LSM6DSO32

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

LGA-14L (2.5 x 3 x 0.83 mm) typ.

Features

- Power consumption: 0.55 mA in combo highperformance mode
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 9 kbytes
- ±4/±8/±16/±32 g full scale
- ±125/±250/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IO supply (1.62 V)
- Compact footprint: 2.5 mm x 3 mm x 0.83 mm
- SPI / I²C & MIPI I3CSM serial interface with main processor data synchronization
- Advanced pedometer, step detector and step counter
- Significant Motion Detection, Tilt detection
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Programmable finite state machine: accelerometer, gyroscope and external sensors
- Embedded temperature sensor
- ECOPACK, RoHS and "Green" compliant

Applications

- · Wearables, smart watches, and sports equipment
- · Motion tracking and gesture detection
- · Hard fall detection
- Sensor hub
- Navigation
- IoT and connected devices
- · Smart power saving for handheld devices

Description

The LSM6DSO32 is a system-in-package featuring a 3D digital accelerometer and 3D digital gyroscope boosting power performance to 0.55 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DSO32 supports main OS requirements, offering real, virtual and batch sensors with 9 kbytes for dynamic data batching. ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSO32 has a full-scale acceleration range of $\pm 4/\pm 8/\pm 16\pm 32$ g and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DSO32 the preferred choice of system designers for the creation and manufacturing of reliable products. The LSM6DSO32 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range [°C]	Package	Packing
LSM6DSO32	-40 to +85	LGA-14L	Tray
LSM6DSO32TR	-40 to +85	(2.5x3x0.83 mm)	Tape & Reel

Contents LSM6DSO32

Contents

1	Ove	/iew	8
2	Emb	edded low-power features19	9
	2.1	Tilt detection	0
	2.2	Significant Motion Detection	0
	2.3	Finite State Machine	0
3	Pin	escription	2
	3.1	Pin connections	3
4	Mod	le specifications	5
	4.1	Mechanical characteristics	5
	4.2	Electrical characteristics	8
	4.3	Temperature sensor characteristics	9
	4.4	Communication interface characteristics	0
		4.4.1 SPI - serial peripheral interface	0
		4.4.2 I ² C - inter-IC control interface	1
	4.5	Absolute maximum ratings	2
	4.6	Terminology 33	3
		4.6.1 Sensitivity	3
		4.6.2 Zero-g and zero-rate level	3
5	Digi	ıl interfaces	4
	5.1	I ² C/SPI interface	4
		5.1.1 I ² C serial interface	4
		5.1.2 SPI bus interface	7
	5.2	MIPI I3C SM interface	1
		5.2.1 MIPI I3C SM slave interface	1
		5.2.2 MIPI I3C SM CCC supported commands	1
	5.3	I ² C/MIPI I3C SM coexistence in LSM6DSO32	3
	5.4	Master I ² C interface	4
6	Fun	tionality45	5

	6.1	Operating modes	45
	6.2	Accelerometer power modes	45
		6.2.1 Accelerometer ultra-low-power mode	45
	6.3	Gyroscope power modes	46
	6.4	Block diagram of filters	46
		6.4.1 Block diagrams of the accelerometer filters	46
		6.4.2 Block diagrams of the gyroscope filters	48
	6.5	FIFO	49
		6.5.1 Bypass mode	50
		6.5.2 FIFO mode	50
		6.5.3 Continuous mode	50
		6.5.4 Continuous-to-FIFO mode	51
		6.5.5 Bypass-to-Continuous mode	51
		6.5.6 Bypass-to-FIFO mode	51
		6.5.7 FIFO reading procedure	52
7	Appl	lication hints	53
	7.1	LSM6DSO32 electrical connections in Mode 1	53
	7.2	LSM6DSO32 electrical connections in Mode 2	5/
	1.2	LOWIDDOOSZ electrical confrections in wode 2	
8		ister mapping	
	Regi	ister mapping	57
	Regi	ister mapping	57
	Regi Regi	ister mapping ister description FUNC_CFG_ACCESS (01h)	57 60
	Regi Regi 9.1	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h)	57 60 60
	Regi 9.1 9.2 9.3	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h)	57 60 60 60
	Regi 9.1 9.2 9.3 9.4	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h)	57 60 60 61
	Regi 9.1 9.2 9.3 9.4 9.5	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h)	57 60 60 61 61
	Regi 9.1 9.2 9.3 9.4 9.5 9.6	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah)	57 60 60 61 61 62
	Regi 9.1 9.2 9.3 9.4 9.5 9.6 9.7	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah) COUNTER_BDR_REG1 (0Bh)	57 60 60 61 62 63
	Regi 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	ister mapping ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah) COUNTER_BDR_REG1 (0Bh) COUNTER_BDR_REG2 (0Ch)	57 60 60 61 62 63 64
	Regi 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah) COUNTER_BDR_REG1 (0Bh) INT1_CTRL (0Dh)	57 60 60 61 62 63 64 64
	Regi 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah) COUNTER_BDR_REG1 (0Bh) COUNTER_BDR_REG2 (0Ch) INT1_CTRL (0Dh) INT2_CTRL (0Eh)	57 60 60 61 62 63 64 64 65
8	Regi 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	ister description FUNC_CFG_ACCESS (01h) PIN_CTRL (02h) FIFO_CTRL1 (07h) FIFO_CTRL2 (08h) FIFO_CTRL3 (09h) FIFO_CTRL4 (0Ah) COUNTER_BDR_REG1 (0Bh) COUNTER_BDR_REG2 (0Ch) INT1_CTRL (0Dh) INT2_CTRL (0Eh) WHO_AM_I (0Fh)	57 60 60 61 61 62 63 64 64 65 66

Contents LSM6DSO32

9.13	CTRL2_G (11h)	. 68
9.14	CTRL3_C (12h)	. 69
9.15	CTRL4_C (13h)	. 70
9.16	CTRL5_C (14h)	. 71
9.17	CTRL6_C (15h)	. 72
9.18	CTRL7_G (16h)	. 73
9.19	CTRL8_XL (17h)	
9.20	CTRL9_XL (18h)	. 76
9.21	CTRL10_C (19h)	. 76
9.22	ALL_INT_SRC (1Ah)	. 77
9.23	WAKE_UP_SRC (1Bh)	. 77
9.24	TAP_SRC (1Ch)	
9.25	D6D_SRC (1Dh)	
9.26	STATUS_REG (1Eh)	
9.27	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	. 79
9.28	OUTX_L_G (22h) and OUTX_H_G (23h)	
9.29	OUTY_L_G (24h) and OUTY_H_G (25h)	. 80
9.30	OUTZ_L_G (26h) and OUTZ_H_G (27h)	
9.31	OUTX_L_A (28h) and OUTX_H_A (29h)	
9.32	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	. 81
9.33	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	
9.34	EMB_FUNC_STATUS_MAINPAGE (35h)	
9.35	FSM_STATUS_A_MAINPAGE (36h)	
9.36	FSM_STATUS_B_MAINPAGE (37h)	. 83
9.37	STATUS_MASTER_MAINPAGE (39h)	
9.38	FIFO_STATUS1 (3Ah)	. 84
9.39	FIFO_STATUS2 (3Bh)	. 84
9.40	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	. 85
9.41	TAP_CFG0 (56h)	. 86
9.42	TAP_CFG1 (57h)	. 87
9.43	TAP_CFG2 (58h)	. 87
9.44	TAP THS 6D (59h)	. 88

LSM6DSO32 Contents

	9.45	INT_DUR2 (5Ah)
	9.46	WAKE_UP_THS (5Bh)
	9.47	WAKE_UP_DUR (5Ch)
	9.48	FREE_FALL (5Dh)
	9.49	MD1_CFG (5Eh)
	9.50	MD2_CFG (5Fh)
	9.51	I3C_BUS_AVB (62h)
	9.52	INTERNAL_FREQ_FINE (63h)
	9.53	X_OFS_USR (73h)
	9.54	Y_OFS_USR (74h)
	9.55	Z_OFS_USR (75h)
	9.56	FIFO_DATA_OUT_TAG (78h)
	9.57	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) 96
	9.58	FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch) 96
	9.59	FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) 96
10	Embe	edded functions register mapping
11	Embe	edded functions register description99
11	Emb e	edded functions register description
11		
11	11.1	PAGE_SEL (02h)
11	11.1 11.2	PAGE_SEL (02h)
11	11.1 11.2 11.3	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100
11	11.1 11.2 11.3 11.4	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100
11	11.1 11.2 11.3 11.4 11.5	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100
11	11.1 11.2 11.3 11.4 11.5 11.6	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103 EMB_FUNC_INT2 (0Eh) 104
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103 EMB_FUNC_INT2 (0Eh) 104 FSM_INT2_A (0Fh) 105
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103 EMB_FUNC_INT2 (0Eh) 104 FSM_INT2_A (0Fh) 105 FSM_INT2_B (10h) 106
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103 EMB_FUNC_INT2 (0Eh) 104 FSM_INT2_A (0Fh) 105 FSM_INT2_B (10h) 106 EMB_FUNC_STATUS (12h) 107
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14	PAGE_SEL (02h) 99 EMB_FUNC_EN_A (04h) 99 EMB_FUNC_EN_B (05h) 100 PAGE_ADDRESS (08h) 100 PAGE_VALUE (09h) 100 EMB_FUNC_INT1 (0Ah) 101 FSM_INT1_A (0Bh) 102 FSM_INT1_B (0Ch) 103 EMB_FUNC_INT2 (0Eh) 104 FSM_INT2_A (0Fh) 105 FSM_INT2_B (10h) 106 EMB_FUNC_STATUS (12h) 107 FSM_STATUS_A (13h) 107

	11.16	EMB_FUNC_FIFO_CFG (44h)	109
	11.17	FSM_ENABLE_A (46h)	109
	11.18	FSM_ENABLE_B (47h)	110
	11.19	FSM_LONG_COUNTER_L (48h) and	
		FSM_LONG_COUNTER_H (49h)	
		FSM_LONG_COUNTER_CLEAR (4Ah)	
		FSM_OUTS1 (4Ch)	
		FSM_OUTS2 (4Dh)	
		FSM_OUTS3 (4Eh)	
		FSM_OUTS4 (4Fh)	
		FSM_OUTS5 (50h)	
		FSM_OUTS6 (51h)	
		FSM_OUTS7 (52h)	
	11.28	FSM_OUTS8 (53h)	115
	11.29	FSM_OUTS9 (54h)	115
	11.30	FSM_OUTS10 (55h)	116
	11.31	FSM_OUTS11 (56h)	116
	11.32	FSM_OUTS12 (57h)	117
	11.33	FSM_OUTS13 (58h)	117
	11.34	FSM_OUTS14 (59h)	118
	11.35	FSM_OUTS15 (5Ah)	118
	11.36	FSM_OUTS16 (5Bh)	119
	11.37	EMB_FUNC_ODR_CFG_B (5Fh)	119
	11.38	STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)	120
	11.39	EMB_FUNC_SRC (64h)	120
	11.40	EMB_FUNC_INIT_A (66h)	121
	11.41	EMB_FUNC_INIT_B (67h)	121
4.0			400
12	Embe	edded advanced features pages	122
13	Embe	edded advanced features register description	. 125
	13.1	Page 0 - Embedded advanced features registers	125
		13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh) .	125
		13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)	125

57/

LSM6DSO32 Contents

		13.1.3	MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)	126
		13.1.4	MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	126
		13.1.5	MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	127
		13.1.6	MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	127
		13.1.7	MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	128
		13.1.8	MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)	128
		13.1.9	MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)	
		13.1.10	MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	
		13.1.11	MAG_CFG_A (D4h)	
		13.1.12	MAG_CFG_B (D5h)	
	13.2	-	- Embedded advanced features registers	
		13.2.1	FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)	
		13.2.2	FSM_PROGRAMS (7Ch)	
		13.2.3	FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)	
		13.2.4	PEDO_CMD_REG (83h)	
		13.2.5	PEDO_DEB_STEPS_CONF (84h)	
		13.2.6	PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)	133
14	Sense	or hub r	egister mapping	. 134
14	Sense	or hub r	egister mapping	. 134
14 15			register mapping	
		or hub r		. 136
	Sense	or hub r SENSO	register description	. 136 . 136
	Senso 15.1	or hub r SENSO SENSO	register description	. 136 . 136 . 136
	Senso 15.1 15.2	or hub r SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h)	. 136 . 136 . 136 . 136
	Senso 15.1 15.2 15.3	SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h)	. 136 . 136 . 136 . 136 . 137
	Senso 15.1 15.2 15.3 15.4	SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h)	. 136 . 136 . 136 . 136 . 137
	Senso 15.1 15.2 15.3 15.4 15.5	SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h)	. 136 . 136 . 136 . 137 . 137
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7	SENSO SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h)	. 136 . 136 . 136 . 136 . 137 . 137 . 138
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h)	. 136 . 136 . 136 . 137 . 137 . 137 . 138
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h) R_HUB_9 (0Ah)	. 136 . 136 . 136 . 137 . 137 . 137 . 138 . 138
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10	SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h) R_HUB_9 (0Ah) R_HUB_10 (0Bh)	. 136 . 136 . 136 . 137 . 137 . 137 . 138 . 138 . 138
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11	SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h) R_HUB_9 (0Ah) R_HUB_10 (0Bh) R_HUB_11 (0Ch)	. 136 . 136 . 136 . 137 . 137 . 137 . 138 . 138 . 138 . 139
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12	SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h) R_HUB_9 (0Ah) R_HUB_10 (0Bh) R_HUB_11 (0Ch) R_HUB_12 (0Dh)	. 136 . 136 . 136 . 137 . 137 . 137 . 138 . 138 . 138 . 139 . 139
	Senso 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13	SENSO	register description R_HUB_1 (02h) R_HUB_2 (03h) R_HUB_3 (04h) R_HUB_4 (05h) R_HUB_5 (06h) R_HUB_6 (07h) R_HUB_7 (08h) R_HUB_8 (09h) R_HUB_9 (0Ah) R_HUB_10 (0Bh) R_HUB_11 (0Ch)	. 136 . 136 . 136 . 137 . 137 . 137 . 138 . 138 . 138 . 139 . 139 . 140

18	Revis	sion history
	17.2	LGA-14 packing information
	17.1	LGA-14L package information
17	Packa	age information
16	Solde	ering information
	15.33	STATUS_MASTER (22h)
		DATAWRITE_SLV0 (21h)
		SLAVE3_CONFIG (20h)
		SLV3_SUBADD (1Fh)
	15.29	SLV3_ADD (1Eh)
	15.28	SLAVE2_CONFIG (1Dh)
	15.27	SLV2_SUBADD (1Ch)
	15.26	SLV2_ADD (1Bh)
	15.25	SLAVE1_CONFIG (1Ah)
	15.24	SLV1_SUBADD (19h)
	15.23	SLV1_ADD (18h)
	15.22	SLAVE0_CONFIG (17h)
		SLV0_SUBADD (16h)
	15.20	SLV0_ADD (15h)
		MASTER_CONFIG (14h)
		SENSOR_HUB_18 (13h)
		SENSOR_HUB_17 (12h)
		SENSOR_HUB_16 (11h)
	15.15	SENSOR_HUB_15 (10h)

LSM6DSO32 List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	. 24
Table 3.	Mechanical characteristics	. 25
Table 4.	Electrical characteristics	
Table 5.	Temperature sensor characteristics	
Table 6.	SPI slave timing values (in mode 3)	
Table 7.	I ² C slave timing values	
Table 8.	Absolute maximum ratings	
Table 9.	Serial interface pin description	
Table 10.	I ² C terminology	
Table 11.	SAD+Read/Write patterns	
Table 12.	Transfer when master is writing one byte to slave	
Table 13.	Transfer when master is writing multiple bytes to slave	
Table 14.	Transfer when master is receiving (reading) one byte of data from slave	
Table 15.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 15.	MIPI I3C SM CCC commands	
Table 10.	Master I ² C pin details	
Table 17.	Gyroscope LPF2 bandwidth selection	
Table 10.	Internal pin status	
Table 19.	Registers address map	
Table 20.	FUNC_CFG_ACCESS register.	
Table 21.	FUNC_CFG_ACCESS register description	
Table 22.	PIN_CTRL register	
Table 23.	PIN_CTRL register description	
Table 24. Table 25.		
Table 25. Table 26.	FIFO_CTRL1 register	
Table 26. Table 27.	FIFO_CTRL1 register description	
Table 27. Table 28.	FIFO_CTRL2 register	
Table 26. Table 29.	FIFO_CTRL2 register description	
Table 29. Table 30.	FIFO_CTRL3 register description	
	FIFO_CTRL4 register	
Table 31.	FIFO_CTRL4 register	
Table 32.	FIFO_CTRL4 register description	
Table 33.	COUNTER_BDR_REG1 register	
Table 34.	COUNTER_BDR_REG1 register description	
Table 35.	COUNTER_BDR_REG2 register	
Table 36.	COUNTER_BDR_REG2 register description	
Table 37.	INT1_CTRL register	
Table 38.	INT1_CTRL register description	
Table 39.	INT2_CTRL register	
Table 40.	INT2_CTRL register description	
Table 41.	WhoAml register	
Table 42.	CTRL1_XL register	
Table 43.	CTRL1_XL register description	
Table 44.	Accelerometer ODR register setting	
Table 45.	Accelerometer full-scale selection	
Table 46.	CTRL2_G register	
Table 47.	CTRL2_G register description	
Table 48.	Gyroscope ODR configuration setting	. 68

