Kaggle House Price Competition

Data Science & Machine Learning in Canada

Prepared by

Background Information

There has been a significant advancement in the technological environment in every field from health sector to business and trade. It is the technology and Big Data solutions that are driving these sectors towards more growth. Machine learning tools combined with Big Data can give a perfect foresight about any industry. Housing prices are an important reflection of the economy, and housing price ranges are of great interest for both buyers and sellers. In this project, house prices will be predicted given explanatory variables that cover many aspects of residential houses. As continuous house prices, they will be predicted with various regression techniques.

Purpose

The purpose of this report is to showcase the nature of the dataset briefly and what steps were taken in order to handle and prepare the dataset for the model training phase. The primary goal is to choose the best model with high accuracy and low root mean square log error as it was the criteria for ranking the predictions made by the model on Kaggle. Various performance metrics such as accuracy score, mean absolute error, mean squared error, root mean square error, root mean square log error, confusion matrix is used to select the model wisely. They are explained through this report. Some visualisations and graphs are also provided in this report for better elaboration of the patterns deduced from the dataset.

Audience

This report aims to provide my understanding of the problem statement, dataset, and regression algorithms being used to the primary audience, i.e., Prof. Moez Ali. My utmost effort is to make this assignment report more informative and easier to understand when compared with the code. Therefore, fellow students and companions are the secondary audiences for this report. Even with basic knowledge of data science and python programming language, the code can be easily understood as each, and every step is elaborated. This report has provided several visualizations to make it easy to understand and informative to my primary and secondary audience.

Table of Contents

L	ist of F	igures	5					
1	. Da	taset Description	6					
2	. Da	ta Understanding & Pre-processing	9					
	2.1	Importing libraries & Data loading	9					
	2.2	Getting some basic information about the dataset:	. 10					
2.3		Information on the datatypes of attributes:						
	2.4	Handling the "NaN" values in the dataset:	. 12					
3	. Exp	oloratory Data Analysis	. 13					
	3.1	Relationship between SalePrice & LotArea	. 13					
	3.2	Relationship between SalePrice by No. of bedrooms\	. 13					
	3.3	Relationship between Sale Price and Kitchen quality	. 14					
	3.4	Relationship between Sale price and overall condition of the house	. 14					
	3.5 R	elationship between sale price and garage area w.r.t Alley path too	. 15					
3.5		Relationship between sale price and overall quality of the house						
	3.7 S	3.7 Sale price distribution16						
	3.8 R	elationship between Sale price and MSSubclass	. 16					
	3.9 R	elationship between Sale Price and Year built	. 17					
	3.11	Relationship between Sale price and Total Basement area	. 18					
	3.12	Relationship between Sale Price and total Rooms in house	. 18					
3.13 Relationship between Sale Price and Fireplaces in the house								
	3.14	Relationship between Sale price and Pool area in the house	. 20					
	3.15	Relationship between Sale price and year sold	. 20					
	3.16	Relationship between Sale Price and Basement quality	. 21					
	3.17	Relationships between Sale price and selling condition of the house	. 21					
	3 18	Co-relation plot	22					

3.19	Relationship between Sale price and Garage Year built	23
3.20	Relationship between Sale price and Wood deck surface area	23
3.21	Relationship between Sale price and greater living area	24
3.22	Relationship between Sale price and full bathrooms above grade	24
3.23	Relationship between Sale price and First floor square feet area	25
3.24	Relationship between Sale price and Year remodelled	25
3.26	Detecting Outliers in Street column	26
3.27	Detecting outliers in Lot configuration	27
3.28	Detecting outliers in House style column	27
4. Mo	odel Building	28
4.1	Catboost Regressor:	28
4.2	Evaluation metrics:	28
4.3	Hyper- parameter tuning using Grid Search CV:	31
5. Co	nclusion	32
6 Re	ferences	32

