NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

JSC-16748 -A

DEC 0 4 1980

Lyndon B. Johnson Space Center Houston, Texas 77058

NASA CR-160957

STS-2

 \mathcal{L}

SAIL NON-AVIONICS SUBSYSTEMS
MATH MODEL REQUIREMENTS

(This revision supersedes LEMSCO-14524, issued Guly 1980.)

Prepared By

Lockheed Engineering and Management Services Company, Inc.
Houston, Texas

For

SHUTTLE AVIONICS INTEGRATION DIVISION

November 1980

(NASA-CR-160957) STS-2: SAIL NON-AVIONICS SUBSYSTEMS MATH MODEL REQUIREMENTS (Lockneed Engineering and Management) 420 pHC A18/MF A01

N81-27189

Unclas

G3/16 31031

O. S.

LEMSCO-14524_A

1. William of sugarant a trib.

JSC-16748 -A

DEC 0 4 1980

Lyndon B. Johnson Space Center Houston. Texas 77058

NASA CR- 160957

STS-2
SAIL NON-AVIONICS SUBSYSTEMS
MATH MODEL REQUIREMENTS

Job Order 22-109 5 . Contract NAS 9-15800

3511 352 30

(This revision supersedes LEMSCO-14524, issued July 1980.)

Prepared By

Lockheed Engineering and Management Services Company, Inc.
Houston, Texas

For

SHUTTLE AVIONICS INTEGRATION DIVISION

', November 1980

Chen,

LEMSCO-14524_A

STS-2 SAIL NON-AVIONICS SUBSYSTEMS MATH MODEL REQUIREMENTS

Job Order 22-109

PREPARED BY

Principal Engineer Systems Integration Section Systems Engineering Department,625-21

Systems Integration Section Systems Engineering Department, 625-21

APPROVED BY

Systems Integration Section
SAIL Operations Branch, EF2
Systems Engineering Department,625-21
SHUTTLE AVIONICS INTEGRATION DIVISION

D. Overton, Chief

Prepared By

Lockheed Engineering and Management Services Company, Inc. Houston, Texas

For

SHUTTLE AVIONICS INTEGRATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

November 1980

1. Report No. JSC- 16748-A	2. Government Acces N/A	sion No.	3. Recipient's Catalog	No.					
4. Title and Subtitle STS-2			5. Report Date November, 19	080					
SAIL NON-AVIONICS SUBSYSTEMS 'ATH MODEL REQUIREMENTS			6. Performing Organia N/A	ration Code					
7. Author(s)			8. Performing Organiz	-					
B. E. Carlton		-	10. Work Unit No.	4 - <u>H</u>					
9. Performing Organization Name and Address SYSTEMS ENGINEERING DEPARTMENT			N/A						
LOCKHEED			11. Contract or Grant	No.					
1830 NASA ROAD 1			NAS 9-15800	•					
HOUSTON, TEXAS 77058			13. Type of Report ar	nd Period Covered					
12. Sponsoring Agency Name and Address			NASA/JSC						
SAIL OPERATIONS OFFICE	NIVICION ICC HOU	CTON TEVAC	14. Sponsoring Agency	Code					
SHUTTLE AVIONICS INTEGRATION D)141210W-92C WOO	SIUN, IEAAS	N/A						
15. Supplementary Notes									
NONE									
16. Abstract									
Simulation of the STS-2 Shuttle non-avionics subsystems in the Shuttle Avionics Integrated Laboratory (SAIL) is necessary for verification of the integrated Shuttle avionics system. This report documents the math model (simulation) requirements for each of the ion-avionics subsystems that interfaces with the Shuttle avionics system and provides a ringle source document for controlling approved changes (by the SAIL Change Control inel) to the math models. PRECEDING PAGE BLANK NOT FILMED									
17. Key Words (Suggested by Author(s))		18. Distribution Statement							
SAIL NON-AVIONICS MATH MODELS		N/A							

security Classif, (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*					
U	U			•					

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161

SAIL NON-AVIONICS MATH MODEL CHANGE STATUS

The baselined SAIL non-avionics math model requirements are provided in Appendix A through N. Future approved SCR's will be identified on the Change Status Sheet which will be released with the revised math model pages and the title page (revision number change) for incorpo-

ration in this report.

	in this report.	·	
SCR/ESCR NUMBER	DATE	MODEL/ PAGE(S)	CHANGE SUMMARY
1113	10/18		NOMENCLATURE CONVENTION: CHANGE GSIU TO STS NAS GTS NAS IMPLIES GTS RIG. NAS IMPLIES BOTH STS & GTS
1173	10/27	APU/HYD TABLE 2	• NOMINAL VALUE CHANGES TO V46T0222A V46T0184A V46T0284A V46T0384A V46P0290A
N/A	10/30	MPS TABLE 1	ADDED LDT-LO2 DUMP TIME PSEUDO HDT-LH2 DUMP TIME PSEUDO
N/A	10/30	MPS TABLE 2	VALUE CHANGES FOR ENGINE INLET PRESSURES, PLUS, LOGIC FLOW DIAGRAM CHANGE
N/A	11/20	MPS	DELETION OF MMES REFERENCE IN GTS, ie DELETION OF: VE; VGH; for i = 1, 2, 3 VGO;
1184	10/20	MPS	ADDED 3 PRESSURE MEASUREMENTS TO THE HE SYSTEM: i.e. V41P1153A V41P1253A V41P1353A

ACKNOWLEDGEMENT

The SAIL non-avionics math model requirements contained in the appendices of this report resulted from the combined efforts of Lockheed Engineering and Management Services Company, Inc. (R. W. Herold and W. P. Bennett) and Rockwell/Downey (C. D. McPhail et. al.). These requirements are those baselined by the SAIL Change Control Panel.

CONTENTS

	. •	Page
Sect	tion	1-1
١.	INTRODUCTION	2-1
	PURPOSE	
3.	TEST STATION SIMULATOR CONFIGURATIONS	3-1
	3.1 STS CONFIGURATION	3-4
	3.2 GTS CONFIGURATION	3-8
	MATH MODEL DESIGN	4-1
4.		4-1
	4.1 DESIGN GROUNDRULES	• •
	4.2 CHANNELIZATION	4-2
	4.3 FAULT INSERTION	4-2
	APPLICABLE DOCUMENTS	5-1
5.		6-1
6.	ACRONYM LIST	0-1

APPE	ENDIX	Page
A.	APU/Hydraulics Math Model Requirements	A-1
B.	Vent Doors Math Model Requirements	B-1
C.	Umbilical Doors Math Model Requirements	C-1
D.	ET Sep Pyros Math Model Requirements	D-1
E.	MPS Plumbing Math Model Requirements	E-1
F.	Fuel Cell/Cryo Math Model Requirements	F-1
G.	Atmosphere Revitalization/H20 Loops Math Model Requirements	G-1
н.	Atmosphere Revitalization/PCS-Airlock Math Model Requirements	H-1
I.	Active Thermal Control Math Model Requirements	I-1
J.	Smoke Detection Math Model Requirements	J-1
Κ.	Water/Waste Management Math Model Requirements	K-1
L.	RCS/OMS (DFI) Math Model Requirements	L-1
М.	Switch Math Model Requirements	
N.	Recorder Math Model Requirements	M-1 N-1

TABLES

															Page
Table		_									_				1-2
1.	NON-AVIONICS MATH MODEL APPLICATIONS	2	٠	•	•	•	•	•	•	•	•	·	Ī		

FIGURES

						Page
igure				. •		 3-2
ı	SATL	Non-Avionics	simulators	functional	interfaces	

1. INTRODUCTION

The SAIL non-avionics math models are required to support verification of the Ascent Ops 1 Avionics Configuration, On-Orbit Ops 2 Avionics Configuration, Entry Ops 3 Configuration, and the Backup Flight System. The non-avionics subsystems math models resident in the GTS and/or the STS and their application to testing each of the Ops configurations are summarized in Table I.

This document defines non-avionic math model requirements for the STS and GTS that support GN&C tests, as well as the following GPC software functions: namely, Systems Management (SM), Fault Detection and Annunciation (FDA), Switch Scan, and Special Processing.

			PRIMA	RY	
MATH MODEL	IMPLEMENTATION REQUIREMENT	ASCENT OPS 1	ON-ORBIT OPS 2 GNC SM	ENTRY OPS 3	BFS GNC SM
APU/ HYDRAULICS VENT DOORS UMBILICAL DOORS ET SEP PYROS MPS PLUMBING FUEL CELL/CRYO ATMOS REVITALIZATION/PCS- AIRLOCK ACTIVE THERMAL CONTROL SMOKE DETECTION SYSTEM WATER/WASTE MGMT RCS/OMS (DFI) SWITCH RECORDER		✓ ✓ ✓ ✓			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

2. PURPOSE

The purpose of this report is to provide a single source document for consistently controlling approved changes to the non-avionics math models. When changes are approved, change pages will be released and a change status page will accompany each change release. The change status page should be inporporated behind the signature page and will provide a history of all changes to this JSC report. The form of this change sheet is provided at the front of this document.

3. TEST STATION SIMULATOR CONFIGURATIONS

The purpose of this section is to describe the functional similarities and differences between the STS and the GTS simulators in order to give a basis for the statement of STS non-avionics math model requirements and GTS non-avionics math model requirements. The simulators are describer only to the level of detail necessary to delineate the non-avionics math model requirements and are not considered definitive with respect to the details of actual simulator hardware implementations or modifications.

In the sections and appendices that follow, the non-avionics simulator for STS is referred to as STS NAS, the non-avionics simulator for GTS is referred to as GTS NAS, and a reference to both the STS and GTS simulators is referred to as NAS.

Figure 1 shows the major interfaces with the non-avionics simulator. Path A is used for bidirectional communication between the NAS and the GPC through payload MDM's. Path R is used by NAS for transmission of output measurements to the PCM master unit via O/I and DFI MDM's. Path C denotes bidirectional data transmission via flight critical MDM's. Bidirectional communication with the MMES is accomplished by Path D. Output to the GN&C simulator is accomplished by Path E. Path F interfaces mechanical hardware with the simulator. Path G interfaces the Flight Recorder output with the simulator.

Notice from figure 1 that while STS uses all the interfaces A thru G. GTS uses paths A. B. C and E.

(F)

(0)

HOTE 1 - GTS REGIMT ONLY . SWITCH FUNCTION PROVIDED BY VARIOUS SOURCES IN STS.

505 w/wms

RAS/oms

SWITCH

RCAR

B

6

NOTE 1 A,B

The table of figure 1 shows the similarities and differences between STS and GTS. For example, the vent doors, umbilical doors, ET separation pyros, and the recorder are simulated in STS by the use of mechanical hardware on interrace paths F and G where as the lack of this hardware in GTS necessitates the requirement for math models to accomplish these functions. Therefore, the vents doors, umbilical doors, ET separation pyros and the recorder math models reside only in GTS.

The math models shown in the table on figure 1 reside in the STS and GTS non-avionic simulators (NAS) with the exception noted above.

The MPS is the only math model which has interfaces with other simulators. The MPS communicates with the MMES and the GN&C simulators.

Interfaces exist between some of the non-avionics math models within the NAS. The FC/CRYO generates output measurements which are required as inputs to the AR/PCS. The AR/PCS in turn generates output measurements which are required as inputs to the W/WMS. Therefore, in order to run the W/WMS model, the AR/PCS model is required to be run also. Similarly, in order to run the AR/PCS model, the FC/CRYO model is required to be run also. All other models may be executed independently.

Where the same model appears in the STS and the GTS, the flowcharts logic is the same with the exception of the MPS model. See Section 2.1.4 of appendix E. Differences in the test stations however necessitate front end processing for the GTS stimuli to obtain inputs to the model logic that are the same. This front end processing is accomplished by vehicle hardware in the STS.

The STS and GTS non-avionic models cycle once a second, in a serial manner, examining input stimuli and adjusting output measurements as defined by the flowchart logic. Timers in some of the models increment or decrement by one each cycle, or approximately one per second.

3.1 STS CONFIGURATION

The STS is a more complete test facility in terms of flight hardware. All cockpit switches along with LCA/PCA circuitry are available in the STS. For this reason the STS non-avionics math models form the basis for the GTS models. Within STS, only subsystem hardware such as pumps, heaters and valves are required to be simulated. This is due to the fact that, within STS, multiple MML's are channeled through LCA and PCA circuitry to produce single subsystem inputs, where as in GTS the LCA and PCA circuitry is not available.

Mechanical hardware and simulators for vent doors, umbilical doors, ET separation pyros and recorder are available in STS.

3.1.1 INPUT STIMULI IDENTIFICATION

The stimuli identification for those stimuli in the STS which have their sources at the flight system are coded in terms of reference Avionics Test Article (ATA) interface connector and pin number according to the following format.

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C70-1140 cable set interface.

Those stimuli which are uplinked to the model from the operator station are given unique alphanumeric variable names. The model output parameters whose destinations are the flight system are identified by their Master Measurement List numbers.

3.1.2 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in model counts outside the boxes and flight system engineering units inside the boxes for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling discussed in the following paragraphs. The math model count values (or the count values by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciaiton (FDA), and for cockpit displays. The following paragraphs describe the scaling equations which apply to the models. Section 3.1.2.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 3.1.2.2 describes the scaling equation for measurements which require the limit conversion method which was used on STS-1.

3.1.2.1 Polynomial Conversion Method

The scaling polynomial equation used by the flight system is defined in the SM FSSR, SD 76-SH-0027F. See Section 5, item 19. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1X + A_2X^2 + A_3X^3$$

where: $FS_{EU} =$ flight system engineering units
 $X =$ flight system input voltage
 A_0 , A_1 , A_2 , $A_3 =$ scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to model counts.

This procedure may be used to calculate model count values for fault insertion.

Example:

For measurement no. V63R1100A, convert FS_{EU} value = 2288 to model counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$

so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to model counts, evaluate the following equation which shows the relationship between X and model counts:

model counts =
$$\left[X\left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

model counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, model counts = 787 counts.

Note that since model counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

$$X = model counts \left(\frac{K}{1023}\right)$$

$$X = 787 \ X \left(\frac{5}{1023}\right)$$

$$S0 \ X = 3.846529$$
And
$$FS_{EU} = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

$$FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)^2 + 12.246 (3.848)^3$$

 $FS_{FII} = 2288.017$

Hence when 787 model counts is inserted for measurement no. V63R1100A, a value of 2288.017 FS_{EU} will result.

3.1.2.2 Range Limit Conversion Method

Several analog measurements in the models are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in the previous section of this document. The form of the scaling equation for these cases is given as follows:

The measurement which use this method with an asterisk (*) in the Output leasurement List designated as Table 2 in Section 4.2 of each appendix which follows.

3.2 GTS CONFIGURATION

The GTS is not as complete a test facility as STS in terms of flight hardware availability. Only the related cockpit switches from the Commander station at the left side of the cockpit are available to GTS. All other switches must be simulated by operator entries at the NAS keyboard. The LCA/PCA circuitry which occurs between the cockpit switches and subsystems is not available in GTS, therefore GTS pre-processor logic is required prior of the model in order to accomplish the function. Models which apply only to GTS contain the GTS pre-processor logic implicitly within the model. However, for models adapted from STS to GTS, the GTS pre-processor logic is called out explicitly prior to the model flow diagram.

In GTS, additional models are required where mechanical hardware and simulators are not available. This is the case for vent door, umbilical doors, ET separation pyros, and the recorder.

The GTS MAS will adjust the math model analog output values, based on the latest calibration coefficients defined in the Space Shuttle OFT Level C SM FSSR, SD 76-SH-0027F so that once the GPC makes its calibration calculations, the resulting flight system values are the same as those specified inside the boxes of the logic flow diagrams in these requirements.

GTS models do not respond to EPD & C bus failures as in the STS. BUS states are not monitored and failure simulations must be handled by the operator at the NAS keyboard.

4. MATH MODEL DESIGN

4.1 <u>DESIGN GROUNDRULES</u>

The purpose of the NAS math models is to provide the responses to flight system commands such that flight software and hardware components can be tested. The purpose is not to test the performance of the system being simulated, but rather the system's external interfaces. The exact characteristics of the system are not simulated in the model. For example, the output values are static until the system configuration changes, and the transients that occur with configuration changes are not reflected in the model outputs, e.g. pressure build-ups and decays associated with pressurization or venting, and temperature ramps associated with system heating or cooling.

In preparing the requirements for the non-avionic system math models, the following ground rules were observed:

- Output all measurements addressed to flight critical MDM's.
- Output those measurements used in dedicated displays, systems management, or caution and warning.
- Output those measurements needed for operation by other systems.
- Output those measurements needed during pre-launch operations, starting at T-20 minutes.
- Respond to stimuli inputs in a discrete manner (no timed transients simulating pressure or temperature build-up and decay, for example).
- Do not account for depletion of expendables during a mission.

These ground rules are intended to simplify the math models without compromising the avionics testing in SAIL. Where required, specific ground rules may be waived.

4.2 CHANNELIZATION

The output values are unique, as much as possible, to permit channelization checks where the outputs are followed through the flight circuitry to the GPC, CRT displays, and out the telemetry link to ground recording. The actual system output values would probably have negligible differences for similar measurements, such as the temperature values for cryo tanks 1, 2 and 3.

4.3 FAULT INSERTION

Data values for out of limits conditions may be entered through the operators console when required for testing system management limits or caution and warning alarms. Any value may be entered within the transducer range of the measurement.

5. APPLICABLE DOCUMENTS

- 1. LA-B-10100-1/JSC-11174, Space Shuttle Systems Handbook OV-102
- 2. LEC-9510, Orbiter 102 Simulation Requirements for SMFS/APU-HYD
- 3. LEC-6992 Rev. A, Space Shuttle APU Controller Study
- 4. LEC-Memo #77-2109-055, GSIU Math Model Requirements for APU/HYD
- 5. VS70-580102, Hydraulic Control Subsystem Schematic
- 6. VS70-460102, Auxiliary Power Unit Schematic
- 7. VL70-000137G, Hydraulic Subsystem, Orbiter MCR1750 Baseline Schematic
- 8. ICD-3-1603-5, Flight Test System to SAIL Elements/Facility Non-Avionics Interface Control Document
- 9. GMCTS-02 GMCTS Crew Station to GTS ICD
- 10. GNCTS-06 GTS Non-Avionics Simulator ICD, dated 8/2/78
- 11. LEC Memo no. 78-GNC-254, NAS Functional Logic by N. Bauer, 8/18/78
- 12. LEC Memo no. 78-GNC-260, NAS CRT Formats by N. Bauer, 8/30/78
- 13. VS70-415001, Main Propulsion System Schematic
- 14. 382-240-CDM/76-062, Rockwell Preliminary Requirements
- 15. 382-240-CDM/76-064, Preliminary Requirements Update
- 16. LEC-7827, MPS Simulation Requirements
- 17. VS70-450102, Schematic Diagram Fuel Cells
- 18. VS70-450202, Schematic Diagram Cryo Subsystem
- SD76-SH-0027F, Functional Subsystem Software Requirements (Level C),
 June 1980
- SD72-SH-0104-1, System Definition Manual, paragraph 5.0, Fuel Cell/ Cryogenic System
- 21. LEC-9485, Orbiter 102 Subsystem Simulation Requirements
- 22. VS70-610102, 5/20/77, Schematic Diagram Atmospheric Revitalization Subsystem

- 23. VS70-610202, Schematic Diagram-Atmosphere Revitalization/Pressure Control System
- 24. LEC Memo #77-2109-060, GSIU Math Model Requirements
- 25. Shuttle Operational Data Book, Section 4.6, ECLSS
- 26. VS70-630102, Schematic Diagram Active Thermal Control System
- 27. VS70-620102, Smoke Detection Schematic
- 28. LEC-9361, Smoke Detection Subsystem Simulation Software Specification
- 29. Potable Water Storage OV-102 Space Shuttle Dwg. 6.4 (6-15-77)
- 30. Waste Management OV-102 Space Shuttle Dwg. 6.5 (6-1-77)
- 31. Schematic Diagram Waste Mgm't Subsystem Dwg. VS70-620202 (8-24-77)
- 32. Schematic Diagram Water Mgm't Subsystem Dwg. VS70-620302 (7-26-77)
- 33. Rockwell Internal Letter No. 382-460-JTK-78-012 subject; Justification for Adding DFI MDM (DC02) to SAIL in Support of Mission Profile Tests
- 34. Backup Flight System Management/Special Processes and Sequencing Program Requirements Document, pp. 9, 20 & 128, document number MG038103 Rev. B, dated 9/21/79, by Rockwell International Space Division

6. ACRONYM LIST

APU/HYD - Auxiliary Power Unit/Hydraulics AR/H20 - Atmosphere Revitalization/Water Loops AR/PCS - Atmosphere Revitalization/Pressurization Control System-Airlock. ATA - Avionics Test Article **ATCS** - Active Thermal Control System **BFS** - Back-up Flight System **CMDS** - Commands CP - Connector-pin number **CRT** - Cathode Ray Tube CTS - Counta DCM - Display and Control Module DFI - Development Flight Instrumentation **ECLSS** - Environmental Control and Life Support System **EPR** - Engine Prevalve Routine ET SEP PYRO - External Tank/Orbiter Forward Separation Pyro EU - Engineering Units FC/CRYO - Fuel Cell/Cryogenic **FDA** - Fault Detection and Annunciation FS - Flight System - Functional Subsystem Software Requirements **FSSR** GN&C - Guidance, Navigation and Control GND - Ground **GPC** - General Purpose Computer G. E - Ground Support Equipment GTS - GN&C Test Station **HDT** - LH2 Dump Time IC - Initial Condition JSC - Lyndon B. Johnson Space Center **KYBD** - Keyboard LCA - Load Control Assembly LCG - Liquid Cooling Garmet

- LO2 Dump Time

LDT

LVR - Latching Valve Routine MDM - Multiplexer/Demultiplexer MEC - Mission Events Controller MMES - Marshall Mated Element System MIL - Master Measurement List MPS - Main Propulsion System NAS - Non-Avionics Simulator NCVR - Normally Closed Valve Routine NOVR - Normally Open Valve Routine **OFT** - Orbital Flight Test 1/0 - Operational Instrumentation PCA - Power Control Assembly **PCM** - Pulse Code Modulation **PCMMU** - PCM Master Unit PYLD - Payload RCDR - Recorder RCS/OMS - Reaction Control System/Orbiter Maneuvering System ROS - RCS/OMS Simulator SAIL - Shuttle Avionics Integration Laboratory SDS - Smoke Detection System SM - Systems Management STS - Shuttle Test Station STS-2 - Space Transportation System Flight No. 2 UMB - Umbilical **VDC** - Volts, Direct Current VDS - Vehicle Dynamics Simulator W/WMS - Water/Maste Management System

APPENDIX A

APU/HYDRUALICS MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion											,												Page
1.	INTR	ODUCTION .			•		•	•			•	•		•	•	•	•	•			•		•	A-1
2.	DETA	ILED REQUII	REMENTS.		•	•	•		•	•		•		•	•	•	•	•		•	•	•		A-2
	2.1	MATH MODEL	DESCRI	PTION.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		A-2
	2.2	STS UNIQUE	REQUIR	EMENTS	. •	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•		A-7
	2.3	GTS UNIQUE	REQUIR	EMENTS	. •		•	•	•	•	•		•	•		•		•	•		•	•		A-7
3.	MATH	MODEL LOGI	c		•	•		•			•					•		•	•	•	•	•		A-9
	3.1	GTS PREPRO	CESSOR I	LOGIC.	•	•	•		•	•												•	•	A-9
	3.2	LOGIC FLOW	DIAGRA	<u>1</u> :				•	•		• .	.•		•	•			•	•	•		•	•	A-13
4.	TABLE	S			•		•		•		•		•	•	•			•			•	•		A-31
	4.1	INPUT STIM	ULI LIST	<u>[</u>			•			•	•							•	•	•	•			A-31
	4.2	OUTPUT MEA	SUREMENT	LIST	•									•										A-38

FIGURES

igure																Page
1	APU subsystem schematic.	•	•	•	•	•	•	•					•	•	•	A-3
2	HYD subsystem schematic.									_	_	_				A-4

1. INTRODUCTION

This model simulates those functions of the Auxiliary Power Unit (APU) and the Hydraulics (HYD) subsystems that are in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

Internal to the model is considerable "cross-talk" between the APU and the HYD areas. An attempt was made to keep these two areas separate for modular simplicity. The "cross-talk" involved here is transparent to the user and requires no special conditioning.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the APU/HYD subsystem.

2.1 MATH MODEL DESCRIPTION

2.1.1 APU SUBSYSTEM

The APU subsystem consists of three APU packages providing the mechanical power necessary to drive the main hydraulic pumps. Inputs from the flight system (FS) drive the model to simulate a dedicated control unit for each APU, which will maintain the selected speed and, in the event of the limiting conditions being exceeded, will automatically shut the unit down. Override control is provided by a crew switch. The APU turbine drives the gearbox which in turn drives the main hydraulic pump. Figure 1 is a functional diagram of the APU system.

2.1.2 HYD SUBSYSTEM

The hydraulic pump is driven by the APU, and the speed is dependent upon whether input stimuli is selected to Normal or High speed mode. Hydraulic power is supplied to aerosurface controls (elevons, rudder, body flap, and speedbrake), landing gear, wheel brakes, and nosewheel steering. Figure 2 is a functional diagram of the HYD system.

Hydraulic fluid must be cooled during main pump operation; and, therefore, the model simulates a water boiler which removes heat from the system fluid.

When the APU's are shut down (idle), a circulation pump maintains fluid circulation to prevent freezing.

Figure 1 - Auxiliary power unit block diagram.

Figure 2 - Hydraulic system (typical for systems 1, 2, and 3).

A reservoir and nitrogen pressurized accumulator are also a part of the system, and the model simulates these I/O parameters also.

The hydraulic subsystem incorporates functional redundancy. This redundancy is obtained by switching valves which provide the capability for any one of the subsystems connected to the switching valves to supply the function in the event of failure of the other connected subsystems.

2.1.3 UNIQUE REQUIREMENTS

There exists a requirement for some measurements within the model to reflect a nominal, Hi/Low, and off condition. The condition is determined by (a) the system running normally, (b) the system being idle, but the circulation pumps running, and (c) all functions in an off mode. There is also the requirement for the model to be capable of functioning in a triple-redundant mode.

In order to best show these requirements, the following criteria were set up and are used throughout this document.

- i = 1, 2, 3
 Where (i) represents the system; APU1, APU2, or APU3, respectively.
- 2. α = i + 3, γ = i l These relationships were established for simplicity and ease of representing logic flow diagrams within this requirements package.
- 3. K = 1, 2, 3
 Where (K) represents the condition existing for the system, i.e.:
 - 1 = Nominal
 - 2 = Circulation Pumps On
 - 3 = Idle Mode

The value K is then used to find the correct measurement value needed to reflect the proper conditions. These measurement values will be found in table 2 entitled, "Measurement Output from APU/HYD Model".

NOTE: The flow diagrams refer to the value tables in the following manner:

MEAS. = Value (K)

Where MEAS. is the output measurement.

VALUE is one of three possible values for that particular MEAS.

(K) is a pointer that shows which of the three values is applied.

EXAMPLE: V5810101A = VALUE (2) = 40°F

4. TURBINE SPEED (V46R0i35A)>0 = APU i RUN MODE TURBINE SPEED (V46R0i35A)<0 = APU i IDLE MODE

2.1.4 APU TURBINE OVERSPEED OR UNDERSPEED CONDITIONS

APU turbine overspeed or underspeed is a common test condition. To simplify the simulation of APU turbine overspeed or underspeed, the model incorporates a set of six pseudos that are controllable by the test operator. These pseudos automatically produce the appropriate changes in output measurements when the test operator sets the pseudo(s) to 1. The pseudos are listed in table 1.

2.1.5 BFS MEASUREMENTS

The hydraulic measurements listed below are used by the Back-up Flight System (BFS). The calculations required to convert these analog measurements from FS_{EU} to model counts is slightly different than the usual polynomial conversion method discussed in the front document. The value for model counts is multiplied by a factor of 64 in order to shift the least significant bit of the counts from the low order bit (bit 24) of the Data Response Word to bit 18. See pp. 9, 20, and 128 of the "Backup Flight System Management/Special Processes and Sequencing Program Requirements Document", document number MG038103 Rev. B. dated 9/21/79, by Rockwell International Space Division for information pertaining to this type of conversion. After multiplying the model counts by 64, the polynomial conversion is employed with K = 500. See Section 3.1.2.1 of the front document. The polynomial coefficients are

shown on page 128 of the referenced BFS document. The measurements are:

V58T0830A V58T0880A V58T0930A V58T0980A V57T0014A V57T0018A

2.1.6 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

2.2.1 APU HEATER THERMAL SWITCHES

Certain APU heaters are controlled by thermal switches in the APU controller. For simplification of the APU math model, the operation of the thermal switches and the cycling of heater temperatures are not simulated, but instead the thermal switches are simulated closed and heater temperatures are a function of heater power only. The control logic for the thermal switches resides in the flight system Load Controller Assembly (LCA) hardware; therefore, the APU math model must send "thermal switch on" signals to the LCA. The LCA then transmits a heater power signal to the APU math model whenever the heater power switch is "ON". Since the thermal switch signals to the LCA from the math model do not have MML ID numbers, pseudo numbers have been assigned, reference table 2.

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The simplified GTS model is being replaced by the complete STS model. The math model input stimuli symbols referred to in the logic flow diagram, Section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the APU/HYD are required in a

GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

2.3.2 APU HEATER THERMAL SWITCHES

The APU heater thermal switch outputs listed in table 2, reference pseudos FP1A through GG3B, are required for STS only and do not apply to GTS.

2.3.3 HYDRAULIC SUPPLY PRESSURE

Hydraulic supply pressure B has two MML identifications, one for the value sent to the GPC (V58P0i15C), and another for the value sent to the PCM master unit (V58P0i15A). Both values are equal since they originate from the same pressure transducer, but as the measurements leave the signal conditioner they become two distinct measurements. In STS, the math model must supply only one measurement because the signal conditioner is part of the flight system being tested, and the signal conditioner will generate the duplicate measurement. In GTS however, the math model must supply both measurements because the signal conditioner is not present.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required. Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

MML TO CONN-PIN CONVERSION LOGIC

SYSTEM				SOURCE*					
CONN-PIN	MML	ID	MDM CONN/PIN		INITIALIZATION VALUES				
APU									
K54P106-J =	V46	K0097E			0				
5P106-J =		98E			0				
6P106-J =		99E			. 0				
K50SP441 =	1	103E			1				
423 =		109E			1				
493 =		203E			1				
474 =		209E			1				
545 =		303E			1				
↓ 527 =		309E			1				
K50P9909-A =		114E ·			0				
10-8 =		121E			0				
19-A =		214E			0				
20-B ≈		221E			0				
29-A =		314E			0				
↓ 30-B =		321E			0				
K50SP452 =		116E			1				
457 =		117E			1				
505 =	l	216E			1				
510 =		217E			1				
556 =		316E			1				
↓ 561 =	1	317E			1				
K50P9911-B =		118E			1				
12-B =		119E			1				
21-B =		218E			1				
22-B =		21 9E			1				
31-B =		318E			1				
32-B =		31 <i>9</i> E			1				
K54P107-C =		124E			0				
4P106-C =	1	144E			0				

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - APU/HYD MML TO CONN-PIN CONVERSION LOGIC

SYSTEM			SOURCE*	
CONN-PIN	MML ID	MDM	CONN/PIN	INITIALIZATION VALUES
K55P107-C =	V46K0224E			0
5P106-C =	244E			0
6P107-C =	324E		<u> </u>	0
6P106-C =	344E			0
4P106-R =	126E		. •	0
4P107-R =	146E	1		0
4P106-S =	127E			0
√4P107-S =	147E			0
K55P106-R =	226E			0
107-R =	246E			0
106-S =	227E			0
107-S =	247E			0
K50P106-R =	326E			0
107-R =	346E			0
106-S =	327E			0
↓ 107-S =	347E			0
K54P106- <u>E</u> =	129E			0
↓ 107- <u>E</u> =	749E			0
K55P106-E =	229E			0
↓ 107- <u>E</u> =	249E			0
K56P106- <u>E</u> =	32 9 E			0
107-E =	¥ 349E			0
НУД				
K50PP1-E1	V58K0142Y OR 143Y	PF01 PF02	J08/039 J08/039	
2-E1 =	V58K0242Y OR 243Y	PF01 PF02	J08/051 J08/051	
3-E1 =	V58K0342Y OR 343Y	PF01 PF02	J08/053 J08/053	
K50P9007-A =	V58K0195X	FA01	J08/104	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - APU/HYD MML TO CONN-PIN CONVERSION LOGIC

SYSTEM			SOURCE*	
CONN-PIN	MML ID	MOM	CONN/PIN	INITIALIZATION VALUES
K50P9008-A	= V58K0295X	FA02	J08/104	
↓ 9-A	- 395X	FA03	J08/104	
K50P9022-A	= V58K0149E			0
25-A	= 150E			. 0
28-A	= 249E			0
31-A	≠ 250E			0
34-A	= 349E			0'
37-A	= 350E			0
24-4	= 151E			0
27-4	= 151E			0
30-4	= 251E		·	0
33-4	= 251E			0
36-4	= 351E			0
39-4	= ¥ 351E			0
K50P9004-1	= V58K0171E			0
5-1	- 0271E			0
6-1	- 0371E			. 0
7C	- 0191E			0
8-C	• 0291E			0
↓ 9-C	= 0391E			0
K50P38-A	= 1134E			0
38-C	■ · 1135E			1
39-A	= 1234E			·J
39-C	= 1235E			1
40-A	= 1334E			0
40-C	- ¥ 1335E			1
9001-C	. **			1
9002-C	•		j	1
↓ 9003-C	\		İ	1

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected line:, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 FS $_{\hbox{EU}}$ which is equivalent to 534 $_{\hbox{MODEL}_{\hbox{CTS}}}$ shown outside the box.

ORIGINAL PAGE IS

A-22

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDO VARIABLE INITIALIZATION

The following pseudos are initialized as following:

VAIABLE	INITIAL CONDITION
0S1 US1 0S2 US2 0S3 US3	0 0 0 0 0

PANEL/ SWITCH	NOMENCLATURE -APU-	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
A12/S7	TK/LN HTRS A SYS 1	5	V46K0103E	K50SP441	1-0N/0-0FF
A12/S8	TK/LN HTRS B SYS 1	5	V46K0109E	K50SP423	1-0N/0-0FF
A12/S9	TK/LN HTRS A SYS 2	5	V46K0203E	K50SP493	1-0N/0-0FF
A12/S10	TK/LN HTRS B SYS 2	5	V46K0209E	K50SP474	1-0N/0-0FF
A12/S11	TK/LN HTRS A SYS 3	5	V46K0303E	K50SP545	1-0N/0-0FF
AJ2/S12	TK/LN HTRS B SYS 3	5	V46K0309E	K50SP527	1-0N/0-0FF
A12/S4	LUBE OIL LINE HTRS - A AUTO SYS 1	5	V46K0116E	K50SP452	1-0N/0-0FF
	LUBE OIL LINE HTRS - B AUTO SYS 1	5	V46K0117E	K50SP457	1-0N/0-0FF
A12/S5	LUBE OIL LINE HTRS - A AUTO SYS 2	5	V46K0216E	K50SP505	1-0N/0-0FF
	LUBE OIL LINE HTRS - B AUTO SYS 2	5	V46K0217E	K50SP510	1-0N/0-0FF
A12/S6	LUBE OIL LINE HTRS - A AUTO SYS 3	5	V46K0316E	K50SP556	1-0N/0-0FF
	LUBE OIL LINE HTRS - B AUTO SYS 3	5	V46K0317E	K50SP561	1-0N/0-0FF
A12/S1	GG/FU PMP HTRS - A AUTO SYS 1	5	V46K0118E	K50P9911-B	1-0N/0-0FF
	GG/FU PMP HTRS - B AUTO SYS 1	5	V46K0119E	K50P9912-B	1-0N/0-0FF
A12/S2	GG/FU PMP HTRS - A AUTO SYS 2	5	V46K0218E	K50P9921-B	1-0N/0-0FF
	GG/FU PMP HTRS - B AUTO SYS 2	5	V46K0219E	K50P9922-B	1-0N/0-0FF
A12/S3	GG/FU PMP HTRS - A AUTO SYS 3	5	V46K0318E	K50P9931-B	1-0N/0-0FF
	GG/FU PMP HTRS - B AUTO SYS 3	5	V46K0319E	K50P9932-B	1-0N/0-0FF

TABLE 1 - STIMULI I T FOR APU/HYD

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R2/S35	FUEL ISOL VLV A SYS 1	5	V46K0121E	K50P9910-B	1-0PN/0-CLS
	FUEL ISOL VLV B SYS 1	5	V46K0114E	K50P9909-A	1-0PN/0-CLS
R2/S36	FUEL ISOL VLV A SYS 2	5	V46K0221E	K50P9920-B	1-0PN/0-CLS
	FUEL ISOL VLV B SYS 2	5	V46K0214E	K50P9919-A	1-0PN/0-CLS
R2/S37	FUEL ISOL VLV A SYS 3	5	V46K0321E	K50P9930-B	1-OPN/O-CLS
	FUEL ISOL VLV B SYS 3	5	V46K0314E	K50P9929-A	1-0PN/0-CLS
R2/S32	APU CNTRL PWR A - SYS 1	5	V46K0124E	K54P107-C	1-0N/G-0FF
	APU CNTRL PWR B - SYS 1	5	V46K0144E	K54P106-C	1-0N/0-0FF
R2/S33	APU CNTRL PWR A - SYS 2	5	V46K0224E	K55P107-C	1-0N/0-0FF
	APU CNTRL PWR B - SYS 2	5	V46K0244E	K55P106-C	1-0N/0-0FF
R2/S34	APU CNTRL PWR A - SYS 3	5	V46K0324E	K56P107-C	1-0N/0-0FF
	APU CNTRL PWR B - SYS 3	5	V46K0344E	K56P106-C	1-0N/0-0FF
R2/S16	APU CNTRL - START/RUN CMD A SYS 1	5	V46K0126E	K54P106-R	1-RUN/O-OFF
	APU CNTRL - START/RUN CMD B SYS 1	5	V46K0146E	K54P107-R	1-RUN/0-0FF
	APU CNTRL - O'RIDE/RUN CMD A SYS 1	5	V46K0127E	K54P106-S	1-RUN/0-OFF
	APU CNTRL - O'RIDE/RUN CMD B SYS 1	5	V46K0147E	E K54P106-C 1- E K55P107-C 1- E K55P106-C 1- E K56P107-C 1- E K56P106-C 1- E K54P106-R 1- E K54P107-R 1- E K54P106-S 1-	1-RUN/0-OFF
R2/S17	APU CNTRL - START/RUN CMD A SYS 2	5	V46K0226E	K55P106-R	1-RUN/0-OFF
	APU CNTRL - START/RUN CMD B SYS 2	5	V46K0246E	K55P107-R	1-RUN/0-OFF
	APU CNTRL - O'RIDE/RUN CMD A SYS 2	5	V46K0227E	K55P106-S	1-RUN/0-OFF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R2/S17 CONTINUED	APU CNTRL - O'RIDE/RUN CMD B SYS 2	5	V46K0247E	K55P107-S	1-RUN/0-OFF
R2/S18	APU CNTRL - START/RUN CMD A SYS 3	5	V46K0326E	K56P106-R	1-RUN/0-OFF
	APU CNTRL - START/RUN CMD B SYS 3	5	V46K0346E	K56P107-R	1-RUN/0-OFF
	APU CNTRL - O'RIDE/RUN CMD A SYS 3	5	V46K0327E	K56P106-S	1-RUN/0-OFF
	APU CNTRL - O'RIDE/RUN CMD B SYS 3	5	V46K0347E	K56P107-S	1-RUN/0-OFF
R2/S22	AUTO SHUTDOWN INHIBIT A - SYS 1 & 3	5	V46K0097E	K54P106-J	1-0N/0-0FF
•	AUTO SHUTDOWN INHIBIT B - SYS 1 & 2	5	V46K0098E	K55P106-J	1-0N/0-0FF
	AUTO SHUTDOWN INHIBIT C - SYS 2 & 3	5	V46K0099E	K56P106-J	1-0N/0-0FF
R2/S19	SPEED SELECT HI - CMD A SYS 1	5	V46K0129E	K54P106-E	1-HI/O-NORM
	SPEED SELECT HI - CMD B SYS 1	5	V46K0149E	K54P107-E	1-HI/O-NORM
R2/S20	SPEED SELECT HI - CMD A SYS 2	5	V46K0229E	K55P106- <u>E</u>	1-HI/O-NORM
	SPEED SELECT HI - CMD B SYS 2	5	V46K0249E	K55P107- <u>E</u>	1-HI/0-NORM
R2/S21	SPEED SELECT HI - CMD A SYS 3	5	V46K0329E	K56P106- <u>E</u>	1-HI/O-NORM
	SPEED SELECT HI - CMD B SYS 3	5	V46K0349E	K56P107- <u>E</u>	1-HI/O-NORM
	TURBINE OVERSPEED CMD - SYS 1			0S1	1-0S/0-0FF
	TURBINE UNDERSPEED CMD - SYS 1			US1	1-US/0-0FF
	TURBINE OVERSPEED CMD - SYS 2	7		0\$2	1-0S/0-0FF
	TURBINE UNDERSPEED CMD - SYS 2			US2	1-US/0-OFF
	TURBINE OVERSPEED CMD - SYS 3 TURBINE UNDERSPEED CMD - SYS 3			0S3 US3	1-0S/0-0FF 1-US/0-0FF

TABLE 1 - STIMULI I T FOR APU/HYD

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
	-HYD-				
R2/S29	CIRC PUMP SYS 1	2	V58K0142Y V58K0143Y	K50PP1-E1	1-0N/0-0FF
R2/S30	CIRC PUMP SYS 2	2	V58K0242Y V58K0243Y	K50PP2-E1	1-0N/0-0FF
R2/S31	CIRC PUMP SYS 3	2	V58K0342Y V58K0343Y	K50PP3-E1	1-0N/0-0FF
R2/S26	MN PUMP DEPR ON SYS 1	5	V58K0171E	K50P9004-1	1-LOW/O-NORM
R2/S27	MN PUMP DEPR ON SYS 2	5	V58K0271E	K50P9005-1	1-LOW/0-NORM
R2/S28	MN PUMP DEPR ON SYS 3	5	V58K0371E	K50P9006-1	1-LOW/0-NORM
R4/S22	LG ISLN VLV OPEN SYS 1	2	V58K0195X	K50P9007-A	1-0PN/0-0FF
	LG ISLN VLV CLOSED SYS 1	5	V58K0191E	K50P9007-C	1-CLS/0-OFF
R4/S23	LG ISLN VLV OPEN SYS 2	2	V58K0295X	K50P9008-A	1-0PN/0-0FF
	LG ISLN VLV CLOSED SYS 2	5	V58K0291E	K50P9008-C	1-CLS/0-OFF
R4/S24	LG ISLN VLV OPEN SYS 3	2	V58K0395X	K50P9009-A	1-0PN/0-0FF
	LG ISLN VLV CLOSED SYS 3	5	V58K0391E	K50P9009-C	1-CLS/0-OFF
R4/S25	ME/TVC SPLY VLV OPEN SYS 1	5	V58K1134E	K50P38-A	1-0PN/0-0FF
	ME/TVC SPLY VLV CLOSED SYS 1	5	V58K1135E	K50P38-C	1-CLS/0-OFF
R4/S26	ME/TVC SPLY VLV OPEN SYS 2	5	V58K1234E	K50P39-A	1-0PN/0-0FF
	ME/TVC SPLY VLV CLOSED SYS 2	5	V58K1235E	K50P39-C	1-CLS/0-0FF

