

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width of the text area. It is used for document tracking and identification.

(43) International Publication Date
10 January 2002 (10.01.2002)

PCT

(10) International Publication Number
WO 02/02738 A2

(51) International Patent Classification⁷:	C12N	(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(21) International Application Number:	PCT/US01/20710	
(22) International Filing Date:	29 June 2001 (29.06.2001)	
(25) Filing Language:	English	
(26) Publication Language:	English	(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(30) Priority Data:	60/215,925	3 July 2000 (03.07.2000) US
(71) Applicant (for all designated States except US):	GALA DESIGN, INC. [US/US]; 280 Washington Street, Prairie du Sac, WI 53579 (US)	

(72) Inventors: and

(75) Inventors/Applicants (for US only): BREMEL, Robert, D. [US/US]; E3352 Chapel Road, Hillpoint, WI 53937 (US). MILLER, Linda, U. [US/US]; N1301 O'Conner Road, Lodi, WI 53555 (US). BLECK, Gregory, T. [US/US]; 1111 Silver Drive, Baraboo, WI 53913 (US). YORK, Donna [US/US]; E9923 Trout Road, Dells, WI 53965 (US).

(74) Agents: **JONES, J.**, Mitchell et al.; Medlen & Carroll, LLP, Suite 2200, 220 Montgomery Street, San Francisco, CA 94104 (US).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/02738 A2

(54) Title: HOST CELLS CONTAINING MULTIPLE INTEGRATING VECTORS

(57) Abstract: The present invention relates to the production of proteins in host cells, and more particularly to host cells containing multiple integrated copies of an integrating vector. Suitable integrating vectors for use in the present invention include retrovirus vectors, lentivirus vectors, transposon vectors, and adeno-associated virus vectors. Methods are provided in which the host cells are prepared by using the integrating vector at a high multiplicity of infection. The host cells are useful for producing pharmaceutical proteins, variants of proteins for use in screening assays, and for direct use in high throughput screening.

HOST CELLS CONTAINING MULTIPLE INTEGRATING VECTORS

FIELD OF THE INVENTION

The present invention relates to the production of proteins in host cells, and more particularly to host cells containing multiple integrated copies of an integrating vector.

BACKGROUND OF THE INVENTION

The pharmaceutical biotechnology industry is based on the production of recombinant proteins in mammalian cells. These proteins are essential to the therapeutic treatment of many diseases and conditions. In many cases, the market for these proteins exceeds a billion dollars a year. Examples of proteins produced recombinantly in mammalian cells include erythropoietin, factor VIII, factor IX, and insulin. For many of these proteins, expression in mammalian cells is preferred over expression in prokaryotic cells because of the need for correct post-translational modification (e.g., glycosylation or sialylation; *see, e.g.*, U.S. Pat. No. 5,721,121, incorporated herein by reference).

Several methods are known for creating host cells that express recombinant proteins. In the most basic methods, a nucleic acid construct containing a gene encoding a heterologous protein and appropriate regulatory regions is introduced into the host cell and allowed to integrate. Methods of introduction include calcium phosphate precipitation, microinjection, lipofection, and electroporation. In other methods, a selection scheme is used to amplify the introduced nucleic acid construct. In these methods, the cells are co-transfected with a gene encoding an amplifiable selection marker and a gene encoding a heterologous protein (*See, e.g.*, Schroder and Friedl, Biotech. Bioeng. 53(6):547-59 [1997]). After selection of the initial transformants, the transfected genes are amplified by the stepwise increase of the selective agent (e.g., dihydrofolate reductase) in the culture medium. In some cases, the exogenous gene may be amplified several hundred-fold by these procedures. Other methods of recombinant protein expression in mammalian cells utilize transfection with episomal vectors (e.g., plasmids).

Current methods for creating mammalian cell lines for expression of recombinant proteins suffer from several drawbacks. (*See, e.g.*, Mielke *et al.*, Biochem. 35:2239-52

[1996]). Episomal systems allow for high expression levels of the recombinant protein, but are frequently only stable for a short time period (See, e.g., Klehr and Bode, Mol. Genet. (Life Sci. Adv.) 7:47-52 [1988]). Mammalian cell lines containing integrated exogenous genes are somewhat more stable, but there is increasing evidence that stability depends on the presence of only a few copies or even a single copy of the exogenous gene.

Standard transfection techniques favor the introduction of multiple copies of the transgene into the genome of the host cell. Multiple integration of the transgene has, in many cases, proven to be intrinsically unstable. This intrinsic instability may be due to the characteristic head-to-tail mode of integration which promotes the loss of coding sequences by homologous recombination (See, e.g., Weidle *et al.*, Gene 66:193-203 [1988]) especially when the transgenes are transcribed (See, e.g., McBurney *et al.*, Somatic Cell Molec. Genet. 20:529-40 [1994]). Host cells also have epigenetic defense mechanisms directed against multiple copy integration events. In plants, this mechanism has been termed "cosuppression." (See, e.g., Allen *et al.*, Plant Cell 5:603-13 [1993]). Indeed, it is not uncommon that the level of expression is inversely related to copy number. These observations are consistent with findings that multiple copies of exogenous genes become inactivated by methylation (See, e.g., Mehtali *et al.*, Gene 91:179-84 [1990]) and subsequent mutagenesis (See, e.g., Kricker *et al.*, Proc. Natl. Acad. Sci. 89:1075-79 [1992]) or silenced by heterochromatin formation (See, e.g., Dorer and Henikoff, Cell 77:993-1002 [1994]).

Accordingly, what is needed in the art are improved methods for making host cells that express recombinant proteins. Preferably, the host cells will be stable over extended periods of time and express the protein encoded by a transgene at high levels.

SUMMARY OF THE INVENTION

The present invention relates to the production of proteins in host cells, and more particularly to host cells containing multiple integrated copies of an integrating vector. The present invention is not limited to host cells transfected with a particular number of integrating vectors. Indeed, host cells containing a wide range of integrating vectors are contemplated. In some embodiments, the present invention provides a host cell comprising a genome containing preferably at least about two integrated integrating vectors. In still further embodiments, the genome preferably comprises at least 3

integrated integrating vectors and most preferably at least 4 integrated integrating vectors, 5 integrated integrating vectors, 6 integrated integrating vectors, 7 integrated integrating vectors, 10 integrated integrating vectors, 15 integrated integrating vectors, 20 integrated integrating vectors, or 50 integrated integrating vectors.

The present invention is not limited to host cells containing vectors encoding a single protein of interest (*i.e.*, exogenous protein). Indeed, it is contemplated that the host cells are transfected with vectors encoding multiple proteins of interest. In some embodiments, the integrating vector comprises at least two exogenous genes. In some preferred embodiments, the at least two exogenous genes are arranged in a polycistronic sequence. In some particularly preferred embodiments, the at least two exogenous genes are separated by an internal ribosome entry site. In other preferred embodiments, the at least two exogenous genes are arranged in a polycistronic sequence. In still further embodiments, the two exogenous genes comprise a heavy chain of an immunoglobulin molecule and a light chain of an immunoglobulin molecule. In other embodiments, one of the at least two exogenous genes is a selectable marker. In still other embodiments, the host cells comprise at least 2 integrated copies of a first integrating vector comprising a first exogenous gene, and at least 1 integrated copy of a second integrating vector or other vector comprising a second exogenous gene. In still further embodiments, the host cells comprise at least 10 integrated copies of a first integrating vector comprising a first exogenous gene, and at least 1 integrated copy of a second integrating vector or other vector comprising a second exogenous gene.

In some preferred embodiments, the integrating vectors comprise at least one exogenous gene operably linked to a promoter. The present invention is not limited to vectors containing a particular promoter. Indeed, a variety of promoters are contemplated. In some embodiments of the present invention, the promoter is selected from the group consisting of the alpha-lactalbumin promoter, cytomegalovirus promoter and the long terminal repeat of Moloney murine leukemia virus. In other preferred embodiments, the integrating vectors further comprise a secretion signal operably linked to the exogenous gene. In still other embodiments, the integrating vectors further comprise an RNA export element operably linked to the exogenous gene.

The present invention is not limited to a particular integrating vector. Indeed, a variety of integrating vectors are contemplated. In some embodiments of the present invention, the integrating vector is selected from the group consisting of a retroviral

vector, a lentiviral vector, and a transposon vector. In some preferred embodiments, the retroviral vector is a pseudotyped retroviral vector. In other preferred embodiments, the pseudotyped retroviral vector comprises a G glycoprotein. The retroviral vectors of the present invention are not limited to a particular G glycoprotein. Indeed, a variety of G glycoproteins are contemplated. In some particularly preferred embodiments, the G glycoprotein is selected from the group consisting of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus and Mokola virus G glycoproteins. In still further embodiments, the retroviral vector comprises long terminal repeats. The retroviral vectors of the present invention are not limited to a particular LTR. Indeed, a variety of LTRs are contemplated, including, but not limited to MoMLV, MoMuSV, MMTV long terminal repeats.

In other embodiments, the retroviral vector is a lentiviral vector. In some preferred embodiments, the lentiviral vector is pseudotyped. In some particularly preferred embodiments, the lentiviral vector comprises a G glycoprotein. In still further embodiments, the G glycoprotein is selected from the group consisting of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus and Mokola virus G glycoproteins. In still other embodiments, the lentiviral vector comprises long terminal repeats selected from the group consisting of HIV and equine infectious anemia long terminal repeats.

In still further embodiments of the present invention, the integrating vector is a transposon vector. In some preferred embodiments, the transposon vector is selected from Tn5, Tn7, and Tn10 transposon vectors.

The present invention is not limited to a particular host cell. Indeed, a variety of host cells are contemplated. In some embodiments of the present invention, the host cell is cultured *in vitro*. In still further embodiments of the present invention, the host cell is selected from chinese hamster ovary cells, baby hamster kidney cells, and bovine mammary epithelial cells. In some preferred embodiments, the host cells are clonally derived. In other embodiments, the host cells are non-clonally derived. In some embodiments, the genome of the host cell is stable for greater than 10 passages. In other embodiments, the genome is stable for greater than 50 passages, while in still other embodiments, the genome is stable for greater than 100 passages. In still other embodiments, the host cells can be an embryonic stem cell, oocyte, or embryo. In some embodiments, the integrated vector is stable in the absence of selection.

The present invention is not limited to vectors encoding a particular protein of interest. Indeed, vectors encoding a variety of proteins of interest encoded by exogenous genes are contemplated. In some embodiments, the protein of interest is selected from hepatitis B surface antigen, MN14 antibody, LL2 antibody, *botulinum* toxin antibody and cc49IL2. In some embodiments, the genes encoding the protein of interest are intronless, while in other embodiments, the genes encoding the protein of interest include at least one intron.

The present invention also provides a method for transfecting or transducing host cells comprising: 1) providing: a) a host cell comprising a genome, and b) a plurality of integrating vectors; and 2) contacting the host cell with the plurality of integrating vectors under conditions such that at least two integrating vectors integrate into the genome of the host cell. In some embodiments, the conditions comprise contacting the host cells at a multiplicity of infection of greater than 10. In other embodiments, the conditions comprise contacting the host cells at a multiplicity of infection of from about 10 to 1,000,000. In still further embodiments, the conditions comprise contacting the host cells at a multiplicity of infection of from about 100 to 10,000. In still further embodiments, the conditions comprise contacting the host cells at a multiplicity of infection of from about 100 to 1,000. In still other embodiments of the present invention, the method further comprises transfecting said host cells with at least two integrating vectors, each of said two integrating comprising a different exogenous gene. In still other embodiments, the conditions comprise serial transfection or transduction or host cells wherein the host cells are transfected or transduced in at least a first transfection or transduction with a vector encoding a protein of interest and then re-transfected or re-transduced in a separate transfection or transduction step.

The present invention further provides a method of producing a protein of interest comprising: 1) providing a host cell comprising a genome, the genome comprising at least two integrated copies of at least one integrating vector comprising an exogenous gene operably linked to a promotior, wherein the exogenous gene encodes a protein of interest, and 2) culturing the host cells under conditions such that the protein of interest is produced. In some preferred embodiments, the integrating vector further comprises a secretion signal sequence operably linked to said exogenous gene. In other embodiments, the methods further comprise step 3) isolating the protein of interest. The present invention is not limited to any particular culture system. Indeed, a variety of culture

systems are contemplated, including, but not limited to roller bottle cultures, perfusion cultures, batch fed cultures, and petri dish cultures. In some embodiments, the cell line is clonally selected, while in other embodiments, the cells are non-clonally selected.

The methods of the present invention are not limited to host cells containing any particular number of integrated integrating vectors. Indeed, in some embodiments, the genome of the host cell comprises greater than 3 integrated copies of the integrating vector; in other embodiments, genome of the host cell comprises greater than 4 integrated copies of the integrating vector.; in still other embodiments, the genome of the host cell comprises greater than 5 integrated copies of the integrating vector; in further embodiments, the genome of the host cell comprises greater than 7 integrated copies of the integrating vector; while in still further embodiments, the genome of the host cell comprises greater than 10 integrated copies of the integrating vector. In other embodiments, the genome of the host cell comprises between about 2 and 20 integrated copies of the integrating vector. In some embodiments, the genome of the host cell comprises between about 3 and 10 integrated copies of the integrating vector.

The methods of the present invention are not limited to any particular integrating vector. Indeed, the use of a variety of integrating vectors is contemplated. In some embodiments, the integrating vector is a retroviral vector. In some preferred embodiments, the retroviral vector is a pseudotyped retroviral vector. In other embodiments, the retroviral vector is a lentiviral vector.

The methods of the present invention are not limited to the use of any particular host cell. Indeed, the use of a variety of host cells is contemplated, including, but not limited to, Chinese hamster ovary cells, baby hamster kidney cells, bovine mammary epithelial cells, oocytes, embryos, stem cells, and embryonic stem cells.

The methods of the present invention are not limited to the production of any particular amount of exogenous protein (*i.e.*, protein of interest) from the host cells. Indeed, it is contemplated that a variety of expression levels are acceptable from the methods of the present invention. In some embodiments, the host cells synthesize greater than about 1 picogram per cell per day of the protein of interest. In other embodiments, the host cells synthesize greater than about 10 picograms per cell per day of the protein of interest. In still further embodiments, the host cells synthesize greater than about 50 picograms per cell per day of the protein of interest.

In other embodiments, the present invention provides a method for screening compounds comprising: 1) providing a) a host cell comprising a genome, the genome comprising at least two integrated copies of at least one integrating vector comprising an exogenous gene operably linked to a promotore, wherein the exogenous gene encodes a protein of interest; and b) one or more test compounds; 2) culturing the host cells under conditions such that the protein of interest is expressed; 3) treating the host cells with one or more test compounds; and 4) assaying for the presence or absence of a response in the host cells to the test compound. In some embodiments of the present invention, the exogenous gene encodes a protein selected from the group consisting of reporter proteins, membrane receptor proteins, nucleic acid binding proteins, cytoplasmic receptor proteins, ion channel proteins, signal transduction proteins, protein kinases, protein phosphatases, and proteins encoded by oncogenes.

In still further embodiments, the host cell further comprises a reporter gene. In some particularly preferred embodiments, the reporter gene is selected from the group consisting of green fluorescent protein, luciferase, beta-galactosidase, and beta-lactamase. In some embodiments, the assaying step further comprises detecting a signal from the reporter gene. In other embodiments, the genome of the host cell comprises at least two integrating vectors, each comprising a different exogenous gene.

In still other embodiments, the present invention provides methods for comparing protein activity comprising: 1) providing a) a first host cell comprising a first integrating vector comprising a promoter operably linked to a first exogenous gene, wherein the first exogenous gene encodes a first protein of interest, and b) at least a second host cell comprising a second integrating vector comprising a promoter operably linked to a second exogenous gene, wherein the second exogenous gene encodes a second exogenous gene that is a variant of the first protein of interest; 2) culturing the host cells under conditions such that the first and second proteins of interest are produced; and 3) comparing the activities of the first and second proteins of interest.

In some embodiments, the exogenous gene encodes a protein selected from the group consisting of membrane receptor proteins, nucleic acid binding proteins, cytoplasmic receptor proteins, ion channel proteins, signal transduction proteins, protein kinases, protein phosphatases, cell cycle proteins, and proteins encoded by oncogenes. In other embodiments, the first and second proteins of interest differ by a single amino acid. In still further embodiments, the first and second proteins of interest are greater than 95%

identical, preferably greater than 90% identical, and most preferably greater than 80% identical.

In other embodiments, the present invention provides methods comprising: 1) providing: a) a host cell comprising a genome comprising at least one integrated exogenous gene; and b) a plurality of integrating vectors; and 2) contacting the host cell with the plurality of integrating vectors under conditions such that at least two of the integrating vectors integrate into the genome of the host cell. In some embodiments, the integrated exogenous gene comprises an integrating vector. In other embodiments, the host cell is clonally selected. In alternative embodiments, the host cell is non-clonally selected.

