Fairness and Bias

Applications and Future Opportunities: Understand tools and methods to quantify bias and examine ways to use algorithmic fairness to mitigate this bias. Apply your knowledge of analytics and AI/ML to transform a current biased data-set into a more objective solution.

Our field has been struggling with this problem for years.

Struggle no more! I'm here to solve it with algorithms!

Learning Objective

As we've learned, the impact of AI on society is not all good. AI can encode and amplify human biases, leading to unfair outcomes at scale.

Talk of Al and Ethics Is On the Rise

- Algorithmic Fairness is a growing field of research that aims to mitigate the effects of unwarranted bias/discrimination on people propagated by Al/ML algorithms.
- The primary focus is on mathematical formalisms and algorithm approaches of fairness to help develop solutions.

Representational Harm

 When an AI/ML system amplifies or reflects negative stereotypes about particular groups.

Opportunity Denial

 When an AI/ML system negative impacts individuals' access to opportunities, resources, and overall quality of life

Disproportionate Failure

 When the experience of interacting with an AI/ML system is disproportionately failing for particular groups.

Which is then exacerbated by a **feedback loop**

Georgia Tech

54% of Americans think automated finance scores would be effective – but just 32% think they would be fair

% of U.S. adults who say the following types of computer programs would be very/somewhat ...

	Effective	Fair	Effective- fair difference
Automated personal finance score	54%	32%	+22
Automated video analysis of job interviews	39	33	+6
Automated resume screening of job applicants	47	43	+4
Automated scoring of people up for parole	49	50	-1

Note: Respondents who did not give an answer or gave other answers are not shown.

Source: Survey of U.S. adults conducted May 29-June 11, 2018. "Public Attitudes Toward Computer Algorithms"

PEW RESEARCH CENTER

Public Sentiments About Algorithmic Fairness

Addressing: Source of Bias

	Previous Views/Strategies	New Views/Strategies	
Source of Bias	None	Human Biases – Garbage in, Garbage out	
Protected Features	Unawareness	Redundant Encodings	
Fairness Measures	None	Blindness, Disparate Impact (many)	
Solution	None	Fair Classifiers	

Solutions Have Been Proposed

Problem:

Biased Data Stored in Protected Attributes

Solution:

Blind the model to Protected Features

Protected Attributes:

- Age
- Disability
- National Origin
- Race/color
- Religion
- Sex

Problem: Discriminatory

Decisions

Goal: Race-Blindness

Issue:

- Redundant Encodings or Proxies
- By "removing" protected features, we ignore the underlying processes that affect different demographics.

Examples of How This Would Work

Addressing: Fairness Measures

	Previous Views/Strategies	New Views/Strategies
Source of Bias	None	Human Biases – Garbage in, Garbage out
Protected Features	Unawareness	Redundant Encodings
Fairness Measures	None	Blindness, Disparate Impact (many)
Solution	None	Fair Classifiers

Solutions Have Been Proposed

	Definition	Paper	Citation #	Result
3.1.1	Group fairness or statistical parity	[12]	208	×
3.1.2	Conditional statistical parity	[11]	29	✓
3.2.1	Predictive parity	[10]	57	✓
3.2.2	False positive error rate balance	[10]	57	×
3.2.3	False negative error rate balance	[10]	57	✓
3.2.4	Equalised odds	[14]	106	×
3.2.5	Conditional use accuracy equality	[8]	18	×
3.2.6	Overall accuracy equality	[8]	18	✓
3.2.7	Treatment equality	[8]	18	×
3.3.1	Test-fairness or calibration	[10]	57	¥
3.3.2	Well calibration	[16]	81	¥
3.3.3	Balance for positive class	[16]	81	✓
3.3.4	Balance for negative class	[16]	81	×
4.1	Causal discrimination	[13]	1	×
4.2	Fairness through unawareness	[17]	14	✓
4.3	Fairness through awareness	[12]	208	×
5.1	Counterfactual fairness	[17]	14	-
5.2	No unresolved discrimination	[15]	14	77.0
5.3	No proxy discrimination	[15]	14	
5.4	Fair inference	[19]	6	-

http://www.ece.ubc.ca/~mjulia/publications/Fairness Definitions Explained 2018.pdf

Problem: There are issues with Error-Rate Imbalances such that different groups have different outcomes

Solution: Only Outcomes Matter. Make sure groups are in line with predetermined "fairness metrics"

Issue:

- There are many (30+) definitions for fairness
- Many of the definitions conflict
- The way you define fairness impacts bias

Principles for Quantifying Fairness

In the context of an algorithm generating a prediction:

- Predictions for people with similar non-protected attributes should be similar
- Differences should be mostly explainable by non-protected attributes

Two basic frameworks for measuring fairness:

- Fairness at the individual level: consistency or individual fairness
- Fairness at the group level: statistical parity

I. Žliobaitė (2015): A survey on measuring indirect discrimination in machine learning. arXiv pre-print.

Supposedly 'Fair' Algorithms Can Perpetuate Discrimination, WIRED, 2019-02-05, https://www.wired.com/story/ideas-joi-ito-insurancealgorithms/

Case: Redlining, USA, 1968

- "redlining, an insurance-company term for drawing a red line on a map around parts of a city deemed too risky to insure"
- "once a minority community had been redlined, the red line established a feedback cycle that continued to drive inequity and deprive poor neighborhoods of financing and insurance coverage—redlining had contributed to creating poor economic conditions, which already affected these areas in the first place."

