

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1)
FISIESE WETENSKAPPE: FISIKA (V1)

EXEMPLAR 2014 MODEL 2014

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 12 pages. *Hierdie memorandum bestaan uit 12 bladsye.*

QUESTION 1/VRAAG 1

1.1 B ✓ ✓ ((2)
-------------	-----

$$1.2 \qquad A \checkmark \checkmark \tag{2}$$

1.3 A
$$\checkmark\checkmark$$
 (2)

$$1.5 C \checkmark \checkmark (2)$$

(2)

(5)

QUESTION 2/VRAAG 2

2.4

When a resultant/net force acts on an object, the object will accelerate in the direction of the force. This acceleration is directly proportional to the force ✓ and inversely proportional to the mass of the object. ✓ Wanneer 'n resulterende/netto krag op 'n liggaam inwerk, sal die liggaam in

Wanneer 'n resulterende/netto krag op 'n liggaam inwerk, sal die liggaam in die rigting van die krag versnel. Hierdie versnelling is direk eweredig aan die krag en omgekeerd eweredig aan die massa van die liggaam.

2.2 Remains the same / Bly dieselfde ✓ (1)

2.3

Accepted labels/Aanvaarde benoemings

W F_g/F_w/ weight / mg / gravitational force $F_g/F_w/gewig / mg / gravitasiekrag$ Ffiction / F_f / friction $F_{wrywing}/F_w/wrywing$ N F_N / F_{normal} / normal force $F_N/F_{normal}/normaalkrag$ FT F_t / T / tension $F_t/T/spanning$

(4)

2.4.1 Up the incline as positive/Teen die skuinste op as positief:

 $F_{\text{net}} = \text{ma} \\ F_{\text{T}} + f_{\text{k}} + w_{\text{//}} = \text{ma} \\ F_{\text{T}} + \mu_{\text{k}} N + \text{wsin} 30^{\circ} = \text{ma} \\ F_{\text{T}} + \mu_{\text{k}} \text{mgcos} 30^{\circ} + \text{mgsin} 30^{\circ} = \text{ma} \\ F_{\text{T}} - (0,2)(6)(9,8)\text{cos} 30^{\circ} \checkmark - (6)(9,8)\text{sin} 30^{\circ} \checkmark = (6)(4) \checkmark \\ \therefore F_{\text{T}} = 63,58 \text{ N} \checkmark$

2.4.2 Up the incline as positive/Teen die skuinste op as positief:

 $\begin{array}{l} F_{\text{net}} = \text{ma} \\ F + f_{\text{k}(6 \text{ kg})} + f_{\text{k}(3 \text{ kg})} + \text{w}_{\text{//}} = \text{ma} \\ F + \mu_{\text{k}} N_{(6 \text{ kg})} + \mu_{\text{k}} N_{(3 \text{ kg})} + \text{mgsin} 30^{\circ} = \text{ma} \end{array} \right\} \ \, \checkmark \ \, \text{Any one} / Enige \ \, \text{een} \\ F - (0,2)(6)(9,8)\cos 30^{\circ} \checkmark - (0,1)(3)(9,8)\cos 30^{\circ} \checkmark - (9)(9,8)\sin 30^{\circ} \checkmark = 0 \ \, \checkmark \\ \therefore F = 56,83 \ \, \text{N} \ \, \checkmark \ \, \end{aligned}$

2.5 Decreases / Afneem ✓ (1) [19]

QUESTION 3/VRAAG 3

3.1 0,5 m √ (1)

3.2 **OPTION 1/OPSIE 1**

Upwards positive/Opwaarts positief:

Downwards positive/Afwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$
 $v_f^2 = (2)^2 + 2(9,8)(1,89) \checkmark$
 $v_f = 6,27 \text{ m} \cdot \text{s}^{-1} \checkmark$
 $v_f = v_i + a\Delta t$
 $6,27 = 2 + (9,8)\Delta t$
 $\Delta t = 0.44 \text{ s} \checkmark$

