MATH 153 Ch. 10 & 12 Formula Sheet

Conic Sections

For unshifted standard forms of conic sections, let h = 0, k = 0.

Parabolas Graph $(x-h)^2 = 4p(y-k)$ $(y-k)^2 = 4p(x-h)$ Equation $y = (x - h)^2 + k$ $x = (y - k)^2 + h$ Directrix y = k - px = h - pFoci (h, k+p)(h+p,k)Vertices (h,k)(h,k)

Parametric Equations

General Form of Parametric Equations

$$x = f(t), \quad y = g(t), \quad a \le t \le b$$

Parametric Equations of an Ellipse

$$x = a\cos(\omega)t, \quad y = b\sin(\omega)t$$

Traces an ellipse exactly once in a counter-clockwise direction starting at the point (a,0) in the range $0 \le t \le 2\pi$

Parametric Derivatives

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ where } \frac{dx}{dt} \neq 0$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Parametric Tangents

Tangent Line: y = F(a) + m(x - a) where $\frac{d}{dx}\Big|_{t=a} = F'(a)$ Horizontal Tangents: $\frac{dy}{dt} = 0$, where $\frac{dx}{dt} \neq 0$ Vertical Tangents: $\frac{dx}{dt} = 0$, where $\frac{dy}{dt} \neq 0$

Parametric Areas Under Curves

$$A = \int_{\alpha}^{\beta} g(t)f'(t) dt, \quad a = f(\alpha), b = f(\beta)$$

$$A = \int_{\beta}^{\alpha} g(t)f'(t) dt, \quad b = f(\alpha), a = f(\beta)$$

where α and β are values of t, a and b are values of x, y.

Parametric Arc Length

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The calculated arc length may not be proportional to the number of times the parametric curve has been traced.

Parametric Surface Areas

$$S = \int 2\pi y \, ds$$
 rotation about x-axis

$$S = \int 2\pi x \, ds$$
 rotation about y-axis

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \quad \text{if } x = f(t), y = g(t), \alpha \le t \le \beta$$

Polar Coordinates

Alt. Representations of Polar Coordinates

$$(r, \theta + 2\pi n)$$

$$(-r, \theta + (2\pi + 1)n)$$

Polar to Cartesian Formula

$$x = r \cos(\theta)$$

$$y = r \sin(\theta)$$

Cartesian to Polar Formula

$$r^2 = x^2 + y^2; \quad r = \sqrt{x+y}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Basic Polar Graphs

Symmetry Tests

· · · · · · · · · · · · · · · · · · ·	
Symmetric about the polar axis or x-axis	$(r, -\theta)$
Symmetric about the pole/origin	$(-r, \theta)$
Symmetric about $\theta = \pi/2$ or y-axis	(-r,- heta)

Lines

Lines				
	Polar	Cartesian		
	$\theta = \beta$	$y = (\tan \beta)x$		
	$r\cos\theta = a$	x = a		
	$r\sin\theta = b$	y = b		

Circles

ſ	Polar	Cartesian			
Ī	r = a	$x^2 + y^2 = a^2$			
	$r = 2a\cos\theta$	$(x-a)^2 + y^2 = (a)$			
	$r = 2b\sin\theta$	$x^2 + (y - b)^2 = (b)$			

Polar Tangents

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Polar Areas Under Curves

$$A = \int^{\beta} \frac{1}{2} r^2 d\theta$$

Polar Arc Length

$$L = \int ds = \int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Polar Conic Sections

$$\mbox{Horizontal Conic: } r = \frac{ed}{1 \pm e \cos \theta}, \quad x \pm d$$

Vertical Conic:
$$r = \frac{ed}{1 \pm e \sin \theta}, \quad y \pm d$$

The conic is an ellipse if e < 1, a parabola if e = 1 or a hyperbola if e > 1.

3D Coordinate Space

Distance Between Two Points in 3D

$$d(P_1, P_2) = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Eq. of Sphere with center (h, k, l) and radius r:

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

Vectors

Magnitude of a Vector:
$$|\vec{a}|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Direction of a Vector: $\theta = \arctan\left(\frac{\vec{a}_x}{\vec{a}_y}\right)$

Unit Vector: $\vec{u} = \frac{1}{|\vec{a}|} \vec{a}$

Net Angle Between Two Vectors

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Direction Cosines

$$\frac{1}{|a|}\vec{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

Scalar projection of \vec{b} onto \vec{a} :

$$\operatorname{comp}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

Vector projection of \vec{b} onto \vec{a} :

$$\mathrm{proj}_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}^2|}\vec{a}$$

Dot Product

Given two vectors $\vec{a} = \langle a_1, a_2, \dots, a_n \rangle$ and $\vec{b} = \langle b_1, b_2, \dots, b_n \rangle$, the dot product $\vec{a} \cdot \vec{b}$ is:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\vec{a} \cdot \vec{b} = |a||b|\cos\theta$$

Cross Product

Given two vectors $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ in \mathbb{R}^3 , the cross product $\vec{a} \times \vec{b}$ is:

$$\vec{a} \times \vec{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$
$$|\vec{a} \times \vec{b}| = |a||b| \sin \theta$$

Other Formulas

Exponent Properties

$$a^{m}a^{n} = a^{n+m}$$

$$(a^{n})^{m} = a^{nm}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$\left(\frac{a^{n}}{b^{m}}\right) = \frac{a^{nk}}{b^{mk}}$$

$$\frac{1}{a^{-n}} = a^{n}$$

Logarithm Properties

$$\begin{split} \log_b(M\cdot N) &= \log_b(M) + \log_b(N) \\ \log_b\left(\frac{M}{N}\right) &= \log_b(M) - \log_b(N) \\ \log_b(M^k) &= k \cdot \log_b(M) \end{split}$$

Trignometric Identities

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$= 2\cos^2(x) - 1$$

$$= 1 - 2\sin^2(x)$$

Trigonometry Reference

Common Values of Sine and Cosine

θ	Cosine	Sine
0	1	0
$\pi/6$	$\sqrt{3}/2$	1/2
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	1/2	$\sqrt{3}/2$
$\pi/2$	0	1
π	-1	0
$3\pi/2$	0	-1