Negative feedback cycle:

- The insurance companies didn't sell insurances
- Banks didn't offer loans as there was no insurances
- The areas got even more poor

Insurers' arguments ("actuarial fairness"):

- "...their job was purely technical and that it didn't involve moral judgments."
- "Second-order effects on society were really not their problem or their business."

Question: How can scoring models become unfair?

Example: Loan applicants

- Score each customer with probability to pay back the loan (0-100)
- Define a threshold, under which lender does not grant loans

Reality is more difficult:

https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Getting a predictive model is easy. But is it fair?

Max Profit

Maximize profits:Obvious

Total Profit: 32,400

Decision Rules: Different

True Positive Rate: Unequal

Percent Approved: Unequal

Blinding Model

Group Unaware: Class features and all "proxy" information removed

Total Profit: 25,600

Decision Rules: Same

True Positive Rate: Unequal

Percent Approved: Unequal

Demographic Parity

Parity:

All groups have same percentage approved

Total Profit: 30,800

Decision Rules:Different

True Positive Rate: Unequal

Percent Approved: Equal

Equal Opportunity

Opportunity:
Same percentage of "credit-worthy" candidates

Total Profit: 30,400

Decision Rules:Different

True Positive Rate: Equal

Percent Approved: Unequal

Other Ways Bias Is Introduced into the Algorithm Process

Bias Mitigation Strategies for ML Models

https://dzone.com/articles/machine-learning-models-bias-mitigation-strategies

Other Bias Mitigation Approaches at the Three Phases

Al Fairness 360

https://aif360.mybluemix.net/

Open Source Toolbox to Mitigate Bias

- Demos & Tutorials on Industry Use Cases
- Fairness Guidance
- Comprehensive Toolbox
 - 75+ Fairness metrics
 - 10+ Bias Mitigation Algorithms
 - Fairness Metric Explanations

Extensible
Toolkit for
Detecting,
Understanding, &
Mitigating
Unwanted
Algorithmic Bias

Leading
Fairness
Metrics and
Algorithms
from
Industry &
Academia

Designed to translate new research from the lab to industry practitioners (using Scikit Learn's fit/predict paradigm)

IBM Data & AI / October 15, 2019 / © 2019 IBM Corporation

Pre-Processing Algorithms Mitigates Bias in Training Data

In-Processing Algorithms Mitigates Bias in **Classifiers**

Adversarial Debiasing

Uses adversarial techniques to

maximize accuracy & reduce evidence

of protected attributes in predictions

Post-Processing Algorithms Mitigates Bias in **Predictions**

Reweighing

Modifies the weights of different training examples

Prejudice Remover

Adds a discrimination-aware

Reject Option Classification

Changes predictions from a classifier to make them fairer

Disparate Impact Remover

Edits feature values to improve group fairness

regularization term to the learning objective

Calibrated Equalized Odds Postprocessing

Optimizes over calibrated classifier score outputs that lead to fair output labels

Optimized Preprocessing

Modifies training data features & labels

Meta Fair Classifier

Takes the fairness metric as part of the input & returns a classifier optimized for the metric

Equalized Odds

Modifies the predicted label using an optimization scheme to make predictions fairer

Learning Fair Representations

Learns fair representations by obfuscating information about protected attributes

IBM Data & AI / October 15, 2019 / © 2019 IBM Corporation

Bias Mitigation Algorithms For Each Phase of the Pipeline

Pre-Processing Algorithms Mitigates Bias in Training Data

Reweighing

Modifies the weights of different training examples

Reweighing only changes Weights applied to training samples (no changes to feature/labels). Ideal if you cannot change values

Disparate Impact Remover

Edits feature values to improve group fairness

Disparate Impact Remover and Optimized

Preprocessing yield modified datasets in the same space as the input training data (provides transparency)

Optimized Preprocessing

Modifies training data features & labels

Learning Fair Representations

Learns fair representations by obfuscating information about protected attributes

Learning Fair Representations yields modified datasets in the latent space

Pre-Processing to Mitigate Bias

What-if Tool

What if...

you could inspect machine learning models, with **minimal coding** required?

