On the Learning Parity with Noise Problem

Luca Melis

Università degli Studi di Firenze

Århus Universitet

22 April 2013

Advisors:
Prof. Alessandro Piva
Prof. Fabrizio Argenti

Dr. Claudio Orlandi

Prof. Ivan Damgård

Scenario

Cryptography schemes

- address the security of communication across an insecure medium
- are usually based only on complexity assumptions (standard model)

Near Future

- Problem: What if someone constructs large quantum computers?
- Cryptography world may fall apart:
 - 1 cryptographic assumptions broken by efficient quantum algorithms
 - 2 proof of security becomes invalid

Scenario

Cryptography schemes

- address the security of communication across an insecure medium
- are usually based only on complexity assumptions (standard model)

Near Future:

- Problem: What if someone constructs large quantum computers?
- Cryptography world may fall apart:
 - 1 cryptographic assumptions broken by efficient quantum algorithms
 - 2 proof of security becomes invalid

Schemes that are believed to resist classical & quantum computers

- Hash-based cryptography
- Code-based cryptography
- Lattice-based cryptography

Our contribution

On the Learning Parity with Noise Problem

Schemes that are believed to resist classical & quantum computers

- Hash-based cryptography
- Code-based cryptography
- Lattice-based cryptography

Our contribution

- We investigate about the Learning Parity with Noise (LPN) problem
- We propose a Threshold Public-Key Encryption scheme based on LPN
- We propose a Commitment protocol based on LPN

Schemes that are believed to resist classical & quantum computers

- Hash-based cryptography
- Code-based cryptography
- Lattice-based cryptography

Our contribution

- We investigate about the Learning Parity with Noise (LPN) problem
- We propose a Threshold Public-Key Encryption scheme based on LPN
- We propose a Commitment protocol based on LPN

Schemes that are believed to resist classical & quantum computers

- Hash-based cryptography
- Code-based cryptography
- Lattice-based cryptography

Our contribution

- We investigate about the Learning Parity with Noise (LPN) problem
- We propose a Threshold Public-Key Encryption scheme based on LPN
- We propose a Commitment protocol based on LPN

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}}\ s\in\mathbb{Z}_2^\ell$ given "noisy random inner products"

Errors
$$e_i \leftarrow \mathrm{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

Deviations distinguish (a₀, b₁) from uniform (a₀, b₁)

destributed and worch LPN are "softwarefully communications."

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: find $s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$\mathbf{a_1} \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} \quad , \quad \mathbf{b_1} = <\mathbf{a_1} \; , \; \mathbf{s} > \oplus \; e_1$$

Errors
$$e_i \leftarrow \mathrm{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: find $s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$egin{aligned} oldsymbol{a_1} & \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} &, & oldsymbol{b_1} = < oldsymbol{a_1} \;, \; oldsymbol{s} > \oplus e_1 \\ & & & dots \\ oldsymbol{a_q} & \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} &, & oldsymbol{b_q} = < oldsymbol{a_q} \;, \; oldsymbol{s} > \oplus e_q \end{aligned}$$

Errors
$$e_i \leftarrow \mathrm{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

Decision: distinguish (a_i, b_i) from uniform (a_i, b_i)

decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: find $s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$oldsymbol{A} = \left(egin{array}{c} oldsymbol{a_1} \ dots \ oldsymbol{a_q} \end{array}
ight), oldsymbol{b} = oldsymbol{A} \cdot oldsymbol{s} \oplus oldsymbol{e}$$

Errors
$$e_i \leftarrow \mathrm{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}} \ s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$m{A} = \left(egin{array}{c} m{a_1} \ dots \ m{a_q} \end{array}
ight), m{b} = m{A} \cdot m{s} \oplus m{e}$$

Errors
$$e_i \leftarrow \mathrm{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}} \ s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$m{A} = \left(egin{array}{c} m{a_1} \ dots \ m{a_q} \end{array}
ight), m{b} = m{A} \cdot m{s} \oplus m{e}$$

