RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 1

1. Udowodnij wzór włączeń i wyłączeń

$$\mathbf{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbf{P}(A_i) - \sum_{1 \le i < j \le n} \mathbf{P}(A_i \cap A_j) + \ldots + (-1)^{n+1} \mathbf{P}\left(\bigcap_{i=1}^n A_i\right) .$$

2. (Nierówności Boole'a) Udowodnij nierówności

$$\mathbf{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mathbf{P}(A_i), \qquad \mathbf{P}\left(\bigcap_{i=1}^{n} A_i\right) \geq 1 - \sum_{i=1}^{n} \mathbf{P}(A_i^c).$$

- **3.** Pokaż, że jeżeli $\mathbb{P}(A_i) = 1$ dla $i \geq 1$, to $\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = 1$.
- **4.** Rzucamy symetryczną kostką do gry chwili otrzymania szóstki. Zdefiniuj odpowiednią przestrzeń probabilistyczną. Jaka jest szansa, że liczba rzutów będzie podzielna przez 6?
- 5. Na odcinku [0,1] umieszczono losowo punkty L i M. Obliczyć prawdopodobieństwo, że:
 - a) środek odcinka LM należy do [0, 1/3];
 - b) z L jest bliżej do M niż do zera.
- **6.** Z przedziału [0,1] wybrano losowo dwa punkty, które podzieliły go na trzy odcinki. Obliczyć prawdopodobieństwo, że z tych odcinków można skonstruować trójkąt.
- 7. Wybrano losowy punkt (x, y) z kwadratu $[0, 1] \times [0, 1]$. Oblicz prawdopodobieństwo, że
- a) *x* jest liczbą wymierną;
- b) obie liczby x i y są niewymierne;
- c) spełniona jest nierówność $x^2 + y^2 < 1$;
- d) spełniona jest równość $x^2 + y^2 = 1$.
- 8. W kwadracie $[0,1] \times [0,1]$ wybrano losowo dwa punkty A i B. Zdefiniuj odpowiednią przestrzeń probabilityczną. Oblicz prawdopodobieństwo, że
- a) odcinek AB przecina przekątną łączącą wierzchołki (0,0) i (1,1);
- b) odległość punktu A od (1,1) jest mniejsza niż 1, a odległość punktu B od (1,1) jest większa niż 1;
- c) oba punkty leżą pod parabolą y = -x(x-1).
- 9. Igłę o długości l rzucono na podłogę z desek o szerokości $a \ge l$. Znajdź prawdopodobieństwo, że igła przetnie krawędź deski.
- 10^* . Niech (Ω, \mathcal{F}) będzie przestrzenią mierzalną. Uzasadnij, że σ -ciało \mathcal{F} nie może być nieskończoną przeliczalną rodziną zbiorów.
- $\mathbf{11}^*$. Oznaczmy przez \mathcal{B}_0 ciało składające się ze skończonych sum rozłącznych przedziałów (a,b] zawartych w odcinku (0,1]. Określmy na \mathcal{B}_0 funkcję P taką, że P(A)=1 lub 0 w zależności od tego, czy zbiór A zawiera przedział postaci $(1/2,1/2+\varepsilon]$ dla pewnego $\varepsilon>0$, czy też nie. Pokaż, że P jest miarą addytywną, ale nie przeliczalnie addytywną.
- $\mathbf{12}^*.$ Na rodzinie wszystkich podzbiorów $\mathbb N$ określamy miarę probabilistyczną $\mathbb P_n$ wzorem

$$\mathbb{P}_n(A) = \frac{|\{m: 1 \le m \le n, m \in A\}|}{n}.$$

Mówimy, że zbiór A ma gęstość

$$D(A) = \lim_{n} \mathbb{P}_n(A)$$

jeżeli istnieje powyższa granica. Niech $\mathcal D$ oznacza rodzinę zbiorów posiadających gęstość.

- a) Pokaż, że D jest skończenie addytywna na \mathcal{D} , ale nie jest przeliczalnie addytywna.
- b) Czy \mathcal{D} jest σ -ciałem?
- c) Wykaż, że jeżeli $x \in [0,1]$, to istnieje zbiór A taki, że D(A) = x.
- 13. Niech $\Omega = \mathbb{R}$ i niech \mathcal{F} składa się ze wszystkich podzbiorów $A \subset \mathbb{R}$ takich, że jeden ze zbiorów A lub A^c jest skończony. Ponadto zdefiniujmy

$$\mathbb{P}[A] = \left\{ \begin{array}{ll} 0, & \text{ jeżeli } A \text{ jest skończony} \\ 1, & \text{ jeżeli } A^c \text{ jest skończony.} \end{array} \right.$$

- a) Czy \mathcal{F} jest σ -ciałem?
- b) Czy miara P jest skończenie addytywna?
- c) Czy miara P jest przeliczalnie addytywna?
- 14^* . Niech $\Omega = \mathbb{R}$ i niech \mathcal{F} składa się ze wszystkich podzbiorów $A \subset \mathbb{R}$ takich, że jeden ze zbiorów A lub A^c jest przeliczalny. Ponadto zdefiniujmy

$$\mathbb{P}[A] = \left\{ \begin{array}{ll} 0, & \text{ jeżeli } A \text{ jest przeliczalny} \\ 1, & \text{ jeżeli } A^c \text{ jest przeliczalny.} \end{array} \right.$$

Pokaż, że $(\Omega,\mathcal{F},\mathbb{P})$ jest przestrzenią probabilistyczną.