In still further embodiments, the present invention provides methods of indirectly detecting the expression of a protein of interest comprising providing a host cell transfected with a vector encoding a polycistronic sequence, wherein the polycistronic sequence comprises a signal protein and a protein of interest operably linked by an IRES, and culturing the host cells under conditions such that the signal protein and protein of interest are produced, wherein the presence of the signal protein indicates the presence of the protein of interest. The methods of the present invention are not limited to the expression of any particular protein of interest. Indeed, the expression of a variety of proteins of interest is contemplated, including, but not limited to, G-protein coupled receptors. The present invention is not limited to the use of any particular signal protein. Indeed, the use of variety of signal proteins is contemplated, including, but not limited to, immunoglobulin heavy and light chains, beta-galactosidase, beta-lactamase, green fluorescent protein, and luciferase. In particularly preferred embodiments, expression of the signal protein and protein of interest is driven by the same promoter and the signal protein and protein of interest are transcribed as a single transcriptional unit.

DESCRIPTION OF THE FIGURES

Figure 1 is a western blot of a 15% SDS-PAGE gel run under denaturing conditions and probed with anti-human IgG (Fc) and anti-human IgG (Kappa).

Figure 2 is a graph of MN14 expression over time.

Figure 3 is a Western blot of a 15% PAGE run under non-denaturing conditions and probed with anti-human IgG (Fc) and anti-human IgG (Kappa).

Figure 4 provides the sequence for the hybrid human-bovine alpha-lactalbumin promoter (SEQ ID NO:1).

Figure 5 provides the sequence for the mutated PPE sequence (SEQ ID NO:2).

Figure 6 provides the sequence for the IRES-Signal peptide sequence (SEQ ID NO:3).

Figures 7a and 7b provide the sequence for CMV MN14 vector (SEQ ID NO:4).

Figures 8a and 8b provide the sequence for the CMV LL2 vector (SEQ ID NO:5).

Figures 9a-c provide the sequence for the MMTV MN14 vector (SEQ ID NO:6).

Figures 10a-d provide the sequence for the alpha-lactalbumin MN14 Vector (SEQ ID NO:7).

Figures 11a-c provide the sequence for the alpha-lactalbumin Bot vector (SEQ ID NO:8).

Figures 12a-b provide the sequence for the LSRNL vector (SEQ ID NO:9).

Figures 13a-b provide the sequence for the alpha-lactalbumin cc49IL2 vector (SEQ ID NO:10).

Figures 14a-c provide the sequence for the alpha-lactalbumin YP vector (SEQ ID NO:11).

Figure 15 provides the sequence for the IRES-Casein signal peptide sequence (SEQ ID NO:12).

Figures 16a-c provide the sequence for the LNBOTDC vector (SEQ ID NO:13).

Figure 17 provides a graph depicting the INVADER Assay gene ratio in CMV promoter cell lines.

Figure 18 provides a graph depicting the INVADER Assay gene ratio in α -lactalbumin promotor cell lines.

Figures 19a-d provide the sequence of a retroviral vector that expresses a G-Protein coupled receptor and antibody light chain.

DEFINITIONS

To facilitate understanding of the invention, a number of terms are defined below.

As used herein, the term "host cell" refers to any eukaryotic cell (e.g., mammalian cells, avian cells, amphibian cells, plant cells, fish cells, and insect cells), whether located *in vitro* or *in vivo*.

As used herein, the term "cell culture" refers to any *in vitro* culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, finite cell lines (e.g., non-transformed cells), and any other cell population maintained *in vitro*, including oocytes and embryos.

As used herein, the term "vector" refers to any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.

As used herein, the term "integrating vector" refers to a vector whose integration or insertion into a nucleic acid (e.g., a chromosome) is accomplished via an integrase. Examples of "integrating vectors" include, but are not limited to, retroviral vectors, transposons, and adeno associated virus vectors.

As used herein, the term "integrated" refers to a vector that is stably inserted into the genome (*i.e.*, into a chromosome) of a host cell.

As used herein, the term "multiplicity of infection" or "MOI" refers to the ratio of integrating vectors:host cells used during transfection or transduction of host cells. For example, if 1,000,000 vectors are used to transduce 100,000 host cells, the multiplicity of infection is 10. The use of this term is not limited to events involving transduction, but instead encompasses introduction of a vector into a host by methods such as lipofection, microinjection, calcium phosphate precipitation, and electroporation.

As used herein, the term "genome" refers to the genetic material (e.g., chromosomes) of an organism.

The term "nucleotide sequence of interest" refers to any nucleotide sequence (e.g., RNA or DNA), the manipulation of which may be deemed desirable for any reason (e.g., treat disease, confer improved qualities, expression of a protein of interest in a host cell, expression of a ribozyme, etc.), by one of ordinary skill in the art. Such nucleotide sequences include, but are not limited to, coding sequences of structural genes (e.g., reporter genes, selection marker genes, oncogenes, drug resistance genes, growth factors, etc.), and non-coding regulatory sequences which do not encode an mRNA or protein product (e.g., promoter sequence, polyadenylation sequence, termination sequence, enhancer sequence, etc.).

As used herein, the term "protein of interest" refers to a protein encoded by a nucleic acid of interest.

As used herein, the term "signal protein" refers to a protein that is co-expressed with a protein of interest and which, when detected by a suitable assay, provides indirect evidence of expression of the protein of interest. Examples of signal protein useful in the present invention include, but are not limited to, immunoglobulin heavy and light chains, beta-galactosidase, beta-lactamase, green fluorescent protein, and luciferase.

As used herein, the term "exogenous gene" refers to a gene that is not naturally present in a host organism or cell, or is artificially introduced into a host organism or cell.

The term "gene" refers to a nucleic acid (e.g., DNA or RNA) sequence that comprises coding sequences necessary for the production of a polypeptide or precursor (e.g., proinsulin). The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, etc.) of the full-length or fragment are retained. The term also encompasses the coding region of a structural gene and includes sequences located adjacent to the coding region on both the 5' and 3' ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA. The sequences that are located 5' of the coding region and which are present on the mRNA are referred to as 5' untranslated sequences. The sequences that are located 3' or downstream of the coding region and which are present on the mRNA are referred to as 3' untranslated sequences. The term "gene" encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed "introns" or "intervening regions" or "intervening sequences." Introns are segments of a gene which are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or "spliced out" from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.

As used herein, the term "gene expression" refers to the process of converting genetic information encoded in a gene into RNA (e.g., mRNA, rRNA, tRNA, or snRNA) through "transcription" of the gene (i.e., via the enzymatic action of an RNA

polymerase), and for protein encoding genes, into protein through "translation" of mRNA. Gene expression can be regulated at many stages in the process. "Up-regulation" or "activation" refers to regulation that increases the production of gene expression products (*i.e.*, RNA or protein), while "down-regulation" or "repression" refers to regulation that decrease production. Molecules (*e.g.*, transcription factors) that are involved in up-regulation or down-regulation are often called "activators" and "repressors," respectively.

Where "amino acid sequence" is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms, such as "polypeptide" or "protein" are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.

As used herein, the terms "nucleic acid molecule encoding," "DNA sequence encoding," "DNA encoding," "RNA sequence encoding," and "RNA encoding" refer to the order or sequence of deoxyribonucleotides or ribonucleotides along a strand of deoxyribonucleic acid or ribonucleic acid. The order of these deoxyribonucleotides or ribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA or RNA sequence thus codes for the amino acid sequence.

As used herein, the term "variant," when used in reference to a protein, refers to proteins encoded by partially homologous nucleic acids so that the amino acid sequence of the proteins varies. As used herein, the term "variant" encompasses proteins encoded by homologous genes having both conservative and nonconservative amino acid substitutions that do not result in a change in protein function, as well as proteins encoded by homologous genes having amino acid substitutions that cause decreased (*e.g.*, null mutations) protein function or increased protein function.

As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (*i.e.*, a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence "A-G-T," is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.

The terms "homology" and "percent identity" when used in relation to nucleic acids refers to a degree of complementarity. There may be partial homology (*i.e.*, partial identity) or complete homology (*i.e.*, complete identity). A partially complementary sequence is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid sequence and is referred to using the functional term "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe (*i.e.*, an oligonucleotide which is capable of hybridizing to another oligonucleotide of interest) will compete for and inhibit the binding (*i.e.*, the hybridization) of a completely homologous sequence to a target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (*i.e.*, selective) interaction. The absence of non-specific binding may be tested by the use of a second target which lacks even a partial degree of complementarity (*e.g.*, less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.

The art knows well that numerous equivalent conditions may be employed to comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (*e.g.*, the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, the art knows conditions that promote hybridization under conditions of high stringency (*e.g.*, increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.).

When used in reference to a double-stranded nucleic acid sequence such as a cDNA or genomic clone, the term "substantially homologous" refers to any probe that can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described above.

When used in reference to a single-stranded nucleic acid sequence, the term "substantially homologous" refers to any probe that can hybridize (*i.e.*, it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described above.

As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (*i.e.*, the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the T_m of the formed hybrid, and the G:C ratio within the nucleic acids. A single molecule that contains pairing of complementary nucleic acids within its structure is said to be "self-hybridized."

As used herein, the term " T_m " is used in reference to the "melting temperature" of a nucleic acid. The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the T_m of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the T_m value may be calculated by the equation: $T_m = 81.5 + 0.41(\% G + C)$, when a nucleic acid is in aqueous solution at 1 M NaCl (*See e.g.*, Anderson and Young, Quantitative Filter Hybridization, in *Nucleic Acid Hybridization* [1985]). Other references include more sophisticated computations that take structural as well as sequence characteristics into account for the calculation of T_m .

As used herein the term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "weak" or "low" stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.

"High stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l $NaH_2PO_4 \cdot H_2O$ and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 μ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Medium stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l Na₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Low stringency conditions" comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l Na₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

A gene may produce multiple RNA species that are generated by differential splicing of the primary RNA transcript. cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon "A" on cDNA 1 wherein cDNA 2 contains exon "B" instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other.

The terms "in operable combination," "in operable order," and "operably linked" as used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced.

As used herein, the term "selectable marker" refers to a gene that encodes an enzymatic activity that confers the ability to grow in medium lacking what would otherwise be an essential nutrient (e.g. the *HIS3* gene in yeast cells); in addition, a selectable marker may confer resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed. Selectable markers may be "dominant"; a dominant selectable marker encodes an enzymatic activity that can be detected in any eukaryotic

cell line. Examples of dominant selectable markers include the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the *neo* gene) that confers resistance to the drug G418 in mammalian cells, the bacterial hygromycin G phosphotransferase (*hyg*) gene that confers resistance to the antibiotic hygromycin and the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the *gpt* gene) that confers the ability to grow in the presence of mycophenolic acid. Other selectable markers are not dominant in that their use must be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of non-dominant selectable markers include the thymidine kinase (*tk*) gene that is used in conjunction with *tk*⁻ cell lines, the CAD gene which is used in conjunction with CAD-deficient cells and the mammalian hypoxanthine-guanine phosphoribosyl transferase (*hprt*) gene which is used in conjunction with *hprt*⁻ cell lines. A review of the use of selectable markers in mammalian cell lines is provided in Sambrook, J. *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989) pp.16.9-16.15.

As used herein, the term "regulatory element" refers to a genetic element which controls some aspect of the expression of nucleic acid sequences. For example, a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region. Other regulatory elements are splicing signals, polyadenylation signals, termination signals, RNA export elements, internal ribosome entry sites, etc. (defined *infra*).

Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription (Maniatis *et al.*, *Science* 236:1237 [1987]). Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells, and viruses (analogous control elements, *i.e.*, promoters, are also found in prokaryotes). The selection of a particular promoter and enhancer depends on what cell type is to be used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types (for review see, Voss *et al.*, *Trends Biochem. Sci.*, 11:287 [1986]; and Maniatis *et al.*, *supra*). For example, the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in mammalian cells (Dijkema *et al.*, *EMBO J.* 4:761 [1985]). Two other examples of

promoter/enhancer elements active in a broad range of mammalian cell types are those from the human elongation factor 1 α gene (Uetsuki *et al.*, *J. Biol. Chem.*, 264:5791 [1989]; Kim *et al.*, *Gene* 91:217 [1990]; and Mizushima and Nagata, *Nuc. Acids. Res.*, 18:5322 [1990]) and the long terminal repeats of the Rous sarcoma virus (Gorman *et al.*, *Proc. Natl. Acad. Sci. USA* 79:6777 [1982]) and the human cytomegalovirus (Boshart *et al.*, *Cell* 41:521 [1985]).

As used herein, the term "promoter/enhancer" denotes a segment of DNA which contains sequences capable of providing both promoter and enhancer functions (*i.e.*, the functions provided by a promoter element and an enhancer element, see above for a discussion of these functions). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous" or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one which is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one which is placed in juxtaposition to a gene by means of genetic manipulation (*i.e.*, molecular biological techniques such as cloning and recombination) such that transcription of that gene is directed by the linked enhancer/promoter.

Regulatory elements may be tissue specific or cell specific. The term "tissue specific" as it applies to a regulatory element refers to a regulatory element that is capable of directing selective expression of a nucleotide sequence of interest to a specific type of tissue (*e.g.*, liver) in the relative absence of expression of the same nucleotide sequence of interest in a different type of tissue (*e.g.*, lung).

Tissue specificity of a regulatory element may be evaluated by, for example, operably linking a reporter gene to a promoter sequence (which is not tissue-specific) and to the regulatory element to generate a reporter construct, introducing the reporter construct into the genome of an animal such that the reporter construct is integrated into every tissue of the resulting transgenic animal, and detecting the expression of the reporter gene (*e.g.*, detecting mRNA, protein, or the activity of a protein encoded by the reporter gene) in different tissues of the transgenic animal. The detection of a greater level of expression of the reporter gene in one or more tissues relative to the level of expression of the reporter gene in other tissues shows that the regulatory element is "specific" for the tissues in which greater levels of expression are detected. Thus, the term "tissue-specific" (*e.g.*, liver-specific) as used herein is a relative term that does not

require absolute specificity of expression. In other words, the term "tissue-specific" does not require that one tissue have extremely high levels of expression and another tissue have no expression. It is sufficient that expression is greater in one tissue than another. By contrast, "strict" or "absolute" tissue-specific expression is meant to indicate expression in a single tissue type (e.g., liver) with no detectable expression in other tissues.

The term "cell type specific" as applied to a regulatory element refers to a regulatory element which is capable of directing selective expression of a nucleotide sequence of interest in a specific type of cell in the relative absence of expression of the same nucleotide sequence of interest in a different type of cell within the same tissue. The term "cell type specific" when applied to a regulatory element also means a regulatory element capable of promoting selective expression of a nucleotide sequence of interest in a region within a single tissue.

Cell type specificity of a regulatory element may be assessed using methods well known in the art (e.g., immunohistochemical staining and/or Northern blot analysis). Briefly, for immunohistochemical staining, tissue sections are embedded in paraffin, and paraffin sections are reacted with a primary antibody specific for the polypeptide product encoded by the nucleotide sequence of interest whose expression is regulated by the regulatory element. A labeled (e.g., peroxidase conjugated) secondary antibody specific for the primary antibody is allowed to bind to the sectioned tissue and specific binding detected (e.g., with avidin/biotin) by microscopy. Briefly, for Northern blot analysis, RNA is isolated from cells and electrophoresed on agarose gels to fractionate the RNA according to size followed by transfer of the RNA from the gel to a solid support (e.g., nitrocellulose or a nylon membrane). The immobilized RNA is then probed with a labeled oligo-deoxyribonucleotide probe or DNA probe to detect RNA species complementary to the probe used. Northern blots are a standard tool of molecular biologists.

The term "promoter," "promoter element," or "promoter sequence" as used herein, refers to a DNA sequence which when ligated to a nucleotide sequence of interest is capable of controlling the transcription of the nucleotide sequence of interest into mRNA. A promoter is typically, though not necessarily, located 5' (i.e., upstream) of a nucleotide sequence of interest whose transcription into mRNA it controls, and provides a site for

specific binding by RNA polymerase and other transcription factors for initiation of transcription.

Promoters may be constitutive or regulatable. The term "constitutive" when made in reference to a promoter means that the promoter is capable of directing transcription of an operably linked nucleic acid sequence in the absence of a stimulus (e.g., heat shock, chemicals, *etc.*). In contrast, a "regulatable" promoter is one which is capable of directing a level of transcription of an operably linked nucleic acid sequence in the presence of a stimulus (e.g., heat shock, chemicals, *etc.*) which is different from the level of transcription of the operably linked nucleic acid sequence in the absence of the stimulus.

The presence of "splicing signals" on an expression vector often results in higher levels of expression of the recombinant transcript. Splicing signals mediate the removal of introns from the primary RNA transcript and consist of a splice donor and acceptor site (Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York [1989], pp. 16.7-16.8). A commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40.

Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length. The term "poly A site" or "poly A sequence" as used herein denotes a DNA sequence that directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable as transcripts lacking a poly A tail are unstable and are rapidly degraded. The poly A signal utilized in an expression vector may be "heterologous" or "endogenous." An endogenous poly A signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome. A heterologous poly A signal is one that is isolated from one gene and placed 3' of another gene. A commonly used heterologous poly A signal is the SV40 poly A signal. The SV40 poly A signal is contained on a 237 bp *Bam*HI/*Bcl*II restriction fragment and directs both termination and polyadenylation (Sambrook, *supra*, at 16.6-16.7).

