Modelos Lineares I

Regressão Linear Simples (RLS):

(4a, 5a e 6a Aulas)

Professor: Dr. José Rodrigo de Moraes
Universidade Federal Fluminense (UFF)
Departamento de Estatística (GET)

Estimação da variância σ^2 dos erros do modelo:

Introdução:

- □ A variância σ² dos erros do modelo de regressão é de extrema importância para a realização de inferências na análise de regressão.
- □ É necessário obter alguma informação sobre a variabilidade da distribuição de probabilidade da variável resposta Y do modelo.

2

Estimação da variância σ^2 dos erros do modelo:

Vimos que os resíduos do modelo são definidos por:

$$e_i = Y_i - \hat{Y}_i, \quad \forall i = 1, 2, ..., n$$

Assim a soma dos quadrados dos resíduos (SQRes) é definida por:

$$SQRes = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$$

Essa soma envolveu em seu cálculo a estimação de dois coeficientes de regressão β_0 e β_1 , e portanto 2 gl's foram perdidos. Desse modo, ao dividir a SQRes por n-2 (graus de liberdade), obtém-se o chamado "Quadrado Médio dos Residuos" (QMRes), dado por:

Estimação da variância dos erros, isto é, VAR(ε_i)= σ^2 :

$$QMRes = \frac{SQRes}{n-2} = \frac{\sum\limits_{i=1}^{n}e_{i}^{2}}{n-2} = \frac{\sum\limits_{i=1}^{n}(Y_{i} - \hat{Y}_{i})^{2}}{n-2}$$

Será demonstrado mais adiante que o QMRes, também representado, alternativamente, por $\hat{\sigma}^2$, é um estimador não viciado da variância dos erros e, portanto, da variância da variável resposta Y_i do modelo de regressão, já que $VAR(Y_i)=VAR(\epsilon_i)=\sigma^2$. Ou seja:

$$E(QMRes) = E\left(\frac{\sum_{i=1}^{n} e_i^2}{n-2}\right) = \sigma^2$$

Modelo de Regressão Linear Normal:

- □ As hipóteses gerais do modelo de RLS descritas anteriormente estabeleciam que os erros aleatórios do modelo apresentavam média zero, variância constante σ^2 e COV(ϵ_i, ϵ_j)=0 \forall i≠j (erros não correlacionados).
- □ Não foi feita nenhuma hipótese sobre a possível distribuição de probabilidade dos erros.
- Acrescendo ao conjunto de hipóteses, a hipótese de normalidade dos erros, diremos que Y_i=β₀+β₁X_i +ε_i é um modelo de regressão linear (simples) normal, isto é, um modelo com erros normalmente distribuídos.
- A suposição de que os erros tem distribuição normal simplifica substancialmente a teoria de análise de regressão, e em muitos casos é plenamente justificada na prática.

Representação genérica do modelo de RLS normal:

- □ Modelo de regressão linear normal: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
 - ${}^{\blacksquare}$ Y_{i} \rightarrow valor observado da variável resposta do i-ésimo elemento da amostra.
 - eta_0 e eta_1 ightarrow são os parâmetros desconhecidos a serem estimados com base na amostra.
 - $\begin{tabular}{l} \blacksquare \end{tabular} X_i \to \mbox{valor observado da variável explicativa do i-ésimo} \\ \begin{tabular}{l} \mbox{elemento da amostra.} \end{tabular}$
 - ε_i → erro aleatório do modelo referente ao i-ésimo elemento da amostra. Os erros ε_i's são supostamente independentes e normalmente distribuídos com média 0 e variância σ², isto é : ε_i ~ N(0,σ²) , i=1,2,...,n

Exemplo: Utilizando o método de estimação de máxima verossimilhança (MV) estudado nas disciplinas "Estatística II" e "Inferência Estatística", pede-se:

- a) Obtenha os estimadores dos parâmetros β_0 e β_1 do modelo de regressão linear normal
- b) Obtenha o estimador de σ^2 .
- c) Compare os estimadores obtidos por MV com os obtidos pelo método de Mínimos Quadrados (MQ). Qual a conclusão obtida?

