本科生科研培养计划

——将形式变为习惯,培养具有学者精神的本科生

1. 学生建档

- a) 针对个人学习特点,指定不同进度方案。
- b) 课题组 Onedrive 定期更新。
- c) 实行层级管理,由研究生对本科生进行辅助监管指导。

2. 科研进阶方案

- a) 自学阶段:包括机器学习初步知识,深度学习代码框架。提高自己搜索材料和独立思考的能力。自学阶段结束前需经过任务考核。
- b) 中期阶段:
 - i. 项目认领:由高年级、研究生或老师牵头项目,负责课题调研(调研完成后需以文档或者 PPT 展示)、部分代码实现(代码存档)、数据处理(整理)等工作。
 - ii. 自由组队:自己有创新性 idea,自发项目(暑研、SRTP)。自发项目应先与老师和高年级同学讨论,做好初步调研、proposal 以及进度安排。
- c) 进阶阶段:
 - i. 以个人或小组形式独立承担老师布置的课题, 完成课题后应将成果整理为专利或者论文发表。

3. 日常训练

- a) 文献阅读:建立文献阅读档案及习惯,每篇文章可总结几句话或关键词作为备忘。
- b) 进度总结:每周 seminar 研究生分享后,实行进度监督制度,1页 ppt 简述进展, 务必简洁明了,包括以下部分:
 - i. 当前进展:本周做了哪些工作。
 - ii. 短期计划:下周预计可以完成多少。
 - iii. 长期目标或 deadline,几月份可完成:
 - 1. 自学阶段。
 - 2. 对某一子领域的初步调研。
 - 3. SRTP
 - 4. 暑研。
 - 5. 比赛。
 - 6. 文章投稿。
- c) 经验讨论:不定期进行经验分享讨论。
 - i. pytorch 框架搭建分享。
 - ii. 写作经验分享。
 - iii. 文献阅读分享:
 - 1. 近两年为主。
 - 2. 推荐 CCF A 类为主: CVPR、ICCV、ECCV、ACM MM、AAAI、NeurIPS、ICML 等,以及 T-PAMI、T-IP、T-MM、T-CSVT 等 IEEE Transactions。
 - 3. 理解、代入、思考、学习、批判。
 - iv. PPT presentation 分享、模板。
 - v. 每学期进行两次科研体会和总结。

- d) 中期及进阶阶段的本科生参与到 seminar 报告中。
- 4. 自学阶段内容(自学课件或网上搜索, https://www.deeplearningbook.org/)
 - a) Linear Algebra (课件)
 - i. Linear representation
 - ii. Eigenvalue decomposition
 - iii. Singular value decomposition
 - iv. Principal component analysis
 - b) Statistics (课件)
 - i. Maximum likelihood estimation
 - ii. Bayesian rule (https://simple.wikipedia.org/wiki/Bayes%27_theorem)
 - c) Computer Vision (https://www.cs.cornell.edu/courses/cs4670/2018sp/)
 - i. Classification, detection, segmentation (课件)
 - ii. 2D-3D geometry
 - d) Machine Learning (课件)
 - i. Difference between supervised and unsupervised learning
 - ii. Overfitting
 - iii. Linear regression
 - iv. Deep neural networks
 - v. K-means clustering
 - e) Coding
 - i. Python
 - ii. Pytorch https://pytorch.org/tutorials/beginner/basics/intro.html
 - f) 基础文献阅读 (课件)
 - i. 对某一方面感兴趣可以搜发表在顶刊上的综述类文章,英文中带"survey"或 "review"关键词的。
- 5. 锻炼思考问题能力
 - a) Data
 - i. Acquire: what kinds of sensors?
 - ii. Collect: public available datasets?
 - iii. Quality: observation noise? Noisy labels? Missing data? Partly/weakly/few labeled data? Imbalanced data?
 - b) Task
 - i. How about your hobby related topics?
 - ii. Match your major? (data and major related?)
 - iii. Some challenges you encountered in your life?
 - iv. Some meaningful works that are strongly needed by the society or the nation?
 - c) Method (read recent high impact papers)
 - i. Is it a novel task without existing methods?
 - ii. What are existing works that address the similar tasks in recent two years?
 - iii. Are there any weaknesses of the existing works?
 - iv. How to make some improvements? What would be the possible solutions? What direction you should focus on? What contributions you could make?