Smooth minimization of nonsmooth functions by parallel coordinate descent

Olivier Fercoq and Peter Richtárik

The University of Edinburgh

 $1^{\rm st}$ May 2013

Minimization of functions with max structure

Minimize for $x \in \mathbb{R}^n$ the structured nonsmooth function f

$$f(x) = \max_{u \in Q_2 \subseteq \mathbb{R}^m} \langle Ax, u \rangle - \langle b, u \rangle$$

- $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, Q_2 convex
- Also for composite functions $F(x) = f(x) + \psi(x)$ $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, convex, closed, separable

$$\psi(x) = \sum_{i=1}^n \psi_i(x^i)$$

Setting

Norms:

- norm in \mathbb{R}^n : $\|\cdot\|_1$
- norm in \mathbb{R}^m : $\|\cdot\|_2$
- induced norm

$$\|A\|_{1,2} = \max_{x \in \mathbb{R}^n} \{ \|Ax\|_2^* : \|x\|_1 = 1 \} = \max_{u \in \mathbb{R}^m} \{ \|A^Tu\|_1^* : \|u\|_2 = 1 \}$$

Prox function d_2 : σ_2 -strongly convex on Q_2 with minimizer u_0

- $d_2(u) \geq \sigma_2 ||u u_0||_2^2, \forall u \in Q_2$
- $u_0 = \operatorname{arg\,min}_{u \in Q_2} d_2(u)$
- $D_2 = \max\{d_2(u) : u \in Q_2\}$

Nesterov's smoothing

For $\mu > 0$, smooth approximation f_{μ} of f:

$$f_{\mu}(x) = \max_{u \in Q_2 \subset \mathbb{R}^m} \{ \langle Ax, u \rangle - \langle b, u \rangle - \frac{\mu}{\mu} d_2(u) \}$$

Theorem (Nesterov, 2005)

$$f_{\mu}(x) \leq f(x) \leq f_{\mu}(x) + \mu D_{2}, \quad \forall x \in \mathbb{R}^{n}$$

 $\|\nabla f_{\mu}(x+h) - \nabla f_{\mu}(x)\|_{1}^{*} \leq \frac{\|A\|_{1,2}^{2}}{\mu \sigma_{2}} \|h\|_{1}$

Any ε -solution of f_{μ} is $(\varepsilon + \mu D_2)$ -solution of f

Examples

Sum of absolute values

$$f(x) = \sum_{j=1}^{m} |e_j^T A x - b^j| = \max_{u \in [-1,1]^n} \langle A x, u \rangle - \langle b, u \rangle$$

$$f_{\mu}(x) = \sum_{j=1}^{m} ||e_j^T A||_1^* \psi_{\mu} \left(\frac{|e_j^T A x - b^j|}{||e_j^T A||_1^*} \right)$$

$$\psi_{\mu}(t) = \begin{cases} \frac{t^2}{2\mu}, & 0 \le t \le \mu \\ t - \frac{\mu}{2}, & \mu \le t \end{cases}$$

• Maximum of linear functions: $\tilde{A} = \begin{bmatrix} A \\ -A \end{bmatrix}$, $\tilde{b} = \begin{bmatrix} b \\ -b \end{bmatrix}$ $f(x) = \max_{1 \le j \le m} |e_j^T A x - b^j| = \max_{u \in \Sigma_{2m}} \langle \tilde{A} x, u \rangle - \langle \tilde{b}, u \rangle$ $f_{\mu}(x) = \mu \log \left(\frac{1}{2m} \sum_{i=1}^{2m} \exp(\frac{e_j^T \tilde{A} x - \tilde{b}^j}{\mu}) \right)$

Smoothness of f_{μ}

Proposition

If $\|x\|_1 = (\sum_{i=1}^n (x^i)^2)^{1/2}$, ∇f_{μ} is coordinate-wise Lipschitz with constants $L_i = \frac{(\|Ae_i\|_2^*)^2}{\mu\sigma_2}$:

$$\forall x \in \mathbb{R}^n, t \in \mathbb{R}, i \in \{1, \dots, n\},$$
$$|\nabla_i f_{\mu}(x) - \nabla_i f_{\mu}(x + te_i)| \leq \frac{(\|Ae_i\|_2^*)^2}{\mu \sigma_2} \|te_i\|_1$$

Fact

Let
$$t \in \mathbb{R}$$
 and $\|x\|_L = (\sum_{i=1}^n L_i(x^i)^2)^{1/2}$
 $f_{\mu}(x + te_i) \le f_{\mu}(x) + \langle \nabla f_{\mu}(x), te_i \rangle + \frac{1}{2} \|te_i\|_L^2$

Serial Coordinate Descent

At each iteration:

- 1. Choose at random a coordinate i
- 2. Compute update $t \in \mathbb{R}$ that minimizes the overapproximation of $f_{\mu}(x + te_i)$
- 3. Update variable $x = x + te_i$.

