Step-1

false

Step-2

Given that x and y are orthogonal

So,
$$x^T y = 0$$

P is a projection matrix

Therefore $P^2 = P$ and $P^T = P$

Now $(Px)^T Py = (x^T P^T) Py$

$$= \left(\left(x^T P^T \right) P \right) y$$

= $x^{T}((PP)y)$ By the associativity of matrix multiplication and $P^{T} = P$

$$= x^T P y$$
 Using $P^2 = P$

Step-3

We know that the inner product of x with Py equal to the inner product of Px with y.

In other words, $x^T P y = y^T P x$

So, $(Px)^T Py$ is not necessarily equal to 0

Therefore, Px and Py are not orthogonal