

Zaštitno kodiranje II

Teorija informacije

Sadržaj predavanja

- Uvod
 - Komunikacijski sustav; Cilj zašt. kodiranja; Podjela zaštitnih kodova.
- Blok kodovi
 - Uvod
 - Paritetno kodiranje
 - Linearno binarni blok kodovi
 - Generirajuća matrica G i njen standardni oblik
 - ▶ Kodiranje
 - Dekodiranje (dekodiranje preko sindroma)
 - Proračun vjerojatnosti ispravnog dekodiranja
 - Hammingovi kodovi
 - Ciklični kodovi

Hammingovi i ciklični kodovi

(klasa linearnih blok kodova)

Hammingovi kodovi

Definicija: Hammingov kôd

Hammingov kôd: Neka je r pozitivan cijeli broj i neka je **H** matrica dimenzija $r \times (2^r - 1)$ čije stupce sačinjavaju svi vektori dimenzije r različiti od **0** iz vektorskog prostora V(r). Matrica **H** je matrica provjere pariteta Hammingovog koda s oznakom Ham(r).

Primjer: Matrice provjere pariteta: r = 3, $n = 2^3 - 1 = 7$

Stupci matrica provjere pariteta su binarni ekvivalenti cijelih brojeva od 1 do 2^r-1! Redoslijed je nevažan!

Svojstva Hammingovih kodova

Svojstva Hammingovih kodova: Neka je Ham(r) binarni Hammingov kôd. $Za r \ge 2$ vrijedi da je Ham(r):

- *linearan blok-kôd* [2^r−1, 2^r−1−*r*];
- ima najmanju distancu 3 (otkriva dvostruku i ispravlja jednostruku pogrešku);
- perfektan kôd.

Hammingovi	e distance!
ući Ha	Jihov€
i mogući F	kodovi i r
Nek	Koc

[n, k, 3]	[n, k, 5]	[n, k, 7]	[n, k, 9]	[n,k,11]	[n,k,13]
[3,1,3]	[5,1,5]	[7,1,7]	[9,1,9]	[11,1,11]	[13,1,13]
[5,2,3]	[8,2,5]	[11,2,7]	[14,2,9]	[17,2,11]	[20,2,13]
[6,3,3]	[10,3,5]	[13,3,7]	[17,3,9]	[20,3,11]	[24,3,13]
[7,4,3]	[11,4,5]	[14,4,7]	[19,4,9]	[22, 4, 11]	[26, 4, 13]
[9,5,3]	[13,5,5]	[15,5,7]	[20,5,9]	[23,5,11]	[27,5,13]
[10,6,3]	[14,6,5]	[17,6,7]	[22,6,9]	[25,6,11]	[29,6,13]
[11,7,3]	[15,7,5]	[18,7,7]	[24,7,9]	[26,7,11]	[32,7,13]
[12,8,3]	[16,8,5]	[19,8,7]	[25,8,9]	[28,8,11]	[34,8,13]
[13,9,3]	[17,9,5]	[20,9,7]	[26,9,9]	[30,9,11]	[35,9,13]
[14,10,3]	[19,10,5]	[21,10,7]	[28,10,9]	[31,10,11]	[36,10,13]

Kodiranje pomoću Hammingovog koda

<u>Primjer:</u> Hammingov kôd [7, 4, 3]

$$\mathbf{H} = \begin{bmatrix} & 0 & 1 & 0 & 1 & 0 & 1 \\ & 1 & 1 & 0 & 0 & 1 & 1 \\ & & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- Generirajuću matricu **G** nije jednostavno izračunati iz **H** jer ista nije u standardnom obliku, tj. jednadžba **GH**[⊤]=**0** daje velik broj mogućnosti.
- Potrebno je dobiti <u>sistematičan kôd</u> iz kojeg jednostavno dobivamo poslanu kodiranu poruku.
- Važno svojstvo matrice H: Svaki redak matrice provjere pariteta određuje pozicije simbola kodne riječi čiji zbroj mora bit paran broj (ili jednak 0 u aritm. mod. 2).

Formiranje kodne riječi Hammingovog koda

	0	1	0	1	0	1
H =	1	1	0	0	1	1
	0	0	1	1	1	1

prvi redak	Pozicije (1), (3), (5) i (7).
drugi redak	Pozicije (2, 3), (6 i 7),
treći redak	Pozicije (4, 5, 6 i 7),

Ključno pitanje - koji bitovi su zaštitni?

$$\begin{array}{rcl} x_{1} & = & m_{1} + m_{2} 0 + \underline{m}_{x_{1}} + m_{\xi_{3}} + \underline{m}_{\xi_{7}} + \underline{x}_{7} + \underline{x}_{7} + \underline{x}_{8} + \underline{x}_{15} + \underline{x}_{13} + \underline{x}_{13} + \underline{x}_{14} + \underline{x}_{11} + \underline{x}_{10} + \underline{x}_{11} + \underline{x}_{10} + \underline{x}_{11} + \underline{x}_{10} + \underline{x}_{11} + \underline{x}_{10} + \underline{x}_{11} + \underline{x}_{11} + \underline{x}_{11} + \underline{x}_{11} + \underline{x}_{12} + \underline{x}_{13} + \underline{x}_{14} + \underline{x}_{15} + \underline{x}_{12} + \underline{x}_{13} + \underline{x}_{15} +$$

Primjer: formiranje kodne riječi za Hammingov kôd [7, 4, 3]

Poruka 1 0 1 0

Okvir kodne riječi

$$\mathbf{H} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix}$$

Primjer: generirajuća matrica za Hammingov kôd [7, 4, 3]

- (1) Izbriši one stupce koji su na pozicijama paritetnih bitova
- (2) Dobivenu matricu transponiraj
 - (3) Stupce transponirane matrice postavi na pozicije 1, 2, 4, 8, 16, ...
- (4) Ostatak stupaca popuni jediničnom matricom

Teorija informacije

10 od 36

Primjer: sindrom za Hammingov kôd [7, 4, 3]

Napomena: Vrijedi samo za standardni način formiranja Hammingovih riječi!

e	S(y)	CJELOBROJNI EKVIVALENT
1 0 0 0 0 0 0	1 0 0	1
0 1 0 0 0 0 0	0 1 0	2
0 0 1 0 0 0 0	1 1 0	3
0 0 0 1 0 0 0	0 0 1	4
0 0 0 0 1 0 0	1 0 1	5
0 0 0 0 0 1 0	0 1 1	6
0 0 0 0 0 0 1	1 1 1	7

bez matrice provjere pariteta

Pogreška je na poziciji br. 6, a ispravna kodna riječ 1 0 1 1 0 1 0

bez matrice provjere pariteta

Pogreška je na poziciji br. 2, a ispravna kodna riječ 1 0 1 1 0 1 0

Ciklični kodovi

Definicija: ciklični kôd

Ciklični kôd: Blok kôd K je ciklični kôd ako je:

- linearan blok-kôd i
- ako bilo koji ciklični posmak kodne riječi iz K opet daje kodnu riječ iz K.

Ako je 11110000 kodna riječ, onda su kodne riječi i

11100001

11000011

10000111

00001111

00011110

00111100

01111000

Polinomski zapis kodne riječi

Kodna riječ $[a_{n-1} \ a_{n-2} \dots \ a_2 \ a_1 \ a_0]$ cikličnog koda može se poistovjetiti s polinomom stupnja $n \ \square \ 1$:

$$\mathbf{a} = [a_{n-1} \dots a_2 \ a_1 \ a_0] \square \qquad a(x) = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0 x^0$$

a(x) ne promatramo kao funkciju, nego čisto kao način zapisa. Na primjer,

$$x \cdot (x)^{n} = 1 + a_{n-1}^{n} x^{n-1} + a_{n-2}^{n} x^{n-1} + a_$$

Koeficijenti $a_{n-1} = s_{n-1} \cdot s$

$$= a_{n-1}(x^{n}-1) + a_{n-2}x^{n-1} + \dots + a_{1}x^{2} + a_{0}x^{1} + a_{n-1}x^{0}.$$

Nad polinomima kodnih riječi vršimo operacije u aritmetici modulo $x^n-1!$ Zbrajanje polinoma odgovora zbrajanju vektora, a množenje s x odgovara cikličnom posmaku ulijevo.

