

③ BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

® DE 197 53 573 A 1

(2) Aktenzeichen: 197 53 573.9 (2) Anmeldetag: 3. 12. 97 (3) Offenlegungstag: 10. 6. 99 5) Int. Cl.⁶: F 01 N 3/20

B 01 D 53/94 B 01 D 53/88 B 01 D 53/02

(f) Anmelder:

Bayerische Motoren Werke AG, 80809 München, DE

(72) Erfinder:

Detterbeck, Stefan, 80799 München, DE; Müller, Peter, 80799 München, DE; Preis, Michael, 86343 Königsbrunn, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

EP 06 25 633 A1 EP 05 82 917 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(3) Abgasreinigungsanlage

(f) Eine Abgasreinigungsanlage für einen magerbetriebenen Otto-Motor mit einem NO_x-Speicher-Katalysator weist zwischen dem Motor und dem NO_x-Speicher-Katalysator einen Schwefelspeicher auf, welcher den Schwefel im mageren Abgas sorbiert und ihn bei neißem, fetten Abgas freigibt.

Beschreibung

Die Erfindung bezieht sich auf eine Abgasreinigungsat lage für einen bei niedrager und mittlerer Last magernetriebenen Or. -Meter mit einem NO_x-Speicher-Kutalysator.

Zur Reinigung der Abgase eines Kraftfahrzeuges von Konlenmonoxid (CO) Kohlenwasserstoff (HC) und Stickoxiden (NO) werder, vor allem geregelte Dreiwege-Katalysuloren verwendet, bei denen mileiner Lambda-Sonde und einem Regler die Cendschhildung des Einspritzsystems so. 10. eingestellt wird, daß die Zusammensetzung des Abgases eine optimale, simultane Konvertierung von CÖ, HC und NO, am gunstigsten Betriebspunkt des Katalysators ernlöglicht. I'm solcher Kutalysator weist beispielsweise einen Trager aus Keramik oder Metall mit einer Aluminiumoxidbeschichtung auf, die nut Edelmetallen, wie Platin, Palladiam und khodium impragniert ist. Der optimale Betriebspunk lemes wichen Dreiwege-Katalysators hinsichtlich der maxima en Uniscizung der Abgasbestandteile HC, CO und NO, hogt beim stochiometrischer Luft-Kraftstoftverhältnis. 20. d. n. bis zu dieser Temperatur wird, speziell bei sauerstoff-(), = 1) Will man den Verbrennungsmotor zum Zwecke produce. Knowski, is contradent mager petrelben: $\lambda>1$. Is: düher keine optimale Unisetzung der schädlichen Abgasbestandteric mehr möglich.

Lur die Abgasteinigung von mager betriebenen Ottomotoren sind deshalb spezielle NO_V-Kutalysatoren, u. a. sogenannie NO,-Speicher-Katalysatoren entwickelt worden. Die NO, Speicher-Katalysatoren weisen auf einem Träger aus Kerannk oder Metall eine Aluminiumoxidbesenichtung aufweisen, die einerseits Metalle, wie Alkali-, Erdalkali- oder 30 Seltenerd-Metalle, die NO, adsorbieren, und undererseits Edelmetalle, wie Platin, enthalt. Bei mageren., d. h. sauerstoffreichera Abgas, wird NO, z. B. durch das Erdalkalimetall adsorbiert, wahrend CO und HC z. B. durch das Platin zu Kohlendiovid und Wasser katalytisch oxidiert werden. Durch intermittierenden kurzfristigen fetten Betrieb des sonst magerbetriebenen Otto-Motors wird das am Katalysator adsorbierte NO, durch die reduzierenden Gase, wie CO, zu Stickstoff reduziert und der Kutalysator damit regenerier: (vgl, EP 0 (45 173 B1; EP 0 657 204 A1).

