HTWK

Hochschule für Technik, Wirtschaft und Kultur Leipzig Prof. Dr. habil. H.-J. Dobner

§33. Differenzieren und Integrieren von Funktionen mehrerer Veränderlicher

=>> INFORMATIK

Computergraphik, Visualisierung

33.1 Funktionen mit mehreren Veränderlichen

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Rückblick auf das WS "§3.1 Abbildungen"

Definition 1

Eine Abbildung (Funktion) f von einer nichtleeren Menge D in eine nichtleere Menge W ist eine Vorschrift

(Abbildungsvorschrift, Formel,...) die **jedem** Element $x \in D$ auf eindeutig bestimmte Art und Weise **genau** ein Element $y \in W$ zuordnet. Schreibweise: $f: D \to W, x \mapsto f(x) = y$

$$f:D\subseteq\mathbb{R}^n\to W\subseteq\mathbb{R}^m$$
, $x\mapsto f(x)=y$

Man nennt D den Definitionsbereich von f (weil f für alle Elemente aus D definiert sein muss) und W den Wertevorrat von f, weil f(x) als Funktionswert von f bezeichnet wird und f(x) alle möglichen Funktionswerte von f in sich versammelt.

 $\mathsf{Bildmenge} \ f(D) = \left\{ f(x) \middle| x \in D \subseteq \mathbb{R}^n \right\} \subseteq W \subseteq \mathbb{R}^m$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

 \mathbb{R}^n und \mathbb{R}^m reelle Vektorräume. Lineare Abbildung

$$L \colon \mathbb{R}^{n} \to \mathbb{R}^{m}$$

$$\forall \vec{u}, \vec{v} \in \mathbb{R}^{n} \colon L(\vec{u} + \vec{v}) = L(\vec{u}) + L(\vec{v})$$

$$\forall \alpha \in \mathbb{R}, \forall \vec{u} \in \mathbb{R}^{n} \colon L(\alpha \cdot \vec{u}) = \alpha \cdot L(\vec{u})$$
NEU Abbildungen
$$f : \bigcirc \subseteq \mathbb{R}^{n} \to \bigcirc \subseteq \mathbb{R}^{m}, x \mapsto f(x) = y$$

$$f: \bigcirc \subseteq \mathbb{R}^n \to \bigcirc \subseteq \mathbb{R}^m, x \mapsto f(x) = y$$

