Nonequilibrium Dynamics and Superadiabatic Fluxon Motion for Reversible Computing

Karpur Shukla

Laboratory for Emerging Technologies, Brown University

(earlier: Department of Physics, Carnegie Mellon University)

Presented at the Center for Computing Research, Sandia National Laboratories

Date: February 13, 2020

Outline

- Resource theory of quantum thermodynamics.
- Modelling generalized reversible computing in quantum open systems.
- State space geometric properties of open systems and impact on generalized reversible computing.
- Application to the dissipation delay product.
- Other work: reversible computing via superconducting circuits and superadiabatic fluxon motion.

Resource Theory

- Resource theory^[1]: all free states $\hat{\rho} \in \mathcal{D}(\mathcal{H})$ and free operations $\Phi \in \text{Aut}(\mathcal{D}(\mathcal{H}))$ which can be implemented with no energetic cost or dissipation, with conditions.
 - <u>Ex.</u>: Resource theory of bipartite entanglement. Free states: separable states. Free operations: local unitaries & classical communication (LOCC). Necessary & sufficient condition: $|\psi\rangle\langle\psi|_{AB} \mapsto |\phi\rangle\langle\phi|_{AB}$ iff $S(\psi_A) \geq S(\phi_A)$.
- Resource theory of quantum thermodynamics (RTQT):
 - Free states for nontrivial $\beta \widehat{H}$: equilibrium thermal states $\{\widehat{\rho}_G\}$.
 - Free operations for nontrivial $\beta \hat{H}$: all operations that preserve $\{\hat{\rho}_G\}$. Thermal operations.
 - Condition for $\hat{\rho} \mapsto \hat{\sigma}$ under thermal operations: thermomajorization.

Thermal Operations & Thermomajorization

- Start: system S coupled to environment E. E starts in thermal state: $\hat{\rho}_{E,G}$.
- Thermal operations: all quantum channels $\mathcal{E}(\hat{\rho}_S)$: $\hat{\rho}_S \mapsto \operatorname{Tr}_E \left\{ \widehat{U}_{SE} \left(\hat{\rho}_S \otimes \hat{\rho}_{E,G} \right) \widehat{U}_{SE}^{\dagger} \right\}$.
 - Energy-conserving unitary dynamics: global unitary evolution \widehat{U}_{SE} across SE.
 - Require $\left[\widehat{U}_{SE}, \widehat{H}_S + \widehat{H}_E\right] = 0$ at all times.
 - Maps thermal states to thermal states (but not necessarily the same one).
- Thermomajorization: necessary & sufficient for $\mathcal{E}(\hat{\rho})$ to map $\hat{\rho}_S \mapsto \hat{\sigma}_S$. For eigenvalues $\lambda_i(\hat{\rho})$ of $\hat{\rho}$ with corresponding energies $E_{i,\hat{\rho}}$, require:

$$\left(\sum_{i} e^{-\beta E_{i,\widehat{\rho}}}, \sum_{i} \lambda_{i}(\widehat{\rho})^{\downarrow}\right) \geq \left(\sum_{i} e^{-\beta E_{i,\widehat{\sigma}}}, \sum_{i} \lambda_{i}(\widehat{\sigma})^{\downarrow}\right)$$

• $\lambda_i(\hat{\rho})^{\downarrow}$: order eigenvalues of $\hat{\rho}$ by decreasing value.

Nonequilibrium Landauer Limit

• Using RTQT, can get an explicit nonequilibrium Landauer bound^[13].

$$\beta \langle Q \rangle \geq -\ln \left[\operatorname{Tr}_{S} \operatorname{Tr}_{E} \left\{ \left(\widehat{\rho}_{S}(0) \otimes \mathbb{1}_{E} \right) \widehat{U}_{SE}^{\dagger} \left(\mathbb{1}_{S} \otimes \widehat{\rho}_{E,\beta} \right) \widehat{U}_{SE} \right\} \right]$$

