Álgebra Linear - Ciência de Dados Fatec Rubens Lara

Prof. Me. Alexandre Garcia de Oliveira $\label{eq:June 2022} \text{June 2022}$

Chapter 1

Matrizes e sistemas lineares

1.1 Sistemas Lineares

Um sistema de equções lineares é quando temos várias equações que envolvem várias variáveis. Dois métodos básicos serão investigados em um primeiro momento e depois será investigado a forma matricial de um sistema linear.

Definição 1.1 Um sistema linear com duas variáveis e duas equações possuem a forma:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.1)

Nota-se que $a, b, c, d, e, f \in \mathbb{R}$ e x, y são incógnitas.

Um método para solucionar um sistema linear é o de substituição.

Definição 1.2 (Método da substituição) esse método consiste em isolar uma das variáveis na primeira equação e substituir na segunda, eliminando assim uma das variáveis. Por exemplo, queremos isolar x no sistema:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.2)

para isso devemos subtrair by dos dois lados na primeira equação e dividir depois por a (assumimos que $a \neq 0$).

$$\begin{cases} x = \frac{c - by}{a} \\ dx + ey = f \end{cases}$$
 (1.3)

 $Agora, \ substitui-se \ x \ por \ \tfrac{c-by}{a} \ na \ segunda \ equação.$

$$d\left(\frac{c-by}{a}\right) + ey = f$$

Agora, sepramos a fração

$$\frac{dc}{a} - \frac{dby}{a} + ey = f$$

Subtraimos a quantidade $\frac{dc}{a}$ em ambos os lados

$$-\frac{dby}{a} + ey = f - \frac{dc}{a}$$

Agora, o y fica em evidência.

$$(e - \frac{db}{a})y = f - \frac{dc}{a}$$

Dividimos em ambos os lados pela quantia $(e - \frac{db}{a})$.

$$y = \frac{f - \frac{dc}{a}}{\frac{db}{a} + e}$$

E finalmente substituimos novamente na expressão que possui x (primeira equação).

$$x = \frac{c - b\left(\frac{f - \frac{dc}{a}}{\frac{db}{a} + e}\right)}{a}$$

A fórmula fechada e reduzida para x fica como exercício. Uma observação é que para termos solução devemos ter que $\frac{db}{a}+e\neq 0.$

Exemplo 1.1 Resolva

$$\begin{cases} x + y = 9 \\ x - 2y = 15 \end{cases}.$$

Primeiro passo, isolar x.

$$\begin{cases} x = 9 - y \\ x - 2y = 15 \end{cases}.$$

 $Substituimos\ x\ na\ segunda\ equação.$

$$9 - y - 2y = 15$$

Resolvemos a equação de primeiro grau em y.

$$9 - 3y = 15$$
$$-3y = 6$$
$$y = -2$$

Agora, substituimos y na primeira equação.

$$x = 9 - y = 9 - (-2) = 11$$

$$Logo, x = 11 \ e \ y = -2$$

Outro método é quando multiplicamos uma das equações por uma constante e somamos ou subtraimos uma equação da outra de modo a eliminar uma das variáveis.

Definição 1.3 (Método da eliminação) Dado o sistema:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.4)

Queremos eliminar x, para isso devemos deixar que o coeficiente de x na primeira equação seja -d. Para isso, divide-se a primeira equação por $a \neq 0$ e multiplicamos por -d.

$$\begin{cases} x + \frac{by}{a} = \frac{c}{a} \\ dx + ey = f \end{cases}$$

$$\begin{cases} -dx - \frac{dby}{a} = \frac{-dc}{a} \\ dx + ey = f \end{cases}$$

Somando as duas equações, temos que x é eliminado.

$$-\frac{dby}{a} + ey = f - \frac{dc}{a}$$
$$(-\frac{db}{a} + e)y = f - \frac{dc}{a}$$
$$y = \frac{f - \frac{dc}{a}}{e - \frac{db}{a}}$$

 $Procedemos\ da\ mesma\ maneira\ para\ x.$

Exemplo 1.2 Resolva

$$\begin{cases} x + y = 9 \\ x - 2y = 15 \end{cases}.$$

Devemos multiplicar por -1 (o oposto do inverso do coeficiente de x que \acute{e} 1) a primeira equação e somar com a segunda

$$\begin{cases}
-x - y = -9 \\
x - 2y = 15
\end{cases}$$

$$-3y = 6$$

Logo,

$$y = -2$$

Substituindo na primeira equação y = -2

$$x - 2 = 9$$

$$x = 11$$

Exemplo 1.3 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}.$$

Primeiro passo é multiplicar pelo inverso do coeficiente de x na primeira equação, que no caso é 3, logo seu inverso é $\frac{1}{3}$.

$$\begin{cases} x + \frac{2}{3}y = \frac{10}{3} \\ 8x + y = 7 \end{cases}.$$

O próximo passo é multiplicar pelo oposto do coeficiente de x da segunda equação, que no caso é 8, nos dando -8.

$$\begin{cases}
-8x - \frac{16}{3}y = \frac{-80}{3} \\
8x + y = 7
\end{cases}.$$

Agora é somar as duas equações

$$y - \frac{16}{3}y = 7 - \frac{80}{3}$$
$$\frac{3y}{3} - \frac{16}{3}y = \frac{21}{3} - \frac{80}{3}$$
$$-\frac{13}{3}y = \frac{-59}{3}$$
$$-13y = -59$$
$$y = \frac{-59}{-13} = \frac{59}{13}$$

Substituimos $y = \frac{59}{13}$ na primeira equação.

$$3x + 2\frac{59}{13} = 10$$

Multiplicando tudo por 13 para facilitar

$$39x = 12$$

39x + 118 = 130

$$x = \frac{12}{39}$$

Logo, $x = \frac{12}{39} e y = \frac{59}{13}$

Exemplo 1.4 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}.$$

Podemos sempre eliminar se os coeficientes das duas equações (em x) sejam opostos. Nesse caso, multiplica-se, na primeira equação, por -8 que é o oposto de 8 (coeficiente de x na segunda equação). Na segunda equação multiplica-se por 3 para obtermos coeficientes opostos.

$$\begin{cases} -24x - 16y = -80\\ 24x + 3y = 21 \end{cases}$$

Somando as duas equações

$$-13y = -59$$
$$y = \frac{-59}{-13} = \frac{59}{13}$$

Para x procede-se da mesma forma que a solução anterior.

Uma observação é que podemos sempre eleiminar y primeiro se bem quisermos.

1.2 Forma matricial de um sistema linear

Definição 1.4 Uma matrix quadrada 2×2 com coeficientes em \mathbb{R} é o seguinte conjunto $M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$. Para matrizes quadrados 2×2 $(n \times n)$ basta indicar com o número em questão abaixo do M. Por exemplo $M_3(\mathbb{R}) = \left\{ \begin{bmatrix} a & b & c \\ c & d & e \\ f & g & h \end{bmatrix} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$. Para matrizes retangulares, por exemplo (2×3) , escrevemos $M_{2,3}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b & c \\ c & d & e \end{bmatrix} \mid a, b, c, d, e \in \mathbb{R} \right\}$

Exemplo 1.5

$$\begin{bmatrix} 2 & 7 \\ 9 & -1 \\ 0 & 3 \end{bmatrix} \in M_{3,2}(\mathbb{R})$$

Exemplo 1.6

$$\begin{bmatrix} 2 & 7 & -8 & 9 \\ 9 & -1 & 0 & 10 \\ 0 & 3 & 0 & 1 \end{bmatrix} \in M_{3,4}(\mathbb{R})$$

Todo sistema linear pode ser escrito em forma de matriz, para isso devemos relembrar as operações com matrizes.

Definição 1.5 (Soma de matrizes) para somarmos duas matrizes de mesma dimensão (mesmas linhas e colunas) devemos somar ordenamente na mesma posição sempre. Por exemplo, $A, B \in M_2(\mathbb{R})$ com $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$ e $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$, $logo\ A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix}$

Exemplo 1.7
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
 $e B = \begin{bmatrix} -1 & 1 \\ 5 & 7 \end{bmatrix}$, $logo A + B = \begin{bmatrix} 0 & 1 \\ 7 & 10 \end{bmatrix}$

Uma observação é que as matrizes satisfazem os axiomas de associatividade, oposto, neutro e comutatividade para a soma (+). No caso de $M_2(\mathbb{R})$, o neutro seria a matriz $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ e dado uma matriz $B \in M_2(\mathbb{R})$, seu oposto é -B que possui todos os seus coeficientes multiplicados por (-1).

Definição 1.6 Dado uma matriz $A \in M_{m,n}(\mathbb{R})$, a matriz $A^T \in M_{n,m}(\mathbb{R})$ possuindo os mesmos valores.

Nota-se que as entradas de uma linha i e coluna j são trocadas para uma entrada em uma linha j e coluna i.

Exemplo 1.8

$$A = \begin{bmatrix} 2 & 7 \\ 9 & -1 \\ 0 & 3 \end{bmatrix} \in M_{3,2}(\mathbb{R}),$$

sua transposta é

$$A^{T} = \begin{bmatrix} 2 & 9 & 0 \\ 7 & -1 & 3 \end{bmatrix} \in M_{2,3}(\mathbb{R}).$$

Trabalhando com matrizes quadradas (mesmo número de linhas e de colunas) existe uma função que associa a cada matriz um número real. Essa função auxilia para verificar se uma matriz possui uma inversa ou não.

Definição 1.7 O determinante é a função det : $M_n(\mathbb{R}) \to \mathbb{R}$, e possui a seguinte regra de cálculo.

n=2: Seja

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}),$$

Seu determinante é det(A) = ad - bc

n=3: Seja

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in M_3(\mathbb{R}),$$

 $Seu\ determinante\ (regra\ de\ Sarrus)\ det(A) = aei+bfg+cdh-bdi-afh-ceg$

Exemplo 1.9 Calcule det(A) para

$$A = \begin{bmatrix} 1 & 1 \\ 8 & 10 \end{bmatrix} \in M_2(\mathbb{R}).$$

$$det(A) = 1 \cdot 10 - 1 \cdot 8 = 10 - 8 = 2$$

Exemplo 1.10 Calcule det(A) para

$$A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & 2 & 2 \\ 1 & 3 & 1 \end{bmatrix} \in M_3(\mathbb{R}).$$

$$det(A) = 1 \cdot 2 \cdot 3 + 5 \cdot 2 \cdot 1 + (-1 \cdot 0 \cdot 3) - 5 \cdot 0 \cdot 1 - 1 \cdot 2 \cdot 3 - (-1 \cdot 2 \cdot 1) = 8$$

Definição 1.8 Seja $A \in M_{m,n}(\mathbb{R})$ e $B \in M_{n,p}(\mathbb{R})$, a multiplicação $A \cdot B \in M_{m,p}(\mathbb{R})$ dada pelo critério abaixo.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,p} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,p} \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,p} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \cdots & c_{m,p} \end{bmatrix}$$

Para calcular os coeficientes de $A \cdot B$ devemos fazer o produto de cada elemento da linha de A com cada elemento da coluna de B e fazer a soma. Por exemplo $c_{1,1} = a_{1,1} \cdot b_{1,1} + a_{1,2} \cdot b_{2,1} + \ldots + a_{1,n} \cdot a_{m,1}$. Genericamente, $c_{i,j} = c_{i,1} \cdot c_{j,1} + c_{i,2} \cdot c_{2,j} + \ldots + c_{i,n} \cdot c_{j,m}$.

Exemplo 1.11

$$A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & 2 & 2 \end{bmatrix} \in M_{2,3}(\mathbb{R}),$$
$$B = \begin{bmatrix} 0 & 7 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} \in M_{3,2}(\mathbb{R}).$$

$$A \cdot B = \begin{bmatrix} 1 \cdot 0 + 5 \cdot 2 + ((-1) \cdot (-1)) & 1 \cdot 7 + 5 \cdot 1 + ((-1) \cdot 1) \\ 0 \cdot 0 + 2 \cdot 2 + (2 \cdot (-1)) & 0 \cdot 7 + 2 \cdot 1 + 2 \cdot 1 \end{bmatrix} \in M_2(\mathbb{R}).$$

$$A \cdot B = \begin{bmatrix} 11 & 11 \\ 2 & 4 \end{bmatrix} \in M_2(\mathbb{R}).$$

Definição 1.9 No caso da multiplicação de matrizes quadradas (mesmo número de linhas e colunas), a multiplicação possui um elemento neutro $I_n \in M_n(\mathbb{R})$, com as entradas da diagonal sempre sendo 1 e o resto sempre sendo 0. Por exemplo

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in M_3(\mathbb{R}).$$

Definição 1.10 Dado uma matriz $A \in M_n(\mathbb{R})$, sua inversa $A^{-1} \in M_n(\mathbb{R})$, satisfaz

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

Observação: $det(A) \neq 0$

Aplicando as definições de matrizes acima, conseguimos achar uma forma matricial para um sistema linear. Basicamente temos que achar uma solução de um sistema é a mesma coisa do que achar a inversa de uma matriz de coeficientes. Note que para isso funcionar o sistema deve possuir o mesmo número de equações e incógnitas para termos a matrix quadrada.

Definição 1.11 Um sistema linear na forma matricial é dado por:

$$A \cdot \mathbf{x} = \mathbf{b}$$

. Por exemplo, se um sistema linear possuir 3 incógnitas e 3 variáveis temos que $A \in M_3(\mathbb{R})$, $\mathbf{x} \in M_{3,1}(\mathbb{R})$ e $\mathbf{b} \in M_{3,1}(\mathbb{R})$. A matriz A representa os coeficientes, a matriz \mathbf{x} de variáveis e a matriz \mathbf{b} de resultados.

Exemplo 1.12

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases},$$

A equação em forma matricial é

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 7 \end{bmatrix}$$

A solução de um sistema linear se dá pela multiplicação à esquerda da matriz inversa de coeficientes. Ou seja, se tivermos o sistema $A \cdot \mathbf{x} = \mathbf{b}$, devemos fazer os seguintes passos para resolver.

$$A \cdot \mathbf{x} = \mathbf{b}$$

O primeiro passo é multiplicar a inversa de A pela esquerda

$$A^{-1} \cdot A \cdot \mathbf{x} = A^{-1} \cdot \mathbf{b}$$

$$I_n \cdot \mathbf{x} = A^{-1} \cdot \mathbf{b}$$

o segundo passo é notar que $I_n \cdot \mathbf{x} = \mathbf{x}$ para obtermos

$$\mathbf{x} = A^{-1} \cdot \mathbf{b}$$

e por fim devemos realizar a multiplicação de $A^{-1}\cdot \mathbf{b}$ nos dando a solução do sistema.

1.3 Matrizes Inversas

Para calcularmos a inversa de uma matriz 2 por 2 basta apenas usar uma fórmula. Para todos os outros casos usa-se o método da eliminação de Gauss.

Definição 1.12 (Caso 2 por 2) Dado

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}),$$

sua inversa é dada por

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \in M_2(\mathbb{R}),$$

 $note \ que \ det(A) = ad - bc \neq 0$

Exemplo 1.13

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 7 \end{bmatrix} \in M_2(\mathbb{R}),$$

$$det(A) = 1 \cdot 7 - 3 \cdot (-1) = 7 - (-3) = 7 + 3 = 10$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 7 & -3 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbb{R}),$$

logo

$$A^{-1} = \begin{bmatrix} \frac{7}{10} & \frac{-3}{10} \\ \frac{1}{10} & \frac{1}{10} \end{bmatrix} \in M_2(\mathbb{R}),$$

Exemplo 1.14 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}$$

 $Primeiro\ colocamos\ em\ forma\ matricial.$

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 7 \end{bmatrix}$$

A solução é dada por

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 10 \\ 7 \end{bmatrix}.$$

Depois achamos a inversa da matriz de coeficientes.

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}^{-1} = \frac{1}{3 - 2 \cdot 8} \begin{bmatrix} 1 & -2 \\ -8 & 3 \end{bmatrix} = \frac{-1}{13} \begin{bmatrix} 1 & -2 \\ -8 & 3 \end{bmatrix} = \begin{bmatrix} \frac{-1}{13} & \frac{2}{13} \\ \frac{8}{13} & \frac{-3}{13} \end{bmatrix}$$

Logo,

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{-1}{13} & \frac{2}{13} \\ \frac{8}{13} & \frac{-3}{3} \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 7 \end{bmatrix} = \begin{bmatrix} \frac{-10}{13} + \frac{14}{13} \\ \frac{80}{13} - \frac{21}{13} \end{bmatrix} = \begin{bmatrix} \frac{4}{13} \\ \frac{59}{13} \end{bmatrix}.$$

Portanto, $x = \frac{4}{13} e y = \frac{59}{13}$.

Definição 1.13 (Algoritmo da eliminação de Gauss) consiste em achar a inversa de uma matriz quadrada A de qualquer dimensão. O algoritmo consiste na aplicação de 3 regras até que a matriz inversa desejada seja formada. A regras são:

- 1. Troca de linhas
- 2. Soma e subtração de linhas (ou múltiplos de linhas)
- 3. Multiplicação por uma constante na linha toda.

O algoritmo consiste de deixar a matriz desejada e a matriz identidade correspondente lado-a-lado, o algoritmo deve ser efetuada com a sucessiva aplicação das regras até que a matriz identidade aparece do lado esquerdo onde estava a matriz A inicial, a matriz do lado direito será a matriz inversa desejada.

Exemplo 1.15 Calcular a inversa da matriz

$$A = \begin{bmatrix} 9 & 3 & 4 \\ 7 & 10 & 11 \\ 12 & 13 & 6 \end{bmatrix}$$

$$[A|I] = \left[\begin{array}{ccc|ccc|c} 9 & 3 & 4 & 1 & 0 & 0 \\ 7 & 10 & 11 & 0 & 1 & 0 \\ 12 & 13 & 6 & 0 & 0 & 1 \end{array} \right].$$

Divide-se por 9 a primeira linha toda.

$$\left[\begin{array}{ccc|c}
1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0 \\
7 & 10 & 11 & 0 & 1 & 0 \\
12 & 13 & 6 & 0 & 0 & 1
\end{array}\right].$$

Linha 2 menos 7 vezes a linha 1 e substituo pela linha 2 $(l_2 - 7l_1 \rightarrow l_2)$.

