Data Science Project Architecture

Putting everything together: math, code, data, scientific approach

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DataScience

Table of Contents

- High-quality code and software engineering best practices
 - Code conventions
- Data science project structure
- Improving code
 - Debugging, unit tests, performance tests
- Reproducible research
 - Tools, methods, ideas

High-Quality Code

Best practices, guides, patterns

Code Conventions

- Scientists usually don't care too much about code
- Leads to several things
 - Scientists' code is sometimes hard to understand and maintain
 - Developers can have a hard time debugging, and / or communicating ideas
- Why not take the best of both worlds?
- Python guidelines ("The Zen of Python")
 import this
- Google Python Style Guide
- It's good to have code conventions
 - Many people can write code as one
 - {Team / company > language > personal} conventions

General Ideas

- "It's not going to production anyway"
 - Often, this is your production code
- "Why did I write this?"
 - Leave comments, and make your code self-documenting
 - Unit tests can also serve as documentation
 - Other assets (e.g., pdf documents, issues, project requirements, etc.)
 can also help on a higher level
- Use descriptive names
 - Add meaningful context
 - Avoid misleading names, comments, etc.
- Refactor the code when needed
 - Technical debt
- Separate the code into smaller, single-purpose chunks

Naming Stuff

- lower_with_under variables, functions, files, folders
- UPPER_WITH_UNDER global constants
- PascalCase class names, folders
- camelCase only to conform to existing conventions
- Notes
 - _leading_underscore marks a private variable
 - Not truly private, only a signal to developers not to mess with it
 - __double_leading_underscore "mangles" variable names
 - __double_underscores___ special variables or methods
 - name__, __doc__, __init__, __str__, __repr__, __len__, etc.

```
arr = np.array([1, 2, 3])
arr.__str__() # '[1 2 3]'
arr.__repr__() # 'array([1, 2, 3])'
arr.__len__() # 3
```

Readability

- Use imports for modules and packages
- Avoid global variables
 - Pollute the global scope
 - Can create subtle dependencies in the code
 - Try using function parameters (and / or classes)
- List comprehensions, lambdas, conditional expressions
 - Okay for simple, one-line cases

```
print([x + 3 for x in range(3)])
sum_two_nums = lambda x, y: x + y
print("even" if a % 2 == 0 else "odd")
```

Lexical scoping (closures) – use very carefully

```
def summator(a): # Usage: summator(4)(5)
    def inner_summator(b):
        return a + b
return inner_summator
```

Readability (2)

- Whitespace
 - DO NOT mix tabs and spaces!
 - Prefer spaces (text editors replace 1 tab with 4 spaces by default)
 - This can create a lot of pain and sinister bugs
 - 1-2 blank lines between variables, functions and methods
 - Use typography rules (e.g. 1 space after comma)
- Comments
 - Avoid inline comments

```
x = x + 1 \# Increment x by 1
```

- Docstrings a way of documenting the code, unique to Python
 - More info <u>here</u>
- TODO comments: temporary code, short-term solution, or good enough but not perfect

Object-Oriented Programming

- Python has OOP
- For most of our purposes, it's not necessary
 - We have used a lot of objects, but we didn't really need to create classes
- We generally prefer a combination of procedural and functional style
- If you're comfortable, feel free to use classes
 - All principles from other OOP languages apply
 - Once again, the goal is to create readable code, which is easier to maintain

Project Structure How not to get lost

Notebook Structure

- Similar to scientific papers
- Imports usually the first cell contains all imports
- Title, author(s)
- Abstract not mandatory, but really good to have
- Data manipulation process
 - Divided into sections and subsections
 - Most commonly: getting data, transformations, visualization, modelling, etc.
- Conclusion(s)
- Tips
 - Make sections self-contained, reduce dependencies
 - Create functions when possible
 - To avoid creating too many global variables

