Bayesova statistika - zapiski s predavanj prof. Smrekarja

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Uvo	pd	1
	1.1	Elementarna Bayesova statistika]
	1.2	Proučevani slučajni vektor (vzročni) parametrični model	3
	1.3	Apriorna in "robna" porazdelitev	5
	1.4	Disperzija aposteriornih porazdelitev	7
	1.5	Aposteriorni kredibilnostni interval	Ć
	1.6	Splošne oznake	1(
2	Enc	pparametrični modeli	12
	2.1	Beta-binomski model	12
	2.2	Poissonov model (gama-poissonov model)	12
	2.3	Normalni model z znano disperzijo	13
	2.4	Eksponentne družine porazdelitev	15
	2.5	Neinformirane apriorne porazdelitve	18
3	Mo	nte-Carlo integracija in metode vzorčenja	21
	3.1	Klasična integracija Monte-Carlo	22
	3.2	Simulacija vzorčenja z inverzno kumulativno porazdelitveno	
		funkcijo	23
	3.3	Metoda sprejmi ali zavrni (A/R) $\dots \dots \dots \dots \dots$	24
	3.4	Metode MCMC (Monte Carlo z markovskimi verigami)	26
	3.5	Markovske verige z zveznim prostorom stanj - appendix	32
	3.6	MCMC diagnostika	36

4	Nor	malni modeli	41
	4.1	Dvofazna predstavitev	41
	4.2	Hierarhični modeli	45

Seznam uporabljenih kratic

kratica	pomen
s.v.	slučajni vektor
В	binomska porazdelitev
\mathbf{NEP}	neodvisen in enako porazdeljen
s.s.	slučajna spremenljivka
p.v.	pričakovana vrednost
\mathbf{AKI}	aposteriorni kredibilnostni interval
\mathbf{BF}	Bayesova formula
s.g.	skoraj gotovo
k.p.f.	kumulativna porazdelitvena funkcija
A/R	accept or reject
M.v.	Markovska veriga
$\mathbf{EZV\check{S}}$	ergodični zakon veliikih števil
ECLI	ergodični CLI
M-H	Matropolis-Hasting
$\mathbf{H}\mathbf{M}$	hierarhični model
\mathbf{EIZ}	ergodični interval zaupanja
MCMC	Monte Carlo markovske verige
\mathbf{SNK}	?

Poglavje 1

$\mathbf{U}\mathbf{vod}$

Bayesova statistika je formalni okvir za "osveževanje" vedenja/znanja o porazdelitvi nekega slučajnega vektorja.

 $Zgled.~1000, \approx 400 \text{\center} \rightarrow 600 \text{\center}$ B (apriorno znanje).

Izvedemo (statistični) poskus: izvlečemo 10, dobimo 6 črnih in 4 bele

1.1 Elementarna Bayesova statistika

Privzamemo popoln sistem dogodkov $E_1, E_2 \dots E_m : E_i \cap E_j = \emptyset$ za $i \neq j$ in $E_1 \cup E_2 \cup \dots \cup E_m = \Omega$.

Če imamo še neki dogodek A, velja t.i. zakon o popolni verjetnosti $P(A) = \sum_{i=1}^{m} P(A \mid E_i) \cdot P(E_i)$ (interpretacija: 2-fazni poskus).

V Bayesovem okviru nas zanimajo $P(E_j \mid A)$ (verjetnost, da se je v "1. fazi" zgodil E_j , če se je "2. fazi" zgodil A). Ker je

$$P(E_j \mid A) = \frac{P(E_j \cap A)}{P(A)}$$

jе

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{P(A)}$$
 - elementarna pogojna verjetnost

oziroma

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{\sum_{i=1}^m P(A \mid E_i) \cdot P(E_i)} - \text{elementarna Bayesova formula}.$$

Nadaljujemo zgled. V Bayesovi statistiki predhodno ("apriorno") vedenje formaliziramo kot realizacijo slučajnega eksperimenta. V našem primeru vpeljemo fukcijo, da smo število črnih frnikul θ (- realizacija) dobili kot rezultat slučajne spremenljivke $\Theta \in \{0, 1, 2 \dots 1000\}$.

Informacijo $\theta \approx 400$ zakodiramo kot $E(\Theta) = 400$.

Privzamemo (kar!)
$$\Theta \sim B\left(1000, \frac{4}{10}\right)$$

$$\implies P(\Theta = \theta) = \binom{1000}{\theta} \left(\frac{4}{10}\right)^{\theta} \left(1 - \frac{4}{10}\right)^{1000 - \theta}.$$

$$P(k \text{ črnih od 10 izvlečenih}|\Theta = \theta) = \frac{\binom{\theta}{k}\binom{1000 - \theta}{10 - k}}{\binom{10}{k}} \ (*)$$
(*) pri omejitvah (k omejimo).

Osvežena porazdelitev - novo vedenje

$$\begin{split} P(\Theta = \theta \mid \text{6 črnih od 10 izvlečenih}) &= \\ \frac{P(\text{6 črnih od 10 izvlečenih} \mid \Theta = \theta) \cdot P(B(1000, \frac{4}{10}) = \theta)}{\sum_{i=0}^{1000} P(\text{6 črnih od 10 izvlečenih} \mid \Theta = i) \cdot P(B(1000, \frac{4}{10})) = i}. \end{split}$$

Pravimo ji aposteriorna porazdelitev.

1.2 Proučevani slučajni vektor (vzročni) parametrični model

Naj bo $X=(X_1,X_2...X_n)\in\mathbb{R}^n$ preučevani slučajni vektor. Pogosto so neodvisni in enako porazdeljeni (NEP) realizacija danega slučajnega eksperimenta. S pomočjo statistike lahko "ocenjujemo" porazdelitev slučajnega vektorja X. Zanjo privzamemo, da pripada nekemu modelu, t.j. neki množici dopustnih rešitev. Privzamemo, da je ta množica parametrizirana s parametričnim prostorom $\Theta \subset \mathbb{R}^r$. Tu si mislimo, da parameter $\theta \in \Theta$ dobimo kot realizacijo slučajnega vektorja (s.v.) Θ z vrednostmi v Θ (večinoma $r \geq 2$). Porazelitvi s.v. X_i pogojno na $\Theta = \theta$ pravimo vzorčna porazdelitev. Privzeli bomo, da imamo gostote $f(x \mid \theta)$ ali verjetnostne funkcije

$$P(X = x \mid \theta) = f(x \mid \theta),$$

torej da velja

$$P(X \in B \mid \Theta = \theta) = \int_{B} f(x \mid \theta) d\nu(x)$$

(v Lebesgueovi meri) ali

$$P(X \in B \mid \Theta = \theta) = \sum_{x \in B} f(x \mid \theta).$$

Modelu pogojnih porazdelitev $(X \mid \Theta = \theta)$ pravino vzorčni model.

1.3 Apriorna in "robna" porazdelitev

Porazdelitvi fiktivnega slučajnega vektorja Θ pravimo apriorna porazdelitev, brezpogojni (robni) porazdelitvni slučajnega vektorja X pa pravimo "robna" porazdelitev

(*) v resnici sta obe porazdelitvi robni porazdelitvi družne porazdelitve vektorja (X, Θ) z vrednostmi v \mathbb{R}^{n+r} .

Zgled. Ocenjujemo Bernoullijevo porazdelitev. Predhodno vedenje je podano z apriorno prazdelitvijo na (0,1); mislimo si, da je p realizacija slučajne spremenljivke (s.s.) Π z vrednostmi v (0,1). Možnosti:

• nimamo apriornega mnenja o (dejanskem) p: tedaj bi (morda) vzeli zvezno porazdelitev z gostoto enakomerna porazdelitve,

• smo "zelo" prepričani, da je (dejanski) $p\approx\frac{1}{2}.$

Recimo, da je f(p) gostota apriorne porazdelitve. Tedaj so apriorne verjetnosti

$$P(\Pi \in (a,b)) = \int_a^b f(p)dp$$

in apriorna pričakovana vrednost

$$E(\Pi) = \int_0^1 pf(p)dp.$$

Pripomnimo, da pri $\Pi \sim U(0,\!1)$ dobimo $E(U(0,\!1)) = \frac{1}{2}.$

Privzemimo, da smo "vzorčili" p, potem pa "neodvisno" n-krat vržemo p-kovanec (P(cifra=p)), gre za slučajne spremenljivke $X_1,X_2...X_n$, za katere

je $(X_i \mid \Pi = p) \sim Bernoulli(p)$ in so $X_1 \dots X_n$ neodvisne pogojno na p. To ne pomeni, da do $X_1 \dots X_n$ brezpogojno neodvisne. Za $i \neq j$ je

$$P(X_{i} = 1 \land X_{j} = 1) = \int_{0}^{1} P(X_{i} = 1 \land X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$\stackrel{\text{pogojno neodvisne}}{=} \int_{0}^{1} P(X_{i} = 1 \mid \Pi = p) P(X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$= \int_{0}^{1} p^{2} f(p) dp =$$

$$= E(\Pi^{2}).$$

Ker je
$$P(X_i = 1) = \int_0^1 P(X_i = 1 \mid p) f(p) dp = \int_0^1 p f(p) dp = E(\Pi)$$
, je
$$Cov(X_i, X_j) = E(\Pi^2) - E(\Pi)^2 = D(\Pi)$$

za $i \neq j$, torej so X_i brezpogojno neodvisne $\iff \Pi = \text{konstantna}$ (slučajna spremenljivka).

Tvorimo $X = X_1 + \cdots + X_n \in \{0, 1 \dots n\}$. To je "preučevana" slučajna spremenljivka. Velja $(X \mid \Pi = p) \sim B(n,p)$. To je vzorčna porazdelitev; vzročni model je parametriziran s prostorom parametrov $(0,1) = \Theta$. Robna porazdelitev je podana z verjetnostmi

$$P(X = k) = \int_0^1 P(X = k \mid p) f(p) dp =$$

$$= \int_0^1 \binom{n}{k} p^k (1 - p)^{n-k} f(p) dp.$$

Recimo, da "opazimo" X=k. Aposteriorna porazdelitev (osveženo vedenje o p) je sestavljeno iz verjetnosti

$$P(X \in (a,b) \mid X = k) = \frac{P(X = k \land \Pi \in (a,b))}{P(X = k)} =$$

$$= \frac{\int_0^1 P(X = k \land \Pi \in (a,b) \mid \Pi = p) f(p) dp}{P(X = k)} =$$

$$= \int_a^b \frac{P(X = k \mid \Pi = p)}{P(X = k)} f(p) dp.$$

Opazimo, da ima aposteriorna porazdelitev ($\Pi \mid X = k$) gostoto

$$f_{(\pi|X)}(p \mid k) = \frac{P(X = k \mid p)f(p)}{P(X = k)}.$$

Zgornji formuli pravimo Bayesova formula.

Za številsko oceno za p bi lahko vzeli pričakovano vrednost aposteriorne porazdelitve

$$\hat{p} = E(\Pi \mid X = k) = \int_0^1 p \cdot f(p \mid k) dp.$$

Pravimo ji aposteriorna pričakovana vrednost.

Posebej priročna družina apriornih porazdelitev (za binomske vzorčne porazdelitev) je t.i. $Beta = \{Beta(a,b) \mid a,b \in (0,\infty)\}$

$$f_{Beta(a,b)}(p) = \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1} 1_{(0,1)}(p)$$

(tu je
$$B(a,b) = \int_0^1 p^{a-1} (1-p)^{b-1} dp$$
).

$$E(Beta(a,b)) = \frac{a}{a+b}$$

$$D(Beta(a,b)) = \frac{ab}{(a+b)^2(a+b+1)}.$$

D(Beta(a,b)) predstavlja "težo" apriornega prepričanja; večji - manj sigurni smo.

$$E(Beta(a,b)) = 0.7.$$

Aposteriorna porazdelitev ima gostoto (če je $f(p) = f_{Beta(a,b)}(p)$)

$$f(p \mid k) = \frac{\binom{n}{k} p^k (1-p)^{n-k} \cdot \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1}}{P(X=k)} = \text{konst.} \cdot p^{a+k-1} (1-p)^{b+n-k-1}.$$

Vidimo, da je $(\Pi \mid X = k) \sim Beta(a + k, b + n - k)$. Aposteriorna pričakovana vrednost (p.v.) je

$$\frac{a+k}{a+b+n} = \frac{(a+b)\frac{a}{a+b} + n\frac{k}{n}}{a+b+n} =$$

$$= \frac{a+b}{a+b+n} \cdot \frac{a}{a+b} + \frac{n}{a+b+n} \cdot \frac{k}{n}.$$

Tukaj je

- $\frac{a}{a+b}$ apriorna ocena,
- $\frac{k}{n}$ vzorčna ocena in
- $\frac{a+b}{a+b+n}$ in $\frac{n}{a+b+b}$ faktorja pri konveksni kombinaciji obeh ocen.

