GRADE: 7

SUBJECT: Mathematics

LESSON: Exponents and Powers

DURATION: 21/2 hrs MAX MARKS: 80

Instructions:

1. The time given at the head of this Paper is the time allowed for writing the answers.

- 2. You will not be allowed to write during the first 10 minutes. Use this time to read the question paper carefully.
- 3. Attempt all questions from Section A and any four questions from Section B.
- 4. All working, including rough work, must be clearly shown.
- 5. Omission of essential working will result in loss of marks.

SECTION A $(4 \times 10 = 40 \text{ marks})$

(Answer all questions)

1. Choose the correct option:

- a) The value of $(-2)^4$ is:
- (i) -16
- (ii) 16
- (iii) 8
- (iv) -8
- b) The scientific notation of 3,430,000 is:
- (i) 3.43×10^6
- (ii) 34.3×10^5
- (iii) 3.43×10^5
- (iv) 3.43×10^7
- c) The prime factorization of 512 in exponential form is:
- $(i) 2^8$
- $-(ii) 2^6$

- (iii) 2⁷
- (iv) 2^9
- d) The value of 10⁰ is:
- (i) 0
- (ii) 1
- (iii) 10
- (iv) 100

2. Solve the following:

- a) Write the base and exponent for the following exponential forms:
 - 5³
 - $(-3)^4$
 - 7⁵
- b) Convert the following numbers into scientific notation:
 - 573,000
 - 9,812,700,000
- c) Express the following numbers as powers of 2:
 - 32
 - 128
 - 1024

3. Solve the following equations:

- a) Find the value of x in each case:
 - $3^x = 243$
 - $(-5)^x = -125$
- b) Simplify and write the answer in exponential form:
 - $2^4 \times 2^3$
 - $10^7 \div 10^3$
- c) Express the following numbers in expanded exponential form:

- 753015
- 900230

4. State whether the following statements are TRUE or FALSE:

- a) $(-2)^3$ is equal to 8.
- b) The standard form of 7,000,000 is 7.0×10^6 .
- c) 10^{-2} is equal to 0.01.
- d) The exponent in 5^6 is 5.

5. Solve the following problems:

- a) Write the prime factorization of the following numbers in exponential form:
 - 48
 - 360
- b) Compare the following numbers using exponential notation:
 - 4.3×10^{14} and 3.01×10^{17}
 - 2.3×10^9 and 2.5×10^9
- c) By what number should we multiply $(-6)^{-3}$ so that the product is 10^1 ?

SECTION B $(4 \times 10 = 40 \text{ marks})$

(Answer any four questions)

6. Graph-Based Question:

The table below shows population figures in scientific notation for different planets:

Planet	Population (approx.)
Earth	7.8×10^9
Mars	1.2×10^6
Venus	4.5×10^5

- a) Represent this data using a bar graph.
- b) Which planet has the smallest population?

7. Exponential Form Calculations:

- a) Simplify and express in exponential form:
 - $(-3)^5 \times (-3)^3$
 - $10^9 \div 10^4$
- b) Find the value of x:
 - $7^x = 49$
 - $2^x = 64$
- c) Write the following numbers as powers of 3:
 - 81
 - 729

8. Laws of Exponents Applications:

- a) Using the laws of exponents, simplify:
 - $(2^3)^4$
 - $5^6 \div 5^2$
- b) Express the following in standard form:
 - 6000000
 - 0.00042
- c) Compare the numbers in standard form:
 - 1.2×10^8 and 9.8×10^7

9. Application-Based Questions:

a) The speed of light is $3\times10^8 m/s$. If a spaceship travels at $1.5\times10^7 m/s$, how long will it take to travel 4.5×10^{12} meters?

- b) The mass of Jupiter is $1.9 \times 10^{27} kg$, and the mass of Earth is $5.97 \times 10^{24} kg$. How many times heavier is Jupiter than Earth?
- c) A scientist is working with atoms that have a diameter of 2.5×10^{-10} meters. How many atoms would fit in a 1 cm space?

10. Higher Order Thinking Skills (HOTS):

- a) A bacteria population doubles every hour. If the initial count is 2^5 , find the population after 6 hours in exponential form.
- b) A number is written as $6^x = 36$. Find x.
- c) The planet Kepler-22b is estimated to be 2.4×10^6 km from its star. Convert this into meters using exponential notation.

END OF THE QUESTION PAPER