Lösungen zu den Erdbebenaufgaben

1. Geg.: P-Welle braucht $t_P = 160 \text{ s}$ für bekannte Strecke s = 960 km

S-Welle braucht $\Delta t = 220$ s länger für dieselbe Strecke s, d.h., $t_s = 380$ s

Ges.: Geschwindigkeiten v_P, v_S der P- resp. der S-Wellen

<u>Lösung</u>: Bestimme die Geschwindigkeit mit v = s/t

$$v_P = 960 \text{ km} / 160 \text{ s} = 6.0 \text{ km/s} = 6.0 \cdot 10^3 \text{ m/s}$$

 $v_S = 960 \text{ km} / 380 \text{ s} = 2.5 \text{ km/s} = 2.5 \cdot 10^3 \text{ m/s}$

2. Geg.: P-Welle braucht $\Delta t = 61$ s länger für eine unbekannte Distanz L als die S-Wellen für dieselbe Distanz L.

 $v_P = 9.2 \text{ km/s}$

 $v_S = 3.8 \text{ km/s}$

- Ges.: Distanz L des Erdbebenherds zum Beobachtungsstandort Fürstenfeldbrück, sowie der genaue Zeitpunkt des Erdbebens am 20. Jan. 2000.
- <u>Lösung</u>: Als erstes benennen wir die unbekannten Laufzeiten, die wir für die Lösung brauchen:

Die P-Welle brauchte für die Distanz L die Zeit t_P Die S-Welle brauchte für die Distanz L die Zeit t_S

Wir wissen zudem aus der Aufgabe: $t_S = t_P + \Delta t$

Also: $t_P = L / v_P$ (1) \Rightarrow $L = v_P \cdot t_P$ (1')

 $t_S = L / v_S$ (2) \Rightarrow $L = v_S \cdot t_S$ (2')

 $t_S = t_P + \Delta t$ (3) \Rightarrow $L = v_S \cdot (t_P + \Delta t)$ (3')

Wir setzen Gleichung (1) in Gleichung (3) ein.

 $t_S = t_P + \Delta t = L / v_P + \Delta t$ | mit Gleichung (2) können wir t_S noch ersetzen:

 $L / v_S = L / v_P + \Delta t$ | Gleichung nach L auflösen

 $L / v_S - L / v_P = \Delta t$ L ausklammern

 $L(^{1}/v_{S} - ^{1}/v_{P}) = \Delta t$ durch die Klammer dividieren, Zahlen einsetzen

 $L = \Delta t / (^{1}/v_{S} - ^{1}/v_{P})$ | Doppelbruch vereinfachen

 $\mathcal{L} = \frac{\Delta t \cdot v_P \cdot v_S}{v_P - v_S}$

Numerische Lösung: L = 395 km oder rund 400 km.

Die Laufzeit der P-Welle betrug damit: $t_P = L / v_P = 395 \text{ km} / 9.2 \text{ km/s} = 42.9 \text{ s}$ D.h. das Erdbeben fand 43 s vor dem Eintreffen der P-Welle in Fürstenfeldbrück statt, also: 03:04:14-43 s = 03:03:31

Das Erdbeben geschah um 03:03:31 am 20. Jan. 2000, 400 km von Fürstenfeldbrück entfernt.

Alternativ können die drei Gleichungen (1') bis (3') auch in der Form rechts gelöst werden:

Aus (1') und (3') folgt: $L = v_P \cdot t_P = v_S \cdot (t_P + \Delta t)$ | nach t_P auflösen

 $t_P (v_P - v_S) = v_S \cdot \Delta t$ durch die Klammer dividieren

 $t_P = v_S \cdot \Delta t / (v_P - v_S)$ | Zahlen einsetzen und mit (1') L berechnen