This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-347181

(43) Date of publication of application: 15.12.2000

(51)Int.Cl.

GO2F 1/1335 5/02 GO2B 5/08

GO2B 5/30 1/13363

(21)Application number: 11-162072

(71)Applicant : NITTO DENKO CORP

(22)Date of filing:

09.06.1999

(72)Inventor: SAIKI YUJI

SATAKE MASAYUKI TAKAHASHI YASUSHI SHODA TAKAMORI

(54) OPTICAL MEMBER AND LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an optical member which hardly causes blocking due to stacking and which is excellent in the assembling efficiency for a liquid crystal display device or the like by temporarily applying a separator having specified or higher surface roughness Ra of the outer surface to cover an adhesive layer formed on the outermost surface, especially on one face of an optical material.

SOLUTION: The optical member is produced by temporarily applying a separator having ≥0.03 μm surface roughness Ra of the outer surface to cover an adhesive layer formed on the outermost surface, especially on one surface of an optical material, and if necessary, by adhering and applying a protective film on

the other side of the optical material. As for the optical material, proper material may be used, for example, a polarizing plate, phase difference plate, or elliptic polarizing plate or luminance improving plate produced by laminating those plates to be used to form a liquid crystal display device or the like, and its kind is not especially limited. Therefore, the polarizing plate may be

a reflection type or semitransmission type. For example, the optical member consists of a separator 1, adhesive layer 2, polarizing plate 3, protective film 4, phase difference plate 5, and the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Optical faculty material which surface roughness Ra of an outside surface carries out tentative installation covering of the adhesive layer prepared in the maximum front face of an optical material with separator 0.03 micrometers or more, and is characterized by the bird clapper.

[Claim 2] In a claim 1, it has separator in the one side side of an optical material, and is the optical faculty material of an optical material which, on the other hand, comes to have a protection film in a side.

[Claim 3] Optical faculty material which is that in which an optical material has a polarizing plate, it and a phase contrast board, or an improvement board in brightness at least in a claim 1 or 2. [Claim 4] The liquid crystal display characterized by providing an optical member according to claim 1 to 3 where the separator is removed.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] this invention relates to the optical member which cannot produce blocking by pile easily and is excellent in assembly efficiency, such as a liquid crystal display.
[0002]

Background of the Invention] Although the polarizing plate used for formation of a liquid crystal display (LCD) etc. is used as an optical member which comes to attach the adhesive layer for pasting it with other members, such as a liquid crystal cell, for the purpose of the increase in efficiency of LCD assembly etc. beforehand, transportation, storage, etc. are presented with it where tentative installation covering is carried out with separator so that the adhesive layer exposed in that case may paste up superfluously or may not be polluted.

[0003] However, if it was in the conventional optical member, after accumulating it and conveying or keeping it, when the automatic-assembling work of a liquid crystal display etc. was presented with it, two or more units were incorporated without an optical member being inseparable for every unit because of blocking, assembly equipment detected the abnormality, the assembly line stopped, and there was a trouble of reducing assembly efficiency.

[0004]

[The technical problem of invention] a halt of the assembly line according [even if this invention performs transportation, storage, etc. where it was hard to be generated and blocking is repeated, and it presents the automatic-assembling work of a liquid crystal display etc. with it, can separate an optical member from the pile object smoothly for every unit, and] to the incorporation of two or more units -- avoidable -- a liquid crystal display etc. -- assembly -- the optics which can be manufactured efficiently -- let development of a member be a technical problem [0005]

[Means for Solving the Problem] Surface roughness Ra of an outside surface comes to carry out tentative installation covering of the maximum front face of an optical material, and the adhesive layer prepared especially in the one side with separator 0.03 micrometers or more, and this invention offers the optical member of an optical material which, on the other hand, carries out adhesion covering of the side with a protection film, and is characterized by the bird clapper if needed.

[0006]

[Effect of the Invention] a halt of the assembly line the split face given to the outside surface of separator even if it presented transportation, storage, etc. in the state where it put according to the optical member of this invention prevents blocking, and present the automatic-assembling work of a liquid crystal display etc. with the pile object, can separate an optical member smoothly for every unit of the, and according to the incorporation of two or more units -- being avoidable -- a liquid crystal display etc. -- assembly -- it can manufacture efficiently [0007]

[The operation gestalt of invention] Surface roughness Ra of an outside surface comes to carry out

tentative installation covering of the maximum front face of an optical material, and the adhesive layer prepared especially in the one side with separator 0.03 micrometers or more, and the optical member by this invention consists of a thing of an optical material which, on the other hand, carried out adhesion covering of the side with the protection film if needed. The example was shown in <u>drawing 1</u> - <u>drawing 3</u>. For a polarizing plate and 4, a protection film and 5 are [separator, and 2, 21 and 22 / 1 / an adhesive layer and 3 / a phase contrast board and 6] the improvement boards in brightness. [0008] An optical material may be used for formation of liquid crystal displays, such as a polarizing

[0008] An optical material may be used for formation of liquid crystal displays, such as a polarizing plate, a phase contrast board, a elliptically-polarized-light board that carried out the laminating of them, and an improvement board in brightness, etc., and there is [proper] especially no limitation about the kind. Therefore, polarizing plates may be a reflected type, a half-transparency type thing, etc. Moreover, a phase contrast board may also have the proper purposes, such as one half, a wavelength plate of 1/4 grades, and viewing-angle compensation. In addition, in the case of the laminating type optical material like said elliptically-polarized-light board, the laminating may be performed through proper adhesion meanses, such as an adhesive layer.

