MT:METALLURGICAL ENGINEERING

1.	The of	yield point of the pho	enomenon observed in an	nneal	led low carbon steels	s is due to the presence
	(a)	silicon	(b) chromium	(c)	phosphorous	(d) carbon
						(GATE MT 2008)
2.	In a	tensile test of a ducti	le material, necking start	s at		
	(a)	lower yield stress		(c)	ultimate tensile stre	ngth
	(b)	upper yield stress		(d)	just before fracture	
						(GATE MT 2008)
3.	Fatig	gue resistance of a ste	eel is reduced by			
	(a)	decarburization		(c)	reducing the grain s	size
	(b)	polishing the surfac	e	(d)	shot peening	
						(GATE MT 2008)
4.	The	stress concentration	factor K, for a circular ho	ole lo	ocated at the center o	f a plate is
	(a)	0	(b) 1	(c)	3	(d) tends to ∞
						(GATE MT 2008)
5.	Cass	iterite is an importan	at source for			
	(a)	tin	(b) titanium	(c)	molybdenum	(d) thorium
						(GATE MT 2008)
6.	High	top pressure in the l	plast furnace			
	(a)		of contact between gas		and solid	
		and solid		(c)	increases fuel consu	umption
	(b)	increases the time of	of contact between gas	(d)	increases the rate of	f solution loss reaction
						(GATE MT 2008)
7.	For a	a closed system of fix	ted internal energy and v	olum	ne, at equilibrium	
	(a)	Gibb's free energy i	s minimum	(c)	Helmholtz's free en	ergy is minimum
	(b)	entropy is maximum	n	(d)	enthalpy is maximu	ım
						(GATE MT 2008)
8.	Inter	granular corrosion o	f 18-8 stainless steel can	NO	Γ be prevented by	

MT 1/??

	(a) reduction (a) 0.05%	C	n content to less than	vent chromium carbide precipitation				
				(c)	(c) adding strong carbide forming elements			
	(b) quenc	ching it from h	igh temperature to pre-	(d)	increasing the c	arbon content		
						(GATE MT 2008)		
9.	Riser is NC	OT required fo	r the castings of			(GATE EE 2025)		
	(a) grey o	east iron	(b) white cast iron	(c)	Al-4% Cu	(d) Al-12% Si		
						(GATE MT 2008)		
10.	The NDT to	echnique used	I to detect deep lying def	fects i	n a large sized ca	asting is		
	(a) liquid	manatuant ins	maatian	(a)	ultus ania in ana	ation		
	_	penetrant ins	_		ultrasonic inspe			
	(b) magn	etic particle ii	ispection	(u)	eddy current ms	spection		
						(GATE MT 2008)		
11.	The maxim	um number o	f phases in a quaternary	syste	m at atmospheric	e pressure are		
	(a) 2		(b) 3	(c)	4	(d) 5		
						(GATE MT 2008)		
12.	_	-	the solubility of Al in C The Hume-Rothery rule		_	e is about 10% and that of the erence is		
	(a) size fa	actor		(c)	structure			
	(b) electron	o-negativity		(d)	valency			
						(GATE MT 2008)		
13.	Mannesma	nn process						
	(a) is a co	old working p	rocess	(c)	uses parallel rol	ls		
	(b) is use tubes	ed for making	thin walled seamless	(d)	is used for mak tubes	ing thick walled seamless		
						(GATE MT 2008)		
14.	The intensi	ve thermodyn	amic variables among th	ne fol	lowing are			
	(a) pressu	ıre	(b) volume	(c)	temperature	(d) enthalpy		
						(GATE MT 2008)		
	(a) P, Q		(b) P, R	(c)	R, S	(d) Q, R		
						(GATE MT 2008)		
15	In a hinary	phase diagram	n the activity of the solu	uta in	a two phase field	l at a given temperature		

MT 2/??

