Betriebssysteme

Prozessor-Scheduling

Uwe Neuhaus

BS: Prozessor-Scheduling

Überblick

- Wechsel von CPU- und E/A-Nutzung
- Preemptives und Non-preemptives Scheduling
- Ziele des Prozess-Schedulings
- Scheduling-Strategien
- Beispiele

Wechsel von CPU- und E/A-Nutzung

rechne lese Datei

warte auf E/A

rechne schreibe Datei

warte auf E/A

lese Datei

warte auf E/A

exit

Länge der CPU-Nutzungszyklen (ms)

Non-preemptives Scheduling

- Keine Verdrängung
- Prozesse laufen bis sie
 - sich selbst beenden,
 - auf ein Ereignis/eine Nachricht warten oder
 - die Kontrolle freiwillig an einen anderen Prozess abgeben.
- Gefahr durch unkooperative oder fehlerhafte Prozesse

Preemptives Scheduling

- Verdrängung des aktiven Prozesses möglich
- Prozesse laufen bis sie
 - freiwillig den Prozessor freigeben oder
 - der Scheduler ihnen den Prozessor entzieht.
- Auslöser für die Verdrängung:
 - zeitgesteuerte Strategien
 - prioritätsgesteuerte Strategien
- Keine Blockierung durch unkooperative oder fehlerhafte Prozesse

Ziele des Prozess-Schedulings

- Prozessorauslastung
- Durchsatz
- Ausführungszeit
- Wartezeit
- Antwortzeit
- Faire Behandlung
- Terminerfüllung

Scheduling-Strategien (I)

- First Come First Serve (FCFS)
 - Bearbeitung in der Reihenfolge des Eintreffens
 - Non-preemptive Strategie
 - Prozesse mit langen CPU-Nutzungszyklen können behindern (Konvoi-Effekt)
- Shortest Job First (SJF)
 - Auswahl des Prozesses mit dem kürzesten CPU-Nutzungszyklus
 - Optimale Strategie, um die durchschnittliche Wartezeit zu minimieren
 - Problem: Länge des nächsten CPU-Nutzungszyklus muss geschätzt werden
 - Non-preemptive und preemptive Realisierung möglich

Scheduling-Strategien (II)

- Priority Scheduling
 - Auswahl nach vergebenen Prioritäten
 - Prioritäten können intern oder extern vergeben werden
 - Non-preemptive und preemptive Realisierung möglich
 - Problem: Prozesse niedriger Priorität können "verhungern" (starving).
 - Lösung: Lange Wartezeiten erhöhen langsam die Priorität (aging)

Scheduling Strategien (III)

- Round Robin (RR)
 - FCFS mit Zeitscheibenverfahren (preemptiv)
 - Verdrängte Prozesse erhalten eine neue Zeitscheibe und reihen sich hinten wieder ein
 - Kleine Zeitscheiben -> kurze Antwortzeiten
 - Kleine Zeitscheiben -> geringere CPU-Auslastung, da erhöhter Verwaltungsaufwand durch Kontext-Wechsel
- Shortest Remaining Time First (SRTF)
 - Einsortierung nach der kleinsten verbleibenden Restzeit
- Dynamic Priority Round Robin (DPRR)
 - Dynamische, prioritätgesteuerte Warteschlange als Vorstufe vor RR

Multi-level Scheduling

Scheduling in Solaris 2

Uwe Neuhaus

BS: Prozessor-Scheduling

Scheduling in Windows 2000

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Uwe Neuhaus

BS: Prozessor-Scheduling