MATHS TUTORIAL-3 (Group Theory)

Q1.)

- 1. In the following determine whether the systems described are groups. If they are not, point out which of the group axioms fail to hold.
 - (a) $G = \text{set of all integers}, a \cdot b \equiv a b$.
 - (b) G = set of all positive integers, $a \cdot b = ab$, the usual product of integers.
 - (c) $G = a_0, a_1, \dots, a_6$ where

$$a_i \cdot a_j = a_{i+j}$$
 if $i + j < 7$,
 $a_i \cdot a_j = a_{i+j-7}$ if $i + j \ge 7$

(for instance, $a_5 \cdot a_4 = a_{5+4-7} = a_2$ since 5 + 4 = 9 > 7).

(d) $G = \text{set of all rational numbers with odd denominators, } a \cdot b \equiv a + b$, the usual addition of rational numbers.

Q2.)

2. Prove that if G is an abelian group, then for all $a, b \in G$ and all integers $n, (a \cdot b)^n = a^n \cdot b^n$.

Q3.)

3. If G is a group such that $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$, show that G must be abelian.

Q4.)

- 9. (a) If the group G has three elements, show it must be abelian.
 - (b) Do part (a) if G has four elements.
 - (c) Do part (a) if G has five elements.

- Q5.)
- 11. If G is a group of even order, prove it has an element $a \neq e$ satisfying $a^2 = e$.
- Q6.)
 - 14. Suppose a *finite* set G is closed under an associative product and that both cancellation laws hold in G. Prove that G must be a group.
- Q7.)
 - #20. Let G be the set of all real 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $ad bc \neq 0$ is a rational number. Prove that G forms a group under matrix multiplication.
- Q8.)
- #21. Let G be the set of all real 2×2 matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ where $ad \neq 0$.

 Prove that G forms a group under matrix multiplication. Is G abelian?
- **Q**9.)
- #22. Let G be the set of all real 2×2 matrices $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ where $a \neq 0$. Prove that G is an abelian group under matrix multiplication.

#24. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo 2, such that $ad - bc \neq 0$. Using matrix multiplication as the operation in G, prove that G is a group of order 6.

Q11.)

- #25. (a) Let G be the group of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $ad bc \neq 0$ and a, b, c, d are integers modulo 3, relative to matrix multiplication. Show that o(G) = 48.
- (b) If we modify the example of G in part (a) by insisting that ad bc = 1, then what is o(G)?

Q12.)

- #*26. (a) Let G be the group of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo p, p a prime number, such that $ad bc \neq 0$.

 G forms a group relative to matrix multiplication. What is o(G)?
 - (b) Let H be the subgroup of the G of part (a) defined by

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \mid ad - bc = 1 \right\}.$$

What is o(H)?