List of Figures

Figure 1: The dataset	10
Figure 2: Information on dataset	10
Figure 3: duplicate data	
Figure 4: Information on data types	11
Figure 5: Handling NaN values	12
Figure 6: SalePrice Vs. LotArea	
Figure 7: SalePrice Vs. No. of Bedrooms	13
Figure 8: SalePrice Vs. Kitchen Quality	
Figure 9: SalePrice Vs. Overall Condition	
Figure 10: SalePrice Vs. Garage Area	15
Figure 11: SalePrice Vs. Overall Quality	15
Figure 12: SalePrice Distribution	
Figure 13: SalePrice Vs. MSSubClass	
Figure 14: SalePrice Vs. Year built	
Figure 15: Sale price Vs. Masonry Veneer area	
Figure 16: Sale price Vs. Total basement area	
Figure 17: Sale price Vs. Total Rooms	
Figure 18: Sale price Vs. Fireplaces	
Figure 19: Sale price Vs. Pool Area	
Figure 20: SalePrice Vs. Year Sold	
Figure 21: Sale price Vs. Basement quality	
Figure 22: Sale Price Vs. Sale condition	
Figure 23: Co-relation plot	
Figure 24: Sale Price Vs. Garage Year build	
Figure 25: SalePrice Vs. Wood deck Area	
Figure 26: SalePrice Vs. Living Area	
Figure 27: Sale price Vs. Full bathroom	
Figure 28: Sale price Vs. First floor area	
Figure 29: Sale price Vs. Remodelled Year	
Figure 30: Sale price Vs. Kitchen quality	
Figure 31: Sale price Vs. Street type	
Figure 32: Sale price Vs. Configuration of Lot	
Figure 33: Sale price Vs. House style	
Figure 34: Mean Absolute Error	
Figure 35: Mean Squared Error	
Figure 36: Root Mean Squared Error	
Figure 37: Root Mean Squared Log Error	
Figure 38: Evaluation Metrics	
Figure 39: Grid Search CV	
Figure 40: Ideal Parameters	
Figure 41: Final Submission	32

1. Dataset Description

The dataset used in this assignment is called as **House Prices dataset and** is retrieved from Kaggle **House Prices- Advanced Regression Techniques** competition. This dataset has **81 features** and **1460 instances.** Along with the dataset, the test dataset was provided separately to test the predictions made by our model. Those predictions were submitted to Kaggle for ranking. A sample submission was also provided through this competition. The most important file after the training data was the "data description" file which gave a detailed overview of the features used in the dataset. The features and their description are listed below: -

- SalePrice the property's sale price in dollars. This is the target variable that you're trying to predict.
- MSSubClass: The building class
- MSZoning: The general zoning classification
- LotFrontage: Linear feet of street connected to property
- LotArea: Lot size in square feet
- Street: Type of road access
- Alley: Type of alley access
- LotShape: General shape of property
- LandContour: Flatness of the property
- Utilities: Type of utilities available
- LotConfig: Lot configuration
- LandSlope: Slope of property
- Neighborhood: Physical locations within Ames city limits
- Condition1: Proximity to main road or railroad
- Condition2: Proximity to main road or railroad (if a second is present)

BldgType: Type of dwelling

HouseStyle: Style of dwelling

OverallQual: Overall material and finish quality

OverallCond: Overall condition rating

YearBuilt: Original construction date

YearRemodAdd: Remodel date

RoofStyle: Type of roof

RoofMatl: Roof material

Exterior1st: Exterior covering on house

• Exterior2nd: Exterior covering on house (if more than one material)

MasVnrType: Masonry veneer type

MasVnrArea: Masonry veneer area in square feet

ExterQual: Exterior material quality

ExterCond: Present condition of the material on the exterior

Foundation: Type of foundation

BsmtQual: Height of the basement

BsmtCond: General condition of the basement

BsmtExposure: Walkout or garden level basement walls

BsmtFinType1: Quality of basement finished area

BsmtFinSF1: Type 1 finished square feet

BsmtFinType2: Quality of second finished area (if present)

BsmtFinSF2: Type 2 finished square feet

BsmtUnfSF: Unfinished square feet of basement area

TotalBsmtSF: Total square feet of basement area

Heating: Type of heating

HeatingQC: Heating quality and condition

CentralAir: Central air conditioning

Electrical: Electrical system

1stFlrSF: First Floor square feet

2ndFlrSF: Second floor square feet

LowQualFinSF: Low quality finished square feet (all floors)

• GrLivArea: Above grade (ground) living area square feet

BsmtFullBath: Basement full bathrooms

BsmtHalfBath: Basement half bathrooms

FullBath: Full bathrooms above grade

• HalfBath: Half baths above grade

Bedroom: Number of bedrooms above basement level

Kitchen: Number of kitchens

KitchenQual: Kitchen quality

TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)

