Chapitre 1 - Limites de fonctions

Terminales Spé Maths

1 Histoire des mathématiques

On peut considérer que le concept de limite est né avec le philosophe grec **Zénon d'Elée** au 4^{ème} siècle avant notre ère. Il est l'auteur de célèbres paradoxes dont celui d'Achille et la tortue.

Aux 17^{ème} et au 18^{ème} siècles, les mathématiques ont une intuition claire de la notion de limite. Par exemple, Gottfried Leibniz, utilise des écritures telles que :

$$\pi = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - \dots).$$

Au 19^{ème} siècle, le besoin de définir rigoureusement le concept de limite se fait sentir. Le mathématicien français **Augustin Cauchy** donne une place centrale à la notion de limite en analyse. Plus tard, le mathématicien allemand **Karl Weierstrass** surnommé le père de l'analyse moderne en donne la première définition précise et introduit la notation $\lim_{x\to x_0} f(x)$ pour la limite d'une fonction f en x_0 .

EXERCICE 1

Grand Oral Rechercher le paradoxe d'Achille et la tortue (un des Paradoxes de Zénon)

2 Limites de fonctions : définitions et premières propriétés

2.1 Limites en $+\infty$ et en $-\infty$

Définition 2.1.

Limite infinie à l'infini

• Une fonction f a pour limite $+\infty$ en $+\infty$ si tout intervalle ouvert de la forme $]A, +\infty[$ contient toutes les valeurs de f(x) pour x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = +\infty$$

• Une fonction f a pour limite $-\infty$ en $+\infty$ si tout intervalle ouvert de la forme $]-\infty,A[$ contient toutes les valeurs de f(x) pour x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = -\infty$$

• On définit de façon analogue les limites infinies en $-\infty$. On les note

$$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} f(x) = -\infty$$

Remarque.

Ces définitions sont formalisées dans un langage mathématique :

• $\lim_{x\to +\infty} f(x) = +\infty$: Pour tout A>0, il existe un réel x_0 réel (dépendant de A à chercher) tel que si $x>x_0$ alors f(x)>A

Dans certains livres vous pouvez voir les notations suivantes (non demandées en terminale, mais anticipons sur vos études supérieures):

$$\forall A > 0; \exists x_0 > 0 : (x > x_0) \Rightarrow f(x) > A$$

N° 37 p 178 : écrire dans le même formalisme les autres limites en $+\infty$ ou $-\infty$.

Propriété 2.1.

Soit n en entier supérieur ou égal à 1. On a :

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$$

$$\lim_{x \to +\infty} e^x = +\infty$$

Démonstration.

• Montrons la limite de $\lim_{x \to +\infty} \sqrt{x} = +\infty$

Soit A un réel strictement positif.

A partir de $x_0 = A^2$, pour tout $x > x_0$ on a $\sqrt{x} > A$. Donc $\sqrt{x} \in]A; +\infty[$. Donc $\lim_{x \to +\infty} \sqrt{x} = +\infty$

• Montrons que $\lim_{x \to +\infty} x^n = +\infty$

Soit A un réel strictement positif.

A partir de $x_0 = \sqrt[n]{A}$, pour tout $x > x_0$, on a $x^n > A$. Donc $x^n \in A$; $+\infty$. Donc $\lim_{x \to +\infty} x^n = +\infty$

• Montrons que $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$

Cette démonstration utilise les compositions de fonctions et quelques opérations sur les limites vues plus loin dans le chapitre, elle est peut être étudiée maintenant ou par la suite.

n pair Posons y=-x alors $\lim_{x\to-\infty}x^n=\lim_{y\to+\infty}(-y)^n=\lim_{y\to+\infty}y^n$ car n est pair donc $(-y)^n=y^n$. Or $\lim_{y\to+\infty}y^n=+\infty$ donc $\lim_{x\to-\infty}x^n=+\infty$ n impair Posons y=-x alors $\lim_{x\to-\infty}x^n=\lim_{y\to+\infty}(-y)^n=\lim_{y\to+\infty}-y^n$ car n est impair donc $(-y)^n=-y^n$. Or $\lim_{y\to+\infty}-y^n=-\infty$ donc $\lim_{x\to-\infty}x^n=-\infty$ • la démonstration **BAC** de la $\lim_{x\to+\infty}e^x=+\infty$ sera étudiée dans la démonstration du théorème des

croissances comparées.

