Lista de Exercícios 2

Dado o conjunto $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$, onde

$$v_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} 0 \\ 5 \\ -1 \\ 3 \end{bmatrix}, \quad v_{3} = \begin{bmatrix} -4 \\ -3 \\ 2 \\ 1 \end{bmatrix}, \quad v_{4} = \begin{bmatrix} -1 \\ -7 \\ 3 \\ -\frac{7}{3} \end{bmatrix}, \quad v_{5} = \begin{bmatrix} 1 \\ -4 \\ -6 \\ -2 \end{bmatrix} \quad \text{e} \quad v_{6} = \begin{bmatrix} 3 \\ 2 \\ -\frac{1}{4} \\ 2 \end{bmatrix}$$

Exercício 1. Seja A uma matriz de ordem n. Se

$$A(1,:), A(2,:), \ldots, A(n,:)$$

são os vetores linha de A, e

$$A(:,1), A(:,2), \ldots, A(:,n)$$

são os vetores coluna de A. Note que, para todo $i = 1, 2, \ldots, n$

$$A(i,:)$$
 e $A^T(:,i)$

são vetores em \mathbb{R}^n . Então, determine se alguma destas expressões define uma norma matricial em $\mathbb{R}(n,n)$:

- (a) $\max\{\|A(1,:)\|_1, \|A(2,:)\|_1, \dots, \|A(n,:)\|_1\};$
- (b) $\sum_{i=1}^{n} ||A(i,:)||_{\infty}^{3};$
- (c) $\left\{ \sum_{i=1}^{n} \|A(:,i)\|_{2}^{2} \right\}^{\frac{1}{2}}$;
- (d) $\sum_{i=1}^{n} 2^{-i} ||A(:,i)||_{\infty};$

Exercício 2. Dadas as matrizes:

$$A = \begin{bmatrix} v_3 & v_1 & v_2 & v_6 \end{bmatrix}, \quad B = \begin{bmatrix} v_3 & v_5 & v_2 & v_6 \end{bmatrix}, \quad C = \begin{bmatrix} v_3 & v_1 + v_5 & v_2 & v_6 \end{bmatrix},$$

$$D = \begin{bmatrix} v_5 & v_4 & v_1 & v_3 \end{bmatrix}$$

Calcule as normas matriciais $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_F$ e $\|\cdot\|_\infty$ das matrizes A^2-C , B+C, CB e D-2A;

Exercício 3. Sejam $A, B \in \mathbb{R}^{m \times n}$. Sob cada uma das suposições abaixo, determine se A = B deve sempre valer, ou se A = B vale apenas algumas vezes.

- (a) Se Ax = Bx é verdadeiro para todo $x \in \mathbb{R}^n$.
- (b) Se Ax = Bx é verdadeiro para algum $x \in \mathbb{R}^n$.

Exercício 4. Uma matriz $A \in \mathbb{R}^{n \times n}$ é dita assimétrica se $A^T = -A$.

(a) Encontre todas as matrizes assimétricas de ordem 2.

- (b) Explique o porque as entradas da diagonal de uma matriz assimétrica devem ser zero.
- (c) Mostrar que se A é assimétrica e $x \in \mathbb{R}^n$ temos $(Ax) \perp x$. Dica: $x^T(Ax) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$

Exercício 5. Suponha que p é um polinomio de grau n-1 ou menor:

$$p(t) = c_1 + c_2 t + \dots + c_n t^{n-1}$$

A derivada p'(t) é um polinomio de grau n-2 ou menor:

$$p'(t) = d_1 + d_2t + \dots + d_{n-1}t^{n-2}$$

Encontrar uma matriz D para a qual d = Dc.

Exercício 6. Dada $A \in \mathbb{R}^{(n-1)\times n}$, definida por

$$A = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & & \ddots & \ddots & & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

Verifique se as colunas da matriz A são L.I.

Exercício 7. Seja a matriz por blocos $S = \begin{bmatrix} A \\ I \end{bmatrix}$ onde $A \in \mathbb{R}^{m \times n}$. Discuta

- (a) Quando S tem colunas L.I?
- (b) Quando S tem linhas L.I?

Sua resposta pode depender de m, n, ou se A tem ou não colunas ou linhas L.I.

Exercício 8. Suponhamos que precisemos calcular z = (A + B)(x + y), onde $A, B \in \mathbb{R}^{m \times n}$ e $x, y \in \mathbb{R}^n$.

- (a) Calcular a quantidade aproximada de flops se calculamos z = (A + B)(x + y);
- (b) Calcular a quantidade aproximada de flops se calculamos z = Ax + Ay + Bx + By;
- (c) Qual método requer menos quantidade de flops?

Exercício 9. Elabore um algoritmo que calcule $(xy^T)^k$ onde $x, y \in \mathbb{R}^n$ e $k \geq 0$ é um inteiro.

Exercício 10. Dada $A \in \mathbb{R}^{n \times n}$. Elabore os seguintes algoritmos:

- (a) Multiplique por 2 a todos os elementos da coluna 1.
- (b) Multiplique por c a todos os elementos da coluna j, onde $j = 1, \ldots, n$.
- (c) Multiplique simultaneamente as colunas $1, 2, \ldots, n$ por c_1, c_2, \ldots, c_n .
- (d) Multiplique simultaneamente as linhas $1, 2, \ldots, n$ por c_1, c_2, \ldots, c_n .

(e) Troque as linhas $i \in j$.

Exercício 11. Sejam as matrizes $A, B \in \mathbb{R}^{n \times n}$. Note que para calcular C = AB, podemos usar a seguinte formula para calcular cada coluna j:

$$C(:,j) = \sum_{k=1}^{n} B(k,j)A(:,k)$$
 $j = 1,...,n$

- (a) Considerando B sendo triangular superior. Então
 - (1) Usando e modificando a formula, elabore um algoritmo que calcule C = AB e aproveite a estrutura especial de B (sem multiplicações por zero).
 - (2) Assuma que A também é **triangular superior**. Usando e modificando a formula, elabore um algoritmo que calcule C = AB e aproveite a estrutura especial de A e B (sem multiplicações por zero).
- (b) Considerando B sendo triangular inferior. Então
 - (1) Usando e modificando a formula, elabore um algoritmo que calcule C = AB e aproveite a estrutura especial de B (sem multiplicações por zero).
 - (2) Assuma que A também é **triangular inferior**. Usando e modificando a formula, elabore um algoritmo que calcule C = AB e aproveite a estrutura especial de A e B (sem multiplicações por zero).

Use o seguinte modelo para dar sua a resposta de cada item:

Exercício 12. Dado $t_1, t_2, \ldots, t_m \in \mathbb{R}$. Elabore um algoritmo que gere a matriz de Vandermonde:

$$A = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-2} & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-2} & t_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & t_m & \cdots & t_m^{n-2} & t_m^{n-1} \end{bmatrix}$$