IMPROVED BOUNDS FOR AVERAGE BENDING ON THE CONVEX CORE OF A KLEINIAN GROUP

ANDREW YARMOLA

ABSTRACT. Let $\Gamma \leq \operatorname{Isom}^+(\mathbb{H}^3)$ be a finitely-generated Kleinian group and $N = \mathbb{H}^3/\Gamma$. In this note, we consider the case where the boundary $\partial C(N)$ of the convex core is non-empty and incompressible in N. Our main result improves bounds on the total bending of a geodesic arc on $\partial C(N)$ as a function of its length. Following the work of Bridgeman [Bri03], we use this to provide better bounds on the length and average bending of the measured lamination on $\partial C(N)$ and universal bounds on the optimal Lipschitz constant for a map from $\partial C(N)$ to the conformal structure at infinity $\partial_{\infty}N$. Additionally, we show that the shortest rectifiable path connecting four disjoint sequentially tangent hyperplanes in \mathbb{H}^3 is attained when the planes support four of the faces of a standard ideal octahedron. This work formed part of the author's thesis.

1. Introduction

Let $\Gamma \leq \operatorname{Isom}^+(\mathbb{H}^3)$ be a finitely-generated Kleinian group, $N = \mathbb{H}^3/\Gamma$ and assume that the boundary $\partial C(N)$ of the convex core is non-empty and incompressible in N. Thurston [Thu91] showed that the path metric on $\partial C(N)$ is a complete hyperbolic metric. In addition to this structure, one may consider the conformal structure $\partial_{\infty}N = \Omega_{\Gamma}/\Gamma$, where $\Omega_{\Gamma} \subset \hat{\mathbb{C}}$ is the domain of discontinuity of Γ as a subgroup of $\operatorname{PSL}(2,\mathbb{C})$. Since $\partial C(N)$ is non-empty and incompressible in N, Ω_{Γ} is non-empty and its components are simply connected hyperbolic domains. Let $CH(\cdot)$ denote taking the convex hull in \mathbb{H}^3 . There is a well-defined Γ -equivariant map $\tilde{r}: \Omega_{\Gamma} \to \partial CH(\hat{\mathbb{C}} \setminus \Omega_{\Gamma})$ given by letting $\tilde{r}(x)$ be the first point of intersection of a growing family of horoballs at $x \in \Omega_{\Gamma}$ with $\partial CH(\hat{\mathbb{C}} \setminus \Omega_{\Gamma})$. This map projects to the nearest point retraction $r: \partial_{\infty}N \to \partial C(N) = \partial CH(\hat{\mathbb{C}} \setminus \Omega_{\Gamma})/\Gamma$.

The hyperbolic structure on $\partial C(N)$ comes with a measured lamination μ_{Γ} on $\partial C(N)$, called the *bending lamination*. For any measured lamination μ on hyperbolic surface and L > 0, one defines the *L-roundness* $\|\mu\|_{L}$ as

$$\|\mu\|_L = \sup i(\alpha, \mu)$$

where the supremum is taken over all open geodesic arcs of length L. As seen in the work of Epstein, Marden, and Markovic [EMM04] and our previous work [BCY16] L-roundness for a measured lamination μ on \mathbb{H}^2 provides some control on the embeddedness of the associated pleating map $P_{\mu} : \mathbb{H}^2 \to \mathbb{H}^3$. Extending [BCY16, Theorem 3.1], we prove

In this note, we extend our previous results in [BCY16] to prove

Theorem 1.1. If $L \in (0, 2 \sinh^{-1}(2)]$, μ is a measured lamination on \mathbb{H}^2 , and P_{μ} is an embedding, then $\|\mu\|_L \leq F(L)$ where

$$F(L) = \begin{cases} 2\cos^{-1}(-\sinh(L/2)) & \text{for } L \in [0, 2\sinh^{-1}(1)] \\ 3\pi - 2\cos^{-1}\left(\left(\sqrt{\cosh(L)} - 1\right)/2\right) & \text{for } L \in (2\sinh^{-1}(1), 2\sinh^{-1}(2)] \end{cases}$$

As a corollary of the proof of Theorem 1.1, we obtain

Corollary 1.1. The shortest rectifiable path $\alpha(t) \subset \mathbb{H}^3$ connecting four disjoint sequentially tangent hyperplanes in \mathbb{H}^3 has length $2\sinh^{-1}(2)$ and is attained when the planes support four of the faces of a standard ideal octahedron.

Theorem 1.1 allows us to improve bounds by Bridgeman [Bri03, Theorem 1.2] on average bending and the Lipschitz constant for the homotopy inverse of the retraction map.

Theorem 1.2. There exist universal constants K_0, K_1 with $K_0 \leq 2.494$ and $K_1 \leq 3.101$ such that if $\Gamma \leq \text{Isom}^+(\mathbb{H}^3)$ is a finitely-generated Kleinian group, $N = \mathbb{H}^3/\Gamma$, and the boundary $\partial C(N)$ of the convex core is non-empty and incompressible in N, then

(i) if μ_{Γ} is the bending lamination of $\partial C(N)$, then

$$\ell_{\partial C(N)}(\mu_{\Gamma}) \leq K_0 \pi^2 |\chi(\partial C(N))|$$

(ii) for any closed geodesic α on $\partial C(N)$,

$$B_{\Gamma}(\alpha) = \frac{i(\alpha, \mu_{\Gamma})}{\ell(\alpha)} \le K_1$$

where $B_{\Gamma}(\alpha)$ is called the average bending of α .

(iii) there exists a $(1+K_1)$ -Lipschitz map $s: \partial C(N) \to \partial_{\infty} N$ that is a homotopy inverse to the nearest point retraction $r: \partial_{\infty} N \to \partial C(N)$.

The previous best constants in [Bri03, Theorem 1.2] were $K_0 \le 2.8396$ and $K_1 \le 3.4502$.

2. Background

2.1. Kleinian Groups and Convex Hulls. Let $\Gamma \leq \operatorname{Isom}^+(\mathbb{H}^3)$ be a discrete torsion free subgroup. Define the *limit set* of Γ to be $\Lambda_{\Gamma} = \overline{\Gamma x} \cap \partial_{\infty} \mathbb{H}^3$ for any $x \in \mathbb{H}^3$. This definition is independent of the choice of x. We say that Γ is a *Kleinian group* if Λ_{Γ} contains at least 3 points. The set $\Omega(\Gamma) = \partial_{\infty} \mathbb{H}^3 \setminus \Lambda_{\Gamma}$ is called the *domain of discontinuity* of Γ . It can be equivalently defined as the largest open subset in $\partial_{\infty} \mathbb{H}^3$ where Γ acts properly discontinuously.

The convex hull CH(X) of a closed set $X \subset \partial_{\infty}\mathbb{H}^3$ is smallest convex subset of \mathbb{H}^3 such that $\overline{CH(X)} \cap \partial_{\infty}\mathbb{H}^3 = X$. We require that X contain more than two points. For a Kleinian group Γ , the convex hull of Γ is $CH(\Lambda_{\Gamma})$ and the convex hull of \mathbb{H}^3/Γ is $CH(\Lambda_{\Gamma})/\Gamma$, which is the smallest π_1 -injective convex submanifold.

One defines a projection $\tilde{r}: \mathbb{H}^3 \cup \Omega(\Gamma) \to CH(X)$ as follows. For $x \in \overline{\mathbb{H}}^3$ (resp. $x \in \Omega(\Gamma)$) let $B_t(x)$ denote the 1-parameter family of hyperbolic balls (resp. horoballs) centered at x with $B_{t_0}(x) \subset B_{t_1}(x)$ for all $t_0 < t_1$. Then, for $x \in CH(X)$, we define r(x) = x and for all other x, r(x) is the first (unique) intersection point of CH(X) with $B_t(x)$. See [EM87] for a proof that this is a well defined continuous distance decreasing map. For a Kleinian group Γ , this map projects to the nearest point retraction $r: (\mathbb{H}^3 \cup \Omega(\Gamma)) / \Gamma \to CH(\Lambda_{\Gamma}) / \Gamma$.

A hyperbolic domain Ω in $\hat{\mathbb{C}}$ is a connected open set such that $\hat{\mathbb{C}} \setminus \Omega$ is at least 3 points. In particular, when one identifies $\partial_{\infty}\mathbb{H}^3 \cong \hat{\mathbb{C}}$, a connected component of $\Omega(\Gamma)$ for a Kleinian group Γ is a hyperbolic domain. Let $X = \hat{\mathbb{C}} \setminus \Omega$. Epstein and Marden [EM87] show that if X is not contained in a circle, then CH(X) has non empty interior and a well defined boundary, denoted $\mathrm{Dome}(\Omega) = \partial CH(X)$. If X lies in a circle, then CH(X) lies in a hyperbolic plane and is bounded by a countable collection of complete geodesics. In this setting, $\mathrm{Dome}(\Omega)$ is defined as the double CH(X) along those geodesics.

Points on $\mathrm{Dome}(\Omega)$ can be connected by rectifiable paths along $\mathrm{Dome}(\Omega)$ and so it inherits a path metric from \mathbb{H}^3 . Thurston [Thu91] showed that this path metric is, in fact, a complete hyperbolic metric. Further, he demonstrates that the covering map $\mathbb{H}^2 \to \mathrm{Dome}(\Omega)$ as a very specific structure that we now describe.

2.2. Laminations. A geodesic lamination on \mathbb{H}^2 is a closed subset $\lambda \subset \mathcal{G}(\mathbb{H}^2)$ which does not contain any intersecting geodesics. It can be realized on \mathbb{H}^2 as a closed set foliated by complete geodesics and therefore the elements of λ are called *leaves*. A measured lamination μ on \mathbb{H}^2 is a non-negative countably additive measure μ on $\mathcal{G}(\mathbb{H}^2)$ supported on a geodesic lamination. A geodesic arc α in \mathbb{H}^2 is said to be transverse to μ , if it is transverse to every geodesic in $\sup(\mu)$. Whenever α is transverse to μ , we define

$$i(\mu, \alpha) = \mu \left(\{ \gamma \in \mathscr{G}(\mathbb{H}^2) \mid \gamma \cap \alpha \neq \emptyset \} \right).$$

If α is not transverse to μ , then it is contained in a geodesic of supp(μ) and we let $i(\mu, \alpha) = 0$.

Given a measured lamination μ on \mathbb{H}^2 , we may construct a pleated plane $P_{\mu}: \mathbb{H}^2 \to \mathbb{H}^3$, well-defined up to post-composition with elements of $\mathrm{Isom}^+(\mathbb{H}^3)$. P_{μ} is an isometry on the components of $\mathbb{H}^2 \setminus \mathrm{supp}(\mu)$, which are called flats. If μ is a finite-leaved lamination, then P_{μ} is simply obtained by bending, consistently rightward, by the angle $\mu(\{l\})$ along each leaf l of μ . Since any measured lamination is a limit of finite-leaved laminations, one may define P_{μ} in general by taking limits (see [EM87, Theorem 3.11.9]).

- **Lemma 2.1.** [EM87] If Ω is a hyperbolic domain, there is a lamination μ on \mathbb{H}^2 such that P_{μ} is a locally isometric covering map with image $Dome(\Omega)$.
- 2.3. **Pleated Planes.** For any point $x \in \text{Dome}(\Omega)$, a support plane P at x is a totally geodesic plane through x which is disjoint from the interior of the convex hull of $\hat{\mathbb{C}} \setminus \Omega$. At least one support plane exists at every point $x \in \text{Dome}(\Omega)$ and $\text{Dome}(\Omega) \cap P$ is either a geodesic line with endpoints in $\partial\Omega$, called a bending line, or a flat, which is the convex hull

of a subset of ∂P containing at least 3 points. The boundary geodesics of a flat will also be called bending lines. Support planes come with a preferred normal direction pointing away from $CH(\hat{\mathbb{C}} \setminus \Omega)$. The closure of the complement of $\mathbb{H}^3 \setminus P$ that lies in this direction is called the associated *half space*, denoted H_P . A detailed discussion and proofs on these facts can be found in [EM87].

