

Home Search Collections Journals About Contact us My IOPscience

A new analysis of the v_2 fundamental band of H_2O^{+*}

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2008 Chinese Phys. B 17 4485

(http://iopscience.iop.org/1674-1056/17/12/026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 59.72.122.105

This content was downloaded on 01/04/2017 at 12:34

Please note that terms and conditions apply.

You may also be interested in:

Quartet ESR Signals Detected from Natural Clay Minerals and Their Applicability to Radiation Dosimetry and Dating

Tatsuro Fukuchi

Picosecond pulse generation in a passively mode-locked Bi-doped fibre laser

Aleksandr A Krylov, P G Kryukov, Evgenii M Dianov et al.

Positronium formation in collisions of positrons on vapour water molecules

P-A Hervieux, O A Fojón, C Champion et al.

ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORBUNDANCE ARRATIO OF WATER

Yoshiharu Shinnaka, Hideyo Kawakita, Hitomi Kobayashi et al.

Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range

E V Andreeva, A E Zhukov, Vyacheslav V Prokhorov et al.

DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY-RIDEAL REACTIONS

Yunxi Yao and Konstantinos P. Giapis

Modelling of OH production in cold atmospheric-pressure He-H2O plasma jets

G V Naidis

Observation of electron excitation into silicon conduction band by slow-ion surface neutralization

S. Shchemelinin and A. Breskin

A new analysis of the ν_2 fundamental band of H_2O^{+*}

Zheng Rui(郑 锐), Li Song(李 松), Hou Shun-Yong(侯顺永), Huang Guang-Ming(黄光明), and Duan Chuan-Xi (段传喜)[†]

College of Physical Science and Technology, HuaZhong Normal University, Wuhan 430079, China

(Received 14 March 2008; revised manuscript received 8 April 2008)

This paper reports that the absorption spectra of H_2O^+ have been measured by tunable mid-infrared diode laser spectroscopy in the spectral range of $1100-1380\,\mathrm{cm}^{-1}$. The H_2O^+ ions are generated in an AC glow discharge of the gaseous mixtures of H_2O /He and detected with the velocity modulation technique. Forty new lines are assigned to the ν_2 fundamental band of H_2O^+ (\tilde{X}^2B_1). The observed lines together with other data published previously are fitted to the standard effective Hamiltonian of an asymmetric top, yielding a set of improved rotational constants, spin-rotation constants and their quartic and sextic centrifugal distortion constants for the $\nu_2=1$ vibrational state of H_2O^+ .

Keywords: infrared spectra, water cations, rotational analysis

PACC: 3320E, 3520P, 3310E

1. Introduction

The water cation (H₂O⁺) has been extensively studied for many decades since it was postulated to be present in comet tails by Whipple in 1950.^[1] The first high resolution electronic emission spectrum of the $\tilde{A}^2 A_1 - \tilde{X}^2 B_1$ band system of H_2O^+ was reported by Lew and Heiber in 1973.^[2] Later, Lew performed a detailed analysis of the emission spectrum in 1976.^[3] The high resolution absorption spectrum of H_2O^+ has been reported in visible, [4,5] near-infrared, [6,7] midinfrared, $^{[8-10]}$ and far-infrared region. $^{[11,12]}$ Das and Farley^[4] and Wu *et al*^[5] measured the $\tilde{A}^2 A_1 - \tilde{X}^2 B_1$ transition in the visible range with a dye laser. Huet et $al^{[6]}$ and Gan et $al^{[7]}$ measured the $\tilde{A}^2A_1-\tilde{X}^2B_1$ transition in the near-infrared range with a Ti: Sapphire laser. Dinelli et al observed the ν_3 band in the region $3100-3400\,\mathrm{cm}^{-1}$ with a tunable difference frequency spectrometer. [8] Brown et al recorded the ν_2 and $2\nu_2 - \nu_2$ bands in the region 1270–1750 cm⁻¹ with a diode laser spectrometer.^[9] Huet et al measured the ν_1 and $\nu_2 + \nu_3 - \nu_2$ bands in the region 3180–3390 cm⁻¹ with a colour centre laser spectrometer.^[10] The farinfrared laser magnetic resonance spectroscopy has also been used to measure the pure rotational transitions of H_2O^+ in the ground state. [11,12]

