

Bidirectional Feature Pyramid Network with Recurrent Attention Residual Modules for Shadow Detection

Lei Zhu^{1,2,4,*}, Zijun Deng^{3,*}, Xiaowei Hu¹, Chi-Wing Fu^{1,4}, Xuemiao Xu³, Jing Qin², and Pheng-Ann Heng^{1,4}

¹The Chinese University of Hong Kong, ²The Hong Kong Polytechnic University, ³South China University of Technology, ⁴Shenzhen Institutes of Advanced Technology, CAS

Contributions

- Detect shadows by exploring and combining global context in deep layers and local context in shallow layers of a deep convolutional neural network (CNN).
- Formulate the recurrent attention residual (RAR) module to combine the contexts in two adjacent CNN layers and learn an attention map to select a residual and then refine the context features.
- Develop a **bidirectional feature pyramid network** (BFPN) to aggregate shadow contexts spanned across different CNN layers by deploying two series of RAR modules.
- Outperform the best existing method with 34.88% reduction on SBU and 34.57% reduction on UCF for the balance error rate (BER).

Experimental Results

	BER	
method	SBU	UCF
BDRAR (ours)	3.64	5.30
$\overline{\mathrm{DSC}}$	5.59	8.10
scGAN	9.10	11.50
stacked-CNN	11.00	13.00
patched-CNN	11.56	_
Unary-Pairwise	25.03	_
DeshadowNet	6.96	8.92
SRM	7.25	9.81
Amulet	15.13	15.17
PSPNet	8.57	11.75

[CVPR 18']

[arXiv 17']

[ICCV 17']

[ECCV 16']

