

Kauno technologijos universitetas Informatikos Fakultetas

3 Laboratorinio Darbo Ataskaita

P175B100 Skaitmeninės Logikos Pradmenys

Atliko:
IFF-1/9 grupės studentas
Nedas Liaudanskis
Priėmė:
Lekt. Jurgita Arnastauskaitė

Turinys

Turi	inys	2
	Įvadas	
	Tikslas	
	Užduotis	
	Universalaus registro užduotis	
	Specializuoto registro realizacija	
	Universalaus Registro PLIS realizacijas	
	Išvados	

1. Įvadas

1.1 Tikslas

Perprasti darbą su postūmio registrais, jų struktūra, veikimo principus, taikymo metodus ir realizavimą naudojant trigerius.

1.2 Užduotis

Užduoties numeris: 130

Užduoties registrų sąlygos:

130	5	LL1, CR2, AL2	0	Sinchroninis	Atvirkštinis

Teorija:

- Registrai, tai prietaisai, kurie įrašo informacija ir yra skirti ją saugoti. Registrai dar gali atlikti ir kitas operacijas, tokia kaip postūmius. Registrą sudaro trigeriai ir juos kontroliuojančios schemos. Registrų tipai skirstomi pagal įvedimo ir išvedimo būdą:
 - saugojimo (lygiagretusis);
 - postūmio (nuoseklusis);
 - universalusis.

Registrai taip pat, gali būti vientaktčiai (sudaryti iš dinaminio valdymo trigerių) ir dvitakčiai, kuriuose informacija įrašoma per du taktus. Visos registro skiltys yra numeruojamos nuo dešinės pusės, pradedant nuo 0. Tokio rašymo pagalba, informaciją yra galima interpretuoti kaip skaičių, kurio reikšmė nustatoma sumuojant atitinkamas reikšmes, gaunamas dvejetą pakėlus indekso laipsniu.

2. Universalaus registro užduotis

Pirmiausia iš užduoties sąlygos išsiaiškinau, jog mano gautas registras turės 5 trigerius ir gebės saugoti informacija 2⁴ dydžiu. Tada pasidariau Universalaus registro veikimo lentelę.

Universalaus registro lentelė

R	A ₀	A_1	D_R	D_L	D ₄ D ₀	Q_4	Q_3	Q_2	Q_1	Q_0	Komentaras
0	Х	Х	Х	Х	xx	0	0	0	0	0	Nustatymas į 0
1	0	0	х	x	xx	Q_4	Q_3	Q_2	Q_1	Q_0	Saugojimas
1	1)	1 x	x	, ,	1	Q_4	Q_3	Q_2	Q_1	Dostūmis i dožino
		0	0	x	XX	0	Q_4	Q_3	Q_2	Q_1	Postūmis į dešinę
1	0	0	$\begin{bmatrix} & & & & 1 & & & & & Q_3 & & Q_2 \\ 0 & 1 & & & & & & & & & & & & & & & & &$	0 1	Q ₂	Q_1	Q_0	1	Dostumis i kaira		
		1	х	0	XX	Q_3	Q_2	Q_1	Q_0	0	Postumis į kairę
1	1	1	х	х	D ₄ D ₀	D ₄	D_3	D_2	D_1	D _o	Lygegretus įrašymas

- Stulpeis "R" tai registro resetas, kurio dėka bus galima, kontroliuoti ar registras turi vykdyti duota komandą ar ne. Taip pat reseto pagalba galėsime visus dydžius nustatyti į 0, kaip pavaizduota pirmoje eilutėje.
- Stulpelis "A₀ A₁" tai du įvesties punktai, kurių dėka galėsime pasirinkti norimą atlikti komandą.
 - ightharpoonup Kai $A_0 = 0$ ir $A_1 = 0$ informacija bus saugoma. (antra eilutė)
 - \triangleright Kai $A_0 = 1$ ir $A_1 = 0$ bus vykdomas informacijos postūmis į dešinę. (trečia eilutė)
 - \triangleright Kai $A_0 = 0$ ir $A_1 = 1$ bus vykdomas informacijos postūmis į kairę. (ketvirta eilutė)
 - \triangleright Kai $A_0 = 1$ ir $A_1 = 1$ informacija bus įrašoma lygiagrečiai. (penkta eilutė)
- Stulpelis "D_R D_L" tai du įvesties punktai, kurių dėka galime pasirinkti, kokį skaitmenį įrašysime vykdant postūmius į atsilaisvintas vietas. Tai gali būti arba 0, arba 1.
- Stulpelis "D₄...D₀" parodo per kokia operacija bus galima įrašyti naujus skaičius lygiagrečiai i registra.
- Stulpelis "Q₄...Q₀" tai stulpelis, kuris parodo kaip keičiasi informacijos pozicija(skaičiai) ar pati informacijos kiekvienos operacijos metu.

Universalaus registro schema

Universalaus registro simuliacijos scenarijus

Simuliacijos direktyvos:

force - <u>freeze sim:</u> /schema3/ <u>Reset</u> 0 0	run
force - <u>freeze sim:</u> /schema3/C 1 0, 0 {50 <u>ps}</u> -r 100	force -freeze sim:/schema3/A0 0 0
run	force -freeze sim:/schema3/A1 0 0
force -freeze sim:/schema3/Reset 1 0	run
force -freeze sim:/schema3/A0 1 0	force -freeze sim:/schema3/DR 0 0
force -freeze sim:/schema3/A1 1 0	force -freeze sim:/schema3/A0 1 0
force -freeze sim:/schema3/D0 0 0	run
force -freeze sim:/schema3/D1 1 0	force -freeze sim:/schema3/A0 0 0
force - <u>freeze sim:</u> /schema3/D2 1 0	force -freeze sim:/schema3/A1 1 0
force - <u>freeze sim:</u> /schema3/D3 1 0	force -freeze sim:/schema3/DL 1 0
force -freeze sim:/schema3/D4 0 0	run

Rezultatai:

Iš simuliacijos galime pamatyti visą registro veikimo principą ir visas jo galimas operacijas.

