MATH2033 Mathematical Analysis

Integrability of bounded function

Suppose that we would like to find the area of the region (i.e. shaded region below) bounded by a bounded function y = f(x) and x-axis over the interval [a, b].

Since the region has irregular shape, one can only estimate the area of the region through *estimation*.

• To do so, we first divide the region into a number of small parts by partitioning the interval [a,b] into n subintervals (denoted by $[a,x_1]$, $[x_1,x_2]$,..., $[x_{n-1},b]$). Here, the set of nodes $\{a,x_1,x_2,...,x_{n-1},b\}$ is called *partition* of [a,b] and is denoted by \mathcal{P} .

(*Note: In general, a partition of [a,b] is defined as a <u>finite</u> set of points $\{x_0,x_1,\ldots,x_{n-1},x_n\}$ which $a=x_0< x_1< x_2< \cdots < x_n=b$.

2 MATH2033 Mathematical Analysis

- Given the partition \mathcal{P} , we estimate the area of the region by finding its *upper* bound and *lower bound*.
 - ✓ For every subinterval $[x_{k-1}, x_k]$ (where k = 1, 2, ..., n), we let $M_k = \sup\{f(x) | x \in [x_{k-1}, x_k]\}$ be the "maximum value" of the function over the subinterval, then the upper bound of the area of the region is given by

$$U(\mathcal{P}, f) = \sum_{k=1}^{n} M_k (x_k - x_{k-1}).$$

✓ Similarly, we let $m_k = \inf\{f(x)|x \in [x_{k-1},x_k]\}$ be the "minimum value" of the function over the subinterval $[x_{k-1},x_k]$, then the lower bound of the area of the region is given by

$$L(\mathcal{P}, f) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

Example 1

We let $f(x) = x^2$ over the interval [0,1] and consider the partition $\mathcal{P} = \left[0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right]$. Compute $U(\mathcal{P}, f)$ and $L(\mathcal{P}, f)$.

⊗Solution

Since $f(x) = x^2$ is increasing over [0,1], we have

$$M_k = \sup\left\{x^2 | x \in \left[\frac{k-1}{n}, \frac{k}{n}\right]\right\} = \left(\frac{k}{n}\right)^2 \quad and \quad m_k = \inf\left\{x^2 | x \in \left[\frac{k-1}{n}, \frac{k}{n}\right]\right\} = \left(\frac{k-1}{n}\right)^2.$$

Thus the upper sum and lower sum are given by

$$U(\mathcal{P},f) = \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2} \left(\frac{k}{n} - \frac{k-1}{n}\right) = \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} = \frac{1}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6}\right) = \frac{(n+1)(2n+1)}{6n^{2}}.$$

$$L(\mathcal{P}, f) = \sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^{2} \left(\frac{k}{n} - \frac{k-1}{n}\right) = \frac{1}{n^{3}} \sum_{k=0}^{n-1} k^{2} = \frac{1}{n^{3}} \left(\frac{(n-1)(n)(2n-1)}{6}\right)$$
$$= \frac{(n-1)(2n-1)}{6n^{2}}.$$

As an example, we take n=100. Then the area of the region A can be estimated as

$$0.32835 \stackrel{n=100}{=} L(\mathcal{P}, f) \le A \le U(\mathcal{P}, f) \stackrel{n=100}{=} 0.33835.$$

Obtaining a better estimation – Refinement of partition

From Example 1 (with n=100), one can improve the estimation by further dividing each subinterval into 100 equal parts so that new partition will be $P^* =$

$$\left\{0, \frac{1}{10000}, \frac{2}{1000}, \frac{3}{10000}, \dots, \frac{9999}{10000}, 1\right\} \supseteq \left\{0, \frac{1}{100}, \frac{2}{100}, \dots, \frac{9999}{10000}, 1\right\}$$
. Then the corresponding upper sum and lower sum are computed as

$$U(\mathcal{P}^*, f) = \sum_{k=1}^{10000} \left(\frac{k}{10000}\right)^2 \left(\frac{k}{10000} - \frac{k-1}{10000}\right) = \dots = 0.333383 \text{ and}$$

$$L(\mathcal{P}^*, f) = \sum_{k=1}^{10000} \left(\frac{k-1}{10000}\right)^2 \left(\frac{k}{10000} - \frac{k-1}{10000}\right) = 0.333283.$$

Then the new prediction will be

 $(0.32835 <) 0.333283 = L(\mathcal{P}, f) \le A \le U(\mathcal{P}^*, f) = 0.333383 (< 0.33835)$

which is better than the previous estimation.

So the new partition \mathcal{P}^* is called *refinement* of partition P.

Definition (Refinement)

Given a partition \mathcal{P} of [a,b], a refinement \mathcal{P}^* is a partitional which $\mathcal{P}^*\supseteq P$

As inspired from the example, we expect the refinement should yield a better estimation on the area of the region.

Theorem 1

We let $\mathcal{P} = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b]. Then for any refinement $\mathcal{P}^* \supseteq \mathcal{P}$, we have $L(\mathcal{P}, f) \leq L(\mathcal{P}^*, f)$ and $U(\mathcal{P}^*, f) \leq U(\mathcal{P}, f)$

⊗Solution

We first prove the case when $\mathcal{P}^* = \mathcal{P} \cup \{c\}$ (i.e. we place one more "cutting point" in the partition), where $c \neq x_i$ for any i = 0,1, ..., n. We let $x_{k-1} < c < x_k$ for some k = 1,2, ..., n.

Note that $w_1 = \inf\{f(x) | x \in [x_{k-1}, c]\} \ge m_k = \inf\{f(x) | x \in [x_{k-1}, x_k]\}$ and $w_2 = \inf\{f(x) | x \in [c, x_k]\} \ge m_k = \inf\{f(x) | x \in [x_{k-1}, x_k]\}$. Then we deduce that

$$L(\mathcal{P},f) - L(\mathcal{P}^*,f)$$

$$= m_k(x_k - x_{k-1}) - w_1(c - x_{k-1}) - w_2(x_k - c)$$

$$\leq m_k(x_k - x_{k-1}) - m_k(c - x_{k-1}) - m_k(x_k - c) = 0$$

So we deduce that $L(\mathcal{P}, f) \leq L(\mathcal{P}^*, f)$. $U(\mathcal{P}^*, f) \leq U(\mathcal{P}, f)$ can be proved similarly.