Errors $e_i \leftarrow \text{Ber}_{\tau}$, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- decisional and search LPN are "polinomially equivalent"

Hardness of LPN

Breaking the search LPN problem takes

- $2^{\Theta(\ell/\log \ell)}$ having the same number of samples q
- $2^{\Theta(\ell/\log\log\ell)}$ having $q = poly(\ell)$ samples
- $2^{\Theta(\ell)}$ having $q = \Theta(\ell)$ samples

where ℓ is the security parameter

Interesting features

- Efficiency ⇒ suitable for limited computing power devices (e.g. RFID).
- quantum algorithm resistance

Hardness of LPN

Breaking the search LPN problem takes

- $2^{\Theta(\ell/\log \ell)}$ having the same number of samples q
- $2^{\Theta(\ell/\log\log\ell)}$ having $q = poly(\ell)$ samples
- $2^{\Theta(\ell)}$ having $q = \Theta(\ell)$ samples

where ℓ is the security parameter

Interesting features

- Efficiency ⇒ suitable for limited computing power devices (e.g. RFID).
- quantum algorithm resistance

Hardness of LPN

Breaking the search LPN problem takes

- $2^{\Theta(\ell/\log \ell)}$ having the same number of samples q
- $2^{\Theta(\ell/\log\log\ell)}$ having $q = poly(\ell)$ samples
- $2^{\Theta(\ell)}$ having $q = \Theta(\ell)$ samples

where ℓ is the security parameter

Interesting features

- Efficiency ⇒ suitable for limited computing power devices (e.g. RFID).
- quantum algorithm resistance

Threshold Public-Key Encryption schemes

Public-key cryptography

- the ability of decrypting or signing is restricted to the owner of the secret key.
- \Rightarrow only one person has all the power

Threshold Public-Key Encryption schemes

Solution: Threshold PKE

- The secret key is split into shares and each share is given to a group of users.
- users can decrypt or sign only if enough cooperate

Our contribution

A Threshold Public-Key Encryption scheme which is:

- based on LPN
- secure in the Semi-honest model

Alekhnovich PKE scheme

Key Generation

The receiver R chooses

- a secret key $s \xleftarrow{R} \mathbb{Z}_2^{\ell}$
- $A \stackrel{R}{\leftarrow} \mathbb{Z}_2^{q \times \ell}$ and the error $e \leftarrow \operatorname{Ber}_{\tau}^q$, where $\tau \in \Theta(\frac{1}{\sqrt{\ell}})$ and computes the pk as $(A, b = As \oplus e)$

Encryption of a message bit $m \in \mathbb{Z}_2$

Sender S

Receiver R

choose a vector
$$f \leftarrow \operatorname{Ber}_{\tau}^q$$
 compute $u = f \cdot A$
$$c = \langle f, b \rangle \oplus m \qquad \underbrace{ \qquad \qquad (u, c)}_{}$$

Decryption

The receiver R computes $d = c \oplus \langle s, u \rangle = \cdots = \langle f, e \rangle \oplus m$

Alekhnovich PKE scheme

Key Generation

The receiver R chooses

- a secret key $s \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell}$
- $A \stackrel{R}{\leftarrow} \mathbb{Z}_2^{q \times \ell}$ and the error $e \leftarrow \operatorname{Ber}_{\tau}^q$, where $\tau \in \Theta(\frac{1}{\sqrt{\ell}})$ and computes the pk as $(A, b = As \oplus e)$

Encryption of a message bit $m \in \mathbb{Z}_2$

Sender S

Receiver $\underline{\mathtt{R}}$

choose a vector
$$\mathbf{f} \leftarrow \operatorname{Ber}_{\tau}^{q}$$
compute $\mathbf{u} = \mathbf{f} \cdot \mathbf{A}$

$$c = \langle \mathbf{f}, \mathbf{b} \rangle \oplus m \qquad (\mathbf{u}, c)$$

Decryption

The receiver R computes $d=c\oplus \langle s,u\rangle = \cdots = \langle f,e\rangle \oplus m$

