DATABASE MANAGEMENT SYSTEM LABORATORY COURSE CODE: BCSE2073

Lab Manual

for

BACHELOR OF

Engineering & Technology

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA UTTAR PRADESH

NAME-NEERAJ SINGH SEC-6 21SCSE1011675 SUBMITTED TO-SWATI SHARMA MA'AM

Department of Computer Science & Engineering

Sr. No.	Title of Lab Experiments				
1.	Implement Data Definition language Statements.				
2.	Implement Data Manipulation Statements.				
3.	Implement SELECT command with different clauses.				
4.	Implement various type of Integrity Constraints on database.				
5.	Implement SINGLE ROW functions (Character, Numeric, Date functions) and GROUP functions (avg, count, max, min, sum).				
6.	Implement various type of SET OPERATORS (Union, Intersect, Minus) and JOINS.				
7.	Implement the concept of grouping of Data and Subqueries.				
8.	Implement the concept of Data Control Language (DCL), Transaction Control Language (TCL).				
9.	Implement Simple and Complex View.				
10.	Write a PL/SQL block to satisfy some conditions by accepting input from the user.				
11.	Write a PL/SQL block for greatest of three numbers using IF AND ELSEIF				
12.	Write a PL/SQL block for summation of odd numbers using for LOOP				
13.	Write a PL/SQL Procedure for GCD Numbers				
14.	Write a PL/SQL Procedure for cursor implementation				
15.	Write a PL/SQL block to implementation of factorial using function				
Value 2	Value Added Experiments				
16.	Create a Database for Banking Sector and implement various queries on it.				
17.	Create a Database for Customer Sale/purchase and implement various queries on it.				

EXPERIMENT DETAILS

Experiment 1

Title Data Definition Language

Objective Study of Data Definition language commands. - Create table, Alter Table, Drop Table, Rename Table.

Syntax

CREATE TABLE

```
CREATE TABLE Emp1 (
EID int,
EName Char,
Edept char,
EDOB date,
Salary int
);
ALTER TABLE Emp1 ADD location int;
DROP TABLE Emp1;
RENAME Emp1 To Empolyee;
TRUNCATE TABLE Empolyee;
```

output-Empl

EID	EName	Edept	EDOB	Salary	age	location	
1	neeraj	cs	0	4000000	20	delhi	

Experiment 2

Title Data Manipulation Language Statements.
Objective Study of Data Manipulation Statements.

Syntax

```
SELECT * FROM Student;
```

INSERT INTO Student (Stu_id, Stu_Name, Stu_Marks, Stu_Age) VALUES (104, Anmol, 89, 19);

UPDATE Product SET Product_Price = 80 WHERE Product_Id = 'P102' ;
DELETE FROM Product WHERE Product_Id = 'P202' ;

Student_ID	Student_Name	Student_Marks
BCA1001	Abhay	85
BCA1002	Anuj	75
BCA1003	Bheem	60
BCA1004	Ram	79
BCA1005	Sumit	80

Experiment 3

Title SELECT Command Objective Study of SELECT command with different clauses. Syntax Syntax of SQL SELECT Statement:

SELECT * **FROM** Student **WHERE** Stu_Marks = 80;

Student_ID	Student_Name	Student_Marks
BCA1001	Abhay	80
BCA1003	Bheem	80
BCA1005	Sumit	80

SELECT COUNT (Car_Name), Car_Price **FROM** Cars_Details **GROUP BY** Car_Price;

	•	_	 	_		
Count (Car_Name)					Car_Price	
2					1000000	
2					900000	

SELECT * FROM Employee Order ORDER BY Emp Salary DESC:

Emp_Id	 Emp_Name	Emp_Salary	Emp_City
204	Anuj	90000	Goa
203	Rashet	80000	Jaipur
205	Sumit	50000	Delhi

```
Keys
Title
Objective Study of various type of Integrity Constraints.
Syntax
SQL CREATE TABLE + CONSTRAINT Syntax
CREATE TABLE PersonsNotNull
P Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
CREATE TABLE Persons
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P_Id)
)
CREATE TABLE Orderr
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)
```

output

Persons

P_Id	LastName	FirstName	Address	City
empty				

PersonsNotNull

P_Id	LastName	FirstName	Address	City
empty				

Orderr

O_ld	OrderNo	P_ld
empty		

Experiment 5

Title: SINGLE ROW functions and Group functions
Objective: Study of SINGLE ROW functions (Character, Numeric,
Date functions) and GROUP functions (avg, count, max, min, sum).
Syntax

SELECT first_name, last_name, salary, NVL (commission_pct,0) FROM employees WHERE rownum < 5;

output

FIRST_NAM	E LAST_NAME	SALARY	NVL(COMMISSION_PCT,0)
Steven	King	24000	0
Neena	Kochhar	17000	0
Lex	De Haan	17000	0
Alexander	Hunold	9000	0

Some of the commonly used aggregate functions are as below -

SUM([ALL | DISTINCT] expression)

AVG([ALL | DISTINCT] expression)

COUNT([ALL | DISTINCT] expression)
COUNT(*)
MAX(expression)
MIN(expression)
Post Lab Assignment (If Any)

Experiment 6(a)

Title SET Operators.