[0009] What iodine and/or the dichromatic dye were made to stick to the hydrophilic high polymer film like a polyvinyl alcohol system film, a partial formal-ized polyvinyl alcohol system film, and an ethylene-vinylacetate-copolymer system partial saponification film, and was extended as an example of the polarizing plate incidentally described above, the polarization film which consists of a polyene oriented film like the dehydration processing object of polyvinyl alcohol or the desalting acid-treatment object of a polyvinyl chloride are raised. Moreover, a polarizing plate may have transparent protection layer to one side or both sides of a polarization film.

[0010] It is that by which the reflected type polarizing plate prepared the reflecting layer in the polarizing plate on the other hand, and it is for forming the liquid crystal display of the type which is made to reflect the incident light from a check-by-looking side (display side), and is displayed etc., and built-in of the light sources, such as a back light, can be omitted, and it has an advantage, such as being easy to achieve thin shape-ization of a liquid crystal display. A method with the proper method which attaches the reflecting layer which becomes one side of a polarizing plate from a metal etc. through transparent protection layer etc. if needed can perform formation of a reflected type polarizing plate. [0011] What attached the foil and vacuum evaporation film which consist of reflection nature metals, such as aluminum, to one side of the transparent protection layer which carried out mat processing as an example of a reflected type polarizing plate if needed, and formed the reflecting layer in it is raised. Moreover, the aforementioned transparent protection layer is made to contain a particle, it considers as surface detailed irregularity structure, and what has the reflecting layer of detailed irregularity structure on it is raised. In addition, the use gestalt of a reflecting layer in the state where the reflector was covered with transparent protection layer, the polarizing plate, etc. is more desirable than the point of fall prevention of the reflection factor by oxidization, as a result long-term duration of an initial reflection factor, the point of evasion of separately an attachment of a protective layer, etc. [0012] The reflecting layer of said detailed irregularity structure diffuses an incident light by the scattered reflection, prevents directivity and the appearance [GIRAGIRA / appearance], and has the advantage which can suppress the nonuniformity of light and darkness. Moreover, the transparent protection layer of particle content has the advantage which is spread in case an incident light and its reflected light penetrate it, and can suppress light-and-darkness nonuniformity more. [0013] Formation of the reflecting layer of the detailed irregularity structure in which the surface detailed irregularity structure of transparent protection layer was made to reflect can be performed by the method of attaching a metal directly on the surface of transparent protection layer by methods with proper vacuum evaporationo method, plating method, etc., such as for example, a vacuum deposition method, an ion plating method, and a sputtering method, etc.

[0014] In addition, the polymer which is excellent in transparency, a mechanical strength, thermal stability, moisture cover nature, etc. is preferably used for formation of the transparent protection layer in the above-mentioned polarizing plate. As the example, the resin of heat-hardened types, such as a polyester system resin, an acetate system resin, a polyether sulphone system resin and a polycarbonate

system resin, a polyamide system resin and a polyimide system resin, a polyolefine system resin and an acrylic resin or acrylic and an urethane system, an acrylic urethane system, an epoxy system, and a silicone system, or an ultraviolet-rays hardening type etc. is raised.

[0015] Although transparent protection layer considered as the application method and film of polymer, it may form by the method with a proper laminating method etc., and you may determine thickness suitably. Especially generally let 1-300-micrometer 500 micrometers or less above all be the thickness of 5-200 micrometers. In addition, transparent particles which consist of the silica whose mean particle diameter is 0.5-50 micrometers, for example, an alumina, a titania and a zirconia, a tin oxide, indium oxide and a cadmium oxide, an antimony oxide, etc. as a particle which formation of the transparent protection layer of surface detailed irregularity structure is made to contain, such as an organic system particle which a conductive thing also becomes from the polymer for which a bridge is not constructed [a certain inorganic system particle, bridge formation, or], are used, the amount of the particle used --per [2] transparent resin 100 weight section - 50 weight sections -- 5 - 25 weight section is common above all

[0016] On the other hand, as an example of the above-mentioned phase contrast board, what supported with the film the polyolefine of a polycarbonate, polyvinyl alcohol and polystyrene, a polymethylmethacrylate and polypropylene, or others, the form birefringence film which comes to carry out extension processing of the film which consists of proper polymer like a polyarylate or a polyamide and the oriented film of a liquid crystal polymer, and the orientation layer of a liquid crystal polymer is raised.

[0017] A phase contrast board may be the inclination oriented film which may have the proper phase contrast according to the purposes of use, such as a thing aiming at compensation of for example, various wavelength plates, coloring by the birefringence of a liquid crystal layer, a viewing angle, etc., and controlled the refractive index of the thickness direction. Moreover, you may be what carried out the laminating of two or more sorts of phase contrast boards, and controlled optical properties, such as phase contrast. In addition, the aforementioned inclination oriented film can paste up a thermal-contraction nature film for example, on a polymer film, and can obtain a polymer film to operation-ization of the shrinkage force by heating with extension processing or/and the method that carries out contraction processing, the method to which slanting orientation of the liquid crystal polymer is carried out. [0018] The optical material may consist of what carried out the laminating of two-layer or the three or more-layer optical layer like the layered product of the above-mentioned elliptically-polarized-light board and the above-mentioned reflected type polarizing plate, or a phase contrast board. Therefore, you may be what combined a polarizing plate 3, the phase contrast board 5 or/, and the improvement board 6 in brightness as illustrated to drawing 2 or drawing 3, the thing which combined the reflected type polarizing plate, the half-transparency type polarizing plate, and the phase contrast board. [0019] Although the optical material which carried out the laminating of two-layer or the three or morelayer optical layer can be formed also by the method which carries out a laminating separately one by one in manufacture process, such as a liquid crystal display, some which carried out the laminating beforehand and which were used as optical material have the advantage in which it excels in stability, assembly-operation nature, etc. of quality, manufacture efficiency, such as a liquid crystal display, is raised, and it deals.

