Consumer and Corporate Affairs Canada

Bureau des brevets

Patent Office

Ottewa, Ceneda	(11) (C)	1,293,465	•
K1A 009	(21)	558,097	SICTION B CORRECTION
	(22)	1988/02/04	SEE CFRTIFICATE CORRECTION - ARTICLE B
	(45)	1991/12/24	VOIR CERTIFICAT
	(52)	196-21	

- (51) INTL.CL. B03B-9/02
- (19) (CA) CANADIAN PATENT (12)
- (54) Purification Process for Bitumen Froth
- (72) Shelfantook, William E. , Canada Hyndman, Alexander W. , Canada Hackman, Larry P. , Canada
- (73) Alberta Energy Company Ltd. , Canada
 Canadian Occidental Petroleum Ltd. , Canada
 Esso Resources Canada Limited , Canada
 Gulf Canada Resources Limited , Canada
 Majesty (Her) the Queen in right of the Province of
 Alberta, as represented by the Minister of Energy and
 Natural Resources , Canada
 HBOG-Oil Sands Limited Partnership , Canada
 PanCanadian Petroleum Limited , Canada
 Petro-Canada Inc. , Canada
- (57) 2 Claims
- (60) Supplementary Disclosure Filed 1989/11/03

Canadä

OCA 3254 (10 89) 41

Bureau canadien des brevels Certificat de correction Canadian Patent Office Certificate of Correction

Canadian Patent No. 1,293,465 Granted: December 24, 1991

Les corrections suivantes sont faites en raison de l'article 8 de la *Loi sur les brevets* et le document doit être lu tel que corrigé.

In the Patent file and Patent grant:

1.

The following corrections are made pursuant to section 8 of the *Patent Act* and the document should read as corrected.

The following lines have been added to the top of page two of the claims:

"mixing the first underflow stream from the first settler in the second mixer with a second recycled overflow stream from the third settler, said second overflow stream being"

Enraud ent certificateur / Certifying Officer

November 29, 1999

Date

(CIPO 25)

"PURIFICATION PROCESS FOR BITUMEN FROTH"

ABSTRACT OF THE DISCLOSURE

Bitumen froth is treated in a circuit comprising a
plurality of serially connected mixer and inclined plate
settler units. A light hydrocarbon diluent moves
countercurrently through the circuit. Thus, as the bitumen
content of the stream being settled diminishes, the
concentration of diluent in that stream increases.

1	FIELD OF THE INVENTION
2	This invention relates to a process for purifying
3	bitumen froth, to thereby obtain a diluted bitumen stream of good
4	enough quality to be fed to a downstream upgrading facility. By
5	'purifying' is meant that water and solids present in the froth
6	are separated from the bitumen.
7	BACKGROUND OF THE INVENTION
8	The oil sands of the Fort McMurray region of Alberta
9	are presently being exploited by two large commercial operations.
10	The process practised in these operations involves four broad
11	steps, namely:
12	- mining the oil sand;
13	- extracting the bitumen from the mined oil sand
14	using a process known as the 'hot water process',
15	to produce bitumen in the form of a froth
16	contaminated with water and solids;
17	 purifying the froth to separate the water and
18	solids from the bitumen; and
19	 upgrading the purified bitumen in a coking
20	facility to produce products which are suitable
21	for a conventional refinery.
22	The present invention has to do with the purifying
23	step. However, in order to understand the problems solved by
24	the invention, it is first necessary to review the steps of the
25	hot water process and the conventional froth purification
26	process.
27	As a beginning point, it needs to be understood that
28	oil sands comprises relatively large quartz sand grains,
29	each grain being encapsulated in a thin sheath of connate
30	water. The water contains minute clay particles (referred to

as 'fines'). The bitumen is positioned in the interstices between the water-sheathed grains of sand.

. 17

In the first step of the hot water process, the mined oil sand is mixed in a rotating horizontal cylindrical drum (or 'tumbler') with hot water (80°C) and a small amount of NaOH (referred to as 'process aid'). Steam is sparged into the slurry at intervals along the length of the drum, to ensure that the exit temperature of the resultant slurry is about 80°C.

