ECE569/AI539 Convex Optimization - Mid-term Exam

Fall 2022 School of Electrical Engineering and Computer Science Oregon State University

Due: 11:59 PM, Oct. 31, 2022

Note: please submit through Canvas. Please also sign the attached statement in the last page.

- This cover sheet must be signed and submitted along with the exam answers.
- By submitting the exam answers with my name affixed above,
 - I understand that exam answers submitted at 11:59 PM Oct. 31, 2022, or later will not be accepted,
 - I acknowledge that I am aware of the Oregon State University policy concerning academic misconduct (see https://studentlife.oregonstate.edu/studentconduct),
 - I attest that the work I am submitting for this exam is solely my own,
 - I understand that suspiciously similar answers submitted by multiple individuals will be reported to the School of EECS and College of Engineering for investigation, and
 - I understand that the exam materials are confidential and will not disclose the materials to any third party.

Robert

() s= gn & R" | maxieqi ng xi < x y XER.

> If x and x are in get S. Say max dised & max died for convexity check 0x1+(1-0)x2= x3 applying the function max 0x1+(1-0)N=73

applying max on LHS

max (0x1+(1-0) %) = max(0x1) + max(0-0)2)

=) Oman XII +(+0) max 7/2i

> Ox+ (1-0) x = 0x+1x-0x=x

=) \ = 12 which satisfies the wordition xiex =) 763 is in sets

=) sie a convex set

S= { x E IR at n+b < 1, ctx+d>0}

CTX+B C+

21 aTX+b < CTX+d

 $a^{T}x - c^{T}x \leq d-b$

which is of the form aTXL=b

=) (at-ct) x < (d-b) which is of the form of half-space

Halfspaces are Lonvex.

1c) f(x)= 11Ax-61122-811x112 where 8>0 11 An-6112 = (An-6) (An-6) 1121122 = NTN = f(n) = (An-b) T(An-b) - 8 (XTX) XTATAX-XTAT6- 6TAX+ 6T6 - 8 XTX BELKATA-GTATK - K(IY-ATA)TK 15 2 (11An-b112 - 8 11×112) dein) = = 2 (An-b). A - 82 x 2 f(N)= 2 (A) + 2 (Ax-b)(0) - 72 $\frac{1}{2} \int \frac{d^2 f(x)}{dx^2} = 2A - 8.2 = 2(A - 8)$ It's convex f(x) = max & 11 APA- 6114 | P is Permutation matrix} 12 Suppose manimum is Proax H(N) = { 11 APmax 2- 611 49 APmax 2-6 is an affine function 7 It's connex as in 11 APmax-billy Wall age and author are suffice

is affine function of x

4 norm 4 convex.

Let X, and X2 belong to S Stank (X1) \(\

2a) given Note: conic Hull in a set c is X = WHT set of all conic combinations XERMXN of points en C & DIXI, where DIZO & i=1 .. K 121 - conic combination of XIOOXK S.T. X.l) & cone(w) xl=1,00,n X(82) - 1th column of X WIT MXT H= | Hill Ha ... Hir W11 W12 . W2r W21 231 MWE HII HE Hni WHT = WINE HIT HU Hnr Mu Hut ... + WITHIT WIL HZI+ -- WICHZC . . . which has n when is and M YOUS Fulther + burtur . Say for an 1th column in X where & 651, .. , 13 X(:,1) = Wither - Watter W21 Heit . . . W31 HR1 + WMIHELT -- WATHER MXI =1 x(3,1) = 5 Hei W Wi Hill =) X(°, l) is a comil combination of Wie v j E 21, ... mz => X(0,1) E (one (w). Ne es 1. ong L frem (


```
20) K= { lio ola 3 C { 100 on 3
             H(li:) T = wiei xi + E1, 39,73
       where xi>0 Ni=100r & ei ER is ith unit
                 2 = arg max 11 × (:1)1/2
           X(:1) e { w(:,1) x 1 ... w(:r) x r }
           Hint ST IEK
           By expanding X(8.1)
             x(:1) = max | x(:1) | 2 1 = {1,00, n3
           = X(°1) = max | Swittell | | Le Elong
            If the convex hull has max points in Enjor 29
                     If we take the combon of pts that belong to
                 max days, we have
                      = 921 +622+ (323+ +Cq2q -0)

where G = [0,1] x i = {1 - q}

z = 1
               Using the triangle irequality on 110112
              HO 114 21 + (212+ . 1974 1/2 = CAPUILLE GIINLET-
                    < 4112 maxill2 + . Call nmaxili
2
A
```

H^T(:,I) for all I_i is a linear combination and it is sparse, will have only one term.

