CS1231: Discrete Structures

Tutorial 8

Li Wei

Department of Mathematics National University of Singapore

25 March, 2019

Quick Review

- Euclidean Algorithm.
 Inverse of a modulo m.
- ▶ RSA Cryptosystem.
- ▶ **Principle of Mathematical Induction** To prove $\forall n \ge 0(P(n))$, we complete two steps:
 - Base Case: Verify that P(0) is true. (That is, start with the least n.)
 - Inductive Step: Show that for all $k\geqslant 0$ $P(0)\wedge P(1)\wedge \cdots \wedge P(k) \xrightarrow{\text{using various rules of inference}} P(k+1).$

Menu

Question 1	Question 3(c)
Question 2.	Question 4
Question 3(a)	Question 5.
Question 3(b)	Question 6.

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: **Step 1.** n=1537 with digits. I is separated into blocks of length ((the number of digits of n) -1) = .

Step 2. Let
$$M$$
 be each block and $C = M^e$ **Mod** $n =$

- M = . Then
- M = . Then
- M = . Then

- 1. Consider the RSA cryptosystem with p = 29, q = 53, so that n=pq=1537 and with e=47. Thus the enciphering key is (1537, 47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n = 1537 with digits. I is separated into blocks of length ((the number of digits of n) -1) = .

Step 2. Let
$$M$$
 be each block and $C = M^e$ **Mod** $n =$

- M = . Then
- M = . Then
- M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = .

Step 2. Let M be each block and $C = M^e$ **Mod** n =

- M = . Then
- M = . Then
- M = . Then
- The encrypted message is

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** n =

M = . Then

M = 1. Then

M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

08 051 216

Step 2. Let M be each block and $C = M^e$ **Mod** n =

- M = Then
- M = . Then
- M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

08 051 216

Step 2. Let M be each block and $C = M^e \text{ Mod } n = M^{47} \text{ Mod } 1537.$

- M = . Then
- M = . Then
- ullet M= . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M=08. Then
- ullet M= . Then
- M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e \text{ Mod } n = M^{47} \text{ Mod } 1537.$

- M=08. Then C=
- M = . Then
- M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e \text{ Mod } n = M^{47} \text{ Mod } 1537.$

- M = 08. Then $C = 08^{47} \; \text{Mod} \; 1537$
- ullet M = ldot . Then
- M = 1. Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e \text{ Mod } n = M^{47} \text{ Mod } 1537.$

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = . Then
- ullet M= . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M=051. Then
- M = . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e \text{ Mod } n = M^{47} \text{ Mod } 1537.$

- M = 08. Then $C = 08^{47} \text{ Mod } 1537 = 814$.
- M = 051. Then C =
- M = 1 . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ **Mod** 1537
- M = 1. Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ **Mod** 1537 = 419.
- ullet M = ldot . Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

08 051 216

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ **Mod** 1537 = 419.
- M = 216. Then

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ Mod 1537 = 419.
- M = 216. Then C =

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ Mod 1537 = 419.
- M = 216. Then $C = 216^{47}$ **Mod** 1537

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ **Mod** 1537 = 419.
- M = 216. Then $C = 216^{47} \text{ Mod } 1537 = 1456$.

- 1. Consider the RSA cryptosystem with $p=29,\ q=53,$ so that n=pq=1537 and with e=47. Thus the enciphering key is (1537,47).
 - (i) Encrypt the message HELP using 01 for A, 02 for B, etc. **Step 0.** Translate HELP into a number I: 08051216. **Step 1.** n=1537 with 4 digits. I is separated into blocks of length ((the number of digits of n) -1) = 3.

08 051 216

Step 2. Let M be each block and $C = M^e$ **Mod** $n = M^{47}$ **Mod** 1537.

- M = 08. Then $C = 08^{47}$ Mod 1537 = 814.
- M = 051. Then $C = 051^{47}$ Mod 1537 = 419.
- M = 216. Then $C = 216^{47}$ Mod 1537 = 1456.

814 419 1456

814 419 1456

We need to need the inverse d of e=47 $\mod (p-1)(q-1)=(29-1)\times (53-1)=1456.$ Using the Euclidean algorithm, we have

We need to need the inverse d of e=47 $\mod(p-1)(q-1)=(29-1)\times(53-1)=1456$. Using the Euclidean algorithm, we have

$$\begin{array}{rcl}
1456 & = & \underline{47} \times 30 + \underline{46} \\
\underline{47} & = & \underline{46} \times 1 + 1
\end{array}$$

Now backward

We need to need the inverse d of e = 47 $\mod(p-1)(q-1) = (29-1) \times (53-1) = 1456$. Using the Euclidean algorithm, we have

$$1456 = 47 \times 30 + 46$$

 $47 = 46 \times 1 + 1$
Now backward

We need to need the inverse d of e=47 $\mod(p-1)(q-1)=(29-1)\times(53-1)=1456$. Using the Euclidean algorithm, we have

$$\begin{array}{rcl} \underline{47} & = & \underline{46} \times 1 + 1 \\ & \text{Now backward} \\ 1 & = & \underline{47} - \underline{46} \end{array}$$

We need to need the inverse d of e=47 $\mod(p-1)(q-1)=(29-1)\times(53-1)=1456$. Using the Euclidean algorithm, we have

$$47 = 46 \times 1 + 1$$
Now backward
$$1 = 47 - 46$$

$$= 47 - (1456 - 47 \times 30)$$
=

We need to need the inverse d of e=47 $\mod (p-1)(q-1)=(29-1)\times (53-1)=1456$. Using the Euclidean algorithm, we have

$$\begin{array}{rcl} \underline{47} & = & \underline{46} \times 1 + 1 \\ & \text{Now backward} \\ 1 & = & \underline{47} - \underline{46} \\ & = & \underline{47} - (1456 - \underline{47} \times 30) \\ & = & 47 \times 31 - 1456 \end{array}$$

