

Mizar Z7 用户手册 Xilinx ZYNQ-7000 SoC

Rev. 1.1

版本记录

版本	时间	描述
Rev. 1.0	2020.05.05	第一版发布
Rev. 1.1	2020.07.02	修改了电源部分的描述

版权声明:

MicroPhase FPGA 开发板,XME/IME 系列核心模块、评估板及其相关知识产权由微相科技有限公司所有。

本文档由微相科技有限公司版权所有,并保留一切权利。在未经微相公司书面许可的情况下,不得以任何方式或形式来修改、分发或复制本文档的任何部分。

免责声明

产品中所提供的程序源代码、软件、资料文档等,微相科技不提供任何 类型的担保;不论是明确的,还是隐含的,包括但不限于合适特定用途的保 证,全部的风险,由使用者来承担。

目录

版本证	己录.			1
版权声	吉明:			2
免责芦	与明.			2
目录.				3
1.	产品	る間が	<u> </u>	5
2.	板十	卡规棒	各	6
2	.1	器件	-	6
2	.2	功能	是框图	8
2	.3	资源	原特性	9
2	.4	机械	战尺寸	. 10
3.	硬件	牛资》	原	. 12
3	.1	ZYN	Q 芯片	. 12
3	.2	ZYN	Q 启动模式	. 14
	.3		3	
	.4		р	
	.5		Ī	
	.6		则外设	
J	3.6.		DDR3 RAM	
	3.6.		QSPI Flash	
	3.6.		Wi-Fi	
	3.6.		千兆以太网	
	3.6.		USB 接口	
	3.6.		SD Card	
	3.6.		USB 串口	
	3.6.		用户按键	
	3.6.		用户 LED	31
2	7	DI ଐ	川接口	32

Mizar Z7 用户手册

3.	7.1	HDMI TX(HDMI1)	32
3.	7.2	HDMI RX(HDMI2)	34
3.	7.3	MIPI CSI	36
3.	7.4	EEPROM	38
3.	7.5	用户按键	39
3.	7.6	用户 LED	40
3.	7.7	GPIO 扩展口	41
3.	7.8	GPIO 电压调整	48
3.8	电源	Ī	49

1. 产品简介

Mizar Z7 是微相科技推出的一款基于 Xilinx Zynq-700 系列的 SoC 开发板,Zynq-7000 集成了 1 个双核 ARM Cortex-A9 处理器,以及 Xilinx 7 系列现场可编程门阵列(FPGA)逻辑,这种 FPGA+ARM 的架构在传统 CPU+FPGA 应用领域提供了一种替代升级的解决方案,其单芯片的 SoC 的解决方案,在价格和开发难度上都具有很大优势。

Mizar Z7 是微相科技面向创客、嵌入式爱好者、学生、教育工作者以及电子发烧友等群体开发的一款开源的创客神器。它基于 Xilinx 公司的 Zynq-7000 系列的 SoC 的嵌入式开发平台,Zynq-7000 集成了 1 个双核 ARM Cortex-A9 处理器,以及 Xilinx 7 系列现场可编程门阵列(FPGA)逻辑器件,这种 FPGA+ARM 的架构在传统 CPU+FPGA 应用领域提供了一种替代升级的解决方案,其单芯片 SoC 的解决方案,在价格和开发难度上都具有很大优势,这种方案已经成为广大用户的优选方案。

Mizar Z7 主芯片兼容 XC7Z010CLG400-1 和 XC7Z020CLG400-2,其型号分别为 Mizar Z7010 和 Mizar Z7020。其产品特点:

- 1. 板载千兆以太网,USB OTG,UART 串口,HDMI 接口,MIPI-CSI 接口,Wi-Fi 带蓝牙,同时配有 2×40Pin 扩展板接口。
- 2. 产品使用方式灵活,既可以当单板开发板使用,也可以当开发板使用,可谓是一板多用。
- 3.其小巧灵活的特点可以广泛应用在各类领域上,加上 ZYNQ 所特有的可编程逻辑开发与嵌入式开发相结合,在高速帧率的视频处理、硬件加速、IoT 应用,工业实时控制,人工智能,机器人等方面所表现出更的卓越性能和更强的通用性。

Mizar Z7 在以下创客所能想到的应用领域具有突出的应用开发优势:

- 机器视觉
- 人工智能

- 工业控制
- 无人机
- 嵌入式硬件加速
- 运动控制,机器人
- loT 应用

Mizar Z7 设计小巧紧凑的特点,既适合作为掌中开发神器,成为你忠实的朋友,帮你思维变成现实;亦可以作为核心模块嵌入到应用产品中,成为你可信任的产品,加速你的产品推向市场;还可以作为随身携带的口袋实验室,成为你学习的好工具,让你早日成为技术大神。

2. 板卡规格

2.1 器件布局

MIZAR Z7 模块功能框图如 Figure 2-1 和 Figure 2-2 所示

Figure 2-1 MIZAR Z7 TOP 面器件布局图

Figure 2-2 MIZAR Z7 Bottom 面器件布局图

2.2 功能框图

MIZAR Z7 模块功能框图如 Figure 2-3 所示

Figure 2-3 MIZAR Z7 功能框图

2.3 资源特性

MIZAR Z7 提供了如下硬件资源。

特性	描述
ZYNQ 处理器	Mizar Z7010 搭载 Xilinx XC7Z010-1CLG400,k LCs Mizar Z7020 搭载 Xilinx XC7Z020-2CLG400,k LCs
DDR3 RAM	Mizar Z7010 512MB DDR3 RAM, 32Bit Mizar Z7020 1GB DDR3 RAM, 32Bit
时钟	PS 时钟输入 33.333333MHz,PL 时钟输入 50MHz
JTAG	板载 USB Cable 电路,可以在线调试与下载, 无需额外购买下载器/仿真器
Flash	256Mbit QSPI Flash

网络	10/100/1000M 自适应
USB Host	USB2.0,标准 A 型接口
USB Slave	USB2.0,标准 Micro USB 接口
Wi-Fi 无线	802.11b/g/n
蓝牙	4.0 双模
天线	Wi-Fi 和蓝牙共用,板载陶瓷天线及 IPX 天线接口
串口	USB 转 UART,标准 Micro USB 接口
TF 卡槽	Micro SD 卡槽一个
HDMI TX	一路 HDMI 输出接口,最高可支持 1080p@60Hz
HDMI RX	一路 HDMI 输入接口,仅 Mizar Z7020 支持
MIPI CSI	一路 MIPI CSI 摄像头接口,仅 Mizar Z7020 支持
按键	7个按键,4个PL按键,2个PS按键,1个系统复位按键
LED	8 个 LED, 4 个 PL 控制, 2 个 PS 控制, 1 个配置状态, 1 个电源状态
GPIO 扩展口	2 组 40pin,2.54mm 间距,共 72 个 GPIOs, 48 个 IOs 电压可调,24 个 IO 电压 3.3V
PCB	8 层沉金工艺, 125*90mm
供电	5V/2A, 或通过 40pin 的电源脚供电。

2.4 机械尺寸

MIZAR Z7 机械尺寸为: 125*90mm, 尺寸图如

Figure 2-4 MIZAR Z7 机械尺寸图

3. 硬件资源

3.1 ZYNQ 芯片

MIZAR Z7 使用 Xilinx Zynq-7000 SoC 作为核心芯片,型号为: XC7Z010CLG400-1, XC7Z020CLG400-2, Zynq-7000 系列芯片是将双核 ARM Cortex-A9 处理器和 FPGA 可编程逻辑单元集成在一颗单芯片中,从而构成了 PS(Processing System)加 PL(Programmable Logic)的单芯片 SoC 解决方案。芯片的 PS 系统集成了两个 ARM Cortex-A9 处理器,AMBA 互连,内部存储器,外部存储器接口和外设。这些外设主要包括以太网接口,SD/SDIO 接口,USB总线接口,I2C总线接口,SPI总线接口,CAN总线接口,UART接口,GPIO等。PS 可以独立运行并在上电或复位下启动。

Zynq-7000 整体框图如 Figure 3-1 所示:

Figure 3-1 Zynq-7000 Block Diagram

其中 PS 部分的资源如下:

- 双核 ARM Cortex-A9 处理器,支持对称和非对称配置,ARM-V7 指令集,主频高达 766MHz
- 32KB 指令和 32KB 数据 L1 缓存, 512KB 共享 L2 缓存。
- 片上 Boot ROM 和 256KB 的片上 SRAM。
- 外部存储接口,支持 16/32 bit DDR3, DDR3L, DDR2, LPDDR-2 接口
- Quad-SPI 控制器
- 两个千兆网卡支持: DMA, GMII, RGMII, SGMII 接口
- 两个 USB2.0 OTG 接口,每个最多支持 12 节点
- 两个 CAN2.0B 总线接口
- 两个SD卡、SDIO、MMC兼容控制器
- 2个SPI, 2个UARTs, 2个I2C接口
- 4 组 32bit GPIO, 54 (32+22) 作为 PS 系统 IO, 64 连接到 PL
- PS 内和 PS 到 PL 的高带宽连接

其中 PL 部分的资源如下:

- 逻辑单元 Logic Cells: 74K;
- 查找表 LUTs: 46,200
- 触发器(flip-flops): 92,400
- 乘法器 18x25MACCs: 160;
- Block RAM: 3.3Mb;
- 4路 6.25Gbps 高速 GTP 收发器, 支持 PCIE Gen2x4;
- 2 个 AD 转换器,可以测量片上电压、温度感应和高达 17 外部差分输入通道, 1Mbps

MIZAR Z7 上使用的 FPGA 芯片型号为: XC7Z015-2CLG485I,

Zyng-7000 FPGA 型号定义如下:

Figure 3-2 Zynq-7000 命名规则

Zynq-7000 资源表如果 Figure 3-3 所示:

Z	ynq®-7	000 So	C Fa	mily	,							
					Cost-Optim	ized Device	s			Mid-Ran	ge Devices	
		Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100
		Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100
										Dua	l-Core	
		Processor Core	Arm® Co	ortex®A9 M	1PCore™	Arm C	Cortex-A9 M	IPCore	Arm Cortex-A9 MPCore			
			U	p to 766MI	Ηz	U	p to 866MH	Ηz		Up to	1GHz ⁽¹⁾	
SS	F	rocessor Extensions		-	NEON™ SIM	D Engine ar	nd Single/Do	ouble Precis	ion Floating Po	int Unit per p	rocessor	
Processing System (PS)		L1 Cache				32k	(B Instruction	on, 32KB Da	ta per process	or		
ten		L2 Cache						512KB				
Sys		On-Chip Memory						256KB				
Be	Externa	I Memory Support (2)					DDR3, D	DR3L, DDR2	2, LPDDR2			
SSi	External Stati	Memory Support ⁽²⁾					2x Qu	ad-SPI, NAN	ID, NOR			
900		DMA Channels					8 (4	dedicated	to PL)			
P.		Peripherals				2x UAF	RT, 2x CAN 2	2.0B, 2x I2C	2x SPI, 4x 32b	GPIO		
	Periphera	ls w/ built-in DMA ⁽²⁾				2x USB 2.0 (OTG), 2x Tri	i-mode Giga	bit Ethernet, 2	2x SD/SDIO		
		Security ⁽³⁾							Stage Boot Loa	,		
		Jecurity	AES and SHA 256b Decryption and Authentication for Secure Boot									
	F	Processing System to		2x AXI 32b Master, 2x AXI 32b Slave								
		Logic Interface Ports	4x AXI 64b/32b Memory									
		es & Interrupts Only)						AXI 64b AC	•			
	<u> </u>		A - 1 '- ® - 7	Austra 7	A 12 7	A		16 Interrup		10°-17	W-1	10'-1 7
	/	Series PL Equivalent	Artix®-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7	Kintex®-7	Kintex-7	Kintex-7	Kintex-7
		Logic Cells	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K
<u>- E</u>	LC	ook-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900 343,800	218,600	277,400 554,800
ji O		Flip-Flops Total Block RAM	28,800 1.8Mb	68,800	81,200	35,200	92,400	106,400	157,200	,	437,200 19.2Mb	,
9		(# 36Kb Blocks)		2.5Mb	3.8Mb	2.1Mb	3.3Mb	4.9Mb	9.3Mb	17.6Mb		26.5Mb
<u>e</u>		DSP Slices	(50) 66	(72) 120	(107) 170	(60) 80	(95) 160	(140) 220	(265) 400	(500) 900	(545) 900	(755) 2,020
nak		PCI Express®	_	Gen2 x4	170	_	Gen2 x4	_	Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8
Ē	Analog Mixed Signal (AMS) / XADC ⁽²⁾											
Programmable Logic (PL)	Alialog ivlixed Si											
Pro		Security ⁽³⁾ Commercial		-1	LJ & JIIA Z	Deciyp	-1	citicationi	Jecule Flog	-1	ic comig	-1
	Speed Grades	Extended		-2			-2,-3			-2,-3		-2
	Speed Grades	Industrial		-12			-2,-3 -121L			-2,-3 -1, -2, -2L		-122L
		industriai		-1, -2			-1, -2, -1L			-I, -Z, -ZL		-1, -Z, -ZL

