Математика для Data Science. Теория вероятностей. Решения задач

Содержание

Теорема Байеса	
Задача 1	
Задача 2	
Задача 3	
Правило суммы	
Задача 1	
Задача 2	
Биномиальные коэффициенты	
Задача 1	
Задача 1	
Случайная величина и математическое ожидание	
Задача 2	
Задача 3	
Задача 4	
Залача 5	

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Теорема Байеса

Задача 1

Докажите теорему Байеса:
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
 при при $P(A), P(B) \neq 0$.

Подсказка. Понадобится формула из определения условной вероятности.

Решение. Запишем утверждение по-другому: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \Leftrightarrow P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$. А это равенство верно, поскольку и левая, и правая его части равны $P(A \cap B)$.

Задача 2

- 1. Мы держим в руках монетку. С вероятностью $\frac{99}{100}$ она честная. С вероятностью $\frac{1}{100}$ это нечестная монетка, которая всегда выпадает орлом вверх. Мы подбросили монетку 5 раз, и все разы она выпала орлом вверх. Ясно, что это наблюдение свидетельствует в пользу нечестности монетки. Какова вероятность того, что монетка нечестная?
- 2. Тот же вопрос, что и в пункте 1, но мы подбросили монетку 20 раз и все разы выпал орёл. Сравните ответ с ответом из пункта 1.

Подсказка. Воспользуйтесь теоремой Байеса.

Решение.

1. Пусть событие A — монетка нечестная, событие B — 5 раз подряд выпал орёл. Воспользуемся теоремой Байеса: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$.

Здесь P(B|A) — вероятность выпадения 5 орлов, если монетка нечестная. Эта вероятность равна 1 по условию.

$$P(A) = \frac{1}{100}$$
 по условию.

$$P(B) = P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A}) = 1 \cdot \frac{1}{100} + \frac{1}{2^5} \cdot \frac{99}{100} = \frac{131}{3200}.$$

Итак,
$$P(A|B) = \frac{1 \cdot \frac{1}{100}}{\frac{131}{2200}} = \frac{32}{131} \approx 0.2442748.$$

2. В предыдущем рассуждении поменяется только $P(B) = P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A}) = 1 \cdot \frac{1}{100} + \frac{1}{2^{20}} \cdot \frac{99}{100} = \frac{41947}{4194304}$.

$$P(A|B) = \frac{1 \cdot \frac{1}{100}}{\frac{41947}{4194700}} = \frac{4194304}{4194700} \approx 0.999905595$$
. То есть монетка почти точно нечестная.

Задача 3

Вы покупаете одинаковые аккумуляторы у трёх поставщиков: X, Y и Z. На основании предыдущих покупок у этих поставщиков вы знаете, какова доля брака в продукции каждого из них.

- Y X вы купили 600 аккумуляторов. Среди аккумуляторов, которые вы покупаете у X, доля брака 0.1.
- У Y вы купили 300 аккумуляторов. Среди аккумуляторов, которые вы покупаете у Y, доля брака 0.2.
- У Z вы купили 100 аккумуляторов. Среди аккумуляторов, которые вы покупаете у Z, доля брака 0.05.

Задача. Вы смотрите на один из ваших аккумуляторов, который оказался бракованным. Какова вероятность, что его вам продал Y?

Попробуйте интерпретировать эту задачу через теорему Байеса. Что будет скрытым состоянием? Что будет наблюдением?

Подсказка. Нужно найти, какую долю составляют аккумуляторы от Y среди всех бракованных аккумуляторов.

Решение. Решим сначала, явно не пользуясь теоремой Байеса. Посчитаем, сколько всего бракованных аккумуляторов: $600 \cdot 0.1 + 300 \cdot 0.2 + 100 \cdot 0.05 = 125$. При этом $300 \cdot 0.2 = 60$ из них — от поставщика Y. Значит, искомая вероятность равна $\frac{60}{125} = 0.48$.

Теперь воспользуемся теоремой Байеса. Событие $A_{\rm Y}$ — аккумулятор куплен у Y, событие B — аккумулятор бракован.

Также обозначим за $A_{\rm X}$ и $A_{\rm Z}$ события "аккумулятор куплен у X" и "аккумулятор куплен у Z" соответственно. Тогда по формуле полной вероятности

ренно. Гогда по формуле полной вероятности
$$P(B) = P(B|A_{\rm X}) \cdot P(A_{\rm X}) + P(B|A_{\rm Y}) \cdot P(A_{\rm Y}) + P(B|A_{\rm Z}) \cdot P(A_{\rm Z}) = 0.1 \cdot \frac{600}{1000} + 0.2 \cdot \frac{300}{1000} + 0.05 \cdot \frac{100}{1000} = 0.125.$$
 По теореме Байеса $P(A_{\rm Y}|B) = \frac{P(B|A_{\rm Y}) \cdot P(A_{\rm Y})}{P(B)} = \frac{0.2 \cdot \frac{300}{1000}}{0.125} = 0.48.$

Правило суммы

Задача 1

Докажите правило суммы. Напомним его: если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$.

Подсказка. Введите обозначения для вероятностей элементарных исходов, принадлежащих событию A. То же самое сделайте для события B.

Решение. Пусть всего в A n элементарных исходов с вероятностями p_1, p_2, \ldots, p_n . Аналогично, пусть всего в B m элментарных исходов с вероятностями q_1, q_2, \ldots, q_m . Изобразим это на картинке:

Точка внутри множества обозначает элементарный исход, а его вероятность написана рядом.

По определению вероятность события равна сумме вероятностей элементарных исходов, которые в него входят. Значит, $P(A) = p_1 + p_2 + \dots + p_n$. Аналогично $P(B) = q_1 + q_2 + \dots + q_m$. А тогда $P(A) + P(B) = p_1 + \dots + p_n + q_1 + \dots + q_m$.

По условию множества A и B не пересекаются, поэтому $P(A \cup B) = p_1 + \dots + p_n + q_1 + \dots + q_m$. Итак, мы доказали нужное нам равенство $P(A \cup B) = P(A) + P(B)$.

Задача 2

Докажите, что $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Подсказка. Нарисуйте диаграмму Эйлера, а дальше действуйте аналогично предыдущей задаче.

Решение. Для начала заметим, что множество $A \cup B$ можно разбить на три непересекающихся множества: $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Теперь поступим как и в прошлой задаче: пусть

- 1. событию $A \setminus B$ принадлежат элементарные исходы с вероятностями p_1, p_2, \ldots, p_n
- 2. событию $B \setminus A$ элементарные исходы с вероятностями q_1, q_2, \dots, q_m
- 3. событию $A \cap B$ элементарные исходы с вероятностями r_1, r_2, \dots, r_k

Изобразим это:

В событие A входят элементарные исходы с вероятностями $p_1, \ldots, p_n, r_1, \ldots, r_k$.

Значит, $P(A) = (p_1 + \dots + p_n) + (r_1 + \dots + r_k)$.

Аналогично $P(B) = (r_1 + \dots + r_k) + (q_1 + \dots + q_m).$

Посчитаем теперь выражения из условия:

 $P(A \cup B) = (p_1 + \dots + p_n) + (r_1 + \dots + r_k) + (q_1 + \dots + q_m)$ $P(A) + P(B) - P(A \cap B) = (p_1 + \dots + p_n) + (r_1 + \dots + r_k) + (r_1 + \dots + r_k) + (q_1 + \dots + q_m) - (r_1 + \dots + r_k).$

Сокращая в последнем равенстве одинаковые скобки, получаем: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Биномиальные коэффициенты

Задача 1

Докажите, что для любых n и k таких, что $k \leq n$ выполнено соотношение $\binom{n}{k} = \binom{n}{n-k}$. Попробуйте доказать двумя способами: явно через формулу и через комбинаторный смысл.

Подсказка. Комбинаторный смысл заключается в том, что биномиальный коэффициент $\binom{n}{k}$ равен числу подмножеств размера k у n-элементного множества.

Решение.

