0. >

Locality List Update Seminar

Loric ANDRE

05.07.2021

Outline

Introduction

Move Recursively Forward

Base bound

Weak Pairwise Property Move Recursively Forward

Locality

Model

Phases

Optimal Algorithm

Cost of OPT

Cost of MRF

Introduction

- ► Add dependencies to classic list update problem
- ► Goal : Get ratio in terms of locality

MRF

- ▶ Move accessed item to first dependency in front
- Then move said dependency the same way
- Repeat
- ► We already have a competitive ratio of 4 in the case with dependencies

Base bound

- ▶ Not in terms of locality yet
- ▶ We want another way to prove the bound of 4

Notations

- ▶ $ALG^*(\sigma)$: partial cost of ALG over the sequence σ ; accessing node i costs only i-1.
- σ_{xy} : sequence without accesses to nodes different from x and y
- ► ALG(x,j): 1 if x in front of $\sigma(j)$ at time j
- ► $ALG_{xy}(\sigma)$: sum of all ALG(x,j) and ALG(y,j) where j is x or y: projection of the cost for x and y

Pairwise property

Base version: ALG satisfies the pairwise property if

$$ALG_{xy}(\sigma) = ALG(\sigma_{xy})$$

ALG satisfies the weak pairwise property if

$$ALG_{xy}(\sigma) \leq ALG(\sigma_{xy})$$

Move Recursively Forward

MRF satisies the weak pairwise property :

- Cost of MRF : access and reconfiguration
- ightharpoonup Access: pos(x)
- ▶ Reconfiguration : at least pos(x) #{parents of x}
- $MRF(\sigma_{xy}) = 2pos(x) + 2pos(y) a(x)occ(x, \sigma) a(y)occ(y, \sigma)$
- ▶ $a(x)occ(x, \sigma) + a(y)occ(y, \sigma)$ less than optimal cost so less than $MRF_{xy}(\sigma) = pos(x) + pos(y)$

Ratio on pairs

Independent nodes:

- ▶ i and j : 2 consecutive indexes of accesses to the back node by MRF. $j i \ge 1$
- ► MRF : cost 3+3+(j-i-1)=5+j-i
- ▶ OPT pays at least 2 (access to back node) 1 time : cost at least 2 + i i

Full ratio

- ▶ If satisfies pairwise property, can sum ratios
- ▶ In the case of MRF, $MRF(\sigma) \leq 2 \sum_{x \neq y} MRF_{xy}(\sigma)$
- Related nodes : MRF = OPT
- Conclusion : Ratio of 4
- Ratio decreases with number of related nodes

Model

- ► Locality : grows with accesses to same node
- ► Short and long runs
- ► Long run changes
- $\lambda = \frac{l_c(\sigma)}{r(\sigma)}$

Phases

- 2 forms starting with x:
 - > split after every long run or at the end
 - ightharpoonup (a). $(xy)^k x^l$: xyxyxyxyxxxxx
 - \blacktriangleright (b). $(xy)^k y^l$: xyxyxyxyyyyyy

Optimal Algorithm

We deal with pairs of unrelated nodes for now.

An optimal algorithm is to move a node to the front of the list at the beginning of every long run.

Cost of OPT

- Analyze cost over phases $((xy)^k x^l)$ or $(xy)^k y^l$
- Beginning of phase starting with x : y in front
- Phase other than first or last :
 - ▶ (b) costs $\frac{r(\pi(i))}{2}$ (number of accesses to x)
 - (a) costs $\frac{r(\bar{\pi(i)})-1}{2}+2$ (number of accesses to x then 2 for the long run)
 - Conclusion : cost of $\frac{r(\pi(i))+3l_c(\pi(i))}{2}$ $(l_c(\pi(i)))$ number of long run changes)
- Last run: no move if no long run change, same cost minus $f_e(\sigma_{xy})$ (whether it ends in a long run change or not)
- First run : x can be in front : cost at least $\frac{r(\pi(1))+3l_c(\pi(1))-f_b(\sigma_{xy})}{2}$

Cost of MRF

All runs cost 2, first one can cost 0 if first accessed node in front :

$$MRF_U^*(\sigma_{xy}) = 2r(\sigma_{xy}) - 2f_b(\sigma_{xy})$$

Related nodes

- ► Related nodes : list fixed, same cost
- $\blacktriangleright \eta(\sigma_{xy})$: Number of accesses to back node
- ightharpoonup Cost $\eta(\sigma_{xy})|\sigma_{xy}|$

Full ratio - strict competitiveness

- $\qquad \qquad \alpha(\sigma) = \frac{(1+\eta(\sigma))|\sigma|-f_{b,U}}{r_U(\sigma)}$
- ► Ratio (strict competitiveness) : $R(\sigma) \le \frac{4}{1 + \frac{\alpha + \beta}{\alpha + 1}}$
- Issue : α could be negative or not, so transition to $R(\sigma) \leq \frac{4}{1+\beta}$ not yet proven
- ▶ Once done, $R(\sigma) \leq \frac{4}{1+\lambda_U}$

Full ratio - down to one

$$\beta'(\sigma) = \frac{l_{c,U}(\sigma)}{r_U(\sigma)} \ge \frac{l_{c,U}(\sigma)}{r_U(\sigma)} \ge \lambda_U$$

► Ratio (strict competitiveness) :

$$MRF(\sigma) \leq \frac{4OPT(\sigma)}{1+\frac{\alpha'+3\beta'}{\sigma'+1}} + 4f_{e,U}(\sigma) (1+2f_{b,U})$$

- Same issue
- ▶ Once done, $MRF(\sigma) \leq \frac{4OPT(\sigma)}{1+3\lambda_{II}} + O(I^4)$, I number of nodes
- ► This goes down to one!

Conclusions

- Need one step cleared to get a ratio of 4, going down to 2 (strict competitiveness) or 1
- ➤ Always removed the cost over related nodes when we could : ratio of one means that the full ratio decreases with the number of related pairs !

Questions

Thank you for listening, any questions?