

tany = 44(e)
It is a particula is droped from a high
of it a particular of pt. about the earth
1 III I
CV
Ed. 100° How find out the
{ d. 0 = 91°, 4 = 100° How find out the
lin theorard to flation when
Lateral angular acquire
lin !Inter and angulor deflation when hith the down.
11 Occilatori-
Harmonic Oscilatori-
1 in I a consciol al varia-
Harmonic-s which has sinusoidal varia-
-tion. Listlacoment Harmonic motion, loose
G Harmonic motton,
Hammonic tras- Hammonic Osci-
-lation lation.
f(t)
wave; Harmoncic Oscolata.
$-f(\gamma,t)$
Spring man=
Restarning force
$F = -kx$ $\int F = kx$
QU(X)= JX FNOY XI
(N) (N)
1 × X · L

F=- K7. - [(- N7) da dv2 - xx >0 at x=0, we have V= vmin= 6 50 LOT WILL BE X 71(+) = A (0) (w+++) ansteas + antitory cost

Scanned by CamScanner

Real Harmonic Oscilatori
Restoring Force.
FROS = -KN > directed town of sthe town of sthe town of the
e. damping force Ford X
J Fdamp=b~
m (Resistive fee) 4 domping
for f(t) it is always offoites to the velocity of the mos
The verdos of the mos
Enternal force fent = F(t)
eartion of motion.
eqution of motion. m. i = fextood.
$m.\dot{x} = -Kx - bx + F(t)$
$m_{i}\gamma_{i} = -k\gamma - b\lambda + r(i)$
$m.\dot{x} + b\dot{x} + Kx = F(t)$
i bi K
$\frac{1}{x} + \frac{1}{m} \frac{1}{x} + \frac{1}{m} \frac{1}{x} = \frac{1}{m}$
1-e+, b = 27
and $\sqrt{x} = \omega$
$-\frac{\ddot{\chi}+2\dot{\chi}+\omega^2\chi=F(t)}{2}$
$\frac{1}{\sqrt{2}}$
$\frac{\partial^2 \chi}{\partial t^2} + 2 \frac{\partial^2 \chi}{\partial t} + \omega^2 \chi = \frac{f(t)}{m}$
second and man man amily differen
egution cost const with const constitutions

Scanned by CamScanner

