第3章 连续性

- 3.1.1 函数的连续性概念 与间断点的分类
- 3.1.2 连续函数的性质 与初等函数的连续性
- 3.1.3 闭区间上连续函数的性质 函数的一致连续性

3.1.3 闭区间上连续函数的性质

- 1. 有界性定理
- 2. 最值定理
- 3. 零点存在定理
- 4. 介值定理
- 5. 一致连续性

1. 有界性定理 反证法+致密性定理

定理1 设 $f(x) \in C[a,b] \Rightarrow f(x)$ 在[a, b]上有界.

证明 设若不然,设f(x)在[a,b]上无上界.

$$\forall n \in \mathbb{N}_+, \exists x_n \in [a,b], \notin |f(x_n)| > n,$$

$$\{x_n\}\subseteq [a,b]$$
,有收敛子列 $\{x_{n_k}\}$, $\lim_{k\to\infty}x_{n_k}=x_0\in [a,b]$.

由f连续,
$$\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$$
存在.

但由
$$|f(x_{n_k})| > n_k \ge k$$
,有 $\lim_{k\to\infty} f(x_{n_k}) = \infty$,矛盾.

例1. 证明: 若 f(x) 在 $(-\infty, +\infty)$ 内连续, $\lim_{x\to\infty} f(x)$ 存在, 则 f(x) 必在 $(-\infty, +\infty)$ 内有界.

证 令 $\lim_{x \to \infty} f(x) = A$,则给定 $\varepsilon > 0$, $\exists X > 0$, $\exists X | x > X$ 时,有 $A - \varepsilon < f(x) < A + \varepsilon$

又 $f(x) \in C[-X, X]$, 根据有界性定理, $\exists M_1 > 0$, 使

$$|f(x)| \le M_1, \quad x \in [-X, X]$$

$$\mathbb{R} M = \max\{|A + \varepsilon|, |A - \varepsilon|, M_1\}$$

$$|f(x)| \le M, \quad x \in (-\infty, \infty)$$

$$-X \quad 0$$

2. 最大值和最小值定理

确界原理+致密性定理+迫敛性。

定理2 设 $f(x) \in C[a,b]$,

$$\Rightarrow \exists x_1, x_2 \in [a,b], \quad s.t. \quad \forall x \in [a,b],$$

有
$$f(x_1) = \max_{x \in [a,b]} f(x)$$
, $f(x_2) = \min_{x \in [a,b]} f(x)$.

证法一: 由确界原理, f[a,b] 在[a,b]上有上确界M.

只需验证存在 $x_{1, s.t.}$ $f(x_1) = \sup_{x \in [a,b]} f(x) = M$ 由上确界定义,

$$\forall n \in \mathbb{N}_+, \exists x_n \in [a,b], \quad s.t. \quad M - \frac{1}{n} < f(x_n) \le M$$

 $\{x_n\}\subseteq [a,b]$,有收敛子列 $\{x_{n_k}\}$, 设 $\lim_{k\to\infty}x_{n_k}=x_1\in [a,b]$,

$$\Rightarrow M - \frac{1}{n_k} < f(x_{n_k}) < M, \quad \diamondsuit k \to \infty$$
可知 $f(x_1) = M.$

定理2 设
$$f(x) \in C[a,b]$$
, $\Rightarrow \exists x_1, x_2 \in [a,b]$, $s.t. \forall x \in [a,b]$, 有 $f(x_1) = \max_{x \in [a,b]} f(x)$, $f(x_2) = \min_{x \in [a,b]} f(x)$.

证法二: 由确界原理,f在[a,b]上有上确界M.

只需验证存在
$$x_{1,}$$
 s.t. $f(x_1) = \sup_{x \in [a,b]} f(x) = M$

假设
$$\forall x \in [a,b]$$
 都有 $f(x) < M$,令 $g(x) = \frac{1}{M - f(x)}, x \in [a,b]$.

则g(x)在[a,b]上连续,故g(x)在[a,b]上有界,设G是g的一个上界,

则
$$0 < g(x) = \frac{1}{M - f(x)} \le G, x \in [a,b].$$

从而推得
$$f(x) \leq M - \frac{1}{G}$$
, $x \in [a,b]$.

这与M为f([a,b])的上确界(最小上界)相矛盾.

