Tópico 4: Teoremas Limite

Ben Dëivide

6 de outubro de 2021

Seja X uma variável aleatória definida no espaço de probabilidade (Ω, \mathcal{F}, P) , em que Ω é o espaço amostral, \mathcal{F} é a σ -álgebra que contém uma coleção de subconjuntos de Ω que pode ser atribuído uma probabilidade P. Trataremos iid uma amostra aleatória X_1, X_2, \ldots, X_n independente e identicamente distribuída. Denote $(X_n)_{n \in \mathbb{N}}$ uma sequência de variáveis aleatórias X_1, X_2, \ldots

Em se tratando de sequência de variáveis aleatórias, às vezes estamos interessados no seu limite e a sua convergência. Muitas das teorias de probabilidades clássicas se baseiam nos teoremas limites, tais como o estudo de estimadores pontuais, intervalos de confiança, testes de hipóteses. Assim, apresentaremos diversas formas de convergência de interesse na Teoria das Probabilidades.

1 Revisão sobre convergência de funções

No material escrito existe a distinção entre os dois tipos de convergência de funções: convergência pontual e convergência uniforme.

2 Tipos de convergência de variáveis aleatórias

Usaremos a notação $(X_n)_{n\in\mathbb{N}}$ para definir uma sequência de variáveis aleatórias.

Definição 1 (Convergência em probabilidade). *Uma sequência de variáveis aleatórias* X_n *converge em probabilidade para* X, *denotado por* $X_n \stackrel{p}{\to} X$, *se para cada* $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \le \epsilon) = 1,\tag{1}$$

ou equivalentemente,

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0.$$
 (2)

Uma condição suficiente¹ para a convergência em probabilidade é a desigualdade de Chebychev.

 $^{^1}$ Raciocínio Lógico: Considere uma condicional p -> q, dizemos que p é condição SUFICIENTE para q, e também dizemos que q é condição NECESSÁRIA para p. Em uma bicondicional p <-> q, dizemos que p é condição NECESSÁRIA e SUFICIENTE para q, e vice-versa.

Teorema 1 (Desigualdade de Chebychev). Seja X uma variável aleatória definida no espaço de probabilidade (Ω, \mathcal{F}, P) , com $f_X(x; .)$. Considere ainda g(x) uma função não negativa de X. Então para qualquer k > 0,

$$P(g(x) \ge k) \le \frac{E[g(x)]}{k}.$$
(3)

Demonstração. A prova será realizada considerando X uma variável aleatória absolutamente contínua. Então poderemos expressar esperança de g(x) da seguinte forma:

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x;.) dx. \tag{4}$$

Observe pelo gráfico:

que E[g(x)] pode ser particionada em

$$E[g(x)] = \int_{\{x:g(X) \le k\}} g(x) f_X(x;.) dx + \int_{\{x:g(X) \ge k\}} g(x) f_X(x;.) dx$$

$$\geq \int_{\{x:g(X) \ge k\}} g(x) f_X(x;.) dx$$

$$\geq \int_{\{x:g(X) \ge k\}} k f_X(x;.) dx = k \int_{\{x:g(X) \ge k\}} f_X(x;.) dx = k P(g(x) \ge k).$$
 (5)

Logo,

$$P(g(x) \ge k) \le \frac{E[g(x)]}{k},\tag{6}$$

como queríamos provar.

Se a distribuição de *X* for discreta, basta substituir as integrais por somatórios.

Teorema 2. Uma condição suficiente para $X_n \to X$ é que

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0, \tag{7}$$

isto é, X_n converge em média quadrática para X, em notação $X_n \stackrel{\mathrm{r}}{\to} X$.

Demonstração. Se

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0,$$
(8)

então

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = \lim_{n\to\infty} P[(X_n - X)^2 > \epsilon^2]$$

$$\leq \lim_{n\to\infty} \frac{E[(X_n - X)^2]}{\epsilon^2} \quad \text{(Designal dade de Chebychev)}$$

$$\leq \frac{1}{\epsilon^2} \lim_{n\to\infty} E[(X_n - X)^2]$$

$$= 0.$$

Exemplo 1 (Binomial). Seja uma amostra aleatória $Y_1, Y_2, ..., Y_n$ com distribuição de Bernoulli(p). Considere ainda $S_n = \sum_{i=1}^n Y_i$ o número de sucessos em n experimentos de sucesso p. Se denotarmos $X_n = S_n/n$ e X = p, então

$$\lim_{n \to \infty} E[(X_n - X)^2] = \lim_{n \to \infty} Var[X_n] = \lim_{n \to \infty} \frac{p(1 - p)}{n} = 0.$$
 (9)

De (19) segue que $\frac{S_n}{n} \stackrel{p}{\to} p$.

