1. Plot the airfoil geometry (with same scale of x-and y-axis)

NACA 0012 AIRFOILS (n0012-il)

NACA 0012 AIRFOILS - NACA 0012 airfoil

Max thickness 12% at 30% chord. 대칭형에다가 최대 두께가 시위의 12%인 형상, 시위의 길이를 1m라고 가정할 경우 최대두께는 0.12m이고 지점은 시위의 30%인 0.3m지점이다.

2. Calculate the Reynolds number based on chord length

air property is standard atmosphere

$$\frac{77:15^{\circ}c, \ e:1.2250 \ k_{2}/m_{3}}{14:1.785 \ x_{10}^{-5} \ (p_{3}-s)}$$

$$Re = \frac{PVL}{M} = \frac{1.2250 \times 30 \times 1}{1.785 \times 10^{-5}}$$

$$= 2.059 \times 10^{6}$$

- 3. For two inviscid cases
- (a) Plot and compare the pressure distribution along the upper and lower surface

pressure distribution

위아래 대칭형이기 때문에 위치x에서의 압력 분포는 위 아래 거의 유사하다.

(b) Calculate the normal and axial force per unit span (for each AOA case)

At lower surface

_4	Α	В	С	D	Е	F	
1	х	у	pressure		각도	길이 ds	pres
2	0.00E+00	0.00E+00	5.34E+02		=-ATAN2(A3- <mark>A2,</mark> B3-I	B2)
3	3.52E-04	-3.31E-03	5.03E+02		1 ATAN2	x_num, y_nun	n)

(x1,y1), (x2,y2)를 이용해서 -atan2 공식을 이용해서 각도를 구한다.

4	Α	В	С	D	Е	F	G	F
1	Х	у	pressure		각도	길이 ds	pressure	norma
2	0.00E+00	0.00E+00	5.34E+02		1.464853	=SQRT((A	3- <mark>A2)^2+(</mark> B3-B	2)^2)
3	3.52E-04	-3.31E-03	5.03E+02		1.256711	SQRT(nui	mber) 4.62E+02	4.9
	4 405 00	0.045.00	4045 00		4 0000 47	2.045.02	2.005 02	^

길이 ds는 (x1,y1), (x2,y2)를 이용해서 $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ 로 길이 ds를 구할 수 있다.

С	D	E	F	G
pressure		각도	길이 ds	pressure
5.34E+02		1.464853	3.33E-03	=(C3+C2)/2
5.03E+02		1.256711	3.47E-03	4.62E+02
4.21F+02		1.068547	3.61F-03	3.66F+02

연속적이지 않고 이산적인 지점에서의 중간 압력은 주변의 압력을 통해서 근사적으로 구할 수 있다.

E	F	G	Н	
각도	길이 ds	pressure	normal force	axi
1.464853	3.33E-03	5.19E+02	=G2*F2*COS(E2)

아랫면의 normal force는 다음과 같으며 $dN_l'=P_lds_l\cos\theta$ 비점성유동을 가정했기에 전단응력은 존재하지 않는다.

E	F	G	Н	1	
각도	길이 ds	pressure	normal force	axial force	lift
1.464853	3.33E-03	5.19E+02	1.83E-01	=G2*F2*SIN(E2)

Axial force는 다음과 같으며 $dA'_l = P_l ds_l \sin \theta$ 마찬가지로 전단응력은 고려하지 않는다.

At upper surface

E	F	G	Н	1	
각도	길이 ds	pressure	normal force	axial force	
-3.00262	3.34E-03	1.31E+02	=-G103*F103	*COS(E103)	

윗면의 normal force는 다음과 같으며 $dN_u' = -P_u ds_u \cos \theta$ 비점성유동을 가정했기에 전단응력은 존재하지 않는다.

Axial force는 다음과 같으며 $dA'_u = -P_u ds_u \sin \theta$ 마찬가지로 전단응력은 고려하지 않는다.

모든 normal force, axial force에 대한 unit span은 다음과 같다.

At angle of attack 0 degree.

normal force/unit span axial force/unit span -2.06E+02 3.82E-07

At angle of attack 4 degree.

normal force/unit span axial force/unit span -2.27E+02 4.31E+01

(c) Calculate the lift and drag per unit span by using the result of (b)

Normal force와 axial force, AOA를 알고 있다면 lift와 drag를 구할 수 있다.

 $L = N \cos \alpha - A \sin \alpha$

 $D = N \sin \alpha - A \cos \alpha$

Degree is AOA

At angle of attack 0 degree.

