# Le $\lambda$ -calcul simplement typé.

Dans ce chapitre, on va parler de typage. Ceci permet de « stratifier » les  $\lambda$ -termes. En effet, pour l'instant, tous les termes se ressemblent.

### 1 Définition du système de types.

**Définition 1.** On se donne un ensemble de types de base, notés  $X, Y, Z, \ldots$  Les types simples sont donnés par la grammaire suivante :

$$A, B, C ::= X \mid A \rightarrow B.$$

Il n'y a donc que deux « types » de types : les types de base, et les types fonctions. Il n'y a donc pas de type unit, bool, ... En effet, ceci demanderai d'ajouter des constantes (), true, false, etc dans la grammaire du  $\lambda$ -calcul (et ceci demanderai ensuite d'ajouter des règles de typage supplémentaire). On verra en TD comment typer  $\mathbf{T}$  et  $\mathbf{F}$  comme défini au chapitre précédent.

Par convention, on notera  $A \to B \to C$  pour  $A \to (B \to C)$ .

**Définition 2.** On définit une hypothèse de typage comme un couple variable-type (x, A) noté x : A.

**Définition 3.** Un environment de typage, noté  $\Gamma$ ,  $\Gamma'$ , etc est un dictionnaire sur  $(\mathcal{V}, \mathsf{Types})$ , c.f. cours de Théorie de la Programmation. On notera  $\Gamma(x) = A$  lorsque  $\Gamma$  associe x à A. On définit

le domaine de  $\Gamma$  comme

$$dom(\Gamma) := \{x \mid \exists A, \ \Gamma(x) = A\}.$$

On note aussi  $\Gamma, x : A$  l'extension de  $\Gamma$  avec x : A si  $x \notin \text{dom}(\Gamma)$ .

**Définition 4.** On définit la relation de typage, notée  $\Gamma \vdash M : A$  (« sous les hypothèses  $\Gamma$ , le  $\lambda$ -terme M a le type A ») par les règles d'inférences suivantes :

$$\begin{array}{cccc} & & & & \frac{\Gamma \vdash M : A \to B & \Gamma \vdash N : A}{\Gamma \vdash x : A} & & \frac{\Gamma \vdash M : A \to B & \Gamma \vdash N : A}{\Gamma \vdash M N : B} \\ & & & \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . \ M : A \to B} \end{array}$$

Dans cette dernière règle, on peut toujours l'appliquer modulo  $\alpha$ -conversion (il suffit d' $\alpha$ -renommer x dans  $\lambda x$ . M).

**Exemple 1.** On peut omettre le «  $\emptyset$  » avant «  $\vdash$  ».

$$\frac{f: X \rightarrow X, z: X \vdash f: X \rightarrow X}{f: X \rightarrow X, z: X \vdash f: X \rightarrow X} \quad \overline{f: X \rightarrow X, z: X \vdash z: X} } \\ \frac{f: X \rightarrow X, z: X \vdash f: X \rightarrow X}{f: X \rightarrow X, z: X \vdash f: X \rightarrow X} \\ \frac{f: X \rightarrow X, z: X \vdash f: X \rightarrow X}{f: X \rightarrow X, z: X \vdash X} \\ \frac{f: X \rightarrow X, z: X \vdash f: X \rightarrow X}{f: X \rightarrow X, z: X \vdash X \rightarrow X}$$

#### Exemple 2.

$$\frac{\overline{a, X, t: X \to Y \vdash t: X \to Y} \quad \overline{a, X, t: X \to Y \vdash a: X}}{\underbrace{a, X, t: X \to Y \vdash t a: Y}}{\overline{a: X \vdash \lambda t. \ t \ a: (X \to Y) \to Y}}$$

# 2 Propriétés de la relation de typage.

**Lemme 1** (Lemme administratif).

- ightharpoonup Si  $\Gamma \vdash M : A \text{ alors } \mathcal{V}\ell(M) \subseteq \text{dom}(\Gamma).$
- $ightharpoonup Affaiblissement: \text{si }\Gamma \vdash M: A \text{ alors, pour tout }B \text{ et tout }x \not\in \text{dom}(\Gamma) \text{ alors }\Gamma, x: B \vdash A.$

**Proposition 1** (Préservation du typage). Si  $\Gamma \vdash M : A \text{ et } M \to_{\beta} M' \text{ alors } \Gamma \vdash M' : A.$ 

Preuve. On procède comme en Théorie de la Programmation [Chapitre 7] avec le lemme suivant.