For the general case when \mathcal{P} has n more cutting point, one can deduce the theorem by using the above result n times.

Obtaining the best estimate – Upper integral and lower integral

By considering various possible partition \mathcal{P} , we obtain a set of lower sum $L(\mathcal{P}, f)$ and upper sum $U(\mathcal{P}, f)$. Using these estimates, one can define

$$\overline{\int_{a}^{b}} f(x)dx = \inf_{\mathcal{P}} \{U(\mathcal{P}, f)\} \quad and \quad \underline{\int_{a}^{b}} f(x)dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\}$$

be the *upper integral* and *lower integral* of f(x) which represents the *best estimate* on the upper bound and lower bound of the are of the region (or the integral $\int_a^b f(x)dx$).

If $\overline{\int_a^b} f(x)dx = \underline{\int_a^b} f(x)dx = L$, one can deduce that the area of the region is L so that $\int_a^b f(x)dx = L$. Then we say f(x) is *Riemann integrable* over [a,b].

Definition

We let $f:[a,b] \to \mathbb{R}$ be a *bounded* function. We say f is Riemann integrable if and only if $\overline{\int_a^b} f(x)dx = \int_a^b f(x)dx = L$. We denote the common value L by $L = \int_a^b f(x)dx$.

Remark: If f(x) is bounded (i.e. $m \le f(x) \le M$), this implies that all of $L(\mathcal{P}, f)$, $U(\mathcal{P}, f)$, $\overline{\int_a^b} f(x) dx$ and $\underline{\int_a^b} f(x) dx$ exist.

Example 2

Show that $f(x) = x^2$ in Example 1 is integrable over [0,1].

⊗Solution

We consider the partition $\mathcal{P}_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$ for $n \in \mathbb{N}$.

Using the result in Example 1, the upper sum and lower sum are given by

$$L(\mathcal{P}_n, f) = \frac{(n-1)(2n-1)}{6n^2}, \qquad U(\mathcal{P}_n, f) = \frac{(n+1)(2n+1)}{6n^2}.$$

This implies that

$$\frac{(n-1)(2n-1)}{6n^2} = L(\mathcal{P}_n, f) \le \underline{\int_0^1 f(x)dx} \le \overline{\int_0^1 f(x)dx} \le U(\mathcal{P}_n, f) = \frac{(n+1)(2n+1)}{6n^2}$$

By taking
$$n \to \infty$$
, we have $\lim_{n \to \infty} \frac{(n-1)(2n-1)}{6n^2} = \lim_{n \to \infty} \frac{2n^2 - 3n + 1}{6n^2} = \lim_{n \to \infty} \frac{2 - \frac{3}{n} + \frac{1}{n^2}}{6} = \frac{1}{3}$ and $\lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} = \dots = \frac{1}{3}$.

So it follows from sandwich theorem that $\underline{\int_0^1 f(x)dx} \leq \overline{\int_0^1 f(x)dx} = \frac{1}{3}$. Hence, f(x) is integrable on [0,1].

Example 3

We consider a function $f:[a,b] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & if \ x \in [a, b] \cap \mathbb{Q} \\ 0 & if \ x \in [a, b] \setminus \mathbb{Q} \end{cases}.$$

Show that f(x) is not integrable on [a, b].

Solution

We consider a partition $\mathcal{P} = \{x_0, x_1, x_2, ..., x_n\}$, where $x_0 = a$ and $x_n = b$.

For each subinterval $[x_{k-1}, x_k]$, we note the followings:

- By the density of rational number, there exists $q \in \mathbb{Q}$ such that $x_{k-1} < q < x_k$ and f(q) = 1.
- By the density of irrational number, there exists $r \in \mathbb{R} \setminus \mathbb{Q}$ such that $x_{k-1} < r < x_k$ and f(r) = 0.

So we have $M_k = \sup\{f(x)|x \in [x_{k-1},x_k]\} = 1$ and $m_k = \inf\{f(x)|x \in [x_{k-1},x_k]\} = 0$. This implies that

$$U(\mathcal{P},f) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = 1 \sum_{k=1}^{n} (x_k - x_{k-1}) = b - a, \ L(\mathcal{P},f) = \sum_{k=1}^{n} m_k(x_k - x_{k-1}) = 0$$

This implies that $\overline{\int_0^1} f(x) dx = 1$ and $\underline{\int_0^1} f(x) dx = 0$.

As $\overline{\int_0^1} f(x)dx \neq \underline{\int_0^1} f(x)dx$, it follows that f(x) is not integrable on [a,b].

9 MATH2033 Mathematical Analysis

A shortcut of verifying integrability – Integral criterion

Practically, it is not quite efficient to verify the integrability of a function by computing the upper integral $\overline{\int_a^b} f(x)dx$ and lower integral $\underline{\int_a^b} f(x)dx$ because one needs to consider all possible partitions over [a,b].

As inspired from the Example 2, it appears that it is sufficient to find a partition \mathcal{P} which the upper sum $U(\mathcal{P}, f)$ and lower sum $L(\mathcal{P}, f)$ are sufficiently close in the sense that $U(\mathcal{P}, f) - L(\mathcal{P}, f)$ is very small. If such partition exists, this would imply that the upper integral and lower integral are also very close and eventually "equal".

The following theorem confirms our conjecture:

Theorem 2 (Integral criterion)

A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if and only if for any $\varepsilon > 0$, there exists a partition \mathcal{P} of [a,b] such that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon.$$

Proof of Theorem 2

"⇒" part

Since the function is integrable, we have $\overline{\int_a^b} f(x)dx = \underline{\int_a^b} f(x)dx = K$.

