PLP - 21

TOPIC 21—GENERALISING INDUCTION (A BIT)

Demirbaş & Rechnitzer

TWO GENERALISATIONS OF INDUCTION

A GENERALISATION

THEOREM: MATHEMATICAL INDUCTION.

Let $\ell \in \mathbb{Z}$ and $S = \{n \in \mathbb{Z} ext{ s.t. } n \geq \ell\}$. Let P(n) be a statement for all $n \in S$. Then if

- $P(\ell)$ is true, and
- $ullet P(k) \Longrightarrow P(k+1)$ is true for all integer $k \in S$ then P(n) is true for all $n \in S$.

PROPOSITION:

For every integer $n \geq 5$, $2^n \geq n^2$

PROOF

PROOF.

We prove the result by induction. Since $2^5=32>25=5^2$, the result holds when n=5. Now assume that $k\geq 5$ and that $2^k\geq k^2$. Then

$$egin{array}{lll} 2^{k+1} & \geq 2k^2 = k^2 + k^2 \ & \geq k^2 + 5k & ext{since } k \geq 5 \ & = k^2 + 2k + 3k \ & \geq k^2 + 2k + 1 & ext{since } k \geq 5 \end{array}$$

Thus the inductive step holds for $k \geq 5$.

The result follows for all integer $n \geq 5$ by induction.

ANOTHER GENERALISATION

THEOREM: STRONG MATHEMATICAL INDUCTION.

Let $\ell \in \mathbb{Z}$ and $S = \{n \in \mathbb{Z} \text{ s.t. } n \geq \ell\}$. Let P(n) be a statement for all $n \in S$. Then if

- $P(\ell)$ is true, and
- $(P(\ell) \land P(\ell+1) \land P(\ell+2) \land \cdots \land P(k)) \implies P(k+1)$ is true for all integer $k \in S$ then P(n) is true for all $n \in S$.

PROPOSITION:

Let $\theta \in \mathbb{R}$ be fixed.

Let $p_0=1, p_1=\cos \theta$, and $p_n=2p_1p_{n-1}-p_{n-2}$. Then $p_n=\cos(n\theta)$ for all integer $n\geq 0$.

A LITTLE TRIGONOMETRIC REMINDER

Recall that

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
 $\cos(a-b) = \cos a \cos b + \sin a \sin b$

PROOF.

We prove the result by strong induction. When n=0 we have $p_0=\cos 0=1$ as required. Now assume that $p_j=\cos j heta$ for $j=0,1,2,\ldots k$. Now consider $p_{k+1}=2p_1p_k-p_{k-1}$

$$egin{aligned} p_{k+1} &= 2\cos heta\cos k heta - \cos(k-1) heta \ &= 2\cos heta\cos k heta - (\cos k heta\cos heta + \sin heta\sin k heta) \ &= \cos heta\cos k heta - \sin heta\sin k heta \ &= \cos((k+1) heta) \end{aligned}$$

as required. So the result holds for all integer $n \geq 0$ by strong induction.