Math 360

Section 1.2 Exercises

Trevor Klar

July 2, 2018

- 1. The three things we must check in order to confirm that a function $\phi: S \to S'$ is an isomorphism are the following:
 - ϕ is one-to-one
 - ϕ is onto
 - For all $a, b \in S$, we have $\phi(a * b) = \phi(a) *' \phi(b)$.

Determine whether the given map ϕ is an isomorphism of the first binary structure with the second. If not, why not?

2. $\langle \mathbb{Z}, + \rangle$ with $\langle \mathbb{Z}, + \rangle$ where $\phi(n) = -n$ for $n \in \mathbb{Z}$

Answer: Yes, because ϕ is a bijection, and for all $a, b \in \mathbb{Z}$, -(a+b) = -(a) + -(b).

3. $\langle \mathbb{Z}, + \rangle$ with $\langle \mathbb{Z}, + \rangle$ where $\phi(n) = 2n$ for $n \in \mathbb{Z}$

Answer: No, because ϕ is not onto; there is no $n \in \mathbb{Z}$ such that 2n = 3, for example.

5. $\langle \mathbb{Q}, \cdot \rangle$ with $\langle \mathbb{Q}, \cdot \rangle$ where $\phi(x) = \frac{x}{2}$ for $x \in \mathbb{Q}$

Answer: No, because for any nonzero $a, b \in \mathbb{Q}$, we have $\frac{a \cdot b}{2} \neq \frac{a}{2} \cdot \frac{b}{2}$

7. $\langle \mathbb{R}, \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$.

Answer: Yes. It is clear from its graph that ϕ is a bijection. Also, for all $a, b \in \mathbb{R}$, we have $(a \cdot b)^3 = a^3 \cdot b^3$.

8. $\langle M_2(\mathbb{R}), \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(A)$ is the determinant of matrix A.

Answer: No, since ϕ is not one-to-one. To see this, observe that for $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$, we have $A \neq B$ but $\phi(A) = 0 = \phi(B)$.

9. $\langle M_1(\mathbb{R}), \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(A)$ is the determinant of matrix A.

Answer: Yes. Since any $A \in M_1(\mathbb{R})$ is a matrix of the form A = [a] where $a \in \mathbb{R}$, then $\det(A) = a$. So clearly, ϕ is a bijection. Now we apply the definition of matrix multipliaction. For any $A, B \in M_1(\mathbb{R})$, we have

$$\det(AB) = \det([a][b]) = \det[ab] = a \cdot b = \det([a]) \cdot \det([b]) = \det(A) \cdot \det(B)$$

and we are done.

Same instructions. Let $F = \{f : \mathbb{R} \to \mathbb{R} \mid f(0) = 0, f \in C^{\infty}\}$.

11. $\langle F, + \rangle$ with $\langle F, + \rangle$ where $\phi(f) = f'$.

Answer: Yes, though verifying this does require a bit of thought. For any $f,g \in F$, we have that (f+g)'=f'+g' by linearity. We can also see that ϕ is onto, since every element of F is smooth and therefore integrable. Thus, for any $g \in F$, we have that $f(x) = \int_0^x g(t)dt$ is an element of F such that $\phi(f)=g$. Now to see that ϕ is one-to-one, we point out that $f(x)=\int_0^x g(t)dt$ is the *only* element of F which maps to g under ϕ . Let $h: \mathbb{R} \to \mathbb{R}$ be a function such that $\phi(h)=g$. Then, since f and g have the same derivative, they differ only by a constant. Thus, if g if g is an otherwise, g is an other in g is an otherwise, g is an other in g is an otherwise, g is an other in g in g is an other in g is an other in g in g in g in g in g in g is an other in g i

1

12. $\langle F, + \rangle$ with $\langle \mathbb{R}, + \rangle$ where $\phi(f) = f'(0)$.

Answer: Let $f, g \in F$. We can see that ϕ commutes with the operations, since

$$\phi(f+q) = (f+q)'(0) = f'(0) + q'(0) = \phi(f) + \phi(q).$$

However, ϕ is not one-to-one, since given some $x \in \mathbb{R}$, there are many functions in F whose derivative at zero is x. For example, consider x = 0. The identically zero function and x^2 are both in F, and $\phi(0) = \phi(x^2) = 0$.

