What can we learn from a billion agents?

Ayush Chopra MIT

Zheng et al (2021)

Zheng et al (2021)

Smallville with 25 agents

Park et al (2023)

Zheng et al (2021)

Minecraft with 1000 agents

Yang et al (2024)

Smallville with 25 agents

Park et al (2023)

Zheng et al (2021)

Minecraft with 1000 agents

Yang et al (2024)

Smallville with 25 agents

Park et al (2023)

Deepmind framework for generative social simulations

Vezhnevets et al (2023)

Trillion-Dollar Pandemic

lpm.media.mit.edu/platform

Outline: What can we learn from a billion agents?

- Motivation and Impact
- Introduction
 - Large Population Models (LPMs)
 - The AgentTorch framework
- Case Study
 - Modeling disease spread over 8.4 million agents
- Conclusion

Challenges with agent-based simulations

Expressive agents

Adaptive Heterogeneous

Dynamic interactions

Multi-scale Stochastic

Synchronized analysis

Decentralized Sensitive

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Synchronized analysis

Decentralized Sensitive

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up)

Synchronized analysis

Decentralized Sensitive

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up)

Synchronized analysis

Decentralized Sensitive

Secure MPC

ICML-W'22 (Best paper); AAMAS'24; Nature Medicine'25

Simulate an entire country on commodity hardware

Execute upto 300,000 interactions/sec and scale to 60 million agents/GPU

Method	Simulation	Calibration	Analysis	
Conventional ABM*	50 hours	100,000 hours	5,000 hours	
LPM	5 minutes	12 hours	10 seconds	

*Mesa, JUNE, Simudyne 8 million Iondon agents

Simulate an entire country on commodity hardware

Execute upto 300,000 interactions/sec and scale to 60 million agents/GPU

Method	Simulation	Calibration	Analysis	
Conventional ABM*	50 hours	100,000 hours	5,000 hours	
LPM	5 minutes	12 hours	10 seconds	

+ 600x + 8300x + 5000x

*Mesa, JUNE, Simudyne 8 million london agents

github.com/AgentTorch/AgentTorch

pip install agent-torch

Build end-to-end workflows in 3 lines of code

```
from agent_torch.core import env
from agent_torch.core import models, populations
# create
simulation = env.create_from_template(
                models.epidemiology,
                populations.new zealand
# execute
simulation.execute()
# visualize
simulation.visualize(
        geo_index='agent/positions')
```

Build end-to-end workflows in 3 lines of code

```
from agent_torch.core import env
from agent_torch.core import models, populations
# create
simulation = env.create_from_template(
                models.epidemiology,
                populations.new zealand
# execute
simulation.execute()
# visualize
simulation.visualize(
        geo_index='agent/positions')
```

Expressive templates

Custom populations

High-res visualizations

Comparison with other frameworks

Feature	AgentTorch	Concordia	Flame	Mesa
GPU Execution	☑	<u>~</u>		×
Million-agent Populations	☑	×	<u> </u>	<u> </u>
Differentiable Environments	☑	×	×	×
Mechanistic Environments	~	×	<u> </u>	<u>~</u>
LLM Integration	~	~	×	×
Neural Composition	Z	<u> </u>	×	×

Outline: What can we learn from a billion agents?

- Motivation and Impact
- Introduction
- Case Study:
 - Problem Formulation: modeling disease spread over 8.4 million agents
 - Part 1: Population Prompting via Archetypes
 - Part 2: Gradient-assisted simulation via Differentiable Environments
 - Part 3: Decentralized analysis via Secret Sharing
- Conclusion

- 5 boroughs
- 8.4 million people
- 3.3 million households

- 200,000 small businesses

2020-2022

What if we give \$500 stimulus payments?

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot | \mathbf{z}_i(t))
ight)$$

environmental influence

"Spread factor" of the variant

environmental influence

Disease status

- Age, Income, Occupation

Current state of agent

New state of agent

- New disease status
- Age, Income, Occupation

neighborhood influence

- Time since infection
- Vaccination status

Individual agency

Willingness to interact

Q1: model individual agency?

