

Exponential Flocking under Communication Failures for some Cucker-Smale models

Benoît Bonnet (in collaboration with É. Flayac)

Weekly seminar of the INRIA team MAMBA LJLL, Paris-Sorbonne University

March 8, 2021

Outline of the talk

Multi-agent systems and pattern formation

A quick overview of the Cucker-Smale flocking

Cucker-Smale flocking under communication failures

Outline of the talk

Multi-agent systems and pattern formation

A quick overview of the Cucker-Smale flocking

Cucker-Smale flocking under communication failures

Multi-agent systems – *Some illustrations*

A multi-agent system is a large ensemble of interacting things

Introduction – Pattern formation

Central observation (pattern formation)

Interacting multi-agent systems may form interesting global structures starting from elementary interaction rules.

Examples of classical patterns

- Consensus (everybody tends to agree on something) :
 - → aggregation models in biology, opinion models, etc...
- Flocking (everybody goes in the same direction)
 - → flocks of birds, herds analysis, opinion formation, etc...

Introduction – Pattern formation

Central observation (pattern formation)

Interacting multi-agent systems may form interesting global structures starting from elementary interaction rules.

Examples of classical patterns

- Consensus (everybody tends to agree on something) :
 - → aggregation models in biology, opinion models, etc...
- Flocking (everybody goes in the same direction)
 - → flocks of birds, herds analysis, opinion formation, etc...

Introduction – Pattern formation

Central observation (pattern formation)

Interacting multi-agent systems may form interesting global structures starting from elementary interaction rules.

Examples of classical patterns

- Consensus (everybody tends to agree on something) :
 - → aggregation models in biology, opinion models, etc...
- Flocking (everybody goes in the same direction) :
 - → flocks of birds, herds analysis, opinion formation, etc...

Let $N \ge 1$ and $(x, v) := (x_1, \dots, x_N, v_1, \dots, v_N) \in (\mathbb{R}^{2d})^N$ be s.t.

(CS')
$$\begin{cases} \dot{x}_{i}(t) = v_{i}(t), \\ \dot{v}_{i}(t) = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|x_{i}(t) - x_{j}(t)|) (v_{j}(t) - v_{i}(t)), \end{cases}$$

where

- \diamond $\phi(\cdot)$ is **radial** \leadsto interactions depend on **relative distance**,
- \Rightarrow $\xi_{ij}(\cdot) \in L^{\infty}(\mathbb{R}_+,[0,1])$ are symmetric communication rates

→ Intuitive idea: each agent tries to align its velocity with that of the other agents, with a weight depending on their relative distance.

Main question for today

Under which hypotheses will (CS') converge towards alignment ?

Let $N \ge 1$ and $(x, v) := (x_1, \dots, x_N, v_1, \dots, v_N) \in (\mathbb{R}^{2d})^N$ be s.t.

(CS')
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|x_i(t) - x_j(t)|) (v_j(t) - v_i(t)), \end{cases}$$

where

- $\diamond \ \phi(\cdot)$ is radial \leadsto interactions depend on relative distance,
- $\diamond \; \xi_{ij}(\cdot) \in L^{\infty}(\mathbb{R}_+,[0,1])$ are symmetric communication rates

→ Intuitive idea: each agent tries to align its velocity with that of the other agents, with a weight depending on their relative distance.

Main question for today

Under which hypotheses will (CS') converge towards alignment ?

Let $N \ge 1$ and $(x, v) := (x_1, \dots, x_N, v_1, \dots, v_N) \in (\mathbb{R}^{2d})^N$ be s.t.

(CS')
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|x_i(t) - x_j(t)|) (v_j(t) - v_i(t)), \end{cases}$$

where

- \diamond $\phi(\cdot)$ is **radial** \leadsto interactions depend on **relative distance**,
- $\Rightarrow \; \xi_{ij}(\cdot) \in L^\infty(\mathbb{R}_+,[0,1])$ are symmetric communication rates

→ Intuitive idea: each agent tries to align its velocity with that of the other agents, with a weight depending on their relative distance.

Main question for today

Under which hypotheses will (CS') converge towards alignment?

Let $N \ge 1$ and $(x, v) := (x_1, \dots, x_N, v_1, \dots, v_N) \in (\mathbb{R}^{2d})^N$ be s.t.

(CS')
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|x_i(t) - x_j(t)|) (v_j(t) - v_i(t)), \end{cases}$$

where

- \diamond $\phi(\cdot)$ is **radial** \leadsto interactions depend on **relative distance**,
- \diamond $\xi_{ij}(\cdot) \in L^{\infty}(\mathbb{R}_+, [0,1])$ are symmetric communication rates

→ Intuitive idea: each agent tries to align its velocity with that of the other agents, with a weight depending on their relative distance.

