

Progress Report

Personalized Facial Expression Imitation

Peizhen Li

Dec 19, 2024

Outline

Work completed in the past four weeks

- 1. Dataset collection
 - o results from intern students
 - o dataset statistics
 - o control values rollout: high-level vs low-level
- 2. Coding and experiments in virtual environment
- 3. Mapping network training and toy experiments on physical Ameca

Expected outcomes in the following four weeks

- 1. Current issues and possible solutions
 - o ineffectiveness of the mapping network
 - o insufficient action space exploration/coverage
 - o real-time requirement
- 2. Draft for IROS25 submission

Dataset Collection

- Results from intern students
- Dataset statistics

Statistics	Train	Validation
# of images	9341	2336
# of control sequences	9341	2336
# of (image, control sequence)	9341	2336

Jaw Pitch: 0.524652
Jaw Yaw: 0.6763
Lip Bottom Curl: 0.670025
Lip Bottom Depress Left: 0.541817
Lip Bottom Depress Middle: 0.6158985
Lip Bottom Depress Right: 0.533704
Lip Corner Raise Left: 0.446363
Lip Corner Raise Right: 0.525653
Lip Corner Stretch Left: 0.431248
Lip Corner Stretch Right: 0.327669
Lip Top Curl: 0.3929235

Dataset Collection

- High-level vs low-level controls
 - Tune high-level controls in the animator tool
 - Convert to low-level controls to better explore the action space (fine-grained control)
- Matrix formulation

$$(H_1, \quad H_2, \quad \cdots, \quad H_{12}) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{12} \end{pmatrix} = x_1 H_1 + x_2 H_2 + \cdots + x_{12} H_{12} = \mathbf{H}_{\Delta}$$

$$H_i \in \mathbb{R}^{13 \times 1}, \quad x_1 + x_2 + \cdots + x_{12} = 1, \quad i \in \{1, 2, \cdots, 12\}$$

Coding and Experiments in Virtual Environment

- Scripts for dataset curation and model training
 - \$ python misc/construct_dataset.py
 - \$ python main.py train.batch_size=16

Figure: An overview of the proposed facial expression imitation framework.

Mapping Network Training and Toy Experiments

- From image space to action space
- Output a list of 30 low-level control values

Mapping Network Training and Toy Experiments

• **Goal:** Generate robotic facial expressions that mimic those of a human performer.

Figure: Left: Human performer. Middle: Ameca in a neutral state. Right: Ameca displaying a facial expression to mimic the human performer.

Expected Outcomes in the following four weeks

- Current Issues:
 - ineffectiveness of the mapping network
 - insufficient action space exploration/coverage
 - real-time requirement
- Possible Solutions
 - sanity check on the dataset (temporal alignment/granularity/dataset scale)
 - inspect control value distribution
 - adjust network architecture
 - predict deviations from neutral state
- Draft for RSS25/IROS submission