

ECE 441 Interfacing & Modulating the Nervous System

Fall 2023

Lecture 06 Electrical Neural Interface

Professor Xilin Liu

xilinliu@ece.utoronto.ca

Today's Agenda

- Neural signals
- Neural Signal Amplification
- Model of Electrode Interface
- Noise and Interferences
- Instrumentation Amplifiers

About Me

Experience

- Assistant Professor University of Toronto
- Affiliated Scientist University Health Network
- Qualcomm Inc. (2016 2021)
- Ph.D. University of Pennsylvania

Research Interests

- Integrated Circuits and Systems
- Brain Machine Interfaces
- Edge Artificial Intelligence

About Me

More about my research

https://www.eecg.utoronto.ca/~xilinliu/

Contact

Email: xilinliu@ece.utoronto.ca

Office: BA5108

Office Hours

After lecture or by appointment

Neural Signals

Neural signals are essentially electrical and electrochemical signals

Neural Signals

Can we use an oscilloscope to measure brain signals?

V.S.

Neural Signals: EEG

EEG 5-300uV < 100Hz

• **EEG**: Electroencephalogram

Neural Signals: ECoG

ECoG 10uV – 1mV < 200Hz

• **EEG**: Electroencephalogram

■ **ECoG**: Electrocorticography

Neural Signals: LFP & AP

ECoG: Electrocorticography

LFP: Local Field Potential

AP: Action Potential

ECoG 10uV – 1mV < 200Hz

LFP 20uV – 2mV < 500Hz

AP 100uV – 1mV 100 – 7kHz

Neural Signal Amplification

Neural Signal Amplification with Electrode

Impedance: < 10kohm

Dry EEG Electrodes

Impedance: 500kohm -1Mohm

Neural Electrodes: ECoG

Impedance: 5-10kohm

Neural Electrodes: AP

Impedance: 300kohm – 5Mohm

Model of Electrode Interface

Metal and Reaction	Potential E ⁰ (V)
$A1 \rightarrow A1^{3+} + 3e^{-}$	-1.706
$Zn \rightarrow Zn^{2+} + 2e^-$	-0.763
$Cr \rightarrow Cr^{3+} + 3e^{-}$	-0.744
$\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+} + 2\mathrm{e}^{-}$	-0.409
$\mathrm{Cd} \rightarrow \mathrm{Cd}^{2+} + 2\mathrm{e}^{-}$	-0.401
$Ni \rightarrow Ni^{2+} + 2e^-$	-0.230
$Pb \rightarrow Pb^{2+} + 2e^{-}$	-0.126
$H_2 \rightarrow 2H^+ + 2e^-$	0.000 by definition
$Ag + Cl^{-} \rightarrow AgCl + e^{-}$	+0.223
$2Hg + 2Cl^{-} \rightarrow Hg_2Cl_2 + 2e^{-}$	+0.268
$Cu \rightarrow Cu^{2+} + 2e^-$	+0.340
$Cu \rightarrow Cu^+ + e^-$	+0.522
$\mathrm{Ag}\! ightarrow\!\mathrm{Ag}^{+}+\mathrm{e}^{-}$	+0.799
$Au \rightarrow Au^{3+} + 3e^{-}$	+1.420
$Au \rightarrow Au^+ + e^-$	+1.680
710 /10	1.000

Source: Data from *Handbook of Chemistry and Physics*, 55th ed., Cleveland, OH: CRC Press, 1974–1975, with permission.

Neural Signal Amplification with Electrode

Neural Signal Amplification with Electrode

If we consider the non-idealities of the amplifier...

Noise and Interference

Common Mode Rejection

Differential Amplifier

Instrumentation Amplifier (3 Op-amp Circuit)

Instrumentation Amplifier (3 Op-amp Circuit)

Instrumentation Amplifier (3 Op-amp Circuit)

... with Resistor Mismatches

Let's assume resistors have 1% mismatch

R1 = 10.1kohm, R3 = 9.9kohm

R2 = 0.99Mohm, R4 = 1.01Mohm

... with Resistor Mismatches

Let's assume resistors have 1% mismatch

R1 = 10.1kohm, R3 = 9.9kohm

R2 = 0.99Mohm, R4 = 1.01Mohm

... with Resistor Mismatches

Let's assume resistors have 1% mismatch

R1 = 10.1kohm, R3 = 9.9kohm

R2 = 0.99Mohm, R4 = 1.01Mohm

R5 = 505kohm, R6 = 495kohm

RG = 10kohm

ADS1299, ADS1299-4, ADS1299-6

SBAS499C - JULY 2012-REVISED JANUARY 2017

ADS1299-x Low-Noise, 4-, 6-, 8-Channel, 24-Bit, Analog-to-Digital Converter for EEG and Biopotential Measurements

1 Features

- Up to Eight Low-Noise PGAs and Eight High-Resolution Simultaneous-Sampling ADCs
- Input-Referred Noise: 1 μV_{PP} (70-Hz BW)
- Input Bias Current: 300 pA
- Data Rate: 250 SPS to 16 kSPS
- CMRR: –110 dB

Figure 23. PGA Implementation

Faraday Cabin

Faraday Cabin for Animal Studies

or home-made...

Noise and Interference

Figure 6.12 Magnetic-field pickup by the electrocardiograph (a) Lead wires for lead I make a closed loop (shaded area) when patient and electrocardiograph are considered in the circuit. The change in magnetic field passing through this area induces a current in the loop. (b) This effect can be minimized by twisting the lead wires together and keeping them close to the body in order to subtend a much smaller area.

Differential Signal Routing

PCB routing for differential signal

IC routing with "braiding"

Active Shielding

Active Shielding with DRL

Summary

- Neural recording is challenging because:
 - Signals are weak
 - Electrodes have high and complex impedance
 - Strong interference and noise in the environment
 - Non-idealities in amplifiers
- Challenges that we didn't discuss:
 - Channel scaling (there are sooooo many neurons...)
 - Noises and power of electronics, heating
 - Electrode drifting, degradation, foreign body rejection
 - o etc.