所以必
$$\exists \xi \in [a,b]$$
,使 $f(\xi) = M$.即 f 在 $[a,b]$ 上有最大值

注意:1.若区间是开区间, 定理不一定成立;

2.若区间内有间断点, 定理不一定成立.

3. 零点定理

定理3
$$f(x) \in C[a,b]$$
, 且 $f(a)f(b) < 0$ $\Rightarrow \exists \xi \in (a,b)$, s.t. $f(\xi) = 0$.

即方程 f(x) = 0在 (a,b)内至少存在一个实根.

几何解释

连续曲线弧y = f(x)的两个端点位于x轴的不同侧,则曲线弧与x轴至少有一个交点.

零点定理: 设f在闭区间[a,b]上连续,且 $f(a) \cdot f(b) < 0$, 至少存在一点 $x_0 \in (a,b)$,使得 $f(x_0) = 0$.

证: (应用确界原理) 不妨设 f(a) < 0, f(b) > 0.

记
$$E = \{x \mid f(x) > 0, x \in [a,b]\}.$$

E非空有界数集. (因为 $E \subset [a,b]$, 且 $b \in E$). 由确界原理, E有下确界. 设 $x_0 = \inf E$.

(i) 先证 $x_0 \in (a,b)$.

因f(a) < 0, f(b) > 0.由连续函数的保号性:

存在 $\delta > 0$, 使 f(x) < 0, $x \in [a, a + \delta)$; f(x) > 0, $x \in (b - \delta, b]$. 所以 $x_0 \neq a$, $x_0 \neq b$. 即 $x_0 \in (a, b)$.

(ii) 再证
$$f(x_0) \ge 0$$
. $x_0 = \inf E$,

∴由确界的定义,
$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in E, s.t.$$

 $x_0 \le x_{\varepsilon} < x_0 + \varepsilon.$

取
$$\varepsilon = \frac{1}{n}(n=1,2,\cdots)$$
, 得数列 $\{x_n\} \subset E, s.t.$ $x_0 \le x_n < x_0 + \frac{1}{n}$. $\Rightarrow \lim_{n \to \infty} x_n = x_0$.

由
$$f(x_n) > 0$$
且 $f(x)$ 在 x_0 连续 $\Rightarrow f(x_0) = \lim_{n \to \infty} f(x_n) \ge 0$.

(iii) 最后证
$$f(x_0) = 0$$
. 若 $f(x_0) > 0$,则由局部保号性:

存在
$$\eta > 0$$
, 当 $x \in U(x_0; \eta) \subset [a,b]$ 时,有 $f(x) > 0$.

特别地
$$f(x_0 - \frac{h}{2}) > 0 \implies x_0 - \frac{\eta}{2} \in E$$
,这与 $x_0 = \inf E$ 矛盾.

故有
$$f(x_0) = 0$$
.

下面用区间套定理证明零点定理.

一、区间套定理

定义1 设闭区间列{[a_n,b_n]}具有如下性质:

(i)
$$[a_n,b_n]\supset [a_{n+1},b_{n+1}], n=1,2,\cdots$$

(ii)
$$\lim_{n\to\infty} (b_n - a_n) = 0$$

$$\frac{\begin{bmatrix} [[]]] \end{bmatrix}}{a_1 a_2 a_3} b_3 b_2 b_1$$

则称 $\{[a_n,b_n]\}$ 为闭区间套,或简称区间套.

$$a_1 \le a_2 \le \dots \le a_n \le \dots \le b_n \le \dots \le b_2 \le b_1$$

用单调有界原理证明区间套定理

定理1(区间套定理)若 $\{[a_n,b_n]\}$ 是一个区间套,则在实数系中存在唯一的一点 ξ , 使 $\xi \in [a_n,b_n] \ (n=1,2,\cdots).$

$$\begin{split} & \coprod_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi. \\ & a_1 \le a_2 \le \dots \le a_n \le \dots \le \xi \le \dots \le b_n \le \dots \le b_2 \le b_1 \end{split}$$

证: (存在性) 由条件(i) 知 $\{a_n\}$ 为递增有上界数列,依单调有界原理, $\{a_n\}$ 有极限 ξ ,且 $a_n \leq \xi$, $n = 1,2,\cdots$ 递减有下界数列 $\{b_n\}$ 也有极限,并按区间套的条件(ii) 有 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \xi$ 且 $a_n \leq \xi \leq b_n, n = 1,2,\cdots$

证:(唯一性)即证明 & 是唯一的.

