ASEN 5044 Fall 2024 HW 3 Jash Bhalavat

Problem 1

0	ADEN SO44 Fall 2024 Jash Bhalavat
Problem 1 ->	$ \frac{1}{x} = \frac{1}{x}(+) + Ru(+) = \frac{1}{y_1} = \frac{1}{y_2} = \frac{1}{y_2$
	$y = C_{X}(t) + D(t) = \begin{bmatrix} q_{1} \\ q_{1} - q_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
From leiture 6, side 4 -	$K_{1} = K_{2} = K_{3} = 1 \text{ m} m_{1} = m_{2} = 1 \text{ kg} \Delta t = 0.05 \text{ sel}$ $\dot{x} = Ax + Bu = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
	A= [A B] = (0-02) = [F G] = using nation for [O O] Tratua superiord H=C, M=1
	10.0999 0.0975 0.05 0.00/2 0.00 Q1(K) -0.00/2 0.00 Q1(K) -0.00/2 0.00 Q1(K) -0.00/2 0.00 Q1(K)
	= Fx(x) + & 4(x)
	$y_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \times (E) = H \times (E) + M \times (E)$

As stated in Lecture 6, slide 14, the natural modes of this system are 2.72 Hz and 1.57 Hz. The nyquist limit is twice both those modes i.e. 5.44 Hz and 3.14 Hz respectively. The sampling rate of 0.05 s converts to 20 Hz which is more than

the nyquist limit. That's why aliasing should not be a concern.

6)	0= H HF2 = 0.9075 0.05 0.0012 0 HF3 -0.1498 0.9962 0.1499 -0.9963 0.99 0.985 0.985 0.0002 0.2985 0.985 0.012 0.00000 0.9776 0.1489 0.012 0.00000 60.4450 0.9654 0.4450 -0.9864	Rank(0)=4, n=4 = Rank(0)=1, the DT system is observable!
	(W3)	ASEN souy fall zozy Jash Bhalaval
	$X_1 = F \times_0 + 6 \times_0 \rightarrow y_1 = H \times_1 = H F \times_0 + 16 \times_0 = H F^2$ $X_2 = F \times_1 + 6 \times_1 \rightarrow y_2 = H \times_2 = H F \times_1 + H 6 \times_1 = H F^2$ $X_1 = F \times_0 + 6 \times_0 \rightarrow y_1 = H \times_2 = H F \times_1 + H 6 \times_1 = H F^2$ $X_1 = F \times_0 + 6 \times_0 \rightarrow y_2 = H \times_2 = H F \times_1 + H 6 \times_1 = H F^2$	X0+ NFQ40+1164,

• Part d

 \circ x0 = [0.1, 0.3, -0.33, -0.86]^T where "^T" signifies transpose

Part e

- At least 2 vector measurements of Y (k=1, k=2) are needed in order to get an estimate for x(0). So, not all available measurements are needed to estimate x(0).
- Yes, this is consistent with the observability matrix because if only one measurement is used, O = [H*F], and H*F is a 2x4 matrix which means that the rank of O cannot be more than 2, but n = 4 which means that O is not full rank. So, a unique solution to x(0) does not exist. Additionally, if O doesn't have full rank, then its gramian (O^T*O) also doesn't have full rank. And, the system doesn't have a unique solution.
- o If H is updated to be as follows:

$$H = egin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}$$

- then, rank of H is 1. Multiplying H by F leads to rank of 1 because F has all linearly independent vectors and H has all dependent vectors. This means multiplying it by F 4 times will lead to a full rank matrix. Hence, O has to be [H*F, H*F*F, H*F*F*F, H*F*F*F*F]. Hence, 4 Y measurements (k = 1, 2, 3, 4) are needed in order to estimate x(0).
- All the k discrete values start from 1 because Y(k=0) is not provided. Assuming that the same assumption spans throughout this problem.

