Lecture 10

Neural Networks & Word Embeddings

COMP 474/6741, Winter 2021

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

René Witte
Department of Computer Science
and Software Engineering
Concordia University

Outline

René Witte

Introduction

Neural Networks 101

Perceptron
Backpropagation
Keras & TensorFlow

... ._ . . .

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word2vec Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

- 1 Introduction
- 2 Neural Networks 101
- **3** Word Embeddings
- 4 Notes and Further Reading

Summary of Chatbot Approaches

Ren	é	W	itte	

Introduction

Neural Networks 101 Perceptron Backpropagation

Keras & TensorFlow Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

Approach	Advantages	Disadvantages
Grammar	Easy to get started Training easy to reuse Modular Easily controlled/restrained	Limited "domain" Capability limited by human effort Difficult to debug Rigid, brittle rules
Grounding	Answers logical questions well Easily controlled/restrained	Sounds artificial, mechanical Difficulty with ambiguity Difficulty with common sense Limited by structured data Requires large scale information extraction Requires human curation
Retrieval	Simple Easy to "train" Can mimic human dialog	Difficult to scale Incoherent personality Ignorant of context Can't answer factual questions
Generative	New, creative ways of talking Less human effort Domain limited only by data Context aware	Difficult to "steer" Difficult to train Requires more data (dialog) Requires more processing to train

Copyright 2019 by Manning Publications Co., [LHH19]

Generative Models

René Witte

Examples

Generate answers to analogy questions like:

"Man is to Woman what King is to ?" "Japan is to Sushi what Germany is to?"

Today

- Introduction to Neural Networks
- Building word vectors (word embeddings)
- Math with word vectors

→ Worksheet #9: Task 1

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

Outline

René Witte

Introduction

Neural Networks 101

Perceptron Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

- 2 Neural Networks 101 Perceptron Backpropagation Keras & TensorFlow
- **Word Embeddings**
- 4 Notes and Further Reading

Say hello to one of your neurons

Introduction

Neural Networks 101

Perceptron Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

Basic Perceptron (Franz Rosenblatt, 1957)

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

Perceptron Details

Mathematical Perceptron

Input vector:

$$\vec{x} = [x_0, x_1, ..., x_n]$$

Weights vector:

$$\vec{w} = [w_0, w_1, ..., w_n]$$

Dot product:

$$\vec{x} \cdot \vec{w} = \sum_{i=1}^{n} w_i \cdot x_i$$

Activation function:

$$f(\vec{x}) = \begin{cases} 1, & \text{if } \vec{x} \cdot \vec{w} \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

The 'bias' unit & weight

- · Bias: additional input that is always "1"
- Why? Consider the case that all $x_i = 0$, but we need to output 1
- Notation differs in the literature, but idea is always the same

René Witte

Introduction

Neural Networks 101

Perceptron Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Perceptron vs. Biological Neuron

Introduction

Neural Networks 101

Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Fasttext Document vectors with

Doc2vec

Notes and Further

Notes and Furthe Reading

→ Worksheet #9: Task 2

Introduction

Neural Networks 101

Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

Learning the weights

Perceptron uses *supervised learning*:

- look at each training sample
- output correct?
 - Yes: don't change any weights
 - No: update the weights that were activated

Updating the weights

Based on how much they contributed to the error:

- $w'_i = w_i + \eta \cdot (label predicted) \cdot x_i$ (label: training example, predicted: calculated output)
- η is called the learning rate (e.g., $\eta = 0.2$)
- Going through all training examples once is called an epoch

→ Worksheet #9: Task 3

Linearly Separable Data

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors
Word Embeddings with
Word2vec
Word Vectors with spaCy
Fasttext
Document vectors with

Doc2vec

Notes and Further Reading

10.11

Nonlinearly Separable Data

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors
Word Embeddings with
Word2vec
Word Vectors with spaCy
Fasttext
Document vectors with

Notes and Further Reading

Doc2vec

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word2vec Word Vectors with spaCy

Fasttext Document vectors with Doc2vec

Notes and Further Reading

What can a single Perceptron learn?

- A single Perceptron can learn linearly separable data
- Two dimensions: line, three dimensions: plane, etc.
- It can not learn data that is not linearly separable
- · Example: the XOR function

This was pointed out in a famous book by Minksy & Papert in 1969*

So what, it's useless?

Not quite...so far, we only used a single neuron.

We can use a network of neurons to also learn non-linearly separable data!

 x_2

 x_1

^{*[}Marvin Minsky and Seymour Papert: Perceptrons: an introduction to computational geometry, MIT Press, 1969]

Multi-layer neural networks with hidden weights

Introduction

Neural Networks 101 Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Word2vec

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word Vectors with spaCy

Document vectors with Doc2vec

Notes and Further Reading

opyright 2019 by Manning Publications Co., [LHH19]

Training multi-layer neural networks

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors Word Embeddings with

Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

Backpropagation

- First proposed in 1969, but not used until 1980s because of high computational demands
- Form of supervised learning like Perceptron training
- Basic idea like before: show input, compute output, determine error, and adjust weights to reduce error
- learning is done in two phases
 - first, apply input and propagate forward until output layer is reached
 - · then, compute error and propagate backwards, adjusting weights until input layer is reached

Forward step

Introduction

Neural Networks 101

Perceptron Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors

Word Embeddings with
Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Notes and Further Reading

Weighted input

Neurons in backpropagation networks compute the net weighted input like the Perceptron:

$$X = \sum_{i=1}^{n} x_i w_i - \theta$$

Activation function

But here we use a sigmoid activation function

$$\textit{Y}^{\text{sigmoid}} = \frac{1}{1 + \textit{e}^{-\textit{X}}}$$

Updating weights

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word2vec Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

Notes and Further Reading

Backpropagation rule

- compute the gradient of the loss function with respect to the weights of the network for a single input—output example
- iterating backwards from output layer to input layer, updating weights
- intuitively: minimize cost function representing the error of the network
- algorithm performs gradient descent to try minimizing the error

Convex Error Curve

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

Nonconvex Error Curve

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Simple. Flexible. Powerful.

Get started

Guides

API docs

```
Item tensorflow.keras inject layers

Individual to a continuous mental

vision_model = keras.applications.ResHetSe()

Finis is our video_encoding branch wising the trained vision_model

video_input keras.input(shape(180, None, 19))

encoded_frame_sequence layers.input(shape(180, None, 19))

encoded_frame_sequence layers.input(shape(180, None, 19))

Finis our text_processing branch for the question_input(shape(180, None, 19))

embedded_question = layers.input(shape(180, None, 19))

# And this our video question mental product

encoded_question = layers.input(shape(180, None, 19))

# And this is our video question mental product

encoded_question = layers.input(shape(180, None, 19))

# And this is our video question mental product

# Input is our vid
```

tensorflow:

Deep learning for humans.

Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides.

Install

Learn ▼

API ▼

Resources -

Community

More ▼

Q Search

English 🕶

GitHub

ıb Sign in

Missed TensorFlow Dev Summit? Check out the video playlist.

Vatch recordings

An end-to-end open source machine learning platform

TensorFlow

For JavaScript

For Mobile & IoT

For Production

The core open source library to help you develop and train ML models. Get started quickly by running Colab notebooks directly in your browser.

Get started with TensorFlow

PyTorch Get Started Ecosystem Mobile Blog Tutorials Docs ✓ Resources ✓ GitHub Q

FROM RESEARCH TO PRODUCTION

An open source machine learning framework that accelerates the path from research prototyping to production deployment.

Install >

Introducing PyTorch Profiler - the new and improved performance tool

KEY FEATURES & CAPABILITIES

See all Features >

Production Ready Distribu

Distributed Training

Robust Ecosystem

Cloud Support

Example Neural Network in Keras

from keras.layers import Dense

from keras.models import Sequential

model.add(Dense(8, activation='relu'))

fit the keras model on the dataset model.fit(X, y, epochs=150, batch_size=10)

model.add(Dense(1, activation='sigmoid'))

split into input (X) and output (y) variables

model.add(Dense(12, input_dim=8, activation='relu'))

from numpy import loadtxt

define the keras model

compile the keras model

load the dataset

X = dataset[:.0:8]

model = Sequential()

v = dataset[:,8]

René Witte

Introduction

Neural Networks 101 Perceptron Backpropagation

Keras & TensorFlow Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec Word Vectors with spaCy

