DIALOG(R) File 351: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv. 007101159 WPI Acc No: 1987-101156/198714 XRAM Acc No: C87-042072 XRPX Acc No: N87-076028 Electrophotographic process - in which positive or negative images can be formed by electrical control only Patent Assignee: MITA IND CO LTD (MTAI); MITA IND CO LTD (MTAI) Inventor: FUSHIDA A; HASEGAWA Y; HORIUCHI A; MAEDA M; MATSUI T; TSUJI N; YUKITAKE K Number of Countries: 002 Number of Patents: 003 Patent Family: Patent No Kind Date Applicat No Kind Date 19850830 198714 B US 4652510 Α 19870324 US 85771416 A JP 61059361 Α 19860326 199029 19931109 JP 84180381 Α 19840831 199347 JP 93080671 В Priority Applications (No Type Date): JP 84180381 A 19840831 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes US 4652510 Α 10 JP 93080671 G03G-015/08 Based on patent JP 61059361 Abstract (Basic): US 4652510 A Electrophotographic process comprises developing a light-sensitive layer having an electrostatic charge image with magnetic developer, under a development bias voltage of 0-30% of the set surface voltage Vo of the light-sensitive layer with the same polarity, to form a positive image; or 50-150% of VO to form a negative image; or 30-50% of VO to form a positive or negative image. The layer is then contacted with a transfer sheet of the same polarity as the image to form a positive image or the opposite polarity to form a negative image. ADVANTAGE - Negative or positive images can be formed by electric controls only, using ordinary photosensitive material and a single developer. 1/5 Title Terms: ELECTROPHOTOGRAPHIC; PROCESS; POSITIVE; NEGATIVE; IMAGE; CAN; FORMING; ELECTRIC; CONTROL Derwent Class: A89; G08; P84; S06 International Patent Class (Main): G03G-015/08 International Patent Class (Additional): G03G-009/14; G03G-013/08; G03G-015/06 File Segment: CPI; EPI; EngPI Manual Codes (CPI/A-N): A12-L05C2; G06-G05; G06-G08B Manual Codes (EPI/S-X): S06-A04C1 Plasdoc Codes (KS): 0218 0231 0248 0306 0488 0899 1288 2318 2422 2427 2439 2507 2585 2654 2728 2806 2808 Polymer Fragment Codes (PF): *001* 014 034 04- 040 041 046 050 055 056 074 081 100 143 27& 316 332 398

431 432 47& 477 575 583 589 596 609 658 659 688 725

Derwent Registry Numbers: 0895-U

THIS PAGE BLANK (USPTO)

⑩日本国特許庁(JP)

(1) 特許出願公告

公 報(B2) ⑫特 許

平5-80671

@Int. Cl. 3 G 03 G 15/08 識別記号

庁内整理番号

❷❷公告 平成5年(1993)11月9日

7810-2H

発明の数 1 (全8頁)

❷発明の名称	電子写真法におけるネガ・ポジ画像形成法
	②特 願 昭59-180381
@発明者	鉗 子 田 晃 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
720発明者	松 井 利 一 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
700発明者	長 谷 川 雄 司 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
700発明者	前 田 雅 彦 大阪府大阪市東区玉造1丁目2番28号 三田工業株式会社 内
700発明者	辻 伸 行 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
伊 発明者	堀 内 彰 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
伊発明 者	雷 竹 和 期 大阪府大阪市東区玉造 1 丁目 2 番28号 三田工業株式会社 内
勿出 願人	三田工業株式会社 大阪府大阪市中央区玉造1丁目2番28号
10代理人	弁理士 鈴木 郁男
審 査 官	芝 哲 央
❷参考文献	特開 昭57-128365 (JP, A) 特開 昭50-114224 (JP, A) 特開 昭60-229062 (JP, A)

