ı	
	数字信号处理 I
	Digital Signal Processing
	第三章 — 快速停立叶变接 (FET)

			®	西安交通大學			
1	通过第二章的学习,	, 我们知道有限	长序列的一个重要特点是其	ţ			
频均	(也可以离散化,即	可以进行DFT变换	。DFT变换在数字信号处理	₹			
中日	有很重要的地位, 何	列如FIR滤波器的	设计,以及信号的频谱分	析			
都區	都离不开DFT运算。						
	尽管如此, 但在很	长一段时间里, 1	由于DFT运算的冗长和繁杂	,			
DFT	并未得到真正的运用	。直到1965年,	快速傅里叶变换(FFT)身	F -			
法自	1出现使得DFT的运算	大大简化, DFT:	才真正在实际中得到广泛层	5月。			
本	章主要内容:						
	3.1 DFT运算的特点	3.2	按时间抽取				
	3.3 按頻率抽取	3.4	IDFT的运算方法				
	3.5 任意基数的算法	3.6	Chirp-z变换				
	3.7 线性卷积的FFT	算法 3.8	FFT的流水线工作原理				
	本章	主要内容	9/21/2022	2			

	(金) 百安文道大學
■ 3.1 DFT运算的特点	NAME AND PROPERTY AND PARTY.
我们先来计算一下,对有限长序列x(n)进行一次DFT运算的	9工作量:
$X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n)W_N^{nk}, \qquad k = 0,1,\dots,$	N-1
一般, $\chi(n)$ 和 W_N^m 都是复数。因此, 每计算一个 $\chi(k)$ 值,	必须进行N次
复数相乘和N-1次复数相加。X(k)共有N个点,因此要完成	全部DFT运算
需要进行N ² 次复数相乘和N(N-1)次复数相加。每一个复数	相乘包括4个
实数相乘和2个实数相加。	
$X(k) = \sum_{n=0}^{N-1} \{ (\text{Re}[x(n)] \text{Re}[W_N^{nk}] - \text{Im}[x(n)] \text{Im}[W_N^{nk}] \}$	D
$+ j(\operatorname{Re}[x(n)]\operatorname{Im}[W_N^{nk}] + \operatorname{Im}[x(n)]\operatorname{Re}[W_N^{nk}]$	D}
这样,每运算一个X(k)值需要进行4N次实数相乘和2N-	
次实数相加。因此整个DFT运算需要4N ² 次实数相乘和2	2N(2N-1)次实数
相加。可见,DFT的运算量与N ² 成正比。	
3.1 DFT运算的特点 9/	/21/2022 3

_	بين ا	
П	3.2 按时间抽取	あ安文道大学 XXXX JIAOTONG ENEVERSITY
	为了将一个N点的DFT运算分解,假定 $N=2^M$,其中M为正整数。 首先,将序列x(n)分解为两组,偶数项为一组,奇数项为一组。 $\begin{cases} x(2r)=x_1(r) \\ x(2r+1)=x_2(r) \end{cases} r=0,1,\cdots,N/2-1$	
	等DFT运算也相应分为两组: $X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n)W_N^{nk} = \sum_{n=0}^{N-1} x(n)W_N^{nk} + \sum_{n=0}^{N-1} x(n)W_N^{nk}$	
i	$= \sum_{r=0}^{N/2-1} x(2r) W_N^{2rk} + \sum_{r=0}^{N/2-1} x(2r+1) W_N^{(2r+1)k} = \sum_{r=0}^{N/2-1} x_1(r) W_N^{2rk} + W_N^{k/2-1} x_2(r)$ $\Leftrightarrow \mathcal{T} \qquad W_N^{2n} = e^{-\frac{2\pi}{N} 2n} = e^{-\frac{2\pi}{N/2} n} = W_{N/2}^{n} \qquad \text{if } \forall \lambda$	W_N^{2rk}
	3.2 按时间抽取 9/21/2022	5

● お子文名人	李
$X(k) = \sum_{r=0}^{N/2-1} x_1(r) W_N^{2rk} + W_N^k \sum_{r=0}^{N/2-1} x_2(r) W_N^{2rk}$	
$= \sum_{r=0}^{(2-1)} x_1(r) W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(2-1)} x_2(r) W_{N/2}^{rk}$ $= X_1(k) + W_N^k X_1(k), k = 0, 1, \dots, N-1 (3-2)$	
于是,一个N点的DFT被分解为两个N/2点的DFT了,这两个N/2点的DFT再按照式(3-2)合并成一个N点DFT。	
$X_1(k),\; X_2(k)$ 只有N/2个点,而X(k)却有N个点,要用 $X_1(k),\; X_2(k)$	
表达全部X(k)值,还必须利用W系数的周期特性。	
$W_{N/2}^{r(N/2+k)} = W_{N/2}^{rk} \longrightarrow X_1(N/2+k) = \sum_{r=0}^{N/2-1} x_1(r) W_{N/2}^{r(N/2+k)} = \sum_{r=0}^{N/2-1} x_1(r) W_{N/2}^{rk}$	
3.2 按时间抽取 9/21/2022	6

	FFT算法	与直接算法的运算	量比较	
M	N	N ^e	NlegiN	Nº/(Nlog/N
1	2	4	2	2.0
2	4	16	8	2.0
3	8	64	24	2.7
4	16	256	64	4.0
5	32	1024	160	6.4
6	64	4096	384	10.7
7	128	16384	896	18.3
8	256	65536	2048	32.0
9	512	262144	4608	56.9
10	1024	1048576	10240	102.4
11	2048	4194304	22528	186.2
12	4096	16777216	49152	341.3


```
void inverse( double a[], int len, int number_of_bita) {

/* a: 插入的被接触: len: a的长度
number_of_bita: 进行两位侧置的位数。len = 2 number_of_bita;

*/

unsigned in, out, /*-进一出两个被持*/last_bit, i, j;

for(i = 0; i < len; i++) {

    out = 1;

    in = 0;

    for(j = 1; j <= number_of_bita; j++) {

        last_bit = out & 1; /*承出被型汁的泵的一位*/

        out >>= 1; /*出被冲方形一位*/

        in = in << l + last_bit; /*入极冲上带一位, 并带入出被冲的泵布一位*/

        if (i < in) {

        double temp:

        temp = a[i];

        a[i] = a[in];

        a[i] = a[in];

        return;

    }

    return;

}

3.2 按时间抽取

9/21/2022

13
```

```
3.3 按频率拍取

(分然假定 N=2^M。頻率抽取法是将输入序列接前后对半分开,这样可将N点DFT写成前后两部分。
X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{nk} + \sum_{n=N/2}^{N-1} x(n)W_N^{nk}
= \sum_{n=0}^{N/2-1} x(n)W_N^{nk} + \sum_{n=0}^{N-1} x(n+N/2)W_N^{(n+N/2)k}
= \sum_{n=0}^{N/2-1} [x(n)+W_N^{(N/2)k}x(n+N/2)]W_N^{nk}
由于 W_N^{(N/2)} = -1,以W_N^{(N/2)k} = (-1)^k, k为偶数时(-1)^k = 1, k为奇数时(-1)^k = -1 因此,X(k)可进一步分解为偶数组和奇数组。
```

```
● 百步克至大学
X(k) = \sum_{n=0}^{N/2-1} [x(n) + (-1)^{k} x(n+N/2)] W_{N}^{nk}
X(2r) = \sum_{n=0}^{N/2-1} [x(n) + x(n+N/2)]W_N^{2m}
      = \sum_{n=0}^{N/2-1} \left[ x(n) + x(n+N/2) \right] W_{N/2}^{nr} = \sum_{n=0}^{N/2-1} \frac{x_1(n)}{A} W_{N/2}^{nr}
                                                                        (3-5)
X(2r+1) = \sum_{n=0}^{N/2-1} [x(n) - x(n+N/2)] W_N^{(2r+1)n}
      = \sum_{n=0}^{N/2-1} [x(n) - x(n+N/2)] W_N^n W_{N/2}^{nr} = \sum_{n=0}^{N/2-1} \underline{x_2(n)} W_{N/2}^{nr}
                                  x_1(n)、x_2(n)可用下图所示的蝶形运算来表示:
  式(3-5)、(3-6)表示的正
是两个N/2点的DFT运算,这
                                           x(n)
                                                         x(n) + x(n + N/2) = x_1(n)
样同样将一个N点的DFT分解
                                                     W_N^n = [x(n) - x(n+N/2)]W_N^n = x_2(n)
为两个N/2点的DFT了。
                                   x(n+N/2)
                                               频率抽取法的蝶形运算
                       3.3 按频率抽取
```


(♠) 843	道大學
3.4 IDFT的运算方法	
$x(n) = IDFT [X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}, n = 0,1,\cdots, N-1$ $X(k) = DFT [x(n)] = \sum_{n=0}^{N-1} x(n) W_N^{-nk}, k = 0,1,\cdots, N-1$ FFT 算法 两样 可以用于IDFT 连算、 简称为IFFT即快速 帳里 中反夸	
换。只要把DFT运算中的每一个系数 W_{ν}^{mk} 改为 W_{ν}^{mk} ,并且最后再乘以	
常数1/N、那么前面所讨论的时间抽取和频率抽取的FFT算法都可以直	
接拿来运算IDFT, 只是在命名上要颠倒一下, 如时间抽取的FFT运算	
用于IDFT时,应称为频率抽取IFFT。	
另外,在IFFT运算中,经常将常数1/N分解为 (1/2) ^M ,并且在M级	
运算中、每级运算都分别乘一个1/2因子,这样就得到IFFT的两种基	
本蝶形运算结构。	
1 may est atta	
3.4 IDFT的运算方法 9/21/2022	18

	● 百步文至大學
另外还有一种IFFT算法可以完全不用改动FFT的	的程序。
$x^{*}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^{*}(k) W_{N}^{nk}$	
$\Rightarrow x(n) = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^*(k) W_N^{nk} \right]^* = \frac{1}{N}$	$\frac{1}{4}\left\{DFT[X^*(k)]\right\}^*$
这就是说,如果我们先将X(k)取共轭变换	
以-1, 然后就可以直接访问FFT的子程序, 最 次共轭变换并乘以常数1/N即可得到x(n)值。i	
从开北又秋灯水风巾吸1/14叶7行45以11/11c。3 共用一个子程序块,这在使用通用计算机时是	
3.4 IDFT的运算方法	9/21/2022 20

			(金) 百安京道)
3.5	任意基数	的算法	
4	、节将讨论N的数值	是以2为基数的FFT算法 不是2的整数次幂时的: 般有两种处理办法:	
	有限长序列补零		最邻近的一个2 [™] 数值。 [∞]),只是频谱的采样点数增加了。 任意数为基数的FFT算法来计算。
	下面我们来讨论。	一下以任意数为基数的	FFT算法的基本原则。
			E本思想就是要将DFT的运算量尽
	量分小。 因此 . 加里]	N可以分解为两个整数p与	q 的乘积,即 $N = p \cdot q$,也希望
			FT,这样就可以减小运算量