Définition 2.2.

Soit une fonction f définie sur un ensemble \mathcal{D}_f telle qu'il existe un réel x_0 pour lequel $[x_0; +\infty[\subset \mathcal{D}_f$ Soit l un nombre réel, dire que f tend vers la limite l quand x tend vers $+\infty$ signifie que quelque soit un ε donné strictement positif, il existe un réel $x_0 > 0$ tel que pour tout x de \mathcal{D}_f , si $x > x_0$ alors $|f(x) - l| \le \varepsilon$ On note

$$\lim_{x \to +\infty} f(x) = l$$

On définit de façon analogue la limite réelle de f en $-\infty$

Définition 2.3.

Lorsqu'une fonction f a pour limite un réel l en $+\infty$ ou en $-\infty$, on dit que la courbe représentation de f admet une asymptote horizontale en $+\infty$ ou en $-\infty$ d'équation y = l.

Remarque.

Dans l'exemple précédent, la courbe représentative de f admet une asymptote en $+\infty$ d'équation y=1

Exemple: : l'animation permet de comprendre la notion d'asymptote horizontale.

Propriété 2.2.

Soit n un entier supérieur ou égal à 1. On a

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to -\infty} e^x = 0$$

 $D\'{e}monstration.$

$$\bullet \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0.$$

On choisit $\varepsilon > 0$ proche de 0, il existe $x_0 = \frac{1}{\varepsilon^2}$ alors pour tout $x > x_0$ alors $\frac{1}{\sqrt{x}} < \varepsilon$.

Donc
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\bullet \lim_{x \to +\infty} \frac{1}{x^n} = 0.$$

On choisit $\varepsilon > 0$ proche de 0, il existe $x_0 = \frac{1}{\sqrt[n]{\varepsilon}}$ alors pour tout $x > x_0$ alors $\frac{1}{x^n} < \varepsilon$.

Donc
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

 $\lim_{x \to -\infty} \frac{1}{x^n} = 0.$

$$\bullet \lim_{x \to -\infty} \frac{1}{x^n} = 0.$$

On pose
$$y = -x$$
 donc $\lim_{x \to -\infty} \frac{1}{x^n} = \lim_{y \to +\infty} \frac{1}{(-y)^n} = \pm \lim_{y \to +\infty} \frac{1}{y^n} = 0$

On pose y=-x donc $\lim_{x\to-\infty}\frac{1}{x^n}=\lim_{y\to+\infty}\frac{1}{(-y)^n}=\pm\lim_{y\to+\infty}\frac{1}{y^n}=0$ • La démonstration $\mathbf{BAC}\lim_{x\to-\infty}\mathrm{e}^x=0$ sera étudiée dans le cadre du théorème des croissances comparées.

CQFD

2.2Limite en un réel

Définition 2.4.

Soit f une fonction définie sur un ensemble \mathcal{D}_f . La fonction f a pour limite $+\infty$ en a si tout intervalle de \mathbb{R} du type A; $+\infty$ contient toutes les valeurs de f(x) pour x assez proche de a. On note alors : $\lim_{x \to a} f(x) = +\infty.$

Quel que soit A, il existe un réel $\delta > 0$ tel que pour tout $x \in \mathcal{D}_f$ si $|x - a| < \delta$ alors f(x) > A.

On définit de la même manière $\lim_{x\to a} f(x) = -\infty$.

Dans cet exemple la fonction f définie par $f(x) = \frac{1}{x-1}$ tend vers $+\infty$ lorsque x tend vers 1.

Propriété 2.3. • Pour tout $n \in \mathbb{N}^*$ si n est pair $\lim_{x \to 0} \frac{1}{x^n} = +\infty$.

- Pour tout $n \in \mathbb{N}^*$ si n est impair $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty$.
- Pour tout $n \in \mathbb{N}^*$ si n est impair $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = -\infty$.
- $\bullet \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty.$

Remarque.

 $\lim_{x \to a} f(x)$ est appelée limite à droite en a.

 $x \rightarrow a$ $\lim f(x)$ est appelée limite à gauche en a.

Définition 2.5.

Lorsque la limite de f en a réel a est $+\infty$ ou $-\infty$, on dit que la droite d'équation x=a est une asymptote verticale de la courbe C_f .

Remarque.

Dans l'exemple ci-dessus, la droite d'équation x=1 est une asymptote à la courbe.

Exemple: L'animation permet de comprendre la notion d'asymptote verticale.

Définition 2.6.

Soit l un nombre réel. Une fonction a pour limite l en a si tout intervalle ouvert contenant l contient toutes les valeurs de f(x) pour x suffisamment proche de a. On note $\lim f(x) = l$.

Pour tout $\varepsilon > 0$, il existe un réel $\delta > 0$ tel que, pour tout $x \in \mathcal{D}_f$ si $|x - a| < \delta$ alors $|f(x) - l| < \varepsilon$.

Propriété 2.4.

Soit a un réel,

- Si a ≥ 0; lim √x = √a
 Si P est un polynôme, alors lim P(x) = P(a)
- Si F est une fonction rationnelle, (quotient de deux polynômes) définie en a, alors $\lim F(x) =$ F(a)
- $\lim_{x \to a} \cos(x) = \cos(a)$ et $\lim_{x \to a} \sin(x) = \sin(a)$
- $\lim_{x \to a} e^x = e^a$

EXERCICE

En vous aidant du graphique, donnez les équations réduites des asymptotes à la courbe.

EXERCICE

asymptote et limite 1

EXERCICE 4

asymptote et limite 2

EXERCICE

Limite de fonctions usuelles niveau 1 La fonction ln sera étudiée plus tard dans l'année

EXERCICE

Limite de fonctions usuelles niveau 2 La fonction ln sera étudiée plus tard dans l'année

EXERCICE

Limite d'autres fonctions usuelles La fonction ln sera étudiée plus tard dans l'année

EXERCICE

Limite d'autres fonctions usuelles La fonction ln sera étudiée plus tard dans l'année

Opérations sur les limites 3

Propriété 3.1.

— Limite d'une somme :

Elimite d'une somme.		
f	g	f+g
ℓ	ℓ'	$\ell + \ell'$
ℓ	∞	∞
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$-\infty$	Forme Indéterminée

— Limite d'un produit :

f	g	fg
ℓ	ℓ'	$\ell\ell'$
$\ell \neq 0$	∞	∞
∞	∞	∞
0	∞	Forme Indéterminée

— Limite d'un quotient :

f	g	f/g
ℓ	$\ell' \neq 0$	ℓ/ℓ'
$\ell \neq 0$	0	∞
∞	0	∞
ℓ	∞	0
0	∞	0
0	0	Forme Indéterminée
∞	∞	Forme Indéterminée

Remarque. • ∞ peut signifier $+\infty$ ou $-\infty$. Les règles du signe d'un produit ou d'un quotient demeurent.

- Pour la limite de la différence f-g, on considère la limite de la somme f+(-g).
- les lignes en vert sont des cas pariculiers.

Exemple

Soit $f: x \mapsto (1-x)\left(x^3 + \frac{1}{x}\right)$ définie sur \mathbb{R}^* . Calculons $\lim_{x \to +\infty} f(x)$. Par somme, $\lim_{x \to +\infty} (1-x) = -\infty$ et $\lim_{x \to +\infty} \left(x^3 + \frac{1}{x}\right) = +\infty$ donc, par produit, $\lim_{x \to +\infty} f(x) = -\infty$.

EXERCICE 9

calcul de limites à l'infini

EXERCICE 10

calcul de limites en un réel

4 Limites de composée de fonctions

4.1 Fonctions composées

Une composée de deux fonctions correspond à un enchaînement de deux fonctions l'une après l'autre. Par exemple, composons la fonction $f: x \mapsto 1-x$ suivie de $g: x \mapsto \sqrt{x}$. On peut ainsi schématiser :

$$x \mapsto 1 - x \mapsto \sqrt{1 - x}.$$

Cependant, on voit que la fonction g ne peut s'appliquer que si l'ensemble des images par la fonction f est inclus dans l'ensemble de définition de g.

Ainsi, pour appliquer ici la racine carrée, il faut que $1-x \ge 0$ c'est-à-dire que $x \le 1$.

La composée existe donc dans le schéma suivant où on précise les ensembles de départ et d'arrivée pour f:

$$[-\infty; 1] \rightarrow [0; +\infty[\rightarrow \mathbb{R} \atop x \mapsto 1-x \mapsto \sqrt{1-x} \atop g$$

En composant f suivie de g, on a ainsi défini sur $]-\infty$; 1] la fonction $x\mapsto \sqrt{1-x}$.

Définition 4.1.

Soit f une fonction définie sur E et à valeurs dans F, et soit g une fonction définie sur F.

La composée de f suivie de g est la fonction notée $g \circ f$ définie sur E par $g \circ f(x) = g(f(x))$.

Remarque.

Il ne faut pas confondre $q \circ f$ et $f \circ q$ qui sont, en général, différentes.

Exemple:

En reprenant f et q de l'exemple précédent, définissons $f \circ q$.

La composée de g suivie de f est possible en partant de l'ensemble de définition de g:

$$\begin{array}{ccc} [0 ; +\infty[\to [0 ; +\infty[\to \mathbb{R} \\ x & \mapsto \sqrt{x} & \mapsto 1 - \sqrt{x} \\ g & f \end{array}]$$

En composant g suivie de f, on a ainsi défini sur $[0; +\infty[$ la fonction $x \mapsto 1 - \sqrt{x}$.

4.2 Théorème de composition des limites

Théorème 4.1.

Soit h la composée de la fonction f suivie de g et α , β et γ trois réels ou $\pm \infty$.

Si
$$\lim_{x \to \alpha} f(x) = \beta$$
 et $\lim_{x \to \beta} g(x) = \gamma$, alors $\lim_{x \to \alpha} h(x) = \gamma$.

Exemple:

Déterminons la limite en $-\infty$ de la fonction $q \circ f$ de l'exemple précédent.

La composée de $f: x \mapsto 1-x$ suivie de $g: x \mapsto \sqrt{x}$ est $h: x \mapsto \sqrt{1-x}$ définie sur $]-\infty$; 1].

Or, $\lim_{x \to -\infty} (1-x) = +\infty$ (par somme) et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ (limite de référence).

Donc, d'après le théorème de composition, $\lim_{x\to -\infty} \sqrt{1-x} = +\infty$.

Déterminer une limite de fonction

On applique les propriétés d'opérations sur les limites.

Si la limite est indéterminée, « $+\infty + (-\infty)$ », « $0 \times \infty$ », « $\frac{\infty}{\infty}$ » ou « $\frac{0}{0}$ », on essaye de :

- factoriser par le terme prépondérant;
- multiplier par la quantité conjuguée ¹ si des racines carrées interviennent;
- effectuer un changement de variable (voir théorème de composition des limites).

Calculer les limites suivantes :

$$1. \lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

2.
$$\lim_{x \to +\infty} \frac{2x^2 - 3x + 1}{x^2 - 1}$$

3.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$$

Ces limites sont indéterminées (respectivement formes « $\infty - \infty$ », « $\frac{\infty}{\infty}$ » et « $\frac{0}{0}$ »).

1. On multiplie le numérateur et le dénominateur par la quantité conjuguée de $\sqrt{x+1}-\sqrt{x}$:

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Or, par composition: $\lim_{x \to +\infty} (x+1) = +\infty$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ donc $\lim_{x \to +\infty} \sqrt{x+1} = +\infty$.

Et, par somme : $\lim_{x \to +\infty} \left(\sqrt{x+1} + \sqrt{x} \right) = +\infty$. Donc, par inverse : $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

2. Divisons le numérateur et le dénominateur par x^2 . Alors, $\frac{2x^2-3x+1}{x^2-1}=\frac{2-\frac{3}{x}+\frac{1}{x^2}}{1-\frac{1}{x^2}}$.

Or, par somme :
$$\lim_{x \to +\infty} \left(2 - \frac{3}{x} + \frac{1}{x^2} \right) = 2$$
 et $\lim_{x \to +\infty} \left(1 - \frac{1}{x^2} \right) = 1$.

Donc, par quotient : $\lim_{x \to +\infty} \frac{2 - \frac{3}{x} + \frac{1}{x^2}}{1 - \frac{1}{x^2}} = 2.$

3. Changeons de variable en posant $u = \sqrt{x}$. Si x tend vers 4, alors u tend vers 2.

$$\frac{x-4}{\sqrt{x}-2} = \frac{u^2-4}{u-2} = \frac{(u+2)(u-2)}{u-2} = u+2 \text{ pour } u \neq 2. \text{ Donc, par somme } : \lim_{u\to 2} (u+2) = 4.$$

EXERCICE 11

1. limites en $+\infty$ et $-\infty$ des Fonctions polynômes

(a)
$$5x^3 + 2x^2 - 6x + 5$$

(b)
$$-4x^5 + 2x^2 + 10$$

2. Fonctions rationnelles

(a)
$$\lim_{x \to -\infty} \frac{2x^2 + x - 3}{3x + 4}$$

(b)
$$\lim_{x \to +\infty} \frac{8x^3 - 5x + 4}{3x^3 + 2x^2 - 1}$$

EXERCICE 12

Limites de fonctions composées

^{1.} on désigne généralement par $a-b\sqrt{c}$ la quantité conjuguée de $a+b\sqrt{c}$

Limites et comparaison 5

5.1Théorème de comparaison

Théorème 5.1.

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle α ; $+\infty$ de \mathbb{R} .

- $-\lim_{x \to +\infty} f(x) = +\infty \Rightarrow \lim_{x \to +\infty} g(x) = +\infty.$ $-\lim_{x \to +\infty} g(x) = -\infty \Rightarrow \lim_{x \to +\infty} f(x) = -\infty.$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]-\infty$; $\beta[de \mathbb{R}]$.

- $-\lim_{x \to -\infty} f(x) = +\infty \Rightarrow \lim_{x \to -\infty} g(x) = +\infty.$ $-\lim_{x \to -\infty} g(x) = -\infty \Rightarrow \lim_{x \to -\infty} f(x) = -\infty.$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]\alpha$; $\beta[$ de \mathbb{R} et $x_0 \in]\alpha$; $\beta[$.

- $\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} g(x) = +\infty.$ $-\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty.$

Exemple

Soit la fonction h définie sur \mathbb{R} par $h(x) = \sqrt{x^4 + 1}$, calculer $\lim h(x)$.

Pour tout $x, x^4 < x^4 + 1$

La fonction racine carrée est croissante sur $[0; +\infty[$, donc $\sqrt{x^4} < \sqrt{x^4 + 1} \Leftrightarrow x^2 < h(x)$.

Or $\lim_{x\to +\infty} x^2 = +\infty$ d'après le théorème de comparaison $\lim_{x\to +\infty} h(x) = +\infty$

5.2Théorème d'encadrement dit « des gendarmes »

Théorème

Soit deux réels α et ℓ et trois fonctions f, g et h telles que, pour $x > \alpha$, on a $f(x) \leq g(x) \leq h(x)$. Si $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = \ell$, alors $\lim_{x \to +\infty} g(x) = \ell$.

Remarque.

On a, comme pour le théorème de comparaison précédent, deux théorèmes analogues lorsque x tend vers $-\infty$ et lorsque x tend vers un réel x_0 .

Démonstration. Par hypothèse, les fonctions f et h ont pour limite ℓ .

Considérons un intervalle ouvert I qui contient ℓ . Il contient toutes les valeurs f(x) dès que x > a et toutes les valeurs h(x) dès que x > b. Notons $c = \max(a; b)$, I contient donc toutes les valeurs f(x) et h(x) dès que x > c.

Comme pour tout $x \in I, f(x) \leq g(x) \leq h(x)$, J contient toutes les valeurs g(x) dès que x > c. C'est vrai pour tout intervalle ouvert contenant ℓ donc $\lim_{x \to +\infty} g(x) = \ell$.

CQFD

Exemple

Soit la fonction f définie sur $I = [0; +\infty[$ telle que pour tout $x \in I$,

$$-\frac{1}{x} + 2 \leqslant f(x) \leqslant \frac{1}{x} + 2$$

Sachant que, par somme, $\lim_{x\to +\infty} -\frac{1}{x}+2=2$ et que $\lim_{x\to +\infty} \frac{1}{x}+2=2$; on a d'après le théorème d'encadrement "des gendarmes" $\lim_{x\to +\infty} f(x)=2$

EXERCICE 13

$$1. \lim_{x \to +\infty} \frac{\sin(x) + 3}{x}$$

$$2. \lim_{x \to +\infty} \frac{2x + \cos(x)}{x - 1}$$

$$3. \lim_{x \to +\infty} \frac{\cos(x)}{x^2}$$

$$4. \lim_{x \to +\infty} \frac{2 + \cos(x)}{x - \sin(2x)}$$

corrigé

5.3 Théorème des croissances comparées

Théorème 5.3.

Pour tout $n \in \mathbb{N}^*$; $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ et $\lim_{x \to -\infty} x^n e^x = 0$

Démonstration. Démonstration des ptes 2.1 et 2.2

1. Limite en $+\infty$. On considère la fonction $g(x) = e^x - x$ g est dérivable sur \mathbb{R} et $g'(x) = e^x - 1$ $g'(x) > 0 \Leftrightarrow e^x > 1 \Leftrightarrow e^x > e^0 \Leftrightarrow x > 0$ car e^x est une fonction croissante.

Donc g est décroissante sur $]-\infty;0[$ et croissante sur $]0;+\infty[$ avec g(0)=1 le minimum de g sur \mathbb{R} .

Donc pour tout x réel $g(x) \ge 1 > 0 \Rightarrow e^x - x > 0$ donc $e^x > x$. Or $\lim_{x \to +\infty} x = +\infty$ donc, par comparaison,

$$\lim_{x \to +\infty} e^x = +\infty$$

2. Limite en $-\infty$. Posons X = -x donc $\lim_{x \to -\infty} e^x = \lim_{X \to +\infty} e^{-X} = \lim_{X \to +\infty} \frac{1}{e^X}$ Or $\lim_{X \to +\infty} e^X = +\infty$ d'après la démonstration précédente donc par inverse $\lim_{X \to +\infty} \frac{1}{e^X} = 0$ Donc

$$\lim_{x \to -\infty} e^x = 0$$

Démonstration du théorème des croissances comparées Limite en $+\infty$

1. **cas** n = 1 :

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^x - \frac{x^2}{2}$$

(a) f est dérivable sur \mathbb{R} comme somme d'une fonction de la fonction exponentielle et d'une fonction polynôme.

$$f'(x) = e^x - x.$$

Nous avons vu dans la démonstration de la propriété 2.1 que f'(x) > 0 pour tout $x \in \mathbb{R}$. Donc f est croissante sur \mathbb{R} .

Donc pour tout x > 0, f(x) > f(0) donc f(x) > 1 donc $f(x) > 0 \Leftrightarrow e^x > \frac{x^2}{2} \Leftrightarrow \frac{e^x}{x} > \frac{x}{2}$

Par le théorème de comparaison, on a $\lim_{x\to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$

2. **cas** n > 1

$$\frac{\mathrm{e}^x}{x^n} = \left(\frac{\mathrm{e}^{\frac{x}{n}}}{\frac{x}{n}}\right)^n \times \left(\frac{1}{n}\right)^n$$

En posant
$$X = \frac{x}{n}$$
, on a $\frac{e^x}{x^n} = \left(\frac{e^X}{X}\right)^n \times \left(\frac{1}{n}\right)^n$

 $\lim_{x\to +\infty} X = +\infty \text{ et on a montré précédemment que } \lim_{X\to +\infty} \frac{\mathrm{e}^X}{X} = +\infty \text{ donc, par composition : pour tout } n>0; \lim_{x\to +\infty} \frac{\mathrm{e}^x}{x^n} = +\infty$

Limite en $-\infty$

Posons
$$X = -x$$
 donc $\lim_{x \to -\infty} x^n e^x = \lim_{X \to +\infty} (-X)^n e^{-X} = \lim_{X \to +\infty} \frac{(-X)^n}{e^X}$

On sait que pour tout n > 0, $\lim_{X \to +\infty} \frac{e^X}{X^n} = +\infty$ donc par inverse $\lim_{X \to +\infty} \frac{X^n}{e^X} = 0$

Donc
$$\lim_{X \to +\infty} (-1)^n \frac{X^n}{e^X} = \lim_{X \to +\infty} \frac{(-X)^n}{e^X} = 0$$

Conclusion:
$$\lim_{x \to -\infty} x^n e^x = 0$$

CQFD

EXERCICE 14

Déterminer $\lim_{x \to +\infty} \frac{e^x + x}{e^x - x^2}$

Corrigé