For a curve $\alpha:(a,b)\to \mathrm{Dome}(\Omega)$, it is natural to consider the space of support planes at each point $\alpha(t)$. A theorem of Kulkarni and Pinkall [KP94] asserts that the space of support planes to $\mathrm{Dome}(\Omega)$ is an \mathbb{R} -tree in the induced path metric from $\mathscr{P}(\mathbb{H}^3)$ whenever Ω is a simply connected hyperbolic domain. Recall that an \mathbb{R} -tree is a simply connected, geodesic metric space such that for any two points there is a unique embedded arc connecting them. Therefore, dual to any rectifiable path $\alpha:(a,b)\to\mathrm{Dome}(\Omega)$, there is a continuous path $P_t:(c,d)\to\mathcal{P}(\mathbb{H}^3)$ and a map $P_t:(c,d)\to(a,b)$ such that P_t is a support plane at $\alpha(p(t))$. It also follows that we can define terminal support planes on the ends of α by $P_a=\lim_{t\to c^+}P_t$ and $P_b=\lim_{t\to d^-}P_t$.

Epstein and Marden further show that for every point $x \in \text{Dome}(\Omega)$, there is a neighborhood $W \subset \mathbb{H}^3$ of x such that if l_1, l_2 are bending lines that meet W, then any support plane that meets l_1 intersects all support planes that meet l_2 [EM87, Lemma 1.8.3]. The transverse intersection of two support planes P, Q is called a *ridge line*. Notice that if two support planes P, Q intersect, they either do so at a ridge line or P = Q. If P = Q and the interiors of H_P, H_Q are not equal, then $\hat{\mathbb{C}} \setminus \Omega$ is contained in a the circle ∂P .

The exterior angle, denoted $\angle_{ext}(P,Q)$, between two intersecting or tangent support planes is the angle between their normal vectors at any point of intersection or tangency. We define the interior angle by $\angle_{int}(P,Q) = \pi - \angle_{ext}(P,Q)$.

Let μ be the measured lamination on $\operatorname{Dome}(\Omega)$ such that $P_{\mu}: \mathbb{H}^2 \to \operatorname{Dome}(\Omega)$ is the pleated plane. By a transverse geodesic arc $\alpha:(a,b)\to\operatorname{Dome}(\Omega)$, we will mean arc such that $P_{\mu}^{-1}(\alpha)$ is a geodesic arc in \mathbb{H}^2 and transverse to $\operatorname{supp}(\mu)$. We say the terminal support planes P_a, P_b form a roof over α if the interiors of the associated half spaces H_t intersects H_a for all t. Roofs play an important role in approximating the bending along α .

Lemma 2.2. (Lemmas 4.1 and 4.2 [BC03]) Let μ be the measured lamination on Dome(Ω). If $\alpha:(a,b)\to \text{Dome}(\Omega)$ is a transverse geodesic arc such that the terminal support planes P_a, P_b form a roof over α then $i(\alpha,\mu) \leq \angle_{ext}(P,Q) = \pi - \angle_{int}(P,Q)$.

Lemma 2.3. Let Ω be a simply connected hyperbolic domain and $\alpha:(a,b)\to \mathrm{Dome}(\Omega)$ a transverse geodesic arc. If the interiors of the terminal half spaces H_a, H_b intersect, then P_a and P_b form a roof over α .

Proof. Intuitively, this is a consequence of the fact that support planes can't form "loops" when Ω is simply connected. Recall that the space of support planes to $Dome(\Omega)$ is an \mathbb{R} -tree. Since α is geodesic, the of support planes P_t to α must be embedded, and therefore the unique path between P_a and P_b . As the interiors of H_a , H_b intersect, either $P_a = P_b$

or P_a, P_b intersect at a ridge line ℓ_r . In the former case, it follows that $P_t = P_a = P_b$ is constant and therefore $H_t = H_a$ for all t.

In the later case, consider the path β which goes from $\alpha(a)$ to ℓ_r along P_a and from ℓ_r to $\alpha(b)$ along P_b . We can project β to $r(\beta) \subset \text{Dome}(\Omega)$. Since P_t is the unique path connecting P_a to P_b , it follows that the path of support planes along $r(\beta)$ must fun over all of P_t . By construction, every support plane to $r(\beta)$ must contain the ridge line ℓ_r . Thus, the interiors of H_t and H_a intersect for all t and P_a , P_b is a roof over α .

2.4. L-roundness. For a measured lamination μ on \mathbb{H}^2 , Epstein, Marden and Markovic [EMM04] defined the roundness of μ to be $||\mu|| = \sup i(\mu, \alpha)$ where the supremum is taken over all open unit length geodesic arcs in \mathbb{H}^2 . The roundness bounds the total bending of P_{μ} on any segment of length 1 and is closely related to average bending, which was introduced earlier by Bridgeman [Bri98].

In our work, we consider the *L*-roundness of a measured lamination for any L > 0

$$||\mu||_L = \sup i(\alpha, \mu)$$

where now the supremum is taken over all open geodesic arcs of length L in \mathbb{H}^2 . We note that the supremum over open geodesic arcs of length L, is the same as that over *half* open geodesic arcs of length L.

3. Improved Upper Bound on L-roundness for Embedded Pleated Planes

In this section, we adapt the techniques of [Bri03] to obtain an improved bound on the L-roundness of an embedded pleated plane. As it appears here, Theorem 1.1 is an extended version of our work in [BCY16, Theorem 3.1].