814 419 1456

We need to need the inverse d of e=47 $\mod (p-1)(q-1)=(29-1)\times (53-1)=1456$. Using the Euclidean algorithm, we have

$$\begin{array}{rcl} \underline{47} & = & \underline{46} \times 1 + 1 \\ & \text{Now backward} \\ 1 & = & \underline{47} - \underline{46} \\ & = & \underline{47} - (1456 - \underline{47} \times 30) \\ & = & 47 \times 31 - 1456 \\ d & = & \end{array}$$

We need to need the inverse d of e=47 $\mod (p-1)(q-1)=(29-1)\times (53-1)=1456$. Using the Euclidean algorithm, we have

$$1456 = 47 \times 30 + 46$$

$$47 = 46 \times 1 + 1$$
Now backward
$$1 = 47 - 46$$

$$= 47 - (1456 - 47 \times 30)$$

$$= 47 \times 31 - 1456$$

$$d = 31.$$

The decryption formula is thus $M = C^{31}$ **Mod** 1537.

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

ightharpoonup C =
ightharpoonup . Then $M =
ightharpoonup ^{31}$ Mod 1537 =
ightharpoonup .

ightharpoonup C =
ightharpoonup . Then $M =
ightharpoonup^{31} \operatorname{Mod} 1537 =
ightharpoonup .$

21 - - -

 $C = \qquad . \ \, \text{Then} \,\, M = \qquad ^{31} \,\, \textbf{Mod} \,\, 1537 = \qquad .$

Then I is

 $M = C^{31} \text{ Mod } 1537.$

•
$$C=814$$
. Then $M=814^{31}~{
m Mod}~1537=~$.

$$ightharpoonup C =
ightharpoonup .$$
 Then $M =
ightharpoonup ^{31}$ Mod $1537 =
ightharpoonup .$

$$C = \qquad . \text{ Then } M = \qquad \frac{31 \text{ Mod } 1537}{} = \qquad .$$

Then I is

 $M = C^{31} \text{ Mod } 1537.$

$$ightharpoonup C =
ightharpoonup Then $M =
ightharpoonup ^{31} \ extbf{Mod} \ 1537 =
ightharpoonup .$$$

$$ho$$
 $C=$. Then $M=$ 31 **Mod** $1537=$.

Then I is

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

• C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.

• C = 419. Then $M = 419^{31}$ **Mod** 1537 = .

C = 1000 Then M = 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Then I is

i ileli 1 is

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

- C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.
- C = 419. Then $M = 419^{31} \text{ Mod } 1537 = 051$.
- C = . Then M = 31 Mod 1537 = .

Then I is

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

- C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.
- C = 419. Then $M = 419^{31} \ {
 m Mod} \ 1537 = 051$.
- C = 1456. Then $M = 1456^{31}$ **Mod** 1537 =

Then I is

Back into English:

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

- C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.
- C = 419. Then $M = 419^{31} \text{ Mod } 1537 = 051$.
- C = 1456. Then $M = 1456^{31}$ **Mod** 1537 = 216.

Then I is

Back into English:

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

- C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.
- C = 419. Then $M = 419^{31} \text{ Mod } 1537 = 051$.
- C = 1456. Then $M = 1456^{31}$ Mod 1537 = 216.

Then I is

8 051 216

Back into English:

814 419 1456

 $M = C^{31} \text{ Mod } 1537.$

- C = 814. Then $M = 814^{31}$ **Mod** 1537 = 8.
- C = 419. Then $M = 419^{31}$ **Mod** 1537 = 051.
- C = 1456. Then $M = 1456^{31}$ Mod 1537 = 216.

Then I is

 $051 \quad 216$

Back into English: HELP

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose a = dq + r, $0 \le r < d$. (Division Algorithm)
- 3. \therefore (Substitute the expression of d in 1 to the equation in 2.)
- expression of d in 1 to the equation in 2.)

 4. \therefore (From 3.)
- 5. \therefore (From 2,4 and d is the smallest integer that can be written in the form as + bt)
- 6. ∴ (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose a = dq + r, $0 \le r < d$. (Division Algorithm)
- 3. $\therefore a=(au+bv)q+r=a(uq)+b(vq)+r$ (Substitute the expression of ${\color{red}d}$ in 1 to the equation in 2.)
- 4. ... (From 3.)
- 5. \therefore (From 2,4 and d is the smallest integer that can be written in the form as+bt)
- 6. ∴ (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose a = dq + r, $0 \le r < d$. (Division Algorithm)
- 3. $\therefore a = (au + bv)q + r = a(uq) + b(vq) + r$ (Substitute the expression of $\frac{d}{d}$ in 1 to the equation in 2.)
- 4. $\therefore r = a(1 uq) + b(-vq)$ (From 3.)
- 5. \therefore (From 2,4 and d is the smallest integer that can be written in the form as + bt)
- 6. ∴ (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose a = dq + r, $0 \le r < d$. (Division Algorithm)
- 3. $\therefore a = (au + bv)q + r = a(uq) + b(vq) + r$ (Substitute the
- expression of d in 1 to the equation in 2.) 4. $\therefore r = a(1 - uq) + b(-vq)$ (From 3.)
- 5. $\therefore r = 0$ (From 2,4 and d is the smallest integer that can be
- written in the form as + bt)
- 6. ... (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose a = dq + r, $0 \le r < d$. (Division Algorithm)
- 3. $\therefore a = (au + bv)q + r = a(uq) + b(vq) + r$ (Substitute the expression of d in 1 to the equation in 2.)
- expression of a in 1 to the equation in 2.) 4. $\therefore r = a(1 - uq) + b(-vq)$ (From 3.)
- 5. $\therefore r = 0$ (From 2,4 and d is the smallest integer that can be written in the form as + bt)
- 6. $\therefore d|a \text{ (From 5)}$