• Note that $\overline{\int_a^b} f(x) dx = \inf_{\mathcal{P}} \{U(\mathcal{P}, f)\} = K$. Then for any $\varepsilon > 0$, there exists a partition \mathcal{P}_1 such that

$$U(\mathcal{P}_1, f) < K + \frac{\varepsilon}{2}.$$

• Since $\int_a^b f(x)dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} = K$. Then there exists a partition \mathcal{P}_2 such that

$$L(\mathcal{P}_2, f) > K - \frac{\varepsilon}{2}.$$

By taking $\mathcal{P}^* = \mathcal{P}_1 \cup \mathcal{P}_2$ (which can be seen as a refinement to both \mathcal{P}_1 and \mathcal{P}_2), it follows that $U(\mathcal{P}_1, f) \geq U(\mathcal{P}^*, f)$ and $L(\mathcal{P}_2, f) \leq L(\mathcal{P}^*, f)$. Hence, we have

$$U(\mathcal{P}^*,f) - L(\mathcal{P}^*,f) \le U(\mathcal{P}_1,f) - L(\mathcal{P}_2,f) < K + \frac{\varepsilon}{2} - \left(K - \frac{\varepsilon}{2}\right) = \varepsilon.$$

"∈" part

For any $\varepsilon > 0$, there exists \mathcal{P} such that $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$.

Since $\overline{\int_a^b} f(x) dx = \inf_{\mathcal{P}} \{U(\mathcal{P}, f)\} \leq U(\mathcal{P}, f) \text{ and } \underline{\int_a^b} f(x) dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \geq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \sup_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P}, f)\} \leq L(\mathcal{P}, f), \text{ then } dx = \lim_{\mathcal{P}} \{L(\mathcal{P},$

$$0 \le \overline{\int_a^b} f(x) dx - \underline{\int_a^b} f(x) dx \le U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon.$$

It follows from infinitesimal property that $\overline{\int_a^b} f(x)dx - \underline{\int_a^b} f(x)dx = 0$. So $\overline{\int_a^b} f(x)dx = \int_a^b f(x)dx$ and f(x) is Riemann integrable.

11 MATH2033 Mathematical Analysis

Example 4

Show that $f(x) = \sin x$ is integrable over $\left[0, \frac{\pi}{2}\right]$.

Solution

We consider the partition $\mathcal{P}=\{x_0,x_1,\ldots,x_n\}=\left\{0,\frac{\pi}{2n},\frac{2\pi}{2n},\ldots,\frac{n\pi}{2n}\right\}$, where $x_k=\frac{k\pi}{2n}$. Since $\sin x$ is increasing over $\left[0,\frac{\pi}{2}\right]$, so that $M_k=\sup\{f(x)|x\in[x_{k-1},x_k]\}=\sin\frac{k\pi}{2n}$ and $m_k=\sup\{f(x)|x\in[x_{k-1},x_k]\}=\sin\frac{(k-1)\pi}{2n}$. Then the upper sum and lower sum are given by

$$U(\mathcal{P},f) = \sum_{k=1}^{n} \underbrace{\sin \frac{k\pi}{2n}}_{M_k} \times \underbrace{\left(\frac{k\pi}{2n} - \frac{(k-1)\pi}{2n}\right)}_{x_k - x_{k-1}} = \frac{\pi}{2n} \sum_{k=1}^{n} \sin \frac{k\pi}{2n} \quad and \quad L(\mathcal{P},f) = \frac{\pi}{2n} \sum_{k=1}^{n} \underbrace{\sin \frac{(k-1)\pi}{2n}}_{m_k}$$

Using the mean value theorem, we deduce that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) = \frac{\pi}{2n} \sum_{k=1}^{n} \left(\sin \frac{k\pi}{2n} - \sin \frac{(k-1)\pi}{2n} \right) = \frac{\pi}{2n} \sum_{k=1}^{n} (\cos c_k) \left(\frac{k\pi}{2n} - \frac{(k-1)\pi}{2n} \right)$$
$$< \frac{\pi}{2n} \sum_{k=1}^{n} \frac{\pi}{2n} = \left(\frac{\pi}{2n} \right)^2 (n) = \frac{\pi^2}{4n}.$$

By Archimedean property, there exists $K \in \mathbb{N}$ such that $K > \frac{\pi^2}{4\varepsilon} \Leftrightarrow \frac{\pi^2}{4K} < \varepsilon$. By taking n = K, we have $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \frac{\pi^2}{4K} < \varepsilon$. So f(x) is integrable.

12 MATH2033 Mathematical Analysis

Example 5 (Integrability of discontinuous functions)

Show that the function defined on [a, b] by

$$f(x) = \begin{cases} 2 & if \ x = x_1, x_2, \dots, x_n \\ 1 & otherwise \end{cases}$$

is Riemann integrable. Here, $a < x_1 < x_2 < \cdots < x_n < b$.

⊗ Solution

Since the function has discontinuities (jumps) at points x_1, x_2, \dots, x_n , we consider this partition

$$\mathcal{P} = \{a, x_1 - \delta, x_1 + \delta, x_2 - \delta, x_2 + \delta, \dots, x_n - \delta, x_n + \delta, b\}$$

Then the corresponding upper bound and lower bound are given by

$$U(\mathcal{P}, f) = (x_1 - \delta - a)(1) + \sum_{k=2}^{n} (1)(x_k - \delta - x_{k-1} - \delta) + n(2\delta)(2) + (b - x_n - \delta)(1)$$

$$L(\mathcal{P}, f) = (x_1 - \delta - a)(1) + \sum_{k=2}^{n} (1)(x_k - \delta - x_{k-1} - \delta) + n(2\delta)(1) + (b - x_n - \delta)(1)$$

This implies that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) = 2n\delta$$

For any $\varepsilon>0$, by picking $\delta<\frac{\varepsilon}{2n}$. we get $|U(P,f)-L(P,f)|=|2n\delta|<\varepsilon$

Hence f(x) is Riemann Integrable.

