Nonlinear System Theory Solution to Homework 8

1. (a) G(s) has two unstable poles and its Nyquist plot is shown in Figure 1, which is a circle centered at $(-\frac{1}{2},0)$ with radius $\frac{1}{2}$. Note that $G(j\omega) \to 0$ as $\omega \to 0$ and $\omega \to \infty$. Hence for positive frequency $0 < \omega < \infty$, $G(j\omega)$ is a complete circle, starting from and ending at (0,0). Consider the whole frequency $\omega \in (-\infty,\infty)$, $G(j\omega)$ in Figure 1 actually consists of two circles. Because G(s) is unstable, α must be positive, and $G(j\omega)$ is outside $D(\alpha,\beta)$ and encircles $D(\alpha,\beta)$ twice in the counterclockwise direction. As a result, $D(\alpha,\beta)$ must be contained in the circle of $G(j\omega)$. Choose $-\frac{1}{\alpha} = -\frac{1}{1+\varepsilon_1}$ and $-\frac{1}{\beta} = -\varepsilon_2$ for $0 < \varepsilon_1, \varepsilon_2 \ll 1$. Hence the system is absolutely stable for the sector $[1+\varepsilon_1,\frac{1}{\varepsilon_2}]$.

Figure 1: Nyquist Plot for Problem 1(a)

(b) G(s) is stable and its Nyquist plot is shown in Figure 2. In this case, α can be positive, negative or zero. If $\alpha>0$, the disk $D(\alpha,\beta)$ must be on the left-hand side of $G(j\omega)$ since $G(j\omega)$ cannot encircle $D(\alpha,\beta)$. Thus β is a finite value. To extend the sector, we can consider $\alpha=0$, and $G(j\omega)$ is on the right-hand side of the vertical line passing through (-0.35,0) (see Figure 2); hence $\beta=\frac{1}{0.35}=2.857$ and the sector is $[0,\ 2.857]$. On the other hand, if $\alpha<0$, then $G(j\omega)$ should be contained inside $D(\alpha,\beta)$. Consider that $D(\alpha,\beta)$ is centered at (0.35,0) with radius 1.07 (see Figure 2); then $\alpha=\frac{-1}{0.35+1.07}=-0.704$ and $\beta=\frac{-1}{0.35-1.07}=1.389$.

Hence the sector is [-0.704, 1.389]

Figure 2: Nyquist Plot for Problem 1(b)

(c) G(s) has an unstable pole at s=1 and its Nyquist plot is shown in Figure 3. Therefore, α must be positive, and $G(j\omega)$ should be outside the disk $D(\alpha, \beta)$ and encircles $D(\alpha, \beta)$ once in the counterclockwise direction. As a result, $D(\alpha, \beta)$ should be inside the closed contour of $G(j\omega)$. Let $D(\alpha, \beta)$ be centered at (-0.16, 0) with radius 0.09 (see Figure 3). So, $\alpha = \frac{-1}{-0.16-0.09} = 4$ and $\beta = \frac{-1}{-0.16+0.09} = 14.29$. In other words, the sector is [4, 14.29].

Figure 3: Nyquist Plot for Problem 1(c)

2. (a) Since G(s) is unstable, loop transformation is applied as shown in Figure 4, where $\alpha > 0$ is a constant. Then

$$\tilde{G}(s) = \frac{G(s)}{1 + \alpha G(s)} = \frac{s}{s^2 + (\alpha - 1)s + 1}$$

Choose $\alpha = 1.1$ and $\tilde{G}(s)$ is stable. The Popov plot of $\tilde{G}(s)$ is shown in Figure 5. To find the maximum sector, we choose the a vertical line (i.e.

 $\gamma=0$) which intersects the horizontal axis at a point arbitrarily close to zero. In other words, k>0 and k can be arbitrarily large. Note that for $\gamma=0,\,1+\lambda_i\gamma=1\neq 0$, where λ_i is any pole of $\tilde{G}(s)$. Moreover,

$$Z(j\omega) = \frac{1}{k} + \tilde{G}(j\omega) \to \frac{1}{k} > 0$$
, as $\omega \to \infty$

Consequently, Z(s) is SPR if the Popov plot is to the right of the vertical line shown in Figure 5. This implies that if $\tilde{\psi} \in [0, k)$, where k > 0 can be arbitrarily large, or $\psi \in [\alpha, \infty) = [1.1, k)$, then the feedback system is absolutely stable.