•
$$7 - 1 \cdot 7 = 0$$

1.3. MATRIZES INVERSAS

•
$$10 - \frac{1}{3} \cdot 7 = \frac{30-7}{3} = \frac{23}{3}$$

•
$$11 - \frac{4}{9} \cdot 7 = \frac{99 - 28}{9} = \frac{71}{9}$$

•
$$0 - \frac{7}{9} = \frac{-7}{9}$$

•
$$1 - 0 \cdot 7 = 1$$

•
$$0 - 0 \cdot 7 = 0$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & \frac{23}{3} & \frac{71}{9} & \frac{-7}{9} & 1 & 0\\ 12 & 13 & 6 & 0 & 0 & 1 \end{bmatrix}.$$

13

Linha 3 menos 12 vezes a linha 1 e substituo pela linha 3

•
$$12 - 12 = 0$$

•
$$13 - \frac{12}{3} = 13 - 4 = 9$$

•
$$6 - \frac{4 \cdot 12}{9} = \frac{54 - 48}{9} = \frac{6}{9} = \frac{2}{3}$$

•
$$0 - \frac{12}{9} = \frac{-4}{3}$$

•
$$0 - 12 \cdot 0 = 0$$

•
$$1 - 12 \cdot 0 = 1$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & \frac{23}{3} & \frac{71}{9} & \frac{-7}{9} & 1 & 0\\ 0 & 9 & \frac{2}{3} & \frac{-4}{3} & 0 & 1 \end{bmatrix}.$$

Divide-se tudo na linha 2 por $\frac{23}{3}$.

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} \\ 0 & 1 & \frac{71}{9} \cdot \frac{9}{23} \\ 0 & 9 & \frac{2}{2} \end{bmatrix} \begin{vmatrix} \frac{1}{9} & 0 & 0 \\ -\frac{7}{9} \cdot \frac{3}{23} & \frac{3}{23} & 0 \\ \frac{-4}{2} & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 9 & \frac{2}{3} & \frac{-4}{3} & 0 & 1 \end{bmatrix}.$$

Multipl
ca-se $\frac{1}{3}$ da linha 2 e subtrai-se da linha 1 e substitui-se pe
la linha 1 $l_1-\frac{l_2}{3}\to l_1$

$$\bullet$$
 $\frac{1}{3} - \frac{1}{3} = 0$

$$\bullet \ \frac{4}{9} - \frac{213}{621} = \frac{2484 - 1917}{5589} = \frac{7}{69}$$

$$\bullet$$
 $\frac{1}{9} + \frac{21}{621} = \frac{621 + 189}{5589} = \frac{10}{69}$

•
$$0 - \frac{3}{23 \cdot 3} = \frac{1}{23}$$

$$\left[\begin{array}{ccc|c} 1 & 0 & \frac{7}{69} \\ 0 & 1 & \frac{213}{207} \\ 0 & 9 & \frac{2}{3} \end{array} \right| \begin{array}{ccc|c} \frac{10}{69} & \frac{1}{23} & 0 \\ \frac{-21}{207} & \frac{3}{23} & 0 \\ \frac{-4}{3} & 0 & 1 \end{array} \right].$$

Multipl
ca-se -9da linha 2 e soma-se da linha 3 e substitui-se pe
la linha 3 $(l_3-9l_2\to l_3)$

$$\bullet \ \frac{2}{3} - 9 \cdot \frac{213}{207} = \frac{2}{3} - \frac{1917}{207} = \frac{414 - 5751}{621} = \frac{-5337}{621} = \frac{593}{69}$$

$$\bullet$$
 $\frac{-4}{3} + \frac{189}{207} = \frac{-29}{69}$

$$\begin{bmatrix} 1 & 0 & \frac{7}{69} & \frac{10}{69} & \frac{1}{23} & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 0 & \frac{593}{69} & \frac{-29}{69} & \frac{-27}{23} & 1 \end{bmatrix}.$$

Multiplica-se por $\frac{69}{593}$ a linha 3 toda.

$$\left[\begin{array}{cc|ccc} 1 & 0 & \frac{7}{69} & \frac{10}{69} & \frac{1}{23} & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{array}\right].$$

O proximo passo é fazer $l_2 - \frac{213}{207}l_3 \rightarrow l_2$.

$$\bullet \ \ \frac{213}{207} - \frac{213}{207} = 0$$

•
$$\frac{-21}{207} - \frac{213}{207} (\frac{-29}{593}) = \frac{-21}{207} + \frac{213}{207} (\frac{29}{593}) = \frac{-12453 + 6177}{122751} = \frac{-18630}{122751} = \frac{-90}{593}$$

$$\bullet$$
 $\frac{-3}{23} - \frac{213}{207} (\frac{-81}{593}) = \frac{-6}{593}$

$$\bullet \ \ \frac{-213}{207} \left(\frac{69}{593}\right) = \frac{-71}{593}$$

$$\begin{bmatrix} 1 & 0 & \frac{7}{69} & \frac{1}{69} & \frac{1}{23} & 0\\ 0 & 1 & 0 & \frac{-90}{593} & \frac{-6}{593} & \frac{-71}{593}\\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{bmatrix}.$$

O último passo é fazer $l_1 - \frac{7}{69}l_3 \rightarrow l_1$.

$$\bullet \ \ \frac{7}{69} - \frac{7}{69} = 0$$

•
$$\frac{10}{69} - \frac{-7}{69}(\frac{-29}{593}) = \frac{10}{69} - \frac{7}{69}(\frac{29}{593}) = \frac{5930}{40917} - \frac{203}{40917} = \frac{5727}{40917} = \frac{83}{593}$$

•
$$\frac{1}{23} - \frac{7}{69} \left(\frac{-81}{593} \right) = \frac{3}{69} - \frac{7}{69} \left(\frac{81}{593} \right) = \frac{1779}{40917} + \frac{567}{40917} = \frac{2346}{40917} = \frac{34}{593}$$

•
$$0 - \frac{-7}{69} (\frac{69}{593}) = \frac{7}{69} (\frac{69}{593}) = \frac{483}{40917} = \frac{7}{593}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{83}{593} & \frac{34}{593} & \frac{7}{593} \\ 0 & 1 & 0 & \frac{-90}{593} & \frac{-6}{593} & \frac{-71}{593} \\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{bmatrix} .$$

O algoritmo termina nos dando a matriz inversa de A.

$$A^{-1} = \begin{bmatrix} \frac{83}{593} & \frac{34}{593} & \frac{7}{593} \\ \frac{593}{593} & \frac{7}{593} & \frac{7}{593} \\ \frac{7}{593} & \frac{7}{593} & \frac{7}{593} \\ \frac{7}{593} & \frac{7}{503} & \frac{7}{593} \end{bmatrix}$$

Colocando em evidência $\frac{-1}{593}$, também podemos escrever a inversa na forma a seguir.

$$A^{-1} = \frac{-1}{593} \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ 29 & 81 & -69 \end{bmatrix}$$

Esta última forma de escrever a matriz inversa não é coincidência, pois o determinante de A é exatamente -593 (pede-se para o leitor o cálculo).

Teorema 1 Dado uma matriz $A \in M_n(\mathbb{R})$, com $det(A) \neq 0$, sua inversa A^{-1} pode ser calculada pela fórmula a seguir.

$$A^{-1} = \frac{1}{\det(A)} Adj(A),$$

onde Adj(A) é a matriz adjunta de A.

A matriz adjunta é calculada através da transposta da matriz de cofatores A.

Definição 1.14 A matriz de cofatores de A é calculada pela expressão

$$C = (-1)^{i+j} M_{i,j}$$

onde $M_{i,j}$ é o determinante da matriz A eliminando-se a linha i e a coluna j. A matriz adjunta é apenas $Adj(A) = C^T = (-1)^{i+j} M_{j,i}$ e devemos, nesse caso, eliminar a linha i e coluna j da transposta de A.

O exemplo feito através do método da eliminação de Gauss pode também ser feito com a fórmula apresentada pelo Teorema.

Exemplo 1.16 Seja

$$A = \begin{bmatrix} 9 & 3 & 4 \\ 7 & 10 & 11 \\ 12 & 13 & 6 \end{bmatrix},$$

temos que o determinante det(A) = -593. Vamos agora calcular a adjunta, para isso devemos achar a matriz C dos cofatores. Primeiro obtenha a transposta de A.

$$A^{T} = \begin{bmatrix} 9 & 7 & 12 \\ 3 & 10 & 13 \\ 4 & 11 & 6 \end{bmatrix},$$

$$M_{1,1} = (-1)^{1+1} det \left(\begin{bmatrix} 10 & 13 \\ 11 & 6 \end{bmatrix} \right) = 1 \cdot (60 - 143) = -83$$

$$M_{1,2} = (-1)^{1+2} det \left(\begin{bmatrix} 3 & 13 \\ 4 & 6 \end{bmatrix} \right) = (-1)^{3} \cdot (18 - 52) = (-1)(-34) = 34$$

$$M_{1,3} = (-1)^{1+3} det \left(\begin{bmatrix} 3 & 10 \\ 4 & 11 \end{bmatrix} \right) = 1 \cdot (33 - 40) = -7$$

$$\begin{split} M_{2,1} &= (-1)^{2+1} det \left(\begin{bmatrix} 7 & 12 \\ 11 & 6 \end{bmatrix} \right) = (-1) \cdot (42 - 132) = 90 \\ M_{2,2} &= (-1)^{2+2} det \left(\begin{bmatrix} 9 & 12 \\ 4 & 6 \end{bmatrix} \right) = 1 \cdot (54 - 48) = 6 \\ M_{2,3} &= (-1)^{2+3} det \left(\begin{bmatrix} 9 & 7 \\ 4 & 11 \end{bmatrix} \right) = (-1) \cdot (99 - 28) = -71 \\ M_{3,1} &= (-1)^{3+1} det \left(\begin{bmatrix} 7 & 12 \\ 10 & 13 \end{bmatrix} \right) = 1 \cdot (91 - 120) = -29 \\ M_{3,2} &= (-1)^{3+2} det \left(\begin{bmatrix} 9 & 12 \\ 3 & 13 \end{bmatrix} \right) = (-1) \cdot (117 - 36) = -81 \\ M_{3,3} &= (-1)^{3+3} det \left(\begin{bmatrix} 9 & 3 \\ 7 & 10 \end{bmatrix} \right) = 1 \cdot (90 - 21) = 69 \end{split}$$

Logo, a adjunta de A é dada por

$$Adj(A) = \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ -29 & -81 & 69 \end{bmatrix}$$

que nos dá

$$A^{-1} = \frac{-1}{593} \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ -29 & -81 & 69 \end{bmatrix}.$$

O método dos cofatores é rápido para matrizes quadradas de tamanhos 2 e 3, porém é mais lento para fazer manualmente em casos para dimensões maiores que 3, por causa do cálculo dos determinantes. Neste último caso o método indicado é o da eliminação de Gauss.

Exemplo 1.17 Resolver o sistema linear abaixo.

$$\begin{cases} x - y + z = 67 \\ x + y - z = -53 \\ x + y + z = 10 \end{cases}$$

A forma matricial dessa equação é dada por

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

A solução consiste em achar a matriz A^{-1} da matriz

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

e depois multiplicaremos pela matriz de resultados

$$\begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

para acharmos $x, y \in z$. Vamos proceder pelo método dos cofatores. Sabe-se que det(A) = 4.

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$M_{1,1} = (-1)^{1+1} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = 1 \cdot (1 - (-1)) = 1 \cdot 2 = 2$$

$$M_{1,2} = (-1)^{1+2} det \left(\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{3} \cdot (-1 - 1) = (-1) \cdot (-2) = 2$$

$$M_{1,3} = (-1)^{1+3} det \left(\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{2,1} = (-1)^{2+1} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{3} \cdot (1 - (-1)) = (-1) \cdot 2 = -2$$

$$M_{2,2} = (-1)^{2+2} det \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{2,3} = (-1)^{2+3} det \left(\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) = (-1)^{5} \cdot (-1 - 1) = (-1) \cdot (-2) = 2$$

$$M_{3,1} = (-1)^{3+1} det \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{3,2} = (-1)^{3+2} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{5} \cdot (1 - (-1)) = (-1) \cdot 2 = -2$$

$$M_{3,3} = (-1)^{3+3} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{6} \cdot (1 - (-1)) = 1 \cdot 2 = 2$$

$$Adj(A) = \begin{bmatrix} 2 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & -2 & 2 \end{bmatrix}$$

Que nos dá

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & -2 & 2 \end{bmatrix},$$

 $ou\ multiplicando\ todas\ as\ entradas\ por\ \tfrac{1}{4},$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & 0 & \frac{1}{2}\\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Para verificar se a matriz A^{-1} é realmente a inversa de A, devemos efetuar, por exemplo, $A \cdot A^{-1}$ e verificar se temos a matriz identidade I_3 .

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A seguir as contas necessária para se efetuar a multiplicação acima.

- $linha\ 1,\ coluna\ 1:\ 1\cdot\frac{1}{2}+(-1)\cdot\frac{-1}{2}+1\cdot 0=1$
- linha 1, coluna 2: $1 \cdot \frac{1}{2} + (-1) \cdot 0 + 1 \cdot \frac{-1}{2} = 0$
- $linha\ 1$, $coluna\ 3$: $1 \cdot 0 + (-1) \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$
- linha 2, coluna 1: $1 \cdot \frac{1}{2} + 1 \cdot \frac{-1}{2} + (-1) \cdot 0 = 0$
- $linha\ 2$, $coluna\ 2$: $1 \cdot \frac{1}{2} + 1 \cdot 0 + (-1) \cdot \frac{-1}{2} = 1$
- $linha\ 2$, $coluna\ 1$: $1 \cdot 0 + 1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0$
- $linha\ 3$, $coluna\ 1$: $1 \cdot \frac{1}{2} + 1 \cdot \frac{-1}{2} + 1 \cdot 0 = 0$
- linha 3, coluna 2: $1 \cdot \frac{1}{2} + 1 \cdot 0 + 1 \cdot \frac{-1}{2} = 0$
- $linha\ 3,\ coluna\ 3:\ 1\cdot 0 + 1\cdot \frac{1}{2} + 1\cdot \frac{1}{2} = 1$

Para achar a solução final devemos fazer a seguinte multiplicação.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix} = \begin{bmatrix} \frac{67}{2} - \frac{53}{2} + 0 \cdot 10 \\ \frac{-67}{2} - 0 \cdot (-53) + \frac{10}{2} \\ 0 \cdot 67 + \frac{53}{2} + \frac{10}{2} \end{bmatrix} = \begin{bmatrix} 7 \\ -\frac{57}{2} \\ \frac{63}{2} \end{bmatrix}.$$

Logo,
$$x = 7, y = \frac{-57}{2} e z = \frac{63}{2}$$
.

No caso de sistemas lineares, uma simplificação do método de Gauss pode ser feita e podemos reuzir a matriz A junta com a matriz de resultados e não com a identidade como fizemos anteriormente nos facilitando um pouco a vida. O nome dessa técnica chama-se escalonamento da matriz de coeficientes.

Exemplo 1.18 Considere a mesma equação anterior em sua forma matricial. A forma matricial dessa equação é dada por

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

Devemos agora escalonar a matriz [A|b], onde b é a matriz

$$\begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}.$$

Ou seja,

$$[A|b] = \begin{bmatrix} 1 & -1 & 1 & 67\\ 1 & 1 & -1 & -53\\ 1 & 1 & 1 & 10 \end{bmatrix}.$$

O primeiro passo é $-l_2 + l_3 \rightarrow l_3$

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 67 \\ 1 & 1 & -1 & -53 \\ 0 & 0 & 2 & 63 \end{array}\right].$$

O segundo passo é multiplicar por $\frac{1}{2}$ a linha 3.

$$\begin{bmatrix} 1 & -1 & 1 & | & 67 \\ 1 & 1 & -1 & | & -53 \\ 0 & 0 & 1 & | & \frac{63}{2} \end{bmatrix}.$$

O terceiro passo $\acute{e} - l_1 + l_2 \rightarrow l_2$.

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 67 \\ 0 & 2 & -2 & -120 \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O quarto passo é multiplicar a linha 2 por $\frac{1}{2}$

$$\begin{bmatrix} 1 & -1 & 1 & 67 \\ 0 & 1 & -1 & -60 \\ 0 & 0 & 1 & \frac{63}{2} \end{bmatrix}.$$

O quinto passo é somar linhas 1 e 1 e substituir na linha 2 $(l_2 + l_1 \rightarrow l_1)$.

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 7 \\ 0 & 1 & -1 & -60 \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O último passo é somar linhas 2 e 3 e substituir na linha 2 $(l_2 + l_3 \rightarrow l_2)$.

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -\frac{57}{2} \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O algoritmo deve para, pois a matriz identidade apareceu. Logo, $x=7, y=\frac{-57}{2}$ e $z=\frac{63}{2}$.

Note que todos os sistemas resolvidos possuem matrizes de coeficientes com o determinante diferente de zero. Quando o determinante for zero temos o caso de infinitas soluções (retas coincidentes) ou nenhuma solução (retas paralelas).

Exemplo 1.19 Resolva o sistema linear.

$$\begin{cases} 2x + 3y = 5\\ 8x + 12y = 20 \end{cases}$$

Em forma matricial, temos a seguinte equação.

$$\begin{bmatrix} 2 & 3 \\ 8 & 12 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 20 \end{bmatrix}$$

Notemos que o determinante da matriz de coeficientes é 0. Vamos tentar escalonar a matriz de coeficientes juntada com a de resultados.

$$\left[\begin{array}{cc|c} 2 & 3 & 5 \\ 8 & 12 & 20 \end{array}\right].$$

Devemos multiplicar a primeira por 4 e subtrair da segunda linha substituindo na própria $4l_1 - l_2 \rightarrow l_2$.

$$\left[\begin{array}{cc|c} 2 & 3 & 5 \\ 0 & 0 & 0 \end{array}\right].$$

Nota-se que a segunda linha zerou, logo teremos infinitas soluções. Pois, temos apenas uma equação válida 2x+3y=5. A equação 8x+12y=20 não acrescenta nenhuma informação a mais (retas paralelas). Para ver isso basta multiplicar por 4 em ambos lados de 2x+3y=5. Na literatura esse sistema é chamado de possível porém indeterminado.

Exemplo 1.20 Resolva o sistema linear.

$$\begin{cases} x + 3y = 10 \\ 5x + 15y = 15 \end{cases}$$

Em forma matricial, temos a seguinte equação.

$$\begin{bmatrix} 1 & 3 \\ 5 & 15 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \end{bmatrix}$$

Note que o determinante da matriz de coeficientes é 0. Vamos escalonar a matriz de coeficientes juntada com a de resultados.

$$\left[\begin{array}{cc|c} 1 & 3 & 10 \\ 5 & 15 & 15 \end{array}\right].$$

Fazemos então $-5l_1 + l_2 \rightarrow l_2$.

$$\left[\begin{array}{cc|c} 1 & 3 & 10 \\ 0 & 0 & -35 \end{array}\right].$$

Note que não conseguiremos mais efetuar o algoritmo, pois temos que a parte da matriz dos coeficientes está zerada. Diferentemente do outro exemplo, neste temos a linha $0\ 0\ -35$ que nos daria a equação 0x+0y=-35, ou seja, 0=-35 que é um absurdo. Portanto, o sistema acima é impossível (não há soluções). Nesse caso teriamos duas retas paralelas.

