Specyfikacja funkcjonalna automatu komórkowego - WireWorld, Game of Life

Danuta Stawiarz, Katarzyna Stankiewicz

$3~\mathrm{maja}~2019~\mathrm{r}.$

Spis treści

1	1 Cel projektu																2						
2	Opi	Opis zasad programu														2							
	_	2.1 WireWorld													2								
	2.2	$_{ m Game}$																					3
3	Wy	Wygląd interfejsu użytkownika															3						
	3.1	WireV		-	-																		3
	3.2																						4
4	Opi	Opis działania programu															4						
	4.1^{-}											4											
	4.2			_	-																		5
	4.3	-c rc																					
	1.0	4.3.1																					5
		4.3.2																					6
5	Wy	niki dz	iałan	iia p	rogr	am	u																6
6	Koı	Komunikaty błędów														6							
	6.1	Błąd pliku wejściowego											6										
	6.2	Błędy		-		_																	6
	6.3																						6

1 Cel projektu

Celem projektu jest napisanie automatu komórkowego łączącego dwie gry: WireWorld oraz Game of Life. Program zaimplementowany zostanie w języku java z użyciem biblioteki graficznej JavaFX. Po ukończeniu program będzie w stanie przeprowadzać proste symulacje, poprzez generowanie kolejnych planszy od ustawionej na początku przez użytkownika, podanej jako plik wejściowy lub losową w przypadku braku działań użytkownika. Ponadto możliwa będzie również interakcja użytkownika z programem poprzez interfejs graficzny i odpowiednie przyciski. Użytkownik będzie miał możliwość edycji danej planszy.

2 Opis zasad programu

2.1 WireWorld

Automat komórkowy WireWorld ma za zadanie wykonać symulację, w której przekształca podaną planszę na podstawie kilku podstawowych zasad.

Komórka może znajdować się w jednym z czterech stanów:

- 1. Pusta,
- 2. Głowa elektronu,
- 3. Ogon elektrony,
- 4. Przewodnik.

W zaimplementowanym automacie przyjmuje się następujące kolory stanów:

- czarny pusta
- niebieski głowa elektronu
- czerwony ogon elektronu
- żółty przewodnik

Kolejne generacje budowane są z wykorzystaniem zestawu pięciu zasad:

- 1. Komórka pozostaje Pusta, jeśli była Pusta.
- 2. Komórka staje się Ogonem elektronu, jeśli była Głową elektronu.
- 3. Komórka staje się Przewodnikiem, jeśli była Ogonem elektronu.
- 4. Komórka staje się Głową elektronu tylko wtedy, gdy dokładnie 1 lub 2 sąsiadujące komórki są Głowami Elektronu.
- 5. Komórka staje się Przewodnikiem w każdym innym wypadku.

W WireWorld stosuje się sąsiedztwo Moore'a.

2.2 Game of Life

Program "Gra w życie" to prosta symulacja której zasady działania określone są kilkoma regułami. W grze istnieje plansza, zawierająca pola białe i czarne. Pola białe oznaczają komórki żywe, pola czarne – martwe. Jeśli martwa komórka ma dokładnie 3 żywych sąsiadów, w następnej jednostce czasu staje się żywa (rodzi się). Żywa komórka, która ma obok siebie 2 albo 3 żywych sąsiadów pozostaje nadal żywa; przy innej liczbie sąsiadów umiera (z "samotności" albo "zatłoczenia"). W programie stosujemy sąsiedztwo Moore'a, co oznacza, że uwzględniamy 8 przylegających komórek (znajdujących się: na południu, na południowym-zachodzie, na zachodzie, na północnym-zachodzie, na północnym-wschodzie).

3 Wygląd interfejsu użytkownika

3.1 WireWorld

Poniżej przedstawiono wygląd interfejsu użytkownika, który pojawia się po włączeniu programu. Domyślnie jest to zakładka WireWorld.

3.2 Game of Life

Istnieje możliwość przełączenia gry na Game of Life w zakładce po prawej stronie. W takim wypadku pojawia się następujący interface:

4 Opis działania programu

W momencie uruchomienia programu pojawia się menu umożliwiające użytkownikowi wybór symulacji, którą chce przeprowadzić. W zależności od wyboru WireWorld lub Game of Life wyświetlone zostanie okno pozwalające na przeprowadzenie symulacji adekwatnej do wybranej opcji.

4.1 Ustawienia początkowe

Na wejściu użytkownik może podać plik zawierający dane do wczytania planszy lub podać wymiary planszy która ma zostać wczytana. Po podania wymiarów użytkownik może również o wybrać stan w jakim ma zostać wczytana plansza.

- wypełnij losowo plansza ma zostać wypełniona losowo
- pusta plansza wszystkie komórki są martwe (dla Game of Life) lub puste (dla WireWorld)

4.2 Zarządzanie planszą

Obok planszy będą wyświetlane następujące opcje:

- wczytaj plik za pomocą tego przycisku użytkownik będzie mógł wczytać wybrany przez siebie plik
- start/stop umożliwia wstrzymanie lub uruchomienie symulacji
- wymiary dwa okienka: x szerokość planszy y wysokość planszy
- generacje wyświetla ile generacji upłynęło od czasu działania programu,
- strzałki obok generacji umożliwiają manualne przejście do kolejnej generacji lub powrót do poprzedniej (aktywne tylko w przypadku zatrzymanej symulacji)
- zapisz umożliwia zapisanie planszy do pliku
 Obok planszy będzie się znajdowało również okno pozwalające na edycję aktualnej planszy. Będzie ono aktywne tylko w przypadku zatrzymanej symulacji. W przypadku zatrzymanej symulacji istnieje możliwość wyboru komórki na planszy i zmianę jej stanu.

4.3 Przykładowe pliki wejściowe

W obu wariantach gry pliki wejściowe muszą zawierać informację o wymiarach planszy oraz stanach poszczególnych komórek w niej umieszczonych.

4.3.1 WireWorld

W tym wariancie gry komórki mogą przyjmować jeden z 4 stanów. W pliku tekstowym przyjmują one kolejno postać cyfr:

- 1- Komórka pusta
- 2- Głowa elektronu
- 3- Ogon elektronu
- 4- Przewodnik

Przykładowy plik może wyglądać następująco:

- 4 4
- 1 2 0 1
- 3 4 1 0
- 0 1 1 2
- 3 4 0 0

Wymiary planszy są podane w pierwszej linijce, a w kolejnych umieszczono dane o stanach komórek.

4.3.2 Game of Life

W tym wariancie gry komórki mogą przyjmować jeden z 2 stanów. W pliku tekstowym przyjmują one kolejno postać cyfr:

- 0- Komórka żywa
- 1- Komórka martwa

Przykładowy plik może wyglądać następująco:

4 4

1 0 0 1

1 1 1 0

0 1 1 0

1 0 0 0

Wymiary planszy są podane w pierwszej linijce, a w kolejnych umieszczono dane o stanach komórek.

5 Wyniki działania programu

Wynikiem działania programu jest plik tekstowy zawierający dane o obrazie ostatniej generacji komórek. Plik ten zostaje zapisany pod podanym przez użytkownika adresem. Na bieżąco użytkownik może też obserwować wygląd planszy wraz ze stanami poszczególnych komórek online.

6 Komunikaty błędów

6.1 Bład pliku wejściowego

W przypadku niepowodzenia wczytania pliku zostanie wyświetlony komunikat "Nie udało się wczytać pliku". Jeśli plik istnieje, ale zawiera błędy, komunikat będzie zawierał informację w której linii pojawił się błąd. "Nieprawidłowa wartość w linii x, nierozpoznany znak:

 błędny znak>"

6.2 Błędy w obsłudze planszy

Jeśli użytkownik spróbuje podać nieprawidłowy rozmiar planszy, program wyświetli komunikat "Podano nieprawidłowy rozmiar planszy"

6.3 Błąd zapisu do pliku

W przypadku niepowodzenia zapisu pliku zostanie wyświetlony komunikat "Nie udało się zapisać do pliku". Program poprosi użytkownika o wskazanie innego adresu zapisu.