F3b: modular arithmetic II

tkkwon@snu.ac.kr

some slides from course15-251@cmu course15-853@duke
Jeremy Johnson@Drexel

modular arithmetic

- we covered addition/multiplication and their inverses
- first, we dive into exponentiation in modular arithmetic

a^b (mod n)

a: base

b: exponent

n: modulus

let's forget modular arithmetic for a while

How do you compute...

5⁸

using few multiplications?

First idea:

$$5 5^2 5^3 5^4 5^5 5^6 5^7 5^8$$
$$= 5 * 5 5^2 * 5$$

How do you compute...

5⁸

Better idea:

$$5 \quad 5^2 \quad 5^4 \quad 5^8$$
$$= 5^* + 5^2 + 5^4 + 5^4$$

Used only 3 mults instead of 7!!!

Repeated squaring calculates a^{2k} in k multiply operations

compare with $(2^k - 1)$ multiply operations used by the naïve method

How do you compute...

5¹³

Use repeated squaring again?

too high! what now? assume no divisions allowed...

How do you compute...

 5^{13}

Use repeated squaring again?

So $a^{13} = a^8 * a^4 * a^1$

$$5 5^2 5^4 5^8$$
Note that $13 = 8+4+1$ •••• $13_{10} = (1101)_2$

Two more multiplies!

To compute a^m

Suppose
$$2^k \le m < 2^{k+1}$$

$$a \quad a^2 \quad a^4 \quad a^8 \quad \dots \quad a^{2k}$$

This takes k multiplies

Now write m as a sum of distinct powers of 2

say,
$$\mathbf{m} = 2^k + 2^{i1} + 2^{i2} \dots + 2^{it}$$

 $\mathbf{a}^{\mathbf{m}} = \mathbf{a}^{2k} * \mathbf{a}^{2i1} * \dots * \mathbf{a}^{2it}$

at most k more multiplies

Hence, we can compute a^m while performing at most 2 [log₂ m] multiplies

Now come back to modular arithmetic

How do you compute...

First idea: Compute 5¹³ using 5 multiplies

5
$$5^2$$
 5^4 5^8 5^{12} 5^{13} = 1,220,703,125
= $5^8*5^45^{12}*5$

then take the answer mod 11

$$1,220,703,125 \pmod{11} = 4$$

How do you compute...

5¹³ (mod 11)

Better idea: keep reducing the answer mod 11

$$5$$
 5^2 5^4 5^8 5^{12} 5^{13} $9\%11=9$ $36\%11=3$ $25\%11=3$ $81\%11=4$ $15\%11=4$

Hence, we can compute a^m (mod n) while performing at most $2 \lfloor \log_2 m \rfloor$ multiplies

where each time we multiply together numbers with $\lfloor \log_2 n \rfloor + 1$ bits

How do you compute...

The current best idea would still need about 54 calculations

answer = 4

Can we exponentiate any faster?

OK, need a little more number theory for this one...

an example of modular exponentiation

mod 7 case

Look at columns and rows!

$$1^{1} \equiv 1 \qquad 1^{2} \equiv 1 \qquad 1^{3} \equiv 1 \qquad 1^{4} \equiv 1 \qquad 1^{5} \equiv 1 \qquad 1^{6} \equiv 1
2^{1} \equiv 2 \qquad 2^{2} \equiv 4 \qquad 2^{3} \equiv 1 \qquad 2^{4} \equiv 2 \qquad 2^{5} \equiv 4 \qquad 2^{6} \equiv 1
3^{1} \equiv 3 \qquad 3^{2} \equiv 2 \qquad 3^{3} \equiv 6 \qquad 3^{4} \equiv 4 \qquad 3^{5} \equiv 5 \qquad 3^{6} \equiv 1
4^{1} \equiv 4 \qquad 4^{2} \equiv 2 \qquad 4^{3} \equiv 1 \qquad 4^{4} \equiv 4 \qquad 4^{5} \equiv 2 \qquad 4^{6} \equiv 1
5^{1} \equiv 5 \qquad 5^{2} \equiv 4 \qquad 5^{3} \equiv 6 \qquad 5^{4} \equiv 2 \qquad 5^{5} \equiv 3 \qquad 5^{6} \equiv 1
6^{1} \equiv 6 \qquad 6^{2} \equiv 1 \qquad 6^{3} \equiv 6 \qquad 6^{4} \equiv 1 \qquad 6^{5} \equiv 6 \qquad 6^{6} \equiv 1$$

