Geometría Lineal

Victoria Torroja Rubio 8/9/2025

Índice general

0.	Preliminares 0.1. Partición de \mathbb{Z} definida por $n\mathbb{Z}$			3
				4
1.	Geometría sintética			
	1.1.	Planos	afines sintéticos	6
			Independencia de los axiomas	
			Algunos teoremas	
		1.1.3.	Planos afines finitos	11
	1.2.	Planos	proyectivos sintéticos	12
		1.2.1.	Independencia de los axiomas	13
		1.2.2.	Algunos teoremas	13
		1.2.3.	Construcción de planos proyectivos desde planos afines	15
		1.2.4.	Construcción de un plano afín desde un plano proyectivo	17
		1.2.5.	Dualidad	18
	1.3.	Indepe	ndencia del teorema de Desargues	20
2.	Geometría afín y proyectiva lineal			
	2.1.	Espaci	os proyectivos y afines	23

Información útil en el Campus Virtual.

Bibliografía: El libro que más sigue es el tercero de la bibliografía, aunque no incluye la primera parte de geometría sintética.

Evaluación: será el máximo entre

- Final
- \bullet 75 % Final + 15 % Parcial + 10 % Entrega ejercicios

Fechas:

- Parcial individual en el aula: 20 de octubre
- Entrega de ejercicios en grupo: 1 de diciembre

Capítulo 0

Preliminares

Definición 0.1 (Cuerpo). Un **cuerpo** es un conjunto \mathbb{K} con dos operaciones + y \cdot tales que:

- $(\mathbb{K}, +)$ es un grupo abeliano.
- $(\mathbb{K}/\{0\},\cdot)$ es un grupo abeliano.
- Se cumple la propiedad distributiva.

Definición 0.2 (Espacio vectorial). Un **espacio vectorial** V sobre un cuerpo \mathbb{K} , es un grupo abeliano (V, +) con una función $\cdot : \mathbb{K} \times V \to V$ tal que:

- $\forall \lambda, \mu \in \mathbb{K}, \forall \vec{v} \in V, \lambda \cdot (\mu \cdot \vec{v}) = (\lambda \mu) \cdot \vec{v}.$
- $\quad \blacksquare \ \forall \vec{v} \in V, \, 1 \cdot \vec{v} = \vec{v}.$
- $\forall \lambda \in \mathbb{K}, \forall \vec{u}, \vec{v} \in V, \ \lambda \left(\vec{u} + \vec{v} \right) = \lambda \vec{u} + \lambda \vec{v}.$
- $\forall \lambda, \mu \in \mathbb{K}, \forall \vec{v} \in V, \lambda \vec{v} + \mu \vec{v}$.

Observación. Dado V un \mathbb{K} -espacio vectorial, si dim $(V) = n < \infty$, entonces se tiene que $V \cong \mathbb{K}^n$.

Definición 0.3 (Relación de equivalencia). Una relación \mathcal{R} en un conjunto X es de **equivalencia** si cumple:

Reflexiva. $\forall x \in X, x \mathcal{R} x$.

Simétrica. $\forall x, y \in X, x\mathcal{R}y \Rightarrow y\mathcal{R}x$.

Transitiva. $\forall x, y, z \in X, (x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow (x\mathcal{R}z).$

Recordamos los conjuntos de clase de equivalencia de un elemento $x \in X$:

$$[x]_{\mathcal{R}} = \{ y \in X : y\mathcal{R}x \}.$$

Similarmente, tenemos que el conjunto cociente de una relación de equivalencia es

$$X/\mathcal{R} = \{ [x]_{\mathcal{R}} : x \in X \}.$$

Una **partición** de X es una familia de subconjuntos de X, disjuntos dos a dos, cuya unión es X.

0.1. Partición de \mathbb{Z} definida por $n\mathbb{Z}$

Para $A, B \subset \mathbb{Z}$, definimos las operaciones

- $A + B = \{a + b : a \in A, b \in B\}.$
- $A \cdot B = \{a \cdot b : a \in A, b \in B\}.$
- $n\mathbb{Z} := \{n\} \cdot \mathbb{Z}.$
- $a+n\mathbb{Z}:=\{a\}+\{n\}\,\mathbb{Z}.$

Teorema 0.1 (Algoritmo de la división). Para todo $x \in \mathbb{Z}$ existe un único $q \in \mathbb{Z}$ y $r \in \{0, 1, \dots, n-1\}$ tal que x = r + qn. Por tanto,

$$\{n\mathbb{Z}, 1+n\mathbb{Z}, \ldots, (n-1)+n\mathbb{Z}\}\$$

es una partición de \mathbb{Z} que denotamos por $\mathbb{Z}/n\mathbb{Z}$.

Observación. La partición anterior se corresponde con la relación de equivalencia

$$a\mathcal{R}_n b \iff a - b \in n\mathbb{Z}.$$

Teorema 0.2. El par $(\mathbb{Z}/n\mathbb{Z}, +)$ es un grupo, con la suma definida de la siguiente forma:

$$(a+n\mathbb{Z}) + (b+n\mathbb{Z}) = (a+b) + n\mathbb{Z} = r + n\mathbb{Z},$$

donde $a + b = r + qn \text{ con } r \in \{0, 1, \dots, n - 1\}.$

Demostración. Primero vamos a ver que la aplicación está bien definida. Para ello, vamos a ver que no depende del representante. Es decir, supongamos que $x_1, x_2 \in [x]_{\mathcal{R}}$ e $y_1, y_2 \in [y]_{\mathcal{R}}$. Tenemos que $x_2 = x_1 + \lambda n$ e $y_2 = y_1 + \mu n$, así tenemos que

$$y_2 + x_2 = y_1 + \mu n + x_1 + \lambda n = (y_1 + x_1) + (\mu + \lambda) n.$$

Así, tenemos que $y_2 + x_2 \mathcal{R}_n y_1 + x_1$, por lo que $y_2 + x_2 \in [y_1 + x_1]_{\mathcal{R}_n}$. Así, hemos visto que está bien definida y, por la definición, se puede ver que es una operación binaria en $\mathbb{Z}/n\mathbb{Z}$. Ahora tenemos que ver que es asociativa:

$$\begin{split} \left[(a+n\mathbb{Z}) + (b+n\mathbb{Z}) \right] + (c+n\mathbb{Z}) &= \left[(a+b) + n\mathbb{Z} \right] + (c+n\mathbb{Z}) \\ &= (a+b+c) + n\mathbb{Z} \\ &= (a+n\mathbb{Z}) + \left[(b+c) + n\mathbb{Z} \right] \\ &= (a+n\mathbb{Z}) + \left[(b+n\mathbb{Z}) + (c+n\mathbb{Z}) \right]. \end{split}$$

Ahora vamos a ver que existen el elemento neutro y los inversos. Por un lado, tenemos que el elemento neutro es claramente $0 + n\mathbb{Z}$. En efecto, $\forall a \in \mathbb{Z}$,

$$(0+n\mathbb{Z}) + (a+n\mathbb{Z}) = (0+a) + n\mathbb{Z} = a + n\mathbb{Z}.$$

Así, tenemos que 0 es el elemento neutro. En cuanto al inverso, si $a \in \mathbb{Z}$, tenemos que $-a + n\mathbb{Z}$ es su inverso:

$$(a+n\mathbb{Z}) + (-a+n\mathbb{Z}) = (a-a) + n\mathbb{Z} = 0 + n\mathbb{Z}.$$

Observación. Además, se tiene que dado que la suma en \mathbb{Z} es conmutativa, la suma definida en $\mathbb{Z}/n\mathbb{Z}$ también lo es.

Proposición 0.1. Para $\forall a, b \in \mathbb{Z}$ se tiene que

- (i) $(a+n\mathbb{Z})\cdot(b+n\mathbb{Z})\neq\emptyset$.
- (ii) $(a+n\mathbb{Z})\cdot(b+n\mathbb{Z})\subset(a\cdot b)+n\mathbb{Z}=r+n\mathbb{Z},$ donde $a\cdot b=r+qn$ con $r\in\{0,1,\ldots,n-1\}.$

Demostración. (i) Dado que $a, b \in \mathbb{Z}$, tenemos que $a + n\mathbb{Z}, b + n\mathbb{Z} \neq \emptyset$. Así, por nuestra definición del producto de conjuntos, tenemos que $(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) \neq \emptyset$.

