Page No. 26 Date: 23 10 7 | 2018

Regular Expressions (RE) and Languages

1. Regular Language:

12 = 38 = 1

- A set of strings accepted by finite automata is known as regular language.

set of	Finite	set of Accepted
strings ?	Automata	Strings
KEEGS	1. 4do6=1	(Regular Language)

frq. 1: Regwar Language

- Regular language can also be described in a compact form using a set of operators.
- - The operators used to represent regular expression.
 - in this operator (+) on Diel
 - ii. (ancatenation (.)
 - iii. closure operation (x)

Regular Expression:

- An expression written using the set of operators (+, +, *) and describing a regular language is known as regular expression.
- Regular expression is nothing but description of the language in algebraic form.
- The language represented by regular expression is raised as regular language.
- Regular expression provides a declarative way to express the strings that machine can accept, which DFA/NFA

Regular Expressions for basic Automata:

	A 1 100 m 1 0	Language	Regular Expoension
SY.	Automata	L=9E3	RE = E
1.		L =9 E3	SOUTH AND THE
	-0°>0	L= 2 a 3	RE = a
2.	70-70		
3.	-0 D	L= ga, b2g	RE = a+b
A.	706	人名 · · · · · · · · · · · · · · · · · · ·	process of the same
4.	-0 a >0 b 0	L=Sab3 .	RE=ab
	Lieu The Bender of the Pen	Jemos state to	
5.	->0<0	L= 80	RE= 0
	01	2756000	16 +12 D PT26
6.	-6	L= SE, a, aa, aaq, y	RE = ax
	Qa	constitution at 6	SEN 200 FRANCE ANT I-
7.	-0 a 6	L= Sa, aa, aaa, 3	RE = at or a a*
	asorb		on Large Andrews (4)
9.	- 10 a	L= fab, baz	RE=ab+ba
	600 a		
			make shorted principles
	b Aa		05
19.	- C - C - C - C - C - C - C - C - C - C	L= dabaa, baaag	RE = abaa + baaa
	206		→ (ab+ba) aa
	Oa,b		
10.		L= d & a, b, aq ab,	RF - (21) 2*
10.		7 (1, 7, 91, 93, 11)	VP = (A+P).

If R, 4R2 are regular expressions then.

1. R ₁ + R ₂ 7	1. Rit le gre also
	5. Rz gre also
3 4 R * 1 1 1 July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Salt of the salt of the

Languages to Regular Expressions (& Languages to RE) & write regular expressions for the following languages. Example 1: set & 10103 RE = 1010 Example 2: L = \$10,1010} son = RE=10+1010 Example 3: L = { E, 10, 01} SOI == E + 10+01 Example $f: L = \delta E, 0, 00, 000, ...$ $SO(?) \Rightarrow RE = 0$ Example 5: L= \$0,00,000,...}

BO[] => RE = 0+ Example 6: The set of strings over 2 30,13 starting with L = {0,01,00,010,000,011,...} RE = 0 (0+1)* Example 7: The set of strings over 2=50,13 ending in 1. L= &1,01,11,111,001,011,101,...3 RE = (0+1)*1 Example 8: The set of strings over &= &a, b} starting with 811:=) RE = a (a+b) x b

Scanned by CamScanner

Exmits the set of strings recognized by (a+b)3 200000000 DEDUCATE = (a+b) = ade con unicompression est ation RE = (9+6) (9+6) (9+6) (0+6) (0+6) (0+6) RE= qaq+qab+aba+ abb+baa+bab+bba+bba A word 'w' is said to be accepted by a finite automate Regular set: M, if $\delta(90, \omega) = p$ for some PEF. Here, 90 is stored state, F is set of final states and δ is a transition function. A language is a regular set if it is the set accepted by some finite automata. 2. L = { €,00,0000,000000; } (omposite Finite Audomata:> Let FA For Regular Expression R. Regulari Dayson, Company of the same of th Let FA Por RE PZ *(140)0 = 38 2 of pathon 1, 2 to 80 R2 200 2 to the odn : # 2/4/10 x8 Each finite automata is assumed to have one final state.
Then finite automata for following regular expressions

Scanned by CamScanner

((110) *1) *(110) *1+ 3= 2.H.J = from identity [E+RR* = R* :. R= 1* (011) tour or D RX a(1*(011)*)* : from identity, (P+Q) = (p+Q*) = (p+Q*) => (1+011) * => R. H.S. Example 5: Find all possible RE L C Sa, by [Dec-2007, May-2008]

a) The set of strings ending in b 807 = (a+b) x b b) the set of things ending in ba, ag 817 RE = (a+b)*ba of the set of all strings ending heither in b nor in ba RE = E+a+(a+b) * aa * (a)) 9 = 9 * (09) 2612 d) The set of all strings ending in ab 20187 RE= (9+6) + ab e), the set of all strings ending neither in ab nor ba. 3018 = RE = & +a+b + (a+b)* (aa+bb)

Scanned by CamScanner

