Работа 3.1.3 Измерение магнитного поля Земли

Пискунова Ольга Б06-205

28 февраля 2024 г.

Цель работы

Определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5-0,6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25\times30\times60~{\rm km}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики ($\sim20~{\rm mr}$.) набор гирь и разновесов.

Теоретическая справка

Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент $\vec{P_m}$ тонкого витка площадью S с током I равен:

$$\vec{P_m} = \frac{I}{c}\vec{S} = \frac{I}{c}S\vec{n}$$

где c – скорость света в вакууме, $\vec{S} = S\vec{n}$ — вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление $\vec{P_m}$ принимается за направление $S \to N$ от южного (S) к северному (N) полюсу). Если размеры контура с током или магнитной стрелки малы по сравнению расстоянием до диполя, то соответствующий магнитный диполь $\vec{P_m}$ называют элементарным или точечным.

Поле точечного диполя определяется по следующей формуле:

$$\vec{B} = \frac{3\left(\vec{P_m}, \vec{r}\right)\vec{r}}{r^5} - \frac{\vec{P_m}}{r^3}$$

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь \vec{P}_m действует механический момент сил:

 $\vec{M} = \left[\vec{P_m}, \vec{B} \right]$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это — положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда $\vec{P_m}$ и \vec{B} параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начального положения.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -\left(\vec{P_m}, \vec{B}\right)$$

Неодимовые магниты

В настоящей работе используются неодимовые магниты шарообразной формы. Для нас важно то, что:

- 1. шары намагничены однородно;
- 2. вещество, из которого изготовлены магниты, является магнитожёстким материалом. Внутри такого шара магнитное поле равно

$$B_0 = \frac{2P_m}{R^3} \tag{1}$$

Полный магнитный момент $\vec{P_m}$ постоянного магнита определяется намагниченностью $\vec{p_m}$ вещества, из которого он изготовлен. По определению, намагниченность — это магнитный момент единицы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p_m} = \frac{\vec{P_m}}{V} \tag{2}$$

Намагниченность — важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция B_r — одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам).

$$\vec{B_P} = \frac{8\pi}{3} \vec{p_m} = \frac{2}{3} \vec{B_r} \tag{3}$$

Экспериментальное определение величины магнитного момента магнитных шариков

 P_{m} можно определить из параметров шарика и из расстояния r_{max} , на котором они удерживаются в поле тяжести.

$$P_m = \sqrt{\frac{mgr_{max}^4}{6}} \tag{4}$$

$$\vec{B_p} = \frac{2\vec{P_m}}{R^3} \tag{5}$$

Определение величины магнитного момента по силе сцепления магнитных шариков

Если сила сцепления двух одинаковых шаров равна

$$F_0 = \frac{6P_m^2}{d^4} \Rightarrow P_m = \sqrt{\frac{F_0 d^4}{6}} \tag{6}$$

то минимальный вес цепочки, при которой она оторвется от верхнего шарика равен:

$$F \approx 1,08F_0 \tag{7}$$

Измерение горизонтальной составляющей индукции магнитного поля Земли

При отклонении "стрелки"на угол θ от равновесного положения в горизонтальной плоскости возникают крутильные колебания вокруг вертикальной оси, проходящей через середину стрелки. Если пренебречь упругостью нити, то уравнение крутильных колебаний такого маятника определяется возвращающим моментом сил $M=-P_0B_h\sin\theta$, действующим на "стрелку"со стороны магнитного поля Земли, и моментом инерции I_n "стрелки"относительно оси вращения.

При малых амплитудах:

$$T = 2\pi \sqrt{\frac{I_n}{nP_mB_h}}$$

Пусть

$$T(n) = kn \Rightarrow$$

$$k = \pi \sqrt{\frac{md^2}{3P_m B_h}} \Rightarrow B_h = \frac{\pi^2 m d^2}{3k^2 P_m}$$
(8)

Рис. 1: Крутильный маятник

С помощью небольшого дополнительного грузика "стрелку"можно "выровнять расположив её горизонтально: в этом случае момент силы тяжести груза относительно точки подвеса будет

равен моменту сил, действующих на "стрелку"со стороны магнитного поля Земли. Если масса уравновешивающего груза равна m, плечо силы тяжести r, а полный магнитный момент "стрелки" $P_0=nP_m$, то в равновесии:

$$mgr = P_0 B_v = n P_m B_v$$

Пусть $M(n) = An \Rightarrow$

$$B_v = \frac{A}{P_m} \tag{9}$$

Погрешности

$$\begin{split} \varepsilon_{\mathfrak{m}_1} &= \sqrt{\left(\frac{\Delta m}{m}\right)^2 + 4 \left(\frac{\Delta r_{max}}{r_{max}}\right)^2} \approx 3\% \\ \varepsilon_{\mathfrak{m}_2} &= \sqrt{4 \left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta M}{M}\right)^2} \approx 4\% \\ \varepsilon_{B_{\parallel}} &= \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^2 + \left(\frac{\Delta \frac{T_n}{n}}{n}\right)^2} \approx 5\% \end{split}$$

$$\varepsilon_{B_{\perp}} = \sqrt{\left(\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^2} \approx 6\%$$

Ход работы

Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Метод А

Определим все данные наших шариков и запишем их в таблицу.

Параметр	Среднее Значение	σ
т, г	0,839	0,001
d, cm	0.60	0,01

Таблица 1. Параметры шариков.

