

Lecture 14 Deep Learning II Recurrent Networks

Department of Electrical Engineering and Computer Science

Recurrent Networks

Recurrent Network Applications

Sequence recognition

- Identify a word from its audio recording.
- Recognize a song from its audio.

Sequence labeling

- Label all proper nouns in a text.
- Label all R-peaks in an ECG

Sequence/Time-Series Prediction

- Predict the price of a stock based on previous prices.
- Predict the next word in a text given the words so far (Language models).

Sequence Generation

- Generate a sequence of actions to perform a task.
- Play a piece of music given its title.

- Output a sequence in response to an input sequence.
- Output the words of a song given the lyrics.
- Machine translation.

Language Representation

Embed sentences into a vector space (sentence embedding).

Associative Memory

Store and recall associative memories as attractors.

Pattern Completion

• Complete/filter a pattern given a noisy or partial version.

..... And many others.

Department of Electrical Engineering and Computer Science

Why are recurrent networks "deep"?

Each cycle of time is like going through a layer of neurons

Recurrent networks learn using **backpropagation through time** (BPTT)

Training Recurrent Networks

A typical, single hidden-layer recurrent network.

Weight vector:
$$W = \begin{bmatrix} W^{oh} & W^{hh} & W^{hi} \end{bmatrix}^T$$

Loss function: J(t)

Data set: $\{(x(t), y(t))\}$ Training/validation/test sets

Typically, several shorter *sub-sequences* are grouped into a *minibatch*, and several minibatches in an *epoch*.

- Recurrent networks are trained by backpropagation.
- Each time-step adds a layer to the effective network.
- Backpropagation of δs through layers = propagation of δs back through time.

Backpropagation Through Time (BPTT)

Learning Procedure:

For t = 1 to T

- Present input *x*(*t*)
- Get the output $\hat{y}(t)$
- Compare with desired output y(t) to get errors e(t) and loss J(t)

- Calculate the gradient
$$\frac{\partial J(t)}{\partial W} = \begin{bmatrix} \frac{\partial J(t)}{\partial W^{oh}} & \frac{\partial J(t)}{\partial W^{hh}} & \frac{\partial J(t)}{\partial W^{hi}} \end{bmatrix}^T$$

- Update weights using $\Delta W = -\eta \frac{\partial J(t)}{\partial W}$ (every step, or end of sequence/epoch)

End

Main Issue:

- Hidden output h(t) depends not just on x(t) but also on h(t-1)
- And *h* (*t*-1) is generated through the same weights as *h* (*t*)
- And the same is true for h(t-2) and h(t-3),..., h(1)
- So h(t) at time t depends on the recurrent weights W^{hh} through multiple paths.

$$\frac{\partial e(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hh}}$$

$$\frac{\partial e(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hi}}$$

Department of
Electrical
Engineering and
Computer Science

$$\frac{\partial e(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hh}}$$

$$\frac{\partial e(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hi}}$$
Multiple paths of dependency

Department of
Electrical
Engineering and
Computer Science

Must be summed

over all paths

 $\hat{y}(1)$

h(1)

 $^{ extstyle W}$ oh

 W^{hi}

x(1)

 W^{hh}

$$\frac{\partial e(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hh}}$$

$$\frac{\partial e(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hi}}$$

Department of
Electrical
Engineering and
Computer Science

$$\frac{\partial e(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hh}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hh}}$$

$$\frac{\partial e(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hi}}$$

Department of Electrical Engineering and Computer Science

Consider the paths shown in different colors:

$$\frac{\partial h(t)}{\partial W^{hi}} = \frac{\partial f(x(t), h(t-1))}{\partial W^{hi}} + \frac{\partial h(t)}{\partial h(t-1)} \frac{\partial h(t-1)}{\partial W^{hi}} + \frac{\partial h(t)}{\partial h(t-1)} \frac{\partial h(t-1)}{\partial h(t-2)} \frac{\partial h(t-2)}{\partial h(t-2)} \frac{\partial h(t-2)}{\partial W^{hi}} + \dots + \frac{\left[\prod_{d=2}^{t} \frac{\partial h(d)}{\partial h(d-1)}\right] \frac{\partial h(1)}{\partial W^{hi}}}{\frac{\partial h(1)}{\partial W^{hi}}}$$

Department of
Electrical
Engineering and
Computer Science

Consider the three paths shown in different colors:

$$\frac{\partial h(t)}{\partial W^{hi}} = \frac{\partial f(x(t), h(t-1))}{\partial W^{hi}} + \frac{\partial h(t)}{\partial h(t-1)} \frac{\partial h(t-1)}{\partial W^{hi}} + \frac{\partial h(t)}{\partial h(t-1)} \frac{\partial h(t-1)}{\partial h(t-2)} \frac{\partial h(t-2)}{\partial W^{hi}}$$
Note that this could be written as $\frac{\partial h(t)}{\partial W^{hi}}$ but that would confuse it with the LHS