Figure 3-3 Zynq-7000 FPGA 资源表

3.2 ZYNQ 启动模式

ZYNQ 的启动模式通过 MIZAR Z7 开发板上的拨码开关 J1 的 ON/OFF 状态去配置。 MIZAR Z7 支持三种启动模式,分别为: SD 卡启动,QSPI 启动,JTAG 模式。ZYNQ 系统上电后,会检测相应管脚的电平状态决定何种方式启动,用户可以通过拨码开关 J1 开关状态去选择启动模式。

MIZAR Z7 的启动方式配置原理图如下图 Figure 3-4 所示

Boot Mode	MIO[5] (QSPI_DQ3)	MIO[4] (QSPI_DQ2)		
JTAG	0	0		
NAND	0	1		
QSPI	1	0		
SD Card	1	1		

Figure 3-4 MIZAR Z7 启动配置原理图

注: MIZAR Z7 不支持 NAND 启动

3.3 JTAG

MIZAR Z7 提供 USB 下载接口,在电路板上板载了 USB JTAG Cable 的下载电路,用户只需要一根 Micro USB 线就可以对 ZYNQ 进行下载程序,在线调试程序,用户无需额外购买专用下载器,这样极大降低用户的使用成本。

MIZAR Z7 的 JTAG 原理图如图 Figure 3-5 所示

Figure 3-5 MIZAR Z7 USB JTAG 实物图

3.4 时钟

MIZAR Z7 开发板提供了 2 路有源时钟,分别提供给 PS 系统和 PL 逻辑部分,PS 系统和 PL 逻辑可以独立工作。

MIZAR Z7 时钟与 Zynq-7000 SoC 连接示意图如下图 Figure 3-6 所示

Figure 3-6 时钟与 ZYNQ 连接示意图

PS 系统时钟

MIZAR Z7 开发板上为 PS 系统提供了 33.33333MHz 的有源时钟,时钟的输入连接到 ZYNQ 芯片的 BANK500 的 PS_CLK_500 的管脚上。

PS 系统时钟原理图如下图 Figure 3-7 所示:

Figure 3-7 PS 系统时钟电路图

PS 时钟输入分配如下表 Table 3-1 所示:

信号名	ZYNQ Pin Name	Pin Num
PS_CLK_33d3	PS_CLK_500	E7

Table 3-1 PS 时钟输入管脚分配

PL 系统时钟

MIZAR Z7 开发板上为 PL 系统提供了 50MHz 的有源时钟,时钟的输入连接到 ZYNQ 芯片的 BANK13 的管脚 Y14 上。

PL 时钟输入分配如下表 Table 3-2 所示:

信号名	ZYNQ Pin Num.	描述
PL_CLK_50M	H16	连接至 Bank13 MRCC

Table 3-2 PL 时钟输入管脚分配

3.5 复位

MIZAR Z7 开发板上提供了一路系统硬复位,低电平有效,复位按键 K1 经过复位电源监控芯片后,输出信号至 ZYNQ 管脚的 PS_POR_B,当然 K1 按下时为低时,或者板 3.3V 电源的电压低于 2.93V,将会产生系统复位。

复位电路原理图如下图 Figure 3-8 所示:

Figure 3-8 复位电路电路图

复位信号与 FPGA 连接分配表

Signal Name	FPGA Pin	说明		
POR_nRST	B18	复位信号使能,或 3.3V 电源输出低于 2.93V		

Table 3-3 系统硬件复位管脚分配

3.6 PS 侧外设

3.6.1 DDR3 RAM

模块采用两片 16 位的 DDR3 内存芯片,Mizar Z7010 版为 512MB,Mizar Z7020 版为 1GB, 数据位宽为 32 位。所使用 DDR3 型号,Mizar Z7010 参数兼容 MT41J128M16 HA-125 (在 Vivado ZYNQ 开发过程中,DDR3 型号可使用 MT41J128M16 HA-125),Mizar Z7020 参数兼容 MT41J256M16 RE-125(在 Vivado ZYNQ 开发过程中,DDR3 型号可使用 MT41J256M16 RE-125)。DDR3 SDRAM 的最高运行时钟速度可达 533MHz(数据速率

1066Mbps), DDR3 芯片连接到 PS BANK 502 存储器接口上。DDR 控制器接口 PS BANK 502, 32bit 数据总线。

DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制,保证 DDR3 的高速稳定的工作。

ZYNQ PS Bank502 与 DDR3 硬件连接示意图如下图 Figure 3-9 所示

Figure 3-9 ZYNQ 与 DDR3 连接示意图

3.6.2 QSPI Flash

模块板载一片 256MBit 大小的 QSPI Flash,型号为 W25Q256FVEI,厂商为 Winbond,它使用 3.3V CMOS 电压标准。可以用于引导 SoC 系统启动,初始化 PS 并配置 PL 部分,以及系统 ARM 系统,即它可以作为系统的启动设备来存储系统的启动镜像。这些镜像主要包括 FPGA 的 bit 文件、ARM 的应用程序代码以及其它的用户数据文件。QSPI 连接到 ZYNQ PS 下的 BANK500 MIO[1-6]。

QSPI 与 ZYNQ 硬件连接示意图如下图 Figure 3-10 所示

Figure 3-10 QPSI 与 ZYNQ 连接示意图

QSPI 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name
QSPI_CS	A7	PS_MIO1_500
QSPI_CLK	A5	PS_MIO6_500
QSPI_DQ0	B8	PS_MIO2_500
QSPI_DQ1	D6	PS_MIO3_500
QSPI_DQ2	В7	PS_MIO4_500
QSPI_DQ3	A6	PS_MIO5_500

Table 3-4 QSPI 信号管脚分配

3.6.3 Wi-Fi

Mizar Z7 提供了 Wi-Fi&BLE 无线通信,Wi-Fi 接到 ZYNQ PS 的 SD/SDIO 1 接口上,BLE 的 UART 信号接到 ZYNQ PL Bank35 IO 上,在系统开发过程中,可以通过 EMIO 接口,将BLE 连接到 ARM 下,无线模块支持:

- Wi-Fi 802.11b/g/n
- Bluetooth V4.0

板卡上提供两种天线,一种是陶瓷天线,一种是 IPEX 天线,默认使用陶瓷天线,用户可以通过焊接电容 C127,C128 来选择何种天线。

ZYNQ 与无线模块接口

- 6 个 WI-FI 的 SDIO 信号全部连接到 ZYNQ PS IO
- 2 个 BLE 的 UART 信号连到 ZYNQ PL IO
- 5 个控制信号连接到 ZYNQ

WIFI_HOST_WAKE

WIFI REG ON

BT WAKE

BT_HOST_WAKE

BT nRESET

• PCM 接口没有连接, PCM 主要用来做蓝牙语音传输。

Wi-Fi 与 ZYNQ 硬件连接示意图如下图 Figure 3-11 所示

Figure 3-11 eMMC 与 ZYNQ 连接示意图

Wi-Fi 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
WIFI_REG_ON	D5	PS 侧,Wi-Fi 模块电源使能
WIFI_SDIO_CLK	D9	PS 侧,SDIO 时钟信号
WIFI_SDIO_CMD	C6	PS 侧,SDIO 命令信号
WIFI_SDIO_DATA0	E9	PS 侧,SDIO 数据信号 0
WIFI_SDIO_DATA1	E8	PS 侧,SDIO 数据信号 1
WIFI_SDIO_DATA2	C5	PS 侧,SDIO 数据信号 2
WIFI_SDIO_DATA3	C8	PS 侧,SDIO 数据信号 3
WIFI_HOST_WAKE	B5	PS 侧,Wi-Fi 模块唤醒信号
BT_FM_UART_RXD	E19	PL 侧,BT UART 接受信号

BT_FM_UART_TXD	D18	PL 侧,BT UART 发送信号
BT_HOST_WAKE	M17	PL 侧,BT 主站唤醒信号
BT_NRESET	E18	PL 侧,BT 复位信号
BT_WAKE	M18	PL 侧,BT 唤醒信号

Table 3-5 Wi-Fi 信号管脚分配

3.6.4 千兆以太网

MIZAR Z7 在 PS 接口上集成了一片 10/100/1000M 以太网 PHY 芯片,采用的是 Realtek 公司的 RTL8211E,数字接口工作在 1.8V,以太网 PHY 芯片连接到 ZYNQ PS Ethernet0,对应的管脚在 Bank501 上,用户可以非常方便地使用它实现以太网的相关应用。

以太网 PHY 通过 RGMII 接口与 ZYNQ 的以太网 MAC 相连,同时 ZYNQ 可以通过 MDIO 网口管理接口去配置 PHY 芯片的寄存器,芯片支持 MDI/MDIX 交叉自适应,MDI 收发信号则连接到 B2B 连接器 JM3 上,用户只需将这些信号连接 RJ45 连接器即可完成网口的设计,非常简单易用。

以太网 PHY RTL8211 与 ZYNQ 连接示意图如图 Figure 3-12 所示

Figure 3-12 以太网连接示意图

RTL8211 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name	说明
ETH_TXCK	A19	PS_MIO16_501	RGMII 发送时钟
ETH_TXD0	E14	PS_MIO17_501	RGMII 数据发送位 0
ETH_TXD1	B18	PS_MIO18_501	RGMII 数据发送位 1
ETH_TXD2	D10	PS_MIO19_501	RGMII 数据发送位 2
ETH_TXD3	A17	PS_MIO20_501	RGMII 数据发送位 3
ETH_TXCTL	F14	PS_MIO21_501	RGMII 发送控制信号,使能信号
ETH_RXCK	B17	PS_MIO22_501	RGMII 接受时钟
ETH_RXD0	D11	PS_MIO23_501	RGMII 数据接受位 0
ETH_RXD1	A16	PS_MIO24_501	RGMII 数据接受位 1

ETH_RXD2	F15	PS_MIO25_501	RGMII 数据接受位 2
ETH_RXD3	A15	PS_MIO26_501	RGMII 数据接受位 3
ETH_RXCTL	D13	PS_MIO27_501	RGMII 接受有效信号
ETH_MDC	C10	PS_MIO52_501	管理接口时钟
ETH_MDIO	C11	PS_MIO53_501	管理接口数据

