Formerky's

University of Buea

College of Technology

Department of Electrical and Electronic Engineering EEC 209: Mathematics I Test, 05 February 2018 15.00-17.00

Exercise 1 (15 marks)

Consider the sequence $\{x_n\}$ defined for all $n \in \mathbb{N}$ by

$$x_0 = 1$$
 and $x_n = \frac{1}{4}x_{n-1} + 1, n \ge 1.$

- 1. Evaluate x_1 , x_2 and x_3 . (1+1+1 marks).
- 2. We consider now the sequence $\{y_n\}$ defined for all $n \in \mathbb{N}^*$ by

$$y_n = x_n - x_{n-1}, \ n \ge 1.$$

- (a) Evaluate y_1 , y_2 and y_3 . (1+1+1 marks).
- \gtrsim (b) Prove that $\{y_n\}$ is a geometric progression and find its ratio. (2 marks).
 - (c) Deduce, according to n, the general term y_n . (2 marks).
- 3. Consider the sum $S_n = y_1 + y_2 + \cdots + y_n$.
 - (a) Prove that $S_n = \frac{1}{3} \left(1 \left(\frac{1}{4}\right)^n\right)$ and find $\lim_{n \to \infty} S_n$. (2+1 marks).
 - (b) Prove that $S_n = x_n x_0$ and deduce $\lim_{n \to \infty} x_n$. (1+1 marks).

Exercise 2 (30 marks)

- 4. Find the domain of definition of the following functions and indicate which of them are even, odd, periodic (precise the period where applicable) or neither even, odd nor periodic: a) f(x) = |x|; b) $f(x) = \frac{1}{x}$; c) $f(x) = \cos 2x$; d) $f(x) = \frac{x+1}{x^2+x-2}$. (3×4 marks).
- 2. Find the domain of definition and the domain of study of the following: a) $f(x) = x^2$; b) $f(x) = \sin 2x$. (2+2 marks).
- 3. Find the indicated limits if they exists:

a)
$$\lim_{x\to 1} (1-2x^2)$$
; b) $\lim_{x\to 3} \frac{x^2-2x-3}{x-3}$; c) $\lim_{x\to +\infty} \sqrt{x^2+4}-x$; d) $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$. (7 marks).

- 4. Consider the function $f(x) = \begin{cases} x^2 1 & \text{if } x \leq 1 \\ \ln x & \text{if } x > 1. \end{cases}$
 - (a) Determine the domain of definition of f. (1 mark).
 - (b) Evaluate $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$. Can we say that $\lim_{x\to 1} f(x)$ exists? Justify your answer. (4 marks).
 - (c) Is f continuous at $x_0 = 1$? Explain. (2 marks).