ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Variáveis Aleatórias Contínuas

Distribuições de Variáveis Aleatórias Contínuas

Distribuição Uniforme

Distribuição Triangular

Distribuições de Variáveis Aleatórias Contínuas

Distribuição Normal

Distribuição Log Normal

Distribuições de Variáveis Aleatórias Contínuas

Distribuição Exponencial

Distribuição Qui-Quadrado

Definição

• Uma função X definida sobre o espaço amostral Ω e assumindo valores num intervalo de números reais, é denominada variável aleatória contínua.

Exemplos:

- altura de um adulto
- custo do sinistro de um carro
- temperatura mínima diária
- saldo em aplicações financeiras
- ganho de peso após dieta
- distância percorrida

Função de Densidade de Probabilidade

A função densidade de probabilidade (f.d.p.) de uma variável aleatória X é uma função $f(x) \ge 0$ cuja área total sob a curva seja igual à unidade. Em termos matemáticos:

$$\int_{-\infty}^{+\infty} f(x) dx = 1.$$

Modelo Uniforme

· Uma v.a. aleatória X com função densidade de probabilidade

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b,$$

é denominada uma v.a. uniformemente distribuída em (a, b).

· Notação:

$$X \sim U(a, b)$$
.

 Trata-se de uma extensão natural do modelo uniforme para o caso contínuo.

Exemplo:

Se X é uma variável aleatória uniforme no intervalo [1, 5], notação $X \sim U[1,5]$, então a função densidade de probabilidade de X é definida por

$$f(x) = \begin{cases} \frac{1}{4} & 1 \leq x \leq 5 \\ 0 & c.c. \end{cases}$$

A área total sob a curva corresponde à área de um retângulo de base $\Delta=4$ e altura $h=\frac{1}{4}$. Logo, a área total fica dada por

$$A = \Delta \times h = 4 \times \frac{1}{4} = 1.$$

Distribuição Uniforme

A área total sob a curva pode ser calculada diretamente pela solução da integral

$$\int_{1}^{5} \frac{1}{4} dx = \frac{1}{4} \int_{1}^{5} dx$$
$$= \frac{1}{4} x |_{1}^{5}$$
$$= \frac{1}{4} (5 - 1)$$
$$= \frac{4}{4} = 1.$$

Probabilidade de eventos

A probabilidade $P(a \le X \le b)$ corresponde à área sob a curva no intervalo [a, b]. Em termos matemáticos

$$P(a \le X \le b) = \int_a^b f(x) dx.$$

Por exemplo, se $X \sim U[1,5]$, a probabilidade $P(1 \le X \le 2)$ corresponde à área do retângulo de base $\Delta = 1$ e altura $h = \frac{1}{4}$. Essa área fica dada por

$$B = \Delta \times h = 1 \times \frac{1}{4} = 0,25.$$

A probabilidade $P(1 \le X \le 2)$ pode ser calculada diretamente pela solução da integral

$$\int_{1}^{2} \frac{1}{4} dx = \frac{1}{4} \int_{1}^{2} dx$$

$$= \frac{1}{4} x |_{1}^{2}$$

$$= \frac{1}{4} (2 - 1)$$

$$= \frac{1}{4} = 0,25.$$

Vamos supor que X é uma variável aleatória tal que $X \sim U[a, b]$.

Esperança

A esperança de X fica dada por

$$\mathsf{E}(X) = \int_a^b \frac{x}{(b-a)} dx = \frac{a+b}{2}.$$

Variância

A variância de X fica dada por

$$Var(X) = \underbrace{\int_{a}^{b} \frac{x^{2}}{(b-a)} dx}_{E(X^{2})} - [E(X)]^{2} = \frac{(b-a)^{2}}{12}.$$

Se X é uma variável aleatória com distribuição exponencial de parâmetro $\lambda > 0$ ($X \sim \text{Exp}(\lambda)$), a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x},$$

em que x > 0.

Descrição de f(x) para $\lambda = 3$

Área total

A área total sob a curva é calculada através da integral

$$\int_0^{+\infty} \lambda e^{-\lambda x} dx = \lambda \int_0^{+\infty} e^{-\lambda x} dx = 1.$$

Probabilidade de eventos

A probabilidade $P(1 \le X \le 2)$ corresponde à área na figura abaixo e pode ser calculada pela integral

$$A = \int_{1}^{2} \lambda e^{-\lambda x} dx$$
$$= e^{-\lambda} - e^{-2\lambda}.$$

Vamos supor que X é uma variável aleatória com distribuição exponencial de parâmetro $\lambda > 0$.