Table 3-6 以太网管脚分配表

3.6.5 USB接口

MIZAR Z7 在 PS 接口上集成了一片 USB 2.0 ULPI 收发器芯片,采用的是 Microchip 公司的 USB3320,数字接口工作在 1.8V,USB PHY 芯片连接到 ZYNQ PS USB0,对应的管脚在 Bank501 上,用户可以它拓展成 Device Mode, OTG Mode, Host Mode。

USB 收发器定义成 OTG 模式,可以工作在 Host 和 Slave 两种模式,当工作在 Host 模式,USB 需要向 USB 设备提供 5V 电源到 USB 接口上,用户可以通过开发板上 USB-Type A (J3)接口来接外设,此时需要把跳线帽 J5 短接来实现对外部从设备提供电源;当工作在 Slave 模式,可以通过开发板上 USB-micro(J4)接口来连接外部主设备,此时需要把 J5 断开。

USB PHY USB3320 与 ZYNQ 连接示意图如图 Figure 3-13 所示

Figure 3-13 USB 连接示意图

USB3320 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name	说明
OTG_NRST	D16	PS_MIO8_500	OTG reset, low active
OTG_CLK	A11	PS_MIO36_501	ULPI clock output
OTG_DATA0	A14	PS_MIO32_501	ULPI bi-directional Data0
OTG_DATA1	D15	PS_MIO33_501	ULPI bi-directional Data1
OTG_DATA2	A12	PS_MIO34_501	ULPI bi-directional Data2
OTG_DATA3	F12	PS_MIO35_501	ULPI bi-directional Data3
OTG_DATA4	C16	PS_MIO28_501	ULPI bi-directional Data4
OTG_DATA5	A10	PS_MIO37_501	ULPI bi-directional Data5
OTG_DATA6	E13	PS_MIO38_501	ULPI bi-directional Data6
OTG_DATA7	C18	PS_MIO39_501	ULPI bi-directional Data7

OTG_DIR	C13	PS_MIO29_501	Controls the direction of the data bus
OTG_NXT	E16	PS_MIO31_501	OTG NXT signal
OTG_STP	C15	PS_MIO30_501	OTG STP signal

Table 3-7 USB 管脚分配表

3.6.6 SD Card

MIZAR Z7 在 PS 接口上提供了一路 Micro SD 卡,Micro SD 卡可以用于存储 Zynq 芯片的 BOOT 程序,操作系统内核, 文件系统以及其它的用户数据文件。

Micro SD 卡槽连接到 ZYNQ PS SDIO0,对应的管脚在 Bank501 的 MIO[40-45]上,由于 PS 的 Bank501 的 IO 电压是 1.8V,Micro SD Card 的 IO 电压是 3.3V 接口,因此在 SD 卡与 ZYNQ 之间需要加一个 TXS02612 电平转换芯片。

PS SDIO 信号与 SD 卡槽连接示意图如图 Figure 3-14 所示

Figure 3-14 PS MIO 与连接器连接示意图

SD 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name
SD_CLK	D14	PS_MIO40_501

SD_CMD	C17	PS_MIO41_501
SD_DATA0	E12	PS_MIO42_501
SD_DATA1	A9	PS_MIO43_501
SD_DATA2	F13	PS_MIO44_501
SD_DATA3	B15	PS_MIO45_501

Table 3-8 SD 信号与 ZYNQ 管脚连接分配表

3.6.7 USB 串口

MIZAR Z7 在 PS 侧提供了一路 UART-to-USB 接口,即 USB 串口,用于 PS 的系统通信,使用的芯片是 Silicon Labs CP2102,USB 接口采用 Micro USB 接口,用户可以用一根 Micro USB 数据线连接到 PC 上实现通信。PS 的 UART1 接口分配到 Bank501 MIO[48-49]。

USB-UART 的数字 IO 电压是 3.3V 接口, PS 的 Bank501 的 IO 电压是 1.8V, 因此在 USB-UART 芯片与 ZYNQ 之间需要加一个 TXS0102 电平转换芯片。

PS UART 信号与 USB 连接器连接示意图如图 Figure 3-15 所示

Figure 3-15 UART 与 USB 连接示意图

UART 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name
UART_TX	B12	PS_MIO48_501
UART_RX	C12	PS_MIO49_501

Table 3-9 UART 信号与 ZYNQ 管脚连接分配表

3.6.8 用户按键

MIZAR Z7 在 PS 侧提供了两个用户按键(K2~K3),按键默认状态是上拉状态,即没有按下按键时,对应的 FPGA 芯片管脚输入信号为高电平; 当按键按下后,对应的 FPGA 的管脚输入信号为低电平。

PS KEY 与 ZYNQ 连接示意图如图 Figure 3-16 所示

Figure 3-16 PS KEY 与 ZYNQ 连接示意图

PS KEY 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name
PS_KEY1	E6	PS_MIO40_500

PS_KEY2	B14	PS_MIO47_501	
---------	-----	--------------	--

Table 3-10 PS KEY 与 ZYNQ 管脚连接分配表

3.6.9 用户 LED

MIZAR Z7 在 PS 侧提供了两个用户 LED (D4~D5) , 当 FPGA 对应的管脚输出低电平时,LED 会发亮;输出高电平时,LED 会熄灭。

PS LED 与 ZYNQ 连接示意图如图 Figure 3-17 所示

Figure 3-17 PS LED 与 ZYNQ 连接示意图

PS LED 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	Pin Name
PS_LED1	B13	PS_MIO50_500
PS_LED2	В9	PS_MIO51_501

Table 3-11 PS LED 与 ZYNQ 管脚连接分配表

3.7 PL 侧接口

3.7.1 HDMI TX (HDMI1)

此 HDMI 亦可配置 HDMI 输入。

HDMI,全称为高清晰度多媒体视频输出接口。Mizar Z7 开发板上提供了一个高清 HDMI 的视频接口,HDMI 接口为 Type-A 型, HDMI 的差分时钟和数据直接接到 ZYNQ 的 PL 侧的 IO 口上,在 FPGA 内部实现 HMDI 信号的差分转并行再进行编解码,实现 DMI 数字视频输入和输出的传输解决方案,最高支持 1080P@60Hz 的输入和输出的功能。