(2)	ASEN SO44 Fall 2024		
	Jash Bradewar		
	Z(K+1)= Z(K) + 2[Z(K) - Z(K)] - 2(K)=[Z(K), Z(K)]		
	22(K+1)= 22(K) + M[2,(K)-22(K)]		
76	KEDZ, MJT, Y(K+1) = [S(K+1), P(K+1)] = [Z1(K+1)-Z(K) Z(K+1)-Z(K)]		
= 2, 4 are	X(k+1) = X(r) = [3] = [10](2] EX 4=[00]		
constants	$x(k+1) = x(k) = 2 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$		
	y(k+1)= 2,(k+1)-2,(E) [2(2,(K)-2,(K))]=[2,(K)-2,(K)] 0 2()		
	[22(K+1)-22(K)] [M(2(K)-22(K))] 0 2(K)-22(K)] 31		
	$=NLE)X$ $M=\begin{bmatrix}0&0\\0&0\end{bmatrix}$		
5	If z(t) = 2,2(t) the H(K) = [0 0] and 2(K+1) = 2(t). In this		
	case I and I don't affect 2/4) so Thay cannot be determined from		
0	given 2(2) values. In the given values, this represents 2(5) = 2(6)		
	carnot be used to calculate I and M.		
	Also w(k+1)= H(x)x - where w(x+1) is 2x1 and H(x) is 2x2. So,		
	this is a "Nice" linear system of equation (as is certain 2, dide 3)		
	So, I and I can be obtermed if HCBI +0.		
7	[5,] [Ho] [2,(1)-2,(0)] [2,(0)-2,(0)]		
Not union	102 Hi X - 2(1) -2(2) = 2(1) -2(0) D X = AX		
Not using	2(3)=2(1)		
	[-54.334] [80 0]		
	1-3-0873 4-3943 0		
	1.0567 0 4.2843 M = x = G H X 1-01692 - 0.2403 0 0.0679 - 0.2403 X=[] = [-0.7042]		
	1-0.0093 0.0132 0		
	0.0032 0 0.0132 LM 0.2410) -5x10-4 7x10-4 0 7x10-4		
	[2x10-4] [0 7x10-4]		

```
clear; clc; close all;
A = [0 \ 1 \ 0 \ 0; \ -2 \ 0 \ 1 \ 0; \ 0 \ 0 \ 0 \ 1; \ 1 \ 0 \ -2 \ 0];
B = [0 \ 0; -1 \ 0; \ 0 \ 0; \ 1 \ 1];
C = [1 \ 0 \ 0 \ 0; \ 0 \ 1 \ 0 \ -1];
D = [0 \ 0; \ 0 \ 0];
H = C;
M = D;
delta_t = 0.05;
% Part a
% A is always square matrix
n = length(A);
m = size(B,2);
A_hat = [A B; zeros([n - m, n+m])];
syms t
stm = expm(A_hat*t);
stmf(t) = stm;
f(t) = stm(1:4, 1:4);
g(t) = stm(1:4, 5:6);
% Part b
% is u = 0?
F = double(f(delta_t));
G = double(g(delta_t));
O = [H; H*F; H*F*F; H*F*F*F];
rank_0 = rank(0);
% Part c
data = load("hw3problem1data.mat");
U = data.Udata;
Y = data.Ydata;
t0 = 0;
tf = 5;
time_steps = t0:delta_t:tf;
% Estimating x(0)
Y_{temp} = Y';
Y_sole = reshape(Y_temp, [2*length(Y_temp), 1]);
```

```
U_temp = U(1:end-1,:)';
U_sole = reshape(U_temp, [2*length(U_temp), 1]);
n = 3;
0_sole = [];
for i = 1:n
   0_sole = [0_sole; H*F^i];
end
p = 2;
HFG\_sole = [];
for i = 1:n
   temp_vec = zeros([p, 2*n]);
    count = 1;
    for j = 1:i
        temp_vec(:,count:count+1) = H*F^(i-j)*G;
        count = count + 2;
    end
    HFG_sole = [HFG_sole; temp_vec];
end
LHS = Y_sole(1:2*n) - HFG_sole*U_sole(1:2*n);
gram = O_sole' * O_sole;
x0 = inv(gram) * O_sole' * LHS;
x = x0;
for i = 1:length(time steps)
    x(:,i+1) = F * x(:,i) + G * U(i,:)';
    y_{predicted(:,i)} = H * x(:,i) + M * U(i,:)';
end
figure()
plot(time_steps(2:end), x(1,2:length(time_steps)))
hold on
plot(time_steps(2:end), x(2,2:length(time_steps)))
plot(time_steps(2:end), x(3,2:length(time_steps)))
plot(time_steps(2:end), x(4,2:length(time_steps)))
hold off
legend("q1 [m]", "q1dot [m/s]", "q2 [m]", "q2dot[m/s]")
xlabel("Time [seconds]")
title("Estimated x states")
figure()
plot(time_steps(2:end), y_predicted(1,2:end))
hold on
plot(time_steps(2:end), y_predicted(2,2:end))
hold off
legend("y_1 [m]", "y_2 [m/s]")
xlabel("Time [seconds]")
title("Predicted y states")
figure()
```

```
subplot(2,1,1)
plot(time_steps(2:end), Y(:,1)-y_predicted(1,2:end)')
xlabel("Time [seconds]")
ylabel("Y1 [m]")
title("Predict y1 - recorded y1")

subplot(2,1,2)
plot(time_steps(2:end), Y(:,2)-y_predicted(2,2:end)')
xlabel("Time [seconds]")
ylabel("Y2 [m/s]")
title("Predict y2 - recorded y2")

% Part e
H_single = [1 0 0 0; 1 0 0 0; 1 0 0 0];
O_single = [H_single*F; H_single*F*F; H_single*F*F*F; H_single*F*F*F];
rank_0_single = rank(0_single);
```


Time [seconds]

```
clear; clc; close all;
% Slick's offer - z1 (thousands of $)
% Prad Bitt's offer - z2 (thousands of $)
z0 = [100; 20];
z1 = [43.6658; 39.2815];
z2 = [40.5785; 40.3382];
z3 = [40.4093; 40.3961];
z4 = [40.4; 40.3993];
z5 = [40.3995; 40.3995];
z = [z0, z1, z2, z3, z4, z5];
for i = 2:6
    lambda(i) = (z(1,i) - z(1,i-1))/(z(1,i-1) - z(2,i-1));
    mu(i) = (z(2,i) - z(2,i-1))/(z(1,i-1) - z(2,i-1));
end
for i = 1:length(z)-1
    y(:,i) = [z(1,i+1) - z(1,i); z(2,i+1) - z(2,i)];
end
y = reshape(y, [10, 1]);
H = [];
for i = 1:length(z)-1
    H_{temp} = [z(1,i) - z(2,i), 0; 0, z(1,i)-z(2,i)];
    H = [H; H_{temp}];
end
gram = H' * H;
x = inv(gram) * H' * y;
```

Published with MATLAB® R2024a