MAT2440, Classwork12, Spring2025

ID:	Name:							
1. Valid Arg	guments:							
An <u>arg</u>	eument	is a sec	quence of p	ropositions tha	it end v	with a conclusion.		
The <u>pre</u>	<u>mises</u>	are all	but the fina	al propositions	in the	argument and the final		
propositio	on is calle	ed 🐧	con clusion	△ .				
An argument is if the truth of all its premises implies that the conclusion is								
true.								
				osition Logic: ving propositio	ns آسمبر	standard form o	f an	
"If it snows, I will go skiing."				$p \rightarrow q$	a a a a a a a a a a a a a a a a a a a	Premise #1	_ arjunem	
"It shows"				p		premise #2	_	
Therefore, I will go skiing, con clusion							_	
	p	q	p o q	$p \land (p \rightarrow$	q)	$p \land (p \rightarrow q) \rightarrow q$		
	工	T	T	T		T		
	1-1	F	F	<u> </u>		T		
		<u> </u>	T	<u> </u>		T		
This is a	alia	_avguy	neut	torm. It mean	s by kı	nowing the two premise	s P	
and P		e can con	iclude 🗜	_, that is,	∧(p-	$\Rightarrow 2) \Rightarrow 2$ is a tauto	logy.	

3. The Rules of Inference for Propositional Logic:

deductive argument

	D 1 4 7 4	<u> </u>			
Name	Rule of Inference	Tautology			
(1) Modus ponens	$p \rightarrow q$				
implication elimination	<i>p</i>	p ~ (p → g) → g			
	: 8				
(2) Modus tollens	$p \rightarrow q$,			
p>9=79-7p	<i>¬q</i> 	(7g) (p>g) -> (7p)			
(contra pocition)	:,7P	V			
(3) Hypothetical syllogism	$p \rightarrow q$	((5-50) - (5-50) - (5-50)			
	$q \rightarrow r$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$			
	p>r				
(4) Disjunctive syllogism	$p \lor q$	(
	$\neg p$	(7p1(pvq)) -> g			
	118				
(5) Addition If p is "true", then	p g	P → PV & 2 > 9. VP			
"Por Q" is true	:PVB:gvf				
(6) Simplification	$p \wedge q \qquad p_{\Lambda}$	9 DA9-29			
	: P : 8	t prop prop g			
(7) Conjunction	p				
	q	((p)∧(q)) → p~q			
	: Prg				
(8) Resolution	$p \lor q$	(i			
	$\neg p \lor r$	(pvg) 1 (Tpvr)			
	·. gvr	(pvg) ∧ (7pvr) → gvr			