- (a) increases linearly with the solute content
- (b) decreases linearly with the solute content
- (c) remains constant

(d) is proportional to the square root of the solute content

(GATE MT 2008)

- 16. In Jominy curves of steel A (Fe-0.4% C) and steel B (Fe-0.4% C -1.0% Ni),
 - (a) depth of hardening in steel A is more than in steel B
 - (b) depth of hardening in steel B is more than in steel A
- (c) hardness at the quenched end in steel A is more than in steel B
- (d) hardness at the quenched end in steel B is more than in steel A

(GATE MT 2008)

- 17. Determinant of $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 2 & 1 \\ 4 & 2 & 3 \end{pmatrix}$
 - (a) -2
- (b) -1
- (c) 1
- (d) 2

(GATE MT 2008)

18.
$$\int \frac{dx}{ax+b}$$
 is

- (a) $\frac{1}{b}\ln(ax+b) + c$ (b) $\ln(ax+b) + c$ (c) $b\ln(ax+b) + c$ (d) $\frac{1}{a}\ln(ax+b) + c$

(GATE MT 2008)

19. The value of dy/dx for the following data set at x = 3.5, computed by central difference method, is

X	1	2	3	4	5	
у	0	3	8	15	24	
	1. 7		(-)	10.5		

(a) 3.5

- (b) 7
- (c) 10.5
- (d) 14

(GATE MT 2008)

- 20. The velocity at which particles from a fluidized bed are carried away by the fluid passing through it, is known as
 - (a) elutriation velocity

(c) minimum fluidization velocity

(b) terminal velocity

(d) superficial velocity

(GATE MT 2008)

21. A metal with an average grain size of 36 μ m has yield strength of 250 MPa and that with 4 μ m has 500 MPa. The friction stress of the metal in MPa is

MT 3/??

	(a) 31.2	(b) 62.5	(c) 125	(d) 250
				(GATE MT 2008)
22.	The stacking seque	ence of close packed plan	es with a stacking fault i	s
	(a) <i>a b c a b c a</i>	<i>b c</i>	(c) a b c a c a b	c a b
	(b) a b a b a b a	b a b	(d) a b c a b a c	b a
				(GATE MT 2008)
23.	The slip directions	s on a (111) plane of a fcc	crystal are	
	(a) [101], [011]	,[110]	(c) [101], [110]	,[011]
	(b) [101], [110]	,[101]	(d) [101], [110]	, [011]
				(GATE MT 2008)
24.	The correct statem	nents among the following	g are	
	(b) screw dislocation(c) edge dislocation	ations cannot climb ations cannot cross-slip tions cannot climb tions cannot cross-slip		
	(a) P, R	(b) P, S	(c) Q, R	(d) Q, S
				(GATE MT 2008)
25.	· ·	e modulus = 200 GPa and ergoes a plastic strain of 2	•	Pa) is loaded to a tensile stress
	(a) 0	(b) 0.2	(c) 0.5	(d) 2.0
				(GATE MT 2008)
26.	The ASTM grain s of 200X is	ize number of a material w	which shows 64 grains per	square inch at a magnification
	(a) 5	(b) 6	(c) 7	(d) 8
				(GATE MT 2008)
27.	•	d Q of a brittle material h Q, measured normal to the	•	ratio 4:1. The ratio of fracture
	(a) 1:4	(b) 1:2	(c) 2:1	(d) 4:1
				(GATE MT 2008)
28.	The structure-sens	itive properties are		
	(a) elastic modu(b) yield strength(c) melting poin	h t		
	(d) fracture strer	ngth		
ΛТ				4/??

