1.	对于集合 $A = \{x y = \frac{ x-1 }{x-1}$ 为		1	去中, 正确的说法的序号	
2.	对于集合 $C = \{(x,y) y=x^2\}$	$\{x, x \in \mathbf{R}\}, D = \{(y, x) y = x\}$	$x^2, x \in \mathbf{R}$ }, 则集合 $C \cap D$ 的	元素个数为 ().	
	A. 0	B. 1	C. 2	D. 无限	
3.	设常数 $m \in \mathbf{R}$. 已知集合 A	$=(2,4), B=(m,m^2).$ 若 A	$C \subset B$, 求 m 的取值范围.		
4.	设常数 $a \in \mathbf{R}$. 已知集合 $A =$	$=[2,3], B=[a,2a-rac{5}{2}], ext{ } extbf{H} extbf{.}$	$A \cap B \neq \emptyset$, 求 a 的取值范围		
5.	设常数 $a \in \mathbf{R}$. 已知集合 $A = (1)$ 根据 a 的值, 写出集合 A (2) 若 $B \subseteq A$, 求 a 的值的第	1;	$B = \{x x^2 - 4x + 2a = 0\}.$		
6.	设常数 $a \in \mathbf{R}$. 若 $\{x x^2 - ax\}$	$x + a = 0, \ x \in \mathbf{R} \} \cap (-\infty, 0]$	$ eq \varnothing$, 则 a 的取值范围为为		
7.	集合 $A = \{(x,y) x^2 + y^2 = 2\}$	$25\}, B = \{(x,y) (x-3)^2 + (x-3)^2 $	$(y-4)^2 = 100$ }, 则集合 $A \cap B$	B 的元素个数为 ().	
	A. 0	B. 1	C. 2	D. 无限	
8.	设常数 $a \in \mathbb{R}$. 已知集合 $A =$ 求 a 的取值范围.	$= \{x y = \sqrt{-1 - \frac{1}{1+x}} \text{ If. } x$	$x \in \mathbf{R}$, $B = \{x ax < x + 1$,	$x \in \mathbf{R}$ }. 若 $A \cap B = A$,	
9.	设常数 a ∈ R . 若关于 x 为	的不等式组 $\begin{cases} x^2 + 2x - 3\\ (x-2)(x-3) \end{cases}$	≥ 0 , 整数解的集合为 $a) < 0$	{1}, 则 a 的取值范围	
10.	设常数 $a \in \mathbf{R}$. 若 $A = \{(x, y) \}$ 个数为 n .	$y) y = -x^2 + ax, \ x \in \mathbf{R}\}, B$	$= \{(x,y) x+y=2, \ x \in [0,$	2]}. 记 A∩B 的子集的	
	(1) $n = 2$, 求 a 的取值范围;				
	(2) 求 a 的取值范围, 使得 n	最大,并求出对应的 n 的最	大值.		
11.	对于实数 $x, y, "x + y < 4"$ }	是 " x,y 中至少有一个小于等	于 2"成立的 ()条件.		
	A. 充分而不必要	B. 必要而不充分	C. 充分必要	D. 既不充分也不必要	
12.	对于 $x, y \in \mathbb{R}$, 命题 " $x + y$ 7	$\neq 4$ " 是命题 " $x \neq 1$ 或 $y \neq 3$	"成立的()条件.		
	A. 充分而不必要	B. 必要而不充分	C. 充分必要	D. 既不充分也不必要	
13.	设 $a_1, b_1, c_1, a_2, b_2, c_2$ 均为非	零实数, 不等式 $a_1x^2 + b_1x$	$+c_1 > 0 \text{fm} a_2 x^2 + b_2 x + c_2$	> 0 的解集分别为集合	

A. 充分而不必要 B. 必要而不充分 C. 充分必要

M 和 N, 那么 " $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$ " 是 "M=N" 的 () 条件.

D. 既不充分也不必要

14. 下列函数中, 最小值为 2 的函数的序号是_____

①
$$y = \cos x + \sec x$$
, $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$; ② $y = \cos x + \sec x$, $x \in (0, \frac{\pi}{2})$; ③ $y = \ln x^2 + \log_{x^2} e$; ④ $y = 2^x + 2^{-x}$, $x > 0$; ⑤ $y = \frac{x}{\sqrt{x-1}}$.