若ヨ
$$\xi'$$
, 满足 $a_n \leq \xi' \leq b_n$ 则 $|\xi - \xi'| \leq b_n - a_n$,
$$\lim_{n \to \infty} |\xi - \xi'| \leq \lim_{n \to \infty} (b_n - a_n) = 0,$$

$$\therefore \xi = \xi'.$$

推论 若 $\xi \in [a_n, b_n], n = 1, 2, \cdots$ 是区间套 $\{[a_n, b_n]\}$ 所确定点, 则 $\forall \varepsilon > 0$, $\exists N > 0, \forall n > N$,有 $[a_n, b_n] \subset U(\xi, \varepsilon).$

$$\frac{([[\cdot \]])}{\xi - \varepsilon} a_n \quad \xi \quad b_n \quad \xi + \varepsilon$$

用区间套定理证明零点定理.

(零点定理) 设 $f \in C[a,b]$, 且 $f(a) \cdot f(b) < 0$,

则存在 $\xi \in (a,b)$, 使得 $f(\xi) = 0$.

证: 不妨设 f(a) < 0, f(b) > 0.

设 [a,b] 的中点为 c.

若 f(c) = 0, 则定理得证.

(以下总假设在中分点处的函数值都不为零)

若 f(c) < 0, 则取 $[a_1,b_1] = [c,b]$, 否则取 $[a_1,b_1] = [a,c]$,

则
$$[a_1,b_1]$$
满足: $f(a_1)<0$, $f(b_1)>0$, 且 $b_1-a_1=\frac{b-a}{2}$.

再设 $[a_1,b_1]$ 的中点为 c_1 ,重复上述过程,得区间 $[a_2,b_2]$.

则
$$[a_2,b_2]$$
满足: $f(a_2) < 0$, $f(b_2) > 0$, 且 $b_2 - a_2 = \frac{b-a}{2^2}$.

如此下去,得闭区间套: $[a_n,b_n](n=1,2,\cdots)$, 它满足:

(1)
$$[a_n, b_n] \supset [a_{n+1}, b_{n+1}] (n = 1, 2, \dots);$$

(1)
$$[a_n, b_n] \supset [a_{n+1}, b_{n+1}] (n = 1, 2, \dots);$$
 (2) $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b - a}{2^n} = 0,$

(3)
$$f(a_n) < 0 < f(b_n)$$
.

由闭区间套定理,存在唯一的一点的, 使

$$a_n \leq \xi \leq b_n$$
 \coprod $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$.

再由函数 f(x) 的连续性及(3), 有

$$\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(\xi) \le 0,$$

$$\lim_{n\to\infty} f(b_n) = f(\lim_{n\to\infty} b_n) = f(\xi) \ge 0.$$

故
$$f(\xi) = 0.$$

例2 证明方程 $x^3 - 4x^2 + 1 = 0$ 在区间 (0,1) 内至少有一个根.

证 显然
$$f(x) = x^3 - 4x^2 + 1 \in C[0,1]$$
, 又 $f(0) = 1 > 0$, $f(1) = -2 < 0$

故据零点定理, 至少存在一点 $\xi \in (0,1)$, 使 $f(\xi) = 0$, 即 $\xi^3 - 4\xi^2 + 1 = 0$

说明:

取[0,1]的中点
$$x = \frac{1}{2}$$
, $f(\frac{1}{2}) = \frac{1}{8} > 0$,

则(1/2,1)内必有方程的根;

取[
$$\frac{1}{2}$$
,1]的中点 $x = \frac{3}{4}$, $f(\frac{3}{4}) < 0$,

则 $(\frac{1}{2},\frac{3}{4})$ 内必有方程的根;… 可用此法求近似根.

例3. 证明任意奇次代数方程必有实根.

