• n 元有序实数组构成的集合

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbb{R}, i = 1, 2, \cdots, n\}.$$

 \mathbb{R}^3 等同于三维空间中的全体点 (或向量全体). \mathbb{R}^n 等同于 n 维空间中的全体点 (或向量全体, $P \in \mathbb{R}^n \to \overrightarrow{OP}$),

• \mathbb{R}^n 上可定义加法和数乘.

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

• $\begin{tabular}{l} \begin{tabular}{l} \begin{ta$

• n 元有序实数组构成的集合

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \cdots, x_{n}) | x_{i} \in \mathbb{R}, i = 1, 2, \cdots, n\}.$$

 \mathbb{R}^3 等同于三维空间中的全体点 (或向量全体). \mathbb{R}^n 等同于 n 维空间中的全体点 (或向量全体, $P \in \mathbb{R}^n \to \overrightarrow{OP}$),

• \mathbb{R}^n 上可定义加法和数乘.

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

· 函数的定义:集合 D 到 ℝ 的映射

$$f: D \to \mathbb{R}$$

 $x \mapsto y = f(x)$

称为 D 上的函数. x 为自变量, D 称为定义域, y 为因变量, $f(D) = \{f(x) : x \in D\}$ 称为 f 的值域.

• 一元函数: 若 $D \subset \mathbb{R}$, 则称 f 是一元函数; 若 $D \subset \mathbb{R}^n$, 则称 f 是 n 元函数.

2 / 171

● 函数的定义:集合 D 到 ℝ 的映射

$$f: D \to \mathbb{R}$$

 $x \mapsto y = f(x)$

称为 D 上的函数. x 为自变量, D 称为定义域, y 为因变量, $f(D) = \{f(x) : x \in D\}$ 称为 f 的值域.

● 一元函数: 若 $D \subset \mathbb{R}$, 则称 f 是一元函数; 若 $D \subset \mathbb{R}^n$, 则称 f 是 n 元函数.

- 若 n 元函数 f 的值域 f(D) 包含在一元函数 g 的定义域内,则可以定义 f 与 g 的复合 $g \circ f$ (就是映射的复合).
- 例: 二元函数 $z = f(x, y), (x, y) \in D$. 三元函数 $u = f(x, y, z), (x, y, z) \in \Omega$.
- 二元函数的图形: $\{(x, y, z)|z = f(x, y), (x, y) \in D\}$, 一般为一曲面.
- 例: z = ax + by + c, $(x, y) \in \mathbb{R}^2$ 的图形是一平面.
- 例: $z = \sqrt{r^2 x^2 y^2}$,它的定义域为 $D = \{(x, y) | x^2 + y^2 \le r^2\}$ 的图形是上半球面.

3 / 171

- 若 n 元函数 f 的值域 f(D) 包含在一元函数 g 的定义域内,则可以定义 f 与 g 的复合 $g \circ f$ (就是映射的复合).
- 例: 二元函数 z = f(x, y), $(x, y) \in D$. 三元函数 u = f(x, y, z), $(x, y, z) \in \Omega$.
- 二元函数的图形: $\{(x, y, z)|z = f(x, y), (x, y) \in D\}$, 一般为一曲面.
- 例: z = ax + by + c, $(x, y) \in \mathbb{R}^2$ 的图形是一平面.
- 例: $z = \sqrt{r^2 x^2 y^2}$,它的定义域为 $D = \{(x, y) | x^2 + y^2 \le r^2\}$ 的图形是上半球面.

- 若 n 元函数 f 的值域 f(D) 包含在一元函数 g 的定义域内,则可以定义 f 与 g 的复合 $g \circ f$ (就是映射的复合).
- 例: 二元函数 $z = f(x, y), (x, y) \in D$. 三元函数 $u = f(x, y, z), (x, y, z) \in \Omega$.
- 二元函数的图形: $\{(x,y,z)|z=f(x,y),(x,y)\in D\}$, 一般为一曲面.
- 例: z = ax + by + c, $(x, y) \in \mathbb{R}^2$ 的图形是一平面.
- 例: $z = \sqrt{r^2 x^2 y^2}$,它的定义域为 $D = \{(x, y) | x^2 + y^2 \le r^2\}$ 的图形是上半球面.

- 若 n 元函数 f 的值域 f(D) 包含在一元函数 g 的定义域内,则可以定义 f 与 g 的复合 $g \circ f$ (就是映射的复合).
- 例: 二元函数 $z = f(x, y), (x, y) \in D$. 三元函数 $u = f(x, y, z), (x, y, z) \in \Omega$.
- 二元函数的图形: $\{(x,y,z)|z=f(x,y),(x,y)\in D\}$, 一般为一曲面.
- 例: z = ax + by + c, $(x, y) \in \mathbb{R}^2$ 的图形是一平面.
- 例: $z = \sqrt{r^2 x^2 y^2}$,它的定义域为 $D = \{(x, y) | x^2 + y^2 \le r^2\}$ 的图形是上半球面.

• 集合 $D \subset \mathbb{R}^n$ 到 \mathbb{R}^m 的映射:

$$f: D \to \mathbb{R}^m$$

$$x = (x_1, x_2, \dots, x_n) \mapsto f(x) = (y_1, y_2, \dots, y_m)$$

这里

$$\begin{cases} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \dots \\ y_m = f_m(x_1, x_2, \dots, x_n) \end{cases}$$

- 若 f 是集合 D 到 \mathbb{R}^m 的映射. 可以称 f 为 D 上的向量函数. D 为 f 的定义域. 像集 $f(D) = \{f(x) : x \in D\}$ 为 f 的值域. 若 $D \subset \mathbb{R}^n$,可称 f 是一元向量函数;若 $D \subset \mathbb{R}^n$,可称 f 是 n 元向量函数.
- \overline{A} \overline{A}

- 若 f 是集合 D 到 \mathbb{R}^m 的映射. 可以称 f 为 D 上的向量函数. D 为 f 的定义域. 像集 $f(D) = \{f(x) : x \in D\}$ 为 f 的值域. 若 $D \subset \mathbb{R}^n$,可称 f 是一元向量函数;若 $D \subset \mathbb{R}^n$,可称 f 是 n 元向量函数.
- 若 $f \neq D$ 到 \mathbb{R}^m 的映射, $f(D) \subset E$. $g \neq E$ 到 \mathbb{R}^k 的映射, 则复合 $g \circ f \neq D$ 到 \mathbb{R}^k 的映射.

5 / 171

• 例: 平面曲线参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $t \in [\alpha, \beta]$ 是一元向量函数

$$\vec{r}: [\alpha, \beta] \to \mathbb{R}^2, t \mapsto \vec{r}(t) = (\phi(t), \psi(t)).$$

- 例: 平面坐标变换 $\begin{cases} u = x\cos\theta y\sin\theta \\ v = x\sin\theta + y\cos\theta \end{cases}, \ (u,v) \in \mathbb{R}^2, \ \mathbb{R}^2 \ \mathbb{R}^2 \ \mathbb{R}^2$ 的映射 (二元向量函数).
- 例: $\begin{cases} u = \phi(t)\cos\theta \psi(t)\sin\theta \\ v = \phi(t)\sin\theta + \psi(t)\cos\theta \end{cases}, \ t \in [\alpha, \beta] \ \text{是上面两个映射的复合}.$

• 例: 平面曲线参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $t \in [\alpha, \beta]$ 是一元向量函数

$$\vec{r}: [\alpha, \beta] \to \mathbb{R}^2, t \mapsto \vec{r}(t) = (\phi(t), \psi(t)).$$

- 例: 平面坐标变换 $\begin{cases} u = x\cos\theta y\sin\theta \\ v = x\sin\theta + y\cos\theta \end{cases}, \ (u,v) \in \mathbb{R}^2, \ \mathbb{R}^2 \ \mathbb{R}^2 \ \mathbb{R}^2$ 的映射 (二元向量函数).
- 例: $\begin{cases} u = \phi(t)\cos\theta \psi(t)\sin\theta \\ v = \phi(t)\sin\theta + \psi(t)\cos\theta \end{cases}, \ t \in [\alpha,\beta] \ \text{是上面两个映射的复合}.$

• 例: 平面曲线参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $t \in [\alpha, \beta]$ 是一元向量函数

$$\vec{r}: [\alpha, \beta] \to \mathbb{R}^2, t \mapsto \vec{r}(t) = (\phi(t), \psi(t)).$$

- 例: 平面坐标变换 $\begin{cases} u = x\cos\theta y\sin\theta \\ v = x\sin\theta + y\cos\theta \end{cases}, \ (u,v) \in \mathbb{R}^2, \ \mathbb{R}^2 \ \mathbb{R}^2 \ \mathbb{R}^2$ 的映射 (二元向量函数).
- 例: $\begin{cases} u = \phi(t)\cos\theta \psi(t)\sin\theta \\ v = \phi(t)\sin\theta + \psi(t)\cos\theta \end{cases}, \ t \in [\alpha,\beta] \ \text{是上面两个映射的复合}.$

• 例: 曲面参数方程
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \quad , \ (u,v) \in D, \ \mathbb{R} \in D \ \mathbb{R}^3 \\ z = z(u,v) \end{cases}$$
 的映射 (二元向量函数), 经常用 \vec{r} 表示这个映射:
$$\vec{r} \colon D \to \mathbb{R}^2, (u,v) \to \vec{r}(u,v) = (x(u,v),y(u,v),z(u,v)).$$

\mathbb{R}^n 中的距离 1

• \mathbb{R}^n 上的内积和模, 设 $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n),$

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$
$$|x| = \sqrt{x \cdot x} = \sqrt{\sum_{k=1}^{n} x_k^2}$$

• 性质: 内积关于 x 和 y 线性, 且

$$|x \cdot y| \le |x| \cdot |y|.$$

• \mathbb{R}^n 中的距离: $P(x_1, x_2, \dots, x_n)$ 到 $P_0(x_1^0, x_2^0, \dots, x_n^0)$ 的距离定义为

$$d(P, P_0) = |\overrightarrow{PP_0}| = \sqrt{\sum_{i=1}^n (x_i - x_i^0)^2}.$$

ℝ"中的距离 2

- 例: n = 1 时, $d(x, x_0) = |x x_0|$.
- 例: n=3 时, P(x,y,z) 到 $P_0(x_0,y_0,z_0)$ 的距离为

$$d(P, P_0) = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}.$$

- $d(P,Q) \ge 0$, $d(P,Q) = 0 \iff P = Q$.
- d(P, Q) = d(Q, P).

ℝ"中的距离 2

- 例: n = 1 时, $d(x, x_0) = |x x_0|$.
- 例: n=3 时, P(x,y,z) 到 $P_0(x_0,y_0,z_0)$ 的距离为

$$d(P, P_0) = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}.$$

- $d(P, Q) \ge 0$, $d(P, Q) = 0 \iff P = Q$.
- d(P, Q) = d(Q, P).

ℝ"中的距离 2

• $d(P,Q) \le d(P,R) + d(R,Q)$. 证明: 设 $x = (x_1, x_2, \cdots, x_n)$, $y = (y_1, y_2, \cdots, y_n)$. $|x+y|^2 = (x+y) \cdot (x+y) = x \cdot x + 2x \cdot y + y \cdot y$ $\le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.$

因此得不等式 $|x+y| \le |x| + |y|$. 上面不等式中取 $x = \overrightarrow{PR}$, $y = \overrightarrow{RQ}$, 则 $x+y = \overrightarrow{PQ}$.

内点集

• 点 $P_0 \in \mathbb{R}^n$ 的 r 邻域

$$U_r(P_0) = \{ P \in \mathbb{R}^n | d(P, P_0) < r \},$$

 P_0 的 r 空心邻域为 $U_r(P_0)\setminus\{P_0\}$.

• 集合 $E \subset \mathbb{R}^n$ 的内点集

 $\stackrel{\circ}{E} = \{ P \in E | \text{ FAE } r, \text{ 使得 } U_r(P) \subset E \}.$

显然内点集 E 是 E 的子集.

内点集

• 点 $P_0 \in \mathbb{R}^n$ 的 r 邻域

$$U_r(P_0) = \{ P \in \mathbb{R}^n | d(P, P_0) < r \},$$

 P_0 的 r 空心邻域为 $U_r(P_0)\setminus\{P_0\}$.

• $A \in E \subset \mathbb{R}^n$ 的内点集

$$\stackrel{\circ}{E} = \{ P \in E | \text{ 存在 } r, \text{ 使得 } U_r(P) \subset E \}.$$

显然内点集 E 是 E 的子集.

边界点集

$$\partial E = \{ P \in \mathbb{R}^n | \text{对任意 } r > 0, \ \text{figure } U_r(P) \cap E \neq \phi, U_r(P) \cap E^c \neq \phi \}.$$

E的边界点不一定属于 E.

- 性质: $\partial E = \partial E^c$.
- 性质: $E = E \Leftrightarrow \partial E \cap E = \phi$.

边界点集

$$\partial E = \{ P \in \mathbb{R}^n | \text{对任意 } r > 0, \ \text{figure } U_r(P) \cap E \neq \phi, U_r(P) \cap E^c \neq \phi \}.$$

E的边界点不一定属于 E.

- 性质: ∂E = ∂E^c.
- 性质: $E = E \Leftrightarrow \partial E \cap E = \phi$.

边界点集

• 集合 $E \subset \mathbb{R}^n$ 的边界点集

E的边界点不一定属于 E.

- 性质: $\partial E = \partial E^c$.
- 性质: $E = \mathring{E} \Leftrightarrow \partial E \cap E = \phi$.

- 满足 $E = \mathring{E}$ 的集合称为开集,若集合 E 的补集为开集,则称 E 为闭集.
- 性质: E 为开集 $\Leftrightarrow \partial E \cap E = \phi$. 证明: 利用 $E = \mathring{E} \Leftrightarrow \partial E \cap E = \phi$.
- 性质: E 为闭集 $\Leftrightarrow \partial E \subset E$. 证明: E 为闭集 \iff E^c 为开集 \iff $\partial E^c \cap E^c = \phi \iff \partial E = \partial E^c \subset E$.

- 满足 E= E的集合称为开集, 若集合 E的补集为开集, 则称 E为闭集.
- 性质: E 为开集 $\Leftrightarrow \partial E \cap E = \phi$. 证明: 利用 $E = \mathring{E} \Leftrightarrow \partial E \cap E = \phi$.
- 性质: E 为闭集 $\Leftrightarrow \partial E \subset E$. 证明: E 为闭集 \iff E^c 为开集 \iff $\partial E^c \cap E^c = \phi \iff \partial E = \partial E^c \subset E$.

- 满足 E= c的集合称为开集, 若集合 E的补集为开集, 则称 E为闭集.
- 性质: E 为开集 $\Leftrightarrow \partial E \cap E = \phi$. 证明: 利用 $E = \mathring{E} \Leftrightarrow \partial E \cap E = \phi$.
- 性质: E 为闭集 $\Leftrightarrow \partial E \subset E$. 证明: E 为闭集 \iff E^c 为开集 \iff $\partial E^c \cap E^c = \phi \iff \partial E = \partial E^c \subset E$.

• 例: $R = (-a, a) \times (-b, b)$ 是开集,

$$\partial R = \{(x, y) | |x| = a$$
或者 $|y| = b, |x| \le a, |y| \le b\}.$

因此 $\partial R \cap R = \phi$, R 是开集.

- 例: $R_1 = [-a, a] \times [-b, b], \ \partial R_1 = \partial R \subset R_1, R_1$ 是闭集.
- 单点集 $\{P_0\}$ 是闭集, $\bigcup_{n=1}^{\infty} (a_n, b_n)$ 是一维开集.

• 例: $R = (-a, a) \times (-b, b)$ 是开集,

$$\partial R = \{(x, y) | |x| = a \vec{A} |y| = b, |x| \le a, |y| \le b\}.$$

因此 $\partial R \cap R = \phi$, R 是开集.

- 例: $R_1 = [-a, a] \times [-b, b]$, $\partial R_1 = \partial R \subset R_1$, R_1 是闭集.
- 单点集 $\{P_0\}$ 是闭集, $\bigcup_{n=1}^{\infty} (a_n, b_n)$ 是一维开集.

• 例: $R = (-a, a) \times (-b, b)$ 是开集,

$$\partial R = \{(x, y) | |x| = a$$
或者 $|y| = b, |x| \le a, |y| \le b\}.$

因此 $\partial R \cap R = \phi$, R 是开集.

- 例: $R_1 = [-a, a] \times [-b, b]$, $\partial R_1 = \partial R \subset R_1$, R_1 是闭集.
- 单点集 $\{P_0\}$ 是闭集, $\cup_{n=1}^{\infty}(a_n,b_n)$ 是一维开集.

- 连通开集: $E \subset \mathbb{R}^n$ 是开集,且 E 中任意两点都可以用一条落在 E 中的曲线相连接,则称 E 为连通开集. 当 n=1 时, E 为连通非空开集的充分必要条件是 E 为开区间.
- 区域:连通的非空开集称为区域.
- 闭区域:设 G 是一个区域,集合 $\overline{G} = G \cup \partial G$ 称为闭区域 (集合 $E \cup \partial E$ 称为 E 的闭包,闭集 E 的闭包还是 E).
- 例: $R = (-a, a) \times (-b, b)$ 是二维空间中的区域; $U_r(P_0)$ 也是区域. $R_1 = \overline{R}$ 和 $\overline{U_r(P_0)} = \{P|d(P, P_0) \leq r\}$ 是闭区域.
- 有界集: 若存在 r>0
 使得 U_r(O) ⊃ E, 则称 E 为有界集.

15 / 171

- 连通开集: $E \subset \mathbb{R}^n$ 是开集,且 E 中任意两点都可以用一条落在 E 中的曲线相连接,则称 E 为连通开集. 当 n=1 时,E 为连通非空开集的充分必要条件是 E 为开区间.
- 区域:连通的非空开集称为区域.
- 闭区域:设 G 是一个区域,集合 $\overline{G} = G \cup \partial G$ 称为闭区域 (集合 $E \cup \partial E$ 称为 E 的闭包,闭集 E 的闭包还是 E).
- 例: $R = (-a, a) \times (-b, b)$ 是二维空间中的区域; $U_r(P_0)$ 也是区域. $R_1 = \overline{R}$ 和 $\overline{U_r(P_0)} = \{P | d(P, P_0) \le r\}$ 是闭区域.
- 有界集: 若存在 r> 0
 使得 U_r(O) ⊃ E, 则称 E 为有界集.

- 连通开集: E⊂ℝⁿ 是开集,且 E中任意两点都可以用一条落在 E中的曲线相连接,则称 E为连通开集。
 当 n=1 时, E为连通非空开集的充分必要条件是 E为开区间。
- 区域:连通的非空开集称为区域.
- 闭区域:设 G 是一个区域,集合 $\overline{G} = G \cup \partial G$ 称为闭区域 (集合 $E \cup \partial E$ 称为 E 的闭包,闭集 E 的闭包还是 E).
- 例: $R = (-a, a) \times (-b, b)$ 是二维空间中的区域; $U_r(P_0)$ 也是区域. $R_1 = \overline{R}$ 和 $\overline{U_r(P_0)} = \{P | d(P, P_0) \le r\}$ 是闭区域.
- 有界集: 若存在 r>0
 使得 U_r(O) ⊃ E, 则称 E 为有界集.

- 连通开集: E⊂ℝⁿ 是开集,且 E中任意两点都可以用一条落在 E中的曲线相连接,则称 E为连通开集.
 当 n=1 时, E为连通非空开集的充分必要条件是 E为开区间.
- 区域:连通的非空开集称为区域.
- 闭区域:设 G 是一个区域,集合 $\overline{G} = G \cup \partial G$ 称为闭区域 (集合 $E \cup \partial E$ 称为 E 的闭包,闭集 E 的闭包还是 E).
- 例: $R = (-a, a) \times (-b, b)$ 是二维空间中的区域; $U_r(P_0)$ 也是区域. $R_1 = \overline{R}$ 和 $\overline{U_r(P_0)} = \{P | d(P, P_0) \le r\}$ 是闭区域.
- 有界集: 若存在 r>0
 使得 U_r(O) ⊃ E, 则称 E 为有界集.

多元函数的极限的定义 1

- 复习一元函数的极限: y = f(x) 在 a 的某个空心邻域 $(a-r,a) \cup (a,a+r)$ 上有定义,若存在 A, 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x-a| < \delta$ 时, $|f(x)-A| < \epsilon$, 则称 $x \to a$ 时,f(x) 以 A 为极限, 记为 $\lim_{x \to a} f(x) = A$.
- 定义:设二元函数 z = f(x,y) 在 (x_0,y_0) 的某个空心邻域上有定义. 若存在实数 A,使得对任意的 $\epsilon > 0$,都存在 $\delta > 0$,使得当 (x,y) 满足 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,有

$$|f(x,y) - A| < \epsilon,$$

则称 (x,y) 趋向于 (x_0,y_0) 时,f(x,y) 以 A 为极限, 记为

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \vec{A} \underset{\substack{x\to x_0\\y\to y_0}}{\lim} f(x,y) = A$$

多元函数的极限的定义 1

- 复习一元函数的极限: y = f(x) 在 a 的某个空心邻域 $(a-r,a) \cup (a,a+r)$ 上有定义,若存在 A, 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x-a| < \delta$ 时, $|f(x)-A| < \epsilon$, 则称 $x \to a$ 时,f(x) 以 A 为极限, 记为 $\lim_{x \to a} f(x) = A$.
- 定义:设二元函数 z = f(x,y) 在 (x_0,y_0) 的某个空心邻域上有定义. 若存在实数 A,使得对任意的 $\epsilon > 0$,都存在 $\delta > 0$,使得当 (x,y) 满足 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,有

$$|f(x,y)-A|<\epsilon,$$

则称 (x,y) 趋向于 (x_0,y_0) 时, f(x,y) 以 A 为极限, 记为

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \vec{A} \stackrel{\lim}{\underset{y\to y_0}{\longleftarrow}} f(x,y) = A.$$

多元函数的极限的定义 2

• 类似可定义 n 元函数的极限: 对任意的 $\epsilon > 0$, 都存在 $\delta > 0$, 使得当 P 满足 $0 < d(P, P_0) < \delta$ 时,有

$$|f(P) - A| < \epsilon$$
.

则称 $P \rightarrow P_0$ 时, f(P) 以 A 为极限, 记为 $\lim_{P \rightarrow P_0} f(P) = A$.

多元函数的极限的定义 3

- 注:依照定义,要求 f(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义. 依照上述定义, $f(x,y)=xy\sin\frac{1}{xy}$ 不能讨论 $(x,y)\to(0,0)$ 的极限. 若补充定义函数在 x,y 轴上的值为 0,则可以验证 $(x,y)\to(0,0)$ 时的 f(x,y) 的极限为 0.也可采用下面的更一般的定义,可以不考虑没定义的点.
- 定义: f 是集合 E 上的函数, P_0 是 E 的聚点. 若对任意的 $\epsilon > 0$,存在 $\delta > 0$,使得当 $P \in D$ 且满足 $0 < d(P,P_0) < \delta$ 时,有

$$|f(P) - A| < \epsilon,$$

18 / 171

则称 $P \to P_0$ 时, f(P) 以 A 为极限, 记为 $\lim_{P \to P_0} f(P) = A$.

多元函数的极限的定义 3

- 注:依照定义,要求 f(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义. 依照上述定义, $f(x,y)=xy\sin\frac{1}{xy}$ 不能讨论 $(x,y)\to(0,0)$ 的极限. 若补充定义函数在 x,y 轴上的值为 0,则可以验证 $(x,y)\to(0,0)$ 时的 f(x,y) 的极限为 0.也可采用下面的更一般的定义,可以不考虑没定义的点.
- 定义: f 是集合 E 上的函数, P_0 是 E 的聚点. 若对任意的 $\epsilon > 0$,存在 $\delta > 0$,使得当 $P \in D$ 且满足 $0 < d(P, P_0) < \delta$ 时,有

$$|f(P) - A| < \epsilon$$

则称 $P \rightarrow P_0$ 时, f(P) 以 A 为极限, 记为 $\lim_{P \rightarrow P_0} f(P) = A$.

多元函数的极限的等价定义 1

• 命题: $\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)}} f(x,y) = A$ 的充要条件是: 对任意的 $\epsilon>0$, 存在 $\delta>0$, 使得当 (x,y) 满足 $|x-x_0|<\delta$, $|y-y_0|<\delta$ 且 $(x,y)\neq(x_0,y_0)$ 时,有 $|f(x,y)-A|<\epsilon$.

多元函数极限的等价定义 2

• 证明: 若对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 (x, y) 满足

$$|x-x_0|<\delta, |y-y_0|<\delta \mathbb{L}(x,y)
eq (x_0,y_0)$$

时,有 $|f(x,y)-A|<\epsilon$,则当(x,y)满足

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta,$$

时有 $|f(x,y) - A| < \epsilon$.

反过来, 若对任意的 $\epsilon > 0$, 存在 $\rho > 0$, 使得当 (x, y) 满足

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \rho$$

时,有 $|f(x,y) - A| < \epsilon$. 取 $\delta = \frac{1}{\sqrt{2}}\rho$, 则当 (x,y) 满足 $|x - x_0| < \delta$, $|y - y_0| < \delta$ 且 $(x,y) \neq (x_0,y_0)$ 时有 $|f(x,y) - A| < \epsilon$.

20 / 171

多元函数极限的等价定义 2

• 证明: 若对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 (x, y) 满足

$$|x-x_0|<\delta, |y-y_0|<\delta \mathbb{L}(x,y)
eq (x_0,y_0)$$

时,有 $|f(x,y)-A|<\epsilon$,则当(x,y)满足

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta,$$

时有 $|f(x,y) - A| < \epsilon$.

反过来, 若对任意的 $\epsilon > 0$, 存在 $\rho > 0$, 使得当 (x,y) 满足

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \rho$$

时,有 $|f(x,y) - A| < \epsilon$. 取 $\delta = \frac{1}{\sqrt{2}}\rho$, 则当 (x,y) 满足 $|x - x_0| < \delta$, $|y - y_0| < \delta$ 且 $(x,y) \neq (x_0,y_0)$ 时有 $|f(x,y) - A| < \epsilon$.

映射 (多元向量函数) 极限的定义 1

• 定义: 设映射 (二元函数向量函数) $f(x,y) = (f_1(x,y), f_2(x,y))$ 在 (x_0,y_0) 的某个空心邻域上有定义. 若存在 $a=(a_1,a_2)$,使得对任意的 $\epsilon>0$,都存在 $\delta>0$,使得当 (x,y) 满足

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

时,有

$$|f(x,y)-a| = \sqrt{(f_1(x,y)-a_1)^2 + (f_2(x,y)-a_2)^2} < \epsilon,$$

则称 (x,y) 趋向于 (x_0,y_0) 时, f(x,y) 以 a 为极限, 记为

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a.$$

多元向量函数极限的定义 2

• 性质: $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a$ 的充要条件是

$$\lim_{(x,y)\to(x_0,y_0)} f_1(x,y) = a_1, \qquad \lim_{(x,y)\to(x_0,y_0)} f_2(x,y) = a_2.$$

• 证明: 利用

$$|f_i(x,y) - a_i| \le |f(x,y) - a| \le |f_1(x,y) - a_1| + |f_2(x,y) - a_2|, \quad i = 1, 2$$

• 注: 一般向量函数的极限可类似定义.

多元向量函数极限的定义 2

• 性质: $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a$ 的充要条件是

$$\lim_{(x,y)\to(x_0,y_0)} f_1(x,y) = a_1, \qquad \lim_{(x,y)\to(x_0,y_0)} f_2(x,y) = a_2.$$

• 证明: 利用

$$|f_i(x,y)-a_i| \le |f(x,y)-a| \le |f_1(x,y)-a_1|+|f_2(x,y)-a_2|, \quad i=1,2.$$

• 注: 一般向量函数的极限可类似定义.

多元向量函数极限的定义 2

• 性质: $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a$ 的充要条件是

$$\lim_{(x,y)\to(x_0,y_0)} f_1(x,y) = a_1, \qquad \lim_{(x,y)\to(x_0,y_0)} f_2(x,y) = a_2.$$

• 证明: 利用

$$|f_i(x,y)-a_i| \le |f(x,y)-a| \le |f_1(x,y)-a_1|+|f_2(x,y)-a_2|, \quad i=1,2.$$

• 注: 一般向量函数的极限可类似定义.

一元向量值函数

• 一元向量函数的极限: 设 $f(t) = (x_1(t), x_2(t), \dots, x_n(t))$, $a = (a_1, a_2, \dots, a_n)$, 若对任意的 $\epsilon > 0$, 存在 δ , 使得当 $0 < |t - t_0| < \delta$ 时, 有

$$\sqrt{(x_1(t)-a_1)^2+(x_2(t)-a_2)^2+\cdots+(x_n(t)-a_n)^2}<\epsilon,$$

则称 $t \to t_0$ 时,一元向量函数 f(t) 的极限为 a, 记为 $\lim_{t \to t_0} f(t) = a$.

- $\lim_{t \to t_0} f(t) = a \Leftrightarrow \lim_{t \to t_0} x_k(t) = a_k, \ k = 1, 2, \dots, n.$
- 向量值函数的导数:

$$f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = (x'_1(t), x'_2(t), \dots, x'_n(t)).$$

一元向量值函数

• 一元向量函数的极限: 设 $f(t) = (x_1(t), x_2(t), \dots, x_n(t))$, $a = (a_1, a_2, \dots, a_n)$, 若对任意的 $\epsilon > 0$, 存在 δ , 使得当 $0 < |t - t_0| < \delta$ 时, 有

$$\sqrt{(x_1(t)-a_1)^2+(x_2(t)-a_2)^2+\cdots+(x_n(t)-a_n)^2}<\epsilon,$$

则称 $t \to t_0$ 时,一元向量函数 f(t) 的极限为 a, 记为 $\lim_{t \to t_0} f(t) = a$.

- $\lim_{t\to t_0} f(t) = a \Leftrightarrow \lim_{t\to t_0} x_k(t) = a_k, \ k=1,2,\cdots,n.$
- 向量值函数的导数:

$$f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = (x'_1(t), x'_2(t), \dots, x'_n(t))$$

一元向量值函数

• 一元向量函数的极限: 设 $f(t) = (x_1(t), x_2(t), \cdots, x_n(t)),$ $a = (a_1, a_2, \cdots, a_n),$ 若对任意的 $\epsilon > 0$, 存在 δ , 使得当 $0 < |t - t_0| < \delta$ 时, 有

$$\sqrt{(x_1(t)-a_1)^2+(x_2(t)-a_2)^2+\cdots+(x_n(t)-a_n)^2}<\epsilon,$$

则称 $t \to t_0$ 时,一元向量函数 f(t) 的极限为 a, 记为 $\lim_{t \to t_0} f(t) = a$.

- $\lim_{t\to t_0} f(t) = a \Leftrightarrow \lim_{t\to t_0} x_k(t) = a_k, \ k=1,2,\cdots,n.$
- 向量值函数的导数:

$$f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = (x'_1(t), x'_2(t), \dots, x'_n(t)).$$

复习一元复合复合函数的极限

- 一元复合函数的极限: 设 $\lim_{\substack{x \to x_0 \\ y \to y_0}} g(x) = y_0$, 且 $x \neq x_0$ 时, $g(x) \neq y_0$, 若 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(y) = A$, 则有 $\lim_{\substack{x \to x_0 \\ x \to x_0}} f(g(x)) = A$.
- 一元复合函数的极限: 设 $\lim_{x \to x_0} g(x) = y_0$, $\lim_{y \to y_0} f(y) = A = f(y_0)$, 则 有 $\lim_{x \to x_0} f(g(x)) = A$.

复习一元复合复合函数的极限

- 一元复合函数的极限: 设 $\lim_{x \to x_0} g(x) = y_0$, 且 $x \neq x_0$ 时, $g(x) \neq y_0$, 若 $\lim_{y \to y_0} f(y) = A$, 则有 $\lim_{x \to x_0} f(g(x)) = A$.
- 一元复合函数的极限: 设 $\lim_{x \to x_0} g(x) = y_0$, $\lim_{y \to y_0} f(y) = A = f(y_0)$, 则 有 $\lim_{x \to x_0} f(g(x)) = A$.

- 设函数 f 在 $P_0 \in \mathbb{R}^m$ 的某个空心邻域上有定义, $\lim_{P \to P_0} f(P) = A$. 映 射 $g: D \subset \mathbb{R}^n \to \mathbb{R}^m$,D 包含 $Q_0 \in \mathbb{R}^n$ 的某个空心邻域。若 $\lim_{Q \to Q_0} g(Q) = P_0$,且 $Q \neq Q_0$ 时, $g(Q) \neq P_0$. 则有 $\lim_{Q \to Q_0} f(g(Q)) = A$.
- 证明: 由 lim f(P) = A, 任给 ε > 0, 存在 r > 0, 当
 0 < |d(P, P₀)| < r 时 |f(P) A| < ε.
 由 lim g(Q) = P₀, 存在 δ > 0, 满足: 当 0 < d(Q, Q₀) < δ 时, d(g(Q), P₀) < r. 又由条件 d(g(Q), P₀) > 0, 因此 |f(g(Q)) A| < ε.

- 设函数 f 在 $P_0 \in \mathbb{R}^m$ 的某个空心邻域上有定义, $\lim_{P \to P_0} f(P) = A$. 映 射 $g: D \subset \mathbb{R}^n \to \mathbb{R}^m$,D 包含 $Q_0 \in \mathbb{R}^n$ 的某个空心邻域。若 $\lim_{Q \to Q_0} g(Q) = P_0$,且 $Q \neq Q_0$ 时, $g(Q) \neq P_0$. 则有 $\lim_{Q \to Q_0} f(g(Q)) = A$.
- **IIIII** $g(Q) = F_0$, 且 $Q \neq Q_0$ 時, $g(Q) \neq F_0$. 契項 $\lim_{Q \to Q_0} f(g(Q)) = F_0$ 证明: 由 $\lim_{P \to P_0} f(P) = A$, 任给 $\epsilon > 0$, 存在 r > 0, 当 $0 < |d(P, P_0)| < r$ 时 $|f(P) A| < \epsilon$. 由 $\lim_{Q \to Q_0} g(Q) = P_0$, 存在 $\delta > 0$, 满足: 当 $0 < d(Q, Q_0) < \delta$ 时, $d(g(Q), P_0) < r$. 又由条件 $d(g(Q), P_0) > 0$, 因此 $|f(g(Q)) A| < \epsilon$.

刘建明 (北大数学学院)

- 设函数 f 在 $P_0 \in \mathbb{R}^m$ 的某个空心邻域上有定义, $\lim_{P \to P_0} f(P) = A$. 映 射 $g: D \subset \mathbb{R}^n \to \mathbb{R}^m$,D 包含 $Q_0 \in \mathbb{R}^n$ 的某个空心邻域。若 $\lim_{Q \to Q_0} g(Q) = P_0$,且 $Q \neq Q_0$ 时, $g(Q) \neq P_0$. 则有 $\lim_{Q \to Q_0} f(g(Q)) = A$.
- 证明: 由 $\lim_{P \to P_0} f(P) = A$, 任给 $\epsilon > 0$, 存在 r > 0, 当 $0 < |d(P, P_0)| < r$ 时 $|f(P) A| < \epsilon$. 由 $\lim_{Q \to Q_0} g(Q) = P_0$, 存在 $\delta > 0$, 满足: 当 $0 < d(Q, Q_0) < \delta$ 时, $d(g(Q), P_0) < r$. 又由条件 $d(g(Q), P_0) > 0$, 因此 $|f(g(Q)) A| < \epsilon$.

刘建明 (北大数学学院)

• 设函数 f 在 $P_0 \in \mathbb{R}^m$ 的某个邻域上有定义, $\lim_{P \to P_0} f(P) = f(P_0)$. 映 射 $g: D \subset \mathbb{R}^n \to \mathbb{R}^m$. D 包含 $Q_0 \in \mathbb{R}^n$ 的某个空心邻域. 若 $\lim_{Q \to Q_0} g(Q) = P_0$, 则有 $\lim_{Q \to Q_0} f(g(Q)) = A$.

复合函数的极限

• 定理: x = g(u, v), y = h(u, v) 在 (u_0, v_0) 的一个空心邻域上有定义, 且有 $\lim_{\substack{(u,v) \to (u_0, v_0)}} g(u, v) = x_0, \quad \lim_{\substack{(u,v) \to (u_0, v_0)}} h(u, v) = y_0.$

又 f(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且有 $(g(u,v),h(u,v)) \neq (x_0,y_0)$. 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$,则有

$$\lim_{(u,v)\to(u_0,v_0)} f(g(u,v),h(u,v)) = A.$$

• 注: 若 $f(x_0, y_0) = A$, 条件 $(g(u, v), h(u, v)) \neq (x_0, y_0)$ 可去掉.

复合函数的极限

• 定理: x = g(u, v), y = h(u, v) 在 (u_0, v_0) 的一个空心邻域上有定义, 且有 $\lim_{(u,v)\to(u_0,v_0)} g(u,v) = x_0, \quad \lim_{(u,v)\to(u_0,v_0)} h(u,v) = y_0.$

又 f(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且有 $(g(u,v),h(u,v)) \neq (x_0,y_0)$. 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$,则有

$$\lim_{(u,v)\to(u_0,v_0)} f(g(u,v),h(u,v)) = A.$$

• 注: 若 $f(x_0, y_0) = A$, 条件 $(g(u, v), h(u, v)) \neq (x_0, y_0)$ 可去掉.

• 定理: 设 $\lim_{u\to u_0} f(u) = A$, u = g(x,y) 满足 $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = u_0$, 且 $(x,y) \neq (x_0,y_0)$ 时有 $g(x,y) \neq u_0$. 则有

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = A.$$

• 命题 (沿曲线的极限): $\lim_{\substack{(x,y)\to(x_0,y_0)\\t\to t_0}} f(x,y) = A, \ x=x(t), y=y(t)$ 满足 $\lim_{\substack{t\to t_0\\t\to t_0}} x(t) = x_0, \lim_{\substack{t\to t_0\\t\to t_0}} y(t) = y_0, \ \text{且}\ t\neq t_0\ \text{时有}\ (x(t),y(t))\neq (x_0,y_0).$ 则有 $\lim_{\substack{t\to t_0\\t\to t_0}} f(x(t),y(t)) = A.$

• 定理: 设 $\lim_{u \to u_0} f(u) = A$, u = g(x, y) 满足 $\lim_{(x,y) \to (x_0, y_0)} g(x, y) = u_0$, 且 $(x, y) \neq (x_0, y_0)$ 时有 $g(x, y) \neq u_0$. 则有

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = A.$$

• 命题 (沿曲线的极限): $\lim_{\substack{(x,y)\to(x_0,y_0)\\t\to t_0}}f(x,y)=A$, x=x(t),y=y(t) 满足 $\lim_{\substack{t\to t_0\\t\to t_0}}x(t)=x_0$, $\lim_{\substack{t\to t_0\\t\to t_0}}y(t)=y_0$, 且 $t\neq t_0$ 时有 $(x(t),y(t))\neq (x_0,y_0)$. 则有 $\lim_{\substack{t\to t_0\\t\to t_0}}f(x(t),y(t))=A$.

• 命题: 设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$, $y_0 = \lim_{x\to x_0} \phi(x)$. 则沿着曲线 $y = \phi(x)$, (x,y) 趋向于 (x_0,y_0) 时的极限

$$\lim_{x \to x_0} f(x, \phi(x)) = A.$$

• 注:

若上面命题中
$$y_0 = \lim_{x \to x_0 + 0} f(x)$$
,则 $\lim_{x \to x_0 + 0} f(x, \phi(x)) = A$.

• 注: 对三元函数有类似结论。

• 命题: 设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$, $y_0 = \lim_{x\to x_0} \phi(x)$. 则沿着曲线 $y = \phi(x)$, (x,y) 趋向于 (x_0,y_0) 时的极限

$$\lim_{x \to x_0} f(x, \phi(x)) = A.$$

• 注:

若上面命题中
$$y_0 = \lim_{x \to x_0 + 0} f(x)$$
,则 $\lim_{x \to x_0 + 0} f(x, \phi(x)) = A$.

• 注: 对三元函数有类似结论。

• 命题: 设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$, $y_0 = \lim_{x\to x_0} \phi(x)$. 则沿着曲线 $y = \phi(x)$, (x,y) 趋向于 (x_0,y_0) 时的极限

$$\lim_{x \to x_0} f(x, \phi(x)) = A.$$

• 注:

若上面命题中
$$y_0 = \lim_{x \to x_0 + 0} f(x)$$
,则 $\lim_{x \to x_0 + 0} f(x, \phi(x)) = A$.

• 注: 对三元函数有类似结论。

- 推论: 若存在连续函数 $y = \phi(x)$, 且 $y_0 = \phi(x_0)$, 但是极限 $\lim_{x \to x_0} f(x, \phi(x))$ 不存在, 则极限 $\lim_{(x,y) \to (x_0, y_0)} f(x, y)$ 不存在.
- 推论: 若存在连续函数 $y = \phi_1(x)$ 和 $y = \phi_2(x)$, 且 $y_0 = \phi_1(x_0) = \phi_2(x_0)$, 但是

$$\lim_{x \to x_0} f(x, \phi_1(x)) \neq \lim_{x \to x_0} f(x, \phi_2(x)),$$

则极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 不存在. (条件中的极限可以改为单边极限)

- 推论: 若存在连续函数 $y = \phi(x)$, 且 $y_0 = \phi(x_0)$, 但是极限 $\lim_{x \to x_0} f(x, \phi(x))$ 不存在, 则极限 $\lim_{(x,y) \to (x_0, y_0)} f(x, y)$ 不存在.
- 推论: 若存在连续函数 $y = \phi_1(x)$ 和 $y = \phi_2(x)$,且 $y_0 = \phi_1(x_0) = \phi_2(x_0)$,但是

$$\lim_{x \to x_0} f(x, \phi_1(x)) \neq \lim_{x \to x_0} f(x, \phi_2(x)),$$

则极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 不存在. (条件中的极限可以改为单边极限)

极限存在性 —例

- $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$, 则有 $f(x,x) = \frac{x}{\sqrt{2}|x|}$. 由于 $\lim_{x \to 0} f(x,x)$ 不存在,因此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{|x|}{\sqrt{x^2 + y^2}}$, 则有 $f(x,kx) = \frac{1}{\sqrt{1 + k^2}}$. 由于 $\lim_{x \to 0} f(x,kx)$ 与 k 有 关,因此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{x^4 \cdot y^4}{(x^2 + y^4)^3}$,则有

$$\lim_{x \to 0} f(x, k\sqrt{|x|}) = \frac{k^4}{(1 + k^4)^3}.$$

与 k 有关,所以极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

极限存在性 —例

- $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$, 则有 $f(x,x) = \frac{x}{\sqrt{2}|x|}$. 由于 $\lim_{x \to 0} f(x,x)$ 不存在,因 此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{|x|}{\sqrt{x^2 + y^2}}$, 则有 $f(x,kx) = \frac{1}{\sqrt{1 + k^2}}$. 由于 $\lim_{x \to 0} f(x,kx)$ 与 k 有 关,因此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{x^4 \cdot y^4}{(x^2 + y^4)^3}$,则有

$$\lim_{x \to 0} f(x, k\sqrt{|x|}) = \frac{k^4}{(1 + k^4)^3}.$$

与 k 有关,所以极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

极限存在性 —例

- $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$, 则有 $f(x,x) = \frac{x}{\sqrt{2}|x|}$. 由于 $\lim_{x \to 0} f(x,x)$ 不存在,因 此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{|x|}{\sqrt{x^2 + y^2}}$,则有 $f(x,kx) = \frac{1}{\sqrt{1 + k^2}}$. 由于 $\lim_{x \to 0} f(x,kx)$ 与 k 有 关,因此极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 不存在.
- $f(x,y) = \frac{x^4 \cdot y^4}{(x^2 + y^4)^3}$,则有

$$\lim_{x \to 0} f(x, k\sqrt{|x|}) = \frac{k^4}{(1 + k^4)^3}.$$

与 k 有关,所以极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

- 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$,则 $\lim_{(x,y)\to(x_0,y_0)} |f(x,y)| = |A|$.反过来不一定成立.
- 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $f(x,y) \geq g(x,y)$. 若 (x,y) 趋向于 (x_0,y_0) 时,函数 f(x,y) 和 g(x,y) 的极限都存在,则有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \ge \lim_{(x,y)\to(x_0,y_0)} g(x,y).$$

- 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$, 则 $\lim_{(x,y)\to(x_0,y_0)} |f(x,y)| = |A|$. 反过来不一定成立.
- 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $f(x,y) \geq g(x,y)$. 若 (x,y) 趋向于 (x_0,y_0) 时,函数 f(x,y) 和 g(x,y) 的极限都存在,则有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \ge \lim_{(x,y)\to(x_0,y_0)} g(x,y).$$

• 命题:设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,满足

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) > \lim_{(x,y)\to(x_0,y_0)} g(x,y).$$

则存在 $\delta > 0$, 使得当 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,

$$f(x,y) > g(x,y).$$

• 注:设 f(x,y) 满足 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) > 0$,则存在 $\delta > 0$,使得当 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时, f(x,y) > 0.

• 命题:设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,满足

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) > \lim_{(x,y)\to(x_0,y_0)} g(x,y).$$

则存在 $\delta > 0$, 使得当 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,

$$f(x,y) > g(x,y).$$

• 注: 设 f(x,y) 满足 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) > 0$, 则存在 $\delta > 0$, 使得当 $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时, f(x,y) > 0.

夹逼定理

• 定理: 设 f(x,y), g(x,y), h(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $f(x,y) \le h(x,y) \le g(x,y)$. 若有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} g(x,y) = A,$$

则有极限 $\lim_{(x,y)\to(x_0,y_0)} h(x,y) = A.$

• 推论: 设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $|f(x,y)| \leq |g(x,y)|$. 若 $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = 0$,则有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 0.$$

夹逼定理

• 定理: 设 f(x,y), g(x,y), h(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $f(x,y) \le h(x,y) \le g(x,y)$. 若有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} g(x,y) = A,$$

则有极限 $\lim_{(x,y)\to(x_0,y_0)} h(x,y) = A.$

• 推论: 设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,且 $|f(x,y)| \leq |g(x,y)|$. 若 $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = 0$,则有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 0.$$

•
$$f(x,y) = \frac{x \sin y}{\sqrt{x^2 + y^2}}$$
,则有

$$|f(x,y)| \le \frac{|xy|}{\sqrt{x^2 + y^2}} \le \frac{1}{2}\sqrt{x^2 + y^2}.$$

由于
$$\lim_{(x,y)\to(0,0)} \frac{1}{2} \sqrt{x^2 + y^2} = 0$$
,因此 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

•
$$f(x,y) = xy \ln(x^2 + y^2)$$
, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
证明: 利用 $\lim_{u\to 0+0} u \ln(u) = 0$,

$$|f(x,y)| \le \frac{1}{2}|(x^2+y^2)\ln(x^2+y^2)| \to 0$$

•
$$f(x,y) = \frac{x \sin y}{\sqrt{x^2 + y^2}}$$
,则有

$$|f(x,y)| \le \frac{|xy|}{\sqrt{x^2 + y^2}} \le \frac{1}{2}\sqrt{x^2 + y^2}.$$

由于
$$\lim_{(x,y)\to(0,0)} \frac{1}{2} \sqrt{x^2 + y^2} = 0$$
,因此 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

•
$$f(x,y) = xy \ln(x^2 + y^2)$$
, $\lim_{(x,y) \to (0,0)} f(x,y) = 0$.
证明: 利用 $\lim_{u \to 0+0} u \ln(u) = 0$,

$$|f(x,y)| \le \frac{1}{2}|(x^2+y^2)\ln(x^2+y^2)| \to 0.$$

• $f(x,y) = \frac{x^m \cdot y^n}{(x^2 + y^2)^{\frac{k}{2}}}, n + m > k$ 时,极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 存在 (极限为 0). $n + m \le k$ 时上述极限不存在.

证明: n+m>k 时,

$$|f(x,y)| \le \frac{(x^2+y^2)^{\frac{m}{2}} \cdot (x^2+y^2)^{\frac{n}{2}}}{(x^2+y^2)^{\frac{k}{2}}} \le (x^2+y^2)^{\frac{m+n-k}{2}} \to 0.$$

n+m < k 时,取 y = x

$$|f(x,x)| = 2^{-\frac{k}{2}}|x|^{n+m-k} \to +\infty,$$

n+m=k 时,取 y=ax,

$$|f(x,ax)| = |a|^n (1+a^2)^{-\frac{k}{2}}.$$

• $f(x,y) = \frac{x^m \cdot y^n}{(x^2 + y^2)^{\frac{k}{2}}}$, n + m > k 时, 极限 $\lim_{(x,y) \to (0,0)} f(x,y)$ 存在 (极限为 0). $n + m \le k$ 时上述极限不存在. 证明: n + m > k 时,

$$|f(x,y)| \leq \frac{(x^2+y^2)^{\frac{m}{2}} \cdot (x^2+y^2)^{\frac{n}{2}}}{(x^2+y^2)^{\frac{k}{2}}} \leq (x^2+y^2)^{\frac{m+n-k}{2}} \to 0.$$

n+m < k 时,取 y=x

$$|f(x,x)| = 2^{-\frac{k}{2}}|x|^{n+m-k} \to +\infty,$$

n+m=k 时,取 y=ax

$$|f(x,ax)| = |a|^n (1+a^2)^{-\frac{k}{2}}.$$

• $f(x,y) = \frac{x^m \cdot y^n}{(x^2 + y^2)^{\frac{k}{2}}}, n + m > k$ 时,极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 存在 (极限为 0). $n + m \leq k$ 时上述极限不存在. 证明: n + m > k 时.

$$|f(x,y)| \le \frac{(x^2 + y^2)^{\frac{m}{2}} \cdot (x^2 + y^2)^{\frac{n}{2}}}{(x^2 + y^2)^{\frac{k}{2}}} \le (x^2 + y^2)^{\frac{m+n-k}{2}} \to 0.$$

n+m < k 时,取 y = x,

$$|f(x,x)| = 2^{-\frac{k}{2}}|x|^{n+m-k} \to +\infty,$$

n+m=k 时,取 y=ax

$$|f(x,ax)| = |a|^n (1+a^2)^{-\frac{k}{2}}.$$

• $f(x,y) = \frac{x^m \cdot y^n}{(x^2 + y^2)^{\frac{k}{2}}}, n + m > k$ 时,极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 存在 (极限为 0). $n + m \leq k$ 时上述极限不存在. 证明: n + m > k 时.

$$|f(x,y)| \le \frac{(x^2 + y^2)^{\frac{m}{2}} \cdot (x^2 + y^2)^{\frac{n}{2}}}{(x^2 + y^2)^{\frac{k}{2}}} \le (x^2 + y^2)^{\frac{m+n-k}{2}} \to 0.$$

n+m < k 时,取 y = x,

$$|f(x,x)| = 2^{-\frac{k}{2}} |x|^{n+m-k} \to +\infty,$$

n+m=k 时,取 y=ax,

$$|f(x,ax)| = |a|^n (1+a^2)^{-\frac{k}{2}}.$$

•
$$f(x, y, z) = \frac{x^m y^n z^l}{(x^2 + y^2 + z^2)^{\frac{k}{2}}}, \ n + m + l > k \ \text{th}, \ \ \text{QR}$$

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0.$$

 $n+m+1 \le k$ 时上述极限不存在.

极限的性质

• 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 的一个空心邻域上有定义,若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A, \lim_{(x,y)\to(x_0,y_0)} g(x,y) = B.$ 则有

$$\lim_{(x,y)\to(x_0,y_0)} (f(x,y) \pm g(x,y)) = A \pm B,$$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)g(x,y) = AB.$$

当
$$B \neq 0$$
 时,
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{A}{B}.$$

求极限 —例

•
$$\mathfrak{P}$$
: $\lim_{(x,y)\to(0,0)} (1+x^2+y^2)^{\frac{1}{x^2+y^2}} = \lim_{u\to 0} (1+u)^{\frac{1}{u}} = e.$

• 例:
$$\dot{x} I = \lim_{(u,v)\to(0,0)} \left(\frac{\sin 2(u^2+v^2)}{u^2+v^2}\right)^{\frac{u\sin v}{\sqrt{u^2+v^2}}}$$
.

$$\lim_{(x,y) \to 0} \frac{\sin 2(u^2 + v^2)}{v^2 + v^2} = 2, \qquad \lim_{(x,y) \to 0} \frac{u \sin v}{\sqrt{2 + v^2}} = 0$$

因此

$$\ln I = \lim_{(x,y) \to (2,0)} \frac{u \sin v}{\sqrt{u^2 + v^2}} \ln \frac{\sin 2(u^2 + v^2)}{u^2 + v^2} = 0 \cdot \ln 2 = 0$$

求极限 —例

•
$$\mathfrak{P}$$
: $\lim_{(x,y)\to(0,0)} (1+x^2+y^2)^{\frac{1}{x^2+y^2}} = \lim_{u\to 0} (1+u)^{\frac{1}{u}} = e.$

•
$$\mathfrak{P}: \ \ \mathring{x} \ \ I = \lim_{(u,v) \to (0,0)} \left(\frac{\sin 2(u^2 + v^2)}{u^2 + v^2}\right)^{\frac{u \sin v}{\sqrt{u^2 + v^2}}}.$$

解: 由于

$$\lim_{(u,v)\to(0,0)} \frac{\sin 2(u^2+v^2)}{u^2+v^2} = 2, \quad \lim_{(u,v)\to(0,0)} \frac{u\sin v}{\sqrt{u^2+v^2}} = 0$$

因此

$$\ln I = \lim_{(x,y) \to (2,0)} \frac{u \sin v}{\sqrt{u^2 + v^2}} \ln \frac{\sin 2(u^2 + v^2)}{u^2 + v^2} = 0 \cdot \ln 2 = 0$$

求极限 —例

• \mathfrak{P} : $\lim_{(x,y)\to(0,0)} (1+x^2+y^2)^{\frac{1}{x^2+y^2}} = \lim_{u\to 0} (1+u)^{\frac{1}{u}} = e.$

•
$$\mathfrak{P}: \ \ \ \mathcal{X} \ \ I = \lim_{(u,v)\to(0,0)} \left(\frac{\sin 2(u^2+v^2)}{u^2+v^2}\right)^{\frac{u\sin v}{\sqrt{u^2+v^2}}}.$$

解: 由于

$$\lim_{(u,v)\to(0,0)}\frac{\sin 2(u^2+v^2)}{u^2+v^2}=2,\quad \lim_{(u,v)\to(0,0)}\frac{u\sin v}{\sqrt{u^2+v^2}}=0.$$

因此

$$\ln I = \lim_{(x,y)\to(2,0)} \frac{u\sin v}{\sqrt{u^2 + v^2}} \ln \frac{\sin 2(u^2 + v^2)}{u^2 + v^2} = 0 \cdot \ln 2 = 0.$$

累次极限

• 令 $A(y) = \lim_{x \to x_0} f(x, y)$, $B(x) = \lim_{y \to y_0} f(x, y)$. 两个累次极限定义为

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{x \to x_0} B(x),$$

$$\lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \lim_{y \to y_0} A(y).$$

- 注: 上面定义中函数 f(x,y) 可以在两条直线 $x = x_0$ 和 $y = y_0$ 上没有定义.
- 例: $\lim_{x\to 0} (\lim_{y\to 0} \frac{xy}{x^2+y^2}) = 0$, 但是全面极限 $\lim_{(x,y)\to (0,0)} \frac{xy}{x^2+y^2}$ 不存在.
- $\bullet \ \, \mathfrak{P}: \ \, \lim_{x \to 0} (\lim_{y \to 0} \frac{x^2 y^2}{x^2 + y^2}) = 1, \ \, \lim_{y \to 0} (\lim_{x \to 0} \frac{x^2 y^2}{x^2 + y^2}) = -1$

累次极限

• 令 $A(y) = \lim_{x \to x_0} f(x, y), \ B(x) = \lim_{y \to y_0} f(x, y).$ 两个累次极限定义为

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{x \to x_0} B(x),$$

$$\lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \lim_{y \to y_0} A(y).$$

- 注: 上面定义中函数 f(x,y) 可以在两条直线 $x = x_0$ 和 $y = y_0$ 上没有定义.
- 例: $\lim_{x\to 0} (\lim_{y\to 0} \frac{xy}{x^2+y^2}) = 0$, 但是全面极限 $\lim_{(x,y)\to (0,0)} \frac{xy}{x^2+y^2}$ 不存在.
- $\bullet \ \, \mathfrak{P}: \ \, \lim_{x \to 0} (\lim_{y \to 0} \frac{x^2 y^2}{x^2 + y^2}) = 1, \ \, \lim_{y \to 0} (\lim_{x \to 0} \frac{x^2 y^2}{x^2 + y^2}) = -1$

累次极限

• 令 $A(y) = \lim_{x \to x_0} f(x, y)$, $B(x) = \lim_{y \to y_0} f(x, y)$. 两个累次极限定义为

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{x \to x_0} B(x),$$

$$\lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \lim_{y \to y_0} A(y).$$

- 注: 上面定义中函数 f(x,y) 可以在两条直线 $x = x_0$ 和 $y = y_0$ 上没有定义.
- 例: $\lim_{x\to 0} (\lim_{y\to 0} \frac{xy}{x^2+y^2}) = 0$, 但是全面极限 $\lim_{(x,y)\to (0,0)} \frac{xy}{x^2+y^2}$ 不存在.
- $\bullet \ \, \text{FI: } \lim_{x \to 0} (\lim_{y \to 0} \frac{x^2 y^2}{x^2 + y^2}) = 1, \ \, \lim_{y \to 0} (\lim_{x \to 0} \frac{x^2 y^2}{x^2 + y^2}) = -1$

累次极限和全面极限

• 若全面极限和累次极限都存在,则一定相等. 若两个累次极限存在 但是不等,则全面极限不存在.

证明: 若 $\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} f(x,y)$ 存在,则对任给 $\epsilon>0$,存在 $\delta>0$,使得 当 $0<|x-x_0|<\delta$, $0<|y-y_0|<\delta$ 时, $|f(x,y)-A|<\epsilon$,则有当 $0<|x-x_0|<\delta$ 时, $|\lim_{\substack{y\to y_0\\y\to y_0}} f(x,y)-A|\leq \epsilon$,因此 $\lim_{\substack{x\to x_0\\y\to y_0}} \lim_{\substack{y\to y_0\\y\to y_0}} f(x,y)=A$.

• 例: $f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 则有 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, 但 是 $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ 不存在.

累次极限和全面极限

• 若全面极限和累次极限都存在,则一定相等. 若两个累次极限存在 但是不等,则全面极限不存在.

证明: 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在,则对任给 $\epsilon>0$,存在 $\delta>0$,使得 当 $0<|x-x_0|<\delta$, $0<|y-y_0|<\delta$ 时, $|f(x,y)-A|<\epsilon$,则有当 $0<|x-x_0|<\delta$ 时, $|\lim_{y\to y_0} f(x,y)-A|\leq \epsilon$, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)-A|\leq \epsilon$,因此 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)=A$.

• 例: $f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 则有 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, 但 是 $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ 不存在.

累次极限和全面极限

● 若全面极限和累次极限都存在,则一定相等. 若两个累次极限存在 但是不等,则全面极限不存在.

证明: 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在,则对任给 $\epsilon>0$,存在 $\delta>0$,使得 当 $0<|x-x_0|<\delta$, $0<|y-y_0|<\delta$ 时, $|f(x,y)-A|<\epsilon$,则有当 $0<|x-x_0|<\delta$ 时, $|\lim_{y\to y_0} f(x,y)-A|\leq \epsilon$, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)-A|\leq \epsilon$,因此 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)=A$.

• 例: $f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 则有 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, 但 是 $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ 不存在.

多元函数的连续性的定义

- 定义:设二元函数 z = f(x,y) 在 (x_0,y_0) 的一个邻域上有定义.若 $\lim_{\substack{(x,y)\to(x_0,y_0)\\z=f(x,y)}} f(x,y) = f(x_0,y_0)$ 则称 f(x,y) 在 (x_0,y_0) 处连续.若 z = f(x,y) 在区域 D 内有定义,且在 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: f 在 (x_0, y_0) 处连续 \Leftrightarrow 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ (或者 $|x-x_0| < \delta, |y-y_0| < \delta$) 时,有 $|f(x,y) f(x_0, y_0)| < \epsilon$.
- 例: 函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在原点处不连续. 因为 极限 $\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}$ 不存在.

多元函数的连续性的定义

- 定义:设二元函数 z = f(x,y) 在 (x_0,y_0) 的一个邻域上有定义.若 $\lim_{\substack{(x,y)\to(x_0,y_0)\\z=f(x,y)}} f(x,y) = f(x_0,y_0)$ 则称 f(x,y) 在 (x_0,y_0) 处连续.若 z = f(x,y) 在区域 D 内有定义,且在 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: f 在 (x_0, y_0) 处连续 \Leftrightarrow 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ (或者 $|x-x_0| < \delta, |y-y_0| < \delta$) 时,有 $|f(x,y) f(x_0, y_0)| < \epsilon$.
- 例: 函数 $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在原点处不连续. 因为 极限 $\lim_{(x,y) \to (0,0)} \frac{xy}{x^2+y^2}$ 不存在.

多元函数的连续性的定义

- 定义:设二元函数 z = f(x,y) 在 (x_0,y_0) 的一个邻域上有定义.若 $\lim_{\substack{(x,y)\to(x_0,y_0)\\z=f(x,y)}} f(x,y) = f(x_0,y_0)$ 则称 f(x,y) 在 (x_0,y_0) 处连续.若 z = f(x,y) 在区域 D 内有定义,且在 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: f 在 (x_0, y_0) 处连续 \Leftrightarrow 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ (或者 $|x-x_0| < \delta, |y-y_0| < \delta$) 时,有 $|f(x,y) f(x_0, y_0)| < \epsilon$.
- 例: 函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在原点处不连续. 因为 极限 $\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}$ 不存在.

复合函数的极限

• 定理: 若 z = f(x, y) 在 (x_0, y_0) 处连续, u = g(z) 在 $z = z_0 = f(x_0, y_0)$ 处连续,则有 g(f(x, y)) 在 (x_0, y_0) 处连续.

证明: 若 u = g(z) 在 $z = z_0$ 处连续, $\lim_{(x,y)\to(0,0)} f(x,y) = z_0$, 则有

$$\lim_{(x,y)\to(x_0,y_0)} g(f(x,y)) = g(z_0) = g(f(x_0,y_0)).$$

• 若 g(u,v) 在 $(u_0.v_0)$ 处连续,f(x,y),h(x,y) 在 $(x_0.y_0)$ 处连续,且 $(u_0.v_0) = (f(x_0.y_0),g(x_0.y_0))$. 则有 g(f(x,y),h(x,y)) 在 $(x_0.y_0)$ 处连续.

复合函数的极限

• 定理: 若 z = f(x,y) 在 (x_0,y_0) 处连续, u = g(z) 在 $z = z_0 = f(x_0,y_0)$ 处连续, 则有 g(f(x,y)) 在 (x_0,y_0) 处连续. 证明: 若 u = g(z) 在 $z = z_0$ 处连续, $\lim_{(x,y)\to(0,0)} f(x,y) = z_0$, 则有

$$\lim_{(x,y)\to(x_0,y_0)} g(f(x,y)) = g(z_0) = g(f(x_0,y_0)).$$

• 若 g(u,v) 在 $(u_0.v_0)$ 处连续,f(x,y),h(x,y) 在 $(x_0.y_0)$ 处连续,且 $(u_0.v_0) = (f(x_0.y_0),g(x_0.y_0))$. 则有 g(f(x,y),h(x,y)) 在 $(x_0.y_0)$ 处连续.

复合函数的极限

• 定理: 若 z = f(x,y) 在 (x_0,y_0) 处连续, u = g(z) 在 $z = z_0 = f(x_0,y_0)$ 处连续, 则有 g(f(x,y)) 在 (x_0,y_0) 处连续. 证明: 若 u = g(z) 在 $z = z_0$ 处连续, $\lim_{(x,y)\to(0,0)} f(x,y) = z_0$, 则有

$$\lim_{(x,y)\to(x_0,y_0)} g(f(x,y)) = g(z_0) = g(f(x_0,y_0)).$$

• 若 g(u,v) 在 $(u_0.v_0)$ 处连续,f(x,y),h(x,y) 在 $(x_0.y_0)$ 处连续,且 $(u_0.v_0)=(f(x_0.y_0),g(x_0.y_0))$. 则有 g(f(x,y),h(x,y)) 在 $(x_0.y_0)$ 处连续.

复合函数的极限

• 定理: 若 z = f(x,y) 在 (x_0,y_0) 处连续, u = g(z) 在 $z = z_0 = f(x_0,y_0)$ 处连续, 则有 g(f(x,y)) 在 (x_0,y_0) 处连续. 证明: 若 u = g(z) 在 $z = z_0$ 处连续, $\lim_{(x,y)\to(0,0)} f(x,y) = z_0$, 则有

$$\lim_{(x,y)\to(x_0,y_0)} g(f(x,y)) = g(z_0) = g(f(x_0,y_0)).$$

• 若 g(u,v) 在 $(u_0.v_0)$ 处连续, f(x,y),h(x,y) 在 $(x_0.y_0)$ 处连续,且 $(u_0.v_0)=(f(x_0.y_0),g(x_0.y_0))$. 则有 g(f(x,y),h(x,y)) 在 $(x_0.y_0)$ 处连续.

二元函数四则运算的连续性

- 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 处连续,则 $f \pm g, f \cdot g$ 在 (x_0,y_0) 处连续. 若还有 $g(x_0,y_0) \neq 0$,则 $\frac{f}{g}$ 在 (x_0,y_0) 处连续. 证明: z = f(x,y) + g(x,y) 是 z(u,v) = u + v, (u,v) = (f(x,y), g(x,y))
- 例: $g(z) = \sqrt{z}$, $z = x^2 + y^2$, 从而 $\sqrt{x^2 + y^2}$ 连续.

二元函数四则运算的连续性

- 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 处连续,则 $f\pm g, f\cdot g$ 在 (x_0,y_0) 处连续. 若还有 $g(x_0,y_0)\neq 0$,则 $\frac{f}{g}$ 在 (x_0,y_0) 处连续. 证明: z=f(x,y)+g(x,y) 是 z(u,v)=u+v, (u,v)=(f(x,y),g(x,y)) 的复合.
- 例: $g(z) = \sqrt{z}$, $z = x^2 + y^2$, 从而 $\sqrt{x^2 + y^2}$ 连续.

二元函数四则运算的连续性

- 定理: 设 f(x,y), g(x,y) 在 (x_0,y_0) 处连续,则 $f\pm g, f\cdot g$ 在 (x_0,y_0) 处连续. 若还有 $g(x_0,y_0)\neq 0$,则 $\frac{f}{g}$ 在 (x_0,y_0) 处连续. 证明: z=f(x,y)+g(x,y) 是 z(u,v)=u+v, (u,v)=(f(x,y),g(x,y)) 的复合.
- 例: $g(z) = \sqrt{z}$, $z = x^2 + y^2$, 从而 $\sqrt{x^2 + y^2}$ 连续.

二元初等函数的连续性

- 二元初等函数:从x,y出发进行有限次的加、减、乘、除、与一元初等函数复合得到的函数.
- 定理: 二元初等函数在其定义域内连续 (定义域的内点都是连续点). 例: $\sqrt{x^2 + y^2}$, $\frac{xy}{x^2 + y^2}$.
- 推论: 设 f(x,y) 为二元初等函数, (x_0,y_0) 是其定义域的内点, 则有 $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (y,y)\to(x_0,y_0)}} f(x,y) = f(x_0,y_0).$ 例: $x_0>0$ 时, $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\to(x_0,y_0)}} x^y = x_0^{y_0},$

$$\lim_{(x,y)\to(x_0,y_0)}(\sin(x+y)+|x+y+1|)=\sin(x_0+y_0)+|x_0+y_0+1|$$

二元初等函数的连续性

- 二元初等函数: 从 x,y 出发进行有限次的加、减、乘、除、与一元 初等函数复合得到的函数.
- 定理: 二元初等函数在其定义域内连续 (定义域的内点都是连续点). 例: $\sqrt{x^2+y^2}$, $\frac{xy}{x^2+y^2}$.
- 推论: 设 f(x,y) 为二元初等函数, (x_0,y_0) 是其定义域的内点, 则有 $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\to(x_0,y_0)}} f(x,y) = f(x_0,y_0).$ 例: $x_0>0$ 时, $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\to(x_0,y_0)}} x^y = x_0^{y_0},$

 $\lim_{(x,y)\to(x_0,y_0)} (\sin(x+y) + |x+y+1|) = \sin(x_0+y_0) + |x_0+y_0+1|.$

二元初等函数的连续性

- 二元初等函数:从 x,y 出发进行有限次的加、减、乘、除、与一元初等函数复合得到的函数.
- 定理: 二元初等函数在其定义域内连续 (定义域的内点都是连续点). 例: $\sqrt{x^2+y^2}$, $\frac{xy}{y^2+y^2}$.
- 推论: 设 f(x,y) 为二元初等函数, (x_0,y_0) 是其定义域的内点, 则有 $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\to(x_0,y_0)}} f(x,y) = f(x_0,y_0).$ 例: $x_0>0$ 时, $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\to(x_0,y_0)}} x^y = x_0^{y_0}$,

$$\lim_{(x,y)\to(x_0,y_0)}(\sin(x+y)+|x+y+1|)=\sin(x_0+y_0)+|x_0+y_0+1|.$$

向量函数的极限

- 向量函数的极限: 设函数 $z = f(P): D \to \mathbb{R}^m$ 在 P_0 点的一个空心 邻域上有定义,若存在向量 $A \in \mathbb{R}^m$,对任意 $\epsilon > 0$,存在 δ ,使得当 $0 < d(P, P_0) < \delta$ 时,有 $d(f(P), A) < \epsilon$,则称 $\lim_{P \to P_0} f(P) = A$.
- 性质: 设 $f(P) = (f_1, f_2, \dots, f_m), A = (a_1, a_2, \dots, a_m).$ 则有

$$\lim_{P\to P_0} f(P) = A \iff \lim_{P\to P_0} f_k(P) = a_k, k = 1, 2, \cdots, m$$

证明:
$$|f_k(P) - a_k| \le d(f(P), A) \le \sum_{k=1}^m |f_k(P) - a_k|$$

向量函数的极限

- 向量函数的极限: 设函数 $z = f(P): D \to \mathbb{R}^m$ 在 P_0 点的一个空心 邻域上有定义,若存在向量 $A \in \mathbb{R}^m$,对任意 $\epsilon > 0$,存在 δ ,使得当 $0 < d(P, P_0) < \delta$ 时,有 $d(f(P), A) < \epsilon$,则称 $\lim_{P \to P_0} f(P) = A$.
- 性质: 设 $f(P) = (f_1, f_2, \cdots, f_m), A = (a_1, a_2, \cdots, a_m).$ 则有

$$\lim_{P\to P_0} f(P) = A \Longleftrightarrow \lim_{P\to P_0} f_k(P) = a_k, k = 1, 2, \cdots, m.$$

证明:
$$|f_k(P) - a_k| \le d(f(P), A) \le \sum_{k=1}^m |f_k(P) - a_k|$$
.

映射 (向量函数) 的连续性

- 映射 (向量函数) 的连续: 设映射 (向量函数)z = f(P) 在 P_0 点附近有定义,若 $\lim_{P \to P_0} f(P) = f(P_0)$, 则称 f(P) 在 P_0 点处连续. 如果 f 在区域 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: 设 $f(P) = (f_1, f_2, \dots, f_m)$, 则有 f 在 P_0 处连续 $\Leftrightarrow f_1, f_2, \dots, f_m$ 在 P_0 处连续.
- 例: 坐标变换 $\begin{cases} u = x\cos\alpha y\sin\alpha \\ v = x\sin\alpha + y\cos\alpha \end{cases} \not\in \mathbb{R}^2 \to \mathbb{R}^2 \text{ 的连续映射.}$

映射 (向量函数) 的连续性

- 映射 (向量函数) 的连续: 设映射 (向量函数)z = f(P) 在 P_0 点附近有定义,若 $\lim_{P \to P_0} f(P) = f(P_0)$, 则称 f(P) 在 P_0 点处连续. 如果 f 在区域 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: 设 $f(P) = (f_1, f_2, \dots, f_m)$, 则有 f 在 P_0 处连续 $\Leftrightarrow f_1, f_2, \dots, f_m$ 在 P_0 处连续.
- 例: 坐标变换 $\begin{cases} u = x\cos\alpha y\sin\alpha \\ v = x\sin\alpha + y\cos\alpha \end{cases} \not\in \mathbb{R}^2 \to \mathbb{R}^2 \text{ 的连续映射.}$

映射 (向量函数) 的连续性

- 映射 (向量函数) 的连续: 设映射 (向量函数)z = f(P) 在 P_0 点附近有定义,若 $\lim_{P \to P_0} f(P) = f(P_0)$, 则称 f(P) 在 P_0 点处连续. 如果 f 在区域 D 上处处连续,则称 f 在 D 上连续,记为 $f \in C(D)$.
- 性质: 设 $f(P) = (f_1, f_2, \dots, f_m)$, 则有 f 在 P_0 处连续 $\Leftrightarrow f_1, f_2, \dots, f_m$ 在 P_0 处连续.
- 例: 坐标变换 $\begin{cases} u = x \cos \alpha y \sin \alpha \\ v = x \sin \alpha + y \cos \alpha \end{cases} \not\in \mathbb{R}^2 \to \mathbb{R}^2 \text{ 的连续映射.}$

• 定义: f 是闭区域 \bar{D} 上的函数, $P_0 \in \partial \bar{D}$. 若对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $P \in U_\delta(P_0) \cap \bar{D}$ 时, 有

$$|f(P) - f(P_0)| < \epsilon,$$

则称 f 在 P_0 处连续. 当 f 在 \bar{D} 上处处连续时,记为 $f \in C(\bar{D})$.

- n=1 时,
 若 D=[a,b], f在 a 点连续,即为右连续
- 设 $f \in C(\bar{D}), P_0, P_k \in \bar{D},$ 且 $P_k \to P_0$,则有 $\lim_{k \to \infty} f(P_k) = f(P_0).$

• 定义: f 是闭区域 \bar{D} 上的函数, $P_0 \in \partial \bar{D}$. 若对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $P \in U_{\delta}(P_0) \cap \bar{D}$ 时, 有

$$|f(P) - f(P_0)| < \epsilon,$$

则称 f 在 P_0 处连续. 当 f 在 \bar{D} 上处处连续时,记为 $f \in C(\bar{D})$.

- n=1 时,
 若 D̄ = [a, b], f 在 a 点连续,即为右连续.
- 设 $f \in C(\bar{D}), P_0, P_k \in \bar{D},$ 且 $P_k \to P_0$,则有 $\lim_{k \to \infty} f(P_k) = f(P_0).$

• 定义: f 是闭区域 \bar{D} 上的函数, $P_0 \in \partial \bar{D}$. 若对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $P \in U_\delta(P_0) \cap \bar{D}$ 时, 有

$$|f(P) - f(P_0)| < \epsilon,$$

则称 f 在 P_0 处连续. 当 f 在 \bar{D} 上处处连续时,记为 $f \in C(\bar{D})$.

- n = 1 时,
 若 D̄ = [a, b], f 在 a 点连续,即为右连续.
- 设 $f \in C(\bar{D}), P_0, P_k \in \bar{D},$ 且 $P_k \to P_0$,则有 $\lim_{k \to \infty} f(P_k) = f(P_0).$

- 定理:设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,则f在 \bar{D} 上有界,即存在M > 0,使得 $|f(P)| \le M$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$, 则 f 在 \bar{D} 上能取到最大值和最小值, 即存在 $P_1, P_2 \in \bar{D}$, 使得 $f(P_1) \geq f(P) \geq f(P_2)$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,设 f 在 \bar{D} 上的最大值为 M,最小值为 m. 则对任意 $\eta \in (m,M)$,存在 $P \in \bar{D}$,使得 $f(P) = \eta$.

49 / 171

- 定理:设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,则 f 在 \bar{D} 上有界,即存在 M > 0,使得 $|f(P)| \le M$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,则 f 在 \bar{D} 上能取到最大值和最小值,即存在 $P_1, P_2 \in \bar{D}$,使得 $f(P_1) \geq f(P) \geq f(P_2)$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,设 f 在 \bar{D} 上的最大值为 M,最小值为 m. 则对任意 $\eta \in (m,M)$,存在 $P \in \bar{D}$,使得 $f(P) = \eta$.

49 / 171

- 定理:设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,则 f 在 \bar{D} 上有界,即存在 M > 0,使得 $|f(P)| \le M$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,则 f 在 \bar{D} 上能取到最大值和最小值,即存在 $P_1, P_2 \in \bar{D}$,使得 $f(P_1) \geq f(P) \geq f(P_2)$ 对所有 $P \in \bar{D}$ 成立.
- 设 \bar{D} 是有界闭区域, $f \in C(\bar{D})$,设 f 在 \bar{D} 上的最大值为 M,最小值为 m. 则对任意 $\eta \in (m,M)$,存在 $P \in \bar{D}$,使得 $f(P) = \eta$.

一阶偏导数的定义 1

• 定义:设 z = f(x, y) 在 (x_0, y_0) 的某个邻域上有定义. 若极限

$$\lim_{\Delta x \rightarrow 0} \frac{f(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{y}_0) - f(\mathbf{x}_0, \mathbf{y}_0)}{\Delta \mathbf{x}}$$

存在 (即 $f(x, y_0)$ 作为 x 的函数在 $x = x_0$ 处可导),则称 f(x, y) 在 (x_0, y_0) 处关于 x 的偏导数存在. f(x, y) 在 (x_0, y_0) 处关于 x 的偏导数可记为 $f_x(x_0, y_0)$, $\frac{\partial f}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial x}|_{(x_0, y_0)}$ 或者 $z_x|_{(x_0, y_0)}$. 类似可定义 f(x, y) 在 (x_0, y_0) 处关于 y 的偏导数

$$f_{y}(x_{0},y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0},y_{0} + \Delta y) - f(x_{0},y_{0})}{\Delta y}.$$

• f 在 $\{(x, y_0) \in U_\delta(x_0, y_0)\}$ 上有定义即可考虑关于 x 的偏导数.

一阶偏导数的定义 1

• 定义: 设 z = f(x, y) 在 (x_0, y_0) 的某个邻域上有定义. 若极限

$$\lim_{\Delta x \rightarrow 0} \frac{f(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{y}_0) - f(\mathbf{x}_0, \mathbf{y}_0)}{\Delta \mathbf{x}}$$

存在 (即 $f(x, y_0)$ 作为 x 的函数在 $x = x_0$ 处可导),则称 f(x, y) 在 (x_0, y_0) 处关于 x 的偏导数存在. f(x, y) 在 (x_0, y_0) 处关于 x 的偏导数可记为 $f_x(x_0, y_0)$, $\frac{\partial f}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial x}|_{(x_0, y_0)}$ 或者 $z_x|_{(x_0, y_0)}$. 类似可定义 f(x, y) 在 (x_0, y_0) 处关于 y 的偏导数

$$f_{y}(x_{0},y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0},y_{0} + \Delta y) - f(x_{0},y_{0})}{\Delta y}.$$

• f 在 $\{(x, y_0) \in U_\delta(x_0, y_0)\}$ 上有定义即可考虑关于 x 的偏导数.

• 几何意义: $f_x(x_0, y_0)$ 是坐标曲线 $\begin{cases} z = f(x, y) \\ y = y_0 \end{cases}$ 在 (x_0, y_0) 点的切线 关于 x 轴的斜率, $f_y(x_0, y_0)$ 类似.

•
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}, f(x,0) = f(0,y) = 0,$$
 因此 $f_x(0,0) = f_y(0,0) = 0.$

$$f_X(x,y) = \begin{cases} \frac{-x^2y + y^3}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$f_Y(x,y) = \begin{cases} \frac{x^3 - xy^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- 几何意义: $f_x(x_0, y_0)$ 是坐标曲线 $\begin{cases} z = f(x, y) \\ y = y_0 \end{cases}$ 在 (x_0, y_0) 点的切线 关于 x 轴的斜率, $f_y(x_0, y_0)$ 类似.
- $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$, f(x,0) = f(0,y) = 0, 因此 $f_x(0,0) = f_y(0,0) = 0$.

$$f_x(x,y) = \begin{cases} \frac{-x^2y + y^3}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$f_y(x,y) = \begin{cases} \frac{x^3 - xy^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

• \mathfrak{H} : $z = \arctan \frac{(x-2)^2 + y}{x + (x-2)^2 y^2}$, \mathfrak{M}

$$z_y|_{(2,0)} = \frac{d}{dy} \Big(\arctan\frac{y}{2}\Big) \Big|_{y=0} = \frac{1}{1+\frac{y^2}{4}} \frac{1}{2} \Big|_{y=0} = \frac{1}{2}.$$

- $\{\emptyset\}: \ f(x,y) = x^y, \ x > 0. \ \ \emptyset \ \ f_x = yx^{y-1}, \ f_y = x^y \ln x.$
- 注: $f(x_1, x_2, \dots, x_n)$ 的偏导数记为 $f_{x_1}, f_{x_2}, \dots, f_{x_n}$.

• 例: $z = \arctan \frac{(x-2)^2 + y}{x + (x-2)^2 y^2}$, 则

$$z_y|_{(2,0)} = \frac{d}{dy} \Big(\arctan\frac{y}{2}\Big) \Big|_{y=0} = \frac{1}{1+\frac{y^2}{4}} \frac{1}{2} \Big|_{y=0} = \frac{1}{2}.$$

- $\{f(x,y) = x^y, \ x > 0. \ \}, \ f_x = yx^{y-1}, \ f_y = x^y \ln x.$
- 注: $f(x_1, x_2, \dots, x_n)$ 的偏导数记为 $f_{x_1}, f_{x_2}, \dots, f_{x_n}$.

• 例: $z = \arctan \frac{(x-2)^2 + y}{x + (x-2)^2 y^2}$, 则

$$z_y|_{(2,0)} = \frac{d}{dy} \Big(\arctan\frac{y}{2}\Big) \Big|_{y=0} = \frac{1}{1+\frac{y^2}{4}} \frac{1}{2} \Big|_{y=0} = \frac{1}{2}.$$

- $\{\emptyset\}: \ f(x,y) = x^y, \ x > 0. \ \emptyset \} \ f_x = yx^{y-1}, \ f_y = x^y \ln x.$
- 注: $f(x_1,x_2,\cdots,x_n)$ 的偏导数记为 $f_{x_1},f_{x_2},\cdots,f_{x_n}$.

高阶偏导数的定义

• 定义:设z = f(x, y),定义f的二阶偏导数

$$\begin{split} f_{xx} &= \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right), f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right), \\ f_{yx} &= \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right), f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right). \end{split}$$

•
$$\{f(x, y) = x^y, f_x = yx^{y-1}, f_y = x^y \ln x.$$

$$f_{xx} = y(y-1)x^{y-2}, \quad f_{xy} = yx^{y-1} \ln x + x^{y-1}$$

$$f_{yx} = yx^{y-1} \ln x + x^{y-1}, \quad f_{yy} = x^y (\ln x)^2$$

高阶偏导数的定义

• 定义:设z = f(x,y),定义f的二阶偏导数

$$\begin{split} f_{xx} &= \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \Big(\frac{\partial z}{\partial x} \Big), f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \Big(\frac{\partial z}{\partial x} \Big), \\ f_{yx} &= \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \Big(\frac{\partial z}{\partial y} \Big), f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \Big(\frac{\partial z}{\partial y} \Big). \end{split}$$

• $\{f(x,y) = x^y, f_x = yx^{y-1}, f_y = x^y \ln x.$

$$\begin{split} f_{xx} &= y(y-1)x^{y-2}, \quad f_{xy} &= yx^{y-1}\ln x + x^{y-1}, \\ f_{yx} &= yx^{y-1}\ln x + x^{y-1}, \quad f_{yy} &= x^y(\ln x)^2 \end{split}$$

高阶偏导数 —例

•
$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, $f(x,y) \neq (0,0)$ By,
$$f_x(x,y) = \frac{(3x^2y - y^3)(x^2 + y^2) - (x^2 - y^2)xy \cdot 2x}{(x^2 + y^2)^2},$$
$$f_y(x,y) = \frac{(x^3 - 3xy^2)(x^2 + y^2) - (x^2 - y^2)xy \cdot 2y}{(x^2 + y^2)^2}.$$

显然, $f_x(0,0) = f_v(0,0) = 0$, $f_x(x,y)$, $f_v(x,y)$ 连续.

• 因为 $f_x(0,y) = -y$, $f_y(x,0) = x$. 从而得 $f_{xy}(0,0) = -1$, $f_{yx}(0,0) = 1$. 容易验证 f_{xy} , f_{yx} 在原点处不连续.

54 / 171

刘建明 (北大数学学院) 多元函数微积分

高阶偏导数 —例

•
$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, $f(x,y) \neq (0,0)$ If,

$$f_x(x,y) = \frac{(3x^2y - y^3)(x^2 + y^2) - (x^2 - y^2)xy \cdot 2x}{(x^2 + y^2)^2},$$

$$f_y(x,y) = \frac{(x^3 - 3xy^2)(x^2 + y^2) - (x^2 - y^2)xy \cdot 2y}{(x^2 + y^2)^2}.$$

显然, $f_x(0,0) = f_y(0,0) = 0$, $f_x(x,y)$, $f_y(x,y)$ 连续.

• 因为 $f_x(0,y) = -y$, $f_y(x,0) = x$. 从而得 $f_{xy}(0,0) = -1$, $f_{yx}(0,0) = 1$. 容易验证 f_{xy} , f_{yx} 在原点处不连续.

高阶偏导数的性质

- 定理: 若 f(x,y) 的两个混合偏导数 f_{xy} 和 f_{yx} 在区域 D 内连续,则 $f_{xy}(x,y) = f_{yx}(x,y)$ 对任意 $(x,y) \in D$ 成立.
- $f(x,y) = x^y \in C^2$, 但是 $f(x,y) = \begin{cases} \frac{(x^2 y^2)xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 的二阶 偏导数不连续.
- 记 $C^n(D)$ 为 D 上所有 k 阶 $(k \le n)$ 偏导数连续的函数构成的集合. 则对 $f \in C^2(D)$, $f_{xy} = f_{yx}$, 对 $f \in C^3(D)$, $f_{xxy} = f_{yxx}$, ...

高阶偏导数的性质

- 定理: 若 f(x,y) 的两个混合偏导数 f_{xy} 和 f_{yx} 在区域 D 内连续,则 $f_{xy}(x,y) = f_{yx}(x,y)$ 对任意 $(x,y) \in D$ 成立.
- $f(x,y) = x^y \in C^2$, 但是 $f(x,y) = \begin{cases} \frac{(x^2 y^2)xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 的二阶 偏导数不连续.
- 记 $C^n(D)$ 为 D 上所有 k 阶 $(k \le n)$ 偏导数连续的函数构成的集合. 则对 $f \in C^2(D)$, $f_{xy} = f_{yx}$, 对 $f \in C^3(D)$, $f_{xxy} = f_{xyx} = f_{yxx}$, ...

高阶偏导数的性质

- 定理: 若 f(x,y) 的两个混合偏导数 f_{xy} 和 f_{yx} 在区域 D 内连续,则 $f_{xy}(x,y) = f_{yx}(x,y)$ 对任意 $(x,y) \in D$ 成立.
- $f(x,y) = x^y \in C^2$,但是 $f(x,y) = \begin{cases} \frac{(x^2 y^2)xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 的二阶 偏导数不连续.
- 记 $C^n(D)$ 为 D 上所有 k 阶 $(k \le n)$ 偏导数连续的函数构成的集合. 则对 $f \in C^2(D)$, $f_{xy} = f_{yx}$, 对 $f \in C^3(D)$, $f_{xxy} = f_{yxx}$, ...

定理的证明1

• 证明: 设

$$\begin{split} H(\Delta x, \Delta y) &= f(x_0 + \Delta x, y_0 + \Delta y) \\ &- f(x_0, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0, y_0), \\ &\Leftrightarrow g(y) = f(x_0 + \Delta x, y) - f(x_0, y), \quad \forall \forall f \\ g'(y) &= f_y(x_0 + \Delta x, y) - f_y(x_0, y), \\ H &= (f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)) \\ &- (f(x_0 + \Delta x, y_0) - f(x_0, y_0)) \\ &= g(y_0 + \Delta y) - g(y_0) = g'(y_0 + \theta_1 \Delta y) \Delta y \\ &= (f_y(x_0 + \Delta x, y_0 + \theta_1 \Delta y) - f_y(x_0, y_0 + \theta_1 \Delta y)) \Delta y \\ &= f_{yx}(x_0 + \theta_2 \Delta x, y_0 + \theta_1 \Delta y) \Delta x \Delta y. \end{split}$$

定理的证明 2

• 证明 (续): 令
$$h(x) = f(x, y_0 + \Delta y) - f(x, y_0)$$
, 则有 $h'(x) = f_x(x, y_0 + \Delta y) - f_x(x, y_0)$,
$$H = (f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0)) - (f(x_0, y_0 + \Delta y) - f(x_0, y_0))$$
$$= h(x_0 + \Delta x) - h(x_0) = h'(x_0 + \theta_3 \Delta x) \Delta x$$
$$= (f_x(x_0 + \theta_3 \Delta x, y_0 + \Delta y) - f_x(x_0 + \theta_3 \Delta x, y_0)) \Delta x$$
$$= f_{xy}(x_0 + \theta_3 \Delta x, y_0 + \theta_4 \Delta y) \Delta x \Delta y,$$

因此
$$\Delta x \Delta y \neq 0$$
 时,
 $f_{yx}(x_0 + \theta_2 \Delta x, y_0 + \theta_1 \Delta y) = f_{xy}(x_0 + \theta_3 \Delta x, y_0 + \theta_4 \Delta y)$,
 $\Delta x \to 0, \Delta y \to 0$ 得 $f_{yx}(x_0, y_0) = f_{xy}(x_0, y_0)$.

• 例: $z = \ln \sqrt{x^2 + y^2}$ 满足 $\Delta z = 0$, 其中 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. 证明: 设 $r = \sqrt{x^2 + y^2}$,

$$\frac{\partial z}{\partial x} = \frac{1}{r} \cdot \frac{x}{r} = \frac{x}{r^2}, \qquad \frac{\partial z}{\partial y} = \frac{1}{r} \cdot \frac{y}{r} = \frac{y}{r^2}.$$

则有

$$\frac{\partial^2 z}{\partial x^2} = \frac{1}{r^2} - \frac{2x^2}{r^4}, \qquad \frac{\partial^2 z}{\partial y^2} = \frac{1}{r^2} - \frac{2y^2}{r^4},$$

相加即得.

• 例: $z = \ln \sqrt{x^2 + y^2}$ 满足 $\Delta z = 0$, 其中 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. 证明: 设 $r = \sqrt{x^2 + y^2}$,

$$\frac{\partial z}{\partial x} = \frac{1}{r} \cdot \frac{x}{r} = \frac{x}{r^2}, \qquad \frac{\partial z}{\partial y} = \frac{1}{r} \cdot \frac{y}{r} = \frac{y}{r^2},$$

则有

$$\frac{\partial^2 z}{\partial x^2} = \frac{1}{r^2} - \frac{2x^2}{r^4}, \qquad \frac{\partial^2 z}{\partial y^2} = \frac{1}{r^2} - \frac{2y^2}{r^4},$$

相加即得.

• 例: $u = \frac{1}{\sqrt{x^2+y^2+z^2}}$ 满足 $\Delta u = 0$, 其中 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. 证明: 设 $r = \sqrt{x^2+y^2+z^2}$,

$$\frac{\partial u}{\partial x} = -\frac{x}{r^3}, \qquad \frac{\partial u}{\partial y} = -\frac{y}{r^3}, \qquad \frac{\partial u}{\partial z} = -\frac{z}{r^3},$$

则有

$$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{r^3} + \frac{3x^2}{r^5}, \frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^3} + \frac{3y^2}{r^5}, \frac{\partial^2 u}{\partial z^2} = -\frac{1}{r^3} + \frac{3z^2}{r^5},$$

相加即得

• $ightharpoonup \mathbf{i} : n > 2 \text{ pt}, \ \Delta = \sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2}, \ \Delta[(x_1^2 + x_2^2 + \dots + x_n^2)^{1 - \frac{n}{2}}] = 0.$

• 例: $u=\frac{1}{\sqrt{x^2+y^2+z^2}}$ 满足 $\Delta u=0$, 其中 $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$. 证明: 设 $r=\sqrt{x^2+y^2+z^2}$,

$$\frac{\partial u}{\partial x} = -\frac{x}{r^3}, \qquad \frac{\partial u}{\partial y} = -\frac{y}{r^3}, \qquad \frac{\partial u}{\partial z} = -\frac{z}{r^3},$$

则有

$$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{r^3} + \frac{3x^2}{r^5}, \frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^3} + \frac{3y^2}{r^5}, \frac{\partial^2 u}{\partial z^2} = -\frac{1}{r^3} + \frac{3z^2}{r^5},$$

相加即得.

• $i\hat{\mathbf{z}}: n > 2 \text{ ft}, \ \Delta = \sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}, \ \Delta[(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2})^{1 - \frac{n}{2}}] = 0.$

• 例: $u = \frac{1}{\sqrt{x^2+y^2+z^2}}$ 满足 $\Delta u = 0$, 其中 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. 证明: 设 $r = \sqrt{x^2+y^2+z^2}$,

$$\frac{\partial u}{\partial x} = -\frac{x}{r^3}, \qquad \frac{\partial u}{\partial y} = -\frac{y}{r^3}, \qquad \frac{\partial u}{\partial z} = -\frac{z}{r^3},$$

则有

$$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{r^3} + \frac{3x^2}{r^5}, \frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^3} + \frac{3y^2}{r^5}, \frac{\partial^2 u}{\partial z^2} = -\frac{1}{r^3} + \frac{3z^2}{r^5},$$

相加即得.

• $i \pm : n > 2 \text{ ft}, \ \Delta = \sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}, \ \Delta[(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2})^{1 - \frac{n}{2}}] = 0.$

全微分的定义

- 一元函数可微的定义: $f(x_0 + \Delta x) f(x_0) = A\Delta x + o(\Delta x)$, $\Delta x \to 0$. 即 y = f(x) 与 $y = f(x_0) + A(x x_0)$ 相切, 也等价于 f(x) 在 x_0 点可导, 且 $f'(x_0) = A$.
- 二元函数可微的定义: z = f(x,y). 记 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$, 若存在 实数 A, B, 使得

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\rho),$$
$$(\Delta x, \Delta y) \to (0, 0)$$

则称 f(x,y) 在 (x_0,y_0) 处可微,称 $A\Delta x + B\Delta y$ 为 f(x,y) 在 (x_0,y_0) 处的全微分,记为 $df = A\Delta x + B\Delta y = Adx + Bdy$.

全微分的定义

- 一元函数可微的定义: $f(x_0 + \Delta x) f(x_0) = A\Delta x + o(\Delta x)$, $\Delta x \to 0$. 即 y = f(x) 与 $y = f(x_0) + A(x x_0)$ 相切, 也等价于 f(x) 在 x_0 点可导, 且 $f'(x_0) = A$.
- 二元函数可微的定义: z = f(x,y). 记 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$, 若存在 实数 A, B, 使得

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\rho),$$
$$(\Delta x, \Delta y) \to (0, 0)$$

则称 f(x,y) 在 (x_0,y_0) 处可微,称 $A\Delta x + B\Delta y$ 为 f(x,y) 在 (x_0,y_0) 处的全微分,记为 $df = A\Delta x + B\Delta y = Adx + Bdy$.

60 / 171

全微分 —例

• 注: z = f(x, y) 在 (x_0, y_0) 处可微, 即存在实数 A, B, 使得

$$\lim_{(\Delta x, \Delta y) \rightarrow (0,0)} \frac{f(\mathbf{x}_0 + \Delta x, \mathbf{y}_0 + \Delta y) - f(\mathbf{x}_0, \mathbf{y}_0) - \mathbf{A} \Delta x - \mathbf{B} \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.$$

• n 元函数的全微分可类似定义.

•
$$\mathfrak{P}$$
: $f(x,y) = \begin{cases} \frac{x^4}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

$$f(\Delta x, \Delta y) = o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

因此 f(x,y) 在 (0,0) 处可微, 此时 A=B=0, $df|_{(0,0)}=0$.

全微分 —例

• 注: z = f(x, y) 在 (x_0, y_0) 处可微, 即存在实数 A, B, 使得

$$\lim_{(\Delta x, \Delta y) \rightarrow (0,0)} \frac{f(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{y}_0 + \Delta \mathbf{y}) - f(\mathbf{x}_0, \mathbf{y}_0) - A \Delta \mathbf{x} - B \Delta \mathbf{y}}{\sqrt{(\Delta \mathbf{x})^2 + (\Delta \mathbf{y})^2}} = 0.$$

• n 元函数的全微分可类似定义.

•
$$f(x,y) = \begin{cases} \frac{x^4}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$f(\Delta x, \Delta y) = o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

因此 f(x,y) 在 (0,0) 处可微, 此时 A=B=0, $df|_{(0,0)}=0$.

• 定理: z = f(x, y) 在 (x_0, y_0) 处可微, 设 $df|_{(x_0, y_0)} = Adx + Bdy$, 则 z = f(x, y) 在 (x_0, y_0) 处的两个偏导数存在,且 $f_x(x_0, y_0) = A$, $f_y(x_0, y_0) = B$. 即

$$df|_{(x_0,y_0)} = f_x(x_0,y_0)dx + f_y(x_0,y_0)dy.$$

• 证明: z = f(x, y) 在 (x_0, y_0) 处可微,则

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - A\Delta x - B\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

• 定理: z = f(x, y) 在 (x_0, y_0) 处可微,设 $df|_{(x_0, y_0)} = Adx + Bdy$,则 z = f(x, y) 在 (x_0, y_0) 处的两个偏导数存在,且 $f_x(x_0, y_0) = A$, $f_y(x_0, y_0) = B$. 即

$$df|_{(x_0,y_0)} = f_x(x_0,y_0)dx + f_y(x_0,y_0)dy.$$

• 证明: z = f(x, y) 在 (x_0, y_0) 处可微,则

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - A\Delta x - B\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.$$

• 证明 (续): 取 $\Delta y = 0$, $\rho = |\Delta x|$, 则有 $\Delta x \to 0$ 时,

$$\frac{|f(x_0 + \Delta x, y_0) - f(x_0, y_0) - A\Delta x|}{|\Delta x|} \to 0.$$

得 $f_x(x_0, y_0) = A$. 同样可得 $f_y(x_0, y_0) = B$.

• 推论: f(x,y) 在 (x_0,y_0) 处可微等价于: f(x,y) 在 (x_0,y_0) 处的偏导数存在,且

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta z - f_{x}(x_{0}, y_{0}) \Delta x - f_{x}(x_{0}, y_{0}) \Delta y}{\sqrt{(\Delta x)^{2} + (\Delta y)^{2}}} = 0.$$

• 偏导数存在时不一定可微. 如

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

• 证明 (续): 取 $\Delta y = 0$, $\rho = |\Delta x|$, 则有 $\Delta x \to 0$ 时,

$$\frac{|f(x_0 + \Delta x, y_0) - f(x_0, y_0) - A\Delta x|}{|\Delta x|} \to 0.$$

得 $f_x(x_0, y_0) = A$. 同样可得 $f_y(x_0, y_0) = B$.

• 推论: f(x,y) 在 (x_0,y_0) 处可微等价于: f(x,y) 在 (x_0,y_0) 处的偏导数存在, 且

$$\lim_{\stackrel{\Delta x \rightarrow 0}{\Delta y \rightarrow 0}} \frac{\Delta z - f_{\mathsf{X}}(x_0,y_0) \Delta x - f_{\mathsf{X}}(x_0,y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.$$

• 偏导数存在时不一定可微. 如

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

• 证明 (续): 取 $\Delta y = 0$, $\rho = |\Delta x|$, 则有 $\Delta x \to 0$ 时,

$$\frac{|f(x_0 + \Delta x, y_0) - f(x_0, y_0) - A\Delta x|}{|\Delta x|} \to 0.$$

得 $f_x(x_0, y_0) = A$. 同样可得 $f_y(x_0, y_0) = B$.

• 推论: f(x,y) 在 (x_0,y_0) 处可微等价于: f(x,y) 在 (x_0,y_0) 处的偏导数存在, 且

$$\lim_{\stackrel{\Delta x \to 0}{\Delta y \to 0}} \frac{\Delta z - f_{\mathsf{x}}(x_0, y_0) \Delta x - f_{\mathsf{x}}(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.$$

• 偏导数存在时不一定可微. 如

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

全微分的定义几何意义

• 几何意义: z = f(x, y) 在 (x_0, y_0) 处可微,则

$$f(x,y) = f(x_0,y_0) + A(x-x_0) + B(y-y_0) + o(\sqrt{(x-x_0)^2 + (y-y_0)^2}).$$

即
$$z = f(x, y)$$
 和
平面 $z = f(x_0, y_0) + A(x - x_0) + B(y - y_0)$
在 (x_0, y_0) 点相切.

可微与连续

• 定理: z = f(x, y) 在 (x_0, y_0) 处可微,则 z = f(x, y) 在 (x_0, y_0) 处连续.

证明: $(x, y) \rightarrow (x_0, y_0)$ 时,

$$f(x,y) - f(x_0, y_0) = A(x - x_0) + B(y - y_0) + o(\sqrt{(x - x_0)^2 + (y - y_0)^2}) \to 0.$$

• 例: 连续函数不一定可微: f(x,y) = |x| + |y|. f(x,y) 在 (0,0) 处的偏导数不存在, 因此不可微.

可微与连续

• 定理: z = f(x, y) 在 (x_0, y_0) 处可微,则 z = f(x, y) 在 (x_0, y_0) 处连续.

证明: $(x,y) \to (x_0,y_0)$ 时,

$$f(x,y) - f(x_0, y_0) = A(x - x_0) + B(y - y_0) + o(\sqrt{(x - x_0)^2 + (y - y_0)^2}) \to 0.$$

• 例:连续函数不一定可微: f(x,y) = |x| + |y|. f(x,y) 在 (0,0) 处的偏导数不存在, 因此不可微.

- 定理: 若 f(x,y) 在 (x₀,y₀) 附近两个偏导数存在,且 f_x(x,y), f_y(x,y) 在 (x₀,y₀) 点连续,则 f(x,y) 在 (x₀,y₀) 处可微.
- 证明:

$$\begin{split} \Delta z = & f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \\ = & f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) \\ & + f(x_0, y_0 + \Delta y) - f(x_0, y_0) \\ = & f_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_y(x_0, y_0 + \theta_2 \Delta y) \Delta y \\ = & f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y \end{split}$$

- 定理: 若 f(x,y) 在 (x_0,y_0) 附近两个偏导数存在,且 $f_x(x,y)$, $f_y(x,y)$ 在 (x_0,y_0) 点连续,则 f(x,y) 在 (x_0,y_0) 处可微.
- 证明:

$$\begin{split} \Delta z = & f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \\ = & f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) \\ & + f(x_0, y_0 + \Delta y) - f(x_0, y_0) \\ = & f_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_y(x_0, y_0 + \theta_2 \Delta y) \Delta y \\ = & f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y \end{split}$$

• 证明 (续): 其中

$$\alpha_1 = f_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) - f_x(x_0, y_0) \to 0$$

$$\alpha_2 = f_y(x_0, y_0 + \theta_2 \Delta y) - f_y(x_0, y_0) \to 0$$

因为

$$\frac{|\alpha_1 \Delta x + \alpha_2 \Delta y|}{\rho} \le |\alpha_1| + |\alpha_2| \to 0,$$

即得 $\alpha_1 \Delta x + \alpha_2 \Delta y = o(\rho)$.

