

Department of Electrical, Computer, & Biomedical Engineering

Faculty of Engineering & Architectural Science

ELE 202

Electric Circuit Analysis

LAB COVER PAGE for Part II submission.

	ı			
Lab #:		Lab Title:		
Last Na	me:			
First Name:				
Student	# *:			
Signature:				
(* Note:	remove the	first 4 digits from you	r student ID)	
		•		
			Section #:	
		Submission	n date and time:	

Document submission for Part II:

Due date and time:

- A completed and signed "COVER PAGE **Part II**" has to be included with your submission, a copy of which is available on D2L. The report will not be graded if the signed cover page is not included.
- Scan your completed pages of **Section 5.0** and **Section 6.0** (via a scanner or phone images), together with any required In-Lab Oscilloscope screen-shot images.
- Collate and create a .pdf or .docx file of the above, and upload it via D2L by 11.59 p.m. on the same day your lab is scheduled. Late submissions will not be graded.

*By signing above, you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: www.ryerson.ca/senate/current/pol60.pdf.

In lab

	\mathbf{V}_{OC}	I sc	$\mathbf{V}_{\mathrm{Th}} = \mathbf{V}_{OC}$	$\mathbf{R}_{Th} = \mathbf{V}_{OC}/\mathbf{I}_{SC}$
E	Measured Result (volts)	Measured Value (mA)	(volts)	$(k\Omega)$
10 (volts)	8.37	2.06	8.37	4.06

	Thevenin voltage,	Measured load	Load resistance R _L per	
Input Source, E	\mathbf{V}_{TH}	voltage, V_L	resultant potentiometer, R _P	
•	(volts)	(volts)	reading. $(k\Omega)$	
	From Pre-Lab	Measured Result	Measured Result	
10	8.361	4.468	4.18	
(volts)				

Vx (volts)	Ix (mA)	Vx1 (volts)	IX1 (mA)	Vx2 (volts)	Ix2 (mA)	$V_X = V_{X1} + V_{X2}$	$\mathbf{I}_{\mathbf{X}} = \mathbf{I}_{\mathbf{X}1} \\ + \mathbf{I}_{\mathbf{X}2}$
Measured Result	Measured Result	Measured Result	Measured Result	Measured Result	Measured Result	From measured results	From measured results
2.65	1.32	3.60	1.85	-0.96	-0.49	2.64	1.36

Table 7.0: Experimental results from the Figure 3.0 related circuit.

Post lab

	Date:
Post-lab	A - 2
0	· 10 0 0 17 1.
a) The measurements are similar	For example pre lab vy nos calculated
at "8:361" V - hile the measured V	was 8.37". There is a little
variation due to resistance between	in the apparatus, or the frictional forces
with are accounted in experiments.	1-10-1101-11077
ip) Yes! the concept of V,n	was verified as the experiment
generated the same results	as multisin readings and theory
	4-11-12
b) There was a mistake in	the Tel I a
Multising circuit was not c	ontracted properly which resulted in
V, = 8.36. This value should	d have been 418 V as seen in
the experiment and touble 6.0	. There was a little
	night have been due to apparatus
not fixed properly or due	to frictional forces.
of les	i test
ii) Yes! the experiment verified	I the direct maximum power
transfer theorem.	Concernit Leanue 1
10.17	Complete and the
() $V_{\pm} = V_{x_1} + V_{x_2}$ and $I_{x_1} = V_{x_1} + V_{x_2}$	1x + 1x2, these equations
were satisfied. There was	difference between the readings
with ± 0.01 uncertainty.	1.000
(St. S.	Land (1977) I Take
The readings are almost id	sentical, just that environmental
conditions of experiment led t	to the expainmental readings to
withe different differ by	40.02
	*