Leçon 170. Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

1. NOTATION. On considère un corps ${\bf K}$ de caractéristique différente de deux. Soit E un ${\bf K}$ -espace vectoriel de dimension finie.

1. Formes bilinéaires et formes quadratiques

1.1. Premières définitions

2. DÉFINITION. La forme quadratique associée à une forme bilinéaire $b\colon E\times E\longrightarrow \mathbf{K}$ est l'application

$$q_b: \begin{vmatrix} E \longrightarrow \mathbf{K}, \\ x \longmapsto b(x, x). \end{vmatrix}$$

- 3. EXEMPLE. Soient $f, g \in E^*$. Alors la forme bilinéaire $(x, y) \longmapsto f(x)g(y)$ définie la forme quadratique $x \longmapsto f(x)g(x)$.
- 4. Proposition. Soit $q: E \longrightarrow \mathbf{K}$ une forme quadratique. Alors

$$\forall \lambda \in \mathbf{K}, \ \forall x \in E, \qquad q(\lambda x) = \lambda^2 q(x).$$

- 5. Proposition. Toute forme quadratique q sur E est associée à une unique forme bilinéaire symétrique sur E, appelée la forme polaire de q.
- 6. Proposition. Soit q une forme quadratique sur E de forme polaire b. Alors

$$\forall x, y \in E, \qquad b(x, y) = \frac{q(x+y) - q(x) - q(y)}{2}.$$

- 7. EXEMPLE. Sur l'espace $\mathcal{M}_n(\mathbf{K})$, l'application $A \longmapsto \operatorname{Tr}(A^2)$ est une forme quadratique de forme polaire $(A, B) \longmapsto \operatorname{Tr}(AB)$.
- 8. DÉFINITION. Un espace quadratique est la donnée d'un **K**-espace vectoriel F et d'une forme quadratique q sur F.
- 9. DÉFINITION. Soient (E,q) et (F,q') deux espaces quadratiques. Un morphisme entre ces deux espaces est une application linéaire $u\colon E\longrightarrow F$ telle que $q'\circ u=q$. Un isomorphisme est un morphisme bijectif. Les deux formes q et q' sont équivalentes s'il existe un isomorphisme entre les espaces (E,q) et (F,q').

1.2. Représentations matricielle et polynomiale

10. DÉFINITION. On considère un **K**-espace vectoriel E de dimension $n \in \mathbb{N}^*$ et une base \mathscr{B} de E. Soit q une forme quadratique sur E de forme polaire b. La matrice associée à la forme quadratique q dans la base \mathscr{B} est la matrice

$$\operatorname{Mat}_{\mathscr{B}}(q) := (b(e_i, e_j))_{1 \leq i, j \leq n} \in \mathscr{M}_n(\mathbf{K}).$$

11. PROPOSITION. Les matrices de la forme q dans deux bases sont congruentes. Plus précisément, soit \mathcal{B}_1 et \mathcal{B}_2 deux bases de E. Notons $P := \operatorname{Mat}_{\mathcal{B}_2}(\mathcal{B}_1)$. Alors

$$\operatorname{Mat}_{\mathscr{B}_2}(q) = {}^{\operatorname{t}}P \operatorname{Mat}_{\mathscr{B}_1}(q)P.$$

12. Remarque. Cela nous donne une bijection entre l'ensemble des formes quadratiques sur E et l'ensemble des matrices symétriques de taille $n \times n$: pour une matrice symétrique $A \in \mathscr{M}_n(\mathbf{K})$, l'application $(X,Y) \longmapsto {}^{\mathrm{t}} X A Y$ est une forme quadratique sur \mathbf{K}^n .

