

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ / ARISTOTLE UNIVERSITY OF THESSALONIKI

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΔΟΚΙΜΗΣ / TEST REPORT

Δείκτης Ηχομείωσης μετρημένος σύμφωνα με το ISO 10140-2:2010 σε θαλάμους δοκιμών αερόφερτου ήχου / Sound Reduction Index measured according ISO 10140-2:2010 in airborne sound test rooms

APIOMOS Δ OKIMHS / TEST REPORT NUMBER A.1042.2021

14.09.2021

Κοινοποιημένος Φορέας Αρ.2326 Notified Body Nr. 2326

EPΓΑΣΤΗΡΙΟ APXITEKTONIKHΣ TEXNOΛΟΓΙΑΣ / LABORATORY OF ARCHITECTURAL TECHNOLOGY 54124 Thessaloniki, University Campus, Tel: +30 2310 995501, Fax: +30 2310 995504, technology@arch.auth.gr, www.window.gr

TOMEAS APXITEKTONIKOY SXEDIASMOY KAI APXITEKTONIKHS TEXNONOFIAS / DEPARTMENT OF ARCHITECTURAL DESIGN & ARCHITECTURAL TECHNOLOGY - TMHMA APXITEKTONON MHXANIKON / SCHOOL OF ARCHITECTURE - Π ONYTEXNIKH SXONH / FACULTY OF TECHNOLOGY

ΣΕΛΙΔΑ/PAGE 2/8

1 FENIKOLOPOL/GENERAL CONDITIONS

ΔΟΚΙΜΗ/TEST: A.1042.2021

Το πιστοποιητικό αυτό είναι το αποτέλεσμα της δοκιμής της ηχομονωτικής ικανότητας ενός δομικού στοιχείου. Περιγράφει αναλυτικά τα αποτελέσματα της δοκιμής που έγινε στο συγκεκριμένο δοκίμιο

δομικού στοιχείου και προσδιορίζει την ηχομονωτική του ικανότητα με ένα μονότιμο μέγεθος.

Η δοκιμή της ηχομονωτικής ικανότητας έγινε στο Εργαστήριο Αρχιτεκτονικής Τεχνολογίας του Τμήματος Αρχιτεκτόνων σύμφωνα με τις διαδικασίες της Υ.Α. ΚΑ/679/22.8.96, Φ.Ε.Κ. 826, τεύχος Β', άρθρο 1, παράγραφος 2 και μετά από σχετικές εγκρίσεις των αρμοδίων οργάνων του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης.

Το αποτέλεσμα της δοκιμής αφορά αποκλειστικά το δοκίμιο που χρησιμοποιήθηκε και το οποίο προσκόμισε ο αναθέτης στις εγκαταστάσεις του Εργαστηρίου με δική του ευθύνη. Για να αποδίδει ένα δοκίμιο τις ίδιες τιμές με αυτές που δίδονται στο φύλλο αποτελεσμάτων, θα πρέπει να είναι όμοιο τόσο από άποψη κατασκευής όσο και από άποψη εφαρμογής με το δοκίμιο που χρησιμοποιήθηκε. Κάθε διαφοροποίηση, έστω και μικρή, μπορεί να οδηγήσει σε διαφορετικά αποτελέσματα.

Η δοκιμή πραγματοποιήθηκε σε εργαστηριακές συνθήκες, ώστε να προκύψει η πραγματική ηχομονωτική ικανότητα του δοκιμίου. Σε περίπτωση εφαρμογής του κάτω από άλλες συνθήκες ως προς τις πλευρικές μεταδόσεις, ο Δείκτης Ηχομείωσης που δίνει το πιστοποιητικό δοκιμής μπορεί να μειωθεί, ιδιαίτερα αν τα πλευρικά χωρίσματα έχουν ίση ή μικρότερη ηχομονωτική ικανότητα.

Το Εργαστήριο διατηρεί το δικαίωμα να χρησιμοποιεί τα αποτελέσματα των δοκιμών σε επιστημονικές δημοσιεύσεις, επιστημονικές ανακοινώσεις, ερευνητικές εργασίες, καθώς και κάθε είδους ανάλογες εργασίες καθαρά επιστημονικού ή ερευνητικού χαρακτήρα, χωρίς να αναφέρει το όνομα του Αναθέτη ή τον τύπο του προϊόντος.

