KING SAUD UNIVERSITY **COLLEGE OF COMPUTER AND INFORMATION SCIENCES COMPUTER SCIENCE DEPARTMENT CSC 329: Computer Network** Tutorial 5 and 6 2nd Semester 1441 Name:

<u>Pa</u>

Stud	ent ID:
art1: Multiple-Choice Questions	
1) The Hamming code is a method of	
a. Error detection	
b. Error correction	
c. Error encapsulation	
d. (a)and(b)	
2) A receiver receives the code 11001100111. Walgorithm, the result is 0101. Which bit is in eral a. 1 b. 3 c. 5	8
d. none of the above	
3) Which error detection method involves poly	nomials?
a. Simple parity check	
b. Two-dimensional parity check	
<mark>c. CRC</mark> d. Checksum	
d. Checksum	
4) In CRC, if the data unit is 111111 and the the transmitter?	divisor 1010, what is the dividend at
a.111111000	
b.1111110000	
c.111111 d.111111010	
u .1111111010	
5) In CRC there is no error if the remainder at	the receiver is

- a. Equal to the remainder at the sender
- b. Zero
- c. Nonzero
- d. The quotient at the sender

6) Which error detection method can detect a burst error?
a. simple parity check
b. Two-dimensional parity check
c. CRC
d. (b) and (c)
7) Which error detection method uses ones complement arithmetic?
a. Simple parity check
b. Two-dimensional parity check
c. CRC
d. Checksum
8) Flow control is needed to prevent
a. Bit errors
b. Overflow of the sender buffer
c. Overflow of the receiver buffer
d. Collision between sender and receiver
9) A timer is set when is (are) sent out.
a. A data frame
b. An ACK
c. A NAK
d. All the above

Part2: Exercises

1) Hamming code is a technique that is used to achieve forward error control. This allows a receiver to correct any single error, if any, in the received message. If the transmitted character is **01001010**, generate the Hamming codeword.

Implementing the Hamming codeword

We have the following redundant bits: r₁,r₂,r₄,r₈

	11			_		_				_	-
0	1	0	0	r8	1	0	1	r4	0	r ₂	\mathbf{r}_1

Each one of them is responsible for the following bits:

r₁: 1, 3, 5, 7, 9, 11 r₂: 2, 3, 6, 7, 10, 11 r₄: 4, 5, 6, 7,12

*r*₈: 8, 9, 10, 11, 12

0	1	0	0	r ₈	1	0	1	r4	0	r ₂	\mathbf{r}_1
0	1	0	0	r8	1	0	1	r4	0	r ₂	1
0	1	0	0	r ₈	1	0	1	r4	0	0	1
0	1	0	0	r8	1	0	1	0	0	0	1
0	1	0	0	1	1	0	1	0	0	0	1

2) Assume that the **received** Hamming codeword is:

11	10	9	8	7	6	5	4	3	2	1
1	0	1	0	0	1	1	0	0	1	0

Deduce the original data word from the above codeword after correction if any error.

To check the received data we will calculate the party bit for each combination

 $r1: 1,3,5,7,9,11 (3) \rightarrow 1$ $r2: 2,3,6,7,10,11 (3) \rightarrow 1$

r4: 4,5,6,7 (2) \rightarrow 0 r8: 8,9,10,11 (2) \rightarrow 0

r8 r4 r2 r1

 $0 \ 0 \ 1 \ 1 \rightarrow \text{error in bit in position 3 should be 1}$

The Correct code word is

11	10	9	8	7	6	5	4	3	2	1
1	0	1	0	0	1	1	0	1	1	0

Data word is 1010111

3) Given the sequence 1 0 0 1 1 1 1 1 and a divisor of 10011, find the CRC.

4) Assume that the following frame (1 1 0 0 1 1 0 1 0 1 1 0) is received across a data link using CRC for error detection. And the divisor is represented by the equation of $x^4 + x + 1$. Check whether the received frame is correct or incorrect. If the frame is correct, then deduce the original message.

5) Find the polynomial equivalent of **011000111001**.

$$x^{10} + x^9 + x^5 + x^4 + x^3 + 1$$

6) Find the checksum for the following bit sequence. Assume a 16-bit segment size.

0001111010110001 1001001001000111

7) Suppose the receiver receives

1001001110010011 1001100001001101 0100111100000111

Check if the data received has error or not by using Checksum.

Complement 1000010100010111 means that the pattern is corrupted.

- 8) Draw the sender and receiver flow diagram for a system using Stop-and-Wait ARQ. Given the following actions:
 - a. **Frame 0** is sent; frame 0 is acknowledged.
 - b. **Frames 1** is lost.
 - c. **Frame 1** is acknowledged.
 - d. **Frames 0** is sent; frame 0 is acknowledged but the acknowledgment is lost.
 - e. **Frame 0** is acknowledged.