1.4 Matrizes - Revisão

Note que até o momento foi possível observar algumas operações simples com matrizes. A soma de matrizes, por exemplo, onde temos que: $M_{lk}(\mathbb{R}) + M_{lk}(\mathbb{R}) \to M_{lk}(\mathbb{R})$. Logo $A = (a_{ij}), B = (b_{ij}) \to (a_{ij} + b_{ij}) \in \mathbb{R}$.

Exemplo 1.21 (+)

$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 + (-1) & 1 + 1 \\ 0 + (-1) & 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

Exemplo 1.22 (+)

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1+0 \\ 3+(-1) \\ 5+2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$$

Agora, é importe ressaltar que há casos em que não é possível calcular essas matrizes, pois pertencem a conjuntos diferentes, como:

Exemplo 1.23

$$\begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

pois $\in M_2(\mathbb{R})$ e $\in M_{2,1}(\mathbb{R})$

Outra operação vista foi a multiplicação de matrizes, a qual muda as suas dimensões, $M_{lk}(\mathbb{R}) \cdot k_n \to M_{ln}(\mathbb{R})$:

Exemplo 1.24

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 9 \\ 1 \\ -1 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \cdot 9 + 2 \cdot 1 + (-1) \cdot (-1) \\ 1 \cdot 9 + 1 \cdot 1 + 1 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 12 \\ 9 \end{bmatrix}$$

$$\in M_{2,1}(\mathbb{R})$$

Exemplo 1.25 Imagine o sequinte cenário: e se fosse $B \cdot A$?

$$B \cdot A = \begin{bmatrix} 9 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $M_{3,1}(\mathbb{R})$, $M_{2,3}(\mathbb{R})$, não seria possível, pois $1 \neq 2$, portanto, não pode ser realizada a multiplicação.

Observação: As ordens dos fatores altera o produto.

Ainda temos a multiplicação por escalar, onde: $\mathbb{R} \cdot M_{lk}(\mathbb{R}) \to M_l \cdot k(\mathbb{R})$. Ou seja, $\lambda(a_{ij}) \to (\lambda a_{ij})$.

Exemplo 1.26

$$A = \begin{bmatrix} -1 & 1\\ 0 & 2 \end{bmatrix}$$

$$5A = \begin{bmatrix} 5 \cdot (-1) & 5 \cdot 1\\ 5 \cdot 0 & 5 \cdot 2 \end{bmatrix} = \begin{bmatrix} -5 & 5\\ 0 & 10 \end{bmatrix}$$

Uma matriz é nula quando independentemente de sua dimensão, todos os seus elementos são iguais a zero.

Exemplo 1.27

$$O_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

$$O + A = \begin{bmatrix} 0+2 & 0+3 \\ 0+5 & 0+(-1) \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

$$A + O = \begin{bmatrix} 2+0 & 3+0 \\ 5+0 & (-1)+0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

A matriz identidade recebe esse nome quando ela possui os elementos da diagonal principal iguais a 1 e os restante dos elementos iguais a 0. Veja um exemplo:

Exemplo 1.28

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$AI_{2} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \cdot 1 + (-1) \cdot 0 & 3 \cdot 0 + (-1) \cdot 1 \\ 2 \cdot 1 + 1 \cdot 0 & 2 \cdot 0 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$I_{2}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 3 + 0 \cdot 2 & 1 \cdot (-1) + 0 \cdot 1 \\ 0 \cdot 3 + 1 \cdot 2 & 0 \cdot (-1) + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

Agora vamos elaborar um sistema a partir da solução:

Exemplo 1.29

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) \\ 2 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) \\ 1 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix} = b$$

$$Ax = b \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + 2y + 3z \\ 2x + y + 2z \\ x + y + 2z \end{bmatrix}$$

Logo:

$$\begin{cases} x + 2y + 3z = -2\\ 2x + y + 2z = 0\\ x + y + 2z = -1 \end{cases}$$

Definição 1.15 Duas matrizes são iguais quando cada elemento de mesma posição for igual. Se $A = (a_{ij})$ e $B = (b_{ij})$ com A e B de mesma dimensão, vale que: $A = B \Leftrightarrow a_{ij} = b_{ij}, \forall_{ij}$.

Exemplo 1.30

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$A = B \Leftrightarrow \begin{cases} a_{11} = b_{11} \\ a_{12} = b_{12} \\ a_{21} = b_{21} \\ a_{22} = b_{22} \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} x = \begin{bmatrix} x \\ y \end{bmatrix} b = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ -x + 3y \end{bmatrix}$$

Portanto, com a noção de igualdade de matrizes, gera o sistema linear.

Quando você multiplica a inversa, você obtém como resultado a inversa (à esquerda).

Note que: Matrizes não são comutativas.

Exemplo 1.31

$$Ax = b$$

$$A^{-1}(Ax) = A^{-1}b$$

$$(A^{-1}A)x = A^{-1}b$$

$$Ix = A^{-1}b$$

$$x = A^{-1}b$$

Para solucionar sistemas lineares, uma das propostas vistas que iremos utilizar daqui para frente, foi o "escalonamento da matriz de coeficientes", chamada também de "operações elementares". Para isso é necessário seguir as regras abaixo:

- 1. Trocar de linhas;
- 2. Multiplicar linhas;
- 3. Atualizar linha por combinação de duas.

Exemplo 1.32 Resolva o seguinte sistema:

$$\begin{cases} x + 2z = -1 \\ -2x - 3z = 1 \\ 2y = -2 \end{cases}$$

Ou seja:

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
-2 & 0 & -3 & 1 \\
0 & 2 & 0 & -2
\end{array}\right]$$

O primeiro passo é $l_2 + l_1 \rightarrow l_2$ (Regra 3)

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 0 & 1 & -1 \\
0 & 2 & 0 & -2
\end{array}\right]$$

O segundo passo é trocar $l_2 \Leftrightarrow l_3$ (Regra 1)

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 2 & 0 & -2 \\
0 & 0 & 1 & -1
\end{array}\right]$$

O terceiro passo é $l_2/2 \rightarrow l_2$ (Regra 2)

$$\left[\begin{array}{ccc|c} 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

O quarto e último passo $l_1 + (-2)l_3 \rightarrow l_1$

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

O algoritmo deve parar, pois a matriz identidade apareceu.

Logo,
$$x = 1$$
 $y = -1$ e $z = -1$.

Exemplo 1.33 Vamos resolver o seguinte sistema:

$$\begin{cases} x+y+z=6\\ -y+2z=4\\ 3x-y=1 \end{cases}$$

Sendo assim:

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
3 & -1 & 0 & 1
\end{array}\right]$$

O primeiro passo é $l_3 + (-3)l_1 \rightarrow l_3$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & -4 & -3 & -17
\end{array}\right]$$

O segundo passo $l_3 + (-4)l_2 \rightarrow l_3$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & 0 & -11 & -33
\end{array}\right]$$

O terceiro passo é $\frac{1}{-11}l_3 \rightarrow l_3$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O quarto passo é $l_2 + (-2)l_3 \rightarrow l_2$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O quinto passo, basta multiplicar l_2 por (-1)

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O sexto passo é $l_1 + (-1)$ $l_3 \rightarrow l_1$

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O sétimo e último passo é $l_1 + (-1)$ $l_2 \rightarrow l_1$

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

$$Logo, x = 1, y = 2 e z = 3.$$

Cada operação elementar, é na verdade uma multiplicação à esquerda de uma matriz elementar no sistema.

Exemplo 1.34

$$Ax = b$$

$$M_1(Ax) = M_1b$$

$$M_2(M_1(Ax)) = M_2M_1b$$

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{11} \end{bmatrix}$$

$$M_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_6 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_7 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Se multiplicar todas essas matrizes, obtém-se a inversa

$$A^{-1} = M_1 M_2 M_3 M_4 M_5 M_6 M_7$$
$$x = M_1 M_2 M_3 M_4 M_5 M_6 M_7$$

1.5 Exercícios

Exercício 1 Dado as matrizes

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$$

e

$$B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

Calcule:

- a) 3A + 7B
- b) B-A
- c) $A \cdot B$
- $d) \ 2 \cdot (AB)$
- $e) B \cdot \mathbf{A}$
- $f) A^2$
- $g) B^2$

Exercício 2 Dado a matriz:

$$\left[\begin{array}{cc|cc|c} 1 & 0 & 2 & -1 \\ -2 & 0 & -3 & 1 \\ 0 & 2 & 0 & -2 \end{array}\right].$$

- a) Quem são as matrizes elementares? b) Calcular A^{-1} (opcional).

Chapter 2

Espaços Vetoriais

Um espaço vetorial é um conjunto formado com as operações de adição de vetores (+) e de multiplicação por escalar $(\cdot\lambda)$ os quais satisfazem as 8 propriedades que veremos mais adiante. A ideia é mostrar que alguns conjuntos possuem estrutura similar as dos espaços vetoriais.

2.1 Noção Geométrica de um Vetor

Definição 2.1 Vetor é um objeto matemático que possui direção, magnitude e sentido no plano ou espaço. Pode ser representado como: \vec{v} ou em negrito \vec{v} . A seta \rightarrow aponta na direção e no sentido da ação e seu comprimento fornece a magnitude da ação.

Exemplo 2.1 Considere o vetor \vec{v} em amarelo, onde: $||\vec{v}|| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$.

Definição 2.2 (+) A soma de vetores pode ser realizada através da operação chamada soma vetorial, a qual devem ser considerados o módulo, direção e sentido, que gera um \vec{v} resultante, ou seja, ligando a origem com a extremidade obtém-se o vetor soma.

Exemplo 2.2 (Comutatividade): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$:

$$\vec{u} = \vec{v} + \vec{w} = \begin{pmatrix} 1+4\\2+2 \end{pmatrix} = \begin{pmatrix} 5\\4 \end{pmatrix}$$

$$\vec{u} = \vec{w} + \vec{v} = \begin{pmatrix} 4+1\\2+2 \end{pmatrix} = \begin{pmatrix} 5\\4 \end{pmatrix}$$

Representação gráfica do vetor \vec{u} :

NOTA: A soma geralmente formará paralelogramos. O gráfico acima ilustra como a ordenação da soma vetorial possui a propriedade de comutatividade.

Exemplo 2.3 (Associatividade): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e $\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$\begin{aligned} \vec{v} + \vec{w} + \vec{u} &= \vec{a} \\ \vec{v} + \vec{w} &= \vec{c} \\ \vec{w} + \vec{u} &= \vec{b} \end{aligned}$$

Representação gráfica dos vetores v, w e u:

Definição 2.3 O vetor com comprimento equivalente a 0 é o vetor nulo (neutro): $\vec{0} = \binom{0}{0}$, além disso, é o único sem direção específica.

Exemplo 2.4 (Neutro): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$:

$$\vec{v} + \vec{0} = \begin{pmatrix} 1+0\\ 2+0 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$
$$\vec{0} + \vec{v} = \begin{pmatrix} 0+1\\ 0+2 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Exemplo 2.5 (Oposto): O oposto de um vetor é representado por \vec{v} e $-\vec{v}$, onde possuem a mesma magnitude e direção, mas no sentido contrário.

$$\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rightarrow \vec{-v} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

Definição 2.4 (.) A multiplicação por escalar ou homotetia é a dilatação da distância entre um ponto em relação a um ponto fixo e $\lambda \neq 0$, segundo uma razão dada. Nesse contexto, podemos multiplicar um $\lambda \in \mathbb{R}$ por um \vec{v} , ou simplesmente $\lambda \cdot \vec{v}$, a ideia é fazer o \vec{v} crescer $\vec{w} = \lambda \cdot \vec{v}$.

Exemplo 2.6 (Multiplicação por escalar): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ e $\lambda = 2$:

$$2 \cdot {1 \choose 2} = 2\vec{v}$$

Agora saindo da geometria, uma possível aplicação com carteiras de ativos, "teoria da carteira" ou "teoria de Markowitz". Essa teoria não é foco dessa disciplina, mas é possível termos uma exemplo menor que envolva finanças.

Exemplo 2.7 Considerando que temos as seguintes corrência em mãos BRL, USD (real e dólar):

a)
$$100BRL + 50BRL = (100 + 50) = 150BRL$$

- b) 10BRL 10BRL = (10 10)BRL = 0BRL = 0
- c) $2 \cdot BRL + USD$. Não se multiplica corrências e sim um escalar pela unidade de dinheiro.

2.2 Exercícios

Exercício 1 Dado $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$, represente geometricamente os vetores:

- a) $3\vec{v} + 6\vec{w}$
- $b) \frac{1}{2}\vec{v} + \frac{1}{5}\vec{w}$
- c) $\vec{v} + \vec{w}$
- d) $-\vec{v}$ $-\vec{w}$
- $e) \vec{v} + \vec{v}$
- $f) \vec{w} + \vec{w} + \vec{w}$

Exercício 2 Calcule as expressões abaixo:

a)
$$\vec{v} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\vec{w} + \vec{v}$, $+3\vec{w} - 7\vec{v}$, $15\vec{w}$, $20\vec{v}$.

b)
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{w} - \vec{v}$, $\vec{v} - \vec{w}$, $3\vec{v} + 2\vec{w}$, $5\vec{v}$, $17\vec{w}$.

Exercício 3 Dado $\vec{u} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \vec{v} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} e \vec{w} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, calcule:$

- a) $\vec{u} + 2\vec{v} 5\vec{w}$
- b) $7\vec{u} + 0\vec{v} + 15\vec{w}$
- c) $\frac{1}{2}\vec{u} + \pi\vec{v}$
- $d) \vec{u} \vec{v}$
- $e) \ \vec{v}$ \vec{u}
- $f) \vec{u} + \vec{v} + \vec{w} + \vec{w}$
- $g) \vec{u} + \vec{u} \vec{v} + 3\vec{v}$

2.3 Noção Algébrica de um Vetor

O módulo de um vetor é representado pela dimensão do segmento de uma reta. A direção por sua vez pode ser representada através de diversas formas, sendo por pontos cardeiais (direção Norte-Sul, Leste-Oeste...), círculo trigonométrico e direção referencial.

Ainda podemos dizer que em um sistema de coordenadas (definidas pelos eixos direcionais) pode ser visto como 2 dimensões, 3 dimensões e etc. Os vetores podem, dessa forma, ser representados pelo par ordenado (x,y) ou através das expressões álgebricas.

Outra forma de representação vetorial é com a utilização da notação matricial.

Definição 2.5 $Um \mathbb{R}$ -espaço vetorial V é um objeto matemático (conjunto) que satisfaz duas operações:

$$(+): V \times V \to V$$
$$(\cdot): \mathbb{R} \cdot V \to V$$

Aqui, é possível observar as oito propriedades que satisfazem as operações de "Adição" e "Multiplicação por Escalar" para cálulos que envolvem os espaços vetoriais.

Adição de vetores, satisfaz:

- 1. Associatividade (+): $(\forall u, v, w \in V) (u + v) + w = u + (v + w)$
- 2. Neutro (+): $(\exists \ \mathbf{0} \in V) \ (\forall \ \mathbf{v} \in V) \ \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- 3. Oposto (+): $\forall v \in V \exists (-v) \in V v + (-v) = (-v) + v = 0$
- 4. Comutatividade (+): $\forall \mathbf{u}, \mathbf{v} \in V \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Multiplicação de vetor por escalar, satisfaz:

- 5. Distributividade: $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{v} \in V \ (a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$
- 6. Distributividade: $\forall a \in \mathbb{R} \ \forall \ \boldsymbol{u}, \boldsymbol{v} \in V \ a \cdot (\boldsymbol{u} + \boldsymbol{v}) = a \cdot \boldsymbol{u} + b \cdot \boldsymbol{v}$
- 7. Distributividade: $\forall a, b \in \mathbb{R} \ \forall \ \boldsymbol{u} \in V \ (ab) \cdot \boldsymbol{u} = a \cdot (b \cdot u)$
- 8. Neutro (·): $\forall v \in V \ 1 \cdot v = v$

Proposição 1 Mostrar que o $\mathbb{R}^2 : \mathbb{R} \times \mathbb{R}$ é um \mathbb{R} -espaço vetorial.

