

Exemple de minimalisation

octobre 2015

Cet automate est complet sur l'alphabet $\{a, b\}$.

Étape 0 : Partition des états selon qu'ils sont acceptants, ou non :

$A = \{2,3\}, B = \{0,1,4\}$ $\begin{bmatrix} 0 & 1 & 3 \\ B & B & A \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 \\ B & A & B \end{bmatrix}$ $\begin{bmatrix} 2 & 1 & 2 \\ A & B & A \end{bmatrix}$ $\begin{bmatrix} 3 & 4 & 3 \\ A & B & A \end{bmatrix}$ $\begin{bmatrix} 4 & 3 & 4 \\ B & A & B \end{bmatrix}$		q	$\delta(q,a)$	$\delta(q,b)$
$A = \{2,3\}, B = \{0,1,4\}$		0	1	3
$A = \{2,3\}, B = \{0,1,4\}$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A = \{2, 3\}, B = \{0, 1, 4\}$	В	В	A
$A = \{2,3\}, B = \{0,1,4\}$		1	2	1
A B A 3 4 3 A B A 4 3 4		В	A	В
3 4 3 A B A 4 3 4		2	1	2
A B A 4 3 4		A	В	A
4 3 4		3	4	3
		A	В	A
$\mathbf{B} \mid \mathbf{A} \qquad \mid \mathbf{B} \mid$		4	3	4
		В	A	В

Étape 1 : Les états de l'ensemble A sont équivalents, tous deux ont pour transitions : $\begin{array}{c|c} q & \delta(q,a) & \delta(q,b) \\ \hline A & B & A \end{array}$

Mais l'ensemble B doit être partitionné, pour distinguer l'état $0: \frac{q \mid \delta(q,a) \mid \delta(q,b) \mid}{B \mid B \mid A}$. et les

états 1 et 4 : $\begin{array}{c|cccc} q & \delta(q,a) & \delta(q,b) \\ \hline B & A & B \end{array}$. On obtient

$$A = \{2, 3\}, BA = \{0\}, BB = \{1, 4\}$$

q	$\delta(q, a)$	$\delta(q,b)$
0	1	3
BA	BB	A
1	2	1
BB	A	BB
2	1	2
A	BB	A
3	4	3
A	BB	A
4	3	4
BB	A	BB

Étape 2 : Les états de l'ensemble A sont équivalents : $\begin{array}{c|c} q & \delta(q,a) & \delta(q,b) \\ \hline A & BB & A \end{array}$

Le partitionnement reste identique : c'est donc la congruence de Nérode

L'automate minimal regroupe les états 2 et 3 d'une part, 1 et 4 d'autre part. L'état initial est celui qui contient 0. Tous les états formés d'états acceptants sont acceptants : ici il n'y en a qu'un : $A = \{2, 3\}$.

