1. Let X_i be the indicator variable denoting whether $r_A(s_i) \in [t - \sqrt{n}, t + \sqrt{n}]$. Observe that for any given $t \in [1, n]$,

$$\Pr[X_i = 0] \le \left(1 - \frac{1}{\sqrt{n}}\right) \le e^{-1/\sqrt{n}}.$$

Because s_i 's are picked independently,

$$\Pr\left[\bigcap_{i=1}^{k} (X_i = 0)\right] \le e^{-k/\sqrt{n}} \le e^{-c}$$

if $k \ge cn$ for some constant c > 0. Consequently,

Pr [some
$$s_i$$
 in S has rank $r_A(s_i) \in [t - \sqrt{n}, t + \sqrt{n}] \ge 1 - 1/e^c$.

2. Let G be any simple graph of average degree n/3. Suppose that t nodes in G have degree $\geq n/4$. Then we get

$$\sum_{x \in G} \deg(x) \le \sum_{x \in G, \deg(x) \ge n/4} n + \sum_{x \in G, \deg(x) < n/4} n/4$$

$$= tn + (n-t)n/4$$

$$= n\left(\frac{n+3t}{4}\right)$$

Because G has the average degree n/3, we have

$$\frac{n}{3} \le \frac{n+3t}{4}$$

or equivalently $t \ge n/9 = \Omega(n)$ as desired.

3. Let X_k be the indicator variable denoting whether element k is included in S_n . Let $X = \sum_{k=1}^n X_k$. By calculus, we get

$$\mu = \mathbb{E}[X] = \Theta(\log n).$$

We are done by Chernoff bound

$$\Pr[|X - \mathbb{E}[X]| \ge \varepsilon \mathbb{E}[X]] \le e^{-\Omega(\varepsilon^2 \mu)} \le 1/n^{\Omega(\varepsilon^2)}.$$

4. Let $X_{i,j,k}$ be the indicator variable denoting whether nodes i, j, k in G form an triangle. Clearly, $X_{i,j,k} = 0$ is a monotone decreasing graph property for each $i, j, k \in {[n] \choose 3}$ and

$$\Pr[X_{i,j,k} = 0] = 1 - \frac{c^3}{n^3}.$$

Hence, we get

$$\begin{split} \Pr[G \text{ is triangle-free}] &= \Pr\left[\bigcap_{i,j,k \in \binom{[n]}{3}} X_{i,j,k} = 0\right] \\ &\geq \prod_{i,j,k \in \binom{[n]}{3}} \Pr[X_{i,j,k} = 0] \\ &\geq \left(1 - \frac{c^3}{n^3}\right)^{n^3} \\ &\geq e^{-2c^3} \end{split} \tag{if } n^3 > 2c^3) \end{split}$$

We are done because c is a constant and n is sufficiently large.

5. Let S be an n-point set. Let R_1 (resp. R_2) be any subset of S so that all points in R_1 (resp. R_2) are covered by an axis-parallel square, but none of the points in $S \setminus R_1$ (resp. $S \setminus R_2$) is covered by the square. Observe that there are $O(n^4)$ such R_1 's and R_2 's.

For k=2, our algorithm outputs two squares. Let R_1 be the point set covered by the first square, and let R_2 be the point set covered by the second square. In what follows, we will say our algorithm outputs $R_1 \cup R_2$ for simplicity. The points that are not covered by the two squares form the complement set of $R_1 \cup R_2$, i.e. $S \setminus (R_1 \cup R_2)$. There are $O(n^8)$ such complement sets. Our algorithm needs to ensure that, if the complement set of $R_1 \cup R_2$ is large, then it is unlikely to output R_1 and R_2 . Here is how.

```
1 Let S = \{p_i : i \in [n]\};

2 X \leftarrow \emptyset;

3 for i \leftarrow 1 to \lceil \frac{9}{\varepsilon} \log n \rceil do

4 | Let j be an uniformly random number in [1, |S|];

5 | X \leftarrow X \cup \{p_j\};

6 end

7 Find the optimum \ell(2) to cover X, using O((1/\varepsilon) \log n) space;
```

Algorithm 1: Pseudocode.

Note that if $S \setminus (R_1 \cup R_2)$ has more than εn points, then X is likely to have an non-empty intersection with $S \setminus (R_1 \cup R_2)$ and Algorithm 1 is unlikely to output $R_1 \cup R_2$.

Here we bound the probability for a single large complement set and get:

$$\Pr\left[\left(S \setminus (R_1 \cup R_2)\right) \cap X = \emptyset\right] < (1 - \varepsilon)^{\lceil (9/\varepsilon) \log n \rceil} \le e^{-9\log n} = \frac{1}{n^9}.$$

Hence, by Union Bound, Algorithm 1 outputs $R_1 \cup R_2$ whose complement set $S \setminus (R_1 \cup R_2)$ has size no more than εn with probability at least 1 - 1/n.

To find $\ell(2)$ for X, it needs $O(|X| \log |X|)$ runtime by binary search among all possible $\ell(2)$ and verify each guess using O(|X|) time. The runtime is therefore

$$O((1/\varepsilon)(\log n)(\log(1/\varepsilon) + \log\log n)) = O((1/\varepsilon)\log^2 n).$$

The last equality holds because $\varepsilon \geq 1/n$.

For k=3, we set Line 3 in Algorithm 1 to be a for-loop of $\lceil \frac{13}{\varepsilon} \log n \rceil$ iterations. The remaining part in the proof is similar.