Vzorec velik \rightarrow prevlada mnenje vzorca.

1.4 Disperzija aposteriornih porazdelitev

Gre pravzaprav za disperzijo pogojnih porazdelitev. Naj bosta $X: \Omega \to \mathbb{R}^m$ in $Y: \Omega \to \mathbb{R}^n$ in naj ima (X,Y) gostoto $f_{(X,Y)}$ glede na $\mu \times \nu$ Sledita gostoti $f_X(x) = \int f_{(X,Y)}(x,y) d\nu(y)$ za X glede na μ in $f_Y(y) = \int f_{(X,Y)}(x,y) d\mu(x)$ za Y glede na ν . Dalje definiramo pogojni porazdelitvi $(Y \mid X = x)$ in $(X \mid Y = y)$ preko gostot

$$f_{(Y|X)}(y \mid x) = \frac{f_{(X,Y)}(X,Y)}{f_X(x)}$$

glede na ν : gostota v $X \to \mu$ in simetrično za $f_{(X|Y)}(x \mid y)$. $P(Y \in B) \mid X = x = \int_B f_{(Y|X)}(y \mid x) d\nu(y)$ - porazdelitev, opremljena z gostoto.

Definicija 1.4.1.

$$E(Y \mid X = x) = \int y f_{(Y|X)}(y \mid x) d\nu(y).$$

y lahko zamenjamo s h(y).

Pišemo $E(Y \mid X = x) = u(X)$ - h je identiteta.

Definicija 1.4.2.

$$E(Y \mid X) = u(X) : \Omega \to \mathbb{R}^n.$$

Slučajni vektor \rightarrow pogojna pričakovana vrednost, oz.

$$E(Y \mid X)(\omega) = u(X(\omega)) = E(Y \mid X = X(\omega)).$$

 $E(Y \mid X)(\omega)$: funkcija na X, kompozitum.

 $X(\omega)$: vrednost.

Definicija 1.4.3. Pogojno varianco slučajnega vektorja Y, pogojno na X = x definiramo kot varianco pogojne porazdelitve $(Y \mid X = x)$, t.j.

$$E((Y - u(X))(Y - u(X))^T \mid X = x) =: Var(Y \mid X = x).$$

Ker je E aditivna, velja

$$E((Y-u(X))(Y-u(X))^T \mid X=x) = E(YY^T \mid X=x) - u(X)u(X)^T =: v(X).$$

v(X) je $n \times n$ matrika.

Definicija 1.4.4. Pogojna varianca slučajnega vektorja Y pogojno na slučajni vektor X je

$$Var(Y \mid X) = v(X).$$

Zadnjič: beta-binomski model: proučevana s.s. T; vzorčne porazdelitve $(T \mid p) \sim B(n,p)$ za $p \in \Theta = (0,1)$. Če je apriorna porazdelitev Beta(a,b), je aposteriorna pri T = k enaka Beta(a+k,b+n-k).

Disperzija porazdelitve ($\Pi \mid T = k$) je enaka $\frac{(a-k)(b+n-k)}{(a+b+k)^2(a+b+n+1)}$ (in je odvisna od realizacije k).

DN: za katere k je D(aposteriorne) > D(apriorne).

Izkaže se, da je za nekatere k manjša, za nekatere k pa večja od disperzije apriorne porazdelitve. Vendar pa velja t.i. "zakon popolne porazdelitve"

$$Var(\Theta) = E(Var(\Theta \mid X)) + Var(E(\Theta \mid X)),$$

kjer sta seveda

$$E(Var(\Theta \mid X)) \ge 0$$
 in $Var(E(\Theta \mid X)) \ge 0$,

(Xvzorčni), iz katerega sledi $E(Var(\Pi\mid X))\leq Var(\Theta)$ (apriori). V konkretnem primeru je

$$E(Var(\Pi \mid T)) \leq Var(\Pi).$$

Opomba.

$$E(Var(\Pi \mid T)) = \sum_{k=0}^{n} Var(\Pi \mid k) \cdot P(T = k);$$

T vzorčimo, T je robna porazdelitev (binomska pogojna?).

(V povprečju aposteriorna varianca boljša.)

1.5 Aposteriorni kredibilnostni interval

(Bayesova različica intervala zaupanja).

V konkretnem zgledu "iščemo" funkciji realizacije L(k), U(k), za kateri velja

$$\forall k \ P(L(k) \le p \le U(k)) \ge 1 - \alpha.$$

p je slučajen.

Ker za $\Pi \sim Beta(a,b)$, vemo $(\Pi \mid T=k) \sim Beta(a+k,b+n-k)$, lahko izberemo

$$L(k) = F_{Beta(a+k,b+n-k)}^{-1} \left(\frac{\alpha}{2}\right),$$

$$U(k) = F_{Beta(a+k,b+n-k)}^{-1} \left(1 - \frac{\alpha}{2}\right)$$

in v aposteriorni kredibilnostni interval (AKI) dobimo = $1-\alpha$. Taki konstrukciji pravimo centralni kredibilnostni interval. V praksi pogosto uporabljamo tudi t.i. kredibilnostni interval največje gostote, kjer zahtevamo

$$f_{(\Pi|T=k)}(L(k)) = f_{(\Pi|T=k)}(U(k)).$$

To ima smisel za unimodalne aposteriorne porazdelitve.

1.6 Splošne oznake

X - proučevalni vektor (z vrednostmi v \mathbb{R}^n).

x - realizacija vektorja $X(x \in \mathbb{R}^n)$.

 $\Theta \subset \mathbb{R}^n$ - parametrični prostor.

 Θ - (fiktivni) vektor z realizacijo $\theta \in \Theta$.

 $P=\{P_{\theta}=(X\mid \Pi=\theta)\mid \theta\in\Theta\}$ - družina vzorčnih porazdelitev (vzorčni model).

 $f(x\mid\theta)$ - gostota (ali verjetnostna funkcija) porazdelitve (X | $\Theta=\theta)$ (izračunano vx).

 $Opomba. \ f(x \mid \theta) = f_{X \mid \Theta}(x \mid \theta)$ - spuščamo.

V istem smislu gostota (ali verjetnostna funkcija) apriorne porazdelitve. Za aposteriorno gostoto (ali verjetnostno funkcijo) velja Bayesova formula (BF)

$$f(\theta \mid x) = \frac{f(x \mid \theta)f(\theta)}{f(\theta)} \propto f(x \mid \theta)f(\theta).$$

f(x) je normalizacijski faktor.

Poglavje 2

Enoparametrični modeli

2.1 Beta-binomski model

Uvodni beta-binomski model je enoparametričen.

2.2 Poissonov model (gama-poissonov model)

Naj bo parametrični prostor $\Theta = (0, \infty)$ in naj bo $X = (X_1 \dots X_n)$, kjer so $(X_i \mid \lambda) \stackrel{\text{NEP}}{\sim} Poisson(\lambda)$. Za proučevano s.s. vzamemo $T = \sum_{i=1}^n X_i$; seveda je $(T \mid \lambda) \sim Poisson(n\lambda)$.

Privzemimo apriorno porazdelitev

$$f(\lambda) = f_{Gama(a,b)}(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda} \cdot 1_{(0,\infty)}(\lambda).$$

 $(0,\!\infty)$ je parametrični prostor, a in b sta pozitivni konstanti. Izkaže se:

$$E(Gama(a,b)) = \frac{a}{b},$$

$$D(Gama(a,b)) = \frac{a}{b^2}.$$

DN.

$$P(T = k \mid \lambda) = e^{-n\lambda} \frac{(n\lambda)^k}{k!}.$$

Bayesova formula se glasi

$$f(\lambda \mid T = k) \propto P(T = k \mid \lambda) \cdot f(\lambda)$$
$$\propto e^{-n\lambda} \lambda^k \cdot \lambda^{a-1} e^{-b\lambda}$$
$$= \lambda^{a+k-1} e^{-(b+n)\lambda}$$

$$\implies (\Lambda \mid T = k) \sim Gama(a + k, b + n).$$

Definicija 2.2.1. Naj bo podan vzorčni model P in naj bo K družina porazdelitev na parametričnem prostoru Θ . Pravimo, da je K konjugirana kP, če vedno velja

$$f(\theta \mid x) \in K \implies \forall x : (\Theta \mid X = x) \in K.$$

 $f(\theta \mid x)$ je porazdelitev na Θ . Rečemo lahko tudi, da sta P in K konjugiran par.

2.3 Normalni model z znano disperzijo

Tu je σ^2 znana disperzija, vzorec $X=(X_1\ldots X_n)$ pa zadošča $(X_i\mid \mu)\stackrel{\text{NEP}}{\sim} N(\mu,\sigma^2)$, kjer je $\mu\in\Theta=\mathbb{R}$. S katero porazdelitvijo bi zakodirali apriorno informacijo?

Recimo, da je apriorno mnenje: $\mu \approx \mu_0$. Vzemimo za apriorno porazdelitev kar $N(\mu_0, \tau_0^2)$.

Vzorčna:

$$f(x \mid \mu) = f(x_1 \dots x_n \mid \mu)$$

= $(2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$.

Pripomnimo, da je

$$\sum_{i=1}^{n} (x_i - \mu)^2 = n \cdot (\mu - \overline{x})^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2,$$

kjer je $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

 $\mathbb{R}(1,1...1)$ - prostorska diagonala.

(Vzorčna: jih je več, apriorna: ena.)

Apriorna:

$$f(\mu) = (2\pi\sigma_0^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2}.$$

Opazimo, da je

$$f(\mu) = e^{\text{kvadratni polinom}(\mu)}$$
.

Velja:

$$\int_{-\infty}^{\infty} e^{a\mu^2 + b\mu + c} d\mu < \infty \iff a < 0.$$

DN (kako se narobe lotiti): drugače koliko apriorna gostota (integral robne gostote, Bayesova formula).

V tem duhu

$$f(\mu \mid x) \propto e^{-\frac{1}{2}\left(\left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)\mu^2 - 2\left(\frac{n\overline{x}}{\sigma^2} - \frac{\mu_0}{\tau_0^2}\right)\mu\right)}.$$

Prepoznamo kot normalno porazdelitev. Označimo jo $N(\mu_1, \tau_1^2)$.

Velja

$$f_{N(\mu_1, \tau_1^2)}(\mu) \propto e^{-\frac{1}{2} \left(\frac{1}{\tau_1^2} \mu^2 - 2\frac{\mu_2}{\tau_1^2} \mu\right)}.$$

Sledi

$$[\mu^2]: \frac{n}{\sigma^2} + \frac{1}{\tau_0^2} = \frac{1}{\tau_1^2} \text{ in}$$
$$[\mu]: \frac{n\overline{x}}{\sigma^2} + \frac{\mu_0}{\tau_0^2} = \frac{\mu_1}{\tau_1^2}.$$

Tukaj je:

- $\frac{n}{\sigma^2}$ vzorčna preciznost,
- $\frac{1}{\tau_0^2}$ apriorna preciznost,

- $\frac{1}{\tau_1^2}$ aposteriorna preciznost,
- preciznosti se pri seštevanju neodvisnih normalnih porazdelitvah seštevajo.

Preciznost je $\frac{1}{D(..)}$.

To pomeni

$$\tau_1^2 = (\frac{n}{\sigma^2} + \frac{1}{\tau_0^2})^{-1}$$

in

$$\mu_1^2 = \tau_1^2 \left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)$$

$$= \frac{\left(\frac{n}{\sigma^2}\overline{x} + \frac{1}{\tau_0^2}\mu_0\right) \cdot \frac{\tau_0^2 \sigma^2}{n}}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau_1^2}\right) \cdot \frac{\tau_0^2 \sigma^2}{n}}$$

$$= \frac{\tau_0^2 \overline{x} + \frac{\sigma^2 \mu_0}{n}}{\tau_0^2 + \frac{\sigma^2}{n}}$$

$$= \frac{\tau_0^2}{\tau_0^2 + \frac{\sigma^2}{n}} \overline{x} + \frac{\frac{\sigma^2}{n}}{\tau_0^2 + \frac{\sigma^2}{n}} \mu_0$$

2.4 Eksponentne družine porazdelitev

Vzorčni model pripada eksponentni družini porazdelitev, če velja

$$f(x \mid \theta) = c(\theta) \cdot e^{\langle Q(\theta), T(x) \rangle} \cdot h(x)$$

= $e^{-\psi(\theta)} e^{\langle Q(\theta), T(x) \rangle} \cdot h(x),$ (2.1)

kjer je

$$\tau: \Theta \to \mathbb{R}$$

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$Q: \Theta \to \mathbb{R}^m \text{ in }$$

$$h: \mathbb{R}^n \to [0, \infty].$$

Zgled.