Primjer: ciklični posmak kodne riječi

a = [1 0 1] - polinom je $a(x) = x^2 + 1$, duljina riječi n = 3

$$b\Box(x) = a(x) \ \textcircled{+} = x^3 + x,$$

$$x^3 + x : x^3 - 1 = 1$$

$$-x^3 + 1$$

$$x + 1 \qquad \Box \quad ostatak \quad nakon \quad dijeljenja.$$

- **b** = [0 1 1] kodna riječ nastala cikličnim posmakom kodne riječi **a** ulijevo za jedno mjesto!
- Svaka kodna riječ duljine n je polinom stupnja n-1 i nad njim sve operacije provodimo u aritmetici mod x^n-1 ;
- Skup svih riječi u mod x^n 1 aritmetici označavamo s R_n ;
- Ciklični kôd je neki podskup od R_n :

$$K \square Rn$$

Uvjeti za cikličan kôd

Uvjeti za cikličan kôd: Kôd $K \square R_n$ je cikličan kôd ako i samo ako K zadovoljava sljedeća dva uvjeta:

- \Box a(x), b(x) \Box K, vrijedi a(x) + b(x) \Box K (svojstvo linearnosti);
- [] a(x) [] K i [] r(x) [] R_n , vrijedi $r(x) \cdot a(x) \mod (x^n 1)$ [] K. Kako dobiti sve kodne riječi nekog cikličkog koda?
- izaberi bilo koji polinom f(x) najvećeg stupnja n-1;
- sve kodne riječi cikličnog koda K dobit će se množenjem svih $r(x) \square R s f(x)$;

Kaže se da je kôd K generiran polinomom f(x):

$$K \square \{f(x)\} = \{r(x)f(x) \mid r(x)\square R_n\}.$$

f(x) je kodna riječ koda K!

Primjer: generiranje cikličnog koda

- Polinom kojim se generira kôd $f(x) = x^2 + 1$

$$= 8. \frac{(0x^2 + 0x + 0)}{(0x^2 + 0x + 1)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 0x^2 + 0x + 0 \quad [000]}{(0x^2 + 0x + 1)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 1x^2 + 0x + 1 \quad [101]}{(0x^2 + 1x + 0)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 0x^2 + 1x + 1 \quad [011]}{(0x^2 + 1x + 1)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 1x^2 + 1x + 0 \quad [110]}{(1x^2 + 0x + 0)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 0x^2 + 1x + 1 \quad [011]}{(1x^2 + 1x + 0)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 0x^2 + 0x + 1 \quad [101]}{(1x^2 + 1x + 1)} \stackrel{\clubsuit}{•} (x^2 + 1) (\text{mod}(x^3 - 1)) = 0x^2 + 0x + 0 \quad [000]$$

$$K = \begin{cases} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{cases}$$

$$G = \begin{cases} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{cases}$$

Generirajući polinom cikličnog koda

Generiranje cikličnog koda: Neka je K ciklični kôd dimenzije veće od 1, podskup od R_n .

- Postoji jedinstven polinom g(x) najmanjeg stupnja u K.
- Kôd K je generiran upravo polinomom g(x).
- g(x) je faktor polinoma $x^n 1$, $tj. x^n 1 = g(x) \cdot q(x)$.

