Exponential functions

The exponential functions $f(x) = b^x$ are defined for 0 < b < 1 or b > 1. The (constant) number b here is the base.

• If x = n, a positive integer number, then $b^n = \underbrace{b.b.\cdots b.b.}_{n \text{ factors}}$.

$$\bullet b^{-n} = \frac{1}{b^n}.$$

- If x = 0, then $b^0 = 1$.
- If x is a rational number then $b^x = b^{n/d} = \sqrt[d]{b^n}$.
- If x is an irrational number, we make a sequence of rational numbers r_n converging to x, and then b^{r_n} converges to b^x .

The domain of $f(x) = b^x$ is \mathbb{R} and the range is $(0, \infty)$.

The graph of $f(x) = b^x$ depends on whether the base is less than 1 or greater than 1.

In the first case, it is a decreasing function, while in the second case, it is an increasing function.

Properties of exponential functions

1.
$$b^x . b^y = b^{x+y}$$
, $\frac{b^x}{b^y} = b^{x-y}$.

2.
$$(b^x)^y = b^{xy}$$
, $(ab)^x = a^x b^x$.

3. If
$$0 < b < 1$$
, then $\lim_{x \to -\infty} b^x = \infty$ and $\lim_{x \to \infty} b^x = 0$.

4. If
$$b > 1$$
, then $\lim_{x \to -\infty} b^x = 0$ and $\lim_{x \to \infty} b^x = \infty$.

The natural exponential function is defined to be $f(x) = e^x$, where e (called Euler's number) is an irrational number. It's approximate value to 10 decimal places is $e \approx 2.7182818285$. In particular, e > 1. Sometimes e is also defined as the following limit

$$e = \lim_{h \to 0} (1+h)^{1/h}$$
.

Example 1. Evaluate the limit $\lim_{x\to\infty} (2^{-x} - 1)$.

$$\lim_{x \to \infty} \left(2^{x} - 1 \right) = \lim_{x \to \infty} \frac{1}{2^{x}} - 1 = \lim_{x \to \infty} \frac{1}{2^{x}} - 1$$

$$= \frac{1}{2} - 1 = 0 - 1 = -1$$

Logarithmic Functions

The logarithm to the base b of a positive real number x, where b > 0, $b \ne 1$, is written as $\log_b x$, and defined as

$$y = \log_b x$$
 if and only if $x = b^y$.

The logarithmic function is defined as $f(x) = \log_b x$ where 0 < b < 1 or b > 1.

The domain of $f(x) = \log_b x$ is $(0, \infty)$ and the range is \mathbb{R} .

The graph of $f(x) = \log_b x$ depends on whether the base b is less than 1 or greater than 1.

In the first case, it is a decreasing function, while in the second case, it is an increasing function.

Properties of logarithm

1.
$$\log_b(MN) = \log_b M + \log_b N$$
.

2.
$$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$$
.

- 3. $\log_b M^k = k \log_b M$.
- 4. $\log_b 1 = 0$.
- 5. Cancellation equations:

$$\log_b(b^x) = x$$
 for every $x \in \mathbb{R}$,
 $b^{\log_b x} = x$ for every $x > 0$.

6. If
$$0 < b < 1$$
, then $\lim_{x \to 0^+} \log_b x = \infty$ and $\lim_{x \to \infty} \log_b x = -\infty$.

7. If
$$b > 1$$
, then $\lim_{x \to 0^+} \log_b x = -\infty$ and $\lim_{x \to \infty} \log_b x = \infty$.

The natural logarithm function is defined as $f(x) = \ln x = \log_e x$. It has the following important properties.

1.
$$\ln 1 = 0$$
 and $\ln e = 1$.

2.
$$\ln(e^x) = x$$
 and $e^{\ln x} = x$.

3. Change of base formula:
$$\log_b x = \frac{\ln x}{\ln b}$$
.

Example 2. Expand $\ln \sqrt{\frac{x+1}{x^2y}}$.

$$\ln \int \frac{x+1}{x^{2}y} = \ln \left(\frac{x+1}{x^{2}y}\right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \ln \left(\frac{x+1}{x^{2}y}\right)$$

$$= \frac{1}{2} \left[\ln (x+1) - \ln (x^{2}y) \right]$$

$$= \frac{1}{2} \ln (x+1) - \frac{1}{2} \ln (x^{2}y) = \frac{1}{2} \ln (x+1) - \frac{1}{2} \left[\ln (x^{2}) + \ln y \right]$$

$$= \frac{1}{2} \ln (x+1) - \frac{1}{2} \ln (x^{2}) - \frac{1}{2} \ln y$$

$$= \frac{1}{2} \ln (x+1) - \frac{1}{2} \cdot 3 \ln x - \frac{1}{2} \ln y = \frac{1}{2} \ln (x+1) - \ln x - \frac{1}{2} \ln y.$$

Example 4. Solve the equation $10^{5-3x} + 4 = 104$.

$$|0|^{5-3x} + 4 = |0|4$$

$$\Rightarrow |0|^{5-3x} = |0|4 - 4$$

$$\Rightarrow |0|^{5-3x} = |0|0$$
Take lag₁₀ on both sides ?
$$\Rightarrow |0|_{5-3x} = |0|_{10} |0|$$

$$\Rightarrow |0|_{10} = |0|_{10} |0|$$

$$\Rightarrow |5-3x| = |0|_{10} |0|$$