Critical states of slow pattern in neuronal networks

Longbin Zeng¹ S. Another²

¹Department of Computer Science University of Somewhere

²Department of Theoretical Philosophy University of Elsewhere

Conference on Fabulous Presentations, 2003

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Network Dynamics

- Network response correspond to specific neuronal parameter, including fire rate, degree of irregularity, spatiotemporal patterns in neuronal spike trains and neuronal critical dynamics.
- Explor the influence of simulation size of neuronal network as well as the community stuctural network. 2000, 5000, 10000, ..., 100 million.
- Synapase density and input heterogeneity.(to be confirmed)

Theoretical explanation

Mainly three aspects...

- Explain the mechanism underly the trainsition dynamics.
 - input current variablity analysis.
 - Mean-filed equation and hopf bifuraction
 - The real part of fixed point is decreasing.
- fit the network response with a simple f unction.

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Criticality in large-scale network

Fit to function $s \cdot tanh(ax + by + c) + t$

- in the small blcok, slop is 1.6
- in the large-scale block, slop is 1.4

Figure: size=2k

Criticality in large-scale network

Some simulation case from a fixed parameter of critical space.

Figure: size=10k

Figure: size=100m

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.