

· · · · · · ·	1	
Student Number:	i	

St Catherine's School Waverley

August 2011

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Complete each question in a separate booklet

- Attempt Questions 1 8
- All questions are of equal value
- Total Marks 120

Total marks -120 Attempt Questions 1-8 All questions are of equal value

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use the Question 1 Writing Booklet.	Mar
(a) Find $\int \frac{dx}{x^2 - 2x + 5}$	2
(b) Use integration by parts to evaluate $\int_0^1 \tan^{-1} x \ dx$. 3
π	
(c) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sin x + \cos x}$	3
(d) \not Find the values of a , b and c such that;	, 2
$\frac{x^2 - x - 21}{(2x - 1)(x^2 + 4)} = \frac{a}{2x - 1} + \frac{bx + c}{x^2 + 4}$	
(ii) Hence evaluate $\int \frac{x^2 - x - 21}{(2x - 1)(x^2 + 4)} dx$	2
XeX . Upo the substitution π	
(e) Use the substitution $x = \frac{\pi}{2} - u$ to show that	3
$\int_0^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin 2x} dx = 0$	

Que	stion 2	(15 marks) Use the Question 2 Writing Booklet.	Marks
(a)	(i) ,	Express $z = \sqrt{3} + i$ in modulus-argument form.	1
	(ji)	Hence show that $z^7 + 64z = 0$	2
(b)		argand diagram the point P representing the complex number z s such that $ z-(1+i) =1$	
	(i)	Sketch the locus of P	1
	(1i)	Find the greatest value of z	2
	\(\text{iii}\)	Shade the region common to $ z-(1+i) \le 1$ and $0 < \arg(z-1) < \frac{\pi}{4}$	2
	(i/v)	Find the area of the region in part (iii) above	2
(c)	If w	is one of the complex roots of $z^3 = 1$	
	(i)	Show that w^2 is also a root.	1
	(il)	Show that $1 + w + w^2 = 0$	1
	(Ni	Evaluate $(1-w)(1-w^2)(1-w^4)(1-w^8)$	3

Question 3 (1	5 marks)	Use the Question	3 Writin	g Booklet.
---------------	----------	------------------	----------	------------

tion 3 Writing Booklet. Marks

Given that (x+i) is a factor of $P(x) = x^4 + 3x^3 + 6x^2 + 3x + 5$ factorise P(x) over the complex field.

Given that the equation $x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$ has a root of multiplicity 3, find all the roots of this equation.

If α , β , γ are the roots of $x^3 - 3x^2 + 2x - 1 = 0$ find the equation whose roots are

 $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$

(ii) $\alpha^2, \beta^2, \gamma^2$ (d) Im(z)

Diagram not to scale

The points A and C represent the complex numbers $z_1 = 1 + i$ and $z_2 = 7 + 3i$.

Find the complex number z_3 , represented by the point B such that $\triangle ABC$ is isosceles and right angled at B.

3

The equation of an ellipse E is given by $\frac{x^2}{9} + \frac{y^2}{5} = 1$

- (i) Find the eccentricity of E
- (ii) Write down
 (a) The coordinates of the foci
 (b) The equations of the directrices
 (c) The equation of the major auxiliary circle A
- (iii) Draw a *neat* sketch of *E* and A showing clearly the features in part (b) above 2

 (at least one third of a page)
- (iv) A line parallel to the y-axis meets the x-axis at N and the curves E and A at P and Q respectively. If N has coordinates $(3\cos\theta, 0)$ and given that P and Q are in the first quadrant, show that the coordinates of P are $(3\cos\theta, \sqrt{5}\sin\theta)$ and the coordinates of Q are $(3\cos\theta, 3\sin\theta)$.
- (v), Show that the equations of the tangents at P and Q are $\sqrt{5}\cos\theta \ x + 3\sin\theta \ y = 3\sqrt{5}$ and $x\cos\theta + y\sin\theta = 3$ respectively.
 - Show that the point of intersection R of these tangents lies on the major axis of \sqrt{E} produced.
 - 'rove that ON. OR is independent of the position of P and Q on the curves.

Question 5 (15 marks) Use the Question 5 Writing Booklet.

Marks

3

(a) Prove that the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab square units

Use the method of cylindrical shells, find the volume of the solid formed when the area in (1) is rotated through one complete revolution about the line y = b

A drinking glass is in the shape of a truncated cone, in which the internal diameter of the top and the bottom are 8cm and 6 cm respectively.