[0020] In addition, nominal has been carried out to the polarization division plate etc. by the improvement board in brightness which is combined with a polarizing plate if needed [abovementioned], and is used as optical material, if incidence of the natural light is carried out, the linearly polarized light of a predetermined polarization shaft or the circular polarization of light of the predetermined direction will be reflected, and other light shows the property to penetrate and is used for the purpose of improvement in the brightness of a liquid crystal display.

[0021] Namely, while the improvement board in brightness carries out incidence of the light from the light sources, such as a back light, and obtains the transmitted light of a predetermined polarization state While aiming at increase in quantity of the light which is made to reverse the reflected light through a reflecting layer etc., is made to carry out re-incidence to the improvement board in brightness, is made to

penetrate the part or all as a light of a predetermined polarization state, and penetrates the improvement board in brightness It is used for the purpose of raising brightness with the method which aims at increase of the quantity of light which supplies the polarization which cannot be easily absorbed by the polarizing plate and can be used for a liquid crystal display etc.

[0022] therefore, as an improvement board in brightness, like the multilayer layered product of the thin film film from which the multilayered film and refractive-index anisotropy of a dielectric are different, for example what shows the property of penetrating the linearly polarized light of a predetermined polarization shaft, and reflecting other light (3 M company make --) cholesteric-liquid-crystal layers, such as D-BEF, and the thing (the NITTO DENKO CORP. make --) which supported the oriented film and its orientation liquid crystal layer of cholesteric-liquid-crystal polymer on the film base material above all Right-and-left one [, such as PCF350, and a product made from Merck, Transmax, / like] circular polarization of light is reflected, and other light can use what has the proper thing which shows the property to penetrate.

[0023] It can be made to penetrate efficiently with the improvement board in brightness of the type which penetrates the linearly polarized light of said predetermined polarization shaft, suppressing the absorption loss by the polarizing plate by arranging a polarization shaft and carrying out incidence of the transmitted light to a polarizing plate as it is.

[0024] On the other hand, although incidence can be carried out to a polarizing plate as it is with the improvement board in brightness of the type which penetrates the circular polarization of light like a cholesteric-liquid-crystal layer, it is more desirable than the point which suppresses an absorption loss to linearly-polarized-light-ize the transparency circular polarization of light through a phase contrast board, and to carry out incidence to a polarizing plate incidentally -- as the phase contrast board -- 1/4 wavelength plate -- using -- a polarizing plate and the improvement in brightness -- by arranging to a wooden floor, the circular polarization of light is convertible for the linearly polarized light [0025] The phase contrast board which functions as 1/4 wavelength plate in the latus wavelength ranges, such as a light region, can be obtained with the method which superimposes the phase contrast layer which shows the phase contrast layer which functions as 1/4 wavelength plate to the homogeneous lights, such as light with a wavelength of 550nm, and other phase contrast properties, for example, the phase contrast layer which functions as 1/2 wavelength plate, therefore, a polarizing plate and the improvement in brightness -- the phase contrast board arranged to a wooden floor may consist of a phase contrast layer more than one layer or two-layer

[0026] In addition, also about a cholesteric-liquid-crystal layer, although reflected wave length is different, by considering as two-layer or the arrangement structure superimposed three or more layers in combination, what reflects the circular polarization of light in the latus wavelength ranges, such as a light region, can be obtained, and the transparency circular polarization of light of the latus wavelength range can be acquired based on it.

[0027] The optical member by this invention prepares the adhesive layer aiming at pasting other members, such as a liquid crystal cell, in one side of an optical material, or the double-sided maximum front face, and surface roughness Ra of an outside surface carries out tentative installation covering of the adhesive layer with separator 0.03 micrometers or more. Therefore, although separator can be formed in front reverse side both sides of an optical material, generally, like the example of drawing, it forms an adhesive layer 2 in one side of an optical material, carries out tentative installation covering of it with separator 1, and is made into the gestalt which carried out adhesion covering of the aiming at surface injury prevention etc. protection-on the other hand film 4 to a side of an optical material. [0028] The separator which carries out tentative installation covering of the aforementioned adhesive layer aims at preventing the contamination until it presents practical use with an adhesive layer, preventing the unnecessary adhesion from it pasting up superfluously and being hard to deal with it, if an adhesive layer is exposed, etc. The method which establishes the ablation coat by proper removers, such as a silicone system, a long-chain alkyl system, a fluorine system, and a molybdenum sulfide, for example in a proper thin nerve if needed can perform formation of separator.

[0029] In addition, the proper thing according to the former, such as plastic film, a rubber sheet, paper

and cloth, a nonwoven fabric, a network and a foaming sheet, and metallic foils, those lamination objects, can be used for the aforementioned thin nerve. The thickness of a thin nerve can be suitably determined according to intensity etc., and 500 micrometers or less, 5-300 micrometers, although especially generally referred to as 10-200 micrometers above all, it is not limited to KORE. [0030] On the other hand, generally, although it can form only in protective-group material, said protection film is formed so that an adhesive layer may be prepared in protective-group material and protective-group material can be exfoliated from an optical material with the adhesive layer. Therefore, although an adhesive layer remains by the ablation usually at an optical member in the case of separator, in the case of a protection film, the front face of an optical material is exposed by the ablation. [0031] In addition, like the above, it can also form so that the adhesive layer which it pastes up according to separator also about a protection film may be made to remain for an optical material. Moreover, the proper thin nerve according to the aforementioned separator can be used for the protective-group material which forms a protection film.

[0032] A proper slime and a proper binder can be used for formation of the adhesive layer which said separator is installed [adhesive layer] tentatively and makes an optical material remain, or the adhesive layer prepared in protective-group material, and there is especially no limitation in it. Incidentally as the example, what makes base polymer proper polymer, such as an acrylic polymer, silicone system polymer, polyester and polyurethane, a polyamide and a polyether, a fluorine system, and a rubber system, is raised.

