Berechnungen und Logik Hausaufgabenserie 2

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

a)

$Q = \{0, 1, 2, 3\}$	$A = \{a, b, c\}$	α, δ	$q \in Q$	$a \in A$	$\delta(q,a)$	$\alpha(q,a)$
$B = \{\epsilon, a, b, c \}$	$q_I = 0$		0	a	1	a
$\iota = \epsilon$	$\omega = \epsilon$		0	b	2	b
			0	c	3	c
			1	a	1	ϵ
			1	b	2	b
			1	c	3	c
			2	a	1	a
			2	b	2	ϵ
			2	c	3	c
			3	a	1	a
			3	b	2	b
			3	\mathbf{c}	3	ϵ

Not sure, ob wir f_M auch definieren müssen.

b)

$$f_M(abac) = \epsilon \hat{\alpha}(0, abac)\omega(\hat{\delta}(0, abac))$$

$$\begin{split} &= \epsilon \hat{\alpha}(0,abac)\epsilon \\ &= \hat{\alpha}(0,abac) \\ &= \hat{\alpha}(0,aba)\alpha(\hat{\delta}(0,aba),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(\hat{\delta}(0,ab),a),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(\delta(\hat{\delta}(0,a),b),a),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(\delta(\delta(\hat{\delta}(0,a),b),a),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(\delta(\delta(0,a),b),a),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(\delta(1,b),a),c) \\ &= \hat{\alpha}(0,aba)\alpha(\delta(2,a),c) \\ &= \hat{\alpha}(0,aba)\alpha(1,c) \\ &= \hat{\alpha}(0,aba)\alpha(\hat{\delta}(0,ab),a)c \\ &= \hat{\alpha}(0,ab)\alpha(\delta(\hat{\delta}(0,a),b),a)c \\ &= \hat{\alpha}(0,ab)\alpha(\delta(\hat{\delta}(0,a),b),a)c \\ &= \hat{\alpha}(0,ab)\alpha(\delta(\hat{\delta}(0,a),b),a)c \\ &= \hat{\alpha}(0,ab)\alpha(\delta(\delta(0,a),b),a)c \\ \end{split}$$

 $= \hat{\alpha}(0, ab)\alpha(\delta(\delta(0, a), b), a)c$

 $= \hat{\alpha}(0, ab)\alpha(\delta(1, b), a)c$

$$= \hat{\alpha}(0, ab)\alpha(2, a)c$$

$$=\hat{\alpha}(0,ab)ac$$

$$= \hat{\alpha}(0, a)\alpha(\hat{\delta}(0, a), b)ac$$

$$= \hat{\alpha}(0, a)\alpha(\delta(\hat{\delta}(0, \epsilon), a), b)ac$$

$$= \hat{\alpha}(0,a)\alpha(\delta(0,a),b)ac$$

$$= \hat{\alpha}(0, a)\alpha(1, b)ac$$

$$=\hat{\alpha}(0,a)bac$$

$$= \hat{\alpha}(0,\epsilon)\alpha(\hat{\delta}(0,\epsilon),a)bac$$

$$= \hat{\alpha}(0, \epsilon)\alpha(0, a)bac$$

$$=\hat{\alpha}(0,\epsilon)abac$$

$$= \epsilon abac$$

$$= abac$$

$$f_M(caa) = \epsilon \hat{\alpha}(0, abac) \omega(\hat{\delta}(0, ca)a)$$
$$= \hat{\alpha}(0, ca) \alpha(\delta(\hat{\delta}(0, c)a)a)$$
$$= \hat{\alpha}(0, ca) \alpha(\delta(\delta(\hat{\delta}(0, \epsilon)c)a)a)$$

$$= \hat{\alpha}(0, ca)\alpha(\delta(\delta(0, c)a)a)$$

$$= \hat{\alpha}(0, ca)\alpha(\delta(3, a)a)$$

$$= \hat{\alpha}(0, ca)\alpha(1, a)$$

$$= \hat{\alpha}(0, ca)\epsilon$$

$$= \hat{\alpha}(0, c)\alpha(\hat{\delta}(0, c)a)\epsilon$$

$$= \hat{\alpha}(0, c)\alpha(3, a)\epsilon$$

$$= \hat{\alpha}(0, c)a\epsilon$$

$$= \hat{\alpha}(0, \epsilon)\alpha(\hat{\delta}(0, \epsilon)c)a\epsilon$$

$$= \hat{\alpha}(0, \epsilon)\alpha(0, c)a\epsilon$$

$$= \hat{\alpha}(0, \epsilon)ca\epsilon$$

$$= \hat{\alpha}(0, \epsilon)ca\epsilon$$

$$= \epsilon ca\epsilon$$

$$\{w \in A^* \mid w = u^1 v^1, u, v \in A\}$$

= ca

$\mathbf{A2}$

		ω :	q	$\omega(q)$
$Q = \{\epsilon, 0, 1, 2, 3\}$	$A = \{0, 1, 2, 3\}$		0	0
$B = \{0, 1, 2, 3\}$	$q_I = \epsilon$		1	3
$\iota = \{0, 1, 2, 3\}$			2	2
			3	1

α, δ	$q \in Q$	$a \in A$	$\delta(q,a)$	$\alpha(q,a)$
	ϵ	0	0	0
	ϵ	1	1	1
	ϵ	2	2	2
	ϵ	3	3	3
	0	0	0	0
	0	1	1	1
	0	2	2	2
	0	3	3	3
	1	0	1	0
	1	1	2	1
	1	2	3	2
	1	3	0	3
	2	0	2	0
	2	1	3	1
	2	2	0	2
	2	3	1	3
	3	0	3	0
	3	1	0	1
	3	2	1	2
	3	3	2	3

Not sure, ob wir $f_{\cal M}$ auch definieren müssen.

Es gilt $f=f_M,$ da bei Eingaben $a\in A$ keine undefinierten Zustände oder Ausgaben erzeugt werden können.

$\mathbf{A3}$

$$Q = \{in\} \qquad A = \{0, 1, 2, 3\} \quad \delta, \alpha \quad q \in Q \quad a \in A \quad \delta(q, a) \quad \alpha(q, a)$$

$$B = \{\epsilon, 0, 1, 2, 3\} \quad q_I = \text{in} \quad \text{in} \quad 0 \quad \text{in} \quad 3$$

$$\iota = \epsilon \quad \omega = \epsilon \quad \text{in} \quad 1 \quad \text{in} \quad 2$$

$$\text{in} \quad 2 \quad \text{in} \quad 1$$

$$\text{in} \quad 3 \quad \text{in} \quad 0$$

Es gilt $f = f_M$, da $dom(f_M)$ die Domain von f_M derart einschränkt, dass nur valide Ausgaben nach f erzeugt werden können.

Das ist falsch hier, das muss nochmal überarbeitet werden. Gedankenstütze, damit's mir später wieder einfällt: $dom(f_M)$ muss erzeugt werden, dhes braucht einen zweiten Zustand, in denen invalide Eingaben hineingeleitet werden und zur fehlerhaften Terminierung der seg. Maschine führen.

A4

Hier steht was.