Fasttext Document vectors with Doc2vec

Notes and Further

Reading model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])

```
Example
```

 Using the Pima Indians Diabetes dataset (predicting the onset of diabetes based on diagnostic measures, like 2-Hour serum insulin (mu U/ml) and Diastolic blood pressure (mm Hg)

dataset = loadtxt('pima-indians-diabetes.data.csv', delimiter=',')

See https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

Output


```
Using TensorFlow backend.
Epoch 1/150
Epoch 2/150
768/768 [=============== ] - 0s 87us/step - loss: 0.8344 - accuracy: 0.5964
Epoch 3/150
768/768 [============= ] - 0s 93us/step - loss: 0.7119 - accuracy: 0.6510
Epoch 4/150
768/768 [============== ] - 0s 87us/step - loss: 0.6776 - accuracy: 0.6484
Epoch 5/150
Epoch 6/150
768/768 [============= ] - 0s 84us/step - loss: 0.6358 - accuracy: 0.6602
Epoch 7/150
768/768 [============= ] - 0s 89us/step - loss: 0.6254 - accuracy: 0.6810
Epoch 8/150
Epoch 9/150
768/768 [============== ] - 0s 80us/step - loss: 0.6121 - accuracy: 0.6745
Epoch 10/150
768/768 [============= ] - 0s 80us/step - loss: 0.6072 - accuracy: 0.6745
. . .
Epoch 150/150
768/768 [============= ] - 0s 86us/step - loss: 0.5269 - accuracy: 0.7096
```

Introduction

Neural Networks 101
Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings

Bag-of-Words Model
One-Hot Vectors
Word Embeddings with
Word2vec
Word Vectors with spaCy
Fasttext
Document vectors with

Outline

René Witte

Introduction

Neural Networks 101
Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

1 Introduction

2 Neural Networks 101

3 Word Embeddings

Bag-of-Words Model
One-Hot Vectors
Word Embeddings with Word2vec
Word Vectors with spaCy
Fasttext
Document vectors with Doc2vec

Bag-of-Words (BOW) Model

Task

Turn words into numbers.

Word	Freq.
Mary	2
apples	1
did	2
eat	1
John	1
kill	1
like	1
not	1
to	1

Introduction

Neural Networks 101

Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings

Bag-of-Words Model
One-Hot Vectors
Word Embeddings with
Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Problems with the Bag-of-Words Model

René Witte

_	UN	11.5		B 1		Т					
TC	`^	n	-		٦	۲	٠	H	i	a	
(d)	. •	.,	•	•	•	٠	٦	4	4	u	
\sim				2 N		¥	٠	R	×	т	

Introduction

Neural Networks 101 Perceptron Backpropagation

Keras & TensorFlow Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

	Word	Freq.
•	Mary	2
	apples	1
	did	2
	eat	1
	John	1
	kill	1
	like	1
	not	1
	to	1

Word order is ignored

Mary did kill John.

apples.

John.

Mary did not like to eat

John did not kill Mary.

Mary did not like to kill

Mary did eat apples.

Mary did like to eat apples.

Meaning of the text is lost.

One-Hot Vectors

René Witte

Vector dimensionality = Vocabulary size

With *n*-dimensional vectors of $\{0,1\}$, we can represent each word in our vocabulary that has 1 (one) for the word, else 0 (zero).

Example

We can encode the sentence The big dog as a series of three-dimensional vectors:

(a "1" means on, or hot; a "0" means off, or absent.)

Note

- Unlike in the BOW model, we do not lose information
- Not practical for long documents

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors

Word Embeddings with Word2vec Word Vectors with spaCy

Fasttext

Document vectors with Doc2vec

The 'Curse of Dimensionality'

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors Word Embeddings with

Word2vec Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

Notes and Further Reading

'cat' = [0, 0, 1]'dog' = [0, 1, 0]'house' = [1, 0, 0] dog house

https://en.wikipedia.org/wiki/Curse_of_dimensionality

→ Worksheet #9: Task 4

Towards better 'word vectors'

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with

Notes and Further

Notes and Furthe Reading

Word Vector Requirements

- Dense vectors (smaller dimensions, fewer 0's)
- · Capture semantics of words
 - E.g., Animal-ness, Place-ness, Action-ness...
 - The (cosine) distance between "cat" and "dog" should be smaller than between "cat" and "house"
 - Synonyms (e.g., "inflammable" and "flammable") should have nearly identical word vectors

Answer analogy questions

We could then use these vectors for semantic word math, e.g., to answer analogy questions like:

"Who is to physics what Louis Pasteur is to germs?"

By calculating \vec{w} ('Louis Pasteur') $-\vec{w}$ ('germs') $+\vec{w}$ ('physics')

→ Worksheet #9: Task 5

Hand-crafting Word Vectors (6 words, 3 dimensions)

```
word vector['cat'] = .3*topic['petness'] +
                       .1*topic['animalness'] +
                        0*topic['cityness']
word_vector['dog'] = .3*topic['petness'] +
                       .1*topic['animalness'] -
                       .1*topic['cityness']
word vector['apple'] = 0*topic['petness'] -
                       .1*topic['animalness'] +
                       .2*topic['cityness']
word vector['lion'] = 0*topic['petness'] +
                       .5*topic['animalness'] -
                       .1*topic['citvness']
word vector['NYC'] = -.2*topic['petness'] +
                       .1*topic['animalness'] +
                       .5*topic['cityness']
word_vector['love'] = .2*topic['petness'] -
                       .1*topic['animalness'] +
                       .1*topic['cityness']
```

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow Word Embeddings

Bag-of-Words Model

One-Hot Vectors

Word Embeddings with
Word2vec

Word Vectors with spaCy Fasttext Document vectors with Doc2vec

3D vectors for six words about pets and NYC

René Witte

Introduction

Neural Networks 101

Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Automatic computation of word vectors

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Notes and Further Reading

Doc2vec

Word2vec

- In 2012, Thomas Mikolov (intern at Microsoft) trained a neural network to predict word occurrences near each target word
- Released in 2013 (then working at Google) as Word2vec
- Word vectors (a.k.a. word embeddings) typically have 100-500 dimensions and are trained on large corpora (e.g., Google's 100 billion words news feed)
- Unsupervised learning (using a so-called autoencoder)

Geometry of Word2vec math

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings
Bag-of-Words Model
One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

Copyright 2019 by Manning Publications Co., [LHH19]

Computing the answer to the soccer team question

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Notes and Further

Notes and Further Reading

$\begin{bmatrix} 0.0168 \\ 0.007 \\ 0.247 \\ \dots \end{bmatrix} + \begin{bmatrix} 0.093 \\ -0.028 \\ -0.214 \\ \dots \end{bmatrix} - \begin{bmatrix} 0.104 \\ 0.0883 \\ -0.318 \\ \dots \end{bmatrix} = \begin{bmatrix} 0.006 \\ -0.109 \\ 0.352 \\ \dots \end{bmatrix}$

Finding word vectors near the result

- Result vector (with 100s of dimensions) is not going to match any other word vector exactly
- Find closest results (e.g., using cosine similarity) for the answer

Word vectors for ten US cities projected onto a 2D map

Neural Networks 101
Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings
Bag-of-Words Model
One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Document vectors with Doc2vec

Notes and Further Reading

Copyright 2019 by Manning Publications Co., [LHH19]

Training a Word2vec model

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Reading

Approaches

Skip-gram: predict the context of words (output words) from an input word

CBOW: (continuous-bag-of-words) predicts output word from nearby (input)

words

Using a pre-trained model

You can download pre-trained word embeddings for many domains:

- Google's Word2vec model trained on Google News articles
- spaCy comes with word vector models (shown later)
- Facebook's fastText model (for 294 languages)
- Various models trained on medical documents, Harry Potter, LOTR, ...

Training input and output example for the skip-gram approach

Introduction

Neural Networks 101 Perceptron Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Notes and Further Reading

Skip-gram

- Skip-gram is an n-gram with gaps
- Goal: predict surrounding window of words based on input word

Training: Ten 5-grams from the sentence about Monet

Input word w _t	Expected output w _{t-2}	Expected output w _{t-1}	Expected output w _{t+1}	Expected output w _{t+2}	
Claude			Monet	painted	
Monet		Claude	painted	the	
painted	Claude	Monet	the	Grand	
the	Monet	painted	Grand	Canal	
Grand	painted	the	Canal	of	
Canal	the	Grand	of	Venice	
of	Grand	Canal	Venice	in	
Venice	Canal	of	in	1908	
in	of	Venice	1908		
1908	Venice	in			

Copyright 2019 by Manning Publications Co., [LHH19]

René Witte

Introduction

Neural Networks 101
Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec Word Vectors with spaCy

Fasttext
Document vectors with

Doc2vec
Notes and Further

Neural Network example for the skip-gram training (1/2)

René Witte

Neural Networks 101
Perceptron
Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Softmax function

The softmax function σ takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers:

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

 $(e = Euler's \text{ number} \approx 2.71828)$

Softmax properties

- "normalizes" vector to a [0..1] interval, where all values add up to 1
- often used as activation function in the output layer of a neural network

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

→ Worksheet #9: Task 6

Neural Network example for the skip-gram training (2/2)

René Witte

Neural Networks 101
Perceptron
Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Notes and Further Reading

10.42

Conversion of one-hot vector to word vector

Neural Networks 101 Perceptron

Keras & TensorFlow Word Embeddings Bag-of-Words Model

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Doc2vec

Introduction

Backpropagation

One-Hot Vectors

Document vectors with

Notes and Further Reading

Three neuron

weight matrix					
	.03	.92	.66		
	.06	.32	.61		
×	.14	.62	.43		
	.24	.99	.62		
	.12	.02	.44		
	.32	.23	.55		

Resulting 3-D word vector

The dot product calculation

 $(0^*.03) + (1^*.06) + (0^*.14) + (0^*.24) + (0^*.12) + (0.^*.32)$

 $(0^*.92) + (1^*.32) + (0^*.62) + (0^*.99) + (0^*.02) + (0.*.23)$

 $(0^*.66) + (1^*.61) + (0^*.43) + (0^*.62) + (0^*.44) + (0.^*.55)$

One-hot vector

in vocabulary

of six words

0

Hidden weights are our word vectors

- We're not actually using the neural network we trained
- We're just using the weights as our word embeddings
- (that's a common trick in using neural networks)

Why does this work?

- Two different words that have a similar meaning will have similar context words appearing around them
- So the output vector for these different words have to be similar
- So the neural network has to learn weights for the hidden layer that map these (different) input words to similar output vectors
- So we will get similar word vectors for words that have a different surface form, but similar (or related) semantics

Note

This does not solve the disambiguation problem: there will be one word vector for *"bank"*, including both "river bank" and "financial bank" contexts.

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Now we can do math with word vectors:

```
king - man + woman = queen
Paris - France + Germany = Berlin
fish + music = bass
road - ocean + car = sailboat
desert - sand + suburbia = driveways
dorm - students = bachelor pad
barn - cows = garage
yeti - snow + economics = homo economicus
```

See https://graceavery.com/word2vec-fish-music-bass/ for more fun examples

Neural Networks 101

Perceptron
Backpropagation
Keras & TensorFlow

Introduction

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word2vec

Word Embeddings with

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Continuous Bag Of Words (CBOW)

René Witte

Introduction

Neural Networks 101
Perceptron
Backpropagation

Keras & TensorFlow
Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with

Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Doc2vec

Notes and Further Reading

Idea

- Slide a rolling window across a sentence to select the surrounding words for the target word
- All words within the sliding window are considered to be the content of the CBOW

Claude Monet painted the Grand Canal of Venice in 1908.

Claude Monet painted the Grand Canal of Venice in 1908.

Claude Monet painted the Grand Canal of Venice in 1908.

Copyright 2019 by Manning Publications Co., [LHH19]

Training input and output example for the CBOW approach

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors

Word Embeddings with

Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Ten CBOW 5-grams from sentence about Monet

Input word w_{t-1}

Claude

Monet

painted

the

Grand

Canal

Venice

of

in

Input word w_{t+1}

Monet

painted

the

Grand

Canal

Venice

1908

of

in

Input word w_{t+2}

painted

the

Grand

Canal

Venice

1908

of

in

Expected output w_t

Claude

Monet

painted

the

Grand

Canal

Venice

of

in 1908

Rene	Witte

101

Word Vectors with spaCy Fasttext Document vectors with

Reading

Introduction
Neural Networks 10
Perceptron
Backpropagation
Keras & TensorFlow
Word Embeddings
Bag-of-Words Model
One-Hot Vectors
Word Embeddings with Word2vec

Doc2vec Notes and Further

Input word w_{t-2}

Claude

Monet

painted

the

Grand

Canal

Venice

of

CBOW Word2vec network

René Witte

Introduction

Neural Networks 101
Perceptron
Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model

One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Notes and Further Reading

Doc2vec

Which one to use?

