ГРУППЫ 23.Б07–23.Б10 V семестр, 2025/2026 уч. год Задание №1

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Пусть дано алгебраическое или трансцендентное уравнение вида

f(x) = 0, (1

причем, известно, что все интересующие вычислителя корни находятся на отрезке [A, B], на котором функция f(x) определена и непрерывна.

Требуется найти все корни уравнения (1) на [A, B] **нечетной кратности** (здесь **A, B,** $f(\mathbf{x})$ – параметры задачи).

Решение задачи разбить на два этапа:

- 1. Процедура отделения корней уравнения (1) на отрезке [A, B];
- 2. Уточнение корней уравнения (1) на отрезках перемены знака вида [ai, bi]
 - а. Методом половинного деления (методом бисекции);
 - b. Методом Ньютона (методом касательных);
 - с. Модифицированным методом Ньютона;
 - d. Методом секущих

с заданной точностью $\varepsilon > 0$ (ε – параметр задачи). Это предполагает выбор отрезка перемены знака и применение для него всех четырех методов. То есть отрезок фиксирован; единственный корень, ему принадлежащий, уточняется всеми методами.

Примечания:

- 1) Требования к оформлению задачи: вывести на печать название темы, исходные параметры задачи: А, В, вид функции f(x), ε .
- 2) Отделение корней произвести способом табулирования [A, B] с шагом h>0 (где h=(B-A)/N, здесь $N\geq 2$ также параметр задачи). При реализации выбирать достаточно малые значения h. Результатом решения задачи отделения корней является последовательный вывод
 - тезультатом решения задачи отделения корнеи является последовательный вывод отрезков перемены знака функции f(x) вида $[a_i, b_i]$ из [A, B], а также указание их количества.
- 3) При уточнении корней на каждом из отрезков [a_i, b_i] указанными методами, выводить на печать (для каждого метода)
 - название метода (для порядка));
 - начальное(ые) приближение(я) к корню;
 - количество шагов m (в каждом методе своё) для достижения точности ε ;
 - приближенное решение x_m уравнения (1), найденное каждым из упомянутых методов с точностью ε ;
 - $|x_m x_{m-1}|$ (в методе бисекции выводить длину последнего отрезка);
 - абсолютную величину невязки для прибл. решения x_m : $|f(x_m) \theta|$.

ВНИМАНИЕ!

В методе Ньютона и его модификации (хотя это неправильно) можно не выбирать начальное приближение, обеспечивающее сходимость, а ограничиться наудачу случайными значениями из промежутка (a_i или b_i ; середина отрезка; ...)

В методе секущих взять концы отрезка перемены знака за начальные приближения: $x_0 = a_i$; $x_1 = b_i$

Тестовые задачи:

$1. f(x) = x - 10 \cdot \sin(x)$	[A, B] = [-5; 3]	$\epsilon = 10^{\text{-}6}$
2. $f(x) = 2^{-x} - \sin(x)$	[A, B] = [-5; 10]	$\epsilon=10^{\text{-}6}$
3. $f(x) = 2^x - 2\cos(x)$	[A, B] = [-8; 10]	$\epsilon = 10^{-6}$
4. $f(x) = sqrt(4x+7) - 3 \cdot cos(x)$	[A, B] = [-1,5; 2]	$\epsilon=10^{\text{-8}}$
$5. f(x) = x \cdot \sin(x) - 1$	[A, B] = [-10; 2]	$\epsilon = 10^{\text{-}5}$
6. $f(x) = 8 \cdot \cos(x) - x - 6$	[A, B] = [-9; 1]	$\epsilon=10^{\text{-}7}$
7. $f(x) = 10 \cdot \cos(x) - 0.1 \cdot x^2$	[A, B] = [-8; 2]	$\epsilon = 10^{\text{-}5}$
8. $f(x) = 4 \cdot \cos(x) + 0.3 \cdot x$	[A, B] = [-15; 5]	$\epsilon = 10^{\text{-}5}$
9. $f(x) = 5 \cdot \sin(2x) - \operatorname{sqrt}(1 - x)$	[A, B] = [-15; -10]	$\epsilon=10^{\text{-}6}$
10. $f(x) = 1,2 \cdot x^4 + 2 \cdot x^3 - 13 \cdot x^2 - 14,$	$2 \cdot x - 24,1 \text{ [A, B]} = [-5; 5]$	$\varepsilon = 10^{-6}$
11. $f(x) = 2 \cdot x^2 - 2^x - 5$	[A, B] = [-3; 7]	$\varepsilon = 10^{-9}$
12. $f(x) = 2^{-x} + 0.5 \cdot x^2 - 10$	[A, B] = [-3; 5]	$\epsilon = 10^{-8}$
13. $f(x) = \sin(x) + x^3 - 9x + 3$	[A, B] = [-5; 4]	$\epsilon=10^{\text{-8}}$
14. $f(x) = x - \cos^2(\pi x)$	[A, B] = [-1; 2]	$\epsilon=10^{\text{-8}}$
15. $f(x) = (x-1)^2 - \exp(-x)$	[A, B] = [-1; 3]	$\epsilon=10^{\text{-8}}$
16. $f(x) = \sin(5x) + x^2 - 1$	[A, B] = [-3; 3]	$\epsilon = 10^{\text{-8}}$
17. $f(x) = \cos(3x) - x^3$	[A, B] = [-2; 1]	$\epsilon=10^{\text{-8}}$
18. $f(x) = x^2 - \sin(5x)$	[A, B] = [-2; 1]	$\epsilon=10^{\text{-8}}$
19. $f(x) = 1.8 \cdot x^2 - \sin(10 x)$	[A, B] = [-1; 1]	$\epsilon = 10^{-6}$
20. $f(x) = sqrt(x) - 2 \cdot cos(\pi x/2)$	[A, B] = [0; 4.5]	$\epsilon=10^{\text{-8}}$
21. $f(x) = x - 3 \cos^2(1.04 x)$	[A, B] = [0; 3,5]	$\epsilon=10^{\text{-8}}$
22. $f(x) = (x - 3) \cdot \cos x - 1$	[A, B] = [-6,5; 6,5]	$\epsilon=10^{\text{-8}}$
23. $f(x) = \exp(-x) + x^2 - 2$	[A, B] = [-10; 10]	$\epsilon=10^{\text{-8}}$
24. $f(x) = 8 \cdot x^4 + 4 \cdot x^3 - 14 \cdot x^2 - x$	+2 [A, B] = [-5; 5]	$\epsilon = 10^{-10}$
25. $f(x) = \ln x + (x-1)^3$	[A, B] = [0,01; 5]	$\varepsilon = 10^{-10}$
26. $f(x) = x^2 - 20 \cdot \sin(x)$	[A, B] = [-4.5; 5]	$\varepsilon = 10^{-6}$
27. $f(x) = 0.001 \cdot x^5 + x^2 - 1$	[A, B] = [-15; 10]	$\varepsilon = 10^{-10}$
28. $f(x) = 0.5^{x} - (x-1)^{2} + 1$	[A, B] = [0; 12,5]	$\varepsilon = 10^{-7}$
29. $f(x) = 8 \cdot x^5 + 8 \cdot x^3 - x^2 - 9$	[A, B] = [-10; 5,5]	$\varepsilon = 10^{-10}$
30. $f(x) = 24 \cdot x^5 + 8 \cdot x^3 - 3 \cdot x^2 - 9$	[A, B] = [-10; 8,5]	$\varepsilon = 10^{-9}$

Решение задачи про шар:

Написать программу, решающую задачу о погружении шара, с параметрами ρ (плотность) и r (радиус). Выбрать один из методов уточнения корня, наиболее эффективный на ваш взгляд (по результатам решения тестовой задачи).

Вывести на печать сводную таблицу с результатами расчетов для фиксированного r, введенного пользователем, и различных материалов, руководствуясь таблицей плотностей. **Материалы:** пробка, бамбук, сосна, кедр, дуб, бук, красное дерево, тиковое дерево, парафин, полиэтилен, пчелиный воск. Например: шар радиуса $r = 62 \ cm = 0.62 \ m$.

	Вещество	Плотность р	Глубина погружения d
		$\Gamma/MЛ = 1000 \ K\Gamma/M^3$	
1	Пробка	0,25	
2	Бамбук	0,4	
3	Сосна (белая)	0,5	
4	Кедр	0,55	
5	Дуб	0,7	
6	Бук	0,75	
7	Красное дерево	0,8	
8	Тиковое дерево	0,85	
9	Парафин	0,9	
10	Лёд/Полиэтилен	0,92	
11	Пчелиный воск	0,95	