 $\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; oldsymbol{\ell(\cdot|\mathbf{z}_i(t))}
ight)$

LLMs to prompt 8.4 millions agents in NYC?

Varies with agent state

Large Population Models

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up

Data-driven analysis

Decentralized Sensitive

Secure MPC

ICML-W'22 (Best paper); AAMAS'24; Nature Medicine'25

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

Scale LLMs to prompt millions of agents

```
. .
from agent_torch.core import Archetype, Behavior
from agent torch.populations import NYC
# Create an object of Archetype class
# n_arch estimates a predictive posterior over outcomes
archetype = Archetype(n_arch=7)
# Create an object of Behavior class
work_behavior = Behavior(archetype=archetype.llm(prompt),
                        region=NYC)
will_work = work_behavior.sample()
```

Agent Prompt

User Prompt

You are a {gender} of age {age}, living in the {location} region. You work in {occupation } industry with monthly income of {income }.

The number of new cases in your neighborhood is {cases}, which is a {change}% change from the previous month. It has been {duration} months since the start of the pandemic.

This month, you have received a stimulus payment of {payment} to support your living expenses.

Given these factors, do you choose to isolate at home? (isolation behavior)

"There isn't enough information" and "It is unclear" are not acceptable answers. Give a "Yes" or "No" answer, followed by a period. Give one sentence explaining your choice.

#archetypes = age x gender x regions x occupation x income-levels

Specify prompt-specific archetypes

8.4 million agents in NYC

~2000 representative archetypes

prompt dimensions data resolution (e.g. census)

Population Prompting via Archetypes

Archetypes

Population Prompting via Archetypes

Archetypes

Population Prompting via Archetypes

Archetypes Agents

High variance individual agents produce reliable census-level estimates

Prompt virtual population of 8.4 million agents

Measure correlation with labor force participation census

High variance individual agents produce reliable census-level estimates

Prompt virtual population of 8.4 million agents

Measure correlation with labor force participation census

Rebuild the census, in simulation!?

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot | \mathbf{z}_i(t))
ight)$$

Q2: simulate and calibrate efficiently?

Simulation involves repeated execution of f

Calibration involves estimating $\boldsymbol{\theta}$

$$\mathbf{z}_i(t+1) = oldsymbol{f}\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), oldsymbol{ heta}, \ \ell(\cdot | \mathbf{z}_i(t))
ight)$$

Q2: simulate and calibrate efficiently?

Simulation involves repeated execution of f

Calibration involves estimating $\boldsymbol{\theta}$

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \ m{ heta}, \ \ell(\cdot | \mathbf{z}_i(t))
ight)$$

- neural or mechanistic
- Stochastic and multiple "sub-steps"

f vectorized and differentiable?

Large Population Models

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up)

Data-driven analysis

Decentralized Sensitive

Secure MPC

ICML-W'22 (Best paper); AAMAS'24; Nature Medicine'25

Dynamic interactions

Multi-scale Stochastic

Differentiability

Compose end-to-end with NNs

```
# agent_"torch" works seamlessly with the pytorch API
from torch.optim import SGD
nn = compose nn()
for i in range(n_epochs):
  parameters = compose_nn.forward()
  simulation.step(params=parameters)
  cases, employment = simulation.predict()
  simulation.optimize(SGD)
  simulation.reset()
```


$$\theta_T = \theta_T - \alpha \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \theta_T}$$

$$\theta_P = \theta_P - \alpha \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \theta_P}$$

$$\theta_T = \theta_T - \alpha \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \theta_T}$$

$$\theta_P = \theta_P - \alpha \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \theta_P}$$

$$\theta_P = \theta_P - \alpha \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \theta_P}$$

Mode 1: Calibrate parameters with gradient descent (c-GRADABM)

$$\phi = \phi - \alpha \frac{\partial \mathcal{L}(\hat{y}, y; (\theta_T^t, \theta_P^t))}{\partial \phi},$$

