# **Simplex Integration**

Trials and Errors for transcendental Integrals

# Inhaltsverzeichnis

| I. | The     | eory                             | 3  |
|----|---------|----------------------------------|----|
| 1. | Problem |                                  |    |
|    | 1.1.    | Ansatz functions                 | 3  |
|    |         | Numerical Work                   |    |
| 2. | Sim     | plex Integration in $n = 2$      | 5  |
|    | 2.1.    | Element Description              | 5  |
|    |         | Pure Integration Strategies      | 6  |
|    |         | 2.2.1. Quadrilaterial Integrator | 6  |
|    |         | 2.2.2. Sphere Integrator         | 9  |
|    |         | 2.2.3. Other Quadrature Formulas | 9  |
|    | 2.3.    | Subdivision Integration Strategy | 10 |
|    |         | ·                                | 10 |
| 3. | Sim     | plex Integration in $n = 3$      | 11 |
|    | 3.1.    | Space Definition                 | 11 |
|    |         | 1                                | 11 |
|    |         | Pure Integration Strategy        | 12 |

1 Problem

# Teil I.

# **Theory**

#### 1. Problem

Total Energy in the System:

$$\Pi = \int_{\Omega} g(\phi)\psi(\mathfrak{u}) d\Omega + \frac{G_c}{2l} \int_{\Omega} \phi^2 + l^2 \nabla \phi \cdot \nabla \phi d\Omega \to \min$$
 [1.1]

**Degradation Function** 

$$g(\phi) = \left(1 - \phi^2\right) + k \tag{1.2}$$

mit

k ... being a small but finite scalar such as  $10 \cdot 10^{-6}$ 

G<sub>c</sub> ... critical energy release rate, material parameter

l ... width of phase field

 $\psi(u)$ ...strain energy density function

u ... displacement function

φ ... phase field parameter, ansatz function discussed below

 $\nabla \varphi$  ...gradient of phase field parameter

$$\delta_{\mathbf{u}}\Pi = \int_{\Omega} g(\phi)\sigma(\mathbf{u})\frac{\partial \varepsilon}{\partial \mathbf{u}} \,\delta\mathbf{u} = 0 \tag{1.3}$$

$$\delta_{\phi}\Pi = \int_{\Omega} 2(\phi - 1) \,\delta\phi\psi(\mathbf{u}) \,d\Omega + \frac{G_c}{l} \int_{\Omega} \phi \,\delta\phi + l^2 \nabla\phi \cdot \nabla \,\delta\phi \,d\Omega = 0 \qquad [1.4]$$

#### 1.1. Ansatz functions

$$\mathbf{u} = \sum_{i} N_{i} \mathbf{u}_{i} + \sum_{i} N_{i} \mathbf{F} \mathbf{a}_{i}$$
 [1.5]

mit

N<sub>i</sub> ... are quadratic lagrange (standard) shape functions for tetrahedrons

 $U_i = u_i, a_i \dots$  are nodal degrees of freedom for displacement function

F ... is an enrichment function (sigmoid like, depends on  $\phi$ , later)

$$f_{\text{base}} = \sum_{i} N_{i} \phi_{i}$$
 [1.6]

$$\varsigma = \frac{f_{\text{base}}}{\sqrt[4]{f_{\text{base}}^2 + k_{\text{res}}}}$$
[1.7]

mit

1 Problem

 $k_{reg}$  . . . small but finite parameter

$$\phi = \exp(-\varsigma) \tag{1.8}$$

$$\phi = \exp(-\frac{\zeta}{1}) \tag{1.9}$$

we need to be able to integrate the residual vectors and the stiffness matrices efficiently and accurately

$$\delta_{\mathbf{U}_{i}}\Pi = \int_{\Omega} g(\phi)\sigma(\mathbf{u})\frac{\partial \varepsilon}{\partial \mathbf{u}} \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{U}} d\Omega \cdot \delta \mathbf{U}_{i}$$
 [1.10]