HDMI 采用和 DVI 相同的传输原理,即 TMDS 标准,ZYNQ 中 PL 侧的 IO 结构是支持 TMDS,可以用 FPGA 直接驱动 HDMI 信号或接受 HDMI 信号。同时,HDMI 的信号是可以 支持 DVI 信号,用户可以用一个 HDMI 转 DVI 的适配器,无需修改程序,可以支持 DVI 接口的显示器。

HDMI 有 19 个引脚,包含了三对差分数据信号,一对差分时钟信号,五个地脚,一线制 CEC 信号总线,两线制的 DDC 信号总线,还包含 I2C 总线,一个热插拔监测 HPD 信号,5V 电源以及一个保留引脚。HDMI 的信号全部连接 Bank35 上。

HDMI 与 ZYNQ 连接示意图如图所示

Figure 3-18 ZYNQ 与 HDMI1 连接示意图

HDMI 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
HDMI1_CLK_N	K18	HDMI TMDS 时钟
HDMI1_CLK_P	K17	HDMI TMDS 时钟
HDMI1_D0_N	G20	HDMI TMDS 数据
HDMI1_D0_P	G19	HDMI TMDS 数据
HDMI1_D1_N	F20	HDMI TMDS 数据
HDMI1_D1_P	F19	HDMI TMDS 数据
HDMI1_D2_N	D20	HDMI TMDS 数据
HDMI1_D2_P	D19	HDMI TMDS 数据
HDMI1_HPD	F16	HDMI 热插拔检测信号

HDMI1_I2C_SCL	F17	HDMI I2C 总线时钟信号
HDMI1_I2C_SDA	M19	HDMI I2C 总线数据信号
HDMI1_OUT_EN	M20	HDMI 输出使能

Table 3-12 HDMI1 信号与 ZYNQ 分配表

3.7.2 HDMI RX(HDMI2)

此 HDMI 仅在 7020 版支持,它亦可配置 HDMI 输出。

和 HDMI TX 相比,两者电路完全一致,所以两个 HDMI 接口既可以配置成 HDMI 发送,又可以配置成 HDMI 接受,这是由于 HDMI 的信号是由 FPGA IO 模拟产生,FPGA 内部 实现 HDMI 编解码功能,而 FPGA IO 包括时钟是双向 IO,可以配置成输入,也可以配置成输出,所以说两个 HMDI 接口即可以做成 HDMI 输入,亦可配置成 HDMI 输出。

此路 HDMI 连接到 ZYNQ Bank13,由于 Bank13 在 7010 上管脚是 NC,所以此路 HDMI 仅 7020 版本支持,7010 版不支持。

HDMI 与 ZYNQ 连接示意图如图所示

Figure 3-19 ZYNQ 与 HDMI2 连接示意图

HDMI 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
HDMI2_CLK_P	Y7	HDMI TMDS 时钟
HDMI2_CLK_N	Y6	HDMI TMDS 时钟
HDMI2_D0_P	T5	HDMI TMDS 数据
HDMI2_D0_N	U5	HDMI TMDS 数据
HDMI2_D1_P	U7	HDMI TMDS 数据
HDMI2_D1_N	V7	HDMI TMDS 数据
HDMI2_D2_P	V8	HDMI TMDS 数据
HDMI2_D2_N	W8	HDMI TMDS 数据
HDMI2_HPD	U8	HDMI 热插拔检测信号

HDMI2_I2C_SCL	V6	HDMI I2C 总线时钟信号
HDMI2_I2C_SDA	W6	HDMI I2C 总线数据信号
HDMI2_OUT_EN	V5	HDMI 输出使能

Table 3-13 HDMI2 信号与 ZYNQ 分配表

3.7.3 MIPI CSI

Mizar Z7上的 MIPI CSI 端口是一个 15 针、1 mm 间距的上接触 FPC 连接器,设计用于连接 MIPI 接口的摄像头。MIPI FPC 连接器引脚定义兼容树莓派摄像头,这些信号定义包括 MIPI CSI-2 总线、用于 Camera 配置的 I2C 总线,双向通用 IO 以及 3.3V 的供电。

MIPI CSI-2 总线连接到 ZYNQ PL IO 上。Xilinx 应用说明 XAPP894 D-PHY 解决方案中描述的准则遵循了这些准则,以便使用 Zynq 实现兼容的 D-PHY 接收器。该接口经过测试,可在每个通道上以高达 672 Mbps 的速度运行。根据 Zynq-7000 芯片规格,每个 Lane 的速度高达 950 Mbps。

MIPI CSI-2 接收器 IP 内核可从 Xilinx 获得,包括嵌入式 Linux 支持。它需要许可证才能使用,但也有可能免费从 Xilinx 获得评估许可证。

MIPI CSI 与 ZYNQ 连接示意图如图所示

Figure 3-20 MIPI CSI 与 ZYNQ 连接示意图

MIPI CSI 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
LP_CLK_P	Y9	MIPI CLK
LP_CLK_N	Y8	MIPI CLK
LP_LANEO_P	Y12	MIPI Lane0 data
LP_LANEO_N	Y13	MIPI Lane0 data
LP_LANE1_P	V11	MIPI Lane1 data
LP_LANE1_N	V10	MIPI Lane1 data
CAM_CLK	U9	可做 GPIO,
CAM_GPIO	H17	Default NC
CAM_SCL	A20	I2C 时钟,和 EEPROM 共用
CAM_SDA	E17	I2C 数据,和 EEPROM 共用

