Create a presence/ Absence Matrix of candidates in all shortest paths

Calcule Jaccard similarity coefficient

Filter by 0.25 Jaccard coefficient threshold

	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate 6	Candidate 7
Shortest path 1	1	0	0	1	0	1	1
Shortest path 2	1	1	1	0	0	0	1
Shortest path 3	0	1	1	1	1	0	0
Shortest path 4	0	0	1	1	0	1	1
Shortest path 5	0	1	1	1	1	0	1
Shortest path 6	0	1	0	1	1	1	1
Shortest path 7	1	1	1	0	1	0	1

	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate 6	Candidate 7
Candidate 1	1	0.82	0.43	0.98	0.55	0.34	0.22
Candidate 2		1	0.21	0.01	0.78	0.43	0.78
Candidate 3			1	0.65	0.24	0.67	0.12
Candidate 4				1	0.45	0.56	0.91
Candidate 5					1	0.03	0.45
Candidate 6						1	0.29
Candidate 7							1

	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate 6	Candidate 7
Candidate 1	1	0.82	0.43	0.98	0.55	0.34	0.22
Candidate 2		1	0.21	0.01	0.78	0.43	0.78
Candidate 3			1	0.65	0.24	0.67	0.12
Candidate 4				1	0.45	0.56	0.91
Candidate 5					1	0.03	0.45
Candidate 6						1	0.29
Candidate 7							1

For each cluster:

- Consider the shortest paths in which selected nodes are present

- Select only candidates present on 75% of these shortest paths

	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate 6	Candidate 7
Shortest path 1	1	0	0	1	0	1	1
Shortest path 2	1	1	1	0	0	0	1
Shortest path 3	0	1	1	1	1	0	0
Shortest path 4	0	0	1	1	0	1	1
Shortest path 5	0	1	1	1	1	0	1
Shortest path 6	0	1	0	1	1	1	1
Shortest path 7	1	1	1	0	1	0	1

Final pathway 1 will contain Candidate 4 and Candidate 7

Cluster 1 contains;

Candidate 1

Candidate 4

Candidate 7