Predict Future Sales

∼A Competition on Kaggle

資科四 106703055 黃浩瑋 資科四 106703043 林琖崴 資科四 106703018 戴冕

資料介紹

items.csv

item_name item_id item_category_id

item_categories.csv

item_category_name item_category_id

shops.csv

shop_name shop_id

sales_train.csv

date date_block_num shop_id item_id item_price item_cnt_day 2,935,849笔

test.csv

ID shop_id item_id 214,200笔

資料前處理-異常值處理

item_cnt_day&item_price

資料前處理-shop值處理

相同shop處理

	Shop_name	Silop_iu
39	РостовНаДону ТРК "Мегацентр Горизонт"	39
40	РостовНаЛону ТРК "Мегацентр Горизонт" Островной	40

shop name shop id

shop劃分為city和category

	shop_name	shop_id	city	category
0	!Якутск Орджоникидзе, 56 фран	0	Якутск	Орджоникидзе,
1	!Якутск ТЦ "Центральный" фран	1	Якутск	тц
2	Адыгея ТЦ "Мега"	2	Адыгея	тц
3	Балашиха ТРК "Октябрь-Киномир"	3	Балашиха	TPK
4	Волжский ТЦ "Волга Молл"	4	Волжский	ТЦ

出現頻率低的category用etc表示

資料前處理-item_categories進行分類/篩選

	item_category_name	item_category_id	item_type	split	subtype
0	РС - Гарнитуры/Наушники	0	etc	[РС , Гарнитуры/Наушники]	Гарнитуры/Наушники
1	Аксессуары - PS2	1	Аксессуары	[Аксессуары , PS2]	PS2
2	Аксессуары - PS3	2	Аксессуары	[Аксессуары , PS3]	PS3
3	Аксессуары - PS4	3	Аксессуары	[Аксессуары , PS4]	PS4
4	Аксессуары - PSP	4	Аксессуары	[Аксессуары , PSP]	PSP

資料前處理-item_name進行篩選/細分

	item_name	item_id	item_category_id	name	type
164	1с аудиокниги аркадий аверченко классика русск	164	44	цифровая версия	цифровая
165	1с аудиокниги артур конан дойл долина страха	165	45	0	0
166	1с аудиокниги артур конан дойл истории о шерло	166	45	0	0
167	1с аудиокниги аткинсон у сила мысли или магнет	167	44	рс цифровая версия	рс

	item_id	item_category_id	name
0	0	40	4
1	1	76	48
2	2	40	4
3	3	40	4
4	4	40	4

進階資料處理-從「train」資料集製作 Dataframe「matrix」

	date_block_num	shop_id	item_id	item_cnt_month	shop_category	shop_city	item_category_id	name	subtype_code	item_type
0	0	2	19	0.0	4	0	40	4	4	5
1	0	2	27	1.0	4	0	19	60	10	3
2	0	2	28	0.0	4	0	30	77	55	3
3	0	2	29	0.0	4	0	23	90	16	3
4	0	2	32	0.0	4	0	40	4	4	5
	Section	1900	ieres	550	1939	1994	200	***		
11056272	34	45	18454	0.0	4	20	55	4	2	7
11056273	34	45	16188	0.0	4	20	64	4	42	8
11056274	34	45	15757	0.0	4	20	55	4	2	7
11056275	34	45	19648	0.0	4	20	40	4	4	5
11056276	34	45	969	0.0	4	20	37	4	1	5

1056277 rows × 10 columns

進階資料處理-Matrix

- . 每種資料的排列組合
- . 新增變數—Item_cnt_month, Revenue

Item_cnt_month:每個月不同店家, 所賣出的tem數量-種類。

Revenue:每個店家在該item類別的月收入

. 新增Lag Feature

Lag Feature

- . 時間性的問題處理方法, 可以用在股價預測、銷售量等
- . 前面的月份會影響現在的銷售量

Lag Feature Estimate- ACF vs PACF

ACF(Autocorrelation Function): ACF會計算時間跟自己本身變因的 correlation關係。

PACF(Partial Autocorrelation Function):PACF也會計算時間與自己本身變因的關係,不過會把已經解釋的變因移除。

新增完Lag Feature後的matrix

item_cnt_month_lag_1	0.000000	0.000000	NaN	0.000000	1.000000
item_cnt_month_lag_2	0.000000	0.000000	NaN	1.000000	1.000000
item_cnt_month_lag_3	0.000000	0.000000	NaN	0.000000	4.000000
date_avg_item_cnt_lag_1	0.286865	0.286865	NaN	0.286865	0.286865
date_item_avg_item_cnt_lag_1	0.021744	0.130493	NaN	2.826172	1.260742
date_item_avg_item_cnt_lag_2	0.086975	0.152222	NaN	11.046875	4.781250
date_item_avg_item_cnt_lag_3	0.065247	0.173950	NaN	18.734375	13.648438
date_shop_avg_item_cnt_lag_1	0.071838	0.071838	NaN	0.071838	0.071838
date_shop_avg_item_cnt_lag_2	0.091064	0.091064	NaN	0.091064	0.091064
date_shop_avg_item_cnt_lag_3	0.059875	0.059875	NaN	0.059875	0.059875
date_shop_item_avg_item_cnt_lag_1	0.000000	0.000000	NaN	0.000000	1.000000
date_shop_item_avg_item_cnt_lag_2	0.000000	0.000000	NaN	1.000000	1.000000
date_shop_item_avg_item_cnt_lag_3	0.000000	0.000000	NaN	0.000000	4.000000
date_shop_subtype_avg_item_cnt_lag_1	0.449463	0.387207	NaN	0.018585	0.035919
date_city_avg_item_cnt_lag_1	0.071838	0.071838	NaN	0.071838	0.071838
date_item_city_avg_item_cnt_lag_1	0.000000	0.000000	NaN	0.000000	1.000000
delta_price_lag	0.367676	0.256348	0.0	0.212402	0.191040
delta_revenue_lag_1	37326.816406	37326.816406	NaN	37326.816406	37326.816406

XGBoost

What about other models?

Other Models

NOT better than XGBoost!!

Essemble Model

Performance

Q: How to merge the prediction of every model?
A: How about use the Mean of all predictions?

RMSE: 0.98507

Q: Is it good enough?
A: We can use the predictions of the models be the input of an additional model. (e.g. Linear Regression)

Output details & Null Model

	ID	item_cnt_month
0	0	0.509988
1	1	0.381447
2	2	0.862875
3	3	0.473632
4	4	4.759768
214195	214195	0.058575
214196	214196	0.003565
214197	214197	0.056603
214198	214198	0.006932
214199	214199	0.036925
214200 rd	ws × 2 co	lumns

	ID	item_cnt_month
0	0	0.286275
1	1	0.286275
2	2	0.286275
3	3	0.286275
4	4	0.286275
	•••	
214195	214195	0.286275
214196	214196	0.286275
214197	214197	0.286275
214198	214198	0.286275
214199	214199	0.286275
214200 rd	ws × 2 co	lumns

Model Comparison

NULL MODEL 1.21744 XGB Regressor 0.89604 Ensemble Model 0.90700

Ranking

The First Place with 0.75980

1014	Jiachen Shi	9	0.89601	14	9mo
1015	omarB202791		0.89601	2	14d
1016	tourist	(4)	0.89601	8	2y
1017	houheixue	9	0.89603	6	2у
1018	1091DS_106703055	A	0.89604	14	2h

Q&A