complete symmetry. Lagrange's rule is usually expressed as follows:

To find the extreme values of the function f(x, y) subject to the subsidiary condition  $\phi(x, y) = 0$ , we add to f(x, y) the product of  $\phi(x, y)$  and an unknown factor  $\lambda$  independent of x and y, and write down the known necessary conditions,

$$f_{\alpha} + \lambda \phi_{\alpha} = 0$$
,  $f_{\nu} + \lambda \phi_{\nu} = 0$ ,

for an extreme value of  $F = f + \lambda \phi$ . In conjunction with the subsidiary condition  $\phi = 0$  these serve to determine the co-ordinates of the extreme value and the constant of proportionality  $\lambda$ 

Before proceeding to prove the rule of undetermined multipliers rigorously we shall illustrate its use by means of a simple example. We wish to find the extreme values of the function

$$u = xy$$

on the cucle with unit radius and centie the origin, that is, with the sub-sidiary condition

$$x^2 + y^2 - 1 \approx 0$$

According to our rule, by differentiating  $ay + \lambda(a^2 + y^2 - 1)$  with respect to x and to y we find that at the stationary points the two equations

$$y + 2\lambda x = 0$$
$$x + 2\lambda y = 0$$

have to be satisfied. In addition we have the subsidiary condition

$$x^2 + y^3 - 1 = 0.$$

On solving we obtain the four points

$$\begin{array}{ll} \xi = \frac{1}{2}\sqrt{2}, & \eta = \frac{1}{2}\sqrt{2}, \\ \xi = -\frac{1}{2}\sqrt{2}, & \eta = -\frac{1}{2}\sqrt{2}, \\ \xi = \frac{1}{2}\sqrt{2}, & \eta = -\frac{1}{2}\sqrt{2}, \\ \xi = -\frac{1}{2}\sqrt{2}, & \eta = \frac{1}{2}\sqrt{2} \end{array}$$

The first two of these give a maximum value  $u = \frac{1}{2}$ , the second two a minimum value  $u = -\frac{1}{2}$ , of the function u = xy. That the first two do really give the greatest value and the second two the least value of the function u can be seen as follows: on the circumference the function must assume a greatest and a least value (of. p. 97), and since the circumference has no boundary point, these points of greatest and least value must be stationary points for the function