Main question for today

Under which hypotheses will (CS') converge towards alignment ?

Let $N \ge 1$ and $(x, v) := (x_1, \dots, x_N, v_1, \dots, v_N) \in (\mathbb{R}^{2d})^N$ be s.t.

(CS')
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|x_i(t) - x_j(t)|) (v_j(t) - v_i(t)), \end{cases}$$

where

- \diamond $\phi(\cdot)$ is **radial** \leadsto interactions depend on **relative distance**,
- \diamond $\xi_{ij}(\cdot) \in L^{\infty}(\mathbb{R}_+, [0,1])$ are symmetric communication rates

→ Intuitive idea: each agent tries to align its velocity with that of the other agents, with a weight depending on their relative distance.

Main question for today

Under which hypotheses will (CS') converge towards alignment ?

Outline of the talk

Multi-agent systems and pattern formation

A quick overview of the Cucker-Smale flocking

Cucker-Smale flocking under communication failures

Cucker-Smale systems – Alignment models

Alignement models (Cucker & Smale '07)

Consider the **full-communication** case where $\xi_{ij}(\cdot) \equiv 1$, i.e.

(CS)
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \phi(|x_i(t) - x_j(t)|)(v_j(t) - v_i(t)), \end{cases}$$

where $\phi \in Lip(\mathbb{R}_+, \mathbb{R}_+^*)$ is a **positive** and **non-increasing** kernel.

Definition (Asymptotic flocking for (CS))

A solution $(x(\cdot), v(\cdot))$ of (CS) converges to flocking if

$$\sup_{t\geq 0}|x_i(t)-\bar{\boldsymbol{x}}(t)|<+\infty \qquad \text{and} \qquad \lim_{t\to +\infty}|v_i(t)-\bar{\boldsymbol{v}}|=0.$$

where $ar{m{x}}(\cdot)$ and $ar{m{v}}$ are the position-velocity barycenters

Cucker-Smale systems – Alignment models

Alignement models (Cucker & Smale '07)

Consider the **full-communication** case where $\xi_{ij}(\cdot) \equiv 1$, i.e.

(CS)
$$\begin{cases} \dot{x_i}(t) = v_i(t), \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} \phi(|x_i(t) - x_j(t)|)(v_j(t) - v_i(t)), \end{cases}$$

where $\phi \in Lip(\mathbb{R}_+, \mathbb{R}_+^*)$ is a **positive** and **non-increasing** kernel.

Definition (Asymptotic flocking for (CS))

A solution $(x(\cdot), v(\cdot))$ of (CS) converges to flocking if

$$\sup_{t>0}|x_i(t)-\bar{\boldsymbol{x}}(t)|<+\infty\qquad\text{and}\qquad \lim_{t\to+\infty}|v_i(t)-\bar{\boldsymbol{v}}|=0.$$

where $\bar{x}(\cdot)$ and \bar{v} are the position-velocity barycenters.

Cucker-Smale systems - Convergence analysis framework

First question

How do we characterise flocking formation ?

→ Good idea: find a suitable dissipative Lyapunov structure

Definition (Variance and standard deviation)

Consider the variance bilinear form

$$B: (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mapsto \frac{1}{N} \sum_{i=1}^N \langle x_i, y_i \rangle - \langle \bar{\boldsymbol{x}}, \bar{\boldsymbol{y}} \rangle.$$

Characterisation of flocking

$$\sup_{t>0} X(t) < +\infty$$
 and $\lim_{t\to +\infty} V(t) = 0$,

where
$$X(t) := \sqrt{B(\mathbf{x}(t), \mathbf{x}(t))}$$
 and $V(t) := \sqrt{B(\mathbf{v}(t), \mathbf{v}(t))}$.

Cucker-Smale systems - Convergence analysis framework

First question

How do we characterise flocking formation ?

→ Good idea: find a suitable dissipative Lyapunov structure

Definition (Variance and standard deviation)

Consider the variance bilinear form

$$B: (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mapsto \frac{1}{N} \sum_{i=1}^N \langle x_i, y_i \rangle - \langle \bar{\boldsymbol{x}}, \bar{\boldsymbol{y}} \rangle.$$

Characterisation of flocking

$$\sup_{t>0} X(t) < +\infty$$
 and $\lim_{t\to +\infty} V(t) = 0$,

where
$$X(t) := \sqrt{B(\mathbf{x}(t), \mathbf{x}(t))}$$
 and $V(t) := \sqrt{B(\mathbf{v}(t), \mathbf{v}(t))}$.

Cucker-Smale systems – Convergence analysis framework

First question

How do we characterise flocking formation ?

