Mathematical Formulation

Sets:

- G: Let G be a graph with nodes set N and O be the depot.
- C = {1,2,3,....,N} : Set of customers
- N = {0,1,2,3,...,N} : A collection of nodes including a depot.
- V = {bolero_1, bolero_2,.....,bolero_10, tata_1, tata_2,....., tata_20,ape_1,ape_2,...,ape_15,bike_1,bike_2}

Indices:

• $i, j \in \mathbb{N}$: Nodes

• 0: Depots

• $v \in V$: Vehicles

Parameters:

- ullet q_j : demand associated with each customer (i.e. the weight to be delivered).
- S_j: service time associated with each customer j.
- f_n : free km for vehicle v
- A time window [E_j, L_j] where E_j is the earliest time the service can begin and L_i is the latest time for every customer.
- $\bullet \quad Q_{_{\mathcal{V}}}: \ \, \text{maximum capacity of vehicle v}.$
- FC_n: Fixed cost of vehicle v.
- D_{ii} : Distance between two nodes.
- max_kms_v : maximum km vehicle v can travel in a day.
- max_time_v : maximum time a vehicle v can travel in a day.
- speed, : uniform speed of different vehicles v.
- T_{ij}^{v} : Travel time between two nodes = D_{ij} / $speed_{v}$.
- VC_v : This is the variable cost for vehicle type v.
- maxcustomer; maximum number of customers served by v vehicles.
- maxdemand,: maximum demand of customers served by v vehicles.
- mindemand_v: minimum demand of customers served by v vehicles.

Decision Variables:

 A decision variable that decides if vehicle v has taken route i -> j or not.

$$x_{ij}^{v} = \left\{ \begin{array}{l} 1, if \ \ vehicle \ v \ has \ taken \ the \ route \ i->j \\ 0, \ otherwise \end{array} \right\}$$

• $extrakms_v$: A decision variable that calculates extra km that vehicle v will travel in its route.

$$(extrakms_{y} \in R^{+})$$
 $(low_bound = 0)$

- d_v : total distance traveled by vehicle $v = \sum_{i \in N} \sum_{j \in N} (D_{ij} * x_{ij}^v) \ \forall \ v \in V$ $(d_v \in R^+)$
- ullet A decision variable that indicates whether the vehicle v is used or not.

$$u_v = \left\{ \begin{array}{l} 1, if \ vehicle \ v \ is \ in \ use \\ 0, \ otherwise \end{array} \right\}$$

• A decision variable that indicates whether vehicle v visited customer i or not.

$$y_i^v = \left\{ \begin{array}{l} 1, if \ vehicle \ v \ visits \ node \ i \\ 0, otherwise \end{array} \right\}$$

- t_i^v : time of vehicle v to visit node i $(t_i^v \in R^+)$
- f_{ii}^v : number of units of product taken by vehicle v from node i to j

$$(f_{ii}^v \in R^+)$$

Objective Function:

Our objective is to minimize the sum of the vehicle acquisition costs and routing costs.

Minimize (z) :
$$\sum_{v \in V} VC_v^* extra \ kms_v + \sum_{v \in V} FC_v^* u_v$$

Constraints:

(1) This constraint says that when the value of cumulative distance traveled by vehicle v is negative, the value of $extrakms_v$ becomes 0, otherwise the value of $extrakms_v$ is equal to the cumulative distance traveled by vehicle v.

$$extrakms_{v} \ge d_{v} - f_{v}$$
 $\forall v \in V$

(2) This constraint is a big M constraint which tells that if any vehicle v is in use then it has at least visited one node and if it is not in use, then the value of LHS becomes O because x_{ij}^v is a binary variable and has its lower bound zero.

$$\sum_{i \in N} \sum_{j \in N} x_{ij}^{v} \le M(u_{v})$$
 $\forall v \in V$

(3) This constraint says that each customer in C is visited exactly once by any vehicle \boldsymbol{v} .

$$\sum_{v \in V} y_j^v = 1$$
 $\forall j \in C$

(4) This constraint is a flow balancing constraint which tells that the number of vehicles coming in and out of a customer's location is the same and it can only be by only one vehicle ν .

$$\sum_{i \in N} x_{ij}^{v} = \sum_{i \in N} x_{ji}^{v} = y_{j}^{v}$$
 $\forall j \in N, \forall v \in V$

(5) This constraint says that every customer j demand must be bounded between the minimum and maximum demand, any vehicle v can serve.

$$y_{j}^{v} mindemand_{v} \leq q_{j} y_{j}^{v} \leq y_{j}^{v} maxdemand_{v}$$
 $\forall j \in C, \forall v \in V$

(6) This constraint says that the number of customers per vehicle v must be less than the maximum number of customers it can serve.

$$\sum_{i \in C} y_j^v \leq maxcustomer_v + 1 \qquad \forall v \in V$$

7) This constraint says that the total number of units taken by vehicle v between two nodes = demand of the node i.

$$\sum_{v \in V} \sum_{i \in N} f_{ij}^{v} - \sum_{v \in V} \sum_{i \in N} f_{ji}^{v} = q_{i}$$
 $\forall i \in C$

8) This constraint says that the flow of units between two nodes must be less than the maximum weight a vehicle v can take between two nodes.

$$0 <= f_{ij}^{v} <= Q_{v} x_{ij}^{v} \qquad \forall i, j \in N, \forall v \in V$$

(9) Time Window Constraints.

$$t_i^v + S_i + T_{ij}^v \le t_j^v + M(1 - x_{ij}^v)$$
 $\forall i \in N, j \in C, v \in V$

(10) This constraint says that the start time of any vehicle must lie between the time windows of each customer *j*.

$$E_{j}y_{j}^{v} \leq t_{j}^{v} \leq L_{j}y_{j}^{v} \qquad \forall j \in C, \ v \in V$$

(11) Upper bounds of variables.

$$d_{v} \le max_kms_{v} \qquad \qquad \forall v \in V$$