If the internal height of the glass, MN, is 10cm, show that the area of the cross-section at a height of x cm above the base is

$$\pi \left(3 + \frac{x}{10}\right)^2 \text{ cm}^{\frac{1}{2}}$$

(ii) Hence find by integration, the volume of the glass.

The points $P(a\sec\theta, b\tan\theta)$ and $Q(a\sec\phi, b\tan\phi)$ lie on the same branch of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and PQ is a focal chord, passing through S(ae, 0).

Use the gradients of PS and QS to show that $e = \frac{\sin \theta - \sin \phi}{\sin(\theta - \phi)}$

Questi	on 6	(15 marks) Use the Question 6 Writing Booklet.	Marks
(a) · '	(i)	Show that the equation of the normal to the hyperbola $xy = c^2$ at	2
		$P\left(cp, \frac{c}{p}\right)$ is $p^3x - py = c(p^4 - 1)$	
	(ji)	The normal at $P\left(cp,\frac{c}{p}\right)$ meets the x-axis at Q. Find the coordinates of Q.	1
	(iji)	Find the coordinates of the mid point, R, of PQ.	1
	(iy)	Hence find the equation of the locus of R .	2
(D)	Use	the compound angle formula for $cos(x+y)$ and $cos(x-y)$ to prove	2
	the 1	result $\cos S - \cos T = -2\sin\left(\frac{S+T}{2}\right)\sin\left(\frac{S-T}{2}\right)$	
r/(c)	If I_n	is defined such that $I_n = \int_0^{\frac{\pi}{4}} \frac{1 - \cos 2nx}{\sin 2x} dx$ for $n = 0, 1, 2, 3, \dots$	
	do	Show that $I_1 = \frac{1}{2} \ln 2$	2
,/	A	Using the result proven in part (b) above, show that for $r \ge 1$;	3.
	٠,	$I_{2r+1} - I_{2r-1} = \frac{1 - (-1)^r}{2r}$	
	(iii)	Hence evaluate I_5	2

Ouestion 7 (15 marks) Use the Question 7 Writing Booklet.

A string 50 cm in length can just sustain a weight of mass 20 kg without breaking.

A mass of 4 kg is attached to one end of the string and revolves uniformly on a smooth horizontal table. The other end is fixed to a point on the table.

Find the greatest number of complete revolutions the mass can make in a minute without breaking the string. [Use acceleration due to gravity as 10 ms⁻²]

(b) The base of a solid is the region in the xy plane enclosed by the curve $y = \sec x$,

y=-1, x=0 and $x=\frac{\pi}{4}$. Each cross-section perpendicular to the x-axis is an equilateral triangle.

Show that the area or the triangular cross-section x units from the origin is given by

y = -1

$$A = \frac{\sqrt{3}}{4} (\sec x + 1)^2$$

Show by differentiation that $\int \sec x \ dx = \ln(\sec x + \tan x) + c$

Hence, show that the volume of the solid is given by;

1

3

$$\frac{\sqrt{3}}{4} \left[1 + 2\ln(\sqrt{2} + 1) + \frac{\pi}{4} \right]$$
 units³

If $U_1=1$, $U_2=5$ and $U_n=5U_{n-1}-6U_{n-2}$ for $n \ge 3$, prove by mathematical induction that $U_n=3^n-2^n$ for $n \ge 1$

The complex number z moves so that the sum of its distances from 3 (|z-3|) and -3 (|z+3|) is 10 units. Find the Cartesian equation of the ellipse described by the locus of z

(a) (i) Given that a, b, and c are three non negative numbers, show that the arithmetic mean \geq geometric mean.

3

i.e. show that $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$

(You may assume that $a^2 + b^2 \ge 2ab$)

Given that $a + \frac{1}{a} \ge 2$ show that $(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9$

2

(b) A body of unit mass falls under gravity through a resisting medium. The body falls from rest from a height of 50 metres above the ground. The resistance to its motion is $\frac{1}{100}v^2$ where v metres per second is the speed of the body when it has fallen a distant of x referres. The acceleration due to gravity is $g ms^{-2}$

(i)/

Show that the equation of motion of the body is:

2

$$\ddot{x} = g - \frac{1}{100}v^2$$

(ii)

Show that the terminal velocity V of the body is given by

$$V = \sqrt{100g}$$

Hence show that $v^2 = V^2(1 - e^{-\frac{x}{50}})$

3

(iy)

Find the distance fallen in metres until the body reaches a velocity equal to 50% of the terminal velocity.

2

(v)

Find the velocity reached as a percentage of terminal velocity when the body hits the ground.

2

END of PAPER

Academic Year: 2010-11

Λ	Marking Scheme for Task: Aca	demic Year	: 2010-11
Q	Solutions	Marks	Comments
QIA)	$\frac{x^2-2x+5}{}$		
	$= \int \frac{dx}{(x^2 - 2x + 1) + 4}$ $= \int \frac{dx}{(x - 1)^2 + \lambda^2}$	1	
	$=\frac{1}{2}\tan^{-1}\left(\frac{\chi-1}{2}\right)+C$	l	
6)	$\int_{0}^{1} \tan^{2}x dx \qquad u = \tan^{2}x \qquad v = x$ $u' = \frac{1}{1+x^{2}} \qquad v' = 1$	1	
	$= \int_{0}^{1} tan' x dx = \left[x + tan' x\right]_{0}^{1} - \int_{0}^{1} \frac{x}{1 + x^{2}} dx$ $= \frac{T}{4} - \left[\frac{1}{2} \ln(1 + x^{2})\right]_{0}^{1}$.1	
	$= II - \frac{1}{2} \ln 2$	1	
c)	$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x + \cos x} \qquad t = \tan \frac{x}{2} \cdot \sin x = \frac{2t}{1 + t^{2}}$ $dx = \frac{2dt}{1 + t^{2}} \cdot \cos x = \frac{1 - t^{2}}{1 + t^{2}}$ $= \int_{0}^{1} \frac{2dt}{1 + t^{2}} \qquad x = 0 t = 0$ $1 + \frac{2t}{1 + t^{2}} \cdot \frac{1 - t^{2}}{1 + t^{2}} \qquad x = \frac{\pi}{2} \cdot t = 1$	1	
	$=\int_0^1 \frac{2dt}{1+t^2+2t+1-t^2}$		
	$=2\int_{0}^{1}\frac{dt}{2t+2}$		
	$=\int_0^1 \frac{dt}{t+1}$	- 1	
	$= \left[\left(/ n \left(t + i \right) \right) \right]_{0}^{i}$		
	$= \ln 2$		

Course:

`	SOLIBO.	rage no.	O1
N		demic Year	: 2010-11
Q	Solutions	Marks	Comments
2a)	V3		
	$2 = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}) \qquad r = \sqrt{3+1} = 2$ $= 2 \cos \frac{\pi}{6} \qquad 0 = +an^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$	1	
	$ (11) z^7 = \left(2 \cos \frac{\pi}{6}\right)^7 = 2^7 \cos \frac{\pi}{6} $		
	$643 = 128 \text{ CIS} \frac{\pi}{6}$ $3^{7} + 643 = 128 \text{ CIS} \frac{\pi}{6} + 128 \text{ CIS} \frac{\pi}{6}$	1	
	$= 128 \left[\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} + \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right]$ $= 128 \left[-\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} + \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right]$		
	= 0	1	
Ai)	(1) 3-(1+i) =1 $(1,1)$ $(1,1)$	2	·
	(11) 13/ 15 maximum when 3 is at P : Now OP = T2 + 1	1	
	: max value of $ 3 = \sqrt{2} + 1$	1	
	(ut)	l	
	(IV) Orea shaded region = area of segment = $\frac{1}{2} \left(\frac{\pi}{2} - \sin \frac{\pi}{2} \right)$		

