Etude de fonctions

Limite d'une fonction (Rappel)

Limite d'une fonction polynôme

- •Si f est une fonction polynôme alors $\lim f(x) = f(a)$.
- La limite d'un polynôme en $+\infty$ ou $-\infty$ est celle de son terme de plus haut degré

Limite d'une fonction rationnelle

- La limite d'une fonction rationnelle en $+\infty$ ou $-\infty$ est celle du quotient des termes de plus haut degré.
- Soit f une fonction rationnelle tel que : $f(x) = \frac{p(x)}{a(x)}$
- Si $\lim_{x\to a} \frac{p(x)}{q(x)} = \left(\frac{0}{0}\right)$ forme indéterminée. C'est à dire a est une racine de p(x) et q(x)

donc

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \lim_{x \to a} \frac{(x-a)p_1(x)}{(x-a)q_1(x)} = \lim_{x \to a} \frac{p_1(x)}{q_1(x)}$$

Limite d'une fonction irrationnelle

- Si $\lim_{x \to a} f(x) = a$, avec $(a \ge 0)$ alors $\lim_{x \to a} \sqrt{f(x)} = \sqrt{a}$
- Si $\lim_{x \to 2} f(x) = +\infty$ alors $\lim_{x \to 2} \sqrt{f(x)} = +\infty$

Limites usuelles

Soit $n \in IN^*$ on a:

- $\lim x^n = +\infty$
- $\lim x^n = -\infty$ si n est impair
- $\lim x^n = +\infty$ si n est pair
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x^n} = 0$

Limites trigonométriques

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad ; \quad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Formes indéterminées

$$+\infty + (-\infty)$$
 et $0 \times \infty$

$$\left(\frac{0}{0}\right)$$

$$\left(\frac{\infty}{\infty}\right)$$

Operations sur les limites

Dans ce paragraphe, a désigne un nombre réel ou $+\infty$ ou $-\infty$, L et M sont deux nombres réels.

Limite de la somme de deux fonctions.						
$\lim_{x \to a} f(x)$	L	L	L	+ &	- 8	+ &
$\lim_{x\to a}g(x)$	M	+ ∞	- 8	+ ∞	- 8	- 8
$\lim_{x \to a} (f(x) + g(x))$	L + M	+ ∞	- ∞	+ ∞	- 8	F. I

Limite du produ	Le signe se					
$\lim_{x \to a} f(x)$	L	L≠0	8	0	détermine en	
$\lim_{x\to a}g(x)$	M	8	8	8	respectant la règle des	
$\lim_{x\to a} (f(x) \times g(x))$	$L \times M$	8	8	F. I	signes	

Limite du quotient de deux fonctions.					
$\lim_{x\to a} f(x)$	L	$L \neq 0$	8	8	0
$\lim_{x\to a}g(x)$	$M \neq 0$	0	M	8	0
$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right)$	$\frac{L}{M}$	8	8	F. I	F. I

Limites et ordre.

Dans ce paragraphe, a désigne un nombre réel ou $+\infty$ ou $-\infty$.

Théorème1: Soient f et g deux fonctions définies sur un intervalle I.

• Si
$$(\forall x \in I)$$
; $f(x) \ge g(x)$ et $\lim_{x \to a} g(x) = +\infty$

alors $\lim f(x) = +\infty$.

• Si
$$(\forall x \in I)$$
; $f(x) \le g(x)$ et $\lim_{x \to a} g(x) = -\infty$

alors $\lim_{x\to a} f(x) = -\infty$.

THÉORÈME DES GENDARMES: Soient f, g et

h trois fonctions définies sur un intervalle

I. et k un réel.

Si
$$(\forall x \in I)$$
; $g(x) \le f(x) \le h(x)$

et
$$\lim_{x\to a} g(x) = \lim_{x\to a} h(x) = k$$
 Alors $\lim_{x\to a} f(x) = k$

Lemme:

Si
$$(\forall x \in I)$$
; $|f(x)-k| \le g(x)$ et $\lim_{x\to a} g(x) = 0$

Alors
$$\lim_{x \to a} f(x) = k$$

EXERCICES ET PROBLÈMES

Exercice 1: Calculer les limites

1)
$$\lim_{x \to +\infty} 2 + 3x^2 - x^3$$

$$2) \lim_{x \to -\infty} x^3 - 2x + 5$$

3)
$$\lim_{x \to -\infty} (x^4 - 2x + 1)$$

4)
$$\lim_{x \to -\infty} \frac{2x^2 - 5}{x - x^2 + 9}$$

$$5) \lim_{x \to +\infty} \frac{2x^3 - 5}{x^2 - 6x + 9}$$

6)
$$\lim_{x \to +\infty} \frac{3x-1}{x^2 - 3x}$$

$$7) \lim_{x \to +\infty} \sqrt{\frac{x^2}{4x^2 + 1}}$$

8)
$$\lim_{x \to 1^+} \frac{x+1}{x^2-1}$$

9)
$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{x^2 - 1}$$

10)
$$\lim_{x \to 3} \frac{x-3}{x^2-4x+3}$$

11)
$$\lim_{x \to 1} \frac{\sqrt{4x+5}-3}{x-1}$$
12) $\lim_{x \to +\infty} \sqrt{4x^2+3}-2x$

12)
$$\lim_{x \to +\infty} \sqrt{4x^2 + 3} - 2x$$

13)
$$\lim_{x \to -\infty} \sqrt{4x^2 + 3} + 2x$$

14)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$$

15)
$$\lim_{x \to +\infty} \sqrt{4x^2 + 3} - x$$

$$\lim_{x \to +\infty} \sqrt{4x^2 + 3} + x$$

17)
$$\lim_{x \to 3} \frac{x(x-3)}{x - \sqrt{x+1} - 1}$$

18)
$$\lim_{x \to +\infty} \sqrt{x^2 + x - 1} - 3x$$

19)
$$\lim_{x\to 0} \frac{1-\cos^2 x}{x^2}$$

19)
$$\lim_{x \to 0} \frac{x^2}{x^2}$$
20)
$$\lim_{x \to 2} \frac{\sqrt{x^2 + x + 3} + x - 5}}{x - 2}$$

$$21) \lim_{x \to +\infty} x \sin\left(\frac{1}{x}\right)$$

$$22)\lim_{x\to 0}\frac{\tan x - \sin x}{x^3}$$

$$23) \lim_{x \to +\infty} \frac{1 - \cos x}{x}$$

$$24) \lim_{x \to 0} \frac{1 + \cos^2 x}{x^2 + 2}$$

Exercice2:

Soit f la fonction définie sur l'intervalle $I = \mathbf{J0}$; 3[par: $f(x) = \frac{3x-1}{x^2-3x}$

- 1) Etudier le signe de f sur l'intervalle I.
- 2) Calculer les limites de f aux bornes de I.

Exercice 3:

Soit f la fonction définie sur IR\{3\} par $f(x) = \frac{x^3 - 1}{x^2 - 6x + 9}$

- 1) Etudier le signe de $x^2 6x + 9$.
- 2) Calculer les limites de f aux bornes du domaine de définition.
- 3) Calculer: $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} f(x) x$

Exercice 4:

Soit f la fonction définie sur IR par : $f(x) = \frac{x}{\sqrt{x^2 + 1} + x}$

- 1) Montrer que, $(\forall x > 0)$; $\left| f(x) \frac{1}{2} \right| \le \frac{1}{x^2}$.
- 2) En déduire $\lim_{x \to +\infty} f(x)$

Exercice 5:

Soient (C_f) et (C_g) les courbes représentatives respectivement des fonctions f et g.

- 1) Conjecturez
 - a) $\left(D_f\right)$ et $\left(D_g\right)$
 - b) $\lim_{x\to 4} f(x)$ et $\lim_{x\to 0^+} g(x)$
 - c) f([0;2]) et g([0;9])
 - d)Le signe de f(x).
 - e) Le signe de g'(x).
 - f) Le tableau de variation de f.
- 2) Quelles sont les solutions des équations: f(x) = g(x); f(x) = 0; f(x) = -1 et g(x) = 1
- 3) Soit *m* un réel donné, donnez le nombre de solutions de l'équation
- f(x) = m.
- 4) Résoudre graphiquement l'inéquation: $f(x) \le g(x)$.
- 5) Supposons que $D_f = [-9; 9]$ et f est une fonction paire.
 - a) Donnez la valeur de: f(-4) et f(-7)
 - b) Complétez la construction de la courbes (C_f) .
- 6) Construire la courbe de la function |f| sur l'intervalle [0;9].

Le succès est la somme de petits efforts, répétés jour après jour. Leo Robert Collier

II) Continuité d'une fonction.

1) Continuité en un point-continuité à droite - continuité à gauche

Définition 1: Soit f une fonction définie sur un intervalle ouvert I et $a \in I$.

On dit que f est continue en a si $\lim_{x\to a} f(x) = f(a)$

Attention: Une fonction ne peut pas être continue en un point qui n'appartient pas au domaine de définition, cela n'a aucun sens.

Définition2: Soit f une fonction définie sur un intervalle de la forme $[a; a+\alpha]$ avec $\alpha > 0$.

On dit que f est continue à droite en a si $\lim_{x\to a^+} f(x) = f(a)$

Propriété1: Soit f une fonction définie sur un intervalle ouvert I et $a \in I$.

On dit que f est continue en a si $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$

Théorème: Si f est dérivable en un point a, alors f est continue en a.

Attention : La réciproque est fausse.

2) Continuité sur un intervalle

Définition: On dit qu'une fonction f est continue sur un intervalle ouvert si elle continue en tout point de l'intervalle.

Remarque: Dire que f est continue sur I signifie que l'on peut tracer sa courbe sans lever le crayon.

La fonction f est discontinue en 2 car $\lim_{x \to 2^+} f(x) = 3 \neq f(2)$

La fonction f est continue en $\mathbf{2}$ car $\lim_{x\to 2} f(x) = 2 = f(2)$

Propriétés : - Toute fontion polynôme est continue sur IR.

- Toute fonction rationnelle est continue sur les intervalles où elle est définie.
- La fonction $x \mapsto \sqrt{x}$ est continue sur $[0,+\infty[$.
- Les fonctions *sinus* et *cosinus* sont continues sur IR.
- La fonction *tangente* est continue sur ses intervalles de définition.
- Toutes les fonctions construites par **somme**, **produit**, **quotient** ou par **composition** des fonctions précédentes sont continues sur leur domaine de définition.

Théorème: Si f est dérivable sur I, alors f est continue sur I.

Attention : La réciproque est fausse.

Exemple: la fonction $x \mapsto |x|$ est continue, mais n'est pas dérivable en zéro.

3) Image d'un intervalle et d'un segment par une fonction continue.

Propriétés : L'image d'un intervalle I par une fonction continue f est un intervalle f(I).

L'image d'un segment par une fonction continue est un segment.

Remarques: f([a;b])=[m;M] tels que m est le minima et M est le maxima de f sur le segment [a;b].

- Si l'intervalle *I* n'est pas fermé, alors son image est un intervalle qui peut être fermé, ouvert ou semi-ouvert.

Cas particulier:

L'image d'un intervalle I par une fonction f continue et monotone est un intervalle J = f(I).

	f(I) est l'intervalle:			
Si <i>I</i> =	f est croissante sur I	f est décroissante sur I		
[a;b]	[f(a);f(b)]	[f(b);f(a)]		
]a;b[$\lim_{x\to a^+} f(x); \lim_{x\to b^-} f(x) \Big[$	$\lim_{x\to b^-} f(x); \lim_{x\to a^+} f(x) \bigg[$		
$]$ - ∞ ; b $]$	$\left]\lim_{x\to\infty}f(x);f(b)\right]$	$\left[f(b); \lim_{x \to -\infty} f(x)\right]$		
]a;+∞[$\lim_{x \to a^+} f(x); \lim_{x \to +\infty} f(x) \Big[$	$\lim_{x\to +\infty} f(x); \lim_{x\to a^+} f(x)$		

4) Théorème des valeurs intermédiaires.

Théorème : Soit f une fonction *continue* sur un intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel ℓ de l'intervalle [a;b] tel que f(c) = kAutrement dit: l'équation f(x) = k admet au moins une solution sur l'intervalle [a;b].

Interprétation graphique:
La droite (D): y=k coupe la courbe de f en au moins un point dont l'abscisse est comprise entre a et b.

Corollaire1: Si f est une fonction *continue* et **strictement** monotone sur un intervalle [a;b], alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une solution **unique** dans a;b.

Interprétation: La droite (D): y=k coupe la courbe de f en un seul point dont l'abscisse est comprise entre a et b.

Corollaire2: Si f est une fonction *continue*, *strictement monotone* sur un intervalle [a;b] et f(a).f(b) < 0 alors l'équation f(x) = 0 admet une solution *unique* dans l'intervalle]a;b[.

Interprétation: la courbe de la fonction f coupe l'axe des abscisses en un seul point dont l'abscisse est comprise entre a et b.

Méthode d'encadrement d'une solution par dichotomie

5) Fonction réciproque d'une fonction continue et strictement monotone sur un intervalle Soient f une fonction continue et strictement monotone sur un intervalle I et J=f(I).

La fonction **réciproque** de la fonction f est la fonction notée f^{-1} définie sur J à valeurs dans I, telle que :

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$
 avec $x \in J$ et $y \in I$.

Corollaires: Si f est continue et strictement monotone sur un intervalle I, alors:

- 1) f admet une fonction réciproque notée f^{-1} définie sur J=f(I) à valeurs dans I
- 2) $(\forall x \in I); f^{-1}(f(x)) = x$ et $(\forall y \in J); f(f^{-1}(y)) = y$.
- 3) La fonction f^{-1} est continue et strictement monotone sur J=f(I). (de même sens de monotonie que k).
- 4) Dans un repère orthonormé, $(C_{f^{-1}})$ et sont symétriques par rapport à la première bissectrice. (la droite d'équation y = x).

Théorème(important): Si f une fonction continue et strictement monotone sur un intervalle I et $k \in f(I)$ Alors l'équation f(x) = k admet une unique solution dans I.

III) Dérivabilité d'une fonction.

1) Dérivabilité d'une fonction en un point.

Définition 1: Soit f une fonction définie sur un intervalle ouvert I. et a un élément de I.

On dit que f est dérivable en a, s'il existe un nombre

réel
$$\ell$$
 tel que: $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell$

Le nombre $\boldsymbol{\ell}$ s'appelle alors le nombre dérivé de f en \boldsymbol{a} et on le note f'(a).

Définition2: Soit f une fonction définie sur un intervalle de la forme [a;b] avec b>a.

On dit que f est dérivable à droite en a, s'il existe un f(x) - f(a)

nombre réel ℓ tel que: $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \ell$.

Le nombre ℓ s'appelle alors le nombre dérivé à droite en a, et on le note $f_d'(a)$.

Propriété: f est dérivable en a si est seulement si f est dérivable à droite en a, f est dérivable à gauche en a et $f'_d(a) = f'_g(a)$

Interprétation géométrique du nombre dérivé.

- 1) Si f est dérivable en a alors (C_f) admet une tangente en A(a; f(a)) d'équation: y = f'(a)(x-a) + f(a)
- 2) Si f est dérivable en a alors $x \mapsto f'(a)(x-a)+f(a)$ est la fonction affine tangente à f au point a.
- 3) Si f est dérivable à droite en a alors (C_f) admet une demi-tangente en A(a; f(a)) de coefficient directeur $f'_d(a)$.
- 4) Si f est dérivable à gauche en a alors (C_f) admet une demi-tangente en A(a; f(a)) de coefficient directeur $f'_g(a)$.
- 5) Si f est dérivable à droite en a et à gauche en a et $f'_d(a) \neq f'_g(a)$ alors A(a; f(a)) est un **point anguleux**.
- 6) Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = \infty$ alors f n'est pas dérivable à droite en a, Cependant, la courbe admet au point d'abscisse a une demi-tangente verticale.

2) Dérivabilité sur un intervalle - Fonction dérivée d'une fonction.

Définition: Soit f une fonction définie sur un intervalle I.

- On dit que f est dérivable sur I si elle est dérivable en tout réel x de I. Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée *fonction dérivée* de f et se note f'.
- On dit que f est dérivable sur [a;b] si elle est dérivable sur]a;b[, dérivable à droite en a et dérivable à gauche en b.

Propriétés : Toute fonction polynôme est dérivable sur IR .

- Toute fonction **rationnelle** est dérivable sur tout intervalle inclus dans son ensemble de définition.
- Les deux fonctions *sin* et *cos* sont dérivables sur **IR**.
- La fonction $x \mapsto \sqrt{x}$ est dérivable sur $]0;+\infty[$.

Théorème (Dérivation d'une fonction composée) :

Si u est une fonction définie et dérivable sur I et v une fonction définie et dérivable sur J tel que $u(I) \subset J$, alors $v \circ u$ est dérivable sur I et on a : $(\forall x \in I)$; $(v \circ u)'(x) = v'(u(x)) \times u'(x)$

Théorème (<u>Dérivation d'une fonction réciproque)</u> :

Soit f une fonction continue et strictement monotone sur un intervalle I et $a \in I$.

• Si f est dérivable sur I et $(\forall x \in I)$; $f'(x) \neq 0$, alors f^{-1} est dérivable sur J = f(I) et on a :

$$(\forall x \in J); (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 et si $f'(a) \neq 0$ alors $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$

• Soient u et v deux fonctions dérivables sur un intervalle I, et k un réel alors :

Opérations sur les fonctions dérivées		Dérivées des fonctions usuelles		
f(x)	f'(x)	f(x)	f'(x)	
u(x)+v(x)	u'(x)+v'(x)	k	0	
$\lambda . u(x)$	$\lambda . u'(x)$	ax	а	
$u(x)\times v(x)$	$u'(x)\times v(x)+v'(x)\times u(x)$	ax^n	$n.ax^{n-1}$	
$\frac{u(x)}{v(x)}$	$\frac{u'(x)\times v(x)-u(x)\times v'(x)}{\left(v(x)\right)^2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$	
$\frac{1}{u(x)}$	$\frac{-u'(x)}{\left(u(x)\right)^2}$	$\frac{1}{x}$	$-\frac{1}{x^2}$	
$u \circ v(x)$	$u'(v(x)) \times v'(x)$	sin x	cos x	
$\sqrt[n]{u(x)}$	$\frac{u'(x)}{n\sqrt[n]{u(x)}}$	$\cos x$	-sin x	
$(u(x))^n$	$n.(u(x))^{n-1}\times u'(x)$	tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

3) Applications de la fonction dérivée.

• Dérivée et variations. Théorèmes admis

Soit f une fonction dérivable sur un intervalle I.

- Si $(\forall x \in I)$; $f'(x) \ge 0$, alors la fonction f est **croissante** sur I.
- Si $(\forall x \in I)$; $f'(x) \le 0$, alors la fonction f est **décroissante** sur I.
- Si $(\forall x \in I)$; f'(x) > 0, alors la fonction f est **strictement croissante** sur I.
- Si $(\forall x \in I)$; f'(x) < 0, alors la fonction f est **strictement décroissante** sur I
- Si $(\forall x \in I)$; f'(x) = 0, alors la fonction f est constante sur I.

Remarque:

Si $(\forall x \in I)$; $f'(x) \ge 0$ et f' s'annule en des points isolés alors la fonction f est **strictement croissante** sur I

■ Extremums d'une fonction.

Propriété: f est dérivable sur un intervalle ouvert I et $a \in I$.

• Si f' s'annule en a en changeant de signe, alors f(a) est un extremum local de la fonction f sur I.

Remarque: Si f'(a) = 0 et f' ne change pas de signe, alors A(a; f(a)) est un **point d'inflexion**.

■ Concavité et dérivée seconde

Définition : Soit f une fonction deux fois dérivable sur un intervalle I. et (C_f) sa courbe représentative.

- On dit que la courbe (C_f) admet une concavité dirigée vers les ordonnées positives (**convexe**), s'elle est entièrement située au-dessus de chacune de ses tangentes.
- On dit que la courbe (C_f) admet une concavité dirigée vers les ordonnées négatives (**concave**), s'elle est entièrement située au-dessous de chacune de ses tangentes.

Propriété : Soit f une fonction deux fois dérivable sur un intervalle I.

- Si $(\forall x \in I)$; $f''(x) \ge 0$, alors la courbe (C_f) admet une concavité dirigée vers les ordonnées positives.
- Si $(\forall x \in I)$; $f''(x) \le 0$, alors la courbe (C_f) admet une concavité dirigée vers les ordonnées négatives.
- Si f''(a) = 0 et f'' change de signe, alors A(a; f(a)) est un **point d'inflexion**.

IV) Les branches infinies

Si $\lim_{x \to +\infty} f(x) = b$

La droite d'équation y = b est une asymptote horizontale à (C_f) en $+\infty$

Si $\lim_{x\to a} f(x) = \infty$

La droite d'équation x = a est une asymptote verticale à (C_f) .

 $\lim_{x\to+\infty}f(x)-(ax+b)=0.$

La droite d'équation y = ax + b est une asymptote oblique à (C_f) en $+\infty$

V) Axe de symétrie - Centre de symétrie

Soit f une fonction définie sur un ensemble D.

On dit que la droite (Δ) : x = a est un axe de

 $(2a-x) \in D$ et f(2a-x) = f(x)

symétrie de

On dit que le point I(a;b) est un centre de symétrie de si pour tout x de D on a :

$$(2a-x) \in D$$
 et $f(2a-x) = 2b-f(x)$

VI) Fonction paire - Fonction impaire

si pour tout \boldsymbol{x} de \boldsymbol{D} on a :

On dit que f est une fonction paire : Si pour tout

 $x \text{ de } D_f \text{ on a} : -x \in D_f \text{ et } f(-x) = f(x)$

Remarque : La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

On dit que f est une fonction impaire : Si pour tout x

de D_f on a: $-x \in D_f$ et f(-x) = -f(x)

Remarque : La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.

VII) Fonction périodique

On dit que f est une fonction périodique s'il existe un réel positif T tel que : pour tout x de D_f on a: $(x+T) \in D_f$ et f(x+T) = f(x) (T est appelé une période de la fonction f)

VIII) Position relative d'une courbe et d'une droite

Pour étudier la position relative d'une courbe et d'une droite (Δ): y = ax + b sur un intervalle I, on doit étudier le signe de f(x) - (ax + b) sur I.

- $si\ (\forall x \in I);\ f(x)-(ax+b)>0$, alors est strictement au-dessus de (Δ) sur I.
- $si\ (\forall x \in I);\ f(x) (ax + b) < 0$, alors est strictement au-dessous de (Δ) sur I.
- Les solutions de l'équation f(x)-(ax+b)=0 sont les abscisses des points d'intersection de et (Δ) .

Fonction racine nième IX)

Définition: a désignant un réel positif et n un entier naturel non nul.

On appelle racine $\mathbf{n}^{\text{ième}}$ de \mathbf{a} le réel positif noté $\sqrt[n]{a}$ tel que $\left(\sqrt[n]{a}\right)^n = \sqrt[n]{a^n} = \mathbf{a}$.

Propriétés: Pour tous réels x et y positifs et pour tous entiers naturels m et n on a:

- $x \mapsto \sqrt[n]{x}$ est la fonction **réciproque** de la fonction $x \mapsto x^n$ sur l'intervalle $[0;+\infty[$. • $\sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$
 • $\sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x < y$
 • $\sqrt[n]{x} = \sqrt[n]{x}$
 • $\sqrt[n]{x} = \sqrt[n]{x}$

Remarque. Les règles de calculs sur les racines nième sont les mêmes que celles sur les racines carrées.

X) Puissance d'exposant rationnel d'un réel strictement positif.

Soient x un nombre réel strictement positif et r un nombre rationnel tel que : $r = \frac{p}{q}$ avec $(p;q) \in \mathbb{Z} \times \mathbb{N}^*$.

On remarque que : $\left(x^{\frac{p}{q}}\right)^q = x^{\frac{p}{q} \times q} = x^p$ et $\left(\sqrt[q]{x^p}\right)^q = x^p$ donc $\sqrt[q]{x^p} = x^{\frac{p}{q}}$

Propriétés: Pour tous réels x et y strictement positifs et pour tous nombres rationnels m et n on a:

- \bullet $(x^m)^n = x^{mn}$

- $\bullet \ \frac{x^m}{r^n} = x^{m-n}$

 $\bullet \ \frac{1}{x^n} = x^{-n}$

Remarque. Les règles de calculs sur les exposants rationnels sont les mêmes que celles sur les exposants entiers.