13 MATH2033 Mathematical Analysis

Some properties of integrability

In this section, we shall present some basic properties related to integrability. To facilitate the presentation, we let

$$\sup_{x \in [a,b]} f(x) = \sup\{f(x) | x \in [a,b]\}, \quad \inf_{x \in [a,b]} f(x) = \inf\{f(x) | x \in [a,b]\}$$

Property 1 (Continuous function is integrable)

We let $f:[a,b] \to \mathbb{R}$ be a continuous function, then f(x) is Riemann integrable over [a,b].

In order to prove the property, one needs the concept of <u>uniform continuity</u>:

- We say f(x) is uniform continuous on [a,b] if and only if for any $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ for any x,y satisfying $|x-y|<\delta$

One can prove that any continuous function f over [a, b] is also uniform continuous on [a, b].

- To see this, suppose that f is *not* uniform continuous, it follows that there exists $\varepsilon_0 > 0$ such that for any $\delta > 0$, there exists x, y such that $|x y| < \delta$ and $|f(x) f(y)| \ge \varepsilon_0$.
- We pick $\delta = \frac{1}{n}$ for any $n \in \mathbb{N}$, there exists a pair x_n , y_n satisfying

$$|x_n - y_n| < \frac{1}{n}$$
 and $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

- Since $x_n, y_n \in [a,b]$ and $\{x_n\}, \{y_n\}$ are bounded, it follows from Bolzano-Weierstrass theorem, there exists a subsequence $\{x_{n_k}\}$ such that $\lim_{k \to \infty} x_{n_k} = w \in [a,b]$.

- Note that
$$\left|x_{n_k}-y_{n_k}\right|<\frac{1}{n_k}\Rightarrow\underbrace{x_{n_k}-\frac{1}{n_k}}_{\to w\ as\ k\to\infty}< y_{n_k}<\underbrace{x_{n_k}+\frac{1}{n_k}}_{\to w\ as\ k\to\infty}$$
, it follows from sandwich theorem that $\lim_{k\to\infty}y_{n_k}=w$.

- Since f(x) is continuous at $x = w \in [a, b]$, it follows that

$$\lim_{k\to\infty} |f(x_n) - f(y_n)| \ge \varepsilon_0 \Rightarrow \underbrace{|f(w) - f(w)|}_{=0} \ge \varepsilon_0.$$

This leads to the contradiction.

Hence, we conclude that f(x) is also uniformly continuous on [a, b].

Proof of property 1

Since f(x) is uniformly continuous on [a,b], then for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \frac{\varepsilon}{b-a}$$
 for $|x - y| < \delta$.

We choose a positive integer N such that $N > \frac{b-a}{\delta} \Rightarrow \frac{b-a}{N} < \delta$ and consider the partition

$$\mathcal{P} = \{a, x_1, x_2, \dots, x_{N-1}, b\}, \text{ where } x_k = a + \frac{k(b-a)}{N}.$$

We consider the interval $[x_{k-1}, x_k]$. By extreme value theorem, there are $x_L, x_U \in [x_{k-1}, x_k]$ such that $\sup_{x \in [x_{k-1}, x_k]} f(x) = f(x_U)$ and $\inf_{x \in [x_{k-1}, x_k]} f(x) = f(x_L)$.

Since $|x_U - x_L| \le |x_k - x_{k-1}| = \frac{b-a}{N}$ and f(x) is uniformly continuous, it follows that

$$\sup_{x \in [x_{k-1}, x_k]} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x) = f(x_U) - f(x_L) < \frac{\varepsilon}{b - a}.$$

Then it follows that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) < \frac{\varepsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{\varepsilon}{b-a} (b-a)$$

$$= \varepsilon.$$

So we conclude that f is integrable.

Property 2 (Integrability of monotone function)

We let f be a bounded function on [a, b]. Suppose that f(x) is monotone, then f(x) is integrable over [a, b].

Proof of theorem 2

To facilitate the analysis, we shall consider the case when f(x) is monotonic increasing. We consider the partition

$$\mathcal{P} = \{x_0, x_1, ..., x_n\}, \quad where \ x_k = a + \frac{b-a}{n}.$$

(*We will determine the value of n later.)

Over the interval $[x_{k-1}, x_k]$, we note that

$$\sup_{x \in [x_{k-1}, x_k]} f(x) = f(x_k) \quad and \quad \inf_{x \in [x_{k-1}, x_k]} f(x) = f(x_{k-1}).$$

It follows that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) = \sum_{k=1}^{n} \underbrace{\underbrace{[f(x_k) - f(x_{k-1})]}_{x \in [x_{k-1}, x_k]} f(x)}_{f(x) - \underbrace{\inf_{inf} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x)}_{f(x)}$$

$$= \frac{b - a}{n} \sum_{k=1}^{n} [f(x_k) - f(x_{k-1})] = \frac{b - a}{n} [f(x_n) - f(x_1)]$$

$$= \frac{b - a}{n} (f(b) - f(a)).$$

By Archimedean property, we choose a positive integer n such that

$$n > \frac{b-a}{\varepsilon(f(b)-f(a))} \Leftrightarrow \frac{b-a}{n} (f(b)-f(a)) < \varepsilon.$$

It follows that $U(\mathcal{P}, f) - L(\mathcal{P}, f) = \frac{b-a}{n} \big(f(b) - f(a) \big) < \varepsilon$. This proves that f(x) is integrable over [a, b].

Property 3 (Integrability of composite function)

We let f be a bounded function on [a,b] and is integrable. We let g be a continuous function on [c,d] (where $[c,d]\supseteq f([a,b])$). Then g(f(x)) is also integrable on [a,b]

Remark of Example 3

- If we take g(x) = |x| (which is continuous over \mathbb{R}), then it follows that |f| is integrable.
- If we take $g(x) = x^n$ (where $n \in \mathbb{N}$), then we have f^n is also integrable.