From a theoretic point of view, H_2O^+ is also a prototype for studying the Renner-Teller effect. The

ground and the first excited electronic states of $\mathrm{H_2O^+}$ are degenerated into a $^2\Pi_u$ state in the linear configuration. Several ab initio calculations have been carried out on this system. [13–17] Among them, the calculations by Weiss et al [16] and Brommer et al [17] were widely used to guide and compare with the experimental measurement. Recently, Wu et al performed an ab initio calculations of the electronic dipole moment components for the \tilde{A}^2A_1 and \tilde{X}^2B_1 electronic states and the electronic transition moment for the $\tilde{A}^2A_1 - \tilde{X}^2B_1$ transition of $\mathrm{H_2O^+}$.[18]

During our previous work on H₃O⁺, we observed some lines of molecular ions which could not be assigned to the $\nu_2(1^- \leftarrow 0^+)$ band of H_3O^+ .^[19] They were most probably from the ν_2 fundamental or hot bands of H₂O⁺ in a glow discharge of the mixtures of H₂O/He. Though Brown et al have derived a set of molecular constants for the $\nu_2 = 0$, 1 and 2 vibrational states by recording 85 lines of the ν_2 fundamental band and 20 lines of the $2\nu_2 - \nu_2$ hot-band of H_2O^+ in the region 1270–1750 cm⁻¹,^[9] the discrepancies between our observed line positions and the predicted frequencies based on their molecular parameters were quite large. Therefore we performed a spectral scan from $1100 \text{ to } 1380 \,\mathrm{cm}^{-1}$ with our available laser diodes in order to make an extension to their measurement and refine the molecular parameters.

In this paper, we present a new measurement and

^{*}Project supported by the National Natural Science Foundation of China (Grant Nos 10544002 and 10604019).

[†]Corresponding author. E-mail: cxduan@phy.ccnu.edu.cn

analysis of the ν_2 fundamental band of H_2O^+ . Our observed lines together with those reported in Ref.[9] are fitted to the standard effective Hamiltonian of an asymmetric top. It derives a set of improved rotational constants, spin-rotation constants and their quartic and sextic centrifugal distortion constants for the $\nu_2 = 1$ vibrational state of H_2O^+ .

2. Experiment

The tunable mid-infrared diode laser spectrometer used to investigate the absorption spectra of H₂O⁺ is identical to that used in our previous work on $H_3O^{+[19]}$ and $D_2O^{+[20]}$. The velocity modulation technique is used to eliminate signals from neutral species.^[21] Briefly, the mid-infrared radiations are emitted from a tunable lead-salt diode laser which is mounted in a liquid-nitrogen cooled Dewar (Model L5736. Laser Components). After a single pass through a 10 mm bore, 1 m long water-cooled discharge cell, the main part of the laser beam is detected by a liquid-nitrogen cooled HgCdTe detector. A small portion of laser beam is reflected by the front CaF₂ window of the discharge cell. Then it is modulated by a mechanical chopper at a frequency of about 600 Hz. This chopped beam is split into two parts further before they transmit through a referential gas cell and a Ge etalon separately. The absorption of the reference gas and the interference fringes are also detected by two liquid-nitrogen cooled HgCdTe detectors. Three lock-in amplifiers are used to demodulate signals from three HgCdTe detectors separately. The scan of the current of the diode laser and the data acquisition from three lock-in amplifiers are controlled by a homedeveloped LabView program simultaneously.

In this paper, the $\rm H_2O^+$ ions were generated by an AC glowed discharge with a flowing gas mixture of distilled water vapour and high-purity helium (> 99.999%). The typical discharge frequency and peak-to-peak current were 42 kHz and 300 mA respectively. The optimal gas mixture was at a total pressure of $\sim 1.5 \, \rm Torr \, (1 \, Torr = 133 \, Pa)$, which was measured

by a Pirani vacuum gauge at the downstream of the discharge cell. The $\rm H_2O^+$ ions have been also observed in a $\rm He/H_2/O_2$ discharge. [8–10] The main differences of the plasma chemistry between these two discharge systems have been qualitatively illustrated by Huet et al. [10] Four laser diodes were used to cover about 20% of the 1100–1380 cm⁻¹ region. The absorption spectra of $\rm H_2O^+$ were calibrated by using the accurate line positions of $\rm N_2O$ and $\rm SO_2$ from the HITRAN database [22] and the Ge etalon fringes (FSR $\sim 0.049 \, \rm cm^{-1}$). The absolute accuracy of the calibration was estimated to be better than $0.005 \, \rm cm^{-1}$.

