LITERATURE SUMMARY REVIEW:

These topics discuss the work done by the various authors, students and researchers in brief under the domain of classification and pre-processing the textual data.

SR .no	Title of paper, publisher /event	Autor of public ation	Proble m they solved	Technolo gy they used	Metho dology used	Input provid ed	Output obtained	Summary of work	Future work proposed/ possible extension of work
	Text Categoriz ation with Support Vector Machines : Learning with Many Relevant Features	Thorst en Joachi ms	Classifi cation of Text Docum ent	Polynom ial and RBF kernels	SVM	Text Docu ment	Text classificati on based on predefined categories	It uses Support Vector Machine for the text classification. They are fully Automated and eliminate the need of manual parameter turing. The document may fall in multiple, one or not any of the categories. The representation of each category is treated as separate binary classification. With the information retrival system, the documents are transformed into representable format for the learning algo and classification task. Ordering of the words doesn't matter so it generates the category for the corresponding word in the set including its number of repetition. It has a very high dimensional feature sets which doesn't over-fit the feature set for classification and also generalizes the accuracy.	SVMs do not require any parameter tuning, since they can nd good parameter settings automaticall y. All this makes SVMs a very promising and easy-to-use method for learning text classifiers
2	Interactio n of Feature Selection Methods	Janez Brank , Mark o	Classifi cation of Text Docum ent	Tensorflo w	SVM, differ ent classif ier ie.	Text Docu ment	Text classificati on based on predefined	The method SVM and other classifier for better accuracy. The Naïve Bayes Classifier, Perceptron-I, Linear	Expand the study to additional classifiers, linear and

		G 1			37.0			CYD 6: 1 1	1.
	and	Grobe			Naïve		categories	SVM is used as the	non-linear,
	Linear	lnik			Bayes			classifier. One of the	and
	Classifica				,			classifier's weaknesses	diversify
	tion				Perce			can be hindered by	the feature
	Models				ptron-			another. Using this	scoring
					I,			concept, the	algorithms
					Linear			classification is done.	to include
					SVM			Here the feature	those that
								selection is done in two	possibly
								ways. One is using full	include
								features set and second	information
								one is using selected	of feature
								features set and study	dependencie
								them for future	s or similar
								references for linear	characteristi
								classification. Feature	cs, leading
								selection is based on	to more
								score of the feature.	sophisticate
								Top ranked are kept	d data
								while other are	modeling.
								discarded.	8
								It has seen the SVM has	
								outperformed	
								perceptron- based and	
								Naïve Bayes- based	
								classifiers for the text	
								categorization.	
3	An	Ana	Classifi	ModApt	Latent	Messa	Assigning	The classification is	We plan to
	Empirical	Cardo	cation	e	Sema	ges	one or	based on the messages,	investigate
	Comparis	soCac	of Text		ntic	and	more	newsgroups and	if further
	on of	hopo	Docum		Analy	News	number of	categorized into 10	improveme
	Text	and	ent		sis	group	Text	different sections. Both	nts can be
	Categoriz	Arlind	CIIt		(LSA)	group	Categoriza	the inputs are used for	applied to
	ation	0			(LSA)		tion	comparing the SVM	the SVMs
	Methods	Limed			, SVM,		tion	and LSA results. Pre-	and k-NN
	Wichious	e			KNN			processing of dataset is	LSA
		Olivei			IXININ			done by removing	models. If
								words with length	possible,
		ra						smaller than 3 or	this would
									further
								greater than 20.	enhance the
								Removed numbers,	
								made the upper and	superiority
								lower cases same. The	of these
								tf-idf (term frequency –	methods
								inverse document	observed in
								frequency) is used for	this
								computing the index	experiments
								term weight of a	
								document. The LSA	
								then lowers the	

