DPI: One Dimentional

fibonaci Series

4, POCN)

int fibo(int N) {

if (N<=1) return N

return fibo(N-1) + fibo(N-2);

11 = O(2N) S(=0(N)

Properties of Dynamic Programming (DP)

Optimal Substructure -> can the problem be divided into smaller subproblems.

```
Durlapping Subproblems -> Repeating subproblems.

Stone the subproblem result of re-nee it.
```

$$f(s)=5$$
 fibes)
 $f(u)=3$ fibeu)
 $f(s)=2$ fibes)
 $f(s)=2$ fibes)
 $f(s)=1$ fibes)
 $f(s)=1$ fibes)
 $f(s)=1$ fibes)

- 1. Top down / Recursive DP -> start with main

 problem, divide it into smaller subproblem,

 colve & store subproblem result & use it

 to solve main problem.
 - 2. Bottom up / iterative DP > start with smallest

 Subproblem & use it to calculate bisser subproblem

 tru we get the final sexult.

int f (N=1)

f(0) = 0 , f(1) = 1

for (i=2 to N) {

F(i) = f(i-1) + f(i-2); S(=O(N))

}

xtom f(N)

Simple to write & understand

no recursion space =>
tuen is possibility of reducing
SC.

```
iul f (N+1)

f(0)=0, f(1)=1

for(i=2 to N) {

F(i)=f(i-1)+f(i-2);

}

xtum f(N)
```

$$f(2) = f(1) + f(0)$$

$$f(3) = f(2) + f(1)$$

$$f(4) = f(3) + f(2)$$

$$a=0, b=1$$

$$phinize$$

$$for(i=2 + 0 N)$$

$$c=a+b;$$

$$a=b;$$

$$b=c;$$

$$b=c;$$

$$N=5$$

$$7(-0(N))$$
 $a=0$ $b=1$ $i=2$ $c=1$ $a=1$ $b=1$ $i=3$ $c=2$ $a=1$ $b=2$ $i=4$ $c=3$ $a=2$ $b=3$ $c=5$ $c=5$ $c=5$ $c=5$

Susstian - find the number of ways to climb N

stairs S.f. in 1 step we can climb either

1 or 2 stairs.

$$N=4$$
 $(1,1,1,1)$
 $(1,1,2)$
 $(1,2,1)$
 $(2,1,1)$

[212]

Similar to fibonacci Sches

Question

N=5

$$N = 10$$

$$V = 10$$

$$V$$

(491)

Sol 1 > linedy -> Select largest perfect sq <= N

$$N \ge 10$$
 $10 - 9 = 1$
 $1 - 1 = 0$

$$N=12$$
 $12-9=3$
 $3-1=2$
 $2-1=1$
 $1-1=0$
 $12-4=8$
 $8-4=4$
 $3-4=4$
 $3-1=2$
 $3-1=2$
 $3-1=2$
 $3-1=3$

Bruteforce

aus (N) z
$$1 + \min \S$$
 aus (N - χ^2) $+ \chi^2 < = N \S$

$$(N-1^2)$$
 $(N-2^2)$ $(N-3^2)$

int Solve (N)
$$\S$$

if $(N==0)$ return 0;

 $am=N$
 $for (n=1; x r x <=N; x r) \S $\longrightarrow UN$ times

 $am = min(am, 1 + Solve(N-x^2));$
 \S
 $xturn am;$
 $TC = O((VN)^N)$
 $SC = O(N)$$

```
int dp[N+1); 11 initialize witer-1
int Solve (N) }
   if (N==0) sctum 0;
   if (abw) = -1) setum ab(N)
  am=N
  for ( n=1; x ≈x <=N; x +r) } → JN +imes
      am= min (am, 1+ Solve (N-x2));
  ap(n) = aw;
  xtvm am;
                                   TC = O( N " JN )
                                     = O(NJN)
                                   SC=OCN)
```

```
Protip: 70 of dp wde = size of dp array *

TC in single ft call
```

Disclaimer: not 100% correct, only works 99% of thme.

```
Italine code
 int of [NAI]
to, dp (i) = i
 for ( i=1 to N) }
     tor(x=1; x=x <=i; x++) }
         dp(i) = min(ap(i), 1 + ap(i-x^2))
                                   TC = O(NUN)
 xtum dp[N]
                                    SC = O(N)
                                         not possible
                                           to reduce
```