Schur 多項式からみる幾何学と表現論

慶應義塾大学総合政策学部 金沢研究会 赤松輝海

Schur 多項式は数学の様々な分野に現れる対称多項式で、その組み合わせ論的性質がまったく関係のないように思える問題の解を与えることがしばしばある。本稿では、表現論と幾何学で Schur 多項式がどのように用いられるかを紹介する。

第1部ではまず Schur 多項式の定義と基本性質について述べる。特に重要なのが Schur 多項式が対称多項式環の基底をなすという事実である。これにより、2つの Schur 多項式の積は Schur 多項式の線形結合で表せられることがわかるが、その係数は Littlewood-Richardson 規則という組み合わせ論的ルールによって記述される。

第2部では有限群の表現論の一般論と、その具体例として対称群の表現論、および Schur-Weyl 双対性について紹介する。表現論とは群や多元環などの抽象的な代数系を、ベクトル空間への作用(これを表現という)を通して研究する分野である。第2部では最も基本的な対称群の表現論と一般線形群の表現論について解説する。対称群の表現の同値類からつくられる表現環が対称関数環という、任意変数の対称多項式をあつめてきたような環と同型になることが示される。その中で、Schur 多項式と対称群の既約表現が対応することがわかり、積の構造を通して既約表現の分解に Littlewood-Richardson 規則が現れる。また、一般線形群の表現においては、既約表現のテンソル積の分解に Littlewood-Richardson 規則が現れる。

第3部では数え上げ幾何学を紹介する。数え上げ幾何の古典的な問題として、幾何学的な条件を満たす直線の本数を数えることがある。そのような条件を満たす直線の集合は Schubert 多様体と呼ばれる空間をなし、数え上げ問題を解くことは Schubert 多様体の交叉を調べることに対応する。交叉を調べる際にまたしても Littlewood-Richardson 規則が現れ、これを用いて数え上げ問題に解答を与えることが目標である。

本稿で用いる記号を整理しておく。 \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} でそれぞれ、整数, 有理数, 実数, 複素数全体のなす集合を表すものとする。

目次

第Ⅰ部	Schur 多項式	3
1	Schur 多項式	3
1.1	対称多項式と交代多項式	3
1.2	Schur 多項式	5
2	Littlewood-Richardson 規則	7
2.1	Young 図形	7
2.2	Littlewood-Richardson 規則	8
第Ⅱ部	対称群と一般線形群の表現	17
3	有限群の表現論	17
3.1	既約表現と Maschke の定理	17
3.2	指標理論	20
3.3	群環	28
3.4	誘導表現	31
4	対称群の表現論	35
4.1	対称群の既約表現	35
4.2	対称群の表現環と対称関数環	42
5	一般線形群の表現と Schur-Weyl 双対性	43
6	テンソル積の分解	44
第Ⅲ部	B 数え上げ幾何学	45

第一部

Schur 多項式

1 Schur 多項式

1.1 対称多項式と交代多項式

定義 1.1.1. n 変数多項式 $f \in \mathbb{C}[x_1, \cdots, x_n]$ が対称多項式であるとは、任意の置換 $\sigma \in \mathfrak{S}_n$ に対して $\sigma f := f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}) = f(x_1, \cdots, x_n)$ が成り立つことをいう。対称多項式全体のなす $\mathbb{C}[x_1, \cdots, x_n]$ の部分集合を $\mathbb{C}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ と書く。f が交代多項式であるとは、任意の置換 σ に対して $\sigma f := f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}) = sgn(\sigma) f(x_1, \cdots, x_n)$ が成り立つことをいう。ただし sgn は置換の符号である。

例 1.1.2. $xy, x+y, x^2+y^2$ はいずれも $\mathbb{C}[x,y]$ の対称多項式であり、x-y は交代多項式である。 $xy^2, x+2y$ などは対称でも交代でもない

命題 1.1.3. $\mathbb{C}[x_1,\cdots,x_n]^{\mathfrak{S}_n}$ は $\mathbb{C}[x_1,\cdots,x_n]$ の部分環をなす

Proof. $f, g \in \mathbb{C}[x_1, \dots, x_n], \sigma \in \mathfrak{S}_n$ に対して

$$\sigma(f+g) = \sigma f + \sigma g, \qquad \sigma(f \cdot g) = \sigma f \cdot \sigma g$$

が成り立つことから従う。

定義 1.1.4. $e_k, h_k \in \mathbb{C}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ を次のように定め、それぞれ基本対称式、完全対称式という。

$$e_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$h_k = \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

例 1.1.5. n 変数の場合

$$e_1 = x_1 + \dots + x_n$$
, $e_2 = x_1 x_2 + x_1 x_3 + \dots$, $e_n = x_1 x_2 \cdots x_n$
 $h_1 = x_1 + \dots + x_n$, $h_2 = x_1^2 + x_1 x_2 + \dots$, $h_n = x_1^n + x_1^{n-1} x_2 + \dots$
 $h_{n+1} = x_1^{n+1} + x_1^n x_2 + \dots$

n変数の基本対称式は e_1, \cdots, e_n だけだが、完全対称式は無限に存在することに注意。また、基本対称式については次の基本的な事実が知られている。

定理 1.1.6 (対称式の基本定理). 任意の対称多項式は基本対称式の多項式で表される。 すなわち

$$\mathbb{C}[x_1,\cdots,x_n]^{\mathfrak{S}_n}=\mathbb{C}[e_1,\cdots,e_n]$$

が成り立つ。

Proof. 対称多項式

$$f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n}$$

について、任意の置換 $\sigma \in \mathfrak{S}_n$ に対して

$$f(x_{1}, \dots, x_{m}) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \sum_{i_{1}, \dots, i_{n}} c_{i_{1}, \dots, i_{n}} x_{\sigma(1)}^{i_{1}} \dots x_{\sigma(n)}^{i_{n}}$$

$$= \sum_{i_{1}, \dots, i_{n}} c_{i_{1}, \dots, i_{n}} x_{1}^{i_{\sigma^{-1}(1)}} \dots x_{n}^{i_{\sigma^{-1}(n)}}$$

$$= \sum_{i_{1}, \dots, i_{n}} c_{i_{\sigma(1)}, \dots, i_{\sigma(n)}} x_{1}^{i_{1}} \dots x_{n}^{i_{n}}$$

よって

$$c_{i_1,\dots,i_n} = c_{i_{\sigma(1)},\dots,i_{\sigma(n)}}$$

がなりたつ。これにより f は

$$\sum_{\sigma \in \mathfrak{S}_n} x_{\sigma(1)}^{i_1} \cdots x_{\sigma(n)}^{i_n} \tag{1}$$

の形の対称多項式の線形結合であることがわかるから、この形の多項式について主張を示せばよい。適当に並べ替えて (i_1,\cdots,i_n) は単調減少であると仮定してよい。 $d=i_1+\cdots+i_n$ とし、

$$\mathcal{I} = \{(j_1, \dots, j_n) \in \mathbb{Z}_{\geq 0}^n \mid j_1 + \dots + j_n = d\}$$

とし、
て
に辞書式順序を入れておく。
このとき

$$g(x_1, \dots, x_n) = \sum_{\sigma \in \mathfrak{S}} x_{\sigma(1)}^{i_1} \cdots x_{\sigma(n)}^{i_n} - e_n^{i_n} e_{n-1}^{i_{n-1}-i_n} \cdots e_2^{i_2-i_3} e_1^{i_1-i_2}$$

とおく。g は d 次斉次項式で、g に現れる単項式の指数(それは $\mathcal I$ の元である)を考えたとき、それはすべて (i_1,\cdots,i_n) より真に小さい。 $\mathcal I$ は有限集合なので帰納法により主張が従う。

例 1.1.7. 完全対称式は対称多項式なので定理 1.1.6 より基本対称式の多項式である。実際

$$h_1 = e_1$$

 $h_2 = e_1^2 - e_2$
 $h_3 = e_1^3 + e_3 - 2e_1e_2$

一般に

$$h_k = \begin{vmatrix} e_1 & e_2 & e_3 & \cdots & e_k \\ 1 & e_1 & e_2 & \cdots & e_{k-1} \\ 0 & 1 & e_1 & \cdots & e_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & e_1 \end{vmatrix}$$

が成り立つことがわかる。

定義 1.1.8. $\alpha=(a_1,\cdots,a_n),\,a_k\in\mathbb{Z}_{\geq 0}$ に対して多項式 $A_\alpha\in\mathbb{C}[x_1,\cdots,x_n]$ を

$$A_{\alpha} = \det((x_i^{a_j}))$$

によって定める。行列式の交代性から、 A_{α} は交代多項式である。よって、 α に重複があるなら $A_{\alpha}=0$ となる。

例 1.1.9. $\delta = (n-1, n-2, \cdots, 1, 0)$ のとき

$$A_{\delta} = \begin{vmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{vmatrix}$$

は Vandermonde 行列式に他ならない。したがって

$$A_{\delta} = \prod_{i < j} (x_i - x_j)$$

命題 1.1.10. 任意の交代多項式は A_δ で割り切れる

 $Proof.\ f\in \mathbb{C}[x_1,\cdots,x_n]$ を交代多項式とする。交代性から i< j のとき f は x_i に x_j を代入すると 0 になる。よって f は x_i-x_j で割り切れる。 x_i-x_j は既約多項式であり、(i,j), (k,l) が異なるならば x_i-x_j , x_k-x_l は互いに素である。 $\mathbb{C}[x_1,\cdots,x_n]$ は UFD であるので f は A_δ で割り切れる。

1.2 Schur 多項式

定義 1.2.1 (Schur 多項式). $\alpha = (a_1, \dots, a_n), a_1 > \dots > a_n \geq 0$ に対して

$$s_{\alpha} = \frac{A_{\alpha}}{A_{\delta}}$$

を Schur 多項式という。

命題 1.1.10 より、 A_{α} は A_{δ} で割り切れるので s_{α} は多項式である。また任意の置換 $\sigma \in \mathfrak{S}_n$ に対して

$$\sigma s_{\alpha} = \frac{\sigma A_{\alpha}}{\sigma A_{\delta}} = \frac{\operatorname{sgn}(\sigma) A_{\alpha}}{\operatorname{sgn}(\sigma) A_{\delta}} = s_{\alpha}$$

となるから Schur 多項式は対称多項式である。

例 1.2.2. $\alpha = (4,2,0)$ とする。

$$s_{\alpha} = \frac{\begin{vmatrix} x_1^4 & x_1^2 & 1 \\ x_2^4 & x_2^2 & 1 \\ x_3^4 & x_3^2 & 1 \end{vmatrix}}{\begin{vmatrix} x_1^2 & x_1^1 & 1 \\ x_2^2 & x_2^1 & 1 \\ x_3^2 & x_3^1 & 1 \end{vmatrix}} = \frac{(x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2^2 - x_3^2)}{(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)}$$
$$= (x_1 + x_2)(x_1 + x_3)(x_2 + x_3)$$
$$= (x_1 + x_2 + x_3)(x_1x_2 + x_2x_3 + x_1x_3) = e_1e_2$$

Schur 多項式について重要な命題が次の定理である。

定理 1.2.3. n>0 を整数とする。Schur 多項式の集合 $\{s_{\alpha}\mid \alpha=(a_1,\cdots,a_n),a_1>\cdots>a_n\geq 0\}$ は対称多項式のなす環 $\mathbb{C}[x_1,\cdots,x_n]^{\mathfrak{S}_n}$ の基底をなす

Proof. 次の補題を示す。

補題 1.2.4. $\mathcal{S}=\{(a_1,\cdots,a_n)\mid a_1>\cdots>a_n\geq 0\}$ とする。交代多項式全体のなすベクトル空間は $\{A_\alpha\}_{\alpha\in\mathcal{S}}$ を基底にもつ

Proof. $f(x_1, \dots, x_n)$ を交代多項式とする。

$$f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n}$$

とおく。任意の置換 $\sigma \in \mathfrak{S}_n$ に対して

$$f(x_1, \dots, x_n) = \operatorname{sgn}(\sigma) f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \sum_{i_1, \dots, i_n} \operatorname{sgn}(\sigma) c_{i_1, \dots, i_n} x_{\sigma(1)}^{i_1} \dots x_{\sigma(n)}^{i_n}$$

$$= \sum_{i_1, \dots, i_n} \operatorname{sgn}(\sigma) c_{i_{\sigma(1)}, \dots, i_{\sigma(n)}} x_1^{i_1} \dots x_n^{i_n}$$

がなりたつ。よって

$$\operatorname{sgn}(\sigma)c_{i_{\sigma(1)},\dots,i_{\sigma(n)}} = c_{i_1,\dots,i_n} \tag{2}$$

これにより、 (i_1, \dots, i_n) に重複がある場合

$$c_{i_1,\dots,i_n}=0$$

であることがわかる。よって

$$f(x_1, \cdots, x_n) = \sum_{(i_1, \cdots, i_n) \in \mathcal{S}} \sum_{\sigma \in \mathfrak{S}_n} c_{i_{\sigma(1)}, \cdots, i_{\sigma(n)}} x_1^{i_{\sigma(1)}} \cdots x_n^{i_{\sigma}(n)}$$