- 15. 设 a > 0, $a \neq 1$, t > 0, 比较 a^{2t} 和 a^{t^2-3} 的大小, 并证明你的结论.
- 16. 已知 $x, y \in \mathbb{R}^+$, x y = 1 + xy, 求 x 4y 的取值范围.
- 17. 设常数 $a \in (0,1)$. 若 $0 < x \le y$, $a^x + a^y = 1$. 已知 x + y 恰存在最小值与最大值中的一个, 请你指出 x + y 存在的是哪一个最值? 并求出该最值.
- 18. 设常数 $a,b \in \mathbb{R}$, 关于 x 的不等式 $(a^2 3b^2)x ab < 0$ 的解集是 $(\frac{1}{2}, +\infty)$, 则 $\frac{b}{a} =$ ______.
- 19. 设常数 $a \in \mathbb{R}$. 知函数 $f(x) = x^2 2ax + 4$. 若对任意 $x \in [-1,2], f(x) > 0$ 恒成立, 则 a 的取值范围为______.
- $20. \ \mbox{ 设实数 } m,n,p,q \ \mbox{满足不等式组} \begin{cases} (p-m)(p-n)>0,\\ (q-m)(q-n)<0,\\ (p-m)(q-m)>0,\\ m+n>p+q, \end{cases} \mbox{ 则 } m,n,p,q \ \mbox{的大小顺序用 "<" 连接为______.}$
- 21. 不等式 $\ln x^2 < \ln(4-3x)$ 的解集是_____
- 22. 不等式 $\log_2(1-x) > 1 + \log_4 x$ 的解集是______.
- 23. 设常数 a > 0. 已知关于 x 的不等式 (x a)(x 2a) < 0 的解集为 A. 若 $A \cap \mathbf{Z}$ 的元素个数为 3, 求 a 的取值范围.
- 24. 不等式 $\frac{3|x|-2}{|x|} \le 1$ 的解集是_____.
- 25. 设常数 a>0 且 $a\neq 1$. 若关于 x 的不等式 $\log_a x<0$ 的解集是 $(1,+\infty)$, 则关于 x 的不等式 $\log_a (x-\frac{4}{x})\geq 0$ 的解集是______.
- 26. 设常数 $a \in \mathbb{R}$. 已知关于 x 的不等式 $\frac{ax-2}{x^2-a} < 0$ 的解集为 M. 若 $1 \in M$ 且 $3 \notin M$, 求 a 的取值范围.
- 27. 设 a,b,c 是互不相等的正数,则下列不等式中正确的不等式的序号是______.
 ① $|a-c| \leq |a-b| + |c-b|$; ② $a+\frac{1}{a} \leq a^3+\frac{1}{a^3}$; ③ $a-\frac{1}{a} \leq (a+b)^2-\frac{1}{(a+b)^2}$; ④ $\sqrt{a+4}+\sqrt{a+1} \leq \sqrt{a+3}+\sqrt{a+2}$; ⑤ $\sqrt{a+b+c} < \sqrt{abc}$.
- 28. 函数 y = f(x) 满足对于任意 $x \neq 0$,恒有 $f(x \frac{1}{x}) = x^2 + \frac{1}{x^2}$. 若存在 x_0 使得 $f(x_0) x_0 = 2$ 成立,则 $x_0 =$ ______.
- 29. 已知半径为 r 的扇形的面积为 1, 试将扇形的周长 C 表示成 r 的函数.

