练习卷(3)参考答案

一、填空题(将答案写在答题纸相应的位置。每小题 3 分, 共 15 分.)

1. 4

2.	2020!	
3.	$\frac{-b}{a^2\sin^3t}$	
4.	$2^n e^{2x+1}$	
5. = . 1.		应的位置。每小题 3 分, 共 15 分.)
2.		
3.	D	
4. D		
5. A	1	
三、	计算题 (要求写出主要计算步骤及	结果;每小题7分,共42分.)
1. オ	文极限 $\lim_{x\to 0} \frac{\left(1-\frac{x}{\sin x}\right)}{\ln\left(1+\frac{x^2}{2}\right)}$.	
解:	原式= $\lim_{x\to 0} \frac{\sin x - x}{\frac{x^2}{2} \sin x}$	2′
	$=2\lim_{x\to 0}\frac{\sin x-x}{x^3}$	4′
	$=2\lim_{x\to 0}\frac{\cos x-1}{3x^2}$	6′
	$=2\lim_{x\to 0}\frac{-x^2/2}{3x^2}=-\frac{1}{3}$	7
2. オ	\forall 过原点且与曲线 $y = e^x$ 相切的切线	方程.
解:	$y'=e^x,$	2'
	设切点为 (x_0,e^{x_0}) ,则切线方程为 y	$e^{-e^{x_0}} = e^{x_0}(x - x_0),$
	曲 $x = 0$ 时 $y = 0$, $-e^{x_0} = -x_0 e^{x_0}$ 得 y	$x_0 = 1$, $\cdots 6'$

所求切线方程为y=ex. 3. 设 $\int_0^{-x} y e^t dt + \int_0^y x \cos t dt = 0$, 求 dy. 解: 由原式可得 $y \left[e^t \right]_0^{-x} + x \left[\sin t \right]_0^y = 0$, $\mathbb{P} v(e^{-x}-1) + x \sin v = 0$ 两边取微分 $(e^{-x}-1)dy - ye^{-x}dx + \sin ydx + x\cos ydy = 0$, 解得 $dy = \frac{ye^{-x} - \sin y}{x\cos y + e^{-x} - 1} dx$. 4.求定积分 $\int_{1}^{e} \frac{dt}{t\sqrt{1+\ln t}}$. 解: 原式= $\int_{1}^{e} \frac{d \ln t}{\sqrt{1+\ln t}}$ $= \int_{1}^{e} \frac{d(1+\ln t)}{\sqrt{1+\ln t}}$ $=2\left[\sqrt{1+\ln t}\right]^{e}$ $=2\left(\sqrt{2}-1\right)$ 解: 设 $\int_{1}^{2} f(x)dx = A$, 则 $f(x) = \frac{2}{x(1+x^{2})} + \frac{A}{2}$ 积分得 $\int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{2}{r(1+r^{2})} dx + \int_{1}^{2} \frac{A}{2} dx$,

6. 求不定积分
$$\int e^{\sqrt{2x+1}} dx$$
.

所以 $A = \ln \frac{8}{5} + \frac{A}{2}$. $A = \int_{1}^{2} f(x) dx = 2 \ln \frac{8}{5}$.

M:
$$\diamondsuit \sqrt{2x+1} = t$$
, $x = \frac{t^2-1}{2}$, $dx = tdt$

四、解答题(要求写出主要计算步骤及结果;每小题7分,共14分.)

1. 确定
$$a,b$$
 的值,使 $\lim_{x\to\infty} \left[(x-2)e^{\frac{1}{x}} - (ax+b) \right] = 0$.

解: 由
$$\lim_{x \to \infty} x \left[\frac{(x-2)e^{\frac{1}{x}}}{x} - a - \frac{b}{x} \right] = 0$$
,得 $a = \lim_{x \to \infty} \frac{(x-2)e^{\frac{1}{x}}}{x}$ 2'

$$\mathbb{M} a = \lim_{x \to \infty} \left(1 - \frac{2}{x} \right) e^{\frac{1}{x}} = 1$$

$$b = \lim_{x \to \infty} \left[(x-2)e^{\frac{1}{x}} - x \right] = \lim_{x \to \infty} \left[x \left(e^{\frac{1}{x}} - 1 \right) - 2e^{\frac{1}{x}} \right]$$

$$= \lim_{x \to \infty} x \cdot \frac{1}{x} - \lim_{x \to \infty} 2e^{\frac{1}{x}} = -1$$
7

2. 已知 $f(x) = x^3 + ax^2 + bx$ 在 x = -1 处有极值 2,试确定常数 a,b,并求 f(x) 的极值点、拐点.

解: 由
$$\begin{cases} f'(-1) = 3x^2 + 2ax + b \big|_{x=-1} \\ = 3 - 2a + b = 0 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = -3 \end{cases}, \qquad 2'$$

$$\Rightarrow \begin{cases} a = 0 \\ b = -3 \end{cases}, \quad \mathbb{P} f(x) = x^3 - 3x \qquad 4'$$

$$\Rightarrow f'(x) = 3x^2 - 3 = 0, \quad \exists x = \pm 1, \quad \exists$$

五、证明题(要求写出主要证明步骤;每小题7分,共14分.)

1. 证明: $a\cos x + b\cos 2x = 0$ 在 $(0,\pi)$ 内存在根,其中a,b为常数.

	则 $f(x)$ 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内口	可导,且 $f(0) = f(\pi) = 0$	4′
	由罗尔定理可知,存在 $\xi \in (0,\pi)$,使	ț得 $f'(\xi) = 0$, ···································	6'
	即 $a\cos x + b\cos 2x = 0$ 在 $(0,\pi)$ 内存在	E根	7′
2. 证明:	当 $x \neq 0$ 时, $e^x > 1 + x$.		
证明:	$\Leftrightarrow f(x) = e^x - 1 - x,$		2'
			4′
	曲 $x > 0$ 时, $f'(x) > 0 \Rightarrow f(x) > f(0)$	=0;	
	$x < 0 \forall f'(x) < 0 \Rightarrow f(x) > f(0) = 0$).	6′
	所以,当 $r \neq 0$ 时, $f(r) = e^x = 1 = r$	$0 \cdot \mathbb{R} e^x > 1 + x \cdots$	7'