Modèles et Algorithmes pour la Décision dans l'Incertain

Patrice PERNY

Sorbonne Université

Patrice.Perny@lip6.fr

http://madi.lip6.fr

Cours MADI Master ANDROIDE - P. Perny Décision en IA / RO Multicritère Théorie Décision de la automatique décision Groupe Incertain · Aide à la décision ➤ Elaboration de modèles formels (actions possibles, préf., croyances,...) et analyse axiomatique > Procédures d'exploitation pour le choix, le classement > Systèmes décisionnels et SIADs

Plan et contenu du cours

Partie I: Modèles graphiques probabilistes

Partie II : Modèles pour la décision ds l'incertain et le risque

- S1 : modèles pour l'incertain total, modèle EU dans le risque
- S2: Le modèle Rank Dependent Utility
- **\$3**: Arbres de décision et PDMs à horizon fini
- S4: PDMs à horizon infini, modèle BEU, CEU
- S5 : Théorie des possibilités, utilité qualitatives, PDM possibilistes

Partie III: Modèles graphiques pour les préférences

Chapitre I : décision dans l'incertain et décision dans le risque

1. Introduction à la décision dans l'incertain et dans le risque

Décision dans l'incertain et dans le risques.

Arbitrage entre des choix dont les conséquences sont mal connues. Risque = incertain probabilisé.

- ⇒ Modèles formels
 - Préférences, croyances
 - Critères et règles de décision EU, RDU
- ⇒ propriétés caractéristiques, pouvoir descriptif, paramétrage pour modéliser des comportements

Décision dans le risque

Risque = contexte incertain probabilisé

Contexte: 1 agent, n actions possibles aux conséquences incertaines (connues en probabilités)

But: Choisir la meilleure action

a ≿ b ?

=> Modèle décisionnel

Incertain et Risque

FORMALISME DE LA DÉCISION L'INCERTAIN TOTAL :

S ensemble des états de la nature 2^S ensemble des événements X ensemble des conséquences

Acte : $f : S \rightarrow X$

FORMALISME DE LA DÉCISION DANS LE RISQUE :

Hypothèse : on connaît la loi de probabilité $P: 2^S \to X$ A tout acte f on associe la loi de probabilité $P_f: 2^S \to X$ avec $P_f(x) = P(\{s \in S : f(s) = x\})$

Exemples de jeux avec un dé

Exemple : Dé 2 jeux

1 2 3 4 5 6

 $g \quad 1 \quad -1 \quad 0 \quad 3 \quad -1 \quad 0$

2 jeux f et g:

Incertain: on compare des actes

f 1 0 1 0

Risque : on compare des lois de proba sur X

2. Notions de base pour la décision dans le risque

Dominance stochastique d'ordre 1

$$X ext{ DS1 } Y ext{ ssi } \forall x \in X, P(X > x) \ge P(Y > x)$$

non Y DS1 X

Dominance stochastique d'ordre 2

Fonction cumulative : $F_X(x) = P(X \le x)$

Fonction décumulative : $G_X(x) = P(X > x) = 1 - F_X(x)$

$$X$$
 DS2 Y ssi $\forall x \in X, \int_{-\infty}^{x} F_X(t)dt \le \int_{-\infty}^{x} F_Y(t)dt$
 X DS2 Y ssi $\forall x \in X, \int_{-\infty}^{x} G_X(t)dt \ge \int_{-\infty}^{x} G_Y(t)dt$

 $X DS1 Y \Rightarrow X DS2 Y$

ETALEMENT À MOYENNE CONSTANTE

on dit que Y se déduit de X par un étalement à moyenne constante (mean preserving spread), noté Y MPS X ssi :

$$\begin{cases} E(X) = E(Y) \\ X DS2 Y \end{cases}$$

Exemple : Y plus risqué que X

Attitude vis-à-vis du risque

Aversion au risque :

Un agent est adversaire du risque si pour toute loterie X il préfère un gain certain E(X) que de jouer X

Aversion à l'accroissement du risque :

Un agent a de l'aversion pour un accroissement du risque si, pour toute paire de variables aléatoire X, Y telles que Y MPS X (i.e. Y résulte d'un étalement de X) alors il préfère X à Y

Equivalent certain et prime de risque

Equivalent certain:

L'équivalent certain d'une variable aléatoire X est le gain certain EC(X) tel que $X \sim EC(X)$ (le décideur est indifférent)

Prime de risque :

