Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 84 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 104 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
99.5 - 104	1,0
94.0 - 99.0	1,3
89.0 - 93.5	1,7
83.5 - 88.5	2,0
78.5 - 83.0	2,3
73.5 - 78.0	2,7
68.0 - 73.0	3,0
63.0 - 67.5	3,3
57.5 - 62.5	3,7
52.0 - 57.0	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	20	10	10	12	10	10	12

• Es sind ____ von 84 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Sie führen einen Versuch mit einer Behandlung und drei Faktorleveln durch. Danach rechnen Sie eine einfaktorielle ANOVA und es ergibt sich ein $\eta^2 = 0.31$. Welche Aussage ist richtig?

- **A** \square Das η^2 wird genutzt um zu erfahren welchen Anteil der Varianz die Behandlungsbedingungen erklären.
- **B** \square Das n^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **C** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **D** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.
- **E** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Kartoffel zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.17$. Welche Aussage ist richtig?

- **A** \square Es werden 17% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht.
- **B** \square Mit dem η^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen ist.
- ${f C} \ \square$ Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 17% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 83%.
- **D** \square Das η^2 beschreibt den Anteil der Varianz, der durch den Forschenden entsteht. Es gilt die Regel, dass ca. 70% der Varianz eines Versuches durch die Versuchsdurchführung entstehen sollen.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 17% der Varianz durch die Behandlungsgruppen erklärt.

3. Aufgabe (2 Punkte)

Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig?

- **A** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **B** □ Wenn die F-Statistik kleiner als der kritische Wert ist kann die Nullhypothese nicht abgelehnt werden. Die F-Statistik ist der Quotient der MS der Behandlung durch die MS des Fehlers.
- C □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.

- **D** □ Wenn die F-Statistik höher ist als der kritische Wert kann die Nullhypothese nicht abgelehnt werden. Die F-Statistik ist die Differenz der MS der Behandlung durch die MS des Fehlers.
- **E** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese abgelehnt werden.

Viele statistische Verfahren nutzen eine Teststatistik um eine Aussage über den Zusammenhang zwischen der Grundgesamthat und der Stichprobe abzubilden. Ein statistisches Testwerkzeug ist hierbei die ANOVA. Die ANOVA rechnet dabei...

- **A** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.
- **B** \square ... den Unterschied zwischen der Varianz durch verschiedene Behandlungsguppen unter der Varianz über alle Behandlungsgruppen. Wenn die ANOVA signifikant ist, kann kein Effekt η^2 bestimmt werden.
- **C** □ ... den Unterschied zwischen zwei paarweisen Mittelwerten aus verschiedenen Behandlungsguppen. Wenn die signifikant ist, ist daher bekannt welcher Vergleich konkret unterschiedlich ist.
- D □ ... den Unterschied zwischen der globalen Varianz und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.
- **E** □ ... den Unterschied zwischen der Varianz ausgelöst durch alle Behandlungsgruppen und der Varianz aus globalen Behandlungsguppen der Kontrollen. Wenn die ANOVA nicht signifikant ist, muss ein PosthocTest ausgeschlossen werden.

5. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Kanarienvögel entstand folgende Abbildung. Der Versuch wurde an 59 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist im Bezug auf eine zweifaktorielle ANOVA richtig?

- **A** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **B** \square Das Bestimmtheitsmaß R^2 ist klein.
- **C** \square Eine mittlere bis starke Interaktion liegt vor ($p \le 0.05$)
- **D** \square Das Bestimmtheitsmaß R^2 ist groß.
- **E** \square Keine Korrelation liegt vor $(p \ge 0.05)$.

Deskriptive Statistik & Explorative Datenanalyse

6. Aufgabe (2 Punkte
Wie lautet der Mittelwert und Standardabweichung von y mit 14, 4, 9, 10 und 13.
A □ Es berechnet sich 10 +/- 3.94
B □ Sie erhalten 10 +/- 1.97
C □ Es berechnet sich 10 +/- 15.5
D □ Sie erhalten 10 +/- 1.98
E □ Es ergibt sich 11 +/- 1.97
7. Aufgabe (2 Punkte
Gegeben ist y mit 11, 15, 25, 22, 20, 20, 16, 17, 30, 18 und 42. Berechnen Sie den Median, das 1^{st} Quarti sowie das 3^{rd} Quartile.
A □ Es berechnet sich 21 [17; 24]
B □ Sie erhalten 20 [14; 23]
C □ Es ergibt sich 21 +/- 16
D □ Sie erhalten 20 +/- 25
E □ Es ergibt sich 20 [16; 25]
8. Aufgabe (2 Punkte
Mit einem Dotplot können Sie sehr gut die Verteilung von Daten visualisieren. Die empfohlene Mindestanza an Beobachtungen ist dabei?
A □ Die opimale Anzahl ist größer als hundert Beobachtungen, wobei es gerne sehr viel mehr sein könne
B □ Damit wir hier sauber eine Abbilung von einem
C □ Die untere Grenze liegt bei einer Beobachtung.
D □ 10 Beobachtungen.
E □ Wir sollten eine Beobachtung mindestens pro Gruppe vorliegen haben.
9. Aufgabe (2 Punkte
Sie wollen nach einem Feldversuch die Standardabweichung berechnen. Welche der folgenden Rechenoperationen müssen durchgeführt werden?
A □ Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadratischen Abstände z dem Mittelwert. Abschließend teilen wir durch die Fallzahl.
$\textbf{B} \; \square \; \; \text{Den Mittelwert berechnen und die Abstände quadrieren. Die Summe mit der Fallzahl multiplizieren.}$
C □ Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadratischen Abstände z dem Mittelwert. Abschließend subtrahieren wir die Fallzahl.
D □ Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren
E □ Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durc die Fallzahl teilen, dann die Wurzel ziehen.

Nachdem Sie eine ANOVA und die paarweisen t-Tests über das Rehet {emmeans} durchgeführt haben, müssen Sie Ihre Daten nochmal zur Überprüfung visualisieren. Sie entscheiden sich für den Barplot. Welche statistischen Maßzahlen stellt der Barplot dar?

A □ Durch die Abbildung des Barplot erhalten wir die Informationen über die Mittelwerte und die Varianz.

B □ Der Barplot stellt den Median und die Quartile dar.

C □ Der Barplot stellt die Mittelwerte und die Varianz dar.

D □ Den Median und die Standardabweichung.

E □ Den Mittelwert und die Standardabweichung.

11. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit zuKartoffel finden Sie aufeinmal seltsame Daten. Jedenfalls kommt Ihnen das so vor. Daher berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden sich. Welche Aussage ist richtig?

A □ Der Mittelwert und der Median sollten gleich sein, wenn keine Outlier in den Daten vorliegen.

B □ Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.

C □ Der Mittelwert und der Median sollten sich unterscheiden sein, wenn Outlier in den Daten vorliegen.

D □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.

E □ Wenn sich der Mittelwert und der Median unterscheiden, liegen vermutlich keine Outlier in den Daten vor.

12. Aufgabe (2 Punkte)

Sie wollen eine ANOVA im Anschluss an Ihr Feldexperiment rechnen. Dafür muss Ihr gemessener Endpunkt die Annahme einer Normalverteilung genügen. Zur Überprüfung können Sie folgende Visualisierung nutzen. Welche entsprechende Regel zur Abschätzung der Annahme einer Normalverteilung kommt zur Anwendung?

- **A** □ Wir erstellen uns für jede Behandlung einen Dotplot und schauen, ob die Dots und damit die Varianz für jede Behandlung gleich groß sind.
- **B** □ In einer explorativen Datanalyse nutzen wir den Boxplot. Dabei sollte der Median als dicke Linie in der Mitte der Box liegen. Dann können wir von einer Normalverteilung ausgehen.
- **C** □ Einen Violinplot. Der Bauch der Violine muss hierbei einen höhren Wert annehmen als der Steg der Violine. Dann kann die Annahme einer Normalverteilung angenommen werden.
- **D** □ Wir erstellen uns für jede Behandlung einen Boxplot und schauen, ob die Box und damit das IQR für jede Behandlung gleich groß ist.
- **E** □ Einen Barplot. Die Mittelwerte müssen alle auf einer Höhe liegen. Die Fehlerbalken haben hier keine Informationen.

13. Aufgabe (2 Punkte)

Nach der Durchführung Ihres Feldexperiments wollen Sie eine ANOVA rechnen. Dafür muss aber Ihr Messwert zumindestens approximativ einer Normalverteilung folgen. Welche der drei Abbildungen erlaubt Ihnen abzuschätzen, ob Sie eine Normalverteilung in Ihrem Endpunkt vorliegen haben?

A □ Scatterplot, Mosaicplot, Boxplot

B □ Violinplot, Scatterplot, Barplot

- **C** □ Histogramm, Densityplot, Dotplot
- **D** □ Densityplot, Boxplot, Violinplot
- **E** □ Histogramm, Scatterplot, Boxplot

Sie haben n=213 Pflanzen geerntet und wollen sich nun die Verteilung der Pflanzen einmal in einem Histogramm anschauen. Welche Verteilung ist dargestellt?

- **A** □ Dem Histogramm entnehmen wir eine Possion-Verteilung.
- **B** □ In dem Histogramm ist eine Normalverteilung dargestellt.
- **C** □ Eine Standardnormalverteilung.
- **D** □ Es handelt sich um eine Binomial-Verteilung.
- **E** □ Eine multivariate Normalverteilung.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

Sie haben das Modell $Y \sim X$ vorliegen und wollen nun ein prädiktives Modell rechnen. Welche Aussage ist richtig?

- **A** □ Es wird ein Trainingsdatensatz zum Trainieren des Modells benötigt. Der Testdatensatz dient zur Validierung. Dies gilt insbesondere für ein prädiktives Modell.
- **B** \square Ein prädiktives Modell schliesst grundsätzlich lineare Modell aus. Es muss ein Graph gefunden werden, der alle Punkte beinhaltet. Erst dann kann das R^2 berechnet werden.
- $\mathbf{C} \square$ Wenn ein prädiktives Modell gerechnet werden soll dann kann dies auf dem gesamten Datensatz geschehen. Das Ziel ist es einen Zusammenhang von X auf Y zu modellieren. Wie wirken sich die Einflussvariablen X auf den gemessenen Endpunkt Y aus?
- **D** \square Wenn ein prädiktives Modell gerechnet werden soll dann kann dies auf dem gesamten Datensatz geschehen. Das Ziel ist es einen Zusammenhang von X auf Y zu modellieren. Wie wirken sich die Einflussvariablen Y auf die gemessenen Endpunkte $X = x_1, ..., x_p$ aus?
- **E** \square Ein prädiktives Modell wird auf einem Trainingsdatensatz trainiert und anschliessend über eine explorative Datenanalyse validiert. Signifikanzen über β_i können hier nicht festgestellt werden.

Nach einer Regressions sollten die Residuen normalverteilt sein. Was bei einer simplen Regression noch relativ einfach visuell in einem Scatterplot zu überprüfen ist. Für komplexere Modell liefert der QQ-Plot die notwendigen Informationen über die Normalverteilung. Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **B** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **C** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden und Korrelation ist negativ.
- **D** □ Wir betrachten die Punkte auf der Geraden. Wenn die Punkte einigermaßen auf der Geraden liegen, dann gehen wir von normalverteilten Residuen aus. Wir können hier von normalverteilten Residuen ausgehen.
- **E** □ Wir betrachten die Gerade, die durch die einzelnen Punkte laufen sollte. Wenn die 95% der Punkte von der Geraden getroffen werden, dann gehen wir von normalverteilten Residuen aus.

17. Aufgabe (2 Punkte)

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen (.resid) gleichmäßig um die gefitte Gerade liegen. Sie können folgende Abbildung für die visuelle Überprüfung der Residuen nutzen. Welche Aussage ist richtig?

A □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Diagonalen. Damit ist das Modell erfolgreich geschätzt worden.

- **B** \square Wenn wir die Nulllinie betrachten so liegen die Punkte nicht gleichmäßig über und unter der Nulllinie. Unser Modell erfüllt nicht die Annahme von normalverteilten Residuen mit einem Mittelwert von 0 und einer Streuung von s^2 .
- C □ Die Punkte müssen gleichmäßig in dem positiven Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.
- D □ Wir betrachten die Nulllinie und alle Punkte sollten ohne Muster gleichmäßig um die Nulllinie liegen. Da dies der Fal ist, gehen wir von keinen Ausreißern aus.
- **E** \square Die Annahme der normalverteilten Residuen ist erfüllt. Es ist ein Muster zu erkennen und wir können damit auf die Signifkanz von $x_1, ..., x_p$ schließen.

Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- **A** \square Der Korrelationskoeffizienten ρ ist eine veraltete Darstellungsform von Effekten in der linearen Regression und wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression.
- **B** \square Der Korrelationskoeffizienten ρ wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression. Dabei gibt er jedoch eine Richtung an und kann auch negativ werden.
- ${f C} \ \square$ Der Korrelationskoeffizienten ho liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ho als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- **D** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.
- **E** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen -1 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos.

19. Aufgabe (2 Punkte)

Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der PO_2 -Konzentration in $[\mu g]$ im Wasser auf das Trockengewicht von Spitzkohl in [kg] erhalten Sie einen β_{PO_2} Koeffizienten von 7.4×10^{-6} und einen hoch signifikanten p-Wert mit 0.00051. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz?

- **A** □ Die Fallzahl ist zu hoch angesetzt. Je höher die Fallzahl ist, desto kleiner ist die Teststatistik und damit ist dann auch der *p*-Wert sehr klein. Es sollte über eine Reduzierung der Fallzahl nachgedacht werden. Dann sollte der Effekt zum p-Wert passen.
- **B** \square Wenn der Effekt β_{PO_2} winzig ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{PO_2} in x. Wir müssen daher die Einheit von y entsprechend anpassen.
- ${f C} \ \square$ Das Gewicht und die PO_2 -Konzentration korrelieren sehr stark, deshalb wird der eta_{PO_2} Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann zum p-Wert.
- D □ Die Einheit der PO₂-Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der PO₂-Konzentration hängen antiproportional zusammen.
- **E** \square Manchmal ist die Einheit der Einflussvariable X zu klein gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu kleinen Änderung in Y führt. Daher kann der Effekt β_{PO_2} sehr klein wirken, aber auf einer anderen Einheit sehr viel größer sein. Der p-Wert wird auf einer einheitslosen Teststatistik bestimmt.

Nachdem Sie Ihr Experiment abgeschlossen haben, stehen Sie vor der Frage wie Sie Ihre Daten modellieren sollen. In der Beispielauswertung von Ihrem Betreuenden finden Sie die Funktion lm() in \mathbb{R} . Welche Aussage ist richtig?

- **A** □ Die Funktion lm() in wird klassischerweise für die lineare Regression genutzt. Ist die Einflussvariable *X* ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.
- **B** □ Neben der klassichen Verwendung der Funktion lm() in der linearen Regression kann auch ein Gruppenvergleich gerechnet werden. Dafür müssen aber alle Faktoren aus den Daten entfernt und numerishc umgewandelt werden. Dann kann das R Paket {emmeans} genutzt werden um die Korrelation zu berechnen. Eine Adjustierung ist dann nicht mehr notwendig.
- C □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.
- **D** □ Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Die Funktion lm() kann dabei eigentlich weggelassen werden, wird aber traditionell gerechnet.
- **E** □ Ist die Einflussvariable *X* numerisch so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.

21. Aufgabe (2 Punkte)

Wenn Ihr gemessener Endpunkt nicht einer Normalverteilung folgt, so können Sie dennoch Ihre Daten modellieren. Hierzu nutzen Sie dann das *generalisierte lineare Modell (GLM)*. Welche Aussage ist richtig?

- A □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in auch mit zusätzlich geladenen Paketen nicht möglich.
- **B** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
- **C** □ Das GLM erlaubt auch nicht normalverteilte Residuen in der Schätzung der Regressionsgrade.
- D □ Das GLM ist ein faktisch maschineller Lernalgorithmus, der selstständig die Verteilungsfamilie für Y wählt.
- **E** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien als die Normalverteilung mit einer linearen Regression modelliert werden.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung ist die direkte Folge von Strukturgleichheit. Die Strukturgleichheit erlaubt es erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **B** □ Strukturgleichheit ist durch Randomisierung gegeben. Somit kann von der Stichprobe auf die Grundgesamtheit geschlossen werden
- **C** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
- **D** □ Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte. Ohne Mittelwerte keine Varianz und somit auch kein statistischer Test.
- **E** □ Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.

Wenn Sie einen Datensatz erstellen, dann ist es ratsam die Spalten und die Einträge in englischer Sprache zu verfassen, wenn Sie später die Daten in Rauswerten wollen. Welcher Aussage ist richtig?

- **A** □ Alle Funktionen und auch Anwendungen sind in **R** in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
- **B** □ Die Spracherkennung von **?** ist nicht in der Lage Deutsch zu verstehen.
- **C** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von 😱 untersagt.
- D □ Die R Pakete sind nur in englischer Sprache verfasst. Das ist aber nicht der Hauptgrund, denn R hat wie alle Programmiersprachen Probelem mit Umlauten und Sonderzeichen.
- **E** □ Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.

24. Aufgabe (2 Punkte)

Nachdem Sie Ihr Feldexperiment als Vorversuch für Ihre Abschlussarbeit abgeschlossen haben, wollen Sie in einer explorativen Datenanalyse (EDA) in einmal schauen, ob Sie überhaupt Effekte der Behandlung vorliegen haben. Welche Reihenfolge von Schritten müssen Sie in durchführen, damit Sie eine EDA rechnen können?

- **A** □ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen.
- **B** □ Wir lesen die Daten über eine generische Funktion read() ein und müssen dann die Funktion ggplot() nur noch installieren. Dann haben wir die Abbildungen als *.png vorliegen.
- **C** □ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
- **D** □ Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse.
- **E** □ Für eine explorativen Datenanalyse (EDA) in müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Zeilen richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit kontinuierlichen Werten in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.

25. Aufgabe (2 Punkte)

Es sei $n_1 = n_2$ in dem Modell $Y \sim X$. Welche Aussage ist richtig?

- **A** □ Es handelt sich um ein balanciertes Design.
- **B** □ Es handelt sich um abhängige Beobachtungen.
- **C** □ Es liegt Varianzhetrogenität vor.
- **D** ☐ Es liegt Varianzhomogenität vor.
- **E** □ Es handelt sich um ein unbalanciertes Design.

In einem Zuchtexperiment messen wir die Ferkel verschiedener Sauen. Die Ferkel einer Muttersau sind daher im statistischen Sinne...

- **A** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander abhängig.
- **B** □ Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss modelliert werden.
- **C** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.
- D ☐ Abhängig von der Stallanlage und des Experiments können die Ferkel abhängig oder unabhängig sein. Allgmein gilt, dass Ferkel von unterschiedlichen Sauen näher miteinander verwandt sind als Ferkel von gleichen Sauen. Das Fisher-Axiom.
- **E** □ Untereinander stark korreliert. Die Ferkel sind von einer Mutter und sommit miteinander korreliert. Dies wird in der Statistik jedoch meist nicht modelliert.

27. Aufgabe (2 Punkte)

Neben der Mittelwertsdifferenz als Effektschätzer bei normalverteilten Endpunkten wird auch häufig der Effektschätzer Risk ratio bei binären Endpunkten verwendet. Welche Aussage über den Effektschätzer Risk ratio ist im folgenden Beispiel zur Behandlung von Klaueninfektionen bei Schweinen richtig? Dabei sind 3 Tiere krank und 8 Tiere sind gesund.

- **A** □ Es ergibt sich ein Risk ratio von 0.38, da es sich um ein Anteil handelt.
- **B** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Risk ratio von 3.67.
- C □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Risk ratio von 0.38.
- D □ Das Verhältnis der Chancen Risk ratio ergibt ein Chancenverhältnis von 0.27. Wir sind an der Chance krank zu sein interessiert.
- **E** □ Der Anteil der Kranken wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Risk ratio von 0.27

28. Aufgabe (2 Punkte)

Historisch gesehen ergibt sich ein Problem, wenn Sie mit sehr großen Datensätzen, wie in der Bio Data Sience üblich, rechnen. Warum ist es ein Problem, wenn Ihre Datensätze sehr groß werden hinsichtlich der Bewertung anhand der Signifikanz?

- **A** □ Mehr Fallzahl in Datensätzen bedeutet mehr signifikante Ergebnisse, da in mehr Daten auch mehr Informationen beinhaltet sind. Deshalb lohnen sich riesige Datensätze, die durch die vielen signifikanten Ergebnisse auch eine Menge an relevanten Erkenntnissen liefern.
- **B** □ Aktuell werden immer größere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.
- ${f C}$ \square Riesige Datensätz haben mehr Fallzahl was zur lpha-Inflation führt. Durch eine Adjustoerung kann dem Problem entgegengewirkt werden.
- **D** □ Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
- **E** □ Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzen berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.001, 0.02, 0.34, 0.01, 0.03 und 0.42. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 2e-04, 0.0033, 0.0567, 0.0017, 0.005 und 0.07. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 2e-04, 0.0033, 0.0567, 0.0017, 0.005 und 0.07. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.006, 0.12, 1, 0.06, 0.18 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.006, 0.12, 1, 0.06, 0.18 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.006, 0.12, 2.04, 0.06, 0.18 und 2.52. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.

30. Aufgabe (2 Punkte)

Die Abkürzung *CLD* steht für welches statistische Verfahren? Welche folgende Beschreibung der Interpretation ist korrekt?

- **A** □ Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ja nach dem Unterschied suchen.
- **B** □ Compact letter detection. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt.
- **C** □ Compact letter display. Gleiche Buchstaben bedeuten, dass sich die Behandlungen unterscheiden. Daher ist das CLD sehr unintuitiv. Es wäre besser, wenn gleiche Buchstaben Gleichheit anzeigen würden. Dies ist aber leider in der statistischen Testtheorie nicht möglich.
- **D** ☐ Contrast letter display. Unterschiede in den Behandlungen werden durch den gleichen Buchstaben oder Symbol dargestellt. Die Interpretation des CLD führt häufig in die Irre.
- **E** □ Compact letter display. Teilweise ist die Interpretation des CLD schwierig, da wir ja nach Unterschieden suchen aber nur Gleichheit in den Buchstaben sehen. Die Gleichheit der Behandlungen wird durch gleiche Buchstaben dargestellt.

31. Aufgabe (2 Punkte)

Sie haben eine zweifaktorielle ANOVA gerechnet und wollen nach einem signifikanten Ergebnis in dem Gruppenfaktor einen Posthoc-Test rechnen. Welches R Paket nutzen Sie dafür und welche Eigenschaften des Paktes sind korrekt?

- **A** □ Da Sie für Ihre Bachelorarbeit einen Barplot mit CLD brauchen nutzen Sie das R Paket {emmeans} welches Ihnen schnell die notwenidigen Informationen liefert um einen Barplot zu erstelen. Die Berechnung eines CLD ist hierbei auch einfach.
- **B** Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.
- C □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- D □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.
- **E** □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.

In den Humanwissenschaften werden multiple Vergleiche häufig anders behandelt als in den Agrarwissenschaften. In beiden Bereichen tritt jedoch das gleiche Phänomen bei multiplen Testen auf. Wie muss mit dem Phänomen umgegangen werden und wie ist es benannt?

- **A** \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Welch das bekanneste Verfahren ist.
- **B** Beim multiplen Testen kann es zu Varianzheterogenität kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5%. Daher müssen die p-Werte entsprechend adjustiert werden. Das Verfahren nach Welch, bekannt aus dem t-Test, ist hier häufig anzuwenden.
- ${f C}$ Die Adjustierung der p-Werte nach Bonferroni erlaubt es gegen die ${f eta}$ -Inflation vorzugehen, die häufig beim multiplen Testen auftritt. Das globale Powerniveau liegt nicht mehr bei 80% sondern sehr viel niedriger.
- **D** \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.
- **E** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.

33. Aufgabe (2 Punkte)

Sie rechnen mehrere t-Tests für einen multiplen Vergleich nachdem eine einfaktorielle ANOVA sich als signifikant herausgestellt hat. Welche Aussage im Bezug auf den Effekt ist richtig?

- $\mathbf{A} \square$ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nicht adjustiert werden im Gegensatz zu den p-Werten.
- **B** □ Beim multiplen Testen werden die Effekte der paarweisen Vergleiche ignoriert. Der Nachteil des multiplen Testens ist ja auch, dass wir am Ende keine Effekte mehr vorliegen haben. Eine ANOVA liefert hier bessere Informationen.
- C □ Beim multiplen Testen kann es zu einer Δ-Inflation kommen. Das globale Effektniveau liegt nicht mehr bei 20%. Daher müssen die Effekte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Effekte nach Bonferroni das bekanneste Verfahren ist.
- \mathbf{D} Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten.
- **E** \square Beim multiplen Testen kann es zu einer Δ -Deflation kommen. Das globale Relevanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die Δ -Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Δ -Werte nach Bonferroni das bekanneste Verfahren ist. Die Δ -Werte werden durch die Anzahl an Vergleichen geteilt.

Statistische Testtheorie

34. Aufgabe (2 Punkte)

Welche Aussage zum mathematische Ausdruck $Pr(D|H_0)$ ist richtig?

- $A \square Pr(D|H_0)$ beschreibt die Wahrscheinlichkeit die Teststatistik T_D aus den Daten D zu beobachten, wenn die Nullhypothese wahr ist.
- $\mathbf{B} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit nicht die Daten D zu beobachten sondern die Nullhypothese, wenn diese wahr ist.

- **C** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
- **D** \square $Pr(D|H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1 Pr(H_A)$
- $\mathbf{E} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- **A** □ ... dass Annahmen an statistische Modelle meist falsch sind.
- **B** □ ... dass Modelle meist falsch sind und selten richtig.
- C □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein weniger schlechtes Modell ersetzt wird.
- **D** □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.
- **E** □ ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.

36. Aufgabe (2 Punkte)

Der Fehler 1. Art oder auch Signifikanzniveau α genannt, liegt bei 5%. Welcher der folgenden Gründe für diese Festlegeung auf 5% als Signifikanzschwelle ist richtig?

- **A** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha=5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.
- **B** \square Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha = 5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
- **C** □ Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet. Dadurch ergibt sich dieser optimale Cut-Off.
- **D** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.
- **E** \square In der Wissenschaft gibt es neben der Naturkonstante, die sich aus der Beobachtung der Welt ergibt, noch die Kulturkonstante, die von einer Gruppe Menschen selbstgewählt wird. Dabei ist $\alpha = 5\%$ eine Kulturkonstante und wurde somit eher zufällig gewählt.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt
$$T_D = \frac{signal}{noise^2}$$

B \square Es gilt $T_D = signal \cdot noise$

C □ Es gilt
$$T_D = \frac{signal}{noise}$$

D \square Es gilt $T_D = (signal \cdot noise)^2$

E □ Es gilt
$$T_D = \frac{noise}{signal}$$

Sie versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie ist richtig?

H₀ ablehnen obwohl die H₀ gilt

- **A** \square *Fire without alarm,* dem β -Fehler als Analogie eines Rauchmelders.
- **B** \square Dem β -Fehler mit der Analogie eines brennenden Hauses: *Fire without alarm*.
- **C** \square Dem α -Fehler in der Analogie eines Rauchmelder: *Alarm without fire*.
- **D** In die Analogie eines brennenden Hauses ohne Rauchmelder: *House without noise*.
- **E** \square In die Analogie eines Rauchmelders: *Alarm without fire police*, dem α -Fehler.

39. Aufgabe (2 Punkte)

Sie lesen eine wissenschaftliche Arbeit, die damit wirbt, dass Effekte und Signifikanz nicht separat dargestellt sind, sondern in einer statistischen Maßzahl zusammen. Welche Aussage ist richtig?

- A □ Das Δ. Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
- **B** □ Über das Konfidenzintervall. Das Konfidenzinterval inkludiert eine Entscheidung über die Relevanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Signifikanzschwelle vom Forschenden definiert werden.
- **C** \square Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
- **D** □ Über das Konfidenzintervall. Das Konfidenzinterval beitet eine Entscheidung über die Signifikanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Relevanzschwelle definiert werden.
- **E** \square Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.

40. Aufgabe (2 Punkte)

Sie haben ein Signifikanzniveau α gleich 5% vorliegen. Welche Aussage zusammen mit dem p-Wert ist richtig?

- **A** \square Wir machen ein Aussage über die Flächen und zwischen den Kurve der Teststatistiken der Hypothesen H_0 und H_A , wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.
- **B** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
- ${f C}$ \square Wir schauen, ob der p-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- **D** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
- **E** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.

Um die Testtheorie besser zu verstehen, mag es manchmal sinnvoll sein ein Beispiel aus dem Alltag zu wählen. Die Ergebnisse der Analyse durch einen statistischen Test können auch in grobe Analogie zur Wettervorhersage gebracht werden. Welche Aussage trifft am ehesten zu?

- **A** □ In der Analogie der Wahrscheinlichkeit für Regen: ein statistischer Test erlaubt die Wahrscheinlichkeit für ein Ereignis abzuschätzen. Die Stärke des Effektes können wir nicht bestimmen.
- **B** In der Analogie des Niederschlags oder Regenmenge: ein statistischer Test gibt die Stärke eines Effektes wieder. Zum Beispiel, wie hoch ist der Mittelwertsunterschied.
- **C** □ In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten *D* wieder und lässt sich kaum verallgemeinern.
- **D** □ In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- **E** □ In der Analogie der Maximaltemperatur: Was ist der maximale Unterschied zwischen zwei Gruppen. Wir erhalten hier eine Aussage über die Spannweite und den maximalen Effekt.

42. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie eine Aussage über ein untersuchtes Individuum treffen. Dazu nutzen Sie einen statistischen Test. Können Sie eine valide Aussage treffen?

- **A** □ Ja, wir erhalten eine Aussage. Müssen aber das Individuum im Kontext der Population adjustieren.
- **B** □ Ja, wir erhalten nur eine Aussage zu zwei Individuen. Ein statistischer Test liefert Informationen zu einem Individuum im Vergleich zu einem anderen Individuum.
- **C** □ Ja, es ist möglich ein untersuchtes Individuum mit einem t-Test auszuwerten. Wir erhalten dann eine Aussage zum Individuum.
- **D** □ Nein, es ist nicht möglich ein untersuchtes Individuum mit einem t-Test auszuwerten. Wir erhalten dann leider keine Aussage zum Individuum.
- **E** □ Weder eine Ausssage über die Population noch über das Individuum ist mit einem statistischen Test möglich. Wir erhalten eine Aussage über ein Experiment.

43. Aufgabe (2 Punkte)

Welche Aussage über die Power ist richtig?

- **A** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 20% gesetzt.
- **B** \square Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird
- $\mathbf{C} \square$ Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.
- **D** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 20% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 80% gesetzt.
- **E** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%.

Sie rechnen einen statistischen Test und erhalten neben dem p-Wert noch einen Effekt wiedergegeben. Welche Aussage zum Effekt ist richtig?

- **A** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.
- **B** □ Der Effekt eines statistischen Tests beschreibt die mathematisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- ${f C}$ Durch den Effekt erfahren wir die biologisch interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Relevanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- **D** □ Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.
- **E** □ Der Forschende muss am Anfang wissen, ob das Eregbnis eines Experiments relevant für seine Forschung ist. Dafür kann der Effekt eines statistischen Tests genutzt werden oder auch der Prähoc-Test. Damit beschreibt der Effekt den biologischen interpretierbaren Teil eines Experimnts vor der Durchführung. Zum Beispiel der Unterschied zwischen zwei Mittelwerten.

45. Aufgabe (2 Punkte)

Welche Aussage über die Entscheidung anhand des p-Wertes gegen die Nullhypothese ist richtig?

- **A** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.
- **B** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- **C** \square Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.
- **D** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.
- **E** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall α dann kann die Nullhypothese abgelehnt werden.

46. Aufgabe (2 Punkte)

Ein statistischer Test benötigt für die richtige Durchführung Hypothesen H, sonst ist der Test nicht zu interpretieren. Welche Aussage ist richtig?

- **A** □ Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternativehypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird.
- **B** \square Es gibt ein statistisches Hypothesenpaar mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 .
- ${\bf C} \square$ Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.
- **D** \square Es gibt bedingt durch das das Falsifikationsprinzip ein Set von k Nullhypothesen, die iterative gegen k-1 Alternativhypothesen getestet werden.
- **E** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

Welche Aussage über den t-Test im Allgmeinen ist richtig? Berücksichtigen Sie den Welch t-Test wie auch den Student t-Test!

- A □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
- **B** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte *jeweils* von Null unterscheiden.
- **C** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
- **D** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen.
- **E** □ Der t-Test vergleicht zwei oder mehr Gruppen indem die Mittelwerte miteinander verglichen werden.

48. Aufgabe (2 Punkte)

Ein Versuch wurde in 9 Parzellen pro Gruppe durchgeführt. Die folgende Abbildung enthält die Daten aus diesem Versuch zur Bewertung der Wirkung des Mikronährstoff Sulfit auf den Ertrag in t/ha von Mais im Vergleich zu einer Kontrolle. Welche Aussage ist richtig, wenn Sie einen t-Test rechnen?

- **A** □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.
- **B** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.
- **C** □ Die Barplots deuten auf ein signifikanten Unterschied. Der Effekt liegt vermutlich bei -3.
- **D** □ Die Barplots deuten auf einen signifikanten Unterschied. Der Effekt liegt vermutlich bei -3. Wir müssen aber einen Posthoc-Test rechnen um den Effekt wirklich bestimmen zu können.
- **E** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt liegt bei -3.

49. Aufgabe (2 Punkte)

Sie rechnen einen gepaarten t-Test, da Ihre Beobachtungen verbunden sind. Welche der folgenden Aussagen ist richtig?

- **A** □ Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz *d* dient dann zur Differenzbildung.
- **B** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir die Differenz zwischen den beiden Zeitpunkten. Auf den Differenzen rechnen wir den gepaarten t-Test.

- C □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.
- **D** ☐ Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz der Einzelbeobachtungen.
- **E** □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.

Nach einem Experiment mit fünf Weizensorten ergibt eine ANOVA (p=0.048) einen signifikanten Unterschied für den Ertrag. Sie führen anschließend die paarweisen t-Tests für alle Vergleiche der verschiedenen Weizensorten durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.052$. Welche Aussage ist richtig?

- **A** □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- **B** \square Hier kommt der Effekt der stiegenden Fallzahl auf die Anzahl an signifikante Ergebnisse zu tragen. Da die ANOVA auf weniger Fallzahl testet als die paarweisen t-Tests, kann die ANOVA schwerer einen signifikanten Unterscheid nachweisen.
- **C** □ Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
- **D** □ Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
- **E** □ Die adjustierten p-Werte deuten in die richtige Richtung. Zusammen mit den nicht signifikanten rohen p-Werten ist von einem Fehler in der ANOVA auszugehen.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark steht vor einem ersten Problem, denn wenn es nach seiner Betreuer geht, soll er in einem einem Feldexperiment Brokoli auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Am Ende dann doch besser Geocaching. Wunderbar. Eine echte Ablenkung für Mark. Das heißt erstmal überlegen für Mark. Mark schmeißt noch eine Handvoll Marzipankugeln in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Andrea Berg. Die Behandlung werden verschiedene Düngestufen (*ctrl*, *low* und *high*) sein. In seiner Exceldatei wird er den Outcome (Y) *Frischegewicht* als *freshmatter* aufnehmen. Vorab soll Mark aber eimal die folgenden Barplots seiner Betreuer nachbauen, damit er den R Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Mark und die Unsicherheit, eine unendliche Geschichte mit kniffeligen Wendungen.