Alekhnovich PKE scheme

Key Generation

The receiver R chooses

- a secret key $s \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell}$
- $A \stackrel{R}{\leftarrow} \mathbb{Z}_2^{q \times \ell}$ and the error $e \leftarrow \operatorname{Ber}_{\tau}^q$, where $\tau \in \Theta(\frac{1}{\sqrt{\ell}})$ and computes the pk as $(A, b = As \oplus e)$

Encryption of a message bit $m \in \mathbb{Z}_2$

Sender S

Receiver R

choose a vector
$$\mathbf{f} \leftarrow \operatorname{Ber}_{\tau}^{q}$$
compute $\mathbf{u} = \mathbf{f} \cdot \mathbf{A}$

$$c = \langle \mathbf{f}, \mathbf{b} \rangle \oplus m \qquad (\mathbf{u}, c)$$

Decryption

The receiver R computes $d = c \oplus \langle s, u \rangle = \cdots = \langle f, e \rangle \oplus m$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Key Generation

- All the receivers share a matrix $A \stackrel{R}{\leftarrow} \mathbb{Z}_2^{q \times \ell}$
- Each receiver R_i indipendently choose a secret key $s_i \xleftarrow{R} \mathbb{Z}_2^{\ell}$ and an error $e_i \leftarrow \operatorname{Ber}_{\tau}^q$
- the public key for $\mathtt{R_i}$ is the pair $(A,b_i=As_i\oplus e_i)$

- Ney Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Key Assembly

The combined public key is the pair (A, b), where

$$oldsymbol{b} = igoplus_{i \in I} oldsymbol{b}_i$$

and I is the users subset

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Sender \underline{S}

Receivers R_i, R_j

$$(\textit{\textbf{C}}_{1},\textit{\textbf{c}}_{2}) \leftarrow \texttt{ThLPN}.\texttt{Enc}(\textit{m},\textit{\textbf{b}})$$

- Encryption

Sender S

Receivers Ri, Ri

$$(C_1, c_2) \leftarrow \texttt{ThLPN.Enc}(m, b)$$

Encryption function (Alekhnovich scheme)

where
$$m{F} := egin{bmatrix} J_1 \ \dots \ f_q \end{bmatrix}, m{f_i} \leftarrow \mathrm{Ber}_{ au}^q$$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Sender \underline{S}

Receivers $\mathtt{R_i},\mathtt{R_j}$

$$(C_1, c_2) \leftarrow \texttt{ThLPN.Enc}(m, b) \quad (C_1, c_2)$$

Encryption function (Alekhnovich scheme)

$$egin{aligned} oldsymbol{C_1} &= oldsymbol{F} \cdot oldsymbol{A}, \ oldsymbol{c_2} &= oldsymbol{F} \cdot oldsymbol{b} \oplus oldsymbol{igsigma}_1^1 \\ oldsymbol{1} \\ 1 \end{bmatrix} \cdot m \qquad ext{where } oldsymbol{F} := egin{bmatrix} oldsymbol{f_1} \\ \vdots \\ oldsymbol{f_q} \\ \end{matrix}, oldsymbol{f_i} \leftarrow egin{bmatrix} egin{bmatrix} oldsymbol{f_1} \\ \vdots \\ oldsymbol{f_q} \\ \end{matrix} \end{bmatrix}, oldsymbol{f_i} \leftarrow egin{bmatrix} egin{bmatrix} oldsymbol{f_1} \\ \vdots \\ oldsymbol{f_q} \\ \end{matrix} \end{bmatrix}, oldsymbol{f_i} \leftarrow egin{bmatrix} egin{bmatrix} oldsymbol{f_1} \\ \vdots \\ oldsymbol{f_q} \\ \end{matrix} \end{bmatrix}, oldsymbol{f_i} \leftarrow egin{bmatrix} oldsymbol{f_i} \\ \vdots \\ oldsymbol{f_q} \\ \end{matrix} \end{bmatrix}$$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Receiver $\underline{\mathtt{R_i}}$

$$d_i \leftarrow \texttt{ThLPN.Pdec}(\mathit{C}_1, \mathit{c}_2, \mathit{s}_i)$$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Receiver $\underline{\mathtt{R_i}}$

