Diskrétní struktury 1

Nekonečno

Radim Bělohlávek

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Proč se zabýváme nekonečnem?

- řada množin, které potřebujeme při praktických úvahách, je nekonečných
- potřebujeme vědět, jak se s nekonečnými množinami pracuje
- mnoho úvah o algoritmech obsahuje úvahy o nekonečných množinách
- nekonečno je jeden z nejzáhadnějších jevů

Některé otázky

- jak měřit velikost množin, zejména nekonečných?
- co znamená, že dvě množiny jsou stejně velké?
- která množina je větší, \mathbb{N} nebo \mathbb{Q} ? \mathbb{Q} nebo \mathbb{R} ?

. . .

Konečné a nekonečné množiny

Intuitivně:

A je konečná, pokud lze její prvky "očíslovat" čísly $1, \ldots, n$.

Definice Množina A je konečná, pokud existuje $n \in \mathbb{N}$ a bijekce

$$f:\{1,2,\ldots,n\}\to A.$$

Množina A je nekonečná, pokud není konečná.

Je-li A konečná, číslo n z definice se nazývá počet prvků (také mohutnost, velikost) A, značí se |A|.

Příklad $\{2,3,5,7\}$ je konečná, protože pro n=4 je např. zobrazení $f: \{1, 2, 3, 4\} \rightarrow \{2, 3, 5, 7\}$ definované

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 5$, $f(4) = 7$

je bijekce. Tedy $|\{2, 3, 5, 7\}| = 4$.

Příklad Množina S všech kladných sudých čísel je nekonečná.

Je to celkem zřejmé. Ale argument: Kdyby $f:\{1,\ldots,n\}\to S$ byla bijekce, vezměme m=největší z $f(1), \ldots, f(n)$. Pak 2(m+1) je sudé, ale protože 2(m+1) > m, není obrazem žádného i, což je spor s tím, že f je bijekce.

Příklad Množina \mathbb{R} je nekonečná. Jasné (např. podobným argumentem).

Spočetné množiny

Intuitivně:

A je spočetná, pokud lze její prvky seřadit do posloupnosti (konečné nebo nekonečné).

Definice Množina A je spočetná, pokud je

konečná,

nebo existuje bijekce $f:\mathbb{N}\to A$ (pak je tzv. nekonečná spočetná, popř. spočetně nekonečná).

Tedy A je spočetná, právě když existuje posloupnost

$$a_1, \ldots, a_n$$
 nebo $a_1, a_2 \ldots$

ve které se vyskytují všechny prvky z A (f je surjekce) a neopakují se v ní (f je injekce).

Příklad (nekonečné spočetné množiny)

 $-\mathbb{N}$

Základní nekončená spočetná množina: identita f(n) = n je bijekce $f: \mathbb{N} \to \mathbb{N}$.

- $\{2,4,6,8,\dots\}$ Zobrazení $f:\mathbb{N}\to\{2,4,6,8,\dots\}$ dané f(n)=2n je bijekce.
- $\mathbb{N} \cup \{0\}$ Zobrazení $f: \mathbb{N} \to \mathbb{N} \cup \{0\}$ dané f(n) = n-1 je bijekce.

Příklad (nekonečné spočetné množiny, pokrač.)

 $-\mathbb{Z}$

Požadovaná posloupnost z prvků \mathbb{Z} je např.

$$0, -1, 1, -2, 2, -3, 3, \dots$$

Jinými slovy, bijekce $f:\mathbb{N} \to \mathbb{Z}$ z definice je

$$f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5) = 2, \dots$$

(Napište explicitní vzorec pro f(n).)

 $-\{k,k+1,k+2,\dots\}$ pro libovolné $k\in\mathbb{Z}$

Zobrazení $f:\mathbb{N} \to \{k,k+1,k+2,\dots\}$ dané f(n)=n+(k-1) je bijekce.

K poslednímu příkladu:

– $\{k,k+1,\dots\}$ pro libovolné $k\in\mathbb{Z}$ Zobrazení $f:\mathbb{N}\to\{k,k+1,k+2,\dots\}$ dané f(n)=n+(k-1) je bijekce.

