【矩阵分解】那些在Netflix Prize中大放异彩的推荐算法

2018-03-26 刑无刀

推荐系统三十六式 进入课程 >

讲述: 黄洲君

时长 12:17 大小 5.63M

早在前几篇务虚的文章中,我就和你聊过了推荐系统中的经典问题,其中有一类就是评分预测。

让我摸着自己的良心说,评分预测问题只是很典型,其实并不大众,毕竟在实际的应用中,评分数据很难收集到,属于典型的精英问题;与之相对的另一类问题行为预测,才是平民级推荐问题,处处可见。

缘起

评分预测问题之所以"虽然小众却十分重要",这一点得益于十多年前 Netflix Prize 的那一百万美元的悬赏效应。

公元 2006 年 10 月 2 号,对于很多人来说,这只是平凡了无新意的一天,但对于推荐系统从业者来说,这是不得了的一天,美国著名的光盘租赁商 Netflix 突然广发英雄帖,放下"豪"言,这个就是土豪的"豪",凡是能在他们现有推荐系统基础上,把均方根误差降低 10% 的大侠,可以瓜分 100 万美元。消息一出,群贤毕至。

Netflix 放出的比赛数据,正是评分数据,推荐系统的问题模式也是评分预测,也就是为什么说,评价标准是均方根误差了。

这一评分预测问题在一百万美元的加持下,催生出无数推荐算法横空出世,其中最为著名的就是一系列矩阵分解模型,而最最著名的模型就是 SVD 以及其各种变体。这些模型后来也经受了时间检验,在实际应用中得到了不同程度的开枝散叶。

今天我就来和你细聊一下矩阵分解, SVD 及其最有名的变种算法。

矩阵分解

为什么要矩阵分解

聪明的你也许会问,好好的近邻模型,一会儿基于用户,一会儿基于物品,感觉也能很酷炫地解决问题呀,为什么还要来矩阵分解呢?

刨除不这么做就拿不到那一百万的不重要因素之外, 矩阵分解确实可以解决一些近邻模型无 法解决的问题。

我们都是读书人,从不在背后说模型的坏话,这里可以非常坦诚地说几点近邻模型的问题:

- 1. 物品之间存在相关性, 信息量并不随着向量维度增加而线性增加;
- 2. 矩阵元素稀疏,计算结果不稳定,增减一个向量维度,导致近邻结果差异很大的情况存在。

上述两个问题,在矩阵分解中可以得到解决。矩阵分解,直观上说来简单,就是把原来的大矩阵,近似分解成两个小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵。

具体说来就是,假设用户物品的评分矩阵 A 是 m 乘以 n 维,即一共有 m 个用户,n 个物品。我们选一个很小的数 k,这个 k 比 m 和 n 都小很多,比如小两个数量级这样,通过一

套算法得到两个矩阵 U 和 V, 矩阵 U 的维度是 m 乘以 k, 矩阵 V 的维度是 n 乘以 k。

这两个矩阵有什么要求呢?要求就是通过下面这个公式复原矩阵 A, 你可以点击文稿查看公式。

$$U_{m imes k} V_{n imes k}^T pprox A_{m imes n}$$

类似这样的计算过程就是矩阵分解,还有一个更常见的名字叫做 SVD; 但是, SVD 和矩阵分解不能划等号, 因为除了 SVD 还有一些别的矩阵分解方法。

1 基础的 SVD 算法

值得一说的是,SVD 全称奇异值分解,属于线性代数的知识;然而在推荐算法中实际上使用的并不是正统的奇异值分解,而是一个伪奇异值分解(具体伪在哪不是本文的重点)。

今天我介绍的 SVD 是由 Netflix Prize 中取得骄人成绩的 Yehuda Koren 提出的矩阵分解推荐算法。

按照顺序,首先介绍基础的 SVD 算法,然后是考虑偏置信息,接着是超越评分矩阵增加多种输入,最后是增加时间因素。好,一个一个来。

前面已经从直观上大致说了矩阵分解是怎么回事,这里再从物理意义上解释一遍。矩阵分解,就是把用户和物品都映射到一个 k 维空间中,这个 k 维空间不是我们直接看得到的,也不一定具有非常好的可解释性,每一个维度也没有名字,所以常常叫做隐因子,代表藏在直观的矩阵数据下面的。

