The IRS Compactification of Moduli Space Part I

Yannick Krifka

NCNGT 2021

ETH zürich

Outline

Two parts:

- Part I: Introduction
- Part II: Description of the IRS compactification of moduli space

What is an IRS?

IRS stands for Invariant Random Subgroup

Intuition: Let G be a group. An invariant random subgroup of G is a random variable taking values in the set of subgroups Sub(G) of G with conjugation invariant law.

Q: How can we formalize this?

A: Need a σ -algebra on Sub(G)

 $\sim \sim$ Borel σ -algebra induced by the Chabauty topology on Sub(G)!

The space Sub(G)

Let G be a locally compact second countable group.

The set of all closed subgroups

$$Sub(G) = \{H \leq G \text{ closed subgroup}\}\$$

can be equipped with the Chabauty topology.

Properties

- Sub(G) is **compact** and metrizable with respect to the Chabauty topology.
- G acts continuously on Sub(G) via conjugation,

$$g*H:=gHg^{-1}$$

for every $g \in G$ and every $H \in Sub(G)$.

Formal definition of IRS

Definition (IRS)

An **invariant random subgroup** of G is a conjugation invariant Borel probability measure on Sub(G).

Corollary

The space of all invariant random subgroups $IRS(G) = Prob(Sub(G))^G$ is **compact** with respect to its weak*-topology.

Where do IRSs come from?

A large source of examples:

Let $G \curvearrowright (X, \nu)$ be a probability measure preserving (PMP) action.

Fact

Then the stabilizer map

stab:
$$X \longrightarrow \operatorname{Sub}(G)$$
, $x \longmapsto G_x$,

pushes ν to an invariant random subgroup $\mu := \operatorname{stab}_*(\nu) \in \operatorname{IRS}(G)$.

Theorem (Abért–Glasner–Virág [AGV14], Abért–Bergeron–Biringer–Gelander–Nikolov–Raimbault–Samet [Abé+17])

Every IRS arises as a "stabilizer IRS" of some PMP action $G \curvearrowright (X, \nu)$.

An important special case: Lattices as IRSs

Let $\Gamma \leq G$ be a lattice. Then G acts on the quotient $\Gamma \backslash G$ via

$$h*(\Gamma g) = \Gamma g h^{-1} \quad \forall h \in G \, \forall \Gamma g \in \Gamma \backslash G,$$

and there is a unique invariant probability measure ν_{Γ} on $\Gamma \backslash G$.

In this case, the stabilizer of $\Gamma g \in \Gamma \backslash G$ is

$$\operatorname{stab}(\Gamma g) = g^{-1}\Gamma g.$$

As before, we obtain an IRS $\mu_\Gamma \coloneqq (\varphi_\Gamma)_*(\nu_\Gamma)$ as the push-forward measure of ν_Γ along

$$\mathsf{stab} = \varphi_{\mathsf{\Gamma}} \colon \mathsf{\Gamma} \backslash \mathsf{G} \longrightarrow \mathsf{Sub}(\mathsf{G}), \quad \mathsf{\Gamma} \mathsf{g} \longmapsto \mathsf{g}^{-1} \mathsf{\Gamma} \mathsf{g}.$$

Idea (Gelander [Gel15])

Use this construction to compactify the moduli space!

The moduli space of finite-area hyperbolic surfaces

Let Σ be an oriented surface possibly punctured without boundary and negative Euler characteristic $\chi(\Sigma) < 0$.

Definition (Moduli Space)

The **moduli space** of finite-area hyperbolic surfaces homeomorphic to Σ is

$$\mathcal{M}(\Sigma) \coloneqq \{X \text{ hyp. surf. with finite area} \mid X \cong \Sigma \} / \text{isometry.}$$

For example:

Convention

From now on:

$$G\coloneqq \mathsf{Isom}^+(\mathbb{H}^2)\cong \mathsf{PSL}(2,\mathbb{R})$$

The moduli space and lattices in $G = PSL(2, \mathbb{R})$

Two observations:

- Every $X \in \mathcal{M}(\Sigma)$ is isometric to a quotient $X \cong \Gamma \backslash \mathbb{H}^2$ where $\Gamma < G$ is a lattice.
- ② If $\Gamma_1 \backslash \mathbb{H}^2$, $\Gamma_2 \backslash \mathbb{H}^2 \in \mathcal{M}(\Sigma)$ are isometric then the isometry

$$\varphi\colon \Gamma_1\backslash \mathbb{H}^2\longrightarrow \Gamma_2\backslash \mathbb{H}^2$$

lifts to an isometry

$$g := \tilde{\varphi} \colon \mathbb{H}^2 \longrightarrow \mathbb{H}^2 \in G$$

conjugating Γ_1 and $\Gamma_2 = g\Gamma_1g^{-1}$.

The moduli space and lattices in $G = PSL(2, \mathbb{R})$

Proposition

There is a one-to-one correspondence between $\mathcal{M}(\Sigma)$ and the set $G \setminus \mathcal{L}(\Sigma)$ of conjugacy classes of lattices via

$$G \setminus \mathcal{L}(\Sigma) \longrightarrow \mathcal{M}(\Sigma), \quad [\Gamma] \longmapsto \Gamma \setminus \mathbb{H}^2,$$

where

$$\mathcal{L}(\Sigma) := \{ \Gamma \leq G \text{ torsion-free lattice} \, | \, \Gamma \backslash \mathbb{H}^2 \cong \Sigma \} \subseteq \mathsf{Sub}(G).$$

This map is a homeomorphism.

Embedding the moduli space in IRS(G)

Proposition

The map

$$\iota \colon \mathcal{M}(\Sigma) \longrightarrow \mathsf{IRS}(G),$$

$$X = \Gamma \backslash \mathbb{H}^2 \longmapsto \mu_{\Gamma},$$

is a topological embedding.

Remark

The IRS μ_{Γ} depends only on the conjugacy class $[\Gamma] \in G \setminus \mathcal{L}(\Sigma)$.

The IRS compactification of moduli space

Definition (IRS Compactification; Gelander [Gel15])

The closure of its image

$$\overline{\mathcal{M}}^{\mathsf{IRS}}(\Sigma) \coloneqq \overline{\iota(\mathcal{M}(\Sigma))} \subset \mathsf{IRS}(\mathit{G})$$

is called the IRS compactification of $\mathcal{M}(\Sigma)$.

Recall the corollary from the beginning:

Corollary

The space of all invariant random subgroups $IRS(G) = Prob(Sub(G))^G$ is **compact**.

What is the IRS compactification $\overline{\mathcal{M}}^{\text{\tiny IRS}}(\Sigma)$?

We will answer this question in

Part II

Thank you!

References

M. Abért, Y. Glasner, and B. Virág. "Kesten's theorem for invariant random subgroups". In: *Duke Mathematical Journal* 163.3 (2014), 465–488. ISSN: 0012-7094. DOI: 10.1215/00127094–2410064.

M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet. "On the growth of L^2 -invariants for sequences of lattices in Lie groups". In: *Annals of Mathematics* 185.3 (2017), 711–790. ISSN: 0003-486X. DOI: 10.4007/annals.2017.185.3.1.

T. Gelander. A lecture on Invariant Random Subgroups. 2015. arXiv: 1503.08402 [math.GR].