Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2024-25 **Course Information** B.Tech. (Mechanical Engineering) **Programme** Class, Semester Second Year B. Tech., Sem IV Course Code 7ME221 **Course Name** Fluid Mechanics and Fluid Machines **Desired Requisites: Teaching Scheme Examination Scheme (Marks)** 3Hrs/week **MSE** Total Lecture ISE **ESE Tutorial** 20 50 100 30 Credits: 3 **Course Objectives** To learn about the application of mass and momentum conservation laws for fluid flows 1 To understand the importance of dimensional analysis 2 To obtain the velocity and pressure variations in various types of simple flows 3 Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Bloom's Bloom's CO **Course Outcome Statement/s Taxonomy** Taxonomy Level Description Recall knowledge of mathematics, Remembering science. and I CO₁ engineering for the needs in fluid mechanics. Explain the basics of fluid properties, pressure measurement, fluid statics, kinematics, dynamics, and П Understanding CO₂ dimensional analysis. Summaries the basic expressions and theory related to: fluid statics, kinematics, dynamics, dimensional analysis, Applying Ш CO3 boundary layer theory and its applications. Explain analyze rotodynamic machines for their IV Analyzing CO4 performance Module **Module Contents** Hours **INTRODUCTION AND BASIC CONCEPTS:** Introduction, No-Slip Condition, Classification of Fluid Flows, PROPERTIES OF FLUIDS: Density and Specific Gravity, Vapor Pressure and Cavitation, Coefficient of Compressibility, Viscosity, Surface Tension and Capillary Effect PRESSURE AND FLUID STATICS: Hydrostatic Forces on Submerged Plane Surfaces, Hydrostatic Forces

on Submerged Curved Surfaces, Buoyancy and Stability, Fluids in

Rigid-Body Motion

	FLUID KINEMATICS:					
	Lagrangian and Eulerian Descriptions, Flow Visualization, Plots of					
	Fluid Flow Data, Reynolds Transport Theorem					
	MASS, BERNOULLI, AND ENERGY EQUATIONS:					
II	Introduction, Conservation of Mass, Mechanical Energy and	6				
11	Efficiency, The Bernoulli Equation and its applications, General	U				
	Energy Equation, Energy Analysis of Steady Flows					
	MOMENTUM ANALYSIS OF FLOW SYSTEMS:					
	Newton's Laws and Conservation of Momentum, Choosing a Control					
III	Volume, Forces Acting on a Control Volume, The Linear Momentum	7				
	Equation, Rotational Motion and Angular Momentum, Angular					
	Momentum Equation					
	DIMENSIONAL ANALYSIS AND MODELING:					
	Dimensional Homogeneity, Dimensional Analysis and Similarity, The					
	Method of Repeating Variables and the Buckingham Pi Theorem,					
	FLOW IN PIPES:					
	Laminar and Turbulent Flows, The Entrance Region, Laminar and					
	Turbulent Flows in pipes, Minor Losses, Flow Rate and Velocity					
IV	Measurement	7				
1 V	DIFFERENTIAL ANALYSIS OF FLUID FLOW:	,				
	The Stream Function, Cauchy's Equation, The Navier–Stokes					
	Equation Equation, Cauchy's Equation, The Navier–Stokes					
	FLOW OVER BODIES: DRAG AND LIFT:					
	Boundary Layer Approximation, Drag and Lift, Friction and Pressure					
	Drag FUNDAMENTALS OF TURBOMACHINERY:					
	Euler's equation – theory of Rotodynamic machines – various					
V	efficiencies – velocity components at entry and exit of the rotor,	7				
	velocity triangles – Centrifugal pumps, working principle, work done	7				
	by the impeller, performance curves – Cavitation in pumps					
	Reciprocating pump – working principle					
	TYPES OF TURBOMACHINERY:					
	Classification of water turbines, heads and efficiencies, velocity					
VI	triangles- Axial, radial and mixed flow turbines- Pelton wheel, Francis					
V 1	turbine and Kaplan turbines, working principles – draft tube- Specific	5				
	speed, unit quantities, performance curves for turbines – governing of					
	turbines					
	Text Books	1 . 1				
_	S K Som, Gautam Biswas, Suman Chakraborty, "Introduction to Fluid Med	enanics and				
1	Fluid Machines" Tata McGraw – Hill Publication. 3 rd Edition 2012.					
	Cengel Yunus A. And Cimbala John M. "Fluid Mechanics and Fundament	al and				
	applications", Tata Megraw-Hill New Delhi. 4th Edition 2017	ai ana				
	applications, Tata Megraw-IIII New Delin. 4 Edition 2017					
	Dr. R. K. Bansal, "Fluid mechanics and Hydraulic machines" Laxmi Publ	ication, 9 th				
3]	Edition 2010					
	References					
T .	Streeter, Wylie and Bedford, "Fluid Mechanics", Tata McGraw – Hill Publ	ication. 9 th				
	Edition 2000.					
	Edition 2000.					
1]	Edition 2000. Franke and White, " <i>Fluid Mechanics</i> ", Tata Mcgraw-Hill New Delhi. 5 th Eo					