Figure 4: Loop Transformation for Problem 2(a)

Figure 5: Popov plot for Problem 2(a)

(b) The Popov plot of G(s) is shown in Figure 6. Choose $\gamma = 1$ and the intersection with the horizontal axis can be arbitrarily close to 0, implying

that k > 0 can be arbitrarily large. Since the poles of G(s) are $\lambda_{1,2} = -0.5 \pm 0.866j$, we have $1 + \lambda_i \gamma \neq 0$ for i = 1, 2. Moreover,

$$Z(j\omega) = \frac{1}{k} + (1 + j\omega\gamma)G(j\omega) \to \frac{1}{k}, \text{ as } \omega \to \infty$$

Thus Z(s) is SPR if the Popov plot is to the right of the line shown in Figure 6. Hence the feedback system is absolutely stable if $\psi \in [0, k)$, where k > 0 can be arbitrarily large.

However, we can further extend the lower bound of the sector to a negative value. Consider again the loop transformation in Figure 4. In this case, we have

$$\tilde{G}(s) = \frac{G(s)}{1 + \alpha G(s)} = \frac{1}{s^2 + s + (\alpha + 1)}$$

Choose $\alpha = -0.9$; then $\tilde{G}(s)$ is stable and its Popov plot is shown in Figure 7. Choose $\gamma = 1$ and the intersection with the horizontal axis can be arbitrarily close to 0, implying that k > 0 can be arbitrarily large. The poles of $\tilde{G}(s)$ are $\lambda_{1,2} = -0.887, -0.113$; therefore $1 + \lambda_i \gamma \neq 0$ for i = 1, 2. Moreover,

$$Z(j\omega) = \frac{1}{k} + (1 + j\omega\gamma)\tilde{G}(j\omega) \to \frac{1}{k}, \text{ as } \omega \to \infty$$

Thus Z(s) is SPR if the Popov plot is to the right of the line shown in Figure 7. Hence if $\tilde{\psi} \in [0, k)$, where k > 0 is arbitrarily large, or $\psi \in [\alpha, k) = [-0.9, k)$, the feedback system is absolutely stable.

Figure 6: Popov plot for Problem 2(b)
– without Loop Transformation

(c) Because G(s) is unstable, we need to do loop transformation as shown in Figure 4. Then

$$\tilde{G}(s) = \frac{G(s)}{1 + \alpha G(s)} = \frac{s+1}{s^3 + 3s^2 + \alpha s + (\alpha - 4)}$$

By Routh's table, we can see that if $\alpha > 4$, then $\tilde{G}(s)$ is stable. Choose $\alpha = 4.1$ and the Popov plot is shown in Figure 8. Choose $\gamma = 0.5$ and

Figure 7: Popov plot for Problem 2(b) – with Loop Transformation

k>0 arbitrarily large. Note that the poles of $\tilde{G}(s)$ are $\lambda_{1,2,3}=-1.488\pm 1.347j, -0.024$; hence $1+\lambda_i\gamma\neq 0$ for i=1,2,3. Moreover,

$$Z(j\omega) = \frac{1}{k} + (1 + j\omega\gamma)\tilde{G}(j\omega) \to \frac{1}{k}, \text{ as } \omega \to \infty$$

Thus Z(s) is SPR if the Popov plot is to the right of the line shown in Figure 8. Hence if $\tilde{\psi} \in [0, k)$, where k > 0 is arbitrarily large, or $\psi \in [\alpha, k) = [4.1, k)$, the feedback system is absolutely stable.

Figure 8: Popov plot for Problem 2(c)

3. (a) Let $V = \frac{1}{2} \left(k_1 e_1^2 + e_2^2 + \frac{1}{\gamma} \tilde{a}^2 \right)$ be a Lyapunov function candidate. V is positive definite and radially unbounded. Then

$$\dot{V} = k_1 e_1 e_2 + e_2 \left(-\tilde{a}\phi - k_1 e_1 - k_2 e_2 \right) + \tilde{a}e_2 \phi = -k_2 e_2^2$$

Since \dot{V} is negative semidefinite, the equilibrium point is globally stable.

(b) Since the equilibrium point is stable, the state variables, e_1, e_2, \tilde{a} are bounded. Then V is bounded and from the state equation we see that \dot{e}_2 is also bounded. As a result, $\ddot{V} = -2k_2e_2\dot{e}_2$ is bounded. This implies that \dot{V} is uniformly continuous. Hence by Barbalat's lemma, we conclude that $\dot{V} \to 0$ as $t \to \infty$, and $e_2 \to 0$ as $t \to \infty$.