3. Results and analysis

Under the experimental conditions described above, more than one hundred lines of molecular ions were recorded in the range $1100-1380\,\mathrm{cm}^{-1}$, in which 40 new lines were assigned to the ν_2 fundamental band of $\mathrm{H_2O^+}$ with the aid of molecular parameters reported in Ref.[9]. Fourteen lines were re-measured at better accuracy. The measured frequencies and their assignment are listed in Table 1. Due to our improved signal-to-noise ratio, some blended lines reported in Ref.[9] were well resolved in this work, as shown in Fig.1.

Fig.1. A typical spectrum of the ν_2 fundamental band of $\mathrm{H_2O^+}$. The assigned transitions are $2_{12}\mathrm{F}_2 \leftarrow 3_{21}\mathrm{F}_2$ ($1285.059\,\mathrm{cm}^{-1}$), $2_{12}\mathrm{F}_1 \leftarrow 3_{21}\mathrm{F}_1$ ($1285.713\,\mathrm{cm}^{-1}$) and $3_{12}\mathrm{F}_2 \leftarrow 4_{23}\mathrm{F}_2$ ($1285.739\,\mathrm{cm}^{-1}$). The latter two transitions are well resolved in this work, but were blended with each other in Ref.[9] and observed at $1285.713\,\mathrm{cm}^{-1}$.

Table 1. Transitions of the ν_2 fundamental band of H_2O^+ .

N'	K'_a	K_c'	J'	$N^{\prime\prime}$	$K^{\prime\prime}{}_a$	$K^{\prime\prime}{}_c$	$J^{\prime\prime}$	$\mathrm{Obs./cm^{-1}}$	Obs Calc./ 10^{-3} cm ⁻¹
5	3	3	5.5	6	4	2	6.5	$1193.067^{\rm a}$	-10
5	3	3	4.5	6	4	2	5.5	$1193.081^{\rm a}$	6
6	2	4	5.5	7	3	5	6.5	1205.111^{a}	6
6	2	4	6.5	7	3	5	7.5	$1205.395^{\rm a}$	11

