DSP LAB-29

- Generating elementary signals like Unit Step, Ramp, Exponential, Sine, and Cosine sequences.
- Demonstrates the effect of sampling, aliasing.
- \bullet Show that the highest rate of oscillation in a discrete-time sinusoidal is obtained when $\omega{=}\pi.$
- Consider the analog signal $x_a(t) = 3\cos(100\pi t)$. \Rightarrow Sampling it at 200 Hz and 75 Hz. Show the discrete-time signal after sampling. -> realization.
- Consider the analog signal: $x_a(t) = 3\cos(2000\pi t) + 5\sin(6000\pi t) + 10\cos(12000\pi t)$. Show the effect of sampling rate.
- The impulse response of a discrete-time LTI system is $h(n)=\{u(n)-u(n-5)\}$. \Rightarrow Determine the output of the system for the input x[n]=u(n), using the convolution sum.
- Given x(n)=[1,3,-2,4] y(n)=[2,3,-1,3], z(n)=[2,-1,4,-2] \Longrightarrow Find the correlation between x(n) & y(n) and y(n) & z(n). \Longrightarrow observe the realization.
- Filter realization using 6-point averaging, 6-point differencing equations.
- DFT of $x_n(t) = \sin(2\pi \cdot 1000t) + 0.5\sin(2\pi \cdot 2000t + \frac{3\pi}{4})$. \Rightarrow Also DFT with window + window function realization.
- Design a low pass FIR filter to remove high-frequency noise from a signal using convolution.