Solution to CS 3843 Midterm Exam Two Fall 2013

Name (La	act)	, (First)	
Maine (L	asi)	, (F11St)	

You may use a calculator and one sheet of notes on this exam, but no other materials and no computer.

Show all the major steps in your work to receive partial credits.

Problem 1 (27 points)

Assume the following values are stored at the indicated memory addresses and registers

Address	Value	Register	Value
0x200	0x3A	%eax	0x200
0x204	0x45	%ecx	0x08
0x208	0x3D	%edx	0x03
0x20C	0x11		
0x210	0x2F		
0x214	0x09		

a) (12 points - 1.5 points each) Fill the following table :

Operand	Value	Operand	Value
12(%eax)	0x11	4(%eax, %edx, 4)	0x2F
4(%eax, %ecx)	0x11	0x1F0(, %edx, 8)	0x3D
-3(%eax, %edx)	0x3A	0x200(%ecx, %edx, 4)	0x09
leal -0x10(%eax, %ecx, 8), %edx	0x230	leal 0xFC(%ecx), %edx	0x104

b) (15 points - 1.5 point each) Fill in the following table

Instruction	Destination	Value
xorl %edx, %ecx	%ecx	0x0B
subl %ecx, %edx	%edx	0xFB or 0xFFFFFFB
addl %edx, 4(%eax, %ecx, 2)	0x214	0x0C
imul \$4, (%eax, %edx, 4)	0x20C	0x44
incl 0x8(%eax)	0x208	0x3E

Problem 2 (35 points)

Fill in the following table. Assume that x and y are of a new type short integer which is 12 bits. Enter the value of (y-x) in decimal. This is the value that would be stored in z if short z = y - x;

The range of 12-bit signed number: $-2048 \sim 2047$ The range of 12-bit unsigned number: $0 \sim 2^{12}$ -1=4095

Sol: 2's complement representation:

$$-7=N*=2^{12}-N=2^{12}-7=4089$$

$$0x7$$
fe = $2^{11} - 2 = 2046$

$$-0x7$$
fe= $2^{12} - 0x7$ fe= $4096-2046=2050$

Consider the instruction: cmpw %eax, %ecx

(2 points each) Fill in the value of the flags if eax contains x and ecx contains y.

x	у	z = y - x	ZF	SF	OF	CF
15	7	7-15=-8(signed)	0	1	0	1
-7	15	15-(-7)=22 (signed) 15-4089=-4074 (unsigned)	0	0	0	1
-7	-7	(-7)-(-7)=0	1	0	0	0
7	0 <i>x</i> 7fe	2046-7=2039	0	0	0	0
7	-0 <i>x</i> 7fe	-2046-7=-2053(signed) 2050-7=2043(unsigned)	0	0	1	0
0x7fe	7	7-2046=-2039	0	1	0	1
0x7fe	-7	-7-2046=-2053(signed) 4089-2046=2043 (unsigned)	0	0	1	0

Problem 3 (18 points)

Please check whether the following instruction is TRUE or FALSE, and if FALSE, and what's wrong with each line?

- 1) movl %edx, 0xFD(%eax) TURE (X) FALSE ()
 If FALSE, explain why?
- 2) movl (%ecx), 0xC(%esp) TURE () FALSE (X) If FALSE, explain why?

Ans: Cannot have both source and destination be memory address.

```
TURE ( ) FALSE (X)
3) movb $0xFF, (%ah)
   If FALSE, explain why?
   Ans: Cannot use %al as address register
4) movw %ecx, (%edx)
                                              TURE ( ) FALSE (X)
   If FALSE, explain why?
   Ans: Mismatch between instruction suffix and register ID.
                                             TURE ( ) FALSE (X)
5) movb %cl, %dx
   If FALSE, explain why?
   Ans: Destination operand incorrect size.
6) movw %ax, $0xCD
                                             TURE() FALSE(X)
   If FALSE, explain why?
   Ans: Cannot have immediate as destination
```

Problem 4 (20 points)

A function *fun* has the following overall structure:

```
int fun(unsigned x) {
  int val = 0;
  int i;
  while (x) {
    val ^= x;
    x >>= 1;
  }
  return val & 0x1;
}
The GCC C compiler generates the following assembly code:
  x at %ebp+8 // comments here
```

```
1
       movl
                  8(%ebp), %edx
                                             // %edx = x
2
                  $0, %eax
                                             // %eax = val = 0
       movl
3
                  %edx, %edx
                                             // test x = 0 or not
       testl
                                             // jump to .L7 if x = 0
4
       je
                  .L7
5
     .L10
                                             // val ^= x
6
       xorl
                 %edx, %eax
                             shift right by 1 //x >> = 1
7
       shrl
                 %edx
                                              // if x != 0, jump to .L10
8
       jne
                 .L10
9
     .L7:
                                             // return val & 0x1
10
      andl
                 $1, %eax
```

Reverse engineer the operation of this code and then do the following:

A. (8 points) Comment each assembly instruction.

Sol: See above.

B. (6 points) Use the assembly-code version to fill in the missing parts of the C code.

Sol: See above.

B. (6 points) Describe in English what this function computes.

Sol: This code computes the parity of argument *x*. That is, it returns 1 if there is an odd number of ones in *x* and 0 if there is an even number.