2. Сила, действующая на подвешенную пластину, вычисляется с помощью «цепочки» формул

$$F = \frac{qE}{2} = \frac{S\sigma E}{2} = \frac{\varepsilon_0 E^2}{2} S = \frac{\varepsilon_0 U^2 S}{2h^2},$$
 (1)

где q - электрический заряд одной пластины, σ - поверхностная плотность

заряда на пластине, $E=\frac{\sigma}{2\varepsilon_0}$ - напряженность поля, создаваемого одной

пластиной (естественно, напряженность поля внутри конденсатора $E_I = \frac{U}{h}$ в

два раза больше).

Условие равновесия пластины имеет вид

$$mg + \frac{\varepsilon_0 U^2 S}{2h^2} = k(l - l_0 - h),$$
 (2)

где $(l-l_0-h)$ - сила упругости пружины,

l - расстояние от нижней неподвижной платины до точки подвеса, l_0 - длина недеформированной пружины, h - расстояние между пластинами. Если напряжение между пластинами отсутствует, то $h=h_0$, тогда выполняется условие

$$mg = k(l - l_0 - h_0).$$
 (3)

Из уравнений (2)-(3) следует

$$\frac{\varepsilon_0 U^2 S}{2h^2} = k(h_0 - h). \tag{4}$$

Пластины смогут находится в положении равновесия, если уравнение (4) имеет корни, если в качестве неизвестной рассматривать величину h . Перепишем уравнение (4) в виде

$$\frac{\varepsilon_0 U^2 S}{2kh^2} + h = h_0 \tag{5}$$

и найдем минимум функции

$$f(h) = rac{arepsilon_0 U^2 S}{2kh^2} + h$$
 . Производная от этой

функции
$$f'(h) = -\frac{\varepsilon_0 U^2 S}{kh^3} + 1$$
 обращается в

нуль при
$$\,h=h^*=\sqrt[3]{rac{{\mathcal E}_0 U^2 S}{k}}\,$$
 . Поэтому

минимальное значение рассматриваемой функции определяется выражением

$$f_{min} = f(h^*) = \frac{3}{2}h^*$$
. Уравнение (4) и

 $f = \frac{a}{h^2} + h$ h_0 $f_2 = h$ $f_1 = \frac{a}{h^2}$ h_2 h^* h_1

равносильное ему уравнение (5) будут иметь корни, если $f_{min} < h_0$. Таким образом, условия существования положения равновесия имеет вид

$$\frac{3}{2}\sqrt[3]{\frac{\varepsilon_0 U^2 S}{k}} < h_0. \tag{6}$$

Из этого неравенства находим

$$U < \frac{8}{27} \frac{k h_0^3}{\varepsilon_0 S} \,. \tag{7}$$

Теперь необходимо убедится, что хотя бы одно из решений уравнения (4) описывает устойчивое положение равновесия.

Для этого построим схематически графики зависимостей сил упругости пружины и силы электрического притяжения от расстояния между пластинами.

Легко показать, что большему корню h_1 соответствует положение устойчивого равновесия, а меньшему h_2 - положение неустойчивого равновесия.

Таким образом, при выполнении неравенства (7), пластины могут находится на некотором расстоянии друг от друга.

Схема оценивания.

Номер	Содержание	баллы	в том числе за
пункта	J	всего	подпункты
1	Аналитическое условие равновесия (4)	5	
	- сила притяжения (1)		3
	- сила упругости		1
	- уравнение (4)		1
2	Условие существования корней	3	
	- анализ уравнения (4)		2
	- условие (7)		1
3	Доказательство устойчивости	2	
	итого	10	