Исследование технологических требований для внедрения ИИ в учреждения здравоохранения Москвы

Требования к аппаратному обеспечению

Для эффективного внедрения ИИ в учреждения здравоохранения Москвы необходима следующая аппаратная инфраструктура:

а) Процессоры (CPU/GPUs/TPUs).

Для обработки больших объемов данных и выполнения сложных вычислений потребуется мощное оборудование. Рекомендуется использовать графические процессоры (GPUs) для задач машинного обучения и обработки изображений, а также тензорные процессоры (TPUs) для ускорения работы нейронных сетей.

б) Память (RAM).

Объем оперативной памяти должен быть достаточным для обработки больших наборов данных. Рекомендуется не менее 64 ГБ RAM для серверов, работающих с ИИ.

в) Хранилище. Необходимо обеспечить высокоскоростное хранилище данных (например, SSD) с объемом не менее нескольких терабайт для хранения медицинских изображений и других данных.

г) Сетевые возможности.

Высокоскоростные сетевые соединения (например, 10 Гбит/с Ethernet) необходимы для быстрой передачи данных между серверами и рабочими станциями.

д) Специализированное оборудование.

В зависимости от задач могут потребоваться специализированные устройства, такие как сканеры для медицинских изображений или устройства для сбора данных с сенсоров.

Программное обеспечение

Для реализации ИИ в здравоохранении потребуются следующие программные средства:

а) Языки программирования.

Наиболее распространенными языками для разработки ИИ являются Python и R, благодаря их богатым библиотекам для анализа данных и машинного обучения (например, TensorFlow, PyTorch, scikit-learn).

б) Среды разработки.

Рекомендуется использовать интегрированные среды разработки (IDE) такие как Jupyter Notebook для прототипирования и разработки, а также PyCharm для более сложных проектов.

в) Программное обеспечение для обработки данных.

Необходимы инструменты для обработки и анализа данных, такие как Apache Spark или Наdoop, для работы с большими данными.

Информация о медицинских изделиях с использованием технологий ИИ

Медицинские изделия, разработанные с использованием технологий искусственного интеллекта, должны соответствовать ряду критических требований и стандартов. Вот основные моменты, касающиеся таких изделий:

1. Регистрационное удостоверение.

Медицинское изделие должно иметь действующее регистрационное удостоверение, подтверждающее его статус как медицинского изделия с использованием технологий ИИ. Это удостоверение гарантирует, что продукт прошел необходимые проверки и соответствует установленным стандартам безопасности и эффективности.

2. Разработка российской компанией.

Важно, чтобы медицинское изделие с использованием технологий ИИ было разработано российской компанией. Это может способствовать соблюдению местных регуляторных требований и стандартов.

3. Регистрация программного обеспечения.

Программное обеспечение, используемое в медицинском изделии, должно быть зарегистрировано в реестре Российского программного обеспечения (https://reestr.digital.gov.ru/). Это подтверждает легальность и соответствие программного обеспечения установленным требованиям.

4. Направленность на здоровье.

Медицинские изделия с использованием технологий ИИ должны быть ориентированы на выявление заболеваемости и снижение смертности от серьезных заболеваний, таких как онкологические и сердечно-сосудистые заболевания. Они должны использоваться в рамках первичной медико-санитарной помощи, включая массовые профилактические осмотры и скрининговые исследования.

Эти аспекты являются критически важными для обеспечения безопасности и эффективности медицинских изделий, использующих технологии ИИ, и их успешного внедрения в систему здравоохранения.

