理论力学复习

胡喜平

2019年12月31日

1 达朗贝尔原理

对于稳定的系统,有

$$\sum_{\alpha} \mathbf{F}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = 0 \tag{1}$$

将 \mathbf{F}_{α} 分解为外力 \mathbf{F}_{α}^{e} 和内力 (约束力) \mathbf{f}_{α} , 其中

$$\sum_{\alpha} \mathbf{f}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = 0 \tag{2}$$

因此有

$$\sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \delta \mathbf{r}_{\alpha} = 0 \tag{3}$$

当问题不是静力学问题的时候,我们添加一个惯性力使之化为静力学问题,由于 $\mathbf{F}_{\alpha}-\dot{\mathbf{p}}_{\alpha}=0$

$$\sum_{\alpha} (\mathbf{F}_{\alpha}^{e} - \dot{\mathbf{p}}_{\alpha}) \cdot \delta \mathbf{r}_{\alpha} = 0 \tag{4}$$

这就是达朗贝尔准则

2 拉格朗日方程

2.1 广义坐标

位置 \mathbf{r}_{α} 可以由坐标 q_j 表示

$$\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha} \left(q_{j}, t \right) \tag{5}$$

对它求导

$$\dot{\mathbf{r}}_{\alpha} = \frac{\mathrm{d}\mathbf{r}_{\alpha}}{\mathrm{d}t} = \sum_{j} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \mathbf{r}_{\alpha}}{\partial t}$$
(6)

进而得到

$$\delta \mathbf{r}_{\alpha} = \sum_{j} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j} \tag{7}$$

2.2 拉格朗日方程的推导

又方程 4可以得到

$$\sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} \tag{8}$$

对左边进行展开,代入7

$$\sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \sum_{j} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j} = \sum_{j} \sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j}$$
(9)

定义广义力 Q_j

$$\sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} = Q_{j} \tag{10}$$

则式 8左边可以化为

$$\sum_{\alpha} \mathbf{F}_{\alpha}^{e} \cdot \delta \mathbf{r}_{\alpha} = \sum_{j} Q_{j} \delta q_{j} \tag{11}$$

下面我们对右边进行展开,同样,代入7

$$\sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \sum_{j} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j} = \sum_{\alpha} m_{\alpha} \ddot{\mathbf{r}}_{\alpha} \cdot \sum_{j} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j} = \sum_{\alpha} \sum_{j} m_{\alpha} \ddot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \delta q_{j}$$
(12)

运用复合函数求导法则

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \right) = m_{\alpha} \ddot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} + m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \right)$$
(13)

即

$$m_{\alpha}\ddot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha}\dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} \right) - m_{\alpha}\dot{\mathbf{r}}_{\alpha} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} \right)$$
(14)

把 14代入 12, 得到

$$\sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \right) - m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \right) \right] \delta q_{j}$$
(15)

因为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} \right) = \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_{i}} \tag{16}$$

我们得到

$$\sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \right) - m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_{j}} \right] \delta q_{j}$$
(17)

对 6求偏导

$$\frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial \dot{q}_{j}} = \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{j}} \tag{18}$$

带入 17

$$\sum_{\alpha} \dot{\mathbf{p}}_{\alpha} \cdot \delta \mathbf{r}_{\alpha} = \sum_{\alpha} \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial \dot{q}_{j}} \right) - m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_{j}} \right] \delta q_{j}$$
(19)

将 11和 19代入 8

$$\sum_{\alpha} \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial \dot{q}_{j}} \right) - m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_{j}} \right] \delta q_{j} = \sum_{j} Q_{j} \delta q_{j}$$
(20)

定义动能 $T = \sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\mathbf{r}}_{\alpha}^2$

$$\partial T = \partial \left(\sum_{\alpha} \frac{1}{2} m_{\alpha} \dot{\mathbf{r}}_{\alpha}^{2} \right) = \sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \partial \dot{\mathbf{r}}_{\alpha}$$
 (21)

将 21代入 20

$$\sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] \delta q_{j} = \sum_{j} Q_{j} \delta q_{j} \tag{22}$$

因此

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_j \tag{23}$$

即

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \left(\frac{\partial T}{\partial q_j} + Q_j \right) = 0 \tag{24}$$

当 Q_j 是保守力, 势能为 U 时

$$-\frac{\partial U}{\partial q_j} = Q_j \tag{25}$$

$$\frac{\partial U}{\partial \dot{q}_i} = 0 \tag{26}$$

方程 24可以化为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial (T - U)}{\partial \dot{q}_j} \right) - \frac{\partial (T - U)}{\partial q_j} = 0 \tag{27}$$

定义 L = T - U, 则

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0 \tag{28}$$