Proof of property 3 (Quite technical)

For any $\varepsilon > 0$,

Step 1: Some preparations

- Since g(x) is continuous over [c,d], it follows from extreme value theorem that g(x) is bounded and we write $-K \le g(x) \le K$ for some positive number K.
- As g(x) is also uniform continuous over [c,d], then there exists $\delta>0$ such that

$$|g(x) - g(y)| < \varepsilon' = \frac{\varepsilon}{b - a + 2K}$$
 for $|x - y| < \delta$.

For technical purpose, we choose δ such that $\delta < \frac{\varepsilon}{b-a+2K}$.

• Since f is integrable on [a,b], then there exists a partition $\mathcal{P}=\{x_0,x_1,\dots,x_n\}$ such that $U(f,\mathcal{P})-L(f,\mathcal{P})<\varepsilon''=\delta^2.$

Step 2: Argue that $U(g(f(x)), \mathcal{P}) - L(g(f(x), \mathcal{P}) < \varepsilon$ (so that g(f(x)) will be integrable by integral criterion)

We let $\widetilde{M}_k = \sup\{g(f(x)): x \in [x_{k-1}, x_k]\}$ and $\widetilde{m}_k = \inf\{g(f(x)): x \in [x_{k-1}, x_k]\}$, Then

$$U(g(f(x)), \mathcal{P}) - L(g(f(x), \mathcal{P})) = \sum_{k=1}^{n} (\widetilde{M}_k - \widetilde{m}_k)(x_k - x_{k-1}) \dots (*)$$

We let $M_k = \sup\{f(x): x \in [x_{k-1}, x_k]\}$ and $m_k = \inf\{f(x): x \in [x_{k-1}, x_k]\}$

Note that the magnitude of $\widetilde{M}_k-\widetilde{m}_k$ depends on the difference M_k-m_k . So we let

$$A = \{k | M_k - m_k < \delta\} \text{ and } B = \{k | M_k - m_k \ge \delta\}.$$

Then

$$U(g(f(x)), \mathcal{P}) - L(g(f(x), \mathcal{P})) = \sum_{k=1}^{n} (\widetilde{M}_{k} - \widetilde{m}_{k})(x_{k} - x_{k-1})$$

$$= \sum_{k \in A} \underbrace{(\widetilde{M}_{k} - \widetilde{m}_{k})}_{< \frac{\varepsilon}{b - a + 2K}} (x_{k} - x_{k-1}) + \sum_{k \in B} \underbrace{(\widetilde{M}_{k} - \widetilde{m}_{k})}_{< 2K} (x_{k} - x_{k-1})$$

$$< \frac{\varepsilon}{b - a + 2K} \sum_{k \in A} (x_{k} - x_{k-1}) + 2K \sum_{k \in B} (x_{k} - x_{k-1})$$

19 MATH2033 Mathematical Analysis

$$< \frac{\varepsilon}{b-a+2K}(b-a) + \frac{2K}{\delta} \sum_{k \in B} \underbrace{(M_k - m_k)}_{as \ M_k - m_k \ge \delta} (x_k - x_{k-1})$$

$$= \frac{\varepsilon}{b-a+2K}(b-a) + \frac{2K}{\delta} \Big(U(f,\mathcal{P}) - L(f,\mathcal{P}) \Big)$$

$$< \frac{\varepsilon}{b-a+2K}(b-a) + \frac{2K}{\delta} \delta^2 \stackrel{\delta < \varepsilon'}{\ge} \frac{\varepsilon}{b-a+2K} (b-a) + \frac{2K}{\delta} \Big(\frac{\varepsilon}{b-a+2K} \Big) = \varepsilon.$$

So g(f(x)) is integrable by integral criterion.

Property 4

We let $f, g: [a, b] \to \mathbb{R}$ be two bounded function. Suppose that both functions are integrable, then cf, f+g, f-g and fg are integrable, where c is some constant.

Proof of property 4

We first prove the integrability of cf.

- When c=0, we have cf=0 which is clearly integrable.
- When c > 0
 - Since f is integrable, then for any $\varepsilon > 0$, there exists a partition $\mathcal P$ such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \frac{\varepsilon}{|c|}$$

- Since $\sup_{x \in [x_{k-1}, x_k]} cf(x) = c \sup_{x \in [x_{k-1}, x_k]} f(x)$ and $\inf_{x \in [x_{k-1}, x_k]} cf(x) = c \inf_{x \in [x_{k-1}, x_k]} f(x)$ for c > 0, it follows that

$$U(cf, \mathcal{P}) = cU(f, \mathcal{P})$$
 and $L(cf, \mathcal{P}) = cL(f, \mathcal{P})$

- So we deduce that

$$U(cf,\mathcal{P}) - L(cf,\mathcal{P}) = c\left(U(f,\mathcal{P}) - L(f,\mathcal{P})\right) < c\frac{\varepsilon}{|c|} \stackrel{c>0}{=} \varepsilon$$

- When *c* < 0
 - Since f is integrable, then for any $\varepsilon > 0$, there exists a partition $\mathcal P$ such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \frac{\varepsilon}{|c|}$$

- Since $\sup_{x \in [x_{k-1}, x_k]} cf(x) = c \inf_{x \in [x_{k-1}, x_k]} f(x)$ and $\inf_{x \in [x_{k-1}, x_k]} cf(x) = c \sup_{x \in [x_{k-1}, x_k]} f(x)$ for c < 0, it follows that

$$U(cf,\mathcal{P}) = cL(f,\mathcal{P})$$
 and $L(cf,\mathcal{P}) = cU(f,\mathcal{P})$

So we deduce that

$$U(cf,\mathcal{P}) - L(cf,\mathcal{P}) = c\left(L(f,\mathcal{P}) - U(f,\mathcal{P})\right) < (-c)\frac{\varepsilon}{|c|} \stackrel{c>0}{=} \varepsilon$$

So combining all cases, we deduce that cf is integrable.