每一个物品都得到一个向量 q,每一个用户也得到一个向量 p。对于物品,与它对应的向量 q 中的元素,有正有负,代表着这个物品背后暗藏的一些用户关注的因素。

对于用户,与它对应的向量 p 中的元素,也有正有负,代表这个用户在若干因素上的偏好。物品被关注的因素,和用户偏好的因素,它们的数量和意义是一致的,就是我们在矩阵分解之处人为指定的 k。

举个例子,用户 u 的向量是 pu,物品 i 的向量是 qi,那么,要计算物品 i 推荐给用户 u 的推荐分数,直接计算点积即可:

$$\hat{r}_{ui} = p_u q_i^T$$

看上去很简单,难在哪呢?难在如何得到每一个用户,每一个物品的 k 维向量。这是一个机器学习问题。按照机器学习框架,一般就是考虑两个核心要素:

- 1. 损失函数;
- 2. 优化算法。

SVD 的损失函数是这样定义的:

$$\min_{q^*,p^*} \sum_{(u,i) \in \kappa} \left(r_{ui} - p_u q_i^T
ight)^2 + \lambda (||q_i||^2 + ||p_u||^2)$$

理解 SVD 的参数学习过程并不是必须的, 如果你不是算法工程师的话不必深究这个过程。

由于这个公式略复杂,如果你正在听音频,就需要自己看一下图片。这个损失函数由两部分构成,加号前一部分控制着模型的偏差,加号后一部分控制着模型的方差。

前一部分就是: 用分解后的矩阵预测分数, 要和实际的用户评分之间误差越小越好。

后一部分就是:得到的隐因子向量要越简单越好,以控制这个模型的方差,换句话说,让它在真正执行推荐任务时发挥要稳定。这部分的概念对应机器学习中的过拟合,有兴趣可以深入了解。

整个 SVD 的学习过程就是:

- 1. 准备好用户物品的评分矩阵,每一条评分数据看做一条训练样本;
- 2. 给分解后的 U 矩阵和 V 矩阵随机初始化元素值;
- 3. 用 U 和 V 计算预测后的分数;
- 4. 计算预测的分数和实际的分数误差;
- 5. 按照梯度下降的方向更新 U 和 V 中的元素值;
- 6. 重复步骤 3 到 5, 直到达到停止条件。

过程中提到的梯度下降是优化算法的一种,想深入了解可以参见任何一本机器学习的专著。

得到分解后的矩阵之后,实质上就是得到了每个用户和每个物品的隐因子向量,拿着这个向量再做推荐计算就简单了,哪里不会点哪里,意思就是拿着物品和用户两个向量,计算点积就是推荐分数了。

2 增加偏置信息

到现在,你已经知道基础的 SVD 是怎么回事了。现在来多考虑一下实际情况,试想一下:有一些用户会给出偏高的评分,比如标准宽松的用户;有一些物品也会收到偏高的评分,比如一些目标观众为铁粉的电影,甚至有可能整个平台的全局评分就偏高。

所以,原装的 SVD 就有了第一个变种:把偏置信息抽出来的 SVD。

一个用户给一个物品的评分会由四部分相加:

$$\hat{r}_{ui} = \mu + b_i + b_u + p_u q_i^T$$

从左至右分别代表:全局平均分、物品的评分偏置、用户评分的偏置、用户和物品之间的兴趣偏好。

针对前面三项偏置分数,我在这里举个例子,假如一个电影评分网站全局平均分是 3 分,《肖申克的救赎》的平均分比全局平均分要高 1 分。

你是一个对电影非常严格的人,你一般打分比平均分都要低 0.5,所以前三项从左到右分别就是 3,1,-0.5。如果简单的就靠这三项,也可以给计算出一个你会给《肖申克的救赎》打的分数,就是 3.5。