3A) AER AZAZZAZZZANYO
bER bk=Vak.

minimize - log (at n) - log (bTx)
Subject to xz0, 1Tx=1

A f(n) = -log(aTn) - log(bTn)

= - [log(aTn) + log(bTn)]

= - [log(aTn.bTn)]

which can be written as

- log(nTabTn)

we know that n≥0 is convex

ITn=1 in affine.

abT → is a number of (x1 =) PSD

and determinant is

number itself.

=) - log is convex punction :. the problem is

KKT of minimize - log(aTr) - log(bir)
Subject to x 20
ITx=1 36) $fi(x^*) \le 0$, i=1-m $hi(x^*) = 0$, i=1-p $hi(x^*) \ge 0$, i=1-m

1Tx =1., x >0 ITx*-1=0, - x*<0 入* × =0 入* x =0

L(x*, x*, v*)

= - log(aT n*) - log

2(x, x,v) = - wg(at n) - wg(b) n) Taking the gradient

- 1 ai - 1 bi - Ai + V*IT = 0.

X;fi(x*)=0, 1=1.-m

Vf.(x*) + 2 1 (x*)
+ 2 1 7 (x*)

 $\frac{-ai}{a^{T}n^{*}} - \frac{bi}{b^{T}n^{*}} - \lambda_{i}^{*} + v^{*}|_{T=0}$

4a) minimize Tr(cx)Subject to Tr(Ax)=1 $x \ge 0$ rank(x)=1

minimize Tr(x)subject to Tr(AX)=1 —@ $X \ge 0$

V* and Vsor are optimal values of @ Ex@

From (2) it can be observed that the rank \$1 as it is relaxed which implies that in (3) there will only be a lower bound on the optimal objective value

Hence, V spr < v*

fic(Xx) & ki 0, i=1...m hi (x*) =0 , i=1.--P Ai* Z K* 0 , i=1 ... m 1x Tf((xx) =0, 1=1...m ひたの(x*)+ このた(x*) T が、ナギ、v* Vhi(x*)=0 46) from the question minimize Tr(CX) Subject to Tr(Ax)=1 -2 XXO Tr(AX)=1 =1 f(x)>=0 =) - X = 0 i=1 Tr(AX)-1 = 0 λi* ∠ki O i=1 1=1 x = 0 i=1 der AB = bji; VA tr AB = BT =) L (x*, 1x, v*) = Tr((x*) - 1xx* + V * (Tr(A x *) - 1 Vatr (CA) = CT pt term = (T 2nd term aftergradient = XXI 3rd term = V * AT =) 7 L(x*, 1x*, 1x*) = CT - 1xI + x* AT=0

Noti:

$$x*_{sor} = arg min (2)$$

$$rank (x*_{sor}) \leq 1$$

from KKT

$$\lambda_{i}^{*} T f_{i}(x^{*}) = 0$$
 $\lambda_{i}^{*} x^{*} = 0$
 $\lambda_{i}^{*} = 0 \text{ as } x^{*} > 0$

Taking cT-X*I + V* AT =0

and term becomes 0 as 1*I=0 eT + V*AT = 0

rank of cx is full rank
rank((x) is same as rank(x)

multiply xt on both sides of (8)

$$C_L X_A = -\Lambda_A Y_L X_A$$

 $rank(CTX^*) = rank(-V^*A^TX^*)$ $rank(X^*) = rank(-V^*A^TX^*)$

=) rank(-v* AT x*) = rank (AT x*)

=) x* meds to have a rank

1 at the most

-) rank(x*) < 1