Correction - DM 9 - Géométrie

Exercice 1. On munit le plan d'un repère orthonormé dont l'origine est placée en A(0,0). Soit B, C deux points du plan de coordonnées respectives $B = (x_B, y_B)$ et $C = (x_C, y_C)$.

Soit A' (respectivement B' et C') le milieu de [BC] (respectivement [AC] et [AB])

- 1. Déterminer les coordonnées de A', B' et C'
- 2. Soit G le point vérifiant $\overrightarrow{GA} = \frac{1}{3}(\overrightarrow{BA} + \overrightarrow{CA})$.
 - (a) Déterminer les coordonnées de G.
 - (b) Montrer que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$
 - (c) Montrer que $\overrightarrow{GA} = \frac{2}{3}\overrightarrow{A'A}$
 - (d) Pourquoi a-t-on aussi : $\overrightarrow{GB} = \frac{2}{3}\overrightarrow{B'B}$ et $\overrightarrow{GC} = \frac{2}{3}\overrightarrow{C'C}$?
 - (e) Justifier alors que les droites (AA'), (BB') et (CC') sont concourantes en G.
- 3. Soit D la médiatrice de [AB] et D' la médiatrice de [AC] et $\Omega(x_{\Omega}, y_{\Omega})$ l'intersection de D et D'.
 - (a) Donner les équations cartésiennes des droites D et D'
 - (b) Montrer que les coordonnées de Ω vérifie

$$M \begin{pmatrix} x_{\Omega} \\ y_{\Omega} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x_B^2 + y_B^2 \\ x_C^2 + y_C^2 \end{pmatrix}$$

où $M \in M_2(\mathbb{R})$ est une matrice à déterminer.

- (c) En utilisant le fait que \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires justifier que M est inversible et donner son inverse.
- (d) En déduire que

$$\begin{pmatrix} x_{\Omega} \\ y_{\Omega} \end{pmatrix} = \frac{1}{2\left(x_By_C - x_Cy_B\right)} \left(\begin{array}{c} y_C\left(x_B^2 + y_B^2\right) - y_B\left(x_C^2 + y_C^2\right) \\ -x_C\left(x_B^2 + y_B^2\right) + x_B\left(x_C^2 + y_C^2\right) \end{array} \right)$$

- (e) Montrer que $\overrightarrow{A'\Omega} \cdot \overrightarrow{BC} = 0$ et justifier alors que Ω appartient à la médiatrice de [BC]
- 4. Soit $H(x_H, y_H)$ le point d'intersection de la hauteur issue de C et de la hauteur issue B.
 - (a) Déterminer des représentations cartésiennes des hauteurs issues de C et B.
 - (b) Montrer que les coordonnées de H vérifient l'équation

$$M\left(\begin{array}{c} x_H \\ y_H \end{array}\right) = \left(\begin{array}{c} x_B x_C + y_B y_C \\ x_B x_C + y_B y_C \end{array}\right).$$

- (c) En déduire les coordonnées de H.
- (d) Montrer que $\overrightarrow{AH} \cdot \overrightarrow{BC} = 0$ et justifier que H appartient à la hauteur issue de A.

Correction 1.

1. Les coordonnées de A' sont $(\frac{x_B+x_C}{2}, \frac{y_B+y_C}{2})$

Les coordonnées de B' sont $(\frac{x_C}{2},\frac{y_C}{2})$

Les coordonnées de C' sont $(\frac{x_B}{2}, \frac{y_B}{2})$

2. (a) Les coordonnées de G sont $\left(\frac{x_B+x_C}{3},\frac{y_B+y_C}{3}\right)$

(b) On a $\overrightarrow{GA} = \frac{1}{3}(\overrightarrow{BA} + \overrightarrow{CA})$ donc en utilisant la relation de Chasles on obtient :

$$\overrightarrow{GA} = \frac{1}{3}(\overrightarrow{BG} + \overrightarrow{GA} + \overrightarrow{CG} + \overrightarrow{GA})$$

En mulitpliant par 3 et en mettant tous les termes à gauche, cela donne :

$$\overrightarrow{GA} - \overrightarrow{BG} - \overrightarrow{CG} = \overrightarrow{0}$$

On obtient le résultat demandé en remarquant que $\overrightarrow{BG}=-\overrightarrow{GB}$ et $\overrightarrow{CG}=-\overrightarrow{GC}$

(c) On peut utiliser les coordonées des différents points (on peut aussi répondre purement avec des arguments vectoriels) Les coordonnées du vecteur \overrightarrow{GA} sont $\frac{1}{3} \begin{pmatrix} x_B + x_C \\ y_B + y_C \end{pmatrix}$ Et les coordonnées du vecteur $\frac{2}{3}\overrightarrow{A'A}$ sont

$$\frac{2}{3} \begin{pmatrix} \frac{x_B + x_C}{2} \\ \frac{y_B + y_C}{2} \end{pmatrix} = \frac{2}{3} \begin{pmatrix} x_B + x_C \\ y_B + y_C \end{pmatrix}$$
Ainsi $\overrightarrow{GA} = \frac{2}{3} \overrightarrow{A'A}$

