Coursera Cryptography I (Stanford)

Introduction

Cryptography is Everywhere

- Secure Communication
 - Web Traffic: HTTPS
 - o Wireless Traffic: 802.11i WPA2, WEP, GSM, Bluetooth
- Encrypting Files on Disk
 - o EFS
 - TrueCrypt
- Content Protection (e.g. DVD, Blu-ray)
 - o CSS
 - AACS
- User Authentication

Secure Communication

- · No tampering.
- No eavesdropping.

Secure Socket Layer / TLS

- Handshake Protocol: Establish shared secret key using public-key cryptography
- Record Layer: Transmit data using shared secret key
 - Ensure confidentiality and integrity
- Encryption algorithm is publicly known.
- Single Use Key (One Time Key):
 - Key is only used to encrypt one message.
 - Encrypted Email : New key generated for every email
- Multi Use Key (Many Time Key):
 - Key used to encrypt multiple messages.
 - Encrypted Files : Same key used to encrypt many files
 - Need more machinery than for one-time key

Applications

- Digital Signatures
- Anonymous Communication
- Anynomous Digital Cash
 - Spend a digital coin without anyone knows who I am
 - Prevent double spending
- Protocols
 - Elections
 - Private Auctions
 - Secure Multi-party Computation
- Privately Outsourcing Computation
- Zero Knowledge(Proof of Knowledge)

Theorem

• Anything that can be done with trusted authority can also be done without it.

A Rigorous Science

- Precisely specify threat model.
- Propose a construction
- Prove that breaking construction under threat mode will solve an underlying hard problem

Examples (Most Badly Broken)

- Substitution Cipher
- Caesar Cipher
- Vigener Cipher
 - + mod 26
 - ∘ Suppose most common = "H", first letter of key = "H" "E" = "C
- Rotor Machines
 - the Hebern Machine(Single Rotor)
 - Enigma(3-5 rotors)
 - keys = 26^4 = 2^{18}
 - Actually 2³⁶ due to plugboard
- · How to break them?
 - By uneven frequency of letters or letter pairs appear in English texts.
- Data Encryption Standard

$$\circ$$
 Keys = 2^{56}

- Block Size = 64 bits
- AES
- Salsa20

Discrete Probability

- U: Finite Set
 - $\circ~$ Def : Probability distribution P over U is a function $P~:U\to [0,1]$ such that

$$\sum_{x \in U} P(x) = 1$$

- Uniform Distribution
 - $\circ \forall x \in U, P(x) = \frac{1}{|U|}$
- Point Distribution at x_0

$$P(x_0) = 1$$

$$\lor \forall x \neq x_0, P(x) = 0$$

- Events
 - \circ For a set $A\subseteq U$: $P\,r[A]=\sum\limits_{x\in A}P\,(x)\in [0,1]$

$$Pr[U] = 1$$

- The set A is called an event.
- The Union Bound
 - $\circ \ \, \text{For events} \, \, A_1 \, \, \text{and} \, \, A_2, \, P\, r[A_1 \, \, \text{U} \, A_2] \leq \, P\, r[A_1] + \, P\, r[A_2]$
 - Equals if $A_1 \cap A_2 = \emptyset$
- Random Variables
 - $\circ~$ Def : A random variable X is a function $X\,:\,U\to V$
 - $\circ~$ More generally, random variable X introduces a distribution on V: $P\,r\big[X\,=\,v\big]:=\,P\,r\big[X^{\,-\,1}(v)\big]$
- The Uniform Random Variable
 - \circ Let U be some set, e.g. $U = 0, 1^n$
 - $\circ~$ We write $r \overset{R}{\leftarrow} U$ to denote a uniform distribution variable over U for all a $\in \! U.$

$$\circ Pr[r = a] = \frac{1}{|U|}$$

- Formally, r is the identity function: r(x) = x for all $x \in U$
- Randomized Algorithms

$$\circ \ y \leftarrow A(m,r) \ \text{where} \ r \overset{R}{\leftarrow} \{0,1\}^n$$

- Output is a random variable $y \stackrel{R}{\leftarrow} A(m)$
- Independence
 - Events A and B are independent if $Pr[A \text{ and } B] = Pr[A] \cdot Pr[B]$
 - The defintion of random variables is similar.
- XOR
 - o Bitwise addition mod 2

Theorem

• Y is a random variable over $\{0,1\}^n$, X is a independent uniform variable on $\{0,1\}^n$.

Then $Z := Y \oplus X$ is uniform variable on $0, 1^n$

- The Birthday Paradox
 - \circ Let $r_1, \ldots, r_n \in U$ be independent identically distributed random variables

Theorem

 $\bullet \ \ \text{When } n = \ 1.2 \times \ |U|^{\frac{1}{2}} \text{, then } P \, r \big[\exists i \neq \ j \ : r_i = \ r_j \, \big] \geq \ \frac{1}{2}.$

Stream Cipher

Symmetric Ciphers

• Definition: A cipher defined over (K, M, C) is a pair of efficient algorithms (E, D)

where
$$E: K \times M \to C$$
, $D: K \times C \to M$ such that $\forall m \in M, k \in K$:

$$D(k, E(k, m)) = m$$

- E is often randomized.
- D is always deterministic.

The One Time Pad

• First example of a secure cipher.

$$\circ M = C = K = \{0, 1\}^n$$

- Key is a random bit string as long as the message.
- \circ E(k, m) = k \oplus m
- \circ D(k, c) = k \oplus c
- Very fast encryption and decryption, but long keys.

What is a Secure Cipher?

- · Attacker's ability: CT only attack
- Shannon: Cipher text should reveal no information about plaintext

Information Theoretic Security

• Def : A cipher (E,D) over (K, M, C) has perfect secrecy if

$$\forall m_0, m_1 \in M$$
, $len(m_0) = len(m_1)$ and $\forall c \in C$

$$Pr[E(k, m_0) = c] = Pr[E(k, m_1) = c]$$
 where k is uniform in K.

 \circ Given the ciphertext only, we cannot tell the message is m_0 or m_1 .

Lemma

- One Time Pad has perfect secrecy.
 - ∘ \forall m, c : if E(k, m) = c ⇒ k ⊕ m = c ⇒ k = m ⊕ c ⇒ # {k ∈ K : E(k, m) = c} = 1 ⇒ OTP has perfect secrecy.#

Theorem

- Perfect Secrecy \Rightarrow $|K| \ge |M|$
 - One time pad is hard to use in practice.

Psuedorandom Generators

- Stream Ciphers : Making OTP Practical
 - Place random key by pseudorandom key
 - PRG is a function $G: \{0,1\}^s (\text{seed space}) \to \{0,1\}^n, n >> s$
 - Efficiently computable by a deterministic algorithm
 - Stream Ciphers cannot have perfect secrecy because the key is shorter than the message.
- PRG must be unpredictable.

- $\circ~$ Definition : PRG is unpredictable if it is not predictable. $\Rightarrow~\forall i$: no efficient
 - adversary can predict bit (i+1) for non-neg ϵ
- Linear congruent generators are weak PRGs

Negligible v.s Non-negligible

- In practice : €is a scalar.
 - ∘ Negligible : ϵ ≤ $\frac{1}{2^{80}}$
 - ∘ Non-negligible : ϵ ≥ $\frac{1}{2^{30}}$
- In theory : \in is a function, \in : $Z^{\geq 0} \to R^{\geq 0}$
 - Negligible : $\forall d, \lambda \geq \lambda_d : \epsilon(\lambda) \leq \frac{1}{\lambda^d}$
 - \circ Non-negligible : $\exists d$: $\mbox{\it E}(\lambda) \geq \ \frac{1}{\lambda^d}$
- PRGs: The Rigorous Theory View
 - $\circ\,$ PRGs are parameterized by a security parameter $\lambda.$
 - $\circ~$ If λ increases, PRG becomes more secure, seed lengths and output lengths grows with $\lambda.$
 - $\circ\,$ For every $\lambda,$ there is a different PRG $G_{\lambda}:K_{\lambda}\to\{0,1\}^{n(\lambda)}$
 - If a PRG is predictable at position i if there exists a polynomial time algorithm A such that $Pr_{k\leftarrow K_{\lambda}}[A(\lambda,G_{\lambda}(k)|_{1,\dots,i})=G_{\lambda}(k)_{i+1}]>\frac{1}{2}+\textbf{\textit{e}}(\lambda)$ for some nonnegligible $\textbf{\textit{e}}(\lambda)$.