	Integratin	Dimit	Classifi	ModApt	FIS	Text	Text	dimension of the original set of vectors with the new ones which comprises mostly a generalized word or class for the document. It is seen that k-NN LSA shows more promising classification than any other used method. Most of the time feature	Can be
4	g Feature and Instance Selection for Text Classifica tion	ris Frago udis,D imitris Meret akis, Spiros Likot hanaS sis	cation of Text Docum ent	e- training- test, Newsgro up, Reuters	(Feature and Instance Selection)	Document	classificati on based on predefined categories	selection does the job of reducing the dataset. Thus the FIS algorithm pre-processes the dataset by selecting the features and instances then dataset is provided to algorithm. Naïve Bayes, TAN and LB classifier has produced better results with resultant dataset of FIS algorithm. Also provides best result compared to SVM. The results were compared between MI (Mutual Information) and FIS dataset classifier. It was observed that FIS had more promising results than MI. Naïve Bayes, TAN and LB algorithm used the data set which was the resultant dataset of the MI and FIS. Among which FIS had more accurate results.	extend FIS for dealing with multiclass problems and to apply it to structured data in addition to text.
5	Pruning Training Corpus to Speedup Text Classifica tion	Jihon g Guan, Shuig eng Zhou	Classifi cation of Text Docum ent	VC++ 6.0 under Windows 2000, PC with P4 1.4GHz CPU and 256MHz memory	KNN	Text Docu ment	Text classificati on based on predefined categories	The method is based on the pruning of dataset by clustering method. The classification is done by using the KNN and Linear classifier. They both alone are not efficiently producing results as they can by	Improves by the factor of larger than 4, with less than 3% degradation of micro- averaging

6	Accuracy improve ment of automatic	Xuexi an Han Guow	Classifi cation of Text Docum	ModApt e-training-test,	Euclid ean distan ce,	Text Docu ment	Text classificati on based on	doing both. Firstly the clustering calculates the difference between the documents vector as corresponding to features selected. By treating each training class as a distinctive cluster, then using a genetic algorithm to select a subset of document features such that the difference among all clusters is maximized. The pruning method has dataset of document D. A document d also has other documents in its classified class. The features and similarities score of the document is tallied with the Class in Dataset D. Thus we are pruning the dataset For further classification based on the score of a document and selecting only the class which has the score near to the document. The procedure of the automatic text classification consists of four general steps for feature vector.	performanc e. So can be put to use where unnecessary features are bulk or irrelevant. Can be used where biased dataset
	text classifica tion based on feature transform ation and Multi- classifier combinat ion	ei Zu, Watar u Ohya ma1	ent	Newsgro up, Reuters.	SVM- Linear , Linear discri minan t functi on,		predefined categories	feature vector generation, dimension reduction, learning and classification. The study done in this report tells us that the use of multiple classifiers can be done for better and efficient classification of documents. The classifiers alone are not efficient enough but the working together it overcomes each- others	comes into picture with multiple dimensional ity.

				т	Γ				
								drawback. Based on the	
								score of the document's	
								feature, dataset can be	
								reduced dimensionally	
								if the feature doesn't	
								have the needed count.	
								Among all the	
								classifiers, the SVM-	
								Linear had the best	
								outcome with reduced	
								dimensionality.	
7	Combini	Yongg	Classifi	ModApt	K-	Text	Text	It uses basic K- nearest	Multiple
	ng	uang	cation	e-	neares	Docu	classificati	neighbour for the	reducts to
	Multiple	Bao	of Text	training-	t	ment	on based	classification. Alone K-	improve the
	K-	and	Docum	test,	Neigh		on	nearest neighbour is	performanc
	Nearest	Naohi	ent	Newsgro	bour,		predefined	sufficient so multiple	e of the k-
	Neighbou	ro		up,	KNN		categories	feature set has been put	nearest
	r	Ishii		Reuters.	Classi			to use. It combines	neighbor
	Classifier				fier,			multiple KNN	classifier
	s for Text				RkNN			classifiers. To select the	which is
	Classifica							feature of the subset,	easiest
	tion by							the MFS were build on	classifier.
	Reducts							trail and error. To	So future
								overcome this problem,	use might
								random selection of	be
								MFS was done. This	restricted.
								made the problem NP-	1080110000.
								hard. The multiple	
								reducts can be	
								formulated precisely	
								and in a unified way	
								within the framework	
								of Rough Sets theory.	
								This theory generates	
								multiple reducts which	
								improves the	
								performance of KNN classifier.	
8	Feature	Jana	Classifi	Reuters	Naive	Text	Text	In text classification,	Many areas
0	Selection	Novo	cation	IXCUICIS	Bayes	Docu	classificati	usually a document	of future
	using	vicov	of Text		Classi	ment	on based	representation using a	work
	Improved		Docum		fier,	ment	on	bag-of-words approach	remain.
	Mutual	a , Anton	ent		Best		predefined	is employed. This	Ongoing
	Informati	on	Ciit		indivi		categories	representation scheme	work
	on for	Malik			dual		categories		includes
		and						leads to very high dimensional feature	
	Text				featur				comparison
	Classifica	Pavel			es(BI			space. A predefined	on the other
	tion	Pudil			F),			number of the best	text
					Seque			features are taken to	classifiers,
					ntial			form the best feature	for

					1			<u>, </u>	
					forwa			subset. Scoring of	example,
					rd			individual words can be	support
					selecti			performed. Best	vector
					on			individual features	machines
					(SFS)			(BIF) methods evaluate	and k-
					(212)			all the n words	nearest
								individually according	neighbor.
									neighbor.
								to a given criterion, sort	
								them and select the best	
								k words. Sequential	
								forward selection (SFS)	
								methods firstly select	
								the best single word	
								evaluated by given	
								criterion. Then, add one	
								word at a time until the	
								number of selected	
								words reaches desired k	
								words. r SFS methods	
								do not result in the	
								optimal words subset	
								but they take note of	
								dependencies between	
								words as opposed to the	
								BIF methods. Therefore	
								SFS often give better	
								results than BIF.	
9	D: ': :	D.	C1 'C	D 4	A 1 D	T. 4	Tr. 4		A 1 D 4
9	Discretizi	Pio	Classifi	Reuters	AdaB	Text	Text	Based on the idea of	AdaBoost.
	ng	Nardi	cation	and	oost	Docu	classificati	adaptive boosting, a	MH is in
	Continuo	ello,	of Text	newsgro		ment	on based	version of boosting in	the
	us	Fabriz	Docum	up			on	which members of the	restricted
	Attribute	10	ent				predefined		lot of the
	s in	Sebast					categories	sequentially generated	peak text
	AdaBoos	iani,						after learning from the	categorizati
	t for Text	and						classification mistakes	on
	Categoriz	Aless						of previously generated	performers
	ation	andro						members of the same	nowadays, a
		Sperd						committee,	lot where
		uti						AdaBoost.MH is a	the margins
								realization of the well-	for
								known AdaBoost	performanc
								algorithm, which is	e
								specifically aimed at	improveme
								multi-label TC4, and	nt are
								which uses decision	slimmer and
								trees composed of a	slimmer.
								root and two leaves	Simmici.
								only as weak	
								1	
								hypotheses. Algorithms	
								attempt to optimally	

10	A comparat ive study on feature selection in text categoriz ation	Yamin g Yang, Jan O Peder son	Classifi cation of Text Docum ent	Reuters, OHSUM ED	KNN, Linear Least Squar e Fit (LLS F), Docu ment freque ncy,	Text Docu ment	Text classificati on based on predefined categories	split the interval on which these attributes range into a sequence of disjoint subintervals. This split engenders a new vector (binary) representation for documents, in which a binary term indicates that the original nonbinary weight belongs or does not belong to a given sub-interval Document Frequency (DF) Threshold is the simplest for vocabulary reduction. Easily scales to very large corpus. Due to widely received assumption of info retrival, DF is not used. The Information Gain (IG) measures the bit of information and obtains	Eases the computation and power over the application used for high level performanc e. From Neural Network to
					Information gain, Chitest			the category of the document by the presence or absence of terms. With each term Information gain is calculated and few are discarded which has less value than already predefined threshold. Thus conditional probability is put to use for term <i>t</i> and category <i>c</i> . The Chi-test measures the lack of independence between the term <i>t</i> and category c and can be compared to Chi square distribution with one degree of freedom. Thus the IG or DF combined with KNN or LLSF gives us efficient results for the classification.	Text categorizati on The methods can be used significantly .

