Agustín Esteva aesteva@uchicago.edu Due Date: 05-14-2025

Problem 1

Let $E \subseteq \mathbb{R}^n$ and $F \subseteq \mathbb{R}^\ell$. Suppose $T \in C^1(E, F)$. Let $\omega \in \Lambda^k(F)$ and $\lambda \in \Lambda^m(F)$. Prove that $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$

Solution: We remark that by definition, $(dx_i)_T = dt_i$ Suppose r = 1, then by definition

$$(dx_1)_T = (dt_1).$$

Suppose that we preserve order in the pullback when r = n, i.e,

$$(dx_{i_1} \wedge \cdots \wedge dx_{i_n})_T = (dx_{i_1})_T \wedge \cdots \wedge (dx_{i_n})_T = dt_{i_1} \wedge \cdots \wedge dt_{i_n}$$

Now for r=n+1, we have that (if we denote dx_I to be the standard presentation of the form), then if α is the number of permutations necessary to make i_1, \ldots, i_{n+1} into the standard presentation $I'=i'_1, \ldots, i'_{n+1}$

$$(dx_{i_1} \wedge \dots \wedge dx_{i_n} \wedge dx_{i_{n+1}})_T = (-1)^{\alpha} dx_{I'})_T$$

$$= (-1)^{\alpha} (dx_{I'})_T$$

$$= (-1)^{\alpha} \left(dt_{i'_1} \wedge \dots \wedge dt_{i'_{n+1}} \right)$$

$$= dt_{i_1} \wedge \dots \wedge dt_{i_n} \wedge dt_{i_{n+1}}$$

$$= (dt_{i_1} \wedge \dots \wedge dt_{i_n}) \wedge dt_{i_{n+1}}$$

$$= (dt_{i_1} \wedge \dots \wedge dt_{i_n}) \wedge (dx_{i_{n+1}})_T$$

$$= (dx_{i_1} \wedge \dots \wedge dx_{i_n})_T \wedge (dx_{i_{n+1}})_T$$

$$= (dx_{i_1})_T \wedge \dots \wedge (dx_{i_n})_T \wedge (dx_{i_{n+1}})_T$$

$$= (dx_{i_1})_T \wedge \dots \wedge (dx_{i_n})_T \wedge (dx_{i_{n+1}})_T$$

Consider first the case when

$$\omega = f dx_I = f dx_{i_1} \wedge \cdots \wedge dx_{i_k}, \qquad \lambda = g dx_J = g dx_{j_1} \wedge \cdots \wedge dx_{j_m}.$$

Then by the lemma,

$$(\omega \wedge \lambda)_{T} = (fg \, dx_{i_{1}} \wedge \cdots \wedge dx_{i_{k}} \wedge dx_{j_{1}} \wedge \cdots \wedge dx_{j_{m}})_{T}$$

$$= fg(T(\mathbf{x})) \, dt_{i_{1}} \wedge \cdots \wedge dt_{i_{k}} \wedge dt_{j_{1}} \wedge \cdots \wedge dt_{j_{m}}$$

$$= (f(T(\mathbf{x})) \, dt_{i_{1}} \wedge \cdots \wedge dt_{i_{k}}) \wedge (g(T(\mathbf{x})) \, dt_{j_{1}} \wedge \cdots \wedge dt_{j_{m}})$$

$$= (f \, dx_{i_{1}} \wedge \cdots \wedge dx_{i_{k}})_{T} \wedge (g \, dx_{j_{1}} \wedge \cdots \wedge dx_{j_{m}})_{T}$$

