带余整除法

定理 1. 设 a, b 为给定的整数, $a \neq 0$,则一定存在唯一的一对整数 q 与 r,满足 b = qa + r, $0 \le r < |a|$ 。特别地 a|b 的充要条件是 r=0.

证明:需证明存在性与唯一性问题。

定理 2. 设 $r \ge 2$ 是 给 定 的 正 整 数 , 则 任 一 正 整 数 n 必 可 唯 一 表 为 : $n = a_k \cdot r^k + a_{k-1} \cdot r^{k-1} + \dots + a_1 \cdot r + a_0$,其中整数 $k \ge 0$, $0 \le a_i \le r - 1$ ($0 \le i \le k$)。

(即正整数 n 的 r 进制表示)

例 1:
$$r=2$$

$$3_{10} = 1 \times 2^1 + 1 = 11_2$$

$$9_{10} = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 = 1001_2$$

$$r = 8$$

$$3677_{10} = 7 \times 8^3 + 1 \times 8^2 + 3 \times 8^1 + 5 = 7135_8$$

最大公约数与最小公倍数.

1. 最大公约数: 设 a_1, a_2, \dots, a_k 为 k 个整数,且 $d | a_i, (i = 1, \dots, k)$,则称 d 为 a_1, a_2, \dots, a_k 公约数,其中最大的公约数记为(a_1, a_2, \dots, a_k)。

例: $a_1 = 12$, $a_2 = 18$. 则 $d = \pm 1$, ± 2 , ± 3 , ± 4 , ± 6 , $(a_1, a_2) = (12,18) = 6$

注:一般情况下仅考虑正整数的情况。

- 2. 互素: 若 (a_1,a_2,\cdots,a_k) =1, 则称 a_1,a_2,\cdots,a_k 为互素的。
- 3. 最小公倍数: 设 a_1, a_2, \dots, a_k 为 k 个整数,若 $a_i | m$, $(i = 1, \dots, k)$,则 m 称为 $a_i (i = 1, \dots, k)$ 的公倍数。其中最小的公倍数记为 $[a_1, a_2, \dots, a_k]$ 。 例: [12, 18] = 36
- 4. 最大公约数的求解方法:

I. 先将待求正整数分解成素因数之积,然后取出它们所公有的素因数。(相同的素因数照公有的个数取)相乘。

例 1:
$$36 = 2 \times 2 \times 3 \times 3 = 2^{2} \times 3^{2}$$
$$24 = 2 \times 2 \times 2 \times 3 = 2^{3} \times 3^{1}$$
则 (36,24) = $2^{2} \times 3 = 12$

例 2: $48 = 2^4 \times 3$, $60 = 2^2 \times 3 \times 5$, $72 = 2^3 \times 3^2$, 则 $(48,60,72) = 2^2 \times 3 = 12$.

II. 辗转相除法 (Euclid 法) 求(a, b). (a>b)

1)

$$a = b \cdot q_1 + r_1, 0 \le r_1 < b$$
 $b = r_1 \cdot q_2 + r_2$
 $r_1 = r_2 \cdot q_3 + r_3$
......
 $r_{n-3} = r_{n-2} \cdot q_{n-1} + r_{n-1}$
 $r_{n-2} = r_{n-1} \cdot q_n + r_n$
 $r_{n-1} = r_n \cdot q_{n+1} + r_{n+1}$
 $r_n = r_{n+1} \cdot q_{n+2} + 0$
则 r_{n+1} 即为所求。

