Perth Modern School

2018

TEST 2

Yr 12 Maths Specialist

Page 1

36 marks 8 Questions Classpads allowed! TIME: 5 mins reading 40 minutes working Exceptional schooling. Exceptional students.

BERTH MODERN SCHOOL **PERTH MODERN SCHOOL** Year 12 Specialist

SNOILM705

Teacher:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Consider $\int (x) dx = x^2 + 4x - 4$. Q1 (2 & 2 = 4 marks)

(i) Show that (x-2i) is a factor of f(x) + (2i) +

Consider $f(x) = x^3 + bx^2 + cx + 8$ where b & c are constants. Given that (x+2) is a factor

of f(x) and when f(x) is divided by f(x-x) has a remainder of f(x) . Determine f(x)

$$Q = (z) + Q = (z-) +$$

0=(2-)+/ 0=(2-)+/ 0=27-94 0=27-94 0=27-94 8+28+96+28=01- 0=8+32-94+8-

Given that $f(x) \gtrsim 0$ bood $f(x) \lesssim 0$ sood $f(x) \lesssim 0$ book $f(x) \lesssim 0$ book the natural $f(x) \lesssim 0$ Q3 (3 marks)

domain of 8? Explain your answer. To exist $(q \le d + \sqrt{5t^2 t^2})$ conclusion of 8? Explain your answer. To exist $(q \le d + \sqrt{5t^2 t^2})$ conclusion of 8? Explain your answer. To exist $(q \le d + \sqrt{5t^2 t^2})$ conclusion of $(q \le d + \sqrt{5t^2 t^2})$ over $(q \le d + \sqrt{5t^2 t^2})$ conclusion of $(q \le d + \sqrt{5t^2 t^2})$ conclusion of $(q \le d + \sqrt{5t^2 t^2})$ over $(q \le d + \sqrt{5t^2 t^2})$ conclusion of $(q \le d + \sqrt{5t^2 t^2})$ over $(q \le d + \sqrt{5t^2 t^2})$

Yr 12 Maths Specialist

Perth Modern School

Q4 (2 & 2 = 4 marks)

Given that
$$f(x) = \sqrt{x}$$
 and $h(x) = \frac{1}{x^2 + 5}$:

Q4 (2 & 2 = 4 marks)

Given that
$$f(x) = \sqrt{x}$$
 and $h(x) = \frac{1}{x^2 + 5}$:

i) Determine the rule of $h \circ f(x) = \frac{1}{x + 5}$:

 $\sqrt{\text{state}} = \sqrt{\text{state}} = \sqrt{\text{state}}$

Q5 (3 & 3 = 6 marks)

i) On the diagram, sketch the inverse function $f^{-1}(x)$

Perth Modern School

Page 3

but of
$$0=x$$
 to slotomyze $(x) t = y$

show of $0=x$ to slotomyze $(x) t = y$

(1.1) to $(x) + 2 \cos x$

Q6) (1, 1, 2 & 2= 6 marks)

) Determine the natural domain of fConsider the function $f\left(x\right)=\frac{cx+d}{dx+b}$ where a,b,c & d are non-zero constants.

ii) Determine the limit that f approaches as $x \to \pm \infty$

iii) Determine the inverse function
$$\int_{-1}^{-1} (x)$$
 in terms of a,b,c & d .

$$x = cy + d \qquad (x)^{-1} + (x) = (y + d) \qquad (x)^{-1} + (x) = (x + y + d) \qquad (x)^{-1} + (x)^{-1} = (x + y + d) \qquad (x)^{-1} + (x)^{-1} = (x + y + d) \qquad (x)^{-1} + (x)^{-1} = (x + y + d) \qquad (x)^{-1$$

. In The possible values of
$$a,b,c$$
 a if b is b if b if b is b is b if b is b is b is b is b in b is b in b in

Q7 (4 marks)

Consider the equation |2x+5| = p|x+q| + r which is true and only true for $\frac{-5}{2} \le x \le 3$.

Determine the possible values of the constants p,q & r.

sketcher overlap only between - 25 > 6 3 (OR other reasoning that)

Right/wrong

No follow through

P=-2

Q8 (4 marks)

Page 5

Let
$$z=\cos(2\theta)+i\sin(2\theta)$$
 , prove that $\dfrac{1+z}{1-z}=\dfrac{i}{\tan\theta}$

$$LHS = \frac{\cos 200 + 1 + 1 \sin 200}{1 - \cos 200} + \frac{1 \sin 200}{(1 - \cos 200) + 1 \sin 200}$$

$$= \frac{(1 + \cos 20)(1 - \cos 20) - \sin^2 200}{(1 - \cos 20)^2 + \sin^2 200}$$

$$= \frac{1 - \cos^2 0 - \sin^2 200}{1 - 2\cos 200 + \cos^2 200} + \frac{2\cos 200}{1 - 2\cos 200}$$

$$= \frac{2 \cos 200}{2 - 2\cos 200}$$

$$= \frac{2 \sin^2 0}{2 \sin^2 0}$$

$$= \frac{2 \cos 0}{2 \sin 0}$$

$$= \frac{2 \cos 0}{2 \sin 0}$$

$$= \frac{\cos 0}{\sin 0}$$

$$= \frac{\cos 0}{\sin 0}$$

$$= \frac{\cos 0}{\sin 0}$$

$$= \frac{\cos 0}{\sin 0}$$

$$= \frac{\cos 0}{\cos 0$$