L-08 (ANSYS)

Формулировка задачи:

E – модуль упругости материала; I_z – изгибный момент инерции;

 M_{np} = M_L – предельный внутренний изгибающий момент.

Требуется: Определить предельное значение параметра нагрузки q_{np} и форму потери балкой несущей способности.

Аналитический расчёт (см. <u>L-08</u>) показывает следующие варианты форм потери несущей способности:

Задача данного примера: при помощи ANSYS Multyphisics выяснить методом конечных элементов, какая из возможных форм реализуется на самом деле. http://www.tychina.pro

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

 $U_M > PlotCtrls > Style > Colors > Reverse Video$

B меню оставить только пункты, относящиеся к прочностным расчётам: M M > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера точек и линий твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> ОК
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro

Решение задачи:

Параметры задачи должны иметь положительные ненулевые значения. Лучше, в районе единицы, это уменьшает вклад в результаты расчёта ошибок округления. Но A (площадь поперечного сечения) формально зададим существенно больше I_z (момент инерции поперечного сечения относительно оси упругого изгиба) для того, чтобы гнулся стержень легче, чем растягивался.

Диапазон поиска предельной нагрузки q_{np} должен заведомо содержать её значение. Аналитически эта задача на семинарах не решалась. Ориентируемся на значение верхней границы интервала поиска предельной распределённой нагрузки из задачи $\underline{\text{L-07}}$: $q_{max} = 70 \cdot \frac{M_L}{l^2}$. Нижняя граница диапазона поиска — нуль.

No	Действие	Результат
1	Задаём параметры расчёта— базовые величины задачи: U_M > Parameters > Scalar Parameters > ML=1	Scalar Parameters

№	Действие		Результат			
9	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines >Показываем обе модели, твердотельную и конечноэлементную:U_M > Plot > Multi-Plots	Pick All	Y X 1.1 2	Т.2 3	<u>I.3</u>	4
10	Левой кнопкой мыши нажать на узлы в ключевых т > OK > Lab2 установить "UY" > OK Apply JROT on Nodes Lab2 DOFs to be constrained Apply as If Constant value then: VALUE Displacement value	ANDOF ANDOF AND ANDOF AND	X I.1 2	T.2 3	T.3.	4

No	Действие	Результат
11	Cocpedomoченная нагрузка: M_M > Preprocessor > Loads > Define Loads > Apply > > Structural > Force/Moment > On Nodes > Левой кнопкой мыши нажать на узел в ключевой точке 2 > OK > Lab установить "FY" VALUE установить " qmax*l" > OK	X 1.1 2 1.2 3 1.3 4
12	Pacnpedenëhhaя нагрузка: M_M > Preprocessor > Loads > Define Loads > Apply > > Structural > Pressure > On Beams > Селектор появившегося окошка Apply PRES on Beams устанавливаем в положение "Вох" Левой кнопкой мыши растянуть прямоугольник, в который попадают все конечные элементы линии L3 > ОК > VALI qmax > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	X T.1 2 T.2 3 T.3 4 X X T.1 2 T.2 3 T.3 4 X X T.1 2 T.2 3 T.3 4
13	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	Conform Contours CCONT) Deleterm Contours VM Woodown remother Volunters NCONT Number of contours Contour intervals 20 Contour intervals 7 Auto colculated

Лействие Результат No Поиск второго пластического шарнира ▲ Solution Controls Расчёт балки с одним пластическим шарниром при возрастающей нагрузке: Basic Transient Sol'n Options Nonlinear Advanced NL Small Displacement Static Множество расчётов ANSYS позволяет только в нелинейной задаче, поэтому в □ Calculate prestress effects C. User selected упругую балку мы привнесли геометрическую нелинейность учётом больших Time Control перемещений (опция Large Displacement Static, действие 14). Теперь Automatic time stepping Prog Chosen нелинейность в задачу итак вносит пластический шарнир. Отказываемся от учёта Write every substep where N = 1 больших перемещений для лучшего совпадения с результатами аналитического 700 700 расчёта: M M > Solution > Analysis Type > Sol'n Controls 20 OK Cancel Help В графе Analysis Options выбираем Small Displacement Static Time = 70 > OK Запускаем расчёт: M M > Solution > Solve > Current LS > OK A check of your model data produced 1 warnings.
SHOULD THE SOLV COMMAND BE EXECUTED? В окне Verify нажмите кнопу ОК Solution is done! Yes No Когда он закончится, появится окно «Solution is done!». Закройте это окно. Cumulative Iteration Number ↑ Flement Table Data Time Stamp Составление эпюры внутреннего изгибающего момента на первом шаге по нагрузке: M M > General Postproc > Read Results > First Set 21 M M > General Postproc > Element Table > Define Table > > Update > Close Add... Update Delete Close Help

№	Действие	Результат
	Эпюра на первом шаге:	
	Эпюра внутреннего изгибающего момента в балке с одним пластическим шарниром:	
	M_M > General Postproc > Plot Results >	1 LINE STRESS
	> Contour Plot > Line Elem Res >	STEP=1 SUB =1
	LabI установить "SMIS6"	TIME=-1 SMIS6 SMIS6 MIN =023241
	LabJ установить "SMIS6"	ELEM=52 MAX =.014036
22	> OK	ELEM=148
	Некоторые символы пропадают. Восстановим их:	CP Y
	U_M > PlotCtrls > Symbols >	X X
	Boundary condition устанавливаем "All Applied BCs"	
	> OK	
	Эпюры будем смотреть на недеформированной форме:	02324100833 .006581
	<pre>U_M > PlotCtrls > Style > Displacement Scaling ></pre>	015785875E-03 .014036
	DMULT устанавливаем "0.0(off)"	
	> OK	
	Нагрузка образования второго пластического шарнира:	1 LINE STRESS
	C_P > SET, NEXT \$ ETABLE, REFL \$ /REPLOT > Enter	STEP=1 TIME=5.3 MIN =-1.0006
	Вводите команду «SET, NEXT \$ ETABLE, REFL \$ / REPLOT» до тех пор, пока	ELEM=52 MAX =1.00614 ELEM=139
23	максимальное или минимальное значение внутреннего изгибающего момента вне	U F
	первого пластического шарнира не превысит по модулю значения ML=1.	CP Y
	Видим: второй пластический шарнир (M_{u32} =-1,00614· M_L) образуется в срединной	
	опоре при значении внешней нагрузки:	
	$q_{np} = 5, 3 \cdot \frac{M_L}{l^2}$	-1.0006599252197904 .203445 1.00614

№	Действие	Результат		
	Форма потери несущей способнос	ти		
26	Расчёт балки с двумя пластическими шарнирами при возрастающей до q _{max} нагрузке: М_М > Solution > Solve > Current LS > OK В окне Verify нажмите кнопу ОК Когда он закончится, появится окно «Solution is done!». Закройте это окно.	Time = 70 1.05+80 1		
27	Форма оси нагруженной балки на последнем шаге нагружения: Результаты расчёта на инальном шаге по нагрузке: М_М > General Postproc > Read Results > Last Set Масштаб перемешений выбирается автоматически: U_M > PlotCtrls > Style > Displacement Scaling > DMULT устанавливаем "Auto calculated" > OK Прорисовывать деформированную и недеформированную формы: M_M > General Postproc > Plot Results > > Deformed Shape > КUND установить Def + undeformed > OK Некоторые символы пропадают. Восстановим их: U_M > PlotCtrls > Symbols > Воинdary condition устанавливаем "All Applied BCs" [/PSF] устанавливаем "Pressures" > OK	Поврымент утимент ути		

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.