CAPE Lab Report Assignment - 2

Arpit Kumar 09th April, 2025

Project Title: Heat Exchanger Design for Heating Benzene using Toluene

Objective:

To design a shell-and-tube heat exchanger in Aspen HYSYS to heat **benzene** from **70°F** to **140°F** using **toluene** as the heating medium, with outlet temperature of **toluene** at **150°F**. The simulation includes thermal design, rating, and creation of an EDR file.

Problem Statement:

• Cold Fluid (Benzene):

o Flow rate: **80,000 lb/hr**

o Inlet temperature: 70°F

o Outlet temperature: 140°F

o Inlet pressure: **45 psia**

o Allowable pressure drop: 5 psia

• Hot Fluid (Toluene):

o Inlet temperature: 235°F

Outlet temperature: 150°F

o Inlet pressure: 40 psia

o Allowable pressure drop: 5 psia

• Heat Exchanger Details:

o Type: Shell and Tube

Configuration: Multi-pass (2 pass)

o Hot fluid: **Tube side**

o Cold fluid: **Shell side**

• Fouling factors: **0.0015** ft²·hr·°F/BTU (both sides)

Q1. Flowrate Check & Heat Duty Estimation

Approach:

A **simple heater block** was used in HYSYS to simulate the benzene heating process with toluene as the heat source. This step helps in estimating the **required heat duty**.

Worksheet	Name	inlet	0	E
Conditions	Vapour	0.0000	0.0000	<empty></empty>
Properties	Temperature [F]	70.00	140.0	<empty></empty>
Composition PF Specs	Pressure [psia]	45.00	40.00	<empty></empty>
	Molar Flow [lbmole/hr]	1024	1024	<empty></empty>
	Mass Flow [lb/hr]	8.000e+004	8.000e+004	<empty></empty>
	Std Ideal Liq Vol Flow [barrel/day]	6209	6209	<empty></empty>
	Molar Enthalpy [Btu/lbmole]	2.137e+004	2.345e+004	<empty></empty>
	Molar Entropy [Btu/lbmole-F]	-35.16	-31.48	<empty></empty>
	Heat Flow [Btu/hr]	2.189e+007	2.402e+007	2.125e+006

Results:

• Heat Duty (Q): 21,24,640 BTU/hr.

Q2. Thermal Design using Aspen HYSYS - Heat Exchanger Modeler

Q3. Thermal Design using Aspen HYSYS - Heat Exchanger Modeler

Design Ratin	g Worksheet Performance Dynamic	Rigorous Shell&Tube			
Worksheet	Name	toluene_hot_in	toluene_hot_out	benzene_cold-in	benzene_cold_out
Conditions Properties	Vapour	0.0000	0.0000	0.0000	0.0000
	Temperature [C]	112.8	80.24	21.11	52.97
Composition	Pressure [kPa]	275.8	264.6	310.3	307.5
PF Specs	Molar Flow [kgmole/h]	324.3	324.3	464.6	464.6
	Mass Flow [kg/h]	2.988e+004	2.988e+004	3.629e+004	3.629e+004
	Std Ideal Liq Vol Flow [m3/h]	34.35	34.35	41.13	41.13
	Molar Enthalpy [kJ/kgmole]	2.720e+004	2.159e+004	4.972e+004	5.363e+004
	Molar Entropy [kJ/kgmole-C]	-66.06	-81.23	-147.2	-134.6
	Heat Flow [kJ/h]	8.820e+006	7.002e+006	2.310e+007	2.492e+007

Situation 2:

1. Objective:

This addendum evaluates the **existing shell and tube heat exchanger**, initially designed for heating benzene with toluene, for a **new service**: heating **methanol using high-temperature water**. The same **heat duty (10.5 MMBTU/hr)** is maintained. The goal is to **rate** and **retune** the exchanger and assess its performance under the new operating conditions.