Определим r_{max} по расстоянию на котором шарики удерживают друг друга. Затем по формуле (4) определим P_m , по формуле (2) определим p_m , по формуле (5) определим B_p и по формуле (3) определим B_r . Все полученные данные занесем в таблицу 2

Величина	Значение	σ
r_{max} , cm	2,50	0,01
P_m , эрг/ Γ с	72	2
p_m , эрг/ Γ с· см ³	346	11
B_p , к Γ с	2.9	0,1
B_r , к Γ с	4.35	0,15

Таблица 2. Величины, определяемые в методе А.

Меряем B_p с помощью магнитометра и получаем $B_p = (2.7 \pm 0.3)$ кГс. Табличная остаточная магнитная индукция NdFeB $B_r = 12 \pm 2$.

Метод В

Составим цепочку и определим F - вес грузиков, которые надо подвесить к этой цепочке, чтобы грузики оторвались.

По формуле (7) определим силу сцепления двух шаров. По формуле (6) найдем P_m и запишем все данные в таблицу.

Величина	Значение	σ
M , Γ	292,866	0,001
F, кдин	287	1
F_0 , кдин	266	1
P_m , эрг/ Γ с	75	3

Таблица 3. Величины, определяемые в методе В.

В итоге получаем, что $P_m=(75\pm3)~{\rm spr}/\Gamma c.~B_p=(2.7\pm0.2)~{\rm k}\Gamma c.$ Метод А дает более точный результат т.к. его погрешность меньше, но оба довольно далеко от измеренного нами поля магнитометром.

Определение горизонтальной составляющей магнитного поля Земли

Для определения горизонтальной составляющей магнитного поля Земли нам нужно собрать установку для возбуждения крутильных колебаний и исследовать зависимость количество шариков от периода.

Перед этим удостоверимся, что при расчете периода упругость нити можно не учитывать, свернув стрелку в кольцо и измерив период крутильных колебаний (магнитный момент такой стрелки равен 0). Измерим период колебаний кольца. $T\approx 60$ с. Введем эффективный коэффициент упругости нити χ : $I\ddot{\phi}+\chi\phi=0$. Момент инерции кольца можно оценить как $I=\frac{12mR^2}{2}=6.3\,\mathrm{r\cdot cm/c^2}$ Т.к. $T=2\pi\sqrt{\chi/I}$, то $\chi_{\mathrm{нити}}=(2\pi/T)^2I\approx 6\cdot 10^{-2}\,\mathrm{r\cdot cm/c^4}$ Это означает, что мы можем пренебречь упругостью нитей. Будем измерять период колебаний стрелок различной длины. Время реакции возьмем $0.5\mathrm{c}~\sigma T=0.5/10=0.05~\mathrm{c}$.

n	<i>t</i> , c	N	<i>T</i> , c
12	45.7	10	4.57
11	43.7	10	4.37
10	43.1	11	3.92
9	33.7	10	3.37
8	30.5	10	3.05
7	26.2	10	2.62
6	22.4	10	2.24
5	19.0	10	1.90
4	14.9	10	1.49
3	12.2	10	1.12

Таблица 4. Зависимость крутильных колебаний от количества шариков T(n)

Построим график зависимости T(n) и по формуле (8) найдем B_h .

График 1. Зависимость $T(n) = k \cdot n$

По значению углового коэффициента $k=(0.394\pm0.007)c$ рассчитаем величину горизонтальной составляющей магнитного поля Земли по формуле (8). $B_h=(0.114\pm0,006)$ Гс

Определение вертикальной составляющей магнитного поля Земли

Определяем механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную "стрелку". Для этого, с помощью одного или нескольких кусочков проволоки, уравновесьте "стрелку"в горизонтальном положении. Сделаем измерения для разных количеств шариков и занесем все в таблицу. M=980mr

n	m , Γ	r, cm	M, дин · см	$\epsilon_M,\%$
12	0,18	3	529.2	5
10	0,208	2,4	489.2	5
8	0,24	1,8	423.36	5
6	0,264	1,2	310.5	5
4	0,427	0,6	251.08	5

Таблица 5. Зависимость момента сил M от n.

Построим график.

График 2. Зависимость $M(n) = A \cdot n$

Аддитивность магнитных моментов применима - точки относительно хорошо ложатся на прямую. По значению углового коэффициента $A=36.8\pm3$. По формуле (9) определяем $B_v=(0.48\pm0,03)~\Gamma c$.

В итоге получаем, что $B=\sqrt{B_v^2+B_h^2}=(0.49\pm0.05)$ Гс и $\beta=\arctan(B_v/B_h)=(76\pm4)^\circ$ Пользуясь тем, что индукция $B=P_m/R^3$ и напряженность магнитного H поля внутри сферы однородны, а также граничными условиями $B_{1n}=B_{2n}$ и $H_{1\tau}=H_{2\tau}$ на границе раздела сред воздух/земля. Получаем магнитное наклонение \vec{B} ($\phi=56^\circ$)

$$\beta = \arctan \frac{\frac{2P_m \cdot \sin \phi}{R^3}}{\frac{P_m \cdot \cos \phi}{R^3}} = \arctan(2 \tan \phi) = 71^{\circ}$$
 (10)

Справочные данные: $B_v = 0.5$ Гс, $B_h = 0.15 - 0.20, \, \beta = 70^\circ$