Consider the following reaction:

$$O_2 + 2H_2 \rightarrow 2H_2O$$

bond	$\Delta H_{break}^{\circ} \; (kJ \cdot mol^{-1})$
O = O	498
H - H	436
O-H	464

1. Write a total "inventory" of the bonds on both sides of the reaction:

products		reactants		
bond type	number	bond type	number	

2. Can you estimate the ΔH° of the reaction? Is it exothermic or endothermic?

3. Can you make sense of the reaction enthalpy in terms of the atoms involved?

4. Is H_2 oxidized or reduced in this reaction? How can you tell?

5. If an $ADP + P_i \rightarrow ATP$ takes $30.5 \ kJ \cdot mol^{-1}$, how many ATP could you form with this reaction?