MA2213, NUMERICAL ANALYSIS I, LABORATORY 1

Introduction to MATLAB

August 27, 2018

Qian Lilong

qian.lilong@u.nus.edu

Department of Mathematics National University of Singapore Outline Introduction Starting the software Variable Operators Some commands Math functoin matrix operation Logical flow of programmi

OUTLINE

- 1. Introduction
- 2. Starting the software
- 3. Variable
- 4. Operators
- 5. Some commands
- 6. Math functoin
- 7. matrix operation
- 8. Logical flow of programming

INTRODUCTION TO MATLAB

- → MATLAB: Matrix Laboratory
- → multi-paradigm numerical computing system and proprietary programming language
- → Object-oriented programming and procedure languages
- → Developed by MathWorks Inc. in USA
- → Alternatives: Octave
- → Nus student software:

https://nusit.nus.edu.sg/services/software_and_os/software/software-student/#install-matlab

→ Octave:

https://www.gnu.org/software/octave/

STARTING, 1/2

- 1. Login with your NUS Net ID:NUSSTU****** and corresponding password
- 2. Double click the MATLAB icon

Figure: MATLAB Icon

STARTING, 2/2

Figure: MATLAB Interface

BASIC STATEMENTS

- → Single statements
- → assign to a variable
- → Usage of semicolon":"
- → variable "ans"
- → Comments "%"
- → Rules for name variable: start by a letter, including letters, numbers and underscore "_". Case sensitive

```
>> 1+2

>> a = 1+2

>> 1+2;

>> a = 1+2;

>> % a = 1+2;

>> A = 1+2;

>> 1A = 1+2;

>> A1 = 1+2;

>> A_1 = 1+2;
```

REAL NUMBER AND COMPLEX NUMBER

→ real number :

Ex

$$1,1.1,1.1e+1(1.1 \times 10^{1}),1.1e-1(1.1 \times 10^{-1}),pi(\pi = 3.1415...)$$

→ Complex number Default imaginary unit i or j, which is $\sqrt{-1}$

Ex

$$1+i,1-i,1+j,1-j,(1+j)'$$

For operation of complex number: https://www.mathworks.com/help/matlab/complex-numbers.html

VECTOR AND MATRIX

- → Row vector: a.b
- → Column vector: c.d.e
- → Matrix: A,B,C (Vector can be regarded as a special matrix)
- → Special matrix: 0,1,1

Ex

```
a = [1,2,3]; b = [ 1 2 3];
c = [1;2;3];d = a';
e = transpose(b);
A = [1 2;3 4];
B = [1,2,3;4,5,6];
C = B';
O = zeros(4,3);
I = eye(4,4);
one = ones(5,5);
```

SPECIAL VARIABLE

symbol	pi	1	0	true
meaning	$\pi=3.14\dots$	default double 1 or "true"	default 0 or "false"	logical 1
symbol	false	inf	-inf	NaN
meaning	logical 0	∞	-∞	non a number: $\frac{0}{0}$

ARITHMETIC OPERATORS

Symbol	+	-	*	/	\	^
Example	1+2	1-2	1*2	1/2	1\2	2^2
Result	2	-1	2	0.5	2	4

Table: Arithmetic Operators

 $Refs.\ https://www.mathworks.com/help/matlab/matlab_prog/matlab-operators-and-special-characters.html$

RELATION OPERATORS

Symbol	==	~ =	>	>=	<	<=
Example	1==2	1~=2	2>2	2>=2	2<2	2<=2
Result	0	1	0	1	0	1

Table: Relation Operators

Note that here "1" is of the logical type, means "true" and "0" means the logical value "false".

See the detail of variables by "who var".

LOGICAL OPERATORS

symbol		&	-
meaning	Or	And	Not
Ex	1 0	1& 0	~ 0
Result	1	0	1
Equal exp.	or(1,0)	and(1,0)	not(0)
Another exp.	1 0	1&& 0	~ 0

SOME COMMANDS

cmd:	clc	clear a	clear all	1:3	1:2:3
Result	clear screen	clear variable a	remove all variables	row vector [1,2,3]	row vector [1,3]
cmd:	who a	whos	clf	help cmd	doc cmd
Results:	see detail of vari- able a	see the details of all variables	clear the graph win- dow	see help informa- tion of cmd	see document de- tails of cmd

MATH FUNCTION

abs(x)	sqrt(x)	sign(x)	sin(x)	cos(x)	tan(x)	cot(x)	sec(x)	csc(x)
x	\sqrt{X}	signum function	sin(x)	cos(x)	tan(x)	cotangent of x	secant of x	The cosecant of x

Table: basic function

$$asin(x)$$
 $acos(x)$ $atan(x)$ $acot(x)$ $asec(x)$ $acsc(x)$ $sin^{-1}(x)$ $cos^{-1}(x)$ $tan^{-1}(x)$ $cot^{-1}(x)$ $sec^{-1}(x)$ $csc^{-1}(x)$

Table: Inverse Trigonometric Functions

syntax
$$exp(x)$$
 $log(x)$ $log(x)$ $log(x)$ $log(x)$ value e^x $log_e(x)$ $log_2(x)$ $log_{10}(x)$

Table: Exponential and Logarithm Functions

COMMAND WINDOW DISPLAY OUTPUT FORMAT

- → format short (default): display 4 digits
- → format long: display 15 digits
- → format short e (format shorte): scientific notation with 4 digits
- → format long e: Short scientific notation with 15 digits
- → format long g: scientific notation with a total of 15 digits for double values, and 7 digits for single values.
- → format rat: Ratio of small integers.
- → format compact:Suppress excess blank lines to show more output on a single screen.
- → format loose: Add blank lines to make output more readable.

MATRIX OPERATION

- \rightarrow Input matrix: A=[1,2,3;4,5,6]; or A(1,1)=1,...A(2,3)=5;
- → Get the size: [n1,n2] = size(A); n1:row length, n2: column length. length(A) gets the row length of A.
- \rightarrow Increase the matrix: or A(1,4)=1;A(2,4) = 2;
- → Matrix concatenation: row concatenation,A= [B,C] if column length equals. For example, B = [1;2];C=[3;4]; column concatenation, A= [B;C] if row length equals. For ex. B = [1,2];C = [3,4];

MATRIX INDEXING

A is a matrix of size $m \times n$

- \rightarrow A(i,j): (i,j)-th entry of A
- \rightarrow A(i,:) : i-th row of A
- \rightarrow A(:,j): j-th column of A
- → A(end,:): last row of A
- → A(:,end-1); second last column of A
- \rightarrow A(a:b,c:d): submatrix of A from a to b row and c to d column.
- → A(e,f)(e,f are two vectors): sub matrix of A row indexing in e, column indexing in f.

For Ex. A = eye(5); e = [1,3,5]; f = [3,4]; A(e,f)

Note that index should not exceed the size of the matrix. A vector can be regarded as a matrix.

MATIRX COMPUTATION

matrix operation matrix entr	rywise operation =A+B
	=A+B
A-B matrix subtraction AB	=A-B
tA scalar-matrix, $t \in R$, C	=t*A
AB matrix multiplication A.B	A(i,j)*B(i,j)
A^n A*A*A*A, n times A.^n	A(i,j).^ n
A\ B inv(A)*B	$\frac{B(i,j)}{A(i,j)}$
A/D DY:/A)	
A/B B*InV(A)	$\frac{A(i,j)}{B(i,j)}$

RELATED OPERATION OF MATRIX

- → A: conjugate transpose of A
- → A.': transpose of A
- → det(A): determinant of a square matrix A
- → rank(A): rank of a square matrix A
- → eig(A): eigenvalues of a square matrix A
- → inv(A):inverse of a square nonsingular matrix A

CONDITIONAL STATEMENTS

If statement

```
a=1;b=2;
if a>b
y=a;
else
y=b;
end
```

Find the largest number of {a,b}.

switch statement

```
a=1;b=2;c=3;%
if a>b
    if a>c
        y=a;
    else
        y=c;
    end
elseif b>c
    y=b;
else
    y=c;
end
```

Find the largest number of {a,b,c}.

LOOPS

→ While loop:

```
k=0;
y=0;
while k<10
k=k+1;
y=y+k;
end
```

$$y = \sum_{i=1}^{10} i$$

$$\rightarrow \text{ for loop}$$

y=0; for k=1:10 y=y+k; end

$$y = \sum_{i=1}^{10} i$$

TERMINATION OF LOOPS

→ break exits from the innermost loop

```
k=0;
y=0;
while 1
k=k+1;
y=y+k;
if k==10
break
end
end
```

$$y = \sum_{i=1}^{10} i$$

```
A = [1,2,3;4,5,6]; [n1,n2] = size(A);
y=0;
for i=1:100
  for j=1:100
    y = y + A(i,j);
    if i==n2
      break
    end
  end
  if i==n1
    break
  end
end
```

$$y = \sum_{i,j}^{n1,n2} A_{ij}$$

TERMINATION OF LOOPS

- → break exits from the innermost loop
- → return exists the scripts or function

```
y=0;
for k=1:10
  if mod(k,2)==0 % if k is even
    continue
    % if condition holds, then pass to
    % next loop without executing the
    % following statements in the loop
  end
    y=y+k;
```

The sum of odd numbers from 1 to 10.

```
A = randi(2,10,20)-1;
% create a matrix with 0 or 1
for i=1:10
    for j=1:20
        if A(i,j)==0;
        y=1; disp(A(i,j)); % display this varial
        return
    end
end
end
```

Check if A has a zero entry.