

INF 1010 Estruturas de Dados Avançadas

Grafos

Primeiro uso conhecido 1736 Euler: pontes de Königsberg

Primeiro uso conhecido 1736 Euler: pontes de Königsberg

Saindo de uma margem, é possível atravessar todas as pontes exatamente uma vez e retornar à mesma margem?

Caminho Euleriano

Caminho Euleriano:

caminho que visita cada aresta apenas uma vez.

Circuito Euleriano:

caminho Euleriano que começa e termina no mesmo vértice (Grafos Eulerianos).

Um grafo conexo possui caminho euleriano se e somente se ele tem exatamente zero ou dois vértices de grau impar.

Definição

$$G = (V,E)$$

um conjunto V de *n* nós (vértices, *vertices*) e um conjunto E de *m* arcos (arestas, *edges*)

exemplos

vértices:
$$V = \{0,1,2,3\}$$

arestas: $E = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$
 $n = 4$
 $m = 6$

vértices :
$$V = \{0,1,2,3,4,5,6\}$$

arestas: $E = \{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$
 $n = 7$
 $m = 6$

Usos de grafo

grafo	vértices	arestas
transporte	interseções de ruas	ruas
comunicação	computadores	cabos
Web	páginas Web	links
sociedade	pessoas	relacionamentos
software	funções	chamadas de função
cronograma	tarefas	restrições de preferência

Vértices adjacentes

vértices conectados por arestas

Digrafo: grafo direcionado (orientado)

vértices: $V = \{0,1,2\}$

arestas (pares ordenados):

$$E = \{<0,1>,<1,0>,<1,2>\}$$

Qual é o número máximo de arestas em um grafo direcionado de *n* vértices?

n (n-1)

Subgrafo

Subgrafo

Grafo completo

grafo não direcionado, em que cada vértice está conectado com cada um dos outros vértices por apenas uma aresta

Quantas arestas há em um grafo completo de n vértices? n (n-1)/2

Grafo conectado (ou conexos)

existe um caminho entre quaisquer dois vértices

exemplo

grafo com 2 componentes conectados

Grau

número de arestas incidentes em um vértice exemplo:

```
grau do vértice (1): 3
grau de entrada do vértice (1): 1
grau de saída do vértice (1): 2
voltando ao problema da
ponte de Königsberg
```


seria possível somente se o grau de todos os nós fosse par

Caminhos e ciclos

caminhos

de comprimento 1 entre A e C de comprimento 2 entre B e G, passando por H de comprimento 2 entre B e G, passando por F de comprimento 3 de A a F

Ciclos

caminho de um nó para si mesmo

exemplo: B-F-G-B

grafo cíclico

contém um ou mais ciclos

ciclos

grafo acíclico

não contém ciclos

Multigrafo

dois nós podem estar conectados por mais de uma aresta

Digrafo com auto-aresta

dúvidas sobre definições de grafo?

Representações de grafo

- matriz de adjacências
- listas de adjacências (incidências)

	0	1	2	3
0	0	1	1	1
1	1	0	1	1
2	1	1	0	1
3	1	1	1	0

	0	1	2	3	4	5	6
0	0	1	1	0	0	0	0
1	1	0	0	1	1	0	0
2	1	0	0	0	0	1	1
3	0	1	0	0	0	0	0
4	0	1	0	0	0	0	0
5	0	0	1	0	0	0	0
6	0	0	1	0	0	0	0

	0	1	2
0	0	1	0
1	1	0	1
2	0	0	0

Percursos em grafos

em profundidade (depth-first search)

arestas que partem do vértice mais recente (visitado por último)

em largura (breadth-first search)

arestas que partem do vértice mais antigo (visitado primeiro)

guloso (greedy)

arestas de menor custo, menor caminho

Percursos em grafos

Cada vértice examinado deve ser marcado como visitado.

Por quê?

Percurso em profundidade – depth first search

```
/* grafo como matriz de adjacências */
int graph[MAX_VERTICES][MAX_VERTICES];
int visited[MAX_VERTICES];
void dfs(int v) {
  int w;
  printf("%3d", v);
  visited[v] = 1;
  for (w = 0; w < MAX_VERTICES; w++)
   if (graph[v][w] && !visited[w]) dfs(w);
```

dúvidas

sobre o percurso dfs em um grafo representado como matriz de adjacências?

Listas de adjacências

Percurso em profundidade – depth first search

```
/* grafo como listas de adjacências */
typedef struct _listNode ListNode;
struct _listNode { int vertex; ListNode* link; };
ListNode* graph[MAX_VERTICES];
int visited[MAX_VERTICES];
void dfs(int v){
  ListNode* w:
  visited[v] = 1;
  printf("%3d", v);
  for (w = graph[v]; w != NULL; w = w->link)
    if (!visited[w->vertex]) dfs(w->vertex);
```

Percurso em largura – breadth first search

semelhante ao percurso por nível em uma árvore (registrando os nós visitados)

Grafo ponderado

cada aresta possui um peso (*weight*) ou custo (*cost*)

Menor caminho entre um nó de origem e um de destino – algoritmo de Dijkstra

- Defina o nó de origem
- 2. Atribua todos os nós um valor de distância ao nó de origem: valor zero ao nó de origem, e *infinito* para todos os outros nós.
- 3. Marque todos os demais nós como não visitados e o nó origem como corrente (A).
- 4. Considere a distância de todos os nós vizinhos não visitados ao nó corrente e calcule uma distância deles ao nó origem através do nó corrente. Por exemplo, se o nó atual A tiver distância 6, e houver uma aresta de peso 2 conectando-o com um outro nó B, a distância de B através de A será 8. Se essa distância for menor do que a distância registrada anteriormente (infinito, na primeira rodada; zero para o nó de origem), sobrescreva a distância de B.
- 5. Ao terminar de considerar todos os vizinhos do nó atual A, marque-o como visitado. Um nó visitado não será mais verificado; sua distância registrada agora é final e mínima.
- 6. Se todos os nós tiverem sido visitados, termine. Caso contrário, marque o nó não visitado com a menor distância (do nó de origem) como o próximo "nó corrente", e repita a partir do passo 4.

