(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年2 月3 日 (03.02.2005)

PCT

(10) 国際公開番号 WO 2005/011333 A1

(51) 国際特許分類7: H05B 33/12, 33/14, 33/22, C09K 11/06

(21) 国際出願番号: PCT/JP2003/009525

(22) 国際出願日: 2003 年7 月28 日 (28.07.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(71) 出願人 (米国を除く全ての指定国について): 出光興 産株式会社 (IDEMITSU KOSAN CO., LTD.) [JP/JP]; 〒100-8321 東京都 千代田区 丸の内三丁目 1番 1号 Tokyo (JP). (HOSOKAWA, Chishio) [JP/JP]; 〒 299-0293 千葉県袖ヶ浦市上泉1280番地 Chiba (JP).

- (74) 代理人: 渡辺 喜平 (WATANABE,Kihei); 〒101-0041 東京都 千代田区 神田須田町一丁目 2 6 番 芝信神田ビル 3 階 Tokyo (JP).
- (81) 指定国 (国内): CN, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 福岡 賢一 (FUKUOKA,Kenichi) [JP/JP]; 〒 299-0293 千葉県 袖ヶ浦市 上泉 1 2 8 0 番地 Chiba (JP). 細川 地潮

(54) Title: WHITE ORGANIC ELECTROLUMINESCENCE ELEMENT

(54) 発明の名称: 白色系有機エレクトロルミネッセンス素子

- 8...CATHODE
- 7...ELECTRON TRANSPORT LAYER
- 6...YELLOW THROUGH RED LIGHT EMITTING LAYER
- 5...BLUE LIGHT EMITTING LAYER
- 4...HOLE TRANSPORT LAYER
- 3...HOLE INJECTION LAYER
- 2...ANODE

(57) Abstract: A white electroluminescence element (1) comprising an anode (2), a blue light emitting layer (5) containing a host material and a blue dopant, yellow through red light emitting layer (6) containing a host material identical to that of the blue light emitting layer (5) and a yellow through red dopant, and a cathode (8), formed sequentially in layers, wherein the light emitting layer is composed of the blue light emitting layer (5) and the yellow through red light emitting layer (6). In a type where the light emitting layer is divided into two, trend of color shift toward red can be canceled by employing the blue light emitting layer (5) on the anode (2) side where the light emitting region of the emitting layer has a trend to shift. Since the yellow through red light emitting layer (6) can be formed thick, variation of chromaticity can be suppressed.

⁽⁵⁷⁾ 要約: 陽極 (2)、ホスト材料と青色系ドーパントを含む青色系発光層 (5)、青色系発光層と同一のホスト材料と黄色~赤色系ドーパントを含む黄色~赤色系発光層 (6)及び陰極 (8)をこの順序に積層して含み、青色系発光層 (5)と黄色~赤色系発光層 (6)から発光層が構成される白色系有機エレクトロルミネッセンス素子 (1)。発光層を2分割するタイプにおいて、発光層の発光領域が偏りやすい陽極 (2)側の発光層を青色系発光層 (5)とすることで、発光色が赤色に偏りがちな傾向を打ち消すことができる。従って、黄色~赤色系発光層 (6)の膜厚を厚くできるため色度変化が少ない。

明細書

白色系有機エレクトロルミネッセンス素子

5 技術分野

本発明は、白色系有機エレクトロルミネッセンス素子に関する(以下、「エレクトロルミネッセンス」を「EL」と略記する)。

背景技術

15

25

30

10 近年、白色系有機EL素子の開発は、モノカラー表示装置としての用途、バックライト等の照明用途及びカラーフィルターを使用したフルカラー表示装置等に使用できるため積極的に行われている。

白色系有機EL素子の色度変化は、製品としての品位を損なうだけではなく、 例えばカラーフィルターと組み合わせたフルカラー表示ディスプレイでは色再現 性の低下を引き起こす原因となるため、色度変化の少ない白色系有機EL素子が 要求される。

有機ELにより白色発光を得る方法は数多く開示されている。これらの方法は、 1種類の発光材料だけで白色を得るものは少なく、通常は2種類又は3種類の発 光材料を一つの有機ELの中で、同時に発光させている。

20 3種類の発光材料を使用する場合は、光の三原色に対応する赤、青、緑の発光 の組み合わせで白色にするが、色度制御が困難であり繰り返し再現性が悪いとい う問題があった。

2種類の発光材料を使用する場合は、青系とその補色となる黄色~赤色系の発 光材料を選択するが、黄色~赤色系の発光が強くなることが多く、色度変化を引 き起こし易い。

例えば、特開2001-52870の参考例1及び2に示されているように、 従来の白色有機ELは青色が低下し易く、色度変化の問題点を有している。

また、青色系ドーパントと黄色~赤色系ドーパントを同時にドープし、ドープ 比を調整することでも、白色発光が得られるが、赤が強くなりやすいことに加え、 青から赤へエネルギー移動し易いため、赤味を帯びた白色になりがちである。従 って、白色を得るには、黄色~赤色系ドーパントを非常に希薄にドープする必要があり、やはり再現性が難しいという問題があった。

さらに、発光層に隣接する正孔輸送層に、黄色~赤色系材料をドーピングする 方法がある。この方法では、正孔輸送層には電子が注入しにくいため、発光が偏 りがちな黄色~赤色系をドープしても強く赤が光らない。よって白色発光を得る ための青色系発光と黄色~赤色系発光のバランスを取りやすく、発光効率にも優 れていて寿命も長いという長所がある。

しかし、エネルギー移動の距離依存性の問題から、連続駆動時や高温保存時の 色度変化が大きいという重大な問題があった。

10 本発明者らの知見では、励起された赤色発光の分子は正孔輸送層側界面に集中 しているため、劣化により電子とホールのバランスが崩れ、界面への集中度合い が例え僅かでも変化すると、青色発光はそれほど変化していないのに、赤色発光 は大きく変化してしまうことが色度変化の原因である。

また、発光層を2分割するタイプにおいて、陽極側発光層を黄色~赤色系発光 15 層、陰極側を青色発光層とした積層型がある。

この場合、効率の面で優れているが、白色を得るためには黄色~赤色系発光を押さえるため、黄色~赤色系発光層を青色系発光層に比べて、膜厚を薄くしたり、ドープ濃度を薄くする必要があり、素子作製が難しくなっていた。

具体的には黄色~赤色系発光層の膜厚を、1~2nm程度にしなければ、白色 20 発光とならないことが多かった。この膜厚は、通常の低分子系有機ELの分子サイズと同等レベルの薄さであることから制御が極めて難しいと言える。

本発明は上記課題に鑑み、色変化が少ない白色系有機EL素子を提供することを目的とする。

25 発明の開示

この課題を解決するために本発明者らは、発光層を2分割するタイプにおいて、 発光層の発光領域が偏りやすい陽極側の発光層を青色系発光層とすることで、発 光色が赤色に偏りがちな傾向を打ち消せることを見出し、本発明を完成させた。