Fermat's Little Theorem (FLT)

- $a^{p-1} = 1 \pmod{p}$
 - where p is prime and gcd(a, p) = 1
- also $a^p = a \pmod{p}$
- useful in public key and primality testing

if modulus is denoted by p, that implies p is a prime number

Fermat's Little Theorem (FLT)

(Fermat's Little Theorem) If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}.$ Proof. Let $S = \{1,2,3, \mathbb{N}, p-1\}$. Consider the map $S \to S$:

Proof. Let $S = \{1,2,3, \mathbb{N}, p-1\}$. Consider the map $S \to S$: $m(x) \equiv ax \pmod{p}$. Clearly, $m(x) \not\equiv 0 \pmod{p}$. Now, suppose $x \neq y \in S$. We have $ax \not\equiv ay \pmod{p}$. Therefore, $m(1), m(2), \mathbb{N}$, m(p-1) are distinct elements of S. It follows that

 $1 \cdot 2 \cdot 3 \, \mathbb{I} \quad (p-1) = m(1)m(2) \, \mathbb{I} \quad m(p-1) = (a \cdot 1) \cdot (a \cdot 2) \cdot (a \cdot 3)$

Since gcd(j,p) = 1 for $j \in S$, we can divide this congruence by 1,2,3, \mathbb{Z} , p-1. What remains is $1 \equiv a^{p-1} \pmod{p}$.

FLT: proof (appendix)

- If $ax ay = 0 \mod p$, then $a(x-y) = 0 \mod p$
 - as a≠0, x-y=0 mod p; however -p < (x-y) < p
 - Thus contradiction!
- There is a multiplicative inverse for all elements
 - -1..(p-1)
 - We can divide both sides by (p-1)!

FLT: examples

- 2^{10} (mod 11)? - 2^{10} = 1024 = 1 (mod 11)
- 2^{53} (mod 11)? - $(2^{10})^5 2^3 = 2^3 = 8 \pmod{11}$

Go back to page 13

what if modulus is not a prime?

- Euler's Theorem
 - A general version of FLT
- Let us start with Euler's totient/phi function $\phi(n)$
 - the number of the positive integers less than or equal to n that are relatively prime to n.

Euler's Totient Function $\phi(n)$

- when doing arithmetic modulo n
- complete set of residues is $Z_n = \{0, 1, ..., n-1\}$
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - e.g. for n=10,
 - complete set of residues is $Z_n = \{0,1,2,3,4,5,6,7,8,9\}$
 - reduced set of residues is $Z_n^* = \{1,3,7,9\}$
- number of elements in reduced set of residues is called the Euler's Totient Function φ(n)

Euler's Totient Function: $\phi(n)$

- $\phi(4) = 2$ (1, 3 are relatively prime to 4)
- $\phi(5) = 4 (1, 2, 3, 4 \text{ are relatively prime to } 5)$
- $\phi(6) = 2$ (1, 5 are relatively prime to 6)
- $\phi(7) = 6 (1, 2, 3, 4, 5, 6 \text{ are relatively prime to } 7)$

Euler's Totient Function $\phi(n)$

- in general we need prime factorization, but

```
- for p (p: prime) \phi(p) = p-1

- for p*q (p,q: prime) \phi(pq) = (p-1)(q-1)

- for p* (p: prime) \phi(p^k) = p^{k-1}(p-1)
```

• e.g.

```
\phi(37) = 36 

\phi(21) = (3-1)(7-1) = 2x6 = 12
```

Euler's Theorem

- a generalisation of Fermat's Little Theorem
- $a^{\varphi(n)} = 1 \pmod{n}$
 - for any a, n where gcd(a,n)=1
 - if n is prime, this becomes FLT
- e.g.

```
a=3; n=10; \quad \phi(10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \quad \phi(11)=10;
hence 2^{10}=1024=1 \mod 11
```

Proof of Euler's theorem

```
Consider x_1, x_2, ... x_{\varphi(n)} < n and coprime to n
Since a is also coprime to n, from previous result
 ax_1 \equiv x_i \pmod{n}, ax_2 \equiv x_j \pmod{n}, \dots \text{ etc.}

\Rightarrow a^{\phi(n)} x_1 x_2 x_3 \dots x_{\phi(n)} \equiv x_1 x_2 x_3 \dots x_{\phi(n)} \pmod{n}
 \Rightarrow a^{\varphi(n)} x \equiv x \pmod{n} where x = x_1 x_2 x_3 ... x_{\varphi(n)}
 \Rightarrow n | \times (\alpha^{\phi(n)} - 1)
But n doesn't divide x
 \Rightarrow n | (a^{\varphi(n)} - 1)
 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}
```

Groups based on modular arithmetic

- group: a set of elements with a binary operation
 - the outcome of the operation should satisfy four properties below
- The group of positive integers modulo a prime p

```
Z_{p}^{*} \equiv \{1, 2, 3, ..., p-1\}

*_{p}^{*} \equiv \text{ multiplication modulo p}

Denoted as: (Z_{p}^{*}, *_{p}^{*})
```

Required properties

- 1. Closure. Yes.
- 2. Associativity. Yes.
- 3. Identity. 1.
- 4. Inverse. Yes.
- **Example:** $Z_7^* = \{1,2,3,4,5,6\}$ $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$

Other properties

- $|Z_p^*| = (p-1)$
- By Fermat's little theorem: a^(p-1) = 1 (mod p)
- Example of Z₇^{*}

	X	x^2	x ³	x ⁴	x ⁵	x ⁶
	1	1	1	1	1	1
Generators	2	4	1	2	4	1
	<u>3</u>	2	6	4	5	1
	4	2	1	4	2	1
	<u>5</u>	4	6	2	3	1
	6	1	6	1	6	1

For all p, the group is cyclic. A cyclic group is a group that can be generated by a single element (the generator)

Page 27

What if n is not a prime?

The group of positive integers modulo a non-prime n

```
Z_n \equiv \{1, 2, 3, ..., n-1\}, \text{ n not prime } 
* multiplication modulo n
```

Required properties?

- 0. elements?
- 1. Closure. ?
- 2. Associativity. ?
- 3. Identity. ?
- 4. Inverse. ?
- How do we fix this?

Groups based on modular arithmetic

The multiplicative group modulo n

```
Z_n^* \equiv \{m : 1 \le m < n, \gcd(n,m) = 1\}

*_n \equiv \text{ multiplication modulo n}

Denoted as (Z_n^*, *_n^*)
```

Required properties:

- Closure. Yes.
- Associativity. Yes.
- Identity. 1.
- Inverse. Yes.
- **Example:** $Z_{15}^{*} = \{1,2,4,7,8,11,13,14\}$
- $1^{-1} = 1$, $2^{-1} = 8$, $4^{-1} = 4$, $7^{-1} = 13$, $11^{-1} = 11$, $14^{-1} = 14$

Recap: Euler's Phi Function

$$\phi(n) = |Z_n^*| = n \prod_{p|n} (1 - 1/p)$$

If n is a product of two primes p and q, then

$$\phi(n) = pq(1-1/p)(1-1/q) = (p-1)(q-1)$$

Euler's Theorem:

$$a^{\phi(n)} = 1 \pmod{n}$$
 for $a \in \mathbb{Z}_n^*$

Or for n = pq

$$a^{(p-1)(q-1)} = 1 \pmod{n}$$
 for $a \in \mathbb{Z}_{pq}^*$

Law of exponentiation:

if
$$a = b \mod \phi(n)$$
 then $x^a = x^b \mod n$ $x \in \mathbb{Z}_n^*$

This will be very important in RSA!