Eukaryotic expression vectors may also contain "viral replicons" or "viral origins of replication." Viral replicons are viral DNA sequences that allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate

replication factors. Vectors that contain either the SV40 or polyoma virus origin of replication replicate to high "copy number" (up to 10^4 copies/cell) in cells that express the appropriate viral T antigen. Vectors that contain the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at "low copy number" (~100 copies/cell). However, it is not intended that expression vectors be limited to any particular viral origin of replication.

As used herein, the term "long terminal repeat" of "LTR" refers to transcriptional control elements located in or isolated from the U3 region 5' and 3' of a retroviral genome. As is known in the art, long terminal repeats may be used as control elements in retroviral vectors, or isolated from the retroviral genome and used to control expression from other types of vectors.

As used herein, the term "secretion signal" refers to any DNA sequence which when operably linked to a recombinant DNA sequence encodes a signal peptide which is capable of causing the secretion of the recombinant polypeptide. In general, the signal peptides comprise a series of about 15 to 30 hydrophobic amino acid residues (See, e.g., Zwizinski *et al.*, *J. Biol. Chem.* 255(16): 7973-77 [1980], Gray *et al.*, *Gene* 39(2): 247-54 [1985], and Martial *et al.*, *Science* 205: 602-607 [1979]). Such secretion signal sequences are preferably derived from genes encoding polypeptides secreted from the cell type targeted for tissue-specific expression (e.g., secreted milk proteins for expression in and secretion from mammary secretory cells). Secretory DNA sequences, however, are not limited to such sequences. Secretory DNA sequences from proteins secreted from many cell types and organisms may also be used (e.g., the secretion signals for t-PA, serum albumin, lactoferrin, and growth hormone, and secretion signals from microbial genes encoding secreted polypeptides such as from yeast, filamentous fungi, and bacteria).

As used herein, the terms "RNA export element" or "Pre-mRNA Processing Enhancer (PPE)" refer to 3' and 5' cis-acting post-transcriptional regulatory elements that enhance export of RNA from the nucleus. "PPE" elements include, but are not limited to Mertz sequences (described in U.S. Pat. Nos. 5,914,267 and 5,686,120, all of which are incorporated herein by reference) and woodchuck mRNA processing enhancer (WPRE; WO99/14310 and U.S. Pat. No. 6,136,597, each of which is incorporated herein by reference).

As used herein, the term "polycistronic" refers to an mRNA encoding more than polypeptide chain (See, e.g., WO 93/03143, WO 88/05486, and European Pat. No. 117058, all of which are incorporated herein by reference). Likewise, the term "arranged in polycistronic sequence" refers to the arrangement of genes encoding two different polypeptide chains in a single mRNA.

As used herein, the term "internal ribosome entry site" or "IRES" refers to a sequence located between polycistronic genes that permits the production of the expression

product originating from the second gene by internal initiation of the translation of the dicistronic mRNA. Examples of internal ribosome entry sites include, but are not limited to, those derived from foot and mouth disease virus (FDV), encephalomyocarditis virus, poliovirus and RDV (Schepers *et al.*, *Biochem.* 76: 801-809 [1994]; Meyer *et al.*, *J. Virol.* 69: 2819-2824 [1995]; Jang *et al.*, 1988, *J. Virol.* 62: 2636-2643 [1998]; Haller *et al.*, *J. Virol.* 66: 5075-5086 [1995]). Vectors incorporating IRES's may be assembled as is known in the art. For example, a retroviral vector containing a polycistronic sequence may contain the following elements in operable association: nucleotide polylinker, gene of interest, an internal ribosome entry site and a mammalian selectable marker or another gene of interest. The polycistronic cassette is situated within the retroviral vector between the 5' LTR and the 3' LTR at a position such that transcription from the 5' LTR promoter transcribes the polycistronic message cassette. The transcription of the polycistronic message cassette may also be driven by an internal promoter (e.g., cytomegalovirus promoter) or an inducible promoter, which may be preferable depending on the use. The polycistronic message cassette can further comprise a cDNA or genomic DNA (gDNA) sequence operatively associated within the polylinker. Any mammalian selectable marker can be utilized as the polycistronic message cassette mammalian selectable marker. Such mammalian selectable markers are well known to those of skill in the art and can include, but are not limited to, kanamycin/G418, hygromycin B or mycophenolic acid resistance markers.

As used herein, the term "retrovirus" refers to a retroviral particle which is capable of entering a cell (*i.e.*, the particle contains a membrane-associated protein such as an envelope protein or a viral G glycoprotein which can bind to the host cell surface and facilitate entry of the viral particle into the cytoplasm of the host cell) and integrating the retroviral genome (as a double-stranded provirus) into the genome of the

host cell. The term "retrovirus" encompasses Oncovirinae (e.g., Moloney murine leukemia virus (MoMOLV), Moloney murine sarcoma virus (MoMSV), and Mouse mammary tumor virus (MMTV), Spumavirinae, and Lentivirinae (e.g., Human immunodeficiency virus, Simian immunodeficiency virus, Equine infection anemia virus, and Caprine arthritis-encephalitis virus; See, e.g., U.S. Pat. Nos. 5,994,136 and 6,013,516, both of which are incorporated herein by reference).

As used herein, the term "retroviral vector" refers to a retrovirus that has been modified to express a gene of interest. Retroviral vectors can be used to transfer genes efficiently into host cells by exploiting the viral infectious process. Foreign or heterologous genes cloned (*i.e.*, inserted using molecular biological techniques) into the retroviral genome can be delivered efficiently to host cells which are susceptible to infection by the retrovirus. Through well known genetic manipulations, the replicative capacity of the retroviral genome can be destroyed. The resulting replication-defective vectors can be used to introduce new genetic material to a cell but they are unable to replicate. A helper virus or packaging cell line can be used to permit vector particle assembly and egress from the cell. Such retroviral vectors comprise a replication-deficient retroviral genome containing a nucleic acid sequence encoding at least one gene of interest (*i.e.*, a polycistronic nucleic acid sequence can encode more than one gene of interest), a 5' retroviral long terminal repeat (5'LTR); and a 3' retroviral long terminal repeat (3'LTR).

The term "pseudotyped retroviral vector" refers to a retroviral vector containing a heterologous membrane protein. The term "membrane-associated protein" refers to a protein (e.g., a viral envelope glycoprotein or the G proteins of viruses in the Rhabdoviridae family such as VSV, Piry, Chandipura and Mokola) which are associated with the membrane surrounding a viral particle; these membrane-associated proteins mediate the entry of the viral particle into the host cell. The membrane associated protein may bind to specific cell surface protein receptors, as is the case for retroviral envelope proteins or the membrane-associated protein may interact with a phospholipid component of the plasma membrane of the host cell, as is the case for the G proteins derived from members of the Rhabdoviridae family.

The term "heterologous membrane-associated protein" refers to a membrane-associated protein which is derived from a virus which is not a member of the same viral class or family as that from which the nucleocapsid protein of the vector particle is

derived. "Viral class or family" refers to the taxonomic rank of class or family, as assigned by the International Committee on Taxonomy of Viruses.

The term "Rhabdoviridae" refers to a family of enveloped RNA viruses that infect animals, including humans, and plants. The Rhabdoviridae family encompasses the genus Vesiculovirus which includes vesicular stomatitis virus (VSV), Cocal virus, Piry virus, Chandipura virus, and Spring viremia of carp virus (sequences encoding the Spring viremia of carp virus are available under GenBank accession number U18101). The G proteins of viruses in the Vesiculovirus genera are virally-encoded integral membrane proteins that form externally projecting homotrimeric spike glycoproteins complexes that are required for receptor binding and membrane fusion. The G proteins of viruses in the Vesiculovirus genera have a covalently bound palmititic acid (C₁₆) moiety. The amino acid sequences of the G proteins from the Vesiculoviruses are fairly well conserved. For example, the Piry virus G protein share about 38% identity and about 55% similarity with the VSV G proteins (several strains of VSV are known, *e.g.*, Indiana, New Jersey, Orsay, San Juan, etc., and their G proteins are highly homologous). The Chandipura virus G protein and the VSV G proteins share about 37% identity and 52% similarity. Given the high degree of conservation (amino acid sequence) and the related functional characteristics (*e.g.*, binding of the virus to the host cell and fusion of membranes, including syncytia formation) of the G proteins of the Vesiculoviruses, the G proteins from non-VSV Vesiculoviruses may be used in place of the VSV G protein for the pseudotyping of viral particles. The G proteins of the Lyssa viruses (another genera within the Rhabdoviridae family) also share a fair degree of conservation with the VSV G proteins and function in a similar manner (*e.g.*, mediate fusion of membranes) and therefore may be used in place of the VSV G protein for the pseudotyping of viral particles. The Lyssa viruses include the Mokola virus and the Rabies viruses (several strains of Rabies virus are known and their G proteins have been cloned and sequenced). The Mokola virus G protein shares stretches of homology (particularly over the extracellular and transmembrane domains) with the VSV G proteins which show about 31% identity and 48% similarity with the VSV G proteins. Preferred G proteins share at least 25% identity, preferably at least 30% identity and most preferably at least 35% identity with the VSV G proteins. The VSV G protein from which New Jersey strain (the sequence of this G protein is provided in GenBank accession numbers M27165 and M21557) is employed as the reference VSV G protein.

As used herein, the term "lentivirus vector" refers to retroviral vectors derived from the Lentiviridae family (e.g., human immunodeficiency virus, simian immunodeficiency virus, equine infectious anemia virus, and caprine arthritis-encephalitis virus) that are capable of integrating into non-dividing cells (See, e.g., U.S. Pat. Nos. 5,994,136 and 6,013,516, both of which are incorporated herein by reference).

The term "pseudotyped lentivirus vector" refers to lentivirus vector containing a heterologous membrane protein (e.g., a viral envelope glycoprotein or the G proteins of viruses in the Rhabdoviridae family such as VSV, Piry, Chandipura and Mokola).

As used herein, the term "transposon" refers to transposable elements (e.g., Tn5, Tn7, and Tn10) that can move or transpose from one position to another in a genome. In general, the transposition is controlled by a transposase. The term "transposon vector," as used herein, refers to a vector encoding a nucleic acid of interest flanked by the terminal ends of transposon. Examples of transposon vectors include, but are not limited to, those described in U.S. Pat. Nos. 6,027,722; 5,958,775; 5,968,785; 5,965,443; and 5,719,055, all of which are incorporated herein by reference.

As used herein, the term "adeno-associated virus (AAV) vector" refers to a vector derived from an adeno-associated virus serotype, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAVX7, etc. AAV vectors can have one or more of the AAV wild-type genes deleted in whole or part, preferably the *rep* and/or *cap* genes, but retain functional flanking ITR sequences.

AAV vectors can be constructed using recombinant techniques that are known in the art to include one or more heterologous nucleotide sequences flanked on both ends (5' and 3') with functional AAV ITRs. In the practice of the invention, an AAV vector can include at least one AAV ITR and a suitable promoter sequence positioned upstream of the heterologous nucleotide sequence and at least one AAV ITR positioned downstream of the heterologous sequence. A "recombinant AAV vector plasmid" refers to one type of recombinant AAV vector wherein the vector comprises a plasmid. As with AAV vectors in general, 5' and 3' ITRs flank the selected heterologous nucleotide sequence.

AAV vectors can also include transcription sequences such as polyadenylation sites, as well as selectable markers or reporter genes, enhancer sequences, and other control elements which allow for the induction of transcription. Such control elements are described above.

As used herein, the term "AAV virion" refers to a complete virus particle. An AAV virion may be a wild type AAV virus particle (comprising a linear, single-stranded AAV nucleic acid genome associated with an AAV capsid, *i.e.*, a protein coat), or a recombinant AAV virus particle (described below). In this regard, single-stranded AAV nucleic acid molecules (either the sense/coding strand or the antisense/anticoding strand as those terms are generally defined) can be packaged into an AAV virion; both the sense and the antisense strands are equally infectious.

As used herein, the term "recombinant AAV virion" or "rAAV" is defined as an infectious, replication-defective virus composed of an AAV protein shell encapsidating (*i.e.*, surrounding with a protein coat) a heterologous nucleotide sequence, which in turn is flanked 5' and 3' by AAV ITRs. A number of techniques for constructing recombinant AAV virions are known in the art (*See, e.g.*, U.S. Patent No. 5,173,414; WO 92/01070; WO 93/03769; Lebkowski *et al.*, *Molec. Cell. Biol.* 8:3988-3996 [1988]; Vincent *et al.*, *Vaccines* 90 [1990] (Cold Spring Harbor Laboratory Press); Carter, *Current Opinion in Biotechnology* 3:533-539 [1992]; Muzyczka, *Current Topics in Microbiol. and Immunol.* 158:97-129 [1992]; Kolin, *Human Gene Therapy* 5:793-801 [1994]; Shelling and Smith, *Gene Therapy* 1:165-169 [1994]; and Zhou *et al.*, *J. Exp. Med.* 179:1867-1875 [1994], all of which are incorporated herein by reference).

Suitable nucleotide sequences for use in AAV vectors (and, indeed, any of the vectors described herein) include any functionally relevant nucleotide sequence. Thus, the AAV vectors of the present invention can comprise any desired gene that encodes a protein that is defective or missing from a target cell genome or that encodes a non-native protein having a desired biological or therapeutic effect (*e.g.*, an antiviral function), or the sequence can correspond to a molecule having an antisense or ribozyme function. Suitable genes include those used for the treatment of inflammatory diseases, autoimmune, chronic and infectious diseases, including such disorders as AIDS, cancer, neurological diseases, cardiovascular disease, hypercholesterolemia; various blood disorders including various anemias, thalassemias and hemophilia; genetic defects such as cystic fibrosis, Gaucher's Disease, adenosine deaminase (ADA) deficiency, emphysema, etc. A number of antisense oligonucleotides (*e.g.*, short oligonucleotides complementary to sequences around the translational initiation site (AUG codon) of an mRNA) that are useful in antisense therapy for cancer and for viral diseases have been described in the art. (*See, e.g.*, Han *et al.*, *Proc. Natl. Acad. Sci. USA* 88:4313-4317 [1991]; Uhlmann *et*

al., Chem. Rev. 90:543-584 [1990]; Helene *et al.*, Biochim. Biophys. Acta. 1049:99-125 [1990]; Agarwal *et al.*, Proc. Natl. Acad. Sci. USA 85:7079-7083 [1989]; and Heikkila *et al.*, Nature 328:445-449 [1987]). For a discussion of suitable ribozymes, *see, e.g.*, Cech *et al.* (1992) J. Biol. Chem. 267:17479-17482 and U.S. Patent No. 5,225,347, incorporated herein by reference.

By "adeno-associated virus inverted terminal repeats" or "AAV ITRs" is meant the art-recognized palindromic regions found at each end of the AAV genome which function together in *cis* as origins of DNA replication and as packaging signals for the virus. For use with the present invention, flanking AAV ITRs are positioned 5' and 3' of one or more selected heterologous nucleotide sequences and, together with the *rep* coding region or the Rep expression product, provide for the integration of the selected sequences into the genome of a target cell.

The nucleotide sequences of AAV ITR regions are known (*See, e.g.*, Kotin, Human Gene Therapy 5:793-801 [1994]; Berns, K.I. "Parvoviridae and their Replication" in Fundamental Virology, 2nd Edition, (B.N. Fields and D.M. Knipe, eds.) for the AAV-2 sequence. As used herein, an "AAV ITR" need not have the wild-type nucleotide sequence depicted, but may be altered, *e.g.*, by the insertion, deletion or substitution of nucleotides. Additionally, the AAV ITR may be derived from any of several AAV serotypes, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAVX7, etc. The 5' and 3' ITRs which flank a selected heterologous nucleotide sequence need not necessarily be identical or derived from the same AAV serotype or isolate, so long as they function as intended, *i.e.*, to allow for the integration of the associated heterologous sequence into the target cell genome when the *rep* gene is present (either on the same or on a different vector), or when the Rep expression product is present in the target cell.

As used herein the term "*in vitro*" refers to an artificial environment and to processes or reactions that occur within an artificial environment. *In vitro* environments can consist of, but are not limited to, test tubes and cell cultures. The term "*in vivo*" refers to the natural environment (*e.g.*, an animal or a cell) and to processes or reaction that occur within a natural environment.

As used herein, the term "clonally derived" refers to a cell line that it derived from a single cell.

As used herein, the term "non-clonally derived" refers to a cell line that is derived from more than one cell.

As used herein, the term "passage" refers to the process of diluting a culture of cells that has grown to a particular density or confluence (e.g., 70% or 80% confluent), and then allowing the diluted cells to regrow to the particular density or confluence desired (e.g., by replating the cells or establishing a new roller bottle culture with the cells).

As used herein, the term "stable," when used in reference to genome, refers to the stable maintenance of the information content of the genome from one generation to the next, or, in the particular case of a cell line, from one passage to the next. Accordingly, a genome is considered to be stable if no gross changes occur in the genome (e.g., a gene is deleted or a chromosomal translocation occurs). The term "stable" does not exclude subtle changes that may occur to the genome such as point mutations.

As used herein, the term "response," when used in reference to an assay, refers to the generation of a detectable signal (e.g., accumulation of reporter protein, increase in ion concentration, accumulation of a detectable chemical product).

