- 1. Data redundancy and inconsistency. Difficulty in access data. Data isolation, Integrity problems. Atomicity problems, Concurrent-access anomalies, Security problems
- 2. a. data model
 - b. tables, columns, name. row
 - C. instance, database schema
 - d. ODL, DML
 - e. query
 - f. transaction manager
 - 9. file manager
 - h. butter manager
 - i null value

3 A file-processing system

- The files may have different formats.

 This can lead to duplication.
- You can access same data simultaneously. This may lead to inconsistent duta.
- It is difficult to retrieve the necessary duta.
- It is difficult to satisfy the consistency constraints.

DBMS

- Data is stored in the same structure.

 This reduces the possibility of duplication.
- It synchronizes duta so that multiple users feel like they are accessing the database alone.
- It is easy to retrieve and access data through queries.
- DBIMS automatically checks the constraints and ensures that data satisfies integrity.
- 4. a. T person_name (6 city = "Miami" (employee))
 - b. Tperson_name (& salary > 100000 (works))
 - C. Tperson_name (6 city = "Miami" Asalary > 100000 (Employee Momployee person_name = works.person_name works))
 - d. TID. person-name (6 company-name #"BigBank" (employee Nomployee.porson-name = works.person-name works))
 - e. T ID. person_name (6 salary > MAX (salary) (employee Momployee person_name = works.person_name works))
 - f. TID. person_name. City (Geompany_name = "BigBank" (employee Momployee.porson_name = works.person_name works))
 - 9. TI ID. person_name, street, city (6 company_name = "BigBank" 1 salary > 10000 (employee Momployee.porson_name = works.person_name works))
 - h. TI ID. person_name (employ \ employ.city = company.city (company)

- 5. a. T ID , name (6 dept_name = "Physics" (instructor)).
 - b. TI ID. name (6 building = "Wortson" (department & department dept-name = instructor. dept-name Instructor))
 - C. TID, name (of (takes M takes.course_id = course.course_id (ourse)) —

 TIO, name (of dept-name = "Comp. Sc;" (takes M takes.course_id = course.course_id (ourse))
 - d. TID. name (5 (takes M takes.course_id = course.course_id (ourse)) TIO. name (5 year = 2018 (takes M takes.course_id = course.course_id (ourse))
 - e. TIO, name (o year \$ 2018 (takes M takes.course_id = course.course_id (ourse))
- 6. a. name

 Select name from instructor where dept-name = "Accounting";

 Moreira
 Hau
 Ullman
 - b. count(*) select count(*) from student where dept_name = "Statistics";
 - C. count(distinct na... | Select count (distinct name) from student where dept-name="Astronomy";
 - O. | ID ^ name | dept_name | tot_cred | | Select # from student where name | Tike "% db%"; | Select # from student where name | Tike "% db%";

 - 8. The result of (i) is a table with 4 columns and 50 wws. These are every records from instructor table.

The result of (ii) is a table with I columns and 50 rows with value 'teacher'.

This query makes a table that is all value is teacher, and the number of its row is same as the row of instructor table.

The result of (iii) is a table with 1 column and 1 row, and its value is 'teacher'.

The result of (iv) is a table with 5 columns and 50 rows.

select x from <table_name> : shows all records of <table_name>
select <listernal> from <table_name> : shows a IXN table, and each row has <listernal> value
select <listernal> : shows a IXI table, and its value is <listernal>

select *, (literal) from (table_name). shows a table with (literal) column added to all the records