[0033] Above all, like an acrylic binder, it excels in optical transparency, moderate wettability and moderate cohesiveness, and an adhesive adhesion property are shown in formation of an adhesive layer which makes an optical material remain, and what is excellent in weatherability, thermal resistance, etc. can use for it preferably.

[0034] Moreover, the adhesive layer which makes an optical material remain in addition to the above has a low moisture absorption, and it is more desirable than points, such as a fall of the optical property by prevention of the foaming phenomenon by moisture absorption, or a peeling phenomenon, the differential thermal expansion, etc., curvature prevention of a liquid crystal cell, as a result the plasticity of a liquid crystal display that is excellent in endurance with high quality, to be formed in what is excellent in thermal resistance.

[0035] The adhesive layer may contain the proper additive by which adhesive layers, such as resins of a natural product or a compost, a bulking agent which consists of an adhesive grant resin, a glass fiber, a glass bead and a metal powder, other inorganic powder, etc. above all, a pigment and a coloring agent, and an antioxidant, have been added. Moreover, the adhesive layer which makes an optical material remain contains a particle, and may show optical diffusibility.

[0036] A proper method can perform the attachment of the adhesive layer to an optical material or protective-group material. Incidentally, as the example, make the solvent which consists of the independent object or mixture of a proper solvent, such as toluene and ethyl acetate, for example dissolve or distribute a slime or its constituent, and about 10 - 40% of the weight of binder liquid is prepared. The method which attaches it directly on an optical material or protective-group material by proper expansion methods, such as a flow casting method and a coating method, or the method which forms an adhesive layer on separator according to the above, and carries out ** arrival of it on an optical material etc. is held.

[0037] An adhesive layer can also be prepared in an optical member or protective-group material as a superposition layer of things, such as different composition or a kind. The thickness of an adhesive layer can be suitably determined according to the purpose of use, adhesive strength, etc., and, especially generally is set to 10-100 micrometers 5-200 micrometers above all 1-500 micrometers. In addition, the adhesive layer prepared in optical faculty material or protective-group material may have composition, a the same kind, etc., and may differ.

[0038] In addition, when the front face of the separator used as an outside surface is smooth, based on Ra, surface roughness 0.03 micrometers or more can be formed with the application of proper split-face-ized mode of processing, such as for example, buff processing and embossing, 0.04-10 micrometers

especially of 5 micrometers or less of desirable surface roughness Ra [in / the outside surface of separator / from points by pile, such as prevention of blocking and prevention of a fall of an optical element, the optical property by reflection of the surface roughness to an adhesive layer, or an adhesion property,] are 0.05-1 micrometer above all.

[0039] Each class which forms the above-mentioned optical member, such as a polarizing plate, a phase contrast board, an improvement board in brightness, transparent protection layer and an adhesive layer, and separator, may be what gave ultraviolet-absorption ability with the method with the proper method processed with ultraviolet ray absorbents, such as for example, a salicylate system compound, a benzo phenol system compound, a benzotriazol system compound, and a cyanoacrylate system compound, a nickel complex salt system compound.

[0040] The optical member by this invention can be preferably used for formation of various equipments, such as a liquid crystal display, etc. The liquid crystal display can be formed as what has the proper structure which applied the optical member by this invention to the former, such as a penetrated type which comes to arrange the separator on one side or the both sides of a liquid crystal cell through the adhesive layer which removed, and a reflected type or type both for transparency / reflective, correspondingly.

[0041]

[Example] The protection film which comes to prepare an acrylic adhesive layer with a thickness of 20 micrometers in the rear face of polyester film with a thickness of 50 micrometers was pasted up on one side of a polarizing plate with a thickness of about 180 micrometers which comes to paste [a triacetyl-cellulose film] the both sides of the polarization film which carried out extension processing and formed the polyvinyl alcohol film with an example 1 thickness of 80 micrometers 5 times in iodine solution through a polyvinyl alcohol system glue line through the adhesive layer.

[0042] next, on the other hand, the aforementioned polarizing plate was alike, the acrylic adhesive layer with a thickness of 25 micrometers was prepared in the rear face of the separator which consists of polyester film with a thickness of 38 micrometers through the silicone system ablation coat, it was pasted up with separator, and the optical member was obtained In addition, surface roughness Ra of the outside surface of said separator was 0.06 micrometers in measurement by the surface roughness meter (it is the same the Tokyo Seimitsu Co., Ltd. make, the surfboard COM, and the following). [0043] Removed the separator of example 2 polarizing plate, pasted up on it the phase contrast board which comes to carry out uniaxial-stretching processing of the polycarbonate film at 170 degrees C, and the acrylic adhesive layer with a thickness of 25 micrometers prepared in separator was pasted up on the phase contrast board with separator, and also the optical member was obtained according to the example

[0044] As an example 3 phase-contrast board, the thing (the Fuji Photo Film Co., Ltd. make, WVA02A) which comes to support the discotheque liquid crystal layer of inclination orientation in a film base material was used, and also the optical member was obtained according to the example 2. [0045] Pasted up the improvement board in brightness (the NITTO DENKO CORP. make, PCF350) which consists of a layered product of the film base material and 1/4 wavelength plate which support an example 4 cholesteric-liquid-crystal layer through the acrylic adhesive layer with a thickness of 25 micrometers on the polarizing plate which removed the protection film, and the removed protection film was pasted up on the exposed surface of the improvement board in brightness, and also the optical member was obtained according to the example 1.