Generators in Groups

• Example of Z_{10}^* : {1, 3, 7, 9}

	×	x ²	x ³	x ⁴
	1	1	1	1
Generator	<u>3</u>	9	7	1
= primitive	7	9	3	1
element	9	1	9	1

We want to encrypt and decrypt a message *m*. In RSA, an encryption performs exponentiating modulo *N*, i.e. m^e mod *N*.

We want to find a different exponent d based on e and N which will give us back m, i.e. we want $m^{ed} \mod N = m$. In other words, we want an **exponential inverse** for e modulo N.

To tackle the general problem, start first with the case of N a prime number. Exponentiation modulo a prime number is well understood.

e.g. exponentiating 3 modulo 7: (3 is generator)

- 1. $3^1 \mod 7 = 3$
- 2. $3^2 \mod 7 = 2$ 8. $3^8 \mod 7 = 2$
- 3. $3^3 \mod 7 = 6$ 9. $3^9 \mod 7 = 6$
- $4. 3^4 \mod 7 = 4$
- $5. 3^5 \mod 7 = 5$
- 6. $3^6 \mod 7 = 1$

- $7. 3^7 \mod 7 = 3$

 - 10. $3^{10} \mod 7 = 4$
 - 11. $3^{11} \mod 7 = 5$
 - 12. $3^{12} \mod 7 = 1$

Exponentiating to the *p* -1 power results in 1 (by FLT). Therefore, any further exponentiation results in a cycling, with repetitions occurring every 6 exponentiations.

Fermat's Little Theorem says that this effect happens for all relative-prime numbers under prime modulus:

1.
$$3^1 \mod 7 = 3$$

2.
$$3^2 \mod 7 = 2$$

3.
$$3^3 \mod 7 = 6$$

4.
$$3^4 \mod 7 = 4$$

5.
$$3^5 \mod 7 = 5$$

6.
$$3^6 \mod 7 = 1$$

7.
$$3^7 \mod 7 = 3$$

8.
$$3^8 \mod 7 = 2$$

9.
$$3^9 \mod 7 = 6$$

10.
$$3^{10} \mod 7 = 4$$

11.
$$3^{11} \mod 7 = 5$$

12.
$$3^{12} \mod 7 = 1$$

Corollary: If e is relatively prime to p-1, where p is prime, then its exponential inverse modulo p exists and is the multiplicative inverse of e modulo p-1.

Proof. Supposing $ed \equiv 1 \pmod{p-1}$. Then for some k, ed = 1+k(p-1). So if a is any number not divisible by p, FLT implies:

$$a^{ed} \equiv a^{1+k(p-1)} \pmod{p} \equiv a \pmod{p}$$

In other words, exponentiating by ed doesn't change numbers, modulo p, so by definition, d and e are exponential inverses.

E.g. Find the exponential inverse of 3 modulo 11.

p =11, so p-1 = 10. The inverse of 3 modulo 10 is **7**, which is the answer.

Exponential Inverses: Next Step

Q: Why don't we just use a prime number as our base *N* since it's so easy to find the decryptor *d*?

Exponential Inverses: Next Step

A: Because it's so **easy** to find the decryptor *d!*Recall, this is a *public cryptosystem*. The key
(*N*,*e*) is available to all users including attackers. If a prime *N* were used, anybody can find the inverse of *e* modulo *N*-1.

RSA uses next simplest case: N = pq where N is a product of two (different) primes.

N is publicly known while p and q are hidden

Exponential Inverses: Next Step

If we know what *p* and *q* are, then we'll be able to find the exponential inverse.

But that's a big if.

Factoring large prime numbers is a surprisingly difficult problem.

No one knows how to do this in polynomial time.