- Ejection of information in correlated bits^[3]: loss of prior correlations to environment.
 - Ejection of *uncorrelated* bits to the environment does *not* contribute to change in entropy.
- Dissipation bound depends on subsystem non-unitarity of \widehat{U}_{SE} .
 - Measure of non-unitarity^[4] on $E: \mathcal{N}_E \coloneqq \|\sum_{jk} \lambda_k \langle s_k | \widehat{U}_{SE} | s_j \rangle \langle s_j | \widehat{U}_{SE} | s_k \rangle \mathbb{1}_E \|$.
 - $\mathcal{N}_E = 0$: no lower bound on dissipation.
 - $\langle s_a | \widehat{U}_{SE} | s_b \rangle$: environment Kraus operators. Maps $\mathcal{D}(\mathcal{H}_E)$ to itself via operator algebra.

^{[2] –} J. Goold, M. Paternostro, and K. Modi, Phys. Rev. Lett. 114, 060602 (2015).

^{3] –} M. Frank, arXiv:1806.10183.

^{[4] –} G. Guarnieri et al., New J. Phys. 19, 103038 (2017).

Modelling Reversible Computational Processes

- Standard^[5] method: N density matrices encoding N-ary alphabet.
 - Bijection between physical and computational states.
 - Generalized classical reversible computing: more physical states than computational states.
- Need to generalize to GRC, thermal operations, and nonequilibrium dynamics.
 - Want physical state \to computational state mapping to always commute with $\widehat{U}_{SE(MW)}$. The same physical state always maps to the same computational state.
 - Can permit long-lived quantum coherences between physical states within an equiv. class.
 - Want to represent these as thermal operations, possibly within a larger open system.

(System) Kraus Operators

• ∞-simal evolution for density matrices in open (noneq.) quantum systems:

$$\mathcal{E}_{dt}[\hat{\rho}_{S}(t)] = \hat{\rho}_{S}(t + dt) = \sum_{jk} \langle e_{k} | \widehat{U}_{SE}(dt) | e_{j} \rangle \hat{\rho}_{S}(t) \langle e_{j} | \widehat{U}_{SE}(dt) | e_{k} \rangle$$

- $\hat{E}_{jk} \coloneqq \sqrt{\lambda_j} \langle e_k | \hat{U}_{SE} | e_j \rangle$: (system) Kraus operators over environment eigenstates $\{|e_i\rangle\}$.
- Any map of the form $\hat{\rho}_S(t) \mapsto \sum_{jk} \hat{E}_{jk}(t) \, \hat{\rho}_S(0) \, \hat{E}_{jk}^{\dagger}(t)$ is a *CPTP map*.
- $\hat{E}_{ik} \in \mathsf{Op}(\mathcal{H}_S)$: takes $\mathcal{D}(\mathcal{H}_S)$ to itself, but expression depends on $\{|e_i\rangle\}$.
 - Done via algebra operation $Op(\mathcal{H}_S) \times Op(\mathcal{H}_S) \to Op(\mathcal{H}_S)$. $\hat{E}_{jk} \notin L_1(Op(\mathcal{H}_S))$.

The GKSL Superoperator

- GKSL superop.: time evolution generator at lowest order. $\mathcal{E}_{\mathrm{d}t} = \mathcal{I} + \mathrm{d}t \,\mathcal{L} + \cdots$, and $\mathcal{L} \coloneqq \lim_{\mathrm{d}t \to 0} (\mathcal{E}_{\mathrm{d}t} \mathcal{I})/\mathrm{d}t.$
- Kraus operators give evolution of $\hat{\rho}$ under quantum jump:

$$\widehat{E}_0 := \mathbb{1}_S - i\widehat{H}_S dt - \frac{1}{2} \sum_{j,k>0} \widehat{F}_{jk}^{\dagger} \widehat{F}_{jk}; \quad \widehat{E}_{j,k>0} = \sqrt{\kappa_{jk} dt} \,\widehat{F}_{jk}$$