As used herein, the term "membrane receptor protein" refers to membrane spanning proteins that bind a ligand (e.g., a hormone or neurotransmitter). As is known in the art, protein phosphorylation is a common regulatory mechanism used by cells to selectively modify proteins carrying regulatory signals from outside the cell to the nucleus. The proteins that execute these biochemical modifications are a group of enzymes known as protein kinases. They may further be defined by the substrate residue that they target for phosphorylation. One group of protein kinases are the tyrosine kinases (TKs) which selectively phosphorylate a target protein on its tyrosine residues. Some tyrosine kinases are membrane-bound receptors (RTKs), and, upon activation by a ligand, can autophosphorylate as well as modify substrates. The initiation of sequential phosphorylation by ligand stimulation is a paradigm that underlies the action of such effectors as, for example, epidermal growth factor (EGF), insulin, platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF). The receptors for these ligands are tyrosine kinases and provide the interface between the binding of a ligand (hormone, growth factor) to a target cell and the transmission of a signal into the cell by the activation of one or more biochemical pathways. Ligand binding to a receptor tyrosine kinase activates its intrinsic enzymatic activity (See, e.g., Ullrich and Schlessinger, *Cell*

61:203-212 [1990]). Tyrosine kinases can also be cytoplasmic, non-receptor-type enzymes and act as a downstream component of a signal transduction pathway.

As used herein, the term "signal transduction protein" refers to a proteins that are activated or otherwise effected by ligand binding to a membrane receptor protein or some other stimulus. Examples of signal transduction protein include adenyl cyclase, phospholipase C, and G-proteins. Many membrane receptor proteins are coupled to G-proteins (*i.e.*, G-protein coupled receptors (GPCRs); for a review, *see* Neer, 1995, *Cell* 80:249-257 [1995]). Typically, GPCRs contain seven transmembrane domains. Putative GPCRs can be identified on the basis of sequence homology to known GPCRs.

GPCRs mediate signal transduction across a cell membrane upon the binding of a ligand to an extracellular portion of a GPCR. The intracellular portion of a GPCR interacts with a G-protein to modulate signal transduction from outside to inside a cell. A GPCR is therefore said to be "coupled" to a G-protein. G-proteins are composed of three polypeptide subunits: an α subunit, which binds and hydrolyses GTP, and a dimeric $\beta\gamma$ subunit. In the basal, inactive state, the G-protein exists as a heterotrimer of the α and $\beta\gamma$ subunits. When the G-protein is inactive, guanosine diphosphate (GDP) is associated with the α subunit of the G-protein. When a GPCR is bound and activated by a ligand, the GPCR binds to the G-protein heterotrimer and decreases the affinity of the α subunit for GDP. In its active state, the α subunit exchanges GDP for guanine triphosphate (GTP) and active α subunit disassociates from both the receptor and the dimeric $\beta\gamma$ subunit. The disassociated, active α subunit transduces signals to effectors that are "downstream" in the G-protein signalling pathway within the cell. Eventually, the G-protein's endogenous GTPase activity returns active α subunit to its inactive state, in which it is associated with GDP and the dimeric $\beta\gamma$ subunit.

Numerous members of the heterotrimeric G-protein family have been cloned, including more than 20 genes encoding various α subunits. The various G subunits have been categorized into four families, on the basis of amino acid sequences and functional homology. These four families are termed $G\alpha_s$, $G\alpha_i$, $G\alpha_q$, and $G\alpha_{12}$. Functionally, these four families differ with respect to the intracellular signaling pathways that they activate and the GPCR to which they couple.

For example, certain GPCRs normally couple with $G\alpha_s$ and, through $G\alpha_s$, these GPCRs stimulate adenylyl cyclase activity. Other GPCRs normally couple with $GG\alpha_q$, and through $GG\alpha_q$, these GPCRs can activate phospholipase C (PLC), such as the β

isoform of phospholipase C (*i.e.*, PLC β , Stermweis and Smrcka, Trends in Biochem. Sci. 17:502-506 [1992]).

As used herein, the term "nucleic acid binding protein" refers to proteins that bind to nucleic acid, and in particular to proteins that cause increased (*i.e.*, activators or transcription factors) or decreased (*i.e.*, inhibitors) transcription from a gene.

As used herein, the term "ion channel protein" refers to proteins that control the ingress or egress of ions across cell membranes. Examples of ion channel proteins include, but are not limited to, the Na⁺-K⁺ ATPase pump, the Ca²⁺ pump, and the K⁺ leak channel.

As used herein, the term "protein kinase" refers to proteins that catalyze the addition of a phosphate group from a nucleoside triphosphate to an amino acid side chain in a protein. Kinases comprise the largest known enzyme superfamily and vary widely in their target proteins. Kinases may be categorized as protein tyrosine kinases (PTKs), which phosphorylate tyrosine residues, and protein serine/threonine kinases (STKs), which phosphorylate serine and/or threonine residues. Some kinases have dual specificity for both serine/threonine and tyrosine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain. This domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through IX comprise the highly conserved catalytic core. STKs and PTKs also contain distinct sequence motifs in subdomains VI and VIII which may confer hydroxyamino acid specificity. Some STKs and PTKs possess structural characteristics of both families. In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain.

Non-transmembrane PTKs form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that signal through non-transmembrane PTKs include cytokine, hormone, and antigen-specific lymphocytic receptors. Many PTKs

were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (See, e.g., Carboneau, H. and Tonks, Annu. Rev. Cell Biol. 8:463-93 [1992]). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

Examples of protein kinases include, but are not limited to, cAMP-dependent protein kinase, protein kinase C, and cyclin-dependent protein kinases (See, e.g., U.S. Pat. Nos. 6,034,228; 6,030,822; 6,030,788; 6,020,306; 6,013,455; 6,013,464; and 6,015,807, all of which are incorporated herein by reference).

As used herein, the term "protein phosphatase" refers to proteins that remove a phosphate group from a protein. Protein phosphatases are generally divided into two groups, receptor and non-receptor type proteins. Most receptor-type protein tyrosine phosphatases contain two conserved catalytic domains, each of which encompasses a segment of 240 amino acid residues. (See, e.g., Saito *et al.*, Cell Growth and Diff. 2:59-65 [1991]). Receptor protein tyrosine phosphatases can be subclassified further based upon the amino acid sequence diversity of their extracellular domains. (See, e.g., Krueger *et al.*, Proc. Natl. Acad. Sci. USA 89:7417-7421 [1992]). Examples of protein phosphatases include, but are not limited to, cdc25 a, b, and c, PTP20, PTP1D, and PTP λ (See, e.g., U.S. Pat. Nos. 5,976,853; 5,994,074; 6,004,791; 5,981,251; 5,976,852; 5,958,719; 5,955,592; and 5,952,212, all of which are incorporated herein by reference).

As used herein, the term "protein encoded by an oncogene" refers to proteins that cause, either directly or indirectly, the neoplastic transformation of a host cell. Examples of oncogenes include, but are not limited to, the following genes: *src*, *fps*, *fes*, *fgr*, *ros*, *H-ras*, *abl*, *ski*, *erbA*, *erbB*, *fms*, *fos*, *mos*, *sis*, *myc*, *myb*, *rel*, *kit*, *raf*, *K-ras*, and *ets*.

As used herein, the term "immunoglobulin" refers to proteins which bind a specific antigen. Immunoglobulins include, but are not limited to, polyclonal, monoclonal, chimeric, and humanized antibodies, Fab fragments, F(ab')2 fragments, and includes immunoglobulins of the following classes: IgG, IgA, IgM, IgD, IgE, and secreted immunoglobulins (sIg). Immunoglobulins generally comprise two identical heavy chains (γ , α , μ , δ , or ϵ) and two light chains (κ or λ).

As used herein, the term "antigen binding protein" refers to proteins which bind to a specific antigen. "Antigen binding proteins" include, but are not limited to,

immunoglobulins, including polyclonal, monoclonal, chimeric, and humanized antibodies; Fab fragments, F(ab')2 fragments, and Fab expression libraries; and single chain antibodies. Various procedures known in the art are used for the production of polyclonal antibodies. For the production of an antibody, various host animals can be immunized by injection with the peptide corresponding to the desired epitope including but not limited to rabbits, mice, rats, sheep, goats, etc. In a preferred embodiment, the peptide is conjugated to an immunogenic carrier (e.g., diphtheria toxoid, bovine serum albumin (BSA), or keyhole limpet hemocyanin (KLH)). Various adjuvants are used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and *Corynebacterium parvum*.

For preparation of monoclonal antibodies, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used (See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). These include, but are not limited to, the hybridoma technique originally developed by Köhler and Milstein (Köhler and Milstein, *Nature* 256:495-497 [1975]), as well as the trioma technique, the human B-cell hybridoma technique (See e.g., Kozbor *et al.* *Immunol. Today* 4:72 [1983]), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole *et al.*, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 [1985]).

According to the invention, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; herein incorporated by reference) can be adapted to produce specific single chain antibodies as desired. An additional embodiment of the invention utilizes the techniques known in the art for the construction of Fab expression libraries (Huse *et al.*, *Science* 246:1275-1281 [1989]) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibody fragments that contain the idiotype (antigen binding region) of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')2 fragment that can be produced by pepsin digestion of an antibody molecule; the Fab' fragments that can be generated by reducing

the disulfide bridges of an F(ab')2 fragment, and the Fab fragments that can be generated by treating an antibody molecule with papain and a reducing agent.

Genes encoding antigen binding proteins can be isolated by methods known in the art. In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western Blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.) etc.

As used herein, the term "reporter gene" refers to a gene encoding a protein that may be assayed. Examples of reporter genes include, but are not limited to, luciferase (See, e.g., deWet *et al.*, Mol. Cell. Biol. 7:725 [1987] and U.S. Pat Nos., 6,074,859; 5,976,796; 5,674,713; and 5,618,682; all of which are incorporated herein by reference), green fluorescent protein (e.g., GenBank Accession Number U43284; a number of GFP variants are commercially available from CLONTECH Laboratories, Palo Alto, CA), chloramphenicol acetyltransferase, β -galactosidase, alkaline phosphatase, and horse radish peroxidase.

As used herein, the term "purified" refers to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated. An "isolated nucleic acid sequence" is therefore a purified nucleic acid sequence. "Substantially purified" molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated.

The term "test compound" refers to any chemical entity, pharmaceutical, drug, and the like contemplated to be useful in the treatment and/or prevention of a disease, illness, sickness, or disorder of bodily function, or otherwise alter the physiological or cellular status of a sample. Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. A "known therapeutic compound" refers to a therapeutic compound that has been shown (e.g., through animal

trials or prior experience with administration to humans) to be effective in such treatment or prevention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the production of proteins in host cells, and more particularly to host cells containing multiple integrated copies of an integrating vector. The present invention utilizes integrating vectors (*i.e.*, vectors that integrate via an integrase or transposase) to create cell lines containing a high copy number of a nucleic acid encoding a gene of interest. The transfected genomes of the high copy number cells are stable through repeated passages (*e.g.*, at least 10 passages, preferably at least 50 passages, and most preferably at least 100 passages). Furthermore, the host cells of the present invention are capable of producing high levels of protein (*e.g.*, more than 1 pg/cell/day, preferably more than 10 pg/cell/day, more preferably more than 50 pg/cell/day, and most preferably more than 100 pg/cell/day.)

The genomic stability and high expression levels of the host cells of the present invention provide distinct advantages over previously described methods of cell culture. For example, mammalian cell lines containing multiple copies of genes are known in the art to be intrinsically unstable. Indeed, this instability is a recognized problem facing researchers desiring to use mammalian cell lines for various purposes, including high throughput screening assays (*See, e.g.*, Sittampalam *et al.*, *Curr. Opin. Chem. Biol.* 1(3):384-91 [1997]).

It is not intended that the present invention be limited to particular mechanism of action. Indeed, an understanding of the mechanism is not necessary to make and use the present invention. However, the high genomic stability and protein expression levels of the host cells of the present invention are thought to be due to unique properties of the integrating vectors (*e.g.*, retroviral vectors). For example, it is known that retroviruses are inherited elements in the germ line of many organisms. Indeed, as much as 5-10% of the mammalian genome may consist of elements contributed by reverse transcription, indicating a high degree of stability. Likewise, many of these types of vectors target active (*e.g.*, DNase I hypersensitive sites) transcriptional sites in the genome.

Many investigations have focused on the deleterious effects of retroviral and transposon integration. The property of targeting active regions of the genome has led to the use of retroviral vectors and transposon vectors in promoter trap schemes and for

saturation mutagenesis (*See, e.g.*, U.S. Pat. Nos. 5,627,058 and 5,922,601, all of which are herein incorporated by reference). In promoter trap schemes, the cells are infected with a promoterless reporter vector. If the promoterless vector integrates downstream of a promoter (*i.e.*, into a gene), the reporter gene encoded by the vector is activated. The promoter can then be cloned and further characterized.

As can be seen, these schemes rely on the disruption of an endogenous gene. Therefore, it is surprising that the methods of the present invention, which utilize integrating vectors at high multiplicities of infection that would normally be thought to lead to gene disruption, led to the development of stable cell lines that express high quantities of a protein of interest. The development of these cell lines is described more fully below. The description is divided into the following sections: I) Host Cells; II) Vectors and Methods of Transfection; and III) Uses of Transfected Host Cells.

I. Host Cells

The present invention contemplates the transfection of a variety of host cells with integrating vectors. A number of mammalian host cell lines are known in the art. In general, these host cells are capable of growth and survival when placed in either monolayer culture or in suspension culture in a medium containing the appropriate nutrients and growth factors, as is described in more detail below. Typically, the cells are capable of expressing and secreting large quantities of a particular protein of interest into the culture medium. Examples of suitable mammalian host cells include, but are not limited to Chinese hamster ovary cells (CHO-K1, ATCC CCI-61); bovine mammary epithelial cells (ATCC CRL 10274; bovine mammary epithelial cells); monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture; *see, e.g.*, Graham *et al.*, *J. Gen Virol.*, 36:59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); mouse sertoli cells (TM4, Mather, *Biol. Reprod.* 23:243-251 [1980]); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather *et al.*, *Annals N.Y. Acad. Sci.*, 383:44-68 [1982]); MRC 5 cells; FS4 cells; rat fibroblasts (208F cells);

MDBK cells (bovine kidney cells); and a human hepatoma line (Hep G2).

In addition to mammalian cell lines, the present invention also contemplates the transfection of plant protoplasts with integrating vectors at a low or high multiplicity of infection. For example, the present invention contemplates a plant cell or whole plant comprising at least one integrated integrating vector, preferably a retroviral vector, and most preferably a pseudotyped retroviral vector. All plants that can be produced by regeneration from protoplasts can also be transfected using the process according to the invention (e.g., cultivated plants of the genera *Solanum*, *Nicotiana*, *Brassica*, *Beta*, *Pisum*, *Phaseolus*, *Glycine*, *Helianthus*, *Allium*, *Avena*, *Hordeum*, *Oryzae*, *Setaria*, *Secale*, *Sorghum*, *Triticum*, *Zea*, *Musa*, *Cocos*, *Cydonia*, *Pyrus*, *Malus*, *Phoenix*, *Elaeis*, *Rubus*, *Fragaria*, *Prunus*, *Arachis*, *Panicum*, *Saccharum*, *Coffea*, *Canellia*, *Anauas*, *Vitis* or *Citrus*). In general, protoplasts are produced in accordance with conventional methods (See, e.g., U.S. Pat. Nos. 4,743,548; 4,677,066, 5,149,645; and 5,508,184; all of which are incorporated herein by reference). Plant tissue may be dispersed in an appropriate medium having an appropriate osmotic potential (e.g., 3 to 8 wt. % of a sugar polyol) and one or more polysaccharide hydrolases (e.g., pectinase, cellulase, etc.), and the cell wall degradation allowed to proceed for a sufficient time to provide protoplasts. After filtration the protoplasts may be isolated by centrifugation and may then be resuspended for subsequent treatment or use. Regeneration of protoplasts kept in culture to whole plants is performed by methods known in the art (See, e.g., Evans *et al.*, *Handbook of Plant Cell Culture*, 1: 124-176, MacMillan Publishing Co., New York [1983]; Binding, *Plant Protoplasts*, p. 21-37, CRC Press, Boca Raton [1985],) and Potrykus and Shillito, *Methods in Enzymology*, Vol. 118, Plant Molecular Biology, A. and H. Weissbach eds., Academic Press, Orlando [1986]).

The present invention also contemplates the use of amphibian and insect host cell lines. Examples of suitable insect host cell lines include, but are not limited to, mosquito cell lines (e.g., ATCC CRL-1660). Examples of suitable amphibian host cell lines include, but are not limited to, toad cell lines (e.g., ATCC CCL-102).

II. Vectors and Methods for Transfection

According to the present invention, host cells such as those described above are transduced or transfected with integrating vectors. Examples of integrating vectors include, but are not limited to, retroviral vectors, lentiviral vectors, adeno-associated viral vectors, and transposon vectors. The design, production, and use of these vectors in the present invention is described below.

A. Retroviral Vectors

Retroviruses (family Retroviridae) are divided into three groups: the spumaviruses (e.g., human foamy virus); the lentiviruses (e.g., human immunodeficiency virus and sheep visna virus) and the oncoviruses (e.g., MLV, Rous sarcoma virus).