RSA: one way function

- Multiplication of two prime numbers is believed to be a one-way function.
- We say "believed" because nobody has been able to prove that it is hard to factorise.

RSA Cryptosystem Proof of Decryption

```
Proof that d is inverse of e mod (p-1)(q-1):
We can therefore find k such that ed = 1+k(p-1)(q-1).
Does m^{ed} equal itself modulo N = pq?
m^{ed} \equiv m^{1+k(p-1)(q-1)} \pmod{pq}.
    \equiv m^{1} \cdot m^{k(p-1)(q-1)} \pmod{pq}
    \equiv m \cdot m^{k(p-1)(q-1)} \pmod{pq}
                                              \equiv m \cdot (m^{(p-1)(q-1)})^k \pmod{pq}
    \equiv m \cdot (1)^k \pmod{pq}
    \equiv m \pmod{pq}
```

RSA Cryptosystem: example

- 1. Select primes: p=17 & q=11
- 2. Compute $N = pq = 17 \times 11 = 187$
- 3. Compute \emptyset (N) = (p-1) (q-1) = $16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1; choose e = 7
- 5. Determine d: $ed=1 \mod 160$ and d < 160Value is d=23 since $23 \times 7 = 161 = 160 + 1$
- 6. Publish public key $KU = \{7, 187\}$
- 7. Keep secret private key KR={23}

RSA Cryptosystem: example

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88 < 187)
- encryption:

$$C = 88^7 \mod 187 = 11$$

• decryption:

$$M = 11^{23} \mod 187 = 88$$

usually, e is small, d is large!

Chinese Remainder Theorem (CRT)

For	each	$x \in$	Z_{15}	write
x m	od 3	and	$x \mod$	l 5.

Each $x \in Z_{15}$ has a different $x \mod 3$, $x \mod 5$ pair.

I hus, the function
$f(x) = (x \bmod 3, x \bmod 5)$
from Z_{15} to the 15 pairs (i,j)
with $0 \le i < 3$ and $0 \le j < 5$
is one-to-one.

 $\Rightarrow x$ is uniquely determined by its pair of remainders.

\boldsymbol{x}	$x \mod 3$	$x \mod 5$
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
1 2 3 4 5 6	2	0
6	2	1
7 8	1	2 3
8	1 2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

CRT

```
Let m_1, ..., m_n > 0 be relative prime. Then the system of equations x \equiv a_i \pmod{m_i} (for i=1 to n) has a unique solution modulo m = m_1 \cdot m_2 \cdot ... \cdot m_n.
```

```
Proof: Let M_i = m/m_i. Thus \gcd(m_i, M_i) = 1. as multi. inverse exists, \exists y_i such that y_i M_i \equiv 1 \pmod{m_i}. Now let x = \sum_i a_i y_i M_i. Since m_i \mid M_k for k \neq i, we have M_k \equiv 0 \pmod{m_i}. \therefore x mod m_i \equiv \sum_l a_l y_l M_l \pmod{m_l} = a_i y_i M_i \pmod{m_l}.
```

Thus, $x \equiv a_i \pmod{m_i}$ holds for each i. Thus, the congruences hold.

What's x such that:

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$?

(So, $a_1 = 2$, etc.
and $m_1 = 3$ etc.)
$$x = 2 \pmod{7}$$

$$m = 3 \times 5 \times 7 = 105$$

$$m = 3 \times 5 \times 7 = 105$$

$$m = 3 \times 5 \times 7 = 105$$

$$m = 3 \times 5 \times 7 = 105$$

$$m = 3 \times 5 \times 7 = 105$$

$$m = m/m_i$$

$$m = m/m_i$$

$$y_i M_i \equiv 1 \pmod{m_i}$$

$$x = \sum_i a_i y_i M_i$$

$$x = \sum_i a_i y_i M_i$$

$$x = m/5 = 105/5 = 21$$
1 is an inverse of $M_1 = 35 \pmod{3}$ since $35 \times 2 \equiv 1 \pmod{3}$

$$M_2 = m/5 = 105/5 = 21$$
1 is an inverse of $M_2 = 21 \pmod{5}$ since $21 \times 1 \equiv 1 \pmod{5}$

$$M_3 = m/7 = 15$$
1 is an inverse of $M_3 = 15 \pmod{7}$ since $15 \times 1 \equiv 1 \pmod{7}$

