Семинар 17

Варламов Антоний Михайлович

4 марта 2022 г.

1 Исследование многошаговых методов на устойчивость

$$\begin{cases} \frac{du}{dt} = f(u,t), \ t \in [0,T] \\ u(0) = u_0 \end{cases} \tag{1}$$

Для рассмотрения вопросов устойчивости от задачи (1) можно перейти к уравнению Далквиста, которое выглядит как:

$$\begin{cases} \frac{du}{dt} = \lambda u, \Re(\lambda) \leq 0\\ u(0) = u_0 \end{cases}$$
 (2)

Для схем, которые мы исследовали на устойчивость ранее, мы могли явным образом выразить функцию перехода между двумя лагами по времени:

$$y_{n+1} = R\left(\lambda \Delta t\right) \cdot y_n \tag{3}$$

При этом условие устойчивости:

$$|R(z)| \leqslant 1 \tag{4}$$

Данное неравенство накладывает ограничения на величину Δt при фиксированном значении λ .

В случае многошаговых методов, получить такую связь между двумя последовательными шагами по времени в общем случае невозможно. Рассмотрим в качестве примера явный метод Адамса второго порядка:

$$\frac{y_{n+1} - y_n}{\Delta t} = \frac{3}{2} f_n - \frac{1}{2} f_{n-1} \tag{5}$$

Применяя его для решения уравнения Далквиста получаем:

$$\frac{y_{n+1} - y_n}{\Delta t} = \frac{\lambda}{2} (3y_n - y_{n-1}) \tag{6}$$

$$y_{n+1} - y_n \left(1 + \frac{3}{2} \lambda \cdot \Delta t \right) + \frac{\Delta t \lambda}{2} y_{n-1} = 0 \tag{7}$$

Решим данное разностное уравнение. Искать решение будем в виде: $y_n = \Theta^n$. Получаем:

$$\Theta^2 - \Theta\left(1 + \frac{3}{1}z\right) + \frac{z}{2} = 0\tag{8}$$

Откуда получаем значения $\Theta_{1,2}$ для корней *характеристического многочлена*. Общее решение будет выглядеть следующим образом:

$$y_n = C_1 \Theta_1^n + C_2 \Theta_2^n$$
, в случае простых корней, (9)

$$y_n = C_1 \Theta^n + C_2 n \Theta^n$$
, если корень кратный. (10)

Тогда для ограниченности численного решения мы должны потребовать:

$$|\Theta_{1,2}| \leq 1$$
 — простые корни, (11)

$$|\Theta| < 1$$
 — кратные корни. (12)

Однако, производить оценку модуля корней может быть довольно затруднительно, поэтому есть альтернативный вариант. Будем искать границу области устойчивости исследуемого метода:

$$\frac{z}{2} - \frac{3}{2}z\Theta = \Theta - \Theta^2 \tag{13}$$

$$z\left(\frac{1}{2} - \frac{3}{2}\Theta\right) = \Theta\left(1 - \Theta\right) \tag{14}$$

$$z = \frac{\Theta\left(1 - \Theta\right)}{\frac{1}{2} - \frac{3}{2}\Theta}\tag{15}$$

Для точек границы области устойчивости должно выполняться:

$$|\Theta| = 1 \tag{16}$$

Значит, $\Theta = e^{i\varphi}, \varphi \in [0, 2\pi]$

$$z = \frac{e^{i\varphi} \left(1 - e^{i\varphi}\right)}{\frac{1}{2} - \frac{3}{2}e^{i\varphi}} \tag{17}$$

Таким образом, мы получили явное выражение $z(\varphi)$.

Рис. 1: Граница области устойчивости в комплексной плоскости, определяемая выражением $z=rac{e^{iarphi}\left(1-e^{iarphi}
ight)}{rac{1}{2}-rac{3}{2}e^{iarphi}}$

Перейдем к рассмотрению устойчивости решения систем ОДУ:

$$\frac{d\vec{u}}{dt} = A \cdot \vec{u} \tag{18}$$

Для простоты воспользуемся явным методом Эйлера:

$$\frac{\vec{y}_{n+1} - \vec{y}_n}{\Delta t} = A\vec{y}_n \tag{19}$$

Выражаем:

$$\vec{y}_{n+1} = (I + \Delta t \cdot A) \cdot \vec{y}_n \equiv S \cdot \vec{y}_n \tag{20}$$

$$\parallel \vec{y}_{n+1} \parallel \leqslant \parallel \vec{y}_n \parallel \tag{21}$$