(ii) Si $x \in (a + n\mathbb{Z}) \cdot (b + n\mathbb{Z})$, tenemos que $x = y \cdot z$ para $y \in a + n\mathbb{Z}$ y $z = b + n\mathbb{Z}$. Así, $y = a + \lambda n$ y $z = b + \mu n$, con $\lambda, \mu \in \mathbb{Z}$. Así, queda que

$$x = y \cdot z = (a + \lambda n) \cdot (b + \mu n) = ab + (a\mu + \lambda b + \lambda \mu n) n.$$

Así, está claro que $x \in (a \cdot b) + n\mathbb{Z}$.

Observación. En cuanto a la parte (ii) de la proposición anterior, la igualdad no tiene por qué darse. En efecto, consideremos como ejemplo

Definimos la operación $*: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ como

$$(a+n\mathbb{Z})*(b+n\mathbb{Z}) = (c+n\mathbb{Z}) \iff (a+n\mathbb{Z})\cdot(b+n\mathbb{Z}) \subset c+n\mathbb{Z}.$$

Capítulo 1

Geometría sintética

1.1. Planos afines sintéticos

Definición 1.1 (Plano afín). Un plano afín es un par $(\mathcal{P}, \mathcal{R})$ donde \mathcal{P} es un conjunto no vacío cuyos elementos llamamos **puntos**, y \mathcal{R} es un conjunto de subconjuntos de \mathcal{P} cuyos elementos llamamos **rectas**, que satisfacen lo siguiente:

- **A1.** Sean $P,Q \in \mathcal{P}$ con $P \neq Q$. Existe una única recta $l \in \mathcal{R}$ tal que $P,Q \in l$ (escribimos l = l(PQ)).
- **A2.** $\forall l \in \mathcal{R}, \forall P \in \mathcal{P}, P \notin l$, existe una única recta $m \in \mathcal{R}$ tal que $P \in m$ y $m \cap l = \emptyset$.
- A3. Toda recta tiene al menos dos puntos y hay al menos dos rectas.

Observación. El tercer axioma asegura que se trata de algo dimensional.

Definición 1.2 (Rectas paralelas). Si $l, m \in \mathcal{R}$ tales que $l \cap m = \emptyset$, diremos que l y m son paralelas y escribimos l||m.

Ejemplo (Plano cartesiano). El plano cartesiano \mathbb{R}^2 es un plano afín. Tenemos que

$$\mathcal{P} = \{ (x_1, x_2) : x_1, x_2 \in \mathbb{R} \}.$$

 $\mathcal{R}: l = \{(x_1, x_2) \in \mathbb{R}^2 : ax_1 + bx_2 = 0, a, b, c \in \mathbb{R}, (a, b) \neq (0, 0)\} := \{ax_1 + bx_2 = c\}.$

Vamos a ver que verifica los axiomas. Comprobamos A1. Si tomamos $P = (a_1, a_2)$ y $Q = (b_1, b_2)$, tenemos que la ecuación de una recta que pasa por P y Q será

$$\begin{vmatrix} 1 & x_1 & x_2 \\ 1 & a_1 & b_1 \\ 1 & a_2 & b_2 \end{vmatrix} = 0 \iff (b_2 - b_1) x_1 + (a_1 - a_2) x_2 = a_1 b_2 - a_2 b_1.$$

Así, existe una única recta que contiene a P y Q. Sabemos que la recta es única porque

el sistema

$$\begin{cases} ax_1 + bx_2 = c \\ a'x_1 + b'x_2 = c \end{cases},$$

tiene dos soluciones (porque $P \neq Q$), por lo que tiene infinitas soluciones. Ahora comprobamos el axioma **A2**. Supongamos que $l = \{ax_1 + bx_2 = c\}$, $P = (a_1, b_1) \notin l$, es decir,

$$aa_1 + bb_1 \neq c$$
.

Tomamos la recta $m = \{ax_1 + bx_2 = aa_1 + bb_1\}$. Tenemos que $P \in m$. Por otro lado, calculamos $m \cap l$:

$$\begin{cases} ax_1 + bx_2 = c \\ ax_1 + bx_2 = aa_1 + bb_1 \end{cases}$$

Se trata de un sistema incompatible puesto que ran $\begin{pmatrix} a & b \\ a & b \end{pmatrix} < \operatorname{ran} \begin{pmatrix} a & b & c \\ a & b & aa_1 + bb_1 \end{pmatrix}$. Así, tenemos que $l \cap m = \emptyset$. La unicidad se deduce de un argumento similar al anterior. En cuanto a **A3**, tenemos que existe dos rectas $\{x_1 = 0\}$ y $\{x_2 = 0\}$, y los puntos $\left(0, \frac{c}{b}\right), \left(\frac{c}{a}, 0\right) \in l = \{ax_1 + bx_2 = c\}$. Si a = 0 o b = 0 tenemos que **A3** se sigue cumpliendo:

$$\left(\frac{c}{a},0\right),\left(\frac{c}{a},1\right)\in\left\{ax_{1}=c\right\},\quad\left(0,\frac{c}{b}\right),\left(1,\frac{c}{b}\right)\in\left\{bx_{2}=c\right\}.$$

Observación. Una recta tiene más de una ecuación asociada. En efecto,

$$l = \{ax_1 + bx_2 = c\} = \{\lambda ax_1 + \lambda bx_2 = \lambda c\}, \ \forall \lambda \in \mathbb{R}/\{0\}.$$

Ejemplo. Consideremos $\mathcal{P} = \{A, B, C, D\}$ y

$$\mathcal{R} = \{ \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\} \}.$$

Tenemos que este plano se corresponde con el gráfico sigiuente:

Se puede ver claramente que A1 y A2 se cumplen. Es trivial que A3 se cumple.

Teorema 1.1. Si \mathbb{K} es un cuerpo, entonces \mathbb{K}^2 es un plano afín con puntos \mathbb{K}^2 y rectas las ecuaciones lineales.

Demostración. Adaptar la demostración del ejemplo del plano cartesiano.

Ejemplo. Consideremos el cuerpo $\mathbb{F}_2 = \{0,1\}$ con la suma módulo 2 y el producto también módulo 2. Tenemos, por el teorema anterior, el plano afín \mathbb{F}_2^2 de la forma:

$$\mathbb{F}_2^2 = \{(0,0), (1,0), (0,1), (1,1)\}.$$

$$\mathcal{R} = \{\{x_1 = 0\}, \{x_2 = 0\}, \{x_1 = 1\}, \{x_2 = 1\}, \{x_1 + x_2 = 1\}\}.$$

Gráficamente podemos ver que es igual al ejemplo anterior. En este caso, decimos que existe una colineación entre ellos.

1.1.1. Independencia de los axiomas

En primer lugar, estudiamos la independencia de **A3**. Consideremos un ejemplo que satisface **A1** y **A2**: $\mathcal{P} = \mathbb{R}$ y $\mathcal{R} = \{l = \mathbb{R}\}$. Así, tenemos que **A3** es independiente de los otros dos axiomas.

Ahora vamos a ver la independencia de **A2** respecto de **A1** y **A3**. Para ello eplearemos el ejemplo del plano de Fano (Gino Fano, 1892):

$$\mathcal{P} = \{A, B, C, D, E, F, G\}.$$

$$\mathcal{R} = \{ \{A, B, C\}, \{C, D, E\}, \{E, F, A\}, \{A, G, D\}, \{B, G, E\}, \{C, G, F\}, \{F, B, D\} \}.$$

Tenemos que $|\mathcal{P}| = |\mathcal{R}| = 7$. Está claro que se verifica $\mathbf{A3}$, puesto que $|\mathcal{R}| = 7$ y $\forall l \in \mathcal{R}, |l| = 3$. Se puede ver gráficamente que se cumple $\mathbf{A1}$ y no se cumple $\mathbf{A2}$, pues cualquier par de rectas se interseca y por tanto no existen rectas paralelas: Este es el plano proyectivo más pequeño.

