Basics of Number System

Dr. Md Abu Sayeed EET 340

Recap: Basics of Number System

Binary Numbers

- Binary to Decimal Conversion
- Decimal to Binary Conversion

Hexadecimal Numbers

- Binary to Hexadecimal Conversion
- Hexadecimal to Binary Conversion

Binary Numbers

- The binary number system has base 2.
- The value of digit is determined by its position in the number.
- The two binary digits are: 1 and 0.
- The weights in a binary number are based on powers of two.

TABLE 2-1						
Decimal Number	Binary Number					
0	О	O	0	0		
1	0	O	O	1		
2	0	O	1	O		
3	0	O	1	1		
4	О	1	O	O		
5	О	1	O	1		
6	О	1	1	O		
7	О	1	1	1		
8	1	O	O	O		
9	1	O	O	1		
10	1	O	1	O		
11	1	O	1	1		
12	1	1	O	O		
13	1	1	O	1		
14	1	1	1	O		
15	1	1	1	1		

TABLE 2-2

Binary weights.

Positive Powers of Two (Whole Numbers)						Negative Powers of Two (Fractional Number)								
28	27	26	2 ⁵	2^4	2^3	2^2	2^1	2^0	2-1	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}
256	128	64	32	16	8	4	2	1	1/2 0.5	1/4 0.25	1/8 0.125	1/16 0.625	1/32 0.03125	1/64 0.015625

The Weighting Structure of Binary Number

- A binary number is a weighted number. The right most bit is the LSB (least significant bit) in a binary whole number and has a weight of 20=1. For whole numbers, the weights are positive powers of two that increases from right to left.
- Fractional decimal digits are placed to the right of decimal point. The left most bit is MSB in a binary fractional number and a weight of 2⁻¹. For fractional numbers, the weights are negative powers of two that decreases from left to right.
- The weight structure of a binary number is:

Example 1: Convert 1101 to decimal.

```
Weights: 2^3 2^2 2^1 2^0
Binary Digit: 1 1 0 1
1101 = 2^3 + 2^2 + 2^0
= 8 + 4 + 1 = 13
```

Example 2: Convert 10.111 to decimal number.

```
Weights: 2^{1} 2^{0} · 2^{-1} 2^{-2} 2^{-3}

Binary Digit: 1 0 . 1 1 1

10.111 = 2^{1} + 2^{-1} + 2^{-2} + 2^{-3}
= 2 + 0.5 + 0.25 + 0.125 = 2.875
```

Converting whole decimal numbers to binary (Sum-of-weights Method)

- Determine the set of binary weights whose sum is equal to the decimal number.
- Place 1's and 0's on the appropriate weight positions determines the binary number for that decimal number.
- An easy way to remember binary weights is that the lowest is 1, which is 2⁰, and that doubling any weight, you get the next higher weight. A list of seven binary weights:

Weights: 64 32 16 8 4 2 1 Weights: 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

Converting 9 to binary number

• Step 1: The set of binary weights 8 and 1, whose sum is equal to the decimal number.

Weights: 64 32 16 8 4 2 1

• Step 2: Place 1's and 0's on the appropriate weight positions determines the binary number for that decimal number.

Example 1: Convert decimal number 25 to binary using Sum-of-Weights Method.

$$25 = 16 + 8 + 4 + 1$$
Weights: 16 8 4 2 1
Weights: 2^4 2^3 2^2 2^1 2^0

$$1 1 0 0 1$$
Binary value = 11001

Example 2: Convert decimal number 58 to binary using Sum-of-Weights Method.

58 = 32 + 16	+ 8 -	+ 2				
Weights: Weights:	32 2 ⁵	16 2 ⁴	8 2 ³	4 2 ²	2 2 ¹	1 2°
Binary value	1 = 11:	1 1010	1	0	1	0

Hexadecimal Numbers

- The hexadecimal number system has sixteen characters; it is used primarily as a compact way of displaying or writing binary numbers because it is very easy to convert between binary and hexadecimal.
- As you are probably aware, long binary numbers are difficult to read and write because it is easy to drop or transpose a bit.
- The hexadecimal number system has a base of sixteen; that is, it is composed of 16 numeric and alphabetic characters.
- Most digital systems process binary data in groups that are multiples of four bits, making the hexadecimal number very convenient because each hexadecimal digit represents a 4-bit binary number

Hexadecimal Numbers

TABLE 2-3		
Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Binary-to-Hexadecimal Conversion

• Simply break the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit group with the equivalent hexadecimal symbol.

Convert the following binary numbers to hexadecimal:

(a) 11001010010101111 (b) 1111111000101101001

Solution

(a) $\underbrace{110010100101111}_{C A 5 7}$ (b) $\underbrace{001111111000101101001}_{3 F 1 6 9}$ = $\mathbf{3F169}_{16}$

Two zeros have been added in part (b) to complete a 4-bit group at the left.

Hexadecimal-to-Binary Conversion

• To convert from a hexadecimal number to a binary number, reverse the process and replace each hexadecimal symbol with the appropriate four bits.

Determine the binary numbers for the following hexadecimal numbers: (a) $10A4_{16}$ (b) $CF8E_{16}$

Note: The figures, text etc included in slides are borrowed from books, other sources for academic purpose only. The author does not claim any originality.

Source:

1.Digital Fundamentals (11th Edition) by Floyd