Introducción a Haskell

Y a la programación funcional

Pablo Baeyens 0pbaeyens

Mario Román @M42

OSL 2015

Índice

Haskell

Tipos

Funciones

Ejemplos

Más

¡Contribuye!

El código fuente de estas diapositivas está disponible en:

Erratas, correcciones y aportaciones son bienvenidas.

Instalando Haskell Platform

haskell-platform contiene el compilador, depurador y otras utilidades. También podemos instalar ghc (Glasgow Haskell Compiler):

```
sudo apt-get install haskell-platform
```

Viene con un gestor de librerías: cabal

Sin efectos secundarios

Las funciones en los lenguajes funcionales no tienen *efectos secundarios*. No alteran el mundo alrededor ni cambia el valor de los argumentos.

```
int n = 0;
int next_n() { return n++; }
next_n(); // n = 1
```

El intérprete: GHCi

GHC incluye GHCi como intérprete. Permite los siguientes comandos:

- ▶ : q Quitar
- ► :1 Cargar módulo
- ▶ :r Recargar módulos
- ► :t Consultar tipos

El intérprete: GHCi

Las funciones se llaman escribiendo su nombre, un espacio y sus parámetros, separados por espacios:

```
ghci> 3 + 4

7

ghci> (+) 2 9

11

ghci> succ 27

28

ghci> max 23 34

34
```


Tipos

Usamos :t para ver el tipo de una expresión:

```
ghci> :t True
True :: Bool
ghci> :t 'a'
'a' :: Char
ghci> :t "Unaustring!"
"Unaustring!" :: [Char]
ghci> :t not
not :: Bool → Bool
```


Tipos

Los tipos de Haskell son **fuertes** y **estáticos**. La mayor parte de los errores se detectan en compilación como errores de tipo.

Además son **inferidos**, por lo que no tenemos por qué especificar el tipo de nuestras funciones:

```
ghci> let nand a b = not (a && b) ghci> :t nand nand :: Bool \rightarrow Bool \rightarrow Bool
```


askell **Tipos** Funciones Ejemplos Más

Clases de tipos

Las clases de tipos agrupan a tipos con la misma interfaz. Por ejemplo, la clase Eq, define la función ==.

```
2 :: Num a \Rightarrow a
pi :: Floating a \Rightarrow a
(==) :: Eq a \Rightarrow a \rightarrow a \rightarrow Bool
```

Las instancias de Num pueden sumarse y multiplicarse, las de Show convertirse a String y sobre las de Integral pueden calcularse restos modulares.

Variables de tipo

Haskell infiere siempre el tipo más general. Para ello usa variables de tipo, que pueden ser sustituidas:

```
id :: a \rightarrow a
(+) :: Num a \Rightarrow a \rightarrow a \rightarrow a
(<) :: Ord a \Rightarrow a \rightarrow a \rightarrow Bool
```

Las variables pueden restringirse a pertenecer a una clase.

Tipos algebraicos

Creamos nuevos tipos definiendo **constructores de datos**: funciones que devuelven valores del tipo que definimos.

```
data () = () — Tipo None
data Bool = False | True
data Point = Point Float Float
data Triangle = Triangle Point Point
```


Constructores de tipos

Los constructores de tipos son funciones sobre tipos: toman un tipo y devuelven otro.

```
"Haskell!" :: [Char]
[1,2,3,4] :: (Num a) ⇒ [a]
[True, False, False] :: [Bool]
[] :: [a]
Just True :: Maybe Bool
Nothing :: Maybe a
```

Constructores de tipos

Sus definiciones son:

```
data [a] = [] | a:[a]
data Maybe a = Nothing | Just a
```

En las **listas**, el primer constructor es la lista vacía y el segundo antepone un elemento a otra lista.

En el caso de **Maybe** podemos tener algo de tipo a (Just a) o nada (Nothing).

Reconocimiento de patrones

Para definir una función sobre un tipo, definimos su comportamiento para cada constructor de datos del tipo:

```
\begin{array}{lll} \text{neg} & :: & \text{Bool} \rightarrow \text{Bool} \\ \text{neg} & \text{False} & = & \text{True} \\ \text{neg} & \text{True} & = & \text{False} \end{array}
```

Podemos sustituir argumentos del constructor por variables:

```
factorial :: Integral a\Rightarrow a\rightarrow a factorial 0=1 factorial n=n * factorial (n-1)
```


Recursividad

El tipo lista y las definiciones recursivas son la base de los programas de Haskell. Para calcular la **longitud de una lista**, definimos la función para sus dos constructores:

```
len :: Num a \Rightarrow [t] \rightarrow a
len [] = 0
len (\_:xs) = 1 + len xs
```

Currificación

```
¿Por qué (+) es de tipo a \rightarrow a \rightarrow a y no (a,a) \rightarrow a?
```

Esto nos permite aplicar parcialmente una función. El tipo hay que leerlo realmente como a -> (a -> a), es decir, al darle un número nos devuelve otra función:

Es lo mismo decir (+3) 5 que (+) 3 5.

Funciones de orden superior

Son funciones que toman funciones como argumento.

map toma una función y devuelve su versión sobre listas:

$$\mathsf{map} \ :: \ (\mathsf{a} \to \mathsf{b}) \to ([\mathsf{a}] \to [\mathsf{b}])$$

Ejemplo: map not [True, True, False]

foldr toma una función y un acumulador y aplica los elementos de la lista contra el acumulador.

foldr ::
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

Ejemplo: foldr (*) 1 [2,3,5,7]

Especialización

A partir de estas podemos crear funciones básicas:

```
negation = map not
lowerText = map toLower
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) []
and = foldr (&&) True
```

Ejemplo: lowerText "aBcDEfG"

Quicksort

Implementación del algoritmo Quicksort

```
qsort [] = []
qsort (x:xs) = qsort [y | y<-xs, y<=x]
++ [x]
++ qsort [y | y<-xs, y>x]
```

Árboles binarios

Los definimos como vacíos o un nodo con dos árboles:

```
data Tree a = Empty
| Node a (Tree a) (Tree a)
```

Ejemplo: Node 4 (Node 3 Empty Empty) Empty

Esto nos deja definir funciones sobre ellos fácilmente:

```
preorder :: Tree a \rightarrow [a]

preorder Empty = []

preorder (Node x a b) =

x : preorder a ++ preorder b
```


Curry-Howard

Como las instancias sólo pueden construirse desde los constructores definidos y las funciones no tienen efectos secundarios, podemos razonar fácilmente la corrección del código. Usamos inducción estructural:

```
qsort [] = []
qsort (x:xs) = qsort [y | y<-xs, y<=x]
++ [x]
++ qsort [y | y<-xs, y>x]
```

Quicksort funciona porque ordena correctamente una lista vacía y porque, supuesto que funcione para listas menores que una dada, funciona para ella.