Attacks on OTP and Stream Ciphers

- Attack 1 for two-time pad
 - \circ C₁ \leftarrow m₁ \oplus P RG(k)

$$C_2 \leftarrow m_2 \oplus PRG(k)$$

- $\circ~$ Eavesdropper does $C_1 \oplus C_2 \to m_1 \oplus m_2$
- Then it can use the redundancy in English to figure out the messages.
- Examples: Project Venona, MS-PPTP(Windows NT), 802.11b WEP, Disk Encryption
- o 802.11b WEP
 - Length of initalization vector(IV): 24bits
 - Repeated IV after 2²⁴ frames

- One some cards, IV resets to 0 after power cycle.
- A better construction
 - Different keys for every frame, user a stronger encryption method
- Summary
 - Never use a key more than once.
 - Network traffic : negotiate a new key for every session(TLS)
 - Disk encryption : typically do not use a stream cipher
- Attack 2 : No Integrity(OTP is malleable)
 - Modification to ciphertexts are undetected and have predictable impact on plaintext

Real World Stream Ciphers

- Old Example: RC4
 - Used in HTTPS and WEP
 - Weaknesses
 - Bias in inital output $Pr[2^{nd} byte = 0] = \frac{2}{256}$
 - Probability of (0,0) is $\frac{1}{256^2} + \frac{1}{256^3}$
 - Related Key attacks
- Old Example: CSS
 - Linear Feedback Shift Register(LFSR)
 - o DVD, GSM, Bluetooth are all broken
 - Seed = 5 bytes = 40bits
 - \circ Easy to break in time 2^{17}
 - For all possible initial settings of 17-bit LFSR do:
 - Run 17-bit LFSR to get 20 bytes of output
 - Subtract from CSS prefix ⇒ Candidate 20 bytes output 25-bit LFSR
 - If consistent with 25-bit LFSR, found correct initial settings of both.
- Modern Stream Ciphers : eStream
 - ∘ PRG: $\{0,1\}^s$ (seed) × R(nonce) → $\{0,1\}^n$
 - Nonce: A non-repeating value for a given key
 - \bullet E(k, m;r) = m \oplus PRG(k;r)
 - The pair (k; r) is never used more than once
 - o eStream: Salsa20
 - $\{0,1\}^{128 \text{ or } 256} \times \{0,1\}^{64} \rightarrow \{0,1\}^n$, $\max(n) = 2^{73}$ bits

- (k;r) := H(k,(r,0))||H(k,(r,1)||...
- h:invertible function
- No known provably secure PRGs
- No known attack better than exhaustive search
- Generating Randomness
 - Continuously add entropy to internal state
 - Entropy sources
 - Hardware RNG
 - Timing : Hardware interrupts

PRG Security Definitions

- Let $G: K \to \{0,1\}^n$ be a PRG.
- Goal: Define what it means that a PRG is indistinguishable from a RNG
- Statistical Tests
 - \circ An Algorithm A s. t. A(x) outputs 0(not random) or 1(random)
- Advantage

$$\circ \text{ Define}: Adv_{PRG}[A,G] = |\Pr_{K \overset{R}{\leftarrow} K}[A(G(k)) = 1] - \Pr_{r \overset{R}{\leftarrow} \{0,1\}^n}[A(r) = 1]| \in [0,1]$$

- Close to 1: Distinguishable
- Close to 0 : Not Distinguishable
- Secure PRGs : Crypto Definition
 - \circ Def : We say that $G:K\to\{0,1\}^n$ is a secure PRG if for all efficient statistical tests A the advantage is negligible.
 - Easy fact : A secure PRG is unpredictable.

Theorem

- if $\forall i \in \{0, ..., n-1\}$ PRG G is unpredictable at position i, then G is a secure PRG.
- More generally, let P_1 and P_2 be two distributions over $0, 1^n$, we say that P_1 and P_2 are computationally indistinguishable (denoted $P_1 \approx_p P_2$) if for all efficient statistical tests A $|\Pr_{x \leftarrow P_1}[A(x) = 1] \Pr_{x \leftarrow P_2}[A(x) = 1]| < negligible$
 - Example: Uniform Distribution

Semantic Security

- For b=0,1, define EXP(0) and EXP(1) as for b=0,1: $W_b:=$ [event that EXP(b)=1] $Adv_{SS[A:E]}:=\|Pr[W_0]-Pr[W_1]\|\in [0,1]$
 - \circ E is semantically secure if for all efficient A $Adv_{SS}[A, E]$ is negligible.
 - \circ For all explicit $m_0, m_1 \in \!\! M : \{E(k,m_0)\} \approx_p \{E(k,m_1)\}$
- For all A: $Adv_{SS}[A, OTP] = |Pr[A(k \oplus m_0) = 1] Pr[A(k \oplus m_1) = 1]|$

Stream Ciphers are Semantically Secure

Theorem

- $G:K \to \{0,1\}^n$ is a secure PRG \Rightarrow stream cipher E derived from G is semantically secure.
- For all semantic secure adversary A, there exists a PRG adversary B such that $Adv_{SS}[A,E] \leq 2 \cdot Adv_{PRG}[B,G]$

Block Ciphers

What is a Block Cipher?

- R(k, m) is called a round function.
- Psuedo Random Function(PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that exists efficient algorithm to evaluate F(k, x).

• Psuedo Random Permutation(PRP) defined over (K,X):

$$E:K\times X\to X$$

such that

- \circ exists a deterministic algorithm to evaluate E(k,x).
- \circ The function $E(k,\dot{})$ is one to one.
- Exists efficient inversion algorithm D(k,y).
- Functionally, any PRP is also a PRF A PRP is a PRF where X=Y and is efficiently invertible.
- Secure PRFs
 - \circ Let $F:K\times X\to Y$ be a PRF

{ Funs[X, Y]: the set of all functions from X to Y
$$S_F = \{F(k, \cdot)s.t.k \in K\} \subseteq Funs[X, Y]$$

- \circ Intuition : a PRF is secure if a random function in $Funs[X\,,\,Y]$ is indistinguishable from a random function in S_F .
- Secure PRPs(Secure Block Cipher)
 - \circ Let $E:K\times X\to Y$ be a PRP
 - $\left\{ \begin{array}{l} P\,erm\,s[X]\,:\,the\,\,set\,\,of\,\,all\,\,one\text{-to-one}\,\,functions\,\,from\,\,X\,\,to\,\,Y\\ S_F = \left\{ E\,(k,\cdot)s\,.\,t\,.\,k\in K \right\} \subseteq P\,erm\,s[X,Y] \end{array} \right.$
 - $\circ \ \ \text{Intuition: a PRP is secure if a random function in } P\ erms[X\,,\,Y]\ is\ indistinguishable$ from a random function in $S_F\,.$
- An easy application($PRF \Rightarrow PRG$)
 - \circ Let $F:K\times\{0,1\}^n\to\{0,1\}^n$ be a secure PRF. Then the following $G:K\to\{0,1\}^{nt} \text{ is a secure PRG}:$

$$G(k) = F(k, 0)||F(k, 1)|| \cdots ||F(k, t - 1)||$$

- Key Property : Parallelizable
- Security from PRF property

The Data Encryption Standard(DES)

- Core idea : Feistel Network
 - Given functions $f_1, \dots, f_d : \{0, 1\}^n \to \{0, 1\}^n$
 - $\circ~$ Goal : Build invertible function $F~:~\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$
 - In symbols:

$$R_i = f_i(R_{i-1}) \oplus L_{i-1}$$
$$L_i = R_{i-1}$$

• Claim : For all $f_1,\ldots,f_d:\{0,1\}^n\to\{0,1\}^n$, Fiestel network $F:\{0,1\}^{2n}\to\{0,1\}^{2n}$ is invertible

$$R_{i} = L_{i+1}$$

$$L_{i} = R_{i+1} \oplus f(R_{i})$$

• Inversion is basically the same circuit with functions f_i applied in reverse order.

Theorem (Luby Rackoff)

• $f: K \times \{0,1\}^n \to \{0,1\}^n$ a secure PRF \Rightarrow 3-round Fiestel

$$f: K^3 \times \{0,1\}^{2n} \to \{0,1\}^{2n}$$
 a secure PRP.

- DES: 16 round Fiestel Network
 - $\circ f_i : \{0, 1\}^{32} \to \{0, 1\}^{32}, f_i(x) = F(k_i, x)$
 - $\circ~$ 64 bits input \to IP \to Key Expansion and 16 round Feistel network \to I P $^{-1}$ \to 64 bits output
 - o To invert, use keys in reverse order
 - $\circ~$ S-box : function $\{0,1\}^6$ to $\{0,1\}^4$, implemented as a looked-up table.
 - A bad example: inner product with mod
 - $S_i = A_i \cdot x$, we say that S_i is a linear function.
 - Then entire DES cipher will be linear.
 - Choosing the S-boxes and P-box at random would result in an insecure block cipher(2²⁴ outputs)
 - No output bits should be close to a linear function of the input bits
 - S-boxes are 4-1 maps.

Exhaustive Search Attack

• Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i = 1, 2, 3, find key k

Lemma

- Suppose DES is an ideal cipher(2^{56} random invertible functions), then $\forall m, c$ there is at most one key k such that c = DES(k, m) with probability $\geq 99.5\%$.
- For two DES pairs(m $_1$, c $_1$ = DES(k, m $_1$)), (m $_2$, c $_2$ = DES(k, m $_2$)) unicity probability $\approx 1 \frac{1}{2^{71}}$
 - $\circ~$ For AES 128, the probability is $1-\frac{1}{2^{128}}$
 - Two input/output pairs is enough for exhaustive search
- DES Challenge
 - 56-bit ciphers should not be used.
- · Strengthening DES
 - Triple-DES

- \blacksquare Let $E:K\times M\to M$ be a block cipher
- Define $3E : K^3 \times M \to M$ as

$$3E((k_1, k_2, k_3), m) = E(k_1, D(k_2, E(k_3, m)))$$

- Key-size: 168 bits
- k_2=k_1=k_3 to be DES
- 3 times slower
- Simple attack in time 2¹¹⁸
- Prevent meet-in-the-middle attack
- If Double-DES
 - 112 bits for DES
 - Build table and sort on 2nd column
 - \blacksquare For all $k \in \{0,1\}^{56}$ do test if D(k,C) is in 2nd column
 - If so then $E(k^i, M) = D(k, C) \Rightarrow (k^i, k) = (k_2, k_1)$
- Meet in the middle attack
 - Time: 2^{63}
 - On 3 DES become 2¹¹⁸
 - Space : 2⁵⁶
- DESx
 - $\blacksquare \ E \ : K \ \times \ \{0,1\}^n \ \rightarrow \{0,1\}^n$ be a block cipher
 - Define EX as $EX((k_1, k_2, k_3), m) = k_1 \oplus E(k_2, m \oplus k_3)$
 - Key-len: 64 + 56 + 64 = 184 bits
 - Attack in time 2¹²⁰

More Attack on Block Ciphers

- Implementation
 - Side Channel Attacks
 - Measure time to do encode and decode, measure power for encode and decode
 - Fault Attacks
 - Computing errors in the last round
- Linear and Differential Attacks
 - $\circ\,$ Given many input output pairs, we can recover keys in time less than 2^{56}

