UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2022/1 Prova da área IIB

1 - 4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

1.	Linearidade	Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$ $\mathcal{F}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{F}\{f(t)\} + \beta \mathcal{F}\{g(t)\}$	
1.	Lincaridade	X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{ f'(t) \} = i w \mathcal{F} \{ f(t) \}$	
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$	
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$	
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$	
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$	
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$	
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{ onde } (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$	
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$	
8.	Conjugação	$\overline{F(w)} = F(-w)$	
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$	
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$	
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$	
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$	
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$	

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}, T$ é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
de l'ourier	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
	$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty xe^{-a^2x^2}\sin(mx)dx = \frac{m\sqrt{\pi}}{4a^3}e^{-\frac{m^2}{4a^2}} (a>0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Questão 1.(A) (0.8pt) A decomposição em série de Fourier de $f(t) = \begin{cases} |t| & , -1 \le t < 1 \\ f(t+2) = f(t), & t \in \mathbb{R} \end{cases}$

$$f(t) = \frac{1}{2} - \frac{4}{\pi^2} \left(\cos(\pi t) + \frac{1}{3^2} \cos(3\pi t) + \frac{1}{5^2} \cos(5\pi t) + \frac{1}{7^2} \cos(7\pi t) + \frac{1}{9^2} \cos(9\pi t) + \dots + \right), t \in \mathbb{R}$$

O equacionamento de $f'\left(\frac{1}{2}\right) = 1$ implica:

()
$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \dots = \frac{\pi}{4}$$

()
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots = \frac{\pi}{4}$$

()
$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \dots = \frac{\pi^2}{4}$$

()
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots = \frac{\pi^2}{4}$$

() nenhuma das alternativas anteriores

Questão 1.(B) (1.6pt) Considere a função $f(t) = 8\cos^4(t)$. Calcule os coeficientes da expansão em série de Fourier de f(t) e assinale na primeira coluna a representação trigonométrica e na segunda a representação exponencial.

()
$$3 + 8\sum_{n=1}^{\infty} \left(\frac{1}{2n+1} \cos(2nt) + \frac{n}{2n+1} \sin(2nt) \right)$$

$$\left(\quad \right) \sum_{n=-\infty}^{\infty} \left(\frac{3}{2n+1} - \frac{in}{2n^2+1} \right) e^{2nit}$$

()
$$3 + 4\cos(2t) + \cos(4t)$$

()
$$\frac{i}{2}e^{-4it} + 2e^{-2it} + 3 + 2e^{2it} - \frac{i}{2}e^{4it}$$

()
$$3 + 4\cos(t) + 2\cos(2t) + \cos(3t) + \frac{1}{2}\cos(4t)$$

()
$$\frac{i}{2}e^{-2it} + 2ie^{-it} + 3 - 2ie^{it} - \frac{i}{2}e^{2it}$$

()
$$3 + 4\operatorname{sen}(t) + 2\operatorname{sen}(2t)$$

()
$$\frac{1}{2}e^{-4it} + 2e^{-2it} + 3 + 2e^{2it} + \frac{1}{2}e^{4it}$$

() nenhuma das anteriores

() nenhuma das anteriores

Questão 2. (0.8pt) Considere $f(t) = te^{-|t|}$. Sobre a transformada de Fourier F(w) de f(t), é correto:

()
$$F(w) = \frac{-4iw}{(1+w^2)^2}$$

()
$$F(w) = \frac{-2iw}{(1+w^2)^2}$$

()
$$F(w) = \frac{-2w}{(1+w^2)^2}$$

()
$$F(w) = \frac{1 - w^2}{(1 + w^2)^2}$$

() nenhuma das alternativas anteriores

Questão 3. (1.6pt) Resolva o seguinte problema de difusão de calor: $\begin{cases} 4u_t(x,t) - u_{xx}(x,t) = 0 \\ u(x,0) = \delta(x-1) \end{cases}$ Assinale na primeira coluna a transformada de Fourier $U(k,t) = \mathcal{F}\{u(x,t)\}$ e na segunda a solução u(x,t). () $u(x,t) = e^{-ik}e^{-2k^2t}$

()
$$U(k,t) = e^{-ik}e^{-2k^2t}$$

$$u(x,t) = \frac{1}{\sqrt{\pi t}}e^{-\frac{(x-1)^2}{t}}$$

()
$$U(k,t) = \frac{1}{\sqrt{\pi t}}e^{-k^2t/4}$$

()
$$u(x,t) = \frac{1}{\sqrt{\pi t}}e^{-\frac{x^2}{t}}$$

()
$$U(k,t) = e^{-k^2t/2}$$

()
$$u(x,t) = \frac{2}{\sqrt{\pi t}}e^{-\frac{x^2}{4t}}$$

()
$$U(k,t) = \frac{e^{-ik}}{2\sqrt{\pi t}}e^{-k^2t/4}$$

()
$$u(x,t) = \frac{1}{\sqrt{\pi t}} e^{-\frac{(x+1)^2}{t}}$$

() nenhuma das alternativas anteriores

() nenhuma das alternativas anteriores

Questão 4. (1.2pt) Considere a função $f(t) = \cos(4\pi t) + 2\sin^2(\pi t)$. Sobre o diagrama de espectro de módulo (primeira coluna) e diagrama de espectro de fase, estão corretos:

() nenhuma das alternativas anteriores

() nenhuma das alternativas anteriores

$\text{nestão 5.(B) (1.0pt) Considerando os coeficientes } \{a_n\}, \{b_n\} \text{ da série de Fourier da função periódica} \\ f(x) = \begin{cases} 2\cos(x) & , x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ 0 & , x \in [-\pi, -\frac{\pi}{2}] \bigcup [\frac{\pi}{2}, \pi) \end{cases} \text{ representada na figura abaixo} \\ f(x+2\pi) & , x \in \mathbb{R} \end{cases}$ vencha com os valores numéricos: $\frac{a_0}{a_1} = \frac{a_1}{a_2} = \frac{a_3}{a_3} = \frac{a_4}{a_4} = \frac{b_1}{b_2} = \frac{b_3}{b_3}$ vencha com os valores numéricos:	iestao 5.(A) (1.0pt) (Obtenha os coeficientes $\{a_n\}$, $\{b_n\}$ da série de Fourier da função periódica $g(x) = 2 \operatorname{sen}^3(x) + 3 \cos(2x)$
y -3π $-\pi$ π 3π 3π π π π π π π π π π		
y -3π $-\pi$ π 3π 3π π π π π π π π π π		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	-3π	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Questão 6	Considere	o	problema
-----------	-----------	---	----------

ſ	$u_t + 2u_x = -u$, pa	ara todos $x \in \mathbb{R}, t >$	0
ĺ	$u(x,0) = f(x), x \in$	$ \text{ara todos } x \in \mathbb{R}, t > \\ \in \mathbb{R} $	

6A. (0.8pt) Obtenha a transformada de Fourier $F(\cdot)$ de $f(x) = e^{- x }$	$x, x \in \mathbb{R}$
6B. (1.2pt) Encontre a solução $u(x,t)$ (e a respectiva transformada d $f(x)$ conforme definida em 6A .	e Fourier $U(\cdot,t))$ do problema do enunciado para

Bom Trabalho.