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose b = dp + w, $0 \le w < d$. (Division Algorithm)
- 3. . . . (Substitute the expression of d in 1 to the equation in 2.)
- 4. . . (From 3.)
 - (From 2,4 and d is the smallest integer that can be written in the form as + bt)
- 6. . (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose b = dp + w, $0 \le w < d$. (Division Algorithm)
- 3. $\therefore b = (au + bv)p + w = a(up) + b(vp) + w$ (Substitute the
- expression of d in 1 to the equation in 2.) 4. . . (From 3.)
 - (From 2,4 and d is the smallest integer that can be written in the form as + bt
- 6. . (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose b = dp + w, $0 \le w < d$. (Division Algorithm)
- 3. $\therefore b = (au + bv)p + w = a(up) + b(vp) + w$ (Substitute the
- expression of d in 1 to the equation in 2.)
- 4. w = a(1 up) + b(-vp) (From 3.)
- (From 2,4 and d is the smallest integer that can be
- written in the form as + bt
- 6. . (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose b = dp + w, $0 \le w < d$. (Division Algorithm)
- 3. $\therefore b = (au + bv)p + w = a(up) + b(vp) + w$ (Substitute the
- expression of d in 1 to the equation in 2.)
- 4. w = a(1 up) + b(-vp) (From 3.)
- 5. w = 0 (From 2.4 and d is the smallest integer that can be written in the form as + bt
- 6. . (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose b = dp + w, $0 \le w < d$. (Division Algorithm)
- 3. $\therefore b = (au + bv)p + w = a(up) + b(vp) + w$ (Substitute the
- expression of d in 1 to the equation in 2.)
- 4. w = a(1 up) + b(-vp) (From 3.)
- 5. w = 0 (From 2.4 and d is the smallest integer that can be written in the form as + bt
- 6. $\therefore d|b$ (From 5)

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose c|a and c|b and c>0 (That is, c is any common divisor of a and b.)
- 3. . .
- 4. . . .
- 5. . .
- 6. . .

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose c|a and c|b and c>0 (That is, c is any common divisor of a and b.)

- 3. $\therefore c|(au+bv)$ 4. ...
- 5. . .

6. . .

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose c|a and c|b and c>0 (That is, c is any common divisor of a and b.)
- 3. $\therefore c|(au+bv)$
- $4. \therefore c|d$
- 5. . .
- 6. . .

- 1. Suppose d = au + bv. (By the given condition.)
- 2. Suppose c|a and c|b and c>0 (That is, c is any common divisor of a and b.)
- 3. $\therefore c|(au+bv)$
- $4. \therefore c|d$
- $5. \therefore c \leq d$

6. . .

- 1. Suppose d = au + bv. (By the given condition.) 2. Suppose c|a and c|b and c>0 (That is, c is any common
- divisor of a and b.)
- 3. $\therefore c|(au+bv)$
- 5. $\therefore c \leq d$

 $4. \therefore c|d$

6. \therefore d is the greatest common divisor.

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n= , LHS =

RHS =

Inductive step: Assume that it's true for $0, \dots k$, where $k \geqslant 1$. In particular P(k) is True, where P(k) says

, and

```
Now for the case k+1: LHS
```

(by
$$P(k)$$
)

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n = 0, LHS =

RHS =

Inductive step: Assume that it's true for $0, \dots k$, where $k \ge 0$. In particular P(k) is True, where P(k) says

, and

```
Now for the case k+1: LHS
```

=

(by P(k))

(a)
$$\sum_{i=1}^{n+1} i 2^i = n 2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=$

RHS =

Inductive step: Assume that it's true for 0, ...k, where $k \ge 0$. In particular P(k) is True, where P(k) says

, and

```
Now for the case k+1: LHS
```

(by
$$P(k)$$
)

(a)
$$\sum_{i=1}^{n+1} i 2^i = n 2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=1$, and RHS =1

Inductive step: Assume that it's true for $0, \dots k$, where $k \ge 0$. In particular P(k) is True, where P(k) says

```
Now for the case k+1: LHS
```

= (by P(k))

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS =

Inductive step: Assume that it's true for 0, ...k, where $k \ge 0$. In particular P(k) is True, where P(k) says

```
Now for the case k+1: LHS
```

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=$.

Inductive step: Assume that it's true for 0, ...k, where $k \ge 0$. In particular P(k) is True, where P(k) says

```
Now for the case k+1: LHS
```

$$(by P(k)) =$$

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

```
Now for the case k+1: LHS
```

$$(by P(k)) =$$

- 3. Prove the following by mathematical induction.
- (a) $\sum_{i=1}^{n+1} i 2^i = n 2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

Now for the case k + 1:

LHS =

(by P(k))

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

$$= \sum_{i=1}^{k+2} i2^i =$$
(by $P(k)$)

- 3. Prove the following by mathematical induction.
- (a) $\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

$$= \sum_{i=1}^{k+2} i2^i = + \sum_{i=1}^{k+1} i2^i =$$
(by $P(k)$)

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for $0, \dots k$, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

Now for the case k + 1:

LHS

=
$$\sum_{i=1}^{k+2} i2^i = (k+2)2^{k+2} + \sum_{i=1}^{k+1} i2^i = (k+2)2^{k+2} + \text{(by } P(k)\text{)}$$

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

Now for the case k + 1:

LHS

$$= \sum_{i=1}^{k+2} i 2^i = (k+2) 2^{k+2} + \sum_{i=1}^{k+1} i 2^i = (k+2) 2^{k+2} + k 2^{k+2} + 2$$
 (by $P(k)$)

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

$$= \sum_{i=1}^{k+2} i 2^i = (k+2) 2^{k+2} + \sum_{i=1}^{k+1} i 2^i = (k+2) 2^{k+2} + k 2^{k+2} + 2$$
 (by $P(k)$)

$$= (2k+2)2^{k+2} + 2 =$$

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for 0, ... k, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

=
$$\sum_{i=1}^{k+2} i2^i = (k+2)2^{k+2} + \sum_{i=1}^{k+1} i2^i = (k+2)2^{k+2} + k2^{k+2} + 2$$
 (by $P(k)$)

$$= (2k+2)2^{k+2} + 2 = (k+1)2^{k+3} + 2 =$$

(a)
$$\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \quad \forall n \in \mathbb{Z}^*.$$

Idea. Base Case: If n=0, LHS $=\sum_{i=1}^{0+1}i2^i=1\times 2^1=2$, and RHS $=0\times 2^{0+2}+2=2$.