Leider kennt sich Mark mit der Erstellung von Barplots in $\mathbf R$ nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Barplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Mark einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas und die Erschöpfung, eine unendliche Geschichte mit kniffeligen Wendungen. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Jonas ist es eine Möglichkeit schneller ans Ziel zu gelangen. Deshalb hat sich Jonas viele Poster in der Fakultät angeschaut und ist zum Schluß gekommen, dass Barplots eine häufig genutzte Abbildung sind. Jonas soll nun in seiner Abschlussarbeit Kartoffeln untersuchen. Die Behandlung in seiner Abschlussarbeit sind verschiedene Düngestufen (ctrl, low und high). Erhoben wurden von Jonas als Messwert (Y) Proteingehalt benannt als protein in seiner Exceldatei. Erwartungsgemäß erhält er von seiner Betreuerin den Auftrag die erhobenen Daten als Barplots darzustellen. Dann kann Jonas auch schonmal abschätzen, was bei einem statistischen Test rauskommen könnte. Na dann mal los. Jonas schafft sich die nötige Stimmung. Wenn Iron Maiden ertönt, dann sucht das Meerschweinchen schleunigst Schutz unter dem Sofa. Jonas schüttelt den Kopf.

treatment	protein
high	46.7
ctrl	33.9
low	38.4
ctrl	34.1
low	39.3
ctrl	37.2
high	43.1
low	46.2
low	46.7
ctrl	33.0
ctrl	38.5
high	49.5

Leider kennt sich Jonas mit der Erstellung von Barplots nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Kartoffeln! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Jonas *keinen Effekt* zwischen den Behandlungen von Kartoffeln erwarten würde, wie sehen dann die Barplots aus? *Antworten Sie mit einer Skizze der Barplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina steht vor einem ersten Problem, denn wenn es nach ihrer Betreuerin geht, soll sie in einem einem Gewächshausexperiment Erdbeeren auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Tina liebt Astronomie. Darin kann sie sich wirklich verlieren und immer wieder neu begeistern. Das heißt erstmal überlegen für Tina. Tina schmeißt noch eine Handvoll Katjes in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Tocotronic. Die Behandlung werden verschiedene Genotypen (AA, AB und BB) sein. In ihrer Exceldatei wird sie den Outcome (Y) Frischegewicht als freshmatter aufnehmen. Vorab soll Tina aber eimal die folgenden Boxplots ihrer Betreuerin nachbauen, damit sie den Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Eine echte Herausforderung für sie war schon immer die Wut gewesen. Ein leidiges Lied.

Leider kennt sich Tina mit der Erstellung von Boxplots in \P nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Tina einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alex steht vor einem ersten Problem, denn wenn es nach seiner Betreuerin geht, soll er in einem einem Feldexperiment Maiss auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Am Ende dann doch besser Starcraft. Wunderbar. Eine echte Ablenkung für Alex. Die Behandlung waren verschiedene Düngestufen (*ctrl* und *high*). In seiner Exceldatei hat er den Outcome (*Y*) *Proteingehalt* als *protein* aufgenommen. Nun soll Alex die Daten eimal als Boxplots in einer Präsentation visualisieren, damit seiner Betreuerin wieder klar wird, was er eigentlich nochmal gemacht hat und was für ein Ergbnis in einem statistischen Test zu erwarten wäre. Anhand von Boxplots lässt sich eine Aussage über die Normalverteilung von *Y* treffen. Wäre da nicht noch etwas. Eine echte Herausforderung für ihn war schon immer die Gefälligkeit gewesen. Ein leidiges Lied. Aber egal. Alex will später nochmal raus um zu Laufen. Druck ablassen, dass muss er auch.

treatment	drymatter
high	41.2
ctrl	27.3
high	33.2
high	39.2
ctrl	34.4
high	34.1
ctrl	35.8
high	35.3
ctrl	30.4
high	40.0
high	39.8
ctrl	23.0
high	45.7
ctrl	39.7
high	47.2
high	39.2
ctrl	24.1
ctrl	35.3
ctrl	37.0
ctrl	37.5

Leider kennt sich Alex mit der Erstellung von Boxplots nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Maiss! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie keinen Effekt zwischen den Behandlungen von Maiss erwarten würden, wie sehen dann die beiden Boxplots aus? Antworten Sie mit einer Skizze der Boxplots! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ihrer Hausarbeit möchte Paula gerne die Daten aus einem Stallexperiment mit Fleischrindern in einem Histogramm darstellen. Das Histogramm erlaubt ihr dabei Rückschlüsse auf die Verteilung über das Outcome (Y) zu treffen. 'Hm...', Smarties und White Lies. Das ist und bleibt die beste Kombination zum Nachdenken für Paula. In seinem Experiment hat Paula die Anzahl an gedrehten Haaren pro cm^2 gezählt. Es wäre einfacher, wenn da nicht noch was wäre. Eine echte Herausforderung für sie war schon immer der Perfektionismus gewesen. Ein leidiges Lied. Paula streichelt liebevoll die Ratte. Der Kopf ist in ihrem Schloß vergraben um den Klang von White Lies zu dämpfen.

Die Anzahl an gedrehten Haaren pro cm^2 : 1, 1, 8, 8, 6, 4, 4, 1, 2, 4, 2, 2, 1, 2, 8, 2, 9, 4, 1, 5, 4, 1, 3, 1, 2, 5, 1, 5, 4, 1

Leider kennt sich Paula mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 6 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 6 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ihrer Abschlussarbeit möchte Nilufar gerne die Daten aus einem Stallexperiment mit Fleischrindern in einem Histogramm darstellen. Das Histogramm erlaubt ihr dabei Rückschlüsse auf die Verteilung über den Messwert (Y) zu treffen Aus den Boxen wummert Deichkind und ihr Mund ist verklebt von Takis Blue Heat. 'Herrlich', denkt Nilufar. In seinem Experiment hat Nilufar die mittleren auffälligen Hautflecken gezählt. Es wäre einfacher, wenn da nicht noch was wäre. Wenn die Erwartung nicht wäre, ja dann wäre wohl vieles möglich für Nilufar! Aber so.. Wenn Deichkind ertönt, dann sucht das Huhn schleunigst Schutz unter dem Sofa. Nilufar schüttelt den Kopf.

Die mittleren auffälligen Hautflecken: 9.8, 9.1, 11.6, 6.6, 9.7, 12.9, 11, 10.7, 8.8, 10.2, 7.3, 10.9, 12, 12.7, 8.9, 9, 11.7, 8.4, 12.7, 13.1, 8.5, 10.3, 9.5, 12.2, 11.8, 10, 13.1, 11.9

Leider kennt sich Nilufar mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wenn es nach Alex ginge, wäre er schon längst fertig mit seiner Hausarbeit. Geht es aber nicht. Alex schmeißt noch eine Handvoll Gummibärchen in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Abba. In seiner Hausarbeit hatte er ein Stallexperiment im Wendland durchgeführt. Nach der Meinung seiner Betreuerin sieht das jedoch etwas anders aus. Jetzt soll er doch noch eine explorative Datenanalyse für den Zusammenhang zwischen mittlerer Eisenkonzentration [Fe/ml] und Gewichtszuwachs in der 1LW in Fleischrindern durchführen. Wie nervig! Wenn die Gefälligkeit nicht wäre, ja dann wäre wohl vieles möglich für Alex! Aber so.. Da zwei kontinuierliche Variablen vorliegen, geht die explorative Datenanalyse leider nicht mit Boxplots oder Barplots. Dann was anderes. Wenn Alien läuft, dann ist die Katze nicht mehr da. Aber jetzt braucht er mal Entspannung!

Gewichtszuwachs in der 1LW	Mittlerer Eisenkonzentration [Fe/ml]
19.3	24.8
17.4	27.0
17.9	25.7
20.8	28.0
18.6	27.3
20.3	25.6
15.9	20.1
19.6	27.7
20.8	29.3

Leider kennt sich Alex mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *kein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? **(2 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Zwei kategoriale Variablen darzustellen ist nicht so einfach. Jessica hatte erst über einen Mittelwert nachgedacht, dann aber die Idee verworfen. Wäre da nicht noch was anderes. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied. Dabei hatte sie sich in ein Stallexperiment im Teuteburgerwald zum einen die Behandlung Automatische Fütterung [ja/nein] und zum anderen die Messung Schlachtgewicht im Zielbereich [ja/nein] im Kontext von Fleischrindern angeschaut. Jetzt möchte ihre Betreuerin erstmal die langen Tabellen mit ja/nein in einer explorativen Datenanalyse zusammengefasst bekommen. Sonst geht es bei ihrer Hausarbeit nicht weiter. Was super nervig ist. Um Rad zu fahren geht Jessica dann später nochmal raus. Echte Entspannung.

Automatische Fütterung	Schlachtgewicht im Zielbereich	Automatische Fütterung	Schlachtgewicht im Zielbereich
nein	ja	ja	nein
ja	nein	ja	nein
ja	ja	ja	nein
ja	nein	ja	ja
ja	ja	ja	ja
nein	ja	ja	ja
ja	ja	nein	ja
nein	ja	ja	ja
nein	ja	nein	ja
ja	ja	nein	ja
nein	ja	nein	nein
nein	ja	ja	ja
ja	nein	nein	ja
nein	ja	ja	ja
ja	nein	ja	nein
nein	ja	nein	ja

Leider kennt sich Jessica mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn *kein* Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was soll das denn jetzt schon wieder sein? Drei Boxplot, die auf der Seite liegen?', entfährt es Steffen und schaut dabei Alex an. 'Keine Ahnung. Es ist bestimmt wieder so ein Lernziel mit der Verteilung und so.', meint Alex sichtlich genervt und mampft noch ein paar Gummibärchen. 'Du weißt doch wie es heißt, *Frei ist, wer missfallen kann.*1', merkt Steffen nickend an. Die beiden schauen angestrengt auf die drei Boxplots. Das Ziel ist es zu verstehen, wie eine Verteilung anhand eines Boxplots bewertet werden kann. Alex und die Romantik machen die Sache nicht einfacher.

Jetzt brauchen Steffen und Alex Ihre Hilfe bei der Abschätzung einer Verteilung anhand von Boxplots um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Zeichnen Sie über die Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wie viel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wie viel Prozent der Beobachtungen fallen in $\bar{y} \pm 1s$ und $\bar{y} \pm 2s$ unter der Annahme einer Normalverteilung? (2 Punkte)

¹Oschmann, A. (2024) Mädchen stärken: Stärken fördern, Selbstwert erhöhen und liebevoll durch Krisen begleiten. Goldegg Verlag

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark und die Unsicherheit machen die Sache nicht einfacher. Immerhin ist noch Yuki zur Hilfe mit dabei. Yuki hat Marzipankugeln mitgebracht und Andrea Berg aufgedreht. Das ist immerhin eine Ablenkung. Nicht so gut wie Geocaching, aber immerhin etwas. Jetzt sollen die beiden diese komische Aufgabe lösen. Es geht um verschiedene Normalverteilungen. Anschneinend hängen Normalverteilungen vom Mittelwert \bar{y} und der Standardabweichung s ab. 'Wozu brauchen wir nochmal Normalverteilungen?', entfährt es Mark. Durch das Mampfen von Yuki versteht er kein Wort der Antwort. Yuki lächelt.

Jetzt brauchen Mark und Yuki Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie vier Normalverteilungen mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3 \neq \bar{y}_4$ und $s_1 = s_2 = s_3 = s_4$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den statistischen Maßzahlen! (2 Punkte)
- 3. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. In welchen Bereich fallen 68% bzw. 95% der Beobachtungen in einer Normalverteilung? Ergänzen Sie die Bereiche in einer Normalverteilung! (2 Punkte)
- 5. Ergänzen Sie unter einer der Normalverteilungen den entsprechenden Boxplot! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was sollen wir hier dann noch zeichnen?!', entfährt es Alex und schaut dabei Paula an. 'Wir sollen eine Normalverteilung mit einem Mittelwert von $\bar{y}_1=4$ und einer Standardabweichung von $s_1=0.25$ zeichnen. Sowie eine weitere Normalverteilung mit einem Mittelwert von $\bar{y}_2=1$ und einer Standardabweichung von $s_2=0.25$. Keine Ahnung wie das geht. Darunter sollen dann noch eine Poissonverteilung mit einem Mittelwert von $\lambda_1=3$ sowie einer weiteren Poissonverteilung mit einem Mittelwert von $\lambda_2=15$ gezeichnet werden.', meint Paula sichtlich genervt und mampft noch ein paar Smarties. Im Hintergrund spielt leise White Lies. 'Wirre Geschichte...', merkt Alex nickend an. Die beiden schauen angestrengt auf die leeren Flächen für die Abbildungen. Paula und die Gefälligkeit machen die Sache nicht einfacher.

Jetzt brauchen Alex und Paula Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie die zwei Normalverteilungen und zwei Poissonverteilungen! (4 Punkte)
- 2. Achten Sie auf die entsprechende Skalierung in den jeweiligen Abbildungen! (2 Punkte)
- 3. Ergänzen Sie unter einer Normalverteilung den entsprechenden Boxplot! (1 Punkt)
- 4. Ergänzen Sie unter einer Poissonverteilung den entsprechenden Boxplot! (1 Punkt)
- 5. Geben Sie ein Beispiel für ein Outcome y, welches einer Normalverteilung folgt! (1 Punkt)
- 6. Geben Sie ein Beispiel für ein Outcome y, welches einer Poissonverteilung folgt! (1 Punkt)

Teil II.

