Measuring Stellar Elemental Abundance

Huihao Zhang, Connor Michael, Farah Abdulrahman & Connor McKiernan

Group 6

Introduction

- It is important for us to know the elemental abundance of stars
- Why?
 - There are more than ten trillion stars in the universe
 - we can know the lifetime of the star (e.g. the Sun)
 Based on its stellar elemental abundance
- How do we find out the elemental abundance of a star?
- Curve of Growth Method!

Credit: R. Hollow, CSIRO.

Method

Curve of Growth Method

- 1. Find the number density of ground state Na based on the equivalent width.
- 2.Find the number density of excited state Na based on the Boltzmann Equation
- 3.Find the number density of neutral and ionized Na based on Saha Equation
- 4. Find the column density of Na based on the results of 1-3

Number Density of Ground State and Equivalent Width

Equivalent Width: 0.834 Angstrom

$$\log(W/\lambda) = \log(0.83 / 5890) = -3.85$$

 λ : 5890 Angstrom

f: 0.65 (Oscillator strength)

Ground Sodium Density

N: 8.24×10¹⁴ atoms/cm**2

Number Density of Excited State and Boltzmann Equation

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{kT}\right)$$

 $N_1:$ Number Density of Ground State

8.24×10¹⁴ atoms/cm**2

T: Temperature

5780 K

 $\frac{g_2}{g_1}$: Number of degenerate energy states

Na 5896 has electrons that enter the 3p orbital, which also has 3 degenerate states, so the ratio should be 2

k: Boltzmann constant

Number Density of Excited State

 N_2 2.432 × 10^13 atoms/cm**2

Number Density of Neutral and Ionized Na and Saha Equation

$$\frac{Na_{II}}{Na_{I}} = \frac{2kT}{P_{e}} \frac{Z_{II}}{Z_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} \exp\left(-\frac{\chi}{kT}\right)$$

The neutral state number density Na_I is equivalent to N1 + N2. m_e is electron mass,

temperature T = 5780

the ionization energy $\chi=5.1$ eV,

partition function $Z_{I}=2.4$ and $Z_{II}=1.0$

electron pressure $P_e = n_e kT = 1.0N \cdot m^{-2}$

Ionized state number density (N_aii)

2.136 *10^18 atoms/cm**2

Column Density of Na

$$N_1 \times (1 + \frac{N_2}{N_1}) \times (1 + \frac{Na_{II}}{Na_I}).$$

 $N_1:$ Number Density of Ground State

 $N_2\,$: Number Density of Excited State

 Na_I is equivalent to N1 + N2.

 Na_{II} : Ionized state number density

Sodium column density

2.137 * 10^18 atoms/cm**2

Relative Abundance

$$\frac{N_{element}}{N_H} = 12 + log_{10}(\frac{N_{element}}{N_H})$$

Number density of hydrogen, here it can N_H be column density

6.6* 10^23

Number density of Sodium, here it can be column density

2.137 * 10^18

Number density ratio $(N_Na/N_H) = 3.24 * 10^{-06}$

Relative log abundance ([Na/H]) = 6.51

Results

Ground Sodium Density

8.24×10¹⁴ atoms/cm**2

Ionized state number density (N_aii)

2.136 *10^18 atoms/cm**2

Number Density of Excited State

2.432 × 10^13 atoms/cm**2

Column density of Sodium

2.137 * 10^18

Number density ratio (N_Na / N_H)

3.24 * 10^-06

Relative log abundance ([Na/H])

6.51

Comments?

