

Topic 1 Content

This lecture covers:

- Systems of Units.
- Charge, Current and Voltage.
- Power and Energy.
- Independent and Dependent Sources.
- Resistors and Ohm's law.
- Diodes.

Corresponds to Chapter 1 and parts of Chapter 2 of your textbook

Systems of Units

- We need a consistent system of units to describe electrical quantities (e.g. voltage, current) in a circuit.
- The International System of Units (SI Units), is built upon the seven base or fundamental units below.

Quantity	Unit Name	Unit Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	S
Temperature	Kelvin	K
Electric current	Ampere	А
Amount of substance	mole	mol
Luminous intensity	Candela	Cd

Further reading: http://physics.nist.gov/cuu/Units/units.html

http://physics.nist.gov/cuu/Units/current.html (historical context)

Systems of Units

SI derived units

- Derived quantities are defined in terms of the seven base quantities.
- SI derived units are obtained from the seven SI base units according to the expression below.

Quantity	Unit Name	Expression	Symbol
Frequency	Hertz	S ⁻¹	Hz
Force	Newton	kg.m/s ²	N
Energy (work)	Joule	N.m	J
Power	Watt	J/s	W
Electric Charge	Coulomb	A.s	С
Electric potential	Volt	W/A	V
Resistance	Ohm	V/A	Ω
Conductance	Siemens	A/V	S
Capacitance	Farad	C/V	F
Magnetic flux	Weber	V.s	Wb
Inductance	Henry	Wb/A	Н

Systems of Units

Multiples and Prefixes

Factor	Name	Symbol
10-1	deci	d
10-2	centi	С
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10 ⁻¹²	pico	р
10-15	femto	f

Factor	Name	Symbol
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10 ²	hecto	h
10 ¹	deka	da

600,000,000 mm = 600,000 m = 600 km

Electric Charge

- Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- One coulomb is the total charge possessed by 6.25×10^{18} electrons, so a single electron has a charge $e = -1.6 \times 10^{-19}$ C.
 - This value is also called electronic charge. The charges that occur in nature are integral multiples of the electronic charge.
- Protons carry positive charge of the same magnitude.
- Charge cannot be created or destroyed, only transferred (law of conservation of charge).
 - This is an important law as it will help us define many of the laws we use in the analysis of electric circuits.

Notation

- *Q* : Constant charge
- q(t) or q: Instantaneous or time-varying charge

1. How many Coulombs do 93.75×10¹⁶ electrons represent?

2. How many electrons does it take to have 2 C of charge?

One Coulomb is the total charge possessed by 6.25×10^{18} electrons, so a single electron has a charge of -1.6×10^{-19} C.

- Electric charge moves, and movement of charge from one place to another results in a transfer of energy.
- Electric current is defined as the time rate of change of charge past a given point (or rate of flow of electrons in a conductor).

$$i \triangleq \frac{dq}{dt}$$

 Current is measured in amperes (A), which are coulombs per second.

$$1 A = 1 \frac{C}{s}$$

http://ajitvadakayil.blogspot.com.au/2010/06/basics-for-chemical-tankerman-capt-ajit.html

Notation

- *I* : Constant current
- *i*(*t*) or *i*: Instantaneous or time-varying current

Remark: Since we use "i" as current, complex numbers in electrical engineering are represented with "j". This will come up again in Topic 7!

- Historically, moving charges were thought to be positive.
- Practically, both negative and positive charges are moving when compelled by an electromotive force.
- In metallic conductors, current is created by negatively-charged electrons.
- By <u>convention</u>, the direction of current is the net flow of positive charge.

Convention

- Standard way of describing something so that others in the profession understand what we mean.
- IEEE conventions will be used, e.g., for notations like Q as constant charge.

Charge calculation given a current

• Since $i \triangleq \frac{dq}{dt}$, then charge can be calculated from current as:

$$q = \int_{-\infty}^{t} i \, d\tau = \int_{0}^{t} i \, d\tau + q(0)$$

where q(0) is the charge at t = 0 and i(t) = 0 for $t \le 0$.