13. DÉFINITION. À tout polynôme homogène

$$P := \sum_{i=1}^{n} \alpha_i X_i^2 + \sum_{i < j} 2\beta_{i,j} X_i X_j \in \mathbf{K}[X_1, \dots, X_n],$$

on associe une forme quadratique $\Psi(P)$ sur E dont la matrice dans la base \mathscr{B} est

$$\operatorname{Mat}_{\mathscr{B}}(\Psi(P)) = \begin{pmatrix} \alpha_1 & \beta_{i,j} \\ & \ddots \\ \beta_{j,i} & \alpha_n \end{pmatrix}.$$

- 14. PROPOSITION. L'application ainsi définie $P \mapsto \Psi(P)$ entre les polynômes homogènes de $\mathbf{K}[X_1, \dots, X_n]$ et les formes quadratiques sur E est une bijection.
- 15. EXEMPLE. La forme quadratique

$$(x,y,z) \in \mathbf{K}^3 \longmapsto x^2 + 2xy - z^2$$

est représentée, dans la base canonique, par la matrice

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

et par le polynôme $X^2 + 2XY - Z^2 \in \mathbf{K}[X, Y, Z]$

16. EXEMPLE. Soient $\Omega \subset \mathbf{R}^n$ un ouvert et $f: U \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^2 . Soit $a \in \Omega$ un point. Alors l'application $d^2f(a)$ est une forme quadratique dont la matrice dans la base canonique est le hessienne de la fonction f au point a.

1.3. Noyau, rang et discriminant

- 17. DÉFINITION. La dimension d'un espace quadratique (E,q) est la dimension de l'espace vectoriel E.
- 18. DÉFINITION. Le noyau d'une forme quadratique q sur E de forme polaire b est l'ensemble

$$\operatorname{Ker} q := \{ x \in E \mid \forall y \in E, \ b(x, y) = 0 \}.$$

- 19. EXEMPLE. Pour une matrice symétrique $A \in \mathscr{M}_n(\mathbf{K})$, le noyau de la forme quadratique $X \longmapsto {}^{\mathrm{t}} X A X$ est le noyau de la matrice A.
- 20. DÉFINITION. Le rang d'une forme quadratique q sur E est le rang de sa matrice dans une base quelconque.
- 21. Proposition. Deux formes quadratiques équivalents ont le même rang.
- 22. DÉFINITION. Une forme quadratique q est non dégénérée si $\operatorname{Ker} q = \{0\}$.
- 23. Exemple. La forme quadratique $A \longmapsto \operatorname{Tr}(A^2)$ sur $\mathscr{M}_n(\mathbf{K})$ n'est pas dégénérée.
- 24. Proposition. Une forme quadratique q sur E de forme polaire b n'est pas dégénérée si et seulement si l'application

$$E \longrightarrow E^*,$$
$$x \longmapsto b(x, \cdot)$$

est un isomorphisme.

25. DÉFINITION. Soit q une forme quadratique non dégénérée. Notons

$$\pi \colon \mathbf{K}^{\times} \longmapsto \mathbf{K}^{\times}/(\mathbf{K}^{\times})^2$$

la projection. Alors les quantités $\pi(\det \operatorname{Mat}_{\mathscr{B}}(q))$ ne dépend pas de la base \mathscr{B} choisie. On l'appelle le $\operatorname{discriminant}$ de la forme quadratique, notée disc q.

- 26. EXEMPLE. Le discriminant de la forme $(x, y, z) \mapsto x^2 + y^2 z^2$ vaut -1.
- 27. Proposition. Deux formes quadratiques non dégénérées équivalentes ont le même discriminant.

2. Orthogonalité et isotropie

2.1. Orthogonalité

28. DÉFINITION. Soit q un forme quadratique sur E de forme polaire b. Deux vecteurs $x,y\in E$ sont q-orthogonaux si b(x,y)=0. Le q-orthogonal d'une partie $A\subset E$ est l'ensemble

$$A^{\perp q} = \{ x \in E \mid \forall y \in E, \ b(x, y) = 0 \}.$$

- 29. EXEMPLE. On a Ker $q = E^{\perp q}$.
- 30. Proposition. Soient $A, B \subset E$ deux parties. Alors
 - l'ensemble $A^{\perp q}$ est un sous-espace vectoriel de E contenant Ker q:
 - si $A \subset B$, alors $B^{\perp q} \subset A^{\perp q}$;
 - $-A \subset (A^{\perp q})^{\perp q}$.
- 31. EXEMPLE. On considère la forme quadratique $(X,Y) \mapsto \operatorname{Tr}(XY)$ sur $\mathcal{M}_n(\mathbf{K})$. Alors l'orthogonal de l'ensemble des matrices symétriques est l'ensemble des matrices antisymétriques.
- 32. PROPOSITION. Soit $F \subset E$ un sous-espace vectoriel. Alors $\dim E = \dim F + \dim F^{\perp q} \dim (F \cap \operatorname{Ker} q)$ et $(F^{\perp q})^{\perp q} = F + \operatorname{Ker} q$.

