US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12392016

B2

August 19, 2025

Flores Renteria; Arturo

Alloy, powder, ductile gamma' adhesion promoter layer and component

Abstract

An adhesion promoter layer is produced by a novel composition with a lower cobalt content in an MCrAlY alloy. The adhesion promoter layer leads to a very slow growth of the TGO. The nickel-based alloy contains at least (in wt. %): cobalt (Co) 0.2%-5.0%, chromium (Cr) 14.0%-20.0%; aluminum (Al) 6.0%-8.0%; tantalum (Ta) 1.0%-3.0%; yttrium (Y) 0.3%-0.6%; nickel (Ni) 70.0%-75.0%.

Inventors: Flores Renteria; Arturo (Berlin, DE)

Applicant: Siemens Energy Global GmbH & Co. KG (Munich, DE)

Family ID: 1000008765622

Assignee: Siemens Energy Global GmbH & Co. KG (Munich, DE)

Appl. No.: 18/750692

Filed: June 21, 2024

Prior Publication Data

Document IdentifierUS 20240344182 A1

Oct. 17, 2024

Foreign Application Priority Data

DE 10 2020 213 918.0 Nov. 05, 2020

Related U.S. Application Data

division parent-doc US 18251916 PENDING WO PCT/EP2021/077444 20211005 child-doc US 18750692

Publication Classification

Int. Cl.: C22C19/05 (20060101); B22F1/10 (20220101); C23C4/073 (20160101); C23C28/00 (20060101)

U.S. Cl.:

CPC C22C19/058 (20130101); B22F1/10 (20220101); C23C4/073 (20160101); C23C28/3215

(20130101); **C23C28/3455** (20130101); B22F2301/15 (20130101); B22F2999/00

(20130101)

Field of Classification Search

CPC: C22C (19/056); C22C (19/058); C22C (19/055); C22F (1/10); C23C (4/073); C23C

(28/3215); B22F (1/10)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
4885216	12/1988	Naik	148/404	C30B 29/52
4909984	12/1989	Singheiser et al.	N/A	N/A
6060174	12/1999	Sabol et al.	N/A	N/A
6482537	12/2001	Strangman et al.	N/A	N/A
7422769	12/2007	Kassner et al.	N/A	N/A
2003/0211356	12/2002	Beers	420/443	C23C 4/073
2012/0048912	12/2011	Hu et al.	N/A	N/A
2014/0220384	12/2013	Stamm	N/A	N/A
2014/0234652	12/2013	Li	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
103797141	12/2013	CN	N/A
108950415	12/2017	CN	N/A
3612588	12/1986	DE	N/A
3842300	12/1989	DE	C23C 30/00
8842301	12/1989	DE	N/A
60010271	12/2004	DE	N/A
60103526	12/2004	DE	N/A
102004034410	12/2007	DE	N/A
0241807	12/1986	EP	N/A

OTHER PUBLICATIONS

Akatsu, T. A. K. A. S. H. I., et al. "Thermal barrier coating made of porous zirconium oxide on a nickel-based single crystal superalloy formed by plasma electrolytic oxidation." Surface and Coatings Technology 223 (2013): 47-51. cited by examiner

English Abstract and English Machine Translation of Boveri (DE 3842300 A1) (Jun. 21, 1990). cited by examiner

Primary Examiner: Roe; Jessee R

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATION (1) This application is a divisional of patent application Ser. No. 18/251,916, filed May 5, 2023, now U.S. Pat. No. 12,129,530, which was a § 371 national stage filing of international application PCT/EP2021/077444, filed Oct. 5, 2021, which designated the United States, this application also claims the priority, under 35 U.S.C § 119, of German patent application DE 10 2020 918.0, filed Nov. 5, 2020; the prior applications are herewith incorporated by reference in their entirety.

FIELD AND BACKGROUND OF THE INVENTION

- (1) The invention relates to an alloy, to a powder, to a ductile adhesion promoter layer, and to a component.
- (2) The thermomechanical behavior of metallic adhesion promoter layers on substrates has a direct influence on the performance of ceramic thermal barrier coating systems which in the case of turbine components comprise a nickel- or cobalt-based substrate, the adhesion promoter layer, and at least one ceramic layer (TBC) over it.
- (3) These metallic adhesion promoter layers have a number of strict criteria to meet, such as protection from oxidation, long-term thermal stability, strength, and ductility.
- (4) Particularly for hydrogen turbines, the thermal barrier coating system is subject to a different requirement.

