Département Réseaux et Télécommunications

SAE24 Mathématiques

Toutes les réponses doivent être justifiées.

Exercice 1 On considère le polynôme

$$P(X) = x^4 - 2x^3 + x - 2$$

- 1. Déterminer un intervalle [a, b] qui contient toutes les solutions réelles de l'équation P(x) = 0.
- 2. Calculer P'(x).
- 3. Déterminer le reste de la division euclidienne de P(x) par P'(x).
- 4. Déterminer la suite de Stum de P(x)
- 5. Déterminer Le nombre de solutions réelles de l'équation P(x) = 0.

Exercice 2 On considère le polynôme $P(x) = x^3 + x^2 + 4x + 2$. On admet que P possède une solution α entre -2 et 2 à l'équation P(x) = 0.

- 1. On veut déterminer une valeur approchée de α par la méthode de dichotomie en posant $a_1 = -2$ et $B_1 = 2$. Déterminer a_2, b_2 et a_3, b_3 . Si on veut une valeur approchée de α à 10^{-3} près, jusqu'à quel n faut-il calculer a_n, b_n ?
- 2. On veut déterminer une valeur approchée de α par la méthode de Newton en posant $x_0=0$. Déterminer x_1 et x_2 . D