

Technische Grundlagen der Informatik: Übungssatz 8

Aufgabe 8.1

Eine Diode und eine Lampe seien wie folgt in Reihe geschaltet.

Dimensionierung:

Lampe mit: $R_L = 10\Omega$ Ideale Diode mit: $U_{F0} = 0.7V$

- (a) Für welchen Wertebereich von U_D ist die Diode gesperrt?
- (b) Welche Spannung U_D fällt über einer leitenden Diode ab?
- (c) Bestimmen Sie U_D und I_L für die gegebene Schaltung unter der Annahme, dass die Diode gesperrt ist. Für welche Werte von U_B ergibt sich ein Widespruch zu dieser Annahme?
- (d) Geben Sie in Abhängkeit von den folgenden Werten für U_B an, ob ein Strom durch die Lampe fließt und diese damit leuchtet. Berechnen Sie zusätzlich U_D , U_L und I_L .

U _B /V	Lampe leuchtet	U_D/V	U_L/V	I_L/mA
-5,0				
0,0				
5,0				

Aufgabe 8.2

Ein Hersteller für Light Emitting Diodes (LED) gibt im Datenblatt der LED die Durchschaltspannung U_F und den maximal zulässigen Strom $I_{F,max}$ an.

- (a) Leiten Sie eine Formel her, mit der sich der Vorwiderstand $R(U_B, U_F, I_{F,max})$ für eine gegebene LED und Betriebsspannung dimensionieren lässt.
- (b) Widerstände werden nur in bestimmten Größen produziert. Muss der tatsächlich verbaute Widerstand kleiner oder größer als der berechnete Widerstand sein? Begründen Sie ihre Entscheidung.
- (c) Dimensionieren Sie einen Vorwiderstand für $U_B=3,3$ V, $U_F=2,1$ V und $I_{F,max}=20$ mA bzw. $I_{F,max}=22,5$ mA. Es liegen Widerstände der E12-Serie [1] vor. Beachten Sie die Bauteiltoleranzen!
 - [1] http://www.resistorguide.com/resistor-values

Aufgabe 8.3

Gegeben seien die Diodenschaltungen A und B mit $U_{e1}=7\,\text{V}$, $U_{e2}=5\,\text{V}$, $U_{e3}=1\,\text{V}$, $U_{F0}=0.7\,\text{V}$ und dem Sperrstrom $I_S=10\,\mu\text{A}$. Innenwiderstand der Spannungsquellen ist ≈ 0 .

- (a) Machen Sie sich die Funktion der Schaltung A klar! Begründen Sie dier hierfür gebräuchliche Bezeichnung "Minimumschaltung"!
- (b) Berechnen Sie für Schaltung A die Ausgangsspannung U_a , die Ströme durch die Dioden und durch den Widerstand R_b ! Welche Spannungen U_D liegen über den Dioden?
- (c) Welche logische Funktion wird durch die Schaltung A realisiert, wenn gelten soll:
 - am Eingang: High-Pegel $U(H) \geq 9V$, Low-Pegel $U(L) \leq 1V$
 - am Ausgang: High-Pegel $U(H) \ge 8V$, Low-Pegel $U(L) \le 2V$
- (d) **Zusatzaufgabe:** Lösen Sie dieselben Teilaufgaben für Schaltung B (Maximumschaltung)!

Hinweis: Bei der Lösung aller Teilaufgaben ist die idealisierte Diodenkennlinie zu Grunde zu legen.

