第七章 耦合电感与理想变压器

7-1 耦合电感

一、互感及互感电压

(空芯耦合线圈)

$$u_{11} = \frac{d\Psi_{11}}{dt} = L_1 \frac{di_1}{dt}$$

$$u_{21} = \frac{d\Psi_{21}}{dt} = M_{21} \frac{di_1}{dt}$$

M₂₁: 互感系数

$$u_{22} = \frac{d\Psi_{22}}{dt} = L_2 \frac{di_2}{dt}$$

$$u_{12} = \frac{d\Psi_{12}}{dt} = M_{12} \frac{di_2}{dt}$$

M₁₂: 互感系数

$$M_{12} = M_{21} = M$$

思考: 电压U1由几部分构成? U2?

二、同名端:

• 同名端规定: 当电流i₁、i₂分别从两个线圈对应的端纽流入时,磁通相互加强,则这两个端纽称作为同名端。

同名端意义: 若电流 i_1 由 N_1 的"•"端流入,则在 N_2 中产生的

互感电压u21的正极在N2的 "•"端。

• 同名端判断:

1、已知线圈绕向判断

2、未知线圈绕向判断

三、耦合电感(互感)的电路符号:

四、耦合系数:

表示两个线圈磁耦合的紧密程度。

$$K=rac{M}{\sqrt{L_{\!\scriptscriptstyle 1} L_{\!\scriptscriptstyle 2}}}$$

7-2 耦合电感的伏安关系

一、时域关系

$$u_1(t) = L_1 \frac{di_1(t)}{dt} + M \frac{di_2(t)}{dt}$$

$$u_2(t) = M \frac{di_1(t)}{dt} + L_2 \frac{di_2(t)}{dt}$$

二、频域关系

$$\dot{U}_1 = j\omega L_1 \dot{I}_1 + j\omega M \dot{I}_2$$
 $\dot{U}_2 = j\omega M \dot{I}_1 + j\omega L_2 \dot{I}_2$

7-3 耦合电感的连接及等效变换

一、串联

1、同向串联 (顺接)

$$\mathbf{L} = \mathbf{L_1} + \mathbf{L_2} + \mathbf{2M}$$

2、反向串联(反接)

$$\mathbf{L} = \mathbf{L}_1 + \mathbf{L}_2 - 2\mathbf{M}$$

 $L = L_1 + L_2 \pm 2M$ (顺接取正, 反接取负)

二、并联

1、同侧并联

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 \mp 2M}$$

2、异侧并联

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 + 2M}$$

(同侧取负,异侧取正)

例1: 图示电路, $\omega=100$ rad/s,U=220V。求: U_1 和 U_2 .

解: 设
$$\dot{U} = 220 \angle 0^{\circ}$$
 $\dot{I} = \frac{220 \angle 0^{\circ}}{200 + j300} = 0.61 \angle -56.31^{\circ}A$

$$\dot{U}_1 = j300\dot{I} - j500\dot{I} + 100\dot{I} = 136.4 \angle -119.74^{\circ}V$$

 $\dot{U}_2 = j1000\dot{I} - j500\dot{I} + 100\dot{I} = 311.04 \angle 22.38^{\circ}V$

例2: 两个耦合线圈,接到220V、50Hz正弦电压上。 顺接时I=2.7A, P=218.7W; 反接时I=7A。求互感M=?

P:
$$Z = R_1 + R_2 + j\omega(L_1 + L_2 \pm 2M) = \begin{cases} R + jX_1 \\ R + jX_2 \end{cases}$$

反接:
$$\frac{U}{I} = 31.429 = \sqrt{R^2 + X_2^2}$$
, 故, $X_2 = 9.7066$ $X_1 - X_2 = 4\omega M$ $M = \frac{X_1 - X_2}{4\omega} = 53.07mH_8$

例3: 图示电路, ω =4rad/s, C = 5F , M=3H。 求: 输入阻抗Z。当C为何值时阻抗Z为纯电阻?