Esperança

A esperança de X fica dada por

$$\mathsf{E}(X) = \frac{1}{\lambda}.$$

Variância

A variância de X fica dada por

$$Var(X) = \frac{1}{\lambda^2}$$

Distribuição Exponencial - Exemplo

- Uma v.a. exponencial pode ser entendida como um modelo para o "espaço" entre a ocorrência de dois sucessos ao longo de um esperimento de Poisson.
- Exemplo: seja X o número de falhas apontado por um processador ao longo de 1h. Dado que uma falha acabou de ocorrer, determine o tempo médio de ocorrência de uma nova falha.

Distribuição Exponencial - Exemplo

- · Sabemos que X segue o modelo Poisson com alguma taxa λ .
- · Denotando por Y o tempo decorrido até a próxima falha, temos que

$$P(Y > t) = P(X = 0 \text{ nas próximas } t \text{ horas.})$$
$$= \frac{e^{-\lambda t} (\lambda t)^0}{0!} = e^{\lambda t}.$$

Logo,

$$P(Y \le t) = 1 - P(Y > t) = 1 - e^{-\lambda t} \Longrightarrow Y \sim Exp(\lambda)$$

e,

$$E(Y) = \frac{1}{\lambda}$$
.

 Ou seja, em média, um nova falha ocorrerá em 1/λ horas, em que λ é a taxa média de ocorrência de falhas ao longo de 1h.

Distribuição Gaussiana

Algumas variáveis contínuas exibem um comportamento muito particular quando visualizamos a distribuição de frequências de seus valores.

- Concentração de valores em torno de um valor central;
- Simetria em torno do valor central;
- Frequência pequena de valores muito extremos.

O matemático alemão Karl Gauss popularizou um modelo proposto para a distribuição de probabilidades de variáveis do tipo descrito anteriormente.

A curva descrita por este modelo é conhecida como Curva de Gauss (ou também como Curva Normal)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty$$

A função de densidade de X só depende de dois valores: a média μ e o desvio-padrão σ

 π e e são constantes conhecidas ($\pi \approx 3.14159...$ e $e \approx 2.71828...$)

A média μ de uma variável aleatória X que siga o modelo Gaussiano pode assumir qualquer valor na reta real

$$-\infty < \mu < \infty$$

O desvio-padrão σ de qualquer variável aleatória X só pode assumir valores maiores do que zero

$$\sigma > 0$$

 μ e σ são os parâmetros do Modelo Gaussiano Dizemos que $X \sim \text{Normal } (\mu, \sigma)$

A curva gaussiana (ou curva Normal) é definida pela média μ e pelo desvio-padrão σ.

• O parâmetro μ informa onde está centrada a curva gaussiana

Curvas normais com $\mu_{\rm 1} < \mu_{\rm 2}$ e $\sigma_{\rm 1} = \sigma_{\rm 2}$.

 A forma do sino (mais "achatado" ou mais "alongado") é dada pelo valor do desvio-padrão σ

Para cada combinação de μ e σ , existe uma curva gaussiana diferente

A curva gaussiana tem a forma de um sino e é simétrica em torno da

média μ ;

$$P(X < 3000-a) = P(X > 3000+a)$$

Simetria

Propriedades da Distribuição Normal

Área fixa entre intervalos simétricos

Cálculo de Probabilidade na Curva Normal

Considere uma variável aleatória X com distribuição Normal (μ, σ) . Ou seja, $X \sim \text{Normal}(\mu, \sigma)$

Probabilidade de X estar entre x_1 e x_2 : P($x_1 < X < x_2$)

Cálculo de Probabilidade na Curva Normal

Curvas Normais diferentes -> áreas diferentes

Distribuição Normal

Distribuição Normal

Distribuição Normal

Se X é uma variável aleatória com distribuição normal de média μ e variância σ^2 , a função densidade de probabilidade de X é definida por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{\sigma^2}(x-\mu)^2},$$

para $-\infty < x, \mu < +\infty$ e $\sigma > 0$. Notação: $X \sim N(\mu, \sigma^2)$.

Descrição de f(x) de uma N(0,1)

Distribuição Normal

Padronização

Se $X \sim N(\mu, \sigma^2)$ e $Z \sim N(0, 1)$ (normal padrão), então

$$P(X \leq X) = P\left(Z \leq \frac{X - \mu}{\sigma}\right),$$

ou seja, todos os cálculos podem ser feitos pela normal padrão.

As probabilidades na curva Normal são calculadas com o auxílio de uma tabela.

Como existem infinitas combinações dos valores para μ e σ , seria inviável tabelar as probabilidades de todas as distribuições Normais possíveis.

Sendo assim, uma única variável Normal possui suas probabilidades tabeladas: a variável Z com média igual a 0 e desvio-padrão igual a 1.

$$Z \sim \text{Normal } (\mu=0 ; \sigma=1)$$

A variável aleatória Normal com média μ=0 e desvio-padrão σ=1 é chamada de

Variável Normal Padrão

Função de distribuição acumulada: Tabela Z

$$z \ge 0$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201

Função de distribuição acumulada: Tabela Z

$$z \leq 0$$

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.03	-0.01	-0.00
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
0.1-	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.251086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000

A Tabela Normal Padrão (Tabela Z) Parte Negativa

Linha: Parte inteira e primeira casa decimal de *z*

	0.00	0.01	0.02	0.03 —	Coluna: Segunda casa decimal de z
-2.9	0.0019	0.0018	0.0017	0.0017	
-0.8	0.2119	.: 0.2090	0.2061	0.2033	

A Tabela Normal Padrão (Tabela Z) Parte Positiva

Linha: Parte inteira e primeira casa decimal de *z*

)	z	0.00	0.01	0.02	0.03 —	Coluna: Segunda casa decimal de z
	0	0.5000	0.5039	0.5039	0.51197	
	: 1.5	0.9331	0.9344	0.9357	0.93699	

Exemplo: Seja Z uma v.a. normal padronizada. Calcule:

$$P(Z < -1.97) = ?$$

P(Z < -1.97) = 0.0244, obtida direto da tabela.

$$P(Z > 1.84) = ?$$

$$P(Z > 1.84) = P(Z < -1.84) = 0.0329,$$

obtida direto da tabela
e por simetria.

$$P(-1.97 < Z < 0.86) = P(Z < 0.86) - P(Z < -1.97)$$

= 0.8051 - 0.0244
= 0.7807

A Tabela Normal Padrão (Tabela Z)

Cálculo de probabilidades

Por exemplo, a probabilidade $A = P(0 \le X \le 1)$ pode ser calculada pela diferença

$$P(X \le 1) - P(X \le 0) = 0,841 - 0,5 = 0,341.$$

A Tabela Normal Padrão (Tabela Z)

Cálculo de probabilidades

Para calcular a probabilidade $A = P(-1 \le X \le 1)$ podemos usar o fato da distribuição ser simétrica na média. Assim,

$$P(-1 \le X \le 1) = 2 \times P(0 \le X \le 1) = 2 \times 0,341 = 0,682.$$

Cálculo de percentis na curva Normal

Percentil de ordem 2.5

Que valor de Z na tabela Normal Padrão deixa uma área de 0.0250 abaixo dele ?

Ou seja, quem é a tal que P[Z < a] = 0.0250 ?

Como usar a tabela Normal Padrão para calcular probabilidades em uma curva Normal qualquer?

Padronização de uma variável aleatória Normal

Podemos transformar uma variável aleatória $X \sim Normal (\mu, \sigma)$ em uma variável aleatória $Z \sim Normal (0, 1)$ usando a expressão:

$$Z = \frac{X - \mu}{\sigma}$$

Padronização de uma variável aleatória Normal

$$X \sim Normal(\mu,\sigma)$$

$$Z \sim Normal(0,1)$$

$$z_2 = \frac{x_2 - \mu}{\sigma}$$

Calculando probabilidades de X utilizando a tabela Z

$$P[X < 9] = P\left[\frac{X - \mu}{\sigma} < \frac{9 - \mu}{\sigma}\right] = P\left[\frac{X - 10}{2} < \frac{9 - 10}{2}\right]$$
$$= P[Z < -0.5] = 0.3085$$

$$P[X > 13] = P[\frac{X - 10}{2} > \frac{13 - 10}{2}] = P[Z > 1.5]$$
$$= P[Z < -1.5] = 0.0668$$

Exemplo 1: Se X tem distribuição Normal com $\mu = 40$ e $\sigma = 6$, encontre o valor de x tal que P[X < x] = 0.45.

Se
$$P[X < x] = 0.45$$
.

então P(
$$Z < (x-40)/6$$
) = 0.45.

Mas
$$P(Z < -0.13) = 0.45$$
 (da tabela);

Logo
$$(x-40)/6 = -0.13$$

$$\Rightarrow x = 40 + (-0.13)6$$

$$= 40 - 0.78$$

$$= 39.22.$$

Ou seja,
$$39.22$$
 é o percentil 45 da distribuição de X .

$$z=\frac{x-40}{6}$$

Exemplo 2: Se X tem distribuição Normal com $\mu = 40$ e $\sigma = 6$, encontre o valor de x tal que P[X > x] = 0.14.