Es ist bekannt, daß Schwefeloxide, die durch den int Kraftstott enthaltenen Schwetel gebildet werden, zu einer Deaktivierung des Katalysators führen, und zwar insbesondere auch des NO,-Speicher-Katulysators. Diese sogenannte Sulfatisierung führt beim NO,-Speicher-Katalysator zu ei- 45 ner beträchtlichen Herabsetzung von dessen NO_x-Speicher-Kapazität. Die Sulfatisierung des Katalysators läßt sich durch Beautschlagung des Kaialysators mit heißem, fettem Abgas unter Bildung von Schwefelwasserstoff rückgängig machen (vgl. EP 0 645 173 B1). Diese fetten, heißen Be- 50 triebszustände haben allerdings einen erhöhten Kraftstoffverbrauch zur Folge. Außerdem werden sie je nach Betriebsprofil eines Funzeugs unter Unsfünden auch gar nicht angefahren, beispielsweise im Stadtverkehr, bei dem das Abgas nicht die erforderliche Temperatur erreicht. Sie müs- 55 sen dann speziell generiert werden, z. B. durch Zündwinkeloder Lambda-Eineriffe.

Der Erfindung liegt die Aufgabe zugrunde, das Problem der Sulfatisierung und der dann notwendigen Desulfatisierung von Katalysatoren, insbesondere von NOx-Speicher- 60 Katalysatoren, zu lösen.

Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten Abgasreinigungsanlage erreicht. In den Unteransprüchen sind vorteilhafte Ausgestaltungen der Erfindung wiedergegeben.

Erfindungsgemäß werden die Sorption des Schwefels, der in dem mageren Abgas als Schwefeldioxid (SO₂) and Schwefeltrioxid (SO-) enthalten ist, und die Sorption des NO, ortlich voneinander getrennt. Das heißt, dem NOx-Spelisher-Katalysator in ein Schwefelspeicher vorgette enthält, weic schaffet, der e. i Sorpt. lie Schwe-Didurch teloxide (SO₂ SO₃) it stageren Abgas so wird zugleich eine Verringerung des Kraf er-nauchs von magerbetriebenen Ottomor ren im Kur ... etrieb und eine Verlängerung der Katalys - irstandzeit erreicht.

Der Schwefelspeicher kant dazu entsprechund einem NO,-Speicher-Katalysator autgebaut sein. Das heißt, er kann auf einem Träger aus Metall oder Keramik, z. B. Cordierit, eine Metalloxidbeschichtung aufweisen, beispielsweise Aluminiumoxid (Al_2O_3), Siliciumoxid (SiO_2), Zirkonoxid (ZrO2) und/oder Titanoxid (TiO2), wobei die Metalioxidbeschichtung als Sorptionsmittel für das Schwefeloxid (SO₂/SO₂) z. B. ein Alkali-, Erdalkali- oder Seltenerd-Metall enthält, beispielsweise als Oxid oder Salz.

Die Sorptionstemperatur eines solchen Sorptionsmittels für Schwefeloxid (SO₂/SO₃) liegt im allgemeinen im Temperaturberaich bis ca. 600°C, insbesondere bis ca. 500°C, reicher Atmosphare das Schwefeloxid nähezu quantitativ alsorbieri

Die aus dem Motor austretenden mageren Abgäse $(\lambda > 1)$ weisen bei geringer und mittlerer Last eine Temperatur von weniger als 600°C auf. Unter stöchtometrischen Bedingungen und hoher Last können Abgastemperaturen bis 900°C und mehr auftreten.

Wenn der Schwefelsbeicher in dem Abgasstrang daher an einer Stelle niöglichst kurz nach dem Verbrennungsmotor eingebaut wird, weist er bei geringer und mittlerer Last damit die zur Sorption des Schwefeloxids optimale Tempera-

Andererseits erreicht er dann, wenn der Motor unter hoher Last läuft, eine Temperatur von über 600°C, also eine Temperatur, bei der das Schwefeloxid desorbiert wird. Durch die bei hoher Last vorliegenden im stöchiometrischen oder (aus Kat-Schutzgründen) fetten Abgas reduzierenden Gase (CO und HC) wird das Schwefeloxid damit zu Schwetelwasserstoff (H₂S) reduziert, was zur Desulfatisierung, also Regenerierung des Schwefelspeichers führt.