Statistisches Testen & statistische Testtheorie

62. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

 Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

 H_0 abgelehnt Testentscheidung α -Fehler H_0 wahr

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Monat Alarm schlagen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 95%"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $+T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Trockengewicht nach Düngergabe zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (b) Ein 95% Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (c) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (d) Ein 95% Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (e) Ein signifikantes, relevantes 99% Konfidenzintervall.
 - (f) Ein signifikantes, nicht relevantes 95% Konfidenzintervall

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in einem Wort oder Symbol beschreiben! (4 Punkte)

	T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ↑				Δ↓			
<i>s</i> ↑				s ↓			
				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 90%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

67. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Nilufar erschaudert. Eine echte Herausforderung für sie war schon immer die Erwartung gewesen. Ein leidiges Lied. Ein mächtiges Werkzeug ist der t-Test in den Händen desjenigen, der einen normalverteilten Endpunkt (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Nilufar überhaupt aus? 'Hm...', Takis Blue Heat und Deichkind. Das ist und bleibt die beste Kombination zum Nachdenken für Nilufar. Nilufar hat ein Stallexperiment mit Fleischrindern durchgeführt um eine neue technische Versuchsanlage zu testen. Bei dem Pilotexperiment mit sehr geringer Fallzahl ($n_1 = n_2 = 3$) wurde die Behandlung Lüftungssystem (keins und vorhanden) an den Fleischrindern getestet und dabei wurde geschaut, ob der Versuch überhaupt technisch klappen könnte. Gemessen hat Nilufar dann als Messwert Schlachtgewicht [kg]. Warum der Versuch im Teuteburgerwald für ihre Abschlussarbeit stattfinden musste, ist ihr bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Schlachtgewicht [kg]?

treatment	weight
ctrl	13.4
dose	12.8
ctrl	21.5
dose	18.1
dose	20.0
ctrl	13.2

Leider kennt sich Nilufar mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%}=1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Nilufar über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet ein normalverteiltes Outcome (Y).', liest Steffen laut. Das hilft jetzt auch nur bedingt weiter. Eine echte Herausforderung für ihn war schon immer die Romantik gewesen. Ein leidiges Lied. Laut seinem Betreuer ist zwar ihm Messwert Schlachtgewicht [kg] normalverteilt, aber wie rechnet er jetzt einen t-Test? Für seiner Hausarbeit musste er ein Kreuzungsexperiment mit Fleischrindern im Oldenburger Land durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll er auch noch testen, ob die Behandlung Lüftungssystem (keins und vorhanden) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Hm, lecker Oreos und dazu dann im Hintergrund Harry Potter laufen lassen.

Lüftungssystem	Schlachtgewicht
keins	23.9
vorhanden	28.1
vorhanden	39.3
vorhanden	28.7
vorhanden	19.2
vorhanden	27.4
vorhanden	15.3
keins	22.2
vorhanden	33.2
keins	29.1
keins	27.2
vorhanden	24.2
keins	20.4
keins	12.0
keins	20.9

Leider kennt sich Steffen mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *einen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Steffen über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Oldenburger Land, unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer von Mark, der mit seiner 1 Mann starken Besatzung 12 Wochen lang unterwegs ist, um neue Welten zu erforschen, neues Leben und neue Zivilisationen. 'Oder nennen wir es Ödnis und Verzweiflung', denkt Mark. Für seinen Projektbericht ist Mark ins Nichts gezogen. Eine echte Herausforderung für ihn war schon immer die Unsicherheit gewesen. Ein leidiges Lied. Was macht er nun? Mark hat ein Kreuzungsexperiment mit Fleischrindern durchgeführt. Die Behandlung Flüssignahrung (*ctrl* und *flOw*) wurde an Fleischrindern getestet. Gemessen hat er dann als einen normalverteilten Messwert (Y) Gewichtszuwachs in der 1LW. Jetzt soll er seiner Betreuerin nach testen, ob die Behandlung Flüssignahrung (*ctrl* und *flOw*) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Mark schmeißt noch eine Handvoll Marzipankugeln in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Andrea Berg.

Flüssignahrung	Gewichtszuwachs
flOw	40.5
ctrl	31.9
ctrl	29.1
ctrl	23.5
flOw	39.4
flOw	43.5
ctrl	29.7
ctrl	28.2
flOw	47.1
flOw	47.7
flOw	39.4
flOw	47.4
ctrl	33.0
flOw	39.2
ctrl	29.5

Leider kennt sich Mark mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 90% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Mark über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas und Mark haben sich dazu entschieden zusammenzuarbeiten. Das sollte alles etwas einfacher machen. Jeder hat zwar ein getrenntes Themenfeld aber den Hauptversuch machen beide gemeinsam. Das hat sich schonmal als gut Idee soweit herausgestellt. In einer Hausarbeit sollen beide herausfinden, ob es einen Zusammenhang zwischen Ernährungszusatz (ohne und 14d) und Schlachtgewicht [kg] gibt. Die Besonderheit ist hierbei, dass die Messungen an der gleichen Beobachtung stattfinden. Beide messen also zweimal an den gleichen Fleischrindern. Hier muss dann wohl auf einen normalverteilten Endpunkt (Y) ein gepaarter t-Test gerechnet werden. Jonas schaut etwas flehentlich zu Mark. Jonas und die Erschöpfung, eine unendliche Geschichte mit kniffeligen Wendungen.. Steffen denkt derweil angestrengt an Andrea Berg und wippt leicht mit dem Fuß.

ID	treatment	freshmatter
2	14d	48.3
3	14d	36.3
11	14d	33.1
8	ohne	36.7
3	ohne	42.9
7	14d	40.3
9	14d	44.2
6	ohne	40.6
4	14d	37.3
1	ohne	50.4
10	14d	35.3
7	ohne	43.8
6	14d	31.0
5	14d	12.4
5	ohne	42.0
4	ohne	52.2
8	14d	39.6
1	14d	35.0
2	ohne	44.8

Leider kennen sich Jonas und Mark mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie den *p*-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! (2 **Punkte**)
- 6. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Programmieren ist wie eine Sprache lernen. Man muss es nur machen, dann wird man mit der Zeit immer besser!', gibt Alex zwinkernd zu Protokoll. Ein paar Mal hat sie schon die Gefälligkeit gehindert weiterzumachen. Das hilft jetzt Mark und Jonas nur bedingt, da beide jetzt die Ausgabe interpretieren müssen und nicht vor drei Wochen, wo noch Zeit gewesen wäre. Beide mampfen konzentriert Marzipankugeln und Snickers in sich hinein. Die beiden hatten im Emsland einen Versuch mit Fleischrindern in einem Leistungssteigerungsversuch durchgeführt. Das war schon anstrengend genug! 'Wir haben Schlachtgewicht [kg] gemessen, vielleicht hilft das ja...', meint Jonas leicht genervt. Alle starren auf die Ausgabe des t-Tests. Im Hintergrund wummert Abba und man versteht kaum sein eigenes Wort. Jonas hofft, dass die Katze von Alex beruhigend wirkt.

```
##
## Two Sample t-test
##
## data: Schlachtgewicht by Flüssignahrung
## t = 0.41178, df = 13, p-value = 0.6872
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -7.969636 11.723207
## sample estimates:
## mean in group ctrl mean in group flow
## 32.11429 30.23750
```

Helfen Sie Alex bei der Interpretation des t-Tests! Sonst geht es auch für Mark und Jonas nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.16|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wir waren im Oldenburger Land um Fleischrindern in einem Stallexperiment zu messen.', Nilufar legt das Dokument auf den Tisch und schaut Mark und Yuki fragend an. Beide schauen fragend zurück. Gäbe es die Faulheit nicht, dann wäre es für Yuki irgendwie einfacher hier zu helfen. Echt unangenehm. Die beiden sind zu Nilufar gekommen, da sie sich nicht mit auskennen und daher Hilfe bei der Interpretation des t-Tests brauchen. Im Hintergrund wummert Deichkind und leere Takis Blue Heat Packungen stappeln sich auf dem Boden. 'Kein Problem', sagt Nilufar und streichelt langsam das Huhn. 'Aber worum es in dem Versuch geht, lässt sich nur aus dem Text in seiner Hand erahnen.' merkt sie an. Vielleicht hilft da ja die Ausgabe des t-Tests in R weiter. Draußen geht blutrot die Sonne unter.

```
##
## Two Sample t-test
##
data: Gewichtszuwachs by Ernährungszusatz
## t = 3.6438, df = 16, p-value = 0.002187
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 6.266196 23.700038
## sample estimates:
## mean in group ctrl mean in group fedX
## 46.42857 31.44545
```

Helfen Sie Nilufar bei der Interpretation des t-Tests! Sonst geht es auch für Mark und Yuki nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit dem R Paket {emmeans} können wir gleich die Gruppenvergleiche rechnen und uns das compact letter displac' ausgeben lassen!', verkündet Nilufar sichtlich stolz. Ein paar Mal hat sie schon die Erwartung gehindert weiterzumachen. 'Nach Meinung des Betreuers soll es aber nur erstmal ein t-Test sein. Und die Ausgabe ist schon wirr genug.', merkt Jonas an. Tina und Jonas sind bei Nilufar um sich in helfen zu lassen. Im Hintergrund wummert Deichkind. Jonas streichelt zur Beruhigung das Huhn von Nilufar. Die beiden waren 1 Monate im Oldenburger Land um einen Versuch mit Fleischrindern in einem Stallexperiment durchzuführen. Ziel war es das Outcome (Y) Protein/Fettrate [%/kg] zu bestimmen. Nilufar überlegt, ob sie die beiden nicht noch auf den Film Star Trek einlädt oder dann doch lieber raus geht um zu Kicken? Vielleicht will ja Jonas mit. Besser als der Film.

```
##
## Two Sample t-test
##
data: Protein/Fettrate by Bestandsdichte
## t = 0.30102, df = 19, p-value = 0.7667
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -4.735349 6.326258
## sample estimates:
## mean in group Verordnung mean in group Erhöht
## 40.25000 39.45455
```

Helfen Sie Nilufar bei der Interpretation des t-Tests! Sonst geht es auch für Tina und Jonas nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alles voll mit Fleischrindern. Aber das haben Tina und Jessica eben gemeinsam in einer Abschlussarbeit gemacht! Worum ging es aber konkret? Beide haben als einen normalverteilten Messwert (Y) Fettgehalt [%/kg] von Fleischrindern bestimmt. Die Daten haben beide zusammen in einem Stallexperiment erhoben. In dem Experiment ging es um eine vorher/nachher Untersuchung an den gleichen Fleischrindern. Als Behandlung wurde Flüssignahrung (1l/d und 5l/d) eingesetzt. Nach der Meinung des Betreuers muss hier ein gepaarter t-Test gerechnet werden. Leider kennen sich beide nicht sehr gut in \mathbb{R} aus.

```
##
## Paired t-test
##
## data: Fettgehalt by Flüssignahrung
## t = 2.3864, df = 8, p-value = 0.0441
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 0.3864428 22.5468906
## sample estimates:
## mean difference
## 11.46667
```

Jetzt brauchen Tina und Jessica Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in Rum ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

75. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wir können jetzt anhand der Visualisuierung sehen, ob da schon was signifikant ist?', Jonas hebt die Augenbraue. 'Ja, können wir. Dafür müssen wir aber erstmal in {ggplot} uns die Daten anschauen. Oder wir zeichnen es flott mit der Hand. Geht auch.', meint Tina dazu. Jonas hatte sich in ein Kreuzungsexperiment verschiedene Fleischrindern angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Ernährungszusatz (ctrl, fedX und getIt) und dem Messwert Fettgehalt [%/kg] gibt.

Ernährungszusatz	Fettgehalt
fedX	45
getIt	36
fedX	45
fedX	46
ctrl	43
ctrl	42
getIt	35
getIt	35
fedX	45
fedX	45
getIt	34
ctrl	43
getIt	34
ctrl	46
ctrl	47
getIt	35
ctrl	50

Leider kennen sich Jonas und Tina mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β₀ (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nilufar und Alex schauen sich etwas entnervt an. Gemeinsam schreiben die beiden ihre Abschlussarbeit und sollen nun als erstes einmal die Daten mit eine einfaktoriellen ANOVA auswerten damit abgeschätzt werden kann, ob überhaupt signifikante Ergebnisse in den multipen Gruppenvergleichen zu erwarten sind. Die beiden waren im Emsland um ein Kreuzungsexperiment mit Fleischrindern durchzuführen. Dabei haben Nilufar und Alex den Messwert Schlachtgewicht [kg] unter der Behandung Lüftungssystem (keins, storm, tornado und thunder) ermittelt.