と書くことができる。再び(2)より

$$f(x_1, \dots, x_n) = \sum_{(i_1, \dots, i_n) \in \mathcal{S}} \sum_{\sigma \in \mathfrak{S}_n} c_{i_{\sigma(1)}, \dots, i_{\sigma(n)}} x_1^{i_{\sigma(1)}} \dots x_n^{i_{\sigma(n)}}$$

$$= \sum_{(i_1, \dots, i_n) \in \mathcal{S}} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) c_{i_1, \dots, i_n} x_1^{i_{\sigma(1)}} \dots x_n^{i_{\sigma(n)}}$$

$$= \sum_{(i_1, \dots, i_n) \in \mathcal{S}} c_{i_1, \dots, i_n} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) x_1^{i_{\sigma(1)}} \dots x_n^{i_{\sigma(n)}}$$

$$= \sum_{(i_1, \dots, i_n) \in \mathcal{S}} c_{i_1, \dots, i_n} A_{(i_1, \dots, i_n)}$$

 $\{A_{\alpha}\}_{\alpha\in\mathcal{S}}$ が一次独立であることは $\alpha\neq\beta$ ならば A_{α} と A_{β} は異なる単項式を含むことからわかる。

定理の証明に戻る。f が対称多項式ならば fA_δ は交代多項式であるから、補題により

$$fA_{\delta} = \sum_{\alpha \in \mathcal{S}} c_{\alpha} A_{\alpha}$$

両辺を A_δ で割って

$$f = \sum_{\alpha \in \mathcal{S}} c_{\alpha} \frac{A_{\alpha}}{A_{\delta}} = \sum_{\alpha \in \mathcal{S}} c_{\alpha} s_{\alpha}$$

一意的に表せることは $\{A_{\alpha}\}_{\alpha \in S}$ が一次独立であることからわかる。

定理 1.2.3 より、2 つの Schur 多項式の積は Schur 多項式の線形結合であることがわかる。次節ではその係数を記述する Littlewood-Richardson 規則について解説する。

2 Littlewood-Richardson 規則

2.1 Young 図形

定義 2.1.1. 整数列 $\lambda=(\lambda_1,\cdots,\lambda_n,\cdots),\ \lambda_1\geq\cdots\geq\lambda_n\geq0$ に対して、1 行目に λ_1 個の箱を書き、2 行目 に λ_2 個の箱を書き… と続けてできる図形を Young 図形といい、 λ で表す。ある n 以降 $\lambda_n=\lambda_{n+1}=\cdots=0$ となる場合は、0 を省略して $\lambda=(\lambda_1,\cdots,\lambda_{n-1})$ と書くこともある。箱が 1 つもないものも Young 図形であるとし、これを \varnothing で表す。また $|\lambda|=\lambda_1+\lambda_2+\cdots$ とし、これを λ の大きさという。

例 2.1.2.

定義 2.1.3. 2 つの Young 図形 $\lambda = (\lambda_1, \dots, \lambda_n, \dots), \mu = (\mu_1, \dots, \mu_n, \dots)$ に対して、

$$\lambda \leq \mu \Leftrightarrow \lambda_1 \leq \mu_1, \cdots, \lambda_n \leq \mu_n, \cdots$$

と定義する。このとき λ は μ の部分 Young 図形であるという。

定義 2.1.4. n 行からなる Young 図形の全体を \mathcal{Y}_n とする。すなわち

$$\mathcal{Y}_n = \{\lambda = (\lambda_1, \cdots, \lambda_n, 0) \mid \lambda_1 \ge \cdots \ge \lambda_n \ge 0\}$$

である。また、 $(m-n,m-n,\cdots,m-n)$, (m-n) が n 個、つまり $n\times (m-n)$ 長方形) の部分 Young 図形の全体を $\mathcal{Y}_n(m)$ とする。

定義より

$$\mathcal{Y}_n = \bigcup_{k=n+1}^{\infty} \mathcal{Y}_n(k)$$

が成り立つ。

Young 図形と Schur 多項式との関係は次の命題で表される

命題 2.1.5. $S = \{(a_1, \cdots, a_n) \mid a_1 > \cdots > a_n \geq 0\}$ と \mathcal{Y}_n には次の全単射が存在する。

$$\mathcal{Y}_n \ni \lambda \mapsto \alpha = \lambda + \delta \in \mathcal{S}$$

ただし $\delta = (n-1, n-2, \dots, 1, 0)$ である

Proof. $\lambda \in \mathcal{Y}_n$ は単調減少であるから、実際に $\lambda + \delta \in \mathcal{S}$ であることはわかる。逆に任意の $\alpha \in \mathcal{S}$ に対して、 δ が \mathcal{S} の辞書式順序に関する最小元であることから $\alpha - \delta \in \mathcal{Y}_n$ であることもわかり、全単射であることが 従う。

よって Young 図形 λ に対応する Schur 多項式を $s_{\lambda}=rac{A_{\lambda+\delta}}{A_{\delta}}$ と書くことにする。

定義 2.1.6. $\lambda \in \mathcal{Y}_n$ に対して、 λ の各箱に次の条件が満たされるように数字を書き入れたものを形 λ の半標準タブローという。

- 各数字は1以上n以下
- 各行は左から右に広義単調増加
- 各列は上から下に狭義単調増加

形 λ の半標準タブロー全体のなす集合を $\mathcal{T}(\lambda)$ と書く。半標準タブロー $T \in \mathcal{T}(\lambda)$ について、T に数字 $k \in \{1, \cdots, n\}$ が t_k 個書かれているとき $\omega_k(T) = t_k$ のように書き、

$$\omega(T) = (t_1, \cdots, t_n)$$

とし、これをTのウェイトと呼ぶ。

例 2.1.7. 形 (2,1)= $\in \mathcal{Y}_3$ の半標準タブローは次の通りである

しかし次などは半標準タブローではない

$$\begin{array}{c|c}
1 & 1 \\
1 & 3
\end{array}$$

定義 2.1.8. Young 図形 $\lambda \in \mathcal{Y}_n$ に対して次で定まる多項式を λ のタブロー和という。

$$T_{\lambda} = \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_1(T)} \cdots x_n^{\omega_n(T)}$$

例 2.1.9. 例 2.1.7 より、

$$T_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + 2x_1 x_2 x_3 + x_2^2 x_3 + x_2 x_3^2 = e_1 e_2 = s_{(2,1)}$$

2.2 Littlewood-Richardson 規則

定理 2.2.1 (Littlewood-Richardson 規則). Young 図形 $\lambda, \mu \in \mathcal{Y}_n$ について

$$s_{\lambda}s_{\mu} = \sum_{\nu \in \mathcal{Y}_n} \eta_{\lambda\mu}^{\nu} s_{\nu}$$

とおいたとき、

$$\eta_{\lambda\mu}^{\nu}=\#\left\{T\in\mathcal{T}(\mu)\mid T$$
は λ-good であり、 $\omega(T)=\nu-\lambda
ight\}$

が成り立つ。係数 $\eta^{\nu}_{\lambda\mu}$ を Littlewood-Richardson 数と呼ぶ。

ここで $T \in \mathcal{T}(\mu)$ が λ -good であるとは、次の条件を満たすことをいう。T に書かれている数字を上から下、右から左へ読んでいったときにできる数字の並びを c(T) とする。

$$T = \begin{array}{|c|c|c|c|}\hline 1 & 1 & 2 & 2 \\\hline 3 & 3 & 3 & 4 \\\hline 4 & 5 & \\\hline \end{array} \qquad \rightarrow \qquad c(T) = 2423135134$$

 $c(T)_i$ を c(T) の左から j 番目までの部分列とするとき

$$\lambda + \omega(c(T)_j) \in \mathcal{Y}_n, \quad \forall j = 1, \dots, |\mu|$$

が成り立つとき、T は λ -good であるという。すなわち、「T の右上から左下へ数字を読んでいくとき、読まれた数に対応する λ の行に箱を追加する」という操作を続けて各ステップで Young 図形であることが保たれるということである。

例 2.2.3. Ø-good であるような形 μ の半標準タブローは 1 行目がすべて 1, 2 行目がすべて 2, ... というものただ一つである。この半標準タブローを μ^{st} と書く。

T が Ø-good であるとする。Ø に箱を 1 つ追加して Young 図形になるためには第 1 行目に追加しなければならない。よって T の一番右上には 1 が入っており、半標準タブローの行単調性から 1 行目はすべて 1 である。半標準タブローの列単調性から 2 行目の一番右は 2 以上が入っているはずであり、3 より大きければ Young 図形ができないので 2 である。よって行単調性から 2 行目はすべて 2 である。以下同様にして k 行目に入っている数字はすべて k であることがわかる。

例 2.2.4. $\lambda =$ $\in \mathcal{Y}_2$ とし、 s_{λ}^2 を Schur 多項式の線形結合として表そう。 λ -good な形 λ の半標準タブローは

ですべてである。それぞれのウェイトは

$$\omega(T_1) = (2,1), \quad \omega(T_2) = (1,2)$$

定理 2.2.1 より

$$s_{\lambda}^2 = s_{4,2} + s_{3,3}$$

である。実際、定義より

$$s_{\lambda} = \frac{\begin{vmatrix} x^3 & x \\ y^3 & y \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^3y - xy^3}{x - y} = xy(x + y), \qquad s_{\lambda}^2 = x^4y^2 + 2x^3y^3 + x^2y^4$$

$$s_{4,2} = \frac{\begin{vmatrix} x^5 & x^2 \\ y^5 & y^2 \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^5y^2 - x^2y^5}{x - y} = x^2y^2(x^2 + xy + y^2) = x^4y^2 + x^3y^3 + x^2y^4$$

$$s_{3,3} = \frac{\begin{vmatrix} x^4 & x^3 \\ y^4 & y^3 \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^4y^3 - x^3y^4}{x - y} = x^3y^3$$

で確かに正しい。

定理 2.2.1 の証明のあらすじを述べよう。ポイントになるのが次の等式 (補題 2.2.6) である:

$$A_{\lambda+\delta}T_{\mu} = \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta}$$

この等式はタブロー和 T_{μ} が対称多項式であること (命題 2.2.5) から示される。右辺に関して、T が λ -good でない項たちは互いにキャンセルされることが示され (補題 2.2.7)、結局

$$A_{\lambda+\delta}T_{\mu} = \sum_{T:\lambda\text{-good}} A_{\lambda+\omega(T)+\delta}$$
(3)

ここで、 $\lambda = \emptyset$ の場合を考えると例 2.2.3 より

$$A_{\delta}T_{\mu} = A_{\omega(\mu^{st}) + \delta}$$

両辺を A_δ で割れば

$$T_{\mu} = \frac{A_{\omega(\mu^{st}) + \delta}}{A_{\delta}} = \frac{A_{\mu + \delta}}{A_{\delta}} = s_{\mu}$$

すなわち、タブロー和は Schur 多項式と等しいということが導かれる。再び一般の λ に対し式 (3) の両辺を A_δ で割って

$$s_{\lambda}s_{\mu} = \sum_{T: \lambda \text{-good}} s_{\lambda + \omega(T)}$$

これより主張が従う。

あらすじで用いた命題・等式を示そう。

命題 2.2.5. タブロー和 T_{λ} は対称多項式である。

Proof. 対称群は隣り合う数字の互換 $\sigma = (k-1,k), k=2,\cdots,n$ によって生成されるから、

$$\sigma T_{\lambda} = T_{\lambda}$$

を証明すればよい。ポイントになるのは半標準タブローの集合 $T(\lambda)$ 上の対合 $^{*1}\iota$ であって

$$\omega(\iota(T)) = \sigma(\omega(T)) \tag{4}$$

をみたすものの存在である。ここで、

$$\sigma(\omega(T)) = (\omega_{\sigma^{-1}(1)}(T), \cdots, \omega_{\sigma^{-1}(n)}(T))$$

である。このような ι が構成できれば、

$$\sigma T_{\lambda} = \sum_{T \in \mathcal{T}(\lambda)} x_{\sigma(1)}^{\omega_1(T)} \cdots x_{\sigma(n)}^{\omega_n(T)}$$

$$= \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_{\sigma^{-1}(1)}(T)} \cdots x_n^{\omega_{\sigma^{-1}(n)}(T)}$$

$$= \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_1(\iota(T))} \cdots x_n^{\omega_n(\iota(T))}$$

$$= T_{\lambda}$$

となり対称性が従う。最後の等式はしが全単射であることによる。

このような ι は次のように構成される。まず条件 (4) は、半標準タブロー T と $\iota(T)$ は書かれている k-1 と k の数が逆転した関係にある、ということを意味している。最初に T が一行の Young 図形からなる場合を考えよう。半標準タブローの単調性から k-1 か k の書かれている部分はひとつながりの帯領域をなしており、その長さは $\omega_{k-1}(T)+\omega_k(T)$ である。よってこの帯領域の数字を、左 $\omega_k(T)$ 個の箱に k-1,残りの $\omega_{k-1}(T)$ 個の箱に k を入れるように変更したものを $\iota(T)$ とすれば、これは条件 (4) を満たす半標準タブローになる。

$$T = \cdots k-2 \frac{k-1}{k-1} \frac{k-1}{k} \frac{k-k}{k} \frac{k-1}{k-1} \cdots \rightarrow \iota(T) = \cdots k-2 \frac{k-1}{k-1} \frac{k-1}{k-1} \frac{k-k}{k} \frac{k-1}{k-1} \cdots$$

