GEM2006/GET1028 Logic

8.2 easier quantificational proofs

Dr. Lee Wang Yen
Department of Philosophy

recap: the 3 steps of (easier) propositional proofs

1. Block off the conclusion and assume the negation of the conclusion

2. Apply S- and I- rules with the goal of getting a contradiction

3. Apply the RAA rule: block off the entire section beginning from the last non-blocked off assumption to the occurrence of the contradiction. Infer the conclusion.

new inference rules 1&2: reverse squiggles

Reverse squiggles for universals:

$$^{\sim}(x)Lx \rightarrow (\exists x)^{\sim}Lx$$

e.g. not everyone is listening → someone is not listening

Reverse squiggles for existentials:

$$\sim (\exists x) Lx \rightarrow (x) \sim Lx$$

e.g. No one is listening → everyone is not listening

reverse squiggle rules in longer wffs

 Reverse squiggles only when a negated quantified statement is outermost wff

• DON'T reverse squiggles in this case: $(P \supset ^{\sim}(x)Qx)$

Reverse squiggles in this case:

$$^{\sim}(x)(Px\supset ^{\sim}Qx)$$

new inference rule 3: drop existentials

- Drop existentials: $(\exists x)Px \rightarrow Pa$
- Always use a new constant when dropping existential quantifier

```
- E.g. 1. (\exists x)Bx
2. (\exists x)Rx
Drop existentials: (\exists x)Bx \rightarrow Ba
(\exists x)Rx \rightarrow Rb
```

- Why must a new constant be used?
 - something is B, and something is R 2 possibilities, which must be kept open:
 - 1. There is an object that is both B and R
 - 2. An object is B, another object is R.
 - 'a is B and b is R' can affirm (1) or (2)
 - 'a is B and a is R' can only affirm (1)

the drop existentials rule in longer wffs

- 1. The rule can only be applied if $(\exists x)$ begins the wff.
 - can't be applied to ((∃x)Rx⊃L)
- 2. Apply the rule by replacing the variable in a long existential statement with the same new constant.
 - (∃x)(Rx·Bx) \rightarrow (Ra·Ba)
- 3. Don't replace the variable of a quantified statement embedded within an existential statement.
 - $-(\exists x)(Fx\cdot(x)Gx) \rightarrow (Fa\cdot(x)Gx)$

new inference rule 4: drop universals

• Drop universals: $(x)Px \rightarrow Pa$, Pb, Pc...

 You can use any constant; but to ensure effective proof all old constants that have appeared so far should be used.

Don't use a new constant unless it is necessary

the drop universals rule in longer wffs

- 1. The rule can only be applied if (x) begins the wff.
 - The rule can't be applied to this case: $((x)Fx\supset(x)Gx)$)
- 2. Apply the rule by replacing the variable in a long universal statement with the same constant.
 - $(x)(Fx\supset Gx) \rightarrow (Fa\supset Ga)$
- 3. Don't replace the variable of a quantified statement embedded within a universal statement.
 - $-(x)(Fx\cdot(\exists x)Gx) \rightarrow (Fa\cdot(\exists x)Gx)$

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $(x)(Rx\supset Bx)$
- 2. (∃x)Rx
- ∴(∃x)Bx

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $(x)(Rx\supset Bx)$
- 2. (∃x)Rx
- |∴(∃x)Bx
- 3. asm: $^{\sim}(\exists x)Bx$

Start: block off conclusion and assume its negation

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $(x)(Rx\supset Bx)$
- 2. (∃x)Rx
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. \therefore (x)~Bx (from 3)

Reverse squiggles: line 3

Mark line 3

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $(x)(Rx \supset Bx)$
- 2.* (∃x)Rx
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. \therefore (x)~Bx (from 3)
- 5. ∴Ra (from 2)

Drop existentials (use a new

constant): line 2

Mark line 2

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $a(x)(Rx \supset Bx)$
- 2.* (∃x)Rx
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. \therefore (x)~Bx (from 3)
- 5. ∴Ra (from 2)
- 6. ∴(Ra⊃Ba) (from 1)