证: 设
$$p(x) = x^{2n+1} + a_0 x^{2n} + a_1 x^{2n-1} + \dots + a_{2n-1} x + a_{2n},$$
可见 $p(x) \in C(-\infty, +\infty).$

$$p(x) = x^{2n+1} \left(1 + \frac{a_0}{x} + \frac{a_1}{x^2} + \dots + \frac{a_{2n-1}}{x^{2n}} + \frac{a_{2n}}{x^{2n+1}}\right)$$

$$\therefore \lim_{x \to +\infty} p(x) = +\infty, \lim_{x \to -\infty} p(x) = -\infty.$$

故 $\exists a,b \in R, s.t. \ a < b, p(a) < 0, p(b) > 0.$

由零点定理 $\Rightarrow \exists \xi \in (a,b)$, 使 $p(\xi) = 0$.

4.介值定理

定理4 设 $f(x) \in C[a, b]$, 且 f(a) = A, f(b) = B,

 $A \neq B$,则对A 与 B之间的任一数m,至少有

一点
$$\xi \in (a, b)$$
, 使 $f(\xi) = \mu$.

证 作辅助函数 $\varphi(x) = f(x) - \mu$

则 $\varphi(x) \in C[a,b]$,且

$$\varphi(a) \varphi(b) = (A - \mu)(B - \mu) < 0$$

故由零点定理知,至少有一点 $\xi \in (a, b)$,使 $\varphi(\xi) = 0$,

即
$$f(\xi) = \mu$$
 .

推论1 在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值.

$$(M = f(x_1) \ge f(x))$$
$$(m = f(x_2) \le f(x))$$

推论2 闭区间上非常数的连续函数的值域为闭区间.

$$(f([a,b]) = [m,M])$$

例5.
$$f \in C(a,b), a < x_1 < x_2 < \dots < x_n < b$$
.
求证: $\exists \xi \in (a,b), f(\xi) = \frac{1}{n} \sum_{k=1}^{n} f(x_k)$.

证: 易见 $f \in C[x_1, x_n]$,

$$m \le \mu = \frac{1}{n} \sum_{k=1}^{n} f(x_k) \le M$$

$$\therefore \exists \xi \in (x_1, x_n), \notin f(\xi) = \mu = \frac{1}{n} \sum_{k=1}^n f(x_k).$$

思考题:某短跑运动员跑完100米用了10秒,证明其中有10米的距离恰好用1秒跑完.

思考题

- 一、证明方程 $x = a \sin x + b$,其中 a > 0, b > 0 ,至 少有一个正根,并且它不超过 a + b .
- 二、若 f(x) 在 [a,b] 上连续,

$$a < x_1 < x_2 < \dots < x_n < b$$
 则在 $[x_1, x_n]$ 上必有
 ξ ,使 $f(x) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$.

三、设 f(x) 在 [a,b] 上连续, a < c < d < b ,试证明: 对任意正数p和q; 至少有一点 $\xi \in [c,d]$,使 $pf(x) + qf(x) = (p+q)f(\xi)$

5. 函数的一致连续性

连续的定义

 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使当 $|x - x_0| < \delta$ 时, 恒有 $|f(x) - f(x_0)| < \varepsilon$. 是一个局部概念

- 一致连续——在某个区间上"一起"连续
- 一致连续是区间上整体的性质,强调有公共的8.

连 续: $\forall \varepsilon > 0$, $\exists \delta(\varepsilon, x_0)$.

一致连续: $\forall \varepsilon > 0$, $\exists \delta(\varepsilon)$.

$$\delta = \delta(\varepsilon).$$

定义1 $\forall \varepsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in I, |x_1 - x_2| < \delta,$ 总有:

 $|f(x_1)-f(x_2)|<\varepsilon$,则称f(x) 在 I 上一致连续.

显然, f(x)在区间 I 上一致连续

f(x)在区间I上连续

直观地说, f 在I上一致连续意味着:

不论两点 x'与 x''在 I中处于什么位置, 只要它们的距离 小于 δ ,就可使 $|f(x')-f(x'')|<\varepsilon$.

可以看出,一致连续要求函数变化不要"太陡"

例6
$$\cos x$$
在 $(-\infty, +\infty)$ 上一致连续.

$$iii: \forall \varepsilon > 0$$

取
$$\delta = \varepsilon$$
 当 $|x_1 - x_2| < \delta$ 时,都有 $|\cos x_1 - \cos x_2| < \varepsilon$

 $\therefore \cos x$ 在 $(-\infty, +\infty)$ 上一致连续.

$$\cos x - \cos y = -2\sin\frac{x-y}{2}\sin\frac{x+y}{2} .$$

例7
$$f(x) = \frac{1}{x} \in C(0,1]$$
, 但不一致连续.