This test report is the result of a laboratory test of the sound insulation properties of a building element. The results obtained from measurements on the specific building element are presented in detail, and a single figure rating for its sound insulation properties is calculated.

This sound insulation test was performed by the Architectural Technology Laboratory of the School of Architecture, in accordance with the procedures of the Y.A. KA/679/22.8.96, F.E.K. 826, part B', article 1, paragraph 2 and after the appropriate approvals by the administrative authorities of the Aristotle University of Thessaloniki.

The test result reflects exclusively on the properties of the specific test specimen which was provided by the Client to the Laboratory facility on his own responsibility. The tests have taken place under laboratory conditions, so as to obtain the actual sound insulation properties of the test specimen. Under different mounting conditions involving flanking sound transmission, the Sound Reduction Index might be reduced, especially if the flanking partitions have equal or inferior sound insulation properties.

The Laboratory maintains the right to use the test results in scientific publications, scientific papers, research reports, and any other kind of studies of purely research or scientific nature, without revealing the name of the Client or the type of the product.

2. ΔΙΑΔΙΚΑΣΙΕΣ / PROCEDURES

2.1 Εφαρμοζόμενα Πρότυπα / Applied Standards

ISO 10140-2:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation

ISO 10140-1:2016, Acoustics – Laboratory measurement of sound insulation of building elements - Part 1: Application rules for specific products

ISO 10140-4:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 4: Measurement procedures and requirements

ΔΟΚΙΜΗ/TEST: A. 1042.2021 ΣΕΛΙΔΑ/PAGE 3/8

ISO 10140-5:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 5: Requirements for test facilities and equipment

DIN EN ISO 717-1:2013 Acoustics - Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation

EA - 2/17: M 2016

EA Document on assessment for notification purposes

Κανονισμός (ΕΕ) αριθ. 305/2011 του Ευρωπαϊκού Κοινοβουλίου και του Συμβουλίου για τη θέσπιση εναρμονισμένων όρων εμπορίας προϊόντων του τομέα των δομικών κατασκευών

DIN EN 14351-1:2016

Windows and doors –Product standard, performance characteristics – Part 1: Windows and external pedestrian doorsets; English version EN 143511:2006+A2:2016, English translation of DIN EN 14351-1:2016-12

DIN EN 1279-5:2018

Glass in building –Insulating glass units – Part 5: Product standard; English version EN 12795:2018, English translation of DIN EN 1279-5:2018-10

DIN EN 13241-1:2016

Industrial, commercial, garage doors and gates – Product standard, performance characteristics; English version EN 13241:2003+A2:2016, English translation of DIN EN 13241:2016-12

DIN EN 13830:2015 Curtain walling – Product standard; English version EN 13830:2015, English translation of DIN EN 13830:2015-07

2.2 Διαδικασία Δοκιμής/ Test Procedure

Το δοκίμιο εφαρμόστηκε στους θαλάμους δοκιμών από τον Αναθέτη. Η δοκιμή υλοποιήθηκε σύμφωνα με τις διαδικασίες που καθορίζονται στο πρότυπο ISO 10140-2:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation

Για τον προσδιορισμό του Δείκτη Ηχομείωσης R χρησιμοποιήθηκε η σχέση:

 $R = L_1 - L_2 + 10log (S/A) σε dB όπου:$

L₁: η μέση στάθμη ηχητικής πίεσης στο θάλαμο εκπομπής σε dB L₂: η μέση στάθμη ηχητικής πίεσης στο θάλαμο λήψης σε dB

S: η επιφάνεια του δοκιμίου σε m²

Α: η ηχοαπορρόφηση του θαλάμου λήψης που προκύπτει από τη σχέση:

A = 0.163 (V/ T) σε m^2 όπου:

V: ο όγκος του θαλάμου λήψης σε m³

Τ: ο χρόνος αντήχησης του θαλάμου λήψης σε s

Χρόνος αντήχησης: Για τον προσδιορισμό του χρόνου αντήχησης πραγματοποιήθηκαν μετρήσεις σε 6 διαφορετικές θέσεις μικροφώνου.