• GKSL superoperator in terms of jump operators $\{\hat{F}_{jk}\}$:

$$\mathcal{L}[\hat{\rho}_S] \coloneqq \frac{\mathrm{d}\hat{\rho}_S}{\mathrm{d}t} = -i[\hat{H}_S, \hat{\rho}_S] + \frac{1}{2} \sum_{i,k>0} \kappa_{jk} \left(2\hat{F}_{jk} \, \hat{\rho}_S \, \hat{F}_{jk}^{\dagger} - \left\{ \hat{F}_{jk}^{\dagger} \, \hat{F}_{jk}, \hat{\rho}_S \right\} \right)$$

Spectrum of the GKSL Superoperator

- Formal solution to GKSL equation: $\hat{\rho}_S(t) = e^{t\mathcal{L}} \hat{\rho}_S(0)$.
 - Examine spectral decomposition of \mathcal{L} via Choi-Jamiołkowski isomorphism: mapping of operators $\mathbb{F}^{n\times m}$ to vector space \mathbb{F}^{nm} , employing Hilbert-Schmidt inner product.
 - $|a\rangle\langle b| \mapsto |a\rangle \otimes |b\rangle$; $\hat{A} \mapsto |\hat{A}\rangle\rangle$. Inner product $\langle\langle \hat{A}|\hat{B}\rangle\rangle\rangle = \text{Tr}\{\hat{A}^{\dagger}\hat{B}\}$.
- Steady state solutions: defined as $|\hat{\rho}_{SS}\rangle := \lim_{t \to \infty} e^{t\mathcal{L}} |\hat{\rho}_{S}(0)\rangle$.
- System with *multiple* steady states: assuming \mathcal{L} is unitarily diagonalizable, have:

$$|\hat{\rho}_{S}(t)\rangle\rangle = e^{t\mathcal{L}}|\hat{\rho}_{S}(0)\rangle\rangle = \sum_{a} e^{t\lambda_{a}}|\hat{x}_{a}\rangle\rangle\langle\langle\hat{y}_{a}|\hat{\rho}_{S}(0)\rangle\rangle$$

- $|\hat{x}_a\rangle$, $\langle\langle \hat{y}_a|, \lambda_a$ are right eigenstates, left eigenstates, and eigenvalues of \mathcal{L} .
- $\Re{\{\lambda_a\}} < 0$: damped states. $\Re{\{\lambda_a\}} = 0$: steady states. $(\Re{\{\lambda_a\}} > 0$ blows up.)

Four-Corners Decomposition

- Multiple steady states form^[6] asymptotic subspace $\mathsf{As}(\mathcal{H})$ of nonzero steady states.
 - Right eigenvectors of $\mathcal L$ with pure imaginary eigenvalues.
 - Corresponding left eigenvectors are system conserved currents.
 - All initial states have components along these states.
 - $As(\mathcal{H})$ can have further nontrivial dynamics.
- Four-corners decomposition: decomposition of $\mathcal L$ in terms of $\mathsf{As}(\mathcal H)$ and conserved currents.

Example Types of Asymptotic Subspaces

- Decoherent subspace: decoherence between steady states in dynamics purely within $\mathsf{As}(\mathcal{H})$.
 - Decoherence-free subspace (DFS): no further decoherence.
- Noiseless subsystem (NS): $As(\mathcal{H})$ is tensor product of DFS subspace and subspace spanned by different steady state.
- von Neumann algebra: $\mathsf{As}(\mathcal{H})$ is a direct sum of DFS or NS blocks.
 - von Neumann algebra: C*-algebra which also includes all \hat{A} that satisfy $\langle \phi | \hat{A}_n | \psi \rangle \rightarrow \langle \phi | \hat{A} | \psi \rangle$ for $| \phi \rangle$, $| \psi \rangle \in \mathcal{H}$ and $\{ \hat{A}_n \} \in \mathsf{L}_1(\mathcal{H})$.