Functional: Home functionality rating

Fireplaces: Number of fireplaces

FireplaceQu: Fireplace quality

GarageType: Garage location

GarageYrBlt: Year garage was built

GarageFinish: Interior finish of the garage

GarageCars: Size of garage in car capacity

GarageArea: Size of garage in square feet

GarageQual: Garage quality

GarageCond: Garage condition

PavedDrive: Paved driveway

WoodDeckSF: Wood deck area in square feet

OpenPorchSF: Open porch area in square feet

EnclosedPorch: Enclosed porch area in square feet

• 3SsnPorch: Three season porch area in square feet

• ScreenPorch: Screen porch area in square feet

PoolArea: Pool area in square feet

PoolQC: Pool quality

Fence: Fence quality

MiscFeature: Miscellaneous feature not covered in other categories

MiscVal: Value of miscellaneous feature

MoSold: Month Sold

YrSold: Year Sold

SaleType: Type of sale

SaleCondition: Condition of sale

2. Data Understanding & Pre-processing

2.1 Importing libraries & Data loading

The very first step is to import the libraries to be used for loading load the dataset. The dataset is then read using the panda's library. First five rows are displayed to get the brief overview of loaded dataset.

Figure 1: The dataset

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities		
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub		
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub		
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub		
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub		
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub		
5 rows × 81 columns												

2.2 Getting some basic information about the dataset: -

To understand the shape of the dataset and whether there are some **null values**, and whether the dataset has **duplicate values** or not, this step is priority before any other cleaning techniques are applied. Therefore, some snippets of various steps are displayed below: -

Figure 2: Information on dataset

<pre>1 df.describe().transpose()</pre>								
	count	mean	std	min	25%	50%	75%	max
ld	1460.0	730.500000	421.610009	1.0	365.75	730.5	1095.25	1460.0
MSSubClass	1460.0	56.897260	42.300571	20.0	20.00	50.0	70.00	190.0
LotFrontage	1201.0	70.049958	24.284752	21.0	59.00	69.0	80.00	313.0
LotArea	1460.0	10516.828082	9981.264932	1300.0	7553.50	9478.5	11601.50	215245.0
OverallQual	1460.0	6.099315	1.382997	1.0	5.00	6.0	7.00	10.0
OverallCond	1460.0	5.575342	1.112799	1.0	5.00	5.0	6.00	9.0
YearBuilt	1460.0	1971.267808	30.202904	1872.0	1954.00	1973.0	2000.00	2010.0
YearRemodAdd	1460.0	1984.865753	20.645407	1950.0	1967.00	1994.0	2004.00	2010.0
MasVnrArea	1452.0	103.685262	181.066207	0.0	0.00	0.0	166.00	1600.0

Figure 3: duplicate data

```
duplicate = df[df.duplicated()]
print(duplicate)

Empty DataFrame
Columns: [Id, MSSubClass, MSZoning, LotFrontage, LotArea, Street, Alley, LotShape, LandContour, e, Neighborhood, Condition1, Condition2, BldgType, HouseStyle, OverallQual, OverallCond, YearBu ofMatl, Exterior1st, Exterior2nd, MasVnrType, MasVnrArea, ExterQual, ExterCond, Foundation, Bsn smtFinType1, BsmtFinSF1, BsmtFinType2, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, Heating, HeatingQC, F, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, BedroomAt TotRmsAbvGrd, Functional, Fireplaces, FireplaceQu, GarageType, GarageYrBlt, GarageFinish, GaragarageCond, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolAreascVal, MoSold, YrSold, SaleType, SaleCondition, SalePrice]
[0 rows x 81 columns]
```

2.3 Information on the datatypes of attributes: -

The dataset contains a blend of various data types depending on the attributes. To find out about it, the following piece of code depicts the **data type of each attribute** and the memory usage: -

