Лабораторна робота № 3

НАЗВА: Моніторинг використання оперативної пам'яті в ОС Linux. МЕТА: Навчитись роботі з командами та системними утилітами моніторингу використання оперативної пам'яті в ОС Linux.

1. Загальні відомості

1.1. Детальну інформацію про біжучий розподіл та використання оперативної пам'яті можна отримати за допомогою віртуальної файлової системи procfs (/proc file system), виконавши в командному рядку:

\$ cat /proc/meminfo

Параметри використання пам'яті у віртуальному файлі /proc/meminfo визначаються в режимі реального часу в момент звертання до вмістимого файлу. Основні параметри:

MemTotal - загальний об'єм доступної оперативної пам'яті (тобто фізичний об'єм RAM мінус кілька зарезервованих бітів і мінус бінарний код ядра);

MemFree - об'єм вільної пам'яті;

MemAvailable - оцінка об'єму пам'яті доступної для запуску нової програми (за виключенням своппінгу);

Buffers - пам'ять, що використовується для буферизації файлів (тимчасового зберігання блоків диску);

Cached - розмір кешу для файлів, які читаються з диску (pagecache), за виключенням SwapCached;

SwapCached - об'єм даних які одночасно знаходяться в оперативній пам'яті і у свопі (для економії часу на операціях вводу/виводу); SwapTotal - загальний доступний об'єм свопу (swap); SwapFree - об'єм вільної пам'яті у свопі.

Приклади:

1) визначити біжучий сумарний об'єм спільної пам'яті (shared memory) у системі:

```
$ cat /proc/meminfo | grep Shmem:
Shmem: 327188 kB
```

2) вивести основні параметри використання оперативної пам'яті і свопу:

\$ egrep --color 'Mem|Buffers|Cached|Swap' /proc/meminfo

 MemTotal:
 3955628 kB

 MemFree:
 733420 kB

 MemAvailable:
 1875064 kB

 Buffers:
 119776 kB

 Cached:
 1509596 kB

 SwapCached:
 0 kB

 SwapTotal:
 4099068 kB

 SwapFree:
 4099068 kB

1.2. Команда **free** призначена для отримання інформації про оперативну пам'ять (загальний об'єм, об'єм використаної пам'яті, об'єм вільної пам'яті та ін.) у зручному вигляді з можливістю

уточнення інформації за допомогою опцій команди. Інформація, яку виводить команда **free**, береться з віртуального файлу /proc/meminfo.

Приклади:

- 1) вивести інформацію про використання пам'яті у зручному вигляді:
- \$ free -h
- 2) вивести підсумкову інформацію про використання пам'яті:
- \$ free -ht
- 3) виводити інформацію про використання пам'яті кожні 5 секунд:
- \$ free -s 5
- 1.3. Системна утиліта **vmstat** (virtual memory statistics) входить до набору утиліт sysstat (system statistics) і призначена для отримання інформації про віртуальну пам'ять системи. За домогою утиліти **vmstat** можна організувати збір статистичної інформації про різні аспекти використання оперативної пам'яті.

Приклади:

1) вивести інформацію про використання оперативної пам'яті:

\$ vmstat

```
procs -------memory------ ---swap-- ----io---- -system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 934748 121036 1454304 0 0 27 11 111 607 3 1 95 1 0
```

- 2) виводити інформацію про біжуче використання оперативної пам'яті кожні 5 секунд 10 разів:
- \$ vmstat 5 10
- 3) виводити інформацію про біжуче використання оперативної пам'яті з часовими відмітками:

\$ vmstat -t 1 5

4) вивести статистичну інформацію про використання оперативної пам'яті та системні події:

\$ vmstat -s

1.4. Команда **рмар** призначена для отримання інформації про використання пам'яті окремим обчислювальних процесом або набором процесів. Команда **рмар** дозволяє визначити які об'єкти даних знаходяться в пам'яті процесу, де вони розміщені і який об'єм займають (memory map).