Demonstração 1 Primeiramente, define-se:

$$(+): \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(+): (a,b)(c,d) = (a+c,b+d)$$

$$(\cdot): \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(\cdot): a(x,y) = (ax,ay)$$

Associatividade: Sejam $\mathbf{u} \in \mathbb{R}^2$, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{w} \in \mathbb{R}^2$

$$egin{aligned} m{u} &= (m{u}_1, m{u}_2) \ m{v} &= (m{v}_1, m{v}_2) \ m{w} &= (m{w}_1, m{w}_2) \ (m{u} + m{v}) + m{w} &= ((m{u}_1, m{u}_2) + (m{v}_1, m{v}_2)) + (m{w}_1, m{w}_2) \ &= ((m{u}_1 + m{v}_1, m{u}_2 + m{v}_2)) + (m{w}_1, m{w}_2) \ &= (m{u}_1 + m{v}_1 + m{w}_1, m{u}_2 + m{v}_2 + m{w}_2) \ &= (m{u}_1 + (m{v}_1 + m{w}_1), m{u}_2 + (m{v}_2 + m{w}_2)) \ &= (m{u}_1, m{u}_2) + ((m{v}_1, m{v}_2) + (m{w}_1, m{w}_2)) \ &= m{u} + (m{v} + m{w}) \end{aligned}$$

Exemplo 2.8 (Numérico):

$$((1,2)+(0,3))+(1,1) = (1,5)+(1,1) = (2,6)$$

 $(1,2)+((0,3)+(1,1)) = (1,2)+(1,4) = (2,6)$

Neutro: $\exists \ \boldsymbol{0} \in \mathbb{R}^2 \ \forall \ \boldsymbol{v} \in \mathbb{R}^2$

$$egin{aligned} oldsymbol{0} &= (oldsymbol{0}, oldsymbol{0}) \ oldsymbol{v} &= (oldsymbol{v}_1, oldsymbol{v}_2) \ oldsymbol{0} + oldsymbol{v} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{v}_2 + oldsymbol{v}) \\ (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2) + (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{$$

Exemplo 2.9 (Numérico):

$$(0,0)+(3,4) = (0+3,0+4) = (3,4)$$

Oposto: Sejam $\forall \ \boldsymbol{v} \in \mathbb{R}^2 \ \exists \ (-\boldsymbol{v}) \in \mathbb{R}^2$

$$v = (v_1, v_2)$$

$$-v = (-v_1, -v_2)$$

$$v+(-v) = 0$$

$$(-v)+v = 0$$

$$v+(-v) = (v_1, v_2)+(-v_1, -v_2)$$

$$= (v_1+(-v_1), v_2+(-v_2))$$

$$= (v_1, -v_1), (v_2 - v_2)$$

$$= (0, 0)$$

Exemplo 2.10 (Numérico):

$$(5,-3)+(-5,3)=(5-5),(-3+3)=(0,0)$$

Comutatividade: Sejam $\forall u, v \in \mathbb{R}^2$

$$egin{aligned} m{u} &= (m{u}_1, m{u}_2) \ m{v} &= (m{v}_1, m{v}_2) \ m{u}_1, m{u}_2 \ m{v}_1, m{v}_2 &\in \mathbb{R} \ m{u} + m{v} &= m{v} + m{u} \ m{u} + m{v} &= (m{u}_1, m{u}_2) + (m{v}_1, m{v}_2) \ &= (m{u}_1 + m{v}_1, m{u}_2 + m{v}_2) \ &= (m{v}_1 + m{u}_1, m{v}_2 + m{u}_2) \ &= (m{v}_1, m{v}_2) + (m{u}_1, m{u}_2) \ &= m{v} + m{u} \end{aligned}$$

Exemplo 2.11 (Numérico):

$$(4,3)+(1,-1) = (5,2)$$
ou
 $(1,-1)+(4,3) = (5,2)$

<u>Distributividade:</u> Sejam $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{v} \in \mathbb{R}^2$

$$v = (v_1, v_2)$$

$$(a+b) \cdot v = (v_1, v_2) = a \cdot v + b \cdot v$$

$$(a+b) \cdot v = ((a+b)v_1, (a+b)v_2)$$

$$= (av_1, av_2) + (bv_1, bv_2)$$

$$= a \cdot (v_1, v_2) + b \cdot (v_1, v_2)$$

$$= a \cdot v + b \cdot v$$

Exemplo 2.12 (Numérico):

$$(2+3)\cdot(1,1) = 5\cdot(1,1) = (5,5)$$
ou
$$2\cdot(1,1)+3\cdot(1,1) = (2,2)+(3,3) = (5,5)$$

Distributividade: Sejam $\forall \ a \in \mathbb{R} \ \forall \ \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^2$

$$\begin{aligned} \boldsymbol{u} &= (\boldsymbol{u}_1, \boldsymbol{u}_2) \\ \boldsymbol{v} &= (\boldsymbol{v}_1, \boldsymbol{v}_2) \\ a \cdot (\boldsymbol{u} + \boldsymbol{v}) &= a \cdot \boldsymbol{u} + a \cdot \boldsymbol{v} \\ a \cdot (\boldsymbol{u}_1 + \boldsymbol{v}_1, \boldsymbol{u}_2 + \boldsymbol{v}_2) \\ &= (a(\boldsymbol{u}_1 + \boldsymbol{v}_1), a(\boldsymbol{u}_2 + \boldsymbol{v}_2)) \\ &= (a\boldsymbol{u}_1 + a\boldsymbol{v}_1, a\boldsymbol{u}_2 + a\boldsymbol{v}_2) \\ &= (a\boldsymbol{u}_1, a\boldsymbol{u}_2) + (a\boldsymbol{v}_1, a\boldsymbol{v}_2) \\ &= a \cdot (\boldsymbol{u}_1, \boldsymbol{u}_2) + a \cdot (\boldsymbol{v}_1, \boldsymbol{v}_2) \\ &= a \cdot \boldsymbol{u} + a \cdot \boldsymbol{v} \end{aligned}$$

Exemplo 2.13 (Numérico):

$$7 \cdot ((1,1) + (1,0)) = 7 \cdot (2,0) = (14,0)$$
ou
$$7 \cdot (1,1) + 7 \cdot (1,0) = (7,7) + (7,0) = (14,0)$$

Distributividade: Sejam $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{u} \in \mathbb{R}^2$

$$egin{aligned} m{v} &= (m{v}_1, m{v}_2) \ (ab) \cdot m{v} &= a \cdot (b \cdot m{v}) \ (ab) \cdot m{v} &= (ab) \cdot (m{v}_1, m{v}_2) \ &= (abm{v}_1, abm{v}_2) \ &= (a(bm{v}_1), a(bm{v}_2)) \ &= a \cdot (bm{v}_1, bm{v}_2) \end{aligned}$$

Exemplo 2.14 (Numérico):

$$6 \cdot (1,1) = (6,6)$$

$$ou$$

$$(2 \cdot 3) \cdot (1,1) = 2 \cdot (3 \cdot (1,1))$$

$$2 \cdot (3,3) = (6,6)$$

Neutro: Sejam $\forall v \in \mathbb{R}^2 \ 1 \cdot v = v$

$$egin{aligned} oldsymbol{v} &= (oldsymbol{v}_1, oldsymbol{v}_2) \ 1 \cdot oldsymbol{v} &= oldsymbol{v} \cdot (oldsymbol{v}_1, oldsymbol{v}_2) \ (oldsymbol{v}_1, 1 oldsymbol{v}_2) &= (oldsymbol{v}_1, oldsymbol{v}_2) = oldsymbol{v} \end{aligned}$$

Exemplo 2.15 (Numérico):

$$1 \cdot (3,2) = (3,2)$$

Logo, \mathbb{R}^2 é um \mathbb{R} -Espaço vetorial.

Vejamos mais alguns exemplos:

Proposição 2 (
$$\mathbb{C}$$
) = $\{a+bi \mid a,b,c,d \in \mathbb{R}\}$ (vetores = números complexos).
+ : $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$
 $(a+bi)+(c+di) \to (a+c)+(b+d)i$

$$+: \mathbb{R} \times \mathbb{C} \to \mathbb{C}$$

 $\lambda(a+bi) \to +bi$

Exemplo 2.16 Comutatividade: $\forall u, v \in \mathbb{C}$.

$$\begin{aligned} u+v&=v+u\\ u&=u_1+u_2i(u_1,u_2\in\mathbb{R})\\ v&=v_1+v_2i(v_1,v_2\in\mathbb{R})\\ u+v&=(u_1+u_2i)+(v_1+v_2i)\\ &=(u_1+v_1)+(u_2+v_2)i\\ &=(v_1+u_1)+(v_2+u_2)i\\ &=(v_1+v_2i)+(u_1+u_2i)\\ &=v+u \end{aligned}$$

2.4. EXERCÍCIOS

37

Exemplo 2.17 Distributividade: $\forall a, b \in \mathbb{R} \ u \in \mathbb{C}$:

$$(ab) \cdot \mathbf{u} = a \cdot (b\mathbf{u})$$

$$(ab) \mathbf{u} = (ab) \cdot (\mathbf{u}_1 + \mathbf{u}_2 i)$$

$$= ab\mathbf{u}_1 + ab\mathbf{u}_2 i$$

$$= a(b\mathbf{u}_1) + a(b\mathbf{u}_2 i)$$

$$= a \cdot (b\mathbf{u}_1 + b\mathbf{u}_2 i)$$

$$= a \cdot (b \cdot (\mathbf{u}_1 + \mathbf{u}_2 i))$$

$$= a \cdot (b \cdot \mathbf{u})$$

2.4 Exercícios

Exercício 1 Mostre que são \mathbb{R} -Espaços vetoriais os seguintes conjuntos:

 $a) \mathbb{R}$

$$u + v = u \cdot v$$

$$a \cdot \mathbf{v} = \mathbf{v}^a$$

b)
$$M_{2\times 2}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

c)
$$\mathbb{R}^n$$
, $\forall n > 2$

- $d) \mathbb{R}^3$
- $e) \mathbb{R}^4$
- $f) \mathbb{R}^5$
- $g) \mathbb{R}^6$
- $h) \mathbb{R}^7$
- $i) \mathbb{R}^8$
- $j) \mathbb{R}^{10}$

2.5 Subespaços

Um subconjunto W de um espaço vetorial V, recebe o nome de "Subespaço Vetorial" de V se esse subconjunto é um \mathbb{R} -espaço vetorial e está relacionado com as oito propriedades vistas, as quais satisfazem as operações de adição e multiplicação por escalar.

Teorema 2 : Seja $W \subseteq V$, onde V é um \mathbb{R} -espaço vetorial, W é um espaço vetorial de V se satisfaz:

- a) $0 \in W$;
- b) Se $\mathbf{w}_1, \mathbf{w}_2 \in W$, então $\mathbf{w}_1 + \mathbf{w}_2 \in W$;
- c) Se $a \in \mathbb{R}$ e $\mathbf{w} \in W$, então $a \cdot w \in W$.

Exemplo 2.18 $W = \{(x_1, x_2) \mid x_1 - 2x_2 = 0\}$. Mostre que W é um subespaço vetorial de \mathbb{R}^2 .

Resposta:

$$x_1 - 2x_2 = 0$$
$$x_1 = 2x_2$$

então: $W = \{(2x_1, x_2) \mid x_1 \in \mathbb{R}\}$

a) $\mathbf{0} \in W$

$$(0,0) = (2x_2, x_2)$$
$$2x_2 = 0$$
$$x_2 = 0$$
$$(0,0) \in W$$

b) $u, v \in W \rightarrow u+v \in W$

$$u = (2u_2, u_2)$$

$$v = (2v_2, v_2)$$

$$u+v = (2u_2, u_2)+(2v_2, v_2)$$

$$= (2u_2 + v_2, u_2 + v_2)$$

$$= (2(u_2 + v_2)u_2 + v_2)$$

$$= (u_2 + v_2)\cdot(2, 1)$$

Exemplo 2.19 (Numérico):

$$\mathbf{w}_1 = (4, 2) = 2 \cdot (2, 1)$$

 $\mathbf{w}_2 = (6, 3) = 3 \cdot (2, 1)$
 $\mathbf{w}_1 + \mathbf{w}_2 = (10, 5)$
 $= 5 \cdot (2, 1)$

c) $a \in \mathbb{R} \boldsymbol{u} \in W \to a \cdot \boldsymbol{u} \in W$

$$egin{aligned} & m{u} = (2 m{u}_2, m{u}_2) \ & a \cdot m{u} = (2 m{u}_2, m{u} a) \ & = (2 a m{u}_2, a m{u}_2) \in W \ & = a m{u}_2 \cdot (2, 1) \end{aligned}$$

Logo, $W \notin um \ subespaço \ de \mathbb{R}^2$.

Representação gráfica \rightarrow Subespaços de $\mathbb{R}^2(Plano)$:

2.5. SUBESPAÇOS

39

$$-\mathbb{R}^2 \subseteq \mathbb{R}^2$$

$$-Retas que passam em (0,0)$$

$$-\{(0,0)\} \subseteq \mathbb{R}^2$$

$$0$$

Exemplo 2.20 $W = \{(x_1, x_2, x_3) \mid x_1 - x_3 = 0 \land x_1 + x_2 + x_3 = 0\}$. Mostre que W é um subespaço vetorial de \mathbb{R}^3 . Resposta:

$$x_1 - x_3 = 0$$
$$x_1 + x_2 + x_3 = 0$$

$$x_1 = x_3$$
$$2x_1 + x_2 = 0$$
$$x_2 = -2x_1$$

Então $W = \{(x_1 - 2x_1, x_1) \mid x_1 \in \mathbb{R}\}.$

a)
$$\mathbf{0} \in W$$
; $(0,0,0) = (0,-2\cdot 0,0) \in W$.

b) $u, v \in W \rightarrow u+v \in W$

$$egin{aligned} m{u} &= (m{u}_1, -2m{u}_1, m{u}_1) \ m{v} &= (m{v}_1, -2m{v}_1, m{v}_1) \ m{u} + m{v} &= (m{u}_1 + m{v}_1, -2m{u}_1 - 2m{v}_1, m{u}_1 + m{v}_1) \ &= (m{u}_1 + m{v}_1, (-2)(m{u}_1 + m{v}_1), m{u}_1 + m{v}_1) \ &= (m{u}_1 + m{v}_1) \cdot (1, -2, 1) \end{aligned}$$

$$c) \ a \in \mathbb{R} \boldsymbol{u} \in W \to a \cdot \boldsymbol{u} \in W$$

$$u = (u_1, -2u_1, u_1)$$

 $a \cdot u = (au_1, -2au, u_1) \in W$
 $= (au_1 \cdot (1, -2, 1)$

Logo, W é um subespaço de \mathbb{R}^3 .

Representação gráfica \rightarrow Subespaços de \mathbb{R}^3 :

$-\mathbb{R}^3 \subseteq \mathbb{R}^3$	3
- Planos que passam em $(0,0,0)$	2
- Retas que passam em $(0,0,0)$	1
$-\{(0,0,0)\}$	0

Subespaços de \mathbb{R}^4

$-\mathbb{R}^4 \subseteq \mathbb{R}^4$	4
$-Cubos\ que\ passam\ em\ (0,0,0,0)$	3
- Planos que passam em $(0,0,0,0)$	2
$-Retas\ que\ passam\ em\ (0,0,0,0)$	1
$-\{(0,0,0,0)\}$	0

Vajamos mais alguns exemplos:

Exemplo 2.21 $W = \{(x_1, x_2, x_3) \mid x_1 + 3x_3 = 0\}$ Mostre que W é um subespaço vetorial de \mathbb{R}^3 .

$$\rightarrow x_1 = -3x_3$$

Reescrevemos como: $W = \{(-3x_3, x_2, x_3) \mid x_2, x_3 \in \mathbb{R}\}$

$$(-3x_3, 0, x_3) + (0, x_2, 0)$$

 $x_3(-3, 0, 1) + x_2(0, 1, 0)$

Esse subespaço é um plano com os vetores diretores sendo (-3,0,1) e (0,1,0) passando por (0,0,0).

a)
$$(0,0,0) \in W$$
 $x_3 = 0$ e $x_2 = 0$

b) $\boldsymbol{u}, \boldsymbol{v} \in W$

$$u = (-3u_3, u_2, u_3)$$

$$v = (-3v_3, v_2, v_3)$$

$$u + v = (-3u_3 - 3v_3, u_2 + v_2, u_3 + v_3)$$

$$= (-3(u_3 + v_3), u_2 + v_2, u_3 + v_3)$$

$$= (-3(u_3 + v_3), 0, u_3 + v_3) + (0, u_2 + v_2, 0)$$

$$= (u_3 + v_3) \cdot (-3, 0, 1) + (u_2 + v_2)(0, 1, 0)$$

 $c) \ a \in \mathbb{R} \ \boldsymbol{u} \in W$

$$u = (-3u_3, u_2, u_3)$$

$$a \cdot u = (-3au_3, au_2, au_3) \in W$$

$$= (-3au_3, 0, au_3) + (0, au_2, 0)$$

$$= au_3 \cdot (-3, 0, 1) + au_3 \cdot (0, 1, 0)$$

2.6 Exercícios

Exercício 1 Mostre que os conjuntos W são subespaços dos \mathbb{R} -Espaços vetoriais ao lado.

a)
$$W = \{(x_1, x_2, x_3, x_4) \mid x_2 - 5x_3 = 0 \land x_1 + x_4 = 0\}$$
 \mathbb{R}^4
b) $W = \{(x_1, x_2, x_3) \mid x_1 - x_2 + x_3 = 0 \land x_1 - 2x_3 = 0\}$ \mathbb{R}^3
c) $W = \{(x_1, x_2, x_3) \mid 5x_1 - x_2 = 0 \land x_2 - x_3 = 0\}$ \mathbb{R}^3
d) $W = \{(x_1, x_2, x_3) \mid 5x_1 - 2x_2 + x_3 = 0\}$ \mathbb{R}^3
e) $W = \{(x_1, x_2, x_3, x_4) \mid x_3 = 0\}$ \mathbb{R}^4
f) $W = \{(x_1, x_2, x_3) \mid x_2 + x_3 = 0\}$ \mathbb{R}^3
g) $W = \{(x_1, x_2, x_3) \mid x_2 - x_3 + x_1 = 0 \land x_2 + \frac{x_1}{2} = 0\}$ \mathbb{R}^3
h) $W = \{(x_1, x_2) \mid 9x_1 + 8x_2 = 0\}$ \mathbb{R}^2
i) $W = \{(x_1, x_2) \mid 5x_1 + 2x_2 = 0\}$ \mathbb{R}^2

Exercício 2 Modifique os conjuntos acima de forma que não sejam mais subespaços. Explique.

2.7 Combinações Lineares

Podemos dizer que, uma Combinação Linear, portanto, é a soma de múltiplos de vetores no espaço, de forma que o espaço gerado é denotado através do "Span" que está definido abaixo.

Definição 2.6 Suponha $V \mathbb{R}$ -Espaço vetorial $e \ a_1, a_2, ..., a_n \in \mathbb{R} \ v_1, v_2, ..., v_n \in V$. Então a combinação linear de $v_1, v_2, ..., v_n$ com pesos $a_1, a_2, ..., a_n$ \acute{e} :

$$a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

Definição 2.7 (Gerador): O conjunto de todas as combinações lineares é dado por: Span $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} = \{a_1 \cdot \mathbf{v}_1 + a_2 \cdot \mathbf{v}_2, ..., + a_n \cdot \mathbf{v}_n \mid a_1, a_2, ..., a_n \in \mathbb{R}\}.$

NOTA: Vertores \rightarrow dados e escalares \rightarrow pesos.

Exemplo 2.22 Span $\{(1,0),(0,1)\} = \{a_1 \cdot (1,0) + a_2 \cdot (0,1) \mid a_1, a_2, ..., a_n \in \mathbb{R}\}.$

2.7. COMBINAÇÕES LINEARES

43

Note que: vetores = dados e escaleres = pesos

Proposição 3 Dado $v_1, v_2, ..., v_n$ com V \mathbb{R} -Espaço vetorial, temos que Span $\{v_1, v_2, ..., v_n\}$ é um subespaço de V.