(1) NEP Bernoullijev model:

$$(X_i \mid p) \stackrel{\text{NEP}}{\sim} Bernoulli(p) = B(1,p)$$

$$f(x_1 \dots x_n \mid p) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n)$$

$$f(x_1 \dots x_n \mid p) = P(X_1 = x_1 \dots X_n = x_n \mid p)$$

Preoblikujemo v:

$$(1-p)^n \left(\frac{p}{1-p}\right)^{\sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n) = e^{\ln\left(\frac{p}{1-p}\right) \sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n).$$

(2) Normalni model z znano σ^2 :

$$\Theta = \mathbb{R}, \mu \in \mathbb{R}$$

$$(EXP) f(x_1 \dots x_n \mid \mu) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2}}$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} \cdot e^{-\frac{n\mu^2}{2\sigma^2}} \cdot e^{\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i} \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2}.$$

Tukaj je

$$c(\mu) = (2\pi\sigma^2)^{-\frac{n}{2}} \cdot e^{-\frac{n\mu^2}{2\sigma^2}}$$

$$Q(\mu) = e^{-\frac{\mu}{\sigma^2}}$$

$$T(x) = e^{\sum_{i=1}^{n} x_i}$$

$$h(x) = e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2}$$

(3) Normalni model z neznano disperzijo:

$$\Theta = \mathbb{R} \times (0, \infty) = (\mu, \sigma^2)$$

Zapišemo

$$f(x_1 \dots x_n \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{n\mu^2}{2\sigma^2}} e^{\left(\left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right), \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2\right)\right)}.$$

Tukaj je

$$c(\mu) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{n\mu^2}{2\sigma^2}}$$

$$Q(\mu) = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right)$$

$$T(x) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2\right).$$

m=2.

Preimenujemo (EXP) in definirajmo apriorne gostote

$$f(\eta, \upsilon) = \frac{1}{K(\eta, \upsilon)} \cdot e^{\langle Q(\theta), \eta \rangle - \upsilon \psi(\theta)}.$$
 (2.2)

Tukaj je $\mu \in \mathbb{R}^n$ in $v \in \mathbb{R}$.

(Upoštevati moramo morebitne omejitve zaradi zahteve $\int F = 1$). Seveda je

$$K(\eta, \upsilon) = \int e^{\langle Q(\theta), \upsilon \rangle - \upsilon \psi(\theta)} d\theta.$$

Aposteriorna gostota?

$$f(\theta \mid x) \propto e^{-(\upsilon+1)\psi(\theta) + \langle Q(\theta), \eta + T(x) \rangle}$$

Tukaj smo zmožili nekonstantne faktorje iz 2.1 in 2.2.

Vidimo:

$$f(\theta \mid x) = f_{(\eta + T(x), \upsilon + 1)}(\theta).$$

Gre za konjugirano družino.

Zgled. Aplicirajmo to konstrukcijo na modelu $\Large{\textcircled{2}}$. Dobimo konjugirano družino

$$f_{(\eta,\upsilon)}(\mu) \propto e^{\frac{\mu}{\sigma^2\eta} - \tau \frac{n\mu^2}{2\sigma^2}},$$

kjer sta $\eta, \upsilon \in \mathbb{R}$.

Vidimo, da mora biti v > 0.

DN: $\eta, \upsilon \rightarrow \mu_0, \tau_0^2$ - reparametrizacija.

2.5 Neinformirane apriorne porazdelitve

Neinformirana apriorna porazdelitev je taka, ki "ne vsebuje predhodne informacije" o parametru. Tovrsten koncept je šibko-informativna apriorna porazdelitev. Izkaže se, da s statistični praksi (tudi v aplikacija frekventistične statistike) potrebujemo ta koncept.

Zgled. V Beta-binomskem modelu (...) je Laplace predlagal U(0,1) = Beta(1,1) kot neinformirano porazdelitev.

"Ploščata porazdelitev".

Učinek reparametrizacije

Zgled. Binomski vzorčni model: $f(k \mid p) = \binom{n}{k} p^k (1-p)^{n-k}, \ p \in (0,1).$ Reparametrizirajmo s parametrom $q = \ln \left(\frac{p}{1-p} \right) = logit(p)$. Dobimo

$$\begin{split} \widetilde{f}(k \mid q) &= f(k \mid logit^{-1}(q)) \\ &= f\left(k \mid \frac{e^q}{1 + e^q}\right) \\ &= \binom{n}{k} \left(\frac{e^q}{1 + e^q}\right)^k \left(\frac{1}{1 + e^q}\right)^{n - k} \\ &= \binom{n}{k} (1 + e^q)^{-k} e^{kq} \quad (q \in \mathbb{R}). \end{split}$$

Kako je s transformacijo apriorne porazdelitve?

Naj bo Π slučajna spremenljivka z realizacijo p in Q slučajna spremenljivka

z realizacijo q; velja $Q = logit \circ \Pi = logit(\Pi)$:

$$f_Q(q) = f_{logit(\Pi)}(q) = f_{\Pi}(logit^{-1}(q)) \cdot \left| \frac{d}{dq} logit^{-1}(q) \right|$$
$$logit^{-1}(q) = 1 - \frac{1}{1 + e^q} \implies \frac{d}{dq} logit^{-1}(q) = (1 + e^q)^{-2} e^q.$$

Sledi: če je $\Pi \in (0,1)$, je

$$f_Q(q) = \frac{e^q}{(1+e^q)^2};$$

ali je to še ploščata porazdelitev?

Jeffreys je kot privzeto neinformativno porazdelitev predlagal

$$f(\theta) \propto \sqrt{|det(FI(\theta))|}$$
. (2.3)

Tu je $FI(\theta)$ t.i. Fisherjeva informacija:

$$FI(\theta) = E_{(X|\Theta)}(grad_{\theta} \ln(f(x \mid \theta)) \cdot grad_{\theta} \ln(f(x \mid \theta))^{T})$$

$$= Var_{(X|\Theta)}(grad_{\theta} \ln(f(x \mid \theta)))$$

$$= -E_{(X|\Theta)}(H_{\theta}(lnf)(x \mid \theta)).$$

Za $\theta \in \Theta \subset \mathbb{R}^r$ je $\operatorname{grad}_{\theta} \ln(f(x \mid \theta))$ vektor s komponentami $\frac{\partial}{\partial \theta_i} \ln(f(x \mid \theta))$ za $1 \leq i \leq r$.

Učinek reparametrizacije na Jeffreysovo apriorno porazdelitev

Reparametrizirajmo s parametrom $\lambda = \phi(\theta)$, kjer je

$$\phi:\Theta\subset\mathbb{R}^n\to\Lambda\subset\mathbb{R}^n$$

diferenciabilen; sledi

$$\widetilde{f}(x \mid \lambda) = f(x \mid \phi^{-1}(\lambda)).$$

Odvajajmo

$$\frac{\partial}{\partial \lambda_{i}} \ln(\widetilde{f}(x \mid \lambda)) = \sum_{j=1}^{n} (\frac{\partial}{\partial \lambda_{j}} \ln(f(x \mid \lambda_{j})) \cdot \frac{\partial(\psi^{-1})_{j}}{\partial \lambda_{i}}(\lambda))$$
$$= \left[\frac{\partial(\psi^{-1})_{j}}{\partial \lambda_{i}}\right]_{j=1}^{n} \cdot grad_{\theta}(\ln f)(x \mid \phi^{-1}(\lambda))$$

$$grad_{\lambda} f(x \mid \lambda) = [J(\phi^{-1}(\lambda))]^T \cdot grad_{\theta} \ln f(x \mid \phi^{-1}(\lambda))$$

J: Jacobijeva matrika.

$$\ln \widetilde{f}(x \mid \lambda) = \ln \left(f(x \mid \phi^{-1}(\lambda)) \right) \cdot \operatorname{grad}_{\lambda} \ln (f(x \mid \lambda)) \cdot \operatorname{grad}_{\lambda} \ln (f(x \mid \lambda))^{T}$$

$$= [J\phi^{-1}(\lambda)]^{T} \cdot \operatorname{grad}_{\theta} \ln f(x \mid \phi^{-1}(\lambda)) \cdot \operatorname{grad}_{\theta} \ln f(x \mid \phi^{-1}(\lambda))^{T} \cdot [J\phi^{-1}(\lambda)]$$

$$\Longrightarrow \widetilde{FI}(\lambda) = (J\phi^{-1}(\lambda))^{T} \cdot FI(\phi^{-1}(\lambda)) \cdot J\phi^{-1}(\lambda).$$

Kaj je Jeffreysova apriorna porazdelitev na λ ?

$$f_{Jeffrey}(\lambda) = c\sqrt{det}\widetilde{FI}(\lambda) =$$

$$= c\sqrt{det}FI(\phi^{-1}(\lambda)) = c|detJ(\phi^{-1}(\lambda))|;$$

to je transformirana Jeffreysova apriorna porazdelitev (transformirana sama vase).

Poglavje 3

Monte-Carlo integracija in metode vzorčenja

Proučujemo (neznani) parameter vzorčnega povprečja, recimo da nas zanima realnoštevilska funkcija $h(\theta)$.

Zgled.

Morda nas zanima " $E(X^2)$ " naše preučevane slučajne spremenljivke. Če imamo normalni model s parametrom $\theta=(\mu,\sigma^2)$, nas torej zanima $h(\mu,\sigma^2)=(\mu^2,\sigma^2)$. V Bayesovem okviru iz apriorne porazdelitve in vzorca dobimo aposteriorno porazdelitve z gostoto

$$f(\theta \mid x) = \frac{f(x \mid \theta)f(\theta)}{f(x)},$$

kot oceno za $h(\theta)$ vzamemo npr. aposteriorno pričakovano vrednost

$$E(h(\theta) \mid X = x) = \int h(\theta) f(\theta \mid x) d\theta.$$

Problemi:

- $h(\theta)f(\theta\mid x)$ je lahko zahtevna za integracijo numerično,
- morda je "že" $f(x\mid\theta)f(\theta)$ zahtevna za integracijo in f(x) sploh ne "poznamo".

Odgovor na to je integracija Monte-Carlo z Markovskimi verigami.

3.1 Klasična integracija Monte-Carlo

Zgled. "Integrirajte" $\int_0^1 |\sin(100\sin(\pi x))| dx$.

Spomnimo se na KZVŠ: če so $X_1, X_2 \dots$ NEP slučajni vektorji s pričakovano vrednostjo μ , velja

$$\frac{x_1 + \dots + x_n}{n} \to \mu = \int x f(x) dx$$

skoraj gotovo (s.g.).

Če je h taka realnoštevilska funkcija, da obstaja $E(h(X_i))$, so tudi $h(X_1), h(X_2) \dots$ NEP s pričakovano vrednostjo $E(h(X_i))$ in zato

$$\frac{h(x_1) + \dots + h(x_n)}{n} \to E(h(X_i)) = \int h(x)f(x)dx$$

skoraj gotovo.

S pomočjo KZVŠ lahko ocenimo integral dane funkcije $h:(0,1)\to\mathbb{R}$ na naslednji način: privzamemo zaporedje NEP $X_i\sim N(0,1)$, torej velja

$$\frac{h(x_1) + \dots + h(x_n)}{n} \to \int h(x) \cdot |.dx$$

skoraj gotovo.

Kaj to pomeni?

Verjetnost tistih zaporedij $(X_1, X_2...)$, pri katerih limita $\frac{1}{n} \sum_{i=1}^{n} h(x_i)$ obstaja in je enaka .|..

Tu manjka ocena za natančnost ocene.

DN: implementirajmo.

NEP - izziv.

Izkaže se, da s psevdonaključnimi števili znamo izvrstno simulirati NEP. Vzorčenje iz (0,1) (za razumno velike vzorce).

Oceno natančnosti lahko dobimo s pomočjo CLI: privzemino obstoj disperzije slučajne spremenljivke X_i ($\iff \int h(x)^2 f(x) dx < \infty$).

