- 1) Consider an exchange economy with two goods and m identical consumers, each with utility function $U(x_1, x_2) = (x_1)^2 + (x_2)^2$ and initial endowment $\omega = (1, 1)$.
 - (a) When m=2, what are the competitive equilibria?
 - (b) When m > 2, what are the competitive equilibria?
 - (c) If m=2, but the endowments are $\omega_a=(\frac{1}{2},\frac{1}{2})$ and $\omega_b=(\frac{3}{2},\frac{3}{2})$, what are the competitive equilibria?
- 2) MWG 15.B.10
- 3) MWG 15.D.6
- 4) MWG 15.D.9
- 5) Consider n agents with utility function $u_i(x_i, G) = \ln x_i + \alpha_i \ln G$. Suppose that each agent has an endowment of the private good $w_i = 1$ and no public good. Suppose that the technology is linear, i.e. f(z) = z for all $z \ge 0$.
 - (a) What is the Lindahl equilibrium?
 - (b) Consider the case when there are 3 agents and $\alpha_i = 1$ for i = 1, 2, 3. Suppose we wish a social planner to implement this allocation, but she cannot observe α_i . All agents must report their value of α_i to the planner. Suppose agents 2 and 3 report the truth, that $\alpha_i = 1$. Show that agent 1 can benefit from misreporting his value of α_1 .
 - (c) (Optional) Can you think of a way to implement the Lindahl equilibrium?