Równania Różniczkowe i Różnicowe Zadania na zajęcia, lab 7

Zadania z gwiazdką wykraczają poza poziom, który będzie wymagany na kolokwium i nie są obowiązkowe.

- 1. Niech $f(x,y) = \ln(x^2 + y^2)$ na $\Omega = \{(x,y) : x^2 + y^2 < 1\}$. Sprawdź, czy
 - (a) $f \in L^1(\Omega)$
 - (b)* $f \in L^p(\Omega)$ dla $1 \le p < \infty$

 $Wskaz \acute{o}wka:$ Dla rodpowiednio blisko zera można ograniczyć $\ln r$ przez dowolnie małą potęgę r

2.* Niech $f(x) = \sin x/x$ na dziedzinie $\Omega = (0, \infty)$. Pokaż, że

$$\left| \int_0^\infty f(x) \, dx \right| < \infty$$

ale $f \not\in L^1(\Omega)$.

Wskazówka: scałkuj przez część, żeby pokazać powyższą nierówność. Czym można ograniczyć od dołu całkę z |f(x)| na $[k\pi, (k+1)\pi]$?

- 3. Niech $f_n(x) = \sqrt{\frac{1}{n} + x^2}$ będzie ciągiem funkcji zdefiniowanych na przedziale $\Omega = (-1, 1)$.
 - (a) Pokaż, że $f_n \in W^{1,1}(\Omega)$
 - (b) Pokaż, że ciąg f_n jest zbieżny w $W^{1,1}(\Omega)$ do g(x)=|x|
 - (c)* Pokaż to samo dla $W^{1,p}(\Omega)$ dla dowolnego $1 \leq p < \infty$

Powyższy przykład pokazuje, że przestrzenie $C^1(\overline{\Omega})$ nie są zupełne względem normy $\|\cdot\|_{1,p}$

4. Dana jest funkcja f na dziedzinie $\Omega = (0,3)$ zdefiniowana jako

$$f(x) = \begin{cases} 2 \ln x & \text{dla } x < 1 \\ x^2 - 1 & \text{dla } 1 \le x < 2 \\ 3 & \text{dla } 2 < x \end{cases}$$

Do których z poniższych przestrzeni należy funkcja f?

(a) $f \in W^{1,1}(\Omega)$

(c) $f \in L^{\infty}(\Omega)$

(b) $f \in H_0^1(\Omega)$

- (d) $f \in W^{1,\infty}(\Omega)$
- 5. Dana jest funkcja f na dziedzinie $\Omega = (-1, 2)$ zdefiniowana jako

$$f(x) = \begin{cases} |x| & \text{dla } x < 1\\ \frac{1}{2}x^2 & \text{dla } x \ge 1 \end{cases}$$

Do których z poniższych przestrzeni należy funkcja f?

(a) $f \in L^1(\Omega)$

(c) $f \in W^{2,1}(\Omega)$

(b) $f \in H_0^1(\Omega)$

- (d) $f \in W^{1,\infty}(\Omega)$
- 6. Dana jest funkcja fna dziedzinie $\Omega=(-1,1)$ zdefiniowana jako

$$f(x) = \sqrt{1 - x^2}$$

Do których z poniższych przestrzeni należy funkcja f?

(a) $f \in W^{1,1}(\Omega)$

(c) $f \in W^{1,\infty}(\Omega)$

(b) $f \in W_0^{1,1}(\Omega)$

- (d) $f \in H_0^1(\Omega)$
- 7. Dana jest funkcja f na dziedzinie $\Omega = (-1,1)$ zdefiniowana jako

$$f(x) = x^2 \operatorname{sgn} x$$

Do których z poniższych przestrzeni należy funkcja f?

(a) $f \in H^1(\Omega)$

(c) $f \in H^2(\Omega)$

(b) $f \in H_0^1(\Omega)$

(d) $f \in W^{1,\infty}(\Omega)$

8. Dana jest funkcja f na dziedzinie $\Omega = (-1,1)^2$ zdefiniowana jako

$$f(x,y) = (1 - |x|)(1 - |y|)$$

Do których z poniższych przestrzeni należy funkcja f?

(a) $f \in H^1(\Omega)$

(c) $f \in H^2(\Omega)$

(b) $f \in H_0^1(\Omega)$

(d) $f \in W^{1,\infty}(\Omega)$

Powyższa funkcja używana jest do konstrukcji tzw. funkcji bazowych wykorzystywanych w Metodzie Elementów Skończonych w 2D.

- 9. Niech $f(x) = |x|^{-s} \ln |x|$ na dziedzinie $\Omega = (-1, 1)$.
 - (a) Dla jakich wartości s zachodzi $f \in L^1(\Omega)$?
 - (b) Dla jakich wartości s zachodzi $f \in W^{1,1}(\Omega)$?
- 10.* Dla jakich p funkcja z zadania 1 należy do przestrzeni $W^{1,p}(\Omega)$? Wskazówka: jak można zapisać pochodne funkcji testowych po x, y używając pochodnych po zmiennych biegunowych r, θ ?
- 11. Niech $\Omega = \{(x,y) \colon 0 < x < 1, |y| < x^6\}$ i f(x,y) = 1/x.
 - (a) Pokaż, że $f \in H^2(\Omega)$, ale $f \notin C(\overline{\Omega})$.
 - (b)* Czy ślad fna brzegu Ω jest elementem $L^2(\partial\Omega)$?
 - (c)* Dla zadanych k, p podaj przykład dziedziny $\Omega \subset \mathbb{R}^2$ oraz funkcji $f \in W^{k,p}(\Omega)$ takiej, że $f \not\in C(\overline{\Omega})$

Powyższy przykład pokazuje, że bez założeń na dziedzinę twierdzenia łączące przestrzenie Sobolewa z klasycznymi przestrzeniami C^k są fałszywe.