Introdução a Inteligência Artificial

Aula 7

Prof. Lucas Cambuim

Sistemas Baseados em Conhecimento

Capítulo 7 – Russell & Norvig

Ao fim desta aula a gente deve....

- Entender o que é um Sistema Baseado em Conhecimento (SBC)
- Saber distinguir entre os vários "Tipos" de conhecimento
- Compreender sobre os mecanismos de raciocínio existentes
- Conhecer e Comparar Linguagens de representação do conhecimento

O problema do capitão West...

- West é criminoso ou não?
 - "A lei americana diz que é proibido vender armas a uma nação hostil. Cuba possui alguns mísseis, e todos eles foram vendidos pelo Capitão West, que é americano"
- Como você resolveria este problema de classificação?

Limitações da resolução de problemas por Busca

- Sistemas de busca são muito eficientes na solução de problemas que podem ser formalizados por:
 - um estado inicial; ações; um conjunto de estados finais.
- Porém, não são capazes de resolver problemas que exigem raciocínio baseado em conhecimento sobre o mundo:
 - Porque seu modelo do mundo é pobre e o raciocínio é limitado
 - e.g., diagnóstico médico, controle aeroespacial, prova de teoremas, sistemas especialistas em geral,...
 - mesmo em casos aparentemente solucionáveis por busca (usando planejamento), pode ser preciso adicionar conhecimento explícito

O que é conhecimento?

- Dado, informação ou abstração formatado de maneira a permitir raciocínio por um ser humano ou por uma máquina, por exemplo
 - Classes e objetos
 - Formula da lógica
 - Distribuição de probabilidade prévia e condicional de variáveis aleatórias
- O que é raciocínio?
 - Mecanismo sistemático para inferir ou derivar novo conhecimento a partir de novas percepções e/ou de conhecimento prévio, por exemplo:
 - Herança de atributos entre classe, sub-classes e objetos
 - Prova de teorema por refutação, resolução e unificação
 - Cálculo de probabilidade posterior de um evento pelo Teorema de Bayes

Como a máquina poderia resolver o caso do capitão West?

- Segundo a IA simbólica, é necessário
 - Identificar o conhecimento do domínio
 - Representá-lo em uma linguagem formal
 - Implementar um mecanismo de inferência para utilizá-lo
 - Resumo: Necessitam que o conhecimento sobre o problema seja definido manualmente no sistema para que ele possa raciocinar e tomar as decisões.
- The Knowledge Principle (Lenat & Feigenbaum)
 - "If a program is to perform a complex task well, it must know a great deal about the world in which it operates"
- Questões-chave
 - Como adquirir este conhecimento?
 - Como representá-lo adequadamente?
 - Como raciocinar com ele de maneira correta e eficientemente?

Solucionando o caso do cap. West (Linguagem Natural)

conhecimento prévio

- A) Todo americano que vende uma arma a uma nação hostil é criminoso
- B) Todo país em guerra com uma nação X é hostil a X
- C) Todo país inimigo político de uma nação X é hostil a X
- D) Todo míssil é um arma
- E) Toda bomba é um arma
- F) Cuba é uma nação
- G) USA é uma nação
- H) Cuba é inimigo político dos USA
- I) Irã é inimigo político dos USA
- J) West é americano
- K) Existem mísseis em Cuba
- L) Os mísseis de Cuba foram vendidos por West

novo onhecimentc

- M) Cuba possui um míssel M1 de K
- N) M1 é um míssil de K
- O) M1 é uma arma de D e N
- P) Cuba é hostil aos USA de F, G, H e C
- Q) M1 foi vendido a Cuba por West de L, M e N
- R) West é crimonoso de A, J, O, P e Q

Sistemas Baseados em Conhecimento

- São sistemas que
 - Utilizam conhecimento representado <u>explicitamente</u> para resolver problemas complexos
 - Manipulam conhecimento e informação
 - Têm embutida a capacidade de raciocínio
 - Habilidade de definir um conjunto de passos para a resolução eficiente de um problema
 - O próprio mecanismo de inferência é conhecimento

Algumas características

- "Dialogar" com o usuário/ambiente para adquirir informações
 - Mais conhecimento sobre o problema
 - Entender a necessidade do usuário
- Raciocinar sobre o conhecimento obtido
- Explicar seu raciocínio

Comparando....

