Stat 421: Applied Categorical Data Analysis, Spring 2020 Lec. 002 Derek Bean Homework 9

Due: Friday 4/24/20 by 11:59pm CST through Canvas

Each question worth 10 points. TOTAL: 50 points.

Suggested Readings in Agresti (2nd Ed.)

- 1. Chapter 4, Section 4.3: §4.3.1–4.3.3
- 2. Chapter 4, Section 4.4

Problems

1. A study in Florida found that the death penalty was given in 19 out of 151 cases in which a white killed a white, in 0 out of 9 cases in which white killed a black, in 11 out of 63 cases in which a black killed a white, and in 6 out of 103 cases in which a black killed a black. The below table shows software output when logic model is fit for death penalty as a response (1 = yes), with defendant's race (1 = white) and victim's race (1 = white) as indicator predictors.

		Standard	Likelih	ood Ratio				
Parameter	Estimate	Error	95% Con:	f. Limits	Chi-Square			
Intercept def	-3.5961 -0.8678	0.5069 0.3671	-4.7754 -1.5633	-2.7349 -0.1140	50.33			
vic	2.4044	0.6006	1.3068	3.7175	16.03			
LR Statistics								
	Source	DF Chi-Square		Pr > ChiSq				
	def	1	5.01	0.0251				
	vic	ric 1 2		<.0001				

(a) Based on the parameter estimates, which group is most likely to have the "yes" response? Estimate the probability in that case.

- (b) Interpret the parameter estimate for victim's race.
- (c) Using the information shown, construct and interpret a 95% likelihood-ratio confidence interval for the conditional odds ratio between death penalty verdict and victim's race.
- (d) Test the effect of victim's race, controlling for defendant's race, using a Wald test or likelihood-ratio test. Interpret.
- 2. The below table shows results of an eight-center clinical trial to compare a drug to placebo for curing an infection. At each center, subjects were randomly assigned to groups.

Center		Resp	Sample	
	Treatment	Success	Failure	Odds Ratio
1	Drug	11	25	
	Control	10	27	
2	Drug	16	4	1.82
	Control	22	10	
3	Drug	14	5	4.80
	Control	7	12	
4	Drug	2	14	2.29
	Control	1	16	
5	Drug	6	11	∞
	Control	0	12	
6	Drug	1	10	∞
	Control	0	10	
7	Drug	1	4	2.0
	Control	1	8	
8	Drug	4	2	0.33
	Control	6	1	

Source: P. J. Beitler and J. R. Landis, Biometrics, 41: 991-1000, 1985.

(a) Analyze these data using logistic regression, describing and making inferences about the group effect.

- (b) Give possible reasons for why we would want to control for the center variable in our model.
- 3. A sample of subjects were asked their opinion about current laws legalizing abortion (support, oppose). For the explanatory variables gender G (female, male), religious affiliation R (Protestant, Catholic, Jewish), and political party affiliation P (Democrat, Republican, Independent), the model for the probability π of supporting legalized abortion,

$$logit(\pi) = \alpha + \beta_h^G + \beta_i^R + \beta_j^P,$$

has reported parameter estimates (setting the parameter for the last listed category of a variable equal to 0) $\hat{\alpha} = -0.11$, $\hat{\beta}_1^G = 0.16$, $\hat{\beta}_2^G = 0$, $\hat{\beta}_1^R = -0.57$, $\hat{\beta}_2^R = -0.66$, $\hat{\beta}_3^R = 0$, $\hat{\beta}_1^P = 0.84$, $\hat{\beta}_2^P = -1.67$, $\hat{\beta}_3^P = 0$.

- (a) Interpret how the odds of supporting legalized abortion depend on gender.
- (b) Find the estimated probability of supporting legalized abortion for (i) male Catholic Republicans and (ii) female Jewish Democrats.
- (c) If we defined parameters such that the *first* category of a variable has value 0, then what would $\hat{\beta}^G$ equal? Show then how to obtain the odds ratio that describes the conditional effect of gender.
- (d) If we defined parameters such that they sum to 0 across the categories of a variable, then what would $\hat{\beta}_1^G$ and $\hat{\beta}_2^G$ equal? Show then how to obtain the odds ratio that describes the conditional effect of gender.
- 4. The table below shows estimated effects for a fitted logistic regression model with squamous cell esophageal cancer (1 = yes, 0 = no) as the response variable Y. Smoking status (S) equals 1 for at least one pack per day and 0 otherwise, alcohol consumption (A) equals the average number of alcoholic drinks consumed per day, and race (R) equals 1 for blacks and 0 for whites.

Variable	Effect	P-value		
Intercept	-7.00	<0.01		
Alcohol use	0.10	0.03		
Smoking	1.20	< 0.01		
Race	0.30	0.02		
Race × smoking	0.20	0.04		

- (a) To describe the race-by-smoking interaction, construct the prediction equation when R=1 and again when R=0. Find the fitted YS conditional odds ratio for each case. Similarly, construct the prediction equation when S=1 and again when S=0, and find the fitted YR conditional odds ratio for each case. Note that, for each association, the coefficient of the cross-product term is the difference between the log odds ratios at the two fixed levels for the other variable.
- (b) Explain what the coefficients of R and S represent for the coding as given above. What hypotheses do the P-values refer to for these variables?
- (c) Suppose the model also contained an $A \times R$ interaction term, with coefficient 0.04. In the prediction equation, show that this represents the difference between the effect of A for blacks and for whites.
- 5. The table below shows results of a study about Y = whether a patient having surgery with general anesthesia experienced a sore throat on waking (1 = yes) as a function of D = duration of the surgery (minutes) and T = type of device used to secure the airway (0 = laryngeal mask airway, 1 = tracheal tube).

Patient	D	T	Y	Patient	D	T	Y	Patient	D	T	Y
1	45	0	0	13	50	1	0	25	20	1	0
2	15	0	0	14	75	1	1	26	45	0	1
3	40	0	1	15	30	0	0	27	15	1	0
4	83	1	1	16	25	0	1	28	25	0	1
5	90	1	1	17	20	1	0	29	15	1	0
6	25	1	1	18	60	1	1	30	30	0	1
7	35	0	1	19	70	1	1	31	40	0	1
8	65	0	1	20	30	0	1	32	15	1	0
9	95	0	1	21	60	0	1	33	135	1	1
10	35	0	1	22	61	0	0	34	20	1	0
11	75	0	1	23	65	0	1	35	40	1	0
12	45	1	1	24	15	1	0				

Source: Data from D. Collett, in Encyclopedia of Biostatistics, Wiley, New York, 1998, pp. 350–358. Predictors are D = duration of surgery, T = type of device.

- (a) Fit a main effects model using these predictors. Interpret parameter estimates.
- (b) Conduct inference about the D effect in the model in part (a).
- (c) Fit a model permitting interaction. Report the prediction equation for the effect of D when (i) T=1, (ii) T=0. Interpret.
- (d) Conduct inference about whether you need the interaction term in the model in (c).