M. Potter, D.Wiggert "Fluid Mechanics" Schaum's Outline Series Mcgraw-Hill New York 2008..

Useful Links

https://archive.nptel.ac.in/courses/112/105/112105269/

	CO-PO Mapping													
	Programme Outcomes (PO)									PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO. ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)

AY 2024-25

Course Information							
Programme B.Tech. (Mechanical Engineering)							
Class, Semester	Second Year B. Tech., Sem IV						
Course Code	7ME222						
Course Name	Kinematics and Theory of Machines						

Desired Requisites:

Teachi	ng Scheme	Examination Scheme (Marks)					
Lecture	3Hrs/week	MSE	Total				
Tutorial	-	30	20	50	100		
		Credits: 3					

	Course Objectives					
1	To make the students understand the kinematics and rigid- body dynamics of kinematically driven machine components					
2	To make the students understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link					
3	To enable the students to design linkage mechanisms and cam systems to generate specified output motion					
4	To make the students understand the kinematics of gear trains					

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxono	Bloom's Taxono
		my Level	my Description
CO 1	Remember facts, terms, basic concepts, and methods related to theories of machines.	I	Remember
CO 2	Identify mechanism that should be used according to application and find degrees of freedom of different mechanisms.	II	Understand
CO 3	Analyse various linkage mechanisms for optimal functioning	IV	Analyze
CO 4	Develop various linkage mechanism for different applications	V	Evaluate

Modul e	Module Contents	Hours
I	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains- Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms	7
II	Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity acceleration analysis, instantaneous centers, velocity and acceleration analysis using loop closure equations, Coincident points-Coriolis component of acceleration	8
III	Introduction to linkage synthesis three position graphical synthesis for motion and path generation kinematic analysis of simple mechanisms slider crank mechanism dynamics	7

IV	Classification of cams and followers- Terminology and definitions- Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers						
V							
	and regular gear train kinematics						
3.71	Surface contacts- sliding and rolling friction- friction drives, belt and rope						
VI	drives bearings and lubrication, friction clutches and brakes	5					
	Text Books						
1							
2							
3							
	·						
	References						
1	Thomas Bevan, "Theory of Machines", CBS Publishers, New Delhi, 1st Edition, 20	010.					
2	J. E. Shigley,"Theory of Machines and Mechanism", , McGraw Hill, New York. 4tl						
	2011						
G.S. Rao and R.V. Dukipatti, "Theory of Machines and Mechanism", New Age Intern							
	Publications Ltd. New Delhi. 2011						
	Useful Links						
1	Kinematics of Mechanisms and Machines - YouTube						
2	Module 1 Lecture 1 Kinematics Of Machines - YouTube						
3	Lecture 01 Introduction to Kinematics of Machines KOM - YouTube						
4	https://onlinecourses.nptel.ac.in/noc22_me25/preview						

	CO-PO Mapping													
	Programme Outcomes (PO)									PS	PSO			
	1	2	3	4	5	6	7	8	9	1	1	1	1	2
										0	1	2		
CO1	2	3												1
CO2		3		1									1	
CO3		3		1									1	
CO4			3			1							1	

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2024-25 Course Information Programme B. Tech. (Mechanical Engineering) Class, Semester Second Year B. Tech. SEM-II Course Code 7ME223 Course Name Manufacturing Processes - II Desired Requisites: NA Examination Scheme (Marks)

Teaching	g Scheme	Examination Scheme (Marks)					
Lecture 3Hrs/week		MSE	ISE	ESE	Total		
Tutorial	-	30	20	50	100		
		Credits: 3					

	Course Objectives						
1	To familiarize students in various metal cutting, joining and finishing processes						
2	To introduce students with various plastic processing, additive manufacturing and various						
nonconventional machining processes							
3	To train the students to identify various process and response variables in cutting, joining and						
3	finishing processes.						
4	To familiarize students about CNC, VMC and various micromachining processes.						
5	To make aware of various non-conventional machining processes.						

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	To summarize and compare various cutting, joining, finishing, plastic working and additive manufacturing, non-conventional machining processes.	II	Understanding
CO2	To illustrate/practice various cutting, joining, finishing, plastic processing and additive manufacturing, non-conventional machining processes	III	Applying
CO3	Differentiate and investigate various cutting, joining, finishing, plastic working and additive manufacturing, non-conventional machining processes	IV	Analysing
CO4	To estimate the effect of various process parameters in cutting, joining, finishing, plastic working and additive manufacturing, non-conventional machining processes	V	Evaluating

Module	Module Contents	Hours
I	Metal Cutting: Single and multi-point cutting, Machinability, cutting tool materials, cutting fluids, Tool geometry, Orthogonal / oblique cutting, various force components, tool wear and tool life and its economics, Surface finish and integrity machining. Major operations performed on Lathe, Milling, shaping machines.	7
П	Joining Processes: Overview and classification of joining processes: Soldering, brazing, oxifuel gas welding such as oxyacetylene and pressure gas welding, arc welding such as shielded metal arc welding, gas metal arc welding, submerged arc welding, plasma arc welding, Electrodes and Electrode Coatings, resistance welding such as spot, seam and projection welding, Solid-State Welding, Friction Stir Welding, HAZ.	6
III	Plastic Processing and Additive Manufacturing Processes: Classification of Plastics and its properties, Thermosetting and thermoplastic materials, comparison with other materials, their properties and	7