- 推论: 若 $f \in C^1(D)$, 则 f 在 D 上可微.
- 对初等函数, 若 f 在 (x_0, y_0) 附近偏导数存在, 则 f 在 (x_0, y_0) 处可微.

• 证明 (续): 其中

$$\alpha_1 = f_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) - f_x(x_0, y_0) \to 0$$

$$\alpha_2 = f_y(x_0, y_0 + \theta_2 \Delta y) - f_y(x_0, y_0) \to 0$$

因为

$$\frac{|\alpha_1 \Delta x + \alpha_2 \Delta y|}{\rho} \le |\alpha_1| + |\alpha_2| \to 0,$$

即得 $\alpha_1 \Delta x + \alpha_2 \Delta y = o(\rho)$.

- 推论: 若 $f \in C^1(D)$, 则 f 在 D 上可微.
- 对初等函数, 若 f 在 (x_0, y_0) 附近偏导数存在, 则 f 在 (x_0, y_0) 处可微.

可微函数但偏导数不一定连续

• 注: 可微函数函数偏导数不一定连续, 如

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

则有

$$f_{x}(x,y) = \begin{cases} 2x\sin\frac{1}{x^{2}+y^{2}} - \frac{2x}{x^{2}+y^{2}}\cos\frac{1}{x^{2}+y^{2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

• 例:
$$f(x,y,z) = \left(\frac{y}{x}\right)^z$$
,由于 $f_x(1,2,-1) = \frac{1}{2}$, $f_y(1,2,-1) = -\frac{1}{4}$, $f_z(1,2,-1) = \frac{1}{2} \ln 2$,因此

$$df|_{(1,2,-1)} = \frac{1}{2}dx - \frac{1}{4}dy + \frac{1}{2}\ln 2dz.$$

• 定理: 设 z = g(x, y) 在 (x_0, y_0) 处的偏导数存在, u = f(z) 在 $z_0 = g(x_0, y_0)$ 处可导,则复合函数 u = f(g(x, y)) 在 (x_0, y_0) 处偏导数存在,且有链式法则

$$\begin{split} \frac{\partial u}{\partial x}\Big|_{(x_0, y_0)} &= \frac{du}{dz}(z_0) \cdot \frac{\partial z}{\partial x}\Big|_{(x_0, y_0)} \\ \frac{\partial u}{\partial y}\Big|_{(x_0, y_0)} &= \frac{du}{dz}(z_0) \cdot \frac{\partial z}{\partial y}\Big|_{(x_0, y_0)} \end{split}$$

• 定理: 设 $u = \phi(x, y)$, $v = \psi(x, y)$ 在 (x_0, y_0) 处的偏导数存在, z = f(u, v) 在 (u_0, v_0) 附近偏导数存在且偏导数在 (u_0, v_0) 点连续 (这里 $u_0 = \phi(x_0, y_0)$, $v_0 = \psi(x_0, y_0)$), 则复合函数 $z = f(\phi(x, y), \psi(x, y))$ 在 (x_0, y_0) 处偏导数存在,且有链式法则

$$\begin{split} \frac{\partial z}{\partial x}\Big|_{(x_0,y_0)} &= \frac{\partial f}{\partial u}\Big|_{(u_0,v_0)} \cdot \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} + \frac{\partial f}{\partial v}\Big|_{(u_0,v_0)} \cdot \frac{\partial v}{\partial x}\Big|_{(x_0,y_0)} \\ \frac{\partial z}{\partial y}\Big|_{(x_0,y_0)} &= \frac{\partial f}{\partial u}\Big|_{(u_0,v_0)} \cdot \frac{\partial u}{\partial y}\Big|_{(x_0,y_0)} + \frac{\partial f}{\partial v}\Big|_{(u_0,v_0)} \cdot \frac{\partial v}{\partial y}\Big|_{(x_0,y_0)} \end{split}$$

• f 满足的条件可以改为: f(u,v) 在 (u_0,v_0) 点处可微.

• 定理: 设 $u = \phi(x, y)$, $v = \psi(x, y)$ 在 (x_0, y_0) 处的偏导数存在, z = f(u, v) 在 (u_0, v_0) 附近偏导数存在且偏导数在 (u_0, v_0) 点连续 (这里 $u_0 = \phi(x_0, y_0)$, $v_0 = \psi(x_0, y_0)$), 则复合函数 $z = f(\phi(x, y), \psi(x, y))$ 在 (x_0, y_0) 处偏导数存在,且有链式法则

$$\begin{split} \frac{\partial z}{\partial x}\Big|_{(x_0,y_0)} &= \frac{\partial f}{\partial u}\Big|_{(u_0,v_0)} \cdot \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} + \frac{\partial f}{\partial v}\Big|_{(u_0,v_0)} \cdot \frac{\partial v}{\partial x}\Big|_{(x_0,y_0)} \\ \frac{\partial z}{\partial y}\Big|_{(x_0,y_0)} &= \frac{\partial f}{\partial u}\Big|_{(u_0,v_0)} \cdot \frac{\partial u}{\partial y}\Big|_{(x_0,y_0)} + \frac{\partial f}{\partial v}\Big|_{(u_0,v_0)} \cdot \frac{\partial v}{\partial y}\Big|_{(x_0,y_0)} \end{split}$$

• f 满足的条件可以改为: f(u, v) 在 (u_0, v_0) 点处可微.

• 定理证明: 由 z = f(u, v) 在 (u_0, v_0) 点可微, 有

$$\Delta z = \frac{\partial f}{\partial u}(u_0, v_0)\Delta u + \frac{\partial f}{\partial v}(u_0, v_0)\Delta v + \sqrt{\Delta u^2 + \Delta v^2}\alpha(\Delta u, \Delta v),$$

其中
$$\alpha$$
 满足: 当 $(\Delta u, \Delta v) \to (0,0)$ 时, $\alpha(\Delta u, \Delta v) \to 0$. 令 $\Delta u = \phi(x_0 + \Delta x, y_0) - \phi(x_0, y_0),$ $\Delta v = \psi(x_0 + \Delta x, y_0) - \psi(x_0, y_0),$

$$\Delta z = f(\phi(x_0 + \Delta x, y_0), \psi(x_0 + \Delta x, y_0)) - f(u_0, v_0)$$

$$= \frac{\partial f}{\partial u}(u_0, v_0)\Delta u + \frac{\partial f}{\partial v}(u_0, v_0)\Delta v + \sqrt{\Delta u^2 + \Delta v^2}\alpha(\Delta u, \Delta v).$$

上面等式两边同除以 Δx , 再令 $\Delta x \rightarrow 0$ 即得第一个等式。

• 定理证明: 由 z = f(u, v) 在 (u_0, v_0) 点可微, 有

$$\Delta z = \frac{\partial f}{\partial u}(u_0, v_0) \Delta u + \frac{\partial f}{\partial v}(u_0, v_0) \Delta v + \sqrt{\Delta u^2 + \Delta v^2} \alpha(\Delta u, \Delta v),$$

其中
$$\alpha$$
 满足: 当 $(\Delta u, \Delta v) \rightarrow (0,0)$ 时, $\alpha(\Delta u, \Delta v) \rightarrow 0$. 令
$$\Delta u = \phi(x_0 + \Delta x, y_0) - \phi(x_0, y_0),$$

$$\Delta v = \psi(x_0 + \Delta x, y_0) - \psi(x_0, y_0),$$

$$\Delta z = f(\phi(x_0 + \Delta x, y_0), \psi(x_0 + \Delta x, y_0)) - f(u_0, v_0)$$

$$= \frac{\partial f}{\partial u}(u_0, v_0)\Delta u + \frac{\partial f}{\partial v}(u_0, v_0)\Delta v + \sqrt{\Delta u^2 + \Delta v^2}\alpha(\Delta u, \Delta v).$$

上面等式两边同除以 Δx , 再令 $\Delta x \rightarrow 0$ 即得第一个等式。

定理证明:由 z = f(u, v) 在 (u₀, v₀) 点可微,有

$$\Delta z = \frac{\partial f}{\partial u}(u_0, v_0)\Delta u + \frac{\partial f}{\partial v}(u_0, v_0)\Delta v + \sqrt{\Delta u^2 + \Delta v^2}\alpha(\Delta u, \Delta v),$$

其中
$$\alpha$$
 满足: 当 $(\Delta u, \Delta v) \rightarrow (0,0)$ 时, $\alpha(\Delta u, \Delta v) \rightarrow 0$. 令
$$\Delta u = \phi(x_0 + \Delta x, y_0) - \phi(x_0, y_0),$$

$$\Delta v = \psi(x_0 + \Delta x, y_0) - \psi(x_0, y_0),$$

$$\Delta z = f(\phi(x_0 + \Delta x, y_0), \psi(x_0 + \Delta x, y_0)) - f(u_0, v_0)$$

= $\frac{\partial f}{\partial u}(u_0, v_0)\Delta u + \frac{\partial f}{\partial v}(u_0, v_0)\Delta v + \sqrt{\Delta u^2 + \Delta v^2}\alpha(\Delta u, \Delta v).$

上面等式两边同除以 Δx , 再令 $\Delta x \rightarrow 0$ 即得第一个等式.

• $z = f(\phi(x, y), \psi(x, y))$ 求导的链式法则可以写成

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial \phi}{\partial x} + f_2' \cdot \frac{\partial \psi}{\partial x}, \qquad \frac{\partial z}{\partial y} = f_1' \cdot \frac{\partial \phi}{\partial y} + f_2' \cdot \frac{\partial \psi}{\partial y}.$$

• 若 $z = f(\phi(t), \psi(t))$, f 可微, 则有

$$\frac{dz}{dt} = f_1'\phi'(t) + f_2'\psi'(t).$$

- \mathfrak{P} : z = f(x, y, w(x, y)). $\frac{\partial z}{\partial x} = f_1' + f_3' \frac{\partial w}{\partial x}$, $\frac{\partial z}{\partial y} = f_2' + f_3' \frac{\partial w}{\partial y}$.
- 若 $z = f(u_1, u_2, \dots, u_n)$, $u_i = u_i(x_1, x_2, \dots, x_m)$, $i = 1, 2, \dots, n$. f 可 微,则有

$$\frac{\partial z}{\partial x_k} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \cdot \frac{\partial u_i}{\partial x_k}, k = 1, 2, \cdots, m.$$

• $z = f(\phi(x, y), \psi(x, y))$ 求导的链式法则可以写成

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial \phi}{\partial x} + f_2' \cdot \frac{\partial \psi}{\partial x}, \qquad \frac{\partial z}{\partial y} = f_1' \cdot \frac{\partial \phi}{\partial y} + f_2' \cdot \frac{\partial \psi}{\partial y}.$$

• 若 $z = f(\phi(t), \psi(t))$, f 可微, 则有

$$\frac{dz}{dt} = f_1'\phi'(t) + f_2'\psi'(t).$$

- $\{\emptyset\}: z = f(x, y, w(x, y)). \ \frac{\partial z}{\partial x} = f_1' + f_3' \frac{\partial w}{\partial x}, \ \frac{\partial z}{\partial y} = f_2' + f_3' \frac{\partial w}{\partial y}.$
- 若 $z = f(u_1, u_2, \dots, u_n)$, $u_i = u_i(x_1, x_2, \dots, x_m)$, $i = 1, 2, \dots, n$. f 可 微,则有

$$\frac{\partial z}{\partial x_k} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \cdot \frac{\partial u_i}{\partial x_k}, k = 1, 2, \cdots, m.$$

• $z = f(\phi(x, y), \psi(x, y))$ 求导的链式法则可以写成

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial \phi}{\partial x} + f_2' \cdot \frac{\partial \psi}{\partial x}, \qquad \frac{\partial z}{\partial y} = f_1' \cdot \frac{\partial \phi}{\partial y} + f_2' \cdot \frac{\partial \psi}{\partial y}.$$

• 若 $z = f(\phi(t), \psi(t))$, f 可微, 则有

$$\frac{dz}{dt} = f_1'\phi'(t) + f_2'\psi'(t).$$

- \mathfrak{G} : z = f(x, y, w(x, y)). $\frac{\partial z}{\partial x} = f_1' + f_3' \frac{\partial w}{\partial x}$, $\frac{\partial z}{\partial y} = f_2' + f_3' \frac{\partial w}{\partial y}$.
- 若 $z = f(u_1, u_2, \dots, u_n)$, $u_i = u_i(x_1, x_2, \dots, x_m)$, $i = 1, 2, \dots, n$. f 可 微,则有

$$\frac{\partial z}{\partial x_k} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \cdot \frac{\partial u_i}{\partial x_k}, k = 1, 2, \cdots, m.$$

• $z = f(\phi(x, y), \psi(x, y))$ 求导的链式法则可以写成

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial \phi}{\partial x} + f_2' \cdot \frac{\partial \psi}{\partial x}, \qquad \frac{\partial z}{\partial y} = f_1' \cdot \frac{\partial \phi}{\partial y} + f_2' \cdot \frac{\partial \psi}{\partial y}.$$

• 若 $z = f(\phi(t), \psi(t))$, f 可微,则有

$$\frac{dz}{dt} = f_1'\phi'(t) + f_2'\psi'(t).$$

- $[x]: z = f(x, y, w(x, y)). \frac{\partial z}{\partial x} = f'_1 + f'_3 \frac{\partial w}{\partial x}, \frac{\partial z}{\partial y} = f'_2 + f'_3 \frac{\partial w}{\partial y}.$
- 若 $z = f(u_1, u_2, \dots, u_n)$, $u_i = u_i(x_1, x_2, \dots, x_m)$, $i = 1, 2, \dots, n$. f 可 微,则有

$$\frac{\partial z}{\partial x_k} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \cdot \frac{\partial u_i}{\partial x_k}, k = 1, 2, \cdots, m.$$

• 例: $z = f(u, v) = v \ln u$, $u = x^2 + y^2$, $v = \frac{y}{x}$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. 解:

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{v}{u} \cdot 2x - \ln u \cdot \frac{y}{x^2} = \frac{2y}{x^2 + y^2} - \frac{y}{x^2} \ln(x^2 + y^2), \\ \frac{\partial z}{\partial y} &= \frac{v}{u} \cdot 2y + \ln u \cdot \frac{1}{x} = \frac{2y^2}{x(x^2 + y^2)} + \frac{1}{x} \ln(x^2 + y^2). \end{split}$$

• f(u, v) 在 (u_0, v_0) 处的偏导数存在但不可微时,复合函数的偏导数不一定存在,即使偏导数存在也不一定满足链式法则.

• 例: $z = f(u, v) = v \ln u$, $u = x^2 + y^2$, $v = \frac{y}{x}$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. 解:

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{v}{u} \cdot 2x - \ln u \cdot \frac{y}{x^2} = \frac{2y}{x^2 + y^2} - \frac{y}{x^2} \ln(x^2 + y^2), \\ \frac{\partial z}{\partial y} &= \frac{v}{u} \cdot 2y + \ln u \cdot \frac{1}{x} = \frac{2y^2}{x(x^2 + y^2)} + \frac{1}{x} \ln(x^2 + y^2). \end{split}$$

• f(u, v) 在 (u_0, v_0) 处的偏导数存在但不可微时,复合函数的偏导数不一定存在,即使偏导数存在也不一定满足链式法则.

• 例: 设 u = x + y, v = x - y,

$$z = f(u, v) = \begin{cases} \frac{u^2 v}{u^2 + v^2}, & (u, v) \neq (0, 0) \\ 0, & (u, v) = (0, 0) \end{cases}$$

則有
$$z = f(x + y, x - y) = \begin{cases} \frac{(x+y)^2(x-y)}{2(x^2+y^2)}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial z}{\partial x}\Big|_{(0,0)} = \frac{1}{2}, \quad \frac{\partial f}{\partial u}\Big|_{(0,0)} \cdot \frac{\partial u}{\partial x}\Big|_{(0,0)} + \frac{\partial f}{\partial v}\Big|_{(0,0)} \cdot \frac{\partial v}{\partial x}\Big|_{(0,0)} = 0,$$

$$\frac{\partial z}{\partial y}\Big|_{(0,0)} = -\frac{1}{2}, \quad \frac{\partial f}{\partial u}\Big|_{(0,0)} \cdot \frac{\partial u}{\partial y}\Big|_{(0,0)} + \frac{\partial f}{\partial v}\Big|_{(0,0)} \cdot \frac{\partial v}{\partial y}\Big|_{(0,0)} = 0$$

• 例: 设 u = x + y, v = x - y,

$$z = f(u, v) = \begin{cases} \frac{u^2 v}{u^2 + v^2}, & (u, v) \neq (0, 0) \\ 0, & (u, v) = (0, 0) \end{cases}$$

則有
$$z = f(x + y, x - y) = \begin{cases} \frac{(x+y)^2(x-y)}{2(x^2+y^2)}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\begin{split} \frac{\partial z}{\partial x}\Big|_{(0,0)} &= \frac{1}{2}, \quad \frac{\partial f}{\partial u}\Big|_{(0,0)} \cdot \frac{\partial u}{\partial x}\Big|_{(0,0)} + \frac{\partial f}{\partial v}\Big|_{(0,0)} \cdot \frac{\partial v}{\partial x}\Big|_{(0,0)} = 0, \\ \frac{\partial z}{\partial y}\Big|_{(0,0)} &= -\frac{1}{2}, \quad \frac{\partial f}{\partial u}\Big|_{(0,0)} \cdot \frac{\partial u}{\partial y}\Big|_{(0,0)} + \frac{\partial f}{\partial v}\Big|_{(0,0)} \cdot \frac{\partial v}{\partial y}\Big|_{(0,0)} = 0. \end{split}$$

复合函数微分法 —例 2

• 设 z = f(x, y) 有连续的一阶偏导数, $x = r\cos\theta, y = r\sin\theta$, 证明

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$$

证明:利用复合函数求导法则,

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta, \quad \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x}(-r\sin\theta) + \frac{\partial z}{\partial y}(r\cos\theta).$$

从上式可以解出 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r}\cos\theta - \frac{1}{r}\frac{\partial z}{\partial \theta}\sin\theta$, $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r}\sin\theta + \frac{1}{r}\frac{\partial z}{\partial \theta}\cos\theta$.

复合函数微分法 —例 2

• 设 z = f(x, y) 有连续的一阶偏导数, $x = r\cos\theta$, $y = r\sin\theta$, 证明

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$$

证明: 利用复合函数求导法则,

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta, \quad \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x}(-r\sin\theta) + \frac{\partial z}{\partial y}(r\cos\theta).$$

从上式可以解出 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r}\cos\theta - \frac{1}{r}\frac{\partial z}{\partial \theta}\sin\theta$, $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r}\sin\theta + \frac{1}{r}\frac{\partial z}{\partial \theta}\cos\theta$.

复合函数微分法 —例 2

• 设 z = f(x, y) 有连续的一阶偏导数, $x = r\cos\theta$, $y = r\sin\theta$, 证明

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$$

证明: 利用复合函数求导法则,

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta, \quad \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x}(-r\sin\theta) + \frac{\partial z}{\partial y}(r\cos\theta).$$

从上式可以解出 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r}\cos\theta - \frac{1}{r}\frac{\partial z}{\partial \theta}\sin\theta$, $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r}\sin\theta + \frac{1}{r}\frac{\partial z}{\partial \theta}\cos\theta$.

复合函数的高阶偏导数

• 设 $u = \phi(x, y)$, $v = \psi(x, y)$ 和 z = f(u, v) 都有连续的二阶偏导数,则 复合函数 $z = f(\phi(x, y), \psi(x, y))$ 的二阶偏导数存在,且有

$$\frac{\partial^{2}z}{\partial x^{2}} = f_{uu} \left(\frac{\partial u}{\partial x}\right)^{2} + 2f_{uv} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + f_{vv} \left(\frac{\partial v}{\partial x}\right)^{2} + f_{u} \frac{\partial^{2}u}{\partial x^{2}} + f_{v} \frac{\partial^{2}v}{\partial x^{2}},
\frac{\partial^{2}z}{\partial x \partial y} = f_{uu} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + f_{uv} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + f_{vv} \frac{\partial v}{\partial x} \frac{\partial v}{\partial y}
+ f_{u} \frac{\partial^{2}u}{\partial x \partial y} + f_{v} \frac{\partial^{2}v}{\partial x \partial y}.$$

• 证明:
$$\frac{\partial z}{\partial x} = f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x}, \quad \frac{\partial f_u}{\partial x} = f_{uu} \frac{\partial u}{\partial x} + f_{uv} \frac{\partial v}{\partial x}, \quad \frac{\partial f_v}{\partial x} = f_{vu} \frac{\partial u}{\partial x} + f_{vv} \frac{\partial v}{\partial x}.$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial f_u}{\partial x} \frac{\partial u}{\partial x} + f_u \frac{\partial^2 u}{\partial x^2} + \frac{\partial f_v}{\partial x} \frac{\partial v}{\partial x} + f_v \frac{\partial^2 v}{\partial x^2}.$$

复合函数的高阶偏导数

• 设 $u = \phi(x, y)$, $v = \psi(x, y)$ 和 z = f(u, v) 都有连续的二阶偏导数,则 复合函数 $z = f(\phi(x, y), \psi(x, y))$ 的二阶偏导数存在,且有

$$\frac{\partial^{2}z}{\partial x^{2}} = f_{uu} \left(\frac{\partial u}{\partial x}\right)^{2} + 2f_{uv} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + f_{vv} \left(\frac{\partial v}{\partial x}\right)^{2} + f_{u} \frac{\partial^{2}u}{\partial x^{2}} + f_{v} \frac{\partial^{2}v}{\partial x^{2}},
\frac{\partial^{2}z}{\partial x \partial y} = f_{uu} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + f_{uv} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + f_{vv} \frac{\partial v}{\partial x} \frac{\partial v}{\partial y}
+ f_{u} \frac{\partial^{2}u}{\partial x \partial y} + f_{v} \frac{\partial^{2}v}{\partial x \partial y}.$$

•
$$\mathbb{E}\mathfrak{H}$$
: $\frac{\partial z}{\partial x} = f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x}, \ \frac{\partial f_u}{\partial x} = f_{uu} \frac{\partial u}{\partial x} + f_{uv} \frac{\partial v}{\partial x}, \ \frac{\partial f_v}{\partial x} = f_{vu} \frac{\partial u}{\partial x} + f_{vv} \frac{\partial v}{\partial x}.$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial f_u}{\partial x} \frac{\partial u}{\partial x} + f_u \frac{\partial^2 u}{\partial x^2} + \frac{\partial f_v}{\partial x} \frac{\partial v}{\partial x} + f_v \frac{\partial^2 v}{\partial x^2}.$$

• z = f(x, y), $x = r\cos\theta$, $y = r\sin\theta$. 则有

$$\Delta z = z_{rr} + \frac{1}{r}z_r + \frac{1}{r^2}z_{\theta\theta}.$$

证明: 利用复合函数求偏导

$$\begin{split} z_r &= z_x \cos \theta + z_y \sin \theta, \quad z_\theta = z_x (-r \sin \theta) + z_y (r \cos \theta) \\ 继续求偽异 z_{rr} &= \cos \theta \frac{\partial z_x}{\partial r} + \sin \theta \frac{\partial z_y}{\partial r}, \, \frac{\partial z_x}{\partial r} = z_{xx} \cos \theta + z_{xy} \sin \theta. \\ z_{\theta\theta} &= z_x (-r \cos \theta) - z_y (r \sin \theta) + (-r \sin \theta) \frac{\partial z_x}{\partial \theta} + (r \cos \theta) \frac{\partial z_y}{\partial \theta}. \\ z_{rr} &= z_{xx} \cos^2 \theta + z_{yy} \sin^2 \theta + 2z_{xy} \cos \theta \sin \theta \\ z_{\theta\theta} &= z_{xx} (r^2 \sin^2 \theta) + z_{yy} (r^2 \cos^2 \theta) + 2z_{xy} (-r^2 \cos \theta \sin \theta) \\ &+ z_x (-r \cos \theta) + z_y (-r \sin \theta) \end{split}$$

设 u = f(x, y, z) 有连续的一阶偏导数, $x = r\sin\phi\cos\theta, y = r\sin\phi\sin\theta, z = r\cos\phi$, 则有

•

$$\left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \phi}\right)^2 + \frac{1}{r^2 \sin^2 \phi} \left(\frac{\partial u}{\partial \theta}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2.$$

• u = f(x, y, z), $x = r\sin\phi\cos\theta$, $y = r\sin\phi\sin\theta$, $z = r\cos\phi$. 则有

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} (\sin \phi \frac{\partial u}{\partial \phi}) + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2}.$$

• \bar{x} z = f(x + y, x - y) 的偏导数 (这里 f 有连续的二阶偏导数).

$$\frac{\partial^{2}z}{\partial x^{2}} = f_{11}''(x+y,x-y) + f_{12}''(x+y,x-y) + f_{21}''(x+y,x-y) + f_{22}''(x+y,x-y) = f_{11}''(x+y,x-y) + 2f_{12}''(x+y,x-y) + f_{22}''(x+y,x-y),
\frac{\partial^{2}z}{\partial x \partial y} = f_{11}''(x+y,x-y) - f_{12}''(x+y,x-y) + f_{21}''(x+y,x-y) - f_{22}''(x+y,x-y) = f_{11}''(x+y,x-y) - f_{22}''(x+y,x-y).$$

 求 z = f(x + v,x − v) 的偏导数 (这里 f 有连续的二阶偏导数). 解: $\frac{\partial z}{\partial x} = f_1'(x+y,x-y) + f_2'(x+y,x-y)$. $\frac{\partial^2 z}{\partial \cdot \cdot 2} = f_{11}''(x+y, x-y) + f_{12}''(x+y, x-y)$ $+ f_{21}''(x+y,x-y) + f_{22}''(x+y,x-y)$ $= f_{11}''(x+y,x-y) + 2f_{12}''(x+y,x-y) + f_{22}''(x+y,x-y),$ $\frac{\partial^2 z}{\partial y \partial y} = f_{11}''(x+y, x-y) - f_{12}''(x+y, x-y)$ $+ f_{21}''(x+y,x-y) - f_{22}''(x+y,x-y)$ $= f_{11}''(x+y,x-y) - f_{22}''(x+y,x-y).$

• 定理:设 z = f(u, v), u = u(x, y), v = v(x, y) 都有连续的偏导数,则 z = f(u(x, y), v(x, y)) 可微,全微分为 $dz = f_u du + f_v dv$,即不管 u, v 是自变量还是中间变量,z = f(u, v) 的微分形式相同.

• 证明:
$$\frac{\partial z}{\partial x} = f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = f_u \frac{\partial u}{\partial y} + f_v \frac{\partial v}{\partial y}.$$
 符
$$dz = \left(f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x}\right) dx + \left(f_u \frac{\partial u}{\partial y} + f_v \frac{\partial v}{\partial y}\right) dy$$

$$= f_u \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy\right) + f_v \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy\right)$$

$$= f_u du + f_v dv.$$

- 定理:设 z = f(u, v), u = u(x, y), v = v(x, y) 都有连续的偏导数,则 z = f(u(x, y), v(x, y)) 可微,全微分为 $dz = f_u du + f_v dv$,即不管 u, v 是自变量还是中间变量,z = f(u, v) 的微分形式相同.
- 证明: $\frac{\partial z}{\partial x} = f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x}$, $\frac{\partial z}{\partial y} = f_u \frac{\partial u}{\partial y} + f_v \frac{\partial v}{\partial y}$. 得

$$dz = \left(f_u \frac{\partial u}{\partial x} + f_v \frac{\partial v}{\partial x} \right) dx + \left(f_u \frac{\partial u}{\partial y} + f_v \frac{\partial v}{\partial y} \right) dy$$
$$= f_u \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) + f_v \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right)$$
$$= f_u du + f_v dv.$$

其它形式复合函数的微分:设下面中用到的函数都有连续偏导数或 导数.

$$d(f(g(x,y))) = f'(g)dg$$

$$d(f(\phi(x), \psi(x))) = f'_1 d\phi + f'_2 d\psi$$

• 令
$$f(u, v) = u \pm v, uv, \frac{u}{v}, u = u(x, y), v = v(x, y),$$
 得
$$d(u \pm v) = du \pm dv$$

$$d(uv) = udv + vdu$$

$$d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$$

其它形式复合函数的微分:设下面中用到的函数都有连续偏导数或 导数.

$$d(f(g(x,y))) = f'(g)dg$$

$$d(f(\phi(x), \psi(x))) = f'_1 d\phi + f'_2 d\psi$$

• 令
$$f(u, v) = u \pm v, uv, \frac{u}{v}, u = u(x, y), v = v(x, y),$$
 得
$$d(u \pm v) = du \pm dv$$

$$d(uv) = udv + vdu$$

$$d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$$

一阶全微分形式不变性的应用

• 设 $u = \sin(x^2 + y^2) + e^{xz}$, 求函数在 (1,0,1) 处的全微分。

$$du = \cos(x^2 + y^2)d(x^2 + y^2) + e^{xz}d(xz)$$

$$= \cos(x^2 + y^2)(2xdx + 2ydy) + e^{xz}(xdz + zdx)$$

$$= [2x\cos(x^2 + y^2) + e^{xz}z]dx + 2y\cos(x^2 + y^2)dy + e^{xz}xdz,$$

从而得 $du|_{(1,0,1)} = (2\cos 1 + e)dx + edz$.

高阶微分

• 若 $z = f(x,y) \in C^2(D)$. 当 x,y 为自变量时,dx,dy 看成常数,从而 df 是 x,y 的函数,定义二阶微分 $d^2f = d(df)$. 由于 $df = f_x dx + f_y dy = (dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y})f$,

$$d^{2}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)f$$
$$= dx^{2}\frac{\partial^{2}f}{\partial x^{2}} + 2dxdy\frac{\partial^{2}f}{\partial x\partial y} + dy^{2}\frac{\partial^{2}f}{\partial y^{2}}.$$

• 若 $z = f(x, y) \in C^{n}(D)$, 定义 $d^{n}f = d(d^{n-1}f)$. 则有

$$d^{n}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{n}f$$

$$= dx^{n}\frac{\partial^{n}f}{\partial x^{n}} + ndx^{n-1}dy\frac{\partial^{n}f}{\partial x^{n-1}\partial y} + \dots + dy^{n}\frac{\partial^{n}f}{\partial y^{n}}.$$

高阶微分

• 若 $z = f(x,y) \in C^2(D)$. 当 x,y 为自变量时,dx,dy 看成常数,从而 df 是 x,y 的函数,定义二阶微分 $d^2f = d(df)$. 由于 $df = f_x dx + f_y dy = (dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y})f$,

$$d^{2}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)f$$
$$= dx^{2}\frac{\partial^{2}f}{\partial x^{2}} + 2dxdy\frac{\partial^{2}f}{\partial x\partial y} + dy^{2}\frac{\partial^{2}f}{\partial y^{2}}.$$

• 若 $z = f(x, y) \in C^{n}(D)$, 定义 $d^{n}f = d(d^{n-1}f)$. 则有

$$d^{n}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{n}f$$

$$= dx^{n}\frac{\partial^{n}f}{\partial x^{n}} + ndx^{n-1}dy\frac{\partial^{n}f}{\partial x^{n-1}\partial y} + \dots + dy^{n}\frac{\partial^{n}f}{\partial y^{n}}.$$

• 方向导数:设 z = f(x, y) 在 $P_0(x_0, y_0)$ 的一个邻域内有定义, \vec{l} 是一个给定的方向,其方向余弦为 $(\cos\alpha, \cos\beta)$,若极限

$$\lim_{t \to 0} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt} f(x_0 + t\cos\alpha, y_0 + t\cos\beta)\big|_{t=0}$$

存在,则称 f 在 P_0 点沿方向 \vec{l} 的方向导数 存在,记作 $\frac{\partial z}{\partial \vec{l}}|_{(x_0,y_0)}$ 或 $\frac{\partial f}{\partial \vec{l}}(x_0,y_0), \frac{\partial f}{\partial \vec{l}}|_{(x_0,y_0)}$.

• 注: f 沿方向 \overline{I} 的方向导数存在,等价于 f 沿方向 $-\overline{I}$ 的方向导数存在,且 $\frac{\partial f}{\partial (-\overline{I})} = -\frac{\partial f}{\partial \overline{I}}$.

$$\frac{\partial f}{\partial (-\vec{l})} = \frac{d}{dt} f(x_0 - t\cos\alpha, y_0 - t\cos\beta) \big|_{t=0}$$
$$= -\frac{d}{dt} f(x_0 + t\cos\alpha, y_0 + t\cos\beta) \big|_{t=0} = -\frac{\partial f}{\partial \vec{l}}$$

 $\bullet \ \alpha = 0, \beta = \tfrac{\pi}{2} \ \text{ft} \, , \ \ \tfrac{\partial f}{\partial \tilde{I}} = \tfrac{\partial f}{\partial x}; \ \alpha = \tfrac{\pi}{2}, \beta = 0 \ \text{ft} \, , \ \ \tfrac{\partial f}{\partial \tilde{I}} = \tfrac{\partial f}{\partial y}.$

• 注: f 沿方向 \overline{I} 的方向导数存在,等价于 f 沿方向 $-\overline{I}$ 的方向导数存在,且 $\frac{\partial f}{\partial (-\overline{I})} = -\frac{\partial f}{\partial \overline{I}}$. 证明·

$$\frac{\partial f}{\partial (-\vec{l})} = \frac{d}{dt} f(x_0 - t\cos\alpha, y_0 - t\cos\beta) \big|_{t=0}$$
$$= -\frac{d}{dt} f(x_0 + t\cos\alpha, y_0 + t\cos\beta) \big|_{t=0} = -\frac{\partial f}{\partial \vec{l}}.$$

 $\bullet \ \alpha = 0, \beta = \tfrac{\pi}{2} \ \text{ft} \, , \ \ \tfrac{\partial f}{\partial \tilde{I}} = \tfrac{\partial f}{\partial x}; \ \alpha = \tfrac{\pi}{2}, \beta = 0 \ \text{ft} \, , \ \ \tfrac{\partial f}{\partial \tilde{I}} = \tfrac{\partial f}{\partial y}.$

• 注: f 沿方向 \overline{I} 的方向导数存在,等价于 f 沿方向 $-\overline{I}$ 的方向导数存在,且 $\frac{\partial f}{\partial (-\overline{I})} = -\frac{\partial f}{\partial \overline{I}}$. 证明·

$$\frac{\partial f}{\partial (-\vec{l})} = \frac{d}{dt} f(x_0 - t\cos\alpha, y_0 - t\cos\beta) \big|_{t=0}$$
$$= -\frac{d}{dt} f(x_0 + t\cos\alpha, y_0 + t\cos\beta) \big|_{t=0} = -\frac{\partial f}{\partial \vec{l}}.$$

• $\alpha=0, \beta=\frac{\pi}{2}$ H, $\frac{\partial f}{\partial \vec{l}}=\frac{\partial f}{\partial x}$; $\alpha=\frac{\pi}{2}, \beta=0$ H, $\frac{\partial f}{\partial \vec{l}}=\frac{\partial f}{\partial y}$.