Drop universals (use old

constant): line 1

DON'T mark line 1 with *

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $a(x)(Rx \supset Bx)$
- 2.* (∃x)Rx
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. $a \cdot (x)^Bx$ (from 3)
- 5. ∴Ra (from 2)
- 6. ∴(Ra⊃Ba) (from 1)
- 7. ∴~Ba (from 4)

Drop universals (use old

constant): line 4

DON'T mark line 4 with *

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $a(x)(Rx \supset Bx)$
- $2.*(\exists x)Rx$
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. $a:(x)^Bx$ (from 3)
- 5. ∴Ra (from 2)
- 6.* ∴(Ra⊃Ba) (from 1)
- 7. ∴~Ba (from 4)
- 8. ∴Ba (from 5 and 6)

I-rule: MP (lines 5 & 6)

Mark line 6

- 1. All ravens are black
- 2. Something is a raven
- ∴Something is black
- 1. $a(x)(Rx \supset Bx)$
- 2.* (∃x)Rx
- |∴(∃x)Bx
- 3.* asm: $\sim(\exists x)Bx$
- 4. a∴(x) B x (from 3)
- 5. ∴Ra (from 2)
- 6.* ∴(Ra⊃Ba) (from 1)
- 7. ∴~Ba (from 4)
- 8. ∴Ba (from 5 and 6)
- 9. \therefore (\exists x)Bx (from 3; 7 contradicts 8)

RAA: block off the section from asm to 8; infer the negation of the assumption

additional rules for marking (starring)

Mark any wff to which

1. a reverse squiggles rule has been applied

2. the drop existentials rule has been applied

 Don't mark with an asterisk any wff to which the drop universals rule has been applied

the additional sub-steps of quantificational proofs

- formal method of quantificational proofs = method of propositional proofs + the following additional sub-steps in step 2
- 1. Reverse squiggles (mark the line)
- 2. Drop existentials (mark the line)
- 3. Drop universals (don't mark the line with *)

- *Don't switch the order of 2 and 3. Otherwise you'll have to re-apply the drop universal rule.
 - What if there are only universal statements in lines?
 - LogiCola: make a further assumption if possible; don't apply DU straightaway
 - Wang Yen: LogiCola is unreasonable; go ahead and apply DU (use my rule in MCQs; no such questions will appear in computerised test)

1. (x)Fx
 ∴(x)(Gx∨Fx)

- 1. (x)Fx
- |:(x)(GxVFx)|
- 2. asm: $^{\sim}(x)(GxVFx)$

- (x)Fx
 |∴(x)(GxVFx)
 asm: ~(x)(GxVFx)
- $3. : (\exists x)^{\sim}(GxVFx) \text{ (from 2)}$

```
    (x)Fx
    ∴(x)(GxVFx)
    * asm: ~(x)(GxVFx)
    ∴(∃x)~(GxVFx) (from 2)
```

```
    (x)Fx
    ∴(x)(GxVFx)
    * asm: ~(x)(GxVFx)
    ∴(∃x)~(GxVFx) (from 2)
    ∴~(GaVFa) (from 3)
```

```
    (x)Fx
    ∴(x)(GxVFx)
    * asm: ~(x)(GxVFx)
    ∴(∃x)~(GxVFx) (from 2)
    ∴~(GaVFa) (from 3)
```

```
    (x)Fx
    ∴(x)(GxVFx)
    * asm: ~(x)(GxVFx)
    * ∴(∃x)~(GxVFx) (from 2)
    ∴ ~(GaVFa) (from 3)
    ∴ Fa (from 1)
```

```
    (x)Fx
    ∴(x)(GxVFx)
    * asm: ~(x)(GxVFx)
    * ∴(∃x)~(GxVFx) (from 2)
    ∴ ~(GaVFa) (from 3)
    ∴ Fa (from 1)
    ∴ ~Fa (from 4)
```

```
1. (x)Fx
|:(x)(GxVFx)|
2.* asm: ^{\sim}(x)(GxVFx)
3.* : (\exists x)^{\sim}(GxVFx) \text{ (from 2)}
4. ∴~(Ga∨Fa) (from 3)
5. ∴Fa (from 1)
6. ∴~Fa (from 4)
7. \therefore(x)(GxVFx) (from 2; 5 contradicts 6)
```

Valid

source

• Gensler (2010)