(a) P, S

(b) Q, S

(c) Q, R

(d) P, R

(GATE MT 2008)

29. The time taken for 50% recrystallization of cold worked Al is 100 hours at 500 K and 10 minutes at 600 K. Assuming Arrhenius kinetics, the activation energy for recrystallization in kJ mol^{-1} is

(a) 50

(b) 80

(c) 160

(d) 320

(GATE MT 2008)

30. Match the mechanical behaviour in Group 1 with the terms in Group 2

Group 1

(P) Low cycle fatigue

(Q) Creep

(R) Impact toughness

(S) Stretcher strain

Group 2

(a) P-2, Q-4, R-1, S-5

(b) P-2, Q-1, R-5, S-3

(1) Charpy test

(2) Portevin-LeChatelier effect

(3) Coffin-Manson equation

(4) Larson-Miller parameter

(5) Jominy test

(c) P-3, Q-4, R-1, S-2

(d) P-3, Q-1, R-4, S-5

(GATE MT 2008)

31. Match the processes in Group 1 with the physical principles in Group 2

Group 1

(a) Floatation

(b) Jigging

(c) Tabling

(d) Heavy media separation

(a) P-4, Q-1, R-2, S-3

(b) P-4, Q-1, R-3, S-2

Group 2

(1) Differential initial acceleration

(2) Differential lateral movement

(3) Difference in density

(4) Modification of surface tension

(c) P-2, Q-3, R-4, S-1

(d) P-1, Q-3, R-4, S-2

(GATE MT 2008)

32. Which of the following is the solution for $\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2}$

(a) $z(x,t) = [Asinx]e^{-\lambda^2 t}$

(c) $z(x,t) = \frac{A}{t}e^{-x^2t}$

(b) $z(x,t) = [Asin(\lambda x)]e^{-\lambda^2 t}$

(d) $z(x,t) = [A\cos(\lambda x)]\sqrt{t}$

(GATE MT 2008)

33. Match the unit processes in Group 1 with the objectives in Group 2

MT

Group 1

- (P) Leaching
- (Q) Cementation
- (R) Roasting
- (S) Converting

Group 2

- (a) P-2, Q-1, R-3, S-5
- (b) P-2, O-1, R-4, S-3

- (1) Precipitation of metal in aqueous solution
- (2) Selective dissolution of metal
- (3) Conversion of matte to metal
- (4) Conversion of sulphide to oxide
- (5) Separation of metal from slag

(c)
$$P-3, Q-4, R-5, S-2$$

(d)
$$P-4$$
, $O-3$, $R-2$, $S-1$

(GATE MT 2008)

34. Match the following metals in Group 1 with their production methods in Group 2

Group 1

- (P) Titanium
- (Q) Nickel
- (R) Magnesium
- (S) Zinc

Group 2

- (A) P-5, Q-2, R-3, S-4
- (B) P-3, Q-5, R-4, S-2

- (1) Mond's process
- (2) Pidgeon's process
- (3) Imperial smelting
- (4) Kroll's process
- (5) Cyanidation
- (C) P-4, Q-1, R-2, S-3
- (D) P-4, Q-1, R-5, S-3

(GATE MT 2008)

- 35. Manganese recovery in steelmaking is aided by
 - (P) oxidizing slag
 - (Q) reducing slag
 - (R) high temperature
 - (S) low temperature
 - (T) acidic slag
 - (A) P, Q
- (B) Q, S
- (C) Q, R
- (D) P, R

(GATE MT 2008)

- 36. A flotation plant treats 100 tons of chalcopyrite containing 2% Cu and produces 6 tons of concentrate. The concentrate has 25% Cu. The percentage Cu in the tailings is
 - (A) 0.35
- (B) 0.53
- (C) 0.86
- (D) 0.93

(GATE MT 2008)

37. One ton of liquid steel initially containing 0.08% S is brought into equilibrium with 0.1 ton of liquid slag containing no sulphur. The sulphur distribution ratio $\frac{\%S_{\text{slag}}}{\%S_{\text{metal}}} = 30$ at equilibrium. The final sulphur content of steel in wt.% is

MT 6/??