Ahora tenemos que estudiar la independencia de A1 respecto de A2 y A3. Consideremos

$$\mathcal{P} = \{A, B, C, D\}.$$

$$\mathcal{R} = \{ \{A, B\}, \{C, D\} \}.$$

Tenemos que A3 se verifica, pues $|\mathcal{R}| = 2$ y $|\{A, B\}| = |\{C, D\}| = 2$. Por otro lado, si $P \notin \{A, B\}$, tenemos que $P \in \{C, D\}$, por lo que $\{C, D\} || \{A, B\}$. Lo mismo podemos decir si $P \notin \{C, D\}$. Así, tenemos que se verifica A2. Sin embargo, no se cumple A1 porque no existe ninguna recta que contenga a A y C.

1.1.2. Algunos teoremas

Lema 1.1 (Tricotomía). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Sean $l, m \in \mathcal{R}$. Se cumple una y solo una de las siguientes afirmaciones:

- 1. l = m.
- 2. l||m|
- 3. $l \cap m$ es un punto.

Demostración. Si l no es paralela a m, tenemos que $l \cap m \neq \emptyset$. Si $|l \cap m| = 1$, tenemos que es un punto y se cumple **3**. Si $|l \cap m| \geq 2$, tenemos que existen $P, Q \in l \cap m$. Por **A1**, dado que por dos puntos pasa una única recta, debe ser que m = l.

Teorema 1.2 (Rectas equipotentes). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Todo par de rectas están en biyección.

Demostración. Sean $l, m \in \mathcal{R}$.

Caso 1. Si l = m, es trivial que l y m son equipotentes.

Caso 2. Supongamos $l \cap m = O$, donde $O \in \mathcal{P}$. Por **A3**, tenemos que existen $L \in l, M \in m$ tales que $M, L \neq O$. Por **A1**, existe una única $r \in \mathcal{R}$ tal que $L, M \in r$. Si $P \in l/\{L\}$, tenemos que existe una única $r_p||r$ tal que $P \in r_p$.

Podemos hacer un par de observaciones:

Observación 1. Vamos a ver que $\forall P \in l/\{L\}$ tenemos que $P \notin r$, queremos ver que r_p existe. Si $P \in l \cap r$, tenemos que $L, P \in l \cap r$, por lo que l = r, por lo que $M \in l$ y $O, M \in l$ y l = m, que es una contradicción. Por tanto, podemos afirmar que $\forall P \in l, P \neq L, \exists r_p$ recta paralela a r y $P \in r_p$.

Observación 2. Tenemos que ver que $r_p \cap m$ es un punto. Si $r_p||m$, como $r_p||r$, $M \in m$ y $M \in r$, se tiene que m = r, por lo que $L \in r = m$ y $O \in m$, por lo que m = l, lo que es una contradicción. Por otro lado, si $r_p = m$, $P \in l$ y $P \in r_p = m$ y $O \in m, l$, por lo que m = l, que es una contradicción. Por tanto, debe ser que $r_p \cap m$ es un punto.

De esta manera, podemos definir la función

$$f: l/\{L\} \to m/\{M\}$$

$$P \to r_p \cap m.$$

Para ver que f es biyectiva, vamos a ver que existe su inversa. En efecto, tenemos que $\forall Q \in m/\{M\}, \ Q \notin r \ y \ r_Q \cap l$ es un punto. Así, tenemos una función

$$g: m/\{M\} \to l/\{L\}$$

 $Q \to r_Q \cap l.$

Para ver que $g = f^{-1}$ tenemos que ver que $g \circ f = id$ y que $f \circ g = id$:

$$(g \circ f)(P) = g(f(P)) = g(r_p \cap m).$$

Tenemos que $r_{f(P)} = r_{r_p \cap m} || r \le r_{f(P)}$ pasa por $r_p \cap m$. Pero $r_p || r \le r_p$ pasa por $r_p \cap m$. Por **A2**, tenemos que $r_{f(P)} = r_p$. Así, tenemos que

$$g(r_p \cap m) = r_{f(P)} \cap l = r_p \cap l = P.$$

Caso 3. Si $m|l y M \in m, L \in l$, tenemos que existe una recta r tal que $M, L \in r$. Así, tenemos que $r \cap m$ y $r \cap l$ es un punto y por lo aplicado en el caso anterior, tenemos que existe una biyección entre r y m y entre r y l.

Lema 1.2. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Ponemos $l \sim m, l, m \in \mathcal{R}$, si l = m o l||m. Entonces, \sim es una relación de equivalencia.

Demostración. (i) Está claro que si $l \in \mathcal{R}$ se tiene que l = l, por lo que se cumple la propiedad reflexiva.

- (ii) Sean $l, m \in \mathcal{R}$. Si l = m es trivial que se cumple la propiedad simétrica. Si $l \sim m$ y l||m, tenemos que $l \cap m = m \cap l = \emptyset$, por lo que $m \sim l$. Así, hemos verificado la propiedad simétrica.
- (iii) Sean $l, m, r \in \mathcal{R}$ con $l \sim m$ y $m \sim r$. Hay que valorar varios casos:

Caso 1. Si l=m y m=r, está claro que l=r y, por tanto, $l\sim r$.

Caso 2. Si l = m y m||r, está claro que $l \cap r = m \cap r = \emptyset$, por lo que $l \sim r$.

Caso 3. Si $l||m ext{ y } m = r$, tenemos que $l \cap r = l \cap m = \emptyset$, por lo que $l \sim r$.

Caso 4. Si $l||m \vee m||r$, está claro que $l \cap m = m \cap r = \emptyset$, por lo que $l \sim r$.

Así, queda demostrada la propiedad transitiva.

Definición 1.3 (Haz de rectas). Un haz de rectas paralelas es una clase de equivalencia de \sim . Entonces, $\mathcal{H} \subset \mathcal{R}$ es un haz si y solo si $\exists l \in \mathcal{R}$ tal que

$$\mathcal{H} = [l]_{\sim} = \{m \mid m = l \text{ o } m | |l\} \,.$$

Proposición 1.1. Sea \mathcal{H} un haz y $l \in \mathcal{R}$ con $l \notin \mathcal{H}$, entonces $f : \mathcal{H} \to l : m \to l \cap m$ es una biyección.

Demostración. (i) Primero vamos a ver que la función está bien definida. Como $l \notin \mathcal{H}$, $\forall m \in \mathcal{H}$ tenemos que l no es paralelo a m y $l \neq m$. Por el lema de la tricotomía, debe ser que $l \cap m$ es un punto. Así, la función está bien definida.

- (ii) Veamos que la función es inyectiva. Consideremos $m_1, m_2 \in \mathcal{H}$ tales que $m_1 \cap l = m_2 \cap l \neq \emptyset$, por lo que $m_1 \cap m_2 \neq \emptyset$. Dado que $m_1, m_2 \in \mathcal{H}$, tenemos que $m_1 \sim m_2$ y como m_1 no es paralela a m_2 , debe ser que $m_1 = m_2$.
- (iii) Comprobemos que la aplicación es sobreyectiva. Supongamos que $P \in l$, $m \in \mathcal{H}$. Si $P \in m$, tenemos que $m \cap l = P$, por lo que hemos ganado. Si $P \notin m$, por **A2** tenemos que existe $m_1 \in \mathcal{H}$ (es decir, paralela a m) tal que $P \in m_1$, por lo que $P = m_1 \cap l$.

Proposición 1.2. Si \mathcal{H}_1 y \mathcal{H}_2 son dos haces distintos, tenemos que $\forall P \in \mathcal{P}, \exists ! l \in \mathcal{H}_1, \exists ! m \in \mathcal{H}_2$ tales que $P = l \cap m$. En particular, la aplicación $f : \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{P} : (l, m) \to l \cap m$ es una biyección.

Demostración. Supongamos que

$$\mathcal{H}_1 = [l]_{\sim} = \{l' \mid l' = l \circ l' || l \}.$$

$$\mathcal{H}_2 = [m]_+ = \{m' \mid m' = m \circ m' | |m\}.$$

Tenemos que dado que $\mathcal{H}_1 \neq \mathcal{H}_2$, tenemos que $l \neq m$ y l no es paralelo a m, por lo que $l \cap m$ es un punto. Así, hemos visto que la aplicación está bien definida. Sea $P \in \mathcal{P}$:

Caso 1. Si $P \in l$ hemos terminado.

