CMPT 280

Topic 4: Timing Analysis

Mark G. Eramian

University of Saskatchewan

References

• Textbook, Chapter 4

Timing Analysis

Express the time required by an algorithm for an input of size n in Big-Oh notation. Also referred to as find the $time\ complexity$ of an algorithm.

- 1. Determine time required as a function of the input size n (may use best-case or worst-case analysis).
 - Statement counting
 - Active operation
- 2. Simplify the resulting function to Big-Oh notation.
 - By inspection
 - By formal proof
- 3. If best and worst case analysis yield same result, may write as Big-Theta.

3/17

Consider this method which returns true if the array a contains the string s.

```
public static bool contains(String[] a, String s)
{
  int count = 0;
  int i = 0;
  while (i < a.length && !s.equals(a[i]))
  {
    i = i + 1;
  }
  return i < a.length;
}</pre>
true n times
false 1 times
```

a) What is the best case?

10

- b) What is the worst case?
- c) Exactly how many statements are executed in the worst case? Best case? 2*n+4

4

inner loop: 3*i+1

Exertiset loop: 3*i+1+5

```
public static <T extends Comparably rst case: # of iteration:
                                      n-1(outer loop)
   // For each string in the array...
   int i = 1;
   while (i < a.length) sum from 1 to n-1:3i+6 +1(total # or )
       // Get the i-th element
                             3n(n-1)/2+6(n-1)+2(int i=1)
       T temp = a[i];
       // Examine all of the elements that come before it, starting at
       // the rightmost. If 'temp' comes before a[i], move a[i] one
       // index to the right and continue.
       int j = i - 1;
       while (j >= 0 && temp.compareTo(a[j]) < 0)
          a[i+1] = a[i];
          i = i - 1:
       // We've found the insertion point. Copy the string here
       // and advance to the next insertion.
       a[i+1] = temp;
       i = i + 1:
```

• Exactly how many statements are executed in the worst case?

2

6

10 11

12

13

14 15

16

17 18

23

24

25

26 27

Repeat exercise 1 and 2 using the active operation approach.
 Exactly how many times does the active operation get executed?

What is the Big-Oh membership of each of the following functions? We would like the tightest upper bound. Simplify by inspection.

$$\bullet \ 47n\log n + 10000n$$

•
$$100n + 500\log n + 1000$$

•
$$\log n + 100\sqrt{n} + 76$$

•
$$n^2$$

$$5$$
 1 $2^n + n + \log n$

•
$$T_{contains}^B(n) = 4$$

•
$$T_{contains}^W(n) = 2n + 4$$

•
$$T_{insort}^{W}(n) = 1.5n^2 + 4.5n - 4$$

 $2^n > n^2$

A More Elaborate Example

Suppose method q() calls another method int k(int i) with $T_k(m) = O(\log(m))$ for some m independent of i. O(n $\log(m)$)

```
public void q()
{
   int c = 0;
   for (int i = 1; i < n + 1; i++)
        c = c + k(i);
}</pre>
```

Determine the time complexity (i.e. the time execution time as a function of input size expressed in Big-Oh notation) of this method using the active operation approach.

- What is the active operation?
- How many times does it execute?
- What is the cost of the active operation?
- What is the total amount of time required expressed in Big-Oh notation.

Again, assume method k requires $O(\log m)$ time, m independent of i and n.

cost of A.O: $2*O(\log m)$

- What is the active operation?
- How many times does it execute?
- What is the cost of the active operation?
- What is the total amount of time required expressed in Big-Oh notation.
 k()+k(): O(log m)

k()*k(): 2*O(log m) k()^k():

=O(n log(m))

What is the time complexity of the method?

