SOFI-UGCL

Overview

This document outlines a method for recovering the full camera projection matrix

$$P = K[R \mid t]$$

from a single image, using vanishing-point geometry. The approach builds upon the outputs of SOFI (Multi-Scale Deformable Transformer for Camera Calibration), which provides estimates of the zenith vanishing point and the horizon line.

1 The Projection Matrix P

The camera projection matrix $P \in \mathbb{R}^{3\times 4}$ maps 3D world points $X = (X, Y, Z, 1)^T$ in homogeneous coordinates to 2D image points $x = (u, v, w)^T$ via:

$$x \sim PX \implies (u/w, v/w) = \text{image coordinates}.$$

We can write P in terms of its columns as:

$$P = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix}$$

where (up to a scale factor for p_1, p_2, p_3):

- p_1 is the image of the world-X axis's vanishing point (vanishing point of lines parallel to world X-axis),
- p_2 is the image of the world-Y axis's vanishing point,
- p_3 is the image of the world-Z axis's vanishing point (i.e., vertical vanishing point),
- p_4 is the image of the world origin (0,0,0).

More precisely, if $R = [r_1 \ r_2 \ r_3]$ where r_i are the world axis directions in camera coordinates, then $P = K[r_1 \ r_2 \ r_3 \ t]$, implying $p_1 = Kr_1, p_2 = Kr_2, p_3 = Kr_3, p_4 = Kt$.

2 Decomposing $P = K[R \mid t]$

Intrinsic Matrix K

The camera's intrinsic matrix K is

$$K = \begin{pmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{pmatrix},$$

where f_x, f_y are the focal lengths in pixels, s is the skew (usually zero), and (u_0, v_0) is the principal point.

Forming f_x, f_y from Field-of-View

SOFI predicts a single horizontal field-of-view angle \hat{f} . For an image of width W pixels,

$$\tan\left(\frac{\hat{f}}{2}\right) = \frac{W/2}{f_x} \implies f_x = \frac{W/2}{\tan\left(\frac{\hat{f}}{2}\right)}.$$

Assuming square pixels, we set

$$f_y = f_x$$
.

Predicting the Principal Point

We append two small regression heads to SOFI's \hat{q}_{fov} embedding:

$$\hat{u}_0 = w_u^{\mathsf{T}} \hat{q}_{\text{fov}} + b_u, \quad \hat{v}_0 = w_v^{\mathsf{T}} \hat{q}_{\text{fov}} + b_v.$$

Assembling \hat{K}

Putting it all together,

$$\hat{K} = \begin{pmatrix} \hat{f}_x & 0 & \hat{u}_0 \\ 0 & \hat{f}_y & \hat{v}_0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Extrinsic Parameters

The extrinsic parameters are:

- $R \in \mathbb{R}^{3\times 3}$: rotation matrix (world-to-camera),
- $t \in \mathbb{R}^3$: translation vector from world to camera frame,

so that

$$P = K[R \mid t], \text{ and } p_4 = Kt.$$

3 Obtaining R from SOFI Outputs

SOFI predicts:

- Zenith vanishing point $\hat{z} = (\hat{u}_z, \hat{v}_z, 1)^T$,
- Horizon line $\ell = (a, b, c)^T$.

Back-projecting to 3D

The world Z-axis direction (vertical) in the camera frame, r_3 , is derived from the zenith vanishing point \hat{z} :

$$v_z = \hat{K}^{-1} \,\hat{z},$$
$$r_3 = \frac{v_z}{\|v_z\|}.$$

To obtain the full rotation matrix $R = [r_1 \ r_2 \ r_3]$, we need to determine r_1 and r_2 . Since r_3 is the world's vertical direction, r_1 and r_2 must lie in the horizontal plane (i.e., be orthogonal to r_3) and

be orthogonal to each other. The zenith vanishing point and horizon line alone do not uniquely determine the camera's "roll" around the vertical axis. To resolve this ambiguity, a common approach is to align the world X-axis (r_1) with the projection of a default camera direction (e.g., its own X-axis) onto the horizontal plane.

We align the world X-axis (r_1) with the projection of the camera's X-axis onto the horizontal plane defined by r_3 :

Let
$$c_x = (1, 0, 0)^T$$
 be the camera X-axis direction in its own frame.
 $r'_1 = c_x - (c_x^\top r_3)r_3$ (Projection of c_x onto plane orthogonal to r_3)
$$r_1 = \frac{r'_1}{\|r'_1\|}.$$

$$r_2 = r_3 \times r_1$$
 (Ensuring a right-handed orthonormal basis).