Table 1 Continued

Table 1 Continued									
N'	K'_a	K'_c	J'	N''	$K^{\prime\prime}{}_a$	$K^{\prime\prime}{}_c$	$J^{\prime\prime}$	$\mathrm{Obs./cm^{-1}}$	Obs Calc./ 10^{-3} cm ⁻¹
4	2	3	4.5	5	3	2	5.5	$1224.693^{\rm a}$	16
8	1	7	8.5	9	2	8	9.5	$1231.022^{\rm a}$	0
8	1	7	7.5	9	2	8	8.5	$1231.081^{\rm a}$	3
3	3	1	3.5	4	4	0	4.5	$1236.775^{\rm a}$	-1
3	3	0	3.5	4	4	1	4.5	$1236.830^{\rm a}$	0
3	3	1	2.5	4	4	0	3.5	$1237.088^{\rm a}$	0
3	3	0	2.5	4	4	1	3.5	$1237.141^{\rm a}$	0
8	0	8	8.5	9	1	9	9.5	$1245.328^{\rm a}$	-1
8	0	8	7.5	9	1	9	8.5	$1245.432^{\rm a}$	3
3	2	2	2.5	4	3	1	3.5	$1248.748^{\rm a}$	-3
3	2	2	3.5	4	3	1	4.5	1249.019^{a}	0
3	2	1	3.5	4	3	2	4.5	$1252.144^{\rm a}$	-1
3	1	3	2.5	4	2	2	3.5	$1252.541^{\rm a}$	0
3	1	3	3.5	4	2	2	4.5	1253.167^{a}	0
8	2	7	7.5	9	1	8	8.5	$1253.243^{\rm a}$	-5
2	2	1	1.5	3	3	0	2.5	$1271.516^{\rm a}$	0
2	2	1	2.5	3	3	0	3.5	1271.618^{a}	-3
2	2	0	1.5	3	3	1	2.5	1272.136^{a}	1
2	2	0	2.5	3	3	1	3.5	1272.237 ^a	-3
4	1	3	3.5	5	2	4	4.5	1272.901^{a}	-1
8	1	8	8.5	8	2	7	8.5	1279.167^{a}	-11
6	0	6	6.5	7	1	7	7.5	1279.188 ^{a,c}	-11
6	0	6	5.5	7	1	7	6.5	1279.277 ^{a,c}	2
2	1	2	1.5	3	2	1	2.5	1285.059 ^a	-2
2	1	2	2.5	3	2	1	3.5	1285.713 ^{a,c}	-4
3	1	2	2.5	4	2	3	3.5	1285.739 ^{a,c}	0
3	1	2	3.5	4	2	3	4.5	$1286.142^{\rm b}$	2
8	0	8	7.5	8	1	7	7.5	$1287.300^{\mathrm{b,d}}$	-49
8	0	8	8.5	8	1	7	8.5	1287.768 ^a	6
5	0	5	4.5	6	1	6	5.5	$1294.918^{\rm b}$	-10
5	0	5	5.5	6	1	6	6.5	$1294.999^{\rm b}$	-7
7	1	7	6.5	7	2	6	6.5	$1295.035^{\rm b}$	-2
7	1	7	7.5	7	2	6	7.5	$1295.583^{\rm b}$	-1
2	1	1	1.5	3	2	2	2.5	$1300.551^{\rm b}$	-1
2	1	1	2.5	3	2	2	3.5	$1301.071^{\rm b}$	-3
5	1	5	5.5	6	0	6	6.5	1302.414 ^{a,c}	-4
5	1	5	4.5	6	0	6	5.5	1302.571 ^{a,c}	-2
7	0	7	7.5	7	1	6	7.5	1308.744 ^a	14
4	0	4	3.5	5	1	5	4.5	1309.859 ^{a,c}	5
4	0	4	4.5	5	1	5	5.5	1309.937 ^{a,c}	6
6	1	6	5.5	6	2	5	5.5	1310.064 ^a	-3
6	1	6	6.5	6	2	5	6.5	1310.642 ^b	3
1	1	1	0.5	2	2	0	1.5	1312.728 ^b	1
1	1	1	1.5	2	2	0	2.5	1313.334 ^b	-3
6	4	2	5.5	6	5	1	5.5	1315.175 ^a	-1
6	4	2	6.5	6	5	1	6.5	1315.301 ^a	1
7	2	6	7.5	7	3	5	7.5	1316.877 ^b	-5
1	1	0	0.5	2	2	1	1.5	1317.563 ^b	10
	1	U	0.0	4		1	1.0	1911.909	10