.

Exemplo: Dados sobre a concentração da substância X (mg/L) e ganho de peso Y (kg) de n=30 bois:

Resultados do Ajuste (n=30 bois) usando o SPSS 17.0 – Statistical Package for the Social Sciences: Analyse /Generalized Linear Models

		Estim	

			95% Wald Confidence Interval		Hypothesis Test			
Parameter	В	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.	
(Intercept)	10,040	,4783	9,102	10,977	440,530	1	,000	
conc_subs_X	,732	,0731	,589	,875	100,236	1	,000	
(Scale)	1,248*	,3221	,752	2,070				

Dependent Variable: danho_peso_Y Model: (Intercept), conc_subs_X

> Estimativas dos parâmetros por MV

Modelo de Regressão Linear Normal (Inferência sobre os parâmetros do modelo):

- $\ \square$ Agora vamos realizar inferências sobre os parâmetros do modelo β_0 e β_1 , através da:
 - ✓ Construção de intervalos de confiança (IC`s)
 - ✓ Realização de testes de hipóteses (TH`s)
- \square Definir as distribuições de probabilidade dos estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$, e de suas funções.

9

Distribuição amostral de $\hat{\beta}_1$:

 $\hfill \square$ Vimos que o estimador de MQ de β_1 é dado pela seguinte expressão:

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sum\limits_{i=1}^{n} \left(X_i - \overline{X}\right)^2}$$

Desenvolvendo o numerador da expressão:

$$\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right) \ = \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) Y_{i}$$

Distribuição amostral de β̂₄:

 $\hfill \square$ Substituindo na expressão do estimador de $\beta_1,$ temos que:

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum\limits_{i=1}^n (X_i - \overline{X})^2} = \frac{\sum\limits_{i=1}^n (X_i - \overline{X}) Y_i}{\sum\limits_{i=1}^n (X_i - \overline{X})^2} = \sum\limits_{i=1}^n V_i Y_i$$

 \square Portanto, temos a seguinte expressão alternativa para o estimador de β_1 :

$$\hat{\beta}_1 = \sum_{i=1}^n V_i Y_i$$

Propriedades importantes:

$$V_i = \frac{(X_i - \overline{X})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

12

Distribuição amostral de $\hat{\beta}_{\scriptscriptstyle 4}$:

O estimador $\hat{\beta}_{1}$ pode ser expresso por:

$$\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n V_i \; \epsilon_i \qquad \qquad \text{F\'ormula alternativa de } \; \hat{\beta}_1$$

 \Box Cálculo da média do estimador $\hat{\beta}_{i}$:

$$E(\hat{\beta}_1) = \beta_1$$

OBS: $\hat{\beta}_1$ é um estimador não viciado para o parâmetro β_1 do modelo.

13

15

Distribuição amostral de $\hat{\beta}_1$:

Cálculo da variância do estimador β̂₁:

$$VAR(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Propriedade:

$$\sum_{i=1}^{n} V_{i}^{2} = \frac{1}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

Distribuição amostral de $\hat{\beta}_1$:

 $\label{eq:podemos} \ \ \ \ \ \ \ \ \ \ \ \ \ \hat{\beta}_1 = \sum^n V_i Y_i$

é uma combinação linear das variáveis aleatórias Y_i 's, i=1,2,...,n. Baseadas nas hipóteses do **modelo de regressão linear normal**, as v.a's Y_i 's são independentes e tem distribuição normal com média $E(Y_i)=\beta_0+\beta_1 X_i$ e variância $VAR(Y_i)=\sigma^2$. Portanto, $\hat{\beta}_i$ também terá distribuição normal:

$$\hat{\beta}_1 \sim N \left[\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right]$$

Distribuição amostral de $\hat{\beta}_0$:

 \square Vimos que o estimador de MQ de β_0 é dado pela seguinte expressão:

$$\hat{\boldsymbol{\beta}}_0 = \overline{\boldsymbol{Y}} - \hat{\boldsymbol{\beta}}_1 \overline{\boldsymbol{X}}$$

Reescrevendo:

$$\hat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n Y_i - \overline{X} \sum_{i=1}^n V_i \, Y_i = \sum_{i=1}^n \biggl(\frac{1}{n} - \overline{X} \, V_i \, \, \biggr) Y_i$$

$$\hat{\beta}_0 = \beta_0 + \sum_{i=1}^n \left(\frac{1}{n} \!-\! \, \overline{X} \, V_i \right) \epsilon_i$$

Distribuição amostral de $\hat{\beta}_0$:

O estimador $\,\hat{\beta}_{\scriptscriptstyle 0}\,$ pode ser expresso por:

$$\hat{\beta}_0 = \beta_0 + \sum_{i=1}^n \left(\frac{1}{n} - \overline{X} \, V_i \right) \epsilon_i \qquad \qquad \boxed{\text{Fórmula alternativa de } \hat{\beta}_0}$$

 \Box Cálculo da média do estimador $\hat{\beta}_0$:

$$E(\hat{\beta}_0) = \beta_0$$

OBS: $\hat{\beta}_0$ é um estimador não viciado para o parâmetro β_0 do modelo.

Distribuição amostral de β̂₀:

 \Box Cálculo da variância do estimador $\hat{\beta}_o$:

$$VAR(\hat{\beta}_0) = E[\hat{\beta}_0 - E(\hat{\beta}_0)]^2 \rightarrow VAR(\hat{\beta}_0) = E[\hat{\beta}_0 - \beta_0]^2$$

$$\left(\!\widehat{\beta}_{\scriptscriptstyle 0} - \beta_{\scriptscriptstyle 0}\right)^{\!\!\!\!\!2} = \sum_{i=1}^n \left(\frac{1}{n} \!-\! \overline{X} \, V_i \,\right)^{\!\!\!\!2} \, \epsilon_i^{\scriptscriptstyle 2} + 2 \sum_{i=1}^n \left(\frac{1}{n} \!-\! \overline{X} \, V_i \,\right) \! \left(\!\frac{1}{n} \!-\! \overline{X} \, V_j \,\right) \! \epsilon_i \epsilon_j$$

$$VAR \Big(\hat{\beta}_0 \Big) = E \Big(\hat{\beta}_0 - \beta_0 \Big)^2 = \sum_{i=1}^n \left(\frac{1}{n} - \overline{X} \, V_i \right)^2 \cdot E \Big(\epsilon_i^2 \Big) + 2 \sum_{i < j}^n \left(\frac{1}{n} - \overline{X} \, V_i \right) \left(\frac{1}{n} - \overline{X} \, V_j \right) \cdot E \Big(\epsilon_i \epsilon_j \Big)$$

8

Distribuição amostral de $\hat{\beta}_0$:

 \Box Cálculo da variância do estimador $\hat{\beta}_{o}$ (continuação):

 $Como \ E(\epsilon_i) = 0 \ \ \forall \ i = 1, 2, ..., n \quad e \quad \ E(\epsilon_i \ \epsilon_j) = 0 \ \ \forall \ i \neq j, \ ent \ \ ao:$

$$VAR(\varepsilon_i)=E(\varepsilon_i^2)=\sigma^2 \forall i=1,2,...,n$$

$$VAR(\hat{\beta}_0) = \sum_{i=1}^{n} \left(\frac{1}{n} - \overline{X} V_i\right)^2 \sigma^2 = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}\right)$$

Distribuição amostral de $\hat{\beta}_0$:

- $\hfill \Box$ Analogamente, podemos verificar que: $\hat{\beta}_0 = \sum_{i=1}^n \biggl(\frac{1}{n} \overline{X} \, V_i \, \biggr) Y_i$
 - é uma combinação linear das variáveis aleatórias Y_i `s, i=1,2,...,n. Baseadas nas hipóteses do modelo de regressão linear normal, as v.a`s Y_i `s são independentes e tem distribuição normal com média $E(Y_i)=\beta_0+\beta_1 X_i$ e variância $VAR(Y_i)=\sigma^2$. Portanto, $\hat{\beta}_n$ também terá distribuição normal:

$$\hat{\boldsymbol{\beta}}_0 \sim N \left[\boldsymbol{\beta}_0 , \ \sigma^2 \left[\frac{1}{n} + \frac{\overline{\boldsymbol{X}}^2}{\sum_{i=1}^n (\boldsymbol{X}_i - \overline{\boldsymbol{X}})^2} \right] \right]$$

20

Covariância entre os estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$:

 $\ \square$ A covariância entre os estimadores dos parâmetros β_0 e β_1 do modelo:

$$COV(\hat{\beta}_0, \hat{\beta}_1) = E[(\hat{\beta}_0 - E(\hat{\beta}_0))(\hat{\beta}_1 - E(\hat{\beta}_1))]$$

$$COV(\hat{\beta}_0, \hat{\beta}_1) = E[(\hat{\beta}_0 - \beta_0)(\hat{\beta}_1 - \beta_1)]$$

Sabe-se que:

$$\textbf{(1)} \quad \hat{\beta}_0 = \beta_0 + \sum_{i=1}^n \biggl(\frac{1}{n} - \overline{X} \, V_i \, \biggr) \epsilon_i \quad \ \ \rightarrow \quad \ \ \hat{\beta}_0 - \beta_0 = \sum_{i=1}^n \biggl(\frac{1}{n} - \overline{X} \, V_i \, \biggr) \epsilon_i$$

(2)
$$\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n V_i \ \epsilon_i \quad \rightarrow \quad \hat{\beta}_1 - \ \beta_1 = \sum_{i=1}^n V_i \ \epsilon_i$$

Covariância entre os estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$:

 $\hfill \Box$ Fazendo as devidas demonstrações, pode-se provar que a covariância entre os estimadores dos parâmetros β_0 e β_1 é dada por:

$$COV(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\overline{X}\sigma^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Pergunta: Qual relação existe entre a média de X e a covariância definida acima ?

22

Intervalo de Confiança para o parâmetro β, :

☐ Vimos que:

$$\hat{\beta}_1 \sim N \left[\beta_1, \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \right]$$

Logo:
$$Z = \frac{(\hat{\beta}_1 - \beta_1) \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}{\sigma} \sim N(0, 1)$$

OBS: A v.a Z depende de σ .

Intervalo de Confiança para o parâmetro $\;\beta_1 \; ; \;$

☐ Aliada ao fato de que:

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{(n-2)}$$

tem distribuição quiquadrada com (n-2) graus de liberdade, obtemos uma nova variável aleatória obtida abaixo:

$$T = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}{\sigma} / \sqrt{\frac{\frac{(n-2)\hat{\sigma}^2}{\sigma^2}}{(n-2)}} = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}{\hat{\sigma}}$$

A v.a T tem distribuição de Student com (n-2) graus de liberdade

Lembre-se que:
$$\hat{\sigma} = \sqrt{\text{QMRes}} = \sqrt{\sum_{i=1}^{n} e_i^2 \over n-2}$$

Intervalo de Confiança para o parâmetro β₁:

lacktriangle Para construir um intervalo de confiança (IC) para eta_1 ao nível de confiança de $100(1-\alpha)\%$ calcula-se a probabilidade abaixo:

$$P\left[-t_{\omega/2,n-2} \leq \frac{\left(\hat{\beta}_1 - \beta_1\right)\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}{\hat{\sigma}} \leq t_{\omega/2,n-2}\right] = 1 - \alpha$$

$$P\left[\hat{\beta}_1 - t_{\alpha/2,n-2} \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}\right] \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2,n-2} \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}\right] = 1 - \alpha$$

Intervalo de Confiança para o parâmetro β, : $\hfill \Box$ Logo o um Intervalo de confiança para o parâmetro β_1 do modelo, ao nível de confiança de $100(1-\alpha)\%$, é dado por: Limite inferior (Linf) Limite superior (L_{sup}) do intervalo

Exemplo: Considerando os dados dos n=30 bois, construa

um <u>intervalo de confiança</u> de 95% para o parâmetro eta_1 do										
modelo de RLS.										
	modele de l'aze.									
Coefficients ^a										
		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for		nce Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound Up		Upper Bound	
1	(Constant)	10,040	,495		20,277	,000		9,025	11,054	
	X_conc.subs	,732	,076	,877	9,672	,000		,577	,887	
a. Dependent Variable: Y_ganho_peso										
		IC para β₁ ao nível de 95%								
									27	

Testes de Hipóteses para o parâmetro g:

☐ Hipóteses a serem testadas:

 $\int H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

☐ Estatística de Teste:

$$T = \frac{\hat{\beta}_1 \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}{\hat{\sigma}} \sim T_{n-2}$$

A Estatística T tem distribuição de Student com (n-2) graus de liberdade (g.l's).

Testes de Hipóteses para o parâmetro β₁:

☐ Região crítica:

$$RC = \left\{ t \in \Re \ / \ t \le -t_{\omega/2, n-2} \quad \text{ou} \quad t \ge t_{\omega/2, n-2} \right\}$$

- ☐ Tomada de Decisão:
- Se $t_{obs} \in RC$ rejeita-se H_0 : β_1 =0 ao nível de significância α , e conclui-se que existe relação linear significativa entre X e Y.
- Se $t_{obs} \notin RC$ não há evidências para rejeitar H_0 : β_1 =0 ao nível de significância α , e conclui-se que não existe relação linear significativa entre X e Y.

Exemplo: Considerando os dados dos n=30 bois, realize um teste estatístico de hipóteses para o parâmetro β_1 ao nível de significância α de 5%. 95,0% Confidence Interval for B
 Lower Bound
 Upper Bound

 9,025
 11,054
 TH para β₁ ao nível de 5%

Testes de Hipóteses para o parâmetro β₁:

No caso do analista desejar testar se o parâmetro β_1 do modelo é igual a algum valor de interesse (β_1^*), realiza-se o seguinte teste de hipóteses:

☐ Hipóteses a serem testadas:

$$\begin{cases} H_0: \beta_1 = \beta_1^* \\ H_1: \beta_1 \neq \beta_1^* \end{cases}$$

☐ Estatística de Teste:

$$T = \frac{\left(\hat{\beta}_1 - \beta_1^*\right)\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}{\hat{\sigma}} \sim T_{n-2}$$

Testes de Hipóteses para o parâmetroβ, :

☐ Região crítica:

$$RC = \left\{ t \in \Re \ / \ t \le -t_{\alpha/2, n-2} \quad \text{ou} \quad t \ge t_{\alpha/2, n-2} \ \right\}$$

ou alternativamente:

$$RC = \left\{ t \in \Re / |t| \ge t_{\alpha/2, n-2} \right\}$$

☐ Tomada de Decisão:

- Se $t_{obs} \in RC$ rejeita-se $H_0: \beta_1=0$ ao nível de significância α , e conclui-se que β_1 é significativamente diferente de β_1^* .
- Se t_{obs} ∉ RC não há evidências para rejeitar H₀:β₁=0 ao nível de significância α, e conclui-se que β₁ não é significativamente diferente de g;.

Intervalo de Confiança para o parâmetro $\,\beta_{\scriptscriptstyle 0}\,$:

□ Vimos que:

$$\hat{\beta}_0 \sim N \left[\beta_0, \sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right] \right]$$

$$\label{eq:logo:Z} \begin{array}{ll} Logo: & Z = \dfrac{\hat{\beta}_0 - \beta_0}{\sigma \sqrt{\dfrac{1}{n} + \displaystyle \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}} \ \sim \ N(0,1) \end{array}$$

OBS: A v.a Z depende de σ .

Intervalo de Confiança para o parâmetro β_0 :

□ Aliada ao fato de que: $\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{(n-2)}$

tem distribuição quiquadrada com (n-2) graus de liberdade, obtemos uma nova variável aleatória obtida abaixo:

$$T = \frac{(\hat{\beta}_0 - \beta_0)}{\sigma \sqrt{\frac{1}{n} + \sum\limits_{i=1}^n (X_i - \overline{X})^2}} \ / \sqrt{\frac{\frac{(n-2)\hat{\sigma}^2}{\sigma^2}}{(n-2)}} = \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum\limits_{i=1}^n (X_i - \overline{X})^2}}}$$

A v.a T tem distribuição de Student com (n-2) graus de liberdade

Lembre-se que:
$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n-2}}$$

Intervalo de Confiança para o parâmetro β_0 :

 \square Para construir um intervalo de confiança (IC) para β_0 ao nível de confiança de 100(1- α)% calcula-se a probabilidade abaixo:

33

$$P \left| -t_{\omega 2,n-2} \leq \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}}} \leq t_{\omega 2,n-2} \right| = 1 - \alpha$$

$$P \left[\hat{\beta}_0 - t_{\alpha/2, n-2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} \right. \leq \left. \beta_0 \right. \leq \left. \hat{\beta}_0 - t_{\alpha/2, n-2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} \right] = 1 - \alpha$$

Intervalo de Confiança para o parâmetro $\, \, \beta_{\scriptscriptstyle 0} \,$:

□ Logo um intervalo de confiança para o parâmetro β_0 do modelo, ao nível de confiança de 100(1- α)%, é dado por:

Exemplo: Considerando os dados dos n=30 bois, construa agora um intervalo de confiança de 95% para o parâmetro β_0 do modelo de RLS. IC para β_0 ao nível de 95%

Testes de Hipóteses para o parâmetro β;

☐ Hipóteses a serem testadas:

$$\left\{ \begin{array}{l} H_0: \; \beta_0 = 0 \\ H_1: \; \beta_0 \neq 0 \end{array} \right.$$

☐ Estatística de Teste:

$$T = \frac{\hat{\beta}_0}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}}} \sim T_{n-1}$$

• A Estatística T tem distribuição de Student com (n-2) graus de liberdade.

Testes de Hipóteses para o parâmetro β_0 : ☐ Região crítica: $RC = \left\{ \; t \in \mathfrak{R} \;\; / \;\; t \leq -t_{_{\alpha/2,n-2}} \quad \text{ou} \quad t \geq t_{_{\alpha/2,n-2}} \;\; \right\}$ ☐ Tomada de Decisão: ■ Se $t_{obs} \in RC$ rejeita-se H_0 : β_0 =0 ao nível de significância $\alpha,$ e

- conclui-se que β_0 é significativamente diferente de zero.
- Se $t_{obs} \notin RC$ não há evidências para rejeitar H_0 : β_0 =0 ao nível de significância $\alpha,$ e conclui-se que β_0 não é significativamente diferente de zero.

Exemplo: Considerando os dados dos n=30 bois, realize um $\underline{\text{teste estatístico de hipóteses}}$ para o parâmetro β_0 ao nível de significância α de 5%. Qual a conclusão ?
 95,0% Confidence Interval for B

 Lower Bound
 Upper Bound

 9,025
 11,054
 TH para β_0 ao nível de 5%