Se P[
$$X < x$$
] = 0.86
então P($Z < (x-40)/6$) = 0.86.
Mas P($Z > 1.08$) = P($Z < -1.08$)
= 0.14 (da tabela);
Logo ($x-40$)/6 = 1.08
 $\Rightarrow x = 40 + (1.08)6$
= 46.48

Ou seja, 46.48 é o percentil 86 da distribuição de X.

Cálculo do Percentil de ordem 100a da distribuição Normal

$$P_{100\alpha} = \mu + z_{(1-\alpha)} \cdot \boldsymbol{\sigma}$$

onde α é a ordem do percentil (0 < α < 1) e

 $z_{(1-\alpha)}$ é o valor na tabela Z que deixa uma área de (1- α) acima dele.

Inicial:

Suponha que X é o peso de bebês ao nascer e Exemplo que, em certa população, X tem distribuição que pode ser aproximada pela Normal com $\mu = 3000g \ e \ \sigma = 1000g.$

Qual é a porcentagem de bebês que nascem com peso abaixo de 1500g ?

$$P[X < 1500] = P\left[\frac{X - 3000}{1000} < \frac{1500 - 3000}{1000}\right]$$
$$= P[Z < -1.5] = 0.0068$$

0.68% dos bebês têm peso inferior a 1500g. Qual é a porcentagem de bebês que nascem com peso acima de 4000g ?

$$P[X > 4000] = P\left[Z > \frac{4000 - 3000}{1000}\right]$$
$$= P[Z > 1.0] = P[Z < -1.0] = 0.1587$$

$$P[2500 < X < 3500] = P[X < 3500] - P[X < 2500]$$

$$= P \left[Z < \frac{3500 - 3000}{1000} \right] - P \left[Z < \frac{2500 - 3000}{1000} \right]$$

$$= P \left[Z < 0.5 \right] - P \left[Z < -0.5 \right]$$

$$= 0.6915 - 0.3085 = 0.3830$$

Qual valor de peso dos bebês separa os 10% mais leves?

1720 gramas

$$\alpha = 0.10$$

$$P_{10} = 3000 + z_{(1-0.1000)} \times 1000$$

$$= 3000 + z_{(0.9000)} \times 1000$$

$$= 3000 + (-1.28) \times 1000$$

$$= 3000 - 1280 = 1720$$

Qual valor de peso dos bebês separa os 10% mais pesados?

4280 gramas

$$\alpha = 0.90$$

$$P_{10} = 3000 + z_{(1-0.9000)} \times 1000$$

$$= 3000 + z_{(0.1000)} \times 1000$$

$$= 3000 + 1.28 \times 1000$$

$$= 3000 + 1280 = 4280$$

Aplicações do Modelo Gaussiano: Cálculo de Faixas de Referência

Faixas de Referência são formadas por dois percentis

Exemplo: uma faixa de referência de 90% é formada pelos percentis 5 e 95

Cálculo de Faixas de Referência utilizando o modelo Gaussiano

Seja X a variável aleatória que representa a característica para a qual queremos construir uma faixa de referência.

Exemplo: X é o peso de recém-nascidos

Se $X \sim \text{Normal } (\mu, \sigma)$, então uma faixa de referência de $(1-\alpha)100\%$ é formada pelos percentis

$$P_{(\alpha/2)100}$$
 e $P_{(1-\alpha/2)100}$

Exemplo: uma faixa de referência de 90% $(\alpha=0.10)$ é formada pelos percentis P_5 e P_{95}

Cálculo de Faixas de Referência utilizando o modelo Gaussiano

No exemplo do peso dos recém-nascidos (X), se pudermos supor que $X \sim \text{Normal } (\mu = 3000 \text{ ; } \sigma = 1000)$,

uma faixa de referência de 80% seria dada pelos percentis P_{10} = 1720 e P_{90} = 4280 (já calculados anteriormente)

Faixa de Referência de 80% para o peso de recém-nascidos

1720 gramas a 4280 gramas

Cálculo de Faixas de Referência utilizando o modelo Gaussiano

Relembrando o cálculo de percentis com o modelo gaussiano e a definição de faixa de referência,

uma faixa de referência de (1-α)100% é dada pela expressão

$$[\mu + z_{(1-\alpha/2)} \cdot \sigma ; \mu + z_{(\alpha/2)} \cdot \sigma]$$

$$\downarrow z_{(1-\alpha/2)} = -z_{(\alpha/2)} \text{ (por simetria)}$$

$$[\mu - z_{(\alpha/2)} \cdot \sigma ; \mu + z_{(\alpha/2)} \cdot \sigma]$$