Neplyne ale spočetnost $\{k,k+1,\dots\}$ z toho, že $\{k,k+1,\dots\}\subseteq\mathbb{Z}$ a že \mathbb{Z} je spočetná? Ano. Dokonce obecně platí:

Věta Každá nekonečná podmnožina spočetné množiny je spočetná.

(Důsledek: Pokud A je spočetná a $B \subseteq A$, pak B je spočetná.)

- Netriviální otázka: Definice spočetné množiny nevylučuje množiny, které jsou větší než konečné, ale menší než spočetné. Věta říká, že takové neexistují.
- Dokážeme později.

Příklad

 $\{0,1\}^* \text{ je množina všech tzv. řetězců (slov, konečných posloupností) nad abecedou } \{0,1\}.$

Například následující jsou prvky množiny $\{0,1\}^*$:

$$01, 11, 10, 0, 111, 01010101, \varepsilon$$
 (prázdný řetězec).

Následující posloupnost je nekonečná, obsahuje všechny řetězce z $\{0,1\}^*$ a prvky se v ní neopakují:

$$\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, \dots$$

Prokazuje tedy, že $\{0,1\}^*$ je nekonečná spočetná množina.

Uspořádání řetězců

$$\varepsilon$$
, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, ...

je obecně důležité (tzv. shortlex):

- 1. kratší řetězce jsou před delšími,
- 2. stejně dlouhé řetězce jsou uspořádány lexikograficky

Podobně lze seřadit do posloupnosti všechna slova nad libovolnou konečnou abecedou. Tedy:

Věta Množina Σ^* všech řetězců na konečnou abecedou $\Sigma = \{a_1, \dots, a_n\}$ je spočetná.

Např.
$$\Sigma = \{a, b, \dots, z\}$$
, $\Sigma^* = \{\varepsilon, a, computer, world, ssca, \dots\}$.

Důležitý důsledek:

Je-li možné nějaké objekty kódovat (reprezentovat, popsat) jako řetězce nad nějakou konečnou abecedou Σ , je množina těchto kódů (popisů) spočetná, a tedy i množina daných objektů je spočetná.

Argument:

```
O= množina uvažovaných objektů; kódování = prosté zobrazení c:O\to \Sigma^*; c(O)= množina kódů; pak c(O)\subseteq \Sigma^* a vzhledem ke spočetnosti \Sigma^* je i c(O) spočetná.
```

Příklad

Množina všech zdrojových kódů v jazyku C (Python, Lisp, ...) je spočetná.

Odbočka: lexikografické a shortlex uspořádání

Dána abeceda $\Sigma = \{a_1, \dots, a_n\}$ a na ní lineární uspořádání \leq ; předp. $a_1 < \dots < a_n$. délka |u| řetězce $u \in \Sigma^*$ je počet znaků v u: |010| = 3, |0| = 1, $|\varepsilon| = 0$

Lexikografické (slovníkové) uspořádání \leq_l : pro $u=u_1\cdots u_p, v=v_1\cdots v_q\in \Sigma^*$ je $u\leq_l v$ p. k. u=v nebo pro nějaké i je $u_1\cdots u_{i-1}=v_1\cdots v_{i-1}$ a $u_i< v_i$

Shortlex uspořádání \leq_s : pro $u=u_1\cdots u_p, v=v_1\cdots v_q\in \Sigma^*$ je $u\leq_s v\quad \text{p. k.}\quad |u|<|v| \text{ nebo } (|u|=|v|\text{ a }u\leq_l v).$

Rozdíl mezi \leq_l a \leq_s :

- $-\leq_s$ je stejného typu jako přirozené uspořádání \mathbb{N} (\leq_s vytváří posloupnost)
- $-\leq_l$ není stejného typu jako přirozené uspořádání $\mathbb N$ (netvoří takovou posloupnost):
 - např. množina $A = \{1, 01, 001, 0001, \dots\}$ nemá nejmenší prvek vzhledem k \leq_l
 - ale každá podmnožina $A\subseteq \mathbb{N}$ má nejmenší prvek

