Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 841 395 A1

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 13.05.1998 Bulletin 1998/20

(21) Application number: 96916305.4

(22) Date of filing: 05.06.1996

(51) Int. CI.⁶: **C12N 15/52**, C12N 1/21, C12P 13/08
// (C12N15/52, C12R1:13), (C12N1/21, C12R1:13), (C12P13/08, C12R1:13)

(86) International application number: PCT/JP96/01511

(87) International publication number:
 WO 96/40934 (19.12.1996 Gazette 1996/55)

(84) Designated Contracting States: **DE DK ES FR GB IT NL**

(30) Priority: 07.06.1995 JP 140614/95

(71) Applicant: AJINOMOTO CO., INC. Tokyo 104 (JP)

(72) Inventors:

OTSUNA, Seiko
 Ajinomoto Co., Inc.

 Technology &

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

 SUGIMOTO, Masakazu Ajinomoto Co., Inc. Technology

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

IZUI, Masako
 Ajinomoto Co., Inc.

 Technology &

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

 HAYAKAWA, Atsushi Ajinomoto Co., Inc.

Technology

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

 NAKANO, Eiichi Ajinomoto Co., Inc.

Technology &

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

 KOBAYASHI, Masaki Ajinomoto Co., Inc.

Technology

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

YOSHIHARA, Yasuhiko
 Ajinomoto Co., Inc.
 Technology

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

 NAKAMATSU, Tsuyoshi Ajinomoto Co., Inc. Technology

Kawasaki-ku Kawasaki-shi Kanagawa 210 (JP)

(74) Representative:

Kolb, Helga, Dr. Dipl.-Chem. et al Hoffmann Eitle, Patent- und Rechtsanwälte, Arabellastrasse 4 81925 München (DE)

(54) PROCESS FOR PRODUCING L-LYSINE

(57) The L-lysine-producing ability and the L-lysine-producing speed are improved in a coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and L-threonine, is substantially desensitized, by successively enhancing DNA coding for a dihydrodipicolinate reductase, DNA coding for a dihydrodipicolinate synthase, DNA coding for a diaminopimelate decarboxylase, and DNA coding for a diaminopimelate dehydrogenase.

Description

5

10

Technical Field

The present invention relates to a method for producing L-lysine by cultivating a microorganism obtained by modifying a coryneform bacterium used for fermentative production of amino acid or the like by means of a technique based on genetic engineering.

Background Art

L-Lysine, which is used as a fodder additive, is usually produced by a fermentative method by using an L-lysine-producing mutant strain belonging to the coryneform bacteria. Various L-lysine-producing bacteria known at present are those created by artificial mutation starting from wild type strains belonging to the coryneform bacteria.

As for the coryneform bacteria, there are disclosed a vector plasmid which is autonomously replicable in bacterial cells and has a drug resistance marker gene (see United States Patent No. 4,514,502), and a method for introducing a gene into bacterial cells (for example, Japanese Patent Laid-open No. 2-207791). There is also disclosed a possibility for breeding an L-threonine- or L-isoleucine-producing bacterium by using the techniques as described above (see United States Patent Nos. 4,452,890 and 4,442,208). As for breeding of an L-lysine-producing bacterium, a technique is known, in which a gene participating in L-lysine biosynthesis is incorporated into a vector plasmid to amplify the gene in bacterial cells (for example, Japanese Patent Laid-open No. 56-160997).

Known genes for L-lysine biosynthesis include, for example, a dihydrodipicolinate reductase gene (Japanese Patent Laid-open No. 7-75578) and a diaminopimelate dehydrogenase gene (Ishino, S. et al., <u>Nucleic Acids Res.</u>, <u>15</u>, 3917 (1987)) in which a gene participating in L-lysine biosynthesis is cloned, as well as a phosphoenolpyruvate carboxylase gene (Japanese Patent Laid-open No. 60-87788), a dihydrodipicolinate synthase gene (Japanese Patent Publication No. 6-55149), and a diaminopimelate decarboxylase gene (Japanese Patent Laid-open No. 60-62994) in which amplification of a gene affects L-lysine productivity.

As for enzymes participating in L-lysine biosynthesis, a case is known for an enzyme which undergoes feedback inhibition when used as a wild type. In this case, L-lysine productivity is improved by introducing an enzyme gene having such mutation that the feedback inhibition is desensitized. Those known as such a gene specifically include, for example, an aspartokinase gene (International Publication Pamphlet of WO 94/25605).

As described above, certain successful results have been obtained by means of amplification of genes for the L-lysine biosynthesis system, or introduction of mutant genes. For example, a coryneform bacterium, which harbors a mutant aspartokinase gene with desensitized concerted inhibition by lysine and threonine, produces a considerable amount of L-lysine (about 25 g/L). However, this bacterium suffers decrease in growth speed as compared with a bacterium harboring no mutant aspartokinase gene. It is also reported that L-lysine productivity is improved by further introducing a dihydrodipicolinate synthase gene in addition to a mutant aspartokinase gene (Applied and Environmental Microbiology, 57(6), 1746-1752 (1991)). However, such a bacterium suffers further decrease in growth speed.

As for the dihydrodipicolinate reductase gene, it has been demonstrated that the activity of dihydrodipicolinate reductase is increased in a coryneform bacterium into which the gene has been introduced, however, no report is included for the influence on L-lysine productivity (Japanese Patent Laid-open No. 7-75578).

In the present circumstances, no case is known for the coryneform bacteria, in which anyone has succeeded in remarkable improvement in L-lysine yield without restraining growth by combining a plurality of genes for L-lysine biosynthesis. No case has been reported in which growth is intended to be improved by enhancing a gene for L-lysine biosynthesis as well.

Disclosure of the Invention

An object of the present invention is to improve the L-lysine-producing ability and the growth speed of a coryneform bacterium by using genetic materials of DNA sequences each coding for aspartokinase (hereinafter referred to as "AK", provided that a gene coding for an AK protein is hereinafter referred to as "lysC", if necessary), dihydrodipicolinate reductase (hereinafter referred to as "DDPR", provided that a gene coding for a DDPR protein is hereinafter referred to as "dapB", if necessary), dihydrodipicolinate synthase (hereinafter abbreviate as "DDPS", provided that a gene coding for a DDPS protein is hereinafter referred to as "dapA", if necessary), diaminopimelate decarboxylase (hereinafter referred to as "DDC", provided that a gene coding for a DDC protein is hereinafter referred to as "lysA", if necessary), and diaminopimelate dehydrogenase (hereinafter referred to as "DDH", provided that a gene coding for a DDH protein is hereinafter referred to as "ddh", if necessary) which are important enzymes for L-lysine biosynthesis in cells of coryneform bacteria.

When an objective substance is produced fermentatively by using a microorganism, the production speed, as well

as the yield of the objective substance relative to an introduced material, is an extremely important factor. An objective substance may be produced remarkably inexpensively by increasing the production speed per a unit of fermentation equipment. Accordingly, it is industrially extremely important that the fermentative yield and the production speed are compatible with each other. The present invention proposes a solution for the problem as described above in order to fermentatively produce L-lysine by using a coryneform bacterium.

The principle of the present invention is based on the fact that the growth of a coryneform bacterium can be improved, and the L-lysine-producing speed thereof can be improved by making enhancement while combining <u>dapB</u> with mutant <u>lysC</u> (hereinafter simply referred to as "mutant <u>lysC</u>", if necessary) coding for mutant AK (hereinafter simply referred to as "mutant type AK", if necessary) in which concerted inhibition by lysine and threonine is desensitized, as compared with a case in which <u>lysC</u> is enhanced singly, and that the L-lysine-producing speed can be further improved in a stepwise manner by successively enhancing <u>dapA</u>, <u>lysA</u>, and <u>ddh</u>.

Namely, the present invention lies in a recombinant DNA autonomously replicable in cells of coryneform bacteria, comprising a DNA sequence coding for an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and a DNA sequence coding for a dihydrodipicolinate reductase. The present invention provides a recombinant DNA further comprising a DNA sequence coding for a dihydrodipicolinate synthase, in addition to each of the DNA sequences described above. The present invention provides a recombinant DNA further comprising a DNA sequence coding for a diaminopimelate decarboxylase, in addition to the three DNA sequences described above. The present invention provides a recombinant DNA further comprising a DNA sequence coding for a diaminopimelate dehydrogenase, in addition to the four DNA sequences described above.

In another aspect, the present invention provides a coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and comprising enhanced DNA coding for a dihydrodipicolinate reductase. The present invention provides a coryneform bacterium further comprising enhanced DNA coding for a dihydrodipicolinate synthase in the aforementioned coryneform bacterium. The present invention provides a coryneform bacterium further comprising enhanced DNA coding for a diaminopimelate decarboxylase in the aforementioned coryneform bacterium, in addition to the three DNA's described above. The present invention provides a coryneform bacterium further comprising enhanced DNA coding for a diaminopimelate dehydrogenase in the aforementioned coryneform bacterium, in addition to the four DNA's described above.

In still another aspect, the present invention provides a method for producing L-lysine comprising the steps of cultivating any one of the coryneform bacteria described above in an appropriate medium, producing and accumulating L-lysine in a culture of the bacterium, and collecting L-lysine from the culture.

The coryneform bacteria referred to in the present invention are a group of microorganisms as defined in Bergey's Manual of Determinative Bacteriology, 8th ed., p. 599 (1974), which are aerobic Gram-positive rods having no acid resistance and no spore-forming ability. The coryneform bacteria include bacteria belonging to the genus Corynebacterium, bacteria belonging to the genus Berevibacterium having been hitherto classified into the genus Berevibacterium but united as bacteria belonging to the genus Corynebacterium at present, and bacteria belonging to the genus Berevibacterium closely relative to bacteria belonging to the genus Corynebacterium.

The present invention will be explained in detail below.

(1) Preparation of genes for L-lysine biosynthesis used for the present invention

The genes for L-lysine biosynthesis used in the present invention are obtained respectively by preparing chromosomal DNA from a bacterium as a DNA donor, constructing a chromosomal DNA library by using a plasmid vector or the like, selecting a strain harboring a desired gene, and recovering, from the selected strain, recombinant DNA into which the gene has been inserted. The DNA donor for the gene for L-lysine biosynthesis used in the present invention is not specifically limited provided that the desired gene for L-lysine biosynthesis expresses an enzyme protein which functions in cells of coryneform bacteria. However, the DNA donor is preferably a coryneform bacterium.

All of the genes of <u>lysC</u>, <u>dapA</u>, and <u>dapB</u> originating from coryneform bacteria have known sequences. Accordingly, they can be obtained by performing amplification in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)).

Each of the genes for L-lysine biosynthesis used in the present invention is obtainable in accordance with certain methods as exemplified below.

(1) Preparation of mutant lysC

20

40

50

55

A DNA fragment containing mutant <u>lysC</u> can be prepared from a mutant strain in which synergistic feedback inhibition on the AK activity by L-lysine and L-threonine is substantially desensitized (International Publication Pamphlet of WO 94/25605). Such a mutant strain can be obtained, for example, from a group of cells originating from a wild type strain of a coryneform bacterium subjected to a mutation treatment by applying an ordinary mutation treatment such as

ultraviolet irradiation and treatment with a mutating agent such as N-methyl-N'-nitro-N-nitrosoguanidine. The AK activity can be measured by using a method described by Miyajima, R. et al. in <u>The Journal of Biochemistry</u> (1968), <u>63(2)</u>, 139-148. The most preferred as such a mutant strain is represented by an L-lysine-producing bacterium AJ3445 (FERM P-1944) derived by a mutation treatment from a wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 (having its changed present name of <u>Corynebacterium glutamicum</u>).

Alternatively, mutant <u>lysC</u> is also obtainable by an <u>in vitro</u> mutation treatment of plasmid DNA containing wild type <u>lysC</u>. In another aspect, information is specifically known on mutation to desensitize synergistic feedback inhibition on AK by L-lysine and L-threonine (International Publication Pamphlet of WO 94/25605). Accordingly, mutant <u>lysC</u> can be also prepared from wild type <u>lysC</u> on the basis of the information in accordance with, for example, the site-directed mutagenesis method.

A fragment comprising <u>lysC</u> can be isolated from a coryneform bacterium by preparing chromosomal DNA in accordance with, for example, a method of Saito and Miura (H. Saito and K. Miura, <u>Biochem. Biophys. Acta, 72, 619 (1963)</u>), and amplifying <u>lysC</u> in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, 5, 185 (1989)).

DNA primers are exemplified by single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 1 and 2 in Sequence Listing in order to amplify, for example, a region of about 1,643 bp coding for <a href="https://list.org

It is preferred that <u>lysC</u> amplified by PCR is ligated with vector DNA autonomously replicable in cells of <u>E. coli</u> and/or coryneform bacteria to prepare recombinant DNA, and the recombinant DNA is introduced into cells of <u>E. coli</u> beforehand. Such provision makes following operations easy. The vector autonomously replicable in cells of <u>E. coli</u> is preferably a plasmid vector which is preferably autonomously replicable in cells of a host, including, for example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, and RSF1010.

When a DNA fragment having an ability to allow a plasmid to be autonomously replicable in coryneform bacteria is inserted into these vectors, they can be used as a so-called shuttle vector autonomously replicable in both \underline{E} . \underline{coli} and coryneform bacteria.

Such a shuttle vector includes the followings. Microorganisms harboring each of vectors and deposition numbers in international deposition facilities are shown in parentheses.

pHC4: Escherichia coli AJ12617 (FERM BP-3532)
pAJ655: Escherichia coli AJ11882 (FERM BP-136)
Corynebacterium glutamicum SR8201 (ATCC 39135)
pAJ1844: Escherichia coli AJ11883 (FERM BP-137)
Corynebacterium glutamicum SR8202 (ATCC 39136)
pAJ611: Escherichia coli AJ11884 (FERM BP-138)
pAJ3148: Corynebacterium glutamicum SR8203 (ATCC 39137)
pAJ440: Bacillus subtilis AJ11901 (FERM BP-140)

15

30

35

40

These vectors are obtainable from the deposited microorganisms as follows. Cells collected at a logarithmic growth phase were lysed by using lysozyme and SDS, followed by separation from a lysate by centrifugation at 30,000 x g to obtain a supernatant to which polyethylene glycol is added, followed by fractionation and purification by means of cesium chloride-ethidium bromide equilibrium density gradient centrifugation.

<u>E. coli</u> can be transformed by introducing a plasmid in accordance with, for example, a method of D. M. Morrison (<u>Methods in Enzymology</u>, <u>68</u>, 326 (1979)) or a method in which recipient cells are treated with calcium chloride to increase permeability for DNA (Mandel, M. and Higa, A., <u>J. Mol. Biol.</u>, <u>53</u>, 159 (1970)).

Wild type <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK wild type strain, while mutant <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK mutant strain in accordance with the method as described above.

An example of a nucleotide sequence of a DNA fragment containing wild type \underline{lysC} is shown in SEQ ID NO: 3 in Sequence Listing. An amino acid sequence of α -subunit of a wild type AK protein is deduced from the nucleotide sequence, which is shown in SEQ ID NO: 4 in Sequence Listing together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 5. An amino acid sequence of β -subunit of the wild type AK protein is deduced from the nucleotide sequence of DNA, which is shown in SEQ ID NO: 6 in Sequence Listing together with the DNA. Only the amino acid sequence is shown in SEQ ID NO: 7. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

The mutant <u>lysC</u> used in the present invention is not specifically limited provided that it codes for AK in which synergistic feedback inhibition by L-lysine and L-threonine is desensitized. However, the mutant <u>lysC</u> is exemplified by one including mutation in which a 279th alanine residue as counted from the N-terminal is changed into an amino acid residue other than alanine and other than acidic amino acid in the α -subunit, and a 30th alanine residue is changed into an amino acid residue other than alanine and other than acidic amino acid in the β -subunit in the amino acid sequence of the wild type AK. The amino acid sequence of the wild type AK specifically includes the amino acid sequence shown in SEQ ID NO: 7 in Sequence Listing as the β -subunit.

Those preferred as the amino acid residue other than alanine and other than acidic amino acid include threonine, arginine, cyteine, phenylanaline, proline, serine, tyrosine, and valine residues.

The codon corresponding to an amino acid residue to be substituted is not specifically limited for its type provided that it codes for the amino acid residue. It is assumed that the amino acid sequence of possessed wild type AK may slightly differ depending on the difference in bacterial species and bacterial strains. AK's, which have mutation based on, for example, substitution, or insertion of one or more amino acid residues at one or more positions irrelevant to the enzyme activity as described above, can be also used for the present invention. Other AK's, which have mutation based on, for example, substitution, deletion, or insertion of other one or more amino acid residues, can be also used provided that no influence is substantially exerted on the AK activity, and on the desensitization of synergistic feedback inhibition by L-lysine and L-threonine.

An AJ12691 strain obtained by introducing a mutant <u>lysC</u> plasmid p399AK9B into an AJ12036 strain (FERM BP-734)as a wild type strain of <u>Brevibacterium lactofermentum</u> has been deposited on April 10, 1992 under a deposition number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under a deposition number of FERM BP-4999.

(2) Preparation of dapB

25

35

50

A DNA fragment containing <u>dapB</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium</u> <u>lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPR is known for <u>Brevibacterium lactofermentum</u> (<u>Journal of Bacteriology</u>, <u>175(9</u>), 2743-2749 (1993)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 8 and 9 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>dapB</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing <u>dapB</u> and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 10. Only the amino acid sequence is shown in SEQ ID NO: 11. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 11, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPR activity.

A transformant strain AJ13107 obtained by introducing a plasmid pCRDAPB containing <u>dapB</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under a deposition number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

(3) Preparation of dapA

A DNA fragment containing <u>dapA</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium</u> <u>lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPS is known for <u>Corynebacterium glutamicum</u> (see <u>Nucleic Acids Research</u>, <u>18(21)</u>, 6421 (1990); <u>EMBL</u> accession No. X53993), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 12 and 13 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>dapA</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing dapA and an amino acid sequence deduced from the nucle-

otide sequence are exemplified in SEQ ID NO: 14. Only the amino acid sequence is shown in SEQ ID NO: 15. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 15, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPS activity.

A transformant strain AJ13106 obtained by introducing a plasmid pCRDAPA containing <u>dapA</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under a deposition number of FERM BP-5113 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

(4) Preparation of IysA

A DNA fragment containing <u>lysA</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium</u> <u>lactofermentum</u> ATCC 13869 strain.

