Integraler

John Rognes

15. mars 2011

Integraler

Integraler forener

- ullet geometrisk målbare områder Ω og
- skalarfelt $f: \Omega \to \mathbb{R}$ definert på disse områdene.

Vi danner produktet $f(\Omega)|\Omega|$ av "verdien $f(\Omega)$ av funksjonen" og "størrelsen $|\Omega|$ av området". Mer presist deler vi området i biter $\{\Omega_i\}_{i=1}^n$, danner produktet av størrelsen av hver bit med verdien av funksjonen på den lille biten, og summerer over alle områdene:

$$\sum_{i=1}^n f(\Omega_i)|\Omega_i| \longrightarrow \int_{\Omega} f$$

Integralet er grenseverdien for summen når alle bitene er tilstrekkelig små.

Integrasjonsområder

For et 1-dimensjonalt område er størrelsen gitt ved en lengde.

- Et intervall [a, b] i \mathbb{R} . Lengden til $[x_{i-1}, x_i]$ er $(x_i - x_{i-1})$.
- En kurve

$$\mathcal{C} = \mathbf{r}([a,b]) = \{\mathbf{r}(t) \mid t \in [a,b]\} \subset \mathbb{R}^N$$

med parametrisering $\mathbf{r} \colon [a,b] \to \mathbb{R}^N$. Lengden av veien fra $\mathbf{r}(x_{i-1})$ til $\mathbf{r}(x_i)$ er ca. $|\mathbf{r}(x_i) - \mathbf{r}(x_{i-1})|$.

Integrasjonsområder

For et 2-dimensjonalt område er størrelsen gitt ved et areal.

- Et rektangel $R = [a, b] \times [c, d]$ i \mathbb{R}^2 . Arealet til $[x_{i-1}, x_i] \times [y_{j-1}, y_j]$ er $(y_j - y_{j-1})(x_i - x_{i-1})$.
- En parametrisert flate

$$T = \mathbf{r}(R) = \{\mathbf{r}(u, v) \mid (u, v) \in R\} \subset \mathbb{R}^3$$

 $\text{med parametrisering } \textbf{r} \colon R \to \mathbb{R}^3.$

Arealet til flatebiten med hjørner $\mathbf{r}(x_i, y_j)$, $\mathbf{r}(x_{i-1}, y_j)$, $\mathbf{r}(x_i, y_{i-1})$ og $\mathbf{r}(x_{i-1}, y_{i-1})$ er ca.

$$|(\mathbf{r}(x_i, y_j) - \mathbf{r}(x_{i-1}, y_j)) \times (\mathbf{r}(x_i, y_j) - \mathbf{r}(x_i, y_{j-1}))|$$

Integrasjonsområder

Andre områder med areal:

- Et type I område A i \mathbb{R}^2 , der $a \le x \le b$ og $\phi_1(x) \le y \le \phi_2(x)$, for kontinuerlige $\phi_1, \phi_2 : [a, b] \to \mathbb{R}$.
- Et type II område A i \mathbb{R}^2 , der $c \leq y \leq d$ og $\psi_1(y) \leq x \leq \psi_2(y)$, for kontinuerlige $\psi_1, \psi_2 \colon [c, d] \to \mathbb{R}$.
- Et Jordan-målbart område $A \subset \mathbb{R}^2$.

Skalar- og vektorfelt

Integranden er i utgangspunktet et skalarfelt, dvs. en funksjon $f: \mathbb{R}^N \to \mathbb{R}$.

For passende integrasjonsområder $\Omega \subset \mathbb{R}^N$ kan også integrere et vektorfelt $\mathbf{F} \colon \mathbb{R}^N \to \mathbb{R}^N$, ved å tilordne et skalarfelt $f \colon \mathbb{R}^N \to \mathbb{R}$.

• For en parametrisert kurve $\mathcal{C} \subset \mathbb{R}^N$ lar vi $f(\mathbf{r}(t)) = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$. Dette er lengden av komponenten av $\mathbf{F}(\mathbf{r}(t))$ i retning $\mathbf{r}'(t)$, ganger lengden $|\mathbf{r}'(t)|$.

Enkeltintegraler

- Riemann-integral $\int_a^b f(x) dx$
- Linjeintegral av skalarfelt $\int_{\mathcal{C}} f \, ds$ (mhp. buelengde s)
- Linjeintegral av vektorfelt $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ (orientert langs parametriseringen \mathbf{r})

Riemann-integral

Betrakt en partisjon $\{x_i\}_{i=0}^n$ av [a,b] og en pen funksjon $f:[a,b]\to\mathbb{R}$. Riemann-integralet er grensen for Riemann-summene

$$\sum_{i=1}^n f(x_i)(x_i-x_{i-1}) \longrightarrow \int_a^b f(x) dx$$

kan beregnes vha. den anti-deriverte

$$\int_{a}^{b} f(x) dt \stackrel{\text{sats}}{=} \left[F(x) \right]_{x=a}^{x=b} = F(b) - F(a)$$

der F'(x) = f(x) for alle x.

