja

Podział na dwie niepołączone grupy, jest najskąpszym podziałem G, tak aby był niespójny. Dodawanie kolejnych podgrub będzie coraz bardziej zmniejszało deg(v) bez możliwości uzupełnienia go do $deg(v) \geq \frac{n}{2}$ z powodu braku wolnych

wierzchołków. Także, taki graf musi być spójny.