Caso 2. Si $P \notin l$, por A2 existe una única recta $l' \in \mathcal{H}_1$ tal que $P \in l'$.

En ambos casos, tenemos que $\exists ! l_1 \in \mathcal{H}_1$ tal que $P \in l_1$. Así, simétricamente existe una única $m_1 \in \mathcal{H}_2$ tal que $P \in m_1$.

1.1.3. Planos afines finitos

Definición 1.4. Un plano afín tiene **orden** n si todas sus rectas tienen n elementos.

Observación. La definición tiene sentido dado que todas las rectas tienen el mismo número de puntos.

Teorema 1.3. Sea $(\mathcal{P}, \mathcal{R})$ una plano afín de orden n.

- (i) Cada haz de rectas tiene n elementos.
- (ii) $|\mathcal{P}| = n^2$.
- (iii) Cada punto está en n+1 rectas.
- (iv) Hay n+1 haces de rectas.
- (v) Hay n(n+1) rectas.

Demostración. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín de orden n.

- (i) Sea \mathcal{H} un haz de rectas. Por **A3**, existe $l_1, l_2 \in \mathcal{R}$ con $l_1 \neq l_2$. Si existe $l \notin \mathcal{H}$ hemos ganado. Si $l_1, l_2 \in \mathcal{H}$, sea $P \in l_1$ y $Q \in l_2$, tenemos que $l(P,Q) \notin \mathcal{H}$ por lo que existe $l \notin \mathcal{H}$. Por una proposición anterior, tenemos que existe una biyección entre \mathcal{H} y l, por lo que $|\mathcal{H}| = |l| = n$.
- (ii) Por el argumento del apartado anterior, existen $l, m \in \mathcal{R}$ con $l \neq m$ y que no son paralelas entre sí, tales que $\mathcal{H}_1 = [l]_{\sim}$ y $\mathcal{H}_2 = [m]_{\sim}$. Por la proposición anterior, tenemos que $|\mathcal{H}_1 \times \mathcal{H}_2| = |\mathcal{P}|$. Por la primera propiedad, nos queda que $|\mathcal{P}| = |\mathcal{H}_1| \cdot |\mathcal{H}_2| = n^2$.
- (iii) Sea $P \in \mathcal{P}$. Por **A3** es fácil deducir que existe una recta $l \in \mathcal{R}$ tal que $P \notin l$. Tenemos que $l = \{A_1, \ldots, A_n\}$, por lo que $P \in l(P, A_1), \ldots, l(P, A_n)$. Por **A2**, existe una única paralela m a l tal que $P \in m$, por lo que P está en n+1 rectas. En efecto, todas las rectas anteriores son distintas porque de no serlo tendríamos que

$$l(P, A_i) = l(P, A_i) \Rightarrow l(P, A_i) = l(A_i, A_i) = l \Rightarrow P \in l.$$

Si $r \in \mathcal{R}$ tal que $P \in r$, por $\mathbf{A2}$ se sigue que o $r \cap l = \emptyset$, por lo que r = m; o $r \cap l = A_i$, por lo que $r = l(P, A_i)$.

- (iv) Por (iii), dado $P \in \mathcal{P}$, existen $l_1, \ldots, l_{n+1} \in \mathcal{R}$ con $P \in l_i, \forall i = 1, \ldots, n+1$. Como $l_i \cap l_j = P$, tenemos que $[l_i]_{\sim} \neq [l_j]_{\sim}$ si $i \neq j$. Por tanto hay al menos n+1 haces. Sea $r \in \mathcal{R}$.
 - Si $P \in r$, tenemos que $r = l_i$ para algún $1 \le i \le n + 1$.
 - Si $P \notin r$, por **A2** tenemos que existe una única l_i tal que $r||l_i$, por lo que $P \in l_i$.

En ambos casos tenemos que $r \in [l_i]_{\sim}$ para algún i.

(v) Los haces son distintos dos a dos, por ser una relación de equivalencia. Por tanto,

$$|\mathcal{R}| = \left| \bigcup_{i=1}^{n+1} \mathcal{H}_i \right| = \sum_{i=1}^{n+1} |\mathcal{H}_i| = \sum_{i=1}^{n+1} n = n (n+1).$$

Observación. Para todo primo p y todo $k \geq 1$, existe un cuerpo \mathbb{K} con p^k elementos. Entonces, $\forall p$ primo y $\forall k \geq 1$, existe un plano afín de orden p^k , porque \mathbb{K}^2 es un plano afín.

1.2. Planos proyectivos sintéticos

Definición 1.5 (Plano proyectivo). Un **plano proyectivo** es un par $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ donde $\overline{\mathcal{P}}$ es un conjunto no vacío cuyos elementos se llaman **puntos** y $\overline{\mathcal{R}}$ es un conjunto de subconjuntos de $\overline{\mathcal{P}}$ cuyos elementos se llaman **rectas**. Se cumplen los axiomas:

- P1. Para cada par de puntos distintos existe una única recta que los contiene.
- P2. Todo par de rectas tiene intersección no vacía.
- P3. Toda recta tiene al menos tres puntos y hay al menos dos rectas.

En primer lugar, vamos a comprobar la consistencia de la definición, es decir, que hemos definido algo que existe.

Ejemplo (Plano de Fano). Consideremos los conjuntos

$$\overline{\mathcal{P}} = \{A, B, C, D, E, F, G\}$$
.

 $\overline{\mathcal{R}} = \{\{A, B, C\}, \{C, D, E\}, \{E, F, A\}, \{B, G, F\}, \{A, G, D\}, \{F, G, C\}, \{F, D, B\}\}.$

Es fácil comprobar que se trata de un plano proyectivo.

Observación. Este es el plano proyectivo más pequeño, es decir, que tiene menos puntos.

1.2.1. Independencia de los axiomas

- Comprobamos la independencia de **P3** respecto de **P2** y **P1**. Consideremos el ejemplo $\overline{P} = \mathbb{R}$ y $\overline{\mathcal{R}} = \{\mathbb{R}\}$. Está claro que se cumplen **P1** y **P2** pero no se cumple **P3**.
- Comprobamos la independencia de **P2** respecto de **P1** y **P3**. Consideremos como ejemplo el plano afín \mathbb{R}^2 . Tenemos que **A1** es igual que **P1**, hay rectas paralelas, por lo que **P2** no se cumple y está claro que se cumple **P3** puesto que $|\overline{\mathcal{R}}| = \infty, \forall \overline{l} \in \overline{\mathcal{R}}, |\overline{l}| = \infty$.
- Comprobamos la independencia de **P1** respecto de **P2** y **P3**. Consideremos por ejemplo:

$$\overline{\mathcal{P}} = \{A, B, C, D, E\}.$$

$$\overline{\mathcal{R}} = \{\{A, B, C\}, \{C, D, E\}\}.$$

Claramente se cumple **P3** y se cumple **P2** porque hay dos rectas y las dos se intersecan. No se cumple **P1** puesto que no existe $\overline{l} \in \overline{\mathcal{R}}$ tal que $A, D \in \overline{l}$.

1.2.2. Algunos teoremas

Teorema 1.4. Sea $\mathbb K$ es un cuerpo y $\mathbb K^3$ un espacio vectorial. Sean

$$\overline{\mathcal{P}} = \{ U \subset \mathbb{K}^3 : U \in \mathcal{L}(\mathbb{K}^3), \dim_{\mathbb{K}} U = 1 \}.$$

$$\overline{\mathcal{R}} = \{ W \subset \mathbb{K}^3 : W \in \mathcal{L}(\mathbb{K}^3), \dim_{\mathbb{K}} W = 2 \}.$$

Entonces, $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo ^a.

"La definición de $\overline{\mathcal{R}}$ es más bien el conjunto de los conjuntos de rectas que son contenidas por un plano, así se puede hacer una correspondencia biyectiva entre $\overline{\mathcal{R}}$ y la descripción que le hemos dado. Así, decimos que un punto $\overline{P} \in \overline{\mathcal{P}}$ está en una recta $\overline{l} \in \overline{\mathcal{R}}$ si \overline{P} está contenido en el plano que caracteriza a \overline{l} .