Table 49.	CTRL3_C register	69
Table 50.	CTRL3_C register description	69
Table 51.	CTRL4_C register	70
Table 52.	CTRL4_C register description	70
Table 53.	CTRL5_C register	71
Table 54.	CTRL5_C register description	71
Table 55.	Angular rate sensor self-test mode selection	71
Table 56.	Linear acceleration sensor self-test mode selection	71
Table 57.	CTRL6_C register	72
Table 58.	CTRL6_C register description	72
Table 59.	Trigger mode selection	72
Table 60.	Gyroscope LPF1 bandwidth selection	72
Table 61.	CTRL7_G register	73
Table 62.	CTRL7_G register description	73
Table 63.	CTRL8_XL register	73
Table 64.	CTRL8_XL register description	74
Table 65.	Accelerometer bandwidth configurations	74
Table 66.	CTRL9_XL register	76
Table 67.	CTRL9_XL register description	76
Table 68.	CTRL10_C register	76
Table 69.	CTRL10_C register description	76
Table 70.	ALL_INT_SRC register	77
Table 71.	ALL_INT_SRC register description	77
Table 72.	WAKE_UP_SRC register	77
Table 73.	WAKE_UP_SRC register description	77
Table 74.	TAP_SRC register	78
Table 75.	TAP_SRC register description	78
Table 76.	D6D_SRC register	78
Table 77.	D6D_SRC register description	78
Table 78.	STATUS_REG register	79
Table 79.	STATUS_REG register description	79
Table 80.	OUT_TEMP_L register	
Table 81.	OUT_TEMP_H register	
Table 82.	OUT_TEMP register description	79
Table 83.	OUTX_L_G register	79
Table 84.	OUTX_H_G register	79
Table 85.	OUTX_H_G register description	
Table 86.	OUTY_L_G register	80
Table 87.	OUTY_H_G register	
Table 88.	OUTY_H_G register description	
Table 89.	OUTZ_L_G register	
Table 90.	OUTZ_H_G register	
Table 91.	OUTZ_H_G register description	
Table 92.	OUTX_L_A register	
Table 93.	OUTX_H_A register	
Table 94.	OUTX_H_A register description	
Table 95.	OUTY_L_A register	
Table 96.	OUTY_H_A register	
Table 97.	OUTY_H_A register description	
Table 98.	OUTZ_L_A register	
Table 99.	OUTZ_H_A register	
Table 100.	OUTZ_H_A register description	81

LSM6DSO32 List of tables

Table 101.	EMB_FUNC_STATUS_MAINPAGE register	82
Table 102.	EMB_FUNC_STATUS_MAINPAGE register description	82
Table 103.	FSM_STATUS_A_MAINPAGE register	82
Table 104.	FSM_STATUS_A_MAINPAGE register description	82
Table 105.	FSM_STATUS_B_MAINPAGE register	83
Table 106.	FSM_STATUS_B_MAINPAGE register description	83
Table 107.	STATUS_MASTER_MAINPAGE register	83
Table 108.	STATUS_MASTER_MAINPAGE register description	83
Table 109.	FIFO_STATUS1 register	84
Table 110.	FIFO_STATUS1 register description	84
Table 111.	FIFO_STATUS2 register	84
Table 112.	FIFO_STATUS2 register description	84
Table 113.	TIMESTAMP output registers	85
Table 114.	TIMESTAMP output register description	85
Table 115.	TAP_CFG0 register	86
Table 116.	TAP_CFG0 register description	86
Table 117.	TAP_CFG1 register	87
Table 118.	TAP_CFG1 register description	87
Table 119.	TAP priority decoding	87
Table 120.	TAP_CFG2 register	87
Table 121.	TAP_CFG2 register description	87
Table 122.	TAP_THS_6D register	88
Table 123.	TAP_THS_6D register description	88
Table 124.	Threshold for D4D/D6D function	88
Table 125.	INT_DUR2 register	88
Table 126.	INT_DUR2 register description	88
Table 127.	WAKE_UP_THS register	
Table 128.	WAKE_UP_THS register description	89
Table 129.	WAKE_UP_DUR register	89
Table 130.	WAKE_UP_DUR register description	89
Table 131.	FREE_FALL register	90
Table 132.	FREE_FALL register description	90
Table 133.	Threshold for free-fall function	90
Table 134.	MD1_CFG register	91
Table 135.	MD1_CFG register description	91
Table 136.	MD2_CFG register	92
Table 137.	MD2_CFG register description	
Table 138.	I3C_BUS_AVB register	93
Table 139.	I3C_BUS_AVB register description	93
Table 140.	INTERNAL_FREQ_FINE register	93
Table 141.	INTERNAL_FREQ_FINE register description	93
Table 142.	X_OFS_USR register	93
Table 143.	X_OFS_USR register description	93
Table 144.	Y_OFS_USR register	
Table 145.	Y_OFS_USR register description	
Table 146.	Z_OFS_USR register	94
Table 147.	Z_OFS_USR register description	
Table 148.	FIFO_DATA_OUT_TAG register	
Table 149.	FIFO_DATA_OUT_TAG register description	
Table 150.	FIFO tag	95
Table 151.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers	
Table 152.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description	96

List of tables LSM6DSO32

Table 153.	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	
Table 154.	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description	96
Table 155.	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	96
Table 156.	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description	96
Table 157.	Register address map - embedded functions	97
Table 158.	PAGE_SEL register	99
Table 159.	PAGE_SEL register description	99
Table 160.	EMB_FUNC_EN_A register	99
Table 161.	EMB_FUNC_EN_A register description	99
Table 162.	EMB_FUNC_EN_B register	100
Table 163.	EMB_FUNC_EN_B register description	100
Table 164.	PAGE_ADDRESS register	100
Table 165.	PAGE_ADDRESS register description	100
Table 166.	PAGE_VALUE register	100
Table 167.	PAGE_VALUE register description	100
Table 168.	EMB_FUNC_INT1 register	101
Table 169.	EMB_FUNC_INT1 register description	101
Table 170.	FSM_INT1_A register	
Table 171.	FSM_INT1_A register description	
Table 172.	FSM_INT1_B register	
Table 173.	FSM_INT1_B register description	
Table 174.	EMB FUNC INT2 register	
Table 175.	EMB_FUNC_INT2 register description	
Table 176.	FSM_INT2_A register	
Table 177.	FSM_INT2_A register description	
Table 178.	FSM_INT2_B register	
Table 179.	FSM_INT2_B register description	
Table 180.	EMB_FUNC_STATUS register	
Table 181.	EMB_FUNC_STATUS register description	
Table 182.	FSM_STATUS_A register	
Table 183.	FSM_STATUS_A register description	107
Table 184.	FSM_STATUS_B register	
Table 185.	FSM_STATUS_B register description	108
Table 186.	PAGE_RW register	108
Table 187.	PAGE_RW register description	108
Table 188.	EMB_FUNC_FIFO_CFG register	109
Table 189.	EMB_FUNC_FIFO_CFG register description	
Table 190.	FSM_ENABLE_A register	109
Table 191.	FSM_ENABLE_A register description	109
Table 192.	FSM_ENABLE_B register	
Table 193.	FSM_ENABLE_B register description	110
Table 194.	FSM_LONG_COUNTER_L register	
Table 195.	FSM_LONG_COUNTER_L register description	110
Table 196.	FSM_LONG_COUNTER_H register	110
Table 197.	FSM_LONG_COUNTER_H register description	110
Table 198.	FSM_LONG_COUNTER_CLEAR register	
Table 199.	FSM_LONG_COUNTER_CLEAR register description	111
Table 200.	FSM_OUTS1 register	111
Table 201.	FSM_OUTS1 register description	111
Table 202.	FSM_OUTS2 register	
Table 203.	FSM_OUTS2 register description	112
Table 204	FSM_OUTS3 register	112

LSM6DSO32 List of tables

Table 205.	FSM OUTS3 register description	110
Table 205.	FSM_OUTS4 register	
Table 200.	FSM OUTS4 register description.	
Table 207.		
Table 200.	FSM_OUTS5 register description	
Table 209.	FSM_OUTS5 register	
	FSM_OUTS6 register description	
Table 211.	FSM_OUTS6 register description	
Table 212. Table 213.	FSM_OUTS7 register	
Table 213.		
Table 214.	FSM_OUTS8 register description	
	FSM_OUTS8 register description	
Table 216.	FSM_OUTS9 register description	
Table 217.	FSM_OUTS9 register description	
Table 218.	FSM_OUTS10 register	
Table 219.	FSM_OUTS10 register description	
Table 220.	FSM_OUTS11 register	
Table 221.	FSM_OUTS11 register description	
Table 222.	FSM_OUTS12 register	
Table 223.	FSM_OUTS12 register description	
Table 224.	FSM_OUTS13 register	
Table 225.	FSM_OUTS13 register description	
Table 226.	FSM_OUTS14 register	
Table 227.	FSM_OUTS14 register description	
Table 228.	FSM_OUTS15 register	
Table 229.	FSM_OUTS15 register description	
Table 230.	FSM_OUTS16 register	
Table 231.	FSM_OUTS16 register description	
Table 232.	EMB_FUNC_ODR_CFG_B register	
Table 233.	EMB_FUNC_ODR_CFG_B register description	
Table 234.	STEP_COUNTER_L register	
Table 235.	STEP_COUNTER_L register description	
Table 236.	STEP_COUNTER_H register	
Table 237.	STEP_COUNTER_H register description	
Table 238.	EMB_FUNC_SRC register	
Table 239.	EMB_FUNC_SRC register description	
Table 240.	EMB_FUNC_INIT_A register	
Table 241.	EMB_FUNC_INIT_A register description	
Table 242.	EMB_FUNC_INIT_B register	
Table 243.	EMB_FUNC_INIT_B register description	
Table 244.	Register address map - embedded advanced features page 0	
Table 245.	Register address map - embedded advanced features page 1	
Table 246.	MAG_SENSITIVITY_L register	
Table 247.	MAG_SENSITIVITY_L register description	
Table 248.	MAG_SENSITIVITY_H register	125
Table 249.	MAG_SENSITIVITY_H register description	
Table 250.	MAG_OFFX_L register	125
Table 251.	MAG_OFFX_L register description.	
Table 252.	MAG_OFFX_H register	125
Table 253.	MAG_OFFX_H register description	
Table 254.	MAG_OFFY_L register	126
Table 255.	MAG_OFFY_L register description	
Table 256.	MAG_OFFY_H register	126

Table 257.	MAG_OFFY_H register description	126
Table 258.	MAG_OFFZ_L register	126
Table 259.	MAG_OFFZ_L register description	126
Table 260.	MAG_OFFZ_H register	126
Table 261.	MAG_OFFZ_H register description	126
Table 262.	MAG_SI_XX_L register	127
Table 263.	MAG_SI_XX_L register description	127
Table 264.	MAG_SI_XX_H register	
Table 265.	MAG_SI_XX_H register description	
Table 266.	MAG_SI_XY_L register	
Table 267.	MAG_SI_XY_L register description	
Table 268.	MAG_SI_XY_H register	
Table 269.	MAG_SI_XY_H register description	
Table 270.	MAG_SI_XZ_L register	
Table 271.	MAG_SI_XZ_L register description	
Table 272.	MAG SI XZ H register	
Table 273.	MAG_SI_XZ_H register description	
Table 274.	MAG_SI_YY_L register	
Table 275.	MAG SI YY L register description	
Table 276.	MAG_SI_YY_H register	
Table 277.	MAG_SI_YY_H register description	
Table 278.	MAG_SI_YZ_L register	
Table 279.	MAG_SI_YZ_L register description	
Table 280.	MAG SI YZ H register	
Table 281.	MAG_SI_YZ_H register description	
Table 282.	MAG_SI_ZZ_L register	
Table 283.	MAG_SI_ZZ_L register description.	
Table 284.	MAG SI ZZ H register	
Table 285.	MAG_SI_ZZ_H register description	
Table 286.	MAG CFG A register	
Table 287.	MAG CFG A description	
Table 288.	MAG CFG B register	
Table 289.	MAG CFG B description	
Table 290.	FSM_LC_TIMEOUT_L register.	
Table 291.	FSM_LC_TIMEOUT_L register description	
Table 292.	FSM LC TIMEOUT H register	
Table 293.	FSM_LC_TIMEOUT_H register description	
Table 294.	FSM PROGRAMS register	
Table 295.	FSM PROGRAMS register description	
Table 296.	FSM_START_ADD_L register	
Table 297.	FSM START ADD L register description	
Table 298.	FSM_START_ADD_H register	
Table 299.	FSM START ADD H register description	
Table 300.	PEDO_CMD_REG register	
Table 301.	PEDO CMD REG register description	
Table 302.	PEDO DEB STEPS CONF register	
Table 303.	PEDO DEB STEPS CONF register description	
Table 304.	PEDO_SC_DELTAT_L register	
Table 305.	PEDO SC DELTAT H register	
Table 306.	PEDO SC DELTAT H/L register description	
Table 307.	Register address map - sensor hub registers	
Table 308.	SENSOR HUB 1 register	

LSM6DSO32 List of tables

Table 309.	SENSOR_HUB_1 register description	
Table 310.	SENSOR_HUB_2 register	
Table 311.	SENSOR_HUB_2 register description	
Table 312.	SENSOR_HUB_3 register	
Table 313.	SENSOR_HUB_3 register description	
Table 314.	SENSOR_HUB_4 register	
Table 315.	SENSOR_HUB_4 register description	
Table 316.	SENSOR_HUB_5 register	
Table 317.	SENSOR_HUB_5 register description	
Table 318.	SENSOR_HUB_6 register	
Table 319.	SENSOR_HUB_6 register description	
Table 320.	SENSOR_HUB_7 register	
Table 321.	SENSOR_HUB_7 register description	
Table 322.	SENSOR_HUB_8 register	
Table 323.	SENSOR_HUB_8 register description	
Table 324.	SENSOR_HUB_9 register	
Table 325.	SENSOR_HUB_9 register description	
Table 326.	SENSOR_HUB_10 register	
Table 327.	SENSOR_HUB_10 register description	
Table 328.	SENSOR_HUB_11 register	
Table 329.	SENSOR_HUB_11 register description	
Table 330.	SENSOR_HUB_12 register	
Table 331.	SENSOR_HUB_12 register description	
Table 332.	SENSOR_HUB_13 register	
Table 333.	SENSOR_HUB_13 register description	
Table 334.	SENSOR_HUB_14 register	
Table 335.	SENSOR_HUB_14 register description	
Table 336.	SENSOR_HUB_15 register	
Table 337.	SENSOR_HUB_15 register description	
Table 338.	SENSOR_HUB_16 register	
Table 339.	SENSOR_HUB_16 register description	
Table 340.	SENSOR_HUB_17 register	
Table 341.	SENSOR_HUB_17 register description	
Table 342. Table 343.	SENSOR_HUB_17 register	
Table 343.	MASTER_CONFIG register	
Table 344.	MASTER_CONFIG register description	
Table 346.	SLV0 ADD register	
Table 347.	SLV ADD register description	
Table 348.	SLV0 SUBADD register	
Table 349.	SLV0_SUBADD register description.	
Table 350.	SLAVE0_CONFIG register	
Table 350.	SLAVEO CONFIG register description.	
Table 351.	SLV1 ADD register	
Table 352.	SLV1_ADD register description	
Table 354.	SLV1_SUBADD register	
Table 355.	SLV1 SUBADD register description.	
Table 356.	SLAVE1_CONFIG register	
Table 357.	SLAVE1 CONFIG register description	
Table 358.	SLV2_ADD register.	
Table 359.	SLV2 ADD register description	
Table 360.	SLV2_SUBADD register	
	- -	

List of tables LSM6DSO32

Table 361.	SLV2_SUBADD register description	145
Table 362.	SLAVE2_CONFIG register	145
Table 363.	SLAVE2_CONFIG register description	145
Table 364.	SLV3_ADD register	146
Table 365.	SLV3_ADD register description	146
Table 366.	SLV3_SUBADD register	146
Table 367.	SLV3_SUBADD register description	146
Table 368.	SLAVE3_CONFIG register	146
Table 369.	SLAVE3_CONFIG register description	146
Table 370.	DATAWRITE_SLV0 register	147
Table 371.	DATAWRITE_SLV0 register description	147
Table 372.	STATUS_MASTER register	147
Table 373.	STATUS_MASTER register description	147
Table 374.	Reel dimensions for carrier tape of LGA-14 package	151
Table 375.	Document revision history	152

LSM6DSO32 List of figures

List of figures

-ıgure 1.	Generic state machine	21
igure 2.	State machine in the LSM6DSO32	21
igure 3.	Pin connections	22
igure 4.	LSM6DSO32 connection modes	23
igure 5.	SPI slave timing diagram (in mode 3)	30
igure 6.	I ² C slave timing diagram	
igure 7.	Read and write protocol (in mode 3)	37
igure 8.	SPI read protocol (in mode 3)	
igure 9.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	38
igure 10.	SPI write protocol (in mode 3)	39
igure 11.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	39
igure 12.	SPI read protocol in 3-wire mode (in mode 3)	
igure 13.	I ² C and MIPI I3C SM both active (INT1 pin not connected)	43
igure 14.	Only MIPI I3C SM active (INT1 pin connected to VDD_IO)	43
igure 15.	Block diagram of filters	46
igure 16.	Accelerometer chain	46
igure 17.	Accelerometer composite filter	47
igure 18.	Gyroscope digital chain - Mode 1 and Mode 2	48
igure 19.	LSM6DSO32 electrical connections in Mode 1	53
igure 20.	LSM6DSO32 electrical connections in Mode 2	54
igure 21.	Accelerometer block diagram	75
igure 22.	LGA-14L 2.5x3x0.86 mm package outline and mechanical data	149
igure 23.	Carrier tape information for LGA-14 package	150
igure 24.	LGA-14 package orientation in carrier tape	
igure 25.	Reel information for carrier tape of LGA-14 package	151

Overview LSM6DSO32

1 Overview

The LSM6DSO32 is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The LSM6DSO32 delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, stationary/motion detection and wakeup events.