1

の特計請求の範囲

1 一定極性の静電荷像を有する電子写真感光層 を、摩擦帯電極性が両極性に混在している一成分 系磁性現像剤を用いて、ポジ像を得る場合には感 光層表面電位と同方向で30%以内のパイアス電位 5 において、またネガ像を得る場合には感光層表面 電位と同方向で50%よりも大で150%以下の範囲 のパイアス電位において、更にポジーネガ像を得 る場合には前記両者の中間のパイアス電位におい て現像し、現像剤層を有する感光層と転写紙と 10 従来の技術及び発明の技術的課題 を、ポジ像を得る場合には静電荷像と同極性の転 写チャージ下に、またネガ像を得る場合には静電 荷像と異極性の転写チャージ下に接触させて、転

写紙上に画像を形成させることを特徴とする電子 写真法。

発明の詳細な説明

発明の分野

本発明は、電子写真法におけるネガ・ポジ画像 形成法に関するもので、より詳細には通常の電子 写真感光層及び単一の一成分系磁性現像剤を使用 し、電気的な制御のみによつて、ネジ画像もポジ 画像も形成し得る電子写真法に関する。

電子写真法においては、ポジ原稿からポジ複写 物を得る通常の復写法の他に、マイクロフイルム 等のネガ原稿或いはレーザピームや発光ダイオー

ド・アレイ等のネガの静電潜像から反転されたポ ジ画像をも得ることが可能な多目的複写システム に対する強い要請がある。

3

従来普通に採用されているネガ・ポジ複写シス テムは、2種類に大別され、その一つは、両帯電 (パイチヤージ) 可能な感光体と、一定極性への 摩擦帯電傾向を有するトナーとを使用し、ポジ像 の場合には感光層の帯電電荷とトナーのそれとを 逆極性にし、またネジ像の場合にはそれらの極性 を同極性にして反転画像を形成させる方法であ る。しかしながら、両帯電可能な感光体は非常に 限られたものであり、その感度や耐久性において 制限を受けるばかりではなく、正帯電と負帯電と で感光体の感度やその他の電子写真学的特性に大 きな相違があり、ネガ像とポジ像との機度や画質 15 る。 を一定に調節することが非常に困難である。

他の方法は、一定極性に帯電可能な感光体を使 用し、帯電、画像雾光により静電潜像を形成し、 ポジ画像形成の場合には、静電潜像と逆極性に帯 合には、静電潜像と同極性のトナーを用いて反転 現像を行う方法である。この方法は、ポジ画像用 とネガ画像用との2種類のトナーを用意しなけれ ばならず、またトナーの交換作業が必要となると いう煩わしさがある。

発明の目的

従つて、本発明の目的は、通常の感光体と単一 の現像剤との使用し、電気的な制御のみによつ て、濃度や画質の一定したネガ像やポジ像を任意 に形成し得る電子写真法を提供するにある。

本発明の他の目的は、現像剤の選択と電気的制 御回路の組込みとによつて、従来の電子写真複写 機にポジの画像形成能の他に、ネガ画像の形成能 をも付与し得る電子写真法を提供するにある。 発明の構成

本発明によれば、一定極性の静電荷像を有する 電子写真感光層を、摩擦帯電極性が両極性に混在 している一成分系磁性現像剤を用いて、ポジ像を 得る場合には感光層表面電位と同方向で30%以内 には感光層表面電位と同方向で50%よりも大で 150%以下の範囲のパイアス電位において、更に ポジーネガ像を得る場合には前記両者の中間のパ イアス電位において現像し、現像剤層を有する感

光層と転写紙とを、ポジ像を得る場合には静電荷 像と同極性の転写チャージ下に、またネガ像を得 る場合には静電荷像と異極性の転写チャージ下に 接触させて、転写紙上に画像を形成させることを 特徴とする電子写真法が提供される。

発明の好適態様

本発明を、添付図面に示す具体例に基づき以下 に詳細に説明する。

本発明は、摩擦帯電極性が両極性に混在してい 10 る一成分系磁性現像剤、即ち正電荷像も負電荷像 も現像可能な一成分系磁性現像剤を使用し、これ と現像パイアス電圧条件の選択及び転写チャージ 極性の切換とによつて、濃度や画質のほぼ一定し たネガ像やポジ像を容易に形成させるものであ

電子写真法の原理

本発明の電子写真法は、上述した特徴を除けば 従来公知のカーソル方式の電子写真法の原理と同 一である。この電子写真法の原理を第1図、第2 電されたトナーを用いて現像し、ネガ像形成の場 20 - A図、第2-B図及び第2-C図により説明す る。先ず、第1図において、駆動回転ドラム1の 導電性基質2の表面には、光導電体感光層3が設 けられている。

このドラム 1 表面に沿つて、主帯電用直流コロ 25 ナチャージャ4、画像露光用光学系5、以下に述 べる一成分磁性現像剤 6 を保持する現像機構 7、 転写用コロナチャージャ8及び8′、主帯電とは 逆極性の除電用直流コロナチャージャ9、除電用 光源10、及びトナークリーニング機構11がこ 30 の順序で設けられている。

複写開始に際しては、除電用チャージャ 9、除 電用光源10及びトナークリーニング機構11を 動作させ、感光層3の表面に付着しているゴミ、 汚れ等を除去する。

- 次いで、主帯電用コロナチヤージャ4により感 光層3を一定極性の電荷に帯電させると共に、光 学系5を通して画像露光し、原稿像に対応する静 電像を形成させる。
- 一成分系磁性現像剤 6 は、摩擦帯電極性が両極 のパイアス電位において、またネガ像を得る場合 40 性に混在している現像剤であり、感光層3と現像 機構7との間には、必要により現像モードを制御 するためのスイツチSıを備えたパイアス電位印加 装置12が設けられている。この一成分系現像剤 6により感光層3上の電荷像は第2-A、2-B

及び2-C図に示すモードで現像が行われる。

5

最後に第3図に示すように、現像剤像を有する 感光層3の表面に複写紙13を供給し、複写紙1 3の背面から、転写用コロナチヤージヤ 8 又は 8'により、電荷のチャージを行い現像剤暦を複 5 写紙13の表面に転写させる。2つの転写用チャ ージャB及びB′は、2つの転写モードに対応す るものであり、チャージャ8には負のコロナチャ --ジ用電源 1 4、チャージャ 8′には正のコロナ 源14,15は、スイツチS₂により作動切換が行 われるようになつている。転写モード切換スイツ チS₂は、現像モード切換スイツチS₁と連動される ように設けられていることが望ましい。

通常の複写、即ちポジーポジ複写モードを説明 15 するための第2-A図において、帯電行程IAIにお いて、感光層3の表面に一様に正符電され、続い て行う画像露光行程(別において、暗部に対応する - 『正の電荷像16が形成される。次いで、現像行程 磁性現像剤を用いて現像を行うと、パツクグラウ ンド17は無帯電であるので、印加パイアス電位 ″がゼロ乃至低い範囲では正の電荷像の部分のみが ○ 負帯電粒子により現像されて現像剤像 18 が形成 から正電荷のチャージを与えると、現像剤像18 は転写紙表面に移行、付着し、続いて定着行程的 において転写紙上に定着される。

反転復写、即ちポジーネガ復写、取いはネガー いて、帯電工程(A)及び画像露光行程(B)は第2-A 図の場合と同様である。また、現像行程ICIでは、 第2-A図と同じ一成分系磁性現像剤が使用され るが、この場合には、パイアス電源12により感 を打ち消すのに十分な大きさの正のパイアス電位 が印加される。このことの結果として、パツクグ ラウンド17が正帯電粒子により現像されて、現 像剤像18′が形成される。転写行程のにおいて、 より、第2-A図の場合に比して反転された画像 が転写紙13上に形成されることに成る。