$$\delta_{\varphi_i}\Pi = \int_{\Omega} 2(\varphi - 1) \frac{\partial \varphi}{\partial \varphi_i} \psi(u) \, d\Omega \, \delta \varphi_i + \frac{G_c}{l} \int_{\Omega} \varphi \frac{\partial \varphi}{\partial \varphi_i} + l^2 \nabla \varphi \cdot \frac{\partial \nabla \varphi}{\partial \varphi_i} \, d\Omega \, \delta \varphi_i = 0 \ \ [1.11]$$

$$\Delta_{\mathbf{U}_{i}} \, \delta_{\mathbf{U}_{i}} \Pi = \mathbf{U}_{i} \cdot \int_{\Omega} g(\phi) \frac{\partial \varepsilon}{\partial \mathbf{U}_{i}} \cdot \mathbb{C} \cdot \frac{\partial \varepsilon}{\partial \mathbf{U}_{i}} \, d\Omega \cdot \delta \mathbf{U}_{i}$$
 [1.12]

$$\Delta_{\phi_{i}} \delta_{\phi_{i}} \Pi = \phi_{j} \int_{\Omega} 2 \left( \frac{\partial \phi}{\partial \phi_{i}} \right)^{2} \psi(u) d\Omega \delta_{\phi_{i}} + \phi_{j} \int_{\Omega} 2(\phi - 1) \frac{\partial^{2} \phi}{\partial \phi_{i}^{2}} \psi(u) d\Omega \delta_{\phi_{i}}$$

$$+ \phi_{i} \frac{G_{c}}{\partial \phi_{i}} \int_{\Omega} \frac{\partial \phi}{\partial \phi_{i}} + \frac{\partial^{2} \phi}{\partial \phi_{i}} + l^{2} \frac{\partial \nabla \phi}{\partial \phi_{i}} \cdot \frac{\partial \nabla \phi}{\partial \phi_{i}} + l^{2} \nabla \phi \cdot \frac{\partial^{2} \nabla \phi}{\partial \phi_{i}} d\Omega \delta_{\phi_{i}}$$
[1.13]

$$+ \phi_{j} \frac{G_{c}}{l} \int_{\Omega} \frac{\partial \phi}{\partial \phi_{i}} + \frac{\partial^{2} \phi}{\partial \phi_{i}} + l^{2} \frac{\partial \nabla \phi}{\partial \phi_{j}} \cdot \frac{\partial \nabla \phi}{\partial \phi_{i}} + l^{2} \nabla \phi \cdot \frac{\partial^{2} \nabla \phi}{\partial \phi_{i}^{2}} d\Omega \, \delta \phi_{i}$$
[1.14]

#### 1.2. Numerical Work

$$\frac{\partial \Phi}{\partial \Phi_{i}} = -\frac{1}{l} \Phi \frac{\partial \zeta}{\partial f_{\text{base}}} N_{i}$$
 [1.15]

$$\frac{\partial \zeta}{\partial f_{\text{base}}} = \left(1 - \frac{f_{\text{base}}^2}{2(f_{\text{base}}^2 + k_{\text{res}})}\right) \cdot \frac{1}{\sqrt[4]{f_{\text{base}}^2 + k_{\text{res}}}}$$
[1.16]

$$\frac{\partial^2 \zeta}{\partial f_{\text{base}}^2} = \left(\frac{5f_{\text{base}}^3}{\left(f_{\text{base}}^2 + k_{\text{res}}\right)} - 6f_{\text{base}}\right) \cdot \frac{1}{4\sqrt[4]{f_{\text{base}}^2 + k_{\text{res}}}}$$
[1.17]

$$\frac{\partial^{3} \zeta}{\partial f_{\text{base}}^{3}} = \frac{3\left(-4k_{\text{res}}^{2} + 12k_{\text{res}}f_{\text{base}}^{2} + f_{\text{base}}^{4}\right)}{2\left(f_{\text{base}}^{2} + k_{\text{res}}\right)^{2}} \cdot \frac{1}{4\sqrt[4]{f_{\text{base}}^{2} + k_{\text{res}}}}$$
[1.18]

$$\frac{\partial^2 \phi}{\partial \phi_i^2} = \frac{1}{l^2} \left( \left( \frac{\partial \zeta}{\partial f_{\text{base}}} \right)^2 - \frac{\partial^2 \zeta}{\partial f_{\text{base}}^2} \right) N_i \cdot N_i$$
 [1.19]

5

2 Simplex Integration in n = 2

## 2. Simplex Integration in n = 2

First start with definitions:

**Pure Integration Strategy** is any quadrature formula of the simplex:

$$I = \iint_{\Delta} f(\xi_1, \xi_2, \xi_3) d\Delta \approx \sum_{i} w_i f(\xi_{1,i}, \xi_{2,i}, \xi_{3,i})$$
 [2.1]

The Term *pure* is used for telling them apart from subdivision integrators.

