ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

¿Cómo anduvieron?

Repaso: Glosario Estadístico

Explicación: Outliers

Hands-on training

Break

¿Sabías que...?

Actividad: Explorando mis datos

Cierre

¿Cómo anduvieron?

Proyecto 1: Análisis Exploratorio de Datos (EDA)

Análisis Exploratorio de Datos (EDA)

fase	ADQUISICIÓN Y EXPLORACIÓN		MODELADO				DEPLOY
entrega	Exploración de datos	Feature Engineering	Regresión	Optimización de parámetros	Procesam. del lenguaje natural	Sistema de recomendación	Publicación de modelos
tiempo	SEM 1	SEM 5	SEM 8	SEM 11	SEM 13	SEM 18	SEM 22
	SEM 2	SEM 6	SEM 9	SEM 12	SEM 14	SEM 19	SEM 23
	SEM 3	SEM 7	SEM 10		SEM 15	SEM 20	SEM 24
	SEM 4				SEM 16	SEM 21	
					SEM 17		

Proyecto EDA: Hoja de ruta

SEM 5

• Ejercicio/s

Integradores

Funciones

Datos

Programación:

Transformación de

• Transformación de Datos con Pandas

Entrega 1

SEM 1 - 4

- Python
- Numpy
- Pandas
- Visualización de datos: Matplotlib y Seaborn
- Estadística

Entrega 2

SEM 6

- Programación: Clases
- Cómo dar Presentaciones Orales
- Transformación de Datos con Scikit-Learn

Usted está aquí

SEM 7

- Transformación de Datos con Scikit-Learn
- Outliers
- Puesta en Común
 Provecto 1

SEM 8

• ¡Arrancamos con Machine Learning!

Repaso: Glosario Estadístico

Repaso: Glosario

Con dos compañeros/as dar una (breve) definición y un ejemplo de los siguientes conceptos estadísticos:

Distribución

Mediana

Percentil

Cuartil

Asimetría estadística (skewness)

Detección de Outliers

America's unique gun violence problem, explained in 16 maps and charts

Homicides by firearm per 1 million people In advanced countries according to the Human Development Index. Numbers are for 2012.

Nota de Color

La figura original (izquierda) fue reemplazada por la de la derecha. Notar que no aparece Argentina.

Si les intriga saber por qué, <u>acá</u>, <u>acá</u> y <u>acá</u> tal vez encuentren algunas pistas y unas discusiones interesantes.

¿Qué es un Outlier? ¿Por qué ocurren?

OUTLIER = valor atípico que difiere significativamente del resto de las observaciones.

¿Por qué difiere?

- Error de medición del instrumento.
- Error al introducir un dato.
- Estamos trabajando con muestras/poblaciones que no son tan homogéneas como creíamos.

¿Qué es un Outlier? ¿Por qué ocurren?

¡Muchas veces los OUTLIERS son una manifestación del proceso que estamos estudiando!

Ejemplos:

- Transacción fraudulenta con una tarjeta de crédito.
- Persona enferma en un conjunto de personas sanas.
- Mayor incidencia de una enfermedad en una ciudad. ¿Esperable o outlier?

SUGERENCIA

Siempre es importante pensar por qué hay un outlier en nuestro dataset

Tipos de valores atípicos

univariante

Se desvía de los valores típicos de un feature (columna)

multivariante

Se desvía de los valores típicos que hay en la relación entre dos o más columnas

Los valores atípicos suelen confundir la estadística que hacemos sobre los datos, ya que nos indican que no estamos trabajando con poblaciones homogéneas.

A veces, **detectar outliers** es el objetivo de nuestro estudio.

¿Se les ocurre algún ejemplo?

¿Cómo detectar outliers?

Muchas veces no existe una manera *obvia* de detectar outliers, y, en general, ¡depende del problema!

Algunas técnicas son

- Visualización: Boxplots
- Por rango intercuartílico (Interquartile Range)
- Regla de las tres sigmas
- ¡Y más

El **diagrama de cajas** es una forma de visualizar un conjunto de valores.

Muchas veces resulta más **informativo** que simplemente dibujar un punto por cada valor, ya que nos permite tener una idea de como es la distribución subyacente.