[0046] As example separator of comparison, surface roughness Ra of an outside surface used what is 0.02 micrometers, and also the optical member was obtained according to the example 1. [0047] the optics acquired in the evaluation examination example and the example of comparison -- 30 units of a member were accumulated one by one, after carrying out seal processing under reduced pressure and leaving it for 48 hours with the inner bag made from polyethylene, and the outside bag made from moisture-proof aluminum, it opened, and the existence of blocking was investigated The result was shown in the following **. [0048]

Example 1 Example 2 Example 3 Example 4 Ratio ** Example Blocking Nothing Nothing Nothing It is and is [0049]. In the above, although each unit blocked through the separator side in the example of comparison, in the examples 1-4, it did not block, but the automatic adhesion processing machine was presented with the pile object, and it dissociated smoothly for every unit, and it exfoliated, the adhesion processing of the separator could be carried out through the adhesive layer at the liquid crystal cell, and the stop of the equipment by the incorporation of two or more units was not produced.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The cross section of the example of optical faculty material

[Drawing 2] The cross section of other examples of optical faculty material

[Drawing 3] The cross section of the example of optical faculty material of further others

[Description of Notations]

- 1: Separator
- 2, 21, 22: Adhesive layer
- 3: Polarizing plate (optical material)
- 4: Protection film
- 5: Phase contrast board (optical material)
- 6: Improvement board in brightness (optical material)

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公閱番号 特開2000-347181 (P2000-347181A)

(43)公開日 平成12年12月15日(2000.12.15)

(51) Int.CL'	識別記号	FΙ			テーマコード(参考)
G02F	1/1335 5 1 0	G 0 2 F	1/1335	510	2H042
G 0 2 B	5/02	G 0 2 B	5/02	I	3 2H049
	5/08		5/08	I	3 2H091
	5/30		5/30		
G02F	1/13363	G 0 2 F	1/13363		
		審查請求	未請求	請求項の数4	OL (全 6 頁)
(21)出願番号	特顧平 11-162072	·(71)出顧人	0000039	064	
			日東電	C株式会社	
(22) 出顧日	平成11年6月9日(1999.6.9)		大阪府	炎木市下穂積17	目1番2号
		(72)発明者	済木 1	*	
			大阪府:	炎木市下植積1丁	1日1番2号日東電
			工株式	会社内	
		(72)発明者	佐竹	E之	
			大阪府:	炎木市下植積1丁	1日1番2号日東電
			工株式	会社内	
		(74)代理人	1000880	07	
			弁理士	群本 勉	
					最終頁に続く

(54) 【発明の名称】 光学部材及び液晶表示装置

(57)【要約】

【課題】 ブロッキングを生じ難くて積み重ねた状態で輸送や保管等を行ってそれを液晶表示装置等の自動組立作業に供しても、その積み重ね体より光学部材を単位毎に円滑に分離できて複数単位の取り込みによる組立ラインの停止を回避でき、液晶表示装置等を組立効率よく製造できる光学部材の開発。

【解決手段】 光学素材(3)の最表面、特にその片側に設けた粘着層(2)を、外表面の表面粗さRaが0.03μ叫以上のセパレータ(1)にて仮着被覆してなり、必要に応じ光学素材の他面側を保護フィルム(4)にて接着被覆してなる光学部材。

【効果】 セパレータの外表面に付与した粗面が積み重ねた状態でのブロッキングを防止する。

1

【特許請求の範囲】

【請求項1】 光学素材の最表面に設けた粘着層を、外表面の表面粗さRaが0.03μ L以上のセパレータにて仮着被覆してなることを特徴とする光学部材。

【請求項2】 請求項1において、セパレータを光学素 材の片面側に有して光学素材の他面側には保護フィルム を有してなる光学部材。

【請求項3】 請求項1又は2において、光学素材が偏 光板又はそれと位相差板若しくは輝度向上板を少なくと も有するものである光学部材。

【請求項4】 請求項1~3に記載の光学部材をそのセパレータを剥がした状態で具備することを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、積み重ねによるブロッキングを生じにくくて液晶表示装置等の組立効率に優れる 光学部材に関する。

[0002]

【発明の背景】液晶表示装置(LCD)の形成などに用 20 いられる偏光板等は、LCD組立等の効率化などを目的 にそれに液晶セル等の他部材と接着するための粘着層を 予め付設してなる光学部材として用いられるが、その場合に露出する粘着層が不必要に接着したり汚染されたり することのないようにセパレータで仮着被覆した状態で輸送や保管等に供されている。

【0003】しかしながら、従来の光学部材にあっては それを積み重ねて輸送又は保管した後それを液晶表示装 置の自動組立作業等に供すると、ブロッキングのために 光学部材を単位毎に分離できずに複数単位を取り込み、 組立装置がその異常を検知して組立ラインが停止し、組 立効率を低下させる問題点があった。

[0004]

【発明の技術的課題】本発明は、ブロッキングを生じ難くて積み重ねた状態で輸送や保管等を行ってそれを液晶表示装置等の自動組立作業に供しても、その積み重ね体より光学部材を単位毎に円滑に分離できて複数単位の取り込みによる組立ラインの停止を回避でき、液晶表示装置等を組立効率よく製造することができる光学部材の開発を課題とする。

[0005]

【課題の解決手段】本発明は、光学素材の最表面、特にその片側に設けた粘着層を、外表面の表面祖さRaが 0.03μ■以上のセパレータにて仮着被覆してなり、必要に応じ光学素材の他面側を保護フィルムにて接着被覆してなることを特徴とする光学部材を提供するものである。

[0006]

【発明の効果】本発明の光学部材によれば、積み重ねた お反射層は、その反射面が透明保護層や偏光板等で被 状態で輸送や保管等に供しても、セパレータの外表面に 50 された状態の使用形態が、酸化による反射率の低下防

