Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по теоретическому заданию в рамках курса «Суперкомпьютерное моделирование и технологии» Численное решение краевой задачи для уравнения Пуассона

Выполнил: Ларочкин Петр Викторович 618/1 группа Вариант 6

Содержание

1	Математическая постановка задачи	2
2	Численный метод решения задачи	3
3	Краткое описание проделанной работы по созданию MPI программы и гибридной реализации $MPI/OpenMP$	6
4	Результаты расчетов для разных размеров задач и на разном числе процессов	6
5	Рисунок точного решения и приближенного решения	7

1 Математическая постановка задачи

В прямоугольнике $\Pi=(x,y):A_1\leq A_2,B_1\leq B_2,$ граница Γ которого состоит из отрезков

$$\gamma_R = \{(A_2, y), B_1 \le B_2\}, \gamma_L = \{(A_1, y), B_1 \le B_2\}$$

$$\gamma_R = \{(x, B_2), A_1 \le A_2\}, \gamma_L = \{(x, B_1), A_1 \le A_2\}$$

рассматривается дифференциальное уравнение Пуассона с потенциалом

$$-\Delta u + q(x,y)u = F(x,y)$$

в котором оператор Лапласа

$$-\Delta u = \frac{\partial}{\partial x}(k(x,y)\frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(k(x,y)\frac{\partial u}{\partial y})$$

Для данной работы мне был предложен **вариант 6**, который соответствует следующим функциям: Аналитическое решение

$$u(x,y) = u_2(x,y) = \sqrt{(4+xy)},$$

прямоугольник

$$\Pi = [0, 4] \times [0, 3],$$

функции

$$k(x, y) = k_1(x, y) = 1,$$

 $q(x, y) = q_2(x, y) = x + y.$

Для выделения единственного решения уравнение дополняется граничными условиями. На каждом отрезке границы прямоугольника Π задается условие одним из трех способов. В **данном варианте** для всех границ прямоугольника применяется граничное условие третьего типа (n- нормаль):

$$(k\frac{\partial u}{\partial n})(x,y) + \alpha u(x,y) = \psi(x,y)$$

Функции F(x,y), $\phi(x,y)$, $\psi(x,y)$, коэффициент k(x,y), потенциал q(x,y) и параметр $\alpha=1$ (предложено такое значение) считаются известными, функцию u(x,y), удовлетворяющую уравнению и граничным условиям, определенным вариантом задания, требуется найти.

Подставим предложенные для этого варианта функции в уравнение Пуассона и граничные условия для нахождения функций $\psi(x,y)$ и F(x,y). Получим:

$$F(x,y) = \frac{1}{4(4+xy)^{\frac{3}{2}}} (x^2 + y^2) + (x+y)\sqrt{(4+xy)},$$

$$\psi(x,y) = \begin{cases} \frac{y}{2\sqrt{(4+4y)}} + 2\sqrt{1+y} & \text{if } x = 4, y \in (0,3) \\ -\frac{y}{4} + 2 & \text{if } x = 0, y \in (0,3) \\ \frac{x}{2\sqrt{(4+3x)}} + \sqrt{4+3x} & \text{if } y = 3, x \in (0,4) \\ -\frac{x}{4} + 2 & \text{if } y = 0, x \in (0,4). \end{cases}$$

2 Численный метод решения задачи

Краевые задачи для уравнения Пуассона с потенциалом предлагается численно решать методом конечных разностей. В расчетной области П определяется равномерная прямоугольная сетка $\omega_h = \overline{\omega}_1 \times \overline{\omega}_2$, где

$$\overline{\omega}_1 = \{x_i = A_1 + ih_1, i = \overline{0, M}\},\$$

$$\overline{\omega}_2 = \{ y_i = B_1 + ih_2, i = \overline{0, N} \}.$$

Здесь $h_1=(A_2-A_1)/M, h_2=(B_2-B_1)/N.$ Через ω_h обозначим множество внутренних узлов сетки ω_h , т.е. множество узлов сетки прямоугольника, не лежащий на границе Γ . Рассмотрим линейное пространство H функций, зада

Рассмотрим линейное пространство H функций, заданных на сетке $\overline{\omega}_h$. Обозначим через ω_{ij} значение сеточной функции $\omega \in H$ в узле сетки $(x_i, y_j) \in \overline{\omega}_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$[u, v] = \sum_{i=0}^{M} h_1 \sum_{j=0}^{N} h_2 \rho_{ij} u_{ij} v_{ij},$$

$$||u||_E = \sqrt{[u,v]}.$$

Весовая функция $\rho ij = \rho^{(1)}(x_i)\rho^{(2)}(y_i)$, где

$$\rho^{(1)}(x_i) = \begin{cases} 1, & 1 \le i \le M - 1\\ \frac{1}{2} & i = 0, i = M \end{cases}$$

$$\rho^{(2)}(y_j) = \begin{cases} 1, & 1 \le j \le N - 1\\ \frac{1}{2} & j = 0, j = N \end{cases}$$

В методе конечных разностей дифференциальная задача математической физики заме- няется конечно-разностной операторной задачей вида

$$A\omega = B$$
,

где $A:H\longrightarrow H$ — оператор, действующий в пространстве сеточных функций, $B\in H$ — известная правая часть. Задача $A\omega=B$ называется разностной схемой. Решение этой задачи считается численным решением исходной дифференциальной задачи.

При построении разностной схемы следует аппроксимировать (приближенно заменить) все уравнения краевой задачи их разностными аналогами — сеточными уравнениями, связы- вающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество — совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Уравнение Пуассона во всех внутренних точках сетки аппроксимируется разностным уравнением

$$\Delta_h \omega_{ij} + q_{ij} \omega_{ij} = F_{ij}, i = \overline{1, M-1}, j = \overline{1, N-1},$$

в котором $F_{ij}=F(x_i,y_j), q_{ij}=q(x_i,y_j),$ разностный оператор Лапласа, с учетом k(x,y)=1

$$\Delta_h \omega_{ij} = \frac{1}{h_1} (\frac{\omega_{i+1j} - \omega_{ij}}{h_1} - \frac{\omega_{ij} - \omega_{i-1j}}{h_1}) + \frac{1}{h_2} (\frac{\omega_{ij+1} - \omega_{ij}}{h_2} - \frac{\omega_{ij} - \omega_{ij-1}}{h_2})$$

Аппроксимация граничных условий третьего типа на правой и левой сторонах прямоугольника имеет вид:

$$\frac{2}{h_1}(\frac{\omega_{Mj}-\omega_{M-1j}}{h_1})+(q_{Mj}+\frac{2}{h_1})\omega_{Mj}-\frac{1}{h_2}(\frac{\omega_{Mj+1}-\omega_{Mj}}{h_2}-\frac{\omega_{Mj}-\omega_{Mj-1}}{h_2})=F_{Mj}+\frac{2}{h_1}\psi_{Mj}$$

$$-\frac{2}{h_1}\left(\frac{\omega_{1j} - \omega_{0j}}{h_1}\right) + \left(q_{0j} + \frac{2}{h_1}\right)\omega_{0j} - \frac{1}{h_2}\left(\frac{\omega_{0j+1} - \omega_{0j}}{h_2} - \frac{\omega_{0j} - \omega_{0j-1}}{h_2}\right) = F_{0j} + \frac{2}{h_1}\psi_{0j}$$

$$j = \overline{1, N-1}$$

На верхней и нижней сторонах соответственно имеем:

$$\frac{2}{h_2}(\frac{\omega_{iN}-\omega_{iN-1}}{h_2}) + (q_{iN} + \frac{2}{h_2})\omega_{iN} - \frac{1}{h_1}(\frac{\omega_{i+1N}-\omega_{iN}}{h_2} - \frac{\omega_{iN}-\omega_{i-1N}}{h_1}) = F_{iN} + \frac{2}{h_2}\psi_{iN}$$