→ Good idea: find a suitable dissipative Lyapunov structure

Definition (Variance and standard deviation)

Consider the variance bilinear form

$$B: (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mapsto \frac{1}{N} \sum_{i=1}^N \langle x_i, y_i \rangle - \langle \bar{\boldsymbol{x}}, \bar{\boldsymbol{y}} \rangle.$$

Characterisation of flocking

$$\sup_{t\geq 0}X(t)<+\infty$$
 and $\lim_{t\to +\infty}V(t)=0,$

where
$$X(t) := \sqrt{B(\mathbf{x}(t), \mathbf{x}(t))}$$
 and $V(t) := \sqrt{B(\mathbf{v}(t), \mathbf{v}(t))}$.

Cucker-Smale systems – Convergence analysis framework

First question

How do we characterise flocking formation ?

→ Good idea: find a suitable dissipative Lyapunov structure

Definition (Variance and standard deviation)

Consider the variance bilinear form

$$B: (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mapsto \frac{1}{N} \sum_{i=1}^N \langle x_i, y_i \rangle - \langle \bar{\boldsymbol{x}}, \bar{\boldsymbol{y}} \rangle.$$

Characterisation of flocking

$$\sup_{t>0} X(t) < +\infty$$
 and $\lim_{t\to +\infty} V(t) = 0$,

where
$$X(t) := \sqrt{B(x(t), x(t))}$$
 and $V(t) := \sqrt{B(v(t), v(t))}$.

Cucker-Smale systems – Convergence analysis framework

First question

How do we characterise flocking formation?

→ Good idea: find a suitable dissipative Lyapunov structure

Definition (Variance and standard deviation)

Consider the variance bilinear form

$$B: (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mapsto \frac{1}{N} \sum_{i=1}^N \langle x_i, y_i \rangle - \langle \bar{\boldsymbol{x}}, \bar{\boldsymbol{y}} \rangle.$$

Characterisation of flocking

A solution $(\mathbf{x}(\cdot), \mathbf{v}(\cdot))$ of (CS) converges to flocking **if and only if**

$$\sup_{t>0} X(t) < +\infty \qquad \text{and} \qquad \lim_{t\to +\infty} V(t) = 0,$$

where
$$X(t) := \sqrt{B(\mathbf{x}(t), \mathbf{x}(t))}$$
 and $V(t) := \sqrt{B(\mathbf{v}(t), \mathbf{v}(t))}$.

Definition (Graph Laplacians)

Consider the operator $L:(\mathbb{R}^d)^N o \mathcal{L}((\mathbb{R}^d)^N)$ defined by

$$(\boldsymbol{L}(\boldsymbol{x})\boldsymbol{v})_i = \frac{1}{N} \sum_{j=1}^N \phi(|x_i - x_j|)(v_i - v_j),$$

for all $i \in \{1, ..., N\}$.

Proposition (Interesting things about graph Laplacians)

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(\mathbf{x}(t))\mathbf{v}(t).$$

- \diamond It holds that $B(\mathbf{L}(\mathbf{x})\mathbf{v},\mathbf{v}) \geq 0$ for all $\mathbf{x},\mathbf{v} \in (\mathbb{R}^d)^N$.
- \diamond The strength of the interactions in the system is quantified by the **eigenvalues** of L(x(t)).

Definition (Graph Laplacians)

Consider the operator $L:(\mathbb{R}^d)^N o \mathcal{L}((\mathbb{R}^d)^N)$ defined by

$$(\boldsymbol{L}(\boldsymbol{x})\boldsymbol{v})_i = \frac{1}{N} \sum_{j=1}^N \phi(|x_i - x_j|)(v_i - v_j),$$

for all $i \in \{1, ..., N\}$.

Proposition (Interesting things about graph Laplacians)

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(\mathbf{x}(t))\mathbf{v}(t).$$

- \diamond It holds that $B(\mathbf{L}(\mathbf{x})\mathbf{v},\mathbf{v}) \geq 0$ for all $\mathbf{x},\mathbf{v} \in (\mathbb{R}^d)^N$.
- \diamond The strength of the interactions in the system is quantified by the **eigenvalues** of L(x(t)).

Definition (Graph Laplacians)

Consider the operator $L:(\mathbb{R}^d)^N o \mathcal{L}((\mathbb{R}^d)^N)$ defined by

$$(\boldsymbol{L}(\boldsymbol{x})\boldsymbol{v})_i = \frac{1}{N}\sum_{j=1}^N \phi(|x_i-x_j|)(v_i-v_j),$$

for all $i \in \{1, ..., N\}$.

