Параметры сухого воздуха подчиняются уравнению состояния, которое мы запишем в виде уравнения Клапейрона:

$$\frac{P_I h}{T} = \frac{P_0 h_0}{T_0}; \quad (3)$$

где T_0 - начальная температура ($T_0 = 20 + 273 = 293 K$), при этой температуре можно пренебречь давлением водяного пара и считать, что давление воздуха равно $P_0 = 1.2 \cdot 10^5 \, \Pi a$ (расчет по формуле (1)). Тогда из формул (3) и (2) следует

$$h = h_0 \frac{T}{T_0} \cdot \frac{P_0}{P_1} = h_0 \frac{T}{T_0} \cdot \frac{P_0}{P_0 - P_{uac.}} . \tag{4}$$

Используя данные, взятые из графика, не представляет труда рассчитать зависимость высоты столба от температуры. Результаты таких расчетов представлены в таблице и на графике.

$t(^{0}C)$	$P_{\scriptscriptstyle{ extit{ extit{Hac}}.}}$	P_1	h(cM)
	$(10^5 \Pi a)$	$(10^5 \Pi a)$	
			N I
30	0.04	1,16	10,7
40	0.08	1.12	11.4
50	0.11	1.09	12.1
60	0.20	1.00	13.6
70	0.32	0.88	15.9
80	0.47	0.73	19.8
90	0.70	0.50	29.7

10.2. Для решения данной задачи удобно воспользоваться уравнением движения для системы тел: произведение массы системы на ускорение центра масс равно сумме внешних сил, действующих на систему._

В данном случае

$$Ma_c = P - Mg$$
, (1)

где M - масса всей системы, P - ее вес, a_c - ускорение центра масс. Когда вода (а, следовательно и центр масс) неподвижна, то вес системы P_θ равен силе тяжести Mg. Поэтому изменение веса при перекачке воды определяется выражением

$$\Delta P = Ma_c. (2)$$

При перекачке уровни воды в сосудах h_1 и h_2 будут изменяться, конечно, по линейному закону

$$h_{1} = h_{10} + \frac{V}{S}t$$

$$h_{2} = h_{20} - \frac{V}{S}t$$
(3)

но положение центра масс всей системы будет изменяться по закону квадратичному. Действительно, высота центра масс Z_c может быть найдена из уравнения

$$MZ_c = M_0 Z_0 + \rho Sh_1 (l + \frac{h_1}{2}) + \rho Sh_2 \frac{h_2}{2},$$
 (4)

где M_0 , Z_0 - масса и высота центра масс установки без воды, l - высота верхнего бака. Подставляя выражения (3), получим

$$MZ_{c} = M_{0}Z_{0} + \rho Slh_{10} + \frac{1}{2}\rho Sh_{10}^{2} + \frac{1}{2}\rho Sh_{20}^{2} + \rho V(l + h_{10} + h_{20})t + \rho \frac{V^{2}}{S}t^{2}$$
 (5)

Из выражений (2) и (5) следует

$$\Delta P = Ma_c = 2\rho \frac{V^2}{S}$$

Заметим, что ответ не зависит от того, перекачивают воду вверх или вниз. Может эта задача вам покажется более понятной, если Вы проведете аналогию с двумя грузами, подвешенными на нити, перекинутой через блок. При ускоренном движении грузов вес всей системы также изменяется. Замените грузы тяжелой однородной веревкой и Вы получите простейший механический аналог этой задачи.

10.3. Для идеальной тепловой машины, работающей по циклу Карно, выполняется соотношение

$$\frac{Q_I}{T_I} = \frac{Q_2}{T_2},\tag{1}$$

где Q_1, Q_2 - теплоты отданная нагревателем и полученная холодильником;

 T_1, T_2 - температуры нагревателя и холодильника, соответственно. Это же соотношение выполняется и для холодильной машины, работающей по обратному циклу, в котором от холодильника теплоту забирают и передают нагревателю. Мы используем соотношение (1), для того чтобы рассчитать количество теплоты, забранное у холодильника.