Generalized Reversible Computing & Four Corners

- Classical reversible computing: surjective map from physical to computational states, equivalence classes.
 - All states *within* a class must have same noncomputational entropy: related by a unitary transformation.
 - We permit intra-class coherences: each class can be a DFS.
 - Each class in a given computational scheme must have same computational entropy: each DFS block has same dimension.
 - : quantum channels performing classical RC can be represented by the von Neumann algebra.
- Quantum GRC: permit inter-class coherences.

Berry-Wilczek-Zee Connection

- Time evolution in adiabatic approximation, expressed in parameter space: $t \mapsto \lambda^{\mu} \in \mathbb{R}^n$.
- Nondegenerate eigenspaces: Berry phase & connection given by:

$$\phi = \oint_C d\lambda^{\mu} A_{\mu}; \quad A_{\mu} = i \langle n(\lambda) | \partial_{\mu} | n(\lambda) \rangle$$

- A_{μ} as U(1) gauge theory: under $|n(t)\rangle \mapsto e^{i\xi}|n(t)\rangle$, have $A_{\mu} \mapsto A_{\mu} \partial_{\mu} \xi$.
- N-fold degenerate eigenspace: Berry-Wilczek-Zee connection is U(N) matrix. Eigenvalues of Wilson loop are generalizations of Berry phase:

$$W = \operatorname{Tr} \mathcal{P} \exp \left\{ \oint_{C} d\lambda^{\mu} A_{ab;\mu} \right\}; \quad A_{\mu;ab} = i \langle n_{a}(\lambda) | \partial_{\mu} | n_{b}(\lambda) \rangle$$

• $A_{\mu;\,ab}$ as U(N) gauge theory: under $|n_b(t)\rangle \mapsto \sum_a U_{ab} |n_a(t)\rangle$, have $A_{\mu} \mapsto i U^{-1} \partial_{\mu} U - U^{-1} A_{\mu} U$.

Berry-Wilczek-Zee to Operator Space

- Systems with multiple steady states: expect geometric effects to arise, especially in quantities not dependent on adiabatic path in parameter space.
- Basis for $Op(\mathcal{H}_S)$: $\{|N_{ab}\rangle\} := |n_a\rangle\langle n_b|$. BWZ connection and Wilson loops in decoherence-free subspace:

$$W = \operatorname{Tr} \mathcal{P} \exp \left\{ \oint_{C} d\lambda^{\mu} \, \mathcal{A}_{\mu; \, abcd} \right\}; \quad \mathcal{A}_{\mu; \, abcd} = \left\langle \!\left\langle N_{cd} \middle| \partial_{\mu} \middle| N_{ab} \right\rangle \!\right\rangle$$

- Noiseless subsystem: $As(\mathcal{H})$ is tensor product of DFS subspace and subspace spanned by different steady state. \mathcal{W} and $\mathcal{A}_{\mu;\,abcd}$ can mix these!
- von Neumann algebra: $A_{\mu;\,abcd}$ is distinct on each block. No mixing between directly summed blocks.

Dissipation Delay Product

- Major quantity of interest for characterizing efficiency of reversible operations.
 - Goal: characterizing *general* (protocol-based, device-independent) efficiency properties of reversible operations.
- Dissipation-delay product: product of energy dissipation incurred by transition process and delay of process.
 - For perfectly unitary time evolution, dissipation is zero.
 - Want to quantify energy dissipation for reversible operation. Dissipation as a function of delay.
 - Geometric approach: both dissipation (via this approach to calculating bound on average dissipation) and delay (preliminarily, can see this from quantum speed limit^[7]) will depend on geometry of states.

Dissipation Length for Single Steady States

- Thermodynamic dissipation length: minimal dissipation amount for processes.
 - Construct manifold for set of all possible Gibbs states.
 (Not the same manifold!)
 - Geodesics: minimal dissipation process.
- Derived^[9] for GKSL dynamics with a *single* steady state.
 - Current status: extending perturbation theory $^{[10]}$ of steady states for $\mathcal L$ with slowly varying parameters to multiple steady states.

