TCS 461 Cor	mputer &	Communication Security	Date :	6/2/2022	
ID: 6288102	Name:	Krissanapong Palakham	Sec	tion: 1	

Lab 3: Message Digest, Hash & Certificates

Follow Lab 3 direction (Lab3_Explain.pdf) and answer these questions:

Part I: Hashing

Question 1: Find hash values for given algorithms and their lengths (bytes).

Algorithm	Hash Value (Message Digest)	Length (bytes)
SHA-1	21 7E 55 AA F5 1D BC EE 95 C5 B3 4A E7 43 E4 B8 FF CC B4 13	20
SHA-256	89 40 80 89 E6 A4 76 46 B7 16 8A 82 A2 B8 79 5C 42 27 4D A6 50 E0 9F 82 AD 4A C1 61 A5 C9 A1 03	32
SHA-384	2B 88 FB 81 C6 15 BA 5B 88 00 F0 9E D7 11 0D 40 93 3A 5F 33 C3 77 5C 37 CC 2C D9 FD 95 00 24 4A 59 BB 0F 2B C9 0A DA 05 7E EE E7 27 E5 B7 0A 67	48
SHA-512	C8 BF D7 8E DE 37 10 EC 9A DB 70 B3 85 50 7D 90 30 57 D6 46 2F 53 30 B0 59 E9 F3 3D B7 DE 6F 83 F3 4D F3 B2 86 A5 9F 10 6A 3E EA 40 37 12 34 02 D2 EA 33 93 52 CC 91 E2 E9 E9 E1 07 CE 51 F8 65	64
MD5	47 AF DF 0B CA F0 96 73 6F 12 BA C0 6B 16 3E D0	16
SHA-3 (Keccak)	02 80 1D 22 63 EB F0 A6 12 72 62 AB 64 92 B7 CB B7 62 1F 08 5B C3 57 77 45 87 E3 81 DF 7C 8B 7B	32

Part II: HMAC

Question 2: Find HMAC values for given hash messages and functions.

Password	Hash Function	HMAC value	
Blank	MD5	CB 78 A4 89 43 9F EC 82 48 0C E9 AA 05 B5 6C 02	
Blank	SHA-1	F2 DF E5 43 B2 D2 1E 27 71 CA EA 8B 90 BD 53 8E 67 3A AD BB	
"secret"	MD5	8B D6 20 FA EB 07 40 14 9B A2 9B A9 1A 73 B8 25	
"secret"	SHA-1	E1 DB E9 48 C3 4D D5 86 DE 01 B0 73 8B 87 86 F2 85 4A A1 B7	

•	When using the blank password and using the same hashing function (MD5, SHA-1) as
	in Question 1, does the HMAC produces the same value as hashing in Question 1?
	$N \qquad (y/n)$

•	Comparing b	etween	using	blank	password	and	password=	"secret",	are th	iese (output
	values equal	?	N	_(y/n)							

Part III: Attack to MD5 (find collision in MD5)

Question 3: What are 2 different data blocks having the same MD5 hash value obtained? Please compare and highlight/underline the different parts.

Data block 1: C7 CC 80 39 AD 59 13 12 6F 73 FA DC C2 75 AB 47 A5 B8 51 9F 9E 34 7B C7 53 02 37 46 1A 29 30 1F EB B3 B0 F8 D0 C5 6A 57 8F 3E 54 F9 02 7E 38 68 8A 08 4C 13 B3 5D B5 2F 44 63 F0 4C 5A 93 01 C7 62 BF 7B F1 E0 E5 6C 25 A9 3D A3 B8 25 39 41 02 BE 78 18 23 0D 3B A0 60 CD 7B F5 CC D5 29 5D 2E 85 2B 16 DE 1D 8C A3 D1 B1 43 D1 CF 8F D5 67 A6 ED F7 04 DE D4 40 EA EB 29 A7 BB 9A 66 77 34 B2

Data block 2: C7 CC 80 39 AD 59 13 12 6F 73 FA DC C2 75 AB 47 A5 B8 51 1F 9E 34 7B C7 53 02 37 46 1A 29 30 1F EB B3 B0 F8 D0 C5 6A 57 8F 3E 54 F9 02 FE 38 68 8A 08 4C 13 B3 5D B5 2F 44 63 F0 CC 5A 93 01 C7 62 BF 7B F1 E0 E5 6C 25 A9 3D A3 B8 25 39 41 02 BE 78 18 A3 0D 3B A0 60 CD 7B F5 CC D5 29 5D 2E 85 2B 16 DE 1D 8C A3 D1 B1 43 D1 CF 8F 55 67 A6 ED F7 04 DE D4 40 EA EB 29 A7 BB 1A 66 77 34 B2

What is the MD5 of data block 1 ? 36 56 91 5F 62 B7 D6 63 3F B7 42 BE 10 93 FD 51 What is the MD5 of data block 2 ? 36 56 91 5F 62 B7 D6 63 3F B7 42 BE 10 93 FD 51

Are the 2 MD5's equal ? __Y_ (y/n) If 'no', try again.

Part IV: Viewing Website Certificate

Question 4:

What is the URL of the webs:	ite you chose? <u>https://www.goo</u>	gle.co.th/?hl=th
What is the name of protocol	? QUIC	
What is the name of key exch	nange algorithm? X25.	519
What is the name of encryption	on algorithm? <u>AES</u>	_128_GCM
Question 5: Give the general info	ormation and details of "Issued	to" and "Issued by" of the website
certificate.		
Purpose of Certificate Ensi	ures the identity of a remote con	mnuter
*	to4/4/20	*
	th(Subject)	
	*.google.co.th	
	-	
)= <u> </u>	
C (Country) =		
Issued by:GTS CA 1	C3(Issuer)	
CN =	GTS CA 1C3	
O =	Google Trust Services LLC	
OU =	-	
$C = \underline{\hspace{1cm}} US \underline{\hspace{1cm}}$		
Signature algorithm		
Signature hash algorithm	sha256	
Public keyECC (25	56 Bits)	-

Question 6: For each certificate in "Certification Path" box, from the bottom-up, fill in this table.

Certificate Name	Subject (only CN)	Issuer (only CN)
*.google.co.th	*.google.co.th	Google Internet Authority G3
GTS CA 1C3	GTS CA 1C3	GTS Root R1
GTS Root R1	GTS Root R1	GlobalSign Root CA
GlobalSign Root CA - R1	GlobalSign Root CA - R1	GlobalSign Root CA

Part V: Viewing a local certificate on Windows

Question 7:

•	How many matched certificates (with certificates in Question 6) that you have found?	1
	(there must be at least 1)	

• List the name of the found certificates and the name of the tab you found them in.

Found certificates

Certificate Name (Subject/CN)	Found in tab
GlobalSign Root CA	Trusted Root Certificated Authorities

Question 8: Examine one of the found certificates from Question 7.

Attribute	Value
Subject (only CN)	GlobalSign Root CA
Issuer (only CN)	GlobalSign Root CA
Signature Algorithm	sha1RSA
Signature Hash Algorithm	sha1
Public Key (only algorithm name and bits)	RSA 2048 Bits
