Problem Set 2, Answers

Kevin Lacker

May 21, 2020

Problem 1. The idea is to use MAJ circuits to calculate PARITY, and thus use our lower bound on PARITY circuits to provide a lower bound on MAJ circuits.

First, we can create a circuit for the function that counts whether precisely half of the bits of the input are 1. I.e., HALF(x) = 1 iff |x| = n/2, with two MAJ circuits:

$$HALF(x) = MAJ(x) \wedge MAJ(\neg x)$$
 (1)

Here $\neg x$ represents the bitwise negation of x. Our circuit for for HALF uses two MAJ subcircuits and one more depth.

Now that we have HALF, we can construct a circuit to count whether precisely k bits of the input are 1, $EXACT_k$, by padding the input with ones or zeros and using a single HALF circuit on at most twice the input size.

We can then take one $EXACT_K$ for each odd number less than or equal to n, and take their conjunction to create a PARITY circuit of depth d+2. This PARITY circuit of depth d+2 is built of O(n) depth-d MAJ circuits, plus O(n) extra gates, where each MAJ circuit has at most 2n inputs.

Let $H_{MAJ}(n,d)$ denote the minimum size of a circuit of depth d calculating MAJ on a size-n input, and H_{PARITY} the same for PARITY. This construction demonstrates that

$$O(n) \cdot H_{MAJ}(n,d) \ge H_{PARITY}(n/2,d+2) \tag{2}$$

But we know that

$$H_{PARITY}(n,d) \ge exp(\Omega(n^{2^{-d}}))$$
 (3)

Substituting in and simplifying we get

$$H_{MAJ}(n,d) \ge exp(\Omega(n^{2^{-d-O(1)}})) \tag{4}$$

Problem 2. Let's say we have an estimate v of $\Sigma_x f(x)$ and we want to improve that estimate. We define:

$$g(x) = \begin{cases} f(0) - v & \text{for } x = 0\\ f(x) & \text{otherwise} \end{cases}$$
 (5)

We can then use our estimation oracle to get an estimation for $\Sigma_x g(x) = \Sigma_x f(x) - E$. Basically, we are estimating the error in our original estimate. When we add this estimate to E, we are improving our estimate to $\Sigma_x f(x)$. If our estimation oracle returns a value within a factor of $1 \pm \epsilon$ of the correct value, then the size of our error shrinks by a factor of ϵ every iteration.

Recursing until our error is below 1 thus takes time that is linear in the size of the output value, so we can use this to get an exact answer to $\Sigma_x f(x)$ in polynomial time, assuming the answer has polynomial length.

We can use this to exactly solve problems in $\sharp SAT$. Let x represent a possible solution to a $\sharp SAT$ problem, and f(x)=1 when x is a solution, 0 otherwise. Since f(x) is a constant, the sum has polynomial length, and our algorithm takes polynomial time.

 $\sharp SAT$ is $\sharp P$ -complete so this solves any $\sharp P$ problem in polynomial time.

Problem 3. Say we have a polynomial that agrees with OR over $\{0,1\}^n$ with degree less than n, $P_{OR}(x_0, x_1, ... x_n) = OR(x_0, x_1, ... x_n)$. Then we can substitute variables to get another polynomial with degree less than n that represents AND:

$$P_{AND}(x_0, x_1, ..., x_n) = 1 - P_{OR}(1 - x_0, 1 - x_1, ..., 1 - x_n)$$
(6)

Now consider any string of n bits, $y = y_0y_1...y_n$. We can construct a polynomial of degree less than n that is 1 on this input and 0 on all the other inputs in $\{0,1\}^n$:

$$P_{y}(x_{0}, x_{1}, ..., x_{n}) = P_{AND}(x_{0} - y_{0}, x_{1} - y_{1}, ..., x_{n} - y_{n})$$

$$(7)$$

Now these functions act as a basis if you think of this as a vector space. So any function f(x) from $\{0,1\}^n \to \mathbb{Z}_q^n$ can be represented as a polynomial of degree less than n:

$$f(x) = \sum_{y \in \{0,1\}^n} P_y(x) f(y) \tag{8}$$

There are q^{2^n} different such functions, as defined by their values on $\{0,1\}^n$. But there are only q^{2^d} different polynomials of degree d, because such polynomials can have only 2^d different terms. This means d cannot be less than n, which gives us a contradiction.