Mathematical Engineering - A.Y. 2022-23

Real and Functional Analysis - Exam with Solutions- January 25, 2023

Answers and solutions can be written in English or in Italian.

Theory

Question 1. (4 points) (i) State and prove the property of continuity of measure along monotone decreasing sequences $\{E_n\}$ of measurable subsets.

(ii) Does the property hold, if E_1 (or some of the sets E_n) has infinite measure? If not, provide a counterexample.

Solution. See Lecture 2.

Question 2. (4 points) State and prove the Fatou's Lemma.

Solution. See Lecture 7.

Question 3 (4 points) (i) Write the definition of open mapping. State the Open Mapping theorem.

(ii) State and prove the Inverse Bounded Mapping Theorem.

Solution. See Lecture 18.

Question 4 (4 points) Let X be a Banach space. (I) Write the definitions of weak convergence and of (strong) convergence for a sequence $\{x_n\} \subset X$.

- (II) Consider now the following properties:
- (a) $x_n \rightharpoonup x$ (weakly) in X; (a') $\{x_n\}$ possesses a weakly convergent subsequence;
- (b) $\{x_n\}$ is bounded;
- (c) $x_n \to x$ (strongly) in X.
- (i) Does (a) imply (b)? (ii) Does (b) imply (a') (if necessary, under additional assumptions)?
- (iii) Does (a) imply (c)? (iv) Does (c) imply (a)?

For questions 4.(II)(i)-(iv), justify the answers, only quoting some theorems or briefly discussing a counterexample. No proofs are required.

Solution. See Lectures 14, 21, 22.

```
Theory:
1) (i) \{E_n\}_n \ G_n:=E_1\setminus E_n.
                               · {Gn} is an increasing sequence: lim Gn = U Gn = U(E1 v En) = E1
                               · We apply the result of antimity of p on a sequence:
                                                            y [ lim Gn ) = lim p(Gn) i.e:
                                                             μ(E1) - μ(lin(En)) = lin μ(Gn) = μ(E1) - lin μ(En)
h-1+00
h-1+00
                                                                j.e: lin (En) = p(lin En) - [ Essutial to
        (ii) E1 is the bignest set (in C since) of {En]n. home p(E1)<+00.
           P: Given {En]nen CM &. E:= lm En = nem
                      If p(E_1) < +\infty then p(E) = \lim_{n \to +\infty} p(E_n). E_n = \{k \in \mathbb{N} : k \neq n\} \ \forall n \in \mathbb{N}.
1 (X, M, p) complete measure space. VnEM,
2) faton's Lemma: let fn: X-9 (0, too) measurable Vn EIN. Ence En.
                                                                  (liming In) dy & liming for . But: E-line En: O En = P
                 Proof: (liming for): oc Ly liming for = sup and for (n) matrolf

notice (n) = to liming for proof for the proof fo
                                    · (gn) is an ihorarshy sequerce:
                                                                                                                                                       g"(x)
                                                       VXEX, 9,(x) < 9,42(2).
                                       · By MCT: Shim ing for the flim gape time for
                                                                                                                                  = hand Sandr & him on Stade. ...

\int_{n} \leq \int_{n} .
```

3) (i) Def [open wap]: Let $T: X \rightarrow Y$. T is an open wap if $\forall A \subset X \circ pen$, $T(A) \subset Y$ is open.

The [open Map Theopen]: Let TEXOXY) with X and Y Bonach Spaces.

T surjective => T open.

(ii) (Corollary I: "Inverse Bounded Mapping Theorem" The inverse of a linear Photology operator between two Banach Spaces X and Y vir bounded.

TEX(X,X), Proof: • T-1 lineae: ToT-1 = Idy and T-10T = Idx; and T lineae.

· T-1 continuous: let ACX open,

(T-1)-1(A) = T(A) c / open.

Indeed T is bijective, here myective, so we use the ont. As a conclusion: YACX open, (T-2)-2(A) CY open.

T-1 15 on Knuons.

Exercises

Exercise 1. Consider the measure space $([0, +\infty), \mathcal{L}([0, +\infty)))$ with the Lebesgue measure. Define the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ by

$$f_n(x) = \frac{\sin^2(x)}{1+x} \chi_{[0,n]}(x), \quad x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

- (1) Prove that $f_n \in L^p([0,+\infty))$ for any $n \in \mathbb{N}$ and any $p \in (1,+\infty)$.
- (2) Study the convergence a.e. of the sequence $\{f_n\}_{n\in\mathbb{N}}$.
- (3) Study the convergence in $L^p([0,+\infty))$ of the sequence $\{f_n\}_{n\in\mathbb{N}}$ for $p\in(1,+\infty)$.

Solution.

(1) Let $n \in \mathbb{N}$ and $p \in (1, +\infty)$, we have

$$\int_0^{+\infty} |f_n(x)|^p dx = \int_0^n \left| \frac{\sin^2 x}{1+x} \right|^p dx < +\infty,$$

indeed, the function $h(x) := \left| \frac{\sin^2 x}{1+x} \right|^p$ is continuous in the bounded interval [0, n], it is integrable. Therefore $f_n \in L^p([0, +\infty))$.

(2) Since for any $x \in [0, +\infty)$, we have

$$\chi_{[0,n]}(x) \to 1$$
, as $n \to +\infty$,

then f_n converges pointwisely everywhere (thus a.e.) to the function f, with

$$f(x) := \frac{\sin^2 x}{1+x}.$$

(3) Let $p \in (1, +\infty)$ be fixed. On account of point (2), we already know that $(f_n)_n$ converges pointwisely a.e. to the function f; hence, to study the convergence of $(f_n)_n$ in $L^p([0, +\infty))$ we need to check whether $||f_n - f||_{L^p([0, +\infty))} \to 0$ as $n \to +\infty$ with f as in item (2). We have

$$||f_n - f||_{L^p}^p = \int_0^{+\infty} |f_n(x) - f(x)|^p dx = \int_0^{+\infty} \left| \frac{\sin^2 x}{1+x} \right|^p \chi_{(n,+\infty)} dx.$$

Denote by $h_n(x) := \left|\frac{\sin^2 x}{1+x}\right|^p \chi_{(n,+\infty)}$, we have that h_n is measurable in $[0,+\infty)$ (indeed it is the product of two measurable functions) and

$$h_n(x) \le \left| \frac{1}{1+x} \right|^p =: g(x), \quad \text{for any } n \in \mathbb{N} \text{ and any } x \in [0, +\infty).$$

Since $g \in L^1([0,+\infty))$ and $h_n = |f_n - f|^p$ converges pointwisely a.e. to 0, we can apply Dominated Convergence Theorem and have

$$\lim_{n \to +\infty} \|f_n - f\|_{L^p}^p = \lim_{n \to +\infty} \int_0^{+\infty} h_n(x) \, \mathrm{d}x = \int_0^{+\infty} \lim_{n \to +\infty} h_n(x) \, \mathrm{d}x = 0.$$

Hence $\{f_n\}_{n\in\mathbb{N}}$ converges to f in $L^p([0,+\infty))$, for any $p\in(1,+\infty)$.

Exercise 2. Let $p \in (1, +\infty)$ and consider the sequence $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in \ell^p$ for any $n \in \mathbb{N}$, defined by

$$x_n = (x_n^{(k)})_{k \in \mathbb{N}}, \text{ with } x_n^{(k)} := \begin{cases} e^{1/n}, & \text{if } k = n \\ 0, & \text{otherwise} \end{cases}.$$

Discuss weak and strong convergence of $\{x_n\}_{n\in\mathbb{N}}$.

Solution. We start by studying the pointwise convergence of $\{x_n\}_{n\in\mathbb{N}}$. Observe that for any $n\in\mathbb{N}, x_n\in\ell^p$ is a sequence of real numbers;

$$x_1 := (e, 0, 0, \dots),$$

 $x_2 := (0, e^{1/2}, 0, \dots),$
 \dots
 $x_n := (0, \dots, 0, e^{1/n}, 0, \dots),$
 \dots

The study of the pointwise convergence of $\{x_n\}_{n\in\mathbb{N}}$ consists in determining the limit of $x_n^{(k)}$ as $n\to +\infty$, for any fixed $k\in\mathbb{N}$ (i.e. of each component of x_n). Fix $k\in\mathbb{N}$, by definition we have

$$x_n^{(k)} = 0$$
, for any $n > k$,

hence $x_n^{(k)} \to 0$ in \mathbb{R} as $n \to +\infty$. Therefore

$$x_n \to \mathbf{0} = (0, 0, \dots), \text{ as } n \to +\infty.$$

Thus $\{x_n\}_{n\in\mathbb{N}}$ converges pointwisely to **0**.

Since weak convergence in ℓ^p implies pointwise convergence, then if $\{x_n\}_{n\in\mathbb{N}}$ converges weakly in ℓ^p to x, then $x=\mathbf{0}$. Since $p\in(1,+\infty)$, by Riesz representation theorem we can identify $(\ell^p)^*$ with ℓ^q , with ℓ^q , with ℓ^q , with ℓ^q conjugate index of ℓ^q . Thus, ℓ^q if and only if

$$\sum_{k=1}^{+\infty} x_n^{(k)} y^{(k)} \to 0, \quad \text{for any } y = (y^{(k)}) \in \ell^q.$$

Let $y \in \ell^q$ be arbitrarily fixed, we have

$$\sum_{k=1}^{+\infty} x_n^{(k)} y^{(k)} = e^{1/n} y^{(n)} \to 0,$$

indeed $e^{1/n} \to 1$ as $n \to +\infty$, and $y^{(n)} \to 0$ by necessary condition of convergence of series (remind that $y \in \ell^q$, so the series $\sum_{k=1}^{+\infty} |y^{(k)}|^q$ converges).

Concerning strong convergence, recall that strong convergence implies weak convergence, so that if $\{x_n\}_{n\in\mathbb{N}}$ converges strongly in ℓ^p to x, then $x=\mathbf{0}$. Therefore we study whether $||x_n-\mathbf{0}||_p$ tends to 0 as $n\to +\infty$. We have

$$||x_n - \mathbf{0}||_p = ||x_n||_p = e^{1/n} \not\to 0,$$

hence $\{x_n\}_{n\in\mathbb{N}}$ does not converge strongly in ℓ^p .

Exercise 3. Let X = C([0,1]) endowed with the norm $\|\cdot\|_{\infty}$. Consider the linear operator T defined by

$$(Tu)(t) = \int_0^t e^{\sin(s)} u(s) ds, \quad \forall u \in X.$$

- (1) Show that $T: X \to X$ is well-defined and bounded.
- (2) Is T surjective? Justify the answer.
- (3) Prove that T is a compact operator.

Solution. Set $g(s) := e^{\sin(s)}$ and notice that g is continuous on [0,1] and $\lambda([0,1]) < +\infty$, hence $g \in L^1([0,1])$.

(1) We have

-T is well defined. Taken $u \in X$ we have $gu \in L^1([0,1])$, since ug is continuous on [0,1]; thus, by the First and Second Fundamental Theorems of Calculus we get

$$(\star) \qquad T(u) \in AC([0,1]).$$

From (\star) we have that, in particular, T(u) is continuous in [0,1], hence it belongs to X and T is well-posed.

-Boundedness. For every $u \in X$, we have

$$|T(u)(t)| \le \int_0^t |g(s)| |u(s)| ds \le ||g||_{L^1} ||u||_{\infty} \quad \forall t \in [0, 1].$$

As a consequence, we obtain

$$(\star\star) \qquad ||T(u)||_{\infty} = \sup_{t \in [0,1]} |T(u)(t)| \le ||g||_{L^{1}} ||u||_{\infty}.$$

This, together with the arbitrariness of $u \in X$, ensures that $T: X \to X$ is bounded.

- (2) The operator $T: X \to X$ is not surjective, indeed $v(t) \equiv 1$ belongs to X, but since $v(0) \neq 0$ there are no $u \in X$ such that v = Tu.
- (3) We consider a bounded set B of X = C([0,1]) and we prove that its image under T, say E = T(B), is equi-bounded and equi-continuous. In view of the Ascoli-Arzelà Theorem, this will ensure that

$$\overline{E}$$
 is compact in $C([0,1])$,

and thus that T is a compact operator.

-Equi-boundedness. By item (1) and in particular from $(\star\star)$, we get that $T \in \mathcal{L}(X)$ and $||T||_{\mathcal{L}(X)} \leq ||g||_{L^1} = M$, with $M < +\infty$. We remind that, since B is bounded in X, there exists R > 0 such that $||u||_{\infty} \leq R$ for any $u \in B$. Hence, for every $u \in B$ we have

$$\max_{t \in [0,1]} |T(u)(t)| = ||T(u)||_{\infty} \le M ||u||_{\infty} \le M \cdot R.$$

Thus, E = T(B) is equi-bounded.

-Equi-continuity. Let $u \in B$ be arbitrarily fixed. Taking into account the very definition of T, for every $t_1, t_2 \in [0, 1]$ with $t_1 < t_2$, we have

$$|T(u)(t_1) - T(u)(t_2)| = \left| \int_{t_1}^{t_2} g(s) \, u(s) \, ds \right| \le \int_{t_1}^{t_2} g(s) \, |u(s)| \, ds$$

$$\le \max_{[0,1]} |u| \cdot \int_{t_1}^{t_2} g(s) \, ds = ||u||_{\infty} \cdot \int_{t_1}^{t_2} g(s) \, ds$$

$$(\text{since } ||u||_{\infty} \le R, \text{ as } u \in B)$$

$$\le R \left| \int_{t_1}^{t_2} e^{\sin(s)} \, ds \right| \le M \cdot R(t_2 - t_1),$$

where we have used the fact that g is bounded on [0,1]. Thanks to the above estimate, we easily infer that E = T(B) is equi-continuous on [0,1] (actually, T(B) is equi-Lipschitz on [0,1]).

Exercise 1. Consider the measure space $([0, +\infty), \mathcal{L}([0, +\infty)))$ with the Lebesgue measure. Define the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ by $f_n(x) = \frac{\sin^2(x)}{1+x} \chi_{[0,n]}(x), \quad x \in \mathbb{R}, \quad n \in \mathbb{N}.$ (1) Prove that $f_n \in L^p([0,+\infty))$ for any $n \in \mathbb{N}$ and any $p \in (1,+\infty)$. (2) Study the convergence a.e. of the sequence $\{f_n\}_{n\in\mathbb{N}}$. (3) Study the convergence in $L^p([0,+\infty))$ of the sequence $\{f_n\}_{n\in\mathbb{N}}$ for $p\in(1,+\infty)$. let nEN, let pE(1/+00). VEER, $\left|f_{n}(x)\right|^{p} = \left|\frac{\overline{\eta} n^{2}(x)}{1+\chi} - A_{(0,n)}(x)\right|^{p} \leqslant \left|\frac{\overline{\eta} n^{2}(x)}{1+\chi}\right|^{p} \leqslant \frac{1}{|1+\chi|^{p}} \leqslant \frac{1}{|\chi|^{p}}$ We know that $a \mapsto \frac{1}{x^p}$ is integrable for p > 1 ($p < +\infty$) in the sense of Riemann. When a fet is integrable in the sense of Rieman, Rand L'intégrals voircide: so fn∈ [°([0;+∞)) VNEW, YPE(1,+20) $f_{n}(x) = \frac{\sin^{2}(x)}{1+x} \int_{0}^{\infty} [0]^{n} dx$ $= \begin{cases} \frac{\sin^{2}(x)}{1+x} & \text{if } x \leq n \\ 0 & \text{otherwise} \end{cases}$ $\xrightarrow[N\to+\infty]{\sinh(x)} =: \{(x).$ frequence thus converges are to form [0:7+00).

(2) let x ERt, let n EN, If they converges on L°((01/16)), it is to f. let p ∈ (1,100). We want to show if: $\left\| f_n - f \right\|_{p}^{p} = \int \left| \frac{\sin^2(x)}{1+x} \left(\int_{[0]n} (x) - 1 \right) \right|^p dx = \int \left| \frac{\sin^2(x)}{1+x} \right|^p \int_{[n]+\infty} (x) dx$ [0;+∞) Let's define $h_n(x) = \left| \frac{sin^2(x)}{1+x} \right| f_1(x)$, $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}$, \$\$(140).

- By previous question, we know that $f_n(x) \xrightarrow{n \to \infty} f(x)$ are in \mathbb{R}^+ .
- Furthernore, $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$? $\left| h_n(x) \right| \leq \frac{1}{|1+\infty|^p} \quad \text{which is sh } \mathcal{L}^1(loitos)) \quad \text{where}.$

We can then apply the DCT to hn:

 $\lim_{n\to+\infty} h_n(x) dx = \lim_{n\to+\infty} \int_{-\infty}^{\infty} h_n(x) dx \qquad i.e.$ $\begin{bmatrix} 0, 1+\infty \end{pmatrix}$

 $\lim_{n\to+\infty} \int h_n(x) dx = \lim_{n\to+\infty} \int |f_n(x)-f(x)|^p dx = \lim_{n\to+\infty} |f_n|^p$ $\lim_{n\to+\infty} \int |f_n(x)-f(x)|^p dx = \lim_{n\to+\infty} |f_n|^p$ $\int h_n(x) dx = \lim_{n\to+\infty} |f_n(x)-f(x)|^p dx = \lim_{n\to+\infty} |f_n|^p$ = 0

As a conclusion: $\left\| \left\{ n - \right\} \right\|_{p^{n+1+\infty}}$ re $\left\{ n - \frac{LP(logtod)}{n-9+\infty} \right\}$.

Exercise 2:
$$p \in (1,+\infty)$$
 | $\{x_n\}_n = w/ \text{ from, } x_n \in \mathbb{P} = L^p(N), P(N), y_{\#}\}.$
 $\forall n \in \mathbb{N}^{\#}$ $\forall n = (x_n^{(h)})_{h \in \mathbb{N}^{\#}} \text{ with } x_n^{(h)} := \begin{cases} e^{1/n} \text{ if } k = n \\ 0 \text{ otherwise} \end{cases}$

• We start by studying the pointuise (vace of {xn}n: Let ken; we want to find the limit when n->+00 of xn

$$x_{3} = \begin{pmatrix} e^{1} & 0 & 0 & \cdots \\ e^{1/2} & 0 & \cdots \end{pmatrix}$$

$$x_{3} = \begin{pmatrix} e^{1} & 0 & e^{1/3} & \cdots \\ e^{1/3} & 0 & \cdots \end{pmatrix}$$

Let $k \in \mathbb{N}^*$, $z_n^{(k)} := \begin{cases} e^{1/n} & \text{if } k = n \\ 0 & \text{thereise} \end{cases}$ o since, for any fixed $k \in \mathbb{N}^*$, $z_n^{(k)} = 0$ for n > k.

$$S_0 : (x_n)_{n \in \mathbb{N}^*}$$
 converges positivisely to $z = (x^{(L)})_{h \in \mathbb{N}^*} = (0)_{h \in \mathbb{N}}$

• If $(x_n)_{n \in \mathbb{N}}$ weakly converges, it should be to x. We are in ℓ^p so we can use Riesz Representation Thm $(1\ell^{p(1\infty)}): x_n = x_n$

$$\forall y \in \ell^{9}(x) \left(\frac{1}{p},\frac{1}{q}=1\right), \sum_{h=1}^{+\infty} x_{h}^{(h)} y_{h\rightarrow +\infty}^{(h)} \sum_{h=-1}^{+\infty} x_{h}^{(h)} y_{h}^{(h)}$$

As a conclusion:

{\angle n \angle n \a

3) If he have shony convergence of french in la, it should be to Shony Charce in It means that:

 $\|x_n - x\|_{QF} \xrightarrow{n \to +\infty} 0$. Let's compute, then, $\|x_n - x\|_{QF}$.

 $||x_n - x||_{P} = \sum_{h=1}^{160} |x_h^{(h)} - x_h^{(h)}|^2 = \sum_{h=1}^{160} |x_h^{(h)}| = e^{1/n} \xrightarrow{n\to+\infty} 1 \neq 0$ Yhein*, 2(h)=0.

As a conclusion: {xn/nein* doesn't converge strongly in lp.

```
with (Tu)(+)= fesin(s) u(s) ds
                  T : X \longrightarrow X
                                                (thex). (the [0,1])
• T is well defined: let u \in X,
 Tu: t -> [esin(s)u(s)ds. We have stop esin(s) u(x) which
 is continuous on [0,t] (since sin is 6° as well as uEX). So it
 were that Tu is the integral function of a continuous furthbon
 on an intoval, so it is boutineous: (Tu)EX.
((lessical Fundamental Theorem of Collects)
To bounded since it is to-humans (if just before).
```

X = (60[0,1], ||. ||_).

Exercise 3:

- 2) T surjective? let $V \in X$. Can we find $u \in X$ s.t : T(u) = V? $V \in A \in X$ but $V(\circ) \neq 0$ so there is no $u \in X$ s.t T(u) = V.

 As a conclusion, T isn't surjective.
- 3) He consider a bounded set B of X=80([0,1]) and we prove that its image under T, T(B)=:E, is equibounded of equiconthusous.

 Using Arcoli-Arzela Theorem, this will ensure that:

 E: TES as compact in 8°([0,1]).
 - every boundedness: By (**) from G) we have: TEXCE) and

 IT//X(X) < M < +00. Since B is beld in X,

 IRSO 5-+ Harlos < R for any WEB. Hence

 VWBB,

 Max ITU (+> | -||Tu|| 50 < M Nulls. < MR

max |Tu (+> | = ||Tu|| ∞ ≤ M ||u|| ∞ ≤ M R + ∈ [0,1]

Thus, E=T(B) is equibod

Let $u \in B$. We have: $|T(u)(t_2) - (Tu)(t_2)| \leq MR(t_2 - t_1)$

So TIB) is equi-lipschitz. Hence Equi-Continuous on [0,1].

- we apply Ascoli Arzelà than:

T(B) = E 13 precompact, i.e.,

T(B) = E 13 compact in 6°([0,1]). Trougact: