Data Engineering Implications of the DevOps Architecture

DEVOPS CONCEPTS

Cem SakaryaDevOps Risk Advisor

Microservices architecture

Microservice A

Stores Data

Service Database Transforms data

Microservice logic

ns data Send & Receive data

API

- Microservices are small-scale software programs
- Microservices deployed separately
- Each microservice take care of a different functionality
- Each microservice has its own data and logic
- They store the data in private databases

Monolithic architecture

- Opposite of the microservices architecture
- A big single unit
- Much simpler compared to microservices
- Maintenance and change is very hard and risky

Monolithic Architecture

- Limited number of databases
- All application uses the same databases
- Could be a viable option for small scale applications

Microservices Architecture

- A database for each microservice
- Microservices must do API calls to reach another services database
- Microservices are effective in large organizations and complex products

Microservices private databases

- Some product functionalities require collaboration from multiple microservices
- Microservices can not access each others databases freely, so they do API calls
- Microservices always communicate with each other.

Data Engineering applications in microservices

Microservice 1 Microservice 2 API Communication Service Service Microservice API API Microservice Data Pipeline 1 Database Database Independent

Databases

Data Engineering applications in microservices

Let's practice!

DEVOPS CONCEPTS

Data Pipelines

DEVOPS CONCEPTS

Cem SakaryaDevOps Risk Advisor

Data pipelines

ETL

¹ https://www.istockphoto.com/nl/vector/data-extract-transform-load-gm1361894912-434102842?phrase=ETL

Batch processing

- Move offline data in batches
- Batch Processing: A large amount of data

Recap

- Data Engineering is an integral part of Infrastructure Engineering
- Data pipelines are robust tools important for handling data
- Batch processing works on regular schedules, stream processing works continuously
- Batch processing is useful for handling the accumulated data
- Stream processing handles the real-time

Let's practice!

DEVOPS CONCEPTS

Analytics & Reporting with DevOps

DEVOPS CONCEPTS

Cem SakaryaDevOps Risk Advisor

DevOps benefits for reporting

- Handling Multiple Data Sources in harmony
- Producing many logs during the change management process

Reporting architecture For DevOps

- DevOps produces a lot of data
- Data sources are spread out
- Data needs to be collected and moved to a database
- Data Scientists can use the data for insights, reports, and dashboards

Let's practice!

DEVOPS CONCEPTS

Tools: Ecosystem

DEVOPS CONCEPTS

Cem SakaryaDevOps Risk Advisor

Requirements

- Business and engineering interaction
- Used throughout the software change management process
- Project Management Tools
- Communication Tools

¹ https://atlassian.design/foundations/logos ² https://slack.com/media-kit ³ https://discord.com/branding

Version Control Software

- Main change management technology is git
- Git is a protocol used for version control
- Git ensures multiple developers can work on the same software
- Git has many implementations, most common ones are GitHub and GitLab

¹ https://git-scm.com/downloads/logos ² https://github.com/logos ³ https://about.gitlab.com/press/press-kit/

Build Tools

- Software needs to be built to become executable
- Main build tools are: Maven and Gradle

¹ https://maven.apache.org/ ² https://gradle.com/brand/

CI/CD Tools

- CI/CD pipelines are the main principles of DevOps
- CI/CD pipelines ensure automated building, testing, and deployment of software
- Main CI/CD tools are Jenkins and CircleCI

¹ https://www.jenkins.io/press/ ² https://circleci.com/legal/trademark-guidelines/

Deployment

- Microservices are developed and deployed independently from each other
- Containers imitate separate machines
- Microservices are deployed on separate containers
- Containers: Docker and Podman
- Container orchestration: Kubernetes

¹ https://www.docker.com/company/newsroom/media-resources/ ² https://podman.io/ ³ https://kubernetes.io/

Monitoring Tools

- Products need to be closely monitored and observed for quality and reliability issues
- Monitor the DevOps health and change management metrics
- Example tools used for monitoring are SignalFX and AppDynamics

¹ https://www.splunk.com/en_us/products/observability.html?301=/en_us/devops.html

Data management tools: Kafka

- Kafka is a message publishing system
- Kafka is heavily used in microservices architecture
- Microservices keep a journal of the work they do on Kafka

¹ https://kafka.apache.org/trademark

Data pipeline management tools

- Most tools used for both batch and streaming processing
- Main tools used for data pipeline management are: Apache Airflow, Hevo Data, and Prefect

¹ https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow%20logos ² https://design.hevodata.com/ ³ https://www.prefect.io/newsroom/logos/

Recap

Let's practice!

DEVOPS CONCEPTS

