Modelos Lineares

Teste - 17/12/2015

Duração: 2h30m

Mestrado em Estatística

Departamento de Matemática e Aplicações

37	
Nome: N	Vúmero:

Grupo I (8.5 valores)

1. Suponha que o teor de ferro x de um certo minério e a sua densidade y estão relacionados linearmente através de uma função do tipo $Y_i = \beta_0 + \beta_1 x_i + \epsilon \ i = 1, \dots, n$. Foram seleccionados pedaços de minério em função do teor de ferro e, numa fase posterior, foi medida a sua densidade tendo-se obtido os seguintes resultados:

ĺ	Y	2.8	2.9	3.0	3.1	3.2	3.2	3.2	3.3	3.4
	\mathbf{x}	27	23	30	28	30	32	34	33	30

- (a) Indique a estimativa do declive da recta de regressão estimada e interprete o significado desse valor no contexto do problema.
- (b) Determine um intervalo de confiança a 99% para a ordenada na origem da recta de regressão.
- (c) Teste formalmente se é admíssivel a hipótese de existir uma relação linear entre a densidade e o teor de ferro deste minério.
- (d) Teste a hipótese de o coeficiente de correlação linear ser igual a zero, supondo que $\alpha=0.05$.
- (e) Qual a densidade predita correspondente a um teor de ferro de 40? Comente esse valor.
- (f) Identifique observações outliers e observações alavanca.
- (g) Admitindo que as variáveis em causa estão correlacionadas conforme o modelo $Y = \alpha x^{\beta}$, determine as estimativas dos parâmetros deste modelo.

Grupo II (8.5 Valores)

1. Pretende-se determinar se existe uma relação entre a temperatura ambiente (variável temperatura, em graus centígrados) e a compra de antibióticos (variável compra, milhares).

Tem-se:

 $\begin{array}{lll} temperatura & \text{compra} \\ Min.: 19.80 & Min.: 27.00 \\ 1stQu.: 21.60 & 1stQu.: 29.75 \\ Median: 22.64 & Median: 32.00 \\ Mean: 22.96 & Mean: 33.48 \\ 3rdQu.: 24.00 & 3rdQu.: 36.00 \\ \end{array}$

Max.: 26.20 Max.: 48.00 Var.: 2.7046 Var.: 28.4360

Ajustou-se uma regressão linear com os seguintes resultados:

> summary(lm(compra temperatura))

Variável	Coeficiente	Standard error
Intercept	91.5285	6.3582
temperatura	-2.5284	0.2763

Residual standard error: 3.369 on 54 degrees of freedom Multiple R-squared: 0.6080, Adjusted R-squared: 0.6008

F-statistic: ??? on 1 and 54 DF

Supondo que o modelo satisfaz os pressupostos do modelo de regressão linear:

- (a) Diga, justificando, qual o valor do coeficiente de correlação amostral entre as variáveis compra e temperatura.
- (b) Discuta a qualidade do modelo ajustado. Em particular, interprete o valor do coeficiente de determinação, e efectue o teste F de ajustamento global do modelo, indicando como obtém o valor da estatística.
- (c) Indique uma estimativa da variância dos erros aleatórios do modelo.
- (d) Determine um intervalo de confiança a 90% para a ordenada na origem da recta de regressão.
- (e) Construa a tabela de análise de variância.
- (f) Calcule um intervalo de predição (95%) para o número de compras, associado a uma observação com temperatura 22.9C

Grupo III (3 Valores)

- 1 Consideremos o modelo $Y_i = \beta_1 x_i + \epsilon_i$; i = 1, ..., n que verifica os pressupostos usuais do modelo de regressão linear. Encontre o estimador de mínimos quadrados para β_1 . Calcule $\widehat{E(\beta_1)}$ e $\widehat{Var(\beta_1)}$.
- 2 Considere o modelo linear, sem preditores (o Modelo Nulo), dado pela equação $Y_i = \beta_0 + \epsilon_i$; i = 1, ..., n que verifica os pressupostos usuais do modelo de regressão linear. Encontre o estimador de mínimos quadrados para β_0 . Calcule $E(\widehat{\beta_0})$ e $Var(\widehat{\beta_0})$.