臺北市立松山高級中學 107 學年度第二學期高二社會組數學期末考試卷

班級: 座號: 姓名:

一、單一選擇題(每題5分,共10分)

()1.設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,且 $A \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $A \begin{bmatrix} 9 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, 試求 $a + b + c + d$ 之值為何? (A)0 (B)8 (C)9 (D)—8 (E)—9 。

()2.某一彗星的軌道是以太陽為焦點的拋物線,當彗星與太陽最接近時,兩者的距離是d, 當彗星與太陽的距離為3d時,彗星與太陽兩者連線與拋物線對稱軸的銳夾角是 θ ,則 $\cos\theta$ 之值為何?

二、多重選擇題(每題8分,共24分,錯一個選項得5分,錯二個選項得2分,錯三個(含)以上得0分)

- 11.設A, B 及 C 為二階方陣, 請選出正確的選項
 - (A)若 A 不是零矩陣,則 A 的乘法反方陣 A^{-1} 必存在
 - (B)若 det $(A) \neq 0$ 且 AB = AC, 則 B = C
 - $(C) \det(AB) = \det(A) \cdot \det(B)$

 - (E)若A, B皆為轉移矩陣,則 $\frac{1}{2}(A^2+B^2)$ 為轉移矩陣
- ()2.下列敘述中哪些正確?
 - $(A)\Gamma$: $\frac{x^2}{2t-4} + \frac{y^2}{t-6} = 1$, 其中 $t \neq 2$ 且 $t \neq 6$,若 Γ 的圖形為橢圓,則其長軸必平行 x 軸
 - $(B)\Gamma: \frac{x^2}{2t-4} + \frac{y^2}{t-6} = 1$,其中 $t \neq 2$ 且 $t \neq 6$,若 Γ 的圖形為雙曲線,則其貫軸必平行 y 軸
 - (C) $\sqrt{(x+3)^2 + (y-3)^2} = \frac{|3x+4y-3|}{5}$ 的圖形為拋物線

 - (D) $\sqrt{x^2 + (y-1)^2} + \sqrt{(x-2)^2 + (y-1)^2} = 2$ 的圖形為一直線 (E) $\left| \sqrt{x^2 + (y-1)^2} \sqrt{(x-2)^2 + (y-1)^2} \right| = 2$ 的圖形為兩射線
-)3.設 a , b 為實數 , $ab\neq 0$, 則下列何者可為直線 $y=\sqrt{\frac{b}{a}}$ (

三、填充題(每格6分,共66分)

1.設甲袋有10元硬幣1枚,乙袋有5元硬幣3枚。每一輪操作「各從甲、乙袋中任取出一枚 硬幣,互換後放回袋內」,試求第三輪操作後,甲袋仍有一枚10元硬幣的機率為____。

- 2.籃球好手豪豪經常練習「罰球」,依過去的紀錄顯示:第一球命中時,第二球命中之機率為80%;第一球未命中時,第二球命中之機率為90%。試求:
 - (1)某次 HBL 高中聯賽,對手惡意犯規,豪豪有3次罰球機會,已知第一球命中,求第3球命中之機率為____。
 - (2)長期而言,豪豪的罰球命中率為____。
- 3.設一拋物線 Γ 與另一拋物線 $x^2 = 20y$ 共焦點、共軸,且過 (4,5), 試求拋物線 Γ 之方程式______。(有二解)

4.如下圖,拋物線 $y^2 = 4x$ 的頂點 V 與焦點 F 正好是另一橢圓的頂點與焦點,若此橢圓短軸的長度是 6,則此橢圓長軸的長度為_____。

- 5. 已知圓 $C_1: x^2 + y^2 = 121$,圓 $C_2: (x+6)^2 + y^2 = 1$ 。若圓 C和 C_1 內切,且圓 C和 C_2 外切,則 C之圓心軌跡方程式為_____。
- 6.設一橢圓 Γ 與橢圓 $\frac{x^2}{23} + \frac{y^2}{18} = 1$ 共焦點,且橢圓 Γ 的長軸長為 8,試求: 橢圓 Γ 的正焦弦長為_____。
- 7.求與 $\frac{x^2}{16} \frac{y^2}{9} = 1$ 有相同的漸近線,且通過點(8,3)的雙曲線方程式____。
- 8.試求以橢圓 Γ : $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的焦點為頂點,以長軸之頂點為兩焦點之雙曲線 Γ' 方程式為_____。
- 9.有一雙曲線 Γ : $9x^2-16y^2-18x-96y+9=0$
 - (1)雙曲線 Γ 的共軛雙曲線 Γ' 方程式為____。
 - (2)雙曲線 Γ 與其共軛雙曲線 Γ 的漸近線方程式為____。

臺北市立松山高級中學 107 學年度第二學期高二社會組數學期末考答案卷									
使用班級	高二社會組	班級		座號		姓名		得分	

一、單一選擇題(每題5分,共10分)

1	2
С	А

二、多重選擇題(每題 8 分, 共 24 分, 錯一個選項得 5 分, 錯二個選項得 2 分, 錯三個(含)以上得 0 分)

1	2	3
ВСЕ	AE	BCDE

三、填充題(每格6分,共66分)

1	2/1\	2/2\	2
1	2(1)	2(2)	3
$\frac{2}{9}$	0.82	9 11	$x^{2} = -8(y-7), x^{2} = 8(y-3)$
4	5	6	7
10	$\frac{(x+3)^2}{36} + \frac{y^2}{27} = 1$	1 <u>1</u> 2	$\frac{x^2}{48} - \frac{y^2}{27} = 1$
8	9(1)	9(2)	
$\frac{x^2}{16} - \frac{y^2}{9} = 1$	$ \frac{(x-1)^2}{16} - \frac{(y+3)^2}{9} \\ = 1 $	3x - 4y - 15 = 0 $3x + 4y + 9 = 0$	