	(A) 0.01	(B) 0.02	(C) 0.03	(D)	0.04
					(GATE MT 2008)
38.	μ m diameter take 3000	minutes to float up throu	duces spherical silica part gh a 2 m height of liquid t, the time required in mir	steel.	For particles of 50
	(A) 30	(B) 300	(C) 960	(D)	3000
					(GATE MT 2008)
39.	Match applications in C	Group 1 with the commor	aly used corrosion protect	tion 1	methods in Group 2
	Group 1		Group 2		
	(P) Seagoing vessel(Q) Underground pipel(R) Electric traction to(S) Electric poles		 Inorganic coating Sacrificial anode Aluminium paint Impressed current 		
	(A) $P-2, Q-4, R-5$ (B) $P-2, Q-3, R-5$	•	(C) $P-1, Q-2, R-5$ (D) $P-4, Q-3, R-1$	-	
					(GATE MT 2008)
40.	For a regular solution A the system would be at	-B, ΔH is 2660.5 J at x_B	= 0.6. The critical point	of th	ne miscibility gap in
	(A) $x_B = 0.5, T = 1000$) K	(C) $x_B = 0.5, T = 500$	K	
	(B) $x_B = 0.6, T = 1000$) K	(D) $x_B = 0.6, T = 2000$) K	
					(GATE MT 2008)
41.	For Ni + $0.5O_2$ = NiO, Ni/NiO in atm is	$\Delta G^{\circ} = -250,000 + 1002$	T Joules. At 1000 K, the	p_{O_2}	in equilibrium with
	(A) 2.13×10^{-16}	(B) 8.54×10^{-16}	(C) 1.46×10^{-8}	(D)	2.92×10^{-8}
					(GATE MT 2008)
42.	The planar density for (111) plane in a fcc crysta	al is		
	(A) 0.68	(B) 0.74	(C) 0.85	(D)	0.91
					(GATE MT 2008)
43.	Iridium has fcc structure. The atomic radius of iri		weight are 22,400 kg/m ³	and	192.2, respectively.
	(A) 0.126	(B) 0.136	(C) 0.146	(D)	0.156

44. Match the names in Group 1 with the invariant reactions in binary phase diagrams in Group 2

MT

7/??

(GATE MT 2008)

Group 1

(A) Eutectic

(B) Eutectoid

(C) Peritectoid

(D) Monotectic

(A) P-2, Q-1, R-3, S-4

(B) P-2, Q-1, R-4, S-3

Group 2

(1) S1 = S2 + S3

(2) L = S1 + S2

(3) L1 = L2 + S

(4) S1 + S2 = S3

(C) P-3, Q-4, R-2, S-1

(D) P-4, O-3, R-1, S-2

(GATE MT 2008)

45. Match the properties in Group 1 with the units in Group 2

Group 1

(P) Thermal conductivity

(Q) Heat transfer coefficient

(R) Specific heat

(S) Diffusivity

(A) P-1, Q-2, R-4, S-3

(B) P-2, Q-3, R-1, S-4

Group 2

(1) $J m^{-2} s^{-1} K^{-1}$

(2) $J m^{-1} s^{-1} K^{-1}$

(3) $m^3 s^{-1}$

(4) $\text{mol}^{-1} \text{ K}^{-1}$

(C) P-2, Q-1, R-4, S-3

(D) P-2, Q-4, R-3, S-1

(GATE MT 2008)

46. Match the heat treatment processes of steels in Group 1 with the microstructural features in Group 2

Group 1

(P) Quenching

(Q) Maraging

(R) Tempering

(S) Austempering

(A) P-2, Q-3, R-1, S-4

(B) P-1, Q-3, R-2, S-4

Group 2

(1) Bainite

(2) Martensite

(3) Intermetallic precipitates

(4) Epsilon carbide

(C) P-2, Q-3, R-4, S-1

(D) P-3, Q-2, R-1, S-4

(GATE MT 2008)

47. Match the nonferrous alloys in Group 1 with their applications in Group 2

Group 1

(P) Ti alloy

(Q) Zr alloy

(R) Ni alloy

(S) Cu alloy

Group 2

(1) Nuclear reactors

(2) Bells

(3) Dental implants

(4) Gas turbines

- (A) P-3, Q-1, R-4, S-2
- (C) P-2, Q-1, R-3, S-4
- (B) P-2, Q-3, R-4, S-1
- (D) P-3, Q-4, R-1, S-2

(GATE MT 2008)