本発明の別の複写モードを説明する第2 - C図 において、現像時のパイアス電位を調節すること

6

により、同じ現像モードから、通常の像或いは反 転像の何れをも得ることができる。この場合、帯 電行程及び画像属光行程は、第2-A図及び第2 --B図の場合と同様であり、使う現像剤も同様で あり、ただ現像行程ICIにおいて、感光層表面に、 第2-A図の場合と第2-B図の場合とのほぼ中 間に位置する電位の正のパイアス電圧が印加され る。これにより、本来の電荷像部16もパックグ ラウンド部17もほぼベタ黒になるように現像操 チャージ用電源15に夫々接続され、これらの電 10 作が行われる。続いて行なう転写行程において、 第2一A図と同様に正の転写チャージを行うと正 常の転写画像が得られ、第2-B図と同様に負の 転写チャージを行うと反転した転写画像が得られ

本発明において、両帯電極性を有する一成分系 磁性現像剤を使用し、現像パイアス電位と転写チ ヤージ極性とを選ぶことにより、上記 3 つのモー ドの彼写が可能となる事実は、第4図及び第5図 の実験結果から明白となろう。これらの図面は、 (C)において、この感光層表面を前述した一成分系 20 感光層の明節 (パツクグラウンド、白丸) と暗部 (電荷像部、黒丸) とについて、パイアス電圧を 横軸、画像濃度を縦軸としてプロツトした結果で あり、第4図は、正帯電の感光層に対して正の転 写チャージを行つた場合、第5図は正帯電の感光 される。転写行程DDにおいて、転写紙13の背面 25 層に対して負の転写チャージを行つた場合を夫々 示す。これらの結果から、パイアス電位の低い域 (第4図) では、ネガ像の転写画像濃度が最小に 抑制される一方でポジ像の転写画像濃度が最大に なること、ポジ像の転写画像濃度が最小に抑制さ ポジ複写モードを説明するための第2-B圏にお 30 れる高パイアス電位域第5図では、ネガ像の転写 **画像濃度が最大となること、及びこれら両者の中** 間のパイアス電位域(約300V付近)では、電荷 像部もパツクグラウンド部も共に現像され、転写 チャージの極性を選ぶことにより、ポジ像或いは 光層3の表面には、感光層表面の正の電荷像16 35 ネガ像の何れをも形成させ得ることが理解され

現像剤

本発明で使用する一成分系磁性現像剤は、電気 絶縁性樹脂結着剤中に磁性材料粉末を分散させて 転写紙背面から負電荷のチャージを与えることに 40 成る混練組成物を、粉砕し、必要により分級し て、誘径 5 乃至30μmの粒子としたものである。 この一成分磁性現像剤は、内部に磁石を備えた非 磁性材料のスリーブ表面に、それ自体安定した磁 気ブラシを形成し得るのみならず、それ自体摩擦 により帯電する特性を有している。粒子表面相互 の摩擦による帯電の程度は、表面相互間の摩擦帯 電列に依存し、一方の表面が負に帯電すると、他 方の表面は常に帯電する。この傾向は、個々の粒 子相互間の帯電極性が異なる場合の他に、同一粒 5

7

子内においても微視的に言つて表面の部分部分で 帯電極性が異なる場合があり得る。

この現像剤に用いる磁性体粉末としては、四三 酸化鉄 (Fe₂O₄)、三二酸化鉄 (γ-Fe₂O₂)、酸 化鉄亜鉛 (ZnFe₂O₄)、酸化鉄イツトリウム 10 50:100万至60:100の重量比にあるのが、両極性 (Y₃Fe₅O₁₂)、酸化鉄カドミウム (CdFe₂O₄)、酸 化鉄ガドリニウム (GdsFesO12)、酸化鉄銅 (CuFe₂O₄)、酸化鉄鉛 (PbFe₁₂O₁₄)、酸化鉄二 ツケル (NiFeaOa)、酸化鉄ネオジウム (NdFeO₃)、酸化鉄パリウム (BaFe₁₂O₁₃)、酸 15 自体公知の処方に従って配合し得る。 化鉄マグネシウム(MqFe₂O₄)、酸化鉄マンガン (MnFe₃O₄)、酸化鉄ランタン (LaFeO₅)、鉄粉 (Fe)、コパルト粉 (Co)、ニッケル粉 (Ni) 等 を使用でき、就中四三酸化鉄(マグネタイト)が 5ミクロンの範囲にあるものが望ましい。

