PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classic	fication 5:
A61K 35/14, 39/00, 37/2	22
C07K 3/00, 13/00, 15/00	0
C07K 17/00, C12Q 1/68	
C12Q 15/00, C12N 1/20	1/00

(11) International Publication Number:

WO 92/20356

(43) International Publication Date: 26 November 1992 (26.11.92)

(21) International Application Number:

PCT/US92/04354

(22) International Filing Date:

22 May 1992 (22.05.92)

(30) Priority data:

705,702 728,838 23 May 1991 (23.05.91) 9 July 1991 (09.07.91) US 764,364 23 September 1991 (23.09.91) ŬŠ 12 December 1991 (12.12.91) 807,043

(71) Applicant (for all designated States except US): LUDWIG INSTITUTE FOR CANCER RESEARCH [US/US]; 1345
Avenue of the Americas, New York, NY 10105 (US).

(72) Inventors; and

(72) Inventors; and
(75) Inventors/Applicants (for US only): BOON, Thierry [BE/BE]; VAN DER BRUGGEN, Pierre [BE/BE]; VAN DEN EYNDE, Benoit [BE/BE]; VAN PEL, Aline [BE/BE]; DE PLAEN, Etienne [BE/BE]; LURQUIN, Christophe [BE/BE]; CHOMEZ, Patrick [BE/BE]; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). TRAVERSARI, Catia [IT/IT]; Sesto S. Giovanni, I-20099 Milano (IT).

(74) Agent: HANSON, Norman, D.; Felfe & Lynch, 805 Third Avenue, New York, NY 10022 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MG, ML (OAPI patent), MR (OAPI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

(57) Abstract

The invention relates to an isolated DNA sequence which codes for an antigen expressed by tumor cells which is recognized by cytotoxic T cells, leading to lysis of the tumor which expresses it. Also described are cells transfected by the DNA sequence, and various therapeutic and diagnostic uses arising out of the properties of the DNA and the antigen for which it codes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΤA	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina baso	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	iT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
Ci	Côte d'Ivoire	KR	Republic of Korea	รบ	Soviet Union
CM	Cameroon	LI	l icchtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
FC	Spain	MG	Madagascar		

1

TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

This application is a continuation-in-part of Serial Number 807,043, filed December 12, 1991, which is a continuation-in-part of Serial Number 764,364, filed September 23, 1991, which is a continuation-in-part of Serial Number 728,838, filed July 9, 1991, which is a continuation-in-part of Serial Number 705,702, filed May 23, 1991, and now abandoned.

10 FIELD OF THE INVENTION

This invention relates in general to the field of immunogenetics as applied to the study of oncology. More specifically, it relates to the study and analysis of mechanisms by which tumors are recognized by the organism's immune system such as through the presentation of so-called tumor rejection antigens, and the expression of what will be referred to herein as "tumor rejection antigen precursors".

BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells animals. when transplanted into syngeneic molecules are "recognized" by T-cells in the recipient animal, and provoke a cytolytic T-cell response with lysis This evidence was first of the transplanted cells. obtained with tumors induced in vitro by chemical carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the T-cell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface This class of antigens has come to be known as antigens. "tumor specific transplantation antigens" or "TSTAs". Following the observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

10

20

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a response to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

3

The family of tum antigen presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med. 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum" cells). When these tum cells are mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

10

20

It appears that tum variants fail to form progressive tumors because they elicit an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl, Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory

which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra).

Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed, these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into spontaneous tumors. See Fearson et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

10

20

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytotoxic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody responses. The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies, in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. The subset proliferates upon recognition of the presented tumor rejection antigen, and

5

the cells presenting the antigen are lysed. Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including minor histocompatibility antigens, the male specific H-Y antigens, and a class of antigens, referred to as "tum-" antigens, and discussed herein.

10

20

A tumor exemplary of the subject matter described supra is known as P815. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 172: 35-45 (1990), the disclosures of which incorporated by reference. The P815 tumor mastocytoma, induced in a DBA/2 mouse with methylcholanthrene and cultured as both an in vitro tumor and a cell line. The P815 line has generated many tum variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 (Sibille, supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are

6

only present after the tumor cells are mutagenized. Tumor rejection antigens are present on cells of a given tumor Hence, with reference to the without mutagenesis. literature, a cell line can be tum+, such as the line referred to as "P1", and can be provoked to produce tumvariants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention. These papers also demonstrated that peptides derived from the tumantigen are presented by the $L^{\mathbf{d}}$ molecule for recognition by CTLs. P91A is presented by L^d , P35 by D^d and P198 by K^d .

10

20

It has now been found that the genes which code for the molecules which are processed to form the presentation tumor rejection antigens (referred to as "tumor rejection antigen precursors", "precursor molecules" or "TRAPs" hereafter), are not expressed in most normal adult tissues but are expressed in tumor cells. Genes which code for the TRAPs have now been isolated and cloned, and represent a portion of the invention disclosed herein.

7

The gene is useful as a source for the isolated and purified tumor rejection antigen precursor and the TRA themselves, either of which can be used as an agent for treating the cancer for which the antigen is a "marker", as well as in various diagnostic and surveillance approaches to oncology, discussed <u>infra</u>. It is known, for example, that tum cells can be used to generate CTLs which lyse cells presenting different tum antigens as well as tum cells. See, e.g., Maryanski et al., Eur. J. Immunol 12: 401 (1982); and Van den Eynde et al., Modern Trends in Leukemia IX (June 1990), the disclosures of which are incorporated by reference. The tumor rejection antigen precursor may be expressed in cells transfected by the gene, and then used to generate an immune response against a tumor of interest.

10

20

In the parallel case of human neoplasms, it has been observed that autologous mixed lymphocyte-tumor cell cultures ("MLTC" hereafter) frequently generate responder lymphocytes which lyse autologous tumor cells and do not lyse natural killer targets, autologous EBV-transformed B cells, or autologous fibroblasts (see Anichini et al., Immunol. Today 8: 385-389 (1987)). This response has been particularly well studied for melanomas, and MLTC have been carried out either with peripheral blood cells or with tumor infiltrating lymphocytes. Examples of the literature in this area including Knuth et al., Proc. Natl. Acad. Sci. USA 86: 2804-2802 (1984); Mukherji et al., J. Exp. Med.

8

158: 240 (1983); Hérin et all, Int. J. Canc. 39: 390-396 (1987); Topalian et al, J. Clin. Oncol 6: 839-853 (1988). Stable cytotoxic T cell clones ("CTLs" hereafter) have been derived from MLTC responder cells, and these clones are specific for the tumor cells. See Mukherji et al., supra, Hérin et all, supra, Knuth et al., supra. The antigens recognized on tumor cells by these autologous CTLs do not appear to represent a cultural artifact, since they are Topalian et al., supra; found on fresh tumor cells. Degiovanni et al., Eur. J. Immunol. 20: 1865-1868 (1990). These observations, coupled with the techniques used herein to isolate the genes for specific murine tumor rejection antigen precursors, have led to the isolation of nucleic sequences coding for tumor rejection antigen acid precursors of TRAs presented on human tumors. It is now possible to isolate the nucleic acid sequences which code for tumor rejection antigen precursors, including, but not being limited to those most characteristic of a particular tumor, with ramifications that are described infra. These isolated nucleic acid sequences for human tumor rejection antigen precursors and applications thereof, as described infra, are also the subject of this invention.

10

20

These and various other aspects of the invention are elaborated upon in the disclosure which follows.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 depicts detection of transfectants expressing antigen P815A.

Figure 2 shows the sensitivity of clones P1.HTR, PO.HTR, genomic transfectant P1A.T2 and cosmid transfectant P1A.TC3.1 to lysis by various CTLs, as determined by chromium release assays.

Figure 3 is a restriction map of cosmid C1A.3.1.

Figure 4 shows Northern Blot analysis of expression of gene 10 P1A.

Figure 5 sets forth the structure of gene P1A with its restriction sites.

Figure 6 shows the results obtained when cells were transfected with the gene from PlA, either isolated from P815 or normal cells and then tested with CTL lysis.

Figure 7 shows lytic studies using mast cell line L138. 8A.

Figure 8 is a map of subfragments of the 2.4 kb antigen E fragment sequence which also express the antigen.

Figure 9 shows homology of sections of exon 3 from genes 20 mage 1, 2 and 3.

Figure 10 shows the result of Northern blots for MAGE genes on various tissues.

10

Figure 11 presents the data of Figure 13 in table form.

Figure 12 shows Southern Blot experiments using the various human melanoma cell lines employed in this application.

Figure 13 is a generalized schematic of the expression of MAGE 1, 2 and 3 genes by tumor and normal tissues.

BRIEF DESCRIPTION OF SEQUENCES

SEQ ID NO: 1 is cDNA for part of gene P1A.

SEQ ID NO: 2 presents coding region of cDNA for gene P1A.

SEQ ID NO: 3 shows non coding DNA for PlA cDNA which is 3' to the coding region of SEQ ID NO: 2.

SEQ ID NO: 4 is the entire sequence of cDNA for P1A.

SEQ ID NO: 5 is the genomic DNA sequence for P1A.

SEQ ID NO: 6 shows the amino acid sequence for the antigenic peptides for P1A TRA. The sequence is for cells which are A^+ B^+ , i.e., express both the A and B antigens.

SEQ ID NO: 7 is a nucleic acid sequence coding for antigen E.

SEQ ID NO: 8 is a nucleic acid sequence coding for MAGE1.

20 SEQ ID NO: 9 is the gene for MAGE-2.

SEQ ID NO: 10 is the gene for MAGE-21.

SEQ ID NO: 11 is cDNA for MAGE-3.

SEQ ID NO: 12 is the gene for MAGE-31.

SEQ ID NO: 13 is the gene for MAGE-4.

SEQ ID NO: 14 is the gene for MAGE-41.

SEQ ID NO: 15 is cDNA for MAGE-4.

SEQ ID NO: 16 is cDNA for MAGE-5.

SEQ ID NO: 17 is genomic DNA for MAGE-51.

SEQ ID NO: 18 is cDNA for MAGE-6.

SEQ ID NO: 19 is genomic DNA for MAGE-7.

10 SEQ ID NO: 20 is genomic DNA for MAGE-8.

SEQ ID NO: 21 is genomic DNA for MAGE-9.

SEQ ID NO: 22 is genomic DNA for MAGE-10.

SEQ ID NO: 23 is genomic DNA for MAGE-11.

SEQ ID NO: 24 is genomic DNA for smage-I.

SEQ ID NO: 25 is genomic DNA for smage-II.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Many different "MAGE" genes have been identified, as will be seen from the sequences which follow the application. The protocols described in the following

12

examples were used to isolate these genes and cDNA sequences.

"MAGE" as used herein refers to a nucleic acid sequence isolated from human cells. The acronym "smage" is used to describe sequences of murine origin.

When "TRAP" or "TRAs" are discussed herein as being specific to a tumor type, this means that the molecule under consideration is associated with that type of tumor, although not necessarily to the exclusion of other tumor types.

Example 1

10

20

In order to identify and isolate the gene coding for antigen P815A, gene transfection was used. This approach requires both a source of the gene, and a recipient cell line. Highly transfectable cell line P1.HTR was the starting material for the recipient, but it could not be used without further treatment, as it presents "antigen A", one of four recognized P815 tumor antigens. See Van Pel et al., Molecular Genetics 11: 467-475 (1985). Thus, screening experiments were carried out to isolate cell lines which did not express the antigen and which nonetheless possessed P1.HTR's desirable qualities.

To do this, P1.HTR was screened with CTLs which were specific for each of tumor antigens A, B, C and D. Such CTLs are described by Uyttenhove et al., J. Exp. Med. 157: 1040-1052 (1983).

13

To carry out the selection, 10⁶ cells of P1.HTR were mixed with 2-4x10⁶ cells of the CTL clone in a round bottom tube in 2 ml of medium, and centrifuged for three minutes at 150xg. After four hours at 37°C, the cells were washed and resuspended in 10 ml of medium, following Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982). Additional information on the CTL assay and screening protocol, in general may be found in Boon et al., J. Exp. Med. 152: 1184-1193 (1980), and Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982), the disclosure of which are incorporated by reference.

10

20

When these selections were carried out, a cell line variant was found which expressed neither antigen A or B. Additional selections with CTLs specific for antigen C then yielded a variant which also lacked antigen C. Please see figure 2 for a summary of the results of these screenings. The variant PO.HTR is negative for antigens A, B and C, and was therefore chosen for the transfection experiments.

The cell line PO.HTR has been deposited in accordance with the Budapest Treaty at the Institute Pasteur Collection Nationale De Cultures De Microorganismes, 28, Rue de Docteur Roux, 75724 Paris France, and has accession number I-1117.

This methodology is adaptable to secure other cell lines which are variants of a cell type which normally presents at least one of the four recognized P815 tumor antigens, i.e., antigens A, B, C and D, where the variants

present none of antigens A, B and C. P1.HTR is a mastocytoma cell line, so it will be seen that the protocol enables the isolation of biologically pure mastocytoma cell lines which express none of P815 antigens A, B and C, but which are highly transfectable. Other tumor types may also be screened in this fashion to secure desired, biologically pure cell lines. The resulting cell lines should be at least as transfectable with foreign DNA as is P1.HTR, and should be selected so as to not express a specific antigen.

10 Example 2

20

Previous work reported by DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988) the disclosure of which is incorporated by reference herein had shown the efficacy of using cosmid library transfection to recover genes coding for tum antigens.

Selective plasmid and genomic DNA of P1.HTR were prepared, following Wölfel et al., Immunogenetics $\underline{26}$: 178-187 (1987). The transfection procedure followed Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), with some modification. Briefly, 60 μ g of cellular DNA and 3 μ g of DNA of plasmid pHMR272, described by Bernard et al., Exp. Cell. Biol. 158: 237-243 (1985) were mixed. This plasmid confers hygromycin resistance upon recipient cells, and therefore provides a convenient way to screen for transfectants. The mixed DNA was combined with 940 ul of 1 mM Tris-HCl (pH 7.5), 0.1 mM EDTA; and 310 ul 1M CaCl₂.

15

The solution was added slowly, and under constant agitation to 1.25 ml of 50 mM Hepes, 280 mM NaCl, 1.5 mM Na2HPO4, adjusted to pH 7.1 with NaOH. Calcium phosphate - DNA precipitates were allowed to form for 30-45 minutes at room temperature. Following this, fifteen groups of PO.HTR cells (5x106) per group were centrifuged for 10 minutes at Supernatants were removed, and pellets were resuspended directly into the medium containing the DNA precipitates. This mixture was incubated for 20 minutes at 37°C, after which it was added to an 80 cm2 tissue culture flask containing 22.5 ml DMEM, supplemented with 10% fetal calf serum. After 24 hours, medium was replaced. Fortyeight hours after transfection, cells were collected and Transfected cells were selected in mass culture counted. using culture medium supplemented with hygromycin B (350 This treatment selected cells for hygromycin ug/ml). resistance.

10

20

For each group, two flasks were prepared, each containing 8×10^6 cells in 40 ml of medium. In order to estimate the number of transfectants, 1×10^6 cells from each group were plated in 5 ml DMEM with 10% fetal calf serum (FCS), 0.4% bactoagar, and 300 ug/ml hygromycin B. The colonies were then counted 12 days later. Two independent determinations were carried out and the average taken. This was multiplied by 5 to estimate the number of transfectants in the corresponding group. Correction had

16

to be made for the cloning efficiency of P815 cells, known to be about 0.3.

Example 3

10

20

Eight days after transfection as described in example 2, supra, antibiotic resistant transfectants were separated from dead cells, using density centrifugation with Ficoll-Paque. These cells were maintained in non-selective medium for 1 or 2 days. The cells were plated in 96 well microplates (round bottom), at 30 cells/microwell in 200 ul of culture medium. Anywhere from 100-400 microwells were prepared, depending on the number of transfectants prepared. Agar colony tests gave estimates of 500-3000. After 5 days, the wells contained about 6x104 cells and replicate plates were prepared by transferring 1/10 of the wells to microplates which were then incubated at 30°C. One day later, master plates were centrifuged, medium removed, and 750 CTLs against P815 antigen A (CTL-P1:5) were added to each well together with 106 irradiated syngeneic feeder spleen cells in CTL culture medium containing 40 U/ml recombinant human IL-2, and HAT medium to kill stimulator cells. Six days later, plates were examined visually to identify wells where CTLs had proliferated. Where plates showed proliferating microcultures, aliquots of 100 ul of the wells were transferred to another plate containing 51Cr labeled P1.HTR target cells $(2x10^3 - 4x10^3 \text{ per well})$, and chromium release

17

was measured after 4 hours. Replicate microcultures corresponding to those showing high CTL activity were expanded and cloned by limited dilution in DMEM with 10% FCS. Five days later, about 200 clones were collected and screened with the CTL.P1:5 cell line, described supra, in a visual lysis assay. See figure 1A for these results.

In these experiments, three of the fifteen groups of transfectants yielded a few positive microcultures. These microcultures were tested for lytic activity against P1.HTR, as described <u>supra</u>. Most of the microcultures where proliferation was observed showed lytic activity. This activity was well above background, as shown in figure 1B. This figure summarizes data wherein two groups of cells (groups "5" and "14"), 400 and 300 microwells were seeded with 30 hygromycin resistant transfected cells. Amplification and duplication of the microcultures was followed by addition of anti-A CTL P1:5. Six days later, lytic activity against P1.HTR was tested. In the figure, each point represents lytic activity of a single microculture.

10

20

Duplicate microcultures corresponding to several positive wells were subcloned, and more than 1% of the subclones were found to be lysed by anti-A CTL. Thus, three independent transfectants expressing P815A were obtained from 33,000 hygromycin resistant transfectants. One of these lines, referred to hereafter as P1A.T2 was tested further.

18

The relevant antigen profile of P1A.T2 is shown in figure 2, this being obtained via anti-CTL assays of the type described supra.

Example 4

The CTL assays carried out for P1A.T2 demonstrated that it presented antigen A ("P815A"), and therefore had received the gene from P1.HTR. To that end, this cell line was used as a source for the gene for the antigen precursor in the following experiments.

10

20

Prior work had shown that genes coding for tumantigens could be recovered directly from transfectants obtained with a cosmid library. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). This procedure was followed for recovery of the P815 gene.

Total genomic DNA of P1A.T2 was partially digested with restriction endonuclease Sau 3A1, and fractionated by NaCl density gradient ultracentrifugation to enrich for 35-50 kb DNA fragments, following Grosveld et al., Gene 10:6715-6732 (1982). These fragments were ligated to cosmid arms of C2RB, described by Bates et al., Gene 26: 137-146 (1983), the disclosure of which is incorporated by reference. These cosmid arms had been obtained by cleavage with SmaI and treatment with calf intestinal phosphatase, followed by digestion with BamHI. Ligated DNA was packaged into lambda phage components, and titrated on E. coli ED 8767, following Grosveld et al., supra. Approximately 9x105

ampicillin resistant colonies were obtained per microgram of DNA insert.

The cosmid groups were amplified by mixing 30,000 independent cosmids with 2 ml of ED 8767 in 10 mM MgCl₂, incubated 20 minutes at 37°C, diluted with 20 ml of Luria Bertani ("LB") medium, followed by incubation for one hour. This suspension was titrated and used to inoculate 1 liter of LB medium in the presence of ampicillin (50 ug/ml). At a bacterial concentration of 2x10⁸ cells/ml (OD₆₀₀=0.8), a 10 ml aliquot was frozen, and 200 ug/ml chloramphenicol was added to the culture for overnight incubation. Total cosmid DNA was isolated by alkaline lysis procedure, and purified on CsCl gradient.

In these experiments, a library of 650,000 cosmids was prepared. The amplification protocol involved the use of 21 groups of approximately 30,000 cosmids.

Example 5

10

20

Using the twenty-one groups of cosmids alluded to supra, (60 ug) and 4 ug of pHMR272, described supra, groups of 5x10⁶ PO.HTR cells were used as transfectant hosts. Transfection was carried out in the same manner as described in the preceding experiments. An average of 3000 transfectants per group were tested antigen for presentation, again using CTL assays as described. group of cosmids repeatedly yielded positive transfectants, at frequency of about 1/5,000 drug resistant

20

transfectants. The transfectants, as with P1A.T2, also showed expression of both antigen A and B. The pattern of expression of transfectant P1A.TC3.1 is shown in figure 2.

Example 6

10

As indicated in Example 5, supra, three independent cosmid transfected cells presenting P815A antigen were isolated. The DNA of these transfectants was isolated and packaged directly with lambda phage extracts, following DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). The resulting product was titrated on <u>E. coli</u> ED 8767 with ampicillin selection, as in Example 5. Similarly, amplification of the cosmids and transfection followed Example 5, again using PO.HTR.

High frequencies of transfection were observed, as described in Table 1, which follows:

Table 1. Transfer of the expression of antigen PE15A by cosmids obtained by direct packaging

Transfectant obtained with the cosmid library	No. of cosmids obtained by direct packaging of 0.5 µg of DNA	No. of transfectants expressing P815A / no. of HmB ^T transfectants	;
·	32	87/192	
TC3.1	52		
TC3.2	32000	49/384	
TC3.3	44	25/72	

The cosmids were analyzed with restriction enzymes and it was found that directly packaged transfectant P1A.TC3.1 contained 32 cosmids, 7 of which were different. Each of these 7 cosmids was transfected into PO.HTR, in the manner described supra, and again, following the protocols described above, transfectants were studied for presentation of P815A. Four of the cosmid transfectants showed P815A presentation and, as with all experiments described herein, P815B was co-expressed.

Of the four cosmids showing presentation of the two antigens, cosmid C1A.3.1 was only 16.7 kilobases long, and was selected for further analysis as described <u>infra</u>.

The cosmid C1A.3.1 was subjected to restriction endonuclease analysis, yielding the map shown in Figure 3.

All EcoRI fragments were transfected, again using the above described protocols, and only the 7.4 kilobase fragment produced a transfectant that anti-A CTLs could lyse. Similar experiments were carried out on the PstI fragments, and only a 4.1 kb fragment fully contained within the 7.4 kb EcoRI fragment produced lysable transfectants.

20

This fragment (i.e., the 4.1 kb PstI fragment), was digested with SmaI, giving a 2.3 kb fragment which also yielded host cells presenting antigens A and B after transfection. Finally, a fragment 900 bases long, secured with SmaI/XbaI, also transferred expression of the precursors of these two antigens, i.e., the transfected host cell presented both antigen A and antigen B.

22

Example 7

10

20

The 900 base fragment described above was used as a probe to detect the expression of the P815A gene in parent cell line P1.HTR. To accomplish this, total cellular RNA was first isolated using the guanidine-isothiocyanate procedure of Davis et al., <u>Basic Methods In Molecular Biology</u> (Elseview Science Publishing Co, New York) (1986). The same reference was the source of the method used to isolate and purify polyA⁺ mRNA using oligodT cellulose column chromatography.

Samples were then subjected to Northern Blot analysis. RNA samples were fractionated on 1% agarose gels containing 0.66 M formaldehyde. The gels were treated with 10xSSC (SSC: 0.15 M NaCl; 0.015 M sodium citrate, pH 7.0) for 30 minutes before overnight blotting on nitrocellulose membranes. These were baked for two hours at 80°C, after which the membranes were prehybridized for 15 minutes at 60°C in a solution containing 10% dextran sulfate, 1% SDS and 1M NaCl. Hybridization was then carried out using denatured probe (the 900 base fragment), together with 100 ug/ml salmon sperm DNA.

When this protocol was carried out using P1.HTR poly A^+ RNA, a band of 1.2 kb and two fainter bands were identified, as shown in Figure 4, lane 1 (6 ug of the RNA).

The same probe was used to screen a cDNA library, prepared from poly- A^{\dagger} RNA from the cell line. This yielded

23

a clone with a 1kb insert, suggesting a missing 5' end. The Northern blots for the cDNA are not shown.

Hybridization experiments in each case were carried out overnight at 60°C. The blots were washed twice at room temperature with 2xSSC and twice at 60°C with 2xSSC supplemented with 1% SDS.

The foregoing experiments delineated the DNA expressing the P815A antigen precursor sufficiently to allow sequencing, using the well known Sanger dideoxy chain termination method. This was carried out on clones generated using a variety of restriction endonucleases and by specific priming with synthetic oligonucleotide primers. The results for exons of the gene are set forth in sequence id no: 4.

Example 8

10

20

The Northern analysis described <u>supra</u> suggested that the 5' end of the cDNA was missing. To obtain this sequence, cDNA was prepared from P1.HTR RNA using a primer corresponding to positions 320-303. The sequence was then amplified using the polymerase chain reaction using a 3' primer corresponding to positions 286-266 and a 5' primer described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). A band of the expected size (270 bases) was found, which hybridized to the 900 bp SmaI/XbaI fragment described <u>supra</u> on a Southern blot. Following cloning into m13tg 130 λ tg 131, the small, 270 bp fragment was sequenced. The sequence is shown in sequence id no: 1.

Example 9

10

20

Following the procurement of the sequences described in Examples 7 and 8 and depicted in seq id no: 4, a 5.7 kb region of cosmid C1A.3.1 was sequenced. This fragment was known to contain the 900 base fragment which expressed P815A in transfectants. This experiment permitted delineation of introns and exons, since the cosmid is genomic in origin.

The delineated structure of the gene is shown in figure 5. Together with seq id no: 4, these data show that the gene for the antigen precursor, referred to as "PIA" hereafter, is approximately 5 kilobases long and contains 3 exons. An ORF for a protein of 224 amino acids starts in exon 1, ending in exon 2. The 900 base pair fragment which transfers expression of precursors for antigens A and B only contains exon 1. The promoter region contains a CAAT box, as indicated in seq. id no: 1, and an enhancer sequence. This latter feature has been observed in promoters of most MHC class I genes, as observed by Geraghty et al., J. Exp. Med 171: 1-18 (1990); Kimura et al., Cell 44: 261-272 (1986).

A computer homology search was carried out, using program FASTA with K-triple parameters of 3 and 6, as suggested by Lipman et al., Science 227: 1435-1441 (1985), and using Genbank database release 65 (October 1990). No homology was found except for a stretch of 95 bases corresponding to part of an acid region coded by exon 1 (positions 524-618), which is similar to sequences coding

25

for acidic regions in mouse nucleolar protein NO38/B23, as described by Bourbon et al., Mol. Biol. 200: 627-638 (1988), and Schmidt-Zachmann et al., Chromosoma 96: 417-426 (1988). Fifty six of 95 bases were identical. In order to test whether these homologies were the reason for cross hybridizing, experiments were carried out using a mouse spleen cDNA library screened with the 900 base fragment. cDNA clones corresponding closely to the sizes of the cross hybridizing bands were obtained. These were partially sequenced, and the 2.6 kb cDNA was found to correspond exactly to reported cDNA sequence of mouse nucleolin, while the 1.5 kb cDNA corresponded to mouse nucleolar protein NO38/B23.

10

20

Analysis of the nucleotide sequence of the gene, referred to as "P1A" hereafter, suggests that its coded product has a molecular mass of 25 kd. Analysis of the sequence id no: 4 shows a potential nuclear targeting signal at residues 5-9 (Dingwall et al., Ann. Rev. Cell Biol. 2: 367-390 (1986)), as well as a large acidic domain at positions 83-118. As indicated supra, this contains the region of homology between P1A and the two nucleolar proteins. A putative phosphorylation site can be found at position 125 (serine). Also, a second acidic domain is found close to the C-terminus as an uninterrupted stretch of 14 glutamate residues. A similar C-terminal structure has been found by Kessel et al. Proc. Natl. Acad. Sci. USA 84: 5306-5310 (1987), in a murine homeodomain protein having nuclear localization.

26

In studies comparing the sequence of gene P1A to the sequences for P91A, 35B and P198, no similarities were found, showing that P1A is indicative of a different class of genes and antigens.

Example 10

10

20

in P1A probe and sequence With the investigations were carried out to determine whether the gene present in normal tissue was identical to that expressed by the tumor. To do this, phage libraries were prepared, using lambda zapII 10 and genomic DNA of DBA2 P1A was used as a probe. murine kidney cells. Hybridization conditions were as described supra, and a hybridizing clone was found. The clone contained exons one and two of the P1A gene, and corresponded to positions -0.7 to 3.8 of figure 5. Following localization of this sequence, PCR amplification was carried out to obtain the sequence corresponding to 3.8 to 4.5 of figure 5.

Sequence analysis was carried out, and no differences were found between the gene from normal kidneys and the P1A gene as obtained from the P815 tumor cells.

In further experiments, the gene as found in DBA/2 kidney cells was transfected into PO.HTR, as described supra. These experiments, presented pictorially in figure 7, showed that antigens A and B were expressed as efficiently by the kidney gene isolated from normal kidney cells as with the P1A gene isolated from normal kidney cells.

27

These experiments lead to the conclusion that the gene coding for the tumor rejection antigen precursor is a gene that does not result from a mutation; rather, it would appear that the gene is the same as one present in normal cells, but is not expressed therein. The ramifications of this finding are important, and are discussed <u>infra</u>.

In studies not elaborated upon herein, it was found that variants of the gene were available. Some cells were "PlA-B+", rather than the normal "PlA". The only difference between these is a point mutation in exon 1, with the 18th triplet coding for Ala in the variant instead of Val.

Example 11

10

Additional experiments were carried out with other cell types. Following the protocols described for Northern blot hybridizations <u>supra</u>, RNA of normal liver and spleen cells was tested to determine if a transcript of the PIA gene could be found. The Northern blot data are presented in figure 4 and, as can be seen, there is no evidence of expression.

The murine P815 cell line from which P1A was isolated is a mastocytoma. Therefore, mast cell lines were studied to determine if they expressed the gene. Mast cell line MC/9, described by Nabel et al., Cell 23: 19-28 (1981), and short term cultures of bone marrow derived mast cells were tested in the manner described supra (Northern blotting), but no transcript was found. In contrast when a Balb/C derived IL-3 dependent cell line L138.8A (Hültner et al.,

J. Immunol. 142: 3440-3446 (1989)) was tested, a strong signal was found. The mast cell work is shown in figure 4.

It is known that both BALB/C and DBA/2 mice share H-2^d haplotype, and thus it was possible to test sensitivity to lysis using the CTLs described <u>supra</u>. Figure 8 shows these results, which essentially prove that anti-A and anti-B CTLs lysed the cells strongly, whereas anti-C and anti-D lines did not.

Further tests were carried out on other murine tumor cell lines, i.e., teratocarcinoma cell line PCC4 (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977), and leukemias LEC and WEH1-3B. Expression could not be detected in any of these samples.

Example 12

10

20

The actual presentation of the P1A antigen by MHC molecules was of interest. To test this, cosmid C1A.3.1 was transfected into fibroblast cell line DAP, which shows phenotype $H-2^k$. The cell lines were transfected with genes expressing one of the K^d , D^d , and L^d antigen. Following transfection with both the cosmid and the MHC gene, lysis with CTLs was studied, again as described <u>supra</u>. These studies, summarized in Table 2, show that L^d is required for presentation of the P1A antigens A and B.

Table 2. H-2-restriction of antigens PE15A and PE15B

Recipient cell*	No of clones lysed by the CTL/ no. of HmB* clones*		
	CTL anti-A	CTL anti-B	
DAP (H-2k)	0/208	0/194	
DAP + Kd	D/165	0/162	
DAP + Dd	0/157	0/129	
DAP+1d	25/33	15/20	

^{*}Cosmid C1A.3.1 containing the entire P1A gene was transferred in DAP cells previously transferred with H-2d class I genes as indicated.

The observation that one may associate presentation of a tumor rejection antigen with a particular MHC molecule was confirmed in experiments with human cells and HLA molecules, as elaborated upon <u>infra</u>.

Example 13

10

Using the sequence of the P1A gene as well as the amino acid sequence derivable therefrom, antigenic peptides which were A^+ B^+ (i.e., characteristic of cells which express both the A and B antigens), and those which are $A^ B^+$ were identified. The peptide is presented in Figure 10. This peptide when administered to samples of PO.HTR cells

[&]quot;Independent drug-resistant colonies were tested for lysis by anti-A or anti-B CTL in a visual assay.

30

in the presence of CTL cell lines specific to cells presenting it, led to lysis of the PO.HTR cells, lending support to the view that peptides based on the product expressed by the gene can be used as vaccines.

Example 14

10

20

The human melanoma cell line referred to hereafter as MZ2-MEL is not a clonal cell line. It expresses four stable antigens recognized by autologous CTLs, known as antigens "D, E, F, and A". In addition, two other antigens "B" and "C" are expressed by some sublines of the tumor. CTL clones specific for these six antigens are described by Van den Eynde et al., Int. J. Canc. 44: 634-640 (1989). Among the recognized subclones of MZ2-MEL are MEL.43, MEL3.0 and MEL3.1. (Van den Eynde et al., supra). Cell line MEL3.1 expresses antigen E, as determined by CTL studies as described for P815 variants, supra, so it was chosen as a source for the nucleic acid sequence expressing the antigen precursor.

In isolating the pertinent nucleic acid sequence for a tumor rejection antigen precursor, the techniques developed <u>supra</u>, showed that a recipient cell is needed which fulfills two criteria: (i) the recipient cell must not express the TRAP of interest under normal conditions, and (ii) it must express the relevant class I HLA molecule. Also, the recipient cell must have a high transfection frequency, i.e., it must be a "good" recipient.

31

In order to secure such a cell line, the clonal subline ME3.1 was subjected to repeated selection with anti-E CTL 82/30 as described by Van den Eynde, <u>supra</u>. The repeated cycles of selection led to isolation of subclone MZ2-MEL-2.2 isc E^- . This subclone is also HPRT, (i.e., sensitive to HAT medium: 10^{-4} M hypoxanthine, 3.8 x 10^{-7} aminopterine, 1.6 x 10^{-5} M 2-deoxythymidine). The subclone is referred to as "MEL-2.2" for simplicity hereafter.

Example 15

20

The genomic DNA of MEL3.0 was prepared following Wölfel et al., Immunogenetics 26: 178-187 (1987), the disclosure of which is incorporated by reference. The plasmid pSVtkneoß, as described by Nicolas et al., Cold Spring Harb., Conf. Cell Prolif. 10: 469-485 (1983) confers geneticin resistance, so it can be used as a marker for cotransfection, as it was in this experiment.

