UNSUPERVISED LEARNING

Souray Karmakar

souravkarmakar29@gmail.com

UNSUPERVISED LEARNING

- The Data has no target attribute or class labels.
- We want to explore the data to find some intrinsic structures in them.
- Usually the objects / data are grouped into two or more groups based on the similarity or dissimilarity on a particular feature.
- Can produce completely different results based on the feature being used for grouping.

Grouping of objects into two or more groups based on the similarity / dissimilarities of objects such that each object fall into exactly one group is called **Clustering**.

SIMILARITY & DISSIMILARITY

How similar / dissimilar are following two objects?

Definition (Webster's Dictionary):

The quality or state of being similar; likeness; resemblance; as, a similarity of features.

- Similarity is hard to define but "We know when we see it"
- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.

SIMILARITY & DISSIMILARITY

- Similarity:
 - Numerical measure of how similar two data /objects are.
 - Is higher when objects are more alike.

- Dissimilarity:
 - Numerical measure of how different two data /objects are.
 - Is lower when objects are more alike.
- So between two data objects if similarity increases then dissimilarity decreases and vice versa.
- Usually dissimilarity between two objects / data points can be defined in terms of the **distance** between those two objects / data points. For distant two objects are more is the dissimilarity and less is the similarity.
- There are different **distance** measures for both quantitative and categorical variables.
- The **definition** of *Distance function* or *Distance Metric* is following:

Let x, y are vectors denoting two different objects, then dist(x, y) is a real number such that:

- $dist(\mathbf{x}, \mathbf{x}) = 0$
- dist(x, y) = dist(y, x) [Commutative property]
- For some object denoted by \mathbf{z} , $dist(\mathbf{x}, \mathbf{y}) \le dist(\mathbf{x}, \mathbf{z}) + dist(\mathbf{z}, \mathbf{y})$ [Triangle inequality]

UNSUPERVISED LEARNING

Distance Measure for different objects

DISTANCE METRICS & SIMILARITY

Euclidean Distance: For two data points denoted by x and y the Euclidean distance is defined as:

$$dist_{euclidean}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Manhattan Distance: For two data points denoted by x and y the Manhattan distance is defined as:

$$dist_{manhattan}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

Minkowski Distance: For two data points denoted by x and y the Minkowski distance is defined as:

$$dist_{minkowski}(x,y) = \left[\sum_{i=1}^{n} (x_i - y_i)^h\right]^{\left(\frac{1}{h}\right)}$$

Cosine Similarity: For two data points denoted by x and y the cosine similarity is defined as:

Sine Similarity: For two data points denoted by
$$x$$
 and y the cosine similarity is defined as
$$CosineSim(x,y) = Cos(\angle x,y) = \frac{x^T y}{|x||y|} = \frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}}$$

$$CosineDistance(x, y) = 1 - CosineSim(x, y)$$

CLUSTERING ANALYSIS

• What is Cluster Analysis?

Finding groups of objects in data such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Formal Definition

Let $X \subseteq \mathbb{R}^n$ be a dataset. A collection of subsets $\{C_1, C_2, C_3, ..., C_k\}$; $C_i \subseteq X$ and $C_i \neq \emptyset \ \forall i$ is called a clustering of X if

- $C_i \cap C_j = \emptyset$ and
- $\bullet \quad \bigcup_{i=1}^k C_i = X$

Such that the **Inter-cluster distances** are maximized and **Intra-cluster distances** are minimized.

CLUSTERING – AN EXAMPLE

What is the natural grouping among the following objects

Simpson's Family

CLUSTERING – AN EXAMPLE

What is the natural grouping among the following objects

CLUSTERING – AN EXAMPLE

What is the natural grouping among the following objects

Hence Clustering is Subjective to the choice of feature(s)

APPLICATIONS OF CLUSTERING

- Customer Segmentation: Grouping of customers based on their spending habits and other features.
- Image Segmentation: Break up the image into meaningful or perceptually similar regions.