Polinom g(x) koji zadovoljava ovo svojstvo nazivamo:

Generirajući polinom cikličkog koda

Primjer: g(x) je jedan od faktora polinoma $x^{15} - 1$:

$$x^{15} - 1 = (x + 1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

Svaki faktor generira jedan mogući ciklički kôd, pa faktoriziranjem polinoma $x^{15}-1$ praktički dobivamo 5 različitih cikličkih kodova s generirajućim polinomima:

$$g_1(x) = x + 1,$$
 $g_2(x) = x^2 + x + 1,$ $g_3(x) = x^4 + x + 1,$ $g_4(x) = x^4 + x^3 + 1,$ $g_5(x) = x^4 + x^3 + x^2 + x + 1$

Generirajuća matrica cikličnog koda

Generirajuća matrica cikličnog koda: Neka je generirajući polinom cikličnog koda $K \square R_n$:

$$g(x) = g_r x^r + ... + g_2 x^2 + g_1 x + g_0.$$

Onda je dimenzija koda k = n - r, a generirajuća matrica koda je:

- Broj redaka matrice **G** odgovara dimenziji koda k = n r;
- Broj stupaca matrice **G** odgovara duljini kodne riječi n;
- § Što je stupanj generirajućeg polinoma g(x) veći, dimenzija koda je manja!

Primjer: generirajuća matrica cikličnog koda (n = 5)

$$n = 5$$

$$x^{5} - 1 = (x+1)(x^{4} + x^{3} + x^{2} + x + 1)$$
Potencijalni generirajući polinomi:
$$g_{1}(x) = x + 1$$

$$g_{2}(x) = x^{4} + x^{3} + x^{2} + x + 1$$

$$r = 1, k = 5 - 1 = 4$$

$$r = 4, k = 5 - 4 = 1$$

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \quad k = 4$$

$$g_2(x) = x^4 + x^3 + x^2 + x^1 + 1$$

$$G = [1 1 1 1 1 1]$$

generirajući

polinomi:

Faktorizacije nekih polinoma oblika $x^n - 1$

n	aritmetika	faktorizacija u aritmetici modulo 2
1	$x^{1}-1$	x+1
2	$x^2 - 1$	$(x+1)^2$
3	$x^3 - 1$	$(x+1)(x^2+x+1)$
5	$x^5 - 1$	$(x+1)(x^4+x^3+x^2+x+1)$
7	$x^7 - 1$	$(x+1)(x^3+x+1)(x^3+x^2+1)$
9	$x^9 - 1$	$(x+1)(x^2+x+1)(x^6+x^3+1)$
11	$x^{11}-1$	$(x+1)(x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)$
13	$x^{13}-1$	$(x+1)(x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)$
15	$x^{15}-1$	$(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$
17	$x^{17}-1$	$(x+1)(x^8+x^5+x^4+x^3+1)(x^8+x^7+x^6+x^4+x^2+x+1)$
19	$x^{19}-1$	$(x+1)(x^{18}+x^{17}+x^{16}++x^4+x^3+x^2+x+1)$

Standardni oblik generirajuće matrice

Traženi oblik matrice $\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{A} \end{bmatrix}$.

ALGORITAM:

- I. Upiši g(x) u binarnom obliku u k-ti redak.
- II. (k-1)-vi redak dobije se cikličnim posmakom k-tog retka za jedno mjesto u lijevo. Ovo odgovara operaciji xg(x).
- k-ti stupac mora u (k 1)-om retku imati nulu kako bi imali standardni oblik matrice **G**.
 - Ako je 1 \square na (k 1)-i redak treba dodati k-ti redak (aritm. mod. 2);
- III. Za (k 2) redak treba primijeniti postupak iz točke II.
 - Napraviti ciklični posmak (k 1)-og retka za jedno mjesto u lijevo.
 - Ako k-ti stupac u (k 2)-om retku ima 1 dodaj na (k 2)-i redak k-ti redak (aritm. mod. 2);
- Ponavljaj algoritam za svaki sljedeći redak sve dok se ne popuni matrica G.