 $x \equiv 2 \times 2 \times 35 + 3 \times 1 \times 21 + 2 \times 1 \times 15 = 233 \equiv 23 \pmod{105}$ So answer: $x \equiv 23 \pmod{105}$

RSA with CRT

- Assuming that M is not divisible by either p or q,
 - Fermat's Little Theorem tells us that $M^{p-1}\equiv 1 \pmod{p}$ and $M^{q-1}\equiv 1 \pmod{q}$
- Thus, we have that the following two congruences hold:

```
First: C^d \equiv M \cdot (M^{p-1})^{k(q-1)} \equiv M \cdot 1^{k(q-1)} \equiv M \pmod{p}
```

Second: $C^d \equiv M \cdot (M^{q-1})^{k(p-1)} \equiv M \cdot 1^{k(p-1)} \equiv M \pmod{q}$

RSA with CRT

For faster decryption, we use CRT

n = pq

- Decryption: $c^d \mod n$.
- Instead of computing $c^d \mod n$ directly, we
 - \square compute $c_1 = c \mod p$ and $c_2 = c \mod q$
 - \square compute $m_1 = (c_1)^d \mod p$ and $m_2 = (c_2)^d \mod q$

RSA with CRT: example (1/2)

- Bob has a public/private key pair of RSA
 - N: 3293 = 37*89 (N=p*q)
 - e:35, d=2987
- Alice has a message to Bob, which is m=153
 - She sends $153^{35} \equiv 2494 \mod 3293$
- Bob is supposed to calculate
 - 2494²⁹⁸⁷ mod 3293
 - But he knows 3293 = 37*89; he can use CRT!

RSA with CRT: example (2/2)

- X ≡ a mod pq iff X ≡ a mod p and X ≡ a mod q
- So, rather than calculating $X \equiv c^d \mod N$, we solve CRT
 - $-X \equiv c^d \mod p, X \equiv c^d \mod q$
 - Since $c^{p-1} \equiv 1 \mod p$, $c^{q-1} \equiv 1 \mod q$
 - At worst, we just have to compute up to c^{p-2} or c^{q-2}
- Bob needs to solve
 - $X \equiv 2494^{2987} \mod 37$ and $X \equiv 2494^{2987} \mod 89$
 - He can reduce both bases by their respective moduli
 - $X \equiv 15^{2987} \mod 37$ and $X \equiv 2^{2987} \mod 89$

- He can also reduce the exponents
 - $X \equiv 15^{36*82+35} \mod 37$ and $X \equiv 2^{88*33+83} \mod 89$
 - $X \equiv 5 \mod 37 \text{ and } X \equiv 64 \mod 89$
- Finally, Bob simply calculates
 - $-5*5*89 + 64*77*37 \equiv 153 \mod (37*89)$

Discrete Logarithms

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- that is to find x such that $y = g^x \pmod{p}$
- this is written as $x = log_q y \pmod{p}$
- if g is a generator then it always exists, otherwise it may not, e.g.
 - $x = log_3 4 \pmod{13}$ has no answer $x = log_2 3 \pmod{13} = 4$ by trying successive powers
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

Discrete logarithm: plotting

A graph of $f(x) = 627^x \mod 941$ for x = 1, 2, 3, ...

Source: Kaafarani@Oxford Univ.