 $\rho(X) = E(X) - EC(X) > 0$ pour un adversaire du risque et négative pour un décideur qui a du goût pour le risque

3. Le modèle EU pour la décision dans le risque

Vers un modèle plus discriminant

- DS1 et si adversaire du risque DS2, MPS sont des relations de préférences naturelles mais laissent beaucoup de distributions incomparables,
- Il faut quelque chose de plus discriminant et de bien fondé
- Une solution : le critère de l'utilité Espérée EU

Modèle de l'utilité espérée (EU) pour la décision dans le risque

Actions = loteries probabilistes

X : l'espace des résultats possibles

loterie: Loi de probaPtelle que $\{x \in X: P(x) > 0\}$ est fini

 \mathcal{L} : ensemble des loteries sur X

 $\label{eq:mixage} \textit{mixage de loteries}: \, \forall P,Q \in \mathcal{L}, \forall \lambda \in [0,1],$

 \longrightarrow loterie : $\lambda P + (1 - \lambda)Q \in \mathcal{L}$

Axiomes du modèle EU dans le risque

Axiome 1 (Complète comparabilité transitive).

 $\forall P, Q \in \mathcal{L}, \quad P \succsim Q \quad \text{ou} \quad Q \succsim P$ $\forall P, Q, R \in \mathcal{L}, \quad (P \succsim Q \text{ et } Q \succsim R) \Longrightarrow P \succsim R$

Axiome 2 (Continuité). $\forall P, Q, R \in \mathcal{L}$ tels que $P \succ Q \succ R$, $\exists \alpha, \beta \in]0,1[$ tels que :

 $\alpha P + (1 - \alpha)R \in \mathcal{L} \succ Q$ and $Q \succ \beta P + (1 - \beta)R$

Axiome 3 (Indépendance). $\forall P, Q, R \in \mathcal{L}, \ \forall \alpha \in]0,1]$

 $P \succsim Q \iff \alpha P + (1 - \alpha)R \succsim \alpha Q + (1 - \alpha)R$

Remarques

- u(x): utilité de la conséquence x pour l'agent
- *u* caractérise les préférences de l'agent et son attitude vis-à-vis du risque
- modèle linéaire en fonction des probabilités $U(\alpha P + (1-\alpha) Q) = \alpha U(P) + (1-\alpha) U(Q)$
- Le théorème se généralise au cas de loi de probas quelconques (à support non nécessairement fini)

Théorème

von Neumann et Morgenstern (1947)

Les deux propositions suivantes sont équivalentes :

- (i) (\mathcal{L}, \succeq) vérifie les axiomes 1, 2 et 3
- (ii) il existe un fonction d'utilité $U: \mathcal{L} \longrightarrow \mathbb{R}$ de la forme :

$$U(P) = \sum_{x \in X} P(x)u(x)$$

où $u:X\longrightarrow \mathbb{R}$ est une application définie à une transformation affine positive près, telle que :

 $\forall P, Q \in \mathcal{L}, P \succsim Q \iff U(P) \ge U(Q)$

Propriétés du modèle EU

Proposition 1

X DS1 Y ssi pour toute fonction d'utilité non décroisante $EU(X) \geq EU(Y)$

Proposition 2

X DS2 Y ssi pour toute fonction d'utilité non décroisante et concave $EU(X) \geq EU(Y)$

La concavité de la fonction d'utilité u s'interprète donc comme de l'aversion à l'acroissement du risque. La concavité de u s'interprète aussi comme de l'aversion au risque.

Coefficient d'aversion au risque : (Arrow-Pratt) -u''(x)/u'(x)

Elicitation de la fonction d'utilité

- Notion d'équivalent certain
- Méthode des loteries 50-50
- Méthode de la probabilité variable
- Exemple

4. Modèles pour la décision dans l'incertain total

Décision dans l'incertain total

Le Problème de décision

Événement

- ens. d'états : S (si S fini, $S = \{s_1, \ldots, s_n\}$)
- $A \subseteq S$
- ens. fini de conséquences: $X = \{x_1, \dots, x_m\}$
- Actes = X^S . Acte $f: S \to X$ caractérisé par $(f(s_1), \dots, f(s_n))$
- Preférence Globale : \succsim on X^S

But : Trouver la meilleure action. ⇒ Modèle décisionnel

$$f \succeq g \iff F(f(s_1), \dots, f(s_n), g(s_1), \dots, g(s_n)) \ge 0$$

Exemples de jeux avec un dé

Cette fois on ne connait plus les probas des faces du dé

Exemple : Dé équilibré, 2 jeux f et g :

	1	2	3	4	5	6			0			
f	1	0	1	0	1	0	P_f	0	1/2	1/2	0	0
g	1	-1	0	3	-1	0	P_g	1/3	$\frac{1/2}{1/3}$	1/6	0	1/6

Incertain : on compare des actes

Risque : on compare des lois de proba sur X

Critère de Wald

Définition

- Choisir l'acte dont la pire conséquence est la meilleure : $\operatorname{Argmax}_{f \in \mathcal{V}} \min_{s \in \mathcal{S}} u(f(s)).$
- o idée : principe de prudence.

	s_1	s_2	s_3	min
f_1	20	10	-30	-30
f_2	-10	30	10	-10
f_3	10	20	-5	-5

	s_1	s_2	s_3	min
f_1	20	10	-10	-10
f_2	200	300	-11	-11

Critère Hurwicz

Définition

 Choisir l'acte avec le meilleur compromis entre meilleure et pire conséquence :

$$\operatorname{Argmax}_{f \in \mathcal{V}} \left[\alpha \min_{s \in \mathcal{S}} u(f(s)) + (1 - \alpha) \max_{s \in \mathcal{S}} u(f(s)) \right],$$

avec $\alpha \in [0, 1]$

• idée : compromis entre prudence et optimisme.

	S ₁	<i>s</i> ₂	s ₃	<i>S</i> ₄	Hurwicz
f_1	200	0	0	-10	$\alpha \times (-10) + (1 - \alpha) \times 200$
f_2	200	200	200	-11	$\alpha \times (-11) + (1 - \alpha) \times 200$

Min Max Regret

Définition

• Choisir l'acte dont on regrettera le moins la conséquence : ${\rm Argmin}_{f \in \mathcal{V}} \max_{s \in \mathcal{S}} R(f,s),$

avec $R(f, s) = \max_{g \in \mathcal{V}} u(g(s)) - u(f(s)).$

	s_1	S2	s_3
f_1	20	10	-30
f_2	-10	30	10
f_3	10	20	-5

	s_1	s_2	S 3	max
R_1	0	20	40	40
R_2	30	0	0	30
R_3	10	10	15	15

Critère EU

Expected Utility (Sav 54)

$$f \succsim g \iff U(f) \geq U(g) \ \text{ where } \ U(f) = \sum_{s \in S} p(s).u(f(s))$$

Critère de Laplace

Définition

- Choisir l'acte ayant la conséquence moyenne la plus élevée : $\operatorname{Argmax}_{f \in \mathcal{V}} \sum_{s \in \mathcal{S}} \frac{1}{|\mathcal{S}|} u(f(s)).$
- o idée : les événements sont équiprobables.

-	R	V	В	Σ
f_1	100	0	0	33,3
f_2	0	99	99	66,0

	R	$\neg R$	\sum
f_1	100	0	50,0
f_2	0	99	49,5

Axiomes de Savage P1-P5

 $\mathbf{P1}\ (X^S,\succsim)$ préordre complet (\succsim compl. refl. trans.)

P2 "Sure-thing principle"

$$\forall A \subseteq S, \forall f, g, h, h' \in X^S, (fAh \succsim gAh \iff fAh' \succsim gAh')$$

P3 $\forall A \subseteq S, A \text{ not null}, (f_x \succsim f_y)_A \iff x \succsim_P y.$

P4 $\forall A, B \in S, \forall x, y, x', y' \in X \text{ such that } x \succ_P y \text{ et } x' \succ_P y', f_x A f_y \succsim f_x B f_y \iff f_{x'} A f_{y'} \succsim f_{x'} B f_{y'}.$

P5 X contains at least two elements x, y such that $f_x \succ f_y$.

P6 $\forall f,g \in X^S: f \succ g, \ \forall \ x \in X, \exists \text{ partition } S = \bigcup_{i=1}^n S_i \text{ such that } \forall i=1,\ldots,n, \ xS_if \succ g \text{ et } f \succ xS_ig.$

Théorème de Savage 54

Si les préférences de l'agent vérifient les axiomes P1, P2, P3, P4, P5, P6

alors elles sont représentables par le modèle EU

$$U(f) = \sum_{s \in S} p(s).u(f(s))$$

Conséquences de P2-P3 & P4 P2, P3 Projection de la préférence sur l'espace des conséquences P4 Projection de la préférence sur l'espace des événements