Floating point

Jinyang Li

Floating Point (FP) lesson plan

- Normalized binary exponential notation
- Strawman 32-bit FP
- IEEE FP format
- Rounding

Previously...

What about real numbers?

Represent real numbers: the decimal way

Real Number	Decimal Representation
11 / 2	(5.5) ₁₀
1/3	(0.3333333) ₁₀
√2	(1.4128) ₁₀

 $(1.4128...)_{10} = 1 * 10^{0} + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ...$

Binary Representation

$$(5.5)_{10} = 4 + 1 + 1/2 = 2^2 + 2^0 + 2^{-1}$$

= $(101.1)_2$

Binary Representation

$$(0.3333333...)_{10} = 1/4 + 1/16 + 1/64 + ...$$

= $(0.01010101...)_2$

Binary Representation

Binary representation

What's the decimal value of (10.01)₂

Binary representation

What's the decimal value of (10.01)₂

Answer: 2.25

Making the representation fixed width Strawman: fixed point

Fixed point representation

Example: $(10.011)_2$

0 00000000000010 01100000000000

Problems of Fixed Point

Range?

Precision?

Problems of Fixed Point

- Limited range and precision: e.g., 32 bits
 - Range: $[-2^{15}+2^{-16},2^{15}-2^{-16}]$
 - Highest precision: 2⁻¹⁶
- → Rarely used (No built-in hardware support)

Floating point: key idea

- Limitation of fixed point:
 - Even spacing results in hard tradeoff between high precision and high magnitude
- How about un-even spacing between numbers?

Floating Point: decimal

Based on exponential notation (aka normalized scientific notation)

$$r_{10} = \pm M * 10^{E}$$
, where 1 <= M < 10

M: significant (mantissa), E: exponent

Floating Point: decimal

Example:

```
365.25 = 3.6525 * 10^{2}
0.0123 = 1.23 * 10^{-2}
```


Decimal point **floats** to the position immediately after the first nonzero digit.

Floating Point: binary

Binary exponential representation

$$\pm M * 2^{E}$$
, where 1 <= M < 2
M = $(1.b_1b_2b_3...b_n)_2$

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Floating Point

Binary exponential representation

$$\pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$

Also called normalized representation

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

(Binary) normalized representation of $(10.25)_{10}$?

(Binary) normalized representation of $(10.25)_{10}$?

Answer: $(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$

Strawman FP: normalized representation in 32-bit

Strawman 32-bit FP: Example

significant exponent
$$+M * 2^{E}$$
, where $1 \le M \le 2$ $M = (1.b_1b_2b_3...b_{23})_2$

Example: $(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$

More Strawman 32-bit FP Examples

Example: $(65)_{10} = (1000001)_2 = (1.000001)_2 * 2^6$

31 30 23 22 0

0 0000 0110 0000 0100 0000 0000 0000

Another example: $(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$

31 30 23 22

0

0 0000 0011 0100 1000 0000 0000 0000

Strawman FP on a number line

Strawman 32-bit FP: pros and cons

- The good delay
 - Large range $[1, 2^{255}+(2^{23}-1)*2^{232}], [-2^{255}-(2^{23}-1)*2^{232},-1]$
 - Allows easy comparison: compare FPs by bit patterns
- The bad
 - No 0!
 - No [-1, 1]
 - Max precision (2⁻²³) not high enough
 - No representation of special cases: ∞

IEEE Floating Point Standard

- Lots of FP implementations in 60s/70s
 - Code was not portable across processors
- IEEE formed a committee (IEEE.754) to standardize FP format and specification.
 - IEEE FP standard published in 1985
 - Led by William Kahan

Prof. William Kahan University of California at Berkeley Turing Award (1989)

IEEE Floating Point Standard

- This class only covers basic FP materials
- A deep understanding of FP is crucial for numerical/scientific computing
 - More FP is covered in undergrad/grad classes on numerical methods

Numerical Computing with IEEE Floating Point Arithmetic

Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises

Michael L. Overton

Courant Institute of Mathematical Sciences New York University New York, New York

Goals of IEEE Standard

- Consistent representation of floating point numbers
 - Address the limitation of our FP strawman

 Correctly rounded floating point operations, using several rounding modes.

