# Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

#### Задача о раскраске карт

Исторически первая задача о раскраске:

• Сколько цветов достаточно использовать в типографии, чтобы можно было напечатать любую географическую карту (так, чтобы граничащие друг с другом страны не сливались на карте)?



### Задача о раскраске планарных графов

Задачу о раскраске карт можно переформулировать на языке раскрасок, рассмотрев планарный граф, двойственный карте:

• Сколькими цветами можно правильно раскрасить любой планарный граф?



## Задача о раскраске планарных графов

Задачу о раскраске карт можно переформулировать на языке раскрасок, рассмотрев планарный граф, двойственный карте:

• Сколькими цветами можно правильно раскрасить любой планарный граф?



# Хроматическое число планарного графа

#### Теорема о четырёх красках (без д-ва).

Для любого планарного графа G выполнено

$$\chi(G) \leq 4$$

Мы докажем оценку чуть похуже:

Теорема о пяти красках.

Для любого планарного графа G выполнено

$$\chi(G) \leq 5$$

### Лемма о вершине степени ≤ 5

#### Лемма.

В любом планарном графе найдётся вершина степени ≤ 5.

#### Доказательство:

Пусть граф G = (V, E) таков, что  $\deg v \ge 6$  для любой  $v \in V$ . Тогда

$$2 \cdot |E| = \sum_{v \in V} \deg v \ge 6 \cdot |V|$$

Отсюда  $|E| \ge 3 \cdot |V|$ , но для планарного графа должно было быть  $|E| \le 3 \cdot |V| - 6$ .

Доказывать теорему будем индукцией по числу вершин графа. База: для графов на  $\leq 5$  вершинах  $\chi \leq 5$ .

Пусть дан планарный граф G, в котором больше пяти вершин, и пусть любой планарный граф на меньшем числе вершин можно правильно раскрасить в пять цветов.

Докажем, что тогда и G можно раскрасить правильно пятью цветами.

По Лемме,  $\exists v \in V(G)$  такая, что  $\deg v \leq 5$ .

Пусть G' — граф, полученный из G удалением v.

По предположению, G' можно правильно раскрасить в цвета  $\{1,2,3,4,5\}$ .

Попытаемся дополнить эту раскраску до раскраски всего графа G.

Пусть badColors — цвета соседей v.

Если  $|badColors| \le 4$ , то окрасим v в один из оставшихся цветов.

Нетривиален только случай |badColors| = 5.

Итак, пусть  $\deg v = 5$ , и все соседи v окрашены в разные цвета из множества  $\{1,2,3,4,5\}$ .

Через  $v_i$  обозначим соседа v цвета i.

Уложим G на плоскости, и б.о.о. будем считать, что  $v_1$ , ...  $v_5$  расположены по порядку друг за другом по часовой стрелке относительно v:



Пусть  $V_{1,3}$  — все вершины G, до которых можно дойти из  $v_1$  только по вершинам цветов 1 и 3:



Если  $v_3 \notin V_{1,3}$ , то можно для всех вершин из  $V_{1,3}$  поменять цвет 1 на 3 и наоборот.

Раскраска останется правильной, но теперь  $v_1$  уже окрашена в цвет 3, и можно окрасить v в освободившийся цвет 1.



Если же  $v_3 \in V_{1,3}$ , то обмен цветов внутри  $V_{1,3}$  не поможет.



Тогда рассмотрим множество  $V_{2,4}$  — те вершины G, до которых можно дойти из  $v_2$  по цветам 2,4.

Множество  $V_{2,4}$  оказывается внутри цикла из вершин цветов 1,3 и вершины v:



Множество  $V_{2,4}$  оказывается внутри цикла из вершин цветов 1,3 и вершины v.

Тогда можно поменять друг на друга цвета 2,4 для вершин множества  $V_{2,4}$ .

Вершина  $v_2$  станет цвета 4, и v можно теперь окрасить в цвет 2.



#### Соседи

- Любая вершина, смежная с вершиной v, называется  $cocedom\ v$
- Множество соседей v обозначают N(v)
- Для множества вершин A считаем

$$N(A) := \left(\bigcup_{v \in A} N(v)\right) \setminus A$$

#### Паросочетания

Паросочетание в графе — это подмножество рёбер без общих концов.



### Паросочетания в двудольных графах

#### Задача.

Есть множество спортсменов S и множество тренеров T. Каждый тренер готов взять на обучение не больше одного спортсмена.

Известно, какие спортсмены готовы пойти к каким тренерам. Требуется при этих условиях распределить всех спортсменов по тренерам.



В терминах графов: построить в двудольном графе паросочетание, покрывающее всё множество S.