また、この場合に $\iota^2(T) = T$ が成立していることもわかる。

一般の半標準タブロー T に対しては一行の場合の操作を拡張することで得られる。まず、T の箱が自由であることを

- 箱にkが入っており、上の箱はk-1より真に小さい
- 箱にk-1が入っており、下の箱はkより真に大きいか下に箱がない

のどちらかを満たしていることと定義する。例えば k=4 において

$$T = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & 1 & 1 & 1 & 2 & 2 \\ \hline 2 & 2 & 3 & 3 & 3 & 4 \\ \hline & 3 & 3 & 4 & 5 \\ \hline & 5 & & & & \\ \hline \end{array}$$

黄色の箱は自由であり、緑の箱は自由でない。不自由な箱は数字を入れ替えると単調性が崩れるので、入れ替えることができないという意味で不自由である。したがって数字の入れ替えをするには、自由な箱のみを考えればよい。重要なこととして、

 $^{^{*1}}$ 集合 X 上の対合とは写像 $\iota: X \to X$ であって $\iota^2 = \operatorname{id}_X$ をみたすものをいう

自由な箱の全体はいくつかの帯領域をなし、さらに帯は各行にたかだか1つである。

実際

- k-1 が書かれている箱が自由なら、その右にある k-1 の書かれた箱はすべて自由である。なぜなら 半標準タブローの行単調性から、その下にある箱はすべて k より真に大きいからである。
- k が書かれている箱が自由なら、その左にある k の書かれた箱はすべて自由である。なぜなら半標準タブローの行単調性から、その上にある箱はすべて k-1 より真に小さいからである。

より、各行に帯領域はたかだか一つである。そこで各帯領域に対して、1 行の場合の入れ替え操作を行った半標準タブローを $\iota(T)$ と置けば、 $\iota(T)$ は条件 (4) を満たす。なぜなら、不自由な箱は k-1 が書かれているものと k が書かれているもので同数あり、1 行の場合に条件 (4) は満たされているからである。また半標準タブローの列単調性から $\iota(T)$ と T で箱の自由性は保たれるので $\iota^2(T) = T$ であることもわかる。また、もし T に自由な箱が存在しない場合は $\iota(T) = T$ とする。これで構成できた。

補題 2.2.6. $\lambda, \mu \in \mathcal{Y}_n$ に対して

$$A_{\lambda+\delta}T_{\mu} = \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta}$$

が成り立つ。

Proof. Alt_n = $\sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma$ とおく (これは交代化作用素と呼ばれる)。 交代化作用素と対称多項式をかけることは可換である。実際、 $f \in \mathbb{C}[x_1, \cdots, x_n]^{\mathfrak{S}_n}, g \in \mathbb{C}[x_1, \cdots, x_n]$ に対し

$$\begin{split} \operatorname{Alt}_n(fg) &= \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma(fg) \\ &= \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma f \cdot \sigma g \\ &= f \cdot \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma g \\ &= f \cdot \operatorname{Alt}_n(g) \end{split}$$

である。

$$A_{\lambda+\delta} = \operatorname{Alt}_n(x_1^{\lambda_1+\delta_1} \cdots x_n^{\lambda_n+\delta_n})$$

だから命題 2.2.5 より

$$\begin{split} A_{\lambda+\delta}T_{\mu} &= \mathrm{Alt}_n(T_{\mu} \cdot x_1^{\lambda_1+\delta_1} \cdots x_n^{\lambda_n+\delta_n}) \\ &= \mathrm{Alt}_n\left(\sum_{T \in \mathcal{T}(\mu)} x_1^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_n^{\lambda_n+\omega_n(T)+\delta_n}\right) \\ &= \sum_{\sigma \in \mathfrak{S}_n} \sum_{T \in \mathcal{T}(\mu)} \mathrm{sgn}(\sigma) x_{\sigma(1)}^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_{\sigma(n)}^{\lambda_n+\omega_n(T)+\delta_n} \\ &= \sum_{T \in \mathcal{T}(\mu)} \sum_{\sigma \in (S)_n} \mathrm{sgn}(\sigma) x_{\sigma(1)}^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_{\sigma(n)}^{\lambda_n+\omega_n(T)+\delta_n} \\ &= \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta} \end{split}$$

補題 2.2.7. $\lambda, \mu \in \mathcal{Y}_n$ に対して、形 μ の半標準タブローで λ -good でないものを λ -bad と呼び、その全体を $\mathcal{T}(\mu)^{\lambda-bad}$ とおく。このとき

$$\sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} A_{\lambda + \omega(T) + \delta} = 0$$

が成り立つ。

Proof. この証明においてもポイントになるのが $\mathcal{T}(\mu)^{\lambda-bad}$ 上の対合 ι であって各 $T \in \mathcal{T}(\mu)^{\lambda-bad}$ に対してある k が存在して $\sigma = (k-1,k)$ に対して

$$\lambda + \omega(\iota(T)) + \delta = \sigma(\lambda + \omega(T) + \delta) \tag{5}$$

をみたすものの存在である。このような ι が構成されれば、 $A_{\lambda+\omega(T)+\delta}$ たちはペアごとに打ち消される。実際、

$$\sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} A_{\lambda + \omega(T) + \delta} = \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} + A_{\lambda + \omega(\iota(T)) + \delta})$$

$$= \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} + A_{\sigma(\lambda + \omega(T) + \delta)})$$

$$= \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} - A_{\lambda + \omega(T) + \delta})$$

$$= 0$$

(5) をみたす ι を構成するために、条件 (5) が成り立つための必要条件から考察していく。(5) が成り立つ には

$$\lambda_k + \omega_k(\iota(T)) + \delta_k = \lambda_{k-1} + \omega_{k-1}(T) + \delta_{k-1}$$

したがって

$$\omega_k(\iota(T)) = \omega_{k-1}(T) + (\lambda_{k-1} - \lambda_k) + 1 \tag{6}$$

となることが必要である。この右辺の値は、 λ の k 行目にいくつ箱を追加すると Young 図形でなくなるか、ということを表していることに注意する。このような k と $\iota(T)$ をみつけたいのである。 そこで、

$$\lambda + \omega(c(T)_i) \notin \mathcal{Y}_n$$

を満たす最小の j をとってこよう。これは λ -bad の定義から必ず存在する。そして j に対応する箱に入っている数字を k とおく。すなわち、j ステップ目で k 行目に箱を追加すると初めて Young 図形でなくなるとする。またこの箱を悪い箱と呼ぶことにする。このとき

$$\omega_k(c(T)_i) = \omega_{k-1}(c(T)_i) + (\lambda_{k-1} - \lambda_k) + 1 \tag{7}$$

が成り立つ。ここで、T を悪い箱よりも左側にある部分 T_1 と悪い箱を含む右側の部分 T_2 に分割する。例えば

においては、黄色い箱が悪い箱で

である。すると、半標準タブローの列単調性から悪い箱の下にある箱にはk+1以上しか存在しないから、

$$\omega_k(c(T)_j) = \omega_k(T_2), \quad \omega_{k-1}(c(T)_j) = \omega_{k-1}(T_2)$$

よって (7) は

$$\omega_k(T_2) = \omega_{k-1}(T_2) + (\lambda_{k-1} - \lambda_k) + 1$$

と書き換えることができる。 $\iota(T)$ の満たすべき必要条件(6) は

$$\omega_k(\iota(T)) = \omega_{k-1}(T) + (\lambda_{k-1} + \lambda_k) + 1$$

$$\omega_k(\iota(T_1)) + \omega_k(\iota(T_2)) = \omega_{k-1}(T_1) + \omega_{k-1}(T_2) + (\lambda_{k-1} + \lambda_k) + 1$$

となるが、 $\iota(T_2) = T_2$ であると仮定すれば

$$\omega_k(\iota(T_1)) + \omega_k(T_2) = \omega_{k-1}(T_1) + \omega_{k-1}(T_2) + (\lambda_{k-1} + \lambda_k) + 1$$
$$\omega_k(\iota(T_1)) = \omega_{k-1}(T_1)$$

結局、 $\iota(T)$ は次のように定義すればよいであろうことがわかる。

 $\iota(T)$ は T_1 に命題 2.2.5 で定義した対合を施し、 T_2 には何もしない

示すべきことは

- 1. 実際に $\iota(T)$ が λ -bad な半標準タブローであること

である。

1. ι が T_2 には何もしないことから、 λ -bad であることは直ちに従う。よって $\iota(T)$ が半標準タブローであることさえ示せばよい。 $\iota(T_1)$ は命題 2.2.5 から半標準タブローであり、 T_2 も半標準タブローだから、問題になるのは $\iota(T_1)$ と T_2 の境界部分である。悪い箱は命題 2.2.5 の証明中の意味で自由である。すなわちその上にある箱は k-1 より真に小さい。

なぜならもし悪い箱の上に k-1 があったとすると、j-1 ステップ目で k-1 行目に箱を追加しても Young 図形であることは保たれている。よってそのとき k 行目の箱の数は k-1 行目の箱の数と同じかそれ以下である。もし同じなら j-2 ステップの時点では k-1 行目の箱の数が k 行目の箱の数より小さいこととなり、これは Young 図形になっていない。k-1 行目の箱の数以下であるなら j ステップ目に k 行目に箱を追加しても Young 図形であることは保たれるから、悪い箱であることに矛盾する。

よってTの悪い箱よりも上部分は考えなくてよい。悪い箱の下部分は半標準タブローの列単調性からkより真に大きいのでここも考えなくてよい。したがって問題になるのは悪い箱の左に入っている数が ι によってどうなるかということだけであるが、 ι はk-1とkを適当に入れ替える操作なので単調性は崩れない。

2. ι は結局のところ k-1 と k を (6) が成り立つように入れ替える操作であるから、

$$\lambda_k + \omega_k(\iota(T)) + \delta_k = \lambda_{k-1} + \omega_{k-1}(T) + \delta_{k-1}$$

$$l \neq k, \ k-1 \implies \lambda_l + \omega_l(\iota(T)) + \delta_l = \lambda_l + \omega_l(T) + \delta_l$$

が成り立つ。命題 2.2.5 の対合を用いているので ι もまた対合であるから

$$\lambda_{k-1} + \omega_{k-1}(\iota(T)) + \delta_{k-1} = \lambda_k + \omega_k(\iota^2(T)) + \delta_k$$
$$= \lambda_k + \omega_k(T) + \delta_k$$

よって $\sigma = (k, k-1)$ として

$$\lambda + \omega(\iota(T)) + \delta = \sigma(\lambda + \omega(T) + \delta)$$

が成り立つ。

Littlewood-Richardson 規則の特別な場合として、 λ が一行の Young 図形の場合は Pieri の規則と呼ばれ、比較的簡単に計算できる。

定義 2.2.8. Young 図形 $\mu \le \nu$, $|\nu| = |\mu| + k$ に対して、 ν/μ が水平帯であるとは

 ν に含まれ、 μ に含まれない箱が各列にたかだか一つ

を満たすことをいう。このことは

$$\nu_l \leq \mu_{l-1}$$

がすべての $l=2,3,\cdots$ について成り立つことと同値である。

定理 2.2.9 (Pieri の規則). $\lambda = (k), \mu \in \mathcal{Y}_n$ に対して

$$s_{\lambda}s_{\mu} = \sum_{\substack{|
u| = |\mu| + k \\

u/\mu$$
は水平帯

が成り立つ

Proof. 定理 2.2.1 より、 μ -good な形 λ の半標準タブローを考える。T が形 λ の μ -good な半標準タブローであるとする。いま λ は一行の Young 図形だから、T が μ -good であることは

$$\omega_l(T) + \mu_l \le \mu_{l-1}$$

がすべての $l=2,3,\cdots,n$ に対して成り立つことと同値である。 $\nu=\mu+\omega(T)$ とすれば、これは ν/μ が水平 帯であることに他ならない。

例 2.2.10. $\lambda=$ $\lambda=$ $\in \mathcal{Y}_3$ として $s_\lambda s_\mu$ を計算する。定理 2.2.9 より大きさ 5 の

Young 図形で水平帯となっているものを探せばよい。それらは

だから

$$s_{\lambda}s_{\mu} = s_{\nu_1} + s_{\nu_2} + s_{\nu_3} + s_{\nu_4}$$

第川部

対称群と一般線形群の表現

3 有限群の表現論

3.1 既約表現と Maschke の定理

定義 3.1.1. G を群、V をベクトル空間とする。群準同型 $\rho:G\to \mathrm{GL}(G)$ が与えられたとき、 (ρ,V) を G の表現といい V を表現空間という。 ρ や V のことを表現ということもある。

以下、本節ではベクトル空間と言ったら複素数体 $\mathbb C$ 上の有限次元ベクトル空間を指すものとし、群と言ったら有限群を指すものとする。

例 3.1.2. G を群、 $V=\mathbb{C}$ とする。すべての $g\in G$ に対して $\rho(g)=\mathrm{id}_V$ とするとこれは表現になる。これを自明な表現という

例 3.1.3. $G = \mathfrak{S}_n, V = \mathbb{C}^n$ として $\sigma \in \mathfrak{S}_n$ に対して

$$\rho(\sigma)(a_1, \cdots, a_n) = (a_{\sigma^{-1}(1)}, \cdots, a_{\sigma^{-1}(b)})$$

とするとこれは表現になる。

例 3.1.4. G を群、V を G の元を基底にもつ自由ベクトル空間とする。 $g \in G$ に対して

$$\rho(g) \sum_{x \in G} a_x x = \sum_{x \in G} a_x g x$$

によって定めるとこれは表現になる。これを G の正則表現という

文脈から明らかな場合や特に明示する必要がないとき、 $\rho(g)x$ のことをたんに gx と書く。表現論の基本的な問題は、G の考えうるあらゆる作用を分類することである。表現の分類の基準となるのは、次の定義である。

定義 3.1.5. $(\rho_1, V_1), (\rho_2, V_2)$ を G の表現とする。線形写像 $\varphi: V_1 \to V_2$ が

$$\rho_2(g) \circ \varphi = \varphi \circ \rho_1(g)$$
, for all $g \in G$

をみたすとき、 φ を G 線形写像という。G 線形写像の全体を $\operatorname{Hom}_G(V_1,V_2)$ と書く。

定義 3.1.6. G の表現 (ρ_1, V_1) , (ρ_2, V_2) の間に同型な G 線形写像があるとき、 (ρ_1, V_1) と (ρ_2, V_2) 同値な表現であるといい、

$$\rho_1 \simeq \rho_2$$

と書く。

表現の同値は同値関係になる。したがって表現の分類はその同値類を求めることと言い換えられる。いきなりすべての表現を考えるのは難しいのでまずは次の意味で「最も小さい表現」を考える。

定義 3.1.7. (ρ, V) を G の表現とする。V の部分空間 W が G 不変であるとは

$$\rho(q)W \subset W$$
, for all $q \in G$

が成り立つことをいう。このとき $\rho': G \to GL(W)$ を

$$\rho'(g) = \rho(g)|_{W}$$

によって定義することができ、表現になる。 (ρ', W) を (ρ, V) の部分表現という。定義より、すべての表現 (ρ, V) は 0 と V を部分表現に持っていることに注意。これらを自明な部分表現という。

定義 3.1.8. G の表現 (ρ, V) が既約であるとは、V が非自明な部分表現を持たないことをいう。

例 3.1.9. $f:V \to W$ が G 線形写像であるなら $\ker f \subset V$, $\operatorname{Im} f \subset W$ はともに G 不変部分空間である。

例 3.1.10. すべての 1 次元表現は既約である。実際 1 次元のベクトル空間 V の部分空間は 0 と V のみである。

例 3.1.11. 例 3.1.3 の表現を考える。

$$W = \{(a_1, \dots, a_n) \in V \mid a_1 + \dots + a_n = 0\}$$

とすると、W は G 不変である。

$$v = (1, 1, \cdots, 1) \in V$$

とし $U = \langle v \rangle$ とおくと

$$\rho(g)v = v$$

だから U も G 不変部分空間で、自明な表現と同値である。例 3.1.10 より U は既約である。

与えられた表現から新しい表現を作る方法を導入しておく。

定義 3.1.12. $(\rho_1, V_1), (\rho_2, V_2)$ を G の表現とする。

• $\rho_1 \oplus \rho_2 : G \to GL(V_1 \oplus V_2) \not \epsilon$

$$(\rho_1 \oplus \rho_2)(g)(x,y) = (\rho_1(x), \rho_2(y))$$

で定義する。これを ρ_1 と ρ_2 の直和という。

• $\rho_1 \otimes \rho_2 : G \to GL(V_1 \otimes V_2) \ \mathcal{E}$

$$(\rho_1 \otimes \rho_2)(g)(x \otimes y) = \rho_1(x) \otimes \rho_2(y)$$

で定義する。これを ρ_1 と ρ_2 のテンソル積という。

• $\rho_1^*: G \to GL(V^*)$ &

$$\rho_1^*(g)(f) = f \circ (\rho_1(g^{-1}))$$

で定義する。これを ρ_1 の反傾表現という。

実は、有限群の複素数体上の有限次元表現は既約表現の直和に同値であることがわかる。すなわち、表現の 分類を考える上では本質的に最も小さい表現、既約表現のみを考えれば良いことがわかる。

定理 3.1.13 (Maschke の定理). V を G の表現とする。任意の V の G 不変部分空間 W に対して、V の G 不変部分空間 U が存在し

$$V = W \oplus U$$

がなりたつ。

Proof. 証明は W への G 不変な射影を構成することで示される。 $p:V \to W$ を G 不変とは限らない何らかの射影とする。

$$f(x) = \frac{1}{|G|} \sum_{h \in G} hp(h^{-1}x)$$

と定めると、f は G 線形な W への射影となる。実際任意の $g \in G$ に対して

$$f(gx) = \frac{1}{|G|} \sum_{h \in G} hp(h^{-1}gx)$$

$$= \frac{1}{|G|} \sum_{k \in G} gkp(k^{-1}x) \quad \text{where } k = g^{-1}h$$

$$= gf(x)$$

より G 線形性は示された。また

$$f^{2}(x) = f\left(\frac{1}{|G|} \sum_{g \in G} gp(g^{-1}x)\right)$$
$$= \frac{1}{|G|^{2}} \sum_{g,h \in G} ghp(h^{-1}p(g^{-1}x))$$

ここで、 $p:V\to W$ は射影で W は G 不変だから $p(h^{-1}p(g^{-1}x))=h^{-1}p(g^{-1}x)$ ゆえに

$$f^{2}(x) = \frac{1}{|G|^{2}} \sum_{g,h \in G} gp(g^{-1}x) = f(x)$$

 $f(W) \subset W$ であり、任意の W の元 x に対して

$$f(x) = \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}x) = \frac{1}{|G|} \sum_{g \in G} gg^{-1}x = x$$

だから f は W への射影である。したがって

$$V = \operatorname{Im} f \oplus \ker f = W \oplus \ker f$$

が成り立つが、f は G 線形なので $\ker f$ は G 不変部分空間である (例 3.1.9)。

注意 3.1.14. 定理 3.1.13 は標数が群の位数を互いに素な任意の体上で成立する。実際証明中で |G| で割るシーンがあるが、それ以外体に依存する議論はしていない。

系 3.1.15. V を G の表現とすると、既約表現 W_1, \dots, W_r が存在して

$$V \simeq W_1 \oplus \cdots \oplus W_r$$

が表現の同値として成り立つ。このことを G の表現の完全可約性という。

 $Proof.\ V$ が既約ならば示すことはない。よって V は可約であるとする。V は非自明な部分表現 V_1 をもつが、定理 3.1.13 より部分表現 U_1 で

$$V = V_1 \oplus U_1$$

となるものが存在する。 V_1, U_1 がどちらも既約ならこれで示されたことになるので、どちらかは可約であるとする。例えば V_1 が可約であるとする。同じ議論で

$$V_1 = V_2 \oplus U_2$$

と非自明な部分表現の直和に分解でき、以下この操作を続けていくと、V は有限次元だからいつかは既約表現にたどりつく。

3.2 指標理論

次に既約表現の分類をする上で鍵となる指標の概念を導入する。

定義 3.2.1. (ρ, V) を G の表現とする。 $\chi_V: G \to \mathbb{C}$ を

$$\chi_V(g) = \operatorname{tr} \rho(g)$$

で定め、これをVの指標という。

本節では指標の直交関係 (定理 3.2.12) を示すことが目標である。これにより、既約指標がある程度まで決定できたら、残りは機械的な計算だけで求めることができるということがわかる。またその系として、

- 既約表現の個数は共役類の個数に等しい
- 既約表現の分類は既約指標の分類に帰着される
- 既約表現の次元に関する公式

といったさまざまな有用な事実が導かれる。

表現の各種の演算と指標との関係を見ておく

命題 3.2.2. V_1, V_2 を G の表現、対応する指標を χ_1, χ_2 とする。

- 1. $\chi_{V_1 \oplus V_2} = \chi_1 + \chi_2$
- 2. $\chi_{V_1 \otimes V_2} = \chi_1 \chi_2$
- 3. $\chi_{V_1^*} = \overline{\chi_1}$

が成り立つ

Proof. 1. $\operatorname{tr}(A \oplus B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ より従う

- 2. $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B)$ より従う
- 3. $\operatorname{Hom}(V,V)=V^*\otimes V$ であり *2 tr : $\operatorname{Hom}(V,V)\to\mathbb{C}$ は $f\otimes v\in V^*\otimes V$ に対して

$$\operatorname{tr}(f \otimes v) = f(v)$$

$$\phi(x) = f_1(x)v_1 + \dots + f_n(x)v_n$$

によって $\phi \in \text{Hom}(V, V)$ を定めればこれが同型を定める。

 $[\]overline{*^2 f_1} \otimes v_1 + \dots + f_n \otimes v_n \in V^* \otimes V$ に対して

で与えられることに注意する。 e_1, \cdots, e_n を V の基底として e_1^*, \cdots, e_n^* をその双対基底とする。この とき $\rho^*(q) \in \operatorname{Hom}(V^*, V^*) = V \otimes V^*$ は

$$\rho^*(g) = e_1 \otimes (\rho^*(g)e_1^*) + \dots + e_n \otimes (\rho^*(g)e_n^*)$$

= $e_1 \otimes (e_1^*\rho(g^{-1})) + \dots + e_n \otimes (e_n^*\rho(g^{-1}))$

と表されるから

$$\operatorname{tr}(\rho^*(g)) = e_1^* \rho(g^{-1}) e_1 + \dots + e_n^* \rho(g^{-1}) e_n = \operatorname{tr}(\rho(g^{-1})) = \operatorname{tr}(\rho(g)^{-1})$$

である。g は有限位数だから $\rho(g)$ はユニタリ行列である。よってその固有値 $\lambda_1, \cdots, \lambda_n$ はすべて絶対値が 1 なので

$$\operatorname{tr}\left(\rho(g)^{-1}\right) = \frac{1}{\lambda_1} + \dots + \frac{1}{\lambda_n} = \overline{\lambda_1} + \dots + \overline{\lambda_n} = \overline{\operatorname{tr}\left(\rho(g)\right)}$$

 \Box

これで示せた

指標の直交関係を示そう。まず、いくつか必要な補題を示す。

補題 3.2.3 (Schur の補題). V, W を G の既約表現とする。このとき

$$\dim_{\mathbb{C}} \mathrm{Hom}_{G}(V,W) = \left\{ \begin{array}{ll} 1 & \text{if } V \simeq W \text{ as G-representation} \\ 0 & \text{otherwise} \end{array} \right.$$

が成り立つ。とくに V = W なら $f \in \text{Hom}_G(V, V)$ はスカラー写像である。

Proof. 先に後半の主張を示す。 $f:V\to V$ を G 線形写像とする。f の固有空間を $V(\lambda)$ とすると、 $V(\lambda)$ は G 不変である。実際、 $x\in V(\lambda),\,g\in G$ に対して

$$f(qx) = qf(x) = q(\lambda x) = \lambda qx$$

である。V は既約であり $V(\lambda) \neq 0$ なので $V(\lambda) = V$ よって

$$f = \lambda i d_V$$

である。

前半を示そう。 $V\simeq W$ とし $\varphi\in \mathrm{Hom}_G(V,W)$ を G 同型として固定する。任意の $f\in \mathrm{Hom}_G(V,W)$ について、 $\varphi^{-1}\circ f$ は $V\to V$ の G 線形写像だから前半の結果より

$$\varphi^{-1} \circ f = \lambda i d_V$$

と表される。すなわち

$$f = \lambda \varphi$$

である。 したがって $\operatorname{Hom}_G(V,W) = \langle \varphi \rangle$ となる。

 $V \not\simeq W$ の場合、 $f \in \operatorname{Hom}_G(V, W)$ について V, W の既約性から

$$\ker f = 0$$
または V , $\operatorname{Im} f = 0$ または W

を得るが、 $V \neq W$ より $\ker f = V$, $\operatorname{Im} f = 0$ すなわち f = 0 である。これで示せた。

注意 3.2.4. 定理 3.2.3 の証明より $f \in \operatorname{Hom}_G(V,W)$ は $V \simeq W$ なら 0 または同型、 $V \not\simeq W$ なら f = 0 であることがわかる。こちらを Schur の補題と呼ぶ場合もある。

補題 3.2.5. $(\rho, V), (\theta, W)$ を G の表現とする。 $\rho: G \to \mathrm{GL}((\mathrm{Hom}(V, W)))$ を

$$\rho(g)(f) = \theta(g) \circ f \circ \rho(g^{-1})$$

とするとこれは表現となり、

$$\chi_{\operatorname{Hom}(V,W)} = \overline{\chi_V} \chi_W$$

が成り立つ

Proof. $Hom(V,W)=V^*\otimes W$ であることから $\rho^*(g)\otimes\theta(g)=\rho(g)$ が成り立つことを示せばよい。 $f=v^*\otimes w\in V^*\otimes W$ に対して、反傾表現およびテンソル表現の定義から

$$g(v^* \otimes w) = [v^* \circ (\rho(g^{-1}))] \otimes [\theta(g)w]$$

となるが、これの定める線形写像は、 $x \in V$ として

$$([v^* \circ (\rho(g^{-1}))] \otimes [\theta(g)w])x = [v^* \circ (\rho(g^{-1}))]x \cdot \theta(g)w$$

である。ここで $[v^* \circ (\rho(g^{-1}))]x$ はスカラーなので

$$[v^* \circ (\rho(g^{-1}))]x \cdot \theta(g)w = \theta(g)(v^* \circ (\rho(g^{-1}))x)w$$
$$= \theta(g)(v^* \otimes w(\rho(g^{-1})))$$
$$= (\theta(g) \circ f \circ \rho(g^{-1}))x$$

