Aplicación de Teoría de Colas en un Terminal de Contenedores Marítimos

Objetivo:

Optimizar los tiempos de espera y atención de camiones en un terminal de contenedores, mejorando la eficiencia del patio de operaciones.

1. Definición del Problema

- Contexto: Los camiones llegan para cargar o descargar contenedores (DRY o REFER).
- **Problema:** Largas filas de espera generan costos extra (combustible, tiempos muertos, penalizaciones).
- **Solución:** Modelar el flujo de camiones como un **sistema de colas**, analizar indicadores y ajustar recursos (grúas portacontenedores, puertas de acceso,).

2. Elementos del Modelo de Cola

Elemento Descripción

Clientes Camiones con contenedores.

Servidores Puertas de ingreso/egreso + equipos de manipulación.

Llegadas Proceso aleatorio (ej: distribución de Poisson).

Servicio Tiempo para carga/descarga y papeleo.

Disciplina FIFO (First In, First Out) - primero en llegar, primero en ser atendido.

Capacidad Número máximo de camiones en cola (limitado por espacio).

3. Propuesta de Modelo Matemático

Utilizaremos un modelo clásico M/M/c:

- M: Llegadas son un proceso de Poisson (arribo aleatorio).
- M: Tiempos de servicio son exponenciales (variabilidad en tiempos de carga).
- c: Número de servidores (puertas + grúas trabajando simultáneamente).

Parámetros básicos:

- λ = tasa de llegada de camiones (camiones/hora).
- μ = tasa de servicio de cada servidor (camiones/hora).
- c = número de servidores.

4. Indicadores Clave que se pueden calcular

Indicador	Fórmula Básica	Interpretación
Utilización (ρ)	$\rho = \lambda / (c \times \mu)$	Nivel de saturación del sistema.
Número medio en cola (Lq)	Lq \approx ((λ^2) / (c μ (c μ - λ)))	- Cuántos camiones en promedio están esperando.
Tiempo medio en cola (Wq)	Wq = Lq / \(\lambda \)	Cuánto tiempo promedio espera un camión.
Tiempo total en sistema (Ws)	Ws = Wq + $(1/\mu)$	Tiempo total incluyendo servicio.

5. Ejemplo Numérico (Simplificado)

- λ = 20 camiones/hora
- μ = 10 camiones/servidor/hora
- c = 3 servidores (3 grúas/puertas)

Cálculo:

• $\rho = 20 / (3 \times 10) = 0.6667 (66.67\% \text{ de utilización})$

Con esto, se puede calcular:

- Número medio en cola (Lq) ≈ 1.11 camiones.
- Tiempo medio de espera (Wq) ≈ 3.33 minutos.
- Tiempo total en sistema (Ws) ≈ 9.33 minutos.

Interpretación:

Con 3 grúas o accesos trabajando, el sistema mantiene tiempos razonables y baja acumulación de camiones.

6. Estrategias de Optimización Basadas en Resultados

- Incrementar número de servidores en horarios peak.
- Separar colas por tipo de operación (dry/reefer/import/export).
- Agendar turnos de llegada mediante cita previa para camiones.
- Instalar sensores o apps para predecir y redistribuir tráfico.
- Ajustar horarios de operación para distribuir flujo

7.Resumen

Camiones llegan (λ) \rightarrow Forman cola \rightarrow Atendidos por c servidores (μ) \rightarrow Salen del sistema

VPC/Placill /Abril/2024