

FCC Test Report

Report No.: ARFR-19AU0427VTSHPB-1

FCC ID: 2ANDLTYGWBS-01

Product: BLEMESH(SIG) Gateway

Model: TYGWBS-01;TYGWBS-01N

Received Date: Aug.06, 2019

Test Date: Aug.06 to Aug.15, 2019

Issued Date: Aug.20, 2019

Applicant: Hangzhou Tuya Information Technology Co., Ltd

Address: Room701, Building3, More Center, No. 87 GuDun Road, Hangzhou,

Zhejiang, China

Issued By: BUREAU VERITAS ADT (Shanghai) Corporation

Lab Address: No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Releas	e Control Record4
1 (Certificate of Conformity
2	Summary of Test Results
2.1	Test Instruments
2.2	Measurement Uncertainty
2.3	Modification Record
3	General Information
3.1	General Description of EUT
3.2	Description of Test Modes
3.2.1	Test Mode Applicability:11
3.2.2	Test Condition:
3.3	Duty Cycle of Test Signal
3.4	Description of Support Units
3.5	General Description of Applied Standards
4	Test Procedure and Results
4.1	6dB Bandwidth Measurement
4.1.1	Limit
4.1.2	Test Setup
4.1.3	Test Procedures
4.1.4	Deviation of Test Standard
4.1.5	Test Results
4.2	Conducted Output Power Measurement
4.2.1	Limit
4.2.2	Test Setup
4.2.3	Test Procedures
4.2.4	Deviation of Test Standard
4.2.5	Test Results
4.3	Power Spectral Density Measurement
4.3.1	
	Test Setup
	Test Procedures
	Deviation of Test Standard
7.0.7	25 Talion 51 1000 Grandard

4.3.5	Test Results
4.4	Emissions in non-restricted frequency bands
4.4.1	Limit
4.4.2	Test Setup
4.4.3	Test Procedures
4.4.4	Deviation of Test Standard
4.4.5	Test Results
4.5	Radiated Emission Measurement
4.5.1	Limits
4.5.2	Test Procedures
4.5.3	Deviation from Test Standard
4.5.4	Test Setup
4.5.5	EUT Operating Conditions
4.5.6	Test Results
4.6	Conducted Emission Measurement
4.6.1	Limits
4.6.2	Test Procedures
4.6.3	Deviation from Test Standard
4.6.4	Test Setup
4.6.5	EUT Operating Conditions
4.6.6	Test Results
5 F	Pictures of Test Arrangements

Release Control Record

Issue No.	Description	Date Issued
ARFR-19AU0427VTSHPB-1	Original release	Aug.20.2019

1 Certificate of Conformity

Product: BLEMESH(SIG) Gateway

Brand: --

Model: TYGWBS-01;TYGWBS-01N

Applicant: Hangzhou Tuya Information Technology Co., Ltd

Test Date: Aug.6 to Aug.15, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **BUREAU VERITAS ADT** (Shanghai) Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Will Yan	, Date:	Aug.19, 2019
	Project Engineer		
Approved by :	Daniel Sun RF Supervisor	, Date:	Aug.19, 2019

2 Summary of Test Results

The EUT has been tested according to the following specifications:

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions Measurement	PASS	Meet the requirement of limit.			
15.247(d)	Emissions in non-restricted frequency bands	PASS	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

2.1 Test Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Hybrid antenna(25MHz-1.5GHz)	Schwarzbeck	VULB9168	E1A1012	Feb.09,18	Feb.08,20
Horn Antenna(1GHz -18GHz)	Schwarzbeck	BBHA9120D	E1A1017	Aug.26,19	Aug.25,20
Pre-Amplifier(100kHz-1.3GHz)	Agilent	8447D	E1A2001	Oct.19, 18	Oct.18, 19
Pre-Amplifier(1GHz-26.5GHz)	Agilent	8449B	E1A2002	Mar. 26, 18	Mar. 25, 20
EMI test recerver	R&S	ESR7	E1R1005	Dec.05, 18	Dec.04, 19
Spectrum Analyzer	Keysight	N9030B	E1S1003	Jul.23,19	Jul.22, 20
EMI test recerver	R&S	ESCS30	E1R1001	Mar.26, 19	Mar.25, 20
LISN	R&S	ENV216	E1L1011	Jul.18, 19	Jul.17, 20
Humidity&Temp Tester	Baolima	WS508	E1H1011	Apr. 04, 19	Apr. 03, 20
Test Software	ADT	ADT_COND_V 7.3.1	N/A	N/A	N/A
Test Software	Toscend	JS32-RE	N/A	N/A	N/A
Test Software	Toscend	JS1120	N/A	N/A	N/A