Θόρυβος βάθους: Δεν απαιτήθηκε διόρθωση για το θόρυβο βάθους

ΔΟΚΙΜΗ/TEST: A. 1042.2021 ΣΕΛΙΔΑ/PAGE 4/8

Τα αποτελέσματα της δοκιμής στις ζώνες συχνοτήτων από 100 μέχρι 3150 Hz (σε τριτοοκτάβες) χρησιμοποιήθηκαν για τον προσδιορισμό του Σταθμισμένου Δείκτη Ηχομείωσης του δοκιμίου σύμφωνα με το πρότυπο DIN EN ISO 717-1:2013.

The test specimen was mounted in the test room by the Client. The test took place under laboratory conditions, according to ISO 10140-2:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation

In order to calculate the Sound Reduction Index R, the following equation was used:

$$R = L_1 - L_2 + 10\log(S/A)$$
 in dB where:

L₁: the average sound pressure level in the source room in dB

L2: the average sound pressure level in the receiving room in dB

S: the area of the test specimen in m2

A: the equivalent sound absorption area in the receiving room given by the equation:

$$A = 0.163 (V/T) in m^2 where:$$

V: the volume of the receiving room in m3

T: the reverberation time of the receiving room in s

Reverberation time: The reverberation time was measured in 6 microphone positions.

Background noise: No background noise correction was required.

The test results in the frequency bands from 100 to 3150 Hz (in third octaves) were used to calculate the Weighted Sound Reduction Index of the test specimen according to DIN EN ISO 717-1:2013.

2.3 Χρησιμοποιούμενος εξοπλισμός / Equipment used

Συσκευή / Apparatus	Τύπος / Type	Κατασκευαστής / Manufacturer	Κωδικός / Code
Noise level analyser	Nor 840-2	Norsonic	EQ-C013
Microphone preamplifiers	Nor 1201	Norsonic	X001, X002
Microphones	Nor 1225	Norsonic	X-C015, X-C016
Rotating Microphone boom	3923	Bruel & Kjaer	EQ017
Dodecahedron loudspeaker	Lab-1217	Roister	EQ019
Amplifier	POA-4400A	Denon	Z1

2.4 Θάλαμοι Δοκιμών / Test Rooms

Οι θάλαμοι δοκιμών είναι κατασκευασμένοι σύμφωνα με τις απαιτήσεις του προτύπου ISO 10140-5:2010* / The test rooms meet the requirements of the ISO 10140-5:2010* standard.

* ISO 10140-5:2010, Acoustics – Laboratory measurement of sound insulation of building elements - Part 5: Requirements for test facilities and equipment.

Αβεβαιότητα / Uncertainty

 Συνδυασμένη τυπική αβεβαιότητα / Combined standard uncertainty

Rw 0,1371

2.Διευρυμένη αβεβαιότητα / Expanded uncertainty

R_w 0,12

Διαστάσεις ανοίγματος δοκιμίου/
Test opening dimensions: 1200x2000mm

Όγκος Θαλάμου εκπομπής/ Source Room Volume: 56 m³

Όγκος Θαλάμου λήψης/ Receiving Room Volume: 51 m³

Ήχος δοκιμής/Test noise: Ροζ θόρυβος /Pink noise

Φίλτρα/Filters: τριτοοκταβικά / third octave

22/06/202 Ex5oon 1

ΔΟΚΙΜΙΟ / TEST SPECIMEN 3.

Κατασκευαστής/Manufacturer:

3.1 Περιγραφή / Description

Προϊόν/Product:

Αναθέτης/Client:

Διεύθυνση/Address:

Διαχωριστικό διπλής υάλωσης με πόρτα / Double Glazed Office

Partition with Door

PCA PAPGROUP Σ+Α Παπαδόπουλος Ο.Β.Ε.Ε. / PCA

PAPGROUP S+A Papadopoulos O.V.E.E.

PCA PAPGROUP Σ+Α Παπαδόπουλος Ο.Β.Ε.Ε. / PCA

PAPGROUP S+A Papadopoulos O.V.E.E.

ΒΙΟΜΗΧΑΝΙΚΗ ΠΕΡΙΟΧΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΒΚ38. 57022 ΣΙΝΔΟΣ, τηλ: 2310 570727, www.papgroup.gr/index.php /

INDUSTRIAL AREA OF THESSALONIKI BK38, SINDOS 57 022, GREECE, tel: +30 2310 570727, www.papgroup.gr/index.php PCA PAPGROUP Σ+Α Παπαδόπουλος Ο.Β.Ε.Ε. / PCA

PAPGROUP S+A Papadopoulos O.V.E.E.

