INTRO

PRE

LCDM Model

Interacting Models

Summary

- Interacting models
- List of what to make clear
- BASIC

Evolution of energy density for $Q_c = \xi H \rho_c$, constant ξ , constant w, and $\xi \neq -3$ w

$$\Omega m = \Omega m0 (1 + z)^{3-\xi}$$

$$\Omega d = \left(\Omega d0 + \frac{\xi}{3 w + \xi} \Omega m0\right) (1 + z)^{3 (1+w)} + \frac{-\xi}{3 w + \xi} \Omega m \equiv \Omega d0 \cdot (1 + z)^{3 (1+w)} + \frac{-\xi}{3 w + \xi} \Omega m$$

Evolution of energy density for $Q_c = \xi H \rho_d$, constant ξ , constant w, and $\xi \neq -3$ w

$$\Omega m = \left(\Omega m 0 + \frac{\xi}{\xi + 3 w} \Omega d 0\right) (1 + z)^3 + \frac{-\xi}{\xi + 3 w} \Omega d = \Omega m 0 \cdot (1 + z)^3 + \frac{-\xi}{\xi + 3 w} \Omega d = \Omega m \Omega d$$

 $\Omega d = \Omega d0 (1 + z)^{3(1+w)+\xi}$

So in the two cases, coupling constant has two effects:

- **1.** Amplifies the curve of deceleration parameter.
- 2. Energy flow between DE and DM.
- Interacting model $Q_c = \xi H \rho_c$ with constant ξ and constant EoS w.

Derived from (transition redshift, Ω m0) plane, the allowed region for coupling constant ξ is (-1.28, -0.46) with a center at -0.88, i.e., $-0.88^{+0.42}_{-0.40}$, taken the case that the universe is flat, and choose the EoS parameter {w=-1}.

Derived from the (transition redshift, $\frac{\Omega m0}{\Omega d0}$) plane, the allowed region of coupling constant ξ is (-1.25,- 0.47) with a center at -0.88, i.e., $-0.88^{+0.41}_{-0.37}$.

There is a bit difference between the two answers. One possible reason is the second method doesn't assume a flat universe, while the first one supposes the universe is flat.

The full table of fitting results are shown below. The light purple element are the final resuls.

In[315]:=

$tab\xi$ FinaltICC

Out[315]=

$Q_c=\xi$ H $ ho_c$, constant ξ , constant w=-1: Results for ξ			
Ω m0/ Ω d0·.Transition	$z_t = 0.376$	$z_t = 0.426$	$z_t = 0.508$
r=0.358	-1.25282	-0.965436	-0.617444
r=0.378	-1.15011	-0.875189	-0.542347
r=0.398	-1.05453	-0.791252	-0.472561

To check the consistancy of the two methods ((Transition, Ω m0) plane fitting and (Transition, Ω m0/ Ω d0) plane fitting), we find out the fitting results of coupling constant ξ for a flat universe, i.e., $r = \frac{\Omega m0}{1-\Omega m0}$ in the (Transition, Ω m0) plane, applying the data from (Transition, Ω m0/ Ω d0) plane. By solving out Ω m0, we get Ω m0 = $\frac{r}{1+r}$ (this is a monotonic function) in this case. Thus if we use the constrain that $r \in (0.358, 0.398)$ with a center value 0.378, the value of Ω m0 is (0.263623,0.284692), centered at 0.274311. Use this set of value of Ω m0 as the contrain, we have the fitting results in (Transition, Ω m0) plane, which is $-0.88^{+0.41}_{-0.37}$. This result is exactly the same as the result directly derived from (transition redshift, $\frac{\Omega$ m0}{\Omegad0) plane. The same has been done to $Q_c = \xi H \rho_d$ with ξ constant and w constant model, and the result is that the two methods are also consistant.

The plots of deceleration parameter are shown below. At the limit z->Infinity, the deceleration parameter is degenerate for different Ω m0 in this constant ξ and constant w model. Theoretically, this limit is determined by the interaction coupling constant ξ , which is $\frac{(1-\xi)}{2}$, with $3 w + \xi < 0$.

In[316]:=

Out[316]=

Check the effect of different parameters on deceleration parameter.

Interaction ξ changes the value of deceleration parameter at $z \to \infty$ limit. EoS changes the the whole shape. Matter fraction determines how fast q varies, but just in a small time scale.

A toy to play with is also provied. Slide the bars to view **the effects of different parameters on deceleration parameter**.

It can be inferred from the expression for Ω m and Ω d that if the transition happens before z=0, increasing couling ξ will bring forward the transition and if the it happens after z=0, increasing coupling ξ will delay the emergence of transition. The following figure shows this result. Gray rectangle is the region given by Riess (References, Data From, 2).

