Automatentheorie – eine Aufgabe

Alexandra Maximova

16. November 2020

Aufgabe

Entwirf einen endlichen Automaten, der die Sprache $L = \{x1100y \mid x, y \in \{0, 1\}^*\}$ erkennt, und bestimme die Bedeutung aller Zustandsklassen.

Lösung

Klasse $[q_{\lambda}] = {\lambda} \cup {x0 \mid x \in {\{0,1\}}^*}$ und x0 enthält das Teilwort 1100 nicht

Klasse $[q_1] = \{x1 \mid x \in \{0,1\}^* \text{ und } x1 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{11}] = \{x11 \mid x \in \{0,1\}^* \text{ und } x11 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

 $\mathsf{Klasse}[q_{110}] \ = \{x110 \mid x \in \{0,1\}^* \text{ und } x110 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{1100}] = \{x1100y \mid x, y \in \{0, 1\}^*\} = L$

Hinweise für die Bewertung

Der Anfangszustand ist markiert	/0.5
Die akzeptierende Zustände sind markiert	/0.5
Der Automat ist vollständig (d.h. aus jedem Zustand gibt es einen Zustandsübergang für	/1.0
jedes Symbol aus dem Alphabet)	
Der Automat akzeptiert das Wort 1100 (und hat mindestens fünf Zustände)	/0.5
Der Automat akzeptiert alle Wörter, die 1100 als Präfix haben, (und hat mindestens fünf	/1.0
Zustände)	
Der Automat akzeptiert die Wörter 11100 und 1101100, (und hat mindestens fünf Zu-	/1.0
stände)	
Der Automat akzeptiert alle Wörter, die 1100 als Teilwort enthalten (und hat mindestens	/1.0
fünf Zustände)	
Der Automat akzeptiert das Wort 110100 nicht	/1.0
Der Automat akzeptiert keine Wörter, die nicht in L sind	/1.0
Die Beschreibungen der Zustandsklassen sind korrekt für den gezeichneten Automaten	/2.5
oder für den Automaten aus der Musterlösung.	,
Total	/10.0

Beispiele

Automat, der alles akzeptiert

$$Klasse[q_0] = \{0, 1\}^*$$

Nach dem Bewertungsschema ist diese Lösung 2.5 Punkte wert.

Automat, der 11100 nicht akzeptiert

Klasse $[q_{\lambda}] = {\lambda} \cup {x0 \mid x \in {\{0,1\}}^* \text{ und } x0 \text{ enthält das Teilwort 1100 nicht}}$

Klasse $[q_1] = \{x1 \mid x \in \{0,1\}^* \text{ und } x1 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{11}] = \{x11 \mid x \in \{0,1\}^* \text{ und } x11 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{110}] = \{x110 \mid x \in \{0,1\}^* \text{ und } x110 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{1100}] = \{x1100y \mid x, y \in \{0, 1\}^*\} = L$

Nach dem Bewertungsschema ist diese Lösung 8.5 Punkte wert.

Automat, der 110100 akzeptiert

Klasse $[q_{\lambda}] = {\lambda} \cup {x0 \mid x \in {\{0,1\}}^*}$ und x0 enthält das Teilwort 1100 nicht

Klasse $[q_1] = \{x1 \mid x \in \{0,1\}^* \text{ und } x1 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{11}] = \{x11 \mid x \in \{0,1\}^* \text{ und } x11 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{110}] = \{x110 \mid x \in \{0,1\}^* \text{ und } x110 \text{ enthält das Teilwort } 1100 \text{ nicht}\}$

Klasse $[q_{1100}] = \{x1100y \mid x, y \in \{0, 1\}^*\} = L$

Nach dem Bewertungsschema ist diese Lösung 8 Punkte wert.