CAPÍTULO 1: IMAGENS DIGITAIS

Profa Letícia Rittner

EA979 – Introdução à computação gráfica e ao processamento de imagens

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	1	1	2	3	3	3	3	3	2	1	1	0	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	1	1	2	3	4	5	6	7	6	5	4	3	2	1	1	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	0	1	1	2	3	3	3	3	3	2	1	1	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	1	1	2	3	3	3	3	3	2	1	1	0	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	1	1	2	3	4	5	6	7	6	5	4	3	2	1	1	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	0	1	1	2	3	3	3	3	3	2	1	1	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	1	1	2	2	2	2	2	2	2	1	1	0	0	0
0	0	0	1	1	2	2	3	3	3	2	2	1	1	0	0	0
0	0	0	1	1	2	2	3	3	3	2	2	1	1	0	0	0
0	0	0	1	1	2	2	3	3	3	2	2	1	1	0	0	0
0	0	0	1	1	2	2	2	2	2	2	2	1	1	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	1	1	2	3	3	3	3	3	Ω	1	1	0	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	1	1	2	3	4	5	6	7	6	5	4	3	2	1	1	0
0	0	1	2	3	4	5	6	6	6	5	4	3	2	1	0	0
0	0	1	2	3	4	4	5	5	5	4	4	3	2	1	0	0
0	0	1	1	2	3	4	4	4	4	4	3	2	1	1	0	0
0	0	0	1	1	2	3	3	3	3	3	2	1	1	0	0	0
0	0	0	0	1	1	2	2	2	2	2	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Imagens digitais

Principais conceitos

Aquisição

- Direta
 - Olho humano
 - Câmera digital
 - Microscópio
 - Ultrassonografia
- Indireta
 - Câmera de filme fotográfico
 - Tomografia computadorizada (CT)
 - Ressonância magnética nuclear (MRI)

Analógica x Digital

- Analógica
 - Contínua no espaço
 - Contínua em intensidade

- Digital
 - Discreta no espaço
 - Discreta em intensidade

Imagem digital

 A imagem digital é representada por uma matriz onde cada posição é chamada de "pixel" e contém um valor numérico que representa uma cor ou um tom de cinza.

Imagem digital: amostragem e quantização

 É uma matriz onde cada posição é chamada de "pixel" e contém um valor numérico que representa uma cor ou um tom de cinza.

Imagem digital

- Intervalo de valores:
 - □ 0 a 1
 - □ 0 a 255

Imagem digital: pixel, voxel, spel

- Pixel, Voxel, Spel ?
- Imagem digital => spel (space element)
- 2D => pixel (picture element)
 - Raio X (4096 x 4096)
- → 3D => voxel (volume element)
 - → CT multi-slice (700 fatias x 512 x 512)

Imagem Digital: Pixel

Pixel:

- Menor elemento resultante da discretização (amostragem) do sinal analógico no espaço
- Menor amostra de uma imagem
- Quanto mais pixels, maior a quantidade de detalhes

Large pixel size low resolution image

Small pixel size high resolution image

Amostragem

19

Amostragem

20

Resolução espacial

- A resolução espacial está associada à densidade de pixels da imagem. Quanto menor o intervalo de amostragem entre os pixels da imagem, ou seja, quanto maior a densidade de pixels em uma imagem, maior será a resolução da imagem.
- A resolução de uma imagem deve ser escolhida de modo a atender ao grau de detalhes que devem ser discerníveis na imagem.

Resolução espacial

Resolução espacial: Exemplo

- Juna imagem f(x,y) representando uma região de 400cm^2 , consistindo em 20 amostras uniformemente espaçadas na direção x e 20 amostras na direção y.
 - Zada pixel da imagem possui dimensão de 1cm x 1cm.
 - Juma resolução maior para a mesma região consistiria em 40 amostras na direção x e 40 amostras na direção y, cada pixel agora correspondendo a 0.5cm × 0.5cm.
 - Juma imagem de resolução menor poderia ter 10 amostras na direção x e 10 amostras na direção y, em que cada pixel corresponderia a 2cm × 2cm.

Quantização

Cada pixel tem associado a ele um valor

$$L_{min} \leq f(x,y) \leq L_{max}$$

tal que o intervalo [L_{min} , L_{max}] é denominado escala de cinza.

- Intervalo de valores típico
 - □ 0 a 1
 - □ 0 a 255
- Normalmente
 - 0 corresponde ao preto
 - 1 ou 255 corresponde ao branco

Resolução radiométrica

- O número de níveis de quantização da imagem f(x,y) é normalmente uma potência de 2, ou seja,
 L = 2^b, em que L é o número de níveis de cinza da imagem e b é chamado de profundidade da imagem.
- Assim, a profundidade de uma imagem corresponde ao número de bits necessários para armazenar a imagem digitalizada.

Resolução radiométrica

Resolução: espacial e radiométrica

(a) 256x256x8 bits, (b) 32x32x8 bits, (c) 256x256x2 bits.

Exemplo: Tomografia computadorizada

CT multi-slice (700cortes x 512 x 512 x 2B)

- número de dimensões (espaço) :
- número de elementos por dimensão:
 - em z:
 - □ em x:
 - em y:
- número de bits ou Bytes por elemento:
- tamanho da imagem (MB):

Exemplo: Tomografia computadorizada

CT multi-slice (700cortes x 512 x 512 x 2B)

- número de dimensões (espaço) : 3D
- número de elementos por dimensão:
 - □ em z: 700
 - □ em x: 512
 - □ em y: 512
- número de bits ou bytes por elemento: 2
- tamanho da imagem (MB): 350 MB