Konec odbočky

Odbočka: algoritmický pohled

Spočetné množiny lze chápat jako množiny, o kterých lze uvažovat jako o množinách, jejichž prvky mohou být postupně vypisovány nějakým algoritmem (který případně pracuje nekonečně dlouho).

```
Algoritmus vypisující \{1,\ldots,n\} (konečná spočetná): for i\leftarrow 1 to n do print(i)
Algoritmus vypisující\{1,2,\ldots\} (nekonečná spočetná): i\leftarrow 1 while true do print(i) i\leftarrow i+1
```

Takové množiny se nazývají algoritmicky vyčíslitelné (nebo rekurzívně vyčíslitelné).

Každá algoritmicky vyčíslitelná množina je tedy spočetná.

Ale: Existuje spočetná množina, která není algoritmicky vyčíslitelná! (ukážeme) Konec odbočky

Příklad (nekonečné spočetné množiny, pokrač.)

- $-\mathbb{Q}$
 - čísla $r\in\mathbb{Q}$ lze chápat (vyjádřit) jako zlomky $\frac{p}{q}$, kde $p\in\mathbb{Z}$ a $q\in\mathbb{N}$
 - připustíme-li pro $r \neq 0$ pouze $\frac{p}{q}$, kde p a q jsou nesoudělná, a r=0 pouze zlomek $\frac{0}{1}$, je každé $r \in Q$ vyjádřeno právě jedním $\frac{p}{q}$ (takové $\frac{p}{q}$ jsou v tzv. kanonickém tvaru)

První argument prokazující spočetnost (detaily přednáška):

- nakreslíme množinu $\mathbb{Z} \times \mathbb{N}$,
- její prvky $\langle p, q \rangle$ lze seřadit do posloupnosti,
- z ní vybrat jen $\langle p,q \rangle$ takové, že $\frac{p}{q}$ je v kanonickém tvaru
- vybraná podposloupnost tedy obsahuje právě všechna racionální čísla a ta se v ní neopakují

Druhý argument: později.

Existují nekonečné množiny, které nejsou spočetné?

Definice konečných a spočetných množin dává následující obrázek:

- konečné množiny
- nekonečné množiny
 - spočetné množiny
 - ???

Definice Množina se nazývá nespočetná, pokud není spočetná (tedy je nekonečná, ale neexistuje bijekce mezi $\mathbb N$ a tou množinou).

Tedy nespočetná množina je "ještě větší" než \mathbb{N} (a každá jiná spočetná množina).

Věta Množina $2^{\mathbb{N}}$ všech podmnožin množiny \mathbb{N} je nespočetná.

Důkaz Provedeme tzv. diagonální metodou.

Sporem. Předpokládejme, že $2^{\mathbb{N}}$ je spočetná.

Pak existuje bijekce $f: \mathbb{N} \to 2^{\mathbb{N}}$, $f(i) = A_i$, a tedy posloupnost A_1, A_2, \ldots všech podmnožiny \mathbb{N} .

Sestrojíme nyní množinu $B\subseteq \mathbb{N}$, která je různá od každé z A_1,A_2,\ldots , to bude spor.

Každou množinu A_i reprezentujeme řádkem 0 a 1:

tedy $1 \not\in A_i$, $2 \not\in A_i$, $3 \in A_i$, $4 \not\in A_i$ a

$$j \in A_i$$
, pokud $a_{ij} = 1$, $j \notin A_i$, pokud $a_{ij} = 0$.

Uvažujme schéma a jeho hlavní diagonálu:

	1	2	3	4	
$\overline{A_1}$	a_{11}	a_{12}	a_{13}	a_{14}	
A_2	a_{21}	a_{22}	a_{23}	a_{24}	
A_3	a_{31}	a_{32}	a_{33}	a_{34}	
A_4	a_{41}	a_{42}	a_{43}	a_{44}	
:	:	÷	:	:	٠

a definujme množinu B jako množinu, jejíž řádek b vznikne "negací" hlavní diagonály.

Tedy pro každé $i \in \mathbb{N}$ definujeme $b_i = 1 - a_{ii}$ neboli

 $i \in B$, právě když $i \not\in A_i$.

Pak B je podmnožinou \mathbb{N} , ale $B \neq A_1$, $B \neq A_2$, ..., protože B a A_i se liší v prvku i.

Věta Množina 2^A všech podmnožin libovolné nekonečné spočetné množiny A je nespočetná.

Důkaz Diagonální metodou jako pro důkaz předchozí věty pro $A=\mathbb{N}.$

Z toho plyne, že řada důležitých množin je nespočetných.

Definice Formální jazyk na konečnou abecedou Σ je libovolná množina $L \subseteq \Sigma^*$. Řetězce $w \in L$ se nazývají slova jazyka L.

- $-\{b_n\cdots b_10\mid b_i\in\{0,1\}\}$, tj. $\{0,00,10,000,010,\dots\}$, je formální jazyk nad $\{0,1\}$. Sestává ze slov představujících zápisy sudých nezáporných čísel ve dvojkové soustavě.
- $-\{x,y,(x+y),(x*x),(x*(y+y)),\dots\}$ je jazyk nad $\{x,y,(,),*,+\}$, jehož slova jsou správně utvořené aritmetické výrazy nad danými proměnnými a symboly operací.

Věta Množina všech formálních jazyků nad libovolnou konečnou abecedou je nespočetná.

Důkaz Důsledek předchozí věty a tvrzení (dříve), že množina Σ^* všech řetězců nad Σ je spočetná.

To má důležitý důsledek:

Existuje množina řetězců nad $\{0,1\}$, která není algoritmicky vyčíslitelná.

Množina všech řetězců z $\{0,1\}^*$ je spočetná. Každá $A\subseteq\{0,1\}^*$ je tedy spočetná.

Některé podmnožiny množiny $A\subseteq\{0,1\}^*$ jsou algoritmicky vyčíslitelné (viz výše), např. jistě všechny konečné, pak např. následující:

```
- \{1, 11, 111, 1111, \dots\},

- \{01, 0011, 000111, \dots\},

- \{1, 0110, 0011100, 0001111000, \dots\},

- \{u \in \{0, 1\}^* \mid u \text{ obsahuje stejný počet } 0 \text{ a } 1\}
```

Ale existují množiny binárních řetězců, které nelze vypisovat pomocí algoritmů! Je jich dokonce víc než těch, které vypisovat lze.

Zdůvodnění:

- algoritmus je reprezentován řetězcem znaků nad konečnou abecedou, tedy algoritmů je spočetně mnoho
- množin řetězců nad $\{0,1\}$ je nespočetně mnoho
- existuje tedy množina $A\subseteq\{0,1\}^*$, pro kterou neexistuje algoritmus, který ji vypisuje

Diagonální metoda (také Cantorova diagonální metoda):

- důležitá myšlenka, objevuje se např. i v úvahách o algoritmech a výpočtech

Georg Cantor (1845-1918)

- německý matematik, vytvořil teorii množin (dnes tzv. intuitivní, naivní)
- Georg Cantor: Ueber eine elementare Frage der Mannigfaltigskeitslehre. Jahresbericht der Deutschen Mathematiker Vereinigung 1(1891), 75–78.

Věta Množina \mathbb{R} je nespočetná.

Důkaz (původním Cantorovým argumentem): Stačí ukázat, že (0,1) není spočetný. Každé reálné $r\in(0,1)$ lze vyjádřit pomocí desetinného rozvoje

$$r=0, r_1r_2r_3\cdots.$$

Předpokládejme, že místo konečných rozvojů uvažujeme jen nekonečné rozvoje s periodou 9. Tj. místo 0,378 uvažujeme $0,377999\cdots$ apod. Pak má každé číslo právě jeden rozvoj.