Damit ist bei medriger und mittlerer Last, aber auch bei hoher Last sichergestellt, daß kein SO-/SO3 den NOx-Speicher-Katalysator belastet Zudem wird bei hoher Last und entsprechend fetten: Abgas eine Regenerierung des Schwefelspeichers sichergestellt, wobei der gebildete Schwefelwasserstoff den NOx-Speicher-Katalysator ohne Beeintrichtigung passiert.

Eine Temperatur des Schwefelspeichers oberhalb der Sorptionstemperatur für SO2/SO3 und ein fettes Abgas läßt sich im übrigen außer durch eine hohe Last auch in anderer Weise erreichen, z. B. durch entsprechende Zündwinkelund Gemisch-Eingriffe. Grundsätzlich wäre auch eine elektrische Beneizung des Schwefelabsorbers vorstellbar.

Der NO_x-Cehalt des Abgases ist wesentlich größer als der Gehalt an Schwefeloxiden. Demgemäß muß verhindert werden, daß der Schwefelspeicher mit NOx beladen wird, so daß er nicht mehr zur Sorption der Schwefeloxide zur Verfügung steht.

In dem Abgas liegt NO, in erster Linie als Stickstoffmonoxid (NO) vor. Wie festgestellt werden könnte, wird NO von dem erwähnten Sorotionsmittel jedoch wesentlich schlechter sorbier, als SO-/SO;

Lediglich Stickstoffdioxid (NO₂) weist eine mit SO₂/SO₃ vergleichbare Affinität zu diesem Sorptionsmittel auf. NO2 wird im Abgas in größeren Mengen jedoch erst durch kata-Ivtische Oxidation aus NO gebildet, und zwar im NO_x-Speicher-Katalysator durch die Oxidationskatalysatorkomponente, also z. B. Platin.

15

4

Dementsprechend ist erfindungsgemäß das Sorptionsmittel des Schwefelspeichers vorzugsweise derart ausgebildet, daß es keinen Katalysator zur Oxidation von NO zu NOgenthält, also z. B. kein Platin oder einen anderen Edelmetallkatalysator. Damit passiert das NO den Schwefelspeicher. 5 ohne von ihm sorbiert zu werden.

Während der Schwefelspeicher nahe am Motor angeordnet ist, befindet sich der $NO_x\text{-}Speicher\text{-}Katalysator im Abgasstrang, wie fiblich, an einer Stelle, an der er die optimalen Temperaturbedingungen besitzt, die zwischen 200 und to 500°C liegen. Bei dieser Temperatur wird das <math display="inline">NO_x$ im $NO_x\text{-}Speicher\text{-}Katalysator einerseits praktisch quantitativ adsorbiert, andererseits das CO und HC im Abgas weitergehend zu Kohlendioxid und Wasser oxidiert. Bei warmgelaufenem Motor sollte die Temperatur des <math display="inline">NO_x\text{-}Speicher\text{-}Katalysators$ 15 um mindestens 50°C , vorzugsweise mindestens 100°C unter der des Schwefelspeichers liegen.

Die Regenerierung des NO_X-Speicher-Katalysators erfolgt ebenfalls, wie üblich, mit fettem Abgas, beispielsweise während der Regenerierung des Schwefelspeichers. Durch das heiße fette Abgas erfolgt also einerseits eine Reduktion des Schwefels im Schwete, speicher zu Schwefelwasserstott, andererseits die Reduktion von NO_X-Speicher-Katalysator zu Stickstoff, und zwar jeweils unter aptimalen Bedingungen.

Der Zeitpunkt zum Betrieb des Motors so, daß kurzzeitig heiße, fette Abgas entstehen zur Regenerierung des Schwefelspeichers, kann rechnerisch über das Lastprofil des Motors ermittelt werden. Das heißt, wenn sich anhand des Lastprofils ergibt, daß die Sorptionskapazität des Schwefelspeichers für Schwefeloxid (SO₂/SO₃) und/oder die Absorptionskapazität des NO₃-Speicher-Katalysators für NO₃ erschöpft ist, also der Sättigungszustand erreicht ist, erfolgt eine kurzzeitige Steuerung des Motors so, daß kurzzeitig heiße, fette Abgase entstehen, um durch die heißen fetten Abgase eine Regeneration des Schwefelspeichers und des NO₃-Speicher-Katalysators durchzuführen.

Mit der erfindungsgemäßen Abgasreinigungsanlage wird eine Sorption des Schwefels am NO_x-Speicher-Katalysator sicher verhindert. Damit können die hohen NO_x-Konvertierungsraten eines solchen Katalysators über lange Zeit stabii gehalten werden. Dadurch wird eine Serieneinführung von NO_x-Speicher-Katalysatoren und damit von magerbetriebenen Otto-Motoren erleichtert.

Patentansprüche

1. Abgasreinigungsanlage für einen bei niedriger und mittlere Last magerbetriebenen Otto-Motor mit einem NO_x Speicher-Katalysator, **dadurch gekennzeichnet**, 50 daß zwischen Motor und NO_x-Speicher-Katalysator ein Schwefelspeicher angeordnet ist, der den Schwefel im mageren Abgas und bei Sorptionstemperatur sorbiert und ihn bei einer Temperatur oberhalb der Sorptionstemperatur und fettem Abgas freigibt.

2. Abgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Schwefelspeicher den Schwefel bei hoher Last freigibt.

- 3. Abgasreinigungsanlage nach Anspruch. 1 oder 2. dadurch gekennzeichnet, daß der Schwefelspeicher 60 derart ausgebildet ist, daß er das NO_x im Abgas nicht sorbiert.
- 4. Abgasreinigungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Schwefelspeicher als Sorptionsmittel ein Alkali-, Erd- 65 alkali- und/oder Seltenerd-Metall enthält.
- Abgasreinigungsanlage nach Anspruch 3, dadurch gekennzeichnet, daß der Schwefelspeicher keine Kata-

4

lysatoren zur Oxidation von Stickstoffmonoxid zu Stickstoffdioxid enthalt.

6. Abgasreinigungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Schwefelspeicher an einer Stelle zwischen Motor und Katalysator angeordnet ist, an der er bei hoher Last eine Temperatur von mehr als 600°C aufweist.

7. Abgasreinigungsantage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Schwefelspeicher an einer Stelle zwischen Motor und Katalysator angeordnet ist, an der er bei niedriger oder mittlerer Last eine Temperatur von höchstens 600°C aufweist.

8. Abgasreinigungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der NO_x-Speicher-Katalysator in einem solchen Abstand vom Schwefelspeicher angeordnet ist, daß die Temperatur des NO_x-Speicher-Katalysators um wenigstens 50°C unter der des Schwefelspeichers liegt.

9. Abgasreinigungsanlage nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Steuerung des Motors auf heißes, tettes Abgas bei sehwefelgesattigtem Schwefelspeicher.

10. Abgasreinigungsanlage nach Anspruch 9, gekennzeichnet dadurch, daß der Sättigungszustand des Schwefelspeichers rechnerisch in Abhängigkeit vom Betriebspunktprofil des Motors und von charakteristischen Daten des Schwefelspeichers ermittelt wird.

11. Abgasreinigungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zwischen Motor und Schwefelspeicher eine Einrichtung zur Reduktion von NO₂ zu NO angeordnet ist.

- Leerseite -