- 30. 设常数 a > 1. 已知函数 $f(x) = \log_{\frac{1}{2}}(x^2 ax + 2)(1 < x < a)$. 若函数 y = f(x) 存在最大值, 求 a 的取值范 围,并求出对应的最大值.
- 31. 已知 xy < 0, 且 $x^2 4y^2 = 4$. 问: 能否由此条件将 y 表示成 x 的函数? 若能, 求出该函数的解析式、定义 域; 若不能, 说明理由.
- 32. 判断函数 $f(x) = \begin{cases} \frac{x}{1-x}, & x \ge 0, \\ \frac{x}{1-x}, & x < 0 \end{cases}$ 的奇偶性.
- 33. 根据常数 a 的不同取值, 讨论函数 $f(x) = \frac{2^x + a}{2^x a}$ 的奇偶性, 并说明理由.
- 34. 设常数 $a \in \mathbf{R}$. 已知函数 y = f(x) 是定义在 \mathbf{R} 上的奇函数,当 x < 0 时, $f(x) = x + \frac{a^2}{x}$,则 $x \ge 0$ 时,
- 35. 设函数 y = f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = 2^{\frac{1}{x}} 3$. 求不等式 f(x) > -1 的解集.
- 36. 设函数 y = f(x) 为 R 上的奇函数, 且对于任意 $x \in \mathbb{R}$, 都有 f(x) = f(2-x). 当 $1 \le x < 2$ 时, f(x) = -2x + 4.
 - (1) 求函数 y = f(x) 在 $-1 \le x < 1$ 时的解析式;
 - (2) 求函数 y = f(x) 1 在 $-100 \le x \le 100$ 时的所有零点的个数.
- 37. 已知定义在 R 上的函数 y = f(x) 是奇函数, 且 y = f(x) 也是以 2 为周期的一个周期函数. 若 $f(\frac{3}{2}) = 0$, 则 在区间 [-2,2] 上的零点的个数的最小值为_____
- 38. 函数 $y = \frac{1}{\sqrt{x^2 5x 6}}$ 的递增区间是______.
- 39. 设常数 $a \in \mathbb{R}$. 已知函数 y = f(x) 为 R 上的奇函数, 且满足对于 $(-\infty, +\infty)$ 内的任意 $x_1, x_2, \exists x_1 < x_2$ 时,都有 $f(x_1) < f(x_2)$. 若 x > 0 时, $f(x) = (x-a)^2 - 1$,则 a 的取值范围为______.
- 40. 判断函数 $f(x) = 2^x + 2^{-x}$ 在 $[0, +\infty)$ 上的单调性, 并证明你的结论.
- 41. 函数 $f(x) = \ln(ax^2 4x + 3)$ 在 $(-\infty, 1]$ 上为减函数, 求实常数 a 的取值范围.
- 42. 下列命题中, 正确的命题的序号是_
 - ① 一个幂函数或是奇函数, 或是偶函数;
 - ② 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条射线;
 - ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它的图像总是过 (-1, -1);
 - ④ 若一个幂函数的图像经过第二象限的点,则这个幂函数是偶函数.
- 43. 若集合 $A = \{y | y = x^3, -1 \le x \le 1\}, B = \{y | y = x^{-1}\}, 则 A \cap B 等于 ().$

A.
$$\{(-1,1)\}$$

B.
$$\{(1,1),(-1,-1)\}$$
 C. $\{-1,1\}$

C.
$$\{-1,1\}$$

D.
$$[-1,0) \cup (0,1]$$

- 44. 设常数 $n \in \mathbb{Z}$. 若 $f(x) = x^{n^2 + 2n 3}$ 是偶函数, 且图像与两条坐标轴都无公共点, 则 n =_____.
- 45. 若函数 $f(x) = 1 \sqrt{-x^2 2x}(-2 \le x \le -1)$, 请在空白处画出函数 $y = f^{-1}(x)$ 的大致图像.