$$= \omega_{T} \wedge \lambda_{T}$$

Now consider general ω and λ . We can express

$$\omega = \sum_{I} f_{I} dx_{I}, \qquad \lambda = \sum_{J} g_{J} dx_{J}.$$

We have that using part (a) of the Theorem,

$$\omega_T \wedge \lambda_T = (\sum_I f_I dx_I)_T \wedge (\sum_J g_J dx_J)_T$$

$$= \sum_I (f_I dx_I)_T \wedge \sum_J (g_J dx_J)_T$$

$$= \sum_{I,J} (f_I dx_I)_T \wedge (g_J dx_J)_T$$

$$= \sum_{I,J} (f_I g_J dx_I \wedge dx_J)_T$$

$$= (\omega \wedge \lambda)_T$$

Let ω be a 1-form on \mathbb{R}^n and let $\gamma:[a,b]\to\mathbb{R}^n$ be a C^1 curve. Let $\Delta:[a,b]\to[a,b]$ be the identity function (which is a curve in \mathbb{R}^1). Prove that

$$\int_{\gamma} \omega = \int_{\Delta} \omega_{\gamma}.$$

Do not just apply Theorem 10.24 or 10.25, please give a direct proof.

Solution: Suppose first $\omega = \sum_I f_I dx_I$ Then by definition of integrating k-forms,

$$\int_{\gamma} \omega = \int_{a}^{b} \sum_{I} f_{I}(\gamma(x)) dy_{I}(\gamma'_{1}(x), \dots, \gamma'_{n}(x)) dx$$

$$= \int_{a}^{b} \sum_{I} f_{I}(\gamma(x)) \gamma'_{I}(x) dx$$

$$= \int_{a}^{b} \sum_{I} f_{I}(\gamma(x)) dt_{I} dx$$

$$= \int_{a}^{b} \omega_{\gamma}(x) dx$$

$$= \int_{a}^{b} \omega_{\gamma}(\Delta(x)) \Delta'(x) dx$$

$$= \int_{\Delta}^{b} \omega_{\gamma}.$$

For general $\omega = \sum_I f_I dx_I$, we use the linearity of the integral to conclude.

Define the forms

$$\omega_1 = x \, dx - y \, dy$$

$$\omega_2 = z \, dx \wedge dy + x \, dy \wedge dz$$

$$\omega_3 = z \, dy.$$

Compute $\omega_1 \wedge \omega_2$, $\omega_1 \wedge \omega_3$ and $\omega_2 \wedge \omega_3$. Write all forms in standard presentation.

SOLUTION: • To compute $\omega_1 \wedge \omega_2$, we see that

$$\omega_1 \wedge \omega_2 = (x \, dx - y \, dy) \wedge (z \, dx \wedge dy + x \, dy \wedge dz)$$

$$= xz \, dx \wedge dx \wedge dy + x^2 \, dx \wedge dy \wedge dz - yz \, dy \wedge dx \wedge dy - yx \, dy \wedge dy \wedge dz$$

$$= x^2 \, dx \wedge dy \wedge dz$$

• For $\omega_1 \wedge \omega_3$, we compute

$$\omega_1 \wedge \omega_3 = (x \, dx - y \, dy) \wedge z \, dy$$
$$= xz \, dx \wedge dy - yz \, dy \wedge dy$$
$$= xz \, dx \wedge dy$$

• For $\omega_2 \wedge \omega_3$, we compute

$$\omega_2 \wedge \omega_4 = (z \, dx \wedge dy + x \, dy \wedge dz) \wedge z \, dy$$
$$= z^2 \, dx \wedge dy \wedge dy + xy \, dy \wedge dz \wedge dy$$
$$= \boxed{0}$$

SOLUTION: Computing,

Let $\omega = xy \, dx \wedge dz + z \, dx \wedge dy$ be a 2-form in \mathbb{R}^3 . Compute $d\omega$.

 $d(\omega) = d(xy dx \wedge dz + z dx \wedge dy)$ = $y dx \wedge dx \wedge dz + 0 + x dy \wedge dx \wedge dz + 0 + dz \wedge dx \wedge dy$ = $-x dx \wedge dy \wedge dz + dx \wedge dy \wedge dz$

 $= (1 - x) dx \wedge dy \wedge dz$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the function defined by T(x, y, z) = (xy, xz, yz). Find the following forms:

- (a) $(dx)_T$, $(dy)_T$ and $(dz)_T$.
- (b) $(dx \wedge dy)_T$
- (c) $(dx \wedge dy \wedge dz)_T$.

Write all forms in standard presentation.

SOLUTION: We consider

$$J = \begin{pmatrix} y & x & 0 \\ z & 0 & x \\ 0 & z & y \end{pmatrix}$$

and we can immediately see

$$dt_1 = ydx + xdy$$

$$dt_2 = zdx + xdz$$

$$dt_3 = zdy + ydz$$

(a) We have by definition

$$(dx)_T = dt_1 = ydx + xdy$$

$$(dy)_T = dt_2 = zdx + xdz$$

$$(dz)_T = dt_3 = zdy + ydz$$

(b) The pullback is distributive, so

$$(dx \wedge dy)_T = (dx)_T \wedge (dy)_T = (y \, dx + x \, dy) \wedge (z \, dx + x \, dz) = -xz \, dx \wedge dy + xy \, dx \wedge dz + x^2 \, dy \wedge dz + x^2 \,$$

(c) Similarly to (b) but just more annoying

$$(dx \wedge dy \wedge dz)_T = (dx \wedge dy)_T \wedge (dz)_T$$

$$= (-xz \, dx \wedge dy + xy \, dx \wedge dz + x^2 \, dy \wedge dz) \wedge z \, dy + y \, dz$$

$$= -xyz \, dx \wedge dy \wedge dz - xyz \, dx \wedge dy \wedge dz$$

$$= -2xyz \, dx \wedge dy \wedge dz$$

Let $T(r, \theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ (this function gives the spherical coordinates of \mathbb{R}^3). Calculate ω_T for each of the following forms ω :

dx, dy, dz, $dx \wedge dy$, $dx \wedge dz$, $dy \wedge dz$, $dx \wedge dy \wedge dz$.

SOLUTION: Holy moly. It is a lot easier if we just look at the Jacobian, which is given by

$$J_T = \begin{pmatrix} \cos\theta \sin\phi & -r\sin\theta \sin\phi & r\cos\theta \cos\phi \\ \sin\theta \sin\phi & r\cos\theta \sin\phi & r\sin\theta \cos\phi \\ \cos\phi & 0 & -r\sin\phi \end{pmatrix}$$

$$(dx)_T = d(T_x) = \cos\theta \sin\phi \, dr - r \sin\theta \sin\phi \, d\theta + r \cos\theta \cos\phi \, d\phi$$
$$(dy)_T = d(T_y) = \sin\theta \sin\phi \, d\theta + r \cos\theta \sin\phi \, d\theta + r \sin\theta \cos\phi \, d\theta$$
$$(dz)_T = d(T_z) = \cos\phi \, dr - r \sin\phi \, d\phi$$

We do not show our work for the following, but we make a lot of use of the fact that wedge products are zero when indices are shared.

$$(dx \wedge dy)_T = (dx)_T \wedge (dy)_T =$$

$$= r \sin^2 \phi dr \wedge d\theta - r^2 \sin \phi \cos \phi d\theta \wedge d\phi$$

$$(dx \wedge dz)_T = (dx)_T \wedge (dz)_T$$

$$= (r \sin \theta \sin \phi \cos \phi) dr \wedge d\theta - r \cos \theta dr \wedge d\phi + r^2 \sin \theta \sin^2 \phi d\theta \wedge d\phi$$

$$(dy \wedge dz)_T = (dy)_T \wedge (dz)_T$$

$$= -r \cos \theta \sin \phi \cos \phi dr \wedge d\theta - r \sin \theta dr \wedge d\phi - r^2 \cos \theta \sin^2 \phi d\theta \wedge d\phi$$

$$(dx \wedge dy \wedge dz)_T = (dx \wedge dy)_T \wedge dz = -r^2 \sin \phi dr \wedge d\theta \wedge d\phi$$

Consider the 2-form $dx \wedge dy$ in \mathbb{R}^2 . Find all linear maps $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\omega_T = \omega$.

