Purpose of lecture

- In this lecture, we will learn about radio links.
- We will answer questions like
 - How far away can I receive the signal?
 - How much power do I need to transmit?
 - What size antenna do I require?
- These factors are related to each other. They are all part of the design of a radio system, in what are called link budget calculations.

FRIIS FREE SPACE EQUATION

Antenna basics

Antenna gain

- As we discussed in the last lecture.
- We compare the antenna with an ideal isotropic radiator
 - This theoretical antenna transmits equally in all directions, and has no losses.
 - Does not exist: hairy ball theorem (HBT) prohibits it. \vec{E} is \bot to the direction of propagation, so $\|$ to the surface of a sphere surrounding the antenna. The HBT requires $\vec{E}=0$ somewhere.
- power density = power per unit area W/m^2

$$gain = \frac{\text{power density in desired direction}}{\text{power density from isotropic radiator}} \text{ at distance } r$$

Antenna Basics

- Receiving antenna
 - collects e-m wave and output on cable.
 - may be directional
- Effective aperture (area)
 - incoming e-m wave has power density [W/m²]
 - power collected proportional to aperture
 - The gain is related to effective aperture:

$$G = \frac{4 \pi A}{\lambda^2}$$

 Note: A < actual area of dish. This accounts for losses and efficiency of the antenna.

- Transmit power
 - output power of the transmitter electronics
 - reduced by loss in feeder (cable or waveguide)
 - leaves net transmit power P_{tx} (W)
- Effective isotropic radiated power EIRP
 - power needed with isotropic radiator to get same power density in desired direction
 - takes account of tx antenna gain, G_{tx}
 - unit W

Free Space Links

- Simplest case
 - only one path from transmitter to receiver
 - no obstructions
- Common in satellite systems
 - uplink, downlink, inter-satellite link
- Some terrestrial systems
 - directional antennas on high sites or masts

Free Space Propagation

Isotropic radiator

- transmit power spread uniformly in 3 dimensions
- imagine illuminating inside surface of sphere...
- at distance r, surface area $4\pi r^2$
- so transmit power P_{tx} gives power density at distance r $\frac{P_{tx}}{4\pi r^2}$

Real transmit antenna

power density in desired direction

$$\frac{P_{tx} G_{tx}}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

Received Power

Power density at receiver

falls with square of distance

$$D_{rx} = \frac{P_{tx} G_{tx}}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

Received power

 power density at receiver × aperture of receive antenna

$$P_{rx} = D_{rx} A_{rx}$$

– fundamental equation:

$$P_{rx} = \frac{P_{tx} G_{tx} A_{rx}}{4\pi r^2}$$

Notes on received power:

- independent of frequency (but G_{tx} might not be)
- falls as square of dist. (free space propagation)

Summary

$$P_{rx} = \frac{P_{tx} G_{tx} A_{rx}}{4\pi r^2}$$

Transmitted power (W) (allowing for feeder loss)	P_{tx}
<pre>x TX antenna gain = EIRP (W)</pre>	$EIRP = P_{tx} G_{tx}$
 surface area of sphere power density (W/m²) 	$D_{rx} = \frac{EIRP}{4\pi r^2}$
× RX antenna effective aperture = received power	$P_{rx} = D_{rx} A_{rx}$
noise power at receiversignal-to-noise ratio	$\frac{S}{N} = \frac{P_{rx}}{N_{rx}}$

The RF world uses the decibel (dB)

• decibel expresses points
$$G = 10 \log_{10} \left(\frac{P_{out}}{P_{in}} \right)$$
 (dB) • e.g. amplifier gain, path

$$P_{\text{dBW}} = 10 \log_{10} \left(\frac{P}{1 \,\text{W}} \right)$$

- antenna gain, path loss, ...
- In RF systems, often also used to express power
 - extra letter added to show reference power

 - dBm = power relative to 1 mW

Example:

– note effect of subtraction!

$$P_{in} = -3 \text{ dBm}$$

$$P_{in} = -3 \text{ dBm}$$
 $P_{out} = +20 \text{ dBm}$ $Gain = 23 \text{ dB}$

$$Gain = 23 dE$$

Example Calculations

Satellite downlink at 11 GHz signal bandwidth 36 MHz

Transmitter output power (less feeder losses etc.)	50 W	17 dBW
TX antenna gain (0.8 m diameter @ 11 GHz, η 59%)	5000	37 dB
Pointing loss (receiver not on boresight)	0.5	-3 dB
EIRP (in direction of receiver)	125 kW	51 dBW

Example Calculations continued

Power density at receiver (40 000 km path length)	6.2 pW/m ²	
Receive antenna aperture (1.8 m diameter, η 63%)	1.6 m ²	
RX signal power	10 pW	-110 dBW (=-80 dBm)
Receiver noise temperature (see later)	200 K	
Receiver noise power in 36 MHz bandwidth	0.1 pW	-130 dBW (=-100 dBm)
Signal-to-noise ratio	100	20 dB

Alternative: Path Loss Method

- Work with antenna gain only
 - related to effective aperture

$$G = \frac{4\pi A}{\lambda^2}$$

• Then calculate

$$P_{rx} = \frac{P_{tx} G_{tx} G_{rx} \lambda^2}{(4\pi)^2 r^2}$$

- Define path loss
 - looks frequency dependent
 - due to RX antenna gain
- Simple calculation

$$PL = \frac{\lambda^2}{(4\pi)^2 r^2}$$

Example Calculations

EIRP	125 kW	51 dBW
(in direction of receiver)		
Path loss (40 000 km @ 11 GHz)	3×10 ⁻²¹	-205 dB
Receive antenna gain (1.8 m diameter @ 11 GHz, η 63%)	27000	44 dB
RX signal power	10 pW	-110 dBW -80 dBm

EIRP obtained as before S/N calculated as before

Example

 Antenna on roof of UCD Engineering building

- gain at ~500 MHz ~9 dB

ground height26 m

building height 17 m

Pointed at Three Rock Mountain TV transmitter

ground height 450 m

mast height45 m

- horizontal distance 7092 m

• What is received power on Saorview signal?

Soarview Terrestrial - Main Transmitters

WOODCOCK HILL

Site	County	CH.	Polarity	kW
CAIRN HILL	Longford	47	Н	160
CLERMONT CARN	Louth	52	V	160
DUNGARVAN	Waterford	55	Н	10
HOLYWELL HILL	Donegal	30	Н	20
KIPPURE	Wicklow	54	н	63
MAGHERA	Clare	48	Н	160
MOUNT LEINSTER	Wexford	23	Н	160
MULLAGHANISH	Kerry	21	Н	200
SPUR HILL	Cork	45	Н	50
THREE ROCK	Dublin	30	Н	63
TRUSKMORE	Sligo	53	Н	160

Clare

MUX

47

Н

MAX ERP

10

Channel 30 = 546 MHz

Path

High Site, Tall Mast

Solution to TV Exercise

$$r_d = \sqrt{(h_{tx} - h_{rx})^2 + d^2}$$

$$P_{rx} = \frac{P_{tx} G_{tx} G_{rx} \lambda^{2}}{(4\pi)^{2} r^{2}}$$

- Horizontal dist. 7092 m, height diff. 452 m
 - path length 7106 m (only 14 m longer!)
- EIRP = $P_{tx}G_{tx}$ = 63 kW
- $G_{rx} = 9 \text{ dB} \text{convert to ratio } 7.94328$
- Wavelength $\lambda = \frac{c}{f} = 0.54945$ m
- Equation gives $P_{rx} = 18.95 \,\mu\text{W}$ or -17.2 dBm
 - using horizontal distance, get 19.02 μW
 - receiver input 75 Ω , this is 37.7 mV rms

- Need to keep precision in intermediate results
 - round answer! In dB, one decimal place...

Design Choices

- E.g. suppose we want to work with smaller receive antenna...
- Higher transmit power?
 - More power on satellite or fewer transponders
- Higher gain transmit antenna?
 - reduces coverage area
 - more costly, esp. if have to unfurl after launch
- Better receiver electronics?
 - generate less noise, so need less signal
- WEST OF THE PROPERTY OF THE PR
- Change modulation and/or coding
 - work with lower S/N

In-class Exercise

$$P_{rx} = \frac{P_{tx} G_{tx} G_{rx} \lambda^{2}}{(4\pi)^{2} r^{2}}$$

- Work individually.
- A robot boat on a lake transmits at 433 MHz and has transmitter power 10 mW. The receiver is on shore with a clear line of sight. Each antenna has gain 1.6 dB.
- Find worst case receive power if the max distance ~150 m
- Find maximum range if receiver needs -105 dBm for acceptable results.

Write your UCD student number at the top of the paper.