Al For Math

作者名稱: 簡偉恆、盧詠涵

輔仁大學 數學系資訊數學組 一年級

2025年6月8日

大綱

- ① 社群活動簡介
- ② Kolmogorov-Arnold Network 簡介
- ③ Kolmogorov-Arnold Network 實作
- ④ 記憶模型是否能降低 KAN 的誤差

六堂課程總覽

113 年學年度第二學期 AI for Math 系列演講

日期	講者	講題
114/02/27	潘老師	感知機(The Perceptron)
114/03/06	潘老師	淺談 Adaptive Linear Neuron 和 Widrow-Hoff
		Learning
114/03/20	潘老師	The Basics of Multilayer Perceptron and Back-
		propagation
114/03/27	俞讚城	Introduction to Shannon Entropy and Cross
		Entropy
114/04/17	俞讚城	Introduction to Universal Approximation The-
		orems and Application in Al
114/05/08	嚴健彰	KAN: Kolmogorov-Arnold Networks

論文簡介

● 發表時間: 2023 年

● 標題: KAN: Kolmogorov-Arnold Networks

主要特點:整合領域先驗知識與深度神經網路

• 應用領域: 數學建模與科學計算

MLP vs. KAN

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(c)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	(a) fixed activation functions on nodes on nodes learnable weights on edges	(b) learnable activation functions on edges sum operation on nodes
Formula (Deep)	$MLP(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	$\begin{array}{c c} \textbf{(c)} & \textbf{MLP(x)} \\ & \textbf{W}_3 \\ & \sigma_2 \\ & \textbf{W}_2 \\ & \sigma_1 \\ & \textbf{W}_1 \\ & \textbf{linear,} \\ & \textbf{learnable} \\ & \textbf{x} \\ \end{array}$	(d) Φ_3 KAN(x) Φ_2 monlinear, learnable Φ_1 x

Kolmogorov-Arnold Networks 架構與特點

- Kolmogorov-Arnold Network(KAN) 受 Kolmogorov-Arnold Representation theorem(KAT) 啟發
- 創新架構:
 - 可學習的一維激活函數位於邊上,取代傳統線性權重
 - 使用樣條函數(spline)參數化
 - 每個節點僅執行線性加總,不附加任何非線性激活函數

Kolmogorov-Arnold Networks 架構圖

Kolmogorov-Arnold Representation theorem 簡介

- 提出者: Andrey Kolmogorov, Vladimir Arnold
- 內容: 針對任意有界區間 $[0,1]^n$ 上的連續函數 $f(x_1,...,x_n)$, 該定理保證:

$$f(x_1,...,x_n) = \sum_{q=1}^{2n+1} \Phi_q \Big(\sum_{p=1}^n \varphi_{q,p}(x_p) \Big)$$

- 其中:
 - $\varphi_{q,p}: [0,1] \to \mathbb{R}$ 為一維連續函數,作用於單一變量 x_p
 - $\Phi_q:\mathbb{R}\to\mathbb{R}$ 為一維連續函數,作用於所有 $\varphi_{q,p}(x_p)$ 的加總結果

<ロト < 個 ト < 重 ト < 重 ト 、 重 ・ の Q ()

Kolmogorov-Arnold Networks 優勢

- 效能優勢:
 - 小規模 AI 任務中,參數量更少
 - 比 MLP 擁有更高精度
 - 更快的泛化縮放律
- 可解釋性:
 - 激活函數可視化
 - 可逐層稀疏修剪
 - 適用於(準)符號回歸與科學發現
- 應用優勢:
 - 可用於 PDE 求解(PINN 框架)
 - 連續學習中能有效避免遺忘現象
 - 結合樣條高精度與 MLP 組合結構

```
[2,1,1] Test RMSE: 1.265029

=== [2,1,1] 測試點比較 ===

x=0.10, y=0.10 真實: 1.375775 預測: 3.680561 誤差: 2.304786
x=0.50, y=0.50 真實: 3.490343 預測: 2.694129 誤差: 0.796214
x=0.75, y=0.25 真實: 2.158917 預測: 2.694129 誤差: 0.535212
```

▲ [2,1,1] 測試點比較

```
=== [2,5,1] 測試點比較 ===
x=0.10, y=0.10 真實: 1.375775 預測: 2.344764 誤差: 0.968989
x=0.50, y=0.50 真實: 3.490343 預測: 3.075765 誤差: 0.414578
x=0.75, y=0.25 真實: 2.158917 預測: 2.608403 誤差: 0.449486
```

▲ [2,5,1] 測試點比較

[2.5.1] Test RMSE: 1.445008

```
[2,1,1] Test RMSE: 0.002997

=== [2,1,1] 測試點比較 ===
x=0.10, y=0.10 真實: 1.375775 預測: 1.376149 誤差: 0.000375
x=0.50, y=0.50 真實: 3.490343 預測: 3.486988 誤差: 0.003355
x=0.75, y=0.25 真實: 2.158917 預測: 2.158463 誤差: 0.000454
```

▲ [2,1,1] 測試點比較 2

▲ [2,1,1] 測試點比較 2-視覺化

```
[2,1,1] Test RMSE: 0.003584
=== [2,1,1] 測試點比較 ===
x=0.10, y=0.10 真實:1.375775 預測:1.376706 誤差:0.000932
x=0.50, y=0.50 真實: 3.490343 預測: 3.489892 誤差: 0.000452
x=0.75, y=0.25 真實: 2.158917 預測: 2.158352 誤差: 0.000565
[2,1,1] Test RMSE: 1.112584
=== [2,1,1] 測試點比較 ===
x=0.10, y=0.10 真實: 1.375775 預測: 2.449288 誤差: 1.073513
x=0.50, y=0.50 真實: 3.490343 預測: 2.449288 誤差: 1.041055
x=0.75, y=0.25 真實: 2.158917 預測: 2.449288 誤差: 0.290371
[2,1,1] Test RMSE: 0.002997
=== [2,1,1] 測試點比較 ===
x=0.10, y=0.10 真實:1.375775 預測:1.376149 誤差:0.000375
x=0.50, y=0.50 真實:3.490343
                           預測:3.486988 誤差:0.003355
x=0.75, y=0.25 真實:2.158917
                            預測: 2.158463
                                          誤差: 0.000454
```

記憶模型是否能降低 KAN 的誤差

記憶模型能不能降低 KAN 的誤差

測試結果: 輸入: x = 0.5, y = 0.5 預測值: 3.489805 真實值: 3.490343 相對誤差: 0.02%

▲ 增加記憶功能後的結果數據

謝謝大家

報告結束