经日本分類 99 A 12

日本因特許庁

①特許出題公告 昭44-28009

44 年(1969)11月19 日

発明の数 1

(全2頁)

②横電流型電子放出案子

2

印符

願 昭42-58947

砂出 願 42(1967)9月12日

砂発 明 者 伊藤徹

門真市大字門真1006株式会社 松下電器東京研究所內

卯出 願 人 松下電器産業株式会社 門真市大字門真1006

代 表 者 松下正治

代 理 人 弁理士 吉埼悦治 外1名

図面の簡単な説明

第1図は本発明の一実施例における横電流型電 子放出素子の平面図、第2図はその断面図である。15を説明する。 発明の詳細な説明

本発明は半導体を用いた横電流型電子放出素子 に関するものである。

横電流型電子放出素子とは、固体から真空ある

従来同様の作用をするものとしては、熱電子放 出、電界電子放出等を利用したものがある。横電 流型電子放出素子では、これらのものと異り、固 体中に高電界を作り、固体中の自由電子が、この 電界からエネルギーを得て、固体から真空中に飛 25 び出す事を可能ならしめるものである。

この場合、高いエネルギーの電子の中で、固体 から飛び出すものは、固体表面に近い場所に存在 するものだけであり、また高電界を作るためには、 固体中に電流を流しておいて、その流路をしぼり、30 しかもそのしばつた部分の電気比抵抗を残りの部 分にくらべて大きくする事が有効である。従つて 必然的に第1図第2図の形状をとる事になる。

横電流型電子放出素子の名称は、薄膜に横に電 流が流れていてそれと直角方向に電子が放出され 35| 電流に外部からの信号を入れる事ができる。 る事から名付けられたものである。

従来この種の電子放出素子は酸化すず薄膜等の **−種類の物質で作られており、また電流を流すフ**

オーミングによつて中央に電子放出面となる抵抗 の高い領域を作つていたがフォーミングの条件の 選び方が難しく特性が一定しないという欠点があ 2t-

本発明は不純物をドープすることにより導電率 を大きくした半導体の薄膜に作られた細膜を、ド ープし<u>ない比較的ペンドギ</u>セップの大きい半導体 の薄膜によつてつなぐことにより結果的に同じ動 作をさせようとするものである。このようにする

10 とドープしない半導体として電子親和力の小さい ものが使えるので放出電子量を増すことができ、 さらにギャップが調整可能になり、特性が一定し、 ある場合にはフォーミングの必要がなくなるとい う利点が生ずる。以下図面についてその一実施例

1はアンチモンSbをドープしたネサ膜のような ♥トー プレた半導体、2はSnO₂ の薄膜のような 不純物をドープしないパンドギヤップの比較的大 きい半導体、3は絶縁物基板である。ここで電子 いは空気中へ電子を放出させる素子の一種である。20 放出部となる半導体2の材料としてはSb-Cs またはCsを付着したGaAsなどの電子親和力 が小さくパンドギヤップの大きい物質を用いれば 電子放出の効率をさらによくすることが可能であ

> 以上のように本発明は不純物をドープした導電 度の大きい半導体の間を比抵抗の大きい半導体で 結合したものであり、特性のそろつたかつ電子放 出能率のすぐれた横電流型電子放出素子を得るこ とができる。

この電子放出素子は、従来熱陰極が用いられて いた。真空管、ブラウン管、撮像管等の電子源と してそのまま置き換えることも可能である。また、 膜を流れる電流を変える事により、放出される電 ◆子の量を充分短い時間で変える事ができるので膜

また、実験によれば、膜に電流を流すために要 する電力に対する、放出電子の量は従来の熱陰極 よりも非常に大きい。

3

特許請求の範囲

1 不純物をドープすることにより導<mark>て</mark>率を大きくした半導体の薄膜に作られた細胞をドープしな。

い半導体の薄膜で連結して構成したことを特徴と する横電流型電子放出素子。

[44-28009]

(column 2, lines 16-35)

The device comprises a pair of doped semiconductor members 1 such as a pair of NESA films doped with antimony Sb, an undoped semiconductor member 2 having a relatively large band gap such as a SnO₂ thin film and an insulator substrate 3. If the semiconductor member 2 for forming an electron emitting section is made of a substance having a small affinity to electrons and a large band gap such as GaAs carrying Sb-Cs or Cs adhered thereto, the electron emitting effect of the device can be further improved.

An electron emitting device according to the invention can be used for the electron source of a vacuum tube, a cathode ray tube or an image pick-up tube to replace a conventional hot cathode. Additionally, as the rate of electron emission of the device can be modified in a very short period of time by modifying the flow rate of the electric current running through the thin film, external signals may be applied to the electric current running to modify its flow rate.