PEiTC_02	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna II rok	2023/24

7adanie 1

Dioda półprzewodnikowa – badanie charakterystyki prądowo-napięciowej

Wstęp teoretyczny

Diody to elementy elektroniczne, które przewodzą prąd elektryczny niesymetrycznie, tzn. w jednym kierunku bardziej (kierunek przewodzenia) niż w przeciwnym (kierunek zaporowy).

Najczęściej spotykanym rodzajem diody współcześnie są diody półprzewodnikowe. Zawierają one w swojej strukturze złącze "p-n". Wyprowadzenie pozytywne (anoda) jest przymocowane do warstwy "p", a negatywne (katoda) do warstwy "n".

W idealnej diodzie, prąd płynie po spolaryzowaniu diody w kierunku przewodzenia, natomiast po spolaryzowaniu w kierunku zaporowym, prąd nie zostaje przepuszczony.

W rzeczywistości, po spolaryzowaniu diody w kierunku przewodzenia, prąd wzrasta proporcjonalnie do eksponenty z przyłożonego do diody napięcia, według wzoru Shockley'a:

$$I_{D} = I_{s} \cdot \left(e^{\frac{U}{\mathbf{n} \cdot U_{T}}} - 1 \right)$$

W temperaturze $27^{\circ}C$ stała U_T przyjmuje wartość 25,852 mV, natomiast wartości n i I_s są specyficzne dla diody, i ich wartość należy odczytać z dokumentacji technicznej diody.

Aby zapobiec zniszczeniu diody przy napięciach powyżej 0,7 V, obowiązkowym elementem w układzie z diodą jest rezystancja wpięta szeregowo limitująca przepływ prądu.

Dla napięć powyżej 0,7 V, ograniczenie prądu przez rezystancję zaczyna dominować, zatem prąd płynący przez diodę jest taki sam jak prąd płynący przez rezystancję, a przybliżony wzór na natężenie prądu diody (z prawa Ohma i napięciowego prawa Kirchhoffa) przyjmuje następującą postać:

Rysunek 1 - Schemat układu diody 1N4007 z rezystorem wpiętym szeregowo

Cel zadania

Obliczyć prąd diody w zależności od napięcia, wyznaczyć wykres prądu diody od napięcia, porównać wyniki z wartościami rzeczywistymi.

Przyjęte wartości: $R=5~\Omega;\,U_T=0$,025852 V

Użyta dioda: 1N4007 (I $_{\rm S}=3{,}19863\cdot 10^{\text{-8}}$ A; n=2)

Obliczenia teoretyczne

U[V]	I[mA] - Równanie Shockley'a	I[mA] - Prawo Ohma
0,00	0,000	-140,000
0,10	0,000	-120,000
0,20	0,001	-100,000
0,30	0,011	-80,000
0,40	0,073	-60,000
0,50	0,507	-40,000
0,52	0,746	-36,000
0,54	1,098	-32,000
0,56	1,617	-28,000
0,58	2,381	-24,000
0,60	3,505	-20,000
0,62	5,161	-16,000
0,64	7,598	-12,000
0,66	11,187	-8,000
0,68	16,471	-4,000
0,70	24,250	0,000
0,72	35,702	4,000
0,74	52,564	8,000
0,76	77,390	12,000
0,78	113,940	16,000
0,80	167,752	20,000
0,90	1160,463	40,000
1,00	8027,757	60,000

Wyniki z programu symulacyjnego

U[V]	I[mA] - Wartości rzeczywiste
0,00	0,000
0,10	0,000
0,20	0,001
0,30	0,011
0,40	0,072
0,50	0,481
0,52	0,694
0,54	0,992
0,56	1,403
0,58	1,957
0,60	2,684

0,62	3,610
0,64	4,753
0,66	6,122
0,68	7,715
0,70	9,523
0,72	11,528
0,74	13,714
0,76	16,060
0,78	18,548
0,80	21,162
0,90	35,644
1,00	51,666

Zestawienie wyników

Rysunek 2 – charakterystyka prądowo-napięciowa dla diody 1N4007

Wnioski

Natężenie prądu płynącego przez diodę w zakresie 0-0,6 V pokrywa się dość dokładnie z wartościami obliczonymi za pomocą równania Shockley'a. Powyżej tych wartości, wpływ rezystancji zaczyna przeważać, i natężenie prądu zaczyna zbliżać się do wartości wyznaczonych z prawa Ohma i napięciowego prawa Kirchhoffa.

