Errata for *Computer Vision: Algorithms and Applications*

Richard Szeliski

March 1, 2011

Hardcopy	Online		
p.#	Sept. 3, 2010	Equation	Correction
36	40	after (2.23)	delete "and 0 is the zero vector"
44–45	49	near (2.51)	$[-1,-1] \Rightarrow [-1,1]$ (2 occurrences)
104	118	(3.25)	$\left \frac{\partial^2 y}{\partial^2 y} \Rightarrow \frac{\partial^2 f}{\partial^2 y} \right $
124	141	(3.70)	$p(S) \Rightarrow p(O S)$
173	197	Ex 3.10	sum up to 1?
276	312	(6.3)	$oxed{oldsymbol{r}_i = oldsymbol{x}_i' - oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) = \hat{oldsymbol{x}}_i' - ilde{oldsymbol{x}}_i'}$
252	287	(5.20)	$Int(R) = \max_{e \in MST(R)} w(e).$
286	324		(Section 6.1.5) to obtain
308	349	(7.16)	$\tilde{y}_i = s(y_i - \mu_y)$
309	349	(7.17)	$oldsymbol{E} = oldsymbol{T}_1^T ilde{oldsymbol{E}} oldsymbol{T}_0.$
313	354	(7.34)	$oldsymbol{P}_1 = [ilde{oldsymbol{H}} e],$
314	356	above (7.35)	$\{\sigma_0,\sigma_1\}$
316	359	below (7.43)	\hat{M} and \hat{S} are the <i>motion</i> and <i>structure</i>
318	361		$ \eta_j = t_{zj}^{-1}$ and parameters $oldsymbol{p}_i$ and $(oldsymbol{R}_j, t_j),$
331	376		A fully automated is presented by
366	415		Lee, Chen, Lin et al. 1997),
367		Fig. 8.15	(dangling "o")
371	422		and smoothness norms such as L_1 or TV
411	469	line 2	allows us to create
419	478		recover the PSF and use it
428	489		$(WLF) \Rightarrow (WLS)$
443	505	Fig. 10.37	grayscale image with some color
481	550		just as in bilateral filtering (Figure 11.9c)
646–647	736–737	(A.1)	$M \Rightarrow m, N \Rightarrow n, P \Rightarrow p.$
651	742	(A.24)	$ig oldsymbol{r}_i = oldsymbol{x}_i' - oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) = \hat{oldsymbol{x}}_i' - ilde{oldsymbol{x}}_i'$
653	745	(A.37)	$oldsymbol{A} = oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^T,$
653	745	(A.38)	$oldsymbol{A}_{-}^{T}oldsymbol{A} = oldsymbol{V}oldsymbol{\Sigma}^{2}oldsymbol{V}^{T},$
653	745	(A.39)	$oldsymbol{A}^T oldsymbol{A} oldsymbol{v}_k = \sigma_k^2 oldsymbol{v}_k,$
658	751	Alg.A.3	10. $p_{k+1} = r_{k+1} + \beta_{k+1} p_k$ (both columns)
738	856		Lee, M.C., Chen, WG., Lin, CL. B.,