Ao final, tem-se a menor distância entre o nó de origem e cada um dos nós do grafo.

considerando como vértice inicial 0

modifica distâncias dos vértices 1 e 5

marca o vértice 0 como visitado seleciona o vértice 5 (o de menor distância) ignora vértice 0 (já visitado); modifica distância do vértice 4

marca o vértice 5 como visitado seleciona o vértice 1 (o de menor distância) ignora vértice 0; modifica distâncias dos vértices 2 e 6

marca o vértice 1 como visitado seleciona o vértice 4 (o de menor distância) modifica distância do vértice 3; ignora vértice 5; mantém a distância do vértice 6

marca o vértice 4 como visitado seleciona o vértice 6 (o de menor distância) ignora vértice 1; mantém distância do vértice 3; ignora vértice 4

marca o vértice 6 como visitado seleciona o vértice 2 (o de menor distância) ignora vértice 1; modifica distância do vértice 3

marca o vértice 2 como visitado seleciona o vértice 3 (o de menor distância) ignora vértices 2, 4 e 6

marca o vértice 3 como visitado não há mais vértices não visitados - FIM!

dúvidas sobre o algoritmo de Dijkstra?

TAD Grafo

```
typedef struct graph Graph;
Graph* graph_create(int initial_size);
Graph* graph_destroy(Graph* g);
int graph_insert_vertex(Graph* g, void* info);
void graph_insert_edge(Graph* g, int v1, int v2, int weight);
void* graph_get_vertex_info(Graph* g, int idx);
void depth_first(Graph* q, int idx, int max_hops, void(*cb_fn)(void*));
unsigned int graph_shortest_distance(Graph* g, int v1, int v2);
void graph_print(Graph* q, void(*cb_fn)(void*));
int graph_num_components(Graph* g);
```

Exemplo

```
int main(void)
  Graph* g = graph_create(10);
  graph_insert_vertex(g, NULL); /* vertex 0 */
  graph_insert_vertex(g, NULL); /* vertex 1 */
  graph_insert_vertex(g, NULL); /* vertex 2 */
   graph_insert_vertex(g, NULL); /* vertex 3 */
  graph_insert_vertex(g, NULL); /* vertex 4 */
  graph_insert_vertex(g, NULL); /* vertex 5 */
   graph_insert_vertex(g, NULL); /* vertex 6 */
  graph_insert_edge(g, 0, 1, 28);
  graph_insert_edge(g, 0, 5, 10);
  graph_insert_edge(g, 1, 2, 16);
  graph_insert_edge(g, 1, 6, 14);
  graph_insert_edge(g, 3, 6, 18);
  graph_insert_edge(g, 4, 5, 25);
  graph_insert_edge(g, 4, 6, 24);
  graph_destroy(g);
  return 0;
}
```


Exemplo

```
int main(void)
  Graph* g = graph_create(10);
  graph_insert_vertex(g, NULL); /* vertex 0 */
  graph_insert_vertex(g, NULL); /* vertex 1 */
  graph_insert_vertex(g, NULL); /* vertex 2 */
  graph_insert_vertex(g, NULL); /* vertex 3 */
  graph_insert_vertex(g, NULL); /* vertex 4 */
  graph_insert_vertex(g, NULL); /* vertex 5 */
  graph_insert_vertex(g, NULL); /* vertex 6 */
  graph_insert_edge(g, 0, 1, 28);
  graph_insert_edge(g, 0, 5, 10);
  graph_insert_edge(g, 1, 2, 16);
  graph_insert_edge(g, 1, 6, 14);
  graph_insert_edge(g, 3, 6, 18);
  graph_insert_edge(g, 4, 5, 25);
  graph_insert_edge(g, 4, 6, 24);
  graph_destroy(g);
   return 0:
}
```


dfs (depth-first search)

dfs iniciando em 0

```
dfs(0)
    dfs(1)
    dfs(2)
    dfs(6)
    dfs(3)
    dfs(4)
    dfs(5)
```


bfs (breadth-first search)

bfs iniciando em 0

bfs(0)		
-> enfileira 1, 5	[1,5]	
bfs(1)		10 0 28
-> enfileira 2, 6	[5,2,6]	10 0 28
bfs(5)		
-> enfileira 4	[2,6,4]	(5) 14 16
bfs(2)		
[6,4]		6
bfs(6)		25 24
-> enfileira 3	[4,3]	18
bfs(4)		4
[3]		(3)
bfs(3)		
[]		

dúvidas?

árvore geradora

1. Considere cada nó uma árvore (formando uma floresta)

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

- 2. Examine a aresta de menor custo. Se ela unir duas florestas, inclua-a.
- 3. Repita até todos os nós estarem conectados.

dúvidas sobre o algoritmo de Kruskal?