Метод Монте-Карло в машинном обучении: исследовательский проект

Валентина Алексеева

17.06.2025

Цель проекта

- Оценка устойчивости регрессионных моделей при случайных изменениях обучающей выборки
- Использование метода Монте-Карло (bootstrap sampling)
- Сравнение моделей по метрикам: MSE и R^2
- Применение на трёх реальных датасетах

Описание данных

- **Diabetes** 442 записи, медицинские признаки, прогноз прогрессирования болезни
- California Housing 20,000 записей, демографические и географические признаки
- Energy Efficiency 768 зданий, теплопотери, архитектурные параметры

Используемые модели и методы

- Линейные модели:
 - Ridge,
 - Lasso,
 - ElasticNet
- Бустинговые модели:
 - GradientBoosting,
 - XGBoost.
 - CatBoost

Метод Монте-Карло:

- N симуляций: 50 / 100 / 150
- Bootstrap-семплирование обучающей выборки
- Расчёт среднего предсказания, доверительных интервалов

Метрики оценки качества

- MSE (Mean Squared Error) ошибка предсказания
- R^2 (Коэффициент детерминации) доля объяснённой дисперсии
- Сравнение метрик до и после Монте-Карло
- Визуализация доверительных интервалов

Пример: Energy Dataset

- Меньше доверительные интервалы
- Небольшой разброс

Пример: Diabetes Dataset

- Больше доверительные интервалы
- Больший разброс

Сравнение метрик R^2

- CatBoost показывает наилучшие результаты на всех датасетах
- Линейные модели (Ridge, Lasso, ElasticNet) хуже справляются с нелинейными зависимостями

Общие результаты

- Бустинг лидирует по точности и устойчивости
- Линейные модели хорошая базовая точка
- Метод Монте-Карло помогает:
 - количественно оценить вариативность
 - снизить переобучение
 - визуализировать доверие к предсказанию

Структура проекта

- Jupyter-ноутбук с экспериментами
- README с описанием
- Презентация
 Все файлы доступны в репозитории GitHub

Спасибо за внимание!