Table 1 Continued

					T	able 1 C	ontinue a	d	
N'	K'_a	K'_c	J'	N''	$K^{\prime\prime}{}_a$	K''_c	J''	$\mathrm{Obs./cm^{-1}}$	Obs Calc./ 10^{-3} cm ⁻¹
1	1	0	1.5	2	2	1	2.5	1318.064 ^b	1
5	3	3	5.5	5	4	2	5.5	$1320.807^{\rm b}$	0
4	3	1	3.5	4	4	0	3.5	$1321.642^{\rm b,d}$	323
4	3	1	4.5	4	4	0	4.5	$1321.759^{\rm b}$	0
5	3	2	5.5	5	4	1	5.5	$1322.029^{\rm b}$	4
4	1	4	4.5	5	0	5	5.5	$1322.175^{\rm b}$	0
4	1	4	3.5	5	0	5	4.5	$1322.391^{\rm b}$	2
6	3	3	6.5	6	4	2	6.5	1323.162^{a}	-3
5	1	5	4.5	5	2	4	4.5	$1323.388^{\rm b}$	3
5	2	4	5.5	6	1	5	6.5	1323.808^{a}	9
5	1	5	5.5	5	2	4	5.5	$1324.001^{a,c}$	0
3	0	3	2.5	4	1	4	3.5	$1324.097^{\rm b}$	5
3	0	3	3.5	4	1	4	4.5	$1324.248^{\rm b}$	7
7	3	4	6.5	7	4	3	6.5	1325.266 b,d	81
5	2	4	4.5	5	3	3	4.5	$1328.375^{\rm b}$	1
5	2	4	5.5	5	3	3	5.5	$1328.830^{\rm b}$	1
6	0	6	5.5	6	1	5	5.5	$1328.872^{\rm b}$	2
6	0	6	6.5	6	1	5	6.5	$1329.211^{\rm b}$	9
3	2	2	3.5	3	3	1	3.5	$1334.356^{a,c}$	2
4	1	4	3.5	4	2	3	3.5	$1334.688^{a,c}$	-4
4	1	4	4.5	4	2	3	4.5	$1335.372^{a,c}$	-9
2	0	2	1.5	3	1	3	2.5	$1338.392^{\rm b}$	-2
4	2	2	4.5	4	3	1	4.5	$1339.503^{\rm b}$	2
8	1	7	8.5	8	2	6	8.5	1340.772^{a}	-11
5	2	3	4.5	5	3	2	4.5	1343.064^{a}	-10
3	1	3	2.5	4	0	4	3.5	$1343.355^{\rm a}$	-14
3	1	3	3.5	3	2	2	3.5	$1344.606^{\rm b}$	1
2	1	2	2.5	2	2	1	2.5	$1351.526^{\rm b}$	-1
7	2	5	6.5	7	3	4	6.5	$1351.984^{\rm b}$	-5
7	2	5	7.5	7	3	4	7.5	$1352.281^{\rm b}$	-6
1	0	1	1.5	2	1	2	2.5	$1354.064^{\mathrm{a,c}}$	4
8	2	6	8.5	8	3	5	8.5	1354.077^{a}	8
6	1	5	5.5	6	2	4	5.5	$1361.607^{\rm b}$	8
6	1	5	6.5	6	2	4	6.5	$1361.833^{\rm b}$	-3
2	1	1	1.5	2	2	0	1.5	$1362.314^{\rm b}$	1
4	0	4	4.5	4	1	3	4.5	$1363.567^{\rm b}$	4
5	1	4	4.5	5	2	3	4.5	$1366.171^{\rm a}$	1
3	1	2	3.5	3	2	1	3.5	1366.192^{a}	0
5	1	4	5.5	5	2	3	5.5	$1366.474^{\rm a}$	-8
4	1	3	3.5	4	2	2	3.5	$1367.248^{\rm b}$	-1
4	1	3	4.5	4	2	2	4.5	$1367.673^{\rm b}$	-5
0	0	0	0.5	1	1	1	1.5	$1371.206^{a,c}$	1
3	0	3	2.5	3	1	2	2.5	$1374.935^{\rm b}$	4
2	0	2	1.5	2	1	1	1.5	$1382.782^{\rm b}$	2
2	0	2	2.5	2	1	1	2.5	$1383.286^{\rm b}$	4
5	2	4	5.5	4	3	1	4.5	$1434.414^{ m b}$	7
1	1	1	0.5	0	0	0	0.5	$1450.851\ ^b$	2

Table 1 Continued

N'	K'_a	K_c'	J'	N''	$K^{\prime\prime}{}_a$	$K^{\prime\prime}{}_c$	J''	$\mathrm{Obs./cm^{-1}}$	Obs Calc./ 10^{-3} cm $^{-1}$
3	0	3	2.5	2	1	2	1.5	1454.826 ^b	-1
3	0	3	3.5	2	1	2	2.5	$1455.126^{\rm b}$	4
2	1	2	2.5	1	0	1	1.5	$1466.346^{\rm b}$	-13
4	2	2	4.5	4	1	3	4.5	$1468.959^{\rm b}$	-4
5	2	3	5.5	5	1	4	5.5	$1469.888^{\rm b}$	-10
4	2	2	3.5	4	1	3	3.5	$1469.992^{\rm b}$	4
2	2	0	2.5	2	1	1	2.5	$1474.109^{\rm b}$	-2
6	2	4	6.5	6	1	5	6.5	$1474.844^{\rm b}$	2
4	0	4	4.5	3	1	3	3.5	$1476.678^{\rm b}$	9
2	2	0	1.5	2	1	1	1.5	$1476.823 \ ^{\rm b,d}$	60
3	1	3	2.5	2	0	2	1.5	$1481.556^{\rm b}$	-4
3	1	3	2.5	2	0	2	2.5	$1481.733^{\mathrm{b,d}}$	37
7	2	5	6.5	7	1	6	6.5	$1485.070^{\rm b}$	-4
2	2	1	2.5	2	1	2	2.5	$1485.302^{\rm b}$	1
3	2	2	3.5	3	1	3	3.5	$1491.607^{\rm b}$	19
3	2	2	2.5	3	1	3	2.5	$1493.171^{\rm b}$	-3
4	2	3	3.5	3	1	2	2.5	$1552.053^{\rm b}$	-0
3	2	1	2.5	2	1	2	1.5	$1552.154^{ m b}$	2
8	2	7	7.5	8	1	8	7.5	$1552.365^{\rm b}$	10

