

Computing Infrastructure

Storage

The topics of the course: what are we going to see today?

HW Infrastructures:

System-level: Computing Infrastructures and Data Center Architectures, Rack/Structure;

Node-level: Server (computation, HW accelerators), Storage (Type, technology), Networking (architecture and technology);

Building-level: Cooling systems, power supply, failure recovery

SW Infrastructures:

Virtualization:

Process/System VM, Virtualization Mechanisms (Hypervisor, Para/Full virtualization)

Computing Architectures: Cloud Computing (types, characteristics), Edge/Fog Computing, X-as-a service

Methods:

Reliability and availability of datacenters (definition, fundamental laws, RBDs)

Disk performance (Type, Performance, RAID)

Scalability and performance of datacenters (definitions, fundamental laws, queuing network theory)

Some Trends...

- Data-driven world
 - 80s-90s data was primarily generated by humans
 - Nowadays machines generate data at an unprecedented rate
 - Not only Media (image/video/audio/socialmedia) as big-data source
 - Sensors, surveillance cameras, digital medical imaging devices...
 - Industry4.0 and Al

Some More Trends...

- The growt favors the centralized storage strategy
 - Limiting redundant data
 - Automatizing replication & backup
 - Reducing management costs

Storage Technologies

- Storage technology is dominated by HDDs
 - Magnetic disks with mechanical interactions
- «Recent» technology advancement brought SSDs
 - No mechanical or moving parts
 - Built out of transistors (NAND flash-based devices)
- NVMe Non-Volatile Memory Express
 - Latest industry-standard to run PCle SSDs
- Tapes ... will never die

Hybrid solutions (HDD + SSD)

Some large storage servers use SSD as a cache for several HDD. Some mainboards of the latest generation have the same feature: the combine a small SSD with a large HDD to have a faster disk.

Some HDD manufacturers produce Solid State *Hybrid Disks* (SSHD) that combine a small SDD with a large HDD in a single unit.

Hybrid (MEMORY) solutions: NVDIMM

NVDIMM (Non-Volatile Dual In-line Memory Module)

- Integrates DRAM with non-volatile memory, typically NAND flash, on a single module
- High performance while ensuring data persistence during power outages (onboard backup power source, e.g. battery or capacitor)
- Key features:
 - Data Persistence: NVDIMMs retain data even when power is lost, making them ideal for applications requiring high reliability and fast recovery times
 - Performance: They offer low latency and high bandwidth, similar to traditional DRAM, but with the added benefit of non-volatility
 - Byte-Addressable: NVDIMMs support direct CPU access, allowing for efficient data manipulation without needing traditional storage interfaces
 - Cost: more expensive than traditional DRAM due to the inclusion of non-volatile memory and backup power, but significant performance and reliability advantage

How It Works

If there is a power failure, the supercap module powers NVDIMM while it copies all data from the DDR-3 to on-module flash

When power is restored NVDIMM copies all data from flash to DDR-3 and normal operation resumes

Do you see anything strange here?