付与した粗面がブロッキングを防止し、その積み重ね体を液晶表示装置等の自動組立作業に供して光学部材をその単位毎に円滑に分離でき、複数単位の取り込みによる組立ラインの停止を回避できて液晶表示装置等を組立効率よく製造することができる。

[0007]

【発明の実施形態】本発明による光学部材は、光学素材の最表面、特にその片側に設けた粘着層を、外表面の表面粗さRaがO.03μm以上のセパレータにて仮着被10 覆してなり、必要に応じ光学素材の他面側を保護フィルムにて接着被覆したものからなる。その例を図1~図3に示した。1がセパレータ、2,21,22が粘着層、3が偏光板、4が保護フィルム、5が位相差板、6が輝度向上板である。

【0008】光学素材は、例えば偏光板や位相差板、それらを積層した楕円偏光板や輝度向上板等の液晶表示装置の形成などに用いられる適宜なものであってよく、その種類について特に限定はない。従って偏光板は、反射型や半透過型のものなどであってもよい。また位相差板も、1/2や1/4等の波長板や視角補償などの適宜な目的を有するものであってよい。なお前記した楕円偏光板の如き積層タイプの光学素材の場合、その積層は粘着層等の適宜な接着手段を介し行われたものであってよい。

【0009】ちなみに前記した偏光板の具体例としては、ポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムにヨウ素及び/又は二色性染料を吸着させて延30 伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルムからなる偏光フィルムなどがあげられる。また偏光板は、偏光フィルムの片面又は両面に透明保護層を有するものなどであってもよい。

【0010】一方、反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化をはかりやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。

【0011】反射型偏光板の具体例としては、必要に応じマット処理した透明保護層の片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また前記の透明保護層に 微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。なお反射層は、その反射面が透明保護層や偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防

止、ひいては初期反射率の長期持続の点や、保護層の別 途付設の回避の点などより好ましい。

【0012】前記した微細凹凸構造の反射層は、入射光 を乱反射により拡散させて指向性やギラギラした見栄え を防止し、明暗のムラを抑制しうる利点などを有する。 また微粒子含有の透明保護層は、入射光及びその反射光 がそれを透過する際に拡散されて明暗ムラをより抑制し うる利点なども有している。

【0013】透明保護層の表面微細凹凸構造を反映させ た微細凹凸構造の反射層の形成は、例えば真空蒸着方 式、イオンプレーティング方式、スパッタリング方式等 の蒸着方式やメッキ方式などの適宜な方式で金属を透明 保護層の表面に直接付設する方法などにより行うことが できる。

【0014】なお上記した偏光板における透明保護層の 形成には、透明性、機械的強度、熱安定性、水分遮蔽性 等に優れるポリマーなどが好ましく用いられる。その例 としては、ポリエステル系樹脂やアセテート系樹脂、ポ リエーテルサルホン系樹脂やポリカーボネート系樹脂、 ポリアミド系樹脂やポリイミド系樹脂、ポリオレフィン 20 系樹脂やアクリル系樹脂、あるいはアクリル系やウレタ ン系、アクリルウレタン系やエポキシ系やシリコーン系 等の熱硬化型、ないし紫外線硬化型の樹脂などがあげら れる。

【0015】透明保護層は、ポリマーの塗布方式やフィ ルムとしたものの積層方式などの適宜な方式で形成して よく、厚さは適宜に決定してよい。一般には500 Am 以下、就中1~300μm、特に5~200μmの厚さと される。なお表面微細凹凸構造の透明保護層の形成に含 有させる微粒子としては、例えば平均粒径が0.5~5 30 0μmのシリカやアルミナ、チタニアやジルコニア、酸 化錫や酸化インジウム、酸化カドミウムや酸化アンチモ ン等からなる、導電性のこともある無機系微粒子、架橋 又は未架橋のボリマー等からなる有機系微粒子などの透 明微粒子が用いられる。微粒子の使用量は、透明樹脂1 00重量部あたり2~50重量部、就中5~25重量部 が一般的である。

【0016】一方、上記した位相差板の具体例として は、ポリカーボネートやポリビニルアルコール、ポリス チレンやポリメチルメタクリレート、ポリプロピレンや 40 その他のポリオレフィン、ポリアリレートやポリアミド の如き適宜なポリマーからなるフィルムを延伸処理して なる複屈折性フィルムや液晶ポリマーの配向フィルム、 液晶ポリマーの配向層をフィルムにて支持したものなど があげられる。

【0017】位相差板は、例えば各種波長板や液晶層の 複屈折による着色や視角等の補償を目的としたものなど の使用目的に応じた適宜な位相差を有するものであって よく、厚さ方向の屈折率を制御した傾斜配向フィルムで あってもよい。また2種以上の位相差板を積層して位相 50 入射させることもできるが、吸収ロスを抑制する点より

差等の光学特性を制御したものなどであってもよい。な お前記の傾斜配向フィルムは、例えばポリマーフィルム に熱収縮性フィルムを接着して加熱によるその収縮力の 作用化にポリマーフィルムを延伸処理又は/及び収縮処 理する方式や液晶ポリマーを斜め配向させる方式などに より得ることができる。

【0018】光学素材は、上記した楕円偏光板や反射型 偏光板や位相差板の積層体の如く、2層又は3層以上の 光学層を積層したものからなっていてもよい。従って図 10 2や図3に例示した如く偏光板3と位相差板5又は/及 び輝度向上板6を組合せたもの、反射型偏光板や半透過 型偏光板と位相差板を組合せたものなどであってもよ 61

【0019】2層又は3層以上の光学層を積層した光学 素材は、液晶表示装置等の製造過程で順次別個に積層す る方式にても形成しうるものであるが、予め積層して光 学素材としたものは、品質の安定性や組立作業性等に優 れて液晶表示装置などの製造効率を向上させうる利点が ある。

