## ~ SOLUTIONS

## Math 56 Compu & Expt Math, Spring 2013: Midterm 1

4/18/13, pencil and paper, 2 hrs, 50 points. Good luck!

it you included fl(x) error on imput, mussier but same outcome.

(a) Say a computer's algorithm for  $e^x$  has relative error in the output of up to  $\varepsilon_{\text{mach}}$ , for  $-1 \le x \le 1$ . [4] Does this guarantee that the algorithm is backward stable in this domain?

[2]

We're told 
$$f(x) = e^{x}(1+\epsilon_1) = f(x) = e^{x(1+\epsilon)}$$

$$f(\tilde{x}) = e^{x(1+$$

for 
$$|\Sigma_1| \leq \Sigma_{unch}$$
 for some  $\Sigma = M_{\Sigma_{unch}}$ 

Caned ex; leaves 
$$X+\Xi_1=X+\Xi X$$
  $= e^{\times}e^{\Xi X}\approx e^{\times}\left(1+\Xi X+...\right)$ 

so 
$$\varepsilon = \frac{\varepsilon_1}{X}$$

[3] (b) Repeat the question for  $\sin x$  in the same domain.

Told 
$$(\sin x)(1+\epsilon_1)$$
 defin blew state  $f(\vec{x}) = \sin(x(1+\epsilon))$ 

a Taylor or addition thm. = Sin x + E COS X + Off

subtract sinx from both sides:

(c) For some x outside [-1,1] one of the above algorithms cannot be backward stable. Which one, Tie with relative error as big as Emach

We look for places where small change M & fail to account for the know relative error in f. #g. where f'(x) = 0, which only

happens for sinx at x = \frac{\frac{1}{2}(1-12n)}{1\frac{1}{2}}, eg. x = \frac{\frac{1}{2}}{1\frac{1}{2}},

These are where K(x) = 0.

(a) What type, and order/rate, do you expect for convergence of the Taylor series truncated to terms less than  $x^n$ , expanding about the origin, when evaluated at x = 0.5? Explain

First way: find singularities in C, ie 
$$2+x^2=0$$
,  $x=\pm\sqrt{2}i$ 

Thus on Taylor says exponential with rate center to  $x$  distributes.

Thus on Taylor says exponential with rate center to  $x$  distributes.

So rate  $r = \frac{0.5}{\sqrt{2}} = \frac{1}{2\sqrt{2}}$ 

The even only.

OR 2nd way:  $f(x) = \frac{1}{2}(1+\frac{x^2}{2})^{-1} = \frac{1}{2}\left[1-\frac{x^2}{2}+\frac{x^4}{2^2}-\frac{x^n}{2^{n_2}}\right]$ 

tail of series  $z_n = \sum_{k \neq n} (\pm) \frac{x^k}{2^{n_2}}$ ,  $|z_n| \in \sum_{k \neq n} \frac{x^n}{2^{n_2}} = \frac{x^n}{\sqrt{2}} \sum_{k \neq n} \frac{x^n}{\sqrt{2}} = \frac{x^n}{\sqrt{2}} = \frac{x^n}{\sqrt{2}} \sum_{k \neq n} \frac{x^n}{\sqrt{2}} = \frac{x^n}{\sqrt{2}} =$ 

Write an upper bound on the error reflecting this convergence, in big-O notation: [1]

error up to 
$$x^n$$
 term,  $\varepsilon_n = O(r^n) = O(\frac{1}{(2\sqrt{2})^n})$ 

## []

(b) Estimate up to what power x<sup>n</sup> is needed for this series to reach 16-digit accuracy.

Want 
$$\Sigma_n \approx 10^{-16}$$
  
ie  $\frac{1}{(2\sqrt{2})^n} \approx 10^{-16}$   
ie  $n \ln (2\sqrt{2}) \approx \ln 10^{+16}$   
 $n \approx \frac{\ln 10^{16}}{\ln (2\sqrt{2})} = \frac{\log_{10} 10^{16}}{\log_{10} 2\sqrt{2}} \approx \frac{16}{\gamma_2} \approx 32$ 

| <ul> <li>3. [8 points] Consider the "left-sided" finite-difference approximation f'(x) ≈ f(x)-f(x-h)/h</li> <li>(a) Derive actigorous bound on the error that applies to each h &gt; 0 [Hint: your bound will need to about x involve properties of f]</li> <li>Suggesti Taylor's Theorem, so expand w/ remainder</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{f(x)-f(x-h)}{h}=\frac{f(x)-f(x)-hf'(x)+\frac{h^2}{2}f''(g)}{h}$ some $\frac{f(x)-f(x-h)}{h}=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(g)}{h}$                                                                                                                                                                                |
| which we want to the error.                                                                                                                                                                                                                                                                                                  |
| = error $ \varepsilon_h  \leq \frac{h}{2} \max_{q \in [x-h,x]}  f''(q)  = O(h)$                                                                                                                                                                                                                                              |
| To note theorem required $ \int \epsilon C^2([x-h,x]) $                                                                                                                                                                                                                                                                      |
| (b) What axes would one choose on a graph so that the error appears as a straight line and yet data at $h = 10^{-4}$ , $10^{-8}$ , $10^{-12}$ are all visible?   log h   If you plot $\geq$ vs h   its also straight line, but if $h = 10^{-4}$ visible, others are trainined into                                           |
| (2) (c) Explain what happens to the error of the approximation in practice as $h \to 0$ the origin, invisible In practice, $f$ is computed to some relative error (number $O(2med)$ )                                                                                                                                        |
| so as happronches O(Emily) we get catastrophic cancellation and the approximation becomes terrible.                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                              |

