Chapter 9. Integration with Respect to a **Probability Measure1**

Background

Let (Ω, \mathcal{A}, P) be a probability space.

We want to define the expectation, or what is equivalent, the "integral", of general r.v.

We have of course already done this for r. v. s on a countable space Ω .

The general case (for arbitrary Ω) is more delicate.

Definition 9.1

1. A r.v. X is called **simple** if it takes on only a finite number of values and hence can be written in the form

$$X = \sum_{i=1}^{n} a_i I_{A_i} \tag{1}$$

Where $a_i \in \mathbb{R}$, and $A_i \in \mathcal{A}, 1 \leq i \leq n$

若
$$A_k \in \mathcal{F}, k=1,2,\ldots,n$$
两两不交,且 $\cup_{k=1}^n A_k = \Omega, a_k \in \hat{\mathcal{R}}^{(1)}, k=1,2,\ldots,n$ 则称函数

$$X(w) = \sum_{k=1}^n a_k I_{A_k}(w) \quad w \in \Omega$$

为 (Ω, \mathcal{F}) 上的简单函数

• Such an X is clearly measurable; (Why?) 思考这里为什么X是可测的

$$orall B\in \mathcal{B}^k$$
 $X^{-1}(B)=\{w:X(w)\in B\}$ 逆象的定义 $=\cup_{a_k\in B}\{w:X(w)=a_k\}$ 简单函数的定义 $=\cup_{a_k\in B}A_k$ 简单函数的定义 $\in \mathcal{F}$ 简单函数中 $A_k\in \mathcal{F}$ $\Rightarrow \cup_{A_k\in B}A_k\in \mathcal{F}$

由定理8.1可知X可测。

- Conversely, if X is measurable and takes on the values a_1, \ldots, a_n it must have the representation (1) with $A_i = \{X = a_i\}$;
- A simple r.v. has of course many different representation of the form (1).
- 2. If X is simple, its **expectation** (or "integral" with respect to P) is the number

$$E\{X\} = \sum_{i=1}^{n} a_i P(A_i) \tag{2}$$

- This is also written $\int X(w)P(dw)$ and even more simply $\int XdP$;
- \circ A little algebra shows that $E\{X\}$ does not depend on the particular representation (1) chosen for X. 练习:

Exercise

Let (Ω, \mathcal{A}, P) be a probability space

Let $X: \Omega \to \mathbb{R}$ be such that it admits two representations

$$X = \sum_{i=1}^n a_i I_{A_i} \quad ext{and} \quad X = \sum_{j=1}^m b_j I_{B_j}$$

where $a_i,b_j\in\mathbb{R}$, and $A_i,B_j\in\mathcal{A}$ for all i,j. Show that

$$\sum_{i=1}^n a_i P(A_i) = \sum_{j=1}^m b_j P(B_j)$$

First, prove that $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^m B_i$.

Assume
$$egin{aligned} a_i
eq 0 & A_i \cap A_j = \emptyset \ b_i
eq 0 & B_i \cap B_j = \emptyset \end{aligned} (i
eq j)$$

$$\begin{array}{ll} \forall w \in \cup_{i=1}^{n} A_{i} & \forall w \in \cup_{j=1}^{m} B_{j} \\ \exists i_{0} \in \{1, 2, \ldots, n\} & \exists j_{0} \in \{1, 2, \ldots, n\} \\ s.t. \ X(w) = a_{i_{0}} \neq 0 & s.t. \ X(w) = b_{j_{0}} \neq 0 \\ so \ w \in \cup_{j=1}^{m} B_{j} & so \ w \in \cup_{i=1}^{n} A_{i} \\ else \ X(w) = 0 & else \ X(w) = 0 \\ \therefore \ \cup_{i=1}^{n} A_{i} \subset \cup_{j=1}^{m} B_{j} & \therefore \ \cup_{j=1}^{m} B_{j} \subset \cup_{i=1}^{n} A_{i} \\ \Downarrow \\ \cup_{j=1}^{m} B_{j} = \cup_{i=1}^{n} A_{i} \end{array}$$