The drum is slightly inclined along its length, so that the mixture moves steadily therethrough. The retention time is about 4 minutes.

This tumbling step is referred to as 'conditioning'. It involves heating of the bitumen and displacement, by water addition, of the bitumen away from the sand grains. Many of the released bitumen globules become aerated by forming films around air bubbles entrained in the tumbler slurry. Conditioning also involves reaction between the NaOH and bitumen to produce surfactants which facilitate the bitumen-release and subsequent flotation/settling steps.

On leaving the tumbler, the conditioned slurry is screened, to remove oversize rocks and lumps, and diluted with additional hot water. The resulting water/bitumen ratio is about 6:1.

The diluted slurry is then introduced into a large thickener-like vessel having a cylindrical upper portion and a conical lower portion. The vessel is referred to as the 'primary separation vessel' or 'PSV'. Here the diluted slurry is retained for about 45 minutes under quiescent conditions. Under the influence of gravity, the sand grains sink, are concentrated in the conical portion and are

1	discharged as 'primary tailings' through a valve and line
2	connected to the lower apex of the vessel. The bitumen
3	globules, rendered buoyant by air attachment, rise to the
4	surface of the PSV and form a froth. This froth is called
5	'primary froth' and typically comprises:
6	66.4% by wt. bitumen
7	24.7% by wt. water
8	8.9% by wt. solids
9	The primary froth is skimmed off and recovered in a launder.
10	In between the layer of sand tailings in the base of the
11	vessel and the layer of froth at the top, there exists a
12	watery slurry referred to as 'middlings'. The middlings
13	contain fines and globules of bitumen which are
14	insufficiently buoyant to reach the froth layer.
15	A stream of middlings is continuously withdrawn
16	from the PSV. These middlings are treated in a series of
17	sub-aerated flotation cells. In these cells, the middlings
18	are vigorously aerated and agitated, with the result that
19	contained bitumen is forced to float and form a dirty froth
20	referred to as 'secondary froth'. This secondary froth
21	typically comprises:
22	23.8% by wt. bitumen
23	58.7% by wt. water
24	17.5% by wt. solids.
25	To reduce the concentration of water and solids in
26	the secondary froth, it may be retained in a settling tank to
27	allow some of the contaminants to settle out. The 'cleaned'
28	secondary froth typically comprises:
29	41.4% by wt. bitumen
30	46.2% by wt. water
31	12.4% by wt. solids.

1		rimary and secondary froths are then combined
2	to provide the	product of the hot water extraction process.
3	The 'combined fr	coth' typically comprises:
4	57.3%	by wt. bitumen
5	34.2%	by wt. water
6	8.4%	by wt. solids.
7		stream is too contaminated to be used as feed
8	to the downstre	am upgrading circuit. This latter circuit
9	requires a feed	typically comprising:
10	99.0%	by wt. bitumen
11	- %	by wt. water
12	1.0%	by wt. solids.
13	So the	e combined froth product requires purification
14	(or water and s	solids removal) before it can be fed to the
15.	upgrading circ	uit. Heretofore, this purification has been
.16	obtained by usi	ng what is referred to as 'two stage dilution
17	centrifuging'.	This operation involves:
18	1.	Diluting the combined froth with naphtha.
19	•	This is done to reduce hydrocarbon phase
20	,	viscosity and increase the density
21		difference between the hydrocarbon phase
22		(bitumen dissolved in naphtha) and the
23	,	water and solids phase (referred to jointly
24		as 'sludge');
25	2.	Passing the diluted froth through a low-
26		speed scroll centrifuge, to remove the
27		coarse solids and some of the water as a
28		cake , which is discarded; and

	3.	Passing the scroll centrifuge product
•		through a high-speed disc centrifuge to
3		remove fine solids and most of the balance
1		of the water. The disc centrifuge product
5		typically analyzes at:
5		59.4% by wt. bitumen
7		37.5% by wt. naphtha

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26.

27

28

29

4.5% by wt. water

0.4% by wt. solids

The naphtha diluent and any contained water is then distilled out of the disc centrifuge product to produce the purified bitumen product for advancing to the upgrading process.

