Dr. Sultan Alfarhood

Linear Regression

- Linear regression is a popular regression learning algorithm that learns a model which is a linear combination of features of the input example.
- The hyperplane in linear regression is chosen to be as close to all training examples as possible.

$$y = wx + b$$

- Logistic regression predicts the output of a categorical dependent variable.
- Therefore, the outcome must be a categorical or discrete value.
 - Yes or No
 - 0 or 1
 - True or False
 - etc.
- Instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1.
- Logistic regression is used for solving the **classification** problems.

- In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic function
 - Predicts two maximum values (0 or 1).
- The curve from the logistic function indicates the likelihood of something
 - Such as whether the cells are cancerous or not, a mouse is obese or not based on its weight, etc.

Logistic Function (Sigmoid Function)

$$f(x) = \frac{1}{1 + e^{-(x)}}$$

It maps any real value into another value within a range of 0 and 1

Logistic Regression Model

$$f_{w,b}(x) = \frac{1}{1 + e^{-(wx+b)}}$$

CSC462: MACHINE LEARNING (FALL 2024)

6

Logistic vs Linear Regression

- Both utilize a linear equation to arrive at predictions.
- In Linear regression, the result is continuous.
- In Logistic Regression, the outcome is a continuous number between the values of 0 and 1.

Likelihood Function

- In statistics, the likelihood function defines how likely the observation (an example) is according to our model.
- The optimization criterion in logistic regression is called **maximum likelihood**, we now maximize the likelihood of the training data according to our model:

$$L_{w,b} = \prod_{i=1}^{n} \left(f_{w,b}(x_i)\right)^{y_i} \left(1 - f_{w,b}(x_i)\right)^{(1-y_i)}$$

$$f_{w,b}(x_i) \text{ is the predicted likelihood}$$

$$y_i \text{ is the true value (1 or 0)}$$

$$\text{When } y_i = 1 \text{ When } y_i = 0$$

Parameters Learning

Classification Evaluation

- Many metrics can be used to evaluate the predictions for these problems
- Here are some:
 - 1. Classification Accuracy
 - 2. Confusion Matrix
 - 3. Precision, Recall, and F₁ score
 - 4. Area Under ROC Curve (AUC)

10 L JA

Classification Accuracy

- It is the number of correct predictions made over all predictions made
- This is only suitable when there is an equal number of observations in each class (balanced dataset) and all predictions and prediction errors are of equal importance

• The most common evaluation metric for classification problems

Python Cheatsheet

Data Preprocessing Feature Engineering & EDA **Model Building Model Evaluation** import matplotlib.pyplot import pandas as pd import train_test_split import metrics df[<column>].plot() df.isnull() train_test_split(...) metrics.plot_confusion_mat rix() df.isull().count() metrics.accuracy_score() df[<column>].quantile(...) import LogisticRegression df.isnull().sum() metrics.roc_curve() LogisticRegression(...) etrics.roc_auc_score() df.drop() import LabelEncoder reg.fit(X_train, y_train) LabelEncoder().fit_transform() df.dropna() reg.predict(X_test) df.fillna() reg.predict_proba(X_test) import seaborn df.corr() sns.heatmap() visit www.visual-design.net for step by step guide

• https://colab.research.google.com/drive/1HweQRlgnm3SrO5TfZpumEjLm8xwaQAMw?usp=sharing

Thank you