Objective Study of various type of SET OPERATORS (Union, Intersect, Minus) and Various type of JOINS.

Syntax

mysql> SELECT *FROM t_students UNION SELECT *FROM t2_students;

ID	Name	Department	Salary	Year_of_Experience
1	Soniya Jain	Udaipur	89	Physics
2	Harshada Sharma	Kanpur	92	Chemistry
3	Anuja Rajput	Jaipur	78	History
4	Pranali Singh	Nashik	88	Geography
5	Renuka Deshmukh	Panipat	90	Biology

mysql> SELECT *FROM t_employees INTERSECT SELECT *FROM t2_employees;

ID	Name	Hometown	Percentage	Favourite_Subject
2	Abhishek Pawar	Production	45000	1
4	Shubham Mahale	Accounts	57000	2
5	Bhushan Wagh	R&D	75000	2

mysql> SELECT *FROM t_employees MINUS SELECT *FROM t2_employees;

ID	Name	Department	Salary	Year_of_Experience
1	Aakash Singh	Development	72000	2
3	Pranav Deshmukh	HR	59900	3
5	Sunil Kulkarni	Development	87000	3

Title Subqueries
Objective Study and implement the concept of sub queries.
Syntax:

The subquery with a SELECT statement will be:

SELECT *

FROM EMPLOYEE

WHERE ID IN (SELECT ID

FROM EMPLOYEE

WHERE SALARY > 4500);

ID	NAME	AGE	ADDRESS	SALARY
4	Alina	29	UK	6500.00
5	Kathrin	34	Bangalore	8500.00
7	Jackson	25	Mizoram	10000.00

INSERT INTO table_name (column1, column2, column3....)
SELECT *
FROM table_name

WHERE VALUE OPERATOR

UPDATE EMPLOYEE

SET SALARY = SALARY * 0.25

WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

WHERE AGE >= 29);

ID	NAME	AGE	ADDRESS	SALARY
1	John	20	US	2000.00
2	Stephan	26	Dubai	1500.00
3	David	27	Bangkok	2000.00

Title Control languages

Objective Study and implement the concept of Data Control Language (DCL), Transaction Control Language (TCL).

Syntax for writing GRANT command:

```
GRANT <privileges> ON <object name>
TO <user/roles>
```

Syntax for writing REVOKE command:

```
REVOKE <privileges> ON <object name>
FROM <user/roles>
```

Example of DCL in SQL:

Examples using GRANT command

```
GRANT SELECT, INSERT

ON product_details

TO Icona; //Gives access to SELECT and INSERT in the database to Icona

GRANT ALL PRIVILEGES

ON product_stock

TO Ancy; //Gives all privilege access to Ancy

GRANT ALL

ON product_stock

TO PUBLIC; //Gives all privilege access to anybody working with the database
```

Examples using REVOKE command

```
REVOKE SELECT, INSERT

ON product_details

FROM Icona; //Retains access from Icona to SELECT and INSERT

REVOKE ALL PRIVILEGES

ON product_stock

FROM Ancy; //Retains all access from Ancy

REVOKE ALL

ON product_stock

FROM PUBLIC; // Retains access from anybody using the database
```

Title Views
Objective Study of Simple and Complex View.
Syntax

SQL CREATE VIEW Syntax
CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Renaming the columns of a view:-

Syntax:-

CREATE VIEW viewname AS SELECT newcolumnname.... FROM tablename WHERE columnname=expression_list;

Selecting a data set from a view-

Syntax:-

SELECT columnname, columnname FROM viewname WHERE search condition;

Destroying a view-

Syntax:-

DROP VIEW viewname;

Experiment 10

Title PL/SQL Program for Addition of Two numbers
Objective PL/SQL Control Structure provides conditional tests, loops, flow
control and branches that let to produce well-structured programs.
Syntax

```
SQL>set serveroutput on
SQL>declare
1 a number;
2 b number;
3 c number;
4 begin
5 a: =&a;
6 b: = \&b;
7 c: =a+b;
8 dbms_output_line ('sum of'||a||'and'||b||'is'||c);
9 end:
10 /
INPUT
Enter value for a: 23
old 6: a:=&a;
new 6: a:=23;
Enter value for b: 12
old 7: b:=&b;
new 7: b:=12;
OUTPUT sum of 23 and 12 is 35
```

PL/SQL procedure successfully completed.