Primjer: standardni oblik generirajuće matrice **G**

Matrica provjere pariteta cikličnog koda

Polinom za provjeru pariteta: Neka je K ciklični kôd duljine n i dimenzije k [n,k] s generirajućim polinomom g(x). Neka je h(x) polinom koji zadovoljava jednadžbu:

$$x^n - 1 = g(x) \cdot h(x)$$
.

h(x) se zove **polinom za provjeru pariteta** cikličnog koda K.

Matrica provjere pariteta cikličnog koda: Neka je $K \square R_n$ ciklični kôd duljine n i dimenzije k s generirajućim polinomom g(x) i polinomom za provje(x) $pariteta...+h_2x^2+h_1x+h_0$.

• Bilo koji polinom c(x) koda K zadovoljava jednakost $c(x) \cdot h(x) = 0$.

• Paritetna matrica koda K je: h_{k-1} h_k 0 0 L 0 h_0 h_1 h_2 L h_{k-1} h_k 0 L 0 h_0 M M O O O O O O O O O h_0 h_1 h_2 L h_{k-1} h_k M h_k M h

Teorija informacije

26 od 36

Primjer: matrica provjere pariteta cikličnog koda (n = 7)

Promatramo ciklički kod n = 7: $g(x) = x^3 + x^2 + 1$

$$\mathbf{G} = \begin{pmatrix} & 1 & 0 & 1 & 0 & 0 & 0 \\ & 1 & 1 & 0 & 1 & 0 & 0 \\ & 0 & 1 & 1 & 0 & 1 & 0 \\ & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

$$x^7 - 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$$
 $h(x) = 1 + x^2 + x^3 + x^4$

$$h(x) = \underbrace{1 + x^2 + x^3 + x^4}_{1 \quad 0 \quad 1 \quad 1 \quad 1}$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & & & & \end{bmatrix} \stackrel{\uparrow}{r} = 3$$

Implementacija kodera cikličnog koda (1/2)

- Duljina kodne riječi može biti iznimno velika!
- Generirajuća i paritetna matrica imaju prevelike dimenzije za praktičnu
 - implementaciju.
- Želimo kodnu riječ koja je sistematična tako da odmah možemo razlučiti zaštitne bitove ok bidovariječi ਵਾਂ ਵਿੱਲਿਆਂ ਵਿੱਲ ਵਿਲੇਗ ।

Rješenje:

Cikličku provjeru zalihosti izračunati na osnovu podatkovnog dijela!

Implementacija kodera cikličnog koda (2/2)

- d(x) polinom kodirane poruke: [1 0 1 1 1] $\to d(x) = x^4 + x^2 + x + 1$
- d(x) se može pomnožiti s x^r , gdje je r stupanj generirajućeg polinoma:

$$d(x) \, \Box x^r = g(x) q(x) \, \Box r(x). \qquad \text{ostatak nakon dijeljenja s } g(x)$$
 generirajući polinom kvocijent

Svaki polinom pomnožen s g(x) u aritmetici $\text{mod } x^n - 1$ je neka kodna riječ c(x) koda K, pa je i $g(x) \cdot q(x)$ neka kodna riječ. Stoga se bilo koja kodna riječ može dobiti kao zbroj:

$$c(x) = g(x)q(x) = d(x) & + r(x),$$

$$r(x) = d(x) \square x^r \bmod[g(x)].$$

Najznačajniji bit kodne riječi

Podatkovni dio = Zaštitni dio = $d(x) x^r + r(x)$ Najmanje značajan bit kodne riječi

Primjer: Generiranje CRC-a

- Poruka je: $\mathbf{d} = [1 \ 0 \ 1 \ 0], \ \mathbf{tj}. \ d(x) = x^3 + x,$
- Generirajući polinom: $g(x) = x^3 + x + 1 [1 \ 0 \ 1 \ 1],$
- Umnožak: $d(x)\cdot x^3 = x^6 + x^4 [1 \ 0 \ 1 \ 0 \ 0 \ 0].$

