For some of these problems you might find L'Hôpital's rule helpful to evaluate limits.

L'Hôpital's Rule

Suppose f(x) and g(x) are functions with either:

- $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$, or
- $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$ as $x \to a$

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

These quotients f(x)/g(x) are called "indeterminate quotients" of type 0/0 and ∞/∞ , respectively.

An indeterminate product f(x)g(x) of type $0 \cdot \infty$ (where one factor approaches 0 as $x \to a$ and the other factor approaches ∞ as $x \to a$) can be turned into an indeterminate quotient by dividing one factor by the reciprocal of the other.

Problems

- 1. Determine if the integral converges or diverges. If it converges, find its (limiting) value.
 - (a) $\int_{-2}^{3} \frac{1}{x^4} dx$
 - (b) $\int_{1}^{\infty} xe^{-x} dx$
 - (c) $\int_{-\infty}^{\infty} x e^{-x^2} dx$
 - (d) $\int_0^1 x \ln x \ dx$
 - (e) $\int_0^9 \frac{1}{\sqrt[3]{x-1}} \, dx$
- 2. Find the values of a for which the integral $\int_0^\infty e^{ax} \cos x \ dx$ converges. Evaluate the integral for those values of a.

Answers

- 1a. Diverges
- 1b. Converges to 2/e
- 1c. Converges to 0
- 1d. Converges to -1/4
- 1e. Converges to 9/2
- 2. Converges to $\frac{-a}{1+a^2}$ if a < 0. Does not converge if $a \ge 0$.