Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

- 1. Congruencias.
- 2. Los enteros módulo n. Aritmética en \mathbb{Z}_{n} .
- 3. Exponenciación modular.
- 4. Elementos inversibles en $\mathbb{Z}_{\underline{n}}$. Función de Euler.
- 5. Aplicación a la criptografía.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

DEFINICIÓN:

Sea n un entero mayor que 1. Dados a y b $\in \mathbb{Z}$, diremos que

a es congruente con b módulo n

y escribiremos

 $a \equiv b \pmod{n}$

si

 $a-b=k\cdot n \text{ con } k\in\mathbb{Z}.$

EJEMPLO:

$$17 \equiv 2 \pmod{5}$$
 ya que $17-2=15=3.5$
 $-7 \equiv -49 \pmod{6}$ ya que $-7-(-49)=42=7.6$

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

TEOREMA

La relación de congruencia módulo n (n > 1) es una relación de equivalencia.

TEOREMA

Si $(x_nx_{n-1} ... X_1x_0)_{10}$ es la representación en base 10 de un entero positivo x, entonces

$$x \equiv (x_0 + x_1 + \dots + x_{n-1} + x_n) \pmod{9}$$
.

NOTA

La relació de congruència es compatible amb la suma i el producte de enters, és a dir:

Si

$$a \equiv b \pmod{n}$$
 $(a+c) \equiv (b+d) \pmod{n}$
 $c \equiv d \pmod{n}$ $a \cdot c \equiv b \cdot d \pmod{n}$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

APLICACIÓN: Estudiemos si la multiplicación

está incorrectamente efectuada.

$$54321 \equiv 15 \pmod{9} \equiv 6 \pmod{9}$$

 $98765 \equiv 35 \pmod{9} \equiv 8 \pmod{9}$
 $5363013565 \equiv 37 \pmod{9} \equiv 10 \pmod{9} \equiv 1 \pmod{9}$
 $54321 \equiv 6 \pmod{9}$
 $98765 \equiv 8 \pmod{9}$
 $5363013565 \equiv 1 \pmod{9}$

Por la compatibilidad de la relación de cong. con el producto:

$$54321.98765 \equiv 6.8 \pmod{9}$$

 $54321.98765 \equiv 48 \pmod{9} \equiv 12 \pmod{9} \equiv 3 \pmod{9}$

Por la transitividad

$$54321.98765 \equiv 3 \pmod{9}$$

Si la operación estuviera bien efectuada, entonces:

$$5363013565 = 54321.98765 \equiv 3 \pmod{9}$$

Luego la operación es incorrecta.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

APLICACIÓN: Estudiemos si la multiplicación 54321·98765=5363013565, está incorrectamente efectuada.

Como 3 ≠ 1, entonces la operación es incorrecta.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

iCUIDADO!: Si una operación supera la prueba de los nueves, ello no implica que la operación sea correcta.

Estudiemos si

$$15.36 = 450$$
,

está incorrectamente efectuada.

$$\underbrace{\frac{15}{6} \cdot \underbrace{36}_{9}}_{6 \cdot 9 = 54} = \underbrace{450}_{9}$$

No podemos concluir nada sobre la falsedad o veracidad de la igualdad. Y, sin embargo, sabemos que la igualdad es falsa, ya que el producto 15·36 da como resultado 540 y no 450.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

 $\mathbb{Z}_{\mathbf{n}} = \{ [0], [1], ..., [n-1] \}$

donde:

$$[0] = \{ 0 + kn / k \in \mathbb{Z} \}$$

 $[1] = \{ 1 + kn / k \in \mathbb{Z} \}$

 $[n-1] = \{ (n-1) + kn / k \in \mathbb{Z} \}$

Ya que, para todo a $\in \mathbb{Z}_{r}$ $\exists ! q, r \in \mathbb{Z}$ tal que

$$a = q \cdot n + r$$
, $0 \le r < |n|$,

de modo que $a \equiv r \pmod{n}$ y por tanto

$$[a] = [r], 0 \le r \le n - 1.$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Dada una clase de equivalencia [a] de \mathbb{Z}_n , obtener un representante de clase entre 0 y n – 1:

El representante buscado es el resto de la división euclídea de a entre n.