Teorija informacije

Primjer: Dijeljenje polinoma -Generiranje CRC-a

Primjer: Sklop za generiranje CRC-a

- $(1) \quad R_3 \quad = \quad R_2 \, \mathbf{Q}(R_3 \, \mathbf{Q}_2)$
- $(2) R_2 = R_1 \mathbf{\hat{Q}}(R_3 \mathbf{\hat{Q}}_1)$
- (3) $R_1 = \text{ulazni bit } (R_3),$

Implementacija dekodera (1/4)

- Proračun sindroma ima preveliku složenost zbog velike duljine kodnih riječi.
- Temeljno pitanje: Možemo li sindrom izračunati principom sličnim izračunu zalihosnog dijela CRC?
- Smisao sindroma: Svaka kodna riječ na kojoj je nastupila pogreška na istoj poziciji mora imati isti sindrom!

e				S(y)
00000	11100	0 0 1 1 1	1 1 0 1 1	0 0 0
00001	1 1 1 0 1	00110	1 1 0 1 0	0 0 1
$0\ 0\ 0\ 1\ 0$	1 1 1 1 0	00101	1 1 0 0 1	010
00100	1 1 0 0 0	00011	1 1 1 1 1	100
01000	10100	0 1 1 1 1	10011	101
10000	01100	10111	0 1 0 1 1	110

Implementacija dekodera (2/4)

$$e(x)$$
 je polinom pogreške: $e = [1 \ 0 \ 0 \ 1 \ 1], \ e(x) = x^4 + x + 1$

Primljena kodna riječ:
$$y(x) = c(x) + e(x)$$
.

Što dobivamo funkcijom
$$S[y(x)] = x^r \Box y(x) \mod g(x)$$
?

$$S[y(x)] = x^r y(x) \mod g(x)$$

$$= x^r [c(x) + e(x)] \mod g(x)$$

$$= x^r c(x) \mod g(x) + x^r e(x) \mod g(x)$$

$$= S[c(x)] + S[e(x)].$$

$$c(x) = g(x)q(x) \mid \mathbf{\hat{q}}^r \quad \mathbf{\hat{q}}$$
$$c(x)x^r = g(x)q(x)x^r.$$

Ako $c(x)\cdot x^r$ podijelimo s g(x) ostatak je 0!

$$S[c(x)] = x^r \Box c(x) \mod g(x) = 0.$$

Implementacija dekodera (3/4)

Primjenom funkcije $S[y(x)] = x^r \Box y(x) \mod g(x)$ na primljenu kodnu riječ y(x) dobivamo:

$$S[y(x)] = S[c(x)] + S[e(x)] = S[e(x)],$$

S[y(x)] za kodne riječi s istom pogreškom uvijek daje isti rezultat!

S[y(x)] je funkcija za računanje sindroma primljene kodne riječi!!!

$$S[y(x)] = x^r \Box y(x) \mod [g(x)]$$
$$r(x) = d(x) \Box x^r \mod [g(x)].$$

JOŠ VAŽNIJE:

Sindrom se određuje na IDENTIČAN način kao i zaštitni dio kodne riječi. Slijedi da je i sklop za računanje sindroma jednak onome za izračunavanje CRC-a!

Implementacija dekodera (4/4)

Primjer dekodera za slučaj koda (7, 4, 3) s generirajućim polinomom: $g(x) = x^3 + x + 1$

Želimo detektirati pogrešku na 4. bitu – $e(x)=x^3$

$$S[y(x)] = S[e(x)] = x^2 + 1$$

$$q = R_3 R_1$$

Tablica sindroma

e(x)	S[e(x)]
1	x+1
x	$x^2 + x$
x^2	$x^2 + x + 1$
x^3	$x^2 + 1$
<i>x</i> ⁴	
x^5	х
x^6	x^2