 $1563.864^{\rm b}$

 $1583.320^{\rm b}$

 1596.114^{b}

 $1596.795^{\rm b}$

 $1620.706^{\rm b}$

 $1677.566^{\rm b}$

4.5

2.5

2.5

2.5

2.5

2.5

3

2

2

3

3

3

2

2

3

3

5.5

3.5

3.5

3.5

3.5

3.5

2

 H_2O^+ has three vibrational modes in the \tilde{X}^2B_1 state: symmetric stretching (ν_1) , bending (ν_2) and asymmetric stretching (ν_3) . The ν_2 fundamental mode obeys the b-type selection rules for an asymmetric top: $\Delta N = 0, \pm 1; \ \Delta K_a = \pm 1(\pm 3, \pm 5, ...);$ $\Delta K_c = \pm 1(\pm 3, \pm 5, \ldots)$. The interaction of the single unpaired electron and the rotation motion splits each rotational level into two spin components $(F_1:$ J = N+1/2; F_2 : J = N - 1/2). The $\Delta J = \Delta N$ doublets have the dominant intensity while the $\Delta J \neq \Delta N$ doublets only have reasonable intensity at low N. The nuclear spin of the hydrogen atom (I = 1/2) gives a nuclear spin statistical weight of 3 for rotational levels with $(K_a, K_c) = (e, e), (o, o),$ and 1 for levels with $(K_a, K_c) = (e, o), (o, e)$, when the vibrational eigenfunction of the lower level is totally symmetric.

The rotational structure of the ground and $\nu_2 = 1$ vibrational states of H_2O^+ (\tilde{X}^2B_1) can be described by the A-reduced asymmetric top Hamiltonian H_R

of Watson^[23] with additional A-reduced spin-rotation Hamiltonian H_{SR} of Brown and Sears:^[24]

-5

1

-6

6

-5

1

$$H_{\rm R} = AN_a^2 + BN_b^2 + CN_c^2 - \Delta_N N^4 - \Delta_{NK} N^2 N_a^2 - \Delta_K N_a^4 - \frac{1}{2} [\delta_N N^2 + \delta_K N_a^2, (N_+^2 + N_-^2)]_+ + H_N N^6 + H_{NK} N^4 N_a^2 + H_{KN} N^2 N_a^4 + H_K N_a^6 + \dots,$$
(1)

$$H_{\rm SR} = \varepsilon_{aa} N_a S_a + \varepsilon_{bb} N_b S_b + \varepsilon_{cc} N_c S_c + \Delta_N^2 N^2 (N \cdot S) + \frac{1}{2} \Delta_{NK}^S [N^2, N_a S_a]_+ + \Delta_{KN}^S N_a^2 (N \cdot S) + \Delta_K^S N_a^3 S_a + \dots,$$
(2)

where A, B, C are rotational constants, Δ_N , Δ_{NK} , Δ_K , δ_N , δ_K are quartic rotational centrifugal distortion constants, and H_N , H_{NK} , H_{KN} , H_K are sextic rotational centrifugal distortion constants; ε_{aa} , ε_{bb} , ε_{cc} are spin-rotation interaction constants, and Δ_N^S ,

^a: From this work.

b: From Ref.[9].

c: Lines are also reported in Ref.[9] but our measured frequencies are adopted in the final fit.

^d: Lines are not in accord with the others and omitted in the final fit.

 Δ_{NK}^S , Δ_{KN}^S , Δ_{K}^S are quartic spin-rotational centrifugal distortion constants.

Our measured lines together with those reported in Ref.[9] were used to determine molecular parameters for the ground and $\nu_2 = 1$ vibrational states of $\rm H_2O^+$ simultaneously by using Pickett's program SPFIT.^[25] In the final fit, 120 lines were fitted to 35 parameters. Five lines measured by Brown *et al*

were excluded from the fit since they were not in accord with the others.^[9] Our measured frequencies were adopted for those re–measured 14 lines. The standard deviation of the fit was $0.0057 \, \mathrm{cm}^{-1}$, close to the accuracy of measurement. The resulting parameters are listed in Tables 2 and 3. The differences between all the observed line positions and their calculated values are listed in Table 1.