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (h(X_{i}) - \overline{h(X_{i})})^{2}.$$

Po CLI velja

$$\frac{h(X_i) - E(h(X_i))}{\frac{S}{\sqrt{n}}} \xrightarrow[n \to \infty]{D} N(0,1).$$

Za $\alpha \in (0,\frac{1}{2})$ sledi

$$P\left(\frac{\overline{h(X_i)} - E(h(X_i))}{\frac{S}{\sqrt{n}}} \in \left[-z_{\frac{\alpha}{2}}, z_{\frac{\alpha}{2}}\right]\right) = 1 - \alpha$$

Verjamemo, da se ocena $\overline{h(x_i)}$ razlikuje od dejanskega integrala $E(h(x_i))$ za kvečjemu $z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$.

3.2 Simulacija vzorčenja z inverzno kumulativno porazdelitveno funkcijo

Privzemimo, da je "ciljna" kumulativna porazdelitvena funkcija (k.p.f.) $F: \mathbb{R} \to [0,1]$ zvezna bijekcija $\mathbb{R} \to (0,1)$. Velja trditev.

Trditev 3.2.1. Naj bo $U \sim U(0,1)$. Tedaj je $F^{-1}(U) \sim F$.

Posledica 3.2.2. Če "poznamo" F^{-1} , znamo simulirati vzorčenje "iz F".

Dokaz 3.2.3.
$$P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$
.

Zgled. "Poznamo"
$$\Phi^{-1}$$
, kjer je $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$.

Zgornja trditev je standardna metoda za vzorčenje iz N(0,1) ($\stackrel{\text{vaja}}{\Longrightarrow}$ znamo vzorčiti iz $N(\mu, \Sigma)$ za poljubne $\mu \in \mathbb{R}^d$ in $\sigma \in \mathbb{R}^{d \times d}$ s.p.d.).

V splošnem, če definiramo posplošeni inverz

$$F^{-}(U) = \inf F^{-1}([u, \infty)),$$

je (še vedno) $F^{-1}(U) \sim F$. ($\stackrel{\text{vaja}}{\Longrightarrow}$ znamo vzorčiti iz končnih diskretnih porazdelitev).

3.3 Metoda sprejmi ali zavrni (A/R)

Motivacija: Naj bo $f: \mathbb{R} \to [0, \infty)$ ciljna (Lebesgueova) gostota. Označimo "graf" pod njo:

$$A_f = \{(x, u) \mid 0 \le u \le f(x)\} \subset \mathbb{R}^2.$$

Seveda je $S(A_f) = 1$ (ploščina).

Pripomnimo, da za $(X,U) \sim U(A_f)$ velja $X \sim f$:

$$f_X(x) = \int_{u=-\infty}^{\infty} f_{(X,U)}(x,u) du = \int_0^{f(x)} du = f(x).$$

A/R #1: privzemimo $\{x \mid f(x) > 0\} \subset (a,b)$, kjer $-\infty < a < b < \infty$ in $\exists m: f(x) < m$ za vse x.

Simulacijo vzorčenja $X \sim f$ implementiramo takole:

- (i) vzorčimo Y = y, kjer $Y \sim (a,b)$ -,,x",
- (ii) vzorčimo $(V \mid Y = y) = v$ (realizacija) iz U(0,m) -,y",
- (iii) če je v < f(y) sprejmemo X = y, če je $v \ge f(y)$ zavrnemo y in ponovimo (i).

Preverimo $X \sim f$. Za $I \subset (a,b)$ je

$$P(X \in I) \stackrel{\text{vaja}}{=} P(Y \in I \mid v < f(y))$$

$$= \frac{\int_{\mathbb{R}} P(Y \in I \land v < f(Y) \mid Y = y) \cdot f_Y(y) dy}{\int_{\mathbb{R}} P(v < f(Y) \mid Y = y) \cdot f_Y(y) dy}$$

$$\stackrel{\text{pogojna}}{=} \frac{\int_{\mathbb{R}} P(y \in I \land v < f(y)) \cdot f_Y(y) dy}{\int_{\mathbb{R}} P(v < f(y)) \cdot f_Y(y) dy}$$

$$I \subset (a,b) = \frac{\int_{I} P(v < f(y)) \cdot \frac{1}{b-a} dy}{\int_{(a,b)} P(v < f(y)) \cdot \frac{1}{b-a} dy}$$

$$= \frac{\int_{I} f(y) dy}{\int_{(a,b)} f(y) dy}$$

$$= \int_{I} f(y) dy,$$

kjer smo v zadnjem koraku upoštevali $P(V < f(y)) = \frac{f(y)}{m}$ na (a,b). $\int_I f(y) dy$ je gostota X.

- A/R #2: Privzemimo, da znamo vzorčiti iz gostote $g: \mathbb{R} \to [0,\infty)$ in da je $f(x) < M \cdot g(x)$ za vse x (za neki M). Simulacijo vzorčenja $X \sim f$ implementiramo takole:
 - (i) vzorčimo Y = y, kjer $Y \sim g$,
 - (ii) vzorčimo $(V \mid Y=y)=v$ iz $U(0,M\cdot g(y))$. Lahko vzamemo $W\sim U(0,1) \text{ in } V\sim M\cdot g(y)\cdot W,$
 - (iii) če je v < f(y) sprejmemo X = y, če je $v \ge f(y)$ zavrnemo in ponovimo (i).

Preverimo $X \sim f$. Za $I \subset \mathbb{R}$ je

$$P(X \in I) \stackrel{\text{vaja}}{=} P(Y \in I \mid M \cdot g(y) \cdot w < f(y))$$

$$= \frac{\int_{\mathbb{R}} P(Y \in I \land M \cdot g(y) \cdot w < f(Y) \mid Y = y) \cdot f_Y(y) dy}{\int_{\mathbb{R}} P(M \cdot g(y) \cdot w < f(Y) \mid Y = y) \cdot f_Y(y) dy}$$

$$\stackrel{\text{pogojna}}{=} \frac{\int_{I} P(W < \frac{f(y)}{Mg(y)}) \cdot g(y) dy}{\int_{\mathbb{R}} P(W < \frac{f(y)}{Mg(y)}) \cdot g(y) dy}$$

$$= \dots = \int_{I} f(y) dy,$$

kjer smo v upoštevali $P(W < \frac{f(y)}{Mg(y)}) = \frac{f(y)}{Mg(y)}$. Opazimo da je $M \cdot g(y)$ namesto m od prej (na nek način).

Pripomnimo, da je verjetnost sprejetja tu enaka

$$P(M \cdot g(y)W < f(y)) = \frac{1}{M} \int_{\mathbb{R}} f(y)dy = \frac{1}{M}.$$

Želimo M čim bližje 1.

Zgled. Oglejmo si $f = F_{N(0,1)}$ in $g = F_{Cauchy}$ $\left(g(x) = \frac{1}{\pi(1+x^2)}\right)$.

$$F_{Cauchy}(x) = \int_{-\infty}^{\infty} \frac{dt}{\pi(1+t^2)} = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$$
$$F_{Cauchy}^{-1}(u) = \tan\left(\pi\left(u - \frac{1}{2}\right)\right).$$

u smo izrazili iz $x = \frac{1}{\pi} arctan(x) + \frac{1}{2}$.

Vzorčenje iz Cauchyja je $\tan\left(\pi(U-\frac{1}{\pi})\right)$, U enakomerna na (0,1).

DN: optimiziraj M.

3.4 Metode MCMC (Monte Carlo z markovskimi verigami)

Okvir:

Želeli bi simulirati vzorčenje iz "ciljne" spremenljivke z gostoto f (ki jo morda poznamo le do multiplikativne konstante natančno). Izkaže se, da za ocenjevanje pričakovane vrednosti

$$E(h(,X')) = \int h(x)f(x)dx$$
 (nevtralne črke)

pravzaprav ne potrebujemo simulacije neodvisnega vzorčenja.

Aproksimacija z vzročnim povprečjem

$$E_f(h) = \frac{1}{m} \sum_{i=1}^{m} h(X^{(i)})$$

dobro funkcionira tudi v primeru, ko je $X^{(0)}, X^{(1)}, X^{(2)}$... primerna markovska veriga (z vrednostmi tam, kjer f>0 - prostor "stanj") s stacionarno porazdelitvijo z gostoto f.

Definicija 3.4.1 (Markovska veriga). Markovska veriga je zaporedje s.v. (na prostoru stanj), ki ima lastnost, da je

(i) $\forall n$:

$$(X^{(n)} \mid X^{(n-1)} = x^{(n-1)} \dots X^{(0)} = x^{(0)}) = (X^{(n)} \mid X^{(n-1)} = x^{(n-1)})$$

- markovska lastnost (neodvisno od n),
- (ii) porazdelitve $(X^{(n)} \mid X^{(n-1)} = x)$ so za vse n enake (za vsak x imamo eno porazdelitev).

Tehnično gledano to pomeni, da Markovska veriga nastane tako, da ob času n vrednost $X^{(n)}$ dobimo z vzorčenjem iz cele porazdelitve, ki je odvisna le od stanja $x^{(n-1)}$.

 $X^{(i)}$ - členi markovske verige,

 $(X^{(n)} \mid X^{(n-1)} = x)$ - prehodne porazdelitve.

Markovska veriga (M.v.) ima stacionarno porazdelitev (...)f, če vedno velja sklep $(X^{(n-1)}) \sim f \implies X^{(n)} \sim f$.

(\mathfrak{G} nista pa $X^{(n-1)}$ in $X^{(n)}$ neodvisna s.v.)

Za ocenjevanje potrebujemo t.i. ergodične markovske verige:

(a) EZVŠ (ergodični zakon veli
ikih števil): če za vsako integrabilno funkcijo h velja

$$\lim_{n \to \infty} \frac{1}{n} h\left(X^{(i)}\right) = E_f(h)$$

skoraj gotovo (s.g.) za (skoraj) vse začetne vrednosti $x^{(0)}$ (ustrezne dobimo z verjetnostjo 1),

(b) ECLI (ergodični CLI): za vsako funkcijo h, za katero obstaja $\int h^2(x)f(x)dx$, obstaja konstanta γ_n (MCMC disperzija), za katero

$$\frac{\frac{1}{n}\sum_{i=1}^{n}h\left(X^{(i)}\right) - \int h(x)f(x)dx}{\frac{\gamma_n}{\sqrt{n}}} \xrightarrow{D} N(0,1).$$

 $(\mathfrak{S} \gamma_n$ je potrebno oceniti iz vzorca, kar je težko.)

Privzamemo (i) in naj bo $A\subset\{f>0\}$ vsako območje, za katero

$$P(,X" \in A) = \int_A f(x)dx = a > 0.$$

Vzenimo $a := 1_A$.

Tedaj <u>število členov (do n-tega, ki padejo v)A</u> $\stackrel{n\to\infty}{\to} \int 1_A(x) f(x) dx = a.$

3.4.1 Metropolisov algoritem

Naj bo f ciljna gostota in naj bo $\{q(y\mid x)\mid y,x \text{ iz prostora stanj}\}$ družina "predlaganih" gostot: za vsak x (iz katerih pa znamo simulirati NEP vzorčenje) je $q(_\mid x)$ gostota neke porazdelitve. Naj bo še $q(y\mid x)=q(x\mid y)$ za vse pare (če smo v stanju x, predlagamo y "z enako verjetnsotjo", kot če bi predlagali x, če smo v stanju y).

Opis algoritma:

- (i) od nekod dobimo $x^{(0)}$,
- (ii) privzamemo, da že imamo realizacijo $X^{(n-1)} = x^{(n-1)}$. Vzorčimo kandidata y za naslednjo realizacijo iz $q(| x^{(n-1)})$.

Če velja $f(y) \ge f(x^{(n-1)})$, vzamemo $X^{(n)} = y$ (realizacija).

Če je $f(y) < f(x^{(n-1)})$, vzamemo

$$\begin{cases} X^{(n)} = y \text{ z verjetnostjo } \rho = \frac{f(y)}{f\left(x^{(n-1)}\right)} \\ X^{(n)} = x^{(n-1)} \text{ z verjetnostjo } 1 - \rho \end{cases}$$

Naenkrat. $X^{(n)}=y$ z verjetnostjo $\rho=\min\{\frac{f(y)}{f\left(x^{(n-1)}\right)},1\}$ (*)

(*): če $f(x^{(n-1)}) = 0$, vedno vzamemo y.

Ta korak implementiramo z realizacijo $u\in U(0,1),$ vzamemo $X^{(n)}=y,$ če $u\le \rho,$ oz. $X^{(n)}=x^{(n-1)},$ če $u>\rho.$

Izkaže se, da ta opis določa markovsko verigo s stacionarno porazdelitvijo f. Če velja sklep $f(y)>0 \implies \forall x: q(y\mid x)>0$, ima veriga EZVŠ.

Bayesova aplikacija.

Ciljna gostota je $f(\theta \mid x)(v \mid \theta)$.

Če je $\theta^{(n-1)}$ stanje v času n-1, za implementacijo koraka (ii) potrebujemo

$$\frac{f(\theta^* \mid x)}{f(\theta^{(n-1)} \mid x)} = \frac{f(x \mid \theta^*) f(\theta^{(*)})}{f(x \mid \theta^{(n-1)}) f(\theta^{(n-1)})};$$

v resnici ne potrebujemo normalizacijske konstante v Bayesovi formuli. Tipični primeri predlaganih gostot:

1. $(Y \mid X^{(n-1)} = x^{(n-1)}) \sim U(K_{\delta}(X^{(n-1)}))$ za fiksen δ (krogla s polmerom δ), v neki metriki.

(Povrnljivost - povsod, kjer neničelne verjetnosti, jemlje ∞ -krat.) (To pomeni $q(y \mid x) = \frac{1}{Vol(K_{\delta}(x))} \cdot 1_{K_{\delta}(x)}(y)$ (namesto klasične uporabimo ∞ metriko).)

2. $(Y \mid X^{(n-1)} = x^{(n-1)}) \sim N\left(x^{(n-1)}, \Sigma\right)$ za fiksno Σ . (To pomeni $q(y \mid x) = (2\pi)^{-\frac{dim}{2}} (det\Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2}\langle \Sigma^{-1}(y-x), (y-x) \rangle}$ - simetričnost \checkmark .) V tem primeru je $Y \mid X^{(n-1)} = X^{(n-1)} + N(0, \Sigma)$.

Metropolisov algoritem tipično nima ECLI: (.

3.4.2 Metropolis-Hastingov algoritem

Tu predlagane gostote $q(y \mid x)$ ne zadoščajo simetričnosti. V algoritmu namesto ρ iz 3.4.1. uporabimo

$$\rho = \rho\left(x^{(n-1)}, y\right) = \min\{1, \frac{f(y)}{f(x^{(n-1)})} \cdot \frac{q(x^{(n-1)} \mid y)}{q(y \mid x^{(n-1)})}\}$$

(in $\rho = 1$ če $f(x^{(n-1)}) \cdot q(y \mid x^{(n-1)}) = 0$).

Enake lastnosti kot prej:

- \bullet vedno dobimo verigo s stacionarno porazdelitvijo f
- če $\forall x: q(\underline{\ }, x^{(n)})$ dopušča kandidate iz $\{f > 0\}$ (v končno korakih), velja EVZŠ (blagi pogoji).

Dobimo pa še:

- pri primernih predpostavkah na q dobimo tudi ECLI.

Zgled ("Neodvisni" Hastingov algoritem). Vedno "funkcionira" (teoretično) $q(y \mid x) = q(y)$ za neko fiksno porazdelitev z gostoto g, kjer g(y) > 0 za $\forall f(y) > 0$.

3.4.3 Gibsov vzorčevalnik

Gibsov vzorčevalnik je algoritem za konstrukcijo markovske verige s ciljno gostoto f(x,y) (ali $f(x_1...x_n)$) na podlagi vzorčenja iz "gostot" $f(x \mid y)$ ali $f(y \mid x)$.

<u>Motivacija</u>: proučujemo vzorčni model z gostotami $f(x \mid \theta_1, \theta_2) = f(x \mid \theta)$, ki je tak, da znamo simulirati neko vzorčenje iz $f(\theta_1 \mid \theta_2, x)$ in $f(\theta_2 \mid \theta_1, x)$, ne pa (neposredno) iz $f(\theta_1, \theta_2 \mid x)$.

Opis algoritma.

- (i) Vzorčimo y_0 iz neke porazdelitve ali pa y_0 določimo. Vzorčimo x_0 iz pogojne porazdelitve $f(X \mid y_0)$.
- (ii) Če poznamo (x_{n-1}, y_{n-1}) , vzorčimo najprej y_n iz $f(x \mid x_{n-1})$, potem pa še x_n iz $f(y \mid y_n)$ (temu koraku oz. njegovim podkorakom pravimo "osveževanje").

Dobimo zaporedje s.s. (ali DN)

$$X^{(0)} = (x_0, y_0), \ X^{(1)} = (x_1, y_1), \ X^{(2)} = (x_2, y_2) \text{ itd.}$$

Izkaže se, da so zaporedja

$$X^{(0)}, X^{(1)}, X^{(2)} \dots$$

 $X_0, X_1, X_2 \dots$
 $Y_0, Y_1, Y_2 \dots$

markovske verige in da ima veriga $\{X^{(i)} \mid n\}$ stacionarno porazdelitev f(x,y). Pri blagih pogojih je ta veriga ergodična.

Zqled.

Tipična aplikacija v Bayesovi statistiki je:

privzemimo model $f(x \mid \theta_1, \theta_2)$ z apriorno gostoto $f(\theta_1, \theta_2) = f(\theta_1), f(\theta_2)$, kjer je $f(\theta_1)$ iz konjugirane družine k modelu $f(x \mid \theta_1, KONST), f(\theta_2)$ pa je iz konjugirane družine k modelu $f(x \mid KONST, \theta_2)$, iz katerih znamo simulirati NEP vzorčenje.

Polna aposteriorna porazdelitev

$$f(\theta_1, \theta_2 \mid x) = \frac{f(x \mid \theta_1, \theta_2) \cdot f(\theta_1) \cdot f(\theta_2)}{f(x)}$$

je tipično nedostopna, pač pa velja

$$f(\theta_1 \mid \theta_2, x) = \frac{f(x \mid \theta_1, \theta_2) \cdot f(\theta_1 \mid \theta_2)}{f(x \mid \theta_2)} = \frac{f(x \mid \theta_1, \theta_2) \cdot f(\theta_1)}{f(x \mid \theta_2)}, \tag{3.1}$$

kar je aposteriorna gostota Bayesovega modela z gostotami $f(x \mid \theta_1, \theta_2)$ iz apriorne gostote $f(\theta_1)$, kjer θ_2 razumemo kot konstanto. Po našem premisleku je torej $f(\theta_1 \mid \theta_2, x)$ iz "prave" konjugirane družine. Simetrično je

$$f(\theta_2 \mid \theta_1, x) = \frac{f(x \mid \theta_1, \theta_2) \cdot f(\theta_2)}{f(x \mid \theta_1)}$$

iz "znane" konjugirane družine.

Konkretno si oglejmo enorazsežni NEP-normalni model

$$(X \mid \mu, \sigma^2) \sim N \left(\begin{bmatrix} \mu \\ \vdots \\ \mu \end{bmatrix}, \sigma^2 I \right)$$
 (3.2)

z gostotami

$$f(x_1 \dots x_n \mid \mu, \sigma^2) = f(x \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \cdot \sum_{i=1}^n (x_i - \mu)^2}.$$

Vemo, da je $\{N(\mu_*, \tau_*^2) \mid \mu_* \in \mathbb{R}, \tau_*^2 \in (0, \infty)\}$ konjugirana k enoparametričnim modelom z gostotami 3.2, kjer σ^2 poznamo.

Izkaže se (vaja), da je družina {InvGama $(a,b) \mid a,b \in (0,\infty)$ } konjugirana k enoparametričnim modelom z gostotami 3.2, kjer μ poznamo. Tu je $Y \sim \text{InvGama}(a,b) \iff \frac{1}{Y} \sim \text{Gama}(a,b)$, velja

$$f_{\text{InvGama}(a,b)}(y) = \frac{b^a}{\Gamma(a)} y^{-a-1} e^{-\frac{b}{y}}.$$

Vemo: pri $f(\mu) = f_{N(\mu_*, \tau_*^2)}(\mu)$ je

$$f(\mu \mid \sigma^2, x) \stackrel{3.1}{=} f_{N\left(\frac{\sigma^2}{\frac{\sigma^2}{n}} \mu_* + \frac{\tau_*^2}{\frac{\sigma^2}{n} + \tau_*^2} \overline{x}, \frac{\sigma^2}{\frac{\sigma^2}{n} + \tau_*^2}\right)}(\mu).$$

Vidimo: pri $f(\sigma^2) = f_{\text{InvGama}(a,b)}(\sigma^2)$ je

$$f(\sigma^2 \mid \mu, x) = f_{\text{InvGama}(a + \frac{n}{2}, b + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2)}(\sigma^2).$$

<u>Gibsov vzorčevalnik</u>: ciljna porazdelitev $f(\mu, \sigma^2 \mid x)$.

(i) Določimo $\sigma_0^2=1.$ Vzorčimo μ_0 iz

$$f_{N\left(\frac{\frac{1}{n}}{\frac{1}{n}+\tau_*^2}\mu + \frac{\tau_*^2}{\frac{1}{n}+\tau_*^2}\overline{x}, \frac{\frac{1}{n}\tau_*^2}{\frac{1}{n}+\tau_*^2}\right)},$$

(ii) vzorčimo σ_1^2 iz $f(\sigma^2 \mid \mu_0, x)$, vzorčimo μ_1^2 iz . . . :

(Blagi pogoji so izpolnjeni, veriga ergodična.)

3.5 Markovske verige z zveznim prostorom stanj - appendix

Markovska veriga "na" Σ v diskretnem času je zaporedje merljivih preslikav $X_i: \Omega \to \Sigma \ (i=0,1,2\dots)$, kjer je Ω verjetnostni prostor, Σ merljiv prostor

in velja

$$P(X_n \in A \mid X_{n-1} = x_{n-1} \dots X_0 = x_0) = P(X_n \in A \mid X_{n-1} = x_{n-1})$$
 (3.3)

za vse $n \in \mathbb{N}, A \subset \Sigma$ in vse n-terice $x_0 \dots x_{n-1} \in \Sigma$.

Tu je $\{P(_ \mid x) \mid x \in \Sigma\}$ družina verjetnostnih mer na Σ , za katero velja, da je za vsako merljivo množico $A \subset \Sigma$ preslikava $\Sigma \to [0,1], x \mapsto \P(A \mid x)$ merljiva.

Prostoru Σ pravimo parameter stanj, X_i so členi verige, lastnosti 3.3 pa pravimo markovska lastnost.

Tu se bomo omejili na Borelove množice $\Sigma \subset \mathbb{R}^r$ (z Borelovo σ -algebro.) Poudarimo, da so verjetnosti P(|x|) (pravimo jim "prehodne verjetnosti") neodvisne od n (torej za vse n enake).

Zqled.

Če ima X_0 neko porazdelitev in velja $X_n = X_{n-1} + \varepsilon_n$ (kjer so $X_0, \varepsilon_1 \dots$ neodvisne in $\epsilon_0 \sim N(0, V)$ za $V \in \P(r)$ (V je s.p.d.)) in $X_0, X_1, X_2 \dots$ markovska veriga in velja

$$P(A \mid x) = P(N(x, V) \in A).$$

Zqled. Metropolis-Hastingovova veriga:

- (1) imamo $X_0 = x_0$,
- (2) če je $X_{n-1} = x$, potem realizacijo od X_n dobimo takole:
 - (i) vzorčimo y iz predlagane porazdelitve $dP_{(Y|x)} = q(y \mid x)d\nu(y)$
 - (ii) vzorčimo $u = U \sim U(0,1)$ in sprejmemo $X_n = y$, če $u \leq \rho(x,y)$ oz. $X_n = x$, če $u > \rho(x,y)$, kjer

$$\rho(x,y) = \begin{cases} \min\{1, \frac{f(y)}{f(x)} \cdot \frac{q(x|y)}{q(y|x)}\}; f(x)q(y \mid x) \neq 0\\ 1; f(x)q(y \mid x) = 0 \end{cases}$$

Tu je f ciljna gostota (glede na ν),

(3)

$$P(X_{n} \in A \mid X_{n-1} = x)$$

$$= \int_{y \in \Sigma} P(X_{n} \in A \mid Y = y, X_{n-1} = x) dP_{(Y|x)}(x)$$

$$= \int_{y \in \Sigma} \int_{u=0}^{1} P(X_{n} \in A \mid U = u, Y = y, X_{n-1} = x) \cdot dP_{(U|Y=y, X_{n-1}=x)}(u) d\nu(y)$$

$$= \int_{y \in \Sigma} \left(\int_{u=0}^{\rho(x,y)} \dots du + \int_{u=\rho(x,y)}^{1} \dots du \right) q(y \mid x) d\nu(y)$$

$$= \int_{y \in \Sigma} \left(1_{A}(y) \cdot q(y \mid x) + 1_{A}(x) \cdot (1 - \rho(x,y)) \right) q(y \mid x) d\nu(y)$$

$$= \int_{y \in A} \rho(x,y) q(y \mid x) d\nu(y) + 1_{A}(x) \int_{y \in \Sigma} (1 - \rho(x,y)) q(y \mid x) d\nu(y).$$

Privzemimo, da ν nima atomov: $\nu(x) = 0$ za vsak x:

$$\implies P(X_n \in A \mid X_{n-1} = x) = \int_{y \in \Sigma} (1 - \rho(x, y)) q(y \mid x) d\nu(y).$$

To je tipično u pozitivna verjetnost. To pomeni, da imajo prehodne verjetnosti atome u: $P(x \mid x) > 0$ (vsaj za nekatere x).

Definicija 3.5.1.

Porazdelitev π je stacionarna za verigo $\{X_i\}$, če iz $X_{n-1} \sim \pi$ sledi $X_n \sim \pi$.

Trditev 3.5.2.

Porazdelitev $fd\nu$ je stacionarna porazdelitev M-H verige.

Dokaz 3.5.3.

Privzemimo $dP_{X_{n-1}} = f d\nu$ in računajmo

$$P(X_n \in A) = \int_{x \in \Sigma} P(X_n \in A \mid X_{n-1} = x) dP_{X_{n-1}}(x)$$

$$= \int_{x \in \Sigma} \int_{y \in A} \rho(x, y) q(y \mid x) f(y) d\nu(y) d\nu(x)$$

$$+ \int_{x \in A} \int_{y \in \Sigma} q(x \mid y) d\nu(y) f(x) d\nu(x)$$

$$- \int_{x \in A} \int_{y \in \Sigma} \rho(x, y) q(x \mid y) f(x) d\nu(y) d\nu(x).$$

Upoštevamo

$$\int_{y \in \Sigma} q(x \mid y) f(x) d\nu(y) = 1.$$

Spomnimo se:

$$\rho(x,y) = \begin{cases} \min\{1, \frac{f(y)}{f(x)} \cdot \frac{q(x|y)}{q(y|x)}\}; f(x)q(y \mid x) \neq 0\\ 1; f(x)q(y \mid x) = 0 \end{cases}$$

Vidimo, da velja enakost (za $\forall x, y$)

$$\rho(x,y)q(y\mid x)f(x) = \rho(y,x)q(x\mid y)f(y)$$

in

$$\int_{x\in\Sigma}\int_{y\in A}\rho(x,y)q(y\mid x)f(y)d\nu(y)d\nu(x)=\int_{y\in\Sigma}\int_{x\in A}\rho(y,x)q(x\mid y)f(x)d\nu(x)d\nu(y).$$
 Zato je

$$P(X_n \in A) = \int_{x \in A} f(x) d\nu(y).$$

Prehodne verjetnosti P(|x) generirajo verigo prehodnih verjetnosti $P(A \mid x) = P(X_n \in A \mid X_0 = x)$.

To verjetnost, da veriga obišče A v času n ob pogoju, da je začela v x, želeni lastnosti (ki implicirata ustrezna ERVŠ) sta

- $||P^n(|x) \pi|| \stackrel{n \to \infty}{\to} 0$ za skoraj vse x,
- $||P^n(|x) \pi|| \stackrel{n \to \infty}{\to} 0$ enakomerno v x,

kjer za predznačeno mero μ definiramo normo totalne variacije

$$||u|| = \sup_{A} |\mu(A)|.$$

Za osnovne lastnosti $P^n(A \mid x)$ izračunajmo

$$P(X_{n} \in A_{n}, X_{n-1} \in A_{n-1} \dots X_{1} \in A_{1} \mid X_{0} = x_{0})$$

$$= \int_{x_{1} \in \sigma} P(X_{n} \in A_{n} \dots X_{1} \in A_{1} \mid X_{1} = x_{1}, X_{0} = x_{0}) dP_{(X_{1} \mid X_{0} = x_{0})}(x_{1})$$

$$= \int_{x_{1} \in A_{1}} P(X_{n} \in A_{n} \dots X_{2} \in A_{2} \mid X_{1} = x_{1}, X_{0} = x_{0}) dP_{(X_{1} \mid X_{0} = x_{0})}(x_{1} \mid x_{0})$$

$$= \int_{x_{1} \in A_{1}} \int_{x_{2} \in \Sigma} P(X_{n} \in A_{n} \dots X_{2} \in A_{2} \mid X_{2} = x_{2}, X_{1} = x_{1}, X_{0} = x_{0}) dP(x_{2} \mid x_{1}) dP(x_{1} \mid x_{0})$$

$$= \dots$$

$$= \int_{x_{1} \in A_{1}} \dots \int_{x_{n} \in A_{n}} dP(x_{n} \mid x_{n-1}) \dots dP(x_{1} \mid x_{0}).$$

Posebej:

$$P^{n}(A \mid x) = \int_{x_{1} \in \Sigma} \cdots \int_{x_{n-1} \in \Sigma} \int_{x_{n} \in A} dP(x_{n} \mid x_{n-1}) \dots dP(x_{1} \mid x).$$

Od tod sledi

$$P^{n}(A \mid x) = \int_{x_{1} \in \Sigma} \cdots \int_{x_{m} \in \Sigma} \left(\int_{x_{m+1} \in \Sigma} \cdots \int_{x_{n} \in A} dP(x_{n} \mid x_{n-1} \dots dP(x_{m+1} \mid x_{m})) \right) dP(x_{m} \mid x_{m-1}) \dots dP(x_{1} \mid x_{0}).$$

Tukaj je

$$\int_{x_{m+1} \in \Sigma} \cdots \int_{x_n \in A} dP(x_n \mid x_{m-1} \dots dP(x_{m+1} \mid x_m)) = P^{n-m}(A \mid x_m)$$

in zato

$$P^{n}(A \mid x) = \int_{x_1 \in \Sigma} P^{n-m}(A \mid x_m) \cdot dP^{m}(x_m \mid x).$$

Tej enakosti rečemo enakost Chapman-Kolmogorova.

3.6 MCMC diagnostika

3.6.1 MCMC varianca

Želimo oceniti $E_f(h) = \int h(x)f(x)dx$.

Privzemimo, da je $X_0, X_1 \dots$ markovska veriga s stacionarno porazdelitvijo "f", ki ima primerne ergodične lastnosti.

Označimo $E_f(h) = \frac{1}{n} \sum_{i=1}^n h(X_i)$ (standardna MCMC cenilka za $E_f(h)$ za veriga do časa n).

Definirajmo
$$D_{MCMC}\left(\widehat{E_f(h)(x)}\right) = E\left(\left(\widehat{E_f(h)(x)}\right) - E_f(h)\right)^2\right).$$

(To je v resnici SNK glede na ocenjeno karakteristiko $E_f(h)$. V splošnem $\widehat{E_f(h)}$ ni nepristranska cenilka za $E_f(h)$.)

Tu je
$$\widehat{E_f(h)} - E_f(h) = \frac{1}{n} \sum_{i=1}^n (h(X_i) - E_f(h))$$
, velja

$$D_{MCMC}\left(\widehat{E_f(h)}\right) = \frac{1}{n^2} \sum_{i=1}^k E((h(X_i) - E_f(h))^2) + \frac{1}{n^2} \sum_{i \neq j} E((h(X_i) - E_f(h))(h(X_j) - E_f(h))).$$

Privzemimo, da je veriga STACIONARNA, t.j. $X_i \sim f$ za vse i (to sledi iz $X_0 \sim f$). Tedaj je

- (i) $E((h(X_i) E_f(h))^2) =: \sigma^2$ varianca ("s.s." $h(X_i)$) (enaka za vse i) in
- (ii) $\sigma_{i,j} = E((h(X_i) E_f(h))(h(X_j) E_f(h)))$ kovarianca "s.s." $h(X_i)$ in $h(X_j)$, ki je odvisna le od |i-j|: če je npr i < j, je

$$E(h(X_i)h(X_j)) = \int E(h(x_i)h(x_j) \mid X_{i-1} = x_{i-1})dx_{i-1}.$$

Sledi
$$D_{MCMC}\left(\widehat{E_f(h)}\right) = \frac{\sigma^2}{n} + \frac{2}{n^2} \sum_{i < j} \sigma_{i,j}$$
 oziroma

$$nD_{MCMC}\left(\widehat{E_f(h)}\right) = \sigma^2 + \frac{2}{n} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sigma_{i,j}$$

$$= \sigma^2 + \frac{2}{n} \sum_{k=1}^{n-1} (n-k)\sigma_{0,k}$$

$$= \sigma^2 + 2 \sum_{k=1}^{n-1} \sigma_{0,k} - \frac{2}{n} \sum_{k=1}^{n-1} k\sigma_{0,k}.$$

Izkaže se, da pri primernih ergodičnih lastnostih velja $\sum_{k=1}^{\infty} |\sigma_{0,k}| < \infty$ in posledično $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n-1} k\sigma_{0,k} = 0$.

Zato definiramo asimptotično MCMC varianco kot

$$\gamma_k^2 = \sigma^2 + 2\sum_{k=1}^{\infty} \sigma_{0,k},$$

kjer je σ^2 "stacionarna" varianca, $\sigma_{0,k}$ pa so "stacionarne rang-k" avtokorelacijske verige.

Izrek 3.6.1. Pri primernih ergodičnih lastnostih velja

(ECLI):
$$\frac{\widehat{E_f(h)} - E_f(h)}{\frac{\gamma_k}{\sqrt{n}}} \longrightarrow N(0,1)$$

(za KATEROKOLI začetno porazdelitev).

Je to že dovolj za konstrukcijo (asimptotičnega) intervala zaupanja za $E_f(h)$? Teoretično da:

$$\lim_{n\to\infty} P\left(E_f(h)\in\left[\widehat{E_f(h)}-z_{\frac{\alpha}{2}}\cdot\frac{\gamma_k}{\sqrt{n}},\widehat{E_f(h)}+z_{\frac{\alpha}{2}}\cdot\frac{\gamma_k}{\sqrt{n}}\right]\right)=1-\alpha.$$

Za praktično rabo je treba γ_k^2 oceniti iz vzorca. Preprosto je oceniti σ^2 ; vzamemo kar

$$\frac{1}{n-1} \cdot \sum_{i=1}^{n} (h(X_i) - E_f(X_i))^2.$$

Vsoto vrste $\sum_{k=1}^n \sigma_{0,k}$ je zahtevno oceniti.

Za neposredno ocenjevanje γ_k^2 si oglejmo metodo povprečij neprikrivajočih se serij.

Privzemimo, da velja n=ab za neki $a,b\in\mathbb{N}$. Veriga $X_1\ldots X_n=X_{ab}$ razdelimo v serije ("batches")

$$X_1 \dots X_b \stackrel{\text{povprečimo}}{\longrightarrow} \widehat{\mu_{b,1}}$$

$$X_{b+1} \dots X_{2b} \longrightarrow \widehat{\mu_{b,2}}$$

. . .

$$X_{(a-1)b+1} \dots X_{ab} \longrightarrow \widehat{\mu_{b,a}}.$$

Pripomnimo, da je $\widehat{\mu_{b,k}} = \frac{1}{b} \sum_{i=(k-1)b+1}^{kb} h(X_i)$.

Tudi to je MCMC ocena za $E_f(h)$. Pišimo še $\widehat{\mu_n} = \widehat{\mu_{ab}} = \frac{1}{a} \sum_{i=1}^n h(X_i)$.

Potem je
$$\widehat{\gamma_k^2} = \frac{b}{a} \sum_{k=1}^a (\widehat{\mu_{b,k}} - \widehat{\mu_k})^2$$
ocena za γ_k^2

Pišimo $\mu = E_f(h)$. Če začnemo z $\widehat{\gamma}_k^2 = \frac{b}{a} \sum_{k=1}^a (\widehat{\mu_{b,k}} - \mu + \mu - \widehat{\mu_b})^2$, račun pripelje

$$\widehat{\gamma_k^2} = \frac{1}{n} \sum_{i=1}^n (h(X_i) - \mu)^2 + \frac{1}{a} \sum_{k=1}^a \frac{1}{b} \sum_{i=(k-1)b+1, i \neq j}^{kb} ((h(X_i) - \mu)(h(X_j) - \mu))$$
$$- \frac{1}{an} \left(\sum_{i=1}^n (h(X_i) - \mu)^2 + \sum_{i \neq j} (h(X_i) - \mu)(h(X_j) - \mu) \right).$$

$$\frac{1}{n} \sum_{i=1}^{n} (h(X_i) - \mu)^2 \stackrel{n \to \infty}{\longrightarrow} \sigma^2 \text{ (EZVŠ)},$$

$$\frac{1}{a} \sum_{k=1}^{a} \frac{1}{b} \sum_{i=(k-1)b+1, i \neq j}^{kb} ((h(X_i) - \mu)(h(X_j) - \mu)) \xrightarrow{a \to \infty, b \to \infty} 2 \sum_{k=1}^{\infty} \sigma_{0,k}, \\
\text{ostalo} \xrightarrow{a \to \infty, b \to \infty} 0.$$

Priporočeni izbiri sta $a = \sqrt{n}$, $a = \sqrt[3]{n}$.

V praksi to realiziramo kot $a(k) \cdot b(k) = n(k) = k \cdot k^2 \ k = 1, 2 \dots$

Sledi želeni ECLI:
$$\lim_{n\to\infty} \frac{\widehat{F_f(h)}n(k) - E_f(h)}{\sqrt{\widehat{\gamma_k^2}(a(k),b(k))}/\sqrt{n}} \stackrel{D}{=} N(0,1)$$
in še EIZ (ergodični interval zauj

in še EIZ (ergodični interval zaupanja) (stopnje zaupanje $1-\alpha)$

$$\left[\widehat{E_f(h)} - z_{\frac{\alpha}{2}} \sqrt{\widehat{\gamma_k^2(a(k),b(k))} \over a(k) \cdot b(k)}, \widehat{E_f(h)} + z_{\frac{\alpha}{2}} \sqrt{\widehat{\gamma_k^2(a(k),b(k))} \over a(k) \cdot b(k)}\right].$$

Ēfektivna velikost vzorca.

Naj bo $\sigma^2 = \int (h(x) - E_f(x))^2 f(x) dx$ kot prej.

Če bi znali vzorčiti (NEP) iz f, bi vzorčno povprečje imelo varianco $\frac{\sigma^2}{n}$.

Za MCMC vzorčenje imamo $D_{MCMC}(\widehat{E_f(h)}) \approx \frac{\gamma_k^2}{n}$.

 Definicija 3.6.2. Efektivna velikost vzorca n_{eff} za dejansko velikost vzorca n je rešitev enačbe $\frac{\gamma_k^2}{n} = \frac{\sigma^2}{n_{eff}}$.

Pri danem vzorcu seveda n_{eff} ocenimo z

$$\widehat{n_{eff}} = n \frac{\widehat{\sigma^2}}{\gamma_k^2} = \frac{\widehat{\sigma^2}}{\gamma_k^2/n}.$$

3.6.2 Mešanje

Kvaliteto konvergence dane markovske verige za dano velikost vzorca n lahko ocenimo tudi z "mešanjem" neodvisnih verig, ki začnejo v "mešano" različnih točkah prostora stanj.

Privzemimo torej, da so X_{ij} $1 \le i \le n$ neodvisne markovske verige z začetkom v $X_{01} \dots X_{0m}$ (torej $1 \leq j \leq m$).

Tu so X_{0j} $(1 \le j \le m)$ lahko konstruirani "ročno" ali pa jih vzorčimo iz neke fiksne porazdelitve z veliko disperzijo.

Povzemimo: skupine $(X_{1j} ... X_{nj})$ so med seboj neodvisne $(1 \le j \le m)$,

 $X_{i-1,j} \to X_{i,j}$ pa so dani z prehodno verjetnostjo.

Označimo

$$W = \frac{1}{m(n-1)} \sum_{j=1}^{m} \sum_{i=1}^{n} \left(h(X_{ij}) - \overline{h(X_{.j})} \right)^2$$
 (variance "znotraj" skupin),

$$B = \frac{n}{m-1} \sum_{j=1}^{m} \left(\overline{h(X_{.j})} - \overline{h(X_{..})} \right)^2 \text{ (varianca "med" skupinami)}.$$
 Končno definiramo še $\widehat{\sigma^{2+}} = \widehat{D_f(h)^+} = \frac{n}{n-1}W + \frac{1}{n}B$. Izkaže se, da $\widehat{\sigma^{2+}}$ precenjuje σ^2 , medtem ko W podcenjuje σ^2 .

Končno definiramo še
$$\widehat{\sigma^{2+}} = \widehat{D_f(h)^+} = \frac{n}{n-1}W + \frac{1}{n}B$$
.

Velja
$$\lim_{n\to\infty} \sqrt{\frac{\widehat{\sigma^{2+}}}{W}} = 1;$$

če imamo za dami k $\frac{\widehat{\sigma^{2+}}}{W} >> 1, n$ povečujemo.

Poglavje 4

Normalni modeli

<u>Uvodni zgled:</u> 1-razsežni "NEP-normalni" model, kjer je $(X \mid \mu, \sigma^2) \sim N(([\mu : \mu], \sigma^2 I_{n \times n}))$ z vzorčnimi gostotami

$$f(x \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} (\sum_{i=1}^n (x_i - \mu)^2)}.$$
 (4.1)

Izkaže se, da je konjugirana družina apriornih gostot podana kot

$$f(\mu, \sigma^2) = f_{\text{InvGama}(a,b)}(\sigma^2) \cdot f_{N(\mu_0, \frac{\sigma^2}{\kappa_0})}(\mu). \tag{4.2}$$

(Za vajo lahko izpeljete; razcepite $\psi = \psi_1 + \psi_2$ (log?) $\to \tau_1, \tau_2$ namesto τ). Tu so $\mu_0 \in \mathbb{R}, a, b, \kappa_0 \in (0, \infty)$ parametri konjugirane družine; κ_0 interpretiramo kot število prostorskih stopenj (fiktivno).

4.1 Dvofazna predstavitev

Privzemimo razcep $\vartheta=(\vartheta_1,\vartheta_2)$ in zapišimo

$$f(\vartheta_1,\vartheta_2) = f(\vartheta_1 \mid \vartheta_2) \cdot f(\vartheta_2).$$

Za aposteriorno gostoto pri X = x velja

$$f(\vartheta_1, \vartheta_2 \mid x) = \frac{f(x \mid \vartheta_1, \vartheta_2) \cdot f(\vartheta_1 \mid \vartheta_2)}{f(x \mid \vartheta_2)} \cdot \frac{f(x \mid \vartheta_2) \cdot f(\vartheta_2)}{f(x)}$$

oz.

$$f(\vartheta_1, \vartheta_2 \mid x) = f(\vartheta_1 \mid \vartheta_2, x) \cdot f(\vartheta_2 \mid x).$$

Tu je $f(\vartheta_1 \mid \vartheta_2, x)$ aposteriorna gostota modela z vzorčnimi gostotami $f(x \mid \vartheta_2)$ in apriorno gostoto $f(\vartheta_2)$.

Tipično je $f(\vartheta_1 \mid \vartheta_2, x)$ enostavneje izračunati (eksplicitno) kot $f(\vartheta_2 \mid x)$, ker za slednje potrebujemo še $f(x \mid \vartheta_2)$.

Načeloma lahko $f(x \mid \vartheta_2)$ izračunamo z integriranjem:

$$f(x \mid \vartheta_2) = \int f(x \mid \vartheta_1, \vartheta_2) \cdot f(\vartheta_1 \mid \vartheta_2) d\vartheta_1,$$

vendar:(

Aplicirajmo na vzorčne gostote z 4.1 z apriorno 4.2.

(i)
$$f(\mu \mid \sigma^2, x)$$
 "pripada" modelu $(X \mid \mu) \sim N \begin{pmatrix} \begin{bmatrix} \mu \\ \vdots \\ \mu \end{bmatrix}, \sigma^2 I \end{pmatrix}$ $(\sigma^2 \text{ konst.})$ za apriorno $M \sim N \left(\mu_0, \frac{\sigma^2}{\kappa_0}\right) = N(\mu_0, \tau_0^2).$ To pomeni $f(\mu \mid \sigma^2, x) \leftrightarrow N(\mu, \tau_0^2)$, kjer je

$$\mu_1 = \frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n} + \tau_0^2} \mu_0 + \frac{\tau_0^2}{\frac{\sigma^2}{n} + \tau_0^2} \overline{x}$$

in

$$\tau_1^2 = \frac{\frac{\sigma^2}{n} \cdot \tau_0^2}{\frac{\sigma^2}{n} + \tau_0^2} = \frac{\sigma^2}{n + \kappa_0}.$$

Interpretacija variance: več primerov.

(ii) Za $f(\sigma^2 \mid x)$ potrebujemo $f(x \mid \sigma^2)$. DN: intergirajte. Oglejmo si raje

$$f(x, \mu \mid \sigma^{2}) = f(x \mid \mu, \sigma^{2}) \cdot f(\mu \mid \sigma^{2})$$

$$\propto e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}} \cdot e^{-\frac{1}{2\left(\frac{\sigma^{2}}{\kappa_{0}}\right)} (\mu - \mu_{0})^{2}}$$

$$= e^{-\frac{1}{2\sigma^{2}} \left\langle W \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \\ \mu \end{bmatrix}, \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \\ \mu \end{bmatrix} \right\rangle},$$

kjer je

$$W = \begin{bmatrix} \frac{1}{\sigma^2} & \dots & 0 & -\frac{1}{\sigma^2} \\ 0 & \dots & \vdots & -\frac{1}{\sigma^2} \\ \vdots & \vdots & \frac{1}{\sigma^2} & -\frac{1}{\sigma^2} \\ -\frac{1}{\sigma^2} & \frac{1}{\sigma^2} & \dots & \frac{\kappa_0 + n}{\sigma^2} \end{bmatrix}.$$

Vidimo, da je $(X, M \mid V \sim \sigma^2)$ normalna porazdelitev $\implies (X \mid V \sim \sigma^2)$ je kot robna tudi normalna.

 $\stackrel{\text{!!}}{\Longrightarrow}$ potrebujemo le $E(X \mid V \sim \sigma^2)$ in $Var(X \mid V \sim \sigma^2)$.

Vemo:

$$\begin{split} E(X \mid V \sim \sigma^2) = & E(E(X \mid M, V) \mid V \sim \sigma^2) \text{ in} \\ Var(X \mid V \sim \sigma^2) = & E(Var(X \mid M, V) \mid V \sim \sigma^2) + \\ & Var(E(X \mid M, V) \mid V \sim \sigma^2). \end{split}$$

Naprej:

$$\begin{split} E(X\mid M=\mu, V\sim\sigma^2) &= \mu\cdot \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \implies E(X\mid M, V) = \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \cdot M \\ Var(X\mid M=\mu, V\sim\sigma^2) &= \sigma^2 I \implies Var(X\mid M, V) = V\cdot I. \end{split}$$

Sledi:

$$E(X \mid V \sim \sigma^2) = E\left(\begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} M \mid V \sim \sigma\right) = \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \mu_0 \text{ in}$$

$$Var(X \mid V \sim \sigma^2) = \sigma^2 I + \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} Var(M \mid V \sim \sigma^2) \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$$

$$= \sigma^2 \left(I + \frac{1}{\kappa_0} \begin{bmatrix} 1 & \cdots & 1\\ \vdots & & \vdots\\ 1 & \cdots & 1 \end{bmatrix}\right).$$

Lahko zapišemo

$$f(x \mid \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \cdot \det \left(I + \frac{1}{\kappa_0} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{bmatrix} \right)^{-1}$$

$$-\frac{1}{2\sigma^2} \left\langle \left(\begin{bmatrix} 1 & \dots & 1 \\ I + \frac{1}{\kappa_0} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{bmatrix} \right)^{-1} \left(x - \begin{bmatrix} \mu_0 \\ \vdots \\ \mu_0 \end{bmatrix} \right)_{,x} - \begin{bmatrix} \mu_0 \\ \vdots \\ \mu_0 \\ \mu_0 \end{bmatrix} \right\rangle$$

$$\cdot e$$

Velja še

$$f(\sigma^{2}) = f_{\text{InvGama}}(\sigma^{2}) = \frac{b^{a}}{\gamma(a)} \cdot (\sigma^{2})^{-a-1} \cdot e^{-\frac{b}{\sigma^{2}}}$$

$$\Longrightarrow f(\sigma^{2} \mid x) \propto (\sigma^{2})^{-\frac{n}{2}} \cdot e^{-\frac{1}{\sigma^{2}} \frac{1}{2} (\langle \dots, \dots \rangle)} \cdot (\sigma^{2})^{-a-1} e^{-\frac{b}{\sigma^{2}}}$$

$$\leftrightarrow \text{InvGama} \left(a + \frac{n}{2}, b + \frac{1}{2} \left\langle \left(I + \frac{1}{\kappa_{0}} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{bmatrix} \right)^{-1} \left(x - \begin{bmatrix} \mu_{0} \\ \vdots \\ \mu_{0} \end{bmatrix} \right), x - \begin{bmatrix} \mu_{0} \\ \vdots \\ \mu_{0} \end{bmatrix} \right\rangle$$

 \leftrightarrow : konjugirana porazdelitev.

Prepričali smo se, da je opisana družina apriornih porazdelitev konjugirana, in sicer

- $a \rightarrow a + \frac{n}{2}$
- $b \to b + \frac{1}{2} \langle \dots, \dots \rangle$
- $\mu_0 \to \frac{\kappa_0}{\kappa_0 + n} \mu_0 + \frac{n}{\kappa_0 + n} \overline{x}$
- $\kappa_0 \to \kappa_0 + n$.

Nova b in μ_0 sta odvisna od realizacije $(x_1 \dots x_n)$.

$$b + \frac{1}{2} \left(\sum_{i=1}^{n} (x_i - \overline{x})^2 + \frac{n \cdot \kappa_0}{\kappa_0 + n} (\overline{x} - \mu_0)^2 \right)$$

4.2 Hierarhični modeli

Spomnimo se na normalni model "preizkušnja m terapij". Frekvencistično gledamo neodvisne skupine s.s.

$$X_{1,1}$$
 $X_{1,2}$ \dots $X_{1,m}$

$$\vdots$$

$$\vdots$$

$$X_{n_m,m}$$

$$X_{n_1,1}$$

$$\vdots$$

$$X_{n_2,2}$$

Velikosti $n_1 + \cdots + n_m = n$.

Funkcija neodvisnosti: $X_{ij} \sim N(\mu_j, \sigma^2)$.

Vse variance so enaka (homoskelastičnost) zaradi "preprostosti".

Najbolj nas zanimajo (ocene) za μ_j in σ^2 , "optimalne" frekventistične cenilke so:

$$\hat{\mu}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{ij} = \overline{X}_{.j}$$

$$\hat{\sigma} = \frac{1}{n-m} \sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{.j})^{2}.$$

Zadnjič: model m terapij $N(\mu_j, \sigma^2)$ $(1 \le j \le m)$.

Po preizkušnju domnev je glavna t.i. domneva homogenosti

$$\mu_1 = \mu_2 = \dots = \mu_m.$$

V pridruženem Bayesovem modelu začnemo z idejo, da so μ_j "poustvarjanje" nekega "izhodiščnega" μ_0 .

 σ^2 našega homoskelastičnega modela je znana. μ_0, τ_0^2, a, b $\downarrow \\ \mu, \eta^2 \in N(\mu_0, \tau_0^2) \times \text{InvGama}(a, b) - \text{Bayesov parameter}$ $\downarrow \\ \mu_1 \dots \mu_m \in N(\mu, \eta^2) \times \dots \times N(\mu, \eta^2) - \phi - \text{Bayesov parameter}$ $\downarrow \text{(neodvisno)}$ $x_{i_1} \in N(\mu_1, \sigma^2) \ (1 \leq i \leq n_1) \dots x_{i_m} \in N(\mu_m, \sigma^2) \ (1 \leq i \leq n_m) - \vartheta - \text{vzorec}$ (večji τ^2 , bolj μ_i različni).

4.2.1 Abstraktna opredelitev hierarhičnega modela

Bayesov parameter je oblike (ϑ, ϕ) kjer ϕ imenujemo hiperparameter, ϑ pa populacijski parameter. Za vzorčne gostote velja temeljni privzetek (HM - hierarhični model) $f(x \mid \vartheta, \phi) = f(x \mid \vartheta)$. Aposteriorne gostote bi lahko predstavili kot

$$f(\vartheta \mid \phi, x) = \frac{f(x \mid \vartheta, \phi) f(\vartheta \mid \phi) f(\phi)}{f(x)}$$
$$= \frac{f(x \mid \vartheta) f(\vartheta)}{f(x)} \cdot \frac{f(\vartheta \mid \phi) f(\phi)}{f(\vartheta)}$$
$$= f(\vartheta \mid x) f(\phi \mid \vartheta).$$

Ta predstavitev tipično ni uporabna, ker ne poznamo $f(\vartheta)$. Zato raje

- $f(\vartheta \mid \phi, x) = \frac{f(x|\vartheta, \phi)f(\vartheta|\phi)}{f(x|\phi)}$: aposteriorna gostota modela z vzorčnimi $f(x \mid \vartheta)$ in apriornimi $f(\vartheta \mid \phi)$,
- $f(\phi \mid \vartheta, x) = \frac{f(x|\vartheta)f(\phi|\vartheta)}{f(x|\vartheta)}$: aposteriorna gostota modela z vzorčnimi $f(\vartheta \mid \phi)$ in apriornimi $f(\phi)$

 $(\implies$ z Gibsom $f(\vartheta, \phi \mid x))$. Aplicirajmo na naš zgled: $\phi = (\mu, \eta^2)$

$$n = \sum_{j=1}^{m} n_j$$
$$\vartheta = (\mu_1 \dots \mu_m)$$

$$f([x_{ij}] \mid \mu_1 \dots \mu_m) = \prod_{j=1}^m (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n_j} (x_{ij} - \mu_j)^2}$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{j=1}^m \sum_{i=1}^{n_j} (x_{ij} - \mu_j)^2}$$

$$j=1\ldots m,\ i=1\ldots n_j.$$

Populacijska apriorna:

$$f(\mu_1 \dots \mu_m \mid \mu, \eta^2) = (2\pi\eta^2)^{-\frac{n}{2}} e^{-\frac{1}{2\eta^2} \sum_{j=1}^m (\mu_j - \mu)^2},$$

hiperapriorna:

$$f(\mu, \sigma^2) = f_{N(\mu_0, \tau_0^2)}(\mu) \cdot f_{\text{InvGama}(a,b)}(\eta^2).$$

$$f(\mu_1 \dots \mu_m \mid \mu, \eta^2, [x_{ij}])$$

$$\propto \prod_{i=1}^m e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n_j} (x_{ij} - \mu_j)^2} \cdot e^{-\frac{1}{2\eta^2} (\mu_j - \mu)^2}.$$

Analogije z aposteriornim NEP-normalnim modelom:

- $\sigma^2 \sigma^2$
- $x_{ij} x_i$
- $\mu_i \mu$
- $\eta^2 \tau_0^2$
- $\mu_j \mu$
- $\mu \mu_0$.

Ta pogojna aposteriorna porazdelitev je

$$\prod_{j=1}^{m} N\left(\frac{\frac{\sigma^2}{n_j}}{\frac{\sigma^2}{n_i} + \eta^2} \mu + \frac{\eta^2}{\frac{\sigma^2}{n_i} + \eta^2} \overline{x_{.j}}, \frac{\frac{\sigma^2}{n_j} \cdot \eta^2}{\frac{\sigma^2}{n_j} + \eta^2}\right).$$

 $f(\mu, \eta^2 \mid \mu_1 \dots \mu_m)$ 1-razsežni NEP-normalni model s polkonjugirano apriorno porazdelitvijo

$$f(\mu \mid \eta^{2}, \mu_{1} \dots \mu_{m}) \dots N\left(\frac{\frac{\tau_{0}^{2}}{m}}{\frac{\tau_{0}^{2}}{m} + \tau_{0}^{2}} \mu_{0} + \frac{\tau_{0}^{2}}{\frac{\tau_{0}^{2}}{m} + \tau_{0}^{2}} \overline{\mu}, \frac{\frac{\tau_{0}^{2}}{m} \cdot \tau_{0}^{2}}{\frac{\tau_{0}^{2}}{m} + \tau_{0}^{2}}\right)$$
$$f(\tau^{2} \mid \mu, \mu_{1} \dots \mu_{m}) \dots \text{InvGama}\left(a + \frac{m}{2}, b + \frac{1}{2} \sum_{i=1}^{m} (\mu_{j} - \mu)^{2}\right).$$

Definicija 4.2.1. Naj bo ν mera na $B(\Sigma)$. Tedaj je veriga $\{X_n\}$ ν -ireducibilna, če iz $\nu(A) > 0$ sledi

$$\forall x \; \exists m = n_n : \; P^n(A \mid x) = P(X_m \in A \mid X_0 = x) > 0.$$

Če naj velja EZVŠ, moramo vsako množico A, za katero

$$\pi(A) = \int_A d\pi(y) = \int_A f(y)dy > 0$$

obiskati neskončno-mnogokrat. Torej nas v našem kontekstu zanima π -ireducibilnost, kjer je π stacionarna porazdelitev.

Primer. Če iz f(y) > 0 sledi $q(y \mid x) > 0$, je M-H (Metropolis-Hastingova) veriga π -ireducibilna.

<u>Komentar</u>: zgornji pogoj je za praktične namene pogosto pomešan? (neuporaben?).

Definicija 4.2.2. Naj bo π stacionarna porazdelitev verige $\{X_n\}$, ki je π -ireducibilna. Veriga $\{X_n\}$ je periodična s periodo $d \geq 2$, če obstajajo paroma disjunktne Borelove množice $E_0 \dots E_{d-1}$, za katere velja

$$\forall i \in \{0 \dots d-1\} \ \forall x \in E_i : \ P(E_{i+1 \bmod d} \mid x) = 1.$$

Pripomnimo, da tedaj sledi

$$\forall x \in E_i : P^d(E_i \mid x) = 1.$$

(Naj bo $x \in E_i$. Tedaj

$$P^{2}(E_{i+2 \mod d} \mid x) = \int_{\Sigma} P(E_{i+2 \mod d} \mid y) dP(y \mid x)$$

$$\geq \int_{y \in E_{i+1 \mod d}} \dots$$

$$= \int_{y \in E_{i+1 \mod d}} dP(y \mid x) = 1.$$

Če veriga ni periodična, je aperiodična.

Trditev 4.2.3. Če sta f(y) in $q(y \mid x)$ pozitivni in zvezni povsod na $\Sigma = \mathbb{R}^r$ oz $\Sigma \times \Sigma = \mathbb{R}^r \times \mathbb{R}^r$, je π -ireducibilna M-H veriga tudi aperiodična.

Izrek 4.2.4. Če je M-H veriga π -ireducibilna in aperiodična, velja

$$\lim_{n \to \infty} \sup_{A \in B(\mathbb{R}^r)} |P^n(A \mid x) - \pi(A)| = 0$$

 $\pi = s.s.[x]$ (za s.g. vsak x).

Izrek 4.2.5. Privzemimo $q(y \mid x) = q(y)$ za $\forall x$ (neodvisni M-H) in q(y) > 0 ter f(y) > 0. Če obstaja konstanta M, za katero je $\forall y : f(y) < Mq(y)$, je M-H veriga ENAKOMERNO ERGODIČNA, obstaja zaporedje $r(n) \stackrel{n \to \infty}{\longrightarrow} 0$, za katero velja $\sup_A |P^n(A \mid x) - \pi(A)| \le r(n)$. Tu obstaja eksplicitni izraz za r(n).

Opomba. Pri predpostavkah izreka zmano s A/R simulirati NEODVISNO vzorčenje iz $\pi.$

Definicija 4.2.6. Naj bo π stacionarna oprazdelitev verige $\{X_n\}$, ki je π ireducibilna. Tedaj je ta veriga POVRNLJIVA, če iz $\pi(A) > 0$ sledi

- (i) $P(X_n \in A \text{ neskončno mnogokrat } | x) > 0 \text{ za } \forall x,$
- (ii) $P(X_n \in A$ neskončno mnogokrat $\mid x) = 1$ za $\pi\text{-skoraj}$ vse x.

Definicija 4.2.7. Veriga je Harrisov povrnljiva, če velja (ii) za $\forall x$.

Izrek 4.2.8. Naj bo π stacionarna porazdelitev verige $\{X_n\}$, ki je π -ireducibilna. Tedaj je veriga povrnljiva.

- Če je veriga še aperiodična, velja $\lim_{n\to\infty}\sup_A|P^n(A\mid x)-\pi(A)|=0$ za vsak x (π -s.g. [x]).
- Če je veriga Harrisov povrnljiva, velja $\lim_{n\to\infty}\sup_A B\left(P^n(A\mid x)-\pi(A)\right)=0$ za vsak x.

Poleg tega v tem primeru velja EZVŠ v obliki: $\forall x \ \forall \text{ integrabilna } h$:

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nh(x_i)=\int h(u)f(u)du\right)=P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nh(x_i)=\int h(u)d\pi(u)\mid x\right)=1.$$

Trditev 4.2.9. π -ireducibilna M-H veriga je Harrisov povrnljiva.

Izrek 4.2.10. Privzemimo Metropolisovo verigo oblike $q(y \mid x) = q(y - x)$, kjer je q simetrična okrog 0. Naj bo $\Sigma = \mathbb{R}^r$. Tedaj pridružena veriga "nikdar" ni enakomerno ergodična.