Homework 5

Daniel Dulaney

November 7, 2020

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purr 0.3.4

## v tibble 3.0.3 v dplyr 1.0.2

## v tidyr 1.1.2 v stringr 1.4.0

## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(here)
## here() starts at C:/Users/dgdul/OneDrive/Documents/grad-school/st-563
library(ggrepel)
library(ISLR)
library(e1071)
## Warning: package 'e1071' was built under R version 4.0.3
(9.3)
(a)
df_9.3 <- tribble(</pre>
```

```
"obs, "x1, "x2, "y,
1, 3, 4, "Red",
2, 2, 2, "Red",
3, 4, 4, "Red",
4, 1, 4, "Red",
5, 2, 1, "Blue",
6, 4, 3, "Blue",
7, 4, 1, "Blue"
```

```
points_9.3 <- df_9.3 %>%
   ggplot(aes(x1, x2, color = y)) +
   geom_point(size = 6) +
   geom_label_repel(aes(label = obs)) +
   scale_color_manual(values = c("Blue", "Red"))

points_9.3
```


(b)

Based on the plot, we know we can construct a line that will separate the classes perfectly.

The maximal margin classifier will be a line between Blue points 5 (2, 1) and 6 (4, 3), and red points 2 (2, 2) and 3 (4, 4). The line will need to pass through the two points (4, 3.5) and (2, 1.5).

The slope of the line equals $\frac{3.5-1.5}{4-2}=1$ and the intercept equals 1.5-2=-0.5

(c)

$$0.5 - X_1 + X_2 > 0$$

(d)

The line passing through Red points 2 and 3 has slope 1 and intercept -1, and the line passing through Blue points 5 and 6 has slope 1 and intercept 0

(e)

(f)

Since observation 7 is outside of the margin, which is the area between the dotted lines, moving it wouldn't affect the maximal margin hyperplane.

(g)

 $-1.1 - X_1 + X_2 > 0$

(h)

(9.7)

```
auto <- as_tibble(Auto)</pre>
```

(a)

```
mpg_median <- median(auto$mpg)
auto <- auto %>%
  mutate(high_mileage = ifelse(mpg > mpg_median, 1, 0))
```

(b)

```
tune_linear <- tune(svm, high_mileage ~ ., data = auto, kernel = "linear", ranges = list(cost = c(.01,
summary(tune_linear)</pre>
```

##

```
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
##
##
## - best performance: 0.07467893
##
## - Detailed performance results:
               error dispersion
##
      cost
## 1 1e-02 0.08392114 0.02695357
## 2 1e-01 0.07855388 0.02526868
## 3 1e+00 0.07467893 0.01853852
## 4 5e+00 0.08364994 0.02389411
## 5 1e+01 0.09145801 0.02547538
## 6 1e+02 0.12656543 0.04668958
```

Errors for various costs in the table above. The lowest error was at cost = 1.

(c)

```
tune_poly <- tune(svm, high_mileage ~ ., data = auto, kernel = "polynomial", ranges = list(cost = c(0.1
summary(tune_poly)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
```

```
##
## - best performance: 0.2952512
##
```

cost degree

15

11 0.1

##

- Detailed performance results:

```
##
     cost degree
                     error dispersion
## 1
     0.1
               2 0.4802780 0.08644157
## 2
     0.5
               2 0.4700671 0.08509175
## 3
     1.0
               2 0.4577319 0.08386686
## 4
     3.0
               2 0.4130300 0.08263519
## 5 15.0
               2 0.2952512 0.07346642
     0.1
               3 0.4819385 0.08665578
## 6
## 7
     0.5
               3 0.4782763 0.08599366
               3 0.4737479 0.08520332
## 8
     1.0
## 9 3.0
               3 0.4560220 0.08238401
## 10 15.0
              3 0.3629959 0.07409030
             4 0.4828261 0.08681829
```

