A Appendix

001

011

012

017

019

021

036

041

042

043 044

A.1 Technical Details

The model was implemented by using the PyTorch library and based on open-source code (Wolf et al., 2020). For the initial checkpoint for BERT, we adapted the BERT_{base} from Devlin et al. (2019). The optimizer was AdamW optimizer proposed by Loshchilov and Hutter (2019).

In the post-training step, the maximum sequence length was set to 240, and the batch size was set to 50. The learning rate was 3e-5. The number of warm-up steps was 0.01% of the total steps.

When we executed fine-tuning, the maximum sequence length was set to 256, the context and response length ratio was set to 1:1, and the batch size was set to 32. When measuring the performance, we calculated the average values among the five measurements from the different seeds.

A.2 Hyperparameters

We fine-tuned BERT-FP with an initial learning rate 1e-5, which achieved the highest score, as shown in Table 1. The learning rate was heuristically determined with less than ten trials of adjustment. The model also converged in one epoch. Other hyperparameters are the same as those described in Section A.1. The post-training is stopped when the validation recall does not increase, as shown in Table 2. Specifically, We stopped post-training at 25th, 27th, and 34th epoch for the Ubuntu, Douban, and E-commerce Corpus, respectively. As shown in Table 3-5, We measure the performance of BERT-FP with five different seeds on three benchmarks

A.3 Datasets link

- Ubuntu Corpus https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntu_data.zip?dl=0
- Douban Corpus https://www.dropbox.com/s/90t0qtji9ow20ca/DoubanConversaionCorpus.zip?
- E-commerce Corpus https: //drive.google.com/file/d/ 154J-neBo20ABtSmJDvm7DK0eTuieAuvw/ view

Learning rate	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
5e-6	0.860	0.933	0.986
1e-5	0.911	0.962	0.994
2e-5	0.900	0.957	0.993

Table 1: Validation performances according to the finetuning learning rate on the Ubuntu Corpus.

# of epoch	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
23	0.909	0.962	0.993
24	0.911	0.962	0.993
25	0.911	0.962	0.994

Table 2: Validation performances according to the number of epochs on the Ubuntu Corpus.

A.4 Computing infrastructure

Table 7 describes the software used for running the experiment. Table 8 describes the hardware used for running the experiment. Our experiments, both post-training and fine-tuning, are run on a single GPU, Titan RTX 24G.

046

047

048

051

052

058

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

A.5 Abbreviation

Table 9 indicate abbreviation.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Huggingface's transformers: State-of-the-art natural language processing.

Seed	0	2020	1118	404	904	Average	STD
$R_{10}@1$	0.91060	0.91126	0.91188	0.91002	0.90990	0.91073	0.00084
$R_{10}@2$	0.96236	0.96230	0.96284	0.96268	0.96232	0.96250	0.00024
$R_{10}@5$	0.99362	0.99420	0.99368	0.99452	0.99386	0.99398	0.00038

Table 3: Validation performances according to seeds on the Ubuntu Corpus.

Seed	0	2020	1118	404	904	Average	STD
$R_{10}@1$	0.91082	0.91112	0.91082	0.91070	0.91076	0.91084	0.00016
$R_{10}@2$	0.96222	0.96270	0.96262	0.96130	0.96286	0.96227	0.00070
$R_{10}@5$	0.99358	0.99410	0.99396	0.99338	0.99380	0.99376	0.00029

Table 4: Test performances according to seeds on the Ubuntu Corpus.

,	Seed	0	2020	1118	404	904	Average	STD
Λ	\overline{MAP}	0.644	0.640	0.643	0.656	0.636	0.644	0.007
Λ	IRR	0.683	0.681	0.680	0.680	0.676	0.680	0.003
	P@1	0.514	0.513	0.505	0.523	0.505	0.512	0.007
R	$2_{10}@1$	0.326	0.322	0.322	0.333	0.319	0.324	0.005
R	$2_{10}@2$	0.543	0.528	0.549	0.570	0.520	0.542	0.019
R	$2_{10}@5$	0.868	0.867	0.870	0.880	0.866	0.870	0.006

Table 5: Test performances according to seeds on the Douban Corpus.

Seed	0	2020	1118	404	904	Average	STD
$R_{10}@1$	0.874	0.866	0.866	0.867	0.877	0.870	0.005
$R_{10}@2$	0.958	0.955	0.957	0.954	0.958	0.956	0.002
$R_{10}@5$	0.993	0.992	0.994	0.994	0.993	0.993	0.001

Table 6: Test performances according to seeds on the E-commerce Corpus.

	Linux version 4.15.0-106-generic
Operating system	(buildd@lcy01-amd64-016)
	(gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04))
	Python==3.6.8
Frameworks	Anaconda==4.7.12
	NVIDIA (R) Cuda compiler driver V10.0.130
	Numpy==1.16.4
	tokenizers==0.5.2
	torch==1.5.0
Libraries	torchvision==0.6.0a0+82fd1c8
	tqdm==4.46.0
	transformers==2.8.0
	cudatoolkit==10.1.243

Table 7: Software specification.

CPU	Intel (R) Core (TM) i7-8700K CPU @ 3.70GHz
RAM	64GB
GPU	Titan RTX 24G

Table 8: Hardware specification.

ALBERT	A Lite BERT
BERT	Bidirectional encoder representations from transformers
BERTbase	Pre-trained BERT base mode(110M, not fine-tuned)
BERT-DPT	BERT+Domain post-training
BERT-FP	BERT model with fine-grained post-training
BERT-FP-NF	BERT+fine-grained post-training+No fine-tuning
BERT-SL	BERT with self-supervised tasks
BERT-VFT	BERT+Variable fine-tuning
DA	Data augmentation
DMN	Deep attention matching network
DUA	Deep utterance aggregation
ESIM	Enhanced sequential inference model
FP	Fine-grained post-training
IOI	Interaction-over-interaction network
MAP	Mean average precision
MLM	Masked language mode
MRR	Mean reciprocal rank
MSN	Multi-hop selector network
NSP	Next sentence prediction
P@1	Precision at one
R ₁₀ @1	Recall 10 at 1
RoBERTa	Robustly optimized BERT
RoBERTa-SS-DA	RoBERTa+Speaker Segment + Data augmentation
SA-BERT	Speaker-aware embedding+BERT
SCR	Short context-response pair
SMN	Sequential matching network
SOP	Sentence ordering prediction
UMS	Utterance manipulation strategies
URC	Utterance relevance classification

Table 9: Abbreviation appendix