Retroviruses are enveloped (*i.e.*, surrounded by a host cell-derived lipid bilayer membrane) single-stranded RNA viruses which infect animal cells. When a retrovirus infects a cell, its RNA genome is converted into a double-stranded linear DNA form (*i.e.*, it is reverse transcribed). The DNA form of the virus is then integrated into the host cell genome as a provirus. The provirus serves as a template for the production of additional viral genomes and viral mRNAs. Mature viral particles containing two copies of genomic RNA bud from the surface of the infected cell. The viral particle comprises the genomic RNA, reverse transcriptase and other *pol* gene products inside the viral capsid (which contains the viral *gag* gene products) which is surrounded by a lipid bilayer membrane derived from the host cell containing the viral envelope glycoproteins (also referred to as membrane-associated proteins).

The organization of the genomes of numerous retroviruses is well known to the art and this has allowed the adaptation of the retroviral genome to produce retroviral vectors. The production of a recombinant retroviral vector carrying a gene of interest is typically achieved in two stages.

First, the gene of interest is inserted into a retroviral vector which contains the sequences necessary for the efficient expression of the gene of interest (including promoter and/or enhancer elements which may be provided by the viral long terminal repeats (LTRs) or by an internal promoter/enhancer and relevant splicing signals), sequences required for the efficient packaging of the viral RNA into infectious virions (e.g., the packaging signal (Psi), the tRNA primer binding site (-PBS), the 3' regulatory sequences required for reverse transcription (+PBS)) and the viral LTRs. The LTRs

contain sequences required for the association of viral genomic RNA, reverse transcriptase and integrase functions, and sequences involved in directing the expression of the genomic RNA to be packaged in viral particles. For safety reasons, many recombinant retroviral vectors lack functional copies of the genes which are essential for viral replication (these essential genes are either deleted or disabled); therefore, the resulting virus is said to be replication defective.

Second, following the construction of the recombinant vector, the vector DNA is introduced into a packaging cell line. Packaging cell lines provide proteins required in *trans* for the packaging of the viral genomic RNA into viral particles having the desired host range (*i.e.*, the viral-encoded gag, pol and env proteins). The host range is controlled, in part, by the type of envelope gene product expressed on the surface of the viral particle. Packaging cell lines may express ecotropic, amphotropic or xenotropic envelope gene products. Alternatively, the packaging cell line may lack sequences encoding a viral envelope (env) protein. In this case the packaging cell line will package the viral genome into particles which lack a membrane-associated protein (*e.g.*, an env protein). In order to produce viral particles containing a membrane associated protein which will permit entry of the virus into a cell, the packaging cell line containing the retroviral sequences is transfected with sequences encoding a membrane-associated protein (*e.g.*, the G protein of vesicular stomatitis virus (VSV)). The transfected packaging cell will then produce viral particles which contain the membrane-associated protein expressed by the transfected packaging cell line; these viral particles which contain viral genomic RNA derived from one virus encapsidated by the envelope proteins of another virus are said to be pseudotyped virus particles.

The retroviral vectors of the present invention can be further modified to include additional regulatory sequences. As described above, the retroviral vectors of the present invention include the following elements in operable association: a) a 5' LTR; b) a packaging signal; c) a 3' LTR and d) a nucleic acid encoding a protein of interest located between the 5' and 3' LTRs. In some embodiments of the present invention, the nucleic acid of interest may be arranged in opposite orientation to the 5' LTR when transcription from an internal promoter is desired. Suitable internal promoters include, but are not limited to, the alpha-lactalbumin promoter, the CMV promoter (human or ape), and the thymidine kinase promoter.

In other embodiments of the present invention, where secretion of the protein of interest is desired, the vectors are modified by including a signal peptide sequence in operable association with the protein of interest. The sequences of several suitable signal peptides are known to those in the art, including, but not limited to, those derived from tissue plasminogen activator, human growth hormone, lactoferrin, alpha-casein, and alpha-lactalbumin.

In other embodiments of the present invention, the vectors are modified by incorporating an RNA export element (*See, e.g.*, U.S. Pat. Nos. 5,914,267; 6,136,597; and 5,686,120; and WO99/14310, all of which are incorporated herein by reference) either 3' or 5' to the nucleic acid sequence encoding the protein of interest. It is contemplated that the use of RNA export elements allows high levels of expression of the protein of interest without incorporating splice signals or introns in the nucleic acid sequence encoding the protein of interest.

In still other embodiments, the vector further comprises at least one internal ribosome entry site (IRES) sequence. The sequences of several suitable IRES's are available, including, but not limited to, those derived from foot and mouth disease virus (FDV), encephalomyocarditis virus, and poliovirus. The IRES sequence can be interposed between two transcriptional units (*e.g.*, nucleic acids encoding different proteins of interest or subunits of a multisubunit protein such as an antibody) to form a polycistronic sequence so that the two transcriptional units are transcribed from the same promoter.

The retroviral vectors of the present invention may also further comprise a selectable marker allowing selection of transformed cells. A number of selectable markers find use in the present invention, including, but not limited to the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the *neo* gene) that confers resistance to the drug G418 in mammalian cells, the bacterial hygromycin G phosphotransferase (*hyg*) gene that confers resistance to the antibiotic hygromycin and the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the *gpt* gene) that confers the ability to grow in the presence of mycophenolic acid. In some embodiments, the selectable marker gene is provided as part of polycistronic sequence that also encodes the protein of interest.

In still other embodiments of the present invention, the retroviral vectors may comprise recombination elements recognized by a recombination system (*e.g.*, the

cre/loxP or flip recombinase systems, *see, e.g.*, Hoess *et al.*, Nucleic Acids Res. 14:2287-2300 [1986], O'Gorman *et al.*, Science 251:1351-55 [1991], van Deursen *et al.*, Proc. Natl. Acad. Sci. USA 92:7376-80 [1995], and U.S. Pat. No. 6,025,192, herein incorporated by reference). After integration of the vectors into the genome of the host cell, the host cell can be transiently transfected (*e.g.*, by electroporation, lipofection, or microinjection) with either a recombinase enzyme (*e.g.*, Cre recombinase) or a nucleic acid sequence encoding the recombinase enzyme and one or more nucleic acid sequences encoding a protein of interest flanked by sequences recognized by the recombination enzyme so that the nucleic acid sequence is inserted into the integrated vector.

Viral vectors, including recombinant retroviral vectors, provide a more efficient means of transferring genes into cells as compared to other techniques such as calcium phosphate-DNA co-precipitation or DEAE-dextran-mediated transfection, electroporation or microinjection of nucleic acids. It is believed that the efficiency of viral transfer is due in part to the fact that the transfer of nucleic acid is a receptor-mediated process (*i.e.*, the virus binds to a specific receptor protein on the surface of the cell to be infected). In addition, the virally transferred nucleic acid once inside a cell integrates in controlled manner in contrast to the integration of nucleic acids which are not virally transferred; nucleic acids transferred by other means such as calcium phosphate-DNA co-precipitation are subject to rearrangement and degradation.

The most commonly used recombinant retroviral vectors are derived from the amphotropic Moloney murine leukemia virus (MoMLV) (*See e.g.*, Miller and Baltimore Mol. Cell. Biol. 6:2895 [1986]). The MoMLV system has several advantages: 1) this specific retrovirus can infect many different cell types, 2) established packaging cell lines are available for the production of recombinant MoMLV viral particles and 3) the transferred genes are permanently integrated into the target cell chromosome. The established MoMLV vector systems comprise a DNA vector containing a small portion of the retroviral sequence (*e.g.*, the viral long terminal repeat or "LTR" and the packaging or "psi" signal) and a packaging cell line. The gene to be transferred is inserted into the DNA vector. The viral sequences present on the DNA vector provide the signals necessary for the insertion or packaging of the vector RNA into the viral particle and for the expression of the inserted gene. The packaging cell line provides the proteins required for particle assembly (Markowitz *et al.*, J. Virol. 62:1120 [1988]).

Despite these advantages, existing retroviral vectors based upon MoMLV are limited by several intrinsic problems: 1) they do not infect non-dividing cells (Miller *et al.*, Mol. Cell. Biol. 10:4239 [1990]), except, perhaps, oocytes; 2) they produce low titers of the recombinant virus (Miller and Rosman, BioTechniques 7: 980 [1980] and Miller, Nature 357: 455 [1990]); and 3) they infect certain cell types (*e.g.*, human lymphocytes) with low efficiency (Adams *et al.*, Proc. Natl. Acad. Sci. USA 89:8981 [1992]). The low titers associated with MoMLV-based vectors have been attributed, at least in part, to the instability of the virus-encoded envelope protein. Concentration of retrovirus stocks by physical means (*e.g.*, ultracentrifugation and ultrafiltration) leads to a severe loss of infectious virus.

The low titer and inefficient infection of certain cell types by MoMLV-based vectors has been overcome by the use of pseudotyped retroviral vectors which contain the G protein of VSV as the membrane associated protein. Unlike retroviral envelope proteins which bind to a specific cell surface protein receptor to gain entry into a cell, the VSV G protein interacts with a phospholipid component of the plasma membrane (Mastromarino *et al.*, J. Gen. Virol. 68:2359 [1977]). Because entry of VSV into a cell is not dependent upon the presence of specific protein receptors, VSV has an extremely broad host range. Pseudotyped retroviral vectors bearing the VSV G protein have an altered host range characteristic of VSV (*i.e.*, they can infect almost all species of vertebrate, invertebrate and insect cells). Importantly, VSV G-pseudotyped retroviral vectors can be concentrated 2000-fold or more by ultracentrifugation without significant loss of infectivity (Burns *et al.* Proc. Natl. Acad. Sci. USA 90:8033 [1993]).

The present invention is not limited to the use of the VSV G protein when a viral G protein is employed as the heterologous membrane-associated protein within a viral particle (*See, e.g.*, U.S. Pat. No. 5,512,421, which is incorporated herein by reference). The G proteins of viruses in the Vesiculovirus genera other than VSV, such as the Piry and Chandipura viruses, that are highly homologous to the VSV G protein and, like the VSV G protein, contain covalently linked palmitic acid (Brun *et al.* Intervirol. 38:274 [1995] and Masters *et al.*, Virol. 171:285 [1990]). Thus, the G protein of the Piry and Chandipura viruses can be used in place of the VSV G protein for the pseudotyping of viral particles. In addition, the VSV G proteins of viruses within the Lyssa virus genera such as Rabies and Mokola viruses show a high degree of conservation (amino acid sequence as well as functional conservation) with the VSV G proteins. For example, the

Mokola virus G protein has been shown to function in a manner similar to the VSV G protein (*i.e.*, to mediate membrane fusion) and therefore may be used in place of the VSV G protein for the pseudotyping of viral particles (Mebatsion *et al.*, *J. Virol.* 69:1444 [1995]). Viral particles may be pseudotyped using either the Piry, Chandipura or Mokola G protein as described in Example 2, with the exception that a plasmid containing sequences encoding either the Piry, Chandipura or Mokola G protein under the transcriptional control of a suitable promoter element (*e.g.*, the CMV intermediate-early promoter; numerous expression vectors containing the CMV IE promoter are available, such as the pcDNA3.1 vectors (Invitrogen)) is used in place of pHCMV-G. Sequences encoding other G proteins derived from other members of the Rhabdoviridae family may be used; sequences encoding numerous rhabdoviral G proteins are available from the GenBank database.

The majority of retroviruses can transfer or integrate a double-stranded linear form of the virus (the provirus) into the genome of the recipient cell only if the recipient cell is cycling (*i.e.*, dividing) at the time of infection. Retroviruses which have been shown to infect dividing cells exclusively, or more efficiently, include MLV, spleen necrosis virus, Rous sarcoma virus and human immunodeficiency virus (HIV; while HIV infects dividing cells more efficiently, HIV can infect non-dividing cells).

It has been shown that the integration of MLV virus DNA depends upon the host cell's progression through mitosis and it has been postulated that the dependence upon mitosis reflects a requirement for the breakdown of the nuclear envelope in order for the viral integration complex to gain entry into the nucleus (Roe *et al.*, *EMBO J.* 12:2099 [1993]). However, as integration does not occur in cells arrested in metaphase, the breakdown of the nuclear envelope alone may not be sufficient to permit viral integration; there may be additional requirements such as the state of condensation of the genomic DNA (Roe *et al.*, *supra*).

B. Lentiviral Vectors

The present invention also contemplates the use of lentiviral vectors to generate high copy number cell lines. The lentiviruses (*e.g.*, equine infectious anemia virus, caprine arthritis-encephalitis virus, human immunodeficiency virus) are a subfamily of retroviruses that are able to integrate into non-dividing cells. The lentiviral genome and the proviral DNA have the three genes found in all retroviruses: *gag*, *pol*, and *env*, which

are flanked by two LTR sequences. The gag gene encodes the internal structural proteins (e.g., matrix, capsid, and nucleocapsid proteins); the pol gene encodes the reverse transcriptase, protease, and integrase proteins; and the env gene encodes the viral envelope glycoproteins. The 5' and 3' LTRs control transcription and polyadenylation of the viral RNAs. Additional genes in the lentiviral genome include the *vif*, *vpr*, *tat*, *rev*, *vpu*, *nef*, and *vpx* genes.

A variety of lentiviral vectors and packaging cell lines are known in the art and find use in the present invention (See, e.g., U.S. Pat. Nos. 5,994,136 and 6,013,516, both of which are herein incorporated by reference). Furthermore, the VSV G protein has also been used to pseudotype retroviral vectors based upon the human immunodeficiency virus (HIV) (Naldini *et al.*, *Science* 272:263 [1996]). Thus, the VSV G protein may be used to generate a variety of pseudotyped retroviral vectors and is not limited to vectors based on MoMLV. The lentiviral vectors may also be modified as described above to contain various regulatory sequences (e.g., signal peptide sequences, RNA export elements, and IRES's). After the lentiviral vectors are produced, they may be used to transfect host cells as described above for retroviral vectors.

C. Adeno-Associated Viral Vectors

The present invention also contemplates the use of adeno associated virus (AAV) vectors to generate high copy number cell lines. AAV is a human DNA parvovirus which belongs to the genus *Dependovirus*. The AAV genome is composed of a linear, single-stranded DNA molecule which contains approximately 4680 bases. The genome includes inverted terminal repeats (ITRs) at each end which function in *cis* as origins of DNA replication and as packaging signals for the virus. The internal nonrepeated portion of the genome includes two large open reading frames, known as the AAV *rep* and *cap* regions, respectively. These regions code for the viral proteins involved in replication and packaging of the virion. A family of at least four viral proteins are synthesized from the AAV *rep* region, Rep 78, Rep 68, Rep 52 and Rep 40, named according to their apparent molecular weight. The AAV *cap* region encodes at least three proteins, VP1, VP2 and VP3 (for a detailed description of the AAV genome, see e.g., Muzyczka, *Current Topics Microbiol. Immunol.* 158:97-129 [1992]; Kotin, *Human Gene Therapy* 5:793-801 [1994]).

AAV requires coinfection with an unrelated helper virus, such as adenovirus, a herpesvirus or vaccinia, in order for a productive infection to occur. In the absence of such coinfection, AAV establishes a latent state by insertion of its genome into a host cell chromosome. Subsequent infection by a helper virus rescues the integrated copy which can then replicate to produce infectious viral progeny. Unlike the non-pseudotyped retroviruses, AAV has a wide host range and is able to replicate in cells from any species so long as there is coinfection with a helper virus that will also multiply in that species. Thus, for example, human AAV will replicate in canine cells coinfected with a canine adenovirus. Furthermore, unlike the retroviruses, AAV is not associated with any human or animal disease, does not appear to alter the biological properties of the host cell upon integration and is able to integrate into nondividing cells. It has also recently been found that AAV is capable of site-specific integration into a host cell genome.

In light of the above-described properties, a number of recombinant AAV vectors have been developed for gene delivery (See, e.g., U.S. Patent Nos. 5,173,414; 5,139,941; WO 92/01070 and WO 93/03769, both of which are incorporated herein by reference; Lebkowski *et al.*, Molec. Cell. Biol. 8:3988-3996 [1988]; Carter, B.J., Current Opinion in Biotechnology 3:533-539 [1992]; Muzyczka, Current Topics in Microbiol. and Immunol. 158:97-129 [1992]; Kotin, R.M. (1994) Human Gene Therapy 5:793-801; Shelling and Smith, Gene Therapy 1:165-169 [1994]; and Zhou *et al.*, J. Exp. Med. 179:1867-1875 [1994]).

Recombinant AAV virions can be produced in a suitable host cell which has been transfected with both an AAV helper plasmid and an AAV vector. An AAV helper plasmid generally includes AAV *rep* and *cap* coding regions, but lacks AAV ITRs. Accordingly, the helper plasmid can neither replicate nor package itself. An AAV vector generally includes a selected gene of interest bounded by AAV ITRs which provide for viral replication and packaging functions. Both the helper plasmid and the AAV vector bearing the selected gene are introduced into a suitable host cell by transient transfection. The transfected cell is then infected with a helper virus, such as an adenovirus, which transactivates the AAV promoters present on the helper plasmid that direct the transcription and translation of AAV *rep* and *cap* regions. Recombinant AAV virions harboring the selected gene are formed and can be purified from the preparation. Once the AAV vectors are produced, they may be used to transfect (See, e.g., U.S. Pat.