At angle of attack 4 degree.

(d) Calculate the lift coefficient and drag coefficient of the airfoil

기준면적 unit span은 length를 1m로 가정한다.

$$q_{\infty} = \frac{1}{2} \rho_{\infty} V_{\infty}^{2}$$

$$C_{l} = \frac{L}{q_{\infty} S}$$

$$C_{d} = \frac{D}{q_{\infty} S}$$

At angle of attack 0 degree.

At angle of attack 4 degree.

- 4. For two viscous cases,
- (a) Plot and compare the pressure and shear stress distribution along the both surface

pressure distribution

Upper surface와 lower surface의 Position x에 대해서 shear stress와 pressure는 이 매우 유사하다.

(b) Calculate the normal and axial force per unit span (for each AOA case)

At lower surface

각도와 압력 ds를 구하는 것은 비점성유동과 동일하며, normal force와 axial force에 대해서는 점성유동이기에 전 단응력도 고려를 해야 한다. $dN_l'=P_l ds_l \cos\theta-\tau_l ds_l \sin\theta$

 $dA'_{l} = P_{l}ds_{l}\sin\theta + \tau_{l}ds_{l}\cos\theta$

E	F	G	н	1	J	К	L
각도	길이 ds	pressure	shear	normal force	axial force	lift	darg
1.464853	3.33E-03	5.18E+02	8.25E-01	1.80E-01	=G2*F2*SI	N(E2)+H2*F2	2*COS(E2)

At upper surface

$$dN'_u = -P_u ds_u \cos \theta - \tau_u ds_u \sin \theta$$

각도	길이 ds	pressure	shear	normal force	axial force
-3.00262	3.34E-03	9.92E+01	4.38E-01	=-G103*F103*	COS(E103)-H103*F103*SIN(E103)

$$dA'_{u} = -P_{u}ds_{u}\sin\theta + \tau_{u}ds_{u}\cos\theta$$

각도	길이 ds	pressure	shear	normal force	axial force
-3.00262	3.34E-03	9.92E+01	4.38E-01	3.29E-01	=-G103*F103*SIN(E103)+H103*F103*COS(E103)

At angle of attack 0 degree.

normal force/unit span total axial force/unit sapn

-2.08E+02 3.07E-06

At angle of attack 4 degree.

normal force/unit span total axial force/unit sapn

-2.27E+02 4.28E+01

(c) Calculate the lift and drag per unit span by using the result of (b)

마찬가지로 Normal force와 Axial force, AOA를 알고 있다면 lift와 drag를 구할 수 있다.

$$L = N\cos\alpha - A\sin\alpha$$

$$D = N \sin \alpha - A \cos \alpha$$

At angle of attack 0 degree.

Lift / unit span Drag / unit span -2.08E+02 3.07E-06

At angle of attack 4 degree.

Lift / unit span Drag / unit span 1.81E+02 1.44E+02

(d) Calculate the lift coefficient and drag coefficient of the airfoil

기준면적 unit span은 length를 1m로 가정한다.

$$q_{\infty} = \frac{1}{2} \rho_{\infty} V_{\infty}^2$$

$$C_l = \frac{L}{q_{\infty}S}$$

$$C_d = \frac{D}{q_{\infty}s}$$

At angle of attack 0 degree.

lift coefficient drag coefficient -3.77E-01 5.56E-09

At angle of attack 4 degree.

lift coefficient drag coefficient 3.28E-01 2.62E-01

5. Discussions

NACA 0012 Airfoils에 대해서는 시위를 중심으로 위아래 형태가 동일하기에 같은 x위치에서 점성/비점성 유동과 관계없이 윗면과 아랫면의 압력과 전단응력은 거의 유사함을 알 수 있다. 그래서 곡예비행기 중에는 뒤집어서 비행이 가능한 기체가 있는데, NACA 0012 Airfoils을 사용하면 뒤집힌 상태에서도 비행이 가능한 것을 알겠다.

비점성유동에 비해 점성유동일 때 전단응력이 추가되어 항력의 크기가 보다 커졌다.

받음각이 0일때 양력은 아래방향으로 작용하기에 수평운동을 할 수가 없으며, 받음각이 0도 일때보다 4도 일 때 양력이 보다 크게 나오는 것을 알 수 있으며, 항력계수 역시 양력과 같이 움직이는 것을 볼 수 있다. 그리고 받음각이 0도 일때보다 4도일때 저항계수는 증가했다.