Demonstração~2

a) $0 \in Span \{ v_1, v_2, ..., v_n \}$, pois

$$0 \cdot v_1 + 0 \cdot v_2 + \dots 0 \cdot v_n$$

 $a_1 = 0 \ a_2 = 0 \ , \dots, \ a_n = 0$

 $Logo \ \theta \in Span.$

b) $\mathbf{u}, \mathbf{w} \in Span \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ (propriedade 5)

$$u = a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n$$

$$w = b_1 \cdot v_1 + b_2 \cdot v_2 + \dots + b_n \cdot v_n$$

$$u + w = a_1 \cdot v_1 + b_1 \cdot v_1 + a_2 \cdot v_2 + b_2 \cdot v_2 + \dots + a_n \cdot v_n + b_n \cdot v_n$$

$$= (a_1 + b_1) \cdot v_1 + (a_2 + b_2) \cdot v_2 + \dots + (a_n + b_n) \cdot v_n$$

 $Logo \ \boldsymbol{u+w} \in Span \{\boldsymbol{v}_1, \boldsymbol{v}_2..., \boldsymbol{v}_n\}.$

Exemplo 2.23 (Numérico): $u, w \in Span \{v_1, v_2..., v_n\}$

$$\begin{split} & \boldsymbol{u} = 7 \cdot (1,0) + 3 \cdot (0,1) \\ & \boldsymbol{v} = 2 \cdot (1,0) + 1 \cdot (0,1) \\ & \boldsymbol{u} + \boldsymbol{v} = 7 \cdot (1,0) + 2 \cdot (1,0) + 3 \cdot (0,1) + 1 \cdot (0,1) \\ & = (7+2) \cdot (1,0) + (3+1) \cdot (0,1) \\ & = 9 \cdot (1,0) + 4 \cdot (0,1) \end{split}$$

Logo $u+v \in Span \{v_1, v_2..., v_n\}.$

c) $a \in \mathbb{R} \ \boldsymbol{u} \in Span \{\boldsymbol{v}_1, \boldsymbol{v}_2..., \boldsymbol{v}_n\} \ (propriedade 7)$

$$\mathbf{u} = a_1 \cdot \mathbf{v}_1 + a_2 \cdot \mathbf{v}_2 + \dots + a_n \cdot \mathbf{v}_n$$
$$a \cdot \mathbf{u} = (a_1) \cdot \mathbf{v}_1 + (a_2) \cdot \mathbf{v}_2 + \dots + (a_n) \cdot \mathbf{v}_n$$

Logo $a \cdot \mathbf{u} \in Span \{ \mathbf{v}_1, \mathbf{v}_2 ..., \mathbf{v}_n \}.$

Exemplo 2.24 (Numérico): $u, v \in Span \{(1, 0), (0, 1)\}$

$$\mathbf{u} = 7 \cdot (1,0) + 3 \cdot (0,1)$$
 $a = 2$
 $a \cdot \mathbf{u} = (2 \cdot 7) \cdot (1,0) + (2 \cdot 3) \cdot (0,1)$
 $= 14 \cdot (1,0) + 6 \cdot (0,1)$

Logo $a \cdot \mathbf{u} \in Span \{(1,0), (0,1)\}.$

2.8 Dependência e Independência Linear

Definição 2.8 Sejam $V \mathbb{R}$ -Espaço Vetorial $\in S \{v_1, v_2..., v_n\}$:

- S é linearmente independente (LI) se: $a_1 \cdot v_1 + a_2 \cdot v_2 + ... a_n + v_n = 0$, apenas quando $a_1 = 0$ e $a_2 = 0$... e $a_n = 0$ (todos os coeficientes são zero);
- S é lienearmente dependente (LD) se: $a_1 \cdot v_1 + a_2 \cdot v_2 + ... a_n \cdot v_n = 0$, mas nem todos os escalares são zero $(\exists j \in \mathbb{N} \mid a_j \neq 0)$.

Exemplo 2.25 (Numérico): O conjunto $S\{(1,0),(0,1)\}$, é LI ou LD?

$$a_1 \cdot (1,0) + a_2 \cdot (0,1) = (0,0)$$

$$(a_1,0) + (0,a_2) = (0,0)$$

$$(a_1a_2) = (0,0)$$

$$a_1 = 0$$

$$a_2 = 0$$

Logo S é LI.

Exemplo 2.26 (Numérico): O conjunto $S\{(-1,1),(2,3)\}$, é LI ou LD?

$$a_1 \cdot (-1, 1) + a_2 \cdot (2, 3) = (0, 0)$$

$$(-a_1, a_1) + (2a_2, 3a_2) = (0, 0)$$

$$(-a_1 + 2a_2, a_1 + 3a_2) = (0, 0)$$

$$\begin{cases}
-a_1 + 2a_2 = 0 \\
a_1 + 3a_2 = 0
\end{cases}$$

Agora temos um sistema linear, então vamos escolher uma equação e resolvê-la. Considerando a primeira equação:

$$-a_1 + 2a_2 = 0$$
$$2a_2 = a_1$$

2.9. EXERCÍCIOS

e, substituindo na segunda:

$$2a_2 + 3a_2 = 0$$
$$5a_2 = 0$$

45

Portanto $a_2 = 0$. Se $a_2 = 0$ e $a_1 = 2a_2$, logo $a_1 = 0$, sendo assim S é LI.

Exemplo 2.27 (Numérico): O conjunto $S\{(1,1),(1,0),(5,2)\}, \ é \ LI \ ou \ LD?$

$$a_{1} \cdot (1,1) + a_{2} \cdot (1,0) + a_{3} \cdot (5,2) = (0,0)$$

$$(a_{1} + a_{1}) + (a_{2},0) + (5a_{3},2a_{3}) = (0,0)$$

$$(a_{1} + a_{2} + 5a_{3}, a_{1} + 2a_{3}) = (0,0)$$

$$\begin{cases} a_{1} + a_{2} + 5a_{3} = 0 \\ a_{1} + 2a_{3} = 0 \end{cases}$$

$$-2a_{3} \cdot (1,1) + -3a_{3} \cdot (1,0) + a_{3}(5,2) = (0,0)$$

$$a_{1} = -2a_{3}$$

$$a_{2} = -3a_{3} = 0$$

$$(-2) \cdot (1,1) + (-3) \cdot (1,0) + 1 \cdot (5,2) = (0,0)$$

$$(-2 - 3 + 5, -2 + 2) = (0,0)$$

Logo S é LD, pois temos números $\neq 0$ gerando (0,0).

2.9 Exercícios

Exercício 1 Dado os conjuntos S abaixo, mostre se eles são LD ou LI:

 $a) \ S = \{(1,0,1), (-2,5,1), (3,0,0), (-1,4,1)\}$ $b) \ S = \{(1,1,1), (-2,2,3), (0,5,0)\}$ $c) \ S = \{(1,2,3,0), (0,1,0,0), (1,0,0,0), (3,1,0,-1)\}$ $d) \ S = \{(1,0,1), (-1,-1,-1), (1,1,2)\}$ $e) \ S = \{(1,0,0), (7,7,8), (-1,-1,-1), (5,2,3)\}$ $f) \ S = \{(1,2,1), (2,1,1), (1,1,2)\}$ $g) \ S = \{(1,1,1), (-1,0,2), (3,2,0)\}$ $h) \ S = \{(1,-1,0), (5,-1,0), (0,0,2)\}$

2.10 Base

Podemos dizer que uma "Base" B para um V espaço vetorial, é um conjunto de vetores linearmete independentes que geram esse espaço. Vejamos algumas definições de base e seus exemplos.

Teorema 3 Uma coleção de vetores $B\subseteq V$ (V \mathbb{R} -Espaço Vetorial) é chamado de base para V se:

- 1) B é linearmente independente (LI).
- 2) Span B = V (o conjunto B gera todos os vetores).

Exemplo 2.28 Tome o \mathbb{R}^3 como \mathbb{R} -espaço vetorial $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ $B \notin LI$.

Verificando se B é uma base:

$$\mathbf{v} \in \mathbb{R}^{3}$$

$$\mathbf{v} = (x_{1}, x_{2}, x_{3})$$

$$a_{1} \cdot (1, 0, 0) + a_{2} \cdot (0, 1, 0) + a_{3} \cdot (0, 0, 1) = (v_{1}, v_{2}, v_{3})$$

$$(a_{1}, 0, 0), (0, a_{2}, 0), (0, 0, a_{3}) = (v_{1}, v_{2}, v_{3})$$

$$(a_{1}, a_{2}, a_{3}) = (v_{1}, v_{2}, v_{3})$$

$$\begin{cases} a_{1} = v_{1} \\ a_{2} = v_{2} \\ a_{3} = v_{3} \end{cases}$$

Portanto B é uma base.

É possível observar a representação gráfica do exemplo dado acima na figura abaixo:

Proposição 4 B é uma base de V se qualquer vetor é escrito de forma única nesta base (regra da unicidade).

Demonstração 3

$$\begin{aligned} & \mathbf{v} = a_1 \cdot \mathbf{v}_1 + \dots + a_n \cdot v_n + \\ & = b_1 \cdot \mathbf{v}_1 + \dots + b_n \cdot v_n \cdot (-1) \\ & = (a_1 - b_1) \cdot \mathbf{v}_1 + \dots + (a_n - b_n) \cdot v_n = 0 \end{aligned}$$

2.10. BASE 47

$$(a_1 - b_1) = 0 a_1 = b_1$$

$$\dots (a_n - b_n) = 0 a_n = b_n$$

Sendo assim, escrita de forma única.

Demonstração 4 \Leftrightarrow Span B = V (Gerador): $\mathbf{v} \in V$

$$\mathbf{v} = a_1 \cdot \mathbf{v}_1 + \dots + a_n \cdot \mathbf{v}_n \quad \mathbf{v} \in Span \ B$$

Se escrevermos v em função das bases, então já temos que $v \in Span B$.

$$(LI): a_1 \cdot \boldsymbol{v}_1 + \dots + a_n \cdot \boldsymbol{v}_n = 0 \cdot \boldsymbol{v}_1 + \dots + 0 \cdot \boldsymbol{v}_n$$

Logo, $a_1 = 0, ..., a_n = 0$ pela unicidade. Portanto B é LI.

Exemplo 2.29 Dado $S = \{(1, -1, 0), (0, 1, 1), (2, 1, -1)\}$ é base para \mathbb{R}^3 ?

Para resolvermos esse problema e mostrar que é ou não base do \mathbb{R} -espaço vetorial \mathbb{R}^3 , temos de mostrar que é "LI" e que gera o espaço vetorial.

Primeiro passo: Mostrar que é LI.

$$a_1 \cdot (1, -1, 0) + a_2 \cdot (0, 1, 1) + a_3 \cdot (2, 1, -1) = (0, 0, 0)$$

$$(a_1 + 2a_3, -a_1 + a_2 + a_3, a_2 - a_3) = (0, 0, 0)$$

$$\begin{cases} a_1 + 2a_3 = 0 \\ -a_1 + a_2 + a_3 = 0 \end{cases}$$

$$a_2 - a_3 = 0$$

 $Resolvendo\ o\ sistema:$

$$-a_1 + 2a_2 = 0 \rightarrow a_1 = 2a_2$$

 $a_2 = a_3$
 $2a_2 + 2a_3 = 0$
 $4a_3 = 0 \rightarrow a_3 = 0$

Logo, $a_1 = 0$, $a_2 = 0$ e $a_3 = 0$. Portando S é LI.

Segundo passo: Agora precisamos verificar se esse conjunto gera algum vetor, ou seja, se o vetor terá coordenada.

Então, para $S = \{(1, -1, 0), (0, 1, 1), (2, 1, -1)\}, \ \mathbf{v} \in \mathbb{R}^3 \ e \ \mathbf{v} = (x, y, z), \ temos:$

$$a_1 \cdot (1, -1, 0) + a_2 \cdot (0, 1, 1) + a_3 \cdot (2, 1, -1) = (x, y, z)$$

$$\begin{cases} a_1 + 2a_3 = x \\ -a_1 + a_2 + a_3 = y \\ a_2 - a_3 = z \end{cases}$$

$$a_{1} + 2a_{2} + a_{3} = -(x - 2a_{3}) + z + a_{3} = y$$

$$4a_{3} = y - z + x$$

$$a_{3} = \frac{x + y - z}{4}$$

$$a_{1} = x - 2a_{3}$$

$$a_{1} = x - 2\frac{x + y - z}{4}$$

$$a_{1} = \frac{x + y - z}{2}$$

$$a_{2} = z + a_{3}$$

$$a_{2} = z + \frac{x + y - z}{4}$$

$$a_{2} = \frac{x + y + 3z}{4}$$

Exemplo 2.30 Qual seria a coordenada do vetor (5, 1, 2) em B? Como B é base, temos:

$$a_1(1,-1,0) + a_2(0,1,1) + a_3(2,1-1) = (x,y,z)$$

Fazendo (x,y,z)=(5,1,2)

$$a_1(1,-1,0) + a_2(0,1,1) + a_3(2,1-1) = (5,1,2)$$

Como o sistema já está resolvido, então:

$$a_1 = \frac{x - y - z}{2} = \frac{5 - 1 - 2}{2} = 3$$

$$a_2 = \frac{x + y + 3z}{4} = \frac{5 + 1 + 6}{4} = 3$$

$$a_3 = \frac{x + y - z}{4} = \frac{5 + 1 - 2}{4} = 1$$

$$(5, 1, 2) = 3 \cdot (1, -1, 0) + 3 \cdot (0, 1, 1) + 1 \cdot (2, 1, -1)$$

Exemplo 2.31 $B = \{(1,1,0), (0,1,1), (-1,1,1)\}$ é base ? Condições para gerar \mathbb{R}^3 : $\mathbf{v} \in \mathbb{R}^3$ $\mathbf{v} = (0,0,0)$ e a_1, a_2, a_3 , sendo: **Primeiro passo:** É LI?

$$a_1 \cdot (1,1,0) + a_2 \cdot (0,1,1) + a_3 \cdot (-1,1,1) = (0,0,0)$$

Resolvendo o sistema teremos $a_1 = 0$, $a_2 = 0$ e $a_3 = 0$. Portanto $B \notin LI$. Segundo passo: $B \text{ gera } \mathbb{R}^3$?

$$\begin{cases} a_1 - a_3 = x \\ a_1 + a_2 + a_3 = y \\ a_2 + a_3 = z \end{cases}$$

$$a_1 = x + a_3$$

$$a_1 = x + y - x - z$$

$$a_1 = y - z$$

$$a_2 = z - a_3$$

$$a_2 = z - y + x + z$$

$$a_2 = x - y + 2z$$

$$a_1 + a_2 + a_3 = y$$

$$x + a_3 + z - a_3 + a_3 = y$$

$$a_3 = y - x - z$$

Portanto B gera \mathbb{R}^3 e é base para o mesmo.

Dado (-3,2,4), escreca na base B.

$$a_1 = 2 - 4 = -2$$

 $a_2 = -3 - 2 + 8 = 3$
 $a_3 = 3 + 2 - 4 = 1$

Logo v(-3,2,4) na base B é:

$$v_B = (-2)\cdot(1,1,0)+3\cdot(0,1,1)+1\cdot(-1,1,1)$$

2.11 Mudança de Base

Nesta seção veremos o que é e como realizar uma mudança de base. Para isso, vejamos a definição de mudança de base.

Definição 2.9 (Mudança de base): Dado B, B' bases de V, é possível obter uma matriz que troca as coordenadas entre bases. Se $B = \{v_1, ..., v_n\}$ e $B' = \{w_1, ..., w_n\}$, escreve-se $w_1 = a_{1_1} \cdot v_1 + ... + a_{1_n} \cdot v_n ... w_n = a_{n_1} \cdot v_1 + ... + a_{n_n} \cdot v_n$

$$[M]_{B'\to B} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix} = [[\mathbf{w}_1]_B [\mathbf{w}_2]_B ... [\mathbf{w}_n]_B]$$

Exemplo 2.32
$$B = \{(1, -1), (1, 1)\}$$
 $B' = \{(2, 3), (-1, 0)\}$

$$a_1 \cdot (1, -1) + a_2 \cdot (1, 1) = (2, 3)$$

 $a_1 \cdot (1, -1) + a_2 \cdot (1, 1) = (-1, 0)$

$$\begin{cases} a_1 + a_2 = 2\\ -a_1 + 2a_2 = 3 \end{cases}$$

Resolvendo as equações (2,3):

$$2a_2 = 5 \rightarrow a_2 = \frac{5}{2}$$

$$a1 = 2 - \frac{5}{2} = \frac{-1}{2}$$

$$a_1 + a_2 = -1$$

$$-a_1 + 2a_2 = 0$$

Resolvendo as equações (-1,0):

$$2a_2 = -1 \to a_2 = \frac{-1}{2}$$
$$a_1 = -1 + \frac{1}{2} = \frac{-1}{2}$$

$$(-1,0) = \frac{-1}{2}(1,-1) - \frac{-1}{2}(1,1)$$

$$[M]_{B'\to B} = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} \\ \frac{5}{2} & \frac{-1}{2} \end{bmatrix}$$

Exemplo 2.33 Escreva $v = -7 \cdot (2,3) + 5 \cdot (-1,0)$ na base B

$$[M]_{B'\to B} \cdot v_B' = \begin{bmatrix} \frac{-1}{2} & \frac{-1}{2} \\ \frac{5}{2} & \frac{-1}{2} \end{bmatrix} \cdot \begin{bmatrix} -7 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -20 \end{bmatrix}$$
$$v_B = (1, -1) - 20(1, 1)$$

2.12 Prova 1.1

Exercício 2.1 Resolva o sistema a seguir usando o escalonamento de matrizes.

$$\begin{cases} 6x - 2y = 28\\ 3x + y = 16 \end{cases}$$

Exiba as matrizes elementares e usando elas, calcule a inversa da matriz de coeficientes do sistema acima.

2.13. PROVA 1.2 51

Exercício 2.2 Considere o conjunto $\mathbb{H} = \{(x, y, z) \mid x, y, z \in \mathbb{R} \land x \geq 0\} \subseteq \mathbb{R}^3$. O conjunto \mathbb{H} é um subespaço do \mathbb{R} -espaço vetorial \mathbb{R}^2 ?

Exercício 2.3 Considere o conjunto:

 $S = \{(x, y, z, w) \in \mathbb{R}^4 | x + y + w = 0 \land -x + w = 0 \land z + w = 0\}$. Mostre que \mathbb{S} é um subespaço do \mathbb{R} -espaço vetorial \mathbb{R}^4 .

Exercício 2.4 Considere o conjunto $S = \{(1, 1, 0), (1, 1, 1), (-1, 0, -2)\}$

- 1. S é li ou ld?
- 2. S forma uma base do \mathbb{R} -espaço vetorial \mathbb{R}^3 ?
- 3. Se S de fato formar uma base, qual seria a coordenada do vetor (-1,1,1) em S?