The LSM6DSO32 supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DSO32 can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DSO32 has been designed to implement hardware features such as significant motion detection, stationary/motion detection, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer.

The LSM6DSO32 offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, etc.

Up to 9 kbytes of FIFO with compression and dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DSO32 leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSO32 is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

18/153 DocID032891 Rev 1

2 Embedded low-power features

The LSM6DSO32 has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 9 kbytes data buffering, data can be compressed two or three times
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable):
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity/inactivity recognition
 - Stationary/Motion detection
- Specific IP blocks with negligible power consumption and high-performance:
 - Pedometer functions: step detector and step counters
 - Tilt
 - Significant Motion Detection
 - Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve targets of both ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with different scenarios, for example:

- Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

2.2 **Significant Motion Detection**

The Significant Motion Detection (SMD) function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the LSM6DSO32 device this function has been implemented in hardware using only the accelerometer.

SMD functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

2.3 **Finite State Machine**

The LSM6DSO32 can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as glance gestures, absolute wrist tilt, shake and double-shake detection.

Definition of Finite State Machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. Figure 1: Generic state machine shows a generic state machine.

20/153 DocID032891 Rev 1

Figure 1. Generic state machine

Finite State Machine in the LSM6DSO32

The LSM6DSO32 works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine (*Figure 2: State machine in the LSM6DSO32*).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

LSM6DSO32 ACC [LSB]
GYR [LSB]
SIGNAL
CONDITIONING

EXT. SENSOR (MAG) [LSB]
(optional)

X = 1..16

Figure 2. State machine in the LSM6DSO32

Pin description LSM6DSO32

3 Pin description

Figure 3. Pin connections

1. Leave pin electrically unconnected and soldered to PCB.

LSM6DSO32 Pin description

3.1 Pin connections

The LSM6DSO32 offers flexibility to connect the pins in order to have two different mode connections and functionalities. In detail:

- Mode 1: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available;
- **Mode 2**: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available.

Figure 4. LSM6DSO32 connection modes

In the following table each mode is described for the pin connections and function.

Pin description LSM6DSO32

Table 2. Pin description

Pin#	Name	Mode 1 function	Mode 2 function			
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)			
1	SA0	I ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	I ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)			
2	SDx	Connect to VDDIO or GND	I²C serial data master (MSDA)			
3	SCx	Connect to VDDIO or GND	I²C serial clock master (MSCL)			
4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.			
5	VDDIO ⁽¹⁾	Power supp	bly for I/O pins			
6	GND	0 V	supply			
7	GND	0 V supply				
8	VDD ⁽¹⁾	Power supply				
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2)/ Data enable (DEN)/ I²C master external synchronization signal (MDRDY)			
10	NC	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾			
11	NC	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾			
12	CS	I ² C/MIPI I3C SM /SPI mode selection (1: SPI idle mode / I ² C/MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C/MIPI I3C SM disabled)	I ² C/MIPI I3C SM /SPI mode selection (1: SPI idle mode / I ² C/MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C/MIPI I3C SM disabled)			
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)	I²C/MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)			
14	SDA	I ² C/MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)			

^{1.} Recommended 100 nF filter capacitor.

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±4		
LA_FS	Linear acceleration measurement			±8] ,
LA_F3	range			±16		g
				±32		
				±125		
	An audau vata			±250		
G_FS	Angular rate measurement range			±500		dps
	- Thousand Herriange			±1000		
				±2000		
		FS = ±4 <i>g</i>		0.122		
LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±8 <i>g</i>		0.244		mg/LSB
LA_30	Linear acceleration sensitivity	FS = ±16 <i>g</i>		0.488		IIIg/LSB
		FS = ±32 <i>g</i>		0.976		
		FS = ±125 dps		4.375		
	Angular rate sensitivity ⁽²⁾	FS = ±250 dps		8.75		
G_So		FS = ±500 dps		17.50		mdps/LSB
		FS = ±1000 dps		35		
		FS = ±2000 dps		70		
LA_So%	Linear acceleration sensitivity tolerance ⁽³⁾	at component level		±0.5		%
G_So%	Angular rate sensitivity tolerance ⁽³⁾	at component level		±0.5		%
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.007		%/°C
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.005		%/°C
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾			±20		mg
G_TyOff	Angular rate zero-rate level offset accuracy ⁽⁵⁾			±0.5		dps
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.1		mg/°C
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.01		dps/°C

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Rn	Rate noise density in high- performance mode ⁽⁶⁾			3.8		mdps/√Hz
RnRMS	Gyroscope RMS noise in normal/low-power mode ⁽⁷⁾			75		mdps
		FS = ±4 <i>g</i>		120		
•	Acceleration noise density	FS = ±8 <i>g</i>		130		1
An	in high-performance mode ⁽⁸⁾	FS = ±16 <i>g</i>		160		– μ <i>g</i> /√Hz
		FS = ±32 <i>g</i>		220		
		FS = ±4 <i>g</i>		3.2		
RMS	Acceleration RMS noise	FS = ±8 <i>g</i>		3.4		
	in normal/low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±16 <i>g</i>		4.0		mg(RMS)
		FS = ±32 <i>g</i>		5.4		_ ilig(ixivio)
	Acceleration RMS noise in ultra-low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±4 g		9.5		
LA_ODR	Linear acceleration output data rate			1.6 ⁽¹¹⁾ 12.5 26 52 104 208 416 833 1666 3332 6664		Hz
G_ODR	Angular rate output data rate			12.5 26 52 104 208 416 833 1666 3332 6664		
	Linear acceleration self-test output change ⁽¹²⁾⁽¹³⁾⁽¹⁴⁾		50		1700	mg
Vst	Angular rate	FS = ±250 dps	20		80	dps
	self-test output change ⁽¹⁵⁾⁽¹⁶⁾	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

26/153 DocID032891 Rev 1

^{2.} Sensitivity values after factory calibration test and trimming.

- 3. Subject to change.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR.
- 9. Accelerometer RMS noise in normal/low-power/ultra-low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when the accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.
- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.122 mg at ±4 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx G bits in a dedicated register for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode			0.55		mA
LA_lddHP	Accelerometer current consumption in high-performance mode			170		μA
LA_lddLP	Accelerometer current consumption in low-power mode	ODR = 52 Hz ODR = 1.6 Hz		26 4.5		μA
LA_lddULP	Accelerometer current consumption in ultra-low-power mode	ODR = 52 Hz ODR = 1.6 Hz		9.5 4.4		μA
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μA
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 * VDD_IO			V
V _{IL}	Digital low-level input voltage				0.3 * VDD_IO	٧
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	VDD_IO - 0.2			V
V _{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}^{(2)}$			0.2	V
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2. 4} mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pin in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

4.3 Temperature sensor characteristics

@ Vdd = 1.8 V, T = 25 $^{\circ}$ C unless otherwise noted.

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} When the accelerometer is in low-power mode or ultra-low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 $^{\circ}\text{C}.$

^{4.} Time from power ON to valid data based on characterization data.

Communication interface characteristics 4.4

SPI - serial peripheral interface 4.4.1

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values (in mode 3)

Symbol	Parameter	Valu	Unit	
Symbol	Farameter	Min	Max	Offic
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 5. SPI slave timing diagram (in mode 3)

Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output Note: ports.

30/153 DocID032891 Rev 1

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Symbol	Parameter	I ² C standard mode ⁽¹⁾		I ² C fast	mode ⁽¹⁾	Unit
Symbol	Farameter	Min	Max	Min	Max	Offic
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		110
t _{w(SCLH)}	SCL clock high time	4.0		0.6		— μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		
t _{su(SP)}	STOP condition setup time	4		0.6		— μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

SDA

START

SDA

Tepeated Start

Star

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 4.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd / Vdd_IO	Supply voltage	-0.3 to 4.8	٧
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration <i>g</i> for 0.2 ms	20,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see *Table 3*).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see *Table 3*).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 *g* on both the X-axis and Y-axis, whereas the Z-axis will measure 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see *Table 3*).

Digital interfaces LSM6DSO32

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the LSM6DSO32 may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I²C less significant bit of the device address

Table 9. Serial interface pin description

5.1.1 I²C serial interface

The LSM6DSO32 I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

Table 10. I²C terminology

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

34/153 DocID032891 Rev 1

LSM6DSO32 Digital interfaces

I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DSO32 is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DSO32 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL3_C* (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 11* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. SAD+Read/Write patterns

Table 12. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Digital interfaces LSM6DSO32

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

LSM6DSO32 Digital interfaces

5.1.2 SPI bus interface

The LSM6DSO32 SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 7. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

Digital interfaces LSM6DSO32

SPI read

Figure 8. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 9. Multiple byte SPI read protocol (2-byte example) (in mode 3)

LSM6DSO32 Digital interfaces

SPI write

Figure 10. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 11. Multiple byte SPI write protocol (2-byte example) (in mode 3)

Digital interfaces LSM6DSO32

SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 12. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

LSM6DSO32 Digital interfaces

5.2 MIPI I3CSM interface

5.2.1 MIPI I3CSM slave interface

The LSM6DSO32 interface includes a MIPI I3C SM SDR only slave interface (compliant with release 1.0 of the specification) with MIPI I3C SM SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- Broadcast CCC communication
- Private communications
- Private read and write for single byte
- · Multiple read and write
- In-Band Interrupt request

Error Detection and Recovery Methods (S0-S6)

Note:

Refer to Section 5.3: I²C/MIPI I3CSM coexistence in LSM6DSO32 for details concerning the choice of the interface when powering up the device.

5.2.2 MIPI I3CSM CCC supported commands

The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.

Table 16. MIPI I3CSM CCC commands

Command	Command code	Default	Description
ENTDAA	0x07		DAA procedure
SETDASA	0x87		Assign Dynamic Address using Static Address 0x6B/0x6A depending on SDO pin
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)
ENTAS1	0x83 / 0x03		Enter activity state (direct and broadcast)
ENTAS2	0x84 / 0x04		Enter activity state (direct and broadcast)
ENTAS3	0x85 / 0x05		Enter activity state (direct and broadcast)
SETXTIME	0x98 / 0x28		Timing information exchange
GETXTIME	0x99	0x07 0x00 0x05 0x92	Timing information exchange
RSTDAA	0x86 / 0x06		Reset the assigned dynamic address (direct and broadcast)
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)

Digital interfaces LSM6DSO32

Table 16. MIPI I3CSM CCC commands

Command	Command code	Default	Description
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
GETMWL	0x8B	0x00 0x08 (2 byte)	Get maximum write length during private write
GETMRL	0x8C	0x00 0x10 0x09 (3 byte)	Get maximum read length during private read
GETPID	0x8D	0x02 0x08 0x00 0x6C 0x10 0x0B	Device ID register
GETBCR	0x8E	0x07 (1 byte)	Bus characteristics register
GETDCR	0x8F	0x44 default	MIPI I3C SM Device Characteristic Register
GETSTATUS	0x90	0x00 0x00 (2 byte)	Status register
GETMXDS	0x94	0x00 0x20 (2 byte)	Return max data speed

LSM6DSO32 **Digital interfaces**

I²C/MIPI I3CSM coexistence in LSM6DSO32 5.3

In the LSM6DSO32, the SDA and SCL lines are common to both I²C and MIPI I3CSM. The I²C bus requires anti-spike filters on the SDA and SCL pins that are not compatible with MIPI I3CSM timing.

The device can be connected to both I^2C and MIPI $I3C^{SM}$ or only to the MIPI $I3C^{SM}$ bus depending on the connection of the INT1 pin when the device is powered up:

- INT1 pin floating (internal pull-down): I²C/MIPI I3CSM both active, see *Figure 13*
- INT1 pin connected to VDD_IO: only MIPI I3CSMactive, see Figure 14

Figure 13. I²C and MIPI I3CSM both active (INT1 pin not connected)

Address assignment (DAA or ENTDA) must be performed with I^2C Fast Mode Plus Timing. When the slave is addressed, the I^2C slave is disabled and the timing is compatible with MIPI $I3C^{SM}$ specifications.

Figure 14. Only MIPI I3CSM active (INT1 pin connected to VDD IO) INT1 pin connected to VDD IO I²C/I3C I3C bus case → Only I3C active Dynamic Master resets Address CCC commands Slave event management

When the slave is MIPI $I3C^{SM}$ only, the I^2C slave is always disabled. The address can be assigned using MIPI $I3C^{SM}$ SDR timing.

Digital interfaces LSM6DSO32

5.4 Master I²C interface

If the LSM6DSO32 is configured in Mode 2, a master I^2C line is available. The master serial interface is mapped in the following dedicated pins.

Table 17. Master I²C pin details

Pin name	Pin description
MSCL	I²C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

LSM6DSO32 Functionality

6 Functionality

6.1 Operating modes

In the LSM6DSO32, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSO32 has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2 G (11h). For combo-mode the ODRs are totally independent.

6.2 Accelerometer power modes

In the LSM6DSO32, the accelerometer can be configured in five different operating modes: power-down, ultra-low-power, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in *CTRL6_C* (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

6.2.1 Accelerometer ultra-low-power mode

The LSM6DSO32 can be configured in ultra-low-power (ULP) mode by setting the XL_ULP_EN bit to 1 in *CTRL5_C* (14h) register. This mode can be used in accelerometer-only mode (gyroscope sensor must be configured in power-down mode) and for ODR_XL values between 1.6 Hz and 208 Hz.

When ULP mode is intended to be used, the bit XL_HM_MODE must be set to 0.

When ULP mode is switched ON/OFF, the accelerometer must be configured in power-down condition.

The embedded functions based on accelerometer data (free-fall, 6D/4D, tap, double-tap, wake-up, activity/inactivity, stationary/motion, step-counter, step-detection, significant motion, tilt) and the FIFO batching functionality are still supported when ULP mode is enabled.

Functionality LSM6DSO32

6.3 Gyroscope power modes

In the LSM6DSO32, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in *CTRL7_G* (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

6.4 Block diagram of filters

Figure 15. Block diagram of filters

6.4.1 Block diagrams of the accelerometer filters

In the LSM6DSO32, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Analog
Anti-aliasing
LP Filter

ADC

Digital
LP Filter

Composite
Filter

ODR_XL[3:0]

Figure 16. Accelerometer chain

LSM6DSO32 Functionality

Figure 17. Accelerometer composite filter

The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This
value is equal to 700 Hz when the accelerometer is in low-power or normal mode.

Note: Advanced functions include pedometer, step detector and step counter, significant motion detection, tilt functions and Finite State Machine.

Functionality LSM6DSO32

6.4.2 Block diagrams of the gyroscope filters

Figure 18. Gyroscope digital chain - Mode 1 and Mode 2

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Table 18. Gyroscope LPF2 bandwidth selection

Gyroscope ODR [Hz]	LPF2 cutoff [Hz]
12.5	4.2
26	8.3
52	16.6
104	33.0
208	66.8
417	135.9
833	295.5
1667	1108.1
3333	1320.7
6667	1441.8

Data can be acquired from the output registers and FIFO over the primary I²C/I³C/SPI interface.

48/153 DocID032891 Rev 1

LSM6DSO32 Functionality

6.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DSO32 embeds 3 kbytes of data in FIFO (up to 9 kbytes with the compression feature enabled) to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Step counter
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- Sensor hub data-ready signal
- Step detection signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batching rates can be selected by the user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batching Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbyte data stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power consumption.

The programmable FIFO watermark threshold can be set in *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (*FIFO_STATUS1* (3Ah), *FIFO_STATUS2* (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in *INT1_CTRL* (0Dh) and *INT2_CTRL* (0Eh).

Functionality LSM6DSO32

The FIFO buffer can be configured according to six different modes:

- · Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO MODE [2:0] bits in the FIFO CTRL4 (0Ah) register.

6.5.1 Bypass mode

In Bypass mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

6.5.2 FIFO mode

In FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '001'.

The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.5.3 Continuous mode

Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh)(INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*)(INT1_FIFO_FULL) = '1' or *INT2_CTRL* (*0Eh*)(INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in *FIFO_STATUS2 (3Bh)* is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]).

50/153 DocID032891 Rev 1

LSM6DSO32 Functionality

6.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

6.5.6 Bypass-to-FIFO mode

In Bypass-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

Functionality LSM6DSO32

6.5.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (*FIFO_DATA_OUT_TAG (78h)*), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT_registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT1_CTRL (0Dh)).

In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in *EMB_FUNC_EN_B* (05h) (embedded functions registers bank) and the FIFO_COMPR_RT_EN bit in *FIFO_CTRL2* (08h). When compression is enabled, it is also possible to force writing non-compressed data at a selectable rate using the UNCOPTR_RATE [1:0] field in *FIFO_CTRL2* (08h).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR CHG EN bit in FIFO CTRL2 (08h).