How does my model perform...

classification accuracy / precision-recall curve / <insert metric here>

How **might** my model perform...

on subgroups in test data / on cross-slices in test data / <insert question here>

Georgia Tech ≝

Fairness Measures	Framework to test given algorithm on variety of datasets and fairness metrics	https://github.com/megantosh/fairness megantosh/fairness megantosh/fai
Fairness Comparison	Extensible test-bed to facilitate direct comparisons of algorithms with respect to fairness measures. Includes raw & preprocessed datasets	https://github.com/algofairness/fairness - comparison
Themis-ML	Python library built on scikit-learn that implements fairness-aware machine learning algorithms	https://github.com/cosmicBboy/themis-ml
FairML	Looks at significance of model inputs to quantify prediction dependence on inputs	https://github.com/adebayoj/fairml
Aequitas	Web audit tool as well as python lib. Generates bias report for given model and dataset	https://github.com/dssg/aequitas
Fairtest	Tests for associations between algorithm outputs and protected populations	https://github.com/columbia/fairtest
Themis	Takes a black-box decision-making procedure and designs test cases automatically to explore where the procedure might be exhibiting groupbased or causal discrimination	https://github.com/LASER-UMASS/Themis
Audit-Al	Python library built on top of scikit-learn with various statistical tests for classification and regression tasks	https://github.com/pymetrics/audit-ai

Other Tools

Solutions to Mitigate Bias

	Previous Views/Strategies	New Views/Strategies
Source of Bias	None	Human Biases – Garbage in, Garbage out
Protected Features	Unawareness	Redundant Encodings
Fairness Measures	None	Blindness, Disparate Impact (many)
Solution	None	Fair Classifiers

Solutions Have Been Proposed

It isn't 100% possible to mitigate bias and create fair algorithms, but are we really surprised?

Hundreds of Years of Bias

A Fair Algorithm

Which Magically Gives Us

Impartiality, Fairness, and Just Outcomes

Evaluating Fairness-Aware Algorithms

Which algorithm is the best?

- ...on which dataset?
- ...how was it preprocessed?
- ...under which measure?
- ...with which training / test split?
- ...what if there are multiple sensitive attributes?

Fairness/Bias Mitigation Is Not Easy

Cannot simply drop protected attributes because other features are correlated with them

Performance can depend on which attribute you focus on and what algorithm you choose

https://arxiv.org/pdf/1802.04422.pdf

Performance can depend on which attribute you focus on and what algorithm

you choose

https://arxiv.org/pdf/1802.04422.pdf

Fairness-Aware Algorithms Trade-Offs

Is the model doing **good things or bad things** to people?

- If your model is sending people to jail, may be better to have more false positives than false negatives
- If your model is handing out loans, may be better to have more False Negatives than False Positives

Determining thresholds for accuracy vs. fairness must take into considerations legal, ethical and trust guidelines

Doing what is legal is top priority (Penalties)

What's your company's Ethics (Amazon Echo)

Losing customer's Trust costly (Facebook)

False Positives Might be Better than False Negatives

False Positive: Something that doesn't need to be gets blurred.

Can be a bummer for surveillance applications.

False Negative: Something that needs to be blurred is not blurred.

Can be a bummer for protecting against identity theft.

Privacy in Images

False Negatives Might Be Better than False Positives

False Negative: SPAM email that is not caught, so gets delivered to your inbox.

Annoying at the minimum

False Positive: Email flagged as SPAM is removed from your inbox.

If it's a highly-sensitive/time-critical email, could be disastrous

Spam Filtering

Bias Must be Considered Relative to Task

Gender in loan application

Gender discrimination is illegal

Gender in medical diagnosis

Gender-specific medical diagnosis is desirable

Note

It's Not Easy

https://www.blog.google/technology/ai/external-advisory-council-help-advance-responsible-development-ai/

https://www.vox.com/future-perfect/2019/4/4/18295933/google-cancels-ai-ethics-board

https://developer.amazon.com/blogs/alexa/post/d9a995d4-943a-456b-9527-848f437b1a8c/amazon-and-nsf-collaborate-to-accelerate-fairness-in-ai-research

https://www.seattletimes.com/business/amazon/amazons-role-in-co-sponsoring-research-on-fairness-in-a-i-draws-mixed-reaction/

https://www.theguardian.com/technology/2019/mar/28/big-tech-ai-ethics-boards-prejudice

https://www.bbc.com/news/technology-48276660

https://www.congress.gov/

https://www.theguardian.com/technology/2018/jun/14/police-face-legal-action-over-use-of-facial-recognition-cameras

https://www.pcmag.com/news/sweden-gets-first-gdpr-fine-after-facial-recognition-used-in-school

https://www.bbc.com/news/uk-wales-49565287

Last Thoughts

Intended use of AI/ML can provide great value

- Increased productivity
- Overcome human biases

The stakes are high, with potential long term negative social impact

- Injustice
- Significant public embarrassments

AI/ML models may boost bias even further

- Pros & cons of benchmark datasets
- Facebook feed elections/polarization and Twitter bots Brexit

We don't know the ground truth that machine learning relies on

- What does "fairness" or "unbiased" really mean?
- How to translate that definition to math and supervise our models

- Ethical responsibility
- SelfishReasons
- Both

Why Should We Care About AI, Ethics and Society?