Exercício 2.5 Considere as bases do \mathbb{R} -espaço vetorial \mathbb{R}^2 , $A = \{(1, -1), (3, -1)\}$ e $B = \{(1, 1), (1, 10)\}$. Os vetores estão em ordem, portanto, $A = \{a_1, a_2\}$ e $B = \{b_1, b_2\}$. Exiba as matrizes de mudança de base $M_B \to_A e M_A \to_B$. Escreva os vetores abaixo nas bases indicadas:

- $\mathbf{v} = \frac{1}{2}a_1 3a_2 \ em \ B$
- $v = -b_1 + b_2 \ em \ A$

2.13 Prova 1.2

Exercício 2.6 Resolva o sistema a seguir usando o escalonamento de matrizes.

$$\begin{cases} x - 4y = -26 \\ x + y = 9 \end{cases}$$

Exiba as matrizes elementares e usando elas, calcule a inversa da matriz de coeficientes do sistema acima.

Exercício 2.7 Ache a base e a dimensão do subespaço de \mathbb{R}^5 ,

$$S = \{(x, y, z, u, w) \mid x + y + z + u = 0 \land z + w = 0\}.$$

Exercício 2.8 Considere o conjunto

$$S = \left\{ (x,y,z,u,v,w) \in \mathbb{R}^6 \mid x+w=0 \land x+u+v=0 \land x+y=0 \right\}.$$
 Mostre que S é um subespaço do \mathbb{R} -espaço vetorial \mathbb{R}^6 .

Exercício 2.9 Considere o conjunto $S = \{(1, 1, 5), (7, 5, 3), (2, 3, 0), (1, 4, 4), (0, -8, 4)\}$

- 1. S é li ou ld?
- 2. S forma uma base do \mathbb{R} -espaço vetorial \mathbb{R}^3 ? Se não formar, exclua alguns valores e mostre que forma uma base S'.
- 3. Qual seria a coordenada do vetor (1,1,1) em S'?

Exercício 2.10 Considere os subconjuntos do \mathbb{R} -espaço vetorial \mathbb{R}^2 , $A = \{(-1, -2), (2, -2)\}$ e

 $B = \{(1,1), (5,6), (1,-1)\}$. Arrume B de forma a se obter uma base. A já é assumido como base. Os vetores estão em ordem, portanto, $A = \{a_1, a_2\}$ e $B = \{b_1, b_2\}$. Exiba as matrizes de mudança de base $M_B \to_A e M_A \to_B$.

Escreva os vetores abaixo nas bases indicadas:

- $v = 4a_1 3a_2 \ em \ B$
- $\mathbf{v} = b_1 + b_2 \ em \ A$

Chapter 3

Dimensão e Transformações Lineares

3.1 Dimensão

É chamado de dimensão de um espaço vetorial V o número de vetores de uma base desse V. Para mostrar esse fato, vejamos algumas definições.

Definição 3.1 Suponha V um \mathbb{R} -espaço vetorial e $B \subseteq V$, dizemos que B \acute{e} um LD maximal se para todo conjunto S, $B \subset S$ \acute{e} LD.

Definição 3.2 Dizemos que B é um conjunto gerador minimal se $Span(B) = V \ e \ S \subset B$, então $Span(S) \subset V$.

Teorema 4 São declarações equivalentes:

- 1. B é um conjunto LI maximal;
- 2. B é um conjunto gerador minimal;
- 3. B é uma base.

Demonstração 5 1 \Rightarrow 3: Suponha B LI maximal, pretende-se demonstrar que B é uma base. Seja $v \in V$ (quero mostrar que o $v \in Span(B)$) $v = \alpha_1 v_1 + ... + \alpha_n v_n$, $v_i \in B$ e $\alpha_i \in \mathbb{R}$. Considere $S = B \cup \{w\}$ e $w \notin B$.

Então, isso quer dizer que: $S \notin LD$, portanto $\exists \beta_i \in \mathbb{R} \mid \beta_1 v_1 + ... + \beta_n \gamma w = 0$, sendo $\gamma \neq 0 \ \beta_i \in \mathbb{R}$.

$$\beta_1 v_1 + \dots + \beta_n v_n \gamma w = 0$$

$$\beta_1 v_1 + \dots + \beta_n v_n w = -\gamma w \qquad \times (-1)$$

$$\gamma w = -\beta_1 v_1 - \dots - \beta_n v_n v_n \qquad \div (\gamma)$$

$$w = \frac{1}{\gamma} (-\beta_1 v_1 - \dots - \beta_n v_n) \qquad \in Span(B)$$

Logo $v = \alpha_1 v_1 + ... + \alpha_n v_n + w \rightarrow \in Span(B)$. Portando, B é uma base.

Demonstração 6 $3 \Rightarrow 1$: Suponha que B é uma base. Seja $S \subseteq V$ tal que $B \subset S$. Seja $w \in S$ e $B \subset V$.

Dessa forma, encontramos $\alpha \in \mathbb{R}$, $v_i \in B \mid w = \alpha_1 v_1 + ... + \alpha_n v_n$

$$\alpha_1 v_1 + \dots + \alpha_n v_n - w = 0$$

Temos que S é LD.

Demonstração 7 $2 \Rightarrow 3$: Suponha que B seja gerador minimal, quero mostrar que B é base. Então considere que: $\alpha_1 v_1 + ... + v_n = 0$, $\alpha_i \in \mathbb{R}$ e $v_i \in V$ Suponha por absurdo que algum $\alpha \neq 0$

$$\begin{split} \alpha_i v_i &= -\alpha v_i - \ldots - \alpha_{i-1} v_{i-1} + \alpha_{i-1} v_{i+1} - \ldots - \alpha_n v_n \\ v_i &= \frac{-1}{\alpha_i} (\alpha_1 v_1 + \ldots + \alpha_i + v_{i-1} + \alpha_{i+1} v_{i+1} + \ldots + \alpha_n v_n) \\ &Span \left\{ v_1, \ldots, v_{i-1}, v_{1+1}, \ldots, v_n \right\} = V \end{split}$$

Isso é uma contradição, pois B é o menor possível. Logo, $\alpha_1=0,\alpha_2=0,\alpha_i\neq 0$. Portando B é LI e é uma base.

Demonstração 8 $3 \Rightarrow 2$: Suponha que B é base, quero mostrar que B é gerador minimal. Seja $S \subseteq B$ e $w \in B$ e $w \in B \notin S$. Se $w \notin Span(S)$, então $Span(S) \subset V$.

Suponha por absurdo que $w \in Span(S), (Span(S) = V).$

$$w = \alpha_1 v_1 + \dots + \alpha_n v_n \ \alpha_i \in \mathbb{R} \ e \ v_i \in B$$
$$\alpha_1 v_1 + \dots + \alpha_n v_n - w = 0$$

Então B é LD, pois é uma contradição.

Teorema 5 Suponha $V = Span \{v_1, ..., v_n\} \in \{w_1, ..., w_n\}$ conjunto LI de vetores. Então $m \le n$.

Definição 3.3 Se $B = \{v_1, ..., v_n\}$ é de $V\mathbb{R}$ -espaço vetorial, dim(V) = |B| = n.

Proposição 5 A noção de dimensão é bem definida (duas bases de um \mathbb{R} -espaço vetorial V terão a mesma dimensão).

Demonstração 9 Suponha $B = \{v_1, ..., v_n\} \ e \ B' = \{w_1, ..., w_n\}.$

 $B \ gera \ V \ e \ B' \ \'e \ LI \rightarrow m \le n$

 $B \notin LI \in B' gera V \rightarrow n \leq m$

Então: m = n.

3.1. DIMENSÃO 55

Exemplo 3.1 \mathbb{R}^3

$$\begin{split} B &= \{ (1,0,0), (0,1,0), (0,0,1) \} \\ B &= \{ (1,1,0), (0,-1,1), (-1,0,1) \} \end{split} \qquad \begin{aligned} \dim(V) &= |B| = 3 \\ \dim(V) &= |B'| = 3 \end{aligned}$$

Exemplo 3.2 Ache a base e dimensão de $V = \{x_1, x_2, x_3 \mid x_1 + 2x_2 = 0\} \subseteq \mathbb{R}^3$.

$$x_1 = -2x_2$$

$$v = \{-2x_2, x_2, x_3 \mid x_2, x_3 \in \mathbb{R}\}$$

$$v \in V \rightarrow v = (-2x_2, x_2, x_3)$$

$$= x_2(-2, 1, 0), (0, 0, 1)$$

$$a(-2, 1, 0) + b(0, 0, 1) = (0, 0, 0)$$

$$-2a = 0, a = 0, b = 0$$

Portanto a=0 e b=0, então temos que $\{(-2,1,0),(0,0,1)\}$ é LI, sendo dessa forma uma base. A partir daí, basta contar a quantidade de elementos, que no caso são 2, para se obter a dimensão da mesma.

Teorema 6 $S\~{ao}$ equivalentes:

- 1. Todo conjunto LI pode ser extendido para uma base;
- $2. \ \, Todo\ conjunto\ gerador\ pode\ ser\ reduzido\ a\ uma\ base.$

Válido para espaços veroriais V tal que a $dim(V) < +\infty$.

Definição 3.4 Dizemos que um \mathbb{R} -espaço vetorial V tem dimensão finita se $dim(V) < +\infty$.

Corolário 1 Todo espaço vetorial de dimensão finita tem base.

Teorema 7 Suponha $W \subseteq V$ (W é subespaço) $W \leq dim(V)$

Definição 3.5 Peque uma base de W.

$$Bw = \{w_1, ..., w_n\} \subseteq V$$

Extenda Bw para uma base B de V

 $Bw \subseteq B$

|Bw| < |B|

 $Dim\ w \leq dim V$

Teorema 8 Suponha \mathbb{R} -espaço vetorial $dim(V) \in n$ e $S = \{v_1, ..., v_n\} \subseteq V$.

- $Se m > n \ ent \tilde{ao} \ S \ \acute{e} \ LD$;
- ullet Se n > m então S não gera o espaço.

Exemplo 3.3 Revisitando o exercício 4 da Revisão do capítulo 2, para resolvêlo, podemos agora aplicar o conceito de dimensão. Assim sendo tínhamos:

Considere o conjunto $S = \{(1, 1, 0), (1, 1, 1), (-1, 0, -2)\}$

- 1) S é li ou ld?
- 2) S forma uma base do \mathbb{R} -espaço vetorial \mathbb{R}^3 ?
- 3) Se S de fato formar uma base, qual seria a coordenada do vetor (-1,1,1) em S?

Então, depois de fazer as contas no item 1 para mostrar se é LI, temos o item 2 onde nos pergunta se B é base. A resposta é sim, pois (S) = dim(V) = 3).

O item 3 também é resolvido da mesma forma (checar respostas do capítulo anterior).

3.2 Transformações Lineares

Uma Transformação Linear (TL) é um tipo de função especial, entre dois espaços vetoriais e que preservam as operações de adição e multiplicação por escalar. Nesta seção, iremos revisitar alguns conceitos sobre funções para o melhor aproveitamento do assunto. Então, podemos definir que:

Definição 3.6 Seja $(V, +, \cdot)$ e $(W, +, \cdot)$ \mathbb{R} -espaço vetoriais, uma Transformação Linear $T: V \to W$ é uma função que satisfaz as seguintes propriedades:

1.
$$T(v_1+v_2) = T(v_1)+(v_2) \quad \forall v_1, v_2 \in V$$

2.
$$T(a \cdot v) = a \cdot T(v)$$
 $\forall a \in \mathbb{R}, v \in V$

Então, podemos considerar que "T preserva a estrutura de espaço vetorial".

Exemplo 3.4 Tendo que:

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$

$$T(x,y) = (2x, y, x + y)$$

a) $v_1 \in \mathbb{R}^2$, $v_2 \in \mathbb{R}^2$

$$\begin{aligned} v_1 &= (x_1, y_1) \\ v_2 &= (x_2, y_2) \\ T(v_1 + v_2) &= T((x_1, y_1) + (x_2, y_2)) \\ &= T(x_1 + y_1, x_2 + y_2) \\ &= (2(x_1 + x_2), y_1 + y_2, (x_1 + x_2) + (y_1 + y_2)) \\ &= (2x_1 + 2x_2, y_1 + y_2, (x_1 + y_1) + (x_2 + y_2)) \\ &= (2x_1, y_1, x_1 + y_1) + (2x_2, y_2, x_2 + y_2) \\ &= T(x_1, y_1) + T(x_2, y_2) \\ &= T(v_1) + T(v_2) \end{aligned}$$

b)
$$v \in \mathbb{R}^2$$
, $a \in \mathbb{R}$

$$v = (x, y)$$

$$T(a \cdot v) = T(a \cdot (x, y))$$

$$= T(ax, ay)$$

$$= (2ax, ay, ax + ay)$$

$$= (2ax, ay, a(x + y))$$

$$= a \cdot (2x, y, x + y)$$

$$= a \cdot T(x, y)$$

$$= a \cdot T(v)$$

Logo, T é uma transformação linear.

Exemplo 3.5 Tendo que:

c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) \quad Para \ \theta = 45^{\circ}$$

$$= \left(\frac{\sqrt{2}}{2}(x-y), \frac{\sqrt{2}}{2}(x+y)\right)$$

$$T(1,0) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$T(0,1) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$T\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \left(\frac{0, \sqrt{2}}{2}, \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right)\right)$$

$$= \left(0, \frac{2}{2}\right)$$

$$= (0,1)$$

$$T\left(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = (-1,0)$$

Proposição 6 Sejam V,W \mathbb{R} -espaços vetoriais e $T:V\to W$ uma transformação linear, então $T(0_v)=0_w$.

Demonstração 10

$$T(0_v) = T(0_v + 0_v) = T(0_v) + T(0_v)$$

Portanto:

$$T(0_v)+T(0_v) = T(0_v) \rightarrow somar + (-T(0_v))$$
$$T(0_v) = 0_w$$

Definição 3.7 Sejam V,W \mathbb{R} -espaços vetoriais e $T:V\to W$ uma transformação linear, definimos:

- $KerT = \{v \in V \mid T(v) = 0\} \subseteq V$
- $ImT = \{w \in W \mid W = T(v) \ e \ algum \ v \in V\} \subseteq W$

Proposição 7 Sejam V,W \mathbb{R} -espaços vetoriais e $T:V\to W$ uma transformação linear, valem:

- 1. KerT é subespaço de V;
- 2. ImT é subespaço de W.

Demonstração 11 (Para o KerT)

$$\boxed{KerT = \{v \in V \mid T(v) = 0\} \subseteq V}$$

- a) $0_v \in KerT$, pois $T(0_v) = 0_w$ pela proposição anterior.
- b) $v \in KerT$, portanto T(v) = 0 e $w \in KerT$, portanto T(w) = 0.

$$T(v)+T(w) = 0+0 = 0$$
$$T(v+w) = 0$$

Portanto

$$v+w \in KerT$$

c) $a \in \mathbb{R} \ v \in KerT$

$$T(v) = 0$$
$$a \cdot 0 = 0$$
$$T(a \cdot v = 0$$

Portanto

$$a \cdot v \in KerT$$

Demonstração 12 (Para a ImT)

$$ImT = \{w \in W \mid W = T(v) \ e \ algum \ v \in V\} \subseteq W$$

- a) $0 \in ImT$, pois $T(0_v) = 0_w$ pela proposição anterior.
- b) $w_1 \in ImT$, portanto $T(v_1) = 0$ e $w_2 \in ImT$, portanto $T(v_2) = 0$.

$$w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$$

Portanto:

 $v_1+v_2 \in V$ então temos que $w_1+w_2 \in ImT$

59

c) $a \in \mathbb{R} \ w \in ImT$

$$a \cdot w = a \cdot T(v)$$
$$= (T(a \cdot v))$$

 $Como\ a{\cdot}v \in V\ temos\ que\ a{\cdot}w \in ImT$

Exemplo 3.6 Ache o subespaço KerT:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

$$T(x, y, z) = (x - z, y + z, x + y)$$

Achar todos os $v \in \mathbb{R}^3$, tal que T(v) = 0

$$x - z = 0$$

$$y + z = 0$$

$$x + y = 0$$

$$x = z$$

$$y = -z$$

Portanto:

$$KerT = \{(z, -z, z) \mid z \in \mathbb{R}\}$$
$$= \{z \cdot (1, -1, 1) \mid z \in \mathbb{R}\}$$
$$= Span \{(1, -1, 1)\}$$

$$dim(KerT) = 1$$

Proposição 8 Sejam V, W \mathbb{R} -espaços vetoriais e $T:V\to W$ T é inversa $\Leftrightarrow KerT=\{0\}$. Para saber se uma T.L. é inversa, basta analisar a origem. Relembrando que, uma função $f:X\to Y$ é dita injetora se para todo $x_1,x_2\in X$ vale que $f(x_1)=f(x_2)\to x_1=x_2$.

Demonstração 13 (\rightarrow) Suponha que T é injetora, $v \in KerT$ e $T(v) = 0 = T(0_v)$, como T é injetora, $v = 0_v, v \in \{0_v\}$. Portanto $KerT \subseteq KerT = \{0\}$.

Demonstração 14 (\leftarrow) Suponha $KerT = \{0\}$, $e v_1 \in V \ e v_2 \in V$, $canT(v_1) = T)v_2$).

Portanto:

$$T(v_1) + (-1 \cdot T(v_2)) = 0$$

60

Então:

$$T(v_1)+T(-1\cdot v_2) = 0$$

$$T(v_1 - v_2) = 0$$

$$v_1 - v_2 \in KerT = \{0_v\}$$

$$v_1 - v_2 = 0 \rightarrow v_1 = v_2$$

Sendo T injetora.

Exemplo 3.7

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(2x, 2y) = (0, 0)$$
$$\begin{cases} 2x = 0\\ 2y = 0 \end{cases}$$

Sendo x = 0 e y = 0, temos que $KerT = \{(0,0)\}$, portanto é injetora.

Teorema 9 (Imagem e do Núcleo): Sejam $V, W \mathbb{R}$ -espaços vetoriais (dimensão finita) e $T: V \to W$ uma transformação linear, vale que:

$$dim(KerT) + dim(ImT) = dimV$$

Exemplo 3.8

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$T(x,y) = (y,x)$$
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

Sendo x = 0 e y = 0, temos que $KerT = \{(0,0)\}$, portanto é injetora e:

$$dim(ImT) = 2$$

$$dim(KerT) = 0$$

$$ImT(2) + KerT(0) \rightarrow dim\mathbb{R}^2 = 2$$

Exemplo 3.9

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (x+y,0)$$

$$\begin{cases} x+y=0\\ 0=0 \end{cases}$$

Sendo x = 0 e y = -x, temos que $KerT = \{(x, -x) \mid x \in \mathbb{R}\}$. Considerando:

$$KerT = \{x \cdot (1, -1) \mid x \in \mathbb{R}\}, temos :$$

$$dim(ImT) = 1$$
$$dim(KerT) = 1$$

$$ImT(1) + KerT(1) \rightarrow dim\mathbb{R}^2 = 2$$

Agora, para casa, um desafio.

