FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA LINEAL 520131 Listado 4 (Rectas y planos en el espacio.)

1. Usando métodos vectoriales demuestre que la distancia d entre el punto $P(x_0, y_0)$ y la recta ax + by + c = 0 es

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

.

2. Hallar la ecuación de la recta que pasan por el punto P en la dirección de \vec{r} .

a) $P(2,-1,4), \quad \vec{r} = (3,-1,6).$ (En práctica)

b) P(-2,4,3), $\vec{r} = (2,0,-3)$.

3. Hallar la ecuación de la recta que pasa por el punto P(-6,5,3) y es paralela a la recta

$$L: \frac{x-4}{-2} = \frac{3-y}{3} = \frac{3z+5}{6}.$$

(En práctica)

4. Hallar las ecuación de la recta que pasa por los puntos: $P_0(5,0,7)$ y $P_1(5,-3,11)$.

5. Hallar la ecuación de la recta que pasa por el punto P(3, -3, 4) y es perpendicular a cada una de las rectas:

$$L_1: \frac{2x-4}{2} = \frac{y-3}{-1} = \frac{z+2}{5}$$
 y $L_2: \frac{x-3}{1} = \frac{2y-7}{3} = \frac{3-z}{-3}$.

(En práctica)

6. Demostrar que las rectas L_1 y L_2 son paralelas y hallar la distancia entre ellas.

$$L_1: \frac{x-2}{3} = \frac{y-2}{4} = \frac{8-z}{4}$$
 y $L_2: \frac{x-1}{3} = \frac{2-y}{-4} = \frac{z+3}{-4}$.

7. Hallar la distancia entre las rectas $L_1: \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-3}{1}$ y $L_2: \frac{x-2}{-3} = \frac{y-2}{1} = \frac{z+1}{2}$.

(En práctica)

8. Hallar la ecuación del plano que contiene los puntos (4,-2,2) y (1,1,5) y es perpendicular al plano: $\Pi: 3x-2y+5z-1=0.$ (En práctica)

9. Determinar el valor de k de modo que los planos $\Pi_1: kx - 2y + 2z - 7 = 0$ a $\Pi_2: 4x + ky - 6z + 9 = 0$, sean perpendiculares.

10. Hallar la ecuación del plano cuyas intersecciones con los ejes coordenados x, y, z son -5, 3 y 1 respectivamente. (En práctica)

11. Hallar la ecuación del plano que pasa por el punto (3, -2, 6) y es paralelo al plano $\Pi: 4y - 3z + 12 = 0$.

12. Hallar el ángulo que forman los planos $\Pi_1: 3x+y-z+3=0$ y $\Pi_2: x-y+4z-9=0$.

13. Hallar el ángulo formado por la recta $L_1: \frac{x+2}{3} = \frac{y}{-1} = \frac{z-4}{2}$ y el plano $\Pi: 2x+3y-z+11=0$.

(En práctica)

14. Hallar el ángulo formado por la recta de intersección de los planos $\Pi_1: x-2y+z+4=0$ y $\Pi_2: x+2y+3z-4=0$ y el plano $\Pi_3: 3x-7y+8z-9=0$. (En práctica)

- 15. Hallar la distancia del punto $P_0(7,7,4)$ a la recta de intersección de los planos $\Pi_1:6x+2y+z-4=0$ y $\Pi_2:6x-y-2z-10=0$.
- 16. Hallar la ecuación del plano que contiene el punto $P_0(3, -1, 7)$ y es perpendicular a la recta $L: \frac{x+2}{-3} = \frac{3-y}{-1} = \frac{z}{2}$. (En práctica)
- 17. Hallar la ecuación del plano que contiene a la recta $L_1: \frac{x+2}{2} = \frac{y-3}{-3} = -\frac{z}{4}$ y es paralelo a la recta $L_2: \frac{x-1}{1} = \frac{y}{-2} = \frac{z+7}{5}$.
- 18. Demostrar que la recta $L_1: \frac{x-2}{6} = \frac{3y+1}{-6} = \frac{1-z}{3}$ y el plano $\Pi: 2x-3y+6z+3=0$ son paralelos y determinar la distancia entre L_1 y Π .