CORRECTIONS TO "NOT LOCALLY COMPACT MONOTHETIC GROUPS"

 \mathbf{BY}

J. W. NIENHUYS

(Communicated by Prof. H. FREUDENTHAL at the meeting of September 26, 1970)

In section 9 there appears a mistake. Namely, by choosing m on S, defined by

$$m(\{x_i\}) = \sum_{i=1}^{\infty} |x_i| + |\sum_{i=0}^{\infty} x_i|$$

we see, that the coordinate functions on S may not be continuous, with respect to m. So m should also satisfy, that S_n is closed with respect to m. Then lemma 83 becomes completely trivial.

Furthermore, in 34, P_j is not defined for elements of G_{π} or G_{ϑ} , that are not in \mathbb{Z}^+ . However, P_j can be continuously extended to G_{π} or G_{ϑ} , in view of the remarks following 24.

Then, the proof of 71, is extremely unclear. So we elucidate that proof here.

Apparently, when a Cauchy net converges coordinate wise to

$$z = \sum_{i=0}^{\infty} a_i(i+1)!$$
 (positive reduced)

in $G_{\theta} = \lim \operatorname{proj} \mathbf{Z}/(n!)$, there are three possibilities.

- (a) From certain index i_0 on, $a_i = i + 1$, or, from a certain index i_0 on, $a_i = 0$, so $z \in \mathbb{Z}$.
- (b) From a certain index i_0 on, $a_i = 0$ or $a_i = i + 1$ for all i, but these possibilities keep alternating infinitely often.
- (c) For infinitely many i, $0 < a_i < i + 1$. We have to exclude (b) and (c).

Case (c) is easy. Let $B = \{i \in \mathbb{N} | 0 < a_i < i+1\}$, then $i \in B$ implies, there is a contribution p_i to the norm of z, whatever ϱ is chosen. B is infinite, so there exists $A \in \mathscr{F}$ with $A \subset B$; For case (b), let us call i a switching place if $a_i = 0$ and $a_{i-1} = i$. It is then proved that a switching place i also contributes p_i , whatever ϱ is. In case (b) there is obviously an infinite set B of switching places, so we can proceed as in (c).