	applications. blow moulding, compression moulding, injection moulding, thermoforming, rotational moulding and calendaring Introduction to Additive manufacturing: Rapid prototyping(3D Printing) Types of 3D printing, advantages, applications.							
IV	Finishing Processes: Overview and classification of finishing processes, Grinding process- abrasive materials, grinding wheel specification and types, grinding machine classification and grinding operations. Lapping, Honing, Buffing, Barrel Tumbling, Burnishing.	7						
V	Non-conventional Machining Processes – I: Importance and scope of various non-conventional machining processes like Abrasive Jet Machining, Water Jet Machining, Abrasive Water Jet Machining, Ultrasonic Machining, micro machining, their working Principle, Process Parameters, comparison and application of these processes	6						
VI	Non-conventional Machining Processes – II: Electrical Discharge Machining, wire EDM, Electro-chemical machining							
	Text Books	2 C Cl 1 0						
1	P.C. Sharma, "A Textbook of Production Technology (Manufacturing processes)" co.,8th revised edition 2014. ISBN:8121911141.	, S. Chand &						
2	P.N. Pao "Manufacturing Technology, Foundry, Forming and Welding", Vol. I. Tata McGray							
3	George E. Dieter, "Mechanical Metallurgy", Tata McGraw Hill Publication, Si Metric Edition, 3 Revised edition, 2013, ISBN: 9780070168930.							
4	Jagadeesha T, "Unconventional Machining Processes", Dreamtech Press, Edition No:978-93-89976-05-2	2020, ISBN						
	References							
1	E. Paul DeGarmo, J.T. Black, Ronald A. Kosher, "Materials and Processes in Manufacturing", John Wiley and Sons Ltd, 9th revised edition, 2004.ISBN:,9780471656777							
2	Jagadeesha T, "Non-traditional Machining Processes", Dreamtech Press, Edition No:978-93-85920-72-9							
3	Serope Kalpakjian, Steven R. Schmid, Manufacturing Engineering and Technolog (Prentice Hall), Fifth Edition, 2005	gy', Pearson						
4	V. K. Jain, Introduction to Micromachining, Alpha Science, 2010, ISBN 1842654 9781842654859	853,						
	Useful Links							
1	https://youtu.be/Qx-Kx4GapgI							
2	https://youtu.be/ljveGnQw2G0?list=PLSGws_74K018JY-1RyIj0cm4yppa1h54r	4						
3	https://youtu.be/ZLlwfXSXEVc?list=PLSGws_74K01_zyzpQkNtm-6ickGhCwihttps://youtu.be/TlhGTSDfQxc	4						
5	* *							
6	https://youtu.be/Vy4nlWoPPmo https://youtu.be/mmKy5PbndQI?list=PLyqSpQzTE6M-KwjFQByBvRx464XpCgOEC							
7	https://www.youtube.com/watch?v=sPhTjrvpGyE&t=1838s	5010						
8	https://www.youtube.com/watch?v=WJtF1wEOeAw							
9	https://www.youtube.com/watch?v=ICjQ0UzE2Ao							
10	https://www.youtube.com/playlist?list=PLzCSUZGIUJkaSyCzPiQMWynGyxmC	C8hrpl						
11	https://www.youtube.com/watch?v=Hc6mfNWT8oQ&t=7s							
12	https://www.youtube.com/watch?v=cxU1zUOpGLk&t=3016s							
13	https://youtu.be/xf6TbK68hHY							
14	https://www.youtube.com/watch? v=06QxjEAMrKc&list=PLwFw6Nkm8oWqFJUxiUuu5c0uHK076lz2K							

						CO-	PO Ma	pping							
				P	rograi	nme (Outcom	es (PC))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	

CO1	3								2		2	
CO2			2				3			2		
CO3			2				1				2	
CO4		2		2	3					2		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information

	Course information					
Programme B.Tech. (Mechanical Engineering)						
Class, Semester	Second Year B. Tech., Sem IV					
Course Code	7ME271					
Course Name	Fluid Mechanics and Fluid Machines Lab					

Desired Requisites:

Teaching	Scheme		Examination S	Scheme (Marks)					
Practical	2Hrs/Week	LA1 LA2 LA ESE Tota							
Interaction	-	30	30	40	100				
		Credits: 1							

	Course Objectives							
1	To introduce the students about basic principles and laws through conducting experiments in laboratory							
2	To enable the students to analyze the fluid turbo machines							
3	To develop skills in the evaluation of fluid turbo machines.							

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Understand basic principles and laws and conduct the experiments for validation	II	Understanding
CO2	Investigate the performance parameters of fluid turbo machines	III	Applying
CO3	Interpret the performance of fluid turbo machines.	IV	Analyzing
CO4	Evaluate the performance of fluid turbo machines.	V	Evaluating

List of Experiments / Lab Activities

List of Experiments:

a) Study and demonstration.

1. Study of similarity principles.

b) Experiments and Trials (Any twelve)

- 1. Experiment on Impact of Jet.
- 2. Experiment on Prandtl type pitot type apparatus.
- 3. Verification of Bernoulli's Equation.
- 4. Calibration of Venturi meter and Orifice meter.
- 5. Calibration of V-Notch
- 6. Calibration of Orifice and Mouthpiece apparatus.
- 7. Experiment on Reynolds apparatus.
- 8. Determination of Minor losses in pipe fittings.
- 9. Determination of loss in pipes (series/parallel/different material)
- 10. Trial on Pelton Turbine.
- 11. Trial on Kaplan Turbine.
- 12. Trial on Francis Turbine.

- 13. Trial on Centrifugal Pump.
- 14. Trial on Gear Pump.

15. Tr	15. Trail on Cavitation apparatus					
	Text Books					
1	S K Som, Gautam Biswas, Suman Chakraborty, "Introduction to Fluid Mechanics and Fluid Machines" Tata McGraw – Hill Publication. 3 rd Edition 2012.					
2	Cengel Yunus A. And Cimbala John M. "Fluid Mechanics and Fundamental and applications", Tata Mcgraw-Hill New Delhi. 4 th Edition 2017					
	References					
1	Streeter, Wylie and Bedford, "Fluid Mechanics", Tata McGraw – Hill Publication. 9 th Edition 2000.					
2	Franke and White, "Fluid Mechanics", Tata Mcgraw-Hill New Delhi. 5th Edition 2003					
3	M. Potter, D.Wiggert "Fluid Mechanics" Schaum's Outline Series Mcgraw-Hill New York 2008					

Useful Links

1 https://archive.nptel.ac.in/courses/112/105/112105269/

	CO-PO Mapping													
				P	rograi	nme C	Outcon	ies (PC	D)				PS	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have

typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information						
Programme B.Tech. (Mechanical Engineering)						
Class, Semester	Second Year B. Tech., Sem IV					
Course Code	7ME272					
Course Name	Kinematics and Theory of Machines Lab					
Desired Requisites:						

Teachin	g Scheme	Examination Scheme (Marks)						
Practical	2 Hrs/Week	LA1 LA2 ESE Total						
Interaction	-	30	30	40	100			
		Credits: 1						

	Course Objectives					
1	To develop skills of generation of gear tooth and cam profiles.					
2	To prepare the students to perform the analysis of gear drives and mechanisms.					

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxono my Level	Bloom's Taxonom y Descriptio n
CO1	Apply principles of kinematics to plot velocity and acceleration diagrams of mechanisms.	III	Apply
CO2	Investigate gear trains for various power transmission systems.	IV	Analyze
CO3	Evaluate various types of gears and belt drives.	V	Evaluate
CO4	Use knowledge of theories of machines to invent new mechanisms or improve existing ones, integrating different components to achieve desired functionalities.	VI	Create

List of Experiments / Lab Activities

List of Experiments:

Term Work contains following:-

- 1. To plot displacement, velocity and acceleration curves for two types of cam follower systems.
- 2. To verify angular displacement ratio of shafts connected by Hooke's joint
- 3. To find out Coriolis component of acceleration.
- 4. To develop computer program for velocity and acceleration analysis of four bar chain and single slider crank mechanism.
- 5. To generate involute gear tooth profile.
- 6. To solve problems on epicyclic gear train by tabular method.
- 7. To determine moment of inertia by Bi-filler suspension, Tri-filler suspension or compound pendulum method.
- 8. To study different mechanisms and analyse them with respect to links, joints, Degrees of freedoms.
- 9. To analyse gear trains in lathe, drilling, milling machine etc
- 10. To study any one automobile gearbox.

In case of mini-projects, drawing, presentations etc, write the relevant details of the same.

	Text Books						
1	Ratan S.S, "Theory of Machines", Tata McGraw Hill, New Delhi, 3rd Edition, 2011.						
2	V. B. Bhandari, "Design of Machine Elements", Tata McGraw Hill, 3rd Edition, 2011						
3	Sadhu Singh, "Theory of Machines", Pearson Education, 2nd Edition, 2009						

References

1	Thomas Bevan, "Theory of Machines", CBS Publishers, New Delhi, 1st Edition, 2010.
2	J. F. Shigley, "Mechanical Engineering Design", , McGraw Hill, New York. 4th Edition, 2011

Useful Links						
1	Virtual Labs (vlabs.ac.in)					
2	Kinematics and Dynamics of Mechanisms (iitkgp.ac.in)					

CO-PO Mapping														
	Programme Outcomes (PO)									PSO				
	1	2	3	4	5	6	7	8	9	1	1	1	1	2
										0	1	2		
CO1	1		3										1	
CO2		1		3	1								1	
CO3			3		1				1				1	
CO4					3		2							1

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessmen	Based on	Conducted by	Typical Schedule	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activitie s, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and

related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

		_
Course	Inform	ation

	Course information
Programme	B. Tech. (Multi-Disciplinary Minor)
Class, Semester	Second Year B. Tech. SEM-II
Course Code	7MDME201
Course Name	Elements of Mechanical Engineering
Desired Requisites:	NA

Teachi	ng Scheme		Examination S	cheme (Marks)				
Lecture	3Hrs/week	MSE ISE ESE Total						
Tutorial	-	30	20	50	100			
		Credits: 3						

Course Objectives

- 1 To engage students in analysing mechanisms used in Mechanical Engineering
- 2 To prepare the students for applying concepts of motion transmission using mechanisms and gears

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Explain the operation of various power plants, first and second	II	Understanding
	laws of thermodynamics		
CO2	Calculate degrees of freedom and understand the concept of	III	Applying
	inversion in mechanisms.		
CO3	Classify gears based on type and terminology.	IV	Analysing
CO4	Select belts, chains, shafts, keys, couplings, and bearings for	V	Evaluating
	various power transmission applications.		

Module	Module Contents	Hours
I	Conventional and nonconventional power plants Steam power plants, hydropower plant, four stroke and two stroke petrol and diesel engines Diesel power plant, wind power plants	7
II	Study of mechanical systems Pumps, compressors, refrigeration, and air conditioning system, hydraulic and pneumatic systems.	6
III	Basic thermodynamics First and second law of thermodynamics. Gas processes, Cannot cycle, Otto cycle, Joule cycle, Air standard efficiency, numerical on above	7
IV	Basics of Machines and Mechanisms Objective of kinematic analysis of mechanism, classification of links, pairs, Basic terminology and kinematic symbols, kinematic chains, plane motion; constraints and degrees of freedom, mechanism and machines, inversion of mechanisms along with their practical applications.	7
V	Elements of Power Transmission - I Gears: Classification and Basic terminology, Fundamental law of gearing, the cycloidal and involute profile, standards in tooth forms, spur gears and other types of gears	6
VI	Elements of Power Transmission – II Introduction to belt and chain drives, types of belt drives, shafts, keys, couplings, sliding and rolling contact bearings	6

Text Books

1	Beer and Johnson, Mechanics of Materials, McGraw Hill, 6th Edition, 2013									
2	S S Rattan, Theory of Machines, McGraw Hill, 3 rd edition, 2016									
3	R. Yadav, Applied Thermodynamics, Central Publishing House, 3rd Edition, 2011									
	References									
1	Den Hartog, Jacob P., Strength of Materials. Dover Publications Inc., 3rd Edition 1961									
2	Yunus A Cengel and Michael Boles, Thermodynamics: An engineering approach, McGraw Hill									
	9th Edition, 2015									
	Useful Links									
1	https://archive.nptel.ac.in/courses/112/104/112104188/									
2	https://www.youtube.com/watch?v=kC2SEiGaqoA									
3	https://nptel.ac.in/courses/112104304									

	CO-PO Mapping																
		Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2			
CO1	1		2		2			2			1						
CO2	1	3	2				2										
CO3	2			1		1											
CO4	1				2												

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

		TX	Jalahand Calla	as of Enginessing	Canali				
		VV		ge of Engineering Lided Autonomous Institut					
				AY 2024-25					
				rse Information					
Progra			B. Tech. (Mechan Second Year B. T	<u> </u>					
Class,									
Course			7ESME201						
Course	e Nam	ie	Numerical Method	ds					
	1.	6.1		T ' ' C I					
Lectur		g Scheme 2Hrs/week	eme (Marks) ESE	Total					
Tutori		1 Hrs/week	MSE 30	1SE 20	50	100 100			
1 utori	aı	1 Hrs/week	30	Credits		100			
				Creatis	: 3				
			Cou	rse Objectives					
	Reca	ll and define th		f numerical errors, stab	ility, and converg	rence in numerical			
1	meth		ie susie concepts of	. Hamorical circis, state	,, and converg	once in numerical			
_			oretical foundations	of various numerical	methods, includ	ng their strengths			
2		weaknesses			,				
3				programs to solve pro	blems in engine	ering and science,			
_	ınter	preting the resu	lts critically						
		Cor	irsa Autcomas (CC)) with Bloom's Taxon	omy I aval				
Δt the	end of		students will be ab		iomy Level				
At the	cha oi	the course, the	students will be ab	ic to,	Bloom's	Bloom's			
CO		Co	urse Outcome Stat	tement/s	Taxonomy	Taxonomy			
		Level							
CO1	Anal	yze and solve v	various types of alg	ebraic and transcendent	al IV	Description Analyzing			
COI			ropriate numerical r						
			•	nd limitations of differe		Evaluating			
CO2			for solving probl	ems in engineering an	nd				
	scien		4114		III	A 1			
CO3	Appi	y numerical	methods to curv integration of real-v	e fitting, interpolation	n, III	Applying			
				ial differential equation	ns IV	Analyzing			
CO4		•	•	for specific application		1 Mary Zing			
	GDII1E	, mamericar teer	iniques appropriate	Tor specific application	5				
Modu	le		Modul	e Contents		Hours			
	R	oots of Algebra	aic Equations						
I				od, false position method		5			
•			Multiple roots, Sy	stem of non-linear equ	ations. Roots of				
		olynomials	- E	ii4i44 NI-v	C				
II				imination method-Naïve thods, nonlinear system		5			
11				decomposition, Gauss Se	•	3			
		curve Fitting							
III	- 1	_	regression- Linear	regression, Polynor	nial regression.	4			
				ence, Interpolating Polyn	nomials				
** **			rentiation and Integ			5			
IV			taamatiam tammiilaa	Tropozordol mila Cimpa	on's rule				
IV				Trapezoidal rule, Simps					
IV	Ir	ntegration of une	equal segments. Rom	berg's integration and G	auss quadrature.				
IV	In N	ntegration of une umerical Differ	equal segments. Rom	aberg's integration and G ation Formulae, Richards	auss quadrature.				

VI Finite Differential Equation Finite Difference – Elliptic Equatiosn – Laplace equation, Liebmen method, Boundary conditions. Parabolic equations, explicit method, implicit method, Crank Nicolson method Text Books Chapra, Steven C., and Raymond A. Canale. Numerical Methods with Applications: An Introduction. McGraw-Hill Education, 5th edition, 2018. Burden, Richard L., J. Douglas Faires, and Anil M. Kainen. Numerical Analysis. Brooks/Cocengage Learning, 3rd Edition, 2016. Atkinson, Kendall A. An Introduction to Numerical Analysis. John Wiley & Sons, 2008. References Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links Useful Links	V	Ordinary Differential Equation Euler method, improved Euler's method, Runge-Kutta methods, System of equations. Boundary value and Eigen value problem: shooting method, Finite difference method, Eigen value problem, power method	5
Chapra, Steven C., and Raymond A. Canale. Numerical Methods with Applications: An Introduction. McGraw-Hill Education, 5 th edition, 2018. Burden, Richard L., J. Douglas Faires, and Anil M. Kainen. Numerical Analysis. Brooks/Co Cengage Learning, 3 rd Edition, 2016. Atkinson, Kendall A. An Introduction to Numerical Analysis. John Wiley & Sons, 2008. References Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1 st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links	VI	Boundary conditions. Parabolic equations, explicit method, implicit method,	4
Introduction. McGraw-Hill Education, 5th edition, 2018. Burden, Richard L., J. Douglas Faires, and Anil M. Kainen. Numerical Analysis. Brooks/Cocengage Learning, 3rd Edition, 2016. Atkinson, Kendall A. An Introduction to Numerical Analysis. John Wiley & Sons, 2008. References Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links		Text Books	
Burden, Richard L., J. Douglas Faires, and Anil M. Kainen. Numerical Analysis. Brooks/Cocengage Learning, 3 rd Edition, 2016. Atkinson, Kendall A. An Introduction to Numerical Analysis. John Wiley & Sons, 2008. References Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1 st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links		• • • • • • • • • • • • • • • • • • • •	plications: An
Atkinson, Kendall A. An Introduction to Numerical Analysis. John Wiley & Sons, 2008. References Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links			ysis. Brooks/Co
Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links			ns, 2008.
Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge University Press, 3 edition, 2007. Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications, 1st edition, 2008 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links		References	
3 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links	1	Numerical Recipes 3.0: The Art of Scientific Computing. Cambridge Univ	
3 Kantorovich, L. V. Lectures on Numerical Methods. Dover Publications, 1964. Useful Links	2	Dahlquist, Germund, and Åke Björck. Numerical Methods. Dover Publications,	1 st edition, 2008.
1			· · · · · · · · · · · · · · · · · · ·
1		Useful Links	

	CO-PO Mapping Programme Outcomes (PO) PSO													
				PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													3
CO2			3								2		3	
CO3		3		3							1		3	2
CO4	2	3		3					1				3	1

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)

AY 2024-25

Course Information										
Programme	B.Tech. (All branches)									
Class, Semester	Second Year B.Tech., Sem - II									
Course Code										
Course Name	Employability Skills Development (ESD)									
Desired Requisites:										

Teaching	Scheme	Examination Scheme (Marks)								
Lecture	4Hrs/week	ISE MSE ESE To								
Tutorial	-	20	30	50	100					
Practical	-									
Interaction	-	Credits: 2								

	Course Objectives	
1	To improve the problem-solving skills of students	
2	To understand the approach towards problem solving	
3	Understanding the sectional cut-offs for different companies	
	Course Outcomes	
CO1	Ability to improve the accuracy percentage	
CO2	Understand the current changing recruitment trends	
CO3	Understanding the differential marking scheme in papers	
CO4	Performance improvement in competitive exams like CAT, GATE	

Module	Module Contents	Hours
	Arithmetic I	
I		6
	Ratio, Proportion, Mark Up & Discount, Averages, Mixtures &	
	Alligations, Simple & Compound Interest	

II	Arithmetic II	8
	Percentages, Profit & Loss, Time & Work, Time, Speed & Distance, Boat & Streams, Linear Races	
	Numbers	
II		4
	Cyclicity, Remainders, Cyclicity of Remainders, Indices, Factors, LCM, HCF	
	Permutation, Combination, Probability	
III		6
	Fundamental principal of counting, Arrangements, Selection, Grouping, Distribution, Independent Events, Conditional Probability, Binomial Distribution	
	Logical Reasoning	6
IV	Cleaks Calandara Camas & Tournaments Analytical Puzzlas	
	Clocks, Calendars, Games & Tournaments, Analytical Puzzles, Binary Logic, Blood relations, Directions, Coding, Decoding, Seating	
	Arrangement (Linear, Circular & Rectangular)	
	Verbal Ability I	
V	Vocabulary - Synonyms, Antonyms, Analogies	6
	Reading Comprehension, Para Jumbles	
VI	Verbal Ability II	4
	Parts of Speech, Tenses, Subject Verb Agreement	
	Text Books	
1	Quantitative Aptitude - Abhijit Guha	
1		
2	Quantitative Aptitude - Sarvesh Agarwal	
	References	
1	Quicker Maths - M. Tyra	
2	Quantitative Aptitude - Chandresh Agarwal	
3	Puzzles to puzzle you - Shakuntala Devi	
	Useful Links	
1	www.campusgate.co.in	
2	www. Lofoya.com	