Анализ медицинских изделий с использованием технологий ИИ из Реестра Росздравнадзора, направленных на работу с центральным архивом медицинских изображений

N₂	Наименование	Наименование	Направление	Метрики
Регистрационного	изделия	разработчика		
удостоверения				
P3H 2021/14449	Программное	000	маммография	Чувствительность
	обеспечение	"Медицинские		= 85%
	ЦЕЛЬС® (ПО	скрининг		Специфичность =
	ЦЕЛЬС®) по ТУ	системы"		93%
	58.29.32-001-			ROC AUC = 91 %
	28139219-2019			
P3H 2022/18855	Программное		рентгенография /	Чувствительность
	обеспечение		флюорография	= 91%
	ЦЕЛЬС® (ПО		грудной	Специфичность =
	ЦЕЛЬС®) для		клетки	93%
				ROC AUC = 96 %

	ортомотического		КТ головного	Uvротритон пост
	автоматического			Чувствительность = 93%
	анализа цифровых		мозга для	
	медицинских		подтверждения и	Специфичность =
	КТизображений		локализации	90%
	головного мозга по		инсульта	ROC AUC = 98 %
	ТУ 58.29.32-003-			
	28139219-2021			
P3H 2021/14506	Программный	ООО "ПТМ	рентгенография /	Чувствительность
	модуль для анализа		флюорография	= 93%
	флюорограмм и		грудной	Специфичность =
	рентгенограмм		клетки	90%
	грудной клетки			ROC AUC = 92.2
	человека по ТУ			%
	58.29.32-001-			
	21494354-2020			
	(«Третье Мнение.			
	РГ/ФЛГ»)			
P3H 2021/14651	Программный		КТ грудной	Чувствительность
13112021/11031	модуль для анализа		клетки	= 95%
	исследований		KJICTKII	Специфичность =
	компьютерной			94%
	томографии человека			ROC AUC = 97 %
	по ТУ 58.29.32-002-			ROC AUC - 97 70
	21494354-2021			
	(«Третье			
DDII 2022/16524	Мнение. КТ»)			TT
P3H 2022/16534	Программный		маммография	Чувствительность
	модуль для анализа			= 81,7%
	маммограмм по ТУ			Специфичность =
	58.29.32-			94,5%
	003-21494354-2021			ROC AUC = 91 %
	(«Третье Мнение.			
	MMΓ»)			
P3H 2022/17406	Программа	ООО "ФБМ"	рентгенография /	Чувствительность
	автоматизированного		флюорография	= 91%
	анализа цифровых		грудной	Специфичность =
	рентгенограмм		клетки	95%
	органов грудной			ROC AUC = 95%
	клетки/флюорограмм			
	по ТУ			
	62.01.29-001-			
	96876180-2019			
L	70070100 Z017		I	

Анализ медицинских изделий с использованием технологий ИИ из Реестра Росздравнадзора, направленных на работу с электронной медицинской картой

No	Наименование	Наименование	Направление	Метрики
Регистрационного	изделия	разработчика		
удостоверения				
P3H 2020/9958	Программное	ООО "К-ЛАБ"	Оценка рисков	Точность - не
	обеспечение		развития	менее
	"Система для		сердечно-	78%
	поддержки		сосудистых	
	принятия врачебных		заболеваний и их	
	решений		осложнений	
	"WEBIOMED" по			
	ТУ			
	62.01.29-001-			
	12860736-2019			

P3H 2022/17272	Программное	000	Предсказание	Точность до 80%
	обеспечение	"СберМедИИ"	трех	
	"Система поддержки		наиболее	
	принятия врачебных		вероятных	
	решений для		диагнозов по	
	прогнозирования		МКБ из 265	
	ТОП-3 диагнозов на		групп	
	основе данных		заболеваний	
	электронной			
	истории болезни" по			
	ТУ 620129-001-			
	44544286-2021			

Сбор и управление данными

Для успешного внедрения ИИ необходимо учитывать следующие аспекты управления данными:

а) Емкость хранилища.

Необходимо обеспечить достаточное хранилище для хранения больших объемов медицинских данных, включая изображения и текстовые записи.

б) Качество данных.

Данные должны быть высококачественными и хорошо размеченными для обучения моделей ИИ. Это включает в себя проверку на наличие ошибок и неполноты.

