Archer Hernandez, Sean L.

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [8,15]

$$y = \sin^2 \frac{117}{x}$$

```
>> x = linspace( , ,1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 117 = 0$.

```
>> format short
>> roots(

ans =

1.6413 + 1.1530i
1.6413 - 1.1530i
-0.5579 + 1.8659i
-0.5579 - 1.8659i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{117 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 117$$

over the interval [15,18] on the same graph.

```
>> x = linspace(15,18);
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 117$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{117}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{117}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00100000000000 -4.680936187241968

0.00010000000000 -4.680093601869827

Belli, Erenik

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $7.0000\ 8.5000\ 10.0000\ 11.5000\ 13.0000$

2. Fill in the blanks in the MATLAB screenshot.

```
>> : :
```

ans =

7.0000 8.5000 10.0000 11.5000 13.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,13]

$$y = \sin^2 \frac{133}{r}$$

```
>> x = linspace( , , , , 1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 133 = 0$.

```
>> format short
>> roots(

ans =

1.6825 + 1.1830i
1.6825 - 1.1830i
-0.5737 + 1.9145i
-0.5737 - 1.9145i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{133 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 133$$

over the interval [17,20] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 133$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{133}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{133}{x}$.

```
f.m

function y = f(x)

;
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =
0.10000000000000000 -5.428571428571409
0.0100000000000000 -5.330661322645013
0.0010000000000000 -5.321064212843395
```

0.00010000000000 -5.320106402102453

Calaguas, Isah

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [9,12]

$$y = \sin^2 \frac{137}{x}$$

```
>> x = linspace( , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 137 = 0$.

```
>> format short
>> roots(

ans =

1.6922 + 1.1901i
1.6922 - 1.1901i
-0.5773 + 1.9259i
-0.5773 - 1.9259i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{137 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 137$$

over the interval [18,21] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 137$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{137}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{137}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.1000000000000000 -5.591836734693878
0.010000000000000 -5.490981963927765
0.0010000000000000 -5.481096219245528
```

0.00010000000000 -5.480109602196136

Checchi, David

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,18]

$$y = \sin^2 \frac{108}{x}$$

```
>> x = linspace( , , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 108 = 0$.

```
>> format short
>> roots(

ans =

1.6161 + 1.1346i

1.6161 - 1.1346i
-0.5483 + 1.8362i
-0.5483 - 1.8362i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{108 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 108$$

over the interval [14,17] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 108$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{108}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{108}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.1000000000000000 -4.408163265306086
0.010000000000000 -4.328657314628969
0.0010000000000000 -4.320864172836280
```

0.00010000000000 -4.320086401712330

Chen, Haoying

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 ${f 2}$. Fill in the blanks in the MATLAB screenshot.

```
ans =

5.0000 7.2000 9.4000 11.6000 13.8000 16.0000
```

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [5,16]

$$y = \sin^2 \frac{138}{r}$$

4. Find the real solution to $4x^5 - x^4 + 138 = 0$.

```
>> format short
>> roots(

ans =

1.6946 + 1.1918i
1.6946 - 1.1918i
-0.5783 + 1.9287i
-0.5783 - 1.9287i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{138 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 138$$

over the interval [18,21] on the same graph.

```
>> x = linspace(18,21);
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 138$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{138}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{138}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -5.520110402166266

Fazio, Greg T

1. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

```
>> : ::
```

5.0000 7.5000 10.0000 12.5000 15.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [5,15]

$$y = \sin^2 \frac{127}{x}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 127 = 0$.

```
>> format short
>> roots(

ans =

1.6676 + 1.1721i
1.6676 - 1.1721i
-0.5679 + 1.8968i
-0.5679 - 1.8968i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{127 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 127$$

over the interval [17,20] on the same graph.

```
>> x = linspace(17,20);
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 127$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{127}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{127}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.01000000000000 -5.090180360721418 0.00100000000000 -5.081016203245524 0.000100000000000 -5.080101602032982

Ganaway, Reese A

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,19]

$$y = \sin^2 \frac{130}{x}$$

```
>> x = linspace( , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 130 = 0$.

```
>> format short
>> roots(

ans =

1.6751 + 1.1776i
1.6751 - 1.1776i
-0.5708 + 1.9057i
-0.5708 - 1.9057i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{130 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 130$$

over the interval [17,20] on the same graph.

```
>> x = linspace(17,20);
>> f = ;
>> g = ;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 130$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{130}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{130}{x}$.

```
function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

Gavilanes, Anthony Brando

1. Fill in the blanks in the MATLAB screenshot.

ans =

7.0000 8.6000 10.2000 11.8000 13.4000 15.0000

2. Fill in the blanks in the MATLAB screenshot.

ans =

7.0000 8.6000 10.2000 11.8000 13.4000 15.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,15]

$$y = \sin^2 \frac{129}{x}$$

```
>> x = linspace( , , , 1000);
>> y = ;
```


4. Find the real solution to $4x^5 - x^4 + 129 = 0$.

```
>> format short
```

>> roots(

ans =

1.6726 + 1.1758i 1.6726 - 1.1758i -0.5699 + 1.9028i

-0.5699 - 1.9028i

-0.5699 - 1.90281 + 0.0000i

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{129 \arccos x}{100\sqrt{1-x}}$$

```
>> format long
>> x = _____;
>> y = ____;
>> [x;y]'
```

ans =

0.90000000000000 1.839890894293573 0.99000000000000 1.825859205885111 0.999000000000000 1.824487557635722 0.999900000000000 1.824350698599161

0.99999000000000

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 129$$

over the interval [17,20] on the same graph.

```
>> x = linspace(17,20);
>> f =
```


decimal place.
$$x =$$

Let
$$f(x) = \frac{129}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{129}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x = ___;
>> h = ___;
>> [h; (f(x+h)-f(x))./h]'
```

ans =

0.10000000000000 -5.265306122448941

0.01000000000000 -5.170340681362616 0.00100000000000 -5.161032206441262

0.00010000000000 -5.160103202044296

Jaundoo, Martin Aaron

1. Fill in the blanks in the MATLAB screenshot.

- 4.0000 8.0000 12.0000
- $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,12]

$$y = \sin^2 \frac{99}{x}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 99 = 0$.

```
>> format short
>> roots(

ans =

1.5892 + 1.1150i
1.5892 - 1.1150i
-0.5380 + 1.8044i
-0.5380 - 1.8044i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

+ 0.0000i

$$\lim_{x \to 1^{-}} \frac{99 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 99$$

over the interval [13,16] on the same graph.

```
>> x = linspace(13,16);
>> f = ;
>> g = ;
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 99$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{99}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{99}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x = ___;
>> h = ___;
>> [h; (f(x+h)-f(x))./h]'
```

ans =

0.10000000000000 -4.040816326530603 0.01000000000000 -3.967935871743221 0.001000000000000 -3.960792158430592 0.000100000000000 -3.960079201554833

Kazmi, Maha

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

7.0000 8.2000 9.4000 10.6000 11.8000 13.0000

2. Fill in the blanks in the MATLAB screenshot.

7.0000 8.2000 9.4000 10.6000 11.8000 13.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,13]

$$y = \sin^2 \frac{89}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 89 = 0$.

```
>> format short
>> roots(

ans =

1.5568 + 1.0914i
1.5568 - 1.0914i
-0.5257 + 1.7663i
-0.5257 - 1.7663i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{89 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 89$$

over the interval [11,14] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 89$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{89}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{89}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.01000000000000 -3.567134268536875 0.00100000000000 -3.560712142430588 0.000100000000000 -3.560071201391679

Khan, Ahsan

1. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,11]

$$y = \sin^2 \frac{107}{r}$$

```
>> x = linspace( , , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 107 = 0$.

```
>> format short
>> roots(

ans =

1.6132 + 1.1325i
1.6132 - 1.1325i
-0.5472 + 1.8328i
-0.5472 - 1.8328i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{107 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 107$$

over the interval [14,17] on the same graph.

```
>> x = linspace(14,17);
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 107$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{107}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{107}{x}$.

```
function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.10000000000000000 -4.367346938775505
0.0100000000000000 -4.288577154308725
0.00100000000000000 -4.280856171238411
```

0.00010000000000 -4.280085601706673

Krawiec, Eryk

1. Fill in the blanks in the MATLAB screenshot.

4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

2. Fill in the blanks in the MATLAB screenshot.

4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,14]

$$y = \sin^2 \frac{125}{x}$$

```
>> x = linspace( , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 125 = 0$.

```
>> format short
>> roots(

ans =

1.6624 + 1.1684i
1.6624 - 1.1684i
-0.5660 + 1.8908i
-0.5660 - 1.8908i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{125 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 125$$

over the interval [17,20] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 125$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{125}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{125}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -5.000100001986140

Lambert, Ashley

1. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [6,17]

$$y = \sin^2 \frac{84}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 84 = 0$.

```
>> format short
>> roots(

ans =

1.5396 + 1.0788i
1.5396 - 1.0788i
-0.5191 + 1.7459i
-0.5191 - 1.7459i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{84 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 84$$

over the interval [11,14] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 84$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{84}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{84}{x}$.

```
function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -3.360067201327865

Lawal, Ishaq M

- 1. Fill in the blanks in the MATLAB screenshot.

 - 4.0000 7.0000 10.0000
- 2. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,10]

$$y = \sin^2 \frac{103}{x}$$

>> x = linspace(, , ,1000); >> y = ; >> plot(x,y)

- **4**. Find the real solution to $4x^5 x^4 + 103 = 0$.
 - >> format short
 >> roots(

 ans =

 1.6014 + 1.1239i
 1.6014 1.1239i
 -0.5427 + 1.8188i
 -0.5427 1.8188i
- ${f 5}$. Make a limit table with 5 rows to estimate

+ 0.0000i

$$\lim_{x \to 1^-} \frac{103 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 103$$

over the interval [13,16] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 103$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{103}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{103}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x = __;
>> h = __;
>> [h; (f(x+h)-f(x))./h]'
```

ans =

0.10000000000000 -4.204081632653036 0.01000000000000 -4.128256513025973 0.00100000000000 -4.120824164832725 0.000100000000000 -4.120082401612989 0.0000100000000000

Mercedes, Janyah

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [9,16]

$$y = \sin^2 \frac{67}{x}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 67 = 0$.

```
>> format short
>> roots(

ans =

1.4739 + 1.0310i
1.4739 - 1.0310i
-0.4940 + 1.6685i
-0.4940 - 1.6685i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{67 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 67$$

over the interval [8,11] on the same graph.

```
>> x = linspace( 8,11 );
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 67$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{67}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{67}{x}$.

```
f.m

function y = f(x)

;
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -2.680053601054055

Nyong, Daniel Eno

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

8.0000 10.2000 12.4000 14.6000 16.8000 19.0000

 $oldsymbol{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [8,19]

$$y = \sin^2 \frac{108}{x}$$

4. Find the real solution to $4x^5 - x^4 + 108 = 0$.

```
>> format short
>> roots(

ans =

1.6161 + 1.1346i
1.6161 - 1.1346i
-0.5483 + 1.8362i
-0.5483 - 1.8362i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{108 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 108$$

over the interval [14,17] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 108$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{108}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{108}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -4.320086401712330

Pasquale, Steven Michael

- ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 - 4.0000 5.7500 7.5000 9.2500 11.0000
- 2. Fill in the blanks in the MATLAB screenshot.

4.0000 5.7500 7.5000 9.2500 11.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,11]

$$y = \sin^2 \frac{91}{x}$$

>> x = linspace(, , ,1000); >> y = ; >> plot(x,y)

- 4. Find the real solution to $4x^5 x^4 + 91 = 0$.
 - >> format short
 >> roots(
)
 ans =
 - 1.5635 + 1.0963i 1.5635 - 1.0963i -0.5282 + 1.7742i -0.5282 - 1.7742i + 0.0000i
- ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{91 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 91$$

over the interval [11,14] on the same graph.

>> x = linspace(11,14); >> f = ; >> g = ;

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 91$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{91}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{91}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x = ;
>> h = ;
>> [h; (f(x+h)-f(x))./h]'
```

ans =

0.10000000000000 -3.714285714285701 0.010000000000000 -3.647294589178428 0.00100000000000 -3.640728145629878 0.000100000000000 -3.640072801438520

Peleshenko, Oksana

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

5.0000 6.6000 8.2000 9.8000 11.4000 13.0000

2. Fill in the blanks in the MATLAB screenshot.

5.0000 6.6000 8.2000 9.8000 11.4000 13.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [5,13]

$$y = \sin^2 \frac{61}{x}$$

```
>> x = linspace( , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 61 = 0$.

```
>> format short
>> roots(
)
ans =
```

1.4475 + 1.0117i 1.4475 - 1.0117i -0.4839 + 1.6374i -0.4839 - 1.6374i + 0.0000i

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{61 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 61$$

over the interval [7,10] on the same graph.

```
>> x = linspace( 7,10 );
>> f = ;
>> g = ;
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 61$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{61}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{61}{x}$.

```
f.m

function y = f(x)

;
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x = ;
>> h = ;
>> [h; (f(x+h)-f(x))./h]'
```

ans =

0.10000000000000 -2.489795918367346 0.01000000000000 -2.444889779559211 0.00100000000000 -2.440488097620985 0.000100000000000 -2.440048800984584

Rosales, Gustavo

1. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

6.0000 6.8000 7.6000 8.4000 9.2000 10.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [6,10]

$$y = \sin^2 \frac{149}{r}$$

```
>> x = linspace( , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 149 = 0$.

```
>> format short
>> roots(

ans =

1.7199 + 1.2103i
1.7199 - 1.2103i
-0.5879 + 1.9586i
-0.5879 - 1.9586i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{149 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 149$$

over the interval [20,23] on the same graph.

```
>> x = linspace(20,23);
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 149$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{149}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{149}{x}$.

```
f.m
function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.10000000000000000 -6.081632653061213
0.0100000000000000 -5.971943887775310
```

0.010000000000000 -5.971943887775310 0.001000000000000 -5.961192238448374 0.000100000000000 -5.960119202370605

Sanusi, Babajide Habib

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

```
ans =
```

- 9.0000 11.0000 13.0000 15.0000 17.0000 19.0000
- $oldsymbol{2}$. Fill in the blanks in the MATLAB screenshot.

```
>> : :
ans =
```

- 9.0000 11.0000 13.0000 15.0000 17.0000 19.0000
- $oldsymbol{3}$. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [9,19]

$$y = \sin^2 \frac{134}{r}$$

```
>> y =
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 134 = 0$.

```
>> format short
>> roots(
ans =
1.6850 + 1.1848i
1.6850 - 1.1848i
-0.5746 + 1.9173i
-0.5746 - 1.9173i
+ 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{134 \arccos x}{100\sqrt{1-x}}$$

```
>> format long
>> x =
>> y =
>> [x;y]'
ans =
0.90000000000000 1.911204494847587
0.99000000000000 1.896628942547325
0.99900000000000 1.895204129637107
0.99990000000000 1.895061965986726
0.99999000000000
```

 $oldsymbol{6}$. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 134$$

over the interval [17,20] on the same graph.

```
>> x = linspace(17,20);
>> g =
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 134$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{134}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{134}{x}$.

```
f.m
function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =
>> h =
>> [h; (f(x+h)-f(x))./h]
ans =
0.10000000000000 -5.469387755102026
0.01000000000000 -5.370741482965612
```

- 0.00100000000000 -5.361072214444817
- 0.00010000000000 -5.360107202108110
- 0.000010000000000

Shablovsky, Jason

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

7.0000 8.4000 9.8000 11.2000 12.6000 14.0000

2. Fill in the blanks in the MATLAB screenshot.

7.0000 8.4000 9.8000 11.2000 12.6000 14.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,14]

$$y = \sin^2 \frac{118}{r}$$

4. Find the real solution to $4x^5 - x^4 + 118 = 0$.

```
>> format short
>> roots(

ans =

1.6440 + 1.1550i
1.6440 - 1.1550i
-0.5589 + 1.8691i
-0.5589 - 1.8691i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{118 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 118$$

over the interval [15,18] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 118$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{118}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{118}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.010000000000000 -4.729458917835315 0.00100000000000 -4.720944188836284 0.000100000000000 -4.720094401875484

Shaheen, Hina

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [8,13]

$$y = \sin^2 \frac{102}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 102 = 0$.

```
>> format short
>> roots(

ans =

1.5984 + 1.1217i
1.5984 - 1.1217i
-0.5415 + 1.8153i
-0.5415 - 1.8153i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{102 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 102$$

over the interval [13,16] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 102$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{102}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{102}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.1000000000000000 -4.163265306122454
0.010000000000000 -4.088176352705374
0.0010000000000000 -4.080816163234856
0.00010000000000000 -4.080081601642859
```

Shalodi, Majd

1. Fill in the blanks in the MATLAB screenshot.

4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

2. Fill in the blanks in the MATLAB screenshot.

4.0000 6.0000 8.0000 10.0000 12.0000 14.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,14]

$$y = \sin^2 \frac{73}{r}$$

```
>> x = linspace( , , , 1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 73 = 0$.

```
>> format short
>> roots(

ans =

1.4984 + 1.0489i
1.4984 - 1.0489i
-0.5034 + 1.6975i
-0.5034 - 1.6975i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{73 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 73$$

over the interval [9,12] on the same graph.

```
>> x = linspace( 9,12 );
>> f =
>> g =
;
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 73$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{73}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{73}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

Shenouda, Andrew

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $oldsymbol{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [9,15]

$$y = \sin^2 \frac{98}{x}$$

4. Find the real solution to $4x^5 - x^4 + 98 = 0$.

```
>> format short
>> roots(

ans =

1.5861 + 1.1127i
1.5861 - 1.1127i
-0.5368 + 1.8008i
-0.5368 - 1.8008i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{98 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 98$$

over the interval [13,16] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 98$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{98}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{98}{x}$.

```
function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.1000000000000000 -3.9999999999999986
0.0100000000000000 -3.927855711422622
0.00100000000000000 -3.920784156832723
```

0.00010000000000 -3.920078401549175

Stepanova, Maria

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

```
>> : :
```

5.0000 7.5000 10.0000 12.5000 15.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [5,15]

$$y = \sin^2 \frac{85}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 85 = 0$.

```
>> format short
>> roots(

ans =

1.5431 + 1.0814i
1.5431 - 1.0814i
-0.5204 + 1.7501i
-0.5204 - 1.7501i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{85 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 85$$

over the interval [11,14] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 85$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{85}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{85}{x}$.

```
f.m function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -3.400068001369049

Suffiullah, Muhammad

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

ans =

- 4.0000 6.2000 8.4000 10.6000 12.8000 15.0000
- $oldsymbol{2}$. Fill in the blanks in the MATLAB screenshot.

```
>> : :
```

ans =

- 4.0000 6.2000 8.4000 10.6000 12.8000 15.0000
- $oldsymbol{3}$. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,15]

$$y = \sin^2 \frac{50}{x}$$

```
>> y =
```


4. Find the real solution to $4x^5 - x^4 + 50 = 0$.

```
>> format short
```

>> roots(

ans =

1.3932 + 0.9721i1.3932 - 0.9721i

-0.4632 + 1.5734i

-0.4632 - 1.5734i

+ 0.0000i

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{50 \arccos x}{100\sqrt{1-x}}$$

```
>> format long
>> x =
>> y =
>> [x;y]'
```

ans =

0.90000000000000 0.713136005540144

0.99000000000000 0.707697366622136

0.99900000000000 0.707165720013846

0.99990000000000 0.707112673875644

0.99999000000000

 $oldsymbol{6}$. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 50$$

over the interval [6,9] on the same graph.

```
>> x = linspace( 6,9 );
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 50$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{50}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{50}{x}$.

```
f.m
function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =
>> h =
>> [h; (f(x+h)-f(x))./h],
```

ans =

0.10000000000000 -2.040816326530610

0.01000000000000 -2.004008016032088

0.00100000000000 -2.000400080016007 0.00010000000000 -2.000040000798009

Thomas, Michael A

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

 $\mathbf{2}$. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [5,12]

$$y = \sin^2 \frac{84}{x}$$

```
>> x = linspace( , , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 84 = 0$.

```
>> format short
>> roots(

ans =

1.5396 + 1.0788i
1.5396 - 1.0788i
-0.5191 + 1.7459i
-0.5191 - 1.7459i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{84 \, \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 84$$

over the interval [11,14] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 84$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{84}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{84}{x}$.

```
f.m

function y = f(x)

;
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =     ;
>> h =     ;
>> [h; (f(x+h)-f(x))./h]'
ans =

0.1000000000000000 -3.428571428571416
0.0100000000000000 -3.366733466933880
0.00100000000000000 -3.360672134427033
```

0.00010000000000 -3.360067201327865

Wu,Jiamin

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

4.0000 5.8000 7.6000 9.4000 11.2000 13.0000

2. Fill in the blanks in the MATLAB screenshot.

4.0000 5.8000 7.6000 9.4000 11.2000 13.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,13]

$$y = \sin^2 \frac{92}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 92 = 0$.

```
>> format short
>> roots(

ans =

1.5668 + 1.0987i
1.5668 - 1.0987i
-0.5295 + 1.7781i
-0.5295 - 1.7781i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{92 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 92$$

over the interval [12,15] on the same graph.

```
>> x = linspace(12,15);
>> f =
>> g =
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 92$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{92}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{92}{x}$.

```
function y = f(x);
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.01000000000000 -3.687374749499027 0.00100000000000 -3.680736147231300 0.000100000000000 -3.680073601479704

Xie, Miaoqin

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [9,10]

$$y = \sin^2 \frac{123}{x}$$

```
>> x = linspace( , , , 1000);
>> y = ;
>> plot(x,y)
```

4. Find the real solution to $4x^5 - x^4 + 123 = 0$.

```
>> format short
>> roots(

ans =

1.6573 + 1.1646i
1.6573 - 1.1646i
-0.5640 + 1.8847i
-0.5640 - 1.8847i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{123 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 123$$

over the interval [16,19] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 123$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{123}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{123}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

Zaalishvili, Alex

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

4.0000 5.6000 7.2000 8.8000 10.4000 12.0000

 $oldsymbol{2}$. Fill in the blanks in the MATLAB screenshot.

```
>> : :
ans =
```

4.0000 5.6000 7.2000 8.8000 10.4000 12.0000

 $oldsymbol{3}$. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [4,12]

$$y = \sin^2 \frac{73}{r}$$

```
>> y =
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 73 = 0$.

```
>> format short
>> roots(
ans =
1.4984 + 1.0489i
1.4984 - 1.0489i
-0.5034 + 1.6975i
-0.5034 - 1.6975i
 + 0.0000i
```

5. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{73 \arccos x}{100\sqrt{1-x}}$$

```
>> format long
>> x =
>> y =
>> [x;y]'
ans =
0.90000000000000 1.041178568088611
0.99000000000000 1.033238155268319
0.99900000000000 1.032461951220215
0.99990000000000 1.032384503858440
0.99999000000000
```

 $oldsymbol{6}$. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 73$$

over the interval [9,12] on the same graph.

```
>> x = linspace( 9,12 );
>> g =
>> plot(x,f,x,g)
```


7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 73$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{73}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{73}{x}$.

```
f.m
function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
>> clear f
>> x =
>> h =
>> [h; (f(x+h)-f(x))./h]
ans =
0.01000000000000 -2.925851703406756
```

0.00100000000000 -2.920584116823831 0.00010000000000 -2.920058401159053

Zaidi, Qumber

1. Fill in the blanks in the MATLAB screenshot.

2. Fill in the blanks in the MATLAB screenshot.

7.0000 8.2500 9.5000 10.7500 12.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,12]

$$y = \sin^2 \frac{148}{r}$$

```
>> x = linspace( , , ,1000);
>> y = ;
>> plot(x,y)
```


4. Find the real solution to $4x^5 - x^4 + 148 = 0$.

```
>> format short
>> roots(

ans =

1.7177 + 1.2087i
1.7177 - 1.2087i
-0.5871 + 1.9559i
-0.5871 - 1.9559i
+ 0.0000i
```

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^-} \frac{148 \arccos x}{100\sqrt{1-x}}$$

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 148$$

over the interval [19,22] on the same graph.

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 148$ to 1 decimal place.

$$x =$$

Let
$$f(x) = \frac{148}{x}$$
 for questions 8 and 9

8. Make a function file for $f(x) = \frac{148}{x}$.

```
f.m
function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

0.00010000000000 -5.920118402329421

REVIEW SHEET VERSION

 ${f 1}$. Fill in the blanks in the MATLAB screenshot.

ans =

7.0000 8.2000 9.4000 10.6000 11.8000 13.0000

2. Fill in the blanks in the MATLAB screenshot.

```
>> : :
```

ans =

7.0000 8.2000 9.4000 10.6000 11.8000 13.0000

3. Fill in the blanks in the MATLAB screenshot, where we plot over the interval [7,13]

$$y = \sin^2 \frac{96}{x}$$

- >> x = linspace(, , ,1000); >> y = ;
- >> plot(x,y)

4. Find the real solution to $4x^5 - x^4 + 96 = 0$.

```
>> format short
```

ans =

1.5797 + 1.1081i

1.5797 - 1.1081i -0.5344 + 1.7933i

-0.5344 - 1.7933i

+ 0.0000i

 ${f 5}$. Make a limit table with 5 rows to estimate

$$\lim_{x \to 1^{-}} \frac{96 \arccos x}{100\sqrt{1-x}}$$

```
>> format long
```

- >> x =
- >> y =
- >> [x;y]'

ans =

- 0.90000000000000 1.369221130637077
- 0.99000000000000 1.358778943914501
- 0.99900000000000 1.357758182426584 0.99990000000000 1.357656333841236
- 0.99999000000000

6. Fill in the blanks in the MATLAB screenshot, where we plot the left and right sides of the equation

$$2\cos(3x) = -7x + 96$$

over the interval [12,15] on the same graph.

- >> f =
- >> g =
- >> plot(x,f,x,g)

7. Using the graph you produce in Question 6, estimate the solution to $2\cos(3x) = -7x + 96$ to 1 decimal place.

$$x =$$

Let $f(x) = \frac{96}{x}$ for questions 8 and 9

8. Make a function file for $f(x) = \frac{96}{x}$.

```
f.m function y = f(x)
```

9. Estimate f'(-5) by making a limit table with 5 rows.

```
>> format long
```

- >> clear f
- >> x =
- >> h =
- >> [h; (f(x+h)-f(x))./h]

ans =

0.10000000000000 -3.918367346938751

- 0.0100000000000 -3.847695390781424
- 0.00100000000000 -3.840768153633433
- 0.00010000000000 -3.840076801537861
- 0.000010000000000