

Lecture 26 & 27: Feature Selection Part 1

#### Recap

•All about Linear Regression

#### A question to ponder

- Suppose you are running sklearn algorithm with a large dataset. It is running slow. What will you think of optimizing?
  - App level
    - Fixing Logic, Grid search CV (reducing range)
  - System level: Multi threading/Multi-processing
  - Hardware level: Using GPU
  - Architecture level
    - Vertical scaling Get a bigger machine
    - Horizontal scaling Spread the load across machines
- What obvious thing have you missed?

## Some facts about Python concurrency/parallelism

- No real multi threading in Python
  - Blame it on GIL
- No multi core computing in Python foundation
  - Not a big deal in other languages
- In python
  - Multi-processing libraries are available as add-on
  - Needs explicit constructs in coding to achieve
  - Process is always bound to CPU on which python runs

## Speeding up, Scaling up sklearn

- •System Level: Set n\_jobs=-1
- Can sklearn use GPU?
  - •If yes, why?
  - •If not, why not?
- Horizontal scaling for sklearn
  - Use joblib
  - Use Ray for distributed training
- Choose a different ML programming paradigm
  - Spark Mlib
  - •H2O

#### Hold on a second

- What obvious performance improvement have you missed?
  - Dimensionality reduction
    - Feature selection & Feature extraction





Why Feature Selection?

# To avoid curse of dimensionality



- •P(point < 0.01 units from border) =
  - •1 P(point inside 0.99)
- •P(point inside 0.99) = 0.99 \* 0.99
- 1-0.9801 = 0.0199
- •P(point < 0.01 units from border) =  $= 1 (0.99)^3 = 1 0.9703 = 0.029$
- •For 1000 dimensions, P(point in 0.01 border) =

$$= 1 - (0.99)^{1000} = 1 - 0.00004317 = 0.99995683$$

#### Unnecessary training & deployment effort

- Impacts Training
  - Computational performance more time for fitting
  - Slower calculation of distances etc. (kNN, Clustering)
  - Longer dot product (Generalized Linear Models)
  - More decision nodes at lower end (Decision Trees)
- Impacts Storage Additional feature storage
- Impacts deployment/ML lifecycle
  - More feature preprocessing overhead
  - Additional ETL overhead
  - More features for managing drift

## Impact on model

- Predictive Performance
  - More is not merrier
  - Adds uncertainty
  - Can potentially make model performance worse
- Interpretability becomes complicated
- Affects model robustness
  - Adds interacting features
  - Add unwanted uncertainty
- Breaks rule of Occam's razor



# A flavour of unsupervised feature selection methods

#### Remove Incomplete features

- Recall Imputation
- •Find features with very high % of missing values
- Remove Features

#### Remove Constant/Quasi-Constant feature



#### Pandas

```
quasi_constant_features = [feat for feat in X_train.columns
if X_train_normalized[feat].var() <= 0.03]
print(quasi_constant_features)</pre>
```

#### Remove Constant/Quasi-Constant feature

#### Scikit Learn

```
from sklearn.feature_selection import VarianceThreshold

vt = VarianceThreshold(threshold=0.003)

vt.fit_transform(X_train_normalized)

mask = vt.get_support()

mask # mask tells which column to retain or remove
```

array([ True, False, False, True, False, False, False, False, True

```
from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
sel.fit(X_ohe)
sel.transform(X_ohe).toarray()
```

#### Remove Constant/Quasi-Constant feature

#### Feature Engine

```
X_train_vars = transformer.transform(X_train)
X_test_vars = transformer.transform(X_test)
```

#### Remove Duplicate features

- Feature Engine
  - DropDuplicateFeatures

# Remove highly correlated features

Pearson's correlation coefficient (-1 0 +1)



#### Triangle Correlation Heatmap





18

## Remove highly correlated features programmatically

Feature Engine

#### Unsupervised

- DropCorrelatedFeatures
- Drop all but one from group of correlated features

#### Supervised

- Retain feature that has best prediction power
- •SmartCorrelatedSelection



Feature Selection overview

# Dimensionality Reduction

**Feature Selection** 

**Feature Extraction** 

#### Overview of Feature Selection Techniques



#### Overview of Feature Selection Techniques



#### Feature selection methods



#### Guiding principles for Feature Selection

- Features should be as less correlated among themselves
- Features and target variable should be highly correlated

$$\rho = \frac{\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]}{\sigma_x \sigma_y}$$

