Networking

Reti locali

Desktop Computer

Laptop Computer

Server

Tablet

Smartphone

Printer

Camera

IP Phone

Scanner

Intermediary Device Icons

Switch

Router

Access Point

Wireless Router

Network Media Icons LAN Media WAN Media Wireless Media Network Cloud Internet

Bandwidth is like the number of lanes.

Network devices are like on-ramps, traffic signals, signs and maps.

Traveling data is like traveling vehicles.

Bandwidth and Latency

• Bandwidth is measured in the number of bits that can be sent every second.

 The amount of time it takes data to travel from source to destination is called latency.

CLASSIFICAZIONE

• PAN

• LAN

• MAN

• WAN

TOPOLOGIE

• 4.4.1

• 4.4.2

• 4.4.3

http://www.submarinecablemap.com/

TIPI DI RETI

OSI Model			
OSI Model	Layer	Description	
Application	7	Responsible for network services to applications	
Presentation	6	Transforms data formats to provide a standard interface for the application layer	
Session	5	Establishes, manages, and terminates the connections between the local and remote application	
Transport	4	Provides reliable transport and flow control across a network	
Network	3	Responsible for logical addressing and the domain of routing	
Data Link	2	Provides physical addressing and media access procedures	
Physical	1	Defines all the electrical and physical specifications for devices	

TCP/IP Model		
TCP/IP Layer	Description	
Application	Where high-level protocols such as SMTP and FTP operate	
Transport	Specifies which application requested or is receiving data through specific ports	
Internet	Where IP addressing and routing take place	
Network Access	Where MAC addressing and physical components of the network exist	

	OSI Model	TCP/IP Model	
7	Application		
6	Presentation	Application	
5	Session		
4	Transport	Transport	
3	Network	Internet	
2	Data Link	Network Access	
1	Physical		

Mnemonics

- All People Seem To Need Data Processing
- Please Do Not Throw Sausage Pizza Away

• ITE 7.2.1.4 FIGURA 2 (livelli e protocolli)

INCAPSULAMENTO

4.4.5 LAN and WAN Frames

Standard IEEE 802: generalità

Wireless Ethernet?

- Ethernet standards come in wired and wireless varieties.
- The wired standard is IEEE 802.3 and the wireless standard is IEEE 802.11

Reti locali: controllo degli accessi

- accesso casuale
 - chi deve trasmettere aspetta che il mezzo si liberi, e poi prova (CSMA/CD)
- accesso distribuito
 - algoritmo distribuito tra tutti i nodi (CSMA/CA, Token Ring)
- accesso centralizzato
 - un solo sistema controlla tutti gli altri nodi (TDMA)

Ethernet

- https://www.youtube.com/watch?v=g5MezxMcRmk
- https://www.youtube.com/watch?v=pJoH6XuUsoY
- http://www.computerhistory.org/revolution/networking/19/381/2323

Capitolo 5 : Ethernet

- https://static-course-assets.s3.amazonaws.com/ITN51/en/index.html#5.1.1.1
- https://static-courseassets.s3.amazonaws.com/ITN51/en/index.html#5.1.1.3 (evoluzione)

IEEE802.3

- The most commonly implemented wired protocol is the Ethernet protocol.
- Ethernet uses a suite of protocols that allow network devices to communicate over a wired LAN connection.
- An Ethernet LAN can connect devices using many different types of wiring media.

Struttura fisica della rete

Tipo di rete	Tipo di cavo	Lungh. Segmento (m)	Numero max nodi	Dim. Massima (m)
10Base5	Coax grosso	500	100	2500=500x5
10Base2	Coax fino	186	30	910=186*5
10BaseT	UTP cl.3	100	2	500=100x5
100BaseTX	UTP cl.5	100	2	205=100+5+ 100

CSMA/CD

- Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access control method:
 - Carrier This is the wire used to transmit data.
 - Sense Each device listens to the wire to determine if it is clear to send.
 - Multiple Access There can be many devices accessing the network at the same time.
 - Collision Detection A collision causes a doubling of voltage on the wire, which is detected by the devices' NICs.

Reti locali: accesso casuale

- **CSMA/CD**, quando deve trasmettere:
 - Carrier Sense: controlla se il mezzo è attualmente in uso: in tal caso aspetta che si liberi
 - Multiple Access: il messaggio trasmesso arriva a tutti i nodi, che ne esaminano l'indirizzo di destinazione, solo il destinatario lo mantiene
 - Collision Detect: in caso di collisione i nodi se ne accorgono, attendono un intervallo di tempo casuale e variante, e poi ricominciano

Generalità dello strato MAC Protocolli CSMA/CD

Carrier Sense Multiple Access/ Collision Detection

- quando la stazione si accorge (quasi subito) di aver colliso, interrompe la trasmissione
- l'intervallo di vulnerabilità vale al massimo il doppio del tempo di propagazione da un estremo all'alto

Listening before talking

- In CSMA/CD, all devices listen to the network wire for clearance to send data.
- This process is similar to waiting to hear a dial tone on a phone before dialing a number. When the device detects that no other device is transmitting, the device can attempt to send data.
- If no other device sends any data at the same time, this transmission arrives at the destination computer with no problems.
- If another device transmits at the same time, a collision occurs on the wire.

Listening while talking

- The first station that detects the collision sends out a jam signal that tells all stations to stop transmitting and to run a backoff algorithm.
- A backoff algorithm calculates random times in which the end station tries transmitting again.
- This random time is typically in 1 or 2 milliseconds (ms). This sequence occurs every time there is a collision on the network and can reduce Ethernet transmission by up to 40 percent.

COLLISION

BEB

ITP	9,6 μs	
N. tentativi di ritrasmissione	16	
N. tentativi prima di limitare il Back-off	10	
Pacchetto di Jamming	32 byte	
Lunghezza minima del pacchetto	64 byte	
Massima lunghezza del pacchetto	1518 byte	

ITP: periodo di silenzio Time-slot =51,2 μs 512 bit a 10 Mbps

Ethernet Cable Standards

Ethernet Standards				
Ethernet Standards	Media	Transfer Rates		
10BASE-T	Category 3	Transfers data at a rate of 10 Mb/s.		
100BASE-TX	Category 5	At 100 Mb/s, transfer rates of 100BASE-TX are ten times that of 10BASE-T.		
1000BASE-T	Category 5e, 6	The 1000BASE-T architecture supports data transfer rates of 1 Gb/s.		
10GBASE-T	Category 6a, 7	The 10GBASE-T architecture supports data transfer rates of 10 Gb/s.		

SPINE e PRESE

ITE 7.3.2.5 CCNA1 4.2.2.6 **CABLE PINOUTS**

1000BASE-T

- is the most commonly implemented Ethernet architecture today. The name indicates the features of the standard:
 - The 1000 represents a speed of 1000 Mb/s or 1 Gb/s.
 - BASE represents baseband transmission. In baseband transmission, the entire bandwidth of a cable is used for one type of signal.
 - The T represents twisted-pair copper cabling.

Codifica Manchester

Ci sono due convenzioni opposte per la rappresentazione dei dati

- La prima fu inizialmente pubblicata da G. E. Thomas nel 1949 ed è seguita da numerosi autori (ad es. Tanenbaum). Specifica che per un bit 0 i livelli di segnale saranno Basso-Alto (assumendo una codifica dei dati con l'ampiezza) con un livello basso nella prima parte del periodo di bit, ed un livello alto nella seconda parte. Per un bit 1 i livelli di segnale saranno Alto-Basso.
- Anche la seconda convenzione è seguita da molti autori (ad es. Stallings). Stabilisce che uno 0 logico sia rappresentato da una sequenza di segnale Alto-Basso ed un 1 logico da una sequenza di segnale Basso-Alto.
- Una conseguenza della transizione per ciascun bit è che la necessità di larghezza di banda per segnali codificati Manchester è doppia in confronto ad una comunicazione asincrona, e che lo spettro del segnale è considerevolmente più ampio. Nonostante la codifica Manchester sia una forma di comunicazione altamente affidabile, il requisito della larghezza di banda è visto come uno svantaggio, e le comunicazioni più moderne avvengono con protocolli con codici più moderni che ottengono gli stessi risultati con una codifica più rapida ed una richiesta di larghezza di banda minore.

10 BASE 5

10 BASE 2

10 BASE T

Backbone

10 BASE 5

10 BASE 2

massima estensione 10BaseT

HUB e BRIDGE

10BaseT segmentata

massima estensione 100BaseTX

3 segmenti - 2 ripetitori

Campo PAD

Requisito di lunghezza minima del frame

- Questo requisito e' dovuto al fatto che una stazione deve poter identificare una collisione sul frame che sta' trasmettendo
- Detto T l'intervallo di tempo per la propagazione del segnale lungo il mezzo tra le stazioni piu' lontane, nel caso peggiore un eventuale segnale di collisione arriva al trasmittente dopo 2T secondi
- Se la trasmissione terminasse entro 2T secondi, la stazione riterrebbe di aver trasmesso con successo quando invece potrebbe essere avvenuta una collisione
- Lo standard Ethernet prevede la possibilita' di avere 5 tratte da 500 m connesse da 4 ripetitori, ed il tempo di propagazione, tenuto in conto il ritardo introdotto dai ripetitori, e' di circa 25 µs; il frame deve quindi durare almeno 50 µs che a 10 Mbps significano 500 bit
- Il frame trasmesso deve essere lungo almeno 500 bit (arrotondato a 512 bit = 64 byte)
- Aumentando di un fattore 10 la velocità, bisogna diminuire di un fattore 10 la distanza (da 2500m a 250m)
- O aumentare la lunghezza minima del frame

SWITCH

- The switching table contains a list of all MAC addresses on the network, and a list of which switch port can be used to reach a device with a given MAC address.
- The switching table records MAC addresses by inspecting the source MAC address of every incoming frame, as well as the port on which the frame arrives.

funzionamento dello SWITCH

- dispositivo che crea una connessione tra una porta entrante ed una uscente
- collega vari segmenti smistando selettivamente i pacchetti in transito
- riduce i domini di collisione ed aumenta la banda di ogni segmento

MAC ADDRESS

• https://static-course-assets.s3.amazonaws.com/ITN51/en/index.html#5.1.2.2

Address Format	Description				
00-50-56-BE-D7-87	Two hexadecimal digits separated by hyphens				
00:50:56:BE:D7:87	Two hexadecimal digits separated by colons				
0050.56BE.D787	Four hexadecimal digits separated by periods				

Switch: esercizi

• https://static-course-assets.s3.amazonaws.com/ITN51/en/index.html#5.2.1.6

Store and forward e cut through

https://static-course-assets.s3.amazonaws.com/ITN51/en/index.html#5.1.2.2

- Uno switch store and forward memorizza ciascun frame che riceve in un buffer, controlla gli errori e se non rivela errori lo inoltra alla sua porta di destinazione.
- Alta latenza
- Può avere porte che operano a velocità diverse

- Uno switch cut through non verifica la correttezza dei frame ricevuti.
- Quando un frame viene ricevuto su una porta di ingresso, lo switch esamina l'indirizzo di destinazione, consulta le tabelle di instradamento per determinare la porta di uscita e, se quest'ultima è libera, inizia immediatamente a trasmettere, mentre sta ancora ricevendo il frame sulla porta di ingresso.

Tipi di indirizzi

- MAC addresses are used by switches to forward traffic within a LAN.
- IP addresses are used by routers to determine the best path to a destination network.
- Port numbers are used by computers to determine which application should receive the data.

ARP

https://static-course-assets.s3.amazonaws.com/ITN51/en/index.html#5.3.2.2

WLAN

Lo standard 802.11 definisce due differenti modalità di funzionamento:

- DCF (Distributed Coordination Function): tale modalità, utilizzabile sia in presenza di un AP sia in una rete ad-hoc, realizza un arbitraggio distribuito per l'accesso al canale per mezzo del protocollo CSMA/CA
- PCF (Point Coordination Function): tale modalità, che è facoltativa, richiede la presenza di un AP e realizza un arbitraggio centralizzato per l'accesso al canale.

CSMA/CA

- Wireless networks use Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
- CMSA/CA does not detect collisions but attempts to avoid them by waiting before transmitting.
- Each device that transmits includes in the frame the time duration that it needs for the transmission. All other wireless devices receive this information and know how long the medium will be unavailable. This means that wireless devices operate in half-duplex mode.

Reti locali: accesso distribuito

- CSMA/CA, quando deve trasmettere:
 - Carrier Sense: controlla se il mezzo è attualmente in uso: in tal caso aspetta che si liberi
 - Multiple Access: il messaggio trasmesso arriva a tutti i nodi, che ne esaminano l'indirizzo di destinazione, solo il destinatario lo mantiene
 - Collision Avoidance: i nodi che vogliono trasmettere, attendono un intervallo di tempo prefissato, e se alla fine il mezzo è libero, lo usano

Terminale nascosto

 Spesso il protocollo CSMA/CA è usato congiuntamente alla tecnica RTS/CTS (prenotazione del canale) per affrontare il problema del cosiddetto terminale nascosto, ovvero il fatto che una stazione A che trasmette verso una stazione B può non essere in grado (ad esempio a causa della distanza) di rilevare una stazione C anch'essa impegnata in una comunicazione con B, generando così collisioni in ricezione su B.

RTS/CTS

Note

- DIFS (Distributed Inter Frame Spacing)
- SIFS (Short Inter Frame Spacing, più breve del DIFS)
- The transmission efficiency of an AP or wireless router is reduced as more devices are attached.

WIRELESS STANDARDS

IEEE Standard	Maximum Speed	Maximum Indoor Range	Frequency	Backwards Compatible
802.11a	54 Mb/s	115 ft (35 m)	5 GHz	-
802.11b	11 Mb/s	115 ft (35 m)	2.4 GHz	
802.11g	54 Mb/s	125 ft (38 m)	2.4 GHz	802.11b
802.11n	600 Mb/s	230 ft (70 m)	2.4 GHz and 5 GHz	802.11a/b/g
802.11ac	1.3 Gb/s (1300 Mb/s)	115 ft (35 m)	5 GHz	802.11a/n

Portata e prestazioni

- La lunghezza delle onde radio della banda a 5 GHz è pari alla metà di quella della banda a 2,4 GHz.
- A parità di potenza di uscita, un modulo radio che utilizza la banda a 5 GHz ha pertanto una portata minore rispetto a uno attivo in quella a 2,4 GHz.
- La riduzione della portata è difficile da predire, in quanto dipende dalle condizioni radio nel punto in questione. I vari materiali assorbono inoltre le frequenze in modo diverso e ciò influisce a sua volta in misura considerevole sulla portata.

Grandezze e unità di misura

- Lunghezza d'onda (metri)
- Periodo (secondi)
- Frequenza (hertz=1/s)
- Velocità di propagazione (m/s)
- c=velocità della luce

$$\lambda = rac{v}{f}$$

$$f=\frac{c}{\lambda}$$

Wireless Access Points and Routers

Wireless network protocol (IoT 1.3.4.3)