- Linear Cryptanalysis
 - Suppose for random k, m :

$$\Pr[\mathsf{m}[\mathsf{i}_1] \oplus \cdots \oplus \mathsf{m}[\mathsf{i}_r] \oplus \mathsf{c}[\mathsf{j}_j] \oplus \cdots \oplus \mathsf{c}[\mathsf{j}_v] = \mathsf{k}[\mathsf{l}_1] \oplus \cdots \oplus \mathsf{k}[\mathsf{l}_u]] = \frac{1}{2} + \varepsilon$$

■ For DES, this ϵ exists with $1\frac{1}{2^{21}}$

Theorem

• Given $\frac{1}{\varepsilon^2}$ random (m, c=DES(k,m)) pairs then

 $k[l_1, \ldots, l_u] = M \, AJ \, [m[i_1] \, \oplus \cdots \, \oplus m[i_r] \, \oplus \, c[j_j] \, \oplus \cdots \, \oplus \, c[j_v]] \, \text{with probability 97.7\%}$

- \Rightarrow with $1/\ensuremath{\,\varepsilon^2}$ pairs can find the key in time $1/\ensuremath{\,\varepsilon^2}$
 - $\circ\,$ For DES, use 2^{42} to find 14 bits key in 2^{42}
 - \circ Brute force remaining in time 2^{42}
 - ∘ Total 2⁴³
 - \circ Problem from S_5
- Quantum Attacks
 - o Generic Search Problems
 - Let $f: X \to \{0, 1\}$ be a function.
 - Goal: Find $x \in X$ such that f(x) = 1
 - Classical
 - Best in O(|X|)
 - Quantum
 - $O|X|^{\frac{1}{2}}$
 - Unknown for construction

The AES Block Cipher

• Key Size: 128, 192, 256 bits

• Block Size: 128 bits

- Sub-perm Network
 - Byte Substitution
 - A 1-byte S box. 256 byte table
 - Easily computable
 - Row Shifting

- Column Mixing
 - 10 rounds
- Key Expansion
 - 16 bytes to 176 bytes
- Trade-offs
 - Pre-compute round functions(largest code, fastest lookup with table and xors)
 - Pre-compute S box only(smaller code, slower lookup)
 - No pre-computation(smallest and slowest)
- Faster on OpenSSL than on hardwares
- Attacks
 - Best key recovery attack
 - 4 times faster than exhaustive search
 - Related key attack on AES 256
 - ullet Given 2^{99} input/output pairs from four related keys can recover in time 2^{99}

Block Ciphers from PRGs

- Let $G: K \to K^2$ be a secure PRG.
- Define one-bit PRF $F: K \times \{0,1\} \to K$ as $F(k,x \in \{0,1\}) = G(k)[x]$ \$

Theorem

- If G is a secure PRG, then F is a secure PRF.
- Extension
 - \circ Let $G:K\to K^2$, define $G_1:K\to K^4$ as $G_1(k)$ = $\,G(G(k)[0])||G(G(k)[1])$
 - 2-bit PRF
 - Extends more
- Extending more: the GGM PRF
 - Not used in practice due to slow performance

Using Block Ciphers

Review: PRPs and PRFs

- Block Ciphers : Crypto Work Horse
- PRF is defined if there exists an efficient algorithm to evaluate the output.
- PRP is defined there exists efficient deterministic algorithm to evaluate the output.

- The function is one-to-one.
- Also exists efficient inversion algorithm.
- A PRF is secure if a random function in F is indistinguishable from a random function in $S_{\rm F}\,.$
 - The difference between two advatanges with different experiments is negligible.
- A secure PRP is like a secure PRF, but it is invertible.
 - Example : AES, 3DES

PRF Switching Lemma

- Any secure PRP is also a secure PRF, if |X| is sufficiently large.
 - \circ Lemma : Let E be a PRP over (K, X). Then for any q-query adversary A :

$$|Adv_{P\,R\,F}\,[A,E\,] - \,Adv_{P\,R\,P}\,[A,E\,]| < \,\tfrac{q^2}{2|X|}$$

• We try to make the lastest component negligible.

Modes of Operation : One Time Key

- Example: Encrypted Email, New key for every message
- Goal: Build secure encryption from a secure PRP
 - Adversary's Power : Sees only one ciphertext
 - Adversary's Goal: Learn information about plaintext from ciphertext(Semantic security)
- · Incorrect use of a PRP
 - Electronic Code Block(ECB)
 - Problem : If $m_1 = m_2$, then $c_1 = c_2$.
 - In pictures, the contour can be observed.
 - Not semantically secure if the message contain more than one block.
- $Adv_{SS}[A, OTP] = |Pr[EXP(0)] = 1 Pr[EXP(1)] = 1|$ should be negligible.
- Secure Construction I:
 - o Deterministic counter mode
 - A stream cipher with a counter, built from a PRF.

Theorem

• For any $L \ge 0$, if F is a secure PRF over (K,X,X) then E_{DETCTR} is semantic secure cipher over (K, X^L , X^L). In particular, for any efficient adversary A attacking

 E_{DETCTR} , there exists an efficient PRF adversary B such that

$$Adv_{SS}[A, DETCTR] = 2 \cdot Adv_{PRF}[B, F]$$

• RHS is negligible

Security for Many-Time Key

- Example : File Systems, IPSec
- Key used more than once ⇒ adversary sees many ciphertexts with same key
 - Adversary's power : Chosen-Plaintext Attack(CPA)
 - Obtain the encryption of arbitrary message of his choice
 - Real life modeling
 - Adversary's Goal: Break semantic security
- If the adversary wants c = E(k, m), it queries with $m_{i,0} = m_{i,1} = m$
- Definition : E is semantically secure under CPA if for all efficient A: $Adv_{CPA}[A,E] = |Pr[EXP(0) = 1] Pr[EXP(1)] = 1| \text{ is negligible.}$
 - Not secure if always give the same output for the same message.
 - The attacker can learn that two encrypted files, packets are the same
 - Leads to significant attack if the message space M is small.
 - Output should be different when using many-time keys.
- Solution 1: Randomized Encryption
 - Ciphertext must be longer than plaintext
 - CT size = PT size + # of random bits
- Solution 2 : Nonce-based Encryption
 - Nonce: A value that changes from message to message
 - (k,n) pair never uses more than once
 - Method 1: Nonce is a counter(Packet Counter)
 - Keep states
 - If decryptor has same state, need not send nonce with cipher text.
 - Method 2: Encryptor chooses a random nonce.
 - Systems should be secure if nonces are chosen adversarially
 - All nonces must be distinct.

Modes of Operation: Many-Time Key(CBC)

- Construction 1: CBC with random IV
 - \circ Choose random IV $\in X$

$$\circ$$
 c[0] = E(k, IV \oplus m[0])

CBC Theorem

- For any L > 0, if E is a secure PRP over (K,X) then E_{CBC} is a semantically secure under CPA over (K, X^L , X^{L+1}).
- In particular, for a q-query adversary A attacking E_{CBC} , there exists a PRP adversary B such that $Adv_{CPA}[A,E_{CBC}] \leq 2 \cdot Adv_{PRP}[B,E] + \frac{2q^2L^2}{|X|}$
 - Only secure if the second item is negligible.
 - Can be calculated for how many blocks is fine before we need to change key.
- Warning: An attack on CBC with random IV
 - If the attacker can predict the IV, then it is not CPA-secure.
 - Bug in SSL / TLS 1.0
 - Nonce-based CBC
- An example Crypto API(OpenSSL)
 - When the nonce is not random, it needs to be encrypted before used
- · A CBC technicality: Padding
 - Removed during encryption
 - If no pad needed, add a dummy block.

Modes of Operation: Many-Time Key(CTR)

- Construction 1: Random CTR-Mode
 - Chooses a random IV, and +1 every block.
 - Parallelizable

Counter-Mode Theorem

- For any L > 0, If F is a secure PRF over (K,X,X) then E_{CTR} is semantic secure under CPA over (K, X^L , X^{L+1}).
 - $\circ~$ In particular, $Adv_{CP\,A}[A,E_{\,CTR}\,] \leq \,2 \cdot Adv_{P\,R\,F}\,[B\,,F\,\,] + \,\frac{2q^2L}{|X|}$
 - Better than CBC for the second item.
 - $\circ\,$ In AES, after 2^{32} ciphertexts each of len $2^{32},$ the key must be changed.(Total of 2^{64} AES blocks)
- Construction 2: Nonce CTR-Mode
 - To ensure F(k, x) is never used more than once, choose IV as:

- IV(128bits) = nonce(64bits) + counter(64bits)
- Counter starts at 0 for every message.

	СВС	ctr mode
uses	PRP	PRF
parallel processing	No	Yes
Security of rand. enc.	q^2 L^2 << X	q^2 L << X
dummy padding block	Yes	No
1 byte msgs (nonce-based)	16x expansion	no expansion

(for CBC, dummy padding block can be solved using ciphertext stealing)

- · Neither mode ensures data Integrity.
- Further Reading
 - A concrete security treatment of symmetric encryption: Analysis of the DES modes of operation, M. Bellare, A. Desai, E. Jokipii and P. Rogaway, FOCS 1997
 - Nonce-Based Symmetric EncrypAon, P. Rogaway, FSE 2004

Message Integrity

Message Authentication Codes(MAC)

- Goal: Integrity, no confidentiality.
- Examples: Protecting public binaries on disk, Protecting banner ads on web page.
- Definition : MAC = (S,V) defined over (K,M,T) is a pair of algorithms
 - S(k,m) outputs t in T
 - V(k,m,t) outputs yes or no
- Integrity requires a secret key.
 - Cyclic Reduandancy Check
 - Attacker can easily modify message m and re-compute CRC.
 - CRC designed to detect random, not malicious errors.
- Attackers power : Chosen Message Attack
 - For messages, attackers are given tags.
- Attackers Goal : Existential Forgery
 - Produce some new message tag pair
 - Attacker cannot produce a valid tag for a new message.
 - Given (m,t), attacker cannot produce (m,t)
- Secure MACs

- A MAC is secure if the challenger gives a new message tag pair, and the probability of the verifier saying yes is negligible.
- Example : Protecting System Files
 - MAC can detect every modified file.
 - If the key derives from user's password, then only the user know the key.