本発明によれば、以下の白色系有機EL素子を提供できる。

30 「1]陽極と、

ホスト材料と青色系ドーパントを含む青色系発光層と、

前記青色系発光層と同一のホスト材料と黄色~赤色系ドーパントを含む黄色~赤色系発光層と、

陰極と、

5 をこの順序に積層して含み、

前記青色系発光層と前記黄色~赤色系発光層から発光層が構成される白色系有機EL素子。

- [2] 前記青色系発光層が酸化剤を含む [1] の白色系有機EL素子。
- [3] さらに、前記陽極と前記青色系発光層の間に、第1の有機層を含み、前記 10 第1の有機層が酸化剤を含む [1] の白色系有機EL素子。
 - [4] 前記黄色~赤色系発光層が還元剤を含む[1]~[3] のいずれかの白色系有機EL素子。
- [5] さらに、前記陰極と前記黄色~赤色系発光層の間に、第2の有機層を含み、前記第2の有機層が還元剤を含む[1]~[3]のいずれかの白色系有機EL素 15 子。
 - [6] さらに、前記陽極及び/又は前記陰極に接して無機化合物層を含む[1] ~ [5] のいずれかの白色系有機EL素子。
 - [7] 前記ホスト材料が、スチリル誘導体、アントラセン誘導体又は芳香族アミンである[1]~[6]のいずれかの白色系有機EL素子。
- 20 [8] 前記スチリル誘導体が、ジスチリル誘導体、トリススチリル誘導体、テトラスチリル誘導体又はスチリルアミン誘導体である[7]の白色系有機EL素子。 [9] 前記アントラセン誘導体が、フェニルアントラセン骨格を含有する化合物
 - である[7]の白色系有機EL素子。
- [10] 前記芳香族アミンが、芳香族に置換された窒素原子を2、3又は4つ含25 有する化合物である[7]の白色系有機EL素子。
 - [11] 前記芳香族アミンが、さらにアルケニル基を少なくとも一つ含有する化合物である[10]の白色系有機EL素子。
- [12] 前記青色系ドーパントが、スチリルアミン、アミン置換スチリル化合物 又は縮合芳香族環含有化合物より選択される少なくとも一種類の化合物である 30 [1] ~ [11] のいずれかの白色系有機EL素子。

- [13] 前記黄色~赤色系ドーパントが、フルオランテン骨格を複数有する化合物である[1] ~[12] のいずれかの白色系有機EL素子。
- [14] 前記黄色~赤色系ドーパントが、電子供与性基とフルオランテン骨格を含有する化合物である[1]~[13]のいずれかの白色系有機EL素子。
- 5 [15] 前記黄色~赤色系ドーパントの蛍光ピーク波長が、540nm~700nmである[1]~[14]のいずれかの白色系有機EL素子。
 - [16] 前記青色系発光層及び前記黄色~赤色系発光層の膜厚が、5nm以上である[1]~[15] のいずれかの白色系有機EL素子。

10 図面の簡単な説明

図1は、本発明の一実施形態にかかる白色系有機EL素子の模式図である。

発明を実施するための最良の形態

本発明では、陽極、青色系発光層、黄色~赤色系発光層及び陰極がこの順序に 15 積層していて、発光層が、青色系発光層及び黄色~赤色系発光層の2層から構成 されている。青色系発光層は陽極側に、黄色~赤色系発光層は陰極側にあって、 さらに、青色系発光層と黄色~赤色系発光層のホスト材料は、同一物質である。

青色系発光層と黄色~赤色系発光層の間には、他の層を介在させることができる。また、陽極と青色系発光層の間、又は黄色~赤色系発光層と陰極の間に、他の有機層又は無機層を介在させることができる。

本発明の白色系有機EL素子の構成として、例えば

25 陽極/青系発光層/黄色~赤色系発光層/陰極

陽極/正孔輸送層/青系発光層/黄色~赤色系発光層/陰極

陽極/青系発光層/黄色~赤色系発光層/電子輸送層/陰極

陽極/正孔輸送層/青系発光層/黄色~赤色系発光層/電子輸送層/陰極

陽極/正孔注入層/正孔輸送層/青系発光層/黄色~赤色系発光層/電子輸送層

30 /陰極

陽極/正孔注入層/正孔輸送層/青系発光層/黄色~赤色系発光層/電子輸送層/電子注入層/陰極

等があるが、青色系発光層が黄色~赤色系発光層より陽極側に積層しているならば特に限定されるものではない。

5 図1は本発明の白色系有機EL素子の一実施形態の模式図である。

白色系有機EL素子1は、陽極2、正孔注入層(第一の有機層)3、正孔輸送層4、青色系発光層5、黄色~赤色系発光層6、電子輸送層(第二の有機層)7 及び陰極8を積層した構造を有している。

この白色系有機EL素子1は、発光層が青色系発光層5と黄色~赤色系発光層10 6の二層積層のみからなる。

本発明の白色系有機EL素子において、陽極側が青色系発光層であるため、発光色が赤色に偏りがちな傾向を打ち消すことができる。従って、白色を得るために黄色~赤色系発光を押さえる必要がなく、黄色~赤色系発光層を青色系発光層に比べて、膜厚を薄くしたり、ドープ濃度を薄くする必要がない。その結果、黄色~赤色系発光層の膜厚を従来より厚くできるため、色度変化が少ない。

また、青色系発光層と黄色~赤色系発光層のホスト材料は、同一物質であるので、青色発光層が界面に発光が集中しにくく、界面の変動による影響を受け難い。 さらに、黄色~赤色系発光層の膜厚が十分大きいので、界面の変動による影響を受け難い。

20 従って、本発明の白色系有機EL素子は色変化が少なく、特に、高温環境下や 連続駆動時で色変化が生じにくいので、情報表示機器、車載表示機器、照明器具 等に好適に使用できる。

以下、本発明の特徴的な部分である青色系発光層及び黄色~赤色系発光層について中心に説明する。従って、その他の有機層、無機化合物層、陽極、陰極等の構成や製法については、一般的な構成を採ることができるため、簡単に説明する。

1. 発光層

25

(1) 青色系発光層

青系発光層はホスト材料と青色系ドーパントからなる。

ホスト材料は、スチリル誘導体、アントラセン誘導体又は芳香族アミンである 30 ことが好ましい。 スチリル誘導体は、ジスチリル誘導体、トリスチリル誘導体、テトラスチリル 誘導体及びスチリルアミン誘導体の中から選ばれる少なくとも一種類であること が特に好ましい。

アントラセン誘導体は、フェニルアントラセン骨格を有する化合物であること 5 が特に好ましい。

芳香族アミンは、芳香族置換された窒素原子を2~4個有する化合物であることが好ましく、芳香族置換された窒素原子を2~4個有し、かつアルケニル基を少なくとも一つ有する化合物が特に好ましい。