-	_
-	-
Ċ	,
×	٠,

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R4/S27	ME/TVC SPLY VLV OPEN SYS 3	5	V58K1334E	K50P40-A	1-0PN/0-0FF
	ME/TVC SPLY VLV CLOSED SYS 3	5	V58K1335E	K50P40-C	1-CLS/0-OFF
R2/S41	H20 BLR CNTLR PWR/HTR A SYS 1	5	V58K0149E	K50P9022-A	1-0N/0-0FF
	H20 BLR CNTLR PWR/HTR B SYS 1	5	V58K0150E	K50P9025-A	1-0N/0-0FF
R2/S42	H20 BLR CNTLR PWR/HTR A SYS 2	5	V58K0249E	K50P9028-A	1-0N/0-0FF
	H20 BLR CNTLR PWR/HTR B SYS 2	5	V58K0250E	K50P9031-A,	1-0N/0-0FF
R2/S43	H20 BLR CNTLR PWR/HTR A SYS 3	5	V58K0349E	K50P9034-A	1-0N/0-0FF
	H20 BLR CNTLR PWR/HTR B SYS 3	5	V58K0350E	K50P9037-A	1-0N/0-0FF
R2/S38	H20 BLR CNTLR A ENABLE SYS 1	5	V58K0151E	K50P9024-4	1-ENABLE/0-0
	H20 BLR CNTLR B ENABLE SYS 1			K50P9027-4	1-ENABLE/0-0
R2/S39	H20 BLR CNTLR A ENABLE SYS 2	5	V58K0251E	K50P9030-4	1-ENABLE/0-0
	H20 BLR CNTLR B ENABLE SYS 2			K50P9033-4	1-ENABLE/0-0
R2/S40	H20 BLR CNTLR A ENABLE SYS 3	5	V58K0351E	K50P9036-4	1-ENABLE/0-0
	H20 BLR CNTLR B ENABLE SYS 3			K50P9039-4	1-ENABLE/0-0
L4/CB57	AC BUS 1B PWR HYD RESV QTY #1	5,6		K50P9001-C	1-0N/0-0FF
L4/CB60	AC BUS 2B PWR HYD RESV QTY #2	5,6		K50P9002-C	1-0N/0-0FF
L4/CB63	AC BUS 3B PWR HYD RESV QTY #3	5,6		K50P9003-C	1-0N/0-0FF

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I. D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I. C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

Note that table 2 includes all output measurement values except those dealing with turbine overspeed and underspeed which are not related to VALUE (K) for K=1, 2, 3. The turbine overspeed and underspeed values not included in table 2 are as follows:

When OSi = 1, V46ROi35A = 135 PCT (827 CNTS) and USi = 1, V46ROi35A = 75 PCT (460 CNTS)

MEASUREMENT		I.C.		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	
	- APU -									
V46P0100A	FUEL TK. PRESS SYSTEM 1	340	693	340	696	NA		34C	696	PSIA
V46P0200A	FUEL TK. PRESS SYSTEM 2	335	685	335	685	NA		335	685	PSIA
V46P0300A	FUEL TK. PRESS SYSTEM 3	346	708	346	708	NA		3 4 6	708	PSIA
V46T0102A	TK. SURFACE TEMP SYSTEM 1	56	360	56	360	NA		47	303	°F
V46T0202A	TK. SURFACE TEMP SYSTEM 2	64	411	64	411	NA		. 47	333	°F
V46T0302A	TK. SURFACE TEMP SYSTEM 3	48	309	48	309	NA		47	303	°F
V46T0104A	FUEL LN TEMP NO. 2 SYSTEM 1	80	331	03	331	ŅĀ		47	195	°F
V46T0204A	FUEL LN TEMP NO. 2 SYSTEM 2	90	372	9C	372	NA NA		47	196	°F
V46T0304A	FUEL LN TMEP NO. 2 SYSTEM 3	105	434	105	0.34	NA		47	196	°F
V46P0105A	FUEL TK OUT PRESS SYSTEM 1	330	675	330	675	NA NA		330	675	PSIA
V46P0205A	FUEL TK OUT PRESS SYSTEM 2	335	685	335	685	NA.		335	685	PSIA
V46P0305A	FUEL TK OUT PRESS SYSTEM 3	338	692	338	692	NA		338	692	PSIA
V46T0108A	FUEL LN TEMP NO. 1 SYSTEM 1	85	352	85	352	NA NA	ĺ	48	201	°F
V46T0208A	FUEL LN TEMP NO. 1 SYSTEM 2	92	381	92	381	NA NA		50	209	°F
V46T0308A	FUEL LN TEMP NO. 1 SYSTEM 3	98	405	98	405	NA	Ì	52	217	°F
V46T0112A	FUEL PUMP DISCHARGE TEMP SYSTEM 1	157.6	409	157.6	409	NA	l	60	158	°F
V46T0212A	FUEL PUMP DISCHARGE TEMP SYSTEM 2	153	397	153	397	NA NA		60	158	°F
V46T0312A	FUEL PUMP DISCHARGE TEMP SYSTEM 3	142	368	142	358	NA NA		60	158	°F
V46X0115E	FUEL ISOL. VALVE POS. SYSTEM 1	0	0				l	l	İ	STATE
V46X0215E	FUEL ISOL. VALVE POS. SYSTEM 2	0	0							STATE
V46X0315E	FUEL ISOL. VALVE POS. SYSTEM 3	0	0							STATE
140,00136	TOLE ISSEL THEFE TOST STOTES		1		ł					1
			1		1					
L			!	<u> </u>	<u>.</u>		L	<u> </u>	<u> </u>	.

MEASUREMENT		I.C	•	VALUE 1 (HOMINAL	K=1	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	
I.D.	MEASUREMENT NAME	FS	CTS		CTS	FS	CTS		CTS	UNITS
	APU Continued									
V46T0122A	G.G. BED TEMP. SYSTEM 1	325	665	325	665	NA		160	327	•F
V46T0222A	G.G. BED TEMP. SYSTEM 2	350	716	350	716			160	327	°F
V46T0322A	G.G. BED TEMP. SYSTEM 3	300	614	300	514	4		160	327	°F
V46X0125E	APU "READY" SYSTEM 1	0	0							STATE
V46X0225E	APU "READY" SYSTEM 2	ว	0							STATE
V46X0325E	APU "READY" SYSTEM 3	0	0							STATE
V46T0128A	APU 1 FUEL LINE TEMP NO. 3	156	405	156	405	ŅA		70	184	DEGF
V46T0228A	APU 2 FUEL LINE TEMP NO. 3	160	415	160	415			70	184	DEGF
V46T0328A	APU 3 FUEL LINE TEMP NO. 3	164	426	164	426			70	184	DEGF
V46T0130A	APU 1 FUEL TANK SURF TEMP AT HTR	87	663	87	663			50	509	DEGF
V46T0230A	APU 2 FUEL TANK SURF TEMP AT HTR	95	696	95	696			50	509	DEGF
V46T0330A	APU 3 FUEL TANK SURF TEMP AT HTR	102	724	102	724	.\		50	509	DEGF
V46X0134E	APU 1 FUEL ISOL VALVE B POSITION	0	0							STATE
V46X0234E	APU 2 FUEL ISOL VALVE B POSITION	0	0							STATE
V46X0334E	APU 3 FUEL ISOL VALVE B POSITION	0.	0							STATE
V46R0135A	TURBINE SPEED SYSTEM 1	0	0	83.5	512	113	692	. 0	0	PCT
V46R0235A	TURBINE SPEED SYSTEM 2	0	0	100.2	614	113	692	0	0	PCT
V46R0335A	TURBINE SPEED SYSTEM 3	0	0	96.86	593	113	692	0	0	PCT
V46T0140A	TURBINE E.G. TEMP. NO. 2 SYSTEM 1	631	421	631	421	NA		41	23	•F
V46T0240A	TURBINE E.G. TEMP. NO. 2 SYSTEM 2	749	501	749	501	NA		41	23	•F
V46T0340A	TURBINE E.G. TEMP. NO. 2 SYSTEM 3	1199	806	1199	806	NA		41	23	°F
	,								!	

MEASUREMENT		I.C.		VALUE 1 K=1 (NOMINAL)		VALUE 2 K=2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V46T0142A	TURBINE E.G. TEMP. NO. 1 SYSTEM 1	601	401	601	401	NΑ		41	23	°F
V46T0242A	TURBINE E.G. TEMP. NO. 1 SYSTEM 2	900	604	900	604			41	23	°F
V46T0342A	TURBINE E.G. TEMP. NO. 1 SYSTEM 3	1051	70€	1051	706			41	23	•F
V46T0150A	G.B. LUBE OIL RTN. TEMP. SYSTEM 1	145	303	145	303			50	108	°F
V46T0250A	G.B. LUBE OIL RTN. TEMP. SYSTEM 2	140	293	140	293			50	108	°F
V46T0350A	G.B. LUBE OIL RTN. TEMP. SYSTEM 3	225	466	225	466			· 50	108	°F
V46P0151A	G.B. GN ₂ PRESS SYSTEM 1	25	851	25	851			25	851	PSIA
V46P0251A	G.B. GN ₂ PRESS SYSTEM 2	20	685	20	685			20	685	PSIA
V46P0351A	G.B. GN ₂ PRESS SYSTEM 3	15	509	15	50 9			15	509	PSIA
V46P0152A	APU 1 GN ₂ BOTTLE PRESS	50	170	50	170			50	170	PSIA
V46P0252A	APU 2 GN2 BOTTLE PRESS	40	137	40	137			40	137	PSIA
V46P0352A	APU 3 GN2 BOTTLE PRESS	45	153	45	153			45	153	PSIA
V46P0153A	G.B. LUBE OIL OUT. PRESS. SYSTEM 1	76	389	76	389			30	153	PSIA
V46P0253A	G.B. LUBE OIL OUT. PRESS. SYSTEM 2	78	399	78	399			30	153	PSIA
V46P0353A	G.B. LUBE OIL OUT. PRESS. SYSTEM 3	81	415	81	415			30	153	PSIA
V46T0154A	G.B. LUBE OIL OUT. TEMP. SYSTEM 1	180	466	180	466			60-	158	°F
V46T0254A	G.B. LUBE OIL OUT. TEMP. SYSTEM 2	172	446	172	446			60	158	°F
V46T0354A	G.B. LUBE OIL OUT. TEMP. SYSTEM 3	168	436	168	436			60	158	•F
V46T0161A	G.B. BRING. TEMP. NO. 1 SYSTEM 1	200	415	200	415			50	108	°F
V46T0261A	G.B. BRING. TEMP. NO. 1 SYSTEM 2	190	395	190	395			50	108	°F
V46T0361A	G.B. BRING TEMP. NO. 1 SYSTEM 3	260	538	260	538			50	108	°F
V46X0165E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 1	0	0			Y				STATE
	· · · · · · · · · · · · · · · · · · ·									
					L			<u> </u>	1	<u> </u>

MEASUREMENT		I.C.		VALUE) K=1 (NOMINAL)		VALUE 2 K=2 (HI/LOW)		VALUE 3 K=3 (OFF)		UNITS
I. D. M	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V46X0265E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 2	0	0							STATE
V46X0365E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 3	0	0							STATE
V46X0166E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 1	0	0							STATE
V46X0266E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 2	0	0							STATE
V46X0366E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 3	0	0	·					.	STATE
V46T0183A	FUEL TEST LN. TEMP. 1 SYSTEM 1	66	274	66	274	NA		· 50	209	°F
V46T0283A	FUEL TEST LN. TEMP. 1 SYSTEM 2	63	262	63	262			50	209	°F
V46T0383A	FUEL TEST LN. TEMP. 1 SYSTEM 3	74	307	74	307			50	209	°F
V46T0184A	FUEL TEST LN. TEMP. 2 SYSTEM 1	54	224	54	224			50	208	°F
V46T0284A	FUEL TEST LN. TEMP. 2 SYSTEM 2	65	269	65.	269			50	208	°F
V46T0384A	FUEL TEST LN. TEMP. 2 SYSTEM 3	70	290	70	290			50	208	°F
V46T0186A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 1	60	250	60	250			50	209	°F
V46T0286A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 2	55	229	55	229			50	209	°F
V46T0386A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 3	52	217	52 ⁻	217			50	209	°F
V46P0190A	APU 1 FUEL PUMP DRAIN LINE PRESS 1	13	264	13	264			13	264	PSIA
V46P0290A	APU 2 FUEL PUMP DRAIN LINE PRESS 1	17	348	17	348			17	348	PSIA
V46P0390A	APU 3 FUEL PUMP DRAIN LINE PRESS 1	10	205	10	205	4		10	205	PSIA
1	'									
	j			•						
	·		}	;						
							,	()		
						i				
								}		
			<u> </u>	L	لبا			<u></u>		

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	UNITS
I. O.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V46T0192A	APU 1 FU PUMP TEMP	185	385	185	385	ŊA		65	139	°F
V46T0292A	APU 2 FU PUMP TEMP	176	366	176	366			67	143	°F
V46T0392A	APU 3 FU PUMP TEMP	125	262	125	262			69	147	•F
V46T0193A	APU 1-PUMP H20 LINE TEMP - PRI	61	393	€1	393			43	276	°F
V46T0293A	APU 2 PUMP H20 LINE TEMP - PRI	67	430	67	430			45	291	°F
V46T0393A	APU 3 PUMP H20 LINE TEMP - PRI	88	667	88	667			47	497	°F
V46T0194A	APU 1 PUMP H20 LINE TEMP - SEC	91	679	91	679			51 .	514	°F
V46T0294A	APU 2 PUMP H20 LINE TEMP - SEC	94	692	94	692			53	522	٥Ė
V46T0394A	APU 3 PUMP H20 LINE TEMP - SEC	99	712	99	712			55	532	°F
V46T0501A	H2O LINE TEMP 1	48	340	48	340			41	321	°F
V46T0502A	H2O LINE TEMP 2	53	354	53	354			43	327	°F
V46T0503A	H2O LINE TEMP 3	58	368	58	368			45	331	°F
V46T9158A	APU 1 FU VLV TEMP	120	276	120	276			71	162	°F
V46T9258A	APU 2 FU VLV TEMP	115	264	115	264			- 73	166	°F
V46T9358A	APU 3 FU VLV TEMP	110	252	110	252			75	172	°F
* V46T9180A	APU 1 INJECTOR TUBE TEMP	419	286	419	286			130	89	°F
* V46T9280A	APU 2 INJECTOR TUBE TEMP	179	327	479	327			135	92	°F
* V46T9380A	APU 3 INJECTOR BUTE TEMP	540	368	540	368			141	96	°F
* V46T9132A	APU 1 CAVITY DRAIN LINE TEMP	56	266	56	266			49	254	°F
* V46T9270A	APU 2 FU PUMP DRAIN LINE TEMP	86	352	86	352			57	233	°F
* V46T9513A	APU 3 CAVITY DRAIN LINE TEMP	69	393	69	393	*		5 9	366	°F

 $[\]star$ NOTE: This measurement uses the range limit conversion method of calculating FS $_{EU}$.

MEASUREMENT		1.0		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	F\$'	CTS	
*FP1A	FUEL PUMP 1A THERMO	1	$\mid 1 \mid$							STATE
*FP1B	FUEL PUMP 1B THERMO	1	1							STATE
*FP2A	FUEL PUMP 2A THERMO	1	1							STATE
*FP2B	FUEL PUMP 2B THERMO	î	1							STATE
*FP3A	FUEL PUMP 3A THERMO	1	1							STATE
*FP3B	FUEL PUMP 3B THERMO	1	1							STATE
*AT1A	APU 1 TANK A THERMO	1	1							STATE
*AF1A	APU F/LINE A THERMO	1	1							STATE
1. 1	APU O/LINE A THERMO	1	1							STATE
1 . I	APU SER LINE A THERMO	1	1							STATE
	APU TANK B THERMO	1	1							STATE
*AF1B	APU F/LINE 3 THERMO	1	1							STATE
* A01B	APU O/LINE B THERMO	1	1]	STATE
* AS1B	APU SER LINE B THERMO	1	1							STATE
* AT2A	APU 2 TANK A THERMO	1	1						•	STATE
* AF2A	APU F/LINE A THERMO	· 1	1						į	STATE
* A02A	APU O/LINE A THERMO	'n	1						}	STATE
* AS2A	APU SER LINE A THERMO	1	1						}	STATE
* AT2B	APU TANK B THERMO] 1	1							STATE
* AF2B	APU F/LINE B THERMO	1	1							STATI
* A02B	APU O/LINE B THERMO	1	1					1		STATE
1. 1	APU SER LINE B THERMO	1	1				1			STATI
1 . !	APU 3 TANK A THERMO	1	1 1							STATE

^{*}ALL PSEUDOS ON THIS PAGE DO NOT APPLY TO GTS.

MEASUREMENT			I.C.		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS		CTS	FS	CTS	FS	CTS	FS	CTS	
*AF3A	APU F/LINE A THERMO	1		1	!						STATE
*AO3A	APU O/LINE A THERMO	1	ļ	1							STATE
*AS3A	APU SER LINE A THERMO	1		1							STATE
*AT3B	APU TANK B THERMO	1		1	:						STATE
*AF3B	APU F/LINE B THERMO	1		1							STATE
* A03B	APU O/LINE B THERMO	1		1					•		STATE
*AS3B	APU SER LINE B THERMO	1		1							STATE
*GG1A	PUMP/GG HTR	1		1							STATE
*GG1B	PUMP/GG HTR	1		1							STATE
* GG2A	PUMP/GG HTR	1		1							STATE
* GG2B	PUMP/GG HTR	1		1							STATE
* GG3A	PUMP/GG HTR	1		1			,			<u> </u>	STATE
* GG3B	PUMP/GG HTR	1		1							STATE
						Ì					
										•	
	·		·							1	
										Ì	
								İ			i
		ł									
									[1	İ
									ł		
			İ								1
										<u> </u>	<u> </u>

^{*}ALL PSEUDOS ON THIS PAGE DO NOT APPLY TO GTS.

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V58T0101A	-HYD- RESVR FLUID TEMP. SYSTEM 1	120	53€	120	536	40	319	35	305	°F
V58T0201A	RESVR FLUID TEMP. SYSTEM 2	124.2	548	124.2	548	40	319	35	305	°F
758T0301A	RESVR FLUID TEMP. SYSTEM 3	117	528	117	528	40	319	35	305	°F
V58Q0102A	RESVR FLUID VOLUME SYSTEM 1	58	593	58	593	0	Ú			PCT
V58Q0202A	RESVR FLUID VOLUME SYSTEM 2	62	634	62	634	0	o			PCT
V58Q0302A	RESVR FLUID VOLUME SYSTEM 3	68	696	68	696	0	0			PCT
V58P0104A	H ₂ O BLR GN ₂ REG. OUT. PRESS. SYSTEM 1	0	149	25	342	25	342	25	342	PSIA
V58P0204A	HO BLR GN REG. OUT. PRESS. SYSTEM 2	0	0	28	383	28	383	28	383	PSIA
V58P0304A	HO BLR GN REG. OUT. PRESS. SYSTEM 3	0	0	27	368	27	368	27	368	PSIA
V58T0105A	HOO BLR GNO TK. TEMP. SYSTEM 1	31.44	0	70.04	278	70.04	278	70.04	278	°F
V58T0205A	HO BLR GN TK. TEMP. SYSTEM 2	31.44	0	103.05	589	103.05	589	103.05	539	°F
V58T0305A	HO BLR GN TK. TEMP. SYSTEM 3	31.44	0	106.94	616	106.94	616	106.94	616	•F
V58P0114C	SUPPLY PRESS. A SYSTEM 1	3022	773	3022 751	773 192	375	96	78	20	PSIA
*V58P0214C	SUPPLY PRESS. A SYSTEM 2	3124	799	3124 751	799 192	375	96	78	20	PSIA
*V53P0314C	SUPPLY PRESS. A SYSTEM 3	3226	825	3226 751	825 192	375	96	78	20	PSIA
V58P0115C V58P0115A	SUPPLY PRESS. B SYSTEM 1	3200	818	3200 751	818 192	376	96	80	20	?SIA
V58P0215C V58P0215A	SUPPLY PRESS. B SYSTEM 2	3000	767	3000 751	767 192	376	96	80	20	PSIA

^{*} ${\tt MOTE}$: This measurement uses the range limit conversion method of calculating ${\tt FS}_{{\tt EU}}$.

^{**} Unique to GTS. Measurement values are equivalent to Supply Pressure B.

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	0.1.7.5
V58P0315C V58P0315A	SUPPLY PRESS B SYSTEM 3	2896	741	2896 75 1	741 192	376	96	80	20	PSIA
*V58P0116C	HYD SYS 1 SUPPLY PRESS C	3300	844	3300 751	844 192		96	78	20	PSIA
*V58P0216C	HYD SYS 2 SUPPLY PRESS C	3402	870	3402 751	870 192		96	78	20	PSIA
*V58P0316C	HYD SYS 3 SUPPLY PRESS C	3152	806	3152 751	806 192		96	· 78	20	PSIA
V58T0120A	HYD SYS 1 FLUID HTR OUT TMP	102	487	102	487	102	487	35	305	DEGF
V58TQ220A	HYD SYS 2 FLUID HTR OUT TMP	90	454	90	454	90	454	35	305	DEGF
V58T0320A	HYD SYS 3 FLUID HTR OUT TMP	81	430	81	430	81	430	35	305	DEGF
V58P0137A	CIRC. PUMP PRESS. SYSTEM 1	50	63	50	63	374	479	80	102	PSIA
V58P0237A	CIRC. PUMP PRESS. SYSTEM 2	54	70	54	70	374	479	80	102	PSIA
V58P0337A	CIRC. PUMP PRESS. SYSTEM 3	61	78	61	78	374	479	80	102	PSIA
V58P0147A	H ₂ 0 BLR. GN ₂ TK. PRESS SYSTEM 1	2471	722	2471	722	2471	722	2471	722	PSIA
V58P0247A	H ₂ O BLR. GN ₂ TK. PRESS SYSTEM 2	2429	710	2429	710	2429	710	2429	710	PSIA
V58P0347A	H ₂ O BLR. GN ₂ TK. PRESS SYSTEM 3	2513	735	2513	735	2513	735	2513	735	PSIA
V58T0157A	HYD SYS 1 LH INBD ELEV ACT RTN LN TMP	141	593	141	593	30	291	30	291	DEGF
V58T0257A	HYD SYS 2 LH INBD ELEV ACT RTN LN TMP	132	569	132	569	30	291	30	291	DEGF
V58T0159A	HYD SYS 1 RH INBD ELEV ACT RTN LN TMP	147	610	147	610	30	291	30	291	DEGF
V58T0359A	HYD SYS 3 RH INBD ELEV ACT RTN LN TMP	78	421	78	421	30	291	30	291	DEGF
V58T0161A	H ₂ 0 BLR. TK. TEMP. SYSTEM 1	31.44	0	100.08	567	55.89	152	55.89	152	°F
V58T0261A	H ₂ O BLR. TK. TEMP. SYSTEM 2	31.44	0	105.03	603	55.89	152	55.89	152	°F

^{*}NOTE: This measurement uses the range limit conversion method of calculating $\mathsf{FS}_{\mathsf{EU}}$.

^{**} Unique to GTS. Measurement values are equivalent to Supply Pressure B.

MEASUREMENT		1.0		VALUE 1 (NOMINAL		VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	ES	CIS	FS	CTS	FS	CTS	
V58T0361A	H ₂ O BLR. TK. TEMP. SYSTEM 3	31.44	0	110.01	636	55.89	152	55.89	152	°F
V58T0162A	H ₂ O BLR. TEMP. NO. 1 SYSTEM 1	29.96	0	82.00	405	55.86	159	55.86	159	°F
V58T0262A	HO BLR. TEMP. NO. 1 SYSTEM 2	29.96	0	76.90	352	55.86	159	55.86	159	°F
V58T0362A	H ₂ O BLR. TEMP. NO. 1 SYSTEM 3	29.96	0	71.00	292	55.86	159	55.86	159	°F
V58T0163A	H ₂ O BLR. TEMP. NO. 2 SYSTEM 1	29.96	0	104.95	610	55.86	159	55.86	159	۰F
V58T0263A	H ₂ O BLR. TEMP. NO. 2 SYSTEM 2	29.96	0	95.98	539	55.86	159	55.86	159	°F
V58T0363A	H ₂ O BLR. TEMP. NO. 2 SYSTEM 3	29.96	0	86.03	446	55.86	159	55.86	159	°F
V58T0165A	H ₂ O BLR. VENT TEMP. NO. 1 SYSTEM 1	150	454	150	454	122	0	122	U	°F
V58T0265A	H ₂ O BLR. VENT TEMP. NO. 1 SYSTEM 2	153	503	153	503	122	0	122	3	°F
V58T0365A	HOO BLR. VENT TEMP. NO. 1 SYSTEM 3	160	618	160	618	122	0	122	၁	۰Ł
V58T0166A	H ₂ O BLR. VENT TEMP. NO. 2 SYSTEM 1	155	536	155	536	122	0	122	O	°F
V58T0266A	H ₂ O BLR. VENT TEMP. NO. 2 SYSTEM 2	157	569	157	569	122	0	122	0	°F
V58T0366A	H ₂ O BLR. VENT TEMP. NO. 2 SYSTEM 3	165	698	165	698	122	0	122)	•F
V58X0181E	H ₂ O BLR. BYPASS CL. IND. SYSTEM 1	0	0	1.	1	0	0	0	ו	STATE
V58X0281E	H ₂ O BLR. BYPASS CL. IND. SYSTEM 2	0	0	1	1	0	0	0	j	STATE
V58X0381E	H20 BLR. BYPASS CL. IND. SYSTEM 3	0	0	1	1	0	0	0	0	STATE
V58X0182E	H ₂ O BLR. OK SYSTEM 1	0	0							STATE
V58X0282E	H ₂ O BLR. OK SYSTEM 2	0	0					^		STATE
V58X0382E	H ₂ O BLR. OK SYSTEM 3	0	0							STATE
					<u> </u>		<u> </u>			

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V58X0190E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 1	0	0							STATE
V58X0290E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 2	0	0							STATE
V58X0390E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 3	0	0						1	STATE
V58T0198A	HYD SYS 1 RSB RETURN LINE TEMP	136.2	581	136.2	581	30	291	30	291	DEGF
V58T0298A	HYD SYS 2 RSB RETURN LINE TEMP	69	397	69	397	30	291	30	291	DEGF
V58T0398A	HYD SYS 3 RSB RETURN LINE TEMP	63	381	63	381	30	291	. 30	291	DEGF
V58T0288A	HYD SYS 2 BODY FLAP RTN LINE TEMP	75	413	75	413	30	291	30	291	DEGF
V58T0388A	HYD SYS 3 BODY FLAP RTN LINE TEMP	66	389	66	389	30	291	30	291	DEGF
V58T0296A	HYD SYS 2 RH BRAKE VLV RTN LN TMP	72	405	72	405	30	291	30	291	DEGF
V58X0800E	LH INBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	0	i						STATE
V58X0801E	LH INBD ELVN ACTR. SW. VLV. PS2 POSN.	0	0						1	STATE
V58T0833A	LH INBD ELVN SW. VALVE LN TEMP.	40	319	40	319	30	291	30	291	°F
V58T0841A	LH OTBD BRAKE SW. VALVE LN TEMP.	57	364	57	364	30	291	30	291	٥F
V58T0842A	LH INBD BRAKE SW. VALVE LN TEMP.	54	356	54	356	30	291	30	291	°F
V58T0845A	RH OTBD BRAKE SW. VALVE LN TEMP.	51	348	51	348	30	291	30	291	°F
V58T0846A	RH INBD BRAKE SW. VALVE LN TEMP.	48	340	48	340	30	291	30	291	°F
V58X0850E	LH OTBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	0						}	STATE
V58X0851E	LH OTBD ELVN ACTR. SW. VLV. PS2 POSN.	0	0	1						STATE
V58T0883A	LH OTBD ELVN SW. VALVE LN TEMP.	45	331	45 ·	331	30	291	30	291	°F
		<u> </u> 								
					·					

MEASUREMENT		I.C		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
1. D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	
V58X0900E	RH INBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	اه							STATE
V58X0901E	RH INBD ELVN ACTR. SW. VLV. PS2 POSN.	0	o							STATE
V58T0933E	RH INBD ELVN SW. VALVE LN TEMP.	42	323	42	323	30	291	30	291	°F
V58X0950E	RH OTBD ELVN ACTR. SW. VLV. ACTV. POSN	0	o			1				STATE
V58X0951E	RH OTBD ELVN ACTR. SW. VLV. PS2 POSN	0	ol							STATE
V58T0983A	RH OTBD ELVN SW. VALVE LN TEMP.	39	315	39	315	30	291	· 30	291	°F
V58X1000E	RDR/SPDBK SW. VLV ACTV. POSN.	0	0							STATE
V58X1001E	RDR/SPDBK SW. VLV. PS2 POSN.	0	0						ì	STATE
V58T1006A	RUDDER SW. VALVE LN TEMP. A	36	307	36	307	30	291	30	291	°F
V58X1136E	HYD SYS 1 ME/TVC SPLY VLV OPN IND	0	o							STATE
V58T1143A	MID FUSLG. RTN. LN TEMP A	33	299	33	299.	30	291	30	291	°F
V58X1236E	HYD SYS 2 ME/TVC SPLY VLV OPN IND	0	0				:			STATE
V58X1336E	HYD SYS 3 ME/TVC SPLY VLV OPN IND	0	0							STATE
V58P9116A	HYD SYS 1 GN2 ACCUMULATOR PRESS	2560	655	2560	655	2560	655	2560	655	PSIA
V58P9216A	HYD SYS 2 GN2 ACCUMULATOR PRESS	2400	614	2400	614	2400	614	2400	614	PSIA
V58P9316A	HYD SYS 3 GN2 ACCUMULATOR PRESS	2600	665	2600	665	2500	665	2600	665	PSIA
						ļ				
				:						
				!						

MEASUREMENT		1.0		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
1. 0.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	00113
V58T9133A	HYD SYS 1 FLUID HTR INLET TMP	108	503	108	503	70	401	70	401	DEGF
V58T9233A	HYD SYS 2 FLUID HTR INLET TMP	125	550	125	550	70	401	70	401	DEGF
V58T9333A	HYD SYS 3 FLUID HTR INLET TMP	170	673	170	673	70	401	70	401	DEGF
V58T9141A	HYD SYS 1 CIRC PUMP OUTLET TEMP	112.2	516	112.2	516	70	401	70	401	DEGF
V58T9242A	HYD SYS 2 CIRC PUMP OUTLET TEMP	127.2	557	127.2	557	70	401	70	401	DEGF
V58T9342A	HYD SYS 3 CIRC PUMP OUTLET TEMP	165	659	165	659	70	401	7C	401	DEGF
V58T9144A	HYD SYS I RETURN LINE RSB TMP	93	462	93	462	30	291	30	291	DEGF
V58T9244A	HYD SYS 2 RETURN LINE RSB TMP	117	528	117	528	30	291	30	291	DEGF
V58T9344A	HYD SYS 3 RETURN LINE RSB TMP	175	687	175	687	30	291	30	291	DEGF
V58T9160A	HYD SYS 1 RTN LN BODY FLAP TMP	99	479	9 9	479	30	291	36	291	DEGF
V58T9165A	HYD SYS 2 RTN LIAR OTBD ELEV ACT TEMP	85	442	85	442	30	291	30	291	DEGF
V58T9178A	HYD SYS 1 RTN LN LMG UPLK ACT TMP	27	282	27	282 .	30	291	30	291	DEGF
V58T9183A	HYD SYS I NLG UPLK ACT LINE TMP	24	274	24	274	30	291	30	291	DEGF
V58T9186A	HYD SYS 1 RTN LN NLG TEMP 3	87	446	87	446	30	291	30	291	DEGF
V58T9189A	HYD SYS 1 RTN LN RMG UPLK ACT TMP	21	266	21	266	30	291	30	291	DEGF
V58T9190A	HYD SYS 1 RTN LN RMG ORIFICE TMP	18	258	18	258	30	291	30	291	DEGF
V58T9194A	HYD SYS 1 RTN LN R BRK SW VLV TMP	96	471	96	471	30	291	30	291	DEGF
V58T9236A	HYD SYS 2 RTN LN BODY FLAP TMP	115	524	115	524	30	291	30	291	DEGF
V58T9261A	HYD SYS 1 RTN LN L OTBD ELEV ACT	34	438	84	438	30	291	30	291	DEGF
V58T9262A	HYD SYS 1 RTN LN R OTBD ELEV ACT	144	602	144	602	30	291	30	291	DEGF
V58T9263A	HYD SYS 2 LH BRAKE VLV RTN LN TMP	30	291	30	291	30	291	30	291	DEGF
V58T9264A	HYD SYS 2 RH BRAKE SW VLV RTN LN TMP	30	291	30	291	30	291	30	291	DEGF
V58T9349A	HYD SYS 3 RTN LN BODY FLAP TMP	160.2	647	160.2	647	30	291	30	291	DEGF

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	Units
1. 0.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V58T9351A	HYD SYS 3 RH BRAKE VLV RTN LN TMP	30	291	30	291	30	291	30	.291	DEGF
V58T9352A	HYD SYS 3 LH BRAKE VLV RTN LN TMP	30	291	30	291	30	29]	30	291	DEGF
V58T9361A	HYD SYS 3 RTN LN L OTBD ELEV ACT TMP	156	634	156	634	30	291	10	237	DEGF
·									·	
V58T0830A	HYD SYS LH into ELEV ACT	120	532							DEGF
V58T0880A	HYD SYS LH OTBD ELEV ACT	126	548							DEGF
V58T0930A	HYD SYS RH INBD ELEV ACT	132	565							DEGF
V58T0980A	HYD SYS RH OTBD ELEV ACT	138	581							DEGF
V57T0014A	RUDDER/SPEEDBRAKE PDU	144	597						}	DEGF
V57T0018A	BODY FLAP PDU	150	614							DEGF
		·								
	·									

APPENDIX B

VENT DOORS MATH MODEL REQUIREMENTS

CONTENTS

		rage
Sec	tion	B-1
١.	INTRODUCTION	B-2
2.	DETAILED REQUIREMENTS	_
	2 1 MATH MODEL DESCRIPTION	
	2.2 STS UNIQUE REQUIREMENTS	B-2°
	2.2 SIS UNIQUE REQUIREMENTS	B-2
	2.3 GTS UNIQUE REQUIREMENTS	B-3
3.	MATH MODEL LOGIC	B-3
	3.1 GTS PREPROCESSOR LOGIC	
	3.2 LOGIC FLOW DIAGRAM	B-21
4.		D-21
٧.	4.1 INPUT STIMULI LIST	B-21
	4.1 INPUT STIMULI LIST	B-28
	4.2 OUTPUT MEASUREMENT LIST	

1. INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shutile's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the Vent Doors.

2.1 MATH MODEL DESCRIPTION

This model simulates those functions of the vent doors in the Orbiter, namely: OPEN, CLOSE, and PURGE. The vent doors permit equalization of pressures between the ambient and the unpressurized areas within the Orbiter during ascent and descent. The PURGE function expels toxic or explosive gas mixtures that may accumulate within the unpressurized areas.

2.2 STS UNIQUE REQUIREMENTS

This model is not required for STS.

2.3 GTS UNIQUE REQUIREMENTS

This model is required for GTS only.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 FS_{EU} which is equivalent to 534 MODEL shown outside the box.

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

PANEL/	NOMENCLATURE	NOTES	MML ID.	SO	URCE	STATE
SWITCH	NUMERICEATURE	MUIES	PINE 10.	MDM	CONN-PIN	SIMIE
(NONE)	L FWD VENTS 1 & 2 CLOSE CMD 1A	2	V59K3000X	FF03	J04-094	1-CLS/0-CLS
	L FWD VENTS 1 & 2 CLOSE CMD 1B		V59K3001X	FF03	J02-079	
	L FWD VENTS 1 & 2 CLOSE CMD 2A		V59K3010X	FF02	J04-094	
	L FWD VENTS 1 & 2 CLOSE CMD 2B		V59K3011X	FF02	J02-094	. ↓
	L FWD VENTS 1 & 2 OPEN CMD 1A		V59K3050X	FF03	J 04 -096	1-0PN/0-0PN
	L FWD VENTS 1 & 2 OPEN CMD 1B		V59K3051X	FF03	J02-096	
	L FWD VENTS 1 & 2 OPEN CMD 2A		V59K3060X	FF02	J04-096	
	L FWD VENTS 1 & 2 OPEN CMD 2B		V59K3061X	FF02	J02-096	1
	L FWD VENTS 1 & 2 PURGE CMD 1A		V59K3100X	FF03	J04- 079	1-PURGE/0-PUR
	L FWD VENTS 1 & 2 PURGE CMD 1B		V59K3101X	FF03	J02-072	
	L FWD VENTS 1 & 2 PURGE CMD 2A		V59K3110X	FF02	J04-072	
•	L FWD VENTS 1 & 2 PURGE CMD 2B	1	V59K3111X	FF02	J02-072	†
•	L PB VENT 3 CLOSE CMD 1A		V59K3200X	FF03	J 04- 091	1-CLS/0-CLS
	L PB VENT 3 CLOSE CMD 1B		V59K3201X	FF03	J02-091	·
	L PB VENT 3 CLOSE CMD 2A		V59K321CX	FF02	J04- 091	
	L PB VENT 3 CLOSE CMD 2B		V59K3211X	FF02	J02-091	1
	L PB VENT 3 OPEN CMD 1A		V59K3250X	FF03	J04- 072	1-0PN/0- 0PN
	L PB VENT 3 OPEN CMD 1B		V59K3251X	FF03	J02-094	
	L PB VENT 3 OPEN CMD 2A		V59K3260X	FF02	J04-079	
	L PB VENT 3 OPEN CMD 2B		V59K3261X	FF02	J02-079	+
	L PB/W VENTS 4 & 7 CLOSE CMD 1A		V59K3300X	FF03	J03-054	1-CLS/0-CLS
	L PB/W VENTS 4 & 7 CLOSE CMD 1B		V59K3301X	FF03	J01-060	
	L PB/W VENTS 4 & 7 CLOSE CMD 2A		V59K3310X	FF02	J03-054	
	L PB/W VENTS 4 & 7 CLOSE CMD 2B		V59K3311X	FF02	J01-054	+
	L PB/W VENTS 4 & 7 OPEN CMD 1A		V59K3350X	FF03	J03-042	1-0PN/0- 0PN

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SOURCE		67475
		NOTES		MDM	CONN-PIN	STATE
(NONE)	L PB/W VENTS 4 & 7 OPEN CMD 1B	2	V59K3351X	FF03	J01-042	1-OPN/O-OPN
	L PB/W VENTS 4 & 7 OPEN CMD 2A		V59K3360X	FF02	J03-042	
	L PB/W VENTS 4 & 7 OPEN CMD 2B		V59K3361X	FF02	J01-042	
	L PB VENT 5 CLOSE CMD 1A		V59K3400X	FF03	J03-055	1-CLS/0-CLS
	L PB VENT 5 CLOSE CMD 1B	ļ į	V59K3401X	FF03	J01-055	
	L PB VENT 5 CLOSE CMD 2A		V59K3410X	FF04	J03-055	
	L PB VENT 5 CLOSE CMD 2B		V59K3411X	FF04	J01-060	†
	L PB VENT 5 OPEN CMD 1A		V59K3450X	FF03	J03-041	1-0PN/0-0PN
	L PB VENT 5 OPEN CMD 1B		V59K3451X	FF03	J01-041	
	L PB VENT 5 OPEN CMD 2A	į l	V59K3460X	FF04	J03-041	
	L PB VENT 5 OPEN CMD 2B]	V59K3461X	FF04	J01-041	↓
	L PB VENT 6 CLOSE CMD 1A		V59K3500X	FF01	J03-044	1-CLS/0-CLS
	L PB VENT 6 CLOSE CMD 1B		V59K3501X	FF01	J01-044	
	L PB VENT 6 CLOSE CMD 2A		V59K3510X	FF04	J03-044	·
	L PB VENT 6 CLOSE CMD 2B		V59K3511X	FF04	J01-044	†
	L PB VENT 6 OPEN CMD 1A		V59K3550X	FF01	J03-056	1-0PN/0-0PN
	L PB VENT 6 OPEN CMD 1B		V59K3551X	FF01	J01-056	
	L PB VENT 6 OPEN CMD 2A		V59K3560X	FF04	J03-056	
	L PB VENT 6 OPEN CMD 2B		V59K3561X	FF04	J01-056	+ [
	L PB VENT 6 PURGE 1 CMD 1A		V59K3600X	FF01	J03-057	1-PURGE/0-PUR
	L PB VENT 6 PURGE 1 CMD 1B		V59K3601X	FF01	J01-057	
	L PB VENT 6 PURGE 1 CMD 2A		V59K3610X	FF04	J03-057	
	L PB VENT 6 PURGE 1 CMD 2B		V59K3611X	FF04	J01-057	
	L PB VENT 6 PURGE 2 CMD 1A		V59K3700X	FF01	J03-045	
	L PB VENT 6 PURGE 2 CMD 1B		V59K3701X	FF01	J01-045	+

œ
N
_

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SOURCE		STATE
		MUIES		MOM	CONN-PIN	JIMIE
(NONE)	L PB VENT 6 PURGE 2 CMD 2A	2	V59K3710X	FF04	J03-045	1-PURGE/0-PUR
	L PB VENT 6 PURGE 2 CMD 2B		V59K3711X	FF04	J01-045	Ī
	L AFT VENTS 8 & 9 CLOSE CMD 1A		V59K3800X	FA01	J06-019	1-CLS/0-CLS
	L AFT VENTS 8 & 9 CLOSE CMD 1B		V59K3801X	FAO1	J08-010	
	L AFT VENTS 8 & 9 CLOSE CMD 2A		V59K3810X	FA04	J06-019	
	L AFT VENTS 8 & 9 CLOSE CMD 2B		V59K3811X	FA04	J08-010	+
	L AFT VENTS 8 & 9 OPEN CMD 1A		V59K3850X	FA01	J06-030	1-0PN/0-0PN
	L AFT VENTS 8 & 9 OPEN CMD 1B		V59K3851X	FA01	J08-019	
	L AFT VENTS 8 & 9 OPEN CMD 2A		V59K3860X	FA04	J06-030	
	L AFT VENTS 8 & 9 OPEN CMD 2B		V59K3861X	FA04	J08-019	1
	L AFT VENTS 8 & 9 PURGE CMD 1A		V59K3900X	FA01	J06-008	1-PURGE/0-PUR
	L AFT VENTS 8 & 9 PURGE CMD 1B		V59K3901X	FA01	J08-030	
	L AFT VENTS 8 & 9 PURGE CMD 2A		V59K3910X	FA04	J05-008	
	L AFT VENTS 8 & 9 PURGE CMD 2B		V59K3911X	FA04	J08-030	+
	R FWD VENTS 1 & 2 CLOSE CMD 1A		V59K4000X	FF01	J04-094	1-CLS/0-CLS
	R FWD VENTS 1 & 2 CLOSE CMD 1B		V59K4001X	FF01	J02-094	
	R FWD VENTS 1 & 2 CLOSE CMD 2A		V59K4010X	FF04	J04-094	
	R FWD VENTS 1 & 2 CLOSE CMD 2B		V59K4011X	FF04	J02-079	ļ ļ
	R FWD VENTS 1 & 2 OPEN CMD 1A	1 1	V59K4050X	FF01	J04-096	1-0PN/0-0PN
	R FWD VENTS 1 & 2 OPEN CMD 1B		V59K4051X	FF01	J02-096	
	R FWD VENTS 1 & 2 OPEN CMD 2A		V59K4060X	FF04	J04-096	
	R FWD VENTS 1 & 2 OPEN CMD 2B		V59K4061X	FF04	J02-096	1
	R FWD VENTS 1 & 2 PURGE CMD 1A		V59K4100X	FF01	J04-072	1-PURGE/0-PUR
	R FWD VENTS 1 & 2 PURGE CMD 1B		V59K4101X	FF01	J02-072	ı
	R FWD VENTS 1 & 2 PURGE CMD 2A		V59K4110X	FF04	J04-079	†

PANEL/	NOMENCLATURE	NOTES	MML ID.	SO	URCE	STATE
SWITCH	NOMENCEATORE	MUIES	rmL 10.	MDM	CONN-PIN	SINIE
(NONE)	R FWD VENTS 1 & 2 PURGE CMD 2B	2	V59K4111X	FF04	J02-072	1-PURGE/0-PURGE
	R PB VENT 3 CLOSE CMD 1A		V59K4200X	FF01	J03-054	1-CLS/0-CLS
	R PB YENT 3 CLOSE CMD 1B		V59K4201X	FF01	J01-054	
	R PB VINT 3 CLOSE CMD 2A		V59K4210X	FF04	J04-091	
	R PE VENT 3 CLOSE CMD 2B		V59K4211X	FF04	J02-091	1
	R PB VENT 3 OPEN CMD 1A		V59K4250X	FF01	J03-042	1-OPN/O-OPN
	R PB VENT 3 OPEN CMD 1B		V59K4251X	FF01	J01-042	
	R PB VENT 3 OPEN CMD 2A		V59K4260X	FF04	J04-072	
	R PB VENT 3 OPEN CMD 2B		V59K4261X	FF04	J02-094	+
	R PB/W VENT 4 & 7 CLOSE CMD 1A		V59K4300X	FF04	J03-054	1-CLS/0-CLS
	R PB/W VENTS 4 & 7 CL0 ~ CMD 1B		V59K4301X	FF04	J01-054	
	R PB/W VENTS 4 & 7 CLOSE CMD 2A		V59K4310X	FF01	J04-091	
	R PB/W VENTS 4 & 7 CLOSE CMD 2B		V59K4311X	FF01	J02-089	+
	R PB/W VENTS 4 & 7 OPEN CMD 1A		V59K4350X	FF04	J03-042	1-0PN/0-0PN
	R PB/W VENTS 4 & 7 OPEN CMD 1B		V59K4351X	FF04	J01-042	
	R PB/W VENTS 4 & 7 OPEN CMD 2A		V59K43@OX	FF01	J04-079	
	R PB/W VENTS 4 & 7 OPEN CMD 2B		V59K4351X	FF01	J02-079	1 1
i	R PB VENT 5 CLOSE CMD 1A		V59K4400X	FF01	J03-055	1-CLS/0-CLS
!	R PB VENT 5.CLOSE CMD 18		V59K4401X	FF01	J01-055	
	R PB VENT 5 CLOSE CMD 2A		V59K4410X	FF02	J03-055	
	R PB VENT 5 CLOSE CMD 2B		V59K4411X	FF02	J01-060	+ 1
	R PB VENT 5 OPEN CMD 1A		V59K4450X	FF01	J03-041	1-OPN/0-OPN
	R PB VENT 5 OPEN CMD 18		V59K4451X	FF01	J01-041	
	R PB VENT 5 OPEN CMD 2A		V59K4460X	FF02	J03-041	
	R PB VENT 5 OPEN CMD 2B		V59K4461X	FF02	J01-041	1

C	
\sim	

PANEL/	NOMENCLATURE	NOTES	MML ID.	SO	URCĘ	STATE	
SWITCH		MUIES	THE 1U.	MOM	CONN-PIN	SIMIE	
(NONE)	R PB VENT 6 CLOSE CMD 1A	2	V59K4500X	FF03	J03-044	1-CLS/0-CLS	
,,	R PB VENT 6 CLOSE CMD 18		V59K4501X	FF03	J01-044		
	R PB VENT 6 CLOSE CMD 2A		V59K4510X	FF02	J03-044		
	R PB VENT 6 CLOSE CMD 2B		V59K4511X	FF02	J01-044	ł	
	R PB VENT 6 OPEN CMD 1A		V59K4550X	FF03	J03-056	1-0PN/0- 0PN	
	R PB VENT 6 OPEN CMD 1B		V59K4551X	FF03	J01-056		
	R PB VENT 6 OPEN CMD 2A		V59K4560X	FF02	J03-056		
	R PB VENT 6 OPEN CMD 2B		V59K4561X	FF02	J01-056	+	
	R PB VENT 6 PURGE 1 CMD 1A		V59K4600X	FF03	J03-057	1-PURGE/0-PUR	
	R PB VENT & PURGE 1 CMD 1B		V59K4601X	FF03	J01-057		
	R PB VENT 6 PURGE 1 CMD 2A		V59K4610X	FF02	J03-057		
	R PB VENT 6 PURGE 1 CMD 2B		V59K4611X	FF02	J01-057	-	
	R PB VENT 6 PURGE 2 CMD 1A		V59K4700X	FF03	J03-045		
	R PB VENT 6 PURGE 2 CMD 1B		V59K4701X	FF03	J01-045		
	R PB VENT 6 PURGE 2 CMD 2A		V59K4710X	FF02	J03-045		
	R PB VENT 6 PURGE 2 CMD 28	1	V59K4711X	FF02	J01-045	, †	
	R AFT VENTS 8 & 9 CLOSE CMD 1A		V59K4800X	FA03	J06-019	1-CLS/0-CLS	
	R AFT VENTS 8 & 9 CLOSE CMD 1B		V59K4801X	FA03	J08-010		
	R AFT VENTS 8 & 9 CLOSE CMD 2A		¥59K4810X	FA02	J06-019	1	
	R AFT VENTS 8 & 9 CLOSE CMD 2B		V59K4811X	FA02	J08-010	Ť	
	R AFT VENTS 8 & 9 OPEN CMD 1A		V59K4850X	FA03	J06-030	1-0PN/0-0PN	
	R AFT VENTS 8 & 9 OPEN CMD 1B		V59K4851X	FA03	J08-019		
	R AFT VENTS 8 & 9 OPEN CMU 2A		V49K4860X	FA02	J06-030		
	R AFT VENTS 8 & 9 OPEN CMD 2B		V59K4861X	FA02	J08-019	+	
	R AFT VENTS 8 & 9 PURGE CMD 1A		V59K4900X	FA03	J06-008	1-PURGE/0-PUR	

c	2	ľ	1
	ı		
۱	•	١	
		۰	١

PANEL/	NOMENCLATURE	NOTES	MML ID.	S0	URCE	STATE	
SWITCH	MOTERICEATORE	MOLES		MOM	CONN-PIN	SIMIE	
(NONE)	R AFT VENTS 8 & 9 PURGE CMD 1B	2	V59K4901X	FA03	J08-030	1-PURGE/0-PU	
	R AFT VENTS 8 & 9 PURGE CMD 2A		V59K4910X	FA02	J06-008		
	R AFT VENTS 8 & 9 PURGE CMD 2B		V59K4911X	FA02	J08-030	.	
						-	
				}			
		Ì		1			

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM VENT DOORS MODEL - TABLE 2

MEASUREMENT		I.C	•	VALUE 1	L	VALUE	2	VALUE	3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	стѕ	
V59X3555X	LFT AFT PLB 6ACT/B1 OPEN	0	0	1	1					STATE
V59X3505X	LFT AFT PLB 6ACT/B1 CLOSE	1	1	0	0					
V59X3605X	LFT AFT PLB 6ACT/B1 PURGE 1	0	0	1	1				Į.	
V59X3705X	LFT AFT PLB 6ACT/B1 PURGE 2	0	0	. 1	1					
V59X3565X	LFT AFT PLB 6ACT/B2 OPEN	0	0	1	1				Į.	
V59X3515X	LFT AFT PLB 6ACT/B2 CLOSE	1	1	0	0					
V59X3615X	LFT AFT PLB 6ACT/B2 PURGE 1	0	0	1	1				l	
V59X3715X	LFT AFT PLB 6ACT/B2 PURGE 2	0	0	1	1					
V59X4555X	RT AFT PLB 6ACT/B1 OPEN	0	0	1	1				ł	
V59X4505X	RT AFT PLB 6ACT/B1 CLOSE	1	1	0	0					
V59X4605X	RT AFT PLB 6ACT/B1 PURGE 1	0	0	1	1					i i '
V59X4705X	RT AFT PLB 6ACT/B1 PURGE 2	0	0	1	1					
V59X4565X	RT AFT PLB 6ACT/B2 OPEN	0	0	1	1					
V59X4515X	RT AFT PLB 6ACT/B2 CLOSE	1	1	0	0	-	1		Ì	
V59X4615X	RT AFT PLB 6ACT/B2 PURGE 1	0	0	1	1					
V59X4715X	RT AFT PLB 6ACT/B2 PURGE 2	0	0	1	1					
V59X3855X	LFT AFT VENT 8&9 ACT/B1 OPEN	0	0	1	1				1	
V59X3805X	LFT AFT VENT 8&9 ACT/B1 CLOSE	1	1	0	0					
V59X3905X	LFT AFT VENT 8&9 ACT/B1 PURGE	0	0	1	1 1]
V59X3865X	LFT AFT VENT 8&9 ACT/B2 OPEN	0	0	1	1					
V59X3815X	LFT AFT VENT 8&9 ACT/B2 CLOSE	1	1	0	0					\ \
V59X3915X	LFT AFT VENT 8&9 ACT/B2 PURGE	0	n	1	1					STATE

MEASUREMENT OUTPUT FROM VENT DOORS MODEL - TABLE 2

MEASUREMENT		I.C		VALUE 1		VALUE	2.	VALUE	3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	0117.5
V59X4855X	RT AFT VENT 8&9 ACT/B1 OPEN	0	0	1	1					STATE
V59X4805X	RT AFT VENT 8&9 ACT/B1 CLOSE	1	1	0	0					
V59X4905X	RT AFT VENT 889 ACT/B1 PURGE	0	0	1	1					
V59X4865X	RT AFT. VENT 889 ACT/B2 OPEN.	0	0	1	1					
V59X4815X	RT AFT VENT 889 ACT/B2 CLOSE	1	1	0	0					
V59X4915X	RT AFT VENT 889 ACT/B2 PURGE	0	0	1	1					
V59X4055X	RT FWD 182 ACT/B1 OPEN	0	0	1 .	1					1
V59X4005X	RT FWD 182 ACT/B1 CLOSE	1	1	0	0				1	
V59X4105X	RT FWD 182 ACT/B1 PURGE	0	0	1	1					
V59X4065X	RT FWD 162 ACT/B2 OPEN	0	0	1	1					·
V59X4015X	RT FWD 182 ACT/B2 CLOSE	1	1	0	0				1	
V59X4115X	RT FWD 182 ACT/B2 PURGE	0	0	1	1				j	
V59X3055X	LFT FWD 1&2 ACT/B1 OPEN	0	0	1	1					
V59X3005X	LFT FWD 182 ACT/B1 CLOSE	1	1	0	0					
V59X3105X	LFT FWD 1&2 ACT/B1 PURGE	0	0	1	1					
V59X3065X	LFT FWD 1&2 ACT/B2 OPEN	0	0	1	1]	1 1
V59X3015X	LFT FWD 1&2 ACT/B2 CLOSE	1	1	0	0					
V59X3115X	LFT FWD 1&2 ACT/B2 PURGE	0	0	1	1					
V59X3255X	LFT PLB/WING 3ACT/B1 OPEN	0	0	1	1	I				
V59X3205X	LFT PLB/WING 3ACT/B1 CLOSE	1	1	0	0		}			1 1
V59X3265X	LFT PLB/WING 3ACT/B2 OPEN	0	0	1	1					
V59X3215X	LFT PLB/WING 3ACT/B2 CLOSE	1	1	0	0				1	1 🕈
V59X4255X	RT PLB/WING 3ACT/B1 OPEN	0	0	1	1				1	STATE

MEASUREMENT OUTPUT FROM VENT DOORS MODEL-TABLE 2

MEASUREMENT		I.C.		VALUE 1		VALUE	2.	VALUE	3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FŞ	CTS	011113
V59X4205X	RT PLB/WING 3ACT/B1 CLOSE	1	1	0	0		`			STATE
V59X4265X	RT PLB/WING 3ACT/B2 OPEN	0	0	1	1	1				
V59X4215X	RT PLB/WING 3ACT/B2 CLOSE	1	1	0	0		1 1			
V59X3355X	LFT PLB/WING 4&7 ACT/B1 OPEN	0	0	1	1					
V59X3305X	LFT PLB/WING 4&7 ACT/B1 CLOSE	1	1	0	0					
V59X3365X	LFT PLB/WING 4&7 ACT/B2 OPEN	0	0	1	1					
V59X3315X	LFT PLB/WING 4&7 ACT/B2 CLOSE	1	1	0	0					
V59X4355X	RT PLB/WING 4&7 ACT/B1 OPEN	0	0.	1	1		1	-		
V59X4305X	RT PLB/WING 4&7 ACT/B1 CLOSE	1	1	0	0]			
V59X4365X	RT PLB/WING 4&7 ACT/B2 OPEN	0	0	1	1					·
V59X4315X	RT PLB/WING 4&7 ACT/B2 CLOSE	1	1	0	0					
V59X3455X	LFT PLB/WING 5ACT/B1 OPEN	0	0	1	1					
V59X3405X	LFT PLB/WING 5ACT/B1 CLOSE	1	1	0	0					
V59X3465X	LFT PLB/WING 5ACT/B2 OPEN	0	0	1	1					
V59X3415X	LFT PLB/WING 5ACT/B2 CLOSE	1	1	0	0			•		
V59X4455X	RT PLB/WING 5ACT/B1 OPEN	0	0	1	1					
V59X4405X	RT PLB/WING 5ACT/B1 CLOSE	1	1	0	0				1	
V59X4465X	RT PLB/WING 5ACT/B2 OPEN	0	0	1	1					1
V59X4415X	RT PLB/WING SACT/B2 CLOSE	1	1	0	0				1	STATE
										į
										ł
					,				ł	
								•	Ì	

APPENDIX C

ET UMBILICAL DOORS
NAS MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	·	Page
1.	INTRO	ODUCTION	C-1
2.	DETA	ILED REQUIREMENTS	C-2
	2.1	MATH MODEL DESCRIPTION	C-2
	2.2	STS UNIQUE REQUIREMENTS	C-2
	2.3	GTS UNIQUE REQUIREMENTS	C-2
3.	MATH	MODEL LOGIC	C-3
	3.1	GTS PREPROCESSOR LOGIC	C-3
	3.2	LOGIC FLOW DIAGRAM	C-4
4.	TABL	ES	C-11
	4.1	INPUT STIMULI LIST	C-11
	4.2	OUTPUT MEASUREMENT LIST	C-15

1. INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the ET Umbilical Doors.

2.1 MATH MODEL DESCRIPTION

This model simulates the functions of the ET Umbilical Doors, namely: OPEN, CLOSED, LATCHED, RELEASED, LOCKED, and STOWED. The doors seal Orbiter umbilical penetrations following ET separation to ensure a unified heat shield for entry.

2.2 STS UNIQUE REQUIREMENTS

This model is not required for STS.

2.3 GTS UNIQUE REQUIREMENTS

This model is required for GTS only.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 FS_{EU} which is equivalent to 534 MODEL $_{CTS}$ shown outside the box.

BEGIN/ V56K3100X CMD 2 CLS V56 K3105X CMD LOPN V56K3000E CMD 2 DPN 456K3005E = 1 V56X3010X=0 156X3010X= 1 AOOR DOOR OPEN V56×3110×= 1 CLOSED V56X3115X= 1 1 , ORIGINAL PAGE E

				* · · · · · · · · · · · · · · · · · · ·
		RIGHT_U	MB CLOSEOUT	DOOR
	2)			
	4100x			
CMD 1 OPN	4105X			
CMD 2 OPN	1000E			
	A005E N			
	DOOR	756x4010x= 1 756x4015x= 1 756x4110x= 0 756x4115x= 0	V56x4010x= 0 V56x4110x= 1 V56x4115x= 1	CLOSED
	3-)	1		

C-7

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 VARIABLE INITIALIZATION

The following stimuli are initialized as follows:

N	ML ID.	INITIAL CONDITION
V	66K3000E	0
	3005E	0
	4000E	0
	4005E	0
	3600E	0
	3610E	0
	3620E	0
	3630E	o
	4600E	0
	4610E	0
	4620E	0
,	4630E	0
		1

PANEL/	NOMENCLATURE		NOTES	MML	TO.	NAS	SOURCE	STATE	
SWITCH	NOMENCEATURE		NOTES		THE ID.		CONN-PIN	-	
R2/S48	ET UMB DOOR LATCH 1 STOW CMD	1A	2	V56K	1200X	FA01	J06-013	1-STOW/O-STOW	
		18			1201X	FA01	J08-026		
	}	2A			1210X	FA02	J06-013		
	↓ ↓	2B			1211X	FA02	J08-026	↓	
	ET UMB DOOR LATCH 1 LOCK CMD	1A			1250X	FA01	J06-015	1-DPLY/0-DPLY	
	1	18	2		1251X	FA01	J08-013	1	
		2A			1260X	FA02	J06-015		
	↓ ↓	28			1261 X	FA02	J08-013	↓	
	ET UMB DOOR LATCH 2 STOW CMD	1A			1300X	FA04	J06-013	1-STOW/O-STOW	
	1	1B	2		1301X	FA04	J08-026		
•		2A			1310X	FA03	J06-013		
•	\	2B			1311X	FA03	J08-026	↓ .	
	ET UMB DOOR LATCH 2 LOCK CMD	1A			1350X	FA04	J06-015	1-DPLY/0-DPLY	
		1B	2		1351X	FA04	J08-013	İ	
		2A			1360X	FA03	J06-015		
	<u> </u>	28			1361X	FA03	J08-013	V	
R2/S49	ET LF UMB CLS-OUT DR OPN CMD	1	5		3000E			1-0PN/0-0PN	
	OPN CMD	2			3005E			\downarrow	
	CLOSE CMD	1	2		3100X	FA01	J06-010	1-CLS/0-CLS	
	CLOSE CMD	2		;	31 05 X	FA03	J06-010	\	
R2/S51	ET RT UMB CLS-OUT DR OPN CMD	1	5		4000E			1-0PN/0-0PN	
	OPN CMD	2			4005E			\downarrow	

_	
\boldsymbol{c})
•	
-	-
-	>

PANEL/	NOMENCI ATUDE	NOMENCLATURE NOTES			OURCE	STATE
SWITCH	NOMENCEATORE	NOTES	MML ID.	MDM	CONN-PIN	SIMIE
R2/S51 (cont)	ET RT UMB CLS-OUT DR CLOSE CMD 1 CLOSE CMD 2	2	V56K4100X 4105X	FA04 FA02	J06-010 J06-010	1-CLS/0-CLS
R2/S50	ET LF UMB CLS-OUT DR LATCH CMD 1A 1B 2A 2B	2	3500X 3510X 3520X 3530X	FA01 FA01 FA04 FA04	J06-017 J08-017 J06-017 J08-017	. i
	ET LF UMB CLS-OUT DR REL CMD 1A 1B 2A 2B	5	3600E 3610E 3620E 3630E			1-REL/O-REL
R2/S52	ET RT UMB CLS-OUT DR LATCH CMD 1A 1B 2A 2B	2	4500X 4510X 4520X 4530X	FA03 FA03 FA02 FA02	J06-017 J08-017 J08-017 J06-017	1-LCH/0-LCH
	ET RT UMB CLS-OUT DR REL CMD 1A 18 2A 2B	5	4600E 4610E 4620E 4630E			1-REL/0-REL
·						

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM ET UMB MODEL - TABLE 2

MEASUREMENT		1.0		VALUE 1	VALUE 1		2	VALUE 3		UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	0.1113
V56X1205X	ET UMB DOOR LATCH 1 STOWED 1	0	0	1	1					STATE
V56X1215X	ET UMB DOOR LATCH 1 STOWED 2	0	o	1	1					
V56X1255X	ET UMB DOOR LATCH 1 LOCKED 1	0	0	1	1					
V56X1265X	ET UMB DOOR LATCH 1 LOCKED 2	0	0	1	1					
V56X1305X	ET UMB DOOR LATCH 2 STOWED 1	0	0	1	1					
V56X1315X	ET UMB DOOR LATCH 2 STOWED 2	0	0	1	1					
V56X1355X	ET UMB DOOR LATCH 2 LOCKED 1	0	0	1	1					
V56X1365X	ET UMB DOOR LATCH 2 LOCKED 2	0	0	1	1					
V56X3010X	ET LF UMB CLOSEOUT DOOR OPEN 1	1	1	0	0					M17
V56X3015X	ET LF UMB CLOSEOUT DOOR OPEN 2	1	1	0	0					
V56X3110X	ET LF UMB CLOSEOUT DOOR CLOSED 1	0	0	1	1					
V56X3115X	ET LF UMB CLOSEOUT DOOR CLOSED 2	0	0	1	1					
V56X3550X	ET LF UMB CLOSEOUT DOOR LATCHED 1	0	0	1	1	2				
V56X3560X	ET LF UMB CLOSEOUT DOOR LATCHED 2	0	0	1	1					
V56X3650X	ET LF UMB CLOSEOUT DOOR RELEASED 1	1	1	0	0					
V56X3660X	ET LF UMB CLOSEOUT DOOR RELEASED 2	1	1	0	0	•				
V56X4010X	ET RT UMB CLOSEOUT DOOR OPEN 1	1	1	0	0				1	
V56X4015X	ET RT UMB CLOSEOUT DOOR OPEN 2	1	1	0	0					
V56X4110X	ET RT UMB CLOSEOUT DOOR CLOSED 1	0	0	1	1					
V56X4115X	ET RT UMB CLOSEOUT DOOR CLOSED 2	0	0	1	1				in the same	
V56X4550X	ET RT UMB CLOSEOUT DOOR LATCHED 1	0	0	1	1					
V56X4560X	ET RT UMB CLOSEOUT DOOR LATCHED 2	0	0	1	1					
V56X4650X	ET RT UMB CLOSEOUT DOOR RELEASED 1	1	1	0	0					\
V56X4660X	ET RT UMB CLOSEOUT DOOR RELEASED 2	1	1	0	0	i				STATE

APPENDIX D

ET SEP PYROS MATH MODEL REQUIREMENTS

CONTENTS

Sec	ion	Page
	INTRODUCTION	D-1
	DETAILED REQUIREMENTS	
2.	2.1 MATH MODEL DESCRIPTION	
	2.2 STS UNIQUE REQUIREMENTS	
	2.3 GTS UNIQUE REQUIREMENTS	
	MATH MODEL LOGIC	
3.	3.1 GTS PREPROCESSOR LOGIC	
	3.2 LOGIC FLOW DIAGRAM	
4.	TABLES	
	4.1 INPUT STIMULI LIST	
	4.2 OUTPUT MEASUREMENT LIST	D-8

1. INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the ET SEP PYROS.

2.1 MATH MODEL DESCRIPTION

This model simulates the functions of the ET/Orbiter Forward Separation Pyro, namely: ARM and FIRE. The rear separation pyros are not part of this model because they exist in the Mission Events Controller (MEC) in the Flight System.

2.2 STS UNIQUE REQUIREMENTS

This model is not required for STS.

2.3 GTS UNIQUE REQUIREMENTS

This model is required for GTS only.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 $FS_{\mbox{EU}}$ which is equivalent to 534 MODEL shown outside the box.

NOTE: Pyro math model output of Pyro System A is also routed to the 3FS to satisfy Pyro System B interface with the BFS.

4. TABLES

INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- Pseudo entered by operator at DCM or NAS Kybd. 7.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- Both GPC commands req'd to oper valve. 10.
- 11. Stimulus provided by other model.
- These commands are mutually exclusive. 12.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

TABLE 1 - STIMULI INPUT FOR ET

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	NAS SOURCE	STATE
C3A7/S3	ET/URB FWD SEP ARM CMD	2	V76K6909B	MEC 1	1-ARM/0-ARM
C3A7/S4	ET/ORB FWD SEP FIRE 1 CMD	2	V76K6913B	MEC 1	1-FIRE/O-FIRE

4.2 QUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM ET SEP MODEL - TABLE 2

MEASUREMENT		I.C		VALUE 1 (NOMINAL	K=1)	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	UNITS
1. 0.	MEASUREMENT NAME	FS	CTS		CTS	FS	CTS	FS	CTS	0
*V76V7079B	ET/ORB FWD PIC SEP A CAP VOLT	0	0	5	1023					VDC
					•					
								·		
						-		-		
		·								

^{*}NOTE: This measurement uses the range limit conversion method of calculating ${\rm FS}_{\rm EU}$.

APPENDIX E

MPS PLUMBING MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion		Page
1.	INTRO	DOUCTION	E-1
2.	DETAI	LED REQUIREMENTS	E-2
			E-2
			E-7'
		GTS UNIQUE REQUIREMENTS	E-7
3.			E-9
J .			E-9
			E-29
			E-49
4.			E-49
			E-61
	Δ2	OUTPUT MEASUREMENT LIST	

FIGURES

Figure		Page
•	Orbiter part of main propulsion system	E-3
	MPS helium system schematic	

1. INTRODUCTION

This model simulates those functions of the Main Propulsion System (MPS) components that are in the Orbiter, namely valve positions, system pressures, and system temperatures. To simplify the model, only those component functions needed to support testing of the Shuttle Avionics System are provided.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the MPS. Figures 1 and 2 are simplified schematics of the Orbiter portion of the MPS and are included in this requirements document for reference.

2.1 MATH MODEL DESCRIPTION

The helium supply pressures (HE1, HE2, HE3, and HE4) are used to establish the pressure levels in the helium system. These pressures are transmitted to the Flight System as well as used in the model to determine if pneumatic valves can or cannot be activated.

The valves in the model are of three types: normally open, normally closed, and latching. The normally open valve remains open unless there is pneumatic pressure and a close command present in which case the valve closes. The normally closed valve remains closed unless there is pneumatic pressure and an open command present in which case the valve opens. The latching valve remains in either the open or close state depending on its last command, unless there is pneumatic pressure and a command for it to go to its opposite state. These three types of valve actions are shown in the logic flow chart routines titled, Normally Open Valve Routine (NOVR), Normally Closed Valve Routine (NCVR), and Latching Valve Routine (LVR).

2.1.1 HELIUM SUPPLY PRESSURE

A mission phase dependent variable in the Orbiter portion of the MPS is helium supply pressure. To avoid complexity in the model, the change of helium pressure to account for the operation of pneumatic valves and engine purging was not incorporated into the flowchart logic. Instead, it is intended that the test operator transmit new pressure values to the model at

appropriate times. A suggested set of pressure values for a nominal mission are as follows:

PHASE	PRESSURE VALUE (PSIA)
Prelaunch	2,000
Launch	4,000
Orbit	1,500
Reentry	1,000
Landing	500

Accounting for pressure usage during the mission is more for data realism than to satisfy avionics test requirements. The helium supply pressure might just as well remain fixed at 4,000 psia.

2.1.2 MODEL INITIALIZATION

The initial conditions column in the measurements table indicates the state of the model prior to configuring for LH2 and LO2 fill operations and is for reference only. The output measurement values of the model shall reflect the state of the input stimuli when the model is made active.

2.1.3 TIMERS

Two timers called "COUNTER" and "KOUNTER" are used in the LO2 and LH2 manifold pressure subroutines. The timers provide a delay before manifold pressures are set to zero. This simulates the time interval during which 20 psig helium pressure is forcing residual liquid propellants out of the manifolds following external tank separation.

The timer limits are LDT (LO2 Dump Time) and HDT (LH2 Dump Time) which are initialized, but may be changed by the fest operator.

2.1.4 FLAGS

The variable in the flow diagram named TST is a unique type of variable since it's function is to convey which part of the flow diagram applies to the STS configuration and which part applies to the GTS configuration. TST is not to be implemented in the model, but is to be interpreted by the implementer as to which paths of the flow diagram are unique to STS and which maths are unique to GTS.

Logic flows unique to STS are indicated by TST=1, while logic flows unique to GTS are indicated by TST=0.

Flags or pseudos that are used for purposes internal to the model are defined as follows:

- D Indicates valve position of the designated valve in the LVR, NCVR, and NOVR subroutines.
- A,B Indicate valve stimuli for the designated valve in the LVR, NCVR, and NOVR subroutines.

D1 thru D13 - Indicates the latching valve position for:

- D1 L02 Feed Disconnect Valve
- D2 LH2 Feed Disconnect Valve
- D3 LH2 Recirculation Disconnect Valve
- D4 LO2 Outboard Fill and Drain Valve
- D5 LO2 Inboard Fill and Drain Valve
- D6 LH2 Outboard Fill and Drain Valve
- D7 LH2 Inboard Fill and Drain Valve
- D8 Engine 1 LO2 Prevalve
- D9 Engine 2 LO2 Prevalve
- D10 Engine 3 LO2 Prevalve
- Dll Engine 1 LH2 Prevalve
- D12 Engine 2 LH2 Prevalve
- D13 Engine 3 LH2 Prevalve

2.1.5 MPS PROPELLANT DUMP SIGNALS

Following Main Engine Cut-Off or External Tank separation, an LO2 signal, an LH2 signal, and an RTLS signal are needed by the Vehicle Dynamics Math Models to compute the changes in vehicle forces and mass properties while MPS residual propellants are discharged overboard. The three signals are generated in the MPS math model and are identified as follows:

LO2DP LO2 DUMP SIGNAL LH2DP LH2 DUMP SIGNAL RTLSDP RTLS DUMP SIGNAL

A state of (1) indicates a dump is in progress. These signals will be output by the MPS model and will be transmitted to the VDS math models.

2.1.5 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see $\underline{\text{GTS PREPROCESSOR LOGIC}}$.

2.2 STS UNIQUE REQUIREMENTS

2.2.1 PREVALVE INHIBIT

In order to properly configure the logic flow diagram for STS, the value for the variable named TST should be 1.

2.2.2 EXTERNAL INPUTS AND OUTPUTS

The model receives stimuli from three sources: (1) the Flight System; (2) the Marshall Mated Elements Simulator (MMES); and (3) the test operator. The model transmits parameter values to the Flight System and the MMES. Tables 1 and 2 list the input stimuli and the output measurements, respectively.

The model generates three engines ready for firing discretes (one per engine) which are transmitted to the MMES as a valve status signal prior to engine firing.

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The MPS math model was originally written for the STS simulator. The math model input stimuli symbols referred to the logic flow diagram, Section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the MPS are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

2.3.2 PREVALVE INHIBIT

In order to properly configure the logic flow diagram for GTS, the value for the variable named TST should be 0. A subroutine called Engine Prevalve Routine (EPR) was added to the math model to accommodate the Mainstage stimuli provided by the Flight System in GTS. The Mainstage stimuli prevent closing of the engine prevalves while the engine is ignited.

2.3.3 DISCRETE STIMULI MONITORING

The following discrete stimuli from the Flight System are not used in the GTS logic flow diagrams but are to be displayed to the NAS console operator for monitoring:

MML NUMBER	NOMENCLATURE						
V41K1700X V41K1701X V41K1702X V41K1750X V41K1751X V41K1752X	REPLACE LH2 ULLAGE PRESS XDCR #1 REPLACE LH2 ULLAGE PRESS XDCR #2 REPLACE LH2 ULLAGE PRESS XDCR #3 REPLACE LO2 ULLAGE PRESS XDCR #1 REPLACE LO2 ULLAGE PRESS XDCR #2 REPLACE LO2 ULLAGE PRESS XDCR #3						

2.3.4 EXTERNAL INPUTS AND OUTPUTS

The model receives stimuli from two sources: (1) the Flight System; (2) the test operator. Tables 1 and 2 list the input stimuli and the output measurements, respectively.

Discrete stimulus K50P721-A shall be generated by the Non-Avionic Simulator (NAS) console operator to simulate a ground command to the LH2 RECIRC PUMPS during prelaunch checkout. In STS this signal comes from the flight system.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - MPS MML TO CONN-PIN CONVERSION LOGIC

Page 1 of 7

SYSTEM			SOURCE	*	7417741 1747441 1441144
CONN-PIN	MML ID	MDM/NAS	CON	N/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1119X	FA03	J06	001	
DIAGRAM	V41K1119E	(NAS)	J21	Α	
WHICH FOLLOWS, FOR CONN-PIN	V41K1120X	FA01	. J06	001	
LOGIC.	V41K1120E	(NAS)	J21	В	
	V41K1121X	FA02	J06	001	
	V41K1121E	(NAS)	J21	С	}
	V41K1122X	FA03	J06	001	1
	V41K1122E	(NAS)	J21	D	}
	V41K1123X	FA01	J06	009	}
	V41K1123E	(NAS)	J21	Ε	
	V41K1124X	FA02	J06	009	
	V41K1124E	(NAS)	J21	F	
	V41K1125X	FA01	J06	016	1
· ·	V41K1126X	FA02	J06	016	
	V41K1136X	FA03	J06	025	
	V41K1136E	(NAS)	J20	С	
	V41K1137X	FA01	J06	025	
	V41K1137E	(NAS)	J20	d	
	V41K1138X	FA02	J06	025	
	V41K1138E	(NAS)	J20	е	
	V41K1139X	FA03	J06	018	
·	V41K1139E	(NAS)	J20	f	
	V41K1140X	FA01	J06	018	
	V41K1140E	(NAS)	J20	g	
	V41K1141X	FA02	J06	910	
	V41K1141E	(NAS)	J20	h	
	V41K1155E	(NAS)	J14	N	
	V41K1156E	(NAS)	J14	R	
	V41K1157E	(NAS)	J14	T	
	V41K1165E	(NAS)	J14	P	
	V41K1166E	(NAS)	J14	S	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

REFER TO FLOW DIAGRAM WHICH FOLLOWS, FOR CONN-PIN LOGIC.	V41K1167E V41K1219X V41K1219E V41K1220X V41K1220E V41K1221X V41K1221E V41K1222X V41K1222X V41K1223X V41K1223X	MDM/NAS (NAS) FA01 (NAS) FA02 (NAS) FA04 (NAS) FA01 (NAS) FA01 (NAS)	J14 J08 J21 J08 J21 J08 J21 J08 J21 J08 J21 J08 J21	U 001 G 001 H 001 J	INITIALIZATION VALUES
DIAGRAM WHICH FOLLOWS, FOR CONN-PIN LOGIC.	V41K1219X V41K1219E V41K1220X V41K1220E V41K1221X V41K1221E V41K1222X V41K1222X V41K1222E	FA01 (NAS) FA02 (NAS) FA04 (NAS) FA01 (NAS)	J08 J21 J08 J21 J08 J21 J08 J21 J08	001 G 001 H 001 J 009	
WHICH FOLLOWS, FOR CONN-PIN LOGIC.	V41K1219E V41K1220X V41K1220E V41K1221X V41K1221E V41K1222X V41K1222X V41K1222E	(NAS) FA02 (NAS) FA04 (NAS) FA01 (NAS)	J21 J08 J21 J08 J21 J08	G 001 H 001 J 009	
FOR CONN-PIN LOGIC.	V41K1220X V41K1220E V41K1221X V41K1221E V41K1222X V41K1222E V41K1222E	FA02 (NAS) FA04 (NAS) FA01 (NAS)	J08 J21 J08 J21 J08	001 H 001 J 009	
	V41K1220E V41K1221X V41K1221E V41K1222X V41K1222E V41K1223X	(NAS) FAO4 (NAS) FAO1 (NAS)	J21 J08 J21 J08	H 001 J 009	
	V41K1221X V41K1221E V41K1222X V41K1222E V41K1223X	FA04 (NAS) FA01 (NAS)	J08 J21 J08	001 J 009	
	V41K1221E V41K1222X V41K1222E V41K1223X	(NAS) FAO1 (NAS)	J21 J08	ე 009	
	V41K1222X V41K1222E V41K1223X	FAO1 (NAS)	J08	009	
	V41K1222E V41K1223X	(NAS)			
	V41K1223X	1	J21	ν	
		FA02		K	1
	VA1K1223F	וחטב	J08	009 -	
	14111777	(NAS)	J21	L	
	V41K1224X	FA04	J0 8	009	
	V41K1224E	(NAS)	J21	M	
	V41K1225X	FA02	J08	016.	
	V41K1226X	FA03	J0 8	016	
	V41K1236X	FA01	J08	025	1
	V41K1236E	(NAS)	J20	i	
	V41K1237X	FA02	J08	025	
	V41K1237E	(NAS)	J20	j	
	V41K1238X	FA03	J08	025	
• :	V41K1238E	(NAS)	J20	k	
•	V41K1239X	FA01	J08	018	
	V41K1239E	(NAS)	J 20	m	
	V41K1240X	FA02	J08	018	
	V41K1240E	(iAS)	J20	n	
	V41K1241X	FA03	J08	018	
	V41K1241E	(NAS)	J20	p	
	V41K1255E	(NAS)	J14	V	
	V41K1256E	(NAS)	J14	X	
	V41K1257E	(NAS)	J14	Z	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

SYSTEM			SOURCE*	t	Thirtial 1747-04 MAL
CONN-PIN N	MML ID	MDM/NAS	CONN	I/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1265E	(NAS)	J14	W	
DIAGRAM	V41K1266E	(NAS)	J14	Υ	
WHICH FOLLOWS, FOR CONN-PIN	V41K1267E	(NAS)	J14	a	
LOGIC.	V41K1319X	FA02	J08	099	
	V41K1319E	(NAS)	J21	N	
	V41K1320X	FA04	J08	099	
	V41K1320E	(NAS)	J21	P	
	V41K1321X	FA01	J08	099	
	V41K1321E	(NAS)	J21	R	
	V41K1322X	FA02	J08	109 -	
	V41K1322E	(NAS)	J21	S	
	V41K1323X	FA04	J08	109	
	V41K1323E	(NAS)	J21	T	
· .	V41K1324X	FA01	J08	109	
	V41K1324E	(NAS)	J21	U	
	V41K1325X	FA04	J08	116	
	V41K1326X	FA01	J08	116	
	V41K1336X	FA02	J08	115	
	V41K1336E	(NAS)	J20	q	
	V41K1337X	FA04	J08	115	
•	V41K1337E	(NAS)	J20	r	
	V41K1338X	FA01	J08	115	
	V41K1338E	(NAS)	J20	S	
	V41K1339X	FA02	J08	097	
	V41K1339E	(NAS)	J20	t	
	V41K1340X	FA04	J08	097	
	V41K1340E	(NAS)	J20	u	
	V41K1341X	FA01	J08	097	
	V41K1341E	(NAS)	J20	v	
	V41K1355E	(NAS)	J14	b	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

SYSTEM		SOURCE*			**************************************
CONN-PIN	MML ID	MDM/NAS	CON	N/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1356E	(NAS)	J14	d	
DIAGRAM WHICH FOLLOWS,	V41K1357E	(NAS)	J14	f	
FOR CONN-PIN	V41K1365E	(NAS)	· J14	С	
LOGIC.	V41K1366E	(NAS)	J14	е	
	V41K1367E	(NAS)	J14	g	
	V41K1391X	FA02	J08	110	
	V41K1391E	(NAS)	J20	T	
	V41K1393X	FA02	J08	098	
	V41K1393E	(NAS)	J20	U	
	V41K1401X	FA02	J08	031	
	V41K1401E	(NAS)	J20	٧	•
	V41K1402X	FA03	J08	031	
	V41K1408E	*			0
	V41K1411X	FA01	J06	021	
	V41K1412X	FA01	J08	021	
	V41K1412E	(NAS)	J20	Υ	
	V41K1413X	FA03	J06	032	
	V41K1414X	FA04	J06	032	
	V41K1415X	FAO2	J06	032	
	V41K1416X	FA03	J06	021	
	V41K1417X	FA04	J06	021	
-	V41K1418X	FA02	J06	021	
	V41K1421X	FA04	J06	009	
	V41K1422X	FAO4	J06	031	
	V41K1431E	(NAS)	J20	G	
	V41K1432F	*			0
	V41K1435X	FA01	J06	027	
	V41K1435E	(NAS)	J20	Ε	
	V41K1437X	FAO2	J06	027	
	V41K1443E	(NAS)	J21	Z	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

SYSTEM			SOURCE*		THITTIAL LITERTON WALLES
CONN-PIN	MML ID	MDM/NAS	CONN	/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1447X	FA03	J08	800	
DIAGRAM WHICH FOLLOWS,	V41K1447E	(NAS)	J21	b	
FOR CONN-PIN	V41K1448X	FA04	J08	800	
LOGIC.	V41K1465E	*			1
	V41K1501X	FA01	J08	018	
	V41K1501E	(NAS)	J20	P	
	V41K1502X	FA04	J08	031	
	V41K1512X	FA02	J08	105	
	V41K1512E	(NAS)	J20	S	
	V41K1515X	FA04	J08	018	
	V41K1515E	(NAS)	J20	N	
	V41K1518X	FA04	J08	025	
· ·	V41K1518E	(NAS)	J20	M	
	V41K1521X	FA03	J08	032	}
	V41K1522X	FA04	J08	032	
	V41K1523X	FA02	J08	032	1
	V41K1524X	FA03	J08	021	
	V41K1525X	FA04	J08	021	
	V41K1526X	FA02	J08	021	
	V41K1531E	(NAS)	J20	С	İ
ļ ·	V41K1532E	*			0
1	V41K1535X	FA03	J08	027	
	V41K1535E	(NAS)	J20	Ε	1
	V41K1537X	FA04	J08	027	
	V41K1543E	(NAS)	J21	٧	
	V41K1547X	FA02	J08	800	
	V41K1547E	(NAS)	J21	X	
	V41K1548X	FAC1	J08	800	1
	V41K1584X	FA03	J08	106	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE 10 BE SUPPLIED BY PROGRAMMER.