Primitive Element Theorem

- $Z_p^* = <\alpha>$, i.e. ord(α) = p-1.
- Example
 - $-Z_7^* = <3> 3^1=3, 3^2=2, 3^3=6, 3^4=4, 3^5=5, 3^6=1$
 - Z_{13}^{**} = <2> Z_{1}^{1} =2, Z_{2}^{2} =4, Z_{3}^{2} =8, Z_{3}^{4} =3, Z_{5}^{5} =6, Z_{6}^{6} =12, Z_{7}^{7} =11, Z_{8}^{8} =9, Z_{9}^{9} =5, Z_{10}^{10} =10, Z_{11}^{11} =7, Z_{12}^{12} =1
- Note. $ord(\alpha) = p-1 \Rightarrow \{\alpha, \alpha^2, ..., \alpha^{p-1}\}\ distinct.$

* Primitive element = generator

Discrete Logarithms

Discrete log problem

- Given $Z_{p}^* = \langle \alpha \rangle$
- $Log_{\alpha}(y) = x$, if $y = \alpha^{x}$.

Example

- $-Z_{13}^{*} = <2>$; $2^{1}=2$, $2^{2}=4$, $2^{3}=8$, $2^{4}=3$, $2^{5}=6$, $2^{6}=12$, $2^{7}=11$, $2^{8}=9$, $2^{9}=5$, $2^{10}=10$, $2^{11}=7$, $2^{12}=1$
- $Log_2(5) = 9.$

ElGamal algorithm

- One way function: modular exponentiation
 - Discrete logarithm is hard
- Solving Log_α(y) has some solutions, which are of high complexity
 - None of them run in polynomial time

Setting up ElGamal

- Let p be a large prime
 - By "large" we mean here a prime rather typical in length to that of an RSA modulus
- Select a special number g
 - The number g must be a primitive element modulo p.
- Choose a private key x
 - This can be any number bigger than 1 and smaller than p-1
- Compute public key y (from x, p and g)
 - The public key y is g raised to the power of the private key x modulo p. In other words:

$$y = g^x \mod p$$

• Publicize p, g, y

y,p,g: known by everybody

C₁,C₂: seen by everybody

x: known by receiver (who sets up parameters)

ElGamal encryption

The first job is to represent the plaintext M as a series of numbers modulo p. Then:

- 1. Generate a random number k (ephemeral key)
- 2. Compute two values C₁ and C₂, where

$$C_1 = g^k \mod p$$
 and $C_2 = My^k \mod p$

 Send the ciphertext C, which consists of the two separate values C₁ and C₂.

M, k: known by sender

y,p,g: known by everybody

C₁,C₂: seen by everybody

ElGamal decryption

$$C_1 = g^k \mod p$$
 $C_2 = My^k \mod p$

1 - The receiver begins by using their private key **x** to transform **C**₁ into something more useful:

$$C_1^x = (g^k)^x \mod p$$

NOTE:
$$C_1^x = (g^k)^x = (g^x)^k = (y)^k = y^k \mod p$$

2 - This is a very useful quantity because if you divide **C**₂ by it you get **M**. In other words:

$$C_2 / y^k = (My^k) / y^k = M \mod p$$

M,k: known by sender

y,p,g: known by everybody

C₁,C₂: seen by everybody

Setting up ElGamal: example

```
Step 1: Let p = 23

Step 2: Select a primitive element g = 11

Step 3: Choose a private key x = 6

Step 4: Compute y = 11<sup>6</sup> (mod 23) = 9

Public key is 9 (and 11, 23)

Private key is 6
```

M,k: known by sender

y,p,g: known by everybody

C₁,C₂: seen by everybody

ElGamal encryption: example

To encrypt M = 10 using Public key 9

1 - Generate a random number k = 3

2 - Compute
$$C_1 = 11^3 \mod 23 = 20$$

 $C_2 = 10 \times 9^3 \mod 23$
 $= 10 \times 16 = 160 \mod 23 = 22$

3 - Ciphertext C = (20, 22)

M,k: known by sender

y,p,g: known by everybody

C₁,C₂: seen by everybody

ElGamal decryption: example

```
M,k: known by sender
```

y,p,g: known by everybody

C₁,C₂: seen by everybody