20 DESEMBER 2021

DigitalSkola

Final Project Presentation

 ∂ erivative team

HackerEarth_how not to lose a customer in 10 days

WHAT HAVE WE DONE

Dataset Understanding
Identify the to do list
Analyzing the Data
Pre-processing
Model development

Preface

Churn rate is a marketing metric that describes the number of customers who leave a business over a specific time period.

Churn rate value may be predicted based on multiple factors such as the user's demographic, their browsing behavior, historical purchase data, etc.

On this Final Project, We try to predict the Churn Rate Value between 1 and 5.

Dataset Understanding

HACKEREARTH: HOW TO NOT LOSE A CUSTOMER IN 10 DAYS

25 Columns:- 24 Features- 1 Label36992 Rows

THE GIVEN DATA MOSTLY
CONSISTS OF USERS DATA
RECORD AND ACTIVITY RECORD

THEIR RESPECTIVE LABELS
CONSISTS OF THEIR CHURN RISK
SCORE FROM 1 TO 5 CATEGORIC
ORDINAL SCALE

Features (Pure Labels)

the unique identification number of a customer

NAME

the name of a customer

SECURITY_NO

a unique security number that is used to identify a person

REFERRAL_ID

a referral ID

Features (Categoric Nominals)

•••••••

the gender of a customer

REGION_CATEGORY

the region that a customer belongs to

MEMBERSHIP_CATEGORY

the category of the membership that a customer is using

JOINED_THROUGH_REFERRAL

Represents whether a customer joined using any referral code or ID

Features (Categoric Nominals)

•••••••

the type of offer that a customer prefers

MEDIUM_OF_OPERATION

the medium of operation that a customer uses for transactions

INTERNET_OPTION

the type of internet service a customer uses

USED_SPECIAL_DISCOUNT

Represents whether a customer uses special discounts offered

Features (Categoric Nominals)

Represents whether a customer prefers offers

PAST_COMPLAINT

Represents whether a customer has raised any complaints

COMPLAINT_STATUS

Represents whether the complaints raised by a customer was resolved

LAST_VISIT_TIME

Represents whether a customer has raised any complaints

JOINING_DATE

the date when a customer became a member ∂ erivative team

Features (Categoric Ordinals)

the feedback provided by a customer

DioitalSkola

Features (Numeric)

• • • • • • • • • • • • •

AGE

the age of a customer

DAYS_SINCE_LAST_LOGIN

the no. of days since a customer last logged into the website

AVG_TIME_SPENT

the average time spent by a customer on the website

AVG_TRANSACTION_VALUE

the average transaction value of a customer

AVG_FREQUENCY_LOGIN_DAYS

the no. of times a customer has logged in to the website

POINTS_IN_WALLET

the points awarded to a customer on each transaction

Label (Categoric Ordinal)

Represents the churn risk score that ranges from 1 to 5

DioitalSkola

EXPLORATORY DATA ANALYSIS

Now we are going to breakdown all of the data we have to get the better understanding of it

CHURN RISK SCORE

There is a negative value in churn risk score column, but in application there shouldn't be any negative prediction. The lowest

VISUALIZATION FOR THE DATA

Visualize the data to further understand about the statistical condition of the data

should be 1

FEATURE DATA TYPE **CLEANSING**

We will make sure every data there were represented by its respective true data-type

CALCULATE THE CORRELATION **BETWEEN FEATURES**

Correlation counting to see how every numeric features correlate with one-another

There are invalid churn_risk_scores.

We will process further without these data

Replace the 'Error' value into NaN for avg_frequency_login_days feature

Change the Data Type into Float for avg_frequency_login_days feature

Change the joining_date feature data type into datetime

FEATURE DATA TYPE CLEANSING

We will make sure every feature represented by their true data type (i.e.: 123 should be either int or float, ['female', 'male'] should be str or object, and '11-12-2008' into datetime64)

DATA VISUALIZATION -DISTRIBUTION PLOT-

∂ erivative team

DATA VISUALIZATION -BOX PLOT-

DATA VISUALIZATION -BAR CHART-

Calculating Correlation Between Features

∂ erivative team

DATA PRE-PROCESSING

SO HOW WAS IT?

