- Иррациональность числа $\sqrt{2}$ (т.е. положительного решения 1 уравнения $x^2 = 2$), его существование в рамках вещественных чисел, как следствие принципа полноты.
- Иррациональность числа $\sqrt{2}$ (т.е. положительного решения уравне-1.1 ния $x^2 = 2$).

Докажем, что рациональных решений уравнения $x^2 = 2$ не существует. (от противного)

 Доказательство. Предположим, что $\frac{p}{q}$ — такое решение, где $p\in\mathbb{Z},\ q\in\mathbb{N}$ и дробь несократима, т.е. нет общ делителей. Тогда $2=\frac{p^2}{q^2} \Leftrightarrow 2q^2=p^2 \Rightarrow p^2 \vdots 2 \Rightarrow p \vdots 2 \Rightarrow p=2p_1 \Rightarrow 2q^2=4p_1^2 \Leftrightarrow$ $\Leftrightarrow q^2=2p_1^2\Rightarrow q$ і 2 $\Rightarrow p$ и q - чётные, а $\frac{p}{q}$ - сократимая дробь \Rightarrow противоречие. Таким образом, доказали, что $\sqrt{2} \notin \mathbb{Q}$.

Существование $\sqrt{2}$ в рамках вещественных чисел. 1.2

Объясним чем с точки зрения структуры множества чисел обусловлено такое "отсутствие" $\sqrt{2}$. Пусть $A = \{a \in \mathbb{R} : a > 0, a^2 \le 2\}$ и $B = \{b \in \mathbb{R} : b > 0, b^2 \ge 2\}$. Заметим, что множество A лежит левее множества B, так как $0 < b^2$ $a^2 = (b-a) \cdot (b+a)$ для каждых $a \in A$ и $b \in B$, и a+b>0. Если бы существовало число c, разделяющее A и B, то обязательно $c^2=2$.

Действительно, во-первых, заметим, что $1 \le c \le 2$ т.к. $1 \in A, 2 \in B$. Теперь, если $c^2 < 2$, то число $c + \frac{2-c^2}{5} \in A$, т.к. $(c + \frac{2-c^2}{5})^2 = c^2 + 2c \cdot \frac{2-c^2}{5} + (\frac{2-c^2}{5})^2 \le c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c^2}{5} + \frac{2-c^2}{5} \le c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c^2}{5} \le c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c^2}{5} \le c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c^2}{5} + \frac{2-c^2}{5} \le c^2 + 4 \cdot \frac{2-c^2}{5} + \frac$ 2, но $c + \frac{2-c^2}{5} > c \Rightarrow c$ не разделяет A и B.

Если $c^2 > 2$, то число $c - \frac{c^2 - 2}{4} \in B$, т.к. $(c - \frac{c^2 - 2}{4})^2 \ge c^2 - 2c \cdot \frac{c^2 - 2}{4} \ge c^2 - 4 \cdot \frac{c^2 - 2}{4} = 2$, но $c - \frac{c^2 - 2}{4} < c \Rightarrow c$ не разделяет A и B.

Таким образом, $c^2 = 2$. (Так как $c^2 = 2$, где c разделяет A и B, то из принципа полноты для десятичных дробей следует, что число c существует.)