Exercice 275:

Soient $C = [-1, 1]^2$ et $f \in \mathcal{L}(\mathbb{R}^2)$. Étudier la suite $(f^n)_{n \in \mathbb{N}}$ sous les hypothèses suivantes :

- i) $f(C) \subset [-\frac{1}{2}, \frac{1}{2}]^2$
- ii) $f(C) \subset]-1,1[^2]$
- iii) $f(C) \subsetneq C$
- i) On travaille avec la norme infinie : $\|\cdot\|: (x,y) \in \mathbb{R}^2 \mapsto \max(x,y)$. Soit $(x,y) \in \mathbb{R}^2$.

On a
$$||f(x,y)|| \le \frac{||(x,y)||}{2} \operatorname{car} \frac{1}{||(x,y)||} (x,y) \in [-1,1]^2$$
.

Par récurrence, on suppose que pour un certain $n \in \mathbb{N}^*$ on ait $||f^n(x,y)|| \leq \frac{||(x,y)||}{2^n}$.

Alors
$$\frac{2^n}{\|(x,y)\|} f(x,y) \in [-1,1]^2$$
 donc $f(\frac{2^n}{\|(x,y)\|} f^n(x,y)) \leqslant \frac{1}{2}$ donc $\|f^n(x,y)\| \leqslant \frac{2^n}{2^{n+1}}$

Ainsi,
$$\forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}^*, \|f^n(x,y)\| \leqslant \frac{\|(x,y)\|}{2^n}.$$

Par encadrement, pour tout $(x,y) \in \mathbb{R}^2$, $\lim_{n \to +\infty} ||f^n(x,y)|| = 0$ donc $\lim_{n \to +\infty} f^n(x,y) = 0$.

ii) La boule unité $C = [-1,1]^2$ est compacte et $f \in \mathcal{L}(\mathbb{R}^2)$ est continue donc elle atteint un maximum en norme sur C, atteint en (x_0, y_0) .

Comme $f(C) \subset]-1,1[^2, M = ||(x_0,y_0)|| < 1.$

Ainsi, $f(C) \subset [-M, M]^2$ et on se retrouve dans un cas similaire à la question précédente :

$$\forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}^*, ||f^n(x,y)|| \leqslant \frac{||(x,y)||}{M^n}.$$

Par encadrement, pour tout $(x,y) \in \mathbb{R}^2$, $\lim_{n \to +\infty} ||f^n(x,y)|| = 0$ donc $\lim_{n \to +\infty} f^n(x,y) = 0$.

iii) On cherche à montrer que la suite $(f^n)_{n\in\mathbb{N}}$ converge si et seulement si -1 n'est pas valeur propre de f. On note A la matrice de f dans la base canonique \mathcal{B} .

Montrons d'abord que les valeurs propres de f dans \mathbb{C} sont de module inférieur à 1.

Soit donc λ une valeur propre de f. Alors $\exists X \in \mathbb{C}^2 \setminus \{0\}, AX = \lambda X$.

Comme $f(C) \subset C$ et que f est linéaire, $(f^n(X))$ est bornée par ||X|| donc (A^nX) également.

Donc (λ^n) est bornée, ce qui implique nécessairement que $|\lambda| \leq 1$.

On suppose que (f^n) converge. On appelle g sa limite.

Si f admet une valeur propre $\lambda \in \mathbb{R}$. Soit $x \in \mathbb{C} \setminus \{0\}$ un vecteur propre associé.

Alors $f^n(x) = \lambda^n x$ donc (λ^n) converge.

Ainsi,
$$\lambda \neq -1$$
.

On suppose maintenant que -1 n'est pas valeur propre de f.

 χ_f est de degré 2 à coefficients réels donc il est soit scindé sur $\mathbb R$ soit scindé à racines simples sur $\mathbb C/\mathbb R$, où les deux racines sont conjuguées l'une de l'autre.

 $\underline{1}^{\mathrm{er}}$ cas : χ_f est scindé à racines simples dans $\mathbb{C}\backslash\mathbb{R}$ de module 1.

On note $\lambda, \overline{\lambda}$ les racines de χ_f .

La suite (λ_n) est contenue dans le compact C donc admet une sous-suite $\lambda^{\varphi(n)}$ convergente.

Alors, $(\lambda^{\varphi(n+1)-\varphi(n)})$ converge vers 1. Comme $A^{\varphi(n+1)-\varphi(n)} \sim \operatorname{diag}(\lambda^{\varphi(n+1)-\varphi(n)}, \overline{\lambda}^{\varphi(n+1)-\varphi(n)}), (A^{\varphi(n+1)-\varphi(n)})$ converge vers I_2 .

Donc $(f^{\varphi(n+1)-\varphi(n)})$ converge vers Id.

Soit $x \in C \setminus f(C)$. La suite $(f^{\varphi(n+1)-\varphi(n)}(x))$ converge vers x et C est stable par f donc x est adhérent à f(C). Pourtant, f est continue et C est fermé donc f(C) l'est également. C'est absurde donc ce cas est impossible.

 $\underline{2^{\mathrm{e}} \text{ cas}}$: χ_f est scindé à racines simples sur \mathbb{C} , de racines de module strictement inférieur à 1.

Alors A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$: $A = PDP^{-1}$ où $D = \operatorname{diag}(\lambda, \mu)$ et $P \in \operatorname{GL}_2(\mathbb{C})$.

Donc $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$ et comme $|\lambda|, |\mu| < 1$, les suites (λ^n) et (μ^n) convergent et la suite (D^n) également.

Le produit matriciel étant continu, (A^n) converge et (f^n) aussi.

C'est absurde, donc ce cas n'est pas possible.

 $\underline{3^{\mathrm{e}} \text{ cas}} : \chi_f \text{ admet } 1 \text{ et } \lambda \in]-1,1[$ comme racines.

Alors (λ^n) converge vers 0 et f est diagonalisable donc $A \sim \text{diag}(1, \lambda)$.

Donc (A^n) converge vers $B \sim \operatorname{diag}(1,0)$ et (f^n) converge vers g de matrice canoniquement associée B.

 $\underline{4^{\rm e}~{\rm cas}}:\chi_f$ ad
met une racine double, nécessairement réelle, qu'on not
e $\lambda.$

Alors, $\lambda \in]-1,1]$. On trigonalise f pour obtenir $f=\lambda \mathrm{Id}+v$ où $v\in\mathcal{L}(\mathbb{R}^2)$ nilpotente.

 λ ne peut être égal à 1, sinon f = Id et f(C) = C.

Comme Id et v commutent, on a $f^n = \lambda^n \text{Id} + n\lambda^{n-1}v$ et f converge vers 0.

Dans tous les cas, (f^n) converge.