Homework 3

La frazione di siti reticolari occupati da vacanze nell'oro a 800°C è 2.5x10⁻⁵. Calcolare il numero di vacanze per metro cubo assumendo la densità del metallo 18.45 g/cm³ e il peso atomico 196.97 g/mol.

[1.41x10²⁴]

Un metallo a 750°C ha una concentrazione di vacanze all'equilibrio pari a 2.8x10²⁴ vacanze/m³. Se la densità ed il peso atomico sono 5.6 g/cm³ e 65.6 g/mol, calcolare la concentrazione di vacanze a tale temperatura in rapporto ai siti reticolari.

[5.45x10⁻⁵]

Calcolare la concentrazione di vacanze (frazione di siti) nel piombo alla sua temperature di fusione (327°C) assumendo una energia di attivazione per la formazione di vacanze pari a 0.55 eV/atomo. Calcolare inoltre la concentrazione di vacanze a temperatura ambiente (25°C).

[2.4x10⁻⁵; 5.1x10⁻¹⁰]

Calcolare l'energia di attivazione per la formazione di vacanze nell'alluminio sapendo che la concentrazione di equilibrio a 500°C è 7.57x10²³ vacanze/m³. La densità a tale temperatura è 2.62 g/cm⁻³ e il peso atomico 26.98 g/mol.

[72.3 kJ/mol = 0.75 eV/particella]

Calcolare il raggio atomico massimo che può avere un elemento interstiziale che non introduce nessuna distorsione in siti tetraedrici ed ottaedrici di strutture FCC e BCC.

FCC

OTTATORIO DEC SITO OTTATORIO DISTA OF 2 DA TUTTI GLI ATOMI SUI O VERTICI.

$$0|^* = \frac{\alpha}{2} = \frac{4R}{2\sqrt{2}} = \sqrt{2R}$$

VISTA MILIATO:

PER AVERTE LA DIMENSIONE CHASSIMA (r*) di UN ATOMO NEL SITO DEVO SOTTRARE A d* 11 RAGLIO DEGLE ATOMI R.

FICE TETREINIUM

POSIT.

0 000

A $\frac{1}{2}$ $\frac{1}{2}$ B $0\frac{1}{2}$ CENTRO TOTALEDRO $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $A = \frac{4L}{\sqrt{2}} = > CENTRO TOT - 0 = \sqrt{3} \cdot \frac{4R}{\sqrt{2}} = \sqrt{3}R$ $X = \frac{4L}{\sqrt{2}} = > CENTRO TOT - 0 = \sqrt{3} \cdot \frac{4R}{\sqrt{2}} = \sqrt{3}R$ $X = \sqrt{3} \cdot R - R = (\sqrt{3} - 1)R \approx 0.225 R$

OTTAFORD BCC

\$\frac{1}{2} = \frac{1}{2} = \frac{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \fra

& NON & ERVIDISTANTE DAI JERTICE
DELL'OTTATIONO (NON NELOUME)

PRENDU LA DIMENSIONE MINONE (QE = QF = 0/2)

$$\Gamma^* = \frac{4R}{2\sqrt{3}} - R = \left(\frac{4}{2\sqrt{3}} - 1\right)R = \left(\frac{2}{\sqrt{3}} - 1\right)R \approx 0.155k$$

NEL PLAND (INVECT I VEATICI SONO DIU DISTANTI.

$$\frac{7}{5} - \sqrt{5} \pi \pi \vec{\omega} = \frac{\sqrt{2}}{2} \vec{\kappa} = \frac{\sqrt{2}}{2} \frac{4R}{\sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{3}} R$$

$$r_2^* = \left(\frac{2\sqrt{2}}{\sqrt{3}} - 1\right) R \approx 0.673 R$$

TETMEDE BCC

$$\overline{AB} = \overline{CD} = 0$$
 $\overline{BD} = \overline{AD} = \overline{BC} = \overline{AC} = \frac{\sqrt{3}}{2} \omega$ (metal diagonale aubo)

E E EQIDISTANTE DA TUTTI I VERTIG

$$V = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{4}} = \sqrt{\frac{1}{4}} = \sqrt{\frac{1}{4}} = \sqrt{\frac{1}{4}} = \sqrt{\frac{5}{4}} =$$

$$r^* = \sqrt{\frac{5}{3}} R - R = (\sqrt{\frac{5}{3}} - 1) R^2 = 0.291 R$$

Data la rappresentazione qualitativa di una microstruttura sotto riportata, rispondere se le seguenti affermazioni sono vere o false:

- a) Tutte le fasi hanno una simile concentrazione di vacanze
- b) Sono presenti due tipi di elementi e due fasi
- c) Nessuna fase presenta elementi interstiziali
- d) Solo un grano cristallino della fase rossa è presente
- e) Sono presenti difetti sostituzionali
- f) La concertazione di impurezza sostituzionali nelle due fasi è simile

[V; V; V; F; V; F]

Data la tabella sotto riportata stimare quali elementi hanno completa solubilità sostituzionale, quali solubilità sostituzionale parziale e quali possono formare soluzioni interstiziali nel rame.

Element	Atomic Radius (nm)	Crystal Structure	Electronegativity	Valence
Cu	0.1278	FCC	1.9	+2
C	0.071			
Н	0.046			
O	0.060			
Ag	0.1445	FCC	1.9	+1
Al	0.1431	FCC	1.5	+3
Co	0.1253	HCP	1.8	+2
Cr	0.1249	BCC	1.6	+3
Fe	0.1241	BCC	1.8	+2
Ni	0.1246	FCC	1.8	+2
Pd	0.1376	FCC	2.2	+2
Pt	0.1387	FCC	2.2	+2
Zn	0.1332	HCP	1.6	+2

[Ni,Pd,Pt= sostituzionale completa; Ag, Al, Co,Cr,Fe,Zn=sostituzionale incompleta; C, H, O = interstiziali]

Determinare la composizione atomica di una lega contenete 30wt% di Zn e 70wt% di Cu (usare la tavola periodica per reperire i dati mancanti).

Calcolare la composizione in peso di una lega contenente 6 at% Pb e 94 at% Sn (usare la tavola periodica per reperire i dati mancanti).

Una lega viene prodotta a partire da 218.0 kg di Ti, 14.6 kg di Al, e 9.7 kg di V. Calcolare la composizione in wt% e at%(usare la tavola periodica per reperire i dati mancanti).

$$[Ti = 90.0wt\% = 86.2 at\%; AI = 6wt\% = 10.2 at\%; V = 4 wt\% = 3.6 wt\%]$$

Una lega Al-Mg viene prodotta fondendo una miscela contente 2 vol% di Mg. Conoscendo la densità di Al (2.70 g/cm³) e Mg (1.74 g/cm³), determinare la composizione in at%.

$$[Mg = 1.44 \text{ at}\%; AI = 98.56 \text{ at}\%]$$

Calcolare la composizione molare degli ossidi che formano un vetro sodico calcico con la seguente composizione ponderale:

```
71.4 SiO2; 1.0 Al2O3; 13.9 Na2O; 0.4 K2O; 4.1MgO; 9.2 CaO
```

Calcolare altresì la composizione atomica. Utilizzare la tavola periodica per reperire eventuali dati mancanti.

Γ

	mol%	
SiO2	70.2	
AI2O3	0.6	
Na2O	13.3	
K20	0.3	
MgO	6.0	
CaO	9.7	

	at%
Si	24.6
ΑI	0.4
Na	9.3
K	0.2
Mg	2.1
Ca	3.4
0	60.0
]	