Índices: Hash

Daniel de Oliveira Capanema Adaptado Prof. Kutova

Tabela de dispersão

- As tabelas de dispersão (hash) em disco também podem ser usadas como índices, ao invés das árvores.
- Nessas tabelas, o curso de acesso é O(1).
- A posição do registro é determinada por uma função de dispersão (ou função hash).

Função de dispersão

h(chave) → endereço

- Depende do número de endereços e da natureza da chave.
- Registros do índice devem ser de tamanho fixo.
- Quantidade fixa de endereços (depende do tratamento de colisões)

Tabela de dispersão

Exemplos de função de dispersão

 Elevar a chave ao quadrado e pegar um grupo de dígitos do meio:

$$A = h(453) \rightarrow 453^2 = 205209 \rightarrow A = 52$$

(dois dígitos foram escolhidos pois o arquivo possui apenas 100 endereços)

Exemplos de função de dispersão

Mudar a chave para outra base:

$$A = h(453) \rightarrow 453_{10} = 382_{11} \rightarrow$$

382 mod 99 = 85 \rightarrow A = 85

(99 é a quantidade de endereços no arquivo)

Exemplos de função de dispersão

 Multiplicar o valor ASCII das letras e usar o resto da divisão pelo número de endereços

Chave	Cálculo	Endereço
JOÃO	74 x 79 = 5846	846
CARLOS	67 x 65 = 4355	355
GILBERTO	71 × 73 = 5183	183

Colisões

Tratamento de colisões

- Alternativas:
 - Encadeamento interno usa outras posições vazias dentro da própria da tabela hash
 - Encadeamento externo usa uma área extra, além da tabela hash, como uma área de extensão, ou um segundo arquivo.

- Endereçamento aberto uma nova posição dentro da área da tabela será procurada
 - Sondagem linear
 - Sondagem quadrática
 - Duplo hash (double hashing)

 Sondagem linear – as próximas posições são sondadas (circularmente), até que uma posição livre seja encontrada.

	Código	Título	Autor	Preço
0	1	Java Web Services	Martin Kalin	34,87
108	2	Web Design Responsivo	Maurício Samy Silva	45,50
216	3	Web Services em PHP	Lorna Jane Mitchell	33,90
324	4	Programação Java para a Web	Décio Heinzelmann	93,22
432	5	Desenvolvimento Web Java	Qian et al	118,90

Regra:
$$h(k,i) = [h(k) + i] \mod n$$

 Sondagem quadrática – a distância até a próxima posição a ser sondada é determinada pelo quadrado da tentativa

	Código	Título	Autor	Preço
0	1	Java Web Services	Martin Kalin	34,87
108	2	Web Design Responsivo	Maurício Samy Silva	45,50
216	3	Web Services em PHP	Lorna Jane Mitchell	33,90
324	4	Programação Java para a Web	Décio Heinzelmann	93,22
432	5	Desenvolvimento Web Java	Qian et al	118,90

Regra: $h(k,i) = [h(k) + i^2] \mod n$

 Duplo hash – a distância até a próxima posição a ser sondada é determinada por uma segunda função hash

	Código	Titulo	Autor	Preço
0	1	Java Web Services	Martin Kalin	34,87
108	2	Web Design Responsivo	Maurício Samy Silva	45,50
216	3	Web Services em PHP	Lorna Jane Mitchell	33,90
324	4	Programação Java para a Web	Décio Heinzelmann	93,22
432		Desenvolvimento Web Java		118,90

Regra: $h(k,i) = [h(k) + i * h'(k)] \mod n$

Encadeamento externo

Área de extensão –
os registros colididos
são armazenados
em uma área de
extensão

Encadeamento externo

 Lista encadeada – todos os registros são armazenados em uma lista encadeada (outro arquivo)

Buckets (cesto)

- Da mesma forma que no caso da árvore B, é importante otimizar o acesso ao disco.
- Assim, cada posição no índice, pode conter mais de uma entrada (ou registro)
- Exemplo:
 - Registro no índice = 12 bytes
 - Setor do HD = 4096 bytes = 341,33 registros

Buckets (cesto)

	Código	End.	Código	End.	Código	End.	Código	End.
0								
h(1) = 21								
h(2) = 8	1	0	5	432				
h(3) = 5								
h(4) = 5								
h(5) = 0 5	3	216	4	324				
6								
7								
* 8	2	108						
9								

Buckets (cesto)

- Tratamento de colisões (quando o cesto está cheio)
 - Alocar o registro no próximo cesto em que houver espaço disponível (usando endereçamento aberto)
 - Usar uma das técnicas anteriores (considerando que cada posição equivale a um novo cesto)

Tabela hash dinâmica

- Quando o arquivo de dados cresce ou diminui com frequência (muitas inclusões e exclusões), o índice também precisará ser ajustado.
- Uma tabela hash estática, para crescer, precisa reposicionar todos os registros.

Tabela hash dinâmica

 Uma tabela hash dinâmica é uma tabela hash em que apenas alguns registros afetados (aqueles do bucket) precisam ser reposicionados.

 $h(k) = k \bmod 2^p$

Adicionar chave 9:

 $h(k) = k \bmod 2^p$

Adicionar chave 20:

Adicionar chave 20:

Adicionar chave 26:

Adicionar chave 26:

111

Vantagens do hash extensível

- O diretório cresce, sem precisarmos reposicionar todos os registros (do índice)
- O índice (lista de buckets) cresce de acordo com a necessidade
- Como não há encadeamento dos buckets, não há perda de eficiência

Índices invertidos

- Um índice invertido é um índice em que uma parte do conteúdo de um registro (como uma palavra de um campo) é usada na localização do próprio registro.
- Essa é uma solução para permitir, entre outras, a busca de texto em arquivos, como fazem as máquinas de busca na Web.

Buscar Dados?

Índices invertidos

Cód.	Título	
1	Implementação de sistemas de bancos de dados	
2	Sistemas de bancos de dados	
3	Estruturas de dados e seus algoritmos	
4	Dominando algoritmos	
5	Estruturas de dados em Java	
6	Core Java	
7	Biblioteca do programador Java	

Busca sequencial?

- A busca sequencial (testando cada registro) é lenta demais para um grande volume de dados
 - Google: pesquisa em bilhões de páginas em uma fração de segundo

Índice invertido

 Todos os "termos" são identificados e, para cada um deles, criamos uma lista dos registros em que aparecem

Índice invertido = listas invertidas

Índice invertido

Cód.	Título	
1	Implementação de sistemas de bancos de dados	
2	Sistemas de bancos de dados	
3	Estruturas de dados e seus algoritmos	
4	Dominando algoritmos	
5 .	Estruturas de dados em Java	
6	Core Java	
7	Biblioteca do programador Java	

Termos
implementação
de
sistemas
bancos
dados
estruturas
e
seus
algoritmos
dominando
em
java
core
biblioteca
do
programador

Índice invertido

Cód.	Título	
1	Implementação de sistemas de bancos de dados	
2	Sistemas de bancos de dados	
3	Estruturas de dados e seus algoritmos	
4	Dominando algoritmos	
5 .	Estruturas de dados em Java	
6	Core Java	
7	Biblioteca do programador Java	

Termos	Re	egis	tro)5	
algoritmos	3	4			
bancos	1	2			
biblioteca	7				
core	6				
dados	1	2	3	5	
dominando	4				
estruturas	3	5			
implementação	1				
java	5	6	7		
programador	7				
seus	3				
sistemas	1	2			

Exemplo de consulta

Termos	Registros
algoritmos	3 4
bancos	1 2
biblioteca	7
core	6
dados	1 2 3 5
dominando	4
estruturas	3 5
implementação	1
java ·	5 6 7
programador	7
seus	3
sistemas	1 2

Consulta: "estruturas ¾ dados"

Faço buscas por termos; Comparo em pares; Encontro a resposta pela interseção

Vantagens

- Os índices invertidos (ou listas invertidas) podem ser construídos para qualquer conjunto de informações dos registros.
- Esses índices são estruturas adequadas para consultas combinadas (vários campos).