Théorème spectral

Dans tout le chapitre $\left(E,\left(\bullet|\bullet\right)\right)$ désigne un espace euclidien de dimension $n\geq 1$. On note $\|\cdot\|$ la norme associé au produit scalaire.

1. L'espace euclidien $M_{n,1}(\mathbb{R})$

 $M_{n,1}(\mathbb{R})$ est un \mathbb{R} -espace vectoriel de dimension n.

Pour
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 et $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ dans $M_{n,1}(\mathbb{R})$ on pose : $(X \mid Y) = \sum_{i=1}^{n} x_i y_i$.

Proposition.— $(\cdot | \cdot)$ est un produit scalaire sur $M_{n,1}(\mathbb{R})$.

Pour tout
$$(X,Y) \in M_{n,1}(\mathbb{R})^2$$
 on a: ${}^tXY = [(X \mid Y)].$

Dans toute la suite on écrira : $(X | Y) = {}^{t}XY$. C'est abusif mais pratique...

Proposition.— Soient
$$A = (a_{ij})$$
 dans $M_n(\mathbb{R})$ et $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ dans $M_{n,1}(\mathbb{R})$.

$$^{t}XAY = (X \mid AY) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}y_{j}.$$

2. Réduction des endomorphismes symétriques

Définition.- Soit u un endomorphisme de E.

On dit que u est dit symétrique si et seulement si : $\forall (x,y) \in E^2$, (x | u(y)) = (u(x) | y).

On note S(E) l'ensemble des endomorphismes symétriques de E.

Proposition.— Soit u un endomorphisme de E et B une base <u>orthonormale</u> de E. u est symétrique si et seulement si $M_B(u)$ est symétrique.

Proposition.- Soit u un endomorphisme symétrique de E.

- 1) χ_u est scindé sur \mathbb{R} et spu $\neq \emptyset$.
- 2) Des vecteurs propres de u associés à des valeurs propres distinctes sont orthogonaux.
- 3) Si F est un sous espace vectoriel de E stable par u alors F^{\perp} est stable par u.

Théorème.- (Théorème spectral)

Soit u un endomorphisme symétrique de E.

- 1) Il existe une base orthonormale de E constituée de vecteurs propres de E.
- 2) L'endomorphisme u est diagonalisable et si $\lambda_1, \dots, \lambda_r$ sont les valeurs propres distinctes de u alors $E = E_{\lambda_1}(u) \oplus \dots \oplus E_{\lambda_r}(u)$ et $E_{\lambda_1}(u), \dots, E_{\lambda_r}(u)$ sont deux à deux orthogonaux.

3. Réduction des matrices symétriques réelles

Soit A une matrice carrée d'ordre $n \ge 1$ à coefficients dans \mathbb{R} .

Définition.– La matrice A est dite symétrique si et seulement si ${}^tA = A$. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de $M_n(\mathbb{R})$.

Définition.– Soient A et B dans $M_n(\mathbb{R})$. On dit que A est orthogonalement semblable à B si et seulement si il existe $P \in O_n(\mathbb{R})$ telle que $P^{-1}AP = B$.

 $\begin{array}{l} \underline{\text{Remarque}}: \text{Pour exprimer que } A \text{ est orthogonalement semblable } a B \text{ on note } A \sim_{os} B. \\ \underline{\text{La relation }} \text{ ``etre orthogonalement semblable } a \text{ ``etre orthogonalement semblable } a \text{ ``etre orthogonalement semblable } a B \text{ on dit } aussi que A \text{ et } B \text{ sont orthogonalement semblables}. \end{array}$

Proposition.— Si A est symétrique réelle alors χ_A est scindé sur $\mathbb R$ et sp A $\neq \emptyset$.

Théorème.- (Théorème spectral)

Le \mathbb{R} -espace vectoriel $M_{n,1}(\mathbb{R})$ est muni de son produit scalaire usuel.

Si la matrice réelle A est symétrique alors on a les propriétés suivantes :

- 1) A est orthogonalement semblable à une matrice diagonale.
- 2) Il existe une base orthonormale (X_1, \dots, X_n) de $M_{n,1}(\mathbb{R})$ constituée de vecteurs propres de A.
- 3) A est diagonalisable dans $M_n(\mathbb{R})$ et si $\lambda_1, \dots, \lambda_r$ sont les valeurs propres distinctes de A alors $M_{n,1}(\mathbb{R}) = E_{\lambda_1}(A) \oplus \dots \oplus E_{\lambda_r}(A)$ et $E_{\lambda_1}(A), \dots, E_{\lambda_r}(A)$ sont deux à deux orthogonaux.

Proposition.– $A \in S_n(\mathbb{R})$ ssi A est orthogonalement semblable à une matrice diagonale.

- 4. Pour aller plus loin (HP)
- 4.1 Matrices symétriques réelles et matrices nilpotentes

Proposition.— Si $A \in S_n(\mathbb{R})$ est nilpotente alors A = 0.

