PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-335383

(43) Date of publication of application: 18.12.1998

(51)Int.Cl.

H01L 21/60 H01S 3/18

(21)Application number: 09-138903

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

28.05.1997

(72)Inventor: CHINO TOYOJI

YOSHIDA TAKAYUKI MATSUDA KENICHI

(54) PRODUCING METHOD FOR SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for efficiently processing the rear faces of a large number of semiconductor chips.

SOLUTION: A semiconductor chip or a submount 200 is coated (1st step) with resins. Next, the semiconductor chip and the submount 200 are pressed (2nd step) so as to practically cover a 1st surface with resins, while electrically conducting the semiconductor chip and the submount 200 after the 1st step. After the 2nd step, next, at least one of filming, etching, patterning and cleaning is performed (3rd step) on a 2nd surface of the semiconductor chip.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出題公開番号

特開平10-335383

(43)公開日 平成10年(1998)12月18日

(51) Int.Cl.⁶

識別記号

FΙ

H01L 21/60

H01S 3/18

3 1 1

H01L 21/60

311S

H01S 3/18

審査請求 未請求 請求項の数7 OL (全 17 頁)

		The state of the s
(21)出願番号	特膜平9-138903	(71)出題人 000005821
		松下電器産業株式会社
(22)出顧日	平成9年(1997)5月28日	大阪府門真市大字門真1006番地
		(72)発明者 知野 豊治
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		·
		(72)発明者 吉田 隆幸
	•	大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 松田 賢一
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(74)代理人 弁理士 山本 秀策
		i

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

【課題】 多数個の半導体チップの裏面を効率的に処理 する方法を提供する。

【解決手段】 樹脂を半導体チップまたはサブマウント に塗布する第1ステップと、第1ステップの後において、半導体チップおよびサブマウントが電気的に導通するように、かつ樹脂が第1表面を実質的に覆うように、半導体チップおよびサブマウントに圧力を加える第2ステップと、第2ステップの後において、成膜、エッチング、パターニングおよび洗浄のうちの少なくとも1つを半導体チップの第2表面に施す第3ステップと、を包含する。

【特許請求の範囲】

【請求項1】 互いに実質的に平行な第1表面および第2表面を有する半導体チップを、該第1表面がサブマウントに対向するように、該サブマウント上に実装することによって半導体装置を製造する方法であって、

樹脂を該半導体チップまたは該サブマウントに塗布する 第1ステップと、

該第1ステップの後において、該半導体チップおよび該サブマウントが電気的に導通するように、かつ該樹脂が該第1表面を実質的に覆うように、該半導体チップおよ 10 び該サブマウントに圧力を加える第2ステップと、

該第2ステップの後において、成膜、エッチング、パターニングおよび洗浄のうちの少なくとも1つを該半導体チップの該第2表面に施す第3ステップと、を包含する半導体装置の製造方法。

【請求項2】 前記第2ステップおよび前記第3ステップのあいだにおいて、前記半導体チップの特性を検査するステップをおこなう請求項1に記載の半導体装置の製造方法。

【請求項3】 前記第3ステップによって、前記第2表 20 面上に別の半導体装置を形成する請求項1に記載の半導 体装置の製造方法。

【請求項4】 前記第3ステップの後において、前記第2表面上に生じた酸化膜を除去する第4ステップと、前記半導体チップと、別の半導体チップとを該第2表面上において原子層接合する第5ステップと、

をさらに包含する請求項1 に記載の半導体装置の製造方法。

【請求項5】 前記第5ステップによって、前記第2表面上に別の半導体装置を形成する請求項4に記載の半導体装置の製造方法。

【請求項6】 前記サブマウント上に複数の前記半導体チップを実質的に同時に配置するステップをさらに包含する請求項1に記載の半導体装置の製造方法。

【請求項7】 前記第1表面または前記サブマウント上 に低融点金属を形成するステップと、

該低融点金属を融点近傍の温度に加熱するステップと、 をさらに包含する請求項1 に記載の半導体装置の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置の製造方法に関し、特に半導体チップを基板に実装した後に半導体チップを加工する半導体装置の製造方法に関する。 【0002】

【従来の技術】基板上に複数個の半導体チップを搭載して構成される従来の技術による半導体装置の一例は、例えば、フォトニクステクノロジーレターズ第7巻(1995年)、第4号第360~362ページ(Photonics Technology Letters, vol. 7,No. 4, pp. 360-362(199

5))に示されている。この従来技術は、CMOSトランジスタが予め形成されたSi基板上に数十個のGaAs多重量子井戸光変調器(以下、「光変調器」とする)をハイブリッドに集積する。光変調器は、Si基板上のCMOSトランジスタによりパイアス電圧が加えられることによって、光変調器裏面からの入力光に対して反射率が変化し、その結果、反射光強度を変化させる。つまり光変調器は、バイアス電圧を変調することで反射光強度を変調させて、それにより信号処理をおこなう。

【0003】図18は、従来の技術による半導体装置製造方法を示す工程断面図である。まず図18の(a)に示すように、Si基板上に形成されたCMOSトランジスタ1805と、GaAs基板1802上に形成された光変調器1801との上にPb/Sn半田1803を所定の形状に形成する。

【0004】次に図18の(b)に示すように、Pb/Sn半田1803どうしを溶融させて接着する。この後、図18の(c)に示すように、エポキシ樹脂1806を100℃に加熱して、その粘性を低下させることによって、CMOSトランジスタ1805が形成されているSi基板と光変調器1801との隙間に流し込む。

【0005】その後、図18の(d)に示すように、光変調器1801が形成されているGaAs基板1802をウエットエッチングによって除去する。CMOSトランジスタ1805が形成されているSi基板と、光変調器1801との隙間のエポキシ樹脂1806は、ウエットエッチングの際に光変調器1801の表面をエッチング液から保護する層になる。GaAs基板1802が除去された光変調器1801の面に反射防止膜を堆積して製造工程を終了する。

[0006]

【発明が解決しようとする課題】しかし上述の従来技術によれば、エポキシ樹脂の粘性を低下させて、隙間を埋める。そのため、加熱の温度制御を精密におこなう必要がある。また従来技術によれば、エポキシ樹脂中に隙間(微小な気泡)が生じることがある。そのため、ウエットエッチングをおこなうときに、実装された基板表面がエッチングされることも起こりうる。本発明は、上記課題を解決するためになされたものであり、その目的は、40 半導体チップの裏面加工を効率的におこなえる半導体装置の製造方法を提供することにある。

