СИСТЕМЫ ОБРАБОТКИ БОЛЬШИХ ДАННЫХ

Разработка приложений

к.т.н.
Папулин Сергей Юрьевич

papulin_bmstu@mail.ru

Программа курса

Лекции

- Hadoop: Hadoop Distributed File System (HDFS)
- Управление ресурсами и приложениями (YARN), платформа MapReduce
- Apache Spark. Распределенная координация с Zookeeper
- Cистемы потоковой обработки. Apache Storm. Spark Streaming. Kafka
- Cистемы обработки графов: Giraph, Spark GraphX, Spark GraphFrames
- Docker и Kubernetes. Управление контейнеризированными приложениями

Семинары

- **The Second Proof** HDFS и MapReduce
- > Spark. Основные операции над RDD
- > Spark. Основные операции над Dataframe
- Spark. Взаимодействие с HDFS, Parquet, Avro
- Потоковая обработка. Разработка приложений под Spark Streaming и Structured Streaming

PK1,2

- Oбработка графов. Разработка приложений под Spark GraphFrame
- Pазвертывание Spark на Docker и Kubernetes

- MapReduce
- Spark + Kafka
- Spark + MLlib
- Spark GraphFrame

cloudera

Java, Scala, Python

https://github.com/bigdataprocsystems

Баллы за РК

Модуль 1

Д31:

- Часть 1 (10 баллов)
- Часть 2 (10 баллов)

РК1 =
$$35/20 \cdot (K1.1 \cdot Д31. Часть 1 + K1.2 \cdot Д31. Часть 2)$$

$$PK1 = K1.1 \cdot Д31.$$
 Часть $1 + K1.2 \cdot Д31.$ Часть $2 + Вопросы (15 баллов)$

K – коэффициент (1; 0.85; 0.7)

Модуль 2

Д32:

- Часть 1 (10 баллов)
- Часть 2 (10 баллов)

$$PK2 = 35/20 \cdot (K2.1 \cdot Д32. Часть 1 + K2.2 \cdot Д32. Часть 2)$$

РК2 =
$$K2.1 \cdot Д32$$
. Часть 1 + $K2.2 \cdot Д32$. Часть 2 + Вопросы (15 баллов)

Рабочая машина

Лекция 1. Концепция Больших Данных

Основные темы

- Большие данные 4V
- Параллельные и распределенные вычисления
- Системы обработки и хранения больших данных
- Стек технологий
- Облачные ресурсы

Системы обработки больших данных

Статистика

Пример, Facebook

- 2.23 млрд. активных пользователей в месяц (2018)
- 90,032 постов в день (2018)

domo.com

Статистика

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Большие Данные – 4V

Большие Данные – 4V

 Чем больше данных у нас есть, тем больше знаний мы может извлечь, лучшее решение можем принять

- Чем быстрее обрабатываются поступающие данные, тем быстрее можно начать анализ
- Чем более разнообразные источники данных (социальные сети, история просмотров, покупок и пр.), тем лучше можно составить портрет клиента
- Чем более достоверные данные, тем точнее можно составить портрет клиента

Источники данных

Публичные данные

Экономические

Перепись

Гео-информация

Погода

Открытые данные

Коммерческие данные

Бизнес-информация

Исследования рынка

Кредитное бюро

Социальные сети

Сообщества

Блоги

Twitter, Facebook, LinkedIn, Tumblr

Операционные данные

Сенсоры GPS Транзакции Корпоративные данные

Взаимодействия с клиентами

Отчеты

Логи

Контакты

Gartner

Основные задачи систем обработки больших данных

- ETL (Extract, Transform, Load)
- Поиск информации
- Анализ данных
- Машинное обучение

Extract Transform Load

ETL. Общая схема

- Извлечение данных из различных внешних источников (БД, приложения, системы)
- Преобразование и очистка данных в соответствии с целями обработки
- Загрузка результата в хранилище данных

ETL. Базовые трансформации

- **Очистка** (cleaning) обработка null значений, пропущенных данных, аномальных значений и пр.)
- **Преобразование формата** (format revision) преобразование формата даты, времени, единиц измерения и пр.)
- Преобразование структуры данных (restructuring)
- Дедубликация (deduplication) удаление повторных записей

ETL. Трансформации

- **Фильтрация** (filtering)
- **Получение производных данных** (derivation)
- Aгрегирование (aggregation)
- **Обобщение/резюме** (summarization) сводные данные на разных уровнях, например, страна, регион, город и пр.
- **Слияние** (merging)
- **Разделение** (splitting) (например, одного столбца на несколько)

и др.

