Game-Math Developer

Подробни решения:

Задача 1.

Събитията $A \cap \overline{B}$, $\overline{A} \cap B$, $A \cap B$ и $\overline{A} \cap \overline{B}$ са пълна група от събития, тъй като сечението на всеки две от тях дава празното множество, а обединението на всички образуват пълното множество от събития Ω . Следователно,

$$\mathbb{P}(A \cap \overline{B}) + \mathbb{P}(\overline{A} \cap B) + \mathbb{P}(A \cap B) + \mathbb{P}(\overline{A} \cap \overline{B}) = 1.$$

От законите на де Морган знаем, че

$$\mathbb{P}(\overline{A} \cap \overline{B}) = 1 - \mathbb{P}(\overline{\overline{A} \cap \overline{B}})$$
 де Морган $1 - \mathbb{P}(A \cup B)$ по условие $1 - \frac{1}{3} = \frac{2}{3}$.

Заместваме с получения резултат в по-горното уравнение и получаваме, че:

$$\mathbb{P}(A \cap \overline{B}) + \mathbb{P}(\overline{A} \cap B) + \mathbb{P}(A \cap B) = \frac{1}{3}.$$

Тъй като събитията A и B са независими, то и събитията A, \overline{A} , B и \overline{B} са две по две независими (ТОВА Е ОСНОВНА ЛЕМА, КОЯТО ТРЯБВА ДА СЕ ДОКАЖЕ!). Тогава $\mathbb{P}(A\cap \overline{B})=\mathbb{P}(A)\times \mathbb{P}(\overline{B}), \mathbb{P}(\overline{A}\cap B)=\mathbb{P}(\overline{A})\times \mathbb{P}(B)$ и $\mathbb{P}(A\cap B)=\mathbb{P}(A)\times \mathbb{P}(B)$.

 $\mathbb{P}(A)=a$ и $\mathbb{P}(B)=b$. Търсим a и b, такива, че $a<\frac{1}{3}$ и $b<\frac{1}{3}$. От зависимостта по-горе следва, че $a(1-b)+(1-a)b+ab=\frac{1}{3}$. Тоест търсим едно от безбройно многото решения на уравнението $a+b-ab=\frac{1}{3}$. Всяко решение на уравнението 3a+3b-3ab=1, за което $a<\frac{1}{3}$ и $b<\frac{1}{3}$ е решение на задачата. Нека $a=\frac{1}{5}<\frac{1}{3}$, тогава $b=\frac{1}{6}$. Окончателно $\mathbb{P}(A)=\frac{1}{5}$ и $\mathbb{P}(B)=\frac{1}{6}$ е едно от безбройно многото валидни решения. Тези числа могат да се отгатнат и чрез тривиални разсъждения.

Доказателство на използваната в решението ЛЕМА може да намерите тук.

Задача 2.

За да е напълно дефинирана задачата е необходимо да се спомене, че играчът ще играе разумно или казано по друг начин - оптимално. Това може да се добави при допълнителен въпрос зададен от полагащия теста. В това решение правим допускането, че играчът ще прилага възможно най-добрата стратегия. Най-добрата стратегия, която може да приложи играчът е да хвърля зарчето втори път когато е получил брой точки по-малък от 4. Това е така, тъй като ако е получил брой точки по-голям или равен на 4, той няма да има смисъл да рискува с повторно хвърляне, тъй като вероятността да получи повече точки от вече получените е по-малка. Нека означим с p броя на точките които играчът е получил при хвърляне на зарчето. Тогава имаме, че:

хвърляне на зарчето. Тогава имаме, че:
$$\mathbb{P}(p < 4) \times \frac{1 + 2 + 3 + 4 + 5 + 6}{6} + \mathbb{P}(p \ge 4) \times \frac{4 + 5 + 6}{3} = \frac{1}{2} \times 3.5 + \frac{1}{2} \times 5 = \boxed{4.25}$$

Задача 3.

Преименуваме събитията Activator = A и RandomWilds = RW. Тъй като $A=\Omega\backslash \overline{A}$, то A и \overline{A} образуват пълна група от събития. От формулата за пълната математическа вероятност имаме, че:

$$\mathbb{P}(RW) = \mathbb{P}(RW|A) \times \mathbb{P}(A) + \mathbb{P}(RW|\overline{A}) \times \mathbb{P}(\overline{A}) =$$

$$= (60\% + 4\%) \times 19\% + 10\% \times 81\% =$$

$$= \frac{64 \times 19 + 10 \times 81}{10,000} = \frac{2026}{10,000} = 20.26\%$$

Задача 4.