Experiment 11

Title PL/SQL block for greatest of three numbers using IF AND ELSEIF Objective PL/SQL Control Structure provides conditional tests Syntax

```
SQL>set server output on
SQL> declare
2 a number;
3 b number;
4 c number;
5 begin
```

```
6 a:=&a;
7 b:=&b;
8 c:=&c;
9 if(a>b)and(a>c) then
10 dbms_output.put_line('A is maximum');
11 else if(b>a)and(b>c)then
12 dbms_output.put_line('B is maximum');
13 else
14 dbms_output.put_line('C is maximum');
15 end if;
16 end;
17 /
```

INPUT

```
Enter value for a: 21 old 7: a:=&a; new 7: a:=21; Enter value for b: 12 old 8: b:=&b; new 8: b:=12; Enter value for b: 45 old 9: c:=&b; new 9: c:=45;
```

OUTPUT

C is maximum PL/SQL procedure successfully completed.

Experiment 12

Title PL/SQL block for summation of odd numbers using for LOOP Objective PL/SQL Control Structure provides conditional tests, loops, flow control

and branches that let to produce well-structured programs. Syntax

SQL>set server output on SQL> declare

```
2 n number;
3 sum1 number default 0;
4 end value number;
5 begin
6 end value:=&end value;
7 n = 1:
8 for n in 1..endvalue
9 loop
10 if mod(n,2)=1
11 then
12 sum1:=sum1+n;
13 end if;
14 end loop;
15 dbms_output.put_line('sum ='||sum1);
16 end;
17 /
INPUT
Enter value for end value: 4
old 6: end value:=&end value;
new 6: end value:=4;
OUTPUT
sum = 4
PL/SQL procedure successfully completed.
```

Title PL/SQL Procedure for GCD Numbers
Objective PL/SQL Control Structure provides conditional tests.
Syntax
create or replace procedure pro is

```
a number(3);
b number(3);
c number(3);
d number(3);
```

```
begin a:=&a;
b:=&b;
if(a>b) then c:=mod(a,b);
if(c=0) then
dbms_output.put_line('GCD is');
dbms_output.put_line(b);
else
dbms_output.put_line('GCD is');
dbms_output.put_line(c);
end if;
else d:=mod(b,a);
if(d=0) then
dbms_output.put_line('GCD is');
dbms_output.put_line(a);
else
dbms_output.put_line('GCD is');
dbms_output.put_line(d);
end if;
end if;
end;
/
INPUT
Enter value for a: 8
old 8: a:=&a;
new 8: a:=8;
Enter value for b: 16
old 9: b:=&b;
new 9: b:=16;
Procedure created.
SQL> set serveroutput on;
SQL> execute pro;
OUTPUT
GCD is 8
PL/SQL procedure successfully completed
```

Title PL/SQL Procedure for cursor implementation. Objective To understand the concept of cursor. Syntax

PL/SQL procedure successfully completed.

```
insert into st13 values(101, 'raji', 100, 90, 97, 89, 91);
insert into a13 values(102,'kali');
insert into a13 values(103,'jaya');
select * from st13;
REGNO NAME MARK1 MARK2 MARK3 MARK4 MARK5
 101 raji 100 90 97 89 91
102 kali 99 77 69 81 99
103 jaya 78 88 77 60 89
SQL>set server output on
declare
ave number (5,2);
tot number(3);
cursor c_mark is select * from st13 where mark1>=40 and mark2>=40 and mark3>=40 and
mark4 > = 40 and mark5 > = 40:
begin
dbms_output.put_line('regno name mark1 mark2 mark3 mark4 mark5 total average');
dbms_output.put_line('-----');
for student in c_mark
loop
tot:=st13.mark1+st13.mark2+st13.mark3+st13.mark4+st13.mark5;
ave:=tot/5:
dbms_output.put_line(st13.regno||rpad(st13.name,15)||rpad(st13.mark1,6)||rpad(st13.mark2,6)||rp
ad(st13.mark3,6)||rpad(st13.mark4,6)||rpad(st13.mark5,6)||rpad(tot,8)||rpad(ave,5)); end loop;end;
regno name mark1 mark2 mark3 mark4 mark5 total average
101raji
           100 90 97 89 91 467 93.4
102kali
           99 77 69 81 99 425 85
103jaya
           78 88 77 60 89 392 78.4
```

Title FUNCTION TO FIND FACTORIAL Objective To find factorial using function Syntax

```
declare
n number;
fac number:=1;
i number;

begin
n:=&n;

for i in 1..n
loop
fac:=fac*i;
end loop;

dbms_output.put_line('factorial='||fac);
end;
//
```

Output

Enter value for n: 10 old 7: n:=&n; new 7: n:=10; factorial=3628800