Kdyby bylo možné čísla z (0,1) seřadit do posloupnosti r_1,r_2,\ldots , mohli bychom uvažovat číslo $s=0,s_1s_2\cdots$ definované pomocí diagonály schématu

	1	2	3	
		r_{12}		
r_2	r_{21}	r_{22}	r_{23}	 přednisem: pro $i \in \mathbb{N}$ je s. libovolné z 1 $0 = 1$
r_3	r_{31}	r_{32}	r_{33}	 předpisem: pro $i \in \mathbb{N}$ je s_i libovolné z $\{1, \ldots, 9\} - \{r_{ii}\}$.
		:		

Pak s má uvažovaný rozvoj a $s \neq r_1, s \neq r_2, \ldots$, což je spor s předpokladem.

Další vlastnosti spočetných množin

Věta Pro libovolnou nekonečnou množinu A existuje injektivní zobrazení $f: \mathbb{N} \to A$. (Tedy A obsahuje nekonečnou spočetnou podmnožinu; totiž $f(\mathbb{N})$.)

Důkaz $f: \mathbb{N} \to A$ budeme definovat indukcí:

- 1. Def. f(1) jako libovolný prvek z A.
- 2. Předp., že pro $n \in \mathbb{N}$ jsou definovány $f(1), \dots, f(n)$ a že jsou po dvou různé.

Pak
$$\{f(1),\ldots,f(n)\}\subseteq A$$
 je konečná, je různá od A , a tedy existuje $a\in A-\{f(1),\ldots,f(n)\}.$

Položme
$$f(n+1) = a$$
.

Podle principu definice matematickou indukcí existuje injektivní zobrazení $f: \mathbb{N} \to A$.

(Ke zmíněnému principu se vrátíme.)

Často používané tvrzení k prokázání spočetnosti:

Věta Pokud A je spočetná a $B \subseteq A$, pak B je spočetná.

 $\mathbf{D}\mathbf{\mathring{u}kaz}$ Je-li B konečná, je dle definice spočetná.

Je-li B nekonečná, existuje dle věty výše injekce $f: \mathbb{N} \to B$. Uvažujme $f(\mathbb{N})$. Pak:

$$f(\mathbb{N}) \subseteq B \subseteq A$$
,

přitom existuje bijekce množiny A na $f(\mathbb{N})$.

(Bijekci $g:A\to f(\mathbb{N})$ dostaneme např. jako $g=h^{-1}\circ f$, kde $h:\mathbb{N}\to A$ je bijekce.)

Tvrzení nyní plyne z následujícího lemma (jeho důkaz později):

Lemma Existuje-li bijekce množiny A_1 na A_3 a je-li $A_3 \subseteq A_2 \subseteq A_1$, pak existuje bijekce množiny A_1 na A_2 .

 ${f V\'eta}$ Kartézský součin A imes B spočetných množin A a B je spočetná množina.

Důkaz 1. Jsou-li A a B konečné, je $A \times B$ konečná (a tedy spočetná).

2. Je-li jedna nekonečná (např. $A=\{a_1,a_2,\dots\}$) a druhá konečná ($B=\{b_1,\dots,b_k\}$), lze prvky $\langle a_i,b_j\rangle\in A\times B$ uspořádat do posloupnosti

$$\langle a_1, b_1 \rangle, \langle a_1, b_2 \rangle, \dots, \langle a_1, b_k \rangle, \langle a_2, b_1 \rangle, \dots, \langle a_2, b_k \rangle, \langle a_3, b_1 \rangle, \dots$$

(bijekce
$$f: \mathbb{N} \to A \times B$$
 je $f(n) = \langle a_i, b_j \rangle$, kde $i = \lceil n/k \rceil$ a $j = ((n-1) \mod k) + 1$)

3. Jsou-li nekonečné, $A=\{a_1,a_2,\dots\}$ a $B=\{b_1,b_2,\dots\}$, definujme $f:A\times B\to\mathbb{N}$ takto:

$$f(a_i, b_j) = 2^i \cdot 3^j.$$

Protože 2 a 3 jsou prvočísla, je $2^i \cdot 3^j = 2^k \cdot 3^l$, právě když i = k a j = l, tedy f je injekce. Máme tedy bijekci $A \times B$ na $f(A \times B)$.