2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

	_	Expanded Uncertainty	
Measurement	Frequency	(k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.36 dB	
	1GHz ~ 6GHz	3.47 dB	
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.75 dB	
	18GHz ~ 40GHz	3.30 dB	

2.3 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	BLEMESH(SIG) Gateway
Brand	
Test Model	TYGWBS-01;TYGWBS-01N
Model Difference	The two models exactly are the same except the model name and the package.
Power Rating	5VDC/1A with adaptor 100-240V~,50/60Hz
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
Operating Frequency	See clause 3.2
Number of Channel	See clause 3.2
Antenna Type	PCB Antenna
Antenna Connector	
Antenna Gain	2.5dBi

Note: For more details, please refer to the User's manual of the EUT.

Modulation Mode	TX /RX Function
802.11b	1TX / 1RX
802.11g	1TX / 1RX
802.11n (HT20)	1TX / 1RX
802.11n (HT40)	1TX / 1RX

3.2 Description of Test Modes

13 channels are provided for 802.11b, 802.11g and 802.11n (HT20) and 11 channels are provided for 802.11n (HT40).

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz	-	-

3.2.1 Test Mode Applicability:

EUT		Applic	able to		2
Configure Mode	RE≥1G	RE < 1G	PLC	APCM	Description
-	√	√	√	√	-

Where RE≥1G: Radiated Emission above 1GHz RE≤1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1 GHz):

□ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 13	1, 6, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 13	1, 6, 11	OFDM	BPSK	6.0
-	802.11n (HT20)	1 to 13	1, 6, 11	OFDM	BPSK	6.5
-	802.11n (HT40)	1 to 13	3, 6 ,9	OFDM	BPSK	13.5

Radiated Emission Test (Below 1 GHz):

□ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Power Line Conducted Emission Test:

- □ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGU MODE	RE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1	DSSS	DBPSK	1.0

Report No.: ARFR-19AU0427VTSHPB-1 Page No. 11 / 90 Report Format Verision: 6.1.1

Antenna Port Conducted Measurement

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
-	802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5
-	802.11n (HT40)	1 to 13	3, 6 ,9	OFDM	BPSK	13.5

3.2.2 Test Condition:

Applicable to	Normal Environmental Conditions	Normal Input Power	
RE ≥ 1G	25deg. C, 60%RH	120Vac, 60Hz	
RE < 1G	25deg. C, 60%RH	120Vac, 60Hz	
PLC	25deg. C, 60%RH	120Vac, 60Hz	
APCM	25deg. C, 60%RH	120Vac, 60Hz	

3.3 Duty Cycle of Test Signal

The Duty Cycle of the EUT is 100%.

Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standard:

FCC Part 15, Subpart C (15.247)

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10:2013

All relaxed test items have been performed and recorded as per the above standard.

4 Test Procedure and Results

4.1 6dB Bandwidth Measurement

4.1.1 Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz

4.1.2 Test Setup

4.1.3 Test Procedures

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" for compliance to FCC 47CFR 15.247 requirements (clause 8.2).

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geqslant 3 · RBW, peak detector with maximum hold) is implemented by the instrumentation function.

4.1.4 Deviation of Test Standard

No deviation.

4.1.5 Test Results

802.11b

Channel	Frequency (MHz)	99% Occpuied Bandwidth (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	13.718	9.082	0.5	Pass
6	2437	13.625	9.079	0.5	Pass
11	2462	13.606	9.074	0.5	Pass

802.11g

Channel	Frequency (MHz)	99% Occpuied Bandwidth (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	16.676	16.580	0.5	Pass
6	2437	16.541	16.570	0.5	Pass
11	2462	16.536	16.580	0.5	Pass

802.11n(HT20)

Channel	Frequency (MHz)	99% Occpuied Bandwidth (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	17.917	17.830	0.5	Pass
6	2437	17.747	17.830	0.5	Pass
11	2462	17.756	17.830	0.5	Pass

802.11n(HT40)

Channel	Frequency (MHz)	99% Occpuied Bandwidth (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
3	2422	36.004	36.380	0.5	Pass
6	2437	35.941	36.340	0.5	Pass
9	2452	36.022	36.360	0.5	Pass

Conducted Output Power Measurement

4.1.6 Limit

For systems using digital modulation in the 2400 - 2483.5 MHz bands: 1 Watt (30 dBm)

4.1.7 Test Setup

4.1.8 Test Procedures

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" for compliance to FCC 47CFR 15.247 requirements (clause 9.2.2.4).

