MATH 1060 Calculus of One Variable I

Test 1 – Answer Key Version A

Fall 2015 Sections 1.5,1.6, 2.1 - 2.8, 3.1 - 3.2

Student's	s Printed Name:	CUID:
Instructo	or:	Section:
use a textbo	ons: You are not permitted to use a calculator cook, notes, cell phone, laptop, PDA, or any technoff while you are in the testing room.	
_	test, any communication with any person (other any form, including written, signed, verbal, or d c integrity.	_
No part of	this test may be removed from the examination i	room.
Read each	question very carefully. In order to receive full c	eredit, you must:
1. 2. 3. 4.	Show legible, logical, and relevant justificated Use complete and correct mathematical notal Include proper units, if necessary. Give exact numerical values whenever possion	ation.
You have 9	00 minutes to complete the entire test.	
-	nor, I have neither given nor received inapproe before or during this test.	opriate or unauthorized information
Student's	s Signature:	
	Do not write below this lir	ne.

Free Response Problem	Possible Points	Points Earned	Free Response Problem	Possible Points	Points Earned
1.	8		4.a.	7	
2.a.	8		4.b.	7	
2.b.	8		4.c.	7	
2.c.	8		5.	7	
2.d.	8		6.	9	
3.	8		7.	8	
	<u>'</u>	<u>'</u>	8.	7	
			Test Total	100	

Read each question carefully. In order to receive full credit you must show legible, logical, and relevant justification which supports your final answer. Give answers as exact values. You are NOT permitted to use a calculator on any portion of this test.

1. (8 pts.) Use the graph of f(x) to answer the following questions. (1 pt. each) Infinite limits should be answered with "= ∞ " or "= $-\infty$ ", whichever is appropriate. If the limit does not exist (and cannot be answered as ∞ or $-\infty$), state "DNE."

a)
$$\lim_{x \to -5} f(x) = 4$$

b)
$$\lim_{x \to 5^{+}} f(x) = -\infty$$

c)
$$\lim_{x \to 0} f(x) = -3$$

d)
$$\lim_{x \to -4} f(x)$$
 DNE

e)
$$\lim_{x \to 3} f(x) = 2$$

f)
$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
 DNE

g)
$$\lim_{x \to 7^{-}} f(x) = -1$$

h)
$$\lim_{x \to -6^+} \frac{df}{dx} = 0$$

2. (8 pts. each) Find the following limits. Show all work. Do NOT use L'Hopital's Rule.

$$\lim_{x \to -\infty} \left(e^{\ln\left(7 + \frac{1}{x} + \frac{2}{x^2}\right)} \sec\left(\frac{1}{x^3}\right) \right)$$

$$= \lim_{x \to -\infty} \left(\left(7 + \frac{1}{x} + \frac{2}{x^2}\right) \sec\left(\frac{1}{x^3}\right) \right) = \lim_{x \to -\infty} \left(7 + \frac{1}{x} + \frac{2}{x^2}\right) \lim_{x \to -\infty} \sec\left(\frac{1}{x^3}\right) = (7 + 0 + 0) \sec(0) = 7(1) = 7$$

Work on Problem:	Points Awarded:
Finds limit for argument of natural log function.	3 points
Finds limit for argument of secant function	3 points
Simplifies exponential and natural log as inverse functions	1 point
Final answer	1 point

Notes:

- Subtract ½ point for missing notation such as:, $x \rightarrow a$ (w/o "limit"), omitting =, including lim after substitution
- Maximum of 1 point deduction for all notation errors

b)
$$\lim_{t \to 5} \frac{\sqrt{4t+16}-6}{25t-t^3}$$

$$= \lim_{t \to 5} \frac{\sqrt{4t+16}-6}{25t-t^3} \cdot \frac{\sqrt{4t+16}+6}{\sqrt{4t+16}+6} = \lim_{t \to 5} \frac{(4t+16)-36}{(25t-t^3)(\sqrt{4t+16}+6)} = \lim_{t \to 5} \frac{4t-20}{t(25-t^2)(\sqrt{4t+16}+6)}$$

$$= \lim_{t \to 5} \frac{4(t-5)}{t(5-t)(5+t)(\sqrt{4t+16}+6)} = \lim_{t \to 5} \frac{-4}{t(5+t)(\sqrt{4t+16}+6)}$$

$$= \frac{-4}{5(5+5)(\sqrt{4(5)+16}+6)} = -\frac{-4}{5(10)(12)} = -\frac{1}{150}$$

