Best overall model as measured by accuracy: **Model 2 This is the best model for predicting tumor classes**

```
model2 = Sequential()
model2.add(Dense(600, input_shape=(675,), activation='relu'))
model2.add(Dense(300, activation='relu'))
model2.add(Dense(150, activation='relu'))
model2.add(Dense(75, activation='relu'))
model2.add(Dense(4, activation='softmax'))
```

model2.compile(optimizer='adam',loss='sparse categorical crossentropy',metrics=['accuracy'])

Early stopping is on with a patience of 20 and optimizing for accuracy

precision		recall	f1-score	support
0	0.91	0.87	0.89	180
	0.0.			
1	0.89	0.89	0.89	183
2	0.94	0.89	0.91	88
3	0.89	0.95	0.92	169
accuracy			0.90	620

Best model at classifying normal scans vs any brain tumor: final_model_CC Class 2 are the normal tumors and class two has a recall of 97%

0.83

accuracy

620

```
final model CC = Sequential()
final_model_CC.add(Dense(600, input_shape=(675,), activation='relu'))
final model CC.add(Dropout(.2))
final_model_CC.add(Dense(300, activation='relu'))
final model CC.add(Dropout(.2))
final_model_CC.add(Dense(150, activation='relu'))
final model CC.add(Dense(75, activation='relu'))
final_model_CC.add(Dropout(.2))
final model CC.add(Dense(4, activation='softmax'))
final_model_CC.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
       precision recall f1-score support
      0
           0.93
                   0.69
                           0.79
                                   180
      1
           0.83
                           0.79
                                   183
                   0.75
           0.87
                           0.91
                   0.97
                                    88
      3
           0.74
                           0.84
                                   169
                   0.98
```