52/153 DocID032891 Rev 1

LSM6DSO32 Application hints

7 Application hints

7.1 LSM6DSO32 electrical connections in Mode 1

Mode 1 HOST I^2C MIPI I3CSM NC (1) SDO/SA0 SPI (3/4-w 1 11 NC (1) TOP SDx LSM6DSO32 **VIEW** SCx Vdd INT2 GND or VDDIO 4 8 INT1 VDD GND VDDIO 100 nF I²C configuration GND Vdd_IO R_{pu} Vdd_IO 100 nF SCL GND SDA Pull-up to be added R_{pu}=10kOhm

Figure 19. LSM6DSO32 electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I 2 C/MIPI I3C SM interface.

Application hints LSM6DSO32

7.2 LSM6DSO32 electrical connections in Mode 2

Mode 2 HOST I²C / MIPI I3CSM SPI (3/4-w) LSM6DSO32 NC (1) 11 DO/SAO NC (1) TOP MSDA **VIEW** MSCL MDRDY/INT2 4 8 INT1 External VDD sensors 7 C1 GND 100 nF I²C configuration GND Vdd_IO Vdd_IO 100 nF SCL GND SDA Pull-up to be added $R_{pu}=10kOhm$

Figure 20. LSM6DSO32 electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I 2 C/MIPI I3C SM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the $SPI/I^2C/MIPI\ I3C^{SM}$ primary interface.

54/153 DocID032891 Rev 1

LSM6DSO32 Application hints

Table 19. Internal pin status

pin#	Name	Mode 1 function	Mode 2 function	Pin status Mode 1	Pin status Mode 2
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Default:	Default:
1	SA0	l ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	l ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1 in reg. 02h.	input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1 in reg. 02h.
2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).
3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).
4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Default: input with pull-down ⁽¹⁾	Default: input with pull-down ⁽¹⁾
5	VDDIO	Power supply for I/O pins	Power supply for I/O pins		
6	GND	0 V supply	0 V supply		
7	GND	0 V supply	0 V supply		
8	VDD	Power supply	Power supply		
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Default: output forced to ground	Default: output forced to ground
10	NC	Leave unconnected	Leave unconnected	Default: input with pull-up.	Default: input with pull-up.
11	NC	Connect to VDDIO or leave unconnected	Connect to VDDIO or leave unconnected	Default: input with pull-up.	Default: input with pull-up

Application hints LSM6DSO32

Table 19. Internal pin status (continued)

pin#	Name	Mode 1 function	Mode 2 function	Pin status Mode 1	Pin status Mode 2
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.
13	SCL	l ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	l²C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-up
14	SDA	l²C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	l²C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-up

^{1.} INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on VDDIO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

- 1. Write 40h in register at address 01h (enable access to the sensor hub registers)
- 2. Write 08h in register at address 14h (enable the pull-up on pins 2 and 3)
- 3. Write 00h in register at address 01h (disable access to the sensor hub registers)

LSM6DSO32 Register mapping

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 20. Registers address map

Name	Time	Regist	er address	Default	Commont
Name	Туре	Hex	Binary	Default	Comment
FUNC_CFG_ACCESS	RW	01	00000001	00000000	
PIN_CTRL	RW	02	00000010	00111111	
RESERVED	-	03-06			
FIFO_CTRL1	RW	07	00000111	00000000	
FIFO_CTRL2	RW	08	00001000	00000000	
FIFO_CTRL3	RW	09	00001001	00000000	
FIFO_CTRL4	RW	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	RW	0D	00001101	00000000	
INT2_CTRL	RW	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101100	
CTRL1_XL	RW	10	00010000	00000000	
CTRL2_G	RW	11	00010001	00000000	
CTRL3_C	RW	12	00010010	00000100	
CTRL4_C	RW	13	00010011	00000000	
CTRL5_C	RW	14	00010100	00000000	
CTRL6_C	RW	15	00010101	00000000	
CTRL7_G	RW	16	00010110	00000000	
CTRL8_XL	RW	17	0001 0111	00000000	
CTRL9_XL	RW	18	00011000	11100000	
CTRL10_C	RW	19	00011001	00000000	
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
TAP_SRC	R	1C	00011100	output	
D6D_SRC	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F	00011111		
OUT_TEMP_L	R	20	00100000	output	

Register mapping LSM6DSO32

Table 20. Registers address map (continued)

Nama	T	Regist	ter address	Default	0
Name	Туре	Hex	Binary	- Default	Comment
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-34			
EMB_FUNC_STATUS_ MAINPAGE	R	35	00110101	output	
FSM_STATUS_A_ MAINPAGE	R	36	00110110	output	
FSM_STATUS_B_ MAINPAGE	R	37	00110111	output	
RESERVED	-	38			
STATUS_MASTER_ MAINPAGE	R	39	00111001	output	
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			
TIMESTAMP0	R	40	01000000	output	
TIMESTAMP1	R	41	01000001	output	
TIMESTAMP2	R	42	01000010	output	
TIMESTAMP3	R	43	01000011	output	
RESERVED	-	44-55			
TAP_CFG0	RW	56	01010110	00000000	
TAP_CFG1	RW	57	01010111	00000000	
TAP_CFG2	RW	58	01011000	00000000	
TAP_THS_6D	RW	59	01011001	00000000	

LSM6DSO32 Register mapping

Table 20. Registers address map (continued)

Name	Time	Regist	er address	Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
INT_DUR2	RW	5A	01011010	00000000	
WAKE_UP_THS	RW	5B	01011011	00000000	
WAKE_UP_DUR	RW	5C	01011100	00000000	
FREE_FALL	RW	5D	01011101	00000000	
MD1_CFG	RW	5E	01011110	00000000	
MD2_CFG	RW	5F	01011111	00000000	
RESERVED	-	60-61		00000000	
I3C_BUS_AVB	RW	62	01100010	00000000	
INTERNAL_FREQ_FINE	R	63	01100011	output	
RESERVED	-	64-72			
X_OFS_USR	RW	73	01110011	00000000	
Y_OFS_USR	RW	74	01110100	00000000	
Z_OFS_USR	RW	75	01110101	00000000	
RESERVED	-	76-77			
FIFO_DATA_OUT_TAG	R	78	01111000	output	
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_Z_H	R	7E	01111110	output	

Register description LSM6DSO32

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w)

Table 21. FUNC_CFG_ACCESS register

FUNC_CFG_ ACCESS SHUB_ REG_ ACCESS 0(1) 0(1) 0(1) 0(1) 0(1)

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 22. FUNC_CFG_ACCESS register description

FUNC_CFG_ ACCESS	Enable access to the embedded functions configuration registers. Default value: 0 ⁽¹⁾
SHUB_REG_ ACCESS	Enable access to the sensor hub (I²C master) registers. Default value: 0 ⁽²⁾

Details concerning the embedded functions configuration registers are available in Section 10: Embedded functions register mapping and Section 11: Embedded functions register description.

9.2 PIN_CTRL (02h)

SDO pin pull-up enable/disable register (r/w)

Table 23. PIN_CTRL register

PU_EN ' ' ' ' ' '

^{1.} This bit must be set to '0' for the correct operation of the device.

2. This bit must be set to '1' for the correct operation of the device.

Table 24. PIN_CTRL register description

	Enable pull-up on SDO pin
SDO_PU_EN	Enable pull-up on SDO pin (0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

Details concerning the sensor hub registers are available in Section 14: Sensor hub register mapping and Section 15: Sensor hub register description.

9.3 FIFO_CTRL1 (07h)

FIFO control register 1 (r/w)

Table 25. FIFO_CTRL1 register

Table 26. FIFO_CTRL1 register description

	FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)
WTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
VV 1 IVI[7.0]	Watermark flag rises when the number of bytes written in the FIFO is greater than or
	equal to the threshold level.

9.4 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 27. FIFO_CTRL2 register

STOP_ON _WTM	FIFO_ COMPR_ RT_EN	0 ⁽¹⁾	ODRCHG _EN	0 ⁽¹⁾	UNCOPTR _RATE_1	UNCOPTR _RATE_0	WTM8
-----------------	--------------------------	------------------	---------------	------------------	--------------------	--------------------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 28. FIFO_CTRL2 register description

STOP_ON_ WTM	Sensing chain FIFO stop values memorization at threshold level (0: FIFO depth is not limited (default); 1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))
FIFO_COMPR_ RT_EN ⁽¹⁾	Enables/Disables compression algorithm runtime
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
UNCOPTR_ RATE_[1:0]	This field configures the compression algorithm to write non-compressed data at each rate. (0: Non-compressed data writing is not forced; 1: Non-compressed data every 8 batch data rate; 2: Non-compressed data every 16 batch data rate; 3: Non-compressed data every 32 batch data rate)
WTM8	FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h) 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

^{1.} This bit is effective if the FIFO_COMPR_EN bit of $EMB_FUNC_EN_B~(05h)$ is set to 1.

Register description LSM6DSO32

9.5 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 29. FIFO_CTRL3 register

| BDR_ |
|------|------|------|------|------|------|------|------|
| GY_3 | GY_2 | GY_1 | GY_0 | XL_3 | XL_2 | XL_1 | XL_0 |

Table 30. FIFO CTRL3 register description

Table 30. FIFO_CTRES register description							
	Selects Batching Data Rate (writing frequency in FIFO) for gyroscope data. (0000: Gyro not batched in FIFO (default);						
	0001: 12.5 Hz;						
	0010: 26 Hz;						
	0011: 52 Hz;						
	0100: 104 Hz;						
	0101: 208 Hz;						
BDR_GY_[3:0]	0110: 417 Hz;						
	0111: 833 Hz;						
	1000: 1667 Hz;						
	1001: 3333 Hz;						
	1010: 6667 Hz;						
	1011: 6.5 Hz;						
	1100-1111: not allowed)						
	Selects Batching Data Rate (writing frequency in FIFO) for accelerometer data. (0000: Accelerometer not batched in FIFO (default);						
	0001: 12.5 Hz;						
	0010: 26 Hz;						
	0011: 52 Hz;						
	0100: 104 Hz;						
DDD VI 13:01	0101: 208 Hz;						
BDR_XL_[3:0]	0110: 417 Hz;						
	0111: 833 Hz;						
	1000: 1667 Hz;						
	1001: 3333 Hz;						
	1010: 6667 Hz;						
	1011: 1.6 Hz;						
	1100-1111: not allowed)						

9.6 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 31. FIFO_CTRL4 register

DEC_TS_	DEC_TS_	ODR_T_	ODR_T_	0(1)	FIFO_	FIFO_	FIFO_
BATCH_1	BATCH_0	BATCH_1	BATCH_0	0 7	MODE2	MODE1	MODE0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 32. FIFO_CTRL4 register description

DEC_TS_ BATCH_[1:0]	Selects decimation for timestamp batching in FIFO. Writing rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder. (00: Timestamp not batched in FIFO (default); 01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz]; 10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz]; 11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
ODR_T_ BATCH_[1:0]	Selects batching data rate (writing frequency in FIFO) for temperature data (00: Temperature not batched in FIFO (default); 01: 1.6 Hz; 10: 12.5 Hz; 11: 52 Hz)
FIFO_ MODE[2:0]	FIFO mode selection (000: Bypass mode: FIFO disabled; 001: FIFO mode: stops collecting data when FIFO is full; 010: Reserved; 011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode; 100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode; 101: Reserved; 110: Continuous mode: if the FIFO is full, the new sample overwrites the older one; 111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

Register description LSM6DSO32

9.7 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 33. COUNTER_BDR_REG1 register

dataready _pulsed	RST_ COUNTER _BDR	TRIG_ COUNTER _BDR	0 ⁽¹⁾	0 ⁽¹⁾	CNT_BDR _TH_10	CNT_BDR _TH_9	CNT_BDR _TH_8
----------------------	-------------------------	--------------------------	------------------	------------------	-------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 34. COUNTER BDR REG1 register description

	idalo o ii o o o i ii i o gioto: dooon pilon						
dataready_pulsed	Enables pulsed data-ready mode (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 75 µs long)						
RST_ COUNTER_BDR	Resets the internal counter of batching events for a single sensor. This bit is automatically reset to zero if it was set to '1'.						
TRIG_ COUNTER_BDR	Selects the trigger for the internal counter of batching events between XL and gyro. (0: XL batching event; 1: GYRO batching event)						
CNT_BDR_TH_ [10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batching events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.						

9.8 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 35. COUNTER_BDR_REG2 register

| CNT_BDR |
|---------|---------|---------|---------|---------|---------|---------|---------|
| _TH_7 | _TH_6 | _TH_5 | _TH_4 | _TH_3 | _TH_2 | _TH_1 | _TH_0 |

Table 36. COUNTER_BDR_REG2 register description

	In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets
CNT_BDR_	the threshold for the internal counter of batching events. When this counter reaches
TH_[7:0]	the threshold, the counter is reset and the COUNTER_BDR_IA flag in
	FIFO_STATUS2 (3Bh) is set to '1'.

64/153 DocID032891 Rev 1

9.9 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1 when the MIPI $^{\rm SM}$ dynamic address is not assigned ($^{\rm I}$ C or SPI is used). Some bits can be also used to trigger an IBI (In-Band Interrupt) when the MIPI $^{\rm I3C}$ CM interface is used. The output of the pin will be the OR combination of the signals selected here and in $^{\rm MD1_CFG}$ ($^{\rm SEh}$).

Table 37. INT1_CTRL register

DEN_ DRDY_ flag	INT1_CNT _BDR	INT1_ FIFO _FULL	INT1_ FIFO_ OVR	INT1_ FIFO_TH	INT1_ BOOT	INT1_ DRDY_G	INT1_ DRDY_XL
-----------------------	------------------	------------------------	-----------------------	------------------	---------------	-----------------	------------------

Table 38. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin
INT1_CNT_ BDR	Enables COUNTER_BDR_IA interrupt on INT1
INT1_FIFO_FULL	Enables FIFO full flag interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_BOOT	Enables boot status on INT1 pin
INT1_ DRDY_G	Enables gyroscope data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_ DRDY_XL	Enables accelerometer data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.

Register description LSM6DSO32

9.10 INT2_CTRL (0Eh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2 when the MIPI I3CSM dynamic address in not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the MIPI I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in *MD2_CFG* (5Fh).

Table 39. INT2_CTRL register

0 ⁽¹⁾ INT	2_CNT INT2_ FIFO_ FULL	INT2_ FIFO_ OVR	INT2_ FIFO_TH	INT2_DRDY _TEMP	INT2_ DRDY_G	INT2_ DRDY_XL
----------------------	--------------------------------	-----------------------	------------------	--------------------	-----------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 40. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin
INT_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin
INT2_DRDY_TEMP	Enables temperature sensor data-ready interrupt on INT2 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used and INT2_ON_INT1 = '1' in <i>CTRL4_C</i> (13h).
INT2_DRDY_G	Gyroscope data-ready interrupt on INT2 pin
INT2_DRDY_XL	Accelerometer data-ready interrupt on INT2 pin

9.11 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Ch.

Table 41. WhoAml register

0	1	1	0	1	1	0	0

66/153 DocID032891 Rev 1

9.12 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 42. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_ EN	0 ⁽¹⁾	
---------	---------	---------	---------	--------	--------	----------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 43. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see <i>Table 44</i>)
FS[1:0]_XL	Accelerometer full-scale selection (see <i>Table 45</i>)
LPF2_XL_EN	Accelerometer high-resolution selection (0: output from first stage digital filtering selected (default); 1: output from LPF2 second filtering stage selected)

Table 44. Accelerometer ODR register setting

ODR_ XL3	ODR_ XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	х	х	Not allowed	Not allowed

Table 45. Accelerometer full-scale selection

FS[1:0]_XL	Accelerometer full-scale
00 (default)	±4 g
01	±32 g
10	±8 g
11	±16 g

Register description LSM6DSO32

9.13 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 46. CTRL2_G register

ODR_G3 OD	DR_G2 ODR_G1	ODR_G0	FS1_G	FS0_G	FS_125	0 ⁽¹⁾
-----------	--------------	--------	-------	-------	--------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 47, CTRL2 G register description

	Tuble 47: OTREZ_O register description
ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to <i>Table 48</i>)
FS[1:0]_G	Gyroscope chain full-scale selection (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)
FS_125	Selects gyro chain full-scale ±125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to ±125 dps)

Table 48. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

9.14 CTRL3_C (12h)

Control register 3 (r/w)

Table 49. CTRL3_C register

воот	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	0 ⁽¹⁾	SW_RESET
------	-----	-----------	-------	-----	--------	------------------	----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 50. CTRL3_C register description

	Reboots memory content. Default value: 0			
BOOT	(0: normal mode; 1: reboot memory content)			
	This bit is automatically cleared.			
	Block Data Update. Default value: 0			
BDU	(0: continuous update;			
	1: output registers are not updated until MSB and LSB have been read)			
H LACTIVE	Interrupt activation level. Default value: 0			
II_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low)			
PP OD	Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0			
11_05	(0: push-pull mode; 1: open-drain mode)			
SIM	SPI Serial Interface Mode selection. Default value: 0			
Olivi	(0: 4-wire interface; 1: 3-wire interface)			
IF INC	Register address automatically incremented during a multiple byte access with a serial interface (I²C or SPI). Default value: 1			
_	(0: disabled; 1: enabled)			
	Software reset. Default value: 0			
SW_RESET	(0: normal mode; 1: reset device)			
	This bit is automatically cleared.			

