## Problema 1060

Construir sobre los lados AB y AC de un triángulo ABC pares de puntos B' y C', respectivamente, tales que BB' = B'C' = C'C.

Montesdeoca, A. (2022): Comunicación personal.

## Solution proposée par Philippe Fondanaiche

Nota liminaire : on retient les notations N et M pour désigner les points B' et C' de l'énoncé.



Soit AB = d. Le cercle de centre C et de rayon d coupe CA en  $A_1$ . Le cercle de centre  $A_1$  et de rayon d coupe la parallèle xx' à BC au point  $N_1$ . Le cercle de centre  $N_1$  et de rayon d coupe la ligne BC en  $B_1$ . Comme  $AB = N_1B_1 = d$ ,  $ABB_1N_1$  est un parallélogramme  $\Rightarrow AB$  et  $B_1N_1$  sont parallèles. Soit N l'intersection de C  $N_1$  et de AB.

Les triangles CBN et C  $B_1N_1$  sont semblables  $\Rightarrow$  BN/ $B_1N_1$  = CN/C  $N_1$  = k.

La parallèle menée de N à  $A_1N_1$  coupe AC en un point M. les triangles CMN et  $CA_1N_1$  sont semblables  $\Rightarrow$  MN/ $A_1N_1 = CN/CN_1 = k \Rightarrow$  MN=BN=k\*d.

Par ailleurs  $CM/CA_1 = CM/d = CN/CN_1 = k \implies CM = k*d$ .

Les trois segments CM,MN et BN sont donc égaux.

La construction n'est possible que si M est entre A et C, c'est à dire quand l'angle  $AN_1A_1$  est inférieur à l'angle ABC. Or  $\sin(AN_1A_1)$  /  $(AB - AC) = \sin(ACB)$  /  $A_1N_1 = \sin(ACB)$  /  $AB = \sin(ABC)$  / AC. Il en résulte que  $\sin(AN_1A_1)$  <  $\sin(ABC)$   $\Leftrightarrow$  AB - AC < AC ou encore AB < 2AC.