Proposition (Interesting things about graph Laplacians)

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(\mathbf{x}(t))\mathbf{v}(t).$$

- ♦ It holds that $B(\mathbf{L}(\mathbf{x})\mathbf{v},\mathbf{v}) \geq 0$ for all $\mathbf{x},\mathbf{v} \in (\mathbb{R}^d)^N$.
- \diamond The strength of the interactions in the system is quantified by the **eigenvalues** of L(x(t)).

Definition (Graph Laplacians)

Consider the operator $L:(\mathbb{R}^d)^N o \mathcal{L}((\mathbb{R}^d)^N)$ defined by

$$(\boldsymbol{L}(\boldsymbol{x})\boldsymbol{v})_i = \frac{1}{N}\sum_{j=1}^N \phi(|x_i-x_j|)(v_i-v_j),$$

for all $i \in \{1, ..., N\}$.

Proposition (Interesting things about graph Laplacians)

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(\mathbf{x}(t))\mathbf{v}(t).$$

- ⋄ It holds that $B(\mathbf{L}(\mathbf{x})\mathbf{v},\mathbf{v}) \ge 0$ for all $\mathbf{x},\mathbf{v} \in (\mathbb{R}^d)^N$.
- \diamond The strength of the interactions in the system is quantified by the eigenvalues of L(x(t)).

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- If φ(·) is lower-bounded, then flocking always occurs
 → V(·) uniformly exponentially converges towards 0,
- \diamond If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \leadsto one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is **lower-bounded**, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- ♦ If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$.

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- ♦ If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well! •• one has $\phi \notin L^1 \Longrightarrow X(t) \le X_M$ for some $X_M > 0$.
- \diamond If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... \leadsto One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$.

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- ♦ If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well! •• one has $\phi \notin L^1 \Longrightarrow X(t) \le X_M$ for some $X_M > 0$.
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- \diamond If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \longrightarrow one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... \leadsto One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$.

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- \diamond If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \longrightarrow one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- \diamond If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... \leadsto One needs small (X(0), V(0)).
- \hookrightarrow We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$.

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- \diamond If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \longrightarrow one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- \diamond If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \longrightarrow one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).

 $[\]hookrightarrow$ We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$

Observation: $\dot{X}(t) \leq V(t)$ and $\dot{V}(t) \leq -\phi(2\sqrt{N}X(t))V(t)$

- \diamond If $\phi(\cdot)$ is lower-bounded, then flocking always occurs $\leadsto V(\cdot)$ uniformly exponentially converges towards 0,
- ♦ If $\phi(\cdot)$ vanishes at infinity but $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking always occurs as well!
 - \longrightarrow one has $\phi \notin L^1 \Longrightarrow X(t) \leq X_M$ for some $X_M > 0$,
- ♦ If $\phi(\cdot)$ vanishes at infinity and $\phi \in L^1(\mathbb{R}_+, \mathbb{R}_+)$, then flocking may fail to occur... → One needs small (X(0), V(0)).
- \hookrightarrow We will henceforth assume that $\phi \notin L^1(\mathbb{R}_+, \mathbb{R}_+)$.

Outline of the talk

Multi-agent systems and pattern formation

A quick overview of the Cucker-Smale flocking

Cucker-Smale flocking under communication failures

Generalised flocking – Modelling communication failures

Cucker-Smale system (Back to communication failures)

The weighted Cucker-Smale model can be rewritten as

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(t, \mathbf{x}(t))\mathbf{v}(t),$$

where we introduce the time-dependent graph-Laplacian

$$(\mathbf{L}(t,\mathbf{x})\mathbf{v})_{i} = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|\mathbf{x}_{i} - \mathbf{x}_{j}|) (\mathbf{v}_{i} - \mathbf{v}_{j})$$

Problem (Communication weights)

 \longrightarrow The $\xi_{ii}(\cdot)$ may vanish or be small on possibly long time-intervals.

Main guestion

Under what kind of assumption on $\xi_{ij}(\cdot)$ do we recover flocking ?

Generalised flocking – Modelling communication failures

Cucker-Smale system (Back to communication failures)

The weighted Cucker-Smale model can be rewritten as

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(t, \mathbf{x}(t))\mathbf{v}(t),$$

where we introduce the time-dependent graph-Laplacian

$$(\mathbf{L}(t,\mathbf{x})\mathbf{v})_{i} = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|\mathbf{x}_{i} - \mathbf{x}_{j}|) (\mathbf{v}_{i} - \mathbf{v}_{j})$$

Problem (Communication weights)

 \longrightarrow The $\xi_{ii}(\cdot)$ may vanish or be small on possibly long time-intervals.

Main guestion

Under what kind of assumption on $\xi_{ij}(\cdot)$ do we recover flocking ?

Generalised flocking – Modelling communication failures

Cucker-Smale system (Back to communication failures)

The weighted Cucker-Smale model can be rewritten as

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t), \qquad \dot{\mathbf{v}}(t) = -\mathbf{L}(t, \mathbf{x}(t))\mathbf{v}(t),$$

where we introduce the time-dependent graph-Laplacian

$$(\mathbf{L}(t,\mathbf{x})\mathbf{v})_{i} = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|\mathbf{x}_{i} - \mathbf{x}_{j}|) (\mathbf{v}_{i} - \mathbf{v}_{j})$$

Problem (Communication weights)

 \longrightarrow The $\xi_{ii}(\cdot)$ may vanish or be small on possibly long time-intervals.

Main question

Under what kind of assumption on $\xi_{ij}(\cdot)$ do we recover flocking ?

Generalised flocking – Modelling communication failures

Cucker-Smale system (Back to communication failures)

The weighted Cucker-Smale model can be rewritten as

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{v}(t), \qquad \dot{\boldsymbol{v}}(t) = -\boldsymbol{L}(t, \boldsymbol{x}(t))\boldsymbol{v}(t),$$

where we introduce the time-dependent graph-Laplacian

$$(\mathbf{L}(t,\mathbf{x})\mathbf{v})_{i} = \frac{1}{N} \sum_{j=1}^{N} \xi_{ij}(t) \phi(|\mathbf{x}_{i} - \mathbf{x}_{j}|) (\mathbf{v}_{i} - \mathbf{v}_{j})$$

Problem (Communication weights)

 \rightarrow The $\xi_{ij}(\cdot)$ may vanish or be small on possibly long time-intervals.

Main question

Under what kind of assumption on $\xi_{ij}(\cdot)$ do we recover flocking ?

First idea: Agents i and j directly communicate if $\xi_{ij}(t) > 0$, but they can still indirectly communicate when $\xi_{ii}(t) = 0$.

Figure: In both situation $\xi_{34}(t) = 0$ but agents 3 and 4 communicate

Second idea: All the agents do not **need** to interact at all times, → we only need a lower-bound on the **average interactions**.

First idea: Agents i and j directly communicate if $\xi_{ij}(t) > 0$, but they can still indirectly communicate when $\xi_{ij}(t) = 0$.

Figure: In both situation $\xi_{34}(t) = 0$ but agents 3 and 4 communicate

Second idea: All the agents do not **need** to interact at all times, → we only need a lower-bound on the **average interactions**.

First idea: Agents i and j directly communicate if $\xi_{ij}(t) > 0$, but they can still indirectly communicate when $\xi_{ii}(t) = 0$.

Figure: In both situation $\xi_{34}(t) = 0$ but agents 3 and 4 communicate

Second idea: All the agents do not **need** to interact at all times, → we only need a lower-bound on the **average interactions**.

First idea: Agents i and j directly communicate if $\xi_{ij}(t) > 0$, but they can still indirectly communicate when $\xi_{ij}(t) = 0$.

Figure: In both situation $\xi_{34}(t) = 0$ but agents 3 and 4 communicate

Second idea: All the agents do not **need** to interact at all times, → we only need a lower-bound on the average interactions.

First idea: Agents i and j directly communicate if $\xi_{ij}(t) > 0$, but they can still indirectly communicate when $\xi_{ij}(t) = 0$.

Figure: In both situation $\xi_{34}(t) = 0$ but agents 3 and 4 communicate

Second idea: All the agents do not **need** to interact at all times, → we only need a lower-bound on the **average interactions**.

Definition (Graph Laplacian of the weights)

Consider the operator $oldsymbol{L}_{\xi}: \mathbb{R}_{+}
ightarrow \mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\boldsymbol{L}_{\xi}(t)\boldsymbol{v})_{i} = \frac{1}{N}\sum_{i=1}^{N}\xi_{ij}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\left(\left(\frac{1}{\tau}\int_{t}^{t+\tau} \mathbf{L}_{\xi}(s) ds\right) \mathbf{v}, \mathbf{v}\right) \ge \mu B(\mathbf{v}, \mathbf{v}),$$
 (PE_{\tau,\mu})

for all $(t, \mathbf{v}) \in \mathbb{R}_+ imes (\mathbb{R}^d)^N$, where $(\tau, \mu) \in \mathbb{R}_+^* imes (0, 1]$.