Leider kennen sich Nilufar und Alex mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Lüftungssystem	3				
error	20	329.09			
Total	23	651.96			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.1$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas und Yuki schauen sich etwas entnervt an. Gemeinsam schreiben die beiden ihre Abschlussarbeit und sollen nun als erstes einmal die Daten mit eine einfaktoriellen ANOVA auswerten damit abgeschätzt werden kann, ob überhaupt signifikante Ergebnisse in den multipen Gruppenvergleichen zu erwarten sind. Nun möchte erstmal ihre Betreuung der Arbeit eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag. Jonas schaut Yuki sehen erstmla gar nichts. Die beiden waren im Emsland um ein Stallexperiment mit Fleischrindern durchzuführen. Dabei haben Jonas und Yuki den Messwert Schlachtgewicht [kg] unter der Behandung Lüftungssystem (keins, storm, tornado und thunder) ermittelt.

Leider kennen sich Jonas und Yuki mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Lüftungssystem	3	891.03			
Error	31	881.66			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=2.91$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Lüftungssystem	Fallzahl (n)	Mittelwert	Standardabweichung
keins	7	3.14	7.24
storm	10	4.90	6.82
tornado	10	6.60	2.72
thunder	8	16.75	3.41

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina schaut entnervt auf und klappt den Laptop zu. Nun möchte ihr Betreuer ihrer Hausarbeit erstmal eine ANOVA sehen und *dann* die Ergebnisse präsentiert bekommen bevor es überhaupt mit der Abschlussarbeit weitergeht. Dabei war sie extra im Emsland um ein Stallexperiment mit Fleischrindern durchzuführen. Und dort was es wirklich nicht schön geschweige denn spannend wie bei ihren Kommilitonen, die in Almería waren. Hätte sie es vorher gewusst, dann hätte sie die Abschlussarbeit bei wem anders geschrieben. Aber gut, jetzt als die ANOVA in \bigcirc R.

Leider kennen sich Tina mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Stallexperiment wurden Fleischrindern mit dem Behandlung Bestandsdichte (*standard*, *eng*, *weit* und *kontakt*) sowie der Behandlung Elterlinie (*ctrl*, und *Xray*) untersucht. Es wurde als Messwert Schlachtgewicht [kg] bestimmt. Nilufar ahnte schon, dass es komplexer wird, als sie mit ihrer Abschlussarbeit angefangen hat. Das es jetzt aber so kompliziert wird, hätte sie jetzt aber auch nicht gedacht. Nilufar kratzt sich am Kopf. Eventuell muss sie dann doch nochmal Hilfe in der statistischen Beratung holen. Jetzt versucht sie es aber erstmal selber.

Leider kennen sich Nilufar mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3	119			
Elterlinie	1	1.17			
Bestandsdichte:Elterlinie	3	530.14			
Error	18	466.56			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$\emph{F}_{lpha=5\%}$
Bestandsdichte	4.26
Elterlinie	3.40
Bestandsdichte:Elterlinie	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Bestandsdichte: Elterlinie aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit der zweifaktoriellen ANOVA lässt sich die Interaktion zwischen den beiden Behandlungen nachweisen!', seine Betreuerin scheint die zweifaktoriellen ANOVA zu verstehen. Warum jetzt er jetzt nochmal alles wiederkäuen muss, wird Yuki echt nicht so klar. Wenn es doch so klar ist? Yuki war im Emsland und hatte dort einen Leistungssteigerungsversuch mit Fleischrindern durchgeführt. Die Komune wo er untergekommen war, war cool gewesen. Nur jetzt muss eben das Experiment fertig ausgewertet werden. Yuki hatte zwei Behandlungen auf Fleischrindern angewendet. Einmal Ernährungszusatz (ctrl, fedX und getIt) sowie als zweite Behandlung Lüftungssystem (keins und thunder). Gemessen wurde der Messwert (Y) Protein/Fettrate [%/kg]. Jetzt muss das hier zu einem Ende kommen!

```
## Analysis of Variance Table
##

## Response: Protein/Fettrate
##

## Response: Protein/Fettrate

##

## Response: Protein/Fettrate

##

## Liftungszusatz

## Liftungssystem

## Liftungssystem

## Ernährungszusatz:Liftungssystem

## Residuals

## Residuals

## 10.4355

## 10.702
```

Leider kennen sich Yuki mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! **(5 Punkte)**

In der untenstehenden Tabelle ist die Formel für den F-Test aus der ANOVA und die Formel für den Student t-Test dargestellt. In der ANOVA berechnen Sie die F-Statistik F_{calc} und in dem Student t-Test die T-Statistik T_{calc} .

$$F_{calc} = rac{MS_{treatment}}{MS_{error}}$$
 $T_{calc} = rac{ar{y}_1 - ar{y}_2}{s_p \cdot \sqrt{2/n_g}}$

- 1. Erklären Sie den konzeptionellen Zusammenhang zwischen der F_{calc} Statistik und T_{calc} Statistik! (2 **Punkte**)
- 2. Visualisieren Sie eine nicht signifikante F_{calc} Statistik sowie eine signifikante F_{calc} Statistik anhand von $MS_{treatment}$ und MS_{error} ! Beschriften Sie die Abbildung! (2 Punkte)
- 3. Erklären Sie an der Formel des F-Tests sowie an der Abbildung warum das Minimum der F-Statistik 0 ist! (2 Punkte)
- 4. Wenn die F-Statistik 0 ist, spricht dies eher für oder gegen die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen eine zweifaktorielle ANOVA und erhalten einen signifikanten Interaktionseffekt zwischen den beiden Faktoren f_1 und f_2 . Der Faktor f_1 hat drei Level. Der Faktor f_2 hat dagegen nur zwei Level.

- 1. Visualisieren Sie in zwei getrennten Abbildungen eine starke und keine Interaktion zwischen den Faktoren f_1 und f_2 ! **(4 Punkte)**
- 2. Erklären Sie den Unterschied zwischen den beiden Stärken der Interaktion! (2 Punkte)
- 3. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen bei einem Posthoc-Test? (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA mit einem Faktor f_1 mit drei Leveln. Nachdem Sie die einfaktorielle ANOVA gerechnet haben, erhalten Sie einen p-Wert von 0.078 und eine F Statistik mit $F_{calc}=1.2$. Als Sie sich die Boxplots der Behandlungen anschauen, stellen Sie fest, dass es eigentlich einen Mittelwertsunterschied zwischen dem zweiten und ersten Level geben müsste. Die IQR-Bereiche überlappen sich nicht und die Mediane liegen auch weit vom globalen Mittel entfernt.

- 1. Erklären Sie die Annahme der Normalverteilung und die Annahme der Varianzhomogenität für eine ANOVA an einer passenden Abbildung! (3 Punkte)
- 2. Visualisieren Sie die Berechnung von F_{calc} am obigen Beispiel! (3 Punkte)
- 3. Erklären Sie das Ergebnis der obigen einfaktoriellen ANOVA unter der Berücksichtigung der Annahmen an eine ANOVA! (3 Punkte)

Teil V.

Multiple Gruppenvergleiche

84. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Moment, die haben ja das Gleiche gemacht wie wir!', ruft Tina laut aus. Alex schaut etwas verwundert. 'Das glaube ich eher nicht. Lass uns mal unsere Daten mit den Ergebnissen von Qui et al. (2017) vergleichen.', antwortet Alex. In ein Stallexperiment mit Fleischrindern wurde die Behandlung Lüftungssystem (keins, storm, tornado und thunder) auf den Messwert Schlachtgewicht [kg] untersucht. Jetzt müssen die beiden mal schauen, ob sie wirklich was Neues gefunden haben oder ob die Ergebnisse alle die gleichen sind wie schon bei Qui et al. (2017). Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Qui et al. (2017).

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.001		
0.340		
0.060		
0.002		

Leider kennen sich Tina und Alex mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica sitzt schon etwas länger bei ihrer Betreuerin. So langsam macht Jessica sich Gedanken, ob sie nicht doch mal anmerken sollte, dass sie von CLD noch nie was gehört hat. Aber noch kann gelauscht werden, ein Ende ist erstmal nicht in Sicht! Jessica hatte in ihrer Hausarbeit ein Kreuzungsexperiment durchgeführt. Deshalb sitzt sie hier. Also eigentlich nein, deshalb nicht. Jessica will fertig werden. Hat sie sich doch mit Lüftungssystem (keins, storm, tornado und thunder) und Gewichtszuwachs in der 1LW schon eine Menge angeschaut. Jessica beugt sich leicht nach vorne. Nein, doch keine Pause. Weiter warten auf eine Lücke im Fluss...

Behandlung	Compact letter display
keins	а
storm	a
tornado	b
thunder	a

Leider kennen sich Jessica mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! **(3 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina sitzt schon etwas länger bei ihre Betreuerin. So langsam macht Tina sich Gedanken, ob sie nicht doch mal anmerken sollte, dass sie von CLD noch nie was gehört hat. Aber noch kann gelauscht werden, ein Ende ist erstmal nicht in Sicht! Tina hatte in ihre Hausarbeit einen Leistungssteigerungsversuch durchgeführt. Deshalb sitzt sie hier. Also eigentlich nein, deshalb nicht. Tina will fertig werden. Hat sie sich doch mit Elterlinie (ctrl, Standard, TOP und Xray) und Protein/Fettrate [%/kg] schon eine Menge angeschaut. Tina beugt sich leicht nach vorne. Nein, doch keine Pause. Weiter warten auf eine Lücke im Fluss... 'Wir müssen als erstes die Gruppen nach absteigender Effektstärke sortieren!', hört Tina noch aus der Ferne bevor sie einnickt.

Elterlinie	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	9	14.54	1.86
Standard	8	15.56	1.63
TOP	7	15.17	2.98
Xray	7	5.36	2.80

Leider kennen sich Tina mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Tina und Alex! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Okay, dann nochmal für mich. Ich habe jetzt alles in SPSS gemacht, aber das Wichtigste, was gemacht werden soll, nämlich das CLD, das kann ich nicht in SPSS machen?', Paula muss sich echt beherrschen. Immerhin betreut ihre Betreuerin ja erst nicht seit gestern Abschlussarbeiten und wusste ja was gemacht werden soll! Paula hatte sich zwei Variablen mit Elterlinie (ctrl, Standard, SLOW, und Xray) und Gewichtszuwachs in der 1LW in ein Stallexperiment mit Fleischrindern angeschaut. Jetzt möchte sie eigentlich fertig werden und nicht nochmal alles neu in \P und {emmeans} machen. Deshalb soll jetzt das CLD per Hand aus der Matrix der p-Wert abgeleitet werden. 'Ich glaube ich wechsel nochmal das Thema...', denkt Paula, verwirft dann aber den Gedanken.

	ctrl	Standard	SLOW	Xray
ctrl	1.0000000	0.2083029	0.2506510	0.2826827
Standard	0.2083029	1.0000000	0.0223217	0.0298816
SLOW	0.2506510	0.0223217	1.0000000	0.9809861
Xray	0.2826827	0.0298816	0.9809861	1.0000000

Leider kennen sich Paula mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Paula und Alex! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

88. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Nilufar in ihrer Mitschrift. So richtig helfen tut ihr das jetzt eherlichweise dann doch nicht. Nilufar hatte sich in ein Stallexperiment n=106 Beobachtungen von Fleischrindern angeschaut. Dabei hat er als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Gewichtszuwachs erreicht [ja/nein] ermittelt. Am Ende möchte dann ihre Betreuerin gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

38	11	
13	44	

Leider kennt sich Nilufar mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! (2 Punkte)
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas hat sich ein Herz gefasst und war für seinem Projektbericht in die Niederlande gegangen. Das war eine super Zeit in der er viel gelernt hat. Klar gab es auch die ein oder andere Besonderheit, aber das gehört hier eher nicht hin. Jonas ist schon eine ganze Zeit im Büro, da seine Betreuerin möchte, dass er jetzt auf seinen Daten mit n=152 Beobachtungen von Fleischrindern einen \mathcal{X}^2 -Test rechnet. Das ginge, da er als Behandlung Außenklimakontakt [ja/nein] bestimmt und zum anderen die Variable Fettgehalt erreicht [ja/nein] ermittelt hat. Wie genau, das ist jetzt eine andere Frage.