增加了偏置信息的 SVD 模型目标函数稍有改变:

$$\min_{q^*,p^*} \sum_{(u,i) \in \kappa} (r_{ui} - \mu - b_i - b_u - p_u q_i^T)^2 + \lambda (||q_i||^2 + ||p_u||^2 + b_i^2 + b_u^2)$$

和基本的 SVD 相比,要想学习两个参数:用户偏置和物品偏置。学习的算法还是一样的。

3 增加历史行为

探讨完增加偏执信息的 SVD 后,接着你再思考一个问题:有的用户评分比较少。事实上这很常见,相比沉默的大多数,主动点评电影或者美食的用户是少数。

换句话说,显式反馈比隐式反馈少,那么能不能利用隐式反馈来弥补这一点呢?另外,再考虑多一点,对于用户的个人属性,比如性别等,是不是也可以加入到模型中来弥补冷启动的不足呢?

是的,都是可以的,在 SVD 中结合用户的隐式反馈行为和属性,这套模型叫做 SVD++。

先说隐式反馈怎么加入,方法是:除了假设评分矩阵中的物品有一个隐因子向量外,用户有过行为的物品集合也都有一个隐因子向量,维度是一样的。把用户操作过的物品隐因子向量加起来,用来表达用户的兴趣偏好。

类似的,用户属性,全都转换成 0-1 型的特征后,对每一个特征也假设都存在一个同样维度的隐因子向量,一个用户的所有属性对应的隐因子向量相加,也代表了他的一些偏好。

综合两者, SVD++ 的目标函数中, 只需要把推荐分数预测部分稍作修改, 原来的用户向量 那部分增加了隐式反馈向量和用户属性向量:

$$\hat{r}_{ui} = \mu + b_i + b_u + \left. \left(p_u + |N(u)|^{-0.5} \sum_{i \in N(u)} x_i + \sum_{a \in Au} y_a
ight) q_i^T$$

(滑动查看完整公式)

学习算法依然不变,只是要学习的参数多了两个向量: x 和 y。一个是隐式反馈的物品向量,另一个用户属性的向量。

这样一来,在用户没有评分时,也可以用他的隐式反馈和属性做出一定的预测。

4 考虑时间因素

截止到目前,我们还没有正视过一个人性:人是善变的。这个是一个广义的评价,我们在进步也是在变化,今天的我们和十年前的我们很可能不一样了。这是常态,因此,在 SVD 中考虑时间因素也变得顺理成章。

在 SVD 中考虑时间因素, 有几种做法:

- 1. 对评分按照时间加权, 让久远的评分更趋近平均值;
- 2. 对评分时间划分区间,不同的时间区间内分别学习出隐因子向量,使用时按照区间使用对应的隐因子向量来计算;
- 3. 对特殊的期间,如节日、周末等训练对应的隐因子向量。

总结

至此,我们介绍了在 Netflix Prize 比赛中最为出众的模型: SVD 及其一些典型的改进。改进方案分别是:

- 1. 考虑偏置信息;
- 2. 考虑隐式反馈和用户属性;
- 3. 考虑时间因素。

其实 Netflix Prize 比赛上诞生了很多其他优秀的算法,或者把一些已有的算法应用得到很好的效果,比如受限玻尔兹曼机用来融合多个模型,这个我会在后面的专栏文章中专门再讲。

好了,最后我要给你留一个思考题,假如矩阵分解面对的数据不是评分数据,而是行为数据,那么今天讲到的损失函数是否依然有效呢?欢迎留言一起讨论。感谢你的收听,我们下次再见。

⑥ 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 【近邻推荐】协同过滤中的相似度计算方法有哪些

下一篇 【矩阵分解】Facebook是怎么为十亿人互相推荐好友的

精选留言 (23)

心 2

Dan

2018-04-04

請問老師隱性因子k的個數通常如何決定?

展开~

作者回复: 用K-fold确定。

企 2

陈洋溢

በ ጎ

2019-04-12

有个疑问,已经有原始的评分矩阵,结果通过分解得到两个稠密矩阵,最后还是相乘又去估算得到评分相比本来的评分的优势在哪呢?是因为相乘后对那些没有评分过的物品也会有值出现么

展开٧

衬衫的价格...

凸 1

2019-02-19

- 1.用户物品评分矩阵中某个特定用户一般只给其中的部分物品有评分,那么如何计算该用户对未评分物品的推荐分呢?
- 2.通过分解用户物品评分矩阵得到隐式因子,这是隐藏在用户物品中的不为人直观理解的影响因子,却又能深刻揭示用户物品的关系
- 3.因此,从用户物品评分矩阵分解得到隐式因子是关键,一般用SVD方法 展开~

愚公移山

凸 1

2018-03-27

老师,在SVD++分解中,用户的隐式反馈数据和用户属于是怎样加入到用户物品评分矩阵中的呢?损失函数应该需要这部分数据做监督训练的

作者回复: 就是认为每个隐式反馈对象和每个属性都是一个特征,都对应一个隐因子向量。也就是公式中的xi和ya。

4

凸 1

185

2018-03-26

根据我的理解,损失函数对行为数据是有用的,例如购买物品的数量、观看或者收听的时长、每天打开app的次数等都是和评分类似的数据。

我理解的对吗?

展开~

作者回复: 可以这样处理, 但又略有不同, 下一篇会讲。

ďЪ

2019-05-21

svd + +中的item向量q和隐士反馈的item向量x是独立的吗?

展开~

凸

在最基础的svd模型里,如果不添加用户和物品的评分bias,会有什么影响? 展开~

作者回复:一般实际工作中也常常不分离出bias。

•

sangyongj...

凸

2019-04-30

用户物品评分矩阵中某个特定用户一般只给其中的部分物品有评分,评分矩阵是极度稀疏的,但是在矩阵分解时需要使用到评分矩阵。问题是:这些未评分的位置如何填充呢? 展开 >

shangqiu86

2019-04-29

老师,我还有个疑问就是基于矩阵分解的协同过滤和这节课讲的矩阵分解是不是就是一套算法啊?

shangqiu86

凸

2019-04-29

老师,您好,我之前用过spark的ALS,我负责的项目中没有显示反馈,全部是隐式反馈,比如点击、点赞、收藏这种,所以我是对每种行为定义了分数,比如点击是3分,点赞4分,收藏或分享是5分这样,然后使用的矩阵分解,上线效果并不理想,我不知道这样是不是不合适?正好您也留了这个思考作业,所以希望您能指点下

展开~

凸

請問老師,最後一個預測函數中,將用戶屬性的向量用ya的方式加總,是出現在大神的哪篇論文中呢?目前我只看到xi的,還請指點迷津,不勝感激。

在要学习的空间内 向量p在向量q上的投影只能是1或0 展开 >

ß

SVD++中隐式反馈数据在公式当中是不是只关注特征维度,不关注实际比如操作次数这些值?比如用户属性,我们只需人为确定与几个用户属性相关?

老师,我想问一下,SVD++对于隐式反馈数据,损失函数拟合的rui值是0吗?还有用户行为向量x和用户属性y这个迭代初始值是什么,加上这两个向量,可是损失函数拟合的还是评分,这两个向量好像有点捉摸不透,意义在哪,能否细讲一下

作者回复: 其实就是,每个隐式反馈对象ID都是特征,这些特征背后都有一个k维的隐因子向量。 所有这些隐因子向量都是未知参数,同等地位被优化,所以都是随机初始化。