Disclaimer

- The material provided in this document is not my original work and is a summary of some one else's work(s).
- A simple Google search of the title of the document will direct you to the original source of the material.
- I do not guarantee the accuracy, completeness, timeliness, validity, non-omission, merchantability or fitness of the contents of this document for any particular purpose.
- Downloaded from najeebkhan.github.io

CEPSTRAL ANALYSIS SYNTHESIS ON THE MEL FREQUENCY SCALE

Presented by Najeeb Khan 2014-5-20

Abstract

- The log spectrum on the Mel frequency scale is considered to be an effective representation of the spectral envelope of speech
- This analysis synthesis system uses the Mel log spectrum approximation (MLSA) filter which was devised for the cepstral synthesis on the Mel frequency scale
- The filter coefficients are easily obtained through a simple linear transform from the Mel cepstrum

Abstract (contd...)

- The MLSA filter has
 - Low coefficient sensitivity
 - Good coefficient quantization characteristics
 - Spectral distortion due to interpolation is small
 - Same quality speech is synthesized at 60-70 % of data rates in the conventional cepstral vocoder or the LPC vocoder

Introduction(1)

- The log spectrum is considered to be a reasonable representation of the spectral envelope of speech
- The cepstrum has good characteristics for parametric representation of speech, since it is defined as a Fourier transform of the log spectrum
- The log spectrum is efficiently approximated by the LMA filter from the cepstral parameter
- LMA filter is of pole-zero, and it is an accurate and efficient model for the log spectral envelope of speech

Introduction(2)

- The cepstrum has the following good features as the spectral envelope parameter
 - It is considered to be a good parameter of a pole-zero model which represents the log spectral envelope of the speech accurately and efficiently
 - The LMA filter can be used for a high quality speech direct synthesis from the cepstral parameter
 - The cepstral parameter sensitivity of the log spectrum is very small and the cepstrum quantization effect is also small
 - Spectral distortion caused by interpolation of the cepstral parameters of two successive frames is small

Introduction(3)

- Although the cepstrum has many good features, it is not always an efficient parameter for speech analysis synthesis
- The order of the cepstrum is larger than that of the LPC parameter for a high quality speech analysis synthesis
- The log spectrum on a Mel frequency scale is considered to be a more effective representation of the spectral envelope of speech than that on the linear frequency scale
- The Mel cepstrum has a comparatively low order hence it is an efficient parameter

Mel Cepstral Analysis Synthesis System

Spectral Envelope Extraction by Improved Spectral Method

 The Mel scale can be approximated by the phase characteristics of a first order all-pass filter

$$H^{(\alpha)}(z) = (z^{-1} - \alpha)/(1 - \alpha z^{-1})$$

$$\beta_{\alpha}(\Omega) = -\arg H^{(\alpha)}(e^{i\Omega}) = \tan^{1}\frac{(1-\alpha^{2})\sin\Omega}{(1+\alpha^{2})\cos\Omega - 2\alpha}$$

$$\widetilde{\Omega} = \beta_{\alpha}(\Omega)$$

Spectral Envelope Extraction by Improved Spectral Method

The true envelope of the Mel log spectrum is

$$G_{\alpha}(\widetilde{\Omega}) = \sum_{m=0}^{M} C_{\alpha}(m) \cos(m\widetilde{\Omega})$$

- The transfer function of the MLSA filter is given by a rational function of the first order all-pass transfer function, it is necessary not to contain any delay free path in the feedback loop of the filter
- The MLSA filter is given by a transfer function approximating the exponential of a transfer function of a basic filter

 Hi(z) = exp(F_{*}(z))

$$F_{\infty}(\widetilde{z}) = \sum_{m=0}^{M} C_{\infty}(m) \widetilde{z}^{-m}$$
,

$$\ln \left| H_{\infty}^{0}(e^{j\widetilde{\Lambda}}) \right| = \sum_{m=0}^{M} c_{\infty}(m) \cos(m\widetilde{\Omega}).$$

- If the filter parameter C(m) is chosen as the mel cepstrum for the spectral envelope, the log magnitude on the mel frequency scale is identical to the mel log spectral envelope
- The exponentional is approximated by the pade approximant

$$R_{L}(w) = P_{L}(w)/P_{L}(-w),$$

$$P_{L}(w) = 1 + p_{L,1}w(1 + p_{L,2}w(\cdots - (1 + p_{L,L-1}w(1 + p_{L,L}w))\cdots),$$

$$p_{L,\ell} = \lambda_{L,\ell}(L - \ell + 1)/(2L - \ell + 1) \quad (\lambda_{L,\ell} \approx 1).$$

For L=3, the modified Pade approximation $R_3(w)$ is represented by

$$R_3(w) = P_3(w)/P_3(-w)$$

 $P_3(w) = 1 + p_{3,1} w (1 + p_{3,2} (\frac{w}{2}) (1 + p_{3,3} (\frac{w}{2})))$

where

$$p_{3,1} = 64/128$$
, $p_{3,2} = 51/128$, $p_{3,3} = 21/128$.

$$F_{\alpha}(\tilde{z}) = F(z) = b_{\alpha}(0) + z^{-1} \sum_{m=1}^{M+1} b_{\alpha}(m) \tilde{z}^{-(m-1)}$$

$$b_{\alpha}(M+1) = \alpha c_{\alpha}(M)$$

$$b_{\alpha}(m) = c_{\alpha}(m) + \alpha (c_{\alpha}(m-1) - b_{\alpha}(m+1))$$

$$(m = M, M-1, \dots, 3, 2)$$

$$b_{\alpha}(1) = (c_{\alpha}(1) - \alpha b_{\alpha}(2))/(1 - \alpha^{2})$$

$$b_{\alpha}(0) = c_{\alpha}(0) - \alpha b_{\alpha}(1).$$

Let
$$F_{\alpha}^{(0)}(\widetilde{z}) = b_{\alpha}(0)$$

$$F_{\alpha}^{(1)}(\widetilde{z}) = z^{-1}b_{\alpha}(1)$$

$$F_{\alpha}^{(2)}(\widetilde{z}) = z^{-1}(b_{\alpha}(2)\widetilde{z}^{-1} + b_{\alpha}(3)\widetilde{z}^{-2})$$

$$F_{\alpha}^{(3)}(\widetilde{z}) = z^{-1}(b_{\alpha}(4)\widetilde{z}^{-3} + \cdots + b_{\alpha}(7)\widetilde{z}^{-6})$$

$$F_{\alpha}^{(4)}(\widetilde{z}) = Z^{-1}(b_{\alpha}(8)\widetilde{z}^{-7} + \cdots + b_{\alpha}(M+1)\widetilde{z}^{-M}),$$
and
$$H_{\alpha}(\widetilde{z}) = \exp(b_{\alpha}(0)) \prod_{k=1}^{4} R_{3}(F_{\alpha}^{(k)}(\widetilde{z})),$$

Voiced-Unvoiced Decision

- When the averaged value of the spectral envelope in a fundamental frequency region (50—350 Hz) exceeds a threshold, the sound is voiced
- The voiced-to-unvoiced and unvoiced-tovoiced error rates are 1-2 % and 2-4 %, respectively

Speech Quality

- The frequency warping factor α is fixed at 0.375
- For T= 15 ms, M= 11, q = 0.25 and b = 7 bit,
 the speech quality is very high
- The synthesized speech is indistinguishable from the sound synthesized by a linear frequency cepstral vocoder using the 25th order cepstral parameter