Strategy

- 1. Randomization Assign random Boolean values to each variable.
- Attempt to Improve Iteratively flip the truth value of each variable one at a time. After each flip, compute the new number of satisfied clauses. Retain the flip if it improves the solution; otherwise, revert the flip.
- Anytime The algorithm attempts to improve the solution incrementally over multiple iterations. It stops either when no further improvement is made after 5 consecutive iterations or when all clauses are satisfied (best_count == m).

Analytical Runtime

- 1. Randomly assigning truth values to each variable; Takes O(n) where n is the number of variables
- satisfied_clauses iterates over each clause and each literal in the clause; Iterating over each clause takes O(m) where m is the number of clauses and each literal takes constant time O(1) since each clause can only have 3 literals
- max_3sat_approx has two loops:
 - a. Outer loop: Runs up to 5 iterations: Outer loop runs in constant time O(1)
 - b. Inner loop: Iterates over each variable and uses satisfied_clauses; Iterating over each variable takes O(n) and since satisfied_clauses takes O(m), the inner loop takes O(n * m)
- 4. Runtime: O(n * m)

Wall Clock

 As the input size of m (variables) increases, the time the exact solution takes grows exponentially, while the approximation grows linearly.

# Variables	Approximation	Exact
3	0.12	0.12
5	0.116	0.124
8	0.113	0.121
10	0.114	0.124
12	0.116	0.129
15	0.125	0.203
17	0.126	0.367
20	0.12	2.444
21	0.12	4.984
22	0.123	9.923
23	0.127	19.161
24	0.122	103.294
25	0.117	187.374
26	0.116	341.106

Non Optimal

- As the number of clauses m increases, the approximation algorithm becomes less optimal.
 - Highly Constrained Instances: When clauses are heavily interdependent (e.g., many overlapping variables among cl