Εγκατάσταση/ Installation:

Ονομασία προϊόντος/Product name: Ημερομηνία παραγωγής/Production date: Διαστάσεις δοκιμίου/ Sample dimensions: ALLURE 01/09/2021 1200x2000mm

3.2 Κατασκευή / Construction

Διαχωριστικό διπλής υάλωσης με πόρτα τοποθετημένο βάσει του προτύπου ISO 10140-2:2010 Acoustics Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound

For high soundproof performance, Allure double glazed partition with door is the best solution. The partition is consisted of 5+5 tempered laminated glass with double acoustic PVB and 6+6 tempered laminated with double acoustic PVB on either side. Allure's profile dimension is 100x35 mm and the gap between the glasses is 60mm. The system comes with a full frame aluminium door with 5+5 mm tempered laminated glass with double acoustic PVB and drop seal function for ultimate sound isolation.

Double glazed office partition with door, installed according to ISO 10140-2:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation.

For high soundproof performance, Allure double glazed partition with door is the best solution. The partition is consisted of of 5+5 tempered laminated glass with double acoustic PVB and 6+6 tempered laminated with double acoustic PVB on either side. Allure's profile dimension is 100x35 mm and the gap between the glasses is 60mm. The system comes with a full frame aluminium door with 5+5 mm tempered laminated glass with double acoustic PVB and drop seal function for ultimate sound isolation.

3.3 Απεικόνιση / Drawing

^{*}Τα σχέδια ετοιμάστηκαν από τον Αναθέτη / The drawings have been prepared by the Client.

ΔΟΚΙΜΗ/TEST: A. 1042.2021 ΣΕΛΙΔΑ/PAGE 7/8

4 ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ / TEST RESULTS

Οι τιμές του Δείκτη Ηχομείωσης Αερόφερτου Ήχου του δοκιμίου δίδονται στο επισυναπτόμενο διάγραμμα στη σελίδα 8 σε συνάρτηση με την συχνότητα. / The values of the Airborne Sound Reduction Index of the test specimen are given in the annexed data sheet in page 8 as a function of frequency.

Ο παρακάτω Σταθμισμένος Δείκτης Ηχομείωσης για φάσμα συχνοτήτων από 100Hz ως 3150Hz είναι αποτέλεσμα αξιολόγησης σύμφωνα με το πρότυπο EN ISO 717-1:2013 / The following Weighted Sound Reduction Index for the frequency range from 100Hz to 3150Hz is the result of evaluation according to EN ISO 717-1:2013.

Σύμφωνα με το Πρότυπο Προϊόντος / According to the Product Standard **EN 14351-1:2016**Διαπιστωθείσα τιμή / Determined value

Σταθμισμένος Δείκτης Ηχομείωσης / Weighted Sound Reduction Index:

 R_w (C;C_{tr}) = 48 (-2;-5) dB

Θεσσαλονίκη/Thessaloniki, 14.09.2021

Διαπιστευμένο Εργαστήριο Δοκιμών / Accredited Test Laboratory E.SY.D. No 704-4

Κοινοποιημένος Φορέας / Notified Body NB 2326

Κλειώ Αξαρλή / Klio Axarli

Δρ Αρχιτέκτων Μηχαγμκός /Architect Engineer, PhD

Επιστημονική Υποστήριξη /Scientific Support

Βασίλειος Βασιλειάδης / Vasilios Vasiliadis

Δρ Μηχανολόγος Μηχανικός/Mechanical, PhD Engineer

Υπεύθυνος Μετρήσεων/Measurement Engineer

Κωνσταντίνος Ιωαννίδης / Konstantinos Ioannidis

Δρ Αρχιτέκτων Μηχανικός/Architect Engineer, PhD

Διευθυντής του Εργαστηρίου / Laboratory Director

Δείκτης Ηχομείωσης Sound Reduction Index

σύμφωνα με το/according to ISO 10140-2:2010

Κατασκευαστής/Manufacturer: PCA PAPGROUP Σ+A Παπαδόπουλος O.B.E.E. / PCA PAPGROUP S+A Papadopoulos O.V.E.E.

Αναθέτης/Client: PCA PAPGROUP Σ+Α Παπαδόπουλος Ο.Β.Ε.Ε. / PCA PAPGROUP S+A Papadopoulos O.V.E.E.