EJEMPLO: Sea [149] $\in \mathbb{Z}_{23}$. Calculemos un representante de clase entre 0 y 22:

$$149 = 6 \cdot 23 + 11$$

[149] = [11] en \mathbb{Z}_{23}

Por otro lado, como

$$-149 = (-6) \cdot 23 - 11$$

= $(-6) \cdot 23 - 11 + 23 - 23$
= $(-7) \cdot 23 + 12$,
entonces $[-149] = [12]$ en \mathbb{Z}_{23}

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

OPERACIONES INDUCIDAS EN \mathbb{Z}_n

A partir de la suma y el producto de enteros podemos inducir dos nuevas operaciones en $\mathbb{Z}_{\bf n}$:

- La suma en $\mathbb{Z}_{\mathbf{n}}$: $[x] +_n [y] = [x+y]$
- ullet El producto en $\mathbb{Z}_{\mathbf{n}}$: $[x] \cdot_n [y] = [x \cdot y]$

EJEMPLO: En \mathbb{Z}_2 las tablas de las operaciones inducidas son:

	[0]		\cdot_2	[0]	[1]
[0]	[0] [1]	[1]	[0]	[0]	[0]
[1]	[1]	[0]	[1]	[0]	[1]

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

OPERACIONES INDUCIDAS EN \mathbb{Z}_n

EJEMPLO:

$$[128] +_{347} [306] = [128 + 306] = [434] = [87] \leftarrow 434 = 1 \cdot 347 + 87.$$

$$[-27] \cdot_{347} [370] = [(-27) \cdot 370] = [-9990] = [73]$$

$$-9990 = (-28) \cdot 347 - 274 = (-28) \cdot 347 - 274 + 347 - 347 = (-29) \cdot 347 + 73$$

Podríamos haber reducido previamente [-27] y [370]:

$$\begin{bmatrix} -27 \end{bmatrix} \cdot_{347} \begin{bmatrix} 370 \end{bmatrix} = \begin{bmatrix} 320 \end{bmatrix} \cdot_{347} \begin{bmatrix} 23 \end{bmatrix} = \begin{bmatrix} 7360 \end{bmatrix} = \begin{bmatrix} 73 \end{bmatrix} \leftarrow 7360 = 21 \cdot 347 + 73$$

$$\begin{bmatrix} -27 \end{bmatrix} = \begin{bmatrix} 320 \end{bmatrix} \leftarrow -27 = (-27 + 347) - 347 = (-1) \cdot 347 + 320.$$

$$\begin{bmatrix} 370 \end{bmatrix} = \begin{bmatrix} 23 \end{bmatrix} \leftarrow 370 = 1 \cdot 347 + 23$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Estas nuevas operaciones en \mathbb{Z}_n heredan las propiedades de la suma y el producto en \mathbb{Z} :

- $+_n$ y \cdot_n son asociativas y conmutativas
- poseen elemento neutro ([0] y [1], respectivamente)
- todo elemento posee simétrico para +_n ([a]+[-a]=[0])
- · n es distributivo respecto de + n

TEOREMA

 \mathbb{Z}_n es un anillo conmutativo con unidad con las operaciones inducidas:

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

Existen situaciones (por ejemplo, en criptografía) en las que se hace necesario el cálculo de ciertas potencias con enteros grandes.

Por ejemplo, supongamos que queremos calcular [2268] 101 en \mathbb{Z}_{2537} .

En lugar de calcular 2268^{101} y después reducir a \mathbb{Z}_{2537} podemos utilizar un algoritmo que usa la expresión binaria del exponente.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Cálculo de <i>m</i> ^t en Z _n	Cálculo de 2268 ¹⁰¹ en Z ₂₅₃₇		
Representación binaria del exponente			
$t = (r_k r_{k-1} \dots r_1 r_0)$	101 = (1100101)		
$t = r_k 2^k + r_{k-1} 2^{k-1} + \dots + r_1 2^1 + r_0 2^0$	$101 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$		
$m^{t} = m^{r_{k} \cdot 2^{k} + r_{k-1} \cdot 2^{k-1} + \dots + r_{1} \cdot 2 + r_{0}}$ $m^{t} = m^{r_{k} \cdot 2^{k}} \cdot m^{r_{k-1} \cdot 2^{k-1}} \cdots m^{r_{1} \cdot 2} \cdot m^{r_{0}}$	$2268^{101} = 2268^{1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2 + 1}$ $2268^{101} = 2268^{1 \cdot 2^{6}} \cdot 2268^{1 \cdot 2^{5}} \cdot 2268^{0 \cdot 2^{4}} \cdot 2268^{0 \cdot 2^{3}} \cdot 2268^{1 \cdot 2^{2}} \cdot 2268^{0 \cdot 2} \cdot 2268^{1}$		
Cuando r _i =0 el factor no afecta	$2268^{101} = 2268^{2^6} \cdot 2268^{2^5} \cdot 2268^{2^2} \cdot 2268^1$		
Las sucesivas potencias m^{2^i} se pueden calcular a partir de la anterior: $m^{2^i} = m^{2^{i-1}} \cdot m^{2^{i-1}}$ reduciendo en cada paso a módulo n	Las sucesivas potencias 2268^{2^i} se pueden calcular a partir de la anterior: $2268^{2^i} = 2268^{2^{i-1}} \cdot 2268^{2^{i-1}}$ reduciendo en cada paso a módulo n		