[0007]

【課題を解決するための手段】本発明による半導体装置の製造方法は、互いに実質的に平行な第1表面および第2表面を有する半導体チップを、該第1表面がサブマウントに対向するように、該サブマウント上に実装するととによって半導体装置を製造する方法であって、樹脂を該半導体チップまたは該サブマウントに塗布する第1ステップと、該第1ステップの後において、該半導体チップはよび該サブマウントが電気的に導通するように、か

つ該樹脂が該第1表面を実質的に覆うように、該半導体 チップおよび該サブマウントに圧力を加える第2ステッ プと、該第2ステップの後において、成膜、エッチン グ、パターニングおよび洗浄のうちの少なくとも1つを 該半導体チップの該第2表面に施す第3ステップと、を 包含しており、そのことにより上記目的が達成される。 【0008】ある実施形態では、前記第2ステップおよ び前記第3ステップのあいだにおいて、前記半導体チッ プの特性を検査するステップをおこなう。

って、前記第2表面上に別の半導体装置を形成する。

【0010】ある実施形態では、前記第3ステップの後 において、前記第2表面上に生じた酸化膜を除去する第 4ステップと、前記半導体チップと、別の半導体チップ とを該第2表面上において原子層接合する第5ステップ と、をさらに包含する。

【0011】ある実施形態では、前記第5ステップによ って、前記第2表面上に別の半導体装置を形成する。

【0012】ある実施形態では、前記サブマウント上に 複数の前記半導体チップを実質的に同時に配置するステ 20 ップをさらに包含する。

【0013】ある実施形態では、前記第1表面または前 記サブマウント上に低融点金属を形成するステップと、 該低融点金属を融点近傍の温度に加熱するステップと、 をさらに包含する。

[0014]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施の形態を説明する。図面において同じ参照符号 は、同じ構成要素を示す。

参照しながら、本発明による方法の実施の形態1によっ て製造された半導体装置の構造を説明する。

【0016】図1は、本発明による方法の実施の形態1 によって製造された半導体装置10の概略図である。S iサブマウント200上には、数十個の面発光レーザチ ップ100が実装されている。面発光レーザチップ10 0は、互いに実質的に平行な2つの面を有している。面 発光レーザチップ100のとれら2面のうち一方の面 は、Siサブマウント200の表面に接触している。本 明細書において、面発光レーザチップ100の「裏面」 とは、これら2面のうち面発光レーザチップ100がS iサブマウント200に接触する面に反対側の面をい う。

【0017】後で詳述するように、図1に示す一枚の大 口径基板に多数のチップを実装し、その後に実装された チップにある種の加工を施すことによって、従来におい てはチップの個数分だけ施さなければならなかった処理 工程数を一挙に低減できる。面発光レーザチップ100 の裏面への処理を一括しておこなった後に、サブマウン 与する。

【0018】面発光レーザチップ100の裏面には、レ ーザ光を取り出すための裏面ガイド穴106が形成され ている。との裏面ガイド穴106は、レーザ光が、面発 光レーザチップ100を形成するGaAs基板に吸収お よび散乱されるのを防止する。また裏面ガイド穴106 は、GaAs基板の表面に形成された面発光レーザと同 芯円状に形成されており、光ファイバと面発光レーザと を結合させる際に、位置合わせを容易にする効果をも併 【0009】ある実施形態では、前記第3ステップによ 10 せもつ。裏面ガイド穴106は、面発光レーザチップ1 00がSiサブマウント200上に実装された後に、面 発光レーザチップ100の裏面に形成される。

> 【0019】後述する面発光レーザは、GaAs基板上 にその外縁がほぼ円形になるように形成されており、そ の円の直径は、例えば、約5μm~約50μmである。 裏面ガイド穴106の直径は130μmである。この直 径は、裏面ガイド穴106に挿入する光ファイバの直径 が125μmであり、5μmのマージンを考慮して決め られている。

【0020】図2は、本発明による方法の実施の形態1 によって製造された半導体装置10のうちの1つの面発 光レーザチップ100の近傍の断面図である。Siサブ マウント200のSi基板202上には、配線204が 所定の形状に加工されている。配線204は、例えば、 Au単体またはAuを含む複数層の金属で形成される が、これには限られない。面発光レーザチップ100 は、後で詳述するようにSiサブマウント200上にフ リップチップ実装されている。

【0021】面発光レーザチップ100は、GaAs基 【0015】(実施の形態1)まず、図1および図2を 30 板102と、GaAs基板102上に形成された面発光 レーザ120とを含む。面発光レーザ120は、GaA s 基板204上にエッチングストップ層104を介して 形成されたp型ブラッグ反射器130、活性層140、 n型ブラッグ反射器160および電極170を備えてい る。p型ブラッグ反射器130は、p-AlAs132 およびp-GaAs134を24.5対積層して構成さ れている。n型ブラッグ反射器160は、導電型がn型 であること以外は、p型ブラッグ反射器130と同様の 構造を有する。

> 40 【0022】活性層140は、n-AlGaAs14 2, AlGaAsl44, GaAsl46, InGaA s 148、GaAs 150、AIGaAs 152および p-AlGaAs154を備えている。活性層140で 発生した光は、p型ブラッグ反射器130およびn型ブ ラッグ反射器160により閉じ込められ、レーザ発振に 至る。

【0023】上述の面発光レーザ120を構成するp型 ブラッグ反射器 130、活性層 140 および n型ブラッ グ反射器160は、例示のためであって、それらの具体 ト200をスクライブすれば、工程の簡略化に大きく寄 50 的な構成は、上述のものに限られない。活性層と、活性 層を間に挟む2つの反射器とを少なくとも有する面発光

レーザであれば、本発明に適用することができる。 【0024】フリップチップ実装の際、面発光レーザ1 20がSi基板202に接触しないようにマイクロバン プ180およびコモンアノードマイクロバンブ190が 形成されている。具体的には、面発光レーザ120およ びSi基板202の間隔は、配線204の厚さにほぼ等 しく、例えば、約 $0.5\mu m$ ~約 $3\mu m$ の範囲にある。 面発光レーザ120は、Ti/Au配線182を通して マイクロバンプ180に電気的に接続されている。Ti /A u 配線182は、ある程度の機械的強度と電気抵抗 の低さが必要であるために、TiおよびAuの2層を用 いているが、これには限られない。Ti/Au配線18