Work on Problem:	Points Awarded:
Recognizes implicitly or explicitly indeterminate form 0/0.	1 point
Uses conjugate to rewrite	3 points
Algebra to get a reduced form for which substitution works	3 points
Correctly evaluates limit.	1 point

- Subtract ½ point for the untrue statement: $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$.
- Subtract 1 point for not presenting the correct reduced form before substitution
- Maximum of 1 point deduction for all notation errors

c)

$$\lim_{x \to 4} \sin \left(\cos^{-1} \left(\frac{\ln e^{(x^2 - 1)}}{30} \right) \right)$$

$$= \sin \left(\cos^{-1} \left(\frac{\ln e^{(4^2 - 1)}}{30} \right) \right) = \sin \left(\cos^{-1} \left(\frac{\ln e^{(15)}}{30} \right) \right) = \sin \left(\cos^{-1} \left(\frac{15}{30} \right) \right) = \sin \left(\cos^{-1} \left(\frac{1}{2} \right) \right) = \sin \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$$

Work on Problem:	Points Awarded:
Substitutes.	1 point
Simplifies exponential and natural log as inverse functions	2 points
Finds $\cos^{-1}(1/2)$	3 points
Finds $\sin(\pi/3)$	2 points

- Subtract ½ point for missing notation such as:, $x \rightarrow a$ (w/o "limit"), omitting =, including $\lim_{x \rightarrow a}$ after substitution
- Maximum of 1 point deduction for all notation errors

d)
$$\lim_{x \to -\infty} \left(\frac{\sqrt{16x^4 + 64x^2 + x^2}}{2x^2 - \pi^5} \right)$$

$$= \lim_{x \to -\infty} \frac{\sqrt{x^4 \left(16 + \frac{64}{x^2} \right) + x^2}}{2x^2 - \pi^5} = \lim_{x \to -\infty} \frac{x^2 \sqrt{\left(16 + \frac{64}{x^2} \right) + x^2}}{2x^2 - \pi^5} = \lim_{x \to -\infty} \frac{\frac{x^2}{x^2} \sqrt{\left(16 + \frac{64}{x^2} \right) + \frac{x^2}{x^2}}}{\frac{2x^2}{x^2} - \frac{\pi^5}{x^2}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\left(16 + \frac{64}{x^2} \right) + 1}}{2 - \frac{\pi^5}{x^2}} = \frac{\sqrt{\left(16 + 0 \right) + 1}}{2 - 0} = \frac{4 + 1}{2} = \frac{5}{2}$$

Work on Problem:	Points
Recognizes implicitly or explicitly indeterminate form ∞/∞ .	1 point
Rewrites to get a form for which substitution works	5 points
Correctly evaluates limit.	2 points

- Award 3 points total for recognizing ∞/∞ (I.F.) and the need to rewrite, but incorrect algebra leads to incorrect answer or leads to incorrect work to arrive at answer.
- Subtract ½ point for the untrue statement: $\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$
- Subtract ½ point for missing notation such as:, $x \rightarrow a$ (w/o "limit"), omitting =, including $\lim_{x \rightarrow a}$ after substitution
- Maximum of 1 point deduction for all notation errors

3. **(8 pts.)** Let $f(x) = \frac{2x^2 - 9x - 5}{x - 5}$. Use the epsilon-delta definition of a limit to prove $\lim_{x \to 5} f(x) = 11$.

we want

$$\left| \frac{f(x) - 11}{\varepsilon} \right| < \varepsilon$$

$$\left| \frac{2x^2 - 9x - 5}{x - 5} - 11 \right| < \varepsilon$$

$$\left| \frac{(2x+1)(x-5)}{x-5} - 11 \right| < \varepsilon$$

$$|(2x+1)-11|<\varepsilon$$

$$|2(x-5)| < \varepsilon$$

$$|x-5| < \frac{\varepsilon}{2} \Rightarrow \text{choose } \delta = \frac{\varepsilon}{2}$$

Proof:

Let $\varepsilon > 0$ be given.

