Tarea de Matemáticas discretas

- 1) Considere que un candidato a la presidencia de México dice "Si salgo electo, entonces el país crecerá el 7%"
 - a) Identifica las proposiciones simples

p: Salgo electo

q: el país crecerá el 7%

b) Representa esta proposición condicional en una expression matemática

$$p \rightarrow q$$

c) Anota la tabla de verdad

Ver respuesta en d)

d) Interpreta todos los casos

p	q	$p \rightarrow q$	
V	V	V	Si salgo electo, entonces el país crecerá el 7% (El candidato dijo la verdad)
V	F	F	Si salgo electo, entonces el país no crecerá el 7% (El candidato mintió)
F	V	V	Si no salgo electo, entonces el país crecerá el 7% (El candidato no mintió ni dijo la verdad, porque el país puede crecer por otros motivos)
F	F	V	Si no salgo electo, entonces el país no crecerá el 7% (El candidato no mintió ni dijo la verdad)

- 2) Determine si las siguientes proposiciones condicionales son V o F
 - a) Si 1+1=3, entonces los perros vuelan

V

b) Si 1+1=2, entonces los perros vuelan

F

c) Si los chimpances vuelan, entonces 1+1=3

٧

d) Si 1+1=2, entonces 2+2=5

F

e) Si Saltillo es la capital del Coahuila, entonces Monterrey es la capital de Nuevo León

3) Encuentra la tabla de verdad de la siguientes proposiciones e indica si son una tautologia o contradicción.

$$((p \rightarrow q) \land p) \rightarrow q$$

p	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$((p \to q) \land p) \to q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

Por lo tanto es una Tautología.

 $(p \lor q) \land [(\neg p) \land (\neg q)]$

				\I-		··[/]
p	q	$p \lor q$	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$	$(p \lor q) \land [(\neg p) \land (\neg q)]$
V	٧	V	F	F	F	F
V	F	V	F	V	F	F
F	V	V	V	F	F	F
F	F	F	V	V	V	F

Por lo tanto es una Contradicción.

4) Indica si las siguientes proposiciones son lógicamente equivalentes. Crea tablas de verdad para ambas proposiciones

$$(\neg p) \lor (\neg q) \equiv ? \neg (p \lor q)$$

p	q	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$	(<i>p</i> ∨ <i>q</i>)	$\neg (p \lor q)$
٧	٧	F	F	F	V	F
٧	F	F	V	V	V	F
F	V	V	F	V	V	F
F	F	V	V	V	F	V

Por lo tanto, no son equivalentes

$$(p \lor q) \land p \equiv ?(p \lor q) \lor q$$

p	q	$p \lor q$	$(p \lor q) \land p$	(p ∨ q) ∨ q
V	٧	V	V	V
V	F	V	F	V
F	V	V	F	V
F	F	F	F	F

Por lo tanto, no son equivalentes

5) Cuál es el valor de verdad de $((p \land q) \lor p) \rightarrow \neg r$ cuando:

p es Falso, q es Verdadero y r es Verdadero

Falso