Machine Learning

- Gradient Descent Algorithm
- Linear Regression
- Non-Linear Regression
- Logistic Regression
- Decision Trees
 - o Regression Trees
 - o Classification Trees
- Clustering Algorithms
 - o K-Means
 - Hierarchical clustering
 - o DB-Scan
 - Mean Shift
 - o GMM
- Support Vector Machine

Deep Learning

- o MLP
- o CNN

Datasets

- Breast Cancer Wisconsin
- o MIMIC-III
- Framingham Heart Study
- Alzheimer's Disease Neuroimaging Initiative
- Drug discovery
- Microbiome

Model complexity

my humble ML course

Model complexity

Input Real Output supervised learning find a model \hat{f} that best approximates $f:\hat{f}\approx f$ \hat{f} should achieve a low predictive error on unseen datasets. Model / **Hypothesis** hidden layers 7-10-100 input layer output layer

Model complexity

 \hat{f} is not flexible enough to approximate f

 \hat{f} fits the training set noise

Bias

- bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
- how much $\hat{f} \neq f$

high bias: very little attention to the training data and oversimplifies the model

low bias: ...

Variance

- variability of model prediction for a given data point or a value which tells us spread of our data.
- how much $\hat{f} \neq f$

high variance: pays a lot of attention to training data and does not generalize on the data which it hasn't seen before

low variance: ...

 $Err(x) = Bias^2 + Variance + Irreducible Error$

$$Err(x) = \mathrm{Bias}^2 + \mathrm{Variance} + \mathrm{Irreducible}$$
 Error

overfitting

underfitting

Good balance

When the model complexity increases, the variance increases while the bias decreases

When the model complexity decreases, the variance decreases while the bias increases.

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

Since this error is the sum of three terms with the irreducible error being constant, you need to find a balance between bias and variance because as one increases the other decreases. This is known as the bias-variance trade-off.

in context ...

CART in practice:

- Can easily overfit
- How do we regularize?
 - Can stop if gain is small
 - But this can be short-sighted
- Can use tree pruning
- Can use ensemble methods.

in context ...

Algorithm	Bias	Variance
Linear Regression	High Bias	Less Variance
Decision Tree	Low Bias	High Variance
Bagging	Low Bias	High Variance (Less than Decision Tree)
Random Forest	Low Bias	High Variance (Less than Decision Tree and Bagging)

Diagnose bias and variance problems

.

Generalization error

How do we estimate the generalization error of a model?

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

- ML algorithms -> data-driven models
- Usually you only have one dataset

inginieries de dutos Hold Out CV 500 Original set abuignante origiting Training set Test set Training set Validation set Test set Training, tuning, and evaluation Machine learning algorithm Predictive Model Final performance estimate

K Fold CV

5	
_	

Split 1	Fold 1	Fold 2 ·	Fold 3	Fold 4	Fold 5	Metric 1	-
Split 2	F <u>old</u> 1	Fold 2°	Fold 3	Fold 4	Fold 5	Metric 2	
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3	
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4	-
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5	

Training data

Test data

Diagnose problems

Bias problems

High bias (underfitting)

CV error ≈ training set error >> desired error

Variance problems

High variance (overfitting)

CV error > training set error

Leave-One-Out CV (LOOCV)

Random Subsampling

Bootstrapping

Bibliography

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

https://app.datacamp.com/learn/courses/machine-learning-with-tree-based-models-in-python

https://www.bmc.com/blogs/bias-variance-machine-learning/

https://medium.com/@eijaz/holdout-vs-cross-validation-in-machine-learning-7637112d3f8f

https://moredvikas.wordpress.com/2018/10/10/machine-learning-model-validation-techniques/