上記スチリル誘導体及びアントラセン誘導体としては、例えば下記一般式 10 〔1〕~〔5〕で示される化合物が、上記芳香族アミンとしては、例えば下記一 般式〔6〕~〔7〕で示される化合物が挙げられる。

15 〔式中、R¹~R¹°は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換の炭素原子数1~20のアルコキシ基、置換もしくは未置換の炭素原子数1~20のアルオキシ基、置換もしくは未置換の炭素原子数1~20のアルキルチオ基、置換もしくは未置換の炭素原子数1~20のアルキルチオ基、置換もしくは未置換の炭素原子数6~30のアリールチオ基、置20 換もしくは未置換の炭素原子数7~30のアリールアルキル基、未置換の炭素原子数5~30の単環基、置換もしくは未置換の炭素原子数10~30の縮合多環基又は置換もしくは未置換の炭素原子数5~30の複素環基である。Ar¹及びAr²は、それぞれ独立に、置換もしくは未置換の炭素原子数6~30のアリール基又は置換もしくは未置換のアルケニル基であり、置換基としては、置換もし

くは未置換の炭素原子数1~20のアルキル基、置換もしくは未置換の炭素原子数1~20のアルコキシ基、置換もしくは未置換の炭素原子数6~30のアリールオキシ基、置換もしくは未置換の炭素原子数1~20のアルキルチオ基、置換もしくは未置換の炭素原子数6~30のアリールチオ基、置換もしくは未置換の炭素原子数6~30のアリールアルキル基、未置換の炭素原子数5~30の単環基、置換もしくは未置換の炭素原子数10~30の縮合多環基又は置換もしくは未置換の炭素原子数5~30の複素環基である。〕

10

15

20

5

「式中、 R^{1} ~ R^{10} は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、二トロ基、置換もしくは未置換の炭素原子数 1~20のアルコキシ基、置換もしくは未置換の炭素原子数 1~20のアルコキシ基、置換もしくは未置換の炭素原子数 1~20のアルカキシ基、置換もしくは未置換の炭素原子数 1~20のアルキルチオ基、置換もしくは未置換の炭素原子数 10~30のアリールチオ基、置換もしくは未置換の炭素原子数 10~30の縮合多環基又は置換もしくは未置換の炭素原子数 10~30の縮合多環基又は置換もしくは未置換の炭素原子数 10~30の縮合多環基又は置換もしくは未置換の炭素原子数 10~30のアリール基又は置換もしくは未置換の炭素原子数 10~30のアリール基又は置換もしくは未置換のアルケニル基であり、置換基としては、置換もしくは未置換の炭素原子数 10~30のアリールオキシ基、置換もしくは未置換の炭素原子数 10~30のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールオキシ基、置換もしくは未置換の炭素原子数 100のアリールチオ基、置換もしくは未置換の炭素原子数 100のアリールチオ基、置換もしくは未置換の炭素原子数

炭素原子数 $6 \sim 30$ のアリールアルキル基、未置換の炭素原子数 $5 \sim 30$ の単環基、置換もしくは未置換の炭素原子数 $10 \sim 30$ の縮合多環基、置換もしくは未置換の炭素原子数 $5 \sim 30$ の複素環基又は置換もしくは未置換の炭素原子数 $4 \sim 40$ のアルケニル基である。 n は $1 \sim 3$ 、 m は $1 \sim 3$ 、 かつ $n+m \geq 2$ である。〕

$$R^{1}$$
 R^{2}
 R^{7}
 R^{3}
 R^{4}
 R^{5}
 R^{5}

〔式中、R¹~R⁸は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、 ニトロ基、置換もしくは未置換の炭素原子数1~20のアルキル基、置換もしく 10 は未置換の炭素原子数1~20のアルコキシ基、置換もしくは未置換の炭素原子 数6~30のアリールオキシ基、置換もしくは未置換の炭素原子数1~20のア ルキルチオ基、置換もしくは未置換の炭素原子数6~30のアリールチオ基、置 換もしくは未置換の炭素原子数7~30のアリールアルキル基、未置換の炭素原 子数5~30の単環基、置換もしくは未置換の炭素原子数10~30の縮合多環 15 基又は置換もしくは未置換の炭素原子数5~30の複素環基である。Ar3及び Ar⁴は、それぞれ独立に、置換もしくは未置換の炭素原子数6~30のアリー ル基又は置換もしくは未置換のアルケニル基であり、置換基としては、置換もし くは未置換の炭素原子数1~20のアルキル基、置換もしくは未置換の炭素原子 数1~20のアルコキシ基、置換もしくは未置換の炭素原子数6~30のアリー 20 ルオキシ基、置換もしくは未置換の炭素原子数1~20のアルキルチオ基、置換 もしくは未置換の炭素原子数6~30のアリールチオ基、置換もしくは未置換の 炭素原子数6~30のアリールアルキル基、未置換の炭素原子数5~30の単環 基、置換もしくは未置換の炭素原子数10~30の縮合多環基、置換もしくは未

置換の炭素原子数5~30の複素環基又は置換もしくは未置換の炭素原子数4~40のアルケニル基である。〕

$$(R^{11})a$$
 R^{13}
 R^{14}
 R^{18}
 R^{19}
 R^{19}

5

(式中、R¹¹~R²⁰は、それぞれ独立に水素原子、アルケニル基、アルキル基、シクロアルキル基、アリール基、アルコキシル基、アリーロキシ基、アルキルアミノ基、アリールアミノ基又は置換してもよい複素環式基を示し、a及びbは、それぞれ1~5の整数を示し、それらが2以上の場合、R¹¹同士又はR¹²同士は、それぞれにおいて、同一でも異なっていてもよく、またR¹¹同士又はR¹²同士が結合して環を形成していてもよいし、R¹³とR¹⁴、R¹⁵とR¹⁶、R¹⁷とR¹⁸、R¹⁹とR²⁰がたがいに結合して環を形成していてもよい。L¹は単結合又は一〇一、一S一、一N(R)一(Rはアルキル基又は置換してもよいアリール基である)又はアリーレン基を示す。〕

$$(R^{21})c$$
 $(R^{26})b$ R^{23} R^{25} R^{30} R^{28} R^{29} R^{29} R^{29} R^{29}

(式中、 $R^{21}\sim R^{30}$ は、それぞれ独立に水素原子、アルケニル基、アルキル基、シクロアルキル基、アリール基、アルコキシル基、アリーロキシ基、アルキルア 5 ミノ基、アリールアミノ基又は置換してもよい複数環式基を示し、c、d、e及び f は、それぞれ $1\sim 5$ の整数を示し、それらが 2 以上の場合、 R^{21} 同士、 R^{2} 同士、 R^{26} 同士又は R^{27} 同士は、それぞれにおいて、同一でも異なっていてもよく、また R^{21} 同士、 R^{22} 同士、 R^{26} 同士又は R^{27} 同士が結合して環を形成していてもよいし、 R^{23} と R^{24} 、 R^{28} と R^{29} がたがいに結合して環を形成していてもよい。 L^{2} は単結合又は-O-、-S-、-N(R) - (Rはアルキル基又は置換してもよいアリール基である)又はアリーレン基を示す。〕

$$Ar^{6}$$
 Ar^{7}
 g

15 〔式中、 $A r ^ 5$ 、 $A r ^ 6$ 及び $A r ^ 7$ は、それぞれ独立に炭素原子数 $6 \sim 4 0$ の置換若しくは無置換の一価の芳香族基を示し、それらの中の少なくとも一つはスチリル基を含んでいてもよく、 $g は 1 \sim 4$ の整数を示す。〕

WO 2005/011333 PCT/JP2003/009525

11

$$\begin{pmatrix} Ar^{8} & N & Ar^{10} \\ Ar^{9} & Ar^{11} & Ar^{11} \\ Ar^{13} & Ar^{14} \end{pmatrix}_{k} [7]$$

〔式中、 Ar^8 、 Ar^9 、 Ar^{11} 、 Ar^{13} 及び Ar^{14} は、それぞれ独立に炭素原子数 $6\sim40$ の置換若しくは無置換の一価の芳香族基を示し、 Ar^{10} 及び Ar^{12} は、それぞれ独立に炭素原子数 $6\sim40$ の置換若しくは無置換の二価の芳香族基を示し、 $Ar^{8}\sim Ar^{14}$ の少なくとも一つはスチリル基又はスチリレン基を含んでいてもよく、h及びkはそれぞれ $0\sim2$ の整数、i及びjはそれぞれ $0\sim3$ の整数である。〕

青色系ドーパントは、スチリルアミン、アミン置換スチリル化合物及び縮合芳 10 香族環含有化合物の中から選ばれる少なくとも一種類であることが好ましい。そ のとき、青色系ドーパントは異なる複数の化合物から構成されていもよい。

上記スチリルアミン及びアミン置換スチリル化合物としては、例えば下記一般式 [8] ~ [9] で示される化合物が、上記縮合芳香族環含有化合物としては、例えば下記一般式 [10] で示される化合物が挙げられる。

15

$$Ar^{5} \qquad \qquad Ar^{6} \qquad \qquad [8]$$

$$Ar^{7} \qquad p$$

〔式中、 $A r^5$ 、 $A r^6$ 及び $A r^7$ は、それぞれ独立に、炭素原子数 $6 \sim 40$ の置換もしくは無置換の芳香族基を示し、それらの中の少なくとも一つはスチリル基 20 を含み、pは $1 \sim 3$ の整数を示す。〕

$$U \longrightarrow Ar^{15} \longrightarrow \left(\begin{matrix} C & & C & \\ & & \\ & & \\ E^1 & & E^2 \end{matrix} \right) \qquad [9]$$

WO 2005/011333

5

〔式中、 Ar^{16} 及び Ar^{16} は、それぞれ独立に、炭素原子数 $6\sim30$ のアリーレン基、 E^1 及び E^2 は、それぞれ独立に、炭素原子数 $6\sim30$ のアリール基もしくはアルキル基、水素原子又はシアノ基を示し、qは $1\sim3$ の整数を示す。U及び/又はVはアミノ基を含む置換基であり、該アミノ基がアリールアミノ基であると好ましい。〕

$$(A)_r$$
B

[式中、Aは炭素原子数1~16のアルキル基もしくはアルコキシ基、炭素原子 10 数6~30の置換もしくは未置換のアリール基、炭素原子数6~30の置換もしくは未置換のアルキルアミノ基、又は炭素原子数6~30の置換もしくは未置換のアリールアミノ基、Bは炭素原子数10~40の縮合芳香族環基を示し、rは1~4の整数を示す。〕

(2) 黄色~赤色系発光層

15 黄色~赤色系発光層はホスト材料と黄色~赤色系ドーパントからなる。

ホスト材料は青色系発光層で使用するホスト材料と同一のものを使用する。異なるホスト材料を用いた場合は、色変化が大きくなるため好ましくない。

黄色~赤色系ドーパントは、少なくとも一つのフルオランテン骨格又はペリレン骨格を有する蛍光性化合物が使用でき、例えば下記一般式〔11〕~〔27〕20 で示される化合物が挙げられる。

$$X^{12}$$
 X^{12}
 X^{13}
 X^{14}
 X^{10}
 X

$$X^{18}$$
 X^{17}
 X^{16}
 X^{15}
 X^{14}
 X^{13}
 X^{12}
 X^{11}
 X^{12}
 X^{10}
 X

$$X^{14}$$
 X^{13}
 X^{12}
 X^{10}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}
 X^{7}

$$X^{16}$$
 X^{15}
 X^{14}
 X^{13}
 X^{12}
 X^{10}
 X^{10}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{8}

$$X^{1}$$
 X^{18}
 X^{17}
 X^{16}
 X^{15}
 X^{14}
 X^{12}
 X^{12}
 X^{12}
 X^{13}
 X^{14}
 X^{12}
 X^{12}
 X^{14}
 X^{14}
 X^{15}
 X^{12}
 X^{14}
 X^{15}
 X^{12}
 X^{15}
 X^{15}
 X^{15}
 X^{15}
 X^{15}
 X^{15}
 X^{10}

$$X^{12}$$
 X^{12}
 X^{11}
 X^{10}
 X^{9}
 X^{8}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}

$$X^{14}$$
 X^{13}
 X^{12}
 X^{10}
 X

WO 2005/011333 PCT/JP2003/009525

$$X^{18}$$
 X^{17}
 X^{16}
 X^{14}
 X^{13}
 X^{12}
 X^{11}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{8}
 X^{9}
[21]

$$X^{16}$$
 X^{15}
 X^{14}
 X^{13}
 X^{12}
 X^{10}
 X^{10}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{8}

$$X^{1}$$
 X^{13}
 X^{12}
 X^{11}
 X^{10}
 $X^$

$$X^{10}$$
 X^{9}
 X^{7}
 X^{2}
 X^{4}
 X^{5}

$$[25]$$

10

15

「一般式〔11〕~〔25〕式中、 $X^1 \sim X^2^0$ は、それぞれ独立に、水素原子、直鎖、分岐もしくは環状の炭素原子数 $1 \sim 20$ のアルキル基、直鎖、分岐もしくは環状の炭素原子数 $1 \sim 20$ のアルコキシ基、置換もしくは無置換の炭素原子数 $1 \sim 20$ 0のアリール基、置換もしくは無置換の炭素原子数 $1 \sim 20$ 0のアリールオキシ基、置換もしくは無置換の炭素原子数 $1 \sim 30$ 0のアリールアミノ基、置換もしくは無置換の炭素原子数 $1 \sim 30$ 0のアルキルアミノ基、置換もしくは無置換の炭素原子数 $1 \sim 30$ 0のアルキルアミノ基、置換もしくは無置換の炭素原子数 $1 \sim 30$ 0のアリールアルキルアミノ基又は置換もしくは無置換炭素原子数 $1 \sim 30$ 0のアルケニル基であり、隣接する置換基及び $1 \sim 30$ 0は結合して環状構造を形成していてもよい。隣接する置換基がアリール基の時は、置換基は同一であってもよい。〕