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

$$2268^{101} = 2268^{2^6} \cdot 2268^{2^5} \cdot 2268^{2^2} \cdot 2268^1$$

Podemos ir calculando potencias de 2, e ir reduciendo a módulo 2537:

```
[2268]^{2^{1}} = [2268]^{2} = [5143824] = [2537 \cdot 2027 + 1325] = [1325]
[2268]^{2^{2}} = [2268]^{4} = ([2268]^{2})^{2} = [1325]^{2} = [1755625] = [2537 \cdot 692 + 21] = [21]
[2268]^{2^{3}} = [2268]^{8} = ([2268]^{4})^{2} = [21]^{2} = [441]
[2268]^{2^{4}} = [2268]^{16} = ([2268]^{8})^{2} = [441]^{2} = [194481] = [2537 \cdot 76 + 1669] = [1669]
[2268]^{2^{5}} = [2268]^{32} = ([2268]^{16})^{2} = [1669]^{2} = [2785561] = [2537 \cdot 1097 + 2472] = [2472]
[2268]^{2^{6}} = [2268]^{64} = ([2268]^{32})^{2} = [2472]^{2} = [6110784] = [2537 \cdot 2408 + 1688] = [1688]
```

Sustituimos y multiplicamos 2 a 2, reduciendo a módulo 2537:

```
[2268]^{101} = [2268]^{64} \cdot [2268]^{32} \cdot [2268]^{4} \cdot [2268]^{1}
= [1688] \cdot [2472] \cdot ([21] \cdot [2268]) \qquad [21] \cdot [2268] = [47628] = [2537 \cdot 18 + 1962]
= [1688] \cdot ([2472] \cdot [1962]) \qquad [2472] \cdot [1962] = [4850064] = [2537 \cdot 1911 + 1857]
= ([1688] \cdot [1857]) \qquad [1688] \cdot [1857] = [3134616] = [2537 \cdot 1235 + 1421]
= [1421]
```

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

$$m^t = m^{r_k 2^k} \cdot m^{r_{k-1} 2^{k-1}} \cdots m^{r_1 2} \cdot m^{r_0}$$

Algoritmo

Sean $m,n,t \in \mathbb{Z}$, $n \ge 2$ y consideremos la representación binaria del exponente $t = (r_k r_{k-1} \dots r_1 r_0)$. En la salida x es igual a $[m]^t$ en \mathbb{Z}_n

```
x = 1
pot = [m]
Para i=0,1,...,k
Si r_k = 1, entonces x = x \cdot pot (reducido a módulo n)
pot = pot \cdot pot (reducido a módulo n)
```

Aquí se van calculando las potencias m^{2^i}

Si $r_i = 0$ el factor no afecta a la potencia

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

```
x=1 pot=[m] Para i=0,1,...,k Si r_k=1, entonces x=x\cdot pot (reducido a módulo n) pot=pot\cdot pot (reducido a módulo n)
```

Calcular
$$[2268]^{101}$$
: $x = 1$, pot = $[2268]$

i	r _k	X	pot
0	1	$x = x \cdot pot = [2268]$	$pot = pot \cdot pot = [2268]^2 = [1325]$
1	0		$pot = pot \cdot pot = [1325]^2 = [21]$
2	1	$x = x \cdot pot = [2268] \cdot [21] = [1962]$	$pot = pot \cdot pot = [21]^2 = [441]$
3	0		$pot = pot \cdot pot = [441]^2 = [1669]$
4	0		$pot = pot \cdot pot = [1669]^2 = [2472]$
5	1	$x = x \cdot pot = [1962] \cdot [2472] = [1857]$	$pot = pot \cdot pot = [2472]^2 = [1688]$
6	1	$x = x \cdot pot = [1857] \cdot [1688] = [1421]$	

