

MATHEMATICS

3C/3D

Calculator-free

WACE Examination 2012

Marking Key

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

When examiners design an examination, they develop provisional marking keys that can be reviewed at a marking key ratification meeting and modified as necessary in the light of candidate responses.

Section One: Calculator-free (50 Marks)

Question 1 (4 marks)

Let
$$f(x) = (x+3)(1-x^2)^5$$
.

The derivative of f(x) can be written in the form $f'(x) = (1-x^2)^4 (ax^2 + bx + c)$. Determine the values of a, b and c.

Solution

$$f'(x) = 1(1-x^{2})^{5} + (x+3)(5)(1-x^{2})^{4}(-2x)$$

$$= (1-x^{2})^{4} [(1-x^{2})-10x(x+3)]$$

$$= (1-x^{2})^{4} (-11x^{2}-30x+1)$$

$$a = -11, b = -30, c = 1$$

- ✓ differentiates into the form u'v+v'u
- \checkmark determines u' and v' correctly
- \checkmark correctly determines the remaining factor once $(1-x^2)^4$ is factorised out
- \checkmark simplifies to obtain values of a,b and c.

Question 2 (5 marks)

A company made 16 motorbikes of three different types.

Each type A motorbike cost \$5000 to make, while each type B motorbike cost \$2000 and each type C cost \$1000. The company spent \$65 000 making the 16 motorbikes.

The number of type A motorbikes made was three times the total number of type B and C motorbikes.

Let a = number of type A motorbikes,

b = number of type B motorbikes, and

c = number of type C motorbikes.

Some of the information above is represented by the two equations:

$$a+b+c=16$$

 $5a+2b+c=65$

(a) Write down a third equation which, together with the equations above, is sufficient to determine the values of a,b and c. (1 mark)

Solution					
a = 3(b+c) = 3b + 3c					
Specific behaviours					
✓ states correct equation					

(b) How many of each type of motorbike were made?

(4 marks)

Solution

Since
$$a = 3(b+c)$$
 and $a+b+c=16$, $a = 12$ and $b+c=4$.

Then
$$60 + 2b + c = 65$$
, so $2b + c = 5$.

From b+c=4 and 2b+c=5 we have b=1, and so c=3.

Alternatively:

$$a+b+c=16$$
 ...Eq1

$$5a + 2b + c = 65$$
 ... Eq2

$$a - 3b - 3c = 0$$
 ...Eq3

$$3b + 4c = 15$$
 ... $5 \times \text{Eq}1 - \text{Eq}2$

$$4b + 4c = 16$$
 ...Eq1 – Eq3

b = 1 ...using last two equations

c = 3 ...back-substitution

a = 12 ...back-substitution

Specific behaviours

- ✓ determines that a = 12 and b + c = 4 using ratio
- ✓ substitutes to find 2b+c=5
- ✓ determines that b = 1
- ✓ determines that c = 3

Alternatively:

- ✓ eliminates a variable from one equation correctly
- ✓ eliminates the same variable from another equation correctly
- ✓ solves for one of the remaining variables
- √ back-substitutes to solve for other variables

Question 3 (7 marks)

Let A, B, C, D, E, F and G be points on the graph of a continuous function f(x). The table below contains information about the sign of f(x), f'(x) and f''(x) at these points.

Point	Α	В	С	D	E	F	G
x	- 4	– 3	-1	0	1	2	4
f(x)	+	0	_	0	+	+	+
f'(x)	_	_	0	+	+	0	+
f"(x)	+	+	+	0	_	0	+

There are no other points at which f(x), f'(x) or f''(x) are equal to zero.

(a) Which point is a local minimum?

(1 mark)

Solution						
С						
Specific behaviours						
✓ identifies correct point						

(b) Describe the nature of the graph at point F.

(2 marks)

Solution					
Horizontal point of inflection					
Specific behaviours					
✓ identifies that F is a point of inflection ✓ identifies that $f(x)$ is horizontal at F					

(c) Sketch the function on the axes below.