2.2. Isotropie

- 33. DÉFINITION. Soit q une forme quadratique sur E. Un vecteur $x \in E$ est q-isotrope si q(x) = 0. L'ensemble Co q des vecteurs q-isotropes est le $c\hat{o}ne$ de la forme q.
- 34. EXEMPLE. Le cône isotrope de la forme quadratique $(x,y) \mapsto xy$ sur \mathbf{K}^2 est l'ensemble $(\mathbf{K} \times \{0\}) \cup (\{0\} \times \mathbf{K})$.
- 35. Proposition. Toute forme quadratique q vérifie $\operatorname{Ker} q \subset \operatorname{Co} q.$
- 36. Contre-exemple. L'inclusion est fausse en toute généralité : une forme quadratique représentée par la matrice

$$\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$$

a un noyau nul et pour tant son cône isotrope n'est pas nul. En général, le cône isotrope n'est même pas un sous-espace vectoriel de E.

37. Proposition. Le cône isotrope est un cône, c'est-à-dire

$$\forall \lambda \in \mathbf{K}, \ \forall x \in \operatorname{Co} q, \qquad \lambda x \in \operatorname{Co} q.$$

- 38. DÉFINITION. Un sous-espace vectoriel $F \subset E$ est isotrope si $F \cap F^{\perp q} \neq \{0\}$.
- 39. Proposition. Un sous-espace $F \subset E$ est isotrope si et seulement si $E = F \oplus F^{\perp q}$.

2.3. Groupe orthogonal

- 40. DÉFINITION. Un automorphisme orthogonal d'un espace quadratique (E,q) est un mophisme de l'espace (E,q) vers lui-même. On note O(q) l'ensemble des automorphismes orthogonaux de (E,q).
- 41. PROPOSITION. L'ensemble O(q) est un sous-groupe de GL(E).
- 42. DÉFINITION. Soit q une forme quadratique non dégénérée sur E de forme polaire b. Alors un endomorphisme $u \in \mathcal{L}(E)$ est un automorphisme orthogonal si et seulement si

$$\forall x, y \in E, \qquad b(u(x), u(y)) = b(x, y).$$

- 43. Exemple. On retrouve le groupe orthogonal $\mathcal{O}(E)$ d'un espace euclidien $(E,\langle\;,\;\rangle)$ lorsque $q(x)=\langle x,x\rangle.$
- 44. Remarque. Le déterminant d'un automorphisme orthogonal vaut ± 1 .
- 45. PROPOSITION. Soient \mathscr{B} une base de E et $u \in \mathscr{L}(E)$ un endomorphisme. En posant $M := \operatorname{Mat}_{\mathscr{B}}(q)$ et $A := \operatorname{Mat}_{\mathscr{B}}(u)$, on a

$${}^{\mathrm{t}}AMA = M.$$

3. Classifications des formes quadratiques

3.1. Diagonalisation d'une forme quadratique

46. DÉFINITION. Soit (E,q) un espace quadratique. Une base (e_1,\ldots,e_n) de E est q-orthogonale si ses vecteurs sont deux-à-deux q-orthogonaux. Elle est q-orthonormée si

$$\forall i \neq j, \qquad q(e_i, e_j) = \delta_{i,j}.$$

- 47. EXEMPLE. La base canonique, formée des matrices élémentaires, de $\mathcal{M}_n(\mathbf{K})$ est orthogonale pour la forme $A \longmapsto \operatorname{Tr}({}^{\operatorname{t}}AA)$.
- 48. Théorème. Tout espace quadratique de dimension finie possède une base orthogonale.
- 49. Remarque. On peut appliquer l'algorithme de réduction de Gauss pour trouver une telle base. Par exemple, on a

$$xy - 2xz - 4yz + 2xt + zt =$$

$$= \left(\frac{x+y-6z+2t}{2}\right)^2 - \left(\frac{x-y-2z-2t}{2}\right)^2 + 8\left(z - \frac{7t}{16}\right)^2 + \frac{49t^2}{32}.$$