Heuristic meaning

Definition (Graph Laplacian of the weights)

Consider the operator $m{L}_{\xi}:\mathbb{R}_{+}
ightarrow\mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\boldsymbol{L}_{\xi}(t)\boldsymbol{v})_{i} = \frac{1}{N}\sum_{i=1}^{N}\xi_{ij}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\left(\left(\frac{1}{\tau}\int_{t}^{t+\tau} \mathbf{L}_{\xi}(s) ds\right) \mathbf{v}, \mathbf{v}\right) \ge \mu B(\mathbf{v}, \mathbf{v}), \tag{PE}_{\tau, \mu}$$

for all $(t,oldsymbol{v})\in\mathbb{R}_+ imes(\mathbb{R}^d)^N$, where $(au,\mu)\in\mathbb{R}_+^* imes(0,1]$.

Heuristic meaning

Definition (Graph Laplacian of the weights)

Consider the operator $m{L}_{\xi}:\mathbb{R}_{+}
ightarrow\mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\mathbf{L}_{\xi}(t)\mathbf{v})_{i}=\frac{1}{N}\sum_{j=1}^{N}\xi_{jj}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\Big(\Big(\frac{1}{\tau}\int_t^{t+\tau} \mathbf{L}_{\xi}(s)ds\Big)\mathbf{v},\mathbf{v}\Big) \ge \mu B(\mathbf{v},\mathbf{v}),$$
 (PE_{\tau,\mu})

for all $(t, \mathbf{v}) \in \mathbb{R}_+ \times (\mathbb{R}^d)^N$, where $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$.

Heuristic meaning

Definition (Graph Laplacian of the weights)

Consider the operator $m{L}_{\xi}:\mathbb{R}_{+}
ightarrow\mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\boldsymbol{L}_{\xi}(t)\boldsymbol{v})_{i} = \frac{1}{N}\sum_{i=1}^{N}\xi_{ij}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\Big(\left(\frac{1}{\tau} \int_t^{t+\tau} \mathbf{L}_{\xi}(s) \mathrm{d}s \right) \mathbf{v}, \mathbf{v} \Big) \ge \mu B(\mathbf{v}, \mathbf{v}),$$
 (PE_{\tau,\mu})

for all $(t, \mathbf{v}) \in \mathbb{R}_+ \times (\mathbb{R}^d)^N$, where $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$.

Heuristic meaning

Definition (Graph Laplacian of the weights)

Consider the operator $m{L}_{\xi}:\mathbb{R}_{+}
ightarrow\mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\boldsymbol{L}_{\xi}(t)\boldsymbol{v})_{i} = \frac{1}{N}\sum_{i=1}^{N}\xi_{ij}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\Big(\Big(\frac{1}{\tau}\int_t^{t+\tau} \mathbf{L}_{\xi}(s)ds\Big)\mathbf{v},\mathbf{v}\Big) \ge \mu B(\mathbf{v},\mathbf{v}),$$
 (PE_{\tau,\mu})

for all $(t, \mathbf{v}) \in \mathbb{R}_+ \times (\mathbb{R}^d)^N$, where $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$.

Heuristic meaning

Definition (Graph Laplacian of the weights)

Consider the operator $m{L}_{\xi}:\mathbb{R}_{+}
ightarrow\mathcal{L}((\mathbb{R}^{d})^{N})$ defined by

$$(\boldsymbol{L}_{\xi}(t)\boldsymbol{v})_{i} = \frac{1}{N}\sum_{i=1}^{N}\xi_{ij}(t)(v_{i}-v_{j}).$$

Definition (Persistence condition)

The weights $\xi_{ij}(\cdot)$ satisfy the **persistence condition** (PE) if

$$B\Big(\Big(\frac{1}{\tau}\int_t^{t+\tau} \mathbf{L}_{\xi}(s)ds\Big)\mathbf{v},\mathbf{v}\Big) \ge \mu B(\mathbf{v},\mathbf{v}),$$
 (PE_{\tau,\mu})

for all $(t, \mathbf{v}) \in \mathbb{R}_+ \times (\mathbb{R}^d)^N$, where $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$.

Heuristic meaning

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(au,\mu)\in\mathbb{R}_+ imes(0,1]$
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \ge \frac{K}{(\sigma + r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') converges to flocking.

- \diamond Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- Average connectedness is necessary, even for consensus

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau,\mu) \in \mathbb{R}_+ \times (0,1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \ge \frac{K}{(\sigma + r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') converges to flocking.

- \diamond Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- The persistence assumption (PE) seems quite sharp !
 - → Average connectedness is necessary, even for consensus.
 → Quantitative dissipation estimates are needed for flocking.

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau,\mu) \in \mathbb{R}_+ \times (0,1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') converges to flocking.