The described dilution centrifuging process has been used because it is capable of producing a bitumen product of the desired quality. But it is an operation that is exceedingly expensive to maintain and operate due to the erosive nature of the feed and the rotating character of the centrifuges. For example, in use, the flights of the scroll centrifuges wear badly, even though they are formed of ceramic, and the brittle ceramic flights commonly break and In the case of the disc put the machine out of balance. centrifuges, their sludge discharge nozzles are subject to rapid wear and the separation interface between product and reject in the stack of discs can easily be 'lost', with the result that a significant amount of bitumen is lost with the In addition, a large number of the machines must be used, with attendant consumption of very large amounts of electrical energy.

	1	Thus, there has long been a need for a viable
	2	alternative to the dilution centrifuging circuit for
	3	purifying bitumen froth.
	. 4	The present invention involves a circuit of
	5	interconnected known devices, namely mixers and inclined
	6	plate settlers ('IPS').
•	7	An inclined plate settler comprises a stack of
	8	parallel, spaced apart, solid plates, inclined downwardly
	9	from the horizontal and mounted within a containing vessel.
	10	Each space between a pair of plates forms a discrete settling
•	11	zone. The feed mixture to be separated is distributed into
	12	the spaces, at a point between their longitudinal ends. The
	13	light components of the mixture rise to the underside surface
	14	of the upper plate. These light components then travel up
	15	said underside surface and are collected and recovered at the
	16	upper ends of the plates. The heavy components of the
	17	mixture sink towards the uppermost surface of the lower plate
	18	and follow it downwardly, to be collected and recovered at
•	19	the lower ends of the plates.
	20	A mixer can take any of various forms - the present
:	21	work involved simply a cylindrical container having a
	22	submerged driven impellor positioned therein.
	23	SUMMARY OF THE INVENTION
	24	The present invention is based on the following
	25	experimentally determined observations:
•	26	- That bitumen froth is amenable to high quality
	27	separation in a first IPS, but in that first
•	28	stage of separation only part of the bitumen
	29	in the feed reports as overhead product;

1	- That the underflow from the first IPS, containing
2	a significant proportion of the bitumen in the
3	original feed, is not amenable to high quality
4	separation in a second IPS. It appears that the
5 .	first stage underflow contains stable emulsions
6	that will not readily resolve in the second IPS
7	or that much of the hydrocarbons that did not
8	report to the overflow in the first stage will
. 9	also not report to the overflow in the second
10	stage; and
11	- That if light hydrocarbon diluent (e.g. naphtha)
12	is mixed with the first stage underflow, then
13	this mixture is amenable to good quality
14	separation in the second IPS.
15	Having conceived and tried the underlying
16	experimental work that resulted in these observations,
17	applicants conceived a purification circuit for bitumen froth
18	that would incorporate the following features:
19	 the use of a plurality of serially connected
20	inclined plate settlers, with a subsequent
-21	settler being fed the underflow from a
22	preceding settler;
23 ·	- the addition of light hydrocarbon
24	diluent or solvent, in a progressively
25	richer concentration, to the bitumen-
26	containing stream moving through the
27	series of settlers, said bitumen-containing
28	stream becoming progressively leaner in
29	bitumen as it moves through the circuit; and

1	- the use of mixers before each settler to mix
2	the added diluent with the bitumen.
3	A circuit or line consisting of three pairs of alternating mixers
4	and settlers was tested. The overflow stream from the first
5	settler provided the only bitumen product stream produced from
6	the circuit. The bitumen/diluent overflow stream from the second
7	settler was recycled to the first mixer to be combined with the
8	froth feed. The low-bitumen/high-diluent overflow stream from
9	the third settler was recycled to the second mixer. Thus more
10	diluent was supplied to the relatively bitumen-lean underflow
11	stream being supplied to the second mixer. And finally, fresh
12	diluent was supplied to the third mixer to dissolve the small
13	amount of bitumen in the underflow stream of the second settler.
14	When applied to typical combined bitumen froth this
15	circuit demonstrated:
16	- that the bitumen product stream from the first
17	IPS was of the same order of purity as that
18	derived from a conventional dilution centrifuging
19	circuit; and
20	- that the recovery of bitumen by the test circuit
21	was of the same order as that obtained by
22	dilution centrifuging.
23	Stated otherwise, we have made the surprising discovery
24	that a process using three mixing/IPS separation steps in
25	series, combined with a counter flow of solvent, gives product
26	of as good quality as that obtained from the centrifuge process
27	(said quality being referred to as "upgrading quality"),
28	together with comparable hydrocarbon recovery and a sludge
29	tailings that is substantially hydrocarbon-free. And the

