Contents

1	Mo	difying the Martingale Convergence Theorem	2
	1.1	Definitions and Assumptions	2
	1.2	Generalized Upcrossing Theorem	4
	1.3	The missing bound	20

Chapter 1

Modifying the Martingale Convergence Theorem

1.1 Definitions and Assumptions

We're considering the estimator

$$S_n = \sum_{1 \le i < j \le n} \phi(Z_{i:n}, Z_{j:n}) W_{i:n} W_{j:n}$$

where

$$W_{i:n} = \frac{q(Z_{i:n})}{n-i+1} \prod_{k=1}^{i-1} \left[1 - \frac{q(Z_{k:n})}{n-k+1} \right]$$

Define $\mathcal{F}_n := \sigma\{Z_{1:n}, \ldots, Z_{n:n}, Z_{n+1}, Z_{n+2}, \ldots\}$. Furthermore we will need the following definitions in order to get into a framework that is more similar to that of (forward) sub-martingales. Define

$$\tilde{S}_{n}^{N} := S_{N-n+1}, \, \mathcal{F}_{n}^{N} := \mathcal{F}_{N-n+1}$$

Let $U_n[a,b]$ denote the number of upcrossings of $\tilde{S}_1^N,\ldots,\tilde{S}_n^N$ and define

$$Y_n^N := \tilde{S}_1^N + \sum_{i=1}^{n-1} \epsilon_i (\tilde{S}_{i+1}^N - \tilde{S}_i^N)$$

with

$$\epsilon_i := \begin{cases} 1 & (\tilde{S}_1^N, \dots, \tilde{S}_i^N) \in B \\ 0 & \text{o.w.} \end{cases}$$

for some Borel set $B \in \mathcal{B}(\mathbb{R}^i)$. We can show that

$$(b-a)\mathbb{E}[U_n[a,b]] \leq \mathbb{E}[Y_n^N] \leq \mathbb{E}[\tilde{S}_n^N] - \sum_{k=1}^{n-1} \mathbb{E}[(1-\epsilon_k)\mathbb{E}[\tilde{S}_{k+1}^N - \tilde{S}_k^N | \mathcal{F}_k^N]]$$

We need to show

$$\lim_{N \to \infty} (b - a) \mathbb{E}[U_N[a, b]]$$

$$\leq \lim_{N \to \infty} \mathbb{E}[Y_N^N]$$

$$\leq \lim_{N \to \infty} \mathbb{E}[\tilde{S}_N^N] - \sum_{k=1}^{N-1} \mathbb{E}[(1 - \epsilon_k) \mathbb{E}[\tilde{S}_{k+1}^N - \tilde{S}_k^N | \mathcal{F}_k^N]]$$

$$\leq \lim_{N \to \infty} \mathbb{E}[\tilde{S}_N^N] - \sum_{k=1}^{N-1} \mathbb{E}[(1 - \epsilon_k) \mathbb{E}[\tilde{S}_{k+1}^N | \mathcal{F}_k^N] - \tilde{S}_k^N]$$

$$\leq \infty$$

So the main concern is to show that the sum of increases of \tilde{S}_k^N on the right hand side converges. We will need the following assumptions in order to prove the above:

(A1) $\sup_{n} \mathbb{E}[S_n] < \infty$

TODO The above assumption originates from the original Upcrossing Theorem. I have to refine the statement for our situation. I need to find conditions on ϕ and q (or m) s. t. the above is satisfied. This is pretty much the same problem as for (A4), which I am still investigating.

- (A2) There exists $c_1 \in \mathbb{R}^+$ s. t. $\sup_x (q \circ H^{-1})'(x) \leq c_1$.
- (A3) We have $q \circ H^{-1}(1) = 1$.
- (A4) There exists $c_3 \in \mathbb{R}^+$ s. t.

$$\sum_{1 \le i < j \le N-k+1} \mathbb{E} \left[\phi^2(Z_{i:N-k+1}, Z_{j:N-k+1}) W_{i:N-k+1}^2 W_{j:N-k+1}^2 \right]^{\frac{1}{2}} \le c_3$$

TODO This assumption is not final yet. I need to complete the proof of Lemma 1.6 (last section of this document) in order to formulate the assumption properly.

1.2 Generalized Upcrossing Theorem

Theorem 1.1. Assume that (A1) through (A4) hold. Then we have

$$\lim_{N \to \infty} (b - a) \mathbb{E}[U_N[a, b]]$$

$$\leq \lim_{N \to \infty} \mathbb{E}[Y_N^N]$$

$$\leq \lim_{N \to \infty} \mathbb{E}[\tilde{S}_N^N] - \sum_{k=1}^{N-1} \mathbb{E}[(1 - \epsilon_k) \mathbb{E}[\tilde{S}_{k+1}^N | \mathcal{F}_k^N] - \tilde{S}_k^N]$$

$$< \infty$$

We will first establish all necessary lemmas and then continue with the proof of Theorem 1.1 at the end of this section. The following lemma establishes a representation for the conditional expectation under the sum above, that is similar to Dikta (2000).

Lemma 1.2. Define

$$Q_{ij}^{n+1} := \begin{cases} Q_i^{n+1} & j \le n \\ Q_i^{n+1} - \frac{(n+1)\pi_i \pi_n (1 - q(Z_{n:n+1}))}{(n-i+1)(2 - q(Z_{n:n+1}))} & j = n+1 \end{cases}$$

with

$$Q_i^{n+1} := (n+1) \left\{ \sum_{r=1}^{i-1} \left[\frac{\pi_r}{n-r+2 - q(Z_{r:n+1})} \right]^2 + \frac{\pi_i \pi_{i+1}}{n-i+1} \right\}$$

and

$$\pi_i^{n+1} := \prod_{k=1}^{i-1} \left[\frac{n-k+1 - q(Z_{k:n+1})}{n-k+2 - q(Z_{k:n+1})} \right]$$

Then

$$\mathbb{E}[S_n|\mathcal{F}_{n+1}] = \sum_{1 \le i < j \le n+1} \phi(Z_{i:n+1}, Z_{j:n+1}) W_{i:n+1} W_{j:n+1} Q_{i,j}^{n+1}$$

Proof. This lemma has been proven in my thesis. We already checked the calculations. \Box

We will need the following result on the increases of the Q_i^{n+1} 's later in the proof of Theorem 1.1.

Lemma 1.3. Let Q_i^{n+1} be defined as above. Then

$$Q_{i+1}^{n+1} - Q_i^{n+1} = \frac{\tilde{\pi}_i^2 (n-i+2)^2}{n+1} \left\{ \frac{(q_i - q_{i+1})(n-i)(n-i+1) - q_{i+1}(1-q_i)(n-i+1-q_i)}{(n-i)(n-i+1)(n-i+2-q_i)^2 (n-i+1-q_{i+1})} \right\}$$

where $q_i := q(Z_{i:n+1})$ and

$$\tilde{\pi}_i := \pi_i \frac{n+1}{n-i+2}$$

Note that $\tilde{\pi}_i \leq 1$ for all $i \leq n+1$.

Proof. I proved this lemma in my thesis.

Lemma 1.4. Let (A2) be satisfied. Then the following statements hold true for $k \le n-1$

(i) We have

$$\mathbb{E}[|q(Z_{k:n}) - q(Z_{k+1:n})|] \le \frac{c_1}{n+1} \tag{1.1}$$

(ii) Furthermore assume that (A3) holds. Then

$$\mathbb{E}[1 - q(Z_{k:n})] \le \frac{c_1(n-k+1)}{n+1} \tag{1.2}$$

CHAPTER 1. MODIFYING THE MARTINGALE CONVERGENCE THEOREM6

Proof. Let $q_H := q \circ H^{-1}$ and consider that we can write

$$q(H^{-1}(x)) = q(H^{-1}(x_0)) + q'_H(\hat{x})(x - x_0)$$
(1.3)

using Taylor expansion for some \hat{x} in between x and x_0 . Therefore we have

$$q(H^{-1}(x)) - q(H^{-1}(x_0)) = q'_H(\hat{x})(x - x_0)$$

and hence

$$|q(H^{-1}(x)) - q(H^{-1}(x_0))| = |q'_H(\hat{x})| \cdot |x - x_0|$$
(1.4)

Now let U_1, \ldots, U_n be i.i.d. Uni[0,1] and set $x = U_{k:n}$ and $x_0 = U_{k+1:n}$. Consider the left hand side of the expression above. We have

$$\mathbb{E}[|q(H^{-1}(x)) - q(H^{-1}(x_0))|] = \mathbb{E}[|q(H^{-1}(U_{k:n})) - q(H^{-1}(U_{k+1:n}))|]$$
$$= \mathbb{E}[|q(Z_{k:n}) - q(Z_{k+1:n})|]$$

Thus we get from (1.4)

$$\mathbb{E}[|q(Z_{k:n}) - q(Z_{k+1:n})|] = \mathbb{E}[|q'(H^{-1}(\hat{x}))| \cdot |U_{k:n} - U_{k+1:n}|]$$
$$= \mathbb{E}[|q'(H^{-1}(\hat{x}))| \cdot (U_{k+1:n} - U_{k:n})]$$

where $\hat{x} \in [U_{k:n}, U_{k+1:n}]$. From assumption (A2) directly follows that

$$\left| q'(H^{-1}(x)) \right| \le c_1$$

for all $x \in [0, 1]$. Hence we have

$$\mathbb{E}[|q(Z_{k:n}) - q(Z_{k+1:n})|] = c_1 \mathbb{E}[U_{k+1:n} - U_{k:n}]$$

From Shorack and Wellner (2009) (p. 271), we get

$$\mathbb{E}[U_{k+1:n} - U_{k:n}] = \frac{1}{n+1} \tag{1.5}$$

Therefore we may conclude

$$\mathbb{E}[|q(Z_{k:n}) - q(Z_{k+1:n})|] \le c_1 \mathbb{E}[U_{k+1:n} - U_{k:n}]$$

$$= \frac{c_1}{n+1}$$
(1.6)

Thus proving part (i). We will now continue with the proof of part (ii). Consider

$$1 - q(Z_{k:n}) = 1 - q(Z_{n:n}) + \sum_{l=k}^{n-1} (q(Z_{l+1:n}) - q(Z_{l:n}))$$

$$\leq 1 - q(Z_{n:n}) + \sum_{l=k}^{n-1} |q(Z_{l+1:n}) - q(Z_{l:n})|$$

Taking expectations on each side yields

$$1 - \mathbb{E}[q(Z_{k:n})] \le 1 - \mathbb{E}[q(Z_{n:n})] + \sum_{l=k}^{n-1} \mathbb{E}[|q(Z_{l+1:n}) - q(Z_{l:n})|]$$

Now we apply inequality (1.6) to the expectation under the sum to get

$$1 - \mathbb{E}[q(Z_{k:n})] \le 1 - \mathbb{E}[q(Z_{n:n})] + \frac{c_1(n-k)}{n+1}$$
(1.7)

Recall the Taylor expansion from above

$$q(H^{-1}(x)) = q(H^{-1}(x_0)) + q'_H(\hat{x})(x - x_0)$$

Setting x = 1 and $x_0 = U_{n:n}$ and taking expectations on both sides yields

$$\mathbb{E}[q(H^{-1}(1))] = \mathbb{E}[q(Z_{n:n})] + \mathbb{E}[q'_H(\hat{x}_n)(1 - U_{n:n})]$$

Now we get from assumption (A2) that

$$\mathbb{E}[q(Z_{n:n})] = \mathbb{E}[q(H^{-1}(1))] - \mathbb{E}[q'_H(\hat{x}_n)(1 - U_{n:n})]$$

$$\geq \mathbb{E}[q(H^{-1}(1))] - c_1 \mathbb{E}[1 - U_{n:n}]$$

Using Shorack and Wellner (2009) again, we obtain

$$\mathbb{E}[q(Z_{n:n})] = \mathbb{E}[q(H^{-1}(1))] - \frac{c_1}{n+1}$$

TODO Should I prove $\mathbb{E}[1 - U_{n:n}] = \frac{1}{n+1}$? Applying (A3) yields

$$\mathbb{E}[q(Z_{n:n})] \ge 1 - \frac{c_1}{n+1}$$

By combining the above with (1.7) we get

$$1 - \mathbb{E}[q(Z_{k:n})] \le 1 - 1 + \frac{c_1}{n+1} + \frac{c_1(n-k)}{n+1} = \frac{c_1(n-k+1)}{n+1}$$

This concludes the proof of part (ii).

The following lemma contains some upper bounds that will be needed later in the proof of Theorem 1.1.

Lemma 1.5. For $n \geq 2$ the following statements hold true

(i)
$$\sum_{k=1}^{n-1} \frac{1}{k} \le \ln(n-1) + 1 \tag{1.8}$$

(ii)
$$\frac{\ln(n-1)+1}{(n+1)^{\frac{1}{3}}} \le 3 \tag{1.9}$$

Proof. We will start with the proof of part (i). Consider

$$\sum_{k=1}^{n-1} \frac{1}{k} \leq \ln(n-1) + 1$$

$$\Leftrightarrow \sum_{k=1}^{n-1} \frac{1}{k} - 1 \leq \ln(n-1)$$

$$\Leftrightarrow \sum_{k=2}^{n-1} \frac{1}{k} \leq \ln(n-1)$$

$$\Leftrightarrow \prod_{k=2}^{n-1} \exp\left(\frac{1}{k}\right) \leq n-1$$

$$(1.10)$$

Now we will continue by induction. For n = 2 inequality (1.10) is obviously satisfied, as the product is empty in this case. Now assume that (1.10) holds for any n, then it should hold for n + 1. It remains to show that

$$\prod_{k=2}^{n} \exp\left(\frac{1}{k}\right) \le n$$

Consider

$$\prod_{k=2}^{n} \exp\left(\frac{1}{k}\right) = \exp\left(\frac{1}{n}\right) \prod_{k=2}^{n-1} \exp\left(\frac{1}{k}\right)$$

$$\leq \exp\left(\frac{1}{n}\right) (n-1)$$

It is well known that for any x > 1

$$\exp(x) < \frac{1}{1-x}$$

and hence

$$\exp\left(\frac{1}{n}\right) < \frac{1}{1 - \frac{1}{n}} = \frac{n}{n - 1}$$

Thus we get

$$\prod_{k=2}^{n} \exp\left(\frac{1}{k}\right) < \frac{n}{n-1}(n-1) = n$$

This concludes the proof of part (i). We will continue with the proof of part (ii). Note that (1.9) is equivalent to showing

$$\ln(n-1) + 1 < 3(n+1)^{\frac{1}{3}}$$

Since $ln(n-1) \le ln(n+1)$ it remains to show

$$\ln(n+1) + 1 \le 3(n+1)^{\frac{1}{3}} \tag{1.11}$$

It is easy to check that inequality (1.11) holds for n=2. Now consider that

$$\frac{d}{dn}(\ln(n+1)+1) = \frac{1}{n+1}$$

and

$$\frac{d}{dn}3(n+1)^{\frac{1}{3}} = \frac{1}{(n+1)^{\frac{2}{3}}}$$

Now for $n \geq 2$ we have

$$\frac{\frac{1}{n+1}}{\frac{1}{(n+1)^{\frac{2}{3}}}} = \frac{(n+1)^{\frac{2}{3}}}{n+1} = \frac{1}{(n+1)^{\frac{1}{3}}} < 1$$

and hence

$$\frac{d}{dn}(\ln(n+1)+1) \le \frac{d}{dn}3(n+1)^{\frac{1}{3}} \tag{1.12}$$

for all $n \geq 2$. Now the result in (ii) follows directly from (1.11) and (1.12).

Now we established everything we need in order to proceed with the proof of The-

orem 1.1. Recall that we need to show

$$\lim_{N\to\infty} (b-a)\mathbb{E}[U_N[a,b]] < \infty$$

Proof of Theorem 1. Let (A1) through (A4) be satisfied. Recall the following inequality (proven in my thesis). We have for $n \leq N$

$$(b-a)\mathbb{E}[U_n[a,b]] \le \mathbb{E}[Y_n^N] \le \mathbb{E}[\tilde{S}_n^N] - \sum_{k=1}^{n-1} \mathbb{E}[(1-\epsilon_k)\mathbb{E}[\tilde{S}_{k+1}^N|\mathcal{F}_k^N] - \tilde{S}_k^N]$$

Now consider that we get the following from Lemma 1.2

$$\mathbb{E}[\tilde{S}_{k+1}^{N}|\tilde{\mathcal{F}}_{k}^{N}] = \mathbb{E}[S_{N-k}|\mathcal{F}_{N-k+1}]$$

$$= \sum_{1 \le i \le j \le N-k+1} \phi(Z_{i:N-k+1}, Z_{j:N-k+1}) W_{i:N-k+1} W_{j:N-k+1} Q_{i,j}^{N-k+1}$$

Therefore we have

$$\mathbb{E}[Y_{N}^{N}] \leq \mathbb{E}[\tilde{S}_{N}^{N}] - \sum_{k=1}^{N-1} \mathbb{E}[(1 - \epsilon_{k})\mathbb{E}[\tilde{S}_{k+1}^{N} | \mathcal{F}_{k}^{N}] - \tilde{S}_{k}^{N}]$$

$$= \mathbb{E}[\tilde{S}_{N}^{N}] - \sum_{k=1}^{N-1} \mathbb{E}\left[(1 - \epsilon_{k}) \sum_{1 \leq i < j \leq N-k+1} \phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \times W_{i:N-k+1}W_{j:N-k+1}(Q_{i,j}^{N-k+1} - 1)\right]$$

$$= \mathbb{E}[\tilde{S}_{N}^{N}] - \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[(1 - \epsilon_{k})\phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \times W_{i:N-k+1}W_{j:N-k+1}(Q_{i,j}^{N-k+1} - 1)\right]$$

$$\leq \mathbb{E}[\tilde{S}_{N}^{N}] + \left| \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[(1 - \epsilon_{k})\phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \times W_{i:N-k+1}W_{j:N-k+1}(Q_{i,j}^{N-k+1} - 1)\right] \right|$$

$$\times W_{i:N-k+1}W_{j:N-k+1}(Q_{i,j}^{N-k+1} - 1)\right]$$

$$\leq \mathbb{E}[\tilde{S}_{N}^{N}] + \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} |\mathbb{E}\left[(1-\epsilon_{k})\phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \times W_{i:N-k+1}W_{j:N-k+1}(Q_{i,j}^{N-k+1}-1)\right]|$$

Now using Jensen's inequality yields

$$\mathbb{E}[Y_N^N] \leq \mathbb{E}[\tilde{S}_N^N] + \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[(1 - \epsilon_k) \phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \right]$$

$$\times W_{i:N-k+1} W_{j:N-k+1} |(Q_{i,j}^{N-k+1} - 1)|$$

$$\leq \mathbb{E}[\tilde{S}_N^N] + \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[\phi(Z_{i:N-k+1}, Z_{j:N-k+1}) \right]$$

$$\times W_{i:N-k+1} W_{j:N-k+1} |(Q_{i,j}^{N-k+1} - 1)|$$

The latter inequality above holds, because $1 - \epsilon_k \le 1$ for all $k \le N - 1$. By applying the Cauchy-Schwarz inequality on the expectation above, we obtain

$$\mathbb{E}[Y_N^N] \le \mathbb{E}[\tilde{S}_N^N] + \sum_{k=1}^{N-1} \sum_{1 \le i < j \le N-k+1} \mathbb{E}\left[\phi^2(Z_{i:N-k+1}, Z_{j:N-k+1}) W_{i:N-k+1}^2 W_{j:N-k+1}^2\right]^{\frac{1}{2}} \times \mathbb{E}\left[(Q_{i,j}^{N-k+1} - 1)^2\right]^{\frac{1}{2}}$$

$$(1.13)$$

We will now proceed to find an upper bound for $\mathbb{E}\left[(Q_{i,j}^{N-k+1}-1)^2\right]^{\frac{1}{2}}$. For the purpose of simpler notation we set n:=n(k,N)=N-k. The inequality above can now be written as

$$\mathbb{E}[Y_N^N] \le \mathbb{E}[S_1] + \sum_{k=1}^{N-1} \sum_{1 \le i < j \le n+1} \mathbb{E}\left[\phi^2(Z_{i:n+1}, Z_{j:n+1}) W_{i:n+1}^2 W_{j:n+1}^2\right]^{\frac{1}{2}} \times \mathbb{E}\left[(Q_{i,j}^{n+1} - 1)^2\right]^{\frac{1}{2}}$$

Note k_1 and k_2 below do not correspond to k above in any way. Consider

$$Q_i^{n+1} - 1 = Q_1^{n+1} + \sum_{k_1=1}^{i-1} (Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}) - 1$$
(1.14)

and recall the following definition

$$Q_i^{n+1} := (n+1) \left\{ \sum_{r=1}^{i-1} \left[\frac{\pi_r}{n-r+2 - q(Z_{r:n+1})} \right]^2 + \frac{\pi_i \pi_{i+1}}{n-i+1} \right\}$$

where

$$\pi_i := \prod_{k=1}^{i-1} \left[\frac{n-k+1 - q(Z_{k:n+1})}{n-k+2 - q(Z_{k:n+1})} \right]$$

We have $\pi_1 = 1$, since the product above is empty for i = 1 and

$$\pi_2 = \frac{n - q(Z_{1:n+1})}{n + 1 - q(Z_{1:n+1})}$$

Thus we get

$$\begin{split} Q_1^{n+1} - 1 &= (n+1) \frac{\pi_1 \pi_2}{n} - 1 \\ &= \frac{(n+1)(n - q(Z_{1:n+1}))}{n(n+1 - q(Z_{1:n+1}))} - 1 \\ &= \frac{n(n+1 - q(Z_{1:n+1})) - q(Z_{1:n+1})}{n(n+1 - q(Z_{1:n+1}))} - 1 \\ &= 1 - \frac{q(Z_{1:n+1})}{n(n+1 - q(Z_{1:n+1}))} - 1 \\ &= - \frac{q(Z_{1:n+1})}{n(n+1 - q(Z_{1:n+1}))} \end{split}$$

Therefore we get from (1.14)

$$Q_i^{n+1} - 1 = \sum_{k_1=1}^{i-1} (Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}) - \frac{q(Z_{1:n+1})}{n(n+1 - q(Z_{1:n+1}))}$$

Moreover we have

$$(Q_{i}^{n+1}-1)^{2} = \sum_{k_{1}=1}^{i-1} \sum_{k_{2}=1}^{i-1} (Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1})(Q_{k_{2}+1}^{n+1} - Q_{k_{2}}^{n+1})$$

$$- \frac{2q(Z_{1:n+1})}{n(n+1-q(Z_{1:n+1}))} \sum_{k=1}^{i-1} (Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1})$$

$$+ \frac{q^{2}(Z_{1:n+1})}{n^{2}(n+1-q(Z_{1:n+1}))^{2}}$$

$$\leq \sum_{k_{1}=1}^{i-1} \sum_{k_{2}=1}^{i-1} |Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}| \cdot |Q_{k_{2}+1}^{n+1} - Q_{k_{2}}^{n+1}|$$

$$+ \frac{2q(Z_{1:n+1})}{n(n+1-q(Z_{1:n+1}))} \sum_{k_{1}=1}^{i-1} |Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}|$$

$$+ \frac{q^{2}(Z_{1:n+1})}{n^{2}(n+1-q(Z_{1:n+1}))^{2}}$$

$$\leq \sum_{k_{1}=1}^{i-1} \sum_{k_{2}=1}^{i-1} |Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}| \cdot |Q_{k_{2}+1}^{n+1} - Q_{k_{2}}^{n+1}|$$

$$+ \frac{2}{n^{2}} \sum_{k_{1}=1}^{i-1} |Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}| + \frac{1}{n^{4}}$$

$$(1.15)$$

We get from Lemma 1.3 that

$$\begin{aligned} &|Q_{i+1}^{n+1} - Q_{i}^{n+1}| \\ &= \frac{\tilde{\pi}_{i}^{2}(n-i+2)^{2}}{n+1} \cdot \left| \frac{(q_{i} - q_{i+1})(n-i)(n-i+1) - q_{i+1}(1-q_{i})(n-i+1-q_{i})}{(n-i)(n-i+1)(n-i+2-q_{i})^{2}(n-i+1-q_{i+1})} \right| \\ &\leq \frac{\tilde{\pi}_{i}^{2}(n-i+2)^{2}}{n+1} \cdot \frac{|q_{i} - q_{i+1}|(n-i)(n-i+1) + q_{i+1}(1-q_{i})(n-i+1-q_{i})}{(n-i)(n-i+1)(n-i+2-q_{i})^{2}(n-i+1-q_{i+1})} \\ &\leq \frac{(n-i+2)^{2}}{n+1} \left\{ \frac{|q_{i} - q_{i+1}|(n-i)(n-i+1) + q_{i+1}(1-q_{i})(n-i+1)}{(n-i)(n-i+1)(n-i+1)^{2}(n-i)} \right\} \\ &= \frac{(n-i+2)^{2}}{n+1} \left\{ \frac{|q_{i} - q_{i+1}|(n-i) + q_{i+1}(1-q_{i})}{(n-i)^{2}(n-i+1)^{2}} \right\} \\ &\leq \frac{4|q_{i} - q_{i+1}|}{(n+1)(n-i)} + \frac{4(1-q_{i})}{(n+1)(n-i)^{2}} \end{aligned}$$
(1.16)

The latter inequality above holds since

$$\frac{n-i+2}{n-i+1} = 1 + \frac{1}{n-i+1} \le 2$$

and $q_{i+1} \leq 1$. Thus we have

$$\begin{split} |Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}| \cdot |Q_{k_2+1}^{n+1} - Q_{k_2}^{n+1}| \\ &\leq \left[\frac{4|q_{k_1} - q_{k_1+1}|}{(n+1)(n-k_1)} + \frac{4(1-q_{k_1})}{(n+1)(n-k_1)^2}\right] \\ &\times \left[\frac{4|q_{k_2} - q_{k_2+1}|}{(n+1)(n-k_2)} + \frac{4(1-q_{k_2})}{(n+1)(n-k_2)^2}\right] \\ &= \frac{16|q_{k_1} - q_{k_1+1}||q_{k_2} - q_{k_2+1}|}{(n+1)^2(n-k_1)(n-k_2)} + \frac{16|q_{k_1} - q_{k_1+1}|(1-q_{k_2})}{(n+1)^2(n-k_1)(n-k_2)^2} \\ &\quad + \frac{16(1-q_{k_1})|q_{k_2} - q_{k_2+1}|}{(n+1)^2(n-k_1)^2(n-k_2)} + \frac{16(1-q_{k_1})(1-q_{k_2})}{(n+1)^2(n-k_1)^2(n-k_2)^2} \\ &\leq \frac{16|q_{k_1} - q_{k_1+1}|}{(n+1)^2(n-k_1)(n-k_2)} + \frac{16|q_{k_1} - q_{k_1+1}|}{(n+1)^2(n-k_1)(n-k_2)^2} \\ &\quad + \frac{16|q_{k_2} - q_{k_2+1}|}{(n+1)^2(n-k_1)^2(n-k_2)} + \frac{16(1-q_{k_1})}{(n+1)^2(n-k_1)^2(n-k_2)^2} \end{split}$$

Here the latter inequality holds, since we have $|q_k - q_{k+1}| \le 1$ and $1 - q_k \le 1$ for all $k \le n - 1$.

Recall that

$$(Q_i^{n+1} - 1)^2 \le \sum_{k_1 = 1}^{i-1} \sum_{k_2 = 1}^{i-1} |Q_{k_1 + 1}^{n+1} - Q_{k_1}^{n+1}| |Q_{k_2 + 1}^{n+1} - Q_{k_2}^{n+1}| + \frac{2}{n^2} \sum_{k_1 = 1}^{i-1} |Q_{k_1 + 1}^{n+1} - Q_{k_1}^{n+1}| + \frac{1}{n^4}$$

Taking expectations on each side yields

$$\mathbb{E}[(Q_i^{n+1} - 1)^2] \le \sum_{k_1 = 1}^{i-1} \sum_{k_2 = 1}^{i-1} \mathbb{E}[\left|Q_{k_1 + 1}^{n+1} - Q_{k_1}^{n+1}\right| \left|Q_{k_2 + 1}^{n+1} - Q_{k_2}^{n+1}\right|]$$

$$+\frac{2}{n^2}\sum_{k_1=1}^{i-1}\mathbb{E}[|Q_{k_1+1}^{n+1}-Q_{k_1}^{n+1}|]+\frac{1}{n^4}$$
(1.17)

Consider the expectation under the double sum above. We have

$$\mathbb{E}\left[\left|Q_{k_{1}+1}^{n+1}-Q_{k_{1}}^{n+1}\right|\left|Q_{k_{2}+1}^{n+1}-Q_{k_{2}}^{n+1}\right|\right] \\
\leq \frac{16\mathbb{E}\left[\left|q_{k_{1}}-q_{k_{1}+1}\right|\right]}{(n+1)^{2}(n-k_{1})(n-k_{2})} + \frac{16\mathbb{E}\left[\left|q_{k_{1}}-q_{k_{1}+1}\right|\right]}{(n+1)^{2}(n-k_{1})(n-k_{2})^{2}} \\
+ \frac{16\mathbb{E}\left[\left|q_{k_{2}}-q_{k_{2}+1}\right|\right]}{(n+1)^{2}(n-k_{1})^{2}(n-k_{2})} + \frac{16\mathbb{E}\left[(1-q_{k_{1}})\right]}{(n+1)^{2}(n-k_{1})^{2}(n-k_{2})^{2}} \tag{1.18}$$

We will now use Lemma 1.4 to establish an upper bound for the expectation above. Combining (1.1) and (1.2) above with (1.18) yields

$$\mathbb{E}[\left|Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}\right| \left|Q_{k_2+1}^{n+1} - Q_{k_2}^{n+1}\right|]$$

$$\leq \frac{16c_1}{(n+1)^3(n-k_1)(n-k_2)} + \frac{16c_1}{(n+1)^3(n-k_1)(n-k_2)^2} + \frac{16c_1}{(n+1)^3(n-k_1)^2(n-k_2)} + \frac{16c_1(n-k_1) + 16}{(n+1)^3(n-k_1)^2(n-k_2)^2}$$

Therefore we obtain

$$\begin{split} &\sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \mathbb{E}[\left|Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}\right| \left|Q_{k_2+1}^{n+1} - Q_{k_2}^{n+1}\right|] \\ &\leq \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1}{(n+1)^3(n-k_1)(n-k_2)} + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1}{(n+1)^3(n-k_1)(n-k_2)^2} \\ &\quad + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1}{(n+1)^3(n-k_1)^2(n-k_2)} + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1(n-k_1)}{(n+1)^3(n-k_1)^2(n-k_2)^2} \\ &\quad + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16}{(n+1)^3(n-k_1)(n-k_2)} + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{32c_1}{(n+1)^3(n-k_1)(n-k_2)^2} \\ &\quad = \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1}{(n+1)^3(n-k_1)(n-k_2)} + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16}{(n+1)^3(n-k_1)^2(n-k_2)^2} \\ &\quad + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16c_1}{(n+1)^3(n-k_1)^2(n-k_2)} + \sum_{k_1=1}^{i-1} \sum_{k_2=1}^{i-1} \frac{16}{(n+1)^3(n-k_1)^2(n-k_2)^2} \end{split}$$

$$\leq \frac{16c_{1}}{(n+1)^{3}} \sum_{k_{1}=1}^{i-1} \frac{1}{(n-k_{1})} \sum_{k_{2}=1}^{i-1} \frac{1}{(n-k_{2})} + \frac{32c_{1}}{(n+1)^{3}} \sum_{k_{1}=1}^{i-1} \frac{1}{n-k_{1}} \sum_{k_{2}=1}^{i-1} \frac{1}{(n-k_{2})^{2}} \\
+ \frac{16c_{1}}{(n+1)^{3}} \sum_{k_{1}=1}^{i-1} \frac{1}{(n-k_{1})^{2}} \sum_{k_{2}=1}^{i-1} \frac{1}{n-k_{2}} + \frac{16}{(n+1)^{3}} \sum_{k_{1}=1}^{i-1} \frac{1}{(n-k_{1})^{2}} \sum_{k_{2}=1}^{i-1} \frac{1}{(n-k_{2})^{2}} \\
\leq \frac{16c_{1}}{(n+1)^{3}} \sum_{k_{1}=n-i+1}^{n-1} \frac{1}{k_{1}} \sum_{k_{2}=n-i+1}^{n-1} \frac{1}{k_{2}} + \frac{32c_{1}}{(n+1)^{3}} \sum_{k_{1}=n-i+1}^{n-1} \frac{1}{k_{1}} \sum_{k_{2}=n-i+1}^{n-1} \frac{1}{k_{2}^{2}} \\
+ \frac{16c_{1}}{(n+1)^{3}} \sum_{k_{1}=n-i+1}^{n-1} \frac{1}{k_{1}^{2}} \sum_{k_{2}=n-i+1}^{n-1} \frac{1}{k_{2}} + \frac{16}{(n+1)^{3}} \sum_{k_{1}=n-i+1}^{n-1} \frac{1}{k_{1}^{2}} \sum_{k_{2}=1}^{i-1} \frac{1}{k_{2}^{2}} \tag{1.19}$$

Now using (1.8) and (1.9) from Lemma 1.5 on inequality (1.19) yields

$$\sum_{k_{1}=1}^{n-1} \sum_{k_{2}=1}^{n-1} \mathbb{E}[\left|Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}\right| \left|Q_{k_{2}+1}^{n+1} - Q_{k_{2}}^{n+1}\right|] \\
\leq \frac{16c_{1}}{(n+1)^{3}} (\ln(n-1)+1)^{2} + \frac{64c_{1}}{(n+1)^{3}} (\ln(n-1)+1) \\
+ \frac{32c_{1}}{(n+1)^{3}} (\ln(n-1)+1) + \frac{64}{(n+1)^{3}} \\
\leq \frac{144c_{1}}{(n+1)^{\frac{7}{3}}} + \frac{288c_{1}}{(n+1)^{\frac{8}{3}}} + \frac{64}{(n+1)^{3}} \\
\leq \frac{432c_{1} + 64}{(n+1)^{\frac{7}{3}}} \tag{1.20}$$

We will now proceed with the second sum in (1.17). We get from (1.16)

$$\mathbb{E}[\left|Q_{i+1}^{n+1} - Q_i^{n+1}\right|] \le \frac{4\mathbb{E}[\left|q_i - q_{i+1}\right|]}{(n+1)(n-i)} + \frac{4\mathbb{E}[1 - q_i]}{(n+1)(n-i)^2}$$

Therefore we obtain

$$\frac{2}{n^2} \sum_{k_1=1}^{i-1} \mathbb{E}[|Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}|] \le \frac{8}{n^2(n+1)^2} \sum_{k_1=1}^{i-1} \frac{\mathbb{E}[|q_{k_1} - q_{k_1+1}|]}{n - k_1} + \frac{\mathbb{E}[1 - q_{k_1}]}{(n - k_1)^2}$$

Again using (1.1) and (1.2) reveals

$$\frac{2}{n^2} \sum_{k_1=1}^{i-1} \mathbb{E}[|Q_{k_1+1}^{n+1} - Q_{k_1}^{n+1}|] \le \frac{8}{n^2(n+1)^2} \left\{ \sum_{k_1=1}^{i-1} \frac{c_1}{(n-k_1)} + \sum_{k_1=1}^{i-1} \frac{c_1(n-k_1+1)}{(n-k_1)^2} \right\}$$

$$= \frac{8}{n^2(n+1)^2} \left\{ 2 \sum_{k_1=1}^{i-1} \frac{c_1}{(n-k_1)} + \sum_{k_1=1}^{i-1} \frac{c_1}{(n-k_1)^2} \right\}$$
$$= \frac{8}{n^2(n+1)^2} \left\{ 2 \cdot \sum_{k_1=n-i+1}^{n-1} \frac{c_1}{k_1} + \sum_{k_1=n-i+1}^{n-1} \frac{c_1}{k_1^2} \right\}$$

By using (1.8) and (1.9) again we obtain

$$\frac{2}{n^{2}} \sum_{k_{1}=1}^{i-1} \mathbb{E}[|Q_{k_{1}+1}^{n+1} - Q_{k_{1}}^{n+1}|] \leq \frac{8 \cdot \{2c_{1}(\ln(n-1)+1)+2c_{1}\}}{n^{2}(n+1)^{2}}
= \frac{16c_{1}(\ln(n-1)+1)}{n^{2}(n+1)^{2}} + \frac{16c_{1}}{n^{2}(n+1)^{2}}
\leq \frac{48c_{1}}{n^{2}(n+1)^{\frac{5}{3}}} + \frac{16c_{1}}{n^{2}(n+1)^{2}}
\leq \frac{64c_{1}}{n^{2}(n+1)^{\frac{5}{3}}}$$
(1.21)

Again recall the following fact

$$\mathbb{E}[(Q_i^{n+1} - 1)^2] = \sum_{k_1 = 1}^{i-1} \sum_{k_2 = 1}^{i-1} \mathbb{E}[|Q_{k_1 + 1}^{n+1} - Q_{k_1}^{n+1}||Q_{k_2 + 1}^{n+1} - Q_{k_2}^{n+1}|] + \frac{2}{n^2} \sum_{k_1 = 1}^{i-1} \mathbb{E}[|Q_{k_1 + 1}^{n+1} - Q_{k_1}^{n+1}|] + \frac{1}{n^4}$$

Combining the above with (1.20) and (1.21) yields

$$\mathbb{E}[(Q_i^{n+1} - 1)^2] \le \frac{432c_1 + 64}{(n+1)^{\frac{7}{3}}} + \frac{64c_1}{n^2(n+1)^{\frac{5}{3}}} + \frac{1}{n^4}$$

$$\le \frac{432c_1 + 64}{n^{\frac{7}{3}}} + \frac{64c_1}{n^{\frac{11}{3}}} + \frac{1}{n^4}$$

$$\le \frac{1}{n^{\frac{7}{3}}} \left[432c_1 + 64 + \frac{64c_1}{n^{\frac{4}{3}}} + \frac{1}{n^{\frac{5}{3}}} \right]$$

$$\le \frac{496c_1 + 65}{n^{\frac{7}{3}}}$$

$$= \frac{c_2}{n^{\frac{7}{3}}}$$

with $c_2 := 496c_1 + 65$. Therefore

$$\mathbb{E}[(Q_i^{n+1} - 1)^2]^{\frac{1}{2}} \le \frac{\sqrt{c_2}}{n^{\frac{7}{6}}}$$

Recall that we set n = N - k. Thus we can write

$$\mathbb{E}[(Q_i^{N-k+1}-1)^2]^{\frac{1}{2}} \le \frac{\sqrt{c_2}}{(N-k)^{\frac{7}{6}}}$$

Now combining the latter with (1.13) yields

$$\mathbb{E}[Y_N^N] \leq \mathbb{E}[\tilde{S}_N^N] + \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[\phi^2(Z_{i:N-k+1}, Z_{j:N-k+1})W_{i:N-k+1}^2 W_{j:N-k+1}^2\right]^{\frac{1}{2}} \times \mathbb{E}\left[(Q_{i,j}^{N-k+1} - 1)^2\right]^{\frac{1}{2}}$$

$$\leq \mathbb{E}[\tilde{S}_N^N] + \sum_{k=1}^{N-1} \sum_{1 \leq i < j \leq N-k+1} \mathbb{E}\left[\phi^2(Z_{i:N-k+1}, Z_{j:N-k+1})W_{i:N-k+1}^2 W_{j:N-k+1}^2\right]^{\frac{1}{2}}$$

$$\times \frac{\sqrt{c_2}}{(N-k)^{\frac{7}{6}}}$$

Thus it remains to show that

$$\sum_{1 \le i < j \le N - k + 1} \mathbb{E} \left[\phi^2(Z_{(i)}, Z_{(j)}) W_{(i)}^2 W_{(j)}^2 \right]^{\frac{1}{2}} \le c_3$$

is constant. Then we would have

$$\lim_{N \to \infty} \mathbb{E}[U_N[a, b]] \le \lim_{N \to \infty} \mathbb{E}[Y_N^N]$$

$$\le \lim_{N \to \infty} \left\{ \mathbb{E}[\tilde{S}_N^N] + c_3 \sum_{k=1}^{N-1} \frac{\sqrt{c_2}}{(N-k)^{\frac{7}{6}}} \right\}$$

$$\le \sup_{N} \mathbb{E}[\tilde{S}_N^N] + \sqrt{c_2} c_3 \left\{ \lim_{N \to \infty} \sum_{k=1}^{N-1} \frac{1}{(N-k)^{\frac{7}{6}}} \right\}$$

$$< \infty$$

And therefore we may finally conclude that $S = \lim_{n \to \infty} S_n$ exists. Note that there is more argumentation about the relationship between $U_N[a, b]$ and $\lim_{n \to \infty} S_n$ in my thesis.

1.3 The missing bound

It remains to show that

$$\sum_{1 \le i \le j \le N-k+1} \mathbb{E} \left[\phi^2(Z_{i:N-k+1}, Z_{j:N-k+1}) W_{i:N-k+1}^2 W_{j:N-k+1}^2 \right]^{\frac{1}{2}} \le c_3$$

for some constant $c_3 \in \mathbb{R}^+$. For the sake of simplicity we will set n = N - k again. The following lemma contains the result needed to prove Theorem 1.1.

Lemma 1.6. There exists constant $c_3 \in R^+$ s. t.

$$\sum_{1 \le i < j \le n+1} \mathbb{E} \left[\phi^2(Z_{i:n+1}, Z_{j:n+1}) W_{i:n+1}^2 W_{j:n+1}^2 \right]^{\frac{1}{2}} \le c_3$$

Proof. Consider

$$\sum_{1 \le i < j \le n} \mathbb{E} \left[\phi^{2}(Z_{i:n}, Z_{j:n}) W_{i:n}^{2} W_{j:n}^{2} \right]^{\frac{1}{2}}$$

$$= \sum_{1 \le i < j \le n} \mathbb{E} \left[\phi^{2}(Z_{i:n}, Z_{j:n}) \frac{q^{2}(Z_{i:n})}{n - i + 1} \prod_{k=1}^{i-1} \left[1 - \frac{q(Z_{k:n})}{n - k + 1} \right]^{2} \right]$$

$$\times \frac{q^{2}(Z_{j:n})}{n - j + 1} \prod_{l=1}^{j-1} \left[1 - \frac{q(Z_{l:n})}{n - l + 1} \right]^{2}$$

$$= \frac{1}{n^{2}} \sum_{1 \le i < j \le n} \mathbb{E} \left[\phi^{2}(Z_{i:n}, Z_{j:n}) q^{2}(Z_{i:n}) q^{2}(Z_{j:n}) \right]$$

$$\times \prod_{k=1}^{i-1} \left[1 + \frac{1 - q(Z_{k:n})}{n - k} \right]^2 \prod_{l=1}^{j-1} \left[1 + \frac{1 - q(Z_{l:n})}{n - l} \right]^2$$
 (1.22)

The latter equality holds since

$$\frac{q^{2}(Z_{i:n})}{n-i+1} \prod_{k=1}^{i-1} \left[1 - \frac{q(Z_{k:n})}{n-k+1} \right]^{2} = \frac{q^{2}(Z_{i:n})}{n-i+1} \prod_{k=1}^{i-1} \left[\frac{n-k+1-q(Z_{k:n})}{n-k+1} \right]^{2}$$

$$= \frac{q^{2}(Z_{i:n})}{n-i+1} \prod_{k=1}^{i-1} \left[\frac{n-k+1-q(Z_{k:n})}{n-k} \cdot \frac{n-k}{n-k+1} \right]^{2}$$

$$= \frac{q^{2}(Z_{i:n})}{n^{2}} \prod_{k=1}^{i-1} \left[\frac{n-k+1-q(Z_{k:n})}{n-k} \right]^{2}$$

$$= \frac{q^{2}(Z_{i:n})}{n^{2}} \prod_{k=1}^{i-1} \left[1 + \frac{1-q(Z_{k:n})}{n-k} \right]^{2}$$

Moreover we have for all $i \leq n$ that

$$\prod_{k=1}^{i-1} \left[1 + \frac{1 - q(Z_{k:n})}{n - k} \right] = \prod_{k=1}^{n} \left[1 + \frac{1 - q(Z_k)}{n - R_{k,n}} \right]^{\mathbb{1}_{\{Z_k < Z_{i:n}\}}}$$

Hence the right hand side of (1.22) turns into

$$\frac{1}{n^{2}} \sum_{1 \leq i < j \leq n} \mathbb{E} \left[\phi^{2}(Z_{i:n}, Z_{j:n}) q^{2}(Z_{i:n}) \prod_{k=1}^{i-1} \left[1 + \frac{1 - q(Z_{k:n})}{n - k} \right]^{2} \right] \times q^{2}(Z_{j:n}) \prod_{l=1}^{j-1} \left[1 + \frac{1 - q(Z_{l:n})}{n - l} \right]^{2}$$

$$= \frac{1}{n^{2}} \sum_{1 \leq i < j \leq n} \mathbb{E} \left[\phi^{2}(Z_{i:n}, Z_{j:n}) q^{2}(Z_{i:n}) \prod_{k=1}^{n} \left[1 + \frac{1 - q(Z_{k})}{n - R_{k,n}} \right]^{2\mathbb{I}_{\{Z_{k} < Z_{i:n}\}}} \right]^{\frac{1}{2}}$$

$$\times q^{2}(Z_{j:n}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}} \right]^{2\mathbb{I}_{\{Z_{l} < Z_{j:n}\}}} \right]^{\frac{1}{2}}$$

$$\stackrel{?}{=} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E} \left[\phi^{2}(Z_{i}, Z_{j}) \mathbb{1}_{\{Z_{i} < Z_{j}\}} q^{2}(Z_{i}) \prod_{k=1}^{n} \left[1 + \frac{1 - q(Z_{k})}{n - R_{k,n}} \right]^{2\mathbb{I}_{\{Z_{k} < Z_{i}\}}} \right]^{2}$$

$$\times q^{2}(Z_{j}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}} \right]^{21\{Z_{l} < Z_{j}\}} \right]^{\frac{1}{2}}$$

$$\leq \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E} \left[\phi^{2}(Z_{i}, Z_{j}) q^{2}(Z_{i}) \prod_{k=1}^{n} \left[1 + \frac{1 - q(Z_{k})}{n - R_{k,n}} \right]^{21\{Z_{k} < Z_{i}\}} \right]^{\frac{1}{2}}$$

$$\times q^{2}(Z_{j}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}} \right]^{21\{Z_{l} < Z_{j}\}} \right]^{\frac{1}{2}}$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E} \left[\phi^{2}(Z_{1}, Z_{2}) q^{2}(Z_{1}) \prod_{k=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{k,n}} \right]^{21\{Z_{l} < Z_{2}\}} \right]^{\frac{1}{2}}$$

$$\times q^{2}(Z_{2}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}} \right]^{21\{Z_{l} < Z_{2}\}} \right]^{\frac{1}{2}}$$

$$\times q^{2}(Z_{2}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{k,n}} \right]^{21\{Z_{l} < Z_{2}\}}$$

$$\times q^{2}(Z_{2}) \prod_{l=1}^{n} \left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}} \right]^{21\{Z_{l} < Z_{2}\}} \right]^{\frac{1}{2}}$$

TODO Split up and fill in more details. Below will be the part where I need conditional expectation. Define

$$B_n(s) := \prod_{k=1}^n \left[1 + \frac{1 - q(Z_k)}{n - R_{k,n}} \right]^{21_{\{Z_k < s\}}}$$

and

$$E_n(s,t) := \mathbb{E}\left[\phi^2(s,t)q(s)q(t)B_n(s)B_n(t)\right]$$

Then

$$E_n(Z_1, Z_2) = \mathbb{E}\left[\phi^2(Z_1, Z_2)q^2(Z_1) \prod_{k=1}^n \left[1 + \frac{1 - q(Z_k)}{n - R_{k,n}}\right]^{2\mathbb{I}_{\{Z_k < Z_1\}}} \right] \times q^2(Z_2) \prod_{l=1}^n \left[1 + \frac{1 - q(Z_l)}{n - R_{l,n}}\right]^{2\mathbb{I}_{\{Z_l < Z_2\}}}$$

$$= \mathbb{E}\left[\phi^{2}(Z_{1}, Z_{2})q^{2}(Z_{1}) \exp\left(2 \sum_{k=1}^{n} \mathbb{1}_{\{Z_{k} < Z_{1}\}} \ln\left[1 + \frac{1 - q(Z_{k})}{n - R_{k,n}}\right]\right) \right.$$

$$\times q^{2}(Z_{2}) \exp\left(2 \sum_{l=1}^{n} \mathbb{1}_{\{Z_{l} < Z_{2}\}} \ln\left[1 + \frac{1 - q(Z_{l})}{n - R_{l,n}}\right]\right)\right]^{\frac{1}{2}}$$

$$= \mathbb{E}\left[\phi^{2}(Z_{1}, Z_{2})q^{2}(Z_{1}) \exp\left(2 \sum_{k=1}^{n} \mathbb{1}_{\{Z_{k} < Z_{1}\}} \ln\left[1 + \frac{1 - q(Z_{k})}{n(1 - H_{n}(Z_{k}))}\right]\right)\right]$$

$$\times q^{2}(Z_{2}) \exp\left(2 \sum_{l=1}^{n} \mathbb{1}_{\{Z_{l} < Z_{2}\}} \ln\left[1 + \frac{1 - q(Z_{l})}{n(1 - H_{n}(Z_{l}))}\right]\right)\right]^{\frac{1}{2}}$$

$$(1.23)$$

Now let

$$x_k = \frac{1 - q(Z_k)}{n(1 - H_n(Z_k))}$$

and note that

$$\ln(1+x_k) \le x_k$$

Thus the right hand side of (1.23) becomes

$$\mathbb{E}\left[\phi^{2}(Z_{1}, Z_{2})q^{2}(Z_{1}) \exp\left(2\sum_{k=1}^{n} \mathbb{1}_{\{Z_{k} < Z_{1}\}} \ln\left[1 + \frac{1 - q(Z_{k})}{n(1 - H_{n}(Z_{k}))}\right]\right) \\ \times q^{2}(Z_{2}) \exp\left(2\sum_{l=1}^{n} \mathbb{1}_{\{Z_{l} < Z_{2}\}} \ln\left[1 + \frac{1 - q(Z_{l})}{n(1 - H_{n}(Z_{l}))}\right]\right)\right]^{\frac{1}{2}} \\ \leq \mathbb{E}\left[\phi^{2}(Z_{1}, Z_{2})q^{2}(Z_{1}) \exp\left(2\sum_{k=1}^{n} \mathbb{1}_{\{Z_{k} < Z_{1}\}} \frac{1 - q(Z_{k})}{n(1 - H_{n}(Z_{k}))}\right) \\ \times q^{2}(Z_{2}) \exp\left(2\sum_{l=1}^{n} \mathbb{1}_{\{Z_{l} < Z_{2}\}} \frac{1 - q(Z_{l})}{n(1 - H_{n}(Z_{l}))}\right)\right]^{\frac{1}{2}} \\ = \mathbb{E}\left[\phi^{2}(Z_{1}, Z_{2})q^{2}(Z_{1}) \exp\left(2\int_{0}^{Z_{1} - \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right) \\ \times q^{2}(Z_{2}) \exp\left(2\int_{0}^{Z_{2} - \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)\right]^{\frac{1}{2}} \\ = \left[\int_{0}^{\infty} \int_{0}^{\infty} \phi^{2}(s, t)q^{2}(s) \exp\left(2\int_{0}^{s^{-}} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right)$$

CHAPTER 1. MODIFYING THE MARTINGALE CONVERGENCE THEOREM24

$$\times q^{2}(t) \exp \left(2 \int_{0}^{t-} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz)\right) H(dt) H(ds)\right]^{\frac{1}{2}}$$

where $s, t \le \inf\{x | H(x) = 1\}$. (?)

TODO Construction work ahead...

- \bullet By Glivenko-Cantelli H_n converges uniformly against H w. p. 1
- SLLN on $H_n H$
- Shorack and Wellner (2009), p. 304f

•

$$\int_{0}^{s-} \frac{1 - q(z)}{n(1 - H_{n}(z))} H_{n}(dz) \stackrel{G.C.}{=} \int_{0}^{s-} \frac{1 - q(z)}{n(1 - H(z))} H_{n}(dz)$$

$$= \int_{0}^{s-} \frac{1 - q(z)}{n(1 - H(z))} H(dz)$$

$$+ \int_{0}^{s-} \frac{1 - q(z)}{n(1 - H(z))} (H_{n} - H)(dz)$$

$$\stackrel{SLLN}{\longrightarrow} \int_{0}^{s-} \frac{1 - q(z)}{n(1 - H(z))} H(dz)$$

• upper limit c_3 guaranteed?

Bibliography

- Bose, A. and A. Sen, 1999: The strong law of large numbers for kaplan-meier u-statistics. *Journal of Theoretical Probability*, **12** (1), 181–200.
- Bose, A. and A. Sen, 2002: Asymptotic distribution of the kaplan–meier u-statistics. *Journal of multivariate analysis*, 83 (1), 84–123.
- David, H. A. and H. N. Nagaraja, 2003: Order Statistics, Vol. 3. John Wiley & Sons, Inc.
- Dikta, G., 1998: On semiparametric random censorship models. *Journal of Statistical Planning and Inference*, **66** (2), 253–279.
- Dikta, G., 2000: The strong law under semiparametric random censorship models.

 Journal of Statistical Planning and Inference, 83 (1), 1–10.
- Dikta, G., J. Ghorai, and C. Schmidt, 2005: The central limit theorem under semiparametric random censorship models. *Journal of statistical planning and infer*ence, 127 (1), 23–51.
- Kaplan, E. L. and P. Meier, 1958: Nonparametric estimation from incomplete observations. *Journal of the American statistical association*, **53** (282), 457–481.
- Neveu, J., 1975: Discrete-parameter martingales, Vol. 10. Elsevier.
- Rosenblatt, M., 1952: Remarks on a multivariate transformation. The annals of mathematical statistics, 23 (3), 470–472.
- Shorack, G. and J. Wellner, 2009: Empirical Processes with Applications to Statistics. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), URL https://books.google.de/books?id=hjlMdxmHuEsC.

BIBLIOGRAPHY 26

Stute, W. and J.-L. Wang, 1993: The strong law under random censorship. The Annals of Statistics, 1591–1607.