ЗАКОН ИНЕРЦИИ КВАДРАТИЧНЫХ ФОРМ

Пусть $k(\mathbf{x})$ — квадратичная форма, заданная в пространстве арифметических векторов \mathbf{Rn} .

В пространстве **Rn** существует *канонический базис квадратичной формы*, базис, в котором матрица квадратичной формы является диагональной.

В этом базисе квадратичная форма имеет *канонический вид* $k(\mathbf{x}) = \lambda_1 x_1^{\ 2} + \lambda_2 x_2^{\ 2} + ... + \lambda_n x_n^{\ 2}.$

Числа λ_1 , λ_2 , ..., λ_n — канонические коэффициенты квадратичной формы.

Закон инерции квадратичных форм гласит: число положительных, отрицательных и нулевых канонических коэфициентов квадратичной формы не зависит от преобразования, с помощью которого квадатичная форма приводится к каноническому виду. Число положительных канонических коэфициентов квадратичной формы называется положительным индексом инерции квадратичной формы. Число отрицательных канонических коэфициентов квадратичной формы называется отрицательным индексом инерции квадратичной формы. Разность между положительным и отрицательным индексами квадратичной формы называется сигнатурой квадратичной формы. Число ненулевых канонических коэффициентов называется рангом квадратичной формы.