证 因为
$$\varepsilon_0 = 1$$
, 对任意 $\delta > 0$, 取 $N = [\frac{1}{\delta}] \in \mathbb{N}^+$ 取点 $x_1 = \frac{1}{n}$, $x_2 = \frac{1}{n+1}$ $(n > N)$, 则 $|x_1 - x_2| = |\frac{1}{n} - \frac{1}{n+1}| = \frac{1}{n(n+1)} < \frac{1}{n} < \delta$ 但 $|f(x_1) - f(x_2)| = |n - (n+1)| = 1 \ge \varepsilon_0$

这说明 $f(x) = \frac{1}{x}$ 在 (0,1]上不一致连续.

$$f$$
在 I 上不一致连续 $\Leftrightarrow \exists \varepsilon_0 > 0, \forall \delta > 0,$
$$\exists x_1, x_2, |x_1 - x_2| < \delta \quad s.t. |f(x_1) - f(x_2)| \ge \varepsilon_0.$$

例8. 证明:
$$f(x) = \frac{1}{x}$$
在 $[\sigma, +\infty)$ 上一致连续 $(\sigma > 0)$.

证:
$$\forall \varepsilon > 0$$
, 对 $\forall x_1, x_2 \in [\sigma, +\infty)$,要使

$$|f(x_1) - f(x_2)| = \left| \frac{1}{x_1} - \frac{1}{x_2} \right| = \frac{|x_2 - x_1|}{x_1 x_2} \le \frac{1}{\sigma^2} |x_2 - x_1| < \varepsilon$$

只需
$$|x_2-x_1|<\sigma^2\varepsilon$$
, 取 $\delta=\sigma^2\varepsilon$,

则当
$$|x_2-x_1|$$
< δ 时,必有 $|f(x_1)-f(x_2)|$ < ε .

所以
$$f(x) = \frac{1}{x}$$
在 $[\sigma, +\infty)$ 上一致连续.

定理5(Cantor一致连续性定理)若函数 f 在闭区间[a,b]上连续,则 f 在[a,b]上一致连续.

即:闭区间上的连续函数都是一致连续的.

证明方法: 反证法 + 致密性定理

证 假设f在[a,b]上不一致连续 $\Leftrightarrow \exists \varepsilon_0 > 0, \forall n \in \mathbb{N}_+,$

$$\exists x_n, y_n, |x_n - y_n| < \frac{1}{n} \quad s.t. \quad |f(x_n) - f(y_n)| \ge \varepsilon_0.$$

由于
$$\{x_n\}$$
 \subset $[a,b]$,必有收敛子列 $\{x_{n_k}\}$,

$$\lim_{k\to\infty}x_{n_k}=x_0\in [a,b].$$

设 $\{y_{n_k}\}$ 为 $\{y_n\}$ 的任一子列

小结

闭区间上连续函数的性质:

设 $f(x) \in C[a,b]$, 则

- 1. f(x) 在[a,b] 上有界;
- 2. f(x) 在[a,b] 上达到最大值与最小值;
- 3. f(x) 在[a, b]上可取最大与最小值之间的任何值;
- 4. 当 f(a)f(b) < 0 时, 必存在 $\xi \in (a,b)$, 使 $f(\xi) = 0$;
- 5. f(x) 在[a,b] 上一致连续.

思考题

- 1. 设 f(x)在 [a,b] 上连续, $x_i \in [a,b]$, $\lambda_i > 0$ $(i = 1,2,\dots,n)$, 且 $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$, 证明: $\exists \xi \in [a,b]$, 使得 $f(\xi) = \lambda_1 f(x_1) + \lambda_2 f(x_1) + \dots + \lambda_n f(x_n)$.
- 2. 设f(x)在 [0,1] 上连续, f(0) = f(1). 证明: $\forall n \in N^+, \exists \xi \in [0,1]$, 使得 $f(\xi + \frac{1}{n}) = f(\xi)$.
- 3. 某短跑运动员跑完100米用了10秒,证明其中必有 10米的距离恰好用1秒跑完.