Orange for w=-1
Blue for w=-0.9

Solid line: ξ =0.2 Dashed line: ξ =0.1 Dotted line: ξ =-0.1 DotDashed line: ξ =-0.2

Pink solid line:w=-1, ξ =0

This can also be seen clearly from the following toy. Gray rectangle is the region given by Riess (References, Data From, 2).

The fitting results of coupling constant ξ can also be dynamic.

For different constant EoS, the fitting results using Ωm0∈(0.261,0.287) with a center value 0.274 and Transition redshift ∈ (0.376,0.508) with a center value 0.426. When EoS is very small, the line cross zero. But that is not so useful.

	Some data points are derived using $w = -1.087 \pm 0.096$ (from Reference, Data From, 3).					
In[322]:=	tab&vwExamICC					
	ξ results for Q_c= ξ H $\rho_{\rm C}$ (Fitting data: Data From, 2)					
0 (1000)	W	Center	Lower	Upper		
Out[322]=	-1.183	-0.881565	-1.29687	-0.443589		
	-1.087	-0.88948	-1.29859	-0.459135		
	-0.991	-0.875238	-1.27522	-0.456176		

A plot showing these data points and the curves of $\xi \sim w$.

Or just casually use the following parameters.

(-1 within 5%: (-1.05,-0.95))

w=-1 (-1.279,-0.457) center:-0.878

w=-1.05 (-1.293,-0.461) center:-0.887

w=-0.95 (-1.255,-0.447) center:-0.860

The following graph show how do ξ changes with EoS. The grid lines are the results of $w = -1 \pm 0.05$. Two verticle lines are -1.05 and -0.95 respectively. Horizontal lines are their intersections with the ξ ~w lines. EoS does not monotonically change ξ . And the minima of these line occurs at a larger w with an increasing Ω m0.

Now we assume we do not have the observed Ω m0 data, how do this Ω m0 change the result of ξ . In other words, if the observed Ω m0 data float around some value, then how is the fitting result? We also consider the curvature.

In the figure below, it seems that there is a point where three lines converge. This has something to do with the phenomena that

Some data for flat Λ CDM universe. The following data shows how Ω m0 change our results for ξ if we already have transition redshift data {0.426|0.376,0.508}.

If Ω m0 varies 5 percent from 0.274,

In[326]:=	
	tabξICCSum

Out[326]=

For $\Omega m0 \in 0.274 \ (1 \pm 0.05)$				
Table of ξ for different Ω m0~Transition combination				
Ωm0∵.Transition	0.426	0.376	0.508	
0.2603	-0.994339	-1.28571	-0.641508	
0.274	-0.877755	-1.15303	-0.544482	
0.2877	-0.767582	-1.02756	-0.452892	

Monotonic line.

Out[327]= $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $C_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant} \sim \Omega \text{m0}$ $Q_c = \xi \text{ H } \rho_c, \text{ constant w: Coupling Constant}$

Besides Ω m0, we can also find out the effects of Curvature, EoS. Assuming we have a constrain of Transition redshift (0.376,0.508) with a center at 0.426.

■ Interacting model $Q_c = \xi H \rho_c$ with constant ξ and CPL parameterized EoS $w = w0 + w1 \frac{z}{1+z}$.

For a flat universe, choose the parameters {w0=-1.02,w1=0.6}, the region for interation cosntant ξ should be (-1.04,-0.21) with a center at -0.64, i.e., $-0.64^{+0.42}_{-0.40}$, derived from the (transition redshift, Ω m0) plane, while a result of (-1.01, -0.23) with a center at -0.63, i.e., $-0.63^{+0.40}_{-0.38}$, derived from (transition redshift, $\frac{\Omega$ m0}{\Omegad0) plane.

Deceleration parameter is shown below. Behaves similiar to the constant ξ constant w situation.

The following plots shows the effect of different parameters. Each plot shows how do the deceleration parameter vs redshift line change under uniformly distributed w0,w1, Ω m0 or ξ . w0 moves the line up or down, but not monotonously; w1 changes the late time behavior;

 Ω m0 changes the slope; ξ has moves the line up or down;

In[330]:=

 ${\tt varyingICCPLShowSum}$

Out[330]=

A toy to play with the q~z plot. When ξ =0, w0=-1, w1=0, the curve reduced to LCDM curve.

In[331]:=

pldecICCPLManSum

A plot shows how bad it is to use transition redshift to constrain interacting model. This is a CPL parameterized example. For $\xi \in (-0.8,0)$, the line just stays near the allowed region constrained by Riess's results (References, Data From, 2).

From the manipulate below, we find for w0=-1, there is a point on this transition $\sim \Omega$ m0 curve do not change with coupling constant ξ and w1. (Well, what's the use of that...)