The state of the s	大字
後h(n) 的点长度为 N_1 , 而信号x(n)的点长度为 N_2 , 即 $h(n) = \begin{cases} h(n), & 0 \le n \le N_1 - 1 \\ 0, & n < 0, n > N_1 - 1 \end{cases} x(n) = \begin{cases} x(n), & 0 \le n \le N_2 - 1 \\ 0, & n < 0, n > N_2 - 1 \end{cases}$	
卷积结果 $y(n)$ 也是一个有限长序列,点长度为 $N=N_1+N_2-1$,即	
$y(n) = \begin{cases} y(n), & 0 \le n \le N - 1 \\ 0, & n < 0, n > N - 1 \end{cases}$	
根据上页FIR滤波器的模模型结构,可计算出线性卷积公式的运算量:	
而对于线性相位滤波器,由于其 $h(n)$ 具有偶对称 或奇对称特性,即 $x(n)$ z^{-1} z^{-1}	
$h(n) = \bigoplus_{i \in N_1 - 1 - n}$ 这里加权系数减少了一半, 所以线性相位滤波器,相	
乘次数 $m_d = N_1 N_2 / 2$ 。	27

	● 6步炎	至大学
	重叠相加法的整个运算分五步完成:	
	(1) 事先准备好滤波器的参数 $H(k) = DFT[h(n)]$, N 点	
	(2) 用N点FFT运算 $X_i(k) = DFT[x_i(n)]$	
	(3) $Y_{i}(k) = X_{i}(k)H(k)$	
	(4) 用N点IFFT运算 $y_i(n) = IDFT[Y_i(k)]$	
	(5) 将重叠部分相加起来 $y(n) = \sum_{i=1}^{\infty} y_i(n)$	
	二、重叠保存法	
١.	如果将上面的分段序列中补零的部分不是补零而是保存原	
	来的输入序列值,那么显然圆周卷积以后将出现混淆现象。这	
l i	个混叠部分只发生在 y _i (n) 的起始一段:	
	N=1 () () () () ()	
	$y(n) = x_i(n) \otimes h(n) = \sum_{i=0}^{N-1} x_i(m) h((n-m))_N R_N(n)$	
	m-v	
	3.7 线性卷积的FFT算法 9/21/2022	33

		● 百安 克道大學
	3.8 FFT的流水线工作原理	
	在许多信号实时处理中,要求信号输入的同时,及时地、道信号的FFI运算,完成一个N点FFI运算需 m,= \(^1\) cog_N次复工作时,计算机的速度至少必须高于每果并间隔执行 m,/N=复乘,当信号速率很高时,数字或件往往难以达到那样高的运法之一就是在设计专用FFT处理器时采用流水线工作方式。	乘,因此实时 $\frac{1}{2}(\log_2 N)$ 次
i	FFT算法的一个重要特点是具有分级运算结构,因 高运算速度可以在每级运算中采用单独的运算器,第一 算完后送给第二级,自己再算新来的数据,第二级算完	级运算器
	级,如此形成流水线的工作方式。	H 162 /14
	3.8 FFT的流水线工作原理 9/2	1/2022 36

		● 百步克通大	P.	
	同样,第二级、第三级的工作由于蝶形结配对的要求, 工作一半以后才能开始工作,如果各级都按同一节拍工作,	则每一级都可以		
	在半个周期的时间内完成各自的运算,因而整个运算可以			
	一个N点FFT流水线运算,需要 $M = \log_2 N$ 级运算,要求1次乘法/每采样周期就够了,从而大大降低了对数字 1 或者同样的硬件可以完成更高速度的信号处理。			
	这样做的代价是运算器需要增加M倍,存储单元也 另外,最后所获得的结果也必须有一定的时延。	要增加约M/2倍。		
	从FFT流水线工作示意图中可以看到,每级运算器实际	。 上只有一半时间在工		
作,工作效率只有一半,这是因为,一个 N 点 FFT 要求运算速度为 $J_{\log_2 N}$ 次乘/				
采样周期,这样的运算量被速度为 1 次乘 $/$ 采样周期的运算器分担时,只要 $\frac{1}{2}\log_2 N = 1$				
H	个就够了,或者说由 _{og。N} 个运算器分担的话,每个运算器的速度只要目前的一半 就够了,这说明即使采用流水线方案也还有一半的潜力可以挖掘,这种潜力往往			
	可以根据处理信号的具体要求加以进一步利用。			
	3.8 FFT的流水线工作原理	9/21/2022 39	9	