Содержание

1	Зад	Задание		
2	Teo	ретиче	еская часть	
	2.1	Тесто	вые примеры	
		2.1.1	Плоскость	4
		2.1.2	Линейно-квадратичная функция	6
		2.1.3	Параболоид	•
		2.1.4	Индивидуальная функция	•
	2.2	Разно	стные схемы	•
		2.2.1	Симметричная схема	•
		2.2.2	Чисто неявная схема	
	2.3	Метод	ц решения нелинейной системы уравнений	4
		2.3.1	Метод простой итерации	4
	2.4	Аппро	оксимация коэффициента теплопроводности	4
		1		
3	Пра	актиче	еская часть	4
	3.1	Вычис	слительные эксперименты над симметричной схемой	4
		3.1.1	Плоскость	4
		3.1.2	Линейно-квадратичная функция	4
		3.1.3	Параболоид	٦
		3.1.4	Индивидуальная функция	١
	3.2	Вычис	слительные эксперименты над чисто неявной схемой	
		3.2.1	Плоскость	ļ
		3.2.2	Линейно-квадратичная функция	ļ
		3.2.3	Параболоид	Į
		3.2.4	Индивидуальная функция	6
4	Прі	иложе	ние	6

1 Задание

Рассматривается начально-краевая задача для нелинейного уравнения теплопроводности:

$$\begin{cases} y_t = ((1+y^{3/2})y_x)_x + f(t,x), x \in (0,L), t \in (0,T), \\ y|_{t=0} = \varphi(x), \\ y|_{x=0} = g_0(t), y|_{x=L} = g_L(t) \end{cases}$$
 (1)

Искомым решением является функция y = y(t,x).

Необходимо построить *чисто неявную* и *симметричную* разностную схему, а также реализовать *метод простой итерации* для решения нелинейной системы уравнений.

Выполнить серию вычислительных экспериментов на стандартных тестах. Сравнить время работы PC на одном и том же отрезке [0,T]. Составьте (для каждого тестового расчета) таблицы зависимости времени расчета и количества итераций на шаге от шага сетки τ .

2 Теоретическая часть

2.1 Тестовые примеры

2.1.1 Плоскость

$$y(t,x) = 2x + 3t + 5$$

$$\begin{cases} y_t = ((1+y^{3/2})y_x)_x + 3 - 6\sqrt{2x+3t+5}, \\ x \in (0,L), t \in (0,T), \\ y|_{t=0} = 2x - 5, \\ y|_{x=0} = 3t - 5, \\ y|_{x=L} = 2L + 3t - 5 \end{cases}$$
(2)

2.1.2 Линейно-квадратичная функция

$$y(t,x) = 2x^2 + t + 3$$

$$\begin{cases} y_{t} = ((1+y^{3/2})y_{x})_{x} - 3 - 4y(t,x)^{3/2} - 24x^{2}y^{1/2}, \\ x \in (0,L), t \in (0,T), \\ y|_{t=0} = 2x^{2} + 3, \\ y|_{x=0} = t + 3, \\ y|_{x=L} = 2L^{2} + t + 3 \end{cases}$$
(3)

2.1.3 Параболоид

$$y(t,x) = 3x^2 + 2t^2 + 1$$

$$= 3x^{2} + 2t^{2} + 1$$

$$\begin{cases} y_{t} = ((1+y^{3/2})y_{x})_{x} + 4t - 6 - 6y(t,x)^{3/2} - 54x^{2}y(t,x)^{1/2}, \\ x \in (0,L), t \in (0,T), \\ y|_{t=0} = 3x^{2} + 1, \\ y|_{x=0} = 2t^{2} + 1, \\ y|_{x=L} = 3L^{2} + 2t^{2} + 1 \end{cases}$$

$$(4)$$

2.1.4 Индивидуальная функция

$$y(t,x) = e^{\sin^2 x + \cos^2 t}$$

$$\begin{cases} y_{t} = \left(\left(1 + y^{3/2} \right) y_{x} \right)_{x} + y(t,x) \left(-\sin 2t - 2\cos 2x (1 + y(t,x)^{3/2}) - \sin^{2} 2x \left(1 + \frac{5}{2} y(t,x)^{3/2} \right), \\ x \in (0,L), t \in (0,T), \\ y|_{t=0} = e^{\sin^{2} x + 1}, \\ y|_{x=0} = e^{\cos^{2} t}, \\ y|_{x=L} = e^{\sin^{2} L + \cos^{2} t} \end{cases}$$

$$(5)$$

2.2 Разностные схемы

2.2.1 Симметричная схема

$$\begin{cases}
\frac{U^{j+1} - U^{j}}{\tau} = \frac{1}{2} \left[\Lambda \left(t^{j+1} \right) U^{j+1} + \Lambda \left(t^{j} \right) U^{j} + \varphi^{j} \right], \\
U_{0}^{j+1} = g_{0}(t_{j+1}), \\
U_{N}^{j+1} = g_{L}(t_{j+1}).
\end{cases} (6)$$