- 50. COROLLAIRE. Soit (E,q) un espace quadratique de dimension n. Alors
 - il existe une matrice diagonale représentant le forme q;
 - il existe une base (f_1,\ldots,f_n) de E^* et des scalaires $\lambda_1,\ldots,\lambda_n\in\mathbf{K}$ tels que

$$q = \sum_{k=1}^{n} \lambda_k f_k^2.$$

3.2. Sur le corps de complexes et réels

51. Théorème. Soit (E,q) un espace quadratique complexe de dimension n. Alors il existe une base \mathcal{B} de E et un entier $r \in [\![0,n]\!]$ tels que

$$\operatorname{Mat}_{\mathscr{B}}(q) = \operatorname{diag}(I_r, 0).$$

52. PROPOSITION. Soit (E,q) un espace quadratique réel de dimension n. Alors il existe une base \mathcal{B} de E et deux entiers $r,s\in \mathbf{N}$ avec $r+s\leqslant n$ tels que

$$\operatorname{Mat}_{\mathscr{B}}(q) = \operatorname{diag}(I_r, -I_s, 0).$$

53. DÉFINITION. De tels entiers r et s sont uniques. Le couple (r,s) est la signature de la forme.

54. EXEMPLE. Sur \mathbb{R}^3 , la forme quadratique

$$x^{2} + 2y^{2} + 15z^{2} - 4xy + 6xz - 8yz = (x - 2z + 3z)^{2} - 2(y - z)^{2} + 8z^{3}$$

est de signature (2,1).

- 55. COROLLAIRE. Deux formes quadratiques réelles de même dimension finie sont équivalentes si et seulement si elles ont la même signature.
- 56. APPLICATION (lemme de Morse). Soient $\Omega \subset \mathbf{R}^n$ un ouvert contenant l'origine et $f: \Omega \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^3 . On suppose que
 - l'origine est un point critique, c'est-à-dire df(0) = 0;
 - la forme quadratique $d^2 f(0)$ n'est pas dégénérée;
 - elle est de signature (p, n-p).

Alors il existe des voisinages $U, V \subset \mathbf{R}^n$ de l'origine et un difféomorphisme $\varphi \colon U \longrightarrow V$ de classe \mathscr{C}^1 vérifiant

- $-\varphi(0)=0;$
- pour tout point $x \in U$, on a

$$f(x) - f(0) = \varphi_1(x)^2 + \dots + \varphi_p(x)^2 - \varphi_{p+1}(x)^2 - \dots - \varphi_n(x)^2$$

où les réels $\varphi_i(x)$ sont les coordonnées du vecteurs $\varphi(x)$.

3.3. Sur les corps finis

- 57. LEMME. Soient **K** un corps fini et $a,b \in \mathbf{K}^{\times}$ deux éléments non nul. Alors l'équation $ax^2 + by^2 = 1$ admet au moins une solution.
- 58. Proposition. Soit (E,q) un espace quadratique non dégénéré sur un corps fini \mathbf{K} . On note $\zeta \coloneqq \operatorname{disc} q$. Alors il existe une base (e_1,\ldots,e_n) de E et un élément $\alpha \in \{1,\zeta\}$ tels que

$$x = \sum_{i=1}^{n} x_i e_i \quad \Longrightarrow \quad q(x) = \sum_{i=1}^{n-1} x_i^2 + \alpha x_n^2.$$

- 59. Théorème. Deux formes quadratiques de même dimension sur un corps fini sont équivalents si et seulement si elles ont le même rang et le même discriminant.
- 60. Application (loi de réciprocité quadratiques). Soient p et q deux nombres premiers impairs distincts. Alors

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)/2 \times (q-1)/2}.$$

^[1] Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet. 2017.

^[2] Clément de Seguin-spazzis. Invitation aux formes quadratiques. Calvage & Mounet, 2010.

^[3] Joseph Grifone. Algèbre linéaire. 4° édition. Cépadués, 2011.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.

^[5] François Rouvière. Petit quide de calcul différentiel. Quatrième édition. Cassini, 2015.