In the coryneform bacteria, <u>lysA</u> forms an operon together with <u>argS</u> (arginyl-tRNA synthase gene), and <u>lysA</u> exists downstream from <u>argS</u>. Expression of <u>lysA</u> is regulated by a promoter existing upstream from <u>argS</u> (see <u>Journal of Bacteriology</u>, <u>Nov.</u>, 7356-7362 (1993)). DNA sequences of these genes are known for <u>Corynebacterium glutamicum</u> (see <u>Molecular Microbiology</u>, <u>4(11)</u>, 1819-1830 (1990); <u>Molecular and General Genetics</u>, <u>212</u>, 112-119 (1988)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences shown in SEQ ID NO: 16 in Sequence Listing (corresponding to nucleotide numbers 11 to 33 in a nucleotide sequence described in <u>Molecular Microbiology</u>, <u>4(11)</u>, 1819-1830 (1990)) and SEQ ID NO: 17 (corresponding to nucleotide numbers 1370 to 1392 in a nucleotide sequence described in <u>Molecular and General Genetics</u>, <u>212</u>, 112-119 (1988)). Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>lysA</u> can be performed in the same manner as those for <u>lysC</u> described above.

In Example described later on, a DNA fragment containing a promoter, <u>argS</u>, and <u>lysA</u> was used in order to enhance <u>lysA</u>. However, <u>argS</u> is not essential for the present invention. It is allowable to use a DNA fragment in which <u>lysA</u> is ligated just downstream from a promoter.

A nucleotide sequence of a DNA fragment containing <u>argS</u> and <u>lysA</u>, and an amino acid sequence deduced to be encoded by the nucleotide sequence are exemplified in SEQ ID NO: 18. An example of an amino acid sequence encoded by <u>argS</u> is shown in SEQ ID NO: 19, and an example of an amino acid sequence encoded by <u>lysA</u> is shown in SEQ ID NO: 20. In addition to DNA fragments coding for these amino acid sequences, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 20, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDC activity.

(5) Preparation of ddh

30

A DNA fragment containing <u>ddh</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

A DDH gene is known for <u>Corynebacterium glutamicum</u> (Ishino, S. et al., <u>Nucleic Acids Res.</u>, <u>15</u>, 3917 (1987)), on the basis of which primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 20-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 21 and 22 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>ddh</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing <u>ddh</u> and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 23. Only the amino acid sequence is shown in SEQ ID NO: 24. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 24, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDH activity.

(2) Recombinant DNA and coryneform bacterium of the present invention

The coryneform bacterium of the present invention harbors an aspartokinase (mutant AK) in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, wherein DNA (dapB) coding for a dihydrodipicolinate

reductase is enhanced. In a preferred embodiment, the coryneform bacterium of the present invention is a coryneform bacterium in which DNA (dapA) coding for dihydrodipicolinate synthase is further enhanced. In a more preferred embodiment, the coryneform bacterium of the present invention is a coryneform bacterium in which DNA (lysA) coding for diaminopimelate decarboxylase is further enhanced. In a more preferred embodiment, the coryneform bacterium of the present invention is a coryneform bacterium in which DNA (ddh) coding for diaminopimelate dehydrogenase is further enhanced.

The term "enhance" DNA herein refers to the fact that the intracellular activity of an enzyme encoded by the DNA is raised by, for example, increasing the copy number of a gene, using a strong promoter, using a gene coding for an enzyme having a high specific activity, or combining these means.

The coryneform bacterium harboring the mutant AK may be those which produce the mutant aspartokinase as a result of mutation, or those which are transformed by introducing mutant <u>lysC</u>.

Examples of the coryneform bacterium used to introduce the DNA described above include, for example, the following lysine-producing wild type strains:

Corynebacterium acetoacidophilum ATCC 13870;

Corynebacterium acetoglutamicum ATCC 15806;

Corynebacterium callunae ATCC 15991;

Corynebacterium glutamicum ATCC 13032;

(Brevibacterium divaricatum) ATCC 14020;

(Brevibacterium lactofermentum) ATCC 13869;

(Corynebacterium lilium) ATCC 15990;

(Brevibacterium flavum) ATCC 14067;

Corynebacterium melassecola ATCC 17965;

Brevibacterium saccharolyticum ATCC 14066;

Brevibacterium immariophilum ATCC 14068;

Brevibacterium roseum ATCC 13825;

Brevibacterium thiogenitalis ATCC 19240;

Microbacterium ammoniaphilum ATCC 15354;

Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539).

30

10

15

20

25

Other than the bacterial strains described above, those usable as a host include, for example, mutant strains having an L-lysine-producing ability derived from the aforementioned strains. Such artificial mutant strains includes the followings: S-(2-aminoethyl)-cysteine (hereinafter abbreviated as "AEC") resistant mutant strains (Brevibacterium lactofermentum AJ11082 (NRRL B-1147), Japanese Patent Publication Nos. 56-1914, 56-1915, 57-14157, 57-14158, 57-30474, 58-10075, 59-4993, 61-35840, 62-24074, 62-36673, 5-11958, 7-112437, and 7-112438); mutant strains which require amino acid such as L-homoserine for their growth (Japanese Patent Publication Nos. 48-28078 and 56-6499); mutant strains which exhibit resistance to AEC and require amino acids such as L-leucine, L-homoserine, L-proline, Lserine, L-arginine, L-alanine, and L-valine (United States Patent Nos. 3,708,395 and 3,825,472); L-lysine-producing mutant strains which exhibit resistance to DL-α-amino-ε-caprolactam, α-amino-lauryllactam, aspartate-analog, sulfa drug, quinoid, and N-lauroylleucine; L-lysine-producing mutant strains which exhibit resistance to inhibitors of oxyaloacetate decarboxylase or respiratory system enzymes (Japanese Patent Laid-open Nos. 50-53588, 50-31093, 52-102498, 53-9394, 53-86089, 55-9783, 55-9759, 56-32995 and 56-39778, and Japanese Patent Publication Nos. 53-43591 and 53-1833); L-lysine-producing mutant strains which require inositol or acetic acid (Japanese Patent Laidopen Nos. 55-9784 and 56-8692); L-lysine-producing mutant strains which exhibit sensitivity to fluoropyruvic acid or temperature not less than 34 °C (Japanese Patent Laid-open Nos. 55-9783 and 53-86090); and producing mutant strains belonging to the genus <u>Brevibacterium</u> or <u>Corynebacterium</u> which exhibit resistance to ethylene glycol and produce L-lysine (United States Patent No. 4,411,997).

In a specified embodiment, in order to enhance the genes for L-lysine biosynthesis in the host as described above, the genes are introduced into the host by using a plasmid vector, transposon or phage vector or the like. Upon the introduction, it is expected to make enhancement to some extent even by using a low copy type vector. However, it is preferred to use a multiple copy type vector. Such a vector includes, for example, plasmid vectors, pAJ655, pAJ1844, pAJ611, pAJ3148, and pAJ440 described above. Besides, transposons derived from coryneform bacteria are described in International Publication Pamphlets of WO02/02627 and WO93/18151, European Patent Publication No. 445385, Japanese Patent Laid-open No. 6-46867, Vertes, A. A. et al., Mol. Microbiol., 11, 739-746 (1994), Bonamy, C., et al., Mol. Microbiol., 14, 571-581 (1994), Vertes, A. A. et al., Mol. Gen. Genet., 245, 397-405 (1994), Jagar, W. et al., FEMS Microbiology Letters, 126, 1-6 (1995), Japanese Patent Laid-open No. 7-327680 and the like.

In the present invention, it is not indispensable that the mutant <u>lvsC</u> is necessarily enhanced. It is allowable to use

those which have mutation on <u>lysC</u> on chromosomal DNA, or in which the mutant <u>lysC</u> is incorporated into chromosomal DNA. Alternatively, the mutant <u>lysC</u> may be introduced by using a plasmid vector. On the other hand, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and <u>ddh</u> are preferably enhanced in order to efficiently produce L-lysine.

Each of the genes of IvsC, dapA, dapB, IvsA, and ddh may be successively introduced into the host by using different vectors respectively. Alternatively, two, three, four, or five species of the genes may be introduced together by using a single vector. When different vectors are used, the genes may be introduced in any order, however, it is preferred to use vectors which have a stable sharing and harboring mechanism in the host, and which are capable of co-existing with each other.

A coryneform bacterium harboring the mutant AK and further comprising enhanced <u>dapB</u> is obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing mutant <u>lysC</u> and <u>dapB</u> autonomously replicable in cells of coryneform bacteria.

A coryneform bacterium further comprising enhanced <u>dapA</u> in addition to mutant <u>lysC</u> and <u>dapB</u> is obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing mutant <u>lysC</u>, <u>dapB</u>, and <u>dapA</u> autonomously replicable in cells of coryneform bacteria.

A coryneform bacterium further comprising enhanced <u>lysA</u> in addition to mutant <u>lysC</u>, <u>dapB</u>, and <u>dapA</u> is obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing mutant <u>lysC</u>, <u>dapB</u>, <u>dapA</u>, and <u>lysA</u> autonomously replicable in cells of coryneform bacteria.

A coryneform bacterium further comprising enhanced <u>ddh</u> in addition to mutant <u>lysC</u>, <u>dapB</u>, <u>dapA</u>, and <u>lysA</u> is obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing mutant <u>lysC</u>, <u>dapB</u>, <u>dapA</u>, <u>lysA</u>, and <u>ddh</u> autonomously replicable in cells of coryneform bacteria.

The above-mentioned recombinant DNAs can be obtained, for example, by inserting each of the genes participating in L-lysine biosynthesis into a vector such as plasmid vector, transposon or phage vector as described above.

In the case in which a plasmid is used as a vector, the recombinant DNA can be introduced into the host in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Laid-open No. 2-207791). Amplification of a gene using transposon can be performed by introducing a plasmid which carrying a transposon into the host cell and inducing transposition of the transposon.

(3) Method for producing L-lysine

...

15

30

35

50

55

L-Lysine can be efficiently produced by cultivating, in an appropriate medium, the coryneform bacterium comprising the enhanced genes for L-lysine biosynthesis as described above, producing and accumulating L-lysine in a culture of the bacterium, and collecting L-lysine from the culture.

The medium to be used is exemplified by an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and optionally other organic components.

As the carbon source, it is possible to use sugars such as glucose, fructose, sucrose, molasses, and starch hydrolysate; and organic acids such as fumaric acid, citric acid, and succinic acid.

As the nitrogen source, it is possible to use inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate; organic nitrogen such as soybean hydrolysate; ammonia gas; and aqueous ammonia.

As organic trace nutrient sources, it is desirable to contain required substances such as vitamin B_1 and L-homoserine or yeast extract or the like in appropriate amounts. Other than the above, potassium phosphate, magnesium sulfate, iron ion, manganese ion and so on are added in small amounts, if necessary.

Cultivation is preferably carried out under an aerobic condition for about 30 to 90 hours. The cultivation temperature is preferably controlled at 25 ° C to 37 °C, and pH is preferably controlled at 5 to 8 during cultivation. Inorganic or organic, acidic or alkaline substances, or ammonia gas or the like can be used for pH adjustment. L-lysine can be collected from a culture by combining an ordinary ion exchange resin method, a precipitation method, and other known methods.

Brief Description of the Drawings

- Fig. 1 illustrates a process of construction of plasmids p399AKYB and p399AK9B comprising mutant lysC.
 - Fig. 2 illustrates a process of construction of a plasmid pDPRB comprising dapB and Brevi.-or.
 - Fig. 3 illustrates ia process of construction of a plasmid pDPSB comprising dapA and Brevi.-ori.
 - Fig. 4 illustrates a process of construction of a plasmid p299LYSA comprising lysA.
 - Fig. 5 illustrates a process of construction of a plasmid pLYSAB comprising <u>lysA</u> and Brevi.-ori.
- Fig. 6 illustrates a process of construction of a plasmid pPK4D comprising ddh and Brevi.-ori.
- Fig. 7 illustrates a process of construction of a plasmid pCRCAB comprising lysC, dapB and Brevi.-ori.
- Fig. 8 illustrates a process of construction of a plasmid pCB comprising mutant lysC, dapB, and Brevi.-ori.
- Fig. 9 illustrates a process of construction of a plasmid pAB comprising dapA, dapB and Brevi.-ori.

- Fig. 10 illustrates a process of construction of a plasmid p399DL comprising ddh and lysA.
- Fig. 11 illustrates a process of construction of a plasmid pDL comprising ddh, lysA and Brevi.-ori.
- Fig. 12 illustrates a process of construction of a plasmid pCAB comprising mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, and Brevi.-ori.
- Fig. 13 illustrates a process of construction of a plasmid pCABL comprising mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and Brevi.-ori.
- Fig. 14 illustrates a process of construction of a plasmid pCABDL comprising mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>ddh</u>, <u>lysA</u>, and Brevi.-ori.

Description of Preferred Embodiments

10

The present invention will be more specifically explained below with reference to Examples.

Example 1: Preparation of Wild Type lysC Gene and Mutant lysC Gene from Brevibacterium lactofermentum

(1) Preparation of wild type and mutant lysC's and preparation of plasmids containing them

A strain of <u>Brevibacterium lactofermentum</u> ATCC 13869, and an L-lysine-producing mutant strain AJ3445 (FERM P-1944) obtained from the ATCC 13869 strain by a mutation treatment were used as chromosomal DNA donors. The AJ3445 strain had been subjected to mutation so that <u>lysC</u> was changed to involve substantial desensitization from concerted inhibition by lysine and threonine (<u>Journal of Biochemistry</u>, <u>68</u>, 701-710 (1970)).

A DNA fragment containing <u>lysC</u> was amplified from chromosomal DNA in accordance with the PCR method (polymerase chain reaction; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)). As for DNA primers used for amplification, single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 1 and 2 were synthesized in order to amplify a region of about 1,643 bp coding for <u>lysC</u> on the basis of a sequence known for <u>Coryne-bacterium glutamicum</u> (see <u>Molecular Microbiology</u> (1991), <u>5(5)</u>, 1197-1204; and <u>Mol. Gen. Genet.</u> (1990), <u>224</u>, 317-324). DNA was synthesized in accordance with an ordinary method by using DNA synthesizer model 380B produced by Applied Biosystems and using the phosphoamidite method (see <u>Tetrahedron Letters</u> (1901), <u>22</u>, 1859).

The gene was amplified by PCR by using DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo, and using Taq DNA polymerase in accordance with a method designated by the supplier. An amplified gene fragment of 1,643 kb was confirmed by agarose gel electrophoresis. After that, the fragment excised from the gel was purified in accordance with an ordinary method, and it was digested with restriction enzymes Nrul (produced by Takara Shuzo) and EcoRl (produced by Takara Shuzo).

pHSG399 (see Takeshita, S. et al., <u>Gene</u> (1987), <u>61</u>, 63-74) was used as a cloning vector for the gene fragment. pHSG399 was digested with restriction enzymes <u>Smal</u> (produced by Takara Shuzo) and <u>Eco</u>RI, and it was ligated with the amplified <u>lysC</u> fragment. DNA was ligated by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus plasmids were prepared, in which the <u>lysC</u> fragments amplified from chromosomes of <u>Brevibacterium lactofermentum</u> were ligated with pHSG399 respectively. A plasmid comprising <u>lysC</u> from ATCC 13869 (wild type strain) was designated as p399AKY, and a plasmid comprising <u>lysC</u> from AJ3463 (L-lysine-producing bacterium) was designated as p399AK9.

A DNA fragment (hereinafter referred to as "Brevi.-ori") having an ability to make a plasmid autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u> was introduced into p399AKY and p399AK9 respectively to prepare plasmids carrying <u>lysC</u> autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u>. Brevi.-ori was prepared from a plasmid vector pHK4 containing Brevi.-ori and autonomously replicable in cells of both <u>Escherichia coli</u> and bacteria belonging to the genus <u>Corynebacterium</u>. pHK4 was constructed by digesting pHC4 with <u>Kpnl</u> (produced by Takara Shuzo) and <u>Bam</u>HI (produced by Takara Shuzo), extracting a Brevi.-ori fragment, and ligating it with pHSG298 having been also digested with <u>Kpnl</u> and <u>Bam</u>HI (see Japanese Patent Laid-open No. 5-7491). pHK4 gives kanamycin resistance to a host. <u>Escherichia coli</u> harboring pHK4 was designated as <u>Escherichia coli</u> AJ13136, and deposited on August 1, 1995 under a deposition number of FERM BP-5186 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan).

pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>Bam</u>HI, and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>Bam</u>HI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Bam</u>HI. This plasmid was digested with <u>Bam</u>HI, and the generated Brevi.-ori DNA fragment was ligated with p399AKY and p399AK9 having been also digested with <u>Bam</u>HI respectively to prepare plasmids each containing the <u>lysC</u> gene autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u>.

A plasmid containing the wild type lysC gene originating from p399AKY was designated as p399AKYB, and a plas-

mid containing the mutant <u>lysC</u> gene originating from p399AK9 was designated as p399AK9B. The process of construction of p399AK9B and p399AKYB is shown in Fig. 1. A strain AJ12691 obtained by introducing the mutant <u>lysC</u> plasmid p399AK9B into a wild type strain of <u>Brevibacterium lactofermentum</u> (AJ12036 strain, FERM BP-734) was deposited on April 10, 1992 under a deposition number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under a deposition number of FERM BP-4999.

(2) Determination of nucleotide sequences of wild type lysC and mutant lysC from Brevibacterium lactofermentum

The plasmid p399AKY containing the wild type <u>lysC</u> and the plasmid p399AK9 containing the mutant <u>lysC</u> were prepared from the respective transformants to determine nucleotide sequences of the wild type and mutant <u>lysC's</u>. Nucleotide sequence determination was performed in accordance with a method of Sanger et al. (for example, F. Sanger et al., <u>Proc. Natl. Acad. Sci.</u>, <u>74</u>, 5463 (1977)).

The nucleotide sequence of wild type \underline{lysC} encoded by p399AKY is shown in SEQ ID NO: 3 in Sequence Listing. On the other hand, the nucleotide sequence of mutant \underline{lysC} encoded by p399AK9 had only mutation of one nucleotide such that 1051th G was changed into A in SEQ ID NO: 3 as compared with wild type \underline{lysC} . It is known that \underline{lysC} of $\underline{Corynebacterium}$ glutamicum has two subunits (α, β) encoded in an identical reading frame on an identical DNA strand (see Kalinowski, J. et al., $\underline{Molecular}$ $\underline{Microbiology}$ (1991) $\underline{5(5)}$, 1197-1204). Judging from homology, it is assumed that the gene sequenced herein also has two subunits (α, β) encoded in an identical reading frame on an identical DNA strand.

An amino acid sequence of the α -subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 4 together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 5. An amino acid sequence of the β -subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 6 together with DNA. Only the amino acid sequence is shown in SEQ ID NO: 7. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

On the other hand, mutation on the sequence of mutant <u>lysC</u> means occurrence of amino acid residue substitution such that a 279th alanine residue of the α -subunit is changed into a threonine residue, and a 30th alanine residue of the β -subunit is changed into a threonine residue in the amino acid sequence of the wild type AK protein (SEQ ID NOs: 5, 7).

