S.NO	AUTHOR NAME	PAPER	THEME	AREA OF ESTIMATION	ALGORITHM	RESULTS
01	Geetha.Gout hami et al.	Internet of Things Enabled Real Time Water Quality Monitoring System,2017.	Water Quality Monitoring	Test water samples and upload data on internet for analysis.	None	NA
02	Ahmed et al.	Efficient Water Quality Prediction Using Supervised Machine Learning,2019.	Water quality levels	Use of machine learning algorithms to estimate water quality index	Gradient Boost Algorithm	Make a base for an economical ongoing water quality recognition framework.
03	Ashwini et al	"Intelligent Model For Predicting Water Quality"	Water quality checks	Plan and foster a minimal expense framework for the ongoing observing of water quality utilizing the Internet of Things (IoT) and Machine Learning (ML)	K-Nearest Neighbour	It deliver a practical and economical solution without any human intervention
04	Prasad et al	"Smart Water Quality Monitoring System", 2015	Water quality monitoring system	Upload water quality data onto the internet using IoT, and wireless sensors	None	Successfully send the alarm based on the parameter for immediate action.
05	Mohammed et al.	"Machine Learning: Based Detection of Water Contamination in Water Distribution systems",2018	Water contaminati on	Detection of water contamination using machine learning model	None	NA
06	Singh et al.	Review on Data Mining Techniques for Prediction of Water Quality,2017	Water quality prediction and data mining	Studying various data mining techniques for prediction of water quality	Naïve Bayes, Back Propagation, KNN	NA

07	Kumar et al.	Smart Water Monitoring System for Real-Time Water Quality and Usage Monitoring,20 18	Smart Water Quantity meter and Smart Water Quality meter	Configuration Smart Water Quantity Meter to guarantee water protection by observing how much water drank by a family, and informing something very similar to the shopper and the power	None	Implement quality check meter which improve the predict rate and reduce the error.
08	Koditala et al.	Water QualityMonito ring System using IoT and Machine Learning, in Proceedings of the IEEE International Conference on Research in Intelligent and Computing in Engineering, pp.1-5, 2018	Water quality monitoring	Use of emerging technologies like IoT, machine learning and cloud computing to replace traditional water quality monitoring techniques	None (but designed some)	Used several sensor to determine the quality of the water which are inexpensive giving a inexpensive solution.
09	Haghiabi et al.	Water quality prediction using machine learning methods, 2018	Water quality monitoring	Examine execution of artificial intelligence strategiesrememberin g artificial neural network for anticipating water quality parts	Firefly Algorithm	NA
10	Gollapalli et al.	Ensemble Machine Learning Model to Predict the Waterborne Syndrome, 2022	Maintain hygienic access to clean water	Use of machine learning model extract data on hygienic conditions and water quality	Naïve Bayes	Address the challenges associated with waterborne disease in low income nation.