1. Докажем сначала через формулу:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

С другой стороны,

$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}.$$

2. Теперь докажем через комбинаторный смысл. Как мы помним, $\binom{n}{k}$ равно числу подмножеств размера kу n-элементного множества S. Но любому k-элементному подмножеству $A \subset S$ можно однозначно сопоставить (n-k)-элементное подмножество $S \setminus A$. Другими словами, выбрать k элементов из n возможных - это то же самое, что из n-элементного множества "выкинуть" n-k элементов.

Задача 2

Докажите, что для всех $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \binom{n}{n-2} + \dots + \binom{n}{k} + \dots + \binom{n}{1} + \binom{n}{0} = 2^{n}$$

Это можно сделать двумя способами соответствующими двум интерпретациями биномиальных коэффициентов: коэффициенты в биноме Ньютона и число способов выбрать подмножество фиксированного размера. Попробуйте придумать оба.

Подсказка. В бином Ньютона можно подставить конкретные *а* и *b*.

Решение.

1. Решим сначала через бином Ньютона. Мы доказали, что для любых $a,b \in \mathbb{R}$ и $n \in \mathbb{N}$ выполнено

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Подставим сюда a = b = 1 и получим

$$(1+1)^n = 2^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$$

- 2. Теперь докажем через комбинаторный смысл. В левой стороне равенства мы суммируем количество способов выбрать
 - n-элементное подмножество из n-элементного множества
 - (n-1)-элементное подмножество из n-элементного множества
 - 1-элементное подмножество из *n*-элементного множества
 - 0-элементное подмножество из *n*-элементного множества

То есть мы суммируем количество способов выбрать все возможные подмножества из n-элементного множества. А на прошлой неделе мы уже доказывали, что таких способов всего 2^n .

Случайная величина и математическое ожидание

Задача 2

- 1. Докажите, что для любой случайной величины X и числа $c \in \mathbb{R}$ выполнено $E[cX] = c \cdot E[X]$.
- 2. Докажите, что для любых случайных величин X и Y выполнено E[X+Y]=E[X]+E[Y].
- 3. Из предыдущих двух пунктов выведите, что E[aX + bY] = aE[X] + bE[Y] для любых чисел $a, b \in \mathbb{R}$

Другими словами, в пунктах 1 и 2 мы доказали, что операция взятия математического ожидания перестановочна с операцией умножения на число и с операцией сложения. Эти операции можно менять местами, и от этого результат вычислений не изменится.

Подсказка. Воспользуйтесь определением математического ожидания.

Решение. Пусть наше вероятностное пространство Ω состоит из n элементарных исходов. Обозначим через P_i вероятность i-ого исхода, через x_i — значение случайной величины X на i-ом исходе, а через y_i — значение случайной величины Y на i-ом исходе.

- 1. По определению $E[cX] = \sum_{i=1}^{n} cx_{i}P_{i}$. При этом $c \cdot E[X] = c \cdot \sum_{i=1}^{n} x_{i}P_{i}$. Значит, $E[cX] = c \cdot E[X]$.
- 2. $E[X+Y] = \sum_{i=1}^{n} (x_i + y_i) P_i$. С другой стороны, $E[X] + E[Y] = \sum_{i=1}^{n} x_i P_i + \sum_{i=1}^{n} y_i P_i = \sum_{i=1}^{n} (x_i P_i + y_i P_i) = \sum_{i=1}^{n} (x_i + y_i) P_i = E[X+Y]$.
- 3. По второму пункту E[aX+bY]=E[aX]+E[bY]. Дважды воспользовавшись первым пунктом, получаем E[aX]+E[bY]=aE[X]+bE[Y], что и требовалось.

Задача 3

Пять лучников одновременно стреляют в одну мишень. Первый стрелок попадает с вероятностью 0.9, второй попадает с вероятностью 0.7, третий попадает с вероятностью 0.3, четвёртый с вероятностью 0.5 и пятый с вероятностью 0.8. Их вероятности попасть вполне могут быть не независимы — например, сильный порыв ветра повлияет на выстрел каждого из лучников.

Найдите E[A], где A – число стрел, попавших в мишень.

Подсказка. Математическое ожидание от суммы случайных величин (и для независимых, и для зависимых) всегда равно сумме математических ожиданий.