- \diamond Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- The persistence assumption (PE) seems quite sharp
 - → Average connectedness is necessary, even for consensus.
 → Quantitative dissipation estimates are needed for flocking

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau,\mu) \in \mathbb{R}_+ \times (0,1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- \diamond Hypothesis (ii) is probably not sharp... we expect $eta \in (0,1)$
- ⋄ The persistence assumption (PE) seems quite sharp

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau, \mu) \in \mathbb{R}_+ \times (0, 1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- \diamond Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- The persistence assumption (PE) seems quite sharp !
 - Average connectedness is necessary, even for consensus.
 Quantitative dissination estimates are needed for flocking.

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau, \mu) \in \mathbb{R}_+ \times (0, 1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- ♦ Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- The persistence assumption (PE) seems quite sharp!
 - → Average connectedness is necessary, even for consensus.
 → Quantitative dissipation estimates are needed for flocking.

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau, \mu) \in \mathbb{R}_+ \times (0, 1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- ♦ Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- ⋄ The persistence assumption (PE) seems quite sharp!
 - \hookrightarrow Average connectedness is **necessary**, even for consensus.
 - \hookrightarrow Quantitative dissipation estimates are needed for flocking

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau, \mu) \in \mathbb{R}_+ \times (0, 1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- ♦ Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- ⋄ The persistence assumption (PE) seems quite sharp!
 - \hookrightarrow Average connectedness is necessary, even for consensus.
 - → Quantitative dissipation estimates are needed for flocking

Theorem (Flocking formation)[B. & Flayac '21]

Let $(\mathbf{x}^0, \mathbf{v}^0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and assume the following holds.

- (i) The weights $\xi_{ij}(\cdot)$ satisfy (PE) for some $(\tau, \mu) \in \mathbb{R}_+ \times (0, 1]$.
- (ii) There exists $\sigma, K > 0$ and $\beta \in (0, \frac{1}{2})$ such that

$$\phi(r) \geq \frac{K}{(\sigma+r)^{\beta}}.$$

Then, the solution $(x(\cdot), v(\cdot))$ of (CS') **converges to flocking**.

- ♦ Hypothesis (ii) is probably not sharp... we expect $\beta \in (0,1)$
- ⋄ The persistence assumption (PE) seems quite sharp!
 - \hookrightarrow Average connectedness is necessary, even for consensus.
 - \hookrightarrow **Quantitative** dissipation estimates are needed for flocking.

Problem: Lack of dissipation for $V(\cdot) \leadsto$ strict Lyapunov design!

1) Define the time-varying family of operators

$$\psi_{\tau}(t) = (1+c^2)\tau \operatorname{Id} - \frac{1}{\tau} \int_t^{t+\tau} \int_t^s \boldsymbol{L}(\sigma, \boldsymbol{x}(\sigma)) \operatorname{d}\sigma \operatorname{d}s$$

and consider the candidate Lyapunov functional

$$V_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the **existence horizon** of $\lambda(\cdot) \rightsquigarrow T \to +\infty$!

Problem: Lack of dissipation for $V(\cdot) \leadsto$ strict Lyapunov design!

1) Define the time-varying family of operators

$$\psi_{\tau}(t) = (1+c^2)\tau \mathrm{Id} - \frac{1}{\tau} \int_t^{t+\tau} \int_t^s \mathbf{L}(\sigma, \mathbf{x}(\sigma)) \mathrm{d}\sigma \mathrm{d}s$$

and consider the candidate Lyapunov functional

$$V_{ au}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{ au}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the **existence horizon** of $\lambda(\cdot) \rightsquigarrow T \to +\infty$!

Problem: Lack of dissipation for $V(\cdot) \leadsto$ strict Lyapunov design!

1) Define the **time-varying** family of operators

$$\psi_{ au}(t) = (1+c^2) au \mathrm{Id} - rac{1}{ au} \int_t^{t+ au} \int_t^s m{L}(\sigma, m{x}(\sigma)) \mathrm{d}\sigma \mathrm{d}s$$

and consider the candidate Lyapunov functional

$$V_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the **existence horizon** of $\lambda(\cdot) \rightsquigarrow T \to +\infty$

Problem: Lack of dissipation for $V(\cdot) \leadsto$ strict Lyapunov design!

1) Define the time-varying family of operators

$$\psi_{ au}(t) = (1+c^2) au \operatorname{Id} - rac{1}{ au} \int_t^{t+ au} \int_t^s m{L}(\sigma, \mathbf{x}(\sigma)) \mathrm{d}\sigma \mathrm{d}s$$

and consider the candidate Lyapunov functional

$$\mathcal{V}_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the **existence horizon** of $\lambda(\cdot) \rightsquigarrow T \to +\infty$!

Problem: Lack of dissipation for $V(\cdot) \rightsquigarrow$ strict Lyapunov design!