48. Match the materials in Group 1 with their functional applications in Group 2

Group 1

(P) Nb₃Sn

(Q) GaAs

(R) Fe-4%Si alloy

(S) SiO₂

(A) P-3, Q-1, R-4, S-2

(B) P-1, Q-4, R-2, S-3

Group 2

- (1) Dielectric
- (2) Soft magnet
- (3) Superconductor
- (4) Semiconductor
- (C) P-3, Q-2, R-4, S-1
- (D) P-3, Q-4, R-2, S-1

(GATE MT 2008)

- 49. An annealed hypoeutectoid steel has 10% of proeutectoid ferrite at room temperature. The eutectoid carbon content of the steel is 0.8%. The carbon content in the steel in percent is
 - (A) 0.58
- (B) 0.68
- (C) 0.72
- (D) 0.78

(GATE MT 2008)

- 50. The melting point and latent heat of fusion of copper are 1356 K and 13 kJ mol⁻¹, respectively. Assume that the specific heats of solid and liquid are same. The free energy change for the liquid to solid transformation at 1250 K in kJ mol⁻¹ is
 - (A) -4
- (B) -3
- (C) -2
- (D) -1

(GATE MT 2008)

- 51. According to the Clausius Clapeyron equation, the melting point of aluminium
 - (A) increases linearly with pressure
- (C) increases exponentially with pressure
- (B) decreases linearly with pressure
- (D) does not vary with pressure
- 52. Match the cast irons in Group 1 with the distinguishing microstructural features in Group 2

Group 1

(P) Grey cast iron

(Q) Ductile cast iron

(R) Malleable cast iron

(S) White cast iron

(A) P-3, Q-5, R-4, S-2

(B) P-1, O-5, R-4, S-2

Group 2

- (1) Temper graphite
- (2) Pearlite
- (3) Graphite flakes
- (4) Massive cementite
- (C) P-2, Q-4, R-5, S-3
- (D) P 3, O 5, R 1, S 4

(GATE MT 2008)

53. Match the casting defects in Group 1 with causes given in Group 2

MT

Group 1

- (P) Hot tear
- (Q) Misrun
- (R) Blister
- (S) Rat tail
- (A) P-1, Q-2, R-3, S-4
- (B) P-3, O-4, R-1, S-2

Group 2

- (1) Insufficient melt super heat
- (2) High residual stresses
- (3) Improper venting
- (4) Expansion of sand
- (C) P-4, Q-3, R-2, S-1
- (D) P-2, O-1, R-3, S-4

(GATE MT 2008)

- 54. The thickness of a plate is to be reduced from 60 to 30 mm by multipass rolling. The roll radius is 350 mm and coefficient of friction is 0.15. Assuming equal draft in each pass, the minimum number of passes required would be
 - (A) 2
- (B) 4
- (C) 5
- (D) 6

(GATE MT 2008)

55. Match the particle morphologies in Group 1 with the powder production methods in Group 2

Group 1

- (P) Superalloy powder with rounded morphology
- (Q) Monosized spherical Ta powder
- (R) Fe powder with onion peel structure
- (S) Irregularly shaped W powder
- (A) P-2, Q-1, R-4, S-3
- (B) P-1, Q-4, R-3, S-2

Group 2

- (1) Carbonyl process
- (2) Gas atomization
- (3) Oxide reduction
- (4) Rotating electrode process
- (C) P-2, Q-4, R-1, S-3
- (D) P-4, Q-1, R-2, S-3

(GATE MT 2008)

- 56. One mole of monatomic ideal gas is reversibly and isothermally expanded at 1000 K to twice its original volume. The work done by the gas in Joules is
 - (A) 2430
- (B) 2503
- (C) 5006
- (D) 5763

(GATE MT 2008)

