05 Big Data Life Cycle - KirkYagami

Big Data Analytics Life Cycle: In-Depth Lecture Notes

I. Introduction

The Big Data Analytics Life Cycle is a comprehensive process for handling and analyzing large, complex datasets. It consists of nine phases, each crucial for turning raw data into actionable insights.

II. The Nine Phases

1. Business Case/Problem Definition

- · Objective: Understand the business context and define the problem.
- Key Activities:
 - Learn about the business domain
 - · Identify specific problems or opportunities
 - Frame the business problem as an analytics challenge
 - Estimate potential gains and required resources
 - Determine if it's truly a big data problem (volume, velocity, variety)
- Importance: Sets the direction for the entire project

2. Data Identification

- Objective: Locate appropriate datasets for analysis.
- Key Activities:
 - Research similar cases in other companies
 - Identify internal data sources (e.g., feedback forms, existing software)
 - Explore external data sources (e.g., third-party providers)
- Consideration: Data relevance to the business case is crucial

3. Data Acquisition and Filtration

- Objective: Gather and initially clean the data.
- Key Activities:
 - · Collect data from identified sources
 - Remove corrupt or irrelevant data
 - Store a compressed copy of filtered data for potential future use
- Challenge: Dealing with mostly unstructured data

4. Data Extraction

- Objective: Ensure all data is compatible with the analysis scope.
- Key Activities:
 - Identify incompatible data entries
 - Transform incompatible data to fit the analysis requirements
- Importance: Prepares data for more detailed cleaning and validation

5. Data Munging (Validation and Cleaning)

- Objective: Thoroughly clean and validate the data.
- Key Activities:
 - Remove invalid data
 - Establish and apply complex validation rules
 - Handle null entries (e.g., fill from similar datasets or remove)
- Importance: Ensures data quality for accurate analysis

6. Data Aggregation & Representation (Storage)

- Objective: Combine datasets and prepare for storage.
- Key Activities:
 - Join multiple datasets using common fields
 - · Consider automation for large-scale operations
- Challenge: Handling potentially very large amounts of data

7. Exploratory Data Analysis

- Objective: Analyze the data to extract insights.
- Types of Analysis:
 - 1. Confirmatory Analysis:
 - Test pre-existing hypotheses
 - Provide definitive answers to specific questions
 - 2. Exploratory Analysis:
 - Discover patterns and relationships in the data
 - Answer "why" a phenomenon occurred
- Importance: Core step where insights are generated

8. Data Visualization (Preparation for Modeling and Assessment)

- Objective: Represent findings visually for easy interpretation.
- Key Activities:
 - Use visualization tools to create graphics
 - Ensure visualizations are understandable to business users
- Benefits:
 - Aids in result interpretation
 - · Can reveal answers to unasked questions

9. Utilization of Analysis Results

- · Objective: Apply insights to business decisions.
- Key Activities:
 - Make data-driven decisions
 - Optimize and refine business processes
 - Use results as input for enhancing system performance
- Importance: Translates analysis into tangible business value

III. Iterative Nature of the Process

- Phases 7 and 8 (Analysis and Visualization) may be repeated for better results
- Emphasis on error correction and refinement
- Allows for moving back from Phase 8 to Phase 7 if needed

IV. Key Considerations

- 1. Data Quality: Crucial throughout the process, especially in phases 3-5
- 2. Scalability: Must handle large volumes of data efficiently
- 3. Expertise: Requires a mix of business knowledge and technical skills
- 4. Technology: Appropriate tools needed for each phase, especially for analysis and visualization
- 5. Privacy and Ethics: Important when dealing with sensitive data

V. Conclusion

The Big Data Analytics Life Cycle is a comprehensive approach to extracting value from complex datasets. It requires careful planning, rigorous data handling, and skilled analysis to turn raw data into actionable business insights.

Data Life Cycle