- (d) Le probleme est strictement symétrique. Il suffit juste de changer les lettres A en B (ou C) pour obtenir les égalités annoncées.
- (e) D'aprés les deux questions précédentes :
 - \overrightarrow{GA} est colinéaire à $\overrightarrow{A'A}$, donc $G \in (A'A)$
 - $-\overrightarrow{GB}$ est colinéaire à $\overrightarrow{B'B}$, donc $G \in (B'B)$
 - \overrightarrow{GC} est colinéaire à $\overrightarrow{C'C}$, donc $G \in (C'C)$

Ainsi
$$G \in (A'A) \cap (B'B) \cap (C'C)$$
.

Les trois médianes sont concourantes en G.

3. (a) Les coordonnées de \overrightarrow{AB} sont $\left(\frac{x_B}{y_B}\right)$ Remarquons que par définition \overrightarrow{AB} est normal à D donc Donc D admet une équation de la forme $\frac{x_B}{2}x + \frac{y_B}{2}y + c = 0$ et comme $C' \in D$ on a $\frac{x_B}{2}\frac{x_B}{2} + \frac{y_B}{2}\frac{y_B}{2} + c = 0$ soit $c = -\left(\frac{x_B^2}{4} + \frac{y_B^2}{4}\right)$ Une équation de D est donnée par (en mutlipliant par 2)

$$(D): x_B x + y_B y = \frac{x_B^2 + y_B^2}{2}$$

Des calculs strictement similaires donnent une équation de D':

$$(D): x_C x + y_C y = \frac{x_C^2 + y_C^2}{2}$$

(b) Les coordonnées de Ω vérifient les deux équations cartésiennes de D et D' on a donc

$$\begin{cases} x_B x_{\Omega} + y_B y_{\Omega} &= \frac{x_B^2 + y_B^2}{2} \\ x_C x_{\Omega} + y_C y_{\Omega} &= \frac{x_C^2 + y_C^2}{2} \end{cases}$$

Soit matriciellement:

$$\begin{pmatrix} x_B & y_B \\ x_C & y_C \end{pmatrix} \begin{pmatrix} x_\Omega \\ y_\Omega \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x_B^2 + y_B^2 \\ x_C^2 + y_C^2 \end{pmatrix}$$

Donc
$$M = \begin{pmatrix} x_B & y_B \\ x_C & y_C \end{pmatrix}$$

(c) Comme \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires les couples (x_C, y_C) et (x_B, y_B) ne sont pas proportionnels donc $x_By_C - x_Cy_B \neq 0$. Le determinant de M est non nul donc la matrice M est inversible et on a

$$M^{-1} = \frac{1}{x_B y_C - x_C y_B} \begin{pmatrix} y_C & -y_B \\ -x_C & x_B \end{pmatrix}$$

Finalement les coordonnées de Ω vérifient :

$$\begin{split} \begin{pmatrix} x_{\Omega} \\ y_{\Omega} \end{pmatrix} &= M^{-1} \frac{1}{2} \begin{pmatrix} x_B^2 + y_B^2 \\ x_C^2 + y_C^2 \end{pmatrix} \\ &= \frac{1}{2(x_B y_C - x_C y_B)} \begin{pmatrix} y_C & -y_B \\ -x_C & x_B \end{pmatrix} \begin{pmatrix} x_B^2 + y_B^2 \\ x_C^2 + y_C^2 \end{pmatrix} \\ &= \frac{1}{2 (x_B y_C - x_C y_B)} \begin{pmatrix} y_C (x_B^2 + y_B^2) - y_B (x_C^2 + y_C^2) \\ -x_C (x_B^2 + y_B^2) + x_B (x_C^2 + y_C^2) \end{pmatrix} \end{split}$$

(d) Les coordonnées de $\overrightarrow{A'\Omega}$ sont

$$\overrightarrow{A'\Omega} = \frac{1}{2} \begin{pmatrix} x_{\Omega} - (x_B + x_C) \\ y_{\Omega} - (y_B + y_C) \end{pmatrix}$$

Les coordonnées de \overrightarrow{BC} sont

$$\begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$

Ainsi

$$\overrightarrow{A'\Omega} \cdot \overrightarrow{BC} = \begin{pmatrix} x_{\Omega} - \frac{1}{2}(x_B + x_C) \\ y_{\Omega} - \frac{1}{2}(y_B + y_C) \end{pmatrix} \cdot \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$

$$= (x_{\Omega} - \frac{1}{2}(x_B + x_C))(x_C - x_B) + (y_{\Omega} - \frac{1}{2}(y_B + y_C))(y_C - y_B)$$

$$= x_{\Omega}(x_C - x_B) - \frac{1}{2}(x_C^2 - x_B^2) + y_{\Omega}(y_C - y_B) - \frac{1}{2}(y_C^2 - y_B^2)$$

$$= x_{\Omega}x_C + y_{\Omega}y_C - (x_{\Omega}x_B + y_{\Omega}y_B) - \frac{1}{2}(x_C^2 - x_B^2) - \frac{1}{2}(y_C^2 - y_B^2)$$