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

TEOREMA

Sea \mathbb{Z}_n^* el conjunto de los elementos inversibles de \mathbb{Z}_n , para el producto. Son equivalentes:

- 1. $[a] \in \mathbb{Z}_n^*$
- 2. \exists [b] $\in \mathbb{Z}_n$ tal que [a][b] = [1]
- 3. \exists b,k \in \mathbb{Z} tal que ab kn = 1
- 4. mcd(a,n)=1

EJEMPLO: Los enteros positivos menores que 8 y primos con 8 son: 1, 3, 5 y 7.

De modo que $\mathbb{Z}_8^* = \{[1], [3], [5], [7]\}$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO: Hállese $[25]^{-1}$ en \mathbb{Z}_{72} .

El algoritmo de Euclides da lugar a:

$$72 = 2(25)+22, 0 < 22 < 25$$

$$25 = 1(22) + 3$$
, $0 < 3 < 22$

$$22 = 7(3)+1, \quad 0 < 1 < 3$$

$$3 = 3(1)+0.$$

Por tanto, mcd(25,72) = 1. Además:

$$1 = 22 - 7(3) = 22 - 7(25 - 22)$$

$$= (-7)(25) + (8)(22)$$

$$= (-7)(25) + 8(72 - 2(25))$$

$$= 8(72) - 23(25).$$

Luego
$$[25]^{-1} = [-23] = [-23 + 72 - 72] = [49 - 72] = [49].$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

DEFINICIÓN:

Sea $n \ge 1$. Llamamos **función de Euler** sobre n y la denotamos por $\varphi(n)$ al cardinal de \mathbb{Z}_n^* .

$$\varphi(n) = card\{x \in \mathbb{Z}^+ / x \le n \text{ y } mcd(x, n) = 1\}.$$

Claramente si p es primo, $\varphi(p) = p - 1$.

EJEMPLO:

Como $\mathbb{Z}_{8}^{*} = \{[1],[3],[5],[7]\}$, tenemos que $\phi(8)=4$.

EJEMPLO:

Como 17 es un número primo, $\varphi(17)=17-1=16$.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

TEOREMA (Teorema de Euler) Si $[y] \in \mathbb{Z}_n^*$ entonces, $[y]^{\phi(n)} = [1]$

TEOREMA (Teorema de Euler)

Sean $y, n \in \mathbb{Z}^+ / mcd(y, n) = 1$, entonces $y^{\varphi(n)} \equiv 1 \pmod{n}$

EJEMPLO:

Como
$$\phi(8)=4$$
 y $\mathbb{Z}_8^*=\{[1],[3],[5],[7]\}$, tenemos que:
 $3^4 \equiv 1 \pmod{8}, 5^4 \equiv 1 \pmod{8}, 7^4 \equiv 1 \pmod{8}$

4. ELEMENTOS INVERSIBLES EN Zn. **FUNCION DE EULER**

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

TEOREMA (Teorema de Euler)
Si
$$[y] \in \mathbb{Z}_n^*$$
 entonces, $[y]^{\phi(n)} = [1]$

EJEMPLO:

Este teorema nos puede ayudar a calcular potencias grandes de números enteros.

Intentemos calcular [7]⁴⁹⁵ en \mathbb{Z}_8 .

- 1. $\phi(8)=4$ y como [7] $\in \mathbb{Z}_8^*$, por el teorema de Euler: $[7]^4=1$.
- 2. Además, como 495=123·4+3, podemos escribir: $[7]^{495} = [7]^{123\cdot4+3} = ([7]^4)^{123}\cdot[7]^3 = [1]\cdot[343] = [42\cdot8+7] = [7]$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

COROLARIO (Teorema de Fermat)

Sea $y \in \mathbb{Z}^+$ y p primo. Si p no divide a y, entonces $y^{p-1} \equiv 1 \pmod{p}$

EJEMPLO:

Sea y=348 y el entero primo p=11.