11	"Text	Machi	Classific	linear	SVM	Text	text	In this we study about	In future
	Categoriz ation with	ne Learni	ation of text	kernel, 2nd order		docum ent	classificatio n,	(SVM) support vector machines .	work we want to see if
	Support	ng, 46,	docume	polynomi			lemmatizati	The SVM are capable of	the results
	Vector Machines.	423– 444,	nt	al kernel, Gaussian			on, stemming	effectively processing feature vectors of some 10	can be generalized
	wiaciiiies.	2002		rbf-kernel			stemming	000 dimensions, given	to other
		c		TOT KETHET				that these are sparse.	languages
		,2002						And also support vector	i.e. Slavic,
		Kluwe						machines provide a fast	romance, and
		r						and effective means for	non-Indo-
		Acade						learning text classifier's	Europeans. If
		mic Publis						from examples we study different	the results were
		hers.						mappings of frequencies	positive, a
		Manuf						to input space, and	generic
		acture						combine these mappings	algorithm
		d in						with different kernel	would be
		The						functions	found that
		Nether lands							worked well
		lanus							on nearly any language.
12	1.	Ke H.,	They	salton	Conce	Text	Classified	They uses the vector	This method
	Text	Shaop	find that		pt	docum	data on	space model and feature	for put
	categoriza	ing M	this		indexi	ent		selection of the text	forwarded in
	tion		algorith		ng,			document is represented	the paper is
	based on Concept	2002	m can effective		princi			by a vector and all subsequent calculation	meaningfull to online text
	indexing		ly		ple			based, many ML	categorisatio
	and		reduce		comp			technology have been	n, application
	principal		dimensi		onent			successfully applied to	of more
	componen		onality		analys			text categorization.	machine
	t analysis.		without		is, Vsm,K			Concept indexing is	learning.
			sacrifici ng		NN,Ba			simple and effective way to reduce dimension. For	
			categori		ysean			effective in data	
			zation		classifi			compression and feature	
			accurac		er.			extraction we use	
			у.					PCA,they applied pca to	
13	"Improvin	Clairv	Classific	Corpora,	SVM	Text	automatic	ci subspace. In general, support vector	the proposed
13	g SVM	oyance	ation of	threshold	D V IVI	docum	process for	machines (SVM), when	thresholding
	Text	Corpor	text	adjusting		ent	adjusting	applied to text	approach is
	Classificat	ation,	docume	algorithm			the	classification provide	independent
	ion	5001	nt				thresholds	excellent precision, but	of the learnt
	Performan	Baum					of generic	poor recall.	model, using
	ce through Threshold	Boule vard,					SVM which	So to improve Recall we customizing	it in conjunction
	Adjustme	Suite					incorporate	SVMs.	with other
	nt"	700,					s a user	Customizing Means to	types of
		Pittsbu					utility	adjust the threshold	models will
		rgh,					model, an	associated with an SVM.	also form an
		PA					integral	We describe an automatic	interesting
		15213- 1854,					part of an information	process for adjusting the	aspect of future work.
		1034,					miormation	thresholds of generic	ruture work.

	1	**C *	1	T	I	<u> </u>		CYD 6 1111	
		USA					manageme	SVM which incorporates a user utility model, an	
							nt system	integral part of an	
								information management	
								system	
14	"Feature	Pedro	Classific	Tensorflo	multi-	huge	Improve	In this we use the feature	for
-	Selection	A. C.	ation of	w	agents	networ	Document	selection algorithms were	improving
	Algorithm	Sousa	text		system	k		evaluated in order to	documents'
	s	1, João	docume		s,	infrast		improve documents'	classification
	to	Paulo	nt			ructure		classification performance	performance.
	Improve	Piment			feature	s and		_	
	Document	ão1,			selecti	new			
	S	Bruno			on,	inform			
	Classificat	René			Inform	ation,			
	ion	D.			ation	text			
	Performan	Santos			retriev	docum			
	ce"	2, and			al,	ent			
		Fernan			text				
		do Moura			learnin				
		-Pires3			g				
		-1 11033							
	"An	Yimin	Classific	Corpus,	KNN,	Text	Improve	This paper is a	for
15	evaluation	g	ation of	categoriza	LLSF	docum	Text	comparative study of text	improving
	of	Yang	text	tion	,neural	ents,		categorization methods.	documents'
	statistical	yiming	docume	methods	networ	previo		Fourteen methods are	classification
	approache	@cs.c	nt		k and	usly		investigated, based on	performance.
	s to text	mu.ed			WOR	publis		previously published	
	categoriza	u April			D,	hed		results and newly	
	tion."	10,			cross	results		obtained results from	
		1997			metho d	and newly		additional experiments. Corpus biases in	
					evalua	obtain		commonly used document	
					tion	ed		collections are examined	
					tion	results		using the performance of	
								three classifiers. Problems	
								in previously published	
								experiments are analyzed,	
								and the results of flawed	
								experiments are excluded	
								from the cross-method	
								evaluation. As a result,	
								eleven out of the fourteen	
								methods are remained. A	
								k-nearest neighbor (kNN) classifier was chosen for	
								the performance baseline	
								on several collections; on	
								each collection, the	
								performance scores of	
								other methods were	
								normalized using the	
								score of kNN. This	
								provides a common basis	
								for a global observation	