2の代替の材料としては、例えば、Ti単体、Au単

体、Pt/Au、Ti/Ptおよびこれらの組み合わ

せ、またはTiN合金がある。

【0025】面発光レーザ120に対向するGaAs基 板102が除去されることによって、裏面ガイド穴10 6が面発光レーザ120と同芯円状に形成されている。 反射防止膜108は、レーザ光の出射口およびGaAs 基板102上に堆積される。なお、裏面ガイド穴106 は、エッチングストップ層104をその底面としてい る。裏面ガイド穴106が作られることによって、上述 したようにレーザ光のGaAs基板102による吸収、 散乱がなくなる。また、裏面ガイド穴106は、光ファ イバを面発光レーザ120と結合させる際のガイドとし て機能するのでファイバ結合が非常に容易になる。裏面 ガイド穴106の側面は、好ましくは、逆円錐台の形状 を有する。このときこの逆円錐台の母線と、GaAs基 板102とがなす角度は、好ましくは、約70°~約8 5°である。もちろん裏面ガイド穴106は、円柱形で あってもよい。

【0026】紫外線硬化樹脂300は、面発光レーザチ ップ100およびSiサブマウント200の間の空間を 実質的に充填しており、その結果、面発光レーザ120 の表面が大気に触れないように遮断する。これにより、 面発光レーザ120の経時的な特性劣化が防止できる。 【0027】次に本発明の半導体装置の製造方法を図3 および図4を参照しながら説明する。図3および図4 は、本発明による半導体装置の製造方法の実施の形態1 のステップを示す図である。

【0028】図3のステップ(a)において、Si基板2 02に前処理を施す。この前処理は、典型的には、水洗 および有機溶剤による洗浄である。

【0029】図3のステップ(b)において、前処理が施 されたSi基板202上にAu単体またはAuを含む複 数の金属層からなる配線204を所定の形状に形成し、 Siサブマウント200を形成する。配線204は、面 発光レーザチップ100のマイクロバンプと、Siサブ

する。半導体装置10がパッケージに封止される前に は、このパッドと、接続ピンとがワイヤボンディングに よって電気的に接続される。配線204が形成された状 態でSiサブマウント200を水洗・乾燥し、表面の異 物を除去する。付着したものが有機物の場合、水洗の代 わりに、有機溶剤によって洗浄してもよい。

【0030】図3のステップ(c)において、Siサブマ ウント200上に紫外線硬化樹脂300を塗布する。ス テップ(c)においては、紫外線硬化樹脂300は、液体 10 状である。ととで「塗布」とは、紫外線硬化樹脂300 がSiサブマウント200上の所望の範囲を覆うように 付着させることを意味する。したがって、本明細書にお ける「塗布」は、吹き付けや滴下などによって付着させ ることをも含む。

【0031】図3のステップ(d)において、GaAs基 板102上にエッチングストップ層104および結晶成 長層124をこの順に分子線ビーム成長法(MBE)ま たは有機金属気相成長法(MOVPE)により形成す る。

【0032】図3のステップ(e)において、結晶成長層 124上に所定の配列形状をもつ電極170を形成す る。電極170をマスクとして、塩素およびアルゴンの 混合ガスを用いたドライエッチングをおこなうことによ って、面発光レーザ120、マイクロバンプ180およ びコモンアノードマイクロバンプ190を形成する。マ イクロバンプ180およびコモンアノードマイクロバン プ190を形成する方法は、好ましくは、ドライエッチ ングであるが、これには限られず、例えば、硫酸、過酸 化水素水および水の混合液を用いたウェットエッチング **30** であってもよい。

【0033】図3のステップ(f)において、面発光レー ザ120をマイクロバンブ180にTi/Au配線18 2を用いて配線することによって、面発光レーザチップ 100を形成する。次に面発光レーザチップ100に水 洗・乾燥を施し、表面の異物を除去する。付着したもの が有機物の場合、水洗の代わりに、有機溶剤によって洗 浄してもよい。

【0034】図3のステップ(g)において、好ましくは 複数個の面発光レーザチップ100と、Siサブマウン 40 ト200とを互いに対向させて、位置合わせをおこな う。面発光レーザチップ100は、吸気口402を有す る吸着ツール400上に、その裏面を真空吸着されて固 定される。紫外線硬化樹脂300が滴下されたSiサブ マウント200は、吸気口412を有する吸着台座41 0上に真空吸着されて固定される。吸気口402および 412は、真空ポンプ(不図示)に連通しており、負圧 によってそれぞれ面発光レーザチップ 100 およびSi サブマウント200を吸着する。以下の図面ではこれら の吸気口402および412の図示は省略される。典型 マウント200上のパッド(不図示)とを電気的に接続 50 的には、吸着ツール400の面積は、面発光レーザチッ

プ100の面積よりも大きい。吸着ツール400には、 複数個の面発光レーザチップ100が吸着され、吸着台 座410には、複数個の面発光レーザチップ100に対 応する配線204が設けられたSiサブマウント200 が吸着される。製造プロセスのスループット向上のため には、吸着ツール400に吸着される面発光レーザチップ100の個数は、好ましくは、約10個以上である が、1個であってもよい。

【0035】図3のステップ(h)において、面発光レー ザチップ 1 0 0 および S i サブマウント 2 0 0 は、互い 10 に近接する向きの圧力が加えられながら、紫外線が照射 される。図3のステップ(h)以降では、吸着ツール40 0および吸着台座410を省略して図示する。圧力を加 えるには、例えば、吸着ツール400を吸着台座410 に押し付ければよい。この圧力によって、マイクロバン プ180およびカソードマイクロバンプ190と、配線 204との間にある樹脂がとれらの上から押し出され、 面発光レーザチップ100およびSiサブマウント20 0は、互いに電気的に導通し、かつ紫外線硬化樹脂30 Oは、面発光レーザチップ100のSiサブマウント2 00に対向する面を実質的に覆うように充填される。電 気的な導通および紫外線硬化樹脂の充填のためには、加 えられる圧力は、好ましくは約3×10'(N/m')~ 約 $2 \times 10^{\circ}$ (N/m²)の範囲にあり、より好ましくは 約5×10'(N/m')~約7×10'(N/m')の範 囲にある。典型的には、圧力は、約20秒~約10分の あいだ加えられる。紫外線硬化樹脂300が紫外線を受 けて硬化することによって、面発光レーザチップ100 およびSiサブマウント200は互いに接着される。