Demostración. (i) Vamos a ver que se cumple **P1**. Si $P, Q \in \overline{P}$ con $P \neq Q$, existen $\vec{v}_1, \vec{v}_2 \in \mathbb{K}^3$ linealmente independientes tales que $P = L(\{\vec{v}_1\})$ y $Q = L(\{\vec{v}_2\})$. Así, existe $r \in \overline{\mathcal{R}}$ tal que $r = L(\{\vec{v}_1, \vec{v}_2\})$ que cumple que $P, Q \subset r$. En concreto, tenemos que $r = P \oplus Q$.

Sea $r_2 \in \overline{\mathcal{R}}$ tales que $P, Q \subset r_2$, entonces tenemos que $P \oplus Q \subset r_2$ y dim $(P \oplus Q) = \dim r_2$, por lo que $r_2 = r$.

(ii) Vamos a ver que se cumple **P2**. Sean $l, m \in \overline{\mathbb{R}}$, tenemos que

$$\underbrace{\dim \left(l\cap m\right)}_{\leq 3} = \underbrace{\dim l}_2 + \underbrace{\dim m}_2 - \underbrace{\dim \left(l\cap m\right)}_{\geq 1}.$$

Por tanto, dim $(l \cap m) \ge 1$, por lo que $l \cap m \ne \emptyset$.

(iii) Vamos a ver que se cumple **P3**. Sea $\mathbb{K}^3 = L(\{\vec{u}_1, \vec{u}_2, \vec{u}_3\})$, sean $r_1 = L(\{\vec{v}_1, \vec{v}_2\})$ y $r_2 = L(\{\vec{u}_1, \vec{u}_3\})$ dos rectas. Así, hemos visto que hay al menos dos rectas. Ahora, dada una recta $r = L(\{\vec{v}_1, \vec{v}_2\})$ tenemos que $P_1 = L(\{\vec{v}_1\})$, $P_2 = L(\{\vec{v}_2\})$ y $P_3 = L(\{\vec{v}_1 + \vec{v}_2\})$ son puntos de la recta. Así, hemos visto que cada recta tiene al menos tres puntos.

Definición 1.6. Sea \mathbb{K} un cuerpo. Al plano proyectivo construido en el teorema anterior lo llamamos **proyectivizado de** \mathbb{K}^3 y lo denotamos por $\mathbb{P}(\mathbb{K}^3)$.

Notación. Dado $(a_0, a_1, a_2) \in \mathbb{K}^3$ denotamos por $[a_0 : a_1 : a_2]$ al punto $L(\{(a_0, a_1, a_2)\})$. Observamos que

$$[a_0:a_1:a_2] = [b_0:b_1:b_2] \iff L(\{(a_0,a_1,a_2)\}) = L(\{(b_0,b_1,b_2)\}).$$

Esto es cierto si y solo si existe $\lambda \in \mathbb{K}/\{0\}$ tal que $(a_0, a_1, a_2) = \lambda(b_0, b_1, b_2)$. Así, tenemos que esta notación está bien definida salvo proporcionalidad. Así, tenemos que los puntos de $\mathbb{P}(\mathbb{K}^3)$ son

$$\{[a_0:a_1:a_2]:(a_0,a_1,a_2)\in\mathbb{K}^3/\{0\}\}.$$

Por otro lado, si $u \in \mathbb{K}^3$ tal que dim (u) = 2, podemos describir u con una ecuación implícita homogénea:

$$u = \{(x_0, x_1, x_2) : ax_0 + bx_1 + c_2 = 0\}.$$

CAPÍTULO 1. GEOMETRÍA SINTÉTICA

Así, definimos \bar{l} de la siguiente forma:

$$\bar{l} = \{ [x_0 : x_1 : x_2] : ax_0 + bx_1 + cx_2 = 0 \}, (a, b, c) \neq (0, 0, 0).$$

Tenemos que si $(u_0, u_1, u_2) \in \bar{l}$, entonces $(\lambda u_0, \lambda u_1, \lambda u_2) \in \bar{l}$. En efecto,

$$au_0 + bu_1 + cu_2 = 0 \Rightarrow a\lambda u_0 + b\lambda u_1 + c\lambda u_2 = 0.$$

Así hemos visto que $[u_0: u_1: u_2] \in \bar{l}$ si y solo si $au_0 + bu_1 + cu_2 = 0$, por lo que $[u_0: u_1: u_2] \in \bar{l}$ está bien definido. Definimos $\mathbb{P}(\mathbb{K}^3)$ de la siguiente forma,

$$\overline{\mathcal{P}} = \{ [a_0 : a_1 : a_2] : a_i \in \mathbb{K}/\{0\} \}.$$

$$\overline{\mathcal{R}} = \{ax_0 + bx_1 + cx_2 = 0\}^{1}.$$

Podemos observar que si $P = [a_0 : a_1 : a_2]$ y $Q = [b_0 : b_1 : b_2]$ con $P \neq Q$, se cumple que

$$\bar{l}(P,Q) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \end{vmatrix} = 0 \right\}.$$

1.2.3. Construcción de planos proyectivos desde planos afines

Sea $(\mathcal{P}, \mathcal{R})$ un plano afín.

- Para cada haz de rectas \mathcal{H} creamos un punto $P_{\mathcal{H}}$ ².
- Cogemos $\overline{\mathcal{P}} = \mathcal{P} \cup \{P_{\mathcal{H}} : \mathcal{H} \text{ haz de rectas}\}.$
- Dado $l \in \mathcal{R}$ con $l \in \mathcal{H}$, ponemos $\bar{l} = l \cup \{P_{\mathcal{H}}\}$.
- Ponemos $\bar{l}_{\infty} = \{P_{\mathcal{H}} : \mathcal{H} \text{ haz de rectas}\}.$
- Tomamos $\overline{\mathcal{R}} = \{\overline{l} : l \in \mathcal{R}\} \cup \{\overline{l}_{\infty}\}.$

Observación. Se tiene que $\overline{\mathcal{P}} = \mathcal{P} \cup \overline{l}_{\infty}$.

Ejemplo. Consideremos el plano afín $(\mathcal{P}, \mathcal{R})$ tal que

$$\mathcal{P} = \{A, B, C, D\}.$$

$$\mathcal{R} = \{\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}\}.$$

Tomamos los haces de rectas:

$$\mathcal{H}_1 = \{\{A, B\}, \{C, D\}\}, \quad \mathcal{H}_2 = \{\{A, C\}, \{B, D\}\}, \quad \mathcal{H}_3 = \{\{A, D\}, \{C, B\}\}.$$

Gráficamente queda así:

 $^{^1{\}rm Claramente}~a,~b~{\rm y}~c$ no son 0 simultáneamente.

²Este punto es distinto para cada haz de rectas.

Teorema 1.5. Con esta construcción, $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo.

Demostración. Comprobamos que se cumplen los axiomas.

P1. Sean $P, Q \in \overline{P} = P \cup \overline{l}_{\infty}$. Entonces, tenemos los casos:

Caso 1. Si $P,Q \in \mathcal{P}$, por **A1** existe una única $l \in \mathcal{R}$ tal que $P,Q \in l$. Así, tenemos que $P,Q \in \overline{l} = l \cup P_{\mathcal{H}} \in \overline{\mathcal{R}}$.

Caso 2. Si $P,Q \in \bar{l}_{\infty}$ tenemos que P y Q están en una recta y \bar{l}_{∞} es la única recta con más de un punto que no está en \mathcal{P} .

Caso 3. Si $P \in \mathcal{P}$ y $Q \in \overline{l}_{\infty}$, tenemos que $Q = P_{\mathcal{H}}$, siendo \mathcal{H} un haz de rectas. Por A2, existe $l \in \mathcal{H}$ tal que $P \in l$, por lo que $P, Q \in \overline{l} = l \cup \{P_{\mathcal{H}}\}$. La unicidad se deduce por construcción.

P2. Sean $\overline{l}, \overline{m} \in \overline{\mathcal{R}}$.

Caso 1. Si $\bar{l} = \bar{l}_{\infty}$, tenemos que $\bar{l} \cap \overline{m}$ contiene un punto del infinito por construcción, por lo que $\bar{l} \cap \overline{m} \neq \emptyset$.