Description

SUMMARY OF THE INVENTION

- (1) It is therefore an object of the invention to solve the problem stated above.
- (2) The object is achieved by an alloy as claimed in the independent alloy claim, a powder as claimed in the independent powder claim, a layer as claimed in the independent layer claim, and a component as claimed in the independent component claim.
- (3) The dependent claims list further advantageous measures, which may be combined with one another as desired in order to achieve further advantages.
- (4) The invention comprises a nickel-based alloy, more particularly consisting of (in wt %):
- (5) TABLE-US-00001 cobalt (Co) 0.2%-5.0%, more particularly 1.0%-4%;.sup. chromium (Cr) 14.0%-20.0%, more particularly 16.0%-18.0%; aluminum (Al) 6.0%-8.0%, more particularly 7.0%; tantalum (Ta) 1.0%-3.0%, more particularly 2.0%; yttrium (Y) 0.3%-0.6%; nickel (Ni) 64.0%-79.0%, more particularly 70.0%-75.0%.
- (6) Notable and necessary is the low cobalt (Co) content.
- (7) Impurities are always present in the alloy.
- (8) The γ '-containing adhesion promoter layer slows down the growth of the aluminum oxide layer (TGO) and is able as a result to improve the thermal-cyclical lifetime of an overlying ceramic layer (TBC) or coating system (substrate+NiCoCrAl+optionally TBC).
- (9) A powder composed of the alloy may optionally comprise binders of other particles such as, in particular, ceramic or refractory particles.
- (10) A component, more particularly for a hydrogen-driven gas turbine, comprises a substrate.
- (11) The substrate preferably comprises a nickel- or cobalt-based alloy.
- (12) Applied atop this is the alloy of the invention, based on NiCoCrAlYTa.
- (13) This may be done by means of methods from the prior art, more particularly by means of

HVOF and APS.

- (14) Likewise conceivable are two-layer NiCoCrAlY protective coats, in which the alloy of the invention preferably forms the outer part.
- (15) A TGO forms on this system in operation or as early as during ceramic coating.
- (16) A ceramic coating (TBC) on the NiCoCrAlYTa may have a one-layer or two-layer configuration.
- (17) Stabilized zirconium oxide preferably constitutes the basis for the TBC.

Claims

- 1. A component, comprising: a substrate; a metallic layer formed from a nickel-based alloy or a powder, said nickel-based alloy or said powder each containing (in wt %): TABLE-US-00002 cobalt (Co) 0.2%-5.0%; chromium (Cr) 14.0%-20.0%; aluminum (Al) 6.0%-8.0%; tantalum (Ta) 1.0%-3.0%; yttrium (Y) .sup. 0.3%-0.6%; and nickel (Ni) 64.0%-79.0%. a ceramic thermal barrier layer disposed on said metallic layer.
- 2. The component according to claim 1, wherein said ceramic thermal barrier layer is based on zirconium oxide.
- 3. The component according to claim 1, wherein said chromium (Cr) is 14% to 16% (in wt %).
- 4. The component according to claim 1, wherein said chromium (Cr) is 16% to 18% (in wt %).
- 5. The component according to claim 1, wherein said chromium (Cr) is 18% to 20 (in wt %).
- 6. The component according to claim 1, wherein the component is configured for hydrogen-driven gas turbines.
- 7. The component according to claim 1, wherein said substrate is composed of a nickel-based alloy or a cobalt-based alloy.
- 8. A component, comprising: a substrate; and a metallic layer formed from a nickel-based alloy or a powder, said nickel-based alloy or said powder each consisting of (in wt %): TABLE-US-00003 cobalt (Co) 0.2%-5.0%; chromium (Cr) 14.0%-20.0%; aluminum (Al) 6.0%-8.0%; tantalum (Ta) 2.0%; yttrium (Y) 0.3%-0.6%; and nickel (Ni) 64.0%-79.0%.
- 9. The component according to claim 8, further comprising a ceramic thermal barrier layer.
- 10. The component according to claim 9, wherein said ceramic thermal barrier layer is based on zirconium oxide.
- 11. The component according to claim 8, wherein said chromium (Cr) is 14% to 16% (in wt %).
- 12. The component according to claim 8, wherein said chromium (Cr) is 16% to 18% (in wt %).
- 13. The component according to claim 8, wherein said chromium (Cr) is 18% to 20 (in wt %).
- 14. The component according to claim 8, wherein the component is configured for hydrogen-driven gas turbines.
- 15. The component according to claim 9, wherein said ceramic thermal barrier layer is disposed on said metallic layer.
- 16. The component according to claim 8, wherein said substrate is composed of a nickel-based alloy or a cobalt-based alloy.