1. Pirmiausia resetą "Reset" nustatome į 0 ir uždedame clocką "C". Tai padarę paleidę matysime kaip visa registro laikoma informacija yra nustatoma į 0.

2. A₀ ir A₁, nustatome į vienetus ir Resetą nustatome į 1 ir į "D₄...D₀" surašome norimą kombinaciją, kuri bus lygiagrečiai įrašyta į registrą. Paspaudę "run" informacija surašoma į registrą.

- 3. A_0 nustatome į 1 ir A_1 nustatome į = 0, taip pat į " D_R " įrašę norimą skaitmenį (0 arba 1), kuris bus įrašytas į po poslinkio atlaisvintą vietą galime spausti "run" ir stebėti postūmį į dešinę.
- 4. A_0 nustatome į 0 ir A_1 nustatome į = 1, taip pat į " D_L " įrašę norimą skaitmenį (0 arba 1), kuris bus įrašytas į po poslinkio atlaisvintą vietą galime spausti "run" ir stebėti postūmį į kairę.
- 5. Jeigu A₀ ir A₁, nustatysime į nulius, informacija, kuri yra saugoma registre nepasikais.

Visos šios operacijos yra daromos tada, kaip "C" (clock) yra vienetas 1.

3. Specializuoto registro realizacija

Specializuoto registro veikimo lentelė

A_0	A_1	D ₄	D_3	D ₂	D_1	D_0	Paaiškinimas
0	0	Q_4	Q_3	Q_2	Q_1	Q_0	Informacijos įrašymas
1	0	Q_3	Q_2	Q_1	Q_0	0	LL1, Loginis p. į kairę
0	1	Q_1	Q_0	Q_4	Q_3	Q_2	CR2, Ciklinis p. į dešinę
1	1	Q ₄ (0)	Q_1	Q_0	0	0	ALZ Avitos atinis atviukštinis p. i.dašin
1		Q ₄ (1)	Q ₁	Q_0	1	1	AL2, Aritmetinis atvirkštinis p. į dešin

- Stulpelis "A₀ A₁" tai du įvesties punktai, kurių dėka galėsime pasirinkti norimą atlikti komandą.
 - \blacktriangleright Kai $A_0 = 0$ ir $A_1 = 0$ informacija bus įrašoma į registrą. (pirma eilutė)
 - \blacktriangleright Kai $A_0 = 1$ ir $A_1 = 0$ bus vykdomas Loginis postūmis į kairę. (antra eilutė)
 - \blacktriangleright Kai $A_0 = 0$ ir $A_1 = 1$ bus vykdomas Ciklinis postūmis į dešinę. (trečia eilutė)
 - \triangleright Kai $A_0 = 1$ ir $A_1 = 1$ bus vykdomas Aritmetinis atvirkštinis postūmis į dešinę. (ketvirta eilutė)
- Stulpelis "D₄...D₀" tai stulpelis, kuris parodo kaip keičiasi informacijos pozicija(skaičiai) ar pati informacijos kiekvienos operacijos metu.

Specializuoto registro schema

Specializuoto registro simuliacijos scenarijus

Simuliacijos direktyvos:

Rezultatai:

Iš simuliacijos galime pamatyti visą registro veikimo principą ir visas jo galimas operacijas.

- 1. Pirmiausia resetą "Reset" nustatome į 0 ir uždedame clocką "C". Tai padarę paleidę matysime kaip visa registro laikoma informacija yra nustatoma į 0.
- 2. A₀ ir A₁, nustatome į nulius ir Resetą nustatome į 1 ir į "D₄...D₀" surašome norimą kombinaciją, kuri bus lygiagrečiai įrašyta į registrą. Paspaudę "run" informacija surašoma į registrą.
- 3. A_0 nustatome į 1 ir A_1 nustatome į = 0, galime spausti "run" ir stebėti Loginį postūmį į kairę. (LL1)
- 4. A₀ nustatome į 0 ir A₁ nustatome į = 1, , galime spausti "run" ir stebėti Ciklinį postūmį į kairę. (CR2)
- 5. Jeigu A₀ ir A₁, nustatysime į vienetus, ir paspausime "run", matysime Aritmetinį atvirkštinį postūmį į kairę. (AL2)

Visos šios operacijos yra daromos tada, kaip "C" (clock) yra vienetas 1.

Universalaus Registro PLIS realizacijas Universalaus Registro schema, pritaikyta FPGA matricai

Loginės schemos įvestims/išvestims

Universalaus Registro Rezultatai panaudojant PLIS matricą

5. Specializuoto Registro PLIS realizacijas

Specializuoto Registro schema, pritaikyta FPGA matricai

Loginės schemos įvestims/išvestims

Universalaus Registro Rezultatai panaudojant PLIS matricą

Kombinacija (00110) Aritmetinis atvirkštinis p. į kairę (AL2)

6. Išvados

- Išmokau dirbti su Universaliais ir Specializuotais registrais.
- Išmokau sudaryti Registrų veikimo lenteles ir jas naudojant nubraižyti schemas, per Lattice Diamond.
- Išmokau sujungti matricą su mano sukurta schema per Lattice Diamond.