Thus, at time step *t*:

$$\left| \frac{\partial h(t)}{\partial W^{hi}} = \frac{\partial f(x(t), h(t-1))}{\partial W^{hi}} + \sum_{q=1}^{t-1} \left(\prod_{d=q+1}^{t} \frac{\partial h(d)}{\partial h(d-1)} \right) \frac{\partial h(q)}{\partial W^{hi}} \right|$$

from which, we can calculate:
$$\frac{\partial e(t)}{\partial W^{hi}} = \frac{\partial e(t)}{\partial \hat{y}(t)} \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial W^{hi}}$$

Similarly for
$$\frac{\partial e(t)}{\partial W^{hh}}$$

Problem: As *t* gets larger, we need to calculate longer and longer chains.

Solution: Use shorter training sub-sequences, limit how far back to chain

This is called *truncated BPTT* with look-back limited to τ steps back.

Problem: Back-propagating through time causes vanishing or exploding gradients.

Solution: Clip the gradient (to prevent explosion), use ReLU (to prevent vanishing).

Recurrent networks are good at remembering recent context to generate outputs:

$$\hat{y}(t) = f_{out}(h(t))$$

$$h(t) = f_h(x(t), h(t-1))$$

$$\Rightarrow \hat{y}(t)$$
 depends on $x(t), x(t-1), x(t-2),$

But how much each input is remembered depends only on how long ago it occurred, *not on its* meaning or significance.

There is need for a recurrent network that can control which past data to remember and which to forget based on its meaning and significance.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Hochreiter & Schmidhuber (1997) http://www.bioinf.jku.at/publications/older/2604.pdf

Current Input *X*.

An LSTM Cell ↔ RNN Hidden Layer:

Each LSTM cell is a neural network with several layers shown as of

tanh

denote element-wise operations.

Comparison with Standard RNN

Comparison with Standard RNN

The standard hidden layer is replaced by a 4-part hidden layer, with each sub-layer of the same dimension.

Comparison with Standard RNN

The standard hidden layer is replaced by 4-part hidden layer, with each sub-layer of the same dimension. The **green** line shows the *main path* through the cell.

Squashed Net Input: The update to the cell state based on previous output state and current input transformed by a layer of *tanh* () neurons. This is basically the hidden layer of the cell.

Department of Electrical Engineering and Computer Science

Long Short-Term Memory (LSTM)

Squashed Output: The updated hidden state/output of the cell based on the new cell state squashed element-wise by a *tanh* () function.

Forget Gate: Controls which elements of the cell state are remembered how much

Input Gate: Controls how much of each element of the squashed net input is added to the cell state.

Output Gate: Controls how much of each element of the squashed cell state is included in the new hidden state.

LSTM Equations

$$F_{t} = \sigma(W_{f} \left[X_{t} H_{t-1} \right] + b_{f})$$

$$I_{t} = \sigma(W_{i} \left[X_{t} H_{t-1} \right] + b_{i})$$

$$O_{t} = \sigma(W_{o} \left[X_{t} H_{t-1} \right] + b_{o})$$

$$\tilde{H}_{t} = \tanh(W_{h} \left[X_{t} H_{t-1} \right] + b_{h})$$

$$C_{t} = (F_{t} \otimes C_{t-1}) \oplus (I_{t} \otimes \tilde{H}_{t})$$

$$H_{t} = O_{t} \otimes \tanh(C_{t})$$

- \oplus = Element-wise addition
- \otimes = Element-wise multiplication

LSTM Unfolding

For more on LSTM.....

Tutorials:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

https://skymind.ai/wiki/lstm#long

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/

Beyond the LSTM

The LSTM system is too complicated:

Simpler versions of gated recurrent networks have been proposed. A very commonly used one is the Gated Recurrent Unit (GRU) model

Even LSTM is not that great with learning the right context:

When an output depends on context from several steps ago, LSTM and GRU still have problems learning the right dependences.

Solution: *Attention* – Look explicitly at not only the current hidden state but also at past hidden states, and learn which ones are important.

Attention is computationally expensive:

Keeping track of current and past hidden states explicitly makes the learning problem very large.

Solution: The *transformer model* – uses a CNN-style method to turn attentionbased learning into a parallel rather than sequential process.

For more, see: https://towardsdatascience.com/transformers-141e32e69591