Superadiabaticity / Shortcuts to Adiabaticity (STA)

- Goal: more quickly reach the final results of adiabatic time evolution of \widehat{H} .
 - Ideally, want to reproduce full spectrum (states and their respective densities) that we'd have gotten from adiabatic evolution.
 - Alternately, want to find all of the invariants of the adiabatic motion.
 - No excitation (perturbations) allowed in final \widehat{H} (relative to the time-evolved form of the unperturbed initial \widehat{H} , but such perturbations permitted along the way.
 - Mapping $\{|\psi_i\rangle\} \to \{|\psi_f\rangle\}$ should be state independent: holds for any possible $|\psi_i\rangle$.

STA Techniques

• Counterdiabatic driving (CD): add perturbations, not necessarily adiabatic, to $\widehat{H}_0(t)$. Dynamics should result in same spectral decomposition at end.

$$\widehat{H}_{CD} = i\hbar \sum_{n} \{ |\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle \cdot |n\rangle \langle n| \}$$

- Invariant-based engineering (IE): construct dynamical invariants of the full Hamiltonian from 1st integrals of motion. examine spectral decomposition of this invariant.
 - Lewis-Riesenfeld invariant has $d_t \hat{I} = 0$, so its eigenvalues are time independent and time evolved expectation values of its eigenvectors are constant. Calculate \hat{H} from time evolution.

$$\mathrm{d}\hat{I}/\mathrm{d}t = \partial\hat{I}/\partial t + i[\widehat{H}, \widehat{I}]/\hbar = 0$$

Quantum-Classical Correspondence for STA

• In parameter (Berry) space, define^[11] $\hat{\xi} \coloneqq i\hbar \sum_{n} \{ |\partial_{\mu} n\rangle \langle n| - \langle n|\partial_{\mu} n\rangle \cdot |n\rangle \langle n| \}$. Full \hat{H} is then:

$$\widehat{H} = \widehat{H}_0 + \widehat{H}_{CD} = \widehat{H}_0 + i\hbar \sum_{n} \{ |\partial_{\mu} n\rangle \langle n| - \langle n|\partial_{\mu} n\rangle \cdot |n\rangle \langle n| \} = \widehat{H}_0 + \frac{\mathrm{d}R_{\mu}}{\mathrm{d}t} \cdot \widehat{\xi}$$

• $\hat{\xi}$ satisfies (and is specified by):

$$\left[\hat{\xi}, \hat{H}_{0}\right] = i\hbar \left(\partial_{\mu}\hat{H}_{0} - \sum_{n} |n\rangle\langle n|\partial_{\mu}\hat{H}_{0}|n\rangle\langle n|\right); \quad \langle n|\hat{\xi}|n\rangle = 0$$

• Correspondence: commutator \rightarrow Poisson bracket. For a classical H_0 , microcanonical average $\langle \alpha \rangle_{\mu}$ of classical observable α on constant energy shells given by:

$$\langle \alpha \rangle_{\mu} = \frac{\int d^{3n}p \ d^{3n}q \ \alpha \ \delta(E - H_0)}{\partial_E \int d^{3n}p \ d^{3n}q \ \theta(E - H_0)}; \quad \{\xi, H_0\} = \nabla H_0 - \langle \nabla H_0 \rangle_{\mu}; \quad \langle \xi \rangle_{\mu} = 0$$

Classical STA and Completely Integrable Systems

• Procedure^[12]: for Hamiltonian H_0 that depends on parameters R, determine ξ that satisfies

$$\frac{\partial H_0}{\partial \vec{R}} = \{\xi, H_0\} + \frac{\mathrm{d}E_0}{\mathrm{d}\vec{R}}$$

- Goal for classical STA (and invariant-based engineering): finding invariants.
 - Classical STA: ξ is an invariant used to solve a classical PDE.
 - Invariant-based engineering: Lewis-Riesenfeld invariants used to find a convenient eigenbasis for \widehat{H} .
- Lewis-Riesenfeld equation $\partial \hat{I}/\partial t + i[\hat{H},\hat{I}]/\hbar = 0$ can be directly related to soliton theory: all soliton equations can be reformulated as dL/dt + [P,L] = 0, with L determined from the PDE's symmetry group.

Quantum and Classical STA of KdV Equation

- Korteweg-de Vries equation: $6 \cdot \partial u/\partial R^{\mu} 6u \cdot \partial u/\partial x + \partial u^3/\partial x^3 = 0$
- Quantum STA developed by Lewis-Riesenfeld invariants: $i\hbar \partial \hat{H}_0/\partial R^{\mu} = [\hat{\xi}, \hat{H}_0]$
 - Solution^[12]: for $\widehat{H}_0 = \widehat{p}^2 + u$, have $\widehat{\xi} = -2\widehat{p}/3 (\widehat{p}u + u\widehat{p})/2$
- Classical STA: $\partial H_0/\partial R^{\mu}=\left\{\xi,\widehat{H}_0\right\}$
 - Solution^[12]: for $\widehat{H}_0 = p^2 + u$, have $\xi = -2p/3 pu$
 - Relies on solving a classical PDE for ξ .
- Notice that these provide somewhat different results. Can't just naively go from commutator to Poisson!
- Next step: apply this technique to sine Gordon equation.

Conclusions and Next Steps

- To develop reversible computing and minimal dissipation properties, can embed framework of generalized reversible computing within GKSL dynamics.
- Current work: extending RC to a proper open system / nonequilibrium quantum thermodynamic footing. (Sandia Tracking #1068410)
 - Gives us fundamental quantum thermo results "for free"; e.g. thermodynamic length for multiple SSs.
 - Can give us a device-independent, protocol-based metric for efficiency of reversible operations!
- Current work: shortcut to adiabaticity for fluxons.
 - Relies intrinsically on infinite degrees of freedom (complete integrability) of sine-Gordon equation.

Landauer's Limit

- <u>Landauer's limit</u>^[13]: one bit of information lost in computational process dissipates $\Delta E \ge k_B T \ln 2$ of energy as heat.
 - Dissipation due to increase in entropy: $\Delta S \ge k_B \ln 2$. Links information and physics!
 - Ejection of information in correlated bits^[14]: loss of prior correlations to environment.
 - Ejection of *uncorrelated* bits to the environment does *not* contribute to change in entropy.
- No-hiding theorem^[14]: information can't be destroyed.
 - Moves from system S to environment E. Global unitary evolution over $\mathcal{H}_S \otimes \mathcal{H}_E$.
 - Information lost from original system can't remain in SE correlations.
- Conventional computing: entirely irreversible. (Ex.: clearing memory.)

^{[3] —} M. Frank, arXiv:1806.10183.

Practical Motivation for Reversible Computing

- Dennard scaling: power density of transistors remains constant as transistor size decreases.
- Moore's law: number of transistors in given integrated circuit area doubles (approximately) every 18 months.
 - Dennard: ended by 2008^[15]. Moore: ending now^[16].
- *Main* challenge: energy efficiency! Reversible computing: avoids major source of energy dissipation.
 - Almost all quantum computing is reversible, but classical reversible computing is the *lower bound* case on dissipation.

Classical Computing as a Lower Dissipative Bound

• Information processing expressed as a thermal operation^[17]. Dissipation:

$$\Delta E_Q \ge k_B T \left(S(\hat{\rho}_S) - S(\hat{\varrho}_S) \right) + S \left(\widehat{U}_{SME} \left(\hat{\rho}_S \otimes \hat{\rho}_M \otimes \hat{\rho}_E \right) \widehat{U}_{SME}^{\dagger} \middle\| \hat{\varrho}_S \otimes \hat{\rho}_M \otimes \hat{\rho}_E \right)$$

- System S coupled to environment E and catalyst M; same as splitting E into M and E.
- Channel: $\mathcal{E}(\hat{\rho}_S)$: $\hat{\rho}_S \mapsto \hat{\varrho}_S \coloneqq \operatorname{Tr}_M \operatorname{Tr}_E \left\{ \widehat{U}_{SME} \left(\hat{\rho}_S \otimes \hat{\rho}_M \otimes \hat{\rho}_E \right) \widehat{U}_{SME}^{\dagger} \right\}$.
- First term: information cost of classical IP. Second term: quantum IP.
- Classical IP is a *lower* dissipative bound! Quantum IP can be equal at best.
 - Classical IP: signal states correspond to orthogonal quantum states.
 - Pure unitaries and single input & output operations match classical IP dissipation bound.

