EEG Processing and Feature Extracting

Основные классификаторы Linear Discriminant Analysis, SVM. Их преимущество в небольших затратах ресурсов, что хорошо дл онлайн систем BCI.

Три главных источника информации (не все, но наиболее эффективные в задачах классификации):

- Пространственная информация то, какие каналы более релевантны, какие менее.
- Спектральная или частотная информация как меняется мощность сигнала в релевантных границах частот.
- Временная информация изменение сигнала во времени.

Нельзя взять какой-то один набор признаков, который бы хорошо работал для всех типов BCI, для разных задач акцент может ставится на разные типы признаков.

ВСІ на осциляторной активности

Такие системы используют ментальные состояния, которые приводят к изменению мощности сигнала в заданных границах. Увеличение мощности в заданных границах называется Event Related Synchronization (ERS). Такие BCI могут быть основаны на различных когнитивных задачах представления: ментальные вычисления, генерация слов, вращения фигур. Например, представление поднятия левой руки вверх влияет на сигнал. Для таких систем наиболее важны пространственные и спектральные характеристики сигнала.

Самый простой и эффективный способ вычисления мощностных признаков сигнала в заданных границах — это пройтись band-pass фильтром по сигналу, оставив только нужные частоты, применить квадратичный фильтр (как я понимаю, это нужно для того, чтобы близкие к нулю значения забить и смотреть на абсолютные изменения мощности) и вычислить среднее значения мощности нового сигнала в качестве признака (совсем пока непонятно, зачем так делать, ведь совсем теряется структура сигнала: при одинаковом значении такого признака мы можем иметь как более или менее монотонный сигнал, так и сигнал с явными пиками).

Но тут позже говорят, что все это примитивно и нельзя использовать фиксированные каналы и фиксированные границы частот, все это очень задачезависимо. Поэтому переходим к многоканальным ЭЭГ.

Для многоканальных ЭЭГ актуальны следующие подходы снижения размерности признакового пространства:

- Feature Selection отбор признаков (univariate, multivariate методы).
- Channel Selection отбор релевантных каналов.
- Spatial Filtering такие методы комбинируют несколько каналов в один, в основном, используя линейные комбинации. Признаки вычисляются уже на новых кобинированных сигналах.

Spatial Filtering

Пространственная фильтрация заключается в использовании небольшого набора сигналов, полученных как линейные комбинации исходных каналов.

$$\tilde{x} = \sum_{i} w_i x_i = wX$$

— ну это типа очевидно.

Вообще этот метод эффективен не только, как уменьшающий размерность пространства, но и потому что имеет нейрофизиологическое значение.

Веса пространственных фильтров могут быть как фиксированы, так и настраиваемы в процессе обучения на конкретную задачу. Среди фиксированных пространственных фильтров можно выделить биполярный (определяется как разность между двумя соседними каналами) и лапласовский (определяется над каналом как разность между 4 значениями этого канала и четырьмя его соседями). Признаки, вычисленные на основе этих фильтров, а не исходных каналах, показывают большую эффективность в классификации.

Другой вид пространственных фильтров основан на подборе весов для конкретной задачи в процессе обучения (с учителем или без). В обучении без учителя можно выделить:

- Principal Component Analysis (PCA) находит фильтры, соответствующие большей дисперсии в данных;
- Independent Component Analysis (ICA) фильтры, выходные сигналы которых независимы.

В обучении с учителем для осциляторных BCI можно выделить наиболее эффективный фильтр — Common Spatial Patterns (CSP) алгоритм.

Common Spatial Patterns and variants

CSP алгоритм находит такой фильтр (подбирает такие веса для пространственного фильтра, ведь фильтр однозначно определяется весами), что дисперсия фильтрованного сигнала максимальна для одного класса и минимальна для другого. Поскольку дисперсия полосы пропускания сигнала, отфильтрованная в полосе b, фактически является полосовой мощностью этого сигнала в полосе b, это означает, что CSP

находит пространственные фильтры, которые приводят к оптимально дискриминантным характеристикам полосы частот, поскольку их значения будут максимально отличаться между классами.

CSP находит такие фильтры w, при которых достигается экстремум функции:

$$J_{CSP}(w) = \frac{wX_1X_1^Tw^T}{wX_2X_2^Tw^T} = \frac{wC_1w^T}{wC_2w^T}$$

Где Xi — сигнальная матрица (после band-pass фильтра) для i-го класса и Ci — пространственная ковариационная матрица класса i. На практике матрицу ковариации C определяют как среднюю ковариационную матрицу для каждого триала класса. Задачу нахождения точки экстремума решают с помощью спектрального разложения матрицы, минимум и максимум дисперсий классов соответствуют двум максимальным собственным значениям.

После применения CSP фильтра получаем следующий признак:

$$f = \log(wXX^Tw^T) = \log(wCw^T) = \log(var(wX))$$

CSP фильтру нужно больше каналов, нежели биполярному или лапласовскому, но он и приводит к большему качеству в классификации.

Недостатки CSP:

- Не устойчив к шуму
- Не стационарен
- Легко переобувается, если маленькая обучающая выборка
- Определяет только соответствующую пространственную информацию, но не спектральную

Однако можно сделать CSP устойчивым к шуму и не переобучаемым, используя априорные знания в алгоритме оптимизации такие, как, например, какой фильтр может быть хорош.

