Joseph G. Tylka, Ph.D.

Research Scientist, Siemens Corporate Technology jtylka.github.io

Email: joe.tylka@siemens.com Mobile: +1 (609) 250-8271 755 College Rd. E, Princeton, NJ 08540

2019 - 2020

EDUCATION

Princeton University Princeton, NJ Doctor of Philosophy (Ph.D.) in Mechanical and Aerospace Engineering 2012 - 2019Master of Arts (M.A.) in Mechanical and Aerospace Engineering The Pennsylvania State University University Park, PA Non-Degree Graduate Student in Acoustics (attended online) 2012 - 2014University of Maryland College Park, MD Bachelor of Science (B.S.) in Physics with a minor in Philosophy, cum laude 2008 - 2012

RESEARCH EXPERIENCE

Siemens Corporation, Corporate Technology	Princeton, NJ
Research Scientist, Sustainable Automation Solutions Research Group	2020-present
Research Scientist, Automation Runtime Systems Research Group	2019–2020
Princeton University	Princeton, NJ
Assistant in Research, 3D Audio and Applied Acoustics Laboratory	2012-2019
University of Maryland	College Park, MD
Undergraduate Research Assistant, Cosmic Ray Laboratory	2009–2012

TEACHING EXPERIENCE

Princeton University, Department of Mechanical and Aerospace Engineering	Princeton, NJ
Assistant in Instruction, MAE 502: Mathematical Methods of Engineering Analysis II	Spring 2017
Assistant in Instruction, MAE 433: Automatic Control Systems	Spring 2016 and Fall 2016
Guest Lecturer, MAE 529: The Physics and Engineering of Sound	Spring 2016
Assistant in Instruction, MAE 412: Microprocessors for Measurement and Control	Fall 2014
University of Maryland, Department of Physics	College Park, MD
Teaching Assistant, PHYS 103: Physics of Music Laboratory	Fall 2011

Selected Projects

Autonomous Robotic Spraying & Disinfection System	Advanced Robotics for Manufacturing (ARM) Institute
Role: Principal Investigator	2020-present
SAFE: Safe Autonomy Features in the Edge	Advanced Robotics for Manufacturing (ARM) Institute
Role: Research Scientist	2020-2021
RECON: Resilient Control Systems for Naval Vessels	U.S. Naval Research Laboratory (NRL)

Role: Research Scientist

Virtual Navigation of 3D Sound Fields Sony Corporation of America Role: Doctoral Candidate 2015 - 2019

SELECTED PUBLICATIONS

- ¹ J. Luo, M. Kang, E. Bisse, M. Veldink, D. Okunev, S. Kolb, J. G. Tylka, and A. Canedo. A Quad-Redundant PLC Architecture for Cyber-Resilient Industrial Control Systems. IEEE Embedded Systems Letters, page 4, 2020.
- ² J. G. Tylka and E. Y. Choueiri. Performance of Linear Extrapolation Methods for Virtual Sound Field Navigation. The Journal of the Audio Engineering Society, 68(3):138–156, March 2020.
- ³ E. Y. Choueiri and J. Tylka. System and Method for Virtual Navigation of Sound Fields through Interpolation of Signals from an Array of Microphone Assemblies, Jan. 16, 2020. US Patent Application 2020/0021940.
- ⁴ R. Sridhar, J. G. Tylka, and E. Y. Choueiri. Generalized Metrics for Constant Directivity. The Journal of the Audio Engineering Society, 67(9):666-678, September 2019.
- ⁵ E. Y. Choueiri, J. Tylka, R. Sridhar, and B. Boren. Method and system for producing low-noise acoustical impulse responses at high sampling rate, May 1, 2018. US Patent 9,959,883.
- ⁶ J. G. Tylka, B. B. Boren, and E. Y. Choueiri. A Generalized Method for Fractional-Octave Smoothing of Transfer Functions that Preserves Log-Frequency Symmetry. The Journal of the Audio Engineering Society, 65(3):239-245, March 2017.