Resource Theory & Reversible Computing

- Key issue: IP operations usually involve a catalyst machine, which sometimes needs to be reset. Reset destroys correlations (mutual info.): dissipation!
 - This is also the source of dissipation in irreversible (classical) computing.
- Thermal operations *can* provide a framework for quantum RC with dissipation arbitrarily close to classical RC.
 - Same idea as classical RC: preserve correlations. Rigorously proved^[18]: examine the transition $\hat{\rho}_S \otimes \hat{\rho}_M \otimes |w\rangle\langle w| \mapsto \hat{\varrho}_{SM} \otimes |w-\Delta\rangle\langle w-\Delta|$ for SME coupled to work bit $|w\rangle$. Resetting condition: $\operatorname{Tr}_S \hat{\varrho}_{SM} = \hat{\rho}_M$.
 - $S(\hat{\rho}_S || \operatorname{Tr}_S \hat{\varrho}_{SM})$ can be arbitrarily close to zero: arbitrarily close to classical IP bound.

Generalized Reversible Computing

- <u>Reversible computing</u>: reversibly transform computational states, instead of destructively overwriting them.
 - Computational states c: states representing computational information.
 - $\{c\}$ partitions $\{\hat{\rho}\}$ in equiv. classes. All $\{\hat{\rho}\}$ in same class are linked by unitary transform: have same entropy.
 - GRC: Bijections on the probability-1 subset of $\{c\}$.
 - Lower dissipative bound on classical RC can be zero!
 - Quantum RC: bounded only by mutual entropy term.

Quantum Geometric Tensor from GKSL Dynamics

• Distance in parameter space:

$$ds^{2} = \|\psi(\lambda + d\lambda) - \psi(\lambda)\|^{2} = \langle \partial_{\mu}\psi | \partial_{\nu}\psi \rangle d\lambda^{\mu} d\lambda^{\nu} = (\gamma_{\mu\nu} + i\sigma_{\mu\nu}) d\lambda^{\mu} d\lambda^{\nu}$$

- $\sigma_{\mu\nu}$: Berry curvature. $\sigma_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$.
- $g_{\mu\nu} = \gamma_{\mu\nu} A_{\mu} \wedge A_{\nu}$: quantum geometric tensor. Metric on the manifold of states.
- Interest is in quantum geometric tensor induced by GKSL dynamics.
 - Wilczek-Zee-Berry connection: $\mathcal{A}_{\mu;\,abcd} = \langle \langle \mathbf{N}_{cd} | \partial_{\mu} | \mathbf{N}_{ab} \rangle \rangle = \mathrm{Tr} \{ \widehat{\mathbf{N}}_{cd} \; \partial_{\mu} \; \widehat{\mathbf{N}}_{ab} \}.$
 - Induced QGT for vN algebra: $Q_{\alpha\beta;abcd} = \partial_{\alpha} \mathcal{A}_{\beta;abcd} + \mathcal{A}_{\alpha;abcd} \wedge \mathcal{A}_{\beta;abcd} \langle \langle \hat{\rho}_{cd} | \partial_{\alpha} \partial_{\beta} | \hat{\rho}_{ab} \rangle \rangle$.

More STA Techniques

- Variational counterdiabatic driving: same as CD, except use variational method in quantum to find perturbative term.
- Lie algebraic invariant-based engineering: same as IE, except construct dynamical invariants based on Lie algebra of underlying symmetries.
- Scaling laws: same as IE, except construct invariant from overarching scaling laws of \widehat{H} .
- Variational method: construct approximate dynamics using Lagrangian and calculate via saddle-point approximation.
- Fast forward: same as scaling law approach, but also requires renormalization.