Figure 4: Information on data types

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
 #
    Column
                   Non-Null Count
                                    Dtype
                   1460 non-null
                                    int64
 0
    Ιd
    MSSubClass
                                    int64
 1
                   1460 non-null
 2
    MSZoning
                                   object
                   1460 non-null
 3
    LotFrontage
                   1201 non-null
                                   float64
                                    int64
 4
    LotArea
                   1460 non-null
 5
    Street
                   1460 non-null
                                    object
 6
    Alley
                   91 non-null
                                    object
 7
    LotShape
                   1460 non-null
                                    object
    LandContour
 8
                   1460 non-null
                                    object
    Utilities
                   1460 non-null
                                    object
```

2.4 Handling the "NaN" values in the dataset: -

The "NaN" values present in the dataset needed to be dealt with before putting the dataset in the training phase. Therefore, to handle these values the dataset was analysed first comparing it with the dataset description.

 the unknown "NaN" values were present in the categorical columns were dealt by replacing the "None" value which was being detected by Pandas as null to their appropriate value. For example,

For "Alley" column, if there is no alley access the value in the dataset was given as "None" which was interpreted by Pandas as "Nan". Therefore, the "None" value was replaced by "no alley access" for better understanding".

 Apart from the categorical columns, some of the numeric columns were having missing values. These missing values were imputed using respective techniques such as mean or median.

The following piece of code displays the handling on "NaN" value in just one cell: -

Figure 5: Handling NaN values