Rango intercuartílico

Regla de las tres sigmas

Elegimos un valor mínimo y un valor máximo para los valores "permitidos".

Marcamos como outliers aquellos valores que estén por debajo del mínimo o por arriba del máximo.

¿Cómo elegimos el mínimo y el máximo?

- A veces, es la variable la que nos lo indica. Por ejemplo, la asistencia a un curso no puede ser menor que cero o mayor al número de alumnos que tiene el curso.
- Un criterio estandarizado es usar
 mínimo = Q1 1.5 x IQR
 máximo = Q3 + 1.5 x IQR

¿Y si en lugar de usar los cuartiles usamos las desviaciones estándar?

mínimo = valor medio - 3 x SD **máximo** = valor medio + 3 x SD

A veces, este método se aplica a través del Z-Score

Boxplot

Rango intercuartílico

Regla de las tres sigmas

Tenemos un conjunto de números $x_1, x_2, x_3, ..., x_n$. Su media es μ , y su desviación estándar σ .

$$Z = (x_i - \mu)/\sigma$$

Es una medida de cuánto se desvía un valor del promedio, medido en desviaciones estándar.

Ejemplo:
$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 1.5$

- Media, μ = 1.5
- Desviación estándar, σ = 0.5

$$x_1 = 1$$
 \longrightarrow $z_1 = (1 - 1.5)/0.5 = -1$
 $x_2 = 2$ \longrightarrow $z_2 = (2 - 1.5)/0.5 = 1$
 $x_3 = 1.5$ \longrightarrow $z_3 = (1.5 - 1.5)/0.5 = 0$

- El Z-Score es una medida de cuán lejos está un dato del promedio de la muestra a cual pertenece, medido en desviaciones estándar.
- También nos va a servir, más adelante, para Reescalar Datos. A veces lo podrán encontrar por el nombre de Estandarización o Normalización.
- En Scikit-Learn, existe una clase <u>StandardScaler</u> del módulo preprocessing que lo implementa.

Hands-on training

Hands-on training

DS_Clase_13_Outliers.ipynb

Sabías que...

VALOR EXTREMO = valor distante del resto de las observaciones pero comprendido dentro de los valores esperados en mi distribución.

En general, son más comunes en distribuciones con alta curtosis.

VALOR EXTREMO

¿Debemos sacarlos? ¿Los podemos considerar outliers? Eso dependerá del problema que estemos estudiando.

Pero es importante recalcar la diferencia entre:

- un valor atípico porque estamos mezclando poblaciones (transacciones no-fraudulentas/fraudulentas, personas sanas/no-sanas, etc.)
- valores extremos de una población homogénea
 (Ejemplo: usamos siempre la tarjeta de crédito para hacer compras pequeñas y un día compramos un pasaje en avión).

VALOR EXTREMO: Una demostración

VALOR EXTREMO: Una demostración

VALOR EXTREMO: Una demostración

Regla de las tres sigmas

n	р	1-p	Aprox. 1 en
1	0.682	0.317	3
2	0.954	0.046	22
3	0.997	0.003	370
4	0.999936658	0.000063342	15787
5	0.999999427	0.000000573	1744277
6	0.99999998	0.000000002	506797346

VALOR EXTREMO: Una demostración

VALOR EXTREMO: Una demostración

Resumen

- Un *Outlier* generalmente indica que la distribución subyacente no es homogénea. Sin embargo, hay un grado de subjetividad en qué es un valor atípico.
- Cómo detectarlos va a depender de nuestro problema. Sin embargo, hay algunas técnicas estandarizadas
- ¡Mucho cuidado! No siempre hay que tirarlos. A veces es lo que buscamos. Ej: detección de fraudes.

Actividad: Explorando mis datos

¡Seguimos explorando!

¿Qué preguntas me *gustaría* responder?

¿Qué preguntas podrán responder con ese dataset?

-_(ツ)_/-

Lamentablemente no siempre ambas coinciden

Para la próxima

- 1. Si no lo hicieron, terminar de ver los videos sobre "Transformación de Datos".
- 2. Terminar la Entrega 02.
- 3. Seguir explorando el dataset que eligieron.
- 4. Completar el notebook de hoy si no lo terminaron.

ACAMICA