Table 2. The molecular constants $(in cm^{-1})$ for the ground vibrational state of H_2O^+ . (Figures in parentheses represent one standard deviation in units of the last digit.)

Parameter	This work	Ref.[9]	Ref.[10]	Ref.[3]	Ref.[12]
\overline{A}	29.03970(57)	29.0366(37)	29.0359(21)	29.0256(9)	29.039508(19)
B	12.41917(22)	12.4170(15)	12.42298(58)	12.4224(5)	12.420949(14)
C	8.46877(24)	8.4684(13)	8.46921(58)	8.4693(5)	8.468088(14)
$10^3 \Delta_N$	0.9515(58)	0.937(50)	1.015(13)	1.000(7)	0.97396(30)
$10^3 \Delta_{NK}$	-5.037(33)	-5.63(19)	-5.007(71)	-4.73(3)	-5.0788(32)
$10^3 \Delta_K$	45.466(80)	45.72(73)	44.20(63)	41.87(6)	45.7162(81)
$10^3 \delta_N$	0.34916(89)	0.312(10)	0.3817(24)	0.3700(3)	0.37477(28)
$10^3 \delta_K$	1.689(13)	1.60(12)	1.795(50)	1.97(6)	1.9308(52)
$10^{6} H_{N}$	0.334(42)	1.89(60)	0.33(14)	_	_
$10^6 H_{NK}$	-7.15(44)	-9.7(29)	-5.1(11)	_	_
$10^6 H_{KN}$	-4.03(90)	52(21)	_	_	-24.21(26)
$10^5 H_K$	20.52(30)	20.3(27)	15.1(44)	_	25.935(95)
$arepsilon_{aa}$	-1.0763 (19)	-1.1049(72)	-1.0882(43)	-1.092(6)	-1.088215(63)
$arepsilon_{bb}$	-0.1153(11)	-0.1237(37)	-0.1130(19)	-0.120(3)	-0.114439(41)
$10^3 \varepsilon_{cc}$	3.06(81)	-6.1(25)	3.2(19)	4(3)	1.294(41)
$10^3 \Delta^s_{KN}$	-0.307(36)	-0.98(4)	-0.72(23)	_	-0.543(12)
$10^3\Delta_K^S$	5.83(14)	12.6(8)	6.32(71)	5.0(3)	7.456(28)

Table 3. The molecular constants (in cm⁻¹) for the $\nu_2 = 1$ vibrational state of H₂O⁺. (Figures in parentheses represent one standard deviation in units of the last digit.)

Parameter	This work	Ref.[9]	Ref.[3]
\overline{A}	33.40521(73)	33.3930(42)	33.3601(20)
B	12.47766(24)	12.4765(12)	12.4765(12)
C	8.31554(24)	8.3138(11)	8.3188(20)
$10^3 \Delta_N$	1.0247(68)	0.944(44)	1.22(10)
$10^3 \Delta_{NK}$	-7.850(41)	-8.13(29)	-7.35(31)
$10^3 \Delta_K$	97.37(12)	92.6(10)	82.13(32)
$10^3 \delta_N$	0.39854(97)	0.372(8)	0.26(7)
$10^3 \delta_K$	4.579(18)	5.00(18)	4.96(43)
$10^{6}H_{N}$	0.479(62)	1.34(57)	_
$10^6 H_{NK}$	-32.27(48)	-3.7(7)	_
$10^6 H_{KN}$	14.3(32)	-13.5(59)	_
$10^5 H_K$	106.26(68)	94.1(36)	_
$arepsilon_{aa}$	-1.6158(24)	-1.621(10)	-1.645(10)
$arepsilon_{bb}$	-0.1171(11)	-0.1349(39)	-0.125(4)
$10^3 \varepsilon_{cc}$	3.55(93)	-9.4(28)	13(5)
$10^3 \Delta_{KN}^s$	-1.04(11)	2.92(72)	_
$10^3 \Delta_K^S$	17.33(33)	7.05(205)	18(13)
ν_0	1408.4074(14)	1408.4153(65)	1408.404(10)

4. Discussion and conclusions

Molecular constants for the ground state of H₂O⁺ are compared with previous studies in Table 2. Our results are more precise than those of Brown $et \ al^{[9]}$ from the analysis of the ν_2 fundamental band, and those of Huet et $al^{[10]}$ from the analysis of the combination differences from the ν_1 and ν_3 fundamental bands and the electronic emission spectrum. The rotational constants and quartic centrifugal distortion rotational constants from our fit are very close to those of Mürtz et al from a weighted nonlinear, least-squares analysis with the LMR data and the combination differences from the ν_3 band and the electronic emission spectrum.^[12] We didn't fix the molecular parameters for the ground vibrational state at the values reported in Ref.[12] in our fitting, because transitions with N = 9 and $K_a = 5$ have been measured in this work, but their term values cannot be extrapolated

accurately with the molecular parameters reported in Ref.[12]. All the sextic rotational centrifugal distortion constants have been determined significantly in this work.