- 16. The map $\phi: \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = n + 1$ is a bijection. Give the definition of a binary operation * on \mathbb{Z} such that ϕ is an isomorphism of
 - a. $\langle \mathbb{Z}, + \rangle$ with $\langle \mathbb{Z}, * \rangle$
 - b. $\langle \mathbb{Z}, * \rangle$ with $\langle \mathbb{Z}, + \rangle$

In each case, give the identity for * on \mathbb{Z} .

Answer: (a) Let $*: (\mathbb{Z} \times \mathbb{Z}) \to \mathbb{Z}$ be defined as

$$a * b = a + b - 1$$

for all $a, b \in \mathbb{Z}$. To see that ϕ commutes with + and *, let $n, m \in \mathbb{Z}$. Now,

$$\phi(n+m) = n+m+1 = (n+1)+(m+1)-1 = \phi(n)*\phi(m).$$

Note that the identity of * is 1, since n * 1 = 1 * n = n + 1 - 1 = n.

Answer: (b) Let $*: (\mathbb{Z} \times \mathbb{Z}) \to \mathbb{Z}$ be defined as

$$a * b = a + b + 1$$

for all $a, b \in \mathbb{Z}$. To see that ϕ commutes with * and +, let $n, m \in \mathbb{Z}$. Now,

$$\phi(n*m) = (n*m) + 1 = (n+m+1) + 1 = (n+1) + (m+1) = \phi(n) + \phi(m).$$

Note that the identity of * is -1, since n * (-1) = (-1) * n = n + (-1) + 1 = n.

20. The displayed condition for an isomorphism ϕ in Definition 1.2.7 is sometimes summarized by saying " ϕ must commute with the binary operation(s)". Explain how that condition can be viewed in this manner.

Answer: If we think of * and *' as functions and use function notation (as opposed to binary operation notation), this commutative relationship is more clear. Suppose $\langle A, * \rangle$ and $\langle B, *' \rangle$ are two isomorphic binary structures, and $\phi: A \to B$ is an isomorphism relating them. We would usually write that for all $a_1, a_2 \in A$, $\phi(a_1 * a_2) = \phi(a_1) *' \phi(a_2)$. However using function notation, we see the two functions commuting:

$$\phi(*(a_1, a_2)) = *'(\phi(a_1), \phi(a_2))$$

- 23. An identity for a binary operation * as described by Definition 1.2.12 is sometimes referred to as "a two-sided identity." Give analogous definitions for
 - **a.** a left identity e_L for *, and **b.** a right identity e_R for *.

Answer: Let $*: (S \times S) \to S$ be binary operation on a set S. A left identity for * is some $e_L \in S$ such that for any $x \in S$, we have $e_L * x = x$. Similarly, a right identity for * is some $e_R \in S$ such that for any $x \in S$, we have $x * e_R = x$.

(Problem continued) Theorem 1.2.13 shows that if a two-sided identity for * exists, then it is unique. Is the same true for a one-sided identity you just defined? Prove or give a counterexample $\langle S, * \rangle$ for a finite set S and find the first place where the proof of Theorem 1.2.13 breaks down.

¹I have been saying this in answers to previous problems, having already noticed this question.

Answer: The proof of Theorem 1.2.13 uses one identity as a left identity, and the other as a right identity. We can't do this here, and given two (WLOG) left identities e and e', we have no reason to believe that e * e' = e' * e, so while e * e' = e' and e' * e = e, we cannot conclude that e = e'. Following is a table that give a counterexample:

*	e	e'	a	$\mid b \mid$
\overline{e}	e	e'	a	b
e'	e	e'	a	b
\overline{a}	e'	a	b	e
\overline{b}	a	b	e	e'

Note that a * e = e' while a * e' = a, so since we cannot violate the substitution property of equality, we can see that $e \neq e'$.

