

Álgebra Linear e Geometria Analítica (M1002) Parte 2 do Exame da Época de Recurso 22/04/2021 Duração: Duas horas

Cotação: 10 valores.

Todas as respostas devem ser convenientemente justificadas.

Devem resolver as questões 1 e 2 numa folha e as questões 3, 4 noutra folha.

1. (3,0 valores) Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{array} \right] \ .$$

- (a) Determine a equação caraterística de A e os valores próprios de A.
- (b) Determine os vetores próprios de A associados a cada um dos valores próprios de A.
- (c) Justifique que A é invertível. Sem calcular A^{-1} , relacione os valores próprios de A^{-1} com os valores próprios de A.
- 2. (2,0 valores) Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear tal que

$$f(1,1,0) = (0,0,0), \quad f(1,1,1) = (1,2,3), \quad f(1,-1,-1) = (5,2,-1).$$

- (a) Obtenha a expressão geral de f.
- (b) Determine uma condição necessária e suficiente em x, y, z para que (x, y, z) pertença ao contradomínio de f.
- 3. **(2,5 valores)** Em \mathbb{R}^3 , considere os vetores $v_1 = (1, 1, -1)$ e $v_2 = (1, 2, 0)$ e o subespaço vetorial $W = \{v \in \mathbb{R}^3 : v \cdot v_1 = v \cdot v_2 = 0\}.$
 - (a) Determine uma base de W.
 - (b) Escolha um vetor v_3 não nulo de W e mostre que qualquer vetor de \mathbb{R}^3 é combinação linear de v_1, v_2, v_3 .
- 4. (2,5 valores) (a) Seja A uma matriz quadrada $n \times n$ de entradas reais tal que $AA^t = id_n$. Mostre que A é invertível.
 - (b) Averigue se o conjunto das matrizes A quadradas $n \times n$ de entradas reais tais que $A = A^t$ é um subespaço vetorial do espaço vetorial das matrizes quadradas $n \times n$.