2.2.2 Чисто неявная схема

$$\begin{cases}
\frac{U^{j+1} - U^{j}}{\tau} = \Lambda \left(t^{j+1} \right) U^{j+1} + \varphi^{j+1}, \\
U_{0}^{j+1} = g_{0}(t_{j+1}), \\
U_{N}^{j+1} = g_{L}(t_{j+1}).
\end{cases} (7)$$

2.3 Метод решения нелинейной системы уравнений

2.3.1 Метод простой итерации

Для чисто неявной схемы:

$$U^{(s+1)} = U^j + \frac{\tau}{h} \left(\Lambda \left(t^{(s)} \right) U^{(s)} \right) + \tau f^{(s)}$$
(8)

Для симметричной схемы:

$$U^{(s+1)} = U^j + \frac{\tau}{2h} \left(\Lambda \left(t^{(s)} \right) U^{(s)} + \Lambda \left(t^j \right) U^j \right) + \tau f^{(s)}$$

$$\tag{9}$$

2.4 Аппроксимация коэффициента теплопроводности

В качестве аппроксимации коэффициента k(t, x, y) выберем:

$$a_i = \frac{1}{2}(k(t, x_i, y_i) - k(t, x_{i-1}, y_{i-1}))$$
(10)

Погрешность аппроксимации:

$$\Psi_{\Lambda} = \mathcal{O}(h^2) \tag{11}$$

3 Практическая часть

3.1 Вычислительные эксперименты над симметричной схемой

Начальные параметры: $\tau=10^{-5},\,h=0.1,\,L=1,\,T=1,\,\varepsilon=10^{-6}$

3.1.1 Плоскость

au	Time, sec	Iterations(per step)
au	21.6	2
$\tau/2$	44.5	2
$\tau/4$	86.3	2
$\tau/8$	175.8	2

3.1.2 Линейно-квадратичная функция

au	Time, sec	Iterations(per step)
au	23.7	2
$\tau/2$	49.9	2
$\tau/4$	94.2	2
$\tau/8$	190	2

3.1.3 Параболоид

au	Time, sec	$Iterations(per\ step)$
au	24.1	2
$\tau/2$	49.4	2
$\tau/4$	102.5	2
$\tau/8$	201	2

3.1.4 Индивидуальная функция

au	Time, sec	Iterations(per step)
au	41.1	2
$\tau/2$	80.7	2
$\tau/4$	163.5	2
$\tau/8$	324.2	2

3.2 Вычислительные эксперименты над чисто неявной схемой

3.2.1 Плоскость

au	Time, sec	Iterations(per step)
au	16.1	2 - 3
$\tau/2$	27.9	2
$\tau/4$	55.5	2
$\tau/8$	110.1	2

3.2.2 Линейно-квадратичная функция

au	Time, sec	$Iterations(per\ step)$
au	15.7	2
$\tau/2$	31.3	2
$\tau/4$	61.8	2
$\tau/8$	124.5	2

3.2.3 Параболоид

au	Time, sec	$Iterations(per\ step)$
au	17.5	2
$\tau/2$	32.7	2
$\tau/4$	66.2	2
$\tau/8$	130.5	2

3.2.4 Индивидуальная функция

au	Time, sec	Iterations(per step)
au	32.7	2
$\tau/2$	65.2	2
$\tau/4$	128.7	2
$\tau/8$	264.2	2

Вывод: В ходе лабораторной работы №4 были построены разностные схемы: чисто неявная, симметричная. С помощью этих схем решалось уравнение теплопроводности с нелинейным коэффициентом теплопроводности, поэтому понадобилось решать нелинейную систему уравнений. Метод простой итерации для этого не очень подходит, так как возникает условие на малость шага τ и величины τ/h , в силу данного факта наблюдается тенденция к минимальному количеству итераций на шаге(2-3). По результатам вычислений можно сделать вывод, что чисто неявная работает немного быстрее симметричной, но погрешность у симметричной (второй порядок точности по τ) меньше, чем у чисто неявной(первый порядок точности по τ).

