SEANCE 8

Objectifs: Savoir interpréter les diagrammes d'équilibre liquide-solide contenant les transformations allotropiques, construire des courbes d'analyse thermique (CAT) et appliquer la loi de phases de Gibbs.

Consignes/Activités d'introduction : Apprendre, identifier et comparer les différents types de transformations allotropiques sur les diagrammes d'équilibre liquide-solide, construire en fonction de composition du système des CAT.

Contenu : Chapitre 3, suite, Cours en présentiel souhaitable

Diagramme d'équilibre liquide-solide : solides miscibles, non miscibles et partiellement miscibles

Activités :

- 1. Etudier les diagrammes : solides miscibles, non miscibles et partiellement miscibles avec les transformations allotropiques,
- 2. Identifier les transformations des constituants purs, des composées et des solutions solides.
- 3. Identifier les domaines,
- 4. Construire en fonction de composition du système des CAT,
- 5. Déterminer les masses des phases en utilisant la règle de segments inverses.

3.6 Transformations allotropiques des solides

Les transformations allotropiques se produisent lors du refroidissement du système liquide et concernent des constituants purs, des composées et des solutions solides :

• variation allotropique d'un constituant pur ou d'un composé formé à base de ces constituants ;

Figure 3.9 : Transformations allotropiques d'un constituant pur ou d'un composé formé à base de ces constituants

T représente le point de transition, il traduit sur un diagramme l'équilibre entre deux phases allotropiques $B\alpha$ et $B\beta$ d'un solide B à la température de transition.

variation allotropique d'une solution solide;
La variation allotropique se produit dans un intervalle de températures et avec la variation de la composition de la solution.

Figure 3.10: Transformations allotropiques d'une solution solide

3.7 Exemple d'un diagramme

Pour le diagramme d'équilibre liquide solide Hf- Co :

a. Identifier les courbes de liquidus, solidus et solvus,

- b. Identifier les domaines du diagramme,
- c. Préciser les réactions isothermes eutectiques et pereutectiques,
- d. Tracer les courbes d'analyse thermique en précisant les transformations qui se produisent lors du refroidissement de liquide pour le point P₀ (80%, 1800°C),
- e. Déterminer le rapport de masses des phases en point N_0 (90%, 400°C).