Example 2: Preparation of dapB from Brevibacterium lactofermentum

10

15

(1) Preparation of dapB and construction of plasmid containing dapB

A wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>dapB</u> was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNA's of 23-mers having nucleotide sequences depicted in SEQ ID NOs: 8 and 9 in Sequence Listing respectively were synthesized in order to amplify a region of about 2.0 kb coding for DDPR on the basis of a sequence known for <u>Brevibacterium lactofermentum</u> (see <u>Journal of Bacteriology</u>, <u>157(9)</u>, 2743-2749 (1993)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR-Script (produced by Invitrogen) was used as a cloning vector for the amplified gene fragment of 2,001 bp, which was ligated with the amplified <u>dapB</u> fragment. Thus a plasmid was constructed, in which the <u>dapB</u> fragment of 2,001 bp amplified from chromosome of <u>Brevibacterium lactofermentum</u> was ligated with pCR-Script. The plasmid obtained as described above, which had <u>dapB</u> originating from ATCC 13869, was designated as pCRDAPB. A transformant strain AJ13107 obtained by introducing pCRDAPB into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under a deposition number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting pCRDAPB with <u>Eco</u>RV and <u>Sph</u>I. This fragment was ligated with pHSG399 having been digested with <u>HincII</u> and <u>Sph</u>I to prepare a plasmid. The prepared plasmid was designated as p399DPR.

Brevi.-ori was introduced into the prepared p399DPR to construct a plasmid carrying <u>dapB</u> autonomously replicable in coryneform bacteria. pHK4 was digested with a restriction enzyme <u>KpnI</u> (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>BamHI</u> linker (pro-

duced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Bam</u>HI. This plasmid was digested with <u>Bam</u>HI, and the generated Brevi.-ori DNA fragment was ligated with p399DPR having been also digested with <u>Bam</u>HI to prepare a plasmid containing <u>dapB</u> autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pDPRB. The process of construction of pDPRB is shown in Fig. 2.

(2) Determination of nucleotide sequence of dapB from Brevibacterium lactofermentum

Plasmid DNA was prepared from the AJ13107 strain harboring p399DPR, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 10. Only the amino acid sequence is shown in SEQ ID NO: 11.

Example 3: Preparation of dapA from Brevibacterium lactofermentum

(1) Preparation of dapA and construction of plasmid containing dapA

15

35

55

A wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>dapA</u> was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNA's of 20-mers having nucleotide sequences shown in SEQ ID NOs: 12 and 13 in Sequence Listing respectively were synthesized in order to amplify a region of about 1.5 kb coding for DDPS on the basis of a sequence known for <u>Corynebacterium glutamicum</u> (see <u>Nucleic Acids Research</u>, <u>18(21)</u>, 6421 (1990); <u>EMBL</u> accession No. X53993). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR1000 (produced by Invitrogen, see <u>Bio/Technology</u>, <u>9</u>, 657-663 (1991)) was used as a cloning vector for the amplified gene fragment of 1,411 bp, which was ligated with the amplified <u>dapA</u> fragment. Ligation of DNA was performed by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus a plasmid was constructed, in which the <u>dapA</u> fragment of 1,411 bp amplified from chromosome of <u>Brevibacterium lactofermentum</u> was ligated with pCR1000. The plasmid obtained as described above, which had <u>dapA</u> originating from ATCC 13869, was designated as pCRDAPA.

A transformant strain AJ13106 obtained by introducing pCRDAPA into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under a deposition number of FERM BP-5113 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

Brevi.-ori was introduced into the prepared pCRDAPA to construct a plasmid carrying <u>dapA</u> autonomously replicable in coryneform bacteria. pHK4 was digested with restriction enzymes <u>Kpn</u>I and <u>Bam</u>HI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>SmaI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>SmaI</u>. This plasmid was digested with <u>SmaI</u>, and the generated Brevi.-ori DNA fragment was ligated with pCRDAPA having been also digested with <u>SmaI</u> to prepare a plasmid containing <u>dapA</u> autonomously replicable in coryneform bacteria. This plasmid was designated as pDPSB. The process of construction of pDPSB(Km^I) is shown in Fig. 3.

45 (2) Determination of nucleotide sequence of dapA from Brevibacterium lactofermentum

Plasmid DNA was prepared from the AJ13106 strain harboring pCRDAPA, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 14. Only the amino acid sequence is shown in SEQ ID NO: 15.

Example 4: Preparation of lysA from Brevibacterium lactofermentum

(1) Preparation of IysA and construction of plasmid containing IysA

A wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>argS</u>, <u>lysA</u>, and a promoter of an operon containing them was amplified from the chromosomal DNA in

accordance with PCR. As for DNA primers used for amplification, synthetic DNA's of 23-mers having nucleotide sequences depicted in SEQ ID NOs: 16 and 17 in Sequence Listing respectively were used in order to amplify a region of about 3.6 kb coding for arginyl-tRNA synthase and DDC on the basis of a sequence known for Corynebacterium glutamicum (see Molecular Microbiology, 4(11), 1819-1830 (1990); Molecular and General Genetics, 212, 112-119 (1988)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pHSG399 was used as a cloning vector for the amplified gene fragment of 3,579 bp. pHSG399 was digested with a restriction enzyme Smal (produced by Takara Shuzo), which was ligated with the DNA fragment containing amplified lysA. A plasmid obtained as described above, which had lysA originating from ATCC 13869, was designated as p399LYSA.

A DNA fragment containing <u>lysA</u> was extracted by digesting p399LYSA with <u>Kpn</u>I (produced by Takara Shuzo) and <u>Bam</u>HI (produced by Takara Shuzo). This DNA fragment was ligated with pHSG299 having been digested with <u>Kpn</u>I and <u>Bam</u>HI. An obtained plasmid was designated as p299LYSA. The process of construction of p299LYSA is shown in Fig. 4.

Brevi.-ori was introduced into the obtained p299LYSA to construct a plasmid carrying <u>lysA</u> autonomously replicable in coryneform bacteria. pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u>, and cleaved edges were bluntended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>KpnI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>KpnI</u>. This plasmid was digested with <u>KpnI</u>, and the generated Brevi.-ori DNA fragment was ligated with p299LYSA having been also digested with <u>KpnI</u> to prepare a plasmid containing <u>lysA</u> autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pLYSAB. The process of construction of pLYSAB is shown in Fig. 5.

(2) Determination of nucleotide sequence of IysA from Brevibacterium lactofermentum

Plasmid DNA of p299LYSA was prepared, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced to be encoded by the nucleotide sequence are shown in SEQ ID NO: 18. Concerning the nucleotide sequence, an amino acid sequence encoded by args and an amino acid sequence encoded by lysA are shown in SEQ ID NOs: 19 and 20 respectively.

Example 5: Preparation of ddh from Brevibacterium lactofermentum

25

A <u>ddh</u> gene was obtained by amplifying the <u>ddh</u> gene from chromosomal DNA of <u>Brevibacterium lactofermentum</u> ATCC 13869 in accordance with the PCR method by using two oligonucleotide primers (SEQ ID NOs: 21, 22) prepared on the basis of a known nucleotide sequence of a <u>ddh</u> gene of <u>Corynebacterium glutamicum</u> (Ishino, S. et al., <u>Nucleic Acids Res.</u>, <u>15</u>, 3917 (1987)). An obtained amplified DNA fragment was digested with <u>Eco</u>T22I and <u>Ava</u>I, and cleaved edges were blunt-ended. After that, the fragment was inserted into a <u>Sma</u>I site of pMW119 to obtain a pDDH.

Next, pDDH was digested with <u>Sal</u>I and <u>Eco</u>RI, followed by blunt end formation. After that, an obtained fragment was ligated with pUC18 having been digested with <u>Sma</u>I. A plasmid thus obtained was designated as pUC18DDH.

Brevi.-ori was introduced into pUC18DDH to construct a plasmid carrying <u>ddh</u> autonomously replicable in coryne-form bacteria. pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u>, and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>PstI</u> linker (produced by Takara Shuzo) was ligated so that it was inserted into a <u>PstI</u> site of pHSG299. A plasmid constructed as described above was designated as pPK4. Next, pUC18DDH was digested with <u>XbaI</u> and <u>KpnI</u>, and a generated fragment was ligated with pPK4 having been digested with <u>KpnI</u> and <u>XbaI</u>. Thus a plasmid containing <u>ddh</u> autonomously replicable in coryneform bacteria was constructed. This plasmid was designated as pPK4D. The process of construction of pPK4D is shown in Fig. 6.

Example 6: Construction of Plasmid Comprising Combination of Mutant lysC and dapA

A plasmid comprising mutant <u>lysC</u>, <u>dapA</u>, and replication origin of coryneform bacteria was constructed from the plasmid pCRDAPA comprising <u>dapA</u> and the plasmid p399AK9B comprising mutant <u>lysC</u> and Brevi.-ori. p399AK9B was completely degraded with <u>Sal</u>I, and then it was blunt-ended, with which an <u>EcoRI</u> linker was ligated to construct a plasmid in which the <u>Sal</u>I site was modified into an <u>EcoRI</u> site. The obtained plasmid was designated as p399AK9BSE. The mutant <u>lysC</u> and Brevi.-ori were excised as one fragment by partially degrading p399AK9BSE with <u>EcoRI</u>. This fragment was ligated with pCRDAPA having been digested with <u>EcoRI</u>. An obtained plasmid was designated as pCRCAB. This plasmid is autonomously replicable in <u>E. coli</u> and coryneform bacteria, and it gives kanamycin resistance to a host, the plasmid comprising a combination of mutant <u>lysC</u> and <u>dapA</u>. The process of construction of pCRCAB is shown in Fig. 7.

Example 7: Construction of Plasmid Comprising Combination of Mutant lysC and dapB

5

20

35

50

A plasmid comprising mutant <u>lysC</u> and <u>dapB</u> was constructed from the plasmid p399AK9 having mutant <u>lysC</u> and the plasmid p399DPR having <u>dapB</u>. A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting p399DPR with <u>EcoRV</u> and <u>SphI</u>. This fragment was ligated with p399AK9 having been digested with <u>SalI</u> and then blunt-ended and having been further digested with <u>SphI</u> to construct a plasmid comprising a combination of mutant lysC and dapB. This plasmid was designated as p399AKDDPR.

Next, Brevi.-ori was introduced into the obtained p399AKDDPR. The plasmid pHK4 containing Brevi.-ori was digested with a restriction enzyme KpnI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated BamHI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only BamHI. This plasmid was digested with BamHI, and the generated Brevi.-ori DNA fragment was ligated with p399AKDDPR having been also digested with BamHI to construct a plasmid containing mutant lysC and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCB. The process of construction of pCB is shown in Fig. 8.

Example 8: Construction of Plasmid Comprising Combination of dapA and dapB

The plasmid pCRDAPA comprising <u>dapA</u> was digested with <u>Kpn</u>I and <u>Eco</u>RI to extract a DNA fragment containing <u>dapA</u> which was ligated with the vector plasmid pHSG399 having been digested with <u>Kpn</u>I and <u>Eco</u>RI. An obtained plasmid was designated as p399DPS.

On the other hand, the plasmid pCRDAPB comprising <u>dapB</u> was digested with <u>Sac</u>II and <u>Eco</u>RI to extract a DNA fragment of 2.0 kb containing a region coding for DDPR which was ligated with p399DPS having been digested with <u>Sac</u>II and <u>Eco</u>RI to construct a plasmid comprising a combination of <u>dapA</u> and <u>dapB</u>. The obtained plasmid was designated as p399AB.

Next, Brevi.-ori was introduced into p399AB. pHK4 containing Brevi.-ori was digested with a restriction enzyme BamHI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated KpnI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only KpnI. This plasmid was digested with KpnI, and the generated Brevi.-ori DNA fragment was ligated with p399AB having been also digested with KpnI to construct a plasmid containing dapA and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pAB. The process of construction of pAB is shown in Fig. 9.

Example 9: Construction of Plasmid Comprising Combination of ddh and lysA

The plasmid pUC18DDH comprising <u>ddh</u> was digested with <u>Eco</u>RI and <u>Xba</u>I to extract a DNA fragment containing <u>ddh</u>. This <u>ddh</u> fragment was ligated with the plasmid p399LYSA comprising <u>lysA</u> having been digested with <u>Bam</u>HI and <u>Xba</u>I with cleaved edges having been blunt-ended after the digestion. An obtained plasmid was designated as p399DL. The process of construction of p399DL is shown in Fig. 10.

Next, Brevi.-ori was introduced into p399DL. pHK4 was digested with Xbal and BamHI, and cleaved edges were blunt-ended. After the blunt end formation, a phosphorylated Xbal linker was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only Xbal. This plasmid was digested with Xbal, and the generated Brevi.-ori DNA fragment was ligated with p399DL having been also digested with Xbal to construct a plasmid containing ddh and lysA autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pDL. The process of construction of pDL is shown in Fig. 11.

Example 10: Construction of Plasmid Comprising Combination of Mutant lysC, dapA, and dapB

p399DPS was degraded with <u>EcoRI</u> and <u>SphI</u> to form blunt ends followed by extraction of a <u>dapA</u> gene fragment. This fragment was ligated with the p399AK9 having been digested with <u>SalI</u> and blunt-ended to construct a plasmid p399CA in which mutant <u>lysC</u> and <u>dapA</u> co-existed.

The plasmid pCRDAPB comprising <u>dapB</u> was digested with <u>Eco</u>Rl and blunt-ended, followed by digestion with <u>Sacl</u> to extract a DNA fragment of 2.0 kb comprising <u>dapB</u>. The plasmid p399CA comprising <u>dapA</u> and mutant <u>lysC</u> was digested with <u>Spel</u> and blunt-ended, which was thereafter digested with <u>Sacl</u> and ligated with the extracted <u>dapB</u> fragment to obtain a plasmid comprising mutant <u>lysC</u>, <u>dapA</u>, and <u>dapB</u>. This plasmid was designated as p399CAB.

Next, Brevi.-ori was introduced into p399CAB. The plasmid pHK4 comprising Brevi.-ori was digested with a restric-

tion enzyme <u>Bam</u>HI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>Kpn</u>I linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Kpn</u>I. This plasmid was digested with <u>Kpn</u>I, and the generated Brevi.-ori DNA fragment was ligated with p399CAB having been also digested with <u>Kpn</u>I to construct a plasmid comprising a combination of mutant <u>lysC</u>, <u>dapA</u>, and <u>dapB</u> autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCAB. The process of construction of pCAB is shown in Fig. 12.

10 Example 11: Construction of Plasmid Comprising Combination of Mutant IysC, dapA, dapB, and IysA

The plasmid p299LYSA comprising <u>lysA</u> was digested with <u>Kpnl</u> and <u>Bam</u>HI and blunt-ended, and then a <u>lysA</u> gene fragment was extracted. This fragment was ligated with pCAB having been digested with <u>Hpal</u> (produced by Takara Shuzo) and blunt-ended to construct a plasmid comprising a combination of mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, and <u>lysA</u> autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCABL. The process of construction of pCABL is shown in Fig. 13. It is noted that the <u>lysA</u> gene fragment is inserted into a <u>Hpal</u> site in a DNA fragment containing the <u>dapB</u> gene in pCABL, however, the <u>Hpal</u> site is located upstream from a promoter for the <u>dapB</u> gene (nucleotide numbers 611 to 616 in SEQ ID NO: 10), and the dapB gene is not decoupled.

Example 12: Construction of Plasmid Comprising Combination of Mutant lysC, dapA, dapB, ddh, and lysA

pHSG299 was digested with Xbal and Kpnl, which was ligated with p399DL comprising ddh and lysA having been digested with Xbal and Kpnl. A constructed plasmid was designated as p299DL p299DL was digested with Xbal and Kpnl and blunt-ended. After the blunt end formation, a DNA fragment comprising ddh and lysA was extracted. This DNA fragment was ligated with the plasmid pCAB comprising the combination of mutant lysC, dapA, and dapB having been digested with Hpal and blunt-ended to construct a plasmid comprising a combination of mutant lysC, dapA, dapB, lysA and ddh autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCABDL. The process of construction of pCABDL is shown in Fig. 14.

Example 13: Introduction of Plasmids Comprising Genes for L-Lysine Biosynthesis into L-Lysine-Producing Bacterium of Brevibacterium lactofermentum

The plasmids comprising the genes for L-lysine biosynthesis constructed as described above, namely p399AK9B(Cm¹), pDPSB(Km¹), pDPRB(Cm¹), pLYSAB(Cm¹), pPK4D(Cm¹), pCRCAB(Km¹), pAB(Cm¹), pCB(Cm¹), pDL(Cm¹), pCAB(Cm¹), pCABL(Cm¹), and pCABDL(Cm¹) were introduced into an L-lysine-producing bacterium AJ11082 (NRRL B-11470) of <u>Brevibacterium lactofermentum</u> respectively. AJ11082 strain has a property of AEC resistance. The plasmids were introduced in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Laid-open No. 2-207791). Transformants were selected based on drug resistance markers possessed by the respective plasmids. Transformants were selected on a complete medium containing 5 μg/ml of chloramphenicol when a plasmid comprising a chloramphenicol resistance gene was introduced, or transformants were selected on a complete medium containing 25 μg/ml of kanamycin when a plasmid comprising a kanamycin resistance gene was introduced.

Example 14: Production of L-Lysine

Each of the transformants obtained in Example 13 was cultivated in an L-lysine-producing medium to evaluate its L-lysine productivity. The L-lysine-producing medium had the following composition.

[L-Lysine-producing medium]

The following components other than calcium carbonate (per 1 L) were dissolved to make adjustment at pH 8.0 with KOH. The medium was sterilized at 115 °C for 15 minutes, to which calcium carbonate (50 g) having been separately sterilized in hot air in a dry state was thereafter added.

Glucose	100 g
(NH ₄) ₂ SO ₄	55 g

(continued)

KH ₂ PO ₄	1 g
MgSO ₄ • 7H ₂ O	1 g
Biotin	500 μg
Thiamin	2000 μg
FeSO ₄ • 7H ₂ O	0.01 g
MnSO ₄ • 7H ₂ O	0.01 g
Nicotinamide	5 mg
Protein hydrolysate (Mamenou)	30 ml
Calcium carbonate	50 g

15

10

5

Each of the various types of the transformants and the parent strain was inoculated to the medium having the composition described above to perform cultivation at 31.5 °C with reciprocating shaking. The amount of produced L-lysine after 40 or 72 hours of cultivation, and the growth after 72 hours (OD₅₆₂) are shown in Table 1. In the table, <u>lysC*</u> represents mutant <u>lysC</u>. The growth was quantitatively determined by measuring OD at 560 nm after 101-fold dilution.