Remarks:

- Very cheap iterations
- Many iterations required

Parallel Coordinate Descent Method

[Richtárik, Takáč, 2012]

At each iteration:

- 1. Choose a random subset of variables \hat{S} (sampling)
- 2. In parallel for $i \in \hat{S}$
 - a. Compute update $h^i \in \mathbb{R}$
 - b. Update variable $x^i = x^i + h^i$.
- More general overapproximation to calculate updates
- Theory for smooth partially separable functions

$$f(x) = \sum_{J \in \mathcal{J}} f_J(x)$$

 f_J depends on variable i only if $i \in J$ $|J| \leq \omega$ for all $J \in \mathcal{J}$

Max-partially separable functions

Definition

f is max-partially separable of degree ω if it can be written in the form

$$f(x) = \max_{u \in Q_2 \subseteq \mathbb{R}^m} \langle Ax, u \rangle - \langle b, u \rangle$$

where $Q_2 \subseteq \mathbb{R}^m$ is convex, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and

$$\max_{1 \le j \le m} |\{i : A_{j,i} \ne 0\}| \le \omega$$

Deterministic Separable Overapproximation

Theorem

For
$$v_1, \ldots, v_m > 0$$
, $1 \le p \le 2$, define $||u||_2 = (\sum_{j=1}^m v_j u_j^p)^{1/p}$
Let $||x||_1 = ||x||_w = (\sum_{j=1}^n w_j x_j^2)^{1/2}$ where

$$\mathbf{w}_{i} = (\|Ae_{i}\|_{2}^{*})^{2} = \begin{cases} (\sum_{j=1}^{m} v_{j}^{-1} |A_{j,i}|^{q})^{2/q}, & 1$$

If f is max-partially separable of degree ω , then:

$$f_{\mu}(x+h) \leq f_{\mu}(x) + \langle \nabla f_{\mu}(x), h \rangle + \frac{\theta(h)}{2\mu\sigma_2} \|h\|_{\mathbf{w}^2}$$

where

$$\theta(h) = \max_{1 \le i \le m} |\{i : A_{j,i} \ne 0 \text{ and } h_i \ne 0\}| \le \min(\omega, \|h\|_0)$$

Illustration of $\theta(h)$

Samplings

Expected Separable Overapproximation (ESO)

Definition

 φ admits a (β, w) -ESO with respect to sampling \hat{S} if

$$\mathbf{E}[\varphi(x+h_{[\hat{S}]})] \leq \varphi(x) + \frac{\mathbf{E}[|\hat{S}|]}{n} \Big(\langle \nabla \varphi(x), h \rangle + \frac{\beta}{2} ||h||_{w}^{2} \Big)$$

Theorem

If f is max-partially separable of degree ω and \hat{S} is a uniform sampling with $\mathbf{P}(|\hat{S}|= au)=1$, then $(f_{\mu},\hat{S})\sim\mathrm{ESO}\Big(\min(\omega, au),rac{w}{\mu\sigma_2}\Big)$

ESO with 1-norm

Theorem

Assume that:

- ullet f is max-partially separable of degree ω
- $||u||_2 = \sum_{i=1}^m v_i |u_i|$ a weighted 1-norm
- \hat{S} is a τ -nice sampling
- $\mu > 0$

Then

$$(f_{\mu}, \hat{S}) \sim \mathrm{ESO}\Big(\sum_{k=1}^{\min(\omega, \tau)} \min\Big(1, m \sum_{l=k}^{\min(\omega, \tau)} p_l\Big), \frac{w}{\mu \sigma_2}\Big)$$

where
$$p_l = \frac{\binom{\omega}{l}\binom{n-\omega}{\tau-l}}{\binom{n}{l}}$$

ESO with 2-norm

Theorem

Assume that:

- ullet f is max-partially separable of degree ω
- $\|\cdot\|_2$ is a weighted 2-norm
- \hat{S} is a τ -nice sampling
- $\mu > 0$

Then

$$(f_{\mu}, \hat{S}) \sim \mathrm{ESO}\Big(1 + \frac{(\omega - 1)(\tau - 1)}{\max(1, n - 1)}, \frac{\mathsf{w}}{\mu\sigma_2}\Big)$$

Exactly the same formula as for partially separable functions!