Формально регуляризованный CSP определяется оптимизацией сразу по обоим выражениям:

$$J_{RCSP1}(w) = \frac{w\tilde{C}_1 w^T}{w\tilde{C}_2 w^T + \lambda P(w)}$$

$$J_{RCSP2}(w) = \frac{w\tilde{C}_2 w^T}{w\tilde{C}_1 w^T + \lambda P(w)}$$

$$\tilde{C}_i = (1 - \gamma)C_i + \gamma G_i$$

Где P(w) — пенальти-функция, кодирующая априорное знание, т.е. положительная функция от фильтра, которая возрастает, если w не удовлетворяет априорным знаниям. Матрица Gi — еще один способ использования информации для стабилизации оценки ковариационной матрицы Ci, то есть она кодирует априорные знания о том, какая должна быть матрица ковариации для класса i.

Функция P(w) кодирует пространственные знания, например, из нейрофизиологии известно, что соседние электроды должны давать похожие сигналы, соответственно

$$P(w) = \sum_{i,j} Prox(i,j)(w_i - w_j)^2$$

Где Prox(i, j) — функция близости электродов i и j. Или для некоторых ментальных задач не все регионы мозга релевантны. Тогда:

$$P(w) = wDw^T$$
 with $D(i, j) = \begin{cases} channel & i \text{ "uselessness" if } i = j \\ 0 & \text{otherwise} \end{cases}$

Пенальти-функции — это хороший способ передачи информации с объекта на объект, то есть способ переиспользования знаний. Получается, что осталась только проблема с тем, что мы не учитываем спектральную информацию при использовании CSP фильтра. Тут есть простой и эффективный подход: изначально берем несколько разных bandpass фильтров, проходимся ими, потом для каждой пачки полученных отфильтрованных сигналов запускаем алгоритм CSP, а далее выбираем лучшие фичи.

BCI на Event Related Potentials (ERP)

ERP — это мозговой отклик, зафиксированный BCI, в ответ на конкретную стимуляцию. Типичной ERP, используемой для проектирования BCI, является P300, что является положительным отклонением сигнала ЭЭГ примерно через 300 мс после того, как пользователь воспринял редкий и соответствующий стимул.

Averaged ERP waveforms (electrode CZ) for targets and non targets - S1 - Standing

В отличие от осциляторных систем данные ВСІ больше используют темпоральные признаки, нежели спектральные, но пространственная информация здесь может быть такой же актуальной, правда она в основном ориентируется на положение электродов (например, нас интересует только семенная доля).

Темпоральные признаки описывают в основном как меняется амплитуда сигнала со временем (что можно получить, просто взяв значения обработанного сигнала в заданных временных точках). Наиболее точно, признаки для ERP вычисляются так:

- 1. Обработка сигнала low-pass/ band-pass фильтрами (в основном нужны низкочастотные волны)
- 2. Даунсэмплинг обработанных сигналов для снижения количества временных точек и тем самым понижения размерности задачи
- 3. Собирание всех значений в полученных временных точках в один признаков вектор.

Spatial Filters for ERP

CSP фильтры совсем не походят для ERP, тк не учитывают время, они лишь смотрят мощность сигнала в среднем в какой-то полосе. Один из полезных фильтров здесь — это пространственный фильтр Фишера, он использует критерий Фишера для оптимального разделения классов. Фактически, этот критерий максимизирует дисперсию между классами, минимизируя внутриклассовую дисперсию.

$$J_{Fisher} = \frac{tr(S_b)}{tr(S_w)}$$

$$S_b = \sum_{k=1}^{N_c} p_k (\bar{x}_k - \bar{x}) (\bar{x}_k - \bar{x})^T$$

$$S_w = \sum_{k=1}^{N_c} p_k \sum_{i \in C_k} (x_i - \bar{x}_k) (x_i - \bar{x}_k)^T$$

Где Sb — межклассовая, а Sw — внутриклассовая дисперсии, N — количество классов и pk — вероятность класса k. Заменив векторы весов хi на wXi, получим

$$J(w) = \frac{w\hat{S}_b w^T}{w\hat{S}_w w^T}$$

Которая аналогична CSP.

Еще один эффективный в применении фильтр — пространственный xDAWN фильтр. Его идея в максимизации отношения сигнал к сигнал + шум. Это означает, что xDAWN имеет целью усилить ответ ERP, сделав ERP более заметным в середине шума. Формально он находит фильтры, максимизирующие функцию:

$$J_{xDAWN} = \frac{wADD^T A^T w^T}{wXX^T w^T}$$

Где A - это временной ход реакции ERP на обнаружение для каждого канала (оценивается по данным, обычно с использованием оценки по методу наименьших квадратов), а D - матрица, содержащая положения целевых стимулов, которые должны вызывать ERP. Числитель представляет сигнал, то есть соответствующую информацию, которую мы хотим улучшить, те это мощность временного хода ERP ответа после пространственной фильтрации. Знаменатель — дисперсия всех ЭЭГ сигналов после фильтрации, таким образом, он содержит сигнал + шум.

Пространственные фильтры Фишера и xDAWN эффективны в частности, когда доступна маленькая обучающая выборка.

<u>Другие подходы в ВСІ</u>

- Временные представления: Hjorth parameters или Time Domain Parameters (TDP)
- Меры связности: насколько сигналы с двух каналов коррелируют. Согласованность, phase locking-values и Directed Transfer Function (DFT). Важные признаки.
- **Меры сложности**: измеряют регулярность сигнала или его предсказуемость (может дать очень полезных информацию о ментальных состояниях). Длина волны, сложность предсказания (predictive complexity) или длина волны.
- Меры, основанные на теории хаоса: насколько хаотичен сигнал, какие хаотичные свойства у него есть. fractal dimension, multi-fractal cumulants.