

Questão **1**Correto
Atingiu 1,00 de 1,00

Uma linha de transmissão coaxial tem condutores interno e externo de raios a e b, respectivamente. Entre os condutores existe um meio condutivo cuja condutividade é $\sigma(\rho) = \sigma_0/\rho$, onde σ_0 é uma constante. O condutor interno está carregado com potencial V_0 e o condutor externo está aterrado. Determine uma expressão para a condutância por unidade de comprimento. Avalie sua resposta considerando a = 0.9 mm, b = 3.9 mm, $\sigma_0 = 5.7$ mS.

Resposta: ✓ S/m mS/m KS/m

A resposta correta é: 11,94 S/m.

Questão 2

Incorreto Atingiu 0,00 de Duas placas circulares e paralelas, de raio a, estão localizadas em z = 0 e z = d (considere a muito maior que d). A placa superior (z = d) está no potencial V_0 , enquanto a placa inferior está aterrada. Entre as placas existe uma material condutor que possui condutividade dependente da variável radial, $\sigma(\rho)$ = $\sigma_0 \rho$, onde σ_0 é uma constante. Determine a resistência entre as placas. Para avaliar a sua resposta considere a = 1,0 m, d = 1,30 mm, σ_0 = 5,4 S/m .

Resposta: \times m Ω Ω μ Ω

A resposta correta é: 0,114945237 mΩ.

Questão **3** Incorreto

Atingiu 0,00 de 1.00

Dada a densidade de corrente $\mathbf{J} = -10^4 [\mathrm{sen}(2\mathrm{x})\mathrm{e}^{-2\mathrm{y}} \mathbf{a_x} + \mathrm{cos}(2\mathrm{x})\mathrm{e}^{-2\mathrm{y}} \mathbf{a_y}] \mathrm{kA/m}^2$: calcule a corrente total que atravessa o plano y=1 na direção $\mathbf{a_y}$ na região $0 < \mathrm{x} < 8.6$; $0 < \mathrm{z} < 1.3$.

Resposta: X A kA MA

A resposta correta é: 8,76952393e5 A.

Questão **4**Correto

Atingiu 1,00 de 1,00

Seja $\mathbf{J} = 25/\rho \, \mathbf{a_0} \, -20/(\rho^2 + 0.01) \, \mathbf{a_z} \, A/m^2$. Determine numericamente o campo vetorial \mathbf{J} para uma região do espaço que englobe o plano z = 4,3 e $0 < \rho < 2^*6,4$. Trace o gráfico de \mathbf{J} no plano xz ($\phi = \pi/2$). Trace o gráfico de \mathbf{J} no plano y no plano y no plano y através do plano y no região em que y constant y no plano y através do plano y no região em que y constant y no plano y através do plano y no região em que y constant y no plano y

Resposta:

A kA mA

A resposta correta é: -522,636000 A.

Questão **5**Incorreto

Atingiu 0,00 de

Encontre o campo no centro de um polígono regular de n lados, pelo qual passa uma corrente estacionária I. Afim de avaliar a sua resposnta considere a distância entre o centro e qualquer um dos lados como R = 0,2 m, I = 1,8 A e n = 6.

Resposta: X A/m mA/m KA/m

A resposta correta é: 4,30 A/m.

Questão 6

Correto

Atingiu 1,00 de 1,00

Encontre o campo magnético no ponto P no eixo de um solenoide enrolado de forma compacta (bobina helicoidal) com n voltas por unidade de comprimento pelo qual passa a corrente I, o solenoide envolve um tubo cilíndrico de raio a. Considere que as voltas são essencialmente circulares e expresse sua resposta em termos de θ 1 e θ 2. Afim de avaliar sua resposta calcule a magnitude da intensidade de campo magnético e considere n = 266 voltas/m, I = 1,1 A, I = 0,01 m, I = 0,9 rad e I = 0,4 rad.

Resposta:

✓ A/m mA/m KA/m

A resposta correta é: 43,81 A/m.

Questão **7**Correto

Atingiu 1,00 de

Um disco de raio a pertence ao plano xy, com o eixo z passando pelo seu centro. Uma carga superficial de densidade uniforme ρ_s está presente no disco, que gira em volta do eixo z em uma velocidade angular de Ω rad/s. Calcule a magnitude da intensidade de campo magnético em todos os pontos do eixo z. Avalie sua resposta considerando a = 6,9 m, ρ_s = 2,0 C/m $^\circ$, z = 4,7 m e Ω = 4,6 rad/s

Resposta: ✓ A/m mA/m KA/m

A resposta correta é: 7,335107259 A/m.

Questão **8**

Correto

Atingiu 1,00 de 1.00

Um disco de raio a pertence ao plano xy, com o eixo z passando pelo seu centro. Uma carga superficial de densidade uniforme ρ_s está presente no disco, que gira em volta do eixo z em uma velocidade angular de Ω rad/s. A partir da Lei de Biot-Savart e da densidade superficial de cargas, determine **numericamente** a intensidade de campo magnético em todo o espaço. Para fins de conferência, avalie sua resposta considerando a = 9,9 m, ρ_s = 3,9 C/m $^{\circ}$, z = 6,4 m e Ω = 2,7 rad/s

Resposta:

✓ A/m mA/m KA/m

A resposta correta é: 12,968277303 A/m.

Questão **9**Correto

Atingiu 1,00 de 1.00 Uma lâmina de corrente **K** flui na região -a < y < a no plano z =0. Calcule a intensidade de campo magnético em qualquer posição no eixo z.

Afim de avaliar sua resposta calcule a componente y da intensidade de campo magnético na posição (x = 0, y = 0, z = 4,4 m), considere **K** = 1,8 **a**, A/m e **a** = 6,5 m.

Resposta:

✓ A/m mA/m KA/m

A resposta correta é: -0,55905 A/m.

Questão 10

Incorreto

Atingiu 0,00 de 1,00

Uma lâmina de corrente **K** flui na região -a < y < a no plano z = 0. A partir da densidade de corrente **K**, calcule **numericamente** a intensidade de campo magnético gerado por essa lâmina em qualquer posição do espaço.

Afim de avaliar sua resposta calcule a componente y da intensidade de campo magnético na posição (x = 0, y = 0, z = 2,6 m), considere \mathbf{K} = 2,3 $\mathbf{a_x}$ A/m e a = 5,6 m.

Resposta: X A/m mA/m KA/m

A resposta correta é: -0,83177 A/m.