5,843,742, herein incorporated by reference) host cells at the desired multiplicity of infection to produce high copy number host cells. As will be understood by those skilled in the art, the AAV vectors may also be modified as described above to contain various regulatory sequences (e.g., signal peptide sequences, RNA export elements, and IRES's).

D. Transposon Vectors

The present invention also contemplates the use of transposon vectors to generate high copy number cell lines. Transposons are mobile genetic elements that can move or transpose from one location another in the genome. Transposition within the genome is controlled by a transposase enzyme that is encoded by the transposon. Many examples of transposons are known in the art, including, but not limited to, Tn5 (See e.g., de la Cruz *et al.*, J. Bact. 175: 6932-38 [1993], Tn7 (See e.g., Craig, Curr. Topics Microbiol. Immunol. 204: 27-48 [1996]), and Tn10 (See e.g., Morisato and Kleckner, Cell 51:101-111 [1987]). The ability of transposons to integrate into genomes has been utilized to create transposon vectors (See, e.g., U.S. Pat. Nos. 5,719,055; 5,968,785; 5,958,775; and 6,027,722; all of which are incorporated herein by reference.) Because transposons are not infectious, transposon vectors are introduced into host cells via methods known in the art (e.g., electroporation, lipofection, or microinjection). Therefore, the ratio of transposon vectors to host cells may be adjusted to provide the desired multiplicity of infection to produce the high copy number host cells of the present invention.

Transposon vectors suitable for use in the present invention generally comprise a nucleic acid encoding a protein of interest interposed between two transposon insertion sequences. Some vectors also comprise a nucleic acid sequence encoding a transposase enzyme. In these vectors, the one of the insertion sequences is positioned between the transposase enzyme and the nucleic acid encoding the protein of interest so that it is not incorporated into the genome of the host cell during recombination. Alternatively, the transposase enzyme may be provided by a suitable method (e.g., lipofection or microinjection). As will be understood by those skilled in the art, the transposon vectors may also be modified as described above to contain various regulatory sequences (e.g., signal peptide sequences, RNA export elements, and IRES's).

E. Transfection at High Multiplicities of Infection

Once integrating vectors (*e.g.*, retroviral vectors) encoding a protein of interest have been produced, they may be used to transfet or transduce host cells (examples of which are described above in Section I). Preferably, host cells are transfected or transduced with integrating vectors at a multiplicity of infection sufficient to result in the integration of at least 1, and preferably at least 2 or more retroviral vectors. In some embodiments, multiplicities of infection of from 10 to 1,000,000 may be utilized, so that the genomes of the infected host cells contain from 2 to 100 copies of the integrated vectors, and preferably from 5 to 50 copies of the integrated vectors. In other embodiments, a multiplicity of infection of from 10 to 10,000 is utilized. When non-pseudotyped retroviral vectors are utilized for infection, the host cells are incubated with the culture medium from the retroviral producers cells containing the desired titer (*i.e.*, colony forming units, CFUs) of infectious vectors. When pseudotyped retroviral vectors are utilized, the vectors are concentrated to the appropriate titer by ultracentrifugation and then added to the host cell culture. Alternatively, the concentrated vectors can be diluted in a culture medium appropriate for the cell type. Additionally, when expression of more than one protein of interest by the host cell is desired, the host cells can be transfected with multiple vectors each containing a nucleic acid encoding a different protein of interest.

In each case, the host cells are exposed to medium containing the infectious retroviral vectors for a sufficient period of time to allow infection and subsequent integration of the vectors. In general, the amount of medium used to overlay the cells should be kept to as small a volume as possible so as to encourage the maximum amount of integration events per cell. As a general guideline, the number of colony forming units (cfu) per milliliter should be about 10^5 to 10^7 cfu/ml, depending upon the number of integration events desired.

The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism of action is not necessary for practicing the present invention. However, the diffusion rate of the vectors is known to be very limited (*See, e.g.*, U.S. Pat. No. 5,866,400, herein incorporated by reference, for a discussion of diffusion rates). Therefore, it is expected that the actual integration rate will be lower (and in some cases much lower) than the multiplicity of infection. Applying the equations from U.S Pat. No. 5,866,400, a titer of 10^6 cfu/ml has an average vector-vector

spacing of 1 micron. The diffusion time of a MMLV vector across 100 microns is approximately 20 minutes. Accordingly, the vector can travel approximately 300 microns in one hour. If 1000 cells are plated in a T25 flask, the cells are spaced 2.5 mm apart on average. Using these values, the only 56 viral particles would be expected to contact a given cell within an hour. The Table below provides the expected contact rate for a given number of cells in a T25 flask with a particular vector titer. However, as shown below in the examples, the actual number of integrations obtained is much lower than may be predicted by these equations.

Vector Contact Frequency As A Function of Time and Cell Spacing			
Vector Titer	Cells/T25 Flask	MOI	Contacts/Hour
10 ⁶	1000	1,000	56
10 ⁶	100	10,000	<56
10 ⁵	1000	100	5.6
10 ⁴	1000	10	0.6

Accordingly, it is contemplated that the actual integration rate is dependent not only on the multiplicity of infection, but also on the contact time (*i.e.*, the length of time the host cells are exposed to infectious vector), the confluence or geometry of the host cells being transfected, and the volume of media that the vectors are contained in. It is contemplated that these conditions can be varied as taught herein to produce host cell lines containing multiple integrated copies of integrating vectors. As demonstrated in Examples 8 and 9, MOI can be varied by either holding the number of cells constant and varying CFU's (Example 9), or by holding CFU's constant and varying cell number (Example 8).

In some embodiments, after transfection or transduction, the cells are allowed to multiply, and are then trypsinized and replated. Individual colonies are then selected to provide clonally selected cell lines. In still further embodiments, the clonally selected cell lines are screened by Southern blotting or INVADER assay to verify that the desired number of integration events has occurred. It is also contemplated that clonal selection

allows the identification of superior protein producing cell lines. In other embodiments, the cells are not clonally selected following transfection.

In some embodiments, the host cells are transfected with vectors encoding different proteins of interest. The vectors encoding different proteins of interest can be used to transfect the cells at the same time (*e.g.*, the host cells are exposed to a solution containing vectors encoding different proteins of interest) or the transfection can be serial (*e.g.*, the host cells are first transfected with a vector encoding a first protein of interest, a period of time is allowed to pass, and the host cells are then transfected with a vector encoding a second protein of interest). In some preferred embodiments, the host cells are transfected with an integrating vector encoding a first protein of interest, high expressing cell lines containing multiple integrated copies of the integrating vector are selected (*e.g.*, clonally selected), and the selected cell line is transfected with an integrating vector encoding a second protein of interest. This process may be repeated to introduce multiple proteins of interest. In some embodiments, the multiplicities of infection may be manipulated (*e.g.*, increased or decreased) to increase or decrease the expression of the protein of interest. Likewise, the different promoters may be utilized to vary the expression of the proteins of interest. It is contemplated that these transfection methods can be used to construct host cell lines containing an entire exogenous metabolic pathway or to provide host cells with an increased capability to process proteins (*e.g.*, the host cells can be provided with enzymes necessary for post-translational modification).

In still further embodiments, cell lines are serially transfected with vectors encoding the same gene. In some preferred embodiments, the host cells are transfected (*e.g.*, at an MOI of about 10 to 100,000, preferably 100 to 10,000) with an integrating vector encoding a protein of interest, cell lines containing single or multiple integrated copies of the integrating vector or expressing high levels of the desired protein are selected (*e.g.*, clonally selected), and the selected cell line is retransfected with the vector (*e.g.*, at an MOI of about 10 to 100,000, preferably 100 to 10,000). In some embodiments, cell lines comprising at least two integrated copies of the vector are identified and selected. This process may be repeated multiple times until the desired level of protein expression is obtained and may also be repeated to introduce vectors encoding multiple proteins of interest. Unexpectedly, serial transfection with the same gene results in increases in protein production from the resulting cells that are not merely additive.

III. Uses of Transfected Host Cells

The host cells transfected at a high multiplicity of infection can be used for a variety of purposes. First, the host cells find use in the production of proteins for pharmaceutical, industrial, diagnostic, and other purposes. Second, host cells expressing a particular protein or proteins find use in screening assays (e.g., high throughput screening). Third, the host cells find use in the production of multiple variants of proteins, followed by analysis of the activity of the protein variants. Each of these uses is explained in more detail below.

A. Production of Proteins

It is contemplated that the host cells of the present invention find use in the production of proteins for pharmaceutical, industrial, diagnostic, and other uses. The present invention is not limited to the production of any particular protein. Indeed, the production of a wide variety of proteins is contemplated, including, but not limited to, erythropoietin, alpha-interferon, alpha-1 proteinase inhibitor, angiogenin, antithrombin III, beta-acid decarboxylase, human growth hormone, bovine growth hormone, porcine growth hormone, human serum albumin, beta-interferon, calf intestine alkaline phosphatase, cystic fibrosis transmembrane regulator, Factor VIII, Factor IX, Factor X, insulin, lactoferrin, tissue plasminogen activator, myelin basic protein, insulin, proinsulin, prolactin, hepatitis B antigen, immunoglobulins, monoclonal antibody CTLA4 Ig, Tag 72 monoclonal antibody, Tag 72 single chain antigen binding protein, protein C, cytokines and their receptors, including, for instance tumor necrosis factors alpha and beta, their receptors and their derivatives; renin; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; von Willebrands factor; atrial natriuretic factor; lung surfactant; urokinase; bombesin; thrombin; hemopoietic growth factor; enkephalinase; human macrophage inflammatory protein (MIP-1-alpha); a serum albumin such mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; beta-lactamase; DNase; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; integrin; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-beta; platelet-derived growth

factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF- β 1, TGF- β 2, TGF- β 3, TGF- β 4, or TGF- β 5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(1-3)-IGF-I (brain IGF-I), insulinslike growth factor binding proteins; CD proteins such as CD-3, CD-4, CD-8, and CD-19; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interleukins (ILs), e.g., IL-1 to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the AIDS envelope; transport proteins; homing receptors; addressins; regulatory proteins; antibodies; chimeric proteins, such as immunoadhesins, and fragments of any of the above-listed polypeptides. Nucleic acid and protein sequences for these proteins are available in public databases such as GenBank.

In some embodiments, the host cells express more than one exogenous protein. For example, the host cells may be transfected vectors encoding different proteins of interest (e.g., cotransfection or infection at a multiplicity of infection of 1000 with one vector encoding a first protein of interest and a second vector encoding a second protein of interest or serial transfection or infection) so that the host cell contains at least one integrated copy of a first vector encoding a first protein of interest and at least one integrated copy of second integrating vector encoding a second protein of interest. In other embodiments, more than one protein is expressed by arranging the nucleic acids encoding the different proteins of interest in a polycistronic sequence (e.g., bicistronic or tricistronic sequences). This arrangement is especially useful when expression of the different proteins of interest in about a 1:1 molar ratio is desired (e.g., expressing the light and heavy chains of an antibody molecule).

In still further embodiments, ribozymes are expressed in the host cells. It is contemplated that the ribozyme can be utilized for down-regulating expression of a particular gene or used in conjunction with gene switches such as TET, ecdysone, glucocorticoid enhancer, etc. to provide host cells with various phenotypes.

The transfected host cells are cultured according to methods known in the art. Suitable culture conditions for mammalian cells are well known in the art (See e.g., J. Immunol. Methods (1983)56:221-234 [1983], *Animal Cell Culture: A Practical Approach* 2nd Ed., Rickwood, D. and Hames, B. D., eds. Oxford University Press, New York

[1992]).

The host cell cultures of the present invention are prepared in a media suitable for the particular cell being cultured. Commercially available media such as Ham's F10 (Sigma, St. Louis, MO), Minimal Essential Medium (MEM, Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium (DMEM, Sigma) are exemplary nutrient solutions. Suitable media are also described in U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 5,122,469; 4,560,655; and WO 90/03430 and WO 87/00195; the disclosures of which are herein incorporated by reference. Any of these media may be supplemented as necessary with serum, hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as gentamycin (gentamicin), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range) lipids (such as linoleic or other fatty acids) and their suitable carriers, and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. For mammalian cell culture, the osmolality of the culture medium is generally about 290-330 mOsm.

The present invention also contemplates the use of a variety of culture systems (e.g., petri dishes, 96 well plates, roller bottles, and bioreactors) for the transfected host cells. For example, the transfected host cells can be cultured in a perfusion system. Perfusion culture refers to providing a continuous flow of culture medium through a culture maintained at high cell density. The cells are suspended and do not require a solid support to grow on. Generally, fresh nutrients must be supplied continuously with concomitant removal of toxic metabolites and, ideally, selective removal of dead cells. Filtering, entrapment and micro-capsulation methods are all suitable for refreshing the culture environment at sufficient rates.

As another example, in some embodiments a fed batch culture procedure can be employed. In the preferred fed batch culture the mammalian host, cells and culture medium are supplied to a culturing vessel initially and additional culture nutrients are fed, continuously or in discrete increments, to the culture during culturing, with or without periodic cell and/or product harvest before termination of culture. The fed batch culture can include, for example, a semi-continuous fed batch culture, wherein

periodically whole culture (including cells and medium) is removed and replaced by fresh medium. Fed batch culture is distinguished from simple batch culture in which all components for cell culturing (including the cells and all culture nutrients) are supplied to the culturing vessel at the start of the culturing process. Fed batch culture can be further distinguished from perfusion culturing insofar as the supernate is not removed from the culturing vessel during the process (in perfusion culturing, the cells are restrained in the culture by, *e.g.*, filtration, encapsulation, anchoring to microcarriers etc. and the culture medium is continuously or intermittently introduced and removed from the culturing vessel). In some particularly preferred embodiments, the batch cultures are performed in roller bottles.

Further, the cells of the culture may be propagated according to any scheme or routine that may be suitable for the particular host cell and the particular production plan contemplated. Therefore, the present invention contemplates a single step or multiple step culture procedure. In a single step culture the host cells are inoculated into a culture environment and the processes of the instant invention are employed during a single production phase of the cell culture. Alternatively, a multi-stage culture is envisioned. In the multi-stage culture cells may be cultivated in a number of steps or phases. For instance, cells may be grown in a first step or growth phase culture wherein cells, possibly removed from storage, are inoculated into a medium suitable for promoting growth and high viability. The cells may be maintained in the growth phase for a suitable period of time by the addition of fresh medium to the host cell culture.

Fed batch or continuous cell culture conditions are devised to enhance growth of the mammalian cells in the growth phase of the cell culture. In the growth phase cells are grown under conditions and for a period of time that is maximized for growth. Culture conditions, such as temperature, pH, dissolved oxygen (dO₂) and the like, are those used with the particular host and will be apparent to the ordinarily skilled artisan. Generally, the pH is adjusted to a level between about 6.5 and 7.5 using either an acid (*e.g.*, CO₂) or a base (*e.g.*, Na₂CO₃ or NaOH). A suitable temperature range for culturing mammalian cells such as CHO cells is between about 30° to 38° C and a suitable dO₂ is between 5-90% of air saturation.

Following the polypeptide production phase, the polypeptide of interest is recovered from the culture medium using techniques which are well established in the art. The protein of interest preferably is recovered from the culture medium as a secreted

polypeptide (e.g., the secretion of the protein of interest is directed by a signal peptide sequence), although it also may be recovered from host cell lysates. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The polypeptide thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; and protein A Sepharose columns to remove contaminants such as IgG. A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification. Additionally, the protein of interest can be fused in frame to a marker sequence which allows for purification of the protein of interest. Non-limiting examples of marker sequences include a hexahistidine tag which may be supplied by a vector, preferably a pQE-9 vector, and a hemagglutinin (HA) tag. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (See e.g., Wilson *et al.*, *Cell*, 37:767 [1984]). One skilled in the art will appreciate that purification methods suitable for the polypeptide of interest may require modification to account for changes in the character of the polypeptide upon expression in recombinant cell culture.

The host cells of the present invention are also useful for expressing G-protein coupled receptors (GPCRs) and other transmembrane proteins. It is contemplated that when these proteins are expressed, they are correctly inserted into the membrane in their native conformation. Thus, GPCRs and other transmembrane proteins may be purified as part of a membrane fraction or purified from the membranes by methods known in the art.

Furthermore, the vectors of the present invention are useful for co-expressing a protein of interest for which there is no assay or for which assays are difficult. In this system, a protein of interest and a signal protein are arranged in a polycistronic sequence. Preferably, an IRES sequence separates the signal protein and protein of interest (e.g., a GPCR) and the genes encoding the signal protein and protein of interest are expressed as a single transcriptional unit. The present invention is not limited to any particular signal protein. Indeed, the use of a variety of signal proteins for which easy assays exist is contemplated. These signal proteins include, but are not limited to, green fluorescent

protein, luciferase, beta-galactosidase, and antibody heavy or light chains. It is contemplated that when the signal protein and protein of interest are co-expressed from a polycistronic sequence, the presence of the signal protein is indicative of the presence of the protein of interest. Accordingly, in some embodiments, the present invention provides methods for indirectly detecting the expression of a protein of interest comprising providing a host cell transfected with a vector encoding a polycistronic sequence, wherein the polycistronic sequence comprises a signal protein and a protein of interest operably linked by an IRES, and culturing the host cells under conditions such that the signal protein and protein of interest are produced, wherein the presence of the signal protein indicates the presence of the protein of interest.