Second, if $A_iB_j \neq \emptyset$, for $w \in A_iB_j$ $X(w) = a_i = b_j$

$$\begin{split} X &= \sum_{i=1}^{n} a_{i} I_{A_{i}} & X &= \sum_{j=1}^{m} b_{j} I_{B_{j}} \\ &= \sum_{i=1}^{n} a_{i} I_{A_{i} \cap (\bigcup_{i=1}^{n} A_{i})} &= \sum_{j=1}^{m} b_{j} I_{B_{j} \cap (\bigcup_{j=1}^{m} B_{j})} \\ &= \sum_{i=1}^{n} a_{i} I_{A_{i} \cap (\bigcup_{i=1}^{n} A_{i})} &= \sum_{j=1}^{m} b_{j} I_{B_{j} \cap (\bigcup_{i=1}^{n} A_{i})} \\ &= \sum_{i=1}^{n} a_{i} I_{\bigcup_{j=1}^{m} A_{i} B_{j}} &= \sum_{j=1}^{m} b_{j} I_{\bigcup_{i=1}^{n} A_{i} B_{j}} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} I_{A_{i} B_{j}} &= \sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} I_{A_{i} B_{j}} \\ & \Downarrow \\ &\text{for } w \in A_{i} B_{j} \neq \emptyset, X(w) = a_{i} = b_{j} \end{split}$$

如果 $A_iB_j=\emptyset$, $a_iP(A_iB_j)=b_jP(A_iB_j)=0$, 不影响计算

Last, Prove EX = EY

$$EX = \sum_{i=1}^{n} a_i P(A_i) \qquad EY = \sum_{j=1}^{m} b_j P(B_j)$$

$$= \sum_{i=1}^{n} a_i P(A_i \cap (\bigcup_{i=1}^{n} A_i)) \qquad = \sum_{j=1}^{m} b_j P(B_j \cap (\bigcup_{j=1}^{m} B_j))$$

$$= \sum_{i=1}^{n} a_i P(A_i \cap (\bigcup_{j=1}^{m} B_j)) \qquad = \sum_{j=1}^{m} b_j P(B_j \cap (\bigcup_{i=1}^{n} A_i))$$

$$= \sum_{i=1}^{n} a_i P(\bigcup_{j=1}^{m} A_i B_j) \qquad = \sum_{j=1}^{m} b_j P(\bigcup_{i=1}^{n} A_i B_j) \text{ pairwise disjoint}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i P(A_i B_j) \qquad = \sum_{i=1}^{n} \sum_{j=1}^{m} b_j P(A_i B_j)$$

$$\Downarrow \because a_i = b_j$$

$$EX = EY$$

Remark 测度与概率—2.3节 期望与积分 - 知乎 (zhihu.com)

• Let X,Y be two simple r.v.s and β a real number. We clearly have

$$egin{aligned} X &= \sum_{i=1}^n a_i I_{A_i} \quad Y &= \sum_{j=1}^m b_j I_{B_j} \ EX &= \sum_{i=1}^n a_i P(A_i) \quad EY &= \sum_{j=1}^m b_j P(B_j) \end{aligned}$$

 $\circ E\{\beta X\} = \beta E\{X\};$

$$E\{eta X\} = \sum_{i=1}^n eta a_i P(A_i) = eta \sum_{i=1}^n a_i P(A_i) = eta E\{X\}$$

 $\circ E\{X+Y\} = E\{X\} + E\{Y\};$

$$egin{aligned} E\{X+Y\} &= \sum_{i=1}^n \sum_{j=1}^m (a_i+b_j) P(A_i B_j) \ &= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i B_j) + \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i B_j) \ &= \sum_{i=1}^n a_i P(A_i) + \sum_{j=1}^m b_j P(B_j) \ &= E\{X\} + E\{Y\} \end{aligned}$$

• If $X \leq Y$, then $E\{X\} \leq E\{Y\}$.

$$egin{aligned} X \leq Y &\Rightarrow a_i \leq b_j \ E\{X\} &= \sum_{i=1}^n a_i P(A_i) = \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i B_j) \ &\leq \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i B_j) \ &= \sum_{j=1}^m b_j P(B_j) \ &= E\{Y\} \end{aligned}$$

• Thus, expectation is linear on the vector space of all simple r. v. s.

因此,对于向量空间中的简单随机变量,期望是线性的。

• Next, we define expectation for positive r. v. s.

定义正的随机变量

For X positive,

- By this, we assume that X may take all values in $[0, \infty]$, including $+\infty$; 在这种假设下,随机变量X的取值为 $[0,\infty]$
- This innocuous extension is necessary for the coherence of some of our further results.