• For a given time interval $(t_0 \le t \le t_1)$:

$$q = \int_{t_0}^{t_1} i \, dt + q(t_0)$$

If nothing is mentioned about initial values (integral constant), we assume zero. This is known as zero initial conditions.

Determine the total charge transferred over the time interval $0 \le t \le 10s$ when the current is $i(t) = \frac{1}{2}t A$.

Current value and direction

- Current is described by its value and direction.
- By convention, the direction can be chosen arbitrarily in circuits.
- The algebraic sign of the current and the relevant circuit laws will ultimately determine the actual direction in which the current is flowing.
- A positive current through an element is equivalent to a negative current flowing in the opposite direction. E.g. the following two currents are the same:

DC vs AC current

- Direct Current (DC): A current whose direction remains constant with time.
- Alternating Current (AC): A time-varying current that changes direction at regular intervals.

Voltage

- Electrons move when there is a difference in charge between two locations. This difference is expressed as a *potential* difference or voltage.
- Voltage is defined as the energy (w)
 required to move a unit of charge (q) from a
 reference point to another point.

$$v \triangleq \frac{dw}{dq}$$

 Voltage is measured in volts (V) and energy in joules (J). Volts are joules per coulombs:

$$1 V = 1 \frac{J}{C}$$

Notation

- *V* : Constant voltage
- v(t) or v: Instantaneous or time-varying voltage

Voltage

Voltage value and polarity

- Voltage is described by its value and polarity (+ and signs).
- By convention, the polarity can be chosen arbitrarily in circuits.
- The algebraic sign of the voltage and the relevant circuit laws will ultimately determine the actual polarity.
- A positive voltage across a component is equivalent to a negative voltage with reverse polarity. E.g. the following two voltages are the same:

Remark: Adding the signs of the voltage in all of your figures can be extremely helpful in avoiding mistakes.

Voltage

DC vs AC voltage

- DC voltage: A voltage with fixed polarity.
- AC voltage: A time-varying voltage with alternating polarity over time.

Time-varying voltage

 If on average 10 C of electric charge pass a given point in a wire in 1000 s, what is the mean current in that wire?

• 0.1 C of electric charge has 100 J of energy. What is the voltage of that charge?

$$i \triangleq \frac{dq}{dt} \; ; \; v \triangleq \frac{dw}{dq}$$

Power

- Current and voltage alone are not sufficient to describe the amount of energy consumed by an electric element.
- Power is defined as the rate of change of energy (w).

$$p = \frac{dw}{dt}$$

 Also, power is the product of the voltage across an element and the current flowing through it.

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = v \cdot i \quad \Rightarrow \quad p = vi$$

 Power is measured in watts (W), which are joules per second.

$$1 W = 1 \frac{J}{s}$$

Notation

- P: Constant power
- p(t) or p: Instantaneous or time-varying power

Power

Passive Sign Convention

- The direction of current flowing through an element and the polarity of voltage across that element define the algebraic sign of the power.
- Positive power is power absorbed or dissipated by an element.
 Negative power is power supplied or generated by an element.
- Power is positive when the current enters through the positive terminal of an element (p = +vi, Fig. (a)).

Power is negative when the current enters through the negative terminal of the element (p = -vi, Fig. (b))

Absorbed or Supplied?

Power

Power transfer

- When elements are connected together in a circuit, power can be transferred from some to others.
- In the following case, element A is supplying and element B is absorbing power. Therefore, power is transferred from A to B.

How much power is being transferred between elements A and B?

 Is the power transfer going from A to B, or from B to A? (take sign convention into account).

Power

Conservation of Energy

- There can be multiple elements in a circuit. Some elements can supply or generate power and others may absorb or dissipate power.
- Also, in a circuit, energy cannot be created or destroyed (law of conservation of energy), so the net power balance should be zero.
- This can be examined by calculating the power supplied or absorbed by each element.

Total power supplied = Total power absorbed

$$\sum p_s = \sum p_a$$

$$\sum p = 0$$

Check the net power balance in the following circuit:

Calculate the power (p=vi) produced or consumed by each element and add all values.

