Tut 9: k-Means Clustering

June 2023

- 1. The first step of k-means clustering is to decide the number of clusters, k. After a series of iterations, can k-means ever give results which contain
 - (a) More than k clusters?

Solution. No. It can never give more than k clusters, since at every stage every point is assigned to one of k clusters.

(b) Less than k clusters?

Solution. To give fewer than k clusters, we would need there to be a cluster which contain no points at one of the re-assignment stages. This means that its centre would be farther from every point than one of the other cluster centres and results in an empty clusters.

2. You are given a small example with n=6 observations and p=2 variables. The observations are as follows:

Obs	X_1	X_2
1	1	4
2	1	3
3	0	4
4	5	1
5	6	2
6	4	0

(a) Plot the observations.

```
Solution. In Python:
import matplotlib.pylab as plt
plt.plot([1,1,0,5,6,4],[4,3,4,1,2,0],'o')
plt.xlabel('$X_1$'); plt.ylabel('$X_2$')

In R:
plot(c(1,1,0,5,6,4),c(4,3,4,1,2,0),type='p',xlab="X1",ylab="X2",pch=23,bg="red",cex=1.5)
```

(b) Rescale the observations to [0,1].

Solution. Scale with min-max normalisation in R using

d.f = data.frame(x1=c(1,1,0,5,6,4),x2=c(4,3,4,1,2,0)) $normdf = scale(df,center=c(0,0),scale=sapply(df,function(x){max(x)-min(x)})$

which gives

Obs	X_1	X_2	Clust_Initial	Norm_X1	Norm_X2
1	1	4	A	0.1667	1.0000
2	1	3	A	0.1667	0.7500
3	0	4	В	0.0000	1.0000
4	5	1	В	0.8333	0.2500
5	6	2	A	1.0000	0.5000
6	4	0	В	0.6667	0.0000

(c) Perform k-means clustering to the observations with k = 2. The initial centroids are 2, 5.

Solution. t = 0:

$$C_1^{(0)} = (0.1667, 0.7500); \quad C_2^{(0)} = (1.0000, 0.5000)$$

and then find the Euclidean distance for all points to the cluster centres $C_A^{(2)}$ and $C_B^{(2)}$:

Obs	Dist_A	Dist_B	Cluster*
1	0.2500000	0.9718253	1
2	0.0000000	0.8700255	1
3	0.3004626	1.1180340	1
4	0.8333333	0.3004626	2
5	0.8700255	0.0000000	2
6	0.9013878	0.6009252	2

t=1: Compute the cluster centres from the previous table:

$$C_A^{(3)} = (0.1111, 0.9167); \quad C_B^{(3)} = (0.8333, 0.2500)$$

and then find the Euclidean distance for all points to the cluster centres $C_1^{(1)}$ and $C_2^{(1)}$:

Obs	Dist_A	Dist_B	Cluster*
1	0.1002	1.0035	1
2	0.1757	0.8333	1
3	0.1389	1.1211	1
4	0.9829	0.0000	2
5	0.9817	0.3005	2
6	1.0719	0.3005	2

We can see that the clusters do not change, so we have the final cluster centres $C_1^{(1)},\ C_2^{(1)}$ and stop. \Box

(d) In the plot from (a), colour the observations according to the cluster labels obtained.

```
Solution. A "command" for plotting "kmeans" can be found in practical2.R.

plot(normdf,col=km$cluster+1,pch=20,cex=4)
```

3. (Jan 2021 Final Q3(b). Need to use Excel/R to perform calculations) Given the unlabelled data in Table 3.2.

