Mobile Computing – Wireless Transmission

- Wireless Transmission: It is based on the frequencies selected
 - Frequencies needs to be regulated
 - Modulation is needed to transmit digital data via certain frequencies.
- Frequency and wavelength:
 - \bullet $\lambda = c/f$
 - Wavelength λ , speed of light c, frequency f

Frequencies for radio transmission

VLF = Very Low Frequency

LF = Low Frequency

MF = Medium Frequency

HF = High Frequency

VHF = Very High Frequency

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency

UV = Ultraviolet Light

Usage of Different Frequencies

- VLF, LF, MF, HF are not used for wireless
 - E.g used by submarines so that it can penetrate water
- VHF/UHF ranges are used for mobile radio
 - For TV
 - Simple, small antena for cars
 - Deterministic propagation characteristics, reliable connections
- SHF and higher frequencies are used for radio links, satellite communication
 - Microwave
 - Beam forming
 - Large bandwidth
- Wireless LANs use frequencies in UHF to SHF range
 - Optical transmission e.g fibre optical links

Frequency Regulation

- ITU: International Telecommunication Union located at Geneva is responsible for worldwide coordination of telecommunication activities
 - It handles frequency planning, regulation and moderation
 - It takes care of periodic decision on frequency allocation for different regions

Frequency Regulation

ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones	GSM 450-457, 479- 486/460-467,489- 496, 890-915/935- 960, 1710-1785/1805- 1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470- 5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868

Signals

- Signal is a physical representation of data
- It acts as a function of time and location
- Signal parameters: parameters represent the value of data
- Classification
 - Continuous time/discrete time
 - Continuous values/discrete values
 - Analog signal = continuous time and continuous values
 - Digital signal = discrete time and discrete values
- Signal parameters of periodic signals:
 period T, frequency f=1/T, amplitude A, phase shift Φ

Signals (Sign Wave & Fourier Signal)

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} \frac{a}{n} \sin(2pnft) + \sum_{n=1}^{\infty} b_n \cos(2pnft)$$

Signal (Analog & Digital Representation)

Different Representations of Signals

- Signal Amplitude is represented in three forms:
 - Time domain
 - Frequency domain
 - Phase domain

Antennas

- Antenna: It is used for the radiation and reception of electromagnetic waves, coupling of wires for radio transmission
- Isotropic radiator: theoretical reference antenna that radiates equal radiation in all directions (three dimensions)
- Real antenna: consists of directive effects (vertical and horizontal)
- Radiation pattern: measurement of radiation around an antenna

Isotropic Radiator

Antennas: simple dipoles

- **Real antennas**: are not isotropic radiators but dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole
 - Shape of antenna proportional to wavelength

Example: Radiation pattern of a simple Hertzian dipole

Antennas: directed and sectorized

- They are used for microwave connections or base stations for mobile phones (e.g radio coverage for certain region)
- Directed:

Signal Propagation Ranges

Transmission Range

- Communication possible
- Low error rate

Detection Range

- Detection of the signal possible
- No communication possible

Interference Range

- Signal may not be detected
- Signal adds to the background noise

Signal Propagation Effects

- Propagation in free space always travels like light (straight line)
- Receiving power is proportional to 1/d (d distance between sender and receiver)
- Receiving power is influenced by following:
 - Fading (frequency dependent)
 - Shadowing
 - Reflection at large obstacles
 - Refraction depending on the density of a medium
 - Scattering at small obstacles
 - Diffraction at edges

Signal Propagation Effects

Multipath Propagation

- Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction
 - Time dispersion:
 - Signal is dispersed over time
 - Interference with neighbour symbols, Inter Symbol Interference (ISI)
 - Signal reaches the receiver but with phase shifted
 - Distorted signal depending on the phases of different parts
- **Delay Spread:** signals travelling along different paths with different lengths arrive at the receiver at different times.