- Correlation captures linear relation
- What about non-linear association?
- Consider the plots
  - Uncorrelated but NOT independent
- Moral of the story
  - No correlation doesn't imply independence





#### Guiding principles for Feature Selection

Uncorrelated but NOT independent





- There is predictive power in X beyond linearity
- Independent random variables are always uncorrelated
- Uncorrelated random variables NEED NOT be independent

#### Feature Selection: Correlation methods

- Features should be as less correlated among themselves
- Features and target variable should be highly correlated
- Individual (p-value of coefficients) and/or collective (p-value of F-statistic) linear predictive power of independent variables

#### Feature Selection – Independence methods

- Features should be independent among themselves
- Features and target variable should be highly dependent
- •Statistical Independence P(X,Y) = P(X)P(Y)  $\mathbb{E}[XY] = \mathbb{E}[Y]\mathbb{E}[Y]$
- Chi-Square test for statistical independence
- ANOVA for within group and between group relationship

#### Feature Selection: Information methods

- Features should have as less mutual information among themselves but max mutual information with target
  - Entropy (general)
  - Gini Impurity (Tree specific)

# Helpful libraries

- Numpy, Pandas
- Scikit Learn
- •Feature Engine



# Feature Selection – Filter methods

#### **Dimensionality Reduction** Information gain Correlation with target Feature Selection Pairwise correlation Variance threshold Chi-Squared ANOVA Filter Methods L1 (LASSO) regularization Embedded Methods Decision tree Wrapper Methods Recursive Feature Elimination (RFE) Sequential Feature Selection (SFS) Permutation importance

# Feature analysis: Statistical methods

- •Incomplete Features (Unsupervised)
  - Features with lots of missing values (say > 50%)
- Irrelevant Features
  - Constant/Quasi-Constant Feature (Unsupervised)
  - No relation with target variable (independent of y)
    - Numeric-Numeric: Correlation, Mutual Information
    - Numerical-Categorical: Mutual Information, ANOVA
    - Categorical-Categorical: Chi-Squared Independence Test
- Redundant Features (Unsupervised)
  - Two or more features share the same information. One or more can be discarded

## Supervised Feature Selection methods



| Output Input I | Numeric                                                                                                                   | Categorical                                                                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Numeric        | <ol> <li>Mutual Information</li> <li>Pearson's Correlation</li> <li>Spearman's Correlation</li> </ol>                     | <ol> <li>Mutual Information</li> <li>ANOVA</li> <li>Kendall's</li> <li>Chi-Squared (after discretizing input)</li> </ol> |
| Categorical    | <ol> <li>Mutual Information</li> <li>ANOVA</li> <li>Kendall's</li> <li>Chi-Squared (after discretizing output)</li> </ol> | <ul><li>1. Mutual Information</li><li>2. Chi-Squared</li></ul>                                                           |

#### Filter methods

- Simple and fast
- Need an in-depth understanding of Statistics
- Supervised methods
  - Bivariate
    - Between one feature and target variable
    - Between two features
  - Multivariate many features and target variable

#### Filter methods – Scikit Learn implementation

- SelectKBest
- •SelectKBest(scoring="")
  - •Scoring=chi2
  - •Scoring=mutual\_information\_classif
  - •Scoring=mutual\_information\_regression
  - •f\_regression
  - Many more



## Mutual Information based Feature Selection

#### Mutual Information

$$\bullet H(X,Y) = H(X) + H(Y)$$

$$\bullet H(X,Y) = H(Y) + H(X|Y)$$

$$\bullet I(X,Y) = = H(Y) - H(Y|X)$$

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$





#### Mutual Information

Both X and Y are categorical

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) log \left( \frac{p(x,y)}{p(x)p(y)} \right)$$