SYSTEM			SOURCE*		- TATTIALIZATION VALUES
CONN-PIN	MML ID	MDM/NAS	CONN	/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1585X	FA04	J08	106	
DIAGRAM	V41K1586X	FA02	J08	106	
WHICH FOLLOWS FOR CONN-PIN	, V41K1607E	(NAS)	. J14	j	
LOGIC.	V41K1609E	(NAS)	J14	k	
	V41K1613X	FA02	J08	126	
	V41K1613E	(NAS)	J14	h	
	V41K1619E	(NAS)	J14	i	
	V41K1700X	FA01	J06	031	
	V41K1701X	FA02	J06	031	
	V41K1702X	FA03	J06	031	
	V41K1750X	FA01	J08	125	
	V41K1751X	FA02	J08	125	
	V41K1752X	FA04	J08	125	
•	V41K1815X	FA01	J08	122	
	V41K1816X	FA03	J08	122	
	V41K1825X	FA02	J08	122	
	V41K1826X	FAO4	J08	122	
	V41K1905X	FA03	J08	105	
	V41K1906X	FA04	J08	016	
	V41K1907X	FA01	J08	105	
•	V41K1908X	FA01	J08	016	
•	V41K1913X	FA03	J 0 8	098	
	V41K1914X	FA04	J08	098	
	V41K1915X	FA01	J08	098	
	V41K1923X	FAO3	J08	110	
	V41K1924X	FA04	J08	110	
	V41K1925X	FA01	J08	110	
	V41K1155X	FA01	J07	029	
	V41K1156X	FA02	J07	029	
	V41K1157X	FA03	J07	029	

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

SYSTEM			SOURCE	*	THITTAL TRATTON WALLES
CONN-PIN	MML ID	MDM/NAS	CONI	N/PIN	INITIALIZATION VALUES
REFER TO FLOW	V41K1162X	FA01	J07	014	
DIAGRAM WHICH FOLLOWS	V41K1162E	(NAS)	J14	Α	
FOR CONN-PIN	V41K1163X	FA02	J07	007	
LOGIC.	V41K1163E	(NAS)	J14	C	
	V41K1168X	FA01	J07	024	
	V41K1168E	(NAS)	J14	В	
	V41K1169E	(NAS)	J14	D	
	V41K1255X	FA02	J07	016	
	V41K1256X	FA04	J0 7	016	
	V41K1257X	FA01	J07	016 -	
	V41K1252X	FA02	J0 7	014	
	V41K1262E	(NAS)	J14	E	
	V41K1263X	FA03	407	007	
	V41K1263E	(NAS)	J14	G.	
1	V41K1268X	FA02	J07	024	
	V41K1268E	(NAS)	J14	F	
	V41K1269E	(NAS)	J14	Н	
	V41K1355X	FA03	J07	009	
	V41K1356X	FA01	J07	009	
	V41K1357X	FA02	J07	009	
	V41K1362X	FA03	J07	014	
	V41K1362E	(NAS)	J14	J	
	V41K1363X	FA01	J07	007	
	V41K1363E	(NAS)	J14	L	ļ
	V41K1368X	FA04	J07	024	
	V41K1368E	(NAS)	J14	K	
	V41K1369E	(NAS)	J14	M	
	V41K1607X	FA01	J07	028	
	V41K1608X	FA04	J07	029	
	V41K1111N	*			0

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS PREPROCESSOR LOGIC

2-17

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm MODEL}_{\rm CTS}$ shown outside the box.

ENGINE PREVALVE ROUTINE (EPR)

E-41

ENGINE LHZ INLET PRESSURES

ENGINE LOQ INLET PRESSURES

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDO VARIABLE INITIALIZATION

The following pseudos are initialized as follows:

VARIABLE	INITIAL CONDITION
HE1	4052
HE2	4198
HE3	3998
HE4	4101
LDT	95
HDT	37

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R4/S14	ENG 1 LH2 PRE-VLV OPEN	2	V41K1119X 1119E 1120X 1120E 1121X 1121E	K50P700-A	1-0PN/0- 0PN
	ENG 1 LH2 PRE-VLV CLOSE	2	1122X 1122E 1123X 1123E 1124X 1124E	K50P701-A	1-CLS/0-CLS
R4/S11	ENG 1 LO2 PRE-VLV OPEN	2	1136X 1136E 1137X 1137E 1138X 1138E	K50P709-A	1-0PN/0- 0PN
	ENG 1 LO2 PRE-VLV CLOSE	2	1139X 1139E 1140X 1140E 1141X 1141E	K50P710-A	1-CLS'0-CLS

TABLE ? - STIMULI: PUT TO MPS MODEL

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R4/S15	ENG 2 LH2 PRE-VLV OPEN	2	V41K1219X 1219E 1220X 1220E 1221X 1221E	K50P703-A	1-0PN/0-0PN
	ENG 2 LH2 PRE-VLV CLOSE	2	1222X 1222E 1223X 1223E 1224X 1224E	K50P704-A	1-CLS/0-CLS
R4/S12	ENG 2 LO2 PRE-VLV OPEN	2	1236X 1236E 1237X 1237E 1238X 1238E	K50P712-A	1-0PN/0-0PN
	ENG 2 LO2 PRE-VLV CLOSE	2	1239X 1239E 1240X 1240E 1241X 1241E	K50P713-A	1-CLS/O-CLS

TO MPS MODEL

GE	3	of	Y	•
			1	المحتبين

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R4/S16	ENG 3 LH2 PRE-VLV OPEN	2	V41K1319X 1319E 1320X 1320E 1321X 1321E	K50P706-A	1-0PN/0- 0P N
·	ENG 3 LH2 PRE-VLV CLOSE	2	1322X 1322E 1323X 1323E 1324X 1324E	K50P707-A	1-CLS/0-CLS
R4/S13	ENG 3 LO2 PRE-VLV OPEN	2	1336X 1336E 1337X 1337E 1338X 1338E	K50P715~A	1-0PN/0-0PN
•	ENG 3 LO2 PRE-VLV CLOSE	2	1339X 1339E 1340X 1340E 1341X 1341E	K50P716-A	1-CLS/0-CLS

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R2/S55	ENG 1 HE SPLY ISOL VLV 1 OPEN	2	V41K1155X 1155E	K50P767-A	1-0PN/0-0PN
	ENG 1 HE SPLY ISOL VLV 1 CLOSE		1165E		1-CLS/0-CLS
R2/S12	ENG 1 HE SPLY ISOL VLV 2 OPEN	2	1156X 1156E 1157X 1157E	K50P768-A	1-0PN/0-0PN
	ENG 1 HE SPLY ISOL VLV 2 CLOSE		1166E 1167E		1-CLS/0-CLS
R2/S56	TNG 2 HE SPLY ISOL VLV 1 OPEN	2	1255X 1255E	K50P770-A	1-OPN/O-OPN
	ENG 2 HE SPLY ISOL VLV 1 CLOSE		1265E		1-CLS/0-CLS
R2/S13 ·	ENG 2 HE SPLY ISOL VLV 2 OPEN	2	1256X 1256E 1257X 1257E	K50P771-A	1-0PN/0- 0PN
	ENG 2 HE SPLY ISOL VLV 2 CLOSE		1266E 1267E		1-CLS/0-CLS
R2/S57	ENG 3 HE SPLY ISOL VLV 1 OPEN	2	1355X 1355E	K50P773-A	1-0PN/0-0PN
	ENG 3 HE SPLY ISOL VLV 1 CLOSE		→ 1365E		1-CLS/0-CLS

r	7	;
	ŧ	
ζ		7
ţ	J	٦

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R2/S14	ENG 3 HE SPLY ISOL VLV 2 OPEN	2	V41K1356X 1356E 1357X 1357E	K50P774-A	1-0PN/0- 0PN
	ENG 3 HE SPLY ISOL VLV 2 CLOSE		1366E 1367E		1-CLS/0-CLS
R2/S9	ENG 1 HE I/C "IN" VLV OPEN	2	V41K1162X 1162E 1163X 1163E	K50P86-A	1-OPN/O-CLS
	ENG 1 HE I/C "OUT" VLV OPEN		1168X 1168E 1169E	K50P766-A	
R2/S10	ENG 2 HE I/C "IN" VLV OPEN	2	1262X 1262E 1263X 1263E	K50P87-A	1-0PN/0-CLS
	ENG 2 HE I/C "OUT" VLV OPEN		1268X 1268E 1269E	K50P769-A	
R2/S11	ENG 3 HE I/C "IN" VLV OPEN	2	1362X 1362E 1363X 1363E	K50P88-A	1-0PN/0-CLS

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R2/S11 cont.	ENG 3 HE I/C "OUT" VLV OPEN	2	V41K1368X 1368E 1369E	K50P772-A	1-0PN/0-CLS
R2/S54	ENG 2 HE PNEU XOVR VLV OPN	2	1613X 1613E 1619E	K50P89-A	1-0PN/0-CLS
R2/S15	PNEU HE SPLY ISOL VLV 1 OPEN	2	V41K1607X 1607E 1608X	K50P775-A	1-0PN/0-CLS
	PNEU HE SPLY ISOL VLV 1 CLOSE		1609E		
	PNEU HE SPLY ISOL VLV 2 OPEN	2	1607X 1607E 1608X	K50P776-A	1-0PN/0-CLS
	PNEU HE SPLY ISOL VLV 2 CLOSE		1609E		
(NONE)	LO2 POGO ACCUM VLV 1 CLOSE	2	1815X 1816X	K50P729-A	1-CLS/O-OPN
	LO2 POGO ACCUM VLV 2 CLOSE	2	1825X 1826X	K50P731-A	1-CLS/O-OPN
(NONE)	LO2 OVBD BLEED VLV CLOSE	2	1584X 1585X 1586X	K50P733-A	1-CLS/0-OPN

*TABLE 1 - STIMULI 1 J. 10 MPS MODEL

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R4/S6	LO2 OTBD FILL VLV OPEN	2	V41K1518X 1518E	K50P734-A	1-0PN/0-CLS
	LO2 OTBD FILL VLV CLOSE	2	1515X 1515E	K50P735-A	1-CLS/0-OPN
R4/S7	LO2 INBD FILL VLV OPEN	2	1501 X 1501E 1502 X	K50P737-A	1-0PN/0/CLS
	LO2 INBD FILL VLV CLOSE	2	1512X 1512E	K50P738-A	1-CLS/O-OPN
R4/S9	LH2 TOPPING VLV OPEN	2	1411X	K50P740-A	1-0PN/0-CLS
	LH2 TOPPING VLV CLOSE	5	1408E		
	LH2 INBD FILL VLV OPEN	2	1401X 1401E 1402X	K50P742-A	1-0PN/0-CLS
	LH2 INBD FILL VLV CLOSE	2	1412X 1412E	K50P743-A	1-CLS/O-OPN
	LH2 HI POINT BLEED VLV OPEN	5	1465E	K50P795-A	1-OPN/O-CLS
R4/S8	LH2 OTBD FILL VLV OPEN	2	1391X 1391E	K50P745-A	1-0PN/0-CLS
	LH2 OTBD FILL VLV -CLOSE	2	1393X 1393E	K50P746-A	1-CLS/0-OPN

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
(NONE)	LH2 FEED RTLS OTBD VLV OPEN	2	V41K1913X 1914X 1915X	K50P748-A	1-0PN/0-CLS
	LH2 FEED RTLS INBD VLV OPEN	2	1923X 1924X 1925X	K50P750-A	1-0PN/0-CLS
R4/S17	LO2 RELIEF SHUT-OFF VLV CLOSE	2	1547X 1547E 1548X	K50P752-A	1-CLS/O-OPN
	LO2 RELIEF SHUT-OFF VLV OPEN	2	1543E		l
R4/S18	LH2 RELIEF SHUT-OFF VLV CLOSE	2	1447X 1447E 1448X	K50P754-A	1-CLS/0-OPN
	LH2 RELIEF SHUT-OFF VLV OPEN	2	1443E		
(NONE)	LO2 FEED DISC VLV OPEN	2	1521X 1522X 1523X	K50P756-A	1-OPN/O-CLS
	LO2 FEED DISC VLV CLOSE	2	1524X 1525X 1526X	K50P757-A	1-CLS/O-OPN
(NONE)	LH2 FEED DISC VLV OPEN	2	1413X 1414X	K50P759-A	1-0PN/0-CLS

ŧ	7	ł
	ŧ	
1	٠	:
١	٢	כ

•	.	_
) 	XX.
X	8	S
	- 1	7
Š	•	۵
2	JAN	5
₹	Ę	5

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
(NONE)	LH2 FEED DISC VLV OPEN	2	V41K1415X	K50P759-A	1-0PN/0-CLS
	LH2 FEED DISC VLV CLOSE	2	1416X 1417X 1418X	K50P760-A	1-CLS/O-OPN
(NONE)	LH2 RECIRC DISC VLV OPEN	2	1421X	K50P762-A	1-0PN/0-CLS
	LH2 RECIRC DISC VLV CLOSE	2	1422X	K50P763-A	1-CLS/O-OPN
R4/S2	LH2 MANIFOLD REPRESS VLV 1 OPEN	. 2	1435X 1435E	K50P779-A	1-0PN/0-CLS
	LH2 MANIFOLD REPRESS VLV LOSE	2	1431E		
	LH2 MANIFOLD REPRESS VLV 2 OPEN	2	1437X	K50P780-A	1-0PN/0-CLS
	LH2 MANIFOLD REPRESS VLV 2 CLOSE	5	1432E		
R4/S1	LO2 MANIFOLD REPRESS VLV 1 OPEN	2	1535X 1535E	K50P781-A	1-0PN/0-CLS
	LO2 MANIFOLD REPRESS VLV 1 CLOSE	2	1531E		
	LO2 MANIFOLD REPRESS VLV 2 OPEN	2	1537X	K50P782-A	1-0PN/0-CLS
	LOZ MANIFOLD REPRESS VLV 2 CLOSE	5	1532E		
(NONE)	RTLS REPRESS VLV 1 OPEN	2	1905X 1907X	K50P790-A	1-0PN/0-CLS
	RTLS REPRESS VLV 2 OPEN	2	1906X 1908X	K50P791-A	1-0PN/0-CLS

1	•
	ı
(٠
	•

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
(NONE)	LH2 RECIRC PUMP VLV OPEN	4,5	V41K1111N	K50P721-A	1-0PN/0-CLS
(NONE)	PNEU HE SUPPLY PRESS ENG 1 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS	7		HE1 HE2 HE3 HE4	0/5000 PSIA 0/5000 PSIA 0/5000 PSIA 0/5000 PSIA
(NONE)	GO2 FLCY CONTROL VLV - ENG 1 GO2 FLOW CONTROL VLV - ENG 2 GO2 FLOW CONTROL VLV - ENG 3 GH2 FLOW CONTROL VLV - ENG 1 GH2 FLOW CONTROL VLV - ENG 2 GH2 FLOW CONTROL VLV - ENG 3	14		K50P792-1 93-1 94-1 87-1 88-1 89-1	1-MIN/O-MAX 1-MIN/O-MAX 1-MIN/O-MAX 1-MIN/O-MAX 1-MIN/O-MAX 1-MIN/O-MAX
(NONE)	ENG 1 PRE-VLV INHIBIT CMD A ENG 1 PRE-VLV INHIBIT CMD B ENG 2 PRE-VLV INHIBIT CMD A ENG 2 PRE-VLV INHIBIT CMD B ENG 3 PRE-VLV INHIBIT CMD A ENG 3 PRE-VLV INHIBIT CMD B	15	V41K1125X 1126X 1225X 1226X 1325X 1326X	·	1-INHIE/O-ĪNHĪ
(NONE)	LO2 DUMP TIME LH2 DUMP TIME	7		LDT HDT	0/500 SEC 0/500 SEC

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT		I.C	•	VALUE	1	VALUE	2	VALU	E 3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	стѕ	UNITS
*V41P1100C	ENG 1 LH2 INLET PRESS	0	0	12 52	51 266	32	164	22	113	PSIA
*V41T1101C	ENG 1 LH2 INLET TEMP	-423	286	-405	1023					DEGF
V41X1104X	ENG 1 LH2 PRE-VLV OPEN - A	1	1	0	0					STATE
V41X1105E	ENG 1 LH2 PRE-VLV CLOSED	0	0	1	1					STATE
V41X1106X	ENG 1 LH2 PRE-VLV OPEN - B	1	1	0	0					STATE
V41X1109E	ENG 1 LH2 RECIRC VLV OPEN	1 1]].	0	0					STATE
V41X1110E	ENG 1 LH2 RECIRC VLV CLOSED	0	0	1]		1			STATE
*V41R1115A	ENG 1 LH2 RECIRC PUMP SPEED	11183	572	0	0					RPM
*V41P1130C	ENG 1 LO2 INLET PRESS	0	0	17	58	123	419			. PSIA
*V41T1131C	ENG 1 LO2 INLET TEMP	-290	307	-255	1023					DEGF
V41X1134X	ENG 1 LO2 PRE-VLV OPEN	1	1	0	o					STATE
V41X1135E	ENG 1 LO2 PRE-VLV CLOSED	0	0	1	1					STATE
*V41P1150C	ENG 1 HE SUPPLY PRESS	4198	859							PSIA
*V41P1153A	ENG 1 HE I/F B	762	780	32	33					PSIG
*V41P1154A	ENG 1 HE I/F A	752	769	22	23					PSIG
*V41P1200C	ENG 2 LH2 INLET PRESS	0	0	14	72	34	175	24	123	PSIA
*****				54	276	•				
*V41T1201C	ENG 2 LH2 INLET TEMP	-419	450	-405	1023					DEGF
V41X1204X	ENG 2 LH2 PRE-VLV OPEN - A	1	1	0	0					STATE
V41X1205E	ENG 2 LH2 PRE-VLV CLOSED	0	0	1	1					STATE
V41X1206X	ENG 2 LH2 PRE-VLV OPEN - B	1	1	0	d					STATE
V41X1209E	ENG 2 LH2 RECIRC VLV OPEN	1	1	0	q					STATE
V41X1210E	ENG 2 LH2 RECIRC VLV CLOSED	0	0	1	1 1					STATE

*NOTE: This measurement uses the range limit conversion method of calculating FS_{EU}.

MEASUREMENT OUTPUT to M MPS MODEL - TABLE 2

MEASUREMENT		1.0	•	VALUE	1	VALUE	2	VALU	JE 3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	0/113
*V41R1215A	ENG 2 LH2 RECIRC VLV PUMP SPEED	11202	573	0	0					RPM
*V41P1230C	ENG 2 LO2 INLET PRESS	0	0	19	65	150	512			PSIA
*V41T1231C	ENG 2 LO2 INLET TEMP	-286	389	-255	1023				1	DEGF
V41X1234X	ENG 2 LO2 PRE-VLV OPEN	1	1	0	0					STATE
V41X1235E	ENG 2 LO2 PRE-VLV CLOSED	0	0	1	1				Ì	STATE
*V41P1250C	ENG 2 HE SUPPLY PRESS	3998	818							PSIA
*V41P1253A	ENG 2 HE I/F B	764	782	34	35				1	PSIG
*V41P1254A	ENG 2 HE I/F A	754	771	24	25				ļ	PSIG
*V41P1300C	ENG 3 LH2 INLET PRESS	0	0	16 56	82 286	26	133	36	185	PSIA
*V41T1301C	ENG 3 LH2 INLET TEMP	-413	696	-405	1023					DEGF
V41X1304X	ENG 3 LH2 PRE-VLV OPEN - A	1	ן ן	0	0					STATE
V41X1305E	ENG 3 LH2 PRE-VLV CLOSED	0	0	1	1				1	STATE
V41X1306X	ENG 3 LH2 PRE-VLV OPEN - B	7	1	. 0	0					STATE
V41X1309E	ENG 3 LH2 RECIRC VLV OPEN	1	ן נ	0	0				1	STATE
V41X1310E	ENG 3 LH2 RECIRC VLV CLOSED	0	0	1	1 1	٠				STATE
*V41R1315A	ENG 3 LH2 RECIRC PUMP SPEED	11222	574	0	0					RPM
*V41P1330C	ENG 3 LO2 INLET PRESS	С	0	21	72	774	593			PSIA
*V41T1331C	ENG 3 LO2 INLET TEMP	-279	532	-255	1023					DEGF
V41X1334X	ENG 3 LO2 PRE-VLV OPEN	1]	0	0					STATE
V41X1335E	ENG 3 LO2 PRE-VLV CLOSED	0	0	1	1		1 1		1	STATE
	•									

*NOTE: This measurement uses the range limit conversion method of calculating FS_{EU}.

MEASUREMENT OUTPL FROM MPS MODEL - TABLE 2

MEASUREMENT		I.C		VALUE 1		VALUE	2	VALU	3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	UITTI
*V41P1350C	ENG 3 HE SUPPLY PRESS	4101	839							PSIA
*V41P1353A	ENG 3 HE I/F B	766	784	36	37					PSIG
*V41P1354A	ENG 3 HE I/F A	756	773	26	27				1	PSIG
V41X1388E	LH2 OTBO FILL VLV OPEN	0	0	1	1 1					STATE
V41X1389X	LH2 OTBD FILL VLV CLOSED	1	٦	0	0					STATE
V41X1409E	LH2 INBD FILL VLV OPEN	0 0 1 1								STATE
V41X1410X	LH2 INBD FILL VLV CLOSED	1	ו	0	0					STATE
V41X1419E	LH2 RECIRC DISC VLV OPEN	1	ו	0	0					STATE
*V41T1428A	LH2 FEED MANIFOLD DISC TEMP	-428	82	-405	1023					DEGF
V41X1429X	LH2 FEED DISC VLV OPEN	1	1	0	0					STATE
V41X1430X	. LH2 FEED DISC VLV CLOSED - A	0	0	1	ו					STATE
*V41P1433C	LH2 ENG MANIFOLD PRESS	55	563	15 0	153 0	20	205	25 .	256	PSIA
V41X1434X	LH2 FEED DISC VLV CLOSED - B	0	0	1	ן ו					STATE
V41X1442E	LH2 FEED LINE RLF SHUT-OFF VLV CLOSED	0	0	1	וו					STATE
V41X1453E	LH2 TOPPING VLV OPEN	1	1	0	0				ga.h _i	STATE
V41X1456X	LH2 TOPPING VLV CLOSED	0	0	1	ן ז			-	1	STATE
V41X1468E	LH2 HI POINT BLEED VLV OPEN	1	1	0	0	٠		!		STATE
V41X1469E	LH2 HI POINT BLEED VLV CLOSED	0	0	1	l l					STATE
V41X1509X	LO2 INBD FILL VLV CLOSED	1	1	.0	0					STATE
V41X1510E	LO2 INBD FILL VLV OPEN	0	0	1	1					STATE
V41X1513E	LO2 OTBD FILL VLV OPEN	0	0	1	1					STATE
V41X1514X	LO2 OTBD FILL VLV CLOSED	1	1	0	0					STATE

MEASUREMENT OUTPUT FR. Mrs MODEL - TABLE 2

MEASUREMENT		I.C	I.C. VALUE I			VALUE	2	VALU	UNITS	
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	стѕ	01113
*V41T1528A	LO2 FEED MANIFOLD DISC TEMP	-298	143	-255	1023					DEGF
V41X1529X	LO2 FEED DISC VLV OPEN	1	1	0	0					STATE
V41X1530X	LO2 FEED DISC VLV CLOSED - A	0	0	1	1					STATE
*V41P1533C	LO2 ENG MANIFOLD PRESS	155 529 20 68				0	0			PSIA
V41X1534X	LO2 FEED DISC VLV CLOSED - B	0 0 1 1					1 1	•		STATE
V41X1542E	LO2 FEED LINE RLF SHUT-OFF VLV CLOSED	. 0	0	1	1		1 1	No.		STATE
V41X1580X	LO2 OVBD BLEED VLV CLOSED - A	1	1	0	0		1 1			STATE
V41X1581X	LO2 OVBD BLEED VLV CLOSED - B	1	1	0	0					STATE
V41X1587E	LO2 OVBD BLEED VLV OPEN	0	0 0 1 1							STATE
*V41P1600A	PNEU VLV HE SUPPLY PRESS	4052	829		1					PSIA
*V41P1605A	PNEU HE REG OUT PRESS	758	775	28	29] }			PSIG
V41X1811X	LO2 ACCUM RECIRC VLV 1 OPEN	1	1	0	0		1 1			STATE
V41X1818E	LO2 ACCUM RECIRC VLV 1 CLOSED	0	0	1	1				Ī	STATE
V41X1821X	LO2 ACCUM RECIRC VLV 2 OPEN	1	וו	0	0					STATE
V41X1828E	LO2 ACCUM RECIRC VLV 2 CLOSED	0	0	1	1		1			STATE
V41X1919X	LH2 RTLS OTBD DRAIN VLV CLOSED	1	1	0	0					STATE
V41X1929X	LH2 RTLS INBD DRAIN VLV CLOSED	1]]	0	0	•	1		ļ	STATE
+VGH1	ENG 1 GH2 FLOW CONTROL VLV POSN - LO	0	0	7	1					STATE
+VGH2	ENG 2 GH2 FLOW CONTROL VLV POSN - LO	0	0	1	1		}			STATE
+VGH3	ENG 3 GH2 FLOW CONTROL VLV POSN - LO	0	0	1	1					STATE
+VG01	ENG 1 GO2 FLOW CONTROL VLV POSN - LO	0 0		1	1					STATE
+VG02	ENG 2 GO2 FLOW CONTROL VLV POSN - LO	0 0		1	1					STATE
+VG03	ENG 3 GO2 FLOW CONTROL VLV POSN - LO	0	0	1] 1					STATE

*NOTE: This measurement uses the range limit conversion method of calculating FS_{EU}. +THESE PSEUDO OUTPUTS DO NOT APPLY TO GTS.

MEASUREMENT OUTPUT FROM MIPS MODEL - TABLE 2

MEASUREMENT	MEASUREMENT		: .	VALUE	1	VALUE	2	VALU	E 3	UNITS		
I.D.	MEASUREMENT NAME	FS	стѕ	FS	CTS	FS	стѕ	FS	стѕ	UNITS		
+VE1	ENG 1 PLUMBING READY DISCRÉTE	0	0	1	ı					STATE		
+VE2	ENG 2 PLUMBING READY DISCRETE	0	0	1	1	•				STATE		
+VE3	ENG 3 PLUMBING READY DISCRETE	0	0	1	1					STATE		
LO2DP	LO2 DUMP SIGNAL	0	0	1	1					STATE		
LH2DP	LH2 DUMP SIGNAL	0	0	1	1					STATE		
RTLSDP	RTLS DUMP SIGNAL	0	0	1	1 1					STATE		
	•			·								
	•											

⁺ THESE PSEUDO OUTPUTS DO NOT APPLY TO GTS.

APPENDIX F

FUEL CELL/CRYO MATH MODEL REQUIREMENTS

CONTENTS

Sect	ion																					Page
1.	INTRO	DUCTION								•			•									F-1
		LED REQUIREMENTS																				
		MATH MODEL DESCRIPTION.																				
		STS UNIQUE REQUIREMENTS																				
		GTS UNIQUE REQUIREMENTS																				
3.		MODEL LOGIC																				
J.		GTS PREPROCESSOR LOGIC.																				
		LOGIC FLOW DIAGRAM																				
4		ES																				
4.		INPUT STIMULI LIST																				
		OUTPUT MEASUREMENT LIST																				
	47	UNITED MENDUKEMENT FIDE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-

FIGURES

Figure											F	Page	•
1.	Fuel	cell/CRYO	subsystem	schematic								F-2	

1. INTRODUCTION

The FC/CRYO system provides the Orbiter with electrical power and can be divided into two major systems, 1) the fuel cell power plants where reactants are converted into electrical energy, and 2) the reactant storage and distribution system where reactants are stored in a cryogenic state, then heated to a gas and supplied to the fuel cell power plants. Gaseous oxygen is also provided for the Environmental Control and Life Support System (ECLSS) as well as potable water, a by-product of the fuel cell energy reaction. Figure 1 is a simplified schematic of the FC/CRYO system. Hydrogen and oxygen tanks 4 are not planned for use in STS-1 or STS-2 flights. Consequently only tanks 1, 2 and 3 are simulated in the math model, and tank 4 is shown in dashed lines in figure 1 for reference purposes. There are three fuel cells although figure 1 shows only one for clarity. Each fuel cell has a water coolant loop to transport heat from heat exchangers. To improve the performance of the fuel cells, purge valves are provided to flush impurities overboard. The purge operation may be performed manually or automatically by the GPC but must be initiated by the crew. Each fuel cell has a power rating of 2 to 7 KW continuous duty, or 12 KW peak duty for not more than 15 minutes. Output voltage is 28 to 32 volts DC.

SCHEMA FUEL CELL

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in Table 1 to produce values for the output measurements listed in Table 2 that simulate the operation of the FC/CRYO subsystem.

2.1 MATH MODEL DESCRIPTION

The FC/CRYO flow diagram begins with the cryogenic system and ends with the fuel cell system.

2.1.1 LATCHING VALVE ROUTINE (LVR)

To simplify the logic, a subroutine called LVR is used repetitively to determine the position of the various latching valves in the system. If a valve OPEN command is received, an internal variable "A" is set to 1. If a valve CLOSE command is received, an internal variable "B" is set to 1. The LVR then checks the values of A and B and sets a third variable "V", to 1 or 0, indicating an OPEN or CLOSED valve, respectively. The value of "V" is then used to set the output measurement which indicates the position of the valve. If both an OPEN and a CLOSE command are received due to error, i.e. "A" and "B" both = 1, the LVR will not set "V" and the output measurement indicating the valve's position will remain unchanged from its previous value. The same is true when neither an OPEN or CLOSE command is received.

2.1.2 INTERNAL VARIABLES

The internal variables used in the flow diagram are described below along with their state definition.

		S1	TATE
NAMC	FUNCTION	<u>0</u>	1
FLAG	Indicates the state of O2 pressure on the fuel cell coolant accumulator.	PRESS LO	PRESS OK
OP .	Indicates the state of 02 pressure at fuel cell 3 supply valve inlet.	PRESS LO	PRESS OK
НР	Indicates the state of H2 pressure at fuel cell 3 supply valve inlet.	PRESS LO	PRESS OK
A	Represents an OPEN command in the Latch-ing Valve Routine (LVR).	0FF	ON
В	Represents a CLOSE command in the Latch-ing Valve Routine (LVR).	OFF	ON
V	Indicates the valve position in the Latching Valve Routine (LVR).	CLSD	OPN
٧1	02 GSE supply value position.	OPN	CLSD
٧2	H2 GSE supply valve position.	OPN	CLSD
٧3	02 isolation valve 1.	CLSD	OPN
٧4	02 isolation valve 2.	CLSD	OPN
V 5	H2 isolation valve 1.	CLSD	OPN
٧6	H2 isolation valve 2.	CLSD	OPN
٧7	02 ECLSS supply valve 1.	CLSD	OPN
V8	02 ECLSS supply valve 2.	CLSD	OPN
٧9	FC 1 02 reactant supply valve.	CLSD	OPN
V10	FC 1 !'2 reactant supply valve.	CLSD	OPN
V11	FC 2 02 reactant supply valve.	CLSD	OPN
V 12	FC 2 H2 reactant supply valve.	CLSD	OPN
V13	FC 3 02 reactant supply valve.	CLSD	OPN
V14	FC 3 H2 reactant supply valve.	CLSD	OPN

2.1.3 FUEL CELL ROUTINE OVERVIEW

To clarify the fuel cell logic, which extends over several pages, an overview is provided which depicts the various logic flow paths possible for an individual fuel cell. The dotted lines on the overview define page boundaries. Output measurement values shown in the overview are for information only. The detailed logic for a specific fuel cell designates the required output measurement values.

2.1.4 INPUT PSEUDOS FROM THE OPERATOR KEYBOARD

Three pseudos (L1, L2 and L3) are used as operator inputs to the FC/CRYO model. These inputs permit the model to simulate 02 and H2 flow rates that occur when the fuel cells are either ON-LINE and supplying BUS power, or are OFF-LINE on standby or off.

t1 represents FC1, and 1 = ON-LINE, 0 = OFF-LINE

L2 represents FC2, and 1 = ON-LINE, 0 = OFF-LINE

L3 represents FC3, and 1 = ON-LINE, 0 = OFF-LINE

2.1.5 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

Since fuel cell substitutes are actually providing the vehicle power during SAIL tests, it is necessary that the DCM operator signal the FC/CRYO model when a particular fuel cell is supposed to be supplying power. This allows the proper 02 and H2 flow rates to be determined. The actual current flowing in the vehicle busses is not visible to the math model, so when a fuel cell is simulating supplying power, the 02 and H2 flow rates provided by the model will be either at their maximum or minimum value, depending on whether or not a purge is in progress. This prevents vehicle software from calculating an erroneous position for the 02 and H2 purge valves. There is no position indication measurement on the purge valves so flight software monitors the total reactant flow (provided by the model) and subtracts a calculated amount based on the current in the bus (provided by the fuel cell substitutes). This difference will then indicate the purge valve is open or closed.

The heaters in the 02 and H2 cryogenic tanks are controlled by a three position switch: 1-0ff, 2-AUTO, 3-ON, and by a heater controller. The math model does not know the position of the switch. The math model will see only power or no power to the heaters as provided by the heater controller.

Using a tank pressure value that is less than the low limit will cause the heater controller to provide power whenever the switch is in AUTO or ON. When no power is supplied, the switch will be assumed OFF and the tank pressure value will then reflect a heaters OFF condition.

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The FC/CRYO math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference Connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the fuel cell subsystem are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model. This is the case for the H2/O2 Purge Heaters command, the Fuel Cells 1, 2, 3 O2 Purge Valve Open commands, and the Fuel Cells 1, 2, 3 H2 Purge Valve Open commands. See section 3.1 for a listing of the required logic functions.

2.3.2 FUEL CELL CURRENT AND VOLTAGE

Fuel cell current and voltage are not provided by facility fuel cell substitute units as in the STS. These parameters are required to support the FC Purge special processes in the GPC. Rather than add these parameters to the FC/CRYO model in GTS and make it different from the one in STS, FC current and voltage are provided as part of the SWITCH model.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more mmL numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required. Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - FC/CRYO MML TO CONM-PIN CONVERSION LOGIC

SYSTEM	(v45K)	SOURCE*		
CONN-PIN	MML ID	MDM	CONN/PIN	INITIALIZATION VALUES
K40TB100-KC	= 0604Y OR 0605Y	PF02 PF02	J07/072 J07/082	
K40TB101-KC	= 0604Y OR 0605Y	PF02 PF02	J07/072 J07/082	
K40P862-D	= 0815Y AND 0816Y	PF01 PF01	J05/117 J05/115	
K40P862-E	= 0815Y AND 0816Y	PF01 PF01	J05/117 J05/115	
K40P872-D	= 0825Y AND 0826Y	PF01 PF01	J07/072 J07/082	
K40P872-E	= 0825Y AND 0826Y	PF01 PF01	J07/072 J07/082	
K40P882-D	= 0835Y AND 0836Y	PF02 PF02	J05/117 J05/115	
K40P882-E	= 0835Y AND 0836Y	PF02 PF02	J05/117 J05/115	
K40P862-B	= V45K0109E			1
872-B	= 0209E			1
882-B	= 0309"			1
862 - M	= 0112E			0
872-M	= 0212E			0
882 - M	= 0312E			0
862-V	= 0180E			0
872-V	= 0280E			0
882-V	= 0380E			0
862-C	= 0191E			0
872-C 882-C	= 0291E = 0391E			0 0

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - FC/CRYO MML TO CONN-PIN CONVERSION LOGIC

SYSTEM	(V45K)		SOURCE*		
CONN-PIN	MM	IL ID	MDM	CONN/PIN	_ INITIALIZATION VALUES
K40TB11-KC = V45K0601E				0	
K40TB12-KC	= 1	0601E			0
K40P9875-1	=	1084E			1
75-2	=	1085E			0
76-1	=	1086E			1
	=	1087E			0
V		1131E			1
K40P9831-A	=	1231E			1
KJ5-A =		1331E			1
K40P9851-C	=	1131E			1
K40P9831-C	=	1231E			1
		1331E			1
i .		45K1136E			1
K40P9832-A	=	1236E			1
KJ6-A	=	1336E			1
K40P9852-C	=	1136E			1
K40P9832-C	=	1236E			1
KJ6-C	=	1336E			1
K40P9871-1	=	1143E			1
71-2	=	1144E			0
72-1	=	1148E			1
72-2	=	1149E			0
77-1	=	1151E			1
78-1	=	1151E			1
77-2	=	1152E			е
78-2	=	1152E			0
79-1	=	1156E			1
80-1	=	1156E			1
79-2	=	1157E			0
80-2	=	¥ 1157E			0

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

^{**}ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - FC/CRYO MAL TO COMN-PIN CONVERSION LOGIC

SYSTEM (V45K)	SOURCE*		
CONN-PIN MML ID	MDM	CONN/PIN	INITIALIZATION VALUES
K40P9881-1 = V45K1161E			ן
82-1 = 1161E			
81-2 = 1162E			0
82-2 = 1162E			0
11-B = 2131E			1
41-B = 2231E			1
KJ3-A = 2331E			1
K40P9812-A = 2136E			1
K40P9842-A = 2236E			1
KJ4-A = 2336E			1
K40P9873-1 = 2239E			ı
73-2 = 2241E			0
74-1 = 2243E	· ·		1
74-2 = 2245E			0
K40P862-F = V45K1121N			0
72-F = 1124N			0
₩ 82-F = 1127N			0
K40P9853-A = 1128N			0
9833-A = 1228N			0
9520-A = 1328N			С
K40P9869-1 = 1191N			0
9869-2 = 1196N			1
9813-A = 2128N			0
9843-A = 2228N	1		0
9547-A = 2328N			0
9870-1 = 2191N			0
9870-2 = 2196N			1
K40P863+12 = **			1
73-12 = **			1
₩ 83-12 = **			1

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

MML TO CONN-PIN CONVERSION LOGIC

SYSTEM	(V45K) MML ID	SOURCE*		
CONN-PIN		MDM	CONN/PIN	INITIALIZATION VALUES
K40P864-A 74-A 84-A K40P9853-W 9833-W 9520-W 9813-W 9843-W 9547-W	= ** = ** = ** = ** = **	ייטויץ	COMN/PIN	1 1 1 1 1 1 1
				OK HANDAY TO SAN

^{**}ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

*UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm MODEL}_{\rm CTS}$ shown outside the box.