Theorem 1.1. If $L \in (0, 2 \sinh^{-1}(2)]$, μ is a measured lamination on \mathbb{H}^2 , and P_{μ} is an embedding, then $\|\mu\|_L \leq F(L)$ where

$$F(L) = \begin{cases} 2\cos^{-1}(-\sinh(L/2)) & \text{for } L \in [0, 2\sinh^{-1}(1)] \\ 3\pi - 2\cos^{-1}\left(\left(\sqrt{\cosh(L)} - 1\right)/2\right) & \text{for } L \in (2\sinh^{-1}(1), 2\sinh^{-1}(2)] \end{cases}$$

The proof relies on a careful analysis of minimal lengths of arcs joining a sequence of 3 or 4 pleated planes. We present these arguments as Lemmas 3.1, 3.2, 3.4.

Lemma 3.1. Let P_0, P_1, P_2 be planes in \mathbb{H}^3 with boundary circles $C_i \in \partial_\infty \mathbb{H}^3$. Assume that $C_0 \cap C_2 = \{a\}$, $a \notin C_1$, and the minor angles $\angle_m(C_0, C_1) = \angle_m(C_1, C_2) = \theta < \pi/2$. If $\alpha : [0,1] \to \mathbb{H}^3$ is a rectifiable path with $\alpha(0) \in P_0, \alpha(1) \in P_2$ and $\alpha(t_1) \in P_1$ for some $t_1 \in (0,1)$. Then,

$$\ell(\alpha) \ge 2\sinh^{-1}(\cos\theta).$$

Proof. Since $a \notin C_1$, there is a plane $T \subset \mathbb{H}^3$ perpendicular to all P_i . Let $\lambda_i = T \cap P_i$. Take $\overline{\alpha}$ to be the nearest point projection of α onto T. Since nearest point projections shrink

distances, $\ell(\alpha) \ge \ell(\overline{\alpha})$. In addition, as T is perpendicular to P_i , we have $\overline{\alpha}(0) \in \lambda_0$, $\overline{\alpha}(1) \in \lambda_2$ and $\overline{\alpha}(t_1) \in \lambda_1$. We can identify T with the Poincare disk and conjugate λ_i as in Figure 1.

FIGURE 1. Configuration of $\lambda_i \subset T$ in the Poincare disk model for Lemma 3.1

By symmetry, the shortest curve connecting λ_0 to λ_2 via λ_1 is the symmetric piecewise geodesic β depicted in Figure 1. Let x be the sub-arc of λ_1 between $\lambda_1 \cap \lambda_2$ and $\lambda_1 \cap \beta$. Then, one may apply hyperbolic trigonometry formulae [Bea95, Theorem 7.9.1] and [Bea95, Theorem 7.11.2] to obtain

$$\sinh(x) \tan \theta = 1$$
 and $\sinh(\ell(\beta)/2) = \sinh(x) \sin \theta$.

Therefore,

$$\ell(\alpha) \ge \ell(\beta) \ge 2 \sinh^{-1}(\cos \theta).$$

Lemma 3.2. Let P_0, P_1, P_2, P_3 be planes in \mathbb{H}^3 with boundary circles $C_i \in \partial_\infty \mathbb{H}^3$. Assume

- (i) $P_0 \cap P_2 = P_1 \cap P_3 = P_0 \cap P_3 = \emptyset$
- (ii) $C_0 \cap C_3 = \{a\} \text{ and } C_1 \cap C_2 = \{b\}$
- (iii) $a \notin C_1 \cup C_2$ and $b \notin C_0 \cup C_3$.
- (iv) let η_i be normal directions to C_i such that η_0, η_3 point away from each other and η_1, η_2 point toward each other, then $\angle(\eta_0, \eta_1) = \angle(\eta_2, \eta_3) = \theta < \pi/2$.

If $\alpha: [0,1] \to \mathbb{H}^3$ is a rectifiable path with $\alpha(0) \in P_0, \alpha(1) \in P_3, \alpha(t_1) \in P_1$, and $\alpha(t_2) \in P_2$ for some $t_1, t_2 \in (0,1)$ with $t_1 < t_2$. Then,

$$\ell(\alpha) \ge \cosh^{-1}\left(\left(2\cos\theta + 1\right)^2\right).$$

Proof. Let ρ_i denote the reflection across P_i and $\rho_{i,j} = \rho_i \circ \rho_j$. Since α is supported by the planes P_i , we may look at pieces of α under a series of reflections. In particular, consider the curve

$$\beta = \alpha[0, t_1] \cup \rho_1(\alpha[t_1, t_2]) \cup \rho_{1,2}(\alpha[t_2, 1]).$$

Notice that β is a curve from P_0 to $\rho_{1,2}(P_3)$ and $\ell(\alpha) = \ell(\beta)$. Our goal is now to find a lower bound for $\ell(\beta)$ in terms of θ .

FIGURE 2. Boundaries of the planes P_i in Lemma 3.2 and their reflections in the upper half space model.

By construction, β is longer than the geodesic from P_0 to $\rho_{1,2}(P_3)$. Notice that this geodesic intersects P_1 and $\rho_1(P_2)$, so after reflecting some pieces, it satisfies the assumptions of the Lemma. Let T be the hyperplane going through the Euclidean centers of C_0 and $\rho_{1,2}(C_3)$. Since the geodesic between P_0 and $\rho_{1,2}(P_3)$ is unique, it must lie in T. Refer to Figure 2 for the generic configuration.

We need to say a few words about the validity of Figure 2 for our computations. Conjugating, we can map the points $a \to 0$ and $b \to \infty$. It follows from (ii) and (iii) that C_1, C_2 are parallel lines and C_0, C_3 are circles in the plane. Assumptions (i) and (iv) also guarantee that, maybe after flipping, $0 \le \phi \le \pi/2$. It is straightforward to check that assumption (iv) on a choice of normal directions guarantees that θ is correctly labeled in Figure 2.