Molecular constants for the $\nu_2 = 1$ vibrational state are compared with those of Brown $et~al^{[9]}$ and of Lew^[3] in Table 3. Our results show better precision than others. The band centre of the ν_2 fundamental band was determined to be $1408.4074(14) \,\mathrm{cm}^{-1}$, which agrees well with the value $1408.4153(65) \,\mathrm{cm}^{-1}$ determined by Brown $et~al.^{[9]}$

In summary, we have reported an extension of the previous measurement of the ν_2 fundamental band of $\mathrm{H_2O^+}$. Forty new lines have been assigned and analysed together with the data published previously. Molecular constants for the $\nu_2=1$ vibrational state have been better determined, which can be used to characterize the rotational levels up to N=9 and $K_a=5$ precisely.

References

- [1] Whipple F L 1950 Astrophys. J. 111 375
- [2] Lew H and Heiber I 1973 J. Chem. Phys. 58 1246
- [3] Lew H 1976 Can. J. Phys. **54** 2028
- [4] Das B and Farley J W 1991 J. Chem. Phys. **95** 8809
- [5] Wu S H, Yang X H, Guo Y C, Zhang H, Liu Y Y and Chen Y Q 2003 J. Mol. Spectrosc. 219 258
- [6] Huet T R, Bachir I H, Destombes J L and Vervloet M 1997 J. Chem. Phys. 107 5645
- [7] Gan Y J, Yang X H, Guo Y C, Wu S H, Li W, Liu Y Y and Chen Y Q 2004 Mol. Phys. 102 611
- [8] Dinelli B M, Crofton M W and Oka T 1988 J. Mol. Spectrosc. 127 1
- [9] Brown P R, Davies P B and Stickland R J 1989 J. Chem. Phys. 91 3384
- [10] Huet T R, Pursell C J, Ho W C, Dinelli B M and Oka T 1992 J. Chem. Phys. 97 5977
- [11] Strahan S E, Mueller R P and Saykally R J 1986 J. Chem. Phys. 85 1252
- [12] Mürtz P, Zink L R, Evenson K M and Brown J M 1998 J. Chem. Phys. 109 9744
- [13] Smith J A, J φ rgensen P and Örn Y 1975 J. Chem. Phys. **62** 1285

- [14] Fortune P J, Rosenburg B J and Wahl A C 1976 J. Chem. Phys. ${\bf 65}$ 2201
- [15] Jackels C F 1980 J. Chem. Phys. 72 4873
- [16] Weiss B, Carter S, Rosmus P, Werner H J and Knowles P J 1989 J. Chem. Phys. 91 2818
- [17] Brommer M, Weis B, Follmeg B, Rosmus P, Carter S, Handy N C, Werner H J and Knowles P J 1993 J. Chem. Phys. 98 5222
- [18] Wu S H, Chen Y Q, Yang X H, Guo Y C, Liu Y Y, Li Y, Buenker R J and Jensen P 2004 J. Mol. Spectrosc. 225 96
- [19] Zheng R, Wang R B, Li S, Huang G M and Duan C X 2007 Chin. Phys. Lett. 24 2569
- [20] Duan C X, Zheng R, Li S, Wang R B and Huang G M 2008 J. Mol. Spectrosc. 251 22
- [21] Gudeman C S, Begemann M H, Pfaff J and Saykally R J 1983 Phys. Rev. Lett. 50 727
- [22] Http://www.cfa.harvard.edu/HITRAN
- [23] Watson J K G 1977 Vibrational Spectra and Structure (New York: Decker) p1
- [24] Brown J M and Sears T J 1979 J. Mol. Spectrosc. 75 111
- $[25]\,$ Pickett H M 1991 J. Mol. Spectrosc. ${\bf 148}\ 371$