

ETHERNET- La Norme IEEE 802.3

ISECS 2010 - Wajdi ELLEUCH

La trame CSMA/CD Préambule: 56 bits = 7 x (1010101010)

permet la 'synchronisation bit'.

Délimiteur de début de trame (Start

Délimiteur de début de trame (*Start Frame Delimiter*): 8 bits = 10101011; permet la *synchronisation trame/caractèr*

Adresse (6octets) individuelle/multicast/broadcast.

<u>Longueur du champ de données</u>: valeur comprise entre 1 et 1500, indique le nombre d'octets des données (compatibilité avec Ethernet...).

Padding (bourrage): contenu sans signification complétant une trame dont la longueur des données est inférieure à 46 octets.

<u>Contrôle</u>: séquence de contrôle basée sur un CRC polynomial de degré 32.

Préambule: 56 bits = 7 x (1010101010) permet la 'synchronisation bit'. Délimiteur de début de trame (Start Frame Delimiter): 8 bits = 10101011; permet la synchronisation trame/caractèr Préambule: 56 bits = 7 x (1010101010) Données (0-1500 octets) Données (0-1500 octets) Longueur données (2 octets) Adresse devisation: 6 octets Délimiteur de début de trame: 1 octet Préambule: 7 octets

Adresse (6octets) individuelle/multicast/broadcast.

Longueur du champ de données : valeur comprise entre 1 et 1500, indique le nombre d'octets des données (compatibilité avec Ethernet...).

Padding (bourrage): contenu sans signification complétant une trame dont la longueur des données est inférieure à 46 octets.

<u>Contrôle</u>: séquence de contrôle basée sur un CRC polynomial de degré 32.

CSMA/CD

CSMA/CD: Carrier SenseMultiple Access / CollissionDetection)

Principes

- •Carrier Sense: chaque station est à l'écoute pour détecter la présence d'un signal
- •Multiple Access: plusieurs stations peuvent émettre en même temps
- •Collision Detection: chaque station sait si elle a provoqué une collision

ISECS 2010 – Wajdi ELLEUCH

CSMA/CD CSMA/CD: Principes •Carrier Sense: •Multiple Access: •Collision Detection:

CSMA/CD: Durée minimale d'émission durée d'émission d'émettre A percoit la collision 2.Le délai de propagation n'est pas nul => B peut émettre alors que A a déjà commencé son émission 3.Les 2 trames se percutent: c'est la collision 4.Avec une durée d'émission 'trop courte', A ne peut pas savoir que son message a provoqué une collision...

CSMA/CD: Taille minimale de trame
Durée minimale d'émission • D : débit • V : vitesse de propagation su câble • Dmax : Distance maximale entre 2 stations • P : durée maximale de propagation = Dmax / Vitesse • Durée d'émission >= 2*P • Ce qui revient à dire que la trame doit avoir une longueur >= 2*Pb
Vitesse de propagation : Distance maximale entre 2 stations :
Délai maximal de propagation P =
• Tranche Canal (Slot Time) • TC =
• Taille de trame minimale • D x TC =

CSN	MA/CD: Taille minimale de trame
• D : d	imale d'émission ébit itesse de propagation su câble
• Dma: • P : du • <u>Duré</u>	x : Distance maximale entre 2 stations urée maximale de propagation = Dmax / Vitesse e <u>d'émission >= 2*P</u> vient à dire que la trame doit avoir une longueur >= 2*P*D
• Vitesse	de propagation : 200 000 km/s
• Distance	e maximale entre 2 stations : 2,5 km
	aximal de propagation P = 2,5/200 000 = 12,5 μs
• Tranche	Canal (Slot Time)
	$TC = 2xP = 25 \mu s.$
• Taille de	e trame minimale
•]	$D \times TC = 10Mb/s \times 50\mu s = 500 \text{ bits} = 62.5 \text{ octets}$
	on arrondit à 64 octets

Taille minimale de trame														
Ce « Slot Time » d'acquisition														

Taille minimale de trame

Ce « Slot Time » d'acquisition du canal est gal 51.2 µs : ce délai passé, aucune collision ne peut plus arriver !!

Par conséquent, une station doit donc écouter le signal «Collision Detection» pendant $51.2~\mu s$ à partir du début d'émission de la trame

Délai d'attente avant retransmission

Lorsqu'elle détecte une collision, la station attend $\underline{R*51.2 \mu s}$ tel que :

	$0 \le R \le 2^{l-1}$																											
? =							۰	۰	٠	۰										٠	٠							
i =										۰	۰	۰						۰	۰	۰	۰							

•

Délai d'attente avant retransmission

Lorsqu'elle détecte une collission, la station attend $\underline{R*51.2~\mu s}$ tel que :

$$0 \le R \le 2^{i-1}$$

- **R** étant un entier «Random» et i = min(n, KM)
- n = nombre de retransmissions déjà effectuées
- Le nombre de réémissions est limité à NM

Généralement:

KM=10

NM=15

Si nbre de retransmisson = $< 10 \rightarrow i = n$

Si $10 < \text{nbre de retransmisson} = < 15 \rightarrow i = 10$

Si nbre de retransmisson > 15 → Arrêt