ABSTRACT

Piperidine or piperazine compounds useful for treating neurodegenerated diseases characterized by the lack of dopamine neurons activity or for imaging the dopamine neurons are provided. The compounds are characterized by the formulae:

$$X \xrightarrow{i} B \longrightarrow (CH_2)_{\overline{m}} N \longrightarrow N \longrightarrow N \longrightarrow T \longrightarrow Z_1$$

$$X \xrightarrow{\Gamma} B \longrightarrow (CH_2)_{\overline{m}} N \longrightarrow H Q \longrightarrow Z_2$$

Formula II

$$\begin{array}{c} X \xrightarrow{i} \\ Y \xrightarrow{i} \\ \end{array} \\ \begin{array}{c} B \xrightarrow{i} \\ \end{array} \\ \begin{array}{c} CH_2)_{\overline{m}} \\ \end{array} \\ N \xrightarrow{i} \\ \end{array} \\ \begin{array}{c} O \\ \\ \end{array} \\ \begin{array}{c} I \\ \\ \end{array} \\ \begin{array}{c} I \\ \\ \end{array} \\ Z_3$$

Formula III

$$X - \frac{1}{1}$$
 $Y - \frac{1}{1}$
 $B - (CH_2)_{\overline{m}} - N$
 $B - (CH_2)_{\overline{m}}$

Formula IV

Formula V

wherein:

n is an integer of 1 to 6; X, Y, Z_1 and Z_2 can be the same or different and are hydrogen, halo, haloalkyl, alkyl, aryl, $(C_1\text{-}C_6)$ alkoxy, N-alkyl, $(C_2\text{-}C_6)$ acyloxy, N-alkylene, -SH, -SR, wherein R is from the same group as R_1 and R_2 and can be the same or different than R_1 and R_2 , amino, nitro, cyano, hydroxy, C(=O) OR₆, -C(=O) NR₅R₄, NR₃R₂, or S(=O)_k R₁ wherein _k is 1 or 2, and R₁ to R₆ are independently hydrogen or $(C_1\text{-}C_6)$ alkyl;

 R_1 , and R_2 can be the same or different and are hydrogen, (C_1-C_6) alkyl, hydroxyalkyl or mercaptoalkyl, -C(=O) OR₁, cyano, (C_1-C_6) alkenyl, (C_2-C_6) alkynyl, or 1, 2, 4-oxadiazol-5-yl optionally substituted at the 3-position by Z_4 wherein any (C_1-C_6) alky, (C_1-C_6) alkanoyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl can optionally be substituted by 1, 2 or 3 Z;

R₇ can be hydrogen, O or phenyl

R₈ can be hydrogen, phenyl, halophenyl, nitrophenyl, pyridyl, piperonyl or sulfoxonitrophenyl

 Z_4 is (C₁-C₆) alkyl or phenyl, optionally substituted by 1, 2 or 3 Z_1

W is O or S

T is amino or C₁-C₆ aminoalkyl

A is N or C

T is C1-C6 alklyl or sulfonyl and

V is alkyl (C₀-C₆), alkenyl, alkynyl, haloaryl, alkyl phenol, alkyl

halophenyl, and R₁ or R₂ as indicated above and

 ϕ is phenyl, naphthyl, thienyl or pyridinyl.