Sistemas Computacionais Normais

- Estruturas de Dados
- Dados e suas relações
- Algoritmos determinísticos
- Conhecimento "misturado" no código
- Difícil explicar como chegaram à resposta obtida

SBC (Sistemas baseados em conhecimento)

- Representação de Conhecimento
- Conceitos, relações entre eles, regras
- Heurísticas
- Conhecimento representado explicitamente, e separado do código que o manipula
- Podem e devem explicar seu raciocínio

Sistemas Baseados em Conhecimento

- Possuem dois componentes principais (separados):
 - Base de Conhecimento
 - Mecanismo de Inferência
- Base de Conhecimento (BC):
 - Contém sentenças em uma Linguagem de Representação de Conhecimento "tratável" pelo computador
 - representações de regras e fatos
 - ex., \forall x Míssil(x) \Rightarrow Arma(x)
- Mecanismo (máquina) de Inferência associado:
 - responsável por inferir, a partir do conhecimento da BC, novos fatos ou hipóteses intermediárias/temporárias
 - ex., M1 é uma arma

Agente baseado em conhecimento

Ask= consulta; tell = inserção; retract = remoção

Conhecimento na Máquina

Dados:

- cadeias numéricas ou alfanuméricas que não possuem significado associado
- ex. 12, m1, west, 10.... (?)

Informação:

- dados organizados: significam alguma coisa para quem os recebe
- ex. 01, 03, 04, 06, 07, 08, 10 (meses ???)

Conhecimento:

- Dado, informação ou abstração formatados de maneira a permitir raciocínio por um ser humano ou por uma máquina
- Representa objetos (entidades) de algum domínio, com suas propriedades e relações

Conhecimento na Máquina

- Exemplos de conhecimento formatado
 - Classes e objetos
 - relação Arma Míssil m1
 - Fórmula da lógica
 - InimigoPolítico(Cuba, USA)
 - Distribuição de probabilidade prévia e condicional de variáveis aleatórias
 - P(Cuba-usar-míssil-contra-USA | Cuba-tem-m1) = 0,3
- Basta saber isto?
 - Não!
 - É preciso saber como estruturar o conhecimento, identificar sua natureza e para efetivamente saber como usá-lo....

"Tipos" de Conhecimento

- Estático x Dinâmico
- Em intenção x Em extensão
- Declarativo x Procedimental
- Do problema x Meta-conhecimento
- Diagnóstico x Causal
- Dedutivo x Terminológico
- Síncrono x Diacrônico
- Certo x Incerto
- Preciso x Vago
- De senso comum x Especialista
- Explicito x Implícito

Conhecimento em Intenção x Extensão

Conhecimento em intenção

- Definição do conceito (ou ação), normalmente usando regras, em termos de sua função, estrutura, etc.
 - ex. \forall X, cadeira(X) \Rightarrow assento(X).
 - cadeira: serve para sentar, tem assento, ...
 - ex. \forall X, tem-dengue(X) \Rightarrow tem-dores(X) \land tem-febre(X).
 - · quem tem dengue tem febre, dores, ...

Conhecimento em extensão

- Instâncias do conceito
- ex. cadeira 1, cadeira 21, cadeira 613,
- ex. os sintomas de dengue de João, de Zé, ...
- ex, loc(wall,0,1). loc(wall,0,2). loc(wall,0,3). loc(wall,0,4). loc(wall,5,1). loc(wall,5,2). loc(wall,5,3). loc(wall,5,4). loc(wall,1,0). loc(wall,2,0). loc(wall,3,0). loc(wall,4,0). loc(wall,1,5). loc(wall,2,5). loc(wall,3,5). loc(wall,4,5).

Conhecimento Declarativo X Procedimental

Conhecimento representado de modo:

- Procedimental
 - fatos e sequências de instruções para manipular esses fatos
 - ex.: como desmontar uma bicicleta
- Declarativo
 - representação descritiva dos fatos, relacionamentos e regras
 - as partes de uma bicicleta e seus relacionamentos
 - o pai do pai é o avô

Conhecimento Estático x Dinâmico

Conhecimento estático:

- Aquele que já existe na BC e não mudará
- Hierarquia de conceitos (classes de fatos)
 - ex, \forall X, gato(X) \Rightarrow felino(X).
- Restrições de integridades
 - ex, \forall X,Y estrela-dalva(X) \land vênus(Y) \Rightarrow X = Y.
- Regras de dedução sobre o domínio
 - ex, ∀ X,Y chefe(X,Y) ⇔ empregado(Y,X)
- Meta-regras para controle e explicação do raciocínio
 - ex. preferir ir para direita caso tenha mais de uma escolha

Conhecimento Estático x Dinâmico

Conhecimento dinâmico:

- só existe durante a resolução de uma instância particular do problema
- descrição da instância, hipóteses atuais, fatos novos,...
- Fatos, *i.e.*, proposições sobre instâncias de conceitos
 - ex, loc(wumpus,2,1) ∨ loc(wumpus,1,2) ∨ loc(wumpus,2,3) ex. loc(wumpus,2,3).
 - ex. alive(wumpus,4).
 - ex. \neg alive(wumpus,7).