Next, we first prove the integrability of f + g.

• For any partition $\mathcal{P} = \{x_0, x_1, ..., x_n\}$, we note that

$$\sup_{x \in [x_{k-1}, x_k]} [f(x) + g(x)] \le \sup_{x \in [x_{k-1}, x_k]} f(x) + \sup_{x \in [x_{k-1}, x_k]} g(x) \text{ and}$$

$$\inf_{x \in [x_{k-1}, x_k]} [f(x) + g(x)] \ge \inf_{x \in [x_{k-1}, x_k]} f(x) + \inf_{x \in [x_{k-1}, x_k]} g(x)$$

It follows that (why?)

$$U(f+g,\mathcal{P}) \leq U(f,\mathcal{P}) + U(g,\mathcal{P})$$
 and $L(f+g,\mathcal{P}) \geq L(f,\mathcal{P}) + L(g,\mathcal{P})$

• Note that f, g are integrable on [a,b]. Then for any $\varepsilon>0$, there exists partitions \mathcal{P}_1 and \mathcal{P}_2 such that

$$U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1) < \frac{\varepsilon}{2}$$
 and $U(g,\mathcal{P}_2) - L(g,\mathcal{P}_2) < \frac{\varepsilon}{2}$.

• We consider the partition $\mathcal{P}^*=\mathcal{P}_1\cup\mathcal{P}_2$ (which is the refinement of both \mathcal{P}_1 and \mathcal{P}_2 , it follows that

$$U(f+g,\mathcal{P}^*) - L(f+g,\mathcal{P}^*) \le \left(U(f,\mathcal{P}^*) + U(g,\mathcal{P}^*)\right) - \left(L(f,\mathcal{P}^*) + L(g,\mathcal{P}^*)\right)$$

$$= \left(U(f,\mathcal{P}^*) - L(f,\mathcal{P}^*)\right) + \left(U(g,\mathcal{P}^*) - L(g,\mathcal{P}^*)\right)$$

$$\mathcal{P}^* \text{ is refinement}$$

$$\mathcal{P}^* \text{ is refinement}$$

So we conclude that f + g is integrable.

Since f - g = f + (-1)g, it follows from the above result that f - g is integrable.

22 MATH2033 Mathematical Analysis

To prove the product fg is integrable, we note that

- f^2 is integrable for any integrable function f (by remark of property 3)
- The product fg can be written as

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2].$$

• Since f, g are integrable, it follows that f+g and f-g are integrable. Then it implies that both $(f+g)^2$, $(f-g)^2$ are integrable. Therefore, it follows that fg is also integrable.

Property 5

We let $f: [a, b] \to \mathbb{R}$ be a function and let $c \in (a, b)$. Then f is Riemann integrable on [a, b] if and only if f is Riemann integrable on both [a, c] and [c, b]

Proof of property 5

(" \Rightarrow " part) If f is Riemann integrable, then for any $\varepsilon>0$, there exists a partition $\mathcal P$ on [a,b] such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon$$
.

To prove the integrability on [a, c], we take $\mathcal{P}_1 = [a, c] \cap (\mathcal{P} \cup \{c\})$, then it follows that

$$U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1) \le U(f,\mathcal{P} \cup \{c\}) - L(f,\mathcal{P} \cup \{c\}) \le U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon.$$

So f is integrable on [a, c]. Similarly, one can show that f is integrable on [c, b]

23 MATH2033 Mathematical Analysis

$$(" \Leftarrow " part).$$

Given that f is Riemann integrable on [a, c] and [c, b], for any $\varepsilon > 0$, there exists a partition \mathcal{P}_1 on [a, c] and a partition \mathcal{P}_2 on [c, b] such that

$$\underbrace{U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1)}_{on\ [a,c]} < \frac{\varepsilon}{2}, \qquad \underbrace{U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}_{on\ [c,b]} < \frac{\varepsilon}{2}$$

We pick $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, then we have

$$\underbrace{U(f,\mathcal{P}) - L(f,\mathcal{P})}_{on\ [a,b]} = \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_1 \\ = U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{\sum_{\substack{[x_{k-1},x_k] \subseteq \mathcal{P}_2 \\ = U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}} (M_k - m_k)(x_k - x_{k-1}) + \underbrace{$$

So f is also integrable on [a, b].

Property 6 (Integrability of discontinuous function)

We let $f: [a, b] \to \mathbb{R}$ be a bounded function. Suppose that f is discontinuous at finitely many points $x_1, x_2, ..., x_n \in [a, b]$, then f is Riemann integrable on (a, b).

Proof of property 6

We shall consider the case when f has one discontinuity at x = c.

Since f has discontinuity at x=c, we shall construct the Partition by first considering the region near x=c.

- Since f is bounded, we have $|f(x)| \le K$ for all $x \in [a, b]$.
- For any $\varepsilon > 0$, we pick an interval $\left[c \frac{\varepsilon}{6K}, c + \frac{\varepsilon}{6K}\right]$ so that the difference of upper sum and lower sum over this interval is at most $\left(K (-K)\right)\left(c + \frac{\varepsilon}{6K} \left(c \frac{\varepsilon}{6K}\right)\right) = \frac{\varepsilon}{3}$.