• 定理: 若 f(x,y) 在 (x_0,y_0) 处可微,则 f(x,y) 在该点沿任一方向 $\vec{l}(f)$ 方向余弦为 $(\cos\alpha,\cos\beta)$ 的方向导数均存在,且

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta$$
$$= (f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \vec{l}^{\rho}.$$

• 证明: 利用链式法则,

$$\begin{aligned} \frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} &= \frac{d}{dt} f(x_0 + t \cos \alpha, y_0 + t \cos \beta)\Big|_{t=0} \\ &= f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta. \end{aligned}$$

• 定理: 若 f(x,y) 在 (x_0,y_0) 处可微,则 f(x,y) 在该点沿任一方向 $\vec{l}($ 方向余弦为 $(\cos\alpha,\cos\beta))$ 的方向导数均存在,且

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta$$
$$= (f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \vec{l}^{\rho}.$$

• 证明: 利用链式法则,

$$\begin{aligned} \frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} &= \frac{d}{dt} f(x_0 + t \cos \alpha, y_0 + t \cos \beta)\Big|_{t=0} \\ &= f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta. \end{aligned}$$

方向导数 —例

• 例 (方向导数的计算): $f(x,y) = x^3y$, $\vec{l} = (\sqrt{3},1)$, 则

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(1,2)} = 3x^2y\Big|_{(1,2)} \frac{\sqrt{3}}{2} + x^3\Big|_{(1,2)} \frac{1}{2} = 3\sqrt{3} + \frac{1}{2}.$$

• 例: 若 f(x,y) 在 (x_0,y_0) 处可微, 若单位向量 $\vec{l},\vec{e}_1,\vec{e}_2$ 满足 $\vec{l} = \vec{a}\vec{e}_1 + \vec{b}\vec{e}_2$, 则

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} = a \frac{\partial f}{\partial \vec{e}_1}\Big|_{(x_0, y_0)} + b \frac{\partial f}{\partial \vec{e}_2}\Big|_{(x_0, y_0)}.$$

证明: $(f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \vec{l} = a(f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \vec{e}_1 + b(f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \vec{e}_2.$

方向导数 —例

• 例 (方向导数的计算): $f(x,y) = x^3y$, $\vec{l} = (\sqrt{3}, 1)$, 则

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(1,2)} = 3x^2y\Big|_{(1,2)}\frac{\sqrt{3}}{2} + x^3\Big|_{(1,2)}\frac{1}{2} = 3\sqrt{3} + \frac{1}{2}.$$

例:若 f(x,y)在 (x₀,y₀)处可微,若单位向量 l,ē₁,ē₂满足
 l = aē₁ + bē₂,则

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0,y_0)} = a \frac{\partial f}{\partial \vec{e}_1}\Big|_{(x_0,y_0)} + b \frac{\partial f}{\partial \vec{e}_2}\Big|_{(x_0,y_0)}.$$

证明: $(f_x(x_0,y_0),f_y(x_0,y_0))\cdot \vec{l}=a(f_x(x_0,y_0),f_y(x_0,y_0))\cdot \vec{e}_1+b(f_x(x_0,y_0),f_y(x_0,y_0))\cdot \vec{e}_2.$

三元函数的方向导数

• 三元函数的方向导数可类似定义. 设 u = f(x, y, z) 在 $P_0(x_0, y_0, z_0)$ 的一个邻域内有定义, \vec{l} 是一个给定的方向,其方向余弦为 $(\cos\alpha, \cos\beta, \cos\gamma)$. f 沿方向 \vec{l} 的方向导数定义为

$$\frac{\partial z}{\partial \vec{l}}\big|_{(x_0,y_0,z_0)} = \frac{d}{dt}f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma)\big|_{t=0}.$$

• 若 f(x, y, z) 在 (x_0, y_0, z_0) 处可微, 利用链式法则,

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(P_0)} = f_{\mathsf{x}}(P_0)\cos\alpha + f_{\mathsf{y}}(P_0)\cos\beta + f_{\mathsf{z}}(P_0)\cos\gamma$$

三元函数的方向导数

• 三元函数的方向导数可类似定义. 设 u = f(x, y, z) 在 $P_0(x_0, y_0, z_0)$ 的一个邻域内有定义, \vec{l} 是一个给定的方向,其方向余弦为 $(\cos\alpha, \cos\beta, \cos\gamma)$. f 沿方向 \vec{l} 的方向导数定义为

$$\frac{\partial z}{\partial \vec{l}}\big|_{(x_0,y_0,z_0)} = \frac{d}{dt}f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma)\big|_{t=0}.$$

• 若 f(x, y, z) 在 (x_0, y_0, z_0) 处可微, 利用链式法则,

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(P_0)} = f_x(P_0)\cos\alpha + f_y(P_0)\cos\beta + f_z(P_0)\cos\gamma.$$

方向导数 —例 3

• 读
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}, \vec{l} = (\cos \alpha, \cos \beta).$$
 由于

$$f(t\cos\alpha, t\cos\beta) = \cos\alpha\cos^2\beta \cdot t,$$

因此
$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta$$
.

• 上面的函数 f(x,y) 在原点不可微, $\alpha, \beta \neq \frac{\pi}{2}$ 时,

$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta \neq f_x(0,0) \cos \alpha + f_y(0,0) \cos \beta$$

方向导数 —例 3

$$f(t\cos\alpha, t\cos\beta) = \cos\alpha\cos^2\beta \cdot t,$$

因此
$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta$$
.

• 上面的函数 f(x,y) 在原点不可微, $\alpha, \beta \neq \frac{\pi}{2}$ 时,

$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta \neq f_x(0,0) \cos \alpha + f_y(0,0) \cos \beta.$$

最大方向导数

- 命题:设 f 在 (x_0, y_0) 点可微或偏导数连续,且在 (x_0, y_0) 的两个偏导数不同时为 0,则 f 在 (x_0, y_0) 处沿方向 $\vec{t} = (f_x(x_0, y_0), f_y(x_0, y_0))$ 的方向导数取最大值 $|\vec{t}|$ (沿 $-\vec{t}$ 的方向导数最小).
- 证明:设7是一个任意给定方向,其方向余弦为 $(\cos\alpha,\cos\beta)$,则

$$\begin{aligned} \frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} &= f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta \\ &= \vec{t} \cdot (\cos \alpha, \cos \beta) \le |\vec{t}| = \sqrt{f_x(x_0, y_0)^2 + f_y(x_0, y_0)^2}. \end{aligned}$$

又有

$$\frac{\partial f}{\partial \vec{t}}\Big|_{(x_0,y_0)} = f_x(x_0,y_0) \frac{f_x(x_0,y_0)}{|\vec{t}|} + f_y(x_0,y_0) \frac{f_y(x_0,y_0)}{|\vec{t}|} = |\vec{t}|.$$

最大方向导数

- 命题:设 f 在 (x_0, y_0) 点可微或偏导数连续,且在 (x_0, y_0) 的两个偏导数不同时为 0,则 f 在 (x_0, y_0) 处沿方向 $\vec{t} = (f_x(x_0, y_0), f_y(x_0, y_0))$ 的方向导数取最大值 $|\vec{t}|$ (沿 $-\vec{t}$ 的方向导数最小).
- 证明:设 $\vec{1}$ 是一个任意给定方向,其方向余弦为 $(\cos\alpha,\cos\beta)$,则

$$\begin{aligned} \frac{\partial f}{\partial \vec{l}}\Big|_{(x_0, y_0)} &= f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta \\ &= \vec{t} \cdot (\cos \alpha, \cos \beta) \le |\vec{t}| = \sqrt{f_x(x_0, y_0)^2 + f_y(x_0, y_0)^2}. \end{aligned}$$

又有

$$\frac{\partial f}{\partial \vec{t}}\Big|_{(x_0,y_0)} = f_x(x_0,y_0) \frac{f_x(x_0,y_0)}{|\vec{t}|} + f_y(x_0,y_0) \frac{f_y(x_0,y_0)}{|\vec{t}|} = |\vec{t}|.$$

梯度的定义

• 定义: 设 f 在 (x_0, y_0) 点可微或者偏导数连续. f 在 (x_0, y_0) 的梯度 定义为

$$\operatorname{grad} f|_{(x_0,y_0)} = (f_{\mathsf{x}}(x_0,y_0),f_{\mathsf{y}}(x_0,y_0)).$$

• 注: 类似地可定义三元函数的梯度: f 在 (x_0, y_0, z_0) 点可微或者偏导数连续. f 在 (x_0, y_0, z_0) 的梯度定义为 $\operatorname{grad} f|_{(x_0, y_0, z_0)} = (f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0))$. 且梯度方向的方向导数最大.

刘建明 (北大数学学院)

梯度的定义

• 定义: 设 f 在 (x_0, y_0) 点可微或者偏导数连续. f 在 (x_0, y_0) 的梯度 定义为

$$\operatorname{grad} f|_{(x_0,y_0)} = (f_{\mathsf{x}}(x_0,y_0),f_{\mathsf{y}}(x_0,y_0)).$$

• 注: 类似地可定义三元函数的梯度: f 在 (x_0, y_0, z_0) 点可微或者偏导数连续. f 在 (x_0, y_0, z_0) 的梯度定义为 $\operatorname{grad} f|_{(x_0, y_0, z_0)} = (f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0))$. 且梯度方向的方向导数最大.

梯度的性质

• 性质:设 f 可微或者偏导数连续, f 在 (x_0, y_0) 点处沿方向 $\overline{I}($ 方向余弦为 $(\cos\alpha,\cos\beta)$) 的方向导数为

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0,y_0)} = f_{\mathbf{X}}(x_0,y_0)\cos\alpha + f_{\mathbf{Y}}(x_0,y_0)\cos\beta = \operatorname{grad} f|_{(x_0,y_0)} \cdot \frac{\vec{l}}{|\vec{l}|}.$$

• 利用偏导数公式可得下面的梯度公式 (设 f的偏导数连续):

$$\operatorname{grad} (f(u, v)) = \frac{\partial f}{\partial u} \operatorname{grad} u + \frac{\partial f}{\partial v} \operatorname{grad} v,$$

$$\operatorname{grad} (u \pm v) = \operatorname{grad} u \pm \operatorname{grad} v.$$

$$\operatorname{grad} (uv) = v \operatorname{grad} u + u \operatorname{grad} v.$$

$$\operatorname{grad} (\frac{u}{v}) = \frac{1}{v^2} (v \operatorname{grad} u - u \operatorname{grad} v).$$

梯度的性质

• 性质:设 f 可微或者偏导数连续, f 在 (x_0, y_0) 点处沿方向 $\overline{I}(f)$ 方向余弦为 $(\cos \alpha, \cos \beta)$ 的方向导数为

$$\frac{\partial f}{\partial \vec{l}}\Big|_{(x_0,y_0)} = f_{\mathbf{X}}(x_0,y_0)\cos\alpha + f_{\mathbf{Y}}(x_0,y_0)\cos\beta = \operatorname{grad} f|_{(x_0,y_0)} \cdot \frac{\vec{l}}{|\vec{l}|}.$$

• 利用偏导数公式可得下面的梯度公式 (设 f的偏导数连续):

$$\begin{split} \operatorname{grad}\left(f(u,v)\right) &= \frac{\partial f}{\partial u} \operatorname{grad} u + \frac{\partial f}{\partial v} \operatorname{grad} v, \\ \operatorname{grad}\left(u \pm v\right) &= \operatorname{grad} u \pm \operatorname{grad} v. \\ \operatorname{grad}\left(uv\right) &= v \operatorname{grad} u + u \operatorname{grad} v. \\ \operatorname{grad}\left(\frac{u}{v}\right) &= \frac{1}{v^2} (v \operatorname{grad} u - u \operatorname{grad} v). \end{split}$$

梯度 —例

• 例:位于原点的点电荷产生的电势为 $V = \frac{q}{4\pi\varepsilon} \cdot \frac{1}{r}$,其中 $r = \sqrt{x^2 + y^2 + z^2}$,则产生的电场为

$$-\mathsf{grad}\ V = \frac{q}{4\pi\varepsilon} \frac{(\mathsf{x},\mathsf{y},\mathsf{z})}{\mathsf{r}^3}.$$

• 例: 函数 $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$, 原点处沿方向 $\vec{1} = (\cos \alpha, \cos \beta)$ 的方向导数为

$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta,$$

原点处方向导数最大的方向为 $(\sqrt{\frac{1}{3}},\pm\sqrt{\frac{2}{3}})$. 最大方向导数为 $\frac{2}{3\sqrt{3}}$.

梯度 —例

• 例:位于原点的点电荷产生的电势为 $V = \frac{q}{4\pi\varepsilon} \cdot \frac{1}{r}$,其中 $r = \sqrt{x^2 + y^2 + z^2}$,则产生的电场为

-grad
$$V = \frac{q}{4\pi\varepsilon} \frac{(x, y, z)}{r^3}$$
.

• 例: 函数 $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$, 原点处沿方向 $\vec{l} = (\cos \alpha, \cos \beta)$ 的方向导数为

$$\frac{\partial f}{\partial \vec{l}}(0,0) = \cos \alpha \cos^2 \beta,$$

原点处方向导数最大的方向为 $(\sqrt{\frac{1}{3}},\pm\sqrt{\frac{2}{3}})$. 最大方向导数为 $\frac{2}{3\sqrt{3}}$.

曲面

- 曲面是平面区域 D 到 ℝ³ 中的一个连续映射的像.
- 曲面参数方程: 设平面区域 D 到 ℝ3 的映射

$$(u,v) \mapsto \vec{r}(u,v) = (x(u,v),y(u,v),z(u,v))$$

的像是曲面 S, 则称

$$\begin{cases} x = x(u, v) \\ y = y(u, v), (u, v) \in D, \\ z = z(u, v) \end{cases}$$

为曲面的参数方程.

曲面

- 曲面是平面区域 D 到 ℝ³ 中的一个连续映射的像.
- 曲面参数方程: 设平面区域 D 到 \mathbb{R}^3 的映射

$$(u,v) \mapsto \vec{r}(u,v) = (x(u,v),y(u,v),z(u,v))$$

的像是曲面 5, 则称

$$\begin{cases} x = x(u, v) \\ y = y(u, v), (u, v) \in D, \\ z = z(u, v) \end{cases}$$

为曲面的参数方程.

曲面的法向量

• 曲面中的参数曲线 (坐标曲线):

$$\begin{cases} x = x(u, v_0) \\ y = y(u, v_0) \\ z = z(u, v_0) \end{cases}, \begin{cases} x = x(u_0, v) \\ y = y(u_0, v) \\ z = z(u_0, v) \end{cases}$$

 $P_0(u_0, v_0)$ 处的切向量分别为 $\vec{r}_u = (x_u, y_u, z_u)|_{P_0}$ 和 $\vec{r}_v = (x_v, y_v, z_v)|_{P_0}$.

• 曲面的法向量: 设 $\vec{r}_u \times \vec{r}_v \neq \vec{0}$. $\vec{r}_u \times \vec{r}_v |_{P_0}$ 是曲面在 P_0 点的法向量.

曲面的法向量

• 曲面中的参数曲线 (坐标曲线):

$$\begin{cases} x = x(u, v_0) \\ y = y(u, v_0) \\ z = z(u, v_0) \end{cases}, \begin{cases} x = x(u_0, v) \\ y = y(u_0, v) \\ z = z(u_0, v) \end{cases}$$

 $P_0(u_0, v_0)$ 处的切向量分别为 $\vec{r}_u = (x_u, y_u, z_u)|_{P_0}$ 和 $\vec{r}_v = (x_v, y_v, z_v)|_{P_0}$.

• 曲面的法向量: 设 $\vec{r}_u \times \vec{r}_v \neq \vec{0}$. $\vec{r}_u \times \vec{r}_v | P_0$ 是曲面在 P_0 点的法向量.

正则曲面

- 正则曲面: $x(u,v), y(u,v), z(u,v) \in C^1(D)$, 且 $\vec{r}_u \times \vec{r}_v \neq \vec{0}$. (该条件保证曲面处处有切平面, 且切平面连续变动).
- 例: z = f(x,y) ∈ C¹(D),
 (x,y) ∈ D 是正则曲面.事实
 上,取参数方程 x = x,y = y,z = f(x,y),

$$\vec{r}_x \times \vec{r}_y = (1, 0, f_x) \times (0, 1, f_y) = (-f_x, -f_y, 1) \neq \vec{0}.$$

比如 z = Ax + By + C 的法向量为 (-A, -B, 1)

正则曲面

- 正则曲面: $x(u,v), y(u,v), z(u,v) \in C^1(D)$, 且 $\vec{r}_u \times \vec{r}_v \neq \vec{0}$. (该条件保证曲面处处有切平面, 且切平面连续变动).
- 例: z = f(x,y) ∈ C¹(D),
 (x,y) ∈ D 是正则曲面.事实
 上,取参数方程 x = x,y = y,z = f(x,y),

$$\vec{r}_x \times \vec{r}_y = (1, 0, f_x) \times (0, 1, f_y) = (-f_x, -f_y, 1) \neq \vec{0}.$$

比如 z = Ax + By + C 的法向量为 (-A, -B, 1).

一般曲面方程

隐函数定理

• 一般曲面方程: F(x, y, z) = 0, 若 x = x(t), y = y(t), z = z(t) 是曲面中的曲线, 则有

$$F_x x'(t) + F_y y'(t) + F_z z'(t) = 0.$$

若 $(F_x, F_y, F_z) \neq \vec{0}$, 则切线垂直于 (F_x, F_y, F_z) , 因此 (F_x, F_y, F_z) 是曲面的法向.

• 一般曲面方程: F(x,y,z) = 0, $F \in C^1$, $(F_x, F_y, F_z) \neq \vec{0}$ 时称为正则曲面. 比如 Ax + By + Cz + D = 0 的法向量为 (A, B, C). z - f(x,y) = 0 的法向量为 $(-f_X, -f_y, 1)$.

一般曲面方程

隐函数定理

• 一般曲面方程: F(x, y, z) = 0, 若 x = x(t), y = y(t), z = z(t) 是曲面中的曲线, 则有

$$F_x x'(t) + F_y y'(t) + F_z z'(t) = 0.$$

若 $(F_x, F_y, F_z) \neq \vec{0}$, 则切线垂直于 (F_x, F_y, F_z) , 因此 (F_x, F_y, F_z) 是曲面的法向.

• 一般曲面方程: F(x,y,z) = 0, $F \in C^1$, $(F_x, F_y, F_z) \neq \vec{0}$ 时称为正则曲面. 比如 Ax + By + Cz + D = 0 的法向量为 (A, B, C). z - f(x,y) = 0 的法向量为 $(-f_x, -f_y, 1)$.

球面

• 曲面方程: $F(x, y, z) = x^2 + y^2 + z^2 - R^2$.

曲面参数方程:
$$\begin{cases} x = R\sin\phi\cos\theta \\ y = R\sin\phi\sin\theta \text{ , } (\phi,\theta) \in [0,\pi] \times [0,2\pi), \\ z = R\cos\phi \end{cases}$$

 $\vec{r}_{\phi} = R(\cos\phi\cos\theta, \cos\phi\sin\theta, -\sin\phi)$ $\vec{r}_{\theta} = R(-\sin\phi\sin\theta, \sin\phi\cos\theta, 0).$

 $\vec{r}_{\phi} \times \vec{r}_{\theta} = R^2 \sin \phi (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi).$ $\phi \neq 0, \pi \; \mathbb{H}, \; \vec{r}_{\phi} \times \vec{r}_{\theta} \neq \vec{0}.$

球面

• 曲面方程: $F(x, y, z) = x^2 + y^2 + z^2 - R^2$.

• 曲面参数方程:
$$\begin{cases} x = R\sin\phi\cos\theta \\ y = R\sin\phi\sin\theta \text{ , } (\phi,\theta) \in [0,\pi] \times [0,2\pi), \\ z = R\cos\phi \end{cases}$$

$$\vec{r}_{\phi} = R(\cos\phi\cos\theta, \cos\phi\sin\theta, -\sin\phi)$$

$$\vec{r}_{\theta} = R(-\sin\phi\sin\theta, \sin\phi\cos\theta, 0).$$

$$\begin{split} \vec{r}_{\phi} \times \vec{r}_{\theta} &= \mathit{R}^{2} \sin \phi (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi). \\ \phi &\neq 0, \pi \; \text{ ft }, \; \vec{r}_{\phi} \times \vec{r}_{\theta} \neq \vec{0}. \end{split}$$

切平面与法向量1

曲面 F(x, y, z) = 0. $F \in C^1$, 且 $(F_x, F_y, F_z)|_{P_0} \neq \vec{0}$.

- 曲面在 P_0 点的法向量为 $\vec{n}(P_0) = (F_x, F_y, F_z)|_{P_0}$,
- 切平面方程: $F_x(P_0)(x-x_0) + F_y(P_0)(y-y_0) + F_z(P_0)(z-z_0) = 0$.
- 法线方程: $\frac{x-x_0}{F_x(P_0)} = \frac{y-y_0}{F_y(P_0)} = \frac{z-z_0}{F_z(P_0)}$.

切平面与法向量1

曲面
$$F(x, y, z) = 0$$
. $F \in C^1$, 且 $(F_x, F_y, F_z)|_{P_0} \neq \vec{0}$.

- 曲面在 P_0 点的法向量为 $\vec{n}(P_0) = (F_x, F_y, F_z)|_{P_0}$,
- 切平面方程: $F_x(P_0)(x-x_0) + F_y(P_0)(y-y_0) + F_z(P_0)(z-z_0) = 0.$
- 法线方程: $\frac{x-x_0}{F_x(P_0)} = \frac{y-y_0}{F_y(P_0)} = \frac{z-z_0}{F_z(P_0)}$.

切平面与法向量1

曲面 F(x, y, z) = 0. $F \in C^1$, 且 $(F_x, F_y, F_z)|_{P_0} \neq \vec{0}$.

- 曲面在 P_0 点的法向量为 $\vec{n}(P_0) = (F_x, F_y, F_z)|_{P_0}$,
- 切平面方程: $F_x(P_0)(x-x_0) + F_y(P_0)(y-y_0) + F_z(P_0)(z-z_0) = 0.$
- 法线方程: $\frac{x-x_0}{F_x(P_0)} = \frac{y-y_0}{F_y(P_0)} = \frac{z-z_0}{F_z(P_0)}$.

曲面 z = f(x, y). $f \in C^1$.

- 曲面在 P_0 点的法向量为 $(-f_x, -f_y, 1)$.
- 切平面方程: $f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0) (z z_0) = 0$.
- 法线方程: $\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$.

曲面 z = f(x, y). $f \in C^1$.

- 曲面在 P_0 点的法向量为 $(-f_x, -f_y, 1)$.
- 切平面方程: $f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0) (z z_0) = 0.$
- 法线方程: $\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$.

曲面 z = f(x, y). $f \in C^1$.

- 曲面在 P_0 点的法向量为 $(-f_x, -f_y, 1)$.
- 切平面方程: $f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0) (z z_0) = 0.$
- 法线方程: $\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$.

参数方程表示的曲面: $x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in D,$ $x(u, v), y(u, v), z(u, v) \in C^1(D).$

• 曲面在 $P_0(x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$ 点的法向量为 $\vec{r}_u \times \vec{r}_v|_{(u_0, v_0)}$.

• 切平面方程:
$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u(u_0, v_0) & y_u(u_0, v_0) & z_u(u_0, v_0) \\ x_v(u_0, v_0) & y_v(u_0, v_0) & z_v(u_0, v_0) \end{vmatrix} = 0.$$

证明:
$$(\vec{r} - \vec{r}_0) \cdot \vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0) = 0$$

参数方程表示的曲面: $x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in D,$ $x(u, v), y(u, v), z(u, v) \in C^1(D).$

• 曲面在 $P_0(x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$ 点的法向量为 $\vec{r}_u \times \vec{r}_v|_{(u_0, v_0)}$.

• 切平面方程:
$$\begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ x_u(u_0,v_0) & y_u(u_0,v_0) & z_u(u_0,v_0) \\ x_v(u_0,v_0) & y_v(u_0,v_0) & z_v(u_0,v_0) \end{vmatrix} = 0.$$

证明: $(\vec{r} - \vec{r}_0) \cdot \vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0) = 0.$

参数方程表示的曲面: $x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in D,$ $x(u, v), y(u, v), z(u, v) \in C^1(D).$

• 曲面在 $P_0(x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$ 点的法向量为 $\vec{r}_u \times \vec{r}_v|_{(u_0, v_0)}$.

• 切平面方程:
$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u(u_0, v_0) & y_u(u_0, v_0) & z_u(u_0, v_0) \\ x_v(u_0, v_0) & y_v(u_0, v_0) & z_v(u_0, v_0) \end{vmatrix} = 0.$$

证明: $(\vec{r} - \vec{r}_0) \cdot \vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0) = 0.$

两曲面的交线

- 曲线 $\begin{cases} \psi(x,y,z) = 0 \\ \phi(x,y,z) = 0 \end{cases}$ 的切线, 其中 $\phi, \psi \in C^1(D)$, 且 $(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z})$ 和 $(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z})$ 不共线.
- 设 $P_0(x_0, y_0, z_0)$ 是交线上的一点, 切向

$$(A, B, C) = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)\Big|_{P_0} \times \left(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}\right)\Big|_{P_0},$$

切线方程 $\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C}$.

两曲面的交线

- 曲线 $\begin{cases} \psi(x,y,z) = 0 \\ \phi(x,y,z) = 0 \end{cases}$ 的切线, 其中 $\phi, \psi \in C^1(D)$, 且 $(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z})$ 和 $(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z})$ 不共线.
- 设 $P_0(x_0, y_0, z_0)$ 是交线上的一点, 切向

$$(A, B, C) = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)\Big|_{P_0} \times \left(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}\right)\Big|_{P_0},$$

切线方程
$$\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C}$$
.

复习一元函数的微分中值定理

• 复习一元函数微分中值定理: 设 y = f(x) 在 (a, b) 内可导, x_0 , $x_0 + \Delta x \in (a, b)$. 则存在 $0 < \theta < 1$, 使得

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x.$$

• 定理: 设 $z = f(x, y) \in C^1(D)$, $P_0(x_0, y_0)$, $P_1(x_0 + \Delta x, y_0 + \Delta y) \in D$, 且 $\overline{P_0P_1} \subset D$. 则存在 $\theta \in (0, 1)$, 使得

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

• 注: 设
$$\overrightarrow{\Delta P} = \overrightarrow{P_0P_1}$$
, 中值公式可以写成
$$f(P_1) = f(P_0) + \operatorname{grad} f|_{P_0 + \theta \overrightarrow{\Delta P}} \cdot \overrightarrow{\Delta P}$$
 或者
$$f(P_1) = f(P_0) + \frac{\partial f}{\partial \overrightarrow{\Delta P}}|_{P_0 + \theta \overrightarrow{\Delta P}} \cdot |\overrightarrow{\Delta P}|_{P_0 + \theta \overrightarrow{\Delta P}} \cdot |\overrightarrow{\Delta P}|_{P_0$$

• 定理: 设 $z = f(x, y) \in C^1(D)$, $P_0(x_0, y_0)$, $P_1(x_0 + \Delta x, y_0 + \Delta y) \in D$, 且 $\overline{P_0P_1} \subset D$. 则存在 $\theta \in (0, 1)$, 使得

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

• 注: 设
$$\overrightarrow{\Delta P} = \overrightarrow{P_0P_1}$$
, 中值公式可以写成
$$f(P_1) = f(P_0) + \operatorname{grad} f|_{P_0 + \theta \overrightarrow{\Delta P}} \cdot \overrightarrow{\Delta P}.$$
 或者
$$f(P_1) = f(P_0) + \frac{\partial f}{\partial \overrightarrow{\Delta P}}\Big|_{P_0 + \theta \overrightarrow{\Delta P}} \cdot |\overrightarrow{\Delta P}|.$$

• 定理证明: 令 $\phi(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$, 则 $\phi(t) \in C^1([0,1])$, $\phi'(t) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$. 由一元函数微分中值定理,存在 $\theta \in (0,1)$ 使得

$$f(x_0 + \Delta x, y_0 + \Delta y) = \phi(1) = \phi(0) + \phi'(\theta)$$

= $f(x_0, y_0) + f_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x$
+ $f_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y$.

• 推论: 设 z = f(x, y) 是区域 D 上的函数,且它的两个偏导数在 D 上恒为 0, 则 $f(x, y) \equiv C$.

证明:对任意 $P_0, P \in D$,由于 D 是连通集,存在 D 中连接 P_0 和 P_1 的折线 $P_0P_1P_2\cdots P_nP \subset D$, 利用上面的中值定理,

 推论:设 z = f(x, y) 是区域 D上的函数,且它的两个偏导数在 D 上恒为 0, 则 $f(x,y) \equiv C$. 证明:对任意 $P_0, P \in D$, 由于 D 是 连通集, 存在 D 中连接 P_0 和 P_1 的折线 $P_0P_1P_2\cdots P_nP\subset D$. 利用上面的中值定理. 有 $f(P_0) = f(P_1) = \cdots = f(P_n) = f(P)$.

二元函数的 Taylor 公式

• Lagrange 微分中值定理可以写成:

$$\begin{split} f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \\ &= \frac{\partial f}{\partial x} (x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + \frac{\partial f}{\partial y} (x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y \\ &= df(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \end{split}$$

• 复习高阶微分:

$$d^{n}f = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^{n} f$$

$$= \frac{\partial^{n}f}{\partial x^{n}} \Delta x^{n} + n \frac{\partial^{n}f}{\partial x^{n-1} \partial y} \Delta x^{n-1} \Delta y + \dots + \frac{\partial^{n}f}{\partial y^{n}} \Delta y^{n}$$

108 / 171

二元函数的 Taylor 公式

• Lagrange 微分中值定理可以写成:

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

$$= \frac{\partial f}{\partial x}(x_0 + \theta \Delta x, y_0 + \theta \Delta y)\Delta x + \frac{\partial f}{\partial y}(x_0 + \theta \Delta x, y_0 + \theta \Delta y)\Delta y$$

$$= df(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$$

• 复习高阶微分:

$$d^{n}f = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^{n} f$$

$$= \frac{\partial^{n}f}{\partial x^{n}} \Delta x^{n} + n \frac{\partial^{n}f}{\partial x^{n-1} \partial y} \Delta x^{n-1} \Delta y + \dots + \frac{\partial^{n}f}{\partial y^{n}} \Delta y^{n}$$

二元函数的 Taylor 公式

• 定理: 设 D 是一个平面区域, $f \in C^{n+1}(D)$, $P_0(x_0, y_0)$, $P_1(x_0 + \Delta x, y_0 + \Delta y) \in D$, 且 $\overline{P_0P_1} \subset D$. 则存在 $\theta \in (0, 1)$, 使得

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \sum_{k=1}^{n} \frac{1}{k!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^k f(x_0, y_0)$$

$$+ \frac{1}{(n+1)!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^{n+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$$

$$= f(x_0, y_0) + \sum_{k=1}^{n} \frac{1}{k!} d^k f(x_0, y_0) + \frac{1}{(n+1)!} d^{(n+1)} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$$

$$\stackrel{\text{\mathfrak{F}}}{\Re} R_n = \frac{1}{(n+1)!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^{n+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y).$$

109 / 171

刘建明 (北大数学学院) 多元函数微积分

二元函数的 Taylor 公式的证明

$$\phi'(t) = \Delta x \frac{\partial f}{\partial x} (x_0 + t\Delta x, y_0 + t\Delta y) + \Delta y \frac{\partial f}{\partial y} (x_0 + t\Delta x, y_0 + t\Delta y)$$
$$= \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y} \right) f(x_0 + t\Delta x, y_0 + t\Delta y)$$

 $\phi^{(k)}(t) = (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^k f(x_0 + t \Delta x, y_0 + t \Delta y)$. 由一元函数的 Taylor 公式,

$$\phi(1) = \phi(0) + \frac{1}{1!}\phi'(0) + \dots + \frac{1}{n!}\phi^{(n)}(0) + \frac{1}{(n+1)!}\phi^{(n+1)}(\theta).$$

利用 $\phi^{(k)}(0) = d^k f(x_0, y_0), \ \phi^{(n+1)}(\theta) = d^{(n+1)} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$ 即得.

二元函数的 Taylor 公式的证明

• 定理证明: 令 $\phi(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$, 则 $\phi \in C^{n+1}([0,1])$,

$$\phi'(t) = \Delta x \frac{\partial f}{\partial x} (x_0 + t\Delta x, y_0 + t\Delta y) + \Delta y \frac{\partial f}{\partial y} (x_0 + t\Delta x, y_0 + t\Delta y)$$
$$= \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y} \right) f(x_0 + t\Delta x, y_0 + t\Delta y)$$

 $\phi^{(k)}(t) = (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y})^k f(x_0 + t \Delta x, y_0 + t \Delta y)$. 由一元函数的 Taylor 公式,

$$\phi(1) = \phi(0) + \frac{1}{1!}\phi'(0) + \dots + \frac{1}{n!}\phi^{(n)}(0) + \frac{1}{(n+1)!}\phi^{(n+1)}(\theta).$$

利用 $\phi^{(k)}(0) = d^k f(x_0, y_0), \ \phi^{(n+1)}(\theta) = d^{(n+1)} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$ 即得.