1	components of the present circuit are without moving parts
2	(except for the pumps and impellors) and thus are
3	characterized by comparatively low maintenance costs.
4	DESCRIPTION OF THE DRAWINGS
5	Figure 1 is a block diagram showing the steps of
6	the process in accordance with the preferred embodiment; and
7	Figure 2 is a schematic showing the circuit of
8	processing components or units and their pipe
9	interconnections.
10	DESCRIPTION OF THE PREFERRED EMBODIMENT
11	The test work underlying the present invention was
12	carried out in 3-stage mixer/IPS circuit. The invention will
13	now be described with respect to that circuit, although it
14	could also be conducted in 2, 4 or even more stages.
15	More particularly, combined bitumen froth was fed
16	to a circuit A comprising: a first mixer 1; a first IPS 2; a
17	second mixer 3; a second IPS 4; a third mixer 5; a third IPS
18	6; and appropriate connecting lines.
19	The combined froth was introduced into and mixed in
20	the first mixer 1 with a first recycled overhead stream from
21	the second IPS 4. This first recycled overhead stream was
22	depleted in bitumen but enriched in naphtha, relative to the
23	combined froth feed.
24	The first mixer 1 comprised a cylindrical body la
25	having a flat bottom 1b. An impellor 1c was positioned to
26	stir the contents of the mixer.

	1	The mixture from the first mix	er 1 was fed to the
	2	inlet of the first IPS 2. The first IPS	
	3	2a having an inlet 2b, an overhead	
	4	underflow outlet 2d. The box contained	a pair of inclined
	5	spaced-apart plates 2e.	
	6	The dimensions of the mixer an	d IPS units used are
	7	set forth in Table 1. The several mixe	ers and IPS's in the
	8	circuit were identical to the described a	inits.
	9	TABLE I	
	10	Length of IPS -	5'
	11	Spacing between plates -	1-1/2"
	12	Dimensions of plates -	5' x 1'
	13	Mixer vessel -	12" diameter
	14		12" to 16" of liquid
	15		in the vessel during
	16		operation
 :	17	Type of impellor -	6" diameter marine
	18		propeller
:	19	Impellor rpm -	220 - 680
-	20	Separation of the bitumen,	water, and solids,
	21	present in the mixture fed from the firs	t mixer 1, took place
	22	in the first IPS 2. A first overhead p	product stream, which
•	23	was the only bitumen-rich product fr	om the circuit, was
·:	24	obtained. This stream was enriched in	
:	25	the original froth feed. (The composit	ions of these streams
	26	are set forth in Table II below.)	•
.:	27	The underflow stream from the	e first IPS 2 was fed
•	28	to the second mixer 3. Here it was	
٠.	. 29	recycled stream from the third IPS 6.	
. ; ′	30	stream was very depleted in bitumen bu	
	20		

naphtha.

_	to the
1	The mixture from the second mixer 3 was fed to the
2	inlet of the second IPS 4. Separation occurred therein and
3	overflow and underflow streams were produced. The overflow
4	stream was the stream recycled to the first mixer, as
5	previously stated.
6	The second underflow stream, produced by the second
7	IPS 4, was fed to the third mixer 6. This second underflow
8	stream was quite lean in bitumen - more particularly, it was
9	depleted in bitumen relative to the first underflow stream.
10	In the third mixer 6, the second underflow stream
11	was mixed with fresh pure naphtha. The mixture was fed to the
12	inlet of the third IPS 6 and underwent separation therein.
13	The overflow stream from the third IPS 6 was recycled to the
14	second mixer 3, as previously stated. The underflow stream,
15	virtually free of bitumen, was discarded as tails.
16	The stream compositions and separation results are
17	set forth in Table II.

