6

7

8

9

1

2

3

4

1

2

3

1

2

1

2

3

Atty. Dkt. No.: 039153-0441 (GO406)

WHAT IS CLAIMED IS:

1	1.	An integrated circuit fabrication process, the process comprising
2	the steps of:	
3		patterning a transistor gate pattern on a photoresist layer;
4		curing the transistor gate pattern with an electron beam;
5		trimming the cured transistor gate pattern; and

trimming the cured transistor gate pattern; and transferring the trimmed transistor gate pattern to a layer disposed below the photoresist layer to form a transistor gate, wherein the transistor gate includes a width and a length, and a variation of the width along the length of the transistor gate is reduced due to the curing step.

- 2. The process of claim 1, wherein the photoresist layer is comprised of a photoresist material typicaly used for at least one of 248 nm lithography, 193 nm lithography, and extreme ultraviolet light (EUV) lithography.
- 3. The process of claim 2, wherein the photoresist layer is comprised of a photoresist material of a type typically used for 193 nm and 248 nm lithography and is commercially available.
- The process of claim 1, wherein the final gate transistor width is 4. in the range of approximately 20-60 nm.
- 5. The process of claim 1, wherein the curing step includes exposing 1 the transistor gate pattern to the electron beam having a dose in the range of 2 approximately 100-100000 µC/cm². 3
 - 6. The process of claim 1, wherein the curing step includes exposing the transistor gate pattern to the electron beam having an accelerating voltage in the range of approximately 0.5-20 Kv.

1

2

1

2

1

2

1

2

1

2

3

1

2

3

4

1

2

Atty. Dkt. No.: 039153-0441 (GO406)

1	7. The process of claim 1, wherein the curing step includes changing
2	at least one of a vertical etch rate, a horizontal etch rate, and a minimum
3	extension erosion rate associated with the transistor gate pattern.

8. A method of forming a transistor having a gate width of less than 70 nm, the method comprising the steps of:

E-beam radiating a gate pattern of a photoresist layer;
trimming the E-beam eradiated gate pattern of the photoresist
layer; and

- etching a polysilicon layer disposed below the photoresist layer in accordance with the trimmed gate pattern to form a gate of the transistor, the gate width being less than 70 nm.
 - 9. The method of claim 8, wherein the E-beam radiating step uses an electron beam at a dose in the range of approximately 100-100000 μ C/cm².
 - 10. The method of claim 9, wherein the electron beam is provided at an accelerating voltage in the range of approximately 0.5-50 Kv.
 - 11. The method of claim 9, wherein a uniformity of the gate width is 4 to 6 nm over 3 nm segment.
 - 12. The method of claim 9, wherein the photoresist layer is comprised of a material selected from a group including acrylate-based polymer, alicyclic-based polymer, and phenolic-based or polystyrene-based polymer.
 - 13. The method of claim 9, wherein the E-beam radiation step includes affecting at least one of a vertical etch rate, a horizontal etch rate, and a minimum extension erosion rate associated with the gate pattern of the photoresist layer.
 - 14. The method of claim 9, wherein the E-beam radiation step achieves an enhancement interim rate for a commercially available resists

1

2

6

2

1

2

1

2

3

1

1

2

Atty. Dkt. No.: 039153-0441 (GO406)

- using lithography processes with either 248 nm and 193 nm wavelength of
 light.
 - 15. An integrated circuit, comprising:
 - an isolation region;

gate feature on a photoresist layer.

- a transistor surrounded by the isolation region, wherein the transistor includes a gate, a critical dimension of the gate being less than approximately 60 nm, and the gate being defined by an E-beam eradiated
- 16. The integrated circuit of claim 15, wherein the E-beam eradiated
 - gate feature on the photoresist layer is formed by an electron beam exposure.
 - 17. The integrated circuit of claim 15, wherein a uniformity of the critical dimension along a length of the gate is 4 to 6 nm over a 3 nm segment.
 - 18. The integrated circuit of claim 15, wherein the photoresist layer is comprised of a material selected from acrylate-based polymer, alicyclic-based polymer, and polystyrene and phenolic-based polymer.
- 1 19. The integrated circuit of claim 18 wherein the critical dimension 2 is between 20 and 60 nm.
 - 20. The integrated circuit of claim 18 wherein uniformity of the critical dimension along a length of the gate is 4 to 6 more a 3 nm segment.