Рассмотрим конкретный пример:

$$A = \begin{pmatrix} 98 & 198 \\ -99 & -199 \end{pmatrix} \tag{22}$$

$$\vec{y}_{n+1} = \begin{pmatrix} 1 + 98\Delta t & 198\Delta t \\ -99\Delta t & 1 - 199\Delta t \end{pmatrix} \cdot \vec{y}_n \tag{23}$$

Для решения такой системы разностных уравнений необходимо рассмотреть выражение:

$$\lambda(S) = 1 + \Delta t \lambda(A) \tag{24}$$

$$\begin{cases} \lambda_1 (A) = -1 \\ \lambda_2 (A) = -100 \end{cases} \tag{25}$$

Для данный собственных чисел определяем собственные вектора:

$$\begin{cases}
\vec{v}_{\lambda_1(A)} = \begin{pmatrix} -2\\1 \end{pmatrix} \\
\vec{v}_{\lambda_2(A)} = \begin{pmatrix} -1\\1 \end{pmatrix}
\end{cases} (26)$$

Тогда общее решение записывается в виде

$$\vec{y}_n = C_1 \begin{pmatrix} -2\\1 \end{pmatrix} (1 - \Delta t)^n + C_2 \begin{pmatrix} -1\\1 \end{pmatrix} (1 - 100\Delta t)^n$$
(27)

Для ограниченности такого решения нужно потребовать:

$$\begin{cases} |1 + \lambda_1 \Delta t| \leqslant 1\\ |1 + \lambda_2 \Delta t| \leqslant 1 \end{cases}$$
 (28)

$$\begin{cases} |1 - \Delta t| \leqslant 1\\ |1 - 100\Delta t| \leqslant 1 \end{cases} \tag{29}$$

Данная система сводится к:

$$\begin{cases} \Delta t \leqslant 2\\ \Delta t \leqslant \frac{1}{50} \end{cases} \Rightarrow \Delta t \leqslant \frac{1}{50} \tag{30}$$

Вид ограничений, который мы получили, совпадает со случаем применения явного метода Эйлера для уравнения Далквиста, где в качестве λ используется собственные значения матрицы A.

Рассмотрим еще один пример:

$$\begin{cases} \frac{d^2 u}{dt^2} + \omega^2 u = 0\\ u(0) = u_0\\ u'(0) = 0 \end{cases}$$
(31)

От данной системы перейдем к ОДУ вида:

$$\begin{cases}
\frac{du}{dt} = v \\
\frac{dv}{dt} = -\omega^2 u \\
u(0) = u_0 \\
v(0) = 0
\end{cases}$$
(32)

Исследуем на устойчивость явный метод Эйлера для решения этой системы:

$$\begin{cases} \frac{u_{n+1} - u_n}{\Delta t} = v_n \\ \frac{v_{n+1} - v_n}{\Delta t} = -\omega^2 u_n \end{cases} \Rightarrow A = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix}$$
 (33)

$$\lambda^2 + \omega^2 = 0 \Rightarrow \lambda_{1,2} = \pm i\omega \tag{34}$$

Из условия устойчивости:

$$|1 - z| \leqslant 1 \tag{35}$$

Получаем, что

$$|1 - \Delta t \cdot i\omega| \nleq 1 \tag{36}$$

Т.е. данный метод не является устойчивым.

Для общего случая:

$$\frac{d\vec{u}}{dt} = F\left(\vec{u}, t\right) \tag{37}$$

Необходимо найти матрицу Якоби J(F), а затем определить спектр данной матрицы, после чего перейти к исследованию устойчивости схемы для уравнения Далквиста:

$$\frac{du}{dt} = \lambda u,\tag{38}$$

$$u(0) = u_0, (39)$$

где в качестве λ нужно использовать собственные значения матрицы Якоби.

Рассмотрим пример:

$$\frac{du}{dt} = -u^2 \Rightarrow J = -2u \tag{40}$$

Для такого уравнения "спектр матрицы Якоби" зависит от времени. То есть условие на шаг по времени Δt может меняться. Учитывая, что при устойчивом счете величина решения не должна возрастать, максимальное значение решения достигается в начальный момент времени. То есть при исследовании устойчивости разностной схемы в качестве значения λ в уравнении Далквиста можно использовать $-2u_0$. Воспользуемся явным методом Эйлера для решения этого уравнения:

$$\frac{y_{n+1} - y_n}{\Delta t} = -y_n^2 \tag{41}$$

Условие устойчивости

$$|1 + \Delta t \left(-2u_0\right)| \leqslant 1 \tag{42}$$

Приходим к оценке:

$$\Delta t \leqslant \frac{1}{|u_0|} \tag{43}$$