1		Ţ	ABLE II			
2		COMPOSIT	ION (% B	Y WT.)		
3 4	STREAM	BITUMEN	WATER	SOLIDS	NAPHTHA	RATE kg/min
5 6	Combined froth feed	57.3	34.2	8.5	· _	1.96
7 8 9	First recycled overflow (from 2nd. IPS)	19.7	14.1	1.9	63.4	1.59
10 11	Overflow product (from 1st IPS)	55.7	4.7	0.7	39.0	2.02
12 13	lst IPS underflow	20.7	52.7	12.1	14.5	1.52
15 16	Second recycled overflow (from 3rd IPS)	2.80	53.8	8.3	35.1	3.01
17 18	2nd IPS underflow	2.9	13.7	74.6	9.3	2.95
19	Fresh diluent				99.5	0.B1
20 21	3rd IPS underflow	0.20	77.3	20.3	2.4	0.75

SUPPLEMENTARY DISCI

This supplementary disclosure relates to a variation of the circuit described in the principal disclosure.

It can be advantageous to operate the separation process at elevated temperature because the viscosity of the hydrocarbon is thereby reduced. This allows the solid particles to settle more rapidly. In addition, at higher temperature the water droplets coalesce more readily, which facilitates their separation from the hydrocarbon. A high purity product is thereby produced at lower residence time, with the consequence that the capacity of the equipment is, in effect, increased.

At such higher temperatures, fractions of the diluent can approach or exceed their atmospheric boiling point. To prevent flashing of the diluent, and to contain the pressures generated, it is necessary to surround the functioning units of the equipment with pressure-retaining housings.

This may be effected in conventional fashion by closing in the components of the circuit, as indicated diagrammatically in Figure 3, and operating the process at elevated temperature and pressure.

- 1 THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE 2 PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
- 3 1. A process for purifying bitumen froth from the hot 4 water process for extracting bitumen from oil sand, said froth 5 comprising bitumen, water and solids, said process being carried out in a circuit comprising first, second and third inclined 6 plate settlers and first, second and third mixers, each settler having an inlet, an overflow outlet and an underflow outlet, each mixer having an inlet and outlet, each mixer being positioned 10 before the corresponding settler, the outlet of each mixer being 11 connected with the inlet of the immediately downstream settler, 12 the inlet of the first mixer being connected with a source of bitumen froth, the inlet of the second mixer being connected with 13 the underflow outlet of the first settler, the inlet of the third 14 15 mixer being connected with the underflow outlet of the second 16 settler, the overflow outlet of the first settler providing the 17 diluted bitumen product from the circuit, the overflow outlet of the second settler being connected with the first mixer, the 18 overflow outlet of the third settler being connected with the 19 second mixer, the third mixer being connected with a source of 20 21 light hydrocarbon diluent, said process comprising:

mixing the bitumen froth in the first mixer with a first recycled overflow stream from the second settler, said overflow stream being depleted in bitumen and enriched in diluent relative to the froth;

22

23

24 25

26

27

28

29

30

treating the mixture produced from the first mixer in the first settler to produce a first product overflow stream which is sufficiently enriched in bitumen relative to the froth to be of upgrading quality and a first underflow stream which is depleted in bitumen relative to the froth;

SICTION & CORRECTION SEE CIRTIFICATE 1293465 CORRECTION - ARTICLE &

2

6

depleted in bitumen and enriched in diluent relative to the first 1 overflow stream;

treating the mixture produced from the second mixer in 3 the second settler to produce the first recycled overflow stream and a second underflow stream which is depleted in bitumen relative to the first underflow stream;

mixing the second underflow stream from the second 7 settler in the third mixer with a stream of light hydrocarbon 8 diluent from said source of light hydrocarbon diluent; 9

treating the mixture produced from the third mixer in 10 the third settler to produce the second recycled overflow stream 11 and a third underflow stream which is depleted in bitumen 12 relative to the second underflow stream. 13

1 CLAIM SUPPORTED BY THE SUPPLEMENTARY DISCLOSURE

- 2 2. The process as set forth in claim 1 wherein:
- 3 the process is conducted at elevated temperature and
- 4 pressure and the circuit is pressure-retaining.

Patent agent: &P Johnson

Frg. 2.

Patent agent: P Johnson

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.