Domain Specific AI

SD 18

Jacob Duba, Conor O'Shea, Carter Cutsforth, Diego Perez, and Keenan Jacobs

Improving Natural Language Code Search

Domain Specific Al **Problem**: Improve performance on niche topics

Retrieval Augmented Generation for grounding

Improve for High Performance Computing

Improve for any proprietary codebase

Improving Natural Language Code Search

Keyword search: solved

Natural Language (NL) search: unsolved

Dr. Phan's research: improve NL code search by having LM rerank top 10 vector searches

Challenge: starting the project

- How to break big problem into small problems
- Distributing small problems

Solution:

- Jacob Scaffolded project
- Carter Loading dataset
- Diego Process and Store
- Conor Read and Search
- Keenan Rerank top 10 with LM

Achieving Deliverables

Challenge: Project couldn't communicate research

- Demo was unusable
 - Too slow to handle 50+ embeddings
 - O No UI
- No benchmarks

Achieving Deliverables

Solution:

- Diego Store in SQLite, process on GPU
- Keenan Develop interface
- Carter Set up infrastructure for LM
- Conor Write/run benchmarks

Achieving Deliverables

CodeSearchNet Connection

Design Challenge: Loading Datasets

- Needed a dataset to search using natural language
- Project requires code and comments

CodeSearchNet Connection

-Minor

Design Solution: Hugging Face CodeSearchNet

- 2 million datasets
- Match Project needs

Design Challenge: Expensive Language Models

- LLM Calls are Expensive
- Network Drops
- Privacy

Design Solution: Locally Hosted Model

- Speeds up query times
- Project fully hosted locally
- Practically free

-Major

Ollama

- Open Source
- Easy to integrate
- Multi-model testing possible

Challenges: model limitations, compute intensive

Major Accomplishment: Ollama querying

- Determining Model to use
- Reworking of existing model search
- 33% faster query times

Tools Used: Python, Ollama, OpenRouter API

Design Challenge: How to judge LLM quality?

- Accuracy of reranking top 10
- Dr. Phan's research

Implemented with: Python, UniXcoder, Ollama

Solution: Benchmarking

- Adjust existing data format to handle LLM
- Take UniXcoder top 10, judge LLM's reranking
- Need Ollama for API calls

Major accomplishment

ve = 301	Clone Detection				Code Search		
Model	POJ-104 BigCloneBench			nch	CosQA	AdvTest	CSN
	MAP@R	MAP@R Recall Precision F1-score			MRR		
RoBERTa	76.67	95.1	87.8	91.3	60.3	18.3	61.7
CodeBERT	82.67	94.7	93.4	94.1	65.7	27.2	69.3
GraphCodeBERT	85.16	94.8	95.2	95.0	68.4	35.2	71.3
SYNCOBERT	88.24	-	-	-	-	38.3	74.0
PLBART	86.27	94.8	92.5	93.6	65.0	34.7	68.5
CodeT5-base	88.65	94.8	94.7	95.0	67.8	39.3	71.5
UniXcoder	90.52	92.9	97.6	95.2	70.1	41.3	74.4
-w/o contras	87.83	94.9	94.9	94.9	79.2	40.8	73.6
-w/o cross-gen	90.51	94.8	95.6	95.2	69.4	40.1	74.0
-w/o comment	87.05	93.6	96.2	94.9	67.9	40.7	72.6
-w/o AST	88.74	92.9	97.2	95.0	68.7	40.3	74.2
-using BFS	89.44	93.4	- 96.7	95.0	69.3	40.1	74.1
-using DFS	89.74	94.7	94.6	94.7	69.0	40.2	74.2

Our cosQA results

AdvTest

UniXcoder results

```
| Code Search | CosQA | AdvTest | MRR | 70.1 | 41.3 |
```

```
***** Eval results *****
eval_mrr = 0.331

***** Eval results *****
eval_mrr = 0.392

***** Eval results *****
eval_mrr = 0.423

***** Eval results *****
eval_mrr = 0.444
```

```
Average: 0.395
39.5 < 70.1
```

```
***** Eval results *****
eval_mrr = 0.414

***** Eval results *****
eval_mrr = 0.432

***** Eval results *****
eval_mrr = 0.487
```

Average: 0.444 <u>44.4</u> > 41.3

Vector Search

Design Challenge: How to find user queries?

- App needs to take user input for search
- Find most similar code segments

Implemented with: Python, Numpy, UniXcoder

Vector Search

Solution: Vector similarity search

- Embed code segments
- Dot product of vector comparison
- Ask LLM to rerank top 10

Major accomplishment

Performance Issues

- Performing vector search one-by-one
 - Vector comparison is an expensive computation
- JSON file operations are expensive

How bad can it be?

- Data.json could reach **248MB** and take upwards of 90 minutes*

Optimization Solutions

- SQLite is more efficient than JSON files.
- PyTorch provides easy use of hardware devices through their
 DeviceModel

How to solve the JSON issue?

- Querying vs reading
- Storing binaries vs writing strings to a file

VS.

PyTorch

- Leading machine learning library
- Easy identification of available resources
 - Contains the **device** model

GPUs are awesome

- Able to process multiple, multi-dimensional embeddings concurrently
 - Faster tokenization
 - Easy parallel processing through batching
 - Bigger batches fed to the model (CUDA specifically)
- Parallel SQLite queries
 - Speeds up data loading
 - Speeds up data creation

Not everyone has GPUs

 Program must be backwards compatible with a CPU-based solution

SQLite Issues

- Does not persist along threads

Give each thread their own connection

Results

- Data creation time experienced a **72%** improvement
- Data file (*embeddings.db*) is **80%** smaller than original data.json
- Searching embeddings.db can be up to **100x** faster*


```
# Scoring prompt for LLM
SCORING PROMPT TEMPLATE = """
You are an AI evaluating code snippets.
- Your task: Score this snippet's relevance to the query.
- **Return ONLY a number between 0-10**.
- **DO NOT** explain your reasoning.
- **DO NOT** include any text, words, punctuation, or comments.
- Example response: `8`
### Query:
{query}
### Code Snippet:
{snippet}
### Response Format:
- Output **only** a single integer between `0` and `10`.
- No additional text.
- If unsure, provide your **best numerical estimate**.
```

Design Challenges - LLM

- Tied scores → hurt MRR
- Ignored prompt format
- Frequent API timeouts
- Fixed with retries + smaller batches
- Prompt tweaks improved stability
- Core issue: model limitations, not prompt quality

Major Accomplishments - LLM

- Built a full end-to-end pipeline from natural language input to ranked code results
- Modular design allows easy updates and debugging
- Integrated LLM re-ranking with clean, consistent prompt format
- System works reliably with both small and large code inputs

Frontend Design

Design Challenges - Frontend

- LLM handled smoothly
- Scores unclear to users
- Prompt formatting preserved
- Simple and clean design

Major Accomplishments - Frontend

- Clean, responsive layout with lightweight CSS
- Developer-focused design with minimal distractions
- No JS framework kept it simple and fast

Added visual polish: loading animation & copy buttons

Team Member Contributions

Keenan Jacobs	Frontend, LLM integration, Flask app, prompt design, reports
Diego Perez	Embedding pipeline, SQLite storage, Hardware
	Acceleration/Parallelizing
Conor OʻShea	Vector search, benchmarking, embedding accuracy
Carter Cutsforth	Dataset initialization, LLM test integration, Ollama integration
Jacob Duba	Project management, System Architecture, Pairing

