

散列表 (Hash Table)

散列表(Hash Table),又称哈希表。是一种数据结构,特点是:数据元素的关键字与其存储地址直接相关

如何建立"关键字"与"存储地址"的联系?

通过"散列函数(哈希函数)":Addr=H(key)

例:有一堆数据元素,关键字分别为 {19, 14, 23, 1, 68, 20, 84, 27, 55, 11, 10, 79}, 散列函数 H(key)=key%13

14%13=1 23%13=10 1%13=1

若不同的关键字通过散列函数映射到同一个值,则称它们为"<mark>同义词"</mark> 通过散列函数确定的位置已经存放了其他元素,则称这种情况为"<mark>冲突</mark>"

处理冲突的方法——拉链法

例:有一堆数据元素,关键字分别为 {19, 14, 23, 1, 68, 20, 84, 27, 55, 11, 10, 79}, 散列函数 H(key)=key%13

用拉链法(又称链接法、链地址法)处理"冲突":把所有"同义词"存储在一个链表中

王道考研/CSKAOYAN.COM

例:有一堆数据元素,关键字分别为 {19, 14, 23, 1, 68, 20, 84, 27, 55, 11, 10, 79},散列函数 H(key)=key%13

27的查找长度=3

SE STATE OC

SC ZŽÍNOC

, Xziji MOOC

散列查找

例:有一堆数据元素,关键字分别为 {19, 14, 23, 1, 68, 20, 84, 27, 55, 11, 10, 79},散列函数 H(key)=key%13

$$ASL_{\vec{R}\vec{D}} = \frac{1*6 + 2*4 + 3 + 4}{12} = 1.75$$

"冲突"越多,查 找效率越低

ASL_{$$\text{RXI}$$} = $\frac{1+2+3+4+1+2+1+2+1+2+1}{12} = 1.75$

王道考研/CSKAOYAN.COM

散列查找

例:有一堆数据元素,关键字分别为 {19, 14, 23, 1, 68, 20, 84, 27, 55, 11, 10, 79},散列函数 H(key)=key%13

最理想情况: 散列查找时间复杂度可到达O(1)

如何设计冲突更 一少的散列函数?

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

除留余数法 —— H(key) = key % p

散列表表长为m,取一个不大于m但最接近或等于m的<mark>质数</mark>p

质数又称素数。指除了1和此整数自 身外,不能被其他自然数整除的数

例: 散列表表长13, 散列函数 H(key)=key%13

例: 散列表表长15, 散列函数 H(key)=key%13

0	1	2	3	. 4	5	6	7	8	9	10	11	12	13	14
						5	674	1	4.				۸	^

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

除留余数法 —— H(key) = key % p

散列表表长为m, 取一个不大于m但最接近或等于m的质数p

质数又称素数。指除了1和此整数自 身外,不能被其他自然数整除的数

设:可能出现的关键字={1,2,3,4,5,6,7,8,9,10......}

散列表表长8, 散列函数 H(key)=key%8

散列表表长8,散列函数 H(key)=key%7
0 1 2 3 4 5 6 7
7 1 2 3 4 5 6
14 8 9 10 11 12 13
21 15 16 17 18 19 20
22 23 24

王道考研/CSKAOYAN.COM

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

除留余数法 —— H(key) = key % p

散列表表长为m,取一个不大于m但最接近或等于m的质数p

质数又称素数。指除了1和此整数自 身外,不能被其他自然数整除的数

设:可能出现的关键字={2,4,6,8,10,12......}

散列表表长8, 散列函数 H(key)=key%8

散列表表长8, 散列函数 H(key)=key%7

Why? ——用质数取模,分布更均匀,冲突更少。参见《数论》

Tips: 散列函数的设计要结合实际的关键字分布特点来考虑,不要教条化

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

直接定址法 —— H(key) = key 或 H(key) = a*key + b

其中,a和b是常数。这种方法计算最简单,且不会产生冲突。它<mark>适合关键字的分布基本连续的情况</mark>,若关键字分布不连续,空位较多,则会造成存储空间的浪费。

例:存储同一个班级的学生信息,班内学生学号为(1120112176~1120112205) H(key) = key - 1120112176

0	1	×2	3	4	5		 	26	27	28	29	
176	177	178	179	180	181	<u></u>	 	202	203	204	205	

王道考研/CSKAOYAN.COM

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

数字分析法 —— 选取数码分布较为均匀的若干位作为散列地址

设关键字是r进制数(如十进制数),而**r个数码在各位上出现的频率不一定相同,可能在某些位上分布均匀一些**,每种数码出现的机会均等;而在某些位上分布不均匀,只有某几种数码经常出现,此时可选取数码分布较为均匀的若干位作为散列地址。这种方法适合于已知的关键字集合,若更换了关键字,则需要重新构造新的散列函数。

例: 以"手机号码"作为关键字设计散列函数

138XXXX2875 138XXXX1682	设计长度为10000的散列表,以 手机号后四位作为散列地址									
138XXXX9125			X				1			
	0	1	2 3			9998	9999			
199XXXX1684 199XXXX1236		68					5			

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

平方取中法——取关键字的平方值的中间几位作为散列地址。

具体取多少位要视实际情况而定。<mark>这种方法得到的散列地址与关键字的每位都有关系</mark>,因此使得散列地址分布比较均匀,适用于关键字的每位取值都不够均匀或均小于散列地址所需的位数。

1310²=1,716,100 1110²=1,232,100 1300²=1,690,000 1210²= 1,464,100 1200²=1,440,000

(20)

王道考研/CSKAOYAN.COM

常见的散列函数

设计目标——让不同关键 字的冲突尽可能地少

平方取中法——取关键字的平方值的中间几位作为散列地址。

具体取多少位要视实际情况而定。<mark>这种方法得到的散列地址与关键字的每位都有关系</mark>,因此使得散列地址分布比较均匀,适用于关键字的每位取值都不够均匀或均小于散列地址所需的位数。

例:要存储整个学校的学生信息,以"身份证号"作为关键字设计散列函数

身份证号码规则:

前1、2位数字表示: 所在省份的代码; 第3、4位数字表示: 所在城市的代码; 第5、6位数字表示: 所在区县的代码; 第7-14位数字表示: 出生年、月、日;

第15、16位数字表示: 所在地的派出所的代码; 第17位数字表示性别: 奇数表示男性, 偶数表示女性;

第18位数字是校检码。

0	1	2	3	 (Mari	44	99999
					1.5	
		- 7		The said	-7/3/	1

假设学生不超过十万人,可 身份证号平方取中间5位

设计目标——让不同关键 字的冲突尽可能地少

例:要存储整个学校的学生信息,以"身份证号"作为关键字设计散列函数

					999999 999999
0	1	2	3	 	 999999
.46	Will con				

若散列表的长度为100000000000000000000000(别数了,有18个0 (1)) 则可以直接用身份证号作为散列地址,且不可能有冲突,查找时间复杂度为O(1)

散列查找是典型的"<mark>用空间换时间"</mark>的算法,只要散列函数设计的合理,则散列表越长,冲突的概率越低。

王道考研/CSKAOYAN.COM

知识回顾与重要考点

下次一定

E HANDER