【0036】図3のステップ(i)において、面発光レー

ザチップ100のGaAs基板102は、硫酸、過酸化

水素水および水の混合液によってエッチングされ、Ga

A s 基板 1 0 2 の厚さが約 1 5 μmになったときにエッ

「0037」次のステップである図4のステップ(a)に移る前に、この段階において、実装された面発光レーザチップ100の特性を検査することが好ましい。典型的には、マイクロバンプ180に電気的に接続されたSiサブマウント200上の配線、カソードマイクロバンプ190に電気的に接続されたSiサブマウント200上の配線、または検査用パッド(図示せず)上に、テスタ(特性検査機器)のプローブを立てた状態で面発光レーザ120を発光させる。面発光レーザ120の発光状態は、フォトディテクタ(図示せず)によって検知され、その特性が測定される。上述の特性検査においては、典型的には、発光特性だけでなく直流特性も検査される。【0038】本発明の方法によれば、面発光レーザチップ100をSiサブマウント200上に実装したままで、面発光レーザ120の特性をチェックすることがで

が判明した面発光レーザ120を含む面発光レーザチップ100は、図4のステップ(c)の後で、不良品として製造ラインから除かれる。

【0039】図3のステップ(i)の次におこなわれる、図4のステップ(a)において、面発光レーザチップ100の裏面にSiO,膜310を堆積した後、通常のフォトレジストを用いた工程により、SiO,膜310を所定の形状に加工する。

【0040】図4のステップ(b)において、約15μm の厚さのGaAs基板102は、SiO,膜310をマスクとして、塩素ガスを用いた反応性イオンビームエッチングによりエッチングされる。この反応性イオンビームエッチングは、エッチングストップ層104で停止する。その結果、面発光レーザ120に対向するエッチングストップ層104の裏側の面に裏面ガイド穴106が形成される。

【0041】図4のステップ(c)において、面発光レーザチップ100の裏面に反射防止膜108を堆積する。 反射防止膜108は、面発光レーザ120からレーザ光を効率よく取り出すために設けられる。

【0042】図4のステップ(c)の後、一体化された面発光レーザチップ100が実装されたSiサブマウント200は、スクライブラインに沿って切断される。複数の面発光レーザチップ100を備えた半導体装置を製造する場合は、複数の面発光レーザチップ100を含むSiサブマウント200を単一のチップとして切り出し、単一の面発光レーザチップ100を備えた半導体装置を製造する場合は、単一の面発光レーザチップ100を含むSiサブマウント200を単一のチップとして切り出30 す。

【0043】切断されたチップのうち、良品チップは、 パッケージにマウントされ、チップと外部ピンとが金属 ワイヤによって電気的に接続される。最後にパッケージ が封止される。

【0037】次のステップである図4のステップ(a)に その段階において、実装された面発光レーザ プ100は、Siサブマウント200のために放熱性が 向上し、かつ表面が覆われて大気から遮断されているの には、マイクロバンプ180に電気的に接続されたSi サブマウント200上の配線、カソードマイクロバンプ カ光の基板による吸収、散乱を防止するだけでなく、光 190に電気的に接続されたSiサブマウント200上 40 ファイバと面発光レーザ120との結合を容易にするこの配線、または検査用バッド(図示せず)上に、テスタ とができる。

【0045】本実施の形態では、図3のステップ(i)においてエッチングを、図4のステップ(a)においてパターニングを、図4の(b)においてエッチングをおこなう。しかし、これには限られず、成膜、エッチング、パターニングおよび洗浄のうちの少なくとも1つを面発光レーザチップ100のSiサブマウント200に対向する面と反対側の面に施せば本発明の効果は得られる。

で、面発光レーザ120の特性をチェックすることがで 【0046】ここで本明細書における「成膜」、「エッきる。この特性検査の結果、所望の特性を示さないこと 50 チング」、「バターニング」および「洗浄」の定義を以

下におこなう。「成膜」とは、典型的には、MBEまた はMOVPEによる膜の堆積をいうが、これには限られ ない。成膜によって、例えば、誘電体膜、酸化膜、反射 防止膜が形成される。

【0047】「エッチング」は、ウエハ上に形成された 膜をすべて除去する工程、および典型的にはリソグラフ ィ技術で作られたレジストパターンで覆われている部分 以外の部分を選択的に除去する工程を含む。またことで いうエッチングは、化学薬品(例えば酸)によるウエッ トエッチング、およびガス中でおとなうドライエッチン 10 グを含む。

【0048】「パターニング」は、設計された回路パタ ーンをマスクにする工程、およびこのマスクのパターン をウェハ上に転写するレジスト工程を含む。

【0049】「洗浄」は、典型的には、水を用いて表面 の異物を除去する工程であるが、特に除去すべき異物が 有機物なら有機溶剤による洗浄であってもよい。また洗 浄と併せて、乾燥工程がおこなわれてもよい。

【0050】本発明による半導体装置の製造方法によれ ば、図3のステップ(a)~(h)を典型的に包含するマイク 20 ロバンプボンディング(以下「MBB」とする)法の後 に、成膜、エッチング、パターニングおよび洗浄のうち の少なくとも1つを面発光レーザチップ100のSiサ ブマウント200に対向する面と反対側の面に施す。と れにより、多数個(例えば100~1000個のオーダ ー)の半導体チップの裏面を同時に処理できるので、特 性の均一化、歩留まりの向上、低コスト化が図れる。ま た半導体チップの裏面の処理をおこなうときには、半導 体チップそのものではなく、半導体チップがマウントさら れたサブマウントを固定すればよい。これにより製造シ 30 ステムに要求される位置決め精度などが大幅に緩和さ れ、より効率的な製造が実現できる。

【0051】本実施の形態においては、面発光レーザチ ップをサブマウント上に複数個形成したが、これには限 られず例えば、複数の電界効果トランジスタ、MOSト ランジスタ、バイポーラトランジスタを形成してもよ い。またサブマウントの材質は、典型的にはSiである が、これには限られず、ガラス、AIN、AI、O。また はSiO」が成膜されたSiであってもよい。

