$$\begin{cases} factorial(1) = 1 \\ factorial(n) = n \times factorial(n-1). \end{cases}$$

Ribonacci ,

$$f(n) = no \cdot f$$
 robbits at the end of n^{th} month

$$= f(n-1) + \text{ (rabbits born at the end of } n^{th} \text{ month}$$

$$= f(n-1) + f(n-2)$$

Inductive f(n) = f(n-1) + f(n-2)Basis: f(n) = f(2) = 1Recursive method to define Fibonacai series. GCD of two integer: 2,×2x-- - Common factors. n y = "n is a divisor g y"

① if
$$g|a$$
, $g|b$ then $g|a+b$

$$g|a-b$$

$$g|ka+kb$$

$$a = gb+r$$
Where $0 \le r \le b$ (ess distiplish)

$$\gamma_{t+1} \geqslant 1 = f_1$$

$$\gamma_t \geqslant 2 \cdot \gamma_{t+1} \geqslant 2 = f_2$$

$$\gamma_{t-1} = f_2 + f_1 = f_3$$

$$\gamma_{t-2} = f_3 + f_2 = f_4$$

$$b = \gamma_1 = f_t + f_{t-1} = f_{t+1}$$

$$f_{t+1} > \frac{1+\sqrt{5}}{2} = f_4$$
The no of steps in Eadid's also is $\frac{1}{2} \log b$ and $\frac{1}{2$

Fig.
$$f(0) = f(0) = 1$$
 $f(m) = f(m-1) + f(m-2)$

Prove that $f(m) > (\frac{1+\sqrt{5}}{2})^{m-2}$ for $m \ge 3$.

Basis: $f(3) = 2 > (\frac{1+\sqrt{5}}{2})^1$

Lypotheris: $f(m) > (\frac{1+\sqrt{5}}{2})^{m-2}$ $+ m \in \{1, 2, ..., k\}$

End $f(k+1) = f(k) + f(k+1)$
 $= (\frac{1+\sqrt{5}}{2})^{k-2} + (\frac{1+\sqrt{5}}{2})^{k-3}$

Strictural Induction: Definhing a set by recursion & then prove some properties of the set by using the recursive desfintion. Set S if x, y & s then xty & S S = (set g all miltiples of 3) Prove that,

(all elements of s are)
multiple of 7 (1)Base: 3 E A if N,y ES => x+y ES if 3/n, 3/y => 3 (2x+3)