BONUS Roughly what h has the smallest error? Balancing two somes of error, O(h) from Taylor, L  $O\left(\frac{\Sigma_{mach}}{h}\right)$  from Evaluations of f, we get  $h \approx \frac{\Sigma_{mach}}{h}$  so  $h \approx \sqrt{\Sigma_{mach}} \approx 10^{-9}$ , say.

4. [7 points] Consider the linear system  $\begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ How many digits accuracy (relative to the solution norm  $\sqrt{x_1^2 + x_2^2}$ ) are you guaranteed in the solution if the system is solved by a backward stable algorithm with  $\varepsilon_{\text{mach}} = 10^{-16}$ ? [You may assume a constant of 1 in the backward stability. Hint: full points for rigorous upper bound on the error; generous partial credit for intelligent estimates or other bounds] ie lower e Fells us to look for upper bound We need X(A) = ||A||. ||A-1|| on X(A), but example pairs of vectors x', Ax' only can give lower bounds. > Need exact X calc.  $ATA = \begin{bmatrix} 1 & 10^5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 10^5 \end{bmatrix} = \begin{bmatrix} 10^{10} & 1 \\ 10^5 \end{bmatrix}$ + gives Amax  $J^2 - (10^{10} + 2) \lambda - 10^{10} - 1 + (10^{5})^2 = 0$  so  $\lambda = \frac{1}{2} (10^{10} + 2 + \sqrt{10^{10}})^2$ use  $\sqrt{(10^{10}+2)^2-4} \leq 10^{10}+2$ yuk, can we bound it? 50 Amax ≤ 1010+2 50 |A| = \ame (A'A) \le \sqrt{1010+2}  $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 105 \\ 105 \end{bmatrix}$  which gives identical calc as before  $|A^{-1}| \leq \sqrt{10^{10}+2}$ So X(A) < 100+2 Backward Stability Theorem: rel. err  $\leq \chi \cdot O(\epsilon_{mach})$   $\frac{3}{10^{-16}} \text{ if const} = 1$ 10-6 6-digit accuracy Had! [BONUS] Find a right-hand side b for which the above worst-case prediction is (near by) achieved. Makes you (BUNUS) I must case value of X(5) for the linear solve problem  $\mathcal{K} = f(b) = A^{-1}b'$ , over all b'. We need to rederive  $\mathcal{K}$ : \* RUS-dependent part: want to maximize =>  $\mathcal{K}(b') = \max_{8b \neq 0} \frac{118fN/11fN}{18bN/11bN} = \max_{8b \neq 0} \frac{11A^{-1}8bN}{18bN}, \frac{11bN}{11A^{-1}bN}$ A must shrink 5 Easy to find  $\vec{x}'$  which close to max growth:  $\begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10^5 \\ 10^5 \end{bmatrix}$  so, this RHS does it. the most, re A unst

Note, strangely, a 'typical' b' will give X = A'b' about 10 x lager, (not smaller), so relieve 20 femal)!

grow & the most.

\_ matrix A

- 5. [7 points] Given y > 0, you wish to approximate  $x = \sqrt{y}$  using elementary operations.
- [4] (a) Derive a Newton iteration that converges to the desired x [Hint: x must be a root of something]

As in class pith 
$$f(x) = x^2 - y$$

not x-ty which domands conspecting sy

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - y}{2x_n}$$

$$= \frac{x_n}{2} + \frac{1}{2x_n}$$

(b) Derive a big-O estimate on the error  $\varepsilon_n$  after n iterations. [3]

This is hard, to make you think.

Recall Newton has quadratic convergences, ie Ener & CEN

Start at Eo: €1 € € €2

 $\xi_2 \in C\xi_1^2 \in C(C\xi_0^2)^2 = C_{\xi_0}^3$ 

 $\xi_3 \in C(C(C\xi_0^2)^2)^2 = C_{\xi_0^8}$ 

See by induction that  $\varepsilon_n \in \mathbb{C}^{2^n-1} \times \mathbb{C}^{2^n} = \frac{1}{\mathbb{C}} (\mathbb{C}_{\varepsilon_0})^{2^n}$  $\varepsilon_0 = O(\varepsilon^{2^n})$  for some const c < 1

we hope!

(relies on good

starting guess,

20 small
)

I also gave 2/3 for Mit of property Huis



Or, for each  $\times$ ,  $\exists \varepsilon = \mathbb{O}(\varepsilon_{und})$  st.  $||f(x) - f(x(||\varepsilon))|| \leq ||f(x(||\varepsilon))|| (||\xi_{und}|)$