Εγκατάσταση/ Installation: PCA PAPGROUP Σ+Α Παπαδόπουλος O.B.E.E. / PCA PAPGROUP S+A Papadopoulos O.V.E.E.

πόρτα ALLURE / Double Glazed Office Partition with Door ALLURE Θάλαμοι δοκιμών/Test rooms: FW

Ονομασία προϊόντος/Product name: Διαχωριστικό διπλής υάλωσης με

Ημερομηνία παραγωγής / Production date: 01/09/2021

Ημερομηνία δοκιμής/Testing date: 6/09/2021

Διαστάσεις δοκιμίου / Sample dimensions : 1200 x 2000mm

Περιγραφή του δοκιμίου & της διάταξης τοποθέτησης / Sample & mounting description:

Διαχωριστικό διπλής υάλωσης με πόρτα τοποθετημένο βάσει του προτύπου ISO 10140-2:2010. For high soundproof performance, Allure double glazed partition with door is the best solution. The partition is consisted of 5+5 tempered laminated glass with double acoustic PVB and 6+6 tempered laminated with double acoustic PVB on either side. Allure's profile dimension is 100x35 mm and the gap between the glasses is 60mm. The system comes with a full frame aluminium door with 5+5 mm tempered laminated glass with double acoustic PVB and drop seal function for ultimate sound isolation.

Double glazed office partition with door, installed according to ISO 10140-2:2010. For high soundproof performance, Allure double glazed partition with door is the best solution. The partition is consisted of 5+5 tempered laminated glass with double acoustic PVB and 6+6 tempered laminated with double acoustic PVB on either side. Allure's profile dimension is 100x35 mm and the gap between the glasses is 60mm. The system comes with a full frame aluminium door with 5+5 mm tempered laminated glass with double acoustic PVB and drop seal

function for ditiriate sound isolation.	
S δοκιμίου/S test specimen:	2,40 m ²
Επιφανειακή μάζα/Mass per unit:	kg/m ²
Θερμοκρασία/Temperature:	22 C°
Σχετική υγρασία/Relative humidity:	50 %
Στατική πίεση/Static pressure	101 kPa
V Θαλάμου Εκπομπής/V Source Room	: 56 m ³
V Θαλάμου Λήψης/V Receiving Room:	51 m ³

f(Hz)	R(dB)	R _{max} (dB)
50	18,0	31,4
63	28,7	39,6
80	27,5	50,2
100	24,9	48,7
125	35,1	56,8
160	34,8	49,7
200	35,5	55,0
250	36,4	50,8
315	35,8	54,6
400	36,7	59,9
500	37,4	63,4
630	42,6	67,3
800	43,5	72,5
1000	43,2	75,9
1250	45,5	77,6
1600	43,8	78,6
2000	44,1	78,8
2500	42,8	73,8
3150	43,2	69,0
4000	45,7	66,6
5000	47,8	61,4

Σύμφωνα με το Πρότυπο Προϊόντος / According to the Product Standard EN 14351-1:2016

Διαπιστωθείσα τιμή / Determined value

Σταθμισμένος Δείκτης Ηχομείωσης σύμφωνα με τα αποτελέσματα μετρήσεων σε θαλάμους δοκιμών σε τριτοοκτάβες

Weighted Sound Reduction Index according to measurement results in test rooms in

$$R_w (C; C_{tr}) = 42 (-1; -3) dB$$

R, dB Καμπύλη μέτρησης/Test curve Πρότυπη καμπύλη /Shifted weighting curve index Sound reduction 60 50 40 30 20 500 63 125 Frequency, f, Hz --- $C_{100-5000} = 0 dB$ = -1 dB $C_{50-5000} = 0 dB$ $C_{50-3150}$

Εργαστήριο Αρχιτεκτονικής Τεχνολογίας / Laboratory of Architectural Technology Κοινοποιημένος Φορέας / Notified Body NB 2326

 $C_{tr.50-5000} = -5$ dB

 $C_{tr,100-5000} = -3 dB$

= -5 dB

Ctr.50-3150

Διευθυντής: Κωνσταντίνος Ιωαννίδης / Drector: Konstantinos Ioannidis

Υπογραφή/Signature:

Αριθμός/Number: A.1042.2021

Ημερομηνία/Date: 14.09.2021