CS-C1000 – Introduction to Artificial Intelligence Reinforcement Learning

Arno Solin

March 26, 2021

Outline and intended learning goals

- What is Reinforcement Learning?
- Examples RL use cases
- Model-based methods
- Inverse Reinforcement Learning

$AI \rightarrow ML \rightarrow Reinforcement Learning$

Reinforcement learning

- Concerned with how algorithms ought to take actions to maximize some cumulative reward.
- Typical uses cases where the task and environment are complicated, but some reward (and feedback) can be formulated.
- Example: Learning to walk, drive, grasp things, play games.

Basic idea

- Receive feedback in the form of rewards.
- Utility is defined by a reward function.
- Must (learn to) act so as to maximize expected rewards.
- All learning is based on observed samples of outcomes.

Concepts

Actions: Button presses, muscle movement, etc.

State: What the environment is like now. There might be stochasticity.

Reward: A price or a penalty.

Reward +1 if moves to left Reward -1 if moves to right

Figure: Dan Klein and Pieter Abbeel

Policy

The agent's action selection is modeled as a map called policy:

$$\pi(a \mid s)$$

- ► The policy map gives the probability of taking action *a* when in state *s*.
- ► There are also non-probabilistic policies.
- The policy needs to be learned.

Discounting future rewards

- The agent tries to maximize the expected return of future rewards.
- The future rewards are discounted by the number of steps it takes to reach them.
- For example, with a discounting factor of $\gamma = 0.5$, the rewards one-step away are worth 1, and rewards two steps away only 0.5, for three 0.25, etc.

Exploration vs. exploitation

Explore further

Exploit what you already know

Concrete example: Q-learning

- Q-learning is a model-free reinforcement learning algorithm.
- You already tried this for the Tic-Tac-Toe game in the exercises.
- Let's see how it works on the 'crawler'.

Reward +1 if moves to left Reward -1 if moves to right

Video of Demo Q-learning Crawler: https://www.youtube.com/watch?v=M2DQVWLxB7I

Designing a control: Flexible Muscle-Based Locomotion for Bipedal Creatures: ${\tt https://www.youtube.com/watch?v=pgaEE27nsQw}$

Emergence of Locomotion Behaviours in Rich Environments: https://www.youtube.com/watch?v=hx_bgoTF7bs

Reference

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills: https://www.youtube.com/watch?v=vppFvq2quQ0

Deep Reinforcement Learning

- Traditionally, explicit design of state space and action space required, while the mapping from state space to action space is learned.
- Human designers have had to design how to construct state space from sensor signals and to give how the motion commands are generated for each action before learning.
- In Deep RL (or End-to-end RL), neural networks are used for learning everything, not just the actions, in an unsupervised way.

Al playing Super Mario World with Deep Reinforcement Learning: https://www.youtube.com/watch?v=L4KBBAwF_bE

Model-based methods

- You might notice that most RL use cases nowadays are such that you can do the training in a simulator (playing millions of games, exploring in a physics simulator).
- Model-based RL provides additional knowledge:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- This can be a lot faster than exploring for thousands and thousands of steps.

RealAnt: An Open-Source Low-Cost Quadruped for Research in Real-World Reinforcement Learning: https://youtu.be/pG-XhH-9s7o

Inverse Reinforcement Learning

- In inverse reinforcement learning, no reward function is given.
- Instead, the reward function is inferred given an observed behavior from an agent.
- This can be interesting in user studies, UI development/optimization, etc. (finding out why 'experts' do what they do)

Recap

- Concerned with how algorithms ought to take actions to maximize some cumulative reward.
- Task and environment are complicated, but some reward (and feedback) can be formulated.
- Very active research topic.
- However, still few applications (that really work).

What next?

- Next week is different: The lecture is on Tuesday!
 - Guest lecturer Markus Ojala from Unity Technologies
 - + Normal lecture.
- Next computer exercise will be published on Tuesday but the next exercise session is on Tuesday in two weeks.

A