Nummernschilderkennung mit Python

Anne-Sophie Bollmann, Susanne Klöcker, Pia von Kolken, Christian Peters 19. Januar 2021

Inhalt

1. Einleitung

2. Extraktion des Nummernschildes

3. OpenCV

4. Tesseract

Einleitung

Einleitung

Hier kommt irgendwas fffff hin.

Ein Titel

Hier kann man einfach was hinschreiben. Aufzählungen gehen natürlich auch:

- Dies
- und
- das

Extraktion des Nummernschildes

Convolutional Neural Networks

Abbildung 1: Convolutional Neural Network. ¹

Input: Bild mit Auto \longmapsto **Output:** Bounding Box

¹Bildquelle: https://de.wikipedia.org/wiki/Convolutional_Neural_Network

Implementierung mit Keras

• TODO

OpenCV

OpenCV

Was ist OpenCV?

- OpenCV ist eine plattformübergreifende Bibliothek, für Echtzeit-Computer-Vision-Anwendungen
- beinhaltet Algorithmen für die Bildverarbeitung und im Rahmen von Computer Vision (CV) auch für maschinelles Lernen

Wofür nutzen wir OpenCV?

 Nutzung für die Verarbeitung des erkannten Nummernschildes (z.B. Tresholding), um die Zeichen besser zu erkennen und richtig auszulesen

Beispiel für die Anwendung von OpenCV

OpenCV wurde bereits auf Nummernschildverarbeitung verwendet:

Abbildung 2: Original

Abbildung 3: Graustufen

Beispiel für die Anwendung von OpenCV

Abbildung 4: Tresholding

Abbildung 5: Konturen

Beispiel für die Anwendung von OpenCV

Abbildung 6: Aussortierung

Abbildung 7: Schwarze Schrift auf weissem Hintergrund

Auf das finale Bild (Abbildung 7) wird anschliessend Tesseract angewendet, das die Nummern und Buchstaben ausgibt

Tesseract

Tesseract

Test

Literatur i