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext Document vectors with

Notes and Further

Doc2vec

Reading

Pros & Cons

- Skip-gram approach works well with small corpora and rare terms (more training data due to the network structure)
- CBOW shows higher accuracies for frequent words and is faster to train

Enhancements & Optimizations

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors

Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further Reading

Various Improvements

Frequent Bigrams: Pre-process the corpus and add frequent bigrams as terms (e.g., "New York", "Elvis Presley")

Subsampling: Sample words according to their frequencies (no stop word removal for words like "a", "the") – similar to idf in tf-idf

Negative sampling: To speed up training, don't update all weights, but pick some negative samples to decide which weights to update

Using Word Vectors with spaCy

```
import spacy

nlp = spacy.load("en_core_web_lg")  # make sure to use larger model!
tokens = nlp("dog_cat_banana")

for token1 in tokens:
    for token2 in tokens:
        print(token1.text, token2.text, token1.similarity(token2))
```

Output

```
dog dog 1.0
dog cat 0.80168545
dog banana 0.24327646
cat dog 0.80168545
cat cat 1.0
cat banana 0.2815437
banana dog 0.24327646
banana cat 0.2815437
```

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with

Doc2vec

Training your own Word2vec model using gensim

Google News Word2vec 300-D vectors projected onto a 2D map using PCA

Neural Networks 101
Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings Bag-of-Words Model

One-Hot Vectors
Word Embeddings with
Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Word vectors can be biased

Example

Your word vectors represent what is in your corpus:

```
>>> word_model.distance('man', 'nurse')
0.7453
>>> word_model.distance('woman', 'nurse')
0.5586
```

So an AI using these word vectors will now have a gender bias!

October 11, 2018

Amazon Scraps Secret Al Recruiting Engine that Showed Biases Against Women

René Witte

Introduction

Neural Networks 101

Perceptron
Backpropagation
Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with

10.55

Doc2vec

f☐ Docs Resources Blog GitHub

Library for efficient text classification and representation learning

GET STARTED

DOWNLOAD MODELS

fasttext.cc

Idea: train on character n-grams, not on word n-grams:

- E.g., for "whisper", we can generate the following 2-grams and 3-grams wh, whi, hi, his, is, isp, sp, spe, pe, per, er
- We can now deal with unseen words, misspelled words, partial words, etc.
- Open source project by Facebook research; pre-trained models for 294 languages from Abkhazian to Zulu

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy

Fasttext Document vectors with

Doc2vec

Doc2vec Training

Prediction

René Witte

Introduction

Neural Networks 101

Perceptron Backpropagation

Keras & TensorFlow Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy

Fasttext

Document vectors with

Document vectors with Doc2vec

Notes and Further Reading

the

Claude

Monet

Copyright 2019 by Manning Publications Co., [LHH19]

Input

Paragraph

matrix

Outline

René Witte

Introduction

Neural Networks 101 Perceptron

Backpropagation Keras & TensorFlow

Word Embeddings

Word Embeddin

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

- 1 Introduction
- 2 Neural Networks 101
- **3** Word Embeddings
- 4 Notes and Further Reading

Reading Material

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

Required

• [LHH19, Chapters 5, 6] (Neural Networks, Word Vectors)

References

René Witte

Introduction

Neural Networks 101

Perceptron

Backpropagation

Keras & TensorFlow

Word Embeddings

Bag-of-Words Model One-Hot Vectors Word Embeddings with Word2vec

Word Vectors with spaCy Fasttext

Document vectors with Doc2vec

Notes and Further

[LHH19] Hobson Lane, Cole Howard, and Hannes Max Hapke. Natural Language Processing in Action. Manning Publications Co., 2019. https://concordiauniversity.on.worldcat.org/oclc/1102387045.