原理: $(a,b) = (b,r_1) = (r_1,r_2) = \cdots$

推论:设 d=(a, b), (a>b), 则存在整数 k1, k2, 使得 k1a+k2b=d

特别地当 d=1 时有: k₁a+k₂b=1

$$d = r_{n+1} = r_{n-1} - q_{n+1} \cdot r_n = k_{11} \cdot r_{n-1} + k_{12} \cdot r_n$$

$$(k_{11} = 1, k_{12} = -q_{n+1}, 以下类似)$$

$$= k_{11} \cdot r_{n-1} + k_{12} \cdot (r_{n-2} - q_n \cdot r_{n-1})$$

$$= k_{21} \cdot r_{n-2} + k_{22} \cdot r_{n-1}$$

$$= k_{21} \cdot r_{n-2} + k_{22} \cdot (r_{n-3} - q_{n-1} \cdot r_{n-2})$$

$$= k_{31} \cdot r_{n-3} + k_{32} \cdot r_{n-2}$$

$$= \cdots \cdots = k_{(n-1)1} \cdot r_1 + k_{(n-1)2} \cdot r_2$$

$$= k_{(n-1)1} \cdot r_1 + k_{(n-1)2} \cdot (b - q_2 \cdot r_1)$$

$$= k_{(n-1)2} \cdot b + (k_{(n-1)1} - k_{(n-1)2} \cdot q_2) \cdot r_1$$

$$= k_{(n-1)2} \cdot b + (k_{(n-1)1} - k_{(n-1)2} \cdot q_2) \cdot (a - q_1 \cdot b)$$

$$[\diamondsuit k_1 = (k_{(n-1)1} - k_{(n-1)2} \cdot q_2),$$

$$k_2 = k_{(n-1)2} + (k_{(n-1)1} - k_{(n-1)2} \cdot q_2) \cdot q_1)]$$

$$= k_1 \cdot a + k_2 \cdot b$$

2) 至于 $(a_1,a_2,\cdots a_n)$, 先求 $d_1=(a_1,a_2)$, 再求 $d_2=(d_1,a_3)=(a_1,a_2,a_3)=\cdots$

例 1: d = (6731, 2809)

$$d = (d1, 421160) = 4$$
 (4 | 421160)

- 5. 最小公倍数的求解方法. $[a_1,a_2,\cdots,a_n]$

设 a_1,a_2,\cdots,a_n 所有出现的素因数为 p_1,\cdots,p_s ,则 $\left[a_1,a_2,\cdots,a_n\right]=p_1^{\beta_1}p_2^{\beta_2}\cdots p_s^{\beta_s}$,其中 β_s 取形如 $p_s^{\alpha_s}$ 中最大的 α_s .

例:
$$108 = 2^2 \times 3^3$$
 , $28 = 2^2 \times 7$, $42 = 2 \times 3 \times 7$

则
$$\left[108, 28, 42\right] = 2^2 \times 3^3 \times 7^1 = 756$$

III. 求 $[a_1, a_2, \dots, a_n]$, 先求 $[a_1, a_2] = m_1$, 再求 $[m_1, a_3]$, 以此类推。

例 1:
$$(108, 28) = 4$$
, 则 $\left[108, 28\right] = \frac{108 \times 28}{4} = 2^2 \times 3^3 \times 7 = m_1$, $\left(m_1, 42\right) = 2 \times 3 \times 7$, 则

$$[m_1, 42] = \frac{2 \times 3 \times 7 \times 2^2 \times 3^3 \times 7}{2 \times 3 \times 7} = 2^2 \times 3^3 \times 7$$

6. 性质:

①
$$d = (a_1, \dots, a_n), \mathbb{U}\left(\frac{a_1}{d}, \dots, \frac{a_n}{d}\right) = 1.$$

证明: 令
$$m = \left(\frac{a_1}{d}, \dots, \frac{a_n}{d}\right)$$
, 若 $m > 1$, 则由 $m \mid \frac{a_i}{d}$, $i = 1, \dots, n$ 得到: $dm \mid a_i$

故 dm 为 a_1, \dots, a_n 的一个公因子,且 dm > d,这与 d 为最大公因子矛盾.

$$(2) m(b_1, \dots, b_n) = (mb_1, \dots, mb_n) \quad m > 0.$$

证明:设
$$d1 = (b_1, \dots, b_n), d2 = (mb_1, \dots mb_n)$$

I. 由 $d1|b_i$, $i=1,\cdots,n$ 得: $md1|mb_i$, 故 md1 为 mb_i ($i=1,\cdots,n$) 的公因子, 则由 d2 的定义知: $md1 \leq d2$

II. 由
$$d2 \mid mb_i$$
, $i=1, \dots, n$, 及 $m \mid d2$ 得: $\frac{d2}{m} \mid b_i$, 又由 $d1$ 的定义知: $\frac{d2}{m} \leq d1$, 即: $d2 \leq md1$

