Lab 07: Space & Time Trade-Offs

15 ตุลาคม 2567

หวย (Lottery)

ในกิจกรรม CPE Games 2025 ที่จะจัดขึ้นปีหน้า ภาควิชาได้มีการขายสลากกระดาษที่ประกอบด้วยตัว อักษรยาวเหยียด โดยจะมีการออกรางวัล 1 ครั้ง นักศึกษาที่ถูกหวยตัวนี้จะได้รับรางวัลเป็นเงิน 10 ล้านบาทจา กอ.วี

นักศึกษาเข้าร่วมกิจกรรมนี้โดยซื้อหวยดังกล่าวจำนวน 1 ใบ ที่มีความยาว n ตัวอักษร การออกรางวัลคือ การประกาศสายอักขระที่ถูกหากรางวัล หากในหวยที่นักศึกษาซื้อไปมีสายอักขระที่ถูกรางวัลอยู่ในนั้น ก็จะ ถือว่านักศึกษาถูกหวยนั่นเอง

ตัวอย่างเช่น หากนักศึกษาซื้อหวยที่มีสายอักขระดังนี้

DKRLSMDNRJTKHNF

และผลประกาศคือสายอักขระ SMD นักศึกษาจะสังเกตได้ว่า นักศึกษาถูกหวย โดย Pattern ดังกล่าวเริ่ม ที่ตัวอักษรที่ 4 (เมื่อให้ตัวอักษรแรกเป็นลำดับที่ 0)

เพื่อความรวดเร็วในการตรวจหวย นักศึกษาจึงประยุกต์ใช้วิธีการของ Horspool ในการตรวจว่าถูกหวย หรือไม่ ซึ่งจะมีการเลื่อนตัวอักษรตรวจจำนวน 2 ครั้ง

งานของนักศึกษา

จงใช้ขั้นตอนของ Horspool ในการตรวจสอบว่านักศึกษาถูกหวยหรือไม่ เมื่อให้ String ความยาว n และ String ที่ถูกรางวัลความยาว m หาว่านักศึกษาจะต้องใช้การเลื่อน (Shift) ทั้งหมดกี่ครั้ง และลำดับตัวอักษรตัว แรกที่ทำให้นักศึกษาถูกรางวัล คือตำแหน่งเท่าใด

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม m และ n แทนความยาวของ String หวยที่ซื้อ และ String หวยที่ถูก ตามลำดับ โดยที่ $m \geq n$ เสมอ
บรรทัดที่ 2	String ของหวยที่นักศึกษาซื้อ
บรรทัดที่ 3	String ของหวยที่ถูกรางวัล

ข้อมูลส่งออก (Output)

บรรทัดที่ 1	หากถูกรางวัล ให้พิมพ์ YES ตามด้วยจำนวนครั้งของการเลื่อน และ ตำแหน่งแรก
	ที่ทำให้นักศึกษาถูกหวย แต่ถ้าไม่ถูกรางวัล ให้พิมพ์ NO ตามด้วยจำนวนครั้งของ
	การเลื่อน และตัวเลข -1 ทั้งหมดคั้นด้วยช่องว่าง 1 ช่อง (ดูตัวอย่างประกอบ)

CPE231 : Algorithms 1 / 2024

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
15 3	YES 2 4
DKRLSMDNRJTKHNF	
SMD	
25.42	NO 2 4
35 13	NO 3 -1
CPETHREESEVENKMUTTVERYCUTEBUTSINGLE	
AJWEEHANDSOME	
25 7	YES 4 18
TAGTAGCAGTAGTAGTAGCAGA	
TAGCAGA	
1713671371	

KM COC

Hash Table

ตารางแฮช (Hash Table) เป็นตารางที่มีหน้าที่ในการเก็บค่าต่าง ๆ ซึ่งเป็นเบื้องหลังการเก็บข้อมูลแบบ Dictionary โดยการ Hashing คือการกระจาย Key ออกภายในอาร์เรย์ 1 มิติโดยเราจะใช้ **Hash Function** ในการคำนวณว่า Key แบบนี้จะถูกเก็บไว้ในช่องใด

สมมติว่าเราต้องการเก็บข้อความที่มีทั้งหมด n ข้อความ ดังต่อไปนี้ {WEE, ALGO, CPE, KMUTT} เราจะต้องนิยามฟังก์ชัน Hash ก่อน โดยเรานิยาม Hash Function ดังนี้

$$h(S) = \left(\sum_{i=0}^{len(S)-1} order(s_i)\right) \mod Z$$

เมื่อให้ S คือสตริงข้อความ, $order(s_i)$ เป็นลำดับของตัวอักษรที่ i ในคำนั้น เช่น A คือ 1, B คือ 2, ..., Z คือ 26 และ Z คือขนาดของ Hash Table

สมมติให้ Z=10

ดังนั้น $order({\tt WEE})=(23+5+5) \mod 10=3$ ดังนั้นคำว่า {\tt WEE} จะไปอยู่ในช่องที่ 3 ของ Hash Table นั่นเอง

ในขณะที่ ALGO จะอยู่ช่องที่ 5, CPE จะอยู่ช่องที่ 4 ส่วน KMUTT การคำนวณเมื่อเข้า Hash Function จะได้เท่ากับ 5 แต่ว่าช่องที่ 5 มี ALGO อยู่ในนั้นแล้ว ดังนั้นมันจะถูกถัดไปเช็คอีก 1 ช่อง ถ้าว่างจะเข้าไปอยู่ช่อง นั้น ถ้าไม่ว่างก็จะถัดไปอีกช่อง ทำนองนี้ไปเรื่อย ๆ เราสังเกตได้ว่าสิ่งนี้คือการทำ Closed Hashing นั่นเอง

ดังนั้น Hash Table ของข้อความนี้คือ

{NULL NULL NULL WEE CPE ALGO KMUTT NULL NULL NULL}

งานของนักศึกษา

จงสร้างตาราง Hash แบบ **Closed Hashing** ที่มีทั้งหมด Z ช่อง เพื่อเก็บข้อมูลคำจำนวนทั้งหมด n คำ

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม Z และ n แทนจำนวนช่องของ Hash Table และจำนวนคำที่ จะใส่ตามลำดับ โดยที่ $Z \geq n$ เสมอ
บรรทัดที่ 2 ถึง $n+1$	String ของคำ

ข้อมูลส่งออก (Output)

ം പ്	ผลของ Hash Table หลังจากเก็บข้อมูลทั้งหมด ช่องไหนไม่มีคำในนั้นให้
∣ บรรทัดที่ 1	ี ผลของ Hash Table หลงจากเกบขอมลทงหมด ชองเหนเมมคาเนนนเห
	แสดงเป็น NULL แต่ละช่องคั่นด้วยช่องว่าง 1 ช่อง
	และเมาเกา เทก เ แผ่ยรู้ ภูลาแหน่ โก ภูลา 1 ม ก ม ภูลา

CPE231: Algorithms 1 / 2024

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
10 4	NULL NULL WEE CPE ALGO KMUTT NULL NULL NULL
WEE	
ALGO	
CPE	
7 6	CD GH AA B EF NULL III
AA	
В	
CD	
EF	
GH	
III	

KM COC