

ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

Тест има 20 задатака на 2 странице. Сви задаци се вреднују са по 5 поена. Уколико не желите да се определите за један од првих пет понуђених одговора можете да означите "N", што се вреднује са 0 поена. За погрешан одговор се одузима 0.5 поена. Ако се, за конкретан задатак, означи више од једног или не означи ниједан одговор, као и ако се на било који начин неправилно означи одговор, одузима се 1 поен.

Шифра задатка: 952364

1. Вредност израза	$\left((0.2)^{-2} + \sqrt[3]{64} \cdot \left(13^2 - 12^2 \right) \right)$	$\int_{3}^{\frac{1}{3}}$: $\sqrt[3]{(-2)^3}$ једнака је:
--------------------	---	---

- 2. За $b \neq 0$, израз $\left(\frac{a^3}{b^3} + 1\right) : \left(\frac{a^2}{b^2} \frac{a}{b} + 1\right)$ идентички је једнак изразу:

 А) $\frac{a+b}{b}$;

 В) $\frac{a+3b}{2b}$;

 С) $\frac{2b}{a}$;

 D) $\frac{2a}{b}$;

 E) $\frac{3a+b}{2b}$;

 N) Не знам.
- 3. Ако је $f(x)=\frac{x}{x+5}$ за $x\neq -5$, $g(x)=\frac{5}{5-x}$ за $x\neq 5$ и $h(x)=f^{-1}(x)\cdot g^{-1}(x)$ за $x\neq 0$ и $x\neq 1$, где су f^{-1} и g^{-1} одговарајуће инверзне функције, онда је:
- A) h(x) = -1; B) h(x) = 1; C) h(x) = 5; D) h(x) = -5; E) h(x) = -25; N) He sham.
- **4.** Ако је $z^2 |z|^2 + 4 \cdot \operatorname{Im} z = 2 6i$, $i^2 = -1$, онда је $z \cdot \overline{z}$ једнако:
- A) 5; B) 10; C) 1; D) 2; E) 17; N) Не знам.
- **5.** Цена једне књиге је најпре умањена за 10%, а затим увећана за 900 динара. Ако је нова цена за 50% већа од старе цене, онда је нова цена те књиге једнака:
- A) 2400 динара; В) 1750 динара; С) 1800 динара; D) 2250 динара; Е) 2000 динара; N) Не знам.
- **6.** За чланове аритметичког низа a_1, a_2, a_3, \dots важи једнакост $a_4 + a_5 + a_{11} + a_{12} = 32$. Збир првих 15 чланова тог низа једнак је:
- A) 128; B) 144; C) 64; D) 96; E) 120; N) Не знам.
- 7. Производ свих реалних решења једначине $\left(\log_{\frac{1}{x}}4\right)^{-2} + 0.5 = 3\log_{16}x$ једнак је:
- A) 64; B) 4; C) 8; D) 32; E) 16; N) Не знам.
- 8. Вредност израза $\sqrt[4]{4^{6}\log_{8}5 \log_{\sqrt{2}}125}$ једнака је: А) $\frac{1}{4}$; В) $\frac{1}{9}$; С) $\frac{1}{36}$; D) $\frac{1}{25}$; Е) $\frac{1}{16}$; N) Не знам.

Шифра задатка:	952364
шифра задана.	002001

A)	1;	B) 0;	C) $-3;$	D) -1 ;	E) 3;	N) Не знам.				
10.	Збир квадрата свих реалних решења једначине $2\sqrt{2}\left(1+\sqrt{2}\right)^{x+1}-\left(3+2\sqrt{2}\right)^{x+1}=1$ једнак је:									
A)	4;	B) 1;	C) 9;	D) 8;	E) 5;	N) Не знам.				
11.	Број свих реал једнак је:	них решења једнач	ине $(\sqrt{3}-1)\sin x +$	$\sqrt{3}\cos x = \sin x \operatorname{tg} x$	на интервалу $\left(-\pi\right)$	$,\frac{3\pi}{2}$				
A)		B) 5;	C) 1;	D) 2;	E) 3;	N) Не знам.				
12.	Остатак који се добија дељењем полинома $P(x)=(x-1)^{2023}+x^3+1$ полиномом $Q(x)=x(x^2-2x+2)$ једнак је:									
A)	$2x^2 + x;$	B) $x^2 + x$;	C) $2x^2 - x$;	D) $x^2 - x$;	E) $3x^2 - x$;	N) Не знам.				
13.	3. Вредност израза $\frac{4\sin 50^{\circ} \sin 185^{\circ} + \sqrt{2}}{\sin 10^{\circ} - \cos 10^{\circ}}$ једнака је:									
A)	2;	B) $-2;$	C) $-\sqrt{2}$;	D) 1;	E) -1 ;	N) Не знам.				
14.	. Збир свих вредности реалног параметра p за које је права $y=2x+p$ тангента кружнице $x^2+2x+y^2-4y=10$ једнак је:									
A)	8;	B) 10;	C) 9;	D) 12;	E) 6;	N) Не знам.				
15.	. Разлика највећег и најмањег решења неједначине $x\sqrt{x^2+x-6}\geqslant 2x^2-4x$ једнака је:									
A)	$\frac{14}{3}$;	B) $\frac{2}{3}$;	C) $\frac{11}{3}$;	D) $\frac{5}{3}$;	E) $\frac{8}{3}$;	N) Не знам.				
16.	. Ако је дужина висине праве правилне шестостране пирамиде три пута већа од дужине странице њене основе, тада је однос површине омотача и површине основе те пирамиде једнак:									
A)	$2\sqrt{3}:1;$	B) $\sqrt{13}:1;$	C) $2\sqrt{11} : \sqrt{3};$	D) $3\sqrt{2}:1;$	E) $2\sqrt{10}:\sqrt{3};$	N) Не знам.				
17.	Минималан зби	р растојања произ	вољне тачке на $x-$	оси до тачака $A(-$	(6,1) и $B(6,4)$ једна	к је:				
A)	$\frac{29}{2}$;	B) 13;	C) $\frac{25}{2}$;	D) $\frac{27}{2}$;	E) 14;	N) Не знам.				
18.	. Производ трећег члана од почетка и трећег члана од краја развоја $\left(\sqrt[n]{2023} + \frac{1}{\sqrt[n]{2023}}\right)^n$ је 66^2 . Збир биномних коефицијената датог развоја једнак је:									
A)				D) 256^2 ;	E) 16^2 ;	N) Не знам.				
19.	. На страницама AB , BC и DA , квадрата $ABCD$, редом су дате тачке M , N и P тако да важи $AM: MB=2:1, BN: NC=3:2$ и $DP: PA=4:3$. Ако је дужина странице квадрата 1 cm , онда је површина троугла MNP једнака:									
A)		оугла MNF једнак В) $\frac{2}{7} cm^2$;		D) $\frac{9}{}$ cm^2 :	E) $\frac{11}{cm^2}$:	N) Не знам				
	10	·	10	00	00					
20.	. У једном тениском мечу Ђоковић је победио Надала у два сета, резултатом 6:3, 6:4 у гемовима (сет добија играч који први освоји 6 гемова у том сету). Број различитих начина на које се могао кретати резултат овог меча по гемовима једнак је:									
A)	$72^2;$	B) 96^2 ;	C) 90^2 ;	D) 78^2 ;	E) 84^2 ;	N) Не знам.				

9. Збир свих целобројних решења неједначине $\frac{8x-3}{(x+1)^2(x+3)(x-2)} \geqslant \frac{1}{(x+1)(x-2)}$ једнак је: