Zimmermann Mathe2 6.1.2014

Aufgabe 1 (33 Punkte)

Die Aufgaben zum Thema Kryptologie finden Sie auf einem separaten Aufgabenblatt.

Aufgabe 2 (18 Punkte)

Kreuzen Sie in den folgenden Multiple Choice Aufgaben **maximal** je 3 Antworten als richtig an. Tipp: Nehmen Sie sich für das Lesen und Verstehen der Aufgabenstellung viel Zeit, ansonsten verlieren Sie unnötig viele Punkte.

Bewertungshinweis:

größte Element a.

von M.

- Wenn Sie mehr als drei Kreuze pro Frage ankreuzen, erhalten Sie keine Punkte.
- Haben Sie alle richtigen Antworten angekreuzt, erhalten Sie die volle Punktzahl.
- Haben Sie eine richtige Antwort zu wenig angekreuzt, erhalten Sie die halbe Punktzahl.
- Ansonsten erhalten Sie keine Punkte

Ansonsten ernalten Sie keine Punkte.
(2.1) (3 Punkte) Seien $R_1 \subseteq M_1 \times M_2$, $R_2 \subseteq M_2 \times M_3$ und $R_3 \subseteq M_3 \times M_4$ beliebige Relationen
und $I = \{(x,x) x \in M\}.$
Es gilt:
$\square R_1 \circ R_1^{-1} = R_1^{-1} \circ R_1 = I.$
\square R ⁻¹ ist nur definiert, wenn R $\neq \emptyset$.
$\square (R_1^{-1})^{-1} = R_1.$
$\square (R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
$\square (R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}.$
$\square (R_1 \circ R_2)^{-1} = R_1^{-1} \circ R_2^{-1}.$
$\square R_1 \circ R_2 = R_2 \circ R_1.$
(2.2) (3Punkte) Sei M eine nichtleere Menge und R , $S \subseteq M \times M$ eine beliebige Relation.
☐ Wenn R irreflexiv ist, ist R ⁻¹ auch irreflexiv.
☐ Wenn R nicht irreflexiv ist, ist R reflexiv.
☐ Wenn R asymmetrisch ist, so ist R antisymmetrisch.
☐ Wenn R symmetrisch und transitiv ist, so ist R auch reflexiv.
□ Wenn R und S symmetrisch sind, dann ist auch R ∪ S symmetrisch.
□ Wenn R und S transitiv sind, dann ist auch R ∪ S transitiv.
(2.3) (3 Punkte) Sei M eine beliebige nichtleere Menge und $A \subseteq M$ eine beliebige Teilmenge. Sei \sqsubseteq eine beliebige Ordnungsrelation in M .
☐ Wenn A nichtleer ist, dann hat A ein größtes Element.
☐ Wenn A nichtleer ist, dann hat A ein maximales Element.
\square Wenn a $\in M$ ein beliebiges Element ist, dann hat die Menge [??] Schranken von {a} das

 \square Wenn M = \mathbb{N}_0 und die Ordnungsrelation die Teilbarkeit ist [?existiert?] das größte Element

☐ Wenn A eine obere Schranke hat, dann ist A nicht leer.

☐ Wenn A leer ist, dann ist jedes Element von M untere Schranke.

	nn Mathe2 6.1.2014 4) (3 Punkte) Sei M eine beliebige nichtleere Menge und A \subseteq M eine beliebige Teilmenge. Sei \equiv be beliebige Äquivalenzrelation in M .
	□ Wenn x ∈ M verschieden von y ∈ M ist, dann sind die Äquivalenzklassen von x und y elementfremd.
	\square Wenn die Äquivalenzklassen von $x \in M$ und $y \in M$ verschieden sind, dann sind x und y verschieden.
	□ Wenn die Äquivalenzklassen von x ∈ M und y ∈ M gleich sind, dann sind x und y gleich.
	Wenn zwei Äquivalenzklassen ein gemeinsames Element haben sind sie gleich.
	☐ Jede Äquivalenzklasse hat einen eindeutig festgelegten Repräsentanten.
	☐ Äquivalenzklassen sind immer nichtleer.
(2	5) (3 Punkte) Seien $R_1:M_1\to M_2$ und $R_2:M_2\to M_3$ beliebige Abbildungen.
	Dafür, dass R₁ ∘ R₂ surjektiv ist,
	☐ ist hinreichend, dass R₂ surjektiv ist.
	☐ ist notwendig, dass R₂ surjektiv ist.
	☐ ist hinreichend, dass R ₁ surjektiv ist.
	☐ ist notwendig, dass R₁ surjektiv ist.
	☐ ist notwendig, dass R ₁ oder R ₂ surjektiv ist.
	\square ist hinreichend, dass R_1 und R_2 surjektiv sind.
	☐ ist notwendig, dass R₁ injektiv ist.
	\square ist hinreichend, dass R_1 surjektiv und R_2 injektiv sind.
	☐ ist notwendig und hinreichend, dass R₁ und R₂ surjektiv sind.
	☐ ist weder notwendig noch hinreichend, dass R1 surjektiv ist.
(2	6) (3 Punkte) Sei (G, ∘) eine Gruppe.
	Welche der folgenden Aussagen ist richtig?
	$egin{aligned} \Box$ Die Gleichung $a\circ x=b$ ist für beliebige $a\in G$ und $b\in G$ immer durch ein $x\in G$ lösbar.

G lösbar. Diese Lösung ist eindeutig.

ullet Die Gleichung $x \circ a = b$ ist für beliebige $a \in G$ und $b \in G$ immer durch ein $x \in G$

 \square Die Gleichungen $a \circ x = b$ und $x \circ a = b$ sind für beliebige $a \in G$ und $b \in G$

immer durch ein $x \in G$ lösbar. Diese Lösung ist eindeutig.

 \square Es gibt genau ein $e \in G$, so dass für alle $a \in G$ gilt: $a \circ e = e \circ a = a$.

 \square Es gibt genau ein $e \in G$, so dass für alle $a \in G$ gilt: $a \circ e = e \circ a = e$.

 \square Es gibt genau ein $a' \in G$, so dass für alle $a \in G$ gilt: $a \circ a' = a' \circ a = e$.

Aufacha	2	۱۸	Dunkta)	
Aufgabe	J	(3	runkte)	

Sei *M* = {*a*,*b*,*c*}. Geben Sie ein Beispiel für eine Relation *R* ⊆ *M* x *M* an, die

(3.1) (3 Punkte) irreflexiv, symmetrisch aber nicht transitiv ist.

(3.2) (3 Punkte) reflexiv, antisymmetrisch und transitiv ist.

(3.3) (3 Punkte) antisymmetrisch aber nicht asymmetrisch und nicht symmetrisch ist.

Aufgabe 4 (21 Punkte)

Sei $M = \mathbb{R}$ die Menge aller reellen Zahlen. Die Relation \equiv sei durch

$$X \equiv y \iff X^2 = y^2$$

definiert. $x \equiv y$ heißt nichts anderes, als dass x und y denselben Betrag haben.

(4.1) (3 Punkte) Geben Sie die formale Definition einer Äquivalenzrelation $\equiv\subseteq M\times M$. (Mit Quantoren, nur Eigenschaften aufzählen reicht nicht!)

(4.2) (6 Punkte) Beweisen Sie, dass es sich bei \equiv um eine Äquivalenzrelation handelt.

(4.3) (2 Punkte) Geben Sie die Äquivalenzklassen von 1 und 0 an.

7immermann	Mathe2	6.1.2014
Zimmermann	Maniez	0.1.2014

(4.4) (10 Punkte) Beweisen Sie oder widerlegen Sie, dass die durch $[x]_= \oplus [y]_= = [x+y]$ definierte Addition bzw. das durch $[x]_= \odot [y]_= = [x\cdot y]$ definierte Produkt unabhängig vom Repräsentanten ist.

Aufgabe 5 (19 Punkte)

Rechnen in Restklassenstrukturen

(5.1) (2 Punkte) Dass eine Aufgabe nicht eindeutig lösbar ist, kann zwei Gründe haben. Welche sind das? Bitte antworten Sie mit zwei deutschen Sätzen.

- (5.2) (6 Punkte) Welche der folgenden Aufgaben ist eindeutig lösbar? Schreiben Sie "eindeutig lösbar" / "nicht eindeutig lösbar" hinter die Aufgabe.
 - 1. $[16]_{64} \cdot [x]_{64} = [8]_{64}$
 - 2. $[17]_{64} \cdot [x]_{64} = [16]_{64}$
 - 3. $[18]_{64} \cdot [x]_{64} = [32]_{64}$
- (5.3) (11 Punkte) Berechnen Sie die Lösung der Gleichung [207]₅₈₁₄ · $[x]_{5814} = [45]_{5814}$