

Fast Self-Energy Calculations & Point Charge Implementation in ELEQTRONeX

Teo Lara¹, Saurabh Sawant², Andy Nonaka²

¹Massachusetts Institute of Technology, ²Lawrence Berkeley National Laboratory

Abstract

The Non-Equilibrium-Green's Function (NEGF) technique is used in Carbon Nanotube (CNT) simulations. We build on ELEQTRONeX, a fast, parallelizable NEGF framework. Our work has two major aspects: **implementing fast methods for computationally complex self-energy calculations and adding external charge sources to allow for broader applications.**Our existing ELEQTRONeX framework uses an analytical self-energy solution, valid specifically for CNTs with basic lead configurations. To calculate more general self-energies, we use a tight-binding approximation, leading to an iterative and eigenfunction-based self-energy approach. Using randomly generated matrices, we show our methods are much more efficient than alternative direct inversions, allowing for faster and more complex NEGF geometries.

Motivated by discrepancies with experimental results, we also implement point charges as external boundary conditions, which we demonstrate to have drastic impacts in our simulations.

Motivation

Figure I: Parallel CNT array

- ♦ ELEQTRONeX is a framework for <u>ELE</u>ctrostatic-<u>Quantum TR</u>ansport modeling Of <u>Nanomaterials at eXascale</u>
 - Using NEGF formalism, it has been applied to misaligned CNT arrays, with applications in photon detection
- Extending solver for intricate materials requires faster self-energy calculations
- Point charge implementations are relevant for expanding modeling capabilities
- Effects of isolated charges near CNTs
- Effects of charged impurities within gate-oxide in topgate experiments

ELEQTRONeX Workflow

Figure II: Planar CNT configuration

- **CNT** is a conductor between source and drain V_{ds} , and over gate V_g
- ightharpoonup Current and conductance modified by varying V_q
- **♦ ELEQTRONeX** couples NEGF and electrostatics recursively
 - \succ Poisson's equation finds potential U from charge distribution $ho_{
 m in}$
 - > NEGF calculates charge distribution $ho_{
 m out}$ from potential m U
 - Coupled via Broyden's 2nd Algorithm
- lacktriangle At convergence, current I and conductance G are found
 - Inputs: Boundary Conditions (BCs), external charge densities ρ , and material transmission operators τ_j

Fast Self-Energies

- **♦** 2 methods to calculate faster based on tight-binding approximation
- Assume CNT layers affect only nearest neighbors
- I. Decimation Method
 - ightharpoonup Recursive calculation to invert tridiagonal $(E\boldsymbol{I} \boldsymbol{H}_j)^{-1}$ quickly
 - Desirable convergence for random matrices

Figure IV: Error of decimation technique for random matrices of varying size

- II. Eigenfunction Method
 - Solution Uses periodicity of CNT to write Bloch wave solutions; $H_{R \text{ cond }}(p) = H_{R \text{ cond }}(p+P) \rightarrow \left| \psi_{j}(p+P) \right\rangle = \lambda \left| \psi_{j}(p) \right\rangle$
 - ightharpoonup Solves eigenfunction problem to decompose: $g_{P,0}' = UC$
- Generalizable to any material via Hamiltonian condensation

	Time Complexity				
Decimation Method	$(P-1) \mathcal{O}(n^3) + (M+1) \mathcal{O}(n^3)$				
Eigenfunction Method	$(P-1)\mathscr{O}(n^3)+\mathscr{O}(2^3n^3)+\mathscr{O}(n^3)$				
Inversion of $H_{R \text{ cond}}$	$(P-1) \mathcal{O}(n^3) + \mathcal{O}(P^3n^3)$				
Inversion of H_R	$\mathcal{O}(N^3P^3n^3)$				
	P=2	P = 4	P = 8		
Decimation Method	0.0184	0.0117	0.0159		
Eigenfunction Method	0.0117	0.0148	0.0294		
Inversion of $H_{\rm R\ cond}$	0.5753	0.7039	1.583		
Inversion of H_R	3.146	20.64	136.2		

- lacktriangle Both methods are independent of N, the number of layers, instead they depending on the period size P and layer size n
- Faster surface Green's function calculations significantly accelerate NEGF method and allow for more complex materials
 - Modeling arbitrary lead geometries
 - Different material lead and device layers
 - Phonon transport
- Device defects and errors

Point Charge Implementation

- ♦ We model external point charges as steep Gaussians
 ► Using Poisson's equation, we
 - ightharpoonup Using Poisson's equation, we solve for potential $oldsymbol{U}$
 - Only one calculation per simulation, allows for any configuration without slowing iterative procedure
 - Ability to handle large number of charges

Figure V: CNT with point charge

Figure VI: ELEQTRONeX logo written with 200 point charges

Point Charge Results

Figure VII: Potential distribution over 100 nm CNT

Point charges create result in large SS differences

•	CNT Geometry	$G_{ON}(\mu S/\mu m)$	$G_{OFF}(\mu S/\mu m)$	SS (mV/dec
n	10 nm	64.61	9.869	1912
	10 nm Point Charge	197.7	33.26	2641
	100 nm	16.76	1.215e-3	22.852
	100 nm Point Charge	324.3	45.82	499.35

- Topgate configuration, with gate above CNT separated by oxide region, is common in experiments
- Discrepancy between simulated and experimental results due to trapped charge impurities in gate oxide
- Simulate charge distribution in oxide region
- Point charge density causes shift in G
- We suspect charge dependence on electrostatics affects slope

Figure VIII: Topgate CNT with trapped charges

Figure IX: Conductance plot for topgate configuration, $V_{ds} =$ -0.1 (V)

Acknowledgements

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. Research used resources from the National Energy Research Scientific Computing Center (NERSC).

CENTER FOR COMPUTATIONAL

SCIENCES AND ENGINEERING

LLLLLLL