综上: md1=d2

$$(3)$$
 $(a_1, a_2, \dots, a_n) = ((a_1, a_2), a_3, \dots, a_n)$

$$(a_1,\dots,a_{k+r}) = ((a_1,\dots,a_k),(a_{k+1},\dots,a_{k+r}))$$

- ④ 设(m, a)=1, 则(m, ab) = (m, b) 证明:由(m, b)=(m, b*1)=(m, b*(m, a))=(m, (mb, ab))=((m, mb), ab) =(m, ab)
- ⑤ 设(m, a)=1,若 $m \mid ab$, 则 $m \mid b$ 只需要证明 $m \not = m \not = b$ 的最大公因子即可.

m=(m, ab)=(m,b) (根据性质④)

$$a_1 a_2 = [a_1, a_2].$$
 (a₁, a₂)

证明:先证 $m[a_1,\dots,a_n]=[ma_1,\dots,ma_n]$.

设
$$d1 = [a_1, \dots, a_n], d2 = [ma_1, \dots ma_n]$$

I. 由 $a_i \mid d1$, i=1, …, n 得: $ma_i \mid md1$, 即 md1 为 ma_1 , …, ma_n 的一个公倍数, 则由 d2 的定义知: $d2 \leq md1$

II. 由 $ma_i \mid d2$, i=1, …, n 得: $a_i \mid \frac{d2}{m}$, 即 $\frac{d2}{m}$ 为 a_1 , …, a_n 的一个公倍数,则由 d1 的定义知: $\frac{d2}{m} \ge d1$,即 $d2 \ge md1$

综上: md1=d2

再证: $a_1 a_2 = [a_1, a_2]$. (a_1, a_2)

记
$$d = (a_1, a_2)$$
,则由 $(\frac{a_1}{d}, \frac{a_2}{d}) = 1$ 得: $[\frac{a_1}{d}, \frac{a_2}{d}] = \frac{a_1}{d} \cdot \frac{a_2}{d}$

从而得:
$$a_1 \cdot a_2 = [\frac{a_1}{d}, \frac{a_2}{d}] \cdot d \cdot d = [a_1, a_2] \cdot d$$

⑦ 若 $a \mid a_1 a_2 \cdots a_n$, 且 $(a, a_i) = 1$, $i = 1, \dots, n-1$, 则 $a \mid a_n$ 。

证明:只需要证明 $a \neq a = a_n$ 的最大公因子即可.

由
$$(a, a_1) = 1$$
得: $(a, a_n) = (a, a_1 a_n) = \cdots = (a, a_1 a_2 \cdots a_n)$ (此处反复运用性质 4)

又由
$$a \mid a_1 a_2 \cdots a_n$$
得: $(a, a_1 a_2 \cdots a_n) = a$

所以
$$(a, a_n) = a$$
 从而 $a \mid a_n$

- ⑧ 若 $(a,b_i)=1$, $i=1,\cdots,n$, 则 $(a,b_1b_2\cdots b_n)=1$ 。 证明:因为 $(m,b_1)=(m,b_1b_2)=\cdots=(m,b_1b_2\cdots b_n)$ (此处反复运用性质 4)
- ⑨ 若 p 为素数,且 $p \mid a_1 a_2 \cdots a_n$,则至少存在一个 a_k ,使得 $p \mid a_k$ 。 反证法:假设对所有的 a_i , $i=1,\ldots,n$ 上述结论均不成立,则由 p 为素数得: $(p,\ a_i)=1,\ i=1,\ldots,n, \ \, \text{从而 } (p,\ a_1 a_2 \cdots a_n)=1, \ \, \text{(由性质 8 得到)}$ 从而与 $p \mid a_1 a_2 \cdots a_n$ 矛盾.