**Subdivision Integration Strategy** are Integrators of the form:

$$I = \iint_{\Delta} f(\xi_1, \xi_2, \xi_3) d\Delta = \sum_{i} \iint_{\Delta_i} f(\xi_1, \xi_2, \xi_3) d\Delta_i$$
 [2.2]

which then will be evaluated by pure Integrators.

#### 2.1. Element Description

Shape Functions in barycentric coordinates

$$N_{1}(\xi_{1}, \xi_{2}, \xi_{3}) = \xi_{1}$$

$$N_{2}(\xi_{1}, \xi_{2}, \xi_{3}) = \xi_{2}$$

$$N_{3}(\xi_{1}, \xi_{2}, \xi_{3}) = \xi_{3}$$

$$N_{4}(\xi_{1}, \xi_{2}, \xi_{3}) = 4\xi_{1}\xi_{3}$$

$$N_{5}(\xi_{1}, \xi_{2}, \xi_{3}) = 4\xi_{1}\xi_{2}$$

$$N_{6}(\xi_{1}, \xi_{2}, \xi_{3}) = 4\xi_{2}\xi_{3}$$
[2.3]
$$[2.4]$$

$$[2.5]$$

$$[2.6]$$

$$[2.7]$$

$$[2.7]$$

$$[2.8]$$

Barycentric Interpolation Formula  $P : \mathbb{B}^3 \to \mathbb{R}^2$ 

$$P(\xi_1, \xi_2, \xi_3) = p_1 \xi_1 + p_2 \xi_2 + p_3 \xi_3$$
 [2.9]

 $mit \ p_i \in \mathbb{R}^2, \, \xi_i \in [0,1]$ 

ξ-η-Transformation

$$\xi_1 := 1 - \xi - \eta$$
 [2.10]  
 $\xi_2 := \xi$  [2.11]  
 $\xi_3 := \eta$  [2.12]

mit  $\xi \in [0, 1]$ ,  $\eta \in [0, 1]$ Es gilt:

$$T(\xi, \eta) = \begin{bmatrix} 1 - \xi - \eta \\ \xi \\ \eta \end{bmatrix}$$
 [2.13]

$$T^{-1}(\xi_1, \xi_2, \xi_3) = \xi_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \xi_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \xi_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 [2.14]

Theory

Simplex Integration in n = 2

### 2.2. Pure Integration Strategies

#### 2.2.1. Quadrilaterial Integrator

Characteristic points in barycentric coordinates



Domain of a Simplex  $\Delta$  can be decomposed into three disjunct subdomains:

$$\Delta = D_1 \cup D_2 \cup D_3 \tag{2.18}$$

Therefore the double-Integral

$$\iint_{\Delta} F d\Delta = \iint_{D_1} F dD_1 + \iint_{D_2} F dD_2 + \iint_{D_3} F dD_3$$
 [2.19]

Mapping functions from the  $[-1,1] \times [-1,1] \times [-1]$  X-Y-Unit Square

$$g_1(X) = \frac{X}{2} + \frac{1}{2}$$
  $g_2(X) = -\frac{X}{2} + \frac{1}{2}$  [2.20]

$$\frac{\partial g_1}{\partial X} = \frac{1}{2}$$

$$g_1(Y) = \frac{Y}{2} + \frac{1}{2}$$

$$g_2(Y) = -\frac{Y}{2} + \frac{1}{2}$$
[2.21]

$$g_1(Y) = \frac{Y}{2} + \frac{1}{2}$$
  $g_2(Y) = -\frac{Y}{2} + \frac{1}{2}$  [2.22]

