Práctica 2: Dividir y conquistar

Ejercitación básica

Ejercicio 1. Implementar el algoritmo de ordenamiento mergesort en Python. Se provee un archivo pr02_mergesort.py con una función mergesort a completar. El programa ejecuta casos de test y hace un gráfico para comparar los tiempos de ejecución de mergesort y selection sort.

Ejercicio 2. Sea A un arreglo de números enteros sin repetidos. Decimos que un elemento de A es un "pico" si es el elemento máximo del arreglo y además todos los elementos anteriores están ordenados ascendentemente y todos los elementos posteriores están ordenados descendentemente. Por ejemplo:

$$\underbrace{[-2, 9, 10, 11, 13, 14, 15, 17, 19, 25, 50}_{\text{fragmento ascendente}}, \underbrace{51}_{\text{pico}}, \underbrace{49, 29, 12, 8, 7, 5}_{\text{fragmento descendente}}]$$

- a) Proponer un algoritmo que encuentre el pico de un arreglo en $O(\log n)$.
- b) Implementarlo en Python y convencerse de que es correcto haciendo tests.

Ejercicio 3. [Merge de n vías] Suponemos dados k arreglos ordenados A_1, A_2, \ldots, A_k , cada uno de n elementos. Queremos conseguir un arreglo ordenado que reúna todos los elementos de A_1, A_2, \ldots, A_k en orden. Un método posible para hacer esto podría ser aplicando el algoritmo MERGE: primero mezclar A_1 con A_2 , después mezclar el resultado con A_3 , etcétera.

- a) ¿Cuál es la complejidad temporal en peor caso de dicho método?
- b) Proponer un algoritmo cuya complejidad temporal sea estrictamente mejor que la del método propuesto.

Ejercitación adicional

Ejercicio 4. Suponemos que los valores de T(0) y T(1) se encuentran fijados. Resolver las siguientes ecuaciones de recurrencia (determinando el orden de complejidad de T(n) en cada caso):

a)
$$T(n) = T(n/2) + 1$$

e)
$$T(n) = T(n/3) + 1$$

b)
$$T(n) = T(n/2) + n$$

f)
$$T(n) = T(n/3) + n$$

c)
$$T(n) = 2T(n/2) + 1$$

g)
$$T(n) = 2T(n/3) + 1$$

d)
$$T(n) = 2T(n/2) + n$$

h)
$$T(n) = 2T(n/3) + n$$

Ejercicio 5. Se propone el siguiente método para determinar si un elemento x aparece en un arreglo A (no necesariamente ordenado):

- 1. Si el arreglo es de tamaño 0, devolver False (es decir, x no aparece en el arreglo).
- 2. Si el arreglo es de tamaño 1, comparar A[0] con x.
- 3. Si el arreglo A es de tamaño n > 1, dividir A en dos mitades B, C. Procediendo recursivamente, determinar si x aparece en B o si aparece en C.

Preguntas:

- a) ¿Cuál es la complejidad temporal en peor caso de este método? Proponer una ecuación de recurrencia y resolverla.
- b) ¿Cómo se compara el método con la búsqueda lineal?

Ejercicio 6. Supongamos dado un arreglo A de n números enteros. Sabemos que el arreglo empieza en 0 y que está ordenado crecientemente, pero puede contener repetidos. Por ejemplo, el arreglo podría ser de la forma:

$$[0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,5,5,5,5]$$

Queremos "comprimir" el arreglo generando un arreglo de pares (x, r) donde x representa un elemento del arreglo original y r el número de repeticiones de ese elemento en el arreglo original. Por ejemplo, el arreglo de arriba se puede comprimir del siguiente modo:

[
$$(0,4)$$
 , $(1,4)$, $(2,6)$, $(3,2)$, $(4,1)$, $(5,4)$] el 0 aparece 4 veces

Proponer un algoritmo para comprimir un arreglo A en tiempo $O(k \log n)$, donde k es el valor del número más grande que aparece en A.

Ejercicio 7. [Exponenciación binaria] Dado un número entero $x \in \mathbb{Z}$ y un natural $n \in \mathbb{N}_0$. Queremos calcular la potencia x^n . Por convención, declaramos que $x^0 = 1$ para todo $x \in \mathbb{Z}$.

Un método ingenuo para calcular la potencia es realizar una sucesión de n multiplicaciones, en tiempo O(n):

$$\underbrace{((x \cdot x) \cdot x) \dots \cdot x}_{n \text{ veces}}$$

Se puede calcular x^n de manera más eficiente con el siguiente método, basado en la técnica de D&C:

- Si n=0, devolver 1.
- Si n es mayor que 0 y es par, calcular $y = x^{n/2}$ y devolver $y \cdot y$.
- Si n es impar, calcular $y = x^{(n-1)/2}$ y devolver $y \cdot y \cdot x$.

Se pide:

- a) Implementar el método en Python y convencerse de que es correcto haciendo tests.
- b) Analizar la complejidad temporal en peor caso.