Table 3-14 MIPI CSI 与 ZYNQ 管脚连接分配表

3.7.4 EEPROM

MIZAR Z7 在 PL 提供了一片 32Kb 的 EERPOM 芯片,型号为 24C32,32Kb (4K x 8), EEPROM 应用很广泛,在嵌入设备里,可以存储设备的信息,包括型号,序列号,版本信息,网络地址等等。EERPOM 的接口采用的是 I2C,连接 PL Bank35 IO 上,用户可以通过 I2C 的接口读写 EEPROM,无论是 PL 直接访问,或者 PS 通过 EMIO 访问都可以,用户可以根据的自己的实际应用去做选择。

EEPROM 与 ZYNQ PL 连接示意图如图所示

Figure 3-21 EEPROM 与 ZYNQ PL 连接示意图

EEPROM 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
EEPROM_I2C_SCL	V6	I2C 总线时钟信号

EEPROM_I2C_SDA	W6	I2C 总线数据信号
----------------	----	------------

Table 3-15 EEPROM 与 ZYNQ 管脚连接分配表

3.7.5 用户按键

MIZAR Z7 在 PL 侧提供了四个用户按键(K4~K7),按键默认状态是上拉状态,即没有按下按键时,对应的 FPGA 芯片管脚输入信号为高电平; 当按键按下后,对应的 FPGA 的管脚输入信号为低电平。

PL KEY 与 ZYNQ 连接示意图如图所示

Figure 3-22 PL KEY 与 ZYNQ 连接示意图

PL KEY 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
PL_KEY1	R19	用户 KEY1,按下时为低
PL_KEY2	T19	用户 KEY2,按下时为低
PL_KEY3	J15	用户 KEY3,按下时为低

PL_KEY4	B19	用户 KEY4,按下时为低
---------	-----	---------------

Table 3-16 PL KEY 与 ZYNQ 管脚连接分配表

3.7.6 用户 LED

MIZAR Z7 在 PL 侧提供了四个用户 LED (D6~D9) ,当 FPGA 对应的管脚输出低电平时,LED 会发亮;输出高电平时,LED 会熄灭。

PL LED 与 ZYNQ 连接示意图如图 Figure 3-17 所示

Figure 3-23 PL LED 与 ZYNQ 连接示意图

PL LED 与 ZYNQ 管脚连接分配表

Signal Name	FPGA Pin	说明
PL_LED1	G14	用户 LED1,输出为低时亮
PL_LED2	C20	用户 LED2,输出为低时亮
PL_LED3	B20	用户 LED3,输出为低时亮

PL_LED4	H17	用户 LED4,输出为低时亮
---------	-----	----------------

Table 3-17 PL LED 与 ZYNQ 管脚连接分配表

3.7.7 GPIO 扩展口

Mizar Z7 提供 2 组 2x20 40Pin GPIO 扩展口,间距 2.54mm,位号为 JP1,JP2。每组 扩展口包含一个+5V(VCC_5V),一个 3.3V(VCC_3V3),2 个 GND,36 个用户 GPIO。用户可以通过扩展口来实现自己的功能或接口扩展。也可以选择微相出品的扩展子卡来实现自己的应用,目前微相推出: ADDA 模块,液晶屏模块,千兆以太网模块, 500w 双目视觉摄像头模块。JP1,JP2 的 IO 在 PCB 设计上使用了差分走线,阻抗为 100 欧姆。

扩展口 JP1

扩展口 JP1 与 ZYNQ 连接示意图

Figure 3-24 扩展口 JP1 与 ZYNQ 连接示意图

扩展口 JP1 原理图如下图所示

Figure 3-25 扩展口 JP1 原理图

扩展口 JP1 与 ZYNQ 管脚连接分配表

JP1 Pin No.	Signal Name	FPGA Pin No.	说明
1	GPIO1_0P	N18	JP1 GPIO1_0P,电压可调
2	GPIO1_0N	P19	JP1 GPIO1_0N,电压可调
3	GPIO1_1P	N17	JP1 GPIO1_1P,电压可调
4	GPIO1_1N	P18	JP1 GPIO1_1N,电压可调
5	GPIO1_2P	N20	JP1 GPIO1_2P,电压可调
6	GPIO1_2N	P20	JP1 GPIO1_2N,电压可调
7	GPIO1_3P	T17	JP1 GPIO1_3P,电压可调
8	GPIO1_3N	R18	JP1 GPIO1_3N,电压可调
9	GPIO1_4P	T20	JP1 GPIO1_4P,电压可调
10	GPIO1_4N	U20	JP1 GPIO1_4N,电压可调

11	VCC_5V	-	电源 5V
12	GND	-	地
13	GPIO1_5P	V20	JP1 GPIO1_5P,电压可调
14	GPIO1_5N	W20	JP1 GPIO1_5N,电压可调
15	GPIO1_6P	Y18	JP1 GPIO1_6P,电压可调
16	GPIO1_6N	Y19	JP1 GPIO1_6N,电压可调
17	GPIO1_7P	Y16	JP1 GPIO1_7P,电压可调
18	GPIO1_7N	Y17	JP1 GPIO1_7N,电压可调
19	GPIO1_8P	W18	JP1 GPIO1_8P,电压可调
20	GPIO1_8N	W19	JP1 GPIO1_8N,电压可调
21	GPIO1_9P	U18	JP1 GPIO1_9P,电压可调
22	GPIO1_9N	U19	JP1 GPIO1_9N,电压可调
23	GPIO1_10P	V16	JP1 GPIO1_10P,电压可调
24	GPIO1_10N	W16	JP1 GPIO1_10N,电压可调
25	GPIO1_11P	V15	JP1 GPIO1_11P,电压可调
26	GPIO1_11N	W15	JP1 GPIO1_11N,电压可调
27	GPIO1_12P	W14	JP1 GPIO1_12P,电压可调
28	GPIO1_12N	Y14	JP1 GPIO1_12N,电压可调
29	VCC_3V3	-	电源 3.3V
30	GND	-	地
31	GPIO1_13P	U14	JP1 GPIO1_13P,电压可调
32	GPIO1_13N	U15	JP1 GPIO1_13N,电压可调
33	GPIO1_14P	U13	JP1 GPIO1_14P,电压可调
34	GPIO1_14N	V13	JP1 GPIO1_14N,电压可调

