УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 48

> Студент Новиков Даниил Дмитриевич Р3131

> Преподаватель Поляков Владимир Иванович

Функция $f(x_1,x_2,x_3,x_4,x_5)$ принимает значение 1 при $2<|x_3x_40-x_5x_1x_2|\leq 5$ и неопределенное значение при $|x_3x_40-x_5x_1x_2|=1$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	x_3x_40	$x_5x_1x_2$	x_3x_40	$x_5x_1x_2$	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	4	0	4	1
2	0	0	0	1	0	2	0	2	0	0
3	0	0	0	1	1	2	4	2	4	0
4	0	0	1	0	0	4	0	4	0	1
5	0	0	1	0	1	4	4	4	4	0
6	0	0	1	1	0	6	0	6	0	0
7	0	0	1	1	1	6	4	6	4	0
8	0	1	0	0	0	0	1	0	1	d
9	0	1	0	0	1	0	5	0	5	1
10	0	1	0	1	0	2	1	2	1	d
11	0	1	0	1	1	2	5	2	5	1
12	0	1	1	0	0	4	1	4	1	1
13	0	1	1	0	1	4	5	4	5	d
14	0	1	1	1	0	6	1	6	1	1
15	0	1	1	1	1	6	5	6	5	d
16	1	0	0	0	0	0	2	0	2	0
17	1	0	0	0	1	0	6	0	6	0
18	1	0	0	1	0	2	2	2	2	0
19	1	0	0	1	1	2	6	2	6	1
20	1	0	1	0	0	4	2	4	2	0
21	1	0	1	0	1	4	6	4	6	0
22	1	0	1	1	0	6	2	6	2	1
23	1	0	1	1	1	6	6	6	6	0
24	1	1	0	0	0	0	3	0	3	1
25	1	1	0	0	1	0	7	0	7	0
26	1	1	0	1	0	2	3	2	3	d
27	1	1	0	1	1	2	7	2	7	1
28	1	1	1	0	0	4	3	4	3	d
29	1	1	1	0	1	4	7	4	7	1
30	1	1	1	1	0	6	3	6	3	1
31	1	1	1	1	1	6	7	6	7	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2}$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$ $(x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		K	$^{2}(f)$	
m_1	00001	√	m_8 - m_9	0100X	√	m_8 - m_9 - m_{10} - m_1	0403737	√
m_4	00100	✓	m_8 - m_{10}	010X0	\checkmark	m_8 - m_9 - m_{12} - m_1	0437037	\checkmark
m_8	01000	✓	m_8 - m_{12}	01X00	\checkmark	m_8 - m_{10} - m_{12} - m	0437370	\checkmark
m_9	01001	√	m_1 - m_9	0X001		m_8 - m_{10} - m_{24} - m	26 X10X0	\checkmark
m_{12}	01100	✓	m_4 - m_{12}	0X100		m_8 - m_{12} - m_{24} - m	28 X1X00	\checkmark
m_{24}	11000	✓	m_8 - m_{24}	X1000	✓	m_{12} - m_{13} - m_{14} - m_{14}	$n_{15} = 011XX$	√
m_{10}	01010	✓	m_{10} - m_{11}	0101X	√	m_{10} - m_{11} - m_{14} - m_{14}	$n_{15} = 01X1X$	\checkmark
m_{11}	01011		m_9 - m_{11}	010X1	✓	m_9 - m_{11} - m_{13} - m	01XX1	\checkmark
m_{14}	01110	✓	m_{12} - m_{13}	0110X	\checkmark	m_{24} - m_{26} - m_{28} - m	$n_{30} = 11XX0$	\checkmark
m_{19}	10011	✓	m_{12} - m_{14}	011X0	✓	m_{10} - m_{11} - m_{26} - m_{11}	n_{27} X101X	\checkmark
m_{22}	10110	✓	m_9 - m_{13}	01X01	✓	m_{12} - m_{13} - m_{28} - m	n_{29} X110X	\checkmark
m_{13}	01101	✓	m_{10} - m_{14}	01X10	✓	m_{12} - m_{14} - m_{28} - m	n_{30} X11X0	\checkmark
m_{26}	11010	✓	m_{24} - m_{26}	110X0	✓	m_{10} - m_{14} - m_{26} - m_{26}	n_{30} X1X10	\checkmark
m_{28}	11100	✓	m_{24} - m_{28}	11X00	\checkmark	m_{28} - m_{29} - m_{30} - m_{30}	n ₃₁ 111XX	√
m_{27}	11011	√	m_{10} - m_{26}	X1010	\checkmark	m_{26} - m_{27} - m_{30} - m_{30}	$n_{31} = 11X1X$	\checkmark
m_{29}	11101	✓	m_{12} - m_{28}	X1100	\checkmark	m_{14} - m_{15} - m_{30} - m_{30}	n_{31} X111X	\checkmark
m_{30}	11110	✓	m_{14} - m_{15}	0111X	\checkmark	m_{13} - m_{15} - m_{29} - m_{29}	n_{31} X11X1	\checkmark
m_{15}	01111	✓	m_{13} - m_{15}	011X1	\checkmark	m_{11} - m_{15} - m_{27} - m_{27}	n_{31} X1X11	\checkmark
m_{31}	11111		m_{11} - m_{15}	01X11	\checkmark			
			m_{26} - m_{27}	1101X	\checkmark			
			m_{28} - m_{29}	1110X	\checkmark			
			m_{28} - m_{30}	111X0	\checkmark			
			m_{26} - m_{30}	11X10	\checkmark			
			m_{19} - m_{27}	1X011				
			m_{22} - m_{30}	1X110				
			m_{11} - m_{27}	X1011	✓			
			m_{13} - m_{29}	X1101	✓			
			m_{14} - m_{30}	X1110	✓			
			m_{30} - m_{31}	1111X	√			
			m_{29} - m_{31}	111X1	\checkmark			
			m_{27} - m_{31}	11X11	\checkmark			
			m_{15} - m_{31}	X1111	\checkmark			
				$K^3(f)$			Z(f)	
	m_8 - η	n_9 - m	m_{10} - m_{11} - m_{12} -	(* /	$-m_{15}$	01XXX	0X001	
			n_{12} - m_{14} - m_{24}			37137370	0X100	
			m_{14} - m_{15} - m_{2}			37.1.1.37.37	1X011	
			m_{14} - m_{15} - m_{2}			37437437	1X110	
		11	11 102				01XXX	
							X1XX0	
							X11XX	
							X1X1X	
						L	. –	

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
	0	0	0	0	0	0	1	1	1	1	1	1
	0	0	1	1	1	1	0	0	1	1	1	1
Простые импликанты	0	1	0	0	1	1		1	0	0	1	1
	0	0	0	1	0	1	1	1		1		1 1
	1	0	1	1			1			1	1	
	1	4	9	11	12	14	19	22	24	27	29	30
0X001	Х		X									
0X100		Х			X							
					- 1		v			v		
1X011							Λ.			-/\-		
1X110								X				X
A 01XXX			X	X	X	X						
X1XX0					Х	Ж			Х			Х
X11XX					v	v					v	v
			+	7.7	Α.	V				7-	A .	1/2
B X1X1X				X		X				X		X

Ядро покрытия:

$$T = \begin{cases} 0X001\\ 0X100\\ X1XX0\\ X11XX\\ 1X011\\ 1X110 \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы			
		0 1 0			
Пр	остые импликанты				
		1			
		1			
		11			
A	01XXX	X			
В	X1X1X	X			

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ 01XXX \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ X1X1X \end{Bmatrix}$$

$$S_{1}^{a} = 22$$

$$S_{1}^{b} = 29$$

$$S_{2}^{a} = 22$$

$$S_{2}^{b} = 29$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X001\\ 0X100\\ X1XX0\\ X11XX\\ 1X011\\ 1X110\\ 01XXX \end{cases}$$

$$S^{a} = 22$$

$$S^{b} = 29$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_2 \, \overline{x_5} \vee x_2 \, x_3 \vee x_1 \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = x_2\,\overline{x_5} \lor x_2\,x_3 \lor \overline{x_1}\,x_2 \lor \overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5 \lor \overline{x_1}\,x_3\,\overline{x_4}\,\overline{x_5} \lor x_1\,\overline{x_3}\,x_4\,x_5 \lor x_1\,x_3\,x_4\,\overline{x_5}$$

