Name: Sylvia Le

Course: COM219

HOMEWORK 1

Question 2:

Connector number	Name of connector	Function	
		6-pin mini DIN connector used	
0	PS/2 mouse/keyboard port	for connecting keyboard and	
		mice to PC	
		Use for transferring data, with	
1	USB 3.0 ports	transfer time theoretically 10	
		times the predecessor USB 2.0	
		19 pins connector used to	
2	HDMI Port	transmit digital video and audio	
		signals between devices.	

			Support standard-definition,		
			high-definition and Ultra HD		
			video signals		
=	2	VCA Port	15 pins connector used for		
	3	VGA Port	computer video output		
=			A video display interface is used		
	4	DVI-D Port	to connect a video source (video		
	4	טיו-ט פסינ	display controller) to a display		
			device (computer monitor)	interface for	
-1	5	DTS Support Optical S/PDIF	Support DTS sound system	connecting digital audio	
•		Optical on Dil	Hardware interface that connects	used to	
	6	Thunderbolt port	peripherals to computers.	connect a video source to a display device (ex: monitor)	
-1	U	Display Port	Support high speed and high		
		Bioplay Fort	resolution media display		
=	7	GPU	Specialized circuit used for	system to attach I/O cards to the motherboard	
-1	,	PCI slot	rendering graphics on monitor		
•			Connect to the power cord, that		
	8	Power cable main connector	temporarily connect the PC to		
			electricity supply		
•	9	Modem Ethernet	Connect to Ethernet cables, that		
	J	(RJ-45 Gigabit LAN port)	connects wired network		
•			A type of synchronous dynamic		
			random-access memory	Connector	
-1	10	DDR3 Support	(SDRAM). Able to transfer data at	to add memory sticks	
			twice the rate, enabling higher		
		Memory slot	bandwidth or peak data rates,		
			compare to its predecessor		
•			Interface that connect		
	11	SATA 6Gb/s Ports	motherboard to mass storage		
			devices		

Question 5:

10/16

Chip/Device	Component Class	Approximate Price
ASUS WS C422 SAGE/10G LGA2066 ECC DDR4 M.2 U	Motherboard	\$650
AMD Radeon Pro WX 9100 - 4096 Stream Processors, 16GB vRAM	Graphic card	\$2000
Intel Core i7 i7-7700K - Quad Core, 4.2GHz	CPU	\$370 - \$450
MSI MEG X570 AMD SATA 6Gb/ USB 3.2	Motherboard	\$360 - \$530
Intel Core i9-7980XE X-Series 2.6 GHz 18-Core LGA 2066	CPU	\$1980 - \$2000
Cisco 32GB DDR4-2666-MHZ RDIMM PC4-21300 DUAL	RAM	\$200 X \$1280
NVIDIA QUADRO RTX 8000	Graphic card	\$5500
AMD Ryzen Threadripper 1920X 12-Cores, Socket sTR4, 3.5GHz	СРИ	\$500 - \$650 X \$230
Intel 10PK OPTANE 800P SERIES INT 120GB	SSD	\$200
Intel C246, 14 USB Ports, 24 PCI Express Lanes	Chipset	(skip)
Corsair CX Series CX450M 450 Watt ATX	Power supply	\$80
Kingston 16GB DDR4, 2133MHz DIMM - KVR21R15D4/16	RAM	\$70 - \$80
AMD Phenom II X2 560	СРИ	\$65 (peak: \$120) \$30
NVIDIA Tesla K80 24GB GDDR5 CUDA Cores	Graphic card	\$1700 X \$215
Creative Sound Blaster Z Series ZXR	Sound card	\$350 X \$200
Seagate 1TB SATA 7.2K RPM 6GBPS 2.5IN	HDD	\$150 X \$52

® Summary of quy	•	N 6 5 4 3 2	3 2 4 2 3	At level 1: - Instr type A _ 25% - 44 ns - Instr type B _ 45% - 40 ns	-Instrtype C _ 30% -20ns
		•		_ 10/15	

#Instr: 500,000

a) Number of level-1 instr, for each level-6 instr: 3×2×4×2×3 = 144 instr,

b) Average instress execution time at level $4:t_1=\frac{25\times44+45\times40+50\times20}{100}=35$ ns

c) Number of level-1 instr, for each level-4 instr: 4x2x3 = 24 instr,

→ Average instruction time for each level-4 instruction: $t_4 = 24 \times 35 = 840$ (ns)

d) Average instressecution time for each level-6 instrete = I6 x t1 = 144 x 35 = 5040 ms

e) Program completion time: Tprog = tp x M = 500,000 x 5040
= 252 x 107 ns

f, Recalculation for new program:

Number of level 1 instr, for each level 6 instr: 3×1×4×2×2=96 instr

Average instrexecution time for each level-6 instr: 96 x 35 = 3360 ns

Program completion time: $T_{prog.N} = 5360 \times 500,000$ = 168×10^7 ns

Ratio of new program completion time, compare to old: Tprog = 168 × 107 = 252 × 107 = 3

speed up is 1.5

11/15

+) Let t be the time it takes to execute a program in level 1.

+) An instruction at level n is translated into S instructions at level n-1

-> Each level is 3 times as powerful as the level below it

But as optimal translation from a level to one below is hard to achieved - each additional level of translation slow the machine down.

→ Each level runs S times jaster than the level above it.

+) Given the above conclusion:

level 3:
$$\frac{\cancel{5}}{5} = \frac{\cancel{5}}{5}$$

level
$$6:\frac{\pm}{5^5}$$

$$\frac{t}{S^5} : t = \frac{1}{S^5} \frac{S^5}{W^5}$$

$$\frac{1}{S^{N-1}} \qquad \frac{S^{N-1}}{W^{N-1}}$$

level
$$N: \frac{t}{5^{N-1}}$$

Need to take W into consideration since we are looking for the ratio of the time it takes to execute a program at level 6 to the time it takes an optimal sequence of instructions to do the same work at level 1

level N	# instr S	powe W
6	S	W
5	S	W
4	S	W
3	S	W
2	S	W
1	_	1

at level 6 ... $S/W \times S/W \times S/W \times S/W \times S/W = (S/W)^5 = S^5/W^5$ generally ... S^{N-1}/W^{N-1}

Question 6

10/12

a) Number of transistors on 12A size chip, year 0: 8000 x 12= 96,000

	year !	ì	1 - 1				
	Doubling Pe.		4	8 -	12	16-	20
✓	d years	36000	Nox 24/2 = 584,000	No x 28/2 =1,536,000	No x 212/2 = 6,144,000	!	No x 2 ^{60/2} = 98,504,000
✓	1.5 years C18 montfo)	36000	No = 24/1.5 = 609,562			No = 216/1.5	

(graph attached below)

b, (Since the question didn't mention the chip size, assuming this with area A)

Length of one side of the chip: VA

Number of transistors on one siden: 18000 = 4015 of the chip

-> Length of 1 side of transistor, year 0: VA (lold)

Since we have $l_{new} = \frac{loid}{\sqrt{2n}}$ $\rightarrow \frac{l_{new}}{loid} = \frac{1}{\sqrt{2n}}$, with n is the number of doubling period.

+> For 1.5 years (18 months) doubling period

