Probabilités

I / Langage ensembliste-Langage probabiliste :

<u>Définitions</u>: * Lorsqu'on fait une expérience aléatoire, le résultat est appelé issue.

- * L'ensemble des issues possibles est appelé univers des possibles.
- * Un évènement est une partie de l'univers des possibles.

Soit Ω l'univers des possibles d'une expérience , on $a:P(\Omega)$ est l'ensemble des parties ou évènements de Ω .

Langage ensembliste	Langage probabiliste
A : une partie de Ω	A est un évènement
$A = \Omega$	A est l'évènem <mark>ent c</mark> ertain
$A = \emptyset$	A est l'évènement impossible
e : un élément de Ω , $e\in\Omega$	e est une éventualité ou un cas possible
$\{e\}$ est un singleton , $\{e\}$ \subset Ω	$\{e\}$ est un évènement élémentaire
$A \cup B$ est la réunion de A et B	$A \cup B$ est l'évènement « A ou B »
$A\cap B$ est l'intersection de A et B	$A \cap B$ est l'évènement « A et B »
$\overline{A}=C_{\Omega}^{A}$ est le complémentaire de A dans Ω	A est l'évènement <mark>c</mark> ontraire de A
Si $A\cap B=arnothing$, A et B sont deux parties disjoints de Ω	A et B sont deux évènements incompatibles

II / Probabilité d'un évènement :

<u>**Définition**</u>: Soit Ω un ensemble fini, on appelle probabilité définie sur $P(\Omega)$ toute application $p:P(\Omega) \to [0,1]$ tel que :

- * $p(\Omega)=1$
- * Pour tout A et B de $P(\Omega)$, si $A \cap B = \emptyset$ alors $p(A \cup B) = p(A) + p(B)$
- * On dit que p est une **équiprobabilité** sur $P(\Omega)$ ou **probabilité uniforme** si tous les évènements élémentaires ont la même probabilité.
- * Soit Ω un ensemble fini p l'équiprobabilité sur $P(\Omega)$ pour tout évènement A de $P(\Omega)$, la probabilité de A est :

$$p(A) = \frac{card(A)}{card(\Omega)} = \frac{nombre\ des\ cas\ favorables}{nombre\ des\ cas\ possibles}$$

<u>Notation</u> Le cardinal d'un ensemble A noté card(A) est le nombre d'éléments de A.

III / Propriétés :

Soit Ω un ensemble fini, p l'équiprobabilité sur $P(\Omega)$:

- **O** Pour tout évènement A de $P(\Omega)$ on $a: p(\overline{A}) = 1 p(A)$.
- $p(\varnothing) = 0.$
- Pour tout A et B de $P(\Omega)$ on $a: > p(A \cup B) = p(A) + p(B) p(A \cap B)$. • $p(A - B) = p(A) - p(A \cap B)$. • $Si \quad A \subset B \Rightarrow p(A) \leq p(B)$.

Probabilités

Exercice N°01:

Une urne contient 4 boules rouges, 5 boules vertes et 3 boules blanches indiscernable au toucher.

- 1/On tire simultanément 2 boules de l'urne, calculer la probabilité des évènements suivants:
 - a) A: « avoir 2 boules blanches »
 - b) B: « avoir deux couleurs ».
 - c) C: « avoir au moins une boule verte ».
- 2/On tire successivement et sans remise 2 boules de l'urne, calculer la probabilité des évènements suivants :
 - a) D: « avoir deux boules de même couleur ».
 - b) E: « avoir une seule boule verte ».
- 3/On inscrit le numéro (1) sur les boules rouges, (-1) sur les boules vertes et (0) sur les boules blanches. On tire successivement et avec remise 2 boules de l'urne ; On pose S : « la somme des numéros inscrits sur les boules tirées ».
 - a) Donner les valeurs possibles de S.
 - b) Calculer la probabilité de chaque valeur de S.
 - Vérifier que la somme de toutes ces probabilités est égale à 1.