Natężenie prądu nie pokrywa się idealnie z wartością wyznaczoną z prawa Ohma ze względu na rezystancję dynamiczną diody (rezystancję zależną od napięcia przyłożonego do diody i prądu przez nią płynącego).

Można zauważyć, że dioda, w przeciwieństwie do rezystancji, ma charakterystykę nieliniową – natężenie prądu płynącego przez nią rośnie ekspotencjalnie do przyłożonego napięcia, a w przypadku,

gdy z diodą wpięta jest szeregowo rezystancja, powyżej 0,6 V zaczyna ona zachowywać się jak źródło napięcia o wartości około -0,6 V (zależnie od rezystancji dynamicznej diody).

Zadanie 2

Dioda Zenera – badanie charakterystyki prądowo-napięciowej

Wstęp teoretyczny

WSTĘP DO DIOD – PATRZ "ZADANIE 1: WSTĘP TEORETYCZNY"

Dioda Zenera to odmiana zwykłej diody półprzewodnikowej, której najważniejszym parametrem jest napięcie Zenera, czyli ściśle zaprojektowane, zazwyczaj niskie napięcie przebicia.

Napięcie Zenera to napięcie, po przekroczeniu którego dioda Zenera wpięta zaporowo do układu zaczyna przewodzić prąd. Napięcie to jest praktycznie niezależne od natężenia płynącego przez diodę prądu, ze względu na niską rezystancję dynamiczną tej diody.

Podstawowymi różnicami pomiędzy diodą Zenera a zwykłą diodą są:

- Przebicie diody Zenera nie powoduje jej uszkodzenia
- Napięcie przebicia diody Zenera jest ściśle zaprojektowane i określone, zwykle o wartości do 10 woltów, ale mogące osiągać wartości nawet do kilkuset woltów; napięcia przebicia zwykłej diody osiągają wartości powyżej 1000 V i nie są ściśle sprecyzowane
- Niska rezystancja dynamiczna diody Zenera

Cel zadania

Obliczyć prąd diody Zenera w zależności od napięcia, wyznaczyć wykres prądu diody od napięcia, wyznaczyć napięcie Zenera.

Przyjęte wartości: $R=5~\Omega; U_T=0.025852~\mathrm{V}$

Użyta dioda: 1N4732A ($I_s = 5,038 \cdot 10^{-12} \text{ A}$; $n = 1, U_z = 4,704 \text{ V}$)

Rysunek 3 - Schemat układu diody Zenera 1N4732A spolaryzowanej zaporowo z rezystorem wpiętym szeregowo

Obliczenia teoretyczne

U[V]	Równanie Shockley'a	I[mA] - Prawo Ohma - kierunek przewodzenia	I[mA] - Prawo Ohma - kierunek zaporowy
-5,0	0,000	-	-59,200
-4,9	0,000	-	-39,200
-4,8	0,000	-	-19,200
-4,7	0,000	-	0,800
-4,6	0,000	-	20,800
-4,5	0,000	-	40,800
-4,4	0,000	-	60,800
-4,3	0,000	-	80,800
-4,2	0,000	-	100,800
-4,1	0,000	-	120,800
-4,0	0,000	-	140,800
-3,0	0,000	-	340,800
-2,0	0,000	-	540,800
-1,0	0,000	-	740,800
0,0	0,000	-140,000	-
0,1	0,000	-120,000	-
0,2	0,000	-100,000	-
0,3	0,001	-80,000	-
0,4	0,026	-60,000	-
0,5	1,264	-40,000	-
0,6	60,508	-20,000	-
0,7	2895,613	0,000	-
0,8	138569,148	20,000	-
0,9	6631207,140	40,000	-
1,0	317335487,773	60,000	-

Wyniki z programu symulacyjnego

U[V]	I[mA] - Wartości rzeczywiste
-5,0	-59,33
-4,9	-41,22
-4,8	-24,02
-4,7	-9,06
-4,6	-0,92
-4,5	-0,02
-4,4	0,00
-4,3	0,00
-4,2	0,00
-4,1	0,00
-4,0	0,00
-3,0	0,00
-2,0	0,00
-1,0	0,00

0,0	0,00
0,1	0,00
0,2	0,00
0,3	0,00
0,4	0,03
0,5	1,03
0,6	9,51
0,7	24,59
0,8	41,84
0,9	59,98
1,0	78,58
	•