Identify T with \mathbb{U}^2 so that the center of C_0 corresponds to 0. We compute the distance between the two disjoint geodesics $\lambda = T \cap P_0$ and $\gamma = T \cap \rho_{1,2}(P_3)$. Let $z_1 < z_2 < z_3 < z_4$, $z_i \in \mathbb{R} \subset \partial T$ be the points $\partial \lambda \cup \partial \gamma$. We can use the standard cross ration to compute

$$(z_1, z_3; z_2, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \coth^2\left(\frac{1}{2}d_{\mathbb{H}}(\lambda, \gamma)\right) > 0$$
$$d_{\mathbb{H}}(\lambda, \gamma) = \log\left(\frac{\sqrt{(z_1, z_3; z_2, z_4)} + 1}{\sqrt{(z_1, z_3; z_2, z_4)} - 1}\right).$$

Let r_0, r_1, ϕ, θ be as in Figure 2 and normalize the diagram as shown. By directly constructing a diagram from our parameters, one checks that a configuration satisfies out assumptions if and only if

$$0 \le \theta < \pi/2 \quad \text{and} \quad 0 \le \phi \le \pi/2$$
$$0 \le r_i + r_i \cos \theta \le 1 \text{ for } i = 0, 1$$
$$1 = (r_0 + r_1) (\cos \theta + \cos \phi)$$

To evaluate the cross ratio, let $z_1 = -r_0$, $z_2 = r_0$, $z_3 = c - r_0$, and $z_4 = c + r_0$, where c is the distance between the Euclidean centers of C_0 and $\rho_{1,2}(C_3)$. Computing, we have

$$c^{2} = (r_{0} + r_{1})^{2} \sin^{2} \phi + (2 - (r_{0} + r_{1}) \cos \phi)^{2} = 4 - 4(r_{0} + r_{1}) \cos \phi + (r_{0} + r_{1})^{2}.$$

The cross ratio of these point is then

$$x = (-r_0, c - r_1; r_0, c + r_1) = \frac{(r_0 - r_1)^2 - c^2}{(r_0 + r_1)^2 - c^2} = 1 + \frac{r_0 r_1}{1 - (r_0 + r_1)\cos\phi} = 1 + \frac{r_0 r_1}{(r_0 + r_1)\cos\theta}.$$

Therefore,

$$\ell(\alpha) \ge d_{\mathbb{H}}(P_0, \rho_{1,2}(P_3)) \ge \inf_{r_0, r_1, \phi} \log \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right) = \inf_{r_0, r_1, \phi} \log \left(1 + \frac{2}{\sqrt{x} - 1} \right).$$

Since $\log (1 + 2/(\sqrt{x} - 1))$ is a decreasing function of x, our goal is to maximize x over all allowable configurations with fixed $0 \le \theta < \pi/2$. Our parameter conditions imply

$$0 \le r_i + r_i \cos \theta \le 1$$
, $\frac{1}{1 + \cos \theta} \le (r_0 + r_1)$, and $(r_0 + r_1) \le \frac{1}{\cos \theta}$.

Since $0 \le \theta \le \pi/2$, it is easy to see that this region is a triangle in the (r_0, r_1) -plane bounded by $r_i = 1/(1 + \cos \theta)$ and $(r_0 + r_1) = 1/(1 + \cos(\theta))$, see Figure 3.

FIGURE 3. Constraints for maximizing $x = 1 + \frac{r_0 r_1}{(r_0 + r_1)\cos\theta}$ in Lemma 3.2.

We also have

$$\frac{\partial x}{\partial r_i} = \frac{r_j^2}{(r_i + r_j)^2} > 0 \text{ for } r_i, r_j > 0 \text{ where } \{i, j\} = \{0, 1\},$$

so the maximum value of x is attained on the boundary of our triangle. On the edges corresponding to $r_i = 1/(1 + \cos \theta)$, we get a maximum when $r_0 = r_1 = 1/(1 + \cos \theta)$. For the edge corresponding to $(r_0 + r_1) = 1/(1 + \cos(\theta))$, we have a maximum at $r_0 = r_1 = 1/(2 + 2\cos\theta)$. Of these two points, x has the largest value at the former, so

$$\sup_{r_0, r_1, \phi} x = x \mid_{r_i = 1/(1 + \cos \theta)} = 1 + \frac{1}{2(1 + \cos \theta) \cos \theta}$$

Lastly, note that using $\cosh(z) = (e^z + e^{-z})/2$, we have

$$\cosh\left(\log\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\right) = \frac{1}{2}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1} + \frac{\sqrt{x}-1}{\sqrt{x}+1}\right) = \frac{x+1}{x-1}$$

Our desired results follows,

$$\ell(\alpha) \ge \inf_{r_0, r_1, \phi} \log \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right) = \inf_{r_0, r_1, \phi} \cosh^{-1} \left(\frac{x + 1}{x - 1} \right) = \cosh^{-1} \left((2 \cos \theta + 1)^2 \right).$$

Corollary 3.3. The shortest rectifiable path $\alpha(t) \subset \mathbb{H}^3$ connecting four sequentially tangent hyperplanes in \mathbb{H}^3 has length $2\sinh^{-1}(2)$ and is attained when the planes support four of the faces of a standard ideal octahedron.

Proof. If $\theta = 0$, then the geodesic we have find in Lemma 3.2 has length

$$\cosh^{-1}\left((2\cos(0)+1)^2\right) = \cosh^{-1}(9) = 2\sinh^{-1}(2).$$

The critical values of r_0, r_1 were $r_i = 1/(1 + \cos \theta) = 1/2$, so $1 = (r_0 + r_1)(\cos \theta + \cos \phi) = 1 + \cos \phi$ and $\phi = \pi/2$. This configuration and the other four planes supporting a standard ideal octahedron are shown in Figure 4.

FIGURE 4. The supporting planes of a standard ideal octahedron in Cor 3.3.

Next, we prove a slight generalization of Lemma 3.2 where we replace the tangency of P_0 and P_3 for another condition.

Lemma 3.4. Let P_0, P_1, P_2, P_3 be planes in \mathbb{H}^3 with boundary circles $C_i \in \partial_\infty \mathbb{H}^3$. Assume

- (i) $P_0 \cap P_2 = P_1 \cap P_3 = \emptyset$
- (ii) $C_1 \cap C_2 = \{b\} \text{ and } b \notin C_0 \cup C_3.$
- (iii) let P_{\star} be the unique plane between P_1 and P_2 tangent to P_3 , then $\partial P_{\star} \cap C_0 \neq \emptyset$
- (iv) let η_i be normal directions to C_i such that η_0, η_3 point away from each other and η_1, η_2 point toward each other, then $\angle(\eta_0, \eta_1) = \angle(\eta_2, \eta_3) = \theta < \pi/2$.

