Galois Theory

Course Notes

22 February 2016 – 24 April 2016

1 About This Course

1.1 Suggested Reading

- S. Lang, *Algebra* (3rd ed., 2002) Contains many exercises. Parts V, VI, and VII are especially relevant.
- R. Elkik, Cours d'algebre (2002) In French. Closest in content to this course.
- J. S. Milne, *Fields and Galois Theory* (2015) Course notes. Available for free on the Web at http://www.jmilne.org/math/CourseNotes/ft.html. The last three chapters contain "interesting and important material" not covered in the course.
- I. Stewart, Galois Theory (2015) Less technically ambitious than this course, but includes history, and other applications such as ruler-and-compass constructions.

2 Week 1 Notes: 22 Feb - 28 Feb

2.1 Field extensions. Examples.

This course assumes a basic knowledge of abstract algebra (groups, rings, fields, modules), and linear algebra. All rings we consider will be associative, commutative, and with unity.

2.1.1 Two definitions of field extension.

Let K and L be fields.

Definition 1. We say that L is an **extension of** K if $K \subset L$. That is, K is a subfield of L. Equivalently, L is an extension of K if L is a K-algebra—in other words, if we have $(k_1\mathbf{a_1})(k_2\mathbf{a_2}) = k_1k_2\mathbf{a_1a_2}$ for $k_i \in K$ and $\mathbf{a_i} \in A$.

Why are these definitions equivalent? In fact, given a K-algebra structure on a ring A, this is the same as having a homomorphism of rings $f: K \to A$. So if we have a K-algebra, define a homomorphism f by setting $f(k) = k\mathbf{1}$ for $k \in K$. Conversely, given an arbitrary homomorphism $f: K \to A$, set $k\mathbf{a} = f(k)\mathbf{a}$ for $\mathbf{a} \in A$.

Suppose now that A = L a field. Then any homomorphism $f : K \to L$ is injective. There are several ways to see this; for example, we can show that f(k) is always invertible. Indeed, $\mathbf{1} = f(1) = f(kk^{-1}) = f(k)f(k^{-1})$ for any $k \neq 0$, so $f(k) \neq \mathbf{0}$ whenever k is nonzero. Alternatively, we know that the kernel of f is always an ideal. But L is a field, so the only ideals of L are (0) and (1) = K.

2.1.2 Three examples.

Example 1. \mathbb{C} is an extension of \mathbb{R} , and \mathbb{R} is an extension of \mathbb{Q} .

Example 2. If L is a field, then either (a) $1 + 1 + \ldots + 1 \neq 0$ for any sum of 1's. Then L has characteristic 0 and so we have $\mathbb{Z} \subset L$, which means $\mathbb{Q} \subset L$. Then L is an extension of \mathbb{Q} . Alternatively, suppose (b) $1 + 1 + \cdots + 1 = 0$ for some finite m number of terms. The minimal such number for which this is true turns out to necessarily be a prime, p. We then say that L has characteristic p, and so we have $\mathbb{Z}/p\mathbb{Z} \subset L$; $\mathbb{Z}/p\mathbb{Z}$ is a field, and we denote it (with field structure) by \mathbb{F}_p . In this case L is an extension of \mathbb{F}_p . We call \mathbb{Q} and \mathbb{F}_p the **prime fields**: any field is an extension of a prime field, and prime fields don't contain any proper subfields.

Example 3. Take K[x]/(P), the ring of polynomials in one variable over K, modded out by the ideal of an irreducible polynomial P. This is a field. Suppose $Q \notin (P)$, then gcd(Q, P) = 1, so for some polynomials A, B we have AP + BQ = 1 by Bézout's identity. Hence $BQ \equiv 1 \pmod{P}$, that is, B is an inverse of Q in K[x]/(P).