Inductive step: Assume that it's true for $0, \dots k$, where $k \ge 0$. In particular P(k) is True, where P(k) says

$$\sum_{i=1}^{k+1} i2^i = k2^{k+2} + 2$$

$$= \sum_{i=1}^{k+2} i 2^i = (k+2)2^{k+2} + \sum_{i=1}^{k+1} i 2^i = (k+2)2^{k+2} + k2^{k+2} + 2$$
 (by $P(k)$)

$$=(2k+2)2^{k+2}+2=(k+1)2^{k+3}+2=$$
 RHS (changing forms)

```
(b) 6 | (7^n - 1) \quad \forall n \in \mathbb{Z}^*.
```

Idea. Base Case: If n =, then and **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \geqslant$, so $\Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$= () (use P(k))$$

=

= () (use <math>P(k))= (calculation) = (changing forms)

```
(b) 6 | (7^n - 1) \quad \forall n \in \mathbb{Z}^*.
```

Idea. Base Case: If n = 0, then and **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \geqslant 0$, so $\Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$= () (use P(k))$$

=

= () (use <math>P(k)) = (calculation) = (changing forms)

```
(b) 6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*.
```

Idea. Base Case: If n=0, then $7^n-1=$ and . Inductive step: Assume that the result holds for $0,\dots k$, where $k\geqslant 0$, so $\Rightarrow 7^k-1=$

Now consider the case k + 1.

$$= \\ = () (use $P(k)$)
$$= (calculation) = (changing forms)$$

$$\Rightarrow .$$$$

Idea. Base Case: If n=0, then $7^n-1=7^0-1=1$ **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \geqslant 0$, so $\Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$= () (use P(k))$$

= () (use <math>P(k))= (calculation) = (changing forms)

$$=$$
 (calculation) $=$ (changing form \Rightarrow

Idea. Base Case: If n = 0, then $7^{n} - 1 = 7^{0} - 1 = 0$ and **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \geqslant 0$, so $\Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$=$$
 () (use $P(k)$

$$= () (use $P(k)$)
$$= (calculation) = (changing forms)$$

$$\Rightarrow .$$$$

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \geqslant 0$, so $\Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$=$$
 $=$ (use P

$$= () (use P(k))$$

$$\begin{array}{ll} = & (&) & \text{(use } P(k)\text{)} \\ = & \text{(calculation)} = & \text{(changing forms)} \end{array}$$

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 =$

Now consider the case k+1.

$$=$$
 () (use $P(k)$

= () (use <math>P(k))= (calculation) = (changing forms)

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

Now consider the case k+1.

$$= () (use $P(k))$

$$= (calculation) = (changing forms)$$$$

$$= () (use P(k)$$

$$= (calculation) = (calcul$$

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*$$
.

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where

Inductive step: Assume that the result holds for
$$0, ... k$$
, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

Now consider the case k+1.

$$7^{k+1} - 1$$

 $= \hspace{0.1cm} \big(\hspace{0.1cm} \mathsf{use} \hspace{0.1cm} P(k) \big)$

$$= ()$$
 (use $P(k)$) $=$ (changing form

$$= () (use P(k))$$

$$= (calculation) = (changing forms)$$

$$\Rightarrow$$

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*.$$

 $7^{k+1}-1$

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where

Inductive step: Assume that the result holds for
$$0, ... k$$
, where $k \geqslant 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

 $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$. Now consider the case k+1.

$$\begin{array}{l} = 7(7^k) - 1 \\ = 7(\hspace{1cm}) - 1 \text{ (use } P(k)\text{)} \\ = \hspace{1cm} \text{ (calculation)} = \hspace{1cm} \text{ (changing forms)} \\ \Rightarrow \end{array}$$

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*$$
.

 \Rightarrow

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where

Inductive step: Assume that the result holds for
$$0, \ldots k$$
, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

Now consider the case k+1. $7^{k+1}-1$

$$= 7(7^k) - 1$$

$$= 7(6q + 1) - 1 \text{ (use } P(k)\text{)}$$

$$= \text{ (calculation)} = \text{ (changing forms)}$$

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*$$
.

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \ldots k$, where

Inductive step: Assume that the result holds for
$$0, ... k$$
, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

 $k \geqslant 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$. Now consider the case k+1. $7^{k+1}-1$

$$= 7(7^k) - 1$$

$$= 7(6q + 1) - 1 \text{ (use } P(k)\text{)}$$

$$= 42q + 6 \text{ (calculation)} = \text{ (changing forms)}$$

= 7(6q + 1) - 1 (use P(k)) =42q+6 (calculation) = (changing forms) \Rightarrow

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*$$
.

= 7(6q + 1) - 1 (use P(k))

 $=7(7^k)-1$

 \Rightarrow

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$. **Inductive step**: Assume that the result holds for $0, \dots k$, where

Inductive step: Assume that the result holds for
$$0, \ldots k$$
, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$. Now consider the case $k + 1$. $7^{k+1} - 1$

=42q+6 (calculation) =6(7q+1) (changing forms)

(b)
$$6 \mid (7^n - 1) \quad \forall n \in \mathbb{Z}^*$$
.

Idea. Base Case: If n = 0, then $7^n - 1 = 7^0 - 1 = 0$ and $6 \mid 0$.