4 Приложение

```
import numpy as np
    import matplotlib.pyplot as plt
    import time
   # Границы х и t
   L = 1
   T = 1
   # Cemka
   tau\_grid = 0.00000125
   x_grid = 0.1
   \# cem\kappaa no x
11
   Nx = int(L / x_grid + 1)
   h = np.linspace(0, L, Nx)
13
    # cemka no t
   Nt = int(T / tau_grid + 1)
15
   tau = np.linspace(0, T, Nt)
17
    # Коэффициент теплопроводности
   def Thermal_conductivity(t, x, y):
        return 1 + y ** (3 / 2)
```

```
22
23
    # Тестовые примеры
    # Плоскость
25
    def tf1(t, x):
        return 2 * x + 3 * t + 5
27
28
29
    def fx_tf1(t, x):
        return 3 - 6 * np.sqrt(2 * x + 3 * t + 5)
31
32
33
    def yt0_tf1(t, x):
        return 2 * x + 5
35
36
37
    def yx0_tf1(t, x):
        return 3 * t + 5
41
    def yxL_tf1(t, x):
        return 2 * L + 3 * t + 5
43
45
    # Линейно-квадратичная функция
46
    def tf2(t, x):
47
        return 2 * x ** 2 + t + 3
48
49
50
    def fx_tf2(t, x):
51
        return -3 - 4 * ((2 * x ** 2 + t + 3) ** (3 / 2)) - (24 * x)
52
             ** 2) * np.sqrt(2 * x ** 2 + t + 3)
53
54
    def yt0_tf2(t, x):
55
        return 2 * x ** 2 + 3
56
57
58
    def yx0_tf2(t, x):
59
        return t + 3
61
    def yxL_tf2(t, x):
```

```
return 2 * L ** 2 + t + 3
64
65
66
    # Параболоид
67
    def tf3(t, x):
68
         return 3 * x ** 2 + 2 * t ** 2 + 1
69
70
71
    def fx_tf3(t, x):
72
         return 4 * t - 6 - 6 * (tf3(t, x) ** 1.5) - 54 * (x ** 2) *
             (tf3(t, x) ** 0.5)
74
75
    def yt0_tf3(t, x):
76
         return 3 * x ** 2 + 1
    def yx0_tf3(t, x):
80
         return 2 * t ** 2 + 1
81
82
83
    def yxL_tf3(t, x):
84
         return 3 * L ** 2 + 2 * t ** 2 + 1
85
86
87
    # Индивидуальная функция
88
    def tf4(t, x):
89
         return np.exp(np.sin(x) ** 2 + np.cos(t) ** 2)
90
91
92
    def fx_tf4(t, x):
93
         return tf4(t, x) * (-1 * np.sin(2 * t) - 2 * np.cos(2 * x) *
             (1 + (tf4(t, x) ** 1.5)) - 1 * (np.sin(2 * x) ** 2)
                               * (1 + 2.5 * (tf4(t, x) ** 1.5)))
95
96
97
    def yt0_t4(t, x):
98
         return np.exp((np.sin(x) ** 2) + 1)
99
100
101
    def yx0_tf4(t, x):
102
         return np.exp(np.cos(t) ** 2)
103
104
```

```
def yxL_tf4(t, x):
106
        return np.exp(np.sin(L) ** 2 + np.cos(t) ** 2)
107
108
109
    # аппроксимация коэффициента теплопроводности
110
    def a(t_1, x_1, y_1, t_2, x_2, y_2):
111
        return 0.5 * (Thermal_conductivity(t_1, x_1, y_1) +
112
             Thermal_conductivity(t_2, x_2, y_2))
113
114
    # Чисто неявная схема
115
    def pis(a, fp, yleft, yright, tm, phif, epsilon):
116
        # Искомый слой
        res = np.zeros(Nx)
        # Начальное приближение
        for i in range(Nx):
             res[i] = fp[i] \# fp - предыдущий слой
121
        res[0] = yleft # Kpaesoe условие слева
        res[-1] = yright # Kpaesoe условие справа
123
        res_help = res.copy()
                                # вспомогательный слой
124
        res_const = res.copy() # предыдущий слой
125
        res_prom = res.copy() # слой после итерации
126
        k = 0 # cчетчик
127
        while True:
128
             k += 1
129
             for i in range(1, Nx - 1):
130
                 res_prom[i] = (tau_grid / x_grid ** 2) * (
131
                              a(tm, h[i + 1], res_help[i + 1], tm,
132
                                  h[i], res_help[i]) * (res_help[i +
                                  1] - res_help[i]) - a(
                          tm, h[i], res_help[i], tm, h[i - 1],
133
                              res_help[i - 1]) * (
                                           res_help[i] - res_help[i -
134
                                               1])) + tau_grid *
                                               phif[i] + res_const[i]
             res_help = res_prom.copy()
135
             # проверка условия выхода из цикла итераций
136
             if np.linalg.norm(res_help - res) < epsilon:</pre>
137
                 print(k)
                           # вывод количества итераций
                 return res_help
             else:
                 res = res_help.copy()
141
```