Remarquons maintenant que

$$x_{\Omega}x_{C} + y_{\Omega}y_{C} = \frac{1}{2(x_{B}y_{C} - x_{C}y_{B})} \left(y_{C}x_{C}(x_{B}^{2} + y_{B}^{2}) - y_{B}x_{C}(x_{C}^{2} + y_{C}^{2}) - x_{C}y_{C}(x_{B}^{2} + y_{B}^{2}) + x_{B}y_{C}(x_{C}^{2} + y_{C}^{2}) + x_{B}y_{C}(x_{C}^{2} + y_{C}^{2}) \right)$$

$$= \frac{1}{2(x_{B}y_{C} - x_{C}y_{B})} \left((x_{B}y_{C} - y_{B}x_{C})(x_{C}^{2} + y_{C}^{2}) \right)$$

$$= \frac{1}{2(x_{B}y_{C} - x_{C}y_{B})} \left((x_{B}y_{C} - y_{B}x_{C})(x_{C}^{2} + y_{C}^{2}) \right)$$

$$= \frac{1}{2}(x_{C}^{2} + y_{C}^{2})$$

et de la même manière

$$x_{\Omega}x_B + y_{\Omega}y_B = \frac{1}{2}(x_B^2 + y_B^2)$$

On obtient alors :

 $\overrightarrow{A'\Omega} \cdot \overrightarrow{BC} = 0$ donc les $(A'\Omega)$ est orthogonal à (BC). Ainsi Ω appartient à la médiatrice de [BC]

Les trois médiatrices sont concourantes en Ω

4. Soit Δ la hauteur issue de B. Δ est orthogonale à [AC] donc admet une équation cartésienne de la forme

$$x_C x + y_C y + c = 0$$

où c est un réel à déterminer.

Comme $B \in \Delta$ on a $x_C x_B + y_C y_B + c = 0$ Donc La hauteur issue de B admet pour équation :

$$\Delta: x_C x + y_C y = x_C x_B + y_C y_B$$

Des calculs similaires montrent que la hauteur issue de C admet pour équation :

$$\Delta': x_B x + y_B y = x_B x_C + y_B y_C$$

5. Les coordonnées de H vérifients les équations cartésiennes des deux hauteurs prémentionnées. On a donc :

$$\begin{cases} x_B x_H + y_B y_H = x_B x_C + y_B y_C \\ x_C x_H + y_C y_H = x_B x_C + y_B y_C \end{cases}$$

Soit matriciellement:

$$M \begin{pmatrix} x_H \\ y_H \end{pmatrix} = \begin{pmatrix} x_B x_C + y_B y_C \\ x_B x_C + y_B y_C \end{pmatrix}$$

où
$$M = \begin{pmatrix} x_B & y_B \\ x_C & y_C \end{pmatrix}$$

6. On a déjà calculé l'inverse de M à savoir $M^{-1} = \frac{1}{x_B y_C - x_C y_B} \begin{pmatrix} y_C & -y_B \\ -x_C & x_B \end{pmatrix}$

On en déduit les coordonées de H:

$$\begin{pmatrix} x_H \\ y_H \end{pmatrix} = \frac{1}{x_B y_C - x_C y_B} \begin{pmatrix} y_C & -y_B \\ -x_C & x_B \end{pmatrix} \begin{pmatrix} x_B x_C + y_B y_C \\ x_B x_C + y_B y_C \end{pmatrix}$$

$$= \frac{1}{x_B y_C - x_C y_B} \begin{pmatrix} (y_C - y_B)(x_B x_C + y_B y_C) \\ (-x_C + x_B)(x_B x_C + y_B y_C) \end{pmatrix}$$

7. Enfin on calcule $\overrightarrow{AH} \cdot \overrightarrow{BC}$:

$$\overrightarrow{AH} \cdot \overrightarrow{BC} = \begin{pmatrix} x_H \\ y_H \end{pmatrix} \cdot \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$

$$= x_H(x_C - x_B) + y_H(y_C - y_B)$$

$$= \frac{(y_C - y_B)(x_Bx_C + y_By_C)(x_C - x_B) + (-x_C + x_B)(x_Bx_C + y_By_C)(y_C - y_B)}{x_By_C - x_Cy_B}$$

$$= \frac{(x_Bx_C + y_By_C)(y_C - y_B)(x_C - x_B) - (x_Bx_C + y_By_C)(y_C - y_B)(x_C - x_B)}{x_By_C - x_Cy_B}$$

$$= 0$$

(AH) est orthogonal à (BC), donc H appartient à la hauteur issue de A

Les trois hauteurs sont concourantes en H