PRE-PROCESSING STEPS

ADDITIONAL FEATURE CALCULATION

REPLACING NULL WITH MEDIAN FOR ALL NUMERICAL COLUMN THAT HAS NULL

REPLACING NULL WITH
'UNKNOWN' CLASS FOR ALL
CATEGORICAL COLUMN THAT
HAS NULL

ONE-HOT ENCODING FOR THE REMAINING CATEGORIC NOMINAL FEATURES

LABEL ENCODING FOR FEEDBACK

DROPPING THE UNUSED FEATURE

TO THE SCALING AND

MODELLING

APPLYING SMOTE FOR SAMPLE

BALANCING

From joining_date feature, will be extracted the number of days a user had been registered and the calculation will be written in a new column of joining_days which has an integer data type

JOINING_DAYS = LAST_JOIN_DATE - JOINING_DATE

ADDITIONAL FEATURE
CALCULATION

Untuk sisa kolom fitur kategorik yang memiliki nilai Null:

"region_category",

"preferred_offer_types

REPLACE NULL WITH MEDIAN

Untuk sisa kolom fitur numerik yang memiliki nilai Null:

"avg_frequency_login_days",
"points_in_wallet"

DROPPING THE UNUSED FEATURE

CUSTOMER_ID

NAME

SECURITY_NO

JOINING_DATE

REFERRAL_ID

LAST_VISIT_TIME

LAST_JOIN_DATE

LABEL ENCODING FOR 'FEEDBACK'

'POOR WEBSITE'

'NO REASON

SPECIFIED'

'POOR PRODUCT

QUALITY'

'POOR CUSTOMER
SERVICE'

'TOO MANY ADS'

'PRODUCT ALWAYS
IN STOCK'

"QUALITY
CUSTOMER CARE'

'USER FRIENDLY WEBSITE'

'REASONABLE PRICE'

GENDER

ONE HOT ENCODING FOR CATEGORIC NOMINAL COLUMN

REGION_CATEGORY MEMBERSHIP_CATEGORY JOINED_THROUGH_REFERRAL PREFERRED_OFFER_TYPES MEDIUM_OF_OPERATION INTERNET_OPTION USED_SPECIAL_DISCOUNT OFFER_APPLICATION_PREFERENCE PAST_COMPLAINT COMPLAINT STATUS

SMOTE USAGE

• • • •

TO BALANCE THE SAMPLE BY
SYNTHETIZING NEW DATA USING K-NN
METHOD

12,500

USING ROBUST SCALING

TO MAKE SURE EVERY FEATURE HAS THE FAIR RANGE OF VALUE

 ∂ erivative team

MODELLING

OF COURSE NOT A CATWALK MODEL

METHOD USED

RANDOM FOREST

fl-score :0.8170634148645475

accuracy: 0.8238679969301612

	precision	recall	f1-score	support
1	0.87	0.92	0.89	2087
2	0.91	0.86	0.88	2070
3	0.89	0.91	0.90	2094
4	0.77	0.50	0.61	2109
5	0.70	0.94	0.80	2064
accuracy			0.82	10424
macro avg	0.83	0.82	0.82	10424
weighted avg	0.83	0.82	0.82	10424

Submission ID: 67376341	Result	Score
21 seconds ago	Accepted	75.28612

XGBOOST

fl-score: 0.8351839259364959

accuracy: 0.8367229470452802

	precision	recall	f1-score	support
1	0.91	0.93	0.92	2087
2 3	0.93 0.91	0.90 0.92	0.92 0.91	2070 2094
4 5	0.70 0.73	0.61 0.82	0.65 0.77	2109 2064
	3.73	3.32		
accuracy			0.84	10424
macro avg	0.84	0.84	0.84	10424
weighted avg	0.84	0.84	0.83	10424

Submission ID: 67370677	Result	Score
15 seconds ago	Accepted	75.63348

Our Model

∂ erivative team

KNN

fl-score: 0.6904538694592525

accuracy: 0.6967574827321565

	precision	recall	f1-score	support
1 2 3 4	0.78 0.77 0.71 0.52	0.86 0.84 0.65 0.42	0.82 0.80 0.68 0.46	2087 2070 2094 2109
accuracy macro avg	0.67 0.69	0.72 0.70	0.69 0.70 0.69	2064 10424 10424
weighted avg	0.69	0.70	0.69	10424

Submission ID: 67376491	Result	Score
19 seconds ago	Accepted	53.34862

Our Model

SVM

fl-score: 0.6490629314667464

accuracy: 0.6781465848042978

	precision	recall	f1-score	support
1	0.60	0.96	0.74	2019
2	0.92	0.38	0.54	2105
3	0.78	0.75	0.76	2078
4	0.55	0.32	0.40	2091
5	0.67	1.00	0.80	2131
accuracy			0.68	10424
macro avg	0.71	0.68	0.65	10424
weighted avg	0.71	0.68	0.65	10424

Submission ID: 67377054	Result	Score
6 seconds ago	Accepted	61.44761

Our Model

Summary

XGBoost and Random Forest have highest accuracy both on test and validation dataset (about 83 % on test data and 75% on validation data)

While KNN and SVM don't performed well on this dataset (KNN has 53.35 % accuracy and SVM has 61.45 % accuracy on validation dataset)

a erivative team

Temui Tim Kami

YUDHI NUGRAHA RIYANSYAH

MUHAMMAD GALANG GARDAMUKTI

ALDRICHO A. POLLARDO