OPTION 2/OPSIE 2

Upwards positive/Opwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$-1.8 \checkmark = (-2) \Delta t \checkmark + \frac{1}{2} (-9.8) \Delta t^2 \checkmark$$

$$\Delta t = \frac{-2 \pm \sqrt{(2)^2 - 4(4.9)(-1.8)}}{2(4.9)}$$

$$= 0.44 \text{ s} \checkmark$$

Downwards positive/Afwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$1,8 \checkmark = (2) \Delta t \checkmark + \frac{1}{2} (9,8) \Delta t^2 \checkmark$$

$$\Delta t = \frac{-2 \pm \sqrt{(-2)^2 - 4(4,9)(-1,8)}}{2(4,9)} = 0,44 \text{ s} \checkmark$$
(5)

3.3 Upwards positive/Opwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $0^2 = v_i^2 + 2(-9.8)(0.9) \checkmark$
 $v_i = 4.2 \text{ m·s}^{-1} \checkmark \text{ upwards/opwaarts} \checkmark$

Downwards positive/Afwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$
 $0^2 = v_i^2 + 2(9,8)(0,9) \checkmark$
 $v_i = 4,2 \text{ m·s}^{-1} \checkmark \text{ upwards/opwaarts} \checkmark$
(4)

NSC/NSS - Grade 12 Exemplar/Graad 12 Model - Memorandum

3.4 Upwards positive/Opwaarts positief:

 $F_{\text{net}}\Delta t = m\Delta v \checkmark$ $F_{\text{net}} (0,2) \checkmark = (0,5)[(4,2-(-6,27)] \checkmark$ $F_{\text{net}} = 26,175 \text{ N} \checkmark$

Downwards positive/Afwaarts positief:

 $F_{\text{net}}\Delta t = m\Delta v \checkmark$ $F_{\text{net}} (0,2) \checkmark = (0,5)[(-4,2-(6,27)] \checkmark$ $F_{\text{net}} = -26,175 \text{ N}$ $F_{\text{net}} = 26,175 \text{ N} \checkmark$

(4)

3.5 Upwards positive/Opwaarts positief:

Downwards positive/Afwaarts positief:

(3)

Criteria for graph/Kriteria vir grafiek:	Marks/ Punte
First part of the graph starts at $v = 2 \text{ m} \cdot \text{s}^{-1}$ at $t = 0 \text{ s}$ and extends until $v = 6,27 \text{ m} \cdot \text{s}^{-1}$ at $t = 0,44 \text{ s}$.	✓
Eerste deel van die grafiek begin by $v = 2 \text{ m} \cdot \text{s}^{-1}$ by $t = 0 \text{ s}$ en verleng tot $v = 6,27 \text{ m} \cdot \text{s}^{-1}$ by $t = 0,44 \text{ s}$.	
Graph is discontinuous and object changes direction at 0,64 s. Grafiek is nie kontinu nie en voorwerp verander van rigting by 0,64 s.	√
Second part of graph starts at $v = 4.2 \text{ m} \cdot \text{s}^{-1}$ at $t = 0.64 \text{ s}$ until $v = 0 \text{ m} \cdot \text{s}^{-1}$. Tweede deel van grafiek begin by $v = 4.2 \text{ m} \cdot \text{s}^{-1}$ by $t = 0.64 \text{ s}$ tot $v = 0 \text{ m} \cdot \text{s}^{-1}$.	√

[17]

QUESTION 4/VRAAG 4

4.1 The total linear momentum in a closed system ✓ remains constant. / is conserved. ✓

Die totale lineêre momentum in 'n geslote sisteem bly konstant / bly behoue.

OR/OF

In a closed system \checkmark the total linear momentum before collision is equal to the total linear momentum after collision. \checkmark

In 'n geslote sisteem is die totale lineêre momentum voor botsing gelyk aan die totale lineêre momentum na botsing.

(2)

4.2
$$\sum p_{i} = \sum p_{f}$$

$$(m_{1} + m_{2})v_{i} = m_{1}v_{1f} +$$

$$(2m + 4m)(0) \checkmark = 2m(2) + 4m(v_{2f}) \checkmark$$

$$-4m = 4mv_{f}$$

$$\therefore v_{f} = -1 \text{ m·s}^{-1}$$

$$\therefore v_{f} = 1 \text{ m·s}^{-1} \checkmark \text{ in the opposite direction to that of the boys } \checkmark$$

$$\text{in die teenoorgestelde rigting as dié van die seuns}$$
(5)

4.3 Greater than / *Groter as* ✓ (1)

[8]

QUESTION 5/VRAAG 5

5.1 Frictional force / Wrywingkrag ✓ (1)

5.2 F_N / Normal force / Normaalkrag ✓ F_a / Gravitational force / Weight / Gravitasiekrag / Gewig ✓ F_{app}/ 10 N / Horizontal applied force / Horisontale toegepaste krag ✓

Ac	cepted labels/Aanvaarde benoemings
W	F_g/F_w / weight / mg / gravitational force F_g/F_w / gewig / mg / gravitasiekrag
N	F _N / F _{normal} / normal force F _N / F _{normaal} / <i>normaalkrag</i>
F	F _{app} / applied force / 10 N F _{toeg} / toegepaste krag/ 10 N

(3)

(2)

5.3 The <u>net work done</u> ✓on an object is <u>equal to the change in kinetic energy</u> ✓of the object.

> Die netto arbeid verrig op 'n voorwerp is gelyk aan die verandering in kinetiese energie van die voorwerp.

5.4
$$W_{\text{net}} = \Delta E_{\text{K}} \checkmark$$

$$W_{\text{F}} + W_{\text{w}} + W_{\text{FN}} = \frac{1}{2} m(v_{\text{f}}^2 - v_{\text{i}}^2)$$

$$(10)(2,5)\cos 0^{\circ} + 0 + 0 \checkmark = \frac{1}{2} (3)(v_{\text{f}}^2 - 0^2) \checkmark$$

$$v_{\text{f}} = 4,08 \text{ m·s}^{-1} \checkmark$$
(4)

5.5

 $\frac{\text{OPTION 1/OPSIE 1}}{\text{W}_{\text{nc}} = \Delta \text{E}_{\text{p}} + \Delta \text{E}_{\text{k}} \checkmark}$ $f\Delta x \cos\theta = (mgh_f - mgh^i) + (\frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2)$ $(2)(10)\cos 180^{\circ} \checkmark = (3)(9.8)h_f - 0 \checkmark + 0 - \frac{1}{2}(3)(4.08)^2 \checkmark$ ∴h = 0,17 m \checkmark

OPTION 2/OPSIE 2

 $W_{net} = \Delta E_K \checkmark$ $W_f + W_w = \frac{1}{2} m(v_f^2 - v_i^2)$ $(2)(10)\cos 180^{\circ} \checkmark + (3)(9.8)\cos 180^{\circ} \checkmark = \frac{1}{2}(3)(0^2 - 4.08^2) \checkmark$ ∴h = 0.17 m \checkmark

OPTION 3/OPSIE 3

 $W_{net} = \Delta E_k \checkmark$ mgsina $\Delta x \cos \theta + f \Delta x \cos \theta = \frac{1}{2} m(v_f^2 - v_i^2)$ $(3)(9.8)(\frac{h}{10})(10)\cos 180^{\circ} \checkmark + (2)(10)\cos 180^{\circ} \checkmark = \frac{1}{2}(3)(0^2 - 4.08^2) \checkmark$ ∴h= 0,17 m ✓

(5)[15]

6.1 Smaller than / Kleiner as ✓ (1)

6.3
$$V = f\lambda \checkmark$$

 $345 = f(0,55) \checkmark$
 $\therefore f = 627,27 \text{ Hz}$

$$f_L = \frac{V \pm V_L}{V \pm V_s} f_s \text{ OR/OF } f_L = \frac{V}{V - V_s} f_s \checkmark$$

$$= \frac{345}{345 \times 33,33} \checkmark (627,27) \checkmark$$

$$= 694,35 \text{ Hz} \checkmark$$
 (7)

6.4 Decreases / Verlaag ✓ (1)[10]

QUESTION 7/VRAAG 7

7.1 The (magnitude) of the electrostatic force exerted by one charge on another is directly proportional to the (magnitudes of the) charges ✓ inversely proportional to the square of the distance between their centres. ✓ Die (grootte) van die elektrostatiese krag wat een lading op 'n ander uitoefen, is direk eweredig aan die (groottes van die) ladings en omgekeerd eweredig aan die kwadraat van die afstand tussen hul middelpunte.

7.2 $F(Q_2 \text{ on } Q_1)$

(2)

(2)

$$F = k \frac{Q_1 Q_2}{r^2} \checkmark$$

$$F(Q_2 \text{ on } Q_1) = (9 \times 10^{-9}) \frac{(4 \times 10^{-6})(4 \times 10^{-6})}{(3 \times 10^{-3})^2 \checkmark} = 1,6 \times 10^4 \text{ N (to left/na links)}$$

$$F(Q_3 \text{ on } Q_1) = (9 \times 10^{-9}) \frac{(4 \times 10^{-6})(4 \times 10^{-6})}{(3 \times 10^{-3})^2} = 1.6 \times 10^4 \text{ N}$$

(downwards/afwaarts)

$$F_{\text{net}} = \sqrt{(F_{\text{Q2 on Q1}})^2 + (F_{\text{Q3 on Q1}})^2}$$

$$= \sqrt{(1.6 \times 10^4)^2 + (1.6 \times 10^4)^2} \checkmark$$

$$= 2.26 \times 10^4 \text{ N}$$

$$\tan \theta = \left(\frac{F_{Q3 \text{ on } Q1}}{F_{Q2 \text{ on } Q1}}\right)$$
$$\tan \theta = \left(\frac{1.6 \times 10^4}{1.6 \times 10^4}\right) \checkmark$$

$$\theta = 45^{\circ}$$

$$F_{\text{net}} = 2,26 \times 10^3 \,\text{N} \cdot \text{SW} / 225^\circ / 45^\circ \,\text{south of west} / \,\text{suid van wes} \cdot \text{(8)}$$

[12]

QUESTION 8/VRAAG 8

8.1 <u>The force</u> ✓ <u>per unit charge</u> ✓ at that point. <u>Die krag per eenheidslading by daardie punt.</u>

(2)

8.2
$$E = \frac{kQ}{r^2} \checkmark$$

$$= \frac{(9 \times 10^9)(6.5 \times 10^{-12})}{(0.003)^2} \checkmark$$

$$= 6.5 \times 10^3 \text{ N·C}^{-1} \checkmark$$

(0,003) $6,5 \times 10^3 \text{ N} \cdot \text{C}^{-1} \checkmark$ (3)

8.3 At point X/By punt X

$$\begin{split} E_{Q} &= 6.5 \text{ x } 10^{3} \text{ N} \cdot \text{C}^{-1} \text{ west/wes } \checkmark \\ E_{R} &= \frac{kQ}{r^{2}} \\ &= \frac{(9 \times 10^{9})(6.5 \times 10^{-12})}{(0.003)^{2}} \\ &= 6.5 \text{ x } 10^{3} \text{ N} \cdot \text{C}^{-1} \text{ east/oos } \checkmark \end{split}$$

$$E_{\text{net}} = E_{Q} + E_{R} \checkmark$$

= 6,5 x 10³ + (-6,5 x 10³)
= 0 N·C⁻¹ ✓

(4) **[9]**

QUESTION 9/VRAAG 9

9.1

9.1.1 From graph/Van grafiek: $\frac{R}{V}$

OR/OF

From equation/ $Van \ vergelyking$: $\frac{r}{E}$ (1)

9.1.2
$$\frac{1}{E} = 0.65 \checkmark$$

 $\therefore E = 1.54 \text{ V}\checkmark$ (2)

9.1.3
$$\frac{r}{E} = \frac{2 - 1}{4 - 1}$$
$$\therefore r = 0.51 \Omega \checkmark$$

(Any set of values from the graph can be used to calculate the gradient./Enige stel waardes van die grafiek kan gebruik word om die gradiënt te bereken.)

9.2

9.2.1
$$\text{Emf/emk} = I(R + r) \checkmark$$

 $6 = I(9 + 1) \checkmark$
 $\therefore I = 0,6 \text{ A} \checkmark$ (3)

9.2.2
$$P = I^2 R \checkmark$$

 $1.8 = (0.6)^2 R_1 \checkmark$
 $R_1 = 5 \Omega$

$$R_p = 9 - 5 = 4 \Omega \checkmark$$

$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

$$\frac{1}{4} = \frac{1}{R_{2}} + \frac{1}{4R_{2}}$$

$$\therefore R_{2} = 5 \Omega \checkmark$$
(5)

9.3
$$W = VI\Delta t \checkmark$$

= (240)(9,5)(12)(60) \checkmark
= 1,64 x 10⁶ J

Cost/Koste =
$$\frac{1,64 \times 10^6}{3,6 \times 10^6} \times 1,47$$

= R0,67 or/of 67 cents/sent √

(4) [**18**]

(3)

(1)

QUESTION 10/VRAAG10

10.1 Increase the speed of rotation. / Verhoog spoed van rotasie. ✓

OR/OF

Increase the number of coils. / Verhoog getal windings/spoele.

OR/OF

Increase the strength of the magnetic field. / Verhoog magetiese veldsterkte.

10.2 Commutators replaced by slip rings./ Kommutators vervang met sleepringe. ✓

OR/OF

Criteria for graph/Kriteria vir grafiek:	Marks <i>Punt</i> e
Correct shape with higher amplitude as shown (accept more than one cycle) Korrekte vorm met hoër amplitude soos aangetoon (aanvaar meer as een siklus)	√
Correct shape with higher frequency as shown (accept more than one cycle) Korrekte vorm met hoër frekwensie soos aangetoon (aanvaar meer as een siklus)	√

10.4

$$P_{\text{ave}} = \frac{V_{\text{rms}}^2}{R} \checkmark = \frac{\left(\frac{V_{\text{max}}}{\sqrt{2}}\right)^2}{R} \checkmark$$

$$120 = \frac{\left(\frac{340}{\sqrt{2}}\right)^2}{R} \checkmark$$

$$R = 481,67 \Omega \checkmark$$
(4)

[8]

(2)

QUESTION 11/VRAAG 11

11.1 The minimum energy needed to remove an electron ✓
from the surface of a metal. ✓
Die minimum energie benodig om 'n elektron
vanaf die oppervlak van 'n metaal te verwyder. (2)

11.2

11.2.1
$$W_0 = hf_0 \checkmark$$

= $(6,63 \times 10^{-34})(4 \times 10^{14}) \checkmark$
= $2,65 \times 10^{-19} J \checkmark$ (3)

11.2.2
$$E = W_0 + E_k$$

 $hf = hf_0 + \frac{1}{2}mv^2$ \checkmark Any one/Enige een
 $(6,63 \times 10^{-34})(8 \times 10^{14}) \checkmark = 2,65 \times 10^{-19} \checkmark + \frac{1}{2}(9,11 \times 10^{-31})v^2 \checkmark$
 $\therefore v = 7,63 \times 10^5 \text{ m·s}^{-1} \checkmark$ (5)

11.3

- 11.3.1 Equal to /Gelyk aan ✓
 The gradient is Planck's constant./ Die gradient is Planck se konstante. ✓ (2)
- 11.3.2 $8 \times 10^{14} \text{ Hz} \checkmark$ f₀ is directly proportional to W₀. / f₀ is directly an W₀. \checkmark (2) [14]

TOTAL/TOTAAL: 150