Tópicos de Matemática

 3° teste – 13 jan 2023

Lic. em Ciências de Computação - 1º ano

duração: duas horas

REFULUCA PROPUSTA

GRUPO I. Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1. Existem conjuntos A para os quais qualquer relação binária simétrica neles definida é transitiva.

VX F□

2. Para qualquer relação de equivalência R em $A = \{1, 2, 3, 4\}$, se $2 \in [1]_R \cap [3]_R$, então, $(3,1) \in R$.

V**⊠** F□

3. O conjunto $\{\{1,2\},3,\{4,5\}\}$ é uma partição de $B=\{1,2,3,4,5\}$.

V□ F⊠

4. Para quaisquer conjuntos não vazios A e B, $\omega_{B\setminus A}\cup\omega_{A\setminus B}$ é uma relação de equivalência em $A \cup B$.

V□ Fጆ

5. A relação binária $\theta = \{(1,2), (3,1), (2,1)\}$ em $A = \{1,2,3,4\}$ é uma relação antissimétrica.

V□ F\

6. A relação $R = \{(2,1), (1,3), (2,3), (1,1), (2,2), (3,3)\}$ é uma relação de ordem total em $A = \{1, 2, 3\}.$

VX F□

7. Para qualquer c.p.o. (A, \leq) e qualquer subconjunto não vazio X de A, se X admite elemento máximo, então, $A \setminus X$ admite elemento mínimo.

V□ F🏋

8. Para quaisquer c.p.o.'s $A \in B$ e qualquer função isótona sobrejetiva $f: A \to B$, se m é elemento máximo de A então f(m) é elemento máximo de B.

V X F□

GRUPO II. Considere o conjunto $A = \{a, b, c\}$. Dê exemplo, ou justifique que não existe, de:

1. Uma relação binária θ em A que seja simétrica mas não transitiva;

Nete grupo, le resoluce na outra resa. Basta Substituir 1 - a

2. Uma relação de equivalência \mathcal{R} em A com 4 elementos;

3. Uma relação de ordem parcial \leq em A tal que $\leq = \leq_d$;

4. Uma relação de ordem parcial \leq em A tal que no c.p.o. A não existe $\inf \varnothing$ nem $\sup \varnothing$.

GRUPO III. Sejam A um conjunto e ρ a relação binária definida em $\mathcal{P}(A) \times A$ por $(X,a) \ \rho \ (Y,b) \Leftrightarrow \{a\} \cup X = \{b\} \cup Y \qquad (a,b \in A,\ X,Y \subseteq A).$

1. Mostre que ρ é uma relação de equivalência em $\mathcal{P}(A) \times A$.

Ver vivolus no orto teste. Basto troop as coordenadas da pares (na outre verses habalho. or em AXPIA) e agui habalho. or em P(A) X A)

2. Dado $a \in A$, determine as classes $[(\emptyset, a)]_{\rho}$ e $[(A, a)]_{\rho}$	2.	$Dado\ a \in A,$	determine	as classes	$[(\emptyset,a)]_{\rho}$	e[(A,a)]
--	----	------------------	-----------	------------	--------------------------	----------

3. Determine em que condições se tem
$$[(\emptyset,a)]_{\rho}\cap [(A,a)]_{\rho}\neq \emptyset$$
.

4. Para
$$A=\{1,2\}$$
, indique o conjunto quociente definido por $\rho.$

GRUPO IV. Considere o c.p.o. (A, \leq) definido pelo diagrama de Hasse apresentado. Indique, caso exista:

1. Maj $\{2,4,5,7\}$;

Nd existe MEA t.g. DEN MYEN M SEX MYEN
Le e' meximal

2. $\inf\{2,4\}$:

nd evicte.

3. $\inf \emptyset \in \sup \emptyset$;

inf
$$\phi = mox A$$
 no existe
 $sp \phi = min A = 3$

4. Um subconjunto X de A que não admita supremo;

5. Um subconjunto X de A com 3 elementos maximais e 4 elementos minimais;

5

6. um elemento x de A tal que $\{3,5,9,x\}$ seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.

