Projektowanie efektywnych algorytmów Projekt

Projekt nr 2 - Symulowane wyżarzanie

Autorka: Daria Jeżowska 252731 Prowadzący: mgr inż. Anotni Sterna

Dzień zajęć: Czwartek $15^{15}\,$

1 Wstęp

Problem komiwojażera polega na znalezieniu minimalnego cyklu Hamiltona, czyli najkrótszej drogi pomiędzy wszystkimi wierzchołkami grafu, przy czym każdy wierzchołek może zostać odwiedzony tylko jeden raz i podróż musi się skończyć w punkcie startowym - rozwiązaniem problemu komiwojażera jest cykl o najmniejszej sumie wag krawędzi. Problem ten został sformułowany w 1859 roku i jest to NP-trudny problem.

Symulowane wyżarzanie to algorytm metaheurystyczny nawiązujący do procesu wyżarzania - nagrzaniu materiału do danej temperatury, wygrzewaniu go w określonych warunkach oraz powolnym studzeniu. Celem tego jest otrzymanie pewnych właściwości materiału (np. twardość, wytrzymałość). Symulowane wyżarzanie polega na akceptowaniu lepszego rozwiązania problemu oraz podjęciu decyzji czy należy zaakceptować gorsze. To, czy gorsze rozwiązanie zostanie zaakceptowane zależy w głównej mierze od temperatury - im niższa, tym prawdopodobieństwo zaakceptowania będzie mniejsze. W Umożliwia to wyjście poza obszar minimum lokalnego, co pozwala na znalezienie minimum globalnego. W przypadku symulowanego wyżarzania nie da się także dobrać zawsze idealnych parametrów przez co algorytm nie zapewnia znalezienia rozwiązania danego problemu. Poza parametrami jest także duża losowość w wybieraniu i zamianie ścieżek, co dodatkowo wpływa na jego wyniki. Dzięki ograniczeniom czasowym pomaga za to znaleźć jak najlepsze rozwiązanie w jak najkrótszym czasie.

2 Opis działania algorytmu

- Wybór rozwiązania początkowego S i obliczenie wartości ścieżki
- Dopóki T > T_{końcowe}:
 - Dopóki N < max iteracji
 - Wygeneruj rozwiązanie S' w sąsiedztwie S poprzez zamianę dwóch losowych elementów w S
 - Obliczenie wartości ścieżki dla nowego rozwiązania
 - Jeśli S' < S lub $e^{\frac{-\Delta}{T}} > \text{random}(0,1)$ to S = S',
 - Obniżenie temperatury T

3 Implementacja algorytmu

Algorytm został zaimplementowany w za pomocą języka C++. Program składa się z dwóch klas - *Menu*, która służy do wczytywania i generowania danych oraz wyświetlania menu:

- displayMenu odpowiada za wyświetlanie menu, do którego zostały użyte instrukcje switch ... case.
- readFile wczytuje dane z pliku wybranego przez użytkownika do dwuwymiarowego wektora, który następnie jest przekazywany do funkcji algorithm klasy SimulatedAnnealing
- displayReadedData wypisuje na konsoli wczytane dane
- generateRandom tworzy losowe dane o wybranym rozmiarze

Druga klas SimulatedAnnealing odpowiada za algorytm symulowanego wyżarzania i posiada następujące funkcje:

• swapCities odpowiada za stworzenie nowej ścieżki poprzez zamianę miejscami ze sobą dwóch miast

- randomPath odpowiada za stworzenie nowej ścieżki poprzez wymieszanie kolejności miast. Funkcja ta działa na bazie funkcji swapCities
- calculatePathCost oblicza koszt ścieżki
- printPath wyświetla ścieżkę
- odpowiada za działanie algorytmu

Parametry:

- temperature temperatura
- \bullet iterations odpowiada za ilość iteracji wewnątrz pętli for wykonującej się w funkcji algorithm
- coolingRate przy każdej iteracji pętli while temperatura jest mnożona przez właśnie tą wartość, co pozwala na stopniowe zmniejszanie temperatury
- maxTime maksymalny czas (w sekundach) wykonywania się algorytmu