Multipath Propagation Example

Effects of Mobility

- Channel characteristics change over time and location
 - Signal path change
 - Different delay variations of different signal parts
 - Different phases of signal parts
- Two types of fadings
 - Short term fading:
 - quick changes in the power received
 - Long term fading:
 - slow changes in the power received

Multiplexing

- Multiplexing: It describes how several users can share a medium with minimum or no interference.
 - Goal: to make maximum use of shared medium
 - E.g highway example highways with several lanes
 - Many users (cars) use the same medium (highways) with no interference (accidents). This is possible because of several lanes (space division multiplexing).
 - Also many users (cars) can use the same lane at different time (time division multiplexing).
- Four ways of multiplexing
 - Space (s)
 - Time (t)
 - Frequency (f)
 - Code (c)
- Guard space: space between the interference ranges.

Space Division Multiplexing

Frequency Division Multiplexing

- Separation of the whole spectrum into smaller frequency bands.
 - Channel gets a certain band of the spectrum for the whole time
- Advantages:
 - No dynamic coordination needed
- Disadvantages:
 - Wastes bandwidth if the traffic is distributed unevenly
 - Inflexible

Frequency Division Multiplexing

Time Division Multiplexing

- Channel gets the whole spectrum for a certain amount of time
- Advantages:
 - Only one carrier in the medium at any given time
 - High throughput
- Disadvantages:
 - Requires precise synchronization

Time Division Multiplexing

Frequency & Time Division Multiplexing Combined

- Combination of both: A channel gets a certain frequency band for a certain amount of time
 - E.g GSM
- Advantages:
 - Better protection against tapping
 - Protection against frequency selective interference
 - Higher data rates
- Disadvantages:
 - Requires precise coordination

Frequency & Time Division Multiplexing

Code Division Multiplexing

- Each channel has a unique code.
- All channels use the same spectrum at the same time.
- Advantages:
 - Bandwidth efficient
 - No coordination and synchronization necessary
 - Good protection against interference and tapping

Disadvantages:

More complex signal generation

Code Division Multiplexing

Modulation

- Digital modulation
 - digital data is translated into an analog signal (baseband)
 - Three techniques of modulation
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)
 - Phase Shift Keying (PSK)
 - Modulation schemes consists of differences in spectral efficiency, power efficiency, robustness
- Need for Analog Modulation:
 - Shifts center frequency of baseband signal upto the radio carrier
- Reasons to enhance baseband signal
 - Antennas are smaller in size
 - FDM technique shortcomings
 - Medium characteristics

Modulation Schemes

- Amplitude Modulation (AM)
 - Used in electronic communication for transmitting messages with a radio wave.
 - Amplitude (signal strength) of the carrier wave is varied in proportion to that of the message signal, such as an audio signal
- Frequency Modulation (FM)
 - It is used for the encoding of information in a carrier wave by changing the instantaneous frequency of the wave
- Phase Modulation (PM)
 - It encodes the message signal as variations in the instantaneous phases of a carrier wave.
 - The phase of a carrier signal is modulated to follow the changing signal level of the message signal.

Modulation & Demodulation

Digital Modulation Techniques

- Amplitude Shift Keying (ASK)
 - One amplitude is represented by binary 0 other with 1
 - It needs smaller bandwidth
- Frequency Shift Keying (FSK)
 - Assigns one frequency f1 to the binary 1 and other f2 to binary 0
 - It is implemented by switching between two oscillators (f1 & f2)
 - It needs larger bandwidth
- Phase Shift Keying (PSK)
 - Uses shifts in the phase of a signal to represent data.

Modulation Techniques - Example

Spread Spectrum

- Spread Spectrum: Narrow band signal is spread into a broad band signal (larger frequency range)
 - Advantage: to provide resistance to narrowband interference.
 - Narrow band interference: frequency dependent fading can wipe out narrow band signals for duration of the interference.
 - Broad band signal improves the strength and quality of the signal while traversing

Effects of spreading and interference

Spreading-Despreading process

- Step 1: narrowband signal from sender of user data
- Step 2: senders spreads the user signal
 - Converts narrowband signal into a broadband signal.
 - While spreading of the signal power of the signal reduces
- Step 3: during transmission, narrowband & broadband interference add to the signal
 - Sum of interference and user signal is received at the receiver end
- Step 4: receiver despreads the user signal.
 - Converts the spread user signal into narrowband signal again, while spreading the narrowband interference and leaving the broadband interference.
- Step 5: receiver applies a bandpass filter to cut off frequencies left and right of the narrowband signal.

Narrowband Interference without spread spectrum

- With narrowband interference channel quality reduces.
 - Receiver cannot reconstruct the signal

Spread Spectrum to avoid Narrowband Interference

- All narrowband signals are spread into broadband signals.
 - Uses CDM technique that allows each signal to apply its own code to recover the signal.

Cellular Systems

- Cellular systems work on the concept of SDM
 - Each transmitter (base station) covers a certain area (cell)
 - Cell radii can vary from tens of meters in building, and hundreds of meters in cities.
 - Mobile stations communicate only via the base station
- A basic analog cellular system, consists of three subsystems: a mobile unit, a cell site, and a mobile telephone switching office (MTSO)
 - The cell site provides interface between the MTSO and the mobile units.
 - It has a control unit, radio cabinets, antennas, a power plant, and data terminals.

Cellular Subsystems

- Mobile Unit
 - Radio frequency receiver/transmitter, digital signal processing, analog/digital conversion, control processor, SIM, power control & battery
- Cell Site
 - It is cell tower or cellular base station where antennas and electronic communication equipments are placed
 - Used to transmit cell phone signals to and from the mobile phone back to the receiver.
 - It includes transmitters/receivers, GPS, backup power sources, base transceiver station (BTS)
- Mobile Telephone Switching Office (MTSO)
 - It contains the switching equipment or mobile switching center for routing mobile phone calls.
 - It also contains the equipment for controlling the cell sites that are connected to the MSC (Mobile Switching Center)

Cellular Systems

- A cellular communication system consists of four major components:
 - public switched telephone network (PSTN)
 mobile telephone switching office (MTSO)
 cell sites with antenna systems
 mobile subscriber units (MSU).
- Cell phones use radio waves to communicate.
 - Radio waves transport digitized voice or data in the form of oscillating electric and magnetic fields- electromagnetic field (EMF)
 - Radio waves carry the information and travel in air at the speed of light.
 - Cell phones transmit radio waves in all directions

Cellular Communication Components

- Public Switched Telephone Network (PSTN)
 - It provides infrastructure and services for public telecommunication
 - It is operated by national, regional, or local telephony operators
 - It carries voice calls from phone through the network to the recipient's
- Mobile Telephone Twitching Office (MTSO)
- Cell sites
- Mobile Subscriber Units (MSU).
 - It consists of a control unit and a transceiver that transmits and receives radio transmissions to and from a cell site

Cell Structure (Advantages & Disadvantages)

- Advantages of cell structures:
 - Higher capacity, higher number of users
 - Less transmission power needed
 - More robust decentralized
 - Base station deals with interference, transmission area locally
- Disadvantages:
 - Fixed network needed for the base stations
 - Handover (changing from one cell to another) necessary
 - Interference with other cells

Cell Cluster Pattern

- Cells are combined in clusters
 - E.g 3 cells or 7 cells clusters
- All cells within a cluster use disjointed sets of frequencies.

3 cell cluster

7 cell cluster

Cell Cluster Pattern – Sectorized

Antenna

- Sectorized Antenna: To reduce interference (under traffic conditions i.e number of users per km)
 - E.g use of three sector s per cell in a cluster with three cells.

3 cell cluster with 3 sector antennas

Channel Allocation Strategies

Fixed Channel Allocation:

- Certain frequencies are assigned to a certain cell
- Used in GSM system

Drawback:

- Different traffic load in different cells
 - E.g heavy load in one cell and light load in other

Borrowing Channel Allocation:

- Cells with more traffic are dynamically allotted more frequencies.
- Frequencies can be assigned to cells
- Borrowed frequencies can be blocked in the surrounding cells.

Cell Breathing

- Cellular systems using CDM instead of FDM
 - Users are separated through the code
 - Cell size depends on the current load.
- Drawback with CDM
 - Since CDM is used as more users join, the load increases
- CDM cells are said to 'breath'
 - If the load increases the cell shrinks.
 - Reason: higher noise if more users join the cell
 - Try to reduce the strength of the cell, that results some users out of the transmission range

