- **30** Suppose you know that for integers a and n with gcd(a, n) = 1, there are infinitely many primes p that are congruent to a modulo n. Conclude that every finite abelian group occurs as a Galois group over the rational numbers.
- **Solution** Let $n \geq 1$. We will first show that if ζ_n is a primitive n-th root of unity, then $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$. ζ_n generates the other primitive n-th roots of unity, which are the roots of the n-th cyclotomic polynomial, and these are all ζ_n^r such that $\gcd(r,n)=1$. But these r are precisely the elements of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, by definition. Given an element $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, its action is completely determined by its action on ζ_n , which is $\sigma(\zeta_n) = \zeta_n^r$, for some r. Thus $\sigma \mapsto r$ is an isomorphism $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$: it is certainly injective

$$\varphi(n) = |\{r \mid 0 \le d < n, \gcd(d, n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$$

because if $\sigma(\zeta_n) = \tau(\zeta_n)$, then their actions are identical. On the other hand, it is surjective as there are

roots of unity, which means that $\varphi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = |\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})|$, and this proves the claim. Now let G be a finite abelian group. By the structure theorem,

$$G \simeq \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_m\mathbb{Z},$$

with $n_1 \mid n_2 \mid \cdots \mid n_m$. By Dirichlet's theorem, there are distinct primes p_1, \ldots, p_m so that $p_k = 1 \mod n_k$. If ζ_{p_k} is a primitive p_k -th root of unity, then consider the field extension $\mathbb{Q}(\zeta_{p_k})/\mathbb{Q}$. By the first claim,

$$\operatorname{Gal}(\mathbb{Q}(\zeta_{p_k})/\mathbb{Q}) \simeq (\mathbb{Z}/p_k\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p_k-1)\mathbb{Z}.$$

Since $n_k \mid p_k - 1$ by construction, it follows that $\mathbb{Z}/n_k\mathbb{Z} \leq \mathbb{Z}/(p_k - 1)\mathbb{Z} \simeq (\mathbb{Z}/p_k\mathbb{Z})^{\times}$. By the Chinese remainder theorem, if $\mathbb{Q}(\zeta_n)$ is a primitive *n*-th root of unity, then

 $\simeq G$.

$$Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$$

$$\simeq (\mathbb{Z}/p_1\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_m\mathbb{Z})^{\times}$$

$$\simeq \mathbb{Z}/(p_1 - 1)\mathbb{Z} \times \cdots \times \mathbb{Z}/(p_m - 1)\mathbb{Z}$$

$$\geq \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_m\mathbb{Z}$$

Thus, G is a subgroup of a Galois group, and so it is the Galois group of a subfield of $\mathbb{Q}(\zeta_n)/\mathbb{Q}$, by the Galois correspondence theorem.

31 Let $K = \mathbb{Q}(r)$ with r a root of $t^3 + t^2 - 2t - 1 \in \mathbb{Q}[t]$. Let $r_1 = r^2 - 2$. Show that r_1 is also a root of this polynomial. Find $Gal(K/\mathbb{Q})$ and show that K/\mathbb{Q} is normal.

Solution Notice that by direct calculation,

$$r_1^3 + r_1^2 - 2r_1 - 1 = r^6 - 5r^4 + 6r^2 - 1$$

= $(r^3 - r^2 - 2r + 1)(r^3 + r^2 - 2r - 1) = 0$,

as required.

Notice also that

$$r_1^2 - 2 = r^4 - 4r^2 + 2 = -r^3 - 2r^2 + r + 2 = -r^2 - r + 1 := r_2$$

and

$$r_2^2 - 2 = r^4 + 2r^3 - r^2 - 2r - 1 = r^3 + r^2 - r - 1 = r.$$

Thus, the three distinct roots of the polynomial f are given by r, $r^2 - 2$, and $(r^2 - 2)^2 - 2 = -r^2 - r + 1$, so all the roots are of f are in K, so K is the splitting field of f, and hence K/\mathbb{Q} is normal.