Como 11 no divide a 348, el teorema de Fermat nos garantiza que

$$348^{10} \equiv 1 \pmod{11}$$
.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

CÁLCULO DE LA FUNCIÓN DE EULER PROPOSICIÓN

Si $p \in \mathbb{Z}^+$ es un número primo y $u \in \mathbb{Z}^+$, entonces

$$\varphi(p^u) = p^{u-1}(p-1).$$

TEOREMA

1. Sean n_1, n_2, \ldots, n_k enteros positivos primos entre sí dos a dos. Si $n = n_1 n_2 \cdots n_k$, entonces

$$\varphi(n) = \varphi(n_1)\varphi(n_2)\cdots\varphi(n_k).$$

2. Si $n=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$ es la descomposición en factores primos de un entero positivo n,

$$\varphi(n) = p_1^{r_1-1}(p_1-1)p_2^{r_2-1}(p_2-1)\cdots p_k^{r_k-1}(p_k-1) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_k}\right).$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:

Consideremos el entero n=167544. Como su descomposición en factores primos es

$$167544 = 2^3 \cdot 3^2 \cdot 13 \cdot 179$$
,

se tiene que el valor de la función de Euler calculada sobre dicho entero es:

$$\varphi(167544) = 167544 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{13}\right) \left(1 - \frac{1}{179}\right) = 51264.$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

T: Texto llano (en lenguaje natural o bien reducido a una sucesión de dígitos de transcripción inmediata).

T*: Criptograma, o texto cifrado (ilegible para quien no conozca D).

C: Función de cifrado o de codificación, conocida por el emisor.

D: Función de descifrado o de decodificación, conocida por el receptor. C y D son funciones inversas una de otra.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

DEFINICIÓN:

Un sistema criptográfico o criptosistema consiste en cinco componentes: M, M*,K, C y D.

- 1. *M* es el conjunto de todos los mensajes a transmitir;
- 2. *M** el de todos los mensajes cifrados;
- 3. *K* el conjunto de claves a utilizar, es decir los parámetros que controlan los procesos de cifrado y descifrado;
- 4. C el conjunto de todos los métodos de cifrado:

$$C = \{C_k : M \longrightarrow M^*, k \in K\};$$

5. D el de todos los métodos de descifrado:

$$D = \{D_k : M^* \longrightarrow M, \ k \in K\}.$$

Para una clave dada k, la transformación D_k es la inversa de C_k , es decir,

$$D_k(C_k(m)) = m, \quad \forall m \in M.$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Interceptor

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

CRIPTOSISTEMAS DE CLAVE PRIVADA

Un criptosistema de clave privada basa su técnica en un valor secreto llamado clave.

El emisor y el receptor establecen de mutuo acuerdo el sistema criptográfico, y la clave concreta que utilizarán en sus comunicaciones.

Este tipo de criptosistemas permite, conociendo la función de cifrado, obtener la de descifrado, y viceversa.

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO (cifrado Afín):

Identificando las letras del alfabeto con los enteros módulo 27:

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 es decir, $M=M^*=\mathbb{Z}_{27}$

La función de cifrado $C_{r,s}: M \longrightarrow M^*$, $r,s \in \mathbb{Z}$, viene definida por

$$C_{r,s}([m]) = [r][m] + [s], \text{ con } mcd(r,27) = 1.$$

La función de descifrado será

$$D_{r,s}: M^* \longrightarrow M / D_{r,s}([m^*]) = [r]^{-1}([m^*] - [s]).$$

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Tomando como caso particular r = 2 y s = 3:

$$C_{2,3}([m]) = [2][m] + [3], \text{ con mcd}(2,27)=1.$$

 $D_{23}([m^*]) = [2]^{-1}([m^*] - [3]).$

<u>Símbólico</u> <u>Numérico</u> <u>Cifrado: C_{2,3} <u>Símbólico</u></u>

R [18] [12] M
O [15] [6] G
M [12] [0] A
A [0] [3] D

$$C_{2,3}([18])=[2][18]+[3]=[39]=[1\cdot27+12]=[12]$$

$$C_{2,3}([15])=[2][15]+[3]=[33]=[1\cdot27+6]=[6]$$

$$C_{2,3}([12])=[2][12]+[3]=[27]=[0]$$

$$C_{2,3}([0]) = [2][0] + [3] = [3]$$

R

A

D

0

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Tomando como caso particular r = 2 y s = 3:

$$C_{2,3}([m]) = [2][m] + [3], \text{ con mcd}(2,27)=1.$$

 $D_{23}([m^*]) = [2]^{-1}([m^*] - [3]).$

<u>Símbólico</u>	<u>Numérico</u>	<u>Descifrado: D_{2,3}</u>	<u>Símbólico</u>
M	[12]	[18]	R
G	[6]	[15]	0
Α	[0]	[12]	M
D	[3]	[0]	Α