MAC Based on PRFs

- Secure PRF ⇒ Secure MAC
 - Accept message if tag = F(k,m)

Theorem

- If $F:K\times X\to Y$ is a secure PRF and $\frac{1}{|Y|}$ is negligible, then I_F is a secure MAC.
 - $\circ \ Adv_{MAC}[A,I_F] \leq \ Adv_{PRF}[B,F] + \ \tfrac{1}{|Y|}$
- Examples
 - AES: A MAC for 16-bytes messages.
 - How to convert small MAC into big MAC?
 - CBC-MAC
 - HMAC
 - Convert a small PRF to big PRF.
- Truncating MACs based on PRFs

Lemma

- Suppose $F\,:K\,\times\,X\,\to\{0,1\}^n$ is a secure PRF. Then so is

 $F_t(k,m) = F(k,m)[1,\ldots,t]$ for all $1 \le t \le n$ as long as $\frac{1}{2^t}$ is still negligible.

CBC-MAC and NMAC

• Goal: Given a PRF for short messages(AES), construct a PRF for long messages.

$$\circ$$
 Let $X = \{0, 1\}^{128}$

- Construction 1 Encrypted CBC-MAC
 - $\circ~$ Let $F~:K~\times~X~\to X~$ be a PRP. Define a new PRF $F_{ECBC}:K~^2\times~X^{\leq L}\to X$
 - $\circ \ X^{\, \leq \, L} = \ \textbf{U}_{i=\, 1}^L X^{\, i}$
- Construction 2 NMAC (Nested MAC)

- $\circ~$ Let $F~:K~\times~X~\to K~$ be a PRF. Define a new PRF $F_{NMAC}:K~^2\times~X^{\leq L}\to K$
- If the last step isn't applied to ECBC or NMAC, then the MAC can be forged with one chosen message query.
 - \circ Choose an arbitrary one-block message m \in X
 - Request tag for message. Get t = F(k, m)
 - Output t as MAC forgery for the 2-block message $(m, t \oplus m)$

Theorem for Analysis

- For any L > 0, for every efficient q-query PRF adversary A attacking F_{ECBC} or F_{NMAC}
 - , there exists an efficient adversary B such that :

$$Adv_{P\,R\,F}\,[A,F_{\,E\,C\,B\,C}\,]\!\leq\,Adv_{P\,R\,P}\,[B\,,F\,]\!+\,2\frac{q^2}{|X|}$$
 and

$$Adv_{PRF}[A, F_{NMAC}] \le q \cdot L \cdot Adv_{PRP}[B, F] + \frac{q^2}{2|K|}$$

- + Secure when $q < < \, |X|^{\frac{1}{2}} / \, |K|^{\frac{1}{2}}$
- The security bounds are tight.
 - Suppose the underlying PRF is a PRP.
 - Then both PRFs
 - $\forall x, y, w : F_{BIG}(k, x) = F_{BIG}(k, y) \Rightarrow F_{BIG}(k, x||w) = F_{BIG}(k, y||w)$
 - Generic Attack
 - Issue $|Y|^{\frac{1}{2}}$ message queries for random messages in X. Obtain (m_i,t_i) for $i=1,\dots,|Y|^{\frac{1}{2}}$
 - Find a colllison (By Birthday Paradox)
 - Choose some w and query for $t := F_{BIG}(k, m_u||w)$
 - Output forgery $(m_v||w,t)$
- Better Security: A Random Construction
 - \circ Let $F:k\times X\to X$ be a PRF.
 - \circ Result : MAC with tags in X^2
 - $\circ \ \, \text{Security}: Adv_{MAC}[A,I_{RCBC}] \leq \ \, Adv_{PRP}[B,F] \cdot (1+\,2\tfrac{q^2}{|X|})$
 - For 3DES: 2^{32} messages with one key
- Comparison

- ECBC-MAC is a commonly-used AES MAC.
 - CCM Encryption Mode
 - CMAC
- NMAC is usually not used with 3DES or AES
 - Since it needs to change key on every block, requring recomputing AES key expansion.
 - Basis for HMAC

MAC Padding

- Deal with the situation for the length of the message is not multiple of block-size.
 - o If pad with 0000...
 - pad(m) = pad(m||0)
 - Padding must be invertible(one-to-one).
- ISO: Pad with 10000...00. Add new dummy block if needed.
 - 1 indicates the beginning.
- CMAC
 - Variants of CBC-MAC where $key = (k, k_1, k_2)$
 - No final encryption step
 - No dummy block

PMAC and Cater-Wegman MAC

- ECBC and NMAC are sequential.
 - Can we build a parallel one from a small PRF?
- Construction 3: PMAC-Parallel MAC
 - P(k, i): an easy-to-compute function
 - \circ key = (k, k_1)
 - Padding similar to CMAC
 - $\circ~$ Let $F~:K~\times~X~\to X~$ be a PRF. Define a new PRF $F_{PMAC}:K^{~2}\times~X^{\leq L}\to X$

PMAC Theorem for Analysis

- If F is a secure PRF over (K,X,X), then F_{PMAC} is a secure PRF over $(K,X^{\leq L},X)$.
 - $\circ \ Adv_{P\,R\,F} \left[A, F_{\,P\,M\,A\,C} \right] \leq \ Adv_{P\,R\,F} \left[B\,,\, F \, \right] + \, \tfrac{2q^2L^2}{|X|}$
 - $\circ\,$ Secure as long as $qL<<\,|X|^{\frac{1}{2}}$

- · PMAC is incremental.
 - Deal with modification easily because of independent blocks.
- One Time MAC
 - \circ Def: If I(S, V) is a secure MAC if for all efficient A
 - $Adv_{1MAC}[A, I] = Pr[Chal. outputs 1]$ is negligible.
 - Outputs 1 means the case of the verifier says "yes" but $(m, t) \neq (m_1, t_1)$
 - One-time MAC can be secure against all adversaries and faster than PRF-based MACs/
- One-time Security (Unconditional)

$$\circ \ \forall m_1 \neq m_2, t_1, t_2 : Pr_{a,b}[S((a,b), m_1) = t_1 | S((a,b), m_2) = t_2] \leq \frac{L}{q}$$

- One Time MAC ⇒ Many Time MAC
 - Let (S,V) be a secure one-time MAC over $(K_1, M, \{0, 1\}^n)$
 - ∘ Let $F: K_F \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF.
 - Carter-Wegman MAC
 - \bullet CW((k₁, k₂), m) = (r, F(k₁, r) \oplus S(k₂, m)) for random r

Theorem

• If (S,V) is a secure one-time MAC and F a secure PRF. Then CW is a secure MAC outputting tags in $0,\,1^{2n}$

Collision Resistance

Introduction

- Let $H: M \to T$ be a hash function.(|M| >> |T|)
 - A function H is collision resistant if for all efficient algorithms A: $Adv_{CR}[A, H] = Pr[A \text{ outputs collision for } H]$ is negligible.
 - o SHA-256
- MACs from collision Resistance
 - Let I = (S, V) be a MAC for short messages over (K, M, T).
 - \circ Let $H: M^{big} \rightarrow M$

 \circ Definition : I big = $\,$ (S $^{big}, V^{\,big})$ over $(K\,,M^{\,big},T)$ as

$$S^{big}(k, m) = S(k, H(m)); V^{big}(k, m, t) = V(k, H(m), t)$$

Theorem

- $\bullet\,$ If I is a secure MAC and H is collision resistant, then I big is a secure MAC.
 - $\circ\,$ Suppose the adversary can find the collision, then $S^{\,big}$ is unsecure under 1-chosen message attack.
 - Ask for $t \leftarrow S(k, m_0)$
 - Output (m₁,t) as forgery
- Examples
 - Software Packages
 - Attacker cannot modify package without detection
 - No key needed(public verifiability)
 - Requires read-only space

Generic Birthday Attack

- Let $H:M\to \{0,1\}^n$ be a hash function($|M|>>2^n)$
 - $\circ~$ A generic algorithm to find a collision in time $O(2^{\frac{n}{2}})hashes$
 - \blacksquare Chooses $2^{\frac{n}{2}}$ random messages in M: $m_1,m_2,\ldots,m_{2^{\frac{n}{2}}}$
 - For $i = 1, ..., 2^{\frac{n}{2}}$ compute $t_i = H(m_i) \in \{0, 1\}^n$
 - Look for a collision, if not found, go back to the first step.

Theorem

- Let $r_1, r_2, \ldots, r_n \in \{1, \ldots, B\}$ be independent distributed integers.
 - \circ When n = $1.2 \times$ $B^{\frac{1}{2}}$ then $P\,r[\exists i \neq j : r_i = r_j] \geq \frac{1}{2}$
 - Expected Number of Iteration: 2
 - \circ Time : $O(2^{\frac{n}{2}})$
 - Space : $O(2^{\frac{n}{2}})$
- Best known collision finder for SHA-1 requires 2^{51} hash evaluations.
- Quantum Collision Finder
 - For exhaustive search, it gives the original time complexity a square root.

• For hash function collision finder, it reduces the square root to cubic root.

The Merkle-Damgard Paradigm

- Goal: Collsion resistant hash functions
 - Give C.R. function for short messages, construct one for long messages
- Give $h: T\times X\to T$ (Compression Function), we obtain $H: X^{\leq L}\to T$
 - $\circ \ H_i : \text{Chaining Variables}$
 - PB : Padding Block (100...0 | Message Length(64bits))
 - If no space for PB, add another block.

