1: ARMA processer: Lag-polynomier, stationaritet, invertibilitet og kausalitet

Tidsrækkeanalyse

Kasper Rosenkrands

Stationaritet

Der skelnes mellem to typer stationaritet

- streng stationaritet
- svag stationaritet

Streng stationaritet er ensbetydende med at den simultane fordelingsfunktion

$$P(X_{t_1+s} \leq x_1, X_{t_2+s} \leq x_2, \dots, X_{t_k+s} \leq x_k)$$

er uændret for $s \in \mathbb{Z}$.

I praksis en for stærk antagelse.

Svag stationaritet

Svag stationaritet eller 2. ordens stationaritet er ensbetydende med at

$$\mu_t = \mu$$
, $\gamma(s, t) = \gamma(s + u, t + u) \quad \forall s, t, u \in \mathbb{Z}$.

Med andre ord er

- ► middelværdien konstant gennem tiden
- ightharpoonup autokovariansen afhænger kun af |t-s|

$$\gamma(t+h,0) = \gamma(h,0)[:=\gamma(h)]$$

For en Gaussisk process gælder

streng stationartiet ⇔ svag stationaritet,

da en Gaussisk proces er entydigt bestemt ved dens 1. og 2. moment.

ACF

Autokorrelationsfunktionen (ACF) for en tidsrække, $\{X_t\}_{t\in\mathbb{Z}}$, er defineret som

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}},$$

for alle $s, t \in \mathbb{Z}$.

PACF

Den partielle autokorrelationsfunktion (PACF) er for en stationær tidsrække x_t givet ved

$$\phi_{hh} = \operatorname{corr}(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t), \quad \text{for} \quad h \ge 2.$$

hvor \hat{x}_{t+h} er defineret som regressionen af x_{t+h} på $\{x_{t+h-1}, x_{t+h-2}, \dots, x_{t+1}\}.$

$$\hat{x}_t = \beta_1 x_{t+1} + \beta_2 x_{t+2} + \dots + \beta_{h-1} x_{t+h-1}.$$

Her er den lineære afhængighed af $\{x_{t+1}, \ldots, x_{t+h-1}\}$ fjernet.

AR proces

En autoregressiv proces er bestemt udfra dens foregående værdier:

Definition (Autoregressiv Model)

En AR(p) er på formen

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t,$$

hvor x_t er stationær, $w_t \sim wn(0, \sigma^2)$, $\phi_1, \phi_2, \dots, \phi_p$ er konstanter og $\phi_p \neq 0$. På operatorform kan en AR(p) skrives som

$$\phi(B)X_t=w_t,$$

hvor
$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

Eksempel AR proces

Eksempel AR ACF

Eksempel AR PACF

MA proces

En moving average proces er som navnet antyder et glidende gennemsnit:

Definition (Moving Average Model)

En MA(q) er på formen

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \cdots + \theta_q w_{t-q},$$

hvor $w_t \sim wn(0,\sigma_w^2)$ og θ er et filter. På operatorform kan en MA(q) skrives som

$$X_t = \theta(B)w_t,$$

hvor $\theta(B) = 1 + \theta_1 B + \cdots + \theta_q B^q$.

Eksempel MA proces

Eksempel MA ACF

Eksempel MA PACF

ARMA proces

En ARMA model er en mere generel model end de to forrige som tager højde for både AR og MA komponenter:

Definition (ARMA Model)

ARMA(p,q), er en stationær tidsrække X, som opfylder at

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \dots + \phi_{p} X_{t-p} + w_{t} + \theta_{1} w_{t-1} + \theta_{2} w_{t-2} + \dots + \theta_{q} w_{t-q}.$$

En ARMA(p,q) skrives på operator form som

$$\phi(B)X_t = \theta(B)w_t.$$

Eksempel ARMA proces

Eksempel ARMA ACF

Eksempel ARMA PACF

Egenskaber for ACF og PACF generelt

Model	ACF	PACF
AR(p)	Aftager Eksponentielt	Nul for $h > p$
MA(q)	Nul for $h > p$	Aftager Eksponentielt
ARMA(p,q)	Aftager Eksponentielt	Aftager Eksponentielt

Kausalitet

En ARMA(p,q) model siges at være **kausal** hvis $\phi^{-1}(B)$ -polynomiet eksisterer, og man kan så skrive processen som

$$\phi^{-1}(B)\phi(B)X_t = \phi^{-1}(B)\theta(B)w_t$$
$$X_t = \psi(B)w_t.$$

Som vi kan se i ligningen ovenfor gælder det for en kausal ARMA(p,q) proces, at den kan opskrives som en sum af hvidstøjsleddene.

Kausalitets betingelse

Betingelsen for at en ARMA(p,q) proces er kausal er at alle rødder for polynomiet $\phi(B)$ ligger udenfor enhedscirklen.

Kausalitet eksempel med AR(1)

For en AR(1)-model kan det vises ved:

$$x_{t} = \phi x_{t-1} + w_{t}$$

$$= \phi (\phi x_{t-2} + w_{t-1}) + w_{t}$$

$$= \phi^{2} x_{t-2} + \phi w_{t-1} + w_{t}$$

$$\vdots$$

$$= \sum_{i=0}^{\infty} \phi^{i} w_{t-i},$$

Vi observerer at summen vil konvergere hvis og kun hvis $|\phi| < 1$.

Kausalitet eksempel med AR(1)

I tilfældet hvor $|\phi|>1$ kan man omskrive processen

$$x_t = \phi x_t + w_t$$

$$x_{t-1} = \frac{1}{\phi} x_t + w_t,$$

dernæst kan det verificeres at, den entydige stationære løsning er givet ved

$$x_t = -\sum_{j=1}^{\infty} \phi^{-j} w_{t+j}.$$

I ovenstående ligning kan det dog ses at den nuværende værdi x_t kommer til at afhænge af fremtidige værdier.

Invertibilitet

En ARMA model siges at være **invertibel** hvis $\theta^{-1}(B)$ -polynomiet eksisterer, og man kan så skrive processen som

$$\theta^{-1}(B)\phi(B)x_t = \theta^{-1}(B)\theta(B)w_t$$
$$\pi(B)x_t = w_t.$$

Invertibilitet eksempel med MA(1)

Betragt den følgende MA(1)-model

$$x_t = w_t + \theta w_{t-1}$$
$$= (1 + \theta B) w_t.$$

hvor vi har $|\theta| < 1$, da kan vi gøre følgende 1

$$x_t = (1 + \theta B)w_t$$

$$\frac{1}{1 + \theta B}x_t = w_t$$

$$\frac{1}{1 - (-\theta)B}x_t = w_t$$

$$\sum_{j=1}^{\infty} (-\theta)^j x_{t-j} = w_t,$$

og dermed represæntere vores proces som en $AR(\infty)$.

Geometrisk række: $\sum_{k=0}^{\infty} a \cdot r^k = \frac{a}{1-r}$