$$D_{2,3}([12])=[2]^{-1}([12]-[3])=[14]([12]-[3])=[126]=[4\cdot27+18]=[18]$$

$$D_{2,3}([6])=[2]^{-1}([6]-[3])=[14]([6]-[3])=[42]=[1\cdot27+15]$$

$$D_{2,3}([0])=[2]^{-1}([0]-[3])=[14]([0]-[3])=[-42]=[(-2)\cdot 27+12]=[12]$$

$$D_{2,3}([3]) = [2]^{-1}([3]-[3])=[0]$$

D

E

S

R

A

D

0

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

CRIPTOSISTEMAS DE CLAVE PUBLICA

Basan su técnica en que la clave para cifrar es pública, mientras que la de descifrar sólo es conocida por el usuario correspondiente, y además, es computacionalmente difícil encontrar la clave de descifrado a partir del conocimiento de la de cifrado.

Dan respuesta a la necesidad de dotar de clave secreta a cada par de miembros potencialmente comunicantes de una comunidad de individuos.

Cada usuario *U* tiene asignadas un par de semiclaves:

- La primera semiclave determina la función de cifrado C_v que debe aplicar cualquiera que desee enviarle un mensaje al usuario U; C_v debe ser del dominio público.
- La segunda semiclave debe reservarse en secreto por parte de \boldsymbol{U} ; la función de descifrado $\boldsymbol{D}_{\boldsymbol{U}}$ que determina, será aplicada por él para interpretar los mensajes que reciba.

Es condición imprescindible que la semiclave secreta sea prácticamente imposible de deducir de la semiclave pública.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

CRIPTOSISTEMAS DE CLAVE PUBLICA

EJEMPLO: Sistema Rivest-Shamir-Adleman (Sistema RSA).

Sean p y q dos números primos, y $n = p \cdot q$.

Consideremos $M = M^* = \mathbb{Z}_n^*$ y t un entero tal que

$$mcd(t, \varphi(n)) = 1.$$

En estas condiciones existe un entero s tal que

$$t \cdot s \equiv 1 \pmod{\phi(n)}$$
,

esto es, $t \cdot s = k \cdot \phi(n) + 1$ para algún $k \in Z$.

Definimos la función de cifrado por

C:
$$M \to M^* / C([m]_n) = [m]_n^t$$
.

Y la función de descifrado por

D:
$$M^* \to M / D([m^*]_n) = [m^*]_n^s$$
.

La semiclave que pública es el par (n,t).

La semiclave secreta es el par (n,s).

Deben mantenerse en secreto p, q, $\varphi(n)$ y s.

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:

```
Supongamos el caso concreto donde p = 13 y q = 17. Entonces, 
 n = 13 \cdot 17 = 221 y 
 \phi(n) = (p-1) \cdot (q-1) = 12 \cdot 16 = 192.
```

Por tanto $M = M^* = \mathbb{Z}_{221}^*$.

Entonces, escogiendo

t=11 (ya que, mcd(11,192)=1)

calculamos el valor de s tal que

$$t \cdot s \equiv 1 \pmod{192}$$

y encontramos s=35.

Por tanto:

$$C([m]_{221})=[m]_{221}^{11}$$

 $D([m^*]_{221})=[m^*]_{221}^{35}$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 $C([m]_{221}) = [m]_{221}^{11}$ $D([m^*]_{221}) = [m^*]_{221}^{35}$

C	
I	
F	
R	
A	

<u>Símbólico</u>	<u>Numérico</u>	<u>m¹¹</u>	m ¹¹ (mod 221)
R	018	64268410079232	086
0	015	8649755859375	111
M	012	743008370688	142
Α	000	0	000

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO:A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

 $C([m]_{221})=[m]_{221}^{11}$ $D([m^*]_{221})=[m^*]_{221}^{35}$

Texto cifrado	<u>m³⁵</u>	m ³⁵ (mod 221)	<u>Simbólico</u>
086	Usaremos el	018	R
111	algoritmo de	015	O
142	exponenciación	012	M
000	modular	000	Δ