Senso Comum	Classe de problem a	Instância do problema
Estático	Estático	Dinâmico
∀ x Míssil(x) ⇒ Arma(x)	∀ x InimigoPolítico(x,USA) ⇒ Hostil(x)	Americano (West)

Meta-conhecimento

- Conhecimento sobre o conhecimento disponível:
 - Regras sobre "como" manipular as regras de conhecimento que estão em uma base
 - como escolher ações
 - ataco ou negocio?
 - Entre duas ações conflitantes, escolha a de maior utilidade
 - ∀ G,H,T,A,B goal(G,T+1) ∧ goal(H,T+1) ∧ result(A,T,G,T+1) ∧ result(B,T,H,T+1) ∧ ¬ result(A,T,H,T) ∧ ¬ result(B,T,G,T) ∧ utility(G,high) ∧ utility(H,low) ⇒ do(A,T)

- Dedução
 - fatos + regras de inferência => novos fatos
 - causa -> efeito
 - Se há fogo (causa), há fumaça (efeito). Aqui tem fogo, logo, aqui tem fumaça (novo fato)
 - É o único tipo de inferência que preserva a verdade
 - truth-preserving
- Abdução
 - inverso da dedução: do efeito para a causa
 - Se há fumaça, há fogo. Eu vi fumaça (efeito), logo aqui tem fogo (causa)
 - Ex. Se há febre e dor, a doença é dengue
 - Este tipo de inferência preserva a falsidade
 - A abdução estabelece a probabilidade da conclusão da inferência e não necessariamente a sua verdade.

- Indução
 - parte dos fatos para gerar regras
 - fato1 + fato2 + fato 3 => regra!
 - ex. Sr. Antônio, assim como D. Maria, tem denge e dor de cabeça, então todo mundo que tem dengue, tem dor de cabeça
 - Transforma conhecimento em extensão em conhecimento em intenção!!

Agente baseado em conhecimento dedutivo ou abdutivo

Raciocínio Analógico

- fatos + similaridades + regras de adaptação + ...
- a partir de fatos (conhecimento em extensão), a da similaridade entre eles, resolve o problema sem gerar regras
 - ex.: Naquele caso de dengue, eu passei aspirina e não deu certo, logo vou evitar receitar aspirina neste caso semelhante

Raciocínio na Máquina

- Dedução e Abdução (via dedução)
 - usadas nos agentes baseados em conhecimento declarativo
- Indução e Analogia
 - usadas na aprendizagem automática
- Dedução: dois grandes grupos
 - Lógica e afins
 - Veremos mais sobre isso a seguir
 - Tratamento de incerteza
 - Probabilístico ou difuso (fuzzy)

Como Representar Conhecimento e Raciocinar?

Linguagens de Representação do Conhecimento

Linguagens de Representação do Conhecimento

- Uma Linguagem de Representação do Conhecimento (LRC) é definida por:
 - 1) uma sintaxe, que descreve as configurações que podem constituir sentenças daquela linguagem
 - 2) uma semântica, que liga cada sentença aos fatos do mundo que ela representa
 - cada sentença faz uma afirmação a respeito do mundo
 - o Agente BC acredita nas sentenças armazenadas na sua base de conhecimento
- Toda LRC deve ter um mecanismo de inferência associado => raciocínio

Representação & Raciocínio

- Raciocínio
 - processo de construção de novas sentenças a partir de sentenças existentes
- Raciocínio plausível (sound):
 - garante que as novas **Sentenças** representam fatos que se seguem dos fatos representados pelas sentenças existentes na BC.
 - implementa a relação de "implicação" entre sentenças

Linguagens de Representação do Conhecimento

- Linguagens de programação:
 - são precisas, porém não são suficientemente expressivas
- Linguagens naturais:
 - são muito expressivas, porém são ambíguas
- Linguagens de representação de conhecimento:
 - utilizadas para expressar as sentenças das BC
 - existem 3 grandes classes:
 - linguagens (predominantemente) declarativas
 - linguagens procedimentais
 - linguagens híbridas

Linguagens de Representação do Conhecimento

- Programação Declarativa: diz "o que"
 - representação descritiva dos fatos, relacionamentos e regras
 - ex. as partes de uma bicicleta e seus relacionamentos
 - ex. o pai do pai é o avô
- Programação Procedimental: diz "como"
 - fatos e seqüências de instruções para manipular esses fatos
 - ex.: como desmontar uma bicicleta