Census & Visualization

Prof. Abby Stylianou

Logistics

Quiz on "Using Metadata to Find Paul Revere" Thursday
 Code snippets are in R but should be readable

- Assignment 2 out on Thursday, due the following Thursday
 - o(could be Tuesday Tuesday, depending on how much we get through)

Tables

- A Table is a sequence of labeled columns
- Each row represents one individual
- Data within a column represents one attribute of the individuals

Creating and extending tables:

```
o Table().with-column and Table.read_table(csv_file)
```

Creating and extending tables:

```
o Table().with-column and Table.read_table(csv_file)
```

• Finding the size:

```
onum_rows and num_columns
```

Creating and extending tables:

```
o Table().with-column and Table.read_table(csv_file)
```

• Finding the size:

```
onum rows and num columns
```

• Referring to columns: labels, relabeling, and indices olabels and relabeled; column indices start at 0

Creating and extending tables:

```
o Table().with-column and Table.read_table(csv_file)
```

• Finding the size:

```
onum rows and num columns
```

- Referring to columns: labels, relabeling, and indices olabels and relabeled; column indices start at 0
- Accessing data in a column
 - ocolumn takes a label or index and returns an array

- Creating and extending tables:
 - o Table().with-column and Table.read table(csv file)
- Finding the size:
 - onum rows and num columns
- Referring to columns: labels, relabeling, and indices olabels and relabeled; column indices start at 0
- Accessing data in a column
 ocolumn takes a label or index and returns an array
- Using array methods to work with data in columns oitem, sum, min, max, etc.

Creating and extending tables:

```
o Table().with-column and Table.read table(csv file)
```

• Finding the size:

```
onum rows and num columns
```

- Referring to columns: labels, relabeling, and indices olabels and relabeled; column indices start at 0
- Accessing data in a column
 ocolumn takes a label or index and returns an array
- Using array methods to work with data in columns oitem, sum, min, max, etc.
- Creating new tables containing some of the original columns:
 oselect, drop

• t.sort (column) sorts the rows in increasing order

- t.sort (column) sorts the rows in increasing order
- t.take(row_numbers) keeps the numbered rows o Each row has an index, starting at 0

- t.sort (column) sorts the rows in increasing order
- t.take(row_numbers) keeps the numbered rows o Each row has an index, starting at 0
- t.where (column, are.condition) keeps all rows for which a column's value satisfies a condition

```
oare.equal_to(5), are.above(20), are.below(10),
are.between(30, 38),etc
```

o http://data8.org/datascience/predicates.html

- t.sort (column) sorts the rows in increasing order
- t.take(row_numbers) keeps the numbered rows o Each row has an index, starting at 0
- t.where (column, are.condition) keeps all rows for which a column's value satisfies a condition

```
oare.equal_to(5), are.above(20), are.below(10),
are.between(30, 38),etc
```

- o http://data8.org/datascience/predicates.html
- t.where (column, value) keeps all rows for which a column's value equals some particular value

- t.sort (column) sorts the rows in increasing order
- t.take(row_numbers) keeps the numbered rows o Each row has an index, starting at 0
- t.where (column, are.condition) keeps all rows for which a column's value satisfies a condition

```
oare.equal_to(5), are.above(20), are.below(10),
are.between(30, 38),etc
```

- o http://data8.org/datascience/predicates.html
- t.where (column, value) keeps all rows for which a column's value equals some particular value
- t.with_row(list) makes a new table that has another row with values in list

Tables

- We've worked with small datasets (and some bigger ones last class!)
- No matter how well a large table is organized, it can be difficult to interpret

The Decennial Census

- Every 10 years, the Census Bureau counts # of people in the US
- In between censuses, the Bureau estimates how many people there are each year
- Article 1, Section 2 of the United States Constitution:
 - o"Representatives and direct Taxes shall be apportioned among the several States ... according to their respective numbers ..."

The Decennial Census

Demo!

cs1070.com → Demos → new notebook

Census Table Description

- Values have column-dependent interpretations
 - The SEX column: 1 = male, 2 = Female
- In this table, some rows are sums of other rows
 - o The SEX column: 0 is Total (male + female)
 - o The AGE column: 999 is Total (all ages)
- Numeric codes are often used for storage efficiency
- Values in a column may have the same type but not be directly comparable (AGE 999 vs AGE 12, AGE 100 everyone > 100)

Growth Rate

- Growth rate = g (for example 3%, or 0.03)
- Initial value x, final value y after t periods of time

```
Value after 1 period = x + xg = x * (1+g)

2 periods = x(1+g)(1+g) = x * (1+g) ** 2

t periods = y = x * (1+g) ** t
```

Computing the Growth Rate

$$(1+g) ** t = y/x$$

 $1 + g = (y/x) ** (1/t)$

$$g = (y/x) ** (1/t) - 1$$

Types of Data

• All values in a column should be both the same type and comparable to each other in some way

Types of Data

- All values in a column should be both the same type and comparable to each other in some way
 - Numerical each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful

Types of Data

- All values in a column should be both the same type and comparable to each other in some way
 - Numerical each value is from a numerical scale
 - Numerical measurements are ordered
 - o Differences are meaningful
 - Categorical each value is from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

"Numerical" Data

- Just because the values are numbers doesn't mean the variable is numerical
 - Census example had numerical SEX code (0, 1 and 2)
 - o It doesn't make sense to perform arithmetic on these "numbers", e.g., 1 0 or (0+1+2)/3 are meaningless

"Numerical" Data

- Just because the values are numbers doesn't mean the variable is numerical
 - Census example had numerical SEX code (0, 1 and 2)
 - o It doesn't make sense to perform arithmetic on these "numbers", e.g., 1 0 or (0+1+2)/3 are meaningless
- The variable SEX is still categorical even though they're numbers

Plotting Two Numerical Variables

Line graph: plot

How something changes as the X-axis changes (often chronologically)

Scatter plot: scatter

Comparing two numerical variables

Anthony Daniels (actor)