Algorytm w pierwszej kolejności tworzy losowa ścieżkę za pomoca funkcji randomPath, którą przechowujemy w wektorze localBestPath oraz liczymy jej koszt, który przechowujemy w zmiennej localBestPathCost. Następnie jest tworzony wektor nextPath oraz zmienna typu int nextPathCost, które sa nową, sąsiedzką ścieżką oraz kosztem tej ścieżki. Kolejnym krokiem jest pętla jest while, której warunkami są temperature > 0.0001 i maxTime > elapsedMs, przy czym maxTime jest ustawiane przez użytkownika i mnożone przez 1000, aby obliczanie czasu było dokładniejsze. Natomiast temperatura domyślnie wynosi 1000 i przy każdym obrocie pętli jest mnożona przez stała coolingRate, która wynosi 0.99. W tej petli jest zawarta petla for, której ilość iteracji określa zmienna iterations. W środku pętli for tworzymy nową ścieżkę dla wektora nextPath używajac funkcji swapCities oraz obliczamy jej koszt. W zmiennej delta przechowujemy różnicę między wartością zmiennej next-PathCost oraz localBestPathCost, której używa się do stwierdzenia czy nowa ścieżka jest lepsza oraz do obliczenia prawdopodobieństwa ze wzoru $e^{\frac{-\Delta}{T}}$, gdzie Δ to różnica między kosztami dwóch ścieżek. Zmienna prob przechowuje właśnie to prawdopodobieństwo. Pierwsza instrukcja warunkowa if sprawdza czy delta jest mniejsze od zera. Jeśli któryś z tych warunków jest spełniony to nasza aktualna ścieżka sąsiedzka staje się główną ścieżką globalBestPath. Analogicznie dzieje się dla kosztów tych ścieżek. W drugim ifie sprawdzane jest czy prawdopodobieństwo jest większe niż losowa liczba z przedziału (0,1). Jeśli tak jest do wektora localBestPath przypisywana jest kolejność miast z wektora nextPath oraz wartość localBestPathCost zmienia się na wartość nextPathCost.

4 Skuteczność algorytmu i analiza wyników

W zależności od ustawionego czasu algorytm działa dokładniej lub mniej. Im większy jest czas wykonywania się algorytmu tym można oczekiwać lepszych wyników. Jak widać w tabeli oraz na wykresach wraz ze wzrostem czasu spada koszt drogi oraz zmniejsza się błąd względny. Kolejnym czynnikiem wpływającym na wyniki jest temperatura. Algorytm może nie dawać lepszych wyników, gdy temperatura zmniejsza się - dotyczy to prawdopodobieństwa zaakceptowania gorszej ścieżki - wraz ze zmniejszającą się temperatury zmniejsza się i ono. Jest większe prawdopodobieństwo, że nie wyjdziemy z lokalnego minimum i nie dostaniemy się do globalnego minimum. Dla każdego testu temperatura została ustawiona na INT_MAX, aby algorytm nie zakończył działania przed upływem danego czasu.

Nazwa pliku	Najniższy koszt ścieżki		
tsp_17	39		
ftv44	1613		
ft70	38673		
bier127	118282		
rbg403	2465		

Nazwa pliku	Najlepszy wynik	Czas [s]	Błąd względny [%]
1. 17	39	0,5	0%
	39	1	0%
tsp_17	39	2	0%
	39	5	0%
ftv44	1908	0,5	$18,\!29\%$
	1838	1	13,95%
	1764	2	9,36%
	1733	5	7,44%
	1731	10	7,32%
	42707	0,5	10,43%
ft70	41936	1	8,4%
	41546	2	7,43%
	40797	5	5,49%
	40673	10	5,17%
	148613	0,5	25,64%
	141212	1	19,39%
bier127	139550	2	17,98%
	138665	5	17,23%
	138056	10	16,72%
	137993	20	$16,\!66\%$
a280	31975	0,5	1139,82%
	28714	1	1013,38%
	20794	2	$706,\!28\%$
	4187	5	$62,\!35\%$
	3857	10	$49,\!55\%$
	3664	20	$42,\!07\%$
	3640	30	41,14%
rbg403	7894	0,5	220,24%
	7495	1	204,06%
	7275	2	195,13%
	6422	5	$160,\!53\%$
	2634	10	$6,\!86\%$
	2503	20	1,54%
	2497	50	1,30%