#### Условия Холла

- Когда вообще поставленная задача разрешима?
- Необходимое условие: для любого множества вершин  $A \subseteq S$  число их соседей |N(A)| в T должно быть не меньше размера самого A:

$$|N(A)| \ge |A|$$



#### Теорема Холла

**Теорема Холла.** Пусть дан двудольный граф с долями S и T. Условие

$$\forall A \subseteq S \mid N(A) \mid \geq \mid A \mid$$

является необходимым *и достаточным* для существования паросочетания, покрывающего все вершины из S.



Пусть M — паросочетание наибольшей возможной мощности в нашем графе ( $S \cup T, E$ ).

Допустим, что |M| < |S|, и покажем, что в этом случае условия Холла нарушаются.

Пусть  $u \in S$  —вершина, не покрытая M.

Чередующаяся цепь — это цепь, выходящая из u и идущая попеременно по рёбрам из  $E \setminus M$  и M (начиная с ребра из  $E \setminus M$ ).



Пусть  $U \subseteq S$  — те вершины из S, до которых можно дойти из u по чередующимся цепям (включая саму u).

Пусть  $W \subseteq T$  — множество вершин из T, до которых можно дойти из u по чередующимся цепям (включая саму u).

Заметим, что N(U) = W.



*Тупиковая* ч.ц. — это такая ч.ц., которую нельзя дополнить очередным ребром до более длинной ч.ц.

Никакая тупиковая чередующаяся цепь не заканчивается на вершине из W, иначе M можно было бы увеличить:



Никакая тупиковая ч.ц. не заканчивается на вершине из W.

Значит, каждая вершина из W соединена ребром из M с некоторой вершиной из  $U\setminus\{u\}$ .

Отсюда  $|W| = |U \setminus \{u\}| < |U|$ .



Итак, |N(U)| = |W| < |U|.

То есть условия Холла для нашего графа не выполнены.



#### Следствия теоремы Холла

Паросочетание в графе называется совершенным, если оно покрывает все вершины графа.

#### Следствие из теоремы Холла.

В любом (непустом) двудольном регулярном графе существует совершенное паросочетание.

(Если есть N спортсменов и N тренеров, каждый спортсмен готов пойти к одному из k тренеров, и к каждому тренеру готовы пойти k спортсменов, то можно распределить спортсменов по тренерам, так, чтобы никого не обидеть.)

#### Следствия теоремы Холла

#### Доказательство:

́Пусть  $(S \cup T, E)$  — двудольный k-регулярный граф с долями S и T, и пусть  $A \subseteq S$ .

Из вершин A суммарно исходит  $k \cdot |A|$  рёбер.

Из вершин N(A) исходит  $k \cdot |N(A)|$  рёбер.

Т.к. рёбра, выходящие из A, содержатся среди рёбер, выходящих из N(A), то

$$|k \cdot |N(A)| \ge k \cdot |A|$$

Условия Холла выполнены, поэтому в графе есть паросочетание, покрывающее всё S.

Осталось заметить, что |S| = |T|, поэтому T тоже покрывается этим паросочетанием.

#### Следствие из теоремы Холла.

В любом (непустом) двудольном регулярном графе существует совершенное паросочетание.

#### Следствие из следствия.

Для любого двудольного регулярного G имеем  $\chi'(G) = \Delta(G)$ . Идея доказательства:

Все рёбра совершенного паросочетания красим в один цвет и временно удаляем из графа.

С оставшимся графом поступаем так же.

Степень вершины в мультиграфе — это количество инцидентных ей рёбер (с учётом кратностей).

Заметим, что при доказательстве предыдущих утверждений никак не использовался факт наличия/отсутствия кратных рёбер, поэтому для любого двудольного регулярного мультиграфа G

$$\chi'(G) = \Delta(G)$$

#### Теорема Кёнига.

Для любого двудольного мультиграфа G

$$\chi'(G) = \Delta(G)$$

#### Доказательство:

Пусть  $\Delta(G) = k$ .

Добавим к графу G его перевёрнутую копию:



Для полученного графа G'  $\Delta(G') = \Delta(G) = k$ .

В G' каждую вершину  $v \in S$ , для которой  $\deg v < k$ , соединим  $(k - \deg v)$  рёбрами со своей копией  $v_{\operatorname{copy}} \in S_{\operatorname{copy}}$ .

То же самое проделаем с вершинами из T.

Получим k-регулярный мультиграф  $G^{\prime\prime}$ :



Рёбра k-регулярного мультиграфа G'' можно правильно раскрасить в k цветов.

Так как 
$$G$$
 — подмультиграф  $G''$ , то  $\chi'(G) \leq \chi'(G'') = k = \Delta(G)$ 