【0020】なお上記した必要に応じ偏光板と組み合わ されて光学素材とされる輝度向上板は、偏光分離板など と称呼されることのあるもので、自然光を入射させると 所定偏光軸の直線偏光又は所定方向の円偏光を反射し、 他の光は透過する特性を示すものであり、液晶表示装置 の輝度の向上を目的に用いられるものである。

【0021】すなわち輝度向上板は、例えばバックライ ト等の光源からの光を入射させて所定偏光状態の透過光 を得ると共に、反射光を反射層等を介し反転させて輝度 向上板に再入射させ、その一部又は全部を所定偏光状態 の光として透過させて輝度向上板を透過する光の増量を 図ると共に、偏光板に吸収されにくい偏光を供給して液 晶表示等に利用しうる光量の増大を図る方式などにより 輝度を向上させることを目的に用いられるものである。 【0022】従って輝度向上板としては、例えば誘電体 の多層薄膜や屈折率異方性が相違する薄膜フィルムの多 層積層体の如き、所定偏光軸の直線偏光を透過して他の 光は反射する特性を示すもの(3M社製、D-BEF 等)、コレステリック液晶層、就中コレステリック液晶 ポリマーの配向フィルムやその配向液晶層をフィルム基 材上に支持したもの(日東電工社製、PCF350やM erck社製、Transmax等)の如き、左右一方 の円偏光を反射して他の光は透過する特性を示すものな どの適宜なものを用いうる。

【0023】前記した所定偏光軸の直線偏光を透過する タイプの輝度向上板では、その透過光をそのまま偏光板 に偏光軸を揃えて入射させることにより偏光板による吸 収ロスを抑制しつつ効率よく透過させることができる。 【0024】一方、コレステリック液晶層の如く円偏光 を透過するタイプの輝度向上板では、そのまま偏光板に はその透過円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。ちなみにその位相差板として1/4波長板を用いて偏光板と輝度向上板の間に配置することにより、円偏光を直線偏光に変換することができる。

【0025】可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550mの光等の単色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重量する方式などにより得ることができる。従って偏光板と輝度向上板の間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。

【0026】なおコレステリック液晶層についても、反射波長が相違するものの組合せにて2層又は3層以上重畳した配置構造とすることにより、可視光域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

【0027】本発明による光学部材は、液晶セル等の他 20 部材に接着することを目的とした粘着層を光学素材の片面又は両面の最表面に設けて、その粘着層を外表面の表面粗さRaが0.03μm以上のセパレータにて仮着被覆したものである。従ってセパレータは、光学素材の表裏両面に設けうるものであるが、一般には図例の如く光学素材の片側に粘着層2を設けてそれをセパレータ1にて仮着被覆し、光学素材の他面側には表面の損傷防止等を目的とした保護フィルム4を接着被覆した形態とされる。

【0028】前記の粘着層を仮着被覆するセバレータは、粘着層を実用に供するまでの間その汚染を防止することや、粘着層が露出すると不必要に接着して取扱いにくいことよりその不必要な接着を防止することなどを目的とする。セバレータの形成は、例えば適宜な薄葉体に必要に応じシリコーン系や長鎖アルキル系、ファ素系や硫化モリブデン等の適宜な剥離剤による剥離コートを設ける方式などにより行うことができる。

【0029】なお前記の薄葉体には、例えばプラスチックフィルムやゴムシート、紙や布、不織布やネット、発泡シートや金属箔、それらのラミネート体等の従来に準 40 じた適宜なものを用いることができる。薄葉体の厚さは、強度等に応じて適宜に決定でき、一般には500μ ■以下、就中5~300μ ■、特に10~200μ ■とされるが、コレに限定されない。

【0030】一方、前記した保護フィルムは、保護基材 のみにても形成しうるが一般には、保護基材に粘着層を 設けてその粘着層と共に保護基材を光学素材より剥離で きるように形成される。従って通例、セパレータの場合 にはその剥離で粘着層が光学部材に残存するが、保護フィルムの場合にはその剥離で光学素材の表面が露出す る。

【0031】なお前記の如く保護フィルムについてもセパレータに準じて、それが接着する粘着層を光学素材に 残存させるように形成することもできる。また保護フィルムを形成する保護基材には、前記のセパレータに準じた適宜な薄葉体を用いることができる。

【0032】前記したセパレータを仮着して光学素材に 残存させる粘着層や保護基材に設ける粘着層の形成に は、適宜な粘着性物質や粘着剤を用いることができ、特 10 に限定はない。ちなみにその例としては、アクリル系重 合体やシリコーン系ポリマー、ポリエステルやポリウレ タン、ポリアミドやポリエーテル、フッ素系やゴム系な どの適宜なポリマーをベースポリマーとするものなどが あげられる。

【0033】 就中、光学素材に残存させる粘着層の形成 には、アクリル系粘着剤の如く光学的透明性に優れ、適 度な濡れ性と凝集性と接着性の粘着特性を示して、耐候 性や耐熱性などに優れるものが好ましく用いうる。

【0034】また上記に加えて光学素材に残存させる粘着層は、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れるものにて形成されていることが好ましい。

【0035】粘着層は、例えば天然物や合成物の樹脂類、就中、粘着性付与樹脂、ガラス繊維やガラスビーズ、金属粉やその他の無機粉末等からなる充填剤や顔料、着色剤や酸化防止剤などの粘着層に添加されることのある適宜な添加剤を含有していてもよい。また光学素材に残存させる粘着層は、微粒子を含有して光拡散性を示すものなどであってもよい。