16	Text categoriza tion based on Concept indexing and principal componen t analysis.	Ke H., Shaop ing M 2002	They find that this algorith m can effective ly reduce dimensi onality without sacrifici ng categori zation accurac y.	salton	Conce pt indexi ng, princi ple comp onent analys is, Vsm,K NN,Ba ysean classifi er.	Text docum ent	Classified data on	on methods whose results are only available on individual collections. Windrow-Hoff, k-nearest neighbour, neural networks and the Linear Least Squares Fit mapping are the topperforming classifiers, while the Roccio approaches had relatively poor results compared to the other learning methods. KNN is the only learning method that has scaled to the full domain of MEDLINE categories, showing a graceful behaviour when the target space grows from the level of one hundred categories to a level of tens of thousands An Evaluation of Statistical Approaches to Text They uses the vector space model and feature selection of the text document is represented by a vector and all subsequent calculation based, many ML technology have been successfully applied to text categorization. Concept indexing is simple and effective way to reduce dimension. For effective in data compression and feature extraction we use PCA, they applied pca to ci subspace.	This method for put forwarded in the paper is meaningfull to online text categorisation, application of more machine learning.
17	A Comparis on of Word- and Sense- based Text Categoriz ation	Kehag ias A., Petrid is V., Kabur lasos V., Fragk ou P	: (a) in compar ing the merit of words and senses as classifi cation	Wordnet lexical	MAP, ML,v erson space, KNN, Recur sive Versio n of the	Lexica l databa se	Classified data	They work with WordNet lexical database and distinction between the word and senses. It contains the large number of noun ,verb etc of English language .WordNet provide carefully worked out word and sense vocabularies for English	Nevertheless, in a practical classification task the senses would have to be obtained by a disambiguati on step which, in all probability,

	TT .	2002	c :	ı	1645	1		1,	11
	Using	2003	features		MAP			language, as well as the	would
	Several		and		algorit			membership of each word	introduce a
	Classificat		(b) in		hm,			into a number of	significant
	ion		testing		Maxi			senses.the document they	error
	Algorithm		several		mum			have used in their text	
	S.		classific		Likeli			categorisation experiment	
			ation		hood			use a subset of the brown	
			algorith		(ML)			corpus .for document	
			ms on		Classi			representation they used	
			the					4 document	
			Brown		ficatio			representation two are	
			Corpus		n			word based and two are	
								sense based. And classify	
								algorithm uses are	
								Maximum a posteriori	
								(MAP) classification,	
								batch version, recursive	
								version of MAP	
								algorithm, maximum	
								Likelihood classification	
								and FLNMAP with	
17		B.		Computat	Corpu	Text	Classified	voting. They first linguistic	This theory
1 /	Automotio		Thorr	ional	_	data	data on	research on genre that	used in
	Automatic detection	Kessl	They propose	linguists	S	uata	basis of	uses quantitative method	application
	of text	er, G.	a theory	iniguists	logisti		linguistics.	then identify the genres:	of genre
	genre.	Nunb	of		C		imgaistics.	genetic cues, these cues	classification
	genre.	erg,	genres		Regre			that have figured	to tagging,
		and	as		ssion,			prominently in previously	summarizatio
		H.	bundles		Neura			work on genre.then	n.
		Schut	of		1			applied method like	
		ze.	facets,		Netw			corpus, logistic	
			which		ork,			Regression, Neural	
			correlate					Network. For each genre	
			with					facet, it compare our	
		1997	various					result using surface cues.	
			surface					_	
			cues,						
			and						
			argue						
			that						
			genre						
			detectio						
			n based						
			on						
			surface						
			cues is						
			as						
			successf						
			ul as						
			detectio						
			n based						
			on						
			deeper						

			structura						
			1						
			properti						
			es.						
19		Karl-	In this	Search	Rule	Text	Classified	Here they used text	The main
	Technique	Micha	they	engine,	induct	docum	clustered	document data then then	contribution
	s for	el	demonst	web	ion,	ent	document	classifying these data by	of this paper
	Improving	Schne	rate that	kernel	Naïve			the help of naïve bays	is our novel
	the	ider	simple		bays,			classifier, in these	feature
	Performan		modific		decisi			Bayesian text	scoring
	ce of Naive	2002	ation are		on			classification uses a	function, which is able
	Bayes for		able to improve		tree,su			parametric mixture model to model the generation of	to distinguish
	Text		the		pport			document.to make the	features that
	Classificat		perform		vectr			estimation of parameters	improve the
	ion		ance of		machi			tractable, we make the	clustering of
			Naïve		ne,			Naïve Bayes assumption	the training
			Bayes		cluste			that the basic units are	documents
			for text		ring			distributed independently.	(and thus are
			classific		Img			For the highly	useful for
			ation					classification accuracy	classification
			significa					than binary independence) from
			ntly.					model on text document	features that
								because it model word	degrade the
								occurrence frequency one	clustering
								can see that for longer	quality (and
								document the	thus should
								classification scores	be removed)
								dominated by the word	
								probabilities and the	
								probabilities hardly affect the classification. Feature	
								selection is commonly	
								regarded as a nessarry	
								step in text classification.	
								By taking logarithms and	
								dividing by the length of a	
								document, instead of	
								multiplying conditional	
								probabilities they	
								calculate their geometric	
								mean and thus account for	
								the impact of wrong	
								independence	
								assumptions under	
								varying document	
								lengths. Furthermore, by	
								adding the entropy of (the	
								probability distribution	
								induced by) the	
								document, we account for	
								varying document complexities.	
20		Klopo	. The	Natural	ETC	Large	Classificati	In these work they used	empirical
	Very	Ixiopo	paper	language		data	on of input	ETC described in details,	evaluation of
Ц	· J	1	Labor	154450	1		311 31 IIIput	_ = 1 C CCCCTTCCC III details ,	3.22344311 01

T +		T	ı .	1	111			
Large	tek M.	presents	possessin	algorit	like	large data.	it constructs a tree-like	a Bayesian
Bayesian	and	results	g task.	hm,	search		Bayesian network but	multinet
Networks	Woch	of		naïve	engine		contrary to the Chow/Liu	classifier
in Text	M.	empirica		bays	,		algorithm it does not	based on a
Classificat		1		classif	langua		need to compare all	new method
ion		evaluati		ier, e	ge		variables with each other	of learning
		on of a		Chow	text,		so that it saves much	very large
		Bayesia			petent		calculations of so-called	tree-like
		n		/Liu	databa		DEP-measure. They	Bayesian
		multinet		algorit	ses.		estimate also the fitness of	network
		classifie		hm			ETC to the data bye	
		r based					determining the log	
		on a					likelihood for the	
		new					artificial test and test data.	
		method					The goal was to check the	
		of					quality of the structure of	
		learning					a Bayesian network	
		very					obtained using ETC	
		large					algorithm for various	
		tree-like					DEP functions. Then they	
		Bayesia					compared ETC based	
		n					multi-net classifier	
		network					accuracy with Naive	
		S					Bayes accuracy (NB). On	
							the one hand, though NB	
							is not a particularly good	
							one, it scales quite well	
							for tasks with dozens of	
							thousands of attributes,	
							ETC exhibits a bit higher	
							stability than NB.	
							Standard error values are	
							usually slightly lower	
							than those for NB	
							classifier, though the	
							differences are not	
							striking. It turns out that	
							in spite of the possibility	
							of generation of different	
							trees in case of different	
							sequences of variables the	
							quality of the Bayesian	
							networks obtained is	
							similar they also	
							investigated the	
							complexity of ETC is	
							nlog(N) .then they reduce	
							the ETC complexity, the	
							popular words should be removed from the	
							dictionary. But in some	
							cases this may deteriorate	
							the accuracy of the classification.	
				<u> </u>			Classification.	