2.2 Algebraic elements. Minimal polynomial.

We continue with the previous example: the quotient K[x]/(P) is a field. Rather than Bézout's identity, we can say that (P) is a **maximal ideal** of K[x], and the quotient of a ring by a maximal ideal is always a field. The proof of this fact uses the same identity.

This field is an extension of K in the obvious way: it is a K-algebra!

2.2.1 A concrete example.

Let $K = \mathbb{F}_2 = \{0,1\} = \mathbb{Z}/2\mathbb{Z}$, and $P = x^2 + x + 1$. Then K[x]/(P) contains four elements: 0, 1, the class containing x (denoted by \bar{x} , and the class containing x + 1 (denoted by $\overline{x+1}$). We have that $\bar{x}^2 = -\bar{x} - 1 = \overline{x+1}$ since K has characteristic 2. Similarly $(\overline{x+1})^2 = \bar{x}$. Moreover, these elements are inverses of each other: $\bar{x}(\overline{x+1}) = \bar{x}^2 + \bar{x} = -1 = 1$. Since |K[x]/(P)| = 4, we write $K[x]/(P) = \mathbb{F}_4$. This notation seems presumptuous, implying that there is "only" one field with four elements: in fact every field with a given finite number of elements is isomorphic, so this is true. A proof will come later.

2.2.2 Algebraic elements of a field extension.

Example 4. Given a field extension $K \subset L$ and an element $\alpha \in L$, we say that α is **algebraic** if there exists some polynomial $P \in K[x]$ such that $P(\alpha) = 0$; if no such polynomial exists, we say that α is **transcendental**.

Lemma 1. If α is algebraic, then there exists a unique unitary polynomial P of minimal degree with $P(\alpha) = 0$. P is irreducible, and for any Q such that $Q(\alpha) = 0$, then Q is divisible by P.

Definition 2. We call such a polynomial P the **minimal polynomial of** α **over K**, denoted $P_{\min}(\alpha, K)$.

Proof of lemma. We know that K[x] is a **principal ideal domain**, and the polynomials $I = \{Q \in K[x] : Q(\alpha) = 0 \text{ forms an ideal. Thus } I \text{ has a generator, so } I = (P) \text{ for some } P.$ This generator is a

unique (up to a constant) element of minimal degree in I. Furthermore, if P was not irreducible—if P = QR—then $P(\alpha) = Q(\alpha)R(\alpha)$ and so at least one of $Q(\alpha) = 0$ or $R(\alpha) = 0$. This would contradict the minimal-degree condition on P.

2.3 Algebraic elements. Algebraic extensions.

2.3.1 An important bit of notation.

Definition 3. We denote by $K(\alpha)$ the smallest subfield of L containing α . We say that $K[\alpha]$ (note the square braces) is the smallest subring (or K-algebra) containing K and α .

 $K[\alpha]$ is generated, as a vector space over K, by $1, \alpha, \alpha^2, \ldots, \alpha^n, \ldots$

Example 5. $\mathbb{C} = \mathbb{R}(i)$ as a field, but also $\mathbb{C} = \mathbb{R}[i]$ as a ring. Every $z \in \mathbb{C}$ can be written z = x + iy; this is a vector subspace generated by 1, i.

Proposition 1. The following are equivalent: (1) α is algebraic over K; (2) $K[\alpha]$ is a finite dimensional vector space over K; (3) $K[\alpha] = K(\alpha)$.

Proof. (1) \Rightarrow (2): We have that $\alpha^d + a_{d-1}\alpha^{d-1} + \ldots + \alpha_1\alpha + a_0 = 0$ for $a_i \in K$ (this is just the minimal polynomial). Then $\alpha^d = -\left(\sum_{k=0}^{d-1} a_k \alpha^k\right)$, a linear combination of the lower powers of α . Therefore $K[\alpha]$ is generated by $1, \alpha, \ldots, \alpha^{d-1}$ over K: it is finite-dimensional.