в) Конфиденциальность данных.

Необходимо соблюдать законы о защите данных (например, GDPR) и внедрять меры по обеспечению конфиденциальности, такие как анонимизация данных.

Технологическая инфраструктура

На основе проведенного исследования, необходимая технологическая инфраструктура для реализации ИИ в здравоохранении включает:

а) Оборудование.

Серверы с мощными CPU и GPU, высокоскоростные SSD для хранения данных, сетевое оборудование для обеспечения быстрой передачи данных.

б) Программное обеспечение.

Языки программирования (Python, R), библиотеки для машинного обучения (TensorFlow, PyTorch), инструменты для обработки данных (Apache Spark).

в) Управление данными.

Системы для хранения и обработки данных, а также механизмы для обеспечения их качества и конфиденциальности.

Оценка технической зрелости и состоятельности продукта

ИТ-компании, занимающиеся разработкой сервисов на базе технологий компьютерного зрения, могут участвовать в московском эксперименте по внедрению этих технологий в систему городского здравоохранения. Заявки принимаются на сайте Центра

диагностики и телемедицины, где также указаны необходимые документы и функциональные, технические требования к заявляемым сервисам.

Если сервис соответствует всем требованиям, он проходит функциональное и калибровочное тестирование (тестирование на точность). Разработчик получает грант Правительства Москвы за каждое исследование, проанализированное в соответствии с требованиями эксперимента.

Инна Мороз, директор по развитию компании «КэременторЭйАй», отметила, что площадка московского эксперимента позволяет оценить техническую зрелость и состоятельность продукта, а также его функциональность и нужность. Центр диагностики и телемедицины проводил экспертизу их сервисов, что подтвердило эффективность разработанного искусственного интеллекта и его соответствие всем требованиям. Этот опыт стал катализатором для реализации новых планов компании.

Таким образом, участие в эксперименте не только помогает разработчикам оценить свои продукты, но и способствует их дальнейшему развитию и внедрению в медицинскую практику.

Критический анализ

Внедрение ИИ в здравоохранение сталкивается с рядом потенциальных проблем и ограничений:

а) Технические ограничения.

Необходимость в высокопроизводительном оборудовании может быть финансово затратной для многих учреждений.

б) Качество данных.

Низкое качество данных может привести к неправильным выводам и снижению эффективности ИИ.

в) Конфиденциальность и безопасность.

Обеспечение конфиденциальности данных пациентов является критически важным, и любые утечки могут иметь серьезные последствия.

г) Сопротивление изменениям.

Врачи и медицинский персонал могут быть не готовы к внедрению новых технологий, что может замедлить процесс адаптации.

Таким образом, для успешного внедрения ИИ в учреждения здравоохранения Москвы необходимо учитывать все вышеперечисленные аспекты и тщательно планировать каждый этап реализации.

Источники информации:

- 1. Применение ИИ в здравоохранении: законы, стандарты, этические проблемы https://cdto.ranepa.ru/sum-of-tech/materials/134.
- 2. Применение искусственного интеллекта в московском здравоохранении https://niioz.ru/moskovskaya-meditsina/zhurnal-moskovskaya-meditsina/intervyu/primenenie-iskusstvennogo-intellekta-v-moskovskom-zdravookhranenii/.

- 3. Московские учёные представили обновленные методические рекомендации для технических и клинических испытаний систем ИИ https://mosgorzdrav.ru/ru-RU/news/default/card/7556.html.
- 4. «Искусственный интеллект это помощник»: информационные технологии на службе у врачей https://www.mos.ru/news/item/84702073/.
- 5. О требованиях к внедрении искусственного интеллекта в здравоохранение https://portal.egisz.rosminzdrav.ru/files/26.05.2023 Каспий Матвиенко.pdf.
- 6. Новости в мире медицинских технологий https://www.medicaldevice-network.com/news/.
- 7. Искусственный интеллект для здравоохранения https://www.sbermed.ai/.