- a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.
- b) Set span to at least 1.5 OBW.
- c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 RBW.
- e) Number of points in sweep \geq 2 span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power

4.1.9 Deviation of Test Standard No deviation.	during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add $10 \log (1/0.25) = 6 dB$ if the duty cycle is 25% .
No deviation.	4.1.9 Deviation of Test Standard

4.1.10Test Results

802.11b

Channel	Frequency (MHz)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	15.43	30	Pass
6	2437	14.66	30	Pass
11	2462	13.98	30	Pass

802.11g

Channel	Frequency (MHz)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	16.30	30	Pass
6	2437	14.24	30	Pass
11	2462	13.50	30	Pass

802.11n(HT20)

Channel	Frequency (MHz)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	16.18	30	Pass
6	2437	14.13	30	Pass
11	2462	14.89	30	Pass

Spectrum Plot 802.11n(HT20)(2412MHz) ٥ Center Freq 2 412000000 GHz AvgHeld 300000 Radio Std Name KEYSIGHT Input RF Center Frequency 2.412000000 GHz Ref Lvi Offset 7.00 dB Ref Value 20.00 dBm 40.000 MHz CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Span 40 MHz Sweep Time 1.07 ms (2001 pts) Center 2.412 GHz IRes BW 510.00 kHz #Video BW 1.5000 MHz* Total Channel Power 16.18 dBm / 30.0 MHz -58.59 dBm/Hz .:: 🐧

802.11n(HT40)

Channel	Frequency (MHz)	Average Power (dBm)	Limit (dBm)	Pass / Fail
3	2422	15.35	30	Pass
6	2437	16.31	30	Pass
9	2452	15.43	30	Pass

Spectrum Plot 802.11n(HT40)(2422MHz) ٥ Center Frog. 2 402000000 GHz Avgillekt 309/300 Radio Std None KEYSIGHT Input RF Center Frequency 2.422000000 GHz 80.000 MHz Ref Lvi Offset 7.00 dB Ref Value 20.00 dBm Scale/Div 10.0 dB CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz Span 80 MHz Sweep Time 1.07 ms (2001 pts) Center 2.422 GHz IRes BW 510.00 kHz #Video BW 1.5000 MHz* 15.35 dBm / 50.0 MHz ... 🐧

Special Aralyzet | Chemical Powers | Frequency | Frequ

802.11n(HT40)(2452MHz)

... |

14.76 dBm / 50.0 MHz

-62.23 dBm/Hz

Total Power Spectral Density

4.2 Power Spectral Density Measurement

4.2.1 Limit

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz band.

4.2.2 Test Setup

4.2.3 Test Procedures

The power output per FCC § 15.247(e) was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 10.5) for compliance to FCC 47CFR 15.247 requirements.

- a) Measure the duty cycle (x) of the transmitter output signal.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 OBW.
- d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- e) Set VBW ≥ 3 RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep ≥ 2 span/RBW.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

Report No.: ARFR-19AU0427VTSHPB-1 Page No. 33 / 90 Report Format Verision: 6.1.1

4.2.4 Deviation of Test Standard

No deviation.

4.2.5 Test Results

802.11b

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
1	2412	-14.13	8	Pass
6	2437	-14.77	8	Pass
11	2462	-15.49	8	Pass

Spectrum Plot
802.11b(2412MHz)

802.11g

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
1	2412	-12.27	8	Pass
6	2437	-14.37	8	Pass
11	2462	-15.29	8	Pass

802.11n(HT20)

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
1	2412	-11.40	8	Pass
6	2437	-13.58	8	Pass
11	2462	-12.83	8	Pass