In[333]:=

plztrICCPLManSum

An explicit proof of this statement.

A manipulate of the fitting results.

In[335]:= fit €ICCPLManSum

Category

For different w0 and w1 in its EoS equation,

Quintom

Color illustrations for the following two figures.

"Purple line:(-1,0.1)_ Blue line: (-1,0.2) Green line:(-1,-0.1)\n_ Pink line:LCDM"

"Purple Dashed:(-0.9,0.1) Green Dashed:(-1.1,0.1)"

Plots of Transition redshift vs Ω m0.

Legends are shown on the plots. Hard to distingush from each other.

For **different EoS**, the fitting results are different. The following table and plots show how do w0 and w1 change the results.

In[339]:=

Out[339]=

tab \(\xi vw \text{ExamICCPLQuintom} \)

ξ results for $Q_c = \xi$ H ρ_d , CPL,Quintom.				
{w0,w1}	Center	Lower	Upper	
{-1, -0.1}	-0.907284	-1.3096	-0.484861	
{-1,0}	-0.877755	-1.27874	-0.457448	
{-1, 0.1}	-0.844859	-1.24477	-0.426298	
{-0.9,0.1}	-0.785036	-1.17144	-0.383258	
$\{-1.1, -0.1\}$	-0.910565	-1.3218	-0.477189	

Quintessence

Different from constant w results,

Some ξ fitting results are shown below. This shows how do w0 and w1 change ξ results.

13

In[343]:=

$tab \xi vwExamICCPLQuintessence$

Out[343]=

ξ results for $Q_c = \xi$ H ρ_d , CPL, Quintessence.				
{w0,w1}	Center	Lower	Upper	
$\{-0.9, -0.05\}$	-0.853591	-1.24197	-0.448612	
{-0.8, -0.05}	-0.765204	-1.1341	-0.384235	
$\{-0.8, -0.1\}$	-0.794865	-1.16484	-0.412217	

In[344]:=

Out[344]=

Phantom

In[345]:=

In[347]:=

$tab \xi vwExamICCPLPhantom$

Out[347]=

ξ results for $Q_c = \xi$ H ρ_d , CPL, Phantom.				
{w0,w1}	Center	Lower	Upper	
{-1.1, 0.05}	-0.878139	-1.28773	-0.447379	
{-1.2, 0.05}	-0.870255	-1.28596	-0.431951	
{-1.2, 0.1}	-0.861665	-1.27697	-0.424022	

In[348]:= pltfit & ICCPLPhantomSum -1.5 -1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -1.06-1.16-1.12Out[348]= -1.07-1.17 -1.14-1.08-1.18 {-1.1, 0.05} {-1.2, 0.05} {-1.2, 0.1} -1.18 -1.10 -1.20-1.20

■ Interacting model $Q_c = \xi H \rho_d$ with constant ξ and constant EoS w.

Derived from (transition redshift, Ω m0) plane, the allowed region for coupling constant ξ is (-1.06,-0.42) with a center at -0.76, i.e., $-0.76^{+0.34}_{-0.30}$, taken the case that the universe is flat, and choose the EoS parameter {w=-1}.

Derived from the (transition redshift, $\frac{\Omega m0}{\Omega d0}$) plane, the allowed region of coupling constant ξ is (-1.07,-0.41) with a center at -0.76, i.e., $-0.76^{+0.35}_{-0.31}$.

The plots of deceleration parameter are shown below. At the limit z->Infinity, the deceleration parameter ALL goes to $\frac{1}{2}$.

Theoretically, this limit is $\frac{1}{2}$ which is not related to any parameters, with $3 w + \xi < 0$.

To check the effect of different parameters, another plot is shown.

A toy to play with deceleration vs z curve is also provied

In[351]:= pldecI2CCManSum

If the transition happens before z=0, increasing couling ξ will delay the transition. If the it happens after z=0, increasing coupling ξ will bring forward the emergence of transition.

The following figure shows this result.

Gray rectangle is the region given by Riess.

Orange for w=-1 Blue for w=-0.9

line: ξ =0.2 Dashed: ξ =0.1 Dotted: ξ =-0.1 DotDashed: ξ =-0.2

Pink line:w=1, ξ =0

A toy of transition redshift. Gray rectangle is the allowed region of $\Omega m0\sim Transition$ redshift

The fitting results of coupling constant ξ is

For different constant EoS, the fitting results using Ω m0 \in (0.261,0.287) with a center value 0.274 and Transition redshift \in (0.376,0.508) with a center value 0.426. When EoS is very small, the line might cross zero. But that is not so useful.

