## CS 181 Spring 2020 Homework Week 1

Assigned Tue 3/31; Due via GradeScope Mon 4/6 6:00pm

- 0: Briefly explain the system used in the Sipser textbook to number the sections, subsections, exercises, problems, figures, examples, theorems, etc..
- 1: Let G be a connected acyclic undirected graph (i.e., an undirected tree). Prove that adding exactly one edge to G always results in a graph (call it G') which contains a cycle. Hint: Why is it important that G be connected?

  If this is too easy, you may prove (for no extra credit whatsoever) that G' will always have exactly one cycle.

Inspired by Sipser Exercises: pp 25-27:

- 2: Let Let X be the set  $\{x, y, z\}$ , and let B be the set  $\{0, 1\}$ .
  - a. List the elements of the Cartesian product B x ( X x B )
  - b. List the elements of the Cartesian product ( B x X ) x B
  - c. List the elements of the Cartesian product  $\ B \times X \times B$
  - d. What is the cardinality of the power set  $\mathscr{L}(B \times X)$ ?
- 3. Let alphabet  $\Sigma = \{a, b, c, d\}$ . Let language over  $\Sigma L_3 = \{aa, a, ad\}$ .
  - a. What is the language concatenation L<sub>3</sub> { a, c, aa } ?
  - b. What is the language concatenation  $L_3^+ \cdot \{\}$ ?
  - c. What is the Cartesian Product  $\{ \varepsilon \} \times L_3 ?$
  - d. What is the Cartesian Product {} x L<sub>3</sub>\*?
  - e. What is the language concatenation  $\{\varepsilon\} \cdot L_3^+$ ? Does it contain  $\varepsilon$ ?

## Inspired by Sipser Exercises: p 84:

4: Let alphabet  $\Sigma = \{a, b\}$ . Show a DFA which recognizes the following language over  $\Sigma$ . Show the DFA as a *fully specified* state diagram. Be sure to clearly *indicate your initial state and accepting state(s)*.

L<sub>4</sub> = {  $w \in \Sigma^+$  | w contains 3 consecutive a's and does not contain 3 consecutive b's }

Briefly describe how your design works.

5: Let alphabet  $\Sigma = \{ c, d, e \}$ . Consider the following language over  $\Sigma$ :

$$L_5 = \{ w \in \Sigma^+ \mid w = yx, \text{ where } y \in \Sigma^+ \& x \in \Sigma \text{ , and } w \text{ contains substring } xxxx \}$$

- a. Show two examples of strings in L<sub>5</sub>.
- b. Show two examples of strings not in L<sub>5</sub>.
- c. Briefly describe L<sub>5</sub> in plain, precise English.
- 6: Briefly describe in English the language over  $\Sigma = \{a, b\}$  accepted by this DFA. The accepting state is "00".



eof