2 Теория колец

2.4 Гомоморфизм колец

2.4.1 Основные определения и примеры

Определение 1. Гомоморфизмом колец $\varphi: R \to S$ (кольца) называется отображение:

1.
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

2.
$$\varphi(ab) = \varphi(a) \cdot \varphi(b)$$

 $\it Изоморфизмом$ колец называется гомоморфизм колец, действующий биективно.

2.4.2 Свойства гомоморфизмов колец

Теорема 1. Пусть $\varphi: R \to S$ - гомоморфизм колец, A - подкольцо в R; B - идеал в S.

1. Для
$$\forall r \in R$$
 в положительного целого $n: \begin{cases} \varphi(n \cdot r) = n \cdot \varphi(r) \\ \varphi(r^n) = (\varphi(r))^n \end{cases}$

2.
$$\varphi(A) = \{\varphi(a) | a \in A\}$$
 - подкольцо в S

3.
$$\varphi^{-1}(B) = \{r \in R | \varphi(r) \in \varphi\}$$
 - $u \partial e a \pi \in B$

4. Если
$$R$$
 - коммутативно, то $\varphi(R)$ - коммутативно

5. Если
$$1 \in R; S \neq \{0\}$$
 и φ - сюръективно, то $\varphi(1)$ - обратим (единица) в S

6.
$$\varphi$$
 - изоморфизм $\Leftrightarrow \varphi$ - сюръективно и $Ker \varphi = \{r \in R | \varphi(r) = 0\} = \{0\}$

7. Если
$$\varphi$$
 - изоморфизм, то φ^{-1} - изоморфизм

Теорема 2. Пусть $\varphi:R\to S$ - изоморфизм колец. Тогда $Ker\ \varphi=\{r\in R|\varphi(r)=0\}$ - идеал в R

Теорема 3. Пусть $\varphi:R\to S$ - изоморфизм колец. Тогда отображение ${R/_{Ker}}_{\varphi}\to \varphi(R)$ - изоморфизм: ${R/_{Ker}}_{\varphi}\cong \varphi(R)$

Теорема 4. \forall идеал в кольце R является ядром гомоморфизма кольца R. B частности, идеал A из R есть $Ker\ \varphi$, где φ : $R \to R/A \\ r \to r + A$

Теорема 5. Пусть R - кольцо c единицей.

 $\mathit{Отображениe}\ arphi: egin{array}{c} \mathbb{Z} o R \\ n o n \cdot 1 \end{array}$ - гомоморфизм колец

Следствие 1. Если R - кольцо c единицей u char(R) = n > 0, то R содержит подкольцо, изоморфное \mathbb{Z}_n

 $Ecnu\ char(R)=0,\ mo\ R\ codeржит\ nodкольцо,\ изоморфное\ \mathbb{Z}.$

Доказательство. Пусть 1 - единица RРассмотрим $S = \{k \cdot 1 | k \in Z\}$

По предыдущей теореме: отображение $\varphi: egin{array}{c} \mathbb{Z} o S \\ k o k \cdot 1 \end{array}$ - гомоморфизм колец

По первой теореме об изоморфизмах: ${}^{\mathbb{Z}}/_{Ker}\ _{\varphi}\cong \varphi(\mathbb{Z})$

 $Ker \varphi = \{k \in \mathbb{Z} | \varphi(k) = 0\},$ где $\varphi(k) = k \cdot 1 \Rightarrow k \cdot 1 = 0 \Rightarrow k \ char \ S \Rightarrow k$ аддитивный порядок $1 \Rightarrow Ker \varphi = (k)$

 $\mathbb{Z}/_{Ker \ \varphi} = \mathbb{Z}/_{(k)} = \mathbb{Z}_k$ $\varphi(\mathbb{Z}) \subset S$

 $\mathbb{Z}_k \cong \varphi(\mathbb{Z}) \subset S$

Можно рассмотреть отображение на себя (сюръективность)

 $k = char \ \mathbb{Z}_k = char \ S \Rightarrow \varphi(\mathbb{Z}) = S \Rightarrow \mathbb{Z}_k \cong S$ Если $char \ R = 0 \Rightarrow S \cong \mathbb{Z}/(0) \cong \mathbb{Z}$

Следствие 2. Для \forall положительныц целых m отображение $\varphi: \begin{tabular}{c} \mathbb{Z} \to \mathbb{Z}_m \\ m > m \end{pmatrix}$ является гомоморфизмом.

Следствие 3. Пусть F - none u char F = p. Тогда F содержит подполе, изоморфное \mathbb{Z}_p . Если char F=0, то F содержит подполе, изоморфное полю рациональных чисел.

Теорема 6. Пусть D - кольцо целостности. Тогда \exists поле F, которое содержит подкольцо, изоморфное D.