

YouTube Advertisement Putting

Yuqing Wu

Content

Introduction

EDA

03 Model

Result

Q&A

01 Introduction: Business Objective

Objective:

Analyze YouTube video clicks to determine which videos to advertise for, thereby increasing potential users and sales, and increasing revenue

01 Introduction: Two Main Questions

Q1: When should we put the advertisement?

Q2: What kind of video(s) should we put the advertiseme?

02 EDA: About Data

About Data:

- This csv dataset includes data for different types of YouTuBe videos in the United States region
- The json file includes category title corresponding to category ID

Data Types:

cvs file: 16 columns of data in total

02 EDA: About Data

Video ID	Trending Date	Title	Channel Title	
Category ID	Publish Time	Tags	Views	
Likes	Dislikes	Comment Count	Thumbnail Link	
Comments Disabled	Rating Disabled	Video Error or Removed	Description	

02 EDA: Line chart on average daily & monthly growth views

The trend of average of Increase/Days for Publish Time Month.

The trend of average of Increase/Days for Publish Time Day.

Monthly

Daily

02 EDA: Bar charts and tables for video classification

Avg. Increase/Days and Median Increase Day Diff for each Title	. Color shows details about Avg. Increase/Days and Median
Increase Day Diff.	

	category_id	views	title
0	1	7284156721	Film & Animation
1	2	520690717	Autos & Vehicles
2	10	40132892190	Music
3	15	764651989	Pets & Animals
4	17	4404456673	Sports
5	19	343557084	Travel & Events
6	20	2141218625	Gaming
7	22	4917191726	People & Blogs
8	23	5117426208	Comedy
9	24	20604388195	Entertainment
10	25	1473765704	News & Politics
11	26	4078545064	Howto & Style
12	27	1180629990	Education
13	28	3487756816	Science & Technology
14	29	168941392	Nonprofits & Activism
15	43	51501058	Shows

02 EDA: Strategy - focus on product relevance

Travel & Events need to be included because:

- Related to our product -> Travel App
- Total views not too high -> Cost may not high
- Not too low average daily traffic growth
- Fast trending speed of videos

In addition, we can also advertise other video categories......

02 EDA: Strategy - focus on short-term

A Music + Nonprofit & Activism

Pros:

- Average daily viewing volume of increased significantly
- Medium number of days a video reaches trending is relatively low

Cons:

- The total viewing of music videos is the highest, the cost may be higher
- The total viewing of nonprofit videos is relatively low, may have an impact on the advertising effect

Q2

02 EDA: Strategy - focus on long-term

B Gaming + Entertainment /
Film & Animation+ Sport

Pros:

- Not low total views, but not too high,
 so costs can be controlled
- The average daily traffic growth and medium trending duration are both in the upper middle range

Cons:

 People who watching gaming and entertainment may not necessarily have a strong interest in tourism

03 Data Preprocessing: Check Fraud Data

What is fraud data?

Too few likes, dislikes, and comments in the same level of views

Why need to check fraud data?

- Malicious browsing can affect our judgment on video placement choices
- Disrupting the training results of models

How we check fraud data?

Discovering the relationship between views and the number of likes, dislikes, and comments through the model, and setting threshold values to achieve filtering

03 Data Preprocessing: Correlation Map

03 Data Preprocessing: Correlation Map

Linear Relationship

03 Data Preprocessing: Check Fraud Data

Two Model Select

Linear Regression

Decision Tree

Process:

- Train models separately based on video categories
- Calculate mse and compare sizes
- Among the 16 categories, 93.75% have smaller mse under decision tree model

-> Select Desicion Tree to do the fraud check

Threshold	Rows Detected	
2	524 rows	
3	251 Rows	
4	145 Rows	
5	102 Rows	

Threshold = 2: 524 Rows

Being too precise resulted in some data not belonging to fraud being excluded as well

Row id	Views	Likes	Dislikes	Comment	Detected
4345	88657	593	27	52	Fraud
4129	88257	590	26	54	Real
4572	89002	595	26	52	Real
4799	89311	599	26	52	Real

Threshold = 3: 251 Rows

Being too precise resulted in some data not belonging to fraud being excluded as well

Row id	Views	Likes	Dislikes	Comment	Detected
27795	1783926	1852	172	245	Fraud
27582	1713302	1165	85	163	Real
28005	1808781	2122	234	273	Real

Threshold = 4: 145 Rows

Detected the fraud data well

Row id	Views	Likes	Dislikes	Comment	Detected
5331	190152	926	40	20	Fraud
99	195685	14338	171	1070	Real
126	205869	11198	120	446	Real
347	204298	9321	386	993	Real

Threshold = 5: 102 Rows

Detected the fraud data too narrow which missed some fraud data

Row id	Views	Likes	Dislikes	Comment	Detected
5331	190152	926	40	20	Real
14073	112310	612	7	95	Real
109	125962	5048	139	369	Real
222	122426	6310	298	1624	Real
39975	116841	6767	75	403	Real

03 Data Preprocessing: Remove Fraud Data

Threshold = 4:

Views corresponding to likes, dislikes, and comments of the same level are normal between two to three times, so select 4 as the threshold for filtering

Process:

- Use the corresponding model for preview for each video category
- Compare the preview results with the original views and delete those that are less than four times the size
- -> Remove 145 rows of the fraud data
- -> Remove 108 rows of the data has views but no likes/dislikes/comment

03 Data Preprocessing: Predict Future Views Trends

Linear Regression:

Train linear regression with views based on the difference in days between trending date and publishing date

ARIMA:

Train ARIMA models with trending date and publishing date and views respectively

Both models predict views trends for the last month of the dataset

03 Data Preprocessing: Linear Regression - Publish Date

03 Data Preprocessing: Linear Regression - Trend Date

03 Data Preprocessing: ARIMA - Publish Date

03 Data Preprocessing: ARIMA - Trending Date

04 Clustering: