

本章知识结构

2.1 基本门电路 十2.1.1 与门

2.1.2 或门

-2.1.3 非门

- 2.2 门电路实验板── 2.2.1 电路原理

实验

2.3 复合门电路 --- 2.3.1 与非门

2.3.2 或非门

2.3.3 与或非门

2.3.4 异或门

2.3.5 同或门

2.4 集成门电路

-2.4.1 TTL 集成门电路

-2.4.2 CMOS 集成门电路

门电路是组成各种复杂数字电路的基本单元。门电路包括基本门电路和复合门电路, 复合门电路由基本门电路组合而成。

2.1 基本门电路 🜙

基本门电路是组成各种数字电路最基本的单元,基本门电路有 3 种:与门、或门和非门。

2.1.1 与门

1. 电路结构与原理

与门电路结构如图 2-1 所示,它是一个由二极管和电阻构成的电路,其中 $A \times B$ 为输入端, $S_1 \times S_2$ 为开关,Y 为输出端,+5V 电压经 $R_1 \times R_2$ 分压,在 E 点得到+3V 的电压。

图 2-1 与门的电路结构

与门电路工作原理说明如下:

当 S_1 、 S_2 均拨至位置"2"时,A、B端对地电压都为 0V,由于 E 点电压(注:各点电压均指该点对地电压。以下同)为 3V,所以二极管 VD_1 、 VD_2 都导通,E 点电压马上下降到 0.7V,Y端输出电压为 0.7V。

当 S_1 拨至位置 "2"、 S_2 拨至位置 "1" 时,A 端电压为 0V,B 端电压为 5V,由于 E 点电压为 3V,所以二极管 VD_1 马上导通,E 点电压下降到 0.7V,此时 VD_2 正端电压为 0.7V,负端电压为 5V, VD_2 处于截止状态,Y 端输出电压为 0.7V。

当 S₁ 拨至位置 "1"、S₂ 拨至位置 "2" 时, A 端电压为 5V, B 端电压为 0V, VD₂ 导通,

VD₁截止, E点为 0.7V, Y端输出电压为 0.7V。

当 S_1 、 S_2 均拨至位置"1"时,A、B 端电压都为 5V, VD_1 、 VD_2 均不能导通,E 点电压为 3V,Y 端输出电压为 3V。

为了分析方便,在数字电路中通常将 $0 \sim 1V$ 范围的电压规定为低电平,用"0"表示,将 $3 \sim 5V$ 范围的电压称为高电平,用"1"表示。根据该规定,可将与门电路工作原理简化如下:

当 A=0、B=0 时, Y=0;

当 A=0、B=1 时, Y=0;

当 A=1、B=0 时, Y=0;

当 A=1、B=1 时, Y=1。

由此可见,与门电路的功能是:只有输入端都为高电平时,输出端才会输出高电平; 只要有一个输入端为低电平,输出端就会输出低电平。

2. 真值表

真值表是用来列举电路各种输入值和对应输出值的表格。它能让人们直观地看出电路输入与输出之间的关系。表 2-1 为与门电路的真值表。

A	Ď.	输 出 Y	1	X B	輸出
0	0	0	1	0	0
0	1	0	1	1	1

表 2-1 与门电路的真值表

3. 逻辑表达式

真值表虽然能直观地描述电路输入和输出之间的关系,但比较麻烦且不便记忆。为此 可**采用关系式来表达电路输入与输出之间的逻辑关系,这种关系式称为逻辑表达式**。

与门电路的逻辑表达式是

$Y=A \cdot B$

式中的"·"表示"与",读作"A与B"(或"A乘B")。

4. 与门的图形符号

图 2-1 所示的与门电路由多个元器件组成,这在画图和分析时很不方便,可以用一个简单的符号来表示整个与门电路,这个符号称为图形符号。与门电路的图形符号如图 2-2 所示,其中旧符号是指早期采用的符号,常用符号是指国外多采用的符号,新标准符号是指我国最新公布的标准符号。

图 2-2 与门图形符号

5. 与门芯片

在数字电路系统中,已很少采用分立元件组成的与门电路,市面上有很多集成化的与门芯片(又称与门集成电路)。74LS08 是一种较常用的与门芯片,其外形和结构如图 2-3 所示,从图 2-3 (b)可以看出,74LS08 内部有四个与门,每个与门有 2 个输入端、1 个输出端。

2.1.2 或门

1. 电路结构与原理

或门电路结构如图 2-4 所示,它由二极管和电阻构成,其中 A、B为输入端,Y 为输

出端。

图 2-4 或门电路结构

或门电路工作原理说明如下:

当 S_1 、 S_2 均拨至位置"2"时,A、B 端电压都为 0V,二极管 VD_1 、 VD_2 都无法导通, E 点电压为 0V,Y 端输出电压为 0V。即 A=0、B=0 时,Y=0。

当 S_1 拨至位置 "2"、 S_2 拨至位置 "1"时,A 端电压为 0V,B 端电压为 5V,二极管 VD_2 马上导通,E 点电压为 4.3V,此时 VD_1 处于截止状态,Y 端输出电压为 4.3V。即 A=0、B=1 时,Y=1。

'当 S₁拨至位置 "1"、S₂拨至位置 "2" 时,A 端电压为 5V,B 端电压为 0V,VD₁ 导通,VD₂截止,E 点为 4.3V,Y 端输出电压为 4.3V。即 A=1、B=0 时,Y=1。

当 S_1 、 S_2 均拨至位置"1"时,A、B 端电压都为 5V, VD_1 、 VD_2 均导通,E 点电压为 4.3V,Y 端输出电压为 4.3V。即 A=1、B=1 时,Y=1。

由此可见,或门电路的功能是:只要有一个输入端为高电平,输出端就为高电平;只有输入端都为低电平时,输出端才输出低电平。

2. 真值表

或门电路的真值表见表 2-2。

输	λ 	输 出 Y	输 A	λ Β	输 出
0 .	0	0	1	0	1
0	1	1	1	1	1

表 2-2 或门电路的真值表

3. 逻辑表达式

或门电路的逻辑表达式为

Y=A+B

式中的"+"表示"或"。

4. 或门的图形符号

或门电路的图形符号如图 2-4 所示。

图 2-5 或门图形符号

5. 或门芯片

74LS32 是一种较常用的或门芯片,其外形和结构如图 2-6 所示,从图 2-6 (b)可以看 出,74LS32内部有4个或门,每个或门有2个输入端、1个输出端。

图 2-6 或门芯片 74LS32

非门 2.1.3

1. 电路结构与原理

非门电路结构如图 2-7 所示,它是由三极管和电阻构成的电路,其中A为输入端,Y 为输出端。

非门电路工作原理说明如下:

当 S₁ 拨至位置 "2" 时, A 端电压为 0V 时, 三极管 VT₁ 截止, E 点电压为 5V, Y 端 输出电压为 5V。即 A=0 时, Y=1。

当 S₁ 拨至位置"1"时, A端电压为 5V时, 三极管 VT₁饱和导通, E点电压低于 0.7V

零起步轻松学数字电路(第2版)

(约0.1~0.3V), Y端输出电压也低于0.7V。即A=1时, Y=0。

图 2-7 非门电路结构

由此可见,非门电路的功能是:输入与输出状态总是相反的。

2. 真值表

非门电路的真值表见表 2-3。

表 2-3 非门电路的真值表

输 入	输 出	输入入	输
	Y	A	Y
1	0	0	1

3. 逻辑表达式

非门电路的逻辑表达式为

$$Y = \overline{A}$$

式中的"一"表示"非"(或相反)。

4. 非门的图形符号

非门电路的图形符号如图 2-8 所示。

5. 非门芯片

74LS04 是一种常用的非门芯片(又称反相器), 其外形和结构如图 2-9 所示, 从图 2-9 (b)

可以看出,74LS04内部有6个非门,每个非门有1个输入端、1个输出端。

(a) 外形

图 2-9 非门芯片 74LS04

● 2.2 门电路实验板的电路原理与实验 ●

门电路实验板是一块包含有与门、或门、非门和输入及输出指示电路的实验板,利用它不但可以验证与门、或门和非门的逻辑功能,还可以用实验板上的基本门芯片组合成更复杂的电路,并验证它们的功能。

2.2.1 电路原理

图 2-10 所示是门电路实验板的电路原理图。74LS08 为与门芯片,74LS32 为或门芯片、74LS04 为非门芯片;SIP1~SIP3 分别为这些门电路的输入/输出端接插件,SIP_H 为高电平接插件,用来为门电路提供高电平"1",SIP_L 为低电平接插件,用来为门电路提供低电平"0"; $VD_1 \sim VD_3$ 为发光二极管,它与 $R_2 \subset R_3 \subset R_4$ 构成三组指示电路,在实验时用来

指示门电路的输出端状态,高电平来时发光二极管亮,低电平来时发光二极管灭, C_1 、 C_2 为电源滤波电容,确保提供给电路的电压波动小。

图 2-10 门电路实验板电路原理图

2.2.2 基本门实验

利用门电路实验板可以验证与门、或门和非门的输入输出关系。

1. 与门实验

实验板中的 74LS08 是一块 2 输入与门芯片,内含 4 组相同的与门,其内部结构参见图 2-3,可以使用任意一组与门做验证实验。

在实验时,先用两根导线将 74LS08 的 A_1 、 B_1 端(第一组与门输入端)分别与 SIP_H 插件连接,再用一根导线将 Y_1 端(第一组与门输出端)和插件 SIP4 的第一组指示电路(由 R_2 、 VD_1 构成)连接好,然后给实验板接通 5V 电源,发现指示灯 VD_1

_____(亮或不亮)。

上述实验表明: 当与门输入端 $A_i=1$ 、 $B_i=1$ 时,输出端 $Y_i=$ _____。用相同的方法可

以验证与门的其他3种输入输出关系。

2. 或门实验

实验板中的 74LS32 是一块 2 输入或门芯片,内含 4 组相同的或门,其内部结构参见图 2-6,可以使用任意一组或门做验证实验。

在实验时,先用导线将 74LS32 的 A_1 端与 SIP_H 插件连接,然后用导线将 74LS32 的 B_1 端与 SIP_L 插件连接,再用一根导线将 74LS32 的 Y_1 端与插件 SIP4 的第一组指示电路(由 R_2 、 VD_1 构成)连接好,然后给实验板接通 5V 电源,发现指示灯 VD_1 ______(亮或不亮)。

上述实验表明: 当或门输入端 $A_1=1$ 、 $B_1=0$ 时,输出端 $Y_1=$ ____。用相同的方法可以验证或门的其他 3 种输入输出关系。

3. 非门实验

实验板中的 74LS04 是一块非门芯片,内含 6 组相同的非门,其内部结构参见图 2-9,可以使用任意一组非门做验证实验。

在实验时,用导线将 74LS04 的 A_1 端与 SIP_L 插件连接,再用一根导线将 Y_1 端与插件 SIP4 的第一组指示电路(由 R_2 、 VD_1 构成)连接好,然后给实验板接通 5V 电源,发现指示灯 VD_1 _____(亮或不亮)。

上述实验表明: 当非门输入端 $A_1=0$ 时,输出端 $Y_1=$ ____。用相同的方法可以验证非门 $A_1=0$ 时的输出情况。

② 2.3 复合门电路 ②

复合门电路又称组合门电路,由基本门电路组合而成。常见的复合门电路有:与非门、或非门、与或非门、异或门和同或门等。

2.3.1 与非门

1. 结构与原理

与非门是由与门和非门组成的, 其逻辑结构及图形符号如图 2-11 所示。

图 2-11 与非门

零起步轻松学数字电路(第2版)

与非门工作原理说明如下:

当 A 端输入 "0"、B 端输入 "1"时,与门的 C 端会输出 "0", C 端的 "0" 送到非门的输入端,非门的 Y 端(输出端)会输出 "1"。

A、B端其他3种输入情况的读者可以按上述方法分析,这里不叙述。

2. 逻辑表达式

与非门的逻辑表达式为

 $Y = \overline{A \cdot B}$

3. 真值表

与非门的真值表见表 2-4。

		- N 2 1	74L11L1		
A	· 入 · B	输 出	**	λ	输 出
0	. 0	1	1	0	1
0	1	1	1	1	0

表 2-4 与非门的真值表

4. 逻辑功能

与非门的逻辑功能是: 只有输入端全为"1"时,输出端才为"0";只要有一个输入端为"0",输出端就为"1"。

5. 常用与非门芯片

74LS00 是一种常用的与非门芯片,其外形和结构如图 2-12 所示,从图 2-12 (b)可以看出,74LS00 内部有 4 个与非门,每个与非门有 2 个输入端、1 个输出端。

图 2-12 与非门芯片 74LS00

2.3.2 或非门

1. 结构与原理

或非门是由或门和非门组合而成的,其逻辑结构和图形符号分别如图 2-13 所示。

图 2-13 或非门

或非门工作原理说明如下:

当 A 端输入 "0"、B 端输入 "1"时,或门的 C 端会输出 "1", C 端的 "1" 送到非门的输入端,结果非门的 Y 端(输出端)会输出 "0"。

A、B 端其他 3 种输入情况读者可以按上述方法进行分析。

2. 逻辑表达式

或非门的逻辑表达式为

$Y = \overline{A + B}$

根据逻辑表达式很容易求出与输入值对应的输出值,例如, 当 A=0、B=1 时, Y=0。

3. 真值表

或非门的真值表见表 2-5。

表 2-5 或非门的真值表

4. 逻辑功能

或非门的逻辑功能是: 只有输入端全为 "0" 时,输出端才为 "1"; 只要输入端有一个 "1",输出端就为 "0"。

5. 常用或非门芯片

74LS27 是一种常用的或非门芯片,其外形和结构如图 2-14 所示,从图 2-14 (b)可以看出,74LS27 内部有 3 个或非门,每个或非门有 3 个输入端、1 个输出端。

(a) 外形

图 2-14 或非门芯片 74LS27

与或非门 2.3.3

1. 结构与原理

与或非门是由与门、或门和非门组成, 其逻辑结构和图形符号如图 2-15 所示。

图 2-15 与或非门

与或非门工作原理说明如下:

当 A=0, B=0, C=1, D=0 时, 与门 1 输出端 E=0, 与门 2 的输出端 F=0, 或门 3 输出 端 G=0, 非门输出端 Y=1。

当 A=0, B=0, C=1, D=1 时, 与门 1 输出端 E=0, 与门 2 的输出端 F=1, 或门 3 输出

端 G=1, 非门输出端 Y=0。

A、B、C、D端其他输入情况读者可以按上述方法分析。

2. 逻辑表达式

与或非门的逻辑表达式为

$$Y = \overline{A \cdot B + C \cdot D}$$

3. 真值表

与或非门的真值表见表 2-6。

 A
 B
 C
 D
 Y

 0
 0
 0
 1
 1

 0
 0
 0
 1
 1

 0
 0
 1
 0
 1

 0
 1
 0
 0
 1

 0
 1
 0
 0
 1

 0
 1
 1
 0
 1

 0
 1
 1
 0
 1

 0
 1
 1
 0
 1

 0
 1
 1
 0
 1

 1
 0
 0
 0
 1

 1
 0
 0
 1
 0

 1
 0
 1
 0
 1

 1
 0
 1
 0
 0

表 2-6 与或非门的真值表

4. 逻辑功能

1

与或非门的逻辑功能是: 只要 $A \times B$ 端或 $C \times D$ 端中有一组全为 "1",输出端就为 "0", 否则输出端为 "1"。

1

0

5. 常用与或非门芯片

74LS54 是一种常用的与或非门芯片,其外形和结构如图 2-16 所示,从图 2-16 (b)可以看出,74LS54 内部有 1 个与或非门,它由 4 个 3 输入与门和 1 个 4 输入或非门组成。

图 2-16 与或非门芯片 74LS54

2.3.4 异或门

1. 结构与原理

异或门是由两个与门、两个非门和一个或门组成的,其逻辑结构和图形符号如图 2-17 所示。

异或门工作原理说明如下:

当 A=0, B=0 时, 非门 1 输出端 C=1, 非门 2 的输出端 D=1, 与门 3 输出端 E=0, 与

门 4 输出端 F=0, 或门 5 输出端 Y=0。

当 A=0, B=1 时, 非门 1 输出端 C=0, 非门 2 的输出端 D=1, 与门 3 输出端 E=0, 与门 4 输出端 F=1, 或门 5 输出端 Y=1。

A、B端其他输入情况读者可以按上述方法分析。

2. 逻辑表达式

异或门的逻辑表达式为

$$Y = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B$$

3. 真值表

异或门的真值表见表 2-7。

h A	A	输出	\$	- <u>}</u>	输 出
0	0	0	1	0	. 1
0	1	1	1	1	0

表 2-7 异或门的真值表

4. 逻辑功能

异或门的逻辑功能是: 当两个输入端一个为 "0"、另一个为 "1" 时,输出端为 "1"; 当两个输入端同时为 "1"或同时为 "0"时,输出端为 "0"。该特点简述为: 异出 "1", 同出 "0"。

5. 常用异或门芯片

74LS86 是一个 4 组 2 输入异或门芯片, 其外形和结构如图 2-18 所示, 从图 2-18 (b) 可以看出, 74LS86 内部有 4 组异或门, 每组异或门有 2 个输入端和 1 个输出端。

图 2-18 异或门芯片 74LS86

2.3.5 同或门

1. 结构与原理

同或门又称异或非门,它是在异或门的输出端加上一个非门构成的。同或门的逻辑结构和图形符号如图 2-19 所示。

图 2-19 同或门

同或门工作原理说明如下:

当 A=0,B=0 时,非门 1 输出端 C=1,非门 2 输出端 D=1,与门 3 输出端 E=0,与门 4 输出端 F=0,或门 5 输出端 G=0,非门 6 的输出端 Y=1。

当 A=0,B=1 时,非门 1 输出端 C=0,非门 2 的输出端 D=1,与门 3 输出端 E=0,与门 4 输出端 F=1,或门 5 输出端 G=1,非门 6 的输出端 Y=0。

A、B 端其他输入情况读者可以按上述方法分析。

2. 逻辑表达式

同或门的逻辑表达式为

$$Y = A \cdot B + \overline{A} \cdot \overline{B} = A \odot B$$

3. 真值表

同或门的真值表见表 2-8。

A A	A B	输 出 Y	A W	λ	Y
0	0	1	1	0	0
0	1	0	1	1	1

表 2-8 同或门的真值表

4. 逻辑功能

同或门的逻辑功能是: 当两个输入端一个为"0"、另一个为"1"时,输出端为"0"; 当两个输入端都为"1"或都为"0"时,输出端为"1"。该特点简述为: 异出"0",同出"1"。

5. 常用同或门芯片

74LS266 是一个 4 组 2 输入同或门芯片, 其外形和结构如图 2-20 所示, 从图 2-20 (b) 可以看出, 74LS266 内部有 4 组同或门, 每组同或门有 2 个输入端和 1 个输出端。

图 2-20 同或门芯片 74LS266

② 2.4 集成门电路 ②

分立件构成的门电路已非常少见,现在的门电路大多数已集成化。**集成化的门电路称为集成门电路,集成门电路内部电路的结构与分立件门电路有所不同,但它们的输入输出逻辑关系是相同的**。根据芯片内部采用的主要元件不同,集成门电路主要分为 TTL 集成门电路和 CMOS 集成门电路。不论是 TTL 集成门电路还是 CMOS 集成门电路,它们的逻辑关系是相同的。

TTL 集成门电路简称 TTL 门电路, 其芯片内部主要采用双极型晶体管(即三极管) 来构成门电路, 74LS 系列和 74 系列芯片属于 TTL 门电路。TTL 门电路是电流控制型器件, 其功耗较大, 但工作速度快、传输延迟时间短(5~10ns)。

CMOS 集成门电路简称 CMOS 门电路, 其芯片内部主要采用 MOS 场效应管来构成门电路, 74HC、74HCT 和 4000 系列芯片属于 CMOS 门电路。CMOS 门电路是电压控制型器件, 其工作速度较 TTL 电路慢, 但功耗小、抗干抗性强、驱动负载能力强。

TTL 集成门电路 2.4.1

1. 多发射晶体管

在 TTL 集成门电路中常用到多发射极晶体管,它具有两个以上的发射极,图 2-21 所 示是一只具有 3 个发射极的晶体管的图形符号和等效图,该晶体管内部有 3 个发射结和 1 个集电结。

图 2-21 多发射极晶体管

下面以图 2-22 所示电路来说明多发射极晶体管的工作原理,其中图 2-22 (b)电路为 图 2-22 (a) 电路的等效图。

图 2-22 多发射极晶体管工作原理说明图

当多发射极晶体管 VT_1 的发射极 $A \times B \times C$ 分别输入 $0V \times 5V \times 0V$ 电压时, $F \times A$ 和 $F \times C$ C之间的两个发射结导通,F点电压下降为 0.7V,F、B之间的发射结反偏截止(B端电压 为 5V)。因为 F 点电压为 0.7V,该电压不能使 VT_1 的集电结和 VT_2 的发射结同时导通 (两 者同时导通需要 1.4V 电压), 所以 VT2处于截止状态, VT2集电极电压为 5V。

当 VT₁的发射极 A、B、C 同时输入 5V 电压时, F、A, F、B 和 F、C 之间的 3 个发 射结都不能导通,F点电压为 5V,该电压使 VT_1 的集电结和 VT_2 的发射结同时导通(这时 F点电压会从 5V 降至 1.4V), VT_2 饱和导通, VT_2 集电极电压为 0.3V。

2. TTL 与非门电路

TTL 集成门电路与分立件门电路一样,有与门、或门、非门、与非门、或非门、异或门和同或门等多种类型。这些门电路的分析方法基本相同,下面以 TTL 与非门电路为例来说明 TTL 集成门电路的工作原理。TTL 与非门电路如图 2-23 所示。

图 2-23 TTL 与非门电路

当 $A \times B \times C 3$ 个输入端都加 5V 电压时,即 $A=1 \times B=1 \times C=1$ 时,多发射极晶体管 $VT_1 3$ 个发射结都处于截止状态, VT_1 的基极电压很高, VT_1 集电结导通,基极电压经集电结加到 VT_2 的基极, VT_2 饱和导通, VT_2 的集电极电压下降,发射极电压上升。因为 VT_2 的集电极电压下降至很低, VT_3 基极电压也很低, VT_3 不能导通,处于截止状态,发射极无电压, VT_4 基极无电压, VT_4 截止。因 VT_2 发射极电压上升,该电压加到 VT_5 的基极, VT_5 饱和导通,集电极电压很低($0.1 \sim 0.3V$),为低电平。即当 $A=1 \times B=1 \times C=1$ 时,电路输出端 Y=0。

当 A、B、C 3 个输入端分别加 0V、5V、5V 电压时,即 A=0、B=1、C=1 时, VT_1 与 A 端相接的发射结导通, VT_1 基极电压降为 0.7V,所以 VT_1 另外两个发射结都处于截止状态。 VT_1 的基极电压为 0.7V,它不足以使 VT_1 集电结和 VT_2 的发射结同时导通, VT_2 无法导通,它的发射极电压很低(为 0V),而集电极电压很高。 VT_2 很低的发射极电压送到 VT_3 的基极, VT_5 的基极, VT_5 无法导通而处于截止状态。 VT_2 很高的集电极电压送到 VT_3 的基极, VT_3 导通, VT_3 发射极电压很高,该电压送到 VT_4 的基极, VT_4 饱和导通,+5V 电源经 P_5 、 VT_4 送到输出端,在输出端得到一个较高的电压。即当 P_5 、 P_5

A、B、C 的其他几种输入情况读者可自行分析。从上面的分析可知,该电路的输入与输出之间有"与非"的关系。

3. TTL 集电极开路门(OC门)

(1)结构与原理

TTL 集电极开路门又称 OC 门,图 2-24(a) 所示是一个典型 OC 门的电路结构,从图中可以看出,OC 门输出端内部的三极管集电极是悬空的,没有接负载。图 2-25 中的 OC 门输入与输出有与非关系。

(2) 常用 OC 门芯片

74LS01 是一种常用的 OC 门芯片,其外形和结构如图 2-25 所示,从图 2-25 (b)可以看出,74LS01 内部有 4 个 OC 与非门,每个与非门有 2 个输入端、1 个输出端。

图 2-25 OC 门芯片 74LS01

(3)外接负载形式

OC 门输出端内部的三极管集电极没有接负载,在实际使用时,OC 门可根据需要在输出端外接各种负载。图 2-26 所示为 OC 门 3 种常见外接负载方式。

在图 2-26(a) 所示电路中,输出端外接电阻 R,该电阻常称为上拉电阻;在图 2-26(b)

图 2-26 OC 门 3 种外接负载方式

所示电路中,输出端外接发光二极管,当 OC 门输出端的内部晶体管导通(相当于输出低电平)时,发光二极管有电流流过而发光;在图 2-26(c)所示电路中,输出端外接继电器线圈,当 OC 门输出端的内部晶体管导通时,有电流流过线圈,线圈产生磁场吸合开关(开关未画出)。

(4)线与电路

几个 OC 门并联时还可以构成"线与"电路。OC 门构成的"线与"电路如图 2-27 所示,该电路是将几个 OC 门的输出端连接起来,再接一个公共的负载 R。下面来分析该电路是否有"与"的关系。

图 2-27 OC 门线与电路

如果 Y_1 输出为"1"、 Y_2 输出为"0",则 OC 门 1 内部输出端的晶体管 VT_4 处于截止状态,如图 2-27 (b) 所示,OC 门 2 内部输出端的晶体管 VT_8 处于饱和状态,E 点电压很低,故输出端 Y=0。

如果 Y_1 输出为"1"、 Y_2 输出为"1",则 OC 门 1 和 OC 门 2 内部输出端的晶体管都处于截止状态,E 点电压很高,故输出端 Y=1。

其他几种情况读者可自行分析。

由上述分析可知, 当将几个 OC 门的输出端连接起来, 再接一个公共负载时, 输出端

确实有"与"的关系,这个"与"关系不是靠与门来实现的,而是由导线连接来实现的, 故称为"线与"。

4. 三态输出门(TS门)

三态输出门简称为三态门,或称 TS 门,这种门电路输出不仅会出现高电平和低电平,还可以出现第3种状态——高阻态(又称禁止态或悬浮态)。

(1)结构与原理

图 2-28 (a) 所示是一个典型三态门的电路结构,从图中可以看出,它是在 TTL 与非门电路上进行了改进,它的一个输入端在内部通过二极管 VD 与晶体管 VT_2 集电极相连,该端不再当作输入端,而称为控制端(又称使能端),常用"EN"表示。

图 2-28 三态门

三态门工作原理说明如下:

当 EN=0 (0V)时,VT₁与 EN 端相连的发射结和二极管 VD 都处于导通状态。VT₁一个发射结导通,其基极电压为 0.7V,该电压无法使 VT₁ 的集电结和 VT₂ 的发射结导通,VT₂ 处于截止状态,VT₂ 的发射电压为 0V,VT₅ 基极无电压而处于截止状态。二极管 VD 处于导通状态,VT₂ 的集电极电压下降,为 0.7V,该电压无法使 VT₃、VT₄的两个发射结同时导通,所以 VT₃、VT₄同时处于截止状态。因为 VT₄和 VT₅同时处于截止状态,Y 输出端既不与地接通,又不与电源相通,这种状态称为高阻状态(又称悬浮状态或禁止状态)。

在 EN=0 (0V)情况下,无论 $A \times B$ 端输入 "1" 还是 "0", VT_1 与 EN 相连的发射结和二极管 VD 都处于导通状态, VT_1 基极和 VT_2 的集电极电压都为 0.7V,最终 $VT_4 \times VT_5$ 都处于截止状态。

当 EN=1(5V)时,与 EN 端相连的 VT_1 的发射结和二极管 VD 都处于截止状态,相当于与 EN 相连的 VT_1 发射结和二极管 VD 处于开路,可认为两者不存在,这样该电路可

看成是只有两个输入端的普通与非门电路,输入端A、B与输出端Y有与非关系。

(2) 真值表

图 2-28 所示三态门的真值表见表 2-9。

	输 入		输出		输入	and T	输出
EN	Α	В	Υ	EN	A	В	Y
0	0	0	高阻	1	0	0	1
0	0	1	高阻	1	0	1	1
0	1	Ó	高阻	1	1	0	1
0	1	j † , t	高阻	1	Ī	1.1	0

表 2-9 三态门的真值表

(3)逻辑功能

图 2-28 所示三态门的逻辑功能是: 当控制端 EN=0 时,电路处于高阻状态,无论输入端输入什么,输出端都无输出;当控制端 EN=1 时,电路正常工作,相当于与非门电路,输出与输入有与非关系。

(4)常用三态门芯片

74LS126 是一种常用的高电平有效型三态门芯片,其外形和结构如图 2-29 所示,从图 (b) 可以看出,74LS126 内部有 4 个三态门,每个三态门有 1 个输入端 A、1 个输出端 Y和 1 个控制端 C,当 C=1 时,Y=A,当 C=0 时,高阻态。

图 2-29 三态门芯片 74LS126

(5)应用

三态门广泛用在数字电子产品中,特别是计算机中,它主要用于总线传递,可以进行

单向数据传递,也可以进行双向数据传送。

① 三态门构成单向总线传递电路。三态门构成单向总线传递电路如图 2-30(a)所示,它由 3 个三态门构成。

图 2-30 三态门构成的数据传递电路

在任何时刻,3个三态门中只允许其中一个三态门的控制端为"1",让该三态门处于工作状态,而其他的三态门控制端一定要为"0",让它们处于高阻状态,这样控制端为"1"的三态门电路才能正常工作。如果有两个或两个以上三态门的控制端同时为"1",则这些三态门会同时工作,同时有数据送向总线,那么总线传递信息就会出错,这是不允许的。

数据单向传递过程:假设 3 个三态门的输入端分别是 A=0、B=0、C=1、D=1、E=0、F=1,各个三态门 EN 端均为 0。首先让 $EN_1=1$,三态门 G_1 工作,输出端 $Y_1=1$ (因输入端 A=0、B=0),"1"送往总线去其他的电路;然后让 $EN_2=1$ (此时 EN_1 变为 0),三态门 G_2 工作,输出端 $Y_2=0$,"0"送往总线去其他的电路;再让 $EN_3=1$,三态门 G_3 工作,输出端 $Y_3=1$,"1"送往总线去其他的电路。

由此可见,当让几个三态门的控制端依次为"1"时,这几个三态门输出的数据就会依次送往总线。

② 三态门构成双向总线传递电路。三态门构成双向总线传递电路如图 2-30(b)所示,它由两个三态门构成。这两个三态门控制端的控制方式不同,三态门 G_1 的控制端为 "1"时处于工作状态,而三态门 G_2 的控制端为 "0"时才处于工作状态(三态门 G_2 的 EN 端的小圆圈表示当该端电平为 "0"时工作,为 "1"时处于高阻状态)。

数据双向传递过程:假设三态门 G_1 输入端 A=1,当控制端 EN 为"1"时,三态门 G_1 处于工作状态,三态门 G_2 处于高阻状态,于是三态门 G_1 输出数据"0",并送到总线;当控制端 EN 为"0"时,三态门 G_1 处于高阻状态,三态门 G_2 处于工作状态,总线上的数据

"0"送到三态门 G₂的输入端,三态门 G₂输出数据"1",并送到 G₁的输入端。

由此可见,通过改变三态门的控制端电平,就能改变数据传递方向,实现数据的双向 传递。

5. TTL 器件使用注意事项

TTL 器件在使用时要注意以下事项:

- ① 电源电压。电源电压 V_{CC} 允许范围为+5($1\pm10\%$),超过该范围可能会损坏 TTL 器件,或使器件逻辑功能混乱。
- ② 电源滤波。为了减小 TTL 器件工作时引起电源电压滤动,使 TTL 器件工作稳定,可在电源两端并联 $1 \uparrow 100 \mu F$ 的滤波电容(低频滤波)和 $1 \uparrow 0.01 \uparrow 0.1 \mu F$ 的滤波电容(高频滤波)。
- ③ 输入端的连接。输入端高电平有两种获得方式:一是输入端通<mark>过串接 1 个 1~10kΩ</mark>的电阻与电源连接;二是输入端直接与电源连接。输入端直接接地获得低电平。

或门、或非门等输入端为"或"逻辑的 TTL 器件多余的输入端不能悬空,要接地。与门、与非门等输入端为"与"逻辑的 TTL 器件多余的输入端可以悬空(相当于接高电平),但这样易受外界干扰,为了提高器件的可靠性,通常将多余的输入端直接接电源或与其他输入端并联,如果与其他输入端并联,输入端从输入信号处获得的电流将会增加。

④ 输出端的连接。输出端禁止直接接电源或接地,对于容性负载(100pF 以上),应 串接几百欧的限流电阻,否则器件易损坏。除 OC 门和三态门外,其他门电路的输出端禁 止并联使用,否则会损坏器件或引起逻辑功能混乱。

2.4.2 CMOS 集成门电路

CMOS 集成门电路简称 CMOS 门电路,它由 PMOS 场效应管和 NMOS 场效应管以 互补对称的形式组成。

1. MOS 场效应管

(1)图形符号

MOS 场效应管是一种电压控制型器件,简称为 MOS 管,它是由金属(M)、氧化物(O)和半导体(S)构成的。MOS 管像三极管一样,既可用作放大,也可当作电子开关使用。MOS 管可分为耗尽型 MOS 管和增强型 MOS 管,每种类型又分为 P 沟道和 N 沟道,MOS 管的图形符号如图 2-31 所示,其中采用增强型 MOS 管构成的门电路更为常见。

图 2-31 MOS 管的图形符号

(2) 增强型 MOS 管的结构

增强型 MOS 管有 P 沟道和 N 沟道两种, 其结构原理基本相似, 下面以 N 沟道增强型 MOS 管(简称增强型 NMOS 管)为例进行说明。增强型 NMOS 管的结构如图 2-32 所示。

图 2-32 增强型 NMOS 管的结构

增强型 NMOS 管是以 P 型硅片作为基片(又称衬底),在基片上制作两个含很多杂质的 N 型材料,再在上面制作一层很薄的二氧化硅(SiO_2)绝缘层,在两个 N 型材料上引出两个铝电极,分别称为漏极(D)和源极(S),在两极中间的二氧化硅绝缘层上制作一层铝制导电层,从该导电层上引出电极称为 G 极。一般情况下,P 型衬底常与 S 极内部连接在一起。

(3) 增强型 MOS 管的工作原理

增强型 NMOS 管需要加合适的电压才能工作。下面以图 2-33 来说明增强型 NMOS 管工作原理,其中图 2-33(a)为结构图形式,图 2-33(b)为电路图形式。

电源 E_1 通过 R_1 加到场效应管 $D \setminus S$ 极,电源 E_2 通过开关 S 加到场效应管的 $G \setminus S$ 极。在开关 S 断开时,场效应管的 G 极无电压, $D \setminus S$ 极所接的两个 N 区之间没有导电沟道,

图 2-33 增强型 NMOS 管工作原理说明图

所以两个N区之间不能导通, I_D 电流为0;如果将开关S闭合,场效应管的G极获得正电压,与G极连接的铝电极有正电荷,它产生的电场穿过 SiO_2 层,将P衬底很多电子吸引靠近 SiO_2 层,从而在两个N区之间出现导电沟道,由于此时D、S极之间加上正向电压,就有 I_D 电流从D极流入,再经导电沟道从S极流出。

如果改变 E_2 电压的大小,也即是改变 G、S 极之间的电压 U_{GS} ,与 G 极相连的铝层产生的电场大小就会变化, SiO_2 下面的电子数量就会变化,两个 N 区之间沟道宽度就会变化,流过的 I_D 电流大小就会变化。 U_{GS} 电压越高,沟道就会越宽, I_D 电流就会越大。

增强型 MOS 管具有特点是:在 G、S 极之间未加电压(即 U_{GS} =0)时,D、S 极之间没有沟道, I_D =0;当 G、S 极之间加上合适电压(大于开启电压 U_T)时,D、S 极之间有沟道形成, U_{GS} 电压变化时,沟道宽窄会发生变化, I_D 电流也会变化。

对于增强型 NMOS 管,G、S 极之间的电压 $U_{GS}>0$ (即 $U_{G}>U_{GS}$)且 $U_{GS}>U_{T}$ 时,D、S 极之间才会形成沟道而导通。为分析方便,可认为当 NMOS 管 G 极为高电平时导通,为低电平时截止。

对于增强型 PMOS 管,G、S 极之间的电压 $U_{GS} < 0$ 且 $U_{GS} < U_T$ 时,D、S 极之间才有沟 道形成。为分析方便,可认为当 PMOS 管 G 极为低电平时导通,为高电平时截止。

2. CMOS 非门

(1)结构与原理

CMOS 非门的电路结构如图 2-34 所示, VT_1 为 PMOS 管, VT_2 为 NMOS 管,电路输入端 A 与两管的 G 极连接,电路输出端 Y 与两管的 D 极连接,PMOS 管的 S 极接电源 V_{DD} ,NMOS 管的 S 极接地。

图 2-34 CMOS 非门的电路结构

CMOS 非门电路的工作原理说明如下:

当 A 端为高电平时, VT_1 (PMOS 管) 截止, VT_2 (NMOS) 管导通,Y 端为低电平。即 A=1 时,Y=0。

当 A 端为低电平时, VT₂(NMOS 管)截止, VT₁(PMOS 管)导通, Y 端为高电平。即 A=0 时, Y=1。

从上面分析不难看出, CMOS 非门的输出端与输入端之间满足

$Y = \overline{A}$

对于 CMOS 非门电路,不管输入端为高电平还是低电平, VT_1 、 VT_2 始终有一个处于截止状态,电源与地之间基本无电流通过,因此 CMOS 非门电路功耗极低(微瓦以下)。

(2) 常用 CMOS 非门芯片

CC4069 是一种常用的 CMOS 非门芯片,其结构如图 2-35 所示,从图中可以看出, CC4069 内部有 6 个非门,每个非门有 1 个输入端和 1 个输出端。

图 2-35 CMOS 非门芯片 CC4069

3. CMOS 与非门

(1)结构与原理

CMOS 与非门的电路结构如图 2-36 所示, VT_1 、 VT_2 为 PMOS 管, VT_3 、 VT_4 为 NMOS 管。

图 2-36 CMOS 与非门的电路结构

CMOS 与非门电路的工作原理说明如下:

当 $A \times B$ 端均为高电平时, $VT_1 \times VT_2$ 截止, $VT_3 \times VT_4$ 导通,Y 端为低电平。即 $A=1 \times B=1$ 时,Y=0。

当 $A \times B$ 端均为低电平时, $VT_1 \times VT_2$ 导通, $VT_3 \times VT_4$ 截止,Y 端为高电平。即 $A=0 \times B=0$ 时,Y=1。

当 A 端为低电平、B 端为高电平时,A 端低电平使 VT_2 导通、 VT_3 截止,B 端高电平使 VT_1 截止、 VT_4 导通,由于 VT_2 导通、 VT_3 截止,Y 端输出高电平。即 A=0、B=1时,Y=1。

当 A 端为高电平、B 端为低电平时,A 端高电平使 VT_3 导通、 VT_2 截止,B 端低电平使 VT_4 截止、 VT_1 导通,由于 VT_1 导通、 VT_4 截止,Y 端输出高电平。即 A=1、B=0时,Y=1。

从上面分析不难看出, CMOS 与非门的输出端与输入端之间满足

$Y = \overline{AB}$

(2) 常用 CMOS 与非门芯片

CC4011 是一种常用的 CMOS 与非门芯片,其结构如图 2-37 所示,从图中可以看出, CC4011 内部有 4 个与非门,每个与非门有 2 个输入端和 1 个输出端。

图 2-37 CMOS 与非门芯片 CC4011

4. CMOS 或非门

(1)结构与原理

CMOS 或非门的电路结构如图 2-38 所示, VT_1 、 VT_2 为 PMOS 管, VT_3 、 VT_4 为 NMOS 管。

图 2-38 CMOS 或非门的电路结构

CMOS 或非门电路工作原理说明如下:

当 A、B 端均为高电平时, VT_1 、 VT_2 截止, VT_3 、 VT_4 导通,Y 端为低电平。即 A=1、 B=1 时,Y=0。

当 $A \times B$ 端均为低电平时, $VT_1 \times VT_2$ 导通, $VT_3 \times VT_4$ 截止,Y 端为高电平。即 $A=0 \times B=0$ 时,Y=1。

当 A 端为低电平、B 端为高电平时,A 端低电平使 VT_1 导通、 VT_3 截止,B 端高电平使 VT_2 截止、 VT_4 导通,由于 VT_2 截止、 VT_4 导通,Y 端输出低电平。即 A=0、B=1时,Y=0。

当 A 端为高电平、B 端为低电平时,A 端高电平使 VT_3 导通、 VT_1 截止,B 端低电平使 VT_4 截止、 VT_2 导通,由于 VT_3 导通、 VT_1 截止,Y 端输出低电平。即 A=1、B=0时,Y=0。

从上面分析不难看出,CMOS 或非门的输出端与输入端之间满足

$$Y = \overline{A + B}$$

(2) 常用 CMOS 或非门芯片

CC4001 是一种常用的 CMOS 或非门芯片,其结构如图 2-39 所示,从图中可以看出, CC4001 内部有 4 个或非门,每个或非门有 2 个输入端和 1 个输出端。