		84
		68
86	66	152

Leider kennt sich Jonas mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *ein* signifikanter Effekt zu erwarten wäre! **(2 Punkte)**
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der χ^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Tina in ihrer Mitschrift. So richtig helfen tut ihr das jetzt eherlichweise dann doch nicht. Tina hatte sich in ein Kreuzungsexperiment n=152 Beobachtungen von Fleischrindern angeschaut. Dabei hat er als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Gewichtszuwachs erreicht [ja/nein] ermittelt. Am Ende möchte dann ihr Betreuer gerne einen χ^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen. Nach ihrem Experiment erhielt sie folgende 2x2 Kreuztabelle aus ihren erhobenen Daten.

Dann rechnete Tina den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \mathbb{R} und erhielt folgende \mathbb{R} Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
data: Gewichtszuwachs erreicht
## p-value = 0.005898
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.462677 32.500828
## sample estimates:
## odds ratio
## 6.352594
```

Leider kennt sich Tina mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das Odds ratio im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 3% angenommen. In 75% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 8% der Fälle ist ein Test positiv, wenn das Wollschwein nicht erkrankt ist und somit gesund ist. Sie werten 2000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Teil VII.

Lineare Regression & Korrelation

93. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Hatten wir das als Aufgabe nicht schon mal, das wir aus kontinuierlichen Daten eine Abbildung bauen sollten?', fragt Steffen. Tina schaut fragend zurück. 'Kann mich wie immer an nichts erinnern. Können wir trotzdem jetzt erstmal die Daten auswerten? Columbo?', antwortet Tina leicht angespannt. Die beiden hatten ein Kreuzungsexperiment im Oldenburger Land mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlerer Eisenkonzentration [Fe/ml] und Fettgehalt [%/kg]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich...

Mittlerer Eisenkonzentration [Fe/ml]	Fettgehalt [%/kg]
29.4	20.9
28.5	20.3
26.6	16.1
27.5	20.0
24.3	18.3
33.7	24.1
28.2	19.6
26.7	20.4
25.7	19.9
22.1	17.5

Leider kennen sich Steffen und Tina mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Paula an. 'Ich sehe keine Punkte... ich sehe nur zwei Zeilen einer Tabelle und ich glaube du hast gerade was gelöscht.', antwortet Mark sichtlich übernächtigt. 'Wir müssen die Koeffizienten der linearen Regression ja auch erst interpretieren!', spricht Paula sehr deutlich und langsam. Die beiden hatten ein Stallexperiment in der Uckermark mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Bewegungsscore [Movement/h] und Protein/Fettrate [%/kg]. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der Ausgabe möglich sein.

term	estimate	std.error	t statistic	p-value
(Intercept)	-0.85	2.78		
Durchschnittlicher Bewegungsscore	2.30	0.28		

Leider kennen sich Paula und Mark mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Paula an. 'Ich sehe keine Punkte... das ist doch eine Ausgabe in ... Überhaupt, darum geht es doch gar nicht in unserem Versuch. Wir wollen doch keine Gerade zeichnen?.', antwortet Nilufar sichtlich übernächtigt. 'Doch wir müssen nur die Koeffizienten der linearen Regression erst richtig interpretieren und vor unserem geistigen Auge erscheint eine Gerade!', spricht Paula sehr deutlich und langsam. Die beiden hatten ein Stallexperiment im Teuteburgerwald mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittliche Tagestemperatur [C/d] und Proteianteil [%/kg]. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der Rausgabe möglich sein.

```
##
## Call:
## Proteianteil ~ Durchschnittliche_Tagestemperatur
##
## Residuals:
##
                  10
                       Median
                                    30
        Min
## -3.08513 -0.88104 -0.08541 1.14833
                                        2.80354
##
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                       3.9679
                                                   1.7602
                                                          2.254
                                                                    0.0307
## Durchschnittliche_Tagestemperatur
                                       0.8630
                                                   0.1699
                                                            5.078 1.36e-05
## Residual standard error: 1.405 on 34 degrees of freedom
## Multiple R-squared: 0.4313, Adjusted R-squared: 0.4146
## F-statistic: 25.78 on 1 and 34 DF, p-value: 1.361e-05
```

Leider kennen sich Paula und Nilufar mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert 0.43 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!


```
##
## Pearson's correlation
##
## data: Durchschnittlicher Bewegungsscore [Movement/h] and Schlachtgewicht [kg]
## t = 1.523, df = 8, p-value = 0.1663
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2216973  0.8500001
## sample estimates:
## cor
## 0.4741081
```

Leider kennt sich Jessica mit der Korrelationsanalyse in \mathbb{R} überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

In den folgenden Abbildungen sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (3 **Punkte**)

Pearsons $\rho = 0.25$

$$R^2 = 0.5$$

Pearsons $\rho = 0.5$

$$R^2 = 0.25$$

Pearsons $\rho = -0.75$

$$R^2 = 0.75$$

In den folgenden Abbildungen sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die R^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (1 **Punkt**)

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m^2 (*drymatter*) und Wassergabe l/m^2 (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	23.0	7.6	22.2	
2	18.2	5.6	19.1	
3	13.0	0.9	12.2	
4	29.1	15.0	33.1	
5	25.2	8.4	23.3	
6	43.4	21.0	42.1	
7	34.1	15.7	34.3	
8	38.1	18.1	37.9	
9	26.3	11.6	28.1	
10	25.1	10.3	26.2	
11	26.5	10.2	26.0	
12	39.2	17.6	37.0	
13	26.9	10.4	26.3	

- 1. Ergänzen Sie die Werte in der Spalte .resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Poissonverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)

- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Ein Feldexperiment wurde mit n = 200 Pflanzen durchgeführt. Folgende Einflussvariablen (x) wurden erhoben: fertilizier, rainfall und height. Als mögliche Outcomevariablen stehen Ihnen nun folgende gemessene Endpunkte zu Verfügung: drymatter, yield, count, quality score und dead.

- 1. Wählen Sie ein Outcome was zu der Verteilungsfamilie Gaussian gehört! (1 Punkt)
- 2. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} in der Funktion glm() üblich ist *ohne Interaktionsterm*! (3 Punkte)
- 3. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} üblich ist und ergänzen Sie einen Interaktionsterm nach Wahl! (1 Punkt)
- 4. Zeichen Sie eine *starke* Interaktion in die Abbildung unten für den Endpunkt *yield*. Ergänzen Sie eine aussagekräftige Legende. Wie erkennen Sie eine Interaktion? Begründen Sie Ihre Antwort! **(4 Punkte)**

Teil VIII.

Experimentelles Design

102. Aufgabe (16 Punkte)

Yuki und Jonas sind bei Paula um sich Hilfe für eine Versuchsplanung in \mathbb{R} zu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) sowie Elterlinie (ctrl, und Xray) und dem Messwert Schlachtgewicht [kg] in Fleischrindern. Der Versuch soll in einem Stallexperiment im Oldenburger Land durchgeführt werden. Nach dem Dozenten ist der Messwert Schlachtgewicht [kg] normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Paula ein einfaches experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein Randomized complete block design (RCBD) mit nur einem der beiden Faktoren. Das sollte für den anfang erstmal reichen. 'Und jetzt, was machen wir jetzt?', Jonas schaut die anderen beiden mit großen Augen an. Die zucken mit der Schulter.

Leider kennen sich Paula, Yuki und Jonas mit dem *Randomized complete block design (RCBD)* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 🔃 (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Paula und Tina sind bei Mark um sich Hilfe für eine Versuchsplanung in 2 zu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) sowie Ernährungszusatz (ctrl und getIt) sowie zwei Blöcken und dem Messwert Protein/Fettrate [%/kg] in Fleischrindern. Der Versuch soll in einem Stallexperiment im Emsland durchgeführt werden. Nach dem Dozenten ist der Messwert Protein/Fettrate [%/kg] normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Mark ein komplexeres experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein Split plot design oder auch Spaltanlage mit Berücksichtigung einer Interaktion. Das sollte für den anfang erstmal reichen. 'Und jetzt, was machen wir jetzt?', Tina schaut die anderen beiden mit großen Augen an. Die zucken mit der Schulter.

Leider kennen sich Mark, Paula und Tina mit dem *Split plot design oder auch Spaltanlage* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil IX.

Programmieren in R

104. Aufgabe (9 Punkte)

Paula muss ihrer Hausarbeit mit Rarbeiten. Deshalb sitzt sie jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in Ran Sie! Na dann wollen Sie mal helfen. Immerhin will ihre Betreuerin, dass Renutzt wird.

Paula: Wie war nochmal der Name der Funktion in dem wir in R Daten intern abspeichern? Was waren da nochmal die Vorteile? (1 Punkt)

Sie antworten:

Paula: Ich verstehe den Zuweisungs-Operator nicht. Wie sieht der aus und was macht der? Gebe mal ein Beispiel! (1 Punkt)

Sie antworten:

Paula: Wie sieht der Pipe-Operator aus und was ist seine Funktion? Gerne mit Beispiel! (1 Punkt) Sie antworten:

Paula: Warum brauche ich eigentlich das RStudio und R? Wo ist denn da der Unterschied? (1 Punkt) Sie antworten:

Paula: Was ist der Unterschied zwischen einem Objekt, einem Wort und einer Funktion? (1 Punkt) Sie antworten:

Paula: Wenn ich was in R machen möchte, dann lade ich nochmal welche zwei R Pakete sehr häufig? (1 Punkt)

Sie antworten:

Paula: Jetzt lese ich hier von einem Faktor. Was ist ein Faktor in ? (1 Punkt) Sie antworten:

Paula: Es gibt ja in R unter anderem library() und Packages. Was ist de Unterschied und wozu brauche ich die? (1 Punkt)

Sie antworten:

Paula: Was war eigentlich nochmal ein Vorteil von der Nutzng von ? (1 Punkt) Sie antworten:

Jessica muss ihrer Hausarbeit mit Rarbeiten. Leider ist die Analyse etwas komplexer, so dass es eben in Excel dann nicht mehr geht. Deshalb also gleich alles in R. Das ist auch der Grund warum sie jetzt mit Ihnen in der Küche sitzt und einige vertiefende Fragen zu Ran Sie hat! Na dann wollen Sie mal helfen. Immerhin will ihre Betreuerin, dass Rangenutzt wird und die Abgabe ist dann auch schon in gut einem Monat.

Jessica fragt: Ich will eine ANOVA in R rechnen. Dazu brauche ich zwei Funktionen. Welche waren das noch gleich und wie war die Reihenfolge? (1 Punkt)

Sie antworten:

Jessica fragt: Ich möchte in der Funktion emmeans() den Faktor f_1 getrennt in jedem Level des Faktors f_2 auswerten. Was muss ich da in de Funktion emmeans() angeben? (1 Punkt)

Sie antworten:

Jessica fragt: Nach der EDA zu urteilen liegt eine Interakton vor, wie spezifiziere ich diese im Modell, so dass ich die interaktion zwischen zwei Faktoren f_1 und f_2 testen kann? (1 Punkt)

Sie antworten:

Jessica fragt: Was muss ich bei der Eingabe eines Datums in Excel beachten, wenn ich später die Exceldatei in R einlesen will? Wie lautet das Format? (1 Punkt)

Sie antworten:

Jessica fragt: Warum wurden jeweils die R Pakete {emmeans}, {ggplot} und {readxl} geladen? (2 Punkte) Sie antworten:

Jessica fragt: Das Dateiformat in R hat einen Namen. Wie heißt der und gerne mit Beispiel! (1 Punkt) Sie antworten:

Jessica fragt: Ich habe hier einen Gruppenvergleich als Expriment durchgeführt. Wenn ich jetzt die Daten in R reingeladen habe, was muss ich dann als erstes machen und warum nochmal? (2 Punkte)
Sie antworten:

Teil X.

Forschendes Lernen

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

In der Prüfung erhalten Sie einen Auszug der wissenschaftlichen Veröffentlichung. Für die Einarbeitung in die Veröffentlichung ist in der Prüfung ausdrücklich keine Zeit vorgesehen.

- Sánchez, M., Velásquez, Y., González, M., & Cuevas, J. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., Demann, J., Restemeyer, D., Olfs, H. W., Westendarp, H., Appenroth, K. J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Selle, P. H., Cadogan, D. J., Li, X., & Bryden, W. L. (2010). Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 156(3-4), 57-74. [Link]
- Wu, G., Knabe, D. A., & Kim, S. W. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]

Das forschende Lernen basiert zum anderen auf den folgenden wissenschaftlichen Datensätzen und deren vertiefende Analyse werden als bekannt vorausgesetzt. Die Teilaufgaben der Aufgaben stellen nur eine zufällige Auswahl an möglichen Fragen dar. Die Datensätze werden über ILIAS bereitgestellt.

In der Prüfung erhalten Sie <u>keinen Auszug</u> aus den wissenschaftlichen Daten. Die Datensätze werden als bekannt in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen gemacht.

• bar

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Vor dem Start der eigenen Arbeit möchte ihr Betreuer, dass Jessica einmal die wissenschaftliche Veröffentlichung Sánchez, M., et al. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation sinnvoll zusammenfasst. Dann würde die eigene Arbeit auch leichter von der Hand gehen und Jessica hätte dann schon eine Vorlage. 'Das ist jetzt aber umfangreicher als gedacht!', schnauft sie und runzelt die Stirn.

Leider kennt sich Jessica mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)² (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in R für eine ausgewählte Abbildung! (2 Punkte)
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wisenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

²Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff', denkt Mark Das ist jetzt doch etwas umfangreicher. Mark soll die wissenschaftlichen Daten *data1* einmal sinnvoll analysieren und zusammenfassen. Die Daten sollen als eine Vorlage für seine eigene Arbeit und Experiment dienen. Daher möchte seine Betreuerin, dass er einmal die Daten in einer PowerPoint Präsentation zusammenfasst. 'Das ist jetzt aber doch umfangreicher als gedacht.', mault Mark in sich hinein. Dann starrt er eine Weile in seinen Laptop.

Leider kennt sich Mark mit der Analyse eines wissenschaftlichen Datensatzes überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

- 1. Formulieren Sie die wissenschaftliche Fragestellung des Datensatzes in Form einer PowerPoint Folie! (2 Punkte)
- 2. Nennen Sie zwei Besonderheiten des Datensatzes! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Nennen Sie die untersuchten Endpunkte in dem Datensatz! Wie lautet der primäre Endpunkt für die Auswertung? (2 Punkte)
- 4. Skizzieren Sie die großen Analysebereiche der Statistik! Beschriften Sie die Abbildungen! (2 Punkte)
- 5. In welchen der großen Analysebereiche der Statistik fällt die Auswertung des primären Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie eine ikonische Abbildung für den primären Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 7. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 8. Skizzieren Sie die Datenanalyse hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 9. Skizzieren Sie die Berechnung der Effektstärke für den primären Endpunkt! (2 Punkte)
- 10. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)

Teil XI.

Mathematik

108. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte³.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.8mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 10.5m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1805 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 190cm, eine Breite von 80cm sowie eine Länge von 220cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche $m\ddot{u}hsam$ um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 10*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (2 Punkte)

³Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 120 Maispflanzen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Maispflanzen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Maispflanzen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 8cm und eine Höhe von 9cm. Der Kubikmeterpreis für Torf liegt bei 310 EUR.

- 1. Skizzieren Sie den Versuchsplan auf vier Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Pflanztopffläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Rinderstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{ν} von 7m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 9.5m. Der Rinderstall hat eine Tiefe t von 15m und eine Breite b von 50m.

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1.8m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 12t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 10% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $220kg/m^3$. Bei -100° C hat Methan eine Dichte von $290kg/m^3$. Sie betrieben Ihre Anlage bei -88° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 Punkte)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einem Studienrat mit Stock. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Rewe über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile⁴. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einem Studienrat mit Stock?

- 1. Wenn 4 Blaubeerschalen 7.16 Euro kosten, wie viel kosten 7 Schalen? (2 Punkte)
- 2. Wenn Sie die 7 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.89 EUR können Sie sich dann noch für 100 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Rewe über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 160l Wasser. Eine Strauchtomate wiegt 110 115g.
- Ein Kilo Salat benötigt 120l Wasser. Ein Salatkopf wiegt 320 490g.
- Ein Kilo Avocado benötigt 1050l Wasser. Eine Avocado wiegt 140 380g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3.3 3.8g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2023 blieben die Erträge von Blaubeeren mit 7.7×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 7.2%. Die Exporte für Avocados fielen in dem gleichen Zeitraum um 21.2% auf 2.1×10^5 t.

4. Wie viele Kubikmeter Wasser hat Chile in dem Exportjahr 2022 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur drei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 48 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 35 - 115 Liter pro Waschgang einer Waschmaschine und 3 - 12 Liter pro Minute Händewaschen.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einem Studienrat mit Stock erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

⁴Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 66 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde heutzutage so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁵.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.81m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.1956 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.86g/cm^3 . Das Gewicht von einem heute lebenden Waldelefanten mit 2.7 t liegt bei 6t und das Gewicht von einem Triceratops bei 6t bis 12 t.

- 1. Welchen Durchmesser müsste die Erde vor 66 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 66 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 66 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.03 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.55×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 85% Wasserstoffkernen mit einer molaren Masse von 1.02g/mol, 9% Heliumkernen mit 3.92g/mol sowie 6% weiteren Atomkernen mit 152.01g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 6cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Gänse in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Gänse-Halter:innen nicht⁶. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Gänse für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Gans plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) foraging incl. scratching, (2) sitting, (3) dustbathing und (4) preening.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
foraging incl. scratching sitting dustbathing preening	38cm; 21cm; 25.4%	33cm; 27cm; 64.1%	38cm; 22cm; 25.4%
	30cm; 34cm; 0.6%	33cm; 18cm; 0.6%	38cm; 27cm; 0.8%
	39cm; 22cm; 1.2%	34cm; 27cm; 0.5%	32cm; 31cm; 7.6%
	31cm; 23cm; 3.6%	29cm; 24cm; 6.3%	31cm; 27cm; 6.3%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Gänse für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 Punkte)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Gänse in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 42 Tagen die ersten Symptome ein; die ersten Toten sind nach 72 Tagen zu beklagen; nach 100 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 245 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 95 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $8000\mu g/10mg$ Vitamin C. Der Bedarf liegt bei 120mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in *kg* an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 24 Tage über den Pazifik! **(3 Punkte)**
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{31} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 3000m kollabiert, wird die Sonne 40% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁷.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- ullet m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- *G*, gleich der Gravitationskonstante mit $5.974 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.8 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 Punkte)
- 6. Eine Kirchenglocke und eine Feder stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁸

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt zwei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.1198 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 500 Jahren ist die Replikation abgeschlossen und wiederum zwei Sonden werden ausgesendet. Gehen Sie von 5.16 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.7 \times 10^8 m/s$ an.

- Skizzieren Sie in einer Abbildung die ersten vier Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.5×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 10^8 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die bayrischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 73 Grad im Vergleich zu den ägyptischen Pyramiden mit 54 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 38 Königsellen. Eine Königselle misst 52.6cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 38 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 3cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 3 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 85% aus. In eine Schubkarre passen 90 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 12°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die bayrische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Versicherungsverteter*) mit, das die Pyramide zu steil sei und somit nicht in die bayrische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 7° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 15km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die aufwärts Schwierigkeitschallenge durchführen. Die Reihenfolge der Caches nach Schwierigkeitswertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrainund Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁹.

Ort	Cache	Wertung (S T G)
Α	GC8VFBM	3.0 1.0 Normal
В	GCENICO	2.5 2.0 Normal
С	GCJGHPI	5.0 3.5 Klein
D	GC1P0XV	4.5 4.0 Mikro
Е	GC1DBLP	4.0 5.0 Klein

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AB} ist 6km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 4.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 2.1-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 25° südlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 60° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E südlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort B Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- Welche Strecke in km legen Sie bei der Bewältigung der aufwärts Schwierigkeitschallenge zurück? (5 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.15 + 0.18 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die aufwärts Schwierigkeitschallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 5m lang. Erreichen Sie einen Cache in der Höhe von 6.9m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁹Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 15:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung¹⁰.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $320Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 2.8d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 135d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $320Bq/m^3$ auf unter $100Bq/m^3$ gefallen ist? (4 **Punkte**)

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	78.1	28.1	
Sauerstoff	21.3	16.5	
Kohlenstoffdioxid	0.035	12.5	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung¹¹:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

 $^{^{10}\}mathrm{Die}$ Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹¹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei IKEA die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹² in die Hände gefallen. Nun sind Sie eine Magierin der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 549 n. Chr. für den neuen Lehnsherren Henry dem Roten. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- v, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 40mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 11m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 11m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 2.8mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.7mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 1.2×10^6 Bleikugeln zusammen. Blei hat eine Dichte von $15.1q/cm^3$.

4. Wie schwer in Kilogramm kg sind die 1.2×10^6 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 900 Bleikugeln produzieren wollen und die Bleikugel im Fall 1.4cm Abstand haben müssen? **(1 Punkt)**

 $^{^{12}}$ Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Surfschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1859 ungefähr 32 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹³

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 1.1 \times 10^{10} - 1.4 \times 10^9 \cdot 2.1^{-0.3 \cdot t + 3.2}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 12 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 18 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.6 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 10 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 99.9% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 50% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Westen von Australien. Australien hat eine West-Ost-Ausdehnung von 4100km und eine Nord-Süd-Ausdehnung von knapp 3700km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 7.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 9\$ pro Tier und der durchführende Arzt verlangt ca. 40\$ pro Tier.

6. In Ihrem Stall leben 1000 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹³Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Lüneburger Heide. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer des Schafs Fridolin und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.4×, Februar mit 0.7× und März mit 1.2×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.1
01. Feb 2023	1.1
01. Mrz 2023	2.7
01. Apr 2023	4.3

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 190°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* (4 Punkte)

Auf dem Weg zu Ihrer Jonagoldplantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Fridolin und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Fridolin mit 230N. Die elektrifizierter Renter bringen eine Kraft von 210N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Fridolin lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Fridolin und die Rentner mit einem 50° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.2t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte *Doppelt gewellte, 4-mal-gefaltete, 0.7mm, 50-cm-Karton* durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 50cm und eine Breite von 22cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blatt*rohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 100m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 100m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 14 . Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2023 leben ca. 8×10^7 Menschen in Deutschland und ca. 1.79×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2023 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 *pro Kopf* in einer aussagekräftigen Tabelle dar! **(2 Punkte)**
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹⁴Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 60%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2023! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2023, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Orthopäden und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihre Partnerin über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.8% angenommen. In 90% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 2.5% der Fälle ist ein HIV-Test positiv, wenn der Patient nicht erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n=3\times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁵.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 **Punkte**)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁵Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁶.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von Healthy Herbs Manufacture International (HeHeMan). Das Unternehmen steigerte den Umsatz um rund 24 Prozent von 275 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut HeHeMan habe das Unternehmen 3.3×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma HeHeMan im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 40%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 200EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 25%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 3%, 2% und 1.5%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum drei Partner für sich selbst an. Pro Monat werden im Schnitt zwei Einheiten vom Produkt verkauft. Sie wollen nun 5000EUR im Monat passiv – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei HeHeMan Einheiten des Produkts für 6000EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 6.2% p.a. über 60 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- 8. Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁶Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einem Ihrer Freunde einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 4 sechseitige Würfel (4d6) zum würfeln in der Hand. Wenn Sie eine 6 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 2 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei achtseitigen Würfeln (2d8) als Schaden oder das Schwert mit einem achtseitigen Würfel plus 3 (1d8+3) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.7, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.9. Sie haben mitgezählt und festgestellt, dass in 45 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 Punkte)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Günther und Elke das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Günther	0.3	0.02
Elke	0.4	0.08

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.12 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit einem einäugen Piraten um das große Geld. Das Glücksrad hat 22 Felder. Sie drehen das Glücksrad zweimal. Auf 6 Feldern gewinnen Sie 5000EUR sonst 1500EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 6500EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

129. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

130. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i : fixer Effekt der j-ten Erstkalbealtergruppe (j: $EKA \le 25$ Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- e_{ijkl} : zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

131. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.