CRYO HA TANK I

CRYO HR TANK R

CRYD H2 TANK 3 ROUTINE

FUEL CELL 1
ROUTINE
(PART 3A)

FULL CELL 2 HOUTINE (PART 3A)

FUEL CELL 3
ROUTINE
(PART 3A)

FUEL CELL ROUTINE (PART 5)

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a first of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenciature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands reg'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands reg'd to open valve.
- 10. Both GPC commands reg'd to open valve.
- 11. Stimulus provided by other model-
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to SIS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDO VARIABLE INITIALIZATION

The following pseudos are initialized as follows:

VARIABLE	INITIAL CONDITION
L1	0
L2	0
L3	0

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R1A2/S8	02 TANK 1 HTR A1 POWER	5	V45K1131E	K40P9851-A	1-0N/0-0FF
	02 TANK 1 HTR A2 POWER	5	1131E	-c	1-0N/0-0FF
R1A2/S9	02 TANK 1 HTP B1 POWER	5	1136E	K40P9852-A	1-0N/0-0FF
	02 TANK 1 HTR B2 POWER	5	1136E	+ -c	1-0N/0-0FF
R1A2/S13	02 TANK 2 HTP AT POWER	5	1231E	K40P9831-A	· 1-0N/0-0FF
	02 TANK 2 HTR A2 POWER	5	1231E	-c ·	1-0N/0-0FF
R1A2/S14	02 TANK 2 HTR B1 POWER	5	1236E	K40P9832-A	1-0N/0-0FF
	02 TANK 2 HTP B2 POWER	5	1236E	-с	1-0N/0-0FF
R1A2/S21	02 TANK 3 HTR AT POWER	5	1331E	KJ5-A	1-0N/0-0FF
	02 TANK 3 HTP A2 POWER	5	1331E	-c	1-0N/0-0FF
R1A2/S22	02 TANK 3 HTR B1 POWER	5	1336F	KJ6-A	1-0N/0-0FF
	02 TANK 3 HTP B2 POWER	5	1336E	-c	1-0N/0-0FF
R1A2/S11	H2 TANK 1 HTR A POWER	5	2131E	K40P9811-B	1-0N/0-0FF
R1A2/S12	H2 TANK 1, HTR B POWER	5	213 6 E	K40P9812-A	1-0N/0-0FF
R1A2/S19	H2 TANK 2 HTR A POWER	5	2231E	K40P9841-B	1-0N/0-0FF
R1A2/S20	H2 TANK 2 HTR B POWER	5	2236E	K40P9842-A	1-0N/0-0FF
R1A2/S24	H2 TANK 3 HTR A POWER	5	2331E	KJ3-A	1-0N/0-0FF
R1A2/S25	H2 TANK 3 HTR B POWER	5	2336E	KJ4-A	1-0N/0-0FF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R1A2/S2	O2 MANIFOLD 1 VLV OPEN	5	V45K1143E	K40P9871-1	1-0PN/0- 0PN
	02 MANIFOLD 1 VLV CLOSE	5	44E	K40P9871-2	1-CLS/0-CLS
R1A2/S5	02 MANIFOLD 2 VLV OPEN	5	48E	K40P9872-1	1-0PN/0-0PN
	02 MANIFOLD 2 VLV CLOSE	5	4 9E	K40P9872-2	1-CLS/0-CLS
R1A2/S3	H2 MANIFOLD 1 VLV OPEN	5	V45K2239E	K40P9873-1	1-0PN/0-0PN
	H2 MANIFOLD 1 VLV CLOSE	5	41E	K40P9873-2	1-CLS/0-CLS
R1A2/S6	H2 MANIFOLD 2 VLV OPEN	5	43E	K40P9874-1	1-0PN/0-0PN
	H2 MANIFOLD 2 VLV CLOSE	5	45E	K40P9874-2	1-CLS/0-CLS
L2A1/S11	ECLSS 02 SUPPLY VLV 1 OPEN	5	V45K1084E	K40P9875-1	1-0PN/0-0PN
	ECLSS 02 SUPPLY VLV 1 CLOSE	5	85E	K40P9875-2	1-CLS/0-CLS
L2A1/S20	ECLSS 02 SUPPLY VLV 2 OPEN	5	86E	K40P9876-1	1-0PN/0-0PN
	ECLSS 02 SUPPLY VLV 2 CLOSE	5	→ 87E	K40P9876-2	1-CLS/0-CLS
R1A2/S1	02 SUPPLY VLV OPEN - FC1	5	V45K1151E	K40P9877-1	1-0PN/0-0PN
	H2 SUPPLY VLV OPEN - FC1			K40P9878-1	1-0PN/0-0PN
	02 SUPPLY VLV CLOSE - FC1	5	V45K1152E	K40P9877-2	1-CLS/0-CLS
	H2 SUPPLY VLV CLOSE - FC1		Ì	K40P9878-2	1-CLS/0-CLS
R1A2/S7	02 SUPPLY VLV OPEN - FC2	5	V45K1156E	K40P9879-1	1-0PN/0-0PN
	H2 SUPPLY VLV OPEN - FC2			K40P9880-1	1-OPN/O-OPN

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R1A2/S7	02 SUPPLY VLV CLOSE - FC2	5	V45K1157E	K40P9879-2	1-CLS/0-CLS
(CONTINUED)	H2 SUPPLY VLV CLOSE - FC2		† 	K 40P98 80-2	1-CLS/0-CLS
R1A2/S4	02 SUPPLY VLV OPEN - FC3	5	V45K1161E	K40P9881-1	1-0PN/0-0PN
!	H2 SUPPLY VLV OPEN - FC3		<u> </u>	K40P9882-1	1-0PN/0-0PN
	02 SUPPLY VLV CLOSE - FC3	5	V45K1162E	K40P9881-2	1-CLS/0-CLS
!	H2 SUPPLY VLV CLOSE - FC3			K40P9882-2	1-CLS/0-CLS
R12/S3	FC 1 02 PUPGE VLV OPN	2,10	√45K0815Y 16Y	K40P862-D	1-OPN/O-CLS
	FC 1 H2 PURGE VLV OPN	2,10	15Y 16Y	к40Р862-Е	1-0PN/0-CLS
R12/S4	FC 2 02 PURGE VLV OPN	2,10	25Y 26Y	K40P872-D	1-OPN/O-CLS
	FC 2 H2 PURGE VLV OPN	2,10	25Y 26Y	K40P872-E	1-0PN/0-CLS
R12/S5	FC 3 02 PURGE VLV OPN	2,10	35Y 36Y	K40P882-D	1-0PN/0-CLS
	FC 3 H2 PURGE VLV OPN	2,10	35Y 36Y	K40P882-E	1-0PN/0-CLS
		-			

The second secon

TABLE 1 - STIMULI INPUT TO _ CELL/CRYO MODEL

PANEL / SYSTEM NOTES MML ID. STATE **NOMENCLATURE** CONN-PIN SWITCH R1A2/S16 1-STRT/0-STRT FC 1 START 5 V45K0112F K40P862-M FC 1 STOP A/STOP B 5 09E 1-STOP/O-STOP K40P862-B R1A2/S17 FC 2 START 5 V45K0212E 1-STRT/0-STRT K40PE72-M 5 09E 1-STOP/O-STOP FC 2 STOP A/STOP B K40P872-B 5 1-STRT/O-STRT R1A2/S18 FC 3 START V45K0312E K40P882-M FC 3 STOP A/STOP B 5 09E 1-STOP/O-STOP K40P882-B K40TB11-KC R12/S2 1-0N/0-0FF H2/02 PURGE HTRS-MAN 5 V45K0601E K40TB12-KC K40TB100-KC 2 V45K0604Y 1-0N/0-0FF H2/02 PURGE HTRS-GPC K40TB101-KC **↓** 05Y 4.5 V45K1191N 02 GSE SUPPLY VLV OPEN K40P9869-1 1-0PN/0-0PN 4,5 K40P9869-2 1-CLS/0-CLS 02 GSE SUPPLY VLV CLOSE 96N 4.5 V45K2191N K40P9870-1 1-0PN/0-0PN H2 GSE SUPPLY VLV OPEN H2 GSE SUPPLY VLV CLOSE 4.5 96N 1-CLS/0-CLS K40P9870-2 1-0N/0-0FF L4C/CB65 5,6 K40P864-A FC 1 COOLANT PUMP-PHASE A FC 2 5,6 L4C/CB68 74-A L4C/CB71 FC 3 5,6 84-A 014/512 FC 1 CONTROLLER (RELAY) POWER 5 V45K0180E K40P862-V 015/\$11 FC 2 5 280E K40P872-V K40P8 82-V 380E 016/511 FC 3 5

	7
ı	
-	
-	•

PANEL/ SWITCH		NOMENCLATURE		NOTES	MML ID.	SYSTEM CONN-PIN	STATE		
	FC 1 17 PUMP ()	-ECK		4,5	V45K1121%	K40P862-F	1-0N/0-0FF		
	FC 2			4,5	2411	72-F			
	FC 3 .	The state of the s	and the second s	4,5	÷ 27!	₽82-F			
013/CB22	02 TANK 1 GTY	OCP PWP IESS	BUS 2CA)			K40P9853-W	11-0N/0-0FF		
013/CB20	02 • 2	÷	1 B C)			9833-W			
ML86B/CB55	02 + 3	i. ∲	3AB /	5,6		9520-W			
013/CB23	H2 1	♦	2CA)			9813-W			
013/CB22	H 2 2	÷	180)			9843-W			
ML868/CB5€	H2 + 3	i	3AB)			9547-W			
	FLO /DCP PWP -	FC1 (MN A)		5,6		863-12			
	-	FC2 (MN B)				873-12			
	• -	FC3 (MN C)				883-12			
	02 TANK 1 OTV	CK SIGNA.		4,5,6	V45K1128%	9853- <u>A</u>			
	02 2	\$ •			1228N	9833- <u>A</u>			
	02 + 3	<u>.</u>			13281	9520- <u>A</u>			
	H2 + 1	↓			: 2128N	9813- <u>A</u>			
	H2 + 2	‡			2228№	9843- <u>A</u>			
	H2 + 3	i			23281	9547- <u>A</u>			
R12A1/S6	FC 1 START-UP I	HTR INHIBIT		5	V45K0191E	K40P862-C	1-INHIBIT/ O-ENABLE		
R12A1/S7	2	The second section of the second section of the second section of the second section s		5	291E	72-C			
R12A1/S8	3	Allen and the second second second second second second second second second second second second second second		5	391E	82-C			

LL/CRYO MODEL

STATE	1-0N/0-0FF	
SYSTEM CONN-PIN	L1 L2 L3	
MML ID.		
NOTES	7	
NOMENCLATURE	FC 1 LOAD - ON/OFF	
PANEL/ SWITCH		

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

		I.C.	I.C.			VALUE	2	VALUE	3	UNITS
	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V45X0105E	FC 1 READY	0	0	1	1					STATE
V45T0120A	FC 1 STACK COOLANT OUT TEMP	110	509	198	749					DEGF
V45T0130A	FC 1 CONDENSER EXIT TEMP	105	434	156	542					DEGF
V45X0143E	FC 1 COOLANT PUMP STATUS	0	0	1	1		1		İ	STATE
V45T0145A	FC 1 COOLANT RETURN TEMP	95	393	151	622					DEGF
V45P0147A	FC 1 COOLANT PRESS	60	614	15	153	30	307	58	593	PSIA
V45R0160A	FC 1 02 FLOW	0.836	0	2.86	325	5.31	542		1	LB/HR
V45R0170A	FC 1 H2 FLOW	0.063	0	0.50	529	1.20	776			LB/HR
V45T0181A	FC 1 PRODUCT H20 LINE TEMP	55	229	110	454					DEGF
V45X0205E	FC 2 READY	0	0	1	1					STATE
V45T0220A	FC 2 STACK COOLANT OUT TEMP	108	503	201	757					DEGF
V45T0230A	FC 2 CONDENSER EXIT TEMP	103	426	158	651					DEGF
V45X0243E	FC 2 COOLANT PUMP STATUS	0	0	1	1		1		}	STATE
V45T0245A	FC 2 COOLANT RETURN TEMP	92	381	153	630				1	DEGF
V45P0247A	FC 2 COOLANT PRESS	58	593	14	143	28	286	60	614	PSIA
V45R0260A	FC 2 02 FLOW	0.836	0	2.88	327	5.34	544			LB/HR
V45R0270A	FC 2 H2 FLOW	0.063	0	0.49	523	1.22	783			LB/HR
V45T0281A	FC 2 PRODUCT H20 LINE TEMP	57	237	112	462					DEGF
1 V45X0305E	FC 3 READY	0	0	1	1					STATE
V45T0320A	FC 3 STACK COOLANT OUT TEMP	112	516	204	765					DEGF
V45T0330A	FC 3 CONDENSER EXIT TEMP	107	442	162	667					DEGF
V45X0343E	FC 3 COOLANT PUMP STATUS	0	0	1	1			i		STATE
;									}	
										لــــــا

7.7.7.7			I.C.	I.C.			VALUE	2	VALUE	3	UNITS
i. ə.	MEASUREMENT NAME		FS	CTS	FS	CTS	FS	CTS	FS	CTS	0.(113
V45T0345A	FC 3 COOLANT RETURN TEMP		97	401	155	538					DEGF
V45P0347A	FC 3 COOLANT PRESS		62	634	16	164	32	327	64	657	PSIA
V45R0360A	FC 3 02 FLOW		0.836	0	2.90	329	5.37	546			LB/HR
V45R0370A	FC 3 H2 FLOW		0.063	0	0.48	=17	1.23	785			LB/HR
V45T0381A	FC 3 PRODUCT H20 LINE TEMP		59	246	114	+/1					DEGF
V45X0410E	FC 1 H20 CONDITION		0	0	1	1					STATE
V45T0412A	FC 1 H20 RELIEF VLV TEMP		62	253	103	428					DEGF
V45X0420E	FC 2 CONDITION		0	C	1	1					STATE
V45T0422A	FC 2 H2O RELIEF VLV TEMP		64	256	105	434					. DEGF
V45X0430E	FC 3 H2O CONDITION		0	0	1	1					STATE
V45T0432A	FC 3 H20 RELIEF VLV TEMP	00	66	274	107	442					DEGF
V45T0450A	H20 RELIEF LINE TEMP	ORIGINAL PAGE IS OF POOR QUALITY	62	253	109	450					DEGF
V45T0455A	H20 RELIEF NOZZLE TEMP A	8E	111	254	25 0	575					DEGF
V45T0456A	H20 RELIEF NOZZLE TEMP B	# F	114	262	254	595					DEGF
V45T0600A	FC 02 VENT LINE TEMP	PA6 QUA	125	325	275	708		1			DEGF
V45T0699A	FC H2 VENT LINE TEMP 1	III E	128	333	280	722					DEGF
V45T0700A	FC H2-VENT LINE TEMP 2	3 2	131	327	278	716					DEGF
V45X1080E	PRSD 02 ECS PRI SUPPLY VLV - OPEN		1	1	0	0					STATE
V45X1083E	PRSD 02 ECS SEC SUPPLY VLV - OPEN		1	1	0	0					STATE
V45P1100A	PRSD 02 TANK 1 PRESS		626	534	516	440					PSIA
V45T1101A	PRSD 02 TANK 1 FLUID TEMP		-35	442	-162	295					DEGF
			<u> </u>	<u> </u>	L			<u> </u>			<u></u>

MEASUREMENT		I.C	I.C.		K≖1)	VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	
V45Q1105A	PRSD 02 TANK 1 QUANTITY	30	331	104	1023	0	51			PCNT
V45T1107A	PRSD 02 TANK 1 HTR ASSY 1 TEMP	-107	358	-166	291					DEGF
V45T1109A	PRSD 02 TANK 1 HTR ASSY 2 TEMP	-139	321	-167	288					DEGF
V45P1110A	PRSD 02 TANK 1 HTR CONTROL PRESS	750	481	517	4					PSIA
V45P1140A	PRSD 02 MANIF 1 PRESS	799	681	194	166				.	PSIA
V45X1141E	PRSD 02 MANIF 1 ISOL VLV - OPEN	1	1	0	0			•		STATE
V45P1145A	PRSD 02 MANIF 2 PRESS	811	692	185	158					PSIA
V45X1146E	PRSD 02 MANIF 2 ISOL VLV - OPEN	1	1	0	0					STATE
V45X1150E	PRSD FC 1 02 REAC VLV - OPEN	1	1	0	0					STATE
V45X1155E	PRSD FC 2 02 REAC VLV - OPEN	1	1	0	0					STATE
V45X1160E	PRSD FC 3 02 REAC VLV - OPEN	1	1	0	0					STATE
V45X1195E	PRSD 02 GSE SUPPLY VLV - CLSD	0	0	1	1					STATE
V45P1200A	PRSD 02 TANK 2 PRESS	636	542	518	442					PSIA
V45T1201A	PRSD 02 TANK 2 FLUID TEMP	-26	452	-160	297					DEGF
V45Q1205A	PRSD 02 TANK 2 QUANTITY	40	426	104	1023	0	51		•	PCNT
V45T1207A	PRSD 02 TANK 2 HTR ASSY 1 TEMP	-116	348	-162	295					DEGF
V45T1209A	PRSD 02 TANK 2 HTR ASSY 2 TEMP	-148	311	-167	288					.GF
V45P1210A	PRSD 02 TANK 2 HTR CONTROL PRESS	760	501	518	6			<u> </u> 		PSIA
V45P1300A	PRSD 02 TANK 3 PRESS	646	550	521	444					PSIA
V45T1301A	PRSD 02 TANK 3 FLUID TEMP	-17	462	-159	299					DEGF
V45Q1305A	PRSD 02 TANK 3 QUANTITY	50	518	104	1023	0	51			PCNT
V45T1307A	PRSD 02 TANK 3 HTR ASSY 1 TEMP	-125	338	-166	291					DEGF
V45T1309A	PRSD 02 TANK 3 HTR ASSY 2 TEMP	-157	301	-169	286					DEGF

MEASUREMENT		1.0	•	VALUE 1 (NOMINAL		VALUE 2 (HI/LOW)		VALUE 3 (OFF)	K=3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	011113
V45P1310A	PRSD 02 TANK 3 HTR CONTROL PRESS	776	522	520	10					PSIA
V45P2100A	PRSD H2 TANK 1 PPESS	220	563	145	376					PSIA
V45T2101A	PRSD H2 TANK I FLUID TEMP	-100	366	-286	151					DEGF
V4502105A	PRSD H2 TANK 1 QUANTITY	35	374	105	1023	0	5.			PCNT
V45T2107A	PRSD H2 TANK 1 HTP ASSY TEMP	-70	401	-289	147					DEGF
V45P2110A	PRSD H2 TANK 1 HTF CONTROL PRESS	260	735	148	13					PSIA
V45P2140A	PRSD H2 MANIF 1 PPESS	190	487	142	364					PSIA
V45X2141E	PRSD H2 MANIF 1 ISOL VLV - OPEN	1	1	0	0					STATE
V45P2145A	PRSD H2 MANIF 2 PRESS	194	497	147	375					PSIA
V45X2146E	PRSD H2 MANIF 2 ISOL VLV - OPEN	1	1	c	0					STATE
V45X2150E	PRSD FC 1 H2 REAC VLV - OPEN	1	1	0	0					STATE
V45X2155E	PRSD FC 2 H2 REAC VLV - OPEN	1	1	O	C					STATE
V45X2160E	PRSD FC 3 H2 REAC VLV - OPEN	1	1	0	G				[STATE
V45X2195E	PRSD H2 GSE SUPPLY VLV - CLSD	0	0	1	1					STATE
V45P2200A	PRSD H2 TANK 2 PRESS	230	589	15 0	385					PSIA
V45T2201A	PRSD H2 TANK 2 FLUID TEMP	-91	376	-291	145					DEGF
V45Q2205A	PRSD H2 TANK 2 QUANTITY	45	469	105	1023	0	51			PCNT
V45T2207A	PRSD H2 TANK 2 HTR ASSY TEMP	-60	413	-295	141					DEGF
V45P2210A	PRSD H2 TANK 2 HTR CONTROL PRESS	270	800	151	39					PSIA
V45P2300A	PRSD H2 TANK 3 PRESS	240	614	149	381					PSIA
V45T2301A	PRSD H2 TANK 3 FLUID TEMP	-83	3 37	-288	149					DEGF
V45Q2305A	PRSD H2 TANK 3 QUANTITY	55	561	105	1023	0	51			PCNT
V45T2307A V45P2310A	PRSD H2 TANK 3 HTR ASSY TEMP PRSD H2 TANK 3 HTR CONTROL PRESS	-51 280	424 863	-293 150	143 33					DEGF PSIA

APPENDIX G

ATMOSPHERE REVITALIZATION/H20 MATH MODEL REQUIREMENTS

ACKNOWLEDGEMENTS:

The mathematical model flgw chart appearing in Section 3 was based on one prepared by Rockwell/Downey, California and provided the basic information from which this requirements document was prepared.

CONTENTS

Sec	tion																				Page
1.	INTRO	DDUCTION	•			•	•	•	•		•	•	•	•		•	•	•	•		G-1
2.	DETA	ILED REQUIREMENTS	•					•		•	•	•	•	•	•	•	•		•		G-3
	2.1	MATH MODEL DESCRIPTION			•		•	•					•			•	•	•		•	G-3
	2.2	STS UNIQUE REQUIREMENTS .			•	•	•		•				•	•			•	•		•	G-5
		GTS UNIQUE REQUIREMENTS .																			
3.		MODEL LOGIC																			
	3.1	GTS PREPROCESSOR LOGIC								•	•		•	•	•	•		•		•	G-7
	3.2	LOGIC FLOW DIAGRAM			•					•								•	•	•	G-10
4.	TABL	ES		•	•		•			•		•			•		•	•			G-24
	4.1	INPUT STIMULI LIST			•			•	•			•									G-24
	4.2	OUTPUT MEASUREMENT LIST .	•						•			•									G-27

FIGURES

Figure													1	Page
1	ARS-water	coolant	loops	-	orbiter	102		•					•	G-2

1. INTRODUCTION

Thermal control within the cabin area and the avionics bays (1, 2 and 3) is accomplished by two parallel water coolant loops. For OV-102, both water coolant loops will be operated simultaneously during launch and entry. During orbital operations, only one water coolant loop will be operated. The water coolant loops (fig. 1) remove crew and equipment generated heat, and transport it to the active thermal control subsystem (ATCS) interchanger for heat rejection. Each coolant loop is identical with the exception that the primary loop contains two parallel mounted pumps and a shuttle check valve, while the secondary has only one pump and no shuttle check valve.

Figure $1 - ARS \sim water coolant loops - Orbiter 102.$

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the AR/H2O.

2.1 MATH MODEL DESCRIPTION

2.1.1 WATER COOLANT LOOPS

As depicted in figure 1 water flow leaving the pump first passes through a shuttle check valve (primary coolant loop only) to prevent flow around the inactive pump. On leaving the valve, the water coolant encounters a relief device. After this, the water coolant enters the silver ion generator (SIG) water chiller which cools fuel cell water to allow the water management subsystem SIG to provide proper water purification. From the SIG water chiller, the water coolant divides into two different paths.

- One path provides water coolant to the cabin (MDM) avionics coldplates to pick up heat generated by the MDM's. From the coldplates, the flow divides into two parallel paths. One path directs water coolant through avionics bay 3A heat exchanger to abosrb heat generated by various avionics equipment and then through the avionics bay coldplates. The second path provides water coolant to avionics bay 3B coldplates. From this point, the water coolant merges with coolant exiting bay 3A into a single path.
- The second path divides into two parallel paths, thus entering in-cabin avionics bays 1 and 2. In these avionics bays, the water coolant flows through the avionics bay heat exchanger, and then the avionics bay coldplates. The water coolant leaving avionics bay 1 coldplates enters the hatch coolant loop, and the water coolant exiting avionics bay 2 enters the forward and overhead windows coolant loops. After leaving the hatch and windows, the water coolant merges with coolant exiting bays 3A and 3B into a single path.

Downstream of this point, the water coolant encounters the DFI coldplates and then the water bypass valve line. The bypass valve can be either automatically or manually controlled. In the auto mode, the bypass valve controls the water temperature in the water coolant pump package to $63 \pm 2.5^{\circ}$ F by bypassing coolant around the water/freon interchanger. For different phases of the mission, the bypass valve will be controlled as follows:

- Launch and Entry The bypass valve will be driven manually to the full flow through interchanger position, then the valve will be left in the manual mode.
- Orbital The bypass valve will be manually set to a predetermined position to match the required freon flow through the interchanger.

The water coolant that is bypassed around the interchanger then passes through the main loop filter. Downstream of the filter is the loop accumulator which maintains a constant pump inlet pressure and compensates for thermal expansion and contraction of the coolant loop. From here, the water coolant returns to the pump for recirculation. The water coolant not bypassed continues through the interchanger for heat rejection. After this, the water coolant travels through the liquid cooling garment (LCG) heat exchanger, whose function is to supply chilled water to the airlock support subsystem for crewmen LCG cooling prior to EVA. From the LCG heat exchanger, the water coolant passes through a water chiller to cool water for crewman consumption. Then the water coolant goes through a check valve and the cabin condensing heat exchanger, whose function is to remove sensible and latent heat from the cabin atmosphere. After leaving the cabin condensing heat exchanger, the water coolant is directed to the IMU heat exchanger where heat is abosrbed by a convective/conductive process. From the IMU heat exchanger, the water coolant returns to the coolant pump and accumulator assembly.

2.1.2 INTERNAL VARIABLES

The following internal variables were introduced into the logic to facilitate computations.

 T_1 - Cabin H_X in TEMP - LOOP 1

T₂ - Cabin H_X in TEMP - LOOP 2

 $R_1 - H_20$ INTCHGR flow rate - LOOP 1

 $R_2 - H_2^0$ INTCHGR flow rate - LOOP 2

F1 - Internal logic flag

T_c - Cabin TEMP

Ll - Internal counter

L2 - Internal counter

The following initial conditions are required:

Internal Variable	Initial Value	Model Counts
TI	44	137
T2	47	172
R1	118	0
R2	659	276
L1	1	1
L2	1	1

2.1.3 INITIAL CONDITIONS

note that inital conditions for STS are the same as those listed for GTS; see $\underline{\text{GTS PREPROCESSOR LOGIC}}$.

2.2 STS UNIQUE REQUIREMENTS

None

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The AR/H2O math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the AR/H2O are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

This input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - AR/H20 MML TO CONN-PIN CONVERSION LOGIC

SYSTEM				SOURCE*					
CONN-PIN		MML ID	MDM CONN/PIN		INITIALIZATION VALUES				
K90P13-1	=	V61K2611Y	PF01	J06/009					
15-1	=	2613Y	PF01	J06/031					
23-1	=	2711Y	PF02	J06/021					
27-7	=	2120E			. 0				
33-7	=	2121E			0				
39-1	=	2450E			1				
41-1	=	2455E			1				
31-4	=	2566A			5				
37-4	=	2567A			5				
18-A	=	2585E			0				
20-A	=	2590E			0				
17-1	=	2747E			0				
17-3	=	2748E			0				
1-1	=	2770E			0				
3-1	=	2775E			0				
2-1	=	2780E			1				
4-1	=	2785E			1				
10-1	=	2790E			1				
12-1	=	2795E			1				
25-1	=	2847E			0				
¥ 25-3	=	2848E			0				
K81P157-1	=	- 2849E			1				
158-1	=	2852E			1				
159-1	=	₹ 2855E			1				
K80P32-F	=	**			1				
K81P155-1	=]		1				
K90P5-1	=		!		1				
6-1	=		İ		ı				
14-1	=	+	İ		1				
·			I						
		1							

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - AR/H20 MML TO CONN-PIN CONVERSION LOGIC

SYSTEM	. ,		SOURCE*				
CONN-PIN	MML ID	MDM	CONN/PIN	INITIALIZATION VALUES			
(90P9-1 =	**]			
19-1 =	-			1			
22-1 =	=		,	1			
27-1 =	•			1			
33-1 =	•			1			
43-1 =	=			1			
96-F =				0			
√ 95-F	= ↓	i		1			
	•						
	•						
	•						
			1				
:							
			ł				
			1				
			į				

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 FS_{EU} which is equivalent to 534 $MODEL_{CTS}$ shown outside the box.

G-15

ORIGINAL PAGE IS OF POOR QUALITY

C-4

G-19

ORIGINAL PAGE IS OF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table I contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- Will be entered at NAS Kybd for GTS.
- Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES, for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L4/CB117	CABIN TEMP CNTRLR 1 PWR	5,6		K90P27-1	1-0N/0-0FF
L4/CB119	CABIN TEMP CNTRLR 2 PWR	5,6		K90P33-1	1-0N/0-0FF
L4/CB127	AV BAY 1 S/C PWR	5,6		K90P5-1	1-0N/0-0FF
L4/CB118	AV BAY 2 S/C PWR	5,6		K90P6-1	1-0N/0-0FF
L4/CB120	AV BAY 3 S/C PWR	5,6		K90P14-1	1-0N/0-CFF
L4/CB121	H20 BYPASS CNTRLR - PRI	5,6		K90P9-1	1-0N/0-0FF
L4/CB93	H20 BYPASS CNTRLR - SEC	5,6		K90P19-1	1-0N/0-0FF
L4/CB81	IMU FAN S/C PWR	5,6		K81P155-1	1-0N/0-0FF
L4/CB94	CABIN AIR S/C PWR	5,6		K90P22-1	1-0N/0-0FF
L4/CB80	HUMIDITY SEP S/C PWR	5,6		K90P43-1	1-0N/0-0FF
014/CB35	INTCHGR. FLOW - H20 LOOP 1 PWR	5,6		K90P96-F	1-0N/0-0FF
015/CB35	INTCHGR FLOW - H20 LOOP 2 PWR	5,6		K90P95-F	1-0N/0-0FF
L1A2/S3	H20 PUMP A - LOOP 1 ON	2	V61K2611Y	K90P13-1	1-0N/0-0FF
	H20 PUMP B - LOOP 1 ON	2	.V61K2613Y	K90P15-1	1-0N/0-0FF
L1A2/S6	H20 PUMP - LOOP 2 ON	2	V61K2711Y	K90P23-1	1-0N/0-0FF
L1A2/S4	H20 BYPASS MAN- INCR - LOOP 1	5	V61K2747E	K90P17-1	1-0N/0-0FF
	H20 BYPASS MAN - DECR - LOOP 1	5	V61K2748E	K90P17-3	1-0N/0-0FF
L1A2/S7	H20 BYPASS MAN - INCR - LOOP 2	5	V61K2847E	K90P25-1	1-0N/0-0FF
	H20 BYPASS MAN - DECR - LOOP 2	5	V61K2848E	K90P25-3	1-0N/0-0FF

TABLE 1 - STIM INPUT FOR AR/H20

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L1A2/S12	IMU FAN A	5	V61K2849E	K81P157-1	1-0N/0-05F
L1A2/S13	IMU FAN B	5	V61K2852E	K81P158-1	1-0N/0-0FF
L1A2/S14	IMU FAN C	5	V61K2855E	K81P159-1	1-0N/0-0FF
L1/S11	CABIN TEMP CNTRLR - LOOP 1 ON	5	V61K2120E	K90P27-7	1-0N/0-0FF
	CABIN TEMP CNTRLR - LOOP 2 ON	5	V61K2121E	K90P33-7	1-0N/0-0FF
L1A2/S1	HUMIDITY SEP A ON	5	V61K2450E	K90P39-1	1-0N/0-0FF
L1A2/S2	HUMIDITY SEP B ON	5	V61K2455E	K90P41-1	1-0N/0-0FF
L1A2/S17	CABIN FAN A ON	5	V61K2585E	K90P18-A	1-0N/0-0FF
L1A2/S18	CABIN FAN B ON	5	V61K2590E	K90P20-A	1-0N/0-0FF
L1/R1	CABIN TEMP SELECTOR - LOOP 1	5	V61K2566A	K90P31-4	>7(WARM)/<7(COO
	CABIN TEMP SELECTOR - LOOP 2	5	V61K2567A	K90P37-4	>7(WARM)/<7(COO
L1A2/S9	AVIONICS BAY 1 - FAN A ON	5	V61K2770E	K90P1-1	1-0N/0-0FF
L1A2/S10	AVIONICS BAY 1 - FAN B ON	5	V61K2785E	K90P3-1	1-0N/0-0FF
L1A2/S15	AVIONICS BAY 2 - FAN A ON	5	V61K2780E	K90P2-1	1-0N/0-0FF
L1A2/S16	AVIONICS BAY 2 - FAN B ON	5	V61K2785E	K90P4-1	1-0N/0-0FF
L1A2/S19	AVIONICS BAY 3 - FAN A ON	5	V61K2790E	K90P10-1	1-0N/0-0FF
L1A2/S20	AVIONICS BAY 3 - FAN B ON	5	V61K2795E	K90P12-1	1-0N/0-0FF
	IMU FAN AP POWER	5,6		K80P32-F	1-0N/0-0FF

G-25

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM AR/H20 MODEL - TABLE 2

"EASURE"ENT		I.C	I.C. VALUE 1		VALUE 2		VALUE 2 VALUE 3		UNITS	
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FŞ	CTS	0.4113
* √61P2540A	CO2 PARTIAL PRESSURE	5.2	177	0	0	7.6	259	:		MMHG
₩6102551A	CABIN HUMIDITY	51	522	0	0	100	1023			PERCENT
V61T2552A	CABIN TEMP.	70.7	440	32 95	0 716	65	374	80	546	DEG.F
V61P2556A	CABIN FAN DELTA PRESSURE	0	0	0.2	207					PSID
V61X2557E	HUMIDITY SEP A SPEED	0	O	1	1					STATE
V61X2558E	HUMIDITY SEP B SPEED	0	0	1	1					
V61X2573E	CABIN TEMP CTL FULL HX-LOOP 1	0	0	1	1					
V61X2577E	CABIN TEMP CTL FULL HX-LOOP 2	0	0	1	1				}	
V61P2600A	H ₂ O PUMP OUT PRESS - PRI	61.5	419	0	0	25	170	i 1		PSIA
V61P2605A	H ₂ O PUMP IN PRESS-PRI	18	473	0	12					PSIA
V6102610A	H ₂ O ACCUM QTY-PRI	50	491	0	100					PERCENT
₩61H2612A	HOO BYPASS VLV. POSPRI	2	20	0	0	95	972			PERCENT
V61T2635A	CABIN HX OUT TEMP.	55	102	45	0					DEG.F.
V61T2640A	H ₂ O PUMP OUT TEMLOOP 1	68	409	32	0	66	387	80	546	DEG.F.
V61P2642A	AV. BAY 1 DELTA PRESS.	0	0	0.12	121					PSID
V61T2645A	AV. BAY 1 OUT AIR TEMP.	74	297	45	0	80	358			DEG.F.
V61P2647A	AV. BAY 2 DELTA PRESS.	0.13	121	0	0					PSID
V61T2650A	AV. BAY 2 OUT AIR TEMP.	70	256	45	0	80	358			DEG.F.
V61P2658A	AV. BAY 3 DELTA PRESS.	0.14	151	0	8	1				PSID
V61T2661A	AV. BAY 3 OUT AIR TEMP.	95	512	45	0	80	358			DEG. F.
V61T2663A	CABIN HX IN. TEMPLOOP 1	44.06	137	32 51	0 217	41	102	47	170	DEG.F.

^{*}NOTE: This measurement uses the range limit conversion method of calculating $\mathsf{FS}_{\mathsf{EU}}$.

MEASUREMENT OUTPUT FROM AR/H20 MODEL - TABLE 2

"EASUPEMENT		I.C	I.C. VALUE 1		VALUE 2		VALU	E 3	UNITS	
I. C.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	011213
V61T2665A	CABIN HX IN. TEMPi.OOP 2	47.12	172	32 53	0 239	43	125	51	217	DEG.F.
V61P2700A	H ₂ O PUMP OUT PRESS-SEC.	53	354	1.3	0	25	162			PSIA
V61P2705A	H ₂ O PUMP IN. PRESS-SEC.	16	419	0	10					PSIA
V61Q2710A	H ₂ O ACCUM. QTY-SEC.	52	509	0	100					PERCENT
W61H2712A	H ₂ O BYPASS VLV. POSSEC	95	972	0	0	5	51			PERCENT
V61R2722A	H ₂ O INTCHGR. FLOW - LOOP 2	659	276	4.5	0	560	223	761	338	PPH
V61T2724A	H ₂ O INTCHGR. OUT TEMPLOOP 2	45	512	41	430	49	593			DEG.F.
V61T2740A	H ₂ O PUMP OUT TEMP - LOOP 2	77	512	32	0	72	454	80	546	DEG.F.
V61R2742A	H ₂ O INTCHGR. FLOW - LOOP 1	118	0	560	179	601	199	700	251	. PPH
V61T2744A	H ₂ O INTCHGR. OUT TEMP LOOP 1	50	614	46	532	54	696			DEG.F.
V61X2860E	IMU FAN A SPEED	0	0	1	1		1			STATE
V61X2861E	IMU FAN B SPEED	0	0	1	1					
V61X2862E	IMU FAN C SPEED	0	o	1	1					
V61P2869A	IMU FAN AP	4.2	614	0	0					INCHES H ₂ 0

^{*}NOTE: This measurement uses the range limit conversion method of calculating $\mathsf{FS}_{\mathsf{EU}}$.

APPENDIX H
ATMOSPHERE REVITALIZATION/PCS MATH MODEL REQUIREMENTS

CONTENTS

Sec	ction	Page
1.	INTRODUCTION	
2.	DETAILED REQUIREMENTS	
	2.1 MATH MODEL DESCRIPTION	_
	2.2 STS UNIQUE REQUIREMENTS	
	2.3 GTS UNIQUE REQUIREMENTS	
3.	MATH MODEL LOGIC	_
	3.1 GTS PREPROCESSOR LOGIC	–
	3.2 LOGIC FLOW DIAGRAM	
4.	TABLES	
••		
	4.1 INPUT STIMULI LIST.	
	4.2 OUTPUT MEASUREMENT LIST	H-31

FIGURES

Figure		Dago
1	ATMOS pressurization and control system	Page
2	ATDI OCK administration in the second of System 1	H-3
4-	AIRLOCK simplified schematic	H_4

1. INTRODUCTION

This model simulates the Orbiter Atmosphere Revitalization/Pressurization and Control-Airlock System (AR/PCS-Airlock) by representing the stimulus/response relationships which exist at the power and signal interfaces between the Orbiter Avionics System and the AR/PCS-Airlock. The model has been simplified by including only those output signals which are needed to support the type of testing which will be accomplished in the Shuttle Avionics Integration Laboratory (SAIL).

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in Table 1 to produce values for the output measurements listed in Table 2 that simulate the operation of the AR/PCS.

2.1 MATH MODEL DESCRIPTION

2.1.1 AR/PCS MODEL OVERVIEW

The AR/PCS provides the Orbiter with a pressurized atmosphere of oxygen and nitrogen, and supplies nitrogen for pressurization of the Orbiters' potable and waste water system. Two lines from the Fuel Cell/Cryogenic System (FC/CRYO) supply oxygen to the AR/PCS, which are backed up by an emergency oxygen tank in the AR/PCS. Four nitrogen tanks in the AR/PCS supply the necessary nitrogen. For reliability, two independent systems control the atmosphere and water pressurization, with crossover valves providing additional reliability. Figure 1 and figure 2 are simplified schematics of the AR/PCS and airlock, respectively, showing the various tanks, regulators and valves.

In the AR/PCS-Airlock math model, the OPEN or CLOSED position of the manual values must be entered by the test operator when cockpit valves are changed, so that the AP/PCS-Airlock math model will generate realistic data.

Fixed values are provided for the pressure and temperature of the oxygen and nitrogen tanks. Tank quantities, as calculated by the flight system GPC based on tank pressures and temperatures, will remain unchanged unless different pressure and temperature values are sent by the test operator while the math model's output for these parameters is inhibited.

2.1.2 LATCHING VALVE ROUTINE (LVR)

The math model uses three internal variables (A, B, and V) in subroutine called Latching Valve Routine (LVR). A and B represent the state of CLOSE and OPEN stimuli, respectively, to a valve. V represents the OPENED or CLOSED state of the valve based on A and B values.

CABIN . STA

SPACE VACUUM

FIGURE

2

11-4

FROMS

2.1.3 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

None.

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The AR/PCS math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the AR/PCS subsystem are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

ORIGINAL PAGE IS OF POOR QUALITY

GTS MATH MODEL STIMULI - AR/PCS/AL MML TO CONN-PIN CONVERSION LOGIC

SYSTEM			SOURCE*				
CONN-PIN M	ML ID	MDM	CONN/PIN	INITIALIZATION VALUES			
K80P31-10 = V	61 K2000E			1			
31-12 =	2020E			0			
30-10 =	2040E			1			
30-12 =	2060E	1		0			
27-30 =	2100E			1 1			
28-30 =	2200E			1			
25-10 =	2133E			0			
25-12 =	2134E			1 .			
26-10 =	21 37E	:		0			
26-12 =	2138E			1			
34-32 =	2162E		•	0			
34-5 =	2164E		•	1			
33-5 =	2304E			1			
33-3 =	2305E			0			
34-36 =	2314E			0			
34-17 =	2315E			1			
34-34 =	2317E			0			
34-11 =	2318E	1		1			
33-11 =	2322E			1			
33-9 =	2325E			0			
27-29 =	2370E			1			
↓ 28-29 = √	[↓] 2375E			0			
KAW82D P6-S= V	64K0500E			0			
P6-T=	0501E			1			
P4-13=	0510E			0			
P4-11=	0511E			1			
P6-B=	0520E			0			
P6-C=	0521E			1			
P5-13=	0530E			0			
↓ P5-11= \	0531E			1			
K80P27-37 =	**	1		ì			
28-37 =			·	1			
29-22 =	\downarrow			1			

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 FS_{EU} which is equivalent to 534 $MODEL_{CTS}$ shown outside the box.

LVR GEGIN TO 3 ENTER VEIX2135EE V CAB RLF VLV 8 A = O B= 1 CALL LVR A= K80130-10 CLS Ÿ 8=KB0P30-12 00N V61x2045E= V CAR VENT VLV 4muz NEXT VLIX2065E: V YEA STATE. SET CALL LVR 4- KB0131-10 CLS 8=KB0731-12 0PN RET VOIX 2005E Y CAB VENT VEIX2025E V ISOL VLV (BEGIN) CALL LVR A: K80P33-3 CLS CALL LVR 8 = K80 P33 - 5 A = K80P25-10 CLS B = KBOP25-12 ENAB TYPICAL SET STATEMENT VLIXALISE V NA SUS I REG V61x2321E= V INCET VLV Y61x2130E= V CAB RILF YLY A CALL LVR A= KB0P33-9 CLS CALL LVR B=K80P33-11 OPN A= KBOP26-10 CLS 8 × KBOP26 - 12 ENAB

11-9

02 PRESSURES

3 то 9

3 to 9

OR PRESSURES

3 to 9.

N2 PRESSURES AND FLOWS

(b) To (l)

N2 PRESSURES AND FLOWS

(10) To (14)

emergency Cabin press,

É PREES RATE OF CHANGE

A/L AIRLOCK EMU1 HAD WASTE YLY OPEN HAD WASTE YLY CLOSED KAW82D P6-5 =1 KAW82D PG-T=1 EMUI WASTE NO UPEN IND CMUI WASTE WATER OPEN IN Y64X0505E = 0 V64X0505E = 1 HAO SUPPLY YLY CLOSED HAD SHPPLY YLV OPEN KAW820 PY-13=1 KAW820 PY-11=1 EMUI HAD SPLY OPEN IND. EAUI HED STLY OPEN IND. V64X0515 & = 0 ¥64X0515E = 1 AIRLOCK EMUZ HAD WASTE YLV OPEN HAD WASTE YLY CLOSED KAW82D P6-C=1 KAW82D P6-B =1 EMUL WASTE HED OTH IND. EMUZ WASTE HED OTH JUD. V64X0525E = 1 V64X0525E = 0 HLO SUPPLY VLV CLOSED HED SUPPLY YLY OPEN KAW82D P5-13=1 KAW820 P5-11=1 EMUS HOO SPLY OPEN IND. EMUS MO STLY OPEN IND. V64X05358 = 1 Y64X0535E = 0

> ORIGINAL PAGE IS OF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDO VARIABLE INITIALIZATION

The following pseudos are initialized as follows:

VARIABLE	INITIAL CONDITION
MV1 MV2	1 0
MV3 MV4	1 0
MV5 MV6	0
MV7 MV8	0
MV9 MV10	0

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L2/S15	02/SYS 1 XOVR VLV CMD - OPN	5	V61K2100E	K80P27-30	I-OPN/O-CLS
L2/S18	02/SYS 2 XOVR VLV CMD - OPN	5	V61K2200E	K80P28-30	1-OPN/O-CLS
L2/S3	CABIN VENT ISOL VLV CMD - CLS	5	V61K2000E	K80P31-10	1-CLS/0-OFF
	CABIN VENT ISOL VLV CMD - OPN	5	V61K2020E	1.30r31-12	1-0PN/0-0FF
L2/S4	CABIN VENT VLV CMD - CLS	5	V61K2040E	KE0P30-10	1-CLS/0-OFF
	CABIN VENT VLV CMD - OPN	5	V61K2060E	K80P30-12	1-OPN/O-OFF
L2/S13	N2 SYS 1 SPLY CMD - CLS	5	V61K2325E	K80P33-9	1-CLS/0-OFF
	N2 SYS 1 SPLY CMD - OPN	5	V61K2322E	K80P33-11	1-0PM/0-0FF
L2/S21	N2 SYS 2 SPLY CMD - CLS	5	V61K2315E	K80P34-17	1-CLS/0-OFF
	N2 SYS 2 SPLY CMD - OPN	5	V61K2314E	K80P34-36	1-0PN/0-0FF
L2/S14	N2 SYS 1 REG INLET CMD - CLS	5	V61K2305E	K80P33-3	1-CLS/0-OFF
	N2 SYS 1 REG INLET CMD - OPN	5	V61K2304E	K80P33-5	1-0PN/0-0FF
L2/S22	N2 SYS 2 REG INLET CMD - CLS	5	V61K2318E	K80P34-11	1-CLS/0-OFF
	N2 SYS 2 REG INLET CMD - OPN	5	V61K2317E	K80P34-34	1-OPN/O-OFF
L2/S1	CABIN RLF VLV A CMD - CLS	5	V61K2133E	K80P25-10	1-CLS/0-OFF
	CABIN RLF VLV A CMD - ENABLE	5	V61K2134E	K80P25-12	1-ENABLE/0-OFF
L2/S2	CABIN RLF VLV B CMD - CLS	5	V61K2137E	K80P26-10	1-CLS/0-OFF
	CABIN RLF VLV B CMD - ENABLE	5	V61K2138E	K80P26-12	1-ENABLE/0-OFF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L2/S16	02/N2 CONT VLV SYS 1 - OPN, AUTO	5	V61K2370E	K80P27-29	1-OPN/O-CLS
L2/S19	02/N2 CONT VLV SYS 2 - OPN, AUTO	5	V61K2375E	K80P28-29	1-0PN/0-CLS
L2/S12	02 EMER CMD - CLS	5	V61K2164E	K80P34-5	1-CLS/0-0FF
	02 EMER CMD - OPN	5	V61K2162E	K80P34-32	1-0PN/0-0FF
014/CB19	CABIN PRESS SENSOR PWR MNA	5,6		K80P27-37	1-0N/0-0FF
015/CB18	02 PARTIAL PRESS CONT PWR - MNB	5,6		K80P28-37	1-0N/0-0FF
015/CB16	CABIN PRESS DECAY SENSOR PWR - MNB	5,6		K80P29-22	1-0N/0-0FF
MO10W	SYS 1 CAB REG INLET VLV CMD - OPN	7		MV1	1-0PN/0-CLS
M010W	SYS 2 CAB REG INLET VLV CMD - OPN	7		MV2	1-0PN/0-CLS
MO10W	SYS 1 H20 TK REG INLET VLV CMD - OPN	7		MV3	1-0PN/0-CLS
M010W	SYS 2 H20 TK REG INLET VLV CMD - OPN	7		MV4	1-0PN/0-CLS
M010W	SYS 1 02 REG INLET VLV CMD - OPN	7		MV5	1-0PN/0-CLS
M010W	SYS 2 02 REG INLET VLV CMD - OPN	7		MV6	1-OPN/O-CLS
MO10W	N2 XOVR VLV CMD - OPN	7		MV7	1-OPN/O-CLS
M010W	02 EMER SUPPLY VLV CMD - OPN	7		MV8	1-0PN/0-CLS
AIRLOCK	A/L DEPRESS VLV - OPIC	7		MV9	1-0PN/0-CLS
AIRLOCK	A/L EQUAL VLV - OPN	7		MV10	1-OPN/O-CLS
AW82D/S2	EMU 1 WASTE H20 VLV - OPN	5	V64K0500E	KAW82D P6-S	1-0PN/0-0FF
	EMU 1 WASTE H20 VLV - CLS	5	V64K0501E	KAW82D PG-T	1-CLS/0-OFF

27-11

TABLE 1 - STIMULI PUT FOR AR/PCS/AL

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
AW82D/54	EMU 2 WASTE H20 VLV - OPN	5	V64K0520E	KAW82D P6-B	1-0PN J-0FF
	EMU 2 WASTE H20 VLV - CLS	5	V64K0521E	KAW82D P6-C	1-CLS/0-OFF
AW82D/S1	EMU 1 H2O SUPPLY VLV - OPN	5	V64K0510E	KAW82D P4-13	1-0PN/3-0FF
	EMU 1 H20 SUPPLY VLV - CLS	5	V64K0511E	KAW82D P4-11	1-CLS/C-OFF
AW82D/S3	EMU 2 H20 SUPPLY VLV - OPN	5	V64K0530E	KAW82D P5-13	1-0PN; J-0FF
	EMU 2 H20 SUPPLY VLV - CLS	5	V64K0531E	KAW82D P5-11	1-CLS/0-OFF
	PRSD 02 ECS PRI SUPPLY VLV - OPEN PRSD 02 ECS SEC SUPPLY VLV - OPEN PRSD 02 MANIF 1 PRESS PRSD 02 MANIF 2 PRESS	11	V45X1080E V45X1083E V45P1140A V45P1145A		1-OPN/O-CLS 1-OPN/O-CLS 0-1200 PSIA 0-1200 PSIA

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM AR/PCS MODEL - TABLE 2

MEASUREMENT		I.C	I.C. VALUE 1		VALUE	2	VALUE	3	UNITS	
I.D.	MEASUREMENT NAME	FS	CTS	ES	CTS	FS	CTS	FS	CTS	0.11.13
V61X2321E	N2 SYS 1 Reg Inlet VLV-Open	1	1	0	0					STATE
V61X2323E	N2 SYS 1 Supply VLV-Open	1	1	0	0					STATE
V61X2328E	N2 SYS 2 Reg Inlet VLV-Open	0	o	1	1					STATE
V61X2372E	02/N2 CNTLR VLV-SYS 1 Open	1	1	0	0	·				STATE
V61X2377E	02/N2 CNTLR VLV-SYS 2 Open	0	o	1	1					STATE
V61R2401A	Cabin Press Rate of Change	0	460							PSI/MIN
V61P2405A	Cabin Press	14	732	0	6	8	419			PSIA
V61T2406A	SYS 1 N2 Tank 1 Temp	-12	256			,				DEGF
V61T2407A	SYS 1 N2 Tank 2 Temp	-7	276							DEGF
V61T2408A	SYS 2 N2 Tank 1 Temp	-10	264							DEGF
V61T2409A	SYS 2 N2 Tank 2 Temp	-5	284					:	1	DEGF
V61P2410A	SYS 2 N2 200 PSI Press	0	0	228	771					PSIA
V61X2415E	N2 SYS 1 Reg Inlet VLV-Closed	0	0	1	1					STATE
V61X2416E	N2 SYS 1 Supply VLV-Closed	0	0	1	1					STATE
V61X2420E	N2 SYS 2 Reg Inlet VLV-Closed	1	1	0	0	į				STATE
V61X2421E	N2 SYS 2 Supply VLV-Closed	1	1	0	0				}	STATE
V61P2511A	02 Partial Press-A	3.1	632	0	0					PSIA
V61P2513A	02 Partial Press-B	3.2	653	0	0					PSIA
V61P2515A	O2 Partial Press-C	3.3	675	0	0					PSIA
V61R2553A	SYS 1 N2 Flowrate	2.7	612	0	4	4.45	1003			LB/HR
V61R2554A	SYS 2 N2 Flowrate	O	8	2.8	632	4.35	982			LB/HR

MEASUREMENT OUTPUT FROM AR/PCS MODEL - TABLE 2

"EASUPEMENT		I.C.		VALUE 1		VALUE	2	VALUE	3	UNITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	0111.3
V61X2005E	Cabin Vent ISOL VLV-CLOSED	1	1	0	0					STATE
V61X2025E	Cabin Vent ISOL VLV-OPEN	0	0	1	1					STATE
V61X2045E	Cabin Vent VLV-CLOSED	1	1	0	0					STATE
V61X2065E	Cabin Vent VLV-OPEN	0	0	1	1					STATE
V61R2105A	SYS 1 02 Flowrate	2.5	565	0	8	4.5	1015			LB/HR
V61P2115A	02 Reg Press Sys 1	66	221	1.15	0					PSIA
V61X2130E	Cabin Press RLF VLV A- CLOSED	0	0	1	1					STATE
V61X2131E	Cabin Press RLF VLV A-Enabled	1	1	0	0					STATE
V61X2135E	Cabin Press RLF VLV B-CLOSED	0	0	1	1				1	STATE
V61X2136E	Cabin Press RLF VLV B-ENABLED	1	1	0	0				}	STATE
V61P2161A	EMER 02 Tank Press	2058	579	•]	!		PSIA
V61X2163E	02 EMER VLV-Open	0	0	1	1					STATE
V61X2165E	02 EMER VLV-Close	1	1	0	0	Parents.				STATE
V61P2166A	EMER 02 Supply Press	297	203	0	0				1	PSIA
V61R2205A	SYS 2 02 Flowrate	0	8	2.6	591	4.4	992	•		LB/HR
V61P2215A	02 REG Press SYS 2	0	4	69	237					PSIA
V61T2216A	EMER 02 Tank Temp	-20	223							DEGF
V61P2301A	SYS 1 N2 Supply Press	1562	450							PSIA
V61P2307A	SYS 1 N2 17 PSI Press	15	763	0.06	0				1	PSIG
V61P2309A	SYS 2 N2 Supply Press	1601	458						1	PSIA
V61P2310A	SYS 1 N2 200 PSI Press	224	782	0	15					PSIA
V61P2311A	SYS 2 N2 17 PSI Press	0	2	17	872					PSIG
V61X2319E	N2 SYS 2 Supply VLV-Open	0	0	1	1					STATE

MEASUREMENT OUTPUT FROM AR/PCS MODEL - TABLE 2

MEASUREMENT		I.C.	•	VALUE 1		VALUE	2	VALU	UNITS	
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	F\$	CTS	0.1113
	-AIRLOCK-								1	
V64P0101A	AIRLOCK DIFFERENTIAL PRESS	14.4	880	-10	256	0.08	514			PSID
₩64P0201A	EVLSS H20 SUPPLY PRESS	16	409							PSIG
₩64P0202A	EVLSS 02 SUPPLY PRESS	760	518	295	201	0	0		1	PSIA
V64X0505E	EMU 1 H20 WASTE-OPEN	0	0.	1	1				ł	STATE
V64X0515E	EMU 1 H20 SUPPLY-OPEN	0	0	1	1		1 1			STATE
V64X0525E	EMU 2 H20 WASTE-OPEN	0	0	1	1	i	1		1	STATE
V64X0535E	EMU 2 H20 SUPPLY-OPEN	0	0	1	1] [1	STATE
							1 1		İ	
				•						
									Ì	
							1 1			ł
					} !		1			ł
					1				1	
) ·										Ì
							i		1	
		İ	i				1 1			{
]			Ì
										l
					{ }					

^{*}NOTE: This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EU}$.

APPENDIX I

ACTIVE THERMAL CONTROL MATH MODEL REQUIREMENTS

CONTENTS

		raye
Sec	tion	1-1
١.	INTRODUCTION	1-2
2.	DETAILED REQUIREMENTS	1-2
	2.1 MATH MODEL DESCRIPTION	1-5
	2.1 MATH MODEL DESCRIPTION. 2.2 STS UNIQUE REQUIREMENTS	15
	TO THE UNITOUS DECILIREMENTS	•
2		• •
3.	and porpooressor LOGIC.	
	TOTAL DIAGRAM	, , ,
	TABLES	. I-19
4.	4.1 INPUT STIMULI LIST	. I-19
	4.1 INPUT STIMULI LIST	. I-24
	A 2 OUTPUT MEASUREMENT LIST	

FIGURES

Figure																		Pag	ge
1.	Freon coolant lo	ps				•	•	•	•	•	•	•			•	•	•	I	-3

1. INTRODUCTION

The ATCS transports thermal energy in the unpressurized area of the Orbiter, provides temperature control of selected onboard equipment and rejects excess heat overboard. The ATCS consists of two freon 21 coolant loops which flow in parallel through similar components, and have redundant centrifugal pumps. The ATCS cools the water coolant loops through an interchanger, heats the Orbiter's hydraulic fluid and crew compartment cryogenic makeup oxygen, and transports the heat generated by the payload, fuel cell power plants, and various cold plate electronics. The ATCS rejects the excess heat overboard during different phases of the mission by means of its radiator subsystem. flash evaporators, ammonia boiler, and GSE heat exchanger. During on-orbit operations, whenever the payload bay doors are opened, heat is rejected to space by the radiator subsystem with the flash evaporator subsystem on standby to provide supplemental cooling when needed. Whenever the payload bay doors are closed, heat is rejected by the flash evaporator subsystem. The flash evaporator also provides cooling above 140,000 feet during ascent and above 100,000 feet during entry. The ammonia boiler system provides cooling during entry starting at 100,000 feet and continuing for 15 minutes after landing. The GSE heat exchanger provides thermal control during ground operations; no overboard heat rejection is provided during the period from lift-off until the vehicle reaches 140,000 feet.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in Table 1 to produce values for the output measurements listed in Table 2 that simulate the operation of the ATCS.

2.1 MATH MODEL DESCRIPTION

The model generates values for quantity, flow, temperature, pressure, and valve positions for each of the two freon coolant loops. The values are dependent upon input stimuli from the flight system and upon mission phase indicators uplinked by the test operator. A static set of nominal values are generated for the flash evaporator heater temperatures and for the parameters from the ammonia boiler supply tanks. These static values are sufficient to meet test objectives and they greatly simplify the model.

Referring to the schematic of the ATCS, figure 1, the flowchart starts at the flow proportioning valves and progresses around the coolant loops in a clockwise manner, ending at the flash exporator. Once a complete cycle has been made and values have been assigned to the output parameters, the values are transmitted to the flight system.

2.1.1 MISSION PHASE FLAGS

Mission phase flags for the ATCS model are uplinked by the test operator to assure that the model response is appropriate for the mission phase/segment or Orbiter configuration being simulated. The following definitions explain the mission phase flags:

- GSE When equal to one, ground support equipment provides cooling for the ATCS. Zero indicates no ground cooling.
- <u>Pl</u> When equal to one, the payload doors are open and the radiator panel for ATCS loop one is deployed. Zero indicates the loop one radiator panel is not deployed and cannot provide cooling.

• <u>P2</u> - When equal to one, the payload doors are open and the radiator panel for ATCS loop two is deployed. Zero indicates the loop two radiator panel is not deployed and cannot provide cooling.

Appropriate values for the mission flags in each mission phase are tabulated below:

	FLAGS										
PHASE	GSE (b)	Pl	P2								
Prelaunch	1	0	0								
Ascent to 140K	0	0	0								
Ascent above 140K	0	0	0								
On-Orbit	0	(a)	(a)								
Entry above 100K	0	0	0								
Entry below 100K	0	0	0								
Landing +15 minutes	1	0	0								

- (a) Value of flag depends on Orbit configuration.
- (b) Briefly setting GSE to one during phase transitions will prevent transient alarms for V63T12O7A and V63T14O7A.

2.1.2 INTERNAL VARIABLES

The model uses four internal variables to determine the values of output parameters.

ID#	DESCRIPTIONS
FLO 1	A discrete which represents loop 1 flow through the radiator (1), or flow bypassing the radiator (0).
FLO 2	A discrete which represents loop 2 flow through the radiator (1), or flow bypassing, the radiator (0).
TI	An analog which represents loop 1 evaporator outlet temperature
T2	An analog which represents loop 2 evaporator outlet temperature

2.1.3 INITIAL CONDITIONS

Note that inital conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

None

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The ATCS math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the ATCS are required in the GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

2.3.2 OPERATOR SUPPLIED INPUTS

Notice that several of the operator supplied inputs within the GTS preprocessor logic are combined by logical operators to derive the proper value.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - ATCS MML TO COUN-PIN CONVERSION LOGIC

	3K)		SOURCE*	
CONN-PIN MML	. ID	MDM	CONN/PIN	INITIALIZATION VALUES
K40P9349-1 = V63	K1124Y	PF02	J08/042	
9351-1 =	1324Y	PF01	J08/054	
K50P832-A =	1501Y	PF01	J02/087	
833-A =	1505Y	PF02	J06/009	
831-A =	1509Y	PF02	J02/087	
862-J = AND	1551Y 155 9Y	PF02 PF02	J02/089 J06/031	
862-B = AND	1551Y 1559Y	PF02 PF02	J02/089 J06/031	
861-J = AND	1555Y 1559Y	PF01 PF02	J02/089 J06/031	
861-B = AND	1555Y 1559Y	PF01 PF02	J02/089 J06/031	
9350-1 = K50P861-A = 1 862-A = K40P9385-A = K40P9385-M = V6 0R K40P9386-M = V6 0R	→ 1212E 3K1211E → 1212E			0 0 0 0 1 1 1
V OR K40P9384-M = V6	1211E 1212E 1212E 1411E 3K1411E 1412E 3K1411E 1412E			1 0 0 1 1 1 1

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - ATCS MML TO CONN-PIN CONVERSION LOGIC

SYSTEM	(V63K-	(V63K) MML ID		SOURCE*	. INITIALIZATION VALUES
CONH-PIN	MML I			CONN/PIN	
K40P9384-C	= V63K	1411E			1
9384-A	=	1412E			0
938 3-C	=	1412E			0
9385-E	=	1214E			1
9386- <u>E</u>	1	1214E			o
9383- <u>E</u>	=	1414E			0
→ 9384-E	= ↓	1414E			0
K40P9385-K	= V63K	12 2 1E			0
9386-K	=	1221E			0
9383-K	=	1421E			1
9384-K	=	1421E			1
9333-8	=	1228E			1
9333-7	=	1238E			0
9336-8	=	1428E			1
9336-7	=	1438E			0
K50P831-K	=	1670E			0
↓ 832-K	=	1670E			0
K40P9333-1	=	2000E			1
9336-1	= 🗼	2050E			1
9385-P	=	**			0
9385-N	=			,	1
9386-P	=				0
9386-N	=				1
9383-P					0
9383-N					1
9384-P					0
9384-N	=	+			1

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 ${\rm FS}_{\mbox{EU}}$ which is equivalent to 534 ${\rm MODEL}_{\mbox{CTS}}$ shown outside the box.

LOOP RADIATOR FLOW (CONTROLLER B CONT AUTO **ktor938**6 HI TEMP SELECTED K40P9386 -E 58 DEGF FAULT DETECTED K40P9386 - C = 1 BYP YLY SW TO MAN K4019386 -POR ON KHOP93BA-M = (BYP YLY SW K4019386-K BYP CMD 10009386-= 1 7 RAD CMD FLOW FLBI = 1 THRU RAD K40P9386 -N . 1 RAD CMD K4019386 = 1 FLEI K40P9384-N

I-13

LOOP 2 RADIATOR FLOW

1-14

V6371208A	×	100.7	739
163T1209 A	-	80	514
V63T/YOVA	=	109	SAO DEI MEAS.
V6371409A	=	96	616 ADDED BY
Y63T1801A	=	160	415 Rev. A.
Y63T1802A	=	164	486
8637 1821A	=	156	405
16371870A	=	85	546
Y63T1871A	=	61	511
V63T 1872A	=	86	552
Y63T1873A	•	90	577
Y63T1874A	•	87	5 5 9
V63 T 1875A	•	91	583
V63T 1876A		88	565
V63 T 1877A	•	92	591
V63T1890A	= ;	256	661
V63R9159A	=	120	878

RETURN

ORIGINAL PAGE BOOF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDOS VARIABLE INITIALIZATION

The following pseudos are initialized as following:

VARIABLE	INITIAL CONDITION
GSE	1
Pl	0
P2	0

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L1A2/S21	FCL 1 FLO PROP VLV (PYLD H-X) CMD	5	V63K1238E	K40P9333-7	1-0N/0-0FF
	FCL 1 FLO PROP VLV (INTER H-X) CMD	5	V63K1228E	K40P9333-8	1-0N/0-0FF
L1A2/S22	FCL 2 FLO PROP VLV (PYLD H-X) CMD	5	V63K1438E	K40P9336-7	1-0N/0-0FF
	FCL 2 FLO PROP VLV (INTER H-X) CMD	5	V63K1428E	K40P9336-8	1-0N/0-0FF
L1A2/S23	FCL 1 PMP 1 PWR ON CMD	5	V63K1111E	K40P9348-1	1-0N/0-0FF
	FCL 1 PMP 2 PWR ON CMD	2	244	K40P9349-1	1-0N/0-0FF
L1A2/S24	FCL 2 PMP 1 PWR ON CMD	5	V63K1311E	K40P9350-1	1-0N/0-0FF
	FCL 2 PMP 2 PWR ON CMD	2	244	K40P9351-1	1-0N/0-0FF
017/\$10	OI SIG COND A PWR ON CMD	5	V63K2000E	K40P9333-1	1-AC2/0-0FF
017/S11	OI SIG COND B PWR ON CMD	5	V63K2050E	K40P9336-1	1-AC2/0-0FF
L1A2/S26	FCL 1 RAD TEMP CONT VLV AUTO A CMD	5	V63K1211E	K40P9385-A	1-AUTO A/0-OF
	FCL 1 RAD TEMP CONT VLV AUTO B CMD	5	12E	K40P9386-A	1-AUTO B/0-0F
	FCL T RAD TEMP CONT A PWR ON CMD	5	V63K1211E	K40P9385-M	1-0N/0-0FF
	FCL 1 RAD TEMP CONT B PWR ON CMD	5	1212E 1211E 1212E	K40P9386-M	1-0N/0-0FF
	FCL 1 RAD TEMP CONT AUTO A-FAULT DET B	5,12	V63K1211E	K40P9386-C	1-AUTO A/0-0F
	FCL 1 RAD TEMP CONT AUTO B-FAULT DET A	-	V63K1212E	K40P9385-C	1-AUTO B/0-0F
L1A2/S27	FCL 2 RAD TEMP CONT VLV AUTO A CMD	5	V63K1411E	K40P9383-A	1-AUTO A/0-0F
	FCL 2 RAD TEMP CONT VLV AUTO B CMD	5	V63K1412E	K40P9384-A	1-AUTO B/0-OF
	FCL 2 RAD TEMP CONT A PWR ON CMD	5	V63K1411E ↓1412E	K40P9383-M	1-0N/0-0FF

I-21

-	
\sim	
\sim	

2 RAD TEMP CONT B PWR ON CMD 2 RAD TEMP CONT AUTO A-FAULT DET B 2 RAD TEMP CONT AUTO B-FAULT DET A 1 BYP VLV (MAN/CONT A AUTO) CMD 1 BYP VLV (MAN/CONT B AUTO) CMD 2 BYP VLV (MAN/CONT A AUTO) CMD 2 BYP VLV (MAN/CONT B AUTO) CMD	5 5,12 5	V63K1411E V63K1411E V63K1412E V63K1221E V63K1421E	K40	P9384-M P9384-C P9383-C P9385-K	1-0N/0-0FF 1-AUTO A/0-0FF 1-AUTO B/0-0FF 1-MAN/0-AUTO	
2 RAD TEMP CONT AUTO B-FAULT DEF A 1 BYP VLV (MAN/CONT A AUTO) CMD 1 BYP VLV (MAN/CONT B AUTO) CMD 2 BYP VLV (MAN/CONT A AUTO) CMD	5	V63K1412E V63K1221E	K40	P9383-C	1-AUTO B/0-OFF	
1 BYP VLV (MAN/CONT A AUTO) CMD 1 BYP VLV (MAN/CONT B AUTO) CMD 2 BYP VLV (MAN/CONT A AUTO) CMD		V63K1221E	K40			
1 BYP VLV (MAN/CONT B AUTO)CMD 2 BYP VLV (MAN/CONT A AUTO) CMD			-	P9385-K	1-MAN/0-AUTO	
2 BYP VLV (MAN/CONT A AUTO) CMD	5	V63K1421E	K40			
	5	V63K1421E		P9386-K	7,	
2 BYP VLV (MAN/CONT B AUTO) CMD			K40	P9383-K ,	1-MAN/0-AUTO	
			P9384-K	1		
1 RAD MAN BYP A CMD	5		K40	P9385-P	1-BYP/0-0FF	
1 RAD MAN FLOW A CMD	5			85-N	1-RAD/0-OFF	
T RAD MAN BYP B CMD	5			86-P	1-BYP/0-0FF	
1 RAD MAN FLOW B CMD	5		1	86-N	1-RAD/0-OFF	
2 RAD MAN BYP A CMD	5		K40	P9383-P	1-BYP/0-0FF	
2 RAD MAN FLOW A CMD	5			83-N	1-RAD/0-OFF	
2 RAD MAN BYP B CMD	5			84-P	1-BYP/0-0FF	
2 RAD MAN FLOW B CMD	5		1	84-N	1-RAD/0-OFF	
BOILER CONT A (SEC/ON) CMD	5	V63K1186E	K50	P861-A	1-SEC-ON/O-OFF	
ROTIFE CONT & (PRI/CPC) CMD	2	1555Y		861-J	1-PRI-GPC/0-OF	
DOTEEN CONT A (FRI/GEC) CHO	Ī	1559Y	K50	P861-B	1-OPN/O-CLS	
В		OILER CONT A (SEC/ON) CMD 5 OILER CONT A (PRI/GPC) CMD 2	OILER CONT A (SEC/ON) CMD 5 V63K1186E OILER CONT A (PRI/GPC) CMD 2 1555Y	OILER CONT A (SEC/ON) CMD 5 V63K1186E K50 OILER CONT A (PRI/GPC) CMD 2 1555Y	OILER CONT A (SEC/ON) CMD 5 V63K1186E K50P861-A OILER CONT A (PRI/GPC) CMD 2 1555Y + 861-J	

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE			
L1A2/S43	NH3 BOILER CONT B (SEC/ON) CMD	5	V63K1190E	K50P862-A	1-SEC-ON/0-OF			
	_NH3 BOILER CONT B (PRI/GPC) CMD	2	1551Y	862-J	1-PRI-GPC/0-0			
	NH3 BOILER ISOL VLV (SYS B) CMD		1559Y	K50P862-B	1-0PN/0-CLS			
L1A2/S31	FLASH EVAP PRI A CONT CMD	2	V63K1509Y	K1509Y K50P831-A 1-0				
L1A2/S32	FLASH EVAP PRI B CONT CMD	2	V63K1501Y	K50P832-A	1-0N/0-0FF			
L1A2/S33	FLASH EVAP SEC CONT CMD	2	V63K1505Y	K50P833-A	1-0N/0-0FF			
L1A2/S34	FLASH EVAP PRI A HI LOAD ENABLE CMD			V63K1670E K50P831-K				
	FLASH EVAP PRI B HI LOAD ENABLE CMD			K50P832-K				
L1A2/S25	FCL 1 RAD TEMP CONT A-HI TEMP CMD	5	V63K1214E	K40P9385-E	1-HI/O-NORM			
	FCL 1 RAD TEMP CONT B-HI TEMP CMD	5	V63K1214E	K40P9386-E				
	FCL 2 RAD TEMP CONT A-HI TEMP CMD	5	V63K1414E	K40P9383-E				
	FCL 2 RAD TEMP CONT B-HI TEMP CMD	5	V63K1414E	K40P9384-E				
	GSE COOLING FLAG FCL 1-SPACE RAD DEPLOYED FLAG FCL 2-SPACE RAD DEPLOYED FLAG	7		GSE P1 P2	1-0N/0-0FF			

I-2

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM ATCS MODEL - TABLE 2

MEASUREMENT		I.C.	I.C.		1	VALUE	2	VALUE	3	UNITS	
I. C.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CTS	08113	
V63R1100A	FCL 1 INTER H-X FLOWRATE	2288	787	443	0	1488	328			1b/hr	
V63R1103A	FCL 1 PYLD H-X FLOWRATE	701	321	180	0	1152	759			1b/hr	
V63R1105A	FCL 1 COLDPLATE NETWORK FLOWRATE	348	72E	0	10					1b/hr	
V63Q1130A	FCL 1 ACCUMULATOR QUANTITY	60	581	0	92					PCNT	
*V63T1180A	NH3 SYS A TANK TEMP	65	573		1					DEGF	
*V63T1188A	NH3 SYS B TANK TEMP	70	59 3		1					DEGF	
*V63P1196A	NH3 SYS A TANK PRESS	450	767							PSIA	
*V63P1197A	NH3 SYS B TANK PRESS	475	810							PSIA	
V63T1207A	FCL 1 EVAP OUT TEMP.	32	155	38	231	42	286	70	642	DEGF	
WC271 0001	50 040 007157 7500	100.7		40 35	256 194	34 36	180 207	58 37	489 219	DEGF	
V63T1208A	FCL 1 RAD OUTLET TEMP	100.7	739								
V63T1209A	FCL 1 RAD INLET TEMP	80	514							DEGF	
V63X1222E		0	0	1	$\begin{vmatrix} 1 \end{vmatrix}$					STATE	
V63X1223E		1	1	0	0					STATE	
V63X1230E		1	1	0	0		1 ;			STATE	
V63X1231E		0	0	1	1					STATE	
V63R1300A		2341	825	443	0	1540	350			1b/hr	
V63R1303A		729	342	180	0	1178	798			1b/hr	
V63R1305A		356	745	0	10					1b/hr	
V63Q1330A	FCL 2 ACCUMULATOR QUANTITY	65	622	0	92					PCNT	
V63T1407A	FCL 2 EVAP OUT TEMP	33	168	39 41	246 270	43 35	297 194	71 59	657 501	DEGF	
V63T1408A	FCL 2 RAD OUTLET TEMP	109	820	34	180	36	207	37	219	DEGF	

^{*}NOTE: This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EU}$.

MEASUREMENT OUTPUT FROM ATCS MODEL - TABLE 2

MEASUREMENT		I.C		VALUE 1		VALUE	2	VAL	UNITS	
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	стѕ	FS	стѕ	0.113
V63T1409A	FCL 2 RAD INLET TEMP	96	61F	 - -						DEGF
V63X1422E	FCL 2 RAD BYP VLV POSN-RAD	0	0	1	1					STATE
V63X1423E	FCL 2 RAD BYP VLV POSN-BYP	1	1	0	0		1 1			STATE
V63X1430E	FCL 2 FLO PROP VLV POSN-INTER H-X	1	1	0	0					STATE
V63X1431E	FCL 2 FLO PROP VLV POSN-PYLD H-X	0	0	1	1					STATE
V63T1800A	FLASH EVAP TOPPING DUCT-PORT TEMP	168	692							DEGF
V63T1801A	FL EVAP TOPPING DUCT TEMP D	160	415							DEGF
V63T1802A	FL EVAP TOPPING DUCT TEMP E	164	426							DEGF
V63T1810A	FLASH EVAP TOPPING DUCT-STBD TEMP	172	708							DEGF
V63T1820A	FLASH EVAP HI LOAD DUCT TEMP	152	395						l t	DEGF
V63T1821A	FL EVAP HI LOAD DUCT TEMP B	156	405						1	DEGF
V63T1870A	FLASH EVAP H20 FDLN TEMP 1-L	85	546							DEGF
V63T1871A	FLASH EVAP HOO FDLN TEMP 1-R	89	571]			DEGF
V63T1872A	FLASH EVAP HOO FOLN TEMP 2-L	86	552							DEGF
V63T1873A	FLASH EVAP H20 FDLN TEMP 2-R	90	577							DEGF
V63T1874A	FLASH EVAP H ₂ O FDLN TEMP 3-L	87	559							DEGF
V63T1875A	FLASH EVAP H ₂ O FDLN TEMP 3-R	91	583							DEGF
V63T1876A	FLASH EVAP H ₂ O FDLN TEMP 4-L	88	565							DEGF
V63T1877A	FLASH EVAP H ₂ O FDLN TEMP 4-R	92	591						1	DEGF
V63T1878A	FLASH EVAP NOZZLE TEMP - LEFT	94	389							DEGF
V63T1879A	FLASH EVAP NOZZLE TEMP - RIGHT	72	299				i i			DEGF
V63T1890A	FL EVAP HI LOAD NOZ TEMP C	256	661							DEGF
V63R9159A	MID-BODY DFI LOOP FLOWRATE	420	878							lb/hr

APPENDIX J
SMOKE DETECTION MATH MODEL REQUIREMENTS

CONTENTS

Sect	tion																					Page
1.	INTRO	DUCTION	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	J-1
2.	DETA	LED REQUIREMENTS						•	•	•	•	•	•		•	•		•	•	•	•	J-2
	2.1	MATH MODEL DESCRIPTION.						•		•			•		•		•	•	•		•	J-2
	2.2	STS UNIQUE REQUIREMENTS	•			•	•	•	•	•	•	•						•		•	•	J-4
	2.3	GTS UNIQUE REQUIREMENTS			•			•		•	•			•	•		•		•	•		J-4
3.	MATH	MODEL LOGIC		•		•							•	•			•	•	•	•		J-5
	3.1	GTS PREPROCESSOR LOGIC.	•							•			•	•	•		•	•	•	•		J-5
	3.2	LOGIC FLOW DIAGRAM		•	•	•			•			•		•	•		•	•	•	•		J-7
4.	TABL	S	•		•		•				•	•	•	•	•		•		•	•		J-18
	4.1	INPUT STIMULI LIST					•	•				•	•		•		•					J-18
		OUTPUT MEASUREMENT LIST																				J-21

FIGURES

Figure		Page
1	Smoke detection system functional diagram	J-3

1. INTRODUCTION

The model simulates those functions of the Smoke Detection $(\tilde{s}\tilde{v})$ subsystem in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of the input stimuli listed in Table 1 to produce values for the output measurements listed in Table 2 that simulate the operation of the SDS.

2.1 MATH MODEL DESCRIPTION

2.1.1 SDS FUNCTIONAL CHARACTERISTICS

The SDS consists of several detector head (detector) assemblies. Each detector head shall sense any significant increase in the gaseous or particulate products of combustion or decomposition within the cabin or avionics bays. The logic device shall use the input and send a signal to appropriate warning lights on the detection and fire suppression control panel. The detector shall be designed to provide a warning during the incipient stage (the starting phase or pre-smoke stage) of a potential fire condition to permit certain cabin or avionics system evaluation and troubleshooting prior to an overheat condition or outbreak of an open flame. Figure 1 presents the SDS functional diagram.

- A. The detector function is to sense a predetermined concentration or rate of increase of concentration of gaseous or particulate products of combustion or decomposition and then, through a built-in logic unit, send a signal to the smoke detection and fire suppression control panel. The signal turns on the "smoke warning" light for the affected area.
- B. The crew, alerted by this warning may monitor the concentration level and start a systematic investigation of the equipment in the affected area and take appriopriate action.
- C. When the smoke (incipient fire) condition exists, the "reset" button on the panel may be pressed to verify the smoke condition. If the incipient fire condition has been corrected, the "smoke warning" light will remain off. The detector is now ready to sense a new incipient fire. In the event that the smoke or incipient fire condition still exists, the warning light will come on again. The concentration level may be monitored

Figure 1 - Smoke detection system functional diagram.

to verify if the level is increasing or decreasing during the troubleshooting period.

D. The detector can be interrogated in flight or on ground for an electrical operability check, by depressing a "circuit-test" button on the panel.

2.1.2 SMOKE CONCENTRATION VALUES

Particle concentration values are input to the model by the test operator. Once set, they remain constant until another value is uplinked.

2.1.3 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

None.

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The SDS math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDMs and the SDS are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - SDS MML TO CONN-PIN CONVERSION LOGIC

SYSTEM		SOURCE*	***************************************
CONN-PIN MML ID	MDM	CONN/PIN	INITIALIZATION VALUES
K30P139-8 K81P120-8 K82P108-8 = V62K0802E K83P63-8 K90P28-8			0
K36.	ţ		0
K81P121-7 K83P63-7			1
K30P122-7 K30P139-7 K82P108-7 K83P64-7			1
K81P120-7 K82P109-7 K90P28-7			1
K30P122-4 = **			0
K30P139-4 =			0
K81P120-4 =			0
K81P121-4 =			0
K82P108-4 =			0
K82P109-4 =	1		0
K83P63-4 =			0
K83P64-4 =	1		0
K90P28-4 = ↓			0
			ODERATOR AT THE NAS KYRD

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 ${\rm FS}_{\mbox{EU}}$ which is equivalent to 534 ${\rm MODEL}_{\mbox{CTS}}$ shown outside the box.

ORIGINAL PAGE IS OF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands reg'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES, for GTS NAS only.
 - 14. Flight System commands to STS NAS only.
 - 15. Flight System commands to GTS NAS only.

ے
ī

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
L1A1/S8	BAY 1/DETECTOR A		V62K0802E	K81P120-8	1-TST/O-NO TST
	BAY 2/DETECTOR A		·	K82P108-8	1-TST/O-NO TST
	BAY 3/DETECTOR A	5		K83P63-8	-TST/O-NO TST
	LEFT FLT DECK			K30P139-8	1-TST/O-NO TST
	CABIN	and the state of t		K90P28-8	1-TST/O-NO TST
	BAY 1/DETECTOR B		V62K0806E	K81P121-8	1-TST/0-NO TST
	BAY 2/DETECTOR B	5		K82P109-8	1-TST/O-NO TST
	BAY 3/DETECTOR B			K83P64-8	1-TST/0-NO TST
	RIGHT FLT DECK			K30P122-8	1-TST/O-NO TST
L1A1/S7	BAY 1/DETECTOR B	5	V62K0815E	K81P121-8	1-RESET/0-OFF
	BAY 3/DETECTOR A			K83P63-7	1-RESET/0-OFF
	BAY 3/DETECTOR B		V62K0816E	K83P64-7	1-RESET/0-OFF
	BAY 2/DETECTOR A	5		K82P108-7	1-RESET/0-OFF
	LEFT FLT DECK			K30P139-7	1-RESET/0-OFF
	RIGHT FLT DECK			K30P122-7	1-RESET/0-OFF
	BAY 1/DETECTOR A	5	V62K0817E	K81P120-7	1-RESET/0-OFF
	BAY 2/DETECTOR B			K82P109-7	1-RESET/0-OFF
	CABIN			K90P28-7	1-RESET/0-OFF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
014/CB7	LEFT FLT DECK MN A PWR	5,6		K30P139-4	-ON/0-OFF
	RIGHT FLT DECK MN A PWR			K30P122-4	1-0N/0-0FF
016/CB6	CABIN MN C PWR	5,6		K90P28-4	1-0N/0-0FF
016/CB7	BAY 1/DETECTOR A MN C PWR	5,6		K81P120-4	1-0N/0-0FF
	BAY 2/DETECTOR B MN C PWR			K82P109-4	1-0N/0-0FF
014/CB8	BAY 2/DETECTOR A MN A PWR	5,6		K82P108-4 ,	1-0N/0-0FF
	BAY 3/DETECTOR B MN A PWR			K83P64-4	1-0N/0-0FF
015/CB7	BAY 3/DETECTOR A MN B PWR	5,6		K83P63-4	1-0N/0-0FF
	BAY 1/DETECTOR B MN B PWR	5,6		K81P121-4	1-0N/0-0FF

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM SOS MODEL - TABLE 2

MEASUREMENT		I.C.		VALUE 1		VALUE 2		VALUE 3		UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	стѕ	FS	CTS	0.1113
V62Q0608A	SMOKE DET. CONC. A AV. BAY 2	0.71	626			 				MG/M ³
V62Q0609A	SMOKE DET. CONC. B. AV. BAY 2	1.00	667	•						MG/M ³
V62Q0618A	SMOKE DET. CONC. A AV. BAY 1	1.29	698							MG/H ³
V62Q0619A	SMOKE DET. CONC. B AV. BAY 1	1.60	723							MG/M ³
V62Q0628A	SMOKE DET. CONC. A AV. BAY 3	1.91	743							MG/M ³
V62Q0629A	SMOKE DET. CONC. B AV. BAY 3	2.20	760		}					MG/M ³
V62X0606E	LH FLT DECK SM DET SIG	0	0	1	1					STATE
V62X0607E	RH FLT DECK SM DET SIG	0	0	1	1					·
V62X0596E	SM DET SIG CABIN	0	0	1	1					
V62X0620E	SM DET SIG 1A	0	o	1	1				1	
V62X0610E	SM DET SIG 2A	0	0	1	1					
V62X0630E	SM DET SIG 3A	0	0	1	1		1			
V62X0621E	SM DET SIG 1B	0	0	1	1					
V62X0611E	SM DET SIG 2B	0	0	1	1					l v
V62X0631E	SM DET SIG 3B	0	0	1	1					STATE

APPENDIX K

WATER/WASTE MANAGEMENT MATH MODEL REQUUIREMENTS

CONTENTS

		Page
Sec	tion	K-1
١.	INTRODUCTION	K-4
2.	DETAILED REQUIREMENTS	K-4
	WELL MODEL DESCRIPTION.	•
	2.1 MATH MUDEL DESCRIPTION 2.2 STS UNIQUE REQUIREMENTS	v_s
	THE UNIT OF PERMIT REMENTS	
3.		
٠.	and appropriescop LOGIC.	
	TO THE DIACPAM	
4.		•
	CONTRACTOR OF LIGHT LIGHT CONTRACTOR CONTRAC	•
	4.1 INPUT STIMOLT LIST. 4.2 OUTPUT MEASUREMENT LIST	

FIGURES

Figure							
1.	Water/waste management subsystem	K-2					
2.	Waste management subsystem - waste collector	K-3					

1. INTRODUCTION

This model simulates those functions of the Water/Waste Management (W/WMS) subsystem that are in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided. Figure 1 shows an overview of the W/WMS. Figure 2 shows the waste collector of the Waste Management System.

ORIGINAL PAGE IS OF POOR QUALITY

MELSI STRS LIKENSOMMY. ELSIM

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in Table 1 to produce values for the output measurements listed in Table 2 that simulate the operation of the W/WMS.

2.1 MATH MODEL DESCRIPTION

2.1.1 WATER MANAGEMENT SUBSYSTEM

The water management subsystem performs the primary functions of supplying potable water to the crew for metabolic consumption, to the ATCS flash evaporators for vehicle thermal control purposes, and to the airlock support subsystem for recharging the extravehicular life suport system. The water management subsystem achieves these objectives be collecting and processing water produced at a rate of approximately 0.8 pound per kwhr by the Oriter fuel cells before distributing the water to the various sources.

After the water is properly treated, the potable water is stored in four tanks containing metallic bellows. The water is expelled from the tank by nitrogen gas supplied at approximately 10 psig by the atmospheric revitalization pressure control subsystem (ARPCS) or in contingency conditions by cabin atmospheric pressure. Should the fuel cell production rates exceed the water usage requirement and storage capability, the water management subsystem provides the capability to dump the excess potable water overboard.

2.1.2 WASTE MANAGEMENT SUBSYSTEM

The waste management subsystem provides for collecting, treating, and storing fecal, urine, cabin humidity condensate, personal hygiene, and airlock waste water. To accomplish these task, the waste management subsystem employs a waste collection system which handles solid and liquid waste separately.

Solid wastes, such as fecal material and toilet paper, are collected in a commode or fecal collection system. Fecal material is directed into the collector by air flow and the air is passed through a bacteria filter before

returning to the cabin. The fecal material entering the collector is impinged on the inside surface of the collector by a slinger device. The waste material is vacuum dried for reduction of mass and bacteria control. In the event the commode malfunctions, a backup collection system is provided. The backup system consists of using fecal collection bags.

Liquid waste are collected by a urine/waste water collection system which is comprised primarily of a urinal collector, water separators and waste storage tanks. The urinal collector, used in conjunction with a fan/water separator, collects and transfers the urine into the waste storage tanks.

2.1.3 INITIAL CONDITIONS

Note that initial conditions for STS are the same as those listed for GTS; see GTS PREPROCESSOR LOGIC.

2.2 STS UNIQUE REQUIREMENTS

NONE

2.3 GTS UNIQUE REQUIREMENTS

2.3.1 PREPROCESSOR LOGIC

The W/WMS math model was originally required in the STS simulator. The math model input stimuli symbols referred to in the logic flow diagram, section 3.2, are ATA Reference Connector and pin numbers. Due to the lack of flight hardware circuitry in the GTS simulator, logic functions that bridge the gap between the payload MDM's and the W/WMS subsystem are required in a GTS preprocessor in order to evaluate values for the input stimuli coming from the GPC prior to execution of the model.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC

The basic input stimuli to the model are identified by ATA reference system connector-pin (CP) numbers. A logical combination of one or more MML numbers is used to derive the proper input stimulus for each CP. Within the STS, the logical combination is accomplished via hardware circuitry. However, within the GTS, due to the absence of the required circuitry, the logical relations between CP and MML must be effected by software. The following logical equations are required as a preprocessor within GTS in order to calculate the correct CP stimuli which are then input to the model. Most equations are merely a direct one-for-one correspondence between CP and MML. However, some equiations may require more than one MML to be combined by the logical product (AND) and the inclusive logical sum (OR). In these instances, "AND" denotes the logical product and "OR" denotes the inclusive logical sum.

The SOURCE columns contain an entry for the MDM, connector end pin from which the MML is received. In the absnece of an entry in these columns, the operator must make the entry via the NAS keyboard.

The final column lists the input stimuli initialization values required.

Notice that inputs containing an entry for SOURCE do not have an initialization value, since they are updated at the GTS simulator cycle rate by the source connection.

GTS MATH MODEL STIMULI - W/WMS MML TO CONN-PIN CONVERSION LOGIC

SYSTEM				1	SOURCE*	
C	ONN-PIN		MML ID	MDM	.CONN/PIN	INITIALIZATION VALUES
K	90P412-13	=	V62K0200E	1		0
	412-11	=	0201E			
	401-13	=	0401E			0
	401-11	=	0402E			
	402-13	=	0405E			0
	402-11	=	0406E			7
	403-13	=	0421E			o
	403-11	=	0422E			1 .
	404-13	=	0425E			0
	404-11	=	0426E			1
	411-13	=	0450E	Į.		0
\	411-11	=	0452E			1
K	40P98-13	=	0460E			0
١.	98-11	=	0462E			1
K	90P415-13	=	0530E			0
	415-11	=	0531E	l		1
	99-13	=	0535E			0
	99-11	=	0536E			1
K	40SP182	=	0541E			1
١.	↓ SP181	=	0549E]
Κ	90P416-13	=	0710E	1		0
	416-11	=	0711E			1
	417-11	=	0714E			1
	417-13	=	0715E			0
	408-13	•=	0750E			. 0
	408-11	=	0751E			1
	407-11	=	0754E			1
	407-13	=	0755E			0
	405-13	=	077 0 E			c
	405-11	=	V 0771E			1

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

GTS MATH MODEL STIMULI - W/WMS MML TO CONN-PIN CONVERSION LOGIC

SYSTEM			SOURCE*	••
CONN-PIN	MML ID	MDM	CONN/PIN	INITIALIZATION VALUES
K90P406-13 406-11 413-13 413-11 409-13 409-11 K40SP185 ↓ SP186	= V62K0774E = 0775E = 1000E = 1002E = 1100E = 1102E = ** = \rightarrow		COMMYTEM	0 1 0 1 0 1 1
•				
	•			·

^{*}UNLESS SPECIFIED, STIMULI ARE TO BE ENTERED BY OPERATOR AT THE NAS KYBD. **ARTIFICIAL MML ID'S ARE TO BE SUPPLIED BY PROGRAMMER.

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 ${\rm FS}_{\mbox{EU}}$ which is equivalent to 534 ${\rm MODEL}_{\mbox{CTS}}$ shown outside the box.

OF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES, for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R12A2/S3	POT H20 TK A INLET VLV OPEN	5	V62K0401E	K90P401-13	1-0PN/0-0FF
	POT H20 TK A INLET VLV CLOSE	5	V62K0402E	K90P401-11	1-CLS/0-OFF
R12A2/S4	POT H20 TK A OUTLET VLV OPEN	5	Y52K 04 05E	K90P402-13	1-0PN/0-0FF
	POT H20 TK A OUTLET VLV CLOSE	5	V62K0406E	K90P402-11	1-CLS/0-OFF
R12A2/S9	POT H20 TK B INLET VLV OPEN	5	V62K0421E	K90P403-13	1-0PN/0-0FF
	POT H20 TK B INL. T VLV CLOSE	5	V62K0422E	K90P403-11	1-CLS/0-OFF
R12A2/S10	POT H20 TK B OUTLET VLV OPEN	5	V62K0425E	K90P404-13	1-0PN/0-0FF
	POT H20 TK B OUTLET VLV CLOSE	5	V62K0426E	K90P404-11	1-CLS/0-OFF
R12A2/S14	POT H20 TK C INLET VLV OPEN	5	V62K0770E	K90P405-13	1-0PN/0-0FF
	POT H20 TK C INLET VLV CLOSE	5	V62K0771E	K90P405-11	1-CLS/0-OFF
R12A2/S15	POT H20 TK C OUTLET VLV OPEN	5	V62K0774E	K90P406-13	1-0PN/0-0FF
	POT H20 TK C OUTLET VLV CLOSE	5	V62K0775E	K90P406-11	1-CLS/0-OFF
ML31C/S2	WASTE TK 1 INLET VLV OPEN	5	V62K0710E	K90P416-13	1-0PN/0-0FF
	WASTE TK 1 INLET VLV CLOSE	5	V62K0711E	K90P416-11	1-CLS/0-OFF
ML31C/S1	WASTE TK 1 DRAIN VLV OPEN	5	V62K0715E	K90P417-13	1-0PN/0-0FF
	WASTE TK 1 DRAIN VLV CLOSE	5	V62K0714E	K90P417-11	1-CLS/0-OFF
ML31C/S6	WASTE TK 2 INLET VLV OPEN	5	V62K0750E	K90P408-13	1-0PN/0-0FF
	WASTE TK 2 INLET VLV CLOSE	5	V62K0751E	K90P408-11	1-CLS/0-OFF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
ML31C/S7	WASTE TK 2 DRAIN VLV OPEN	5	V62K0755E	K90P407-13	1-0PN/0-0FF
	WASTE TK 2 DRAIN VLV CLOSE	5	V62K0754E	K90P407-11	1-CLS/0-OFF
R12A2/S16	SEC FLASH EVAP SUPPLY OPEN	5	V62K0200E	K90P412-13	1-0P%/0-0FF
	SEC FLASH EVAP SUPPLY CLOSE	5	V62K0201E	K90P412-11	1-CLS/0-OFF
k12A2/S6	POT H20 DUMP ISLN VLV OPEN	5	V62K0450E	K90P411-13	1-0PN/0-0FF
	POT H20 DUMP ISLN VLV CLOSE	5	V62K0452E	K90P411-11	1-CLS/0-OFF
R12A2/S7	POT H20 DUMP VLV OPEN	5	V62K0460F.	K40P98-13	1-0PN/0-0FF
	POT H20 DUMP VLV CLUSE	5	V62K0462E	K40P98-11	1-CLS/0-OFF
ML31C/S3	WASTE H20 DUMP ISLN VLV OPEN	5	V62K0530E	K90P415-13	1-0PN/0-0FF
	WASTE H20 DUMP ISLN VLV CLOSE	5	V62K0531E	K90P415-11	1-CLS/0-OFF
ML31C/S4	WASTE H20 DUMP VLV OPEN	5	V62K0535E	K90P99-13	1-0PN/0-0FF
	WASTE H20 DUMP VLV CLOSE	5	V62K0536E	K90P99-11	1-CLS/0-OFF
ML31C/S8	WASTE H20 DUMP NOZZLE	5	V62K0541E	K40SP182	1-0N/0-0FF
ML31C/S9	VACUUM VENT HTR ON	5	V62K0549E	K40SP181	1-0N/0-0FF
R12A2/S5	POT H20 XOVR VLV OPEN	5	V62K1000E	K90P413-13	1-0PN/0-0FF
	POT H20 XOVR VLV CLOSE	5	V62K1002E	K90P413-11	1-CLS/0-OFF
R12A2/S11	GALLEY SUPPLY VLV OPEN	5	V62K1100E	K90P409-13	1-0PN/0-0FF
	GALLEY SUPPLY VLV CLOSE	5	V62K1102E	K90P409-11	1-CLS/0-OFF

PANEL/ SWITCH	NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
ML86B/CB4	H2O LN HTRS - PRI	5,6		K40SP185	1-0N/0-0FF
ML86B/CB10	H2O LN HTRS - SEC	5,6		K40SP186	1-0N/0-0FF
	N2 REG PRESS	11	V61P2307A		0-20 PSIG
:	·				
'					
			•		
,					
·	·				ĺ

X-1:

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM W/WMS MODEL - TABLE 2

MEASUREMENT		I.C	•	VALUE	1	VALUE	2	VALU	UNITS	
I.D.	MEASUREMENT NAME	FŞ	CTS	FS	CTS	FS	CTS	FS	CTS	CATIS
V62X0203E	SEC FLASH EVAP SUPPLY OPEN IND	0	0	1	1					STATE
V62X0204E	SEC FLASH EVAP SUPPLY CLOSE IND	1	1	0	0					STATE
V62X0403E	POT. H ₂ O TK A INLET VLV OPEN IND	0	0	1	1					STATE
V62X0404E	POT. H ₂ O TK A INLET VLV CLOSE IND	1	1	0	0				1	STATE
V62X0407E	POT. H ₂ O TK A OUTLET VLV OPEN IND	0	0	1	1					STATE
V62X0408E	POT. H ₂ O TK A OUTLET VLV CLOSE IND	1	1	0	0					STATE
V62Q0410A	POT. H ₂ O TK A QTY	91	894	30	360	99	964			PCT
V62T0418A	POT. H ₂ O DUMP LINE TEMP	90.2	636	30	49	70	440			DEGF
V62Q0420A	POT. H ₂ O TK B QTY	81	806	10	184.	99	964			PCT
V62X0423E	POT. H ₂ O TK B INLET VLV OPEN IND	0	0	1	1					STATE
V62X0424E	POT. H ₂ O TK B INLET VLV CLOSE IND	1	1	0	0					STATE
V62X0427E	POT. H ₂ O TK B OUTLET VLV OPEN IND	0	0	1	1					STATE
V62X0429E	POT. H ₂ O TK B OUTLET VLV CLOSE IND	1	1	0	0	•			1	STATE
V62P0430A	POT. H ₂ O STORAGE INLET PRESS.	35	716	-						PSIA
V62T0439A	PGT. H ₂ O DUMP NOZZLE TEMP. B.	150.8	391							DEGF
V62T0440A	POT. H ₂ O DUMP NOZZLE TEMP	154.8	401							DEGF
V62X0455E	POT. H ₂ O DUMP ISOL VLV OPEN IND	0	0	1	1					STATE
V62X0456E	POT. H ₂ O DUMP ISOL VLV CLOSE IND	1	1	0	0					STATE
V62X0465E	POT. H ₂ O DUMP VLV OPEN IND.	0	0	1	1					STATE
V62X0466E	POT. H ₂ O DUMP VLV CLOSE IND.	1	1	0	0					STATE
V62P0500A	WASTE/POT. H ₂ O LIQUID PRESS	19.0	487	0	0					PSIG
V62T0519A	WASTE HOO DUMP NOZZLE TEMP. B.	144	374	30	82					DEGF
V62T0520A	WASTE H ₂ O DUMP NOZZLE TEMP.	148	385	30	82]				DEGF

MEASUREMENT OUTPUT FROM W/WMS MODEL - TABLE 2

MEASUREMENT		I.C		VALUE 1		VALUE	2	VALU	IE 3	UNITS	
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	CIS	0.7213	
V62X0533E	WASTE HOO DUMP ISOL VLV OPEN IND	0	0	1	1					STATE	
V62X0534E	WASTE HOO DUMP ISOL VLV CLOSED IND	1	1	0	0		1 1		1 1	STATE	
V62X0538E	WASTE HOO DUMP VLV OPEN IND	0	0	1	1					STATE	
V62X0539E	WASTE HOO DUMP VLV CLOSED IND	1	1	0	0					STATE	
V62Q0540A	WASTE HOO TK 1 QTY	84	833	0	96		1 !			PCT	
V62Q0544A	POT. TK D OR WASTE TK 2 QTY.	83	822	10	184	99	964			PCT	
V62Q0548A	РОТ. H ₂ 0 ТК С QTY	82	814	50	534	85	841			PCT	
V62T0551A	VACUUM VENT TEMP	136.2	581	30	291		1 1		1	DEGF	
V62X0566E	WASTE H ₂ 0 TK 1 DRAIN OPEN IND	0	0	1	1		1		1	STATE	
V62X0567E	POT. TK D OR WASTE TK 2 OUT. VLV OPEN IND	0	0	1	1					STATE	
V62X0568E	POT. H ₂ 0 TK C OUTLET VLV OPEN IND	0	0	1	1				İ	STATE	
V62X0570E	WASTE TK 1 INLET VLV OPEN IND	0	0	1	1					STATE	
V62X0571E	POT. TK D OR WASTE TK 2 INLET VLV OPEN IND	0	0	1	1					STATE	
V62X0572E	POT H ₂ O TK C INLET VLV OPEN IND	0	0	1	1				1	STATE	
V62T0578A	WASTE HOO DUMP LINE TEMP	73.4	473	30	49	70	440		i	DEGF	
V62X0580E	WASTE TK 1 DRAIN VLV CLOSE IND	1	1	0	0				Ì	STATE	
V62X0581E	WASTE H ₂ 0 TK 2 OUTLET VLV CLOSE IND	1	1	0	0				1	STATE	
V62X0582E	POT. HOO TK C OUTLET VLV CLOSE IND	1	1	0	0				į	STATE	
V62X0583E	WASTE TK 1 INLET VLV CLOSE IND	1	1	0	0					STATE	
V62X0584E	POT. TK D OR WASTE TK 2 INLET VLV CLOSE IND	1	1	0	0					STATE	
										}	
										<u>l</u>	

MEASUREMENT OUTPUT FROM W/WMS MODEL - TABLE 2

MEASUREMENT		I.	c.	VALUE 1	l	VALUE	2	VALU	UNITS	
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	стѕ	FŞ	CTS	
V62X0585E	POT. H20 TK C INLET VLV CLOSE IND	1	1	0	0					STATE
V62X1005E	POT. H ₂ O XOVR VLV OPEN IND	0	0	1	1					STATE
V62X1006E	POT. H20 XOVR VLV CLOSE IND	1	1	0	0					STATE
V62X1105E	POT. HOO GALLEY SUPPLY VLV OPEN IND	0	0	1	1			İ		STATE
V62X1106E	POT. HOO GALLEY SUPPLY VLV CLOSE IND	1	1	0	0			i I		STATE
V62Q9150A	•	8 5	841							PERCENT
V6209160A		86	849					į		PERCENT

APPENDIX L
RCS/OMS MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion																					Page
1.	INTRO	DUCTION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L-1
2.	DETAI	LED REQUIREMENTS	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	L-2
	2.1	MATH MODEL DESCRIPTION.			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	L-2
	2.2	STS UNIQUE REQUIREMENTS		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L-2
	2.3	GTS UNIQUE REQUIREMENTS	•	•			•	•	•	•	•	•	•	•	•	•	•	•		•	•	L-2
3.	MATH	MODEL LOGIC	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L-3
	3.1	GTS PREPROCESSOR LOGIC.	•	•			•			•	•	•	•	•	•	•	•	•	•	•	•	L-3
	3.2	LOGIC FLOW DIAGRAM	•	•	•	•	•	•	• .	. •	•	•	•	•	•	•	•	•	•	•	•	L-4
4.	TABLE	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	L-6
	4.1	INPUT STIMULI LIST	•	•	•	•	•	•			•	•	•	•			•		•	•	•	L-6
	4.2	OUTPUT MEASUREMENT LIST		•	•		•	•	•	•	•	•	•	•	•	•				•	•	L-8

1. INTRODUCTION

The RCS/OMS model is a Rockwell application requirement. This model outputs those DFI parameters not found in the RCS/OMS simulator (ROS) avionics model. The model receives input from one source, the test operator. The model provides output parameter values to the flight system. Table 2 lists the output measurements.

2. DETAILED REQUIREMENTS

2.1 MATH MODEL DESCRIPTION

This RCS/OMS model is a special case function to provide the Developmental Flight Instrumentation (DFI) measurements found in table 1 to the flight system. These instrumentation measurements could not be output by the RCS/OMS Vehicle Dynamics model because of the absense of a hardware interface.

This model, therefore, does none of the RCS/OMS logic functions. It merely outputs the aforementioned measurements as static values.

2.2 STS UNIQUE REQUIREMENTS

NONE

2.3 GTS UNIQUE REQUIREMENTS

NONE

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors.

RCS/OMS FLOW DIAGRAM

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES. for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

PAGE	STATE						
	-						
		CONN-PIN				•	
	SOURCE	8					
	SC	WOW MOM					
S	_						
CS/0M	1						
FOR F		1					
INPUT	NOTEC						
STIML. INPUT FOR RCS/OMS							
- STI							
TABLE 1						,	
TAI	NOMENC! AT110C						
	MENCI						
	2	2					
		ļ)				
			NONE				
		1					
sagetime.	PANEL/	5		·			
	PAN	3					

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM RCS/OMS MODEL - TABLE 2

MEASUREMENT	·	1.0		VALUE 1		VALUE 2		VALUE 3		UNITS
I. D.	MEASUREMENT NAME	FS ·	CTS	FS	CIS	FS	CTS	FŞ	CTS	0.1773
	- RCS -									
V42T2305A	RCS-L AFT HSG THERM SW TEMP 2	104.0	732							DEGF
V42T3305A	RCS-R AFT HSG THERM SW TEMP 2	105.0	737							DEGF
V42T9044A	FRCS FU TK FILL MANIF LOC 2 THERMO	98.22	630							DEGF
V42T9045A	FRCS OX TK FILL MANIF LOC 2 THERMO	99.2	636							DEGF
V42T9432A	RCS-L OX/HE TEST PORT LN. TEMP	106.23	681							DEGF
V42T9442A	RCS-L OX TK OTBD UPR SKIN TEMP	45.41	293							DEGF
V42T9449A	RCS-L OX VLV TEMP Y WEB OTBD	108.15	694						}	DEGF
V42T9561A	RCS-R OX/HE TEST PORT LN. TEMP	107.2	687							DEGF
	- OMS -						1			
V43T4700A	OMS-L POD RCS PRESS PML SUPT TEMP 1	58.21	374				Ì			DEGF
V43T4706A	OMS-L POD GSE SERVICE PNL TEMP	78.2	323				Ì	}		DEGF
V43T4707A	OMS-L POD ENG SERVICE PNL TEMP	74.22	477				Ì	·		DEGF
V43T4710A	OMS-L POD RCS PRESS PNL SUPT TEMP 2	60.2	552				i			DEGF
V43T4711A	OMS-L POD RCS HSG VERNIER CMPT TEMP 2	111.2	458				i			DEGF
V43T4718A	OMS-L POD OX/HE TEST PORT FIG TEMP 2	82.1	642					·	•	DEGF
V43T5710A	OMS-R POD RCS PRESS PNL SUPT TEMP 2	61.2	557				1		İ	DEGF
V43T5711A	OMS-R POD RCS HSG VERNIER CMPT TEMP 2	112.2	462				į		1	DEGF
V43T5718A	OMS-R POD OX/HE TEST PORT FTG TEMP 2	83.1	647			9	1	1		DEGF
V43T6234A	OMS BHD FU HI PT BLEED LN TEMP	94.0	692				1			DEGF
V43T6235A	OMS BHD OX HI PT BLEED LN TEMP	95.0	696		,				1	DEGF
V43T6236A	OMS-AFT FUSLG LO PT OX DRN LN TEMP-L	90.22	579							DEGF
V43T6237A	OMS-AFT FUSLG LO PT OX DRN LN TEMP-R	91.18	585							DEGF

MEASUREMENT OUTPUT FROM RCS/OMS MODEL - TABLE 2

MEASUREMENT		1.0		VALUE 1		VALUE 2		VALUE 3	UNITS	
1. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	F\$	стѕ	0.1713
V43T6238A	OMS-AFT FU HI PT BLEED LN TEMP	92.0	683			·				DEGF
V43T6239A	OMS-AFT OX HI PT BLEED LN TEMP	93.0	687							DEGF
V43T6240A	OMS-AFT FULSG XFD FU FLX LN-L TEMP	88.30	567							DEGF
V43T6241A	OMS-AFT FULSG XFD FU FLX LN-R TEMP	89.26	573							DEGF
V43T6242A	OMS-AFT FUSLG OX LN CTR TEMP	87.34	561							DEGF
V43T6243A	OMS-AFT FUSLG OX XFD LINE L TEMP	85.42	548					•		DEGF
V43T6244A	OMS-AFT FUSLG OX XFD LINE R TEMP	86.38	554							DEGF
V43T9002A	OMS-L POD OX ISLN VLV TEMP	50.21	323							DEGF
V43T9290A	OMS-R XFD/POD OX COUPLING TEMP	56.29	362							DEGF
V43T9459A	OMS-L ENG COVER THERMOSTAT TEMP	72.29	464							DEGF
V43T9464A	OMS-L FU/HE TEST PORT LN. TEMP	84	651							DEGF
V43T9467A	OMS-L OXIDIZER DRAIN LN. TEMP	66	577							DEGF
V43T9470A	OMS-L OX FLG TEMP POD/ORBR INTFC	55.33	356							DEGF
V43T9471A	OMS-L FU FLG TEMP POD/ORBR INTFC	57.25	368	•						DEGF
V43T9551A	OMS-R OXIDIZER DRAIN LN. TEMP.	67	581							DEGF
V43T9551A	OMS-R ENG COVER THERMOSTAT TEMP.	73.26	471							DEGF
V4319333A	OMS-R ENG COVER INERPOSTAT TEMP.	/3.20	7/1) JEW.
	·)		İ		i			•	}
						:				
]	•			,						
.									1	
		İ								

APPENDIX M
SWITCH MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	Page
	INTRODUCTION	M-1
	DETAILED REQUIREMENTS	M-2
2.	2.1 MATH MODEL DESCRIPTION	M-2
	2.1 MATH MODEL DESCRIPTION	M-2
	2.2 STS UNIQUE REQUIREMENTS	M_2
	2.3 GTS UNIQUE REQUIREMENTS	
3.	MATH MODEL LOGIC	
	3.1 GTS PREPROCESSOR LOGIC	
	3.2 LOGIC FLOW DIAGRAM	M-4
A	TABLES	
٧.	4.1 INPUT STIMULI LIST	
	A 2 OUTDUT MEASUREMENT LIST	M-1

1. INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that simulate the operation of the Vent Doors.

2.1 MATH MODEL DESCRIPTION

This model simulates those functions of the vent doors in the Orbiter, namely: OPEN, CLOSE, and PURGE. The vent doors permit equalization of pressures between the ambient and the unpressurized areas within the Orbiter during ascent and descent. The PURGE function expels toxic or explosive gas mixtures that may accumulate within the unpressurized areas.

2.2 STS UNIQUE REQUIREMENTS

This model is not required for STS.

2.3 GTS UNIQUE REQUIREMENTS

This model is required for GTS only.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding model count value is listed outside the box. For example, the box on the right hand below;

shows that V45P1100A is set equal to 626 $FS_{\mbox{EU}}$ which is equivalent to 534 $\mbox{MODEL}_{\mbox{CTS}}$ shown outside the box.

PAGE Q OF 2

LEDN HOTEL

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES, for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

4.1.2 PSEUDO VARIABLE INITIALIZATION

The following pseudos are initialized as follows:

VARIABLE	INITIAL CONDITION
FCP	0
TFLAG	0

PANEL/ SWITCH	• NOMENCLATURE	NOTES	MML ID.	SYSTEM CONN-PIN	STATE
R12/S1	FC GPC PURGE SEQ START	7		FCP	1-0N/0-0FF
R12/S2	FCP 02/H2 PURGE HTRS GPC-A ON FCP 02/H2 PURGE HTRS GPC-B ON	2	V45K0604Y V45K0605Y	(PF02)J07-072 (PF02)J07-082	1-0N/0-0FF
(NONE)	FC1 02 FLOW FC2 02 FLOW FC3 02 FLOW	11	V45R0160A V45R0260A V45R0360A	(1102)007-082	1-ON/O-OFF O-15 PPH O-15 PPH O-15 PPH
	,				

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT		I.C.	I.C.		ALUE 1 VALUE 2 VALUE :		3			
I.D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	стѕ	UNITS
V72K6050Y	FC GPC PURGE SEQ START	0		1						STATE
V45X0804E	FC AUTO PURGE-ON	0		1						STATE
V45C0101A	FC 1 CURRENT	0		98		198				AMPS-DC
V45C0201A	FC 2 CURRENT	0		100		200				AMPS-DC
V45C0301A	FC 3 CURRENT	0		102		202				AMPS-DC

<u>-:</u>

The following table contains switch scan measurements which are to be output.

SWITCH SCAN MEASUREMENTS

MML NO.	NOMENCLATURE	I.C.
V42S1151E	RCS-FWD HE PRESS VLV-A OP B	0
V42S1154E	RCS-FWD HE PRESS VLV-A CL A	0
V42S1153E	RCS-FWD HE PRESS VLV-B OP B	0
V42S1156E	RCS-FWD HE PRESS VLV-B CL A	0
V42S1344E	RCS-FWD TANK ISI.N VLV-1/2 OP A	0
V42S1352E	RCS-FWD TANK ISLN VLV-1/2 CL A	0
V42S1348E	RCS-FWD TANK ISLN VLV-3/4/5 OP A	0
V42S1357E	RCS-FWD TANK ISLN VLV-3/4/5 CL A	0
V42S1362E	RCS-FWD MANF ISLN VLV-1 OP	0
V42S1372E	RCS-FWD MANF ISLN VLV-1 CL	0
V42S1364E	RCS-FWD MANF ISLN VLV-2 OP	0
V42S1374E	RCS-FWD MANF ISLN VLV-2 CL	0
V42S1366E	RCS-FWD MANF ISLN VLV-3 OP	0
V42S1376E	RCS-FWD MANF ISLN VLV-3 CL	0
V42S1368E	RCS-FWD MANF ISLN VLV-4 OP	0
V42S1378E	RCS-FWD MANF ISLN VLV-4 CL	0
V42S1371E	RCS-FWD MANF ISLN VLV-5 OP B	0
V42S1380E	RCS-FWD MANF ISLN VLV-5 CL A	0
V42S1580E	RCS-FWD THRSTR HEAT-1 AUTO	1
V42S1584E	RCS-FWD THRSTR HEAT-2 AUTO	1
V42S1588E	RCS-FWD THRSTR HEAT-3 AUTO	1
V42S1592E	RCS-FWD THRSTR HEAT-4 AUTO	1
V42S1596E	RCS-FWD THRUSTER HEAT-5 AUTO	1
V42S1910E	RCS-FWD MODULE HEAT-1 AUTO	1
V42S1912E	RCS-FWD MODULE HEAT-1A AUTO	0
V42S2151E	RCS-L AFT HE PRESS VLV-A OP B	0
V42S2154E	RCS-L AFT HE PRESS VLV-A CL A	0
V42S2153E	RCS-L AFT HE PRESS VLV-B OP B	0
V42S2156E	RCS-L AFT HE PRESS VLV-B CL A	0
V42S2340E	RCS-L AFT TANK ISLN VLV-1/2 OP A	0
V42S2351E	RCS-L AFT TANK ISLN VLV-1/2 CL A	0
V42S2345E	RCS-L AFT TANK ISLN V-3/4/5 A OP	0
V42S2356E	RCS-L AFT TANK ISLN VLV-3/4/5 A CL	0

MML NO.	NOMENCLATURE	I.C.
V42S2348E	RCS-L AFT TANK ISLN VLV-3/4/5 B OP	0
V42S2359E	RCS-L AFT TANK ISLN VLV-3/4/5 B CL	0
V42S2362E	RCS-L AFT MANF ISLN VLV-1 OP	0
V42S2372E	RCS-L AFT MANF ISLN VLV-1 CL	0
V42S2364E	RCS-L AFT MANF ISLN VLV-2 OP	0
V42S2374E	RCS-L AFT MANF ISLN VLV-2 CL	0
V42S2366E	RCS-L AFT MANF ISLN VLV-3 OP	0
V42S2376E	RCS-L AFT MANF ISLN VLV-3 CL	0
V42S2368E	RCS-L AFT MANF ISLN VLV-4 OP	0
V42S2378E	RCS-L AFT MANF ISLN VLV-4 CL	0
V42S2371E	RCS-L AFT MANF ISLN VLV-5 OP B	0
V42S2380E	RCS-L AFT MANF ISLN VLV-5 CL A	0
V42S2400E	RCS-L AFT XFD VLV-1/2 OP A	0
V42S2412E	RCS-L AFT XFD VLV-1/2 CL A	0
V42S2406E	RCS-L AFT XFD VLV-3/4/5 OP A	0
V42S2424E	RCS-L AFT XFD VLV-3/4/5 CL A	0
V42S3151E	RCS-R AFT HE PRESS VLV-A OP B	0
V42S3154E	RCS-R AFT HE PRESS VLV-A CL A	0
V42S3153E	RCS-R AFT HE PRESS VLV-B OP B	0
V42S3156E	RCS-R AFT HE PRESS VLV-B CL A	0
V42S3340E	RCS-R AFT TANK ISLN VLV-1/2 OP A	0
V42S3351E	RCS-R AFT TANK ISLN VLV-1/2 CL A	0
V42S3345E	RCS-R AFT TANK ISLN V-3/4/5 A OP	0
V42S3356E	RCS-R AFT TANK ISLN VLV-3/4/5 A CL	0
V42S3348E	RCS-R AFT TANK ISLN VLV-3/4/5 B OP	0
V42S3359E	RCS-R AFT TANK ISLN VLV-3/4/5 B CL	0
V42S3362E	RCS-R AFT MANF ISLN VLV-1 OP	0
V42S3372E	RCS-R AFT MANF ISLN VLV-1 CL	0
V42S3364E	RCS-R AFT MANF ISLN VLV-2 OP	0
V42S3374E	RCS-R AFT MANF ISLN VLV-2 CL	0
V42S3366E	RCS-R AFT MANF ISLN VLV-3 OP	0
V42S3376E	RCS-R AFT MANF ISLN VLV-3 CL	0
V42S3368E	RCS-R AFT MANF ISLN VLV-4 OP	0

MML NO.	NOMENCLATURE	I.C.
V42S3378E	RCS-R AFT MANF ISLN VLV-4 CL	0
V42S3371E	RCS-R AFT MANF ISLN VLV-5 OP B	0
V42S3380E	RCS-R AFT MANF ISLN VLV-5 CL A	0
V42S3400E	RCS-R AFT XFD VLV-1/2 OP A	0
V42S3412E	RCS-R AFT XFD VLV-1/2 CL A	0
V42S3406E	RCS-R AFT XFD VLV-3/4/5 OP A	0
V42S3424E	RCS-R AFT XFD VLV-3/4/5 CL A	0
V42S4580E	RCS-R/L AFT THRSTR HEAT-1 AUTO	1
V42S4584E	RCS-R/L AFT THRSTR HEAT-2 AUTO	1
V42S4588E	RCS-R/L AFT THRSTR HEAT-3 AUTO	1
V42S4592E	RCS-R/L AFT THRSTR HEAT-4 AUTO	1
V42S4596E	RCS-R/L AFT THRSTR HEAT-5 AUTO	1
V43S4184E	OMS-L FOD HE ISLN VLV A CL	1
V43S4186E	OMS-L POD HE A AND VAP ISO VLVS OP	0
V43S4185E	OMS-L POD HE ISLN VLV B CL	1
V43S4187E	OMS-L POD HE B AND VAP ISO VLVS OP	0
V43S4470E	OMS-L POD TANK ISLN VLV A CMD 1 OP	1
V43S4471E	OMS-L POD TANK ISLN VLV A CMD 1 CL	0
V43S4474E	OMS-L POD TANK ISLN VLV B CMD 1 OP	1
V43S4475E	OMS-L POD TANK ISLN VLV B CMD 1 CL	0
V43S4482E	OMS-L POD XFD VLV A CMD 1 OP	0
V43S4483E	OMS-L POD XFD VLV A CMD 1 CL	1
V43S4486E	OMS-L POD XFD VLV B CMD 1 OP	0
V43S4487E	OMS-L POD XFD VLV B CMD 1 CL	1
V43S4575E	OMS-L ENG VLVS PWR ENABLE COILS 1	ו
V43S5184E	OMS-R POD HE ISLN VLV A CL	1
V43S5186E	OMS-R POD HE A AND VAP ISO VLVS OP	0
V43S5185E	OMS-R POD HE ISLN VLV B CL	1
V43S5187E	OMS-R POD HE B AND VAP ISO VLVS OP	0
V43S5470E	OMS-R POD TANK ISLN VLV A CMD 1 OP	1
V43S5471E	OMS-R POD TANK ISLN VLV A CMD 1 CL	0
V43S5474E	OMS-R POD TANK ISLN VLV B CMD 1 OP	1
V43S5475E	OMS-R POD TANK ISLN VLV B CMD 1 CL	0

MML NO.	NOMENCLATURE	I.C.
V43S5482E	OMS-R POD XFD VLV A CMD 1 OP	0
V43S5483E	OMS-R POD XFD VLV A CMD 1 CL	1
V43S5486E	OMS-R POD XFD VLV B CMD 1 OP	0
V43S5487E	OMS-R POD XFD VLV B CMD 1 CL	1
V43S5575E	OMS-R ENG VLVS PWR ENABLE COILS 1	1
V43S7410E	OMS-L POD HTR A1 ON	1
V43S741 4 E	OMS-L POD HTR B1 ON	1
V43S7510E	OMS-R POD HTR A1 ON	1
V43S7514E	OMS-R POD HTR B1 ON	1
V43S7710E	OMS-XFD LINES HTR A ON	1
V43S7712E	OMS-XFD LINES HTR B ON	0
V45S0191E	FCP NO 1 STARTUP HEATER - INHIBIT	0
V45S0291E	FCP NO 2 STARTUP HEATER - INHIBIT	0
V45S0391E	FCP NO 3 STARTUP HEATER - INHIBIT	0
V45S0441E	FCP H20 LINE HTRS A-ON	1
V45S0442E	FCP H2O LINE HTRS B-ON	0
V45S0445E	FCP H2O RELIEF HTRS A-ON	1
V45S0446E	FCP H2O RELIEF HTRS B-ON	0
V45S0601E	FCP 02/H2 PURGE HTRS MNL A	0
V45S0604E	FCP 02/H2 PURGE HTRS GPC-A ON	1
V45S0811E	FCP 1 PURGE VLVS MNL OPEN-A	0
V45S0815E	FCP 1 PURGE VLVS GPC-A OPEN	1
V45S0821E	FCP 2 PURGE VLVS MNL OPEN-A	0
V45S0825E	FCP 2 PURGE VLVS GPC-A OPEN	1
V45S0831E	FCP 3 PURGE VLVS MNL OPEN-A	0
V45S0835E	FCP 3 PURGE VLVS GPC-A OPEN	1
V45X1080E	PRSD 02 ECS PRIM SUP VLV-OPEN	1
V45X1083E	PRSD 02 ECS SEC SUP VLV-OPEN	0
V45S1131E	PRSD 02 TK 1 HTR A-ON A/B	0
V45S1133E	PRSD 02 TK 1 HTR A-AUTO A/B	1 1
V45S1136E	PRSD 02 TK 1 HTR B-ON A/B	0
V45S1138E	PRSD 02 TK 1 HTR B-AUTO A/B	1
V45S1231E	PRSD 02 TK 2 HTR A-ON A/B	0

MML NO.	NOMENCLATURE	I.C.
V45S1233E	PRSD 02 TK 2 HTR A-AUTO A/B	1
V45S1236E	PRSD 02 TK 2 HTR B-ON A/B	0
V45S1238E	PRSD 02 TK 2 HTR B-AUTO A/B	1
V45S1331E	PRSD 02 TK 3 HTR A-ON A/B (MBK)	0
V45S1333E	PRSD 02 TK 3 HTR A-AUTO A/B (MBK)	1
V45S1336E	PRSD 02 TK 3 HTR B-ON A/B (MBK)	0
V45S1338E	PRSD 02 TK 3 HTR B-AUTO A/B (MBK)	1
	·	
V45S2131E	PRSD H2 TK 1 HTR A-ON A/B	0
V45S2133E	PRSD H2 TK 1 HTR A-AUTO A/B	1
V45S2136E	PRSD H2 TK 1 HTR B-ON A/B	0
V45S2138E	PRSD H2 TK 1 HTR B-AUTO A/B	1
V45S2231E	PRSD H2 TK 2 HTR A-ON A/B	0
V45S2233E	PRSD H2 TK 2 HTR A-AUTO A/B	1
V45S2236E	PRSD H2 TK 2 HTR B-ON A/B	0
V45S2338E	PRSD H2 TK 2 HTR B-AUTO A/B	1
V45S2331E	PRSD H2 TK 3 HTR A-ON A/B (MBK)	0
V45S2333E	PRSD H2 TK 3 HTR A-AUTO A/B (MBK)	1
V45S2336E	PRSD H2 TK 3 HTR B-ON A/B (MBK)	0
V45S2338E	PRSD H2 TK 3 HTR B-AUTO A/B (MBK)	1
	•	
V46S0099E	APU AUTO SHUTDOWN INHIBIT CMD-C	0
V46S0106E	APU 1 TANK AND LINE HTRS-A AUTO 2	1
V46S0109E	APU 1 TANK AND LINE HTRS-B AUTO 1	0
V46S0114E	APU 1 FUEL ISLN VLV B OPEN CMD	0
V46S0116E	APU 1 LUBE OIL LINE HTR - A AUTO 1	1
V46S0117E	APU 1 LUBE OIL LINE HTR-B AUTO 1	0

MML NO.	n-MENCLATURE	1.C.
V46S0118E	APU 1 GAS GEN/FU PUMP HTR-A AUTO 1	1
V46S0119E	APU 1 GAS GEN/FU PUMP HTR-B AUTO 1	0
V46S0124E	APU NO 1 CONTROLLER POWER ON CMD-A	0
V46S0126E	APU 1 START/RUN CMD-A	0
V46S0127E	APU 1 START OVERRIDE/RUN CMD-A	0
V46S0129E	APU NO 1 SPEED SELECT-HIGH CMD-A	0
V46S0206E	APU 2 TANK AND LINE HTRS-A AUTO 2	1
V46S0209E	APU 2 TANK AND LINE HTRS-B AUTO 1	0
V46S0214E	APU 2 FUEL ISLN VLV B OPEN CMD	0
V46S0216E	APU 2 LUBE OIL LINE HTR-A AUTO 1	1
V46S0217E	APU 2 LUBE OIL LINE HTR-B AUTO 1	0
V46S0218E	APU 2 GAS GEN/FU PUMP HTR-A AUTO 1	1
V46S0219E	APU 2 GAS GEN/FU PUMP HTR-B AUTO 1	0
V46S0224E	APU NO 2 CONTROLLER POWER ON CMD-A	0
V46S0226E	APU 2 START/RUN CMD-A	0
V46S0227E	APU 2 START OVERRIDE/RUN CMD-A	0
V46S0229E	APU NO 2 SPEED SELECT HIGH CMD-A	0
V46S0306E	APU 3 TANK AND LINE HTRS-A AUTO 2	1
V46S0309E	APU 3 TANK AND LINE HTRS-B AUTO 1	0
V46S0314E	APU 3 FUEL ISLN VLV B OPEN CMD	0
V46S0316E	APU 3 LUBE OIL LINE HTR-A AUTO 1	1
V46S0317E	APU 3 LUBE OIL LINE HTR-B AUTO 1	0
V46S0318E	APU 3 GAS GEN/FU PUMP HTR-A AUTO 1	1
V46S0319E	APU 3 GAS GEN/FU PUMP HIR-B AUTO 1	0
V46S0324E	APU NO 3 CONTROLLER POWER ON CMD-A	0
V46S0326E	APU 3 START/RUN CMD-A	0
V46S0327E	APU 3 START OVERRIDE/RUN CMD-A	0
V46S0329E	APU NO 3 SPEED SELECT HIGH-A	0
V57S0010E	RUDDER/SPEEDBRAKE PDU HEATER-ON A	1
V57S0011E	RUDDER/SPEEDBRAKE PDU HEATER-ON B	1
V57S0015E	BODY FLAP PDU HEATER-ON A	1
V57S0016E	BODY FLAP PDU HEATER-ON B	1
V58S0060E	LANDING GEAR BRAKE A HEATERS AUTO	0

MML NO.	NOMENCLATURE	I.C.
V58S0061E	LANDING GEAR BRAKE B HEATERS AUTO	0
V58S0062E	LANDING GEAR BRAKE C HEATERS AUTO	0
V58S0070E	HYD SYS AFT FUS A HEATERS AUTO	1
V58S0071E	HYD SYS AFT FUS B HEATERS AUTO	1
V58S0086E	HYD SYS ELEVON ACTUATOR HTRS-ON A	1
V58S0087E	HYD SYS ELEVON ACTUATOR HTRS-ON B	1
V58S0108E	HYDR SYS GEAR UP/CIRC VALVE-OPEN A	0
V58S0110E	HYDR SYS GEAR UP/CIRC VALVE-AUTO A	1
V58S0138E	HYDR SYS 1 CIPC PUMP-ON A	0
V58S0140E	HYDR SYS 1 CIRC PUMP-AUTO ENABLE A] 1
V58S0149E	HYD 1 H20 BLR CONT A AC DC PWR ON	1
V58S0150E	HYD 1 H20 BLR CONT B AC DC PWR ON	0
V58S0151E	HYDR SYS 1 H20 BLR CONTLR A ON	0
V58S0153E	HYDR SYS 1 H20 BLR N2 SUPPLY ON A	1
V58S0172E	HYDR SYS 1 MN PUMP DEPRESS-ENBL A	0
V58X0190E	HYDR SYS 1 LDG GR ISLN VLV CL IND	0
V58S0238E	HYDR SYS 2 CIRC PUMP-ON A	0
V58S0240E	HYDR SYS 2 CIRC PUMP-AUTO ENABLE A	1
V58S0249E	HYD 2 H2O BLR CONT A AC DC PWR ON	1
V58S0250E	HYD 2 H2O BLR CONT B AC DC PWR ON	0
V58S0251E	HYDR SYS 2 H20 BLR CONTLR A ON	0
V58S0253E	HYDR SYS 2 H20 BLR N2 SUPPLY ON A	1
V58S0272E	HYDR SYS 2 MN PUMP DEPRESS-ENBL A	0
V58X0290E	HYDR SYS 2 LDG GR ISLN VLV CL IND	0
V58S0338E	HYDR SYS 3 CIRC PUMP-ON A	0
V58S0340E	HYDR SYS 3 CIRC PUMP-AUTO ENABLE A	1
V58S0349E	HYD 3 H2O BLR CONT A AC DC PWR ON	1
V58S0350E	HYD 3 H2O BLR CONT B AC DC PUR ON	0
V58S0351E	HYDR SYS 3 H20 BLR CONTLR A ON	0
V58\$0353E	HYDR SYS 3 H20 BLR N2 SUPPLY ON A	1
V58S0372E	HYDR SYS 3 MN PUMP DEPRESS-ENBL A	0
V58X0390E	HYDR SYS 3 LDG GR ISLN VLV CL IND	0
V58X1136E	HYD SYS 1 ME/TVC SPLY V OP IND	0

MML NO.	NOMENCLATURE	1.C.
V58X1236E	HYD SYS 2 ME/TVC SPLY V OP IND	0
V58X1336E	HYD SYS 3 ME/TVC SPLY V OP IND	0
V61 X2005E	CABIN VENT ISOL-CLOSE	1
V61 X2045E	CABIN VENT-CLOSE	1
V61X2100E	O2 XOVR SYS 1 OPEN	0
V6152120E	CABIN TEMP CNTLR LOOP 1 ON	1
V61S2121E	CABIN TEMP CNTLR LOOP 2 ON	0
V61X2131E	CABIN PRESS RELIEF VLV A IND ENBL	1
V61X2136E	CABIN PRESS RELIEF VLV B IND ENBL	1
V61S2140E	SYS 1 PPO2 MODE SELECT-NORMAL	1
V61S2142E	SYS 2 PPG2 MODE SELECT-NORMAL	1
V61X2163E	O2 EMERGENCY-OPEN	1
V61S2200E	02 XOVR SYS 2 OPEN	0
V61S2308E	H2O ALTERNATE PRESS-OPEN	0
V61X2321E	N2 SYS 1 REG INLET-OPEN	1
V61X2323E	N2 SYS 1 SUPPLY-OPEN	1
V61S2350E	SYS 1/2 PPO2 SNSB/VLV-NORMAL	1
V61S2371E	02/N2 CNTLR VLV-SYS 1 AUTO	1
V6152370E	02/N2 CNTLR VLV-SYS 1 OPEN	0
V61S2376E	02/N2 CNTLR VLV-SYS 2 AUTO	1
V61S2375E	02/N2 CNTLR VIV-SYS 2 OPEN	0
V61X2420E	N2 SYS 2 REG INLET-CLOSE	1
V61X2421E	N2 SYS 2 SUPPLY-CLOSE	1
V61S2450E	HUMIDITY SEPARATOR A PHASE A ON	ו
V61S2455E	HUMIDITY SEPARATOR B PHASE A ON	0
V61S2585£	CABIN FAN A-PHASE A ON] 1
V61S2590E	CABIN FAN B-PHASE A ON	0
V61S2604E	H2O LOOP 1 PUMP A CONT ON	0
V61S26 ⁰ €	H2O LOOP 1 PUMP B CONT ON-GPC CMD	1
V61S2606E	H2O LOOP 1 PUMP B CONTROL-PH A ON	1
V61S2704E	H2O LOOP 2 PUMP CONT ON-GPC CMD	0
V61S2709E	H2O LOOP 2 PUMP CONT ON	1
V61S2745E	H2O LOOP 1 BYPASS MODE-MNL	1

MML NO.	NOMENCLATURE	I.C.
V61S2770E	AVIONICS BAY 1 FAN A PHASE A ON	1
V61S2775E	AVIONICS BAY 1 FAN B PHASE A ON	0
V61S2780E	AVIONICS BAY 2 FAN A PHASE A ON	1
V61S2785 ^r	AVIONICS BAY 2 FAN B PHASE A ON	0
V61S2790E	AVIONICS BAY 3 FAN A PHASE A ON	1
V61S2795E	AVIONICS BAY 3 FAN B PHASE A ON	0
V61S2845E	H20 LOOP 2 BYPASS MODE-MNL	1
V61S2849E	ARS IMU FAN A ON PHASE A	1
V61S2852E	ARS IMU FAN B ON PHASE A	0
V61S2855E	ARS IMU FAN C ON PHASE A	0
V62X0403E	POTABLE H20 TK A INLET VLV-OPEN	1
V62X0407E	POTABLE H20 TK A OUTLET VLV-OPEN	0
V62X0423E	POTABLE H20 TK B INLET VLV-OPEN	1
V62X0427E	POTABLE H20 TK B OUTLET VLV-OPEN	1
V62S0442E	POTABLE H2O DUMP V ENA/NOZ HTR-ON	0
V62X0455E	POTABLE H20 DUMP ISLN VLV-OPEN	1
V62X0465E	POTABLE H20 DUMP VLV-OPEN	0
V62X0533E	WASTE H2O DUMP ISLN VLV-OPEN	1
V62X0538E	WASTE H20 DUMP VLV-OPEN	0
V62S0541E	WASTE H2O DUMP VLV ENA/NOZ HTR-ON	0
V62S0549E	VACUUM VENT HEATER ON	1
V62X0566E	WASTE TK 1 DRAIN VLV-OPEN	0
V62X0567E	POT TK D OR WASTE TK 2 OUT VLV-OP	1
V62X0568E	POTABLE H20 TK C OUTLET VLV-OPEN	1
V62X0570E	WASTE TK 1 INLET VLV-OPEN	1
V62X0571E	POT TK D OR WASTE TK 2 INLT VLV-OP] 1
V62X0572E	POTABLE H20 TK C INLET VLV-OPEN	1
V62X1005E	POTABLE H20 OUTLET ISLN VLV-OPEN	0
V62X1105E	GALLEY SUPPLY VLV-OPEN	1
V63S1111E	FCL 1 PUMP A-PHASE A ON	1
V63S1121E	FCL 1 PUMP B-PHASE A ON	0
V63S1178E	NH3 CONTROLLER A-PRI/GPC CMD	0
V63S1186E	NH3 CONTROLLER A SEC ON	0

MML NO.	NOMENCLATURE	I.C.
V63S1182E	NH3 CONTROLLER B-PRI/GPC CMD	0
V63S1190E	NH3 CONTROLLER B SEC ON	0
V63S1211E	FCL 1 RDTR TEMP CNTLR-AUTO A	1
V63S1212E	FCL 1 RDTR TEMP CNTLR-AUTO B	0
V63S1220E	FCL 1 RDTR BYP VLV-AUTO	1
V63X1222E	FCL 1 RDTR BYPASS VLV POSN-RDTR	1
V63X1230E	FCL 1 FLOW PROP VALVE-INTERCHANGER	1
V63S1311E	FCL 2 PUMP A-PHASE A ON	า
V63S1321E	FCL 2 PUMP B-PHASE A ON	0
V63S1411E	FCL 2 RDTR TEMP CNTLR-AUTO A	1
V63S1412E	FCL 2 RDTR TEMP CNTLR-AUTO B	0
V63S1420E	FCL 2 RDTR BYP VLV-AUTO	1
V63X1422E	FCL 2 RDTR BYPASS VLV POSN-RDTR	1
V63X1430E	FCL 2 FLOW PROP VALVE-INTERCHANGER	1
V63 S1600E	FLASH EVAP CNTLR PRI A-GPC CMD	c
V63S1610E	FLASH EVAP CNTLR PRI A CMD-ON	1
V63S1620E	HI LOAD EVAP-ENABLE	0
V63S1650E	FLASH EVAP CNTLR PRI B-GPC CMD	0
V63S1660E	FLASH EVAP CNTLR PRI B CMD-ON	0
V63S1700E	FLASH EVAP CNTLR SEC-GPC CMD	0
V63S1710E	FLASH EVAP CNTLR SEC CMD-ON	0
V63 S2501E	HI LOAD FLASH EVAP DUCT HTR A ON	0
V63S2521E	HI LCAD FLASH EVAP DUCT HTR B ON	0

NOMENCLATURE	I.C.
IH R.P.Y PANEL TRIM POWER ON A	0
• •	0
MSBLS NO 1 POWER ON	0
MSBLS NO 2 POWER ON	0
MSBLS NO 3 POWER ON	0
TACAN NO 1 POWER ON	0
TACAN NO 2 POWER ON	0
TACAN NO 3 POWER ON	0
RADAR ALT NO 1-ON	0
RADAR ALT NO 2-ON	0
MAIN BUS A TIE BUS ON	0
MAIN BUS C TO ESS BUS-1BC-ON	1
	0
	0
	0
	1 0
	0
	0
	0
	1
	1
AC BUS 1 PHASE C INPUT ON	1
	LH R,P,Y PANEL TRIM POWER ON A RH R,P,Y PANEL TRIM POWER ON A MSBLS NO 1 POWER ON MSBLS NO 2 POWER ON MSBLS NO 3 POWER ON TACAN NO 1 POWER ON TACAN NO 1 POWER ON TACAN NO 3 POWER ON TACAN NO 3 POWER ON RADAR ALT NO 1-ON RADAR ALT NO 2-ON MAIN BUS A TIE BUS ON MAIN BUS A TIE BUS ON MAIN BUS B TIE BUS ON MAIN BUS B TIE BUS ON MAIN BUS A TO ESS BUS-1BC-ON FUEL CELL 1 TO ESS BUS 1BC-ON FUEL CELL 2 TO ESS BUS 2CA-ON FUEL CELL 2 TO ESS BUS 3AB-ON KU BAND ANT JTSN ARM A CMD REND RDR ANT JTSN ARM A CMD AC BUS 1 VOLTAGE SENSOR AUTO AC BUS 1 PHASE A INPUT ON AC BUS 1 PHASE B INPUT ON

MML.NO.	NOMENCLATURE	1.C.
V76S1603E	AC BUS 2 VOLTAGE SENSOR AUTO	1
V76S1604E	AC BUS 2 VOLTAGE SENSOR MONITOR	0
V76X1637E	AC BUS 2 PHASE A INPUT ON	1
V76X1638E	AC BUS 2 PHASE B INPUT ON	1
V76X1639E	AC BUS 2 PHASE C INPUT ON	1
V76S1703E	AC BUS 3 VOLTAGE SENSOR AUTO	1
V76S1704E	AC BUS 3 VOLTAGE SENSOR MONITOR	0
V76X1737E	AC BUS 3 PHASE A INPUT ON	1
V76X1738E	AC BUS 3 PHASE B INPUT ON	1
V76X1739 ^r	AC BUS 3 PHASE C INPUT ON	1
V76S2851E	PAYLOAD CABIN-MAIN BUS A ON	1
V76S2853E	PAYLOAD CABIN-MAIN BUS B ON	C
V76S2861E	PAYLOAD AUXILIARY-MAIN BUS A ON	1
V76546012	MEC 1 BUS A PWR ON	0
V76S4605E	MEC 2 BUS B PWR ON	0
V76S7301E	LH RMS JTSN ARM A CMD	0
V76S7401E	RH RMS JTSN ARM A CMD	0
V79S2004E	ACCEL ASSY 1 PWR ON CMD A	0
V79S2007E	ACCEL ASSY 2 PWR ON CMD B	0
V79S2010E	ACCEL ASSY 3 PWR ON CMD C	0.
V79S2015E	ACCEL ASSY 4 PWR ON CMD D	0
V79S4126E	ASA 1 PWR ON CMD A	0
V79S4132E	ASA 2 PWR ON CMD B	0
V79S4138É	ASA 3 PWR ON CMD C	0
V79S4143E	ASA 4 PWR ON CMD D	0
1		
		·
1		

The following table contains measurements to be output since they are required by the $\ensuremath{\mathsf{GPC}}$ SM:

MML NO.	NOMENCLATURE	I.C.
V43T4215A	OMS-L POD OXDZR TANK TEMP LOWER	50
V43T4216A	OMS-L POD OXDZR ENG INLET TEMP	61
V43T4315A	OMS-L POD FUEL TANK TEMP-LOWER	52
V43T4641A	OMS-L ENG OX VLV TEMP	63
V43T4642A	OMS-L ENG FU FEEDLINE TEMP	65
V43T4643A	OMS-L ENG FUEL INJECTOR TEMP	71
V43T4701A	OMS-L POD RCS HSG VERNIER CMPT T 1	67
V43T4702A	OMS-L POD UPPER Y-WEB OTBD TEMP	69
V43T4703A	OMS-L POD UPPER Y-WEB INBD TEMP	73
V43T4704A	OMS-L POD OX DRAIN PNL TEMP 1	75
V43T4705A	OMS-L POD OX DRAIN PNL TEMP 2	77
V43T4708A	OMS-L POD OX/HE TEST PORT FIG T 1	56
· V43T5215A	OMS-R POD OXDZR TANK TEMP-LOWER	58
V43T5216A	OMS-R POD OXDZR ENG INLET TEMP	79
V43T5315A	OMS-R POD FU TANK TEMP-LOWER	81
V43T5641A	OMS-R ENG OX VLV TEMP	82
V43T5642A	OMS R ENG FU FEEDLINE TEMP	83
V43T5643A	OMS-R ENG FUEL INJECTOR TEMP	84
V43T5700A	OMS-R POD RCS PRESS PNL SPRT TMP 1	85
V43T5701A	OMS-R POD RCS HSG VERNIER CMPT T 1	86 [°]
V43T5702A	OMS R POD UPPER Y-WEB OTBD TEMP	87
V43T5703A	OMS R POD UPPER Y-WEB INBD TEMP	88
V43T5704A	OMS-R POD OX DRAIN PNL TEMP 1	89
V43T5705A	OMS-R POD OX DRAIN PNL TEMP 2	90
V43T5706A	OMS R POD GSE SERVICE PNL TEMP	91
V43T5707A	OMS R POD ENG SERVICE PNL TEMP	92
V4315708A	OMS-R POD OX/HE TEST PORT FIG T 1	54
V45V0100A	FUEL CELL NO. 1 VOLTAGE	29
V45V0200A	FUEL CELL NO. 2 VOLTAGE	30
V45V0300A	FUEL CELL NO. 3 VOLTAGE	31
V45X1185E	PRSD 02 TK 1 HTR CUR SNSR 1A-TRIP	0
V45X1186E	PRSD 02 TK 1 HTR CUR SNSR 2A-TRIP	0
V45X1187E	PRSD 02 TK 1 HTR CUR SNSR 1B-TRIP	0

MML NO.	NOMENCLATURE	I.C.
V45X1188E	PRSD 02 TK 1 HTR CUR SNSR 2B-TRIP	0
V45X1285E	PRSD 02 TK 2 HTR CUR SNSR 1A-TRIP	0
V45X1286E	PRSD 02 TK 2 HTR CUR SNSR 2A-TRIP	0
V45X1287E	PRSD 02 TK 2 HTR CUR SNSR 1B-TRIP	0
V45X1288E	PRSD 02 TK 2 HTR CUR SNSR 2B-TRIP	0
V45X1385E	PRSD 02 TK 3 HTR CUR SNSR 1A-TRIP	0
V45X1386E	PRSD 02 TK 3 HTR CUR SNSR 2A-TRIP	0
V45X1387E	PRSD 02 TK 3 HTR CUR SNSR 1B-TRIP	0
V45X1388E	PRSD 02 TK 3 HTR CUR SNSR 2B-TRIP	0
V54X0131E	PLD NO 1 LATCH 1A RELEASED IND	0
V54X0132E	PLD NO 1 LATCH 1B RELEASED IND	0
V54X0133E	PLD NO 1 LATCH 2A RELEASED IND	0
V54X0134E	PLD NO 1 LATCH 2B RELEASED IND	0
V54X0135E	PLD NO 1 LATCH 3A RELEASED IND	0
V54X0136E	PLD NO 1 LATCH 3B RELEASED IND	0
V54X0141E	PLD NO 1 LATCH 1A LATCHED IND	1
V54X0142E	PLD NO 1 LATCH 1B LATCHED IND	1
V54X0143E	PLD NO 1 LATCH 2A LATCHED IND	1
V54X0144E	PLD NO 1 LATCH 2B LATCHED IND	1
V54X0145E	PLD NO 1 LATCH 3A LATCHED IND	1 .
V54X0146E	PLD NO 1 LATCH 3B LATCHED IND	1
V54X0151E	PLD NO 1 IN-POSITION 1A INDICATION	1
V54X0152E	PLD NO 1 IN-POSITION 1B INDICATION	1
V54X0153E	PLD NO 1 IN-POSITION 2A INDICATION	1
V54X0154E	PLD NO 1 IN-POSITION 2B INDICATION	1
V54X0155E	PLD NO 1 IN-POSITION 3A INDICATION	1
V54X0156E	PLD NO 1 IN-POSITION 3B INDICATION	1
V54X0231E	PLD NO 2 LATCH 1A RELEASED IND	0
V54X0232E	PLD NO 2 LATCH 1B RELEASED IND	0
V54X0233E	PLD NO 2 LATCH 2A RELEASED IND	0
V54X0234E	PLD NO 2 LATCH 2B RELEASED IND	0
V54X0235E	PLD NO 2 LATCH 3A RELEASED IND	0
V54X0236E	PLD NO 2 LATCH 3B RELEASED IND	0

MML . NO.	NOMENCLATURE	1.C.
V54X0241E	PLD NO 2 LATCH 1A LATCHED IND	1
V54X0242E	PLD NO 2 LATCH 1B LATCHED IND	1
V54X0243E	PLD NO 2 LATCH 2A LATCHED IND	1
V54X0244E	PLD NO 2 LATCH 2B LATCHED IND	1
V54X0245E	PLD NO 2 LATCH 3A LATCHED IND	1
V54X0246E	PLD NO 2 LATCH 3B LATCHED IND	1
V54X0251E	PLD NO 2 IN-POSITION 1A INDICATION	1
V54X0252E	PLD NO 2 IN-POSITION 1B INDICATION	1
V54X0253E	PLD NO 2 IN-POSITION 2A INDICATION	1
V54X0254E	PLD NO 2 IN-POSITION 2B INDICATION	1
V54X0255E	PLD NO 2 IN-POSITION 3A INDICATION	1
V54X0256E	PLD NO 2 IN-POSITION 3B INDICATION	1
V54X0331E	PLD NO 3 LATCH 1A RELEASED IND	0
V54X0332E	PLD NO 3 LATCH 1B RELEASED IND	0
V54X0333E	PLD NO 3 LATCH 2A RELEASED IND	0
V54X0334E	PLD NO 3 LATCH 2B RELEASED IND	0
V54X0335E	PLD NO 3 LATCH 3A RELEASED IND	0
V54X0336E	PLD NO 3 LATCH 3B RELEASED IND	0
V54X0341E	PLD NO 3 LATCH 1A LATCHED IND	1
V54X0342E	PLD NO 3 LATCH 1B LATCHED IND	1 ·
V54X0343E	PLD NO 3 LATCH 2A LATCHED IND	1
V54X0344E	PLD NO 3 LATCH 2B LATCHED IND	1
V54X0345E	PLD NO 3 LATCH 3A LATCHED IND	1
V54X0346E	PLD NO 3 LATCH 3B LATCHED IND	1
V54X0351E	PLD NG IN-POSITION 1A INDICATION	1
V54X0352E	PLD NO 3 IN-POSITION 1B INDICATION	1
V54X0353E	PLD NO 3 IN-POSITION 2A INDICATION	1
V54X0354E	PLD NO 3 IN-POSITION 2B INDICATION	1 1
V54X0355E	PLD NO 3 IN-POSITION 3A INDICATION	1
V54X0356E	PLD NO 3 IN-POSITION 3B INDICATION	· 1
V54X0431E	PLD NO 4 LATCH 1A RELEASED IND	0
V54X0432E	PLD NO 4 LATCH 1B RELEASED IND	0
V54X0433E	PLD NO 4 LATCH 2A RELEASED IND	0

MML NO.	NOMENCLATURE	I.C.
V54X0434E	PLD NO 4 LATCH 2B RELEASED IND	0
V54X0435E	PLD NO 4 LATCH 3A RELEASED IND	0
V54X0436E	PLD NO 4 LATCH 3B RELEASED IND	0
V54X0441E	PLD NO 4 LATCH 1A LATCHED IND	1
V54X0442E	PLD NO 4 LATCH 1B LATCHED IND	1
V54X0443E	PLD NO 4 LATCH 2A LATCHED IND	· 1
V54X0444E	PLD NO 4 LATCH 2B LATCHED IND	1
V54X0445E	PLD NO 4 LATCH 3A LATCHED IND	1
V54X0446E	PLD NO 4 LATCH 3B LATCHED IND	1
V54X0451E	PLD NO 4 IN-POSITION 1A INDICATION	1
V54X0452E	PLD NO 4 IN-POSITION 1B INDICATION	1
V54X0453E	PLD NO 4 IN-POSITION 2A INDICATION	1
V54X0454E	PLD NO 4 IN-POSITION 2B INDICATION	1
V54X0455E	PLD NO 4 IN-POSITION 3A INDICATION	1
V54X0456E	PLD NO 4 IN-POSITION 3B INDICATION	1
V54X0531E	PLD NO 5 LATCH 1A RELEASED IND	0
V54X0532E	PLD NO 5 LATCH 1B RELEASED IND	0
V54X0533E	PLD NO 5 LATCH 2A RELEASED IND	0
V54X0534E	PLD NO 5 LATCH 2B RELEASED IND	0
V54X0535E	PLD NO 5 LATCH 3A RELFASED IND	0
V54X0536E	PLD NO 5 LATCH 3B RELEASED IND	0
V54X0541E	PLD NO 5 LATCH 1A LATCHED IND	1
V54X0542E	PLD NO 5 LATCH 1B LATCHED IND	1
V54X0543E	PLD NO 5 LATCH 2A LATCHED IND	1
V54X0544E	PLD NO 5 LATCH 2B LATCHED IND	1
V54X0545E	PLD NO 5 LATCH 3A LATCHED IND	1
V54X0546E	PLD NO 5 LATCH 3B LATCHED IND	1
V54X0551E	PLD NO 5 IN-POSITION 1A INDICATION	1
V54X0552E	PLD NO 5 IN-POSITION 1B INDICATION	1
V54X0553E	PLD NO 5 IN-POSITION 2A INDICATION	1
V54X0554E	PLD NO 5 IN-POSITION 2B INDICATION	1
V54X0555E	PLD NO 5 IN-POSITION 3A INDICATION	1
V54X0556E	PLD NO 5 IN-POSITION 3B INDICATION	1

MML NO.	NOMENCLATURE	I.C.
V54S0600E	RMS PWR MCIU MN A/SEL-ENBL ON CMD	0
V54S0601E	RMS PWR MCIU MN B/SEL-ENBL ON CMD	0
V54X0810E	PORT RMS SHLD POS MECH DEPL IND 1	0
V54X0811E	PORT RMS SHLD POS MECH DEPL IND 2	0
V54X0820E	PORT RMS SHLD POS MECH STOWED IND 1	1
V54X0821E	PORT RMS SHLD POS MECH STOWED IND 2 .	1
V54X0840E	PORT RMS FWD RETNN RDY-FOR-LCH 1	0
V54X0841E	PORT RMS FWD RETNN RDY-FOR-LCH 2	0
V54X0842E	PORT RMS MID RETNN RDY-FOR-LCH 1	0
V54X0843E	PORT RMS MID RETNN RDY-FOR-LCH 2	0
V54X0844E	PORT RMS AFT RETNN RDY-FOR-LCH 1	0
V54X0845E	PORT RMS AFT RETNN RDY-FOR-LCH 2	0
V54 X0860E	PORT RMS FWD RETNN LCH-LCH IND 1	1
V54X0861E	PORT RMS FWD RETNN LCH-LCH IND 2	1
V54X0862E	PORT RMS MID RETNN LCH-LCH IND 1	1
V54X0863E	PORT RMS MID RETNN LCH-LCH IND 2	1
V54X0864E	PORT RMS AFT RETNN LCH-LCH IND 1	1
V54X0865E	PORT RMS AFT RETNN LCH-LCH IND 2	1
V54X0870E	PORT RMS FWD RETNN LCH-REL IND 1	0
V54X0871E	PORT RMS FWD RETNN LCH-REL IND 2	0
V54X0872E	PORT RMS MID RETNN LCH-REL IND 1	0
V54X0873E	PORT RMS MID RETNN LCH-REL IND 2	0
V54X0874E	PORT RMS AFT RETNN LCH-REL IND 1	0
V54X0875E	PORT RMS AFT RETNN LCH-REL IND 2	0
V54X1010E	STBD RMS SHLD POS MECH DEPL IND 1	0
V54X1011E	STBD RMS SHLD POS MECH DEPL IND 2	0
V 54X1020E	STBD RMS SHLD POS MECH STOWED IND 1	1
V54X1021E	STBD RMS SHLD POS MECH STOWED IND 2	1
V54X1040E	STBD RMS FWD RETNN RDY-FOR-LCH 1	0
V54X1041E	STBD RMS FWD RETNN RDY-FOR-LCH 2	0
V54X1042E	STBD RMS MID RETNN RDY-FOR-LCH 1	0
V54X1043E	STBD RMS MID RETNN RDY-FOR-LCH 2	0
V54X1044E	STBD RMS AFT RETNN RDY-FOR-LCH 1	0

- これのことのできないのできないのできないのできない。

MML . NO.	NOMENCLATURE	1.C.
V54X1045E	STBD RMS AFT RETNN RDY-FUR-LCH 2	0
V54X1060E	STBD RMS FWD RETNN LCH-LCH IND 1	l i
V54X1061E	STBD RMS FWD RETNN LCH-LCH IND 2	1 1
V54X1062E	STBD RMS MID RETNN LCH-LCH IND 1	1 1
V54X1063E	STBD RMS MID RETNN LCH-LCH IND 2	1
V54X1064E	STBD RMS AFT RETNN LCH-LCH IND 1 .	1
V54X1065E	STBD RMS AFT RETNN LCH-LCH IND 2	1
V54X1070E	STBD RMS FWD RETNN LCH-REL IND 1	0
V54X1071E	STBD RMS FWD RETNN LCH-REL IND 2	0
V54X1072E	STBD RMS MID RETNN LCH-REL IND. 1	0
V54X1073E	STBD RMS MID RETNN LCH-REL IND 2	0
V54X1074E	STBD RMS AFT RETNN LCH-REL IND 1	0
V54X1075E	STBD RMS AFT RETNN LCH-REL IND 2	0
V58S0139E	HYDR SYS 1 CIRC PUMP-ON B	0
V58S0239E	HYDR SYS 2 CIRC PUMP-ON B	0
V58S0339E	HYDR SYS 3 CIRC PUMP-ON B	0
V63S2511E	HI LOAD DUCT HTR A/B ON	0
V63S2531E	HI LOAD DUCT HTR C ON	0
V74X0847E	CCTV CAMERA OUT OF TEMP	0
V74E4080A	S-BD PM XPNDR 1 AGC SIG STRENGTH	2.5
V74E4081A	S-BD PM XPNDR 2 AGC SIG STRENGTH	2.6
♥ 74X4745E	GCIL-S-BAND PM-XPNDR 1 (ON)	0
V74X4746E	GCIL-S-BAND PM-XPNDR 2 (ON)	0
V47X4747E	GCIL-S-BAND PM-PWR AMPL 1-STBY	0
V74X4749E	GCIL-S-BAND PM-PWR AMPL 2-STBY	0
V74X4753E	GCIL-NSP DATA RATE-XMIT HIGH	0

SM ADDITIONAL INPUTS

MML NO.	MPL NO. NOMENCLATURE				
V74X4754E	GCIL-NSP DATA RATE-XMIT LOW	0			
V74X4756E	GCIL-NSP DATA RATE-RCV LOW	0			
V74X4758E	GCIL-NSP UPLINK DATA-KU	0			
V74X4776E	GCIL-S-BAND PREAMP 1 ON	0			
V74X4777E	GCIL-S-BAND PREAMP 2 ON	0			
V74X4784E	GCIL-S-BAND POWER AMPL 1 OPERATE	0			
V74X4785E	GCIL-S-BAND POWER AMPL 2 OFERATE	0			
V74X4787E	GCIL-S-BAND PM LOW XPNDR STDN	0			
V74X4788E	GCIL-S-BAND PM HI XPNDR STDN .	0			
V74X4789E	GCIL-S-BAND PM XPNDR-SGLS MODE	0			
V74X4790E	GCIL-S-BD XPNDR SPRD SPECTRUM DSBL	0			
V74X4791E	GCIL-S-BAND XPNDR RANGING OFF	0			
V74X4792E	GCIL-S-BAND XPNDR FREQ LOW	0			
V74X4793E	GCIL S-BAND XPNDR FREQ HIGH	0			
V74X4794E	GCIL-NSP DATA RATE-RECEIVE HIGH	0			
V74X4795E	GCIL-NSP UPLINK DATA SOURCE-S BAND	0			
V74X4796E	GCIL-NSP CODING RECEIVE-ON	0			
V74X4797E	GCIL-NSP CODING TRANSMIT-ON	0			
V74X4798E	GCIL-NSP RCDR VOICE CHAN 1/2-OFF	0			
V74X4799E	GCIL-NSP RCDR VOICE CHAN 1/2-ON	0			
V74X4880E	GCIL-CCTV REMOTE CONTROL UNIT MN A	0			
V74 X4881E	GCIL-CCTV REMOTE CONTROL UNIT MN B	0			
V74X5052E	GCIL ACTIVE	0			
V74X5176E	NSP FRAME SYNC LOCK 1	1			
V74X5177E	NSP FRAME SYNC LOCK 2	1			
V74T9220A	S-BAND PWR AMP 1 TEMPERATURE	145			
V74T9221A	S-BAND PWR AMP 2 TEMPERATURE	148			
V76V0100A	MAIN BUS A VOLTAGE	28.0			
V 76V0120A	CONTROL BUS ABI VOLTAGE	28.3			
V76V0121A	CONTROL BUS AB2 VOLTAGE	28.6			

SM ADDITIONAL INPUTS

MML NO.	NOMENCLATURE	I.C.
V76V0122A	CONTROL BUS AB3 VOLTAGE	28.9
V76V0130A	ESS BUS 1BC VOLTAGE	29.2
V76V0200A	MAIN BUS B VOLTAGE	29.0
V76V0220A	CONTROL BUS BC1 VOLTAGE	29.3
V76V0221A	CONTROL BUS BC2 VOLTAGE	29.6
V76V0222A	CONTROL BUS BC3 VOLTAGE	. 29.9
V76V0230A	ESS BUS 2CA VOLTAGE	30.2
V76V0300A	MAIN BUS C VOLTAGE	30.0
V76V0320A	CONTROL BUS CAI VOLTAGE	30.3
V76V0321A	CONTROL BUS CA2 VOLTAGE	30.6
V76V0322A	CONTROL BUS CA3 VOLTAGE	30.9
V76V0330A	ESS BUS 3AB VOLTAGE	31.2
V76V1500A	AC BUS 1 PHASE A VOLT	110
V76V1501A	AC BUS 1 PHASE B VOLT	113
V76V1502A	AC BUS 1 PHASE C VOLT	116
V76X1505E	INVERTER BUS NO 1 0/V-0/V	0
V76X1506E	AC BUS 1 OVERLOAD	0
V76C1540A	AC BUS 1 PHASE A CURRENT	4.3
V76C1541A	AC BUS 1 PHASE B CURRENT	4.6
V76C1542A	AC BUS 1 PHASE C CURRENT	4.9
V76V1600A	AC BUS 2 PHASE A VOLT	111
V76V1601A	AC BUS 2 PHASE B VOLT	114
V76V1602A	AC BUS 2 PHASE C VOLT	117
V76X1605E	INVERTER BUS NO 2 0/V-0/V	0
V76X1606E	AC BUS 2 OVERLOAD	0
V76C1640A	AC BUS 2 PHASE A CURRENT	6.3
V76C1641A	AC BUS 2 PHASE B CURRENT	6.6
V76C1642A	AC BUS 2 PHASE C CURRENT	6.9
V76V1700A	AC BUS 3 PHASE A VOLT	112
V76V1701A	AC BUS 3 PHASE B VOLT	115
V76V1702A	AC BUS 3 PHASE C VOLT	118
V76X1705E	INVERTER BUS NO 3 O/V-O/V	0
V76X1706E	AC BUS 3 OVERLOAD	0

MML NO.	NOMENCLATURE	I.C.
V76C1740A	AC BUS 3 PHASE A CURRENT	8.3
V76C1741A	AC BUS 3 PHASE B CURRENT	8.6
V76C1742A	AC BUS 3 PHASE C CURRENT	8.9
V76C2811A	PAYLOAD AFT MAIN B CURRENT	12
V76C2822A	PAYLOAD AFT MAIN C CURRENT	15
V76V3071A	FWD PCA-1 VOLTAGE	32.0
V76V3072A	FWD PCA-2 VOLTAGE	32.1
V76V3073A	FWD PCA-3 VOLTAGE	32.2
V76C3075A	FWD PCA MAIN BUS A AMPS	55
V76C3076A	FWD PCA MAIN BUS B AMPS	60
V76C3077A	FWD PCA MAIN BUS C AMPS	65
V76C3085A	MID PCA MAIN BUS A AMPS	35
V76C308GA	MID PCA MAIN BUS B AMPS	40
V76C3087A	MID PCA MAIN BUS C AMPS	45
V76V3091A	AFT PCA-4 VOLTAGE	31.0
V76V3092A	AFT PCA-5 VOLTAGE	31.1
V76V3093A	AFT PCA-6 VOLTAGE	31.2
V76C3095A	AFT PCA MAIN BUS A AMPS	15
V76C3096A	AFT PCA MAIN BUS B AMPS	18
V76C3097A	AFT PCA MAIN BUS C AMPS	21
V78X9017E	RCDR DF1 PCM-BITE	0
V78X9028E	RCDR WB ASCENT DFI-BITE	1
V78X9463E	PCM MASTER BITE GOOD-DFI 1	1
V78X9464E	PCM MASTER BITE GOOD-DFI 2	1
V78X9508E	RCDR WB MISSION DFI-BITE	0
1		
	·	

APPENDIX N

RECORDER MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	Page
١.	INTRODUCTION	
2.	•	
	2.1 MATH MODEL DESCRIPTION	
	2.2 STS UNIQUE REQUIREMENTS	
	2.3 GTS UNIQUE REQUIREMENTS	N-2
3.	MATH MODEL LOGIC	N-3
	3.1 GTS PREPROCESSOR LOGIC	N-3
	3.2 LOGIC FLOW DIAGRAM	N-4
4.	TABLES	N-6
	4.1 INPUT STIMULI LIST	N-6
	4.2 OUTPUT MEASUREMENT LIST	N-8

1. INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be trom cockpit switches, the General Purpose Computers (GPC's) or the Now. Avionic Simulator (NAS) console.

2. DETAILED REQUIREMENTS

These requirements specify the logical processing of input stimuli listed in table 1 to produce values for the output measurements listed in table 2 that stimulate the operation of the flight recorder.

2.1 MATH MODEL DESCRIPTION

This model simulates the output of the flight recorder. No logic is involved. The model merely outputs all of table 2 as static values.

2.2 STS UNIQUE REQUIREMENTS

This model is not required for STS.

2.3 GTS UNIQUE REQUIREMENTS

This model is required for GTS only.

3. MATH MODEL LOGIC

This section presents the logic which is the basis for the math model. The section is divided into two parts. The first part applies to GTS, while the second part applies to both STS and GTS.

3.1 GTS PREPROCESSOR LOGIC NONE

3.2 LOGIC FLOW DIAGRAM

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors.

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 contains a list of all model input stimuli. The first column shows the cockpit panel and switch designation followed by a descriptive nomenclature. Entries in the "NOTES" column are explained in subsection 4.1.1 which follows. Applicable MML numbers are listed next, designating their connection to input stimuli shown in the column marked "SYSTEM CONN-PIN". The final column indicates the states which the input stimuli may attain.

4.1.1 NOTES DEFINITION FOR TABLE 1

- 1. Both GND commands req'd to open valve.
- 2. Flt. System CMDS to STS or GTS NAS.
- 3. Unique to GTS stimulus from NAS Kybd to GPC.
- 4. GND commands only no onboard switch or GPC CMDS.
- 5. Will be entered at NAS Kybd for GTS.
- 6. Power connections are not identified by MML no.
- 7. Pseudo entered by operator at DCM or NAS Kybd.
- 8. Conn-pin designation uses same MML ID as line above.
- 9. Both switch commands req'd to open valve.
- 10. Both GPC commands req'd to open valve.
- 11. Stimulus provided by other model.
- 12. These commands are mutually exclusive.
- 13. Stimuli from MMES, for GTS NAS only.
- 14. Flight System commands to STS NAS only.
- 15. Flight System commands to GTS NAS only.

•			 •					
CTATE	JIMIE							
SOURCE	COMM-PIN							
S	ē							
2						,		
MOTEC	C310W							
SGILLY LANGE	MATCHE LA LONG	NOME						
PANEL/	SWITCK							

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the inital condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the model count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions. The CTS columns indicate the count value to be used within the STS NAS. For the GTS, automatic conversion from FS engineering unit values to CTS will be done by the NAS.

MEASUREMENT OUTPUT FROM RCDR MODEL - TABLE 2

MEASUREMENT		1.0	I.C. VALUE 1			VALUE	2	VALUE 3		UNITS
I. D.	HEASUREMENT NAME	FS	CTS	FS	CTS	FS	стѕ	FS	CTS	0111.5
V75X2540E	RCDR OPS 1 PERCENT TAPE BIT 1	0	0							STATE
V75X2541E	RCDR OPS 1 PERCENT TAPE BIT 2	1	1							STATE
Y75X2542E	RCDR OPS 1 PERCENT TAPE BIT 3	1	1						1	STATE
V75X2543E	RCDR QPS' 1 PERCENT TAPE BIT 4	1	1 1							STATE
V75X2544E	RCDR OPS 1 PERCENT TAPE BIT 5	0	0				1			STATE
V75X2640E	RCDR OPS 2 PERCENT TAPE BIT 1	0	0		i				Ì	STATE
V75X2641E	RCDR OPS 2 PERCENT TAPE BIT 2	1	1							STATE
V75X2642E	RCDR OPS 2 PERCENT TAPE BIT 3	0	0							STATE
V75X2643E	RCDR GPS 2 PERCENT TAPE BIT 4	0	0							STATE
V75X2644E	RCDR OPS 2 PERCENT TAPE BIT 5	1	1				Ì			STATE
V75X2740E	RCDR PL PERCENT TAPE BIT 1	0	0				1	•		STATE
V75X2741E	RCOR PL PERCENT TAPE BIT 2	0	0				1			STATE
V75X2742E	RCDR PL PERCENT TAPE BIT 3	1 1	,				1			STATE
V75X2743E	RCDR PL PERCENT TAPE BIT 4	0	0				Ì			STATE
V75X2744E	RCDR PL PERCENT TAPE BIT 5	1 1	1							STATE
775X2505E	RCDR OPS 1 DIRECTION	0	0				1			STATE
V75T2517A	RCDR OPS 1 HEAD TEMPERATURE	82	591				İ			DEGF
V75X2523E	RCDR OPS 1 TAPE MOTION	1 1	1						İ	STATE
V75X2523E	RCDR OPS 1 BITE	1	;		1			•		STATE
V75X2529E	RCDR OPS 1 ACTIVE TRACK BIT 1	0	0				1			STATE
V75X2547E	RCDR OPS 1 TAPE MOTION RCDR OPS 1 BITE RCDR OPS 1 ACTIVE TRACK BIT 1 RCDR OPS 1 ACTIVE TRACK BIT 2 PCOR OPS 1 ACTIVE TRACK BIT 3									STATE
V75X2546E	RCDR OPS 1 ACTIVE TRACK BIT 3	0							ł	STATE
V75X2549E	RCDR OPS 1 ACTIVE TRACK BIT 4	1	1							STATE
4/3/23306	NOW OLD I WOLLD HAND DILLA		 '	<u> </u>	1	l	1]		1

-5

MEASUREMENT OUTPUT FROM "CDR MODEL - TABLE 2

MEASUREMENT	1		•	VALUE 1		VALUE	2	YALU	E 3	UNITS
I.D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	
V75X2555E	RCDR OPS 1 FUNCTION MODE BIT 1	1	1							STATE
V75X2556E	RCDR OPS 1 FUNCTION MODE BIT 2	0	0							STATE
V75X2557E	RCDR OPS 1 FUNCTION MODE BIT 3	0	0							STATE
V75X2605E	RCDR OPS 2 DIRECTION	0	0	•						STATE
V75T2617A	RCDR OPS 2 HEAD TEMPERATURE	84	608						1	DEGF
V75X2623E	RCDR OPS 2 TAPE MOTION	1	1							STATE
V75X2629E	RCDR OPS 2 BITE	1	1 1							STATE
V75X2647E	RCDR OPS 2 ACTIVE TRACK BIT 1	1	1						1	STATE
V75X2648E	RCDR OPS 2 ACTIVE TRACK BIT 2	1	1 1		li				j	STATE
V75X2649E	RCDR OPS 2 ACTIVE TRACK BIT 3	1	1						İ	STATE
V75X2650E	RCDR OPS 2 ACTIVE TRACK BIT 4	0	G						Ì	STATE
V75X2655E	RCDR OPS 2 FUNCTION MODE BIT 1	0	0						j	STATE
V75X2656E	RCDR OPS 2 FUNCTION MODE BIT 2	0	0							STATE
V75X2647E	RCDR OPS 2 FUNCTION MODE BIT 3	0	0						1	STATE
V75X2705E	RCDR PL DIRECTION	1	1						İ	STATE
V75T2717A	RCDR PL HEAD TEMPERATURE	86	626				l l			DEGF
V75X2723E	RCDR PL TAPE MOTION	0	0]			·		STATE
V75X2729E	RCDR PL BITE	1] 1]							STATE
V75X2747E	RCDR PL ACTIVE TRACK BIT 1	0	0							STATE
V75X2748E	RCDR PL ACTIVE TRACK BIT 2	1	1							STATE
V75X2749E	RCDR PL ACTIVE TRACK BIT 3	0	0							STATE
V75X2750E	RCDR PL ACTIVE TRACK BIT 4	0	0							STATE
V75X2755E	RCDR PL FUNCTION MODE BIT 1	0	0		! !					STATE
V75X2756E	RCDR PL FUNCTION MODE BIT 2	1	1							STATE
V75X2757E	RCDR PL FUNCTION MODE BIT 3	0	0							STATE