Linjeintegral av skalarfelt

Betrakt en partisjon $\{t_i\}_{i=0}^n$ av [a,b], en pen parametrisering $\mathbf{r}\colon [a,b]\to\mathbb{R}^N$ og en pen funksjon $f\colon\mathbb{R}^N\to\mathbb{R}$. Grensen for Riemann-summene

$$\sum_{i=1}^n f(\mathbf{r}(t_i))|\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})| \longrightarrow \int_a^b f(\mathbf{r}(t))|\mathbf{r}'(t)| dt$$

definerer linjeintegralet $[ds = |\mathbf{r}'(t)| dt]$

$$\int_{\mathcal{C}} f \, ds \stackrel{\text{def}}{=} \int_{a}^{b} f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt$$

der $C = \mathbf{r}([a, b])$. Kan beregnes ved å antiderivere $f(\mathbf{r}(t))\mathbf{r}'(t)$.

Lengde av en kurve

Buelengden til C er gitt ved integralet

$$\mathsf{lengde}(\mathcal{C}) = \int_{\mathcal{C}} 1 \, ds = \int_a^b |\mathbf{r}'(t)| \, dt$$
 der $\mathcal{C} = \mathbf{r}([a,b])$. Hvis $\mathbf{r}(t) = (t,f(t))$ er dette

$$\int_a^b \sqrt{1+f'(t)^2}\,dt$$

Linjeintegral av vektorfelt

Grensen for Riemann-summene

$$\sum_{i=1}^n \mathsf{F}(\mathsf{r}(t_i)) \cdot (\mathsf{r}(t_i) - \mathsf{r}(t_{i-1})) \longrightarrow \int_a^b \mathsf{F}(\mathsf{r}(t)) \cdot \mathsf{r}'(t) \, dt$$

definerer linjeintegralet $[d\mathbf{r} = \mathbf{r}'(t) dt]$

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \stackrel{\text{def}}{=} \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

 $\mathsf{der}\ \mathcal{C} = \mathbf{r}([a,b]). \ \mathsf{Kan}\ \mathsf{beregnes}\ \mathsf{ved}\ \mathtt{\mathring{a}}\ \mathsf{antiderivere}\ \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t).$

Konservative felt = gradientfelt

Når vektorfeltet $\mathbf{F} = \nabla \phi$ er gradienten til et skalarfelt $\phi \colon \mathbb{R}^N \to \mathbb{R}$ (\mathbf{F} er konservativt), og \mathcal{C} er en kurve fra \mathbf{a} til \mathbf{b} , er

$$\int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{r} \stackrel{sats}{=} \left[\phi(\mathbf{x}) \right]_{\mathbf{x} = \mathbf{a}}^{\mathbf{x} = \mathbf{b}} = \phi(\mathbf{b}) - \phi(\mathbf{a})$$

Hvis $\mathbf{a} = \mathbf{b}$ (så \mathcal{C} er en lukket kurve) er dette integralet 0.

Dobbeltintegraler

- Riemann-integral $\iint_R f(x, y) dxdy$
- Flateintegral av skalarfelt $\iint_T f \, dS$ (mhp. flateareal S)

Riemann-integral

Betrakt partisjoner $\{x_i\}_{i=0}^n$ av [a,b] og $\{y_j\}_{j=0}^m$ av [c,d], og en pen funksjon $f: R = [a,b] \times [c,d] \to \mathbb{R}$. Grensen for Riemann-summene

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j)(x_i - x_{i-1})(y_j - y_{j-1}) \longrightarrow \iint_{R} f(x, y) \, dx dy$$

kan beregnes som itererte integraler

$$\iint_{R} f(x,y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Type I og Type II områder

For A av type I er

$$\iint_A f(x,y) dxdy = \int_a^b \left(\int_{y=\phi_1(x)}^{y=\phi_2(x)} f(x,y) dy \right) dx$$

For A av type II er

$$\iint_A f(x,y) \, dxdy = \int_c^d \left(\int_{x=\psi_1(y)}^{x=\psi_2(y)} f(x,y) \, dx \right) \, dy$$

Polarkoordinater

Hvis transformasjonen $\boldsymbol{T}\colon \mathbb{R}^2 \to \mathbb{R}^2$ gitt ved

$$\mathbf{T}(r,\theta) = (r\cos\theta, r\sin\theta)$$

(polarkoordinater) tar det pene området $D\subset\mathbb{R}^2$ injektivt til $A=\mathbf{T}(D)\subset\mathbb{R}^2$ er

$$\iint_A f(x,y) \, dxdy = \iint_D f(r\cos\theta, r\sin\theta) r \, drd\theta$$

 $[dxdy = r \, drd\theta]$

Flateintegral av skalarfelt

Betrakt partisjoner $\{u_i\}_{i=0}^n$ av [a,b] og $\{v_j\}_{j=0}^m$ av [c,d], en pen parametrisering $\mathbf{r}\colon R=[a,b]\times [c,d]\to \mathbb{R}^N$ og en pen funksjon $f\colon \mathbb{R}^N\to \mathbb{R}$. Grensen for Riemann-summene