【0052】(実施の形態2)図5は、本発明による方 40 【0057】 法の実施の形態2によって製造された半導体装置20の うちの1つの面発光レーザチップ100の近傍の断面図 である。半導体装置20は、面発光レーザチップ100 およびSiサブマウント200がマイクロバンプ302 および304の溶着によって互いに接着されていると と、および紫外線硬化樹脂300を用いないことを除い ては、半導体装置10と同様の構造を有する。

【0053】次に本発明の半導体装置の製造方法を図6 および図7を参照しながら説明する。図6および図7

のステップを示す図である。

【0054】図6のステップ(a)~(i)および図7のステ ップ(a)~(c)は、それぞれ図3のステップ(a)~(i)およ び図4のステップ(a)~(c)に対応する。したがって以下 には、実施の形態1と異なる点を中心に説明する。

10

【0055】図6のステップ(c)において、配線204 上に、マイクロバンプ304が形成され、図6のステッ プ(f)において、Ti/Au配線182上に、マイクロ バンプ302が形成される。実施の形態2においては、 マイクロバンプ302および304の材料としてビスマ ス(Bi)を用いるが、これには限られず、GaAs基 板102上に形成される半導体デバイスに悪影響を与え ないだけ低い温度で溶着する金属であればよい。このと とを考慮すれば、好ましくは、融点が200℃以下の低 融点金属である。例えば、インジウム(In)を用いた マイクロバンプであってもよい。いずれの金属をマイク ロバンプ302および304の材料として用いるときで も、図6のステップ(h)においては、用いられる材料が 溶着する温度に加熱すればよい。また、BiまたはIn を用いたマイクロバンプは、面発光レーザチップあるい はSiサブマウントのどちらか一方にしかなくてもよ とう。

【0056】実施の形態1においては、紫外線硬化樹脂 300に紫外線を照射させることによって面発光レーザ チップ100およびSiサブマウント200を接着した が、実施の形態2は、図6のステップ(h)において、マ イクロバンプ302および304を加熱して溶着させる ことによって面発光レーザチップ100およびSiサブ マウント200を接着する。面発光レーザチップ100 およびSiサブマウント200は、互いに近接する向き の圧力が加えられながら、加熱される。加熱は、マイク ロバンプ302および304が溶着するような温度およ び時間の条件でおこなう。実施の形態2においては、圧 カ約3×10'N/m'を加えながら、温度約150℃に おいて、約5分のあいだ加熱すれば、マイクロバンプ3 02および304は、互いに溶着し、電気的に接続され る。マイクロバンプ302および304の間の良好な導 電性を実現するためには、以下の条件が満たされること が好ましい。

圧力:約3×10'N/m'~約7×10'N/m'、

温度:約130℃~約200℃、および

時間:約20秒~約10分。

【0058】図6のステップ(i)においては、面発光レ ーザチップ100およびSiサブマウント200の、互 いに対向しあう面を保護するために、レジスト301が **塗布される。レジスト301は、面発光レーザチップ1** ○○およびSiサブマウント200を接着するためのも のではないので、紫外線硬化樹脂である必要はない。

は、本発明による半導体装置の製造方法の実施の形態2 50 【0059】図7のステップ(c)においては、レジスト

301を、典型的には、アセトンを用いて除去する。レ ジスト301を除去したあとの空間を充填し、デバイス を保護するためには、その空間に、例えば、ポリイミド を注入すればよい。

11

【0060】実施の形態2においても実施の形態1と同 様、多数の面発光レーザチップの裏面に、成膜、エッチ ング、パターニングおよび洗浄のうちの少なくとも1つ を同時におこなうことができる。

【0061】(実施の形態3)実施の形態3は、実施の 形態 l の図 4 のステップ(a)~(c)において裏面ガイド穴 10 106を形成する代わりに、GaAs基板102上にフ レネルレンズ110を形成する点以外は、実施の形態1 と同様である。したがって実施の形態1と異なる点を中 心に説明する。

【0062】図8は、本発明による方法の実施の形態3 によって製造された半導体装置30の斜視図である。S i サブマウント200上には、紫外線硬化樹脂300に よってGaAs基板102が接着されており、GaAs 基板102上には、フレネルレンズ110が形成されて いる。

【0063】図9は、本発明による方法の実施の形態3 によって製造された半導体装置30の断面図である。

【0064】面発光レーザチップ100の裏面のGaA s 基板 102上には、フレネルレンズ 110が面発光レ ーザ120の中心と一致するように形成されている。面 発光レーザ120の出射されたレーザ光は、フレネルレ ンズ110によって回折され、GaAs基板102から 所望の距離だけ離れた点において集光される。したがっ てこの集光点に光ファイバ、フォトディテクタなどを配 置すれば、出力されたレーザ光を高効率で光ファイバに 30 に、高さ約15μmの裏面突起314が得られる。 結合したり、検知したりすることができる。

【0065】実施の形態3は、実施の形態1における図 3のステップ(i)の面発光レーザチップ100の裏面の エッチング後に、フレネルレンズ110を形成する。具 体的には、まず、図3のステップ(i)のエッチングが施 された面上にPMMA(ポリメタクリル酸メチル)を塗 布する。次に、フレネルレンズ110が形成されるよう に、電子線を照射することによって、PMMAを感光さ せる。その後、飽和臭素水およびアルコールの混合液に よってエッチングをおこないフレネルレンズ110を構 40 成する溝を形成する。

【0066】なお、実施の形態3において、フレネルレ ンズ110の形成には飽和臭素水およびアルコールの混 合液を用いたが、これには限られない。例えば、硫酸、 過酸化水素水および水の混合液や、アンモニア、過酸化 水素水および水の混合液を用いてもよい。さらに、この ようなウエットエッチングでなく、塩素系ガスを用いた ドライエッチングであってもよい。

【0067】図8および図9には、面発光レーザチップ

と同様に多数個の半導体チップを同時に処理することに よって、製造の効率を向上できる。

【0068】(実施の形態4)本発明の半導体装置の製 造方法の実施の形態4を図3および図10を参照しなが ら説明する。図10は、本発明による半導体装置の製造 方法の実施の形態4のステップを示す図である。以下に は、実施の形態1と異なる点を中心に説明する。