SOLUTION: Since $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, then

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

We see the Jacobian is given by

$$J = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and thus

$$(dx \wedge dy)_T = d(T_x) \wedge d(T_y)$$

$$= (a dx + b dy) \wedge (c dx + d dy)$$

$$= (ad) dx \wedge dy + (cb) dy \wedge dx$$

$$= (ad - bc) dx \wedge dy$$

$$= dx \wedge dy$$

Thus, the only linear map T is one such that ad - bc = 1.

20510 Problem Set 7

8

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^1 , and let df be the 1-form which is the derivative of the 0-form f. For any curve $\gamma: [a,b] \to \mathbb{R}^n$, prove that

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a)).$$

SOLUTION: By definition, we have that

$$\int_{\gamma} df = \int_{a}^{b} df(\gamma(u))J(u) du$$

$$= \int_{a}^{b} \sum_{j=1}^{n} (D_{j}f)(\gamma(u))dx_{j}J(u) du$$

$$= \int_{a}^{b} \sum_{j=1}^{n} (D_{j}f(\gamma(u)))(\gamma'_{j}(u)) du$$

$$= \int_{a}^{b} \langle \nabla f(\gamma(u)), \gamma'(u) \rangle du$$

$$= \int_{a}^{b} (f(\gamma(u)))' du$$

$$= f(\gamma(b)) - f(\gamma(a))$$

Where the normal FTC was used in the last step.

Let ω be the 1-form on $\mathbb{R}^2 \setminus \{0\}$ given by

$$\omega = \frac{y \, dx - x \, dy}{x^2 + 4y^2}$$

Let $\gamma: [0,1] \to \mathbb{R}^2$ be the curve defined by $\gamma(t) = (2\cos(2\pi t), \sin(2\pi t))$.

(a) Compute $d\omega$.

SOLUTION:

$$\begin{split} d\omega &= d\left(\frac{y}{x^2+4y^2}\,dx - \frac{x}{x^2+4y^2}\,dy\right) \\ &= d\left(\frac{y}{x^2+4y^2}\,dx\right) - d\left(\frac{x}{x^2+4y^2}\,dy\right) \\ &= \frac{(x^2+4y^2) - (y(8y))}{(x^2+4y^2)^2}dy \wedge dx - \frac{(x^2+4y^2) - (x(2x))}{(x^2+4y^2)^2}\,dx \wedge dy \\ &= \frac{-x^2+4y^2}{(x^2+4y^2)^2}dx \wedge dy - \frac{-x^2+4y^2}{(x^2+4y^2)^2}\,dx \wedge dy \\ &= 0 \end{split}$$

(b) Compute $\int_{\gamma} \omega$.

SOLUTION: Notice that

$$\gamma'(x) = \begin{pmatrix} -4\pi \sin(2\pi t) & 2\pi \cos(2\pi t) \end{pmatrix}$$

By definition,

$$\int_{\gamma} \omega = \int_{0}^{1} \omega(\gamma(t))\gamma'(t) dt$$

$$= \int_{0}^{1} \frac{\sin(2\pi t)}{4\cos^{2}(2\pi t)^{2} + 4\sin^{2}(2\pi t)} (-4\pi\sin(2\pi t)) - \int_{0}^{1} \frac{2\cos(2\pi t)}{4\cos^{2}(2\pi t)^{2} + 4\sin^{2}(2\pi t)} (2\pi\cos(2\pi t))$$

$$= \int_{0}^{1} -\pi\sin^{2}(2\pi t) dt - \int_{0}^{1} \pi\cos^{2}(2\pi t) dt$$

$$= -\pi$$

(c) Is ω closed? Is it exact? (Hint: For exactness, use the previous Problem.)

Solution: Part (a) shows that ω is closed.

Suppose ω is exact. Since ω is a one form, then there exists some $f \in C^1(\mathbb{R}^n, \mathbb{R})$ such that $df = \omega$. Since $(2,0) = \gamma(1) = \gamma(0) = (2,0)$, we have by Problem 8 that

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a)) = 0.$$

But by (b) we have that

$$\int_{\gamma} df = \int_{\gamma} \omega \neq \pi.$$

Thus, ω cannot be exact.