また、一般式〔11〕~〔25〕式の化合物は、アミノ基又はアルケニル基を含有すると好ましい。

$$X^{21}$$
 X^{25}
 X^{36}
 X^{35}
 X^{34}
 X^{33}
 X^{32}
 X^{22}
 X^{23}
 X^{24}
 X^{27}
 X^{28}
 X^{29}
 X^{30}
 X^{31}

 $[-般式 [26] \sim [27] 式中、<math>X^{21} \sim X^{24}$ は、それぞれ独立に、炭素原子 5 数1~20のアルキル基、置換もしくは無置換の炭素原子数6~30のアリール 基であり、 X^{21} と X^{22} 及び/又は X^{23} と X^{24} は、炭素-炭素結合又は-O-、 -S-を介して結合していてもよい。 $X^{25}\sim X^{36}$ は、水素原子、直鎖、分岐も しくは環状の炭素原子数1~20のアルキル基、直鎖、分岐もしくは環状の炭素 原子数1~20のアルコキシ基、置換もしくは無置換の炭素原子数6~30のア 10 リール基、置換もしくは無置換の炭素原子数6~30のアリールオキシ基、置換 もしくは無置換の炭素原子数6~30のアリールアミノ基、置換もしくは無置換 の炭素原子数1~30のアルキルアミノ基、置換もしくは無置換の炭素原子数7 ~30のアリールアルキルアミノ基又は置換もしくは無置換炭素原子数8~30 のアルケニル基であり、隣接する置換基及び $X^{25} \sim X^{36}$ は結合して環状構造を 15 形成していてもよい。各式中の置換基X25~X36の少なくとも一つがアミン又 はアルケニル基を含有すると好ましい。〕

また、フルオランテン骨格を有する蛍光性化合物は、高効率及び長寿命を得る ために電子供与性基を含有することが好ましく、好ましい電子供与性基は置換も しくは未置換のアリールアミノ基である。

さらに、フルオランテン骨格を有する蛍光性化合物は、縮合環数 5 以上が好ましく、6 以上が特に好ましい。これは、蛍光性化合物が 5 4 0~7 0 0 nmの蛍光ピーク波長を示し、青色系発光材料と蛍光性化合物からの発光が重なって白色を呈するからである。

5 上記の蛍光性化合物は、フルオランテン骨格を複数有すると、発光色が黄色から赤色領域となるため好ましい。特に好ましい蛍光性化合物は、電子供与性基とフルオランテン骨格又はペリレン骨格を有し、540~700nmの蛍光ピーク波長を示すものである。

青色系発光層の膜厚は、好ましくは $5\sim30\,\mathrm{nm}$ 、より好ましくは $7\sim30\,\mathrm{nm}$ 加、最も好ましくは $10\sim30\,\mathrm{nm}$ である。 $5\,\mathrm{nm}$ 未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、 $30\,\mathrm{nm}$ を超えると駆動電圧が上昇する恐れがある。

黄色~赤色系発光層の膜厚は、好ましくは $10\sim50\,\mathrm{nm}$ 、より好ましくは $20\sim50\,\mathrm{nm}$ 、最も好ましくは $30\sim50\,\mathrm{nm}$ である。 $10\,\mathrm{nm}$ 未満では発光効率が低下する恐れがあり、 $50\,\mathrm{nm}$ を超えると駆動電圧が上昇する恐れがある。

2. 他の有機層

15

30

(1) 第一の有機層

陽極と青色系発光層の間に、第一の有機層として、正孔注入層、正孔輸送層又は有機半導体層等を設けることができる。

20 正孔注入層又は正孔輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常 5.5 e V以下と小さい。正孔注入層はエネルギーレベルの急な変化を緩和する等、エネルギーレベルを調整するために設ける。このような正孔注入層又は正孔輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移りません。例えば $10^4 \sim 10^6 \text{V/cm}$ の電界印加時に、少なくとも 10^{-6}cm^2 / $10^4 \sim 10^6 \text{V/cm}$ の電界印加時に、少なくとも 10^{-6}cm^2 / $10^4 \sim 10^6 \text{V/cm}$ の電界印加時に、少なくとも 10^{-6}cm^2

正孔注入層又は正孔輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層に使用されている公知のものの中から任意のものを選択して用いることができる。

このような正孔注入層又は正孔輸送層の形成材料としては、具体的には、例え ばトリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサ ジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾー ル誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導 体(米国特許3,615,402号明細書、同第3,820,989号明細書、 同第3,542,544号明細書、特公昭45-555号公報、同51-109 8 3 号公報、特開昭 5 1 - 9 3 2 2 4 号公報、同 5 5 - 1 7 1 0 5 号公報、同 5 6-4148号公報、同55-108667号公報、同55-156953号公 報、同56-36656号公報等参照)、ピラゾリン誘導体およびピラゾロン誘 導体(米国特許第3, 180, 729号明細書、同第4, 278, 746号明細 10 書、特開昭55-88064号公報、同55-88065号公報、同49-10 5537号公報、同55-51086号公報、同56-80051号公報、同5 6-88141号公報、同57-45545号公報、同54-112637号公 報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許 第3,615,404号明細書、特公昭51-10105号公報、同46-37 15 12号公報、同47-25336号公報、特開昭54-53435号公報、同5 4-110536号公報、同54-119925号公報等参照)、アリールアミ ン誘導体(米国特許第3,567,450号明細書、同第3,180,703号 明細書、同第3,240,597号明細書、同第3,658,520号明細書、 同第4, 232, 103号明細書、同第4, 175, 961号明細書、同第4, 20 - 0 1 2, 3 7 6 号明細書、特公昭49-35702号公報、同39-27577 号公報、特開昭55-144250号公報、同56-119132号公報、同5 6-22437号公報、西独特許第1,110,518号明細書等参照)、アミ ノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキ サゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、ス 25 チリルアントラセン誘導体(特開昭56-46234号公報等参照)、フルオレ ノン誘導体(特開昭54-110837号公報等参照)、ヒドラゾン誘導体(米 国特許第3,717,462号明細書、特開昭54-59143号公報、同55 -52063号公報、同55-52064号公報、同55-46760号公報、 同55-85495号公報、同57-11350号公報、同57-148749 30

号公報、特開平2-311591号公報等参照)、スチルベン誘導体(特開昭6 1-210363号公報、同第61-228451号公報、同61-14642 号公報、同61-72255号公報、同62-47646号公報、同62-36 674号公報、同62-10652号公報、同62-30255号公報、同60 5-93455号公報、同60-94462号公報、同60-174749号公報、同60-175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282263号公報)、特開平1-211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙 10 げることができる。