【0036】光学素材や保護基材への粘着層の付設は、 適宜な方式で行いうる。ちなみにその例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒に粘着性物質ないしその組成物を溶解 又は分散させて10~40重量%程度の粘着剤液を調製し、それを流延方式や塗工方式等の適宜な展開方式で光学素材や保護基材の上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素材等の上に移着する方式などがあげられる。

【0037】粘着層は、異なる組成又は種類等のものの 重畳層として光学部材や保護基材に設けることもでき る。粘着層の厚さは、使用目的や接着力などに応じて適 宜に決定でき、一般には1~500μm、就中5~20 0μm、特に10~100μmとされる。なお光学部材又 は保護基材に設ける粘着層は、組成や種類等が同じであ ってもよいし、異なるものであってもよい。

【0038】なお外表面となるセパレータの表面が平滑である場合、Raに基づいて0.03μμ以上の表面粗 50 さは、例えばバフ処理やエンボス加工等の適宜な粗面化

処理方式を適用して形成することができる。積み重ねに よるブロッキングの防止、光学素子や粘着層への表面粗 さの反映による光学特性や粘着特性の低下の防止などの 点よりセパレータの外表面における好ましい表面粗さR aは、0.04~10μm、就中5μψ下、特に0.0 5~1 μmである。

【0039】上記の光学部材を形成する偏光板や位相差 板、輝度向上板や透明保護層、粘着層やセパレータなど の各層は、例えばサリチル酸エステル系化合物やベンゾ フェノール系化合物、ベンゾトリアゾール系化合物やシ 10 アノアクリレート系化合物、ニッケル錯塩系化合物等の 紫外線吸収剤で処理する方式などの適宜な方式により紫 外線吸収能をもたせたものなどであってもよい。

【0040】本発明による光学部材は、液晶表示装置等 の各種装置の形成などに好ましく用いることができる。 その液晶表示装置は、本発明による光学部材をそのセパ レータを剥がした粘着層を介して液晶セルの片側又は両 側に配置してなる透過型や反射型、あるいは透過・反射 両用型等の従来に準じた適宜な構造を有するものとして 形成することができる。

[0041]

【実施例】実施例1

厚さ80μmのポリビニルアルコールフィルムをヨウ素 水溶液中で5倍に延伸処理して形成した偏光フィルムの 両側にポリビニルアルコール系接着層を介してトリアセ チルセルロースフィルムを接着してなる厚さ約180μ ■の偏光板の片面に、厚さ50 µ■のポリエステルフィル ムの裏面に厚さ20μmのアクリル系粘着層を設けてな る保護フィルムをその粘着層を介して接着した。

【0042】次に前記偏光板の他面に、厚さ38μ■の ポリエステルフィルムからなるセパレータの裏面にシリ コーン系剥離コートを介し厚さ25μmのアクリル系粘 着層を設けてそれをセパレータと共に接着して光学部材* *を得た。なお前記したセパレータの外表面の表面粗さR aは、表面粗さ計(東京精密社製、サーフコム、以下同 じ) による測定にて0.06μ1であった。

R

【0043】実施例2

偏光板のセパレータを剥がしてそれにポリカーボネート フィルムを170℃で一軸延伸処理してなる位相差板を 接着し、その位相差板にセパレータに設けた厚さ25μ ■のアクリル系粘着層をセパレータと共に接着したほか は実施例1に準じて光学部材を得た。

【0044】実験例3

位相差板として、傾斜配向のディスコティック液晶層を フィルム基材にて支持してなるもの (富士フィルム社 製、WVAO2A)を用いたほかは実施例2に準じて光 学部材を得た。

【0045】実施例4

コレステリック液晶層を支持するフィルム基材と1/4 波長板との積層体からなる輝度向上板(日東電工社製、 PCF350) を厚さ25µmのアクリル系粘着層を介 して、保護フィルムを剥がした偏光板に接着し、その剥 20 がした保護フィルムを輝度向上板の露出面に接着したほ かは実施例1に準じて光学部材を得た。

【0046】比較例

セパレータとして、外表面の表面粗さRaが0.02 μ ■のものを用いたほかは実施例1に準じて光学部材を得 た。

【0047】評価試験

実施例、比較例で得た光学部材の30単位を順次積み重 ねてそれをポリエチレン製内袋と防湿アルミ製外袋とで 減圧下に密封処理して48時間放置したのち開封して、 30 ブロッキングの有無を調べた。その結果を次表に示し

[0048]

た。

実施例1 実施例2 実施例3 実施例4 比較例

ブロッキング なし なし なし なし あり

【0049】前記において、比較例ではセパレータ面を 介して各単位がブロッキングしていたが、実施例1~4 ではブロッキングせず、その積み重ね体を自動接着処理 機に供して各単位毎にスムーズに分離し、そのセパレー タを剥離して粘着層を介し液晶セルに接着処理でき複数 40 3: 偏光板(光学素材) 単位の取り込みによる装置のストップは生じなかった。

【図面の簡単な説明】

【図1】光学部材例の断面図

【図2】他の光学部材例の断面図

※【図3】さらに他の光学部材例の断面図 【符号の説明】

1:セパレータ

2,21,22:粘着層

4:保護フィルム

5:位相差板(光学素材)

6:輝度向上板(光学素材)

Ж

フロントページの続き

(72)発明者 高橋 寧

大阪府茨木市下穂積1丁目1番2号日東電

工株式会社内

(72)発明者 正田 位守

大阪府茨木市下穂積1丁目1番2号日東電

工株式会社内

Fターム(参考) 2H042 BA02 BA03 BA20 DA02 DA11

DA21 DC01 DC02 DE00

2H049 BA02 BA06 BB03 BB54 BC14

BC22

2H091 FA08X FA08Y FA11X FA11Y FA14Y FB02 FD14 GA01

LA02 LA12