 $(2) \Rightarrow (3)$: It is enough to prove that $K[\alpha]$ is a field, since $K[\alpha] \subset K(\alpha)$. Let $x \in K[\alpha]$ nonzero. We want to show that x is invertible. Consider the operation of multiplication by x, that is, $y \mapsto xy$ for $y \in K[\alpha]$: this is an injective homomorphism of vector spaces over K. But as $K[\alpha]$ is finite-dimensional, this is also a surjection, so there exists $z \in K[\alpha]$ such that xz = 1. Hence x is invertible, and so $K[\alpha]$ is a field.

(3) \Rightarrow (1): If α is not algebraic, then there exists no polynomial P such that $P(\alpha) = 0$. This means that the natural homomorphism $i: K[x] \to L$ defined by $P \mapsto P(\alpha)$ is injective, but $K[\alpha]$ is not a field, and the image of i is a field. Contradiction!

2.3.2 Definition and properties of algebraic extensions.

Definition 4. L is called **algebraic** over K if every element of L is algebraic over K.

Proposition 2. If L is algebraic over K, then any K-subalgebra of L is a field.

Proof. Let $L' \subset L$ be a subalgebra. We know that $\alpha \in L'$ algebraic. Then $K[\alpha] \subset L$ is a field, so α is invertible (when nonzero). This holds for any such (nonzero) α , so L' is a field.

Proposition 3. If $K \subset L \subset M$, and $\alpha \in M$ is algebraic over K, then α is algebraic over L and its minimal polynomial $P_{\min}(\alpha, L)$ divides $P_{\min}(\alpha, K)$.

Proof. Consider $P_{\min}(\alpha, K)$ as an element of L[x].

2.4 Finite extensions. Algebraicity and finiteness.

Definition 5 (Finite extension). L is said to be a **finite extension** of K if it is a finite-dimensional K-vector space. The dimension of L over K is called the **degree** of L over K, and is denoted by [L:K].

Theorem 1. Suppose $K \subset L \subset M$. Then M is finite over K if and only if M is finite over L and L is finite over K. Moreover, in this case, the degrees multiply: [M:K] = [M:L][L:K].

Proof of Thm. 1. First, suppose M is finite over K. Then any linearly independent family $\{m_i\}$ over L are also linearly independent over K, so $\dim_L M$ is finite. Now L is a K-vector subspace of M, so $\dim_K M$ is finite and thus $\dim_K L$ is finite.

Second, let $\{e_i\}_{i=1}^n$ be an L-basis of M, and $\{\varepsilon_j\}_{j=1}^d$ a K-basis of L. We want to show that $e_i\varepsilon_j$ form a K-basis of M. Indeed, for any $x \in M$, we have that $x = \sum_i a_i e_i$ with $a_i \in L$. And for each i, $a_i = \sum_j b_{ij}\varepsilon_j$ with $\sum_{i,j} b_{ij}\varepsilon_j \in K$. So we can write $x = \sum_{i,j} b_{ij}\varepsilon_j e_i$, showing that $e_i\varepsilon_j$ generate M over K. We now need to verify that these elements are linearly independent over K.

If we have $\sum_{i,j} c_{ij} e_i \varepsilon_j = 0$ then $\sum_i \left(\sum_j c_{ij} \varepsilon_j\right) e_i = 0$, and $\sum_j c_{ij} \varepsilon_j \in L$. But $\{e_i\}$ is a basis, so for all i, we have $\sum_j c_{ij} \varepsilon_j = 0$. And since $\{\varepsilon_j\}$ is a basis, necessarily $c_{ij} = 0$ for all i, j. This proves the theorem.

Definition 6. We say that $K(\alpha_1, \ldots, \alpha_n) \subset L$, the smallest subfield of L containing $K, \alpha_1, \ldots, \alpha_n$, is **generated** by $\alpha_1, \ldots, \alpha_n$ over K.

Theorem 2. L is finite over K if and only if L is generated by a finite number of algebraic elements over K.

