Week 12: Problem solving Strategies

1. Maximum suberray problem.

Given un array A[o...n-1], find a contiguous subarray A[i..j] which has the largest som.

E.g.
$$A = \{1, 3, 2, 7\}$$

 $\max_{subarray}(A) = \{1, 3, 2, 7\}$
 $A = \{5, -3, 4, -1\}$
 $\max_{subarray}(A) = \{5, -3, 4\}$

· Kaden's Algorithm

- Logic: If max subarray sum ending at index i is Si, whent is the max subarray sum ending at position it 1 i.e., Siti

$$S_{i+1} = \max(S_i + A_{i+1}, A_{i+1})$$

- Observation: Each time when we ended ern element A_{i+1} to S_{i} , if S_{i+1} becomes < 0, A_{i+1} can not be expect of the solution. [Unless all elements < 0] fy: $\{5, 2, -8, 3\}$

max subarray sum ending at position i+1 (Si+1) either includes Si or it doesn't.

Algorithm

max_subarray(A)

1. $sum = max_sum = A[0]$ 2. fer i = 1 + 0 m - 1 sum = max(sum, sum + A[i]) $max_sum = max(sum, max_sum)$ 3. $Return max_sum$