 Consistent treatment of exceptional situations such as division by zero

IEEE FP: Carve out subsets of bit-patterns from normalized representation

$$+M * 2^{E} M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$
31 30 23 22 0

S	exp	fraction (F)
---	-----	--------------

$$(b_0b_1b_2b_3...b_n)_2$$

For normalization representation, exp can not be $(1111 \ 1111)_2$ or $(0000 \ 0000)_0$

$$\exp_{\text{max}} = ? 254, (1111 1110)_2$$

 $\exp_{\text{min}} = ? 1, (0000 0001)_2$

IEEE FP: Represent negative exponents using bias

$$+M * 2^{E}, M = (1.b_0b_1b_2b_3...b_n)_2$$

To represent FPs in (-1,1), we must allow negative exponent.

- How to represent negative E?
 - 2's complement
 - use bias

Why? Using bias instead of 2's complement allows simple comparison of FPs using their bit-patterns

31 30 23 22

S

exp = E + 127

fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

U

IEEE FP normalized representation

$$+M * 2^{E}$$
, $M = (1.b_0b_1b_2b_3...b_n)_2$
31 30 23 22 0

s exp = E + 127 fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

1 0....10 0...00 1 0....01 0...00 0 0....01 0...00 0 0...11 0...00 -2⁻¹²⁵ -2⁻¹²⁶ 2⁻¹²⁵ 2⁻¹²⁴

Max: 0 1...10 1...11 2¹²⁷+(2²³-1)*2¹²⁷-23

The gap $[-2^{-126}, 2^{-126}]$

is 2-125

Represent values close and equal to 0

IEEE FP denormalized representation: represent values close and equal to 0

Normalized Encoding:

31 30 23 22 0

s exp = E + 127 fraction (F)

$$1 \le M \le 2$$
, $M = (1.F)_2$

Denormalized Encoding:

31 30 23 22 0

s exp =0000 0000 fraction (F)

$$E = 1 - Bias = -126$$
 $0 \le M \le 1, M = (0.F)_2$

Zeros

+0.0

0 0000 0000 0000 0000 0000 0000 0000

-0.0

1 0000 0000 0000 0000 0000 0000 000

Denormalized FP example

Smaller than the smallest E (-126) of normalized encoding

What's the IEEE FP format of $(1.0)_2*2^{-127}$?

$$(1.0)_2^*2^{-127} = (0.1)_2^*2^{-126}$$

0000 0000

1000 0000 0000 0000 0000 000

IEEE FP normalized + denormalized

2²³ evenly spaced denormalized numbers in each of the two intervals

IEEE FP: special values

Special Value's Encoding:

31 30 23 22 0

S	1111 1111	fraction (F)
		11 4 5 6 7 1

values	sign	frac
+∞	0	all zeros
- ∞	1	all zeros
NaN	any	non-zero

IEEE FP: single vs. double precision

double precision (64 bits)

frac

E + 1023

single/ double precision

	E _{min}	E _{max}	N _{min}	N _{max}
Float	-126	127	2-149	≈ 2 ¹²⁸
Double	-1022	1023	2-1078	≈ 2 ¹⁰²⁴

FP summary

Normalized binary representation of real numbers

2²³ evenly spaced denormalized numbers in each of the two intervals

A toy 8-bit FP in the spirit of IEEE FP

Normalized encoding $exp \neq 000, 111$

Denormalized encoding exp = 000

Special values encoding exp = 111

- Smallest positive number?
- Range?
- How many distinct numbers?