Taylor 公式余项估计

- 注: 一元函数 Taylor 公式只要求 f 的 n+1 阶导数存在, 不要求 n+1 阶导数连续. 二元函数 Taylor 公式要求 f 的 n+1 阶偏导数连续.
- 余项估计: 若 f 的任意 (n+1) 阶偏导数的绝对值 $\leq M$, 则

$$|R_{n}| = \left| \frac{1}{(n+1)!} d^{(n+1)} f(x_{0} + \theta \Delta x, y_{0} + \theta \Delta y) \right|$$

$$= \frac{1}{(n+1)!} \left| \sum_{k=0}^{n+1} C_{n+1}^{k} \frac{\partial^{n+1} f}{\partial x^{n+1-k} \partial y^{k}} (x_{0} + \theta \Delta x, y_{0} + \theta \Delta y) \Delta x^{n+1-k} \Delta y^{k} \right|$$

$$\leq \frac{1}{(n+1)!} \left| \sum_{k=0}^{n+1} C_{n+1}^{k} M \rho^{n+1} \right| = M \frac{2^{(n+1)}}{(n+1)!} \rho^{n+1} = o(\rho^{n}),$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$

Taylor 公式余项估计

- 注: 一元函数 Taylor 公式只要求 f 的 n+1 阶导数存在, 不要求 n+1 阶导数连续. 二元函数 Taylor 公式要求 f 的 n+1 阶偏导数连续.
- 余项估计: 若 f 的任意 (n+1) 阶偏导数的绝对值 $\leq M$, 则

$$|R_{n}| = \left| \frac{1}{(n+1)!} d^{(n+1)} f(x_{0} + \theta \Delta x, y_{0} + \theta \Delta y) \right|$$

$$= \frac{1}{(n+1)!} \left| \sum_{k=0}^{n+1} C_{n+1}^{k} \frac{\partial^{n+1} f}{\partial x^{n+1-k} \partial y^{k}} (x_{0} + \theta \Delta x, y_{0} + \theta \Delta y) \Delta x^{n+1-k} \Delta y^{k} \right|$$

$$\leq \frac{1}{(n+1)!} \left| \sum_{k=0}^{n+1} C_{n+1}^{k} M \rho^{n+1} \right| = M \frac{2^{(n+1)}}{(n+1)!} \rho^{n+1} = o(\rho^{n}),$$

$$\sharp \, \Psi \, \rho = \sqrt{(\Delta x)^{2} + (\Delta y)^{2}}.$$

带 Peano 余项的 Taylor 公式

• 推论: 在上面定理相同的条件下, 有

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{1}{1!} df(x_0, y_0) + \cdots + \frac{1}{n!} d^n f(x_0, y_0) + o(\rho^n). \quad (\Delta x, \Delta y) \to (0, 0).$$

- 证明: 存在 (x_0, y_0) 的一个小邻域 U_δ (事实上只要满足 $\bar{U}_\delta \subset D$ 即可), 使得 f 的任意 (n+1) 阶偏导数在 U_δ 上有界.
- 注: 带 Piano 余项的 Taylor 公式的条件可以放松 (比如: $f \in C^n(D)$).
- 注: 如果 n = 2, Taylor 公式可以写成

$$\begin{split} f(x,y) &= f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \\ &+ \frac{1}{2} \left[f_{xx}(x_0,y_0)(x-x_0)^2 + 2f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + f_{yy}(x_0,y_0)(y-y_0)^2 \right] \\ &+ o(\rho^2) \end{split}$$

带 Peano 余项的 Taylor 公式

• 推论: 在上面定理相同的条件下, 有

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{1}{1!} df(x_0, y_0) + \cdots + \frac{1}{n!} d^n f(x_0, y_0) + o(\rho^n). \quad (\Delta x, \Delta y) \to (0, 0).$$

- 证明:存在 (x_0,y_0) 的一个小邻域 U_δ (事实上只要满足 $\bar{U}_\delta \subset D$ 即可),使得 f 的任意 (n+1) 阶偏导数在 U_δ 上有界.
- 注: 带 Piano 余项的 Taylor 公式的条件可以放松 (比如: $f \in C^n(D)$).
- 注: 如果 n = 2, Taylor 公式可以写成

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$+ \frac{1}{2} \left[f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right]$$

$$+ o(\rho^2)$$

带 Peano 余项的 Taylor 公式

• 推论: 在上面定理相同的条件下, 有

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{1}{1!} df(x_0, y_0) + \cdots + \frac{1}{n!} d^n f(x_0, y_0) + o(\rho^n). \quad (\Delta x, \Delta y) \to (0, 0).$$

- 证明:存在 (x_0,y_0) 的一个小邻域 U_δ (事实上只要满足 $\bar{U}_\delta \subset D$ 即可),使得 f 的任意 (n+1) 阶偏导数在 U_δ 上有界.
- 注: 带 Piano 余项的 Taylor 公式的条件可以放松 (比如: $f \in C^n(D)$).
- 注:如果 n = 2, Taylor 公式可以写成

$$\begin{split} f(x,y) &= f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \\ &+ \frac{1}{2} \Big[f_{xx}(x_0,y_0)(x-x_0)^2 + 2f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + f_{yy}(x_0,y_0)(y-y_0)^2 \Big] \\ &+ o(\rho^2) \end{split}$$

Taylor 公式的唯一性

• 命题: 设 $f \in C^{n+1}(D)$, 令 $T_n(\Delta x, \Delta y) = f(x_0, y_0) + \frac{1}{1!} df(x_0, y_0) + \dots + \frac{1}{n!} d^n f(x_0, y_0)$. 若 f(x, y) 有展开

$$f(x_0 + \Delta x, y_0 + \Delta y) = P_n(\Delta x, \Delta y) + o(\rho^n),$$

其中 P_n 是 n 次二元多项式, 则有 $P_n = T_n$.

• 证明: 取 $\Delta y = \lambda \Delta x$, 则有

$$f(x_0 + \Delta x, y_0 + \lambda \Delta x) = P_n(\Delta x, \lambda \Delta x) + o(\Delta x^n)$$

= $T_n(\Delta x, \lambda \Delta x) + o(\Delta x^n)$.

由一元函数 Taylor 公式的唯一性,有 $P_n(\Delta x, \lambda \Delta x) = T_n(\Delta x, \lambda \Delta x)$ 对任意 λ 和 Δx 成立,从而有 $P_n = T_n$.

Taylor 公式的唯一性

• 命题: 设 $f \in C^{n+1}(D)$, 令 $T_n(\Delta x, \Delta y) = f(x_0, y_0) + \frac{1}{1!} df(x_0, y_0) + \dots + \frac{1}{n!} d^n f(x_0, y_0)$. 若 f(x, y) 有展开

$$f(x_0 + \Delta x, y_0 + \Delta y) = P_n(\Delta x, \Delta y) + o(\rho^n),$$

其中 P_n 是 n 次二元多项式,则有 $P_n = T_n$.

• 证明: 取 $\Delta y = \lambda \Delta x$, 则有

$$f(x_0 + \Delta x, y_0 + \lambda \Delta x) = P_n(\Delta x, \lambda \Delta x) + o(\Delta x^n)$$

= $T_n(\Delta x, \lambda \Delta x) + o(\Delta x^n)$.

由一元函数 Taylor 公式的唯一性,有 $P_n(\Delta x, \lambda \Delta x) = T_n(\Delta x, \lambda \Delta x)$ 对任意 λ 和 Δx 成立,从而有 $P_n = T_n$.

- 求函数 $f(x,y) = \sin(\frac{\pi}{2}x^2y)$ 在 (1,1) 处的二阶 Taylor 公式 (带 Peano 余项).
- 解 1: 直接计算得 f(1,1)=1, $f_x(1,1)=0$, $f_y(1,1)=0$, $f_{xx}(1,1)=-\pi^2$, $f_{xy}(1,1)=-\frac{\pi^2}{2}$, $f_{yy}(1,1)=-\frac{\pi^2}{4}$, 由此可得 Taylor 公式

$$\sin(\frac{\pi}{2}x^2y) = 1 - \frac{\pi^2}{2}\left((x-1)^2 + (x-1)(y-1) + \frac{1}{4}(y-1)^2\right) + o(\rho^2).$$

- 求函数 $f(x,y) = \sin(\frac{\pi}{2}x^2y)$ 在 (1,1) 处的二阶 Taylor 公式 (带 Peano 余项).
- 解 1: 直接计算得 f(1,1)=1, $f_x(1,1)=0$, $f_y(1,1)=0$, $f_{xx}(1,1)=-\pi^2$, $f_{xy}(1,1)=-\frac{\pi^2}{2}$, $f_{yy}(1,1)=-\frac{\pi^2}{4}$, 由此可得 Taylor 公式

$$\sin(\frac{\pi}{2}x^2y) = 1 - \frac{\pi^2}{2}\left((x-1)^2 + (x-1)(y-1) + \frac{1}{4}(y-1)^2\right) + o(\rho^2).$$

• 解 2: 由于

$$\frac{\pi}{2}x^2y = \frac{\pi}{2}[1 + 2(x-1) + (y-1) + (x-1)^2 + 2(x-1)(y-1) + o(\rho^2)].$$

我们有

$$\begin{aligned} &\sin(\frac{\pi}{2}x^2y) \\ &= \cos\frac{\pi}{2} \left[2(x-1) + (y-1) + (x-1)^2 + 2(x-1)(y-1) + o(\rho^2) \right] \\ &= 1 - \frac{1}{2} \left[\frac{\pi}{2} (2(x-1) + (y-1)) \right]^2 + o(\rho^2) \\ &= 1 - \frac{\pi^2}{2} \left((x-1)^2 + (x-1)(y-1) + \frac{1}{4} (y-1)^2 \right) + o(\rho^2). \end{aligned}$$

• 解 2: 由于

 $=1-\frac{\pi^2}{2}\left((x-1)^2+(x-1)(y-1)+\frac{1}{4}(y-1)^2\right)+o(\rho^2).$

三元函数的 Taylor 公式

• 三元函数有类似的 Taylor 公式

$$f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) = f(x_0, y_0, z_0)$$

+
$$\sum_{k=1}^{n} \frac{1}{k!} (\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y} + \Delta z \frac{\partial}{\partial z})^k f(x_0, y_0, z_0) + o(\rho^n)$$

如果 n=2,

$$\begin{split} f(x,y,z) &= f(x_0,y_0,z_0) + f_x(x_0,y_0,z_0)(x-x_0) + f_y(x_0,y_0,z_0)(y-y_0) \\ &+ f_z(x_0,y_0,z_0) + \frac{1}{2} \big[f_{xx}(x_0,y_0,z_0)(x-x_0)^2 + f_{yy}(x_0,y_0,z_0)(y-y_0)^2 \\ &+ f_{zz}(x_0,y_0,z_0)(z-z_0)^2 + 2 f_{xy}(x_0,y_0,z_0)(x-x_0)(y-y_0) \\ &+ 2 f_{xz}(x_0,y_0,z_0)(x-x_0)(z-z_0) + 2 f_{yz}(x_0,y_0,z_0)(y-y_0)(z-z_0) \big] + o(\rho^2) \end{split}$$

三元函数 Taylor 公式 —例

• 求函数 $f(x, y, z) = \frac{x}{yz}$ 在 (1, 1, 1) 处的二阶 Taylor 公式 (带 Peano 余 项).

•
$$mathref{m}:
 \rho = \sqrt{(x-1)^2 + (y-1)^2 + (z-1)^2}$$

$$\frac{x}{yz} = \frac{1+x-1}{(1+y-1)(1+z-1)}$$

$$= (1+x-1)[1-(y-1)+(y-1)^2+o(\rho^2)]$$

$$\cdot [1-(z-1)+(z-1)^2+o(\rho^2)]$$

$$= 1+(x-1)-(y-1)-(z-1)+(y-1)^2+(z-1)^2$$

$$-(x-1)(y-1)-(x-1)(z-1)+(y-1)(z-1)+o(\rho^2)$$

三元函数 Taylor 公式 —例

• 求函数 $f(x, y, z) = \frac{x}{yz}$ 在 (1, 1, 1) 处的二阶 Taylor 公式 (带 Peano 余项).

• 解:
$$\rho = \sqrt{(x-1)^2 + (y-1)^2 + (z-1)^2}$$

$$\frac{x}{yz} = \frac{1+x-1}{(1+y-1)(1+z-1)}$$

$$= (1+x-1)[1-(y-1)+(y-1)^2+o(\rho^2)]$$

$$\cdot [1-(z-1)+(z-1)^2+o(\rho^2)]$$

$$= 1+(x-1)-(y-1)-(z-1)+(y-1)^2+(z-1)^2$$

$$-(x-1)(y-1)-(x-1)(z-1)+(y-1)(z-1)+o(\rho^2)$$

一个方程确定的隐函数

- 函数 y = f(x), $x \in D$ 代入 F(x, y) = 0, 使得 $F(x, f(x)) \equiv 0$, 则称 y = f(x), $x \in D$ 是由方程 F(x, y) = 0 确定的隐函数.
- 函数 $z = f(x, y), (x, y) \in D$ 代入 F(x, y, z) = 0, 使得

$$F(x, y, f(x, y)) \equiv 0,$$

则称 $z = f(x, y), (x, y) \in D$ 是由方程 F(x, y, z) = 0 确定的隐函数.

一个方程确定的隐函数

- 函数 y = f(x), $x \in D$ 代入 F(x, y) = 0, 使得 $F(x, f(x)) \equiv 0$, 则称 y = f(x), $x \in D$ 是由方程 F(x, y) = 0 确定的隐函数.
- 函数 $z = f(x, y), (x, y) \in D$ 代入 F(x, y, z) = 0, 使得

$$F(x, y, f(x, y)) \equiv 0,$$

则称 $z = f(x, y), (x, y) \in D$ 是由方程 F(x, y, z) = 0 确定的隐函数.

二个方程确定的隐函数

•
$$(x,y) \in D$$
 时
$$\begin{cases} F(x,y,u(x,y),v(x,y)) \equiv 0 \\ G(x,y,u(x,y),v(x,y)) \equiv 0 \end{cases}$$
, 则称
$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$
,
$$(x,y) \in D$$
 是由方程组
$$\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$$
确定的隐函数.

• 若
$$x \in D$$
 时
$$\begin{cases} F(x, u(x), v(x)) \equiv 0 \\ G(x, u(x), v(x)) \equiv 0 \end{cases}$$
 ,则称
$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$
 , $x \in D$ 是由方
$$\{ F(x, u, v) = 0 \\ G(x, u, v) = 0 \end{cases}$$
 确定的隐函数.

刘建明 (北大数学学院)

二个方程确定的隐函数

•
$$(x,y) \in D$$
 时
$$\begin{cases} F(x,y,u(x,y),v(x,y)) \equiv 0 \\ G(x,y,u(x,y),v(x,y)) \equiv 0 \end{cases}$$
,则称
$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$
,
 $(x,y) \in D$ 是由方程组
$$\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$$
 确定的隐函数.

• 若
$$x \in D$$
 时
$$\begin{cases} F(x, u(x), v(x)) \equiv 0 \\ G(x, u(x), v(x)) \equiv 0 \end{cases}$$
 ,则称
$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$
 , $x \in D$ 是由方 程组
$$\begin{cases} F(x, u, v) = 0 \\ G(x, u, v) = 0 \end{cases}$$
 确定的隐函数.

刘建明 (北大数学学院)

一元隐函数存在定理

一般曲面方程

- 定理: F(x,y) 在 $P_0(x_0,y_0)$ 的一个邻域上有定义, 且满足
 - $F(x_0, y_0) = 0$,
 - $F_x(x,y), F_y(x,y)$ 连续, 且 $F_y(x_0,y_0) \neq 0$.

则在 x_0 的某个邻域 $(x_0 - \delta, x_0 + \delta)$ 内存在一个函数 y = f(x), 使得 $y_0 = f(x_0)$, $F(x, f(x)) \equiv 0$, $\forall x \in (x_0 - \delta, x_0 + \delta)$. 且 y = f(x) 在 $(x_0 - \delta, x_0 + \delta)$ 上连续、可微,导数为

$$f'(x) = -\frac{F_x(x,y)}{F_y(x,y)}\Big|_{y=f(x)}.$$

隐函数存在定理1的证明思路

• 证明思路: 不妨设 $F_y(x_0, y_0) > 0$, $F(x_0, y)$ 作为 y 的函数在 y_0 附近单调增,存在 $\rho > 0$, 使得 $F(x_0, y_0 + \rho) > 0$, $F(x_0, y_0 - \rho) < 0$. 由 F(x, y) 的连续性,存在 $\delta > 0$, 使得对 $x \in (x_0 - \delta, x_0 + \delta)$, $F(x, y_0 + \rho) > 0$ 且 $F(x, y_0 - \rho) < 0$. 由介值定理,对任意 $x \in (x_0 - \delta, x_0 + \delta)$, 存在 y = f(x), 使得 F(x, f(x)) = 0.

121 / 171

• 隐函数的导数: 设 $\Delta y = f(x + \Delta x) - f(x)$, 则

$$0 \equiv F(x + \Delta x, f(x) + \Delta y) - F(x, f(x)),$$

由 Langrange 中值定理, 存在 $\theta \in (0,1)$, 使得

$$0 = F_x(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta x + F_y(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta y$$

因此

$$\frac{\Delta y}{\Delta x} = -\frac{F_x(x + \theta \Delta x, f(x) + \theta \Delta y)}{F_y(x + \theta \Delta x, f(x) + \theta \Delta y)}$$

$$f'(x) = -\frac{F_x(x, y)}{F_y(x, y)}\Big|_{y=f(x)}$$

• 隐函数的导数: 设 $\Delta y = f(x + \Delta x) - f(x)$, 则

$$0 \equiv F(x + \Delta x, f(x) + \Delta y) - F(x, f(x)),$$

由 Langrange 中值定理, 存在 $\theta \in (0,1)$, 使得

$$0 = F_x(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta x + F_y(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta y.$$

因此

$$\frac{\Delta y}{\Delta x} = -\frac{F_x(x + \theta \Delta x, f(x) + \theta \Delta y)}{F_y(x + \theta \Delta x, f(x) + \theta \Delta y)}$$

$$f'(x) = -\frac{F_x(x, y)}{F_y(x, y)}\Big|_{y=f(x)}$$

• 隐函数的导数: 设 $\Delta y = f(x + \Delta x) - f(x)$, 则

$$0 \equiv F(x + \Delta x, f(x) + \Delta y) - F(x, f(x)),$$

由 Langrange 中值定理, 存在 $\theta \in (0,1)$, 使得

$$0 = F_x(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta x + F_y(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta y.$$

因此

$$\frac{\Delta y}{\Delta x} = -\frac{F_x(x + \theta \Delta x, f(x) + \theta \Delta y)}{F_y(x + \theta \Delta x, f(x) + \theta \Delta y)}.$$

$$f'(x) = -\frac{F_x(x, y)}{F_y(x, y)}\Big|_{y=f(x)}$$

• 隐函数的导数: 设 $\Delta y = f(x + \Delta x) - f(x)$, 则

$$0 \equiv F(x + \Delta x, f(x) + \Delta y) - F(x, f(x)),$$

由 Langrange 中值定理, 存在 $\theta \in (0,1)$, 使得

$$0 = F_x(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta x + F_y(x + \theta \Delta x, f(x) + \theta \Delta y) \Delta y.$$

因此

$$\frac{\Delta y}{\Delta x} = -\frac{F_x(x + \theta \Delta x, f(x) + \theta \Delta y)}{F_y(x + \theta \Delta x, f(x) + \theta \Delta y)}.$$

$$f'(x) = -\frac{F_x(x, y)}{F_y(x, y)}\Big|_{y=f(x)}.$$

• 例: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在 $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ 点附近确定隐函数 y = y(x), 求 $y'(\frac{a}{\sqrt{2}})$. 解: 设 $F(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$, $F_x(x, y) = \frac{2x}{a^2}$, $F_y(x, y) = \frac{2y}{b^2}$, 因此有

$$y'(x) = -\frac{F_x}{F_y} = -\frac{b^2 x}{a^2 y} \Longrightarrow y'(\frac{a}{\sqrt{2}}) = -\frac{b}{a}.$$

• 注: 也可用第二章中的方法,对方程 $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ 两边对 x 求导(y 看成 x 的函数). 也可两边微分得 $F_x dx + F_y dy = 0$, $\frac{dy}{dx} = -\frac{F_y}{F_y}$.

• 例: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在 $(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$ 点附近确定隐函数 y = y(x), 求 $y'(\frac{a}{\sqrt{2}})$. 解: 设 $F(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$, $F_x(x, y) = \frac{2x}{a^2}$, $F_y(x, y) = \frac{2y}{b^2}$, 因此有

$$y'(x) = -\frac{F_x}{F_y} = -\frac{b^2x}{a^2y} \Longrightarrow y'(\frac{a}{\sqrt{2}}) = -\frac{b}{a}.$$

• 注: 也可用第二章中的方法,对方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 两边对 x 求导(y 看成 x 的函数). 也可两边微分得 $F_x dx + F_y dy = 0$, $\frac{dy}{dx} = -\frac{F_y}{F_y}$.

• 例: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在 $(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$ 点附近确定隐函数 y = y(x), 求 $y'(\frac{a}{\sqrt{2}})$. 解: 设 $F(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$, $F_x(x, y) = \frac{2x}{a^2}$, $F_y(x, y) = \frac{2y}{b^2}$, 因此有

$$y'(x) = -\frac{F_x}{F_y} = -\frac{b^2x}{a^2y} \Longrightarrow y'(\frac{a}{\sqrt{2}}) = -\frac{b}{a}.$$

• 注: 也可用第二章中的方法, 对方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 两边对 x 求导(y 看成 x 的函数). 也可两边微分得 $F_x dx + F_y dy = 0$, $\frac{dy}{dx} = -\frac{F_x}{F_y}$.

多元隐函数存在定理

- 定理: F(x,y,z) 在 $M_0(x_0,y_0,z_0)$ 的一个邻域上有定义, 满足
 - $F(x_0, y_0, z_0) = 0$,
 - $F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)$ 连续,且 $F_z(x_0, y_0, z_0) \neq 0$.

则在 (x_0, y_0) 的某个邻域 D 上存在函数 z = z(x, y), 使得 $z_0 = z(x_0, y_0)$, $F(x, y, z(x, y)) \equiv 0$, $\forall (x, y) \in D$. 且 $z = z(x, y) \in C^1(D)$,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

多元隐函数存在定理

- 定理: F(x, y, z) 在 $M_0(x_0, y_0, z_0)$ 的一个邻域上有定义, 满足
 - $F(x_0, y_0, z_0) = 0$,
 - $F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)$ 连续, 且 $F_z(x_0, y_0, z_0) \neq 0$.

则在 (x_0, y_0) 的某个邻域 D 上存在函数 z = z(x, y), 使得 $z_0 = z(x_0, y_0)$, $F(x, y, z(x, y)) \equiv 0$, $\forall (x, y) \in D$. 且 $z = z(x, y) \in C^1(D)$,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

多元隐函数的微分法

• 若 F(x, y, z) = 0 确定隐函数 z = z(x, y). 方程 F(x, y, z) = 0 两边对 x, y 求偏导数得 (z 看成 x, y 的函数),

$$F_x + F_z \frac{\partial z}{\partial x} = 0, \qquad F_y + F_z \frac{\partial z}{\partial y} = 0,$$

因此有
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

• 也可方程两边微分:

$$F_x dx + F_y dy + F_z dz = 0 \Longrightarrow dz = -\frac{F_x}{F_z} dx - \frac{F_y}{F_z} dy.$$

多元隐函数的微分法

• 若 F(x, y, z) = 0 确定隐函数 z = z(x, y). 方程 F(x, y, z) = 0 两边对 x, y 求偏导数得 (z 看成 x, y 的函数),

$$F_x + F_z \frac{\partial z}{\partial x} = 0, \qquad F_y + F_z \frac{\partial z}{\partial y} = 0,$$

因此有
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

• 也可方程两边微分:

$$F_x dx + F_y dy + F_z dz = 0 \Longrightarrow dz = -\frac{F_x}{F_z} dx - \frac{F_y}{F_z} dy.$$

• 例: 求 $xy + yz + e^{xz} = 3$ 确定的隐函数 z(x, y) 的偏导数.

解: 设 $F(x, y, z) = xy + yz + e^{xz} - 3$, $F_x = y + ze^{xz}$, $F_y = x + ze^{xz}$, $F_z = y + xe^{xz}$,

$$z_{x} = -\frac{y + ze^{xz}}{y + xe^{xz}}, \quad z_{y} = -\frac{x + z}{y + xe^{xz}}.$$

也可对方程两边求偏导数

$$y+yz_x+e^{xz}(z+xz_x)=0,\quad x+z+yz_y+e^{xz}xz_y=0,$$

再解出 Zx, Zv

• 例: 求 $xy + yz + e^{xz} = 3$ 确定的隐函数 z(x, y) 的偏导数. 解: 设 $F(x, y, z) = xy + yz + e^{xz} - 3$, $F_x = y + ze^{xz}$, $F_y = x + z$, $F_z = y + xe^{xz}$,

$$z_x = -\frac{y+ze^{xz}}{y+xe^{xz}}, \quad z_y = -\frac{x+z}{y+xe^{xz}}.$$

也可对方程两边求偏导数:

$$y + yz_x + e^{xz}(z + xz_x) = 0, \quad x + z + yz_y + e^{xz}xz_y = 0,$$

再解出 Zx, Zy

• 例: 求 $xy + yz + e^{xz} = 3$ 确定的隐函数 z(x, y) 的偏导数. 解: 设 $F(x, y, z) = xy + yz + e^{xz} - 3$, $F_x = y + ze^{xz}$, $F_y = x + z$, $F_z = y + xe^{xz}$,

$$z_x = -\frac{y+ze^{xz}}{y+xe^{xz}}, \quad z_y = -\frac{x+z}{y+xe^{xz}}.$$

也可对方程两边求偏导数:

$$y + yz_x + e^{xz}(z + xz_x) = 0$$
, $x + z + yz_y + e^{xz}xz_y = 0$,

再解出 Zx, Zy

• 例: 求 $xy + yz + e^{xz} = 3$ 确定的隐函数 z(x, y) 的偏导数. 解: 设 $F(x, y, z) = xy + yz + e^{xz} - 3$, $F_x = y + ze^{xz}$, $F_y = x + z$, $F_z = y + xe^{xz}$,

$$z_x = -\frac{y+ze^{xz}}{y+xe^{xz}}, \quad z_y = -\frac{x+z}{y+xe^{xz}}.$$

也可对方程两边求偏导数:

$$y + yz_x + e^{xz}(z + xz_x) = 0, \quad x + z + yz_y + e^{xz}xz_y = 0,$$

再解出 Z_x, Z_y .

• 例: 求 F(x-y,y-z) = 0 确定的隐函数 z = z(x,y) 的偏导数 (这里 $F \in C^1$).

$$-F_1' + F_2'(1 - \frac{\partial z}{\partial y}) = 0, 由此可得$$

$$\frac{\partial z}{\partial x} = \frac{F_1'(x - y, y - z)}{F_2'(x - y, y - z)},$$

• 注: 可令 G(x,y,z) = F(x-y,y-z), $G_x = F_1$, $G_y = -F_1 + F_2$, $G_z = -F_2$, 利用 $\frac{\partial z}{\partial x} = -\frac{G_x}{G_z}$, $\frac{\partial z}{\partial y} = -\frac{G_y}{G_z}$ 也可得到上面的偏导数公式.

• 例: 求 F(x-y,y-z)=0 确定的隐函数 z=z(x,y) 的偏导数 (这里 $F\in C^1$).

解: 方程两边对
$$x,y$$
 求偏导, $F_1+F_2(-\frac{\partial z}{\partial x})=0$,
$$-F_1+F_2(1-\frac{\partial z}{\partial y})=0$$
,由此可得

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{F_1'(x-y,y-z)}{F_2'(x-y,y-z)}, \\ \frac{\partial z}{\partial y} &= \frac{-F_1'(x-y,y-z) + F_2'(x-y,y-z)}{F_2'(x-y,y-z)}. \end{split}$$

• 注: 可令 G(x,y,z) = F(x-y,y-z), $G_x = F_1$, $G_y = -F_1 + F_2$, $G_z = -F_2$, 利用 $\frac{\partial z}{\partial x} = -\frac{G_x}{G_z}$, $\frac{\partial z}{\partial y} = -\frac{G_y}{G_z}$ 也可得到上面的偏导数公式

• 例: 求 F(x-y,y-z)=0 确定的隐函数 z=z(x,y) 的偏导数 (这里 $F\in C^1$).

解: 方程两边对
$$x,y$$
 求偏导, $F_1+F_2(-\frac{\partial z}{\partial x})=0$,
$$-F_1+F_2(1-\frac{\partial z}{\partial y})=0$$
,由此可得

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{F_1'(x-y,y-z)}{F_2'(x-y,y-z)}, \\ \frac{\partial z}{\partial y} &= \frac{-F_1'(x-y,y-z) + F_2'(x-y,y-z)}{F_2'(x-y,y-z)}. \end{split}$$

• 注: 可令 G(x,y,z) = F(x-y,y-z), $G_x = F_1$, $G_y = -F_1 + F_2$, $G_z = -F_2$, 利用 $\frac{\partial z}{\partial x} = -\frac{G_x}{G_z}$, $\frac{\partial z}{\partial y} = -\frac{G_y}{G_z}$ 也可得到上面的偏导数公式.

两曲面的交线

• 设 F(x,y,z), $G(x,y,z) \in C^1$, 且 (F_x,F_y,F_z) 和 (G_x,G_y,G_z) 不是零向量. 设 (F_x,F_y,F_z) 和 (G_x,G_y,G_z) 在交点处不共线 (即两曲面不相切), 则曲面 F(x,y,z) = 0 和 G(x,y,z) = 0 的交集是曲线.

• 若
$$\begin{cases} y = y(x) \\ z = z(x) \end{cases}$$
 是方程组 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 确定的隐函数,即曲线 $x = x, y = y(x), z = z(x)$ 是曲面 $F(x,y,z) = 0$ 和 $G(x,y,z) = 0$ 的交线的一部分. 交线的切向量 $(1,y'(x),z'(x))$ 平行于
$$(F_x,F_y,F_z) \times (G_x,G_y,G_z) = (F_yG_z - F_zG_y,F_zG_x - F_xG_z,F_xG_y - F_yG_x),$$

因此
$$\frac{D(F,G)}{D(y,z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} = F_y G_z - F_z G_y \neq 0$$

两曲面的交线

- 设 F(x, y, z), $G(x, y, z) \in C^1$, 且 (F_x, F_y, F_z) 和 (G_x, G_y, G_z) 不是零向量. 设 (F_x, F_y, F_z) 和 (G_x, G_y, G_z) 在交点处不共线 (即两曲面不相切), 则曲面 F(x, y, z) = 0 和 G(x, y, z) = 0 的交集是曲线.
- 若 $\begin{cases} y = y(x) \\ z = z(x) \end{cases}$ 是方程组 $\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$ 确定的隐函数, 即曲线 x = x, y = y(x), z = z(x) 是曲面 F(x, y, z) = 0 和 G(x, y, z) = 0 的交线的一部分. 交线的切向量 (1, y'(x), z'(x)) 平行于

$$(F_x, F_y, F_z) \times (G_x, G_y, G_z)$$

= $(F_y G_z - F_z G_y, F_z G_x - F_x G_z, F_x G_y - F_y G_x),$

因此
$$\frac{D(F,G)}{D(y,z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} = F_y G_z - F_z G_y \neq 0.$$

两曲面的交线

- 设 $F(x, y, z), G(x, y, z) \in C^1$, 且 (F_x, F_y, F_z) 和 (G_x, G_y, G_z) 不是零向量. 设 (F_x, F_y, F_z) 和 (G_x, G_y, G_z) 在交点处不共线 (即两曲面不相切), 则曲面 F(x, y, z) = 0 和 G(x, y, z) = 0 的交集是曲线.
- 若 $\begin{cases} y = y(x) \\ z = z(x) \end{cases}$ $\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$ 确定的隐函数,即曲线 x = x, y = y(x), z = z(x) 是曲面 F(x, y, z) = 0 和 G(x, y, z) = 0 的交线的一部分. 交线的切向量 (1, y'(x), z'(x)) 平行于 $(F_x, F_y, F_z) \times (G_x, G_y, G_z) \\ = (F_y G_z F_z G_y, F_z G_x F_x G_z, F_x G_y F_y G_x), \end{cases}$

因此
$$\frac{D(F,G)}{D(y,z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} = F_y G_z - F_z G_y \neq 0.$$

•
$$\begin{cases} F(x, u, v) = 0 \\ G(x, u, v) = 0 \end{cases}$$
 确定的隐函数存在定理:
$$\mathcal{F}, G \in C^1, F(x_0, u_0, v_0) = 0, G(x_0, u_0, v_0) = 0.$$

$$(F_u G_v - F_v G_u) \Big|_{(x_0, u_0, v_0)} \neq 0.$$

则存在 x_0 的邻域 D, 以及 D 上的函数 u(x), $v(x) \in C^1(D)$ 使得 $u_0 = u(x_0)$, $v_0 = v(x_0)$, 而且

$$\begin{cases} F(x, u(x), v(x)) \equiv 0 \\ G(x, u(x), v(x)) \equiv 0 \end{cases}$$

•
$$\begin{cases} F(x, u, v) = 0 \\ G(x, u, v) = 0 \end{cases}$$
 确定的隐函数存在定理:
$$\mathcal{F}, G \in C^1, F(x_0, u_0, v_0) = 0, G(x_0, u_0, v_0) = 0.$$

$$(F_u G_v - F_v G_u) \Big|_{(x_0, u_0, v_0)} \neq 0.$$

则存在 x_0 的邻域 D, 以及 D 上的函数 u(x), $v(x) \in C^1(D)$ 使得 $u_0 = u(x_0)$, $v_0 = v(x_0)$, 而且

$$\begin{cases} F(x, u(x), v(x)) \equiv 0 \\ G(x, u(x), v(x)) \equiv 0 \end{cases}.$$

• 若方程组
$$\begin{cases} F(x,u,v) = 0 \\ G(x,u,v) = 0 \end{cases}$$
 确定隐函数
$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$
 即
$$\begin{cases} F(x,u(x),v(x)) \equiv 0 \\ G(x,u(x),v(x)) \equiv 0 \end{cases}$$

对x求导得

$$\begin{cases} F_{x} + F_{u}u' + F_{v}v' = 0 \\ G_{x} + G_{u}u' + G_{v}v' = 0 \end{cases} \Longrightarrow \begin{cases} u'(x) = \frac{F_{v}G_{x} - F_{x}G_{v}}{F_{u}G_{v} - F_{v}G_{u}} \\ v'(x) = \frac{F_{x}G_{u} - F_{u}G_{x}}{F_{u}G_{v} - F_{v}G_{u}} \end{cases}$$

• 若方程组
$$\begin{cases} F(x,u,v)=0\\ G(x,u,v)=0 \end{cases}$$
 确定隐函数
$$\begin{cases} u=u(x)\\ v=v(x) \end{cases}$$
 即
$$\begin{cases} F(x,u(x),v(x))\equiv 0\\ G(x,u(x),v(x))\equiv 0 \end{cases}$$

对x求导得

$$\begin{cases} F_{x} + F_{u}u' + F_{v}v' = 0 \\ G_{x} + G_{u}u' + G_{v}v' = 0 \end{cases} \Longrightarrow \begin{cases} u'(x) = \frac{F_{v}G_{x} - F_{x}G_{v}}{F_{u}G_{v} - F_{v}G_{u}} \\ v'(x) = \frac{F_{x}G_{u} - F_{u}G_{x}}{F_{u}G_{v} - F_{v}G_{u}} \end{cases}$$

方程组确定的二元函数 1

• 方程组 $\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$ 确定的隐函数存在定理: 设 $F,G \in C^1$, $(F_uG_v - F_vG_u)\big|_{(x_0,y_0;u_0,v_0)} \neq 0$.

$$\begin{cases} F(x_0, y_0, u_0, v_0) = 0 \\ G(x_0, y_0, u_0, v_0) = 0 \end{cases}.$$

则存在 (x_0, y_0) 的邻域 D, 以及 D 上的函数 u(x, y), $v(x, y) \in C^1$ 满足 $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$,

$$\begin{cases} F(x, y, u(x, y), v(x, y)) \equiv 0, \\ G(x, y, u(x, y), v(x, y)) \equiv 0. \end{cases}$$

方程组确定的二元函数 2

• 设方程组
$$\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$$
 确定隐函数 $u(x,y)$, $v(x,y)$, 则有
$$F(x,y,u(x,y),v(x,y)) \equiv 0, \ G(x,y,u(x,y),v(x,y)) \equiv 0, \ \text{偏导数满足} \end{cases}$$

$$\begin{cases} F_x + F_u \frac{\partial u}{\partial x} + F_v \frac{\partial v}{\partial x} = 0 \\ G_x + G_u \frac{\partial u}{\partial x} + G_v \frac{\partial v}{\partial x} = 0 \end{cases}$$

$$\begin{cases} F_y + F_u \frac{\partial u}{\partial y} + F_v \frac{\partial v}{\partial y} = 0 \\ G_y + G_u \frac{\partial u}{\partial y} + G_v \frac{\partial v}{\partial y} = 0 \end{cases}$$
 由此方程组可解出 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$.

