§6.8-Indeterminate Forms and L'Hôpital's Rule

Tom Lewis

Spring Semester 2015

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Outline

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Definition (Indeterminate Forms)

If $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, then we say that

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is of the form 0/0. The ∞/∞ form is defined analogously.

Note

In this context, a can be any of a^+ , a^- , $+\infty$, or $-\infty$.

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Theorem (L'Hôpital's Rule)

If $\lim_{x\to a} f(x)/g(x)$ is an ideterminate form of type 0/0 or ∞/∞ and if

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L,$$

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Problem

Evaluate the following limits:

- $\lim_{x\to 0} \frac{\sin(x)}{x}$ $\lim_{x\to 1} \frac{x^2-1}{x-1}$
- $\lim_{x\to\infty}\frac{x^4}{e^x}$.

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Problem

$$\lim_{x\to 0^+} x \ln(x)$$

is called a $0 \cdot \infty$ form. Evaluate this limit by converting it into either one of the forms 0/0 or ∞/∞ .

Strategy for the $0 \cdot \infty$ form

Suppose that the limit $\lim_{x\to a} f(x)g(x)$ is of the form $0\cdot\infty$. This form can be converted into either a 0/0 or an $\infty/infty$ form by algebra:

$$f(x)g(x) = \frac{g(x)}{1/f(x)}$$
 or $f(x)g(x) = \frac{f(x)}{1/g(x)}$.

Now the limit can be attacked by the previous methods.

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Problem

Evaluate the following limits:

- Find $\lim_{x\to\infty} xe^{-x}$.
- Find $\lim_{x\to\infty} x(\pi/2 \tan^{-1}(x))$.

Problem

$$\lim_{u\to 0^+} \left(\frac{1}{1-e^{-u}} - \frac{1}{u} \right)$$

is called an $\infty - \infty$ form. Evaluate this limit converting it into one of the previous forms.

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

The basic strategy for indeterminate differences

• An indeterminate difference is any limit of the form

$$\lim_{x \to a} \left(f(x) - g(x) \right)$$

in which f and g simultaneously approach $+\infty$ or $-\infty$.

• To handle an $\infty - \infty$ form, use algebra to convert this form into one of the other forms.

The basic strategy for indeterminate powers

• An indeterminate power is any limit of the form

$$\lim_{x\to a} f(x)^{g(x)}$$

resulting in 0^0 , ∞^0 and 1^∞ .

• In each of these cases, first write

$$f(x)^{g(x)} = \exp(g(x) \ln f(x)).$$

The exponent, $g(x) \ln f(x)$, will be in one the preceding forms and can be handled by those methods.

The forms 0/0 and ∞/∞

Indeterminate products

Indeterminate differences

Indeterminate powers

Problem

- Find $\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$.
- Find $\lim_{x\to\infty} x^{1/x}$.
- Find $\lim_{x\to 0^+} x^{\sin(x)}$.