Caso 2. Si $\overline{l} \neq \overline{l}_{\infty} \neq \overline{m}$, tenemos que $\overline{l} = l \cup \{P_{\mathcal{H}_1}\}$ y $\overline{m} = m \cup \{P_{\mathcal{H}_2}\}$. Si l||m, tenemos que $P_{\mathcal{H}_1} = P_{\mathcal{H}_2}$, por lo que $\overline{l} \cap \overline{m} \neq \emptyset$. Por otro lado, si l = m está claro que $\overline{l} = \overline{m}$. Finalmente, tenemos que si $l \cap m$ es un punto, entonces $\overline{l} \cap \overline{m} \neq \emptyset$.

P3. Por **A3** se tiene que $|\mathcal{R}| \geq 2$, por lo que $|\overline{\mathcal{R}}| \geq 2$. Similarmente, por **A3** tenemos que $|l| \geq 2$, $\forall l \in \mathcal{R}$. Por tanto,

$$|\bar{l}| = |l \cup \{P_{\mathcal{H}}\}| \ge 3.$$

Ejemplo (Completación proyectiva de \mathbb{K}^2). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín sobre \mathbb{K}^3 . Consideramos $\mathcal{P} = \{(u_1, u_2) : u_i \in \mathbb{K}\}$. Construimos la siguiente aplicación:

$$\mathbb{K}^2 \to \mathbb{P}\left(\mathbb{K}^3\right)$$
$$(u_1, u_2) \to [1: u_1: u_2].$$

Vamos a ver que es inyectiva. Si $(u_1, u_2) \neq (u'_1, u'_2)$, no existe $\lambda \in \mathbb{K}$ tal que $[1:u_1:u_2] = \lambda[1:u'_1:u'_2]$.

Sabemos que las rectas de \mathbb{K}^2 son de la forma $l = \{ax_1 + bx_2 = c\}$. Vemos que

$$(u_1, u_2) \in l \iff [1: u_1: u_2] \in \bar{l} = \{ax_1 + bx_2 = cx_0\}.$$

Por ahora todo ha sido notación. Vamos a ver la construcción. Tenemos que $l = \{ax_1 + b_2 = c\}$ es paralela a $m = \{a'x_1 + b'x_2 = c'\}$ si y solo si existe $\lambda \in \mathbb{K}$ tal que $(a,b) = \lambda(a',b')$. Consideremos $\mathcal{H} = \{\{ax_1 + bx_2 = d\} : d \in \mathbb{K}\}$ y tomamos $P_{\mathcal{H}} = [0:b:-a]$.

Podemos hacer un par de observaciones:

- $[0:b:-a] \in \bar{l} = \{ax_1 + bx_2 = cx_0\}.$
- $\bar{l} = l \cup \{[0:b:-a]\}.$
- $\bar{l}_{\infty} = \{ [0: u_1: u_2] : u_i \in \mathbb{K} \}.$

Ahora ya podemos construir $\overline{\mathcal{P}}$ y $\overline{\mathcal{R}}$:

$$\overline{\mathcal{P}} = P \cup \overline{l}_{\infty} = \{ [1:u_1:u_2] : u_i \in \mathbb{K} \} \cup \{ [0:u_1:u_2] : u_i \in \mathbb{K} \} = \mathbb{P} \left(\mathbb{K}^3 \right).$$

$$\overline{\mathcal{R}} = \mathcal{R} \cup \{ \overline{l} \} = \{ \overline{l}_{\infty} = \{ ax_1 + bx_2 = cx_0 : (a,b) \neq (0,0) \} \} \cup \{ x_0 = 0 \}.$$

1.2.4. Construcción de un plano afín desde un plano proyectivo

Sea $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ un plano proyectivo y sea $\overline{l}_{\infty} \in \overline{\mathcal{P}}$ una recta cualquiera ³. Tomamos

$$\mathcal{P} = \overline{\mathcal{P}} - \overline{l}_{\infty}.$$

$$\overline{\mathcal{R}} = \left\{ l = \overline{l} - (\overline{l} \cap \overline{l}_{\infty}) : \overline{l} \in \overline{\mathcal{R}} - \{\overline{l}_{\infty}\} \right\}.$$

Teorema 1.6. El par $(\mathcal{P}, \mathcal{R})$ construido anteriormente es un plano afín.

Demostración. Comprobemos que se cumplen los axiomas.

- **A1.** Dados $P, Q \in \mathcal{P} \subset \overline{\mathcal{P}}$ con $P \neq Q$, por **P1** tenemos que existe una única $\overline{l} \in \overline{\mathcal{R}}$ tal que $P, Q \in \overline{l}$. Como $P, Q \notin \overline{l}_{\infty}$, tenemos que $P, Q \in \overline{l} (\overline{l} \cap \overline{l}_{\infty}) = l \in \mathcal{R}$. La unicidad de l es por construcción de \mathcal{R} .
- **A2.** Sea $l \in \mathcal{R}$, por lo que $l = \overline{l} \{Q\}$ donde $\overline{l} \in \overline{\mathcal{R}}$ y $Q \in \overline{l}_{\infty}$. Sea $P \in \mathcal{P}$ tal que $P \notin l$. Por **P1** tenemos que existe una única $\overline{m} \in \overline{\mathcal{R}}$ que une P y Q. Por tanto

$$m = \overline{m} - \left(\overline{m} \cap \overline{l}_{\infty}\right) = \overline{m} - \{Q\}.$$

Si $m \cap l \neq \emptyset$, existe $Q_2 \in \mathcal{P}$ tal que $Q_2 \in m \cap l \subset \overline{m} \cap \overline{l}$ y $Q \in \overline{m} \cap \overline{l}$. Así, tenemos que $\overline{m} = \overline{l}$, y como $P \notin \overline{l}$ y $P \in \overline{m}$, obtenemos una contradicción. Así, debe ser que m||l. La unicidad se deduce por construcción.

³Realmente es una recta cualquiera, lo que pasa es que la vamos a tratar como la recta infinita.

A3. Por **P3**, tenemos que $|\bar{l}| \geq 3$, $\forall \bar{l} \in \overline{\mathcal{R}}$. Tenemos entonces que si $l \in \mathcal{R}$

$$|l| = \left| \bar{l} - \left(\bar{l} \cap \bar{l}_{\infty} \right) \right| \ge 2.$$

Por lo que se vio en uno de los ejercicios, tenemos que $|\overline{\mathcal{R}}| \geq 3$, por lo que

$$|\mathcal{R}| = |\overline{\mathcal{R}} - \{\overline{l}_{\infty}\}| = |\overline{\mathcal{R}}| - 1 \ge 2.$$

Corolario. Todo par de rectas de $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ están en biyección.

Demostración. Habíamos demostrado que todo par de rectas de un plano afín están en biyección. Sean $\bar{l}, \overline{m} \in \overline{\mathcal{R}}$. Existe $\bar{r} \in \overline{\mathcal{R}}$ tal que $\bar{r} \neq \bar{l}, \overline{m}$. Tomamos $\bar{l}_{\infty} = \bar{r}$ y construimos un plano afín $(\mathcal{P}, \mathcal{R})$. Así, tenemos que

$$l = \overline{l} - (\overline{l}_{\infty} \cap \overline{l}), \quad m = \overline{m} - (\overline{l}_{\infty} \cap \overline{m}) \in \mathcal{R}.$$

Como l y m están en biyección y $\left| \overline{l}_{\infty} \cap \overline{l} \right| = \left| \overline{l}_{\infty} \cap \overline{m} \right| = 1$, es fácil ver que \overline{l} y \overline{m} están en biyección.

1.2.5. Dualidad

Proposición 1.3. Sea $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ un plano proyectivo. Se cumplen:

- **P1'.** Si P y Q son puntos distintos de $\overline{\mathcal{P}}$, entonces existe una única $\overline{l} \in \overline{\mathcal{R}}$ tal que $P,Q \in \overline{l}$.
- **P2'.** Si \overline{l} y \overline{m} son rectas distintas de $\overline{\mathcal{R}}$, entonces existe un único $P \in \overline{\mathcal{P}}$ tal que \overline{l} y \overline{m} contienen a P.
- P3'. Cada recta contiene al menos tres puntos y cada punto está contenido en al menos tres rectas.