Considere T: $\mathbb{R}^2 \to \mathbb{R}^2$ e T(x,y) = (3x,3y). Mostre que T é uma TL.

3.3 Matrizes TL

Teorema 10 (do Kernel e da Imagem): Sejam $V, W \mathbb{R}$ -espaços vetoriais e $T: V \to W$ uma transformação linear com dim $V < +\infty$ e dim $W < +\infty$, então:

$$dim(KerT) + dim(ImT) = dimV$$

Corolário 2 Suponha que dim $V=\dim W<+\infty$ e $T:V\to W$ uma transformação linear são equivalentes:

- 1. T é injetora ⇔;
- 2. $T \in sobrejetora \Leftrightarrow$;
- 3. T é bijetora.

Demonstração 15 (Injetora \rightarrow Sobrejetora): Suponha que T é injetora, então $Ker T = \{0\} \rightarrow dim(KerT) = 0$, pelo teorema da imagem e do Kernel, temos:

$$dim(KerT) + dim(ImT) = dimV$$

Portanto:

$$0 + dim(ImT) = dimW$$
$$dim(ImT) = dimW$$
$$ImT = W$$

Logo, T é sobrejetora.

Demonstração 16 (Sobrejetora \rightarrow Injetora): $ImT = W \dim (ImT) = \dim W$. Pelo teorema de Kernel e da imagem, temos:

$$dim(KerT) + dim(ImT) = dimV$$

Portanto:

$$dim(kerT) = 0$$
$$KerT = \{0\}$$

 $Logo,\ T\ \'e\ bijetora\ ou\ T\ \'e\ isomorfismo.$

Definição 3.8 Dois \mathbb{R} -espaços vetoriais V, W são ditos isomórficos quando existe $T: V \to W$ transformação linear bijetora.

Exemplo 3.10 $V = M_2(\mathbb{R}) \ e \ W \in \mathbb{R}^4$.

$$Bw = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$$

$$Bv = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$T: M_2(\mathbb{R}) \to \mathbb{R}^4$$

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = (a,b,c,d)$$

$$KerT = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

$$T: M_2(\mathbb{R}) \approx \mathbb{R}^4$$

Portanto T é injetora

Corolário 3 $T: V \to W$ transformação linear $(dimV \neq dimW)$:

- 1. Se T é injetora dim V < dim W
- 2. Se T é sobrejetora $\dim V > \dim W$

Toda transformação linear possui uma matriz associada.

$$\begin{split} T: V &\to W \\ v &\in V \\ Bv &= \{e_1, ..., e_n\} \\ Bw &= \{f_1, ..., f_n\} \\ v &= a_1, e_1 + ... + a_n e_n \\ T(v) &= T(a_1, e_1 + ... + a_n e_n) \\ &= a, T(e_1) + ... + a_n T(e_n) \\ [T] &= T(e_1) \end{split}$$

Exemplo 3.11 $T: \mathbb{R}^3 \to \mathbb{R}^2$

$$T(x, y, z) = (x + y, y - z)$$

$$T(1, 0, 0) = (1, 0)$$

$$T(0, 1, 0) = (1, 1)$$

$$T(0, 0, 1) = (0, -1)$$

Então:

$$[T] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ y-z \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$T(1,2,1) = (1+2,2-1) = (3,1)$$

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ é uma projeção de \mathbb{R}^3 em \mathbb{R}^2 (plano inclinado)

 $Ent\~ao,\ agora\ vamos\ achar\ quem\ \'e\ o\ Kernel\ e\ a\ imagem\ da\ matriz.$

$$KerT = \{v \in V \mid T(v) = 0\} \subseteq V$$

$$T(x, y, z) = (x + y, y - z) = (0, 0)$$

$$\begin{cases} x + y = 0 \\ y - z = 0 \end{cases}$$

$$x = y \ e \ z = y.$$

$$KerT = \{x - y, y, y) \mid y \in \mathbb{R}\} \subseteq V$$

$$Span \{(-1, 1, 1)\}$$

Aplicando isso ao vetor (-7,7,7), por exemplo, teríamos:

$$[T]\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} dim(KerT) = 1$$

$$dim(KerT) + dim(ImT) = 3$$

 $Portanto\ dim(ImT) = 2$

T não é injetora e T não é sobrejetora

Exemplo 3.12 Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ $e \ T(x,y) = (3x - y, 2x + y)$ $e \ B_{\mathbb{R}^2} = \{(1,0),(0,1)\}.$

Primeiro passo: Achar a base de T.

$$T(1,0) = (3,2)$$

$$T(0,1) = (-1,1)$$

$$[T] = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$[T(v)] = [T] \cdot [v]$$

$$T(2,2) = [T] \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Segundo passo: Achar o det.

$$\det\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = 3 - ((-1) \cdot 2) = 5$$

Terceiro passo: Achar o KerT.

$$KerT = \{v \in \mathbb{R}^2 \mid T(v) = 0\}$$

$$T(x, y) = (3x - y, 2x + y) = (0, 0)$$

$$\begin{cases} 3x - y = 0 \\ 2x + y = 0 \end{cases}$$

Resolvendo o sistema:

$$y = 3x \rightarrow y = 0$$

$$2x + 3x = 0 \rightarrow 5x = 0 \rightarrow x = 0$$

Então o subespaço é $KerT = \{v \in \mathbb{R}^2 \mid T(v) = 0\} = \{0, 0\}.$

Quarto passo: Achar a dimensão do KetT.

Portanto a dim(KerT)=0.

Quinto passo: Definir se é injetora, sobrejetora ou bijetora.

T é injetora e sobrejetora, logo T é bijetora.

Exemplo 3.13 Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ e T(x, y, z) = (x+2z, y+3z, x+y+5z) e $B_{\mathbb{R}^3} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

$$T(1,0,0) = (1,0,1)$$

 $T(0,1,0) = (0,1,1)$
 $T(0,0,1) = (2,3,5)$

$$[T] = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{bmatrix}$$

$$KerT = \mathbb{R}^3 = \left\{ v \in \mathbb{R}^3 \mid T(v) = 0 \right\}$$

$$\begin{cases} x + 2x = 0 \\ y + 3z = 0 \\ x + y + 5z = 0 \end{cases}$$

$$x = -2z$$

$$y = -3z$$

$$0 = 0$$

Portanto z é livre.

$$KerT = \mathbb{R}^3 = \{v \in \mathbb{R}^3 \mid T(v) = 0\}$$

= $\{(-2z, -3z, z) \mid z \in \mathbb{R}\}$
= $Span\{(-2, -3, 1)\}$
 $dim(KerT) = 1$

Na matriz:

$$[T] = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{bmatrix}$$

os 3 vetores são LD, então podemos escalonar a matriz para que possamos reduzi-la. Portanto $\dim(\operatorname{Im} T)=2$, que é igual ao número de linhas da matriz escalonada.

Exemplo 3.14 Considere $T?\mathbb{R}^2 \to \mathbb{R}^2$ tal que, T(1,1) = (1,2), T(0,-1) = (3,2). Ache a matriz [T] na base canônica e a lei de transformação: (1,0) = a(1,1) + b(0,-1), (0,1) = c(0,1) + d(0,-1).

$$a = 1$$
$$a - b = 0$$

Portanto $a=b \ e \ b=1$. Então: (1,0) = 1(1,1) + 1(0,-1).

$$c = 0$$
$$c - d = 1$$

Portanto d=-1. Então: (0,1) = 0(0,1) + (-1)(0,-1).

$$T(1(1,1) + 1(0,1)) = 1T(1,1) + 1T(0,1)$$

= $(1,2) + (3,2)$
 $T(1,0) = (4,4)$

$$T(0(1,1) + (-1)(0,1) = -T(0,-1)$$
$$T(0,1) = (-3-2)$$

O [T] na base canônica fica:

$$[T] = \begin{bmatrix} 4 & -3 \\ 4 & -2 \end{bmatrix}$$

Para achar a lei de formação, basta multiplicar o [T] pelo vetor (x,y):

$$[T] = \begin{bmatrix} 4 & -3 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4x - 3y \\ 4x - 2y \end{bmatrix}$$

Portanto a sua transformação linear será: T(x,y) = (4x - 3y, 4x - 2y).

Agora vamos generalizar esse exemplo de matriz de mudança de base.

Definição 3.9 Sejam $V, W \mathbb{R}$ -espaços vetoriais, $B_v = \{v_1...v_n\}$ e $B_w = \{w_1...w_n\}$ e $T: V \to W$ transformação linear. $v \in V \to v = a_1v_1 + ... + a_nv_n$.

$$T(v) = a_1 T(v_1) + \dots + a_n T(v_n) = a_1 (\alpha_{11} w_1 + \dots + \alpha_{n1} w_n) +$$

$$T(v_1) = \alpha_{11} w_1 + \dots + \alpha_{n1} w_n$$

$$\vdots$$

$$T(v_n) = \alpha_{1n} w_1 + \dots + \alpha_{nn} w_n$$

$$= a_n (\alpha_{1n} w_1 + \dots + \alpha_{nn} w_n)$$

Então podemos definir essa generalização da seguinte forma:

$$T(v) = a_1 T(v_1) + \dots + a_n T(v_n)$$

$$= a_1 (\alpha_{11} w_1 + \dots + \alpha_{n1} w_n) + \dots + a_n (\alpha_{1n} + \dots + \alpha_{nn} w_n)$$

$$\beta_i = \sum_{j=1}^n a_i a_{ij}$$

$$T(v) = \beta_i w_1 + \dots + \beta_n w_n$$

$$\begin{bmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ & & & \\ \alpha_{n1} & \dots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} P_1 \\ \vdots \\ P_n \end{bmatrix}$$

$$[T(v)]_{Bw} = [T]_{BvBw} \cdot [v]_{Bv}$$

Exemplo 3.15 Considere: $T : \mathbb{R}^2 \to \mathbb{R}^3$ e T(x,y) = (2x + y, y - x, 3x), sendo as bases $B_{\mathbb{R}^2} = \{(1,2),(2,-1)\}$ e $B_{\mathbb{R}^3} = \{(1,1,1),(0,1,1),(0,0,1)\}$.

$$T(1,2) = (4,1,3) = 4 \cdot (1,1,1) + (-3)(0,1,1)$$

$$T(2,-1) = (3,-3,6) = 3 \cdot (1,1,1) + (-6)(0,1,1) + 9(0,0,1)$$

Então temos a base de B:

$$[T]_{B\mathbb{R}^2 B\mathbb{R}^3} = \begin{bmatrix} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{bmatrix}$$

Agora aplicando um vetor qualquer (-2,3) nessa base:

$$[T]_{B\mathbb{R}^2B\mathbb{R}^3} = \begin{bmatrix} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}_{B\mathbb{R}^2} \begin{bmatrix} 1 \\ -12 \\ 23 \end{bmatrix}_{B\mathbb{R}^3}$$

Agora a base de T para canônica de \mathbb{R}^3 :

$$[T]_{\mathbb{R}^2Can} = \begin{bmatrix} 4 & 3\\ 1 & -3\\ 3 & 6 \end{bmatrix}$$

Considerando o mesmo vetor com a base de \mathbb{R}^2 , chegamos na base canônica:

$$\begin{bmatrix} 4 & 3 \\ 1 & -3 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}_{B\mathbb{R}^2} = \begin{bmatrix} 1 \\ -11 \\ 12 \end{bmatrix}_{Can}$$

Proposição 9 Seja $T: V \to V$ uma T.L. e B, B' bases de V(dimV = n). Se P é matriz de mudança de base $B' \to B$, então: $[T]_B = 1^{0-1}$.

Pode-se dizer que, $[T]_B$ e $[T]_{B'}$ são semelhantes.

Exemplo 3.16 $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (2z - y, x + y)$ considerando as bases $B = \{(1,1), (0,1)\}\ e\ B' = \{(-1,1), (1,1)\}.$

$$a(1,1) + b(0,1) = (-1,1)$$

 $a = -1$
 $a + b = 1 \rightarrow b = 2$

$$a(1,1) + b(0,1) = (1,1)$$

 $a = 1$
 $a + b = 1 \rightarrow b = 0$

$$P_{B',B} = \begin{bmatrix} -1 & 1\\ 2 & 0 \end{bmatrix}$$

NOTA: Uma observação é que $P_{B',B}$ que está acima, é a matriz de mudança de base (mudando o plano). E P^{-1} , que está a seguir, é a aplicação da fórmula do determinante.

$$P^{-1} = \frac{-1}{2} \begin{bmatrix} 0 & -1 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix}$$

$$T(1,0) = (2,1) = \frac{-1}{2}(-1,1) + \frac{3}{2}(1,1)$$

$$T(0,1) = (-1,1) = 1(-1,1) + 0(1,1)$$

$$\begin{cases} -a+b=2 \\ a+b=1 \end{cases}$$
(3.1)

Resolvendo o sistema:

$$a = \frac{-3}{2} - 2 \rightarrow \frac{-1}{2}$$

$$2b = 3 \rightarrow b = \frac{3}{2}$$

$$[T]_{B'} = \begin{bmatrix} -1 & 1\\ \frac{3}{2} & 0 \end{bmatrix}$$

$$[T]_B = \begin{bmatrix} 0 & \frac{1}{2}\\ 1 & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{-1}{2} & 1\\ \frac{3}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1\\ 2 & 0 \end{bmatrix}$$

$$P^{-1} [T]_{B'} P_{B',B}$$

3.4 Exercícios

Exercício 1 Tendo:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (x+y, -y-x)$$

$$B' = \{(1,2), (2,0)\}$$

$$B'' = \{(-1,-1), (0,1)\}$$

Calcule:

- a) [T]B'B''
- b) $[T]B'_{can}$
- $c) [T]_{can}$
- $d) [T]_{can} B''$

Exercício 2 Calcule a resposta dos vetores:

- a) (2,3)B'
- b) $(2,3)_{can}$

Sob ação T nas quatro matrizes do exercício anterior.

Chapter 4

Autovalores e Autovetores

4.1 Noção Geométrica

Para começarmos, vamos verificar um exemplo onde teremos a noção geométrica do comportamento dos Autovalores e Autovetores.

Exemplo 4.1 Temos a seguinte matriz e condições:

$$[T] = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + y \\ 2y \end{bmatrix}$$
$$[T] \cdot \mathbb{R}^2 \to \mathbb{R}^2$$
$$T(x, y) = (3x + y, 2y)$$

$$\begin{split} T(1,0) &= (3,0) = 3 \cdot (1,0) \rightarrow (autovalor \ 3 \ e \ autovetor = (1,0)) \\ T(1,1) &= (4,2) \\ T(-1,1) &= (-2,2) = 2 \cdot (-1,1) \\ T(-5,5) &= (-10,10) = 2 \cdot (-5,5) \rightarrow (ou \ seja \ 2 \ vezes \ a \ entrada) \end{split}$$

Podemos concluir, através da noção geométrica, que o autovalor é o "fator de crescimento".

O autovetor apenas cresce, não sai da direção, mesmo com a aplicação da transformação linear.

Agora vamos calcular os autovalores e autovetores geometricamente.

Definição 4.1 Objetivo: Encontrar uma base para uma transformação linear, ao qual as ações serão apenas de "crescimento e decrescimento" dos vetores.

Se λ é um autovalor de

$$T: V \to V(dimV = n)$$

$$T(v) = \lambda \cdot v \ \forall \ v \in V \ v \neq 0$$

Então: v é denominado autovetor. O subespaço gerado pelo autovalor associado a T $Aut_T(\lambda)$.

Exemplo 4.2

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x, y) = (3x + y, 2y)$$

$$Aut_{T}(2) = Span \{(-1,1)\}$$

$$Aut_{T}(3) = Span \{(1,0)\} \ (que \ \acute{e} \ \lambda \cdot ID)$$

$$T: V \to V(dimV = n)$$

$$T(v) = \lambda v = \lambda Im(v)$$

$$(T - \lambda I) = T(v) - \lambda I(v) = 0$$

$$Aut_{T}(\lambda) = Ker(T - \lambda I)$$

Então: O autovalor é calculado pelo determinante da matriz da transformação linear $T - \lambda I$.

$$P(\lambda) = det(T - \lambda I) = 0$$

$$\rightarrow Que \ \acute{e} \ o \ polin\^{o}mio \ em \ \lambda$$

 $E \ o \ autoespaço: \ Aut_T(\lambda) = Ker(T - \lambda I) \ nos \ d\'a \ os \ autovetores.$

Agora vamos calcular algebricamente.

4.2 Noção Algébrica

Assim como visto na seção anterior, vamos calcular um exemplo algébrico.

71

Exemplo 4.3 Calcular os autovalores e autovetores do:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (3x + y, 2y)$$

$$T(1,0) = (3,0)$$

$$T(0,1) = (1,2)$$

$$[T] = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \rightarrow [T - \lambda I] = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix}$$

Então, agora igualar o determinante a zero e resolver a equação:

$$\det \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} = 0$$

Portanto:

$$(3 - \lambda)(2 - \lambda) - 0 = 0$$
$$(3 - \lambda)(2 - \lambda) = 0$$

NOTA: Neste caso, o resultado do polinômio está obvio, porém fica a observação de que é um passo a ser calculado.

$$S = \{\lambda = 3 \text{ ou } \lambda = 2\} \rightarrow Solução da equação \}$$

Para achar o autoespaço de $Aut_T(2)$ é necessário encontrar o Ker(T-2I):

$$Aut_T(2) = Ker(T - 2I)$$

Então vamos achar a matriz de transformação na base canônica:

$$[T-2I] = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Para achar o Kernel dessa transformação, basta resolver o sistema:

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} x + y = 0 \\ x = -y \end{cases}$$

O resultado de $Aut_T(2) = \{(-y, y) \mid y \in \mathbb{R}\} = Span \{(-1, 1)\}.$

Então vamos achar a matriz de transformação na base canônica:

$$Aut_T(3) = Ker(T - 3I)$$

$$[T - 3I] = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$

Para achar o Kernel dessa transformação, basta resolver o sistema:

$$\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} y = 0 \\ -y = 0 \end{cases}$$

O resultado de $Aut_T(3) = \{(x,0) \mid x \in \mathbb{R}\} = Span\{(1,0)\}.$

Aqui vai ter uma matriz de mudança de base, que vai ser:

$$P = \begin{bmatrix} -1 & 1\\ 1 & 0 \end{bmatrix}$$
$$B = \{(-1, 1), (1, 0)\}$$

Agora vamos calcular a mudança de base:

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$B = \{(-1,1), (1,0)\}$$

$$Can = \{(1,0), (0,1)\}$$

$$T : \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (3x + y, 2y)$$

$$P^{-1} - 1 \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Então:

$$[T]_B = \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

Exemplo 4.4 E se eu quero calcular A^5 ?

$$A = P^{-1}DP$$

$$A^{5} = (P^{-1}DP)^{5}$$

$$= P^{-1}DP \ P^{-1}DP \ P^{-1}DP \ P^{-1}DP$$

$$= P^{-1}D^{5}P$$

$$P^{-1} \begin{bmatrix} \lambda_1^5 & 0 \\ 0 & \lambda_2^5 \end{bmatrix} P$$

Definição 4.2 Seja $T: V \to V$ T é diagonalizável quando existe uma base B, tal que $[T]_B$ é diagonal. Conseguimos uma matriz de mudança de base P (contento os autovetores) tal que:

$$[T]_B = P^{-1} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} P$$

Sendo a matriz o "D". Isso quer dizer que temos uma fatoração de matriz.