よって命題 3.2.2 より従う

補題 3.2.6. V を G の表現とし、 V^G を G の固定点の集合とする。すなわち

$$V^G = \{ v \in V \mid \forall g \in G, \quad gv = v \}$$

とする。このとき V^G は V の部分空間であり

$$\dim V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

が成り立つ。

Proof. $f: V \to V$ &

$$f(x) = \frac{1}{|G|} \sum_{g \in G} gx$$

で定義すると f は射影になる。実際、 $h \in G$ として

$$f^{2}(x) = \frac{1}{|G|} \sum_{g,h \in G} ghx$$
$$= \frac{1}{|G|} \sum_{k \in G} kx$$
$$= f(x)$$

である。また

$$hf(x) = \frac{1}{|G|} \sum_{g \in G} hgx = \frac{1}{|G|} \sum_{k \in G} kx = f(x)$$

より $\operatorname{Im} f = V^G$ である。射影のトレースは像の次元に等しいので

$$\operatorname{tr}(f) = \dim \operatorname{Im} f = V^G$$

だが、

$$\operatorname{tr}(f) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

よって示せた。

例 3.2.7. $\operatorname{Hom}(V,W)^G = \operatorname{Hom}_G(V,W)$ である。実際 $f \in \operatorname{Hom}(V,W)$ の条件について

$$\theta(g) \circ f \circ \rho(g^{-1}) = f \Leftrightarrow f \circ \rho(g) = \theta(g) \circ f$$

である。

定義 3.2.8. 関数 $f:G\to\mathbb{C}$ が

$$f(g^{-1}xg) = f(x),$$
 for all $g \in G$

を満たすとき、f を類関数という。類関数全体を C(G) と置くと C(G) には自然に $\mathbb C$ ベクトル空間の構造が入る

例 3.2.9. 一般に $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ が成り立つので、表現の指標は類関数である。

例 3.2.10. G の共役類を C_1,\cdots,C_s とし、G 上の関数 ω_i を

$$\omega_i(x) = \begin{cases} 1 & \text{if } x \in C_i \\ 0 & \text{otherwise} \end{cases}$$

で定めると ω は類関数であり $\omega_1, \dots, \omega_s$ はC(G) の基底である。よって $\dim C(G) = s$ である。

定義 3.2.11. $\phi, \psi \in C(G)$ に対して

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \psi(g)$$

によって $\langle\,\cdot\,,\cdot\,\rangle$: $C(G)\times C(G)\to\mathbb{C}$ を定めると、これは C(G) 上の Hermite 内積となる。C(G) にはいつもこの内積が入っているものとする。

定理 3.2.12 (指標の直交関係). V,W を G の既約表現とする。このとき

$$\langle \chi_V, \chi_W \rangle = \begin{cases} 1 & \text{if } V \simeq W \text{ as } G\text{-representation} \\ 0 & \text{otherwise} \end{cases}$$

が成り立つ。

Proof. 補題 3.2.5 と補題 3.2.6 および補題 3.2.3 から

$$\langle \chi_v, \chi_W \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{\text{Hom}(V,W)}(g)$$

$$= \dim \text{Hom}(V,W)^G$$

$$= \dim \text{Hom}_G(V,W)$$

$$= \begin{cases} 1 & \text{if } V \simeq W \text{ as } G\text{-representation} \\ 0 & \text{otherwise} \end{cases}$$

 \mathbf{X} 3.2.13. G の既約指標は有限個である。したがって G の既約表現は同値の違いを除いて有限個である。

Proof. 定理 3.2.12 より既約指標の集合は C(G) で一次独立である。C(G) は有限次元だから、既約指標は有限でなければならない

系 3.2.14. G の既約指標 χ_1, \cdots, χ_r は C(G) の正規直交基底をなす。したがって r は G の共役類の数に等しい。

Proof. 正規直交であることは定理 3.2.12 で示されたので、基底であること、すなわち次を示せばよい:

$$f \in C(G)$$
 が $\langle \chi_i, f \rangle = 0$ を各 $i = 1, \dots, r$ に対して満たせば $f = 0$ である

f が仮定をみたす類関数であるとする。各 i について χ_i を指標に持つ既約表現を (ρ_i, V_i) とおく。

$$0 = \langle f, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \operatorname{tr} \left(\rho_i(g) \right)$$

より、写像 $F_i: V_i \to V_i$ を

$$F_i = \sum_{g \in G} \overline{f(g)} \rho_i(g)$$

とおけば $\operatorname{tr}(F) = 0$ である。F は G 線形写像である。実際 $h \in G, x \in V_i$ として

$$\begin{split} F_i(\rho_i(h)x) &= \sum_{g \in G} \overline{f(g)} \rho_i(gh) x \\ &= \sum_{k \in G} \overline{f(kh^{-1})} \rho_i(k) x, \qquad \text{where } k = gh \\ &= \sum_{k \in G} \overline{f(h^{-1}k)} \rho_i(k) x \\ &= \sum_{g \in G} \overline{f(g)} \rho_i(hg) x, \qquad \text{where } g = h^{-1}k \\ &= \rho_i(h) F(x) \end{split}$$

よって補題 3.2.3 よりある $\lambda \in \mathbb{C}$ で

$$F_i = \lambda i d_V$$

24

となるが、 $\operatorname{tr}(F_i) = 0$ だったから $\lambda = 0$ でなければならない。よって $F_i = 0$ であることがわかる。

П

次に、 $\theta:G\to\mathbb{C}[G]$ を G の正則表現とする。ただし $\mathbb{C}[G]$ は G を基底に持つ自由ベクトル空間である。定理 3.1.13 より θ はいくつかの既約表現の直和に同値である。よって

$$\theta = \rho_1^{\oplus m_1} \oplus \dots \oplus \rho_r^{\oplus m_2} \tag{8}$$

とおく。写像 $F: \mathbb{C}[G] \to \mathbb{C}[G]$ を

$$F = \sum_{g \in G} \overline{f(g)} \theta(g)$$

とすれば(8)より

$$F = \left(\sum_{g \in G} \overline{f(g)} \rho_1(g)\right)^{\oplus m_1} \oplus \cdots \oplus \left(\sum_{g \in G} \overline{f(g)} \rho_r(g)\right)^{\oplus m_r} = F_1^{\oplus m_1} \oplus \cdots \oplus F_r^{\oplus m_r} = 0$$

よって e を G の単位元として

$$Fe = \sum_{g \in G} \overline{f(g)}g$$

G は一次独立だからすべての g について f(g)=0

系 3.2.15. ρ を G の表現, ρ_1, \cdots, ρ_r を G の既約表現の同値類の完全代表系とし、それぞれの対応する指標 を $\chi, \chi_1, \cdots, \chi_r$ とおく。

$$\rho = \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_r^{\oplus m_r}$$

とすると、

$$m_i = \langle \chi, \chi_i \rangle$$

が成り立つ。 m_i を ρ の ρ_i に関する重複度という

系 3.2.16. 表現の既約表現への直和分解は、同値の違いを除いて一意的である。

系 3.2.17. 指標 χ が既約指標であるための必要十分条件は $\langle \chi, \chi \rangle = 1$ が成り立つことである

Proof. 必要性は明らか。十分性を示す。 $\chi = m_1 \chi_1 + \cdots + m_r \chi_r$ とおくと

$$\langle \chi, \chi \rangle = 1$$

であるならば

$$m_1^2 + \dots + m_r^2 = 1$$

ゆえにあるiで $\chi = \chi_i$ である。

系 3.2.18 (Schur の補題の逆). V を G の表現とする。 $\dim_{\mathbb{C}} \mathrm{Hom}_{G}(V,V)=1$ であるならば V は既約表現である。

Proof. χ を V の指標とするとき、補題 3.2.5, 補題 3.2.6 より条件は

$$\frac{1}{|G|} \sum_{g \in G} |\chi(g)|^2 = 1$$

すなわち $\langle \chi, \chi \rangle = 1$ に他ならない。

指標の直交性から 2. 表現の分類が指標の分類に帰着されることもわかる

系 3.2.19. ρ_1, ρ_2 を G の表現、対応する指標を χ_1, χ_2 とする。 $\rho_1 \simeq \rho_2$ であるための必要十分条件は $\chi_1 = \chi_2$ が成り立つことである。

Proof. 必要性は明らか。十分性を示す。 θ_1,\cdots,θ_r を G の既約表現の同値類の完全代表系とし、対応する指標を ψ_1,\cdots,ψ_r とおく。定理 3.1.13 より

$$\rho_1 = \theta_1^{\oplus m_1^{(1)}} \oplus \cdots \oplus \theta_r^{\oplus m_r^{(1)}}$$
$$\rho_2 = \theta_1^{\oplus m_1^{(2)}} \oplus \cdots \oplus \theta_r^{\oplus m_r^{(2)}}$$

と分解すれば

$$\chi_1 = m_1^{(1)} \psi_1 + \dots + m_r^{(1)} \psi_r$$
$$\chi_2 = m_1^{(2)} \psi_1 + \dots + m_r^{(2)} \psi_r$$

仮定から $\chi_1 = \chi_2$ であり、系 3.2.14 より

$$m_1^{(1)} = m_1^{(2)}, \cdots, m_r^{(1)} = m_r^{(2)}$$

である。よって

 $\rho_1 \simeq \rho_2$

命題 3.2.20. W_1, \cdots, W_r を G の既約表現の同値類の完全代表系とする。

$$|G| = \dim W_1^2 + \dots + \dim W_r^2$$

が成り立つ

Proof. θ を G の正則表現とする。 θ の指標を R, W_i の指標を χ_i とおく。系 3.2.15 より θ の W_i に関する重複度を m_i とおくと

$$m_i = \langle R, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{R(g)} \chi_i(g)$$

ここで、

$$R(g) = \operatorname{tr} \left(\theta(g) \right) = \left\{ \begin{array}{cc} 0 & \text{if } g \neq e \\ |G| \text{if } g = e \end{array} \right.$$

だから

$$m_i = \chi_i(e) = \dim W_i$$

よって

$$R = \dim W_1 \chi_1 + \dots + \dim W_r \chi_r$$

だから

$$|G| = R(e) = \dim W_1^2 + \dots + \dim W_r^2$$

例 3.2.21. $G = \mathfrak{S}_3$ の既約指標を全て求めよう。G の共役類は

で代表される3つだから既約表現も3つある。またそれぞれの共役類の濃度は順に

1, 3, 2

である。

1 を自明ね表現とし、 ${
m sgn}:G\to\mathbb{C}$ を置換の符号とすると、 ${
m sgn}$ は 1 次元の既約表現である。例 3.1.3 の直和 因子として現れた表現を考える。すなわち $V=\mathbb{C}^3$ として $\rho:G\to {\rm GL}(V)$ を自然な置換による作用とする。 このとき

$$U = \{(a_1, a_1, a_3) \mid a_1 + a_2 + a_3 = 0\}$$

がVの不変部分空間となり、

$$\rho \simeq \rho_U \oplus 1$$

となるのであった。 ρ_U が既約であることを示そう。 ρ_U の指標を χ_U とすると

$$\chi_U(g) = \chi_V(g) - 1 = |\{x \in \{1, 2, 3\} \mid gx = x\}| - 1$$

であるから

$$\langle \chi_U, \chi_U \rangle = \frac{1}{6} (1 \cdot 2^2 + 3 \cdot 0^2 + 2 \cdot (-1)^2) = \frac{6}{6} = 1$$

よって既約である。まとめるとGの既約指標は次の3つである

	e	(1,2)	(1,2,3)
1	1	1	1
sgn	1	-1	1
χ_U	2	0	-1

例 3.2.22. $G = \mathfrak{S}_4$ の既約指標を全て求めよう。G の共役類は

$$e, (1,2), (1,2,3), (1,2,3,4), (1,2)(3,4)$$

で代表される5つだから既約指標も5つある。またそれぞれの共役類の濃度は順に

である。

 \mathfrak{S}_3 と同様、1 次元の既約表現として 1 と sgn がある。再び例 3.1.3 の直和因子として現れた表現を考える。 すなわち

$$U = \{(a_1, a_2, a_3, a_4) \mid a_1 + a_2 + a_3 + a_4 = 0\}$$

への置換による作用 ρ_U を考える。 ρ_U が既約であることを示そう。 ρ_U の指標を χ_U とすると

$$\chi_U(g) = |\{x \in \{1, 2, 3, 4\} \mid gx = x\}| - 1$$

であるから

$$\langle \chi_U, \chi_U \rangle = \frac{1}{24} (1 \cdot 3^2 + 6 \cdot 1^2 + 8 \cdot 0^2 + 6 \cdot (-1)^2 + 3 \cdot (-1)^2) = \frac{24}{24} = 1$$

よって既約である。さらに $sgn^2 = 1$ より

$$\langle \chi_U \operatorname{sgn}, \chi_U \operatorname{sgn} \rangle = 1$$

であることがわかるので χ_U sgn も既約指標である。ここまでをまとめると次の表を得る。

	e	(1,2)	(1,2,3)	(1,2,3,4)	(1,2)(3,4)
1	1	1	1	1	1
sgn	1	-1	1	-1	1
χ_U	3	1	0	-1	-1
$\chi_U \operatorname{sgn}$	3	-1	0	1	-1
$\overline{\psi}$	x_1	x_2	x_3	x_4	x_5

あと 1 つの指標 ψ は直交関係や次元公式を用いることで具体的な作用の考察なしに求めることができる。次元公式より

$$\psi(e) = 24 - (1^2 + 1^2 + 3^2 + 3^2) = 4$$

ゆえに $\psi(e) = 2$ である。直交関係より

$$\begin{cases} 6x_2 + 8x_3 + 6x_4 + 3x_5 & = & -2\\ -6x_2 + 8x_3 - 6x_4 + 3x_5 & = & -2\\ 6x_2 - 6x_4 - 3x_5 & = & -6\\ 4 + 6x_2^2 + 8x_3^2 + 6x_4^2 + 3x_5^2 & = & 24 \end{cases}$$