Register description LSM6DSO32

9.15 CTRL4_C (13h)

Control register 4 (r/w)

Table 51. CTRL4_C register

0 ⁽¹⁾ SLEEP_G	INT2_on_ INT1	0 ⁽¹⁾	DRDY_ MASK	I2C_disable	LPF1_ SEL_G	0 ⁽¹⁾
--------------------------	------------------	------------------	---------------	-------------	----------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 52. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pin enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI, I ² C and MIPI I3C SM interfaces enabled (default); 1: I ² C interface disabled)
LPF1_SEL_G	Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE [2:0] in CTRL6_C (15h). (0: disabled; 1: enabled)

9.16 CTRL5_C (14h)

Control register 5 (r/w)

Table 53. CTRL5_C register

	XL_ULP_EN ROUNDING1	ROUNDING0	0	ST1_G	ST0_G	ST1_XL	ST0_XL
--	---------------------	-----------	---	-------	-------	--------	--------

Table 54. CTRL5_C register description

XL_ULP_EN	Accelerometer ultra-low-power mode enable ⁽¹⁾ . Default value: 0 (0: Ultra-low-power mode disabled; 1: Ultra-low-power mode enabled)
ROUNDING[1:0]	Circular burst-mode (rounding) read from the output registers. Default value: 00 (00: no rounding; 01: accelerometer only; 10: gyroscope only; 11: gyroscope + accelerometer)
ST[1:0]_G	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 55</i>)
ST[1:0]_XL	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 56</i>)

Further details about the accelerometer ultra-low-power mode are provided in Section 6.2.1: Accelerometer ultra-low-power mode.

Table 55. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 56. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

Register description LSM6DSO32

9.17 CTRL6_C (15h)

Control register 6 (r/w)

Table 57. CTRL6_C register

TRIG_EN LVL1_EN	EN XL_HM_MODE	N LVL1_EN LVL2_EN	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0	
-----------------	---------------	-------------------	---------------	---------	---------	---------	--

Table 58. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to <i>Table 59</i> .
LVL1_EN	DEN data level-sensitive trigger enable. Refer to <i>Table 59</i> .
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 59.
XL_HM_MODE	High-performance operating mode disable for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
USR_OFF_W	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) $0 = 2^{-10}$ g/LSB $1 = 2^{-6}$ g/LSB
FTYPE[2:0]	Gyroscope's low-pass filter (LPF1) bandwidth selection <i>Table 60</i> shows the selectable bandwidth values.

Table 59. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 60. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz
000	4.2	8.3	16.6	33.0	67.0	136.6	239.2	304.2	328.5	335.5
001	4.2	8.3	16.6	33.0	67.0	130.5	192.4	220.7	229.6	232.0
010	4.2	8.3	16.6	33.0	67.0	120.3	154.2	166.6	170.1	171.1
011	4.2	8.3	16.6	33.0	67.0	137.1	281.8	453.2	559.2	609.0
100	4.2	8.3	16.7	33.0	62.4	86.7	96.6	99.6	100.4	100.6
101	4.2	8.3	16.8	31.0	43.2	48.0	49.4	49.8	49.9	49.9
110	4.1	7.8	13.4	19.0	23.1	24.6	25.0	25.1	25.1	25.1
111	3.9	6.7	9.7	11.5	12.2	12.4	12.5	12.5	12.5	12.5

72/153 DocID032891 Rev 1

9.18 CTRL7_G (16h)

Control register 7 (r/w)

Table 61. CTRL7_G register

G_HM_ MODE HP_EN_G HPM1_G	HPM0_G 0 ⁽¹⁾	0 ⁽¹⁾	USR_ OFF_ON _OUT	0 ⁽¹⁾
------------------------------	-------------------------	------------------	------------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 62. CTRL7_G register description

G_HM_MODE	Disables high-performance operating mode for gyroscope. Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN_G	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 (00: 16 mHz; 01: 65 mHz; 10: 260 mHz; 11: 1.04 Hz)
USR_OFF_ ON_OUT	Enables accelerometer user offset correction block; it's valid for the low-pass path - see <i>Figure 17: Accelerometer composite filter</i> . Default value: 0 (0: accelerometer user offset correction block bypassed; 1: accelerometer user offset correction block enabled)

9.19 CTRL8_XL (17h)

Control register 8 (r/w)

Table 63. CTRL8_XL register

HPCF_XL	HPCF_XL	HPCF_XL	HP_REF_	FASTSETTL	HP_SLOPE	O(1)	LOW_PASS
_2	_1	_0	MODE_XL	_MODE_XL	_XL_EN	0(1)	_ON_6D

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 64. CTRL8_XL register description

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to <i>Table 65</i> .
HP_REF_ MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 (0: disabled, 1: enabled ⁽¹⁾)
FASTSETTL _MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power-down mode. Default value: 0 (0: disabled, 1: enabled)
HP_SLOPE_ XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 21.
LOW_PASS _ON_6D	LPF2 on 6D function selection. Refer to <i>Figure 21</i> . Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)

^{1.} When enabled, the first output data have to be discarded.

Table 65. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
		l l	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010	ODR/20
Lligh noos	4		011	ODR/45
High pass	1	-	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

Figure 21. Accelerometer block diagram

9.20 CTRL9_XL (18h)

Control register 9 (r/w)

Table 66. CTRL9_XL register

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 67. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1 (0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN_Z	DEN value stored in LSB of Z-axis. Default value: 1 (0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
DEN_XL_G	DEN stamping sensor selection. Default value: 0 (0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN_XL_EN	Extends DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)
I3C_disable	Disables MIPI I3C SM communication protocol ⁽¹⁾ (0: SPI, I²C, MIPI I3C SM interfaces enabled (default); 1: MIPI I3C SM interface disabled)

It is recommended to set this bit to '1' during the initial device configuration phase, when the MIPI I3CSM interface is not used.

9.21 CTRL10_C (19h)

Control register 10 (r/w)

Table 68. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾	TIMESTAMP _EN	0 ⁽¹⁾				
------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 69. CTRL10_C register description

TIMESTAMD EN	Enables timestamp counter. default value: 0 (0: disabled; 1: enabled)
TIMESTAMF_EN	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).

9.22 ALL_INT_SRC (1Ah)

Source register for all interrupts (r)

Table 70. ALL_INT_SRC register

TIMESTAMP_ 0	SLEEP_ D6D_IA	DOUBLE_ SINGLE_ TAP TAP	WU_IA	FF_IA	
--------------	---------------	----------------------------	-------	-------	--

Table 71. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms				
SLEEP CHANGE IA	Detects change event in activity/inactivity status. Default value: 0				
OLLLI _OHANOL_IA	(0: change status not detected; 1: change status detected)				
D6D_IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0				
	(0: change in position not detected; 1: change in position detected)				
DOUBLE TAP	Double-tap event status. Default value: 0				
DOODLL_I/II	(0:event not detected, 1: event detected)				
SINGLE TAP	Single-tap event status. Default value:0				
51322 <u>-</u>	(0: event not detected, 1: event detected)				
WU IA	Wake-up event status. Default value: 0				
	(0: event not detected, 1: event detected)				
FF IA	Free-fall event status. Default value: 0				
11_"	(0: event not detected, 1: event detected)				

9.23 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 72. WAKE_UP_SRC register

_								
	0	SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	X_WU	Y_WU	Z_WU

Table 73. WAKE_UP_SRC register description

SLEEP_ CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)
FF_IA	Free-fall event detection status. Default value: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_	Sleep status bit. Default value: 0
STATE	(0: Activity status; 1: Inactivity status)
WU IA	Wakeup event detection status. Default value: 0
WO_IA	(0: wakeup event not detected; 1: wakeup event detected.)
x wu	Wakeup event detection status on X-axis. Default value: 0
_\V0	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y WU	Wakeup event detection status on Y-axis. Default value: 0
1_00	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z WU	Wakeup event detection status on Z-axis. Default value: 0
	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

9.24 TAP_SRC (1Ch)

Tap source register (r)

Table 74. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP

Table 75. TAP_SRC register description

TAP IA	Tap event detection status. Default: 0
IAI _IA	(0: tap event not detected; 1: tap event detected)
SINGLE TAP	Single-tap event status. Default value: 0
SINGLE_IAF	(0: single tap event not detected; 1: single tap event detected)
DOLIBLE TAB	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X TAP	Tap event detection status on X-axis. Default value: 0
__\\\	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y TAP	Tap event detection status on Y-axis. Default value: 0
I_IAF	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z TAP	Tap event detection status on Z-axis. Default value: 0
Z_IAF	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.25 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 76. D6D_SRC register

DEN_DRDY D6D_IA	ZH	ZL	YH	YL	XH	XL
-----------------	----	----	----	----	----	----

Table 77. D6D_SRC register description

DRDY DEN active condition. ⁽¹⁾ D6D_ Interrupt active for change position portrait, landscape, face-up, face-down. Default val. IA (0: change position not detected; 1: change position detected) Z-axis high event (over threshold). Default value: 0	
IA (0: change position not detected; 1: change position detected)	
,	ue: 0
7-axis high event (over threshold). Default value: 0	
ZH Z axio night event (even threeheld). Zeladit value. e	
(0: event not detected; 1: event (over threshold) detected)	
Z-axis low event (under threshold). Default value: 0	
(0: event not detected; 1: event (under threshold) detected)	
Y-axis high event (over threshold). Default value: 0	
(0: event not detected; 1: event (over-threshold) detected)	
Y-axis low event (under threshold). Default value: 0	
(0: event not detected; 1: event (under threshold) detected)	
X-axis high event (over threshold). Default value: 0	
(0: event not detected; 1: event (over threshold) detected)	
XL X-axis low event (under threshold). Default value: 0	
(0: event not detected; 1: event (under threshold) detected)	

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

9.26 **STATUS_REG** (1Eh)

Status register (r)

Table 78. STATUS REG register

				_ `	-		
0	0	0	0	0	TDA	GDA	XLDA

Table 79. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

9.27 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 80. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
Table 81. OUT_TEMP_H register							
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8
Table 82. OUT_TEMP register description							

Temp[15:0]	Temperature sensor output data
	The value is expressed as two's complement sign extended on the MSB.

9.28 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 83. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0	
Table 84. OUTX_H_G register								
D15	D14	D13	D12	D11	D10	D9	D8	

Table 85. OUTX_H_G register description

D[15:0]	Pitch axis (X) angular rate value

9.29 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 8	86.	OUTY	L G	register

D7	D6	D5	D4	D3	D2	D1	D0	
		Tabl	Y_H_G regi	ster				
D15	D14	D13	D12	D11	D10	D9	D8	

Table 88. OUTY_H_G register description

D[15:0]	Roll axis (Y) angular rate value
---------	----------------------------------

9.30 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 89. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0	
Table 90. OUTZ_H_G register								
D15	D14	D10	D9	D8				
		Table 04 4		· regioter d	oo orintion			

Table 91. OUTZ_H_G register description

D[15:0]	Yaw axis (Z) angular rate value	
---------	---------------------------------	--

9.31 OUTX_L_A (28h) and OUTX_H_A (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 92. OUTX L A register

D7	D6	D5	D4	D3	D2	D1	D0				
	Table 93. OUTX_H_A register										
D15	D14	D13	D12	D11	D10	D9	D8				

Table 94. OUTX H A register description

D[15:0]	X-axis linear acceleration value.	

9.32 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table	95.	OUTY	LA	register

D7	D6	D5	D4	D3	D2	D1	D0
		Tabl	le 96. OUT	Y_H_A regi	ster		
D15	D14	D13	D12	D11	D10	D9	D8

Table 97. OUTY_H_A register description

D[15:0]	Y-axis linear acceleration value
---------	----------------------------------

9.33 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 98. OUTZ_L_A register

	D7	D6	D5	D4	D3	D2	D1	D0		
	Table 99. OUTZ_H_A register									
	D15	D14	D13	D12	D11	D10	D9	D8		
- 1		I	1	1	ı	_		_		

Table 100. OUTZ_H_A register description

	D[15:0]	Z-axis linear acceleration value	
--	---------	----------------------------------	--

9.34 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (r)

Table 101. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS_ SIGMOT	IS_ TILT	IS_STEP_ DET	0	0	0
-----------	---	---------------	-------------	-----------------	---	---	---

Table 102. EMB_FUNC_STATUS_MAINPAGE register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

9.35 FSM_STATUS_A_MAINPAGE (36h)

Finite State Machine status register (r)

Table 103. FSM_STATUS_A_MAINPAGE register

IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
_	_	_	_	_	_	_	_

Table 104. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

9.36 FSM_STATUS_B_MAINPAGE (37h)

Finite State Machine status register (r)

Table 105. FSM_STATUS_B_MAINPAGE register

	IS_FSM16	IS_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9
- 1		_	_		_	-	_	_

Table 106. FSM_STATUS_B_MAINPAGE register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

9.37 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (r)

Table 107. STATUS_MASTER_MAINPAGE register

WR_ ONCE_ DONE	SLAVE3_ NACK	SLAVE2_ NACK	SLAVE1_ NACK	SLAVE0_ NACK	0	0	SENS_HUB_ ENDOP	
----------------------	-----------------	-----------------	-----------------	-----------------	---	---	--------------------	--

Table 108. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
SENS_HUB_ENDOP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

9.38 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 109. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 110. FIFO_STATUS1 register description

DIFF_	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
FIFO_[7:0]	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

9.39 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 111. FIFO_STATUS2 register

FIFO_	FIFO_	FIFO_	COUNTER	FIFO_OVR_	0	DIFF_	DIFF_
WTM_IA	OVR_IA	FULL_IA	_BDR_IA	LATCHED	0	FIFO_9	FIFO_8

Table 112. FIFO_STATUS2 register description

FIFO_ WTM_IA	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than WTM; 1: FIFO filling is equal to or greater than WTM) Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO_ OVR_IA	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_ FULL_IA	Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_ BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0 This bit is reset when these registers are read.
FIFO_OVR_ LATCHED	Latched FIFO overrun status. Default value: 0 This bit is reset when this register is read.
DIFF_ FIFO_[9:8]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00 In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

9.40 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 μ s.

Table 113. TIMESTAMP output registers

D31	D30	D29	D28	D27	D26	D25	D24
D23	D22	D21	D20	D19	D18	D17	D16
D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 114. TIMESTAMP output register description

D[31:0]	Timestamp output registers: 1LSB = 25 μs	
---------	--	--

9.41 TAP_CFG0 (56h)

Activity/inactivity functions, configuration of filtering and tap recognition functions (r/w)

Table 115. TAP_CFG0 register

0 ⁽¹⁾	INT_CLR _ON_ READ	SLEEP_ STATUS_ ON_INT	SLOPE_ FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
------------------	-------------------------	-----------------------------	---------------	----------	----------	----------	-----

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 116. TAP_CFG0 register description

INT_CLR_ON_ READ	This bit allows immediately clearing the latched interrupts of an event detection upon the read of the corresponding status register. It must be set to 1 together with LIR. Default value: 0 (0: latched interrupt signal cleared at the end of the ODR period; 1: latched interrupt signal immediately cleared)
SLEEP_STATUS _ON_INT	Activity/inactivity interrupt mode configuration. If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on the INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1: X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1: Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1: Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

9.42 TAP_CFG1 (57h)

Tap configuration register (r/w)

Table 117. TAP_CFG1 register

TAP_PRI	TAP_PRI	TAP_PRIO	TAP_THS	TAP_THS_	TAP_THS_	TAP_THS_	TAP_THS
ORITY_2	ORITY_1	RITY_0	_X_4	X_3	X_2	X_1	_X_0

Table 118. TAP_CFG1 register description

TAP_PRIORITY_[2:0]	Selection of axis priority for TAP detection (see <i>Table 119</i>)
TAP_THS_X_[4:0]	X-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 119. TAP priority decoding

TAP_PRIORITY_[2:0]	Max. priority	Mid. priority	Min. priority
000	X	Y	Z
001	Y	Х	Z
010	X	Z	Y
011	Z	Y	Х
100	X	Y	Z
101	Υ	Z	Х
110	Z	Х	Y
111	Z	Y	Х

9.43 TAP_CFG2 (58h)

Enables interrupt and inactivity functions, and tap recognition functions (r/w)

Table 120. TAP_CFG2 register

INTERRUPTS_	INACT_	INACT_	TAP_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS	
ENABLE	EN1	EN0	_Y_4	_Y_3	_Y_2	_Y_1	_Y_0	

Table 121. TAP_CFG2 register description

INTERRUPTS_ ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0 (0: interrupt disabled; 1: interrupt enabled)
INACT_EN[1:0]	Enable activity/inactivity (sleep) function. Default value: 00 (00: stationary/motion-only interrupts generated, XL and gyro do not change; 01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change; 10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode; 11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
TAP_THS_ Y_[4:0]	Y-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

9.44 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w)

Table 122. TAP_THS_6D register

D4D_	SIXD_	SIXD_	TAP_	TAP_	TAP_	TAP_	TAP_
EN	THS1	THS0	THS_Z_4	THS_Z_3	THS_Z_2	THS_Z_1	THS_Z_0

Table 123. TAP_THS_6D register description

D4D_EN	4D orientation detection enable. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
SIXD_THS[1:0]	Threshold for 4D/6D function. Default value: 00 For details, refer to <i>Table 124</i> .
TAP_THS_Z_[4:0]	Z-axis recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 124. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	68 degrees
01	47 degrees
10	Reserved
11	Reserved

9.45 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w)

Table 125. INT_DUR2 register

DUR3 DUR2 DUR1 DUR0 QUIET1 QUIET0 SHOCK1 SHOCI
--

Table 126. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000
DUR[3:0]	When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
QUIET[1:0]	Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0]	Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

9.46 WAKE_UP_THS (5Bh)

Single/double-tap selection and wake-up configuration (r/w)

Table 127. WAKE_UP_THS register

DOORFF"	JSR_OFF _ON_WU	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0
---------	-------------------	---------	---------	---------	---------	---------	---------

Table 128. WAKE_UP_THS register description

SINGLE_ DOUBLE_TAP	Single/double-tap event enable. Default: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
USR_OFF_ ON_WU	Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

9.47 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 129. WAKE_UP_DUR register

FF DUR5	WAKE_	WAKE_	WAKE_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DOR5	DUR1	DUR0	THS_W	DUR3	DUR2	DUR1	DUR0

Table 130. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration. 1 LSB = 1 ODR_time
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1LSB = 1 ODR_time
WAKE_THS_W	Weight of 1 LSB of wakeup threshold. Default: 0 (0: 1 LSB = FS_XL / (2^6) ; 1: 1 LSB = FS_XL / (2^8))
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR

9.48 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w)

Table 131. FREE_FALL register

FF DUR4	FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0
_	_	_	_	_	_	_	_

Table 132. FREE_FALL register description

	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration
FF THS[2:0]	Free fall threshold setting. Default: 000
FF_1H5[2:0]	For details refer to <i>Table 133</i> .