Choose
$$\delta = \frac{\varepsilon}{2} \Rightarrow 0 < |x-5| < \delta = \frac{\varepsilon}{2}$$
. Then

$$|f(x)-11| = \left| \frac{2x^2 - 9x - 5}{x - 5} - 11 \right| = \left| \frac{(2x+1)(x-5)}{x - 5} - 11 \right| = \left| (2x+1) - 11 \right| = \left| 2x - 10 \right| = 2\left| x - 5 \right| < 2\delta = 2\left(\frac{\varepsilon}{2}\right) = \varepsilon.$$

Work on Problem:	Points
Determines a value for δ	3 points
Proof	5 points

- Subtract 1pt. if epsilon and delta were switched but the student was consistent throughout. At least 2 points were taken off if they were switched halfway through the problem
- Subtract 1pt. if '=' was used instead of '<' in finding a value for delta
- Subtract 1pt. if limit notation was used
- Subtract ½ point if the absolute values were missing more than once
- Subtract $\frac{1}{2}$ if "let epsilon > 0 be given" (or something similar) was missing from the proof

4. (7 pts. each) Find the derivatives of the following functions. Assume g(x) is a differentiable function wherever it appears. Do NOT simplify your answers.

a)

$$f(x) = \frac{1 + xe^{x}}{1 + e^{x}}$$

$$f'(x) = \frac{(1 + e^{x})(xe^{x} + e^{x}) - (1 + xe^{x})e^{x}}{(1 + e^{x})^{2}}$$
Work of Applies Applies

Notes:

Work on Problem:	Points
Applies Quotient Rule correctly	4 points
Applies Product Rule correctly	3 point
Notoge	

b)	
$f(x) = \frac{(x^2 - 1)^2}{2}$	$\frac{+1)g(x)}{x^3}$
	$\int_{0}^{\infty} \frac{1}{(x^2+1)g'(x)+g(x)(2x)} - (x^2+1)g(x)(3x^2)}{(x^3)^2}$
f(x) =	$(x^3)^2$

Work on Problem:	Points
Applies Quotient Rule correctly	4 points
Applies Product Rule correctly	3 point
Notes:	
•	

c)

$$h(t) = \pi^5 \left(\sqrt{t} - e^3 - \sqrt{7} \right)$$

$$h'(t) = \pi^5 \left(\frac{1}{2} t^{-1/2} - 0 - 0 \right)$$

$$h'(t) = \frac{\pi^5}{2} t^{-1/2}$$

Work on Problem:	Points
Derivative of \sqrt{t}	3 points
Derivative of two constants (1 point each)	2 points
Constant multiple	2 point
Notes:	
•	

5. **(7 pts)** Let
$$h(x) = \frac{-2f(x)}{g(x)}$$
.

Find
$$h'(1)$$
 if $f(1) = -3$, $g(1) = 4$, $f'(1) = -2$, and $g'(1) = 7$.

$$h(x) = \frac{-2f(x)}{g(x)}$$

$$h'(x) = (-2) \left[\frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} \right]$$

$$h'(1) = (-2) \left[\frac{g(1)f'(1) - f(1)g'(1)}{[g(1)]^2} \right]$$

$$h'(1) = (-2) \left[\frac{(4)(-2) - (-3)(7)}{[4]^2} \right]$$

$$h'(1) = (-2) \left[\frac{(-8) - (-21)}{[4]^2} \right]$$

$$h'(1) = (-2) \left[\frac{13}{16} \right]$$

$$h'(1) = -\frac{13}{8}$$

Work on Problem:	Points
Applies Quotient Rule correctly	4 points
Substitutes given values	2 point
Final answer	1 point
Notes:	

- 6. **(9 pts.)** Let $f(x) = 3x^3 13x$.
- a) (3 pts.) Find all values of x such that the line tangent to f(x) is parallel to the line y = 23x + 1.

	solve
$f\left(x\right) = 3x^3 - 13x$	f'(x) = 23
$f'(x) = 9x^2 - 13$	$9x^2 - 13 = 23$
	$9x^2 = 36$
	$x^{2} = 4$

Work on Problem:	Points
Derivative of <i>f</i>	1 point
Sets f 'equal to 23	1 point
Two solutions (1/2 each)	1 point
Notes:	
•	

b) (3 pts.) Find the equation of the line **normal** (perpendicular) to f(x) at x = 1. Put your final answer in slope-intercept form (y = mx + b).