正孔注入層又は正孔輸送層の材料としては、上記のものを使用することができ るが、ポルフィリン化合物(特開昭63-2956965号公報等に開示のも の)、芳香族第三級アミン化合物およびスチリルアミン化合物(米国特許第4, 127.412号明細書、特開昭53-27033号公報、同54-58445 号公報、同54-149634号公報、同54-64299号公報、同55-7 15 9450号公報、同55-144250号公報、同56-119132号公報、 同61-295558号公報、同61-98353号公報、同63-29569 5号公報等参照)、芳香族第三級アミン化合物を用いることもできる。また米国 特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有 する、例えば4. 4'-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビ 20 フェニル、また特開平4-308688号公報に記載されているトリフェニルア ミンユニットが3つスターバースト型に連結された4,4',4"ートリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン等を挙げる ことができる。さらに、発光層の材料として示した前述の芳香族ジメチリディン 系化合物の他、p型Si、p型SiC等の無機化合物も正孔注入層又は正孔輸送 25 層の材料として使用することができる。

この正孔注入層又は正孔輸送層は、上述した材料の1種または2種以上からなる一層で構成されてもよいし、また、正孔注入層又は正孔輸送層とは別種の化合物からなる正孔注入層又は正孔輸送層を積層したものであってもよい。

30 正孔注入層又は正孔輸送層の膜厚は、特に限定されないが、好ましくは、20

~200nmである。

有機半導体層は、発光層への正孔注入または電子注入を助ける層であって、1 0-10 S/cm以上の導電率を有するものが好適である。このような有機半導体層 の材料としては、含チオフェンオリゴマーや特開平8-193191号公報に記 載の含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデン ドリマー等の導電性デンドリマー等を用いることができる。

有機半導体層の膜厚は、特に限定されないが、好ましくは、10~1,000 nmである。

(2) 第二の有機層

陰極と黄色~赤色系発光層の間に、第二の有機層として、電子注入層又は電子 10 輸送層等を設けることができる。

電子注入層又は電子輸送層は、発光層への電子の注入を助ける層であって、電 子移動度が大きい。電子注入層はエネルギーレベルの急な変化を緩和する等、エ ネルギーレベルを調整するために設ける。

電子注入層又は電子輸送層に用いられる材料としては、8-ヒドロキシキノリ 15 ン又はその誘導体の金属錯体が好適である。上記8-ヒドロキシキノリン又はそ の誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は 8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、 例えばトリス (8-キノリノール) アルミニウムを用いることができる。そして、 オキサジアゾール誘導体としては、下記一般式[28]~[30]

$$Ar^{17} - Ar^{18}$$

$$Ar^{19}$$
 Ar^{20} Ar^{21} [29]

$$Ar^{22}$$
 Ar^{23} Ar^{23} Ar^{24} Ar^{25} [30]

(式中、Ar¹⁷、Ar¹⁸、Ar¹⁹、Ar²¹、Ar²²及びAr²⁵は、それぞれ置換基を有する若しくは有しないアリール基を示し、Ar¹⁷とAr¹⁸、Ar¹⁹とAr²¹、Ar²²とAr²⁵は、たがいに同一でも異なっていてもよい。Ar²⁰、Ar²³及びAr²⁴は、それぞれ置換基を有する若しくは有しないアリーレン基を示し、Ar²³とAr²⁴は、たがいに同一でも異なっていてもよい。)で表される電子伝達化合物が挙げられる。これら一般式[28]~[30]におけるアリール基としては、フェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。また、アリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン 基などが挙げられる。そして、これらへの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基またはシアノ基等が挙げられる。この電子伝達化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。

電子注入層又は電子輸送層の膜厚は、特に限定されないが、好ましくは、1~

100nmである。

陽極に最も近い有機層である青色系発光層又は第一の有機層が、酸化剤を含有 していることが好ましい。発光層又は第一の有機層に含有される好ましい酸化剤 は、電子吸引性又は電子アクセプターである。

5 好ましくはルイス酸、各種キノン誘導体、ジシアノキノジメタン誘導体、芳香 族アミンとルイス酸で形成された塩類である。特に好ましいルイス酸は、塩化鉄、 塩化アンチモン、塩化アルミニウム等である。

陰極に最も近い有機層である黄色~赤色系発光層又は第二の有機層が、還元剤を含有していることが好ましい。好ましい還元剤は、アルカリ金属、アルカリ土 類金属、アルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、アルカリ金属と芳香族化合物で形成される錯体である。特に好ましいアルカリ金属はCs、Li、Na、Kである。

3. 無機化合物層

30

15 陽極及び/又は陰極に接して無機化合物層を有していてもよい。無機化合物層 は、付着改善層として機能する。

無機化合物層に使用される好ましい無機化合物としては、アルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類 ハロゲン化物、希土類ハロゲン化物、SiO_x、AlO_x、SiN_x、SiON、

20 Alon、 GeO_x 、 LiO_x 、LiOn、 TiO_x 、TiOn、 TaO_x 、 TaO_x 、 TaO_x 0 TaO_x 1 TaO_x 2 TaO_x 3 TaO_x 4 TaO_x 5 TaO_x 6 TaO_x 7 TaO_x 7 TaO_x 8 TaO_x 9 TaO_x 1 TaO_x 1 TaO_x 1 TaO_x 1 TaO_x 2 TaO_x 3 TaO_x 4 TaO_x 5 TaO_x 6 TaO_x 7 TaO_x 7 TaO_x 8 TaO_x 9 TaO_x 9

特に陽極に接する層の成分としては、 SiO_x 、 AlO_x 、 SiN_x 、SiON、AlON、 GeO_x 、Cが安定な注入界面層を形成して好ましい。

また、特に陰極に接する層の成分としては、LiF、MgF₂、CaF₂、MgF₂、MgF₂、MgF₂、MgF₂ MgF₂ MgF₂

無機化合物層の膜厚は、特に限定されないが、好ましくは、 $0.1nm\sim10$ 0 nmである。

発光層を含む各有機層及び無機化合物層を形成する方法は、特に限定されないが、例えば、蒸着法、スピンコート法、キャスト法、LB法等の公知の方法を適用することができる。また、得られる有機EL素子の特性が均一となり、また、

製造時間が短縮できることから、電子注入層と発光層とは同一方法で形成することが好ましく、例えば、電子注入層を蒸着法で製膜する場合には、発光層も蒸着法で製膜することが好ましい。

4. 電極

- 5 陽極としては、仕事関数の大きい(例えば、4.0 e V以上)金属、合金、電気伝導性化合物又はこれらの混合物を使用することが好ましい。具体的には、インジウムチンオキサイド(ITO)、インジウムジンクオキサイド、スズ、酸化亜鉛、金、白金、パラジウム等の1種を単独で、又は2種以上を組み合わせて使用することができる。
- 10 また、陽極の厚さも特に制限されるものではないが、 $10\sim1$, 000nmの範囲内の値とするのが好ましく、 $10\sim200$ nmの範囲内の値とするのがより好ましい。