	Table 3.2: Unlabelled data.							
	V1	V2	V3	V4				
1	-0.3323	0.7264	2.4691	1.8429				
2	5.5783	5.7211	-3.3731	3.9209				
3	-1.5492	1.4777	5.1921	0.9621				
4	8.0669	-1.1127	1.2409	-0.1392				
5	-0.294	-0.5842	0.7708	1.6414				
6	5.5741	3.4215	0.9827	3.8443				
7	-1.838	0.5629	-3.898	4.483				
8	2.6957	-0.2016	0.6947	0.6821				
9	10.7553	0.1658	-0.8895	3.0359				
10	6.0329	2.3343	0.8758	2.8348				

Use the k-means algorithm with k = 2 (unsupervised learning) to estimate the final cluster centres in **three steps** if the **first row** and **third row** are chosen as the **initial cluster centres**. Does the algorithm **converges** in three steps? (5 marks)

				V1	V2	V3	$\overline{V4}$
Solution. Given the initial centres:				-0.3323	0.7264	2.4691	1.8429
				-1.5492	1.4777	5.1921	0.9621
Step 1 :	Update ta	able base	d on $dist$	ance to c	luster ce	ntres	
	V1	V2	V3	V4	dist.1	dist.2	clust.centre
	-0.3323	0.7264	2.4691	1.8429	0	3.1993	A
	5.5783	5.7211	-3.3731	3.9209	9.9162	12.285	1 A
	-1.5492	1.4777	5.1921	0.9621	3.1993	0	В
	8.0669	-1.1127	1.2409	-0.1392	8.9088	10.770	5 A
	-0.294	-0.5842	0.7708	1.6414	2.155	5.0829	A
	5.5741	3.4215	0.9827	3.8443	6.9544	8.9747	A
	-1.838	0.5629	-3.898	4.483	7.0572	9.7952	A A
	2.6957	-0.2016	0.6947	0.6821	3.8113	6.4144	A
	10.7553	0.1658	-0.8895	3.0359	11.6599	13.943	A
	6.0329	2.3343	0.8758	2.8348	6.8281	8.9643	A
							[1.5 marks]
V1 V2 V3 V4						_	
The new cluster centres are 4.026			4.0265	1.2259	-0.1252	2 2.4607	7[0.5 mark]
			-1.5492	1.4777	5.1921	0.9621	L
Step 2 :	Update ta	able base	d on dista	ance to c	luster ce	ntres	_

V1	V2	V3	V4	dist.1	dist.2	clust.centre
-0.3323	0.7264	2.4691	1.8429	5.1343	3.1993	В
5.5783	5.7211	-3.3731	3.9209	5.941	12.2851	A
-1.5492	1.4777	5.1921	0.9621	7.8531	0	В
8.0669	-1.1127	1.2409	-0.1392	5.5154	10.7705	A
-0.294	-0.5842	0.7708	1.6414	4.8392	5.0829	A
5.5741	3.4215	0.9827	3.8443	3.2183	8.9747	A
-1.838	0.5629	-3.898	4.483	7.2908	9.7952	A
2.6957	-0.2016	0.6947	0.6821	2.7649	6.4144	A
10.7553	0.1658	-0.8895	3.0359	6.8786	13.943	A
6.0329	2.3343	0.8758	2.8348	2.529	8.9643	A

The new cluster centres are

V1	V2	V3	V4
4.5714	1.2883875	-0.4494625	2.5379
-0.94075	1.10205	3.8306	1.4025

[0.5 mark]

Step 3: Update table based on distance to cluster centres

V1	V2	V3	V4	dist.1	dist.2	clust.centre
-0.3323	0.7264	2.4691	1.8429	5.7761	1.5997	В
5.5783	5.7211	-3.3731	3.9209	5.5788	11.0485	A
-1.5492	1.4777	5.1921	0.9621	8.474	1.5997	В
8.0669	-1.1127	1.2409	-0.1392	5.2923	9.7533	A
-0.294	-0.5842	0.7708	1.6414	5.4288	3.5611	В
5.5741	3.4215	0.9827	3.8443	3.0518	7.8674	A
-1.838	0.5629	-3.898	4.483	7.5685	8.3855	A
2.6957	-0.2016	0.6947	0.6821	3.239	5.0275	A
10.7553	0.1658	-0.8895	3.0359	6.32	12.7523	A
6.0329	2.3343	0.8758	2.8348	2.2526	7.8059	A