Inductive step: Assume that the result holds for
$$0, \ldots k$$
, where $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

 $k \ge 0$, so $6 \mid (7^k - 1) \Rightarrow 7^k - 1 = 6q$ for some $q \in \mathbb{Z}$.

Now consider the case
$$k+1$$
.
$$7^{k+1}-1 = 7(7^k)-1$$

= 7(6q + 1) - 1 (use P(k))

$$= 7(6q+1) - 1 \text{ (use } P(k)\text{)}$$

$$= 42q + 6 \text{ (calculation)} = 6(7q+1) \text{ (changing forms)}$$

$$\Rightarrow 6 \mid (7^{k+1} - 1).$$

$$\begin{array}{ll} {\rm Idea.} \ \, {\bf Base} \ \, {\bf step:} \ \, n = \ \, {\rm , \ LHS} = \\ {\rm RHS} = \end{array}$$

 \Rightarrow

Inductive step: Assume that the result holds for $2, \dots k$, where $k \geqslant$, so Now consider the case k+1. Thus

```
\begin{array}{lll} \mathsf{RHS} & = & & \\ & = & & \\ & \geqslant & & \big[\mathsf{by}\;P(k)\big] \\ & = & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} & = & & \end{array}
```

 \rightarrow

Idea. Base step:
$$n = 2$$
, LHS = RHS =

 \Rightarrow

Inductive step: Assume that the result holds for 2, ... k, where $k \ge 2$, so Now consider the case k+1. Thus

```
\begin{array}{lll} \mathsf{RHS} & = & & \\ & = & & \\ & \geqslant & & \big[\mathsf{by}\;P(k)\big] \\ & = & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} & = & & \end{array}
```

 \Rightarrow

Idea. Base step:
$$n=2$$
, LHS $=1+2x$

RHS =

 \Rightarrow

Inductive step: Assume that the result holds for 2, ... k, where $k \ge 2$, so Now consider the case k+1. Thus

```
\begin{array}{lll} \mathsf{RHS} &= & & \\ &= & & \\ &\geqslant & & \big[\mathsf{by}\;P(k)\big] \\ &= & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} &= & & \end{array}
```

 \Rightarrow

Idea. Base step:
$$n = 2$$
, LHS = $1 + 2x$
RHS = $(1 + x)^2$ = \Rightarrow

Inductive step: Assume that the result holds for $2, \ldots k$, where $k \geqslant 2$, so Now consider the case k+1. Thus

$$\begin{array}{lll} \mathsf{RHS} &= & & \\ &= & & \\ &\geqslant & & \big[\mathsf{by}\;P(k)\big] \\ &= & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} &= & & \end{array}$$

Idea. Base step:
$$n = 2$$
, LHS = $1 + 2x$
RHS = $(1 + x)^2 = 1 + 2x + x^2$
 \Rightarrow

Inductive step: Assume that the result holds for 2, ... k, where $k \ge 2$, so Now consider the case k+1. Thus

$$\begin{array}{lll} \mathsf{RHS} & = & & \\ & = & & \\ & \geqslant & & \big[\mathsf{by}\;P(k)\big] \\ & = & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} & = & & \end{array}$$

Idea. Base step:
$$n=2$$
, LHS $=1+2x$
RHS $=(1+x)^2=1+2x+x^2$
 \Rightarrow LHS \leqslant RHS

Inductive step: Assume that the result holds for $2, \dots k$, where $k \ge 2$, so Now consider the case k+1. Thus

```
\begin{array}{lll} \mathsf{RHS} &= & & \\ &= & & \\ &\geqslant & & \big[\mathsf{by}\;P(k)\big] \\ &= & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} &= & & \end{array}
```


Idea. Base step:
$$n = 2$$
, LHS = $1 + 2x$
RHS = $(1 + x)^2 = 1 + 2x + x^2$

 \Rightarrow LHS \leqslant RHS

$$\begin{array}{lll} \mathsf{RHS} &= & & \\ &= & & \\ &\geqslant & & \big[\mathsf{by}\;P(k)\big] \\ &= & & \big[\mathsf{by}\;\mathsf{calculation}\big] \\ \mathsf{LHS} &= & & \end{array}$$

Idea. Base step:
$$n=2$$
, LHS $=1+2x$

RHS =
$$(1+x)^2 = 1 + 2x + x^2$$

$$\Rightarrow$$
 LHS \leqslant RHS

$$\begin{array}{lll} \mathsf{RHS} &=& (1+x)^{k+1} \\ &=& \\ &\geqslant& & \big[\mathsf{by}\; P(k)\big] \\ &=& & \big[\mathsf{by}\; \mathsf{calculation}\big] \\ \mathsf{LHS} &=& \end{array}$$

Idea. Base step:
$$n=2$$
, LHS $=1+2x$ RHS $=(1+x)^2=1+2x+x^2$

 \Rightarrow LHS \leqslant RHS

Inductive step: Assume that the result holds for 2, ... k, where $k \ge 2$, so $1 + kx \le (1 + x)^k$. Now consider the case k + 1. Thus

RHS =
$$(1+x)^{k+1}$$

= $(1+x)(1+x)^k$
 $\geqslant (1+x)$ [by $P(k)$]
= [by calculation]
LHS =

 \Rightarrow

Idea. Base step:
$$n = 2$$
, LHS = $1 + 2x$
RHS = $(1 + x)^2 = 1 + 2x + x^2$

 \Rightarrow LHS \leqslant RHS

RHS =
$$(1+x)^{k+1}$$

= $(1+x)(1+x)^k$
 $\geqslant (1+x)(1+kx)[$ by $P(k)]$
= [by calculation]
LHS =

Idea. Base step:
$$n=2$$
, LHS $=1+2x$

RHS =
$$(1+x)^2 = 1 + 2x + x^2$$

$$\Rightarrow$$
 LHS \leqslant RHS

RHS =
$$(1+x)^{k+1}$$

= $(1+x)(1+x)^k$
 $\geqslant (1+x)(1+kx)[\text{by }P(k)]$
= $1+(k+1)x+kx^2[\text{by calculation}]$
LHS =

$$\Rightarrow$$

Idea. Base step:
$$n = 2$$
, LHS = $1 + 2x$

RHS =
$$(1+x)^2 = 1 + 2x + x^2$$

$$\Rightarrow$$
 LHS \leqslant RHS

RHS =
$$(1+x)^{k+1}$$

= $(1+x)(1+x)^k$
 $\geqslant (1+x)(1+kx)[\text{by }P(k)]$
= $1+(k+1)x+kx^2[\text{by calculation}]$
LHS = $1+(k+1)x$