Nazwa pliku	Najlepszy wynik	Temperatura	Błąd względny [%]
tsp_17	39	100	0%
	39	1000	0%
	39	10000	0%
ftv44	1 818	100	12,71%
	1 748	1000	8,37%
	1 843	10000	14,26%
	1829	100000	13,39%
ft70	41 664	100	7,73%
	41 369	1000	6,97%
	40 919	10000	5,81%
bier127	150 914	100	27,59%
	138 273	1000	16,9%
	137 603	10000	16,33%
	131 409	100000	11,1%
a280	4008	100	55,41%
	3901	1000	$51,\!26\%$
	3728	10000	44,55%
	3834	100000	$48,\!66\%$
rbg403	2520	100	2,23%
	2506	1000	$1,\!66\%$
	2507	10000	1,7%
	2505	100000	1,62%

Koszt drogi w zależności od czasu działania programu dla danych z pliku tsp_17

Błąd względny [%] dla danych z pliku tsp_17

Koszt drogi w zależności od czasu działania programu dla danych z pliku ftv44

Błąd względny dla danych z pliku ftv44

Koszt drogi w zależności od czasu działania programu dla danych z pliku ft70

Błąd względny [%] dla danych z pliku ft70

Koszt drogi w zależności od czasu działania programu dla danych z pliku bier127

Błąd względny [%] dla danych z pliku bier127

Koszt drogi w zależności od czasu działania programu dla danych z pliku a280

Błąd względny [%] dla danych z pliku a280

Koszt drogi w zależności od czasu działania programu dla danych z pliku rbg403

Błąd względny [%] dla danych z pliku rbg403

5 Wnioski

Przy problemie komiwojażera i próbie rozwiązania go za pomoca metody symulowanego wyżarzania można otrzymać dobre wyniki - jednakże trzeba dobrze dostosować czas wykonywania oraz temperaturę. Jeśli jest więcej dużo miast do odwiedzenia to czas działania algorytmu powinien być zdecydowanie większy niż przy np. kilkunastu miastach. Zaleta symulowanego wyżarzania jest to, że dostajemy stosunkowo dobrą ścieżkę w odpowiednio krótkim czasie. W przypadku pliku rbg403 dla czasu 50s błąd względny był rzędu 1,30%, natomiast dla ft70 dla czasu 10s było to 5,15%. Przy algorytmie Helda-Karpa dla wiekszych liczb czas wykonywania algorytmu mocno się wydłużał i byłoby to niemożliwe doczekać się na wynik dla dwóch wymienionych przed chwila danych. Mimo że wyniki symulowanego wyżarzania nie zawsze są blisko idealnych to w konkretnych przypadkach ten algorytm może być lepszym wyborem. Przy tym projekcie więcej czasu zajęło samo testowanie danych niż implementacja kodu. Powodem tego było dobieranie odpowiednich parametrów - czasu, temperatury czy współczynnika chłodzącego (był on na stałe ustawiony na liczbe 0,99). Trzeba było rozważyć różne czasy i temperatury, aby uzyskać możliwie najlepszy wynik i było to najtrudniejsza częścią projektu.

6 Bibliografia

- Wykłady
- $\bullet \ https://www.mimuw.edu.pl/\ grygiel/woen/woen4.pdf$
- $\bullet \ http://www.cs.put.poznan.pl/mkomosinski/lectures/optimization/SA.pdf$
- Dane do testów zostały zaczerpnięte z
 - http://jaroslaw.mierzwa.staff.iiar.pwr.wroc.pl/pea-stud/tsp/wyniki.as
 - http://jaroslaw.rudy.staff.iiar.pwr.wroc.pl/pea.php