Exercice N°02:

Une urne contient 10 boules indiscernables au touchées: six noire numérotées 1,1,2,2,2,3 et quatre blanches numérotées

- 1/On tire simultanément et au hasard trois boules de l'urne. Calculer la probabilité des évènemen<mark>ts</mark> suivants
 - a) A: « obtenir trois boules noires ».
 - b) B: « la somme des trois numéros inscrits sur les boules tirées est paire ».
 - c) C: « obtenir trois boules noires ou une somme paire ».
- 2/On tire successivement et avec remise trois boules de l'urne. Calculer la probabilité des évènements suivants:
 - a) D: « avoir exactement deux boules noires et une boule blanche ».
 - b) F: « avoir au moins une boule noire ».
 - c) E: « la boule n°2 est tirée pour la première fois au deuxième tirage ».

Exercice N°03:

Une urne contient quatre boules blanches numérotées: -1,0,0,1 et cinq boules noires numérotées: -1,1,1,2,2.

- 1/On tire simultanément et au hasard trois boules de l'urne. Calculer la probabilité des évènements suivants :
- a) A: « obtenir trois boules de deux couleurs ».
- b) B: « obtenir trois boules dont le produit des numéros est nul ».
- c) C: « obtenir trois boules dont le produit est une puissance de 2 ».
- d) $\mathbf{D} : (\mathbf{A} \cup \mathbf{B})$.
- e) E: « il reste dans l'urne le même nombre de boules blanches que de boules noires »
- 2/On tire successivement et s<mark>ans remise trois</mark> boules de l'urne . Calculer la probabilité des évènements suivants :
- a) F: « obtenir exactement deux boules blanches ».
- b) G: « obtenir une somme nulle ».
- 3/On répartit les neuf boules <mark>da</mark>ns neuf cases , chaque case pouvant contenir de zéro jusqu'à neuf boules .
- a) Calculer le nombre de répartition possible.
- b) Calculer la probabilité des évènements suivants :
- H: « deux cases et deux seulement sont non vide ».
- K: « aucune case n'est vide ».
- L: « chaque couleur est dans une case ».

b-mehdi.jimdo.com

Exercice N°04:

On considère une urne dans laquelle se trouve : 1 boule portant le numéro 1, 2 boules portant le numéro 2, 3 boules portant le numéro 3 et n boules portant le numéro n.

1/Combien l'urne contient elle de boule?

- 2/On tire au hasard une boule de l'urne, tous les tirages sont supposés équiprobables.
- a) On suppose que n est pair . Exprimer en fonction de n la probabilité pour que la boule tirée porte :
- Un numéro pair.
- Un numéro impair.
- b) Dans cette question, on suppose seulement que le nombre totale de boules dans l'urne est 21. Quelle est la probabilité pour que la boule tirée porte un numéro strictement supérieur à 4?

Exercice N°05:

Une urne contient 6 boules : 3 numérotées 1 , 2 numérotées 2 et une numérotées 3 . On tire une première boule au hasard puis sans remettre cette boule on tire une seconde boule au hasard . Le résultat d'un tel tirage est le couple

(a,b) où a et b sont les nombres inscrits sur la première et la seconde boule.

1/Calculer la probabilité de chaque résultat possible.

2/ Calculer la probabilité des évènements suivants :

- A : « les deux numéros tirés sont égaux (a=b) ».
- B : « le premier nombre tiré est strictement supérieur au second (a > b) » .
- C: « le premier nombre tiré est inférieur au second $(a \le b)$ ».
- 3/On note X la valeur absolue de la différence de deux nombres tirés (X = |a b|).
- a) Quel est l'ensemble E des valeurs possibles de X
- b) Pour tout élément i de E , calculer la probabilité \det l'évènement $(X {
 ightharpoonup i})$.

Exercice Nº06:

Soit $(\Omega, P(\Omega), p)$ un espace probabilisé finie.

1/Montrer que si A , B et C sont trois évènements que (conques de $P(\Omega)$, on a :

$$p(A \cup B \cup C) = p(A) + p(B) + p(C) - p(A \cap B) - p(A \cap C) - p(B \cap C) + p(A \cap B \cap C)$$

3

2/a) Soient $A_{1 \le i \le n}$ n évènements quelconques de $P(\Omega)$. Montrer l'inégalité suivante :

$$p(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) \le \sum_{i=1}^{n} p(A_i)$$

b) Dans quel cas l'inégalité • devient-elle une égalité ?