```
## 12 0.5
                4 0.4827537 0.08681089
## 13 1.0
                4 0.4826632 0.08680169
## 14 3.0
                4 0.4823016 0.08676546
                4 0.4800871 0.08654456
## 15 15.0
## 16 0.1
                5 0.4828416 0.08681982
## 17 0.5
                5 0.4828311 0.08681853
## 18 1.0
                5 0.4828180 0.08681691
## 19 3.0
                5 0.4827656 0.08681045
## 20 15.0
                5 0.4824515 0.08677195
Best cost for type polynomial is at cost = 15.
tune_radial <- tune(svm, high_mileage ~ ., data = auto, kernel = "radial", ranges = list(cost = c(0.1,
summary(tune_radial)
##
## Parameter tuning of 'svm':
  - sampling method: 10-fold cross validation
##
## - best parameters:
##
   cost degree
##
      15
##
## - best performance: 0.07251967
##
## - Detailed performance results:
##
      cost degree
                       error dispersion
## 1
       0.1
                2 0.09852772 0.02127592
## 2
       0.5
                2 0.08359851 0.02670191
                2 0.08021264 0.02951717
## 3
      1.0
                2 0.07758403 0.03351797
## 4
       3.0
## 5
    15.0
                2 0.07251967 0.03489359
## 6
                3 0.09852772 0.02127592
       0.1
## 7
       0.5
                3 0.08359851 0.02670191
## 8
       1.0
                3 0.08021264 0.02951717
## 9
       3.0
                3 0.07758403 0.03351797
## 10 15.0
                3 0.07251967 0.03489359
## 11 0.1
                4 0.09852772 0.02127592
## 12
       0.5
                4 0.08359851 0.02670191
## 13 1.0
                4 0.08021264 0.02951717
## 14 3.0
                4 0.07758403 0.03351797
## 15 15.0
                4 0.07251967 0.03489359
## 16 0.1
                5 0.09852772 0.02127592
## 17 0.5
                5 0.08359851 0.02670191
## 18 1.0
                5 0.08021264 0.02951717
## 19 3.0
                5 0.07758403 0.03351797
                5 0.07251967 0.03489359
## 20 15.0
```

Best cost for type radial is at cost = 15.

(d)

```
svm_linear <- svm(high_mileage ~ ., data = auto, kernel = "linear", cost = 1)
plot(svm_linear, auto, as.formula(mpg~cylinders))</pre>
```

This code follows what is in the book but it's not producing the plot here. Not sure what the issue is.

(10.2)

Will use the hclust() function from an earlier chapter to create these trees.

(a)

(b)

```
plot(hclust(dist_10.2, method = "single"))
```


dist_10.2 hclust (*, "single")

(c)

They are split into (a, b) and (c, d)

(d)

They are split into (d) and (c, b, a)

(e)

dist_10.2 hclust (*, "complete")

(10.3)

(a)

(b)

```
df_10.3 <- df_10.3 %>%
  mutate(cluster = sample(2, 6, replace = TRUE))
df_10.3
```

```
## # A tibble: 6 x 4
##
       obs
            x1
                   x2 cluster
##
     <dbl> <dbl> <dbl>
                        <int>
## 1
        1
              1
                     4
                            1
## 2
        2
              1
                     3
                            2
                            2
## 3
        3
              0
                     4
                            2
## 4
        4
              5
                    1
## 5
                            2
        5
              6
                     2
## 6
        6
                     0
                            1
```

Clusters in last column.

(c)

```
# calculate centroids
clust1_x1 <- df_10.3 %>%
  filter(cluster == 1) %>%
  summarise(mean(x1)) %>%
  pull()
clust1_x2 <- df_10.3 %>%
  filter(cluster == 1) %>%
  summarise(mean(x2)) %>%
  pull()
clust2_x1 <- df_10.3 %>%
  filter(cluster == 2) %>%
  summarise(mean(x1)) %>%
  pull()
clust2_x2 <- df_10.3 %>%
  filter(cluster == 2) %>%
  summarise(mean(x2)) %>%
 pull()
df_10.3 %>%
  ggplot() +
  geom_point(aes(x1, x2, color = as.factor(cluster)),
             data = df_10.3,
             size = 5) +
  geom_point(aes(x1, x2),
             data = tribble(~x1, ~x2,
                            clust1_x1, clust1_x2),
             color = "red",
             size = 5,
             shape = "triangle") +
  geom_point(aes(x1, x2),
             data = tribble(~x1, ~x2,
                            clust2_x1, clust2_x2),
             color = "blue",
             size = 5,
             shape = "triangle") +
  scale_color_manual(values = c("red", "blue"))
```


(d)

