NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Answer 13

2023 年 11 月 10 日

Problem 1

设 $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2$ 使 $\phi(x + \langle 6 \rangle) = x + \langle 2 \rangle$. 证明: ϕ 是 \mathbf{Z}_6 到 \mathbf{Z}_2 的环同态并求 $ker(\phi)$. 解:

- (1) 如果 $x + \langle 6 \rangle = y + \langle 6 \rangle$, 则有 $x y \in \langle 6 \rangle \subseteq \langle 2 \rangle$, 故 $x + \langle 2 \rangle = y + \langle 2 \rangle$, 即 $\phi(x + \langle 6 \rangle) = \phi(y + \langle 6 \rangle)$, 故 ϕ 是一个映射.
- (2) 对任意 $x + \langle 6 \rangle, y + \langle 6 \rangle \in \mathbf{Z}_6$,都有

$$\phi((x + \langle 6 \rangle) + (y + \langle 6 \rangle)) = \phi((x + y) + \langle 6 \rangle) = (x + y) + \langle 2 \rangle = (x + \langle 2 \rangle) + (y + \langle 2 \rangle)$$

$$= \phi(x + \langle 6 \rangle) + \phi(y + \langle 6 \rangle)$$

$$\phi((x + \langle 6 \rangle)(y + \langle 6 \rangle)) = \phi(xy + \langle 6 \rangle) = xy + \langle 2 \rangle = (x + \langle 2 \rangle)(y + \langle 2 \rangle)$$

$$= \phi(x + \langle 6 \rangle)\phi(y + \langle 6 \rangle),$$

因此 ϕ 是一个环同态映射.

(3)

$$ker(\phi) = \{x + \langle 6 \rangle | x + \langle 2 \rangle = \langle 2 \rangle \}$$
$$= \{x + \langle 6 \rangle | x \in \langle 2 \rangle \}$$
$$= \{x + \langle 6 \rangle | x | 2 \}$$
$$= 2\mathbf{Z}_{6}.$$

Problem 2

设 ϕ 是环 R 到环 R' 同态. 证明 ϕ 是单同态的充分必要条件是 $ker(\phi) = \{0\}$. 解:

必要性: 设 $x \in ker(\phi)$, 则 $\phi(x) = 0 = \phi(0)$. 由于 ϕ 是单同态, 因此 x = 0, 故 $ker(\phi) = \{0\}$.

充分性: 设 $x, y \in R$ 满足 $\phi(x) = \phi(y)$, 则 $\phi(x - y) = \phi(x) - \phi(y) = 0$. 因此 $x - y \in ker(\phi)$. 又因为 $ker(\phi) = \{0\}$, 则 x - y = 0, 即 x = y, ϕ 是单同态.

Problem 3

设 m 与 n 是互素的正整数. 证明: 存在环同构 $\mathbf{Z}_{mn} \cong \mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$. 解:

$$\phi: \mathbf{Z}_{mn} \longrightarrow \mathbf{Z}_m \oplus \mathbf{Z}_n$$
$$\overline{x} \longmapsto ([x]_m, [x]_n).$$

- (1) 如果 $\bar{x} = \bar{y}$, 则 $mn \mid x y$, 于是 $m \mid (x y), n \mid (x y)$. 所以 $([x]_m, [x]_n) = ([y]_m, [y]_n)$, 因此 ϕ 为 \mathbf{Z}_{mn} 到 $\mathbf{Z}_m \oplus \mathbf{Z}_n$ 的映射.
- (2) 设 $\overline{x}, \overline{y} \in \mathbf{Z}_{mn}$, 如果 $\phi(\overline{x}) = \phi(\overline{y})$, 即 $([x]_m, [x]_n) = ([y]_m, [y]_n)$, 则 m|(x-y), n|(x-y). 由于 (m,n) = 1, 因此 $mn \mid (x-y)$, 从而 $\overline{x} = \overline{y} \in \mathbf{Z}_{mn}$. 这说明 $\phi \not\in \mathbf{Z}_{mn}$ 到 $\mathbf{Z}_m \oplus \mathbf{Z}_n$ 的单映射. 又因为 $|\mathbf{Z}_{mn}| = mn = |\mathbf{Z}_m \oplus \mathbf{Z}_n|$, 所以 $\phi(\mathbf{Z}_{mn}) = \mathbf{Z}_m \oplus \mathbf{Z}_n$, 因此 ϕ 也是 \mathbf{Z}_{mn} 到 $\mathbf{Z}_m \oplus \mathbf{Z}_n$ 的满映射.
- (3) 对任意的 $\overline{x}, \overline{y} \in \mathbf{Z}_{mn}$, 有

$$\phi(\overline{x} + \overline{y}) = \phi(\overline{x + y}) = (\overline{x + y}, \overline{x + \overline{y}}) = ([x]_m, [x]_n) + ([y]_m, [y]_n) = \phi(\overline{x}) + \phi(\overline{y}),$$

$$\phi(\overline{x} \cdot \overline{y}) = \phi(\overline{x}\overline{y}) = ([xy]_m, [xy]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi(\overline{x}) \cdot \phi(\overline{y}),$$

所以 ϕ 为 \mathbf{Z}_{mn} 到 $\mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ 环同构. 即

$$\mathbf{Z}_{mn}\cong\mathbf{Z}_{m}\oplus\mathbf{Z}_{n}.$$

Problem 4

设 R 是一个有单位元的交换环, I, J 是 R 的两个理想, 满足 I + J = R. 证明:

- (1) $\phi: R \to R/I \times R/J$, 其中 $\phi(r) = (r+I, r+J)$ 是环同态映射;
- (2) 利用环同态基本定理证明 $R/I \cap J \cong R/I \times R/J$.

解:

(1) ∀ $a,b \in R$ 我们有

$$\phi(a+b) = (a+b+I, a+b+J) = (a+I, a+J) + (b+I, b+J) = \phi(a) + \phi(b)$$

$$\phi(ab) = (ab+I, ab+J) = (a+I, a+J) \times (b+I, b+J) = \phi(a)\phi(b),$$

故是一个环同态映射;

(2) 验证 ϕ 是满同态: 由于 R = I + J, 我们有结果 $\exists i \in I, j \in J$ 满足 i + j = e. 因此 $\forall (a + I, b + J) \in R/I \times R/J$, 我们有原象 $ai + bj \in R$,

$$\phi(aj+bi) = (aj+I, bi+J) = (a(e-i)+I, b(e-j)+J) = (a+I, b+J),$$

故 φ 是一个满同态;

最后我们计算 ϕ 的核空间 $\forall r \in R, \phi(r) = (r+I,r+J) = (I,J)$, 这说明 $r \in I$ 以及 $r \in J$, 从而有 $r \in I \cap J$. 反过来, 如果 $r \in I \cap J$, 我们有 $\phi(r) = (r+I,r+J) = (I,J)$. 所以 $\ker(\phi) = I \cap J$.

(3) 由环同态基本定理可得 $R/I \cap J \cong R/I \times R/J$