Proof. First, suppose that $\{\alpha_i\}_{i=1}^d$ is a K-basis of L. Then $L = K[\alpha_1, \ldots, \alpha_d] = K(\alpha_1, \ldots, \alpha_d)$. Moreover, each $K[\alpha_i]$ is a finite-dimensional K-algebra since it is a subring of (already finite-dimensional) L. Then by Proposition 1, α_i is algebraic.

Second, suppose $K[\alpha_1]$ is finite dimensional over K; $K[\alpha_1, \alpha_2]$ is finite dimensional over $K[\alpha_1]$; ...; $K[\alpha_1, \ldots, \alpha_{d-1}, \alpha_d]$ finite dimensional over $K[\alpha_1, \ldots, \alpha_{d-1}]$. Each α_i is algebraic, so for $1 \le i \le d$ we have $K[\alpha_1, \ldots, \alpha_i] = K(\alpha_1, \ldots, \alpha_i)$. Now we use Theorem 1 to conclude that $L = K(\alpha_1, \ldots, \alpha_d)$ is finite over K.

2.5 Algebraicity in towers. An example.

Algebraic extensions have a similar property to finite extensions: a tower of extensions is algebraic only if the floor of the tower is algebraic.

Theorem 3. Let $K \subset L \subset M$. Then M is algebraic over K if and only if M is algebraic over L and L is algebraic over K.

Proof. First, let $\alpha \in M$. If $P(\alpha) = 0$ for some $P \in K[x]$, then also $P \in L[x]$, so α is algebraic over L. Now if $\alpha \in L$ then also $\alpha \in M$ and so α is algebraic over K. Thus L is algebraic over K.

Second, suppose L is algebraic over K and M is algebraic over L; we need to show that M is algebraic over K. Take $\alpha \in M$ and consider $P_{\min}(\alpha, L)$. Its coefficients are elements of L, so they are algebraic over K. By the previous theorem, they generate an extension, E, which is *finite* over K. Now $E(\alpha)$ is also finite over K. Since $E(\alpha)$ is finite over E, then α is algebraic over K: there exists a linear dependence relation between powers of α .

We now consider an example.

Example 6. Consider $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$. This is clearly algebraic and finite over \mathbb{Q} . The degree of this extension is 6: we have $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$. The minimal polynomial $P_{\min}(\sqrt[3]{2}, \mathbb{Q}) = x^3 - 2$; $\mathbb{Q}(\sqrt[3]{2})$ is generated over \mathbb{Q} by $1, \sqrt[3]{2}, (\sqrt[3]{2})^2$, so $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}] = 3$.

Now $\sqrt{3} \notin \mathbb{Q}(\sqrt[3]{2})$, because otherwise we would have $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt[3]{2})$. Then $2 = [\mathbb{Q}(\sqrt{3}) : \mathbb{Q}]$ would divide $3 = [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}]$, which is impossible. Therefore, $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$, and so is in fact the minimal polynomial for $\sqrt{3}$ over this extension.

The degree of the big extension, $[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}):\mathbb{Q}(\sqrt[3]{2})]=2$, and therefore $[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}):\mathbb{Q}]=(2)(3)=6$.

In fact, this reflects a more general property:

Proposition 4. If α is algebraic over K, then the degree of $K(\alpha)$ over K is equal to the degree of the minimal polynomial of α over K.

Proof. The proof is obvious: $K(\alpha)$ is generated by the powers of α up to some α^{d-1} (if deg $P_{\min}(\alpha, K) = d$), and these are linearly independent.

This gives us a nice tool to compute the degree of algebraic extensions.

Proposition 5. Let $K \subset L$ be a field extension and let $L' = \{\alpha \in L : \alpha \text{ is algebraic over } K\}$. Then L' is a subfield of L; we call this the **algebraic closure** of K in L.