Following a procedure similar but not identical to that of Corsao et al., Somatic Cell Molec. Genet 7: 603-616 (1981), total genomic DNA and the plasmid were cotransfected. The genomic DNA (60 μ g) and plasmid DNA (6 μ g) were mixed in 940 μ l of 1 mM Tris·HCl (pH 7.5), 0.1 mM EDTA, after which 310 μ l of 1M CaCl₂ was added. This solution was slowly added, under constant agitation, to 1.25 ml of 2xHBS (50 mM HEPES, 280 mM NaCl 1.5 mM Na₂HPO₄, adjusted to pH 7.1 with NaOH). The calcium phosphate DNA precipitates were allowed to form for 30-45 minutes at room

temperature, after which they were applied to 80 cm² tissue culture flasks which had been seeded 24 hours previously with 3x10⁶ MEL2.2 cells, in 22.5 ml of melanoma culture medium (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal calf serum. After 24 hours, the medium was replaced. Forty eight hours after transfection, the cells were harvested and seeded at 4x10⁶ cells per 80 cm² flask in melanoma culture medium supplemented with 2 mg/ml of geneticin. The geneticin serves as a selection marker.

10 Example 16

Thirteen days after transfection, geneticin-resistant colonies were counted, harvested, and cultured in nonselective medium for 2 or 3 days. Transfected cells were then plated in 96-well microplates at 200 cells/well in 200 ul of culture medium with 20% fetal calf serum (FCS) in order to obtain approximately 30 growing colonies per well. The number of microcultures was aimed at achieving redundancy, i.e., such that every independent transfectant should be represented at least four times.

20

After 10 days, wells contained approximately 6×10^4 cells. These cells were detached, and 1/3 of each microculture was transferred to a duplicate plate. After 6 hours, i.e., after readherence, medium was removed and 1500 anti-E CTL (CTL 82/30), were added to each well in 100 μ l of CTL culture medium with 35 U/ml of IL-2. One day later, the supernatant (50 μ l) was harvested and examined

33

for TNF concentration, for reasons set forth in the following example.

Example 17

10

20

The size of the mammalian genome is 6×10^6 kb. As the average amount of DNA integrated in each drug-resistant transfectant was expected to be about 200 kb, a minimum of 30,000 transfectants would need to be examined to ascertain whether antigen E had been transfected. Prior work with murine cells had shown that when a CTL stimulation assay was used, groups containing only 3% of cells expressing the antigen of interested could be identified. This should reduce the number of assays by a factor of 30. While an anti-E CTL assay, as described supra, in mixed E⁺/E⁻ cells was helpful, it was not sufficient in that consistent results could not be obtained.

As a result, an alternative test was devised. Stimulation of CTLs was studied by release of tumor necrosis factor ("TNF") using well known methodologies which need not be repeated here. As described in Example 15, 1500 CTL 82/30 cells had been added per well of transfectants. These CTLs were collected 6 days after stimulation. As indicated supra, after 1/3 of the cells in each well had been removed and the remaining 2/3 (4×10^4) had readhered, the CTLs and IL-2 were added thereto. The 50 μ l of supernatant was removed 24 hours later and transferred to a microplate containing 3×10^4 W13 (WEHI-164 clone 13;

10

20

Espevik et al., J. Immunol. Meth. 95: 99-105 (1986)) cells in 50 μ l of W13 culture medium (RPMI-1640, supplemented with L-arginine (116 mg/l), L-asparagine (36 mg/l), L-glutamine (216 mg/l), and 10% FCS supplemented with 2 μ g of actinomycin D at 37% in an 8% CO₂ atmosphere. The cell line W13 is a mouse fibrosarcoma cell line sensitive to TNF. Dilutions of recombinant TNF-B in RPMI 1640 were added to target cell controls.

The W13 cultures were evaluated after 20 hours of incubation, and dead cell percentage was measured using an adaptation of the colorimetric assay of Hansen et al., J. Immunol. Meth. 119: 203-210 (1989). This involved adding (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 50 ml tetrazolium bromide at 2.5 mg/ml in PBS, followed by two hours of incubation at 37°C. Dark blue formazan crystals were dissolved by adding 100 μ l of lysis solution (1 volume N,N dimethyl formamide mixed at 37°C with two volumes of water containing 30% (w/v) sodium dodecyl sulphate, at pH 4.7 from 1.6% acetic acid and 2.5% 1N HCl). Plates were incubated at 37°C overnight, and ODs were taken at 570 nm using 650 nm as control. Dead cell percentage was determined via the formula:

35

following Espevik et al., J. Immunol. Meth. 95: 99-105 (1986). The results showed that even when the ratio of E^+/E^- cells was as low as 1/45, significant production of TNF was observed, thus showing active CTLs. This led to the decision to test the drug resistant transfectants in groups of 30.

Example 18

10

20

Cells were tested for TNF production as discussed in Example 17, supra. A total of 100 groups of E⁻ cells (4x10⁶ cells/group) were tested following transfection, and 7x10⁴ independent geneticin resistant transfectants were obtained, for an average of 700 per group. Only one group of transfected cells led to a microculture which caused anti-E antigen CTL clone 82/30 to produce TNF. Of 300 clones tested, 8 were positive. These clones were then tested for lysis by anti-E CTL, using the standard ⁵¹Cr release assay, and were found to be lysed as efficiently as the original E⁺ cell line. The transfectant E.T1, discussed herein, had the same lysis pattern as did MEL2.2 for CTLs against antigens B,C,D and F.

The fact that only one transfectant presented the antigen out of 70,000 geneticin resistance transfectants may at first seem very low, but it is not. The work described <u>supra</u> for P815 showed an average frequency of 1/13,000. Human DNA recipient MEL2.2 appears to integrate 5 times less DNA than P1.HTR.

36

Example 19

Once transfectant E.T1 was found, analysis had to address several questions including whether an E⁺ contaminant of the cell population was the cause. The analysis of antigen presentation, described <u>supra</u>, shows that E.T1 is B⁻ and C⁻, just like the recipient cell MEL2.2. It was also found to be HPRT⁻, using standard selection procedures. All E⁺ cells used in the work described herein, however, were HPRT⁺.

10

20

It was also possible that an E⁺ revertant of MEL2.2 was the source for E.T1. To test this, the observation by Perucho et al., Cell 22: 309-317 (1980), that cotransfected sequences usually integrate together at a single location of recipient genome was employed. If antigen E in a transfectant results from cotransfec-tion with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. Wölfel et al., supra, has shown this to be true. normally E cell is transfected with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. If a normally E⁺ cell transfected with pSVtkneoß is E.T1, however, "co-deletion" should not take place. subjected transfectant E.T1 was to this, the immunoselection with 82/30, as described supra. antigen loss variants were obtained, which resisted lysis Neither of these had lost geneticin by this CTL.

37

resistance; however, Southern blot analysis showed loss of several neo^r sequences in the variants, showing close linkage between the E gene and neo^r gene in E.T1, leading to the conclusion that E.T1 was a transfectant.

Example 20

10

20

The E⁺ subclone MZ2-MEL 4B was used as a source of DNA for preparation of a cosmid library. This library of nearly 700,000 cosmids was transfected into MZ2-MEL 2.2 cells, following the cosmid transfection protocols described supra.

By packaging the DNA of cosmid transfectants directly into lambda phase components, it is sometimes possible to retrieve cosmids that contain the sequences of interest. This procedure was unsuccessful here, so we rescued the transfected sequence by ligating DNA of the transfectant to appropriate restriction fragments of cosmid vector pTL6. This was tried with two transfectants and was successful with one of them. One cosmid, referred to as B3, was recovered from this experiment, and subjected restriction endonuclease digestion via XmaI, or by BamHI digestion of a large, 12 kb XmaI transfected fragment. The fragments were cloned into vector pTZ 18R, and then transfected into MEL2.2. Again, TNF production was the measure by which successful transfection was determined. The experiments led to the determination of a gene sequence capable of transfecting antigen E on the 12 kb XmaI

fragment, and then on the 2.4 kb fragment of BamHI digestion of the 12 kb segment.

The 2.4 kb fragment hybridizes with a 2.4 kb fragment from MZ2-MEL and with a T cell clone of patient MZ-2, as determined by Southern Blots (BamHI/SmaI digested DNA). The band is absent from E antigen loss variants of MZ2-MEL, as seen in Figure 12.

39

The sequence for the E antigen precursor gene has been determined, and is presented herein:

1 30-1 40 1 50 ' '1 20 1 GONTOLAGOS DETGICAGON ANNATARNAS GOSCETGOST GAGNACAGAS GOSCITATOS 60 \$1 ACTIONATIONS ACTIONSCATE TEXANDATE: EASCECASES TECTOSTAGE ACTIONALISE 120 121 CAGGOCTOTO CTTGCGGTCT OCACCCTGAG GOCCCGTGGA TTCCTCTTCC TGGAGCTCCA 180 181 GENACCAGGE AGTGAGGGET TOTTETGAGA ENGTATECTE AGGTENEAGA GENGAGGATG 240 241 CACAGGGTGT GCCAGGAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGGC CCACGTGCCA 300 301 CAGGACACAT AGGACTOCAC AGAGTOTGGC CTCACCTCCC EACTGTCAGT CCTGTAGAAT 360 361 EGACCTETGE TEGECEGETE EXECUTAGE ACCEPTENC TREFFETTE AGGITTICAG 420 421 GGGACAGGCC AACCCAGAGG ACAGGATTCC CTGGAGGCCA CAGAGGAGCA CCAAGGAGAA 480 481 GATOTGIANG TAGGOCTITG FINGAGTOTC CANGGTTCNG TTCTCAGCTG AGGCCTCTCN 540 541 EXEXETECE: ETCTECCEAG GCCTGTGGGT · CTTEXTTGCC EXGCTCCTGC ECXEXCTCCT &00 601 GOOTGOTGOO ETGACGAGAG TEATEATGTO TOTTGAGCAG AGGAGTOTGC ACTGCAAGCO 660 661 TEAGGLAGGE ETTEAGGEES AACHAGAGGS ECTEGGETEG TOTGTGTGCA GGCTGCCACC 720 721 TECTECTECT ETECTETOCT ECTOSSEACE CTOSAGGAGG TOCCEACTGC TOCCTEAALA 760 781 GATECTOCCC AGAGTECTEA GOGAGCCTCC GCCTTTCCCA CTACCATCAA CTTCACTCGA 840 \$41 CAGAGGEAAC CCAGTGAGGG TTCCAGCAGC CGTGAAGAGG AGGGGGCCAAG CACCTCTTGT 900 901 ACCOMBAGE CONTRETECTS AGGASTANC ACTAMBANGS TROOPSANCE GOTTOSTETT 960 961 CTGCTCCTCA AATATCGAGC CAGGGAGCCA GTCACAAAG CAGAAATGCT GGAGAGTGTC 1020 1021 ATCANANTT ACANGENETS TITTECTGAG ATCTTCGGCA AAGCCTCTGA GTCCTTGCAG 1080 108: CTGG:CTTGG GCATTGACGT GAAGGAAGCA GACCCCACGG GCCACTCCTA TGTCCTTGTC 1140 2141 ACCTOCCTAG GTCTCTCCTA TGATGGCCTG CTGGGTGATA ATCAGATCAT GCCCAAGACA 2200 1201 GEOTTOCTGA TAATTGTCCT GGTEATGATT GCAATGGAGG GCGGCCATGC TCCTGAGGAS 1260 1261 GAAATETOGG AGGAGETGAG TUTGATGAG UTGIATEATG GGAGGGAGCA CAGTGCCIAT 1320 1321 GGGGAGCCCA GGAAGCTGCT CACCCAAGAT TIGGTGCASG AAAAGTACCT GGAGTACGGC 1360 1381 AGGTGCCGGA CAGTGATCCC GCACGCTATG AGTTCCTGTG GGGTCCAAGG GCCCTCCCTG 1440 1441 AMACCAGCTA TETGAMAGIC ETIGAGIATG TEATCAAGGT CAGTGCAAGA GITCGCTTTI 1500 1501 TETTECCATE CONGCINENA GENERATION. ENGAGENGIA NENGGENGIO TONGCATUNG 1560 1561 TIGCAGCCAA GCCCASIGGS ASSOCGARIEG GCCCAGIGCA ECTICCAGGG ECCCGTICAG 1620 1621 EAGCTTCCCC TOCCTCOTGT GACATGAGGC ELATTCTTCA ETCTGAAGAG AGCGGTCAGT 1610 2681 GITCICAGIA GIAGGIFFCI GITCIANTGC GIGACTIGGA GATTIANCIT IGITCICITI 1740 2741 TOGULTTOTT CALATOTTTI TTITILAGGG ATGUTTGALI GALCTTCAGC ATCCAAGTTI 1800 1801 ATGANTGACA GCAGTCACAC ACTICIGIGI ANANAGITIA AGGGIAAGAG TCTTGTGTTT 1860 1861 TATTCAGATT OGSAAATCCA TTCTAFTTTG PGAATTGGGA TAATAACAGC AGTGGAATAA 1920 1921 STACTIAGUA ATGTGANANA TGAGCAGTAA AATAGATGAG ATANAGAACT AUAGNATTA 1960 2911 AGAGATAGIC AAITCITGCC TTATACCTCA GTCTATTCTG TAAAATTTTT AAAGATATAT 2040 2041 GEATACOTGS ATTICCTTGS CTICTTTGAG AATGEAAGAG AAATTAAATC TGAATAAAGA 2100 2101 ACTOTICETS TTCACTGGCT ETTITCTTCT CCATGCACTS AGENTCTGCT STTTGGAAGS 2160 2161 COCTGGGTIA GTAGTGGAGA TGCTAAGGTA AGCCAGACTC ATACCCACCC ATAGGGTCGT 2220 2221 AGASTOTAGG AGCTGCAGTC ACGTAATCGA GGTGGCAAGA TGTCCTCTAA AGATGTAGGG 2210 2211 AAAASTGAGA GAGGGSTGAG OGTGTGGGGG TCCCGGTTGAG ADTGGTGGAG TGTCAATGCC 2340 2311 CTGAGCTGGG GCATTTTGGG CTTTGGGAAA CTGCAGTTCC TTCTGGGGGA QCTGATTGTA 2400 2401 ATGATETTOS STOCATOS 2418 1 10 1 20 1 30 1 40 1 50

Example 21

After the 2.4 kb genomic segment had been identified, studies were carried out to determine if an "E+" subline expressed any homologous DNA. Cell line MZ2-MEL 3.0 was used as a source, and a cDNA library was prepared from its mRNA, using art known techniques. The 2.4 kb segment was used as a probe, and mRNA of about 1.8 kb was identified as homologous, using Northern blot analysis. When cDNA was screened, clones were obtained showing almost complete identity to parts of the 2.4 kb fragment. Two exons were thus identified. An additional exon was located upstream of these, via sequencing segments of cosmid B3 located in front of the 2.4 kb BamHI fragment. The gene extends over about 4.5 kb, as shown in Figure 8. The starting point of the transcribed region was confirmed using PCR for the 5' end of the cDNA. The three exons comprise 65, 73, and 1551 base pairs. An ATG is located at position 66 of exon 3, followed by an 828 base pair reading frame.

Example 22

20

10

To determine if smaller segments of the 2.4 kb fragment could transfer the expression of antigen E, smaller pieces corresponding to the larger gene were prepared, using art recognized techniques, and transferred into E cells. Figure 8 shows the boundaries of the three segments.

41

Transfer of antigen expression in this manner indicates that the gene codes for the antigen precursor, rather than coding for a protein which activates the antigen.

Example 23

10

20

The probing of cDNA described supra revealed, surprisingly, two different but closely related cDNAs. These cDNAs, when tested, did not transfer expression of antigen E, but they do show substantial homology to the first cDNA segment. The three segments, appear to indicate a newly recognized family of genes, referred to as "MAGE" for "melanoma antigen". In Figure 9, "mage -1" directs expression of the antigen from MZ2 cells. Portions of the third exon of each gene are presented in Figure 9. second and third sequences are more closely related to each other than the first (18.1 and 18.9% difference compared to the first; 12% with each other). Out of 9 cDNA clones obtained, three of each type were obtained, suggesting equal expression. "MAGE" as used hereafter refers to a family of molecules, and the nucleic acids coding for them. These nucleic acids share a certain degree of homology and are expressed in tumor cells including several types of human tumor cells as well as in human tumors. The family is referred to as "MAGE" because the first members were identified in human melanoma cells. As the experiments which follow indicate, however, the members of the MAGE family are not at all restricted to melanoma tumors;

42

rather, MAGE refers to a family of tumor rejection antigen precursors and the nucleic acid sequences coding therefore.

The antigens resulting therefrom are referred to herein as "MAGE TRAS" or "melanoma antigen tumor rejection antigens"

Example 24

10

20

Experiments with mouse tumors have demonstrated that new antigens recognized by T cells can result from point mutations that modify active genes in a region that codes for the new antigenic peptide. New antigens can also arise from the activation of genes that are not expressed in most normal cells. To clarify this issue for antigen MZ2-E, the mage-1 gene present in the melanoma cells was compared to that present in normal cells of patient MZ2.

Amplification by polymerase chain reaction (PCR) of DNA of phytohemagglutinin-activated blood lymphocytes using primers surrounding a 1300 bp stretch covering the first half of the 2.4 kb fragment was carried out. As expected, a PCR product was obtained whereas none was obtained with the DNA of the E variant. The sequence of this PCR product proved identical to the corresponding sequence of the gene carried by the E melanoma cells. Moreover, it was found that antigen MZ2-E was expressed by cells transfected with the cloned PCR product. This result suggests that the activation of a gene normally silent is responsible for the appearance of tumor rejection antigen MZ2-E.

43

Example 25

10

20

In order to evaluate the expression of gene mage-1 by various normal and tumor cells, Northern blots were hybridized with a probe covering most of the third exon. In contrast with the result observed with human tumor cell line MZ2-MEL 3.0, no band was observed with RNA isolated from a CTL clone of patient MZ2 and phytohemagglutininactivated blood lymphocytes of the same patient. negative were several normal tissues of other individuals (Figure 10 and Figure 11). Fourteen melanoma cell lines of other patients were tested. Eleven were positive with bands of varying intensities. In addition to these culture cell lines, four samples of melanoma tumor tissue were analyzed. Two samples, including a metastasis of patient MZ2 proved positive, excluding the possibility that expression of the gene represented a tissue culture A few tumors of other histological types, artefact. including lung tumors were tested. Most of these tumors were positive (Figures 10 and 11). These results indicated that the MAGE gene family is expressed by many melanomas and also by other tumors. However, they provided no clear indication as to which of genes mage-1, 2 or 3 were expressed by these cells, because the DNA probes corresponding to the three genes cross-hybridized to a To render this analysis more considerable extent. specific, PCR amplification and hybridization with highly specific oligo- nucleotide probes were used. cDNAs were obtained and amplified by PCR using oligonucleotide primers

44

corresponding to sequences of exon 3 that were identical for the three MAGE genes discussed herein. The PCR products were then tested for their ability to hybridize to showed complete three other oligonucleotides that specificity for one of the three genes (Figure 9). Control experiments carried out by diluting RNA of melanoma MZ2-MEL 3.0 in RNA from negative cells indicated that under the conditions used herein the intensity of the signal decreased proportionally to the dilution and that positive signals could still be detected at a dilution of 1/300. The normal cells (lymphocytes) that were tested by PCR were confirmed to be negative for the expression of the three MAGE genes, suggesting therefore a level of expression of less than 1/300 th that of the MZ2 melanoma cell line (Figure For the panel of melanoma cell lines, the results 11). clearly showed that some melanomas expressed MAGE genes mage 1, 2 and 3 whereas other expressed only mage-2 and 3 Some of the other tumors also (Figures 11 and 10). expressed all three genes whereas others expressed only mage-2 and 3 or only mage-3. It is impossible to exclude formally that some positive PCR results do not reflect the expression of one of the three characterized MAGE genes but that of yet another closely related gene that would share the sequence of the priming and hybridizing oligonucleotides. It can be concluded that the MAGE gene family is expressed by a large array of different tumors and that these genes are silent in the normal cells tested to this point.

10

20

45

Exammple 26

10

20

The availability of a sequence that transfects at high efficiency and efficiently expresses a TRAP made it possible to search for the associated major histocompatibility complex (MHC) class I molecule. The class I specificities of patient MZ2 are HLA-A1, A29, B37, B44 and C6. Four other melanomas of patients that had A1 in common with MZ2 were cotransfected with the 2.4 kb fragment and pSVtkneoß. Three of them yielded neor transfectants that stimulated TNF release by anti-E CTL clone 82/30, which is CD8+ (Figure 10). No E- transfectant was obtained with four other melanomas, some of which shared A29, B44 or C6 with MZ2. This suggests that the presenting molecule for antigen MZ2-E is HLA-A1. In confirmation, it was found that, out of 6 melanoma cell lines derived from tumors of HLA-A1 patients, two stimulated TNF release by anti-E CTL clone 82/30 of patient MZ2. One of these tumor cell lines, MI13443-MEL also showed high sensitivity to lysis by these anti-E CTL. These two melanomas were those that expressed mage-1 gene (Figure 13). Eight melanomas of patients with HLA haplotypes that did not include Al were examined for their sensitivity to lysis and for their ability to stimulate TNF release by the CTL. None was found to be positive. The ability of some human anti-tumor CTL to lyse allogeneic tumors sharing an appropriate HLA specificity with the original tumor has been reported previously (Darrow, et al., J. Immunol. 142: 3329 (1989)). quite possible that antigenic peptides encoded by genes

46

mage 2 and 3 can also be presented to autologous CTL by HLA-A1 or other class I molecules, especially in view of the similar results found with murine tumors, as elaborated upon supra.

Example 27

10

20

As indicated <u>supra</u>, melanoma MZ2 expressed antigens F, D and A', in addition to antigen E. Following the isolation of the nucleic acid sequence coding for antigen E, similar experiments were carried out to isolate the nucleic acid sequence coding for antigen F.

To do this, cultures of cell line MZ2-MEL2.2, an E-cell line described <u>supra</u>, were treated with anti-F CTL clone 76/6, in the same manner described for treatment with anti-E CTL clones. This resulted in the isolation of an F antigen loss variant, which was then subjected to several rounds of selection. The resulting cell line, "MZ2-MEL2.2.5" was completely resistant to lysis by anti-F CTLs, yet proved to be lysed by anti-D CTLs.

Again, following the protocols set forth for isolation of antigen -E precursor DNA, the F variant was transfected with genomic DNA from F cell line MZ2-MEL3.0. The experiments yielded 90,000 drug resistant transfectants. These were tested for MZ2-F expression by using pools of 30 cells in the TNF detection assay elaborated upon supra. One pool stimulated TNF release by anti-F CTLs, and was cloned. Five of 145 clones were found to stimulate anti-

47

F CTLs. Lysis assays, also following protocols described supra, confirmed (i) expression of the gene coding for antigen F, and (ii) presentation of antigen F itself.

Example 28

10

20

Following identification of F⁺ cell lines, the DNA therefrom was used to transfect cells. To do this, a cosmid library of F+ cell line MZ2-MEL.43 was prepared, again using the protocols described supra. The library was divided into 14 groups of about 50,000 cosmids, and DNA from each group was transfected into M22-MEL2.2.5. Transfectants were then tested for their ability to stimulate TNF release from anti-F CTL clone 76/6. Of 14 groups cosmids, one produced two independent transfectants expressing antigen F; a yield of two positives out of 17,500 geniticin resistant transfectants.

Example 29

The existence of a gene family was suggested by the pattern observed on the Southern blot (Figure 12). To do this, the 2.4 kb BamHI fragment, which transferred the expression of antigen M22-E, was labelled with 32p and used as a probe on a Southern Blot of BamHI digested DNA of E + cloned subclone M22-MEL2.2. Hybridization conditions included 50 μ l/cm² of 3.5xSSC, 1xDenhardt's solution; 25 mM sodium phosphate buffer (pH 7.0), 0.5% SDS, 2mM EDTA, where the 2.4 kb probes had been labelled with $[\alpha^{32}p]dCTP$ (2-3000)

48

Ci/mole), at 3x10⁶ cpm/ml. Hybridization was carried out for 18 hours at 65°C. After this, the membranes were washed at 65°C four times for one hour each in 2xSSC, 0.1% SDS, and finally for 30 minutes in 0.1xSSC, 0.1% SDS. To identify hybridization, membranes were autoradiographed using Kodak X-AR film and Kodak X-Omatic fine intensifying screens.

In the following examples, whenever "hybridization" is referred to, the stringency conditions used were similar to those described <u>supra</u>. "Stringent conditions" as used herein thus refers to the foregoing conditions; subject to routine, art recognized modification.

Example 30

10

20

The cDNA coding for mage 4 was identified from a sample of the human sarcoma cell line LB23-SAR. This cell line was found to not express mage 1, 2 or 3, but the mRNA of the cell line did hybridize to the 2.4 kb sequence for mage 1. To study this further, a cDNA library was prepared from total LB23-SAR mRNA, and was then hybridized to the 2.4 kb fragment. A cDNA sequence was identified as hybridizing to this probe, and is identified hereafter as mage 4.

Example 31

Experiments were carried out using PHA-activated lymphocytes from patient "MZ2", the source of the "MZ" cells discussed supra. An oligonucleotide probe which

49

showed homology to mage 1 but not mage 2 or 3 was hybridized with a cosmid library derived from the PHA activated cells. The size of the hybridizing BamHI cosmid fragment, however, was 4.5 kb, thus indicating that the material was not mage 1; however, on the basis of homology to mage 1-4, the fragment can be referred to as "mage 5". The sequence of MAGE 5 is presented in SEQ ID NO: 16.

Example 32

10

20

Melanoma cell line LB-33-MEL was tested. Total mRNA from the cell line was used to prepare cDNA, which was then amplified with oligos CHO9: (ACTCAGCTCCTCCCAGATTT), and CHO10: (GAAGAGGAGGGCCCAAG). These oligos correspond to regions of exon 3 that are common to previously described mage 1, 2 and 3.

To do this, 1 μ g of RNA was diluted to a total volume of 20 μ l, using 2 μ l of 10x PCR buffer, 2 μ l of each of 10 mM dNTP, 1.2 μ l of 25 mM MgCl₂, 1 μ l of an 80 mM solution of CHO9, described supra, 20 units of RNAsin, and 200 units of M-MLV reverse transcriptase. This was followed by incubation for 40 minutes at 42°C. PCR amplification followed, using 8 μ l of 10x PCR buffer, 4.8 μ l of 25 mM MgCl₂, 1 μ l of CHO10, 2.5 units of Thermus acquaticus ("Taq") polymerase, and water to a total volume of 100 μ l. Amplification was then carried out for 30 cycles (1 minute 94°C; 2 minutes at 52°C, 3 minutes at 72°C). Ten μ l of each reaction were then size fractionated on agarose gel,

followed by nitrocellulose blotting. The product was found probe CHO18 oligonucleotide hybridize with (TCTTGTATCCTGGAGTCC). This probe identified mage 1 but not mage 2 or 3. However, the product did not hybridize to probe SEQ 4 (TTGCCAAGATCTCAGGAA). This probe also binds This indicated that the PCR mage 1 but not 2 and 3. product contained a sequence that differed from mage 1, 2 Sequencing of this fragment also indicated and 3. differences with respect to mage 4 and 5. These results indicate a sequence differing from previously identified mage 1, 2, 3, 4 and 5, and is named mage 6.

Example 33

10

20

In additional experiments using cosmid libraries from PHA-activated lymphocytes of MZ2, the 2.4 kb mage 1 fragment was used as a probe and isolated a complementary fragment. This clone, however, did not bind to oligonucleotides specific for mage 1, 2, 3 or 4. The sequence obtained shows some homology to exon 3 of mage 1, and differs from mages 1-6. It is referred to as mage 7 hereafter. Additional screenings yielded mage 8-11.

Example 34

The usefulness of the TRAPs, as well as TRAs derived therefrom, was exemplified by the following.

Exon 3 of mage 1 was shown to transfer expression of antigen E. As a result, it was decided to test whether

51

synthetic peptides derived from this exon 3 could be used to confer sensitivity to anti-E CTL.

To do this, and using standard protocols, cells normally insensitive to anti-E/CTLs were incubated with the synthetic peptides derived from Exon 3.1. Using the CTL lytic assays described <u>supra</u> on P815A, and a peptide concentration of 3 mM, the peptide Glu-Ala-Asp-Pro-Thr-Gly-His-Ser-Tyr was shown to be best. The assay showed lysis of 30%, indicating conferring of sensitivity to the anti-E CTL.

Example 35

10

Nucleic acid sequences referred to as "smage" were isolated from murine cells. Using the protocols described supra, a cosmid library was prepared from the DNA of normal DBA/2 kidney cells, using cosmid vector C2RB. As a probe, the 2.4 kb BamHI fragment of MAGE-1 was used. The DNA was blotted to nylon filters, and these were washed in 2xSSC at 65°C to identify the smage material.

Example 36

Further tissue samples were tested for the presence of MAGE genes, using the protocols discussed <u>supra</u>. Some of these results follow.

There was no expression of the MAGE genes in brain or kidney tumor tissue. Colon tumor tissue showed expression of MAGE 1, 2, 3 and 4, although not all tumors tested showed expression of all MAGE genes. This is also true for

pancreatic tumor (MAGE 1); non-small cell lung (MAGE 1, 2, 3 and 4), prostate (MAGE 1), sarcomas (MAGE 1, 2, 3 and 4), breast (MAGE 1, 2 and 3), and larynx (MAGE 1 and 4).

The foregoing disclosure, including the examples, places many tools of extreme value in the hands of the skilled artisan. To begin, the examples identify and provide a methodology for isolating nucleic acid molecules which code for tumor rejection antigen precursors as well as the nucleic acid molecules complementary thereto. It is known that DNA exists in double stranded form, and that each of the two strands is complementary to the other. Nucleic acid hybridization technology has developed to the point where, given a strand of DNA, the skilled artisan can isolate its complement, or synthesize it.

10

20

"Nucleic acid molecule" as used herein refers to all species of DNA and RNA which possess the properties discussed <u>supra</u>. Genomic and complementary DNA, or "cDNA" both code for particular proteins, and as the examples directed to isolation of MAGE coding sequences show, this disclosure teaches the artisan how to secure both of these.

Similarly, RNA molecules, such as mRNA can be secured. Again, with reference to the skilled artisan, once one has a coding sequence in hand, mRNA can be isolated or synthesized.

Complementary sequences which do not code for TRAP, such as "antisense DNA" or mRNA are useful, e.g., in

probing for the coding sequence as well as in methodologies for blocking its expression.

It will also be clear that the examples show the manufacture of biologically pure cultures of cell lines which have been transfected with nucleic acid sequences which code for or express the TRAP molecules. Such cultures can be used as a source for tumor rejection antigens, e.g., or as therapeutics. This aspect of the invention is discussed infra.

10

Cells transfected with the TRAP coding sequences may also be transfected with other coding sequences. Examples of other coding sequences include cytokine genes, such as interleukins (e.g., IL-2 or IL-4), or major histocompatibility complex (MHC) or human leukocyte antigen (HLA) molecules. Cytokine gene transfection is of value because expression of these is expected to enhance the therapeutic efficacy of the biologically pure culture of the cells in vivo. The art is well aware of therapies where interleukin transfectants have been administered to subjects for treating cancerous conditions. In a particularly preferred embodiment, cells are transfected with sequences coding for each of (i) a TRAP molecule, (ii) an HLA/MHC molecule, and (iii) a cytokine.

20

Transfection with an MHC/HLA coding sequence is desirable because certain of the TRAs may be preferentially or specifically presented only by particular MHC/HLA molecules. Thus, where a recipient cell already expresses the MHC/HLA molecule associated with presentation of a TRA,

54

additional transfection may not be necessary although further transformation could be used to cause over-expression of the antigen. On the other hand, it may be desirable to transfect with a second sequence when the recipient cell does not normally express the relevant MHC/HLA molecule. It is to be understood, of course, that transfection with one additional sequence does not preclude further transfection with other sequences.

The term "biologically pure" as used in connection with the cell line described herein simply means that these are essentially free of other cells. Strictly speaking, a "cell line" by definition is "biologically pure", but the recitation will establish this fully.

10

20

Transfection of cells requires that an appropriate vector be used. Thus, the invention encompasses expression vectors where a coding sequence for the TRAP of interest is operably linked to a promoter. The promoter may be a strong promoter, such as those well known to the art, or a differential promoter, i.e., one which is operative only in specific cell types. The expression vectors may also contain all or a part of a viral or bacterial genome, such as vaccinia virus or BCG. Such vectors are especially useful in preparing vaccines.

The expression vectors may incorporate several coding sequences, as long as the TRAP sequence is contained therein. The cytokine and/or MHC/HLA genes discussed supramay be included in a single vector with the TRAP sequence. Where this is not desired, then an expression system may be

55

provided, where two or more separate vectors are used where each coding sequence is operably linked to a promoter. Again, the promoter may be a strong or differential promoter. Co-transfection is a well known technique, and the artisan in this field is expected to have this technology available for utilization. The vectors may be constructed so that they code for the TRA molecule directly, rather than the TRAP molecule. This eliminates the need for post-translational processing.

10

20

As the foregoing discussion makes clear, the sequences code for "tumor rejection antigen precursors" ("TRAPs") which, in turn, are processed into tumor rejection antigens ("TRAs"). Isolated forms of both of these categories are described herein, including specific examples of each. Perhaps their most noteworthy aspect is as vaccines for treating various cancerous conditions. The evidence points to presentation of TRAs on tumor cells, followed by the development of an immune response and deletion of the cells. The examples show that when various TRAs are administered to cells, a CTL response is mounted and presenting cells are deleted. This is characteristic of vaccines, and hence TRAPs, which are processed into TRAs, and the TRAs themselves may be used, either alone or in pharmaceutically appropriate compositions, as vaccines. Similarly, presenting cells may be used in the same manner, either alone or as combined with ingredients to yield pharmaceutical compositions. Additional materials which may be used as vaccines include

isolated cells which present the TRA molecule on their surface, as well as TRAP fragments, mutated viruses, especially etiolated forms, and transfected bacteria. "Fragments" as used herein refers to peptides which are smaller than the TRA, but which possess the properties required of a vaccine, as discussed supra. Another vaccine comprises or consists of complexes of TRA and HLA molecule. Vaccines of the type described herein may be used preventively, i.e., via administration to a subject in an amount sufficient to prevent onset of a cancerous condition.

10

20

The generation of an immune response, be it T-cell or B-cell related, is characteristic of the effect of the presented tumor rejection antigen. With respect to the Bcell response, this involves, inter alia, the generation of antibodies to the TRA, i.e., which specifically bind thereto. In addition, the TRAP molecules are of sufficient size to render them immunogenic, and antibodies which specifically bind thereto are a part of this invention. These antibodies may be polyclonal or monoclonal, the latter being prepared by any of the well recognized methodologies for their preparation which need not be repeated here. For example, mAbs may be prepared using an animal model, e.g., a Balb/C mouse or in a test tube, using, e.g., EBV transformants. In addition, antiserum may be isolated from a subject afflicted with a cancerous condition where certain cells present a TRA. Such

antibodies may also be generated to epitopes defined by the interaction of TRA and HLA/MHC molecules.