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(\mathbf{r}(u_i, v_j)) | (\mathbf{r}(u_i, v_j) - \mathbf{r}(u_{i-1}, v_j)) \times (\mathbf{r}(u_i, v_j) - \mathbf{r}(u_i, v_{j-1})) |$$

definerer flateintegralet $[dS = |\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial u}| \, dudv].$

$$\iint_T f \, dS \stackrel{\text{def}}{=} \iint_R f(\mathbf{r}(u,v)) \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial u} \right| \, du dv$$

der $T = \mathbf{r}(R)$. Kan beregnes ved å integrere iterativt.

Areal av en flate

Flatearealet til T er gitt ved integralet

$$\operatorname{areal}(T) = \iint_{T} 1 \, dS = \iint_{R} |\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial u}| \, du dv$$

der $T = \mathbf{r}(R)$. Hvis $\mathbf{r}(u, v) = (u, v, f(u, v))$ er dette

$$\iint_{R} \sqrt{1 + \big(\frac{\partial f}{\partial u}\big)^2 + \big(\frac{\partial f}{\partial v}\big)^2} \, du dv$$

Greens teorem

La den enkle, lukkede kurven $\mathcal C$ være den positivt orienterte randen til et begrenset område $R\subset\mathbb R^2$. La $\mathbf F=(P,Q)$ være et pent vektorfelt på R. Da er

$$\int_{\mathcal{C}} P \, dx + Q \, dy \stackrel{\text{sats}}{=} \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Linjeintegralet i Greens teorem

Hvis $\mathbf{r}(t) = (x(t), y(t))$ parametriserer \mathcal{C} for $t \in [a, b]$, er

$$\int_{\mathcal{C}} P \, dx + Q \, dy \stackrel{\text{def}}{=} \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{a}^{b} (P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)) \, dt$$

$$[dx = x'(t)dt \text{ og } dy = y'(t)]$$

Bruk av Greens teorem

• Hvis C er lukket, $\frac{\partial Q}{\partial x}$ og $\frac{\partial P}{\partial y}$ er enklere enn P og Q, og R har en grei beskrivelse som et type I eller type II område, kan

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

godt beregnes ved dobbeltintegralet til høyre.

• Hvis $\mathcal C$ har en grei parametrisering $\mathbf r(t) = (x(t), y(t))$, og skalarfeltet f(x,y) kan uttrykkes på formen $f = \partial Q/\partial x - \partial P/\partial y$, kan

$$\iint_{R} f \, dx dy = \int_{\mathcal{C}} P \, dx + Q \, dy$$

beregnes ved linjeintegralet til høyre.

Videre bruk av Greens teorem

Hvis R er et begrenset område med $\partial R = \mathcal{C}_p \cup \mathcal{C}_n$, der \mathcal{C}_p er positivt orientert slik at R ligger på venstre side og \mathcal{C}_n er negativt orientert slik at R ligger på høyre side, er

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\mathcal{C}_{P}} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{C}_{n}} \mathbf{F} \cdot d\mathbf{r}$$

og

$$\int_{\mathcal{C}_{p}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_{n}} \mathbf{F} \cdot d\mathbf{r} + \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Hvis vektorfeltet **F** er konservativt, eller mer generelt lukket $(\partial P/\partial y = \partial Q/\partial x)$, er dobbeltintegralet 0 og

$$\int_{\mathcal{C}_p} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_p} \mathbf{F} \cdot d\mathbf{r}$$

Skifte av variable

Hvis den pene transformasjonen $\mathbf{T} \colon \mathbb{R}^2 \to \mathbb{R}^2$ tar $(u, v) \in D$ til $(x, y) = \mathbf{T}(u, v)$, har Jacobi-determinant

$$\det \mathbf{T}' = \frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

overalt ulik 0, og tar det pene området D injektivt til $A = \mathsf{T}(D)$ er

$$\iint_A f(x,y) \, dxdy = \iint_D f(\mathsf{T}(u,v)) |\det \mathsf{T}'(u,v)| \, dudv$$

Uegentlige integraler

Hvis $A \subset \mathbb{R}^2$ er ubegrenset og $f: A \to \mathbb{R}$ er kontinuerlig og ikke-negativ defineres det uegentlige integralet

$$\iint_A f(x,y) \, dxdy = \lim_{n \to \infty} \iint_{A \cap K_n} f(x,y) \, dxdy$$

$$\text{der } A \cap K_n = \{(x,y) \in A \mid |x| \le n, |y| \le n\}.$$