$$\frac{\partial g_1}{\partial Y} = \frac{1}{2} \qquad \qquad \frac{\partial g_2}{\partial Y} = -\frac{1}{2} \qquad [2.23]$$

$$G_1(X,Y) = g_1(X)g_1(Y)$$
  $G_2(X,Y) = g_1(X)g_2(Y)$  [2.24]

$$G_3(X,Y) = g_2(X)g_1(Y)$$
  $G_4(X,Y) = g_2(X)g_2(Y)$  [2.25]

to barycentric coordinates of the D<sub>1</sub>, D<sub>2</sub>, D<sub>3</sub> Quadrilaterials

$$B_{D_1}(X,Y) = B_1 \cdot G_1(X,Y) + B_5 \cdot G_2(X,Y) + B_4 \cdot G_3(X,Y) + B_C \cdot G_4(X,Y)$$
 [2.26]

$$B_{D_2}(X,Y) = B_2 \cdot G_1(X,Y) + B_6 \cdot G_2(X,Y) + B_5 \cdot G_3(X,Y) + B_C \cdot G_4(X,Y)$$
 [2.27]

$$B_{D_3}(X,Y) = B_3 \cdot G_1(X,Y) + B_4 \cdot G_2(X,Y) + B_6 \cdot G_3(X,Y) + B_C \cdot G_4(X,Y)$$
 [2.28]

**Numerical Integration Scheme** The Integration is done on the Square  $[-1,1] \times [-1,1]$ , which allows for Gaussian Integration to be used:

$$\iint_{[-1,1]\times[-1,1]} F(X,Y) d(X,Y) \approx \sum_{i} \sum_{j} F(X_{i},X_{j}) w_{i} w_{j}$$
 [2.29]

The Gauss-Points  $(X_i, X_j)$  and their weights  $w_i, w_j$  on the Square can be deduced from the one dimensional Gaussian Integration

$$\int_{-1}^{1} H(X) dX \approx \sum_{i} H(X_{i}) w_{i}$$
 [2.30]

The Weights and Points of the 1D Gauss-Legendre Integration are given as:

$$n = 1$$

$$X = 0$$

$$w = 2$$

$$X = \sqrt{\frac{1}{3}}$$

$$w = 1$$

$$X = -\sqrt{\frac{1}{3}}$$

$$w = 1$$

$$X = \sqrt{\frac{3}{5}}$$

$$X = 0$$

$$W = \frac{5}{9}$$

$$X = -\sqrt{\frac{3}{5}}$$

$$W = \frac{5}{9}$$

$$W = \frac{5}{9}$$

**Integral transformation** from the 3 Domains into any simplex.



Let S denote a Matrix of the coordinates of the vertices of the simplex in the following form

$$S = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$$
 [2.31]

The Coordinates C<sub>i</sub> of all characteristic points in Equations [2.15],[2.16] and [2.17] inside the simplex can be expressed in the following form

$$C_{C} = S \cdot B_{C}$$
 [2.32]

$$C_i = S \cdot B_i \quad \forall i \in 1, 2, ..., 6$$
 [2.33]

The transformation from points in the Integration Domain to the points in the barycentric given in [2.26],[2.27] and [2.28] can be expressed as

$$B_{D_{1}}(X,Y) = \begin{bmatrix} B_{1} & B_{5} & B_{4} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{4}(X,Y) \end{bmatrix}$$

$$B_{D_{2}}(X,Y) = \begin{bmatrix} B_{2} & B_{6} & B_{5} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{4}(X,Y) \end{bmatrix}$$

$$[2.34]$$

$$B_{D_2}(X,Y) = \begin{bmatrix} B_2 & B_6 & B_5 & B_C \end{bmatrix} \begin{bmatrix} G_1(X,Y) \\ G_2(X,Y) \\ G_3(X,Y) \\ G_4(X,Y) \end{bmatrix}$$
 [2.35]

$$B_{D_3}(X,Y) = \begin{bmatrix} B_3 & B_4 & B_6 & B_C \end{bmatrix} \begin{bmatrix} G_1(X,Y) \\ G_2(X,Y) \\ G_3(X,Y) \\ G_4(X,Y) \end{bmatrix}$$
[2.36]