这种无害的扩展对于我们某些进一步结果的一致性是必需的。

Let

$$E\{X\} = \sup\{E\{Y\} : Y \text{ a simple r.v. with } 0 \le Y \le X\}$$
(3)

• This supremum always exists in $[0, \infty]$. 这个上确界在 $[0,\infty]$ 上总是存在的

Since expectation is a positive operator on the set of simple $r. v.' s_i$ 既然期望是在简单随机变量集合上的正的运算

it is clear that the definition above for $E\{X\}$ coincides with Definition 9.1. 则上面的关于期望的定义和定义9.1是一致的

定义9. 1里面的关于期望的定义为 $E\{X\} = \sum_{i=1}^{n} a_i P(A_i)$ 思考这里的一致性是为什么?

Remark

- Note that $E\{X\} \ge 0$, but we can have $E\{X\} = \infty$, even when X is never equal $+\infty$. 注意到 $E\{X\} \ge 0$,但是我们可以有 $E\{X\} = \infty$,即使随机变量X不等于无穷。
- Finally, let X be an arbitrary r. v..

最后, 令 X 为任意的随机变量

Let
$$X^+ = max(X, 0)$$
 $X^- = -min(X, 0)$.

Then

$$X = X^+ - X^- \quad |X| = X^+ + X^-$$

and X^+, X^- are positive $r.\,v.\,s.$

Definition 9.2

• A r.v. X has a **finite expectation** (is "integrable") if both $E\{X^+\}$ and $E\{X^-\}$ are finite. 若 $E\{X^+\}$ 和 $E\{X^-\}$ 都是有限的,则随机变量 X 期望有限(也叫做可积)

In this case, its expectation is the number 期望是两数之和

$$E\{X\} = E\{X^+\} + E\{X^-\} \tag{4}$$

also written $\int X(w)dP(w)$ or $\int XdP$

• If X>0 then $X^-=0$ and $X^+=X$ and, since obviously $E\{0\}=0$, this definition coincides with (3)

如果
$$X>0$$
 ,则 $X^-=0$ 、 $X^+=X$ 、 $E\{0\}=0$,在这种情况下,和式(3)一致

We write \mathcal{L}^1 to denote the set of all integrable r.v.s. (Sometimes we write $\mathcal{L}^1(\Omega, \mathcal{A}, P)$ to remove any possible ambiguity.)

用 \mathcal{L}^1 代表所有可积的随机变量的集合

- A r.v. X admits an expectation if $E\{X^+\}$ and $E\{X^-\}$ are not both equal to $+\infty$. 随机变量X有期望,则 $E\{X^+\}$ 和 $E\{X^-\}$ 不都等于正无穷。
 - Then the expectation of X is still given by (4), with the conventions $+\infty + a = +\infty$ and $-\infty + a = -\infty$ when $a \in \mathbb{R}$.

则X的期望还是和(4)式一样,因为 $+\infty + a = +\infty$ 、 $-\infty + a = -\infty$ $a \in \mathbb{R}$.

- If $X \ge 0$ this definition again coincides with (3) 如果 $X \ge 0$,则(4)和(3)是一致的
- Note that if X admits an expectation, then $E\{X\} \in [-\infty, +\infty]$, and X is integrable if and only if its expectation is finite.

如果X有期望,则 $E\{X\} \in [-\infty, +\infty]$, X 可积 \Leftrightarrow 期望有限

Remark 9.1

When Ω is finite or countable we have thus two different definitions for the expectation of a r. v. X, the one above and the one given in Chapter 5.

当 Ω 是有限或可数,则有两个不同的关于随机变量 X 的期望定义,一个是上面给出的,另一个是第五 章给出的

In fact these two definitions coincides: it is enough to verify this for a simple r.v. X, and in this case the formulas (5.1) and (9.2) are identical.

事实上,这两种定义是一致的

$$E\{X\} = \sum_{j \in T'} j P(X = j)$$
 (5.1)

$$E\{X\} = \sum_{i=1}^{n} a_i P(A_i)$$
(9.2)

这个留作练习,下次课讲

Theorem 9.1

• (a) \mathcal{L}^1 is a vector space, and expectation is a linear map on \mathcal{L}^1 , and it is also positive ($i. e. X \ge 0 \Rightarrow E\{X\} \ge 0$).

 \mathcal{L}^1 是一个向量空间,期望是 \mathcal{L}^1 上的线性映射,它也是正的。

If further $0 \le X \le Y$ are two r.v.s and $Y \in \mathcal{L}^1$ and $E\{X\} \le E\{Y\}$.

- (b) $X \in \mathcal{L}^1$ iff $|X| \in \mathcal{L}^1$ and in this case $|E\{X\}| \le E\{|X|\}$. In particular any bounded r. v. is integrable.
- (c) If X = Y almost surely (s. a.), then $E\{X\} = E\{Y\}$.

$$X = Y$$
 a.s. if $P(X = Y) = P(\{w : X(w) = Y(w)\}) = 1$

• (d) (Monotone convergence theorem): 单调收敛定理

If the $r.v.s~X_n$ are positive and increasing a.s. to X_n , then $\lim_{n\to\infty} E\{X_n\} = E\{X\}$ (even if $E\{X\} = \infty$).

• (e) (Fatou's lemma):

If the $r.v.s~X_n$ satisfy $X_n > Y~a.s.~(Y \in \mathcal{L}^1)$, all n, we have

$$E\left\{ \lim_{n o\infty}\inf E\left\{ X_{n}
ight\}
ight\} \leq\lim_{n o\infty}\inf E\left\{ X_{n}
ight\}$$

In particular, if $X_n \geq 0$ a. s. then

$$E\left\{ \lim_{n \to \infty} \inf X_n
ight\} \leq \lim_{n \to \infty} \inf E\left\{ X_n
ight\}$$

• (f) (Lebesgue's dominated convergence theorem): 勒贝格控制收敛定理 If the $r.v.s~X_n$ converge a.s. to X and if $|X_n| \leq Y~a.s. \in \mathcal{L}^1$, all n, then $X_n \in \mathcal{L}^1, X \in \mathcal{L}^1$ and $E\{X_n\} \to E\{X\}$.

Statement

• The a.s. equality between r.v.s is clearly an equivalence relation, and two equivalent (i.e. almost surely equal) r.v.s have the same expectation: 在随机变量间的几乎必然相等时一个等价关系,两个几乎必然相等的随机变量具有相同的表示。 Thus:

one can define a space L^1 by considering " \mathcal{L}^1 modulo this equivalence relation"

- In other words, an element of L^1 is an equivalence class, that is a collection of all r. v. in \mathcal{L}^1 which are pairwise a.s. equal. L^1 是一个相等的类,是所有在 \mathcal{L}^1 上的两两相等的类
- In view of (c) above, one may speak of the "expectation" of the equivalence class (which is the expectation of any one element belonging to this class). 鉴于上面的(c),可以说等价类的"期望"(对属于该类的任何一个元素的期望)。
- Since further the addition of r.v.s or the product of a r.v. by a constant preserve a.s.equality, the set L^1 is also a vector space. 随机变量的加法或者乘法by a constant preserve a.s. equality, 则 L^1 集合也是一个向量空间。 Therefore, we commit the (innocuous) abuse of identifying a r.v. with its equivalence class, and commonly write $X \in L^1$ instead of $X \in \mathcal{L}^1$.
- If $1 \le p < \infty$, we define \mathcal{L}^p to be the space of r.v.s such that $|X|^p \in \mathcal{L}^1$; L^p is defined analogously to L^1 . L^p 和 L^1 的定义类似

That is, L^p is \mathcal{L}^p modulo the equivalence relation "almost surely".

• Put more simply, two elements of \mathcal{L}^p that are a.s. equal are considered to be representatives of one element of L^p .

Two auxiliary results.

Result 1

For every positive r.v. X there exists a sequence $\{X_n\}_{n\geq 1}$ of positive simple r.v.s which increases toward X as n increases to infinity.

An example of such a sequence is given by 为什么要定义为 $\frac{k}{2n}$

$$X_n(w)=egin{cases} rac{k}{2^n} & if rac{k}{2^n} \leq X(w) < rac{k+1}{2^n} \ and \ 0 \leq k \leq n2^n-1 \ n & if \ X(w) \geq n \end{cases}$$

Result 2

If X is a positive r.v., and if $\{X_n\}_{n\geq 1}$ is any sequence of positive simple r.v.s increasing to X, then $E\{X_n\}$ increases to $E\{X\}$.