Combining Growth Functions

• Since O(f(n)) and O(g(n)) are sets, we can use these set properties and the definition of Big-Oh to show:

$$\begin{split} O(f(n)) + O(g(n)) &= O(f(n) + g(n)) \\ &= O(2 \cdot \max(f(n), g(n))) \\ &= O(\max(f(n), g(n))) \\ O(f(n)) \cdot O(g(n)) &= O(f(n) \cdot g(n)) \\ kO(f(n)) &= O(kf(n)) = O(f(n)) \text{ for any constant } k. \end{split}$$

• Same holds for Big-Theta. We will need at least one of these "rules" to solve our next problem.

```
line 3: O(n log(n))
line 6 : O(m log(m))
line 5 :
```

```
# of execution:
O(log(n))
cost of A.O: O(n^2)
total: O(n^2 log(m))
```

- Assuming that we know that:
 - $T_a(n,m) \in O(n \log m)$
 - $T_p(n) \in O(n^2)$
 - $T_s(m) \in O(m \log m)$

r(): O(m log(m) + n² log(m)) (unknown m, n^2) =O(max(m log(m) +

What is the time complexity of the method r? $\frac{n^2 \log(m)}{r}$

Use the active operation approach. There are three candidate active operations, what are they? Determine time required by all three; the one that requires the most time is reflective of the overall time complexity.

- Now we have the tools to return to our list class and consider the time complexity of our list operations.
- Determine the worst-case time complexity of all of the methods in the LinkedList class.
- Are there any methods where the time complexity could be made better?

Although we now know how to convert an expression into Big-Oh notation by inspection, we should also practice the formal proofs.

Recall definition of Big-Oh notation:

 $t(n) \in O(f(n))$ if there exists constants $c, n_0 > 0$ such that t(n) < cf(n) for all $n > n_0$.

- a) Prove that the function $5n^3 + 4\log n + 11n$ is $O(n^3)$.
- b) Prove that the function $2n \log n + 4 \log n$ is $O(n \log n)$.

Do Growth Rates Matter?

- Does the growth rate make a difference, or are computers so fast that any algorithm can be done quickly?
- Some algorithms take huge amounts of time on even small problems.
- Linear vs. quadratic alone is big difference.

Do Growth Rates Matter?

Time to execute f(n) operations at 10^6 operations per second.

	n	$\log_2 n$	n	$n \log_2 n$	n^2	2^n
Г	10	$3.3 \times 10^{-6} s$	$1.0 \times 10^{-5}s$	$3.3 \times 10^{-5} s$	$1.0 \times 10^{-4} s$	$1.0 \times 10^{-3}s$
	100	$6.6 \times 10^{-6}s$	$1.0 \times 10^{-4}s$	$6.6 \times 10^{-4} s$	$1.0 \times 10^{-2} s$	$4.0 \times 10^{16} y^*$
	1000	$9.97 \times 10^{-6}s$	$1.0 \times 10^{-3}s$	$9.97 \times 10^{-3}s$	1.0s	
	10^{5}	$1.66 \times 10^{-5} s$	0.1s	1.66s	2.78h	
	10^{6}	$1.99\times10^{-5}s$	1s	19.9s	11.57d	
	10^{7}	$2.33\times10^{-5}s$	10s	233s	3.17y	

Do Growth Rates Matter?

Time to execute f(n) operations at 10^6 operations per second.

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(%) specialisms at ±0 specialisms per sessional				
n	$\log_2 n$	n	$n \log_2 n$	n^2	2^n	
10	$3.3 \times 10^{-6} s$	$1.0 \times 10^{-5}s$	$3.3 \times 10^{-5} s$	$1.0 \times 10^{-4} s$	$1.0 \times 10^{-3} s$	
100	$6.6 \times 10^{-6} s$	$1.0 \times 10^{-4}s$	$6.6 \times 10^{-4} s$	$1.0 \times 10^{-2} s$	$4.0 \times 10^{16} y^*$	
1000	$9.97 \times 10^{-6}s$	$1.0 \times 10^{-3}s$	$9.97 \times 10^{-3}s$	1.0s		
10^{5}	$1.66 \times 10^{-5}s$	0.1s	1.66s	2.78h	Why	
10^{6}	$1.99 \times 10^{-5}s$	1s	19.9s	11.57d	bother?	
10^{7}	$2.33 \times 10^{-5}s$	10s	233s	3.17y		

* Est. age of universe: $1.3*10^{10}$ years.

Next Class

• Next class reading: Chapter 5: Abstract Data Types.