ADLAIR Military & Defence

ADLAIR V-352 'Vultur'

Diseño

REDIMENSIONAMIENTO

- Alas: estimada capacidad disponible para combustible
- Estabilizadores horizontal y vertical: haciendo uso de los Tail Volume Coefficient
- Morro: usando el Front Fuselage Closure Ratio y el average diameter
 - > Longitud de morro aumentada en 1 m.
- Cola: usando el Aft Fuselage Closure Ratio y el average diameter
 - > Longitud de cola aumentada en 1 m

Diseño

REDIMENSIONAMIENTO FUSELAJE

- Misiones limitantes:
 - ➤ Misión 2: carga de pago de 16000 kg paletizada → Palets Estándar → 4 palets (>18000 kg)
 - ➤ **Misión 3:** transporte de heridos → Capacidad para 36 heridos → Camillas estándar (STANAG 2040)
 - > Resultados:

Reducción de longitud de fuselaje en un 3%

Trabajo Futuro

- **Diseño del avión definitivo:** una vez estabilizados los valores
 - > Nuevas dimensiones de fuselaje, alas y estabilizadores
 - Nueva forma de fuselaje
- Diseño de tren de aterrizaje
 - > Primera idea: tren con rueda en el morro
- Estimación de potencia eléctrica necesaria
 - ➤ More Electric Aircraft (MEA)

Estructuras

			Mod	lelo	mision2				
Grupos estructurales					Pesos globales				
Peso Ala	3400.6969	Kg	15.7931	%	Peso en vacío	21532.7734	Kg	37.847	%
Peso HTP	900	Kg	4.1797	%	Peso carga de pago	16000	Kg	28.1224	%
Peso VTP	372	Kg	1.7276	%	Peso tripulación	304	Kg	0.53432	%
Peso fuselaje	3898.8	Kg	18.1064	%	Peso combustible	19057.46	Kg	33.4963	%
Peso Tren de aterrizaje	2332.5086	Kg	10.8324	%	Resultado Final				
Peso Motores	2095.2	Kg	9.7303	%	MTOW	56894.2334	Kg		
Peso Miscelaneos	8533.5679	Kg	39,6306	%	Superficie alar	135.4535	m^2		

Resultados CG			
Configuración CG	CG [m]	CG [%]	
Payload + Fuel	15	44	
No Payload + No fuel	16	48	
Payload + No fuel	16	47	
No Payload + Fuel	15	44	
Longitud del fuselaje:	34	m	
Peso total:	56894	Kg	

Propulsión

Primera selección de la planta de potencia

El motor seleccionado en un primer momento es:

Ratt Whitney T57-P-1

P_SL=15000 shp TSFC=0,47

Requerimientos de potencia obtenidos de imponer un valor de palanca de gases adecuado para cada segmento a la hora de estimar los pesos de combustible

Actuaciones

Proceso iterativo junto con el departamento de aerodinámica y estructuras para la estimación de Wf

	Segmentos	Iter 1	Iter 2	Iter 3	Iter 4	Iter 5
	1	18847,91	9662,736	6728,49	6925,6	6224,62
	2	11976,8	7319,459	5513,29	5392,58	5009,86
Minián 1	3	3124,93	1988,99	1832,12	1484,39	1378,45
Misión 1	4	11613,67	6160,651	4335,01	4452,33	4002,2
	5	846,46	550,637	426,31	413,16	386
	TOTAL	45563,31	25682,473	18835,22	18668,06	17001,172
Misión 2	1	29780,82	15203,308	14163,21	11209,62	10816,426
	2	448,39	334,757	270,78	267,37	227,53
	3	300,1	202,318	154,77	148,58	121,425
	4	23291,31	11815,252	9598,545	7431,89	6873,32
	TOTAL	53820,62	27555,635	24187,305	19057,46	18038,701

• Misión 1: Wf=17001,2 kg

Misión 2: Wf=18038,7 kg

Selección de perfil para el ala

Cl_opt=0,3570 Cl_max=1,7614

		l l	Aviones similares				
		C-235	An-70	Lockheed C-5			
Parámetro	Ponderación	NACA 65(3)-218	MH 70 11.08	C5A	NACA 23018	NACA 65(2)-415	NACA 64A41
Cd_min	20%	0,00684	0,00517	0,00503	0,00727	0,00607	0,00523
Cm_0	10%	-0,0393	-0,0507	-0,0463	-0,0035	-0,0805	-0,0813
α_s (º)	15%	19	16	16,5	17	17	12,25
α_zl (º)	10%	-1,5	-2,75	-1,25	-1,25	-3	-3,25
CI/Cd max	10%	102,43	112,4	68,459	89,88	120,62	98,626
Cl_max	20%	1,2436	1,5849	1,4398	1,5402	1,3596	1,3359
Stall quality	10%	1	0,5	0,25	0,5	1	0,25
Cl_α	5%	6,72	5,9	6,96	5,96	6,26	3,925

					1		
		Aviones similares					
		C-235	An-70	Lockheed C-5			
Parámetro	Ponderación	NACA 65(3)-218	MH 70 11.08	C5A	NACA 23018	NACA 65(2)-415	NACA 64A41
Cd_min	20%	14,70760234	19,45841393	20	13,83768913	16,57331137	19,23518164
Cm_0	10%	4,833948339	0,690335306	0,755939525	10	0,434782609	0,430504305
α_s	15%	15	12,63157895	13,02631579	13,42105263	13,42105263	9,671052632
α_zl	10%	4,615384615	8,461538462	3,846153846	3,846153846	9,230769231	10
CI/Cd max	10%	8,491958216	9,318520975	5,675592771	7,45150058	10	8,176587631
Cl_max	20%	15,69310367	20	18,16896965	19,43592656	17,15691842	16,85784592
Stall quality	10%	10	5	2,5	5	10	2,5
Cl_α	5%	4,827586207	4,238505747	5	4,281609195	4,497126437	2,819683908
Suma	100%	78,16958338	79,79889336	68,97297158	77,27393194	81,31396069	69,69085604

RFP:

- > Fabricación
- Máxima sustentación
- > Entrada en pérdida
- > Filosofía de la empresa


```
NACA 65(3)-218
Thickness = 18.00%
Max. Thick.pos. = 40.40%
Max. Camber = 1.10%
Max. Camber pos. = 50.50%
Number of Panels = 200
```


Determinación de la polar en configuración limpia

- ➤ Composite Build-Up Method
- > XFLR5
- > OPEN-VSP

Contribución a CD0 de los distintos elementos en configuración limpia

Determinación del ala

- > Estudio distintos tipos de ala en XFLR5
- > Valores del ala seleccionada

S_ref	135,4535
AR	8
cr	5,87830454
ct	2,35132182
b	32,9185054
λ	0,4
Ψ(rad)	0,10673567
d(fus)	4,51663592

AR_eff	12
c(d/2)	5,39437927
S_exposed	84,5388915
Δ_0.25	0,05352027
Δ_max_t	0,02056853
λ_1	3,21831494
AR_eff_H	3,85402189
Δ_max_t_h	0,32995351

Determinación del ala

> Ala seleccionada

> Coeficientes aerodinámicos

CL_α_w	5,57994781
CL_0	0,096569
CL_max	1,75248707
CD0_limp	0,02062433
K1	-0,00045458
K2	0,04342275
e_wing	0,95279833
CL_opt	0,4534
V_s(SL)	61,9257948
CL_α_h	3,48297616

0.08

0.09

0.1

0.11 0.12

1.5

WINGLETS!! Ranked Tips->-5.5%

1.2 CL				
112				
1.0				
0.8				
0.6				
0.4				
0.2				CD
0	0.02	0.04	0.06	———СБ
0.2	0.02	0.01	0.00	
0.4				
0.6				
CD ₀	K1	K2		

0,0436

-0,0004831

0,00882

Estabilidad

Estudio del trimado preliminar:

- ➤ Valor del Tail Volume Coefficient obtenido de la literatura.
- ightharpoonup Se ha considerado C_{L_0} igual a C_L optimo, con carga alar en el punto medio del crucero
- \succ $C_{L_{\alpha}}$ entre -1.2 y -0.4 según la literatura
 - -0.64 en nuestro caso
 -0.948

	Typical values		
	Horizontal c _{HT}	Vertical cv	
Sailplane	0.50	0.02	
Homebuilt	0.50	0.04	
General aviation—single engine	0.70	0.04	
General aviation—twin engine	0.80	0.07	
Agricultural	0.50	0.04	
Twin turboprop	0.90	0.08	
Flying boat	0.70	0.06	
Jet trainer	0.70	0.06	
Jet fighter	0.40	0.07	
Military cargo/bomber	1.00	0.08	
Jet transport	1.00	0.09	

Estabilidad Longitudinal

Estabilidad Longitudinal

Estabilidad Longitudinal

Estabilidad Lateral/Direccional

➤ Pre-dimensionado de estabilizador vertical y rudder

deltamax	0,436
kdeltar	0,95
kv	1
Sr	
Svp	12
hf	3
Av	0,75
Lambda_r	0

Estabilidad Lateral/Direccional

- Derivadas de estabilidad (algunas) estimadas de la literatura:
 - $\circ C_{n_{\beta}} = 0.16$
 - $\circ C_{l_B} = 0.02462$
- Velocidad de maniobra 1.3Vstall a altura de maniobra y configuración limpia, con requisitos de maniobrabilidad de aeronave de clase II

