Math 239 - Lecture #22

Theorem:	If there exists uEV(F) such that a u,v-path exists
	for all NEVG), then G is connected.
1 4 44 13	
Proof:	Let x,y \(V(G), By assumption, there exists an xu-path
	and a u,y-path. Joining them together yields an
	x,y-walk. By a previous theorem, there exists an
	26,4-path. So F is connected. I
Theorem:	The n-cube is connected.
	The firefice is connected.
Proof:	Let up be the string of n=5 how 1
Waster Line	n 0's let & be any string V= 00000 achieve
	of length n. suppose & has K 00001 vertex!
	1's, located at positions in ik 01001 a time
	15, Tocares of positions a,, ck
	Produce K Strings Nim Nx where vo is the string
	with profit is to dealed in action is
	with exactly j 1's, located at positions in, is
	Notice that vi and vin differ in exactly one bit
	at position in, so with is an edge. So
	No, N,, Nx=x is a No, x-path. So the
	n-cube is connected.
Camanant'	
	H is a subgraph of G if V(H) = V(G), E(H) = E(G),
& Cuts	and every edge in E(H) joins two vertices in V(H).
F .	G subgraphs of G
Ex:	
	2 3 2 3 2 3 3
	, u
	4
	A subgraph is spanning if $V(H) = V(G)$.
	FIVE STAR.

A component of G is a maximally connected nonempty subgraph of G.

Maximally means there is no other connected nonempty subgraph that contains it.

A connected graph has one component; disconnected graphs have at least two components.

In a component, there is no edge joining a vertex in the component with a vertex outside of a component, due to maximality.

Defo: Let x = V(G). The cut induced by x is the set of all edges with exactly one end in 2.

Bx.

x= {1,2}, the cut induced by & is \$13, 23, 243. Y= {1,2,3,4} Cut is \$ Z= {1,43 (cot is {12,13, 24,34}

A component induces an empty cut, i.e the set of vertices of a component induces an empty cut.

Theorem: G is not connected if and only if there exists a non-empty proper subset & of v(G) that induces an empty cut.

Moth 234 - Lecture +22 Cont.

Proof: (=) Suppose & is not connected. Then & contains at least 2 components, let H be one of them. Then V(H) is a nonempty proper subset of V(G). That is non-empty by def-, proper because another component exists.

Due to maximality, V(H) induces an empty cut.

(=) Suppose x is a nonempty proper subset of V(F) that induces an empty cut. Let uEX, NEX.

contradiction illustration

Suppose there exists a u,v-path $v_0,v_1,...,v_k$. Since v_0 is in v_0 a v_k is not in v_0 , we can pick the smallest index i such that $v_i \notin \mathcal{X}$. Then $v_{i-1} \in \mathcal{X}$, and $v_{i-1} v_i$ is an edge in the cut induced by \mathcal{X} . Contradiction.

So no u, v-path exists, and & is not connected.