B. Screening Compounds for Activity

The present invention contemplates the use of the high copy number cell lines for screening compounds for activity, and in particular to high throughput screening of compounds from combinatorial libraries (e.g., libraries containing greater than 10^4 compounds). The high copy number cell lines of the present invention can be used in a variety of screening methods. In some embodiments, the cells can be used in second messenger assays that monitor signal transduction following activation of cell-surface receptors. In other embodiments, the cells can be used in reporter gene assays that monitor cellular responses at the transcription/translation level. In still further embodiments, the cells can be used in cell proliferation assays to monitor the overall growth/no growth response of cells to external stimuli.

In second messenger assays, the host cells are preferably transfected as described above with vectors encoding cell surface receptors, ion channels, cytoplasmic receptors, or other proteins involved in signal transduction (e.g., G proteins, protein kinases, or protein phosphatases) (See, e.g., U.S Pat. Nos. 5,670,113; 5,807,689; 5,876,946; and 6,027,875; all of which are incorporated herein by reference). The host cells are then treated with a compound or plurality of compounds (e.g., from a combinatorial library) and assayed for the presence or absence of a response. It is contemplated that at least some of the compounds in the combinatorial library can serve as agonists, antagonists, activators, or inhibitors of the protein or proteins encoded by the vectors. It is also contemplated that at least some of the compounds in the combinatorial library can serve

as agonists, antagonists, activators, or inhibitors of protein acting upstream or downstream of the protein encoded by the vector in a signal transduction pathway.

By way of non-limiting example, it is known that agonist engaged transmembrane receptors are functionally linked to the modulation of several well characterized promoter/enhancer elements (e.g., AP1, cAMP response element (CRE), serum response element (SRE), and nuclear factor of activated T-cells (NF-AT)). Upon activation of a $G_{\alpha q}$ coupling receptor, adenylyl cyclase is stimulated, producing increased concentrations of intracellular cAMP, stimulation of protein kinase A, phosphorylation of the CRE binding protein (CREB) and induction of promoters with CRE elements. $G_{\alpha i}$ coupling receptors dampen CRE activity by inhibition of the same signal transduction components. $G_{\alpha q}$ and some $\beta\gamma$ pairs stimulate phospholipase C (PLC), and the generation of inositol triphosphate (IP3) and diacylglycerol (DAG). A transient flux in intracellular calcium promotes induction of calcineurin and NA-FT, as well as calmodulin (CaM)-dependent kinase and CREB. Increased DAG concentrations stimulate protein kinase C (PKC) and endosomal/lysosomal acidic sphingomyelinase (aSMase); while the aSMase pathway is dominant, both induce degradation of the NF κ B inhibitor I κ B as well as NF κ B activation. In an alternative pathway, a receptor such as growth factor receptor is activated and recruits Sos to the plasma membrane, resulting in the stimulation of Ras, which in turn recruits the serine/threonine kinase Raf to the plasma membrane. Once activated, Raf phosphorylates MEK kinase, which phosphorylates and activates MAPK and the transcription factor ELK. ELK drives transcription from promoters with SRE elements, leading the synthesis of the transcription factors Fos and Jun, thus forming a transcription factor complex capable of activating AP1 sites. It is contemplated that the proteins forming the described pathways, as well as other receptors, kinases, phosphatases, and nucleic binding proteins, are targets for compounds in the combinatorial library, as well as candidates for expression in the host cells of the present invention.

In some embodiments, the second messenger assays measure fluorescent signals from reporter molecules that respond to intracellular changes (e.g., Ca^{2+} concentration, membrane potential, pH, IP₃, cAMP, arachidonic acid release) due to stimulation of membrane receptors and ion channels (e.g., ligand gated ion channels; *see Denyer et al., Drug Discov. Today 3:323-32 [1998]; and Gonzales et al., Drug. Discov. Today 4:431-39 [1999]*). Examples of reporter molecules include, but are not limited to, FRET

(fluorescence resonance energy transfer) systems (e.g., Cuo-lipids and oxonols, EDAN/DABCYL), calcium sensitive indicators (e.g., Fluo-3, FURA 2, INDO 1, and FLUO3/AM, BAPTA AM), chloride-sensitive indicators (e.g., SPQ, SPA), potassium-sensitive indicators (e.g., PBFI), sodium-sensitive indicators (e.g., SBFI), and pH sensitive indicators (e.g., BCECF).

In general, the host cells are loaded with the indicator prior to exposure to the compound. Responses of the host cells to treatment with the compounds can be detected by methods known in the art, including, but not limited to, fluorescence microscopy, confocal microscopy (e.g., FCS systems), flow cytometry, microfluidic devices, FLIPR systems (See, e.g., Schroeder and Neagle, *J. Biomol. Screening* 1:75-80 [1996]), and plate-reading systems. In some preferred embodiments, the response (e.g., increase in fluorescent intensity) caused by compound of unknown activity is compared to the response generated by a known agonist and expressed as a percentage of the maximal response of the known agonist. The maximum response caused by a known agonist is defined as a 100% response. Likewise, the maximal response recorded after addition of an agonist to a sample containing a known or test antagonist is detectably lower than the 100% response.

The cells are also useful in reporter gene assays. Reporter gene assays involve the use of host cells transfected with vectors encoding a nucleic acid comprising transcriptional control elements of a target gene (*i.e.*, a gene that controls the biological expression and function of a disease target) spliced to a coding sequence for a reporter gene. Therefore, activation of the target gene results in activation of the reporter gene product. Examples of reporter genes finding use in the present invention include, but are not limited to, chloramphenicol transferase, alkaline phosphatase, firefly and bacterial luciferases, β -galactosidase, β -lactamase, and green fluorescent protein. The production of these proteins, with the exception of green fluorescent protein, is detected through the use of chemiluminescent, colorimetric, or bioluminescent products of specific substrates (e.g., X-gal and luciferin). Comparisons between compounds of known and unknown activities may be conducted as described above.

C. Comparison of Variant Protein Activity

The present invention also contemplates the use of the high copy number host cells to produce variants of proteins so that the activity of the variants can be compared. In some embodiments, the variants differ by a single nucleotide polymorphism (SNP) causing a single amino acid difference. In other embodiments, the variants contain multiple amino acid substitutions. In some embodiments, the activity of the variant proteins are assayed *in vivo* or in cell extracts. In other embodiments, the proteins are purified and assayed *in vitro*. It is also contemplated that in some embodiments the variant proteins are fused to a sequence that allows easy purification (*e.g.*, a his-tag sequence) or to a reporter gene (*e.g.*, green fluorescent protein). Activity of the proteins may be assayed by appropriate methods known in the art (*e.g.*, conversion of a substrate to a product). In some preferred embodiments, the activity of a wild-type protein is determined, and the activity of variant versions of the wild-type proteins are expressed as a percentage of the activity of the wild-type protein. Furthermore, the intracellular activity of variant proteins may be compared by constructing a plurality of host cell lines, each of which expresses a different variant of the wild-type protein. The activity of the variant proteins (*e.g.*, variants of proteins involved in signal transduction pathways) may then be compared using the reporter systems for second messenger assays described above. Therefore, in some embodiments, the direct or indirect response (*e.g.*, through downstream or upstream activation of signal transduction pathway) of variant proteins to stimulation or binding by agonists or antagonists is compared. In some preferred embodiments, the response of a wild-type protein is determined, and the responses of variant versions of the wild-type proteins are expressed as a percentage of the response of the wild-type protein.

EXPERIMENTAL

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

In the experimental disclosure which follows, the following abbreviations apply: M (molar); mM (millimolar); μ M (micromolar); nM (nanomolar); mol (moles); mmol (millimoles); μ mol (micromoles); nmol (nanomoles); gm (grams); mg (milligrams); μ g (micrograms); pg (picograms); L (liters); ml (milliliters); μ l (microliters); cm

(centimeters); mm (millimeters); μ m (micrometers); nm (nanometers); °C (degrees Centigrade); AMP (adenosine 5'-monophosphate); BSA (bovine serum albumin); cDNA (copy or complimentary DNA); CS (calf serum); DNA (deoxyribonucleic acid); ssDNA (single stranded DNA); dsDNA (double stranded DNA); dNTP (deoxyribonucleotide triphosphate); LH (luteinizing hormone); NIH (National Institutes of Health, Bethesda, MD); RNA (ribonucleic acid); PBS (phosphate buffered saline); *g* (gravity); OD (optical density); HEPES (N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]); HBS (HEPES buffered saline); PBS (phosphate buffered saline); SDS (sodium dodecylsulfate); Tris-HCl (tris[Hydroxymethyl]aminomethane-hydrochloride); Klenow (DNA polymerase I large (Klenow) fragment); rpm (revolutions per minute); EGTA (ethylene glycol-bis(β -aminoethyl ether) N, N, N', N'-tetraacetic acid); EDTA (ethylenediaminetetraacetic acid); bla (β -lactamase or ampicillin-resistance gene); ORI (plasmid origin of replication); lacI (lac repressor); X-gal (5-bromo-4-chloro-3-indolyl- β -D-galactoside); ATCC (American Type Culture Collection, Rockville, MD); GIBCO/BRL (GIBCO/BRL, Grand Island, NY); Perkin-Elmer (Perkin-Elmer, Norwalk, CT); and Sigma (Sigma Chemical Company, St. Louis, MO).

Example 1
Vector Construction

The following Example describes the construction of vectors used in the experiments below.

A. CMV MN14

The CMV MN14 vector (SEQ ID NO:4; MN14 antibody is described in U.S. Pat. No. 5,874,540, incorporated herein by reference) comprises the following elements, arranged in 5' to 3' order: CMV promoter; MN14 heavy chain signal peptide, MN14 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α -lactalbumin signal peptide; MN 14 antibody light chain; and 3' MoMuLV LTR. In addition to sequences described in SEQ ID NO: 4, the CMV MN14 vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in SEQ ID NO:7; the 5' LTR is derived from Moloney Murine Sarcoma Virus in each of the constructs described herein, but is converted to the MoMuLV 5' LTR when integrated).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of MN14 antibody is controlled by the CMV promoter. The MN14 heavy chain gene and light chain gene are attached together by an IRES sequence. The CMV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA. The mRNA expression from the LTR as well as from the CMV promoter is terminated and polyadenylated in the 3' LTR. The construct was cloned by similar methods as described in section B below.

The IRES sequence (SEQ ID NO:3) comprises a fusion of the IRES from the plasmid pLXIN (Clontech) and the bovine α -lactalbumin signal peptide. The initial ATG of the signal peptide was attached to the IRES to allow the most efficient translation initiation from the IRES. The 3' end of the signal peptide provides a multiple cloning site allowing easy attachment of any protein of interest to create a fusion protein with the signal peptide. The IRES sequence can serve as a translational enhancer as well as creating a second translation initiation site that allows two proteins to be produced from a single mRNA.

The IRES-bovine α -lactalbumin signal peptide was constructed as follows. The portion of the plasmid pLXIN (Clontech, Palo Alto, CA) containing the ECMV IRES was PCR amplified using the following primers.

Primer 1 (SEQ ID NO: 35):

5' GATCCACTAGTAACGGCCGCCAGAATT CGC 3'

Primer 2 (SEQ ID NO: 36):

5' CAGAGAGACAAAGGAGGCCATTATCATCGTGTTCAAAG 3'

Primer 2 attaches a tail corresponding to the start of the bovine α -lactalbumin signal peptide coding region to the IRES sequence. In addition, the second triplet codon of the α -lactalbumin signal peptide was mutated from ATG to GCC to allow efficient translation from the IRES sequence. This mutation results in a methionine to alanine change in the protein sequence. This mutation was performed because the IRES prefers an alanine as the second amino acid in the protein chain. The resulting IRES PCR

product contains an EcoRI site on the 5' end of the fragment (just downstream of Primer 1 above).

Next, the α -lactalbumin signal peptide containing sequence was PCR amplified from the α -LA Signal Peptide vector construct using the following primers.

Primer 3 (SEQ ID NO: 14):

5' CTTTGAAAAACACGATGATAATATGGCCTCCTTGTCTCTCTG 3'

Primer 4 (SEQ ID NO: 15):

5' TTCGCGAGCTCGAGATCTAGATATCCCATG 3'

Primer 3 attaches a tail corresponding to the 3' end of the IRES sequence to the α -lactalbumin signal peptide coding region. As stated above, the second triplet codon of the bovine α -lactalbumin signal peptide was mutated to allow efficient translation from the IRES sequence. The resulting signal peptide PCR fragment contains NaeI, NcoI, EcoRV, XbaI, BglII and XhoI sites on the 3' end.

After the IRES and signal peptide were amplified individually using the primers shown above, the two reaction products were mixed and PCR was performed using primer 1 and primer 4. The resultant product of this reaction is a spliced fragment that contains the IRES attached to the full length α -lactalbumin signal peptide. The ATG encoding the start of the signal peptide is placed at the same location as the ATG encoding the start of the neomycin phosphotransferase gene found in the vector pLXIN. The fragment also contains the EcoRI site on the 5' end and NaeI, NcoI, EcoRV, XbaI, BglII and XhoI sites on the 3' end.

The spliced IRES/ α -lactalbumin signal peptide PCR fragment was digested with EcoRI and XhoI. The α -LA Signal Peptide vector construct was also digested with EcoRI and XhoI. These two fragments were ligated together to give the pIRES construct.

The IRES/ α -lactalbumin signal peptide portion of the pIRES vector was sequenced and found to contain mutations in the 5' end of the IRES. These mutations occur in a long stretch of C's and were found in all clones that were isolated.

To repair this problem, pLXIN DNA was digested with EcoRI and BsmFI. The 500bp band corresponding to a portion of the IRES sequence was isolated. The mutated

IRES/α-lactalbumin signal peptide construct was also digested with EcoRI and BsmFI and the mutated IRES fragment was removed. The IRES fragment from pLXIN was then substituted for the IRES fragment of the mutated IRES/α-lactalbumin signal peptide construct. The IRES/α-LA signal peptide portion of resulting plasmid was then verified by DNA sequencing.

The resulting construct was found to have a number of sequence differences when compared to the expected pLXIN sequence obtained from Clontech. We also sequenced the IRES portion of pLXIN purchased from Clontech to verify its sequence. The differences from the expected sequence also appear to be present in the pLXIN plasmid that we obtained from Clontech. Four sequence differences were identified:

bp 347 T - was G in pLXIN sequence

bp 786-788 ACG - was GC in LXIN sequence.

B. CMV LL2

The CMV LL2 (SEQ ID NO:5; LL2 antibody is described in U.S. Pat. No. 6,187,287, incorporated herein by reference) construct comprises the following elements, arranged in 5' to 3' order: 5' CMV promoter (Clontech), LL2 heavy chain signal peptide, LL2 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α-LA signal peptide; LL2 antibody light chain; and 3' MoMuLV LTR. In addition to sequences described in SEQ ID NO:5, the CMV LL2 vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in SEQ ID NO:7).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of LL2 antibody is controlled by the CMV promoter (Clontech). The LL2 heavy chain gene and light chain gene are attached together by an IRES sequence. The CMV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA. The mRNA expression from the LTR as well as from the CMV promoter is terminated and polyadenylated in the 3' LTR.

The IRES sequence (SEQ ID NO:3) comprises a fusion of the IRES from the plasmid pLXIN (Clontech) and the bovine alpha-lactalbumin signal peptide. The initial

ATG of the signal peptide was attached to the IRES to allow the most efficient translation initiation from the IRES. The 3' end of the signal peptide provides a multiple cloning site allowing easy attachment of any protein of interest to create a fusion protein with the signal peptide. The IRES sequence can serve as a translational enhancer as well as creating a second translation initiation site that allows two proteins to be produced from a single mRNA.

The LL2 light chain gene was attached to the IRES α -lactalbumin signal peptide as follows. The LL2 light chain was PCR amplified from the vector pCRL2 using the following primers.

Primer 1 (SEQ ID NO: 16):

5' CTACAGGTGTCCACGTCGACATCCAGCTGACCCAG 3'

Primer 2 (SEQ ID NO: 17):

5' CTGCAGAATAGATCTCTAACACTCTCCCCCTGTTG 3'

These primers add a HincII site right at the start of the coding region for mature LL2 light chain. Digestion of the PCR product with HincII gives a blunt end fragment starting with the initial GAC encoding mature LL2 on the 5' end. Primer 2 adds a BglII site to the 3' end of the gene right after the stop codon. The resulting PCR product was digested with HincII and BglII and cloned directly into the IRES-Signal Peptide plasmid that was digested with NaeI and BglII.

The Kozak sequence of the LL2 heavy chain gene was then modified. The vector pCRMN14HC was digested with XhoI and AvrII to remove about a 400 bp fragment. PCR was then used to amplify the same portion of the LL2 heavy chain construct that was removed by the XhoI-AvrII digestion. This amplification also mutated the 5' end of the gene to add a better Kozak sequence to the clone. The Kozak sequence was modified to resemble the typical IgG Kozak sequence. The PCR primers are shown below.

