# Q-Learning Tower of Hanoi

#### Yann Adjanor, Richard Mann, Feb 2018

5 Python files are provided to demonstrate Q-learning for the Tower of Hanoi project.

The first 4 files are identical apart from minor changes to parameters as described below.

The last file is dedicated to function approximators and the code has different features

Each of the first 4 files is structured as follows:

- Function imports
- Define global variables
- Define functions for Q learning (see below)
- Run Q learning once to show optimum solution graphically
- Create parameter grid for analysing the impact of varying alpha, epsilon etc
- Iterate through parameter grid (and average each setting over n iterations to obtain an average result), storing results in arrays
- Summarise results and display graphs

The script allows two optional variations to Q learning of the standard puzzle.

- 1. Blocking and unblocking the optimal path so that the agent has to re-learn the puzzle at a certain point.
- 2. Addition of experience to Q learning, i.e. Dyna-Q Learning

Functions defined in the script are structured as follows:

- Functions to define the Hanoi puzzle for n disks
  - o prime\_list
  - is\_valid\_state
  - o encode\_state
  - decode\_state
  - o macro\_state
  - next\_allowed\_state
- Functions to create the R/Q matrix for the puzzle
  - o set\_R\_matrix
  - $\circ \quad \ \ init\_Q\_matrix$
  - o init\_M\_matrix (for dyna-Q)
- Q learning functions
  - o Q\_learning\_only\_one\_step\_ahead (random start, one step episodes not used in report)
  - O Q\_learning\_until\_goal\_state (Q learning always to goal state without convergence test)
  - Q\_learning\_until\_goal\_state\_conv (Q learning always to goal state with convergence test, blocking/unblocking and dvna-Q)
  - run\_agent
- Q learning non-core functions
  - o create\_parameter\_mesh (to create grid of alpha, epsilon, gamma parameters)
  - convergence\_graph
  - $\circ \hspace{0.5cm} step\_progression\_graph \\$
  - o manage\_data (save and reload data)
- Hanoi tower visualisations
  - display\_state
  - $\circ \hspace{0.5cm} \mathsf{save\_solution\_images}$
  - o save\_all\_state\_images
  - dispay\_graphviz
  - display\_graphnx
  - Q learning greedy behaviour test
    - o length\_to\_solve

The four versions of the script provided have different settings as described below.

# Hanoi\_Final1\_Qlearning\_Convergence\_3disks.py

# Settings:

3 disk problem. Normal Q learning, no blocking/unblocking.

100 different parameters (all alpha, epsilon combinations 0.1,0.2...1) averaged over 5 iterations.

# Graphical output:

#### Solution:



#### RMSE between Q and Q converged over timesteps



Mean number of episodes to achieve convergence (capped at 10,000 = no convergence)



# Hanoi\_Final2\_Qlearning\_Rgraphs.py

# Settings:

- 4 disk problem. Normal Q learning, no blocking/unblocking.
- 4 different parameters (all alpha, epsilon combinations 0.25 and 0.75) averaged over 5 iterations.

# Graphical output:

#### Solution:



#### Reward v timesteps



#### Rate of reward v timesteps



# Hanoi\_Final3\_Qlearning\_with\_Blocking\_Rgraphs.py

# Settings:

4 disk problem. Normal Q learning, but with added blocking (at 20,000 steps) /unblocking (at 40,000 steps) of optimal path.

4 different parameters (all alpha, epsilon combinations 0.25 and 0.75) averaged over 5 iterations.

#### Graphical output:

#### Solution:



#### Reward v timesteps



# Rate of reward v timesteps



# Hanoi\_Final4\_DynaQlearning\_Rgraphs.py

# Settings:

4 disk problem. Normal Q learning, no blocking.

But experience replay added with n=0 (normal Q learning), n=1 and n=3.

Only 1 setting for alpha and epsilon (0.75) averaged over 5 iterations.

# Graphical output:

#### Solution:



#### Reward v timesteps



#### Rate of reward v timesteps



# Hanoi\_Final5\_Qlearning\_FunctionApproximation.py Settings:

3 or 4 disk problem. Normal Q learning, no blocking.

No Q or R matrix but Q and R functions. The Q function is defined by a function approximator

There are 9 function approximators defined (f1 to f9). Changing the function involves changing the code in:

```
def f_approx(nDisks, Z, states, s, a):
    return f4(nDisks, Z, states, s, a, normalise=True)
```

All parameters settings hardcoded but changeable.

#### Output:

Whether the algorithm has converged or not:

```
solution from state #0 to state #26 in 8 steps
([1, 2, 3], [], [])
([2, 3], [], [1])
([3], [2], [1])
([3], [1, 2], [])
([], [1, 2], [3])
([], [2], [1, 3])
([1], [2], [3])
([1], [2], [3])
([1], [], [2, 3])
```

#### Graphical output:

Results of the learning run showing the norm of the weight vector and number of steps episodes (1<sup>st</sup> graph), value of all individual weights and value of epsilon (2<sup>nd</sup> graph) and value of final weights (last graph)

