МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «Алгоритми і Структури Даних»

Лабораторна робота № 1.2 на тему: «Дерева»

Варіант 2

Виконав:	Богатько Олександр Геннадійович	Перевірила:	Юрчук Ірина Аркадіївна
Група	ІПЗ-12	Дата перевірки	
Форма навчання	денна		
Спеціальність	121	Оцінка	

Завдання 1.

Задані ребра неорієнтованого графа G = (V, E) Знайти центр цього дерева.

 $G(E) = \{01-07, 05-07, 12-16, 18-10, 14-09, 06-07, 12-18, 13-14, 10-04, 11-07, 16-13, 18-08, 08-04, 11-12, 16-18, 15-14, 14-04, 02-12, 17-01, 15-08, 14-03, 08-09, 10-03, 10-09, 17-15, 13-03, 13-10, 07-18, 07-15, 07-17\}.$

1) Побудувати остовне дерево графа.

Насамперед, наведемо матрицю суміжності графа G

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1							1										1	
2												1						
3										1			1	1				
4								1		1				1				
5							1											
6							1											
7	1				1	1					1				1		1	1
8				1					1						1			1
9								1		1				1				
10			1	1					1				1					1
11							1					1						
12		1									1					1		1
13			1							1				1		1		
14			1						1				1		1			
15							1	1						1			1	
16												1	1					1
17	1						1								1			
18								1		1		1				1		

Множина вершін $V^{(1)} = \{1\}$. Множина ребер $\mathbf{E}^1 = \emptyset$

$$\mathbf{V}^{(2)} = \{7, 17\}$$
 $\mathbf{E}^{(2)} = \{1-7, 1-17\}$

$$\mathbf{V}^{(3)} = \{5, 6, 11, 15, 18\}$$
 $\mathbf{E}^{(3)} = \{7-5, 7-6, 7-11, 7-15, 7-18\}$

$$\mathbf{V}^{(4)} = \{8, 10, 12, 14, 16\}$$
 $\mathbf{E}^{(4)} = \{11-12, 15-8, 15-14, 18-10, 18-12\}$

$$\mathbf{V}^{(5)} = \{2, 3, 4, 9, 13\}$$
 $\mathbf{E}^{(5)} = \{8-4, 10-13, 12-2, 12-16, 14-3, 14-9\}$

$$\mathbf{V_1} = \mathbf{V^{(1)}} \; \mathsf{U} \; \mathbf{V^{(2)}} \; \mathsf{U} \; \mathbf{V^{(3)}} \; \mathsf{U} \; \mathbf{V^{(4)}} \; \mathsf{U} \; \mathbf{V^{(5)}} = \{1,\,7,\,17,\,5,\,6,\,11,\,15,\,18,\,8,\,10,\,12,\,14,\,16,\,2,\,3,\,4,\,9,\,13\}$$

 $\mathbf{E_1} = \mathbf{E}^{(1)} \cup \mathbf{E}^{(2)} \cup \mathbf{E}^{(3)} \cup \mathbf{E}^{(4)} \cup \mathbf{E}^{(5)} = \{1-7, 1-17, 7-5, 7-6, 7-11, 7-15, 7-18, 11-12, 15-8, 15-14, 18-10, 18-12, 8-4, 10-13, 12-2, 12-16, 14-3, 14-9\}$

Отримано остовний підграф $G_1 = (V_1, E_1)$ заданого графа G = (V, E). Матриця суміжності для G_1 повинна бути симетричною, тому що G_1 – неорієнтований граф. Для цього відобразимо всі одиниці отриманої матриці відносно головної діагоналі.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1							1										1	
2												1						
3														1				
4								1										
5							1											
6							1											
7	1				1	1					1				1			1
8				1											1			
9														1				
10													1					1
11							1					1						
12		1									1					1		1
13										1								
14			1						1						1			
15							1	1						1				
16												1						
17	1																	
18							1			1		1						

2)Знайти центр дерева.

Для того щоб знайти центр дерева, треба звести його до кореневої форми

З центральної-кореневої форми, ми можемо з'ясувати що центром остового дерева ε вершина 7.

Завдання 2. Граф G = (V, E) містить 6 вершин: $V = \{a, b, c, d, e, f\}$. Відстані між вершинами задані таблицею. Знайти для графа G:

1) мінімальне остовне дерево.

№ 3/п	G	A
2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B 4 C

Відсортувавши ребра по зростанню за вагою, ми додаємо перше мінімальне ребро $\{a,b\}$, а потім і всі інші ребра, які не утворюють циклів.

Множина	Вага	Додати до
ребер	ребра	мінімального
графа		дерева-
G(E)		остова G1
{a, b}	2	+
{b, d}	2	+
{d, e}	2	+
{a, c}	3	+
{b, f}	3	+
{f, d}	3	-
{b, c}	4	-
{c, d}	4	-

Наприкінці отримуємо мінімальне остове дерево $G_1\{V_1, E_1\}$ де множина $V_1 = \{a, b, c, d, e, f\}$, а множина $E_1 = \{(a,b), (b,d), (d,e), (a,c), (b,f)\}$ Вага дерева = 12

2) максимальне остовне дерево.

Так само як і у першому завданні, ми сортуємо ребра за вагою, але у порядку спадання.

Додаємо перше ребро $\{c, d\}$ до графа G_2 .

Далі ребра що не утворюють циклів: (c, d), (b, c), (f, d), (a, c), (d, e)

Результатом зазначеної побудови ми отримаємо максимальне остовне дерево $G_2(V_2,\,E_2)$, де

$$V_2 = \{a, b, c, d, e, f\}$$

$$E_2 = \{(c, d), (b, c), (f, d), (a, c), (d, e)\}$$

Множина	Вага	Додати до
ребер	ребра	мінімального
графа		дерева-
G(E)		остова G1
{c, d}	4	+
{b, c}	4	+
{f, d}	3	+
{b, f}	3	-
{a, c}	3	+
{d, e}	2	+
{b, d}	2	-
{a, b}	2	-

Висновок:

В цій лабораторній работі, ми навчилися будувати остовні дерева графа, знаходити центр остовних дерев. Знаходити мінімальне, та максимальне остовне дерево.