If $\alpha: [0,1] \to \mathbb{H}^3$ is a rectifiable path with $\alpha(0) \in P_0, \alpha(1) \in P_3, \ \alpha(t_1) \in P_1, \ and \ \alpha(t_2) \in P_2$ for some $t_1, t_2 \in (0,1)$ with $t_1 < t_2$. Then,

$$\ell(\alpha) \ge \cosh^{-1}\left(\left(2\cos\theta + 1\right)^2\right).$$

Proof. We will reduce to the case of Lemma 3.2 as follows. We can conjugate $b \to \infty$ and build as similar diagram with C_3 "below" C_0 as before, except they may no longer be tangent. Condition (iii) implies that there is some "slide" of P_0 along P_{\star} to a plane P'_0 that is tangent to P_3 , see Figure 5.

FIGURE 5. The "slide" move of P_0 to P_0' in Lemma 3.4. Notice that the Euclidean length $c \geq c'$.

Notice that the "slide" operation does not change radii of the circles in our configuration. In the proof of Lemma 3.2, the cross ratio was given as

$$x = \frac{(r_0 - r_1)^2 - c^2}{(r_0 + r_1)^2 - c^2}$$

This function is decreasing in c, so if we replace c with the shorter c' as in Figure 5. This gives a larger value of x and, therefore, a shorter geodesic. Thus, we replace P_0 with P'_0 and apply Lemma 3.2.

Proof of Theorem 1.1. Fix $L \in (0, 2\sinh^{-1}(2)]$. If we fix $\|\mu\|_L$, then for every $\epsilon > 0$, we can find a geodesic arc $\alpha : (0,1) \to P_{\mu}$ with $\ell(\alpha) = L$ such that $\|\mu\|_L - \epsilon < i(\alpha,\mu) \le \|\mu\|_L$. Let $\{P_t\}$ for $t \in [0,1]$ denote the path of support planes to α and $p:[0,1] \to [0,1]$ be such that P_t is a support plane at $\alpha(p(t))$. Here, we take $P_0 = \lim_{t \to 0^+} P_t$ and $P_1 = \lim_{t \to 1^-} P_t$. We will divide our argument into cases via bounds on $\|\mu\|_L$.

Case $\|\mu\|_L \le \pi$. This is the trivial case as $0 \le L$ implies $\|\mu\|_L \le \pi = F(0) \le F(L)$.

Case $\pi < \|\mu\|_L \le 2\pi$. Fix $\epsilon > 0$ small enough and α of length L such that

$$\pi < \|\mu\|_L - \epsilon < i(\alpha, \mu) \le \|\mu\|_L \le 2\pi.$$

Let $2\theta = 2\pi - \|\mu\|_L + \epsilon < \pi$, then by assumption $2\pi - 2\theta < i(\alpha, \mu)$. As the interior angle between P_0 and P_t decreases continuously, it follows from the roof property (Lemma 2.2) that there must be a t_1 such that $\angle_{int}(P_0, P_{t_1}) = \theta$ as $i(\alpha, \mu) > \pi - \theta$. Similarly, there must

be at t_2 such that $\angle_{int}(P_{t_1}, P_{t_2}) = \theta$ as $i(\alpha, \mu) > 2\pi - 2\theta$. Notice that $P_0 \cap P_{t_2} = \emptyset$, as otherwise either they form a roof over α by Lemma 2.3 and $i(\alpha, \mu) \leq \pi$, a contraction.

FIGURE 6. The "grow" move of P_0 to P_0' in Case $\pi < \|\mu\|_L \le 2\pi$ of Theorem 1.1.

Since $2\theta < \pi$, our planes P_0, P_{t_1}, P_{t_2} almost satisfy the conditions of Lemma 3.1. By mapping P_{t_1} to a vertical plane in the upper half space model for \mathbb{H}^3 , we easy see that we can "grow" P_0 to a plane P'_0 that is tangent to P_{t_2} while keeping the interior angle with P_{t_1} equal to θ , see Figure 6. The plane P'_0 is not a support plane, but a sub-arc of $\alpha[p(0), p(t_2)]$ joins it to P_{t_2} . Therefore, the shortest curve between P'_0 and P_{t_2} with a point on P_{t_1} is shorter than α . We apply Lemma 3.1 to P'_0, P_{t_1}, P_{t_3} and see

$$L \ge 2 \sinh^{-1}(\cos \theta) \implies \cos^{-1}(\sinh(L/2)) \le \theta$$

$$\|\mu\|_L = 2\pi - 2\theta + \epsilon \le 2\pi - 2\cos^{-1}\left(\sinh(L/2)\right) + \epsilon = 2\cos^{-1}\left(-\sinh(L/2)\right) + \epsilon.$$

Since $\epsilon > 0$ can be taken arbitrarily small and F(L) is an increasing function, $\|\mu\|_L \leq F(L)$.

Case $2\pi < \|\mu\|_L \le 3\pi$. Fix $\epsilon > 0$ small enough and α of length L such that

$$2\pi < \|\mu\|_L - \epsilon < i(\alpha, \mu) \le \|\mu\|_L \le 3\pi.$$

Let $2\theta = 3\pi - \|\mu\|_L + \epsilon < \pi$, then by assumption $3\pi - 2\theta < i(\alpha, \mu)$. As before, since the interior angle decreases and we cannot violate the roof property, there exists t_1 such that $\angle_{int}(P_0, P_{t_1}) = \theta$, the smallest t_2 such that $\angle_{int}(P_{t_1}, P_{t_2}) = 0$, and t_3 such that $\angle_{int}(P_{t_2}, P_{t_3}) = \theta$.