Since f is integrable over [a,b] and hence integrable on both $\left[a,c-\frac{\varepsilon}{6K}\right]$ and $\left[c+\frac{\varepsilon}{6K},b\right]$, there exists partition \mathcal{P}_1 on $\left[a,c-\frac{\varepsilon}{6K}\right]$ and partition \mathcal{P}_2 on $\left[c+\frac{\varepsilon}{6K},b\right]$ such that

$$\underbrace{U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1)}_{on\left[a,c-\frac{\varepsilon}{6K}\right]} < \frac{\varepsilon}{3}, \qquad \underbrace{U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2)}_{on\left[c+\frac{\varepsilon}{6K},b\right]} < \frac{\varepsilon}{3}.$$

So we consider the partition $\mathcal{P}=\mathcal{P}_1\cup\underbrace{\left\{c-\frac{\varepsilon}{6K},c+\frac{\varepsilon}{6K}\right\}}_{\mathcal{P}_3}\cup\mathcal{P}_2$, then we deduce that

$$U(f,\mathcal{P})-L(f,\mathcal{P})<\underbrace{\left[U(f,\mathcal{P}_1)-L(f,\mathcal{P}_1)\right]}_{\widehat{\mathcal{P}}_1}+\underbrace{\frac{\varepsilon}{3}}_{\widehat{\mathcal{P}}_3}+\underbrace{\left[U(f,\mathcal{P}_2)-L(f,\mathcal{P}_2)\right]}_{\widehat{\mathcal{P}}_2}<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon.$$

So the proof is complete. The general case when f has n discontinuities can be proved in a similar fashion.

Properties of integral

In this section, we shall present the derivation of some computational formula of integral which we have used a lot in Calculus course.

Property 7 (Simple properties of Riemann integral)

We let $f, g: [a, b] \to \mathbb{R}$ be two Riemann integrable function over [a, b]. Then

(1)
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

(2)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
, for $c \in (a,b)$

(3)
$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

(4) If
$$f(x) \le g(x)$$
, then $\int_a^b f(x)dx \le \int_a^b g(x)dx$,

(5)
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

Remark:

To establish these properties, one can use the integral criterion and infinitesimal property.

Proof of property 7

To prove (1), we consider the case when k > 0. The case for k < 0 can be proved similarly. Note that kf(x) is integrable by property 4.

For any $\varepsilon > 0$, there exists partitions \mathcal{P}_1 and \mathcal{P}_2 on [a,b] such that

$$U(\mathcal{P},f) - L(\mathcal{P},f) < \frac{\varepsilon}{k}.$$

Since $L(\mathcal{P},f) \leq \int_a^b f(x) dx \leq U(\mathcal{P},f), \ U(\mathcal{P},kf) = kU(\mathcal{P},f) \ \text{and} \ L(\mathcal{P},kf) = kL(\mathcal{P},f) \ \text{for any partition} \ \mathcal{P}$, it follows that

$$kL(\mathcal{P}, f) \le L(\mathcal{P}, kf) \le \int_{a}^{b} kf(x)dx \le U(\mathcal{P}, kf) \le kU(\mathcal{P}, f)$$

By taking supremum on the first inequality and taking infimum on the second inequality over all partition \mathcal{P} , it follows that

$$k \underbrace{\int_a^b f(x) dx} = k \sup\{L(\mathcal{P}, f) | \mathcal{P}\} \le \int_a^b k f(x) dx \le k \inf\{U(\mathcal{P}, f) | \mathcal{P}\} = k \overline{\int_a^b} f(x) dx$$

As f is integrable with $\overline{\int_a^b} f(x) dx = \underline{\int_a^b} f(x) dx = \int_a^b f(x) dx$, it follows from sandwich theorem that $\int_a^b k f(x) dx = k \int_a^b f(x) dx$.

To prove (2), we let \mathcal{P} be a partition of [a,b] and define $\mathcal{P}'=\mathcal{P}\cup\{c\}$ (which is refinement of \mathcal{P}). Then it follows that

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \le U(\mathcal{P}' \cap [a,c],f) + U(\mathcal{P}' \cap [c,b],f) = U(\mathcal{P}',f) \le U(\mathcal{P},f) \dots (*)$$

Similarly, one can show that

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \ge L(\mathcal{P}' \cap [a,c],f) + L(\mathcal{P}' \cap [c,b],f) = L(\mathcal{P}',f) \ge L(\mathcal{P},f) \dots (**)$$

By taking infimum on (*) and taking supremum on (**), we deduce that

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx \le \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \le \overline{\int_{a}^{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

Thus it follows from sandwich theorem that $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

To prove (3), we recall the following facts:

$$U(f+g,\mathcal{P}) \le U(f,\mathcal{P}) + U(g,\mathcal{P})$$
 and $L(f+g,\mathcal{P}) \ge L(f,\mathcal{P}) + L(g,\mathcal{P})$.

Then for any partition \mathcal{P} , we have

$$\int_{a}^{b} [f(x) + g(x)]dx \le U(f + g, \mathcal{P}) \le U(f, \mathcal{P}) + U(g, \mathcal{P}) \dots (*) \quad and$$

28 MATH2033 Mathematical Analysis

$$\int_{a}^{b} [f(x) + g(x)] dx \ge L(f + g, \mathcal{P}) \ge L(f, \mathcal{P}) + L(g, \mathcal{P}) \dots (**).$$

By taking infimum on (*) and taking supremum on (**) and using the fact that both f, g are integrable., we deduce that

$$\underbrace{\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx}_{=\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx} \leq \underbrace{\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx}_{=\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx}$$

So we deduce from sandwich theorem that $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$. To prove (4), for any partition \mathcal{P} , we have

$$\int_{a}^{b} f(x)dx \le U(\mathcal{P}, f) \le U(\mathcal{P}, g).$$

By taking infimum and noting that g(x) is integrable, we get $\int_a^b f(x)dx \le \overline{\int_a^b} g(x)dx = \int_a^b g(x)dx$.

Finally, we note that $-|f(x)| \le f(x) \le |f(x)|$. Then (5) can be proved using the result of (4).

Property 8 (Continuity of Riemann integral)

We let $f:[a,b] \to \mathbb{R}$ a bounded Riemann integrable function over [a,b]. Then for any $c \in [a,b]$, $F(x) = \int_{c}^{x} f(y) dy$ is continuous (and hence uniformly continuous) over [a,b]

Proof of property 8

For any $\varepsilon > 0$, $x_0 \in [a,b]$, we note that $|f(x)| \le K$ since f(x) is bounded. We take $\delta = \frac{\varepsilon}{K}$, then for any $0 < |x - x_0| < \delta$, we have

$$|F(x) - F(x_0)| = \left| \int_c^x f(x) dx - \int_c^{x_0} f(x) dx \right| = \left| \int_{x_0}^x f(x) dx \right| \le K \underbrace{|x - x_0|}_{<\delta = \frac{\varepsilon}{K}} < \varepsilon.$$

So F(x) is continuous at any $x = x_0 \in [a, b]$. It follows that F(x) is uniformly continuous on [a, b].