105

```
142
143
    # симметричная схема
144
    def simsh(a, fp, yleft, yright, tm, phif, epsilon):
145
         # Вектор решения в определенный момент времени
146
        res = np.zeros(Nx)
147
         # Начальное приближение
148
        for i in range(Nx):
149
             res[i] = fp[i]
150
                                   # предыдущий слой
        res_const = res.copy()
151
        res[0] = yleft # Краевое условие слева
152
        res[-1] = yright
                            # Краевое условие справа
153
        res_help = res.copy() # вспомогательный слой
        res_prom = res.copy() # слой после итерации
        k = 0 # счетчик
        while True:
             k += 1
158
             for i in range(1, Nx - 1):
159
                 res_prom[i] = (tau_grid / (2 * x_grid ** 2)) * (
160
                              a(tm, h[i + 1], res_help[i + 1], tm,
161
                                  h[i], res_help[i]) * (res_help[i +
                                 1] - res_help[i]) - a(
                          tm, h[i], res_help[i], tm, h[i - 1],
162
                              res_help[i - 1]) * (res_help[i] -
                              res_help[i - 1])) + (
                                             tau_grid / (2 * x_grid **
163
                                              \rightarrow 2)) * (
                                              a(tm - tau\_grid, h[i + 1],
164
                                                  res_const[i + 1], tm -

    tau_grid, h[i],

                                                res_const[i]) *
165
                                                    (res_const[i + 1] -
                                                    res_const[i]) - a(tm
                                                    - tau_grid, h[i],
166
```

167

```
res_const[i] -
169
                                                                res const[i
                                                                - 1])) +
                                                                tau_grid *
                                                               phif[i] +
                                                                res_const[i]
             res_help = res_prom.copy()
170
             # проверка условия выхода из цикла итераций
171
             if np.linalg.norm(res_help - res) < epsilon:</pre>
                            # вывод количества итераций
                 print(k)
                 return res_help
             else:
175
                 res = res_help.copy()
176
177
178
    def solve_pis(ut0, ux0, uxL, tf, ep):
179
        print('---Чисто неявная схема---')
180
         solve_matr = np.zeros((Nt, Nx)) # Матрица решений
181
         # заполнение матрицы начальным условием t = 0
182
         for i in range(Nx):
183
             solve_matr[Nt - 1][i] = ut0(0, h[i])
184
        fi = np.zeros(Nx) # начальное приближение
185
        for tme in range(1, Nt):
186
             for j in range(Nx):
                                    # заполнение начального
187
                 приближения
                 fi[j] = tf(tau[tme], h[j])
188
             s = pis(a, solve_matr[Nt - tme], ux0(tau[tme], h[0]),
189
                 uxL(tau[tme], h[Nx - 1]), tau[tme], fi, ep)
             solve matr[Nt - tme - 1] = s
190
        return solve_matr
191
192
193
    def solve_simshame(ut0, ux0, uxL, tf, ep):
194
        print('---Симметричная схема---')
195
         solve_matr = np.zeros((Nt, Nx)) # Матрица решений
196
         # заполнение матрицы начальным условием t = 0
197
         for i in range(Nx):
198
```

168

```
solve_matr[Nt - 1][i] = ut0(0, h[i])
199
        fi = np.zeros(Nx) # начальное приближение
200
         for tme in range(1, Nt):
201
             for j in range(Nx):
202
                 fi[j] = tf(tau[tme], h[j]) # заполнение начального
203
                     приближения
             s = simsh(a, solve_matr[Nt - tme], ux0(tau[tme], h[0]),
204
                 uxL(tau[tme], h[Nx - 1]), tau[tme], fi, ep)
             solve_matr[Nt - tme - 1] = s
205
        return solve_matr
206
207
208
    # вычисление погрешности найденного решения
209
    def error_pis(func, ut0, ux0, uxL, tf, ep):
210
        t_matr = np.zeros((Nt, Nx))
         for i in range(Nt - 1, -1, -1):
             for j in range(Nx):
                 t_matr[i][j] = func(tau[Nt - i - 1], h[j])
214
        nt_matr = solve_pis(ut0, ux0, uxL, tf, ep)
215
        print(np.max(np.abs(nt_matr - t_matr)))
216
217
218
    # вычисление погрешности найденного решения
219
    def error_simsh(func, ut0, ux0, uxL, tf, ep):
220
        t_matr = np.zeros((Nt, Nx))
221
        for i in range(Nt - 1, -1, -1):
222
             for j in range(Nx):
223
                 t_matr[i][j] = func(tau[Nt - i - 1], h[j])
224
        nt_matr = solve_simshame(ut0, ux0, uxL, tf, ep)
225
        print(np.max(np.abs(nt_matr - t_matr)))
226
227
228
    start_time = time.time()
229
    error_simsh(tf3, yt0_tf3, yx0_tf3, yxL_tf3, fx_tf3, 0.000001)
230
    print('Simsh = ', time.time() - start_time)
231
```