ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 6

Επιστροφή την Τετάρτη 9/3/2016 στο τέλος της διάλεξης

- 1. Ένα σώμα μάζας m, κινείται σε υπερβολική τροχιά που περνά από ένα σώμα μάζας M, η θέση του οποίου θεωρείται σταθερή. Η ταχύτητα του σώματος m στο άπειρο είναι v_0 , και η παράμετρος πρόσκρουσης b. (α) Δείξτε ότι η γωνία απόκλισης του σώματος m, είναι: $\varphi = \pi 2 \tan^{-1}(\gamma b)$, όπου $\gamma = v_0^2/GM$. (β) Έστω ότι $d\sigma$ είναι η ενεργός διατομή (μετρούμενη όταν το σώμα m είναι αρχικά στο άπειρο) η οποία σκεδάζεται σε στερεά γωνία $d\Omega$ στη γωνία φ . Δείξτε ότι $\frac{d\sigma}{d\Omega} = \frac{1}{4\gamma^2 \sin^4(\varphi/2)}$
- **2.** Δύο μάζες *m* και 2*m*, κινούνται σε τροχιές ως προς το κέντρο μάζας τους, *CM*. Αν οι τροχιές είναι κυκλικές τότε δεν τέμνονται, αλλά αν είναι ελλειπτικές τότε τέμνονται. Ποια είναι η μικρότερη τιμή της εκκεντρότητας για την οποία οι τροχιές τέμνονται;
- **3.** Ένας σώμα κινείται με ταχύτητα v_0 και παράμετρο πρόσκρουσης b, ξεκινά πολύ μακριά από ένα πλανήτη μάζας M. Να βρεθεί η απόσταση εγγύτερης προσέγγισης στον πλανήτη.