Demostración. P1'. Como P1' y P1 son lo mismo, es trivial que se cumple.

- **P2'.** Por **P2** sabemos que $\bar{l} \cap \overline{m} \neq \emptyset$. Por **P1**, si $|\bar{l} \cap \overline{m}| \geq 2$, tenemos que $\bar{l} = \overline{m}$. Así, debe ser que si $\bar{l} \neq \overline{m}$, entonces $|\bar{l} \cap \overline{m}| = 1$.
- **P3'.** Por **P3** cada recta contiene al menos tres puntos. Por un ejercicio de la hoja, tenemos que $|\overline{\mathcal{R}}| \geq 3$, por lo que si $\overline{l}, \overline{m}, \overline{r} \in \overline{\mathcal{R}}$ son distintas, y $P \in \overline{\mathcal{P}}$ con $P \in \overline{l} \cap \overline{m} \cap \overline{r}$, tenemos que P está en tres rectas. Si $P \notin \overline{l}$, existen $A_1, A_2, A_3 \in \overline{l}$ y existen $\overline{l}(P, A_1), \overline{l}(P, A_2), \overline{l}(P, A_3) \in \overline{\mathcal{R}}$ tres rectas distintas.

Teorema 1.7. Sea $\overline{\mathcal{P}}$ un conjunto no vacío y sea $\overline{\mathcal{R}}$ una colección de subconjuntos de $\overline{\mathcal{P}}$. Entonces, son equivalentes

- \bullet $\left(\overline{\mathcal{P}},\overline{\mathcal{R}}\right)$ es un plano proyectivo.
- $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ cumple **P1'**, **P2'** y **P3'**.

Es decir, podríamos haber tomado P1', P2' y P3' como axiomas.

Demostración. (i) Es trivial a partir de la proposición anterior.

(ii) Tenemos que P1' es igual que P1, P2' implica P2 y P3' implica P3.

Observación. En los nuevos axiomas, si cambiamos la palabra 'punto' por 'recta' y 'está contenido' por 'contiene', obtenemos los mismos axiomas. En efecto, **P1'** se convierte en **P2'**, **P2'** se convierte en **P1'** y **P3'** cambia el orden de las oraciones.

En particular, toda afirmación cierta usando **P1**, **P2** y **P3** tendrá una afirmación (llamada afirmación dual) que también será cierta y se obtiene haciendo el cambio indicado anteriormente.

Corolario. En un plano proyectivo cada par de puntos está contenido en el mismo número de rectas. a

Ejemplo. Consideremos la afirmación:

$$\forall \overline{l}_1, \overline{l}_2 \in \overline{\mathcal{R}}, \overline{l}_1 \neq \overline{l}_2, \exists P \in \overline{\mathcal{P}}, P \notin \overline{l}_1 \cup \overline{l}_2.$$

La afirmación dual será:

$$\forall P_1, P_2 \in \overline{\mathcal{P}}, P_1 \neq P_2, \exists \overline{l} \in \overline{\mathcal{R}}, \overline{l} \not\supset \{P_1, P_2\}.$$

Demostración de la primera afirmación:

- Por **P2**' tenemos que existe un único $Q \in \overline{l}_1 \cap \overline{l}_2$ con $Q \in \overline{\mathcal{P}}$.
- Por **P3'** existe $\overline{r} \in \overline{\mathcal{R}}$ tal que $\overline{r} \neq \overline{l}_1, \overline{l}_2$ y $Q \in \overline{r}$.
- Por **P3'** existe $A \in \overline{r}$ tal que $A \neq Q$ y $A \in \overline{P}$.
- Tenemos que si $A \in \bar{l}_1$ se tiene que $A, Q \in \bar{r} \cap \bar{l}_1$ y por **P2'** se tiene que A = Q, que es una contradicción. Por tanto, $A \notin \bar{l}_1 \cup \bar{l}_2$.

Demostramos la afirmación dual:

- Por **P1'** tenemos que existe una única $\bar{l} \in \overline{\mathcal{R}}$ con $P_1, P_2 \in \bar{l}$.
- Por **P3'** tenemos que existe $Q \in \overline{l}$ tal que $Q \neq P_1, P_2$.

^aEsta es la afirmación dual del corolario anterior.

- Por **P3'**, existe $\overline{r} \in \overline{\mathcal{R}}$ con $\overline{r} \neq \overline{l}$.
- Si $P_1 \in \overline{r}$, tenemos que $P_1, Q \in \overline{r}$, por lo que $\overline{r} = \overline{l}$, que es una contradicción, por lo que $P_1, P_2 \notin \overline{r}$.

1.3. Independencia del teorema de Desargues

Teorema 1.8 (Desargues proyectivo). Sean A, B, C, A', B', C' puntos dos a dos distintos y ningún triple alineado ^a. Si $\bar{l}(A,A') \cap \bar{l}(B,B') \cap \bar{l}(C,C') = O \in \overline{\mathcal{P}}$, entonces $\bar{l}(A,B) \cap \bar{l}(A',B')$, $\bar{l}(A,C) \cap \bar{l}(A',C')$ y $\bar{l}(B,C) \cap \bar{l}(B',C')$ están alineados.

Lema 1.3. Sean $A, B, C, D \in \mathbb{P}(\mathbb{K}^3)$ distintos dos a dos y ninguna terna alineada. Existe una base $\mathcal{B} = \{v_0, v_1, v_2\}$ de \mathbb{K}^3 tal que $A = L(\{v_0\}), B = L(\{v_1\}), C = L(\{v_2\})$ y $D = L(\{v_0 + v_1 + v_2\})$.

Demostración. Sean $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{K}^3$ tales que $A = L(\vec{a}), B = L(\vec{b}), C = L(\vec{c})$ y $D = L(\vec{d})$. Si $A \neq B$, tenemos que $\{\vec{a}, \vec{b}\}$ son linealmente independientes. Como C no está alineado con A y B, debe ser que $\vec{c} \notin L(\vec{a}, \vec{b})$. Por tanto, tenemos que $\{\vec{a}, \vec{b}, \vec{c}\}$ son linealmente independientes. Así, tenemos que

$$\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}, \ \alpha, \beta, \gamma \in \mathbb{K}.$$

Si $\alpha=0$, tenemos que $\vec{d}\in L\left(\vec{b},\vec{c}\right)$, por lo que $D\in \bar{l}\left(B,C\right)$, lo que es una contradicción, por lo que $\alpha\neq 0$. De análoga demostramos que $\beta,\gamma\neq 0$. Tomamos $v_0=\alpha\vec{a},\,v_1=\beta\vec{b}$ y $v_2=\gamma\vec{c}$, de forma que nos queda que $\vec{d}=v_0+v_1+v_2$.

Teorema 1.9. Sea \mathbb{K} un cuerpo. Entonces, el teorema de Desargues se cumple en $\mathbb{P}(\mathbb{K}^3)$.

Demostración. En primer lugar, veamos que se cumplen las hipótesis del lema anterior.

- Veamos que $O = \bar{l}(A, A') \cap \bar{l}(B, B') \cap \bar{l}(C, C')$, no está alineado con A y B. Si $O \in \bar{l}(A, B)$, tenemos que $O \in \bar{l}(O, B)$, por lo que $\bar{l}(A, B) = \bar{l}(O, B)$. Sin embargo, tenemos que $B' \in \bar{l}(O, B)$, por lo que A, B y B' están alineados, que es una contradicción.
- Debe ser que $O \neq A$, puesto que si O = A tendríamos que $A \in \bar{l}(B, B')$ y A, B y B' estarían alineados.

De forma análoga tenemos que $O \neq B, C$ y $O \notin \bar{l}(B, C), \bar{l}(A, C)$. Podemos usar el lema con A, B, C y O. En la base apropiada, tenemos que

$$A = [1:0:0], \ B = [0:1:0], \ C = [0:0:1], \ D = [1:1:1].$$

 $[^]a \mbox{Buscamos}$ poder tener dos tríangulos: ABC y A'B'C'.