- Social Network Analysis: In the study of social networks, clustering may be used to recognize communities within large groups of people.
- **Medical Imaging:** On PET (Positron Emission Tomography) scans, cluster analysis can be used to differentiate between different types of tissue and blood in a three-dimensional image.
- Anomaly Detection: Anomalies often don't belong to any cluster of the data.

And Many More...

DIFFERENT TYPES OF CLUSTERING

- Partitional Clustering:
 - K-Means
 - K-Medoids

- Density Based Clustering:
 - DBSCAN
 - OPTICS

- Hierarchical Clustering:
 - Agglomerative
 - Divisive

- Fuzzy Clustering:
 - Fuzzy C-Means

METRICS OF CLUSTERING

Notations

- Dataset: $X = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^d$.
- Clusters: $C = \{C_1, C_2, \dots, C_k\}.$
- c(i): cluster index containing x_i .
- Dissimilarity (distance): $D(x_i, x_j) \geq 0$, often Euclidean.

Silhouette Score

The **Silhouette score** is a clustering validation measure that quantifies how well each data point lies within its cluster relative to other clusters. It ranges between -1 and +1 and can be applied with any dissimilarity measure (commonly Euclidean distance). Higher the value of Silhouette Score, better the clustering.

Other Clustering Validation Techniques

- o **Dunn Index (DI):** Higher the DI, better the cluster (well separated and compact)
- Davis-Bouldin Index (DBI): Lower the better.

POINT-WISE SILHOUETTE SCORE

For a point x_i :

Cohesion Term:

The average distance to other points in the same cluster:

$$a(i) = \frac{1}{|C_{c(i)}| - 1} \sum_{\substack{j \in C_{c(i)} \\ j \neq i}} D(x_i, x_j).$$

Separation Term:

For another cluster
$$C_m \neq C_{c(i)}$$
: $d(i, C_m) = \frac{1}{|C_m|} \sum_{j \in C_m} D(x_i, x_j)$.

The nearest-cluster distance is:
$$b(i) = \min_{m \neq c(i)} d(i, C_m)$$
.

Silhouette Score of Point
$$x_i'$$
: $s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, \quad s(i) \in [-1, 1].$

Interpretation of Silhouette Score:

- $s(i) \approx 1$: Well clustered, far from other cluster.
- $s(i) \approx 0$: on the border of two clusters.
- s(i) < 0: Likely mis-clustered.

CLUSTER AND OVERALL SILHOUETTE SCORE

Once point-wise Silhouette Score is calculated, one can calculate the cluster level and overall (dataset) silhouette scores.

• Cluster Level Silhouette Score:
$$S(C_m) = \frac{1}{|C_m|} \sum_{i \in C_m} s(i)$$

• Overall Silhouette Score:
$$S = \frac{1}{n} \sum_{i=1}^{n} s(i)$$
.

Example Calculation of Silhouette Score:

Consider following two clusters in two-dimensions:

$$C_1 = \{(0,0), (0,1), (1,0)\}, \quad C_2 = \{(5,0), (5,1), (6,0)\}.$$

SILHOUETTE SCORE CALCULATION

Example Silhouette Score Calculation for $A_1 = (0, 0)$

$$a(A_1) = \frac{1+1}{2} = 1,$$

$$b(A_1) = \frac{5+\sqrt{26}+6}{3} \approx 5.366,$$

$$s(A_1) = \frac{5.366-1}{5.366} \approx 0.814.$$

Silhouette Score for all the points in the data:

Point	a(i)	b(i)	s(i)
A_1	1.000	5.366	0.814
A_2	1.207	5.394	0.776
A_3	1.207	4.374	0.724
B_1	1.000	4.700	0.787
B_2	1.207	4.741	0.745
B_3	1.207	5.694	0.788

Overall Silhouette Score:

$$S = \frac{1}{6} \sum_{i} s(i) \approx 0.772$$

Thank You