

(Confidencial)

Ref.: S51956-RT-5801-IAS-661

COPIA:

Pág. 1/10

Alef Nascimento; Diogo Araujo Adalberto Silva

FPARA:

	HISTÓRICO DAS REVISÕES							
REV.	DATA ELABORADO VERIFICADO APROVADO							
	22/03/2024	DTW	EYC / NSI	CFS				
1	PRINCIPAIS MUDANÇAS							
	Primeira Emissão							

TÍTULO: ESTUDO DE CVD DE 1º EXTREMIDADE DA LINHA IG NO MSIAG-01

ÍNDICE

1	INTR	ODUCÃO
	1.1	ODUÇÃOObjetivo
	1.2	Abreviações
	1.3	Abreviações
2	PREM	MISSAS DE CÁLCULO
	2.1	Hipóteses e Metodologia
	2.2	Dados de Referência
	2.3	Critério de Aceitação
3	RESU	JLTADOS
	3.1	Instalação do MCV
	3.1.1	Alinhamento e verticalização do MCV
	3.1.2	Heave up
	3.1.3	Toque da linha no solo após conexão
4		CLUSÕES
5		(O
6		JMO

Todas as informações contidas neste documento devem ser tratadas como PRIVILEGIADAS E CONFIDENCIAIS e não podem ser divulgadas a nenhum terceiro.

(Confidencial)

Ref.: S51956-RT-5801-IAS-661

1 INTRODUÇÃO

1.1 Objetivo

O presente documento tem por objetivo realizar um estudo de CVD de primeira extremidade no MSIAG-01 em uma lâmina d'água de 2240m, a ser realizada pela embarcação Skandi Açu no campo Lula, para avaliar a necessidade do uso de boias e/ou peso morto durante o procedimento de modo a verticalizar o MCV e cumprir o critério de heave up.

As análises são realizadas utilizando o programa de elementos finitos para análises de instalação, ORCAFLEX versão 11.3a.

1.2 Abreviações

CVD : Conexão Vertical Direta

MCV : Módulo de Conexão Vertical

TDP : Touch Down Point

MBR : Minimum Bending Radius

te : Toneladas

1.3 Referências

Ref	Documento	Rev	Título
[1]	RT-2691-CVD	0	CVD de 1 ^a da linha de IG do MSIAG-01 do FPSO Cidade de Itaguaí
[2]	RL-3A26.09-1500-94G-R1N-005	0	DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

Pág. 2/10

Pág. 3/10

(Confidencial)

Ref.: S51956-RT-5801-IAS-661

2 PREMISSAS DE CÁLCULO

2.1 Hipóteses e Metodologia

A metodologia utilizada no estudo visa dispor o cabo ligado à manilha do MCV e o flexível de maneira que o MCV e o hub estejam alinhados, com o desvio do MCV em relação à vertical dentro da tolerância especificada, que é condição necessária para a conexão vertical.

Após o MCV ser assentado, o ponto de conexão do flexível com o navio é suspenso, inicialmente 2,5 metros em 2,15 segundos, para assegurar que não há travamento da vértebra. Caso necessário, esse deslocamento pode ser reduzido. Nesse caso o comprimento de flexível usado para verticalizar o MCV é mantido. Essa etapa é para simular um deslocamento vertical do navio logo após o MCV ser assentado no hub.

As seguintes hipóteses foram assumidas:

- A análise realizada é dinâmica, porém não são considerados efeitos de corrente, ondas e vento:
- Apenas boias encontradas a bordo são consideradas como remediação para possíveis problemas na configuração da instalação;
- O centro de empuxo é considerado na mesma posição do centro de gravidade do MCV;
- A linha é considerada cheia de água;
- Foi considerada a rigidez à flexão nas condições de temperatura e pressão da instalação. e anular alagado.

2.2 Dados de Referência

Item	Descrição
Estrutura	WSI 152.2553-RD-4042-6 Rev. 1
Vértebra	CB-BR1522553-00-01 Rev. 1
Conector	CB-EF1522540-00-05 Rev. 4
MCV	P7000048060 / TechnipFMC
Lâmina d'água	2240 m

(Confidencial)

Ref.: S51956-RT-5801-IAS-661

Pág. 4/10

2.3 Critério de Aceitação

Nas configurações estudadas os parâmetros da Tabela 2.1 são avaliados em relação aos limites informados.

Tabela 2.1 - Parâmetros de aceitação da configuração

Parâmetros	Ref	Valor Limite	Unidade
Inclinação do MCV em relação à vertical	[-]	±0,50	graus
Distância mínima do flexível ao solo	[-]	0,50	m
Distância do flange do MCV ao leito marinho	[1]	3,81	m
Raio de travamento da vértebra	[1]	4,14	m
Raio de curvatura mínimo da linha	[1]	2,40	m
Momento fletor máximo na vértebra	[1]	70,00	kN.m
Força cortante máxima na vértebra	[1]	34,00	kN

De acordo com o documento ET-3000.00-1500-951-PMU-001 - revisão F, algumas observações se aplicam:

- (1) No caso de estudos para MCVs de umbilicais, a aprovação da análise depende apenas dos parâmetros descritos acima, não incluindo os esforços (momento/tração/cortante) como critérios de aceitação;
- (2) No caso de linhas de fluxo, os carregamentos devem ser gerados obedecendo o mesmo sistema de referência do relatório de cargas e comparados individualmente em módulo (i.e. tração com tração, cortante com cortante e momento com momento).