Proof. Let α, β be algebraic over K. We want to show that $\alpha + \beta$ and $\alpha\beta$ are algebraic; these facts follow immediately from Theorem 2, since $\alpha + \beta$ and $\alpha\beta$ belong to $K[\alpha, \beta]$, which is a finite (by Theorem 2) extension of K.

2.6 A digression: Gauss lemma, Eisenstein criterion.

2.6.1 A brief review.

We said that for a field K, an element α is algebraic over K if α is a root of some polynomial $P \in K[x]$.

We said that an extension L is algebraic over K if every element $\alpha \in L$ is algebraic over K.

We said that L is finite over K if the dimension of L over K is finite.

We saw that finite implies algebraic, and that we have finiteness if and only if the field is algebraic and finitely generated.

Finally, we deduced that $[K(\alpha):K] = \deg P_{\min}(\alpha,K)$.

Therefore, it's important to be able to know whether a given polynomial is in fact irreducible over K.

2.6.2 How to decide that a polynomial is irreducible over K.

In our example we had $x^3 - 2$ is irreducible \mathbb{Q} . Since the degree of this polynomial is equal to 3 and there is no root in \mathbb{Q} .

But if we ask whether $x^{100} - 2$ is irreducible over \mathbb{Q} , this is not so trivial. In fact it is irreducible, based on a few facts.

Lemma 2 (Gauss). Let $P \in \mathbb{Z}[x]$. If P decomposes nontrivially (that is, P = QR, where $\deg Q, \deg R < \deg P$) over \mathbb{Q} , then it also decomposes over \mathbb{Z} .

Proof. Let P = QR. Set $mQ = Q_1 \in \mathbb{Z}[x]$ and $nR = R_1 \in \mathbb{Z}[x]$. Then $mnP = Q_1R_1 \in \mathbb{Z}[x]$. For p|mn, then modulo p we have $0 = \bar{Q}_1\bar{R}_1$. Since we're working over \mathbb{F}_p a field, we have that $\bar{Q}_1 = 0 \pmod{p}$ or $\bar{R}_1 = 0 \pmod{p}$: that is, p divides all of the coefficients of either Q_1 or R_1 . WLOG say this is Q_1 . Then $\frac{mn}{p}P = Q_2R_1 \in \mathbb{Z}[x]$ where $Q_2 = \frac{Q_1}{p}$. Continuing in this way, we arrive at $P = Q_1R_s \in \mathbb{Z}[x]$.

Example 7 (Eisenstein criterion example). To show that $x^{100}-2$ is irreducible over \mathbb{Z} ? We reduce modulo 2: if $x^{100}-2=QR$ then $x^{100}=\bar{Q}\bar{R}$ in $\mathbb{F}_2[x]$, so \bar{Q} and \bar{R} are of the form x^k respectively x^l . The constant coefficients of both \bar{Q} and \bar{R} must be divisible by 2; hence the constant coefficient of $x^{100}-2$ must be divisible by 4, except this is not the case. Therefore

Proposition 6 (Eistenstein criterion). Let $P \in \mathbb{Z}[x]$ with $P = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$. If there exists a prime p such that (1) p divides a_n ; (2) p divides a_i for $i = 0, \ldots, n-1$; and (3) p^2 does not divide a_0 ; then $P \in \mathbb{Z}[x]$ is irreducible.

Proof. The proof is the same as in the example.

Both facts are valid in more generality, by replacing \mathbb{Z} with any unique factorization domain R, and replacing \mathbb{Q} by the fraction field of R.

Quiz 1

Which of the following are true?

Solution. A finite extension of fields is algebraic. This is true.

An algebraic extension of fields is finite. This is false; for example, the field of all algebraic numbers is an infinite extension of \mathbb{Q} .

A finitely generated and algebraic extension of fields is finite. This is *true*.

Which of the following pairs is an extension of fields?

Solution. \mathbb{Z}, \mathbb{Q} is not a field extension because \mathbb{Z} is not a field.

 \mathbb{Q}, \mathbb{R} is a field extension because \mathbb{R} is a field and $\mathbb{Q} \subset \mathbb{R}$.

 $\mathbb{Q}(i)$, \mathbb{R} is not a field extension because, e.g., $i \in \mathbb{Q}(i)$ but $i \notin \mathbb{R}$, and so $\mathbb{Q}(i)$ is not a subfield of \mathbb{R} .

 $\mathbb{Q}(i)$, \mathbb{C} is a field extension because \mathbb{C} is a field and $\mathbb{Q}(i) \subset \mathbb{C}$.

What is the minimal polynomial of $e^{2\pi i/3}$ over \mathbb{Q} ?

Solution. Let $\zeta = e^{2\pi i/3}$, and note that $\zeta^3 = e^{2\pi i} = 1$. Therefore ζ is a root of the polynomial $Q(x) = x^3 - 1$. Now Q is not irreducible: Q = PR, where $P(x) = x^2 + x + 1$ and R(x) = x - 1. $R(\zeta) \neq 0$ but $P(\zeta) = 0$, and P is irreducible over Q (by, e.g., the quadratic formula). Therefore $P(x) = x^2 + x + 1$ is the minimal polynomial for ζ over \mathbb{Q} .

Which of the following polynomials f is irreducible over the specified field K?

Solution. $f_1 = x^2 + x + 1$ is irreducible over $K_1 = \mathbb{Q}$; see previous question.

 $f_2 = x^2 - 2$ is irreducible over $K_2 = \mathbb{Q}$, since its roots are $\pm \sqrt{2} \notin \mathbb{Q}$.

 $f_3 = x^2 - 2$ is not irreducible over $K_3 = \mathbb{R}$, since its roots are $\pm \sqrt{2} \in \mathbb{R}$.

 $f_4 = x^2 + x + 1$ is not irreducible over $K_4 = \mathbb{F}_3$: we have $f_4(1) = 1 + 1 + 1 = 0$ since the field has characteristic 3, and $1 \in \mathbb{F}_3$.

 $f_5 = x^4 + 6x^2 + 2$ is irreducible over $K_5 = \mathbb{Q}$. Setting $y = x^2$ and $\hat{f}_5 = y^2 + 6y + 2$, we obtain by

the quadratic formula

$$y = \frac{-6 \pm \sqrt{36 - 4}}{2} = \frac{-6 \pm \sqrt{32}}{2} = \frac{-6 \pm 4\sqrt{2}}{2} = -3 \pm 2\sqrt{2},$$

and hence $x = \pm \sqrt{-3 \pm 2\sqrt{2}} \notin \mathbb{Q}$.

 $f_6 = x^3 - 1$ is not irreducible over $K_6 = \mathbb{Q}$; see previous question.

Which of the following quotient rings is a field?

Solution. Note that this is equivalent to asking if the polynomial we're modding out by is irreducible over the base field.

 $\mathbb{R}[x]/(x^2-2)$ is not a field, since x^2-2 is not irreducible over \mathbb{R} .

 $\mathbb{Q}[x]/(x^2-2)$ is a field, since x^2-2 is irreducible over \mathbb{Q} .

 $\mathbb{F}_3[x]/(x^2+x+1)$ is not a field, since x^2+x+1 is not irreducible over F_3 .

 $\mathbb{R}[x]/(x^2-1)$ is not a field, since x^2-1 is not irreducible over \mathbb{R} .

 $\mathbb{R}[x]/(x^2+1)$ is a field, since x^2+1 is irreducible over \mathbb{R} .

What is the degree of the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$?

Solution. We know that the extension is generated by products of $1, \sqrt{2}, \sqrt{3}$. Now $1^2 = 1, (\sqrt{3})^2 = 3, (\sqrt{2})^2 = 2$, and $\sqrt{2}\sqrt{3} = \sqrt{6}$; therefore any element $q \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ can be written $q = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ with $a, b, c, d \in \mathbb{Q}$. Therefore $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.