46.	设常数 $a,b \in \mathbf{R}, a \neq b$, 是否在, 求出 a,b 满足的条件; 若		$rac{ax+1}{bx+1}$ 存在反函数, 且反函 $rac{ax+1}{bx+1}$	数就是 $y = f(x)$? 若存
47.	设集合 $A = \{5, \log_2(a+3)\},$	$B = \{a, b\}, $ 若 $A \cap B = \{2\}$,则 $A \cup B =$	
48.	已知函数 $f(x) = \log_3(\frac{4}{x} + 2)$, 则方程 $f^{-1}(x) = 4$ 的解为 $x = \underline{\hspace{1cm}}$.			
49.	方程 $\sin 2x = \sin 3x$ 的解集是			
50.	函数 $y = \ln(-x^2 + 2x + 3)$ 的单调递减区间是			
51.	若函数 $y = f(x)$ 的图像与 y	$=x+rac{1}{x}$ 的图像关于 $x=1$	轴对称 , 则 $f(x) =$	
52.	已知等差数列 $\{a_n\}$ 中, $a_1=10$, 当且仅当 $n=5$ 时, 前 n 项和 S_n 取得最大值, 则公差 d 的取值范围是			
53.	. 已知函数 $f(x) = a \sin x + b \cos x (x \in [a^2 - 2, a])$ 是奇函数, 则 $a + b = $			
54.	不等式 $x^2 - 3 > ax - a$ 对一	·切 $3 \le x \le 4$ 恒成立, 则符合	う要求的自然数 α 有	个.
55.	在 $\triangle ABC$ 中,锐角 $\angle B$ 所对的边 $b=10$. $\triangle ABC$ 的面积 $S_{\triangle ABC}=10$, 外接圆半径 $R=13$, 则 $\triangle ABC$ 的周长为			
56.	若函数 $f(x) = x - 3 - \log_a$	x+1 无零点, 则 a 的取值剂	5围为	
57.	已知 $\log_a x = \log_b y = -2$. 表	a+b=2, 则 $x+y$ 的取值	范围为	
58.	已知函数 $f(x)$ 满足: ① 对任意 $x \in (0, +\infty)$,恒有 $f(2x) = 2f(x)$ 成立; ② 当 $x \in (1, 2]$ 时, $f(x) = 2 - x$.若 $f(a) = f(2015)$,则满足条件的最小的正实数 a 是			
59.	已知函数 $f(x)$ 定义域为 $[a,$ 最小值"的().	b]. 则"函数 $f(x)$ 在 $[a,b]$ 上	二为单调函数"是"函数 $f(x)$	在 [a, b] 上有最大值和
	A. 充分但非必要条件	В	. 必要但非充分条件	
	C. 充要条件	D	. 既非充分也非必要条件	
60.	若 $\frac{1}{a} < \frac{1}{b} < 0$,有下面四个不有 ().	下等式: ① $ a > b $; ② $a < b$	$a + b < ab; \ \ a^3 > b^3.$	其中, 不正确的不等式
	A. 0 个	B. 1 个	C. 2 ↑	D. 3 个
61.	已知: 数列 $\{a_n\}$ 满足 $a_1=1$	16, $a_{n+1} - a_n = 2n$. 则 { $\frac{a_n}{n}$ }	} 的最小值为 ().	
	A. 8	B. 7	C. 6	D. 5
62.	设函数 $f_1(x) = \log_4 x - (\frac{1}{4})^2$	$f_2(x) = \log_{\frac{1}{4}} x - (\frac{1}{4})^x$ is	零点分别为 x_1 与 x_2 , 则 ().
	A. $0 < x_1 x_2 < 1$	B. $x_1 x_2 = 1$	C. $1 < x_1 x_2 < 2$	D. $x_1 x_2 \ge 2$

- 63. 关于 x 的不等式 $\frac{x-a}{x+1}>0$ 的解集 P, 不等式 $\log_2(x^2-1)\leq 1$ 的解集为 Q. 若 $Q\subseteq P$, 求实数 a 的取值范围.
- 64. 已知: 函数 $f(x) = p \sin \omega x \cdot \cos \omega x \cos^2 \omega x (p > 0, \omega > 0)$ 的最大值为 $\frac{1}{2}$, 最小正周期为 $\frac{\pi}{2}$.
 - (1) 求: p, ω 的值与 f(x) 的解析式;
 - (2) 若 $\triangle ABC$ 的三条边为 a,b,c, 满足 $a^2=bc$, a 边所对的角为 A. 求: 角 A 的取值范围及函数 f(A) 的值域.
- 65. 市场上有一种新型的强力洗衣液,特点是去污速度快. 已知每投放 $a(1 \le a \le 4, \ \text{且}\ a \in \mathbf{R})$ 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度 $y(\bar{\mathbf{n}}/\mathbf{H})$ 随着时间 $x(\mathbf{G}/\mathbf{H})$ 变化的函数关系式近似为 $y = a \cdot f(x)$,其中 $f(x) = \begin{cases} \frac{16}{8-x} 1, & 0 \le x \le 4 \\ \frac{16}{8-x} 1, & 0 \le x \le 4 \end{cases}$ 若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在 $5 \frac{1}{2}x, \qquad 4 < x \le 10.$

相应时刻所释放的浓度之和. 根据经验, 当水中洗衣液的浓度不低于 4(克/升) 时, 它才能起到有效去污的作用.

