Cálculo de Número de Eventos

 χ^2 y minimización

Datos y plots de eventos

• Los experimento buscan detectar una determinada partícula a un cierto nivel de energía. Los detectores nos dan la cantidad de particulas observadas, a esto llamamos **eventos**. Entonces, a una **nivel de energía** dado, se tiene la **cantidad de particulas detectadas**.

Bin	Energia (GeV)	Eventos
1	0.5	3
2	1	6
3	1.5	8
4	2	12
5	2.5	10
6	3	7
7	3.5	8
8	4	5
9	5	3
10	6	1

Data experimental y simulación

• Los eventos o serie de eventos se representan:

$$N = \{N_1, N_2, N_3, ..., N_{10}\}$$
, o solo N_i , $i \in \{1, 2, ..., 10\}$, donde $N_i = N_i$ (probabilidad de oscilación).

• Nuestro objetivo es **simular** una serie de eventos (N^S) que coincidan lo mejor posible con eventos reales o **true** (N^T), los cuales se obtienen de experimentos o de alguna **simulación especial**.

$$N_i^S \approx N_i^T \,,\, \forall \,\, i \in \{1,2,3,\ldots\,,10\}\,.$$

Data experimental y simulación

• Los eventos o serie de eventos se representan:

 $N = \{N_1, N_2, N_3, ..., N_{10}\}$, o solo N_i , $i \in \{1, 2, ..., 10\}$, donde $N_i = N_i$ (probabilidad de oscilación).

Bin	N^{T}	N ^s
1	3	3
2	5	6
3	7	8
4	11	12
5	10	10
6	6	7
7	7	8
8	4	5
9	3	3
10	1	1

Medición de la diferencia entre N^T y N^S

• Existen muchas formas de realizar la diferencia entre N^T y N^S , pero la que usamos con frecuencia es χ^2 .

$$\chi^{2} = \sum_{i=1}^{n} \frac{\left(N_{i}^{T} - N_{i}^{S}\right)^{2}}{N_{i}^{T}}, \quad n = \text{# total de bines},$$

$$\chi^{2} = \chi^{2} \text{ (propabilidad de oscilación)}.$$

• En nuestro ejemplo n = 10, entonces:

$$\chi^2 = \sum_{i=1}^{10} \frac{\left(N_i^T - N_i^S\right)^2}{N_i^T} = 0.99329.$$

Búsqueda de χ^2 mínimo

• Nuestros eventos simulados serán más parecidos a los evenos reales siempre que χ^2 sea lo más cercano a 0. De este modo, lo que buscamos es encontrar la combinación de parámetros de osclación que nos de χ^2 mínimo, es decir, obtener el mejor ajuste o fit entre la simulación y lo real.

$$\chi^2_{min} = \min_{\substack{parámetros de oscilación}} \left\{ \chi^2(parámetros de oscilación) \right\}$$

Cálculo de Número de Eventos

• La simulación de los eventos se realiza con la ecuación:

$$N_i = C \times F_i \times \sum_{j=1}^m P(E_j, parm \ osc) \times \Phi(E_j) \times \sigma(E_j) \times K_{ij} \times \Delta E_j$$
, donde $E_j \in \{Valores \ de \ energía \ fijada \ por \ el \ experimento\}.$

• Todo se puede reducir aproximadamente a:

$$N_i(E_i, parm \ osc) = C_1 \times P(E_i, parm \ osc) + C_2$$
,

donde C_1 y C_2 son constantes, E_i es la energía del i-ésimo bin y

$$P \equiv P(E_i, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, L, \alpha_2, \alpha_3, \gamma_2, \gamma_3, ...).$$

Cálculo de Número de Eventos

Los eventos finales son la suma de señal (signal) y ruido (background):

$$N_{1}^{s} = \left\{ N_{1,1}^{s}, N_{1,2}^{s}, N_{1,3}^{s}, \dots, N_{1,n}^{s} \right\}$$

$$N_{2}^{s} = \left\{ N_{2,1}^{s}, N_{2,2}^{s}, N_{2,3}^{s}, \dots, N_{2,n}^{s} \right\}$$

$$Signal$$

$$N_{1}^{b} = \left\{ N_{1,1}^{b}, N_{1,2}^{b}, N_{1,3}^{b}, \dots, N_{1,n}^{b} \right\}$$

$$N_{2}^{b} = \left\{ N_{2,1}^{b}, N_{2,2}^{b}, N_{2,3}^{b}, \dots, N_{2,n}^{b} \right\}$$

$$N_{3}^{b} = \left\{ N_{3,1}^{b}, N_{3,2}^{b}, N_{3,3}^{b}, \dots, N_{3,n}^{b} \right\}$$
Background
$$N_{3}^{b} = \left\{ N_{3,1}^{b}, N_{3,2}^{b}, N_{3,3}^{b}, \dots, N_{3,n}^{b} \right\}$$

$$N^{Total} = \left\{ N_{1,1}^s + N_{2,1}^s + N_{1,1}^b + N_{2,1}^b + N_{3,1}^b, \dots, N_{1,n}^s + N_{2,n}^s + N_{1,n}^b + N_{2,n}^b + N_{3,n}^b \right\}$$