Table 1

	Accumulation of L-Lysine after C	Cultivation for 40	or 72 Hours			
Bacterial strain /plasmid	Introduced gene	Amount of	oroduced L- e(g/L)	Growth (OD ₅₆₂ /101)		
		after 40 hrs	after 72 hrs			
AJ11082		22.0	29.8	0.450		
AJ11082/p399AK9B	lysC*	16.8	34.5	0.398		
AJ11082/pDPSB	dapA	18.7	33.8	0.410		
AJ11082/pDRB	<u>dapB</u>	19.9	29.9	0.445		
AJ11082/pLYSAB	<u>lysA</u>	19.8	32.5	0.356		
AJ11082/pPK4D	<u>ddh</u>	19.0	33.4	0.330		
AJ11082/pCRCAB	lysC*, dapA	19.7	36.5	0.360		
AJ11082/pAB	dapA, dapB	19.0	34.8	0.390		
AJ11082/pAB	dapA, dapB	19.0	34.8	0.390		
AJ11082/pCB	<u>lysC*, dapB</u>	23.3	35.0	0.440		
AJ11082/pDL	ddh, lysA	23.3	31.6	0.440		
AJ11082/pCAB	lysC*, dapA, dapB	23.0	45.0	0.425		
AJ11082/pCABL	<u>lysC*, dapA, dapB, lysA</u>	26.2	46.5	0.379		
AJ11082/pCABDL	lysC*, dapA, dapB, lysA, ddh	26.5	47.0	0.409		

50

As shown in Table 1, when mutant <u>lysC</u>, <u>dapA</u>, or <u>dapB</u> was enhanced singly, the amount of produced L-lysine was larger than or equivalent to that produced by the parent strain after 72 hours of cultivation, however, the amount of produced L-lysine was smaller than that produced by the parent strain after 40 hours of cultivation. Namely, the L-lysine-producing speed was lowered in cultivation for a short period. Similarly, when mutant <u>lysC</u> and <u>dapA</u>, or <u>dapA</u> and <u>dapB</u> were enhanced in combination, the amount of produced L-lysine was larger than that produced by the parent strain after 72 hours of cultivation, however, the amount of produced L-lysine was smaller than that produced by the parent strain after 40 hours of cultivation. Thus the L-lysine-producing speed was lowered.

On the other hand, when <u>lysA</u> or <u>ddh</u> was enhanced singly, or when <u>lysA</u> and <u>ddh</u> were enhanced in combination,

the amount of produced L-lysine was larger than that produced by the parent strain after 40 hours of cultivation, however, the amount of produced L-lysine was consequently smaller than that produced by the parent strain after the long period of cultivation because of decrease in growth.

On the contrary, in the case of the strain in which <u>dapB</u> was enhanced together with mutant <u>lysC</u>, the growth was improved, the L-lysine-producing speed was successfully restored in the short period of cultivation, and the accumulated amount of L-lysine was also improved in the long period of cultivation. In the case of the strain in which three of mutant <u>lysC</u>, <u>dapA</u>, and <u>dapB</u> were simultaneously enhanced, the L-lysine productivity was further improved. Both of the L-lysine-producing speed and the amount of accumulated L-lysine were improved in a stepwise manner by successively enhancing <u>lysA</u> and <u>ddh</u>.

Industrial Applicability

10

15

20

25

30

35

40

45

50

55

According to the present invention, the L-lysine-producing ability of coryneform bacteria can be improved, and the growth speed can be also improved.

The L-lysine-producing speed can be improved, and the productivity can be also improved in coryneform L-lysine-producing bacteria by enhancing <u>dapB</u> together with mutant <u>lysC</u>. The L-lysine-producing speed and the productivity can be further improved by successively enhancing <u>dapA</u>, <u>lysA</u>, and <u>ddh</u> in addition to the aforementioned genes.

SEQUENCE LISTING

	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: AJINOMOTO CO., INC.	
	(ii) TITLE OF INVENTION: METHOD OF PRODUCING L-LYSINE	
	(iii) NUMBER OF SEQUENCES: 24	
	(iv) CORRESPONDENCE ADDRESS:	
	(A) ADDRESSEE:	
10	(B) STREET:	
	(C) CITY:	
	(E) COUNTRY:	
	(F) ZIP:	
15	(v) COMPUTER READABLE FORM:	
	(A) MEDIUM TYPE: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
20	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
20	(vi) CURRENT APPLICATION DATA:	
	(A) APPLICATION NUMBER:	
	(B) FILING DATE:	
	(C) CLASSIFICATION:	
25	(vii) PRIOR APPLICATION DATA:	
	(A) APPLICATION NUMBER: JP 7-140614	
	(B) FILING DATE: 07-JUL-1995	
	(viii) ATTORNEY/AGENT INFORMATION:	
30	(A) NAME:	
	(B) REGISTRATION NUMBER:	
·	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE:	
	(B) TELEFAX:	
35	(2) INTENDMENTION EXP. CEO. ID NO.1.	
	(2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 bases	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
45	(iv) ANTI-SENSE: NO	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	TOGOGAAGTA GCACCTGTCA CTT	23
		*
	(2) INFORMATION FOR SEQ ID NO:2:	
50	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 21 bases														
	(B) TYPE: nucleic acid														
_	(C) STRANDEDNESS: single														
5	(D) TOPOLOGY: linear														
	(ii) MOLECULE TYPE: othersynthetic DNA														
	(A) DESCRIPTION: /desc = "synthetic DNA"														
	(iv) ANTI-SENSE: YES														
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:														
	ACGGAATTCA ATCTTACGGC C	21													
		21													
	(2) INFORMATION FOR SEQ ID NO:3:														
	(i) SEQUENCE CHARACTERISTICS:														
15	(A) LENGTH: 1643 base pairs														
	(B) TYPE: nucleic acid														
	(C) STRANDEDNESS: double														
	(D) TOPOLOGY: linear														
20	(ii) MOLECULE TYPE: DNA (genomic)														
	(iv) ANTI-SENSE: NO														
	(vi) ORIGINAL SOURCE:														
	(A) ORGANISM: Brevibacterium lactofermentum														
	(B) STRAIN: ATCC 13869														
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:														
	TCCCCAACTA CCACCTCTCA CTTTTCTCTC AAATATTAAA TCCAATATCA ATATACCCTC	60													
	TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCCA GGAACCCTGT	120													
	GCAGAAAGAA AACACTOCTO TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180													
30	GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT	240													
	GCCGCTTCCT CGCTTGAGAG TGCCGAACGC ATTAGAAACG TCCCTGAACG GATCCTTGCC	300													
	ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360													
	GAACTICTAG AACTIGCAGC GGCAGTGAAT COOGTTCOGC CAGCTOGTGA AATGGATATG	420													
05	CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480													
35	GGCCAGAAG CTCAATCITT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540													
	GGAAACOCAC CCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600													
	AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660													
	TIGGGTCGIG GIGGITCIGA CACCACTGCA GITGCGTTGG CAGCTGCTTT GAACGCTGAT	720													
40	GTGTGTGAGA TTTACTCGGA CGTTGACCGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780													
	AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840													
	TOCAAGATTT TEGTECTECE CAGTETTEAA TACCCTOGTE CATTCAATET GOCACTTOGC	900													
	GTACCCTCGT CITATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT	960													
45	CCTGTGGAAG AAGCAGTCCT TACCGGTGTC GCAACCGACA AGTCCGAAGC CAAAGTAACC	1020													
10	GTTCTGGGTA TTTCCGATAA GCCAGGCGAG GCTGCCAAGG TTTTCCGTGC GTTGGCTGAT	1080													
	GCAGAAATCA ACATTGACAT GGTTCTCCAG AACGTCTCCT CTGTGGAAGA CGGCACCACC	1140													
	GACATCACGT TCACCTGCCC TCGCGCTGAC GGACGCCGTG CGATGGAGAT CTTGAAGAAG	1200													
	CITCAGGITC AGGCCAACTG GACCAATGTG CITTACGACG ACCAGGTCGG CAAAGTCTCC	1260													
50	CTCGTGGGTG CTGCCATGAA GTCTCACCCA GGTGTTACCG CAGAGTTCAT GGAAGCTCTG	1320													
	OGCGATGTCA ACGTGAACAT CGAATTGATT TOCACCTCTG AGATCCGCAT TTCCGTGCTG	1380													

	ATOCTICAAG ATGATCICGA TOCTICCICCA COTICCATIGC ATGACCAGIT CCACCICGGC	1440
	GGCGAAGACG AAGCCCTCGT TTATGCAGGC ACCGGACGCT AAAGTTTTAA AGGAGTAGTT	1500
	TTACAATGAC CACCATCOCA GITGITGGTG CAACCGCCCA GGTCGGCCAG GTTATGCGCA	1560
5	CCCITTIGGA AGAGCGCAAT TICCCAGCIG ACACIGITCG TITCITIGCT TCCCCGCGIT	1620
	COGCAGGOOG TAAGATTGAA TTC	1643
10	(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS:	
70	(A) LENGTH: 1643 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15_	(ii) MOLECULE TYPE: DNA (genomic)	
·	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
20	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 2171482	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
25	TOGOGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TOGAATATCA ATATACGGTC	60
	TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCCA GGAACCCTGT	120
	GCAGAAAGAA AACACTOCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
	GTAACTGTCA GCACGTAGAT OGAAAGGTGC ACAAAG GTG GCC CTG GTC GTA CAG	234
30	Met Ala Leu Val Val Gln	
	1 5	282
	AAA TAT GGC GGT TCC TCG CTT GAG AGT GCG GAA CGC ATT AGA AAC GTC	202
	Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn Val 10 15 20	
	10 15 20 GCT GAA CGG ATC GTT GCC ACC AAG AAG GCT GGA AAT GAT GTC GTG GTT	330
35	Ala Glu Arg Ile Val Ala Thr Lys Lys Ala Gly Asn Asp Val Val	330
	25 30 35	
	GTC TGC TCC GCA ATG GGA GAC ACC ACG GAT GAA CTT CTA GAA CTT GCA	378
	Val Cys Ser Ala Met Gly Asp Thr Thr Asp Glu Leu Leu Glu Leu Ala	370
40	40 45 50	
	GOG GCA GTG AAT COC GTT COG CCA GCT CGT GAA ATG GAT ATG CTC CTG	426
	Ala Ala Val Asn Pro Val Pro Pro Ala Arg Glu Met Asp Met Leu Leu	320
	55 60 65 70	
45	ACT GCT GGT GAG CGT ATT TCT AAC GCT CTC GTC GCC ATG GCT ATT GAG	474
45	Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile Glu	-, -
	75 80 85	
	TOO CIT GGC GCA GAA GCT CAA TCT TTC ACT GGC TCT CAG GCT GGT GTG	522
	Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr Gly Ser Gln Ala Gly Val	-
50	90 95 100	

	CIC	ACC	ACC	GAG	CCC	CAC	GGA	AAC	GCA	CCC	ATT	GTT	GAC	GTC	ACA	∞	570
	Leu	Thr	Thr	Glu	Arg	His	Gly	Asn	Ala	Arq	Ile	Val	Asp	Val	Thr	Pro	370
_			105					110		_			11	_			
5	CCT	CCT	GTG	CCT	GAA	GCA	CTC	GAT	GAG	GGC	AAG	ATC	TGC	ATT	GTT	GCT	618
	Gly	Arg	Val	Arg	Glu	Ala	Leu	Asp	Glu	Gly	Lys	Ile	Cys	Ile	Val	Ala	OIC
		120					125	5				13	C				
	GGT	TTT	CAG	GGT	GIT	AAT	AAA	GAA	ACC	œc	GAT	GTC	ACC	ACG	TTG	GGT	666
10	Gly	Phe	Gln	Gly	Val	Asn	Lys	Glu	Thr	Arg	Asp	Val	Thr	Thr	Leu	Gly	
	135					140)				149	5				150	
	CCT	GGT	GGT	TCT	GAC	ACC	ACT	GCA	GTT	GCC	TTG	GCA	GCT	CCT	TTG	AAC	714
	Arg	Gly	Gly	Ser	Asp	Thr	Thr	Ala	Val	Ala	Leu	Ala	Ala	Ala	Leu	Asn	
15					155					160					16	5	
15	GCT	GAT	GTG	TGT	GAG	ATT	TAC	TCG	GAC	GTT	GAC	CCT	GTG	TAT	ACC	GCT	762
	Ala	Asp	Val	Cys	Glu	Ile	Tyr	Ser	Asp	Val	Asp	Gly	Val	Tyr	Thr	Ala	
				170					175					18	0		
	GAC	<u></u>	CCC	ATC	GTT	∞ T	AAT	GCA	CAG	AAG	CTG	GAA	AAG	CTC	AGC	TTC	810
20	Asp	Pro		Ile	Val	Pro	Asn	Ala	Gln	Lys	Leu	Glu	Lys	Leu	Ser	Phe	
			185					190					19				
	GAA	GAA	ATG	CIG	GAA	CIT	GCT	CCT	GIT	GGC	TCC	AAG	ATT	TTG	GTG	CTG	858
	GIU	GIU	Met	Leu	Glu	Leu			Val	Gly	Ser	Lys	Ile	Leu	Val	Leu	
25		200					205					210					
	œc	AGT	GIT	GAA	TAC	GCT	CGT	GCA	TTC	AAT	GTG	CCA	CTT	CCC	GTA	CGC	906
	Arg	ser	vaı	GIU	Tyr			Ala	Phe	Asn	Val	Pro	Leu	Arg	Val	Arg	
	215	morn.	m. m	. ~		220					225					230	
	Com	Con	TAT	AGT	AA'I	GAT	$\frac{\infty}{2}$	GGC	ACT	TTG	ATT	∞	GGC	TCT	ATG	GAG	954
30	ser.	ser	TYL	ser			Pro	Gly	Thr	Leu		Ala	Gly	Ser	Met	Glu	
	Cam	a.mm	~~	ama.	235		~~			240					24	5	
	QW1	TIO	D-m	GIG	GAA	GAA	CCA	GIC	CIT	ACC	GGT	GTC	GCA	ACC	GAC	AAG	1002
	wsb	116	PIO	AST	GIU	GIU	ATA	Val		Thr	Gly	Val	Ala			Lys	
35	יזעי	C2 2	~~	250	CTII N	100	~	~~~	255					26			
	Soz	Clu	310	AAA	GIA	ACC:	GIT	CIG	GGT	ATT	TCC	GAT	AAG	CCA	GGC	GAG	1050
	Ser	Giu	265	гÃ2	vaı	ш	var			Ile	Ser	Asp	_		Gly	Glu	
	CCTI	ccc		ىنەنت	тт	~~	~~	270		~~~			27				
	λla	λla	Tue	Uni	Dho	Mar.	31-	TIG	GCT	GAT	GCA	GAA	ATC	AAC	ATT	GAC	1098
40	A10	280	гуу	var	PIE	Arg			ALA	Asp	Ala			Asn	Ile	Asp	
	באדע		CIIC	CAG	አልሮ	CIIC	285			~~~	~~~	290					
	Mot	Val	Tau	Cln	y co	Ual	Som	Com	GIG	GAA	GAC	GGC	ACC	ACC	GAC	ATC	1146
	295	VUL	LEU	GIII	VOIT	300	ser	Ser	vaı	Glu			Thr	Thr	Asp		
45		ישוירי	እርጉ	TYCYT	CCut		CCIII	CAC	~~x	~~~	305		.			310	
	Thr	Phe	Thr	Cre	Dm	7~~	בנע	NAC.	Clas	CCC	CGT	GUG	AIG	GAG	ATC	TIG	1194
			***	∪y3	315	лy	vrq	nsp	GTĀ	Arg		Αта	met	GLu			
	AAG	AAG	بلملت	CAG		ርልር	CCC	አጽሮ	π····	320 ACC		~=~	~	m. ~	32	0	
50	Lvs	Ive	Ieu	Gln	Val	Gln	Cl+7	NAC.	ш тос	Mb~	AAT A	GIG	CIT'	TAC	GAC	GAC	1242
50	273	-113	عاتعه	330	₩	GILI	GTÅ	nSII		Thr	AST	vaT	Leu			Asp	
				330					335	1				340)		

	CAG GIC GGC AAA GIC TOC CIC GIG GGI GCI GGC ATG AAG TCI CAC CCA	1290
	Gln Val Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro 345 350 355	
5	GGT GTT ACC GCA GAG TTC ATG GAA GCT CTG CGC GAT GTC AAC GTG AAC	
_		1338
	Gly Val Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn 360 365 370	
	ATC GAA TIG ATT TOO ACC TOT GAG ATC CGC ATT TOO GIG CIG ATC CGT	1386
	Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg	1300
10	275	
	GAA GAT GAT CTG GAT GCT GCA CGT GCA TTG CAT GAG CAG TTC CAG	1434
	Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln 395 400 405	
15	CTG GGC GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAA	1400
		1482
	Leu Gly Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg	
	410 415 420	
	AGTTTTAAAG GAGTAGTTTT ACAATGACCA CCATCGCAGT TGTTGGTGCA ACCGGCCAGG	1542
00	TOGGCCAGGT TATGOGCACC CTTTTGGAAG AGCGCAATTT CCCAGCTGAC ACTGTTCGTT	1602
20	TCTTTGCTTC CCCGCGTTCC GCAGGCCGTA AGATTGAATT C	1643
	•	1030
	(2) INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 421 amino acids	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
30	Met Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala	
	1 5 10 15	
	-5	
	Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala	
	20 25 30	
35	Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp	
	35 40 45	
	Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg	
	50 55 60	
	Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu	
40	(F	
10	75	
	Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr	
	85	
	Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg	
	100 105 110	
45	Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly	
	115 120 125	
	Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg	
	130 135 140	
50	Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala	

Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 380 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala		145					150					155	;				160
Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 195 200 205 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 235 240 16 Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Glu Ala Val Leu Thr 245 25 Cly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 260 265 270 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Thr Val Leu Gly Ile 260 275 Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg 305 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 36 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 370 371 372 373 374 375 376 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (1) SEQUENCE CHARACTERISTICS: (A) LENSTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: Innear		Leu	Ala	Ala	Ala			Ala	Asp	Val	_		Ile	Tyr	Ser	_	
195 200 205 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 215 220 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 235 240 Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr 245 250 255 Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 260 265 270 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285 Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 295 300 Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg 305 310 315 320 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENSTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	5	Asp	Gly	Val				Asp	Pro	_	Ile		Pro	Asn		Gln	
210 215 220 235 240 241 275 230 235 240 245 230 235 240 245 250 255 255 255 255 255 255 255 255 255 255 255 255 261 265 265 270 265 270 265 270 285		Leu	Glu	-	Leu	Ser	Phe	Glu			Leu	Glu	Leu			Val	Gly
225 230 235 240	10	Ser		Ile	Leu	Val	Leu			Val	Glu	Tyr		_	Ala	Phe	Asn
245 250 255			Pro	Leu	Arg	Val	_		Ser	Tyr	Ser		_	Pro	Gly	Thr	
Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285 285 285 286 285 286 285 285 286 286 285 285	15	Ile	Ala	Gly	Ser		Glu	Asp	Ile	Pro			Glu	Ala	Val		
Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285 285 285 286 275 280 285 285 285 286 275 280 285 28		Gly	Val	Ala			Lys	Ser	Glu		_	Val	Thr	Val		_	Ile
290	20	Ser	Asp		Pro	Gly	Glu	Ala		_	Val	Phe	Arg		Leu		Asp
25 305 310 315 320 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 38 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 40 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO		Ala		Ile	Asn	Ile	Asp			Leu	Gln	Asn			Ser	Val	Glu
325 330 335 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 38 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 40 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	25		Gly	Thr	Thr	Asp			Phe	Thr	Cys		-	Ala	Asp	Gly	Arg 320
340 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 381 385 380 385 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 40 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO		Arg	Ala	Met	Glu			Lys	Lys	Leu			Gln	Gly	Asn		
Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 35 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 40 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	20	Asn	Val	Leu			Asp	Gln	Val	_	_	Val	Ser	Leu		_	Ala
370 375 380 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	30	Gly	Met	_	Ser	His	Pro	Gly			Ala	Glu	Phe			Ala	Leu
385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO		Arg	_	Val	Asn	Val	Asn			Leu	Ile	Ser			Glu	Ile	Arg
405 410 415 Ala Gly Thr Gly Arg 420 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	35		Ser	Val	Leu	Ile			Asp	Asp	Leu			Ala	Ala	Arg	Ala 400
(2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO		Leu	His	Glu	Gln			Leu	Gly	Gly			Glu	Ala	Val		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	40	Ala	Gly	Thir		_											
(A) LENGTH: 1643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO		(2)															
(C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO	45		(i	(A) L	ENGT	н: 1	643	base	pai	rs						
(ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO				(c) s	TRAN	DEDN	ESS:	dou								
	50) MO	LECU	LE T	YPE:	DNA		nomi	c)						
(VI) Orderial Booker.			-														

(A) ORGANISM: Brevibacterium lactofermentum (B) STRAIN: ATCC 13869 (ix) FEATURE: 5 (A) NAME/KEY: CDS (B) LOCATION: 964..1482 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: TOGOGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TOGAATATCA ATATACGGTC 60 TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCCA GGAACCCTGT 120 10 GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG 180 GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT 240 GCCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC 300 ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT 360 GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG 15 420 CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT 480 GEOGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC 540 600 GGAAACCCAC GCATTGITGA CGICACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG 660 20 TIGGGICGIG GIGGITCIGA CACCACTGCA GITGCGITGG CAGCIGCITT GAACGCIGAT 720 GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT 780 AATOCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC 840 TOCAAGATIT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC 900 GTACGCTCGT CITATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT 960 OCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA 1008 Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu 10 GCC AAA GTA ACC GTT CTG GGT ATT TOC GAT AAG CCA GGC GAG GCT GCC 1056 30 Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala 25 20 AAG GTT TTC OGT GOG TTG GCT GAT GCA GAA ATC AAC ATT GAC ATG GTT 1104 Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val 35 40 35 CTG CAG AAC GTC TCC TCT GTG GAA GAC GGC ACC ACC GAC ATC ACG TTC 1152 Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe 55 ACC TGC CCT CGC GCT GAC GGA CGC CGT GCG ATG GAG ATC TTG AAG AAG 1200 40 Thr Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu Lys Lys 70 CIT CAG GIT CAG GGC AAC TGG AOC AAT GTG CIT TAC GAC GAC CAG GTC 1248 Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val 85 90 95 80 45 GGC AAA GTC TOC CTC GTG GGT GCT GGC ATG AAG TCT CAC OCA GGT GTT 1296 Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro Gly Val 100 105 ACC GCA GAG TTC ATG GAA GCT CTG CGC GAT GTC AAC GTG AAC ATC GAA 1344 Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu 50

	115 120 125	
	TTG ATT TOO ACC TOT GAG ATC CGC ATT TOO GTG CTG ATC CGT GAA GAT	1392
5	Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg Glu Asp	
	130 135 140	
	GAT CTG GAT GCT GCA CGT GCA TTG CAT GAG CAG TTC CAG CTG GGC	1440
	Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly	
	145 150 155	
10	GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAAAGTTTTAA	1490
	Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg 160 165 170	
	170	
	AGGACTACTT TTACAATGAC CACCATCGCA GTTGTTGCTG CAACCGGCCA GGTCGCCCAG GTTATGCGCA CCCTTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT	1550
15	TOCCOCCTT COCCAGCOC TAAGATTGAA TIC	1610
	ISSUED TO THE TICK TH	1643
	(2) INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 172 amino acids	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
05	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
25	Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu Ala	
	1 5 10 15	
	Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala Lys 20 25 30	•
	Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val Leu	
30	35 40 45	
	Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe Thr	
	50 55 60	
	Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu Lys Lys Leu	
35	65 70 75 80	
	Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val Gly	
	85 90 9 ₅	
	Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro Gly Val Thr	
40	100 105 110	
	Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu Leu	
	115 120 125	
	Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg Glu Asp Asp	
45	130 135 140	
 -	Leu Asp Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly Gly 145 150 155 160	
	145 150 155 160 Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg	
	165 170	
	1/0	
50	(2) INFORMATION FOR SEQ ID NO:8:	

	(1) SEQUENCE CHARACTERISTICS:										
	(A) LENGTH: 23 bases										
_	(B) TYPE: nucleic acid										
5	(C) STRANDEDNESS: single										
	(D) TOPOLOGY: linear										
	(ii) MOLECULE TYPE: other nucleic acid										
	(A) DESCRIPTION: /desc = "synthetic DNA"										
10	(iv) ANTI-SENSE: NO										
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:										
	GGATCCCCAA TCGATACCTG GAA	23									
	(2) INFORMATION FOR SEQ ID NO:9:										
15	(i) SEQUENCE CHARACTERISTICS:										
	(A) LENGTH: 23 bases										
	(B) TYPE: nucleic acid										
	(C) STRANDEDNESS: single										
20	(D) TOPOLOGY: linear										
	(ii) MOLECULE TYPE: other nucleic acid										
	(A) DESCRIPTION: /desc = "synthetic DNA"										
	(iv) ANTI-SENSE: YES										
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:										
25	COGITCATCG CCAAGITITT CIT	23									
	(2) INFORMATION FOR SEQ ID NO:10:										
	(i) SEQUENCE CHARACTERISTICS:										
30	(A) LENGTH: 2001 base pairs										
	(B) TYPE: nucleic acid										
	(C) STRANDEDNESS: double										
	(D) TOPOLOGY: linear										
05	(ii) MOLECULE TYPE: DNA (genomic)										
35	(iv) ANTI-SENSE: NO										
	(vi) ORIGINAL SOURCE:										
	(A) ORGANISM: Brevibacterium lactofermentum										
	(B) STRAIN: ATCC 13869										
40	(ix) FEATURE:										
	(A) NAME/KEY: CDS										
	(B) LOCATION: 7301473										
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:										
45	GGATCCCCAA TOGATACCTG GAACGACAAC CTGATCAGGA TATCCAATGC CTTGAATATT	60									
	GACCITGAGG AAGGAATCAC CAGCCATCTC AACTGGAAGA CCTGACGCCT GCTGAATTGG	120									
	ATCAGTGGCC CAATCGACCC ACCAACCAGG TTGGCTATTA CCGGCGATAT CAAAAACAAC	180									
	TOGOGTGAAC GTTTOGTGCT OGGCAACGCG GATGCCAGCG ATCGACATAT OGGAGTCACC	240									
	AACTTGAGOC TGCTGCTTCT GATOCATOGA OGGGGAACOC AACGGGGGCA AAGCAGTGGG	300									
50	GGAAGGGGAG TTGGTGGACT CTGAATCAGT GGGCTCTGAA GTGGTAGGCG ACGGGGCAGC	360									
	ATCTGAAGGC GTGCGAGTTG TGGTGACCGG GTTAGCGGTT TCAGTTTCTG TCACAACTGG	420									

	AGC	AGGAC	TA G	CAGA	GGTT	G TA	GGCC	FTGA	GCC	CCTT	CCA	TCAC	AAGC	AC T	TAAA	AGTAA	480
	AGAC	36060	AA A	ACCAC	ZAAGO	∞	'AAGC	AACT	, VCC	TGOG	GAA	CCCC	CCCT	GA A	GGGC	AACTT	540
5	AAGT	CIC	r at	TTC	VAAC	T AG	TTCC	ACCI	GTG	TGAT	TAA	TCTC	CAGA	AC G	GAAC	AAACT	600
5	GATO	SAACA	AAT C	GTT?	VACA	AC AC	AGAC	CAAA	ACC	GTCA	GTT	AGGT	'ATGG	AT A	TCAG	CACCT	660
	TCTC	CAATO	EGG 1	'ACG'I	CTAC	A CI	CGIC	CCCC	TTI	GAAA	AAC	TCTT	œœ	CC A	CGAA	AATGA	720
	AGG/	AGCAT	ra at	rg ga	A A	C AA	G GT	rr GC	C G1	T CI	C GC	A GC	C AP	A GC	\mathbf{x}	T	768
			M	et G	ly I	le Ly	ys V	al G	ly V	al Le	eu G	ly A	la Ly	ys G	ly A	rg	
10				1				5					10		_		
	GTT	GGT	CAA	ACT	ATT	GTG	GCA	GCA	GTC	TAA	GAG	TCC	GAC	GAT	CTG	GAG	816
	Val	Gly	Gln	Thr	Ile	Val	Ala	Ala	Val	Asn	Glu	Ser	Asp	Asp	Leu	Glu	
		15					20)				25	5				
15	CTT	GTT	GCA	GAG	ATC	GGC	GTC	GAC	GAT	GAT	TTG	AGC	CTT	CTG	GTA	GAC	864
,-	Leu	Val	Ala	Glu	Ile	Gly	Val	Asp	Asp	Asp	Leu	Ser	Leu	Leu	Val	Asp	
	30					35					40)				4 5	
	AAC	GGC	CCT	GAA	GTT	GTC	GTT	GAC	TTC	ACC	ACT	CCT	AAC	GCT	GTG	ATG	912
	Asn	Gly	Ala	Glu	Val	Val	Val	Asp	Phe	Thr	Thr	${\tt Pro}$	Asn	Ala	Val	Met	
20					50					55	5				6	0	
	GGC	AAC	CTG	GAG	TTC	TGC	ATC	AAC	AAC	GGC	ATT	TCT	GCG	GTT	GTT	GGA	960
	Gly	Asn	Leu	Glu	Phe	Cys	Ile	Asn	Asn	Gly	Ile	Ser	Ala	Val	Val	Gly	
				65					70					7	_		
25						GAT											1008
	Thr	Thr	Gly	Phe	Asp	Asp	Ala	Arg	Leu	Glu	Gln	Val	Arg	Ala	Trp	Leu	
			80					85					9	-			
	GAA	GGA	AAA	GAC	TAA	GTC	GGT	GIT	CTG	ATC	GCA	CCT	AAC	TTT	GCT	ATC	1056
00	Glu	-	Lys	Asp	Asn	Val	Gly	Val	Leu	Ile	Ala	Pro	Asn	Phe	Ala	Ile	
30		95					100					10					
						ATG											1104
		Ala	Val	Leu	Thr	Met	Val	Phe	Ser	Lys	Gln	Ala	Ala	Arg	Phe	Phe	
	110					115					120					125	
35						ATT											1152
	Glu	Ser	Ala	Glu		Ile	Glu	Leu	His			Asn	Lys	Leu	Asp	Ala	
					130					135					14		
						ATC											1200
40	Pro	Ser	Gly			Ile	His	Thr			Gly	Ile	Ala	Ala	Ala	Arg	
				145					150					15			
						GAC											1248
	Lys	Glu			Met	Asp	Ala			Asp	Ala	Thr	Glu	Gln	Ala	Leu	
			160					165					170				
45						GCA											1296
	Glu		Ser	Arg	Gly	Ala			Asp	Gly	Ile			His	Ala	Val	
		175					180		_	_	_	18					
						GTT											1344
50		Met	Ser	Gly	Met	Val		His	Glu	Gln			Phe	Gly	Thr		
	190	_				195					200					205	
	CYTT	CAG	MAC	January.	ΔCC	እጥሮ	D D C	CNC	CAC	TYYY	ጥለጥ	CAT	\sim	አአሮ	UC N	STATES.	1201

	Gly Gln Thr Leu Thr I 210		r Tyr Asp Arg Asn Ser Phe 15 220	
_	GCA CCA GGT GTC TTG G	TG GGT GTG CGC AA	C ATT GCA CAG CAC CCA GGC	1440
5	Ala Pro Gly Val Leu V	al Gly Val Arg As	n Ile Ala Gln His Pro Gly	
	225	230	235	-
	CTA GTC GTA GGA CTT G	AG CAT TAC CTA GO	C CTG TAAAGGCTCA TTTCAGCAGC	1493
	Leu Val Val Gly Leu G	lu His Tyr Leu Gly	y Leu	
10	240	245		
	GGGTGGAATT TTTTAAAAGG	AGCGTTTAAA GGCTGT	GGCC GAACAAGTTA AATTGAGCGT	1553
	GGAGTTGATA GCGTGCAGTT	CTTTTACTCC ACCCGC	TGAT GTTGAGTGGT CAACTGATGT	1613
	TGAGGGGGG GAAGCACTCG	TOGAGITTCC GGGTCC	FIGOC TGCTACGAAA CTTTTGATAA	1673
15	GCCGAACCCT CGAACTCCTT	CCAATGCTGC GTATCT	GCGC CACATCATGG AAGTGGGGCA	1733
	CACTGCTTTG CTTGAGCATG	CCAATGCCAC GATGTA	ATATC CGAGGCATTT CTCGGTCCGC	1793
	GACCCATGAA TTGGTCCGAC	ACCCCCATTT TTCCTT	CICI CAACIGICIC AGOGITICGT	1853
	GCACAGCGGA GAATCGGAAG	TAGTGGTGCC CACTC	CATC GATGAAGATC CGCAGTTGCG	1913
	TGAACTTTTC ATGCACGCCA	TOGATGAGTC TOGGT	CCCT TTCAATGAGC TCCTTAATGC	1973
20	GCTGGAAGAA AAACTTGGCG	ATGAACCG		2001
	(2) INFORMATION FOR S			
	• • •	HARACTERISTICS:		
25	(A) LENG	TH: 248 amino aci	ds	
	, ,	E: amino acid		
		DLOGY: linear		
	(ii) MOLECULE T	-		
30	* * *	ESCRIPTION: SEQ I		
30	-	ly Val Leu Gly Al	a Lys Gly Arg Val Gly Gln	
	1 5		10 15	
	Thr Ile Val Ala Ala V	al Asn Glu Ser As	p Asp Leu Glu Leu Val Ala	
	20	25	30	
35	Glu Ile Gly Val Asp A	sp Asp Leu Ser Le	u Leu Val Asp Asn Gly Ala	
	3 5	40	4 5	
	Glu Val Val Val Asp P	he Thr Thr Pro As	n Ala Val Met Gly Asn Leu	
	50	55	60	
40	-	sn Gly Ile Ser Al	a Val Val Gly Thr Thr Gly	
	65	70	75 80	
	Phe Asp Asp Ala Arg I	eu Glu Gln Val Ar	g Ala Trp Leu Glu Gly Lys	
	85		90 95	
	Asp Asn Val Gly Val I	eu Ile Ala Pro As	n Phe Ala Ile Ser Ala Val	
45	100	105	110	
	Leu Thr Met Val Phe S	er Lys Gln Ala Al	a Arg Phe Phe Glu Ser Ala	
	115	120	125	
	Glu Val Ile Glu Leu H	is His Pro Asn Ly	s Leu Asp Ala Pro Ser Gly	
50	130	135	140	
	Thr Ala Ile His Thr A	la Gln Gly Ile Al	a Ala Ala Arg Lys Glu Ala	
	145	150	155 160	

	Gly	Met	Asp	Ala	Gln 165		Asp	Ala	Thr	Glu 170		Ala	Leu	Glu	Gly 17		
5	Arg	Gly	Ala	Ser 180		Asp	Gly	Ile	Pro		His	Ala	Val	Arg	_	Ser	
	Gly	Met				Glu	Gln		Ile		Gly	Thr		Gly		Thr	
	Leu		195 Ile	Lys	Gln	Asp				Arg	Asn				Pro	Gly	
10	Val	210 Leu	Val	Gly	Val	Arg	215 Asn		Ala	Gln	His	Pro		Leu	Val	Val	
	225 Gly	Leu	Glu	His	Tyr	230 Leu		Leu			23	5				240	
15	1				245		•										
	(2)				FOR CE C												
		(1	(A) L	ENGT	н: 2	3 ba	ses									
20			-	-	YPE: TRAN												
		(ii	-	-	OPOL LE T				ucle	ic a	cid						
25		(iv			ESCR ENSE			/d	lesc	= "s	ynth	etic	DNA	."			
	` ') SE	QUEN	CE D	ESCR AATG	IPTI	ON:	SEQ	ID N	0:12	:						23
					FOR			NO:1	3:								
30	(2)) SE	QUEN	CE C	HARA	CTER	ISTI									
			(в) 1	ENGI YPE:	nuc	cleic	aci									
35					TRAN OPOL				gle								
		(ii			ILE T DESCR							etic	DN/	λ"			
	(***	-) AN	TI-S	ENSE ESCR	: YE	S				_						
40	•	-			CTTG			کح	יי עד	0.10	•						23
	(2)				FOR												
45		(1	((A) 1	VCE C	TH: 3	1411	base	e pa	irs							
				` '	TYPE: STRAI												
		(• •	IOPOI				anom.	(c)							
50		•	•		SENSE			. (<u>y</u>	SI AAIL	LC)							

