

Test report no.: 98175-6

Item tested: RZUSBSTICK

Type of equipment: IEEE 802.15.4, 2.4GHz

Evaluation Module

FCC ID: VW4AVRRZUSBSTICK

Client: Atmel Norway AS

FCC Part 15.247

Digital Transmission System

RSS-210 Issue 7 & RSS Gen Issue 2

Low Power Licence-Exempt Radiocommunication Devices

10 April 2008

Authorized by: Trade Sven

Frode Sveinsen Technical Verificator

CONTENTS

1	GENERAL INFORMATION	3
1.1	Testhouse Info	3
1.2	Client Information	3
1.3	Manufacturer	3
2	Test Information	4
2.1	Test Item	
2.2	Test Environment	5
2.2.1	Normal test condition	5
2.3	Test Period	
3	TEST REPORT SUMMARY	6
3.1	General	
3.2	Test Summary	
3.3	Description of modification for Modification Filing	
3.4	Comments	
3.5	Family List Rationale	
4	TEST RESULTS	q
4.1	Power-line Conducted Emissions.	
4.2	Minimum 6 dB Bandwidth	
4.3	Peak Power Output	
4.4	Spurious Emissions (Radiated)	
4.5	Power Spectral Density (PSD)	
5	LIST OF TEST EQUIPMENT	38
6	BLOCK DIAGRAM	39
6.1	System set up for radiated measurements	
6.2	Test Site Radiated Emission	

1 GENERAL INFORMATION

1.1 Testhouse Info

Name : Nemko AS

Nemko Comlab

Address: Gåsevikveien 8, Box 96

N-2027 Kjeller, NORWAY

Telephone: +47 64 84 57 00
Fax: +47 64 84 57 05
E-mail: post@comlab.no

FCC test firm registration #: 994405 IC OATS registration #: 4443

Total Number of Pages: 40

1.2 Client Information

Name: Atmel Norway AS Address: Vestre Rosten 79,

N-7075 Trondheim, Norway

Telephone: +47 72 88 43 88

Fax: --

Contact:

Name: Ingar Hanssen
Telephone: +47 72 88 43 88

E-mail: <u>hanssen@atmel.com</u>

1.3 Manufacturer

Same as client

2 Test Information

2.1 Test Item

Name :	RZUSBSTICK
FCC ID :	VW4AVRRZUSBSTICK
Model/version :	RZUSBSTICK
Serial number :	Not stated
Hardware identity and/or version:	A09-0320
Software identity and/or version :	1.0
Frequency Range :	2405 – 2480 MHz
Tunable Bands :	1
Number of Channels :	16 ¹
Operating Modes :	TX & RX
Type of Modulation :	O-QPSK
Emissions Designator :	G1D
User Frequency Adjustment :	None, Software controlled
Rated Output Power :	2 mW (3 dBm)
Type of Power Supply :	3.6 V DC
Antenna Connector :	Integral antenna only
Antenna Diversity Supported :	No

^{1) 16} channels in use.

Theory of Operation

The RZUSBSTICK transceiver module is an IEEE® 802.15.4-compliant device that operates in the 2.4 GHz ISM frequency band. This transceiver module specially designed for the Zigbee protocol stack for wireless star and mesh networks.

Description of Test Item

The RZUSBSTICK is an USB dongle with dimension of 8 cm X 5.1cm.

2.2 Test Environment

2.2.1 Normal test condition

Temperature: 20 - 22 °C Relative humidity: 20 - 40 %

Normal test voltage: Power from USB

The values are the limit registered during the test period.

2.3 Test Period

Item received date: 2007-12-13

Test period: from 2007-12-13 to 2007-12-14 & 2008 - 01 -10

3 TEST REPORT SUMMARY

3.1 General		
Manufacturer:	Atmel Norway AS	3
Model No.:	RZUSBSTICK	
Serial No.:	Not stated	
All measurements are tr	aceable to national	standards.
The tests were conducte 15.247.	ed for the purpose of	of demonstrating compliance with FCC CFR 47 Part
		nce with ANSI C63.4-2003. The radiated tests were made intances of 3 and 10meters.
⊠ New Submission		□ Production Unit
Class II Permissive C	Change	☐ Pre-production Unit
DTS Equipment Code	•	☐ Family Listing

THIS TEST REPORT RELATES ONLY TO THE ITEM (S) TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

TEST REPORT #: 98175-6

TESTED BY: ______ DATE: 09.04.2008

G.Suhanthakumar, Test engineer

Nemko Comlab AS authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Comlab AS.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Comlab AS accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

This test report applies only to the items and configurations tested.

3.2 Test Summary

Name of test	FCC Part 15 reference	RSS210 Issue 7 & RSS Gen Issue 2	Result
Supply voltage variations	15.31 (e)	8 (RSS-GEN)	N/A ²
Number of operating frequencies	15.31 (m)	A8.1	Complies
Power-line Conducted Emissions (Receiver)	15.107(a)	7.2.2 (RSS-GEN)	Complies
Radiated Emissions limits (receiver)	15.109(a)	6 (RSS-GEN)	ref. 15.209(a)
Antenna requirement	15.203	7.1.4 (RSS-GEN)	Complies ¹
Radiated emissions limits for restricted bands	15.205(a)		Complies
Power Line Conducted Emissions	15.207(a)	7.2.2 (RSS-GEN)	N/A ²
Radiated emission limits	15.209(a)	A8.5	Complies
Bandwidth	15.247(a)(2)	A8.2	Complies
Peak Power Output	15.247(b)(3)	A8.4	Complies
Power Spectral Density	15.247(d)	A8.2	Complies
Out-of-band emissions (Antenna Conducted)	15.247(c)	A8.5	Complies ¹
Out-of-band emissions (Radiated)	15.247(c)	A8.5	Complies
Lower band edge radiated emission	15.247(c)	A8.5	Complies
Upper band edge radiated emission	15.247(c)	A8.5	Complies

 $^{^{\}rm 1}$ Integral antenna only . For testing purpose 50 ohm MPX connector was provided.

3.3 Description of modification for Modification Filing

Not applicable.

3.4 Comments

The channels are selected with a laptop PC connected to the EUT. The laptop is only used for selection of channels. The measurements are performed at channels near top Ch 26, near middle Ch 18 and near bottom Ch 11. And the out put level is set to maximum in the software. The EUT complies at these channels.

Radiated:

The selection of channels are done by manufacturer out side the test chamber. The lab top is used during the test as power via USB port and no data transmission through USB port. The laptop Model type is DELL Latitude, D610. The laptop is belongs to the manufacturer.

The USB port is populated during spurious emission measurements.

The radiated measurements are tested on three axis.

A temporary antenna connector is used only for making conducted RF measurements for evaluation purposes.

Power line conducted emission:

For power line conducted emission a Toshiba LapTop is used (Satellite)

3.5 Family List Rationale

Not Applicable.

² The power is taken from USB port.

4 TEST RESULTS

4.1 Power-line Conducted Emissions

Para. No.: 15.207 (a)

Test Performed By: G.Suhanthakumar Date of Test: 08.04.2008

Measurement procedure: ANSI C63.4-2003 using 50 μH/50 ohms LISN.

Test Results: Complies

For host a laptop PC is used.

Toshiba Satellite

Model: PS141E-3FXCW-NO

S/N: 43795605G

Toshiba AC Adapter: S/N: 03302006

Model: PA3201U-1ACA

Highest measured value (L1 and N):

Frequency	Detector	Measured value	Limit	Margin
MHz	QP/AV	dΒμV	dBμV	dB
0,150	QP	53	66	13
0,150	AV	39	56	17
0,249	QP	40	61,8	21,8
0,249	AV	23	51,8	28,8
0,465	QP	50	56,6	6,6
0,465	AV	24	46,6	22,6

The measured power line conducted emission for laptop alone and with USB card(EUT) is identical. The power line conducted emission is not changed due to the USB card.

See the attached graphs for peak scan. The measured peak values are also within the requirements.

