Methodology

FANG: Total loss function

- This is achieved by optimizing three concurrent losses:
 - Unsupervised Proximity Loss
 - Self-supervised Stance Loss
 - Supervised Fake News Detection Loss
- Define the total loss by linearly combining these three component losses:
- $\mathcal{L}_{total} = \mathcal{L}_{prox} + \mathcal{L}_{stance} + \mathcal{L}_{news}$

Methodology

FANG: Total loss function

Algorithm 1: FANG Learning Algorithm **Input**: The social context graph G = (A, S, U, E)The news labels Y_A , and the stance labels $Y_{U,A,C}$ **Output:** FANG-optimized parameters θ Initialize θ ; **while** θ has not converged **do for** each news batch $A_i \subset A$ **do for** each news $a \in A_i$ **do** $U_a \leftarrow$ users who have engaged with a; $z_a \leftarrow \text{Equation (2)};$ $z_s \leftarrow GraphSage(s);$ **for** each user $u \in U_a$ **do** $z_u \leftarrow GraphSage(u);$ $\mathcal{L}'_{stance} \leftarrow \text{Equation (4)};$ end end $\mathcal{L}'_{news} \leftarrow \text{Equation (5)};$ end **for** each news–source or user sub-graph G' **do for** *each entity* $r \in G'$ **do** $P_r \leftarrow \text{positive samples of } r \text{ in } G';$ $N_r \leftarrow$ negative samples of r in G'; $\mathcal{L}'_{prox.} \leftarrow \text{Equation (3)};$ end $\mathcal{L}_{total} \leftarrow \text{SUM}(\mathcal{L}'_{stance}, \mathcal{L}'_{news}, \mathcal{L}'_{prox.});$ $\theta \leftarrow \text{Backpropagate}(\mathcal{L}_{total});$ end return θ