Astrostatistics: Thu 22 Feb 2017

https://github.com/CambridgeAstroStat/PartIII-Astrostatistics

- Example Class 2: Friday, Mar 2 2:30pm, MR 5
- Fitting Statistical Models to Astronomical Data
 - Markov Chain Monte Carlo
 - Refs: Not much in Ivezic, Ch 5, F&B Ch 3
 - Gelman et al. Bayesian Data Analysis (Ch 11 & 12)
 - Givens & Hoeting. "Computational Statistics" (Ch 7 & 8)
 - Roberts & Casella. "Monte Carlo Statistical Methods" (theory) (Ch 6 & 7)
 - Hogg & DFM, 2017 "Data analysis recipes: Using Markov Chain Monte Carlo." https://arxiv.org/abs/1710.06068

What if you can't directly sample the posterior: $\theta_i \sim P(\theta \mid D)$?

$$\mathbb{E}[f(\boldsymbol{\theta})|D] = \int f(\boldsymbol{\theta})P(\boldsymbol{\theta}|D) d\boldsymbol{\theta} \approx \frac{1}{m} \sum_{i=1}^{m} f(\boldsymbol{\theta}_i)$$

- Posterior simulation Markov Chain Monte Carlo:
- Generate a correlated sequence (chain) of random variates (Monte Carlo) that (in a limit) are draws from the posterior distribution. The next value in the sequence only depends on the current values (Markov).

Mapping the Posterior $P(\theta \mid D)$

- Markov Chain Monte Carlo (MCMC)
- Last time: 1D Metropolis algorithm
- Today:
 - Drawing Multivariate Gaussian random variables
 - N-D Metropolis Algorithm
 - Rules of thumb for proposal scale
 - assessing convergence (G-R Ratio)
 - Metropolis-Hastings algorithm
 - Gibbs sampling

N-dim Metropolis Algorithm: Posterior $P(\theta \mid D)$

- 1. Choose a random starting point θ_0
- 2. At step i = 1...N, propose a new parameter value $\theta_{prop} \sim N(\theta_i, \Sigma)$. The proposal scale Σ is chosen cleverly.
- 3. Evaluate ratio of posteriors at proposed vs current values. $r = P(\theta_{prop} | \mathbf{y}) / P(\theta_i | \mathbf{y})$.
- 4. Accept θ_{prop} with probability min(r,1): $\theta_{i+1} = \theta_{\text{prop}}$. If not accept, stay at same value $\theta_{i+1} = \theta_i$ & include in chain.
- 5. Repeat steps 2-4 until reach some measure of convergence and gather enough samples to compute your inference

Multi-parameter Bayesian inference: Gaussian example: Gelman BDA Sec 3.2 - 3.3

Sampling distribution: $y_i \sim N(\mu, \sigma^2)$ $i = 1 \dots n$

Likelihood Function: $P(\boldsymbol{y}|\mu,\sigma^2) = \prod_{i=1}^n N(y_i|\mu,\sigma^2)$

Prior: $P(\mu) \propto 1$ $P(\sigma^2) \propto \sigma^{-2}, \sigma^2 > 0$

<u>Posterior</u>

$$P(\mu, \sigma^2 | \mathbf{y}) \propto (\sigma^2)^{-(n+2)/2} \exp\left(-\frac{1}{2\sigma^2}[(n-1)s^2 + n(\bar{y} - \mu)^2]\right)$$

Sufficient Statistics: $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

Last Time: Posterior Distribution of a Gaussian Mean Analytic Result

Posterior Distribution P($\sigma^2 \mid y$) follows a Scaled Inverse χ^2 distribution (~ inverse gamma)

MCMC Animations

- The Markov-chain Monte Carlo Interactive Gallery
- http://chi-feng.github.io/mcmc-demo/

Assessing Convergence with multiple chains: Gelman-Rubin (G-R) ratio

Monitoring convergence of each scalar estimand

Suppose we have simulated m parallel sequences, each of length n (after discarding the first half of the simulations). For each scalar estimand ψ , we label the simulation draws as ψ_{ij} (i = 1, ..., n; j = 1, ..., m), and we compute B and W, the between- and within-sequence variances:

$$B = \frac{n}{m-1} \sum_{j=1}^{m} (\overline{\psi}_{.j} - \overline{\psi}_{..})^2, \text{ where } \overline{\psi}_{.j} = \frac{1}{n} \sum_{i=1}^{n} \psi_{ij}, \quad \overline{\psi}_{..} = \frac{1}{m} \sum_{j=1}^{m} \overline{\psi}_{.j}$$

$$W = \frac{1}{m} \sum_{j=1}^{m} s_j^2, \text{ where } s_j^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\psi_{ij} - \overline{\psi}_{.j})^2.$$

We can estimate $var(\psi|y)$, the marginal posterior variance of the estimand, by a weighted average of W and B, namely

$$\widehat{\operatorname{var}}^{+}(\psi|y) = \frac{n-1}{n}W + \frac{1}{n}B. \tag{11.3}$$

G-R ratio:
$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+(\psi|y)}{W}}, \approx 1$$

Assessing Convergence with multiple chains: Gelman-Rubin (G-R) ratio

Figure 2. Example sample paths of Markov Chain Monte Carlo (MCMC) chains generated by the BAYESN MCMC sampling code. The full chain stochastically

Figure 10. Trace plot for a run of MCRC for 1000 cycles with 3 independent chains. The current values of all parameters were recorded every 10 cycles.

Mandel et al. 2011

Mandel et al. 2014

Assessing Convergence with multiple chains example, Mandel et al. 2017

- Estimate Intrinsic
 Relation, Dust Law,
 Dust Population, etc.
- Gibbs Sampling utilizes conditionals of full posterior to update MCMC steps
- Explore joint posterior probability of all parameters

Four Parallel MCMC Chains