(4 marks)

- ✓ sketches local minimum at C and horizontal point of inflection at F, as per Part (a)
- ✓ sketches x-intercepts at -3 and 0
- \checkmark sketches a point of inflection at x = 0
- √ completes graph correctly

Question 4 (7 marks)

Two events A and B have the following properties.

$$P(A \cup B) = 0.8$$

$$P(A \cap B) = 0.3$$

$$P(A) = 0.6$$

(a) Calculate:

(i) P(B). (1 mark)

Solution

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
. So $P(B) = 0.5$

Specific behaviours

✓ determines the value of P(B)

(ii) $P(\overline{A} \cap B)$. (2 marks)

Solution

 $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ (or draw Venn diagram to show this)

$$0.5 = 0.3 + P(\overline{A} \cap B)$$

$$0.2 = P(\overline{A} \cap B)$$

Specific behaviours

- ✓ identifies that P(B) = P(A \cap B) + P(\overline{A} \cap B) through equation or diagram
- \checkmark solves for P($\overline{A} \cap B$)
- (b) For a third event C, $P(C \mid B) = 0.4$.
 - (i) Calculate $P(B \cap C)$.

(1 mark)

Solution

$$P(B \cap C) = P(C \mid B) P(B) = 0.4 \times 0.5 = 0.2$$

Specific behaviours

- \checkmark determines the value of P(B \cap C)
- (ii) If events B and C above are independent, and events A and C are mutually exclusive, determine the value of $P(A \cup C)$. (3 marks)

Solution

Since B and C are independent, $P(C) = P(C \mid B) = 0.4$

Since A and C are mutually exclusive, $P(A \cup C) = P(A) + P(C) = 1$

- ✓ determines the value of P(C)
- ✓ determines the value of $P(A \cup C)$
- √ uses independence and mutual exclusivity in calculations

Question 5 (9 marks)

(a) Evaluate
$$\int_{0}^{1} 8x(2x^2-1)^7 dx$$
. (3 marks)

Solution

$$\int_{0}^{1} 8x (2x^{2} - 1)^{7} dx = \left[\frac{(2x^{2} - 1)^{8}}{4} \right]_{0}^{1}$$
$$= \frac{1}{4} - \frac{1}{4}$$
$$= 0$$

Specific behaviours

- ✓ integrates to the form $k(2x^2-1)^8$
- ✓ determines that $k = \frac{1}{4}$
- ✓ evaluates the integral correctly
- (b) If $\frac{dy}{dx} = \frac{2}{x^2} + 4x$, and y = 3 when x = 2, determine the value of y when x = 5. (3 marks)

Solution

$$\frac{dy}{dx} = 2x^{-2} + 4x$$

$$y = -2x^{-1} + 2x^{2} + c = \frac{-2}{x} + 2x^{2} + c$$

$$3 = \frac{-2}{2} + 2(2^{2}) + c$$

$$-4 = c$$

$$y|_{x=5} = \frac{-2}{5} + 2(5^2) - 4 = 45\frac{3}{5} = 45.6$$

- √ integrates correctly
- ✓ determines the value of the constant of integration
- ✓ evaluates y correctly when x = 5

(c) Evaluate
$$\int_{1}^{2} \frac{d}{dx} \left(\frac{x^3}{x^2 + 1} \right) dx$$
. (3 marks)

Solution
$$\int_{1}^{2} \frac{d}{dx} \left(\frac{x^{3}}{x^{2}+1} \right) dx = \left[\frac{x^{3}}{x^{2}+1} \right]_{1}^{2}$$

$$=\frac{5}{5} - \frac{1}{2}$$

$$=\frac{11}{10}$$

=1.1

- ✓ uses the Fundamental Theorem of Calculus
- √ substitutes limits of integration correctly
- √ simplifies correctly

Question 6 (6 marks)