```
df_10.3 <- df_10.3 %>%
  mutate(center_clust1_x1 = clust1_x1,
         center_clust1_x2 = clust1_x2,
         center_clust2_x1 = clust2_x1,
         center_clust2_x2 = clust2_x2,
         dist_to_centerclust1 = sqrt((center_clust1_x1 - x1)^2 + (center_clust1_x2 - x2)^2),
         dist_to_centerclust2 = sqrt((center_clust2_x1 - x1)^2 + (center_clust2_x2 - x2)^2),
         new_cluster = ifelse(dist_to_centerclust1 < dist_to_centerclust2, 1, 2))</pre>
df_10.3
## # A tibble: 6 x 11
##
                    x2 cluster center_clust1_x1 center_clust1_x2 center_clust2_x1
              x1
##
     <dbl> <dbl> <dbl>
                                            <dbl>
                                                             <dbl>
                                                                               <dbl>
                          <int>
## 1
         1
               1
                      4
                              1
                                              2.5
                                                                  2
                                                                                   3
## 2
         2
                      3
                              2
                                              2.5
                                                                  2
                                                                                   3
               1
## 3
         3
               0
                      4
                              2
                                              2.5
                                                                  2
                                                                                   3
## 4
         4
               5
                              2
                                              2.5
                                                                  2
                                                                                   3
                      1
## 5
         5
               6
                      2
                              2
                                              2.5
                                                                  2
                                                                                   3
## 6
         6
               4
                      0
                              1
                                              2.5
                                                                  2
## # ... with 4 more variables: center_clust2_x2 <dbl>,
       dist_to_centerclust1 <dbl>, dist_to_centerclust2 <dbl>, new_cluster <dbl>
```

```
df_10.3 %>%
  ggplot() +
  geom_point(aes(x1, x2, color = as.factor(new_cluster)),
             data = df_10.3,
             size = 5) +
  geom_point(aes(x1, x2),
             data = tribble(~x1, ~x2,
                            clust1_x1, clust1_x2),
             color = "red",
             size = 5,
             shape = "triangle") +
  geom_point(aes(x1, x2),
             data = tribble(~x1, ~x2,
                            clust2_x1, clust2_x2),
             color = "blue",
             size = 5,
             shape = "triangle") +
  scale_color_manual(values = c("red", "blue"))
```


(e)

```
# calculate centroids
clust1new_x1 <- df_10.3 %>%
```

```
filter(new_cluster == 1) %>%
summarise(mean(x1)) %>%
pull()

clust1new_x2 <- df_10.3 %>%
  filter(new_cluster == 1) %>%
summarise(mean(x2)) %>%
pull()

clust2new_x1 <- df_10.3 %>%
  filter(new_cluster == 2) %>%
summarise(mean(x1)) %>%
pull()

clust2new_x2 <- df_10.3 %>%
  filter(new_cluster == 1) %>%
summarise(mean(x2)) %>%
pull()
```

(f)

(10.9)

(a)

dist(usa_arrests)
hclust (*, "complete")

(b)

```
usa_arrests <- usa_arrests %>%
  mutate(cluster = cutree(hc_complete, 3))

# show each cluster individually
usa_arrests %>%
  filter(cluster == 1)
```

```
## # A tibble: 16 x 6
##
      state
                     Murder Assault UrbanPop Rape cluster
##
      <chr>
                       <dbl>
                               <int>
                                        <int> <dbl>
                                                       <int>
##
    1 Alabama
                        13.2
                                 236
                                            58
                                                21.2
    2 Alaska
                        10
                                 263
                                            48
                                                44.5
##
                                                           1
    3 Arizona
                         8.1
                                 294
                                            80
                                                31
                                 276
    4 California
                         9
                                            91
                                                40.6
                                                           1
##
    5 Delaware
                         5.9
                                 238
                                                15.8
                                                           1
##
    6 Florida
                        15.4
                                 335
                                           80
                                                31.9
                                                           1
    7 Illinois
                        10.4
                                 249
                                           83
                                               24
                                               22.2
##
    8 Louisiana
                        15.4
                                 249
                                           66
                                                           1
##
    9 Maryland
                        11.3
                                 300
                                           67
                                                27.8
## 10 Michigan
                        12.1
                                 255
                                           74
                                               35.1
                                                           1
## 11 Mississippi
                        16.1
                                 259
                                            44
                                               17.1
## 12 Nevada
                                 252
                        12.2
                                           81 46
```

