Why approximate inference?

$$p^*(z) = p(z|X) = \frac{p(X|z)p(z)}{p(X)}$$

$$p^*(z) = p(z|X) = \frac{p(X|z)p(z)}{p(X)}$$

Easy for conjugate priors

$$p^*(z) = p(z|X) = \frac{p(X|z)p(z)}{p(X)}$$

- Easy for conjugate priors
 - Hard otherwise

$$p^*(z) = p(z|X) = \frac{p(X|z)p(z)}{p(X)}$$

- Easy for conjugate priors
 - Hard otherwise

Example:
$$p(x|z) = \mathcal{N}(x|\mu(z), \sigma^2(z))$$

Neural networks

Do we need exact posterior?

Do we need exact posterior?