Theorem

- If h is collision resistant then so is H.
 - ∘ Proof : Collision on H ⇒ Collision on h
 - \blacksquare It will not iterate all the way to the beginning because it will cause a contradiction $M=M^{'}$
- To construct a C.R. functino, it suffices to construct compression function.

Constructing Compression Functions

- Let $E: K \times \{0,1\}^n \to \{0,1\}^n$ a block cipher.
- The Davies-Meyer compression function
 - \circ h(H,m) = E(m,H) \oplus H

Theorem

- Suppose E is an ideal cipher(collection of |K| random permutations)
 - Finding a collision h(H, m) = h(H', m') takes $O(2^{\frac{n}{2}})$ evaluations.
 - Best possible
- Other instructions
 - Miyaguchi-Preneel: $h(H,m) = E(m,H) \oplus H \oplus m$, $h(H,m) = E(H \oplus m,m) \oplus m$ and other 10 variants
- SHA-256
 - 512-bit key + 256-bit block + SHACAL-2 = 256-bit block
- Provable Compression Function

- Choose a random 2000-bit prime p and random $1 \le u, v \le p$.
 - For $m, h \in \{0, ..., p-1\}$ define $h(H, m) = u^H \cdot v^m (mod p)$
- Fact : Finding collision for h is as hard as solving discrete-log mod p

HMAC: a MAC from SHA-256

- Standardized Method : HMAC(Hash-MAC)
 - H: hash function
 - Example : SHA-256, output is 256 bits
 - \circ S(k, m) = H(k \oplus opad||H(k \oplus ipad||m))
 - Similar to the NMAC PRF
 - Main difference : k_1 , k_2 are dependent.
 - Properties:
 - Built from a black-box implementation of SHA-256
 - Assumed to be a secure PRF, which can be proven under certain PRF assumptions
 - \blacksquare Security bounds similar to NMAC : It needs $\frac{q^2}{|T|}$ to be negligible.

Timing Attacks on MAC Verification

- · Warning: Verification Timing Attacks
 - If using byte-by-byte comparison
 - Return false when the first inequality found
 - To compute tag for target message m do :
 - Query server with random tag
 - Loop over all possible first bytes and query server. Stop when verification takes a little longer than step 1
 - Repeat all tag bytes
 - o Defense: Make string comparator always take the same time
 - It can be difficult to ensure due to optimizing compiler.
 - Defense: Check the return value of H

Authenticated Encryption

Active Attacks on CPA-Secure Encryption

- · Encryption secure against tampering
 - Ensure both confidentiality and integrity

- Example : In TCP / IP
 - Change the information of the package(to different destination)
 - Use IPSec to verify the information
 - Use CBC with random IV (the attacker may get partial information)
- An Attack Using only Network Access
 - Remote terminal app: each key stroke encrypted with CTR mode
 - checksum(hdr, D) = $t \oplus \text{checksum}(\text{hdr}, D \oplus s) \Rightarrow D$
- Lesson
 - CPA security cannot guarantee secrecy under active attacks.

Definitions

• An authenticated encryption system (E, D) is a cipher where

$$E: K \times M \times N \rightarrow C, D: K \times C \times N \rightarrow M \cup \{\bot\}$$

- ■: Ciphertext is rejected
- Security
 - Semantic security under CPA attack.
 - Ciphertext integrity(Attackers cannot create new ciphertexts that decrypt properly)
- (E, D) has ciphertext security if for all efficient A

$$Adv_{CI}[A, E] = Pr[Challenger outputs 1]$$
 is negligible.

- CBC with random IV does not provide authenticated encryption.(No \perp)
- IV manipulation attack
- Implication 1: Authencity
 - Attacker cannot fool Bob into thinking a message was sent from Alice.
 - Message could be a replay.
- Implication 2: Authenticated Encryption ⇒ Security against chosen ciphertext attacks

Chosen Ciphertext Attacks

- Example
 - Adversary has a ciphertext c that it wants to decrypt. Often the adversary can fool the server into decrypting certain ciphertexts.
 - Often, the adversary can learn partial information about the plaintext.
- · Adversary's Power

- Both CPA and CCA
- Obtain arbitrary messages of his choice.
- Decrypt ciphertext of his choice, other than challenge.
- Goal: Break semantic security
- . E is CCA secure if for all efficient A

$$Adv_{CCA}[A, E] = |Pr[EXP(0) = 1] - Pr[EXP(1)] = 1|$$
 is negligible.

Theorem

- Let (E,D) be a cipher that provides authenticated encryption. Then (E,D) is CCA secure.
 - \circ Adv_{CCA}[A, E] \leq 2q · Adv_{Cl}[B₁, E] + Adv_{CPA}[B₂, E]
- Ensures confidentiality against an active adversary that can decrypt some ciphertexts.
 - Does not prevent replay attacks
 - Does not account for side channels(timing attacks)

Constructions from Ciphers and MACs

- Combining Encryption and MAC
 - Let (E, D) be CPA secure cipher and (S,V) secure MAC.
 - Encrypt-then-MAC always provide A.E.
 - MAC-then-Encrypt may be insecure against CCA attacks.
 - However, when (E,D) is random-counter mode or rand-CBC, M-then-E provides A.E.
 - For random-CTR mode, one-time MAC is sufficient.
- Standards
 - All support authenticated encryption with associated data.
 - o All are nonce-based.

Case Study: TLS

- Unidirectional Keys
 - \circ $k_{b\rightarrow s}, k_{s\rightarrow b}$
- Stateful Encryption
 - Each side maintains two 64-bit counters
 - Initialized to 0 when session started, and +1 for every record.
 - Purpose : Replay defense
- Browser Side : $enc(k_{b\rightarrow s}, data, ctr_{b\rightarrow s})$

- $\circ \ \, \text{Step 1:} \, tag \leftarrow S(k_{mac}, [+ \, + \, ctr_{\, b \! \rightarrow \! s} || header || data]$
 - The counter is not transmitted in the packet.
- Step 2 : Pad [header||data||tag] to AES block size
- $\circ~$ Step 3 : CBC encrypt with k_{enc} and new random IV
- Step 4: Prepend header
- Server Side : $dec(k_{b\rightarrow s}, record, ctr_{b\rightarrow s})$
 - \circ Step 1 : CBC decrypt record using k_{enc}
 - Step 2 : Check pad format
 - Step 3 : Check tag on $[+ + ctr_{b\rightarrow s} || header || data]$
- If IV for CBC is predictable
 - IV for next record is last ciphertext block of current record. Not CPA secure.
 - BEAST attack
- Padding oracle during decryption
 - If the pad is invalid, send decryption failed alert.
 - If the MAC is invalid, send bad_record_MAC alert.
 - Attacker learns info about plaintext.
- When decryption fails, do not explain why.
- The TLS header leaks the length of TLS records
 - Also can be inferred by network traffic.
 - Leaking the length may reveal sensitive information.
 - No easy solution.
- WEP: CRC
 - Two time pads
 - Related PRG seeds
 - Active attack
 - By using the linearity and predictability of CRC

CBC Paddings Attacks

- Two types of error
 - Padding error
 - MAC error
- Suppose the attacker can differentiate two errors
 - Padding Oracle: Attacker submits ciphertext and learns if last bytes of plaintext are a valid pad.

- Chosen Ciphertext Attack
- Bad pad / Bad MAC
- Using a pad oracle(Attacker has ciphertext c = (c[0], c[1], c[2]) and it wants m[1]

in CBC encryption)

- Let g be a guess for the last byte of m[1]
- Submit (IV, c'[0], c[1]) to padding oracle \Rightarrow attacker learns if last-byte = g.
- Repeat with g = 0, 1, ..., 255 to learn last byte of m[1]
- Then use a (02, 02) pad to learn the next byte and so on...
- IMAP over TLS
 - TLS renegotiates the key when an invalid record is received
 - Every 5 minute the client sends login message to the server
 - Exact same attack works despite new keys, and it can recover the password in a few hours.

Attacking Non-Atomic Decryption

- SSH Binary Packet Protocol
 - Decryption
 - Decrypt packet length field only
 - Read as many packets as the length specifies
 - Decrypt remaining cipher blocks
 - Check MAC tag and send error response if invalid
 - Send bytes one at a time, and the attacker learns 32 LSB bits of m.
 - Solution
 - Send the length field unencrypted but MACed
 - Add a MAC of (seq-num, length) right after the len field.

Odds and Ends

Key Derivation

- · Deriving many keys from one
 - Typical Scenario
 - A single source key(SK) is sampled from hardware random number generator / a key change protocol.
 - Need many keys to secure session
 - Unidirectional keys / Multiple keys for nonce-based CBC
 - Goal: Generate many keys from this one source key

- Define Key Derivation Function(KDF) as :
 - $\circ KDF(SK,CTX,L) := F(SK,(CTX||0))||F(SK,(CTX||1))|| \cdots ||F(SK,(CTX||L))|$
 - CTX: A string that uniquely identifies the application
 - Even if two apps sample the same SK, they will get independent keys.
 - If the source key is not uniform, the output of the PRF may not look random.
 - Source key is usually not uniformly random.
 - Key Exchange Protocol : Keys are uniform in some subset of K
 - Hardware RNG : Produce biased output
- Extract-then-Expand Paradigm
 - Extract pseudo-random key k from source key SK.
 - Salt : A fixed non-secret string chosen at random
 - Expand k by using it as a PRF key as before.
- HKDF: a KDF from HMAC
 - Implements the EtE paradigm
 - Extract : Use $k \leftarrow HMAC(salt, SK)$
 - Expand : Using HMAC as a PRF with key k
- Password-Based KDF(PBKDF)
 - Deriving key from passwords
 - Do not use HKDF : insufficient entropy
 - Derived keys will be vulnerable
 - Defenses
 - Salt and a slow hash function
 - Standard approach : PKCS#5(PBKDF1)
 - H (c)(pwd||salt)

Deterministic Encryption

- No nonce
 - Enable later lookup
- Problem : Cannot be CPA secure
 - The attacker can tell if the two ciphertexts encrypt the same message.
 - Leaks information
 - Leads to significant attacks if the message space is small.
 - Equal ciphertexts mean the same index
- A solution : Unique messages

- Suppose the encryptor never encrypts the same message twice.
 - When the encryptor chooses message at random from a large message space.
 - Message structure ensures uniqueness(User ID)
- E is semantically secure under deterministic CPA if for all efficient A

$$Adv_{dCPA}[A, E] = |Pr[EXP(0) = 1] - Pr[EXP(1)] = 1|$$
 is negligible.