压缩映像原理:

设函数 f(x) 在 [a,b]上有定义,且满足:

- (i) $f([a,b]) \subset [a,b]$;
- (ii) $\exists k \in (0,1)$, 使得 $\forall x, y \in [a,b]$, 有 $|f(x) f(y)| \le k |x y|$.
- 则 (1) f 有唯一不动点,即 $\exists | \xi \in [a,b]$, $s.t. f(\xi) = \xi$.
 - (2) $\forall x_1 \in [a,b]$, 由递推公式 $x_{n+1} = f(x_n)(n=1,2,\cdots)$ 定义的数列 $\{x_n\}$ 收敛, 且 $\lim_{n\to\infty} x_n = \xi$.

注: 称满足条件(i)(ii)的映射称为压缩映射, k为压缩常数.

例7. 用压缩映像原理证明以下数列收敛,并求其极限:

(1)
$$\alpha > 0, x_1 > 0, x_{n+1} = \sqrt{\alpha + x_n} \ (n = 1, 2, \dots).$$

(2)
$$c > 1, x_1 > 0, x_{n+1} = \frac{c(1+x_n)}{c+x_n} (n = 1, 2, \dots).$$

(3)
$$0 \le x \le 1, y_1 = \frac{x}{2}, y_{n+1} = \frac{x}{2} - \frac{y_n^2}{2} (n = 1, 2, \dots).$$

实数完备性基本定理的等价性

实数完备性的六个基本定理,即:

- 1. 确界原理(定理1.1.1);
- 2. 单调有界定理(定理2.1.7)。
- 3. 柯西收敛准则(定理2.1.8);
- 4. 区间套定理(定理3.2.1);
- 5. 聚点定理 (定理3.2.2)
- 6. 有限覆盖定理(定理3.2.3)

在实数系中这六个命题是相互等价的。在有理数系中这六个命题不一定成立。

实数集的完备性基本定理

- 1. 确界原理: 非空数集必有上确界与下确界.
- 2. 单调有界定理: 在实数系中, 单调有界数列必有极限.
- 3. 柯西收敛准则:

$$\{a_n\}$$
 收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N \in N_+, \forall n, m > N : |a_n - a_m| < \varepsilon.$

4. 区间套定理: 若 $\{[a_n,b_n]\}$ 是一个区间套,则在实数系中存在唯一的一点 ξ ,使得 $\xi \in [a_n,b_n], n=1,2,\cdots$,且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$.

- 5. 聚点定理(Bolzano-Weierstrass定理)(致密性定理是其特例): 实数集上的任一有界无限点集S至少有一个聚点.
- 6. 有限覆盖定理(Heine-Borel定理):

若H 为闭区间 [a,b]的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖 [a,b].

本教材中实数完备性基本定理的等价性的证明

补充例题

1

1. 计算: $\lim_{x\to 0} (\cos x)^{\ln(1+x^2)}$

化为指数函数或利用公式

$$\lim f(x)^{g(x)} = e^{\lim(f(x)-1)g(x)} \qquad (1^{\infty})$$

$$\lim_{x \to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}} = \lim_{e^{x \to 0}} \frac{1}{\ln(1+x^2)} \ln \cos x$$

$$\lim_{x \to 0} \frac{\ln \cos x}{\ln(1+x^2)} = \lim_{x \to 0} \frac{\ln \cos x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{2}$$

原式=
$$e^{-\frac{1}{2}}$$
.

2. 设 f(x) 定义在区间 $(-\infty, +\infty)$ 上, $\forall x_1, x_2 \in R$,有 $f(x_1 + x_2) = f(x_1) + f(x_2)$,若 f(x) 在 x = 0 连续,证明 f(x) 对一切 x 都连续.

提示:

$$\lim_{\Delta x \to 0} f(x + \Delta x) = \lim_{\Delta x \to 0} [f(x) + f(\Delta x)]$$

$$= f(x) + f(0)$$

$$= f(x + 0) = f(x)$$

- 3. 设 $f \in C[a,+\infty)$, 且 $\lim_{x \to +\infty} f(x)$ 存在. 求证: f(x)在[$a,+\infty$)有界.
- 证明:设 $\lim_{x \to +\infty} f(x) = A$, $\exists N > a, \notin x > N$ 时, |f(x) A| < 1.
- ① $|f(x)| = |f(x) + A A| \le |f(x) A| + |A| < 1 + A$.
- ② 在[a,N]上f连续,必有界 $\therefore \forall x \in [a,N], |f(x)| \leq M.$
- ③ 令L=1+|A|+M,则对一切 $x \in [a,+\infty)$,总有 $|f(x)| \leq L$.