```
df=df.fillna({'LotFrontage':df['LotFrontage'].median()})
df=df.fillna({'Alley':'No_alley_access'})
df=df.fillna({'BsmtQual':'No basement'})
df=df.fillna({'BsmtCond':'No_basement'})
df=df.fillna({'BsmtExposure':'No_basement'})
df=df.fillna({'BsmtFinType1':'No_basement'})
df=df.fillna({'BsmtFinType2':'No_basement'})
df=df.fillna({'FireplaceQu':'No_fireplace'})
df=df.fillna({'GarageType':'No garage'})
df=df.fillna({'GarageFinish':'No_garage'})
df=df.fillna({'GarageQual':'No_garage'})
df=df.fillna({'GarageCond':'No_garage'})
df=df.fillna({'PoolQC':'No_pool'})
df=df.fillna({'Fence':'No_fence'})
df=df.fillna({'MiscFeature':'None'})
df=df.fillna({'MasVnrType':'None'})
df=df.fillna({'Electrical':'SBrkr'})
df=df.fillna({'MasVnrArea':df['MasVnrArea'].median()})
df=df.fillna({'GarageYrBlt':2005.0})
```

3. Exploratory Data Analysis

3.1 Relationship between SalePrice & LotArea

4000K

3000K

2000K

2000K

1000K

100K

50K

100K

100K

150K

200K

Figure 6: SalePrice Vs. LotArea

We can observe with the above line plot that SalePrice for most of the houses is maximum where the LotArea is less than 50K. Still, there are some houses which have LotArea greater than 50K but with the lower selling price.

3.2 Relationship between SalePrice by No. of bedrooms

Figure 7: SalePrice Vs. No. of Bedrooms

3.3 Relationship between Sale Price and Kitchen quality

Figure 8: SalePrice Vs. Kitchen Quality

It can be observed from the above graph, the house having excellent kitchen quality have the best-selling price followed by other categories. Therefore, quality of kitchen determines the selling price of a house.

3.4 Relationship between Sale price and overall condition of the house

Figure 9: SalePrice Vs. Overall Condition

The best-selling price is determined by houses having overall condition as 5 and 10.

3.5 Relationship between sale price and garage area w.r.t Alley path too.

Alley Grvl NA Pave

8K

6K

2K

0K

0M

1M

2M

3M

SalePrice

Figure 10: SalePrice Vs. Garage Area

The above Scatter plot depicts that most of the houses having good selling price and more garage area do not have alley access. The scatter plot also gives the hint as the values more than 2M of selling price can be potential outliers.

3.6 Relationship between sale price and overall quality of the house

15

The above clustered column chart depicts that houses having their overall quality rates in the range of 5 to 8 have the best-selling prices.

3.7 Sale price distribution

Figure 12: SalePrice Distribution

3.8 Relationship between Sale price and MSSubclass

Figure 13: SalePrice Vs. MSSubClass

It can be observed that the houses having MSSubClass around 60-80 meaning they are having 2-story and multi-level split have the best-selling prices as compared to other classes.

3.9 Relationship between Sale Price and Year built

Figure 14: SalePrice Vs. Year built

Some of the old houses still have a better selling price than 90's but as the graph depicts that houses in early 2000's has the maximum sale price.

3.10 Relationship between Sale price and MasVnrArea.

Figure 15: Sale price Vs. Masonry Veneer area

The cluster plot shows that as the masonry veneer area increase the Sale price also increases. It also hints for some potential outliers present in this column who have the selling price more than it should be.

3.11 Relationship between Sale price and Total Basement area

Figure 16: Sale price Vs. Total basement area

This scatter plot between the square feet area of basement and sale price gives a clear trend indication that increase in basement area increases the Sale price of house.

3.12 Relationship between Sale Price and total Rooms in house.

70M
60M
50M
20M
10M
0M
2 4 6 8 10 12 14
TotRmsAbvGrd

Figure 17: Sale price Vs. Total Rooms

The column and line chart depicts that sale price is maximum for houses having total rooms in the range of 6-7.

3.13 Relationship between Sale Price and Fireplaces in the house.

Figure 18: Sale price Vs. Fireplaces

Fireplaces are important for heating purposes specially in old houses. It can be observed from the above pattern that more the no. of fireplace in the house, more is the selling price.

3.14 Relationship between Sale price and Pool area in the house

0.7M Average of SalePrice MS.0 WS.0 WS.0 WS.0 0.3M 0.27M 0.2M 0 200 400 600 800 PoolArea

Figure 19: Sale price Vs. Pool Area

Most of the houses have average selling price less than 0.3 M irrespective of the pool area. Only in some cases the prices increase with increase in pool area that may depend on other factors too.

3.15 Relationship between Sale price and year sold

Figure 20: SalePrice Vs. Year Sold

The selling price was lowest in the year 2008. These houses now can be sold at greater price with some renovations.

3.16 Relationship between Sale Price and Basement quality

Figure 21: Sale price Vs. Basement quality

It is clear from the above trend that as the basement quality drops from excellent to fair, the selling price of houses also decreases.

3.17 Relationships between Sale price and selling condition of the house

Figure 22: Sale Price Vs. Sale condition

The houses sold in Partial condition have the maximum sale price as compared to others.

3.18 Co-relation plot

Figure 23: Co-relation plot

The corelation plot was necessary to filter out some columns that are most positively corelated to Sale price column.

3.19 Relationship between Sale price and Garage Year built

Figure 24: Sale Price Vs. Garage Year build

The sale price is maximum for the latest garages after the 90's.

3.20 Relationship between Sale price and Wood deck surface area

It can be observed from the above line plot that as the Wood deck surface area in a house increases the sale prices also goes up.

3.21 Relationship between Sale price and greater living area

Figure 26: SalePrice Vs. Living Area

Greater the living area in a house, result in more spacious living area and increasing the cost of selling price.

3.22 Relationship between Sale price and full bathrooms above grade

Most of the houses are having full bathrooms in the range of 5-10 have their selling price in a moderate range less than 0.4M.

3.23 Relationship between Sale price and First floor square feet area

20K 15K StFIrSF 10K 5K OK 0.0M 0.2M 0.6M M8.0 SalePrice

Figure 28: Sale price Vs. First floor area

Most of the houses are having first floor square foot area bathrooms in the range of 2-10 have their selling price in a moderate range less than 0.3M.

3.24 Relationship between Sale price and Year remodelled

Figure 29: Sale price Vs. Remodelled Year

The houses which were built in 1950's and the latest remodelled houses have the maximum selling price as indicated by the graph above.

3.25 Detecting outliers in Kitchen Quality

Figure 30: Sale price Vs. Kitchen quality

3.26 Detecting Outliers in Street column

Figure 31: Sale price Vs. Street type

3.27 Detecting outliers in Lot configuration

3M
2M
2M
3M
1M
1M
Corner CulDSac FR2 FR3 Inside LotConfig

Figure 32: Sale price Vs. Configuration of Lot

3.28 Detecting outliers in House style column

Figure 33: Sale price Vs. House style

4. Model Training & Evaluation

4.1 Catboost Regressor: -

CatBoost builds upon the theory of decision trees and gradient boosting. The main idea of boosting is to sequentially combine many weak models (a model performing slightly better than random chance) and thus through greedy search create a strong competitive predictive model. Because gradient boosting fits the decision trees sequentially, the fitted trees will learn from the mistakes of former trees and hence reduce the errors. This process of adding a new function to existing ones is continued until the selected loss function is no longer minimized.

In the growing procedure of the decision trees, CatBoost does not follow similar gradient boosting models. Instead, CatBoost grows oblivious trees, which means that the trees are grown by imposing the rule that all nodes at the same level, test the same predictor with the same condition, and hence an index of a leaf can be calculated with bitwise operations. The oblivious tree procedure allows for a simple fitting scheme and efficiency on CPUs, while the tree structure operates as a regularization to find an optimal solution and avoid overfitting.

4.2 Evaluation metrics: -

After training the model, specific evaluation metrics were selected to check the model's accuracy: -

Mean Absolute Error (MAE): - mean absolute error is a measure
 of errors between paired observations expressing the same phenomenon

Figure 34: Mean Absolute Error

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$
 $ext{MAE}$ = mean absolute error y_i = prediction x_i = true value n = total number of data points

Mean Squared Error (MSE): - mean squared error (MSE) measures
the average of the squares of the errors—that is, the average squared
difference between the estimated values and the actual value.

Figure 35: Mean Squared Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

 Root Mean Squared Error (RMSE): - Root-mean-square error is a frequently used measure of the differences between values (sample or population values) predicted by a model and the values observed.

Figure 36: Root Mean Squared Error

$$ext{RMSD} = \sqrt{rac{\sum_{i=1}^{N}\left(x_i - \hat{x}_i
ight)^2}{N}}$$

RMSD = root-mean-square deviation

i = variable i

N = number of non-missing data points

 x_i = actual observations time series

 \hat{x}_i = estimated time series

 Root Mean Squared Log Error (RMSLE): - RMSLE can be defined using a slight modification on sklearn's mean_squared_log_error function, which itself a modification on the familiar Mean Squared Error (MSE) metric.

Figure 37: Root Mean Squared Log Error

RMSLE =
$$\sqrt{\frac{1}{n}\sum_{i=1}^n(\log(p_i+1)-\log(a_i+1))^2}$$

Where:

n is the total number of observations in the (public/private) data set,

 p_i is your prediction of target, and

 a_i is the actual target for i.

log(x) is the natural logarithm of x ($log_e(x)$).

All the metrics used in the code is depicted in the following figure: -

Figure 38: Evaluation Metrics

Mean Absolute Error: 4015.111878978296
Mean Squared Error: 27012165.967486776
Root Mean Squared Error: 5197.322961630033
R Squared: 0.9955661182684862

Root Mean Squared log Error: 0.0013115235797421828

As the score metrics used by Kaggle for ranking was RMSLE, therefore utmost effort was put to improve the RMSLE score using Catboost regression algorithm.

4.3 Hyper- parameter tuning using Grid Search CV: -

GridSearchCV is a function that comes in Scikit-learn's model_selection package. This function helps to loop through predefined hyperparameters and fit your any (model) on the training set. So, in the end, we can select the best parameters from the listed hyperparameters. The following figure presents the usage of Grid Search CV for finding the best parameters for cat boost regression: -

Figure 39: Grid Search CV