1	Marking Scheme for Task: Aca	demic Year	r: 2010-11
Q	Solutions	Marks	Comments
3a)	If $(x+i)$ is a factor of $f(x) = x^4 + 3x^3 + 6x^2 + 3x + 5$		
	then (x-i) is also a factor of MW (MW real coefficients)	1	
	! (c+i)(x-i) = (x+1) is also a factor		
	Now x4 + 3x3 +6x2 + 3x +5 = (x2+1)(x2+3x+5)	1	
	: the zeros of P(0) are i, -i, -3 + TILL	t	
	$\mathcal{L}(x) = (x-i)(x+i)(x+\frac{3-\ln i}{2})(x+\frac{3+\ln i}{2})$	1	
b)	$P(x) = x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$		
- /	$160 = 4x^3 - 18x^2 - 18x + 81$		
	$P''(x) = 12x^2 - 30x - 18 = 0$ for possible roots of multiplicity 3.		
	$2x^{2}-5x-3=0$.*
	(2x+1)(x-3)=0 : $x=-\frac{1}{2},3$	1.	
	how P(3) = 108-135-54+81 =0		
	and p(3) = 81-135-81+243-108=0	1	
	x = 3 is a root of multiplicity 3.	'	
	: (x-3) 2 15 a factor of P(1)		
	also, roots are 3,3,3,d		
	Nous product of roots = 27d = -108		
	1 d = 74	.	
	the roots of P(1) = 0 are x = 3,3,3,4	1	
c)	$x^3 - 3x^2 + 2x - 1 = 0$ Lipit are roots		1
	(i) let y = 1 .: d = 4		
	$: \left(\frac{1}{y}\right)^3 - 3\left(\frac{1}{y}\right)^2 + 2\left(\frac{1}{y}\right) - 1 = 0$	1	
	$\frac{1}{y^3} - \frac{3}{y^2} + \frac{2}{y} - 1 = 0$ $\therefore 1 - 3y + 2y^2 - y^3 = 0$:	
	which equates to the polynomialin x of	,	
1	$x^3 - 2x^2 + 3x - 1 = 0$	1'	

~ Course:	Page no.	of
Marking Scheme for Task:	Academic Year	2010-11
Q Solutions	Marks	Comments
8.4a) $\frac{x^2 + y^2}{9} = 1$ for ellipse $b^2 = a^2(1-e^2)$ $5 = 9(1-e^2)$		
$e^{2} = \frac{4}{9}$ $e = \frac{2}{3}$	}	
b) (1) foci ($\pm ae, 0$) 1e. ($\pm 2, 0$) (11) directrices: $x = \pm \frac{a}{e}$ 1e. $x = \pm \frac{q}{2}$ (11) auxiliary circle: $x^2 + y^2 = 9$	1	
(III) auxiliary circle: $(0, \sqrt{5})$ ρ $(0, \sqrt{5})$ ρ $(0, \sqrt{5})$ ρ $(0, \sqrt{5})$ ρ $(0, \sqrt{5})$	- a	•
$(o, -i\hat{s})$	=9 2	·
d) Coordinates of Q (3Cost, 3Sint) Coordinates of P (3Cost, 55Sint)	1	
e) at $P = 3\cos\theta$ $y = \sqrt{5}\sin\theta$ $\frac{dx}{d\theta} = -3\sin\theta \frac{dy}{d\theta} = \sqrt{5}\cos\theta$		
Mow $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$		
=- \(\frac{15 \cos 0}{3 \sin 0}\)		

Marking Scheme for Task: Academic Year: 2010-11

	Marking Scheme for Task: Acad	ienne reai	: ZUIU-II
Q	Solutions	Marks	Comments
5a)	$y' = t^{2}(1 - \frac{x^{2}}{a^{2}})$ $y' = \frac{t^{2}}{a^{2}}(a^{2} - x^{2})$ $y' = \pm \frac{t}{a}\sqrt{a^{2} - x^{2}}$	 	
	Shaded area is given by $A = \int_{0}^{a} \frac{t}{a} \sqrt{a^{2} - x^{2}} dx$ $= \frac{t}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$ $= \frac{t}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$ is a quadrant of a circle radius a	Į.	could also be done by substitution ilst u = asme
	$= \frac{1}{4}\pi a^{2}$ $\therefore A = \frac{b}{a} \times \frac{1}{4}\pi a^{2}$ $= \frac{1}{4}\pi ab$ $\therefore \text{ area } g \text{ ellipse} = \pi ab$	1 .	
L)	radius of shell is (b-y) height of shell is 2x		
	$SV = 2\pi (b-y).2x$ $V = 4\pi \int_{-b}^{b} (b-y).\frac{a}{b} \sqrt{b^{2}-y^{2}} dy$ $= 4\pi a \int_{-b}^{b} (b\sqrt{b^{2}-y^{2}} - y\sqrt{b^{2}-y^{2}}) dy$	1	

Course:

C	Jourse:	rage no.	OI .
	8		2010-11
Q	Solutions	Marks	Comments
Q5 0	Gradient of Ps: $ \frac{b + an \theta - 0}{a \sec \theta - ae} $ $ \frac{s(ae, e)}{a(a \sec \theta, b + an \theta)} $	· .	,
	gradient of SQ: blong - 0 a Sec g - ae.		
	: btand = btand asecd-al asecd-al	1	
	al tano seco - abe tano = ab tano seco - ab e tano seco	ľ	
	$ \begin{array}{rcl} & \mathcal{C} = & abfang Seco - fano Seco) \\ \hline & ab (fang - fano) \end{array} $ $ = & \frac{Sin B}{Cos g}, \frac{1}{Cos g} - \frac{Sin B}{Cos g} - \frac{Sin B}{Cos g} $ $ \frac{Sin B}{Cos g} - \frac{Sin B}{Cos g} $	J	
	$ \frac{Simp - Sim \theta}{Simp \cos \theta} - Sim \theta \cos \theta $ $ = \frac{Sim \theta - Sim \theta}{Sin (\theta - \theta)} $		
	$= \frac{Sin\theta - Sin\theta}{Sin(\theta - \theta)}$	1	
			·

Marking Scheme for Task: Academic Year: 2010-11

1	Marking Scheme for Task: Acad	lemic Year	
Q	Solutions	Marks	Comments
(366)			
	COS (x-y) = COSX CAY + SINX SINY		
	let S = x+y and T = x-y		
	S+T = 2x	1	
	S-T=2y : y=S-T		
	: 0 - 2 Coss - CosT = -2 sinx siny	1	
	$1e, \cos S - \cos T = -2 \sin \frac{S+T}{2} \sin \frac{S-T}{2}$		
c)	$I_n = \int_0^{\pi} \frac{1 - \cos 2nx}{\sin 2x} dx$ $n = 0,1, 2,3,$		
	(1) $I_1 = \int_0^{T_4} \frac{1 - \cos x}{\sin x} dx$		
	$= \int_{0}^{\sqrt{4}} \frac{2 \sin^{2}x}{2 \sin x \cos x} dx$	1	
	= Sunce de		
	$= - \left[\ln \left \cos x \right \right]_{o}^{1/4}$		
	= - In to		
	$=\frac{1}{2}\ln 2$		
	(11) Izr+1 - Izr-1 = 5/4 1 - Cos(4xx+2x) dx - 5/4 1 - Cos(4xx-2x) Sm2x	dx 1	
	$= \int_{1}^{\sqrt{4}} \frac{\cos(4xr - 2x) - \cos(4xr + 2x)}{\sin 2x} dx$		
	= (4 - 2 sin 4xr sin(-2x) dx from(b)	1	
	=2 Sin 4xr dx		
	$= -\frac{1}{2r} \left[\cos 42r \right]_0^{T_4} = -\frac{1}{2r} \left[\cos \overline{tr} - 1 \right]$		
	$= -\frac{1}{2r}[(-1)^{r}-1] = \frac{1-(-1)^{r}}{2r}$	1	

Course:

1	Marking Scheme for Task: Aca	demic Year	: 2010-11
Q	Solutions	Marks	Comments
78)	(1) $Secx + 1 \qquad Area \Delta = \frac{1}{2} (Secx + 1)^{2} Sin 60^{\circ}$ $= \frac{1}{2} (Secx + 1)^{2} \frac{\sqrt{3}}{2}$ $= \frac{\sqrt{3}}{4} (Secx + 1)^{2}$	J	
	(ii) $dh(Secx + tanx) = \frac{1}{Secx + tanx} \cdot (Secx + tanx + Sec^2x)$ $= \frac{Secx(tanx + Secx)}{(Secx + tanx)}$		
	= Secx	1	
-	(iii) Volume of typical slice is given by $SV = \frac{\sqrt{3}}{4} (\sec x + 1)^2 Sx$	-1	
	$V = \frac{\sqrt{3}}{4} \int_{0}^{\sqrt{4}} \left(\operatorname{Sec}_{x}(t)^{2} dx \right)$ $= \frac{\sqrt{3}}{4} \int_{0}^{\sqrt{4}} \left(\operatorname{Sec}_{x}(t)^{2} + 2 \operatorname{Sec}_{x}(t) \right) dx$	1	
	$= \frac{\sqrt{3}}{4} \left[\frac{1}{4} + 2 \ln \left(\frac{\sec x + \tan x}{4} \right) + x \right]_{0}^{\frac{1}{4}}$ $= \frac{\sqrt{3}}{4} \left[1 + 2 \ln \left(\sqrt{2} + 1 \right) + \frac{\pi}{4} - 0 \right]$		
	$\therefore V = \frac{\sqrt{3}}{4} \left[1 + 2\ln(\sqrt{2} + 1) + \overline{\mu} \right] \text{ units}^3$		

Course:

N	Marking Scheme for Task: Aca	demic Year	: 2010-11
Q	Solutions	Marks	Comments
Q7d	13-31+13+31=10		
	· · · · · · · · · · · · · · · · · · ·		
	let $g = x + iy$	1,	
	(x-3)+iy + (x+3)+iy =10	1	
	$\sqrt{(x-3)^2 + y^2} + \sqrt{(x+3)^2 + y^2} = 10$		
	$\int ((x-3)^2 + y^2) = 10 - \sqrt{((x+3)^2 + y^2)}$		
	$(3C-3)^{2} + y^{2} = (60-20)(x+3)^{2} + y^{2} + (x+3) + y^{3}$		
	$-1.20\sqrt{(x+3)^2+y^2}=100+12x$	1	
	$\sqrt{(x+3)^2+y^2} = 5 + \frac{3x}{5}$	'	
	Squaring both sides $x^2 + 6x + 9 + y^2 = 25 + 6x + \frac{9x^2}{25}$		
	25x +225+25y = 625 +9x2		
	16x2 + 25y2 = 400		
	$\frac{x^2}{25} + \frac{y^2}{16} = 1$		
	$\frac{\partial R}{\partial x}$ $\frac{\partial}{\partial x}$		
	e' su s		
	-3 3		
	for sum of distances from foci to be 10 (= 2a)	
	ellipse must travel through (5,0) :.	2=5	
	also S'B + SB = 10 : SB = SB = 5		
	! b=4 (Pythagoras)		
	: e quation of ellipse is		
	$\frac{3c^2}{25} + \frac{4}{4b} = 1$		
		,	

M	arking Scheme for Task: Aca	demic Year	r: 2010-11
2	Solutions	Marks	Comments
e) ($ma = mg - mv^2$ $t = 0 \times = 0$ $m \times mv^2$		
. [,
	$A = 9 - \frac{v^2}{100}$	1/	
	100		
	$\frac{y}{y} = a - y^2$		
	$\therefore \ddot{x} = g - \frac{v^2}{100}$	1	
	is the equation of motion +ve	1	
-			
((i) terminal velocity when $a = 0$ $v = V$		
	$9 - \sqrt{2} = 0$		
	$\frac{1}{100} = 0$		
	$1.7^2 = 1009$		
	$V = I_{1000}$ also $g = V$	1/	
	$V = \sqrt{1009} also g = \frac{\sqrt{100}}{100}$	'	
	<u>.</u>		
($(11) \ddot{x} = \nu \frac{d\nu}{dn} = g - \frac{\nu}{100}$		
	from (11) $g = \frac{V^2}{100}$		
	1/2 212		
	$v\frac{dv}{du} = \frac{v^2}{100} - \frac{v}{100}$		
	$\frac{dv}{dx} = \frac{v^2 - v^2}{100v}$		
		١,	
	$\frac{dx}{dv} = \frac{100v}{v^2 - v^2}$	1	
.	$\therefore \int dx = \int \frac{100V}{V^2 - V^2} dV (Integrating both Sides)$		
	$\int \overline{V^2 - v^2} \qquad \qquad Cides$		
	[] [[] 2 2 2 L)		
	$x+c=-so \ln(V^2-v^2)$		
	$1.10 2r = 0 X = 0 \implies C = -30/11$		
	$x - 50 \ln V^{2} = -50 \ln \left(V^{2} - v^{2} \right)$		
	x = so(nv = -so(nv))	1	
	$\gamma = 50/n V^2 - 50/n (V - V^2)$	'	
	$\frac{x}{50} = \ln\left(\frac{y^2}{y^2-y^2}\right)$		
	, , , , , , , , , , , , , , , , , , ,		
	$\frac{V^{2}}{V^{2}-v^{2}} = e^{\frac{2e}{50}}$ $\frac{V^{2}-v^{2}}{V^{2}-v^{2}} = V^{2}e^{-\frac{2e}{50}}$		
	V^2 v^2 v^2		
	V2-22 = Ve s	,	
	$v^2 - v^2 = v^2 (1 - e^{-\frac{2}{50}})$		