# Computational Intelligence & Adversarial Machine Learning:

Project #3



## **Project #3**

(Due 10/20/2019)

#### Project #3

- Given the dataset, "Project3\_Dataset\_v1.txt", create a second dataset where
  any training instance with a desired output > 0.5 is relabeled as 1.0 and any
  training instance that has a desired output <= 0.5 is relabeled as -1.0. Name
  this second dataset, Project3\_Dataset\_v2.txt."</li>
- Given the two datasets implement the following and record the statistics presented for Homework #2 for (the first dataset is for Tasks 1, 2, 4 and the second dataset is to be used for Task 2:
  - General Regression Networks (GRNNs)
    - a. Evolve  $\sigma$  using a Steady-State Genetic Algorithm (SSGA)
    - b. Evolve both  $\sigma$  and whether a training instances is within the GRNN similar to EGRNN-I
  - 2. Radial Basis Function Neural Networks (RBFNNs)
    - a. A RBFNN without Kohonen Unsupervised Learning and Backpropagation
    - b. A RBFNN with Kohonen Unsupervised Learning and Backpropagation
  - 3. Support Vector Machines (SVMs)
    - a. Linear SVM (using Scikit-Learn, 2<sup>nd</sup> Dataset Only)
    - b. Radial Basis SVM (using Scikit-Learn, 2<sup>nd</sup> Dataset Only)
  - 4. Feedforward Neural Network (Scikit-Learn, with 1, 2, 4 Hidden Layers)



### Project #3

(Due 10/20/2019)

#### Project #3 (cont.)

- Write a paper using IEEE format documenting your work:
  - I. Title
  - II. Authors
  - III. Abstract
  - IV. Introduction
  - V. Methodology
  - VI. Experiment
  - VII. Results
  - VIII. Breakdown of the Work
  - IX. References



# Project #3

(Due 10/20/2019)

#### Project #3 (cont.)

 The points for this project will be broken down as follows:

| <ul><li>Program/Demo</li></ul> | 60pts |
|--------------------------------|-------|
| • GRNNs                        | 15pts |
| • RBFNNs                       | 15pts |
| <ul> <li>SVMs</li> </ul>       | 15pts |

• FFNNs 15pts

Paper40pts

10pts Extra Credit if you can determine which of the population sizes was used to generate the dataset (3, 12, 25, 50, 100) given a mutation amount of 0.01.



# Have a Great Day!!!