【0069】まず図3のステップ(a)~(i)をおこなう。 図3のステップ(i)において、実施の形態1と異なり、

面発光レーザチップ100のGaAs基板102は、そ の厚さが約100μmになるように、硫酸、過酸化水素 水および水の混合液でエッチングされる。

【0070】実施の形態1と同様に、次のステップであ る図10のステップ(a)に移る前に、ここで、実装され た面発光レーザチップ100の特性を検査することが好 ましい。

【0071】図10のステップ(a)において、面発光レ ーザチップ100の裏面にSiOz膜310を堆積す る。

【0072】図10のステップ(b)において、レジスト 312を面発光レーザ120の中心と一致させてパター ニングをおこなう。それからSiOz膜310にレジス ト312の形状を四フッ化炭素(CF₄)ガスで転写す る。

【0073】図10のステップ(c)において、パターニ ングされたSiOュ膜310をマスクとして、塩素ガス を用いた反応性イオンエッチングをおこない、GaAs 基板102を約15μmエッチングする。

【0074】図10のステップ(d)において、最終的

【0075】裏面突起314を用いれば、予め切断面か **ら15μmだけコアを除去した光ファイバの、面発光レ** ーザチップ100への結合が髙精度で、かつアライメン トフリーで実現される。

【0076】図10の裏面突起314の形状は、好まし くは、円錐台である。形状が円錐台であることによっ て、光ファイバを容易、かつ正確に面発光レーザチップ 100の所望の位置へガイドできる。

【0077】図10においては、1つの面発光レーザチ ップ100について、1つの裏面突起314が形成され ているが、1つの面発光レーザチップ100について、 複数の裏面突起を設けてもよい。

【0078】(実施の形態5)本発明の半導体装置の製 造方法を図11および図12を参照しながら説明する。 図11および図12は、本発明による半導体装置の製造 方法の実施の形態5のステップを示す図である。図11 のステップ(a)~(i)は、それぞれ図3のステップ(a)~ (i)に対応する。したがって以下には、実施の形態1と 異なる点を中心に説明する。

100のうちの一つだけを示しているが、実施の形態1 50 【0079】図11のステップ(a)において、まずSi

基板202上にフォトダイオード320が形成される。 図11のステップ(c)においては、フォトダイオード3 20も寝われるように紫外線硬化樹脂300が塗布される。

13

【0080】図11のステップ(b)~(i)は、以下の点を除いて図3の(b)~(i)と同様におこなわれる。すなわち、図11のステップ(i)においては、面発光レーザチップ100のGaAs基板102は、エッチングストップ層104まで、硫酸、過酸化水素水および水の混合液によってエッチングされる。

【0081】実施の形態1と同様に、次の工程に移る前にここで、実装された面発光レーザチップ100の特性を検査することが好ましい。

【0082】図12のステップ(a)において、面発光レーザチップ100の裏面にSiO₂膜310を堆積する。

【0083】図12のステップ(b)において、レジスト322の側壁に約45°の傾斜をつけておく。次に四フッ化炭素ガスによるドライエッチングで、Si〇,膜310にレジスト322の形状を転写し、光導波路324を形成する。光導波路324の厚さ、つまりSi〇,膜310の厚さは、好ましくは、約0.01μm~約10μmである。また光導波路324の幅は、好ましくは、約3μm~約50μmである。光導波路324は、Si〇,膜によって形成されているが、これには限られず、GaAs基板104よりも屈折率が大きい材料であって、レーザ光を導波しやすい材料であればよい。例えば、有機物材料ならボリイミド、半導体材料ならA1GaAsであってもよい。

【0084】図12のステップ(c)において、レジスト322の端面は上述のように約45°の傾斜を有するため、四フッ化炭素ガスによるドライエッチング後は、結局、光導波路324の端面も約45°の傾斜を有することになる。ここで光導波路324の45°の傾斜を持った端面は、面発光レーザ120に面しており、もう一方の端面はフォトダイオード320に面している。

にフィードバックをかければ、面発光レーザ120が出力するレーザ光を強さ一定に保つような制御をすることができる。

14

【0086】なお、本実施の形態におけるレジスト32 2および光導波路324の端面の角度は、約45°の傾 斜を有する。しかし面発光レーザから出射されたレーザ 光の一部が光導波路324の端面で反射して光導波路中 を伝搬すればよいので、90°でなければ他の角度であってもよい。ただし、好ましくは、光導波路324の端 面の角度は、約30°~約70°の範囲である。

【0087】また図12では、1つのフォトダイオード320は、1つの面発光レーザ120からのレーザ光だけを受け取るが、これには限られない。例えば、あるフォトダイオードが複数個の面発光レーザからのレーザ光を受け取るように光導波路を設ければ、複数個の面発光レーザのレーザ光出力を全体としてフォトダイオードで検出できる。

【0088】(実施の形態6)本発明の半導体装置の製 造方法を図13を参照しながら説明する。図13は、本 発明による半導体装置の製造方法の実施の形態6のステ ップを示す図である。以下には、実施の形態1と異なる 点を中心に説明する。まず図13のステップ(a)~(i)を おこなう。図13のステップ(a)~(i)は、以下の点を除 いて、それぞれ図3のステップ(a)~(i)に対応する。す なわち、実施の形態6においては、実施の形態1におけ るGaAs基板102上に設けられていたエッチングス トップ層104を形成しないこと、および図13のステ ップ(j)をおとなうととが実施の形態1と異なる。Ga As基板102によるレーザ光の吸収、散乱がそれほど 30 大きくなく、GaAs基板102を完全に除去する必要 がない場合には、エッチングストップ層104を設けず に、時間制御でGaAs基板102除去のためのエッチ ングをおこない、はじめの厚さの1/10程度のGaA s 基板102を残しておけばよいからである。

【0089】次に図13のステップ(i)の後におこなわれるステップ(j)において、面発光レーザチップ100の裏面に反射防止膜330を堆積する。

[0090]本実施の形態によれば、反射防止膜330 がレーザ光の出射面である裏面に形成されているため、基板裏面での光の反射が抑制され、効率よくレーザ光を取り出すことができる。また、レーザ光の活性層への戻り光が低減され、戻り光ノイズやブラッグ反射器と基板裏面との間に生じる外部共振器モードの影響を除外することができる。