- 57. In the Ellingham diagram $C \rightarrow CO$ line intersects $M \rightarrow MO$ line at temperature T_1 and $N \rightarrow NO$ line at temperature T_2 . M and N are metals. T_2 is greater than T_1 . The correct statements among the following are:
 - (P) carbon will reduce both MO and NO at temperatures $T_1 > T_2$
 - (Q) carbon will reduce both MO and NO at temperatures between $T_1 and T_2$
 - (R) carbon will reduce both MO and NO at temperatures $T_2 < T_1$
 - (S) carbon will reduce MO but not NO at temperatures between T_1 and T_2
 - (T) carbon will reduce NO but not MO at temperatures between T_1 and T_2

MT 10/??

- (A) P, S
- (B) Q, T

- (C) R, S
- (D) P, T

(GATE MT 2008)

58. Match the forms of corrosion in Group 1 with the typical examples in Group 2

Group 1

- (P) Filiform corrosion
- (Q) Crevice corrosion
- (R) Galvanic corrosion
- (S) Stress corrosion cracking
- (A) P-3, Q-2, R-4, S-1
- (B) P-1, Q-3, R-4, S-2

Group 2

- (1) Austenitic stainless steel in chloride environment
- (2) Nut bolt with gasket
- (3) Painted food cans
- (4) Steel studs in copper plate
- (C) P-3, Q-4, R-2, S-1
- (D) P-2, Q-3, R-4, S-1

(GATE MT 2008)

59. Given the following assertion 'a' and the reason 'r', the correct option is

Assertion a: Phosphorous removal in steelmaking is favoured by basic slag

Reason r: Basic slag decreases the activity of P_2O_5 in the slag

- (A) Both a and r are true and r is the correct (C) a is true but r is false reason for a
- (B) Both a and r are true

- (D) Both a and r are true but r is not the correct reason for a

(GATE MT 2008)

60. Given the following assertion 'a' and the reason 'r', the correct option is

Assertion a: In Bayer's process high pressure is used to dissolve alumina from bauxite **Reason r:** Pressure increases the boiling point of water

- correct reason for a
- (A) Both a and r are correct, but r is not the (C) Both a and r are correct and r is the correct reason for a
- (B) Both a and r are false

(D) a is true but r is false

(GATE MT 2008)

61. Match the alloys in Group 1 with the main precipitates responsible for hardening in Group 2

Group 1	Group 2
(P) Al-4.4%Cu-1.5%Mg-0.6%Mn	(1) Ni ₃ Mo
(Q) Fe-18.0%Ni-8.5%Co-3.5%Mo-0.2%Ti-	. ,
0.1%Al	(2) Mg ₂ Si
(R) Al-1.0%Mg-0.6%Si-0.3%Cu-0.2%Cr	(3) CuAl ₂
(S) Ni-15.0%Cr-2.7%Al-1.7%Ti-1.0%Fe	(4) TiAl ₃

MT 11/??

(A)	P -	3.	0	-5, R -	-2.S	- 4

(C) P-4, Q-1, R-3, S-5

(B)
$$P-1, Q-3, R-2, S-4$$

(D) P-3, Q-1, R-2, S-5

(GATE MT 2008)

62. Identify the attributes associated with dispersion hardened alloys

- (P) dispersoids do not dissolve in the matrix even at high temperatures
- (Q) dispersoids are coherent with the matrix
- (R) dispersoids impart creep resistance to the alloy
- (S) dispersoids improve the corrosion resistance of the alloy

(A) P, S

(C) Q, S

(B) Q, R

(D) P, R

(GATE MT 2008)

- 63. In a gaseous mixture, CO, CO₂ and O₂ are in equilibrium at temperature T. For the reaction CO + $0.5O_2 = \text{CO}_2$, $\Delta G^{\circ} = -281,400 + 87.6T$ Joules. The correct statements among the following are:
 - (P) The reaction will shift to left on increasing T
 - (Q) The reaction will shift to right on increasing T
 - (R) The reaction will shift to left on increasing pressure
 - (S) The reaction will shift to right on increasing pressure

