# **Support Vector Machines**

Boston University CS 506 - Lance Galletti





































## Worksheet a) and b)

We want our samples to lie beyond the street. That is:

$$\vec{w} \cdot \vec{x}_{+} + b \ge 1$$
$$\vec{w} \cdot \vec{x}_{-} + b \le -1$$

Note: for an unknown **u**, we can have

$$-1 < \vec{w} \cdot \vec{u} + b < 1$$

Let's introduce a variable

$$y_i = \begin{cases} +1 & \text{if } x_i \text{ is a } + \text{sample} \\ \\ -1 & \text{if } x_i \text{ is a } - \text{sample} \end{cases}$$

Note: this is effectively the class label of  $x_i$ 

If we multiply our sample decision rules by this new variable:

$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$$

Meaning, for  $x_i$  on the decision boundary, we want:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$













We know that  ${
m WIDTH}=(ec x_+-ec x_-)\cdot rac{ec w}{\|ec w\|}$  for  $ec x_-$  and  $ec x_+$  points on the boundary

And, since they are on the boundary, we know that

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Hence, **WIDTH = ?** 

We know that 
$${
m WIDTH}=(ec x_+-ec x_-)\cdot rac{ec w}{\|ec w\|}$$
 for  $ec x_-$  and  $ec x_+$  points on the boundary

And, since they are on the boundary, we know that

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Hence, **WIDTH** 
$$=\frac{2}{\|\vec{w}\|}$$

### What does that mean?

Size of **w** is inversely proportional to the width of the street.













#### How to find the widest street

Goal is to maximize the width

$$\max(\frac{2}{\|\vec{w}\|})$$

Subject to:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$















## Worksheet c)

### How to find the widest street

Goal is to maximize the width

$$\max(\frac{2}{\|\vec{w}\|}) = \min(\|\vec{w}\|)$$
$$= \min(\frac{1}{2} \|\vec{w}\|^2)$$

Subject to:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

















# Now we know how to move the street in the right direction - but...







## Full Algorithm (Perceptron Algorithm)

- Start with random line  $w_1x_1 + w_2x_2 + b = 0$
- Define:
  - A total number of iterations (ex: 100)
  - A learning rate a (not too big not too small)
  - An expanding rate **c** (< 1 but not too close to 1)
- Repeat **number of iterations** times:
  - Pick a point  $(x_i, y_i)$  from the dataset
  - If correctly classified: do nothing
  - If incorrectly classified:
    - Adjust  $w_1$  by adding  $(y_i * a * x_1)$ ,  $w_2$  by adding  $(y_i * a * x_2)$ , and b by adding  $(y_i * a)$
  - Expand the width by c (multiply the new line by c)















## **Trade-off between width and error**







### What if there is no line?



# **Option 1: Soft Margins**

Can allow for some points in the dataset to be misclassified.



# **Option 2: Change perspective**



### But how to find $\Phi$ ?

Goal is to maximize the width

$$\max(\frac{2}{\|\vec{w}\|}) = \min(\|\vec{w}\|)$$
$$= \min(\frac{1}{2} \|\vec{w}\|^2)$$

Subject to:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Can use Lagrange multipliers to form a single expression to find the extremum of

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i \left[ y_i(\vec{x}_i \cdot \vec{w} + b) - 1 \right]$$

where  $\alpha_i$  is 0 for  $x_i$  not on the boundary.

Now we can take derivatives to find the extremum of L.

$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} = 0$$

$$\implies \vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i}$$

Means w is a linear sum of vectors in our sample/training set!

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0$$

$$\implies \sum_{i} \alpha_{i} y_{i} = 0$$

Let's plug these values back into L to see what happens to L at its extremum

$$L = \frac{1}{2} \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) - \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) - \sum_{i} \alpha_{i} y_{i} b + \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right)$$

Simplifying, we get:

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left( \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right)$$
$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left( \vec{x}_{i} \cdot \vec{x}_{j} \right)$$

## **Quadratic Programming**

Solving lagrange multipliers in general requires numerical optimization methods called quadratic programming solvers.

#### But how to find $\Phi$ ?

Turns out we don't need to find or define a transformation Φ!

Looking back at L, since **it depends only on the dot product of our input**, we only need to define the dot product in our transformed space.

$$L := \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j}$$

#### But how to find Φ?

Turns out we don't need to find or define a transformation Φ!

Looking back at L, since **it depends only on the dot product of our input**, we only need to define the dot product in our transformed space.

i.e. we only need to define

$$K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

Called a Kernel function. This is often referred to as the "kernel trick".

$$L := \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\vec{x}_{i}, \vec{x}_{j})$$

### **Example Kernel Functions**

Polynomial Kernel

$$K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i \cdot \vec{x}_j + 1)^n$$

Radial Basis Function Kernel

$$K(\vec{x}_i, \vec{x}_j) = e^{\frac{\|\vec{x}_i - \vec{x}_j\|}{\sigma}}$$

### **Kernel Function (intuition)**

- The inner product of a space describes how close / similar points are
- Kernel Functions allow for specifying the closeness / similarity of points in a hypothetical transformed space
- The hope is that with that new notion of closeness, points in the dataset are linearly separable.

### Worksheet