Tema 8. Conversión D/A y A/D

■ Contenidos

- 8.1 Conversores D/A
 - 8.1.1 Conversor con ponderación binaria
 - 8.1.2 Conversor en escalera R/2R
 - 8.1.3 Características de funcionamiento
- 8.2 Conceptos básicos de conversión A/D
 - 8.2.1 Muestreo y cuantificación
- 8.3 Conversores A/D
 - 8.3.1 Conversor de aproximaciones sucesivas
 - 8.3.2 Conversor de doble rampa de integración
 - 8.3.3 Conversor paralelo y pipeline
 - 8.3.4 Características de funcionamiento

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 1

Tema 8. Conversión D/A y A/D

Objetivos

- Mostrar ejemplos de aplicaciones de las conversiones digitalanalógica y analógica-digital.
- Entender las características y limitaciones del muestreo.
- Conocer distintas formas de implementar un conversor D/A y A/D.
- Conocer las características principales de los conversores comerciales

Universidad de Zaragoza, IEC.

L.A. Barragán

8.1 Conversores D/A

☐ Curva de transferencia ideal (salida unipolar)

DAC

■Conversor D/A con ponderación binaria

- Resistencias de valores muy distintos
- V_{Bi} no presentan precisión adecuada

$$V_{Bi} = Bi \cdot V_{OH} = \begin{cases} V_{OH} \\ 0 \end{cases}$$

$$V_{B3} \circ \stackrel{R}{\searrow} V_{B2} \circ \stackrel{2R}{\searrow} V_{B1} \circ \stackrel{R'}{\searrow} V_{B0} \circ V_$$

$$\begin{split} V_O &= -R! \left(\frac{V_{B3}}{R} + \frac{V_{B2}}{2R} + \frac{V_{B1}}{4R} + \frac{V_{B0}}{8R} \right) \\ &= -\frac{R!}{R} \cdot \frac{V_{OH}}{8} \cdot \left(8 \cdot B3 + 4 \cdot B2 + 2 \cdot B1 + B0 \right) \\ &= -2 \frac{R!}{R} \cdot \frac{V_{OH}}{2^4} \cdot \left(2^3 \cdot B3 + 2^2 \cdot B2 + 2 \cdot B1 + B0 \right) \\ &= -2 \frac{R!}{R} \cdot \frac{V_{OH}}{2^4} \cdot \left\{ B \right\}_{10} \end{split}$$

DAC en escalera R/2R

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 5

DAC

Definiciones

- FSR. Diferencia entre la máxima y la mínima salida analógica
- 1LSB. El valor analógico de 1LSB es el mínimo cambio que puede ocurrir en la salida del DAC
- Resolución. Diferencia en la salida del DAC correspondiente a 2 códigos binarios de entrada que sólo difieren en el bit menos significativo

□ Características

- Número de bits n
- Velocidad
 - Tiempo de establecimiento. Tiempo que tarda el conversor en estabilizar la salida en un margen de 1LSB cuando todos los bits del código binario de entrada cambian de 0 a 1 o viceversa.
- Entrada DAC: serie, paralelo
- Variable analógica: V, I

DAC

□ DAC-8048 (12 bits)

- Entrada serie
- Salida tensión (Vo)

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 7

DAC

□ DAC1408 (8 bits)

- Entrada paralelo (A1..A8)
- Salida intensidad (Io)

$$I_O = \frac{V_{REF}}{R} \cdot \left(\frac{A1}{2^1} + \frac{A2}{2^2} + \dots + \frac{A8}{2^8} \right)$$

8.2 Conceptos básicos de conversión A/D

☐Etapas:

- Acondicionamiento. Adapta al fondo de escala para aprovechar al máximo la resolución del conversor
 - Protección
- Muestreo-retención (Sample and Hold). Captura la señal analógica en instantes múltiplos de Ts (periodo de muestreo) y la mantiene
 - $X(t) \rightarrow X(k) = \{X(0), X(Ts), X(2 \cdot Ts), \dots, X(k \cdot Ts), \dots \}$
 - Teorema de muestreo de *Nyquist* $-f_s > 2 \cdot f_m$
- Cuantificación Q. Traslada una amplitud analógica en un código binario de n bits
 - $Q[X(k)] \rightarrow Xq$
 - Error de cuantificación. A diversos valores de entrada les corresponde la misma representación digital