Idea. Base step:
$$n=2$$
, LHS = $1+2x$

RHS =
$$(1+x)^2 = 1 + 2x + x^2$$

$$\Rightarrow$$
 LHS \leqslant RHS

RHS =
$$(1+x)^{k+1}$$

= $(1+x)(1+x)^k$
 $\geqslant (1+x)(1+kx)[\text{by }P(k)]$
= $1+(k+1)x+kx^2[\text{by calculation}]$
LHS = $1+(k+1)x$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leqslant 3^n$ for n =

Idea. Inductive step: Now assume that it's true for all $n = \infty$, where $k \ge \infty$. Then $k + 1 \ge \infty$

$$\begin{array}{lll} h_{k+1} &=& \\ &\leqslant&+&+& [\text{ by }P(0),\dots P(k)]\\ &=&(&+&+&)[\text{ to compare with }3^{k+1}]\\ &\leqslant&&[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leq 3^n$ for n = 0, Idea. Inductive step: Now assume that it's true for all

n = , where $k \geqslant$. Then $k+1 \geqslant$

$$\begin{array}{lll} h_{k+1} &=& \\ &\leqslant&+&+& [\text{ by }P(0),\dots P(k)]\\ &=&(&+&+&)[\text{ to compare with }3^{k+1}]\\ &\leqslant&&[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leq 3^n$ for n=0,1, Idea. Inductive step: Now assume that it's true for all $n=0,1,2,\ldots k$, where $k\geqslant 1$. Then $k+1\geqslant 1$

$$\begin{array}{lll} h_{k+1} &=& \\ &\leqslant&+&+& [\text{ by }P(0),\dots P(k)]\\ &=&(&+&+&)[\text{ to compare with }3^{k+1}]\\ &\leqslant&&[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{lll} h_{k+1} &=& \\ &\leqslant&+&+& [\text{ by }P(0),\dots P(k)]\\ &=&(&+&+&)[\text{ to compare with }3^{k+1}]\\ &\leqslant&&[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leq 3^n$ for n = 0, 1, 2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{lll} h_{k+1} &=& \\ &\leqslant&+&+& [\text{ by }P(0),\dots P(k)]\\ &=&(&+&+&)[\text{ to compare with }3^{k+1}]\\ &\leqslant&&[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leq 3^n$ for n = 0, 1, 2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} &=& h_k + h_{k-1} + h_{k-2} \\ &\leqslant&+&+& \big[\text{ by } P(0), \dots P(k)\big] \\ \\ &=& \big(&+&+&\big)\big[\text{ to compare with } 3^{k+1}\big] \\ \\ &\leqslant& \big[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} &=& h_k + h_{k-1} + h_{k-2} \\ &\leqslant & 3^k + & + & \big[\text{ by } P(0), \dots P(k) \big] \\ &=& \big(& + & + & \big) \big[\text{ to compare with } 3^{k+1} \big] \\ &\leqslant & \big[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} &=& h_k + h_{k-1} + h_{k-2} \\ &\leqslant & 3^k + 3^{k-1} + & \big[\text{ by } P(0), \dots P(k) \big] \\ &=& \big(&+& + & \big) \big[\text{ to compare with } 3^{k+1} \big] \\ &\leqslant & \big[\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} & = & h_k + h_{k-1} + h_{k-2} \\ & \leqslant & 3^k + 3^{k-1} + 3^{k-2} [\text{ by } P(0), \dots P(k)] \\ & = & 3^{k+1} (& + & + &) [\text{ to compare with } 3^{k+1}] \\ & \leqslant & \qquad [\text{Noth that} \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} & = & h_k + h_{k-1} + h_{k-2} \\ & \leqslant & 3^k + 3^{k-1} + 3^{k-2} \big[\text{ by } P(0), \dots P(k) \big] \\ & = & 3^{k+1} \big(\frac{1}{3} + & + & \big) \big[\text{ to compare with } 3^{k+1} \big] \\ & \leqslant & \big[\text{Noth that} \\ \end{array}$$

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n \leq 3^n$ for n = 0, 1, 2 Idea. Inductive step: Now assume that it's true for all

$$\begin{array}{rcl} h_{k+1} & = & h_k + h_{k-1} + h_{k-2} \\ & \leqslant & 3^k + 3^{k-1} + 3^{k-2} \big[\text{ by } P(0), \dots P(k) \big] \\ & = & 3^{k+1} \big(\frac{1}{3} + \frac{1}{9} + \quad \big) \big[\text{ to compare with } 3^{k+1} \big] \\ & \leqslant & \big[\text{Noth that} \\ \end{array}$$

4. Suppose that h_0, h_1, \ldots is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$n=0,1,2,\ldots k$$
, where $k\geqslant 2$. Then $k+1\geqslant 3$

$$\begin{array}{rcl} h_{k+1} &=& h_k + h_{k-1} + h_{k-2} \\ &\leqslant & 3^k + 3^{k-1} + 3^{k-2} [\text{ by } P(0), \ldots P(k)] \\ &=& 3^{k+1} (\frac{1}{3} + \frac{1}{9} + \frac{1}{27}) [\text{ to compare with } 3^{k+1}] \\ &\leqslant & [\text{Noth that } \frac{1}{3} + \frac{1}{9} + \frac{1}{27} < 1]. \end{array}$$

4. Suppose that h_0, h_1, \ldots is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3$$

and

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$
 for $k \ge 3$

Prove that $h_n \leq 3^n$ for all $n \geq 0$.