これを解くと

	e	(1,2)	(1,2,3)	(1,2,3,4)	(1,2)(3,4)
1	1	1	1	1	1
sgn	1	-1	1	-1	1
χ_U	3	1	0	-1	-1
$\chi_U \operatorname{sgn}$	3	-1	0	1	-1
$\overline{\psi}$	2	0	-1	0	2

3.3 群環

本節では群環という代数を導入し、環上の加群論を用いた表現論に関するいくつかの命題を証明する。この 節では群は依然有限群のみを考えるが、表現はかならずしも有限次元でないとする。

なおここで環は、乗法単位元をもつ必ずしも可換とは限らない環を指すとする。また加群といったら考えている環上の左加群を指しているとする。

定義 3.3.1. G を群, K を体とする。K[G] を G を基底にもつ K 上の自由ベクトル空間とし、G の積から自然に定まる演算で K[G] に積を入れる。すなわち

$$\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{h \in G} b_h h\right) = \sum_{k \in G} \left(\sum_{gh=k} a_g b_h\right) k$$

である。これによって K[G] は K 上の多元環の構造をもつ。これを G の K 上の群環という。

V を G の体 K 上の表現とする。V は自然に K[G] 加群の構造が入り、逆に K[G] 加群は自然に G の表現とみなすことができる。

実際、V を G の表現とするとき、G の作用 gx を線形に拡張することで V は K[G] 加群となる。逆に K[G] 加群 V は V への K[G] の作用から定まる G の作用によって表現となる。

またこのとき、

- 部分表現は部分加群
- 表現の直和は加群の直和
- 既約表現は単純加群
- G線形写像は加群の準同型
- 表現の同値は加群の同型

にそれぞれ対応することがわかる。ただし表現のテンソル積は K[G] 加群としてのテンソル積ではないことに注意。V,W を K[G] 加群とするとき、V と W の表現のテンソル積は $V\otimes_K W$ に $g(x\otimes y)=gx\otimes gy$ による作用を入れたものである。

ここで、

定義 3.3.2. A を環とする。A 加群 M が単純であるとは、M が非自明な部分加群をもたないことをいう。

である。環 A を A 加群とみなしたとき、A の部分加群とは A の左イデアルにほかならず、A に含まれる単純 A 加群は A の極小左イデアルである。単純性に関連して次の定義をする。

定義 3.3.3. A 加群 M が半単純であるとは、任意の M の部分加群が M の直和因子であることをいう。また、環 A が A 加群として半単純であるとき、A を半単純環という。

定理 3.3.4 (Maschke の定理). K[G] が半単純環であるための必要十分条件は、|G| が $p=\operatorname{ch} K$ で割り切れないことである。

Proof. 十分性は定理 3.1.13 の証明とまったく同様である。必要性を示す。|G| が p がの倍数であるとする。Wedderburn の構造定理より K[G] の Jacobson 根基が 0 でないことを示せばよい。K[G] の元 m を

$$m = \sum_{g \in G} g$$

とおくと、任意の $x \in K[G]$ に対して xm = mx であり、さらに

$$m^2 = \sum_{g,h \in G} gh = |G|m = 0$$

だから

$$(1 - xm)(1 + xm) = 1 - x^2m^2 = 1$$

よって1-xm は単元であるから $m \in Jac(K[G])$ である。

 \mathbb{C} の標数は 0 だから定理 3.1.13 は定理 3.3.4 の特別な場合である。しかし系 3.1.15 は一般には成り立たない。考えている表現が有限次元の場合において成り立つことに注意せよ。

以下、 $K=\mathbb{C}$ の場合を考える。命題 3.2.20 の証明より、G の正則表現は G のすべての有限次元既約表現をその次元の数だけ直和因子にもっている。このことを群環のことばで述べると、 $\mathbb{C}[G]$ は $\mathbb{C}[G]$ 加群として極小左イデアルの直和

$$\mathbb{C}[G] = L_1 \oplus \cdots \oplus L_s, \quad s = m_1 + \cdots + m_r$$

に分解でき、適当に L_1, \cdots, L_s を並べ替えて

$$\begin{split} L_1, \cdots, L_{m_1} &\simeq W_1 \\ L_{m_1+1}, \cdots, L_{m_1+m_2} &\simeq W_2 \\ &\vdots \\ L_{m_1+\cdots+m_{r-1}+1}, \cdots, L_{m_1+\cdots+m_{r-1}+m_r} &\simeq W_r \end{split}$$

とできるということである。ここで W_1,\cdots,W_r は G の既約表現から定まる $\mathbb{C}[G]$ 加群であり、 $m_i=\dim_{\mathbb{C}}W_i$ である。したがって、G の有限次元既約表現を求めることは環 $\mathbb{C}[G]$ の極小左イデアルを求めることと同等である。

定義 3.3.5. A を環とする。べき等元 $e \in A$ $(e^2 = e)$ が原始的であるとは、

$$e = e_1 + e_2, \quad e_1^2 = e_1, \quad e_2^2 = e_2, \quad e_1 e_2 = 0 \implies e_1 = 0 \, \sharp \, \hbar \, l \sharp \, e_2 = 0$$

を満たすことをいう。

命題 3.3.6. A を半単純環, $e \in A$ を単元でないとする。Ae が極小左イデアルとなるための必要十分条件は e が原始的べき等元であることである。

Proof. Ae が極小左イデアルとする。

$$e = e_1 + e_2$$
, $e_1^2 = e_1$, $e_2^2 = e_2$, $e_1 e_2 = 0$

となる $e_1, e_2 \in A$ が存在したとすると、

$$e_1 = e_1^2 = e_1^2 + e_1e_2 = e_1e \in Ae$$

同様に $e_2 \in Ae$ である。よって Ae の極小性から $Ae_1 = Ae$ or 0, $Ae_2 = Ae$ or 0 である。 $Ae_1 = Ae$ であったとしよう。このとき

$$e = ce_1, \quad c \in A$$

とおくことができるから

$$e_2 = e - e_1 = (c - 1)e_1$$

よって

$$e_2 = e_2^2 = (c-1)e_1e_2 = 0$$

またeはべき等元なので

$$e_1 + e_2 = e = (e_1 + e_2)^2 = e_1 + -e_2e_1 + e_2$$

ゆえに $e_2e_1=0$ である。したがって $Ae_2=Ae$ ならば同様の議論で $e_1=0$ となる。 逆に e が原始的べき等元であるとする。 $I\subseteq Ae$ を左イデアルとする。A は半単純だから

$$Ae = I \oplus J$$

となる左イデアルJが存在する。よって

$$e = x + y$$

となる $x \in I, y \in J$ をとることができる。 $x \in Ae$ より

$$x = ce, \quad c \in A$$

とおくと $xe = ce^2 = ce = x$ 。 これより、

$$x = xe = x^2 + xy$$

だが、 $xy \in J$ かつ $I \cap J = 0$ より xy = 0。同様に yx = 0 である。したがって $x^2 = x$, $y^2 = y$ も導かれる。e は原始的なので x = 0 または y = 0 が成り立つが、これより I = 0 または J = 0 が従う。

実際、x = 0 であったとして $m \in I$ を m = ae とおけば

$$m = a(x+y) = ay \in J$$

したがって G の既約表現を求める問題は $\mathbb{C}[G]$ の原始的べき等元を求める問題に帰着された。具体的に原始的べき等元を見つけるのは難しいが、対称群の場合は Young 図形とのきれいな対応により構成することができる。次節にそのことを解説する。

最後にべき等元eでAeの形の加群の間の準同型について考察する。

命題 3.3.7. A を環とする。 $e, f \in A$ をべき等元とするとき、Abel 群の同型として

$$\operatorname{Hom}_A(Ae, Af) \simeq eAf$$

が成り立つ。

 $Proof. \ \phi \in \operatorname{Hom}_A(Ae, Af)$ に対して、

$$\phi(e) = af$$

とおくと、e はべき等元だから

$$\phi(e) = \phi(e^2) = e\phi(e) = eaf$$

よって $\phi \mapsto eaf$ を考えればこれが同型を与える。

注意 3.3.8. 証明からわかる通り、A が体 K 上の多元環である場合 e はべき等元である必要はなく、スカラー倍のずれが許容される。すなわち

$$e^2 = \lambda e, \qquad \lambda \in K$$

となるeに対しても同様のことが成り立つ。

3.4 誘導表現

部分群の表現が与えられたとき、それを元の群に拡張する方法について解説する。

定義 3.4.1. G を群、H を G の部分群とする。W を H の表現とするとき、

$$V=\mathbb{C}[G]\otimes_{\mathbb{C}[H]}W$$

は左 $\mathbb{C}[G]$ 加群の構造をもつ。V を W が誘導する G の表現といい

$$V = \operatorname{Ind} {}_{H}^{G}W$$

と書く。

誘導表現は次の普遍性で特徴づけることができる。

定理 3.4.2 (誘導表現の普遍性). H を群 G の部分群、W を H の表現とする。このとき G の表現 V と H 線 形写像 $\iota:W\to V$ が一意的に存在して、次の性質をもつ:

任意の G の表現 U と H 線形写像 $f:W\to U$ が与えられたとき、G 線形写像 $\overline{f}:V\to U$ が一意的に存在して

$$f = \overline{f} \circ \iota$$

が成り立つ

Proof. 定義 3.4.1 の V がこの性質を持つことを示す。 $\iota:W\to V$ を

$$\iota(x) = 1 \otimes x$$

で定めれば、 $(\mathbb{C}[H]$ 上のテンソル積なので) ι は H 線形写像である。 $f:W\to U$ を H 線形写像とする。 $\overline{f}:V\to U$ を

$$\overline{f}(g \otimes x) = gf(x)$$

を双線形に拡張して得られる写像*3とすれば、より、

$$\overline{f}(g(\alpha \otimes x)) = \overline{f}(g\alpha \otimes x) = g\alpha f(x) = g\overline{f}(\alpha \otimes x)$$

 \overline{f} は G 線形写像であり $f=\overline{f}\circ\iota$ を満たす。 \overline{f} の一意性を示す。G 線形写像 $f':W\to U$ も $f=f'\circ\iota$ を満たしたとする。G 線形性から

$$f'(g \otimes x) = gf'(1 \otimes x) = gf'(\iota(x)) = gf(x) = \overline{f}(g \otimes x)$$

である。

最後にこの性質をもつ V が一意的であることを示す。G の表現 V' と H 線形写像 $\iota':W\to V'$ がこの性質を満たしたとする。 ι の普遍性を用いれば、 $\overline{\iota}:V\to V'$ が存在して $\iota'=\overline{\iota}\circ\iota$ が成り立つ。また、 ι' の普遍性を用いれば $\overline{\iota'}:V'\to V$ が存在して $\iota=\overline{\iota'}\circ\iota'$ が成り立つ。

$$\begin{array}{c|c} W \xrightarrow{\iota} V \\ \iota' \bigvee_{\iota'} \overline{\iota'} \\ V' \end{array}$$

 $\bar{\iota}, \bar{\iota}'$ が互いに逆の写像であることを示そう。 $\bar{\iota}' \circ \bar{\iota} : V \to V$ は G 線形写像であり、

$$(\overline{\iota'} \circ \overline{\iota}) \circ \iota = \overline{\iota'} \circ (\overline{\iota} \circ \iota) = \overline{\iota'} \circ \iota' = \iota$$

 $^{^{*3}}$ ここで $\mathbb{C}[G]$ は右 $\mathbb{C}[H]$ 加群とみなしていることに注意。

を満たす。しかし、 $id_V \circ \iota = \iota$ であるから、 ι の普遍性から

$$\overline{\iota'} \circ \overline{\iota} = \mathrm{id}_V$$

でなければならない。同様に $\bar{\iota} \circ \overline{\iota'} = \mathrm{id}_{V'}$ である。

定義 3.4.1 は加群論的で簡単だが、どのような作用を考えているのかがわかりにくい。そこで線形代数的な誘導表現の定義もみておく。

定義 3.4.3. V を G の表現、W を V の部分空間で H の表現であるとする。R を G/H の完全代表系とする。 このとき V が W から誘導されているとは

$$V = \bigoplus_{\sigma \in R} \sigma W$$

が成り立つことをいう。

 $\sigma^{-1}\tau\in H$ ならば $\sigma W=\tau W$ が成り立つのでこの定義は R の取り方によらない。W の基底を e_1,\cdots,e_n として、 $R=\{\sigma_1,\cdots,\sigma_r\}$ とすれば

$$V = \mathbb{C}\sigma_1 e_1 \oplus \cdots \oplus \mathbb{C}\sigma_1 e_n \oplus \cdots \oplus \mathbb{C}\sigma_r e_1 \oplus \cdots \oplus \mathbb{C}\sigma_r e_n$$

G の元 g は G/H に左からの積で置換作用する。すなわち、各 σ_i に対して、

$$g\sigma_i = \sigma_j h$$

となる $h \in H$ が存在する。よってこのとき、 $g\sigma_i W = \sigma_i W$ 、とくに

$$g\sigma_i e_k = \sigma_i h e_k \in \sigma_i W, \quad \text{for all } k = 1, \dots, n$$
 (9)