(A) P, S

(C) Q, R

(B) P, Q

(D) R, S

(GATE MT 2008)

- 64. The casting processes that require expendable moulds are
 - (P) investment casting

(R) shell moulding

(Q) low-pressure casting

(S) slush casting

(A) P, Q

(C) R, S

(B) Q, R

(D) P, R

(GATE MT 2008)

- 65. Transport mechanisms that do **NOT** contribute to densification during sintering are
 - (P) surface diffusion
 - (Q) grain boundary diffusion
 - (R) bulk diffusion
 - (S) evaporation-condensation
 - (T) viscous flow

(A) P, Q

(C) Q, T

(B) Q, S

(D) P, S

MT 12/??

(GATE MT 2008)

66.	The ord	er of dec	reasing	weldability	among	the fo	llowing	steels is
oo.	THE OIG	ci oi ucc	leasing	wcidability	among	uic io	nowing	SICCIS I

- (P) Fe-0.6%C
- (Q) Fe-0.4%C
- (R) HSLA

(A) $R \rightarrow Q \rightarrow P$

(C) $Q \rightarrow P \rightarrow R$

(B) $P \rightarrow Q \rightarrow R$

(D) $Q \rightarrow R \rightarrow P$

(GATE MT 2008)

67. Match the welding processes in Group 1 with the sources of heat in Group 2

Group 1

(1) Thermochemical

(P) Ultrasonic welding (Q) Spot welding

(R) SMAW

(S) Thermit welding

(4) Friction

Group 2

(5) Electrical arc

(A) P-3, O-2, R-1, S-4

(B) P-4, Q-3, R-2, S-1

(C) P-1, Q-3, R-4, S-2

(2) Electrical resistance

(3) Conversion of matte to metal

(D) P-3, Q-2, R-4, S-1

(GATE MT 2008)

68. A cup is to be made from a 2 mm thick metal sheet by deep-drawing. The height of the cup is 75 mm and the inside diameter is 100 mm. For a drawing ratio of 1.25, the blank diameter in mm is

- (A) 62.5
- (B) 125
- (C) 225
- (D) 250

(GATE MT 2008)

- 69. The defects that are **NOT** observed in extruded products are
 - (P) chevron cracking
 - (Q) fold
 - (R) piping
 - (S) surface cracking
 - (T) alligatoring

(A) P, Q

(C) P, S

(B) R, T

(D) Q, T

(GATE MT 2008)

70. Oil impregnated bronze bearings are manufactured using

MT

	(A) pressure die ca	sting	(C) solid-state sintering								
	(B) centrifugal cas	ting	(D) liquid phase si	ntering							
	Common Data Questions										
	Common Data for	Questions 71, 72 and 73	3:								
	The diffusivities of m ² s ⁻¹ , respectively		3 K and 1273 K are 5.9	0×10^{-12} and 1.94×10^{-11} (GATE MT 2008)							
71.	The activation energy for diffusion in kJ mol ⁻¹ is										
	(A) 138	(B) 148	(C) 158	(D) 168							
				(GATE MT 2008)							
72.	The diffusivity of c	arbon in γ -iron at 1373 K	in m^2s^{-1} is								
	(A) 3.4×10^{-11}	(B) 4.4×10^{-11}	(C) 5.4×10^{-11}	(D) 6.4×10^{-11}							
				(GATE MT 2008)							
73.	During the carburization of a steel, a case depth of d has been obtained in 40 hours at 1173 K. For achieving a case depth of $d/2$ at 1273 K, the time required in hours is										
	(A) 1	(B) 2	(C) 3	(D) 4							
	Common Data for Questions 74 and 75:										
	The powder is con		lie at 300 MPa to a gre	tap density of 4500 kg m ⁻³ . en density of 6000 kg m ⁻³ . Th(GATE MT 2008)							
74.	If the powder is compressed to 10 mm height, the initial fill height in mm is										
	(A) 12	(B) 15	(C) 20	(D) 25							
				(GATE MT 2008)							
75.	The densification parameter of the sintered compact is										
	(A) 0.50	(B) 0.67	(C) 0.75	(D) 0.83							
	Linked Answer Questions: Q.76 to Q.85 carry two marks each.										
	Statement for Linked Answer Questions 76 and 77:										
	A polyester-matrix composite is unidirectionally reinforced with 60 vol.% of E-glass fibers. The elastic moduli of the matrix and the fiber are 6.9 and 72.4 GPa, respectively. (GATE MT 2008)										
76.	The elastic modulus of the composite parallel to the fiber direction in GPa is										
	(A) 15.1	(B) 23.1	(C) 43.4	(D) 46.2							
				(GATE MT 2008)							
77.	If a load of 100 kg in kg is	is applied on the composi	te in the fiber direction,	the load carried by the fibers							
MT	-			14/??							