• 例: 由讨论方程组

$$\begin{cases} x^2 + y^2 - uv = 0 \\ xy + u^2 - v^2 = 0 \end{cases},$$

确定的隐函数 u(x,y), v(x,y) 的存在性, 存在时求 u_x, u_y, v_x, v_y .

• 解: 令 $F(x,y,u,v) = x^2 + y^2 - uv$, $G(x,y,u,v) = xy + u^2 - v^2$, 则 $F_uG_v - F_vG_u = 2(u^2 + v^2)$. 若 (x_0,y_0,u_0,v_0) 满足上面的方程组. 当 $(x_0,y_0) \neq (0,0)$ 时, u_0,v_0 不能同时为 0, 此时 $F_uG_v - F_vG_u \neq 0$, 因此在 (x_0,y_0) 的某个邻域上确定隐函数 u(x,y), v(x,y).

• 例:由讨论方程组

$$\begin{cases} x^2 + y^2 - uv = 0 \\ xy + u^2 - v^2 = 0 \end{cases},$$

确定的隐函数 u(x,y), v(x,y) 的存在性, 存在时求 u_x , u_y , v_x , v_y .

• 解: 令 $F(x,y,u,v)=x^2+y^2-uv$, $G(x,y,u,v)=xy+u^2-v^2$, 则 $F_uG_v-F_vG_u=2(u^2+v^2)$. 若 (x_0,y_0,u_0,v_0) 满足上面的方程组. 当 $(x_0,y_0)\neq(0,0)$ 时, u_0,v_0 不能同时为 0, 此时 $F_uG_v-F_vG_u\neq0$, 因此在 (x_0,y_0) 的某个邻域上确定隐函数 u(x,y), v(x,y).

• 下面求 u(x,y) 和 v(x,y) 的偏导数. 对 x 求偏导,

$$\begin{cases} x^2 + y^2 - uv = 0 \\ xy + u^2 - v^2 = 0 \end{cases}, \begin{cases} 2x - u_x v - uv_x = 0 \\ y + 2uu_x - 2vv_x = 0 \end{cases} \rightarrow \begin{cases} u_x = \frac{4xv - yu}{2(u^2 + v^2)} \\ v_x = \frac{4xu + yv}{2(u^2 + v^2)} \end{cases}$$

对 y 求偏导,

$$\begin{cases} 2y - u_y v - u v_y = 0 \\ x + 2u u_y - 2v v_y = 0 \end{cases} \implies \begin{cases} u_y = \frac{4yv - xu}{2(u^2 + v^2)} \\ v_y = \frac{4yu + xv}{2(u^2 + v^2)} \end{cases}$$

例 2

• 下面求 u(x,y) 和 v(x,y) 的偏导数. 对 x 求偏导,

$$\begin{cases} x^2 + y^2 - uv = 0 \\ xy + u^2 - v^2 = 0 \end{cases}, \begin{cases} 2x - u_x v - uv_x = 0 \\ y + 2uu_x - 2vv_x = 0 \end{cases} \rightarrow \begin{cases} u_x = \frac{4xv - yu}{2(u^2 + v^2)} \\ v_x = \frac{4xu + yv}{2(u^2 + v^2)} \end{cases}.$$

对 y 求偏导,

$$\begin{cases} 2y - u_y v - u v_y = 0 \\ x + 2u u_y - 2v v_y = 0 \end{cases} \implies \begin{cases} u_y = \frac{4yv - xu}{2(u^2 + v^2)} \\ v_y = \frac{4yu + xv}{2(u^2 + v^2)} \end{cases}$$

例 2

• 下面求 u(x,y) 和 v(x,y) 的偏导数. 对 x 求偏导,

$$\begin{cases} x^2 + y^2 - uv = 0 \\ xy + u^2 - v^2 = 0 \end{cases}, \begin{cases} 2x - u_x v - uv_x = 0 \\ y + 2uu_x - 2vv_x = 0 \end{cases} \rightarrow \begin{cases} u_x = \frac{4xv - yu}{2(u^2 + v^2)} \\ v_x = \frac{4xu + yv}{2(u^2 + v^2)} \end{cases}.$$

对 y 求偏导,

$$\begin{cases} 2y - u_y v - u v_y = 0 \\ x + 2u u_y - 2v v_y = 0 \end{cases} \implies \begin{cases} u_y = \frac{4yv - xu}{2(u^2 + v^2)} \\ v_y = \frac{4yu + xv}{2(u^2 + v^2)} \end{cases}.$$

逆映射的存在性定理1

• 定理: 设 x = x(u, v), y = y(u, v) 是 (u_0, v_0) 的一个邻域上定义的函数,且有连续偏导数. 若 Jacobi 行列式

$$\frac{D(x,y)}{D(u,v)}\Big|_{(u_0,v_0)} = x_u y_v - x_v y_u|_{(u_0,v_0)} \neq 0, \begin{cases} x_0 = x(u_0,v_0) \\ y_0 = y(u_0,v_0) \end{cases}.$$

则存在 (x_0, y_0) 的邻域 D, 以及 D 上的函数 u = u(x, y), $v = v(x, y) \in C^1(D)$ 满足 $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$, 且 $x(u(x, y), v(x, y)) \equiv x$, $y(u(x, y), v(x, y)) \equiv y$. 证明. 令 F(x, y, u, v) = x - x(u, v), G(x, y, u, v) = y - y(u, v), $F(x_0, y_0, u_0, v_0) = 0$, $G(x_0, y_0, u_0, v_0) = 0$, $F_uG_v - F_vG_u|_{(x_0, y_0, u_0, v_0)} = x_uy_v - x_vy_u|_{(u_0, v_0)} \neq 0$.

• 定理: 设 x = x(u, v), y = y(u, v) 是 (u_0, v_0) 的一个邻域上定义的函数,且有连续偏导数. 若 Jacobi 行列式

$$\frac{D(x,y)}{D(u,v)}\Big|_{(u_0,v_0)} = x_u y_v - x_v y_u|_{(u_0,v_0)} \neq 0, \begin{cases} x_0 = x(u_0,v_0) \\ y_0 = y(u_0,v_0) \end{cases}.$$

则存在 (x_0, y_0) 的邻域 D, 以及 D 上的函数 u = u(x, y), $v = v(x, y) \in C^1(D)$ 满足 $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$, 且 $x(u(x, y), v(x, y)) \equiv x$, $y(u(x, y), v(x, y)) \equiv y$. 证明. 令 F(x, y, u, v) = x - x(u, v), G(x, y, u, v) = y - y(u, v), $F(x_0, y_0, u_0, v_0) = 0$, $G(x_0, y_0, u_0, v_0) = 0$, $F_uG_v - F_vG_u|_{(x_0, y_0, u_0, v_0)} = x_uy_v - x_vy_u|_{(u_0, v_0)} \neq 0$.

• 定理: 设 x = x(u, v), y = y(u, v) 是 (u_0, v_0) 的一个邻域上定义的函数,且有连续偏导数. 若 Jacobi 行列式

$$\frac{D(x,y)}{D(u,v)}\Big|_{(u_0,v_0)} = x_u y_v - x_v y_u|_{(u_0,v_0)} \neq 0, \begin{cases} x_0 = x(u_0,v_0) \\ y_0 = y(u_0,v_0) \end{cases}.$$

则存在 (u_0, v_0) 的邻域 U, (x_0, y_0) 的邻域 D, 以及 D 上的函数 u = u(x, y), $v = v(x, y) \in C^1(D)$ 满足 $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$, 且映射

$$D \rightarrow U: (x, y) \mapsto (u(x, y), v(x, y))$$

是映射

$$U \rightarrow D: (u, v) \mapsto (x(u, v), y(u, v))$$

136 / 171

的逆映射.

• $\begin{cases} x = x(u, v), & x(u, v), y = y(u, v) \in C^1,$ 逆映射函数 $u = u(x, y), \\ y = y(u, v), & v = v(x, y), \end{cases}$ 的偏导数满足

$$\begin{cases} 1 = x_u \frac{\partial u}{\partial x} + x_v \frac{\partial v}{\partial x} \\ , \\ 0 = y_u \frac{\partial u}{\partial x} + y_v \frac{\partial v}{\partial x} \end{cases} \qquad \begin{cases} 0 = x_u \frac{\partial u}{\partial y} + x_v \frac{\partial v}{\partial y} \\ . \\ 1 = y_u \frac{\partial u}{\partial y} + y_v \frac{\partial v}{\partial y} \end{cases}$$

由上面的方程组可解出 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$.

• 注: 由上面方程组可得

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \Longrightarrow \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}^{-1}$$

• $\begin{cases} x = x(u, v), & x(u, v), y = y(u, v) \in C^1,$ 逆映射函数 $u = u(x, y), \\ y = y(u, v), & v = v(x, y), \end{cases}$ 的偏导数满足

$$\begin{cases} 1 = x_{u} \frac{\partial u}{\partial x} + x_{v} \frac{\partial v}{\partial x} \\ , \\ 0 = y_{u} \frac{\partial u}{\partial x} + y_{v} \frac{\partial v}{\partial x} \end{cases} \qquad \begin{cases} 0 = x_{u} \frac{\partial u}{\partial y} + x_{v} \frac{\partial v}{\partial y} \\ . \\ 1 = y_{u} \frac{\partial u}{\partial y} + y_{v} \frac{\partial v}{\partial y} \end{cases}$$

由上面的方程组可解出 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$.

• 注: 由上面方程组可得

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \Longrightarrow \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}^{-1}$$

• $\begin{cases} x = x(u, v), & x(u, v), y = y(u, v) \in C^1,$ 逆映射函数 $u = u(x, y), \\ y = y(u, v), & v = v(x, y), \end{cases}$ 的偏导数满足

$$\begin{cases} 1 = x_u \frac{\partial u}{\partial x} + x_v \frac{\partial v}{\partial x} \\ 0 = y_u \frac{\partial u}{\partial x} + y_v \frac{\partial v}{\partial x} \end{cases} \qquad \begin{cases} 0 = x_u \frac{\partial u}{\partial y} + x_v \frac{\partial v}{\partial y} \\ 1 = y_u \frac{\partial u}{\partial y} + y_v \frac{\partial v}{\partial y} \end{cases}$$

由上面的方程组可解出 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$.

• 注: 由上面方程组可得

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \Longrightarrow \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}^{-1}$$

• n 为逆映射存在定理: 映射 $f: (x_1, x_2, \dots, x_n) \mapsto (y_1, y_2, \dots, y_n),$ $y_k = f_k(x_1, x_2, \dots, x_n), k = 1, 2, \dots, n.$ 若 f 的 Jacobi 行列式

$$\frac{D(y_1, y_2, \cdots, y_n)}{D(x_1, x_2, \cdots, x_n)} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix} \neq 0$$

则存在局部逆映射.

• 例: $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$, 若 $(x_0, y_0), (r_0, \theta_0)$ 满足上述方程组, 且 $x_r y_\theta - x_\theta y_r|_{(r_0, \theta_0)} = r_0 = \sqrt{x_0^2 + y_0^2} \neq 0$, 则存在 (x_0, y_0) 的某个邻域上定义的逆变换 r = r(x, y), $\theta = \theta(x, y)$. 偏导数满足

$$\begin{cases} 1 = r_x \cos \theta - \theta_x r \sin \theta \\ 0 = r_x \sin \theta + \theta_x r \cos \theta \end{cases} \Rightarrow \begin{cases} r_x = \cos \theta \\ \theta_x = -\frac{\sin \theta}{r} \end{cases}.$$

• 例: $\begin{cases} x = r\cos\theta\sin\phi \\ y = r\sin\theta\sin\phi \text{ in } \phi \text{ in } \phi \text{ Jacobi } 行列式为 \ r^2\sin\phi. \\ z = r\cos\phi \end{cases}$

• 例: $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$, 若 $(x_0, y_0), (r_0, \theta_0)$ 满足上述方程组, 且 $x_r y_\theta - x_\theta y_r|_{(r_0, \theta_0)} = r_0 = \sqrt{x_0^2 + y_0^2} \neq 0$, 则存在 (x_0, y_0) 的某个邻域上定义的逆变换 r = r(x, y), $\theta = \theta(x, y)$. 偏导数满足

$$\begin{cases} 1 = r_x \cos \theta - \theta_x r \sin \theta \\ 0 = r_x \sin \theta + \theta_x r \cos \theta \end{cases} \Rightarrow \begin{cases} r_x = \cos \theta \\ \theta_x = -\frac{\sin \theta}{r} \end{cases}.$$

• 例: $\begin{cases} x = r\cos\theta\sin\phi \\ y = r\sin\theta\sin\phi \text{ in } \phi \text{ in } Jacobi 行列式为 } r^2\sin\phi. \\ z = r\cos\phi \end{cases}$

多元函数的极值和最值

• 定义: f(x,y) 在集合 D 上定义, (x_0,y_0) 是 D 的内点. 若存在 (x_0,y_0) 的一个领域 U_δ 使得

$$f(x, y) \le f(x_0, y_0), \quad \forall (x, y) \in U_\delta$$

成立,则称 (x_0, y_0) 为 f 的一个极大值点, $f(x_0, y_0)$ 称为 f(x, y) 的一个极大值. 类似可定义极小值点与极小值. 极大值点和极小值点统称为极值点, 极大值和极小值统称为极值.

定义: f(x,y) 在集合 D上定义,若(x₀,y₀)∈D满足

$$f(x, y) \le f(x_0, y_0), \quad \forall (x, y) \in D,$$

则称 $f(x_0, y_0)$ 为 f(x, y) 在 D 上的最大值, (x_0, y_0) 为 f 在 D 上的最大值点. 类似可定义最小值点与最小值.

多元函数的极值和最值

• 定义: f(x,y) 在集合 D 上定义, (x_0,y_0) 是 D 的内点. 若存在 (x_0,y_0) 的一个领域 U_δ 使得

$$f(x, y) \le f(x_0, y_0), \quad \forall (x, y) \in U_\delta$$

成立,则称 (x_0, y_0) 为 f 的一个极大值点, $f(x_0, y_0)$ 称为 f(x, y) 的一个极大值. 类似可定义极小值点与极小值. 极大值点和极小值点统称为极值点, 极大值和极小值统称为极值.

• 定义: f(x,y) 在集合 D 上定义, 若 $(x_0,y_0) \in D$ 满足

$$f(x,y) \le f(x_0,y_0), \quad \forall (x,y) \in D,$$

则称 $f(x_0, y_0)$ 为 f(x, y) 在 D 上的最大值, (x_0, y_0) 为 f 在 D 上的最大值点. 类似可定义最小值点与最小值.

140 / 171

• 定理(极值的必要条件): 若 (x_0, y_0) 是 f(x, y) 的极值点,且 $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ 均存在,则 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$.

$$\frac{d}{dx}f(x,y_0)\Big|_{x=x_0} = f_x(x_0,y_0) = 0.$$

- 注: 若 (x_0, y_0) 是 f(x, y) 的极值点, $\vec{l} = (\cos \alpha, \cos \beta)$, 则 t = 0 是 $\phi(t) = f(x_0 + t\cos \alpha, y_0 + t\cos \beta)$ 的极值点. 若 $\frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)}$ 存在, 即 $\phi(t)$ 在 0 点可导, 则有 $\phi'(0) = \frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)} = 0$.
- 定义:满足 $f_x(x_0,y_0)=f_y(x_0,y_0)=0$ 的点 (x_0,y_0) 称为 f 的稳定点.

141 / 171

• 定理(极值的必要条件): 若 (x_0, y_0) 是 f(x, y) 的极值点,且 $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ 均存在,则 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. 证明: $x = x_0$ 是 $f(x, y_0)$ 的极值点,且在 $x = x_0$ 处可导,因此

$$\frac{d}{dx}f(x, y_0)\Big|_{x=x_0} = f_x(x_0, y_0) = 0.$$

- 注: 若 (x_0, y_0) 是 f(x, y) 的极值点, $\vec{l} = (\cos \alpha, \cos \beta)$, 则 t = 0 是 $\phi(t) = f(x_0 + t\cos \alpha, y_0 + t\cos \beta)$ 的极值点. 若 $\frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)}$ 存在, 即 $\phi(t)$ 在 0 点可导, 则有 $\phi'(0) = \frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)} = 0$.
- 定义:满足 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ 的点 (x_0, y_0) 称为 f的稳定点.

• 定理(极值的必要条件): 若 (x_0, y_0) 是 f(x, y) 的极值点,且 $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ 均存在,则 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. 证明: $x = x_0$ 是 $f(x, y_0)$ 的极值点,且在 $x = x_0$ 处可导,因此

$$\frac{d}{dx}f(x, y_0)\Big|_{x=x_0} = f_x(x_0, y_0) = 0.$$

- 注: 若 (x_0, y_0) 是 f(x, y) 的极值点, $\vec{l} = (\cos \alpha, \cos \beta)$, 则 t = 0 是 $\phi(t) = f(x_0 + t\cos \alpha, y_0 + t\cos \beta)$ 的极值点. 若 $\frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)}$ 存在, 即 $\phi(t)$ 在 0 点可导, 则有 $\phi'(0) = \frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)} = 0$.
- 定义:满足 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ 的点 (x_0, y_0) 称为 f的稳定点.

• 定理(极值的必要条件): 若 (x_0, y_0) 是 f(x, y) 的极值点,且 $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ 均存在,则 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. 证明: $x = x_0$ 是 $f(x, y_0)$ 的极值点,且在 $x = x_0$ 处可导,因此

$$\frac{d}{dx}f(x, y_0)\Big|_{x=x_0} = f_x(x_0, y_0) = 0.$$

- 注: 若 (x_0, y_0) 是 f(x, y) 的极值点, $\vec{l} = (\cos \alpha, \cos \beta)$, 则 t = 0 是 $\phi(t) = f(x_0 + t\cos \alpha, y_0 + t\cos \beta)$ 的极值点. 若 $\frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)}$ 存在, 即 $\phi(t)$ 在 0 点可导, 则有 $\phi'(0) = \frac{\partial f}{\partial \vec{l}}|_{(x_0, y_0)} = 0$.
- 定义: 满足 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ 的点 (x_0, y_0) 称为 f 的稳定点.

一元函数极值点的判别方法

- 设 $f'(x_0) = 0$, 若两边单调性相反,则是极值点.
- 设 $f'(x_0) = 0$, 若 f'(x) 在 x_0 两边的符号相反,则是极值点.
- 设 $f'(x_0) = 0$, 若 f 在 x_0 处有二阶导数. 若 $f''(x_0) < 0$, 则 x_0 为极大点; 若 $f''(x_0) > 0$, 则 x_0 为极小点. ($f''(x_0) = 0$, 不定)

二次多项式的极值

• 若 $f(x,y) = Ax^2 + 2Bxy + Cy^2$, 当 $B^2 \neq AC$ 时 (0,0) 是唯一的稳定点, 当 $A \neq 0$ 时,

$$Ax^2 + 2Bxy + Cy^2 = \frac{1}{A}[(Ax + By)^2 + (AC - B^2)y^2],$$

若 $C \neq 0$ 时,

$$Ax^{2} + 2Bxy + Cy^{2} = \frac{1}{C}[(AC - B^{2})x^{2} + (Bx + Cy)^{2}].$$

A = C = 0 B, f(x, y) = 2Bxy.

若 $B^2 < AC$, 则当 A > 0 时,(0,0) 是极小点 (也是最小点); 当 A < 0 时,(0,0) 是极大点 (也是最大点).

 $B^2 > AC$, (0,0) 一定不是极值点.

多元函数极值点的判别定理

• 设 z = f(x, y) 在 (x_0, y_0) 的一个邻域内有连续的二阶偏导数,且 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$. 记 $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$.

$$f(x,y) = f(x_0,y_0) + \frac{1}{2}(A(x-x_0)^2 + 2B(x-x_0)(y-y_0) + C(y-y_0)^2) + o(\rho^2).$$

- 定理: 设 z = f(x, y) 在 (x_0, y_0) 的一个邻域内有连续的二阶偏导数,且 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$.
 - (1) 若 $B^2 < AC$, 则当 A > 0 时, $f(x_0, y_0)$ 是极小值; 当 A < 0 时, $f(x_0, y_0)$ 是极大值.
 - (2) $B^2 > AC$, $f(x_0, y_0)$ 一定不是极值点
 - $(3) B^2 = AC, \, \mathbb{A}\mathbb{E}.$

多元函数极值点的判别定理

• 设 z = f(x, y) 在 (x_0, y_0) 的一个邻域内有连续的二阶偏导数,且 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$. 记 $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$.

$$f(x,y) = f(x_0,y_0) + \frac{1}{2}(A(x-x_0)^2 + 2B(x-x_0)(y-y_0) + C(y-y_0)^2) + o(\rho^2).$$

- 定理: 设 z = f(x, y) 在 (x_0, y_0) 的一个邻域内有连续的二阶偏导数,且 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$.
 - (1) 若 $B^2 < AC$, 则当 A > 0 时, $f(x_0, y_0)$ 是极小值;当 A < 0 时, $f(x_0, y_0)$ 是极大值.
 - (2) $B^2 > AC$, $f(x_0, y_0)$ 一定不是极值点.
 - (3) $B^2 = AC$, 不定.

• (1) 的证明: 由二元函数的 Taylor 公式, 存在 $\theta \in (0.1)$, 使得 $P_{\theta} = (x_0 + \theta \Delta x, y_0 + \theta \Delta y) 满足$ $f(x_0 + \Delta x, y_0 + \Delta y)$ $= f(x_0, y_0) + \frac{1}{2} (f_{xx}(P_{\theta}) \Delta x^2 + 2f_{xy}(P_{\theta}) \Delta x \Delta y + f_{yy}(P_{\theta}) \Delta y^2)$

记 $\tilde{A} = f_{xx}(P_{\theta})$, $\tilde{B} = f_{xy}(P_{\theta})$, $\tilde{C} = f_{yy}(P_{\theta})$. 由函数 $(f_{xy})^2 - 4f_{xx}f_{yy}$ 和 f_{xx} 的连续性,当 $(f_{xy})^2 - 4f_{xx}f_{yy}|_{(x_0,y_0)} = B^2 - AC < 0$, $f_{xx}|_{(x_0,y_0)} = A > 0$ 时,存在 $\delta > 0$,使得当 $|\Delta x| < \delta$, $|\Delta y| < \delta$ 时, $(f_{xy})^2 - 4f_{xx}f_{yy}|_{P_{\theta}} = \tilde{B}^2 - \tilde{A}\tilde{C} < 0$, $f_{xx}|_{P_{\theta}} = \tilde{A} > 0$,则有

 $\tilde{A}\Delta x^2 + 2\tilde{B}\Delta x\Delta y + \tilde{C}\Delta y^2 = \frac{1}{\tilde{A}}[(\tilde{A}\Delta x + \tilde{B}\Delta y)^2 + (\tilde{A}\tilde{C} - \tilde{B}^2)\Delta y^2] \ge 0.$

145 / 171

• (1) 的证明: 由二元函数的 Taylor 公式,存在 $\theta \in (0.1)$,使得 $P_{\theta} = (x_0 + \theta \Delta x, y_0 + \theta \Delta y) 满足$ $f(x_0 + \Delta x, y_0 + \Delta y)$ $= f(x_0, y_0) + \frac{1}{2} (f_{xx}(P_{\theta}) \Delta x^2 + 2f_{xy}(P_{\theta}) \Delta x \Delta y + f_{yy}(P_{\theta}) \Delta y^2)$

记
$$\tilde{A} = f_{xx}(P_{\theta})$$
, $\tilde{B} = f_{xy}(P_{\theta})$, $\tilde{C} = f_{yy}(P_{\theta})$. 由函数 $(f_{xy})^2 - 4f_{xx}f_{yy}$ 和 f_{xx} 的连续性, 当 $(f_{xy})^2 - 4f_{xx}f_{yy}|_{(x_0,y_0)} = B^2 - AC < 0$, $f_{xx}|_{(x_0,y_0)} = A > 0$ 时, 存在 $\delta > 0$, 使得当 $|\Delta x| < \delta$, $|\Delta y| < \delta$ 时, $(f_{xy})^2 - 4f_{xx}f_{yy}|_{P_{\theta}} = \tilde{B}^2 - \tilde{A}\tilde{C} < 0$, $f_{xx}|_{P_{\theta}} = \tilde{A} > 0$, 则有

$$\tilde{A}\Delta x^2 + 2\tilde{B}\Delta x\Delta y + \tilde{C}\Delta y^2 = \frac{1}{\tilde{A}}[(\tilde{A}\Delta x + \tilde{B}\Delta y)^2 + (\tilde{A}\tilde{C} - \tilde{B}^2)\Delta y^2] \ge 0.$$

145 / 171

• (1) 的证明续: 也可用 Peano 余项的 Taylor 公式证明.

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2.$$

其中 $R_2 = o(\rho^2)$. 若 $B^2 < AC$, $A > 0$, 存在 $\epsilon > 0$, 使得
$$A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 \ge \epsilon(\Delta x^2 + \Delta y^2).$$

事实上只要取 ϵ 满足 $B^2 < (A - \epsilon)(C - \epsilon)$ 即可. 取 $\delta > 0$, 使得当 $|\Delta x| < \delta$, $|\Delta y| < \delta$ 时, $|R_2| \le \frac{1}{2} \epsilon (\Delta x^2 + \Delta y^2)$. 当 $B^2 < AC$, A < 0 时, 证明类似.

• (1) 的证明续: 也可用 Peano 余项的 Taylor 公式证明.

事实上只要取 ϵ 满足 $B^2 < (A - \epsilon)(C - \epsilon)$ 即可. 取 $\delta > 0$, 使得当 $|\Delta x| < \delta$, $|\Delta y| < \delta$ 时, $|R_2| \le \frac{1}{2} \epsilon (\Delta x^2 + \Delta y^2)$. 当 $B^2 < AC$, A < 0 时, 证明类似.

• (2) 的证明: 利用 Peano 余项的 Taylor 公式,

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2.$$

其中 $R_2 = o(\rho^2)$.

当 $B^2 > AC$, A > 0 时,取足够小的 $\epsilon > 0$, 存在 δ , 当 $\Delta x = -\frac{B}{A}\Delta y$ 且 $0 < |\Delta y| < \delta$ 时,

$$\begin{split} &\frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2\\ &\leq \frac{1}{2A}[(A\Delta x + B\Delta y)^2 - (B^2 - AC)\Delta y^2] + \epsilon(\Delta x^2 + \Delta y^2)\\ &\leq -\frac{1}{2A}(B^2 - AC)\Delta y^2 + \epsilon(1 + \frac{B^2}{A^2})\Delta y^2 < 0 \end{split}$$

• (2) 的证明: 利用 Peano 余项的 Taylor 公式,

$$\begin{split} f(x_0+\Delta x,y_0+\Delta y)&=f(x_0,y_0)+\frac{1}{2}(A\Delta x^2+2B\Delta x\Delta y+C\Delta y^2)+R_2. \\ &\sharp \ R_2=o(\rho^2). \\ &\sharp \ B^2>AC,\ A>0\ \mathrm{bf},\ \mathrm{取足够小的}\ \epsilon>0,\ 存在\ \delta,\ \ \ \, \Delta x=-\frac{B}{A}\Delta y \\ & \mathrm{II}\ 0<|\Delta y|<\delta\ \mathrm{bf}, \end{split}$$

$$\begin{split} &\frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2\\ &\leq \frac{1}{2A}[(A\Delta x + B\Delta y)^2 - (B^2 - AC)\Delta y^2] + \epsilon(\Delta x^2 + \Delta y^2)\\ &\leq -\frac{1}{2A}(B^2 - AC)\Delta y^2 + \epsilon(1 + \frac{B^2}{A^2})\Delta y^2 < 0 \end{split}$$

• 当 $B^2 > AC$, A > 0 时, 取足够小的 $\epsilon > 0$, 存在 δ , 当 $\Delta y = 0$ 且 $0 < |\Delta x| < \delta$ 时,

$$\frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2 \ge \frac{1}{2}A\Delta x^2 - \epsilon \Delta x^2 > 0$$

因此 (x_0, y_0) 不是极值点.

• A < 0 时类似证明. 若 $C \neq 0$ 时, 利用

$$A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = \frac{1}{C}[(AC - B^2)\Delta x^2 + (B\Delta x + C\Delta y)^2].$$

• 若 A = C = 0, 则 $B \neq 0$, $A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = 2B\Delta x\Delta y$. 考虑 $\Delta x = \Delta y$, $\Delta x = -\Delta y$.

• 当 $B^2 > AC$, A > 0 时, 取足够小的 $\epsilon > 0$, 存在 δ , 当 $\Delta y = 0$ 且 $0 < |\Delta x| < \delta$ 时,

$$\frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2 \ge \frac{1}{2}A\Delta x^2 - \epsilon \Delta x^2 > 0$$

因此 (x_0, y_0) 不是极值点.

• A < 0 时类似证明. 若 $C \neq 0$ 时, 利用

$$A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = \frac{1}{C}[(AC - B^2)\Delta x^2 + (B\Delta x + C\Delta y)^2].$$

• 若 A = C = 0, 则 $B \neq 0$, $A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = 2B\Delta x\Delta y$. 考虑 $\Delta x = \Delta y$, $\Delta x = -\Delta y$.

• 当 $B^2 > AC$, A > 0 时, 取足够小的 $\epsilon > 0$, 存在 δ , 当 $\Delta y = 0$ 且 $0 < |\Delta x| < \delta$ 时,

$$\frac{1}{2}(A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2) + R_2 \ge \frac{1}{2}A\Delta x^2 - \epsilon \Delta x^2 > 0$$

因此 (x_0, y_0) 不是极值点.

• A < 0 时类似证明. 若 $C \neq 0$ 时, 利用

$$A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = \frac{1}{C}[(AC - B^2)\Delta x^2 + (B\Delta x + C\Delta y)^2].$$

• 若 A = C = 0, 则 $B \neq 0$, $A\Delta x^2 + 2B\Delta x\Delta y + C\Delta y^2 = 2B\Delta x\Delta y$. 考虑 $\Delta x = \Delta y$, $\Delta x = -\Delta y$.

• (3) 的证明: 考虑 $f(x,y) = (x+y)^2$ 和 $g(x,y) = (x+y)^2 + x^3$, 在 (0,0) 点, A = B = C = 2, 都满足 $B^2 = AC$.

- $f(x,y) = xy + \frac{1}{3}(x^3 + y^3)$. 求极值点.
- 解:解方程组 $\begin{cases} f_x = y + x^2 = 0 \\ f_y = x + y^2 = 0 \end{cases}$ 得到稳定点 (0,0), (-1,-1). 二阶偏导数 $f_{xx} = 2x$, $f_{xy} = 1$, $f_{yy} = 2y$. 在 (0,0) 点, $B^2 - AC > 0$, 不是极值点.在 (-1,-1) 点, $B^2 - AC < 0$,A < 0 是极大值点.
- 注: 上例中 f(x,y) 在 \mathbb{R}^2 上有唯一的极值点 (-1,-1),但不是最值点.

极值点的判别 -例

- $f(x,y) = xy + \frac{1}{3}(x^3 + y^3)$. 求极值点.
- 解:解方程组 $\begin{cases} f_x = y + x^2 = 0 \\ f_y = x + y^2 = 0 \end{cases}$ 得到稳定点 (0,0), (-1,-1). 二阶偏导数 $f_{xx} = 2x$, $f_{xy} = 1$, $f_{yy} = 2y$. 在 (0,0) 点, $B^2 AC > 0$,
 - 二阶偏导数 $f_{xx} = 2x$, $f_{xy} = 1$, $f_{yy} = 2y$. 在 (0,0) 点, $B^2 AC > 0$ 不是极值点. 在 (-1,-1) 点, $B^2 AC < 0$,A < 0 是极大值点.
- 注: 上例中 f(x,y) 在 \mathbb{R}^2 上有唯一的极值点 (-1,-1),但不是最值点.