Exemplo 4.5

$$T : \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (6x + 2y, 2x + 6y)$$

$$T(1,0) = (6,2)$$

$$T(0,1) = (2,6)$$

1º Passo: Achar a base canônica:

$$[T] = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$$

 $2^{\underline{o}}$ Passo: Fazer o determinande igual a zero:

$$[T - \lambda I] = \begin{bmatrix} 6 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix}$$
$$det \begin{bmatrix} 6 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix} = 0$$

3º Passo: Resolver a equação obtida:

$$(6-\lambda)(6-\lambda) - a = 0 \rightarrow equac\~ao \ de \ 2 \ grau$$
$$36 - 6\lambda - 6\lambda + \lambda^2 - 4 = 0 \rightarrow \lambda^2 - 12\lambda + 32 = 0$$

Obtivemos os valores $\lambda_1 = 8$ e $\lambda_2 = 4$.

4º Passo: Resolver os autoespaços de 4 e 8:

$$Aut_T(4) = Ker(T - 4I)$$

$$Aut_T(8) = Ker(T - 8I)$$

$$[T - 4I] = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix} - 4 = \begin{bmatrix} 6 - 4 & 2 \\ 2 & 6 - 4 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 2x + 2y = 0 \\ 2x + 2y = 0 \end{cases}$$

Então temos para $Aut_T(4)$: $\{(-y,y) \mid y \in \mathbb{R}\} = Span\{(-1,1)\}$.

$$[T - 8I] = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix} - 8 = \begin{bmatrix} 6 - 8 & 2 \\ 2 & 6 - 8 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$
$$\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} -2x + 2y = 0 \\ 2x - 2y = 0 \end{cases}$$

Então temos para $Aut_T(8)$: $\{(y,y) \mid y \in \mathbb{R}\} = Span\{(1,1)\}.$

5º Passo: Calcular a matriz de mudança de base:

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} P^{-1} = \frac{-1}{2} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

6º Passo: Como temos uma matriz diagonalizável, então a solução final será:

$$[T]_B = P^{-1} \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} P = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$$

NOTA: Nem toda matriz é diagonalizável. Quando não temos uma solução real para a equação, como a do passo 3, não há autovalores para [T].

4.3 Exercícios

Exercício 1 Considere a transformação linear:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (6x - y, 2x + 3y)$$

- a) Ache os autovalores, autovetores e a base para a matriz diagonal.
- b) Desenhe a ação de T nos autovetores na base canônica e na base achada B.

Chapter 5

Bilinearidade

5.1 Formas Bilineares

Definição 5.1 Sejam U, V, W \mathbb{R} -espaços vetoriais e $B: U \cdot V \to W$, $B \notin dito$ bilinear se satisfizer as seguintes propriedades:

a) $B_u: V \to W$ (currying) tem que ser uma transformação linear.

$$B_u(v_1 + v_2)$$
= $B_u(v_1)B_u(v_2)$
= $B(u, v_1) + B(u, v_1)$

$$B(u, a \cdot v)$$

$$= B_u(a \cdot v)$$

$$= a \cdot B_u(v)$$

$$= a \cdot B(u, v)$$

b) $B_v: U \to W$ tem que ser uma transformação linear.

$$B(u_1 + u_2, v)$$
= $B_v(u_1 + u_2)$
= $Bv(u_1) + B_v(u_2)$
= $B(u_1, v) + B(u_2, v)$

$$B(a \cdot u, v)$$

$$= B_v(a \cdot u)$$

$$= a \cdot B_v(u)$$

$$= a \cdot B(u, v)$$

Proposição 10 O produto escalar (·): $V \times V \to \mathbb{R}$ é uma forma bilinear.

Exemplo 5.1 Produto escalar (\cdot) :

$$\mathbb{R}_2 \times \mathbb{R}_2 \to \mathbb{R}$$

$$(u_1, v_1), (u_2, v_2) \vdash u_1 \cdot u_2 + v_1 \cdot v_2$$

$$(3, 2) \cdot (1, -1) = 3 \cdot 1 + 2 \cdot (-1) = 3 - 2 = 1$$

NOTA: Isso quer dizer que com o produto escalar teremos o ângulo entre dois vetores. Isso é muito importante para os cálculos estatísticos (correlação).

Exemplo 5.2 Agora considere um vetor qualquer:

Quando temos um ângulo reto aplicamos pitágoras:

$$||\vec{w}||^2 = (u_1, u_1) \cdot (u_1, v_1) = u_1^2 + v_1^2$$

 $||\vec{w}|| = \sqrt{u_1^2 + v_1^2}$

Quando não temos um ângulo reto, aplicamos a lei do cosseno:

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u||||v||\cos\theta$$

$$(u - v) \cdot (u - v) = ||u||^2 + ||v||^2 - 2||u||||v||\cos\theta$$

$$||u||^2 - u \cdot v - v \cdot u + ||v||^2 = ||u||^2 + ||v||^2 - 2||u||||v||\cos\theta$$

$$-2u \cdot v = -2||u||||v||\cos\theta$$

$$\cos\theta = \frac{u \cdot v}{||u||||v||}$$

Exemplo 5.3 Calcule o ângulo entre u = (1, 2) e v = (3, 3).

$$\cos \theta = \frac{(1,2) - (3,3)}{||(1,2)|| \cdot ||(3,3)||}$$

$$(1,2) \cdot (3,3) = 3 + 6 = 9$$

$$||(1,2)|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$||(3,3)|| = \sqrt{3^2 + 3^2} = \sqrt{2 \cdot 9} = 3\sqrt{2}$$

$$\cos \theta = \frac{(1,2) - (3,3)}{||(1,2)|| \cdot ||(3,3)||} = \frac{9}{3\sqrt{5}\sqrt{2}} = \frac{9}{3\sqrt{10}} = \frac{9\sqrt{10}}{30} = \frac{3\sqrt{10}}{10}$$

$$\theta = \arccos \frac{\sqrt{15}}{3} \simeq 0.32rad$$

O valor de θ nos mostra que quanto mais próximo do 1 eles serão o mesmo vetor e quanto mais próximo do 0 eles serão ortogonais.

Exemplo 5.4 Considere u = (1,0) e v = (0,1), ache o ângulo.

$$\cos \theta = \frac{(1,0) \cdot (0,1)}{||(1,0)||||0,1||} = \frac{1 \cdot 0 + 0 \cdot 1}{1 \cdot 1} = 0 \to \theta = 90^{\circ}$$

Agora vamos acrescentar o vetor w = (3,0):

$$\cos \theta = \frac{(1,0) \cdot (3,0)}{||1,0|||3,0||} = \frac{3}{1 \cdot 3} = 1 \to \theta = 0^{\circ}$$

Exemplo 5.5 Considere $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ e os vetores $(u_1, u_2...u_n)$ e $(v_1, v_2...v_n)$. Então temos que:

$$(u_1, u_2...u_n) \cdot (v_1, v_2...v_n) = \sum_{i=1}^{n} u_i v_i$$

Para calcular \mathbb{R}^3 , considerando os vetores (3,-1,1) e (2,1,1), então:

$$(3,-1,1) \cdot (2,1,1)$$

= $3 \cdot 2 + (-1) \cdot 1 + 1 \cdot 1$
= $6 - 1 + 1 = 6$

Para calcular \mathbb{R}^5 , considerando os vetores (1,0,0,1,1) e (-1,1,1,2,1), então:

$$\begin{aligned} &(1,0,0,1,1)\cdot (-1,1,1,2,1)\\ &=1\cdot (-1)+0\cdot 1+0\cdot 1+1\cdot 2+1\cdot 1\\ &=-1+2+1=2 \end{aligned}$$

Você consegue perceber que isso é a mesma coisa que aplicar a fórmula da "correlação"?

$$r_{xy} = \frac{cov(X,Y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2 (y_i - \overline{y})^2}}$$

$$r_{xy} = \frac{cov(X,Y)}{\sigma_x \sigma_y}$$

$$= \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2 (y_i - \overline{y})^2}}$$

$$= \frac{(x - \overline{x})(y - \overline{y})}{\sqrt{\sum_{i=1}^n (x - \overline{x})^2} \sqrt{\sum_{i=1}^n (y - \overline{y})^2}}$$

$$= \frac{(x - \overline{x})(y - \overline{y})}{||(x - \overline{x})||||(y - \overline{y})||}$$

$$= \arccos \theta$$

Vejamos um exemplo numérico:

Table 5.1: Idade e Nota dos alunos de CD

Alunos de Ciência de Dados	
u = idade	v = nota
26	6
22	8
26	6.5
22	6
média	média
24	6.625

Exemplo 5.6 Dada a tabela acima, vamos calcular o θ .

$$\begin{aligned} u - \overline{u} &= (2, -2, 2, -2) \\ v - \overline{v} &= (-0.625, 1.1375, -0.125, -0.625) \\ r_{xy} &= \frac{cov(X, Y)}{\sigma_x \sigma_y} = (u - \overline{u}) \cdot (v - \overline{v}) = -3 \\ ||(u - \overline{u})|| &= \sqrt{2^2 + (-2)^2 + 2^2 + (-2)^2} = \sqrt{4 \cdot 2^2} = 4 \\ ||(v - \overline{v})|| &= 1.64 \\ \frac{(x - \overline{x})(y - \overline{y})}{||(x - \overline{x})||||(y - \overline{y})||} &= \arccos \theta = \frac{-3}{4 \cdot 1.64} = -0.45 \end{aligned}$$

Proposição 11 O produto vetorial $(\times): \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ é uma forma bilinear.

Exemplo 5.7

$$det = u_2v_3i + u_3v_1j + u_1v_2k - u_1v_2j - u_3v_2i - u_2v_1j$$

= $(u_2v_3 - u_3v_2)i(u_3v_1 - u_1v_3)j + (u_1v_2 - u_2v_1)k$

Exemplo 5.8 Ache o vetor normal do plano $Span\{(3,1,1),(-1,0,1)\}.$

Através do produto vetorial achamos o vetor normal.

$$n = (3, 1, 1) \times (-1, 0, 1) = (1, -4, 1) \in v$$

 $\label{eq:qualquer} \textit{Qualquer vetor que estiver no plano, se for calculado o produto escalar, dará sempre zero.}$

$$(1, -4, 1) \cdot (3, 1, 1) = 3 + (-4) \cdot 1 + 1 \cdot 1 = 3 - 4 + 1 = 0$$

 $(1, -4, 1) \cdot v = 0$
 $||(1, -4, 1)|| = \sqrt{1^2 + 4 + 1^2} = \sqrt{6}$

NOTA: O produto vetorial (\times) nos ajuda a calcular a área de um paralelogramo dado por dois vetores $\mathbf{u}, \mathbf{v} \in \mathbb{R}$.

$$||u \times v|| = ||u||||v||sen\theta$$

Exemplo 5.9 Dado A = (1,2,3), B = (-1,0,1) e C = (0,-1,1), calcule a área do triângulo (A_t) compreendido por esses 3 pontos:

$$u = B - A = (-1 - 1.0 - 2, 1 - 3) = (-2, -2, -2)$$

$$v = C - A = (0 - 1, -1 - 2, 1 - 3) = (-1, -3, -2)$$

$$u \times v = (-2, -2, -2) \times (-1, -3, -2) = (-2, -2, 4)$$

$$A_t = \frac{||(-2, -2, 4)||}{2} = \frac{\sqrt{4 + 4 + 16}}{2} = \frac{\sqrt{24}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}$$

Proposição 12 Geralmente uma base $B = \{e_1, e_2, ..., e_n\}$ deve possuir a propriedade de ortogonalidade, ou seja:

1.
$$\forall_{ij} \ e_i \cdot e_j = 0$$

2.
$$\forall_i ||e_i|| = 1$$

Exemplo 5.10 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$

$$(1,0,0) \cdot (0,1,0) = 0$$
 $||(1,0,0)|| = \sqrt{1^2 + 0^2 + 0^2} = 1$
 $(1,0,0) \cdot (0,0,1) = 0$ $||(0,1,0)|| = 1$
 $(0,1,0) \cdot (0,0,1) = 0$ $||(0,0,1)|| = 1$

5.2 Prova 2

Exercício 5.1 Seja

$$B = \begin{bmatrix} 1 & -3 \\ -3 & 1 \end{bmatrix}$$

Calcule B^{20} . A matriz B estaria relacionada a qual transformação linear? É profibido usar qualquer tipo de software para calcular a resposta.

Exercício 5.2 $D\hat{e}$ um exemplo de uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ ao qual $dim(Im\ T) = 1$. Ache Ker T em seu exemplo.

Exercício 5.3 Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z) = (x+y+z,-2x+z).

- 1. Mostre que T é uma transformação linear.
- 2. Qual a matriz de T em relação às bases canônicas?
- 3. Ache uma base para o Kernel.
- 4. Ache uma base para a imagem.
- 5. Qual a matriz de T em relação à base $B = \{(1, -1), (0, 1)\}$

5.2. PROVA 2 81

Exercício 5.4 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (2x + 6y, 6x + 2y) uma transformação linear.

- 1. Ache os autovalores e os autovetores de T.
- 2. Calcule o ângulo (em graus) formado pelos autovetores.
- 3. A base formada pelos autovetores é ortonormal?

Exercício 5.5 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ com autovalores $\lambda_1 = a$, $\lambda_2 = b$ e $\lambda_3 = c$. Sendo $a,b,c \in \mathbb{R}$ variáveis com valores distintos. Seja a matriz A a matriz de T na base canônica. Calcule o determinante de det(A).

Exercício 5.6 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ Dada por $T(x,y) = (\frac{\sqrt{3}}{2}x - \frac{1}{2}y, \frac{1}{2}x + \frac{\sqrt{3}}{2}y$ uma transformação linear.

- 1. T é diagonalizável?
- 2. Calcule T(1,0), T(0,1), T(-1,0) e T(0,-1).
- 3. Exiba um gráfico 2D contendo os 4 vetores acima.
- 4. Qual o sentido geométrico da transformação T?

Exercício 5.7 Seja $T: V \to V$, onde V é um \mathbb{R} -espaço vetorial de dimensão finita com dimV = k. Seja $\{v_1, v_2, ..., v_k\}$ uma base de V. Mostre que $\{T(v_1), T(v_2), ..., T(v_k)\}$ também é uma base de V.

Exercício 5.8 $D\hat{e}$ um exemplo de uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}$ que não seja sobrejetora.

Chapter 6

Aplicações

Aqui temos um breve resumo da aula prática.

O que vamos estudar? **PCA: Principal Component Analysis**. Uma breve introdução aos aspectos de Machine Learning.

6.1 Abordagens do algoritmo PCA

- 1. Enxerga os dados como matriz M.
- 2. Extrai a matriz de covariância (ou correlação) associada de M.
- 2'. M^T M ou M M^T .
- 3. Calcular os autovalores e autovetores dessa matriz obtida em 2 ou 2'.

4.

$$l_1, l_2, ..., l_n$$

 $l_1/(l_1 + ... + l_n)$
 $l_2/(l_1 + ... + l_n)$
...
 $l_n/(l_1 + ... + l_n)$

- 4'. Usaremos as seguintes ferramentas para essa atividade:
- Haskell.
- Nix.
- CSV (cassava).
- Plot (gnuplot).
- hMatrix.

5. IDE.

Isso tudo nos diz sobre os "features extractions" que é a extração de recursos que referem-se ao processo de transformar dados brutos em soluções numéricas que podem ser processadas mantendo as informações no conjunto de dados original. Neste caso faremos o PCA como feature extraction por álgebra linear.

6.2 Processo

1º Passo: Através do link "https://github.com/romefeller/numericla" você encontrará o respositório de projeto PCA, onde tudo já está configurado.

2º Passo: Uma vez clonado o repositório citado acima, faça o download do "Nix: the package manager", que é um gerenciador de pacotes. E depois acesse o seu terminal, instale o pacote e depois é só abrir o "nix-shell". Daqui em diante é só acessar o "ghci".

Entretanto, na aula, devido à algumas configurações, optou-se por seguir utilizando o editor "emacs".

IDE Instalação:

- Emacs.
- Dentro, aperte: M-x package-install

lsp lsp-gui

haskell-mode

lsp-haskell

• Depois crie um arquivo ".emacs".

NOTA: Vale ressaltar que tanto a linguagem quanto a IDE pode ser escolhida de acordo com a necessidade ou afinidade com elas, basta apenas encontrar dentro de sua escolha os pacotes equivalentes.

3º Passo: Dentro da IDE abra o arquivo ".emacs" disponibilizado na pasta da aula, dentro do teams, o qual já está configurado com alguns dos pacotes para a tarefa.

6.2. PROCESSO 85

 Com isso, será possível realizar as operações com matrizes, como as ilustradas abaixo.

Adição:

```
\( \) mat
(3><3)
[ 2.0, 4.0, 7.0
, -3.0, 11.0, 0.0
, 1.0, 4.0, 5.0 ]
\( \) mat + mat
(3><3)
[ 4.0, 8.0, 14.0
, -6.0, 22.0, 0.0
, 2.0, 8.0, 10.0 ]</pre>
```

Matrizes inversas:

Autovalores:

```
\lambda> eigenvalues mat [9.976253531727834e-2 ^{h}:+ 0.0,8.950118732341355 :+ 3.1795599703000073,8.950118732 341<u>3</u>55 :+ (-3.1795599703000073)]
```

 ${\bf E}$ assim por diante, podendo realizar funções referentes ao nosso conteúdo.

$4^{\underline{0}}$ Passo: