

Scan for short Twomes movie

Questions about all homes in a Questions about all homes in a neighbour-

Questions about specific homes and households

hood

Questions that can be answered with help of

data

Twomes Digital Twins for the Home Heating Transition

Who?

Henri ter Hofte, Marco Winkelman, Hossein Rahmani, in cooperation with 8 other researchers, 36 students & 10 teachers Research Group Energy Transition, Windesheim University of Applied Sciences

What?

Which home heating model parameters of specific homes can we learn automatically from energy monitoring data in order provide better advice to a specific household about their home heating transition?

Why?

Data collection

Scan for open source software and open hardware repositories on GitHub

	Data collected					
	category	measured data	symbol	unit	API	sensor
	comfort	setpoint	T _{set}	°C		✓
l	weather	outdoor temperature	T _{out}	°C	✓ KNMI	
		wind	W	m/s		
		global horizontal irradiation	I	W/m ²		
	indoor	indoor temperature	T_in	°C		✓
	installation	supply temperature	T _s	°C		✓
		return temperature	T_{r}	°C		✓
	energy use for heating	electricity	Е	kWh	✓ Enelogic	✓
		gas	G	m^3		
	occupancy/ventilation	CO ₂ concentration	CO ₂	ppm		✓
		Bluetooth presence	BT_{pres}	#pp		✓

Subjects & data

Scan for dataset

> 35 million data points; from 23 homes essential data properties longer than 3 weeks (> 70 days of data per home)

Data analysis

Scan for **GEKKO Python** heat balance model

Inverse grey-box modelling to learn model parameters						
measured input data (time series data)		calculated data <u></u> <u>···</u> (time series data)				
setpoint changes		indoor temperature				
weather	+H1 +H1 +H1	energy use				
	building allation f.needs	indoor tomporature				
	bu instal comf.	indoor temperature energy use				
	model parameters (time-independent)	measured comparison data $(time series data)$				

C eff = m.Intermediate(H * tau) m.options.NODES = 2

Results

Scan for more results

Conclusions

Model parameters to learn specific heat loss building W/K building thermal inertia s (h) thermal mass (C = $H \times \tau$) J/K (Wh/K) building m^2 apparent window area building (imaginary horizontal window in roof) maximum heating system power installation W (boiler + distribution) installation central heating system efficiency (superior value) behaviour CD comfort demand K·s (daily & hourly thermostat setpoints)

First indications that building parameters can be learned:

specific heat loss H [W/K], thermal inertia τ [s], thermal mass C [J/K]

Other parameters: work in progress

50 TINTEN GROEN

ASSENDORP

BDR THERMEA GROUP