$$-\frac{2}{h_2}\left(\frac{\omega_{i1}-\omega_{i0}}{h_2}\right) + \left(q_{i0} + \frac{2}{h_2}\right)\omega_{i0} - \frac{1}{h_1}\left(\frac{\omega_{i+10}-\omega_{i0}}{h_2} - \frac{\omega_{i0}-\omega_{i-10}}{h_1}\right) = F_{i0} + \frac{2}{h_2}\psi_{i_0}$$

$$i = \overline{1, M-1}$$

Построенный уравнений недостаточно, так как неизвестных больше. Требуются уравнения для угловых узлов:

$$-\frac{2}{h_1}\left(\frac{\omega_{10}-\omega_{00}}{h_1}\right) - \frac{2}{h_2}\left(\frac{\omega_{01}-\omega_{00}}{h_2}\right) + \left(q_{00} + \frac{2}{h_1} + \frac{2}{h_2}\right)\omega_{00} = F_{00} + \left(\frac{2}{h_1} + \frac{2}{h_2}\right)\psi_{00}$$

$$\frac{2}{h_1} \left(\frac{\omega_{M0} - \omega_{M-10}}{h_1}\right) - \frac{2}{h_2} \left(\frac{\omega_{M1} - \omega_{M0}}{h_2}\right) + \left(q_{M0} + \frac{2}{h_1} + \frac{2}{h_2}\right) \omega_{M0} = F_{M0} + \left(\frac{2}{h_1} + \frac{2}{h_2}\right) \psi_{M0}$$

$$\frac{2}{h_1}(\frac{\omega_{MN}-\omega_{M-1N}}{h_1})-\frac{2}{h_2}(\frac{\omega_{MN}-\omega_{MN-1}}{h_2})+(q_{MN}+\frac{2}{h_1}+\frac{2}{h_2})\omega_{MN}=F_{MN}+(\frac{2}{h_1}+\frac{2}{h_2})\psi_{MN}$$

$$\frac{2}{h_1} \left(\frac{\omega_{1N} - \omega_{0N}}{h_1}\right) - \frac{2}{h_2} \left(\frac{\omega_{0N} - \omega_{0N-1}}{h_2}\right) + \left(q_{0N} + \frac{2}{h_1} + \frac{2}{h_2}\right) \omega_{0N} = F_{0N} + \left(\frac{2}{h_1} + \frac{2}{h_2}\right) \psi_{0N}$$

где

$$\psi_{00} = \frac{h_1 \psi(A_1 + 0, B_1) + h_2 \psi(A_1, B_1 + 0)}{h_1 + h_2}$$

$$\psi_{M0} = \frac{h_1 \psi(A_2 - 0, B_1) + h_2 \psi(A_2, B_1 + 0)}{h_1 + h_2}$$

$$\psi_{MN} = \frac{h_1 \psi(A_2 - 0, B_2) + h_2 \psi(A_2, B_2 - 0)}{h_1 + h_2}$$

$$\psi_{0N} = \frac{h_1 \psi(A_1 + 0, B_2) + h_2 \psi(A_1, B_2 - 0)}{h_1 + h_2},$$

$$\psi(x_0 \pm 0, y) = \lim_{x \to x_0 \pm 0} \psi(x, y)$$

$$\psi(x, y_0 \pm 0) = \lim_{y \to y_0 \pm 0} \psi(x, y)$$

Приближенное решение системы уравнений $A\omega=B$, для сформулированных выше краевых задач может быть получено итерационным методом наименьших невязок. Этот метод поз- воляет получить последовательность сеточных функций $\omega^{(k)} \in H, k=1,2,...$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||\omega - \omega^{(k)}||_E \to 0, k \to +\infty$$

Начальное приближение $\omega^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация $\omega^{(k+1)}$ вычисляется по итерации $\omega^{(k)}$ согласно равенствам:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^k,$$

где невязка $r^{(k)} = A\omega^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{[Ar^{(k)}, r^{(k)}]}{||Ar^{(k)}||_F^2}$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$||\omega^{(k+1)} - \omega^{(k)}||_E < \epsilon,$$

где ϵ - положительное число, определяющее точность итерационного метода. Константу ϵ для данной задачи предлагается взять равной 10^{-6} .

3 Краткое описание проделанной работы по созданию MPI программы и гибридной реализации MPI/OpenMP

Построенная MPI программа на языке С решает поставленную задачу. При распараллеливании программы каждый процесс вычисляет свою область точке. Для того, чтобы грамотно распределить области между процессами применяются функции MPI_Cart_create , MPI_Cart_coords , MPI_Cart_shift , которые соответственно создает новый коммутатор, определяет координаты процесса в сетке процессов и определяет ранги «соседей». Особенностью данной задачи является то, что при обработке соответствующему каждому рангу области требуется информация о точках, принадлежащих соседнему рангу. Для этих целей в программу применяются MPI_Send и MPI_Recv функции для получение и отправки информации об этих точках. Также в процессе обработки необходимо вычислять скалярное произведение по всей области для этой цели используется $MPI_Allreduce$. Также данная функция используется для получения максимальной среди всех процессов ошибки для условия остановки.

Построение гибридной программы MPI/openMP строилось следующим образом: использовалась предыдущая MPI программа, которая была улучшена засчет распараллеливания используемых циклов. Для распараллеливания циклов for использовалась директива

#pragma omp parallel for default(shared) private(i, j) schedule(dynamic) для циклов двойной вложенности,

#pragma omp parallel for default(shared) private(i или j) schedule(dynamic) для обычных циклов,

#pragma omp parallel for default(shared) private(i, j) reduction(+:local_sum) schedule(dynamic) для того, чтобы собрать вместе в главном потоке результаты вычислений частичных сумм.

4 Результаты расчетов для разных размеров задач и на разном числе процессов

Выполнение последовательной программы решающей данное задание при $M=500,\ N=500$ заняло 316.84 секунды. А для $M=500,\ N=1000$ время и разница составили 1323.47 секунд. Максимум модуля разности между искомой функцией и численного решения на самой большой сетке $M=500,\ N=1000$ составил 0.035. Значение ϵ решено было взять равным 10^{-6} . Ускорение считалось как отношение времени выполнения последовательной программы к времени выполнения параллельной программы на той же сетке $Boost=\frac{time(sequential)}{time(parallel)}$.

Число	Число точек сетки	Время	Ускорение	
процессов МРІ	$M \times N$	решения (с)		
4	500×500	108.57	2.91	
8	500×500	106.15	2.97	
16	500×500	30.22	10.46	
32	500×500	132.86	2.37	
4	500×1000	1028.24	1.28	
8	500×1000	554.36	2.39	
16	500×1000	195.22	6.78	
32	500×1000	92.67	14.27	

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (МРІ код).

Число	Количество ОМР-	Число точек сетки	Время	Varranavira
процессов МРІ	нитей в процессе	$M \times N$	решения (с)	Ускорение
1	4	500×500	260.78	1.21
2	4	500×500	125.25	2.52
4	4	500×500	70.31	4.49
8	4	500×500	49.01	6.44
1	4	500×1000	984.41	1.34
2	4	500×1000	490.62	2.70
4	4	500×1000	306.07	4.32
8	4	500×1000	166.96	7.92

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

5 Рисунок точного решения и приближенного решения

Графики аналитической и построенный численной функций неотличимы начиная с сеток $M=250,\ N=250.$ Ниже приведены рисунки аналитического решения $u(x_i,y_j)$ (Рисунок 1), численного решения (Рисунок 2) $\omega(x_i,y_j)$ и рисунки их абсолютной разности $|\omega(x_i,y_j)-u(x_i,y_j)|$ (Рисунок 3 и Рисунок 4).

Рисунок 1. Аналитическое решение

Рисунок 2. Численное решение

Рисунок 3. Модуль разницы между аналитическим и численным решениями

Рисунок 4. Модуль разницы между аналитическим и численным решениями (вид сверху)