Problem E	Super Lucky Numbers
Time Limit	2 Seconds

Some people believe that 13 is an unlucky number. So they always want to avoid the number 13. In some buildings you will find that there is no 13^{th} floor. After 12^{th} floor there is 14^{th} floor. In a number if there is no 13 (i.e. no '1' is followed by a '3') then we may call it a super lucky number. For example, 12345 is a super lucky number. But if any number contains 13 then it is not a super lucky number such as 13254 or 21345. Given the number of digits $\bf N$ in a number and a base $\bf B$, you have to find out how many super lucky numbers are possible with $\bf N$ digits in the base $\bf B$. $\bf B$ should be greater than 3, as because the digit 3 is present in only for base 4 or more. Note that leading 0's are not significant. So, 011 is not a valid three digit number.

Input

There will be several lines in the input each containing two positive integers **B** and **N**, where $4 \le \mathbf{B} \le 128$ and **N** ≤ 100 . A pair of zero will indicate the end of input and it should not be processed.

Output

For each line in the input print the count of super lucky numbers of N digits in the base B.

Sample Input	Output for Sample Input
4 2	11
5 3	91
0 0	

Problem setter: Md. Bahlul Haider Special thanks to Tanveer Ahsan