Ref.: S51956-RT-5801-IAS-661

3 RESULTADOS

3.1 Instalação do MCV

Para a instalação do MCV com as boias mostradas na Tabela 3.1, os resultados da análise de alinhamento e verticalização do MCV são mostrados no item 3.1.1 e o do heave up no item 3.1.2.

Tabela 3.1 - Posicionamento das boias

Empuxo	Posição em relação ao flange do MCV	
[kg]	[m]	
1320 + 660	3	
741 + 741	6	

3.1.1 Alinhamento e verticalização do MCV

Os resultados da configuração que mantém o MCV verticalizado e alinhado são mostrados na Tabela 3.2. A Figura 3.1 apresenta a configuração do CVD de 1ª extremidade.

Tabela 3.2 - Resultados estáticos para alinhamento e verticalização

Distância do flange do MCV ao solo	Distância mínima da linha ao solo	Inclinação do MCV	MBR Linha	MBR Vértebra
[m]	[m]	[graus]	[m]	[m]
3,81	0,55	-0,23	4,56	5,62

Figura 3.1 – Configuração da CVD de 1ª extremidade. Comprimento do ponto no seio da configuração até ao flange do goose neck e comprimento do ponto na altura do flange do goose neck até o seio.

(Confidencial)

Pág. 6/10

Ref.: S51956-RT-5801-IAS-661

3.1.2 Heave up

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é suspenso 2 metros em 2,15 segundos, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados são apresentados na Tabela 3.3 e na Tabela 3.4.

Tabela 3.3 - Resultados para análise de heave up

Heave up	MBR Linha	MBR Vértebra	Momento Fletor Máx na	Força Cortante Max. na
[m]	[m]	[m]	Vértebra [kN.m]	Vértebra [kN]
2,00	4,13	4,14*	13,06	19,03

*Vértebra travada

Tabela 3.4 - Esforços no flange do goose neck do MCV da análise do heave up

Momento	Momento Fletor	Tração	Força Cortante
Fletor	[kN.m]	[kN]	[kN]
Máximo	43,29	4,80	-3,70
Mínimo	1,40	6,36	-11,57

3.1.3 Toque da linha no solo após conexão

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é pago até que a linha toque no solo, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados dos esforços da interface do MCV com o duto são apresentados na

Tabela 3.5.

Tabela 3.5 – Esforços no MCV no momento em que a linha toca no solo

Momento Fletor	Tração	Força Cortante
[kN.m]	[kN]	[kN]
0,75	6,00	-10,94

Ref.: S51956-RT-5801-IAS-661

4 CONCLUSÕES

A Tabela 4.1 sumariza os resultados da operação de conexão vertical direta de 1ª extremidade.

Conclui-se que é necessário instalar 1980kg de empuxo a 3m, 1482kg de empuxo a 6m, do flange, conforme Tabela 3.1, de forma a verticalizar o MCV e cumprir o critério de heave up que deverá nesse caso ser reduzido para 2m.

O estudo apresenta travamento da vértebra, porém o momento fletor máximo na mesma não ultrapassa o admissível.

Os esforços calculados deste estudo estão aprovados a partir do ábaco (Figura 4.1)

Figura 4.1 – Resultados do ábaco / Resultados do momento equivalente

Tabela 4.1 – Tabela de comparação entre os valores encontrados e os limites

Seção	Parâmetros	Valor encontrado	Valor Limite	Unidade
3.1.1	Inclinação em relação à vertical	-0,23	±0,50	graus
3.1.1	Distância mínima do flexível ao solo	0,55	0,50	m
3.1.1	Distância do flange do MCV ao leito marinho	3,81	3,81	m
3.1.2	Raio de curvatura mínimo da linha/vértebra	4,13 / 4,14*	2,40 / 4,14	m
3.1.2	Momento fletor máximo na vértebra	13,06	70,00	kN.m
3.1.2	Força cortante máxima na vértebra	19,03	34,00	kN

^{*}Vértebra travada

Ref.: S51956-RT-5801-IAS-661

5 ANEXO

Esse anexo apresenta uma contingência para o caso em que o MCV se encontra acoplado no hub, porém não está travado. A ideia é, com o MCV fixo no modelo, pagar linha até que esteja um comprimento lançado no solo e então adicionar boias para a verticalização do MCV sem ação da catenária.

A primeira opção seria acrescentar até 1400kg de empuxo, afastado 9m do flange do MCV para não haver o travamento da vértebra. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 4,13m. O momento fletor obtido nessa condição é de 50,47kN.m no flange e 18,52kN.m na vértebra. A força cortante é de 20,27kN na vértebra. A Figura 5.1 apresenta essa configuração.

Figura 5.1 - Configuração do caso de contingência - 1ª opção

A segunda opção seria acrescentar até 1600kg de empuxo, afastado 11m do flange do MCV para não haver o travamento da vértebra. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 3,76m. O momento fletor obtido nessa condição é de 46,65kN.m no flange e 17,63kN.m na vértebra. A força cortante é de 18,83kN na vértebra. A Figura 5.2 apresenta essa configuração.

Figura 5.2 - Configuração do caso de contingência - 2ª opção

Ref.: S51956-RT-5801-IAS-661

6 RESUMO

CVD de primeira extremidade no MSIAG-01 em uma lâmina d'água de 2240m.

Tabela 6.1 - Heave Up

_		_
	Heave up	
	[m]	
	2,0	

Figura 6.1 - Configuração de Verticalização

Tabela 6.2 - Configurações de Contingência

Contingência	Empuxo limite	Distância ao flange
	[kg]	[m]
1	1400	9,0
2	1600	11,0

(Confidencial)

Ref.: S51956-RT-5801-IAS-661

FIM DO DOCUMENTO

Pág. 10/10