樹脂としては、電気絶縁性のものが何れも使用 され、これは熱可塑性樹脂でも、或いは熱硬化型 樹脂の未硬化のもの乃至は初期縮合物であつてよ い。有用な天然樹脂は、パルサム樹脂、ロジン、 25 体に適用できる。この感光層は、正帯電可能のも シエラツク、コーパル等であり、これらの天然樹 脂は、後述するピニル樹脂、アクリル樹脂、アル キド樹脂、フエノール樹脂、エポキシ樹脂、オレ オレジン(油性樹脂)等の1種又は2種以上で変 性されていることができる。合成樹脂としては、 30 層、酸化亜鉛ー樹脂パインダー型感光層、CdSー 塩化ピニル樹脂、塩化ビニリデン樹脂、酢酸ビニ ル樹脂、ポリピニルブチラールの如きビニルアセ タール樹脂、或いはピニルエーテル重合体の如き ビニル樹脂;ポリアクリル酸エステル、ポリメタ クリル酸エステル、アクリル酸共重合体、メタク 35 る。 リル酸共重合体の如きアクリル樹脂;ポリエチレ ン、ポリプロピレン、ポリスチレン、水素添加ス チレン樹脂、ポリピニルトルエン、スチレン共重 合体の如きスチレン系樹脂;ナイロンー12、ナイ ロンー6、重合脂肪酸変性ポリアミドの如きポリ 40 ス電位は表面電位と同方向で30%以内の範囲とす アミド樹脂;ポリエチレンテレフタレート/イソ フタレート、ポリテトラメチレンテレフタレー ト/イソフタレートの如きポリエステル;フタル 酸樹脂、マレイン酸樹脂の如きアルキド樹脂;フ

エノールホルムアルデヒド樹脂;ケトン樹脂;ク マロンーインデン樹脂;テルペン樹脂;尿素ーホ ルムアルデヒド樹脂、メラミンーホルムアルデヒ ド樹脂等のアミノ樹脂;エポキシ樹脂等を使用す ることができ、これらの合成樹脂はフエノールー エポキシ樹脂、アミノーエポキシ樹脂の如く2種 以上の組合せでも使用できる。

磁性体粉末と電気絶縁性定着用樹脂との量比 は、一般的に40:100乃至75:100の重量比、特に への帯電、磁気ブラシ形成能及び定着性の見地か ら望ましい。.勿論、この現像剤には、それ自体公 知の配合成分、例えば着色顔料、導電剤、オフセ ツト防止剤、電荷制御剤、流動性改良剤等をそれ

粒状化は、上配成分を溶融混練し、冷却した後 これを粉砕することにより容易に行うことがで き、また樹脂溶液に磁性体粉末を分散させた後、 これをスプレー造粒することによつても粒状物と 好適に使用される。磁性体粉末の粒径は0.05乃至 20 することもできる。粒子の形状は球形でも、不定 形でも、或いは若干角を丸めた不定形の何れでも よい。

他の条件

本発明は、それ自体公知の任意の電子写真感光 のでも、負帯可能のものでも、或いは両帯電可能 のものでもよく、その種類は特に限定されない。 適当な感光層の種類は、これに限定されないが、 例えば非晶質セレン感光層、非晶質シリコン感光 樹脂パインダ感光層等の無機光導電体感光層や、 有機顔料ー樹脂パインダー型感光層、有機顔料の 電荷発生相一電荷輸送相の分散型或いは積層型感 光層等の有機光導電体感光層を挙げることができ

感光層の表面設定電位をV。として、反転画像 形成の場合のパイアス電位は該電位と同方向(同 極性)で50%より大で150%以下の範囲とするの が望ましく、一方、正常画像形成の場合のパイア るのがよい。

