Practice Problems for Linear Algebra Review

Within Exam Scope

1. Subspaces and Spans

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ are vectors in \mathbb{R}^3 . Do you agree with the statement that these vectors span \mathbb{R}^3 ?

2. Orthogonality

Which pairs are orthogonal among the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

3. Linear Independence

If \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are independent vectors, would the following vectors be independent?

$$\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_3, \quad \mathbf{w}_2 = \mathbf{v}_1 + \mathbf{v}_2, \quad \mathbf{w}_3 = \mathbf{v}_2 + \mathbf{v}_3.$$

4. Range and Rank

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if rank $(\mathbf{A}) = m < n$, then what is the dimension of the null space?

5. Matrix Inverse

We have matrices $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Which of the following are true?

- (a) **A** is singular
- (b) **B** is invertible
- (c) $\mathbf{A} + \mathbf{B}$ is invertible.

6. Subspaces

The smallest subspace of \mathbb{R}^3 containing the vectors $\begin{pmatrix} 0 \\ -3 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ is the line whose equations are x = a and z = by. What are the values of a and b?

7. Matrix Inverse

For \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\alpha \in \mathbb{R}$, assume \mathbf{A} and \mathbf{B} are invertible:

- (a) $(\text{True/False}) (\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$
- (b) (True/False) $(AB)^{-1} = A^{-1}B^{-1}$
- (c) (True/False) If $\det(\mathbf{A}) = 2$, then $\det(\mathbf{A}^{-1}) = 2^{-1}$.
- (d) (True/False) If $det(\mathbf{A}) = 2$ and $\alpha > 1$, then $det(\alpha \mathbf{A}) = 2$.

8. Linear Independence

Let
$$\mathbf{u} = \begin{pmatrix} \lambda \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$. What are possible values of λ that make $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?

9. Matrix Product

For
$$\mathbf{A} = \begin{bmatrix} 1 & 1/3 \\ x & y \end{bmatrix}$$
, find the value of x and y such that $\mathbf{A}^2 = 0$.

10. Inner Product

Consider the space of all matrices in
$$\mathbb{R}^{2\times 2}$$
. Define inner product as $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2\times 2}$. Let $\mathbf{U} = \begin{bmatrix} 1 & 4 \\ -3 & 5 \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} x^2 & x-1 \\ x+1 & -1 \end{bmatrix}$. Find all values of x such that $\mathbf{U} \perp \mathbf{V}$.

11. Matrix Inverse

If a non-singular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisfies $\mathbf{A}^3 - 4\mathbf{A}^2 + 3\mathbf{A} - 2\mathbf{I}_n = \mathbf{0}$, what is \mathbf{A}^{-1} ?

12. Basis

Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ c \end{pmatrix}$ where $c \in \mathbb{R}$. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is **not** equal to what value?

13. Subspaces

Consider the set of points $(x, y, z) \in \mathbb{R}^3$. Which one of the following is a subspace of \mathbb{R}^3 ?

- (a) x + 3y 2z = 3.
- (b) x + y + z = 0 and x y z = 2.
- (c) $\frac{x+1}{2} = \frac{y-2}{4} = \frac{z}{3}$. (d) $x^2 + y^2 = z$.
- (e) x = -z and x = z.
- (f) $\frac{x}{2} = \frac{y+1}{2}$.

Beyond Exam Scope

1. Solutions to Linear Equations

Consider the linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are known and $\mathbf{x} \in \mathbb{R}^n$ is unknown. Let $\mathbf{b} \in \mathcal{R}(\mathbf{A})$ so that (1) has at least one solution. Let \mathbf{x}_1 be one such solution. Show that *all* solutions to (1) can be written in the form $\mathbf{x}_1 + \mathbf{n}$ for some $\mathbf{n} \in \mathcal{N}(\mathbf{A})$ where $\mathcal{N}(\mathbf{A}) := {\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}}$ is the *nullspace* of \mathbf{A} . (You can check that $\mathcal{N}(\mathbf{A})$ is indeed a subspace of \mathbb{R}^n .)

2. Adjacency Matrices I (Challenging - Not Examinable!)

If **A** is an adjacency matrix show that $\mathbf{A}_{ij}^k = \#$ paths from $i \to j$ in exactly k steps. *Hint*: Use induction. (If you're not familiar with induction that's ok and you can skip this question.)

3. Adjacency Matrices II

Consider the adjacency matrix **A** below with rows and columns ordered according to the node labels {'A','B','C','D','E','F','G'}. Compute **A**³ and confirm that the value in **A**³ corresponding to paths from $E \to B$ is correct by explicitly writing out and counting all the paths from $E \to B$ that take exactly 3 steps.

$$\mathbf{A} = \left(\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

4. Diagonalization

Suppose an $n \times n$ matrix **A** can be diagonalized and let $\mathbf{u}_k := \mathbf{A}^k \mathbf{u}_0$ for some initial vector \mathbf{u}_0 . Show that for any $k \in \mathbb{N}$ we can write

$$\mathbf{u}_k = c_1 \lambda_1^k \mathbf{x}_1 + \dots + c_n \lambda_n^k \mathbf{x}_n. \tag{2}$$

- (a) What are the c_i 's, λ_i 's and \mathbf{x}_i 's?
- (b) There are many problems of interest where \mathbf{u}_k represents the state of some system (e.g. an economy, or web-browser in Google's PageRank model) at time k. Very often, we are interested in the behavior of this system in the long-run, i.e. when k gets very large. How might the representation in (2) be useful for determining this long-run behaviour?

5. Cash-Flow Dynamics

Multinational companies in the U.S., Japan and Europe have assets of \$4 trillion. At the start \$2 trillion are in the U.S. and \$2 trillion in Europe. Each year 1/2 the U.S. money stays home, and 1/4 goes to each of Europe and Japan. For Japan and Europe, 1/2 stays home and 1/2 is sent to the U.S.

- (a) Find the 3×3 matrix **A** that that gives $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$ where \mathbf{x}_k is the 3×1 vector containing the asset values in the US, Europe and Japan, respectively, at the end of year k.
- (b) Find the eigenvalues and eigenvectors of **A**.
- (c) Find the cash-flow distribution at the end of year k.
- (d) Find the limiting cash-flow distribution of the \$4 trillion as the world ends.

(This question is taken from Gilbert Strang's Linear Algebra and Its Applications.)