となる。g の V への作用は G/H への置換作用と H の W への作用を組み合わせたようなものである。また式 (9) から次がでる。

命題 3.4.4 (誘導表現の指標). V が W から誘導されているとき、

$$\chi_V(g) = \sum_{\sigma_i^{-1} g \sigma_i \in H} \chi_W(\sigma_i^{-1} g \sigma_i)$$
(10)

が成り立つ。

Proof. 式 (9) より、g の作用の対角成分を考えるうえで $\sigma_i = \sigma_j$ すなわち i = j となる部分だけ考えればよいことがわかる。このとき $\sigma_i^{-1}g\sigma_i \in H$ であり、

$$h = \sigma_i^{-1} g \sigma_i$$

であるから、あとは h の W への作用の対角成分の和をとればよいので主張が従う。

定義 3.4.3 が定義 3.4.1 と一致することを確かめておく。定義 3.4.3 の V が普遍性 (定理 3.4.2) を満たすことを示せば、一意性から従う。

 $V=igoplus_{\sigma\in R}\sigma W$ において、R として単位元 e を含むものをとり、W を eW と同一視する。この同一視を ι とすれば ι は H 線形写像である。U を任意の G の表現とし、 $f:W\to U$ を H 線形写像とする。このとき $\overline{f}:V\to U$ を

$$\overline{f}(\sigma_i x) = \sigma_i f(x)$$

によって定義すると、 \overline{f} は G 線形である。実際 $g\in G$ に対して、 $g\sigma_i= au_jh$ となる $\sigma_j\in R, h\in H$ をとれば

$$\overline{f}(g\sigma_i x) = \overline{f}(\sigma_j h x) = \sigma_j f(h x) = \sigma_j h f(x) = g\sigma_i f(x)$$

また、

$$\overline{f} \circ \iota(x) = \overline{f}(ex) = ef(x) = f(x)$$

例 3.4.5. H を G の部分群とする。X=G/H とし、V を X を基底に持つ自由ベクトル空間とする。G は V に置換によって作用する。

$$W=\mathbb{C} H\subset V$$

とすればWはHの自明な表現であり、

$$V = \bigoplus_{g \in G/H} gW$$

だから $V = \operatorname{Ind} {}^G_H W$ である。すなわち、H の自明な表現から誘導される G の表現は G/H への置換表現である。

4 対称群の表現論

4.1 対称群の既約表現

前節までに述べたことは有限群の表現論の一般論であり、具体的な群が与えられたときその表現を求める手法を提供しているわけではない。そこでこの節では対称群を例に取り上げ、既約表現の分類を行う。

既約表現の種類は共役類の数だけあった。 \mathcal{P}_n を大きさ n の Young 図形のなす集合とする。 $G=\mathfrak{S}_n$ の共役類と P_n の元は 1 対 1 に対応することが知られている。G の既約表現は P_n から自然に作ることができる。

定義 4.1.1. $\lambda \in \mathcal{P}_n$ の各箱に 1 から n の各数字を重複なく書き入れた図を形 λ のタブローという。T をタブローとし、T の i 行目の箱に書かれている数字の集合を $H_i(T)$, 同様に T の j 列目の箱に書かれている数字の集合を $V_j(T)$ とする。

定義 4.1.2. T を形 $\lambda=(\lambda_1,\cdots,\lambda_s)$ のタブローとする。 $\sigma\in\mathfrak{S}_n$ に対して、 σT を各数字を σ によって置換してできるタブローとする。

- 各 i に対して $H_i(\sigma T) = H_i(T)$ が成り立つなら σ を T の水平置換という。T の水平置換の全体は G の 部分群をなす。これを \mathcal{H}_T と書き、T の水平置換群という。 $\mathcal{H}_T = \mathfrak{S}(H_1(T)) \times \cdots \times \mathfrak{S}(H_s(T))$
- 各 j に対して $V_j(\sigma T) = H_j(T)$ が成り立つなら σ を T の垂直置換という。T の垂直置換の全体は G の 部分群をなす。これを \mathcal{V}_T と書き、T の垂直置換群という。 $\mathcal{V}_T = \mathfrak{S}(V_1(T)) \times \cdots \times \mathfrak{S}(V_{\lambda_1}(T))$

例 4.1.3. 形 のタブロー
$$T=$$
 $\begin{bmatrix}4&5&1\\3&2\end{bmatrix}$ に対して、

$$\mathcal{H}_T = \mathfrak{S}(\{1,4,5\}) \times \mathfrak{S}(\{2,3\}), \qquad \mathcal{V}_T = \mathfrak{S}(\{3,4\}) \times \mathfrak{S}(\{2,5\})$$

である。

例 4.1.4. Young 図形 $\lambda=(\lambda_1,\cdots,\lambda_s)\in\mathcal{P}_n$ に対して、 λ の第 1 行に $1,2,\cdots,\lambda_1$ を、 λ の第 2 行に $\lambda_1+1,\lambda_1+2,\cdots,\lambda_1+\lambda_2$ を、と続けてできるタブローを λ から定まる自然なタブローという。

例 4.1.3 の Young 図形の自然なタブローは
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix}$$

水平置換 σ が垂直置換でもあるならば、 σ の引き起こす各 $H_i(T)$ の置換は恒等置換でなければならない。したがって $\sigma=e$ である。よって $\mathcal{H}_T\cap\mathcal{V}_T=\{e\}$ が成り立つ。また $\mathcal{H}_{gT}=g\mathcal{H}_Tg^{-1},\ mathcalV_{gT}=g\mathcal{V}_Tg^{-1}$ が成り立つ。実際

$$\sigma \in \mathcal{H}_{gT} \Leftrightarrow \sigma gT = gT \tag{11}$$

$$\Leftrightarrow g^{-1}\sigma gT = T \tag{12}$$

$$\Leftrightarrow \sigma \in q \mathcal{H}_T q^{-1} \tag{13}$$

群環 $\mathbb{C}[G]$ の元 a_T, b_T, c_T を

$$a_T = \sum_{\sigma \in \mathcal{H}_T} \sigma, \qquad b_T = \sum_{\tau \in \mathcal{V}_T} \operatorname{sgn}(\tau)\tau, \qquad c_T = a_T b_T = \sum_{\sigma \in \mathcal{H}_T, \tau \in \mathcal{V}_T} \operatorname{sgn}(\tau)\sigma\tau$$

によって定める。 c_T を Young 対称子という。ここで c_T は 0 でないことに注意しておく。実際 c_T の和に現れる $\sigma \tau$ はすべて異なる元である。なぜならもし $\sigma \tau = \sigma' \tau', \, \sigma, \sigma' \in \mathcal{H}_T, \, \tau, \tau' \in \mathcal{V}_T$ ならば、 $\mathcal{H}_T \cap \mathcal{V}_T = e$ より $\sigma = \sigma', \, \tau = \tau'$ である。

定理 4.1.5. $\mathbb{C}[G]$ の左イデアル $\mathbb{C}[G]c_T$ は極小である。

定理 4.1.5 の証明しよう。ポイントになるのは次の補題である。

補題 4.1.6. $\alpha \in \mathbb{C}[G]$ が

- 任意の $\sigma \in \mathcal{H}_T$ に対して $\sigma \alpha = \alpha$
- 任意の $\tau \in \mathcal{V}_T$ に対して $\alpha \tau = \operatorname{sgn}(\tau) \alpha$

を満たすならば、 α は c_T のスカラー倍である。

Proof. $\alpha = \sum_{g \in G} a_g g$ を仮定を満たす元とする。仮定より $\sigma \in \mathcal{H}_T$ に対して

$$\alpha = \sigma^{-1}\alpha = \sum_{g \in G} a_g \sigma^{-1}g = \sum_{g \in G} a_{\sigma g}g$$

よって

$$a_{\sigma g} = a_g \tag{14}$$

が成り立つ。また $\tau \in \mathcal{V}_T$ に対しては

$$\alpha = \operatorname{sgn}(\tau)\alpha\tau^{-1} = \sum_{g \in G} \operatorname{sgn}(\tau)a_g g \tau^{-1} = \sum_{g \in G} \operatorname{sgn}(\tau)a_{g\tau}g$$

より

$$a_{q\tau} = \operatorname{sgn}(\tau)a_q \tag{15}$$

が成り立つ。14,15 より $\sigma\tau \in \mathcal{H}_T \mathcal{V}_T$ に対して

$$a_{\sigma\tau} = \operatorname{sgn}(\tau)a_e$$

であることがわかる。よって

$$g \notin \mathcal{H}_T \mathcal{V}_T \implies a_g = 0 \tag{16}$$

を示せば $\alpha = a_e c_T$ となって証明が完了する。g に関する条件 $g \notin \mathcal{H}_T \mathcal{V}_T$ について次の補題を示す。

補題 4.1.7. $g \in \mathfrak{S}_n$ について、T の同じ行にある任意の数字 i,j(ただし $i \neq j$) が gT では異なる列にあるならば $g \in \mathcal{H}_T \mathcal{V}_T$ が成り立つ。

 $Proof.\ T$ の Young 図形 $\lambda=(\lambda_1,\cdots,\lambda_r)$ の高さ r に関する帰納法で示す。r=1 ならば明らか。r>1 とする。T の第 1 行にある数字に注目する。仮定から、これらは gT でそれぞれ異なる列に入っているので、適当に gT に垂直置換 $\nu\in\mathcal{V}_{gT}$ を施すことで νgT においても第 1 行に入っているようにできる。

よってこのとき νg は T の第 1 行への水平置換 σ_1 と、T の第 2 行以下を取り出したタブロー T' への置換 g' との積

$$\nu g = \sigma_1 g'$$

で表される。g' は T' への置換とみなせば主張の条件をみたすから、帰納法の仮定により

$$g' \in \mathcal{H}_{T'}\mathcal{V}_{T'}$$

である。 $\mathcal{H}_{T'} \subset \mathcal{H}_T, \mathcal{V}_{T'} \subset \mathcal{V}_T$ だから

$$g' = \sigma_2 \tau_2 \in \mathcal{H}_T \mathcal{V}_T$$

と書ける。ここで $\nu \in \mathcal{V}_{qT} = g\mathcal{V}_T g^{-1}$ だから

$$\nu = g\tau_3 g^{-1}, \qquad \tau_3 \in \mathcal{V}_T$$

よって

$$g = \sigma_1 g' \tau_3^{-1} = \sigma_1 \sigma_2 \tau_2 \tau_3^{-1}$$

となるので示せた。

補題 4.1.6 の証明に戻ろう。(16) を示せばよいのであった。 $g \notin \mathcal{H}_T \mathcal{V}_T$ であるのなら、上記の補題から T の同じ行になる異なる数字 i,j であって gT では同じ列にあるものが存在する。よって $\sigma=(i,j)$ とすれば $\sigma\in\mathcal{H}_T\cap\mathcal{V}_{gT}$ である。 $\mathcal{V}_{gT}=g\mathcal{V}_Tg^{-1}$ より $\sigma=g\tau g^{-1}$ とおけば (14),(15) より

$$a_g = a_{\sigma g} = a_{g\tau} = \operatorname{sgn}(\tau)a_g = -a_g$$

命題 4.1.8.

$$c_T^2 = \frac{n!}{\dim_{\mathbb{C}}(\mathbb{C}[G]c_T)} c_T$$

が成り立つ。

Proof. $\sigma \in \mathcal{H}_T$, $\tau \in \mathcal{V}_T$ に対して

$$\sigma a_T = \sigma \sum_{g \in \mathcal{H}_T} g = \sum_{g \in \mathcal{H}_T} \sigma g = a_T$$

であり、

$$b_T \tau = \sum_{g \in \mathcal{V}_T} \operatorname{sgn}(g) g \tau = \operatorname{sgn} \tau b_T$$

だから、補題 4.1.6 よりある $n_T \in \mathbb{C}$ で

$$c_T^2 = n_T c_T$$

となることはわかる。 n_T を求めよう。準同型 $\phi: \mathbb{C}[G] \to \mathbb{C}[G]$ を

$$\phi(\alpha) = \alpha c_T$$

によって定める。任意の $g \in G$ に対して、

$$gc_T = g + \sum_{hk \in \mathcal{H}_T \mathcal{V}_T \setminus \{e\}} \operatorname{sgn}(k)ghk$$

となるから、 ϕ の対角成分はすべて1である。よって

$$\operatorname{tr} \phi = \dim_{\mathbb{C}} \mathbb{C}[G] = n!$$

である。 $\mathbb{C}[G]$ は半単純だから、

$$\mathbb{C}[G] = \mathbb{C}[G]c_T \oplus W$$

となる左イデアルWをとる。すると

$$\mathbb{C}[G]c_T = \mathbb{C}[G]c_T^2 \oplus Wc_T = \mathbb{C}[G]c_T \oplus Wc_T$$

より $Wc_T = 0$ である。したがって、

$$\phi(\mathbb{C}[G]c_T) \subset \mathbb{C}[G]c_T$$
$$\phi(W) = 0$$

となることがわかる。よって

$$\operatorname{tr} \phi = \operatorname{tr} \phi|_{\mathbb{C}[G]_{CT}}$$

である。 $\alpha \in \mathbb{C}[G]$ に対して

$$\phi(\alpha c_T) = \alpha \phi(c_T) = n_T \alpha c_T$$

だから、 $\mathbb{C}[G]c_T$ は ϕ の固有値 n_T の固有空間の部分空間である。

$$\operatorname{tr} \phi|_{\mathbb{C}[G]c_T} = n_T \dim_{\mathbb{C}} \mathbb{C}[G]c_T$$

