	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1^-}^{\#2}_{\alpha}$
3	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
3	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	0	0	0	0
$-\alpha\beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
χ	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$\frac{12ik}{(3+4k^2)^2t_1}$
7	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
-α	0	0	0	0	0	0	0
χ	0	0	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$

f#2	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
$f_{1}^{\#1}$		0	0	0	0	0	0
$\omega_{1}^{#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{_1+_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	- t1	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$o_1^{\#1} + \alpha \beta$	$o_1^{\#2} + \alpha \beta$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

	<i>O</i> ₀ +	'0 ⁺	'0 ⁺	Ο̈́
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0^{+}}^{\#1} +$	0	0	0	0
$\tau_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

- | -

 $\tau_{0}^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

Source constraints SO(3) irreps

					(
					#
_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_{0^+}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0	
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0	
$\sigma_{0^{+}}^{\#1} \dagger$ $\tau_{0^{+}}^{\#1} \dagger$ $\tau_{0^{+}}^{\#2} \dagger$ $\sigma_{0^{-}}^{\#1} \dagger$	0	0	0	0	
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	
				•	

 \sim

 $t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha = 0$

m m m

 $\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$

 $\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$

Total #:

 $t_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$

$\omega_{2}^{\#1}$	0	0	$\frac{t_1}{2}$	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	$f_{0}^{#2}$	0	0	0	0
$\alpha\beta^{-1}$		His		$f_{0}^{\#1}$	0	0	0	0
$\omega_2^{\#1}$	$\alpha\beta$ $\frac{t_1}{2}$	$\alpha\beta$ $\frac{ikt_1}{\sqrt{2}}$	θ^{χ} 0	$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0
	$\omega_{2}^{\#1} + ^{c}$	$f_{2}^{#1} + ^{c}$	$\omega_{2}^{\#1} +^{lpha eta}$!	$\omega_{0}^{#1}$ † ($f_{0}^{#1}$ †	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dagger$

$\sigma_{2^{-}}^{\#1} lpha eta \chi$	0	0	$\frac{2}{t_1}$	
$\tau_2^{\#1}_{2^+}\alpha_\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$J_{2}^{#1} + ^{\alpha\beta\chi}$	

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

	<u>Polarisa</u>
k^{μ}	Square
?	Spin:
	Parity:

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$