

Data Analysis with R:

Lecture Slides: Day 1 - Monday

Sonja Hartnack, Terence Odoch & Muriel Buri

22nd of July 2019

Goals of the course

To be able to...

- import data sets to R
- describe data with R
- apply basic statistical tests in R
- some ideas for more advanced statistical tools ...
- simulate a data set similar to own research

General remarks

Course schedule:

- Starting at 9:00am / 9:30am (?)
- Tea breaks in between
- Lunch break
- Teaching until 4.30pm (\sim 5pm)

Obtaining a certificate is conditional on:

- active participation in class
- attending at least 75 % of the course (lecture & exercises)
- assignments during now and October
- short final exam in October (format to be defined)

Getting to know each other

- My name is ...
- I am doing a Master / a PhD in ...
- I hope to learn in this course how to
- My personal goal for this course is ...

How do we reach these goals

- hands on exercises with R:
 - chickwts
 - ToothGrowth
 - bacteria
 - perulung
 - ... and others.
- interactive discussions & student's present their own solutions
- ask us a lot of questions but also ask google for help!
- group work
- short motivational lectures

Do you all have RStudio and R installed on your computers?

Get started with data set: chickwts

An experiment was conducted to measure and compare the effectiveness of various feed supplements on the growth rate of chickens.

```
# load data set "chickuts"
data("chickwts", package = "datasets")
# the head(...) function shows the first 6 observations
head(chickwts)
##
    weight
           feed
## 1
     179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean
# FUNCTION - open bracket - DATA SET / VARIABLE - close bracket
```

Ideas for plotting the data

Ideas for plotting the data


```
# use x axis to show the categorical variable (feed),
# y axis to represent the continuous variable (weight)
# boxplot (y.cont.variable ~ x.cat.variable, data = dataset)
# ?boxplot
boxplot(weight ~ feed, data = chickwts)
```


Exercise: Statistical Terminologies

Functionalities in RStudio

- Source
- Console
- Environment, History, Files
- Files, Plots, Packages, Help

Good housekeeping!

- Define manually a new folder called rcourse in your personal documents on your personal computer
- Know in which directory you are

```
getwd()
## [1] "/home/mburi/Documents/git_svn/DataAnalysisWithR/Lectures"
```

Set directory path

```
# back- and forslash is dependent on the system
setwd("C:/Users/muriel/Documents/rcourse/")
setwd("C:\\Users\\muriel\\Documents\\rcourse\\")
```

Always clean up before starting with new R-Script

rm(list=ls()) # empty workspace, delete previously saved variables

How to get help in R

?chickwts
?boxplot

Also, have a look at the examples at the end of the help pages.

Exercise: Getting to know R and chickwts

A data frame in R: chickwts

chickwts[ROWS , COLUMNS]

chickwts[6,1]

•		
	weight [°]	teed
1	179	horsebean
2	160	horsebean
3	136	horsebean
4	227	horsebean
5	217	horsebean
6	168	horsebean
7	108	horsebean
8	124	horsebean
9	143	horsebean
10	140	horsebean
11	309	linseed
12	229	linseed
13	181	linseed

chickwts[11, 2]

Rows and columns of a data frame: chickwts

Values of ...

```
# Load (internal) data set from R
data("chickwts")
# ... all columns of sixth observation:
chickwts[6,]
# ... all columns of sixth to eleventh observation:
chickwts[c(6:11),]
# ... all columns of sixth, eleventh and twentieth observation:
chickwts[c(6, 11, 20). ]
# ... all rows of first column (weight):
chickwts[ , 1]
# ... all rows of second column (feed):
chickwts[, 2]
# or use the "$" sign as a reference to column "feed":
chickwts$feed
```

Exercise: Summary Statistics for the chickwts data set

Rules for importing data into R

- First row of excel sheet contains variable names:
 y, ap, hilo, week, ID, trt.
- Columns of excel sheet represent variables.
- Rows of excel sheet represent observations per individual (except for the first row).

Rules for naming variables

Variable names should ...

- start with a letter (not a number):
 y, ap, hilo, week, ID, trt
- longer variables names should be separated with dots:
 time.in.weeks
- do not use special characters, such as /, #, @, &, ⋆, ...

How to import external data files into R?

> Import Dataset > From Text (base)... > CSV Files (.csv)
or

How to import .txt and .csv files into R? (1/3)

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

• > Import Dataset > From Text (base)... > Text Files (.txt)

How to import .txt and .csv files into R? (2/3)

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

How to import .txt and .csv files into R? (2/3)

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

Exercise: Data import to R and summary statistics perulung_ems.csi

Data from a study of lung function among children living in a deprived suburb of Lima, Peru. Data taken from Kirkwood and Sterne, 2nd edition.

Variables:

- fev1: in liter, "forced expiratory volume in 1 second" measured by a spirometer. This is the maximum volume of air which the children could breath out in 1 second
- age: in years
- height: in cm
- sex: 0 = girl, 1 = boy
- respsymp: respiratory symptoms experienced by the child over the previous 12 months