解: 互感元件为同侧并联,有

$$L = \frac{4 \times 6 - 3^2}{4 + 6 - 2 \times 3} = \frac{15}{4}H$$

$$Z = 10 - j0.05 + j15$$

$$=10 + j14.95(\Omega)$$

若改变电容使Z为纯电阻性,则有

$$\frac{1}{\omega C} = 15 \therefore C = \frac{1}{60}F$$

7-4 耦合电感的T型连接及等效变换

一、T型连接

同侧T型连接

异侧T型连接

二、去耦等效电路

同侧T型连接

$$\dot{U}_{13} = j\omega L_1 \dot{I}_1 + j\omega M \dot{I}_2$$

= $j\omega (L_1 - M) \dot{I}_1 + j\omega M \dot{I}_3$
 $\dot{U}_{23} = j\omega L_2 \dot{I}_2 + j\omega M \dot{I}_1$
= $j\omega (L_2 - M) \dot{I}_2 + j\omega M \dot{I}_3$

异侧T型连接

$$U_{13} = j\omega(L_1 + M)I_1 - j\omega M I_3$$

 $\dot{U}_{23} = j\omega(L_2 + M)I_2 - j\omega M I_3$

小结:

同侧T型

异侧T型

例1: 图示电路, $\omega=10$ rad/s, $R=10\Omega$ 。 分别求K=0.5和K=1时,电路中的电流 I_1 和 I_2 以及电阻R吸收的功率.

(1)
$$K=0.5$$
, $M=0.5H$, 有

$$(j5+j5)\dot{I}_1+j5\dot{I}_2=100\angle 0^\circ$$

 $j5\dot{I}_1+(j5+j5+10)\dot{I}_2=0$

$$\vec{I}_1 = 11.3 \angle 81.87^{\circ} A$$
 $\vec{I}_2 = 4 \angle -216.87^{\circ} A$
 $P = 160W$

(2) K=1, M=1H, 有

$$j10\dot{I}_1 + j10\dot{I}_2 = 100\angle 0^{\circ}$$

 $j10\dot{I}_1 + (10 + j10)\dot{I}_2 = 0$

$$\dot{I}_1 = 10\sqrt{2}\angle -45^{\circ}A$$
 $\dot{I}_2 = 10\angle -180^{\circ}$
 $P = 1000W$

例2: 图示电路,求Z为何值可获最大功率?

并求出最大功率。其中:

$$u(t) = 10\sqrt{2}\cos(10^4t + 53.1^\circ)V$$

解:

- 1) 判定同名端,并画出电路图:
- 2) 去耦等效电路:
- 3) 移去待求支路Z,有:

$$U_{oc} = \frac{8 + j4}{14 + j4} 10 \angle 0^{\circ}$$
$$= 6.11 \angle 10.61^{\circ}V$$

$$Z_o = j2 + \frac{6(8+j4)}{14+j4}$$
$$= 3.6 + j2.67$$

4) 戴维南等效电路:

 6Ω

7-5 空芯变压器

一、组成:

N1: 初级线圈(原边线圈或原线圈)

N2: 次级线圈(副边线圈或副线圈)

芯架: 非导磁材料

三、电路方程:

$$(R_1 + j\omega L_1)I_1 + j\omega MI_2 = U_S$$

$$j\omega M I_1 + (R_2 + j\omega L_2 + Z_L)I_2 = 0$$

$$Z_{11}I_1 + jX_MI_2 = U_S$$

$$jX_{M}I_{1}+Z_{22}I_{2}=0$$

四、等效电路

1、初级等效电路

$$Z_{11}\dot{I}_{1} + jX_{M}\dot{I}_{2} = \dot{U}_{S}$$
 $jX_{M}\dot{I}_{1} + Z_{22}\dot{I}_{2} = 0$

$$\dot{I}_{1} = \frac{\dot{U}_{s}}{Z_{11} + \frac{X_{M}^{2}}{Z_{22}}} = \frac{\dot{U}_{s}}{Z_{11} + Z'_{11}}$$

其中:

$$Z_{11} = R_1 + j\omega L_1$$
 (初级回路自阻抗)

$$Z'_{11} = \frac{X_M^2}{Z_{22}}$$
 (次级对初级的反射阻抗)

$$Z_{22} = R_2 + j\omega L_2 + Z_L$$

2、次级等效电路

$$Z_{11}I_{1}+jX_{M}I_{2}=U_{S}$$
 $jX_{M}I_{1}+Z_{22}I_{2}=0$
 $\frac{-jX_{M}U_{S}}{Z_{11}}=\frac{-jX_{M}I_{10}}{Z_{22}+\frac{X_{M}^{2}}{Z_{11}}}=\frac{-jX_{M}I_{10}}{Z_{22}+Z_{22}^{\prime}}$
其中:

其中:

$$Z_{22} = R_2 + j\omega L_2 + Z_L$$
 (次级回路自阻抗)

$$Z_{22}' = rac{X_M^2}{Z_{11}}$$
 (初级对次级的反射阻抗)

$$\overset{ullet}{I}_{1 ext{o}}=rac{oldsymbol{U}_S}{oldsymbol{Z}_{11}}$$

-次级开路时的初级电流

五、空芯变压器倒相作用

初级等效电路电流:

$$\dot{I}_{1} = \frac{\dot{U}_{S}}{Z_{11} + Z_{11}'}$$

 $\begin{array}{c|cccc}
 & \mathbf{i_1} & \mathbf{M} & \mathbf{i_2} \\
 & & L_1 & L_2 \\
 & Us & R_1 & R_2 & Z_1
\end{array}$

次级等效电路电流:

$$\dot{I}_{2} = \frac{-jX_{M}I_{1o}}{Z_{22} + Z_{22}'},$$

其中,
$$I_{10} = \frac{U_S}{Z_{11}}$$

可见:同名端改变时,电流 I_1 不变, I_2 倒相。

六、含空芯变压器电路的分析

- 1、去耦等效法
- 2、初、次级等效法
- 3、直接方程分析法

七、自耦空芯变压器

- 1、组成:
- 2、电路模型:
- 3、去耦等效电路:

例1: 图示电路, $\omega=1000$ rad/s,U=50v, $L_1=10$ mH, $L_2=2$ mH,M=4mH 。求: 1)输入阻抗 Z_i ; 2)求电路中的电流 \dot{I}_1 、 \dot{I}_2 和 \dot{I}_1 ; 3)求 L_1 上的电压.

 L_2 +M

解: 去耦等效电路:

$$L = 14 + \frac{-4 \times 6}{-4 + 6} (mH)$$
$$= 2mH$$

$$Z_i = j2\Omega$$

设
$$\dot{U} = 50 \angle 0^{\circ}$$

$$\dot{I} = -j25A$$
 $\dot{I}_1 = -j75A$ $\dot{I}_2 = j50A$

$$\dot{U}_1 = j\omega L_1 \dot{I} + j\omega M \dot{I}_2 = 50 \angle 0^{\circ}V$$

例2: 图示电路, $\omega=1000$ rad/s, $U_S=20$ v,M=6H。求C=?时,

İ与电源电压同相,并求İ=?[----40

解:

去耦等效电路:

$$Z_{in} = \frac{j6k(j4k - j\frac{1}{\omega C})}{j6k + j4k - j\frac{1}{\omega C}}$$

i与电源电压同相,应有:

$$4k - \frac{1}{\omega C} = 0 \qquad C = \frac{1}{4} \mu F$$
$$6k + 4k - \frac{1}{\omega C} = 0 \qquad C = \frac{1}{10} \mu F$$

含互感元件(耦合电感元件)电路分析应注意:

- 如果不去耦,列方程时不要漏掉互感电压, 同时注意同名端与互感电压的关系;
- 2、去耦等效条件以及联接方式;
- 3、应用戴维南定理时,内外电路应无耦合。

7-6 理想变压器

一、组成:

二、电路模型:

理想化条件:

- 1、全耦合, K=1
- 2、不消耗能量也不储存能量
- $3, L_1, L_2, M \rightarrow \infty$

$$\frac{L_2}{L_1} = \left(\frac{N_2}{N_1}\right)^2 = n^2$$

$$\frac{\mathbf{I}_1}{\mathbf{I}_1} \qquad \mathbf{I}_2$$

$$+ \qquad \qquad \mathbf{U}_1 \qquad \qquad \mathbf{U}_2$$

$$\frac{n}{1} = \frac{N_1}{N_2}$$

三、理想变压器的电路方程:

$$u_2 = nu_1$$

$$u_1$$
 u_2

2、电流关系

$$i_2 = -\frac{1}{n}i_1$$

$$\dot{I}_2 = -\frac{1}{n}\dot{I}_1$$

说明:

- 1、电压与电流相互独立;
- 2、初级电压与次级电压满足代数关系:

注: 电压方向与同名端满足一致方向

3、初级电流与次级电流满足代数关系:

注: 电流方向与同名端满足一致方向

$$\frac{u_1}{u_2} = \frac{1}{n}$$

$$\frac{i_1}{i_2} = -\frac{n}{1}$$

4、同名端、参考方向不同,则电路方程不同。

例:写出下列理想变压器伏安关系。

四、阻抗变换作用

$$Z_i = rac{\overset{ullet}{U_1}}{\overset{ullet}{I_1}} = rac{1}{n^2} Z_L$$

$$Z_o = \frac{\dot{U}_2}{\dot{I}_2} = n^2 Z_S$$

例: 求下列电路输入阻抗。

五、用受控源模拟理想变压器

$$\begin{aligned} u_2 &= nu_1 \\ i_2 &= -\frac{1}{n}i_1 \end{aligned}$$

六、含理想变压器的电路分析

理想变压器作用: 电压变换、电流变换、阻抗变换

例1: 图示电路,求电压 U_2 。

且,
$$\begin{cases} U_2 = 10U_1 \\ \dot{I}_2 = -\frac{1}{10}\dot{I}_1 \end{cases}$$

$$U_1 = 2\angle 0^{\circ}V$$

$$U_2 = 20\angle 0^{\circ}V$$

思路2:

戴维南定理法:移去负载,有:

$$U_{oc} = 100 \angle 0^{\circ}$$

$$Z_o = 100\Omega$$

例2: 图示电路,求 $\dot{I}_1=?$ $\dot{I}_2=?$

解: 网孔法:

$$20\dot{I}_{1} - 10\dot{I}_{2} = 50 \angle 0^{\circ} - \dot{U}_{1}$$
$$-10\dot{I}_{1} + (10 - j50)\dot{I}_{2} = \dot{U}_{2}$$

且,
$$U_2 = 2U_1$$
 $I_2 = \frac{1}{2}I_1$
 $\therefore I_1 = 2 + j2(A)$
 $I_2 = 1 + j2(A)$

练习1: 图示电路,求n=?时,R可获最大功率 P_m ; 并求 $P_m=?$

解: 节点电位方程:

$$1.5 \dot{\varphi}_{1} - 0.5 \dot{\varphi}_{2} = 10 \angle 0^{\circ} - \dot{I}_{1}$$

$$-0.5 \dot{\varphi}_{1} + 1.5 \dot{\varphi}_{2} = -\dot{I}_{2}$$

$$\dot{\varphi}_{2} = n \dot{\varphi}_{1}$$

$$\dot{I}_{2} = -\frac{1}{n} \dot{I}_{1}$$

联立求解,有:

$$\phi_2 = \frac{20n}{3n^2 - 2n + 3}$$

练习2: 图示电路, 求İ=?

解: 回路电流方程:

$$2I_1 = 100 \angle 0^{\circ} - U_1$$

$$-4I + 4I_2 = -U_2$$

$$-4I_2 + (12 - j8)I = 100 \angle 0^\circ$$

$$U_1 = 2U_2$$

$$\dot{I}_1 = -\frac{1}{2}\dot{I}_2$$

联立求解,有:

$$I = 4.776 \angle 43.45^{\circ} A$$

练习3: 图示电路,求Z=? 可获最大功率 P_m ; 并求 $P_m=?$

解: 移去Z, 可求得:

$$\dot{U}_{oc} = \left(\frac{2}{2+j2} - \frac{2}{2-j2}\right) 20 \angle 0^{\circ}$$

$$= -j20V$$

$$Z_o = \frac{j2 \times 2}{2 + j2} + \frac{-j2 \times 2}{2 - j2}$$
$$= 2\Omega$$

$$Z = \overset{*}{Z} = 2\Omega$$
 $P_m = \frac{U_{oc}^2}{4R_0} = 50W$

练习4: 图示电路:

- 1) 求电阻R 消耗的功率;
- 2)若使 R获最大功率 P_m 可采取何种方法? 并求对应电路参数和 P_m 。

解: 1)
$$P = (\frac{12}{72+8})^2 \times 8 = \mathbf{0.18W}$$

2) 可接入一个理想变压器实现功率匹配。

根据最大功率传输定理,应有:

$$\frac{1}{n^2} \times 8 = 72 \qquad n = \frac{1}{3}$$

$$P_m = \frac{12^2}{4 \times 72} = 0.5W$$

本章要点:

一、基本概念:

耦合、互感、耦合系数、同名端、空心变压器、理想变压器; 二、电路计算:

- 1、含互感元件电路分析计算:
 - 1) 直接法:

列方程时不要漏掉互感电压; 注意同名端与互感电压的关系;

- 2) 去耦等效法: 去耦等效法条件、联接方式和参数计算;
- 2、含变压器电路分析计算:
 - 1) 空芯变压器
 - 2) 含理想变压器电路(电压、电流、阻抗变换关系)

注意: 应用戴维南定理时,内外电路应无耦合。