ETL. Общая схема

Поиск информации

Полнотекстовый поиск

Индексирование текстовых документов

- Формирование вектора термов документа (предобработка, токенизация, стемминг и пр.)
- Формирование инвертированного индекса
- Поиск по текстовому запросу
 - Формирование вектора термов запроса (предобработка, токенизация, стемминг и пр.)
 - Отбор документов по инвертированному индексу
 - Ранжирование отобранных документов по релевантности
- Оптимизация

- Дескриптивный анализ
- Предобработка данных (очистка, отбор признаков, преобразование признаков)
- Обучение с учителем (регрессия, классификация)
- Обучение без учителя (кластеризация, уменьшение размерности, выявление аномалий, тематическое моделирование)
- Рекомендательные системы (рекомендации товаров на основе поведения и предпочтений)
- Анализ графов (выявление взаимосвязей различных структур в графе)
- Глубокое обучение

Решаемые задачи

Spark: The Definitive Guide By Bill Chambers & Matei Zaharia (book)

Наука о данных (Data Science)

Архитектура систем обработки больших данных

Вычислительные ресурсы

Общие данным Приложения Обработка Обработка Обработка СУБД Обработка Данные Данные Данные SAN/NAS Данные Данные Данные Данные Данные Данные

Данные обрабатываются там же, где они хранятся

Наращивание производительности

Узел 3

Узел 2

Узел 1

Кластер

Figure 6: Cross-rack networking

Параллельные и распределенные вычисления

Параллельное программирование

Распределенные приложения

Что необходимо учитывать

- Сеть не обязательно надежна
- Существуют задержки
- Пропускная способность ограничена
- Сеть может быть небезопасной
- **Т**опология может изменяться
- Может быть несколько администраторов
- уществуют транспортные затраты
- Сеть может быть гетерогенной

Коммуникация

Синхронная

HTTP REST THRIFT

Асинхронная

WebSocket

Координация

Выбор мастера (Master election)

Назначение задач worker'ам

Обнаружение отказа (Crash detection)

Мастер должен уметь определять, что worker вышел из строя или с ним потеряно соединение

Управление группами (Group membership management)

Мастер должен знать, какие worker'ы доступны для выполнения задач

Управление метаданными (Metadata management)

Macrep и worker'ы должны хранить задания и статусы выполнения надёжным способом

Системы обработки и хранения больших данных

Вычисления

Отложенная

Близко к реальному времени В реальном времени

Batch

Near real-time

Real-time

Классификация систем

Spark GraphX

Flink

Spark

Обработка коллекций данных (batch processing)

Обработка потоковых данных (stream processing)

Обработка графов (graph processing)

Классификация NoSQL СУБД

ACID

Атомарность (Atomicity)

Согласованность (Consistency)

Изолированность (Isolation)

Долговечность (Durability)

BASE

Basic Availability

Soft-state

Eventual consistency

CAP

Классификация NoSQL СУБД

Примеры СУБД

Примеры СУБД

Customer Table

CustomerID	Title	FirstName	LastName	AddressID
1	Mr	Mark	Hanson	500
2	Ms	Lisa	Andrews	501
3	Mr	Walter	Harp	500

Address Table

AddressID	StreetAddress	City	State	ZipCode
500	999 500th Ave	Bellevue	WA	12345
501	888 W. Front St	Boise	ID	54321

Key	Value (blob)
AAAAA	110100100100111101001001001
AABAB	000110100111100100011110010
DFA766	01011001100100110011111001011
FABCC4	1111000011001010010110011001

Row Key	Column Families				
CustomerID	CustomerInfo		AddressInfo		
1	CustomerInfo:Title CustomerInfo:FirstName CustomerInfo:LastName	Mr Mark Hanson	AddressInfo:StreetAddress AddressInfo:City AddressInfo:County AddressInfo:PostCode	999 Thames St Reading Berkshire RG99 922	
2	Customerinfo:Title Customerinfo:FirstName Customerinfo:LastName	Ms Lisa Andrews	AddressInfo:StreetAddress AddressInfo:City AddressInfo:State AddressInfo:ZipCode	888 W. Front St Boise ID 54321	
3	CustomerInfo:Title CustomerInfo:FirstName CustomerInfo:LastName	Mr Walter Harp	AddressInfo:StreetAddress AddressInfo:City AddressInfo:State AddressInfo:ZipCode	999 500th Ave Bellevue WA 12345	

Примеры СУБД

Row Key	Document
1001	OrderDate: 06/06/2013 OrderItems: ProductID: 2010 Quantity: 2 Cost: 520 ProductID: 4365 Quantity: 1 Cost: 18
	OrderTotal: 1058 Customer ID: 99 ShippingAddress: StreetAddress: 999 500th Ave City: Bellevue State: WA ZipCode: 12345
1002	OrderDate: 07/07/2013 OrderItems: ProductID: 1285
	City: Boise State: ID ZipCode: 54321

Стек технологий Hadoop и Spark

Стек Hadoop

Стек Spark

Стек технологий

MapR

Карта технологий

Magic Quadrant for Cloud Infrastructure as a Service

Figure 1. Magic Quadrant for Cloud Infrastructure and Platform Services

Инфраструктуры анализа больших данных

Elasticsearch **Сервис Amazon Elasticsearch**

Анализ больших данных в режиме реального времени

Amazon Kinesis Streams

Amazon Kinesis Analytics

Хранилища и базы больших данных

Объектное хранилище Amazon S3

NoSQL **Amazon DynamoDB**

HBase в Amazon EMR

Реляционные базы данных **Amazon RDS**

Графовые базы данных Amazon DynamoDB для БД Titan