Spectrum Plot 802.11n(HT20)(2412MHz) ٥ KEYSIGHT Input 123455 Select Marker Marker 1 PNNNNN Mkr1 2.405 412 0 GHz Ref Lvi Offset 7.00 dB Ref Level 0.00 dBm 2.405412000 GHz -11.40 dBn Peak Search Next Peak perferent artelanguegastellanderan etisanytellanderanderanderanderandera Next Pk Right Next Pk Left Minimum Peak Marker+ Pk-Pk Search Marker Deta Mit-CF ≢Video BW 10 kHz ter 2.41200 GHz Span 27.00 MHz ? Aug 07, 2019 @ .:: 🔌

802.11n(HT20)(2437MHz) Ö KEYSIGHT Input RF Select Marker PNNNN Mkr1 2.430 412 0 GHz 2.430412000 GHz Ref Lvi Offset 7.00 dB Ref Level 0.00 dBm -13.58 dBr Scale/Div 10 dB Peak Search Next Peak permissi nganggapagataphan nasaganasappanganasappa Next Pk Right Properties Marker Function Counter Met--CF Center 2.43700 GHz Res BW 3.0 kHz Span 27.00 MHz Sweep 8.80 ms (2001 pts) #Video BW 10 kHz ? Aug 07, 2019 .:: V 802.11n(HT20)(2462MHz) ٥ KEYSIGHT INDUE RE Select Marker Marker 1 12345 HWWWW Algo Off PNNNNN Mkr1 2.455 412 0 GHz Ref Lvl Offset 7.00 dB Ref Level 0.00 dBm 2.455412000 GHz -12.83 dBr Peak Search Next Peak while product of the bear work of the state **Properties** Next Pk Right Marker Function Next Pk Left Minimum Peak Marker Pk-Pk Search Counter Marker Deta #Video BW 10 kHz Span 27.00 MHz Sweep 8.80 ms (2001 pts) Res BW 3.0 kHz ? Aug 07, 2019

802.11n(HT40)

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
3	2422	-13.08	8	Pass
6	2437	-13.75	8	Pass
9	2452	-12.30	8	Pass

Spectrum Plot 802.11n(HT40)(2422MHz) ٥ KEYSIGHT Input RE 12345 PNNNN Mkr1 2.418 562 5 GHz 2.418562500 GHz -13.08 dBn scale/Div 10 dB Peak Search Marker Function Pk-Pk Search Marker Deta Met-CF Mkr-Ref LVI ≢Video BW 10 kHz Span 55.00 MHz Sweep 18.0 ms (2001 pts)

4.3 Emissions in non-restricted frequency bands

4.3.1 Limit

Below 30 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Procedures

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 11.0) for compliance to FCC 47CFR 15.247 requirements.

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.

5. Trace Mode = max hold.				
6. Allow trace to fully stabilize.				
7. Use the peak marker function to determine the maximum amplitude level.				
4.3.4 Deviation of Test Standard				
No deviation.				

4.3.5 Test Results

802.11b

Channel	Frequency (MHz)	Pass / Fail
1	2412	Pass
6	2437	Pass
11	2462	Pass

802.11g

Channel	Frequency (MHz)	Pass / Fail
1	2412	Pass
6	2437	Pass
11	2462	Pass

802.11n(HT20)

Channel	Frequency (MHz)	Pass / Fail
1	2412	Pass
6	2437	Pass
11	2462	Pass

Spectrum Plot

802.11n(HT40)

Channel	Frequency (MHz)	Pass / Fail
3	2422	Pass
6	2437	Pass
9	2452	Pass

4.4 Radiated Emission Measurement

4.4.1 Limits

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.4.2 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degree to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.

- d. For each suspected emission, the EUT was arranged to its worst case and the rotate table was turned from 0 degree to 360 degree to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for RMS Average (Duty cycle < 98 %) for Peak detection at frequency above 1 GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.

Report No.: ARFR-19AU0427VTSHPB-1 Page No. 72 / 90 Report Format Verision: 6.1.1

5. All modes of operation were investigated and the worst-case emissions are reported.
4.4.3 Deviation from Test Standard
No deviation.