By the rational root theorem, the only possible rational roots of f are 1 and -1, but neither of them are roots, so f is irreducible over \mathbb{Q} , since f would have to factor into a quadratic and a linear term. Thus, f is the minimal polynomial of r, so $3 = [K : \mathbb{Q}] = |\operatorname{Gal}(K/\mathbb{Q})|$. Thus, $\operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{Z}/3\mathbb{Z}$, by Cauchy's theorem.

- **32** Let K be a splitting field of $t^5 2 \in \mathbb{Q}[t]$.
 - a. Find $Gal(K/\mathbb{Q})$.
 - b. Show that there exists a group monomorphism $Gal(K/\mathbb{Q}) \longrightarrow S_5$.
 - c. Find all subgroups of $Gal(K/\mathbb{Q})$ and the corresponding fields.
- **Solution** a. The splitting field of t^5-2 is $\mathbb{Q}(\alpha,\zeta)$, where $\alpha=\sqrt[5]{2}$ and $\zeta=e^{2\pi i/5}$, since the roots of t^5-2 are $\alpha,\zeta\alpha,\ldots,\zeta^4\alpha$. The minimal polynomial of α is t^5-2 , which is irreducible by Eisenstein, so $[\mathbb{Q}(\alpha):\mathbb{Q}]=5$. On the other hand, the minimal polynomial of ζ over \mathbb{Q} is $(t^5-1)/(t-1)$. Replacing t with t+1, we get

$$\frac{(t+1)^5 - 1}{t} = t^4 + 5t^3 + 10t^2 + 10t + 5,$$

which is irreducible by Eisenstein with p=5. The polynomial has degree 4, so $[\mathbb{Q}(\zeta):\mathbb{Q}]=4$.

Since gcd(4,5) = 1, by Problem 2, $[\mathbb{Q}(\alpha,\zeta):\mathbb{Q}] = 4 \cdot 5 = 20$. Since $t^5 - 2$ has no multiple roots, $|Gal(\mathbb{Q}(\alpha,\zeta))/\mathbb{Q}| = 20$.

Let

$$\sigma \colon \left\{ \begin{array}{ccc} \alpha & \mapsto & \zeta \alpha \\ \zeta & \mapsto & \zeta \end{array} \right. \quad \text{and} \quad \tau \colon \left\{ \begin{array}{ccc} \alpha & \mapsto & \alpha \\ \zeta & \mapsto & \zeta^2. \end{array} \right.$$

Then $\sigma, \tau \in \text{Gal}(K/\mathbb{Q})$. Notice that the order of σ is 5, since $\sigma^5(\alpha) = \zeta^5 \alpha = \alpha$, and the order of τ is 4, since $\tau^2(\zeta) = \zeta^4$, $\tau^3(\zeta) = \zeta^8 = \zeta^3$, and $\tau^4(\zeta) = \zeta^{16} = \zeta$.

We have that $\langle \sigma \rangle \cap \langle \tau \rangle = \{e\}$, since τ always fixes α and σ always fixes ζ . Thus, $|\langle \sigma \rangle \cap \langle \tau \rangle| = 1$ and so

$$|\langle \sigma, \tau \rangle| = |\langle \sigma \rangle| |\langle \tau \rangle| / |\langle \sigma \rangle \cap \langle \tau \rangle| = 20 = |\operatorname{Gal}(\mathbb{Q}(\alpha, \zeta)/\mathbb{Q})|,$$

which means that $Gal(\mathbb{Q}(\alpha,\zeta)/\mathbb{Q}) = \langle \sigma,\tau \rangle$.

b. Define $\varphi \colon \operatorname{Gal}(K/\mathbb{Q}) \to S_5$ via $\sigma \mapsto \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ and $\tau \mapsto \begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$, which are simply the representations of their action on α .

Notice that $\tau \sigma = \sigma^2 \tau$, so to calculate the kernel of φ , we just need to look at what happens to $\sigma^a \tau^b$ when $0 \le a < 5$ and $0 \le b < 4$.

Now, suppose $\varphi(\sigma^a \tau^b) = \text{id}$. 0 is only affected by σ^a , an in order to fix 0, we need a = 0, so we are left with $\varphi(\tau^b) = \text{id}$. Similarly, we need b = 0 in order to fix 1, so $\sigma^a \tau^b = e$, which means that φ is a group monomorphism.

c. There are 12 subgroups, and hence 12 subfields. These subgroups are: $\langle \tau^2 \rangle$, $\langle \sigma \tau^2 \rangle$, $\langle \sigma^2 \tau^2 \rangle$, $\langle \sigma^3 \tau^2 \rangle$, $\langle \sigma^4 \tau^2 \rangle$, $\langle \tau \rangle$, $\langle \tau$

We just need to look for an element of order 2, which will be of the form $\sigma^a \tau^b$. Only τ operates on ζ , so to fix ζ , we need $2b=4 \implies b=2$. Then we check the remaining through brute force:

$$(\tau^2)^2 = \tau^4 = \mathrm{id}$$

$$(\sigma\tau^2)^2 = \sigma\tau^2\sigma\tau^2 = \sigma\tau\sigma^2\tau^3 = \sigma^3\tau\sigma\tau^3 = \sigma^5\tau^4 = \mathrm{id}$$
 :

34 Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, u)$, where $u^2 = (9 - 5\sqrt{3})(2 - \sqrt{2})$. Show that K/\mathbb{Q} is normal and find $Gal(K/\mathbb{Q})$.

Solution We first show that $u \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})$ be the automorphism which sends $\sqrt{2} \mapsto -\sqrt{2}$. Then

$$\frac{\sigma(u^2)}{u^2} = \frac{2 + \sqrt{2}}{2 - \sqrt{2}} = \frac{(2 + \sqrt{2})^2}{2}$$

Thus, if $u \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, then $\sigma(u) = \pm u(2 + \sqrt{2})/\sqrt{2}$. But then

$$\sigma^{2}(u) = \mp \sigma(u) \frac{2 - \sqrt{2}}{\sqrt{2}} = -u \frac{(2 + \sqrt{2})(2 - \sqrt{2})}{2} = -u,$$

but σ had order 2 in $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$. Thus, $u \notin \mathbb{Q}(\sqrt{2},\sqrt{3})$. This also shows that $[K:\mathbb{Q}(\sqrt{2},\sqrt{3})]=2$, since t^2-u^2 is the minimal polynomial of u.

Consider the polynomial

$$f(t) = (t^2 - (9 - 5\sqrt{3})(2 - \sqrt{2}))(t^2 - (9 - 5\sqrt{3})(2 + \sqrt{2}))(t^2 - (9 + 5\sqrt{3})(2 - \sqrt{2}))(t^2 - (9 + 5\sqrt{3})(2 + \sqrt{2})).$$

By WolframAlpha,

$$f(t) = t^8 - 72^6 + 720t^4 - 864t^2 + 144,$$

and f(u) = 0, by definition of u.

Let L be its splitting field over F. We claim that L = K.

By some algebra,

$$(9 - 5\sqrt{3})(2 - \sqrt{2}) = 18 - 9\sqrt{2} - 10\sqrt{3} + 5\sqrt{6}$$
(1)

$$(9+5\sqrt{3})(2-\sqrt{2}) = 18-9\sqrt{2}+10\sqrt{3}-5\sqrt{6}$$
 (2)

$$(9+5\sqrt{3})(2+\sqrt{2}) = 18+9\sqrt{2}-10\sqrt{3}-5\sqrt{6}$$
(3)

Then $(1) + (2) = 36 - 18\sqrt{2}$ and $(1) + (3) = 36 - 20\sqrt{3}$, and $u \in L$ by definition, so $L \ge K$.

Next, notice that by a previous problem $\left[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}\right]=4$. Also, $m_{\mathbb{Q}(\sqrt{2},\sqrt{3})}(u)=t^2-(9-5\sqrt{3})(2-\sqrt{2})$; it is irreducible since $u\notin\mathbb{Q}(\sqrt{2},\sqrt{3})$. Thus, $\left[K:\mathbb{Q}(\sqrt{2},\sqrt{3})\right]=2$, and so

$$[K:\mathbb{Q}] = \left[K:\mathbb{Q}(\sqrt{2},\sqrt{3})\right] \left[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}\right] = 2\cdot 4 = 8.$$

On the other hand, f is irreducible, L/\mathbb{Q} has degree 8 and so L=K. Since L was a splitting field, it is normal.

Consider the automorphisms $\sigma \colon \sqrt{2} \mapsto -\sqrt{2}$ and $\tau \colon \sqrt{3} \mapsto -\sqrt{3}$. We claim that $\operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{H}$, the quaternions.

From the first calculation, we see that

$$\sigma^4(u) = (-u)^2 = u,$$

so σ has order 4. Similarly,

$$\frac{\tau(u^2)}{u^2} = \frac{9 + 5\sqrt{3}}{9 - 5\sqrt{3}} = \frac{(9 + 5\sqrt{3})^2}{6} \implies \tau(u) = \pm u \frac{9 + 5\sqrt{3}}{\sqrt{2}\sqrt{3}} \implies \tau^2(u) = -u.$$

Thus, $\sigma^2 = \tau^2 = v$ and σ and τ have order 4, so $\operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{H}$.

35 Let $F \subseteq E \subseteq K$. If K/E and E/F are both normal, is K/F normal? Prove or give a counterexample.

Solution Consider the tower:

$$\begin{array}{c}
\mathbb{Q}(\sqrt[4]{2}) \\
|2 \\
\mathbb{Q}(\sqrt{2}) \\
|2 \\
\mathbb{Q}
\end{array}$$

 $\mathbb{Q}(\sqrt{2})$ is the splitting field of x^2-2 over \mathbb{Q} , so it is a normal extension of \mathbb{Q} of degree 2, since x^2-2 is irreducible by Eisenstein. Similarly, $\mathbb{Q}(\sqrt[4]{2})$ is the splitting field of $x^2-\sqrt{2}$, so it is a normal extension of $\mathbb{Q}(\sqrt{2})$. $\{1,\sqrt[4]{2}\}$ is a basis for this extension. It is certainly linearly independent, since $\sqrt[4]{2}$ is not a power of $\sqrt{2}$, and they span by definition. Thus, this extension has degree 2 also. Thus,

$$\left[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}\right] = \left[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt[4]{2})\right]\left[\mathbb{Q}(\sqrt{2}):\mathbb{Q}\right] = 4$$

Thus, $\sqrt[4]{2}$ is a root of $x^4 - 2$ which lies in $\mathbb{Q}(\sqrt[4]{2})$. But by Problem 10(c), a splitting field of this polynomial has degree 8, which means that $x^4 - 2$ cannot split in $\mathbb{Q}(\sqrt[4]{2})$, so the extension is not normal over \mathbb{Q} .

37 Suppose that K/F is Galois with Galois group $Gal(K/F) \simeq S_n$. Show that K is the splitting field of an irreducible polynomial in F[t] of degree n over F.

Solution Let $S_{n-1} \simeq G_i \leq S_n$ be the subgroup of S_n which fixes i. By the Galois correspondence theorem, G_i fixes a subfield $F_i \leq K$. Moreover, we have that $[F_i : F] = [\operatorname{Gal}(K/F) : \operatorname{Gal}(K/F_i)] = [S_n : S_{n-1}] = n$.

Because K/F is separable, F_i/F is separable also, so by the primitive element theorem, there exists $\alpha_1 \in F_1$ so that $F_1 = F(\alpha_1)$. Now let Then the stabilizer of α_i is precisely G_i : It's clear that $\operatorname{stab}(\alpha_i) \supseteq G_i$, since G_i fixes $F_i \ni \alpha_i$. Conversely, if $\sigma \in S_n$ fixes α_i , then σ fixes F_i , and so $\sigma \in G_i$, by the Galois correspondence theorem

Now, consider $F(\alpha_1, \ldots, \alpha_n)$, which is a subfield of K. By the Galois correspondence theorem again, $F(\alpha_1, \ldots, \alpha_n)$ corresponds to a subgroup G of S_n . G must fix $\alpha_1, \ldots, \alpha_n$, so

$$G \subseteq \bigcap_{i=1}^{n} \operatorname{stab}(\alpha_i) = \bigcap_{i=1}^{n} G_i = \{e\},$$

since the only permutation which fixes every element in S_n is the identity. Thus, G fixes every element in K, which means that $K = F(\alpha_1, \ldots, \alpha_n)$.

Lastly, note that $m_F(\alpha_1)$ has degree n since $[F_i:F]=n$. If $\sigma:\alpha_1\mapsto\alpha_i$, then

$$\sigma(m_E(\alpha_1)(\alpha_1)) = m_E(\alpha_1)(\alpha_i) = 0.$$

which means that the *n* roots of $m_F(\alpha_1)$ are precisely $\alpha_1, \ldots, \alpha_n$. Thus, *K* is precisely the splitting field of $m_F(\alpha_1)$, which is irreducible by definition, and has degree *n*.

38 Let K be a splitting field of $f \in \mathbb{Q}[t]$. Find K, Gal(K/F) and all intermediate fields if:

a.
$$f = t^4 - t^2 - 6$$
.

b.
$$f = t^3 - 3$$
.

Solution a. We can factor the polynomial as $(t^2-3)(t^2+2)$. Thus, $K=\mathbb{Q}(\sqrt{3},i\sqrt{2})$. t^2-3 is irreducible over \mathbb{Q} by Eisenstein, so it is the minimal polynomial of $\sqrt{3}$ and hence $\left[\mathbb{Q}(\sqrt{3}):\mathbb{Q}\right]=2$. t^2+2 is still irreducible over $\mathbb{Q}(\sqrt{3})$, since $i\sqrt{2}\in\mathbb{C}$, so $\left[\mathbb{Q}(\sqrt{3},i\sqrt{2}):\mathbb{Q}(\sqrt{3})\right]=2$. Thus, [K:F]=4, and because f has no repeated roots, $|\mathrm{Gal}(K/F)|=4$.

If $\sigma: i\sqrt{2} \mapsto -i\sqrt{2}$ and $\tau: \sqrt{3} \mapsto -\sqrt{3}$, then $Gal(K/F) = \{id, \sigma, \tau, \sigma\tau\}$.

The subgroups of Gal(K/F) are $\{id, \sigma\}$, $\{id, \tau\}$, $\{id, \sigma\tau\}$. These correspond to the subfields $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(i\sqrt{2})$, and $\mathbb{Q}(i\sqrt{6})$, respectively.

b. By Eisenstein with $p=3,\,f$ is irreducible. If $\zeta=e^{2\pi i/3},$ then

$$\zeta = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 and $\zeta^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$,

so the splitting field of f is $K = \mathbb{Q}(\sqrt[3]{3}, i\sqrt{3})$. We also have that $\left[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}\right] = 3$, since the minimal polynomial of $\sqrt[3]{3}$ is f. The minimal polynomial of $i\sqrt{3}$ is $t^2 + 3$, which is also irreducible by Eisenstein, so $\left[\mathbb{Q}(i\sqrt{3}) : \mathbb{Q}\right] = 2$. Since 3 and 2 are coprime, by Problem 2, $[K : F] = 3 \cdot 2 = 6$. f has no repeated roots, so $[K : F] = |\operatorname{Gal}(K/F)| = 6$.

Let $\sigma: \sqrt[3]{3} \mapsto \zeta\sqrt[3]{3}$ and $\tau: \zeta \mapsto \zeta^2$. Then the order of σ is 3 and the order of τ is 2, since $\sigma^3(\sqrt[3]{3}) = \zeta^3\sqrt[3]{3} = \sqrt[3]{3}$, and $\tau^2(\zeta) = \zeta^4 = \zeta$. Thus, $Gal(K/F) = \{id, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\} \simeq S_3$.

Subgroups of order 2:

Here, the subgroups are $\{id, \tau\}$, $\{id, \sigma\tau\}$, and $\{id, \sigma^2\tau\}$, by a simple check. These correspond to $\mathbb{Q}(\sqrt[3]{3})$, $\mathbb{Q}(\zeta\sqrt[3]{3})$, $\mathbb{Q}(\zeta^2\sqrt[3]{3})$, respectively.

Subgroups of order 3:

This is just $\{id, \sigma, \sigma^2\}$, which corresponds to $\mathbb{Q}(\zeta)$.

There are no subgroups of order 4 or 5, since they don't divide 6, so these are all the non-trivial subfields.

39 Suppose that L/F is a finite Galois extension and L/K/F an intermediate field. Show that $Gal(K/F) = N_{Gal(L/F)}(Gal(L/K))/Gal(L/K)$, where $N_{Gal(L/F)}(Gal(L/K))$ is the normalizer of Gal(L/K) in Gal(L/K).

Solution Define $\varphi \colon N_{\operatorname{Gal}(L/F)}(\operatorname{Gal}(L/K)) \to \operatorname{Gal}(K/F)$ as follows: $\sigma \mapsto \sigma|_K$.

This is well-defined: If σ fixes K, then $\sigma|_{K}$ certainly fixes F. Also, its kernel is

$$\ker \varphi = \{ \sigma \mid \sigma|_K = \mathrm{id} \} = \mathrm{Gal}\, L/K.$$

Thus, if we can show that φ is onto, then we are done, by the first isomorphism theorem.

Let $\sigma \in \operatorname{Gal}(K/F)$. Because L/K/F is finite, there exists $\alpha \in L$ so that $L = K(\alpha)$. If we write $x = a + b\alpha$ for $a, b \in K$, then set $\tau(x) = a + \sigma(b)\alpha$. This clearly defines a homomorphism on L which fixes K. Moreover, if $v \in \operatorname{Gal}(L/K)$, then $\tau v \tau^{-1}$ fixes $\tau(K) = K$, and so $\tau v \tau^{-1} \in \operatorname{Gal}(L/K)$ also. Thus, $\tau \in N_{\operatorname{Gal}(L/F)}(\operatorname{Gal}(L/K))$, and $\varphi(\tau) = \sigma$, by construction. Hence, φ is onto, as desired.

40 Suppose that K/F is Galois. Let $F \subseteq k \subseteq K$ and L be the smallest subfield of K containing k such that L/F is normal. Show that

$$\operatorname{Gal}(K/L) = \bigcap_{\sigma \in \operatorname{Gal}(K/F)} \sigma \operatorname{Gal}(K/k) \sigma^{-1}.$$

Solution Since L/F is normal, Gal(L/F) is a normal subgroup of Gal(K/F) by the Galois correspondence theorem. Since L is the smallest field of K containing k, Gal(L/F) is the largest subgroup containing Gal(K/k) as a normal subgroup, so Gal(L/F) is the normalizer of Gal(K/k) in Gal(K/F).

If we let G be the right-hand side, then

$$\begin{split} G &= \left\{ \tau \in \operatorname{Gal}(K/F) \mid \sigma \tau \sigma^{-1} \in \operatorname{Gal}(K/F) \right\} \cap \bigcap_{\sigma \in \operatorname{Gal}(K/F) \setminus \{\operatorname{id}\}} \left\{ \tau \in \operatorname{Gal}(K/F) \mid \sigma \tau \sigma^{-1} \in G \right\} \\ &= \left\{ \tau \in \operatorname{Gal}(K/F) \mid \sigma \tau \sigma^{-1} \in \operatorname{Gal}(K/F) \; \forall \sigma \in \operatorname{Gal}(K/F) \right\} \\ &= N_{\operatorname{Gal}(K/F)}(\operatorname{Gal}(K/k)) \\ &= \operatorname{Gal}(K/L). \end{split}$$

- **41** Suppose that K/F is Galois and $p^r \mid [K:F]$, but $p^{r+1} \nmid [K:F]$. Show that there exist fields L_i , $1 \le i \le r$, satisfying $F \subseteq L_r < L_{r-1} < \cdots < L_1 < L_0 = K$ such that L_i/L_{i+1} is normal, $[L_i:L_{i+1}] = p$, and $p \nmid [L_r:F]$.
- Solution Since K/F is Galois, $p^r \mid [K:F] = |\operatorname{Gal}(K/F)|$, so by repeated use of Cauchy's theorem, we get normal subgroups $\operatorname{Gal}(K/F) = G_0 > G_1 > \cdots > G_r = \{e\}$ with $|G_i| = p^{r-i}$. By the Galois correspondence theorem, these all correspond to subfields $F = L_r < \cdots < L_1 < L_0 = K$ with $\operatorname{Gal}(L_i/F) \simeq G_i$ and we also get

$$p = |G_i/G_{i+1}| = |Gal(K/L_{i+1})/Gal(K/L_i)| = [L_i : L_{i+1}].$$

p does not divide $[L_r: F] = |Gal(L_r/F)| = |G_0| = 1$, by construction.

From group theory, p-subgroups of p-groups are normal, so $G_{i+1} \triangleleft G_i$ and hence by the fundamental theorem of Galois theorem, L_i/L_{i+1} is normal.

48 Let f be an irreducible quartic over a field K of characteristic zero, G the Galois group of f, and u a root of f. Show that there is no field properly between K and K(u) if and only if $G = A_4$ or $G = S_4$.

Solution " $\Leftarrow=$ "

Let
$$G = A_4$$
 or $G = S_4$.

Since f is irreducible, [K(u):K]=4. Thus, any field L with K < L < K(u) must satisfy [L:K]=2, by the dimension formula. Also, L(u)=K(u): " \subseteq " comes from L < K, and " \supseteq " is clear.

By Galois correspondence, L/K is associated to a subgroup H of G, and G = [L:K] = [G:H]. If $G = A_4$, then H = G, but A_4 does not have a subgroup of order G. On the other hand, if $G = S_4$, then $H = A_4$. Now consider K(u)/L, which has a subgroup H_1 of index G in G index G in G the same argument as the above. But this means that $H_1 \leq H = A_4$ and $H_1 = G$, which is impossible as before.

$$"\Longrightarrow"$$

Since f is irreducible, $G \leq S_4$ is a transitive group, and recall that the transitive subgroups of S_4 are S_4 , A_4 , D_4 , $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Suppose $G \neq A_4$ and $G \neq S_4$. Since f is irreducible, [K(u):K]=4, so $|G| \geq 4$ and so $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, or D_4 . Moreover, by the Galois correspondence theorem, K(u)/K is associated with a subgroup H of order 4.

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z}$ have order 4, which means that K(u) would be the splitting field of f. But these both have $\mathbb{Z}/2\mathbb{Z}$ as a subgroup, which gives an intermediate field, which is impossible.

On the other hand, if $G = D_4$, then $H = \mathbb{Z}/4\mathbb{Z}$, which is impossible as before.

50 Let K/F be a finite extension. Suppose that F has no nontrivial extensions of odd degree and K has no extensions of degree two. Show that F is perfect and K is algebraically closed.

Solution Since F has no non-trivial extensions of odd degree, any extension of F must have degree a power of 2. Indeed, if L is an extension which is not a power of 2, then $\operatorname{Gal}(L/F)$ has a Sylow-2 subgroup P, which has odd index. Then by the Galois correspondence theorem, $[K^P:F] = [\operatorname{Gal}(L)F:P]$ which is odd; a contradiction.

In particular, $[K:F]=2^n$ for some $n \geq 1$.

Suppose K is not algebraically closed, so that there exists a polynomial $f \in K[t]$ with no roots in K, and consider its splitting field L, which is Galois. L is a non-trivial extension of F, so $[L:F]=2^m$ for some $m \ge 1$. If L is a non-trivial extension of K, then $2 \mid [L:K] = |\operatorname{Gal}(L/F)|$, which means that K would have an extension of 2, by combining Cauchy's theorem and the fundamental theorem of Galois theory. Thus, L = K, which means that f split in K, a contradiction.