Sistemas Operativos, Pauta Certamen #3, 02/2019 Santiago, 17.01.2020

- **1.** [20% ~ 5% c/u] Conteste brevemente las siguientes preguntas:
- a) Mencione los problemas que tienen las técnicas de asignación por bloques fijos y dinámicos.
 Respuesta: Fijos: Fragmentación interna y multiprogramación acotada. Dinámicos fragmentación interna.
- b) Menciones los beneficios que tiene la técnica de paginación.
 Respuesta: Elimina fragmentación externa y permite que el proceso no esté almacenado en memoria de forma contigua.
- c) ¿Cómo se puede limitar la sobrepaginación?
 Respuesta: Eliminando la política de reemplazo global y/o utilizando un algoritmo de prioridades.
- d) Mencione 4 propiedades que se deben incluir en el diseño de un SO para que éste pueda implementar memoria virtual utilizando paginación bajo demanda. Respuesta:
 - Reiniciar una instrucción después de un fallo de páginas.
 - Definir una política de reemplazo de páginas.
 - Definir una política de asignación de frames.
 - Definir una tasa de fallas de página aceptable.
- **2.** [24%] Un SO gestiona su memoria a través de la segmentación. Se generan direcciones lógicas de 20 bits, en donde 12 corresponen al offset. Considere la siguiente tabla de segmentos:

Segmento	Base	Largo
BA	0x40AAF	0x008
FF	0x24FFA	0x00C
AC	0x10001	0xFAB
A4	0x3200C	0xAC4

Determine las direcciones físicas de 0xACFB0, 0xFF004, 0xBA0AC y A40BB y si es que estás producen un error o no.

Respuesta:

- 0xACFB0 -> FB0<FAB -> error
- 0xFF004 -> 004<00C -> 0x24FFA + 0x00004
- 0xBA0AC -> 0AC<008 -> error
- 0xA40BB -> 0BB<AC4 -> 0x3200C + 0x000BB

- **3.** [28%] Un SO utiliza 32 bits para direcciones lógicas y físicas. Debe gestionar 32MB de memoria principal, que se reparten en 4096 frames, utilizando paginación. Se pide:
 - a) ¿Cuál es el tamaño de página?

Respuesta: 32MB/4096 = 2^25/2^12 = 2^13B=8KB

b) ¿Cuál es el tamaño del espacio virtual?

Respuesta: 2^32. Esto debido a que se tienen 32 bits para direcciones lógicas

c) ¿Número máximo de páginas por proceso?

Respuesta: Para el offset se requieren 13 bits, por lo que se tienen 19 bits para las páginas. El espacio virtual corresponde a 2^19.

d) ¿Cuántas páginas requiere un proceso de 40KB?

Respuesta: 40KB/8Kb = 5 páginas.

e) En la pregunta (d) ¿Se produce fragmentación? ¿De cuánto?

Respuesta: No se produce.

f) ¿Cuál es el tamaño de la tabla de páginas del proceso de la pregunta (d)?

Respuesta: 5*19bits.

g) Si se agregan 5 bits a cada entrada de la tabla de páginas. ¿Cuál es el tamaño máximo que puede tener una tabla de páginas?

Respuesta: 2^19*(19+5) bits

4. [28%] Considere un SO que dispone de 32MB en memoria principal y que la gestiona a través de paginación bajo demanda. Las direcciones lógicas tienen un tamaño de 20 bits y se tiene un total de 512 frames. La ejecución concurrente de 3 procesos genera la siguiente secuencia de direcciones: 0xFA001, 0xFBB02, 0xAC5BA, 0xBA000, 0x5A644, 0xA44BC, 0x4800B, 0xBACCC, 0xBA440, 0xFA4CC, 0xFBC04, 0xF44C0, 0xA05BC, 0xB55F0, 0xFFFFC, 0xAFCC0, 0xFF004, 0xBAB4C, 0xFB99C y 0xAB44C.

Bajo una política global de reemplazo el SO asigna 3 frames para realizar la ejecución anterior. Determine la cantidad de fallos de página que se producen para los algoritmos FIFO, LRU y Óptimo. Calcule M(3, 6) para todos los algoritmos y determine si el sistema está en Thrashing para un Δ = 6 (la primera falla de página es el inicio de la ventana).

Respuesta: 32MB/512 = 2^25/2^9 = 2^16 por lo que el offset utiliza 16 bits. Dado esto, se requieren 4 bits (1 dígito hexadecimal) para direccionar páginas. La cadena se convierte en:

F, F, A, B, 5, A, 4, B, B, F, F, F, A, B, F, A, F, B, F, A

FIFO

F	F	Α	В	5	Α	4	В	В	F	F	F	Α	В	F	Α	F	В	F	Α
F	F	F	F	5		5			5			Α	Α						
		Α	Α	Α		4			4			4	В						
			В	В		В			F			F	F						
1		2	3	4		5			6			7	8						

$M(3,6)=\{5AB\}$

ÓPTIMO

F	F	Α	В	5	Α	4	В	В	F	F	F	Α	В	F	Α	F	В	F	Α
F	F	F	F	5		4			F										
		Α	Α	Α		Α			Α										
			В	В		В			В										
1		2	3	4		5			6										

$M(3,6)=\{5AB\}$

LRU

F	F	Α	В	5	Α	4	В	В	F	F	F	Α	В	F	Α	F	В	F	Α
F	F	F	F	5		5	В		4			Α							
		Α	Α	Α		Α	Α		F			F							
			В	В		4	4		В			В							
1		2	3	4		5	6		7			8							

$M(3,6)=\{5AB\}$

Con un delta 6 la ventana es ={FAB5}. Como 4>3 el sistema está en Thrashing.