(a) Express
$$\frac{5}{x+5} - \frac{2}{x+2}$$
 in the form $\frac{ax+b}{(x+5)(x+2)}$, where a and b are constants. (2 marks)

$$\frac{5}{x+5} - \frac{2}{x+2} = \frac{5(x+2) - 2(x+5)}{(x+5)(x+2)}$$
$$= \frac{3x}{(x+5)(x+2)}$$

Specific behaviours

- √ forms a single fraction with the correct denominator
- ✓ simplifies numerator correctly
- (b) Using your answer to Part (a) or otherwise, solve the inequality $\frac{5}{x+5} > \frac{2}{x+2}$. (4 marks)

Solution

$$\frac{3x}{(x+5)(x+2)} > 0$$

Critical points at x = -5, -2, 0

x	x < -5	-5 < x < -2	-2 < x < 0	<i>x</i> > 0
$\frac{3x}{(x+5)(x+2)}$	_	+	_	+

So -5 < x < -2 or x > 0. Alternative notation: $(-5, -2) \cup (0, \infty)$

- ✓ identifies all critical points
- ✓ specifies the interval -5 < x < -2 as a solution
- ✓ specifies the interval x > 0 as a solution
- √ includes no other interval as a solution

Question 7 (6 marks)

Part of the graph of $y = a + be^{cx}$, where a, b and c are constants, is shown below.

(a) Which of the constants a,b and c are positive, and which are negative? Justify your answers. (3 marks)

Solution

From the graph of $y=e^x$, this graph has been reflected in the *y*-axis, since it has a horizontal asymptote as $x\to\infty$, rather than as $x\to-\infty$. So c<0.

From the graph of $y=e^x$, this graph has also been reflected in the x-axis, since it tends to $-\infty$, rather than ∞ , as $x\to -\infty$. So b<0.

As $x \to \infty$, $y \to a$. From the location of the asymptote, a > 0. So a is positive and b and c are both negative.

- \checkmark states sign of a, with justification
- \checkmark states sign of b, with justification
- \checkmark states sign of c, with justification

(b) Sketch on the same axes the graph of $y = -a - be^{-cx}$.

(3 marks)

Shown on axes above

- ✓ *y*-intercept located correctly
- ✓ *x*-intercept located correctly
- ✓ graph has horizontal asymptote in correct location

Question 8 (6 marks)

A continuous function f(x) is increasing on the interval 0 < x < 3 and decreasing on the interval 3 < x < 6. Some of its values are given in the table below.

х	0	1	2	3	4	5	6
f(x)	5	16	27	32	25	0	- 49

The function F(x) is defined, for $0 \le x \le 6$, by $F(x) = \int_0^x f(t) dt$.

(a) At which value of x in the interval $0 \le x \le 6$ is F(x) greatest? Justify your answer.

(2 marks)

Solution

x = 5

F(x) can be interpreted as the signed area under the graph of f(x) and to the right of x = 0. So long as f(x) > 0, this area will increase – which is true up until x = 5.

Specific behaviours

- ✓ determines correct value of x
- \checkmark explains in terms of sign of f(x)

(b) At which value of x in the interval $0 \le x \le 6$ is F'(x) greatest? Justify your answer. (2 marks)

Solution

x = 3

F'(x) = f(x), and the maximum value of f(x) occurs when x = 3.

Specific behaviours

- \checkmark determines correct value of x
- \checkmark explains in terms of the maximum value of f(x)
- (c) Use the values of f(x) in the table to show that $48 \le F(3) \le 75$. (2 marks)

Solution

The area under the graph of f(x) between x = 0 and x = 3 is bounded by rectangles defined by x = 0, 1, 2, 3 and y = f(0), f(1), f(2), f(3).

The lower bounding rectangles have an area of 5 + 16 + 27 = 48

The upper bounding rectangles have an area of 16 + 27 + 32 = 75

So $48 \le F(3) \le 75$

- \checkmark explains that the area corresponding to F(3) is bounded by rectangles.
- ✓ shows the calculation of the lower and upper bounds determined by the rectangles.