1) Define the time-varying family of operators

$$\psi_{ au}(t) = (1+c^2) au \mathrm{Id} - rac{1}{ au} \int_t^{t+ au} \int_t^s m{L}(\sigma, m{x}(\sigma)) \mathrm{d}\sigma \mathrm{d}s$$

and consider the candidate Lyapunov functional

$$\mathcal{V}_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the **existence horizon** of $\lambda(\cdot) \rightsquigarrow T \to +\infty$!

Problem: Lack of dissipation for $V(\cdot) \leadsto \text{strict Lyapunov design }!$

1) Define the time-varying family of operators

$$\psi_{ au}(t) = (1+c^2) au \mathrm{Id} - rac{1}{ au}\int_t^{t+ au}\int_t^s m{L}(\sigma,m{x}(\sigma))\mathrm{d}\sigma\mathrm{d}s$$

and consider the candidate Lyapunov functional

$$\mathcal{V}_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the existence horizon of $\lambda(\cdot) \leadsto T \to +\infty$!

Problem: Lack of dissipation for $V(\cdot) \leadsto \text{strict Lyapunov design }!$

1) Define the time-varying family of operators

$$\psi_{ au}(t) = (1+c^2) au \mathrm{Id} - rac{1}{ au}\int_t^{t+ au}\int_t^s m{L}(\sigma,m{x}(\sigma))\mathrm{d}\sigma\mathrm{d}s$$

and consider the candidate Lyapunov functional

$$\mathcal{V}_{\tau}(t) = \lambda(t)V(t) + \sqrt{B(\psi_{\tau}(t)\mathbf{v}(t),\mathbf{v}(t))}$$

where $\lambda(\cdot)$ is a tuning parameter (e.g. Mazenc & Malisoff '09).

2) After some (heavy) Lyapunov using (PE) and (ii), we have

$$V(T) \lesssim V(0) \exp\left(-C_{ au,\mu} T_{\lambda}^{rac{1-2eta}{2(1-eta)}}
ight)$$

where T_{λ} is the existence horizon of $\lambda(\cdot) \rightsquigarrow T \to +\infty$!

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$ \hookrightarrow Try a **better Lyapunov design**!
- Carry out the analysis using L[∞]-Lyapunov functionals
 → Necessary to obtain uniform estimates w.r.t. N and study graph-limits as N → +∞!
- 3) Adapt our methodology to **random communication failures** \hookrightarrow Case where $(t, \omega) \mapsto \xi_{ii}(t, \omega)$ are **stochastic processes**

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the sharp exponent range $\beta \in (0,1)$ \hookrightarrow Try a better Lyapunov design!
- Carry out the analysis using L[∞]-Lyapunov functionals
 → Necessary to obtain uniform estimates w.r.t. N and study graph-limits as N → +∞!
- 3) Adapt our methodology to random communication failures \hookrightarrow Case where $(t, \omega) \mapsto \xi_{ii}(t, \omega)$ are stochastic processes

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to **random communication failures** $\Rightarrow Case \text{ where } (t, w) \Rightarrow \mathcal{E}_{v}(t, w) \text{ are stochastic processes}$

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to **random communication failures**
 - \hookrightarrow Case where $(t,\omega)\mapsto \xi_{ij}(t,\omega)$ are **stochastic processes**

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$ \hookrightarrow Try a **better Lyapunov design!**
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to random communication failures \hookrightarrow Case where $(t,\omega)\mapsto \xi_{ii}(t,\omega)$ are stochastic processes

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
 - $\hookrightarrow \mathsf{Try} \; \mathsf{a} \; \mathbf{better} \; \mathbf{Lyapunov} \; \mathbf{design!}$
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to **random communication failures** \hookrightarrow Case where $(t, \omega) \mapsto \mathcal{E}_{ii}(t, \omega)$ are **stochastic processes**

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
 - → Try a better Lyapunov design!
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to random communication failures \hookrightarrow Case where $(t,\omega)\mapsto \xi_{ii}(t,\omega)$ are stochastic processes

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to random communication failures
 - \hookrightarrow Case where $(t,\omega)\mapsto \xi_{ii}(t,\omega)$ are **stochastic processes**

Conclusive remarks

We have identified a synthetic and fairly minimalist persistence condition for multi-agent flocking via Lyapunov methods \rightsquigarrow Nice!

- 1) Recover the **sharp** exponent range $\beta \in (0,1)$
- 2) Carry out the analysis using L^{∞} -Lyapunov functionals
 - \hookrightarrow Necessary to obtain **uniform estimates** w.r.t. N and study **graph-limits** as $N \to +\infty$!
- 3) Adapt our methodology to random communication failures
 - \hookrightarrow Case where $(t,\omega)\mapsto \xi_{ii}(t,\omega)$ are stochastic processes

All in all...

Thank you for your attention !