Mode 2: Calibrate generator function with gradient descent (dc-GRADABM)

$$\phi = \phi - \alpha \frac{\partial \mathcal{L}(\hat{y}, y; (\theta_T^t, \theta_P^t))}{\partial \phi},$$

Multi-task learning over simulation environments, reduce overfitting

Estimate posteriors over simulation parameters

github.com/AgentTorch/AgentTorch

pip install agent-torch

Dynamic interactions

Multi-scale Stochastic

Differentiability

Compose with ODEs

```
from chirho.dynamical.handlers.solver import TorchDiffEq
from chirho.dynamical.ops import simulate
simulation = envs.create(
            model=epidemiology,
            populations=NYC,
            archetype={'immune_dynamics':
                        archetype.ode(chiro_ode, eval_times)
            })
simulation.execute()
```

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot | \mathbf{z}_i(t))
ight)$$

Q3: what about the data?

coarse-grained, noisy and stale data limited granularity from privacy not scarcity?

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot|\mathbf{z}_i(t))
ight)$$

- Interaction traces
- Vaccination, disease status

Q3: what about the data?

coarse-grained, noisy and stale data limited granularity from privacy not scarcity?

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} M_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot|\mathbf{z}_i(t))
ight)$$

- Interaction traces
- Vaccination, disease status

decentralize the simulation?

Large Population Models

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up)

Data-driven analysis

Decentralized Sensitive

Secure MPC

ICML-W'22 (Best paper); AAMAS'24; Nature Medicine'25

Data-driven analysis

Decentralized Sensitive

Secure MPC

Backprop through the "real-world"

```
from agent_torch.core import decentralize
# map simulation to real protocol
real sim = decentralize(
 simulation,
 protocol="ble_contact_tracing")
real_sim.deploy()
real_sim.sync()
```

Compose with Physical protocols
Estimate simulation gradients via MPC

aside: what is secure multi-party computation?

additive secret sharing

$$\mathbf{z}_i(t+1) = f\left(\mathbf{z}_i(t), igoplus_{j \in \mathcal{N}_i(t)} igotlus_{ij}(t), \; oldsymbol{ heta}, \; \ell(\cdot|\mathbf{z}_i(t))
ight)$$

securely estimate $z_i(t+1)$ and dz/d heta on agent device

Aggregate Message and Calibration Gradient

Calibrate disease parameters without leaking an agent's state or interaction trace

Analyze dynamics without leaking individual disease, demographic or geo-location

Data-driven analysis

Decentralized Sensitive

Secure MPC

Backprop through the "real-world"

```
from agent_torch.core import decentralize
# map simulation to real protocol
real sim = decentralize(
 simulation,
 protocol="ble_contact_tracing")
real_sim.deploy()
real_sim.sync()
```

Compose with Physical protocols
Estimate simulation gradients via MPC

Large Population Models

lpm.media.mit.edu/research.pdf

Expressive agents

Adaptive Heterogeneous

LLM Archetypes

AAMAS'23; arxiv'24

Dynamic interactions

Multi-scale Stochastic

Differentiability

BMJ'21; AAMAS'23; AAMAS'24 (Best paper runner-up)

Data-driven analysis

Decentralized Sensitive

Secure MPC

ICML-W'22 (Best paper); AAMAS'24; Nature Medicine'25

Conclusion: Power of Large Population Models

- <u>Scale and Speed</u>: LPMs simulate millions of agents in seconds on standard hardware, enabling unprecedented insights into complex systems.
- <u>Expressive Agents</u>: By leveraging LLMs as behavioral archetypes, LPMs capture nuanced individual behaviors at scale.
- <u>Closing Sim2Real Gap</u>: Secure multi-party computation allows LPMs to incorporate real-world data without compromising privacy.
- <u>Diverse Applications</u>: From pandemic response to energy adoption and supply chain management, LPMs are already making global impact.
- <u>Open-Source Accessibility</u>: AgentTorch democratizes LPM technology, making it available to researchers and policymakers worldwide.

github.com/AgentTorch/AgentTorch

lpm.media.mit.edu/join

github.com/AgentTorch/AgentTorch

pip install agent-torch