Uma importante aplicação da convergência em probabilidade é a consistência de estimadores.

Definição 2 (Consistência de estimadores). *Uma sequência de estimadores* W_n *de uma função paramétrica* $g(\theta)$ *é consistente se*

$$W_n \stackrel{p}{\to} g(\theta).$$
 (10)

Uma convergência mais forte é a convergência quase certa ou convergência com probabilidade 1.

Definição 3 (Convergência quase certa). *Uma sequência de variáveis aleatórias* X_n *converge quase certamente para* X, *denotado* $X_n \stackrel{qc}{\rightarrow} X$, *se para* $\epsilon > 0$,

$$P(\lim_{n\to\infty} |X_n - X| \le \epsilon) = 1,\tag{11}$$

ou equivalentemente

$$P(\lim_{n\to\infty}|X_n-X|>\epsilon)=0.$$
 (12)

Para elucidar o próximo Teorema, Magalhães (2006, p. 301) define a convergência quase certa de uma outra forma.

Definição 4 (Convergência quase certa). *Uma sequência de variáveis aleatórias* X_n , definida no espaço de probabilidade (Ω, \mathcal{F}, P) , tem convergência quase certa, se existir um conjunto $A \in \mathcal{F}$ tal que P(A) = 0 e

$$X_n \stackrel{\mathrm{qc}}{\to} X \ em \ A^c$$
, quando $n \to \infty$. (13)

Isto implica que para $\omega \in A^c$, $X_n(\omega) \stackrel{\operatorname{qc}}{\to} X(\omega)$ quando $n \to \infty$. Fora do conjunto A^c , nada se pode afirmar. Não quer dizer que para $\omega \in A$ $X_n \not\to X(\omega)$ quando $n \to \infty$. O que apenas se sabe é a convergência da sequência $X_n \stackrel{\operatorname{qc}}{\to} X$ no conjunto A^c .

Teorema 3. Seja uma sequência de variáveis aleatórias X_n , definida no espaço de probabilidade (Ω, \mathcal{F}, P) . Então $X_n \stackrel{\mathrm{qc}}{\to} X$ se e somente se, para todo $\epsilon > 0$,

$$P(|X_k - X| \le \epsilon, \forall k \ge n) \underset{n \to \infty}{\to} 1.$$
 (14)

Demonstração. Considere $A^c = \{w: X_n(w) \stackrel{\operatorname{qc}}{\to} X(w)\}$ e $P(A^c) = 1$ e $B_n = \bigcap_{k \geq n} \{t: |X_n(t) - X(t)| \leq \epsilon\}$. A sequência de eventos $(B_n)_{n \in \mathbb{N}}$ é não-decrescente, uma vez que $X_n \stackrel{\operatorname{qc}}{\to} X$. Se denotarmos $B = \bigcup_{n=1}^{\infty} B_n$ e que $B \subset A^c$, logo P(B) = 1. Como $B_n \to B$ quando $n \to \infty$, então $P(\lim_{n \to \infty} B_n) = P(B) = 1$, que é equivalente a expressão (14). \square

Comparando (1) com (11) e (14) percebemos uma diferença crucial. Convergência em probabilidade é uma afirmação sobre um único X_n , isto é quando n é suficientemente grande, X_n é muito provável que se aproxime de X. Em contrapartida, a convergência quase certa é uma afirmação simultânea sobre uma sequência, quando n é suficientemente grande, é muito provável que todos os elementos da sequência

n é suficientemente grande, é muito provável que todos os elementos da sequência $X_n, X_{n+1}, X_{n+2}, \ldots$, se aproximem de X. A convergência quase certa é uma convergência pontual. Já a convergência em probabilidade apenas afirma que para valores grandes de n, as variáveis X_n e X são aproximadamente iguais com alta probabilidade.

Evans e Rosenthal (2010) redefinem a convergência quase certa da seguinte forma: para algum ϵ , existirá um valor N_{ϵ} tal que $|X_n - X| < \epsilon$ para todo $n \ge N_{\epsilon}$. O valor de N_{ϵ} variará dependendo dos valores desencadeados da sequência $\{X_n - X\}$. Já a convergência em probabilidade apenas afirma que a distribuição de probabilidade $X_n - X$ se concentra sobre 0 quando n cresce, e não que os valores individuais de $X_n - X$ irão necessariamente todos estar próximo de zero.

