Računarska statistika

Snježana Lubura Strunjak

Zagreb, 08. travnja 2021.

1/26

Monte Carlo eksperimenti

Simulacija i MC simulacija

"Simulacija je reprezentacija ponašanja nekog fizikalnog ili apstraktnog sustava ponašanjem nekog drugog sustava" (Ralston, 1976).

Simulacija se primjenjuje kada je opserviranje/eksperimentiranje sa originalnim sustavom:

- Opasno (npr. epidemije, nuklearne reakcije),
- Nemoguće (npr. globalno zagrijavanje, udar meteora),
- Skupo (optimalni oblik novog vozila), ili
- Presloženo da bi se ispitalo egzaktnim analitičkim alatima (npr. multivarijatne statističke distribucije);
- Ako želimo ispitati utjecaj različitih čimbenika na sustav (utjecaj novih pravila/zakona na pad stope kriminaliteta), itd.

Simulacija i MC simulacija

Simulacija može biti

- Deterministička ili
- Stohastička ili MC simulacija.

U MC simulaciji se barem 1 varijabla ponaša slučajno. Generiraju se skupovi slučajnih brojeva po nekim apriornim distribucijama i istražuju rezultati modela.

Monte Carlo (MC) simulacija

Područja primjene Monte Carlo metoda uključuju biologiju, kemiju,računarstvo, ekonometriju i financije, inženjerstvo, ostala područja znanosti: fiziku, društvene znanosti, statistiku, itd.

MC simulacija znači koristiti dani mehanizam po kome se generiraju podaci kao model procesa koji želimo razumjeti, iz koga želimo generirati nove uzorke, i razmatrati rezultate dobivene na tim uzorcima.

U statistici taj se proces zove <u>ponavljano uzorkovanje</u>.

Ako se ponovno uzorkuje

- po hipotetskoj distribuciji "klasični" Monte Carlo eksperimenti i testovi
- po empirijskoj distribuciji Bootstrap, Jackknife i ostale metode ponovnog uzorkovanja (re-samplinga)

U folderu Primjeri\Simulating data with SAS, program Ch04_sim.sas

Primjene simulacija u statistici

- Osnovne tehnike
 - Aproksimativna sampling distribucija (utjecaj veličine uzorka, utjecaj distribucije podataka, procjene (pristranost, std.pogreška itd,))
 - Procjene vjerojatnosti
 - Evaluacije statističkih tehnika (int. pouzdanosti i vjerojatnost pokrivanja, robusnost testova na odstupanja od pretpostavki, snaga testa, procjene p-vrijednosti (MC testovi))
- Primjene u statističkom modeliranju (MC eksperimenti)
 - Linearni regresijski modeli (sa 1 prediktorom, sa više prediktora, interakcije, polinomijalni modeli, outlieri, povezane opservacije, nenormalnost, heteroscedastičnost)
 - Generalizirani linearni modeli (logistička regresija poissonova regresija)
 - Itd.

Aproksimativna sampling distribucija

- Simuliraj mnogo uzoraka iz iste populacijske distribucije
- Za svaki uzorak, izračunaj statistiku od interesa (npr. prosj. vrijednost, median, broj proporcija, ...). Skup tih statistika čini aproksimativnu sampling distribuciju (kraće ASD).
- Na osnovu analize ASD-a donose se zaključci o procjenama, int. pouzdanosti, vjerojatnosti, i dr.

MC procjena je prosječna vrijednost statistika iz drugog koraka.

MC procjena je procjenitelj θ (očekivane vrijednosti statistike od interesa).

Primjer (ASD za spljoštenost (kurtosis) uzorka γ_2 (za normalne, t, exponencijalne i lognormalne podatke))

Program *CHAPTER1_1_ASD primjer za koeficijent spljostenosti.sas*Pročitajte Chapter 4 iz knjige "Simulating Data with SAS" (Simulating Data with SAS Ch4.pdf) do str. 65.(potrebno i za Zadatak 4 iz zadaće 3)

■ Generaj pseudo-slučajne brojeve po zadanim distribucijama (n=50) iz tablice,

Distribucije	γ_2
normalna	0
<i>t</i> ₅	6
eksponencijalna	6
lognormalna (0,0.503)	6

- 2 Izračunaj γ_2 ,
- 3 Ponovi 1-2 1000 x za svaku od 4 distribucije,
- Sumariziraj

Napomena: γ_2 je "excess kurtosis" (tj. za normalnu distribuciju $\gamma_2 = 0$)

CHAPTER1_1_ASD primjer za koeficijent spljostenosti.sas

Program se sastoji od sljedećih dijelova:

- Definicija veličine uzorka i broja replikacija (macro varijable) (retci 3-4)
- Generiranje podataka (2 petlje, po replikacijama (&NumSamples) i broju opservacija u svakom uzorku (&N) (retci 5-16)
- Izračunavanje statistike od interesa (kurtosis) za svaku replikaciju (SampleID) i za svaku od 4 distribucije, spremanje u izlazni data set Moments (retci 18-22)
- Transpozicija (za svaki SampleID se vektor redak (1x4) transponira u vektor stupac (4x1)) tako da se data set Moments sa 1000 redaka i 4 stupaca transformira u data set Long sa 1000x4 redaka i 1 stupcem (+ dodatne ID varijable). Transpozicija je potrebna zbog grafičke procedure proc sgplot.
- Vertikalni paralelni boxplotovi za aproksimativne sampling distribucije statistike KURTOSIS (za 4 distribucije)

Slika: CHAPTER1_1_ASD primjer za koeficijent spljostenosti.sas

Uočite: Rezultati pokazuju da je kurtosis nepristran na uzorku od 50 samo kad uzorci dolaze iz normalne populacije (sredina sampling distribucije je otprilike jednaka populacijskoj vrijednosti γ_2 za normalnu distribuciju (0), dok su sredine sampling distribucija kod ostale 3 distribucije znatno niže od populacijske vrijednosti 6 za γ_2).

Procjene p-vrijednosti / Monte Carlo testovi

- ullet Barnard (1963) je predložio metode "računarskog zaključivanja" (engl. computational inference): procjene kvantila test statistike, ${\cal T}$ pod nultom hipotezom primjenom MC metoda
- nrep slučajnih uzoraka iste veličine kao dani uzorak se generira pod nultom hipotezom. Test statistika se računa za svaki uzorak (T₁^{*}, T₂^{*},..., T_{nrep}^{*}), što čini uzorak test statistika.
- Empirijska CDF (funkcija kumulativne distribucije) uzorka test statistika se koristi kao procjena CDF test statistike.
- p-vrijednost opservirane test statistike se procjenjuje kao proporcija broja simuliranih vrijednosti ≥ i/ili ≤ od opservirane vrijednosti:

$$p\text{-vrijednost} = \frac{r}{nrep},$$

gdje je r=broj simuliranih vrijednosti $\geq i/ili \leq od$ opservirane vrijednosti.

- Ako je distribucija test statistike kontinuirana, tako definirana p-vrijednost je nepristrana.
- Obično se procjenjuje: p-vrijednost = $\frac{r+1}{nrep+1}$.

Procjene p-vrijednosti / Monte Carlo testovi

- Pretpostavke za primjenu: distribucija slučajne komponente pretpostavljenog modela mora biti poznata i mora biti moguće generirati slučajne uzorke iz te distribucije pod nultom hipotezom.
- Hope(1968), Marriott(1979): snaga MC testova može biti visoka čak i za razmierno male vrijednosti nrep.

Simulacija po empirijskoj distribuciji

- Umjesto hipotetske vrijednosti, za parametar se uzima procjena iz uzorka.
- Uzorci se generiraju po procijenjenom modelu i na svakom uzorku se izračunavaju test statistike $(T_1^*, T_2^*, \dots, T_{nrep}^*)$, što čini uzorak test statistika.
- Empirijska CDF (funkcija kumulativne distribucije) uzorka test statistika se koristi kao procjena CDF test statistike.
- p-vrijednost opservirane test statistike se procjenjuje iz empirijske CDF.
- Distribucijska svojstva empirijske CDF u ovom slučaju NISU svojstva koja vrijede pod nekom nultom hipotezom, već su svojstva koja vrijede pod modelom sa parametrima koji odgovaraju procjenama iz podataka.
- Takav se tip pristupa zaključivanju zove parametarski bootstrap.

Monte Carlo eksperimenti

Model opisuje mehanizam po kome se generiraju podaci. Bolje razumijevanje modela može se postići na slijedeći naćin:

- Koristi model za simulaciju "umjetnih" podataka,
- Ispitaj podudaranje umjetnih podataka sa našim očekivanjima ili sa raspoloživim realnim podacima.
- Analiziraj podatke pomoću modela. Taj proces, koji je svojstvo računarske statistike, pomaže pri evaluaciji metoda analize. Pomaže nam u razumjevanju uloge pojedinih komponenti modela:
 - funkcionalne forme,
 - parametara,i
 - prirode stohastičke komponente. (J. Gentle, George Mason University)

Kada su MC studije neophodne?

- Kada teorijske pretpostavke statističke teorije nisu ispunjene Npr. Ispitivanje posljedica neispunjenih teorijskih pretpostavki (robusnost) i
- Kada je statistička teorija nedovoljno razvijena ili je nema Npr. Određivanje sampling distribucije statistike koja nema teorijsku distribuciju

Koraci u MC studiji

- Postavljanje pitanja koja se mogu ispitivati MC studijom
- Dizajn MC studije koja može dati odgovore na postavljena pitanja
- Generiranje podataka
- Implementacija kvantitativne/statističke tehnike od interesa (funkcija, procedura, macro, IML code)
- Izračunavanje i akumulacija statistike od interesa (u svakoj replikaciji)
- Analiza akumulirane statistike od interesa (vizualizacija i tablice)
- Donošenje zaključaka na osnovu empirijskih rezultata

Primjer: robustnost t-testa za 1 uzorak: Dizajn MC studije

Na osnovu postavljenih pitanja (npr. robusnost t statistike) identificiramo što utječe na sampling distribuciju t statistike:

- Veličina uzorka (1.faktor) Npr. 10,20,50,100,200
- Distribucija (2. faktor) Npr. Normalna, gamma, uniformna
- Broj replikacija (uzoraka) za svaku kombinaciju nivoa faktora Npr. 10000

		Distribucije	
Veličina uzorka	normalna	gamma	uniformna
10	10000	10000	10000
20	10000	10000	10000
50	10000	10000	10000
100	10000	10000	10000
200	10000	10000	10000

Ukupno $3 \times 5 \times 10000 = 150000$ slučajnih brojeva.

Monte Carlo eksperimenti - treba ih koristiti samo kada analitičkim i numeričkim tehnikama ne možemo doći do odgovora.

Monte Carlo eksperiment (ima tri koraka, u našem primjeru gledamo robusnost t-statistike na odstupanja od normalnosti):

- Ulaz (dizajn, generiranje): Uzorkovanje iz normalne, gamma, itd., n= 10,20,50, 100, 200, br. replikacija= 10,000
- Model/modeli (statistička tehnika, izračunavanje, akumulacija): Računanje t statistike za svaku distribuciju, svaki n i svaku replikaciju, akumulacija vrijednosti
- Izlaz (Analiza rezultata i zaključci): Zaključci na osnovu sumarnih rezultata prikazanih u tablicama i grafikonima

Monte Carlo eksperimenti: Zašto ih koristiti

- Monte Carlo procjenjivanje
 - procjenjivanje odredjenog integrala
 - procjenjivanje varijance i pristranosti (bias)
- Monte Carlo testovi: simulacija podataka po hipotetskom modelu
- Bootstrap metode
 - parametarski bootstrap: simulacija podataka po procjenjenom (fitted) modelu
 - neparametarski bootstrap: ponovno uzorkovanje iz podataka

t test

t-statistika (t-test) se koristi za testiranja hipoteza o sredinama:

- Za 1 uzorak
- Za uparene uzorke
- Za 2 uzorka

Najjednostavnji slučaj: 1 uzorak.

MC eksperiment za ispitivanje robustnosti t-statistike (na odstupanje od uvjeta)

t test za 1 uzorak

Za testiranje nul hipoteze

$$H_0: \mu = \mu_0$$

koristi se test statistika

$$t=rac{ar{x}-\mu_0}{s_{ar{x}}}\sim t(n-1),$$

gdje je \bar{x} aritmetička sredina uzorka, a $s_{\bar{x}}$ standardna pogreška $\left(s_{\bar{x}} = \frac{s_n}{\sqrt{n}}\right)$. Test može biti dvostrani $(H_1: \mu \neq \mu_0)$ ili jednostrani $(H_1: \mu < \mu_0)$ ili $H_1: \mu > \mu_0$). Pretpostavke za primjenu t testa:

- Normalnost podataka
- Ili normalnost sampling distribucije sredina (centralni granični teorem) veliki uzorci
- Nezavisnost podataka

Pitanje: Koliko je t-test (odnosno distribucija t statistike) osjetljiv na odstupanja od normalnosti (robusnost)?

t-test: Kritično područje

Slika: $H_1: \mu \neq \mu_0$

Slika: $H_1: \mu < \mu_0$

Slika: $H_1: \mu > \mu_0$

Procjenjivanje varijance i pristranosti (bias)

Primjer (Robusnost t statistike)

Program CHAPTER1_2_T_NORMAL1.SAS, CHAPTER1_2_T_NORMAL2.SAS, CHAPTER1_2_T_NORMAL4.SAS.

Ispitajte, pomoću Monte Carlo eksperimenta (i animacije) sampling distribuciju t statistike (za 1 populaciju) ako su podaci distribuirani po:

- -Normalnoj distribuciji N(0,1)
- -Gamma distribuciji Gamma(0.5, 1)

Koristite slijedeće veličine uzoraka n=10,20,30,50,100,200.

Usporedite momente dobivene simulacijom sa teoretskim momentima t distribucije.

Diskutirajte posljedice primjene t-testa u slučaju jako zakrivljene (asimetrične) originalne distribucije.

Robusnost t statistike - normalna distribucija

Slika: CHAPTER1_2_T_NORMAL4.SAS

Analysis Variable : t						
N	N Obs	Mean	Std Dev	Std Error	Skewness	Kurtosis
10	10000	-0.008	1.135	0.011	-0.014	1.792
20	10000	-0.004	1.055	0.011	0.031	0.458
30	10000	-0.007	1.021	0.010	-0.032	0.286
50	10000	-0.008	1.016	0.010	-0.031	0.303
100	10000	-0.008	1.001	0.010	-0.027	-0.020
200	10000	-0.004	1.011	0.010	-0.024	0.053

Zadatak (Robusnost t statistike (eksploracija))

Koristite program $CHAPTER1_2_T_NORMAL4.SAS$ Izvedite program, pa pogledajte dataset TALL.

Analizirajte distribucije sredina i t statistika (varijable MEAN I T) pojedinačno po veličinama uzoraka N. Dodajte qqplot.

Što uočavate? Kolike su sredine i standardne devijacije od MEAN, za pojedinačne N, a kolike su očekivane vrijednosti standardnih devijacija sredina (st.grešaka sredina) na osnovu centralnog graničnog teorema?

Zadaće

5. zadaća (7.zadatak napraviti nakon idućih predavanja): rok za predaju 22.04. Zadaća se nalaze u folderu Zadaće na MERLINU.

UPUTE: Svaki zadatak iz zadaće mora biti u svom .sas programu. Sve .sas programe nazovite na način *prezime_ime_zad1.sas*, ako je npr. 1.zadatak u pitanju, itd. Sve što radite u zadaćama mora biti u obliku koda (možete koristiti sve dostupne materijale da dobijete tražene rezultate, ali sve mora biti napisano u obliku koda).