Приклади:

1) вивести інформацію про пам'ять процесу з ідентифікатором 3901:

\$ pmap 3901

```
3901:
       bash
0000000000400000
                  1024K r-x-- bash
                   12K r--- bash
36K rw--- bash
0000000000700000
0000000000703000
                    40K rw--- [ anon ]
000000000070c000
0000000000859000
                 1752K rw---
                                [ anon ]
00007f8233021000
                   40K r-x-- libnss files-2.24.so
                  2048K ---- libnss_files-2.24.so
00007f823302b000
                   4K r---- libnss files-2.24.so
00007f823322b000
                     4K rw--- libnss_files-2.24.so
00007f823322c000
                   24K rw--- [ anon ]
00007f823322d000
                    44K r-x-- libnss nis-2.24.so
00007f8233233000
                  2044K ---- libnss_nis-2.24.so
00007f823323e000
                   4K r--- libnss_nis-2.24.so
00007f823343d000
                     4K rw--- libnss_nis-2.24.so
00007f823343e000
                    80K r-x-- libnsl-2.24.so
00007f823343f000
00007f8233453000 2048K ---- libnsl-2.24.so
                     4K r---- libnsl-2.24.so
00007f8233653000
                     4K rw--- libnsl-2.24.so
00007f8233654000
00007fff42db9000
                     8K r-x--
                                [ anon ]
                    4K r-x--
fffffffff600000
                                [ anon ]
                 21284K
total
```

2) вивести інформацію про пам'ять процесу з ідентифікатором 3901 в розширеному вигляді:

\$ pmap -x 3901

```
3901: bash
                           RSS Dirty Mode Mapping 948 0 r-x-- bash
Address
                 Kbvtes
0000000000400000
                  1024
0000000000400000
                    0
                            0
                                     0 r-x-- bash
                                    4 r---- bash
0 r---- bash
0000000000700000
                     12
                            12
                     0
0000000000700000
                            0
                           36
                                   36 rw--- bash
                    36
0000000000703000
                                     0 rw--- bash
00000000000703000
                            Ω
                          28
000000000070c000
                    40
                                  28 rw--- [ anon ]
                   0 0 0 rw---
1752 1748 1748 rw---
000000000070c000
                                               [ anon ]
0000000000859000
                                               [ anon ]
                   0 0
40 40
                                  0 rw--- [ anon ]
0 r-x-- libnss_files-2.24.so
0000000000859000
00007f8233021000
                          0
                                    0 r-x-- libnss files-2.24.so
00007f8233021000
00007f823302b000
                 2048
                                    0 ---- libnss files-2.24.so
                            0
fffffffff600000
                                    0 r-x--
                                               [ anon ]
fffffffff600000
                     0
                            0
                                    0 r-x--
                                               [ anon ]
                  21284
                         5188
                                1972
total kB
```

- 3) вивести інформацію про пам'ять декількох процесів: \$ pmap 3901 5051 5645
- 1.5. Системна утиліта **smem** призначена для формування звітів про використання оперативної пам'яті обчислювальними процесами з врахуванням сторінок спільної пам'яті (shared memory). Утиліта **smem** виводить інформацію про три показника використання пам'яті процесом: USS (Unique Set Size) об'єм пам'яті процесу без врахування спільної пам'яті (значення USS вказує скільки пам'яті буде вивільнено в разі завершення виконання процесу); PSS (Proportional Set Size) об'єм пам'яті процесу з додатковим врахуванням спільної пам'яті (до USS дадається пропорційна частка спільної пам'яті даного процесу з урахуванням кількості інших процесів, які розділяють цю область спільної пам'яті); RSS (Resident Set Size) об'єм частки оперативної пам'яті, яку займає процес (оцінка об'єму пам'яті необхідного для виконання процесу).

Приклади:

1) отримати інформацію про використання пам'яті процесами:

\$ smem

PID	User	Command	Swap	USS	PSS	RSS
1200	smm	/usr/bin/dbus-daemonconf	0	456	600	3828
1125	smm	/usr/lib/gdm3/gdm-x-session	0	672	743	5528
1195	smm	/usr/lib/at-spi2-core/at-sp	0	684	801	6272
1328	smm	/usr/lib/gvfs/gvfs-mtp-volu	0	780	856	5576
1336	smm	/usr/lib/gvfs/gvfs-goa-volu	0	756	870	5640
1458	smm	/usr/lib/dconf/dconf-servic	0	916	972	4936
1220	smm	/usr/lib/gvfs/gvfsd	0	880	1042	6468
1202	smm	/usr/lib/at-spi2-core/at-sp	0	908	1053	6964
1611	smm	/usr/lib/gvfs/gvfsd-burn	0	896	1057	6428
1225	smm	/usr/lib/gvfs/gvfsd-fuse /r	0	1072	1145	5964