Ако се стреля хаотично (напълно аматьорски), то вероятностите да се улучат съответно множествата от точки (секторите) A, B и C са съответно:

$$A: \quad \mathbb{P}(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{\pi \times \left(\frac{1}{3}\right)^{2}}{\pi \times 1^{2}} = \boxed{\frac{1}{9}};$$

$$B: \quad \mathbb{P}(B) = \frac{\mu(A \cup B) - \mu(A)}{\mu(\Omega)} = \frac{\pi \times \left(\frac{2}{3}\right)^{2} - \pi \left(\frac{1}{3}\right)^{2}}{\pi \times 1^{2}} = \frac{4}{9} - \frac{1}{9} = \frac{3}{9} = \boxed{\frac{1}{3}};$$

$$C: \quad \mathbb{P}(C) = \frac{\mu(A \cup B \cup C) - \mu(A \cup B)}{\mu(\Omega)} = \frac{\pi \times 1^{2} - \pi \times \left(\frac{2}{3}\right)^{2}}{\pi \times 1^{2}} = 1 - \frac{4}{9} = \boxed{\frac{5}{9}}.$$

Задачата е типичен пример за Монте Карло алгоритмите. По-добър вариант би бил да се иска да се реши задачата с обърнат пример за Монте Карло алгоритъм – знаят се вероятностите, с които играчът улучва секторите по мишената и се иска да се намерят площите на секторите по мишената. След това да се иска обяснение от полагащия теста – защо това работи и как. Правилният отговор се обляга на закона за големите числа (ЗГЧ), за който може да прочетете повече на страница 17 от тук.

Задача 5.

Разглеждаме осем успоредни диагонала, като диагонал номер j се състои от всички клетки, за които номерът на реда минус номера на стълба дава остатък j при деление на 8, където $j=0,\ldots,7$. Нека тези диагонали са "чекмеджета", а топовете — "предмети". От принципа на Дирихле, тъй като $33/8\equiv 4$ с остатък 1, то има поне един диагонал с поне 4+1 топа. Тези пет топа лежат в различни редове и в различни стълбове, тоест не се бият.

Тоест винаги може да намерим 5 топа измежду 33 топа поставени на шахматна дъска с размерност 8×8 , никои два измежду тях, които не се бият.

0	7	6	5	4	3	2	1	_
1	0	7	6	5	4	3	2	_
2	1	0	7	6	5	4	3	_
3	2	1	0	7	6	5	4	_
4	3	2	1	0	7	6	5	_
5	4	3	2	1	0	7	6	_
6	5	4	3	2	1	0	7	T
7	6	5	4	3	2	1	0	
	7	6	5	4	3	2	1	4//
		7	6	5	4	3	2	4//
			7	6	5	4	3	4//
				7	6	5	4	6//
					7	6	5	4//
						7	6	•//
								1 /

Задача 6.

като $I = \overline{H}$.

Нека $A=\{$ теста е реагирал положително за вирус (включва се аларма) $\}$. Търси се условната вероятност $\mathbb{P}(I|A)$.

$$\mathbb{P}(I \mid A) = \frac{\mathbb{P}(I \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid I)\mathbb{P}(I)}{\mathbb{P}(A \mid I)\mathbb{P}(I) + \mathbb{P}(A \mid H)\mathbb{P}(H)} = \frac{99\% \times 1\%}{99\% \times 1\% + 20\% \times 99\%} = \frac{99}{99 + 20 \times 99} = \frac{1}{21}.$$
 Тук излолзвахме, че I и H са пълна група от събития, тъй

Получаваме, че 1 на всеки 21 души, при които се е пуснала алармата наистина е заразен с вируса COVID. Оказва се, че теста HE е много полезен. Получава се така, тъй като заразените са много малък процент от популацията (посетителите на летището), а грешката в теста от $20\,\%$ е втърде голяма.

Задача 7.

Имаме експеримент, който всеки път е един и същ (играта не се променя) и следователно връщаните стойности от достатъчно на брой игри ще са нормално разпределени (спрямо централна гранична теорема (ЦГТ)).

Критичната стойност за ниво на довереност от 95% се задава от $t^* = 1.96$.

Границата на стандартната грешка е
$$t^* \times \frac{s}{\sqrt{n}} = \frac{1.96 \times 12}{\sqrt{36}} = 3.92.$$

Следователно доверителният интервал за средната върната стойност е:

 $\mu \in (4-3.92,4+3.92) = (0.08,7.92)$ Този интервал ни казва, че с гаранционна вероятност от $95\,\%$ – върнатата стойност от проведения експеримент ще лежи в границите на интервала.

Задача 8.

Контраинтуитивно, такава стратегия съществува!

Именуваме следните събития: $A = \{$ вижда a в I^{-BM} плик $\}$,

 $B = \{$ вижда b във H^{-pu} плик $\}$ и $C = \{$ прави се смяна на пликовете $\}$.