 $c_T \neq 0$ だから $\dim_{\mathbb{C}} \mathbb{C}[G]c_T \neq 0$, よって

$$n_T = \frac{n!}{\dim_{\mathbb{C}} \mathbb{C}[G]c_T}$$

定理 4.1.5 の証明を述べる

Proof. 定理 3.2.18 より

$$\dim_{\mathbb{C}} \operatorname{Hom}(\mathbb{C}[G]c_T, \mathbb{C}[G]c_T) = 1$$

を示せばよい。命題 4.1.6 より c_T は適当にスカラー倍してべき等元になる。よって命題 3.3.7 より

$$\operatorname{Hom}(\mathbb{C}[G]c_T,\mathbb{C}[G]c_T) = c_T\mathbb{C}[G]c_T$$

である。任意の $c_T \alpha c_T \in c_T \mathbb{C}[G] c_T$ は補題 4.1.6 の仮定をみたすので

$$c_T \alpha c_T = \mu c_T, \qquad \mu \in \mathbb{C}$$

と書ける。よって $\dim_{\mathbb{C}} c_T \mathbb{C}[G]c_T = 1$ である。

命題 4.1.9. $b_Ta_T=\tilde{c_T}$ とおくと、 $\mathbb{C}[G]\tilde{c_T}\simeq\mathbb{C}[G]c_T$ が成り立つ。

Proof. $\phi: \mathbb{C}[G]a_Tb_T \to \mathbb{C}[G]b_Ta_T \ \mathcal{E}$

$$\phi(xa_Tb_T) = xa_Tb_Ta_T$$

 $\psi: \mathbb{C}[G]b_Ta_T \to \mathbb{C}[G]a_Tb_T \ \mathcal{E}$

$$\psi(xb_Ta_T) = xb_Ta_Tb_T$$

とすれば

$$\psi(\phi(xa_Tb_T)) = \psi(xa_Tb_Ta_T) = xa_Tb_Ta_Tb_T = n_Txa_Tb_T$$

よって $\psi \circ \phi$ は 0 でないスカラー倍写像なので ϕ は単射、 ψ は全射である。命題 4.1.8 とまったく同様に $\tilde{c_T}^2 = \tilde{n_T}\tilde{c_T}$ となる 0 でないスカラー $\tilde{n_T}$ が存在することがわかる。よって ϕ は同型である。

命題 4.1.10. $\lambda \in \mathcal{P}_n$ とする。T,U を λ に書かれたタブローとすると $\mathbb{C}[G]c_T \simeq \mathbb{C}[G]c_U$ である。

Proof. このときある $g \in G$ が存在して U = gT となるから、

$$\mathcal{H}_U = g\mathcal{H}_T g^{-1}, \qquad \mathcal{V}_U = g\mathcal{V}_T g^{-1}$$

よって

$$c_U = a_U b_U = g a_T g^{-1} g b_T g^{-1} = g c_T g^{-1}$$

である。

$$\mathbb{C}[G]c_U = \mathbb{C}[G]gc_Tg^{-1} = \mathbb{C}[G]c_Tg^{-1}$$

だから、

$$\mathbb{C}[G]c_T \simeq \mathbb{C}[G]c_Tg^{-1}$$

を示せばよい。 $\phi: \mathbb{C}[G]c_T \to \mathbb{C}[G]c_Tg^{-1}$ を

$$\phi(\alpha c_T) = \alpha c_T g^{-1}$$

と置けば ϕ は左 $\mathbb{C}[G]$ 加群の準同型で、g を右から書ける準同型が逆写像を与えるので、同型である。

したがって、同じ Young 図形に対しては $\mathbb{C}[G]c_T$ はタブロー T の取り方によらず同型である。そこで $\lambda \in \mathcal{P}_n$ に対して、 λ の自然なタブロー (例 4.1.4) から定まる Young 対称子を c_λ とし、 $V_\lambda = \mathbb{C}[G]c_\lambda$ とおく。 次の定理を証明することで、既約表現の分類は完成する。

定理 4.1.11. $\lambda, \mu \in \mathcal{P}_n$ とする。

$$V_{\lambda} \simeq V_{\mu}$$

となるための必要十分条件は $\lambda = \mu$ である

Proof. 十分性は明らか。必要性を示す。 $\lambda \neq \mu$ であるとする。 V_{λ}, V_{μ} は既約表現なので、Schur の補題 (補題 3.2.3) より、

$$\dim_{\mathbb{C}} \operatorname{Hom}(V_{\lambda}, V_{\mu}) = 0$$

を証明すればよいが、命題 3.3.7 より、

$$\operatorname{Hom}(V_{\lambda}, V_{\mu}) = c_{\lambda} \mathbb{C}[G] c_{\mu}$$

ゆえに、すべての $g \in G$ に対して

$$c_{\lambda}gc_{\mu} = a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} = 0$$

が成り立つことを示す。次の補題を示す。

補題 4.1.12. \mathcal{P}_n に辞書式順序を入れ、 $\lambda < \mu$ であるとする。 λ, μ でその自然なタブローを表すものとする。 このとき任意の $q \in G$ に対して、 μ の同じ行にある数字 i, j であって $q\lambda$ では同じ列にあるものが存在する。

Proof. $\lambda = (\lambda_1, \dots, \lambda_s), \mu = (\mu_1, \dots, \mu_t)$ とおく。 t についての帰納法で示す。

t=1 の場合 $\lambda_1<\mu_1$ となるから、 λ の列数は μ_1 より少ない。よって鳩の巣原理 $1,2,\cdots,\mu_1$ のうち、 $g\lambda$ の同じ列に存在あるペアが必ず存在する。

t>1 とする。 $\lambda_1<\mu_1$ である場合はまったく同様に鳩の巣原理から従う。 $\lambda_1=\mu_1$ かつ、 $1,2,\cdots,\mu_1$ が $g\lambda$ ではすべて異なる列に存在するとする。このとき垂直置換 $\tau\in\mathcal{V}_{g\lambda}$ を施して

$$H_1(\mu) = H_1(\tau g \lambda) = \{1, 2, \cdots, \mu_1\}$$

が成り立つようにできる。そこで、 μ 、 $\tau g \lambda$ の 2 行目以降をとりだしたタブロー μ' 、 $(\tau g \lambda)'$ を考える。すると $(\tau g \lambda)' < \mu'$ であるから帰納法の仮定により μ' の同じ行にある数字 i,j であって $(\tau g \lambda)'$ では同じ列にあるも のが存在する。i,j が $(\tau g \lambda)'$ の第 m 列にあるとする。 τ は垂直置換だから

$$V_m(\tau g\lambda) = V_m(g\lambda)$$

よってi,jは $g\lambda$ の同じ列に存在する。

定理 4.1.11 の証明に戻る。補題から、 $\nu=(i,j)$ であって $\nu\in\mathcal{H}_{\mu}\cap\mathcal{V}_{g^{-1}\lambda}$ となるものが存在する。よって

$$\nu = g^{-1}\pi g, \qquad \pi \in \mathcal{V}_{\lambda}$$

とおけば

$$\begin{split} c_{\lambda}gc_{\mu} &= a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} \\ &= a_{\lambda}b_{\lambda}\mathrm{sgn}(\pi)\pi ga_{\mu}b_{\mu} \\ &= a_{\lambda}b_{\lambda}\mathrm{sgn}(\pi)g\nu a_{\mu}b_{\mu} \\ &= \mathrm{sgn}(\pi)a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} \\ &= -c_{\lambda}gc_{\mu} \end{split}$$

よって

$$c_{\lambda}gc_{\mu}=0$$

例 4.1.13. $\lambda=(n), \mu=(1,1,\cdots,1)\in\mathcal{P}_n$ とする。このとき $\mathcal{H}_{\lambda}=\mathfrak{S}_n,\,\mathcal{V}_{\lambda}=e$ だから、

$$c_{\lambda} = \sum_{\sigma \in \mathfrak{S}_n} \sigma$$

また $\mathcal{H}_{\mu} = e, \mathcal{V}_{\mu} = \mathfrak{S}_n$ だから、

$$c_{\mu} = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma$$

したがって λ の定める既約表現は自明な表現 1 であり、 μ の定める既約表現は置換の符号 sgn であるとわかる。

例 4.1.14. $G = \mathfrak{S}_3$ とする。

$$\lambda =$$

に対応する Young 対称子は

$$c_{\lambda} = (e + (1,2))(e - (1,3)) = e + (1,2) - (1,3) - (1,3,2)$$

である。 c_{λ} の定める既約表現が、例 3.2.21 で求めた既約表現 U と一致することをたしかめる。

$$c_{\lambda}^2 = 3c_{\lambda}$$

となるから、命題 4.1.8 より

$$\dim_{\mathbb{C}} \mathbb{C}[G]c_{\lambda} = 2$$

である。

$$v = c_{\lambda},$$
 $u = (1, 2, 3)c_{\lambda} = -e + (1, 3) - (2, 3) + (1, 2, 3)$

とすれば、 $\mathbb{C}[G]c_{\lambda} = \mathbb{C}v \oplus \mathbb{C}v$ であり、

$$(1,2)v = v,$$
 $(1,2)u = -v - u$
 $(1,2,3)v = u,$ $(1,2,3)u = -v - u$

だから、

$$\operatorname{tr} e = \dim_{\mathbb{C}} \mathbb{C}[G]c_{\lambda} = 2$$
$$\operatorname{tr} (1,2) = 0$$
$$\operatorname{tr} (1,2,3) = -1$$

となり、指標が一致している。

補題 4.1.15. $\phi: \mathbb{C}[G] \to \mathbb{C}[G]$ を

$$\phi(g) = \operatorname{sgn}(g)g$$

を線形に拡張して定める。 ϕ は環準同型であり、対合である。 $\varepsilon \in \mathbb{C}[G]$ に対して

$$\mathbb{C}[G]\varepsilon\otimes_{\mathbb{C}}\mathbb{C}_{\operatorname{sgn}}\simeq\mathbb{C}[G]\phi(\varepsilon)$$

が成り立つ。ここで、 \mathbb{C}_{sgn} は $\mathbb{C}_{sgn} = \mathbb{C}$ であり、

$$g \cdot \lambda = \operatorname{sgn}(g)\lambda, \qquad g \in G, \lambda \in \mathbb{C}$$

で定まる $\mathbb{C}[G]$ 加群である(すなわち sgn 表現)。

Proof. $f: \mathbb{C}[G]\phi(\varepsilon) \to \mathbb{C}[G]\varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} \ \not{\epsilon}$

$$f(x) = \phi(x) \otimes 1$$

で定めれば $g \in G$ として

$$gf(x) = g(\phi(x) \otimes 1)$$

$$= g\phi(x) \otimes \operatorname{sgn}(g)$$

$$= \operatorname{sgn}(g)g\phi(x) \otimes 1$$

$$= \phi(gx) \otimes 1$$

$$= f(gx)$$

より $\mathbb{C}[G]$ 加群の準同型である。任意の $y\otimes 1\in\mathbb{C}[G]$ $\varepsilon\otimes_{\mathbb{C}}\mathbb{C}_{\mathrm{sgn}}$ に対して

$$f(\phi(y)) = y \otimes 1$$

となり、 $\mathbb{C}[G] \varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}}$ は $y \otimes 1$ の形の元で生成されるから、f は全射である。

$$\dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} = \dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon \cdot \dim_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} = \dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon$$

より f は同型。

例 4.1.16. $\lambda \in \mathcal{P}_n$ に対して、 λ の行と列を反転させたものを双対 Young 図形といい λ^* と書く。

このとき

$$\mathbb{C}[G]_{c_{\lambda}} \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} \simeq \mathbb{C}[G]_{c_{\lambda^*}}$$

となることを示す。定義より、

$$\mathcal{H}_{\lambda^*} = \mathcal{V}_{\lambda}, \qquad \mathcal{V}_{\lambda^*} = \mathcal{H}_{\lambda}$$

であるから、

$$a_{\lambda^*} = \phi(b_{\lambda}), \qquad b_{\lambda^*} = \phi(a_{\lambda})$$

したがって

$$c_{\lambda^*} = \phi(b_{\lambda})\phi(a_{\lambda}) = \phi(b_{\lambda}a_{\lambda}) = \phi(\tilde{c_{\lambda}})$$

である。命題 4.1.9 より、

$$\mathbb{C}[G]c_{\lambda} \simeq \mathbb{C}[G]\tilde{c_{\lambda}}$$

であるから、補題 4.1.15 より、

$$\mathbb{C}[G]c_{\lambda^*} \simeq \mathbb{C}[G]c_{\lambda} \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}}$$

4.2 対称群の表現環と対称関数環

定義 4.2.1. 可算無限個の変数をもつ形式的べき級数環 $R=\mathbb{C}[[x_1,x_2,\cdots]]$ を考える。

5 一般線形群の表現と Schur-Weyl 双対性

6 テンソル積の分解

^{第Ⅲ部} 数え上げ幾何学

参考文献

- [1] ヤング・タブロー
- [2] テンソル代数と表現論
- [3] 数え上げ幾何学講義
- [4] 代数学 2, 環と体とガロア理論
- [5] 代数入門
- [6] 有限群の線形表現
- [7] 環と加群のホモロジー代数的理論
- [8] Symmetric Functions and Hall Polynomials
- [9] Enumerative Combinatorics