	CO-PO Mapping															
	Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1											3					
CO2							2									
CO3									3							
CO4										3						

The strength of mapping is to be written as 1,2,3; Where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on the MCQ test which will be conducted online through the platform and it will be a proctored test. No negative marking will be there in the test. Test will be of 60 minutes with 20 questions each on Quantitative Aptitude, Logical Reasoning & Verbal Ability

		Walchand C	College of Engineeri	ng, Sang	gli						
		(Governi	nent Aided Autonomous Inst	titute)							
			AY 2024-25								
			Course Information								
Programm	e	B.Tech. (Inforn	nation Technology)								
Class, Sem	ester	Second Year B. Tech., Sem III & IV									
Course Co	de	7IK201									
Course Na		Introduction to Ancient Indian Technology									
Desired Re	equisites:	General curiosity, maturity expected from adult student.									
Tagah	ing Cahama		Evamination	Sahama (A	Tanka)						
Lecture	ing Scheme 02 Hrs/week	MSE	Examination S	ESE	Tarks)	Total					
Tutorial	02 Hrs/week	30	20	50		100					
Tatoriai	0 THS/ WEEK	30		dits: 2		100					
	1										
			Course Objectives								
1	The course is d	esigned for under	rgraduate students, interes	sted in lear	ning about th	ne ancient Indian					
	technology whi	ch is the hallmar	k of glorious Indian civili	zation.							
2	The objective is to emphasize on nature centric aspects of ancient Indian technologies that can be										
	adopted in modern time.										
3	The course is to expose the students to ancient science and technologies which can be adopted for										
		ogical developm		T	7						
At the and	of the course, the s		s (CO) with Bloom's Ta	xonomy L	evel						
At the end	The course, the s	tudents will be a	ole to,								
СО		Course Outco	ome Statement/s		Bloom's Taxonomy Level	Bloom's Taxonomy Descriptor					
CO1	Name the ancie	nt Indian technol	ogical achivments		1	Remenbering					
CO2	Comprehend the relevance	e concept of Inc	lian traditional knowledge	e and its	2	Understanding					
CO3		ian contribution	to the world at large		2	Understanding					
CO4		nt Indian technol			5	Evaluating					
Module		M	odule Contents	·		Hours					
I		•	ndian science and technologent from technology?.	ogy relevar	nt today?	4					
II		ncient Indian Sc	technology, how is difficientific methods. Glimps			4					
III	Making and cra	ftsmanship, Woo	ndia : Mining, Metals an otz Steel Technology			5					
IV	Ceramic Techn	ology.	dia, Glass making, Bead			4					
V	construction, Sa	anitation from an	Irrigation Systems. Town cient India period.			5					
VI	Agriculture and	Textile Technol	ogy in context of ancient	India i.e B	harat.	4					

	Textbooks														
П		Tran	script	of the N	IPTEL	course a	availab	le at <u>ht</u>	tps://arc	chive.n	ptel.ac.i	n/courses/1	01/104	/10110	<u>4065</u> /.
	1							ient In	dian Te	chnolo	gy" by	Prof. D.P. N	Aishra	Departi	nent of
Н		Aerospace Engineering, IIT Kanpur													
Ш															
Ш	References														
	The NPTEL course available at https://archive.nptel.ac.in/courses/101/104/101104065/ . Title of the														
	1							lian Te	echnolo	gy" b	y Prof.	D.P. Mis	hra D	epartm	ent of
Ш		Aero	ospace	Engine	ering, I	IT Kanp	our								
							Use	ful Lir	ıks						
	1	<u>https</u>	s://arch	ive.npte	el.ac.in/	courses/	101/10	4/1011	04065/						
						(CO-PO	Марр	ing						
						Progr	amme	Outco	mes (P	(O)				PS	SO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2					1								
	CO2	1					2						1		
	CO3	1					2			1					

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High

Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be Tests, assignments, oral, seminar etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 30 - 40% weightage on modules 1 to 3 and 60 - 70% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information								
Programme B.Tech. (Mechanical Engineering)								
Class, Semester	Second Year B. Tech., Sem IV							
Course Code	7VSME271							
Course Name	Computer Aided Design and Drafting Lab							
Desired Requisites:	Basics of Engineering Drawing							

Teaching	Scheme	Examination Scheme (Marks)								
Practical	Practical 2 Hrs/ Week		LA2	Lab ESE	Total					
Interaction		30	100							
		Credits: 1								

	Course Objectives
1	To make the student familiar with Indian Standards for drawing.
2	To make the student acquainted with standard machine parts and sub-assemblies readily available in market.
3	To develop students to apply knowledge of different limits, fits, and tolerances on assembly drawings.
4	To provide sound knowledge of detail and assembly procedure.
5	To highlight the importance of auxiliary views and interpenetration.
6	To learn to use suitable drafting software.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Use Bureau of Indian Standards drawing conventions in drawings and drafting software to draw assembly and detail drawings.	II	Understanding
CO2	Produce proportionate sketches of standard machine components with use limits, fits and tolerances on assembly drawings.	III	Applying
CO3	Produce detail drawings from given assembly drawings and viceversa.	III	Applying
CO4	Create the solid models and assemblies using the 3D modelling softwares.	V	Evaluating

List of Experiments / Lab Activities/Topics

List of Lab Activities:

PART A. Following sheets are to be completed on A2 size drawing sheet.