	((vi)	ORJ	GINA	L SC	URCE	Ξ:											
			()	A) OF	RGAN:	ISM:	Brev	vibad	cteri	ium 1	Lacto	ofern	entu	m				
			(I	3) S	TRAII	N: A'	rcc :	13869	9									
5	((xi)	FEA	TURE	2:													
			()	A) N	ME/I	ŒY:	CDS											
			(F	3) L(CAT:	ION:	311	12	L3									
	(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	SEQ I	D NO	:14:								
10	CICIO	CAT.	AT C	GAGA	GAGA	A GC	AGCC	CAC	GGT	TTTT	œ	TGAT	TTTG	AG A	TTGA	AACTT		60
	TGGC	AGAC	GG A	TOSC	TAAA	G GC	AACA	AGCC	CGT	ATGT	CAT	GGAC	TTTT.	AA C	GCAA	AGCTC	J	120
	ACACC	CAC	GA G	CTAA	TAAA	T C	TATA	GTTA	AGA	CAAC	ATT	TTTG	GCTG	TA A	AAGA	CAGCC	J	180
	GTAA	AAAC	CT C	TTGC	TCAT	G TO	TTAA	CITO	TTA	TOGG	TAA	GTGG	CTTG	GG C	CATT	GTTAT	2	240
	GCAAA	AGT	TG I	TAGG	TTTI	T TO	CCCC	GITC	TTT	'AACC	∞	TAAA	GAGG	ga a	GAAG	GTAAC	3	300
15	CTTG	ACT	CT A	TG A	GC A	CA C	GT 1	TA A	CA G	CT A	AG A	cc e	GA G	TA C	AG C	AC	. :	349
			1	Met S	Ser !	Thr (Gly 1	Leu '	Thr i	Ala 1	Lys !	Thr (Gly (/al (Glu I	lis		
				1				5					10					
	TTC C	SGC	ACC	GTT	GGA	GTA	GCA	ATG	GTT	ACT	CCA	TTC	ACG	GAA	TCC	GGA	:	397
20	Phe C	Gly	Thr	Val	Gly	Val	Ala	Met	Val	Thr	Pro	Phe	Thr	Glu	Ser	Gly		
		15					20)				25	5					
	GAC A																	445
	Asp 1	Ile	Asp	Ile	Ala	Ala	Gly	Arg	Glu	Val	Ala	Ala	Tyr	Leu	Val	Asp		
05	30					35					40					45		
25	AAG (493
	Lys (Gly	Leu	Asp			Val	Leu	Ala	_		Thr	Gly	Glu	_	_		
					50					55					6			
	ACG A																	541
30	Thr 1	Ihr	Thr		Ala	GIu	Lys	Leu			Leu	Lys	Ala		_	Glu		
	~~~	~~~	~~~	65	~~	~~		~	70		~~	~~~	~~	7				-00
	GAA (589
	Glu \	val	80 GTÀ	ASp	Arg	Ara	ASII			ATG	GTĀ	vaı		_	ASI	ASI		
35	ACG (~~		m/vn	CTIC:	CAA	Cattle.	85		COLL	C/CIII	COTT	90 m~m	-	~~	CC3		637
	Thr A																	037
	11111 7	95	11111	361	Vai	GIU	100		GIU	ма	Αια	105		ма	GIY	ма		
	GAC (بليلت	Αידים	بلبلئ	ζΤΆ			ייע	ጥልር	TYY			204	440	GAG		685
	Asp (000
10	110	_		200					_	-1-		_	110	-	0.1.1	125		
	GGA 7												ACA	GAG	GTT			733
	Gly I																	,
	01, 1				130		<u></u>	••••		135				010	14			
4 5	ATT :	TGT	CTC	TAT			CCT	GGT	OGG			ATT	CCA	ATT				781
	Ile																	
		-1-		145				1	150		1			15				
	GAT A	ACC	ATG		CCC	CTG	AGT	GAA			ACG	ATT	TTG			AAG		829
50	Asp !																	
	•		160					165					170			_		

				GGT													877
	Asp	Ala	Lys	Gly	Asp	Leu	Val	Ala	Ala	Thr	Ser	Leu	Ile	Lys	Glu	Thr	
5		175					180					185					
5				TGG													925
	Gly	Leu	Ala	Trp	Tyr	Ser	Gly	Asp	Asp	Pro			Leu	Val	Trp		
	190					195					200					205	0.70
				GGA													973
10	Ala	Leu	Gly	Gly	Ser	Gly	Phe	Ile	Ser			Gly	His	Ala			
					210					215				010	22		1021
				CCT													1021
	Thr	Ala	Leu	Arg		Leu	Tyr	Thr			GLu	Glu	GIĀ			vaı	
15				225					230		~~~	~~~	CTDA	23		CAA	1069
,,,				GAA													1009
	Arg	Ala			He	Asn	Ala			Ser	PTO	Leu	va. 25		Ald	Gln	
			240		001	OTTO	100	245		***	CCT	COTE			CTIC	CAG	1117
																CAG	1117
20	GLY	_		GIY	GIY	var	260		Νīα	гуз	МI	26		, ALG	Deu	Gln	
	000	255		- CIIIX	CC N	СУШ			Cutur	~~a	ייייע			CCA	AAT	GAG	1165
																Glu	
	270		: ASI	ı var	GLY	275		, , <u></u>		110	28					285	
25			्राण	י האה	ССТ	-	-	GAA	GAC	ATG			GCT	GGA	GTI	CTA	1213
																Leu	
	O _{II}	· OI		. 0	290		3			29		-		-		00	
	TAA	TATA	GAA	TGAT			ATCG	cccc	C GG	AAGG	TTAC	œ	CAAG	GCG	GCCC	ACCAGA	1273
																CICTAA	
30																AGGTGC	
				CAAC													1411
	(2)) IN		AOITA													
35			(i)	SEQ							_						
				•				01 a		aci	ds						
				-				no a									
								lin									
40				MOL						DO TI	n 100	.15.					
				SEQ									, Wi	e Ph	പ ദ്രാ	o Thr	
		_	run	r Gr	y re	u 111	r At	ч г.Х.	2 111		y va 10	L GI	A 1111.	3 111	C 01,	y Thr 15	
		1	57	1 A1.	a Ma	ວ ⊬ ປລ	i mb	r Dr	o Ph			ıı Sei	r Gl	v As	n II	e Asp	
	va	T GT	y va	_	.0	L VG	1 111	LIL		25		u D		,	30		
45	т٦	ר א	ומ ב			a Gl	u Va	וגו			r Le	u Va	l As	o Lv		y Leu	
	11	e M		a 61. 85	<i>z</i> ====	9 01	.		40	1				45		_	
	λα	n Sa] <u>[</u>	u Al	a Gl			r Gl	y Gl	u Se	r Pr	o Th	ır Th	r Thr	
	na	_	50	_ • •	~			55			-		60				
50	Αl			u Lv	s Le	u Gl			u Ly	s Al	a Va	l Ar	g Gl	u Gl	.u Va	ıl Gly	

	65					70					75	5				80	
	Asp	Arg	Ala	Asn	Val 85	Ile	Ala	Gly	Val	Gly 90		Asn	Asn	Thr	Arg 9		
5	Ser	Val	Glu	Leu 100	Ala	Glu	Ala	Ala	Ala 105		Ala	Gly	Ala	Asp 11	_	Leu	
	Leu	Val	Val 115	Thr	Pro	Туг	Tyr	Ser 120		Pro	Ser	Gln	Glu 12		Leu	Leu	
10	Ala	His 130	Phe	Gly	Ala	Ile	Ala 135		Ala	Thr	Glu	Val 140		Ile	Cys	Leu	
	Tyr 145	Asp	Ile	Pro	Gly	Arg 150		Gly	Ile	Pro	Ile 155		Ser	Asp	Thr	Met 160	
15	Arg	Arg	Leu	Ser	Glu 165		Pro	Thr	Ile	Leu 170		Val	Lys	Asp	Ala 17		
	_	_		180					185	,				19	0		
20	_		195		Asp			200)				20	5			
	_	210			Ile		215	i				220	כ				
<i>2</i> 5	225				Thr	230)				235	5				240	
					Lys 245					250)				25	5	
		-		260			-		265	5				27	0		
<i>30</i>			275		Arg			280)				28		GIU	Leu	
	Glu	Ala 290		Arg	Glu	Asp	Met 295		Lys	Ala	GTA	30v					
35	(2)) SE	QUEN A) L	FOR CE CI ENGT YPE:	HARA H: 2	CTER 3 ba	ISTI ses	cs:								
40		(ii) OM (.	D) I	TRAN OPOL LE T	OGY: YPE:	lin oth	ear er n	ucle								
4 5	•) SE) AN	TI-S CE D	ESCR ENSE ESCR TOOG	: NO	ON:				_	etic	; DNA	."			23
50	(2)		.) SE	QUEN	FOR ICE C LENGI	HARA	CTER	ISTI									

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
10	CCAAAACCGC CCTCCACGC GAA	2 3
	(2) INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3579 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
25	(A) NAME/KEY: CDS	
	(B) LOCATION: 5332182	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
3 <i>0</i>	(B) LOCATION: 21883522	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	GTGGAGCCGA CCATTCCGCG AGGCTGCACT GCAACGAGGT CGTAGTTTTG GTACATGGCT	60
	TCTGGCCAGT TCATGGATTG GCTGCCGAAG AAGCTATAGG CATCGCACCA GGGCCACCGA	120
35	GITACOGAAG ATGGTGCCGT GCTTTTCGCC TTGGGCAGGG ACCTTGACAA AGCCCACGCT	180
	GATATOGOCA AGTGAGGGAT CAGAATAGTG CATGGGCACG TCGATGCTGC CACATTGAGC	240
	GGAGGCAATA TCTACCTGAG GTGGGCATTC TTCCCAGCGG ATGTTTTCTT GCGCTGCTGC	300
	AGTGGGCATT GATACCAAAA AGGGGCTAAG CGCAGTCGAG GCGGCAAGAA CTGCTACTAC	360
	CCTTTTATT GTCGAACGGG GCATTACGGC TCCAAGGACG TTTGTTTTCT GGGTCAGTTA	420
40	COCCAAAAAG CATATACAGA GACCAATGAT TTTTCATTAA AAAGGCAGGG ATTTGTTATA	480
	AGTATOGGTC GTATTCTGTG CGACGGGTGT ACCTCGGCTA GAATTTCTCC CC ATG	535
	Met	
	1	
45	ACA CCA GCT GAT CTC GCA ACA TTG ATT AAA GAG ACC GCG GTA GAG GTT	583
	Thr Pro Ala Asp Leu Ala Thr Leu Ile Lys Glu Thr Ala Val Glu Val	
	5 10 15	
	TTG ACC TOC CGC GAG CTC GAT ACT TCT GTT CTT COG GAG CAG GTA GTT	631
	Leu Thr Ser Arg Glu Leu Asp Thr Ser Val Leu Pro Glu Gln Val Val	
50	20 25 30	
	GTG GAG OGT COG CGT AAC OCA GAG CAC GGC GAT TAC GCC ACC AAC ATT	679

	Val		Arg	Pro	Arg	Asn			His	Gly	Asp	_		Thr	Asn	Ile	
		35					40					4	_				
5															TTG		727
		Leu	Gln	Val	Ala		_	Val	Gly	Gln		_	Arg	Asp	Leu	Ala	
	50					55					- 60					6	
															TCT		775
	Thr	Trp	Leu	Ата	_		Leu	Ala	Ala		_	Ala	He	Asp	Ser		
10	~~	3.0301	~~	~~	70			mma		75	-	~mm	~~	~~	8		200
															CCA		823
	GIU	ше	Ата			GIĀ	Pne	Leu			Arg	Leu	Ala		Ala	Ата	
	CNC	CALL.	CAA	85		~~	220	8 mm	90		CAC	~~	CNC	9	o TTC	~~~	071
15																	871
	GIII	GIĀ	100	TTE	var	WIG	гÃ2	105		ΑΤα	GIII	GTĀ		_	Phe	GIA	
	220	mvv		CNC	بليلت	тvc	CAC			CIIC	220	CIV.	110		GTT	m/m	010
															Val		919
20	ASI.	115	L	1113	Lu	-	120		тър	Vai	rich.	125		1116	Vair	Ser	
	GCA		CCA.	ACC	GGA	CCT			CITT	GGC	GGA			TYCG:	GCT	സ	967
															Ala		307
	130				2	135				3 -1	140	_	9			149	5
		GGT	GAC	TCT	TTG			GIG	CTG	GAG			GGC	ccc	AAA		1015
25															Lys		
		•	-		150	-				155			-		16		
	ACC	œ	GAA	TAC	TAC	TTC	AAC	GAT	CAC	GGT	CCC	CAG	ATC	GAT	CCT	TTC	1063
	Thr	Arg	Glu	Tyr	Tyr	Phe	Asn	Asp	His	Gly	Arg	Gln	Ile	Asp	Arg	Phe	
30				165					170)				17	5		
	CCT	TTG	TCC	CTT	CTT	GCA	\cos	\cos	AAG	GGC	GAG	CCA	ACG	CCA	GAA	GAC	1111
	Ala	Leu	Ser	Leu	Leu	Ala	Ala	Ala	Lys	Gly	Glu	Pro	Thr	Pro	Glu	Asp	
			180					185	5				19	0			
35	CCT	TAT	GGC	œc	GAA	TAC	ATT	AAG	GAA	ATT	CCC	GAG	GCA	ATC	GTC	GAA	1159
	Gly	_	Gly	Gly	Glu	Tyr	Ile	Lys	Glu	Ile	Ala	Glu	Ala	Ile	Val	Glu	
		195					200					20!	_				
															GAG		1207
40	_	His	Pro	Glu	Ala			Leu	Glu	Pro			Thr	Gln	Glu	Leu	
40	210					215					220					22	
															TCT		1255
	Phe	Arg	Ala	Glu			Glu	Met	Met			His	Ile	Lys	Ser		
					230					235					24		4000
45															AAC		1303
	Leu	His	Glu			Thr	Asp	Phe	_		Tyr	ТУT	His		Asn	Ser	
	~~~		~~	245		~~	~~~	~~	250		~~~	<b>~</b>	~~~	25		030	1051
															AAG		1351
50	Leu	rne			GTĀ	ΥŢĠ	vaı	_	_	vrg	vaı	GIN			Lys	ASP	
	220	~~	260		ma.c	C3.3	330	265		CO.	m~~	m~~	27		m~~	3~~	1200
	AAC	GGC	AAC	CIG	TAC	GAA	AAC	SAC		GCI	IGG	ישו	CIG	T.O.	TU	AUU	1399

	Asn	Gly 275	Asn	Leu	Туг	Glu	Asn 280		Gly	Ala	Trp		_	Arg	Ser	Thr	
	CVD			СУП	י ראר			_				28					
5	Glu	Dho	Glv	y Court	JANG A	T	ACAC	3	GIG	GIG	ATC	AAG	TCI	' GAC	GGC	GAC	1447
	290	rie	GLY	vəh	ASP			Arg	val	Val	Ile	Lys	Ser	Asp	Gly	Asp	
			ma o	3.000		295	_				30					305	•
	GCA	GU	TAC	AIC	GCT	GGC	GAT	ATC	GCG	TAC	GTG	GCT	GAT	' <b>AA</b> G	TTC	TCC	1495
	Αта	ATA	ıyr	TTE	ALa	GLY	Asp	Ile	Ala	Tyr	Val	Ala	Asp	Lys	Phe	Ser	
10	000	~~~			310					31					32	20	
	œ	GGA	CAC	AAC	CTA	AAC	ATC	TAC	ATG	TTG	GGT	CCT	GAC	CAC	CAT	CCT	1543
	Arg	GTA	His	Asn	Leu	Asn	Ile	Tyr	Met	Leu	Gly	Ala	Asp	His	His	Gly	
				325	)				330	)				33	5		
15	TAC	ATC	ccc	œc	CIG	AAG	GCA	GCG	GOG	GCG	GCA	CTT	GGC	TAC	AAG	CCA	1591
,,,	Tyr	Ile	Ala	Arg	Leu	Lys	Ala	Ala	Ala	Ala	Ala	Leu	Gly	Tyr	Lys	Pro	
			340					345	5				35	0			
	GAA	GGC	GTT	GAA	GTC	CTG	ATT	GGC	CAG	ATG	GTG	AAC	CTG	CIT	œ	GAC	1639
	Glu	Gly	Val	Glu	Val	Leu	Ile	Gly	Gln	Met	Val	Asn	Leu	Leu	Ara	Asp	
20		355					360	)				36	5				
	GGC	AAG	GCA	GTG	CGT	ATG	TCC	AAG	CCT	GCA	GGC	ACC	GTG	GTC	ACC	СТА	1687
	Gly	Lys	Ala	Val	Arg	Met	Ser	Lys	Arg	Ala	Gly	Thr	Val	Val	Thr	Leu	1007
	370					375	j				380	)				385	
	GAT	GAC	CTC	GTT	GAA	GCA	ATC	GGC	ATC	GAT	GCG	GCG	CGT	TAC	TCC	CTG	1735
25	Asp	Asp	Leu	Val	Glu	Ala	Ile	Gly	Ile	Asp	Ala	Ala	Ara	Tvr	Ser	Ieu	1/33
					390	)				395	5				40	ACC CTA ASS CC CTG Ext Leu AOO TG TGG Ext Ala AGG GTT Ext Ala AGG GTT Ext A	
	ATC	CGT	TCC	TCC	GTG	GAT	TCT	TCC	CTG	GAT	ATC	GAT	CTC	GGC	CIG	TGG	1783
	Ile	Arg	Ser	Ser	Val	Asp	Ser	Ser	Leu	Asp	Ile	Asp	Leu	Gly	Leu	Tro	2,00
30				405					410	)				41	5		
	GAA	TCC	CAG	TCC	TCC	GAC	AAC	CCT	GTG	TAC	TAC	GTG	CAG	TAC	GGA	CAC	1831
	Glu	Ser	Gln	Ser	Ser	Asp	Asn	Pro	Val	Tyr	Tyr	Val	Gln	Tvr	Glv	His	1001
			420					425	i				43	n			
25	CCT	CGT	CTG	TGC	TCC	ATC	GCG	$\alpha$	AAG	GCA	GAG	ACC	TTG	GGT	GTC	ACC:	1879
35	Ala	Arg	Leu	Cys	Ser	Ile	Ala	Arg	Lys	Ala	Glu	Thr	Leu	Glv	Val	Thr	1075
		435					440					449	ō				
	GAG	GAA	GGC	GCA	GAC	CTA	TCT	CTA	CTG	ACC	CAC	GAC	œ	GAA	GGC	GAT	1927
	Glu	Glu	Gly	Ala	Asp	Leu	Ser	Leu	Leu	Thr	His	Asp	Ara	Glu	Glv	Asp	1727
40	450					455					460	)				465	
	CTC	ATC	CCC	ACA	CTC	GGA	GAG	TTC	CCA	GCA	GTG	GTG	AAG	GCT	GCC	CCT	1975
	Leu	Ile	Arg	Thr	Leu	Gly	Glu	Phe	Pro	Ala	Val	Val	Lvs	Ala	Ala	Ala	17/0
					470					475	;				480	)	
	GAC	CTA	CCT	GAA	CCA	CAC	œ	ATT	GCC	œ	ТАТ	GCT	GAG	GAA	Αיייני	CiCuti Ci	2023
45	Asp	Leu	Arg	Glu	Pro	His	Arg	Ile	Ala	Ara	Tvr	Ala	Glu	Glu	Ten	Δla	2025
				485			Ū		490		-2-			495		ALG	
	GGA	ACT	TTC	CAC	ССС	TTC	TAC	GAT			CAC	ATY:	ىلىلى	~~.	AAC.	Celluii Celluii	2071
	Gly	Thr	Phe	His	Arg	Phe	Tyr	Asp	Ser	Cvs	His	Ile	Leu	Pm	Luc	Val	2071
50	_		500		J		-	505		-,-			510		nγο	AGT	
	GAT	GAG	GAT	ACG	GCA	ŒΑ	ATC			GCA	CCT	כווכ	CCV	ىلىلىك م	CCX	CCA	2110
									~ 1	~~.	~.	010	-C-1	CII	<del>U</del>	G.A	2119