Table 133. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	312 mg
001	438 mg
010	500 mg
011	Reserved
100	Reserved
101	Reserved
110	Reserved
111	Reserved

9.49 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 134. MD1_CFG register

INT1_ SLEEP_	INT1_ SINGLE_	INT1_WU	INT1_FF	INT1_ DOUBLE_	INT1_6D	INT1_EMB _FUNC	INT1_ SHUB
CHANGE	TAP	_	_	TAP	_	_FUNC	SHOR

Table 135. MD1_CFG register description

	idalo ida mai_ar a regiotor decemption
INT1_SLEEP_ CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT1. Default: 0 (0: routing of activity/inactivity event on INT1 disabled; 1: routing of activity/inactivity event on INT1 enabled)
INT1_SINGLE_TAP	Routing of single-tap recognition event on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)
INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE_TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_EMB_FUNC	Routing of embedded functions event on INT1. Default value: 0 (0: routing of embedded functions event on INT1 disabled; 1: routing embedded functions event on INT1 enabled)
INT1_SHUB	Routing of sensor hub communication concluded event on INT1. Default value: 0 (0: routing of sensor hub communication concluded event on INT1 disabled; 1: routing of sensor hub communication concluded event on INT1 enabled)

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0 (56h) register.

9.50 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 136. MD2_CFG register

Table 137. MD2_CFG register description

	isle 107. MD2_Of G register description
INT2_SLEEP_CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT2. Default: 0 (0: routing of activity/inactivity event on INT2 disabled; 1: routing of activity/inactivity event on INT2 enabled)
INT2_SINGLE_TAP	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE_TAP	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_EMB_FUNC	Routing of embedded functions event on INT2. Default value: 0 (0: routing of embedded functions event on INT2 disabled; 1: routing embedded functions event on INT2 enabled)
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0 (56h) register.

9.51 I3C_BUS_AVB (62h)

I3C_BUS_AVB register (r/w)

Table 138. I3C_BUS_AVB register

0 ⁽¹⁾	0 ⁽¹⁾	0(1)	I3C_Bus_ Avb_Sel1	I3C_Bus_ Avb Sel0	0 ⁽¹⁾	0 ⁽¹⁾	PD_DIS_ INT1
			Avn_Sell	HAAD SEID			

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 139. I3C BUS AVB register description

	This bit allows disabling the INT1 pull-down.					
PD_DIS_INT1	(0: Pull-down on INT1 enabled (pull-down is effectively connected only when no interrupts are routed to the INT1 pin or when I3C dynamic address is assigned); 1: Pull-down on INT1 disabled (pull-down not connected)					
	These bits are used to select the bus available time when I3C IBI is used. Default value: 00					
I3C Bus Avb	(00: bus available time equal to 50 µsec (default);					
Sel[1:0]	01: bus available time equal to 2 μsec;					
	10: bus available time equal to 1 msec;					
	11: bus available time equal to 25 msec)					

9.52 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 140. INTERNAL_FREQ_FINE register

| FREQ_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FINE7 | FINE6 | FINE5 | FINE4 | FINE3 | FINE2 | FINE1 | FINE0 |

Table 141. INTERNAL_FREQ_FINE register description

EREO EINEIZ:01	Difference in percentage of the effective ODR (and Timestamp Rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.
TINEQ_TINE[1.0]	respect to the typical. Step: 0.15%. 8-bit format, 2's complement.

9.53 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 142. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | USR_6 | | | | | | |

Table 143. X_OFS_USR register description

X_OFS_USR_	Accelerometer X-axis user offset correction expressed in two's complement,
[7:0]	weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the
	range [-127 127].

9.54 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 144. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | | | | | | USR_1 | USR_0 |

Table 145. Y_OFS_USR register description

Y_OFS_ USR_[7:0]	Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
---------------------	--

9.55 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 146. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 147. Z_OFS_USR register description

Z_UFS_ USR [7:0]	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
USR [7:0]	depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

9.56 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 148. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_	TAG_ SENSOR_	TAG_ SENSOR_	TAG_ SENSOR_	TAG_ SENSOR_	TAG_CNT	TAG_CNT	TAG_ PARITY	
4	3	2	1	0	_'	_0	PARILI	l

Table 149. FIFO_DATA_OUT_TAG register description

TAG_SENSOR_[4:0]	FIFO tag: identifies the sensor in: FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) For details, refer to Table 150: FIFO tag
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot
TAG_PARITY	Parity check of TAG content

Table 150. FIFO tag

TAG_SENSOR_[4:0]	Sensor name
0x01	Gyroscope NC
0x02	Accelerometer NC
0x03	Temperature
0x04	Timestamp
0x05	CFG_Change
0x06	Accelerometer NC_T_2
0x07	Accelerometer NC_T_1
0x08	Accelerometer 2xC
0x09	Accelerometer 3xC
0x0A	Gyroscope NC_T_2
0x0B	Gyroscope NC_T_1
0x0C	Gyroscope 2xC
0x0D	Gyroscope 3xC
0x0E	Sensor Hub Slave 0
0x0F	Sensor Hub Slave 1
0x10	Sensor Hub Slave 2
0x11	Sensor Hub Slave 3
0x12	Step Counter
0x19	Sensor Hub Nack

9.57 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)

FIFO data output X (r)

Table 151. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers

	D15	D14	D13	D12	D11	D10	D9	D8
L								
	D7	D6	D5	D4	D3	D2	D1	D0

Table 152. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.58 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)

FIFO data output Y (r)

Table 153. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 154. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.59 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)

FIFO data output Z (r)

Table 155. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 156. FIFO DATA OUT Z H and FIFO DATA OUT Z L register description

D[15:0] FIFO Z-axis output

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Table 157. Register address map - embedded functions

Nama	T	Registe	er address	Defect	Commont	
Name	Type	Hex	Binary	Default	Comment	
PAGE_SEL	r/w	02	00000010	0000001		
EMB_FUNC_EN_A	r/w	04	00000100	00000000		
EMB_FUNC_EN_B	r/w	05	00000101	00000000		
PAGE_ADDRESS	r/w	08	00001000	00000000		
PAGE_VALUE	r/w	09	00001001	00000000		
EMB_FUNC_INT1	r/w	0A	00001010	00000000		
FSM_INT1_A	r/w	0B	00001011	00000000		
FSM_INT1_B	r/w	0C	00001100	00000000		
EMB_FUNC_INT2	r/w	0E	00001110	00000000		
FSM_INT2_A	r/w	0F	00001111	00000000		
FSM_INT2_B	r/w	10	00010000	00000000		
EMB_FUNC_STATUS	r	12	00010010	output		
FSM_STATUS_A	r	13	00010011	output		
FSM_STATUS_B	r	14	00010100	output		
PAGE_RW	r/w	17	00010111	00000000		
RESERVED	-	18-43				
EMB_FUNC_FIFO_CFG	r/w	44	01000100	00000000		
FSM_ENABLE_A	r/w	46	01000110	00000000		
FSM_ENABLE_B	r/w	47	01000111	00000000		
FSM_LONG_COUNTER_L	r/w	48	01001000	00000000		
FSM_LONG_COUNTER_H	r/w	49	01001001	00000000		
FSM_LONG_COUNTER_CLEAR	r/w	4A	01001010	00000000		
FSM_OUTS1	r	4C	01001100	output		
FSM_OUTS2	r	4D	01001101	output		
FSM_OUTS3	r	4E	01001110	output		
FSM_OUTS4	r	4F	01001111	output		
FSM_OUTS5	r	50	01010000	output		
FSM_OUTS6	r	51	01010001	output		

Table 157. Register address map - embedded functions (continued)

		Register address			
Name	Туре	Hex	Binary	Default	Comment
FSM_OUTS7	r	52	01010010	output	
FSM_OUTS8	r	53	01010011	output	
FSM_OUTS9	r	54	01010100	output	
FSM_OUTS10	r	55	01010101	output	
FSM_OUTS11	r	56	01010110	output	
FSM_OUTS12	r	57	01010111	output	
FSM_OUTS13	r	58	01011000	output	
FSM_OUTS14	r	59	01011001	output	
FSM_OUTS15	r	5A	01011010	output	
FSM_OUTS16	r	5B	01011011	output	
RESERVED	-	5E	01011110		
EMB_FUNC_ODR_CFG_B	r/w	5F	01011111	01001011	
STEP_COUNTER_L	r	62	01100010	output	
STEP_COUNTER_H	r	63	01100011	output	
EMB_FUNC_SRC	r/w	64	01100100	output	
EMB_FUNC_INIT_A	r/w	66	01100110	00000000	
EMB_FUNC_INIT_B	r/w	67	01100111	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions register description

11.1 PAGE_SEL (02h)

Enable advanced features dedicated page (r/w)

Table 158. PAGE_SEL register

			_	_			
PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 159. PAGE_SEL register description

DACE	SEI [3:0]	Select the advanced features dedicated page
PAGE_	_3⊑∟[3.0]	Default value: 0000

11.2 EMB_FUNC_EN_A (04h)

Embedded functions enable register (r/w)

Table 160. EMB_FUNC_EN_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIGN_ MOTION_ EN	TILT_EN	PEDO_EN	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------------	---------	---------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 161. EMB_FUNC_EN_A register description

SIGN_MOTION_EN	Enable significant motion detection function. Default value: 0 (0: significant motion detection function disabled; 1: significant motion detection function enabled)
TILT_EN	Enable tilt calculation. Default value: 0 (0: tilt algorithm disabled; 1: tilt algorithm enabled)
PEDO_EN	Enable pedometer algorithm. Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)

11.3 EMB_FUNC_EN_B (05h)

Embedded functions enable register (r/w)

Table 162. EMB_FUNC_EN_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	PEDO_ ADV_EN	FIFO_CO MPR_EN	0 ⁽¹⁾	0 ⁽¹⁾	FSM_EN
------------------	------------------	------------------	-----------------	-------------------	------------------	------------------	--------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 163. EMB FUNC EN B register description

PEDO_ADV_EN	Enable pedometer false-positive rejection block and advanced detection feature block. Default value: 0 (0: Pedometer advanced features block disabled; 1: Pedometer advanced features block enabled)			
FIFO_COMPR_EN ⁽¹⁾	Enable FIFO compression feature. Default value: 0 (0: FIFO compression feature disabled; 1: FIFO compression feature enabled)			
FSM_EN	Enable Finite State Machine (FSM) feature. Default value: 0 (0: FSM feature disabled; 1: FSM feature enabled)			

^{1.} This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.

11.4 PAGE_ADDRESS (08h)

Page address register (r/w)

Table 164. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 165. PAGE_ADDRESS register description

PAGE ADDRIZ:01	After setting the bit PAGE_WRITE / PAGE_READ in register <i>PAGE_RW</i> (17h), this register is used to set the address of the register to be written/read in the advanced features page selected through the bits PAGE_SEL[3:0] in register
	PAGE_SEL (02h).

11.5 PAGE_VALUE (09h)

Page value register (r/w)

Table 166. PAGE_VALUE register

| PAGE_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VALUE7 | VALUE6 | VALUE5 | VALUE4 | VALUE3 | VALUE2 | VALUE1 | VALUE0 |

Table 167. PAGE_VALUE register description

	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW
PAGE_VALUE[7:0]	(17h)) or read (if the bit PAGE_READ = 1 in register PAGE_RW (17h)) the data
	at the address PAGE_ADDR[7:0] of the selected advanced features page.

11.6 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 168. EMB_FUNC_INT1 register

INT1_ FSM_ LC								_
	FSM_	0 ⁽¹⁾	_	STEP_	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 169. EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_TILT ⁽¹⁾	Routing of tilt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_STEP DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.7 FSM_INT1_A (0Bh)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 170. FSM_INT1_A register

| INT1_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM8 | FSM7 | FSM6 | FSM5 | FSM4 | FSM3 | FSM2 | FSM1 |

Table 171. FSM_INT1_A register description

INT1_FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM5 ⁽¹⁾	Routing of FSM5 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM3 ⁽¹⁾	Routing of FSM3 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

47/

11.8 FSM_INT1_B (0Ch)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 172. FSM_INT1_B register

ſ	INT1_							
	FSM16	FSM15	FSM14	FSM13	FSM12	FSM11	FSM10	FSM9

Table 173. FSM_INT1_B register description

INT1_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.9 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 174. EMB_FUNC_INT2 register

INT2_ FSM_LC	0 ⁽¹⁾	INT2_SIG _MOT	INT2_TILT	INT2_ STEP_ DETECTOR	O ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-----------------	------------------	------------------	-----------	----------------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 175. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_TILT ⁽¹⁾	Routing of tilt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_STEP_ DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2 EMB FUNC bit of MD2_CFG (5Fh) is set to 1.

11.10 FSM_INT2_A (0Fh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 176. FSM_INT2_A register

INT2_ INT2_ INT2_	 NT2_ INT2_	INT2_	INT2_
FSM8 FSM7 FSM6	FSM4 FSM3	FSM2	FSM1

Table 177. FSM_INT2_A register description

INT2_FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM5 ⁽¹⁾	Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM3 ⁽¹⁾	Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.11 FSM_INT2_B (10h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 178. FSM_INT2_B register

	NT2_ SM9
--	-------------

Table 179. FSM_INT2_B register description

INT2_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.12 EMB_FUNC_STATUS (12h)

Embedded function status register (r)

Table 180. EMB_FUNC_STATUS register

IS_FSM_LC	0	IS_ SIGMOT	IS_ TILT	IS_STEP_ DET	0	0	0
-----------	---	---------------	-------------	-----------------	---	---	---

Table 181. EMB_FUNC_STATUS register description

	<u>, </u>
IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

11.13 FSM_STATUS_A (13h)

Finite State Machine status register (r)

Table 182. FSM_STATUS_A register

	ſ	IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
--	---	---------	---------	---------	---------	---------	---------	---------	---------

Table 183. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.14 FSM_STATUS_B (14h)

Finite State Machine status register (r)

Table 184. FSM_STATUS_B register

IS FSM16 IS FSM15 IS FSM14 IS FSM13 IS FSM12 IS FSM11 IS FSM10 IS FSM9
--

Table 185. FSM_STATUS_B register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

11.15 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (r/w)

Table 186. PAGE_RW register

| EMB_
FUNC_LIR | PAGE_
WRITE | PAGE_
READ | 0 ⁽¹⁾ |
|------------------|----------------|---------------|------------------|------------------|------------------|------------------|------------------|

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 187. PAGE_RW register description

EMB_FUNC_LIR	Latched Interrupt mode for Embedded Functions. Default value: 0 (0: Embedded Functions interrupt request not latched; 1: Embedded Functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page ⁽¹⁾ . Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page ⁽¹⁾ . Default value: 0 (1: enable; 0: disable)

^{1.} Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

11.16 EMB_FUNC_FIFO_CFG (44h)

Embedded functions batching configuration register (r/w)

Table 188. EMB_FUNC_FIFO_CFG register

| 0 ⁽¹⁾ | PEDO_
FIFO_EN | 0 ⁽¹⁾ | |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 189. EMB_FUNC_FIFO_CFG register description

PEDO_FIFO_EN	Enable FIFO batching of step counter values. Default value: 0	
--------------	---	--

11.17 FSM_ENABLE_A (46h)

FSM enable register (r/w)

Table 190. FSM_ENABLE_A register

	FSM8_EN F	FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
--	-----------	---------	---------	---------	---------	---------	---------	---------

Table 191. FSM_ENABLE_A register description

FSM8_EN	FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

5

11.18 **FSM_ENABLE_B** (47h)

FSM enable register (r/w)

Table 192. FSM_ENABLE_B register

FSM16_EN	FSM15_EN	FSM14_EN	FSM13_EN	FSM12_EN	FSM11_EN	FSM10_EN	FSM9_EN
_	_	_	_	_	_	_	_

Table 193. FSM_ENABLE_B register description

FSM16_EN	FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN	FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

11.19 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (r/w)

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 194. FSM_LONG_COUNTER_L register

FSM_LC_								
7	6	5	4	3	2	1	0	

Table 195. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0] Long counter current value (LSbyte). Default value: 00000000

Table 196. FSM_LONG_COUNTER_H register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |

Table 197. FSM_LONG_COUNTER_H register description

ESM 1 C [15:8]	Long counter current value (MSbyte). Default value: 00000000
1 3 N _ L C _ [13.0]	Long counter current value (Mobyte). Delauit value. 00000000

11.20 FSM_LONG_COUNTER_CLEAR (4Ah)

FSM long counter reset register (r/w)