Знаем, че $\mathbb{P}(A) = \mathbb{P}(B) = \frac{1}{2}$ (равно вероятно е да изберем който и да е от двата

плика). Нека още $C = \{$ прави се смяна на пликовете $\}$.

$$\mathbb{P}(b) = \mathbb{P} \quad (A \cap C) + \mathbb{P} \quad (B \cap \overline{C}) =$$
избира се
плик А и
се прави
смяна
$$= \mathbb{P}(C \mid A) \times \mathbb{P}(A) + \mathbb{P}(\overline{C} \mid B) \times \mathbb{P}(B) =$$

$$= \frac{1}{2} \left(\mathbb{P}(C \mid A) + \mathbb{P}(\overline{C} \mid B) \right) =$$

$$= \frac{1}{2} \left(\mathbb{P}(C \mid A) + \mathbb{P}(C \mid B) \right) =$$

$$= \frac{1}{2} \left(\mathbb{P}(C \mid A) + \mathbb{P}(C \mid B) \right) =$$

$$= \frac{1}{2} \left(\mathbb{P}(C \mid A) + \mathbb{P}(C \mid B) \right) =$$

Тук използвахме, че
$$\mathbb{P}(C \mid B) + \mathbb{P}(\overline{C} \mid B) = \frac{\mathbb{P}(C \cap B) + \mathbb{P}(\overline{C} \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.$$

Тоест задачата се свежда до въпроса: може ли да определим такава стратегия, при която $\mathbb{P}(C \mid A) > \mathbb{P}(C \mid B)$.

Нека разгледаме няколко случая, за да добием представа за сложността на въпроса:

Нека.

 $J = \mathbb{P}(C \, | \, A) - \mathbb{P}(C \, | \, B)$. Търсим стратегия, при която J > 0.

$$J = \mathbb{P}(C \mid A) - \mathbb{P}(C \mid B)$$

$$= \frac{\mathbb{P}(C \cap A)}{\mathbb{P}(A)} - \frac{\mathbb{P}(C \cap B)}{\mathbb{P}(B)} =$$

$$= \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(A)} \times \frac{\mathbb{P}(C)}{\mathbb{P}(C)} - \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)} \times \frac{\mathbb{P}(C)}{\mathbb{P}(C)} =$$

$$= \mathbb{P}(C) \times \left(\frac{1}{\mathbb{P}(A)} \times \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(C)} - \frac{1}{\mathbb{P}(B)} \times \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(C)}\right) =$$

$$= \mathbb{P}(C) \times \left(\frac{1}{2} \times \mathbb{P}(A \mid C) - \frac{1}{2} \times \mathbb{P}(B \mid C)\right) =$$

$$= \frac{\mathbb{P}(C)}{2} \times \left(\mathbb{P}(A \mid C) - \mathbb{P}(B \mid C)\right).$$

1 сл. Ако никога не сменяме: J=0, т.к. $\mathbb{P}(C)=0$ и $\mathbb{P}(A\mid C)=0=\mathbb{P}(B\mid C)$. 2 сл. Ако винаги сменяме: J=0, т.к. $\mathbb{P}(A\mid C)=\mathbb{P}(A)=1$ и аналогично $\mathbb{P}(B\mid C)=\mathbb{P}(B)=1$. 3 сл. Ако сменяме на всяко второ теглене: J=0, тъй като $\mathbb{P}(A\mid C)=\frac{1}{2}\times\mathbb{P}(A)=\frac{1}{4}$ и аналогично и за B. 4 сл. Ако сменяме на всяко трето теглене: J=0, тъй като $\mathbb{P}(A\mid C)=\frac{1}{3}\times\mathbb{P}(A)=\frac{1}{6}$ и аналогично и за B. ...

Изглежда, че каквото и да направим, винаги ще е равновероятно да останем с която и да е от двете суми.

Сега да се върнем на $J=\mathbb{P}(C\,|A)-\mathbb{P}(C\,|B)$. Това равенство в този вид е много по-мощно от равенството до което достигаме в синьото уравнение. Но благодарение на равенството от синьото уравнение може да пресметнем J при някакви стратегии от вида "сменяме плика на всяко k^{-TO} теглене".

Какво е всъшност $\mathbb{P}(C|A)$? Това е "вероятността да сменим пликовете при положение, че сме избрали плик A". Ние не знаем дали сме ибрали плик A, но знаем каква е сумата в него! Имаме наредба на събитията. Първо виждаме каква е сумата в избрания плик и после решаваме дали го сменим или не. Нека използваме тази налична информация, за да се опитаме да формулираме желаната стратегия.

Ако си дефинираме стратегията по следния начин:

Ако виждаме числото (сумата) x, то винаги сменяме с вероятност e^{-x} . Тоест $\mathbb{P}(C \mid \text{виждаме } x) = e^{-x}$. Следователно,

$$J = \mathbb{P}(C \, | \, A) - \mathbb{P}(C \, | \, B) = e^{-a} - e^{-b} > 0$$
 и това е валидна стратегия!

В случая взехме неперовото число e, но твърдението е в сила за всяко положително реално число число, може да вземем например числото 2023.

Коментар: Нетривиална задача е да се намери такова число като функция на сумата в двата плика, което да максимизира вероятността за взимане на плика с по-голямата сума в очакване (в средния случай).