Sheet No 1. Based on BIS conventions

Sheet No 2. Based on free hand sketching

Sheet No 3. Drawing details and assembly containing maximum twelve parts by taking actual measurement on parts.

Sheet No 4. Drawing details and assembly from given drawing of details and entering limits fits and tolerances, surface finish symbols, geometrical tolerances etc.

PART B. Following drawings to be completed using suitable drafting software on A4 size papers

Sheet No.5 Simple 2D figures

Sheet No.6 One detail and assembly drawing containing not more than ten parts

Sheet No.7 One 3D object.

Textbooks

P.S.Gill, "Machine Drawing", S.K. Kataria and Sons, 2002.

2	N.D.Bhatt, "Machine Drawing", Charotor Publication House ,2001.
3	N.Sidheshwar, P.Kannaiah and V.V.S.Sastry, "Machine Drawing" McGraw Hill, 2001.
	References
1	I.S.:SP46 Engineering drawing practice for schools and colleges BIS Publication.
2	I.S.:696 Code of practice for general engineering drawings. BIS Publication.
3	I.S.:2709 Guide for selection of fits. BIS Publication.
	Useful Links
1	https://nptel.ac.in/courses/112102101
2	https://www.youtube.com/watch?v=5xQdrWly1ls&list=PLbkIghvjQ7P8qhyX-
	L2HYBbDzzF4ntW7w
3	https://www.youtube.com/watch?v=ptJfomL1I7o&list=PLLvBXFAV-
5	DeIsmVkmcNv2RzwCuT1XvhTV

	CO-PO Mapping													
	Programme Outcomes (PO)													SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			3											
CO2								2						
CO3			2											
CO4					3									

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	endance, Lab Course Faculty Marks Submission at the end of		
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

		Wal		e of Engineerin		gli				
				ded Autonomous Instit Y 2024-25	tute)					
				se Information						
Programme B.Tech. (Mechanical Engineering)										
	Semester	•	Second Year B. Tech., Sem III							
Cours	se Code		7CE271	·						
Cours	se Name		Field Study							
Desire	ed Requisi	ites:	Basics of Mecha	nical Engineering						
	Teaching	Scheme		Examination	Scheme (Marks)				
Practi		2 Hrs/ Week	LA1	LA2	Lab F			Total		
Intera			30	30	40			100		
1111011			30		dits: 1			100		
		1								
				se Objectives						
1				tions through visits a						
2	Promote an interdisciplinary approach to problem-solving, integrating technological, business, and									
		perspectives.			11	4 1	· 1 .			
3	solutions	S.	•	social impact in the						
4				n skills for presentin						
5		an interdiscipli perspectives.	nary approach to p	problem-solving, inte	egrating t	echnolog	ıcal, t	ousiness, and		
) with Bloom's Tax	onomy L	evel				
At the	end of the	course, the stud	dents will be able	to,						
CO			rse Outcome Stat			Bloom Taxono Level	my	Bloom's Taxonomy Description		
CO1	operation challeng	ns of various es and inefficien	industries, and noies within these		fy key	II		Understanding		
CO2			cal skills, capable documentation.	e of conducting th	orough	III		Applying		
CO3	interdisc societal	iplinary perspections.	ctive, integrating to	oroblem-solving fro echnological, busine	ess, and	III		Applying		
CO4			en and oral comrent and defend the	nunication skills, en ir case studies.	nabling	V		Evaluating		

List of Experiments / Lab Activities/Topics

1. Introduction and Fundamentals:

- Overview of techno-societal case studies: definition, importance, and objectives.
- Understanding industry operations, processes, and key performance indicators.

2. Problem Identification and Research:

- Techniques for identifying operational challenges and inefficiencies.
- Methods for collecting and documenting data during industry visits, including ethical considerations.

3. Data Analysis and Solution Development:

- Analytical methods and tools for interpreting collected data.
- Developing innovative and feasible technological solutions.
- Evaluating solutions based on feasibility, cost-effectiveness, and social impact.

4. Case Study Development and Presentation:

- Structuring and writing comprehensive case studies.
- Enhancing communication skills for effective presentation and defense of case studies.
- Practical industry exposure through visits and interaction with industry professionals, culminating in a capstone project that integrates all course elements.

a capstone project that integrates an coarse elements.								
Textbooks								
NA								
References								
NA								
Useful Links								
NA								

	CO-PO Mapping														
	Programme Outcomes (PO)													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		3													
CO2			2										1		
CO3						2								1	
CO4										3					

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

	Assessment
There are three components of lab assessment,	LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
LA2	Lab activities,		During Week 9 to Week 16	
	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal	•	Week 16	
Lab ESE	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.