File Structure

- Usually, projects have one notebook
 - You may include many notebooks if you wish
 - You can also import code from notebooks
- Very long code can be separated in .py files
 - Not greatly recommended, but sometimes helps
 - E.g., if the file contains a lot of utility functions
- Using: simply import the files
 - Using the file names
 - You can also create folders and import them
 - These are called "modules"
 - We usually put all code in a separate folder, e.g., libs or utilities
- Data, images and other assets should also be in their own folders

Improving Code

How not to get your peers angry

Debugging

- Hardest way: don't debug at all
- Easier: use print() statements at important places
- Best: use a debugger to trace the code execution
 - Every IDE (such as Visual Studio, VSCode, PyCharm, etc.) has one
- Most important concepts
 - Breakpoints
 - Step into, step over, step out
 - These usually have keyboard shortcuts assigned
 - Variable inspection
 - Interactive window; terminal
 - Call stack

Unit Testing

- Debugging and testing are very scientific processes
 - Intuitive for most people with math / science background
- Can show bugs in the code
 - Cannot show the code is bug-free!
 - "Absence of evidence is not evidence of absence"
- Unit tests: pieces of code that test other pieces of code
- Unit test layout: AAA (Arrange, Act, Assert)

```
def sum_numbers(a, b):
    return a + b

def test_sum_with_zeros():
    a = 0
    b = 0
    result = sum_numbers(a, b)
    assert result == 0

test_sum_with_zeros()
```

Other Types of Tests

- Unit testing ensures our functions work
- There are many more types of tests
 - Software: integration tests, regression tests, system tests, security tests, etc.
 - Data validation tests these ensure correct formats of the data
- Statistical tests
 - Is my hypothesis (or data model) true?
 - Example: for linear regression $\Rightarrow R^2$
 - Another example: train / test set in machine learning
 - "Sanity checks"
 - Plotting graphs, comparisons, etc.
- It's absolutely important to check most (if not all) of our steps

Performance Tests

- Test how fast a code executes
 - Better: test the code complexity with different arguments
 - Possibly, plot the results
 - We can use the time library

```
start = time.time()
for i in range(1000):
    sum(numbers)
stop = time.time()
print(stop - start)
```

- Important: be careful how you check the time
 - Average execution over multiple trials to reduce random errors
 - Do not include initializations and "external" code
 - Code that you're not interested in optimizing
- Do not optimize prematurely!

numpy Performance

- numpy is really fast on arrays and matrices
 - It works in C "behind the scenes"
 - Takes advantage of all elements being of the same type
- Vectorization transforming the code so that it uses vectors and matrices

```
times = []
for test in range(51):
    a = np.random.uniform(1, 10000, size = test * 20000).tolist()
    b = np.random.uniform(1, 10000, size = test * 20000).tolist()
    start = time.time()
    a.dot(b) # Also: np.dot() on numpy arrays
    stop = time.time()
    times.append((stop - start))
    plt.scatter(range(len(times)), times)
```

- If possible, use numpy only
 - Avoid conversion to and from lists or other structures – this is slow

numpy Performance (2)

- Example: grayscale image from RGB
- 1140 x 550px
- The second block is easier to write, more intuitive, and 100x faster (0,05s vs 0,5s on my machine)
- Correctness test

```
(gs_img == np_img).all()
```

```
img = imread("...")
img_as_list = img.tolist()
start = time.time()
gs img = []
for row in range(len(img_as_list)):
  gs_img.append([])
  for col in range(len(img_as_list[row])):
    gs_img[row].append(∅)
for row in range(len(img_as_list)):
  for col in range(len(img_as_list[row])):
    curr_sum = round(sum(img_as_list[row][col]) / 3)
    gs_img[row][col] = curr_sum
stop = time.time()
print(stop - start)
```

```
start = time.time()
np_img = img.mean(axis = 2).round().astype(np.uint8)
stop = time.time()
print(stop - start)
```

