

Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercices N°2

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Remplacez les pointillés dans les formules suivantes par le symbole adéquat : $\ll \in \gg$, $\ll \subset \gg$ ou $\ll = \gg$.

- (a) 1 ... N;
- (c) $\{1\}$... \mathbb{N} ;
- (e) $A \ldots B \Leftrightarrow \forall y \ldots A, y \ldots B$;

- (b) $\{2,3\} \dots \mathbb{N};$
- (d) 1 ... {1};
- (f) $A \dots B \Leftrightarrow \forall y \dots A, y \dots B \text{ et } \forall y \dots B, y \dots A$

(où A et B sont des parties d'un ensemble E dans les deux derniers).

Question 2. On pose $A = \{1, 2, 4\}$, $B = \{1, 3, 4\}$ et C = [-2, 4[. Déterminer les ensembles $A \cup B$, $A \cup C$, $B \cup C$, $A \cap B$, $A \cap C$, $B \cap C$, $A \setminus B$, $C \setminus A$, $C \cap \mathbb{Z}$ et $C \cap \mathbb{N}$.

Question 3. Écrire explicitement l'ensemble des parties de $X = \{ \heartsuit, \sharp, \diamond \}$.

Question 4. Soit $A = \{0, 1, 8\}$ et $B = \{\{0\}, \{1, 2\}, \{1\}\}$. Vrai ou faux?

- (a) $A \in \mathbb{N}$;
- (b) $A \in \mathcal{P}(\mathbb{N})$;
- (d) $B \in \mathcal{P}(\mathbb{N})$;
- (c) $A \subset \mathcal{P}(\mathbb{N})$;
- (e) $B \subset \mathcal{P}(\mathbb{N})$;

Question 5. Vrai ou faux?

- (a) $\forall (a, b) \in \mathbb{R}^2, |a b| \le |a| |b|;$
- (b) $\forall x \in \mathbb{R}, E(2x) = 2E(x)$;

2. Travaux dirigés

Exercice 1. On rappelle qu'une partie A de \mathbb{R} est un intervalle si et seulement si elle est convexe, c'est-à-dire si et seulement si

$$\forall \alpha, \beta \in A, [\alpha, \beta] \subset A.$$

Démontrer que l'intersection de deux intervalles est un intervalle.

Exercice 2. Vrai ou faux?

- (a) La réunion de deux intervalles est un intervalle.
- (b) L'union d'un ensemble minoré avec un ensemble majoré est un ensemble borné.
- (c) L'intersection d'un ensemble minoré avec un ensemble majoré est un ensemble borné.

Exercice 3 (thème). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Écrire les ensembles suivants en langage mathématique.

- (1) L'image de [0, 1[par f.
- (2) L'ensemble des antécédents de 1 par f.
- (3) L'ensemble des entiers naturels pairs dont l'image par f est inférieure ou égale à 5.

Exercice 4 (version). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Décrire les ensembles suivants en langage naturel.

- (1) $\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}, \exists x' \in \mathbb{R}, x \neq x' \text{ et } f(x) = f(x') = y\}$
- (2) $\{y \in \mathbb{R} \mid \forall A \in \mathbb{R}, \exists x \in \mathbb{R}, x > A \text{ et } f(x) = y\}$
- (3) $\mathbb{Z} \cap \{ y \in \mathbb{R} \mid f(y) \in \mathbb{Q} \text{ et } 0 < f(y) < 5 \}$

Exercice 5. Soit $\{a_1,\ldots,a_N\}$ un ensemble de N nombres réels. Soit C un autre réel, et on suppose que

$$a_1 + \cdots + a_N \ge C$$
.

Montrer qu'il existe $i \in \{1, ..., N\}$ tel que $a_i \ge \frac{C}{N}$.

Exercice 6. Le plus grand élément de l'ensemble $\{x,y\}$ est noté $\max(x,y)$ (et de même on note $\min(x,y)$ le plus petit...); démontrer que, pour tous x et y réels,

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$
 et $\min(x, y) = \frac{x + y - |x - y|}{2}$.

3. RÉVISIONS ET APPROFONDISSEMENT

Exercice 7. Soient A et B deux parties de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\} = \{x \in \mathbb{R} \mid \exists a \in A, \exists b \in B, x = a + b\}.$$

On suppose que A et B sont l'une et l'autre majorées. Montrer que A+B est majorée.

Exercice 8. Écrire avec des symboles mathématiques l'ensemble des carrés des nombres rationnels compris entre 0 et 4.

Exercice 9. Soient A et B deux parties non vides de $\mathbb R$ qui vérifient les deux propriétés suivantes :

- (P1) $\forall a \in A, \forall b \in B, a \leq b$;
- (P2) $\forall \varepsilon > 0, \exists a \in A, \exists b \in B, |a b| < \varepsilon.$

Montrer que

- (a) A est majorée et B est minorée;
- (b) $\sup A \leq \inf B$;
- (c) $\sup A = \inf B$.

Exercice 10. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction majorée. Démontrer l'énoncé :

$$\forall A \in \mathbb{R}, \exists x \in \mathbb{R}, x \ge A \text{ et } f(x+1) - f(x) < 1.$$

Défi. Soit A la partie de \mathbb{R} formée des nombres décimaux de [0,1] dont l'écriture décimale comprend au moins deux chiffres non nuls différents et ne contient pas le chiffre 9. L'ensemble A a-t-il une borne supérieure? Une borne inférieure? Si oui, les déterminer. Sont-elles dans A?