4.4.4 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.4.5 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.4.6 Test Results

Radiated Emissions Range 9kHz~30MHz

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Radiated Emissions Range 30MHz~1GHz

Mode	802.11b-2412MHz	Detector Function	Quasi-Peak (QP)
Frequency Range	30MHz ~ 1GHz	Antenna Polarity	Horizontal

	Spurious Emission Level							
No.	Frequency	Emission Level	Limit	Margin	Correction Factor			
NO.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)			
1	30.97	18.08	40.00	-21.92	-12.01			
2	55.99	17.58	40.00	-22.42	-10.39			
3	119.4	16.44	43.50	-27.06	-13.27			
4	188.6	19.55	43.50	-23.95	-12.42			
5	254.2	21.08	46.50	-25.42	-10.91			
6	528.7	22.90	46.50	-23.60	-4.36			

- 1. Emission Level(dBuV/m) = Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Mode	802.11b-2412MHz	Detector Function	Quasi-Peak (QP)
Frequency Range	30MHz ~ 1GHz	Antenna Polarity	Vertical

	Spurious Emission Level							
No.	Frequency	Emission Level	Limit	Margin	Correction Factor			
NO.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)			
1	30.97	26.88	40.00	13.12	-12.01			
2	35.23	23.93	40.00	16.07	-11.56			
3	43.38	21.34	40.00	18.66	-10.80			
4	55.80	24.06	40.00	15.94	-10.39			
5	119.0	25.01	43.50	18.49	-13.30			
6	183.8	25.16	43.50	18.34	-12.02			

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Radiated Emission Range 1GHz~10th Harmonic

802.11b

Channel	TX Channel 1	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Spurious Emission Level						
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector
1	4824.15	56.18	74.00	-17.82	-6.28	Н	PK
2	4825.00	53.42	54.00	-0.58	-6.28	Н	AV
3	4824.15	55.59	74.00	-18.41	-6.28	V	PK
4	4825.00	52.35	54.00	-1.65	-6.28	V	AV

REMARKS:

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 6	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level							
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector	
1	4874.30	53.84	74.00	-20.16	-6.37	Н	PK	
2	4874.30	50.16	54.00	-3.84	-6.37	Н	AV	
3	4874.30	55.16	74.00	-18.84	-6.37	V	PK	
4	4874.30	51.79	54.00	-2.21	-6.37	V	AV	

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

Channel	TX Channel 11	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level						
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector
1	4923.60	55.62	74.00	-18.38	-6.47	Н	PK
2	4924.45	52.98	54.00	-1.02	-6.47	Н	AV
3	4923.60	55.29	74.00	-18.71	-6.47	V	PK
4	4924.45	52.23	54.00	-1.77	-6.47	V	AV

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

802.11g

Channel	TX Channel 1	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level								
No.	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Correction Factor (dB/m) Antenna Polarity								
1	4815.65	55.89	74.00	-18.11	-6.26	Н	PK		
2	4825.00	49.93	54.00	-4.07	-6.28	Н	AV		
3	4826.70	56.42	74.00	-17.58	-6.28	V	PK		
4	4825.85	50.39	54.00	-3.61	-6.28	V	AV		

REMARKS:

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 6	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level								
No.	Frequency (MHz) Emission Limit (dBuV/m) Margin Factor (dB/m) Polarity Detector								
1	4872.60	53.09	74.00	-20.91	-6.37	Н	PK		
2	4873.45	46.91	54.00	-7.09	-6.37	Н	AV		
3	4870.05	55.55	74.00	-18.45	-6.36	V	PK		
4	4874.30	48.02	54.00	-5.98	-6.37	V	AV		

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 11		Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Spurious Emission Level								
No.	No. Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Correction Factor (dB/m) Antenna Polarity								
1	4920.20	53.01	74.00	-20.99	-6.46	Н	PK		
2	4915.10	46.00	54.00	-8.00	-6.45	Н	AV		
3	4921.90	53.33	74.00	-20.67	-6.46	V	PK		
4	4923.60	47.19	54.00	-6.81	-6.47	V	AV		

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

802.11n(HT20)

Channel	TX Channel 1	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level								
No.	Frequency (MHz) Emission Limit (dBuV/m) Correction Factor (dBuV/m) Correction Factor (dB/m) Detector								
1	4823.30	58.66	74.00	-15.34	-6.28	Н	PK		
2	4824.15	51.00	54.00	-3.00	-6.28	Н	AV		
3	4823.30	56.85	74.00	-17.15	-6.28	V	PK		
4	4824.15	49.30	54.00	-4.70	-6.28	V	AV		

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 6	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

Spurious E	mission Level

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector
1	4874.30	53.56	74.00	-20.44	-6.37	Н	PK
2	4875.15	46.45	54.00	-7.55	-6.37	Н	AV
3	4862.40	55.34	74.00	-18.66	-6.35	V	PK
4	4875.15	47.52	54.00	-6.48	-6.37	V	AV

