#### I. Définir une suite

### Définition 1

Une **suite numérique**  $\mathfrak u$  est une fonction de  $\mathbb N$  dans  $\mathbb R$ . On note alors :

$$\begin{array}{ccc} u \colon \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & u(n) = u_n \end{array}$$

#### <u> Nemarque</u>

Le premier terme de la suite sera alors le terme de rang (d'indice) 0 : u(0). Le suivant est le terme de rang (d'indice) 1 : u(1). Puis u(2)... Dans le cas des suites, on notera plutôt  $u_0, u_1, u_2$ ... Pour parler d'une suite, on dira la suite  $u_0$ , ou encore la suite  $u_0$ ,  $u_0$ .

Pour alléger l'écriture, on pour écrire la suite  $u_0$  mais il ne faut pas confort.

*qui se note*  $u_n$  *ou* u(n).

### A. Suite définie explicitement

# (A) Définition 2

Une suite  $(u_n)_{n\in\mathbb{N}}$  est définie explicitement lorsque l'on connaît l'expression de  $u_n$  en fonction de n. On peut donc calculer directement la valeur de  $\mathfrak{u}_n.$ 

#### Exemples •

- 1°) On considère la suite  $(u_n)$  définie pour tout  $n \in \mathbb{N}$  par  $u_n = 2n^2 3$ . Le terme initial est  $u_0 = 2 \times 0^2 - 3 = -3$ . Le terme suivant est  $u_1 = 2 \times 1^2 - 3 = -1$ .  $u_{10} = 2 \times 10^2 - 3 = 2 \times 100 - 3 = 197$ . Le quinzième terme est  $u_{14} = 2 \times 14^2 - 3 = 389$ .
- 2°) On considère la suite  $(\nu_n)$  définie pour tout  $n\in {\rm I\!N}^*$  par  $\nu_n=\frac{l}{n}.$ Le terme initial est  $v_1=\frac{1}{1}=1.$  Le  $15^e$  terme est  $v_{15}=\frac{1}{15}.$

### B. Suite définie par récurrence

# (n) Définition 3

Une suite  $(u_n)_{n\in\mathbb{N}}$  est définie par récurrence lorsque l'on connaît l'expression de  $u_n$  en fonction de  $u_{n-1}$ . Pour calculer un terme d'une suite, il faut donc connaître le précédent. Pour cela, le terme initial est généralement donné avec la définition de la suite.

On a alors 
$$u_0 = \frac{1}{3}$$
,  $u_1 = \frac{3}{4} \times u_0 - 1 = \frac{3}{4} \times \frac{1}{3} - 1 = \frac{1}{4} - 1 = -\frac{3}{4}$ . Puis  $u_2 = \frac{3}{4} \times u_1 - 1 = \frac{3}{4} \times \left(-\frac{3}{4}\right) - 1 = -\frac{9}{16} - 1 = -\frac{25}{16}$ 



#### <u> Remarque</u>

Dans tous les cas, l'utilisation d'un tableur ou d'une calculatrice peut s'avérer très utile pour calculer rapidement les premiers termes d'une suite ainsi que pour les représenter graphiquement.

### II. Suites particulières

### A. Suite arithmétique

# Définition 4

Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **arithmétique** lorsqu'il existe un nombre réel r tel que, pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=u_n+r$ .

Le réel r est appelé la raison de la suite  $(u_n)$ 

**Exemple •** Des parents ouvrent un compte en banque pour leur enfant. Lors de l'ouverture, ils versent 50 € puis, au début de chaque mois, ils rajoutent 100 €.

On définit alors une suite  $(c_n)_{n\in\mathbb{N}}$  où le terme n de la suite correspond au montant présent sur le compte n mois après son ouverture.

On a donc  $c_0=50$  et, pour tout  $n\in\mathbb{N}^*$ ,  $c_{n+1}=c_n+100$ .

La suite  $(c_n)$  est donc une suite arithmétique.



#### <u> Remarque</u>

Considérons une suite arithmétique  $(u_n)_{n\in\mathbb{N}}$ , de raison r et essayons de déterminer une définition explicite de cette suite. Pour tout  $n\in\mathbb{N}^*$ ,

$$u_n = u_{n-1} + r = u_{n-2} + r + r = u_{n-3} + r + r + r = \dots = u_0 + r + \dots + r = u_0 + n \times r$$

On rappelle que  $u_0$  et r sont fixés et que le nombre n est la variable. Donc, en employant les notations des fonctions, on obtient :

$$\mathfrak{u}(\mathfrak{n})=\mathbf{r}\times\mathbf{n}+\mathfrak{u}_0.$$

Non seulement on a défini  $(u_n)$  explicitement mais de plus, on constate qu'une suite arithmétique est une fonction affine (définie sur  $\mathbb N$  uniquement) dont le cœfficient directeur est la raison  $\mathfrak r$  et l'ordonnée à l'origine est  $\mathfrak u_0$ . On en déduit les résultats suivants :

# <u>Propriété 1</u>

Une suite arithmétique est représentée graphiquement par des points alignés.

### 

Une suite arithmétique de raison r est :

- croissante si r > 0;
- décroissante si r < 0;
- constante si r = 0.



#### B. Suite géométrique

### Définition 5

Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **géométrique** lorsqu'il existe un nombre réel q **non nul** tel que, pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=u_n\times q$ .

Le réel q est appelé la raison de la suite  $(u_n)$ 

**Exemple** • Un professeur décide de faire copier des lignes à chaque élève qui parlera sans autorisation. Le premier copiera 10 lignes, le suivant 2 fois plus, et ainsi de suite en multipliant le nombre de lignes par 2 à chaque fois.

On définit alors une suite  $(\ell_n)_{n\in\mathbb{N}^*}$  où le terme n de la suite correspond au nombre de ligne copiée par le  $n^e$  élève.

On a donc  $\ell_1=10$  et, pour tout  $n\in {\rm I\! N}^*,$   $\ell_{n+1}=\ell_n\times 2.$ 

La suite  $(\ell_n)$  est donc une suite géométrique.



#### <u> Remarque</u>

Considérons une suite géométrique  $(v_n)_{n\in\mathbb{N}}$ , de raison q et essayons de déterminer une définition explicite de cette suite. Pour tout  $n\in\mathbb{N}^*$ ,

$$\nu_n = \nu_{n-1} \times q = \nu_{n-2} \times q \times q = \nu_{n-3} \times q \times q \times q = \ldots = \nu_0 \times q \times \cdots \times q = \nu_0 \times q^n$$

# -\

#### Théorème 2

On considère une suite  $(u_n)_{n\in\mathbb{N}}$  telle que, pour tout  $n\in\mathbb{N}, u_n>0$ . On suppose que  $(u_n)$  est une suite géométrique de raison q>0. Alors,  $(u_n)$  est :

- croissante si q > 1;
- décroissante si q < 1;</li>
- constante si q = 1.



#### **Démonstration**

- Lorsque q = 1 alors  $u_0 = u_1 = u_2 = \dots$  et la suite u est constante.
- Sinon, pour tout  $n \in \mathbb{N}$ , on a  $u_{n+1} = qu_n$ . Puisque, pour tout  $n \in \mathbb{N}$ ,  $u_n > 0$ , on peut alors écrire  $\frac{u_{n+1}}{u_n} = q$ . Cette fraction est strictement positive puisque c'est le quotient de deux nombres strictement positif.

Depuis le collège, on sait que si q<1, cela signifie que le numérateur est inférieur au dénominateur. Donc, pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}< u_n$  et la suite est donc décroissante.

Si q>1, cela signifie que le numérateur est supérieur au dénominateur. Donc, pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}>u_n$  et la suite est donc croissante.