	Asp	Glu 515	Asp	Thr	Ala	Pro	Ile 520		Thr	Ala	Arg	Leu 525	_	Leu	Ala	Ala	
	CCA		œ	CAG	ACC	CIIC			GCC	CTG	CAC			GGC	CTT	TCC:	2167
5			Arg														2207
	530	1111	, mg	O		535					540			021	-	545	
		ന്നു	GAG	AAG	ATG		יא אי	rg gr	א יוני	'A G'I			יים יוי	C AZ	AT GA		2214
			Glu			1.1.					_		_		sn G		
10	1110		010	-10	550		•	1				5					
,,,	СТТ	ന്ന	GCA	CAC			CCA		ААТ	GCC	GTG	œ	CAA	GAA	GAC	GGC	2262
			Ala														
	10					15		3			20				-	25	
		GTC	ACC	GTC	GCT			CCT	CTG	CCT	GAC	CTC	GCT	GAA	GAA	TAC	2310
15			Thr														
				-	30	_				35	_					o Î	
	GGA	ACC	CCA	CTG	TTC	GTA	GTC	GAC	GAG	GAC	GAT	TTC	CGT	TCC	œ	TGT	2358
			Pro														
20				45				•	50		-			_	5	_	
	œ	GAC	ATG	GCT	ACC	GCA	TTC	GGT	GGA	CCA	GGC	AAT	GTG	CAC	TAC	GCA	2406
	Arq	Asp	Met	Ala	Thr	Ala	Phe	Gly	Gly	Pro	Gly	Asn	Val	His	Tyr	Ala	
		-	60					65	_		_		7		_		
25	TCT	AAA	GCG	TTC	CTG	ACC	AAG	ACC	ATT	GCA	CCT	TGG	GTT	GAT	GAA	GAG	2454
25	Ser	Lys	Ala	Phe	Leu	Thr	Lys	Thr	Ile	Ala	Arg	Trp	Val	Asp	Glu	Glu	
		- 75					80				_	8					
	GGG	CTG	GCA	CTG	GAC	ATT	GCA	TCC	ATC	AAC	GAA	CIG	GGC	ATT	GCC	CTG	2502
	Gly	Leu	Ala	Leu	Asp	Ile	Ala	Ser	Ile	Asn	Glu	Leu	Gly	Ile	Ala	Leu	
30	90					95	,				100	)				105	
	GCC	GCT	GGT	TTC	$\infty$	GCC	AGC	CCT	ATC	ACC	GCCG	CAC	GGC	AAC	AAC	AAA	2550
	Ala	Ala	Gly	Phe	Pro	Ala	Ser	Arg	Ile	Thr:	Ala	His	Gly	Asn	Asn	Lys	
					110	)				115	5				12	0	
35	GGC	GTA	GAG	TTC	CTG	$\alpha$	GCG	TTG	GIT	CAA	AAC	GGT	GTG	GGA	CAC	GIG	2598
	Gly	Val	Glu	Phe	Leu	Arg	Ala	Leu	Val	Gln	Asn	Gly	Val	Gly	His	Val	
				125					130	)				13	5		
	GTG	CIG	GAC	TCC	GCA	CAG	GAA	CTA	GAA	CTG	TTG	GAT	TAC	GTT	GCC	GCT	2646
40	Val	Leu	Asp	Ser	Ala	Gln	Glu	Leu	Glu	Leu	Leu	Asp	Tyr	Val	Ala	Ala	
40			140					145	5				15	0			
	GGT	GAA	GGC	AAG	ATT	CAG	GAC	GTG	TTG	ATC	CCC	GTA	AAG	CCA	GGC	ATC	2694
	Gly	Glu	Gly	Lys	Ile	Gln	Asp	Val	Leu	Ile	Arg	Val	Lys	Pro	Gly	Ile	
		155					160	)				16	5				
45	GAA	GCA	CAC	ACC	CAC	GAG	TTC	ATC	GCC	ACT	AGC	CAC	GAA	GAC	CAG	AAG	2742
	Glu	Ala	His	Thr	His	Glu	Phe	Ile	Ala	Thr	Ser	His	Glu	Asp	Gln	Lys	
	170					175	5				18	0				185	
	TTC	GGA	TTC	TCC	CTG	GCA	TCC	GGT	TOO	GCA	TTC	GAA	GCA	GCA	AAA	GCC	2790
50	Phe	Gly	Phe	Ser	Leu	Ala	Ser	Gly	Ser	Ala	Phe	Glu	Ala	Ala	Lys	Ala	
					190	)				19	5				20	00	
	GCC	AAC	AAC	GCA	GAA	AAC	CTG	AAC	CTG	GTT	GGC	CTG	CAC	TGC	CAC	GTT	2838

	Ala	Asn	Asn	Ala	Glu	Asn	Leu	Asn	Leu	Val	Gly	Leu	His	Cys	His	Val	
				205					210					21	L <b>5</b>		
5	GGT	TCC	CAG	GTG	TTC	GAC	GCC	GAA	GGC	TTC	AAG	CTG	GCA	GCA	GAA	CCC	2886
	Gly	Ser	GIn	Val	Phe	Asp	Ala	Glu	Gly	Phe	Lys	Leu	Ala	Ala	Glu	Arg	
			220					22!					23	0		_	
	GIG	TTG	GGC	CIG	TAC	TCA	CAG	ATC	CAC	AGC	GAA	CTG	GGC	GTT	GCC	CTT	2934
	Val	Leu	Gly	Leu	Tyr	Ser	Gln		His	Ser	Glu	Leu	Gly	Val	Ala	Leu	
10	~~	235	~~~	<b>~</b>			240					24					
	CCI	GAA	CIG	GAT	CIC	GGT	GGC	GGA	TAC	GGC	ATT	GCC	TAT	ACC	GCA	GCT	2982
	PIO	GIU	Leu	Asp	Leu	Gly	Gly	Gly	Tyr	Gly	Ile	Ala	Tyr	Thr	Ala	Ala	
	250	<i>~</i>	~~~			255					26					265	
15	CAA	GAA	CLA	CIC	AAC	GIC	GCA	GAA	GTT	$\alpha$	TCC	GAC	CTG	CTC	ACC	GCA	3030
	GIU	GIU	PIO	Leu	ASD	Val	Ala	Glu	Val			Asp	Leu	Leu	Thr	Ala	
	CTTC.	~~		<b>1</b> ma	270					27					28	0	
	GIC.	Clas	AAA	ATG	GCA	GCG	GAA	CTA	GGC	ATC	GAC	GCA	CCA	ACC	GTG	CTT	3078
	van	GTĀ	гйг	MET	ATG	ата	Glu	Leu			Asp	Ala	Pro			Leu	•
20	ىلغلى	CNC	~~	285		~~	3.00		290					29	5		
	Ual	Clu	Dm	C1	7	GCT	ATC	GCA	GGC	$\infty$	TCC	ACC	GTG	ACC	ATC	TAC	3126
	var	GIU	300	GTĀ	Arg	ATA	Ile			Pro	Ser	Thr	_		Ile	Tyr	
	CAA	CIIC		እርር	300	מממ	CAC	305	-	~~~			310	D			
25	Gli	Val	Glv	Thr	Mbx.	AAA T•••	GAC	GIC	CAC	GIA	GAC	GAC	GAC	AAA	ACC	CCC	3174
	OLU	315	GIY	1111	ш	пÃ2	Asp 320		HIS	vaı	Asp			Lys	Thr	Arg	
	CGT		ATC	സ	CIC	GAC	GGA		NTIC:	ш	CNC	325					
	Ara	Tvr	Ile	Ala	Val	Asn	Gly	Clv	WO+	Com	GAC	AAC	AIC	œ	CCA	GCA	3222
30	330	-1-			vu_	335		СТУ	MEL	Ser	ASD 340		тте	Arg	Pro		
00		TAC	GGC	TCC	GAA		GAC	СССС	ന്ദ്ര	CTIV			~~	mmo	~~~	345	
	Leu	Tyr	Glv	Ser	Glu	Tvr	Asp	Ala	Am	OIW	GIA	Som	2000	TIC	GCC	GAA	3270
		-	•		350	-1-	٠ي		'Hg	355		Ser	мy	PIE			
	GGA	GAC	CCA	GTA	-		CCC	ATC	GTG			ርልር	TYYY	CAA	36	· ~~	2210
35	Gly	Asp	Pro	Val	Ser	Thr	Ara	Ile	Val	Glv	Ser	Hie	Ore	Clu	Som	C3	3318
		_		365			3		370			*****	Cys	37		GIY	
	GAT	ATC	CTG	ATC	AAC	GAT	GAA	ATC			TCT	GAC	ATC	ACC	<b>≱</b> C~	CCC.	3366
	Asp	Ile	Leu	Ile	Asn	Asp	Glu	Ile	Tvr	Pro	Ser	Asn	Tle	Thr	Sor	Glv.	3300
40			380			-		385					390		حدد	GIY	
	GAC	TTC	CTT	GCA	CIC	GCA	GCC	ACC	GGC	GCA	TAC	TGC	TAC	GCC	ATC	ΔCC	3414
	Asp	Phe	Leu	Ala	Leu	Ala	Ala	Thr	Gly	Ala	Tvr	Cvs	Tvr	Ala	Met	Ser	2414
		395					400		_		-4-	405			.~.	501	
45	TCC	CCC	TAC	AAC	$\infty$	TTC	ACA	œ	$\infty$	œ	GTC	GTG	TCC	GTC	CCC	CCT	3462
45	Ser	Arg	Tyr	Asn	Ala	Phe	Thr	Arg	Pro	Ala	Val	Val	Ser	Val	Am	Ala	0402
	<b>4</b> 10					415		•			420			-	9	425	
	GGC	AGC	TCC	œc	CTC	ATG	CTG	œc	œc	GAA			GAC	GAC	ATC	CTC	3510
	Gly	Ser	Ser	Arg	Leu	Met	Leu	Arg	Arq	Glu	Thr	Leu	Aso	Asp	Ile	Leu	0010
50					430				J	435				E	440		•
	TCA	CTA	GAG	GCA	TAAC	CTI	TT C	GACG	CTG			CTT	CAC	CTTC		-	3562
											-						

Ser Leu Glu Ala 445

5	GTGC	SAGGC	<b>XXX</b> (	TTT	rgg												3579
	(2)						ID N			:							
		,	(-) -				: 550				2						
				-			amino				-						
10							GY: :										
		(:	ii) N	-	•		E: pr										
							RIP			) ID	NO:1	9:					
	Met	-											Thr	Ala	Val	Glu	
15	1				5					10	_				1	_	
		Leu	Thr	Ser	Arq	Glu	Leu	Asp	Thr	Ser	Val	Leu	Pro	Glu	Gln	Val	
				20	-			•	25					3	_		
	Val	Val		Arg	Pro	Arg	Asn	Pro		His	Gly	Asp	Tyr 4		Thr	Asn	
20	T10	×10	35	Cl n	Wal	. ה	Trra			C1	Cln	N ~~~			λon	Lou	
	тте	50	Leu	GIII	vai	AIG	55 55	_	vai	GIY	GIII	60	_	ALY	Asp	Leu	
		Thr	Trp	Leu	Ala			Leu	Ala	Ala	Asp	Asp	Ala	Ile	Asp	Ser	
	65					70					75					80	
25	Ala	Glu	Ile	Ala			Gly	Phe	Leu			Arg	Leu	Ala	Ala		
					85				_	90	_				9	_	
	Ala	Gln	Gly	Glu 100		Val	Ala	Lys	Ile 105		Ala	Gln	Gly	Glu 11	Thr O	Phe	
30	Gly	Asn	Ser	Asp	His	Leu	Ser	His	Leu	Asp	Val	Asn	Leu	Glu	Phe	Val	
30	-		115					120	)				12	5			
	Ser	Ala	Asn	Pro	Thr	Gly	Pro	Ile	His	Leu	Gly	Gly	Thr	Arg	Trp	Ala	
		130					135					140	)				
	Ala	Val	Gly	Asp	Ser	Leu	Gly	Arg	Val	Leu	Glu	Ala	Ser	Gly	Ala	Lys	
35	145					150	)				155	5				160	
	Val	Thr	Arg	Glu	Tyr	Tyr	Phe	Asn	Asp	His	Gly	Arg	Gln	Ile	Asp	Arg	
					165	;				170	)				17	5	
	Phe	Ala	Leu	Ser	Leu	Leu	Ala	Ala	Ala	Lys	Gly	Glu	Pro	Thr	Pro	Glu	
40				180					185	5				19	0		
	Asp	Gly	Tyr	Gly	Gly	Glu	Tyr	Ile	Lys	Glu	Ile	Ala	Glu	Ala	Ile	Val	
			195					200	)				20	5			
	Glu	Lys	His	Pro	Glu	Ala	Leu	Ala	Leu	Glu	Pro	Ala	Ala	Thr	Gln	Glu	
		210					215	<b>,</b>				22	0				
45	Leu	Phe	Arg	Ala	Glu	Gly	Val	Glu	Met	Met	Phe	Glu	His	Ile	Lys	Ser	
	225					230	)				23	5				240	
	Ser	Leu	His	Glu	Phe	Gly	Thr	Asp	Phe	Asp	Val	Tyr	Tyr	His	Glu	Asn	
					245	j				25	0				25	5	
50	Ser	Leu	Phe	Glu	Ser	Gly	Ala	Val	Asp	Lys	Ala	Val	Gln	Val	Leu	Lys	
				260	)				26	5				27	O		

	Asp	ASN	275		Leu	Tyr	GIu	Asn 280		Gly	Ala	Trp	Trp 28		Arg	Ser
_	Thr	Glu	Phe	Gly	Asp	Asp	Lys			Val	Val	Ile			Asn	Gly
5		290					295	j				300	)			_
		Ala	Ala	Tyr	Ile			Asp	Ile	Ala	Tyr	Val	Ala	Asp	Lys	Phe
	305					310					315	-				320
10	Ser	Arg	Gly	His			Asn	Ile	Tyr			Gly	Ala	Asp	His	
	Gl ₁₇	· The same	Tlo	71a	325		T	31-		330			_		_ 33	
				340					345	5				35		-
15	Pro	Glu	Gly 355		Glu	Val	Leu	11e 360		Gln	Met	Val	Asn 36		Leu	Arg
	Asp	Gly 370	Lys	Ala	Val	Arg	Met 375		Lys	Arg	Ala	Gly 380		Val	Val	Thr
	Leu 385	Asp	Asp	Leu	Val	Glu 390	Ala		Gly	Ile	<b>Asp</b> 395	Ala		Arg	Tyr	Ser
20		Ile	Arq	Ser	Ser			Ser	Ser	Ieu			Asn	Teu	Gly	400
					405					410	)		_		41	5
				420					425	5				43	_	_
25	His	Ala	Arg 435		Cys	Ser	Ile	Ala 440		Lys	Ala	Glu	Thr 44!		Gly	Val
	Thr	Glu 450	Glu	Gly	Ala	Asp	Leu 455		Leu	Leu	Thr	His 460		Arg	Glu	Gly
30	Asp	Leu	${\tt Ile}$	Arg	Thr	Leu	Gly	Glu	Phe	Pro	Ala			Lys	Ala	Ala
••	465					470					475	5				480
	Ala	Asp	Leu	Arg	Glu 485		His	Arg	Ile	Ala 490		Tyr	Ala	Glu	Glu 49	
35	Ala	Gly	Thr	Phe 500	His	Arg	Phe	Tyr	Asp 505		Cys	His	Ile	Leu 51	Pro	Lys
	Val	Asp	Glu 515	Asp	Thr	Ala	Pro	Ile 520		Thr	Ala	Arg	Leu 52	Ala	Leu	Ala
	Ala	Ala 530	Thr	Arg	Gln	Thr		Ala		Ala	Leu		Leu		Gly	Val
40	Ser		Ρm	Glu	Lys	Mot	535					540	)			
	545		110	GIU	_	550										
	(2)	INFO	)RMA1	ON	FOR	SEQ	ID N	₩:20	):							
45		(	(i) S	SEQUI	ENCE	CHAI	RACTI	RIST	rics:	:						
				(A	) LE	NGTH	: 44	5 am	ino a	acid	3					
					) TY											
					OT (											
50					ULE											
					ENCE											
	Met	Ala	Thr	Val	Glu	Asn	Phe	Asn	Glu	Leu	Pro	Ala	His	Val	$\operatorname{Trp}$	Pro