4.2 Endomorphismes symétriques positifs, définis positifs

Définition.- Soit u un endomorphisme de E.

- 1) On dit que u est symétrique positif si et seulement si u est symétrique et vérifie : $\forall x \in E$, $(x | u(x)) \ge 0$.
- 2) On dit que u est symétrique défini positif si et seulement si u est symétrique positif et vérifie : $\forall \ x \in E \ , \ \left(\left(x \mid u\left(x\right) \right) = 0 \ \Rightarrow \ x = 0_E \right).$

Définition.— On note S⁺(E) l'ensemble des endomorphismes symétriques positifs de E et S⁺⁺(E) l'ensemble des endomorphismes symétriques définis positifs de E.

Proposition.- Soit u un endomorphisme symétrique de E.

- u est symétrique positif si et seulement si Spu ⊂ R⁺.
- u est symétrique défini positif si et seulement si et seulement si Spu ⊂ ℝ*+.

Théorème. – Si $u \in S^+(E)$ alors il existe un unique $v \in S^+(E)$ tel que $v^2 = u$.

Proposition. Soit $u : E \to E$ une application. Pour $(x,y) \in E^2$ on pose : $\varphi_u(x,y) = (x \mid u(y))$.

- 1) Si $u \in L(E)$ alors φ_u est une forme bilinéaire sur E.
- 2) Si $u \in S(E)$ alors φ_u est une forme bilinéaire symétrique sur E.
- 3) Si $u \in S^+(E)$ alors φ_u est un semi-produit scalaire sur E.
- 4) Si $u \in S^{++}(E)$ alors φ_u est produit scalaire sur E.
- 4.3 Matrices symétriques positives, définies positives

Définition. – Soit $A \in M_n(\mathbb{R})$.

1) La matrice A est dite symétrique positive si et seulement si A est symétrique et vérifie ${}^{t}XAX \geq 0$ pour tout $X \in M_{n,1}(\mathbb{R})$.

2) La matrice A est dite symétrique définie positive si et seulement si A est symétrique positive et vérifie (${}^{t}XAX = 0 \Rightarrow X = 0$) pour tout $X \in M_{n,1}(\mathbb{R})$.

Définition.— On note $S_n^+(\mathbb{R})$ l'ensemble des matrices symétriques positives de $M_n(\mathbb{R})$ et $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives de $M_n(\mathbb{R})$.

Proposition. Soit $A \in M_n(\mathbb{R})$. Pour $(X,Y) \in M_{n,1}(\mathbb{R})^2$ on pose : $\phi_A(X,Y) = {}^tXAY$.

- 1) φ_{A} est une forme bilinéaire sur $M_{n,1}(\mathbb{R})$.
- 2) Si $A \in S_n(\mathbb{R})$ alors ϕ_A est une forme bilinéaire symétrique sur $M_{n,1}(\mathbb{R})$.
- 3) Si $A \in S_n^+(\mathbb{R})$ alors φ_A est un semi-produit scalaire sur $M_{n,1}(\mathbb{R})$.
- 4) Si $A \in S_n^{++}(\mathbb{R})$ alors φ_A est un produit scalaire sur $M_{n,1}(\mathbb{R})$.

Proposition.— Si $A \in M_n(\mathbb{R})$ alors ${}^tAA \in S_n^+(\mathbb{R})$. Si $A \in GL_n(\mathbb{R})$ alors ${}^tAA \in S_n^{++}(\mathbb{R})$.

Proposition.— Soient $B = (e_1, \dots, e_n)$ une base <u>orthonormale</u> de E, $(x, y) \in E^2$ et $u \in L(E)$.

- 1) u est symétrique positif \Leftrightarrow $M_B(u)$ est symétrique positive.
- 2) u est symétrique défini positif \Leftrightarrow $M_B(u)$ est symétrique définie positive.

Proposition.- Si la matrice réelle A est symétrique alors on a les caractérisations suivantes :

A est symétrique positive si et seulement si $SpA \subset \mathbb{R}^+$.

A est symétrique définie positive si et seulement si et seulement si SpA ⊂ ℝ*+.

Proposition.-

- 1) La matrice réelle A est symétrique positive si et seulement si A est orthogonalement semblable à une matrice diagonale à coefficients diagonaux positifs.
- 2) La matrice réelle A est symétrique définie positive si et seulement si A est orthogonalement semblable à une matrice diagonale à coefficients diagonaux strictement positifs.

Théorème. Si $A \in S_n^+(\mathbb{R})$ alors il existe une unique matrice $B \in S_n^+(\mathbb{R})$ telle que $A = B^2$.

Proposition.— Si $A \in S_n^{++}(\mathbb{R})$ alors il existe $P \in GL_n(\mathbb{R})$ telle que $A = {}^tPP$.

Théorème.- (Décomposition polaire)

Si $A \in GL_n(\mathbb{R})$ alors il existe un unique $(O,S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que A = OS.