A toy 8-bit FP in the spirit of IEEE FP

+M * 2^E

exponent: 3 bits

fraction: 4 bits

bias: 3

_ 7	6	4	3	0
S		exp = E + 3		frac (F)
7	6	4	2	1 <= M < 2, M = (1.F) ₂
	6	4	3	
S		0 0 0		frac (F)
				$0 \le M \le 1, M = (0.F)_2$

Normalized encoding $exp \neq 000, 111$

Denormalized encoding exp = 000 aka E=1-3=-2

28 - 25 -1 distinct numbers: there are 28 total bit-patterns, 25 special values, 0 has 2 bit-patterns.

Floating Point (FP) lesson plan

- Normalized binary exponential notation
- Strawman 32-bit FP
- IEEE FP format
- Rounding

FP: Rounding

Values that are represented precisely

What if the result of computation is at •?

Rounding: Use the "closest" representable value x' for x.

4 modes:

- Round-down
- Round-up
- Round-toward-zero
- Round-to-nearest (Round-to-even in text book)

Round down vs. round up

Round down rounds to the left Round(x) = x_{-} (x_{-} <= x)

Round towards zero

Rounds to the left if x > 0Round(x) = x_i if x < 0

Round to nearest; ties to even

Round to the left if x₋ is nearer to x than x₊

Round to the right if x_+ is nearer to x than x_-

In case of a tie, the one with its least significant bit equal to zero is chosen.

How does CPU know if it is floating point or integers?

CPU has separate registers for floating point and integers.

CPU uses different instructions for floating points and integer operations.

FP summary

- FP representation is based on normalized binary exponential notation
- IEEE FP format
 - Normalized, denormalized, special values
- Precision gets higher as numbers approach 0
- Rounding

Floating point operations

- Addition, subtraction, multiplication, division etc.
- FP Caveats:
 - − Invalid operation: 0/0, sqrt(-1), $\infty+\infty$
 - − Divide by zero: $x/0 \rightarrow \infty$
 - Overflows: result too big to fit
 - Underflows: 0 < result < smallest denormalized value
 - Inexact: round it!

Floating point addition

- Commutative? x+y == y+x?
- Associative? (x+y)+z = x + (y+z)?
 - Rounding:

```
(3.14+1e10)-1e10 = 0
3.14+(1e10-1e10) = 3.14
```

- Overflow
- Every number has an additive inverse?
 - Yes except for ∞ and NaN

Floating point multiplication

- Commutative? x* y == y*x?
- Associative? $(x^*y)^*z = x^*(y^*z)$?
 - Overflow:

```
(1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
```

- Rounding
- (x+y)*z = x*z + y*z?
 - -1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN

Floating point in real world

- Storing time in computer games as a FP?
- Precision diminishes as time gets bigger

FP value (decimal)	Time value	FP precision	Time precision
1	1 sec	1.19E-07	119 nanoseconds
100	~1.5 min	7.63E-06	7.63 microseconds
10 000	~3 hours	0.000977	.976 milliseconds
1000 000	~11 days	0.0625	62.5 milliseconds

Floating point in the real world

Using floating point to measure distances

FP value	Length	FP precision	Precision size
1	1 meter	1.19E-07	Virus
100	100 meter	7.63E-06	red blood cell
10 000	10 km	0.000977	toenail thickness
1000 000	.16x earth radius	0.0625	credit card width

Table source: Random ASCII

Floating point trouble

Comparing floats for equality is a bad idea!

```
float f = 0.1;
while (f != 1.0) {
f += 0.1;
}
```

Floating point trouble

Never count using floating points

```
count = 0;
for (float f = 0.0; f < 1.0; f += 0.1) {
    count++;
}</pre>
```

Floating point summary

- FP format is based on normalized exponential notation
- Floating points are tricky
 - Precision diminishes as magnitude grows
 - overflow, rounding error
- Many real world disasters due to FP trickiness
 - Patriot Missile failed to intercept due to rounding error (1991)

Ariane 5 explosion due to overflow in converting from double to

int (1996)