A ilustração gráfica dessas duas convergências podem ser vistas em Micheaux e Liquet (2008).

Figure 2: Seeing convergence in probability with M=10 fictitious realizations. For n=1000, $\hat{p}_n=2/10$ since we can see two sample paths lying outside the band $[-\epsilon, +\epsilon]$ in the bar at position 1000. For n=2000, $\hat{p}_n=1/10$ since we can see one sample path lying outside the band $[-\epsilon, +\epsilon]$ in the bar at position 2000.

Convergência em probabilidade

Figure 4: Seeing almost sure convergence with M=10 fictitious realizations. For n=1000, $\hat{a}_n=3/10$ since we can see 3 sample paths $(a,\,c,\,d)$ lying outside the band $[-\epsilon,+\epsilon]$ in the block beginning at position 1000. For n=2000, $\hat{a}_n=2/10$ since we can see 2 sample paths $(a,\,c)$ lying outside the band $[-\epsilon,+\epsilon]$ in the block beginning at position 2000.

Convergência quase certa

Definição 5 (Convergência em Distribuição). Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias com função de distribuição $F_{X_n}(x)$. Considere ainda uma outra variável aleatória X com $F_X(x)$. Então X_n converge em distribuição para X, denotado por $X_n \stackrel{\mathrm{d}}{\to} X$, se para todo ponto X em que F é contínua, tivermos

$$\lim_{n \to \infty} F_n(x) = F(x). \tag{15}$$

É importante notar que $X_n \stackrel{\mathrm{d}}{\to} X$ implica em convergência em distribuição de função e não de variáveis aleatórias.

2.1 Relações entre os tipos de convergência

Mostrar com um exemplo que o contrário não é verdade!

Teorema 5 $(X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{d}{\to} X)$. Seja uma sequência de variáveis aleatórias X_n e X definidas no espaço de probabilidade (Ω, \mathcal{F}, P) . Se $X_n \stackrel{p}{\to} X$ então $X_n \stackrel{d}{\to} X$.

Demonstração. No material escrito!

Teorema 6 $(X_n \stackrel{d}{\to} c \Rightarrow X_n \stackrel{p}{\to} c)$. Seja uma sequência de variáveis aleatórias X_n definidas no espaço de probabilidade (Ω, \mathcal{F}, P) e c uma constante tal que $c \in \mathbb{R}$. Se $X_n \stackrel{d}{\to} c$ então $X_n \stackrel{p}{\to} c$.

Um importante Teorema que relaciona dois tipos de convergência é o Teorema de Slutsky.

Teorema 7 (Teorema de Slutsky). *Se* $X_n \stackrel{d}{\to} X$ *em distribuição e* $Y_n \stackrel{p}{\to} a$, *uma constante, em probabilidade, então*

- a) $Y_n X_n \stackrel{d}{\rightarrow} aX$ em distribuição;
- b) $X_n + Y_n \stackrel{d}{\rightarrow} X + a$ em distribuição.

Demonstração. A prova está demonstrada na apostila [REGO,LC].Notas de aula do curso - probabilidade 4. 2010, pág. 51-53; MAGALHÃES (2006, p. 319-320) □

3 Função característica

Definição 6 (Função Característica). Seja X uma variável aleatória definida no espaço de probabilidade (Ω, \mathcal{F}, P) . Então a função característica, denotada por φ_X , é definida por

$$\varphi_X(t) = E[e^{itX}] = E[\cos(tX)] + iE[\sin(tX)], \tag{16}$$

em que
$$i = \sqrt{-1}$$
.

A grande vantagem da função característica é que além de sempre existir, pois $\varphi_X(0)=1$ e $|\varphi_X|\leq 1$, ela pode gerar os momentos de uma variável aleatória X, como também determina a função de distribuição da variável aleatória X. Por exemplo, se X tem esperança E[X], os momentos de X podem ser expressos por $\varphi^d(0)=i^dE[X^d]$.

4 Lei dos Grandes Números

Teorema 8 (Lei Fraca dos Grandes Números (LFRGN)). Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $Var[X] = \sigma^2 < \infty$. Então, para cada $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \le \epsilon) = 1,\tag{17}$$

isto é, $\bar{X}_n = \sum_{i=1}^n X_i / n$ converge em probabilidade para μ , denotada por $\bar{X}_n \stackrel{p}{\to} \mu$.

Demonstração. Podemos afirmar que:

$$P(|\bar{X}_n - \mu| \le \epsilon) + P(|\bar{X}_n - \mu| > \epsilon) = 1. \tag{18}$$

Usando o Teorema 1, temos

$$P(|\bar{X}_n - \mu| \ge \epsilon) = P[(\bar{X} - \mu)^2 \ge \epsilon^2] \le \frac{E[(\bar{X} - \mu)^2]}{\epsilon^2}$$

$$\le \frac{\sigma^2}{n\epsilon^2}.$$
(19)

Substituindo (18) em (19), temos

$$P(|\bar{X}_n - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2}.$$
 (20)

Tomando $n \to \infty$ em (20), logo

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) \ge \lim_{n\to\infty} \left(1 - \frac{\sigma^2}{n\epsilon^2}\right)$$
= 1,

provando o Teorema.

Teorema 9 (Lei Forte dos Grandes Números (LFOGN)). Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $Var[X] = \sigma^2 < \infty$. Então, para cada $\epsilon > 0$,

$$P(\lim_{n\to\infty}|\bar{X}_n-\mu|\leq\epsilon)=1,\tag{21}$$

isto é, $\bar{X}_n = \sum_{i=1}^n X_i/n$ converge em quase certamente para μ , denotada por $\bar{X}_n \stackrel{\text{qc}}{\to} \mu$.

5 Teorema Central do Limite

Teorema 10 (Teorema do Limite Central (TLC)). Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $0 < Var[X] = \sigma^2 < \infty$. Então

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1), \tag{22}$$

sendo \bar{X}_n a média amostral. Assim, dizemos que Z_n converge em distribuição para Z.

Demonstração. Seja,

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{\sqrt{n}(\frac{1}{n}\sum_{i=1}^n X_i - \frac{n}{n}\mu)}{\sigma} = \frac{\sqrt{n}}{n}\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right) = \frac{1}{\sqrt{n}}\sum_{i=1}^n Y_i,$$

sendo $Y_i = \frac{\bar{X} - \mu}{\sigma}$. Como a função característica de uma soma de variáveis aleatórias independentes é igual ao produto das funções características das variáveis aleatórias, tem-se

$$\varphi_{Z_n}(t) = E[e^{itZ_n}] = E\left[e^{\frac{it\sum_{i=1}^n Y_i}{\sqrt{n}}}\right] = E\left[\prod_{i=1}^n e^{\frac{itY_i}{\sqrt{n}}}\right] = \prod_{i=1}^n E\left[e^{\frac{itY_i}{\sqrt{n}}}\right]$$

Usando ainda o fato que as variáveis aleatórias são identicamente distribuídas, temos

$$\varphi_{Z_n}(t) = \prod_{i=1}^n E\left[e^{\frac{itY_i}{\sqrt{n}}}\right] = \varphi_Y(t/\sqrt{n})^n.$$

Fazendo uma aproximação usando a expansão em série de Taylor de segunda ordem em torno de 0 e usando o fato que $\varphi^d(0)=i^dE[X^d]$, então,

$$\varphi_Y(t) \approx \varphi_Y(0) + \frac{t}{\sqrt{n}} \varphi_Y'(0) + \frac{t^2}{2n} + \varphi_Y''(0),$$
 Casella, port. 215
$$\approx 1 + \frac{it\mu_Y}{\sqrt{n}} - \frac{\sigma_Y^2 t^2}{2n},$$

sendo $\mu_Y = 1$ e $\sigma_Y^2 = 1$. Assim,

$$\varphi_Y(t) \approx 1 - \frac{t^2}{2n}.\tag{23}$$

Tomando o limite $n \to \infty$ em (23), temos

$$\lim_{n o\infty} arphi_Y(t) pprox \lim_{n o\infty} \left(1-rac{t^2}{2n}
ight).$$

Fazendo $-\frac{t^2}{2n} = \frac{1}{k} \Rightarrow n = -\frac{kt^2}{2}$, logo

$$\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^{-k\frac{t^2}{2}} = \left[\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k \right]^{-\frac{t^2}{2}} = e^{-\frac{t^2}{2}},$$

que é a função característica da distribuição normal padrão, o que prova o Teorema. $\ \Box$

6 Aplicações

6.1 Aplicações de LFRGN

Consistência...

6.2 Aplicações da LFOGN

Simulação Monte Carlo

6.3 Aplicações do TLC

Aproximação de distribuição, Intervalos de confiança e testes de hipóteses