

Fire Risk Profiles

Image Recognition on Floor Plans as Input for a Fire Risk Model

University of Amsterdam - Data Systems Project

Will Chien, Jelle van Elburg, Anton Kozačkov, Elisabeth Kräman, Marta Turek Group E4

Outline

- The Problem
- The Model
- The Prototype
- Prototype Evaluation
- Conclusions & Future Work
- Questions

The Problem

- Problem definition
- Limitations / challenges
- Solution definition

Problem Ideation Insight

The goal of this project is presently more about **gathering inputs** than it is about creating new models, given the number of missing inputs for any potential risk model.

Problem Discovery & Definition

Discover: Explore the Problem

- Plans must be submitted for permits
- Plans contain key information on possible fire risk and impact of fire

Define: Decide What to Fix

- Computer vision model to parse floor plan images
- Extracting key information: compartments, doors, windows

Challenges

Model:

- Working with varied data
- Computationally heavy & expensive to train model (GPU cost)

Data:

- Target data not available
- Annotated data even rarer

Prototype:

- Visually appealing way to show model and results
- Interface

The Model

- Model selection
- Processing pipeline
- Data annotations
- Model architecture
- Hyperparameter tuning
- Output post-processing
- Model Evaluation

Object detection/ Instance segmentation

- Recognise floor plan elements (door, windows, walls)
- Common problem in computer vision
- Previous work on similar problems available
 - Algorithmic
 - Machine learning

Algorithmic/ML

Algorithmic

- Relies on relation between elements
- Lacks generality in terms of noise and datasets

Machine learning

- Robust to variation
- State-of-the-art
- However, annotated data required
 - o Only recently used, little annotated data

Room Function Extraction

- According to Red Cross, most house fires start in kitchen
- Function encoded in symbols/text
- Room function may predict escape route

Only model with room function prediction: DeepFloorplan (Zeng et al., 2019)

- Published 2019
- Semantic Segmentation (pixel wise labeling)
- Convolutional Neural Network with TensorFlow

Data Processing Pipeline

Data Preparation

- Web-scraping
- Floor plans annotations

Model Implementation

- Train/test split
- Model training
- Hyperparameter fine-tuning

Model Evaluation

 Check accuracy on test sets

Training data preparation

Public training dataset:

- 1. R2V 815 images Japan
- 2. R3D 214 images New York

Adding new data can enrich the model from two aspects:

- 1. Dutch floor plan style
- 2. In Dutch language

A. Japan

B. New York

C. Amsterdam

Web-scraping

- No access to the target floor plans due to privacy issues
- Alternatively, we scraped floor plan images from Funda automatically as supplementary training data

Data annotation

- Annotate each pixel in Photoshop/ Photopnea
- Time to annotate one floor plan: 45 60 minutes

Data annotation

Make sure every single pixel is labeled.

200 images * 45-60 minutes/image =

150 - 200 hours

Floor plan annotations are **labour intensive**.

Model architecture

Room-boundary prediction

Room Boundaries

Room-type prediction

Model Training

Hyperparameter tuning - a focus on learning rate

Learning rate (Ir) is a key hyperparameter for tuning neural networks

Model Evaluation Metrics

Overall pixel accuracy

$$overall\ accu = \frac{\sum_{i} N_{i}}{\sum_{i} \widehat{N}_{i}}$$

Per-class pixel accuracy

$$class\ accu(i) = \frac{N_i}{\widehat{N}_i}$$

 \widehat{N}_i is total number of the ground-truth pixels

 N_i is correctly-predicted pixels for the *i-th* floor plan element

Model Evaluation

	Model_20_lr5-e4	Model_AMS3_Ir5-e4
Overall accuracy	0.7759	0.6328
Room type (Mean accuracy)	0.4267	0.1425
Room type + boundary (Mean accuracy)	0.5324	0.3075

The Prototype

- Requirements
- Development process
- Prototype demo

MVP Requirements

Functionality

- Floor plans -> extracted data CSV
- Batch processing
- Extracted data visualization

Environment

- Data security
- Hardware constraint GPU
- Web application

Competitive usability analysis

- Google Vision AI (similar intended function)
- Smallpdf (similar intended structure)

PDF Converter

First Iteration: Figma click dummy prototype

Technology used

- Backend Django REST API
- Frontend React Javascript framework
- Deployed to remote cloud infrastructure

Demo

Prototype Evaluation

Usability testing

Usability Testing - UX test 1

- Test on Figma prototype using Maze and Zoom
- Explorative usability test
- 5 participants
 - Information Studies
 - High digital literacy
- Different tasks and questions

Usability Testing - Example Maze

- Function was clear
- Intuitive and easy to use
- Output page and data presentation was not clear
 - Extracted features table unclear
 - Adding a legend would help
- Reliability somewhat questionable

Figma landing page heatmap

- Function was clear
- Intuitive and easy to use
- Output page and data presentation was not clear
 - o Extracted features table unclear
 - Adding a legend would help
- Reliability somewhat questionable

Figma upload page heatmap

- Function was clear
- Intuitive and easy to use
- Output page and data presentation was not clear
 - Extracted features table unclear
 - Adding a legend would help
- Reliability somewhat questionable

Usability Testing - UX test 2

- Test on real prototype using Zoom
- Classic usability test
- 5 participants
 - Information Studies
 - High digital literacy
- Tasks, reflection, and open ended questions

- Still clear, intuitive, and easy to use
- Questionable layout scalability
- Output page and data presentation could still be improved according to most users
 - Adding a legend would help
 - Labeling images

Prototype output page

Conclusion & Future Work

Conclusion

System transforms unstructured floor plans to structured data, which can be a supplementary input to the fire risk model

Room boundary detection, counting compartments: accuracy of 77%

Future work

- 1. Annotate and train with Dutch floor plans
 - a. Room function inference harder: more data might help
 - b. Training data should be representative of target data: Dutch features (language, styling) on image important
- 2. Differentiate doors from windows
- 3. Web application improvements based on feedback

Thank youDank je wel

Appendix

Output post-processing

- Due to the per-pixel prediction, the output is noisy
- Post-processing is performed:
 - a. Locate room regions by the room-boundary pixels
 - b. Count the number of pixels of each room type in the bounded region
 - c. Set the overall predicted type by the largest frequency

Raw prediction output

After post-processing

Counting compartments

- Aggregate connected pixels to count different rooms
- Connected component labeling:
 - 4-connected neighborhood
 - 8-connected neighborhood

0	1	0
1	1	1
0	1	0

4-connected neighborhood

1	1	1
1	1	1
1	1	1

8-connected neighborhood

Counting compartments

Raw prediction

Pixels not having 8-connected neighbors

Remove isolated pixels

Counting compartments

- Only the area larger than certain pixels will be counted
- Different threshold for different types of items:
 - Door & windows: 80 pixels
 - Living room & Dining room: 120 pixels
 - Storage room/closet : 200 pixels

These three areas are less than 300 pixels

Original image

Removing areas under 300 pixels

Model Evaluation - Feature Elements

		Accuracy		
Element #	Feature Element	Model_20_lr5-e4	Model_AMS3_Ir5-e4	
0	background	0.9966	0.9972	
1	closet	0.1656	0.0	
2	bathroom/washroom	0.4469	0.0	
3	livingroom/kitchen/dining room	0.4077	0.0	
4	bedroom	0.4628	0.0	
5	hall	0.3281	0.0	
6	balcony	0.1792	0.0	
9	door & window	1.0000	1.0000	
10	wall	0.8046	0.7704	