Chapitre 8 : Probabilités

Définition: Univers, issues, évènements

- Une **expérience aléatoire** est une expérience dont on ne peut pas prédire le résultat à l'avance.
- Lorsqu'on fait une expérience aléatoire, les résultats que l'on peut obtenir sont appelés les **issues**.
- L'ensemble complet des issues est appelé **l'univers**. On le note généralement Ω .
- Un ensemble d'issues est un **évènement**. On le note généralement avec une lettre majuscule, comme A, B, ...
- Si on a un évènement A, on appelle \overline{A} l'évènement contraire de A : c'est l'évènement qui contient les issues qui ne sont pas dans A.

Exemple

- Si on lance un dé et qu'on regarde le résultat, il s'agit d'une expérience aléatoire.
- Les issues sont alors 1, 2, 3, 4, 5 et 6. L'univers est $\Omega = \{1,2,3,4,5,6\}$.
- On peut noter A l'évènement « Le résultat obtenu est pair ». A contient alors les issues 2, 4 et 6.
- \overline{A} contient les issues 1, 3 et 5.

Définition : Loi de probabilité

Si on a un univers, une loi de probabilité consiste à :

- Associer un probabilité entre 0 et 1 à chaque issue;
- Tel que la somme des probabilités des issues soit 1.

Exemple

La loi de probabilité d'un dé est :

Issue	1	2	3	4	5	6
Probabilité	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>

La loi de probabilité d'un dé truqué peut être :

Issue	1	2	3	4	5	6
Probabilité	<u>1</u> 12	<u>1</u> 3	<u>1</u> 12	<u>1</u>	<u>1</u>	1 12

Définition : Arbre de probabilités

Une expérience aléatoire peut être représentée par un **arbre de probabilités** si elle est composée de plusieurs **épreuves** qui se suivent.

Exemple

Épreuve 1 Épreuve 2 Issues

On fait une expérience qui consiste à :

- Lancer une pièce à pile ou face
- Lancer un dé équilibré, et regarder si on a fait un 6.

Propriété

Pour obtenir la probabilité d'une issue, on **multiplie** les probabilités sur les branches menant à cette issue.

Exemple

Sur l'exemple ci-dessus les probabilités sont :

• (Pile; 6)
$$\rightarrow \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

• (Pile; Autre)
$$\to \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$$

• (Face; 6)
$$\rightarrow \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

• (Face; Autre)
$$\to \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$$

Propriété

Pour obtenir la probabilité d'un évènement, on **additionne** les probabilités des issues qui le constitue.

Exemple

Si on cherche la probabilité de l'évènement «On a fait face OU on a fait un 6», les issues (Pile; 6), (Face; 6) ou (Face; Autre) conviennent.

La probabilité de cet évènement est donc $\frac{1}{12} + \frac{1}{12} + \frac{5}{12} = \frac{7}{12}$.

Définition : Tableau à double entrée

Un **Tableau à double entrée** permet de facilement représenter les résultats d'une expérience aléatoire, surtout lorsqu'on étudie deux caractères.

Exemple

On récapitule les résultats d'une étude sur l'efficacité de trois traitements :

Y = X = Traitement	Succès Réussi	Échoue
Traitement A	81	19
Traitement B	55	45
Traitement C	56	44

Les deux caractères sont :

- Le traitement choisi (A, B ou C)
- Le succès du traitement (réussi ou échoué)