Principal component analysis (PCA)

- An automated way to do dimensionality reduction
- A linear transformation of coordinates in decreasing order of variance
 - First principal component has the largest variance
 - Second principal component has second largest variance
 - And so forth
- Dimensions can be reduced by keeping the highest-variance dimensions
- See https://en.wikipedia.org/wiki/
 Principal component analysis

The matrices of PCA

- **CV** = **PV**
- C: covariance matrix
 - C_{kl} is the covariance between dimensions k and l.
 - Usually empirically estimated from data.
- V: matrix of column eigenvectors
 - V_{kI} is the
 - importance of the original coordinate k
 - in the transformed coordinate I.

- known as the principal components
- the columns are orthonormal vectors
- P: diagonal matrix of eigenvalues
 - $P_{kl} = \lambda_{kl}$ if k = 1
 - $P_{kl} = 0$ otherwise
 - variances in transformed coordinate system
 - scaling of the eigenvectors
- All three matrices have the same size