With the Relationship given in [2.32] and [2.33] one can rewrite this as

$$C_{D_{1}}(X,Y) = S \begin{bmatrix} B_{1} & B_{5} & B_{4} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{4}(X,Y) \end{bmatrix}$$

$$C_{D_{2}}(X,Y) = S \begin{bmatrix} B_{2} & B_{6} & B_{5} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{4}(X,Y) \end{bmatrix}$$

$$C_{D_{3}}(X,Y) = S \begin{bmatrix} B_{3} & B_{4} & B_{6} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{3}(X,Y) \\ G_{3}(X,Y) \end{bmatrix}$$

$$[2.37]$$

$$C_{D_{2}}(X,Y) = S \begin{bmatrix} B_{2} & B_{6} & B_{5} & B_{C} \end{bmatrix} \begin{bmatrix} G_{1}(X,Y) \\ G_{2}(X,Y) \\ G_{3}(X,Y) \\ G_{4}(X,Y) \end{bmatrix}$$
[2.38]

$$C_{D_3}(X,Y) = S \begin{bmatrix} B_3 & B_4 & B_6 & B_C \end{bmatrix} \begin{bmatrix} G_1(X,Y) \\ G_2(X,Y) \\ G_3(X,Y) \\ G_4(X,Y) \end{bmatrix}$$
[2.39]

With the Jacobi Matrix of any particular Domain being

$$J(C_{D_i}) = \begin{bmatrix} \frac{\partial C_{D_i}}{\partial X} & \frac{\partial C_{D_i}}{\partial Y} \end{bmatrix} = \begin{bmatrix} C_i & C_j & C_k & C_C \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial G_1}{\partial X} & \frac{\partial G_1}{\partial Y} \\ \frac{\partial G_2}{\partial X} & \frac{\partial G_2}{\partial Y} \\ \frac{\partial G_3}{\partial X} & \frac{\partial G_3}{\partial Y} \\ \frac{\partial G_3}{\partial X} & \frac{\partial G_3}{\partial Y} \end{bmatrix}$$
[2.40]

 $\textbf{Gauss Point Distribution} \quad \text{for the three Orders of Integration used}.$ 



Gauss Points n = 1 Gauss Points n = 2 Gauss Points n = 3

## 2.2.2. Sphere Integrator

### 2.2.3. Other Quadrature Formulas

#### 2.3. Subdivision Integration Strategy

Because any triangle can be decomposed into 4 similar triangles, the subdivision algorithm turns out to be quite practical in implementation.

The Integral over a parent Simplex  $\Delta_p$ , can be expressed as an Integral over 4 Child Simpleces  $\Delta_i$ :

$$\iint_{\Delta_{p}} F d\Delta_{p} = \iint_{\Delta_{1}} F d\Delta_{1} + \iint_{\Delta_{2}} F d\Delta_{2} + \iint_{\Delta_{3}} F d\Delta_{3} + \iint_{\Delta_{4}} F d\Delta_{4}$$
 [2.41]

The Coordinates of a Child Simplex  $\Delta_i$  can be expressed in local-barycentric coordi-

nates  $\xi'_{i,1}$ ,  $\xi'_{i,2}$ ,  $\xi'_{i,3}$  The corresponding Transformation from the local coordinate System into the global is given by



$$T_{lg}(\xi'_{i,1}, \xi'_{i,2}, \xi'_{i,3}) = B_{i,1}\xi'_{i,1} + B_{i,2}\xi'_{i,2} + B_{i,3}\xi'_{i,3}$$
[2.42]

where  $B_{i,j}$  are the coordinates of the Verteces of the Child Simplex  $\Delta_i$ .

This can be done recursively, to get a desired accuracy.