Receiver $\underline{\mathtt{R}_{\mathtt{j}}}$

$$d_i \leftarrow \texttt{ThLPN.Pdec}(\mathit{C}_1, c_2, s_i)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = \mathit{C}_1 \cdot s_i \oplus \nu_i$$

where $\nu_i \leftarrow \mathrm{Ber}_{\sigma}^q$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Receiver $\underline{\mathtt{R_i}}$

 ${\rm Receiver}\ R_{\tt j}$

$$d_i \leftarrow exttt{ThLPN.Pdec}(\mathit{C}_1, \mathit{c}_2, s_i)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \operatorname{Ber}_{\sigma}^q$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Receiver $\underline{R_i}$

 ${\rm Receiver}\ R_{\tt j}$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \operatorname{Ber}_{\sigma}^q$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Receiver $\underline{\mathtt{R_i}}$

Receiver R_j

$$d_i \leftarrow \texttt{ThLPN.Pdec}(C_1, c_2, s_i) \quad \xrightarrow{d_i} \quad \\ d_j \leftarrow \\ \quad & \qquad \qquad d_j \leftarrow \\ \quad & \qquad \qquad \\ \quad & \qquad \\ \quad$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \mathrm{Ber}_{\sigma}^q$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

ThPKE: Protocol phases

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Finish decryption

• Each receiver indipendently computes the vector

$$oldsymbol{d} = oldsymbol{c_2} igoplus_{i \in I} (oldsymbol{d_i}) = oldsymbol{F} \cdot oldsymbol{e} \oplus oldsymbol{\left[egin{array}{c} 1 \ . \ . \ \end{array}
ight]} \cdot m igoplus_{i \in I} (oldsymbol{
u_i}) \,.$$

 \bullet the bit in the vector \boldsymbol{d} that is in majority is separately chosen by each receiver as the plaintext m

Protocol Security Analysis

Semi-honest model

A semi-honest party:

- 1 Follows the protocol properly
- 2 Keeps a record of all its intermediate computations

Security

- Encryption: from the Alekhnovich's scheme security
- Decryption: from the LPN hardness assumption, as each R_i is generating LPN samples

$$d_i = \mathit{C}_1 \cdot s_i \oplus
u_i$$

Protocol Security Analysis

Relaxed Semi-honest model

- Semi-honest model not so realistic (replay attacks may occur)
- Problem: if the same message is encrypted multiple times then it is possible to recover information about the secret key from the ciphertexts

Proposed solutions

- 1 implement the receivers as stateful machines (not good in resource-constrained devices)
- 2 make use of pseudorandom functions (i.e. deterministic algorithms that simulate truly random functions, given a "seed")

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

Our contribution

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to open the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to open the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice **commits** the message and Bob does not learn any information about it (hiding property)
- Alice chooses to **open** the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to **open** the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

- based on the commitment protocol by Jain et a
- based on Exact-LPN problem (where $\mathbf{wt}(e) = \lfloor \tau \cdot \ell \rceil$)
- does not need a trusted third party

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to **open** the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

- based on the commitment protocol by Jain et al
- based on Exact-LPN problem (where $\mathbf{wt}(e) = \lfloor \tau \cdot \ell \rceil$)
- does not need a trusted third party

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to **open** the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

- based on the commitment protocol by Jain et al
- based on Exact-LPN problem (where $\mathbf{wt}(e) = \lfloor \tau \cdot \ell \rceil$)
- does not need a trusted third party

Scenario:

Alice wants to keep a message secret from Bob for now but she intends to reveal it to Bob at some time in the future

Commitment protocol

- Alice commits the message and Bob does not learn any information about it (hiding property)
- Alice chooses to **open** the commitment and reveal the message, but she cannot change the value committed (binding property)

Our contribution

- based on the commitment protocol by Jain et al
- based on Exact-LPN problem (where $\mathbf{wt}(e) = \lfloor \tau \cdot \ell \rceil$)
- does not need a trusted third party

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We state $A = [A' || A''] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = \lfloor \tau k \rfloor$.