Решение. Введём случайные величины X_i для $i \in \{1, 2, 3, 4, 5\}$. Пусть X_i равен 1, если i-ый стрелок попал в мишень, и 0, если i-ый стрелок не попал в мишень.

Тогда $A=X_1+X_2+X_3+X_4+X_5$. А значит, по свойству математического ожидания $E[A]=E[X_1]+E[X_2]+E[X_3]+E[X_4]+E[X_5]=p_1+p_2+p_3+p_4+p_5$, где p_i — вероятность, что i-ый стрелок попал. Итого E[A]=0.9+0.7+0.3+0.5+0.8=3.2.

Задача 4

- 1. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 1$.
- 2. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 1000$.
- 3. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 0$.

Подсказка. В пунктах 2 и 3 надо будет рассмотреть зависимые величины.

Решение. Приведём возможные примеры ответов.

- 1. Возьмём слуайные величины X и Y, всегда равные единице. Тогда E[X] = E[Y] = 1 и $E[X \cdot Y] = 1$.
- 2. Пример 1. Рассмотрим случайные величины X и Y такие, что X = Y и

$$X = \begin{cases} \sqrt{1000} \text{ с вероятностью } p \\ -\sqrt{1000} \text{ с вероятностью } 1-p \end{cases}$$

Чему равно p? Это мы сейчас посчитаем: $E[X] = E[Y] = \sqrt{1000} \cdot p - \sqrt{1000} (1-p) = 1$. Или, эквивалентно, $2\sqrt{1000}p = 1 + \sqrt{1000}$. Значит, $p = \frac{1+\sqrt{1000}}{2\sqrt{1000}} \approx 0.51581$.

Проверим, что условие $E[X \cdot Y] = 1000$ выполнено: $XY = X^2 = 1000$, а значит $E[X \cdot Y] = 1000$.

Пример 2. Можно было рассмотреть такие случайные величины: X = Y и

$$X = \begin{cases} 0 \text{ с вероятностью } 0.999 \\ 1000 \text{ с вероятностью } 0.001 \end{cases}$$

Тогда $E[X] = E[Y] = 0 \cdot 0.999 + 1000 \cdot 0.001 = 1$. При этом $E[X \cdot Y] = E[X^2] = 0^2 \cdot 0.999 + 1000^2 \cdot 0.001 = 1000$.

3. Пусть мы один раз бросаем честный кубик. Введём случайные величины:

$$X(\omega) = egin{cases} 6, \ ext{ecли выпало } 6 \ 0, \ ext{иначe} \end{cases}$$

$$Y(\omega) = egin{cases} 1, & \text{если выпало 1} \\ 2, & \text{если выпало 2} \\ 3, & \text{если выпало 3} \\ 0, & \text{если выпало число больше 3} \end{cases}$$

Тогда $E[X]=6\cdot \frac{1}{6}=1$ и $E[Y]=1\cdot \frac{1}{6}+2\cdot \frac{1}{6}+3\cdot \frac{1}{6}=1.$

При этом случайная величина XY всегда равна 0, ведь нет элементарного исхода, когда и X, и Y ненулевые. Итак, $E[X\cdot Y]=0$.

Задача 5

Приведите пример случайной величины X, для которой не выполнено $E[X^2] = E[X] \cdot E[X]$.

Как мы увидели в этой и предыдущей задачах, математическое ожидание НЕ перестановочно с умножением, то есть не всегда выполнено $E[X \cdot Y] = E[X] \cdot E[Y]$.

Подсказка. На этой неделе мы познакомились с дисперсией: $Var[X] = E[X^2] - E[X]^2$. В этой задаче нужно привести пример случайной величины с ненулевой дисперсией.

Решение. Пусть мы бросаем честную монетку один раз. Выпадению орла сопоставим 0, выпадению решки -1. И пусть X — результат одного броска.

Тогда $E[X] = 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$ и, значит, $E[X] \cdot E[X] = 0.5^2$. При этом $E[X^2] = 0^2 \cdot 0.5 + 1^2 \cdot 0.5 = 0.5$. Итак, $E[X^2] \neq E[X] \cdot E[X]$.