One of X or Y is numerical

$$I(X,Y) = \sum_{x \in X} \int_{y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right) \qquad I(X,Y) = \int_{x} \sum_{y \in Y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

Both are numerical

$$I(X,Y) = \int_{x} \int_{y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

#### Mutual Information for categorical variables X and Y

- Titanic dataset
  - Sex & Survived (x & y)

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

| 0 | 91  | 479 | 570 |
|---|-----|-----|-----|
| 1 | 235 | 109 | 344 |

Total 326 588 914

$$0.1 \times log\left(\frac{0.1}{0.62 \times 0.36}\right) + 0.52 \times log\left(\frac{0.52}{0.62 \times 0.64}\right) + 0.26 \times log\left(\frac{0.26}{0.38 \times 0.36}\right) + 0.12 \times log\left(\frac{0.12}{0.38 \times 0.64}\right)$$

|                 | Female | Male | Total |
|-----------------|--------|------|-------|
| Survived        | 0.1    | 0.52 | 0.62  |
| Not<br>Survived | 0.26   | 0.12 | 0.38  |
| Total           | 0.36   | 0.64 | 1     |

#### Mutual Information for categorical & numerical

- Binning
  - Different bins give different MI
  - Not a robust way for MI calc with numeric variables
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929353/
   (PLOS One 2014)





$$I_{x^{(i)}} = \varphi(N) - \varphi(N_{x^{(i)}}) + \varphi(k) - \varphi(m_i)$$

$$MI = \frac{1}{m} \sum_{i} I_{x^{(i)}}$$

- Nearest Neighbors
- K = Num Neighbors of same type
- M = Num entries to get k same type neighbors
- Nxi = Total number of entries of same type as xi
- N = Total entries in dataset
- Digamma function

#### Digamma function

- Digamma function = Derivative of log of gamma function
- Gamma function
  - Factorial of a non integer
- Used in many probability distributions
  - Gamma distribution
  - Beta distribution
  - T-distribution
  - Chi-squared distribution



The gamma function can be seen as a solution to the following interpolation problem:

"Find a smooth curve that connects the points (x,y) given by y=(x-1)! at the positive integer values for x."

#### Sklearn implementation

- Categorical+numerical features & categorical target
  - SelectKBest(scoring=mutual\_info\_classif, ....)
- Categorical+numerical features & numerical target
  - •SelectKBest(scoring=mutual\_info\_regression, ....)

### Filter method with chi-squared & ANOVA will be covered in next lecture

Lots of statistical theory needed for implementation with 1-2 lines of code



# Feature Selection with Embedded (Intrinsic) methods



• ...

#### Embedded methods

- Always supervised
- No separate feature selection
- Feature Selection happens as part of model training
- E.g.:
  - LASSO
  - Feature Importance with Random Forest
- Returns coeff\_ or feature\_importances
- Other non parametric methods do not augur well



Feature Selection with LASSO

#### Cost function adjusted for L1 Regularization



$$\arg\min_{w} \nabla_{w} \mathcal{J} + \lambda \nabla_{w} ||w||_{1}$$

$$\nabla_w \mathcal{J} = \frac{2}{m} X^T (Xw - y) \qquad \nabla_w ||w||_1 = \mathbf{1}$$

$$\mathbf{w} = \mathbf{w} - \eta \nabla_w \mathcal{J} \qquad \mathbf{w} = \mathbf{w} - \eta \nabla_w \mathcal{J} - \eta \lambda$$

Without regularization

$$\mathbf{w} = (\mathbf{w} - \eta \lambda) - \eta \nabla_w \mathcal{J}$$

A FIXED small number keeps getting subtracting from a small w. Net effect w becomes 0

#### Lasso path



$$\arg\min_{w} \nabla_{w} \mathcal{J} + \lambda \nabla_{w} \|w\|_{1}$$
 52



$$-\sum_{i=1}^{\infty} \left[ y^{(i)} \log \left( \sigma(z^{(i)}) \right) + \left( 1 - y^{(i)} \right) \log \left( 1 - \sigma(z^{(i)}) \right) \right] + \lambda ||w||_{1}$$