```
32.1
## 13 New Mexico
                        11.4
                                  285
                                             70
                                                             1
## 14 New York
                        11.1
                                  254
                                             86
                                                 26.1
                                                             1
## 15 North Carolina
                        13
                                  337
                                             45
                                                 16.1
                                                             1
## 16 South Carolina
                                                 22.5
                        14.4
                                  279
                                             48
                                                             1
usa_arrests %>%
filter(cluster == 2)
## # A tibble: 14 x 6
##
      state
                     Murder Assault UrbanPop Rape cluster
##
      <chr>
                      <dbl>
                               <int>
                                        <int> <dbl>
                                                       <int>
##
   1 Arkansas
                        8.8
                                 190
                                           50
                                               19.5
                                                            2
##
    2 Colorado
                        7.9
                                 204
                                           78
                                               38.7
                                                            2
##
                       17.4
                                           60
                                               25.8
                                                            2
    3 Georgia
                                 211
##
  4 Massachusetts
                        4.4
                                 149
                                           85
                                               16.3
                                                            2
## 5 Missouri
                        9
                                 178
                                           70
                                                28.2
                                                           2
                                                            2
##
    6 New Jersey
                        7.4
                                 159
                                           89
                                                18.8
## 7 Oklahoma
                                                20
                                                           2
                        6.6
                                 151
                                           68
## 8 Oregon
                        4.9
                                 159
                                                29.3
                                                           2
## 9 Rhode Island
                        3.4
                                 174
                                                 8.3
                                           87
## 10 Tennessee
                                 188
                                           59
                                                26.9
                                                           2
                       13.2
## 11 Texas
                       12.7
                                 201
                                           80
                                               25.5
                                                           2
                                               20.7
                                                           2
## 12 Virginia
                        8.5
                                 156
                                           63
## 13 Washington
                        4
                                           73
                                               26.2
                                                           2
                                 145
## 14 Wyoming
                                               15.6
                        6.8
                                 161
                                           60
usa_arrests %>%
 filter(cluster == 3)
```

```
## # A tibble: 20 x 6
##
      state
                     Murder Assault UrbanPop Rape cluster
##
      <chr>
                      <dbl>
                               <int>
                                        <int> <dbl>
                                                       <int>
##
    1 Connecticut
                        3.3
                                 110
                                                11.1
                                            77
##
                                                20.2
    2 Hawaii
                        5.3
                                  46
                                                            3
                                            83
## 3 Idaho
                        2.6
                                 120
                                            54
                                               14.2
                                                            3
## 4 Indiana
                        7.2
                                 113
                                            65
                                                21
                                                            3
## 5 Iowa
                        2.2
                                  56
                                            57
                                                11.3
                                                            3
## 6 Kansas
                                            66
                                                            3
                        6
                                 115
                                                18
## 7 Kentucky
                        9.7
                                 109
                                            52
                                                16.3
                                                            3
##
                        2.1
                                                 7.8
                                                            3
    8 Maine
                                  83
                                           51
##
    9 Minnesota
                        2.7
                                  72
                                            66
                                                14.9
                                                            3
## 10 Montana
                        6
                                 109
                                            53
                                                16.4
                                                            3
## 11 Nebraska
                        4.3
                                 102
                                            62
                                                16.5
                                                            3
                                                            3
## 12 New Hampshire
                        2.1
                                  57
                                            56
                                                 9.5
                                            44
                                                 7.3
                                                            3
## 13 North Dakota
                        0.8
                                  45
## 14 Ohio
                        7.3
                                 120
                                           75
                                                21.4
                                                            3
## 15 Pennsylvania
                        6.3
                                 106
                                           72
                                               14.9
                                                            3
## 16 South Dakota
                        3.8
                                  86
                                            45
                                                12.8
                                                            3
## 17 Utah
                                           80 22.9
                                                            3
                        3.2
                                 120
## 18 Vermont
                        2.2
                                  48
                                            32 11.2
                                                            3
                                  81
                                            39
                                                 9.3
                                                            3
## 19 West Virginia
                        5.7
## 20 Wisconsin
                        2.6
                                  53
                                            66
                                               10.8
```

(c)

Cluster Dendrogram

dist(usa_arrests_scaled)
hclust (*, "complete")

(d)

(10.10)

(a)

```
mat_10.10 <- matrix(nrow = 60, ncol = 50)