Table 198. FSM_LONG_COUNTER_CLEAR register

0 ⁽¹⁾	FSM_LC_ CLEARED	FSM_LC_ CLEAR					
------------------	------------------	------------------	------------------	------------------	------------------	--------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 199. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_ CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

11.21 FSM_OUTS1 (4Ch)

FSM1 output register (r)

Table 200. FSM_OUTS1 register

P_X N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
---------	-----	-----	-----	-----	-----	-----

Table 201. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)

5

11.22 FSM_OUTS2 (4Dh)

FSM2 output register (r)

Table 202. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 203. FSM_OUTS2 register description

	Tuble 200: 1 dili_00 102 register description
P_X	FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.23 FSM_OUTS3 (4Eh)

FSM3 output register (r)

Table 204. FSM_OUTS3 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 205. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.24 FSM_OUTS4 (4Fh)

FSM4 output register (r)

Table 206. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 207. FSM_OUTS4 register description

	Table 2011 Citi_Co 104 Togleter accomption
P_X	FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.25 FSM_OUTS5 (50h)

FSM5 output register (r)

Table 208. FSM_OUTS5 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 209. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.26 FSM_OUTS6 (51h)

FSM6 output register (r)

Table 210. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 211. FSM_OUTS6 register description

	14510 2111 1 0111_00 100 100 100 100 100 100 10
P_X	FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.27 FSM_OUTS7 (52h)

FSM7 output register (r)

Table 212. FSM_OUTS7 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 213. FSM_OUTS7 register description

P_X	FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.28 FSM_OUTS8 (53h)

FSM8 output register (r)

Table 214. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 215. FSM_OUTS8 register description

Table 2 for 1 cm_co register accomplian							
P_X	FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)						
N_X	FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)						
P_Y	FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)						
N_Y	FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)						
P_Z	FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)						
N_Z	FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)						
P_V	FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected						
N_V	FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)						

11.29 FSM_OUTS9 (54h)

FSM9 output register (r)

Table 216. FSM_OUTS9 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 217. FSM_OUTS9 register description

P_X	FSM9 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM9 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM9 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM9 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM9 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.30 FSM_OUTS10 (55h)

FSM10 output register (r)

Table 218. FSM_OUTS10 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 219. FSM_OUTS10 register description

Table 210.1 oiii_00101010gloter description							
P_X	FSM10 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)						
N_X	FSM10 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)						
P_Y	FSM10 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)						
N_Y	FSM10 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)						
P_Z	FSM10 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)						
N_Z	FSM10 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)						
P_V	FSM10 output: positive event detected on the vector. (0: event not detected; 1: event detected						
N_V	FSM10 output: negative event detected on the vector. (0: event not detected; 1: event detected)						

11.31 FSM_OUTS11 (56h)

FSM11 output register (r)

Table 220. FSM_OUTS11 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 221. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM11 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM11 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM11 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.32 FSM_OUTS12 (57h)

FSM12 output register (r)

Table 222. FSM_OUTS12 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 223. FSM_OUTS12 register description

14510 220.1 Cin_00 10 12 10gloto: 400011ption							
P_X	FSM12 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)						
N_X	FSM12 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)						
P_Y	FSM12 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)						
N_Y	FSM12 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)						
P_Z	FSM12 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)						
N_Z	FSM12 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)						
P_V	FSM12 output: positive event detected on the vector. (0: event not detected; 1: event detected						
N_V	FSM12 output: negative event detected on the vector. (0: event not detected; 1: event detected)						

11.33 FSM_OUTS13 (58h)

FSM13 output register (r)

Table 224. FSM_OUTS13 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 225. FSM_OUTS13 register description

P_X	FSM13 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM13 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM13 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM13 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM13 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM13 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM13 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.34 FSM_OUTS14 (59h)

FSM14 output register (r)

Table 226. FSM_OUTS14 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 227. FSM_OUTS14 register description

	Table 227: 1 din_dd 10 14 legister description
P_X	FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.35 FSM_OUTS15 (5Ah)

FSM15 output register (r)

Table 228. FSM_OUTS15 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 229. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM15 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM15 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM15 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM15 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM15 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM15 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM15 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.36 FSM_OUTS16 (5Bh)

FSM16 output register (r)

Table 230. FSM_OUTS16 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 231. FSM OUTS16 register description

	Table 201: 1 oil _ OO 10 10 gloter description
P_X	FSM16 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM16 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM16 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM16 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM16 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.37 EMB_FUNC_ODR_CFG_B (5Fh)

Finite State Machine output data rate configuration register (r/w)

Table 232. EMB_FUNC_ODR_CFG_B register

0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	FSM_ ODR1	FSM_ ODR0	0 ⁽¹⁾	1 ⁽²⁾	1 ⁽²⁾

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 233. EMB FUNC ODR CFG B register description

Finite State Machine ODR configuration:
(00: 12.5 Hz;
01: 26 Hz (default);
10: 52 Hz;
11: 104 Hz)

11.38 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)

Step counter output register (r)

Table 234. STEP_COUNTER_L register

STEP 7	STEP 6	STEP 5	STEP 4	STEP 3	STEP 2	STFP 1	STEP 0
0 _ '	0121_0	0121_0	0 -	0 _ 0	0'-'-	•	0.5.

Table 235. STEP_COUNTER_L register description

STEP_[7:0] Step counter output (LSbyte)

Table 236. STEP_COUNTER_H register

	STEP 15	STEP 14	STEP 13	STEP 12	STEP 11	STEP 10	STEP 9	STEP 8
- 1		_			_	_	_	_

Table 237. STEP_COUNTER_H register description

STEP_[15:8]	Step counter output (MSbyte)
-------------	------------------------------

11.39 **EMB_FUNC_SRC** (64h)

Embedded function source register (r)

Table 238. EMB_FUNC_SRC register

PEDO_ RST_ STEP	0	STEP_ DETECTED	STEP_ COUNT_ DELTA_IA	STEP_ OVERFLOW	STEPCOU NTER_BIT _SET	0	0	
-----------------------	---	-------------------	-----------------------------	-------------------	-----------------------------	---	---	--

Table 239. EMB_FUNC_SRC register description

PEDO_RST_ STEP	Reset pedometer step counter. Read/write bit. (0: disabled; 1: enabled)
STEP_ DETECTED	Step detector event detection status. Read-only bit. (0: step detection event not detected; 1: step detection event detected)
STEP_COUNT_ DELTA_IA	Pedometer step recognition on delta time status. Read-only bit. (0: no step recognized during delta time; 1: at least one step recognized during delta time)
STEP_ OVERFLOW	Step counter overflow status. Read-only bit. (0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)
STEPCOUNTER_ BIT_SET	This bit is equal to 1 when the step count is increased. If a timer period is programmed in <i>PEDO_SC_DELTAT_L</i> (<i>D0h</i>) and <i>PEDO_SC_DELTAT_H</i> (<i>D1h</i>) embedded advanced features (page 1) registers, this bit is kept to 0. Read-only bit.

11.40 EMB_FUNC_INIT_A (66h)

Embedded functions initialization register (r/w)

Table 240. EMB_FUNC_INIT_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIG_MOT _INIT	TILT _INIT	STEP_DET _INIT	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	
------------------	------------------	------------------	---------------	-------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 241. EMB_FUNC_INIT_A register description

SIG_MOT_INIT	Significant Motion Detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer Step Counter/Detector algorithm initialization request. Default value: 0

11.41 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (r/w)

Table 242. EMB_FUNC_INIT_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	FIFO_ COMPR_ INIT	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT
------------------	------------------	------------------	------------------	-------------------------	------------------	------------------	----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 243. EMB_FUNC_INIT_B register description

FIFO_COMPR_INIT	FIFO compression feature initialization request. Default value: 0
FSM_INIT	FSM initialization request. Default value: 0

5

12 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

Table 244. Register address map - embedded advanced features page 0

Name	Time	Register	address	Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
MAG_SENSITIVITY_L	r/w	BA	10111010	00100100	
MAG_SENSITIVITY_H	r/w	BB	10111011	00010110	
MAG_OFFX_L	r/w	C0	11000000	00000000	
MAG_OFFX_H	r/w	C1	11000001	00000000	
MAG_OFFY_L	r/w	C2	11000010	00000000	
MAG_OFFY_H	r/w	C3	11000011	00000000	
MAG_OFFZ_L	r/w	C4	11000100	00000000	
MAG_OFFZ_H	r/w	C5	11000101	00000000	
MAG_SI_XX_L	r/w	C6	11000110	00000000	
MAG_SI_XX_H	r/w	C7	11000111	00111100	
MAG_SI_XY_L	r/w	C8	11001000	00000000	
MAG_SI_XY_H	r/w	C9	11001001	00000000	
MAG_SI_XZ_L	r/w	CA	11001010	00000000	
MAG_SI_XZ_H	r/w	СВ	11001011	00000000	
MAG_SI_YY_L	r/w	СС	11001100	00000000	
MAG_SI_YY_H	r/w	CD	11001101	00111100	
MAG_SI_YZ_L	r/w	CE	11001110	00000000	
MAG_SI_YZ_H	r/w	CF	11001111	00000000	
MAG_SI_ZZ_L	r/w	D0	11010000	00000000	
MAG_SI_ZZ_H	r/w	D1	11010001	00111100	
MAG_CFG_A	r/w	D4	11010100	00000101	
MAG_CFG_B	r/w	D5	11010101	00000010	

The table given below provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Table 245. Register address map - embedded advanced features page 1

Name	Time	Register	address	Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
FSM_LC_TIMEOUT_L	r/w	7A	01111010	00000000	
FSM_LC_TIMEOUT_H	r/w	7B	01111011	00000000	
FSM_PROGRAMS	r/w	7C	01111100	00000000	
FSM_START_ADD_L	r/w	7E	01111110	00000000	
FSM_START_ADD_H	r/w	7F	01111111	00000000	
PEDO_CMD_REG	r/w	83	10000011	00000000	
PEDO_DEB_STEPS_CONF	r/w	84	10000100	00001010	
PEDO_SC_DELTAT_L	r/w	D0	11010000	00000000	
PEDO_SC_DELTAT_H	r/w	D1	11010001	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example:

Example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

Read procedure example:

Example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1. Write bit FUNC_CFG_EN = 1 // Enable access to embedded functions registers in FUNC_CFG_ACCESS (01h) 2. Write bit PAGE_READ = 1 // Select read operation mode in PAGE_RW (17h) register 3. Write 0001 in PAGE SEL[3:0] field // Select page 1 of register PAGE_SEL (02h) 4. Write 84h in PAGE_ADDR register (08h) // Set address 5. Read value of PAGE DATA register (09h) // Get register value 6. Write bit PAGE_READ = 0 // Read operation disabled in PAGE_RW (17h) register 7. Write bit FUNC CFG EN = 0 in // Disable access to embedded functions registers FUNC_CFG_ACCESS (01h)

Note:

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

13 Embedded advanced features register description

13.1 Page 0 - Embedded advanced features registers

13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

External magnetometer sensitivity value register for the Finite State Machine (r/w).

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEFFFFFFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits). Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 246. MAG_SENSITIVITY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SENS_7 | SENS_6 | SENS_5 | SENS_4 | SENS_3 | SENS_2 | SENS_1 | SENS_0 |

Table 247. MAG_SENSITIVITY_L register description

MAG SENS [7:0]	External magnetometer sensitivity (LSbyte). Default value: 00100100
WW (O_OE) (O_[/ .0]	External magneterioter constituty (Ecotyto). Boladit value: 00 100 100

Table 248. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8

Table 249. MAG_SENSITIVITY_H register description

MAG_SENS_[15:8] External magnetometer sensitivity (MSbyte). Default value: 000101

13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)

Offset for X-axis hard-iron compensation register (r/w).

Table 250. MAG_OFFX_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| X_7 | X_6 | X_5 | X_4 | X_3 | X_2 | X_1 | X_0 |

Table 251. MAG_OFFX_L register description

MAG_OFFX_[7:0] Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 252. MAG_OFFX_H register

MAG_OFF								
X_15	X_14	X_13	X_12	X_11	X_10	X_9	X_8	

Table 253. MAG_OFFX_H register description

13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Offset for Y-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 254. MAG_OFFY_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Y_7 | Y_6 | Y_5 | Y_4 | Y_3 | Y_2 | Y_1 | Y_0 |

Table 255. MAG OFFY L register description

MAG_OFFY_[7:0] Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 256. MAG_OFFY_H register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Y_15 | Y_14 | Y_13 | Y_12 | Y_11 | Y_10 | Y_9 | Y_8 |

Table 257. MAG_OFFY_H register description

MAG_OFFY_[15:8] Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000

13.1.4 MAG OFFZ L (C4h) and MAG OFFZ H (C5h)

Offset for Z-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 258. MAG_OFFZ_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Z_7 | Z_6 | Z_5 | Z_4 | Z_3 | Z_2 | Z_1 | Z_0 |

Table 259. MAG_OFFZ_L register description

MAG OFFZ [7:0] Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 260. MAG_OFFZ_H register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Z_15 | Z_14 | Z_13 | Z_12 | Z_11 | Z_10 | Z_9 | Z_8 |

Table 261. MAG_OFFZ_H register description

MAG OFFZ [15:8] Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000

13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 262. MAG_SI_XX_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_7 | XX_6 | XX_5 | XX_4 | XX_3 | XX_2 | XX_1 | XX_0 |

Table 263. MAG_SI_XX_L register description

MAG_SI_XX_[7:0] | Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000

Table 264. MAG_SI_XX_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_15 | XX_14 | XX_13 | XX_12 | XX_11 | XX_10 | XX_9 | XX_8 |

Table 265. MAG_SI_XX_H register description

MAG_SI_XX_[15:8] Soft-iron correction row1 col1 coefficient (MSbyte). Default value: 00111100

13.1.6 MAG SI XY L (C8h) and MAG SI XY H (C9h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 266. MAG_SI_XY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY 7 | XY 6 | XY 5 | XY 4 | XY 3 | XY 2 | XY 1 | XY 0 |

Table 267. MAG_SI_XY_L register description

	MAG_SI_XY_[7:0]	Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000
		value: 00000000

Table 268. MAG_SI_XY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY_15 | XY_14 | XY_13 | XY_12 | XY_11 | XY_10 | XY_9 | XY_8 |

Table 269. MAG_SI_XY_H register description

13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 270. MAG_SI_XZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_7 | XZ_6 | XZ_5 | XZ_4 | XZ_3 | XZ_2 | XZ_1 | XZ_0 |

Table 271. MAG_SI_XZ_L register description

MAC	C CL V7 [7:0]	Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default
IVIAC	5_SI_XZ_[7.0]	Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000

Table 272. MAG_SI_XZ_H register

MAG_SI_								
XZ_15	XZ_14	XZ_13	XZ_12	XZ_11	XZ_10	XZ_9	XZ_8	

Table 273. MAG_SI_XZ_H register description

MAG_SI_XZ_[15:8] Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Defavalue: 000000000	ault
--	------

13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 274. MAG_SI_YY_L register

MAG_SI_	l							
YY_7	YY_6	YY_5	YY_4	YY_3	YY_2	YY_1	YY_0	ĺ

Table 275. MAG SI YY L register description

MAG_SI_YY_[7:0] | Soft-iron correction row2 col2 coefficient (LSbyte). Default value: 00000000

Table 276. MAG_SI_YY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_15 | YY_14 | YY_13 | YY_12 | YY_11 | YY_10 | YY_9 | YY_8 |

Table 277. MAG_SI_YY_H register description

MAG	G SI YY	′ [15:8]	Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100

13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 278. MAG_SI_YZ_L register

ſ	MAG_SI_							
	YZ_7	YZ_6	YZ_5	YZ_4	YZ_3	YZ_2	YZ_1	YZ_0

Table 279. MAG_SI_YZ_L register description

MAG_SI_YZ_[7:0]	Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000
-----------------	---

Table 280. MAG_SI_YZ_H register

ĺ	MAG_SI_							
	YZ_15	YZ_14	YZ_13	YZ_12	YZ_11	YZ_10	YZ_9	YZ_8

Table 281. MAG_SI_YZ_H register description

MAG_SI_YZ_[15:8]	Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000

13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 282. MAG_SI_ZZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_7 | ZZ_6 | ZZ_5 | ZZ_4 | ZZ_3 | ZZ_2 | ZZ_1 | ZZ_0 |

Table 283. MAG SI ZZ L register description

MAG_SI_ZZ_[7:0] | Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000

Table 284. MAG_SI_ZZ_H register

MAG_SI_								
ZZ_15	ZZ_14	ZZ_13	ZZ_12	ZZ_11	ZZ_10	ZZ_9	ZZ_8	

Table 285. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8] | Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100

13.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Z and Y axes) rotation register (r/w)

Table 286. MAG_CFG_A register

n(1)	MAG_Y_	MAG_Y_	MAG_Y_	0(1)	MAG_Z_	MAG_Z_	MAG_Z_
0, ,	AXIS2	AXIS1	AXIS0	0 7	AXIS2	AXIS1	AXIS0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 287. MAG_CFG_A description

	<u> </u>
	Magnetometer Y-axis coordinates rotation (to be aligned to
	accelerometer/gyroscope axes orientation)
	(000: Y = Y; (default)
	001: Y = -Y;
MAG_Y_AXIS[2:0]	010: Y = X;
	011: Y = -X;
	100: Y = -Z;
	101: Y = Z;
	Others: Y = Y)
	Magnetometer Z-axis coordinates rotation (to be aligned to
	accelerometer/gyroscope axes orientation)
	(000: Z = Y;
	001: Z = -Y;
MAG_Z_AXIS[2:0]	010: Z = X;
	011: Z = -X;
	100: Z = -Z;
	101: Z = Z; (default)
	Others: Z = Y)

13.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (r/w)

Table 288. MAG_CFG_B register

	0 ⁽¹⁾	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0					
--	------------------	------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 289. MAG_CFG_B description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
MAG_X_AXIS[2:0]	(000: X = Y;
	001: X = -Y;
	010: X = X; (default)
	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

13.2 Page 1 - Embedded advanced features registers

13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (r/w).