We want to modify our set of planes slightly to satisfy the assumptions of Lemma 3.4. We see that $P_0 \cap P_{t_2} = P_{t_1} \cap P_{t_3} = P_0 \cap P_{t_3} = \emptyset$ by Lemma 2.3 as any roofs over subarcs of α would decrease its bending. Let P_{\star} be the unique plane between P_{t_1} and P_{t_2} that is tangent to P_{t_3} . If $P_{\star} \cap P_0 = \emptyset$, we can then "grow" P_0 to P'_0 so that $P'_0 \cap P_{\star} \neq \emptyset$, see Figure 7. As before, P'_0 is joined to P_{t_3} by a sub-arc of $\alpha[p(0), p(t_3)]$. As $\theta < \pi/2$, all the assumptions of Lemma 3.4 are satisfied, so we have

$$L \ge \cosh^{-1}\left((2\cos\theta + 1)^2\right) \implies \cos^{-1}\left(\left(\sqrt{\cosh(L)} - 1\right)/2\right) \le \theta.$$
$$\|\mu\|_L = 3\pi - 2\theta + \epsilon \le 3\pi - 2\cos^{-1}\left(\left(\sqrt{\cosh(L)} - 1\right)/2\right) + \epsilon.$$

FIGURE 7. The "grow" move of P_0 to P_0' in Case $2\pi < \|\mu\|_L \le 3\pi$ of Theorem 1.1.

Since $\epsilon > 0$ can be taken arbitrarily small, $\|\mu\|_L \leq F(L)$.

Case $\|\mu\|_L > 3\pi$. We can choose α of length L such that $i(\alpha, \mu) > 3\pi$. As before, we find the smallest t_1, t_2, t_3 (in that order) such that $\angle_{int}(P_0, P_{t_1}) = \angle_{int}(P_{t_1}, P_{t_2}) = \angle_{int}(P_{t_2}, P_{t_3}) = 0$. Notice that P_{t_3} is not the terminal support plane for α , as $i(\alpha, \mu) > 3\pi$. After a possible "grow" move, this configuration corresponds to the case of Lemma 3.4 with $\theta = 0$. This, however, implies

$$L > \cosh^{-1}\left((2\cos(0) + 1)^2\right) = \cosh^{-1}(9) = 2\sinh^{-1}(2)$$

which contradicts the fact that we fixed $L \in (0, 2 \sinh^{-1}(2)]$.

4. Improved Bounds on Average Bending and Lipschitz Constants

In this section, we improve the Lipschitz and average bending bounds of [Bri03, Theorem 1.2].

Theorem 1.2. There exist universal constants K_0, K_1 with $K_0 \leq 2.494$ and $K_1 \leq 3.101$ such that if $\Gamma \leq \text{Isom}^+(\mathbb{H}^3)$ is a finitely-generated Kleinian group, $N = \mathbb{H}^3/\Gamma$, and the boundary $\partial C(N)$ of the convex core is non-empty and incompressible in N, then

(i) if μ_{Γ} is the bending lamination of $\partial C(N)$, then

$$\ell_{\partial C(N)}(\mu_{\Gamma}) \le K_0 \, \pi^2 \, |\chi\left(\partial C(N)\right)|$$

(ii) for any closed geodesic α on $\partial C(N)$,

$$B_{\Gamma}(\alpha) = \frac{i(\alpha, \mu_{\Gamma})}{\ell(\alpha)} \le K_1$$

where $B_{\Gamma}(\alpha)$ is called the average bending of α .

(iii) there exists a $(1+K_1)$ -Lipschitz map $s: \partial C(N) \to \partial_{\infty} N$ that is a homotopy inverse to the nearest point retraction $r: \partial_{\infty} N \to \partial C(N)$.

Proof. Our result is a direct generalization of [Bri03] by using our function F(L) from Theorem 1.1. We provide an outline of the proof.

Let δ be a geodesic arc on $P_{\mu_{\Gamma}}$ and fix $L \in (0, 2 \sinh^{-1}]$. Set $\lceil x \rceil$ to be the least integer $\geq x$. By subdividing δ into arcs or length $\leq L$, we see

$$B_{\Gamma}(\delta) \leq \frac{\|\mu_{\Gamma}\|_{L}}{\ell(\delta)} \left\lceil \frac{\ell(\delta)}{L} \right\rceil \leq \frac{\|\mu_{\Gamma}\|_{L}}{\ell(\delta)} \left(\frac{\ell(\delta)}{L} + 1 \right) = \frac{\|\mu_{\Gamma}\|_{L}}{L} \left(1 + \frac{L}{\ell(\delta)} \right) \leq \frac{F(L)}{L} \left(1 + \frac{L}{\ell(\delta)} \right)$$

For an infinite length geodesic β on $P_{\mu_{\Gamma}}$ and a point $x \in \beta$, let β_x^t denote the sub-arc centered at x of length 2t. One can define average bending for β as

$$B_{\Gamma}(\beta_x) = \limsup_{t \to \infty} B_{\Gamma}(\beta_x^t).$$

In [Bri98], Bridgeman shows that this notion is well defined and independent of x. In particular, by taking $\ell(\delta) \to \infty$ in the bound on $B_{\Gamma}(\delta)$, we see that for any infinite length geodesic β on $P_{\mu_{\Gamma}}$,

$$B_{\Gamma}(\beta) \leq \frac{F(L)}{L} \text{ for all } L \in (0, 2\sinh^{-1}(2)].$$

Let

$$K_1 = \min\left[\left(3\pi - 2\cos^{-1}\left(\frac{\sqrt{\cosh(L)}}{2} - \frac{1}{2}\right) \right) / L \right] \text{ over } L \in (2\operatorname{arcsinh}(1), 2\sinh^{-1}(2)]$$

Then, $B_{\Gamma}(\beta) \leq K_1 \leq 3.101$, where the minimum is attained at $L \approx 2.74104$.

