浙江水学

本科实验报告

课程名称:	计算机组成
姓 名:	胡亮泽
学 院:	计算机科学与技术学院
系:	计算机科学与技术系
专业:	计算机科学与技术
学 号:	3120102116
指导教师:	姜晓红

2014年 4 月 28 日

浙江大学实验报告

课程名称:Computer Organization	实验类型:综合		
实验项目名称: Lab7 是: 单周期 CP	U		
学生姓名: 胡亮泽 专业: _	计算机科学与技术		
学号: 3120102116			
同组学生姓名:	指导老师:		
实验地点:	实验日期: <u>2014</u> 年		
<u>4</u> 月 <u>28</u> 日			
一、实验目的和要求			
实现单时钟 CPU 的控制器,用以实现 R 指令。			
二、实验内容和原理			
本次实验中的控制器需要发出的控制信号主要有:			
1. RegDst			
2. ALUscrB			
3. MemToReg			
4. WriteReg	4. WriteReg		
5. MemWrite	5. MemWrite		
6. Branch	6. Branch		
7. ALUop1	7. ALUop1		
8. ALUop0			
9. JMP			
对于以上控制信号的实现的逻辑图如下	:		

具体实验代码如下:

```
module control( input wire[5:0] op,
              output wire RegDst,
                   output wire ALUsrcB,
                   output wire MemToReg,
                   output wire WriteReg,
                   output wire MemWrite,
                   output wire Branch,
                   output wire ALUop1,
                   output wire ALUop0,
                   output wire anode,
                   output wire dot
   );
wire J,R,LW,SW,BEQ;
wire JMP;
and
  and1(J,~op[5],~op[4],~op[3],~op[2],op[1],~op[0]),
   and2(R,~op[5],~op[4],~op[3],~op[2],~op[1],~op[0]),
   and3(LW,op[5],~op[4],~op[3],~op[2],op[1],op[0]),
   and4(SW,op[5],~op[4],op[3],~op[2],op[1],op[0]),
   and5(BEQ, ~op[5], ~op[4], ~op[3], op[2], ~op[1], ~op[0]);
or
  or1 (ALUsrcB, LW, SW),
   or2(WriteReg,R,LW);
assign RegDst = R;
assign MemToReg = LW;
```

```
assign MemWrite = SW;
assign Branch = BEQ;
assign ALUop1 = R;
assign ALUop0 = BEQ;
assign JMP = J;

assign anode = ~JMP;
assign dot = ~JMP;
```

具体原理主要是通过门级的描述将对应的逻辑关系组合在一起,比较简单, 这里不多做赘述。

三、 实验结果

测试结果按照逻辑电路图中的五个不同的与门分别输入不同的 Op 信号。每次输入相应的信号后可以得到对应的控制信号电平,如上图所示。具体对应关系完全符合逻辑电路图,这里不多做赘述。

四、 讨论与心得

本次实验巩固了我对单周期 CPU 中控制信号实现的方法以及对应逻辑关系的认识,并实现了简单的单时钟周期 CPU 控制器,为接下来的实验做好了