陰極には、仕事関数の小さい(例えば、4.0 e V未満)金属、合金、電気電 導性化合物又はこれらの混合物を使用することが好ましい。具体的には、マグネ シウム、アルミニウム、インジウム、リチウム、ナトリウム、銀等の1種を単独 で、又は2種以上を組み合わせて使用することができる。また陰極の厚さも特に 制限されるものではないが、 $10\sim1000$ nmの範囲内の値とするのが好ましく、 $10\sim200$ nmの範囲内の値とするのがより好ましい。

陽極又は陰極の少なくとも一方は、発光層から放射された光を外部に有効に取 20 り出すことが出来るように、実質的に透明、より具体的には、光透過率が10% 以上の値であることが好ましい。

電極は、真空蒸着法、スパッタリング法、イオンプレーティング法、電子ビーム蒸着法、CVD法、MOCVD法、プラズマCVD法等により製造できる。

以下、本発明の実施例を説明するが、本発明はこれらの実施例によって限定さ 25 れるものではない。

なお、各例で得られた有機EL素子の評価は下記の通りである。

- (1) 初期性能: CIE1931色度座標にて色度を測定し評価した。
- (2) 寿命:初期輝度1000cd/m²で定電流駆動し、輝度の半減期、及び 色度の変化で評価した。
- 30 (3) 耐熱性:105℃にて保存試験を実施し、500時間後の色度変化で評

価した。L/J変化は、輝度Lと電流密度Jの比で表される初期のL/Jを、1 としたときの変化である。

[実施例]

5 実施例1

25

(有機EL素子の形成)

25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。

10 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmのN, N'ービス(N, N'ージフェニルー4ーアミノフェニル)ーN, Nージフェニルー4, 4'ージアミノー1, 1'ービフェニル膜(以下「TPD232膜」と略記する)を成膜した。このTPD232膜は、正15 孔注入層として機能する。

TPD232膜の成膜に続けて、このTPD232膜上に膜厚20nmの4,4'ービス[N-(1-ナフチル)ーN-フェニルアミノ]ビフェニル膜(以下「NPD膜」と略記する)を成膜した。このNPD膜は正孔輸送層として機能する。

20 さらに、NPD膜の成膜に続けて、膜厚10nmにて式〔31〕で示されるスチリル誘導体DPVPDANと、式〔32〕で示されるB1を40:1の重量比で蒸着し成膜し、青色系発光層とした。

次いで、30 nmにてスチリル誘導体DPVPDANと式〔33〕で示されるR1 (蛍光ピーク波長545 nm)を40:1 の重量比で蒸着し成膜し、黄色~赤色系発光層とした。

この膜上に、電子輸送層として膜厚10nmのトリス(8-キノリノール)アルミニウム膜(以下「A1q膜」と略記する。)を成膜した。

この後、Li (Li源: サエスゲッター社製) とAlqを二元蒸着させ、電子 注入層としてAlq: Li 膜を10nm形成した。

30 このA1q:Li膜上に金属A1を150nm蒸着させ金属陰極を形成し有機

EL発光素子を形成した。

WO 2005/011333

(有機EL素子の性能評価)

この素子を初期輝度 $1000cd/m^2$ で定電流駆動したところ寿命は1万時間であり優れていた。

また、105 ℃にて保存試験を実施したところ、500 時間後での色度は (0.278, 0.271) であり、試験前後での色差は (-0.004, -0.010) であり優れていることが確認できた。

実施例1及び下記の比較例1~3で得られた有機EL素子の初期性能、寿命及び耐熱性の測定結果を表1に示す。

この表から明らかなように、本実施例の有機EL素子は、寿命が長く耐熱性が高く、色変化が少なかった。

15 比較例1

5

実施例1と同様に素子を作製した。ただし、NPD膜の上に、10nmにてスチリル誘導体DPVDPANと化合物(R1)を100:1の重量比で蒸着し黄色~赤色系発光層とし、さらに膜厚30nmにてスチリル誘導体DPVDPANと化合物(B1)を40:1の重量比で蒸着し成膜し、青色系発光層とした。しかし、色度が(0.417,0.436)となり、白色ではなく、黄色発光となった。105℃保存試験を実施したが、実施例1に比べて色度変化が極めて大きかった。

比較例2

実施例1と同様に素子を作製した。ただし、NPD膜の上に、5nmにてスチ リル誘導体DPVDPANと化合物(R1)を300:1の重量比で蒸着し黄色 ~赤色系発光層とし、さらに膜厚35nmにてスチリル誘導体DPVDPANと 化合物(B1)を40:1の重量比で蒸着し成膜し、青色系発光層とした。色度 が(0.321,0.341)となり、良好な白色が得られた。しかし、105 $^{\circ}$ C保 存試験において、実施例1に比べて色度変化が大きくなった。

比較例3

実施例 1 と同様に素子作製をした。ただし、正孔輸送層としてNPDと同時に (R1)を40:1の割合でドーピングした。さらに、発光層を青色系発光層の みとし、青色系発光層の膜厚を40 nmとした。

5

表1

	初期性能	室温連続駆動	
	色度	半減寿命 (h)	色度変化
実施例1	(0.282, 0.281)	10000	(0.015, 0.015)
比較例1	(0.417, 0.436)	7000	(0.015, 0.020)
比較例2	(0.321, 0.341)	10000	(0.015, 0.015)
比較例3	(0.330, 0.345)	8000	(0.018, 0.024)

	耐熱性	
	L/J 変化	色度変化
実施例1	1.17	(-0.004,-0.010)
比較例1	1.44	(0.024, 0.034)
比較例 2	1.20	(0.012, 0.019)
比較例3	1.20	(0.025, 0.036)

産業上の利用可能性

10 本発明よれば、色変化が少ない白色系有機EL素子を提供することができる。

請求の範囲

1. 陽極と、

ホスト材料と青色系ドーパントを含む青色系発光層と、

5 前記青色系発光層と同一のホスト材料と黄色~赤色系ドーパントを含む黄色~ 赤色系発光層と、

陰極と、

をこの順序に積層して含み、

前記青色系発光層と前記黄色~赤色系発光層から発光層が構成される白色系有 10 機工レクトロルミネッセンス素子。

- 2. 前記青色系発光層が酸化剤を含む請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。
- 15 3. さらに、前記陽極と前記青色系発光層の間に、第1の有機層を含み、前記第 1の有機層が酸化剤を含む請求の範囲第1項記載の白色系有機エレクトロルミネ ッセンス素子。
- 4. 前記黄色~赤色系発光層が還元剤を含む請求の範囲第1項記載の白色系有機20 エレクトロルミネッセンス素子。
 - 5. さらに、前記陰極と前記黄色~赤色系発光層の間に、第2の有機層を含み、前記第2の有機層が還元剤を含む請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。

- 6. さらに、前記陽極及び/又は前記陰極に接して無機化合物層を含む請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。
- 7. 前記ホスト材料が、スチリル誘導体、アントラセン誘導体又は芳香族アミン30 である請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。

PCT/JP2003/009525

- 8. 前記スチリル誘導体が、ジスチリル誘導体、トリススチリル誘導体、テトラスチリル誘導体又はスチリルアミン誘導体である請求の範囲第7項記載の白色系有機エレクトロルミネッセンス素子。
- 5 9. 前記アントラセン誘導体が、フェニルアントラセン骨格を含有する化合物である請求の範囲第7項記載の白色系有機エレクトロルミネッセンス素子。
- 10. 前記芳香族アミンが、芳香族に置換された窒素原子を2、3又は4つ含有する化合物である請求の範囲第7項記載の白色系有機エレクトロルミネッセンス 3 素子。
 - 11. 前記芳香族アミンが、さらにアルケニル基を少なくとも一つ含有する化合物である請求の範囲第10項記載の白色系有機エレクトロルミネッセンス素子。
- 12. 前記青色系ドーパントが、スチリルアミン、アミン置換スチリル化合物又は縮合芳香族環含有化合物より選択される少なくとも一種類の化合物である請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。
- 13. 前記黄色~赤色系ドーパントが、フルオランテン骨格を複数有する化合物 20 である請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。
 - 14. 前記黄色~赤色系ドーパントが、電子供与性基とフルオランテン骨格を含有する化合物である請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。

- 15. 前記黄色~赤色系ドーパントの蛍光ピーク波長が、540nm~700nmである請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。
- 16. 前記青色系発光層及び前記黄色~赤色系発光層の膜厚が、5nm以上であ 30 る請求の範囲第1項記載の白色系有機エレクトロルミネッセンス素子。

WO 2005/011333 PCT/JP2003/009525

1/1

図 1

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/09525

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H05B33/12, H05B33/14, H05B33/22, C09K11/06					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELD	S SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H05B33/00-33/28					
Jitsı Kokai	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2003 Kokai Jitsuyo Shinan Koho 1971-2003 Toroku Jitsuyo Shinan Koho 1994-2003				
Electronic d	lata base consulted during the international search (nam	e of data base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Y	JP 10-3990 A (Idemitsu Kosan Co., Ltd.), 06 January, 1998 (06.01.98), Claims; page 34, left column, line 46 to right column, line 38; Fig. 1 (Family: none)		1-16		
Y	JP 2000-182768 A (Denso Corp 30 June, 2000 (30.06.00), Page 5, left column, lines 28 & US 6447934 B		1-16		
Further documents are listed in the continuation of Box C. See patent family annex.					
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 16 September, 2003 (16.09.03)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No		Telephone No.			

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2001-250690 A (Idemitsu Kosan Co., Ltd.), 14 September, 2001 (14.09.01), Claims 13 to 21; page 4, left column, line 21 to right column, line 28; page 10, right column, line 5 to page 13, left column, line 32 & WO 01/48116 A & EP 1182244 A & US 2002/168544 A & CN 1342190 A & KR 2001102413 A	2-12
Y	JP 2001-244079 A (Junji SHIRODO, Kabushiki Kaisha Aimesu), 07 September, 2001 (07.09.01), Claim 1 & US 6589673 B & CN 1290119 A & KR 2001050711 A	2-3
Y	JP 10-270171 A (Junji SHIRODO, Kabushiki Kaisha Aimesu), 09 October, 1998 (09.10.98), Claims 1 to 2 & US 6013384 A & CN 1190322 A & KR 98070765 A	4-5
Y	JP 2000-100572 A (Seiko Epson Corp.), 07 April, 2000 (07.04.00), Claims & WO 00/05929 A & EP 1018857 A & CN 1286891 A & KR 2001015611 A	6
Y	JP 8-12600 A (TDK Corp.), 16 January, 1996 (16.01.96), Full text & EP 681019 A & US 5635308 A	9
Y	WO 01/023497 A (Idemitsu Kosan Co., Ltd.), 05 April, 2001 (05.04.01), Full text & EP 1138745 A & US 2003/54200 A & CN 1327468 A & KR 2001099809 A	13-15
A	JP 7-142169 A (Mitsubishi Chemical Corp.), 02 June, 1995 (02.06.95), (Family: none)	1

国際調査報告

発明の属する分野の分類 (国際特許分類 (IPC)) Int. Cl7 H05B33/12, H05B33/14, H05B33/22, C09K11/06 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. $C1^7$ H05B33/00-33/28 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2003年 日本国実用新案登録公報 1996-2003年 日本国登録実用新案公報 1994-2003年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP 10-3990 A (出光興産株式会社) Y 1 - 161998.01.06, 特許請求の範囲,第34頁左欄46行-右欄38行,第1図 (ファミリーなし) Y IP 2000-182768 A (株式会社デンソー) 1 - 162000.06.30,第5頁左欄28行-47行,第1図 &US 6447934 □ パテントファミリーに関する別紙を参照。 区欄の続きにも文献が列挙されている。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 20, 08, 03 16.09.03 国際調査機関の名称及びあて先 特許庁審査官 (権限のある職員) 2 V 9529 日本国特許庁(ISA/JP) 今関 雅子 郵便番号100-8915 電話番号 03-3581-1101 内線 3271 東京都千代田区霞が関三丁目4番3号

G ((##.)		
C (続き) 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	JP 2001-250690 A(出光興産株式会社) 2001.09.14,請求項13-21, 第4頁左欄21行-右欄28行, 第10頁右欄5行-第13頁左欄32行 &WO 01/48116 A &EP 1182244 A &US 2002/168544 A &CN 1342190 A &KR 2001102413 A	2-12
Y	JP 2001-244079 A (城戸淳二,株式会社アイメス),2001.09.07, 請求項1 &US 6589673 B &CN 1290119 A &KR 2001050711 A	2-3
Y	JP 10-270171 A (城戸淳二,株式会社アイメス) 1998.10.09,請求項1-2 &US 6013384 A &CN 1190322 A &KR 98070765 A	4 — 5 ·
Y	JP 2000-100572 A (セイコーエプソン株式会社) 2000.04.07, 特許請求の範囲 &WO 00/05929 A &EP 1018857 A &CN 1286891 A &KR 2001015611 A	6
Y	JP 8-12600 A (ティーディーケイ株式会社) 1996.01.16,全文 &EP 681019 A &US 5635308 A	9
Y	WO 01/023497 A (出光與産株式会社) 2001.04.05,全文 &EP 1138745 A &US 2003/54200 A &CN 1327468 A &KR 2001099809 A	13-15
A	JP 7-142169 A (三菱化学株式会社) 1995.06.02 (ファミリーなし)	1