24. Can a binary structure have a left identity and a right identity which are distinct from each other?

Answer: This is impossible. If there exist left and right identities e and e' respectively, we can apply the proof of Theorem 1.2.13: e * e' = e (right identity), and e * e' = e' (left identity). Thus e = e' and there is one identity which is two-sided.

25. Prove that if $\phi: S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then the inverse ϕ^{-1} is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.

PROOF Since ϕ is a bijection, then so is ϕ^{-1} , so all that remains is to show that ϕ^{-1} commutes with *' and *. For any $a', b' \in S'$, there exists $a, b \in S$ such that $\phi(a) = a'$ and $\phi(b) = b'$. Since ϕ is an isomorphism, we know that

$$\phi(a * b) = \phi(a) *' \phi(b) = a' *' b'.$$

Now,

$$\begin{array}{rcl} \phi^{-1}(a'*'b') & = & \phi^{-1}(\phi(a*b)) \\ & = & a*b \\ & = & \phi^{-1}(\phi(a))*\phi^{-1}(\phi(b)) \\ & = & \phi^{-1}(a')*\phi^{-1}(b') \end{array}$$

and we are done.

For 28 through 31, prove that the indicated property of the binary structure $\langle S, * \rangle$ is indeed a structural property.

28. The operation * is commutative.

PROOF To prove that commutativity is a structural property of $\langle S, * \rangle$, we will show that any binary structure which is isometric to $\langle S, * \rangle$ must also have that property. Let ϕ be an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, where $\langle S', *' \rangle$ is another structure. Since * is commutative, we know that for all $a, b \in S$, a*b=b*a. Now we show that *' is commutative as well. Let $c', d' \in S'$ be given. Then there exist unique $c, d \in S$ such that $\phi(c) = c', \phi(d) = d'$. Now,

$$c' *' d' = \phi(c) *' \phi(d)$$

$$= \phi(c * d)$$

$$= \phi(d * c)$$

$$= \phi(d) *' \phi(c)$$

$$= d' *' c'$$

and we are done.

29. The operation * is associative.

PROOF Suppose * is associative, and define $a, b, c \in S$ and * and $a', b', c' \in S'$ and ϕ similarly as above. Then,

$$(a' *' b') *' c' = (\phi(a) *' \phi(b)) *' c'$$

$$= \phi(a * b) *' \phi(c)$$

$$= \phi([a * b] * c)$$

$$= \phi(a * [b * c])$$

$$= \phi(a) *' \phi(b * c)$$

$$= a' *' (\phi(b) *' \phi(c))$$

$$= a' *' (b' *' c')$$

31. There exists an element $b \in S$ such that b * b = b.

PROOF Using notation as expected; if b * b = b, then $\phi(b * b) = \phi(b)$, so $\phi(b) *' \phi(b) = \phi(b)$, thus b' *' b' = b'. Therefore we have found an element $b' \in S'$ with the desired property, so we are done.

- 32. Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$.
 - a. Show that $\langle \mathbb{C}, + \rangle$ is isomorphic to $\langle H, + \rangle$.
 - b. Show that $\langle \mathbb{C}, \cdot \rangle$ is isomorphic to $\langle H, \cdot \rangle$.

(We say that H is a matrix representation of the complex numbers \mathbb{C} .)

PROOF Let $\phi: \mathbb{C} \to H$ be defined as $\phi(a+bi) = \begin{bmatrix} a-b \\ b & a \end{bmatrix}$. It should be clear that ϕ is one-to-one and onto, since this definition holds for all real numbers a and b. Now we show that ϕ commutes with the operations in parts (a) and (b).

a.

$$\phi((a+bi)+(c+di)) = \phi((a+c)+(b+d)i)$$

$$= \begin{bmatrix} (a+c) & -(b+d) \\ (b+d) & (a+c) \end{bmatrix}$$

$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

$$= \phi(a+bi) + \phi(c+di)$$

b.

$$\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i)$$

$$= \begin{bmatrix} (ac-bd) & -(ad+bc) \\ (ad+bc) & (ac-bd) \end{bmatrix}$$

$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

$$= \phi(a+bi) \cdot \phi(c+di)$$