for (i in 1:20) {
   mat_10.10[i, ] <- c(rnorm(n = 50, mean = 0))
}</pre>
```

```
for (i in 21:40) {
   mat_10.10[i, ] <- c(rnorm(n = 50, mean = 10))
}

for (i in 41:60) {
   mat_10.10[i, ] <- c(rnorm(n = 50, mean = 20))
}

# df_10.10 <- as_tibble(mat_10.10) %>%

# mutate(cluster = c(rep(1, 20), rep(2, 20), rep(3, 20)))
# df_10.10
```

(b)

```
pca_out <- prcomp(mat_10.10)
summary(pca_out)</pre>
```

```
## Importance of components:
##
                              PC1
                                      PC2
                                             PC3
                                                      PC4
                                                             PC5
                                                                     PC6
                                                                             PC7
## Standard deviation
                          58.2488 1.81124 1.7623 1.67961 1.6562 1.63688 1.57092
## Proportion of Variance 0.9858 0.00095 0.0009 0.00082 0.0008 0.00078 0.00072
## Cumulative Proportion
                           0.9858 0.98675 0.9877 0.98847 0.9893 0.99005 0.99076
##
                              PC8
                                      PC9
                                              PC10
                                                      PC11
                                                              PC12
                                                                     PC13
                                                                             PC14
                          1.47709 1.46836 1.38370 1.37133 1.33518 1.3090 1.25871
## Standard deviation
## Proportion of Variance 0.00063 0.00063 0.00056 0.00055 0.00052 0.0005 0.00046
## Cumulative Proportion 0.99140 0.99202 0.99258 0.99313 0.99364 0.9941 0.99460
                                            PC17
                                                     PC18
                                                             PC19
                                                                     PC20
                             PC15
                                    PC16
## Standard deviation
                          1.21778 1.1776 1.12766 1.10267 1.04338 1.03407 0.96604
## Proportion of Variance 0.00043 0.0004 0.00037 0.00035 0.00032 0.00031 0.00027
## Cumulative Proportion 0.99503 0.9954 0.99581 0.99616 0.99648 0.99679 0.99706
                             PC22
                                     PC23
                                             PC24
                                                      PC25
                                                             PC26
                                                                     PC27
## Standard deviation
                          0.93948 0.92643 0.89280 0.86282 0.8283 0.80702 0.78794
## Proportion of Variance 0.00026 0.00025 0.00023 0.00022 0.0002 0.00019 0.00018
## Cumulative Proportion 0.99731 0.99756 0.99779 0.99801 0.9982 0.99840 0.99858
##
                             PC29
                                     PC30
                                             PC31
                                                      PC32
                                                             PC33
                                                                    PC34
                                                                            PC35
## Standard deviation
                          0.76807 0.75548 0.68248 0.64086 0.5902 0.5742 0.54906
## Proportion of Variance 0.00017 0.00017 0.00014 0.00012 0.0001 0.0001 0.00009
## Cumulative Proportion 0.99875 0.99892 0.99905 0.99917 0.9993 0.9994 0.99946
##
                             PC36
                                     PC37
                                             PC38
                                                      PC39
                                                              PC40
                                                                      PC41
                                                                              PC42
## Standard deviation
                          0.53631 0.50252 0.49289 0.42975 0.41670 0.38113 0.34721
## Proportion of Variance 0.00008 0.00007 0.00007 0.00005 0.00005 0.00004 0.00004
## Cumulative Proportion 0.99954 0.99961 0.99968 0.99974 0.99979 0.99983 0.99987
##
                                     PC44
                                             PC45
                                                      PC46
                                                              PC47
                             PC43
                                                                      PC48
                                                                              PC49
## Standard deviation
                          0.32571 0.32002 0.27220 0.24514 0.21687 0.19454 0.15301
## Proportion of Variance 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001 0.00001
## Cumulative Proportion 0.99990 0.99993 0.99995 0.99996 0.99998 0.99999 1.00000
##
                            PC50
## Standard deviation
                          0.1112
## Proportion of Variance 0.0000
```

Cumulative Proportion 1.0000

(c)

```
km_out <- kmeans(mat_10.10, 3, nstart = 20)
km_out$cluster</pre>
```

As in the dataset, points are clustered into different classes 20 by 20 by 20. They are perfectly learned here as I gave them a large mean separation.

(d)

```
km_out2 <- kmeans(mat_10.10, 2, nstart = 20)
km_out2$cluster</pre>
```

The second class which was previously "2" is now a part of class "1", while the other class (previously 3) is now all 2.

(e)

```
km_out4 <- kmeans(mat_10.10, 4, nstart = 20)
km_out4$cluster</pre>
```

The cluster which was originally 2, rows 21:40 from the data, is split into two different clusters now. The other two remain the same as original, perfectly separated into their own clusters.

(f)

```
km_outpca <- kmeans(pca_out$x[, 1:2], 3, nstart = 20)
km_outpca$cluster</pre>
```

Like we saw at the start, split perfectly into 3 clusters.

(g)

```
mat_10.10_scaled <- scale(mat_10.10)
km_outscaled <- kmeans(mat_10.10_scaled, 3, nstart = 20)
km_outscaled$cluster</pre>
```

They are still perfectly separated.