Zestawienie wyników

Rysunek 4 - Charakterystyka prądowo-napięciowa diody Zenera 1N4732A

Linia trendu (styczna) poprowadzona dla pomiarów z obszaru pracy dla diody spolaryzowanej zaporowo ma równanie $y=176,57\cdot x+823,67$. Napięcie Zenera jest wyznaczane przez punkt przecięcia tej stycznej z osią napięcia, zatem aby wyznaczyć napięcie Zenera, należy w tym równaniu wstawić y=0 i wyznaczyć x.

$$0 = 176,57 \cdot x + 823,67 \implies x = -4,665.$$

Wyznaczone napięcie Zenera: $U_{\rm Z}=4,\!665~{\rm V}.$

Napięcie Zenera wynikające z dokumentacji: $U_{\rm Z}=4{,}704~{\rm V}$

Wnioski

Natężenie prądu płynącego przez diodę Zenera spolaryzowaną w kierunku przewodzenia jest bardzo zbliżone do zwykłej diody półprzewodnikowej. W zakresie 0-0,6 V pokrywa się dość dokładnie z wartościami obliczonymi za pomocą równania Shockley'a, a powyżej tych wartości, wpływ rezystancji zaczyna przeważać, i natężenie prądu zaczyna zbliżać się do wartości wyznaczonych z prawa Ohma i napięciowego prawa Kirchhoffa.

Dioda Zenera po przyłożeniu napięcia w kierunku zaporowym do wartości około 4,4 V nie przewodzi żadnego prądu, pomiędzy 4,4-4,6 V przewodzi minimalny prąd, a od 4,6-4,7 V, zaczyna przewodzić prąd w sposób nieograniczony (jedyne ograniczenie wynika z rezystancji). Oznacza to, że napięcie Zenera (napięcie przebicia) wynosi około 4,6-4,7 V; dokładna wartość tego napięcia z obliczeń wynosi $U_{\rm Z}=4,665$ V.

Przewodzenie diody Zenera w kierunku zaporowym dla niskich wartości napięcia jest cechą charakterystyczną tej diody.

Natężenie prądu zbliża się aproksymacyjnie dość dokładnie do wartości wyznaczonej z prawa Ohma, zarówno przy spolaryzowaniu przewodzenia, jak i zaporowym. Wynika to z bardzo niskiej rezystancji dynamicznej diody Zenera.

Zadanie 3

Tranzystor bipolarny NPN – badanie charakterystyki wyjściowej

Wstęp teoretyczny

Tranzystor to półprzewodnikowy element elektroniczny, którego głównym zastosowaniem jest blokowanie lub wzmacnianie sygnału elektrycznego. Wykorzystuje się je m.in. do budowy wzmacniaczy, stabilizatorów i generatorów.

Tranzystory dzielą się na tranzystory bipolarne (BJT) i tranzystory unipolarne/polowe (FET).

Tranzystor bipolarny można w uproszczeniu przedstawić jak dwa złącza "p-n" (diody) scalone ze sobą tym samem typem półprzewodnika. Jeżeli złącza są scalone półprzewodnikami typu "p", powstaje tranzystor NPN, a jeżeli są scalone półprzewodnikami typu "n" – powstaje tranzystor PNP. Charakteryzują się one tym, że niewielki prąd płynący pomiędzy bazą a emiterem steruje przepływem znacznie większego prądu między kolektorem a emiterem.

Z tranzystora wyprowadzone są 3 terminale – emiter (E), baza (B) i kolektor (C). W tranzystorze bipolarnym NPN, emiter i kolektor są podpięte do skrajnych półprzewodników typu "n", a baza jest podpięta do środkowego półprzewodnika typu "p".

W zależności od punktu pracy, tranzystor może znajdować się w jednym z czterech stanów:

- Stan aktywny prąd kolektora jest β razy większy od prądu bazy
- Stan nasycenia prąd bazy jest na tyle duży, że kolektor nie jest w stanie dostarczyć prądu β razy większego do emitera
- Stan zatkania złącze baza-emiter nie jest spolaryzowane, więc nie płynie prąd pomiędzy kolektorem a emiterem
- Stan inwersyjny złącze baza-emiter jest spolaryzowane zaporowo, wzmocnienie prądowe jest niewielkie (znacznie mniejsze od β)

Głównymi zastosowaniami tranzystora bipolarnego jest wzmacniacz (praca w stanie aktywnym) i przełącznik (przejścia pracy ze stanu zatkanego - wyłączony do stanu nasycenia - włączony).

Cel zadania

Wyznaczyć rodzinę charakterystyk wyjściowych (zależności prądu kolektora I_C od napięcia kolektoremiter U_{CE} dla 4 różnych prądów bazy I_B).

Przyjęte wartości: $R=5~\Omega$

Użyty tranzystor bipolarny NPN: BC237BP

Rysunek 5 - schemat układu z tranzystorem BC237BP

Wyniki z programu symulacyjnego

$I_{\rm B} = 0.0 \rm mA$		$I_{\rm B}=0.1$		$I_{\rm B} = 0.2 \text{ mA}$ $I_{\rm B} = 0.3 \text{ m}$		3 mA	
U _{CE} [mV]	I _c [mA]	U _{CE} [mV]	I _c [mA]	U _{CE} [mV]	I _c [mA]	U _{CE} [mV]	I _c [mA]
0,000	0,000	-0,709	0,142	-1,275	0,255	-1,650	0,330
50,000	0,000	34,800	3,040	28,141	4,372	24,281	5,144
100,000	0,000	62,931	7,414	51,376	9,725	45,107	10,979
150,000	0,000	87,896	12,421	71,631	15,674	63,336	17,333
200,000	0,000	112,825	17,435	90,672	21,866	80,264	23,947
250,000	0,000	140,583	21,883	109,642	28,072	96,647	30,671
300,000	0,000	174,590	25,082	129,600	34,080	113,041	37,392
350,000	0,000	216,807	26,638	151,953	39,609	129,987	44,003
400,000	0,000	264,396	27,121	178,987	44,202	148,172	50,366
450,000	0,000	313,773	27,245	213,849	47,230	168,677	56,264
500,000	0,000	363,569	27,286	257,277	48,545	193,405	61,319
550,000	0,000	413,454	27,309	305,352	48,930	225,370	64,926
600,000	0,000	463,358	27,328	354,798	49,040	266,467	66,707
650,000	0,000	513,266	27,347	404,551	49,090	313,604	67,279
700,000	0,000	563,175	27,365	454,371	49,126	362,774	67,445

750,000	0,000	613,084	27,383	504,203	49,159	412,420	67,516
800,000	0,000	662,993	27,401	554,039	49,192	462,169	67,566
850,000	0,000	712,902	27,420	603,876	49,225	511,938	67,612
900,000	0,000	762,811	27,438	653,712	49,257	561,712	67,657
950,000	0,000	812,720	27,456	703,549	49,290	611,487	67,702
1000,000	0,000	862,629	27,474	753,385	49,323	661,263	67,747
		912,539	27,492	803,222	49,355	711,038	67,792
		962,448	27,510	853,059	49,388	760,813	67,837
		1012,000	27,529	902,895	49,421	810,589	67,882
				952,732	49,454	860,364	67,927
				1003,000	49,486	910,139	67,972
						959,915	68,017
						1010,000	68,062

Zestawienie wyników

Rysunek 6 - rodzina charakterystyk wyjściowych tranzystora BC237BP

W stanie aktywnym tranzystora można policzyć wzmocnienie prądowe β tranzystora dla poszczególnych prądów bazy:

- $I_B = 0.1 \text{ mA}$ $I_C \approx 27 \text{ mA}$ zatem $\beta = 270$
- $I_B = 0.2 \text{ mA}$ $I_C \approx 49 \text{ mA}$ zatem $\beta = 225$

• $I_B = 0.3 \text{ mA}$ $I_C \approx 68 \text{ mA}$ zatem $\beta = 226$

Oznacza to, że w stanie aktywnym wzmocnienie prądowe tranzystora BC237BP wynosi około 225.

Wnioski

Z przeprowadzonych symulacji można wywnioskować, że tranzystor bipolarny NPN jest elementem elektronicznym, który potrafi sterować przepływem dużego prądu kolektora $I_{\rm C}$ za pomocą bardzo małych prądów bazy $I_{\rm B}$ (dla tranzystora BC237BP, prąd bazy jest około 225 razy mniejszy od prądu kolektora).

Po wyrysowaniu rodziny charakterystyk wyjściowych można zauważyć, że w stanie aktywnym prąd kolektora I_C nie zależy od przyłożonego napięcia, a jedynie od prądu bazy I_B . Dla tych samych napięć U_{CE} prąd kolektora I_C przyjmuje różne wartości w zależności od prądu bazy I_B .

7adanie 4

Stabilizator napiecia stałego

Wstęp teoretyczny

Stabilizator napięcia to układ elektroniczny, którego zadaniem jest utrzymanie na wyjściu stałego napięcia, niezależnie od wahań napięcia zasilającego i od zmian obciążenia układu.

W szczególności, stabilizator napięcia stałego DC może posłużyć jako prostownik napięcia zmiennego AC. Zadaniem takiego układu jest konwersja zmiennego napięcia na stałe. Zadanie to prostownik wykonuje za pomocą różnorodnych elementów elektronicznych, takich jak diody prostownicze, diody Zenera, kondensatory i tranzystory.

Cel zadania

Zbudować krok po kroku zasilacz stabilizowany. Dla każdego etapu budowy, porównać napięcie wyjściowe z napięciem wejściowym oraz z napięciem wyjściowym z poprzedniego kroku budowy. Po zbudowaniu zasilacza, sprawdzić wartości napięć wyjściowych dla kilku różnych rezystancji na wyjściu.

Budowa zasilacza stabilizowanego

Prostownik jednopołówkowy

Rysunek 7 - schemat prostownika jednopołówkowego

Rysunek 8 - sygnał wyjściowy prostownika jednopołówkowego (zielony) na tle sygnału wejściowego (czerwony)

Prostownik dwupołówkowy (mostek Graetza)

Rysunek 8 - schemat prostownika dwupołówkowego

Rysunek 10 - sygnał wyjściowy prostownika dwupołówkowego (zielony) na tle sygnału wejściowego (czerwony)

Prostownik dwupołówkowy z kondensatorem

Rysunek 11 - schemat prostownika dwupołówkowego z kondensatorem

Rysunek 12 - sygnał wyjściowy prostownika dwupołówkowego z kondensatorem (zielony) na tle sygnału wejściowego (czerwony)

Sygnał wyjściowy prostownika dwupołówkowego z kondensatorem jest bardziej zbliżony do sygnału stałego niż w przypadku tego samego prostownika bez kondensatora. Można zauważyć, że dzięki ładowaniu i rozładowywaniu kondensatora, sygnał oscyluje pomiędzy $2,1~\rm V$ a $3,6~\rm V$, a nie jak w poprzednim przypadku pomiędzy $0~\rm V$ a $3,6~\rm V$.

Prostownik dwupołówkowy z kondensatorem i diodą Zenera

Rysunek 13 - schemat prostownika dwupołówkowego z kondensatorem i diodą Zenera

Rysunek 14 - sygnał wyjściowy prostownika dwupołówkowego z kondensatorem i diodą Zenera (zielony) na tle sygnału wejściowego (czerwony)

Sygnał wyjściowy po dodaniu diody Zenera ma obcięte wartości powyżej 2,2 V, co nie miało miejsca w przypadku bez diody Zenera. Dodatkowo, została dodana rezystancja o wartości $10~\Omega$, ograniczająca prąd płynący przez diodę do około $50~\mathrm{mA}$.

Zasilacz stabilizowany

Rysunek 15 - schemat zasilacza stabilizowanego

Rysunek 16 - sygnał wyjściowy zasilacza stabilizowanego (zielony) na tle sygnału wejściowego (czerwony)

Sygnał wyjściowy po dodaniu tranzystora i dodatkowego kondensatora na wyjściu jest zupełnie ustabilizowany. Dzięki tranzystorowi, napięcie na wyjściu jest dodatkowo dość niezależne od zmian na rezystorze obciążającym.

Wartości napięcia wyjściowego dla różnych obciążeń

$$R_L = 1 \text{ k}\Omega \implies U_{OUT} = 1,425 \text{ V}$$

$$R_L = 10 \text{ k}\Omega \implies U_{OUT} = 1,484 \text{ V}$$

$$R_L = 100 \text{ k}\Omega \Rightarrow U_{OUT} = 1,540 \text{ V}$$

Wnioski

Stabilizator napięcia stałego prostuje napięcie zmienne tak, że napięcie wyjściowe jest równe napięciu Zenera minus napięcie baza-emiter, które jest równe około 0,7 V (w sprawdzonym przypadku jest to $U_{OUT}=U_Z$ - $U_{BE}=2,2$ V - 0,7 V =1,5 V). Dodatkowo, dzięki zastosowanemu tranzystorowi, napięcie wyjściowe jest stałe dla różnych wartości rezystancji wyjściowych.

Dzięki opisanym właściwościom, stabilizator napięcia może mieć szerokie zastosowanie w układach, które potrzebują przekształcić prąd zmienny na stały oraz wymagają stałego napięcia na wyjściu niezależnie od przyłożonego obciążenia.