2) отримати інформацію про використання пам'яті процесами firefox:

\$ smem --processfilter="firefox"

PID Us	ser	Command	Swap	USS	PSS	RSS
6052 s	smm	/usr/bin/python /usr/bin/sm	0	13712	13749	15956
3136 s	smm	/home/smm/firefox/firefox-b	0	24396	32145	89148
4464 \$	smm	/home/smm/firefox/firefox-b	0	55692	70865	155804
3857 s	smm	/home/smm/firefox/firefox-b	0	67496	83174	170096
3784 s	smm	/home/smm/firefox/firefox-b	0	74932	91103	178160
3110 s	smm	/home/smm/firefox/firefox-b	0	96488	114267	205436
3821 s	smm	/home/smm/firefox/firefox-b	0	121372	151881	254768
2997 s	smm	/home/smm/firefox/firefox	0	230792	270512	381732

3) вивести узагальнену інформацію про використання пам'яті в системі:

\$ smem -w

y Shem w				
Area	Used	Cache	Noncache	
firmware/hardware	0	0	0	
kernel image	0	0	0	
kernel dynamic memory	1204476	1061764	142712	
userspace memory	1795672	565528	1230144	
free memory	955480	955480	0	

4) вивести інформацію про використання пам'яті в системі зведену по користувачам:

\$ sudo smem -u

User	Count	Swap	USS	PSS	RSS	
daemon	1	0	232	266	2296	
rtkit	1	0	416	463	3148	
systemd-timesync		1	0	600	925	4772
avahi	2	0	400	954	5376	
Debian-ex	kim 1	0	1316	1369	3108	
messagebi	ıs 1	0	1464	1615	4844	
colord	1	0	5276	5742	13500	
root	26	0	60428	67266	179372	
smm	61	0	1500180	1727221	2937784	

2. Послідовність виконання роботи

- 2.1. Ознайомитись з відомостями про моніторинг використання оперативної пам'яті в ОС Linux.
- 2.2. Дослідити вміст віртуального файлу /proc/meminfo. Визначити за його допомогою біжучий сумарний об'єм спільної пам'яті (shared memory) у системі та вивести основні параметри використання оперативної пам'яті і свопу.
- 2.3. Дослідити роботу команди free. Вивести командою free інформацію про використання пам'яті в системі.

- 2.4. Дослідити роботу системної утиліти vmstat. Отримати за її допомогою 1) інформацію про використання оперативної пам'яті, 2) статистичну інформацію про використання оперативної пам'яті та системні події.
- 2.5. Дослідити роботу команди ртар. Отримати за її допомогою інформацію про пам'ять процесу bash у звичайному та розширеному вигляді.
- 2.6. Дослідити роботу системної утиліти smem. Отримати за її допомогою 1) інформацію про використання пам'яті процесами,
- 2) узагальнену інформацію про використання пам'яті в системі,
- 3) інформацію про використання пам'яті в системі зведену по користувачам.
- 2.7. Скласти та захистити звіт з лабораторної роботи.

3. Зміст звіту

- 3.1. Результати виконання завдань по дослідженню вмісту віртуального файлу /proc/meminfo.
- 3.2. Результати дослідження роботи команди free.
- 3.3. Результати виконання завдань по дослідженню роботи утиліти vmstat.
- 3.4. Результати виконання завдань по дослідженню роботи команди ртар.
- 3.5. Результати виконання завдань по дослідженню роботи утиліти smem.

4. Контрольні питання

- 4.1. Віртуальний файл /proc/meminfo.
- 4.2. Призначення та використання команди free.
- 4.3. Призначення та використання системної утиліти vmstat.
- 4.4. Призначення та використання команди ртар.
- 4.5. Призначення та використання системної утиліти smem.

5. Джерела

- 1. Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, 3rd edition, O'Reilly Media, 2005. 944 p.
- 2. Robert Love, Linux Kernel Development, 3rd edition, Addison-Wesley Professional, 2010. 440 p.
- 3. The Linux Kernel documentation, www.kernel.org/doc/html/latest/
- 4. The /proc file system (Linux Documentation), https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt