输出级电路仿真

无04 2019012137 张鸿琳

本次仿真对三种不同的输出级电路进行仿真,验证其转移特性曲线。

A类射极跟随器

电路结构如下图:

$$V_{CC} = +15V$$

$$V_{I}$$

$$I_{Q}$$

$$V_{EE} = -15V$$

A类射极跟随器

搭建如下仿真电路:

设置其中参数, $V_{CC}=15V$, $V_{EE}=-15V$, $I_Q=1mA$, $R_L=1k\Omega$,根据作业中的理论结果,可以得到转移特性曲线的上确界约为 $V_{CC}-V_{CE,sat}$,而下确界约为 $-I_QR_L$,而仿真得到的转移特性曲线如下:

可见仿真得到的下确界确实约为 $-1mA\cdot 1k\Omega=-1V$,而上确界也接近 $V_{CC}=15V$,理论与仿真符合地很好。

B类推挽

电路结构如下:

B类推挽

搭建如下仿真电路:

在作业的理论推导中得到,该电路结构的转移特性曲线在0附近存在平台,这是由于BJT存在开启电压,平台的范围是 $(-V_{on},V_{on})$,而转移曲线的上确界为 $V_{CC}-V_{CE,sat}$,下确界为 $V_{EE}+V_{CE,sat}$,仿真中设定 $V_{CC}=15V$, $V_{EE}=-15V$, $R_L=1k\Omega$,可以通过理论计算得到,得到转移特性曲线如下:

可以看到理论同样与仿真结果十分符合。

AB类推挽

电路结构如下:

AB类推挽

搭建如下仿真电路:

在作业中理论分析得到,该电路结构的转移特性曲线中,由于通过调节使得当 v_I 为0时, Q_1 与 Q_2 处于微微导通的状态,所以不存在0附近的小平台,且上确界为 $V_{CC}-V_{CE,sat}$,下确界为 $V_{EE}+V_{CE,sat}$,仿真时设定 $V_{CC}=15V$, $V_{EE}=-15V$, $R_L=1k\Omega$,通过调节二极管参数,使得两个三极管都处于微微导通状态,得到仿真图像如下:

理论与仿真也是相符的。