CSC 561: Neural Networks and Deep Learning

Loss, Overfitting, Model Selection

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island Spring 2024

The "supervised learning" problem

- Finding a **hypothesis** (classifier/regressor) that best approximates a target function $f(\mathbf{x})$
 - \checkmark the target function maps inputs **x** to outputs *y* from a data-generating distribution *P*

for $h_w \in \mathcal{H}$ and $\forall (x_i, y_i) \sim P$, we want $h_w(\mathbf{x_i}) \approx f(\mathbf{x_i})$

Machine Learning algorithms use search and optimization methods for finding h_w

Loss functions

Empirical risk minimization

• True risk (a.k.a. expected loss, cost function)

$$J^*(\mathbf{w}) = \mathbb{E}\left[l\left(h_w, \mathbf{x_i}, y_i\right)\right]_{(\mathbf{x_i}, y_i) \sim P}$$

where l is the **per-example loss** ("error") between the predicted output $h_w(\mathbf{x_i})$ and the target output y_i

Note that the expectation is taken across the data-generating distribution *P* rather than over a finite training set.

Empirical risk minimization

• Empirical risk

we can't solve the true risk directly as we do not know P but only have a training set \mathcal{D} of samples

$$\mathbb{E}\left[l\left(h_{w}, \mathbf{x_{i}}, y_{i}\right)\right]_{(\mathbf{x_{i}}, y_{i}) \sim \mathcal{D}} = \frac{1}{n} \sum_{i=1}^{n} l\left(h_{w}, x_{i}, y_{i}\right) = J(\mathbf{w})$$

Rather than minimizing the **true risk** directly, we optimize the **empirical risk** hoping that the **true loss** decreases significantly as well.

Empirical risk minimization

- The goal of a machine learning algorithm (supervised learning) is to reduce the **true risk**
 - \checkmark as the true distribution P is unknown we can minimize the empirical risk instead
- The training process based on minimizing the empirical risk is known as empirical risk minimization

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

0/1 loss

 $l_{0/1}(h_w, \mathbf{x_i}, y_i) = I\left(h_w(\mathbf{x_i}) \neq y_i\right)$ indicator
function

Prediction	Target
5	5
1	9
2	2
7	7
8	0
0	0
0	8
3	3
6	6
4	4

Empirical risk?

Practice

X0	X1	X2	Y
1	0	0	-1
1	1	0	+1
1	1	1	+1
1	0	1	+1

$$h_{w}(\mathbf{x}) = \sigma(\mathbf{w}^{T}\mathbf{x})$$

$$\sigma(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

zero-one loss for $\mathbf{w}_a = [0,0,0]^T$?

zero-one loss for $\mathbf{w}_b = [0,1,0]^T$?

zero one loss for $\mathbf{w}_c = [-1,2,2]^T$?

Squared loss

$$l_{sq}(h_w, \mathbf{x_i}, y_i) = \left(h_w(\mathbf{x_i}) - y_i\right)_{\substack{\text{penalizes big} \\ \text{mistakes}}}^2$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Empirical risk?

Absolute loss

$$l_{abs}(h_w, \mathbf{x_i}, y_i) = \left| h_w(\mathbf{x_i}) - y_i \right|$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Empirical risk?

Remarks

- Empirical risk minimization is prone to overfitting
 - √high-capacity models can simply memorize the training set
 - \checkmark can introduce <u>regularization</u> to improve generalization
- · Modern machine learning is based on gradient descent
 - requires loss functions to be <u>differentiable</u> (e.g., can't use 0/1 loss)
- In the context of deep learning, we must go beyond pure empirical risk minimization
 - ✓ the quantity that we actually optimize may differ from the quantity we truly want to optimize
 - ✓ e.g. SGD does not directly optimize the empirical risk, rather a loss function that approximates it

Overfitting

Overfitting

Learning a model that "knows" the training data very well but does not generalize

Overfitting

- Reasons
 - √ model is too complex
 - model is fitting noise present in the training data
 - √ training data is not a representative sample of the
 distribution
- · How to prevent?
 - √ use more training data
 - ✓ use fewer features
 - √regularize your model

Generalization

We can use a ML method to calculate:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

- Problem: it may overfit the training data • we want better generalization
- Solution: split your data in train, validation, test
 use train and validation to select the best hypothesis
 use test for final evaluation and report

Model selection

Train and test TRAIN SET TRAIN SET TEST SET

Confusion matrix (2 classes)

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
ondition	Positive (P)	True positive (TP)	False negative (FN)
Actual condition	Negative (N)	False positive (FP)	True negative (TN)

https://en.wikipedia.org/wiki/Confusion_matrix

Confusion matrix (example)

		Predicted condition	
	Total	Cancer	Non-cancer
	8 + 4 = 12	7	5
ondition	Cancer 8	6	2
Actual condition	Non-cancer 4	1	3

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluation metrics (2 classes)

accuracy (ACC)

$$ext{ACC} = rac{ ext{TP} + ext{TN}}{ ext{P} + ext{N}} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

F1 score

is the harmonic mean of precision and sensitivity

$$F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$$

Matthews correlation coefficient (MCC)

$$ext{MCC} = rac{ ext{TP} imes ext{TN} - ext{FP} imes ext{FN}}{\sqrt{(ext{TP} + ext{FP})(ext{TP} + ext{FN})(ext{TN} + ext{FP})(ext{TN} + ext{FN})}}$$

Confusion matrix (example >2 classes)

https://www.mathworks.com/help/deeplearning/ref/confusionchart.html