D

E

S

R

A

D

0

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO: Supongamos que queremos calcular

$$C([m]_{221})=[86]_{221}^{35}$$

Consideremos la representación en base 2 del exponente 35: (100011)₂ Con lo que:

$$35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 1 \cdot 2^5 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Por tanto:

$$[86]^{35} = [86]^{1 \cdot 2^5 + 1 \cdot 2^1 + 1 \cdot 2^0} = [86]^{32} \cdot [86]^2 \cdot [86]^1$$

Podemos ir calculando potencias de 2, e ir reduciendo a módulo 221:

$$[86]^{2} = [7396] = [33 \cdot 221 + 103] = [103]$$

$$[86]^{4} = ([86]^{2})^{2} = [103]^{2} = [10609] = [48 \cdot 221 + 1] = [1]$$

$$[86]^{8} = ([86]^{4})^{2} = [1]$$

$$[86]^{16} = ([86]^{8})^{2} = [1]$$

$$[86]^{32} = ([86]^{16})^{2} = [1]$$

$$[86]^{35} = [86]^{32} \cdot [86]^{2} \cdot [86]$$

$$= [1] \cdot [103] \cdot [86] = [8858] = [40 \cdot 221 + 18] = [18]$$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

EJEMPLO: Supongamos que queremos calcular

= [9960] = [45.221 + 15] = [15]

$$C([m]_{221})=[111]_{221}^{35}$$

Consideremos la representación en base 2 del exponente 35: (100011)₂ Con lo que:

$$35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 1 \cdot 2^5 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Por tanto:

$$[111]^{35} = [111]^{1 \cdot 2^5 + 1 \cdot 2^1 + 1 \cdot 2^0} = [111]^{32} \cdot [111]^2 \cdot [111]^1$$

Podemos ir calculando potencias de 2, e ir reduciendo a módulo 221:

```
[111]^{2} = [12321] = [55.221 + 166] = [166]
[111]^{4} = ([111]^{2})^{2} = [166]^{2} = [27556] = [124.221 + 1] = [152]
[111]^{8} = ([111]^{4})^{2} = [152]^{2} = [23104] = [104.221 + 120] = [120]
[111]^{16} = ([111]^{8})^{2} = [120]^{2} = [14400] = [65.221 + 35] = [35]
[111]^{32} = ([111]^{16})^{2} = [35]^{2} = [1225] = [5.221 + 120] = [120]
[111]^{35} = [111]^{32} \cdot [111]^{2} \cdot [111]^{1} = [120] \cdot [166] \cdot [111] = [120] \cdot [18426]
= [120] \cdot [83.221 + 83] = [120] \cdot [83]
```

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

La validez del sistema RSA radica que el producto n = pq sea virtualmente imposible de factorizar con los medios actualmente disponibles.

Los medios disponibles van mejorando día a día y además también se producen mejoras en los algoritmos de factorización.

Esto hace que cada vez se tengan que elegir primos p y q con más dígitos de manera que se garantice la seguridad del sistema criptográfico.

Lección2. CONGRUENCIAS. ARITMÉTICA MODULAR

Así, por ejemplo, en 1999, un equipo de personas de todo el mundo, con casi 300 ordenadores, consiguieron completar la factorización RSA-155 (un número entero n de 155 dígits decimals) en poco más de 5 meses. Concretamente, el 26 de agosto de 1999.

RSA-155 = 10941738641570527421809707322040357612003732945 449205990913842131476349984288934784717997257891267332 49762575289978183379707653724402714674

p = 102639592829741105772054196573991675900716 567808038066803341933521790711307779, q = 106603488380168454820927220360012878679207 958575989291522270608237193062808643.

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Otro ejemplo más reciente lo encontramos en la factorización del RSA-576, el cual es un número entero de 576 bits o 174 dígitos decimales. Fue factorizado el 3 de diciembre de 2003 por un grupo de investigadores alemanes y de otros países:

 $\begin{aligned} p &= 3980750864240649373971255005503864911990643623425\\ 26708406385189575946388957261768583317,\\ q &= 4727721461074353025362230719730482246329146953020\\ 97116459852171130520711256363590397527. \end{aligned}$

Lección 2. CONGRUENCIAS. ARITMÉTICA MODULAR

Para la factorización del RSA-576 los investigadores alemanes obtuvieron un premio de 10000 dólares otorgado por la empresa RSA Security.

Esta empresa publicaba diversos números enteros de distintos tamaños, planteando como reto su factorización y ofreciendo diversas recompensas por este éxito que van desde los 20000 dólares, por un entero de 640 bits, hasta los 200000 dólares por un entero de 2048 bits.