5. CMOS 传输门

(1)结构与原理

CMOS 传输门是一种由控制信号来控制电路通断的门电路。CMOS 传输门的电路结构

图 2-39 CMOS 或非门芯片 CC4001

和图形符号如图 2-40 所示, VT_1 为 PMOS 管, VT_2 为 NMOS 管,两端并联连接在一起,在两个 MOS 管衬底未与源极连接时,漏极 D 与源极 S 具有互换性,如果 E 端作为输入端,分析时将 VT_1 、 VT_2 与 E 端相连的极作为 S 极,与 F 端相连的极作为 D 极。C、 \overline{C} 为一对互补控制端,两者控制电平始终相反,当 C 端为高电平时, \overline{C} 为低电平。

CMOS 传输门工作原理说明如下:

当控制信号为高电平(即 C=1, \overline{C} =0)时,VT₁(PMOS 管)的 G 极为低电平,VT₁导通,VT₂(NMOS 管)的 G 极为高电平,VT₂导通,CMOS 传输门开通,E 端输入电压 U_i 经导通的 VT₁、VT₂送到 F 端输出。

当控制信号为低电平(即 C=0, \overline{C} =1)时,VT₁(PMOS 管)的 G 极为高电平,VT₁ 截止,VT₂(NMOS 管)的 G 极为低电平,VT₂截止,CMOS 传输门关断,输入电压 U_i 无法通过。

由于两个 MOS 管漏极 D 与源极 S 具有互换性,故也可将 F 端作为输入端, E 端作为输出端,那么信号电压就可以双向传送,所以 CMOS 传输门又称双向开关。

为了控制方便,CMOS 传输门常和非门组合构成双向模拟开关,其结构如图 2-40(c)所示,当 C=1 时,开关接通,当 C=0 时,开关断开。

(2) 常用 CMOS 传输门芯片

CC4016 是一种常用的 CMOS 传输门芯片(双向模拟开关),其结构如图 2-41 所示,从图中可以看出,CC4016 内部有 4 个传输门,每个传输门有 1 个输入\输出端、1 个输出\输入端和 1 个控制端。

6. CMOS 器件使用注意事项

CMOS 器件在使用时要注意以下事项:

- ① 电源电压。电源电压不能接反,规定 $+V_{DD}$ 接电源正极, V_{SS} 接电源负极(通常为地)。
- ② 输入端的连接。输入端的信号电压 U_i 应为 $V_{DD} > U_i > V_{SS}$,超出该范围易损坏 CMOS 内部的保护二极管或栅极,可在输入<mark>端串接一个 $10 \sim 100 \text{k}\Omega$ </mark>的限流电阻,所有多余的输入端应根据逻辑要求接 V_{DD} 或 V_{SS} ,对器件工作速度要求不高时输入端允许并联使用。
- ③ 输出端的连接。输出端禁止直接接电源或接地,除三态门外,其他门电路的输出端禁止并联使用。
- ④ 测试。在测试 CMOS 器件时,应先加电源 V_{DD} ,然后加输入信号</mark>,停止测试时,要先撤去输入信号,再切断电源,另外要求所有测试仪器的外壳必须良好接地。
- ⑤ 存放与焊接。由于 CMOS 器件的输入阻抗很高,易被静电击穿,存放时应尽量让所有引脚短接(如用金属箔包装),焊接时电烙铁要良好接地,也可用烙铁余温焊接。

习题 2

1、、
和。
2. 真值表是用来列举的表格。逻辑表达式是用来表达的逻辑关系的式子。
3. 与门的逻辑表达式是,或门的逻辑表达式是,非门的逻辑表达式是。
4. 与门电路的功能是:。
5. 复合门电路又称
有:、、、、和等。
6. 与非门的逻辑表达式为,或非门的逻辑表达式为,与或非门的逻辑表达式
为,异或门的逻辑表达式为,同或门的逻辑表达式为。
7. 集成门电路内部电路的结构与分立件门电路有所不同,但它们的关系是相同的。根据芯
片内部采用的主要元件不同,集成门电路主要分为
8. TTL 集成门电路内部主要采用
其功耗较,工作速度、传输延迟时间。
9. CMOS 集成门电路内部主要采用
器件,其工作速度较 TTL 电路,功耗、抗干抗性、驱动负载能力。
10. OC 门也即电路, OC 门输出端内部的三极管集电极是。当将几个 OC 门的输出
端连接起来,再接一个公共负载时,输出端有的关系,这个关系不是靠与门来实现的,而是由导
线连接来实现的,故称为。
11. 三态门又称,这种门电路输出不仅会出现高电平和低电平,还可以出现第 3 种
状态——,又称态或态),它不但有输入、输出端,还有端。
12. 对于输入端为"或"逻辑的 TTL 器件,多余的输入端不能,应;对于输入端
为"与"逻辑的 TTL 器件,多余的输入端可以,相当于接电平,但这样易受外界干扰,
为此可将多余的输入端直接接或。
13. 对于 TTL 器件,输出端禁止,对于容性负载(100pF 以上),应,否则器件易
损坏。除 OC 门和三态门外,其他门电路的输出端禁止。
14. CMOS 集成门电路主要由
方便,可认为当 管 G 极为高电平时导通,为低电平时截止;当 管 G 极为低电平时导通,
为高电平时截止。

零起步轻松学数字电路(第2版)

15 . 对于 ${f CMOS}$ 器件,输入端的信号电压 $U_{f i}$ 应为,超出该范围易损坏,在对器件工作速度
要求不高的情况下,输入端允许
<u>ıt</u> 。
16. 由于 CMOS 器件的输入阻抗很,易被静电击穿,存放时应尽量让所有引脚,
如用包装,焊接时电烙铁要,也可用烙铁焊接。

二、分析題

请按照以下步骤分析图 2-42 所示电路。

- (1)写出电路的逻辑表达式;
- (2)列出电路的真值表;
- (3)认真分析真值表,总结出电路的逻辑功能。