Some data: (-1 within 5%: (-1.05,-0.95)) w=-1 (-1.074,-0.409) center:-0.761 w=-1.05 (-1.126,-0.428) center:-0.798 w=-0.95 (-1.013,-0.385) center:-0.717

The following graph show how do ξ changes with EoS. The grid lines are the results of $w = -1 \pm 0.05$. Two verticle lines are -1.05 and -0.95 respectively. Horizontal lines are their intersections with the ξ ~w lines.

Or we can use some fitting results from WMAP etc. Take the example of w=-1.087±0.096.

In[356]:=

$tab \xi vwExamI2CC$

Out[356]=

$Q_c = \xi$ H ρ_d , Constant w. (Data used: Data From, 2)				
W	Center	Lower	Upper	
-1.183	-0.864289	-1.22984	-0.449552	
-1.087	-0.820486	-1.15946	-0.437339	
-0.991	-0.753634	-1.06346	-0.405262	

 $Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \}$ $\begin{cases} Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{H } \rho_{d}, \text{ constant w: Coupling Constant} \sim \text{EoS} \} \\ Q_{c} = \{ \text{$

Now we assume we do not have the observed Ω m0 data, how do this Ω m0 change the result. In other words, if the observed Ω m0 data float around some value, then how is the fitting result? We also consider the curvature.

If Ω m0 varies 0.05 percent from 0.274,

In[359]:=

Out[359]=

$tab\xi I2CCSum$

For $\Omega m0 \in 0.274 (1 \pm 0.05)$ Table of ξ for different Ω m0~Transition combination 0.426 0.376 0.508 Ωm0∵Transition 0.2603 -0.832284 -1.07758 -0.53584 0.274 -0.760999-1.00068-0.4712980.2877 -0.688664 -0.922602 -0.40585

19

In[360]:=

Out[360]=

In addition, we can also find out the effects of Curvature, EoS. Assuming we have a constrain of Transition redshift (0.376,0.508) with a center at 0.426.

In[361]:=

■ Interacting model $Q_c = \xi H \rho_d$ with constant ξ and CPL parameterization.

varyingI2CCPLShowSum

Out[363]=

Quintom

plEoSI2CCPLQuintomSum

In[366]:=

Out[365]=

plztrI2CCPLQuintomSum

Out[366]=

In[367]:=

$tab \xi vwExamI2CCPLQuintom$

ξ results for Q _c = ξ H $ ho_{ m d}$, CPL,Quintom.				
{w0,w1}	Center	Lower	Upper	
{-1, -0.1}	-1.21004	-1.73137	-0.653393	
{-1,0}	-1.15265	-1.66715	-0.605615	
{-1, 0.1}	-1.09155	-1.59939	-0.553918	
{-0.9, 0.1}	-0.94736	-1.40905	-0.463859	
{-1.1, -0.1}	-1.28331	-1.84354	-0.680925	

Out[367]=

Quintessence

In[370]:=

Out[370]=

In[371]:=

${\tt tab} \xi {\tt vwExamI2CCPLQuintessence}$

Out[371]=

ξ results for Q _c = ξ H $ ho_{ m d}$, CPL,Quintessence.				
{w0,w1}	Center	Lower	Upper	
$\{-0.9, -0.05\}$	-1.05994	-1.53267	-0.561052	
$\{-0.8, -0.05\}$	-0.881934	-1.30148	-0.445082	
$\{-0.8, -0.1\}$	-0.926183	-1.35	-0.483467	

23

In[372]:=

Out[372]=

Phantom

In[373]:=

Out[373]=

In[375]:=

tabξvwExamI2CCPLPhantom

Out[375]=

ξ results for $Q_c=\xi$ H $ ho_d$, CPL,Phantom.				
{w0,w1}	Center	Lower	Upper	
{-1.1, 0.05}	-1.21257	-1.76337	-0.623591	
{-1.2, 0.05}	-1.266	-1.8517	-0.635863	
{-1.2, 0.1}	-1.24569	-1.82849	-0.619702	

pltfit & I2CCPLPhantomSum

Out[376]=

References

Data From

1. CPL data

Combining SN1a, BAO 3, WMAP5, H(z) (From arXiv:0909.0596)

$$\Omega m0 = 0.269^{+0.017}_{-0.008}, \, w0 = -0.97^{+0.12}_{-0.07}, \, w1 = 0.03^{+0.26}_{-0.75}.$$

2. LCDM

From WMAP: Ωm0=0.265

arXiv:astro-ph/0611572, Riess et al

arXiv:1205.4688 : Ω m0=0.247 (+0.013, -0.013) and Transition 0.426 (+0.082, -0.050)

3. Equation of state

From arXiv:1202.0545v1 $w = -1.087 \pm 0.096$.