4. $f \in C(a,b)$,且f(a+0)和f(b-0)存在(包括无穷大) 且异号,证明: $\exists \xi \in (a,b)$, s.t. $f(\xi) = 0$.

证明:
$$\Leftrightarrow \lim_{x \to a^+} f(x) = A, \lim_{x \to b^-} f(x) = B.$$

$$\widetilde{f}(x) = \begin{cases}
A & x = a, \\
f(x) & x \in (a,b), \\
B & x = b.
\end{cases}$$

$$\tilde{f}(x)$$
在[a,b]内连续,而 $\tilde{f}(a+0)\tilde{f}(b-0)<0$

$$\exists \xi \in (a,b)$$
, s.t. $f(\xi) = 0$ 即 $f(\xi) = 0$.

5. 证明:黎曼函数

$$R(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q}, & (p,q) \to \mathbb{R} \\ 0, & x = 0,1, \text{ 或为区间}(0,1) \text{中的无理数} \end{cases}$$

在(0,1)内任何无理点都连续,任何有理点处都不连续.

读题: (1)
$$R(\sqrt{2}/3) = ?, R(\sqrt{3}/3) = ?, R(\pi/4) = ?, R(e/5) = ?$$

(2)
$$R(1/9) = ?, R(2/9) = ?, R(4/9) = ?, R(7/9) = ?$$

 $R(3/9) = ?, R(6/9) = ?$

(3) 使
$$R(x) = \frac{1}{9}$$
 的 x 有几个?使 $R(x) > \frac{1}{9}$ 的 x 有几个?
使 $R(x) = \frac{1}{9}$ 的 x 有不会超过8个.
使 $R(x) > \frac{1}{9}$ 的函数值为: $\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{8}$,
使 $R(x) > \frac{1}{9}$ 的 x 不会超过: $1 + 2 + \dots + 7$

(4) 对于任意给定的 $\varepsilon > 0$,使 $R(x) > \varepsilon$ 的x至多有几个?(有限个!)

5. 证明:黎曼函数

在(0,1)内任何无理点都连续,任何有理点处都不连续.

证: 先证在有理点不连续.

设 x_0 为(0,1)内的有理点. 以下证 $\lim_{x\to x_0} (R(x) - R(x_0)) \neq 0$.

设
$$x_0 = \frac{p}{q}$$
,则 $R(x_0) = \frac{1}{q}$.

对 $\forall \delta > 0$, 在 $U(x_0, \delta)$ 内总可以找到无理数x, 使得

$$|R(x) - R(x_0)| = \frac{1}{q},$$

即 $\lim_{x\to x_0} R(x) \neq R(x_0)$,故**R**(x)在点 x_0 不连续.

证: 再证函数在无理点连续. 设 $\xi \in (0,1)$ 为无理点, 则 $R(\xi) = 0$.

以下要证: $\lim_{x\to\xi} R(x) = R(\xi) = 0$.

即要证: $\forall \varepsilon > 0, \exists \delta > 0, \exists |x - \xi| < \delta$ 时有

$$|R(x)-R(\xi)|=R(x)<\varepsilon.$$

- (i) 当x为无理数时,显然有 $|R(x)-R(\xi)|=0<\varepsilon$.
- (ii) 当x为有理数时, $|R(x)-R(\xi)| = \frac{1}{q}$, 能使 $\frac{1}{q} \ge \varepsilon$ 的q只有有限个,

从而使 $R(x) > \varepsilon$ 的有理数 x 也只有限有个,不妨设为 $x_1, x_2, \dots x_n$.

这些点与 ξ 的最小距离为: $\delta = \min\{|x_1 - \xi|, |x_2 - \xi|, \cdots |x_n - \xi|\}$.

对于满足 $|x-\xi|<\delta$ 的有理点 x, 有 $|R(x)-R(\xi)|<\varepsilon$.

故只要x满足 $|x-\xi|<\delta$ 就有 $|R(x)-R(\xi)|<\varepsilon$,

即 R(x)在 ξ 连续.