Sparse Autoencoders

Autoencoders are neural networks that try to learn the identity function. Sparsity constraints force the learned representation to be nontrivial.

Figure: Autoencoder

Cost Function

Let the hidden layer have p units, and let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable activation function. The neural network is parameterized by terms weights $W^{(1)} \in \mathbb{R}^{p \times n}$ and $W^{(2)} \in \mathbb{R}^{n \times p}$ and bias terms $b^{(1)} \in \mathbb{R}^p$ and $b^{(2)} \in \mathbb{R}^n$. The prediction on an input $x \in \mathbb{R}^n$ is

$$h_{W,b} = f(W^{(2)}f(W^{(1)}x + b^{(1)}) + b^{(2)})$$

Given training examples $x^{(1)},\ldots,x^{(m)}\in\mathbb{R}^n$ the objective function is

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} \ell(h_{W,b}(x^{(i)}), x^{(i)}) + \lambda \psi(W,b) + \beta \sum_{j=1}^{p} \phi(\hat{\rho}_{j})$$

where

$$\hat{\rho}_j = \frac{1}{m} \sum_{j=1}^m f\left((W_j^{(1)})^T x^{(i)} + b_j^{(1)} \right)$$

is the average activation of the jth hidden unit over the training set and $\ell:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ is a loss function. The function ψ is a regularizer.

A sample slide

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

An itemized list:

- ▶ itemized item 1
- ▶ itemized item 2
- itemized item 3

Theorem

In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.