אינדוקציה-רקורסיה

מתי עדיף להשתמש ברקורסיה ומתי עדיף בלולאה?

פתרון:

מבחינת ניהול זיכרון של רקורסיה, בכל קריאה לפונקציה נוצר עותק חדש שלה, בעותק זה יש:

- 1. הקצאה חדשה של כל המשתנים הפנימיים, כולל הפרמטרים המופיעים בחתימה שלה.
- 2. השמה התחלתית של ערכים לפרמטרים לפי מה שהועבר בקריאה אליה.
- 3. אתחול של הפקודה הבאה לבצע בקוד- בעותק החדש זו הפקודה הראשונה בפונקציה.

. נשתמש ברקורסיה כאשר האלגוריתם נותן עץ בגובה $\log_2 n$ או קטן יותר

נשתמש בלולאה כאשר רקורסיה מביאה לעץ בגובה n עם מס' צמתים קרוב t^n לכאשר אין פיצולים והפונקציה קוראת לעצמה פעם אחת.

: דוגמאות למימושים

1. חישוב עצרת :קלט – מספר אי שלילי שלם, פלט- !n .

מימוש אינדוקטיבי (לולאה)	מימוש רקורסיבי
<pre>public static int factorial(int n) { int ans = 1; for(int i = 1 ; i <= n ; i++) { ans *= i; } return ans; }</pre>	<pre>public static int factorial(int n) { if(n == 0) return 1; return n * factorial(n-1); }</pre>
סיבוכיות נעבור פעם אחת מ1 עד n , סה"כ. $O(n)$	סיבוכיות נעבור 2n פעמים (נכנסים n פעמים ויוצאים n פעמים) סה"כ: O(n)+O(n)=O(2n)=O(n)

אמנם שני המימושים הם O(n), אך עדיף לממש לולאה במקום רקורסיה כי כך אין שימוש נוסף בזיכרון.

2. חישוב פיבונאצ'י: קלט- מספר אי שלילי, פלט- ערך באינדקס לפי סדר הסדרה.

מימוש אינדוקטיבי (לולאה)	מימוש רקורסיבי
<pre>public static int fibo(int n) { int[] arr = new int[n+1]; arr[0] = 0; arr[1] = 1; for(int i = 2 ; i <= n ; i++) arr[i] = arr[i-1] + arr[i-2]; return arr[n]; }</pre>	<pre>public static int fibo(int n) { if(n == 0 n == 1) { return n; } return fibo(n-1) + fibo(n-2); }</pre>
סיבוכיות עבור ההשמה של איבר 0 ו-1 זה $O(2)$. עבור הלולאה אנו רצים n - n פעמים פחות n ההשמות שבוצעו כבר, ולכן התחלנו לרות החל מאינדקס n - n כלומר הלולאה מבצעת $O(n$ - n) $O(n$	סיבוכיות כל קריאה לפונקציה גוררת שתי קריאות לפונקציה- לכן, הסיבוכיות היא $\mathcal{O}(2^n)$.

:merge sort חישוב.3

עדיף לחשב ברקורסיה ולא בלולאה כי שימוש ברקורסיה הופך את הקוד לפשוט וקריא.

באלגוריתם גובה העץ הוא $\log_2 n$ (בגלל החלוקה ב-2), ומספר הקריאות לפונקציה הוא 32, ומספר החזרות מהפונקציה הוא 32. מה"כ 64 שלא יגרמו לא $tack\ overflow$.