# **Table-to-text Generation for Biomedical Causal Inference**

**Andrew Bell** 

# FDA Adverse Event Reporting System (FAERS)

- Over 2 million reports every year
- Example Report:

| CaseID   | Gender | Age | PSD                     | ADE              | ••• |  |
|----------|--------|-----|-------------------------|------------------|-----|--|
| 20222515 | Female | 71  | Nicotine, Acetaminophen | Anemia, Headache | ••• |  |

PSD = Primary Suspect Drugs

ADE = Adverse Drug Effects

## **Conventional CI pipeline**

### **Input: Pharmacovigilance Case Reports**

#### Case # **ADE** Age • • • Liver 1 24 ••• Failure 2 45 Nausea • • • Hepatic 16 3 ••• Injury

### **Output: Causal Factors**



### InferBERT informs causal inference with a language model (ALBERT)



# Analgesics-Induced acute liver failure 114.3 Acetaminophen | 20.4 12.4 Death 18-39 6.1 Female

### **InferBERT Results**

| Feature    | Term               | Z-<br>score |  |
|------------|--------------------|-------------|--|
| PSD        | APAP               | 114.95      |  |
| Outcome    | Death              | 77.94       |  |
| Age        | 18-39              | 27.29       |  |
| Indication | Suicide<br>Attempt | 16.85       |  |
| Gender     | Female             | 10.26       |  |
| Dose       | >100mg             | 5.01        |  |

### We modify InferBERT using Table-to-text generation



**Our Method** 

## Advantages of our method

- T2T generation can be applied to any input features This allows us to easily apply the framework to new studies or features
- Using a pre-trained language model, T2T is able to infer implicit relations between report terms
- These relations are made explicit in the generated sentences, improving endpoint prediction of the ALBERT model





### **With More Features**

| Feature | Value                | Z-<br>score |  |
|---------|----------------------|-------------|--|
| SSD     | Diphen-<br>hydramine | 5.13        |  |
| Weight  | 50-70kg              | 5.75        |  |
| Route   | Intravenous          | 15.55       |  |

SSD= Secondary Suspect Drug

### **Future Work**

- Applying this framework to further case studies
- What are the limits for the number of features/terms we can study in one go?
- What would be the impact of using prompting instead of finetuning for endpoint prediction?
  - $\circ$  Can we use a single model from report  $\rightarrow$  prediction?