2008 MAIN PAPER-MT (B) 47 (C) 94 (D) 100 (A) 6 (GATE MT 2008) Statement for Linked Answer Questions 78 and 79: 1000 kg of zinc concentrate of composition 78% ZnS and 22% inerts is roasted in a multiple hearth furnace. Roasting converts ZnS to ZnO, SO₂ and SO₃. The exit gas contains 6 vol.% SO₂ and 2 vol.% SO₃. Molecular weights: Zn = 65, S = 32, $O_2 = 32$. Composition of air (in vol.%) = 21% O_2 and 79% N_2 . 1 kg mol of gas occupies 22.4 m³ at 273 K and 1 atm. 78. Volume of the exit gas (at 1 atm pressure and 273 K) in m³ is (B) 2252 (C) 2628 (D) 2923 (A) 2129 (GATE MT 2008) 79. Stoichiometric amount of air used (at 1 atm pressure and 273 K) in m³ is (A) 1010 (B) 1394 (C) 1520 (D) 2020 (GATE MT 2008) Statement for Linked Answer Questions 80 and 81: Density of Al = 2700 kg m⁻³, atomic weight of Al = 27, density of Al₂O₃ = 3700 kg m⁻³. 80. The Pilling-Bedworth ratio for the oxidation of Al is (A) 0.57 (B) 0.74 (C) 1.38 (D) 3.12 (GATE MT 2008) 81. The oxidation law that governs the high temperature oxidation of Al is (A) parabolic (B) linear (C) logarithmic (D) paralinear (GATE MT 2008) Statement for Linked Answer Questions 82 and 83: In the diffraction pattern of a fcc metal obtained using CuK_{α} radiation (wavelength of 0.154 nm), a diffraction peak appears at 2θ of 58.4° . The lattice parameter of the crystal is 0.316 nm. 82. The interplanar spacing in nm is

(A) 0.158

(B) 0.164

(C) 0.177

(D) 0.185

(GATE MT 2008)

83. The Miller indices of the reflecting plane are

MT 15/??

(A) (111)

(B) (200)

(C) (220)

(D) (222)

(GATE MT 2008)

Statement for Linked Answer Questions 84 and 85:

Mg casting with a volume to surface area ratio (casting modulus) of 0.1~m is made by gravity die casting. Heat transfer coefficient at the metal-mould interface is $1.9~kJ~m^{-2}~K^{-1}~s^{-1}$. The density and melting point of Mg are $1700~kg~m^{-3}$ and 923~K, respectively. Assume ambient temperature to be 293~K.

84. If the solidification time is 50 s, the latent heat of fusion in kJ mol⁻¹ is

(A) 300

(B) 352

(C) 472

(D) 532

(GATE MT 2008)

85. In a spiral channel of 10 mm diameter and with an entrance flow velocity of 300 mm $\rm s^{-1}$, the fluidity of the melt in mm is

(A) 75

(B) 175

(C) 275

(D) 375

(GATE MT 2008)

END OF THE QUESTION PAPER

MT 16/??