$$f(x) = 3x^3 - 13x$$
$$f'(1) = 9(1)^2 - 13 = -4$$
$$\Rightarrow m_{normal} = \frac{1}{4}$$

$$f(1) = -10 \Rightarrow \text{ point}(1, -10)$$

$$y - (-10) = \frac{1}{4}(x - 1)$$

$$y = \frac{1}{4}x - \frac{1}{4} - 10$$

$$y = \frac{1}{4}x - \frac{41}{4}$$

 $x = \pm 2$

Points
1/2 point
1/2 point
1 point
1 point

c) (3 pts.) Let g(x) = -10x + 7. Show that there exists a solution to the equation f(x) = g(x).

f(x) = g(x)
$3x^3 - 13x = -10x + 7$
$3x^3 - 3x - 7 = 0$
Let $h(x) = 3x^3 - 3x - 7$
<i>h</i> is continuous on its domain $(-\infty, \infty)$.

h(0) =	= -7 < 0
h(2) =	=11>0

By the Intermediate Value Theorem there exists some $c \in (0,2)$ such that h(c) = 0 $\Rightarrow h$ has an *x*-intercept at x = c $\Rightarrow f(x) = g(x)$ has a solution at x = c.

Work on Problem:	Points
Establishes continuity	1/2 point
Finds an x such that $f(x) < 0$	1/2 point
Finds an x such that $f(x) > 0$	1/2 point
Mentions IVT	1/2 point
Conclusion that $f(x) = g(x)$ has a solution	1/2 point
Notes:	
•	

7. (8 pts.) Use the **limit definition** of the derivative to find f'(x) if $f(x) = \frac{x}{2x+1}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x+h}{2(x+h)+1} - \frac{x}{2x+1}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x+h}{2x+2h+1} - \frac{x}{2x+1}}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(2x+1) - x(2x+2h+1)}{(2x+2h+1)(2x+1)}$$

$$= \lim_{h \to 0} \frac{2x^2 + x + 2xh + h - 2x^2 - 2xh - x}{h(2x + 2h + 1)(2x + 1)}$$

$$= \lim_{h \to 0} \frac{h}{h(2x+2h+1)(2x+1)}$$

$$= \lim_{h \to 0} \frac{1}{(2x+2h+1)(2x+1)}$$

$$=\frac{1}{(2x+1)^2}$$

	oblem	Points
derivative. Okay if impl	rmula for the limit definition of the	2 Points
Substitutes	(x+h) correctly into the definition	2 Points
Simplifies to works	a form where direct substitution	3 Points
_	oint for getting a common	
den	nominator for $f(x+h)$ and $f(x)$	
	oint for expanding the polynomials in numerator after combining	
f ((x+h) and $f(x)$ into a single	
fun	ction	
who	oint for simplifying terms to the point ere the limit can be evaluated using ect substitution	
Correctly ev follow from	raluates limit (no credit if this doesn't work)	1 Point
Notes:		
	ptract 8 points for not using the limit	
	inition of the derivative	
	otract 2 points if no work is shown	
	ween simplifying from getting a nmon denominator and taking the limit	
	x of 2 points total for all notation	
• Sub	petract 1 point if $\lim_{h \to 0}$ is missing at any	
ster	o where it should be present	
-	otract $\frac{1}{2}$ point if $\lim_{h \to 0}$ is written after	
	ect substitution (after the limit has	
• Wo	ork is only followed after a mistake if mistake does not reduce the difficulty	

8. **(7 pts.)** Let f(x) be a function such that the following inequality is true for all real numbers a and b. Find $\lim_{x\to a} f(x)$.

$$b-|x-a| \le 2f(x) \le b+|x-a|.$$

$$\lim_{x \to a} (b - |x - a|)$$

$$= b - |a - a|$$

$$= b - 0$$

$$= b$$

$$\lim_{x \to a} (b + |x - a|)$$

$$= b + |a - a|$$

$$= b + 0$$

$$= b$$

By the Squeeze Theorem

$$\lim_{x \to a} 2f(x) = b$$

$$\Rightarrow 2\lim_{x \to a} f(x) = b$$

$$\Rightarrow \lim_{x \to a} f(x) = \frac{b}{2}$$

Work on Problem:	Points
Set up inequality of limits or manipulate the given	1 point
inequality (can be omitted)	
Limits of two outside functions (2 each)	4 points
Mentions Squeeze (Sandwich) Theorem	1 point
Final answer	1 points

- -1/2 point for limit notation errors
- Maximum of 1 point deduction for all notation errors
- Max of 5 points awarded for appropriate work without a correct answer via Squeeze Theorem