【0091】(実施の形態7)図14は、本発明による方法の実施の形態7によって製造された半導体装置70のうちの1つの面発光レーザチップ100の近傍の断面図である。半導体装置70の構成要素のうち、実施の形態1による装置の要素とは異なるものを中心に以下に説明する。

【0092】半導体装置70は、Siサブマウント200上に設けられたSEL/HBTチップ500を含む。 SEL/HBTチップ500は、同一のGaAs基板102上に設けられた面発光レーザ530およびへテロ接合バイポーラトランジスタ540を含む。

【0093】へテロ接合バイポーラトランジスタ540のエミッタ542、ベース544およびコレクタ546は、この順番でGaAs基板102上に堆積されている。コレクタ546上には、面発光レーザ530のn型ブラッグ反射器160、活性層140、p型ブラッグ反射器130および電極170がこの順番で堆積されている。ヘテロ接合バイポーラトランジスタ540のコレクタ546は、面発光レーザ530のn型ブラッグ反射器160に電気的に接続されている。これによりヘテロ接合バイポーラトランジスタ540のベース544に入力された電気信号は、ヘテロ接合バイポーラトランジスタ540によって増幅されてから、面発光レーザ530に供給される。したがって入力された電気信号の増幅から、レーザ光の出射までを半導体装置70でおこなうことができる。

【0094】フリップチップ実装の際には、SEL/H BTチップ520がSiサブマウント200に接触しな いように、マイクロバンプ180、ベースマイクロバン プ550およびコモンカソードマイクロバンプ560が 形成されている。電極170およびマイクロバンプ18 Oは、Ti/Au配線182によって電気的に接続され ている。またベース544およびベースマイクロバンプ 550も、Ti/Au配線182によって電気的に接続 されている。GaAs基板102は、その厚さが約10 Oμmになるようにエッチングによって削られている。 【0095】本発明の半導体装置の製造方法を図15を 参照しながら説明する。図15は、本発明による半導体 装置の製造方法の実施の形態7のステップを示す図であ る。以下には、実施の形態1と異なる点を中心に説明す る。図15のステップ(a)~(i)は、以下の点を除いて、 それぞれ図3のステップ(a)~(i)に対応する。

【0096】実施の形態7においては、実施の形態1におけるGaAs基板102上に設けられていたエッチングストップ層104を形成しない。

【0097】図15のステップ(e)において、マイクロバンプ180、SEL/HBT520、ベースマイクロバンプ550およびコモンカソードマイクロバンプ560をGaAs基板102上に形成し、さらにそれらの上に電極170を形成する。

【0098】実施の形態1と異なり、図15の(i)にお バンフいて、GaAs基板102は、その厚さが約100μm 気的接になるようにエッチングをおこなう。GaAs基板10 【012の厚さを薄くすることによって、出射されるレーザ光 めにしがGaAs基板102中で、散乱、吸収されることによ よびSる影響を低減でき、その結果、高い効率でレーザ光を取 50 せる。

り出すことができる。

【0099】(実施の形態8)本発明の半導体装置の製造方法を図16および図17を参照しながら説明する。図16および図17は、本発明による半導体装置の製造方法の実施の形態8のステップを示す図である。実施の形態8は、実施の形態2のBiを用いたマイクロバンプの代わりに金(Au)を用いたマイクロバンプによって電気的接続を実現している点、および面発光レーザチップの実装の後で、半導体チップの裏面に原子層接合技術によって膜の堆積をおこなう点で、実施の形態1と異なる。

16

【0100】図16のステップ(a)において、Si基板1601に前処理を施す。前処理としては、例えば、アセトンなどの有機溶剤による洗浄がある。

【0101】図16のステップ(b)において、Si基板1601上にAu層を含む層を有する配線1602を所望の形状に形成し、Siサブマウント1603を形成する。

【0102】図16のステップ(c)において、GaAs 基板1604上にn型ブラッグ反射器1605を分子線エピタキシー法(MBE)または有機金属気相成長法(MOVPE)により成長する。実施の形態1でも述べたようにn型ブラッグ反射器1605は、n型の導電型をもち、かつ屈折率が互いに異なる2種類の材料を複数層積層したものである。

【0103】図16のステップ(d)において、n型ブラッグ反射器1605上にAuバンプ1606を形成する。このAuバンプ1606をマスクとしながら、塩素ガスおよびアルゴンガスの混合ガスを用いたドライエッ30 チングによって、n型ブラッグ反射器1605およびAuバンプ1606を削り、GaAs基板1604に達するまでドライエッチングをおこなう。

【0104】図16のステップ(e)において、Siサブマウント1603およびGaAs基板1605の実装をおこなう。Siサブマウント1603を吸着台座1608に固定し、裏面を吸着ツール1607に真空吸着されたGaAs基板1603と対向させながら、位置合わせをおこなう。

【0105】図16のステップ(f)において、ステップ40 (e)での位置決め後、圧力を加えて、配線1602およびAuバンプ1606を電気的に接続する。圧力を加えたままSiサブマウント1603およびGaAs基板1604を約400℃以上に加熱し、配線1602とAuバンプ1606の間にAu - Au接合を形成する。Auバンプの代わりに、他の金属を用いたバンプによって電気的接続を実現してもよい。

【0106】n型ブラッグ反射器1605を保護するためにレジスト1609をn型ブラッグ反射器1605およびSiサブマウント1603の間に流し込んで硬化させる。

10

【0107】図16のステップ(g)において、硫酸、過酸化水素水および水の混合液によってGaAs基板1604を除去する。n型ブラッグ反射器1605の裏面の酸化膜をフッ酸により除去した後に、レジスト1609を除去する。図17の(a)は、図16のステップ(g)が終了した状態である。

17

【0108】図17のステップ(b)において、InP基板1704上にMOVPE法によってInGaAsP活性層1705を成長させる。

【0109】図17のステップ(c)において、n型ブラッグ反射器1702の実装されたSiサブマウント1701とInGaAsP活性層1705の成長されたInP基板1704とを互いに対向させて密着させる。InP基板1704の裏面に重りとして数100gのモリブデンを載せる。この状態を保持したまま還元雰囲気中で約500℃以上に加熱し、n型ブラッグ反射器1702とInGaAsP活性層1705との原子層接着をおこなう。