**Lemme 2.** Si  $\Gamma, x: A \vdash M: B$  et  $\Gamma \vdash N: A$  alors  $\Gamma \vdash M[^N/x]: B$ .

### 3 Normalisation forte.

**Définition 5.** Un  $\lambda$ -terme M est dit fortement normalisant ou terminant si toute suite de  $\beta$ -réductions issue de M conduit à une forme normale. Autrement dit, il n'y a pas de divergence issue de M.

**Théorème 1.** Si M est typage (il existe  $\Gamma$ , A tels que  $\Gamma \vdash M : A$ ) alors M est fortement normalisant.

**Remarque 1** (Quelques tentatives de preuves ratées.).  $\triangleright$  Par induction sur M? Non.

 $\triangleright$  Par induction sur la relation de typage  $\Gamma \vdash M : A$ ? Non (le cas de l'application pose problème car deux cas de  $\beta$ -réductions).

Pour démontrer cela, on utilise une méthode historique : les *candidats* de réductibilité.

**Définition 6** (Candidat de réductibilité). Soit A un type simple. On associe à A un ensemble de  $\lambda$ -termes, noté  $\mathcal{R}_A$  appelé candidats de réductibilité (ou simplement candidats) associé à A, défini par induction sur A de la manière suivante :

- $\triangleright \Re_X := \{M \mid M \text{ est fortement normalisant}\};$
- $\triangleright \ \Re_{A \to B} := \{ M \mid \forall N \in \Re_A, M \ N \in \Re_B \}.$

L'idée est la suivante :

M typable $\Gamma \vdash M : A$   $\leadsto$   $M \in \mathcal{R}_A$   $\leadsto$  M fortement normalisant.

Remarque 2 (Rappel sur le PIBF, c.f. Théorie de la Programmation [Chapitre 10]). Le principe d'induction bien fondé nous dit qu'une relation  $\Re$  est terminante ssi pour tout prédicat  $\mathscr{P}$  sur E vérifie que si

$$\forall x \in E ((\forall y, x \mathcal{R} y \implies \mathcal{P}(y)) \implies \mathcal{P}(x))$$

alors  $\forall x \in E, \mathcal{P}(x)$ .

**Proposition 2.** Soit A un type simple. On a :

- **CR 1.** Pour tout  $M \in \mathcal{R}_A$ , M est fortement normalisant.
- **CR 2.** Pour tout  $M \in \mathcal{R}_A$ , si  $M \to_{\beta} M'$  alors  $M' \in \mathcal{R}_A$ .
- **CR 3.** Pour tout  $M \in \mathcal{R}_A$ , si M est neutre (c-à-d, M n'est pas une  $\lambda$ -abstraction), et si  $\forall M', M \to_{\beta} M' \implies M' \in \mathcal{R}_A$  alors  $M \in \mathcal{R}_A$ .

**Preuve.** On montre la conjonction de CR1, CR2 et CR3 par induction sur A. Il y a deux cas.

- $\triangleright$  Cas X un type simple.
  - **CR 1.** C'est vrai par définition.
  - **CR 2.** Si M est fortement normalisant, et  $M \to_{\beta} M'$  alors  $M' \in \mathcal{R}_X$ .
  - **CR 3.** Si M est neutre et si on a que « pour tout M' tel que  $M \to_{\beta} M'$  alors  $M' \in \mathcal{R}_X$  » alors c'est l'induction bien fondée pour  $\to_{\beta}$  sur  $\mathcal{R}_X$ .
- $\triangleright$  Cas  $A \rightarrow B$  un type flèche.
  - **CR 1.** Soit  $M \in \mathcal{R}_{A \to B}$ . Supposons que M diverge :

$$M \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \cdots$$
.

On a observé que  $x \in \mathcal{R}_A$  pour une variable x arbitraire (conséquence de **CR 3** pour A). Par définition de  $\mathcal{R}_{A\to B}$ , M  $x \in \mathcal{R}_B$ . Par **CR 1** pour B, on a que M x est fortement normalisant. Or, M  $x \to_{\beta} M_1 x$  car  $M \to_{\beta} M_1$ . On construit ainsi une divergence dans  $\mathcal{R}_B$  à partir de M x:

$$M x \to_{\beta} M_1 x \to_{\beta} M_2 x \to_{\beta} \cdots$$

C'est absurde car cela contredit que  $M\ x$  fortement normalisant.

- **CR 2.** Soit  $M \in \mathcal{R}_{A \to B}$  et  $M \to M'$ . Montrons que  $M' \in \mathcal{R}_{A \to B}$ , *i.e.* pour tout  $N \in \mathcal{R}_A$  alors  $M' N \in \mathcal{R}_B$ . Soit donc  $N \in \mathcal{R}_A$ . On sait que  $M N \in \mathcal{R}_B$  (car  $M \in \mathcal{R}_{A \to B}$ ). Et comme  $M \to_{\beta} M'$  alors  $M N \to_{\beta} M' N$  et, par **CR 2** pour B, on a  $M' N \in \mathcal{R}_B$ . On a donc montré  $\forall N \in \mathcal{R}_{A \to B}$ ,  $M' N \in \mathcal{R}_B$  autrement dit,  $M' \in \mathcal{R}_{A \to B}$ .
- **CR 3.** Soit M neutre tel que  $\forall M', M \rightarrow_{\beta} M' \implies M' \in \mathcal{R}_{A \rightarrow B}$ . Montrons que  $M \in \mathcal{R}_{A \rightarrow B}$ . On sait que  $\rightarrow_{\beta}$  est

terminante sur  $\mathcal{R}_A$  (par **CR 1** pour A). On peut donc montrer que  $\forall N \in \mathcal{R}_A$ ,  $MN \in \mathcal{R}_B$  par induction bien fondée sur  $\rightarrow_{\beta}$ . On a les hypothèses suivantes :

- hypothèse 1 : pour tout M' tel que  $M \to_{\beta} M'$  alors  $M' \in \mathcal{R}_{A \to B}$ ;
- hypothèse d'induction bien fondée : pour tout N' tel que  $N \to_{\beta} N'$  que  $M N' \in \mathcal{R}_B$ .

On veut montrer M  $N \in \mathcal{R}_B$ . On s'appuie sur **CR 3** pour B et cela nous ramène à montrer que, pour tout P tel que M  $N \to_{\beta} P$  est  $P \in \mathcal{R}_B$ . On a trois cas possibles pour M  $N \to_{\beta} P$ .

- Si  $M = \lambda x$ .  $M_0$  et  $P = M_0[N/x]$  qui est exclu car M est neutre.
- Si P = M' N alors par hypothèse 1  $M' \in \mathcal{R}_{A \to B}$  et donc  $M' N \in \mathcal{R}_B$ .
- Si P=MN' alors, par par hypothèse d'induction bien fondée,  $MN'\in\mathcal{R}_B$ .

**Lemme 3.** Soit M tel que  $\forall N \in \mathcal{R}_A, M[^N/x] \in \mathcal{R}_B$ . Alors  $\lambda x. M \in \mathcal{R}_{A \to B}$ .

**Preuve.** On procède comme pour **CR 3** pour  $A \to B$ .

**Lemme 4.** Supposons  $x_1: A_1, \ldots, x_k: A_k \vdash M: A$ . Alors, pour tout  $N_1, \ldots, N_k$  tel que  $N_i \in \mathcal{R}_{A_i}$ , on a

$$M[^{N_1 \cdots N_k}/_{x_1 \cdots x_k}] \in \mathcal{R}_A.$$

On note ici la substitution simultanée des  $x_i$  par des  $N_i$  dans M. C'est **n'est pas** la composition des substitutions.

**Preuve.** Par induction sur la relation de typage, il y a trois cas.

- $\triangleright$  Si on a utilisé la règle de l'axiome, c'est que M est une variable :  $M = x_i$  et  $A = A_i$ . Soit  $N_i \in \mathcal{R}_{A_i}$  alors  $M[N_1 \cdots N_k/x_1 \cdots x_k] = N_i \in \mathcal{R}_A$ .
- $\triangleright$  Si on a utilisé la règle de l'application, c'est que M est une application :  $M=M_1\,M_2$  et  $M_1:B\to A$  et  $M_2:B$ . On a :

$$M[N_1 \cdots N_k/x_1 \cdots x_k] = M_1[N_1 \cdots N_k/x_1 \cdots x_k]M_2[N_1 \cdots N_k/x_1 \cdots x_k].$$

On conclut en appliquant les hypothèses d'inductions :  $M_1[^{N_1 \cdots N_k}/_{x_1 \cdots x_k}] \in \mathcal{R}_{B \to A}$  et  $M_2[^{N_1 \cdots N_k}/_{x_1 \cdots x_k}] : \mathcal{R}_B$ .

ightharpoonup Si on a utilisé la règle de l'abstraction, c'est que  $M=\lambda y.M_0$  avec  $y \notin \{x_1,\ldots,x_k\} \cup \mathcal{V}\ell(N_1) \cup \cdots \cup \mathcal{V}\ell(N_k)$ . Supposons que  $x_1:A_1,\ldots,x_k:A_k \vdash \lambda y.\ M_0:A \to B$ . Alors nécessairement  $x_1:A_1,\ldots,x_k:A_k,y:A \vdash M_0:B$ . Par hypothèse d'induction, on a que pour tout  $N_i \in \mathcal{R}_{A_i}$  on a

$$M_0[N_1 \cdots N_k/x_1 \cdots x_k][N/y] = M_0[N_1 \cdots N_k N/x_1 \cdots x_k y] \in \mathcal{R}_B.$$

Par le lemme précédent, on déduit que

$$(\lambda y.M_0)[N_1 \cdots N_k/x_1 \cdots x_k] = \lambda y.(M_0[N_1 \cdots N_k/x_1 \cdots x_k]) \in \Re_{A \to B}.$$

**Corollaire** 1. Si  $\Gamma \vdash M : A \text{ alors } M \in \mathcal{R}_A$ .

## 4 Extension : le $\lambda$ -calcul typé avec $\times$ et 1.

En ajoutant les couples et *unit*, il faut modifier quatre points.

Syntaxe.  $M,N::=\lambda x.\ M\mid MN\mid x\mid (M,N)\mid (\ )\mid \pi_1M\mid \pi_2M$   $\beta$ -réduction.

$$\frac{M \to_{\beta} M'}{(M,N) \to_{\beta} (M',N)} \quad \frac{N \to_{\beta} N'}{(M,N) \to_{\beta} (M,N')} - \frac{7/8}{} -$$

$$\overline{\pi_1 (M, N) \to_{\beta} M} \quad \overline{\pi_2 (M, N) \to_{\beta} N}.$$

Types. Typage.

$$A,B ::= X \mid A \to B \mid A \times B \mid \mathbf{1}$$

$$\frac{}{\text{():1}} \qquad \frac{\Gamma \vdash M : A \qquad \Gamma \vdash N : B}{\Gamma \vdash (M,N) : A \times B}$$

$$\frac{\Gamma \vdash P : M \times N}{\Gamma \vdash \pi_1 \ P : M} \qquad \frac{\Gamma \vdash P : M \times N}{\Gamma \vdash \pi_2 \ P : N}.$$