The new cluster centres are

V1	V2	V3	V4
5.2665	1.5559	-0.6238	2.6660
-0.7252	0.5400	2.8107	1.4821

Step 4 : Update table based on distance to cluster centres

	V1	V2	V3	V4	dist.1	dist.2	clust.centre
	-0.3323	0.7264	2.4691	1.842	9 6.5021	0.6602	В
	5.5783	5.7211	-3.373	1 3.920	$9 \mid 5.1556$	10.5245	A
	-1.5492	1.4777	5.1921	0.962	$1 \mid 9.1207$	2.7386	В
	8.0669	-1.1127	1.2409	-0.139	5.1293	9.2263	A
	-0.294	-0.5842	0.7708	3 1.641	$4 \mid 6.2043$	2.374	В
	5.5741	3.4215	0.9827	3.844	$3 \mid 2.7467$	7.5436	A
	-1.838	0.5629	-3.898	4.483	8.0921	7.4331	В
	2.6957	-0.2016	0.6947	0.682	$1 \mid 3.9207$	4.1677	A
	10.7553	0.1658	-0.889	$5 \mid 3.035$	$9 \mid 5.6804$	12.1674	A
	6.0329	2.3343	0.8758	2.834	8 1.863	7.38	A
The new cluster centres are							
			V1	V2	V3	V4	
		6.	4505	1.7214	-0.0781	2.3631	

0.5457

1.1335

2.23235

4. (May 2020 Final Q3(a)) Given the unlabelled data in Table 3.1.

-1.003375

T	Table 3.1: Unlabelled data.								
	V1	V2	V3						
1	7.5205	4.6564	-0.1947						
2	-1.1824	-1.1174	1.8383						
3	-0.3576	-0.4739	-1.1603						
4	-1.422	-0.5891	-0.8287						
5	3.2287	0.7141	0.6208						
6	3.2926	3.1609	2.7553						
7	8.2304	3.8832	-1.7378						
8	4.2079	0.4964	4.361						
9	3.8443	5.7565	1.0293						
_10	1.493	3.525	-2.9904						

Use the k-means algorithm with k=2 (unsupervised learning) to find the final cluster centres if the **first** and **sixth** rows are chosen as the **initial cluster centres**. (4 marks)

	V1	V2	V3
Solution. Given the initial centres:	7.5205	4.6564	-0.1947
	3.2926	3.1609	2.7553
Step 1 · Undate table based on distance to cla	uster centr	PS	