- (1) 若只投放一次 4 个单位的洗衣液, 则有效去污时间可达几分钟?
- (2) 若第一次投放 2 个单位的洗衣液, 6 分钟后再投放 a 个单位的洗衣液, 要使接下来的 4 分钟中能够持续有效去污, 试求 a 的最小值 (按四舍五入精确到 0.1)
- 66. 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_2 = 4$, $S_5 = 30$.
 - (1) 求 a_n 的表达式;
 - (2) 设 A_n 为数列 $\{\frac{a_n-1}{a_n}\}$ 的前 n 项积, 是否存在实数 a, 使得不等式 $A_n \cdot \sqrt{2n+1} < a$ 对一切 $n \in \mathbb{N}^*$ 都成立? 若存在, 求出 a 的取值范围; 若不存在, 请说明理由;
 - (3) 将数列 $\{a_n\}$ 依次按 1 项, 2 项, 3 项, 1 项, 2 项, 3 项循环地分为 (a_1) , (a_2,a_3) , (a_4,a_5,a_6) , (a_7) , (a_8,a_9) , (a_{10},a_{11},a_{12}) , \cdots , 分别计算各个括号内各数之和, 设由这些和按原来括号的前后顺序构成的数列为 $\{b_n\}$, 求 b_{2015} 的值.
- 67. 已知函数 $f_1(x) = e^{|x-2a+1|}, f_2(x) = e^{|x-a|+1}(x \in \mathbf{R}).$
 - (1) 若 a = 2, 求 $f(x) = f_1(x) + f_2(x)$ 在 $x \in [2, 3]$ 上的最小值;
 - (2) 若 $|f_1(x) f_2(x)| = f_2(x) f_1(x)$ 对于任意的实数 $x \in \mathbb{R}$ 恒成立, 求 a 的取值范围;
 - (3) 当 $1 \le a \le 6$ 时, 求函数 $g(x) = \frac{f_1(x) + f_2(x)}{2} \frac{|f_1(x) f_2(x)|}{2}$ 在 $x \in [1, 6]$ 上的最小值.
- 68. 方程 $4^x 2^x = 0$ 的解集为_____
- 69. 若 $(1-2i)\overline{z} = 5 + 10i(i$ 是虚数单位), 则 z =_____.
- 70. 以 (1,2) 为圆心, 且与直线 4x + 3y 35 = 0 相切的圆的方程是
- 71. 无穷数列 $\{a_n\}$, $a_n = (\frac{2}{3})^n$, 则 $\{a_n\}$ 的各项和为______.
- 72. 等腰直角三角形的直角边长为 1, 则绕斜边旋转一周所形成的几何体的体积为_____.
- 73. 若 $(x \frac{a}{x})^9$ 的展开式中 x^3 的系数是 -84, 则 a =______.

- 74. 抛物线 $y^2 = -12x$ 的准线与双曲线 $\frac{x^2}{9} \frac{y^2}{3} = 1$ 的两条渐近线所围成的三角形的面积等于______.
- 75. 设常数 $\omega>0,\ t>0,\$ 函数 $f(x)=\begin{vmatrix} \sqrt{3}&\sin\omega x\\ 1&\cos\omega x \end{vmatrix}$ 的最小正周期为 $2\pi,\$ 将 f(x) 的图像向左平移 t 个单位,所 得图像对应的函数为偶函数,则 t 的最小值为
- 76. 两个三口之家, 共 4 个大人, 2 个小孩, 约定星期日乘红色、白色两辆轿车结伴郊游, 每辆车最多乘坐 4 人, 其 中两个小孩不能独坐一辆车,则不同的乘车方法种数是
- 77. 向量 \overrightarrow{a} , \overrightarrow{b} 满足 $|\overrightarrow{a}|=1$, $|\overrightarrow{a}-\overrightarrow{b}|=\frac{\sqrt{3}}{2}$, \overrightarrow{a} 与 \overrightarrow{b} 的夹角为 60° , 则 $|\overrightarrow{b}|=$ _______.
- 78. 数列 $1, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \cdots,$ 则 $\frac{8}{9}$ 是该数列的第______ 项.
- 79. 已知直线 (1-a)x + (a+1)y 4(a+1) = 0(其中 a 为实数) 过定点 P, 点 Q 在函数 $y = x + \frac{1}{x}$ 的图像上, 则 PQ 连线的斜率的取值范围是___
- 80. 下列函数中, 是奇函数, 且在 $(0,+\infty)$ 上递减的是 (

A. $y = x^2$

- B. $y = x^3$
- C. $y = x^{-\frac{1}{2}}$ D. $y = x^{-\frac{1}{3}}$
- 81. 设 $P ext{ } extstyle extstyle ABC$ 所在平面内一点. 若 $\overrightarrow{CB} = \lambda \overrightarrow{PA} + \overrightarrow{PB}$, $\lambda \in \mathbf{R}$, 则点 P 一定在 ().

