TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

PURWANCHAL CAMPUS

Dharan-8

A Lab Report On: To Draw Line Using DDA Algorithm

Submitted By

Name: Dhiraj KC

Roll No. : PUR077BEI014

Faculty: Electronics, Communication

and Information

Group: A

Submitted To

Department Of Electronics and

Computer Engineering

Checked By:

TITLE: TO DRAW LINE USING DDA ALGORITHM

CONCEPT

We know that, any equation of straight line is given by,

$$y = m x + c - - - 1$$

where, x and y are coordinates of x-axis and y-axis

respectively and c is constant. m gives the slope i.e. change in y w.r.t. x or we can write it as

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} - - - 2$$

Here y_2 , y_1 and x_2 , x_1 are the coordinates of two points which is required to draw a straight line by changing above equations. We can find out small interval step of change in x as Δx and change in y as Δy as follows,

$$\Delta x = \frac{\Delta y}{m}, \Delta y = m \, \Delta x$$

To draw the line, we take a point x_1 and y_1 as (x_1, y_1) . We find out which interval is greater Δx or Δy . We take interval which is greater and increment that by 1 and we calculate other interval step by using formula above. We repeat the process until we reach end-point. The increment or decrement is done keeping in mind the direction where we are drawing the line.

ALGORITHM

- 1. Start
- 2. Take input (x_1, y_1) and (x_2, y_2)
- 3. $\Delta x = x_2 x_1, \Delta y = y_2 y_1$
- 4. If $|\Delta x| > |\Delta y|$, step = $|\Delta x|$

else

step =
$$|\Delta x|$$

- 5. Let $x = x_1$ and $y = y_1$. Plot (x, y)
- 6. Starting at K=0; Repeat steps

$$x = x + x_{inc}$$

$$x = y + y_{inc}$$

plot(round(x), round(y))

EXAMPLE

Lets take example where $(x_1, y_1) = (3,5)$ and $(x_2, y_2) = (7,3)$

$$\Delta x = 4$$

$$\Delta y = -2$$

$$m = \frac{\Delta y}{\Delta x} = \frac{-2}{4} = \frac{-1}{2}$$

k	x	У	Plot(x, y)
0	4	4.5	(4, 4)
1	5	4	(5, 4)
2	6	3.5	(6, 3)
3	7	3	(7, 3)

GRAPH

DERIVATION

By doing above & concept we will get 8 conditions for values for different types of lines.

- 1. For a line L- R
 - 1. Im|<1
 - 1. m is +ve

$$x = x + 1$$

$$y = y + m$$

$$x = x + 1$$

$$y = y - m$$

- 2. |m| >1|
 - 1. m is +ve

$$x = x + 1/m$$

$$y = y + 1$$

2. m is -ve

$$x = x + 1/m$$

$$y = y - 1$$

- 2. For a line L- R
 - 1. Im| < 1
 - 1. m is +ve

$$x = x - 1$$

$$y = y - m$$

$$x = x - 1$$

$$y = y + m$$

- 2. |m| >1 as m is +ve
 - 1. m is +ve

$$x = x - 1/m$$

$$y = y - 1$$

2. m is -ve

$$x = x - 1/m$$

$$y = y + 1$$

Hence we can get different valves of (x, y) for different types of lines.

CONCLUSION

Thus, we can conclude that we drew a line using DDA Algorithm using graphics.h library & putpixel function