For a closed geodesic α on $\partial C(N)$, let $\widetilde{\alpha} \subset P_{\mu_{\Gamma}}$ be a lift. Then (ii) follows, as

$$B_{\Gamma}(\alpha) = B_{\Gamma}(\widetilde{\alpha}) \le K_1.$$

The statement of (iii) can be derived from (ii). Let K_s be the minimal Lipschitz constant of $s: \partial C(N) \to \Omega(\Gamma)/\Gamma$. Then, Thurston characterized

$$K_s = \sup \left\{ \frac{\ell(s_*\alpha)}{\ell(\alpha)} \middle| \alpha \text{ is a simple closed curve on } \partial C(N) \right\}$$

and McMullen's showed that $\ell(s_*\alpha) \leq \ell(\alpha) + i(\alpha, \mu_{\Gamma})$ (see [Thu98, Theorem 8.5] and [McM98, Theorem 3.1]). Combining these two facts gives $K_s \leq 1 + B_{\Gamma}(\widetilde{\alpha}) \leq 1 + K_1$, so (iii) holds.

For (i), we use a computation from [Bri03, Section 5] to bound $\ell(\mu_{\Gamma})$ by integrating along the unit tangent bundle of $\partial C(N)$. Fix $L \in (0, 2\sinh^{-1}(2)]$ and for $v \in T_1(\partial C(N))$, let $\alpha_v : (0, L) \to \partial C(N)$ be the unit speed geodesic in the direction v. Then, Bridgeman and Canary [BC05] show

$$\ell(\mu_{\Gamma}) = \frac{1}{4L} \int_{T_1(\partial C(N))} i(\alpha_v, \mu_{\Gamma}) \, d\Omega$$

By taking a maximal lamination $\widetilde{\mu} \supset \mu_{\Gamma}$, one can integrate our bound $F(L) \geq i(\alpha_v, \mu_{\Gamma})$ over the set of ideal triangles $\partial C(N) \setminus \widetilde{\mu}$. In [Bri03, Section 5], Bridgeman works out this

integral and shows that

$$\frac{\ell(\mu_{\Gamma})}{\pi^2 \left| \chi \left(\partial C(N) \right) \right|} \leq \frac{3}{\pi^2 L} \int_{(x,y) \in U} \frac{dx \, dy}{y^2} \int_0^{\cos^{-1} \left(\frac{D(x,y)}{\tanh(L)} \right)} F\left(L - \tanh^{-1} \left(\frac{D(x,y)}{\cos \theta} \right) \right) \, d\theta = K_0$$

where U is the ideal triangle

$$U = \{(x,y) \mid -1 \le x \le 1, y \ge \sqrt{1-x^2}\} \text{ and }$$

$$D(x,y) = \frac{x^2 + y^2 - 1}{\sqrt{(x^2 + y^2 - 1)^2 + 4y^2}}$$

computes the length of the unique perpendicular from (x, y) to the "bottom" edge of U. We compute this integral with using numerical approximation in Mathematica. We choose $L = \sinh^{-1}(89/10) < 2\sinh^{-1}(2)$ and find the upper bound

$$\frac{\ell(\mu_{\Gamma})}{\pi^2 |\chi(\partial C(N))|} \le K_0 \le 2.494.$$

References

[BC03] Martin Bridgeman and Richard D Canary, From the Boundary of the Convex Core to the Conformal Boundary, Geometriae Dedicata 96 (2003), no. 1, 211–240.

[BC05] _____, Bounding the bending of a hyperbolic 3-manifold, Pacific Journal of Mathematics 218 (2005), no. 2, 299–314.

[BC13] _____, Uniformly perfect domains and convex hulls: improved bounds in a generalization of a theorem of Sullivan, Pure and Applied Mathematics Quarterly 9 (2013), no. 1, 49–71.

[BCY16] Martin Bridgeman, Richard D Canary, and Andrew Yarmola, An improved bound for Sullivan's convex hull theorem, Proceedings of the London Mathematical Society. Third Series 112 (2016), no. 1, 146–168.

[Bea95] Alan F Beardon, *The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995.

[Bis04] Christopher J Bishop, An explicit constant for Sullivan's convex hull theorem, In the Tradition of Ahlfors and Bers, III, Amer. Math. Soc., Providence, RI, Providence, Rhode Island, 2004, pp. 41–69.

[Bri98] Martin Bridgeman, Average bending of convex pleated planes in hyperbolic three-space, Inventiones Mathematicae **132** (1998), no. 2, 381–391.

[Bri03] _____, Bounds on the average bending of the convex hull boundary of a Kleinian group, The Michigan Mathematical Journal 51 (2003), no. 2, 363–378.

[EM87] David B A Epstein and Albert Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space, . . . geometric aspects of hyperbolic space . . . , 1987.

[EM05] David B A Epstein and Vladimir Markovic, *The logarithmic spiral: a counterexample to the K=2 conjecture*, Annals of Mathematics **161** (2005), no. 2, 925–957.

[EMM04] David B A Epstein, Albert Marden, and Vladimir Markovic, *Quasiconformal homeomorphisms* and the convex hull boundary, Annals of Mathematics (2004).

[EMM06] _____, Complex earthquakes and deformations of the unit disk, Journal of Differential Geometry 73 (2006), no. 1, 119–166.

[KP94] Ravi S Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Mathematische Zeitschrift 216 (1994), no. 1, 89–129.

IMPROVED BOUNDS FOR AVERAGE BENDING ON THE CONVEX CORE OF A KLEINIAN GROUP15

- [McM98] Curtis T McMullen, Complex earthquakes and Teichmüller theory, Journal of the American Mathematical Society 11 (1998), no. 2, 283–320.
- [Sul81] Dennis Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S1, Séminaire Bourbaki vol 1979/80 Exposés 543–560 (1981).
- [Thu91] William P Thurston, Geometry and Topology of Three-Manifolds. Princeton lecture notes, 1979, Revised version, 1991.
- [Thu98] _____, Minimal stretch maps between hyperbolic surfaces, arXiv.org (1998).

Department of Mathematics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467

 $E ext{-}mail\ address: and {\tt rew.yarmola@bc.edu}$

URL: https://www2.bc.edu/andrew-v-yarmola