35	GPIO1_15P	V12	JP1 GPIO1_15P,电压可调
36	GPIO1_15N	W13	JP1 GPIO1_15N,电压可调
37	GPIO1_16P	T12	JP1 GPIO1_16P,电压可调
38	GPIO1_16N	U12	JP1 GPIO1_16N,电压可调
39	GPIO1_17P	T11	JP1 GPIO1_17P,电压可调
40	GPIO1_17N	T10	JP1 GPIO1_17N,电压可调

Table 3-18 扩展口 JP1 与 ZYNQ 管脚连接分配表

扩展口 JP2

扩展口 JP2 与 ZYNQ 连接示意图

Figure 3-26 扩展口 JP1 与 ZYNQ 连接示意图

Figure 3-27 扩展口 JP1 原理图

扩展口 JP2 与 ZYNQ 管脚连接分配表

JP1 Pin No.	Signal Name	FPGA Pin No.	说明
1	GPIO2_0P	J18	JP2 GPIO2_0P,电压 3.3V
2	GPIO2_0N	H18	JP2 GPIO2_0N,电压 3.3V
3	GPIO2_1P	G17	JP2 GPIO2_1P,电压 3.3V
4	GPIO2_1N	G18	JP2 GPIO2_1N,电压 3.3V
5	GPIO2_2P	K14	JP2 GPIO2_2P,电压 3.3V
6	GPIO2_2N	J14	JP2 GPIO2_2N,电压 3.3V
7	GPIO2_3P	H15	JP2 GPIO2_3P,电压 3.3V
8	GPIO2_3N	G15	JP2 GPIO2_3N,电压 3.3V
9	GPIO2_4P	J20	JP2 GPIO2_4P,电压 3.3V
10	GPIO2_4N	H20	JP2 GPIO2_4N,电压 3.3V

11	VCC_5V		电源 5V
12	GND		地
13	GPIO2_5P	L14	JP2 GPIO2_5P,电压 3.3V
14	GPIO2_5N	L15	JP2 GPIO2_5N,电压 3.3V
15	GPIO2_6P	K19	JP2 GPIO2_6P,电压 3.3V
16	GPIO2_6N	J19	JP2 GPIO2_6N,电压 3.3V
17	GPIO2_7P	K16	JP2 GPIO2_7P,电压 3.3V
18	GPIO2_7N	J16	JP2 GPIO2_7N,电压 3.3V
19	GPIO2_8P	L19	JP2 GPIO2_8P,电压 3.3V
20	GPIO2_8N	L20	JP2 GPIO2_8N,电压 3.3V
21	GPIO2_9P	L16	JP2 GPIO2_9P,电压 3.3V
22	GPIO2_9N	L17	JP2 GPIO2_9N,电压 3.3V
23	GPIO2_10P	M14	JP2 GPIO2_10P,电压 3.3V
24	GPIO2_10N	M15	JP2 GPIO2_10N,电压 3.3V
25	GPIO2_11P	N15	JP2 GPIO2_11P,电压 3.3V
26	GPIO2_11N	N16	JP2 GPIO2_11N,电压 3.3V
27	GPIO2_12P	P15	JP2 GPIO2_12P,电压可调
28	GPIO2_12N	P16	JP2 GPIO2_12N,电压可调
29	VCC_3V3		电源 3.3V
30	GND		地
31	GPIO2_13P	R16	JP2 GPIO2_13P,电压可调
32	GPIO2_13N	R17	JP2 GPIO2_13N,电压可调
33	GPIO2_14P	V17	JP2 GPIO2_14P,电压可调
34	GPIO2_14N	V18	JP2 GPIO2_14N,电压可调

35	GPIO2_15P	T16	JP2 GPIO2_15P,电压可调
36	GPIO2_15N	U17	JP2 GPIO2_15N,电压可调
37	GPIO2_16P	T14	JP2 GPIO2_16P,电压可调
38	GPIO2_16N	T15	JP2 GPIO2_16N,电压可调
39	GPIO2_17P	P14	JP2 GPIO2_17P,电压可调
40	GPIO2_17N	R14	JP2 GPIO2_17N,电压可调

Table 3-19 扩展口 JP2 与 ZYNQ 管脚连接分配表

3.7.8 GPIO 电压调整

扩展口中 JP1 的全部 IO 和 JP2 中 12 个 IO, 共 48 个 IO 的电压可调,这些 IO 在 Mizar Z7 出厂默认配置成 3.3V, 用户如想调整这些 IO 的电压,可以通过更换电阻来调整 IO 电压。

通过将 0 欧姆电阻选择贴装到 R208,R209,R210 上,来更改 VCCIO34 的电压,即可调整 IO 的电压,注意 R208,R209,R210 只能贴一个。

出厂默认:贴装 R208

贴R208 : 3.3V 贴R209 : 2.5V

贴R210 : 1.8V

R208,R209,R210只能贴一个

Figure 3-28 IO 电压调整图

调整 IO 电压与电阻贴装对应表

电阻贴装 BANK34 电压	IO 电压
----------------	-------

R208	3.3V	3.3V (默认状态)
R209	2.5V	2.5V
R210	1.8V	1.8V
更改 R205 电阻, R208 短接	0.6*(1+R205/10k)	所调电压值范围必须是 1.2V~3.3V

Table 3-20 调整 IO 电压与电阻贴装对应表

3.8 电源

MIZAR Z7 电源输入是直流 5V,使用其它规格的电源可能会损坏开发板。模块上电后,按顺序级联,以 1.0V->1.8V->1.5V->3.3V 的顺序完成上电过程。3.3V 最后上电,同时提供系统电源状态 PG 信号。

Figure 3-29 MIZAR Z7 电源结构