Tenemos que

$$A' \in \bar{l}(A, O) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 0 \right\} = \left\{ x_1 = x_2 \right\}.$$

De esta manera, tenemos que $A'=[\alpha:\beta:\beta]$. Como $A\neq A'$, tenemos que $\beta\neq 0$. Así, podemos definir $A'=\left[\frac{\alpha}{\beta}:1:1\right]=[1+a:1:1]$, para algún $a\in\mathbb{K}/\{0\}$. De forma similar, deducimos que B'=[1:1+b:1] y C'=[1:1:1+c] con $b,c\neq 0$. Calculamos $\bar{l}(A,B)\cap \bar{l}(A',B')$:

$$\bar{l}(A,B) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 0 \right\} = \{x_2 = 0\}.$$

$$\bar{l}(A',B') = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1+a & 1 & 1 \\ 1 & 1+b & 1 \end{vmatrix} = 0 \right\} = \left\{ -bx_0 - ax_1 + ((1+a)(1+b) - 1)x_2 = 0 \right\}.$$

Así, tenemos que $\bar{l}(A,B) \cap \bar{l}(A',B') = [a:-b:0]$. De forma similar, tenemos que $\bar{l}(B,C) \cap \bar{l}(B',C') = [0:b:-c]$ y $\bar{l}(A,C) \cap \bar{l}(A',B') = [a:0:-c]$. Para ver que estos tres puntos están alineados vamos a ver que el determinante se anula:

$$\begin{vmatrix} a & -b & 0 \\ 0 & b & -c \\ a & 0 & -c \end{vmatrix} = -abc + abc = 0.$$

Otra forma de hacerlo es calcular la recta de dos cualesquiera de ellos y ver si el tercero pertenece a esa recta. $\hfill\Box$

Proposición 1.4. Supongamos que $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo que cumple el teorema de Desargues. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín obtenido de $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ quitando una recta. Entonces, dados A, A', B, B', C, C' puntos dos a dos distintos de \mathcal{P} , ningún triple alineado, tales que l(A, A') || l(B, B') || l(C, C'), l(A, B) || l(A', B') y l(A, C) || l(A', C'). Entonces, l(B, C) || l(B', C').

Demostración. Si $\overline{\mathcal{P}} = \mathcal{P} \cup \overline{l}_{\infty}$, tenemos que

$$l\left(A,A'\right)||l\left(B,B'\right)||l\left(C,C'\right)\Rightarrow\bar{l}\left(A,A'\right)\cap\bar{l}\left(B,B'\right)\cap\bar{l}\left(C,C'\right)=O\in\bar{l}_{\infty}.$$

De forma similar, como l(A,B)||l(A',B') y l(A,C)||l(A',C'), se tiene que $\bar{l}(A,B) \cap \bar{l}(A',B'),\bar{l}(A,C) \cap \bar{l}(A',C') \in \bar{l}_{\infty}$. Como se cumple el teorema de Desargues, tenemos que $\bar{l}(B,C) \cap \bar{l}(B',C') \in \bar{l}_{\infty}$, entonces l(B,C)||l(B',C').

Vamos a probar que existen planos proyectivos que no cumplen el teorema de Desargues viendo un plano afín que no cumple la proposición anterior.

Ejemplo (Plano de Moulton). Consideremos el plano afín $\mathcal{P} = \mathbb{R}^2$ y tenemos que \mathcal{R} es el conjunto de:

- Rectas horizontales, $x_2 = k$.
- Rectas verticales, $x_1 = k$.
- Rectas de pendiente negativa, es decir, $x_2 = \lambda x_1 + c$, $\lambda < 0$.
- Rectas quebradas de la forma

$$x_2 = \begin{cases} 2\lambda (x_1 - c), & x_1 \le c \\ \lambda (x_1 - c), & x_1 \ge c \end{cases}$$

con $\lambda > 0$.

Vamos a ver que el plano de Moulton no cumple la proposición.

Tenemos que

son verticales y l(A, B) y l(A, B') son horizontales y paralelas. Las rectas l(A, C) y l(A', C') son paralelas y de pendiente negativa. Sin embargo, por construcción tenemos que l(B, C) y l(B', C') no son paralelas. Este es el primer ejemplo de un plano afín que no viene de un espacio vectorial.

Capítulo 2

Geometría afín y proyectiva lineal

2.1. Espacios proyectivos y afines

Definición 2.1 (Espacio afín). Sea \mathbb{K} un cuerpo. Un \mathbb{K} -espacio afín de dimensión $n < \infty$ es una terna $\left(\mathbb{A}, \vec{\mathbb{A}}, \vec{\cdot}\right)$ donde \mathbb{A} es un conjunto no vacío, $\vec{\mathbb{A}}$ es un \mathbb{K} -espacio vectorial de dimensión n y

$$\vec{\cdot}: \mathbb{A} \times \mathbb{A} \to \vec{\mathbb{A}}$$

$$(A, B) \to \overrightarrow{AB},$$

que cumple

- 1. $\forall A \in \mathbb{A}, \forall v \in \vec{\mathbb{A}}, \exists ! B \in \mathbb{A} \text{ tal que } \overrightarrow{AB} = v.$
- 2. $\forall A, B, C \in \mathbb{A}, \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$

Ejemplo. Un ejemplo es $\mathbb{A} = \vec{\mathbb{A}} = \mathbb{K}^n$. Podemos transformar puntos en vectores de la forma

$$\overrightarrow{(a_1,\ldots,a_n)(b_1,\ldots,b_n)}=(b_1-a_1,\ldots,b_n-a_n).$$

Notación. Si $\overrightarrow{AB} = v$ escribimos A + v = B.

Observación. $\blacksquare \ \forall A \in \mathbb{A} \ \text{la función} \ \overrightarrow{A} : \mathbb{A} \to \overrightarrow{\mathbb{A}} : B \to \overrightarrow{AB} \ \text{es una biyección. Esto se deduce directamente de (1). De forma similar, si <math>v \in \overrightarrow{\mathbb{A}}$, la aplicación $+v : \mathbb{A} \to \mathbb{A} : A \to A + v$ también es biyectiva.

 $\overrightarrow{AB} = 0 \iff A = B$. En efecto, por (2) se tiene que

$$\overrightarrow{AA} + \overrightarrow{AA} = \overrightarrow{AA} \iff \overrightarrow{AA} = 0.$$

Como la aplicación \overrightarrow{A} es biyectiva, si $\overrightarrow{AB} = 0$ debe ser que A = B.

• Se cumple la **ley del paralelogramo**. Es decir, tenemos que $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow \overrightarrow{AC} = \overrightarrow{BD}$. En efecto,

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BD} - \overrightarrow{AB} = \overrightarrow{BD}.$$

Definición 2.2 (Poryectivizado de un espacio vectorial). Sea V un \mathbb{K} -espacio vectoria de $\dim_{\mathbb{K}} V = n$. El **proyectivizado** de V, denotado $\mathbb{P}(V)$, es el conjunto de los subespacios vectoriales de V de dimensión 1. La dimensión de $\mathbb{P}(V)$, denotada dim $\mathbb{P}(V)$, es igual a $\dim_{\mathbb{K}}(V) - 1$.

Observación. $\mathbb{P}(V) = (V - \{0\}) /_{\sim}$, donde \sim denota la relación

$$u \sim v \iff \exists \lambda \in \mathbb{K}^*, \ u = \lambda v.$$

Si $v = (a_1, \dots, a_n) \in \mathbb{K}^n$, usamos $[v], [v]_n$ o $[a_1 : a_2 : \dots : a_n]$ para denotar al punto L(v) $de \mathbb{P}(V)$.

Ejemplo. 1. Sea $V = \{0\}$ el espacio vectorial trivial. Tenemos que $\mathbb{P}(V) = \emptyset$. Así, tenemos que el conjunto vacío es un espacio proyectivo con dim $\mathbb{P}(V) = -1$.

- 2. Si $V = \mathbb{K}$, tenemos que $\mathbb{P}(V) = \{*\}$ es un punto, por lo que dim $(\mathbb{P}(\mathbb{K})) = 0$. 3. Si $V = \mathbb{R}^2$, tenemos que dim $\mathbb{P}(\mathbb{R}^2) = 1$. Hay una biyección $[0, \pi) \to \mathbb{P}(\mathbb{R}^2) : \theta \to [(\cos \theta, \sin \theta)]$. Tenemos que $\mathbb{P}(\mathbb{R}^2) \cong \mathbb{S}^1$, que es una circunferencia.