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reached this value, the FSM generates an interrupt.

Table 290. FSM_LC_TIMEOUT_L register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMEOUT |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Table 291. FSM_LC_TIMEOUT_L register description

FSM_LC_ TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
-------------------------	--

Table 292. FSM_LC_TIMEOUT_H register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMEOUT |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |

Table 293. FSM_LC_TIMEOUT_H register description

FSM_LC_ TIMEOUT[15:8]	FSM long counter timeout value (MSbyte). Default value: 00000000
--------------------------	--

13.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (r/w)

Table 294. FSM_PROGRAMS register

FSM_N_								
PROG7	PROG6	PROG5	PROG4	PROG3	PROG2	PROG1	PROG0	

Table 295. FSM_PROGRAMS register description

FSM_N_PROG[7:0]	Number of FSM programs; must be less than or equal to 16. Default value: 00000000
-----------------	---

13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (r/w). First available address is 0x033C.

Table 296. FSM_START_ADD_L register

ſ	FSM_							
	START7	START6	START5	START4	START3	START2	START1	START0

Table 297. FSM_START_ADD_L register description

FSM START[7:0]	FSM start address value (LSbyte). Default value: 00000000
----------------	---

Table 298. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 299. FSM_START_ADD_H register description

FSM_START[15:8] FSM start address value (MSbyte). Default value: 00000000

13.2.4 PEDO_CMD_REG (83h)

Pedometer configuration register (r/w)

Table 300. PEDO_CMD_REG register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	FP_ REJECTION_ EN	0 ⁽¹⁾	AD_ DET_EN
--	------------------	------------------	------------------	------------------	--------------------	-------------------------	------------------	---------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 301. PEDO_CMD_REG register description

CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.
FP_REJECTION_EN ⁽¹⁾	Enables the false-positive rejection feature.
AD_DET_EN ⁽²⁾	Enables the advanced detection feature.

^{1.} This bit is effective if the PEDO ADV EN bit of EMB_FUNC_EN_B (05h) is set to 1.

13.2.5 PEDO_DEB_STEPS_CONF (84h)

Pedometer debounce configuration register (r/w)

Table 302. PEDO_DEB_STEPS_CONF register

DEB_								
STEP7	STEP6	STEP5	STEP4	STEP3	STEP2	STEP1	STEP0	

Table 303. PEDO_DEB_STEPS_CONF register description

DEB_STEP[7:0]	Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010
DEB_STEP[7:0]	(debounce). Default value: 00001010

^{2.} This bit is effective if both the FP_REJECTION_EN bit in PEDO_CMD_REG (83h) register and the PEDO_ADV_EN bit of EMB_FUNC_EN_B (05h) are set to 1.

13.2.6 PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)

Time period register for step detection on delta time (r/w)

Table 304. PEDO_SC_DELTAT_L register

PD_SC_7 PD_SC_6 PD_SC_5	PD_SC_4	PD_SC_3	PD_SC_2	PD_SC_1	PD_SC_0
-----------------------------	---------	---------	---------	---------	---------

Table 305. PEDO_SC_DELTAT_H register

PD_SC_15 | PD_SC_14 | PD_SC_13 | PD_SC_12 | PD_SC_11 | PD_SC_10 | PD_SC_9 | PD_SC_8

Table 306. PEDO_SC_DELTAT_H/L register description

PD_SC_[15:0]	Time period value (1LSB = 6.4 ms)
--------------	-----------------------------------

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in FUNC_CFG_ACCESS (01h).

Table 307. Register address map - sensor hub registers

Nama	Time	Register addres		Dofoult	Commont	
Name	Type	Hex	Binary	- Default	Comment	
SENSOR_HUB_1	r	02	00000010	output		
SENSOR_HUB_2	r	03	00000011	output		
SENSOR_HUB_3	r	04	00000100	output		
SENSOR_HUB_4	r	05	00000101	output		
SENSOR_HUB_5	r	06	00000110	output		
SENSOR_HUB_6	r	07	00000111	output		
SENSOR_HUB_7	r	08	00001000	output		
SENSOR_HUB_8	r	09	00001001	output		
SENSOR_HUB_9	r	0A	00001010	output		
SENSOR_HUB_10	r	0B	00001011	output		
SENSOR_HUB_11	r	0C	00001100	output		
SENSOR_HUB_12	r	0D	00001101	output		
SENSOR_HUB_13	r	0E	00001110	output		
SENSOR_HUB_14	r	0F	00001111	output		
SENSOR_HUB_15	r	10	00010000	output		
SENSOR_HUB_16	r	11	00010001	output		
SENSOR_HUB_17	r	12	00010010	output		
SENSOR_HUB_18	r	13	00010011	output		
MASTER_CONFIG	rw	14	00010100	00000000		
SLV0_ADD	rw	15	00010101	00000000		
SLV0_SUBADD	rw	16	00010110	00000000		
SLV0_CONFIG	rw	17	0001 0111	00000000		
SLV1_ADD	rw	18	00011000	00000000		
SLV1_SUBADD	rw	19	00011001	00000000		
SLV1_CONFIG	rw	1A	00011010	00000000		
SLV2_ADD	rw	1B	00011011	00000000		
SLV2_SUBADD	rw	1C	00011100	00000000		
SLV2_CONFIG	rw	1D	00011101	00000000		

Table 307. Register address map - sensor hub registers

Name	Type	Register	address	Default	Comment
Name	Type	Hex	Binary	Delault	Comment
SLV3_ADD	rw	1E	00011110	00000000	
SLV3_SUBADD	rw	1F	00011111	00000000	
SLV3_CONFIG	rw	20	00100000	00000000	
DATAWRITE_SLV0	rw	21	00100001	00000000	
STATUS_MASTER	r	22	00100010	output	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (r)

First byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 308. SENSOR_HUB_1 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub1_7 | Hub1_6 | Hub1_5 | Hub1_4 | Hub1_3 | Hub1_2 | Hub1_1 | Hub1_0 |

Table 309. SENSOR_HUB_1 register description

SensorHub1[7:0]	First byte associated to external sensors
-----------------	---

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (r)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 310. SENSOR_HUB_2 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub2_7 | Hub2_6 | Hub2_5 | Hub2_4 | Hub2_3 | Hub2_2 | Hub2_1 | Hub2_0 |

Table 311. SENSOR_HUB_2 register description

SensorHub2[7:0]	Second byte associated to external sensors
-----------------	--

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (r)

Third byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 312. SENSOR_HUB_3 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub3_7 | Hub3_6 | Hub3_5 | Hub3_4 | Hub3_3 | Hub3_2 | Hub3_1 | Hub3_0 |

Table 313. SENSOR_HUB_3 register description

SensorHub3[7:0]	Third byte associated to external sensors

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (r)

Fourth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 314. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 315. SENSOR_HUB_4 register description

SensorHub4[7:0]	Fourth byte associated to external sensors
-----------------	--

15.5 SENSOR_HUB_5 (06h)

Sensor hub output register (r)

Fifth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 316. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 317. SENSOR_HUB_5 register description

SensorHub5[7:0]

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (r)

Sixth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 318. SENSOR HUB 6 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub6_7 | Hub6_6 | Hub6_5 | Hub6_4 | Hub6_3 | Hub6_2 | Hub6_1 | Hub6_0 |

Table 319. SENSOR_HUB_6 register description

SensorHub6[7:0]	Sixth byte associated to external sensors
-----------------	---

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (r)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 320. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 321. SENSOR_HUB_7 register description

SensorHub7[7:0]	Seventh byte associated to external sensors
-----------------	---

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (r)

Eighth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 322. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 323. SENSOR_HUB_8 register description

SensorHub8[7:0]

15.9 SENSOR_HUB_9 (0Ah)

Sensor hub output register (r)

Ninth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 324. SENSOR_HUB_9 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub9_7 | Hub9_6 | Hub9_5 | Hub9_4 | Hub9_3 | Hub9_2 | Hub9_1 | Hub9_0 |

Table 325. SENSOR_HUB_9 register description

SensorHub9[7:0]	Ninth byte associated to external sensors
-----------------	---

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (r)

Tenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 326. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 327. SENSOR_HUB_10 register description

SensorHub10[7:0]	Tenth byte associated to external sensors
------------------	---

15.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (r)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 328. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 329. SENSOR_HUB_11 register description

SensorHub11[7:0]	Eleventh byte associated to external sensors
------------------	--

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (r)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 330. SENSOR_HUB_12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 331. SENSOR_HUB_12 register description

SensorHub12[7:0]	Twelfth byte associated to external sensors
------------------	---

15.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (r)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 332. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 333. SENSOR_HUB_13 register description

SensorHub13[7:0]	Thirteenth byte associated to external sensors
------------------	--

15.14 SENSOR_HUB_14 (0Fh)

Sensor hub output register (r)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 334. SENSOR_HUB_14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 335. SENSOR_HUB_14 register description

SensorHub14[7:0] Fourteenth byte associated to external sensors

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (r)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 336. SENSOR_HUB_15 register

ĺ	Sensor							
	Hub15_7	Hub15_6	Hub15_5	Hub15_4	Hub15_3	Hub15_2	Hub15_1	Hub15_0

Table 337. SENSOR_HUB_15 register description

SensorHub15[7:0]	Fifteenth byte associated to external sensors
------------------	---

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (r)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 338. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 339. SENSOR_HUB_16 register description

SensorHub16[7:0]	Sixteenth byte associated to external sensors
------------------	---

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (r)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 340. SENSOR_HUB_17 register

Se	nsor	Sensor						
Hul	17_7	Hub17_6	Hub17_5	Hub17_4	Hub17_3	Hub17_2	Hub17_1	Hub17_0

Table 341. SENSOR_HUB_17 register description

SensorHub17[7:0]

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (r)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 342. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 343. SENSOR_HUB_17 register description

SensorHub18[7:0]	Eighteenth byte associated to external sensors
------------------	--

15.19 MASTER_CONFIG (14h)

Master configuration register (r/w)

Table 344. MASTER_CONFIG register

RST_ MASTER_ REGS	WRITE_ ONCE	START_ CONFIG	PASS_ THROUGH _MODE	SHUB_ PU_EN	MASTER_ ON	AUX_ SENS_ ON1	AUX_ SENS_ ON0	
-------------------------	----------------	------------------	---------------------------	----------------	---------------	----------------------	----------------------	--

Table 345. MASTER_CONFIG register description

	- and o o ioi in to i = i t_o o iii io i ogiotoi accomption
RST_MASTER_ REGS	Reset Master logic and output registers. Must be set to '1' and then set it to '0'. Default value: 0
WRITE_ONCE	Slave 0 write operation is performed only at the first sensor hub cycle. Default value: 0 (0: write operation for each sensor hub cycle; 1: write operation only for the first sensor hub cycle)
START_CONFIG	Sensor hub trigger signal selection. Default value: 0 (0: sensor hub trigger signal is the accelerometer/gyro data-ready; 1: sensor hub trigger signal external from INT2 pin)
PASS_THROUGH_ MODE	I ² C interface pass-through. Default value: 0 (0: pass-through disabled; 1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
SHUB_PU_EN	Master I ² C pull-up enable. Default value: 0 (0: internal pull-up on auxiliary I ² C line disabled; 1: internal pull-up on auxiliary I ² C line enabled)
MASTER_ON	Sensor hub I ² C master enable. Default: 0 (0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
AUX_SENS_ ON[1:0]	Number of external sensors to be read by the sensor hub. (00: one sensor (default); 01: two sensors; 10: three sensors; 11: four sensors)

15.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (Sensor 1) register (r/w)

Table 346. SLV0_ADD register

slave0_	nu O						
add6	add5	add4	add3	add2	add1	add0	rw_0

Table 347. SLV_ADD register description

slave0_add[6:0]	I ² C slave address of Sensor1 that can be read by the sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor 1. Default value: 0 (0: write operation; 1: read operation)

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (Sensor 1) register (r/w)

Table 348. SLV0_SUBADD register

| slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 349. SLV0_SUBADD register description

slave0_reg[7:0]	Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in <i>SLV0_ADD</i> (15h). Default value: 00000000
	bit value in SEVO_ADD (1911). Delauit value. 00000000

15.22 **SLAVEO_CONFIG** (17h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w)

Table 350. SLAVE0_CONFIG register

SHUB_ ODR_1	SHUB_ ODR_0	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_ EXT_SENS_ 0_EN	Slave0_ numop2	Slave0_ numop1	Slave0_ numop0	
----------------	----------------	------------------	------------------	-----------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 351. SLAVE0_CONFIG register description

SHUB_ODR_[1:0]	Rate at which the master communicates. Default value: 00 (00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz); 01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz); 10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz); 11: 13 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 13 Hz)
BATCH EXT SENS 0 EN	Enable FIFO batching data of first slave. Default value: 0
	•
Slave0_numop[2:0]	Number of read operations on Sensor 1. Default value: 000

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (Sensor 2) register (r/w)

Table 352. SLV1_ADD register

Table 353. SLV1_ADD register description

_		
		I ² C slave address of Sensor 2 that can be read by the sensor hub.
		Default value: 0000000
Ī	Ir 1	Read operation on Sensor 2 enable. Default value: 0
'-		(0: read operation disabled; 1: read operation enabled)

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (Sensor 2) register (r/w)

Table 354. SLV1_SUBADD register

| Slave1_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 355. SLV1_SUBADD register description

Slave1_reg[7:0]	Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in <i>SLV1_ADD</i> (18h).
-----------------	--

15.25 SLAVE1_CONFIG (1Ah)

Second external sensor (Sensor 2) configuration register (r/w)

Table 356. SLAVE1_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT _SENS_1 _EN	Slave1_ numop2	Slave1_ numop1	Slave1_ numop0
------------------	------------------	------------------	------------------	-----------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 357. SLAVE1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enable FIFO batching data of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on Sensor 2. Default value: 000

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (Sensor 3) register (r/w)

Table 358. SLV2_ADD register

Slave2_	- 2	l						
add6	add5	add4	add3	add2	add1	add0	'_2	

Table 359. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of Sensor 3 that can be read by the sensor hub.
lr 🤈	Read operation on Sensor 3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (Sensor 3) register (r/w)

Table 360. SLV2_SUBADD register

Sla	ve2_	Slave2_						
r	eg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0

Table 361. SLV2_SUBADD register description

Slave2_reg[7:0]	Address of register on Sensor 3 that has to be read/written according to the r_2 bit value in <i>SLV2_ADD</i> (1Bh).
-----------------	--

15.28 SLAVE2_CONFIG (1Dh)

Third external sensor (Sensor 3) configuration register (r/w)

Table 362. SLAVE2_CONFIG register

0 ⁽¹⁾	0(1)	0(1)	0(1)	BATCH_ EXT_SENS_ 2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 363. SLAVE2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enable FIFO batching data of third slave. Default value: 0
Slave2_numop[2:0]	Number of read operations on Sensor 3. Default value: 000

577

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (Sensor 4) register (r/w)

Table 364. SLV3_ADD register

Slave3_	₂ 2						
add6	add5	add4	add3	add2	add1	add0	1_3

Table 365. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of Sensor 4 that can be read by the sensor hub.
ir 3	Read operation on Sensor 4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (Sensor 4) register (r/w)

Table 366. SLV3_SUBADD register

| Slave3_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 367. SLV3_SUBADD register description

Slave3_reg[7:0]	Address of register on Sensor 4 that has to be read according to the r_3 bit value	
	in SLV3_ADD (1Eh).	

15.31 SLAVE3_CONFIG (20h)

Fourth external sensor (Sensor 4) configuration register (r/w)

Table 368. SLAVE3_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_ EXT_SENS _3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0
------------------	------------------	------------------	------------------	-----------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 369. SLAVE3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enable FIFO batching data of fourth slave. Default value: 0
Slave3_numop[2:0]	Number of read operations on Sensor 4. Default value: 000

15.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (r/w)

Table 370. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 371. DATAWRITE_SLV0 register description

	Data to be written into the slave 0 device according to the rw_0 bit in register
Slave0_dataw[7:0]	SLV0_ADD (15h).
	Default value: 00000000

15.33 STATUS_MASTER (22h)

Sensor hub source register (r)

Table 372. STATUS_MASTER register

WR_ ONCE_ DONE	SLAVE3_ NACK	SLAVE2_ NACK	SLAVE1_ NACK	SLAVE0_ NACK	0	0	SENS_HUB_ ENDOP	
----------------------	-----------------	-----------------	-----------------	-----------------	---	---	--------------------	--

Table 373. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
SENS_HUB_ENDOP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

16 Soldering information

The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com/mems.

17 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

17.1 LGA-14L package information

Figure 22. LGA-14L 2.5x3x0.86 mm package outline and mechanical data

Package information LSM6DSO32

17.2 LGA-14 packing information

Figure 23. Carrier tape information for LGA-14 package

Figure 24. LGA-14 package orientation in carrier tape

Figure 25. Reel information for carrier tape of LGA-14 package

Table 374. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

Revision history LSM6DSO32

18 Revision history

Table 375. Document revision history

Date	Revision	Changes
13-Mar-2020	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