- All messages are distinct.
- CBC with fixed IV is not deterministic CPA secure.
 - Counter mode with FIV is also not CPA secure.

Deterministic Encryption Constructions: SIV and Wide PRP

- Deterministic encryption needs for maintaining an encrypted database index.
 - Lookup records by encrypted index
- Deterministic CPA security
 - Security if never encrypt same message twice using the same key.
 - The pair (key, msg) is unique.
- Construction 1: Synthetic IV(SIV)
 - Let (E,D) be a CPA-secure encryption.
 - $E(k, m; r) \rightarrow c$
 - \circ Let $F:K\times M\to R$ be a secure PRF.

$$\label{eq:define} \begin{array}{l} \bullet \ \, \text{Define} : E_{det}((k_1,k_2),m) = \begin{cases} \, r \leftarrow F(k_1,m) \\ \, c \leftarrow E(k_2,m;r). \\ \, \text{outputr} \end{cases}$$

Theorem

- \bullet E_{det} is semantically secure under CPA.
 - Well suited for messages longer than 1 AES block.
- · Ensuring ciphertext integrity
 - Goal: Deterministic authenticated encryption
 - SIV-CTR
 - SIV where cipher is counter mode with random IV.

Theorem

 \bullet If F is a secure PRF and CTR from F_{ctr} is CPA-secure. Then SIV-CTR from F, F_{ctr} provides DAE.

• Construction 2: PRP

Theorem

- (E,D), which is a secure PRP, is semantically secure under deterministic CPA.
 - Using AES: Deterministic CPA secure encryption for 16 byte messages. If we want longer messages, then need PRPs on larger message spaces.
- EME: Constructing a wide block PRP
 - \circ a PRP on $\{0,1\}^N$ for N >> n
 - \circ Key = (K, L)
 - \circ M \leftarrow M P \oplus M C
 - Performance: 2x slower than SIV
- PRP-based DAE

Theorem

• Let (E,D) be a secure PRP.

$$\circ E: K\times (X\times \{0,1\}^n) \to X\times \{0,1\}^n$$

• If $\frac{1}{2^n}$ is negligible \Rightarrow PRP-based encryption provides DAE.

$$Pr[LSB_n(\pi^{-1}(c)) = 0^n] \le \frac{1}{2^n}$$

Tweakable Encryption

- Disk Encryption: No Expansion
 - Sectors on disk are fixed size.
 - Encryption cannot expand plaintext
 - Deterministic encryption, no integrity

Lemma

- If (E,D) is a deterministic CPA secure cipher with M=C, then (E,D) is a PRP.
 - Every sector will be encrypted with a PRP.
- Problem: Two sectors may have the same content.
 - Leaks some information as the ECB mode.
 - Use different keys for every block
- Problem: Attacker can tell if a sector is changed and then reverted

```
• Managing keys : k_t = PRF(k, t)
```

- Goal : Construct many PRPs from a key $k \in K$
 - \circ Syntax : E, D : K \times T \times X \rightarrow X for every t \in T and k \leftarrow K
 - $E(k,t,\cdot)$ is an invertible function on X, indistinguishable from random.
- Application : Use sector number as the tweak.
 - Every sector gets its own PRP.
- Example 1: Trivial Construction

$$\circ E_{tweak}(k, t, x) = E(E(k, t), x)$$

- to encrypt n blocks need 2n evaluations of E
- Example 2 : XTS Tweakble Block Cipher

$$\circ E_{tweak}((k_1, k_2), (t, i), x)$$

$$\circ$$
 N \leftarrow E(k₂, t)

- to encrypt n blocks need n + 1 evaluations of E
- Block level PRP, not sector level
- It is necessary to encrypt the tweak before using it.

Format Preserving Encryption(FPE)

- Encrypting credit card numbers
 - Goal: End-to-end encryption
 - Intermediate processors expect to see a credit card number
 - Encrypted credit card should look like a credit card
- Given $0 \leq s \leq 2^n$, build a PRP on 0 to s-1 from a secure PRF $F: K \times 0, 1^n \to 0, 1^n$
 - s: total number of credit cards
 - To encrypt a credit card number
 - map given CC# to $\{0, \dots, s-1\}$
 - Apply PRP to get an in $\{0, \dots, s-1\}$
 - map output back to CC#
 - From $\{0,1\}^n$ to $\{0,1\}^t$
 - Let t be such $2^{t-1} \le s \le 2^t$
 - \blacksquare Method : Luby-Rackoff with $F^{'}:K\times \{0,1\}^{\frac{t}{2}} \rightarrow \{0,1\}^{\frac{t}{2}}$

 $\circ\;$ Given PRP $(E\,,D):K\,\times\,\{0,1\}^t\rightarrow\{0,1\}^t$, we build

$$(E', D') : K \times \{0, ..., s-1\} \rightarrow \{0, ..., s-1\}$$

- E'(k,x) : on input $x \in \{0, ..., s-1\}$ do $y \leftarrow x$; do $\{y \leftarrow E(k,y)\}$ until y is in 0 to s-1, then output y
- Expected Iteration : 2
- $p = \frac{s}{2^t}$
- Security
 - $\circ~$ For all A, there exists B: $P\,R\,P_{\,adv}[A,E\,]\,=\,P\,R\,P_{\,adv}[B,E\,']$
 - Intuition : For all sets $y\subseteq X$, random permutation $\pi:X\to X$ gives another random permutation
 - No integrity

Basic Key Exchange

Trusted Third Parties

- Key Management
 - Problem: n users and storing mutual secret keys is difficult.
 - Total : O(n) keys per user
 - Online Trusted Third Party
 - Every user only remembers one key.
- · A toy protocol to generate keys
 - Alice wants a shared key with Bob.
 - Eavesdropping security only.
 - Eavesdropper sees $E(k_A, A, B||k_{AB}), E(k_B, A, B||k_{AB})$
 - (E,D) is CPA-secure \Rightarrow Eavesdropper learns nothing about k_{AB}
 - TTP needed for every key exchange and knows all session keys.
 - Basis of Kerberos system
 - Insecure against active attacks
 - Replay attacks
 - Attacker records session between Alice and Bob and replays session to Bob
- · Without the TTP
 - Available to do so
 - Merkle, Diffie-Hellman, RSA, ID-based encryption, Functional Encryption

Merkle Puzzles

- Goal: Alice and Bob want a shared key but unknown to eavesdropper.
 - Security against eavesdropping only (no tampering)
- Generic Symmetric Crypto(Merkle Puzzles)
 - Inefficient
 - Puzzles: Problems that can be solved with some effort
 - \circ Alice: Prepare 2^{32} puzzles
 - For every puzzle, choose random $P_i \in \{0,1\}^{32}$ and $x_i, k_i \in \{0,1\}^{128}$
 - Set puzzle_i $\leftarrow E(0^{96}||P_i, Puzzle ||x_i||k_i$
 - Send the puzzles to Bob
 - Bob : Choose a random puzzle and solve it.
 - Obtain (x_i, k_i) and send x_i to Alice.
 - $\circ\,$ Alice : Lookup puzzle with $x_i.$ Use k_i as the shared secret
 - Alice, Bob : O(n)
 - \circ Eavesdropper : $O(n^2)$
- Impossibility Result
 - Unknown for a better gap with symmetric cipher
 - Quadratic gap is best possible if the cipher is a black box oracle

The Diffie-Hellman Protocol

- For a large prime p, fix an integer g in $\{1, \dots, p\}$
 - Alice: Choose random a in 1 to p 1
 - Bob: Choose random b in 1 to p 1
 - $\circ \ B^{\,a}(mod\,p) = \, (g^b)^a = \, k_{AB} = \, g^{ab}(mod\,p) = \, (g^a)^b = \, A^{\,b}(mod\,p)$
 - Security
 - Eavesdropper sees $p, g, A = g^a (mod p), B = g^b (mod p)$, it wants to compute $g^{ab} (mod p)$
 - $\circ \ \mathsf{Define} \ D \, H_{\,g}(g^a,g^b) = \, g^{ab} \, m \, od \, p$
- Suppose p is n bits long, best known algorithm GNFS

$$\circ \ e^{\widetilde{O}(^3\sqrt{\,n})}$$

- Slow transition away from mod p to elliptic curves
- Insecure against man-in-the-middle attack
 - \circ The attacker sends its a', b' to Alice and Bob

Public Key Encryption

- Goal: Alice and Bob want shared secret unknown to the eavesdropper.
- Definition
 - \circ A public encryption system is a triple of algorithms (G, E, D)
 - G(): Randomized algorithm that outputs a key pair (pk, sk)
 - E(pk, m): Randomized algorithm that takes $m \in M$ and outputs $c \in C$
 - D(sk, c): Deterministic algorithm that takes $c \in C$ and outputs $m \in M$ or \bot
 - \circ D(sk, E(pk, m)) = m
- Security(Eavesdropping)
 - Adversary sees pk, E(pk, x) and wants $x \in M$
 - Able to derive session key from x
 - The protocol is vulnerable to MitM.
- Constructions generally rely on hard problems from number theory and algebra.

