- On Friday:
 - We reviewed polarization
 - Behavior of charges and fields within matter depends upon the type of material
 - Insulators:
 - Tightly bound electrons, no mobile charges

Polarized insulator

The part of the part

Conductors

Many mobile charges

Ex: Salt Water

Ex: Metals

- Electrons move around randomly (thermal motion, like a gas)
- · No net charge
- · No net interactions with other electrons or nuclei
- Show first animation
- Now what happens when we apply an electric field near a conductor? (Next page)

- Electron sea or "gas" shifts towards the charge
 - o Excess electrons on one side, deficit of electrons on the other
 - Show animation 2

Excess Charge

No excess charge in interior of conductors.
Alway on surface.

 Let's take a closer look at the motion of the electrons within a metal

Model of Metals: Drude Model:

- Do electrons move at speed vbar forever?
- · No. Eventually they pile up on one end

then:
$$\bar{\gamma} = uE = u(0) = 0$$

At Static eq:

Net E inside a conductor

is Zero

Summary

	Insulator	Conductor
Mobile Charges?	No	Yes
Where is excess chargi	Inside or Surface	Surface
Does charge spread aroud?	\sim	Yes
Enet INSide (eq)	Ê can be +0	= 0
Polarizatian	Induced Dipoles P=LE	Moving chages