Comparison of ESO's

$$m = 2,396,130$$

 $n = 3,231,961$
 $\omega = 414$

 β as a function of the number of processors

Zoom for small number of processors

$$m = 2,396,130$$

 $n = 3,231,961$
 $\omega = 414$

 β as a function of the number of processors

Iteration complexity

Theorem

For $\mu = \varepsilon/(2D_2)$, let (x_k) be the sequence generated by Parallel Coordinate Descent with sampling \hat{S} applied to $F_{\mu} = f_{\mu} + \psi$. If $(f_{\mu}, \hat{S}) \sim ESO(\beta, \frac{w}{\mu\sigma_2})$ and

$$k \geq \frac{8D_2\mathcal{R}_w^2(x_0)}{\sigma_2} \frac{n\beta}{\tau} \frac{1}{\varepsilon^2} \left(1 + \log \frac{1}{\rho}\right) + 2$$

Then
$$\mathbf{P}(F(x_k) - F^* \le \varepsilon) \ge 1 - \rho$$

Comparison of algorithms: Infinity norm

- $f(x) = \max_{1 \leq j \leq m} |(Ax)_j b_j|$
- Dorothea dataset: m = 800, n = 100,000, $\omega = 6,061$
- $\varepsilon = 0.01$

Algorithm	Comp time
GLPK simplex	681 s
Accelerated gradient ¹	10,000 s
Sparse subgradient ² opt value <i>known</i>	6.4s
Sparse subgradient ² opt value unknown	544 s
Smoothed PCDM ³ , τ =4 cores	55 s
Smoothed PCDM ³ , τ =16 cores	34 s

¹Nesterov 2005, Smooth minimization of non-smooth functions

²Nesterov 2012, Subgradient Methods for Huge-Scale Optimization Problems

³Smoothed Parallel Coordinate Descent Method

Bigger Dataset

- URL reputation dataset
- Feature matrix $A \in \mathbb{R}^{m \times n}$ $m = 2,396,130, n = 3,231,961, \omega = 414$
- $b \in \mathbb{R}^m$: spam or non spam page
- Two test cases
 - 1. Least absolute deviations: $f(x) = \sum_{j=1}^{m} |(Ax)_j b_j|$
 - 2. Exponential loss: $f(x) = \sum_{j=1}^{m} \exp(b_j \sum_{i=1}^{n} A_{j,i} x_i)$
- 64-cores Intel(R) Xeon(R) @ 2.60GHz, 128GB RAM
- Asynchronous implementation

Minimization of 1-norm

Number of processors

$$_{-}$$
 $\tau=1$

$$_{-}$$
 $\tau=2$

$$_{-}$$
 $\tau = 4$

Minimization of $||Ax - b||_1$ by parallel coordinate descent

$$m=2,396,130,\ n=3,231,961,\ \omega=414,\ \varepsilon=5.10^3,\ \mu=2.10^{-4}$$

Alternative smoothing

Comparison of two smoothings for least absolute deviations

	Smoothed PCDM	Mini-batch SDCA
Regularization	Dual space	Primal space
Parameter	$\mu = \frac{\varepsilon}{2D_2}$	$\lambda = \frac{\varepsilon}{2\ x^*\ ^2}$
Parallelization speedup factor	$rac{1}{ au}(1+rac{(\omega-1)(au-1)}{n-1})$	$\begin{vmatrix} \frac{1}{\tau} \left(1 + \frac{(\sigma^2 - 1)(\tau - 1)}{n - 1} \right) \\ \sigma^2 \left(\frac{A}{\max_i Ae_i } \right) \le \omega \end{vmatrix}$
Complexity	$O(\ x^*\ ^2/\varepsilon^2)$	$O(\ x^*\ ^2/\varepsilon^2)$
If $ x^* $ unknown	Cannot stop	Cannot start
Stopping criterion	Iteration complexity	Duality gap

Shalev-Schwartz and Zhang, 2012, Proximal Stochastic Dual Coordinate Ascent Takáč, Bijral, Richtárik and Srebro, 2013, Mini-batch primal and dual methods for support vector machines

Applications

Parallel Adaboost

Adaboost = greedy serial coordinate descent for

$$f(x) = \sum_{j=1}^{m} \exp(b_j \sum_{i=1}^{n} A_{j,i} x_i)$$

Parallelization:

- Colins, Shapire and Singer 2002: $\beta = \omega$ (fully parallel)
- Palit and Reddy, 2012: $\beta = \tau$ (generalized greedy)
- here: $\varphi(x) = \max_{1 \leq j \leq m} b_j(Ax)_j$ is max-partially separable With $\mu = 1$, $\log \circ f = \varphi_{\mu}$ $\beta = \min(\omega, \tau) \text{ for any sampling } \beta_1 < \min(\omega, \tau) \text{ for } \tau\text{-nice sampling}$

Experiment on URL reputation dataset

Minimization of exponential loss by parallel coordinate descent

$$m = 2,396,130, n = 3,231,961, \omega = 414$$

Conclusion

- Fine study of coordinate-wise Lipschitz constants of max-partially separable functions
- Expected Separable Overapproximations giving the theoretical parallelization speedup
- Promising numerical experiments
- Commom framework for partially and max-partially separable functions?