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 11		Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Spurious Emission Level								
No.	Frequency (MHz) Emission Level (dBuV/m) Limit (dB) Correction Factor (dB/m) Detector								
1	4927.00	55.10	74.00	-18.90	-6.47	Н	PK		
2	4931.25	47.53	54.00	-6.47	-6.48	Н	AV		
3	4926.15	55.01	74.00	-18.99	-6.47	V	PK		
4	4928.70	48.19	54.00	-5.81	-6.48	V	AV		

REMARKS:

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

802.11n(HT40)

Channel	TX Channel 3	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

Spurious Emission Level

Report No.: ARFR-19AU0427VTSHPB-1 Page No. 83 / 90 Report Format Verision: 6.1.1

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector
1	4845.40	51.29	74.00	-22.71	-6.32	Н	PK
2	4842.85	44.74	54.00	-9.26	-6.31	Н	AV
3	4850.50	51.50	74.00	-22.50	-6.33	V	PK
4	4837.75	44.40	54.00	-9.60	-6.30	V	AV

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 6	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

	Spurious Emission Level								
No.	Frequency (MHz) Emission Limit (dBuV/m) Margin Factor (dB/m)		Antenna Polarity	Detector					
1	4867.50	50.88	74.00	-23.12	-6.36	Н	PK		
2	4870.90	44.49	54.00	-9.51	-6.37	Н	AV		
3	4867.50	51.40	74.00	-22.60	-6.36	V	PK		
4	4868.35	45.57	54.00	-8.43	-6.36	V	AV		

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	TX Channel 9	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz		Average (AV)

Spurious Emission Level

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Correction Factor (dB/m)	Antenna Polarity	Detector
1	4901.50	52.26	74.00	-21.74	-6.42	Н	PK
2	4902.35	46.48	54.00	-7.52	-6.43	Н	AV
3	4907.45	53.68	74.00	-20.32	-6.44	V	PK
4	4908.30	47.91	54.00	-6.09	-6.44	V	AV

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.5 Conducted Emission Measurement

4.5.1 Limits

Frequency (MHz)	Conducted I	Limit (dBuV)
rioquomoy (minz)	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.5.2 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP)

Report No.: ARFR-19AU0427VTSHPB-1 Page No. 85 / 90 Report Format Verision: 6.1.1

and average detection (AV) at frequency 0.15MHz-30MHz.

4.5.3 Deviation from Test Standard

No deviation.

4.5.4 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.5.5 EUT Operating Conditions

Same as 4.1.6.

4.5.6 Test Results

Working While Charging

			Quasi-Peak (QP) /
Phase	Line (L)	Detector Function	Average (AV)

	Freq.	Corr.	Readin	g Value	Emissio	n Level	Lir	nit	Mai	rgin
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.50581	9.83	20.85	15.75	30.68	25.58	56.00	46.00	-25.32	-20.42
2	0.83034	9.88	12.87	6.26	22.75	16.14	56.00	46.00	-33.25	-29.86
3	0.89290	9.88	16.67	11.35	26.55	21.23	56.00	46.00	-29.45	-24.77
4	2.24338	9.92	13.30	1.05	23.22	10.97	56.00	46.00	-32.78	-35.03
5	3.63534	9.80	5.54	-7.83	15.34	1.97	56.00	46.00	-40.66	-44.03
6	8.01454	9.90	5.94	-0.66	15.84	9.24	60.00	50.00	-44.16	-40.76

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

			Quasi-Peak (QP) /
Phase	Neutral (N)	Detector Function	Average (AV)

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.51754	9.83	24.38	13.31	34.21	23.14	56.00	46.00	-21.79	-22.86
2	0.87726	9.88	17.05	13.92	26.93	23.80	56.00	46.00	-29.07	-22.20
3	1.01173	9.89	16.24	9.61	26.13	19.50	56.00	46.00	-29.87	-26.50
4	2.01660	9.91	15.48	8.43	25.39	18.34	56.00	46.00	-30.61	-27.66
5	3.68617	9.79	9.62	6.10	19.41	15.89	56.00	46.00	-36.59	-30.11
6	7.45541	9.89	9.96	5.98	19.85	15.87	60.00	50.00	-40.15	-34.13

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).
END

Report No.: ARFR-19AU0427VTSHPB-1