	1				5					10	)				1.	5
	Arg	Asn	Ala	Val 20	Arg	Gln	Glu	Asp	Gly 25		Val	Thr	Val	Ala 30	_	Val
5	Pro	Leu	Pro 35	Asp	Leu	Ala	Glu	Glu 40		Gly	Thr	Pro	Leu 45	_	Val	Val
	Asp	Glu 50		Asp	Phe	Arg	Ser 55		Cys	Arg	Asp	Met 60	_	Thr	Ala	Phe
10	Gly 65		Pro	Gly	Asn	Val 70	-		Ala	Ser	Lys 75	_	Phe	Leu	Thr	Lys 80
		Ile	Ala	Arg	Trp 85	Val	Asp	Glu	Glu	Gly 90	_	Ala	Leu	Asp	Ile 9	
15	Ser	Ile	Asn	Glu 100	Leu	Gly	Ile	Ala	Leu 105		Ala	Gly	Phe	Pro 110		Ser
	Arg	Ile	Thr 115	Ala	His	Gly	Asn	Asn 120		Gly	Val	Glu	Phe 125		Arg	Ala
20	Leu	Val 130	Gln	Asn	Gly	Val	Gly 135		Val	Val	Leu	Asp 140		Ala	Gln	Glu
	Leu 145	Glu	Leu	Leu	Asp	Tyr 150	Val	Ala	Ala	Gly	Glu 155		Lys	Ile	Gln	Asp 160
25	Val	Leu	Ile	Arg	Val 165	-	Pro	Gly	Ile	Glu 170		His	Thr	His	Glu 17	
20	Ile	Ala	Thr	Ser 180		Glu	Asp	Gln	Lys 185		Gly	Phe	Ser	Leu 19		Ser
	Gly	Ser	Ala 195	Phe	Glu	Ala	Ala	Lys 200		Ala	Asn	Asn	Ala 20		Asn	Leu
30	Asn	Leu 210		Gly	Leu	His	Cys 215		Val	Gly	Ser	Gln 220		Phe	Asp	Ala
	Glu 225	Gly	Phe	Lys	Leu	Ala 230		Glu	Arg	Val	Leu 23		Leu	Tyr	Ser	Gln 240
35	Ile	His	Ser	Glu	Leu 245	-	Val	Ala	Leu	Pro 250		Leu	Asp	Leu	Gly 25	
	Gly	Tyr	Gly	11e 260		Tyr	Thr	Ala	Ala 269		Glu	Pro	Leu	Asn 27	_	Ala
40	Glu	Val	Ala 275	Ser	Asp	Leu	Leu	Thr 280		Val	Gly	Lys	Met 28		Ala	Glu
	Leu	Gly 290		Asp	Ala	Pro	Thr 295		Leu	Val	Glu	Pro 30		Arg	Ala	Ile
<b>4</b> 5	<b>Ala</b> 305	_	Pro	Ser	Thr	Val 310		Ile	Tyr	Glu	Val 31		Thr	Thr	Lys	<b>Asp</b> 320
	Val	His	Val	Asp	<b>Asp</b> 325		Lys	Thr	Arg	Arg 33		Ile	Ala	Val	Asp 33	
E0	Gly	Met	Ser	Asp 340		Ile	Arg	Pro	Ala 34		Tyr	Gly	Ser	Glu 35		Asp
50	Ala	Arg	Val 355	Val	Ser	Arg	Phe	Ala 36		Gly	<b>Asp</b>	Pro	Val 36		Thr	Arg

	lie Val Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu 370 375 380	
5	Ile Tyr Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala	
9	385 390 395 400	
	Thr Gly Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr	
	405 410 415	
	Arg Pro Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu 420 425 430	
10	400	
	Arg Arg Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 435 440 445	
	<b>43</b> 5 <b>44</b> 0 <b>44</b> 5	
	(2) INFORMATION FOR SEQ ID NO:21:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
20	CATCTAAGTA TGCATCTCGG	20
	(2) INFORMATION FOR SEQ ID NO:22:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 bases	
30	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
35	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	TGCCCCTCGA GCTAAATTAG	20
40	(2) INFORMATION FOR SEQ ID NO:23:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1034 base pairs	
	(B) TYPE: nucleic acid	-
45	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: NO	
50	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Brevibacterium lactofermentum	

		(		-		N: A'	rcc :	13869	9								
		(IX	) FEA				an.										
5						KEY:	_	102	`								
	( i ·	CEC				ION:				1.22.							
	•		-			PTIC						dalatat 	የድርስር	אביצ	<b>መ</b> እሮአ	AGAAC	60
														CTG			
														Leu			108
10	1	1111	ASII	116	A19		Λιά	116	Vai	10		GIY	ASII	Deu	1	-	
		GTC	GAA	AAG	•		GCC	AAG	CAG			ATG	GAC	CTT	_	-	156
														Leu			100
		-		20					25					3		1	
15	ATC	TTC	TCG	ССС	œ		ACC	CTC	GAC	ACA	AAG	ACG	CCA	GTC	TTT	GAT	204
														Val			
			35	_	_			40	)		_		4	5		_	
	GTC	GCC	GAC	GTG	GAC	AAG	CAC	$\infty$	GAC	GAC	GTG	GAC	GTG	CTG	TTC	CTG	252
20	Val	Ala	Asp	Val	Asp	Lys	His	Ala	Asp	Asp	Val	Asp	Val	Leu	Phe	Leu	
		50					55	j				60	C				
	TGC	ATG	GGC	TCC	$\cos$	ACC	GAC	ATC	$\alpha$	GAG	CAG	GCA	CCA	AAG	TTC	CCC	300
	Cys	Met	Gly	Ser	Ala	Thr	Asp	Ile	Pro	Glu	Gln	Ala	Pro	Lys	Phe	Ala	
05	65					70	)				7	5				80	
<i>2</i> 5														GAC			348
	Gln	Phe	Ala	Cys			Asp	Thr	Tyr	Asp	Asn	His	Arg	Asp			
					85					90	_				_	5	
														GGC			396
30	Arg	His	Arg			Met	Asn	Glu			Thr	Ala	Ala	Gly		Val	
	221	oma	~~~	100		~~~	maa	~~ m	105	-		mma	maa	110	_		444
														ATC			444
	ATA	Leu			ınr	GIĀ	птр	_		GIĀ	met	Pne		Ile	Asn	Arg	
35	CIIIC	ma.c	115		CCA	CIIC	mmx	120		CNC	CNC	CNC	12	acc	mmo	m~	402
		-												Thr	-		492
	var	130	VIG	vra	ΥΤσ	vai	135		GIU	шъ	GIII	140	_	ш	PIRE	пр	
	~~		CCETT	באניינו	пСУ	CAG			тcc	СУП	CCIII		_	CCC	λπ <b>∨</b>	CCIII	540
40														Arg			240
40	145	110	GIY	Deu	ريس ر	150	-	шэ	کحد	nsp	15		љу	мg	116	160	
		بلملت	CAA	AAG	GCA			ጥልር	ACC	CITC		_	GAA	GAC	GCC.		588
														Asp			330
	O+3	<b>+</b> • • •		2,5	165			-1-		170				-~p	17		
45	GAA	AAG	GCC	œc			GAA	GCC	GGC			ACC	GGA	AAG		-	636

Glu Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr Gly Lys Gln Thr

CAC AAG COC CAA TOC TTC GTG GTT GCC GAC GCG GCC GAT CAC GAG COC

His Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala Asp His Glu Arg

	ATC	GAA	AAC	GAC	ATC	CCC	ACC	ATG	CCT	GAT	TAC	TTC	GTT	GGC	TAC	GAA	732
	Ile	Glu	Asn	Asp	Ile	Arg	Thr	Met	Pro	Asp	Tvr	Phe	Val	Glv	Tvr	Glu	/52
5		210					215	5		•	-	22	_	Q_1	-1-	OLU	
J	GTC	GAA	GTC	AAC	TTC	ATC	GAC	GAA	GCA	ACC	ידידר	GAC	· TYYY	CAC	CAC	700	500
	Val	Glu	Val	Asn	Phe	Ile	Aso	Glu	Ala	Thr	Pha	Δου	Som	Clu	unc	MU.	780
	225					230				****	23		Ser	GIU	ms		
	GGC	ATG	CCA	CAC	GGT		-	CITY	יחיתי	3.00						240	
10	Glv	Met	Pro	His	Glv	Glv	Hie	Val	LIV	Mb~	Mb~	03	GAC	ACC	GGT	GGC	828
					245	; ;	1113	Val	116			GTĀ	Asp	unr			
	TTC	AAC	CAC	ACC			መልሮ	אחור	OTTO:	250		~~~			25	5	
	Phe	AAC	His	Thr	Val	Clu	TAC	AIC	CIC	AAG	CIG	GAC	CGA	AAC	CCA	GAT	876
		Asn	1113	260	AGIT	GIU	TAL	тте			. Leu	Asp	Arg			Asp	
15	тт	λCC	CCI			<b>C1C</b>	3.000	~~	265					27	0		
	Dho	ACC	770	200	TCA	CAG	ATC	GCT	TTC	GGT	œc	GCA	CCT	CAC	$\alpha$	ATG	92 <b>4</b>
	FIRE	Thr	VIG.	ser	ser	GIN	TTE			Gly	Arg	Ala	Ala	His	Arg	Met	
	220	ON C	275	~~~	~			280					28	5			
00	MAG	CAG	CAG	GGC	CAA	AGC	GGA	GCT	TTC	ACC	GTC	CTC	GAA	GTT	GCT	CCA	972
20	гЛS	Gln	GIN	GIĀ	Gin	Ser			Phe	Thr	Val	Leu	Glu	Val	Ala	Pro	
	<b></b>	290					295					30	0				
	TAC	CIG	CIC	TCC	CCA	GAG	AAC	TTG	GAC	GAT	CIG	ATC	GCA	$\alpha$	GAC	GTC	1020
	JAL	Leu	Leu	Ser	Pro	Glu	Asn	Leu	Asp	Asp	Leu	Ile	Ala	Arg	Asp	Val	
25	305					310					315	5				320	
	TAA'	TTAC	CT C	XGAG													1034
	(2)	TAILY	\T\& # \\ T	TON.		220											
	(2)	INFO															
		,	(i) S														
30							: 320			acids	S						
							amino										
		1.3					GY:										
			Li) M														
35	Mot	mr (3	ci) S	EQUE	INCE	DESC	RIPI	'ION:	SEC	) ID	NO:2	24:					
	Met	Thr	Asn	тте	Arg	Val	Ala	Ile	Val	Gly	Tyr	Gly	Asn	Leu	Gly	Arg	
	1	T 7 - 1	<b>~</b> 1	_	- 5 -					10					1	5	
	ser	Val	GIU	LYS	Leu	He	Ala	Lys	Gln	Pro	Asp	Met	Asp	Leu	Val	Gly	
	~ 7		_	_ 20	_	_			25					30	)		
40	тте	Phe	Ser .	Arg	Arg	Ala	Thr	Leu	Asp	Thr	Lys	Thr	Pro	Val	Phe	Asp	
			35					40					4	5			
	Val	Ala	Asp	Val	Asp	Lys	His	Ala	Asp	Asp	Val	Asp	Val	Leu	Phe	Leu	
		50					55					60	)				
45	Cys	Met	Gly	Ser	Ala	Thr	Asp	Ile	Pro	Glu	Gln	Ala	Pro	Lys	Phe	Ala	
,,	65					70					75	5				80	
	Gln	Phe	Ala	Cys	Thr	Val	Asp	Thr	Tyr	Asp	Asn	His	Arg	Asp	Ile	Pro	
					85					90	)				95	5	
	Arg	His	Arg (	Gln	Val	Met	Asn	Glu	Ala	Ala	Thr	Ala	Ala	Glv	Asn	Val	
50				100					105					110			
	Ala	Leu	Val :	Ser	Thr	Gly	Trp	Asp	Pro	Gly	Met	Phe	Ser	Ile	Asn	Am	
						_	-	•		-						•9	

			115					120	)				12	5		
	Val	Tyr	Ala	Ala	Ala	Val	Leu	Ala	Glu	His	Gln	Gln	His	Thr	Phe	Trp
5		130					135					140	)			
	Gly	Pro	Gly	Leu	Ser	Gln	Gly	His	Ser	Asp	Ala	Leu	Arg	Arg	Ile	Pro
	145					150					155	5				160
	Gly	Val	Gln	Lys	Ala	Val	Gln	Tyr	Thr	Leu	Pro	Ser	Glu	Asp	Ala	Leu
10					165					170	)				17	5
	Glu	Lys	Ala		Arg	Gly	Glu	Ala	Gly	Asp	Leu	Thr	Gly	Lys	Gln	Thr
				180					185	i				190	)	
	His	Lys	Arg	Gln	Cys	Phe	Val	Val	Ala	Asp	Ala	Ala	Asp	His	Glu	Arg
15			195					200	)				20	5		
	Ile		Asn	Asp	Ile	Arg	Thr	Met	Pro	Asp	Tyr	Phe	Val	Gly	Tyr	Glu
		210					215					220	)			
	Val	Glu	Val	Asn	Phe	Ile	Asp	Glu	Ala	Thr	Phe	Asp	Ser	Glu	His	Thr
20	225					230					235	5				240
20	Gly	Met	Pro	His	Gly	Gly	His	Val	Ile	Thr	Thr	$\operatorname{Gly}$	Asp	Thr	Gly	Gly
					245					250	)				25	5
	Phe	Asn	His	Thr	Val	Glu	Tyr	Ile	Leu	Lys	Leu	Asp	Arg	Asn	$\mathbf{Pro}$	Asp
				260					265	j				270	)	
25	Phe	Thr	Ala	Ser	Ser	Gln	Ile	Ala	Phe	Gly	Arg	Ala	Ala	His	Arg	Met
			275					280	)				28	5		
	Lys	Gln	Gln	Gly	Gln	Ser	Gly	Ala	Phe	Thr	Val	Leu	Glu	Val	Ala	Pro
		290					295					300	)			
30	Tyr	Leu	Leu	Ser	Pro	Glu	Asn	Leu	Asp	Asp	Leu	Ile	Ala	Arg	Asp	Val
	305					310					315	5				320

### Claims

35

- 1. A recombinant DNA autonomously replicable in cells of coryneform bacteria, comprising a DNA sequence coding for an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and a DNA sequence coding for a dihydrodipicolinate reductase.
- 2. The recombinant DNA according to claim 1, further comprising a DNA sequence coding for a dihydrodipicolinate synthase.
  - 3. The recombinant DNA according to claim 2, further comprising a DNA sequence coding for a diaminopimelate decarboxylase.
- 50 4. The recombinant DNA according to claim 3, further comprising a DNA sequence coding for a diaminopimelate dehydrogenase.
  - 5. The recombinant DNA according to any one of claims 1 to 4, wherein said aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized is an aspartokinase originating from coryneform bacteria, and wherein said aspartokinase is provided as a mutant aspartokinase in which a 279th alanine residue as counted from its N-terminal is changed into an amino acid residue other than alanine and other than acidic amino acid in its α-subunit, and a 30th alanine residue is changed into an amino acid residue other than alanine and other than acidic amino acid in its β-subunit.

- 6. The recombinant DNA according to any one of claims 1 to 4, wherein said DNA sequence coding for the dihydrod-ipicolinate reductase codes for an amino acid sequence depicted in SEQ ID NO: 15 in Sequence Listing, or an amino acid sequence substantially the same as the amino acid sequence depicted in SEQ ID NO: 15.
- 7. The recombinant DNA according to claim 2, wherein said DNA sequence coding for the dihydrodipicolinate synthase codes for an amino acid sequence depicted in SEQ ID NO: 11 in Sequence Listing, or an amino acid sequence substantially the same as the amino acid sequence depicted in SEQ ID NO: 11.
- 8. The recombinant DNA according to claim 3, wherein said DNA sequence coding for the diaminopimelate decarboxylase codes for an amino acid sequence depicted in SEQ ID NO: 19 in Sequence Listing, or an amino acid
  sequence substantially the same as the amino acid sequence depicted in SEQ ID NO: 19.
  - 9. The recombinant DNA according to claim 4, wherein said DNA sequence coding for the diaminopimelate dehydrogenase codes for an amino acid sequence depicted in SEQ ID NO: 24 in Sequence Listing, or an amino acid sequence substantially the same as the amino acid sequence depicted in SEQ ID NO: 24.

15

25

40

45

50

- 10. A coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and comprising an enhanced DNA sequence coding for a dihydrodipicolinate reductase.
- 20 11. The coryneform bacterium according to claim 10, transformed by introduction of the recombinant DNA as defined in claim 1.
  - 12. The coryneform bacterium according to claim 10, further comprising an enhanced DNA sequence coding for a dihydrodipicolinate synthase.
  - 13. The coryneform bacterium according to claim 12, transformed by introduction of the recombinant DNA as defined in claim 2.
- 14. The coryneform bacterium according to claim 12, further comprising an enhanced DNA sequence coding for a diaminopimelate decarboxylase.
  - 15. The coryneform bacterium according to claim 14, transformed by introduction of the recombinant DNA as defined in claim 3.
- 35 16. The coryneform bacterium according to claim 14, further comprising an enhanced DNA sequence coding for a diaminopimelate dehydrogenase.
  - The coryneform bacterium according to claim 16, transformed by introduction of the recombinant DNA as defined in claim 4.
  - 18. A method for producing L-lysine comprising the steps of cultivating said coryneform bacterium as defined in any one of claims 10 to 17 in an appropriate medium, producing and accumulating L-lysine in a culture of the bacterium, and collecting L-lysine from the culture.

## F/G. 1



## F/G. 2



F/G. 3



F / G. 4



F/G, 5



F/G, 6



F/G. 7



F/G. 8



F | G. 9



F/G. 10



# F/G. 11



F/G. 12



## F/G, 13



# F I G. 14



#### INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP96/01511

A. CLASSIFICATION OF SUBJECT MATTER  Int. C1 ⁶ C12N15/52, C12N1/21, C12P13/08 // (C12N15/52, C12R1:13)  (C12N1/21, C12R1:13), (C12P13/08, C12R1:13)  According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)  Int. C1 ⁶ C12N15/52, C12N1/21, C12P13/08  Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  CAS ONLINE, BIOSIS PREVIEWS, WPI/L
Minimum documentation searched (classification system followed by classification symbols)  Int. C1 ⁶ C12N15/52, C12N1/21, C12P13/08  Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Int. C1 ⁶ C12N15/52, C12N1/21, C12P13/08  Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Int. C1 ⁶ C12N15/52, C12N1/21, C12P13/08  Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y/A Applied and Environmental Microbiology, vol. 57, 1-18/5 No. 6 (1991), Hermann Sahm, et al., see p. 1746-1752
<pre>Y JP, 7-75578, A (Mitsubishi Petrochemical Co., Ltd.), March 20, 1995 (20. 03. 95) (Family: none)</pre> 1 - 18
Y Nucleic Acids Res., Vol. 15, No. 9, (1987), Kazumi Araki, et al., see p. 3917
Y Molecular Microbiology, Vol. 4, No. 11, (1990), 3, 8, 14-15 A. J. Sinskey, et al., see p. 1819-1830
Y Molecular and General Genetics, Vol. 212, No. 1, 3, 8, 14-15 (1988), A. J. Sinskey, et al., see p. 112-119 18
Further documents are listed in the continuation of Box C. See patent family annex.
<ul> <li>Special categories of cited documents:</li> <li>"T" later document published after the international filing date or priori date and not in conflict with the application but cited to understant to be of particular relevance</li> </ul>
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other
special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "O" document referring to an oral disclosure, use, exhibition or other means  "O" document of particular relevance; the claimed invention cannot to considered to involve an inventive step when the document combined with one or more other such documents, such combination being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search August 30, 1996 (30. 08. 96)  Date of mailing of the international search report September 10, 1996 (10. 09. 96)
Name and mailing address of the ISA/ Authorized officer
Japanese Patent Office
Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

THIS PAGE BLANK (USPTO)