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 9

Conceptos básicos de conversión A/D

■ Muestreo

■ Cuantificación

Cuantificación

- Error cuantificación
 - e = X(k) Q[X(k)]
 - n↑ ⇒ e↓
- □ 1LSB=V_{REF}/2ⁿ

$$V_{IN} = q \cdot \frac{V_{REF}}{2^n} + e$$

$$q = \{B\}_{10} = \left\lfloor \frac{V_{IN}}{V_{REF}} \cdot 2^n \right\rfloor$$

$$e \le 1LSB = \frac{V_{REF}}{2^n}$$

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 11

8.3 Conversores A/D

□ Tipos

- Conversores Nyquist
 - Aproximaciones sucesivas
- Flash
- Doble rampa de integración
- Pipeline
- Conversores de sobremuestreo
 - Sigma delta
 - Las señales se muestrean a frecuencias fs muy superiores a la frecuencia de Nyquist $(f_{NY}) \Rightarrow$ Errores de cuantificación se minimizan
 - La codificación digital se obtiene promediando digitalmente la secuencia de muestras

ADC basado en contador

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 13

ADC de aproximaciones sucesivas

☐ Se utiliza un SAR (Succesive Approximation Register) en vez del contador

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 14

ADC de doble rampa de integración

Q_{N}	S1	S2
0	Cerrado	Abierto
1	Abierto	Cerrado

$$V_O(t) = V_O(t_0) - \frac{1}{R \cdot C} \int_{t_0}^t V_A(\tau) \cdot d\tau$$

$$q = \{D\}_{10} = m - 1 = \left| 2^n \cdot \frac{V_{IN}}{V_{REF}} \right|$$

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 15

ADC Flash

- ☐ Número comparadores = 2ⁿ-1
- ☐ Ejemplo, V_{REF}=8V

Vi	D2	D1	D0
0≤Vi<1	0	0	0
1≤Vi<2	0	0	1
2≤Vi<3	0	1	0
3≤Vi<4	0	1	1
•••			
•••			
7≤Vi<8	1	1	1

$$q = \{D\}_{10} = \left[2^n \cdot \frac{V_{IN}}{V_{REF}} \right]$$
$$V_{IN} = q \cdot \frac{V_{REF}}{2^n} + e$$

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 16

ADC tipo pipeline

Esquema general

Latencia = p

- Throughtput =1
- Número comparadores = p×(2^m-1)

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 17

ADC tipo pipeline

Dos etapas

ADC (m+n) bits
$$V = q1 \cdot \frac{V_{REF}}{2^{m}} + q2 \cdot \frac{V_{REF}}{2^{m} \cdot 2^{n}} + \frac{e2}{2^{m}} = (2^{n} q1 + q2) \cdot \frac{V_{REF}}{2^{m+n}} + e'$$
$$e' = \frac{e2}{2^{m}} \le \frac{V_{REF}}{2^{m+n}}$$

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 18

ADC

Comparativa

Universidad de Zaragoza, IEC.

L.A. Barragán

Conversión D/A y A/D - 19

ADC 0804

□ ADC por aproximaciones sucesivas

- · Generador de reloj interno
- Salidas triestado. Interfaz con buses de μP
- Salida de interrupción INTR

Tarjeta de sonido

Universidad de Zaragoza, IEC.

Conversión D/A y A/D - 21

Bibliografía

- J.I. Artigas, L.A. Barragán, C. Orrite, Aplicaciones y Problemas de Electrónica Digital. Prensas Universitarias de Zaragoza (Colección Textos Docentes, 69), Zaragoza, 1999. Capítulos 5 y 6.
- □J.I. Artigas, L.A. Barragán, C. Orrite, I. Urriza, Electrónica Digital. Aplicaciones y Problemas con VHDL. Pearson Educación, Madrid, 2002. Capítulo 4
- □T.L. Floyd, Fundamentos de Sistemas Digitales, 7ª edición, Prentice Hall, Madrid, 2000. Capítulo 13