

Finding Dominant Plans Using Plan Evaluation Criteria

Kyle Usbeck and William C. Regli Gerhard Wickler and Austin Tate {kfu22,regli}@drexel.edu

{g.wickler,a.tate}@ed.ac.uk

Overview

- Purpose / Motivation
- Goals
- Approach
 - Qualitatively Different Plans
 - Plan Evaluation Visualization
 - Dominant Plans
- Conclusions

Qualities of Coalition Operations

- Dynamic environments
- Multi-agent cooperation
- Partial-observability
- On-line planning
- Many viable solutions
- Inappropriate actions incur high cost

Planning Under Uncertainty

Coalition Planning

- Challenges
 - Finding plans based on user preference
 - Optimizing unreliable communications

Motivation

IED Change Detection

IED Change Detection is being developed by the US Army Communications – Electronics Research, Development and Engineering Center (CERDEC), to detect IEDs along travel routes using high resolution aerial/overhead imagery. It uses day and night sights and is currently mounted on manned and unmanned aviation systems. The data is sent to a Change Detection Work Station, where a warfighter views day-to-day thermal or TV imagery that is collected by the airborne asset. This system helps an operator to identify and locate "new" environmental changes on a route which could indicate the presence of IEDs or landmines.¹

IED Detection Scenario

- Distributed service composition (Sirin et al. 04)
- Many valid solutions
- Natural plan evaluation trade-offs
- Complex/dynamic communications network
- 13 actions, 70 world-state conditions

Overview

- Purpose / Motivation
- Goals
- Approach
 - Qualitatively Different Plans
 - Plan Evaluation Visualization
 - Dominant Plans
- Conclusions

Goals

- Improve plan construction
- Optimize and visualize plan evaluations
- Improve plan selection

Plan Evaluation Criteria

Agents in Planning

Planning

Task Assignment

Execution

(Tate et al. 98)

Overview

- Purpose / Motivation
- Goals
- Approach
 - Qualitatively Different Plans
 - Plan Evaluation Visualization
 - Dominant Plans
- Conclusions

Domain-independent

- Mixed-initiative (Ferguson et al. 95)
- Distance function (Srivastava et al. 06)
 - Actions present
 - Set of execution states
 - Causal chains

Domain-dependent

- Domain metatheory (Myers & Lee 99)
 - Template features
 - Task features
 - Roles

Qualitatively Different Plans

Goal:

- Improve diversity of plans
- Use the same mechanism for domain-dependent/-independent

Approach:

- Define quantitative evaluations for important factors (e.g. time, monetary cost, network hops)
- Natural trade-offs exist between factors
- Evaluate plans/partial-plans for each criteria

Biasing the planner

Visualizing Plan Evaluations

Plan Evaluation Criteria 1

- Range
 - Theoretic
 - Effective
 - Units
- Direction
 - Maximize
 - Minimize
- Statistics
 - Mean, median, mode, std. dev.

IED detection accuracy: [43%, 80%] (0.0, +INF) MAXIMIZE, mean: 68% transportation cost: [10.53, 11.36] (-INF, +INF) MINIMIZE, mean: 11.15 plan execution time: [42264, 62765] (0.0, +INF) MINIMIZE, mean: 57181 network hop count: [4.0, 6.0] (0.0, +INF) MINIMIZE, mean: 4.65 network bandwidth usage: [5.09, 6.69] (0.0, +INF) MINIMIZE, mean: 5.62 activities in plan: [13.0, 16.0] (0.0, +INF) MINIMIZE, mean: 13.975 longest path length: [10.0, 10.0] (0.0, +INF) MINIMIZE, mean: 10.0 objects used in plan: [4.0, 8.0] (0.0, +INF) MINIMIZE, mean: 5.775

Dominant Plans

Goal: find best candidate plans

 Approach: Iterative Elimination of Strongly Dominated Strategies

Dominant Plans

Plan Evaluation Criteria 1

Overview

- Purpose / Motivation
- Goals
- Approach
 - Qualitatively Different Plans
 - Plan Evaluation Visualization
 - Dominant Plans
- Conclusions

Empirical Results

Contributions

- IED Detection Scenario:
 - Identified key trade-offs between criteria
 - Guided search uncovered a greater variety of dominant plans
- Improve the ability of agents to construct and choose between plans
- Plan evaluation criteria
- Plan evaluation criteria statistics
- Dominant plans
- Plan evaluation visualization

Plan Selection UI

Future Work

- Correlation of partial-plan and complete plan evaluators
- Communication optimization via planning
 - Measuring
 - Execution monitoring
 - Plan repair / replanning

Questions

Kyle Usbeck

http://www.cs.drexel.edu/~kfu22