Review of the foregoing disclosure will show that there are a number of facets to the system which may be referred to as "tumor rejection antigen presentation and recognition". Recognition of these phenomena diagnostic consequences. For example, the existence of specific CTL clones, or antibodies to the TRA makes it possible to diagnose or monitor cancerous conditions (explained infra), by monitoring the CTLs in a sample from a subject, binding of antibodies to TRAs, or the activity of anti-TRA CTLs in connection with subject samples. Similarly, the expression of nucleic acid molecules for TRAPs can be monitored via amplification (e.g., "polymerase reaction"), anti-sense hybridization, technologies, and so forth. Various subject samples, including body fluids (blood, serum, and other exudates, e.g.), tissues and tumors may be so assayed.

10

20

A particular manner of diagnosis is to use an adaptation of the standard "tuberculin test" currently used for diagnosis of tuberculosis. This standard skin test administers a stable form of "purified protein derivative" or "PPD" as a diagnostic aid. In a parallel fashion, TRAS in accordance with this invention may be used in such a skin test as a diagnostic aid or monitoring method.

The term "cancerous condition" is used herein to embrace all physiological events that commence with the initiation of the cancer and result in final clinical

58

Tumors do not spring up "ab initio" as manifestation. visible tumors; rather there are various events associated with the transformation of a normal cell to malignancy, followed by development of a growth of biomass, such as a tumor, metastasis, etc. In addition, remission may be conceived of as part of "a cancerous condition" as tumors seldom spontaneously disappear. The diagnostic aspects of events involved all invention include this carcinogenesis, from the first transformation to malignancy of a single cell, through tumor development and metastasis, as well as remission. All are embraced herein.

Where "subject" is used, the term embraces any species which can be afflicted with a cancerous condition. This includes humans and non-humans, such as domesticated animals, breeding stock, and so forth.

10

20

There are therapeutic aspects of this invention as well. The efficacy of administration of effective amounts of TRAPs and TRAs as vaccines has already been discussed supra. Similarly, one may develop the specific CTLs in vitro and then administer these to the subject. Antibodies may be administered, either polyclonal or monoclonal, which specifically bind to cells presenting the TRA of interest. These antibodies may be coupled to specific antitumor agents, including, but not being limited to, methotrexate radio-iodinated compounds, toxins such as ricin, other cytostatic or cytolytic drugs, and so forth. Thus, "targeted" antibody therapy is included herein, as is the

59

application of deletion of the cancerous cells by the use of CTLs.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Boon, Thierry, Van den Eynde, Benoît
- (ii) TITLE OF INVENTION: Isolated And Purified DNA Sequence Coding Antigen Expressed By Tumor Cells And Recognized By Cytotoxic T Cells, And Uses Thereof
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/807,043
 - (B) FILING DATE: 12-DECEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/764,364
 - (B) FILING DATE: 23-SEPTEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/728,838
 - (b) FILING DATE: 9-JULY-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/705,702
 - (B) FILING DATE: 23-May-1991
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hanson, Norman D.
 - (B) REGISTRATION NUMBER: 30,946
 - (C) REFERENCE/DOCKET NUMBER: LUD 253.4
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 688-9200
 - (B) TELEFAX: (212) 838-3884

- (2) INFORMATION FOR SEQUENCE ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACCACAGGAG A	ATGAAAAGA	ACCCGGGACT	CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG A	TCACTCATT	GGGTGTCTGA	GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA G	CTTACTGTT	CTCGTGGGGG	GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA A	GTTCCGCCT	ACAGCTCTAG	CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA A	GTAGTCCAG	AGTTTACTAC	ACCCTCCCTC	CCCCTCCCA	250
CCTCGTGCTG T	GCTGAGTTT	AGAAGTCTTC	CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC C	GGAGGAAGG	AGGGAGGACC	CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT G	TCAACGCCA	TTGCACTGAG	CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG A	CTCTACTCT	TATCTTAACT	TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG C	cc				462

(2) INFORMATION FOR SEQUENCE ID NO: 2:

	(i	.) SE	(B)	LENG TYPE	TH:	675 nucle : 1	bas ic a inea	se pa Icid Ir							-	
	(ii) MOLECULE TYPE: genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:															
ATG Met	TCT Ser	GAT Asp	AAC Asn	AAG Lys 5	AAA Lys	CCA Pro	GAC Asp	AAA Lys	GCC Ala 10	CAC His	AGT Ser	GGC Gly	TCA Ser	GGT Gly 15	GGT Gly	48
GAC Asp	GGT Gly	GAT Asp	GGG Gly 20	AAT Asn	AGG Arg	TGC Cys	TAA Asn	TTA Leu 25	TTG Leu	CAC His	CGG Arg	TAC Tyr	TCC Ser 30	CTG Leu	GAA Glu	96
GAA Glu	ATT Ile	CTG Leu 35	CCT Pro	TAT Tyr	CTA Leu	GGG Gly	TGG Trp 40	CTG Leu	GTC Val	TTC Phe	GCT Ala	GTT Val 45	GTC Val	ACA Thr	ACA Thr	144
AGT Ser	TTT Phe 50	CTG Leu	GCG Ala	CTC Leu	CAG Gln	ATG Met 55	TTC Phe	ATA Ile	GAC Asp	GCC Ala	CTT Leu 60	TAT Tyr	GAG Glu	GAG Glu	CAG Gln	192
			GAT Asp													240
			GAG Glu													288
			GAC Asp 100													336
Glu	Glu	Glu 115	GAA Glu	Leu	Glu	Asn	Leu 120	Met	Asp	Asp	Glu	Ser 125	Glu	Asp	Glu	384
Ala	Glu 130	Glu	GAG Glu	Met	Ser	Val 135	Glu	Met	Gly	Ala	Gly 140	Ala	Glu	Glu	Met	432
Gly 145	Ala	Gly	GCT Ala	Asn	Сув 150	Ala	Сув	Val	Pro	Gly 155	His	His	Leu	Arg	Lys 160	480
AAT Asn	GAA Glu	GTG Val	AAG Lys	TGT Cys	AGG Arg	ATG Met	ATT Ile	TAT Tyr	TTC Phe	Phe	CAC His	GAC Asp	CCT Pro	AAT Asn	TTC Phe	528

CTG	GTG	TCT	ATA	CCA	GTG	AAC	CCT	AAG	GAA	CAA	ATG	GAG	TGT	AGG	TGT	576
Leu	Val	Ser	Ile	Pro	Val	Asn	Pro	Lys	Glu	Gln	Met	Glu	Сув	Arg	Cys	
			180					185					190	•	-	
GAA	AAT	GCT	GAT	GAA	GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
Glu	Asn	Ala	Asp	Glu	Glu	Val	Ala	Met	Glu							
		195					200				210					
GAG	GAG	GAG	GAG	GAA	GAG	GAA	ATG	GGA	AAC	CCG	GAT	GGC	TTC	TCA	CCT	672
Glu	Met	Gly	Asn	Pro	Asp	Gly	Phe	Ser	Pro							
220					225					230		_			235	
TAG																675

(2)	INFORMATION FOR SEQUENCE ID NO: 3:
•	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 228 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(with SEOTIENCE DESCRIPTION: SEO ID NO: 3

GCATGCAGTT	GCAAAGCCCA	GAAGAAAGAA	ATGGACAGCG	GAAGAAGTGG	TTGTTTTTT	60
TTCCCCTTCA	TTAATTTTCT	AGTTTTTAGT	AATCCAGAAA	ATTTGATTTT	GTTCTAAAGT	120
TCATTATGCA	AAGATGTCAC	CAACAGACTT	CTGACTGCAT	GGTGAACTTT	CATATGATAC	180
ATAGGATTAC	ACTTGTACCT	GTTAAAAATA	AAAGTTTGAC	TTGCATAC		228

- (2) INFORMATION FOR SEQUENCE ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1365 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT	50
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG	150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT	300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCTCCCAG	350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG	400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT	450
ACCCTTTGTG CC	462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC	756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
GAG GAA GAA TTG GAG AAC CTG ATG GAT GAA TCA GAA	840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT	924
GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG AT	966
TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG	1008
AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT	1050
GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG	1092
GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC TCA CCT	1134
TAG	1137
GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGGACAGCG GAAGAAGTGG	1187
TTGTTTTTTT TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCCAGAAA	1237
ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTCAC CAACAGACTT	1287
CTGACTGCAT GGTGAACTTT CATATGATAC ATAGGATTAC ACTTGTACCT	1337
GTTAAAAATA AAAGTTTGAC TTGCATAC	1365
	1303

- (2) INFORMATION FOR SEQUENCE ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4698 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTGTG CC		462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC	AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA	TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG	TGG CTG GTC	588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC	CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG	GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT	GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAT GAG GAT GAC TAC	TAC GAC GAC	756
GAT GAA GAC GAT GAG GAT GAT GAT GAT GAT GAT GAT GAT	GAG GAT GAT	798
GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT	GAA TCA GAA	840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG	CGT CCC CGA	882
GCT GAG GCC GAA GAA GAG AIG AGC GIG GAA AIG		916
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGGT	CCS DALODANS	966
		1016
CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGG		1066
TGGAGCCATT CCTGGCTCTC CTGTCCACGC CTATCCCCGC		1116
CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTG		1166
TTCAGTCCAT CCTGCTCTGC TCCCTTTCCC CTTTGCTCTC	CTTGCTCCCC	
TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT	CCCCACCCTC	1216
TTCAGGCTTC CCCATTTGCT CCTCTCCCGA AACCCTCCCC		1266
CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC		1316
TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGCA	CCTTTTCTTT	1366
TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC	CGCTTTTCCT	1416
CTACCTGCTT CCCTCCCCT TGCTGCTCCC TCCCTATTTG	CATTTTCGGG	1466
TGCTCCTCCC TCCCCCTCCC CCTCCCTCCC TATTTGCATT	TTCGGGTGCT	1516
CCTCCCTCCC CCTCCCCAGG CCTTTTTTT TTTTTTTTTT		1566
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGCT		1616
TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTG	CCTGCCTCTG	1666
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC	CCCAGTGCAG	1716
GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTTT	TCTGCATGTT	1766
AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTCC	CCCTCCCTGT	1816
TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCTC	TCCCTGCTCC	1866
CCTCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCTC	CCTGCTTTCT	1916
GCCCCGTTCC CCTTTTTTGT GCCTTTCCTC CTGGCTCCCC	TCCACCTTCC	1966
AGCTCACCTT TTTGTTTGTT TGGTTGTTTG GTTGTTTGGT	TIGCTTTTTT	2016
TTTTTTTTT GCACCTTGTT TTCCAAGATC CCCCTCCCCC	TCCGGCTTCC	2066
CCTCTGTGTG CCTTTCCTGT TCCCTCCCCC TCGCTGGCTC	CCCCTCCCTT	2116
		

CCTGACCCTG CTCCCCTCC CAGGCTTGCT GTTTGCTTCT GTGCACTTT CCTGACCCTG CTCCCCTCC CCTCCCAGCT CCCCCCCTCTT TTCCCACCTC CCTTCTCCA GCCTGTCAC CCTCCTAGCT CCCCCCTCTT TTCCCACCTC CCTTCTCCT CCAGCCGCC AGTCCCCG AGTCCTCGA TTCTCCACCT GACTTCCTCT CCAGCCGCC AGTCCCCGA AGTCCTCGA TCTTCCTGCT GACTTCCTCT CCAGCCGCC AGTCCCCGA AGTCCTCGA TCTTCCCGC GACTTCTCT CCAGCCGCC AGTCCCCTC AGTCCCTGCA AGTCCTCGC CATCACCTC CTTCCATCT ATCCCTTCT TTCTGTCCC TCTCTTCCA AGTGCCCT CTTCCTTCCT TCCCTTTCC TTCTGTCCC TTTTAGCCCCT CCATCACCTC TCTCCTCCTC TCCCTTTCC CCTTCCA TTTTTCCCA ATTTCCCTCT TACCCTGCT CCCTTTCCC TCCCTTTCC TTTAGCCCCAT CCAGTCCC CTCTCAATC CCTGTCCCAT TGTGCTCCC TACACTTCC ATTTCCCTTTC TTCTCCCTT GCCTTTCCC TCCCTTACCT TTATAGCCCAT ATCTCCTTTCC TTCTCCCTCT CCACTTCCC TCCCTTACCT TTATAGCCCAT ATCTCCTTTCC TCTCCCTCT CCACATACC TTTTTCCTT CCACCCTTCC TTCCCTTTGC TCTCCCCTC CCACATACC TTTTTCCTT CCACCCTCC CTTTGTCCCC AGACCCTACA GTATCCTTCC CACAGGAAGT GCGAGGTGCC AAGAGCAAA AGAAGACAA AAAAAAAAAAAAAAAA	CTAGA CTECCCCTCC CAGGCTTGCT CTTCCATTC CTCCCCCTTCT CTCCCCCCTTT TTCCCACCTC 2216 CTCCC CTCCCCTCCCCCTC CTCCCCCCCTCTT TTCCCCCCTCT 2266 2316 CTCC CTTCCTCCTCCCT ACTCTCCTCC CTCCTCCCCTCCCT 2316 2316 CTCT CCAGCCCCCC ACTCTCCCCC CTCTCTCCCCCT 2416 2416 CCTCT CAGCCC CTTCGTCCCT TCTCTTCCCCCT 2416 2416 CCTCT CATCCTCCTCCT TCTCTCCCCTC CTCTCTTCCC TTTTCCCCTTC 2516 CCCC CACCCTACATC CCTCTTACACT TTTTCCCCTTC 2616 CTCCT TCTCCCCTCC TCCTTCCCCT CCTCTTACCCTC CCTCTTCCCCT CCTCTTACCCTC CCTCTTCCCTC CCTCTTCCCTCT CCTCTTCCCTCT CCTCTTCCTCT CCTCCTTACCCCTC 2716 CCCCC AGACCCTACA AGACCCTACAC CTTCCTCTCT CTTCACTCTC CCTCTTCCTCT CCTCTTCCTCT CCTCTCTCTCT CCTCTCTCTCT CCTCTCTCTCT CCTCTCTCTCT CCTCTCTCTCTCT CCTCTCTCTCTCTCTCTCCCTTCCCC CCTCTCTCTCTCTCTCTCCCTCC	CCTITICTAGA CTCCCCCTC CAGGCTTGCT GTTTGCTTCT GTCCACTTT CCTGCCTGC CTCCCCTCC CCTCCCAGCT CCCCCCTTT TTCCCACCTC CCTTTCTCCA GCCTGTCAC CCCCCAGCT CCCCCCTTT TTCCCACCT TCCTGCTTCC TTTACCCCTT CCCTCTCCT ACTCTCCCC CTCCCTGCTG GCTTCTCT CCAGCCCCC AGTCCCCT ACTCCTCCC CTCCCTGCTG GACTTCCTC CCAGCCCCC AGTCCCTC AGTCCTGCA TCTTTCCTGC CTCTCTGTCC ATCACTTCC CCTAGTTCA CTTCCCTTC ACTCTCCCCT AGTGTCTC TCCCTACCT ACCCTTCCT TTCTGTCCCC TCCCTTGCT CCATCACCTC TCTCCTACCT ATCCCTTCCT TCTTCTCA TTTTCTTCCA CCTGCTTCTT TACCCTGCC TCCCTTTCCT CTCCTTTCCA TTTTCTTCCA CCTGCTTCTT TACCCTGCC TCCCTTTCCT CTCTTTCCA TTTTCTCCC CTGCTTCTT TACCCTGCC TCCCTTCCT TCCTTTCCT TTATCCCCAT ATTTCCCTT TTCCCCTTA GCCTCTTCCT TCCTTTCTT TTATCCCCAT ATTTCCCTTT TACCCCTC TCCTTTCCC TCCCTTTCCT TTATCCCCT TCCCTTGC TTCTCCCTT CCCATACCC TTCTCCCT TCCCTTCCC TACACTTCC CACACTCC TCCCCTCA GCTCTCCC TCCTTTCTC TCCCCTTCCC TACACTTCC CACATGGAC TCCCCACAC GAAACACACC TTTTCCCTT TCCCCTTCCC TACTTGACCT TCCCCTCA GAAACACACC TTTTCCCTT CCACACTCC AATCACACA AGGAGGCAA AAACAGACCA AAATCCCAAA ACCACACAGA 2916 AAGGCTGCAT GAAAATAAG CCAGGTTCTT AGGACAAGTG GCAGAGGTCC AAGTGCCTCC TATAACCCAA GAAACAGACCA AAATCCCAAA ACCACACAGA 2916 AAGTGCCTCC TATAACCCAA GAACAGAAC ACACACACT TCTCCAAATG CAGGCCATCC TCCATCCCTA AAATTAACA AACAGAATCA TCTCCCAAATGC CAGGCCATCC TCCATCCCTA AAATTAACA AACAGAATCA TCACACACG AAATTCAAAA ACTAAGGCCA ATCTCCAAG AAATTAGCA 3216 CCTTACACAAA ACTAAGGCCA ATCTCTAAAATA CCCCTTACAA AATTAACACA AACAGAATCA TCCTTTCTT AGGCCAAAATAAT TCCCCCTAAA AATTAACAA AACAGAATCA TCACTTTTTA ACGAATACTAAAAA ATTATAACA AACAGAATCA TCACTTTCTA ACGAATACTAAAAAAAAAAAAAAAAAAAA			
CCIGACCCE CTCCCTACC CCTCCTTCT TCCCCCTCT TTCCCACT CCTTTCTCCA GCCTGTCACC CCTCCTTCT TCCTCCTCT TTCCCCACT TCCTGGTTCC TTTACCCCTT CCCTTCCT ACTCTCTCT TTCTCCCACT GACTTCCTCT CCAGCCGCC AGTTCCTC ACTCTCTCT CTCCTCTGTC GACTTCCTCT CCAGCCGCC AGTTCCTC ACTCCTTCC TCCCTTCTCT CCTCTCTCTC CAGCCGCC AGTTCCTC TTCTGTCCCC TCTCCTCTCT CCTCTCTCT TCCCTTACT ATCCTTCCT TTCTGTCCCC TCTCCTCTCT CCATCACCTC TCCCCTACT TCCCCTTTCCT CTCTCTCT	CECTE CTECCETTCC CCTCCAGGT CCCCCCTTT TTCCCACT 2366 CTCCA GCCTGTCACC CCTCCCTTCT TCCTCCTGT TTCTCCCACT 2316 CTTCC GCCTGTCACC CCTCCCTTCT ACTCCCCTC CTGCCGCGTG 2366 CCTCT CCAGCCGCC AGTTCCTGC AGTCCTGGAG TCTTCCCTTC CTCCT CCAGCCGCC AGTTCCTGT CTCCCTTCC TCTCCTCCTT CTCTC CTCCAGCTGCC CTTCCTTCCT TCTCCTTCCT CTCTC CTCCCTAGTC CTCTCTTCCA TTTTTTTCTCCA CTCTT TACCCTGCCT TCCCTTACCT TTTTTTTCTCC CTCTT TACCCTGCCT CCCTCTACCT CCCTCTACCT CTCTT TCCCCCAATCCC CTCTCTCTCT CCCTCTACTC CCCC AGCCCTACA GATTCCTGTC CCACGGAGTGCC CACAG AGAGAGCAA AAATCCCAAA ATCACCAGA CACAG AAAATACAGAG CACAGAAATACC CTATACCATA CACAC AAAATACAAAG CACAGAAATACA CACAGAAATACC CACAC AAAATACCAAAA AGAAAATACAAAAA CACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	CCTGACCCTG CCCCCTTCC CCTCCCTCT TCCCCCACT 2316			2166
CCTTGCTCCC TTTACCCCTT TCCTGCTTCC TTTACCCCTT TCCTGCTTCC TTTACCCCTT CCACCCCCC ACTCCCTCCC ACTCCTCCCC CCACCCCCC CCTCTCTCCCC ACTCCCTCC	TTECE GECTETCACE CETECTTECT TECTETETE TTETCECACT TTTACCCETT CAGTECCET ACTETECTEC CROCTECTE CTTET CTAGECGEC ACTITECT ACTETECTEC CROCTECTE CTTET CAGCEGGEC ACTITECT ACTETECTEC CTTET CTACCTTECT CETTECT CTTETCTCCC CTTETT CTCCTATET ATCCCTTTCT TTETCTCCCC TETCTTCTCA CTCTCT TTACCCTACT ACCCTTTCT TTETCTCCCC TETCTTCTCA TTTTCTTCCCC TTCTT TACCCTGCCT TCCCTTTCTCT CTCTTCTCA TTTTCTTCCA CTCTT TACCCTGCCT CTCCCTTTCT CTCTTCTCA TTTTTCTTCCA CTCTT TACCCTGCCT CTCCCTTTCT CTCTTCTCT TTTTTCTTCCC CTCTTTTTCCCCTTCA CCCTTTCTCT CTCTTCTCT TTTTTCTCCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCT TGTACTCT CCACATTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCT TGTACTCCC CTCCC TCCTCAATCC CCTTTCCCC TCCTTTCTC TTTTTCTTCCC CACACTACCC TCCTTTCCCC TCCTTTCTCT TTTTACTTCCC CACACTACCC TCCTTCCCC TCCTTCTCT TTTTCCTTT CCACCCTCCC CACACCCTACA GTATCCTGCC TCCCCTATG CCCTCTACTC CACACA AGGAGGCAAA AAACAGAACC AAAACCCAAAA ATCACCAGGA CACACA AAGAGGCAAA AAACAGAACC AAAACCCAAAA ATCACCAGGA CACACA AAGAGGCAAA AAACAGAACC AAAACCCAAAA ATCACCAGGA CACACA AAGAGGCAAA AAACAGAACC AACACCTG GAACACTTAGCC CACACCTTCTT TTTACATATATT TGCGCACATC TTCTCAAATG CACACA ACCACTCTT TTACATATATT TTGCGGCACA TATTAGCAC CACACA ACCACTCT TTACATATATAT TTGCGCACATC TTCTCAAATG CACACA ACTAGGGGCC AGTGGTTTTT TTTCGGGCACA AATTAGCACG CACACA ACTAGGGGCC AGTGGTTTT TTTCAGAACTA ACCAGGAAAATTG TCACTTAGAA GTTCTTTTTA CACATGGCCC ACTGGTTTCT TTTTCAGAACTA ACCAGGAAAATTG TCACTTAGAA GTTCTTTTTA CACACTGAAAC AATTAGAACGCT TGTTAAAAATA CTCCTTTTTTA CACACTGAAAC AATTAGAACGT TGTTAAAAATA CTCCTTTTTTA CACACTTAAAAAAAAAAA	CONTROLOGY CON			2216
TCCTGGTTCC TTTACCCTT CCCTCTCCT ACTCTCCC CTGCCTGC GATTCCTTC CAGCCCCCC AGTTCCTCC AGTCCTGGGG TCTTTCCTGC CTCTCTGTTCC CAGCCCCCC AGTTCCCTGC AGTCCTGGGG TCTTTCCTGC CTCTCTGTTCC CTTCTTCTCC ATCGCTTCC ATTGCTTCC CTTCCTTCT TCTTCTCCC TTTCTTCTCC TTTCTTC	TITC	TCCTGGTTCC TTTACCCCTT CCCTCCCCTC ACTCCTCC CTGCTGCTG GACTTCTCTC CCAGCCGCC AGTCCCTCC ACTCCTCTCAGC GACTTCTCTC CAGCCGCCC AGTCCCCTC ACTCCCTCC GACTCTCTGTCC ATCACTTCC CCTAGTTTCA CTTCCCTTTC ACTCCCCCC AGTGTCCCC ATCACTTCC CCTGCTTTCC TTCCTTCCC TTCCCTTTCC ATTCCCCTC TTCCCTCCCT TCCCTTTCC TCCTTTCCC TTTTACGCCCT CCAGCCCC TCCCCTCCCT TCCCTTCCCT TCCCTTTCCC TTTACGCCCCT CCAGCCCCC TCCCCTTCCCT TCCCTTCCC TTCCCTTCCC		CCTGACCCTG CTCCCCTTCC CCTCCCAGCT CCCCCCTCTT TTCCCACCTC	2266
GACTTCCTC CAGCCGCC AGTTCCTGC AGTCCTGGAG TCTTTCCTGC CTCTCTGTCC ATACATTCC CCTAGTTTCA CTTCCTTTCA ACTCTCCCTT ATGTGTCTC ATACATTCC CCTAGTTTCA CTTCCTTTCC TCTCTCTCTCT CCATCACCTC TCTCCTACT ATCCCTTTCT TTTTGTGCCCA TTTTCTTCCA CCTGCTTCT TACCCTGCCT TCCCTTTCCT CTCTCTCCA TTTTTCTTCCA CCTGCTCTT TACCCTGCCT CCCCATTGC CCTTTCCTC TACATCTCC ATTTCCCTTT TACCCTCCA GCCCATTGC CCTCTTACCT TGTATCCCCAT ATTTCCCTTT TCTCCCCTTA GCCTCTTCTC CTCTTCTCT TGTATCTCCC ATTTCCCTTT TCTCCCCTT CCCATTGCC CTCTCTCTCT TGTATCTCCC TTCCCTTTGC TTCTCCCTC CCCATTGCC CTCCTTTCTC CCACATCTCC TACATGACA TCTCCCCTC CCCATTGCC CTCCTTTCTC CCACATCTCC TACATGACA AGGAGGCAAG ARACAGAGCA ARATCCCAAA ATCAGCAGGA AGGGCGGAT GAAAATAAGG CCAGGTTTG GACAGGAAG GGGAGGGCC AAGGGCGAG GAAAATAAGG CCAGGTTTG AGGACAGCT GAAACTAGCC AAGTGCCTC TATAACCCTA AGTACCAAGG GAGAAAGTA TGGTGAAGT CCTGATCCTT GCTCCTTCT TTACATATGT TGGGACATCT TCTCTAAAATG CAGGCCATCC TCCATGCTTG GCGCTTGCTC AGCGTGGTA AGTAACGAG CAAACTCGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATAAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAACA ACTGGAACA TACAAATTGT TCACTATGAA GTTCTTTTTA GGCTAAAACA ACTGGAACA TACAAATATG TCACTATGAA GTTCTTTTTA GGCTAAAACA ACTGCGACA ATTATAACA AACAGATTCA TGATTTCTT AGG ATG ATT TAT TTC TTC CAC GAC CT AAT TTC CTG GTC TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA GAA GAA GAA GAA G	COUNTY CAGCCGCC AGTTCCCTGC AGTCCTGGA TCTTTCCTGC 2416	GATTCCTCT CCAGCCCCC AGTTCCCTC AGTCCTGGG TCTTTCCCCCT ATGTCTCTCC ATCACTTCC CCTAGTTTCA CTTCCCTTT AGTCTCCCCT ATGTCTCTCT CTTCCTATCT ATCCCTTCT TCTTCTCCCCT ATGTCTCTCT CTTCCTATCT ATCCCTTCT TCTTCTCCCCT CCATCACCTC TCTCCTCCT TCCCTTTCCT CTCTCTTCCA TTTTCTTCCA CCGCTCTCTT TACCCTGCCT TCCCTTTCCT CTCTCTTCCA TTTTCTCCCA ATTCCCTTCT TACCCTGCCT CTCCCATTGC CCTCTTACCT TATACCCCCA ATTCCCTTCC TTCTCCCTT GCCTCCCATTGC CCTCTTTCCC TATACCCCCC ATTCCCTTTCC TTCTCCCTC CCACATACC CTTCTCCCTT TCTACTCCC ATCACACACA GCACCTACA GTATCCTTCT CCACATACCC CTTGTCCCC AGACCCTACA GTATCCTTGT GCACAGAGAG GGAGGTGCC AGACGACAACAACA AGGAGGCAAG AAACAGAGCA AAATCACCAAA ATCACCAGAA AAGGCTGGAT GAAAATAAGG CCAGGTTCT AGGACAGCT GAATCTAGCC AAGGCGAGT GAAAATAAGG CCAGGTTCT AGGACAGCT GAATCTAGCC AAGGCGAGT GAAAATAAGG CCAGGTTCT AGGACAGCT GAATCTAGCC AAGGCGAGT GAAAATAAGG CCAGGTTCT TCTCACAAA ATCACCAGAA AAGGCTGGAT GAAAATAAG CCAGGTTCT TCTCAAAACAACAACAACAACAACAACAACAACAACAACA			2316
CTETCHETCE ATCACTTCC CETAGTTTCA CTTCCCTTTC ACTCTCCCT ATGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCCTCTGT CCATCACCTC CTCCCTATCT ATCCCTTCCT CTCTCTTCCA TTTTCTTCCA CCTGCTCTT TACCCTCCCT CTCCCATTGC CCTCTCTCCT TTTTCTTCCA CCTGCTTCT TACCCTCCCT CTCCCATTGC CCTCTTCCC TTATCCCCCT TCCCATCTCC TTCTCCCTTA GCCTCTTCCT TTGTGTCCCC CAATCTCC ATTTCCCTCT TTCTCCCTCT CCCTTTCCCC TTCTCTCT TGTATCTCCC TTCCCTTGC TTCTCCCTCT CCACATACC TTTTTCCTTT CCACCCTGC CTTGTATCCC AGACCCTACA GTATCCCTGT CACAGAACT CCACAGAACT ACAACAACA AGGAGCCAA AAACAGAACA AAATCCCAAA ATCAGACAGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAAGTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAGACA AAAATCCCAAA ATCAGAACA AAGGCCAGTC TCCATGCTTC TACACTACTA TTTCCCTTT TTCTCAAATG CAAGGCCATGC TCCATGCTTC GCGCTTCTT TTCGCACACT TTCTCAAATG CAAGGCCATGC TCCATGCTTC GCGCTTCTCT TTGGCACACT TTCTCAAATG CAAGGCCATGC TCCATGCTTC GCGCTTCTCT TTGGCACACT TTCTCAAATG CAAGTCTAAAA ACTAGGGGCC AGTGGTTTGT TTTGGGACACT TTCTCAAATG CAAGTCTAAAA ACTAGGGGCC AGTGGTTTGT TTTGGGACACA TTAGCACG TAGTGATATT TCCCCTAAA AATTATAAACA AACAGATTCA TGATTTGAGA CAATTTTTCTCC ACATATATAACA AACAGATTCA TGATTTGAGA CTCTTCTACA GGTAGAACC ATAGAACCG TTGTTAAAATA CTCCTTCTT TTGCTAAAAT ACTTTCTCTC ACATATTCAT ATTCCCCG GT GTT CCT GGC CAT CAT TTA AGG AAA ATA GAA GTG AAG TGT AGG ATG ATT TAT TTC TC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA GAA GAG GAG GAG GAG GA	NOTICE ATCACTTOCC CUTAGITICA CITCCUTTC ACTUTCCUT CITCT CITCCATACT ATCCUTTCT TICTGTCCC TETCTTCTGT ACCUT CITCCATACTA ATCCUTTCT TICTGTCCC TETCTTCTGT ACCUT CITCCATACTA CICCCTTTCCT CICTCTTCCA TITTCTTCCA ACCUT TACCCTGCCT CICCCATTCCT CICTCTTCCA TITTCTTCCA ACCUT TACCCTGCCT CICCCATTGCCC CICCTTACCT TATAGCCCAT ACCUT TACCCTCATACT CICTCCCAT TGTGCTCCC CACATCTCC ACCCC TITCCCCTTA GCCTCTTCCC TCCCTTACCT TGTATCTCCC ACCCC TITCCCCTTA GCCTCTTCCC TCCCCTATG CCCTCTACTC ACCCC AGACCCTACA GCCTCTTCCC TCCCCTATG CCCTCTACTC ACCCA AGGAGGCAAG AAACAACACC ATTTTCCTTT CCACCCTGCC ACACA AGGAGCAAG AAACAACACA AAATCCCAAA ATCAGCAGGA ACCACAACA AGAACACCA AAATCCCAAA ATCAGCAGGA ACCACAACA AGAACACCA AAATCACCAAA ATCAGCAGGA ACCACT AGAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC ACCCC TATAACCCTA AGTACCAAGG GAAAAATCA TGGTGAAGTT ACTAGCATCCT TACAACAAGG GAAAAAATCA TGGTGAAAGT ACTAGCACCTT GCGCTTGCTC AGCCTGCTA AGTAATCGGA ACTAGCACCTT GCGCTTGCTC AGCCTGCTA AGTAATCGGA ACTAGCAGGACCATAA AATTATAACA AACAGATCA TGAATTCGAAG ACTAGCACCC AGTGGTTTGT TTTCGGGACA AATTAGCACG AAATA ACTAGGAGCC ATTAAACA AACAGATCA TGAATTCGAAG ACTAGCACCC ATAGAAAATTG TCACTATCAA GTTCTTTTA ACCACACCC AAAGAAAATTG TCACTATCAA GTTCTTTTTA ACCACACCA AAATTATAACA AACAGATCA TGAATTCCAG ACCT GGC CAT CAT TTA ACG AAG AAT GAA GTG AAG TGT AAATA ATTCTTTCTC ACACAACC ATTCTAAAATA CTCCTTTCTT AAAAAAAAT ATTCTTTCTC ACACAACC ATTCTAAAATA CTCCTTTCTT AAAAAAAAAA	CHITCHGUE AUGUSTICCE CETAGITTCA CITCCTTTC ACTUTCCCT ATGUSTICTC CITCCTATCT ATCCCTICCT TICTUTCAC CITCCCTGT CCATCACCTC TICCTACTA TACCCTICCT TICTUTCAC TITTUTCTCCA 25.66 CCIGCTCTT TACCCTCCCT CCCCATTCC CCTCTTACCT TATAGCCCAT CCIGCTCTT TACCCTCCCT CCCCATTCC CCCTTACCT TATAGCCCAT ATTCCATGCCC CCTCCAATC CCTGTCCCAT TOTGCTCCCC ACACTTTCC ATTCCCTTGC TTCTCCCCTC CCCCTTTCTC CCTCTTCTC TITAGCCCAT CTACTTGACCT CTCCCTCC TCCTTTCCCC TTCCTCTCT TCTACTCCC TACTTGACCT TCTCCCCTC CCCAATACCC TTTTTCCTTT CCACCCTGCC CAATCACACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCACCAAGA AGGAGCCAGA AAACAGAGCA AAATCCCAAA ATCACCAAGA AAGGCTGCAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTACCC AAAGTGGCTCC TATAACCCTA CFIACCCAAG GAGAAAGTGA TGGTGAAGTT CTTGATCCTT GCTGCTCTT TTACATATCT TGGCACATC TTCTCCAAATG CAAGCCCAAGC TCCACCTAC GTACCCAAG GAGAAAGTGA TGGTGAAGTT CTTGATCCTT GCTGCTCTT TTACATATCT TGGCACATCT TTCTCAAATG CAAGCCCAAGAA ACTACCCTA AGTACCAAG GAGAAAGTGA AATTAAGCAC CAAATCCAAAA ACTAAGCGC AGGCGTGGTTC TTTGGGGACA AATTAGCAC CAAATCCAAAA ACTAAGCGC AGGCGTGTTGT TTGGGGACAA AATTAGCACG AAATTAGAAA ACTAAGACGC ATGAAAATTCA TACCCAAGAAGTCA TCATTTCAGA ACTACAAAAT ACTTCTCTC ACATATTCAA ATTCTCCCAG GT GTT CCT GGC CAT CAT TA AGG AAA AT GAA GTC AAG GTC AAGA ATG AATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTC TCT ATA CCA GTG AAC CCT AAG GAA AAT GAA GTG AAG GTT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GTG AAG GTT AATA CCA GTG AAC CCT AAG GAA GAA GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GTA GAA GAG GAA GAA GAA GA		TCCTGCTTCC TTTACCCCTT CCCTCTCCT ACTCTCCTCC CTGCCTGCTG	2366
ATTGGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCTCTGT CCATCACCTC TCTCCTCCCTTCCT CTCCTTTCCA TTTTCTTCCCA CCTGCTTCTT TACCCCTCCT CTCCCATTGC CTCTCTTCCA TTTTTCTTCCCA TCCATGTCCC CTCTCAATTC CCTCTCCCATTGC CTCTCTCCCT ATTTCCCTTTCC TTCTCCCTTC GCCCTTTCCC TCCTTTCCCT TGTATCTCCC ATTTCCCTTTCC TTCTCCCTCC TCCTTCCCC TTCCCCTTACCT TGTATCTCCC TTCCCTTTGC TTCTCCCTCT CCACATACC CTTTTCCTT TCCACCTTCC CTTTGTCCC AGACCTACA GTATCCTGT CACAGAAGT GGGAGGTGCC CTTTGTCCCC AGACCCTACA GTATCCTGT CACAGAAGA AGACCGACA AAACCCGAGA AAACCCGAGA AAACCCGAGAC AAACCCGAGA AAACCCTAA ATCAACCACA AACGCCTGAC TACAACAACA AACGCCTACT TTCCACACAA AAACCCTAA ACGACCTGA CCACAGACCT TACAACACA AACGCCTACT TTCCACACAC AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTAC TCCATGCTC GCGCTTGCTC AGGACACTCT TCCCAAAATA ACTAGGGGC AGTGGTTTG TTTGGCACACA AATTAGGCA 3ACACGACACT TCCATGCACC TACAGACCC GCACACCT TTTCGCACAAA AATTAAACA AACAGATCA TCCATTCTACA GGTGAGAAGT GGAAAAATTG TCCTTCTACA GGTGAGAAGT GAAAAATACA AACAGAATCA TCATTTTTTA 3ACACAACCA TATCCTTCACA GGTGAAAATA ATTCCTTCCA ACATATTCAT ATTCCCCAG GT GTT CTTCAAAATA CTGCTTTCTT TTCCTAAAATA ATTCCTTCAC ACATATTCAT ATTCCCAG GT GAA AAT GAA GT AAA GT GAA GT AAA TTAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3AAATA CCA GTG AAA CCCT AAA GAA GAA AAT GAA GAA GAA GAA GAA GA	STICT CITCCTATCT ATCCCTTCCT TTCTGTCCC TCTCCTTGT 2516	ATTGTETCT CTTCCTACCT ATTGTCTCC 25.66 CCATCACCTC CTCCCCCCT TCCCTTCCA 25.66 CCTGCTCTCT TCCCTTCCCAT CCCTCTTACCA TTTGTCCCAT 261.6 TCCATGTCC CTCTCAATTC CCCTCTTCCCT CCCTCTTCCCC TTTCCCTTTCC 276.6 ATTTCCCTTC CTCTCCCTT GCCTTTCTCC TCCCTTTCCC CCCTTACCC 271.6 TTCCCTTTCC CTCCCTTCCCT CCCCTTACCC CCCTCTACTC 276.6 TTCCTTTCC CTCCCTTCCCT CCCCTTACCC 276.6 AAGGTGACT TCTCCCTTCT CCACGATACC CTTTCACCAA AAACAGAGCA AAACAGAGCA AAACAGAGCA AAACAGAGCA AACAGAGTTA ATCAGCAGAC AAACAGAGCA AAACAGAGTTA ATCAGCAGACT 296.6 AAACAGAGTTA ATCAGCAGACT 296.6 AAACAGATTACT AACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAATAGCACAC TCTCTAAAACAACAACAACAACAACAACAACAACAACAAC		GACTTCCTCT CCAGCCGCCC AGTTCCCTGC AGTCCTGGAG TCTTTCCTGC	2416
ATTGGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCTCTGT CCATCACCTC TCTCCTCCCTTCCT CTCCTTTCCA TTTTCTTCCCA CCTGCTTCTT TACCCCTCCT CTCCCATTGC CTCTCTTCCA TTTTTCTTCCCA TCCATGTCCC CTCTCAATTC CCTCTCCCATTGC CTCTCTCCCT ATTTCCCTTTCC TTCTCCCTTC GCCCTTTCCC TCCTTTCCCT TGTATCTCCC ATTTCCCTTTCC TTCTCCCTCC TCCTTCCCC TTCCCCTTACCT TGTATCTCCC TTCCCTTTGC TTCTCCCTCT CCACATACC CTTTTCCTT TCCACCTTCC CTTTGTCCC AGACCTACA GTATCCTGT CACAGAAGT GGGAGGTGCC CTTTGTCCCC AGACCCTACA GTATCCTGT CACAGAAGA AGACCGACA AAACCCGAGA AAACCCGAGA AAACCCGAGAC AAACCCGAGA AAACCCTAA ATCAACCACA AACGCCTGAC TACAACAACA AACGCCTACT TTCCACACAA AAACCCTAA ACGACCTGA CCACAGACCT TACAACACA AACGCCTACT TTCCACACAC AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTA AACACCCTAC TCCATGCTC GCGCTTGCTC AGGACACTCT TCCCAAAATA ACTAGGGGC AGTGGTTTG TTTGGCACACA AATTAGGCA 3ACACGACACT TCCATGCACC TACAGACCC GCACACCT TTTCGCACAAA AATTAAACA AACAGATCA TCCATTCTACA GGTGAGAAGT GGAAAAATTG TCCTTCTACA GGTGAGAAGT GAAAAATACA AACAGAATCA TCATTTTTTA 3ACACAACCA TATCCTTCACA GGTGAAAATA ATTCCTTCCA ACATATTCAT ATTCCCCAG GT GTT CTTCAAAATA CTGCTTTCTT TTCCTAAAATA ATTCCTTCAC ACATATTCAT ATTCCCAG GT GAA AAT GAA GT AAA GT GAA GT AAA TTAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3AAATA CCA GTG AAA CCCT AAA GAA GAA AAT GAA GAA GAA GAA GAA GA	STICT CITCCTATCT ATCCCTTCCT TTCTGTCCC TCTCCTTGT 2516	ATTGTETCT CTTCCTACCT ATTGTCTCC 25.66 CCATCACCTC CTCCCCCCT TCCCTTCCA 25.66 CCTGCTCTCT TCCCTTCCCAT CCCTCTTACCA TTTGTCCCAT 261.6 TCCATGTCC CTCTCAATTC CCCTCTTCCCT CCCTCTTCCCC TTTCCCTTTCC 276.6 ATTTCCCTTC CTCTCCCTT GCCTTTCTCC TCCCTTTCCC CCCTTACCC 271.6 TTCCCTTTCC CTCCCTTCCCT CCCCTTACCC CCCTCTACTC 276.6 TTCCTTTCC CTCCCTTCCCT CCCCTTACCC 276.6 AAGGTGACT TCTCCCTTCT CCACGATACC CTTTCACCAA AAACAGAGCA AAACAGAGCA AAACAGAGCA AAACAGAGCA AACAGAGTTA ATCAGCAGAC AAACAGAGCA AAACAGAGTTA ATCAGCAGACT 296.6 AAACAGAGTTA ATCAGCAGACT 296.6 AAACAGATTACT AACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAACAGATTACTAGCC 296.6 AAATAGCACAC TCTCTAAAACAACAACAACAACAACAACAACAACAACAAC			2466
CCATCACCTC TCTCCTCCCT TCCCTTTCCT CTCTCTCCA TTTTCTCCA CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCCAT TCCCATGTCCC CTCTCAATCC CCTGTCCCAT GTGGTCCCT CACATCTCC ATTCCCTCT TCTCCCCTTA GCCTCTTTCTCCTTT TCTACCTCC TTCCCTTTGC TTCTCCCTCT CCACATACCC TTCCCCTATG CCCTTACTC TACATGATCT TCTCCCCTC CCACATACCC TTTTTCCTTT CCACCCTGCC CTTTGTCCC AGCCCTACA GTATCCTGTG CACAGGAAGT GCGAGGTGCC ATCAACAACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCACCAGGA AAGGCTGGAT GAAAATAAGC CCAGGTTCTG AGGACAGTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GACAAAGTGA TGGTGAAGTT CTTGATCCTT GCTGCTCTTCTTACATAGT TGGCACACATCT TTCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGGACGCTA AATTAGCAGGA CAAGTGGCTCC TATAACCCTA AGTACAAGAG GACAAAGTGA TGGTGAAGTT CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGGGTGGTTA AGTAATAGGAA GAAACTGAAAA AATTACATTGCT TTCCACATAGT TTCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGGCTGGTTA AGTAATAGGAA GAAATCTGAAAA AATTACATACAA AAACAGAACAA TCAATTAGAAA CAGGCAAGA TCCCCTAAA AATTAAAAAA AACAGAATCA TGATTTGAAA GCTAAAAAA ACTTGGAACC ATAGAAACCT TTTTAAAAATA CTCCTTTTTA GGCTAAAAAT ATCCTTCTCC CAATATTCAT ATTCCCAG GT GTT CCT GCC CAT CAT TAT AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTG AAG GTG AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAA GAG GAA GAA GAA GAA AAT GCT GAT GAA GAA GAA GAA GAA GAA GAA AAT GCT TAG GCATGCAGGT ACTGCTTCA CTAAACCAAC ATTCCTACA TATTGCATTCT GCTAAGACCA TCTTTTAAAAATAATTCT GCAGTATACA GTTTTAAGAA CCCTAAGATTA AACAATGCA GAAGAATAAT CCAGTATAAA ACAATTGTTA TCTTTTTTACA TAATAAGAT TAAAATTATT GCAGTATAAA TAATAAGTAT TCTTTTTTACATTCT AGACCTGCAAATAATAT TATTTTTCACT TAAGAATAAATATC TAAATAAGTA TAAAATAATTCT TAAATTATAT CCTTCATATT TAAATAAGAA TCAATTCCAT TAATTTTCCAA TAAAATAACTA TAATTTTTAAAATAATCT TAAAATAATCT TAAAATAACTA TAATTTTTAAAATAAAT	ACCIC TCTCCTCCCT TCCCTTTCCT CTCTCTCA TTTTCTCA 2566 TCTCT TACCCTGCCT CCCCATTGC CTCTTACCT TTATGCCCAT 2616 TCTCT TACCCTGCCT CCCTGTCCCAT TGTGCTCCCT TGTATCTTCC 2666 TCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTTCC 2666 TCTCT TCTCCCCTTA GCCCTTCTCCC TTGTCTCCT TGTATCTCCC 2766 TTTGC TTCTCCCTTA GCCCTTTCCCC TTCCCCTAGG CCCTCTACTC 2766 TATCT TCTCCCCTC CCCACATACCC TTTTTCCTTT CCACCCTCCC 2816 TCCC AGACCCTACA GTATCCTGG CACAGGAAGT GGAAGGTGCC 2866 TCCC AGACCCTACA GTATCCTGG CACAGGAAGT GGAAGGTGCC 2866 TCCC TATAACCCTA AGACCAGGA AAATCCCAAA ATCAGCAGGA 2916 TCCCT TATAACCCTA AGACCAGGA GAAAATCCAAA ATCAGCAGGA 2916 TCCCT TATAACCCTA AGACCAGG GAAAATGA TGGTGAAGTT 3016 TCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TCTCAAATG 3066 TCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TCTCAAATG 3066 TCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TCTCAAATG 3066 TCCTT GCTGCTTCT TTACATATGT TTGGCACATCT TTCTCAAATG 3066 TCCTT GCTGCTTCT TTACATATGT TTGGCACATCT TCTCAAATG 3166 TATAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA 3216 TCCTT GCTGGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTT 3266 TAAAAT ATTCTTTCC ACATATTAAT ATTCTCCAG 3355 TC CCT GGC CAT CAT TTA AGA AAG AAT GAA GTG TATTCTTTT 3316 TAAAAT ATTCTTTCC ACATATCAT ATTCTCCAG 3355 TC CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 TC CCT GAC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 TC CAT GAA GAG GAA CAA ATG GAA GAA GAA GAA GAA 3522 TG GAT GAA CCT AAG GAA CAA ATG GAG GAA GAA GAA GAA GAA GAA GAA G	CCTGCTCCT TCCCTTCCC TCCCTTCCC TTTTCTTCCA 2566 CCTGCTCCTT TACCCTGCCT CCTCCTACCT TTTTCCCCTT 2616 ATTTCCCTCT TACCTGCCCT CCTCTTACCT TCTTTCCC 2616 ATTTCCCTCT TCTCTCCCTT CCTCTTCCT TCCTCTCCCC 2716 TCCTTCTCC TCTCTCCCCT TCCTCTCTCT CCTCTTCTCT TCCACCCTGCC 2716 CTTGTTCCCC AGGACCTCAC CTATCTCCCT CCACATCCT CCACCTCCC 2816 ATCAACAACA AGGAGCCACAC AAATCCCAAA ATCACCAGG AAATCCCAAC AAGGCCAGCA AAATCCCAAA AACTGCCACCT CAAATCCACAC AAATCCCAAA AAATCCCAAA AAGGCCAACC TACAACACATC TCCTCAAAATAACCCAACAACAACAACAACAACAACAACA			
CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCCAT TCCATGTCCC CTCTCAATTC CCTCTCCCAT TGTGCTCCCT CACATCTTCC ATTTCCCTCT TTCTCCCTTA GCCTCTTCTCC TCTCTCTCT TGTATCTCC TTCCCTTTGC TTCTCCCTCT CCCTCTTCCCC TTCCCCTATG CCCTCTACTC TACATCACCTTCC CTCCTCCTCC TCCTCTCCC TTCCCCTATG CCCTCTACTC CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGAGATG CGCAGGTGCC CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGAGAAGT GGGAGGTGCC ACACCACACA AGGAGGCAGA AAACAGAGCA AAATCCCAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC AAAGGCTGGT GAAAATAAGG CCAGGTTCTG AGGACAAGTA TCTCACAATGC AAAGGCCTC TATAACCCTA AGTACCAAAG GACAAAGTA TCTCTCAAATG CTGAGCCATCC TCATGCTTG GCGCTTGCTC AGGCAGACTT TCTCCAAATG GAATCTGAAA ACTAGGGGC AGTGGTTGT TTTGGGACACTT TCTCAAATG GAATCTGAAA ACTAGGGGC AGTGGTTGT TTTGGGACACA AATTAGCAC GAATCTGAAA ACTAGGGGC AGTGGTTGT TTTGGGACACA AATTAGCAC GAATCTGAAA ACTAGGAGC AGTGGTTGT TTTGGGACACA AATTAGCAC GAATCTGAAA ACTAGGAGC AAAAAACAGCT TGTTAAAAATA TCCCCCTAAA AAATTATAACA AACAGATCA TCTCTTTTAA GGCTAAAAAA ACTTGGAACC ATAGAAACCGT TGTTAAAAATA CTGCTTTTTA GGCTAAAAAA ATTCTTTCTC ACATATCAA ATTCCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AGG TGT AGG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GTA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA ATG GAA GAA GA	TECTT TACCCTGCCT CTCCCATTGC CTCTTACCT TTATGCCCAT THECC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTTCC 2666 CTCT TTCTCCCTTA GCCTCTTCTT CTGTGCTCCC CACATCTTCC TTTGC TTCTCCCTTA GCCTCTTCTT CCTCTTCTT TGTATCTCCC TTTTGC TTCTCCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC AAACT TCCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC AAACA AGGAGGCAAG AAACAGGACA AAATCCCAAA ATCAGCAGGA CCACA AGAGGGCAAG AAACAGAGCA AAACAGCAGA AATCCCAAA ATCAGCAGGA CCACATCT TATAACCCTA AGTACCAGG GAAAACTGCA GAACCTAGCC CCACGTTCT TATAACCCTA AGTACCAAGG GAAAAATCA TGGTGAAGTT CCATGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CCATGC TCCATGCTTG CGCGTTGCTC AGCACGCTG GAATCTAGCC CACAGTTCT TATAACCCTA AGTACCAAGG GAAAAATCA TGGTGAAGTT CCATGC TCCATGCTTG CGCGTTGCTC AGCCTGCTTA AGTAATGCACG ACATAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTCAAAT CACATAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTCAGA CACATATTTCCCCCTAAA AATTATAACA AACAGATTCA TGATTTCAGA CACATATTTCTC ACATATCAT ATTCTCCAG CTCCT GCC CAT CAT TTA AGG AAG AAT GAA GTG TATT AAAAT ATTCTTTCTC ACATATCAT ATTCTCCAG CTCCT AGG CCAT CAT TTA AGG AAG AAT GAA GTG AAG TGT CACATC TAT TAT TC TC CAC GAC CCT AAT TC CTG GTG TCT AAAATA ATTCTTTCTC ACATATCAT ATTCTCCAG CTC GAT GAA GAG GAA CAA ATG GAA GAG GAA GAA CAC CT TAG CACAT CACATCTACAC AATGCAACC ATTCCTAACA TATGCCCTGTA CACATCTTACAACAACC AATGCAACC AATGCAACC CACATCTAACAACACACACAACAACACACAACAACACAACA	CCTGCTTCTT TACCCTGCCT CTCCATTGC CCTCTTACCT TATGCCCAT TCCATGTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTCCC 2666 ATTTCCCTTT TCTCCCTTA GCCTCTTCTCC CTCTCTCCCT TGTATCTCCC 2716 TTCCCCTTG TTCTCCCCTT GCCTCTTCTCC CTCCTCTCTCT			
TCCATGRECC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTCC ATTTCCCTTT TCTCCCCTTA GCCCTTCTTC CCTCTTCTC TGTATCTCCC TTCTCCTTTCC TTCTCCCTCT CCCTCTCTCC CTCCTTCTC CCCCTTAGCC TTCCCTTTCC TTCTCCCCTC TCCTCTCCC TTCCCCTTTC CCCCCTAGCC CTTTGTCCCC AGACCCTACA GTATCCTGT CACAGAAAGT GCGAGGTGCC ATCAACAACA AGGAGGCAAG AAACCAGACCA AAATCCCAAA ATCAGCAGCA AAGGCCAGGT GAAAATAAGG CCAGGTTCT AGGACAGCTG GAATCTAGCC AAGGTGCTCC TATAACCCTA AGTACCAAG GACAAGTGA TGGCAAGTT CTTGATCCTT GCTGCTTCT TTACATATGT TGGCACATCT TCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGGGTGGTTA AGTAATGGGA GAATCTAGCC AGTACCAAGA AAATTAAAACA AACAGATTCA TCTCTCAAATG TCCTTCAAAA ACTAGGGCC AGTGGTTTGT TTTGGGACA AAATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAAACA AACAGATTCA TCATTTTAAA GGCTAAAGAT ACTTGGAACC ATAGAACGT TGTTAAAATA CTGCTTTCTT GGCATAAAAA ATTCTTCTC ACATATTCAA ATTCCCAGA GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GGC AGG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GTG AAG GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA ACG GAA CAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA GGCAAGCACA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TCTTTAACAAGACA TCTGCTTCAACA TTTTCTTAAAATAAAT ACAACTGTTA TCTTTAACAAGAACT CTTATAAAATAAT CCAGGTATACA TTTTCAGAA GCAAGAGCA TCTTTTTAAA AAATATATTT GGTAAACTAA ACAATTGTTA TCTTTTAACA TAAATAGAA TAAAATATATT GGTAAACTAA ACAATTGTTA TCTTTTTACA TAAATAGAA TAAAATATATT GGTAAACTAA ACAAATTGTTA TCTTTTTACA TAAATAGAA TAAAATATATT GGTAAACTAA ACAATTGTTA TCTTTTAAGT ACCTTTCAGA CAGCCCTATAAA CAGATTGTT TTCAAACAAAA ACAACTCT AAAAATATATT TGGCAACAAA ACAATTGTTA TTCTTAAAATATT TAAATATATT TAAAATATATT TAAATTAAAT CCAGGTATACA GTTTTAAGAAA CCCTAAGCTAA AAAATAACAA TATAATATAT TAAATATATT TAAAATAATAT TAAAATATAT TAAAATATAT TAAATAAGAAA TACAAATTGCT TTCTAAATATT TAAAATATAT TAAAATATAT TAAATATATAT TAAATATATT TAAAATATAT TAAATATATAT TAAAATATATAT TAAAATATATAT	TECC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTCC 2666 CCTCT TTCTCCCCTTA GCCTCTTCTC CCTCTTCTCT TGTATCTCC 2716 FTTGC TTCTCCCCTC TCCTTTCCCC TTCCCCTATG CCCTCTACTC 2766 FAACT TCTCTCCCTC TCCTTTCCCC TTCCCCTATG CCCTCTACTC 2816 FAACA AGGAGCCACA GTATCCTGTG CACAGGAAGT GCGAGGTGCC 2866 FACACA AGGAGCCACA GAACCACACC AAATCCCAAA ATCACCAGGA 2916 FAGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC 2966 FACCT TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT 3016 FACCT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG 3066 FACATC TCCATGGTG GCGGTTGCT AGCGTGGTA AGTAATGGAG 3116 FACATG TCCATGGTG GCGGTTGCT AGCGTGGTA AGTAATGGAG 3116 FACATA ACTAGGGGC AGTGGTTTG TTTTGGGGACA AATTAGCACG 3166 FATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA 3216 FACAT GGTGAGAAGT GGAAAAATTG TCACTATCAA GTTCTTTTTA 3266 FACAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 FACAT GGTGAGAAGT GAAAAATTG TCACTATCAA GTTCTTTTTA 3266 FACAT TAT TTC TC CAC GAC CCT AAT TCC CTG GTG TCT 3438 FACAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA 3522 FAC GTG AAC CCT AAG GAA CAA ATG GAG GTG TGT 3438 FACAT GAA GAG GTA GAG GAA ATG GAA GAA GAA G	TCCATGTCCC CTCTCAATT CCTGTCCCAT TGTGCTCCT 2716 ATTTCCCCTT TCTCTCCTT GCCTCTTCTT CCTCTTCTCC 2716 TTCCCTTTCC TTCCCCTTGC CCCTCTTCCC 2716 TACTGACAT TCTCTCCCT CCCCTTCTC CCCCTCACT 2716 CTTGACATC TCCCCTTCCT CCACATACC CTTTTTCCTTT CCACCTGCC 2816 ATCAACAACA AGGAGGCAG AAACAGGCAA AAACAGGCAA AAACAGCACAA AACAGCAGGCC 2916 AAGGTGGGTT GAGACAGGTG GAAACTAGC 2916 AAAGGTGGATC CCAGGTGCTA AGGAGGGCC 2916 AAGGTGGACTA GCAGACACTC TGCTGAACAT AGGAGGGCA AATTAGCCCT AGGAGGGCA AATTAGCCCT AGGAGGGCA AATTAGCCCT AGGAGGGCA AATTAGCCCT AGGAGGGCA AATTAGCCCT 3016 GAAACTGAAATT AGGTAAATTGCA AATTAGCACC ATTAGCACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT			
ATTTECCTT TCTCCCTTA GCCTCTTCTT CCTCTTCTC TGTATCTCC TTCCCTTTGC TTCTCCCTCC TCCTTTCCCC TTCCCCTATG CCCTCACC TTCCCTTGTCC TCTCTCCCTCC CACATACCC TTTTTCCTTT CCACCCTGCC CTTGTCCCC AGACCCTACA GTATCCTCTG CACAGAAGT GCGAGGTGCC ATCAACAACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTG TGGTGAAGTT CTTCATCCTT GCTCCTTCTT TTACATATGT TGGCACATCT TCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTCTC AGCAGGACATCA TGGTGAAGTT CAGGCCATGC TCCATGCTTG GCGCTTCTC TTTCGGGACA AATTAGCACG GAATCTCAAA ACTAGGGGC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTCAAA ACTAGGGGC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTCAAA ACTAGGGGC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTCAAA ACTAGGGGC ATAGAAACTG TCCTTCTTAAA GCGCTAAAGAT ACTTGGAACC ATAGAACCGT TGTTAAAATA CTGCTTTTTT GGCTAAAAA ATTCTTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GCC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT ATA CCA GTG AAC CCT AAA ATT AGC AGA GAA GAA GAA AAT GCT GAT GAA GAG GAA CAA ATG GAG GTG AGG TGT AAA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA AAT GCT GAT GAA GAG GAA GAG GAA ATG GGA GAA GA	CCTCT TTCTCCCTTA GCCTCTTCT CCTCTTCTC TGTATCTCCC 2716 CTTGC TTCTCCCCTC TCCTTTCCC TTCCCCTACT 2766 CARCT TCTCTCTCT CCACATACC TTTTTCCTTT CCCCTTGCC 2816 CCCC AGACCCTACA GTATCCTGT CACAGGAAGT GGGAGGTGC 2866 CACCA AGGAGCAAG AAACAGAGCA AAATTCCAAAA ATCACCAGGA 2916 CACCA TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT 3016 CACTC TATAACCCTA AGTACCATAGG GAGAAAGTGA TTCTCAAATG 3066 CACTC TATAACCCTA AGTACTATT TGGCACACT TTCTCAAATG 3066 CACTC TATAACCTAT AGTACATGT TGCCATACAT 3016 CACTT GCTGCTTCTT TTACATATGT TGCACATATTGAA AGTATAGAGGG 3166 CATATT TCCCACTAAAA AACAGAGATCA AGTATAGAA 316 CATATT TCCCCCTAAA AACAGAAATTCA CTCACTATGAA 3216 CATATATATTTCTC CACATATCAA ATTCTCCAG 3355 CT CAT CAT TATA AGG AAA ATG GAG AAT GAA GTG AAG TGT 33480 CT GAT GAA GAA GAA GAA GAA GAA GAA GAA GA	ATTTCCCTTG TTCCCCTTA GCCTCTTCTC CTCTTTCCCC TCTCTCTCTC CTCTTTCCCC TCTCTCTCTC CTCTTTCCCC TTCTCCCTCTC CTCTTTCCCC TTCTCCTCTC CCCTTAGTCC CTCTTGTCCC ACCACATACA CTCTTGTCCCC AGACCTACA GTATCCTTG CACAGCAACT CACACCTACA CACACCAACA ACCACCTACA AGACCGACAC CACACCACACA ATTCACCACACA ATTCACACACA ACCACCACACA AACCACACACA AACCACACACACACACACACACACACACACACACACAC			
TTCCCTTTGC TTCTCCCTC TCCTTTCCCC TTCCCCTATG CCCTTACTC TACTTGATCT TCTCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC TACTTGTCCCC AGACCCTACA GTATCCTGT CACAGGARGT GGGAGGTGCC ATCAACAACA AGGAGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTC AGGACAGCT GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAGGA GAACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAGGA GAACAGTCT TCTCCAAATG CTGGATCCTT GCTGCTTCT TTACATATGT TGGCACATCT TCTCCAAATG CAGGCCATGC TCCATGGTTG GCGCTTGCTC AGCGTGGTTA AGTATGGCAC GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGAGGC GAAAAATTA TCGCACATCT TCTCTAAAAAAAAAA	TTTGC	TTCCCTTGC TTCTCCCTCC TCCCTTAGC 2766 TACTTGATCT TCTCTCCTCC CCACATACC TTTTTCCTTT CCACCCTGCC 2816 CTTTGTCCC AGACCCTACA GTATCCTGTG CACAGGAGG 2866 ATCAACAACA AGGAGGCAG GAAACCCTA ATTCACCAGG GAGAGGCAGA AAATCCCAA AGTACCTA AGTACCAGGC AGTACTAGCC 2966 AAGTGGCTC TATAACCCTA AGTACAAGG GAGACACTC TCGTCAACCT AGTACAAGG GAAATCTGAAA AGTACAAGG GAAACAGACTC TTCTCAAATG 3066 CAGGCCATGC TCCATGCTG GCGCTTGCTC AGCGAGCTC TCGTCAAATGCAAAATTCAT AGTACTGAAA 3116 CAGGCATAGAT TCCATGGAGAGT GGAAAAATTC TCTTCTTAGA 3216 GAAATCTGAAA AATTATAACA AACAGAATTCA AGTATTTAGA 3216 TCCTTCTACA GGAAAAATTCA AGCAGAATTCA ATTATCTTCA AGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-		
TACTTGATCT TCTCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC ATCAACAACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCAGGTTTG AGGACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAACTGA TGGTGAAGTT CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGGCTGGTTA AGTAATGGAA CACAGGCATGC TCCATGCTTG GCGCTTGCTC AGGCTGGTTA AGTAATGGAC GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTTGGGGACA AATTAGCACG TAGTGGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAAAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT TTCCTAAAAT ATTCTTTCT CACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAA AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAG GAG GAA AAT GCT GAT GAA GAG GTA CAA ATG GAG GAA GAA GAA GAG GAG GAG GAG GAG GA	### TOTATION CONCENTIAL CONCENTIAL CONCECTION CONCERNATION CONCERNATION CONCERNATION CONCERNATION CONCERNATION CONCERNATION CONCENTIAL CONCERNATION CONCENTIAL CONCERNATION CONCENTIAL CONC	TACTTGATCT TCTCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC AACACCAACA AGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCACGTTCTG AGGACAGCTG GAATCTAGCC AAGTGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGCTG GGGCTTGCTC AGCGTGGTTA AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTTGGGACA TATTAGGAC GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTTGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTTGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAATTG TCACTATGAA CTTCCTTTTTA 3266 GGCTAAAGAT ACTCTTCCTC ACATATTCAT ATTCCCAC GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TCC CAC GAC CCT AAAT TCC TGG GTG TCT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA ATG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA AAT GCT GAT GAA GAG GAA GAG GAA ATG GAA GAA GA			
CTTTGTCCC AGACCTACA GTATCCTGTG CACAGGAGT GGGAGGTGCC ATCARCAACA AGAGGCAAG AAACAGAGCA AAATCCCAAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA CTTGATCCTT GCTGCTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGCTTG GCGGTTGCTC AGCGTGGTTA AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTTG TTTGGGGACAA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTG TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTG TTTGGGGACA AATTAGCACG GAGTGAATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGGA GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTTTA GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTTTT TTGCTAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAC GT GTT CCT GGC CAT CAT TA AGG AAG AAT GAA GTG ATG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GA AAT GCT GAT GAA GAG GAT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	CCCC AGACCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC 2865	CTITGTECCC AGACCCTACA GTATCCTGTG CACAGGARGT 2866 ATCAACAACA AGGAGGCAAR AAACAGRACA ARATCCAAR ATCAGCAGGA 2916 AAGGCTGGT GARATAAGG CCAGGTTCT AGGACAGCTG GAATCTAGCC 2966 AAGTGGCTCC TATAACCCTA AGTACCAAGG GACAAGTT TTCTCAAATG 3016 CAGGCCATCC TCCATCCTTG GCGCTTGCTC AGGGCAGTTA AGTATAGGCA 3116 GAATCTGAAA ACTAGGGCC AGTGGTTGTT TTGGCACATCT TTCTCAAATT ACTAGGAGCGT 3166 TAGTGATAT ACTAGGAGC AGGGTTGTT AGGATTCA AATTAGGAG 3116 GCGTAAGAA ACTAGGAGC AGTGGATCA AATTAGTAGA ACCATATTAGA 3216 TCCTTCTACA GGGAGAGT GAAAAATTG TCACTATTAGA 3216 3216 TCCTTACA GGTAGAAGT AATTATCTCCA GATTATTAGA ATTTCCCAG 3315 GCTACAGAT ATTATTTTTTATATATATATATATATATATATATATAT			
ATCARCARCA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAAGTGA TGGTGAAGTT CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATAGGA 3 GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGAGCC AGTGGTTTGT TCCCTTAGAA GTTCTTTTTA 3 GGCTAAAGAT ACTTGGAACC ATAGAACGGT TGTTAAAATA CTCCTTTTTA 3 GGCTAAAGAT ACTTGTACC ACATATTCAT ATTCTCCAC GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTA AGA GAA GAA GAG GAG GAG GAG GAA GAA GA	CARACA AGGAGGCARG ARACAGAGCA ARACCCARA ATCAGCAGGA 2916 COGAT GARARATARG CCAGGTTCTG AGGACAGCTG GARACTAGCC 2966 COCTC TATARACCTA AGTACARAG GAGACAGCTG GARACTAGCC 2966 COCTC TATARACCTA AGTAGATGCT TTCTCARATG 3016 3016 CATACT CCCATGCTTG GCGCTTCCTC AGCGTGGTTA AGTAATGGGA 3116 CATACA GGGCTTCCTC AGCGTGGTTA AGTAATGGA 3166 3166 CATAT TCCCCCTARA AATTATACA AACAGATTCA TGATTTGGA 3216 CATACACC ATGGAACCA ATGGAACCA ATGCACCACCACCACCACCACCACCACCACCACCACCACCAC	ATCACARARA AGRAGGCAAG AARCAGAGCA AARTCCCAAA ATCAGCAGGA AAGGCTGGAT GARAATAAGG CCAGGTTCTG AGGACAGCTG GARTCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT GCTGATCCTT GCTGCTTCTT TTACATATGT TGGCCACATCT TCTCTCAAATG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTGTT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTGTT TTTGGGGACA AATTAGCACG GAATCTGAAAA ACTAGGGGCC AGTGGTTGTT TTTTGGGGACA AATTAGCACG GCCAAAGAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 GCGTAAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTCCTTTCTT 3316 GCGCAAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTCCTTTCTT TTCCTAAAAAT ATTCTTTCTC ACATATCAAT ATTCTCCAG AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG AGT AAG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTG AAG GAG AAT GCT GAT GAA GAG GTA CAA ATG GAG AGA GAA GAA GAA AAT GCT GAT GAA GAG GTA CAA ATG GAA ATG GAA GAA GAA AAT GCT GAT GAA GAG GAA GAG GAA ATG GGA AAC CCC GAT GC TTC TCA CCT TAG GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3576 GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3626 GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3776 GTAGTGAGAC TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 TCTTTTTTACA TTAAATAAGTA TAAAATTAAT CCAGTATACA GTTTTAAGAA 3726 GCATAGCAAGCA TCCTTTCACA AGATGAGAA TTGTTAAGAT ACAATTGTTA 3776 GTAGTGAGAC TACTTACTAC AGATGAGAAC TTGTTAAGAT TAATTTTTGCT TTCTTATACT ACCTTTGAAC AACTGATAA CAGCTGACAA AAATAAGTGT TTCTTAAAATTT CCTTCAATCT TAAATTAAT CCAGTATAAC AACAATACT TTCTTAAAATTT TTTCTTTCAA GACCACCA TTGTTAAGAT TATTTTTTCCT TAGAATTTT TTTCATTCT AGACCACC ATGGTTCAAA CAGCTGAAAA AACAATAACT TTCTTAAAATTT CCTTCAATCT TAATTTCCT TAATTTTTAA 4126 GTAACTGGGG GCCTTAGGAA ACCTGACAAA ACCGCGAAAAAAAAAA			
AAGGCTGGAT GAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGGTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTGTT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTGTT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAACT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAGAT ACTTGGAACC ATAGAACGTT TGTTAAAATA CTGCTTTCTT TTGCTAAAAT ACTTTCTC ACAATATCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GTG TAG AAT GCT GAT GAA GAG GAT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA GAA GA	REGAT GARAATARGE CCAGGTTCTE AGGACAGCTG GARACTAGCC 2966 RECTC TATAACCCTA AGTACCAAGG GAGARAGTGA TEGTGARGTT 3016 RECTT GCTCTCTTCT TTACATATGT TEGCGACATCT TTTCCAAATGG 3166 REARA ACTAGGGGCC AGTGGTTGT TTTGGGGACA AATTAGCAG 3166 REARA ACTAGGGGCC AGTGGTTGT TTTGGGGACA AATTAGCAG 3166 REARA ACTAGGAGCC AGTGATATAA AACAGATTCA TGATTTTTAGA 3216 REARA ACTGGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 REARA ACTGGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 REARA ATTCTTCCAC ATTCTTCTCACA 3356 3366 348 347 348 GTG AAG TGT 348 336 ATTCCTGAC 348 348 348 348 348 352 348 348 348 348 348 348 348 348 348 348 348 348 348	AAGGCTGGAT GARATARAGG CCAGGTTCTE AGGACAGCTG GARTCTAGCC AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAAGTG CAGGCCATGC TCCATGGTTG GCGCTTGCT AGCGTGGTA AGTAATGGAC GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGAGGC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACATAGAA GTCCTTTTTT 2266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTCCTTTTTT 3316 TTGCTAAAAT ATTCTTTCT ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AAG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT AAAA CAC GTG AAC CCT AAG GAA CAA ATG GAG GTA AGA GTG AAG AAT GCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA GAA GAC GAG GAG GAG GAG GAG GAA GAG GAA GAA GAA			
AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CTTGATCCTT GCTCTCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTTGCT AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAGAT ACTTGGAACC ATAGAACGGT TGTTAAAATA CTGCTTTCTT TGCTAAAAAT ATTCTTTCTC ACAATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AAA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA GAAT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	CCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA 3116 CATAC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA 3166 CATACT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA CTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 CATACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3316 CATACA GGTGAGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 CATACA GGTGAGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 CATACA GGTGAGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 CATACA TTAT TTC TTC CAC GAC CCT AAT TCC CTG GTG TCT 3438 CA GTG AAC CCT AAG GAA CAA ATG GAG GTG AAG TGT CAC GAG GAG GAG GAA GAG GAA GAA GAA 3522 CA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA 3522 CA GTG AAC GAG GAA GAG GAA GAA GAA 3522 CA GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GCC 3564 CA CCT TAG CAC TTG CAC TAG CAC TAG CAC TAGACCAACC ATTCCTAACA TATGCCTGTA 3662 CAC TTTTTTAAAA AAATATATTT GGTAAACCTAA ACAATTGTTA 3676 CAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3676 CAGGA CACTAACAAC ATGATGCT AGATGCCTGT CACATTACAACC AACAATGCC CACATATAC GTTTTAAGAA 3776 CAGGA TACTTACAAC AAGAATGTC CACATATACA GTTTTAAGAAA 3776 CAGGA TACTTACAAC AAGAATGTC CACATATACA TTCTTAAGAAA 3776 CAGAAACAATGCA GTGAAAATTAT TATTTTTCCT TAAAAAAAAATC CACATATAT TATTTTTCAAT 3776 CACAAACAATGCA TTAAATTAT TAAATTTTAAAAAAAAAA	AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT CTTGATCCTT GCGCTTCTT TTACATATGT TGGCACATCT TCTCAAAGTG CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA 3216 TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTA 3266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTCCTTTCTT 3316 TTCCTAAAAA ATTCTTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA			
CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATGC TCCATGCTG GCGCTTGCTC AGCGTGTTA AGTAATGGGA GAATCTGAAA ACTAGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG GAATCTGAAA ACTAGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GCAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAGAT ACTTGGAACC ATAGAACCGT TCTTAAAATA CTGCTTTCTT TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT AATA CCA GTG AAC CCT AAG GAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GAT AAG GAA ATG GAG GAA GAA	CCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG 3066 CATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA 3116 CGAAA ACTAGGGGC AGTGGTTTGT TTTGGGGACA AATTAGCACG 3166 CTATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA 3216 CTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 CAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 CAGAT ACTTGTACC ACATATTCAT ATTCTCCAG 3355 CT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 CT ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 CA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA 3522 CT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA 3522 CT GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC 3564 CA CCT TAG CAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3626 CAGCA TCTTTTTAAA AAATATTATT GGTAAACCTAA ACAATTGTTA 3676 CAGCA TCTTTTTAAA AAATATTATT GGTAAACCTAA ACAATTGTTA 3676 CAGCA TCTTACTACA AGAAGAGA TTGTTAGACT TCCTTAGATT 3776 CAGCA TACATACACA CATGAGAAG TTGTTAGACT CCGGAGTACA 3826 CAGAC TACTTACTACA AGATGAGAAG TTGTTAGACT CCGGAGTACA 3826 CAGAC TACTTACTACA AGATGAGAAG TTGTTAGACT TCCTTTAGATT 3776 CAGAC TACATCACA AGATGAGAAG TTGTTAGACT TCCGGAGTACA 3826 CAGAC TACTTACTACA AGATGAGAAG TTGTTAGACT TCCGGAGTACA 3826 CAGAC TACCTTCAAC CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 CAGAC TACTTACTAC AGACCTGTG TTTTAAAGAA ATGAAAACCT 3926 CATTT TTTCATTCT AGACCTGTG TTTTAAAGAA ATGAAAACCT 4026 CATTT TTTCATTCT TAAATTCACT TCCAAACTAT TATTTTTGTG 3976 CATTT TTTCAATTCT TAAATTCACT TTAAATTTAA TTATTTTTTAAAAAAAA	CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG CAGGCCATCC TCCAGGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA 3116 GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATAAA GTTCCTTTTTA 2266 GGCTAAAGAT ACTTGGAACC ATAGAAGCT TGTTAAAATA CTGCTTCTT TTGCTAAAAT ATCTTCTC ACATATTCAA ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TCC CTG GTG TCT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTG TAGGA GAA AAT GCT GAT GAA GAG GAT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAA GAG GAA ATG GAA GAA GA		AACTCCCTCC TATALCCCTA ACTACCA CACALCAGCT GAATCTAGCC	
CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTANTGGGA GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTA GGCTAAAGAT ACTTGGAACC ATTAGAAGCGT TGTTAAAATA CTGCTTTCTT TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA GAA AAT GCT GAT GAA GAG GAT GAA ATG GAA GAA GAA GA	CATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA STAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG STAAT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA CTACA GGTGGAAGT GGAARAATTG TCACTATGAA GTTCTTTTTA AGGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT AAAAA ATTCTTTCTC ACATATTCAT ATTCTCCAG CT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT CT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AGG TGT CT GAT GAA GAG GAA CAA ATG GAG TGT AGG TGT GAA CT GAT GAA GAG GAA AAT GAA GAA GAA GAA GA	CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA 3116 GAATCTGAAA ACTAGGGGC AGTGGTTGT TTTGGGGACA AATTAGCACG 3166 TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA 3216 TCCTTCTACAC GGTGAGAGAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 TTGCTAAAAT ACTCTTCC ACATATCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTG AAG TGT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTA GAG GTG TAA AATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAA GAA GAA GAA GAA GAA GAG GAG			
GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3 TTGCTAAAAT ATTCTTTCC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAC AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAG GAA ATG GAA GAA GAA GA	ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG ATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA ATTATAACA GATGATTCA TGATTTGAGA AAGTATTCA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA AGAAAA ATTCTTTCTC ACATATTCAT ATTCCCAG AGAAT ATTCTTTCTC ACATATTCAT ATTCCCAG AGAT ATTCTTTCTC ACATATTCAT ATTCCCAG AGAT ATTCTTTCTC ACATATTCAT ATTCCCAG AGAT ATTCTTTCTC ACATATTCAT ATTCCCAG AGA GAG GAG GAC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGAT GAAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA ACAGA GAG GAG GAA GAA ATG GAG GAA GAA GAA AGA GAG GAG GAA GAA GA	GARTETGARA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA ARTTAGCACG TAGTGATATT TCCCCCTARA ARTTATARACA AACAGATTCA TGATTTGAGA 3216 TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 TTGCTAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG 3355 GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTA GGT GAA GAA AAT GCT GAA GAG GAT GCA ATG GAA GAA GAA GAA GAA GAA GAA GAA GA			
TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAAAT ACTTGCAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT TGCTAAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAA AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	TATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 LAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 LAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG 3355 LT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 LT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG TGT 3396 LT CAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 LT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA LT GAT GAA GAG GAT GCA ATG GAA GAA GAA GAA LT GAT GAA GAG GAT GCA ATG GAA GAA GAA GAA LT GAT GAA GAG GAA GAG GAA ATG GAA AAC CCG GAT GCC LT GAG GAG GAA GAA GAG GAA ATG GGA AAC CCG GAT GCC LT TAG LT CCT TAG LT CCT TAG LT CCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 LT CAC TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 LT CAC TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 LT CAC TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 LT CAC TTAATACTAC AGATGAGAAG TTGTTAGACT CCGGAGTAGA 3826 LT CAC TACTTACTAC AGATGAGAAG TTGTTAGACT CCGGAGTAGA 3826 LT CAC TACTTACTAC AGATGAGAAG TTGTTAGACT CCGGAGTAGA 3826 LT CCCTTTGAGA CACCTGTG TTTTTAAATTAT TTTTTCTCT AGAAC ACCCTTTGAGA CACCTGTGAA CACCTGGAAA TCGCAATATTG 3926 LT CCCTTCAATTCT TAATTTCCT TAAATTATT TTTTTTCACT AGAAC ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGCCT ATTTT TTTCAATTCT TAAATTCATC TTAAATTATT TATTTTTCACT AGAAC ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTTCACT AGAAC ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTTCACT AGAAC ATCACACGCC ATGGTTCACA TTATAAATAATTAT AGAACACACACGC TTAAATTCAT TTAAATTTTAA GAATTACATC ATTTT TAAAAAAAAATG CAAATCTCAT TTTAAAATAATTTT AGATTTTTAAAAAAAAATG ACTC TAAAAAAAAATG CAAATCTCAT TTTTAAAGAG ATGAAAAATCT AGACT CTGAGAAGCA GTCAGAGAA ATGGAAAAACC AGAGGAAAA 4226 LT CTGAGAAGCA GTCAGAGAA ATGGAAAAACC AGAGGAAAAT 4226 LT CTCCCTTGAGAA AACAATGACA AACAATGAAA TTGCCAAAAAA AACAATGACA AACAATGACA AACAATGAAA TTGCCAAAAAA AACAATGACA AACAATGACA AACAATAAAA TTGCCAAAAAAAAAA	TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTA 3266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 TTGCTAAAAAT ATTCTTCTC ACATATCAA ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC AGG AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GAT GAA ATG GAA GAA GAA GA			
TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA GGCTAAAAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT TTGCTAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CCA ATG GAG GAG AGG AGG AGG AGG AGG AGG GAG GAA GAA GAA GAA GAA GAG GAG	TRACA GGTGAGARAT GGARARATTG TCACTATGAR GTTCTTTTA 3266 LAGAT ACTTGGARCC ATAGAAGCGT TGTTARARATA CTGCTTTCTT 3316 LARAT ATTCTTTCTC ACATATCAT ATTCTCCAG 3355 LT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 LG ATT TAT TTC TC CAC GAC CCT AAT TTC CTG GTG TCT 3438 LG AGT GAA CAC AAT GAA ATG GAA GAA GAA GAA 3480 LT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA 3522 LG GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC 3564 LA CCT TAG 3576 LAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3626 LAGGA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 LAGGA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3776 LAGGA TACTTACTAC ACATGGAGAG TTGTTAGACT CGGGAGTAGA 3826 LTAAA AGACGAAGTC ACATGGAGAA TCGCATATTG 3876 LAGAA AGATCATGCA CAGCTGAAA CAGCTGGAAA CAGCTGAAA AAATAAAGTGT 3926 LAAAC ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTTCCG 3976 LATTT CCTTCATCTT TAATTTCCT TGCAAATATA TATTTTTCCG 3976 LATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTAAATAGTA TATTTTCTCG 4026 LATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTTCACT 4026 LATTT CCTTCATCTT TAATTTCCT TAACTTTTAG GATTTTTTTAACACA ACAATAGAGAA 4176 LAGGG GGCTTAGGAA ATCGCTGAGA ATGGAAAACC AGGCCCTTGC 4276 LATTT CCTTCATCTT TAATTTCCT TAACTTTTAG GATTTTTTAACACA 4126 LATTT CCTTCATCTT TAATTTCCT TAACTTTTAA GATTTTTTAACACA 4126 LATTT CCTTCAAATTCT TAATTTCCT TAACTTTTAA GATTTTTTAACACA 4126 LATTT CCTTCAATCTT TAATTTCCT TAACTTTTAA GATTTTTTAACACA 4126 LATTT CCTTCAATCTT TAATTTCCT TAACTTTTAA GATTTTTTAACACA 4126 LATTT CCTTCAAACACA ACAACCACACA ACAGGAAAACCA ACAGGGAAAACCA ACAGGGAAAACA ACAAGGAAAACAA ACAAGAGAAAACAA ACAAGAGAAAAAAAA	TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA 3266 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GTG AAG GTG AAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA GAG GAG GAG GA			
GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAT GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	AGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT 3316 AAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG 3355 TC CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3488 AAG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 AAG GTG AAC CCT AAG GAA CAA ATG GAA GAG GAA GAA GAA AGA GAG GAG GAA GAG GAA ATG GAA GAA GAA	GGCTARAGAT ACTTGGAACC ATAGARGCGT TGTTARAATA CTGCTTTCTT TTGCTARAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT A438 ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA GAA GAG GAG GAG GAG GA			3216
TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG GAT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	ARAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG TO COT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 TO ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 TA GTG AAC CCT AAG GAA CAA ATG GAA GAG GAA GAA GAA TO GAT GAA GAG GAT GCA ATG GAA GAG GAA GAA GAA TO GAT GAA GAG GAA GAG GAA ATG GAA GAA GAA	TTGCTAAAAT ATTCTTCTC ACATATTCAT ATTCTCCAG GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG G			3266
GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG AT	TO CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT 3396 GATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 CA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA GAA GT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA GG GAG GAG GAG	GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT A438 ATA CCA GTG AAC CCT AAG GAA CAA ATG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA GAA AAT GCT GAT GAA GAG GAT GCA ATG GAA GAA GAA GAA GAA GAG GAG GAG GAG GA		GGCTARAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT	3316
AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT 3438 A GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA 3480 AT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AGA GAG GAG GAG GA	AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG G			3355
ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GA	A GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA T GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA G GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC ACCT TAG AGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA AGACA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA AGACA TCTTTTTAAA AAATATTATT GGTAAACTAA GCATTTAAGAA GTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT AGACA TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG AGAC ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT ATTT TTTCATTTCT AGACCTGTG TTTTTAAGAG ATGAAAACT ATTCAAATTCT TAATTTCCT TAACTTTTAG TTTTTTTCACT TCAA TTCAAATTCT TAATTTCCT TAACTTTTTA GATTTCTTAA AAAAAAAAAATG CAAATCTCAT TTTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTCCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCCCCAAATC GTTA CTCCTTGAGA AACAATGACA ATGGAAAACC AGGCCCTTGC GTTA CTCCTTGAGA AACAATGACA ATGGAAAACC AGGCCCTTGC GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCCAAATC GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA CCCCGTAAGGAA AGAAATGACA AGACATAAAA TTGGCAAGAA CGCCC TTCATTAATT TCTTAGTTTT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCCAGAAGAA AGAAATGGAC AGCCGGAAGAA GTGGTTGTTT AAAAAATTGAT TCTTAGTTTT TAGTTATCA GAAAATTTGA 4226 CCCC TTCATTAATT TCTTAGTTTT TAGTAATCCA GAAAATTTGA 4526 CCCC TTCATTAATT TCTTAGTTTT TAGTAATCCA GAAAATTTGA 4526 CCCC TTCATTAATT TCTTAGTTTT TAGTAATCCA GAAAATTTGA 4576 CCCC TTCATTAATT TCTTAGTTTT TAGTAATCCA GAAAATTTGA 4526 CCCC TTCATTAATT TCTTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTAA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4526	ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA GAG GAG GAG G		OF GIT COT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT	3396
AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA GAA GAG GAG GAG GA	T GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA GGAG GAG GAG G	AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAA GAG GAG GA		AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT	3438
GAG GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC TCA CCT TAG GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAAG TTTTTTTCACT AAAAAAAAATG CAAATCTCAT TTATATGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGA TTGAGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGAACCA GTCAGAGAGA TTATGGACAC ACGCCCTTGC CAGTAGGTTA GTGAGAACCA GCACTAGAA AACAATGACAA AACAATGACAA AACAATGACAA AACAATGACAA AACAATGACAA AGACATAAAA TTGGCAAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGGGG GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTCTCACAAC AGTCCAGAAG CCCCAGAAGAA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCCAGAAGAA AGACAATAAAA TTGGCAAGAA AGTCAGGAGG GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCCAGAAGAA AGACAATGACA AGCGGAAGAA AGTTGCAAAG CCCCAGAAGAA AGACAATGACA AGCGGAAGAA GTGGTTGTTT TTTTTTCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGTCTCTATAT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGTCTCTATAT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGTCTCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	AG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC CAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA CAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA CAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA CAGCA TCTTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CATTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT CAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA CAGACTACTAC AGATGAGAAG TCGCATAGAAA TCGCATATTG CAGAC ACCTTTGAGA CAGCTGACAA AAATAAGTGT CAGAC ACCTTTGAGA CAGCTGACAA AAATAAGTGT CAGACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG CATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTCATCTT TAATTTTCCT TAACTTTTAG TTTTTTCACT CAGACTGAGA ATCACAATCC TTAATTTTTTA GATTTCTTAA CAGACTGAGA ATCACAATCC TTAATTTTTA GATTTCTTAA CAGACTGAGA ATCACAACAC TCACAAACAGA CAGACTGAGA ATCAGAGAGA ATGAAAACC AGGCCCTTGC CTTCAAAAAAAAAAAC CAAAATCCAA TTATGGACAC TCTCCAAATC CACCC TAACAGCTAA GAACATGACA AGACAAAAAA TTGGCAAGAA CACCCTTGAGAAAAAA AACAATGACA AGACAAAAAA TTGGCAAGAA CACCCTTGAGAAAAAA AACAATGACA AGACAAAAAA TTGGCAAGAAA CACCCCTTGAGAAAAAA AACAATGACA AGACAATAAAA TTGGCAAGAA CACCCCTTGAGAAAAAAAAAAAAAAAAAA	GAG GAG GAG GAG GAR GAG GAR ATG GGA AAC CCG GAT GGC TTC TCA CCT TAG GCATGCAGGT ACTGCCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA GCATAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 CCCTAAGTTA AACAGAAGTC AATGATGCTT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGT GCCATGGAAA TCGCATATTG GTAGTGAGAA ACACTAGCA GTGAAATGT GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTCT AGACCTGTGG TTTTAAAGAGA ATGAAAATCT 4076 CTTAAAAATT CCTTCATCTT TAATTTTCCT TAACTTTTAG TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTTCAT TTTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAAT CAAATCTCAT TTTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAAAT CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAAACCA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAGA CCCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT AGGTTGCAAGA CCCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT AGGTTGCAAGA CCCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT AGGTTGCAAGA CCCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAAT TCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTTCCCC TTCATTAAT TCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTTCCCC TTCATTAAT TCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 ATTTTTTCTCCA TTCATTATA TGCAAAGAT TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATT AGCAACATGA TTACACTTGT ACCTGTTAAA ATTTTTTTTAATT TCTACTTTT TAGCAACAGA ACTTCTGACT 4626 GCATGGTGAA CTTTCATATT AGCAACATGAA TTACACTTGT ACCTGTTAAA 4676		ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA	3480
GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCTAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT TAGAAATTCA TCCATCATT TAATTTCCT TAACTTTAGT TTTTTTCACT AAAGAATAG GGCTTAGGGA ATCTGAGGA TGAAAAGCAGA GTTACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGAGCA GTCAGAGAGA ATGGAAAACC ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AAAATGCACA ACAGGGAAAAT ATTTTAGTTT CTCCTTGAGA AAAATGCACA AGACATAAAA TTGGCAAGAAA AGTCAGGAGG GTATCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAAAA AAAATGCAC ACAGGGAAAAT AGTTGCAAAG CTCCTGAGAA AAAATACAC ACAGGGAAAAT AGTCAGGAGG GTATCTAAA AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAAAA AAAATGCAC ACAGGGAAAAT AGTCAGGAGG GTATCTAAAT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGCAAAG CCCAGAAAAA AAAATGCAC AACCGGAAGAA GTGGTTGTTT AGTTATCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAAATTTGA	ACCT TAG CAGGT ACTGCCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA AGGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA AGACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA AGATCATCA AATGATGTCT AGATGCCTGT TCTTTAGATT AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT AGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG AAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG AAAAA AGATCATCA ATGATCACA CAGCTGACAA AAATAAGTGT AAAAA ATCACACGCC ATGGTTCACA TGCAAAATTAT TATTTTGTCG ATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAGA ATGAAAATCT AAAAAAAAATG CAAATCTCAT TTAACTTTAAG GATTTCTTAA 4126 ATTT AAAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 AGGGG GGCTTAGGGA ATCTGTAGGG TTGCCGTATA GCAATAGGGA 4226 ACTC CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ACTC TAACAGCTAA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT AAAAAAAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3626 GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCCAT TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGG GGCTTAGGGA ATCTGTAGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATTAAATACTC TAACAGCTAA GGATCTCTGA GGGAAAACC ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACAAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGACA AGACGAAAAA TTGGCAAGAA 4426 TTTTTTCCCC TCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGACA AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCCCT TCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCCCT TCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCTCCA TCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCTCCA TCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCTCCA TCCATTAATA TTCTAGTTTT TAGCACATAGA ACCTGTTAAA 4676 AATAAAAATCTA AAGTTCAATTA TTCTAGTTTT TAGCACATAGA ACCTGTTAAA 4676 AATAAAAAATCTA AAGTTCAATTA TTCTAGTTTT TAGCACATAGA ACCTGTTAAA 4676 AATAAAAAAAAA CTTTCAATTA TTCTAGTTTT TAGCACATAGA ACCTGTTAAA 4676 AATAAAAAAAATTTTAAATTAATT TTCTAGTTTT TAGCACATAGA ACCTGTTAAA 4676		AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA	3522
GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TCTTTTTACA TTAAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAGA ATGAAAATCT CCTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTTAG GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCCGGTATA GCAATAGGGA GTACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCCGTATA GCAATAGGGA GTACTGGGTT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGAGGAAAAT AATTTTAGTTT CTCCTTGAGA AACAATGACA AGAGGAAAAT AAGTCAGGAG GTATCTAAT AAGTGTTGCT TATCTTCTTAC AGTTGCAAAG CCCCAGAAGAA AACAATGACA AGAGCAAAAAC AGTCAGGAGT GTATTCTAAT AAGATTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCCAGAAGAA AGAAATGGAC AGCGCAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA AGTTATCTCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA ACTTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA	AGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA AGGCA TCTTTTTAAA AAATTATT GGTAAACTAA ACAATTGTTA ACAGCAACT ATTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA ACGTTA AACAGAAGTC AATGATGCT AGATGCCTGT TCTTTAGATT ACGTTA AACAGAAGTC AATGATGACA TTGTTAGACT CGGGAGTAGA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG AGAC TACTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT AAAA AGATCATGCA ATGGTTCACA TGCAAATTAT TATTTTGTCG AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG ATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAGA ATGAAAATCT ACTTT AAAAAAAAATG CAAATCTCAT TTATTTTTAA GATTTCTAAA ACAATAGGAA ATCTGTAGGG TTGCAGAAAACCA ACAGGGAAAT AAAAAAAAAAG ATCTGTAGGG TTGCAGAAAACCA AGGCCCTTGC ATTT CTGAGAAGCA GTCAGAGAGA ATGGAAAACCA ACAGGGAAAT AAAAAAAAAAAG GTCAGAGAGA ATGGAAAACCA ACAGGGAAAT ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ACTC TAACAGCTAA AACAATGACA AGACATAAAA TTGGCAAGAA ACAATGACA AGACATAAAA TTGGCAAGAA 4426 GGGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT AAAGAC CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA 3626 GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGAAT 3776 GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCTAAGAAAG ATCACACGCC ATGGTCACAA AAATAAGTGT 3926 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAATCT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTTAG TTTTTTCACT 4076 GTAACTGGGG GGCTTAGGGA ATCGCATAAT GAAAACCA TGAAAATCT CAAATTCT TAATTCTAAT TTTTAAGAGA TTGAAAAACCA AGCCCTTGC 4276 GTAACTGGGG GCTCAGAGAGA ATCGGAAAACCA AGCCCCTTGC 4276 CAGTAGGTTA GTGAGAGCA GTCAGAGAGA ATGGAAAACCA ACAGGGAAAT 4326 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACCA ACAGGGAAAT 4376 ATTATAGTTT CTCCTTGAGA AACAATGACA AGACAAAAACA ACAGGGAAAT 4376 ATTATAGTTT CTCCTTGAGA AACAATGACA AGACAAAAAA TTGGCAAAGA 4226 ATTATTAGTTT CTCCTTGAGA AACAATGACA AGACAAAAAA TTGGCAAAGA 4226 ATTATTAGTTT CTCCTTGAGA AACAATGACA AGACAAAAAA TTGGCAAAGA 4226 ATTATTAGTTT CTCCTTGAGA AACAATGACA AGACAAAAAA TTGGCAAAGA 4226 AGTCAGGAGG GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCCAGAAGAA AGAAATGACA AGACAAAAAA TTGGCAAAGAA 4426 AGTTGCAAAG CCCCAGAAGAA AGAAATGACA AGCCGGAAGAA GTGGTTGTTT 4426 TTTTTTCCCC TTCATTAAT TCCAAAATGAC AGCCGAAAAA TTTCTTCTAC 4476 AGTTGCAAAG CTTCTAATT TCCAAATGGA TTACCCTTTAT TTTCTTCTAC 4476 AGTTGCAAAG CTTCTAATT TCCAAAATGGA TCACCAACAG ACTTCTGACT 4526 CCATGGTGAA CTTCCAATTA TCCAAAAAA TTACACTTGT ACCTGTTAAA 4676 AATTAAAAAAAA CTTCAATAT TCCAAAAAA TTACACTTGT ACCTGTTAAA 4676			3564
GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CCCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCCATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAATGGCA AGCCGAAGAA GTGGTTGTTT AGTTTCCCC TTCATTAATT TTCTAGTTTT TAGTATCCA GAAAATTTGA ATTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGCAAAG CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT AGAAAATTTGA AGTTGCAAAG CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT AGGTAACCC TTCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGATCCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGATCCCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGATCCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGATCCCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGATCCCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTCTCCCCC TTCATTTTCTCCC TTCATTTTTTCCCC TTCATTTTTCTCCCC TTCATTTTTCTCCCC TTCATTTTTTCCCC TTC	AGCA TCTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA TACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA GTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 AGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 ATAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 ATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 ATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTTCCT TAACTTTTAG TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCCAT TTTTTAAGAGA TGAAAGCAGA 4176 AGGGG GGCTTAGGGA ATCTGTAGGG TTGCCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TAGTATTTGA 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GCTAAGAGCA TCTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA 3676 TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATCAA TTCAAATTCT TAATTTCCT TAACTTTTA GATTTCTTAA 4126 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCCTGA GGGAAACCA ACAGGGAAAT 4376 ATTTTAGTTT CCCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCCAGAAGAA AGAAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCCAGAAGAA AGAAATGACA AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TCCATTAATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 TTTTTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 TTTTTTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 ATTATTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 ATTATTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 ATTTTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 ATTTTTTCCCC TCCATTATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 ATTTTTTCTCCA TCTCATTATT TCTAGTTTT TAGTAATCA ACCTTCTTAAA 4676 ATTATTTCTCTATTT TCTAGTTTT TAGTAATCA ACCTTCTTAAA 4676 ATTATTTTCTCTATTT TCTAGTTTT TAGTAATCA ACCTTCTTAAA 4676 ATTATTTCTCTATTTT TCTAGTTTT TAGTAATCA ACCTTCTTAAA 4676 ATTATATATTT TCTAGTTTT TAGCATTGT ACCTTTTAAA 4676			3576
TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAATGGCA AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTAGCTACATAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTACTCTCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTACCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTCTCCCC TTCATTAATT TTCTACTCTTTTTTTCCCC TTCATTAATTTTTCCCC TTCATTAATTTTTCCCC TTCATTAATTTTTCCCC TTCATTTTCTCCCC TTCATTAATCTCCACACACA	TACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 GTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 GAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 ATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 GTTT AAAAAAAATG CAAATCTCAT TTTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCCGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAAACCA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TCTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA 3726 CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 AATGTTTTT AAAAAAAATG CAAATCTCAT TTTAAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCCAGAAGAA AGAAATGACA AGACATAAAA TTGGCAAGAA 4426 TTTTTTCCCC TTCATTAATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4526 TTTTTTCCCC TTCATTAATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 TTTTTTCCCC TTCATTAATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 TTTTTTTCCCC TCCTTCAATT TCTAGTTTT TAGTAATCA GAAAATTTGA 4576 AATAAAAACTT TCCACTATAT TCCACAACAG ACTTCCTGACT 4626 GCATGGTGAA CCTTCCAATT TCCACAACAG ACTTCTGACT 4626 GCATGGTGAA CCTTCCAATT TCCACAACAG ACTTCTGACT 4626 GCATGGTGAA CCTTCTCAATT TCCACAACAG ACTTCTTGACT 4626 GCATGGTGAA CCTTCCAATT TCCACAACAG ACTTCTCTAAA 4676		GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA	3626
CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGCAAAG CCCAGAAGAA AGAAATGGCA AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTCTCCCC TTCATTATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTCTCCCC TTCATTATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTCTCTCCCC TTCATTCTCCC TTCATTTTTTCCCC TTCATTTTTTCCCC TTCATTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCATTTTTTTCCCC TTCA	ACTT AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT 3776 AGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 ATAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3926 AAAG ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 ATTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 ATTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCCGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAAATCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAAAT CAAATCCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAAACC ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TAGTTATCCCC TTCATTAATT TTCTAGTTT TAGTAATCCA GAAAATTTGA 4526 TTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 AATAAAAAAAAAAATTTGA AAGATCAAAAAAAAAAAAAA		GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA	3676
GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAAATTT CCCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GGAAAATTTGA AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GGAAAATTTGA AGTTCTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTCTCCCC TTCATTAATCA TTCTCTCTATAT TAGTAATCCA GAAAATTTGA ACTTCTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA ACTTCTCCCC TTCATTATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	AGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA 3826 ATAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 ATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 ATTT TTTCATTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTCCTTAA AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCAATC TTATATTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTCCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 AATAAAAACTT TTCTATTATT TTCTAGTTTT TAGTAATCA ACCTGTTAAAA 4676			3726
GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CCTTAAAATTT CCCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	TRAM AGATCATGCA GTGAMATGTG GCCATGGAMA TCGCATATTG 3876 TAGT ACCTTTGAGA CAGCTGATAM CAGCTGACAM AMATAMGTGT 3926 AMAG ATCACACGCC ATGGTTCACA TGCAMATTAT TATTTTGTCG 3976 ATTT TTTCATTTCT AGACCTGTGG TTTTAMAGAG ATGAMAATCT 4026 ATTT CCTTCATCTT TAMATTTCCT TAMACTTTAGT TTTTTTCACT 4076 TCAM TTCAMATTCT TAMATCCAT TTTTTAMAGAG ATGAMAGCAGM 4126 TTTT AMAMAMAATG CAMATCTCAT TTTTTAMAGAGA TGAMAGCAGM 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATM GCAMTAGGGM 4226 GTCT CTGAGAMGCA GTCAGAGAGM ATGGAMACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAMATC 4326 ACTC TAMCAGCTAM GGATCTCTGM GGGAMACACM ACAGGGAMAT 4376 GTTT CTCCTTGAGA AACAMTGACM AGACATAMAM TTGGCAMGAM 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AMAG CCCAGAMGAM AGAMATGGAC AGCGGAMGAM GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAMTCCA GAMAATTTGA 4576 TCTA AAGTTCATTA TGCAMAGATG TCACCAMACAG ACTTCTGACT 4626	GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG 3876 TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT 3926 TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 CCATGGTGAA CTTTCATATG ATCACATAGGA TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			3776
TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	TAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT ACAATTCT TAATTTTCCT TAACTTTAGT TTTTTCACT TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTCTTAA TTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA ATCGGGG GGCTTAGGGA ATCGGTATA GCAATAGGGA GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ACCC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGAG GCCCTTGC TATCTCTTAT TTTCTTCTAC AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TAGTAATCCA GAAAATTTGA TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 AGTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			3826
TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTTCAT TTTAATTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	AAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 TTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TTCAAGAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG 3976 TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAAA 4676			3876
TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCCATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45 45 46 47 48 48 48 48 48 48 48 48 48	TTTT TTTCATTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 ATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 TTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT 4026 CTTAAAATTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT 4076 TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			3926
CTTANANTTT CCTTCATCTT TAATTTCCT TAACTTTAGT TTTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	ATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT 4076 TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 TTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 GCATGGTGAA CTTTCATTAT TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			3976
TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTA GATTTCTTAA AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	TCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 TTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA 4126 AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT	4026
AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	TTTT AAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA 4176 GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT	4076
GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 42 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA	4126
GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	GGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA 4226 GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC 4276 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC 4326 ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGACA AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		AATGTTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA	4176
CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	GTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AAAG CCCAGAAGAA AGAAATGACA AGCGGAAGAA GTGGTTGTTT CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGACA AGCGGAAGAA GTGGTTGTTT AGTATCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA AGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA AATAAAACTT TCACTTCCAACAG ACTTCTGTACA		GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA	
ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATAT TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC	4276
ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	ACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT 4376 ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATAT TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC	
ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	GTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA 4426 AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT	
AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTT TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	GAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC 4476 AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTAT TTTCTTCTAC 4476 AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA	
AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	AAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT 4526 TTTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			
TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 45	CCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA 4576 TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			
MMMMCMMCM3 33CMMC3MM3 MCG333CAMC TO TO TO THE TOTAL TO TH	TCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626	TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT 4626 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676			
	4020	GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA 4676		TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTCACT	
CCATCCTCAR COMMICAMANC AMAGAMAGA COMMICA COMMICA	TGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTCTTADA ACTC	AATAAACTT TCACTTCAAT AC		GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA	
AAMAAACOO OCACOOOCAA AC	ACTO DCACODOCAR AC	ADSA			
		4070		· · · · · · · · · · · · · · · · · · ·	4070

- (2) INFORMATION FOR SEQUENCE ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

- (2) INFORMATION FOR SEQUENCE ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2418 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

			GCCCTGCGT		50
			TCACAGAGTC		100
			CTTGCGGTCT		150
			GGAACCAGGC		200
			GCAGAGGATG		250
			ACCAAGGGCC		300
			CTCACCTCCC		350
			TACCCTGAGT		400
			AACCCAGAGG		450
			GATCTGTAAG		500
			AGGCCTCTCA		550
CTCTCCCCAG	GCCTGTGGGT	CTTCATTGCC	CAGCTCCTGC	CCACACTCCT	600
			TCTTGAGCAG		650
ACTGCAAGCC	TGAGGAAGCC	CTTGAGGCCC	AACAAGAGGC	CCTGGGCCTG	700
GTGTGTGTGC	AGGCTGCCAC	CTCCTCCTCC	TCTCCTCTGG	TCCTGGGCAC	750
			AGATCCTCCC		800
AGGGAGCCTC	CGCCTTTCCC	ACTACCATCA	ACTTCACTCG	ACAGAGGCAA	850
CCCAGTGAGG	GTTCCAGCAG	CCGTGAAGAG	GAGGGGCCAA	GCACCTCTTG	900
TATCCTGGAG	TCCTTGTTCC	GAGCAGTAAT	CACTAAGAAG	GTGGCTGATT	950
TGGTTGGTTT	TCTGCTCCTC	AAATATCGAG	CCAGGGAGCC	AGTCACAAAG	1000
GCAGAAATGC	TGGAGAGTGT	CATCAAAAAT	TACAAGCACT	GTTTTCCTGA	1050
GATCTTCGGC	AAAGCCTCTG	AGTCCTTGCA	GCTGGTCTTT	GGCATTGACG	1100
TGAAGGAAGC	AGACCCCACC	GGCCACTCCT	ATGTCCTTGT	CACCTGCCTA	1150
GGTCTCTCCT	ATGATGGCCT	GCTGGGTGAT	AATCAGATCA	TGCCCAAGAC	1200
AGGCTTCCTG	ATAATTGTCC	TGGTCATGAT	TGCAATGGAG	GGCGGCCATG	1250
CTCCTGAGGA	GGAAATCTGG	GAGGAGCTGA	GTGTGATGGA	GGTGTATGAT	1300
GGGAGGGAGC	ACAGTGCCTA	TGGGGAGCCC	AGGAAGCTGC	TCACCCAAGA	1350
TTTGGTGCAG	GAAAAGTACC	TGGAGTACGG	CAGGTGCCGG	ACAGTGATCC	1400
CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	GAAACCAGCT	1450
ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1500
TTCTTCCCAT	CCCTGCGTGA	AGCAGCTTTG	AGAGAGGAGG	AAGAGGGAGT	1550
CTGAGCATGA	GTTGCAGCCA	AGGCCAGTGG	GAGGGGGACT	GGGCCAGTGC	1600
ACCTTCCAGG	GCCGCGTCCA	GCAGCTTCCC	CTGCCTCGTG	TGACATGAGG	1650
CCCATTCTTC	ACTCTGAAGA	GAGCGGTCAG	TGTTCTCAGT	AGTAGGTTTC	1700
TGTTCTATTG	GGTGACTTGG	AGATTTATCT	TTGTTCTCTT	TTGGAATTGT	1750
TCAAATGTTT	TTTTTTAAGG	GATGGTTGAA	TGAACTTCAG	CATCCAAGTT	1800
TATGAATGAC	AGCAGTCACA	CAGTTCTGTG	TATATAGTTT	AAGGGTAAGA	1850
GTCTTGTGTT	TTATTCAGAT	TGGGAAATCC	ATTCTATTTT	GTGAATTGGG	1900
			AATGTGAAAA		1950
			AAGAGATAGT		2000
			TAAAGATATA		2050
			GAAATTAAAT		2100
AATTCTTCCT	GTTCACTGGC	TCTTTTCTTC	TCCATGCACT	GAGCATCTGC	2150
TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200

CATACCCACC	CATAGGGTCG	TAGAGTCTAG	GAGCTGCAGT	CACGTAATCG	2250
				AGAGGGGTGA	2300
				CCTGAGCTGG	2350
				AGCTGATTGT	2400
AATGATCTTG		110100110111			2418

- (2) INFORMATION FOR SEQUENCE ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5724 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-1 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

	CACTGGCATC				50
	ATCCAAACAT				100
	TCCACCCTG				150
	ACTGACTTGA				200
	GGCGGCTTGA				250
	AGGTGACATG				300
	CCCCAAATAA				350
	TCAGGCTGGG				400
	GAAGTCAGAG				450
	GTCCAGGCTC				500
	GTCCCTAAGA				550
	CCGTGACCCA				600
	CCCACCCCAT				650
	CACCCCCACC				700
CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
AGGGACGGCG	TAGAGTTCGG	CCGAAGGAAC	CTGACCCAGG	CTCTGTGAGG	850
AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
GAGAGCCCCA	AATATTCCAG	CCCCGCCCTT	GCTGCCAGCC	CTGGCCCACC	950
CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
	CACCAGGTTC				1050
	GCAGGACTGG				1100
GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
CCCATCTCCT	CAGCTACACC	TCCACCCCCA	TCCCTACTCC	TACTCCGTCA	1250
CCTGACCACC	ACCCTCCAGC	CCCAGCACCA	GCCCCAACCC	TTCTGCCACC	1300
TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
CCAGGGAAGC	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
AGATCTGAGA	GAAGCCAGGT	TCATTTAATG	GTTCTGAGGG	GCGGCTTGAG	1500
ATCCACTGAG	GGGAGTGGTT	TTAGGCTCTG	TGAGGAGGCA	AGGTGAGATG	1550
CTGAGGGAGG	ACTGAGGAGG	CACACACCCC	AGGTAGATGG	CCCCAAAATG	1600
ATCCAGTACC	ACCCCTGCTG	CCAGCCCTGG	ACCACCCGGC	CAGGACAGAT	1650
GTCTCAGCTG	GACCACCCC	CGTCCCGTCC	CACTGCCACT	TAACCCACAG	1700
GGCAATCTGT	AGTCATAGCT	TATGTGACCG	GGGCAGGGTT	GGTCAGGAGA	1750
GGCAGGGCCC	AGGCATCAAG	GTCCAGCATC	CGCCCGGCAT	TAGGGTCAGG	1800
ACCCTGGGAG	GGAACTGAGG	GTTCCCCACC	CACACCTGTC	TCCTCATCTC	1850
CACCGCCACC	CCACTCACAT	TCCCATACCT	ACCCCCTACC	CCCAACCTCA	1900
TCTTGTCAGA	ATCCCTGCTG	TCAACCCACG	GAAGCCACGG	GAATGGCGGC	1950
CAGGCACTCG	GATCTTGACG	TCCCCATCCA	GGGTCTGATG	GAGGGAAGGG	2000
	GGCCTCAGGG				2050
	AGAGGACCCA				2100
	CCACTTCTGG				2150
					2130

TTGCATGGGG GTGGGACCCA	GGCCTGCAAG	GCTTACGCGG AGGAAGAGGA	2200
GGGAGGACTC AGGGGACCTT	GGAATCCAGA	TCAGTGTGGA CCTCGGCCCT	2250
GAGAGGTCCA GGGCACGGTG	GCCACATATG	GCCCATATTT CCTGCATCTT	2300
TGAGGTGACA GGACAGAGCT	GTGGTCTGAG	AAGTGGGGCC TCAGGTCAAC	2350
AGAGGGAGGA GTTCCAGGAT	CCATATGGCC	CAAGATGTGC CCCCTTCATG	2400
AGGACTGGGG ATATCCCCGG	CTCAGAAAGA	AGGGACTCCA CACAGTCTGG	2450
CTGTCCCCTT TTAGTAGCTC	TAGGGGGACC	AGATCAGGGA TGGCGGTATG	2500
TTCCATTCTC ACTTGTACCA	CAGGCAGGAA	GTTGGGGGG CCTCAGGGAG	2550
ATGGGGTCTT GGGGTAAAGG	GGGGATGTCT	ACTCATGTCA GGGAATTGGG	2600
GGTTGAGGAA GCACAGGCGC	TGGCAGGAAT	AAAGATGAGT GAGACAGACA	2650
AGGCTATTGG AATCCACACC	CCAGAACCAA	AGGGGTCAGC CCTGGACACC	2700
TCACCCAGGA TGTGGCTTCT	TTTTCACTCC	TGTTTCCAGA TCTGGGGCAG	2750
GTGAGGACCT CATTCTCAGA	GGGTGACTCA	GGTCAACGTA GGGACCCCCA	2800
TCTGGTCTAA AGACAGAGCG	GTCCCAGGAT	CTGCCATGCG TTCGGGTGAG	2850
GAACATGAGG GAGGACTGAG	GGTACCCCAG	GACCAGAACA CTGAGGGAGA	2900
COCCATA ATCACCCTG	CCCCTCCTCT	CACCCAGAG AGCATGGGCT	2950
CTGCACAGAA ATCAGCCCTC	TCCGTTATCC	TGGGATCATT GATGTCAGGG	3000
AGGGCGTCTG CCGAGGICCT	CAACCCTCCC	CTCAGGTCAG TAGAGGGAGC	3050
ACCCCCACCO CTCCCACCAC	TCAACGTGAG	GACCAAGCGG GCACCTCACC	3150
GTCCCAGGCC CTGCCAGGAG	CAAGGTGIG	ATCTCTTGCT GCCCTTCCCC	3200
CAGGACACAT TAATTCCAAT	CCACATCTTT	GTCCCTCCT GTCCTTCCAT	3250
AAGGACCTAG GCACGIGIGG	TOTAL	GATTICTCAG ACCAGCAAAA	3300
TCCTTATCAT GGATGTGAAC	CACCALART	ATAAGGGCCC TGCGTGAGAA	3350
GGGCAGGATC CAGGCCCTGC	AUGUSTANIA T	GGATGTCACA GAGTCCAGCC	3400
CAGAGGGGGT CATCCACTGC	CARCCCACCC	CTGTGCTTGC GGTCTGCACC	3450
CACCCTCCTG GTAGCACTGA	CMMCCMCCAC	CTCCAGGAAC CAGGCAGTGA	3500
CTGAGGGCCC GTGGATTCCT	CIICCIGGAG	ACAGAGCAGA GGATGCACAG	3550
GGCCTTGGTC TGAGACAGTA	TCCTCAGGIC	TGCACACCAA GGGCCCCACC	3600
GGTGTGCCAG CAGTGAATGT	TIGCCCIGAR	OMOCOOMON C CTCCCTNCTC	3650
TGCCACAGGA CACATAGGAC	TCCACAGAGT	CTGGCCTCAC CTCCCTACTG	3700
TCAGTCCTGT AGAATCGACC	TCTGCTGGCC	GGCTGTACCC TGAGTACCCT	3750
CTCACTTCCT CCTTCAGGTT	TTCAGGGGAC	AGGCCAACCC AGAGGACAGG	3800
ATTCCCTGGA GGCCACAGAG	GAGCACCAAG	GAGAAGATCT GTAAGTAGGC	3850
CTTTGTTAGA GTCTCCAAGG	TTCAGTTCTC	AGCTGAGGCC TCTCACACAC	3900
		TTGCCCAGCT CCTGCCCACA	3930
CTCCTGCCTG CTGCCCTGAC	GAGAGTCATC		3972
ATG TCT CTT GAG CAG A	GG AGT CTG	CAC TGC AAG CCT GAG GAA	4014
GCC CTT GAG GCC CAA C	AA GAG GCC	TIG GGC CIG GIG IGI GIG	4056
CAG GCT GCC ACC TCC T	CC TCC TCT	CCT CTG GTC CTG GGC ACC	4098
CTG GAG GAG GTG CCC A	CT GCT GGG	TCA ACA GAT CCT CCC CAG	4140
AGT CCT CAG GGA GCC T	CC GCC TTT	CCC ACT ACC ATC AAC TTC	4182
ACT CGA CAG AGG CAA C	CC AGT GAG	GGT TCC AGC AGC CGT GAA	4224
GAG GAG GGG CCA AGC A	CC TCT TGT	ATC CTG GAG TCC TTG TTC	4266
CGA GCA GTA ATC ACT A	AG AAG GTG	GCT GAT TTG GTT GGT TTT	4308
CTG CTC CTC AAA TAT C	GA GCC AGG	GAG CCA GTC ACA AAG GCA	4350
GAA ATG CTG GAG AGT G	TC ATC AAA	AAT TAC AAG CAC TGT TTT	4392
CCT GAG ATC TTC GGC A	AA GCC TCT	GAG TCC TTG CAG CTG GTC	
TTT GGC ATT GAC GTG A	ag gaa gca	GAC CCC ACC GGC CAC TCC	4434
TAT GTC CTT GTC ACC T	GC CTA GGT	CTC TCC TAT GAT GGC CTG	4476
CTG GGT GAT AAT CAG A	TC ATG CCC	AAG ACA GGC TTC CTG ATA	4518
ATT GTC CTG GTC ATG A	TT GCA ATG	GAG GGC GGC CAT GCT CCT	4560
GAG GAG GAA ATC TGG G	AG GAG CTG	AGT GTG ATG GAG GTG TAT	4602
GAT GGG AGG GAG CAC A	GT GCC TAT	GGG GAG CCC AGG AAG CTG	4644
CTC ACC CAA GAT TTG G	TG CAG GAA	AAG TAC CTG GAG TAC GGC	4686
ACC MCC CCC ACA CTC A		ለለው አውሪ እርጥ ጥርሮ ጥርጥ ርርር	4728
GTC CAA GGG CCC TCG	TO CCG CAC	GCT ATG AGT TCC TGT GGG	4761

AAGTCCTTGA	GTATGTGATC	AAGGTCAGTG	CAAGAGTTC		4800
GCTTTTTCTT	CCCATCCCTG	CGTGAAGCAG	CTTTGAGAGA	GGAGGAAGAG	4850
GGAGTCTGAG	CATGAGTTGC	AGCCAAGGCC	AGTGGGAGGG	GGACTGGGCC	4900
AGTGCACCTT	CCAGGGCCGC	GTCCAGCAGC	TTCCCCTGCC	TCGTGTGACA	4950
TGAGGCCCAT	TCTTCACTCT	GAAGAGAGCG	GTCAGTGTTC	TCAGTAGTAG	5000
GTTTCTGTTC	TATTGGGTGA	CTTGGAGATT	TATCTTTGTT	CTCTTTTGGA	5050
ATTGTTCAAA	TGTTTTTTT	TAAGGGATGG	TTGAATGAAC	TTCAGCATCC	5100
AAGTTTATGA	ATGACAGCAG	TCACACAGTT	CTGTGTATAT	AGTTTAAGGG	5150
TAAGAGTCTT	GTGTTTTATT	CAGATTGGGA	AATCCATTCT	ATTTTGTGAA	5200
TTGGGATAAT	AACAGCAGTG	GAATAAGTAC	TTAGAAATGT	GAAAAATGAG	5250
CAGTAAAATA	GATGAGATAA	AGAACTAAAG	AAATTAAGAG	ATAGTCAATT	5300
CTTGCCTTAT	ACCTCAGTCT	ATTCTGTAAA	ATTTTTAAAG	ATATATGCAT	5350
ACCTGGATTT	CCTTGGCTTC	TTTGAGAATG	TAAGAGAAAT	TAAATCTGAA	5400
TAAAGAATTC	TTCCTGTTCA	CTGGCTCTTT	TCTTCTCCAT	GCACTGAGCA	5450
TCTGCTTTTT	GGAAGGCCCT	GGGTTAGTAG	TGGAGATGCT	AAGGTAAGCC	5500
AGACTCATAC	CCACCCATAG	GGTCGTAGAG	TCTAGGAGCT	GCAGTCACGT	5550
AATCGAGGTG	GCAAGATGTC	CTCTAAAGAT	GTAGGGAAAA	GTGAGAGAGG	5600
GGTGAGGGTG	TGGGGCTCCG	GGTGAGAGTG	GTGGAGTGTC	AATGCCCTGA	5650
GCTGGGGCAT	TTTGGGCTTT	GGGAAACTGC	AGTTCCTTCT	GGGGGAGCTG	5700
ATTGTAATGA	TCTTGGGTGG	ATCC			5724

```
(2) INFORMATION FOR SEQUENCE ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4157 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-2 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
```

```
CCCATCCAGA TCCCCATCCG GGCAGAATCC GGTTCCACCC TTGCCGTGAA
                                                             50
                                                            100
CCCAGGGAAG TCACGGGCCC GGATGTGACG CCACTGACTT GCACATTGGA
GGTCAGAGGA CAGCGAGATT CTCGCCCTGA GCAACGGCCT GACGTCGGCG
                                                            150
                                                            200
GAGGGAAGCA GGCGCAGGCT CCCTGAGGAG GCAAGGTAAG ACGCCGAGGG
AGGACTGAGG CGGGCCTCAC CCCAGACAGA GGGCCCCCAA TTAATCCAGC
                                                            250
                                                            300
GCTGCCTCTG CTGCCGGGCC TGGACCACCC TGCAGGGGAA GACTTCTCAG
                                                            350
GCTCAGTCGC CACCACCTCA CCCCGCCACC CCCCGCCGCT TTAACCGCAG
400
TGCTCAGGGC CCAGACTCAG CCAGGAATCA AGGTCAGGAC CCCAAGAGGG
                                                            450
GACTGAGGGC AACCCACCCC CTACCCTCAC TACCAATCCC ATCCCCCAAC
                                                            500
ACCAACCCCA CCCCCATCCC TCAAACACCA ACCCCACCCC CAAACCCCAT
                                                            550
TCCCATCTCC TCCCCCACCA CCATCCTGGC AGAATCCGGC TTTGCCCCTG
                                                            600
CAATCAACCC ACGGAAGCTC CGGGAATGGC GGCCAAGCAC GCGGATCCTG
                                                            650
                                                            700
ACGITCACAT GTACGGCTAA GGGAGGGAAG GGGITGGGIC TCGIGAGIAI
                                                            750
GGCCTTTGGG ATGCAGAGGA AGGGCCCAGG CCTCCTGGAA GACAGTGGAG
TCCTTAGGGG ACCCAGCATG CCAGGACAGG GGGCCCACTG TACCCCTGTC
                                                            800
TCAAACTGAG CCACCTTTTC ATTCAGCCGA GGGAATCCTA GGGATGCAGA
                                                            850
CCCACTTCAG GGGGTTGGGG CCCAGCCTGC GAGGAGTCAA GGGGAGGAAG
                                                            900
AAGAGGGAGG ACTGAGGGGA CCTTGGAGTC CAGATCAGTG GCAACCTTGG
                                                           950
GCTGGGGGAT CCTGGGCACA GTGGCCGAAT GTGCCCCGTG CTCATTGCAC
                                                           1000
CTTCAGGGTG ACAGAGAGTT GAGGGCTGTG GTCTGAGGGC TGGGACTTCA
                                                           1050
GGTCAGCAGA GGGAGGAATC CCAGGATCTG CCGGACCCAA GGTGTGCCCC
                                                           1100
CTTCATGAGG ACTCCCCATA CCCCCGGCCC AGAAAGAAGG GATGCCACAG
                                                           1150
AGTCTGGAAG TAAATTGTTC TTAGCTCTGG GGGAACCTGA TCAGGGATGG
                                                           1200
CCCTAAGTGA CAATCTCATT TGTACCACAG GCAGGAGGTT GGGGAACCCT
                                                           1250
CAGGGAGATA AGGTGTTGGT GTAAAGAGGA GCTGTCTGCT CATTTCAGGG
                                                           1300
GGTTCCCCCT TGAGAAAGGG CAGTCCCTGG CAGGAGTAAA GATGAGTAAC
                                                           1350
CCACAGGAGG CCATCATAAC GTTCACCCTA GAACCAAAGG GGTCAGCCCT
                                                           1400
GGACAACGCA CGTGGGGTAA CAGGATGTGG CCCCTCCTCA CTTGTCTTTC
                                                           1450
CAGATCTCAG GGAGTTGATG ACCTTGTTTT CAGAAGGTGA CTCAGTCAAC
                                                           1500
ACAGGGGCCC CTCTGGTCGA CAGATGCAGT GGTTCTAGGA TCTGCCAAGC
                                                           1550
ATCCAGGTGG AGAGCCTGAG GTAGGATTGA GGGTACCCCT GGGCCAGAAT
                                                           1600
GCAGCAAGGG GGCCCCATAG AAATCTGCCC TGCCCCTGCG GTTACTTCAG
                                                           1650
AGACCCTGGG CAGGGCTGTC AGCTGAAGTC CCTCCATTAT CTGGGATCTT
                                                           1700
TGATGTCAGG GAAGGGGAGG CCTTGGTCTG AAGGGGCTGG AGTCAGGTCA
                                                           1750
GTAGAGGGAG GGTCTCAGGC CCTGCCAGGA GTGGACGTGA GGACCAAGCG
                                                           1800
GACTCGTCAC CCAGGACACC TGGACTCCAA TGAATTTGAC ATCTCTCGTT
                                                           1850
GTCCTTCGCG GAGGACCTGG TCACGTATGG CCAGATGTGG GTCCCCTCTA
                                                           1900
TCTCCTTCTG TACCATATCA GGGATGTGAG TTCTTGACAT GAGAGATTCT
                                                           1950
CAAGCCAGCA AAAGGGTGGG ATTAGGCCCT ACAAGGAGAA AGGTGAGGGC
                                                           2000
CCTGAGTGAG CACAGAGGGG ACCCTCCACC CAAGTAGAGT GGGGACCTCA
                                                           2050
CGGAGTCTGG CCAACCCTGC TGAGACTTCT GGGAATCCGT GGCTGTGCTT
                                                           2100
GCAGTCTGCA CACTGAAGGC CCGTGCATTC CTCTCCCAGG AATCAGGAGC
                                                          2150
```

TCCAGGAACC AGGCAGTGAG GCCTTGGTCT GAGTCAGTGC	CTCAGGTCAC	2200
AGAGCAGAGG GGACGCAGAC AGTGCCAACA CTGAAGGTTT		2250
CACACCAAGG GCCCCACCCG CCCAGAACAA ATGGGACTCC		2300
GCCTCACCCT CCCTATTCTC AGTCCTGCAG CCTGAGCATG		2350
CTGTACCCTG AGGTGCCCTC CCACTTCCTC CTTCAGGTTC		2400
AGGCTGACAA GTAGGACCCG AGGCACTGGA GGAGCATTGA		2450
CTGTAAGTAA GCCTTTGTCA GAGCCTCCAA GGTTCAGTTC		2500
TAAGGCCTCA CACACGCTCC TTCTCTCCCC AGGCCTGTGG		2550
CCCAGCTCCT GCCCGCACTC CTGCCTGCTG CCCTGACCAG		2597
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG		2639
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG		2681
CAG GCT CCT GCT ACT GAG GAG CAG CAG ACC GCT		
TCT ACT CTA GTG GAA GTT ACC CTG GGG GAG GTG		2723
GAC TCA CCG AGT CCT CCC CAC AGT CCT CAG GGA		2765
TTC TCG ACT ACC ATC AAC TAC ACT CTT TGG AGA		2807
GAG GGC TCC AGC AAC CAA GAA GAG GAG GGG CCA		2849
CCC GAC CTG GAG TCC GAG TTC CAA GCA GCA ATC		2891
		2933
ATG GTT GAG TTG GTT CAT TTT CTG CTC CTC AAG		2975
AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG		3017
AGA AAT TGC CAG GAC TTC TTT CCC GTG ATC TTC		3059
TCC GAG TAC TTG CAG CTG GTC TTT GGC ATC GAG		3101
GTG GTC CCC ATC AGC CAC TTG TAC ATC CTT GTC		3143
GGC CTC TCC TAC GAT GGC CTG CTG GGC GAC AAT		3185
CCC AAG ACA GGC CTC CTG ATA ATC GTC CTG GCC		3227
ATA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC		3269
CTG AGT ATG TTG GAG GTG TTT GAG GGG AGG GAG		3311
TTC GCA CAT CCC AGG AAG CTG CTC ATG CAA GAT		3353
GAA AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC		3395
GCA TGC TAC GAG TTC CTG TGG GGT CCA AGG GCC	CTC ATT GAA	3437
ACC AGC TAT GTG AAA GTC CTG CAC CAT ACA CTA	AAG ATC GGT	3479
GGA GAA CCT CAC ATT TCC TAC CCA CCC CTG CAT	gaa CGG GCT	3521
TTG AGA GAG GGA GAA GAG TGA		3542
GTCTCAGCAC ATGTTGCAGC CAGGGCCAGT GGGAGGGGGT		3592
GCACCTTCCA GGGCCCCATC CATTAGCTTC CACTGCCTCG		3642
GGCCCATTCC TGCCTCTTTG AAGAGAGCAG TCAGCATTCT		3692
TTTCTGTTCT GTTGGATGAC TTTGAGATTT ATCTTTCTTT		3742
TTGTTCAAAT GTTCCTTTTA ACAAATGGTT GGATGAACTT		3792
GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTTATAT		3842
TAAGAGTCCT GTTTTTTATT CAGATTGGGA AATCCATTCC		3892
TTGTCACATA ATAACAGCAG TGGAATATGT ATTTGCCTAT		3942
AATTAGCAGT AAAATACATG ATACAAGGAA CTCAAAAGAT A		3992
TGCCTTATAC CTCAGTCTAT TATGTAAAAT TAAAAATATG	IGTATGTTTT	4042
TGCTTCTTTG AGAATGCAAA AGAAATTAAA TCTGAATAAA		4092
TCACTGGCTC ATTTCTTTAC CATTCACTCA GCATCTGCTC	IGTGGAAGGC	4142
CCTGGTAGTA GTGGG		4157

(2)	INFORMATION FOR SEQUENCE 15 No. 10.
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 662 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-21 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

50
100
150
200
250
300
350
400
450
500
550
600
650
662

- (2) INFORMATION FOR SEQUENCE ID NO: 11:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1640 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDNA MAGE-3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGCAAG GTTCTGAGGG	50
GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA CTGAAGGAGA	100
AGATCTGCCA GTGGGTCTCC ATTGCCCAGC TCCTGCCCAC ACTCCCGCCT	150
GTTGCCCTGA CCAGAGTCAT C	171
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	213
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	255
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	297
TCT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCC	339
GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	381
CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	423
GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	465
CCT GAC CTG GAG TCC GAG TTC CAA GCA GCA CTC AGT AGG AAG	507
GTG GCC GAG TTG GTT CAT TTT CTG CTC CTC AAG TAT CGA GCC	549
AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GGG AGT GTC GTC	591
GGA AAT TGG CAG TAT TTC TTT CCT GTG ATC TTC AGC AAA GCT	633
TCC AGT TCC TTG CAG CTG GTC TTT GGC ATC GAG CTG ATG GAA	675
GTG GAC CCC ATC GGC CAC TTG TAC ATC TTT GCC ACC TGC CTG	717
GGC CTC TCC TAC GAT GGC CTG CTG GGT GAC AAT CAG ATC ATG	759
CCC AAG GCA GGC CTC CTG ATA ATC GTC CTG GCC ATA ATC GCA	801
AGA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC TGG GAG GAG	843
CTG AGT GTG TTA GAG GTG TTT GAG GGG AGG GAA GAC AGT ATG	885
TTG GGG GAT CCC AAG AAG CTG CTC ACC CAA CAT TTC GTG CAG	927
GAA AAC TAC CTG GAG TAC CGG CAG GTC CCC GGC AGT GAT CCT	969
GCA TGT TAT GAA TTC CTG TGG GGT CCA AGG GCC CTC GTT GAA	1011
ACC AGC TAT GTG AAA GTC CTG CAC CAT ATG GTA AAG ATC AGT	1053
GGA GGA CCT CAC ATT TCC TAC CCA CCC CTG CAT GAG TGG GTT	1095
TTG AGA GAG GGG GAA GAG TGA	1116
GTCTGAGCAC GAGTTGCAGC CAGGGCCAGT GGGAGGGGGT CTGGGCCAGT	1166
GCACCTTCCG GGGCCGCATC CCTTAGTTTC CACTGCCTCC TGTGACGTGA	1216
GGCCCATTCT TCACTCTTTG AAGCGAGCAG TCAGCATTCT TAGTAGTGGG	1266
TTTCTGTTCT GTTGGATGAC TTTGAGATTA TTCTTTGTTT CCTGTTGGAG	1316
TTGTTCAAAT GTTCCTTTTA ACGGATGGTT GAATGAGCGT CAGCATCCAG	1366
GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTTATAT AGTTTAGGAG	1416
TAAGAGTCTT GUTTTTACT CAAATTGGGA AATCCATTCC ATTTTGTGAA	1466
TTGTGACATA ATAATAGCAG TGGTAAAAGT ATTTGCTTAA AATTGTGAGC	1516
GAATTAGCAA TAACATACAT GAGATAACTC AAGAAATCAA AAGATAGTTG	1566
ATTCTTGCCT TGTACCTCAA TCTATTCTGT AAAATTAAAC AAATATGCAA	1616
ACCAGGATTT CCTTGACTTC TTTG	1640

(2)	INFORMATION FOR SEQUENCE ID NO. 12.
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 943 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-31 gene
	(**) SECTIFICE DESCRIPTION: SEC ID NO: 12

GGATCCTCCA CCCCAGTAGA GTGGGGACCT CACAGAGTCT GGCCAACCCT	50
CCTGACAGTT CTGGGAATCC GTGGCTGCGT TTGCTGTCTG CACATTGGGG	100
GCCCGTGGAT TCCTCTCCCA GGAATCAGGA GCTCCAGGAA CAAGGCAGTG	150
AGGACTIGGT CTGAGGCAGT GTCCTCAGGT CACAGAGTAG AGGGGGCTCA	200
GATAGTGCCA ACGGTGAAGG TTTGCCTTGG ATTCAAACCA AGGGCCCCAC	250
CTGCCCCAGA ACACATGGAC TCCAGAGCGC CTGGCCTCAC CCTCAATACT	300
TTCAGTCCTG CAGCCTCAGC ATGCGCTGGC CGGATGTACC CTGAGGTGCC	350
CTCTCACTTC CTCCTTCAGG TTCTGAGGGG ACAGGCTGAC CTGGAGGACC	400
AGAGGCCCCC GGAGGAGCAC TGAAGGAGAA GATCTGTAAG TAAGCCTTTG	450
TTAGAGCCTC CAAGGTTCCA TTCAGTACTC AGCTGAGGTC TCTCACATGC	500
TCCCTCTCTC CCCAGGCCAG TGGGTCTCCA TTGCCCAGCT CCTGCCCACA	550
CTCCCGCCTG TTGCCCTGAC CAGAGTCATC	580
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	622
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GGT GCG	664
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	706
TCT AGT GTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCC	748
	790
GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	832
CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	874
GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	916
CCT GAC CTG GAG TCT GAG TTC CAA GCA GCA CTC AGT AGG AAG	
GTG GCC AAG TTG GTT CAT TTT CTG CTC	943

- (2) INFORMATION FOR SEQUENCE ID NO: 13: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2531 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-4 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACA	
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCC	
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACC	
GGCCCATGGA TTCCTCTCT AGGAGCTCCA GGAACAAGGC AGTGA	
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAG	GCTGT 250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACC	TGCCA 300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCAS	TCAAT 350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTC	TCTCA 400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGAS	TTCCC 450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCC	TTTGT 500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCT	CCCTC 550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCAC	TCTTG 600
CCTGCTGCCC TGACCAGAGT CATC	624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT G	AG GAA 666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GC	
CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT GTC TO	
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CC	
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GG	
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG C	
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AG	
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AG	
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TI	
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AG	
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GC	
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC G	
GAA GTG GAC CCC GCC AGC AAC ACC TAC ACC CTT GTC AC	
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CI	
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC AC	
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TC	
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CI	
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TO	
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AC	
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CT	
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AC	
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GA	
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA	1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGCT GGGCC	
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGTA ACATGA	
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA GTAGTC	
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC TTTTAC	
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTCA GCATCO	
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAG	
AGTOTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATTT TGTGA	
natorialit itinitanan itaaannit Caliciniti Talan	ATTTG 1928

GGACATAATA	ACAGCAGTGG	AGTAAGTATT	TAGAAGTGTG	AATTCACCGT	1978
GAAATAGGTG	AGATAAATTA	AAAGATACTT	AATTCCCGCC	TTATGCCTCA	2028
		AAATATATAT		ATTTCCTTGG	2078
			ATAAATAATT	CTTTCTGTTA	2128
			ATCTGCTCTG		2178
ACTGGCTCAT	TICITCICIA	TGUNCTGAGC	VICIGCICIA	Iggingages	
AGGATTAGTA	GTGGAGATAC	TAGGGTAAGC	CAGACACACA	CCTACCGATA	2228
			TAATTAAGGT		2278
CCTCTAAGAT	GTAGGGGAAA	AGTAACGAGT	GTGGGTATGG	GGCTCCAGGT	2328
GAGAGTGGTC	GGGTGTAAAT	TCCCTGTGTG	GGGCCTTTTG	GGCTTTGGGA	2378
					2428
AACTGCATTT	TCTTCTGAGG	GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	
AGGGCCAGAT	TCTCAGAGGG	AGAGGGAAAA	GCCCAGATTG	GAAAAGTTGC	2478
TCTGAGCAGT	ጥርርጥጥጥርጥር A	CAATGGATGA	ACAGAGAGGA	GCCTCTACCT	2528
Torquacuat					0531
GGG					2531

- (2) INFORMATION FOR SEQUENCE ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2531 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-41 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGATCCAGG	CCTGC	CTGGA G	AAATG'	TGAG	GGC	CCT	AGT	GAA	CACA	GTG	50
GGGATCATC	ACTCC!	ATGAG A	TGGG	GACC	TCA	CAGA	GTC	CAG	CCTA	CCC	100
TCTTGATGG	ACTGAC	GGGAC C	GGGC'	TGTG	CTI	'ACAC	TCT	GCA	CCCT	AAG	150
GGCCCATGG	TTCCT	CTCCT A	GAGC'	TCCA	GGA	ACA	AGGC	AGT	GAGG	CCT	200
TGGTCTGAG	A CAGTGT	ICCTC A	GTTA	CAGA	GCA	GAGG	ATG	CAC	AGGC!	TGT	250
GCCAGCAGTO	AATGT	TTGCC C	rgaat(GCAC	: ACC	AAGG	GCC	CCA	CCTG	CCA	300
CAAGACACA											350
CCTGCAGAA											400
CTTCCTCCTT											450
TGGAGGCCA	AGAGG	AGCAC C	AAGGA	GAAG	ATC	TGT	AGT	AAG	CTT	TGT	500
TAGAGCCTCT											, 550
TCTCCGTAGG											600
CCTGCTGCCC											624
ATG TCT TO	T GAG C	CAG AAG	AGT (CAG	CAC	TGC	AAG	CCT	GAG	GAA	666
GGC GTT G											708
CAG GCT CC											750
TCC TCT CC											792
GCT GAG TO											834
GCC TTA CC											876
AAT GAG GG											918
TCG CCT G											960
AAG GTG G											1002
GCC AAG GA											1044
ATC AAA AA											1086
GCC TCC GF											1128
GAA GTG GA											1170
CTG GGC CT											1212
TTT CCC AF											1254
GCA ATG GA											1296
GAG CTG GG											1338
GTC TAT GG											1380
CAG GAA AA	C TAC C	TG GAG	TAC (CGG	CAG	GTA	CCC	GGC	AGT	AAT	1422
CCT GCG CG	C TAT G	AG TTC	CTG 1	rgg .	GGT	CCA	AGG	GCT	CTG	GCT	1464
GAA ACC AG											1506
AAT GCA AG											1548
GCT TTG TT	A GAG G	GAG GAA	GAG (GGA	GTC	TGA					1578
GCATGAGTTG	CAGCCA	AGGGC TO	TGGG	GAAG	GGG	CAGG	GCT	GGGC	CAGI	CC	1628
ATCTAACAGO	CCTGTG	CAGC AG	CTTC	CCTT	GCC	TCGT	GTA	ACAT	'GAGG	CC	1678
CATTCTTCAC											1728
TCTATTTTGT											1778
GTTGAAATGT	TCCTTI	TAAT GO	ATGGI	TGA	ATT	AACT	TCA	GCAT	CCAR	GT	1828
TTATGAATCG											1878
AGTCTTGTTT	TTTATI	CAGA TI	GGGAI	AATC	CGT	TCTA	TTT	TGTG	AATI	TG	1928
GGACATAATA											1978
											=

GAAATAGGTG	AGATAAATTA	AAAGATACTT	AATTCCCGCC	TTATGCCTCA	2028
GTCTATTCTG	TAAAATTTAA	AAATATATAT	GCATACCTGG	ATTTCCTTGG	2078
CTTCGTGAAT	GTAAGAGAAA	TTAAATCTGA	ATAAATAATT	CTTTCTGTTA	2128
ACTGGCTCAT	TTCTTCTCTA	TGCACTGAGC	ATCTGCTCTG	TGGAAGGCCC	2178
	GTGGAGATAC				2228
	AGTCTAGGAG			GACAAGATGT	2278
	GTAGGGGAAA			GGCTCCAGGT	2328
	GGGTGTAAAT		GGGCCTTTTG		2378
AACTCCATTT	TCTTCTGAGG	GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	2428
	TCTCAGAGGG			GAAAAGTTGC	2478
	TCCTTTGTGA			GCCTCTACCT	2528
GGG	1001110101				2531

- (2) INFORMATION FOR SEQUENCE ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1068 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (ix) FEATURE:
 - (A) NAME/KEY: cDNA MAGE-4
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

G	GGG	CCA	AGC	ACC	TCG	CCT	GAC	GCA	GAG	TCC	TTG	TTC	CGA	40
GAA	GCA	CTC	AGT	AAC	AAG	GTG	GAT	GAG	TTG	GCT	CAT	TTT	CTG	82
CTC	CGC	AAG	TAT	CGA	GCC	AAG	GAG	CTG	GTC	ACA	AAG	GCA	GAA	124
ATG	CTG	GAG	AGA	GTC	ATC	AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	166
GTG	ATC	TTC	GGC	AAA	GCC	TCC	GAG	TCC	CTG	AAG	ATG	ATC	TTT	208
GGC	ATT	GAC	GTG	AAG	GAA	GTG	GAC	CCC	GCC	AGC	AAC	ACC	TAC	250
ACC	CTT	GTC	ACC	TGC	CTG	GGC	CTT	TCC	TAT	GAT	GGC	CTG	CTG	292
GGT	AAT	AAT	CAG	ATC	TTT	CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	334
GTC	CTG	GGC	ACA	ATT	GCA	ATG	GAG	GGC	GAC	AGC	GCC	TCT	GAG	376
GAG	GAA	ATC	TGG	GAG	GAG	CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	418
GGG	AGG	GAG	CAC	ACT	GTC	TAT	GGG	GAG	CCC	AGG	AAA	CTG	CTC	460
ACC	CAA	GAT	TGG	GTG	CAG	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	502
GTA	CCC	GGC	AGT	AAT	CCT	GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	544
CCA	AGG	GCT	CTG	GCT	GAA	ACC	AGC	TAT	GTG	AAA	GTC	CTG	GAG	586
CAT	GTG	GTC	AGG	GTC	AAT	GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	628
TCC	CTG	CGT	GAA	GCA	GCT	TTG	TTA	GAG	GAG	GAA	GAG	GGA	GTC	670
TGAG	CATO	GAG :	rtgc:	AGCC1	re ec	CTG	GGGG	AAC	GGGG	CAGG	GCT	3GGC(CAG	720
TGCA	TCT	AAC 1	AGCC	TGT	C AC	CAG	CTTCC	CT	rgcc1	CGT	GTA	ACATO	GAG	770
GCCC	ATTC	CTT (CACT	CTGT	T G	NAGA I	STAA!	GTO	CAGTO	STTC	TTAC	GTAG:	rgg	820
GTTI	CTAI	CTT 1	CGTT	GATO	A C	ľTGG?	GATT	TAT	CTCI	TTDT	TCC	TTTT?	ACA	870
ATTG	TTG	AAA	CTTO	CTT	T A	\TGG!	\TGG1	TG	ATTA	AACT	TCAC	CAT	CA	920
AGTT	TAT	AA ?	CGT	\GTT2	LA CO	TAT	TTGC	TG1	TAAT	ATA?	GTT	ragg <i>i</i>	AGT	970
AAGA	GTC	TTG 7	CTTTI	TAT	C AC	ATTO	GGAZ	ATO	CGTI	CTA	TTT	rgtg?	LAT	1020
TTGG	GAC	ATA A	MAAT	CAGC	G TO	GAG	'AAG'	TA T	TAG	AAGT	GTG	AATTO	2	1068

(2)	INFORMATION FOR SEQUENCE ID NO: 16:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 2226 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-5 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCA	CAGAG 50	
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC CAGCC	TACCC 100	
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACC		
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC ACTGA	GGCCT 200	
TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA TGCAG	ACGTC 250	
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCC	CCATC 300	
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC CTCTC	TACTG 350	
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT GAGGT	GCCCT 400	
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATC	ACCAG 450	
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGG	AGAAG 500	
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT TTTTA	GCTGA 550	
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCAT	TGCCC 600	
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT CGTC	644	
ATG TOT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT G	AG GAA 684	
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG C	TG CTG 728	
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT C	CG CCA 770	
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT C	CA TTA 812	
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA C		
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA A		
TGG CTG ACT TGA	908	
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT CACAA	AGGCA 958	
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCT	GAGAT 1008	
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC ATTGA		
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC CTGCC		
CTCCTATGAT GGCCTGCTGG TTGATAATAA TCAGATCATG CCCAA		
GCCTCCTGAT AATCGTCTTG GGCATGATTG CAATGGAGGG CAAAT		
CCTGAGGAGA AAATCTGGGA GGAGCTGAGT GTGATGAAGG TGTAT		
GAGGGAGCAC AGTGTCTGTG GGGAGCCCAG GAAGCTGCTC ACCCA	AGATT 1308	
TGGTGCAGGA AAACTACCTG GAGTACCGGC AGGTGCCCAG CAGTG		
ATATGCTATG AGTTACTGTG GGGTCCAAGG GCACTCGCTG CTTGA		
CTGGAGCACG TGGTCAGGGT CAATGCAAGA GTTCTCATTT CCTAC		
CCTGCGTGAA GCAGCTTTGA GAGAGGAGGA AGAGGGAGTC TGAGC		
CTGCAGCCAG GGCCACTGCG AGGGGGGCTG GGCCAGTGCA CCTTC	CAGGG 1558	
CTCCGTCCAG TAGTTTCCCC TGCCTTAATG TGACATGAGG CCCAT		
TCTCTTTGAA GAGAGCAGTC AACATTCTTA GTAGTGGGTT TCTGT		
TGGATGACTT TGAGATTTGT CTTTGTTTCC TTTTGGAATT GTTCA		
TTCTTTAAT GGGTGGTTGA ATGAACTTCA GCATTCAAAT TTATG		
CAGTAGTCAC ACATAGTGCT GTTTATATAG TTTAGGAGTA AGAGT		
TTTTTATTCA GATTGGGAAA TCCATTCCAT TTTGTGAATT GGGAC	ATAGT 1858	
TACAGCAGTG GAATAAGTAT TCATTTAGAA ATGTGAATGA GCAGT	AAAAC 1908	
TGATGACATA AAGAAATTAA AAGATATTTA ATTCTTGCTT ATACT		
TGATGACATA AAGAAATTAT AAAAAATGTG CATACCTGGA TTTCC	TTGGC 2008	
TRITICIGIAA ARTITITITI AAAAAATGIG CAIACCIGGA IIICC TICTITIGAGA AIGTAAGACA AATTAAATCI GAATAAATCA TICTO	CCTGT 2058	
LICITIONEN WIGHTHURSON UNITHUNION AUSTRALIAN LICE		

TCACTGGCTC	ATTTATTCTC	TATGCACTGA	GCATTTGCTC	TGTGGAAGGC	2108
CCTGGGTTAA	TAGTGGAGAT	GCTAAGGTAA	GCCAGACTCA	CCCCTACCCA	2158
CAGGGTAGTA	AAGTCTAGGA	GCAGCAGTCA	TATAATTAAG	GTGGAGAGAT	2208
GCCCTCTAAG	ATGTAGAG				2226

```
(2) INFORMATION FOR SEQUENCE ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2305 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-51 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
```

22 CONTRACTOR CARCOLOR CARCOLO	50
GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG	100
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC CAGCCTACCC	150
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCTGAG	200
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT	250
TEGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA TGCAGACGTC	
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCCATC	300
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC CTCTCTACTG	350
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT GAGGTGCCCT	400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAG	450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGGAGAAG	500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT TTTTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCCC	600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT CGTC	644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAM	
GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG TGG GTG TGC	
AGG CTG CCA CTA CTG AGG AGC AGG AGG CTG TGT CCT CCT	
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG	812
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA	854
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA	896
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC	938
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGC	980
TGG CTG ACT TGA	992
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCCGGT CACAAAGGCA	1042
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCTGAGAT	1092
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC ATTGACGTGA	1142
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC CTGCCTGGGA	1192
CTCCTATGAT GGCCTGGTGG TTTAATCAGA TCATGCCCAA GACGGGCCTC	1242
CTGATAATCG TCTTGGGCAT GATTGCAATG GAGGGCAAAT GCGTCCCTGA	1292
GGAGAAAATC TGGGAGGAGC TGGGTGTGAT GAAGGTGTAT GTTGGGAGGG	1342
AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCA AGATTTGGTG	1392
CAGGAAAACT ACCTGGAGTA CCGCAGGTGC CCAGCAGTGA TCCCATATGC	1442
TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA AGTACTGGAG	1492
CACGTGGTCA GGGTCAATGC AAGAGTTCTC ATTTCCTACC CATCCCTGCA	1542
TGAAGCAGCT TTGAGAGAGG AGGAAGAGGG AGTCTGAGCA TGAGCTGCAG	1592
CCAGGGCCAC TGCGAGGGGG GCTGGGCCAG TGCACCTTCC AGGGCTCCGT	1642
CCAGTAGTTT CCCCTGCCTT AATGTGACAT GAGGCCCATT CTTCTCTTT	1692
TGAAGAGAGC AGTCAACATT CTTAGTAGTG GGTTTCTGTT CTATTGGATG	1742
ACTITGAGAT TIGICITIGI TICCITITGG AATIGITCAA ATGITCCITI	1792
TAATGGGTGG TTGAATGAAC TTCAGCATTC AAATTTATGA ATGACAGTAG	1842
TCACACATAG TGCTGTTTAT ATAGTTTAGG AGTAAGAGTC TTGTTTTTTA	1892
TTCAGATTGG GAAATCCATT CCATTTTGTG AATTGGGACA TAGTTACAGC	1942
AGTGGAATAA GTATTCATTT AGAAATGTGA ATGAGCAGTA AAACTGATGA	1992
GATAAAGAAA TTAAAAGATA TTTAATTCTT GCCTTATACT CAGTCTATTC	2042
GATAAAGAAA TIAAAAGAIA IIIAATICII GCCIIAIAGI GAGICIATIC	2012

GGTAAAATTT	TTTTTTAAAA	ATGTGCATAC	CTGGATTTCC	TTGGCTTCTT	2092
TGAGAATGTA	AGACAAATTA	AATCTGAATA	AATCATTCTC	CCTGTTCACT	2142
GGCTCATTTA	TTCTCTATGC	ACTGAGCATT	TGCTCTGTGG	AAGGCCCTGG	2192
GTTAATAGTG	GAGATGCTAA	GGTAAGCCAG	ACTCACCCCT	ACCCACAGGG	2242
TAGTAAAGTC	TAGGAGCAGC	AGTCATATAA	TTAAGGTGGA	GAGATGCCCT	2292
CTAAGATGTA	GAG				2305

(2)	INFORMATION FOR SEQUENCE ID NO. 10.
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 225 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-6 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

ጥልጥ	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	TCC	GAT	TCC	TTG	42
	OTTC	CITIC	distriction.	CCC	ATC	GAG	CTG	ATG	GAA	GTG	GAC	CCC	ATC	84
CAG	CIG	GIC	111	300	MTO.	0110	200	mcc	CTG	CCC	CTC	TCC	TAC	126
GGC	CAC	GTG	TAC	ATC	TTT	GCC	ACC	160	C16		200	303	TAC	168
GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	CCC	AGG	ACA	GGC	
TTC	CTG	ATA	ATC	ATC	CTG	GCC	ATA	ATC	GCA	AGA	GAG	GGC	GAC	210
TGT														225

- (2) INFORMATION FOR SEQUENCE ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1947 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-7 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA	50
GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC	100
TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA	150
GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGAGC	200
ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT	250
GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG	300
GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA	350
CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG	400
GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG	450
GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA	500
AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA	550
GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA	600
GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC	650
TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA	685
ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT	727
ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA	769
GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT	811
GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC	853
ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA	895
CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC	937
AGA GCA TGC CCG AGA CCG GCC TTC TGA	964
TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG	1014
GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT	1064
TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC	1114
TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT	1164
CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG	1214
AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG	1264
CATGAAGAG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC	1314
AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC	1364
CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT	1414
CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG	1464
GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC	1514
GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT	1564
TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG	1614
GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT	1664
TTATGTAAGA AAATCTATGT TATTTCTTGA ATTGGGACAA CATAACATAG	1714
CAGAGGATTA AGTACCTTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG	1764
GTGAGATAAA GAAATAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG	1814
CCTGTAATCC CAGCACTTTA GGAGGCAGAG GCACGGGGAT CACGAGGTCA	1864
GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA	1914
AATACAAAAC TTAGCCGGGC GTGGTGGCGG GTG	1947

- (2) INFORMATION FOR SEQUENCE ID NO: 20:

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1810 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA

 (ix) FEATURE:

 (A) NAME/KEY: MAGE-8 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GAGCTCCAGG AACCAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTTCAA	50
TCACAGAGCA TAAGAGGCCC AGGCAGTAGT AGCAGTCAAG CTGAGGTGGT	100
GTTTCCCCTG TATGTATACC AGAGGCCCCT CTGGCATCAG AACAGCAGGA	150
ACCCCACAGT TCCTGGCCCT ACCAGCCCTT TTGTCAGTCC TGGAGCCTTG	200
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT TTCTCCTTCA	250
GCCTTGCCA GGAGGCTGCA GCCAGGAGGT CAGGAGGCCC CAGAGAAGCA	300
CTGAAGAAGA CCTGTAAGTA GACCTTTGTT AGGGCATCCA GGGTGTAGTA	350
CCCAGCTGAG GCCTCTCACA CGCTTCCTCT CTCCCCAGGC CTGTGGGTCT	400
CAATTGCCCA GCTCCGGCCC ACACTCTCCT GCTGCCCTGA CCTGAGTCAT	450
C	451
ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG GCT GAG GAA	493
GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT ATG GAT GTG	535
CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA TCC TCC	577
TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG ACT GAT TCT	619
GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT GCC TCC TCT	661
TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC CAA TCC GAT	703
GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA AGC ACC TCC	745
CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG GAA GCA CTT	787
GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG CTC CGC AAA	829
TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA ATG CTT GAG	871
AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT GAT ATC TTC	913
AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT GGC ATT GAT	955
GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC ATC CTT GTC	997
ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG GGT GAT GAT	1039
CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC GTC CTG GGC	1081
ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG GAG GCA ATC	1123
TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	1156
TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG CTCACCCAAG	1206
AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC CGGCAGTGAT	1256
CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG CTGAAACCAG	1306
CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA AGAGTTCGCA	1356
TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA GAAAGGAGTT	1406
TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG GGAGGGCCTG	1456
GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT GCTCTGTTAC	1506
ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC ACAGTTCTCA	1556
GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG ACCATCTCTC	1606
AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT TTCCTTTTGG	1656
AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC TTCAACATTC	1706
ATTITATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA TAGTTTAGGA	1756
GTANGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT TATTTCTTGA	1806
ATTC	1810
536 6 W	

- (2) INFORMATION FOR SEQUENCE ID NO: 21:

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1412 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA

 (ix) FEATURE:

 (A) NAME/KEY: MAGE-9 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TCTGAGACAG TGTCCTCAGG TCGCAGAGCA GAGGAGACCC A	GGCAGTGTC 5	0
AGCAGTGAAG GTGAAGTGTT CACCCTGAAT GTGCACCAAG G	GCCCCACCT 10	00
GCCCCAGCAC ACATGGGACC CCATAGCACC TGGCCCCATT C	CCCCTACTG 15	0
TCACTCATAG AGCCTTGATC TCTGCAGGCT AGCTGCACGC TO	GAGTAGCCC 20	0
TCTCACTTCC TCCCTCAGGT TCTCGGGACA GGCTAACCAG G	AGGACAGGA 25	0
GCCCCAAGAG GCCCCAGAGC AGCACTGACG AAGACCTGTA AG	GTCAGCCTT 30	00
TGTTAGAACC TCCAAGGTTC GGTTCTCAGC TGAAGTCTCT C		0
CTCTCTCCCC AGGCCTGTGG GTCTCCATCG CCCAGCTCCT G	CCCACGCTC 40	0
CTGACTGCTG CCCTGACCAG AGTCATC	42	27
ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG C		9
GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG AS		1
CAG GAA CCC ACA GGC GAG GAG GAG ACT ACC TO		3
GAC AGC AAG GAG GAG GTG TCT GCT GCT GGG TC	CA TCA AGT 59	5
CCT CCC CAG AGT CCT CAG GGA GGC GCT TCC TCC TC		37
GTC TAC TAC ACT TTA TGG AGC CAA TTC GAT GAG GO		9
AGT CAA GAA GAG GAA GAG CCA AGC TCC TCG GTC G	AC CCA GCT 72	1
CAG CTG GAG TTC ATG TTC CAA GAA GCA CTG AAA T		3
GCT GAG TTG GTT CAT TTC CTG CTC CAC AAA TAT CO	GA GTC AAG 80)5
GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AGC G	TC ATC AAA 84	7
AAT TAC AAG CGC TAC TTT CCT GTG ATC TTC GGC AI		19
GAG TTC ATG CAG GTG ATC TTT GGC ACT GAT GTG A		1
GAC CCC GCC GGC CAC TCC TAC ATC CTT GTC ACT GC		3
CTC TCG TGC GAT AGC ATG CTG GGT GAT GGT CAT AG		.5
AAG GCC GCC CTC CTG ATC ATT GTC CTG GGT GTG AS		7
AAA GAC AAC TGC GCC CCT GAA GAG GTT ATC TGG G	AA GCG TTG 109	9
AGT GTG ATG GGG GTG TAT GTT GGG AAG GAG CAC AS	TG TTC TAC 114	1
GGG GAG CCC AGG AAG CTG CTC ACC CAA GAT TGG G	TG CAG GAA 118	13
AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AGT G	AT CCT GCG 122	5
CAC TAC GAG TTC CTG TGG GGT TCC AAG GCC CAC GG	CT GAA ACC 126	7
AGC TAT GAG AAG GTC ATA AAT TAT TTG GTC ATG CT	TC AAT GCA 130	9
AGA GAG CCC ATC TGC TAC CCA TCC CTT TAT GAA GI	AG GTT TTG 135	1
GGA GAG GAA GAG GGA GTC TGA	137	5
GCACCAGCCG CAGCCGGGGC CAAAGTTTGT GGGGTCA	141	.2

- (2) INFORMATION FOR SEQUENCE ID NO: 22: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-10 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACCTGCTCCA GGACAAAGTG GACCCCACTG CATCAGCTCC ACCTACCCTA	50
CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GAGGAGCCAT	100
CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CAAGAGGTCA	150
	200
AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CCIGIAAGT GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GCCACTTACA	250
GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGGTGT COCCCA AGTCCTGCCC	300
CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AGTCCTGCCC	333
ACACTCCCAC CTGCTACCCT GATCAGAGTC ATC	
ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CCT GAA GAA	375
GAT CTT CAA TCC CAA AGT GAG ACA CAG GGC CTC GAG GGT GCA	417
CAG GCT CCC CTG GCT GTG GAG GAG GAT GCT TCA TCA TCC ACT	459
TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TCC TC	501
TOT TOO TOO TOO TOO TOO TAT COT CTA ATA COA AGO ACC	543
THE COLUMN CARE AND ACT AND COT COC	585
THE TAX BOX MOS MOS MOS COS TOS STE STE SCT	627
CAG AGT GCT CAG ATA GCC 1GC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC	669
TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AGC AGC CAA	711
AAG GAG GAG AGT CCA AGC ACC CTA CAG GTC CTG CCA GAC AGT	
GAG TOT TTA COO AGA AGT GAG ATA GAT GAA AAG GTG ACT GAT	753
TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AAG GAG CCG	795
ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA AAA AAT TAT	837
GAA GAC CAC TTC CCT TTG TTG TTT AGT GAA GCC TCC GAG TGC	879
ATG CTG CTG GTC TTT GGC ATT GAT GTA AAG GAA GTG GAT CC	920
Wie cie cie ein iii een mit em ten ten	

- (2) INFORMATION FOR SEQUENCE ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1107 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-11 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAACAGG CCAACCTGGA GGACAGGAGT CCCAGGAGAA CCCAGAGGAT	50
CACTGGAGGA GAACAAGTGT AAGTAGGCCT TTGTTAGATT CTCCATGGTT	100
CATATCTCAT CTGAGTCTGT TCTCACGCTC CCTCTCTCCC CAGGCTGTGG	150
GGCCCCATCA CCCAGATATT TCCCACAGTT CGGCCTGCTG ACCTAACCAG	200
AGTCATCATG CCTCTTGAGC AAAGAAGTCA GCACTGCAAG CCTGAGGAAG	250
CCTTCAGGCC CAAGAAGAAG ACCTGGGCCT GGTGGGTGCA CAGGCTCTCC	300
AAGCTGAGGA GCAGGAGGCT GCCTTCTTCT CCTCTACTCT GAATGTGGGC	350
ACTCTAGAGG AGTTGCCTGC TGCTGAGTCA CCAAGTCCTC CCCAGAGTCC	400
TCAGGAAGAG TCCTTCTCTC CCACTGCCAT GGATGCCATC TTTGGGAGCC	450
TATCTGATGA GGGCTCTGGC AGCCAAGAAA AGGAGGGGCC AAGTACCTCG	500
CCTGACCTGA TAGACCCTGA GTCCTTTTCC CAAGATATAC TACATGACAA	550
GATAATTGAT TTGGTTCATT TATTCTCCGC AAGTATCGAG TCAAGGGGCT	600
GATCACAAAG GCAGAA	616
ATG CTG GGG AGT GTC ATC AAA AAT TAT GAG GAC TAC TTT CCT	658
GAG ATA TTT AGG GAA GCC TCT GTA TGC ATG CAA CTG CTC TTT	700
GGC ATT GAT GTG AAG GAA GTG GAC CCC ACT AGC CAC TCC TAT	742
GTC CTT GTC ACC TCC CTC AAC CTC TCT TAT GAT GGC ATA CAG	784
TGT AAT GAG CAG AGC ATG CCC AAG TCT GGC CTC CTG ATA ATA	826
GTC CTG GGT GTA ATC TTC ATG GAG GGG AAC TGC ATC CCT GAA	868
GAG GTT ATG TGG GAA GTC CTG AGC ATT ATG GGG GTG TAT GCT	910
GGA AGG GAG CAC TTC CTC TTT GGG GAG CCC AAG AGG CTC CTT	952
ACC CAA AAT TGG GTG CAG GAA AAG TAC CTG GTG TAC CGG CAG	994
GTG CCC GGC ACT GAT CCT GCA TGC TAT GAG TTC CTG TGG GGT	1036
CCA AGG GCC CAC GCT GAG ACC AGC AAG ATG AAA GTT CTT GAG	1078
TAC ATA GCC AAT GCC AAT GGG AGG GAT CC	1107

- INFORMATION FOR SEQUENCE ID NO: 24: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2150 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: smage-I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA ATGGATCTCT						
CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT TTGCATGGGC						
ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTTC TCCACAGGCC						
TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT ACAGGTCTCT						
GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC CCTCCAAGTG						
AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA CTAGACTTTT	300					
ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT TGCAGAAAAG	350					
AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG AAAG	394					
ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT CCA TTA AG	T 436					
CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA CTT ACA GG	T 478					
TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC AGC TCT TT	T 520					
ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG GGT CAA AA	G 565					
AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG TCA CGC AG	G 604					
GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA GCA GGG TC						
TOT COT GIT GAC CAG AGT GOT GGG TCC AGC TTC CCT GGT GG						
TOT GOT COT CAG GGT GTG AAA ACC COT GGA TOT TIT GGT GO						
GGT GTA TCC TGC ACA GGC TCT GGT ATA GGT GGT AGA AAT GC						
GCT GTC CTG CCT GAT ACA AAA AGT TCA GAT GGC ACC CAG GC						
GGG ACT TCC ATT CAG CAC ACA CTG AAA GAT CCT ATC ATG AG						
AAG GCT AGT GTG CTG ATA GAA TTC CTG CTA GAT AAA TTT AA						
ATG AAA GAA GCA GTT ACA AGG AGT GAA ATG CTG GCA GTA GT						
AAC AAG AAG TAT AAG GAG CAA TTC CCT GAG ATC CTC AGG AG						
ACT TOT GCA CGC CTA GAA TTA GTC TTT GGT CTT GAG TTG AA						
GAA ATT GAT CCC AGC ACT CAT TCC TAT TTG CTG GTA GGC AA						
CTG GGT CTT TCC ACT GAG GGA AGT TTG AGT AGT AAC TGG GG						
TTG CCT AGG ACA GGT CTC CTA ATG TCT GTC CTA GGT GTG AT	C 1150					
TTC ATG AAG GGT AAC CGT GCC ACT GAG CAA GAG GTC TGG CA						
TTT CTG CAT GGA GTG GGG GTA TAT GCT GGG AAG AAG CAC TT						
ATC TIT GGC GAG CCT GAG GAG TIT ATA AGA GAT GTA GTG CG						
GAA AAT TAC CTG GAG TAC CGC CAG GTA CCT GGC AGT GAT CC	C 1314					
CCA AGC TAT GAG TTC CTG TGG GGA CCC AGA GCC CAT GCT GA						
ACA ACC AAG ATG AAA GTC CTG GAA GTT TTA GCT AAA GTC AA						
GGC ACA GTC CCT AGT GCC TTC CCT AAT CTC TAC CAG TTG GC						
CTT AGA GAT CAG GCA GGA GGG GTG CCA AGA AGG AGA GTT CA						
GGC AAG GGT GTT CAT TCC AAG GCC CCA TCC CAA AAG TCC TC						
AAC ATG TAG	1537					
TTGAGTCTGT TCTGTTGTGT TTGAAAAACA GTCAGGCTCC TAATCAGTAG	1587					
AGAGTTCATA GCCTACCAGA ACCAACATGC ATCCATTCTT GGCCTGTTAT	1637					
ACATTAGTAG AATGGAGGCT ATTTTTGTTA CTTTTCAAAT GTTTGTTTAA	1687					
CTAAACAGTG CTTTTTGCCA TGCTTCTTGT TAACTGCATA AAGAGGTAAC						
TGTCACTTGT CAGATTAGGA CTTGTTTTGT TATTTGCAAC AAACTGGAAA						

ACATTATTTT	GTTTTTACTA	AAACATTGTG	TAACATTGCA	TTGGAGAAGG	1837
GATTGTCATG	GCAATGTGAT	ATCATACAGT	GGTGAAACAA	CAGTGAAGTG	1887
GGAAAGTTTA	TATTGTTAAT	TTTGAAAATT	TTATGAGTGT	GATTGCTGTA	1937
TACTTTTTTC	TTTTTTGTAT	AATGCTAAGT	GAAATAAAGT	TGGATTTGAT	1987
GACTTTACTC	AAATTCATTA	GAAAGTAAAT	CGTAAAACTC	TATTACTTTA	2037
TTATTTTCTT	CAATTATGAA	TTAAGCATTG	GTTATCTGGA	AGTTTCTCCA	2087
GTAGCACAGG	ATCTAGTATG	AAATGTATCT	AGTATAGGCA	CTGACAGTGA	2137
GTTATCAGAG	TCT				2150

- (2) INFORMATION FOR SEQUENCE ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2099 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: smage-II
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

			ACTTGTGTGT		50
			TGTCTGGCAC		100
			TGGAGCTTAA		150
CTCCACAGGC	CTATACCCCT	GCATTGTAAG	TTTAAGTGGC	TTTATGTGGA	200
			AGTTTTTCTG		250
			CCCACTTTTG		300
			TTTAATTTCT		350
			GAAGTCCTGG		400
GAAAGATGTT	CTCCTGGAAA	GCTTCAAAAG	CCAGGTCTCC	ATTAAGTCCA	450
AGGTATTCTC	TACCTGGTAG	TACAGAGGTA	CTTACAGGTT	GTCATTCTTA	500
TCTTTCCAGA	TTCCTGTCTG	CCAGCTCTTT	TACTTCAGCC	CTGAGCACAG	550
			CCCGCTCCCG		600
CAGCAGTCAC	GCAGGGAGGT	TCCAGTAGTT	CAGCCCACTG	CAGAGGAAGC	650
			GTCCAGCTTC		700
			CTTTTGGTGC		750
			GCTGCTGTCC		800
AAAAAGTTCA	GATGGCACCC	AGGCAGGGAC	TTCCATTCAG	CACACACTGA	850
			TGATAGAATT		900
			AGTGAAATGC		950
TAACAAGAAG	TATAAGGAGC	AATTCCCTGA	GATCCTCAGG	AGAACTTCTG	1000
CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
			GGTCTTTCCA		1100
TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
			CCACTGAGCA		1200
			GGGAAGAAGC		1250
			AGTGCGGGAA		1300
			CAAGCTATGA		1350
			ATGAAAGTCC		1400
AGCTAAAGTC	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
			CAAGAAGGAG		1500
			AAGTCCTCTA		1550
			CAGGCTCCTA		1600
AGTTCATAGC	CTACCAGAAC	CAACATGCAT	CCATTCTTGG	CCTGTTATAC	1650
ATTAGTAGAA	TGGAGGCTAT	TTTTGTTACT	TTTCAAATGT	TTGTTTAACT	1700
			ACTGCATAAA		1750
			TTTGCAACAA		1800
ATTATTTTGT	TTTTACTAAA	ACATTGTGTA	ACATTGCATT	GGAGAAGGGA	1850
			TGAAACAACA		1900
			ATGAGTGTGA		1950
CTTTTTTCTT	TTTTGTATAA	TGCTAAGTGA	AATAAAGTTG	GATTTGATGA	2000
			TAAAACTCTA		2050
ATTTTCTTCA	ATTATTAATT	AAGCATTGGT	TATCTGGAAG	TTTCTCCAG	2099

- (2) INFORMATION FOR SEQUENCE ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acids
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

Claims:

- 1. Isolated nucleic acid molecule which codes for a tumor rejection antigen precursor or is complementary to a nucleic acid molecule which codes for a tumor rejection antigen precursor.
- 2. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a tumor rejection antigen precursor.
- 3. Isolated nucleic acid molecule of claim 1, wherein said molecule codes for a human tumor rejection antigen precursor.
- 4. The isolated nucleic acid molecule of claim 1, wherein said molecule is complementary to a nucleic acid molecule which codes for tumor rejection antigen precursor.
- 5. The isolated nucleic acid molecule of claim 1, wherein said molecule is DNA.
- 6. The isolated nucleic acid molecule of claim 1, wherein said molecule is RNA.
- 7. The isolated nucleic acid molecule of claim 1, wherein said molecule is a gene.

- 8. The isolated nucleic acid molecule of claim 5, wherein said DNA is genomic DNA.
- 9. The isolated nucleic acid molecule of claim 5, wherein said DNA is cDNA.
- 10. The isolated nucleic acid molecule of claim 6, wherein said RNA is mRNA.
- 11. The isolated nucleic acid molecule of claim 4, wherein said molecule hybridizes to isolated nucleic acid which codes for tumor rejection antigen precursor under stringent conditions.
- 12. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a MAGE antigen precursor or is complementary to a molecule which codes for a MAGE antigen precursor.
- 13. The isolated nucleic acid molecule of claim 12, wherein said MAGE antigen precursor is selected from the group consisting of mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 14. The isolated nucleic acid molecule of claim 12, wherein said molecule codes for a MAGE antigen precursor.

- 15. The isolated nucleic acid molecule of claim 12, wherein said molecule is complementary to a molecule which codes for a MAGE antigen precursor.
- 16. The isolated nucleic acid molecule of claim 12, wherein said molecule is DNA.
- 17. The isolated nucleic acid molecule of claim 12, wherein said molecule is RNA.
- 18. The isolated nucleic acid molecule of claim 12, wherein said molecule is a gene.
- 19. The isolated nucleic acid molecule of claim 16, wherein said DNA is genomic DNA.
- 20. The isolated nucleic acid molecule of claim 16, wherein said DNA is cDNA.
- 21. The isolated nucleic acid molecule of claim 17, wherein said RNA is mRNA.
- 22. The isolated nucleic acid molecule of claim 12, comprising a nucleotide sequence set forth in figure 9.

- 23. The isolated nucleic acid molecule of claim 15, wherein said molecule hybridizes to a molecule which codes for a MAGE antigen precursor under stringent conditions.
- 24. Isolated nucleic acid molecule of claim 1, coding for a tumor rejection antigen precursor for mastocytoma.
- 25. Isolated nucleic acid molecule of claim 1, coding for tumor rejection antigen precursor P1A.
- 26. Isolated nucleic acid molecule of claim 1, having the nucleotide sequence of figure 5.
- 27. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 2.
- 28. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 12.
- 29. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 22.
- 30. Biologically pure culture of a cell line of claim 27, selected from the group consisting of P1A.T2 and P1A.TC3.1.

- 31. Biologically pure culture of a highly transfectable cell line derived from a parent cell line which expresses at least one P815 tumor antigen, wherein said highly transfectable cell line does not express any of P815 tumor antigens A, B and C.
- 32. Biologically pure cell line of claim 31, comprising cell line PO.HTR.
- 33. Biologically pure culture of a cell line of claim 27, wherein said tumor rejection antigen precursor is a human tumor antigen precursor.
- 34. Biologically pure culture of a cell line of claim 33, wherein said human tumor antigen precursor is found in melanoma cells.

35. Biologically pure cell line of claim 34, said tumor rejection antigen precursor is mage-1 and said isolated DNA has nucleic acid sequence:

```
| 10 | 20 | 30-, | 40 | 50 ' | 60

1 GGATGERGE EXCENSIA ANNIARMS GGGGTEATEC 60
   61 ACTICATORS ACTORIGATES TEACHGROTS CASCECACCS TECTOSTRIC ACTORAGEACES 120
  121 CAGGGCTGTG CTTGCGGTCT GCACCCTGAG GGCCCGTGGA TTCCTCTTCC TGGAGCTCCA 180
  181 GGAADCAGGC AGTGAGGCCT TGGTCTGAGA CAGTATCCTC AGGTCACAGA GCAGAGGATG 240
  241 CACAGGGTGT GCCAGGAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA 300
  301 EAGGACACAT AGGACTOCAC AGAGTOTGGC CTCACCTCCC TACTGTCAGT CCTGTAGAA: 360
  361 EGACETETGE TEGECEGETE EXCECTENET ACCEPTENE TREETETTE AGGTTTTENG 420
  421 GGGACAGGCC AACCCAAGGG ACAGGATTCC CTGGAGGCCA CAGAGGAGCA CCCAAGGAGAA 480
 481 BATCTGTANG TAGGCCTTTG TTAGAGTTCTC CAAGGTTCNG TTCTCAGCTG AGGCCTCTCA 540
 541 CACACTOCC: ETCTCCCCAG GCCTGTGGG: - ETTCATTGCC CAGCTCCTGC CCACACTCC: 600
  601 GCCTGCTGCC CTGACGAGAG TCATCATGTC TCTTGAGCAG AGGAGTCTGC ACTGCAAGCC 660
 661 TEAGGAAGCE ETTGAGGCCC AACAAGAGCE ECTGGGCTGG TGTGTGTGCA GGCTGCCACC 720
 721 TOCTOCTOCT ETCCTCTGGT CCTGGGCACC CTGGAGGAGG TGCCCACTGC TGGGTCAACA 760
 781 GATOCTOCCO AGAGTOCTCA GOGAGCCTCC GCCTTTCCCA CTACCATCAA CTTCACTCGA 810
 $41 CAGAGGCAAC CCAGTGAGGG TTCCAGCAGC CGTGAAGAGG AGGGGGCCAAG CACCTCTTGT 900
 901 ACCORGAGE COTTGETCCG AGCASTAATC ACCAAGAAGG TGGCTGACCE GGTTGGTTTT 960
 961 ETGCTCCTCA AATATCGAGC CAGGGAGCCA GTCACALAGG CAGAAATGCT GGAGAGTGTC 1020
1021 ATEXAXATT ACAAGEACTG TITTECTGAG ATCITCGGCA AAGCCTCTGA GTCCTTGCAG 1080
1081 ETGGTCTTTG GCATTGACGT GAAGGAAGTA GACCCEARCG GCCACTCCTA TGTCCTTGTC 1140
1141 ACCTGCCTAG GTCTCTCCTA TGATGCCCTG CTGGGTGATA ATCAGATCAT GCCCAAGACA 1200
2201 GGTTTCCTGA TAATTGTCCT GGTCATGATT GCAATGGAGG GCGGCCLIGC TCCTGAGGAG 1260
1261 Gaaatetogg Aggagetgag tetgategag etgiatgate ogagggagga eagtgeetat 1320
2321 GGGGAGCCCA GGAAGCTGCT CACCCAAGAT TIGGTGCAGG AALAGTACCT GGAGTACGGC 1360
1381 AGGTGCCGGA CAGTGATCCC GCACGCTATG AGTTCCTGTG GGGTCCAAGG GCCCTCGCTG 1440
1441 AAACAGCIA TETEAAAGIC ETIEAGIATE TEATCAAGIT ENGTECAAGA ETICOCTIII 1500
2503 TETTECCATE CONGCORGAN GENGETTIGN GNGNGGNAGN AGNGGGNGTE TONGCATENG 2560
1561 TIGCAGCCAA GGCCAGTGGG A900GGACTG GGCCADTGCA CCTTCCAGGG CCGCGTCCAG 1620
1621 EAGCTTCCCC TGCCTCGTGT GACATGAGGC CCATTCTTCA CTCTGAAGAG AGCGGTCAGT 1610
1681 STECTCASTA STAGGITTCT STECTATEG GEGACTEGGA GATTTATCTT TOTTCTCTT 1740
1741 TGIAATTGIT CAAATGITTI TITTIAAGGG ATGITTGIAT GAACTTCAGC ATGCAAGTTI 1800
1801 ATGULTGLEA GEAGTEREAE ACTTETGTGT ATATACTTTA ACCUTANGAG TETTGTGTTT 1860
1861 EXITCAGATT GGGLAATCCA TTCTATTTTG TGAATTGGGA EMATAACAGC AGTGGLASAA 1920
2921 STACTTAGUA ATGTGALARA TGAGCAGTAA ARTAGATGAG ATARAGAACT ALAGUATTA 1980
1981 AGAGATAGTE AATTETTGCC TTATACCTCA GTETATICTG TANAATTETT AAAGATATAT 2040
2041 SCATACCTSG ATTTCCTTSG CTTCTTTGAS AATSTAAGAG AAATTAAATC TGAATAAAGA 2100
2101 ATTOTICCTG TTCACTGGCT CTTTTCTTCT CCATGCACTG ASCATCTGCT TTTTGGAAGG 2160
2161 CCCTGGGTIA GTAGTGGAGA TGCTAAGGTA AGCCAGACTC ATACCCACCC ATAGGGTCGT 2220
2221 AGASTETAGG AGCTGCAGTC ACGTAATCGA GGTGGCAAGA TGTCCTCTAA AGATGTAGGG 2210
2281 AAAAGTGAGA GAGGGTGAG GGTGTGGGGC TCCGGGTGAG AGTGTGGAG TGTCAATGCC 2340
23(1 ETGAGCIGGG GCATTITGGG CITTGGGAAA ETGCAGTTCC TICTGGGGGA QCTGATTGTA 2400
2401 ATEXTETTES STOCKTCC
                                                                       2418
                           1 30 1 40
                                                                1 60
         1 10
                  1 20
                                                     1 50
```

- said cell line is transfected by a nucleic acid sequence coding for a cytokine.
- 37. The biologically pure culture of claim 36, wherein said cell line is further transfected by a nucleic acid sequence coding for an HLA molecule.
- 38. The biologically pure culture of claim 36, wherein said cytokine is an interleukin.
- 39. The biologically pure culture of claim 38, wherein said interleukin is IL-2.
- 40. The biologically pure culture of claim 38, wherein said interleukin is IL-4.
- 41. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence which codes for an MHC molecule or an HLA molecule.
- 42. The biologically pure culture of claim 27, wherein said cell line expresses an MHC or HLA molecule which presents a tumor rejection antigen derived from a tumor rejection antigen precursor (TRAP), wherein said TRAP is coded for by a nucleic acid sequence transfected into said cell line.

- 43. The biologically pure culture of claim 27, wherein said culture is non-proliferative.
- 44. The biologically pure culture of claim 27, wherein said cell line is a fibroblast cell line.
- 45. Transfected bacteria containing the nucleic acid sequence of claim 2.
- 46. Mutated virus containing the nucleic acid sequence of claim 2.
- 47. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 2 operably linked to a promoter.
- 48. Expression vector useful in transfecting a cell comprising a nucleic acid sequence coding for a tumor rejection antigen operably linked to a promoter.
- 49. Expression vector of claim 47, wherein said promoter is a strong promoter.
- 50. Expression vector of claim 47, wherein said promoter is a differential promoter.

- 51. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 7 operably linked to a promoter.
- 52. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 13 operably linked to a promoter.
- 53. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 14 operably linked to a promoter.
- 54. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 18 operably linked to a promoter.
- 55. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 22 operably linked to a promoter.
- 56. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for an MHC or HLA.
- 57. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for a cytokine.
- 58. The expression vector of claim 57, wherein said cytokine is an interleukin.

- 59. The expression vector of claim 58, wherein said interleukin is IL-2.
- 60. The expression vector of claim 58, wherein said interleukin is IL-4.
- 61. The expression vector of claim 47, further comprising a bacterial or viral genome or portion thereof.
- 62. The expression vector of claim 61, wherein said viral genome vaccinia virus DNA and said bacterial genome or portion thereof in BCG DNA.
- 63. Expression system useful in transfecting a cell, comprising (i) a first vector containing a nucleic acid molecule which codes for a tumor rejection antigen precursor, and (ii) a second vector selected from the group consisting of (a) a vector containing a nucleic acid molecule which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor, and (b) a vector containing a nucleic acid sequence which codes for an interleukin.
- 64. Isolated tumor rejection antigen precursor.
- 65. Isolated human tumor rejection antigen precursor.

- 66. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is mage-1.
- 67. Isolated tumor rejection antigen precursor of claim65, wherein said precursor is a precursor for antigenF.
- 68. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 2.
- 69. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 12.
- 70. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 13.
- 71. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 22.
- 72. Isolated tumor rejection antigen.
- 73. Isolated human tumor rejection antigen.
- 74. Isolated tumor rejection antigen of claim 72 having amino acid sequence of SEQ ID NO: 4.
- 75. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen E.

- 76. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen F.
- 77. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a tumor rejection antigen precursor which provokes an immune response when administered to a subject.
- 78. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a peptide fragment derived from a tumor rejection antigen precursor, wherein said fragment is larger than the tumor rejection antigen derived from said tumor rejection antigen precursor and smaller than said tumor rejection antigen precursor and which provokes an immune response when administered to a subject.
- 79. Vaccine of claim 77, wherein said TRAP is a human TRAP.
- 80. Vaccine of claim 77 wherein said precursor is mage1.
- 81. Vaccine of claim 79, wherein said precursor is antigen F precursor.

- 82. Vaccine useful in treating a patient with a cancer comprising a tumor rejection antigen of claim 72 which provokes an immune response when administered to a subject.
- 83. Vaccine of claim 82, wherein said tumor rejection antigen has amino acid sequence of SEQ ID NO: 4.
- 84. The vaccine of claim 81, wherein said tumor rejection antigen is antigen E.
- 85. The vaccine of claim 81, wherein said tumor rejection antigen is antigen F.
- 86. The vaccine of claim 77, wherein said tumor rejection antigen precursor is the expression product of an expression vector containing a viral genome or portion thereof.
- 87. Vaccine useful in treating a patient with a cancer comprising the transfected bacterial of claim 45 and a pharmaceutically acceptable adjuvant.
- 88. Vaccine useful in treating a cancerous condition comprising the mutated virus of claim 46, and a pharmacologically acceptable adjuvant.

- 89. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a complex of a tumor rejection antigen and an HLA molecule.
- 90. Isolated peptide useful in treating a subject afflicted with a cancerous condition, said peptide having the amino acid of SEQ ID NO: 26.
- 91. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 27 and a pharmacologically acceptable adjuvant.
- 92. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 37 and a pharmacologically acceptable adjuvant.
- 93. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen precursor specific for a tumor characteristic of said cancerous condition, and a pharmaceutically acceptable carrier.
- 94. Composition of matter of claim 93, wherein said cell line is a human cell line.

- 95. Composition of matter of claim 93, wherein said pharmaceutically acceptable carrier is a liposome.
- 96. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen specific for a tumor characteristic of said cancerous condition, and a pharma- ceutically acceptable carrier.
- 97. Composition of matter of claim 96, wherein said cell line is a human cell line.
- 98. Composition of matter of claim 96, wherein said pharma ceutically acceptable carrier is a liposome.
- 99. Composition of matter useful in treating a cancerous condition, comprising (i) a tumor rejection antigen or tumor rejection antigen precursor, (ii) an MHC or HLA molecule, and (iii) a pharmaceutically acceptable carrier.
- 100. Composition of matter of claim 99, wherein said pharmaceutically acceptable carrier is a liposome.
- 101. Antibody which specifically binds to a tumor rejection antigen precursor.

\$

- 102. Antibody of claim 101, wherein said antibody is a monoclonal antibody.
- 103. Antibody of claim 101, wherein said tumor rejection antigen precursor is mage-1.
- 104. Antibody of claim 103, wherein said antibody is a monoclonal antibody.
- 105. Antibody of claim 101, wherein said tumor rejection antigen precursor is antigen F precursor.
- 106. Antibody of claim 105, wherein said antibody is a monoclonal antibody.
- 107. Antibody of claim 101, wherein said tumor rejection antigen precursor is a MAGE precursor.
- 108. Antibody of claim 107, wherein said antibody is a monoclonal antibody.
- 109. Antibody of claim 107, wherein said MAGE precursor is mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 110. Antibody of claim 109, wherein said antibody is a monoclonal antibody.

Ĵ

- 111. Antibody which specifically binds to a tumor rejection antigen.
- 112. Antibody of claim 111, wherein said antibody is a monoclonal antibody.
- 113. Antibody of claim 111, wherein said tumor rejection antigen is that set forth in SEQ ID NO: 4.
- 114. Antibody of claim 113, wherein said antibody is a monoclonal antibody.
- 115. Antibody of claim 111, wherein said tumor rejection antigen is antigen E.
- 116. Antibody of claim 115, wherein said antibody is a monoclonal antibody.
- 117. Antibody of claim 111, wherein said tumor rejection antigen is antigen F.
- 118. Antibody of claim 117, wherein said antibody is a monoclonal antibody.
- 119. Antibody which specifically binds to a complex of (i) tumor rejection antigen and (ii) HLA molecule, but does not bind to (i) or (ii) alone.

ŝ

- 120. The antibody of claim 119, wherein said antibody is a monoclonal antibody.
- 121. Method for diagnosing a cancerous condition in a subject, comprising contacting a lymphocyte containing sample of said subject to a cell line transfected with a DNA sequence coding for a tumor rejection antigen precursor expressed by cells associated with said cancerous condition, and determining lysis of said transfected cell line by a cytotoxic T cell line specific for a tumor rejection antigen derived from said tumor rejection antigen precursor, said lysis being indicative of said cancerous condition.
- 122. Method of claim 121, wherein said tumor rejection antigen precursor is a MAGE antigen.
- 123. Method for determining regression, progression or onset of a cancerous condition comprising monitoring a sample from a patient with said cancerous condition for a parameter selected from the group consisting of (i) tumor rejection antigen precursor, (ii) tumor rejection antigen and (iii) cytolytic T cells specific for a tumor rejection antigen associated with said cancerous condition, wherein amount of said parameter is indicative of progression or regression or onset of said cancerous condition.

- 124. Method of claim 123, wherein said sample is a body fluid.
- 125. Method of claim 123, wherein said sample is a tissue.
- 126. Method of claim 123, comprising contacting said sample with an antibody which specifically binds with said tumor rejection antigen or tumor rejection antigen precursor.
- 127. Method of claim 126, wherein said antibody is labelled with a radioactive label or an enzyme.
- 128. Method of claim 126, wherein said antibody is a monoclonal antibody.
- 129. Method of claim 123, comprising amplifying RNA which codes for said tumor rejection antigen precursor.
- 130. Method of claim 129, wherein said amplifying comprises carrying out polymerase chain reaction.
- 131. Method of claim 123, comprising contacting said sample with a nucleic acid molecule which specifically hybridizes to a nucleic acid molecule which codes for or expresses said tumor rejection antigen precursor.
- 132. Method of claim 123, comprising assaying said sample for shed tumor rejection antigen.

- assaying a sample taken from a subject for a cytolytic T cell specific for a tumor rejection antigen, presence of said cytolytic T cell being indicative of said cancerous condition.
- 134. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) removing a lymphocyte containing sample from said subject,
 - (ii) contacting the lymphocyte containing sample to a cell line transfected with a gene coding for and expressing a gene for a tumor rejection antigen precursor expressed by cancer cells associated with said conditions, under conditions favoring production of cytotoxic T cells against a tumor rejection antigen derived from said tumor rejection antigen precursor, and
 - (iii) introducing said cytotoxic T cells to said subject in an amount sufficient to lyse said cells.
- 135. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by cancer cells associated with said condition;
 - (ii) identifying an HLA molecule which presents a portion of an expression product of said MAGE gene;

- (iii) transfecting a host cell having the same HLA molecule as identified in (ii) with said MAGE gene;
- (iv) culturing said transfected cells to express said MAGE-gene, and;
- (v) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 136. Method of claim 135, wherein said immune response comprises a B-cell response.
- 137. Method of claim 135, wherein said immune response is a T-cell response.
- 138. Method of claim 136, wherein said B cell response comprises production of antibodies specific to said tumor rejection antigen or tumor rejection antigen precursor.
- 139. Method of claim 137, wherein said T-cell response comprises generation of cytolytic T-cells specific for cells presenting said tumor rejection antigen.
- 140. Method of claim 139, further comprising treating said cells to render them non-proliferative.

- 141. Method for treating a subject with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by said tumor:
 - (ii) transfecting a host cell having the same HLA type as said patient with said MAGE gene;
 - (iii) culturing said transfected cells to express
 said MAGE gene, and;
 - (iv) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 142. Method of claim 141, further comprising treating said cells to render them non proliferative.
- 143. Method for treating a subject with a cancerous condition, comprising administering to said subject an amount of a cell transfected with (i) a nucleic acid sequence which codes for a tumor rejection antigen precursor (TRAP) and (ii) a nucleic acid sequence which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said TRAP, wherein said tumor rejection antigen is presented by cells associated with said cancerous condition, sufficient to alleviate said cancerous condition.
- 144. Method of claim 143, further comprising treating said cell to render it non-proliferative.

- 145. Method for preparing a biological material useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) transfecting a host cell with a nucleic acidmolecule which codes for or expresses a tumorrejection antigen precursor;
 - (ii) transfecting said host cell with a nucleic acid molecule which codes for an HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor on a cell surface, and;
 - (iii) treating said host cells under conditions favoring expression of said nucleic acid molecules, and presentation of said tumor rejection antigen by said human leukocyte antigen.
- 146. Method of claim 145, further comprising treating said host cells to render them non proliferative following presentation of said tumor rejection antigen.
- 147. Method of claim 146, further comprising transfecting said host cell with a nucleic acid molecule which codes for or expresses a cytokine.
- 148. Method of claim 146, wherein said cytokine is an interleukin.

- 149. Method of claim 146, wherein said human leukocyte antigen is HLA-A1.
- 150. Method of claim 148, wherein said interleukin is IL2.
- 151. Method of claim 146, wherein said interleukin is IL-4.
- 152. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an amount of a reagent consisting essentially of non-proliferative cell having expressed on its surface a tumor rejection antigen characteristic of cancerous cells in an amount sufficient to elicit an immune response thereto.
- 153. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a tumor rejection antigen expressed on a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.
- 154. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a

tumor rejection antigen precursor expressed by a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.

- 155. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject a biological sample prepared in accordance with claim 142 in an amount sufficient to alleviate said cancerous condition.
- 156. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 77 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 157. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 78 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 158. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 82 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 159. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 86 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 160. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 87 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 161. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 88 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 162. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 163. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 164. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 90 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 165. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying cells from said subject which express a tumor rejection antigen precursor and present a tumor rejection antigen derived from said precursor on their surface;
 - (ii) isolating a sample of said cells;
 - (iii) cultivating said cell, and;
 - (iv) introducing said cells to said subject in an amount sufficient to provoke an immune response against said cells.
- 166. Method of claim 165, further comprising rendering said cells non proliferative, prior to introducing them to said subject.
- 167. Method for identifying a cytotoxic T cell useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a tumor rejection antigen presented by cells associated with said cancerous condition derived from a tumor rejection antigen

precursor expressed by said cells, prior to introducing them to said subject;

- (ii) contacting a cell presenting said antigen to a cytotoxic T cell, and;
- (iii) measuring a parameter selected from the group consisting of (i) proliferation of said cytotoxic T cell and (ii) release of a cytotoxic T cell produced factor, wherein increase in said parameter is indicative of said cancerous condition.
- 168. Method of claim 167, wherein said factor is tumor necrosis factor.
- 169. Method for following progress of a therapeutic regime designed to alleviate a cancerous condition, comprising:
 - (a) assaying a sample from a subject to determine level of a parameter selected from the group consisting of (i) tumor rejection antigen, (ii) a cytolytic T cell specific for cells presenting said tumor rejection antigen, and (iii) an antibody which specifically binds to said tumor rejection antigen at a first time period;
 - (b) assaying level of the parameter selected in (a) at a second period of time and comparing it to the level determined in (a) as a determination of effect of said therapeutic regime.

- 170. Method for diagnosing a cancerous condition comprising assaying a sample taken from a subject for expression of a TRAP molecule, and comparing levels of expression to a normal level, wherein variance there between is indicative of a cancerous condition.
- 171. Method of claim 164, comprising measuring expression via polymerase chain reaction.
- 172. Method of claim 123, comprising intradermally administering an amount of a tumor rejection antigen sufficient to generate a delayed type response in a subject.

FIG. 1A

2/13

10. 1B

3/13

FIG. 2

4/13

FIG. 3

.

5/13 **FIG. 4**

	1 2 3 4 5 6 7 HH.P. P.						
	1	2	3	4	5	6	7
	PI.HTR	PI.H	POLITIE	L138.8A	P1.HTR	Liver DBA/2	Spleen DBA/2
				P1A pr	obe <i>b</i>		
kb							
2.6							
1.2							
	·						
·				B-actin	prob	e	

7/13

FIG. 6

8/13

FIG. 7

FIG. 9

CCTCCCCAGAGTCCTCAGGGAGCCTCCGCCTTTCCCACTACATCACTTCACTCGACAGGCAACCCAGTGAGGGTTCCAGGAGGCTTCCAGCAGCGGTGAAGAGGAGG MAGE-3 III ccrcccagagrccrcaggagccrccagccrccarcargaacraccargaacraccrccaggagacarccargaggagaggaggaggaggaggaggagga

9/13 III GGCCAAGCACCTtcccTgaCC-TGGAGTCCgaGTTCCaAGCAGCACTCAGTAGGAAGGTGGCcGAgTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA $oldsymbol{\it{H}}$ GGCCAAGaAtgTtTccgaGTTCCGAGTTCCAAGCAATCAGTAGGAAGATGGTTGAGTTGGTTcaTTTTCTGCTCCTCAAGTATCGAGCCA

GGGAGCCGGTCACAAAGGCAGAAATGCTGGAGAGTGTCCTCAGAAATTGCCAGGACTt cTTTCCCGt GATCTTCaGCAAAGCCTCcGAGTaCTTGCAGCT GGGAGCCGGTCACAAAGGCAGAAATGCTGGGGAGTGTCGTCGGAAATTGGCAGtAtTtcTTCCTGtGATCTTCaGCAAAGCtTCcagtTCCTTGCAGCT GGGAGCCAGTCACAAAGGCAGAAATGCTGGAGAGTGTCATCAAAAATTACAAGCACTGTTTTCCTGAGATCTTCGGCAAAGCCTCTGAGTCCTTGCAGCT 425

GGTCTTTGGCCATTGACGTGAAGGAAGCAGACCCGACCGGCCACTCCTATGTCCTTGTCACCTGCCTAGGTCTCTACTATGATGGCCTGCTGGGTGATAAT. 525 GGTCTTTGGCATcGAgcTGAtGGAAGtgGACCCCAtCGGCCACTtgTAcaTCtTTGcCACCTGCCTGGGcCTCTCCTAcGATGGCCTGGGTGACAAT GGICTTIGGCAICGAGGIGGt GGAAGt GGt CCCCAt CaGCCACIt GIAcaICCIIGICACCIGGCCITCICCIAcGAIGGCCIGCIGGGCGACAAI Ħ

CAGATCATGCCCAAGGCAGGCCTCCTGATAATcGTCCTGGcCATaATcGCAAgaGAGGGCGaCtgTGCCCCTGAGGAGAAATCTGGGAGGAGCTGAGTG CAGGTCATGCCCAAGACAGGCCTCCTGATAATCGTC-TGGCCATAATCGCAATaGAGGGCGaCtgTGCCCCTGAGGAGAAATCTGGGAGGAGCTGAGTA , CAGATCATGCCCAAGACAGGCTTCCTGATAATTGTCCTGGTCATGATTGCAATGGAGGGGCCGTCCTGAGGAGGAGGAAATCTGGGAGGAGGAGCTGAGTG 625

10/13

β-action	MAGE	PROBES	
		MZ2-MEL.3.0 MZ2-MEL 1982 MZ2-MEL.2.2 E- MZ2-PBL-PHA Lung Kidney	FIG. 10
		MZ2-MEL 3.0 MZ2-CTL 82/30 LB34-MEL LB17-MEL MI665/2-MEL LB41-MEL MI10221-MEL MI13443-MEL SK23-MEL SK33-MEL	Other melanomas
		LB4-MEL MI4024-MEL MZ3-MEL MZ5-MEL SK29-MEL LB31-COL LS411-COL H209-SCLC H345-SCLC H510-SCLC	Other tumors

۵

11/13

FIG. 11

Expression of antigen MZ2-E after transaction**

	-		•				CHICA ROLL	XXLUUII
		EXP		RSSION OF MAGE GENE FAMILY			RECOGNITIN BY ANI-E CTL	
		Northern blot probed with	cDNA-F with oligon	CR produ nucleotide	ct probed specific for	teste :	dby:	
•		cross-reactive MAGE-1 probe*	MAGE-1	MAGE-2	MAGE-3†	TNF release‡	Lysis§	
Cells of patient MZ2	melanoma cell line MZ2-MEL.3.0		###	+++++	+++++	+	+	
•	tumor sample MZ2 (1982)	+	+++	+++	+++			
	antigen-loss variant MZ2-MEL-2.2	+	-	+++	+++	_	_	
	CTL clone MZ2-CTL82/30	_	_	_	_			
	PHA-activated blood lymphocytes	-	-	-	-			
Normal tissues	Liver	_	_	_	_			
	Muscle	-	_	-	_			
	Skin	-	-	_	_			
	Lung .	-		_	_			
	Brain	_	-	-	_			
	Kidney	-	-	-	-			
Melanoma cell lines of	LB34-MEL	+	++	++++	++++	+	+~	
HLA-A1 patients	MIGG5/2-MEL	-	-	_	-	_	-	+
	MI10221-MEL	+	_	++	+++	_	_	+
	MI13443-MEL	+	+++	++++	++++	+	+	
	SK33-MEL	+	-	++++	++++	_	_	-
	SK23-MEL	+	-	++++	++++	-	-	+
Melanoma cell lines of	LB17-MEL	+	+	++++	++++	_	-	· _
other patients	LB33-MEL	+	_	+++	+++	-	_	_
·	LB4-MEL	_	_	_	_	-	_	
	LB41-MEL	_	_	-	_	-	_	
	MI4024-MEL	+	+++	++++	++++	_	-	
	SK29-MEL	-	-	-	-	_	_	
	MZ3-MEL .	+	+	++++	++++	_	-	
	MZ5-MEL	+		++++	****	_	-	
Melanorna tumor sample	BB5-MEL	+	+++	#	***			
Other turnor cell lines	small cell lung cancer H209	+	_	****	++++			
	small cell lung cancer H345	+	_	++++	++++			
	small cell lung cancer H510	+	-	++++	++++			
	small cell lung cancer LB11		+	++++				
	bronchial squamous cell carcinoma				+++			
	thyroid medullary carcinoma TT	+	- ++++	+++	++++			
	colon carcinoma LB31	+	-	+++	++++	-		
	colon carcinoma LS411	-	-	-	-			
Other turnor samples	chronic myeloid leukernia LLC5	_	_	_	_			
Calci miles scriptes	acute myeloid leukemia TA	-	_	_	_			

<sup>Data obtained in the conditions of figure 5.
Data obtained as described in figure 6.
TNF release by CTL 82/30 after stimulation with the tumor cells as described in (11).
Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1.
Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30.</sup>

^{12/13} FIG. 12

MZ2-CTL 82/30

-12 kb

D

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04354

A. CLA	ASSIFICATION OF SUBJECT MATTER				
IPC(5)	:Please See Extra Sheet. :Please See Extra Sheet.				
	to International Patent Classification (IPC) or to both	national classification and IPC			
B. FIEI	LDS SEARCHED				
Minimum d	ocumentation searched (classification system followe	d by classification symbols)			
U.S. :	536/25; 530/350, 387; 424/88, 450; 435/320.1, 7.2,	7.1, 243, 252.32			
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched		
Electronic o	data base consulted during the international search (na	ame of data base and, where practicable	, search terms used)		
APS, Dia	log				
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
X Y	Journal of Experimental medicine, Volume 172, issued July 1990, Sibille et al. "Structure of the Gene of turn- Transplantation Antigen Pl98: A Point Mutation Generates a New Antigenic Peptide", pages 35-45, see entire document.				
Y	International Journal of Cancer, Volume 30, issued Specific Oncofetal Antigen Defined By A Mouse I see entire article.	121-133			
x	Journal of the National Cancer Institute, Volume 72, No. 1, issued January 1984, Gupta et al., "Studies of a Melanoma Tumor-Associated Antigen Detected in the Spent Culture Meidum of a Human Melanoma Cell Line by Allogeneie Antibody. II. Immunobiologie Characterization", pages 75-82, see entire article.				
x	Journal of Experimental Medicine, Volume 152, "Immunogenic Variants Obtained by Mutagenesis Lymphocyte Meidated Cytolysis", pages 1184-1193	s of Mouse Mastocytoma P815 II. T	64-76, 152, 153		
X Furth	ner documents are listed in the continuation of Box C	. See patent family annex.			
	ecial categories of cited documents:	"T" later document published after the inte	mational filing date or priority		
	cument defining the general state of the art which is not considered be part of particular relevance	date and not in conflict with the application principle or theory underlying the investigation.			
E. car	riser document published on or after the international filing date current which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone			
cit	ed to establish the publication date of another citation or other scial reason (as specified)	'Y' document of particular relevance; the			
O do	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in th	documents, such combination		
"P" do	cument published prior to the international filing date but later than priority date claimed	'&' document member of the same patent			
	actual completion of the international search	Date of mailing of the international sea	rch report		
08 SEPTE	EMBER 1992	15 SEP (392)			
Name and n	nailing address of the ISA/	Authorized officer),;;;; ``		
Box PCT	ner of Patents and Frademarks	LYNETTE F. SMITH	<i>//</i>		
•	NOT APPLICABLE	Telephone No. (703) 308-0196	- •		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04354

į

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	Cell, Volume 58, issued 28 July 1989, Lurquin et al, "Structure of the Gene of Tum- Transplantation antigen P91A: The Mutated Exon Encodes a Peptide Recognized with L ^d by Cytolytic T Cells", pages 293-303, see entire article.	1-63, 165-172
,E	US, A, 5,141,742 (Brown et al) 25 August 1992 columns 5-9.	77-100, 135-144, 156- 164
Y	Journal of Virology, Volume 49, No. 3, issued March 1984, Mackett, et al., "General Method for Production and Selection of Infectious Vaccinia Virus Recombinants Expressing Foreign Genes", pages 857-864, see entire document.	47-63
ľ	Cancer Research, Volume 48, issued 01 June 1988, Fearon, et al, "Induction in a Murine Tumor of Immunogenic Tumor Variants by Transfection with a Foreign Gene", pages 2975-2980, see entire article.	77-100
r	Cancer Research, Volume 39, issued May 1979, Gupta et al, "Isolation and Immunochemical Characterization of Antibodies from the Sera of Cancer Patients Which are Reactive against Human Melanoma Cell Membranes by Affinity Chromatography", pages 1683-1695, see pages 1686-1689.	101-120
•	Cancer Research, Volume 43, issued July 1983, Morgan et al, "Monoclonal Antibodies to Human Melanoma-associated Antigens: An Amplified Enzyme-linked Immunosorbent Assay for the Detection of Antigen, antibody and Immune Complexes", pages 3155-3159, see entire article.	101-120
r	Journal of Surgical Research, Volume 48, issued 1990, Wong et al, "Immunochemical Characterization of a Tumor-Associated Antigen Defined by a Monoclonal Antibody", pages 539-546, see entire article.	101-120

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04354

A61K 35/14, 39/00, 37	/22; CO7K 3/00, 13/0	00, 15/00, 17/00); C12Q 1/68, 1/0	0, 15/00; C12N 1/	20, 1/00	
A. CLASSIFICATION US CL :						
536/25; 530/350, 387; 4	124/88, 450; 435/320.	.1, 7.2, 7.1, 243	1, 252.32			
	•					
	·					
3						
			٠			

Form PCT/ISA/210 (extra sheet)(July 1992)★