Introduction to Number Theory

Notation

- The base of key exchange protocols, digital signatures and public-key-encryption.
 - N denotes a positive integer.
 - o p denotes a prime.
 - $\circ Z_N = \{0, 1, 2, ..., N-1\}$
 - Do addition and multiplication under modulo n
 - Arithmetic works as normal.
- Greatest Common Divisor
 - \circ For integers x and y, gcd(x, y) is the greastest common divisor of x,y.
 - For all integers x and y, there exists integers a, b such that $ax + by = \gcd(x,y), a, b \text{ can be found efficiently using the extended}$ Euclidean algorithm.
 - If gcd(x,y) = 1, then x and y are relatively prime.

- Modular Inversion
 - The inverse of x in Z_n is an element y in Z_n such that xy = 1, y is denoted x^{-1} .
 - \blacksquare Let N be an odd integer, the inverse of 2 in Z_N is $\frac{N+1}{2}.$

Lemma

• $x \text{ in } Z_N \text{ has an inverse iff } gcd(x, N) = 1$

• $Z_N^* = \{x \in Z_N : gcd(x, N) = 1\}$

- $\circ\,$ For prime p, $Z_N^{\,\star}$ is 1 ~ p -1
- No 0
- \circ Can find x^{-1} using extended Euclidean algorithm

• Solve ax + b = 0 in Z_N

- \circ Solution : $x = -ba^{-1}$ in Z_N
- $\circ~$ Using Extended Euclidean algorithm to find a^{-1} with time $O(log^2N\,)$

Fermat and Euler

• Find inverses using Euclidean Algorithm, time : $O(n^2)$

Fermat Theorem

• Let p be a prime, $\forall x \in (Z_p)^* : x^{p-1} = 1 \text{ in } Z_p$

$$\circ \ x^{-1} = x^{p-2} \text{ in } Z_p$$

Less efficient

- Generating random primes(1024 bits)
 - $\circ~$ Choose a random integer p \in [2 $^{1024},$ 2 1025 -~ 1]
 - $\circ~$ Test if $2^{p-\,1}=~1$ in Z_p
 - If so, output p and stop
 - If not, choose again
 - \circ Pr[p is not a prime] $< 2^{-60}$

- $(Z_p)^*$ is a cyclic group, that is $\exists g \in (Z_p)^*$ such that $\{1, g^2, g^3, \dots, g^{p-2}\} = (Z_p)^*$, g is a generator of $(Z_p)^*$
 - Not every element is a generator.
- Order
 - \circ For g $\mbox{\ensuremath{\in}}(Z_p)^{\star}, \{1,g,g^2,g^3,\dots\}$ is called the group generated by g, denoted < g>
 - $\circ\,$ The order of $g \in \! (Z_p)^{\star}$ is the size of < g >
 - \bullet or $d_p <\,g\,>\,=\,|\,<\,g\,>\,|\,=\,$ smallest a > 0 such that $g^a\,=\,1$ in Z_p

- $\forall g \in (Z_p)^* : \operatorname{ord}_p(g) \text{ divides } p-1$
- For an integer N define $\phi(N) = |(Z_N)^*|$

$$\circ \phi(p) = p - 1$$

$$\circ \ \, \text{For}\,\, N\,=\,p\cdot q,\, \varphi(N\,)=\,N\,-\,p-\,q+\,1=\,(p-\,1)(q-\,1)$$

Theorem

- $\forall x \in (Z_N)^* : x^{\phi(N)} = 1 \text{ in } Z_N$
 - Generalization of Fermat, and it is the basis of the RSA cryptosystem.

Modular e'th Root

- Let p be a prime and $c \in Z_p$
 - $\circ \ x \in Z_p \ s.\, t.\, x^e = \, c \ \text{in} \ Z_p \ \text{is called the e'th root of c.}$
 - Not all e'th root exists
- Suppose gcd(e,p-1)=1, then for all c in $(Z_p)^\star$, $c^{\frac{1}{e}}$ exists in Z_p and is easy to find.
- If p is an odd prime, then $gcd(2, p-1) \neq 1$
 - \circ in Z_p^{\star} , $x \to x^2$ is a 2-to-1 function.
 - $\circ\,$ x in Z_p is a quadratic residue if it has a square root in Z_p
 - If p is an odd prime, then the number of quadratic residue in Z_p is $\frac{p-1}{2}+1$

- $x \in Z_p^*$ is a quadratic residue $\Leftrightarrow x^{\frac{p-1}{2}} = \text{ in } Z_p$
 - o p is an odd prime.

$$\circ \ x \neq \ 0 \Rightarrow \ x^{\frac{p-1}{2}} = \ 1^{\frac{1}{2}} \in \{1,-1\} \ \text{in} \ Z_p$$

 $\circ \ x^{\frac{p-1}{2}}$ is called the legendre symbol of x over p.

Lemma

- If $c \in \!\! Z_p^{\,\star}$ is a quadratic residue, then $\sqrt{c} = \, c^{\frac{p+1}{4}}$ in Z_p
 - $p \equiv 3 \mod 4$
- If $p \equiv 1 \mod 4$, then takes longer $O(\log^3 p)$
- Solving Quadratic Equations mod p

$$\circ \ \ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ in } Z_p$$

- Find $(2a^{-1})$ using Extended Euclidean Algorithm
- \circ Find square root of $b^2 4ac$ using a square root algorithm
- Let N be a composite number and $e \ge 1$
 - Requires factorization of N to
 - \blacksquare See if $c^{\frac{1}{e}}$ in Z_N exists.
 - See if we can compute if efficiently

Arithmetic Algorithms

- Representing an n-bit integer on a 64-bit machine.
 - Some processors have 128-bit registers and support multiplication on them.
 - $\circ \frac{n}{32}$ blocks
- Addition and Subtraction : O(n)
- Multiplication : Naively $O(n^2)$ but can be faster
 - ∘ Best O(nlogn)
- ullet Division with remainder $O(n^2)$
- Exponentiation

- $\circ\,$ In a finite cyclic group G, given g in G and x to compute g^x
- The repeated squaring algorithm
 - Given g in G and x > 0, Output g^x
 - Turn x into binary
 - $y \leftarrow g, z \leftarrow 1$
 - Do n times the steps : if x[i] = 1, then $z \leftarrow yz$, also, $y = y^2$
 - output z
- Less than $O(n^3)$

Intractable Problems

- Given composite in N and x in Z_N , find \boldsymbol{x}^{-1} in \boldsymbol{Z}_N
 - Easy
- Given prime p and polynomial f(x) in $Z_p[x]$, find x in Z_p such that f(x) = 0 in Z_p
 - Easy, running time is linear in deg(f)
- Find a prime p > 2 and $g \in (Z_p)^*$ with order q
 - $\circ~$ Consider the function $x \to g^x$ in Z_p
 - $\circ~$ Consider the inverse $D\,log_g(g^x)=\,x\,$ where x is 0 to q 1
- DLOG
 - Let G be a finite cyclic group and g be a generator of G, q is called the order of G
 - We say that DLOG is hard in G if for all efficient algorithm A:

$$P\,r_{\,g \leftarrow G, x \leftarrow Z_q}[A(G,q,g,g^x) = \,x\,] < \,\mathsf{negligible}$$

- \blacksquare Z_p for large p
- Elliptic curve groups mod p
- An application : Collision Resistance
 - Choose a group G where DLOG is hard. Let q=|G| be a prime, choose generators g, h of G. For $x,y\in\{1,\ldots,q\}$, define $H(x,y)=g^x\cdot h^y$ in G.

Lemma

• Finding collision for H is as hard as computing $D\log_g(h)$

- Consider the set of integers $Z_2(n) := \{N = pq \text{ where p,q are n-bit primes}\}$
 - Problem 1: Factor a random N in the set
 - $\circ\,$ Problem 2 : Given a polynomial f(x) where its degree > 1 and a random N, find the root in Z_N .
- The factoring problem
 - \circ Best known algorithm : NFS in $exp(\widetilde{O}(^3\sqrt{\,n}))$

Public Key Encryption from Trapdoor Permutations

Public Key Encryption: Definitions and Security

- Bob generates (PK, SK) and gives PK to Alice
- Session Setup(Only eavesdropping security)
 - Non-interactive Applications(Email)
 - Bob sends email to Alice encrypted using pkAlice
 - Bob needs pk_{Alice}: Key management
- Relations to Symmetric Cipher Security
 - One-time Security and Many-time Security(CPA)
 - One-time Security cannot imply CPA
 - The attacker can encrypt himself
 - Public key encryption must be randomized
- Active Attacks : Symmetric Cipher v.s Public Key Encryption
 - Secure Symmetric Cipher provides authenticated encryption
 - Attacker cannot create new ciphertexts
 - CCA secure
 - Public Key settings
 - Attacker can create new ciphertext
 - Directly require CCA

Constructions

- Goal: Construct CCA secure Public Key Encryption
- Trapdoor functions(TDF)
 - \circ A trapdoor function $X \to Y$ is a triple of algorithms.
 - G(): Randomized algorithm outputs a key pair (pk, sk)
 - F(pk, .): Deterministic algorithm that defines a function $X \to Y$

- $F^{-1}(sk, .)$: Defines a function $Y \to X$ that inverts F(pk, .)
- ∘ \forall (pk, sk) output by G, \forall x ∈ X: F⁻¹(sk, F(pk, x)) = x
- ∘ (G,F,F^{-1}) is secure if F(pk, .) is a one-way function.
 - It can be evaluated, but cannot be inverted without sk.
 - $Adv_{OF}[A, F] = Pr[x = x'] < negligible$
- Public Key Encryption from TDFs
 - (G, F, F^{-1}) : secure TDF $X \to Y$
 - (E_s,D_s) : Symmetric authenticated encryption defined over (K,M,C)
 - \blacksquare $H:X\to K$: a hash function
 - The Key generation algorithms are the same.
- \circ Header: F(pk, x)
- \circ Body: $E_s(H(x), m)$