Property 9 (Fundamental theorem of Calculus)

We let $f: [a, b] \to \mathbb{R}$ a bounded Riemann integrable function over [a, b].

- (a) If f(x) is continuous at $x = x_0$ and $F(x) = \int_c^x f(y) dy$, then $F'(x) = f(x_0)$.
- **(b)** If F(x) is differentiable on [a, b], F'(x) = f(x), then $\int_a^b f(x) dx = F(b) F(a)$.

Proof property 9

To prove (a), we shall argue that $F'(x_0) = f(x_0)$ using the definition of derivative and limits.

- Since f(x) is continuous at $x = x_0$, then for any $\varepsilon > 0$, there exists δ such that for $|x x_0| < \delta$, we have $|f(x) f(x_0)| < \varepsilon$.
- On the other hand, we note that

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{\int_c^x f(y)dy - \int_c^{x_0} f(y)dy - f(x_0)(x - x_0)}{x - x_0}$$
$$= \frac{\int_{x_0}^x f(y)dy - f(x_0)(x - x_0)}{x - x_0} \dots (*)$$

• Since for any $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| < \varepsilon \Leftrightarrow f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

Then, we get $(f(x_0) - \varepsilon)(x - x_0) < \int_{x_0}^{x} f(y) dy < (f(x_0) + \varepsilon)(x - x_0)$.

• It follows from equation (*) that

$$-\varepsilon < -\frac{\varepsilon(x - x_0)}{x - x_0} < \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) < \frac{\varepsilon(x - x_0)}{x - x_0} = \varepsilon$$

$$\Rightarrow \left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| < \varepsilon.$$

So $F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$ by the definition of limits.

31 MATH2033 Mathematical Analysis

To prove (b),

We consider a partition $\mathcal{P} = \{x_0, x_1, ..., x_n\}$ of [a, b]

For any subinterval $I_k = [x_{k-1}, x_k]$, one can deduce from mean value theorem that there exists $t_k \in (x_{k-1}, x_k)$ such that

$$\frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = F'(t_k) \Rightarrow F(x_k) - F(x_{k-1}) = \underbrace{F'(t_k)}_{=f(t_k)} (x_k - x_{k-1}).$$

It follows that

$$U(f,\mathcal{P}) \overset{\sup_{x \in I_{k}} f(x) \geq f(t_{k})}{\cong} \underbrace{\sum_{k=1}^{n} [F(x_{k}) - F(x_{k-1})]}_{=F(b) - F(a)} = \sum_{k=1}^{n} f(t_{k})(x_{k} - x_{k-1}) \overset{f(t_{k}) \geq \inf_{x \in I_{k}} f(x)}{\cong} L(f,\mathcal{P}).$$

By taking infimum and supremum on each side of the inequality, we get

$$\int_{a}^{b} f(x)dx \stackrel{f \text{ is integrable}}{=} \underbrace{\int_{a}^{b}} f(x)dx \ge F(b) - F(a) \ge \underbrace{\int_{a}^{b}} f(x)dx = \int_{a}^{b} f(x)dx.$$

So we deduce that $\int_a^b f(x)dx = F(b) - F(a)$ by sandwich theorem.

In fact, fundamental theorem of calculus is one of the important theorem in integration.

- It allows us to compute the integral $\int_a^b f(x)dx$ by finding a function F(x) (also called *anti-derivative*) such that F'(x) = f(x). For example, since $\frac{d}{dx}\sin x = \cos x$, it follows that $\int_a^b \cos x \, dx = \sin b \sin a$.
- On the other hand, one can use this theorem to establish other useful theorems such as "integration by parts" and "method of substitution".

Property 10 (Integration by parts)

If f(x), g(x) are integrable on [a, b] and their derivatives f'(x), g'(x) are also integrable on [a, b], then

$$\int_{a}^{b} f(x)g'(x)dx = \frac{f(b)g(b) - f(a)g(a)}{\int_{a}^{b} f'(x)g(x)dx}$$

Property 11 (Method of substitution)

We let $\phi: [a,b] \to \mathbb{R}$ be differentiable and ϕ' is integrable on [a,b]. If f is continuous on $\phi([a,b])$, then

$$\int_{a}^{b} f(\phi(x))\phi'(x)dx = \int_{\phi(a)}^{\phi(b)} f(y)dy.$$

33 MATH2033 Mathematical Analysis

Proof of property 10

We let
$$F(x) = f(x)g(x)$$
. One can see that $F'(x) = \underbrace{f'(x)g(x)}_{integrable} + \underbrace{f(x)g'(x)}_{integrable}$ is integrable. It

follows from fundamental theorem of calculus that

$$\int_{a}^{b} [f'(x)g(x) + f(x)g'(x)]dx = \int_{a}^{b} F'(x)dx = F(b) - F(a) = f(b)g(b) - f(a)g(a)$$

$$\Rightarrow \int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x)dx.$$

Proof of property 11

We let
$$g(x) = \int_{\phi(a)}^{\phi(x)} f(y) dy$$
 for $x \in [a, b]$.

Since f(x) is continuous over $\phi(x) \in \phi([a,b])$, it follows from fundamental theorem of calculus (1st statement) that

$$g'(x) = \frac{d}{dx} f(\phi(x)) = f(\phi(x))\phi'(x)$$
 for any $x \in [a, b]$.

Then it follows that

$$\int_{a}^{b} f(\phi(x))\phi'(x)dx = \int_{a}^{b} g'(x)dx = g(b) - g(a) \stackrel{g(a)=0}{=} g(b) = \int_{\phi(a)}^{\phi(b)} f(y)dy$$