A. △ABC 内部

- B. AC 边所在直线上 C. AB 边所在直线上 D. BC 边所在直线上
- 82. 若 a,b 是异面直线,则下列命题中的假命题为().
 - A. 过直线 a 可以作一个平面并且只可以作一个平面 α 与直线 b 平行
 - B. 过直线 a 至多可以作一个平面 α 与直线 b 垂直
 - C. 唯一存在一个平面 α 与直线 a,b 等距
 - D. 可能存在平面 α 与直线 a,b 都垂直
- 83. 王先生购买了一部手机, 欲使用中国移动"神州行"卡或加入联通的 130 网, 经调查其收费标准见下表: (注: 本地电话费以分为计费单位,长途话费以秒为计费单位)

网络	月租费	本地话费	长途话费
甲: 联通 130	12 元	0.36 元/分	0.06 元/秒
乙: 移动"神州行"	无	0.60 元/分	0.07 元/秒

若王先生每月拨打本地电话的时间是拨打长途电话时间的 5 倍, 若要用联通 130 应最少打多长时间的长途电 话才合算? 答: ().

A. 300 秒

B. 400 秒

C. 500 秒

D. 600 秒

84. 在三棱锥 P – ABC 中, PA, PB, PC 两两垂直, PB = 5, PC = 6. 若三棱锥 P – ABC 的体积为 20, Q 是 BC 的中点.

(1) 求 PA;

(2) 求异面直线 PB, AQ 所成角的大小.

85. 已知角 ABC 是 $\triangle ABC$ 的三个内角, a,b,c 分别是角 A,B,C 的对边. 若向量 $\overrightarrow{m}=(1-\cos(A+B),\cos\frac{A-B}{2})$, $\overrightarrow{n}=(\frac{5}{8},\cos\frac{A-B}{2})$, 且 $\overrightarrow{m}\cdot\overrightarrow{n}=\frac{9}{8}$.

(1) 求 $\tan A \cdot \tan B$ 的值:

(2) 求 $\frac{ab\sin C}{a^2 + b^2 - c^2}$ 的最大值.

86. 某市 2013 年发放汽车牌照 12 万张, 其中燃油型汽车牌照 10 万张, 电动型汽车 2 万张. 为了节能减排和控制总量, 从 2013 年开始, 每年电动型汽车牌照接 50% 增长, 而燃油型汽车牌照每一年比上一年减少 0.5 万张, 同时规定一旦某年发放的牌照超过 15 万张, 以后每一年发放的电动车的牌照的数量维持在这一年的水平不变. (1) 记 2013 年为第一年, 每年发放的燃油型汽车牌照数构成数列 {a_n}, 每年发放的电动型汽车牌照数构成数列 {b_n}, 完成下列表格, 并写出这两个数列的通项公式;

$a_1 = 10$	$a_2 = 9.5$	$a_3 = _{___}$	$a_4 = _{___}$	
$b_1 = 2$	$b_2 = 3$	$b_3 = _{___}$	$b_4 = _{___}$	

(2) 从 2013 年算起, 累计各年发放的牌照数, 哪一年开始超过 200 万张?

87. 设常数 $m \neq 0$. 已知椭圆 $\frac{x^2}{2} + y^2 = 1$ 上两个不同的点 A, B 关于直线 $y = mx + \frac{1}{2}$ 对称.

(1) 若已知 $C(0, \frac{1}{2})$, M 为椭圆上动点, 证明: $|MC| \leq \frac{\sqrt{10}}{2}$;

(2) 求实数 m 的取值范围;

(3) 求 △AOB 面积的最大值 (O 为坐标原点).

88. 已知函数 $f(x) = \log_k x(k)$ 为常数, k > 0 且 $k \neq 1$, 且数列 $\{f(a_n)\}$ 是首项为 4, 公差为 2 的等差数列.

(1) 求证: 数列 $\{a_n\}$ 是等比数列;

- (2) 若 $b_n=a_n+f(a_n)$, 当 $k=rac{1}{\sqrt{2}}$ 时, 求数列 $\{b_n\}$ 的前 n 项和 S_n 的最小值;
- (3) 若 $c_n = a_n \lg a_n$, 问是否存在实数 k, 使得 $\{c_n\}$ 是递增数列? 若存在, 求出 k 的范围; 若不存在, 说明理由.