 $f(A \times B) \subseteq \mathbb{N}$ a \mathbb{N} je spočetná je (viz věta) $f(A \times B)$ spočetná. Tedy i $A \times B$ je spočetná.

Věta Jsou-li A_1,\ldots,A_n spočetné množiny, je i $A_1\times\cdots\times A_n$ spočetná množina.

Důkaz Matematickou indukcí s použitím předchozí věty.

- 1. pro n=1 zřejmé.
- 2. Předpokládejme, že tvrzení platí pro n a uvažujme $A_1 \times \cdots \times A_{n+1}$.

Pak $A_1 \times \cdots \times A_n$ je spočetná a dle předchozí věty je i $(A_1 \times \cdots \times A_n) \times A_{n+1}$ spočetná. Je zřejmé, že $f: A_1 \times \cdots \times A_n) \times A_{n+1} \to A_1 \times \cdots \times A_{n+1}$ definovaná

$$f(\langle\langle a_1,\ldots,a_n\rangle,a_{n+1}\rangle)=\langle a_1,\ldots,a_{n+1}\rangle$$

je bijekce.

Tedy i $A_1 \times \cdots \times A_{n+1}$ je spočetná.

Věta Sjednocení spočetného systému spočetných množin je spočetná množina.

Důkaz Uvažujme systém $\{A_i \mid i \in I\}$, kde I je spočetná a každá A_i je spočetná, a jeho sjednocení $\bigcup_{i \in I} A_i$.

Když jsou I i všechny A_i konečné, je i $\bigcup_{i \in I} A_i$ konečná.

Předpokládejme tedy, že I nebo některá A_i je nekonečná.

Přednáška.

Jednoduché důsledky předchozích tvrzení:

 \mathbb{Q} je spočetná (už víme):

- rozložme $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$
- ukážeme, že $\mathbb{Q}^+=\{rac{p}{q}\in\mathbb{Q}\mid p,q\in\mathbb{N} \text{ nesoudělná }\}$ je spočetná:
 - zobrazení $f\mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$ definované $f(\frac{p}{q}) = \langle p,q \rangle$ je bijekce množiny \mathbb{Q}^+ na podmnožinu $f(\mathbb{Q}^+)$ spočetné množiny $\mathbb{N} \times \mathbb{N}$, proto je \mathbb{Q}^+ je spočetná.
- $-\mathbb{Q}^-$ je spočetná $(x\mapsto -x$ je bijekce \mathbb{Q}^- na $\mathbb{Q}^+)$ a $\{0\}$ je spočetná,
- tedy i $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$ je spočetná.

 Σ^* je spočetná pro každou spočetnou Σ (už víme pro konečnou Σ):

- Každý řetězec $a_1 \cdots a_n \in \Sigma^*$ lze jednoznačně reprezentovat n-ticí $\langle a_1, \dots, a_n \rangle \in \Sigma^n$. (prázdný řetězec ε pak prvkem \emptyset ; pozn.: $\Sigma^0 = \{\emptyset\}$)
- Zřejmě tedy existuje bijekce množiny Σ^* na $\bigcup_{n=0}^{\infty} \Sigma^n$. ($\varepsilon \mapsto \emptyset$ a $a_1 \cdots a_n \mapsto \langle a_1, \dots, a_n \rangle$)
- $-\bigcup_{n=0}^{\infty} \Sigma^n$ je spočetná (je to sjednocení spočetného systému spočetných množin).
- Tedy i Σ^* je spočetná.

Jak porovnávat množiny podle jejich velikosti?

Pro konečné množiny A a B platí (ověřte):

- |A| = |B|, právě když existuje bijekce $f: A \rightarrow B$.
- $-\ |A| < |B|$, právě když existuje injekce $f:A \to B$ a neexistuje injekce $g:B \to A$.

Pomocí pokročilejšího aparátu teorie množin lze dokázat, že pro obecné množiny A a B nastane právě jedna z možností:

- 1. Existuje bijekce $f:A\to B$. Pak se A a B považují za stejně velké (jsou tzv. ekvivalentní; mají stejnou mohutnost).
- 2. Existuje injekce $f:A\to B$ a neexistuje injekce $g:B\to A$. Pak se A považuje za menší než B (A má menší mohutnost než B).
- 3. Existuje injekce $f: B \to A$ a neexistuje injekce $g: A \to B$. Pak se A považuje za větší než B (A má větší mohutnost než B).