	V1	V2	V3	dist.1		dist.2	clust.centre	
	7.5205	4.6564	-0.1947	0		5.3679	A	-
	-1.1824	-1.1174	1.8383	10.64		6.2586		
	-0.3576	-0.4739	-1.1603	9.4508		6.4705		
	-1.422	-0.5891	-0.8287	10.386		7.0096		
	3.2287	0.7141	0.6208	5.884		3.2476		
	3.2926	3.1609	2.7553	5.3679		0.2410	B	
	8.2304	3.8832		1.866		6.715	A	
			-1.7378					
	4.2079	0.4964	4.361	7.002		3.2428		
	3.8443	5.7565	1.0293	4.0278		3.1655		
	1.493	3.525	-2.9904	6.739)	6.0319	В	-
			<u></u> V1		V	9		[1.5 mark
The new clus	tor control	anro		15				$\dots [0.5 \text{ mar}]$
The new clus	ster centres	sare						[0.5 mar
N. O. II. 1		1	1.6380			0625	0.7031625	
Step 2 : Upd							1 1	-
	V1	V2	V3	dist.1		dist.2	clust.centre	-
	7.5205	4.6564	-0.1947	0.933		6.767	A	
	-1.1824	-1.1174	1.8383	10.905		3.9691		
	-0.3576	-0.4739	-1.1603	9.5039)	3.331	В	
	-1.422	-0.5891	-0.8287	10.491	$4 \mid$	3.9754	В	
	3.2287	0.7141	0.6208	6.062	5	1.7479	В	
	3.2926	3.1609	2.7553	6.0068	3	3.1513	В	
	0.0204	3.8832	-1.7378	0.933		7.4442		
	0.2304	J.00J4	-1.1010	0.000				
	8.2304 4.2079							
	4.2079	0.4964	4.361	7.487)	4.5676	В	
	4.2079 3.8443	$0.4964 \\ 5.7565$	4.361 1.0293	7.4879 4.7374	1	4.5676 4.8639	B A	
	4.2079	0.4964	4.361	7.487	1	4.5676	B A	[0.5 mar
	4.2079 3.8443 1.493	0.4964 5.7565 3.525	4.361 1.0293	7.4879 4.7374	1	4.5676 4.8639	B A	[0.5 mar
Γhe new clu <u>s</u>	4.2079 3.8443 1.493 ster centres	0.4964 5.7565 3.525 s are	4.361 1.0293 -2.9904	7.4879 4.7374 6.737	1	4.5676 4.8639	B A B	- [0.5 mar —
_	4.2079 3.8443 1.493 eter centres V1	0.4964 5.7565 3.525 s are	4.361 1.0293 -2.9904	7.4879 4.7374 6.737 	1	4.5676 4.8639 4.2468	B A B	_
_	4.2079 3.8443 1.493 ster centres V1 6.5317333	0.4964 5.7565 3.525 s are	4.361 1.0293 -2.9904 4.765366	7.4879 4.7374 6.737 V2	67	4.5676 4.8639 4.2468 	B A B V3 01066666666666667	
_	4.2079 3.8443 1.493 eter centres V1	0.4964 5.7565 3.525 s are	4.361 1.0293 -2.9904	7.4879 4.7374 6.737 V2	67	4.5676 4.8639 4.2468 	B A B 	<u> </u>
	4.2079 3.8443 1.493 v1 ster centres V1 6.5317333 1.3228857	0.4964 5.7565 3.525 s are 3333333 1428571	4.361 1.0293 -2.9904 4.765366 0.816571	7.4879 4.7374 6.737 V2 66666666 4285714	67	4.5676 4.8639 4.2468 	B A B V3 01066666666666667	
	4.2079 3.8443 1.493 ster centres V1 6.5317333 1.3228857 	0.4964 5.7565 3.525 s are 33333333 1428571 	4.361 1.0293 -2.9904 4.765366 0.816571 	7.4879 4.7374 6.7377 V2 66666666 4285714 o cluste	67 429 	4.5676 4.8639 4.2468 	B A B 	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 s are 3333333 1428571 oased on o	4.361 1.0293 -2.9904 4.765366 0.816571 distance t	7.4879 4.7374 6.7374 72 66666666666666666666666666666	67 129	4.5676 4.8639 4.2468 	B A B 	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 	7.4879 4.7374 6.737 V2 66666666 4285714 o clusted dist.1 1.0004	67 4129 	4.5676 4.8639 4.2468 	B A B 	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 distance to V3 -0.1947 1.8383	7.4879 4.7374 6.7377 72 66666666 4285714 o cluste dist.1 1.0004 9.9344	67 429 er ce	4.5676 4.8639 4.2468 	B A B 	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 	7.4879 4.7374 6.737 72 66666666 4285714 o clusted dist.1 1.0004 9.9344 8.6978	67 4129 	4.5676 4.8639 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 distance to V3 -0.1947 1.8383 -1.1603 -0.8287	7.4879 4.7374 6.737 V2 66666666 4285714 o cluste	67 4429 er cee 4 7 4 3 8 2 6 3	4.5676 4.8639 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 	7.4879 4.7374 6.737 72 66666666 4285714 o clusted dist.1 1.0004 9.9344 8.6978	67 4429 er cee 4 7 4 3 8 2 6 3	4.5676 4.8639 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 distance to V3 -0.1947 1.8383 -1.1603 -0.8287	7.4879 4.7374 6.737 V2 66666666 4285714 o cluste	67 4129 er ce 4 7 4 3 8 2 6 3 8 1	4.5676 4.8639 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 distance to V3 -0.1947 1.8383 -1.1603 -0.8287 0.6208	7.4879 4.7374 6.737 72 66666666 4285714 o cluste	67 4429 er ce 6 7 8 2 6 3 8 2 6 3 8 1 3	4.5676 4.8639 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 4.765366 0.816571 	7.4879 4.7374 6.737 72 66666666 4285714 o cluste dist.1 1.0004 9.9344 8.6978 9.6026 5.3078 4.7337	67 4429 er ce 4 7 4 3 8 2 6 3 8 1 7 3 8 7	4.5676 4.8639 4.2468 4.2468 	B A B	
	4.2079 3.8443 1.493 	0.4964 5.7565 3.525 	4.361 1.0293 -2.9904 	7.4879 4.7374 6.737 V2 66666666 4285714 o cluste dist.1 1.0004 9.9344 8.6978 9.6026 5.3078 4.7337 2.3933	67 4429 	4.5676 4.8639 4.2468 	V3 01066666666666666666666666666666666666	

There is no	change in the cluste	ring, the final cluster	centres are	
	V1	V2	V3	
	6.531733333333333	4.76536666666667	-0.301066666666667	
	1.32288571428571	0.816571428571429	0.656571428571428	
				$\dots [0.5 \text{ mark}]$

5. (Final Exam Jan 2023, Q3(c)) Given the three-dimensional data in Table 3.3.

Obs.	x_1	x_2	x_3
A	1	4	3
В	2	6	2
\mathbf{C}	4	7	3
D	7	0	2
\mathbf{E}	9	3	3
\mathbf{F}	8	1	2
G	1	6	3

Table 3.3: Three-dimensional data for clustering.

Perform k-means clustering algorithm (using the Euclidean distance) on the data from Table 3.3 with A and G as the initial centres until **two clusters** are found. Write down the stable cluster centres. You may round the numbers in your calculations to 4 decimal places. (13 marks)

Solution. Given the initial centres: A(1,4,3), G(1,6,3)

Step 1: Update table based on distance to cluster centres

$\overline{x_1}$	x_2	x_3	dist.1	dist.2	clust.centre
1	4	3	0	2	1
2	6	2	2.4495	1.4142	2
4	7	3	4.2426	3.1623	2
7	0	2	7.2801	8.544	1
9	3	3	8.0623	8.544	1
8	1	2	7.6811	8.6603	1
1	6	3	2	0	В

The new cluster centres are

$$Centre_1 = (6.25, 2, 2.5)$$

 $Centre_2 = (2.333333, 6.333333, 2.666667)$ [1 mark]

Step 2: Update table based on distance to cluster centres

x_1	x_2	x_3	dist.1	dist.2	clust.centre
1	4	3	5.6403	2.7080	2
2	6	2	5.8577	0.8165	2
4	7	3	5.5057	1.8257	2
7	0	2	2.1937	7.8951	1
9	3	3	2.9686	7.4610	1
8	1	2	2.0767	7.8102	1
_1	6	3	6.6191	1.4142	2

				= (8, 1.3) = (2, 5.7)	[1 mark]		
Step 3: Update table	base	ed or	n dis	tance to	cluster c	entres	
	x_1	x_2	x_3	dist.1	dist.2	clust.centre	
_	1	4	3	7.5203	2.0310	2	
	2	6	2	7.6085	0.7906	2	
	4	7	3	6.9682	2.3717	2	
	7	0	2	1.6997	7.6567	1	
	9	3	3	2.0548	7.5250	1	
	8	1	2	0.4714	7.6893	1	
	1	6	3	8.4393	1.0607	2	
							[2 marks]
The stable cluster cent	res	are					

Average: 9.93 / 13 marks in Jan 2023; 16% below 6.5 marks.