Finally, assemble the rotation matrix:

$$R = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix}$$
.

Training constraints for the rotation matrix:

$$L_{\text{ortho}} = ||R R^{\top} - I||_F^2, \quad L_{\text{det}} = (\det R - 1)^2.$$

4 Recovering p_4 : Image of the World Origin

The world XZ-plane (Y=0) contains the world X-axis and Z-axis. Its image is the line $\ell_{Y=0}$. Since the vanishing points p_1 (for X-axis) and p_3 (for Z-axis) lie on this plane, its image line $\ell_{Y=0}$ must pass through them. Thus, $\ell_{Y=0}=p_1\times p_3$. Similarly, the world YZ-plane (X=0) contains the world Y-axis and Z-axis. Its image line $\ell_{X=0}$ must pass through their vanishing points p_2 and p_3 . Thus, $\ell_{X=0}=p_2\times p_3$.

The world origin (0,0,0) lies on both the world XZ-plane and the world YZ-plane. Therefore, its image, p_4 , must lie on the intersection of their image lines, $\ell_{Y=0}$ and $\ell_{X=0}$.

$$p_4 = \ell_{X=0} \times \ell_{Y=0}$$
.

5 Recovering Translation t

Since $p_4 = K t$, we can recover the translation vector direction:

$$\tilde{t} = \hat{K}^{-1} p_4, \quad \hat{t} = \frac{\tilde{t}}{\|\tilde{t}\|}.$$

This recovers the translation direction up to an unknown scale, as is typical when estimating depth from a single image without additional information.

6 Final Projection Matrix

Thus, the full projection matrix can be constructed as:

$$P = \begin{bmatrix} \hat{K} r_1 & \hat{K} r_2 & \hat{K} r_3 & \hat{K} \hat{t} \end{bmatrix}.$$

7 5. SOFI Core Losses

For SOFI's three camera outputs and line queries, we use:

$$L_{\text{zvp}} = 1 - \frac{z^{\top} \hat{z}}{\|z\| \|\hat{z}\|},$$

$$L_{\text{hl}} = \max(\|b_l - \hat{b}_l\|_1, \|b_r - \hat{b}_r\|_1),$$

$$L_{\text{FoV}} = |f - \hat{f}|,$$

 $L_{\rm class}, L_{\rm score}$: Focal Loss on line class/confidence.

Then, the total SOFI loss is:

$$L_{\text{SOFI}} = 5L_{\text{zvp}} + 5L_{\text{hl}} + 5L_{\text{FoV}} + L_{\text{class}} + L_{\text{score}}.$$

8 6. UGCL-Style Geometric Constraints

6.1 Rotation Matrix Constraints

These losses ensure that the rotation matrix R is orthonormal.

$$L_{r_{12}} = (r_1^{\top} r_2)^2, \quad L_{r_{13}} = (r_1^{\top} r_3)^2, \quad L_{r_{23}} = (r_2^{\top} r_3)^2,$$

 $L_{Riso} = ||R R^{\top} - I||_F^2, \quad L_{det} = (\det R - 1)^2.$

6.2 World-Origin Self-Consistency

This loss ensures that the derived image of the world origin p_4 is consistent with the estimated intrinsic matrix \hat{K} and the recovered translation direction \hat{t} , effectively enforcing the relationship $p_4 \sim \hat{K} \hat{t}$. Note that this is an internal consistency check and does not require ground truth for translation.

$$L_{\mathrm{wc}} = \left\| p_4 - \hat{K} \, \hat{t} \right\|_1.$$

6.3 Horizon Line Consistency

The normal to the horizon plane in camera coordinates should be parallel to the zenith direction. Let $n_h = \hat{K}^{-\top} \ell$ be the normal to the horizon plane, and r_3 be the zenith direction.

$$L_{\text{horizon_normal}} = ||n_h \times r_3||^2.$$

9 7. Final Unified Loss

$$\begin{split} L_{\rm total} = L_{\rm SOFI} \; + \; \lambda_r \left(L_{r_{12}} + L_{r_{13}} + L_{r_{23}} \right) \; + \; \lambda_{\rm iso} \; L_{R\rm iso} \\ + \; \lambda_{\rm det} \; L_{\rm det} \; + \; \lambda_{\rm wc} \; L_{\rm wc} \; + \; \lambda_{\rm horizon_normal} \; L_{\rm horizon_normal}. \end{split}$$

Each weight λ (e.g. 0.1) softly enforces its constraint while preserving SOFI's learned predictions.