## 2.4. Simplex Subdivision

A Criterion for adaptive integration from [1]

$$Q = \iint_{\Delta} F d\Delta$$
 [2.43]

$$\varepsilon = \left| Q - \iint_{\Delta_{\mathbf{p}}} F \, d\Delta_{\mathbf{p}} \right| \tag{2.44}$$

The Coordinates of the Verteces of the 4 Child Simplizes  $\Delta_i$  can be calculated with S by

$$S_{\Delta,1} = S \cdot B_{\Delta,1} = S \cdot \begin{bmatrix} B_1 & B_5 & B_4 \end{bmatrix} = S \cdot \begin{bmatrix} 1 & 0.5 & 0.5 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$
 [2.45]

$$S_{\Delta,2} = S \cdot B_{\Delta,2} = S \cdot \begin{bmatrix} B_2 & B_6 & B_5 \end{bmatrix} = S \cdot \begin{bmatrix} 0 & 0 & 0.5 \\ 1 & 0.5 & 0.5 \\ 0 & 0.5 & 0 \end{bmatrix}$$
 [2.46]

$$S_{\Delta,3} = S \cdot B_{\Delta,3} = S \cdot \begin{bmatrix} B_3 & B_4 & B_6 \end{bmatrix} = S \cdot \begin{bmatrix} 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \\ 1 & 0.5 & 0.5 \end{bmatrix}$$
 [2.47]

$$S_{\Delta,4} = S \cdot B_{\Delta,4} = S \cdot \begin{bmatrix} B_4 & B_5 & B_6 \end{bmatrix} = S \cdot \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \end{bmatrix}$$
 [2.48]

Coordinates of any Grandchild-Simplizes can be calculated by chaining  $B_{\Delta,i}$  Transformations



## 3. Simplex Integration in n = 3



## 3.1. Space Definition

In a  $\mathbb{R}^3$  Simplex, the barycentric coordinates  $\mathbb{B}^4$  need to be used:

$$\mathbb{B}^4 = \{\xi_1, \, \xi_2, \, \xi_3, \, \xi_4 \in [0, 1] | \xi_1 + \xi_2 + \xi_3 + \xi_4 = 1\}$$
 [3.1]

where each set of coordinates corresponds to a point inside the simplex, spanned by the Coordinates in  $\mathbb{R}^3$ 

$$C_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \qquad C_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \qquad C_3 = \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} \qquad C_4 = \begin{bmatrix} x_4 \\ y_4 \\ z_4 \end{bmatrix} \qquad [3.2]$$

The points  $C_i$  can be written in Matrix Form

$$\underline{\mathbf{C}} = \begin{bmatrix} C_1 & C_2 & C_3 & C_4 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{bmatrix}$$
[3.3]

A mapping  $M_B : \mathbb{B}^4 \to \mathbb{R}^3$  can be written as

$$C = \underline{\mathbf{C}} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{bmatrix}$$
 [3.4]

#### 3.2. Common Mappings

The Reference Element in Finite Element Analysis is often given in a  $\xi$ ,  $\eta$ ,  $\zeta$  Coordinates. The set of coordinates spanning this **Reference Space**  $\mathbb{R}^3_r$  can be mapped via  $M_R: \mathbb{R}^3_r \to \mathbb{B}^4$  to barycentric coordinates

$$B = \begin{bmatrix} -1 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \xi \\ \eta \\ \zeta \\ 1 \end{bmatrix} \qquad R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{bmatrix}$$
[3.5]

A Trandformation of the subspace  $\mathbb{B}^4_S$ -Space with its supspace barycentric coordinates  $\xi_{S,i}$  into its greater space  $\mathbb{B}^4$  can be denoted by

$$B = \begin{bmatrix} B_1 & B_2 & B_3 & B_4 \end{bmatrix} \cdot \begin{bmatrix} \xi_{S,1} \\ \xi_{S,2} \\ \xi_{S,3} \\ \xi_{S,4} \end{bmatrix}$$
 [3.6]

## 3.3. Pure Integration Strategy

3 Literatur

# Literatur

[1] Pedro Gonnet. "A Review of Error Estimation in Adaptive Quadrature". In: *ACM Computing Surveys* 44.4 (Aug. 2012), S. 1–36. ISSN: 0360-0300, 1557-7341. DOI: 10. 1145/2333112.2333117. URL: https://dl.acm.org/doi/10.1145/2333112.2333117 (besucht am 07.05.2023).