Drylab Discipline

- Drylab experiments are experiments
- Think about what you are about to do
- Know your tools
- A new directory for each experiment
- Meaningful file names
- Remove clutter (but make sure it **is** clutter)
- Keep a "lab notebook" 00README

Drylab Discipline: common problems

- No log: uh... what did I do there?
- Overwriting files
- Look before you leap:
 - what does that file contain?
 - How was that file created?
- Mis-identifying file content
- RTFM, RTFM, RTFM

Conserved Regions in Sequences

- Things that tend to stay conserved:
 - Structure
 - Function
- Conserved regions are a good place to start looking for biological importance

Protein Structure

- The 3D arrangement of atoms in a protein molecule
- Proteins fold into conformations driven by
 - Hydrogen bonding
 - ionic interactions
 - hydrophobic packing
- Structure is important for understanding how proteins function
- Determining a structure takes more time & effort than a sequence, no guarantees

Protein structure

- Primary: amino-acid sequence
- Secondary: helices, sheets, turns
- Tertiary: three dimensional structure
- Quarternary: 3D
 structure aggregating
 >1 polypeptide chains

Why is Structure Important?

https://imgur.com/a/izZxc

Multiple Sequence Alignments: Conserved Regions

- Multiple Sequence Alignments detecting conserved regions
 - Revealing evolutionary relationships between more than 2 proteins
 - Structure
- The information represented by these conserved regions can be used to align sequences, search similar sequences in the databases or annotate new sequences.
- Different methods exist to build models of these conserved regions:
 - Consensus sequences;
 - Patterns
 - Position Specific Score Matrices (PSSMs)
 - Profiles;
 - Hidden Markov Models (HMMs),
 - and a few others.

MSA reveals secondary structures

STA3_MOUSE ZA70 MOUSE ZA70 HUMAN PIG2 RAT MATK_HUMAN SEM5_CAEEL P85B_BOVIN VAV MOUSE YES_XIPHE TXK_HUMAN PIG2 HUMAN YKF1 CAEEL SPK1 DUGTI STA6_HUMAN STA4 MOUSE SPT6_YEAST

STA3 MOUSE ZA70_MOUSE ZA70 HUMAN PIG2 RAT MATK_HUMAN SEM5 CAEEL P85B BOVIN VAV_MOUSE YES_XIPHE TXK HUMAN PIG2 HUMAN YKF1_CAEEL SPK1_DUGTI STA6 HUMAN STA4_MOUSE SPT6_YEAST

MSA reveals secondary structures

Representing Sequence Conservation

- Consensus sequence
- Sequence pattern
- Position specific score matrix
- Hidden Markov Model

Consensus Sequence

- The consensus sequence method is the simplest method to build a mode from a multiple sequence alignment.
- The consensus sequence is built using the following rules:
 - Plurality, or "majority wins".
 - Skip too much variation.

Consensus Sequence

- The consensus sequence method is the simplest method to build a mode from a multiple sequence alignment.
- The consensus sequence is built using the following rules:
 - Plurality, or "majority wins".
 - Skip too much variation.

Building a consensus sequence

Pros and Cons of Consensus Sequence

- Pros:
 - Easy to implement
 - Fast
- Cons
 - No information about column variation
 - Very dependent on the training set.
 - No scoring, only binary result (YES/NO)
- When to use it?
 - Useful to find highly conserved signatures

Sequence Patterns

- A pattern describes a set of alternative sequences, using a single expression.
- In computer science, patterns are known as regular expressions.
- The Prosite syntax for patterns:
 - uses the standard IUPAC one-letter codes for amino acids (G=Gly, P=Pro, ...),
 - each element in a pattern is separated from its neighbor by a '-',
 - the symbol 'X' is used where any amino acid is accepted,
 - ambiguities are indicated by square parentheses '[]' ([AG] means Ala or Gly),
 - amino acids that are not accepted at a given position are listed between a pair of curly
 - brackets '{ }' ({AG} means any amino acid except Ala and Gly),
 - repetitions are indicated between parentheses '()' ([AG](2,4) means Ala or Gly between
 - 2 and 4 times, X(2) means any amino acid twice),
- a pattern is anchored to the N-term and/or C-term by the symbols '<' and '>'
 respectively.

Building patterns

Search databases

Sequence Signatures

- Post-translational signatures:
- Protein splicing signature:
- [DNEG]-x-[LIVFA]-[LIVMY]-[LVAST]-H-N-[STC]
- Tyrosine kinase phosphorylation site:
- [RK]-x(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y
- DNA-RNA interaction signatures:
- Histone H4 signature:
- G-A-K-R-H
- • p53 signature:
- M-C-N-S-S-C-[MV]-G-G-M-N-R-R
- Enzymes:
 - L-lactate dehydrogenase active site:
- [LIVMA]-G-[EQ]-H-G-[DN]-[ST]
- Ubiquitin-activating enzyme signature:
- P-[LIVM]-C-T-[LIVM]-[KRH]-x-[FT]-P

Patterns: conclusions [RK]-x(3)-[DE]-x(2)-Y

- Patterns are appropriate for models of short sequence signatures.
- Pros:
 - Pattern matching is fast and easy to implement.
 - Models are easy to design & understand
- Cons:
 - Poor model for insertions/deletions (indels).
- Small patterns find a lot of false positives. Long patterns are very difficult to design.
- Poor predictors that tend to recognize only the sequence of the training set.
 - No scoring system, only binary response (YES/NO).
- When I use patterns?
 - To search for small signatures or active sites.
 - To communicate with others

Position Specific Scoring Matrix

Uses the *frequencies* of each residue in a specific position of a multiple alignment.

Position Specific Scoring Matrix

- Create a PSSM from "other" sequences
- •Sliding window: slide across a target sequence, note high scoring matches

PSI-BLAST

Position Specific Iterative BLAST

BLAST - PSI-BLAST

PSI-BLAST - results

PSI-BLAST

- Increases sensitivity
- May decrease specificity. If we get an unrelated hit, we will get to unrelated sequences (contamination). This gets worse with each iteration. Also known as Drift
- Rule of thumb: **<u>Drift Happens</u>**. Within 4-7 iterations.