【0110】図17のステップ(d)において、n型ブラッグ反射器1702を保護するためにSiサブマウント1701およびInGaAsP活性層1705の間にレジスト1706を流し込んで硬化させる。塩酸およびリン酸の混合液でInP基板1704を除去する。

【0111】図17のステップ(e)において、フッ酸で In Ga As P活性層の裏面に生じた酸化膜を除去した 後、レジスト1706を除去する。

【0112】図17のステップ(f)において、GaAs 基板1707上にMBE法またはMOVPE法によって p型ブラッグ反射器1708を成長させる。

【0113】図17のステップ(g)において、図17のステップ(c)と同様に、InGaAsP活性層1705 およびn型ブラッグ反射器1703が実装されたSiサブマウント1701とGaAs基板1707とを対向させて密着させる。再び、GaAs基板1707の裏面に重りとして数100gのモリブデンを載せる(図示せず)。この状態を保持したまま還元雰囲気中で500℃以上に加熱し、InGaAsP活性層1705およびp型ブラッグ反射器1708の原子層接着をおこなう。

【0114】図17のステップ(h)において、n型ブラッグ反射器1702を保護するためにSiサブマウント1701およびInGaAsP活性層1705の間にレジスト1709を流し込んで硬化させる。

【0115】図17のステップ(i)において、硫酸、過酸化水素水および水の混合液でエッチングし、GaAs基板1707の厚さを100μm以下にする。

【0116】とのように原子層接着技術を用いることにより、高反射率のブラッグ反射器により構成された光通信用面発光レーザを製造することができる。これにより、しきい電流値の低減された光通信用面発光レーザが実現される。

【0117】原子層接着技術を本発明による半導体装置の製造方法に適用することにより、面発光レーザ単体を原子層接合技術で製造する場合に比べ、一度に多数製造出来、かつ同一工程で原子層接続をおこなうので特性のばらつきの少ない面発光レーザを製造することができる。

【0118】実施の形態8において、原子層接合によって、面発光レーザ以外の異なる半導体素子、例えばレーザ光の強度を測定・制御するための受光素子を半導体チップの裏面に形成してもよい。これにより、例えば、面発光レーザと、レーザ光強度の制御のための受光素子とを一体化して同一のサブマウント上に形成できる。

【0119】なお、本実施の形態において、面発光レーザの活性層にInGaAsPを用いたが、InGaAs、GaInNAs、InGaNなどの半導体材料を用いてもよい。

【0120】さらに、以上全ての実施の形態においては、面発光レーザとSiサブマウントの組み合わせで説明してきたが、他の電子素子、例えば、電界効果トランジスタ、ヘテロ接合バイポーラトランジスタ、HEMT、MOSトランジスタをSiサブマウント上に実装してもよい。サブマウントの材質は、シリコン(Si)には限られず、例えば、ガラス、窒化アルミ(A1N)であってもよい。

【0121】また全ての実施の形態において、堆積される膜の厚さなどの具体的な条件は、特にことわりのない限り、例示的なものであって、それに限定されない。 【0122】

【発明の効果】本発明によれば、複数の半導体チップを 同一のサブマウント上に実装した後に、半導体チップの 基板裏面に同時に加工(成膜、エッチング、パターニン グまたは洗浄)を施す。これにより、一度に多数の半導 体チップの裏面に加工をおこなうことができる。したが って同一工程において多数の半導体チップを処理するこ とになり、個々の半導体チップの特性の均一化ととも に、半導体チップの裏面処理の低コスト化が実現でき る。

【0123】半導体チップの裏面に加工をおとなった後では、サブマウント上への実装が困難だった従来の技術 は対して、本発明によれば、実装後に半導体チップの裏面の加工をおとなうためにサブマウント上への実装が容易になる。以上のととは、サブマウントが半導体チップの大きさよりはるかに大きな場合に特に有効である。

【図面の簡単な説明】

【図1】本発明による方法の実施の形態1によって製造された半導体装置10の概略図である。

【図2】本発明による方法の実施の形態1によって製造された半導体装置10のうちの1つの面発光レーザチップ100の近傍の断面図である。

50 【図3】本発明による半導体装置の製造方法の実施の形

態1のステップを示す図である。

【図4】本発明による半導体装置の製造方法の実施の形態1のステップを示す図である。

19

【図5】本発明による方法の実施の形態2によって製造された半導体装置20のうちの1つの面発光レーザチップ100の近傍の断面図である。

【図6】本発明による半導体装置の製造方法の実施の形態2のステップを示す図である。

【図7】本発明による半導体装置の製造方法の実施の形態2のステップを示す図である。

【図8】本発明による方法の実施の形態3によって製造された半導体装置30の斜視図である。

【図9】本発明による方法の実施の形態3によって製造された半導体装置30の断面図である。

【図10】本発明による半導体装置の製造方法の実施の 形態4のステップを示す図である。

【図11】本発明による半導体装置の製造方法の実施の 形態5のステップを示す図である。

【図12】本発明による半導体装置の製造方法の実施の 形態5のステップを示す図である。

【図13】本発明による半導体装置の製造方法の実施の 形態6のステップを示す図である。

【図14】本発明による方法の実施の形態7によって製造された半導体装置70のうちの1つの面発光レーザチップ100の近傍の断面図である。

【図15】本発明による半導体装置の製造方法の実施の*

*形態7のステップを示す図である。

【図16】本発明による半導体装置の製造方法の実施の 形態8のステップを示す図である。

【図17】本発明による半導体装置の製造方法の実施の 形態8のステップを示す図である。

【図18】従来の技術による半導体装置製造方法を示す 工程断面図である。

【符号の説明】

100 面発光レーザチップ

10 102 GaAs基板

104 エッチングストップ層

120 面発光レーザ

124 結晶成長層

170 電極

180 マイクロバンプ

182 Ti/Au配線

190 マイクロバンプ

200 Siサブマウント

202 Si基板

20 204 配線

300 紫外線硬化樹脂

400 吸着ツール

402 吸気口

410 吸着台座

412 吸気口

【図1】

(a) 105¹⁰⁸ 102 (b) 130 132 100 190 204 (c) 140 144 182 130 150 10 120 150

【図4】

【図7】

(a) 310 100 200 301

(b)

[図8]

【図9】

【図17】