発明の効果

本発明によれば、用いる電子写真感光層に格別 の制約を受けることなく、しかも単一の一成分系

磁性現像剤を用いて、正常画像或いは反転画像の 何れをも容易に得ることができる。しかも、この 画像の形成には、パイアス電位の調節や転写チャ ジ極性の切換え等の電気的制御のみが必要であ り、面倒なトナー交換等の操作を一切必要としな い。しかも、正常画像或いは反転画像の何れを形 成させるにしても、帯電及び画像露光行程は全て 共通であり、しかも用いる現像剤も共通であるこ とから、形成される転写画像の濃度や画質は共通 してほぼ一定であることが従来法と異なる顕著な 10 す。 利点である。

Q

しかも、本発明方法は、従来の複写機に若干の 改造を加えるのみで、多目的複写に用い得るとい う実用上顕著な利点がある。

実施例

本発明を次の例で説明する。

感光体の作製

N, N'ージ (3, 5ージメチルフエニル) ベ リレンー3, 4, 9, 10ーテトラカルポン酸ジ 12重量部 20 イミド 100重量部 ポリーNーピニルカルパゾール ポリエステル樹脂(パイロン200.東洋紡績区 10重量部 载) 150重量部

テトラヒドロフラン 上配処方を混合し、混合液をポールミルに入れ 25 24時間分散させた後に、1.5㎜のアルミニウム製 の円筒状のドラムに浸漬法により塗布し、100℃ で30分間乾燥させた。

ここでは乾燥時膜厚が、12μの感光体を得た。 現像剤の作製

プライオライトACL(グツドイヤー社製スチレ 40重量部 ンアクリル系共重合体) ピスコール550P(三洋化成社製低分子量ポリブ 5重量部 ロピレン)

鉄黒B6(東洋色素社製四三酸化鉄) 上記処方材料を混合し、熱三本ロールミルを使 用して溶融混練を行い、冷却後ジェットミルで微 粉砕する。アルビネ社製の風力分級機を使用して 5~15µの粒子を得た。

実験例

市販の電子写真複写機 (DC-111:三田工業社 製)を改造して、現像部のパイアス電圧を調節出 来るようにするとともに、転写チャージャの供給 10

電圧の極性も交換出来るようにし、上記のように 作成した感光体ドラムと現像剤を装塡した。

次に主帯電における感光体表面電位を (+) 600Vになるように調整し、現像パイアスを(+) 5 600Vから (一) 600Vまで50Vずつ変化させ、ベ **夕黒部と白色部を持つ原稿をコピーして、その画** 像濃度を濃度計(東京電色社製TD-6D型)を用 いて測定した。転写チャージャの極性の正、負に 対応して、それぞれ第4四、第5回に結果を示

一般にベタ黒部の画像濃度が0.5以上で白色部 の画像濃度が0.2以下であれば複写物として使用 可能である。

実施例 1

上記の実験用複写機を用い、表面設定電位を (+) 600V、現像パイアス電圧を(+) 150V転 写チャージャの極性を正極性に設定し、通常の原 稿すなわち白色用紙に黒文字の原稿を復写したと ころ、鮮明な画像のコピーが得られた。

次いで、現像パイアスを (+) 400V、転写チ ヤージャの極性を負極性に変換し、同じ原稿を複 写したところ、全く反転した鮮明な画像のコピー が得られた。

実施例 2

実施例1で得られた反転コピーを原稿として実 施例 1 と同じ条件で複写したところ、それぞれ元 の原稿の反転及び元の原稿と同じ画像の鮮明なコ ピーが得られた。

実施例 3

現像パイアス電圧を(+)300Vに設定した以 30 外は実施例1と同じように彼写したどころ、黒色 部の画像濃度が少し低くなつたが、転写チャージ ヤの極性の変化だけで正画像、反転画像が簡単に 得られた。

55重量部 35 図面の簡単な説明

第1図乃至第3図は本発明の複写プロセスを説 明する図、第4図及び第5図は本発明の実験結果 を示す図である。

3…感光層、6…一成分磁性現像剤、7…現像 40 機構、8,8'…転写用コロナチヤージヤ、12 ・・・パイアス電源、14,15…転写コロナチャー ジャ用電源。

第1図

第2図

第3図

第4図

