Spark – Big Data Processing

Aula 1

Quem sou eu?

Rodrigo Augusto Rebouças

Engenheiro de dados da Semantix Instrutor do Semantix Academy

Contatos

rodrigo.augusto@semantix.com.br linkedin.com/in/rodrigo-reboucas

Ementa

- Projetos com Jupyter Notebooks Python
- Operações com RDD
- Operações com Dataframe
- Operações com Dataset
- IDE Python e Scala
- Struct Streaming Kafka;
- Spark Streaming Kafka;
- Otimizações e Tunning

Revisão

Spark – Básico (Big Data Foundations)

- o spark-shell Scala
- DataFrame
 - Transformação
 - Ação
 - Schemas
 - Join
- Spark SQL Queries
- API Catalog Scala

Python vs Scala - Revisão

- Diferenças Scala para Python
 - DataFrame (Não precisa declarar variável/constante)
 - Transformação
 - Ação
 - Schemas
 - → Join
 - Spark SQL Queries (Não precisa declarar variável/constante)
 - API Catalog

Preparar Ambiente de Desenvolvimento

Instalação

Preparação Ambiente – Instalação Docker e Docker-compose

- Instalação
 - Docker: https://docs.docker.com/get-docker/
 - Docker Compose: https://docs.docker.com/compose/install/
 - SO
 - Windows
 - Docker Desktop (Hyper-V ou WSL2)
 - Docker Toolbox (VirtualBox)
 - Linux
 - Docker Engine
 - Docker Compose
 - Mac
 - Docker Desktop

Baixar Cluster de Big Data

- Baixar conteudo do Cluster
 git clone https://github.com/rodrigo-reboucas/docker-bigdata.git spark
- Baixar as imagens docker-compose -f docker-compose-completo.yml pull
- Listar as imagens docker image ls
- Iniciar todos os serviços
 docker-compose -f docker-compose-completo.yml up -d

fjardim/jupyter-spark	5.03GB
fjardim/datanode	874MB
fjardim/namenode_sqoop	1.54GB
fjardim/mysql	456MB
fjardim/nifi	1.78GB
fjardim/hive-metastore	275MB
fjardim/metabase	361MB
fjardim/mongo	386MB
fjardim/mongo-express	129MB
fjardim/kafka	422MB
fjardim/hue	2.96GB
fjardim/kafkamanager	438MB
fjardim/hive	1.17GB
fjardim/hbase-master	1.1GB
fjardim/prestodb	3.46GB
fjardim/zookeeper	451MB

Baixar Cluster de Big Data - Parcial

- Arquivo: docker-compose-parcial.yml
 - Remover ~8GB
- Baixar as imagens
 docker-compose -f docker-compose-parcial.yml pull
- Listar as imagens docker image ls
- Iniciar todos os serviços
 docker-compose -f docker-compose-parcial.yml up -d

fjardim/jupyter-spark	5.03GB
fjardim/datanode	874MB
fjardim/namenode sqoop	1.54GB
fjardim/mysql	456MB
fjardim/nifi	1.78GD
fjardim/hive-metastore	275MB
fjardim/metabase	361MB
fjardim/mongo	386MB
fjardim/mongo-express	129MB
fjardim/kafka	422MB
fjardim/huc	2.00GB
fjardim/kafkamanager	438MB
fjardim/hive	1.17GB
fjardim/hbase-master	1.1GB
findim/nactodh	2.4CCB
fjardim/zookeeper	451MB

Exercícios - Instalação de Ambiente

- 1. Instalação do docker e docker-compose
- 2. Executar os seguintes comandos, para baixar as imagens do Cluster de Big Data:
 - git clone https://github.com/rodrigo-reboucas/docker-bigdata.git spark
 - cd spark
 - docker-compose –f docker-compose-parcial.yml pull
- 3. Iniciar o cluster Hadoop através do docker-compose
 - docker-compose –f docker-compose-parcial.yml up -d
- 4. Listas as imagens em execução
- 5. Verificar os logs dos containers do docker-compose em execução
- 6. Verificar os logs do container jupyter-spark
- 7. Acessar pelo browser o Jupyter, através do link:
 - http://localhost:8889 ← → C ① localhost:8889/tree?

