

UNIVERSIDADE FEDERAL DA PARAÍBA

Centro de Informática

Disciplina: Arquitetura de Computadores I

Professor: Hamilton

Primeiro Projeto de Arquitetura de Computadores I

CAROLINA MELO

FELIPE SILVA LIMA

MICHEL ADELINO DA SILVA

PEDRO ALVES DA SILVEIRA

1. INTRODUÇÃO

Foi solicitado um projeto para um sistema dedicado baseado no microprocessador 8086 com as seguintes características:

- a) Capacidade de memória 1MBytes utilizando Circuitos Integrados de memória RAM e PROM de 64kBytes.
- b) Capacidade de endereçamento de dispositivos de e/s de até 16 controladoras de 16 endereços cada um ser capaz de expandir esse endereçamento.

2. DESENVOLVIMENTO

Considerando que o 8086 é um microprocessador de 16 bits e possui um espaço de endereçamento de 20 bits, o que lhe dá uma capacidade total de endereçamento de 1 MByte.

2.1 Memória:

Para atingir a capacidade de 1 MByte utilizando C.I's de memória RAM e PROM de 64 KBytes:

RAM: Precisaria de 16 chips de RAM de 64 KBytes para totalizar 1 MByte (16 x 64 KBytes = 1 MByte).

PROM: Supondo que se queira dividir o espaço igualmente entre RAM e PROM, logo se precisaria de 8 chips de PROM de 64 KBytes e 8 chips de RAM de 64 KBytes.

2.2 Dispositivos de E/S:

O 8086 tem 20 linhas de endereçamento, porém como desejamos endereçar dispositivos de E/S, podemos usar portas de I/O mapeadas. Para um total de 16 controladores com 16 endereços cada:

Decodificador de Endereço: Utiliza-se um decodificador de endereço que pode identificar a faixa de endereços de cada controlador.

Para expandir o endereçamento, poderíamos implementar um esquema de barramento de dados multiplexado, que permite o uso de menos linhas de endereçamento para mais dispositivos, alternando entre elas conforme necessário.

2.3 Diagramas

Diagrama de sistema dedicado baseado no microprocessador 8086, com circuito integrado de memória RAM e 16 endereços.

Aderimos o LucidChart no modo equipe como ferramenta de desenho e desenvolvimento de diagramas para fazermos o esquema do projeto.

Notas:

Em implementações reais, as linhas de controle, como RD e WR, gerenciam as operações de leitura e escrita, as linhas de endereço identificam os locais de memória ou portas de I/O específicas, e as linhas de dados transportam as informações efetivas entre o processador e outros componentes do sistema.

3. CONCLUSÃO

Neste projeto, nos envolvemos na prática de como um processador 8086 trabalha com memória e dispositivos externos. Montamos um sistema com 1 MByte de memória, usando chips de memória RAM e PROM. Para os dispositivos de entrada e saída, usamos um decodificador de endereço para mostrar como o 8086 gerencia as informações que vêm e vão.

Desenhamos os diagramas com o LucidChart, que nos ajudou a visualizar como tudo se conecta e funciona junto. Isso não só cumpriu com o que foi pedido, mas também nos fez entender melhor como criar sistemas de computador.

Através deste projeto, ficou claro como teoria e prática se encontram e como é importante entender os detalhes para fazer tecnologia de computador que realmente funciona. Aprendemos bastante montando esse sistema e vimos como os componentes se falam num computador.

4. REFERÊNCIA

TANENBAUM, Andrew S.; ZUCCHI, Wagner Luiz. Organização estruturada de computadores. Pearson Prentice Hall, 2009.