- If $(G,F\,,F^{\,-1})$ is a secure TDF, $(E_{\,s},D_{\,s})$ provides authenticated encryption and
 - $H\,:X\to K\,$ is a random oracle. Then (G,E,D) is CCA^{ro} secure.
 - No directly encrypt F to a plaintext
 - Deterministic : Cannot be semantically secure
 - Other attacks

The RSA Trapdoor Permutation

- SSL / TLS: Certificates and Key Exchange
- Secure E-mail and File Systems
- G : Chooses random primes p,q about 1024 bits, set N=pq. Choose integers e,d such that $ed=1(mod\varphi(N))$
 - Output pk=(N,e), sk = (N,d)
 - $\circ \ \mathsf{F}(\mathsf{pk}, \mathsf{x}) : Z_N^{\ \star} \to Z_N^{\ \star}$
 - $\circ RSA(x) = x^e \text{ in } Z_N$
 - $\circ \ F^{-1}(sk,y) = \, y^d \text{, } y^d = \, R \, S \, A(x)^d = \, x^{ed} = \, x^{k \varphi(N) + \, 1} = \, x$
- RSA Assumption : RSA is a one-way permutation
 - For all efficient algorithms A:

•
$$Pr[A(N, e, y) = y^{\frac{1}{e}}] < negligible$$

- The RSA trapdoor permutation is not a encryption scheme.
 - $\circ\,$ Suppose a random-session key k is 64 bits from 0 to $2^{64}.$ Eve sees $c=\,k^e$ in Z_N

$$\circ~$$
 If $k=~k_1\cdot k_2$ where $k_1,k_2<~2^{34}$, then $\frac{c}{k_1^e}=~k_2^e$ in Z_N

- Probability is about 20 %.
- Step 1: Build a table $\frac{c}{1^e} \sim \frac{c}{2^{34e}}$
- $\circ\,$ Step 2 : for k_2 from 0 to 2^{34} , test if k_2^e is in the table.
- $\circ~$ Output matching and the total attack time about $2^{40} <<~2^{64}$

PKCS1

- $\bullet \ \, \text{Message Key} \xrightarrow{P \, \text{reprocessingRSA}} \xrightarrow{\text{Ciphertext}}$
 - Preprocess
 - Security about the resulting system
- PKCS1 v1.5
 - o Mode 2
 - 02(16bits) + random pad + FF + msg (RSA modulus size)(2048 bits)
 - + Resulting value is RSA encrypted
 - + Widely deployed ex: in HTTPS
 - Bleichenbacher attack
 - Attacker can test if 16 MSBs of plaintext = '02'
 - CCA to decrypt a given ciphertext C do:
 - Choose $r \in Z_N$. Compute $c' \leftarrow r^e \cdot c = (r \cdot P K C S 1(m))^e$
 - \blacksquare Send c' to web server and use response
 - Baby Bleichenbacher
 - Suppose $N = 2^n$ (an invalid RSA modulus)
 - Sending c reveals msb(x)
 - Sending 2^e c reveals msb(2x mod N)=msb₂(x)
 - and so on...
 - HTTP Defense
 - Generate a string R of 46 random bytes
 - Decrypt the message to recover the plaintext M
 - If the PKCS1 Padding is not correct, pre_master_secret = R

- Preprocessing Function: OAEP (Optimal Asymmetric Encryption Padding)
 - Check the pad on decryption, reject if the ciphertext is invalid.

- RSA is a trap-door permutation ⇒ RSA-OAEP is CCA secure when H,G are random oracles.
 - Use SHA-256 for H and G.
- OAEP+
 - During encryption, validate W(m,r) field.
 - Add a new random oracle W.
 - Problems : Timing information leaks type of error, then the attacker can decrypt any ciphertext.
- SAEP+
 - RSA(e=3)
 - o Delete G, add W.

Is RSA a One-Way Function?

- To invert without d, the attakeer must compute x from $c = x^e \pmod{N}$
 - Factor N(hard)
 - Compute e'th roots modulo p and q(easy)
 - Use reduction to show that there is no shortcut.
 - $\circ\,$ To speed up RSA decryption, use small private key d(2 128), but it will be insecure.

Private key d can be found from (N, e)

· Wiener's attack

$$\circ \ e \cdot d = \ k \cdot \varphi(N) + \ 1 \Rightarrow \ | \, \tfrac{e}{\varphi(N)} - \ \tfrac{k}{d} | = \ \tfrac{1}{d \cdot \varphi(N)} \leq \ \tfrac{1}{\sqrt{N}}$$

- $\circ~$ If $d \leq \frac{N^{0.25}}{3}$, the attacker can use continued fraction expansion to find the private key d.
- $e \cdot d = 1 \pmod{k} \Rightarrow \gcd(d, k) = 1 \Rightarrow \text{find d from } \frac{k}{d}$

RSA in Practice

- To speed up encryption, use a small e : e=3(min)
 - Recommended value : e = 65537(17 multiplications)
- Fast encryption / Slow decryption
- Attacks

- \circ Timing Attack : The time it takes to compute $c^d \pmod{N}$ can expose d.
- $\circ\,$ Power Attack : The power consumption of a smartcard while it is computing c^d (mod N) can expose d.
- Faults Attack: A computer error can expose d.
 - Fix one, make one incorrect, then $gcd((x')^e c, N) = p$
 - Solution : Check output, but 10% slowdown.
- RSA Key Generation Trouble
 - Suppose poor entropy at start.
 - Same p will be generated by multiple devices, but different q.
 - $\circ \gcd(N_1, N_2) = p$

Public Key Encryption from Diffie-Hellman

The ElGamal Public-Key System

- Public Key Encryption Applications
 - Key Exchange (HTTPS)
 - Encryption in non-interactive settings
 - Secure Email: Bob has Alice's public key and sends her email.
 - Encrypted file systems
 - Key escrow: Data recovery without the key of Bob.
- Constructions
 - Based on trapdoor functions(RSA)
 - Based on Diffie-Hellman Protocol
 - ElGamal encryption
 - Goals: Chosen Ciphertext Security
- ElGamal
 - $\circ\,$ Fix a finite cyclic group G (e.g G = $(Z_p)^\star)$ of order n
 - Fix a generator g in G
 - Alice: Choose random a from 1 to n
 - Treat $A = g^a$ as a public key.
 - Bob: Choose random b from 1 to n
 - $\circ\,$ Compute $g^{ab}=\,A^b$, derive symmetric key k, encrypt message m with k
 - Decryption
 - Compute $g^{ab} = B^a$, derive k, and decrypt

- The ElGamal System
 - G: Finite cyclic group of order n
 - \circ (E_s, D_s): Symmetric authenticated encryption defined over (K, M, C)
 - \circ H : $G^2 \to K$: a hash function
 - Key generation
 - $\,\blacksquare\,$ Choose random generator g in G and random a in Z_n
 - Output sk = a, pk = $(g, h = g^a)$
 - Performance
 - Encryption: 2 exponent
 - Can do pre-compute with fixed-basis
 - Speed up 3x
 - Decryption : 1 exponent with variable basis

ElGamal Security

- Computational Diffie-Hellman Assumption
 - CDH assumption holds in G if g, g^a, g^b cannot compute g^{ab} easily
- Hash Diffie-Hellman Assumption
 - \circ HDH assumption holds for (G, H) if $H(g^b, g^{ab})$ acts as R
 - $\circ\,$ H acts as an extractor : Strange distribution on G^2 $\Rightarrow\,$ uniform on K
 - ElGamal is semantically secure under HDH
 - To prove CCA security, it needs stronger assumption.
- Interactive Diffie-Hellman in group G(IDH)
 - The attacker can request the oracle.

Security Theorem

• If IDH holds in group G, (E_s,D_s) provides authenticated encryption and $H:G^2\to K$ is a random oracle, then E1Gamal is CCA^{ro} secure.

ElGamal Variants with Better Security

- Prove CCA based on CDH
 - Use group G where CDH=IDH(bilinear group)
 - Change the ElGamal System
- Twin ElGamal

$$\circ$$
 $a_1, a_2 \leftarrow Z_n$

• output
$$pk = (g, h_1 = g^{a1}, h_2 = g^{a2})$$

$$\circ$$
 sk = (a₁, a₂)

Security Theorem

• If CDH holds in group G, (E_s,D_s) provides authenticated encryption and

 $H: \mathring{G} \to K$ is a random oracle, then twin E1Gamal is CCA^{ro} secure.

- One more exponentiation in Encryption and decryption
 - No one knows if it is worth it.
- Prove CCA security without random oracles
 - Use HDH assumption in bilinear groups
 - Special elliptic curve with more structures
 - Use DDH assumption in any group

A Unifying Theme

- Generic One-way Functions
 - Let $f: X \to Y$ be a secure PRG where (|Y| >> |X|)
 - f is built using deterministic counter mode
 - No special properties, hard to use for key exchange

Lemma

- f is a secure PRG ⇒ f is one-way
- The DLOG one-way function
 - Fix a finite cyclic group G of order n
 - g: a random generator in G
 - ∘ Define $f: Z_n \to G$ as $f(x) = g^x ∈ G$

Lemma

- If DLOG is hard in G, then G is one-way
 - Use exponent property f(x + y) = f(x)f(y)
 - Key Exchange and Public-key encryption

- $\circ \ f(xy) = \ f(x)f(y) \ \text{and f has a trapdoor}$
- Conclusion
 - $\circ\,$ PKE is made possible by one-way functions with special properties.
 - Homomorphic properties and trapdoor