Energy

- Energy is the capacity to do work.
- Energy can be calculated from power:

$$p = \frac{dw}{dt} \to w = \int p \, d\tau$$

Notation

- W: Constant energy
- w(t) or w: Instantaneous or time-varying energy

For a given time interval $(t_0 \le t \le t_1)$:

$$w = \int_{t_0}^{t_1} p \, dt + w(t_0) = \int_{t_0}^{t_1} vi \, dt + w(t_0)$$

- Energy is measured in joules (J).
- Another common unit for energy in electrical engineering is the watthour (Wh) or kilowatt-hour (kWh).

1 Wh =
$$3,600 \text{ J}$$
 and $1 \text{ kWh} = 3,600,000 \text{ J}$

Electric circuits

- An electric circuit is an interconnection of electrical elements.
- It may consist of only two elements or many more.

Independent sources

 An ideal independent source is a circuit element that provides a specified voltage or current, and that is completely independent of any other voltage or current in the circuit.

Ideal voltage source

- Generates or dissipates power at a specified voltage with whatever current is required.
- The voltage is known at the terminals, but the current is not.

v + -

Independent voltage source

Ideal current source

- Generates or dissipates power at a specified current with whatever voltage is required.
- The current is known through the terminal, but the voltage is not.

Independent current source

Independent sources

Connected sources

- Since sources can generate and dissipate power, they can be connected.
- In the following example:
 - The voltage source sets the voltage v to 10V, with the upper wire being positive.
 - The current source sets the current i to 1 A flowing anticlockwise.
 - 10 W of power is generated by the current source and dissipated by the voltage source.

Dependent sources

- An ideal dependent (controlled) source is a circuit element whose output value is controlled by another voltage or current in a circuit.
- There are four types:
 - Voltage-controlled voltage source (VCVS).
 - Current-controlled voltage source (CCVS).
 - Voltage-controlled current source (VCCS).
 - Current-controlled current source (CCCS).

Dependent sources

- The symbol indicates the type of source (voltage or current).
- The expression next to the symbol indicates whether it is voltagecontrolled or current-controlled.
 - The example below shows a voltage-controlled current source.

Find i₁ in the following circuit.

Ideal vs Real sources

- Ideal voltage and current sources can generate/dissipate infinite power, while actual voltage and current sources have limited output power:
 - Real voltage sources have an upper current limit.
 - Real current sources have an upper voltage limit.
- Ideal voltage sources have no internal resistance (series), while real voltage sources have a very low, but non-zero internal resistance.
- Ideal current sources have infinite internal resistance (parallel), while real current sources have a very high, but non-infinite internal resistance.

Resistivity

• **Resistivity** (ρ) is a measure of the ability to resist the flow of charge by a certain material.

Material	Resistivity	Usage
Silver	1.64×10 ⁻⁸	Conductor
Copper	1.72×10 ⁻⁸	Conductor
Aluminum	2.8×10 ⁻⁸	Conductor
Gold	2.45×10 ⁻⁸	Conductor
Carbon	4×10 ⁻⁵	Semiconductor
Germanium	47×10 ⁻²	Semiconductor
Silicon	6.4×10 ²	Semiconductor
Paper	10 ¹⁰	Insulator
Mica	5×10 ¹¹	Insulator
Glass	10 ¹²	Insulator
Teflon	3×10 ¹²	Insulator

Resistance

- Resistance is a physical property of a circuit element that impedes the flow of charge. It is measured in Ohms, Ω.
- The resistance R of a conducting wire of uniform cross-section is a function of its length, l, cross sectional area, A, and material's resistivity, ρ.

$$R = \rho \frac{l}{A}$$
Material with resistivity ρ
Cross-sectional area A

Resistance

Resistor

 Resistor is the circuit element which models the current-resisting behaviour of a material.

Resistor

- The voltage across a resistor is directly **proportional** to the current flowing through it.
- The constant of proportionality is the resistance, R.
- Ohm's law states:

$$v = Ri$$

• Resistance is measured in Ohms, Ω , which are volts per ampere.

$$R = \frac{v}{i} = \frac{1 \text{ V}}{1 \text{ A}} = 1 \Omega$$

 Calculate the current flowing through the resistor in the following circuits:

Conductance

- Conductance is the ability of an element to conduct electric current.
- It is the reciprocal of resistance.
- Conductance G is measured in mho (℧) or siemens (S). Siemens are amperes per volt.

$$G = \frac{1}{R} = \frac{i}{v}$$

$$1S = 10 = 1\frac{A}{V}$$

Linear vs nonlinear resistance

Linear

- Resistors have linear resistance. They obey Ohm's law.
- Their current-voltage (i-v) graph or v-i characteristic is a straight line passing through the origin with positive slope (Fig.(a)).

Nonlinear

- Some circuit elements have nonlinear resistance, so they do not obey Ohm's law.
- Resistance varies with current.
- A sample *i-v* graph of an element with nonlinear resistance is shown in Fig.(b).
- Examples of this are incandescent light bulbs.

Fixed and variable resistors

- Resistors can be fixed or variable.
- Most resistors are of the fixed type, meaning their resistance remains constant.

For further reading: http://www.resistorguide.com/

Polarity convention

- Resistors are passive elements which always dissipate power.
- Ohm's law requires conforming to the passive sign convention.
 - Current flows from the higher potential (positive terminal) to the lower potential (**negative terminal**).

$$i = \frac{v}{R} = \frac{6 \text{ V}}{3 \Omega} = 2 \text{ A}$$

$$i = \frac{v}{R} = \frac{6 \text{ V}}{3 \Omega} = 2 \text{ A}$$
 $i = -\frac{v}{R} = -\frac{6 \text{ V}}{3 \Omega} = -2 \text{ A}$

Power dissipation

 Using Ohm's law, we can derive two forms of the power equation for resistors:

1.
$$\begin{cases} p = vi \\ v = Ri \end{cases}$$

$$p = Ri^{2}$$

$$2. \begin{cases} p = vi \\ i = \frac{v}{R} \end{cases}$$

$$p = \frac{v^{2}}{R}$$

 Power in a resistor is always positive, since resistors always dissipate power (they can never generate power).

- Voltage v across the resistor?
- Current *i* through the resistor?
- Dissipated power p?
- Conductance G?

- Current i going through the resistor?
- Voltage v across the resistor?
- Dissipated power p?
- Conductance G?

Short and open circuits

- A circuit element with almost zero resistance is called a short circuit.
 - Voltage in a short circuit is zero.
 - Ideally, any current may flow through a short circuit.
- A circuit element with infinite resistance is called an open circuit.
 - Current in an open circuit is zero.
 - Ideally, any voltage may drop across an open circuit.

Diodes

- A diode is a semiconductor electrical component that allows the flow of current in only one direction.
- Current flows in the direction of the arrow, and not against the direction of the arrow.
- Voltage is required to start current flow in the forward direction.
 - When v_d > forward voltage, the diode is **forward biased**, and i_d > 0.
 - When v_d < forward voltage, the diode is **reverse biased**, and i_d ≈ 0.

Diodes

There are many different types of diodes

Small Signal Diodes

Laser diodes and photodiodes

Simplified diode characteristic

- Diodes have a *non-linear v-i* characteristic.
 - When the diode is forward biased, it behaves as a voltage source of value v_f V.
 - When the diode is reverse biased, it behaves as an open circuit (i = 0).

Analysis of circuits with diodes

Split into two cases:

- $V_{in} < V_f$ (reversed biased \rightarrow 'off')

 No current flows through diode $\Rightarrow i = 0$ and v = 0
- $V_{in} < V_f$ (forward biased \rightarrow 'on')

Diode has voltage $v_d = V_f$, so $v = V_{in} - V_f$ (according to KVL, as we will see in Lecture 2), and $v = V_{in} - V_f$

$$i = \frac{v}{R} = \frac{V_{in} - V_f}{R}$$

When a diode is 'on', it **always** has a voltage drop of V_f across it

 Calculate the current flowing through the resistor in the following circuit:

Full diode characteristic

The diode can be better modelled using Shockley's equation.
 In its simplest form:

Questions?