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We state $A = [A' || A''] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = \lfloor \tau k \rfloor$.

Commitment phase

Sender S

Receiver \underline{R}

$$\begin{array}{c} \text{chooses } \boldsymbol{r} \xleftarrow{R} \mathbb{Z}_2^{\ell}, \ \boldsymbol{e} \in \mathbb{Z}_2^{k} \ \text{s.t.} \ \boldsymbol{wt}(\boldsymbol{e}) = w \\ \text{computes } \boldsymbol{c} = \boldsymbol{A}(\boldsymbol{r} \| \boldsymbol{m}) \oplus \boldsymbol{e} \end{array}$$

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We state $A = [A' || A''] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = \lfloor \tau k \rfloor$.

Commitment phase

Sender S

Receiver \underline{R}

chooses
$$m{r} \stackrel{R}{\leftarrow} \mathbb{Z}_2^\ell, \ m{e} \in \mathbb{Z}_2^k \ \mathrm{s.t.} \ \ m{wt}(m{e}) = w$$
 computes $m{c} = m{A}(m{r} \| m{m}) \oplus m{e}$

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We state $A = [A' || A''] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = \lfloor \tau k \rfloor$.

Commitment phase

Sender S

Receiver R

chooses
$$r \xleftarrow{R} \mathbb{Z}_2^{\ell}$$
, $e \in \mathbb{Z}_2^{k}$ s.t. $wt(e) = w$ computes $c = A(r || m) \oplus e$ Opening phase

define
$$d = (m', r')$$
 ______d

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We state $\mathbf{A} = [\mathbf{A'} || \mathbf{A''}] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = |\tau k|$.

Commitment phase

Sender S

Receiver R

$$\begin{array}{c} \text{chooses } \boldsymbol{r} \xleftarrow{R} \mathbb{Z}_2^\ell, \ \boldsymbol{e} \in \mathbb{Z}_2^k \ \text{s.t.} \ \boldsymbol{wt}(\boldsymbol{e}) = \boldsymbol{w} \\ \text{computes } \boldsymbol{c} = \boldsymbol{A}(\boldsymbol{r} \| \boldsymbol{m}) \oplus \boldsymbol{e} & \boldsymbol{c} \\ \\ \textbf{Opening phase} \end{array}$$

define
$$d = (m', r')$$
 \xrightarrow{d} computes $e' = c \oplus A(r' || m')$ $\xrightarrow{Yes, No}$ accepts iff $wt(e') = w$

Problem

We need a trusted third party for the common matrix $\boldsymbol{A} = [\boldsymbol{A'} \| \boldsymbol{A''}]$

Solution:

Problem

We need a trusted third party for the common matrix $\boldsymbol{A} = [\boldsymbol{A'} \| \boldsymbol{A''}]$

Solution:

Setup phase

Sender S

Receiver R

chooses
$$A' \stackrel{R}{\leftarrow} \mathbb{Z}_2^{k \times \ell}$$
 A'

Problem

We need a trusted third party for the common matrix $\mathbf{A} = [\mathbf{A'} \| \mathbf{A''}]$

Solution:

Setup phase

Sender $\underline{\mathbf{S}}$ Receiver $\underline{\mathbf{R}}$ chooses $\mathbf{A'} \xleftarrow{R} \mathbb{Z}_2^{k \times \ell}$ $\mathbf{A''}$ chooses $\mathbf{A''} \xleftarrow{R} \mathbb{Z}_2^{k \times v}$

Problem

We need a trusted third party for the common matrix $\mathbf{A} = [\mathbf{A'} \| \mathbf{A''}]$

Solution:

Setup phase

Sender $\underline{\mathbf{S}}$ Receiver $\underline{\mathbf{R}}$ chooses $\mathbf{A'} \xleftarrow{R} \mathbb{Z}_2^{k \times \ell}$ $\qquad \qquad \mathbf{A''} \qquad \qquad \text{chooses } \mathbf{A''} \xleftarrow{R} \mathbb{Z}_2^{k \times v}$

The commitment protocol: a LPN-based variant

LPN variant

- security directly based on the standard LPN problem
- Commit phase: we set $w' = 2 \cdot |\tau k|$ and we choose e such that $wt(e) \leq w'$

Choice of parameters

According to

Levieil, Éric and Fouque, Pierre-Alain

An Improved LPN Algorithm

Springer Berlin Heidelberg, 2006

we choose $\ell = 768$ and noise rate $\tau = \frac{1}{8} \Rightarrow 2^{90}$ bytes of memory to solve LPN

Theorem

Our commitment scheme is statistically binding and computationally hiding

Statistically binding

even if S is computationally unbounded she cannot cheat with probability greater than 2^{-k}

Computationally hiding

- proof for reduction (single bit message)
- we assume that \mathcal{A} is able to break the commitment scheme

Let B an oracle

where
$$\mathbf{b} = \begin{cases} \text{random} & w.p. 1/2 \\ \mathbf{A's} \oplus \mathbf{e} & w.p. 1/2 \end{cases}$$

case 1)

 $\begin{array}{l} \pmb{b} \text{ is random} \Rightarrow \pmb{c} = \pmb{b} \oplus \pmb{A''m} \text{ is a } \underset{\frac{1}{2}}{\text{onetime-pad}} \text{ encryption} \\ \Rightarrow \mathcal{A} \text{ guesses w.p. } \frac{1}{2} \end{array}$

case 2)

b is a Exact-LPN sample $\Rightarrow c$ is a well formed commitment $\Rightarrow \mathcal{A}$ guesses w.p. 1 (by hypothesis)

case 1) and 2)

Let $\mathcal{E}=$ the reduction breaks the Exact-LPN problem,

case 1) and 2)

Let E =the reduction breaks the Exact-LPN problem,

$$\Pr(E) = \Pr\left(E | \; \boldsymbol{b} = \boldsymbol{A's} \oplus \boldsymbol{e}\right) \cdot \Pr\left(\boldsymbol{b} = \boldsymbol{A's} \oplus \boldsymbol{e}\right) + \Pr\left(E | \; \boldsymbol{b} \text{ is random}\right) \cdot \Pr\left(\boldsymbol{b} \text{ is random}\right)$$

case 1) and 2)

Let E = the reduction breaks the Exact-LPN problem,

$$\Pr(E) = \Pr(E|\ \boldsymbol{b} = \boldsymbol{A}'\boldsymbol{s} \oplus \boldsymbol{e}) \cdot \Pr(\boldsymbol{b} = \boldsymbol{A}'\boldsymbol{s} \oplus \boldsymbol{e}) + \Pr(E|\ \boldsymbol{b} \text{ is random}) \cdot \Pr(\boldsymbol{b} \text{ is random})$$
$$= 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

case 1) and 2)

Let E = the reduction breaks the Exact-LPN problem,

$$\Pr(E) = \Pr(E | \mathbf{b} = \mathbf{A}' \mathbf{s} \oplus \mathbf{e}) \cdot \Pr(\mathbf{b} = \mathbf{A}' \mathbf{s} \oplus \mathbf{e}) + \Pr(E | \mathbf{b} \text{ is random}) \cdot \Pr(\mathbf{b} \text{ is random})$$
$$= 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

Exact-LPN hardness ⇒ Hiding commitment

Conclusions and Open Problems

Our contribution

- study the security of our Threshold Public-Key Encryption scheme in the malicious model
- find statistically hiding commitments
- find efficient statistically binding commitments

LPN open problems

- relation between standard LPN and some variants
- Does LPN with noise rate τ imply anything about LPN with $\tau' < \tau$? Is there a threshold?
- how to get some basic primitives from standard LPN?