Info 206: Computing

Lecture 1
Sorting and Searching

September 3, 2014

Considers Google's problems

- Vast amounts of data (Petabytes)
- Need to process that information very quickly
- This is the <u>scalability</u> problem
- Tools that Google has
 - Fast algorithms (this lecture)
 - Searching, sorting
 - Lots of computers (later in semester)
 - MapReduce

Three key algorithms for big data

- Searching
- Sorting
- MapReduce (will discuss later in semester)

Algorithm

- Algorithm: abstract technique for computation
 - Not tied to a particular programming language
- A computer program implements the algorithm
 - Tied to a particular language

Scalability

We need to think big: scalability

Key concern: running time

- Key concern: parallelization
 - (Will discuss later in semester)

Running time

- Running time depends on problem size
 - Sorting a billion items takes more time than sorting a hundred items
- Want a way to describe running time
- Problem computers vary tremendously in speed
- Solution: "Big-O" notation

O(f(n)) - Intuition

- We have a program that takes input of size n
 Tricky part what exactly does n measure?
- If n is big enough (n > N for some N)
- There is some constant c such that
- Running time < cf(n) (n > N)
- Then running time is O(f(n))

O(f(n)) – Formal definition

g(n) is O(f(n)) if there exists an N and c

such that for all n > N

Example - searching

- Linear search
- Search a list one by one

```
def search (x, nums):
    for i in range(len(nums)):
        if nums[i] == x #item found
            return i #return index
    return -1 #item not found
```

How many times through loop

```
def search (x, nums):
    for i in range(len(nums)):
        if nums[i] == x #item found
            return i #return index
    return -1 #item not found
```

- How many times through loop
- len(nums)
- \bullet O(n)

Binary search

```
def search (x, nums):
      low = 0
      high = len(nums) - 1
      while low <= high:
                                     # still searching?
            mid = (low+high)/2
                                     # middle item
            item = nums[mid]
            if x == item:
                                     # found it
                                     # return index
                  return mid
            elif x < item:
                                     \# x in lower 1/2
                  high = mid - 1
                                     # adjust high
            else:
                                     \# x in upper 1/2
                  low = mid + 1
                                     # adjust low
      return -1
                                     # x is not there
```

Running time of binary search

- Each round reduces search size by ½
- Like removing a bit from a binary number
- # of times through loop = # of bits in len(nums) written as a binary number
- We call this $\log n$ (logarithm of n)

Some basic O running times

notation	name
0(1)	constant
$O(\log n)$	logarithmic
0(n)	linear
$O(n^2)$	quadratic
$O(n^c)$	polynomial
$O(c^n)$	exponential

• Don't confuse polynomial $O(n^c)$ with exponential $O(c^n)$

Sorting algorithms

- How do we sort *n* items?
- Two algorithms:
 - Bubble sort
 - Quicksort
- See animations at http://bit.ly/info206sort

Bubble sort

• (See animation)

Bubble sort running time

- Round 1: (n-1) possible swaps
- Round 2: (n-2) possible swaps
- ...
- Round (n-1): 1 possible swap

- What is 1 + 2 + ... + (n-2) + (n-1)?
- We use Gauss's trick

Adding numbers

$$1 + 2 + ... + (n-2) + (n-1)$$
 $n + n$ [(n-1)/2 times]

$$Sum = n(n-1)/2$$

Bubble sort running time

- Round 1: (n-1) possible swaps
- Round 2: (n-2) possible swaps
- ...
- Round (n-1): 1 possible swap

- \bullet 1 + 2 + ... + (n-1) = n(n-1)/2
- $O(n^2)$

Quicksort

• (See animation)

Quicksort idea

- Split sorting problem into two subproblems
- If we are lucky, they subproblems are ½ size
- Recursion

A benefit of recursion

- "Divide and conquer"
- Split a big problem into smaller problems
 - Keep on doing it again and again
- Those smaller problems can be assigned to different computers
- Parallelization!

Running time of quicksort (lucky case)

- Depends on how lucky we are
- Lucky case:
- Round 1: $\sim n$ items compared w/ pivot (n)
- Round 2: $2 \times \sim n/2$ items compared w/pivot (n)
- Round 3: $4 \times \sim n/4$ items compared w/pivot (n)
- ...

- So $n \times (\# \text{ of bits in } n) = n \log n \text{ comparisons}$
- $O(n \log n)$

Running time of quicksort (worst case)

- Worst case
- Round 1: (n-1) items compared w/pivot
- Round 2: (n-2) items compared w/pivot
- Round 3: (n-3) items compared w/pivot
- ...
- This time we need n-1 rounds!
- Running time =
- \bullet 1 + 2 + ... + (n-1) = n(n-1)/2
- $O(n^2)$

Usually we are lucky

- When quicksort input random →mostly lucky
- "Average" running time quicksort is $O(n \log n)$
- This is also the optimal sorting algorithm

- Unlucky case: sorted input (or reverse sorted or partially sorted)
- We can address by choosing pivot randomly

Next lecture

Arrays and lists