Определение МКНФ

$$f = (x_1 \vee x_2 \vee \overline{x_4}) \ (x_2 \vee x_3 \vee x_5) \ (x_2 \vee \overline{x_3} \vee \overline{x_5}) \ (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) \ (\overline{x_1} \vee \overline{x_3} \vee x_4 \vee x_5)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=x_2\,\overline{x_5}\vee x_2\,x_3\vee\overline{x_1}\,x_2\vee\overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5\vee\overline{x_1}\,x_3\,\overline{x_4}\,\overline{x_5}\vee x_1\,\overline{x_3}\,x_4\,x_5\vee x_1\,x_3\,x_4\,\overline{x_5} \qquad S_Q=29 \quad \tau=2$$

$$f=x_2\,\left(\overline{x_1}\vee x_3\vee\overline{x_5}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\,\left(x_3\,\overline{x_5}\vee\overline{x_3}\,x_5\right) \qquad S_Q=21 \quad \tau=4$$

$$\varphi=\overline{x_3}\,x_5$$

$$\overline{\varphi}=x_3\vee\overline{x_5}$$

$$f=x_2\,\left(\overline{\varphi}\vee\overline{x_1}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\,\left(x_3\,\overline{x_5}\vee\varphi\right) \qquad S_Q=21 \quad \tau=5$$
 Декомпозиция нецелесообразна
$$f=x_2\,\left(\overline{x_1}\vee x_3\vee\overline{x_5}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\,\left(x_3\,\overline{x_5}\vee\overline{x_3}\,x_5\right) \qquad S_Q=21 \quad \tau=4$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_2 \lor \overline{x_4}) \ (x_2 \lor x_3 \lor x_5) \ (x_2 \lor \overline{x_3} \lor \overline{x_5}) \ (\overline{x_1} \lor x_3 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_3} \lor x_4 \lor x_5) \quad S_Q = 22 \quad \tau = 2$$
 Декомпозиция невозможна
$$f = (x_2 \lor (x_1 \lor \overline{x_4}) \ (x_3 \lor x_5) \ (\overline{x_3} \lor \overline{x_5})) \ (\overline{x_1} \lor x_3 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_3} \lor x_4 \lor x_5) \qquad S_Q = 22 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_2 \ (\overline{x_1} \lor x_3 \lor \overline{x_5}) \lor (\overline{x_1} \ \overline{x_4} \lor x_1 \ x_4) \ (x_3 \ \overline{x_5} \lor \overline{x_3} \ x_5) \quad (S_Q = 21, \tau = 4)$$

Схема по упрощенной МКНФ:

$$f = (x_2 \lor (x_1 \lor \overline{x_4}) \ (x_3 \lor x_5) \ (\overline{x_3} \lor \overline{x_5})) \ (\overline{x_1} \lor x_3 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_3} \lor x_4 \lor x_5) \quad (S_Q = 22, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_2 \overline{\varphi x_1}}} \overline{\overline{\overline{x_1}} \overline{x_4}} \overline{\overline{x_1} \overline{x_4}} \overline{\overline{x_3} \overline{x_5}} \overline{\overline{\varphi}} \quad (S_Q = 30, \tau = 8)$$
$$\varphi = \overline{x_3} x_5$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_2} \, \overline{\overline{\overline{x_1}} \, x_4} \, \overline{\overline{x_3}} \, \overline{x_5}} \, \overline{x_3} \, \overline{x_5}} \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5} \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5}} \quad (S_Q = 29, \tau = 7)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_2} \, \overline{x_1} \, \overline{\overline{x_3} \, x_5}} \, \overline{\overline{x_1} \, \overline{x_4}} \, \overline{\overline{x_1} \, x_4} \, \overline{\overline{x_3} \, \overline{x_5}} \, \overline{\overline{x_3} \, x_5}} \quad (S_Q = 24, \tau = 5)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_2}} \overline{\overline{\overline{x_1}} \, x_4} \overline{\overline{\overline{x_3}} \overline{x_5}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_4}} \overline{\overline{\overline{x_4}}} \overline{\overline{\overline{x_3}} \overline{x_5}} \overline{\overline{x_3}} \overline{\overline{x_5}}} \quad (S_Q = 30, \tau = 7)$$

