Robotic Perception Camera Model

Yezhou Yang, Ph.D.
Assistant Professor
Zhiyuan Fang, Teaching Assistant
Arizona State University

Camera Model

Pinhole Camera Model

Camera Model

A camera is a mapping between the 3D world and a 2D image

Camera Model

A camera is a mapping between the 3D world and a 2D image

Camera

Pinhole cameras

Pinhole Cameras

- First photograph due to Niepce
- First on record shown in the book 1822
- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice

Three Coordinate Systems

Coordinate Systems

- World coordinate frame: 3D coordinates fixed in the real world.
- Camera coordinate frame: 3D coordinates fixed in the camera. Origin of the camera coordinates is at the center of projection of the camera.
- Image coordinate frame: 3-vector (x, y, 1). Origin is in the top-left corner of the image.

Three Coordinate Systems

World coordinate frame

- 3D coordinates fixed in the real world.

Properties of Projection

- 3D coordinates fixed in the real world.
- Lines project to lines
- Planes project to the whole image or part of the image
- Angles are not preserved
- Degenerate cases Line through focal point projects to a point.
- Plane through focal point projects to line
- Plane perpendicular to image plane projects to part of the image (with horizon).

Basic Transformations

Translation	y = x + t	$\left(\begin{array}{cc} I & \mathbf{t} \\ 000 & 1 \end{array}\right)$
Rotation	y = Rx	$\left(\begin{array}{cc} R & 0 \\ 000 & 1 \end{array}\right)$
Rigid	y = Rx + t	$ \left(\begin{array}{cc} R & t \\ 000 & 1 \end{array}\right) $
Affine	y = Ax + t	(A t 000 1)
Projective		4×4 matrix M

Related Materials

- Camera Projection Lecture 12, CSE486, Penn State, Robert Collins
- The perspective camera model, Thomas Opsahl
- Camera Models, CSC418, Allan Jepson
- Camera Matrix, Kris Kitani
- CS231A Course Notes 1: Camera Models Kenji Hata and Silvio Savarese