

Exercice 1 - Parallélépipède percé* [2]B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir ??.

Exercice 2 – Banc Balafre \star [2]B2-10 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \,\text{mm}$;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;
- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{\text{Joint(rotor)} + \text{Butée double}\}$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR}\overrightarrow{z_0}$ avec $L_{JR} = 390\,\text{mm}$. On notera $I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \end{pmatrix}$ la matrice d'inertie de $\begin{pmatrix} -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathscr{B}_{JR}}$

l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = \left(\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0}\right)$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \text{mm}$ et $R_{CB} = 150 \, \text{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overrightarrow{z_0})$, simplifier la matrice d'inertie $I_{G_{JR}}(JR)$.

Corrigé voir ??.

Exercice 3 – Cylindre percé \star [2]B2-10 **Pas de** corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe $\left(G,\overline{k}\right)$ de rayon R et de hauteur H et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) \text{ et } C = m\frac{R^2}{2}.$$
 Soit la pièce suivante.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir ??.

Exercice 4 – EPAS \star [2]B2-10 Pas de corrigé pour cet exercice.

Dans une première approche, on modélise le parc échelle d'un camion de pompier par un assemblage de trois plaques rectangulaires homogènes d'épaisseur négligeable, de longueur L et de largeur h. Chaque plaque a une masse notée m.

Question 1 Montrez que le vecteur position \overrightarrow{OG} du centre de gravité G du parc échelle est tel que $\overrightarrow{OG} = \frac{L}{2}\overrightarrow{x_5} + \frac{h}{3}\overrightarrow{y_5}$.

Corrigé voir ??.

Exercice 5 - Disque ** [2]B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique μ . Il est percé d'un trou de rayon r tel que $\overrightarrow{OA} = \frac{3}{4}R\overrightarrow{x}$.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en O.

Corrigé voir ??.

3

Exercice 6 - Banc Balafre * [2]B2-10 Pas de corrigé pour cet exercice.

Les galets 2 et 3 sont de masses identiques m_2 et de centres d'inertie respectifs G_2 et G_3 . Le balancier 1 est de masse m_1 et de centre d'inertie O (la tige de G_3H étant de masse négligeable). Les solides 1, 2 et 3 sont supposés homogènes.

Question 1 Donner la forme de la matrice d'inertie du solide **1** au point **0** dans la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$.

Question 2 Exprimer littéralement le moment d'inertie C_1 du solide 1 par rapport à l'axe $(O, \overrightarrow{z_0})$, en fonction de la masse m_1 et de ses dimensions.

Question 3 Donner la forme de la matrice d'inertie du solide 2 au point G_2 dans la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$.

Question 4 Exprimer littéralement le moment d'inertie C_2' du solide 2 par rapport à l'axe $(G_2, \overrightarrow{z_0})$, en fonction de la masse m_2 et de ses dimensions.

Question 5 Exprimer littéralement le moment d'inertie C_2 du solide 2 par rapport à l'axe $(G_2, \overrightarrow{z_0})$, en fonction de la masse m_2 et de ses dimensions.

1.
$$I_O(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$$

2.
$$C_1 = \frac{m_1}{12} \left(b^2 + c^2 \right)$$

$$(0 \quad 0 \quad C_1)_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$$
2. $C_1 = \frac{m_1}{12} (b^2 + c^2)$.
3. $I_{G_2}(1) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$.

4.
$$C_2' = m_2 \frac{r^2}{2}$$
.

4.
$$C_2' = m_2 \frac{r^2}{2}$$
.
5. $C_2 = m_2 \left(\frac{r^2}{2} + a^2\right)$.

Corrigé voir ??.