Reproducible Research How to do stuff properly

Data Science Process

- As we know, the data science lifecycle is complex
 - For example, see this image
 - Also, there are <u>a lot of topics</u>
- Components and dependencies
 - Problem (task)
 - Data (experiments, dataset; different forms)
 - Algorithms (e.g., linear regression, Bayesian model)
 - Models (testing, selecting, fine-tuning; normalizing data, etc.)
 - Programming (APIs, functions, testing)
 - Environment (packages, such as numpy; or tools, such as Excel)
 - Presentation (tables, KPIs, visualizations, software)

Reproducible Research

- The whole process is complex, so we need a way to verify our work (and possibly other people's work)
 - Particularly important when a study affects decisions
 - Sometimes impossible: time, opportunity, money, etc.
- Why is it so important?
 - It's the only thing we can guarantee about our study
- Easiest way: supply all your data, and your notebooks
 - The notebooks contain all information about your research
- Requirements: analytical (not raw) data; code; documentation of the code and processes
- Markdown and LaTeX help us write more explicit documentation (in text and math format)

Reproducible Research (2)

Dos

- Good science (interesting, relevant problem; communication)
- Automation of tasks (as much as possible)
- Version control usage
 - Even if you're working alone, this helps you in the case something goes terribly wrong
- Environment management (e.g. conda packages)
- Sometimes: random seed, mock objects and other pseudorandom variables

Don'ts

- Manually edited data
 - If we get a new version, we have to edit the data again
- Omitted (deleted) steps of the process
 - If a step you perform is not in your notebook, it can't be replicated easily

Comparing to Previous Work

- Both yours (if you have some) and others'
 - In the beginning: to see what others have done
 - In the end: to compare your findings to others'
- This can be a software product, or a paper, or something else
- Example: see papers at <u>arXiv</u>
 - Good examples of a scientific article layout
- Example 2: <u>Kaggle</u> notebooks (kernels)
- Don't forget to cite everyone that you've borrowed ideas, code, research methods, or information from
 - Reason 1: If they are proven wrong, your research may be wrong too
 - Reason 2: You're not plagiarizing them

Communicating Results

- Many possibilities
 - Sometimes, only an action to take: "discount product A by 40% next week to get an expected \$50k ± 5k"
 - Other cases: dashboard (continuous analytics)
 - Deploying models to a production environment
 - If the model is passed data, it returns an output
 - Integrating into existing software
 - E.g., integrating a custom ad manager which recommends products to users
 - Or deploy on Excel / PowerBI / Google Analytics / custom server-side script
 - Creating customer-facing software: not very common
 - Scientific paper (not too often, but depends)
- Be open to feedback
- Use a source control to track changes and share your work

Evidence-Based Analysis

- Once again, the entire process is very long
- At each step, we're making a lot of choices
 - Sometimes without even realizing it
 - E.g., default parameters in algorithms, default settings,
 assumptions about the data
- Main idea
 - Don't take these decisions randomly (or unknowingly)
 - Base them on previous research
 - This reduces the "degrees of freedom"
 - Therefore, accounts for better reproducibility
 - Also, guarantees that the used methods are widely accepted

Evidence-Based Analysis (2)

- Example
 - Default choice: 10 bins vs. Freedman Diaconis bin size rule

```
np.random.seed(120)
x = np.random.uniform(
  1, 10, size = 1000)
```

```
plt.hist(x)
```

```
hist, bins = np.histogram(x, bins = "fd")
width = (bins[1] - bins[0])
center = (bins[:-1] + bins[1:]) / 2
plt.bar(center, hist,
    align = "center", width = width)
```


Last Note: Cognitive Biases

- No matter how good we are, we're all susceptible to biases in our reasoning
 - These can be used for good or bad
 - List of biases
 - Some popular ones: anchoring, choice support and "ostrich effect", confirmation bias, survivorship bias
 - We, as researchers, should try to overcome as many of these as possible
- This will also help find flaws in other people's methods
 - How to Spot a Fake News Story
 - Three Ways to Spot Logical Fallacies
 - StatisticsDoneWrong website

Summary

- High-quality code and software engineering best practices
 - Code conventions
- Data science project structure
- Improving code
 - Debugging, unit tests, performance tests
- Reproducible research
 - Tools, methods, ideas

Questions?