Nº A92846 Carlos Kiquel Nome: Passos Turma: Chinta Ferreira

Resolução dos exercícios

1. (A)Acesso a operandos

"Ox104" uma vez que n temos dados Ly dessas células

Operando	Valor	Comentário	
%eax	OR 200	R [0x200]	
0x204	ORCB	Mem [0x104]	
\$0x108	0×108	Valor constante!	, V
(%eax)	OX DD	Hem [0x200]	
4(%eax)	On CB	Mem [4+0x200]	-> Mem [0x204]
9(%eax,%edx)	0210	Mem [9 + 0x200 + 0x3]]	-> Mem [0x20c]
0x1fc(,%ecx,4)	Ox DD	Hem[0x1fc+[0x104]]	> Hem [02200]
(%eax,%edx,4)	0×10	Mem [0x200+[0x3-4]	-> Hem [Ox 20C]
			-

2. (R)Transferência de informação em funções

Sabendo que:

$$xp \Rightarrow 8(\%ebp)$$

 $yp \Rightarrow 12(\%ebp)$
 $2p \Rightarrow 16(\%ebp)$

x => % eax => % ECX Z > % edx

	Instrução	Valor
leal	6(%eax), %edx	z = 6 + x
leal	(%eax,%ecx), %edx	Z = X + V
leal	(%eax,%ecx,4), %edx	Z= X + Y*4
leal	7(%eax,%eax,8), %edx	2 = 7 + 2 + 2 *8
leal	9(%eax,%ecx,2), %edx	Z = 9+ x+ y* 2

4. (A)Operações aritméticas

	Instrução	Destino	Valor
subl	%edx,4(%eax)	Mem [0x204]	07 C8
imull	\$16,(%eax,%edx,4)	Hem [Ox20c]	0×160
incl	8(%eax)	Mem [0x208]	0χ 15
decl	%ecx	R[%ecx]	0× 0

9. Controlo do fluxo de execução de instruções

jge XXXXXXX a) 8048d1c: 7d 9e b) XXXXXXX: eb 54 jmp 8047c42 8048902: e9 c2 10 00 00 c) jmp XXXXXXX

14:

· subl % edx, 4 (% eax)

Destino: Mem [R[%eax]+4] = Mem [Ox 200 +4] = Mem [Ox 204]

Valor: Mem [0x204] - R[%edx] = 0xCB - 0x3 = 0xC8

· imull \$16, (% eax, % edx, 4)

Destino: Mem [R[%eax] + R[%edx] . 4] = Mem [0x200 + 0x3 *4] = Mem [0x200]

Valor: Mem [0x20c] * 16 = 0x10 * 16 = 0x160

· incl 8 (%00x)

Destino: Hem [8+ R[%ax]] = Hem [8+0x200] = Hem [0x208]

Valor: Hem [0x208] + 1 = 0x14 + 1 = 0x15

· decl %ecx

Destino: R[% ecx]

Valor: R[%ecx]-1= 0x1-1 = 0x0