NEMKO Comlab

08. Apr 08 16:25

Peak

Operator: gns Comment: Atmel

RZUSBSTIKK Mains with PC FCC part 15

Scan Settings (1 Range)

	Frequencies	3		Rec	eiver Settings
Start	Stop	Step	IF BW	Detecto	r M-Time Atten Preamp OpRge
150k	30M	4.5k	9k	PK	50ms AUTO LN OFF 60dB

L1 polarity - power line conducted emission

NEMKO Comlab

08. Apr 08 16:49

Peak

Operator: gns Comment:

Atmel RZUSBSTIKK Mains with PC FCC part 15 USB

Scan Settings (1 Range)

---- Receiver Settings ----Step IF BW Detector M-Time Atten Preamp OpRge 4.5k 9k PK 50ms AUTO LN OFF 60dB Start Stop 150k 30M

N polarity - power line conducted emission

4.2 Minimum 6 dB Bandwidth

Para. No.: 15.247 (a)(2)

Test Performed By: G.Suhanthakumar Date of Test: 13.12.2007

Test Results: Complies

Measurement Data:

6 dB Bandwidth (MHz)				
Ch 11 Ch 19 Ch 26				
2405MHz	2440MHz	2480MHz		
1.28	1.36	1.36		

Requirements:

For Digital Transmission Systems in the 2400-2483.5 MHz band the minimum 6 dB bandwidth shall be at least 500 KHz.

Ch11 - 6 dB bandwidth - 1.28MHz

Ch19 - 6 dB bandwidth - 1.36MHz

CH26 - 6 dB bandwidth - 1.36MHz

91.72

4.3 Peak Power Output

Para. No.: 15.247 (b)

Test Results: Complies

Measurement Data:

Maximum Conducted Peak Output Power

RF channel	Ch 11	Ch 19	Ch 26		
Measured value (mW)	1.68	1.66	1.51		
Maximum Fieldstrength					
RF channel	Ch 11	Ch 19	Ch 26		

91.71

91.53

Maximum EIRP

Measured value (dBμV/m)

RF channel	Ch 11	Ch 19	Ch 26
Measured EIRP (mW)	0.32	0.24	0.27
Antenna gain dBi	-7.2	-8.4	-7.5

Antenna gain = 10*log(EIRP/Conducted Power) dBi

The EIRP is measured using substitution method. The maximum eirp is obtained at horizontal polarization.

Detachable antenna?	Yes	⊠ No
If detachable, is the antenna connector non-standard?	Yes	□No

Requirements:

The maximum peak output power shall not exceed the following limits:

For Digital Transmission Systems in the 2400 - 2483.5 MHz band: 1 Watt

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Ch11 - Conducted Peak Output Power

Ch19 - Conducted Peak Output Power

Ch26 - Conducted Peak Output Power

4.4 Spurious Emissions (Radiated)

Para. No.: 15.247 (c)

Test Performed By: G.Suhanthakumar Date of Test: 12.12.2007 & 10.01.2008

Test Results: Complies

Measurement Data:

Lower Band-edge radiated measurements

Frequency	Power below nearest channel, dB	Limit	Margin
GHz	RF ch 11 DSS	dB	dB
2.4	41.14	-20	21.14

Band-edge field strength 2.4 GHz:

Marker Delta 100kHz RBW: 41.14dB

Peak Field Strength 91.53–41.14 = 50.39 dB μ V/m

Average Field Strength: $50.39 \text{ dB}\mu\text{V/m} - 13.2 \text{ dB} = 37.2 \text{ dB}\mu\text{V/m}$

Upper Band-edge radiated measurements

Frequency	Power below nearest channel, dB	Limit	Margin	
GHz	RF ch 26 DSS	dB	dB	
2.4835	42.95	-20	22.95	

Band-edge field strength 2.4835 GHz:

Marker Delta 100kHz RBW: 42.95dB

Peak Field Strength: $91.72-42.95 = 48.77 \text{ dB}\mu\text{V/m}$

Average Field Strength: $48.77 \text{ dB}\mu\text{V/m} - 13.2 \text{ dB} = 35.6 \text{ dB}\mu\text{V/m}$

RF conducted emissions to 25 GHz

Maximum RF level outside operating band:

RF ch 11: 55.98 dBC, margin > 20 dB

RF ch 19: 52.19 dBC, margin > 20 dB

RF ch 26: 69.55 dBC, margin > 20 dB

Ch11 - lower-band -field strength

Ch11 – Lower-band-edge – Delta-marker

Nemko AS, N-2027 Kjeller Page 19 (40)

Ch26 - upper-band -field strength

Ch26 - Upper-band-edge - Delta-Marker

Nemko AS, N-2027 Kjeller Page 20 (40)

Ch11 - Conducted Spurious - 9kHz - 25GHz

Ch19 - Conducted Spurious - 9kHz - 25GHz

Nemko AS, N-2027 Kjeller Page 21 (40)

Ch26 - Conducted Spurious - 9kHz - 25GHz

Duty Cycle Calculation:

RF duty cycle: Calculation according to RF burst Para 15.35 (c)

 $-20*\log (0.098ms/0.45ms) = 13.2 dB$

Maximum duty cycle according to Para 15.35 (b): 20 dB

This value is used to calculate Average field strength above 1 GHz from measured Peak value.

Duty Cycle - ON-time

Duty Cycle - OFF time

Radiated Emissions, 1-25 GHz, peak

1-18 GHz measured at a distance of 3m, 18-25 GHz measured at 1m.

No radiated spurious emissions detected with 50 ohm load.

Radiated Emission 1 – 25 GHz, Peak

Measured with Peak Detector

Frequenc y	RF channel	Dist. corr. factor	Field strength, Peak, 3m	Duty cycle corr. factor	Limit	Margi n
GHz	11-26	dB	dBμV/m	dB	dBμV/m	dB
4.809	11	0	50.54	-	74	23.46
4.889	19	0	51.69	-	74	22.31
4.959	26	0	52.33	-	74	21.67
7.213	11	0	55.85	-	74	18.15
7.333	19	0	56.16	-	74	17.84
7.438	26	0	56.16	-	74	17.84
8 - 25	11,18,26	0	None detected	-	-	-

Radiated emission 1- 25 GHz, Average

Calculated value from Peak Detector

Frequenc y	RF channel	Dist. corr. factor	Field strength, Peak, 3 meters	Duty Cycle correction factor	Limit	Margi n
GHz	11-26	dB	dBμV/m	DB	dBμV/m	dB
4.809	11	0	50.54	13.2	54	16.7
4.889	19	0	51.69	13.2	54	15.5
4.958	26	0	52.33	13.2	54	14.9
7.213	11	0	55.85	13.2	54	11.3
7.333	19	0	56.16	13.2	54	11.0
7.438	26	0	56.16	13.2	54	11.0
5 - 25	11,18,26	0	None detected	-	-	-

Antenna factor, amplifier gain and cable loss are included in spectrum analyzer "Transducer factor".

In RX mode the spurious is same as for TX mode below 1 GHz. Above 1 GHZ only LO is detected.

Radiated emission 1-25 GHz, Average

Calculated value from Peak Detector

Frequenc y	RF channel	Dist. corr. factor	Field strength, Peak, 3 meters	Duty Cycle correction factor	Limit	Margi n
GHz	11-26	dB	dBμV/m	dB	dBμV/m	dB
2.403	11 -26	0	46.12	-	54	7.88

Ch11 – 2nd harmonic

CH11 - 3rd harmonic

Ch19 – 2nd Harmonic

CH19 - 3rd Harmonic

Ch26 – 2nd Harmonic

CH26 - 3rd Harmonic

RX - Radiated measurement LO

Radiated emissions 30 - 1000 MHz.

Detector: Quasi-Peak Measuring distance 3 m.

Tested in active mode.

Frequenc	Operational	Field Measuring		Limit	Margin
У	condition	strength	distance	FCC15.209	
MHz		dBμV/m	m	dBμV/m	dB
30 -200	TX ON/RX	< 20	3	40	>20
200 -1000	TX on/RX	< 20	3	40	>20

Nemko Comlab 13. Dec 07 16:39

Peak

EUT: AVR RAVEN USB
Manuf: ATMEL
Op Cond: 4m hp, 3 mdistance
Operator: gns
Test Spec: FCC part 15.247
Comment: TX active

Scan Settings (1 Range)

|------ Frequencies -------|------ Receiver Settings ------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms 0dBLN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

VP - 30 - 200 MHz

Nemko Comlab 13. Dec 07 16:46

Peak

EUT: AVR RAVEN USB

Manuf: ATMEL

Op Cond: 1m vp, 3 mdistance
Operator: gns
Test Spec: FCC part 15.247
Comment: TX active

Scan Settings (1 Range)

|------ Frequencies -------|------ Receiver Settings ------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms 0dBLN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

HP - 30 - 200MHz

Nemko Comlab 13. Dec 07 15:17

Peak

EUT: AVR RAVEN USB

Manuf: ATMEL

Op Cond: 1m vp, 3 mdistance
Operator: gns
Test Spec: FCC part 15.247
Comment: TX active

Scan Settings (1 Range)

|------ Frequencies -------||------- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
200M 1000M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 21 200M 1000M HL223

VP - 200 - 1000GHz

Nemko Comlab 13. Dec 07 15:32

Peak

 EUT:
 AVR RAVEN USB

 Manuf:
 ATMEL

 Op Cond:
 4m hp, 3 mdistance

 Operator:
 gns

 Test Spec:
 FCC part 15.247

 Comment:
 TX active

Scan Settings (1 Range)

|------ Frequencies -------||------- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
200M 1000M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 21 200M 1000M HL223

HP 200 - 1000MHz

4.5 Power Spectral Density (PSD)

Para. No.: 15.247 (d)

Test Performed By: G.Suhanthakumar Date of Test: 13.12.2007

Test Results: Passed

Measured and Calculated Data:

Measured Conducted Values:

Ch11 - Lower Channel:

 $PSD = 35 - 48.94 \, dBm/Hz = -13.94 \, dBm$

Ch19 - Middle Channel:

PSD = 35 - 49.07 dBm/Hz = -14.07 dBm

Ch 26 - Upper Channel:

 $PSD = 35 - 49.68 \, dBm/Hz = -14.68 \, dBm$

The spectrum line spacing is less than 3kHz, therefore used noise power density and corrected 35 dB for 3kHz

Requirements:

The Power Spectral Density of a Digital Transmission System shall be no greater than +8 dBm in any 3kHz band

No requirements for Frequency Hopping Systems.

Ch11 - Power Density - Conducted measurement

Ch19 - Power Density - Conducted measurement

Nemko AS, N-2027 Kjeller Page 36 (40)

Ch26 - Power Density - Conducted measurement

5 LIST OF TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Test Laboratory.

No.	Instrument/ancillary	Type of instrument/ancillary	Manufacturer	Ref. no.
1	FSEK	Spectrum Analyzer	Rohde & Schwarz	LR 1337
2	ESN	EMI Receiver	Rohde & Schwarz	LR 1237
3	3115	Antenna horn	EMCO	LR 1330
4	643	Antenna horn	Narda	LR 093
5	642	Antenna horn	Narda	LR 220
6	PM7320X	Antenna horn	Sivers lab	LR 103
7	DBF-520-20	Antenna horn	Systron Donner	LR 101
8	638	Antenna horn	Narda	LR 098
9	Sucoflex 102E	Cable microwave	Suhner	LR 1370
10	6032A	Power supply	HP	LR 1062
11	ESH3-Z3	LISN	Rohde & Schwarz	LR 1076
12	8449B	Amplifier	Hewlett Packard	LR 1322
13	959C	Printer	Hewlett Packard	LR 1414
14	HFH2-Z2	Antenna loop	Rohde and Schwarz	LR 285
15	10855A	Amplifier	Hewlett Packard	LR 1445
16	HL223	Antenna log.per	Rohde & Schwarz	LR 1261
17	HK116	Antenna biconic	Rohde & Schwarz	LR 1260
18	ESVS 30	Test Receiver	Rohde & Schwarz	LR 1101
19	R3271	Spectrum Analyzer	Advantest	LR 1123
20	B32-10R	Power supply	Oltronix	LR 126
21	FSU26	Spectrum Analyzer	Rohde & Schwarz	LR 1504

6 BLOCK DIAGRAM

6.1 System set up for radiated measurements

System set-up for power line conducted measurements

6.2 Test Site Radiated Emission