```
from sklearn.model_selection import GridSearchCV
parameters = {'depth': [6,8,10],
              'learning_rate' : [0.01, 0.05, 0.1],
              'iterations' : [30, 50, 100]
grid = GridSearchCV(estimator=cb,param_grid = parameters, cv = 2, n_jobs=-1)
grid.fit(X_train, y_train)
# Results from Grid Search
print("\n======="")
print(" Results from Grid Search " )
print("======="")
print("\n The best estimator across ALL searched params:\n",
        grid.best_estimator_)
print("\n The best score across ALL searched params:\n",
       grid.best score )
print("\n The best parameters across ALL searched params:\n",
       grid.best_params_)
print("\n ========"")
```

The parameters obtained from the above code were then used as new input parameters for the catboost resulting in improved RMSLE square: -

Figure 40: Ideal Parameters

```
The best score across ALL searched params:
3.8488338671200568

The best parameters across ALL searched params:
{'depth': 6, 'iterations': 100, 'learning_rate': 0.1}
```

5. Conclusion

The House price dataset used in this assignment was prepared, cleansed, analyzed, and visualized to get some actionable insights from the data. It was trained on various different algorithms among which the best model i.e. catboost regressor was chosen, and it's parameters were tuned to get better accurate results. Therefore, after thorough analysis, and modelling predcitions were made on the test dataset.

The predictions made on the test dataset were then saved and submitted as submission to Kaggle competition.

Figure 41: Final Submission

6. References

- https://towardsdatascience.com/catboost-regression-in-6-minutes-3487f3e5b329
- https://www.kaggle.com/c/house-prices-advanced-regression-techniques
- https://www.linkedin.com/learning/power-bi-dashboards-forbeginners/getting-started-with-power-bi?u=56968457