极值点的判别 -例

- $f(x,y) = xy + \frac{1}{3}(x^3 + y^3)$. 求极值点.
- 解: 解方程组 $\begin{cases} f_x = y + x^2 = 0 \\ f_y = x + y^2 = 0 \end{cases}$ 得到稳定点 (0,0), (-1,-1). $\int f_y = x + y^2 = 0$ 二阶偏导数 $f_{xx} = 2x$, $f_{xy} = 1$, $f_{yy} = 2y$. 在 (0,0) 点, $B^2 - AC > 0$, 不是极值点. 在 (-1,-1) 点, $B^2 - AC < 0$, A < 0 是极大值点.
- 注: 上例中 f(x,y) 在 \mathbb{R}^2 上有唯一的极值点 (-1,-1). 但不是最值

极值点的判别 -例

- $f(x,y) = xy + \frac{1}{3}(x^3 + y^3)$. 求极值点.
- 解:解方程组 $\begin{cases} f_x = y + x^2 = 0 \\ f_y = x + y^2 = 0 \end{cases}$ 得到稳定点 (0,0), (-1,-1). 二阶偏导数 $f_{xx} = 2x$, $f_{xy} = 1$, $f_{yy} = 2y$. 在 (0,0) 点, $B^2 AC > 0$, 不是极值点.在 (-1,-1) 点, $B^2 AC < 0$,A < 0 是极大值点.
- 注: 上例中 f(x,y) 在 \mathbb{R}^2 上有唯一的极值点 (-1,-1),但不是最值点.

二次多项式的极值和最值

• 若 f(x,y) 是二次多项式, (x_0,y_0) 是任意一点, 则 f(x,y) 可表示为

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$+ \frac{1}{2} (A(x - x_0)^2 + 2B(x - x_0)(y - y_0) + C(y - y_0)^2)$$

这里 $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$.

若(x₀, y₀) 是稳定点. 当 B² < AC 时, 若 A > 0, (x₀, y₀) 是极小值点, 也是最小值点; 若 A < 0, (x₀, y₀) 是极大值点, 也是最大值点.
 B² > AC 时(x₀, y₀) 不是极值点. 当 B² = AC 时稳定点 (构成一条直线) 都是极值点, 且当 A 或 C 大于零时, 所有稳定点是极小点 (也是最小点).

刘建明 (北大数学学院)

二次多项式的极值和最值

• 若 f(x,y) 是二次多项式, (x_0,y_0) 是任意一点, 则 f(x,y) 可表示为

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$+ \frac{1}{2} (A(x - x_0)^2 + 2B(x - x_0)(y - y_0) + C(y - y_0)^2)$$

这里 $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$.

若 (x₀, y₀) 是稳定点. 当 B² < AC 时, 若 A > 0, (x₀, y₀) 是极小值点, 也是最小值点; 若 A < 0, (x₀, y₀) 是极大值点, 也是最大值点.
 B² > AC 时 (x₀, y₀) 不是极值点. 当 B² = AC 时稳定点 (构成一条直线) 都是极值点, 且当 A 或 C 大于零时, 所有稳定点是极小点 (也是最小点).

多元函数的最值

- 有界闭区域 D上的连续函数存在最大值点和最小值点.在 D内部的最值点必是极值点.事实上一个连续函数限制到一个有界闭集上必然有界.且存在最大值点和最小值点
- 有界闭区域 D 上最值的求法:
 - 1. 求出内部的驻点, 2. 求出边界上的最值. 3. 比较函数在内部驻点处的取值和边界上最值点处的取值, 得到函数的最值.

多元函数的最值

- 有界闭区域 D上的连续函数存在最大值点和最小值点.在 D内部的最值点必是极值点.事实上一个连续函数限制到一个有界闭集上必然有界.且存在最大值点和最小值点
- 有界闭区域 D上最值的求法:
 1. 求出内部的驻点, 2. 求出边界上的最值. 3. 比较函数在内部驻点处的取值和边界上最值点处的取值, 得到函数的最值.

- 最小二乘法: 变量 y 是变量 x 的函数,由实验测得当 x 取 x_1 , x_2 , \dots , x_n 时,对应 y 的值分别为 y_1, y_2, \dots, y_n . 找一个近似公式 y = ax + b,使得 $u(a, b) = \sum_{i=1}^{n} (ax_i + b y_i)^2$ 最小.
- 解:要求函数 u(a,b) 的最小值点. 先求驻点:

$$\begin{cases} \frac{\partial u}{\partial a} = \sum_{i=1}^{n} 2x_i (ax_i + b - y_i) = 0\\ \frac{\partial u}{\partial b} = \sum_{i=1}^{n} 2(ax_i + b - y_i) = 0 \end{cases}$$

- 最小二乘法: 变量 y 是变量 x 的函数,由实验测得当 x 取 x_1 , x_2 , \dots , x_n 时,对应 y 的值分别为 y_1, y_2, \dots, y_n . 找一个近似公式 y = ax + b,使得 $u(a, b) = \sum_{i=1}^{n} (ax_i + b y_i)^2$ 最小.
- 解:要求函数 u(a,b) 的最小值点. 先求驻点:

$$\begin{cases} \frac{\partial u}{\partial a} = \sum_{i=1}^{n} 2x_i (ax_i + b - y_i) = 0\\ \frac{\partial u}{\partial b} = \sum_{i=1}^{n} 2(ax_i + b - y_i) = 0 \end{cases}$$

•解(续):上面方程组整理得

$$\begin{cases} (\sum_{i=1}^{n} x_i^2) a + (\sum_{i=1}^{n} x_i) b = \sum_{i=1}^{n} x_i y_i \\ (\sum_{i=1}^{n} x_i) a + nb = \sum_{i=1}^{n} y_i \end{cases}.$$

上面二元线性方程组的系数行列式

$$\begin{vmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{vmatrix} = \sum_{i < j} (x_i - x_j)^2 \neq 0,$$

因此方程组有唯一解 (a_0, b_0) . 又 $u_{aa} = 2\sum_{i=1}^n x_i^2$, $u_{ab} = 2\sum_{i=1}^n x_i$, $u_{bb} = 2n$, $AC - B^2 = 4\sum_{i < j} (x_i - x_j)^2 > 0$, 因此 (a_0, b_0) 是极小值点, 也是最小值点.

•解(续):上面方程组整理得

$$\begin{cases} (\sum_{i=1}^{n} x_i^2) a + (\sum_{i=1}^{n} x_i) b = \sum_{i=1}^{n} x_i y_i \\ (\sum_{i=1}^{n} x_i) a + nb = \sum_{i=1}^{n} y_i \end{cases}.$$

上面二元线性方程组的系数行列式

$$\begin{vmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{vmatrix} = \sum_{i < j} (x_i - x_j)^2 \neq 0,$$

因此方程组有唯一解 (a_0, b_0) . 又 $u_{aa} = 2\sum_{i=1}^n x_i^2$, $u_{ab} = 2\sum_{i=1}^n x_i$, $u_{bb} = 2n$, $AC - B^2 = 4\sum_{i < j} (x_i - x_j)^2 > 0$, 因此 (a_0, b_0) 是极小值点, 也是最小值点.

154 / 171

•解(续):上面方程组整理得

$$\begin{cases} (\sum_{i=1}^{n} x_i^2) a + (\sum_{i=1}^{n} x_i) b = \sum_{i=1}^{n} x_i y_i \\ (\sum_{i=1}^{n} x_i) a + nb = \sum_{i=1}^{n} y_i \end{cases}.$$

上面二元线性方程组的系数行列式

$$\begin{vmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{vmatrix} = \sum_{i < j} (x_i - x_j)^2 \neq 0,$$

因此方程组有唯一解 (a_0,b_0) . 又 $u_{aa}=2\sum_{i=1}^n x_i^2$, $u_{ab}=2\sum_{i=1}^n x_i$, $u_{bb}=2n$, $AC-B^2=4\sum_{i< j}(x_i-x_j)^2>0$, 因此 (a_0,b_0) 是极小值点,也是最小值点.

求最值 —例 1

- 例: $f(x,y) = x^2y(4-x-y)$, $\bar{D} = \{(x,y)|x \ge 0, y \ge 0, x+y \le 6\}$. 求 $f \in \bar{D}$ 上的最值.
- 解: 先求驻点:

$$\begin{cases} f_x = 2xy(4 - x - y) - x^2y = xy(8 - 3x - 2y) = 0 \\ f_y = x^2(4 - x - y) - x^2y = x^2(4 - x - 2y) = 0 \end{cases}$$

得内部驻点 (2,1), f(2,1)=4.

求最值 —例 1

- 例: $f(x,y) = x^2y(4-x-y)$, $\bar{D} = \{(x,y)|x \ge 0, y \ge 0, x+y \le 6\}$. 求 f 在 \bar{D} 上的最值.
- 解: 先求驻点:

$$\begin{cases} f_x = 2xy(4 - x - y) - x^2y = xy(8 - 3x - 2y) = 0\\ f_y = x^2(4 - x - y) - x^2y = x^2(4 - x - 2y) = 0 \end{cases}$$

得内部驻点 (2,1), f(2,1)=4.

求最值 —例 2

• 例(续):

$$f(x,y)$$
 在边界 $y = 0(0 \le x \le 6)$, $x = 0(0 \le y \le 6)$ 上恒为 0.
在 $x + y = 6(0 \le x \le 6)$ 上

$$f(x,y) = 2x^2(x-6),$$

x = 0,6 时 取最大值 0, x = 4 时取最小值 -64. 综上可知 f(x,y)的最大值为 4. 最小值为 -64.

• z = f(x, y) 在条件 $\phi(x, y) = 0$ 下的条件极值: 设

$$L = \{(x, y) | \phi(x, y) = 0\},\$$

L 一般表示一条曲线. 设 (x_0, y_0) 为 L 上的一内点(即不是端点) . 若存在 (x_0, y_0) 的邻域 U_δ , 使得

$$f(x, y) \ge f(x_0, y_0), \forall (x, y) \in U_\delta \cap L.$$

则称 $f(x_0, y_0)$ 是 f(x, y) 的条件极小值.

• 设 f(x,y), $\phi(x,y) \in C^1$, 且 $\phi_x^2 + \phi_y^2 \neq 0$, 则 $\phi(x,y) = 0$ 表示光滑曲 线. 若 x = x(t), $y = y(t)(x'(t)^2 + y'(t)^2 \neq 0)$ 是曲线 L 的参数方程,则有

$$\phi(x(t), y(t)) \equiv 0 \Longrightarrow \phi_x x'(t) + \phi_y y'(t) = 0.$$

问题转化为求一元函数 z = f(x(t), y(t)) 的极值点,稳定点满足

$$\begin{cases} \phi_{x}x'(t) + \phi_{y}y'(t) = 0, \\ \frac{dz}{dt} = f_{x}x'(t) + f_{y}y'(t) = 0. \end{cases}$$

- 由上面驻点满足的方程可知,向量 (f_x, f_y) , (ϕ_x, ϕ_y) 均与 (x'(t), y'(t)) 垂直,因此必然共线,即存在 λ , 使得 $(f_x, f_y) = -\lambda(\phi_x, \phi_y)$.
- 作辅助函数 $F(x,y,\lambda) = f(x,y) + \lambda \phi(x,y)$, 则稳定点 (x,y) 和 λ 满足

$$\begin{cases} F_x = f_x + \lambda \phi_x = 0 \\ F_y = f_y + \lambda \phi_y = 0 \\ F_\lambda = \phi(x, y) = 0 \end{cases}$$

• 稳定点不一定是极值点, 如 $f(x,y) = x^2y$, $\phi(x,y) = x - y$, 则 $(0,0)(\lambda = 0)$ 是稳定点, 显然不是极值点.

- 由上面驻点满足的方程可知,向量 (f_x, f_y) , (ϕ_x, ϕ_y) 均与 (x'(t), y'(t)) 垂直,因此必然共线,即存在 λ , 使得 $(f_x, f_y) = -\lambda(\phi_x, \phi_y)$.
- 作辅助函数 $F(x,y,\lambda)=f(x,y)+\lambda\phi(x,y)$, 则稳定点 (x,y) 和 λ 满足

$$\begin{cases} F_x = f_x + \lambda \phi_x = 0 \\ F_y = f_y + \lambda \phi_y = 0 \\ F_\lambda = \phi(x, y) = 0 \end{cases}$$

• 稳定点不一定是极值点, 如 $f(x,y) = x^2y$, $\phi(x,y) = x - y$, 则 $(0,0)(\lambda = 0)$ 是稳定点, 显然不是极值点.

- 由上面驻点满足的方程可知,向量 (f_x, f_y) , (ϕ_x, ϕ_y) 均与 (x'(t), y'(t)) 垂直,因此必然共线,即存在 λ , 使得 $(f_x, f_y) = -\lambda(\phi_x, \phi_y)$.
- 作辅助函数 $F(x,y,\lambda)=f(x,y)+\lambda\phi(x,y)$, 则稳定点 (x,y) 和 λ 满足

$$\begin{cases} F_x = f_x + \lambda \phi_x = 0 \\ F_y = f_y + \lambda \phi_y = 0 \\ F_\lambda = \phi(x, y) = 0 \end{cases}$$

• 稳定点不一定是极值点, 如 $f(x,y) = x^2y$, $\phi(x,y) = x - y$, 则 $(0,0)(\lambda=0)$ 是稳定点, 显然不是极值点.

- u = f(x, y, z) 在条件 $\phi(x, y, z) = 0$ 下的条件极值. $\phi(x, y, z) = 0$ 一般表示一张曲面. 条件极值即为曲面上的局部最值.
- 设 f(x, y, z), $\phi(x, y, z) \in C^1$, 且 $\phi_x^2 + \phi_y^2 + \phi_z^2 \neq 0$, 则 $\phi(x, y, z) = 0$ 确定一光滑曲面. 若 x = x(s, t), y = y(s, t), z = z(s, t) 是该曲面的参数方程,则有 $\phi(x(s, t), y(s, t), z(s, t)) \equiv 0$, 求偏导数得方程

$$\begin{cases} \phi_x \frac{\partial x}{\partial s} + \phi_y \frac{\partial y}{\partial s} + \phi_z \frac{\partial z}{\partial s} = 0, \\ \phi_x \frac{\partial x}{\partial t} + \phi_y \frac{\partial y}{\partial t} + \phi_z \frac{\partial z}{\partial t} = 0. \end{cases}$$

问题转化为求 u = f(x(s,t), y(s,t), z(s,t)) 的极值点,因此满足稳定点方程 $\begin{cases} \frac{\partial u}{\partial s} = f_x \frac{\partial x}{\partial s} + f_y \frac{\partial y}{\partial s} + f_z \frac{\partial z}{\partial s} = 0, \\ \frac{\partial u}{\partial t} = f_x \frac{\partial x}{\partial t} + f_y \frac{\partial y}{\partial t} + f_z \frac{\partial z}{\partial t} = 0. \end{cases}$

- u = f(x, y, z) 在条件 $\phi(x, y, z) = 0$ 下的条件极值. $\phi(x, y, z) = 0$ 一般表示一张曲面. 条件极值即为曲面上的局部最值.
- 设 f(x,y,z), $\phi(x,y,z) \in C^1$, 且 $\phi_x^2 + \phi_y^2 + \phi_z^2 \neq 0$, 则 $\phi(x,y,z) = 0$ 确定一光滑曲面. 若 x = x(s,t), y = y(s,t), z = z(s,t) 是该曲面的参数方程,则有 $\phi(x(s,t),y(s,t),z(s,t)) \equiv 0$, 求偏导数得方程

$$\begin{cases} \phi_{x}\frac{\partial x}{\partial s} + \phi_{y}\frac{\partial y}{\partial s} + \phi_{z}\frac{\partial z}{\partial s} = 0, \\ \phi_{x}\frac{\partial x}{\partial t} + \phi_{y}\frac{\partial y}{\partial t} + \phi_{z}\frac{\partial z}{\partial t} = 0. \end{cases}$$

问题转化为求 u = f(x(s,t), y(s,t), z(s,t)) 的极值点, 因此满足稳定点方程 $\begin{cases} \frac{\partial u}{\partial s} = f_x \frac{\partial x}{\partial s} + f_y \frac{\partial y}{\partial s} + f_z \frac{\partial z}{\partial s} = 0, \\ \frac{\partial u}{\partial t} = f_x \frac{\partial x}{\partial t} + f_y \frac{\partial y}{\partial t} + f_z \frac{\partial z}{\partial t} = 0. \end{cases}$

- u = f(x, y, z) 在条件 $\phi(x, y, z) = 0$ 下的条件极值. $\phi(x, y, z) = 0$ 一般表示一张曲面. 条件极值即为曲面上的局部最值.
- 设 f(x,y,z), $\phi(x,y,z) \in C^1$, 且 $\phi_x^2 + \phi_y^2 + \phi_z^2 \neq 0$, 则 $\phi(x,y,z) = 0$ 确定一光滑曲面. 若 x = x(s,t), y = y(s,t), z = z(s,t) 是该曲面的参数方程,则有 $\phi(x(s,t),y(s,t),z(s,t)) \equiv 0$, 求偏导数得方程

$$\begin{cases} \phi_x \frac{\partial x}{\partial s} + \phi_y \frac{\partial y}{\partial s} + \phi_z \frac{\partial z}{\partial s} = 0, \\ \phi_x \frac{\partial x}{\partial t} + \phi_y \frac{\partial y}{\partial t} + \phi_z \frac{\partial z}{\partial t} = 0. \end{cases}$$

问题转化为求 u = f(x(s,t), y(s,t), z(s,t)) 的极值点,因此满足稳定 点方程 $\begin{cases} \frac{\partial u}{\partial s} = f_x \frac{\partial x}{\partial s} + f_y \frac{\partial y}{\partial s} + f_z \frac{\partial z}{\partial s} = 0, \\ \frac{\partial u}{\partial t} = f_x \frac{\partial x}{\partial t} + f_y \frac{\partial y}{\partial t} + f_z \frac{\partial z}{\partial t} = 0. \end{cases}$

• 由上面驻点满足的方程可知,向量 (f_x, f_y, f_z) , (ϕ_x, ϕ_y, ϕ_z) 均垂直于 (x_s, y_s, z_s) 和 (x_s, y_s, z_s) ,因此必然共线,即存在 λ , 使得

$$(f_{\mathsf{x}},f_{\mathsf{y}},f_{\mathsf{z}}) = -\lambda(\phi_{\mathsf{x}},\phi_{\mathsf{y}},\phi_{\mathsf{z}}).$$

• 作辅助函数 $F(x, y, z, \lambda) = f(x, y, z) + \lambda \phi(x, y, z)$, 则稳定点 (x, y, z) 和 λ 满足

$$\begin{cases} F_x = f_x + \lambda \phi_x = 0 \\ F_y = f_y + \lambda \phi_y = 0 \\ F_z = f_z + \lambda \phi_z = 0 \\ F_\lambda = \phi(x, y, z) = 0 \end{cases}.$$

• 由上面驻点满足的方程可知,向量 (f_x, f_y, f_z) , (ϕ_x, ϕ_y, ϕ_z) 均垂直于 (x_s, y_s, z_s) 和 (x_s, y_s, z_s) ,因此必然共线,即存在 λ ,使得

$$(f_x, f_y, f_z) = -\lambda(\phi_x, \phi_y, \phi_z).$$

• 作辅助函数 $F(x, y, z, \lambda) = f(x, y, z) + \lambda \phi(x, y, z)$, 则稳定点 (x, y, z) 和 λ 满足

$$\begin{cases} F_x = f_x + \lambda \phi_x = 0 \\ F_y = f_y + \lambda \phi_y = 0 \\ F_z = f_z + \lambda \phi_z = 0 \\ F_\lambda = \phi(x, y, z) = 0 \end{cases}.$$

- 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = R^2(x > 0, y > 0, z > 0)$ 上的最值.
- \mathbf{M} : $\mathbf{\mathcal{U}} F(x, y, z) = xyz + \lambda(x^2 + y^2 + z^2 R^2)$.

$$\begin{cases} F_x = yz + 2\lambda x = 0 \\ F_y = xz + 2\lambda y = 0 \end{cases}$$
$$F_z = xy + 2\lambda z = 0$$
$$F_\lambda = x^2 + y^2 + z^2 - R^2 = 0$$

解得 $x_0 = y_0 = z_0 = \frac{R}{\sqrt{3}}$. 由于 f 在球面 $x^2 + y^2 + z^2 = R^2(x \ge 0, y \ge 0, z \ge 0)$ 上的最值存在, 且边界上的值 为 0, 故 (x_0, y_0, z_0) 点必为最大值点. 最大值为 $\frac{R^3}{3\sqrt{3}}$.

- 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = R^2(x > 0, y > 0, z > 0)$ 上的最值.
- \mathbf{M} : \mathcal{C} $F(x, y, z) = xyz + \lambda(x^2 + y^2 + z^2 R^2)$.

$$\begin{cases} F_x = yz + 2\lambda x = 0 \\ F_y = xz + 2\lambda y = 0 \end{cases}$$
$$F_z = xy + 2\lambda z = 0$$
$$F_\lambda = x^2 + y^2 + z^2 - R^2 = 0$$

解得 $x_0 = y_0 = z_0 = \frac{R}{\sqrt{3}}$. 由于 f 在球面 $x^2 + y^2 + z^2 = R^2 (x \ge 0, y \ge 0, z \ge 0)$ 上的最值存在, 且边界上的值为 0, 故 (x_0, y_0, z_0) 点必为最大值点. 最大值为 $\frac{R^3}{3\sqrt{3}}$.

一个条件下的条件极值 -例续

- 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = R^2(x > 0, y > 0, z > 0)$ 上的最值.
- 解: 利用球坐标 $x = R\sin\phi\cos\theta$, $y = R\sin\phi\sin\theta$, $z = R\cos\phi$,

$$f(x,y,z) = R^3 \sin^2 \phi \cos \phi \cos \theta \sin \theta, \ 0 < \phi < \frac{\pi}{2}, 0 < \theta < \frac{\pi}{2}$$

当 $\sin\phi = \sqrt{\frac{2}{3}}$, $\cos\phi = \frac{1}{\sqrt{3}}$, $\sin^2\phi\cos\phi$ 取最大值 $\frac{2}{3\sqrt{3}}$, $\theta = \frac{\pi}{4}$ 时 $\cos\theta\sin\theta$ 取最大值 $\frac{1}{2}$, f(x,y,z) 有最大值 $\frac{R^3}{3\sqrt{3}}$.

• 注: 由不等式 $xyz \le \left(\frac{x^2+y^2+z^2}{3}\right)^{\frac{3}{2}}$ 直接可得.

一个条件下的条件极值 -例续

- 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = R^2(x > 0, y > 0, z > 0)$ 上的最值.
- 解: 利用球坐标 $x = R\sin\phi\cos\theta$, $y = R\sin\phi\sin\theta$, $z = R\cos\phi$,

$$f(\mathbf{x},\mathbf{y},\mathbf{z}) = R^3 \sin^2 \phi \cos \phi \cos \theta \sin \theta, \ 0 < \phi < \frac{\pi}{2}, 0 < \theta < \frac{\pi}{2}$$

当 $\sin\phi = \sqrt{\frac{2}{3}}$, $\cos\phi = \frac{1}{\sqrt{3}}$, $\sin^2\phi\cos\phi$ 取最大值 $\frac{2}{3\sqrt{3}}$, $\theta = \frac{\pi}{4}$ 时, $\cos\theta\sin\theta$ 取最大值 $\frac{1}{2}$, f(x,y,z) 有最大值 $\frac{R^3}{3\sqrt{3}}$.

• 注: 由不等式 $xyz \le \left(\frac{x^2+y^2+z^2}{3}\right)^{\frac{3}{2}}$ 直接可得.

一个条件下的条件极值 -例续

- 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = R^2(x > 0, y > 0, z > 0)$ 上的最值.
- 解:利用球坐标 $x = R\sin\phi\cos\theta$, $y = R\sin\phi\sin\theta$, $z = R\cos\phi$,

$$f(\mathbf{x},\mathbf{y},\mathbf{z}) = R^3 \sin^2 \phi \cos \phi \cos \theta \sin \theta, \ 0 < \phi < \frac{\pi}{2}, 0 < \theta < \frac{\pi}{2}$$

当 $\sin\phi = \sqrt{\frac{2}{3}}$, $\cos\phi = \frac{1}{\sqrt{3}}$, $\sin^2\phi\cos\phi$ 取最大值 $\frac{2}{3\sqrt{3}}$, $\theta = \frac{\pi}{4}$ 时, $\cos\theta\sin\theta$ 取最大值 $\frac{1}{2}$, f(x,y,z) 有最大值 $\frac{R^3}{3\sqrt{3}}$.

• 注:由不等式 $xyz \le \left(\frac{x^2+y^2+z^2}{3}\right)^{\frac{3}{2}}$ 直接可得.

• 条件 $\phi(x,y,z) = 0$, $\psi(x,y,z) = 0$ 下 u = f(x,y,z) 的条件极值 (这里假设 (ϕ_x,ϕ_y,ϕ_z) 和 (ψ_x,ψ_y,ψ_z) 不共线). 设 $\phi(x,y,z) = 0$, $\psi(x,y,z) = 0$ 确定的曲线的参数方程 x = x(t), y = y(t), z = z(t), 则极值点满足

$$\begin{cases} \phi_{x}x' + \phi_{y}y' + \phi_{z}z' = 0, \\ \psi_{x}x' + \psi_{y}y' + \psi_{z}z' = 0, \\ f_{x}x' + f_{y}y' + f_{z}z' = 0. \end{cases}$$

因此 (f_x, f_y, f_z) , (ϕ_x, ϕ_y, ϕ_z) 和 (ψ_x, ψ_y, ψ_z) 均与 (x'(t), y'(t), z'(t)) 垂直, 即三个向量 (f_x, f_y, f_z) , (ϕ_x, ϕ_y, ϕ_z) 和 (ψ_x, ψ_y, ψ_z) 共面,存在 λ_1 , λ_2 使得

$$(f_{x}, f_{y}, f_{z}) = -\lambda_{1}(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \lambda_{2}(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}).$$

• 作辅助函数

$$F(x, y, z, \lambda_1, \lambda_2) = f(x, y, z) + \lambda_1 \phi(x, y, z) + \lambda_2 \psi(x, y, z),$$

则稳定点 (x, y, z) 和 λ_1, λ_2 满足

$$\begin{cases} F_x = f_x + \lambda_1 \frac{\partial \phi}{\partial x} + \lambda_2 \frac{\partial \psi}{\partial x} = 0 \\ F_y = f_y + \lambda_1 \frac{\partial \phi}{\partial y} + \lambda_2 \frac{\partial \psi}{\partial y} = 0 \\ F_z = f_z + \lambda_1 \frac{\partial \phi}{\partial z} + \lambda_2 \frac{\partial \psi}{\partial z} = 0 \\ F_{\lambda_1} = \phi = 0 \\ F_{\lambda_2} = \psi = 0 \end{cases}$$

- 求 $f(x_1, x_2, \dots, x_n)$ 条件在 $\phi_k(x_1, x_2, \dots, x_n) = 0 (k = 1, 2, \dots, m < n)$ 下的条件极值.
- 作辅助函数

$$F(x_1, x_2, \dots, x_n, \lambda_1, \dots, \lambda_m) = f(x_1, x_2, \dots, x_n) + \lambda_1 \phi_1(x_1, x_2, \dots, x_n) + \dots + \lambda_m \phi_m(x_1, x_2, \dots, x_n),$$

则驻点 (x_1, x_2, \cdots, x_n) 和 $\lambda_1, \cdots, \lambda_m$ 满足

$$\begin{cases} F_{x_i} = f_{x_i} + \lambda_1 \frac{\partial \phi_i}{\partial x_i} + \dots + \lambda_m \frac{\partial \phi_m}{\partial x_i}, & i = 1, 2, \dots, n. \\ F_{\lambda_k} = \phi_k(x_1, x_2, \dots, x_n) = 0, & k = 1, 2, \dots, m. \end{cases}$$

- 求 $f(x_1, x_2, \dots, x_n)$ 条件在 $\phi_k(x_1, x_2, \dots, x_n) = 0 (k = 1, 2, \dots, m < n)$ 下的条件极值.
- 作辅助函数

$$F(x_{1}, x_{2}, \dots, x_{n}, \lambda_{1}, \dots, \lambda_{m}) = f(x_{1}, x_{2}, \dots, x_{n}) + \lambda_{1}\phi_{1}(x_{1}, x_{2}, \dots, x_{n}) + \dots + \lambda_{m}\phi_{m}(x_{1}, x_{2}, \dots, x_{n}),$$

则驻点 (x_1, x_2, \cdots, x_n) 和 $\lambda_1, \cdots, \lambda_m$ 满足

$$\begin{cases} F_{x_i} = f_{x_i} + \lambda_1 \frac{\partial \phi_i}{\partial x_i} + \dots + \lambda_m \frac{\partial \phi_m}{\partial x_i}, & i = 1, 2, \dots, n. \\ F_{\lambda_k} = \phi_k(x_1, x_2, \dots, x_n) = 0, & k = 1, 2, \dots, m. \end{cases}$$

- 求 $f(x_1, x_2, \dots, x_n)$ 条件在 $\phi_k(x_1, x_2, \dots, x_n) = 0 (k = 1, 2, \dots, m < n)$ 下的条件极值.
- 作辅助函数

$$F(x_{1}, x_{2}, \dots, x_{n}, \lambda_{1}, \dots, \lambda_{m}) = f(x_{1}, x_{2}, \dots, x_{n}) + \lambda_{1}\phi_{1}(x_{1}, x_{2}, \dots, x_{n}) + \dots + \lambda_{m}\phi_{m}(x_{1}, x_{2}, \dots, x_{n}),$$

则驻点 (x_1, x_2, \dots, x_n) 和 $\lambda_1, \dots, \lambda_m$ 满足

$$\begin{cases} F_{x_i} = f_{x_i} + \lambda_1 \frac{\partial \phi_i}{\partial x_i} + \dots + \lambda_m \frac{\partial \phi_m}{\partial x_i}, & i = 1, 2, \dots, n. \\ F_{\lambda_k} = \phi_k(x_1, x_2, \dots, x_n) = 0, & k = 1, 2, \dots, m. \end{cases}$$

- 平面 x+y+z=1 截圆柱面 $x^2+y^2=1$ 得到一个椭圆, 求该椭圆上到原点的最近点与最远点.
- \mathbf{M} : $\mathbf{\mathcal{U}} F(x, y, z) = x^2 + y^2 + z^2 + \lambda_1(x + y + z 1) + \lambda_2(x^2 + y^2 1)$.

$$\begin{cases} F_x = 2x + \lambda_1 + 2\lambda_2 x = 0 \\ F_y = 2y + \lambda_1 + 2\lambda_2 y = 0 \end{cases}$$

$$\begin{cases} F_z = 2z + \lambda_1 = 0 \\ F_{\lambda_1} = x + y + z - 1 = 0 \end{cases}$$

$$\begin{cases} F_{\lambda_2} = x^2 + y^2 - 1 = 0 \end{cases}$$

得驻点 (1,0,0), (0,1,0), $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},1-\sqrt{2})$, $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$. 最近点为 (1,0,0) 和 (0,1,0),最远点为 $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$.

- 平面 x+y+z=1 截圆柱面 $x^2+y^2=1$ 得到一个椭圆, 求该椭圆上到原点的最近点与最远点.
- \mathfrak{M} : $\mathfrak{F}(x, y, z) = x^2 + y^2 + z^2 + \lambda_1(x + y + z 1) + \lambda_2(x^2 + y^2 1)$.

$$\begin{cases} F_x = 2x + \lambda_1 + 2\lambda_2 x = 0 \\ F_y = 2y + \lambda_1 + 2\lambda_2 y = 0 \end{cases}$$

$$\begin{cases} F_z = 2z + \lambda_1 = 0 \\ F_{\lambda_1} = x + y + z - 1 = 0 \\ F_{\lambda_2} = x^2 + y^2 - 1 = 0 \end{cases}$$

得驻点 (1,0,0), (0,1,0), $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},1-\sqrt{2})$, $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$. 最近点为 (1,0,0) 和 (0,1,0),最远点为 $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$.

• 注: 上例用椭圆周的参数方程更简单:

$$x = \cos t$$
, $y = \sin t$, $z = 1 - \cos t - \sin t$,

代入得

$$f(x, y, z) = 1 + (1 - \cos t - \sin t)^2 = 1 + \left[1 - \sqrt{2}\sin(t + \frac{\pi}{4})\right]^2.$$

则有当 $\sin(t+\frac{\pi}{4})=\frac{1}{\sqrt{2}}$,即 $t=0,\frac{\pi}{2}$ 时最小,最近点为 (1,0,0) 和 (0,1,0),当 $\sin(t+\frac{\pi}{4})=-1$,即 $t=\pi+\frac{\pi}{4}$ 时最大,得最远点为 $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$.

• 注: 上例用椭圆周的参数方程更简单:

$$x = \cos t, y = \sin t, z = 1 - \cos t - \sin t,$$

代入得

$$f(x, y, z) = 1 + (1 - \cos t - \sin t)^2 = 1 + [1 - \sqrt{2}\sin(t + \frac{\pi}{4})]^2.$$

则有当 $\sin(t+\frac{\pi}{4})=\frac{1}{\sqrt{2}}$,即 $t=0,\frac{\pi}{2}$ 时最小,最近点为 (1,0,0) 和 (0,1,0),当 $\sin(t+\frac{\pi}{4})=-1$,即 $t=\pi+\frac{\pi}{4}$ 时最大,得最远点为 $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1+\sqrt{2})$.

- 利用洛比达法则, 泰勒公式求极限, 多元函数的极限.
- 中值定理及其应用:函数单调性,函数的凸凹性,不等式证明,拐点, 渐近线。
- 一元函数和多元函数的泰勒公式
- 一元函数和多元函数的极值和最值.
- 空间解析几何:向量运算,平面与直线方程,二次曲面.曲面的切平 面与法向量
- 多元函数的连续性, 偏导数存在性, 可微性.
- 隐函数存在定理, 多元函数 (或隐函数确定的函数) 的偏导数, 微分, 方向导数, 梯度.

169 / 171

期末考试

• 关于期末考试范围

期末考试

- 关于缓考:学生因病或其他特殊原因不能参加考试时,须在考试前申请缓考。未申请缓考或申请未准而不参加考试的,按旷考处理。
- 考试纪律:复习资料不能留在座位旁边或随身携带。携带本身就违规了,按规定属考试作弊行为,不是看了用了才算作弊。以往案例中,常见携带手机、智能手表、与考试课程相关材料等物品。除非主考教师另有规定,学生只能携带必要的文具参加考试,其它所有物品(包括空白纸张、手机等电子设备)不得带入座位;已经带入考场的手机等电子设备必须关机,与其他物品一起集中放在监考人员指定位置,不得随身携带或带入座位及旁边。

171 / 171