Exercice 1 (Questions de cours.)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Conditions équivalentes à la continuité d'une application linéaire.
- 2. Convergence ou divergence d'une série de Riemann.
- 3. Règle de d'Alembert.

Exercice 2 (Exercice préparé.)

Pour $P \in \mathbb{R}[X]$ un polynôme, on pose

$$N_1(P) = \sup_{t \in [-1,1]} |P(t)|$$
 et $N_2(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|$.

On admet que N_1 et N_2 sont des normes sur $\mathbb{R}[X]$ et on considère la suite de polynômes $(P_n)_{n>1}$ définie par

$$P_n(X) = \frac{1}{n}X^n.$$

- 1. La suite (P_n) converge-t-elle pour N_1 ?
- 2. La suite (P_n) converge-t-elle pour N_2 ?
- 3. Les normes N_1 et N_2 sont-elles équivalentes?

Exercice 3

Soit N et N' deux normes sur E. On suppose $B(0,1) \subset B'(0,1)$. Montrer

$$\forall x \in E, N'(x) \leq N(x).$$

Exercice 4

Soit E un espace vectoriel normé. Soit F un sous-espace de E, contenant une boule ouverte de rayon R > 0. Montrer que F = E.

Exercice 5

Soit (u_n) une suite de nombres réels.

- 1. On suppose que u est croissante et admet une suite extraite convergente. Que dire de u?
- 2. On suppose que u est croissante et admet une suite extraite majorée. Que dire de u?
- 3. On suppose que u n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge vers $+\infty$.

Exercice 6

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction uniformément continue sur \mathbb{R}_+ . Montrer qu'il existe $\alpha, \beta > 0$ tels que pour tout x > 0

$$|f(x)| \le \alpha x + \beta.$$

Exercice 7

Une suite (u_n) est appelée suite de Cauchy si, pour tout $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que pour tout $p, q \geq N$, on a

$$|u_p - u_q| < \varepsilon.$$

- 1. Montrer que toute suite convergente est une suite de Cauchy.
- 2. On souhaite désormais montrer la réciproque. Soit (u_n) une suite de Cauchy.
 - (a) Montrer que (u_n) est bornée.
 - (b) On suppose que (u_n) admet une suite extraite convergente. Montrer que (u_n) est convergente.
 - (c) Conclure.

Exercice 8

Soit E une partie compacte d'un espace vectoriel normé, et $f: E \to E$ une fonction continue vérifiant

$$\forall (x, y) \in E^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||.$$

- 1. Montrer que f admet un unique point fixe, que l'on notera α .
- 2. Le résultat subsiste-il si on suppose simplement E fermé?

Exercice 9

Étudier la convergence des séries $\sum u_n$ suivantes :

1)
$$u_n = \frac{n}{n^3 + 1}$$
 2) $u_n = \frac{1}{n!}$ 3) $u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$

$$2) u_n = \frac{1}{n!}$$

$$3) u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$$

$$4) u_n = n \sin\left(\frac{1}{n}\right)$$

4)
$$u_n = n \sin\left(\frac{1}{n}\right)$$
 5) $u_n = \frac{n!}{n^{an}}, a \in \mathbb{R}$ 6) $u_n = \frac{\ln(n^n)}{n!}$

$$6) u_n = \frac{\ln(n^n)}{n!}$$

Exercice 10

Soit, pour $n \ge 1$ et a > 0, la suite $u_n = \frac{a^n n!}{n^n}$.

- 1. Étudier la convergence de la série $\sum u_n$ lorsque $a \neq e$.
- 2. Lorsque a=e, prouver que, pour n assez grand, $\frac{u_{n+1}}{u} \geq 1$. Que dire de la nature de la série $\sum u_n$?