Kardinální číslo

Kardinální číslo (kardinalita) množiny A je objekt, označujeme ho |A|, přiřazený množině A tak, že |A|=|B|, právě když A a B jsou ekvivalentní.

Definici nebudeme uvádět (viz literatura o teorii množin).

Pro konečnou A lze |A| ztotožnit s počtem prvků množiny A (ten jsme značili |A|).

Pro nekonečnou množinu složitější. Pro zajímavost:

- Cantor: |A| je třída všech množin ekvivalentních s A (problematické z hlediska axiomatických teorií množin)
- axiomatické přístupy (ZFC): |A| je nejmenší ordinální číslo ekvivalentní s A

Pro možnosti 1., 2. a 3. výše pak píšeme |A|=|B|, |A|<|B| a |A|>|B|.

Značení:

- $-\ leph_0 = |\mathbb{N}|$, tj. mohutnost množiny \mathbb{N}
- $leph_1=|\mathbb{R}|$, tj. mohutnost množiny \mathbb{R}
- víme, že $\aleph_0 < \aleph_1$

Cantorova-Bernsteinova věta

Věta Pokud pro množiny A a B existuje injekce $f:A\to B$ a injekce $g:B\to A$, pak existuje bijekce množiny A na množinu B.

Důkaz Nebudeme dělat (komentář na přednášce).

Poznámka

- Dokresluje výše uvedené možnosti 1., 2. a 3.:
- Pokud existuje injekce A do B i injekce B do A, je to případ 1 (existuje bijekce A na B).
- Dokázal G. Cantor s použitím tzv. axiomu výběru.
- 1897 pak F. Bernstein bez axiomu výběru, konstruktivní důkaz.

Cantorova věta

Věta Pro každou množinu A platí $|A| < |2^A|$.

Tedy existuje injekce $f:A\to 2^A$, ale neexistuje injekce $g:2^A\to A$.

Před důkazem:

- S ohledem na to, že $a\mapsto\{a\}$ je injekce A do 2^A , a s ohledem na Cantorovu-Bernsteinovu větu lze Cantorovu větu ekvivalentně formulovat takto: Neexistuje bijekce $f:A\to 2^A$.
- Pro konečné množiny známe, protože pak $|2^A|=2^{|A|}$.
- Ukazuje, že existují větší a větší množiny, nekonečná hierarchie nekonečen.
- Víme, že $|\mathbb{N}|<|\mathbb{R}|$. Ale ještě větší než \mathbb{R} je množina $2^{\mathbb{R}}$. Ještě větší je $2^{2^{\mathbb{R}}}$ atd.
- S tím souvisí slavná tzv. hypotéza kontinua (komentář na přednášce): Neexistuje množina A, pro kterou $|\mathbb{N}|<|A|<|\mathbb{R}|$.

Důkaz Cantorovy věty $(|A| < |2^A|)$

Stačí dokázat, že neexistuje surjekce $f:A\to B.$

Dokážeme sporem. Předpokládejme, že $f:A\to 2^A$ je surjekce.

Uvažujme množinu $D \in 2^A$ definovanou následovně:

$$a \in D$$
, právě když $a \not\in f(a)$.

(např. pro
$$A=\mathbb{N}$$
, $a=2$, pro $f(a)=\{1,3,5\}$ je $2\not\in D$, pro $f(a)=\mathbb{N}$ je $a\in D$)

f je surjekce, tedy existuje $d\in A$ t.ž. f(d)=D.

Pak

$$d \in D$$
, p.k. $d \not\in f(d)$, p.k. $d \not\in D$,

což je spor.

Myšlenka podobná jako u dříve uvedené diagonální metody. Srovnejte s předchozím důkazem, že $2^{\mathbb{N}}$ je nespočetná (z toho plyne $|\mathbb{N}| < |2^{\mathbb{N}}|$).