Idea. Base Case: Check that $h_n\leqslant 3^n$ for n=0,1,2 Idea. Inductive step: Now assume that it's true for all

$$n=0,1,2,\ldots k$$
, where $k\geqslant 2$. Then $k+1\geqslant 3$

$$\begin{array}{rcl} h_{k+1} &=& h_k + h_{k-1} + h_{k-2} \\ &\leqslant & 3^k + 3^{k-1} + 3^{k-2} \big[\text{ by } P(0), \dots P(k) \big] \\ &=& 3^{k+1} \big(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} \big) \big[\text{ to compare with } 3^{k+1} \big] \\ &\leqslant & 3^{k+1} \big[\text{Noth that } \frac{1}{3} + \frac{1}{9} + \frac{1}{27} < 1 \big]. \end{array}$$

5. What's wrong with the following proof that $2^n = 1$ for all $n \in \mathbb{Z}^*$?

Basis step: $2^0 = 1$.

Inductive step: Assume that $2^j = 1$ for j = 0, 1, ..., k. Then

 $2^{k+1} = \frac{2^k \cdot 2^k}{2^{k-1}} = \frac{1 \cdot 1}{1} = 1.$

5. What's wrong with the following proof that $2^n = 1$ for all $n \in \mathbb{Z}^*$?

Basis step: $2^0 = 1$.

Inductive step: Assume that $2^j=1$ for $j=0,1\ldots,k$. Then

$$2^{k+1} = \frac{2^k \cdot 2^k}{2^{k-1}} = \frac{1 \cdot 1}{1} = 1.$$

Answer. The inductive step is not valid for k=0 because the denominator becomes $2^{k-1}=2^{-1}$ and this is not covered by the induction hypothesis.

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For
$$n = 1$$
, $2^n > n^2 + n$ says " Truth Value:

For
$$n=2$$
, $2^n>n^2+n$ says " Truth Value: For $n=3$, $2^n>n^2+n$ says " Truth Value:

For
$$n=4$$
, $2^n>n^2+n$ says " Truth Value:

For
$$n=5$$
, $2^n>n^2+n$ says " Truth Value:

For
$$n = 6$$
, $2^n > n^2 + n$ says " Truth Value:

Guess,
$$2^n > n^2 + n$$
 for $n \ge n$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For
$$n = 1$$
, $2^n > n^2 + n$ says " $2^1 > 1^2 + 1$ " Truth Value:

For
$$n=2$$
, $2^n>n^2+n$ says " Truth Value: For $n=3$, $2^n>n^2+n$ says " Truth Value:

For
$$n=4$$
, $2^n>n^2+n$ says " Truth Value:

For
$$n=4$$
, $2^n>n^2+n$ says " " Iruth Value:
For $n=5$. $2^n>n^2+n$ says " " Truth Value:

For
$$n=6$$
, $2^n>n^2+n$ says " Truth Value:

For
$$n=6$$
, $2^n>n^2+n$ says " " Truth Value: Guess. $2^n>n^2+n$ for $n\geqslant$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For
$$n=1$$
, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F

For
$$n=2$$
, $2^n>n^2+n$ says " Truth Value: For $n=3$, $2^n>n^2+n$ says " Truth Value:

For
$$n = 4$$
, $2^n > n^2 + n$ says " Truth Value:

For
$$n = 4$$
, $2^n > n^2 + n$ says " I ruth Value:
For $n = 5$, $2^n > n^2 + n$ says " " Truth Value:

For
$$n = 5$$
, $2^n > n^2 + n$ says " Truth Value:
For $n = 6$, $2^n > n^2 + n$ says " " Truth Value:

For
$$n = 0$$
, $2^n > n^- + n$ says

Truth value:

Guess. $2^n > n^2 + n$ for $n \ge n$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For n=2. $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value:

For n = 3, $2^n > n^2 + n$ says " Truth Value:

For n=4, $2^n>n^2+n$ says " Truth Value: For n=5, $2^n>n^2+n$ says " Truth Value:

For n=5, $2^n>n^2+n$ says " " Truth Value: For n=6, $2^n>n^2+n$ says " " Truth Value:

Guess. $2^n > n^2 + n$ for $n \ge n$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: For n=3, $2^n>n^2+n$ says " Truth Value:

For n = 4, $2^n > n^2 + n$ says " " Truth Value: For n = 5, $2^n > n^2 + n$ says " " Truth Value: For n = 6, $2^n > n^2 + n$ says " " Truth Value: " Truth Value:

Guess. $2^n > n^2 + n$ for $n \geqslant$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: For n=4, $2^n>n^2+n$ says " Truth Value: For n=5, $2^n>n^2+n$ says " Truth Value:

For n=5, $2^n>n^2+n$ says " Truth Value: For n=6, $2^n>n^2+n$ says " Truth Value: " Truth Value:

Guess. $2^n > n^2 + n$ for $n \geqslant$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: For n=4, $2^n>n^2+n$ says " $2^n>n^2+n$ says" Truth Value:

For n=4, $2^n>n^2+n$ says " " Truth Value: For n=5, $2^n>n^2+n$ says " " Truth Value: For n=6, $2^n>n^2+n$ says " " Truth Value: Guess. $2^n>n^2+n$ for $n\geqslant n$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n = 1, $2^n > n^2 + n$ says " $2^1 > 1^2 + 1$ " Truth Value: F For n = 2, $2^n > n^2 + n$ says " $2^2 > 2^2 + 2$ " Truth Value: F For n = 3, $2^n > n^2 + n$ says " $2^3 > 3^2 + 3$ " Truth Value: F For n = 4, $2^n > n^2 + n$ says " $2^4 > 4^2 + 4$ " Truth Value: For n = 5. $2^n > n^2 + n$ says " " Truth Value:

For n = 6. $2^n > n^2 + n$ says " " Truth Value:

Guess. $2^n > n^2 + n$ for $n \ge$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

Guess. $2^n > n^2 + n$ for $n \ge$

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: F For n=4, $2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: F For n=5, $2^n>n^2+n$ says " Truth Value: F For n=6. $2^n>n^2+n$ says " Truth Value: Truth Value:

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For
$$n=1$$
, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For $n=2$, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For $n=3$, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: F For $n=4$, $2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: F For $n=5$, $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: For $n=6$. $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: For $n=6$. $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value:

" Truth Value: Guess. $2^n > n^2 + n$ for $n \ge$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: F For n=4, $2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: F For n=5, $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: T For n=6. $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: T

Guess. $2^n > n^2 + n$ for $n \geqslant$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction. Idea.

For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: F For n=4, $2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: F For n=5, $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: T For n=6. $2^n>n^2+n$ says " $2^6>6^2+6$ " Truth Value:

Guess. $2^n > n^2 + n$ for $n \geqslant$

$$2^n > n^2 + n$$

Next give a proof using mathematical induction.

Idea. For n=1, $2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: For n=2, $2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: For n=3, $2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: For n=4, $2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: For n=5, $2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: Tor n=6, $2^n>n^2+n$ says " $2^6>6^2+6$ " Truth Value: Tor n=6, $2^n>n^2+n$ for $n>n^2+n$ says " $2^6>6^2+6$ " Truth Value: Tor n=6, $n>n^2+n$ for $n>n^2+n$ for n>n0.

$$2^n > n^2 + n$$

Next give a proof using mathematical induction.

Idea. For $n=1,\ 2^n>n^2+n$ says " $2^1>1^2+1$ " Truth Value: F For $n=2,\ 2^n>n^2+n$ says " $2^2>2^2+2$ " Truth Value: F For $n=3,\ 2^n>n^2+n$ says " $2^3>3^2+3$ " Truth Value: F For $n=4,\ 2^n>n^2+n$ says " $2^4>4^2+4$ " Truth Value: F For $n=5,\ 2^n>n^2+n$ says " $2^5>5^2+5$ " Truth Value: T For $n=6,\ 2^n>n^2+n$ says " $2^6>6^2+6$ " Truth Value: T Guess $2^n>n^2+n$ for $n\geq 5$

$$2^{k+1} =$$
 $>$
 $=$
 $=$
 $=$
Note that $is >$
 $= RHS$

$$2^{k+1} =$$

$$>$$

$$=$$

$$=$$

$$=$$

$$=$$
Note that $is \ge$

$$= RHS$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value:

$$2^{k+1} =$$
 $>$
 $=$
 $=$
 $=$
Note that $is \ge$
 $= RHS$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth

Value: T

```
2^{k+1} =
>
=
=
=
Note that is >
= RHS
```

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth

Value: T

$$2^{k+1} =$$
 $>$
 $=$
 $=$
 $=$
Note that $is \ge$
 $= RHS$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth

Value: T

$$2^{k+1} =$$
 $>$
 $=$
 $=$
 $=$
Note that $is >$
 $= RHS$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth

Value: T

$$2^{k+1} = 2 \times 2^k$$
 $> 2($
 $=$
 $=$
 $=$
Note that
 $is \ge$
 $= RHS$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$2^{k+1} = 2 \times 2^k$$
 $> 2(k^2 + k)$
 $=$
 $=$
 $=$
Note that $is \ge$
 $= RHS$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$2^{k+1} = 2 \times 2^{k}$$

$$> 2(k^{2} + k)$$

$$= [(k+1)^{2} + (k+1)] -$$

$$= [(k+1)^{2} + (k+1)] -$$

$$= [(k+1)^{2} + (k+1)] +$$

$$= [(k+1)^{2} + (k+1)] +$$
Note that is \geq

$$> (k+1)^{2} + (k+1) = \text{RHS}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + \\ &= \left[(k+1)^2 + (k+1) \right] - \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &\text{Note that} \qquad \text{is } \geqslant \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] - \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &\text{Note that} \qquad \text{is } \geqslant \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] - \left[k^2 + 2k + 1 + k + 1 \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &= \left[(k+1)^2 + (k+1) \right] + \\ &\text{Note that} \qquad \qquad \text{is } \geqslant \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] - \left[k^2 + 2k + 1 + k + 1 \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] + k^2 - k - 2 \\ &= \left[(k+1)^2 + (k+1) \right] + \\ \text{Note that} \qquad \qquad \text{is } \geqslant \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] - \left[k^2 + 2k + 1 + k + 1 \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] + k^2 - k - 2 \\ &= \left[(k+1)^2 + (k+1) \right] + k(k-1) - 2 \\ \text{Note that } \underbrace{k(k-1) - 2 \text{ is } \geqslant}_{} \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$

Base Case. For n = 5, $2^n > n^2 + n$ says " $2^5 > 5^2 + 5$ " Truth Value: T

$$\begin{split} 2^{k+1} &= 2 \times 2^k \\ &> 2(k^2 + k) \\ &= \left[(k+1)^2 + (k+1) \right] - \left[(k+1)^2 + (k+1) \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] - \left[k^2 + 2k + 1 + k + 1 \right] + 2k^2 + 2k \\ &= \left[(k+1)^2 + (k+1) \right] + k^2 - k - 2 \\ &= \left[(k+1)^2 + (k+1) \right] + k(k-1) - 2 \\ \text{Note that } \underbrace{k(k-1) - 2 \text{ is } \geqslant 18}_{} \\ &> (k+1)^2 + (k+1) = \text{RHS} \end{split}$$