Primer 1 (SEQ ID NO: 18):

5'CAGTGTGATCTCGAGAATT CAGGACCTACCATGGATGGAGCTGTATCAT 3'

Primer 2 (SEQ ID NO: 19):

5'AGGCTGTATTGGTGGATTCGTCT 3'

The PCR product was digested with XhoI and AvrII and inserted back into the previously digested plasmid backbone.

The "good" Kozak sequence was then added to the light chain gene. The "good" Kozak LL2 heavy chain gene construct was digested with EcoRI and the heavy chain gene containing fragment was isolated. The IRES α -Lactalbumin Signal Peptide LL2 light chain gene construct was also digested with EcoRI. The heavy chain gene was then cloned into the EcoRI site of IRES light chain construct. This resulted in the heavy chain gene being placed at the 5' end of the IRES sequence.

Next, a multiple cloning site was added into the LNCX retroviral backbone plasmid. The LNCX plasmid was digested with HindIII and ClaI. Two oligonucleotide primers were produced and annealed together to create an double stranded DNA multiple cloning site. The following primers were annealed together.

Primer 1 (SEQ ID NO: 20):

5'AGCTTCTCGAGTTAACAGATCTAGGCCTCCTAGGTCGACAT 3'

Primer 2 (SEQ ID NO: 21): 5'

CGATGTCGACCTAGGAGGCCTAGATCTGTTAACTCGAGA 3'

After annealing, the multiple cloning site was ligated into LNCX to create LNC-MCS.

Next, the double chain gene fragment was ligated into the retroviral backbone gene construct. The double chain gene construct created above was digested with Sall and BglII and the double chain containing fragment was isolated. The retroviral expression plasmid LNC-MCS was digested with XhoI and BglII. The double chain fragment was then cloned into the LNC-MCS retroviral expression backbone.

Next, an RNA splicing problem in the construct was corrected. The construct was digested with NsiI. The resulting fragment was then partially digested with EcoRI. The fragments resulting from the partial digest that were approximately 9300 base pairs in size were gel purified. A linker was created to mutate the splice donor site at the 3' end of the LL2 heavy chain gene. The linker was again created by annealing two

oligonucleotide primers together to form the double stranded DNA linker. The two primers used to create the linker are shown below.

Primer 1 (SEQ ID NO: 22):

5'CGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGA
AATGAAAGCCG 3'

Primer 2 (SEQ ID NO: 23):

5'AATTCGGCTTCATTCCCGGGAGACAGGGAGAGGCTCTCTCGCTGTAGTGG
TTGTGCAGAGCCTCGTGCA 3'

After annealing the linker was substituted for the original NsiI/EcoRI fragment that was removed during the partial digestion.

C. MMTV MN14

The MMTV MN14 (SEQ ID NO:6) construct comprises the following elements, arranged in 5' to 3' order: 5' MMTV promoter; double mutated PPE sequence; MN 14 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α LA signal peptide MN 14 antibody light chain; WPRE sequence; and 3' MoMuLV LTR. In addition to the sequences described in SEQ ID NO:6, the MMTV MN14 vector further comprises a MoMuLV LTR, MoMuLV extended viral packaging signal; neomycin phosphotransferase gene located 5' of the MMTV promoter (these additional elements are provided in SEQ ID NO: 7).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of MN14 antibody is controlled by the MMTV promoter (Pharmacia). The MN14 heavy chain gene and light chain gene are attached together by an IRES/ bovine α -LA signal peptide sequence (SEQ ID NO: 3). The MMTV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES/bovine α -LA signal peptide sequence. Ribosomes attach to the mRNA at the CAP site and at the IRES/ bovine α -LA signal peptide sequence. This allows both heavy and light chain protein to be produced from a single mRNA. In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of

the mRNA. The PPE sequence is contained between the RNA CAP site and the start of the MN14 protein coding region, the WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the MMTV promoter is terminated and poly-adenylated in the 3' LTR.

ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence is placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE is isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold.

D. α -LA MN14

The α -LA MN14 (SEQ ID NO:7) construct comprises the following elements, arranged in 5' to 3' order: 5' MoMuLV LTR, MoMuLV extended viral packaging signal, neomycin phosphotransferase gene, bovine/human alpha-lactalbumin hybrid promoter, double mutated PPE element, MN14 heavy chain signal peptide, MN14 antibody heavy chain, IRES from encephalomyocarditis virus/bovine α LA signal peptide, MN14 antibody light chain, WPRE sequence; and 3' MoMuLV LTR.

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of MN14 antibody is controlled by the hybrid α -LA promoter (SEQ ID NO:1). The MN14 heavy chain gene and light chain gene are attached together by an IRES sequence/ bovine α -LA signal peptide (SEQ ID NO:3). The α -LA promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA.

In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation

initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence is placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human alpha-lactalbumin hybrid promoter is terminated and poly adenylated in the 3' LTR.

The bovine/human alpha-lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter /enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point (tsp) to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine.

For construction of the bovine/human α -lactalbumin promoter, human genomic DNA was isolated and purified. A portion of the human α -lactalbumin promoter was PCR amplified using the following two primers:

Primer 1 (SEQ ID NO: 24):

5'AAAGCATATGTTCTGGGCCTTGTACATGGCTGGATTGGTT 3'

Primer 2 (SEQ ID NO: 25):

5'TGAATTCGGCGCCCAAGAACCTGAAATGGAAGCATCACTCA
GTTTCATATAT 3'

This two primers created a NdeI site on the 5' end of the PCR fragment and a EcoRI site on the 3' end of the PCR fragment.

The human PCR fragment created using the above primers was double digested with the restriction enzymes NdeI and EcoRI. The plasmid pKBaP-1 was also double digested with NdeI and EcoRI. The plasmid pKBaP-1 contains the bovine α -lactalbumin 5' flanking region attached to a multiple cloning site. This plasmid allows attachment of

various genes to the bovine α -lactalbumin promoter.

Subsequently, the human fragment was ligated/substituted for the bovine fragment of the promoter that was removed from the pKBaP-1 plasmid during the double digestion. The resulting plasmid was confirmed by DNA sequencing to be a hybrid of the Bovine and Human α -lactalbumin promoter/regulatory regions.

Attachment of the MN14 light chain gene to the IRES α -lactalbumin signal peptide was accomplished as follows. The MN14 light chain was PCR amplified from the vector pCRMN14LC using the following primers.

Primer 1 (SEQ ID NO: 26): 5' CTACAGGTGTCCACGTCGACATCCAGCTGACCCAG 3'

Primer 2 (SEQ ID NO: 27): 5' CTGCAGAATAGATCTCTAACACTCTCCCTGTTG 3'

These primers add a HincII site right at the start of the coding region for mature MN14 light chain. Digestion of the PCR product with HincII gives a blunt end fragment starting with the initial GAC encoding mature MN14 on the 5' end. Primer 2 adds a BgIII site to the 3' end of the gene right after the stop codon. The resulting PCR product was digested with HincII and BgIII and cloned directly into the IRES-Signal Peptide plasmid that was digested with NaeI and BglII.

Next, the vector pCRMN14HC was digested with XhoI and NruI to remove about a 500 bp fragment. PCR was then used to amplify the same portion of the MN14 heavy chain construct that was removed by the XhoI-NruI digestion. This amplification also mutated the 5' end of the gene to add a better Kozak sequence to the clone. The Kozak sequence was modified to resemble the typical IgG Kozak sequence. The PCR primers are shown below.

Primer 1 (SEQ ID NO: 28):

5'CAGTGTGATCTCGAGAATTCAAGGACCTCACCATGGGATGGAGCTGTATCAT 3'

Primer 2 (SEQ ID NO: 29):

5'GTGTCTTCGGGTCTCAGGCTGT 3'

The PCR product was digested with XhoI and NruI and inserted back into the previously digested plasmid backbone.

Next, the "good" Kozak MN14 heavy chain gene construct was digested with EcoRI and the heavy chain gene containing fragment was isolated. The IRES α -Lactalbumin Signal Peptide MN14 light chain gene construct was also digested with EcoRI. The heavy chain gene was then cloned into the EcoRI site of IRES light chain construct. This resulted in the heavy chain gene being placed at the 5' end of the IRES sequence.

A multiple cloning site was then added to the LNCX retroviral backbone plasmid. The LNCX plasmid was digested with HindIII and ClaI. Two oligonucleotide primers were produced and annealed together to create an double stranded DNA multiple cloning site. The following primers were annealed together.

Primer 1 (SEQ ID NO: 30):

5' AGCTTCTCGAGTTAACAGATCTAGGCCTCCTAGGTGACAT 3'

Primer 2 (SEQ ID NO: 31):

5' CGATGTCGACCTAGGAGGCCTAGATCTGTTAACTCGAGA 3'

After annealing the multiple cloning site was ligated into LNCX to create LNC-MCS.

The double chain gene fragment was then inserted into a retroviral backbone gene construct. The double chain gene construct created in step 3 was digested with SalI and BglII and the double chain containing fragment was isolated. The retroviral expression plasmid LNC-MCS was digested with XhoI and BglII. The double chain fragment was then cloned into the LNC-MCS retroviral expression backbone.

Next, a RNA splicing problem in the construct was repaired. The construct was digested with NsiI. The resulting fragment was then partially digested with EcoRI. The fragments resulting from the partial digest that were approximately 9300 base pairs in size, were gel purified. A linker was created to mutate the splice donor site at the 3' end of the MN14 heavy chain gene. The linker was again created by annealing two oligonucleotide primers together to form the double stranded DNA linker. The two primers used to create the linker are shown below.

Primer 1 (SEQ ID NO: 32):

5'CGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGCTCCGGGA
AATGAAAGCCG 3'

Primer 2 (SEQ ID NO: 33):

5'AATTCCGGCTTCTGATTTCCCGGGAGACAGGGAGAGGCTTCTGCGTGTAGTGG
TTGTGCAGAGCCTCGTGCA 3'

After annealing the linker was substituted for the original NsiI/EcoRI fragment that was removed during the partial digestion.

Next, the mutated double chain fragment was inserted into the α -Lactalbumin expression retroviral backbone LN α -LA-Mertz-MCS. The gene construct produced above was digested with BamHI and BglII and the mutated double chain gene containing fragment was isolated. The LN α -LA-Mertz-MCS retroviral backbone plasmid was digested with BglII. The BamHI/BglII fragment was then inserted into the retroviral backbone plasmid.

A WPRE element was then inserted into the gene construct. The plasmid BluescriptII SK+ WPRE-B11 was digested with BamHI and HincII to remove the WPRE element and the element was isolated. The vector created above was digested with BglII and HpaI. The WPRE fragment was ligated into the BglII and HpaI sites to create the final gene construct.

E. α -LA Bot

The α -LA Bot (SEQ ID NO:8, botulinum toxin antibody) construct comprises the following elements, arranged in 5' to 3' order: bovine/human alpha-lactalbumin hybrid promoter, mutated PPE element, cc49 signal peptide, botulinum toxin antibody light chain, IRES from encephalomyocarditis virus/ bovine α -LA signal peptide, botulinum toxin antibody heavy chain, WPRE sequence, and 3' MoMuLV LTR. In addition, the α -LA botulinum toxin antibody vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in SEQ ID NO: 7).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of botulinum toxin antibody is controlled by

the hybrid a-LA promoter. The botulinum toxin antibody light chain gene and heavy chain gene are attached together by an IRES/ bovine α -LA signal peptide sequence. The bovine/human alpha-lactalbumin hybrid promoter drives production of a mRNA containing the light chain gene and the heavy chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both light and heavy chain protein to be produced from a single mRNA.

In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence was placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human alpha-lactalbumin hybrid promoter is terminated and poly adenylated in the 3' LTR.

The bovine/human α -lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter/enhancer element derived from human and bovine α -lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human.

F. LSRNL

The LSRNL (SEQ ID NO:9) construct comprises the following elements, arranged in 5' to 3' order: 5' MoMuLV LTR, MoMuLV viral packaging signal; hepatitis B surface antigen; RSV promoter; neomycin phosphotransferase gene; and 3' MoMuLV LTR.

This construct uses the 5' MoMuLV LTR to control production of the Hepatitis B surface antigen gene. The expression of the neomycin phosphotransferase gene is controlled by the RSV promoter. The mRNA expression from the LTR as well as from the RSV promoter is terminated and poly adenylated in the 3' LTR.

G. α -LA cc49IL2

The α -LA cc49IL2 (SEQ ID NO:10; the cc49 antibody is described in U.S. Pat. Nos. 5,512,443; 5,993,813; and 5,892,019; each of which is herein incorporated by reference) construct comprises the following elements, arranged in 5' to 3' order: 5' bovine/human α -lactalbumin hybrid promoter; cc49-IL2 coding region; and 3' MoMuLV LTR. This gene construct expresses a fusion protein of the single chain antibody cc49 attached to Interleukin-2. Expression of the fusion protein is controlled by the bovine/human α -lactalbumin hybrid promoter.

The bovine/human α -lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter/enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human. The 3' viral LTR provide the poly-adenylation sequence for the mRNA.

H. α -LA YP

The α -LA YP (SEQ ID NO: 11) construct comprises the following elements, arranged in 5' to 3' order: 5' bovine/human alpha-lactalbumin hybrid promoter; double mutated PPE sequence; bovine α LA signal peptide; *Yersinia pestis* antibody heavy chain

Fab coding region; EMCV IRES/ bovine α -LA signal peptide; *Yersenia pestis* antibody light chain Fab coding region; WPRE sequence; 3' MoMuLV LTR.

This gene construct will cause the expression of *Yersenia pestis* mouse Fab antibody. The expression of the gene construct is controlled by the bovine/human α -lactalbumin hybrid promoter. The PPE sequence and the WPRE sequence aid in moving the mRNA from the nucleus to the cytoplasm. The IRES sequence allows both the heavy and the light chain genes to be translated from the same mRNA. The 3' viral LTR provides the poly-adenylation sequence for the mRNA.

In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated (bases 4, 112, 131, and 238 of SEQ ID NO: 2 were changed from a G to a T) to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence was placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human α -lactalbumin hybrid promoter is terminated and polyadenylated in the 3' LTR.

The bovine/human alpha-lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter /enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human.

Example 2

Generation of Cell Lines Stably Expressing the MoMLV gag and pol Proteins

Examples 2-5 describe the production of pseudotyped retroviral vectors. These methods are generally applicable to the production of the vectors described above. The expression of the fusogenic VSV G protein on the surface of cells results in syncytium formation and cell death. Therefore, in order to produce retroviral particles containing the VSV G protein as the membrane-associated protein a two-step approach was taken. First, stable cell lines expressing the gag and pol proteins from MoMLV at high levels were generated (e.g., 293GP^{SD} cells). The stable cell line which expresses the gag and pol proteins produces noninfectious viral particles lacking a membrane-associated protein (e.g., an envelope protein). The stable cell line was then co-transfected, using the calcium phosphate precipitation, with VSV-G and gene of interest plasmid DNAs. The pseudotyped vector generated was used to infect 293GP^{SD} cells to produce stably transformed cell lines. Stable cell lines can be transiently transfected with a plasmid capable of directing the high level expression of the VSV G protein (see below). The transiently transfected cells produce VSV G-pseudotyped retroviral vectors which can be collected from the cells over a period of 3 to 4 days before the producing cells die as a result of syncytium formation.

The first step in the production of VSV G-pseudotyped retroviral vectors, the generation of stable cell lines expressing the MoMLV *gag* and *pol* proteins is described below. The human adenovirus Ad-5-transformed embryonal kidney cell line 293 (ATCC CRL 1573) was cotransfected with the pCMVgag-pol and the gene encoding for phleomycin. pCMV gag-pol contains the MoMLV *gag* and *pol* genes under the control of the CMV promoter (pCMV gag-pol is available from the ATCC).

The plasmid DNA was introduced into the 293 cells using calcium phosphate co-precipitation (Graham and Van der Eb, Virol. 52:456 [1973]). Approximately 5×10^5 293 cells were plated into a 100 mm tissue culture plate the day before the DNA co-precipitate was added. Stable transformants were selected by growth in DMEM-high glucose medium containing 10% FCS and 10 μ g/ml phleomycin (selective medium). Colonies which grew in the selective medium were screened for extracellular reverse transcriptase activity (Goff *et al.*, J. Virol. 38:239 [1981]) and intracellular p30gag expression. The presence of p30gag expression was determined by Western blotting

using a goat-anti p30 antibody (NCI antiserum 77S000087). A clone which exhibited stable expression of the retroviral genes was selected. This clone was named 293GP^{SD} (293 gag-pol-San Diego). The 293GP^{SD} cell line, a derivative of the human Ad-5-transformed embryonal kidney cell line 293, was grown in DMEM-high glucose medium containing 10% FCS.

Example 3

Preparation of Pseudotyped Retroviral Vectors Bearing the G Glycoprotein of VSV

In order to produce VSV G protein pseudotyped retrovirus the following steps were taken. The 293GP^{SD} cell line was co-transfected with VSV-G plasmid and DNA plasmid of interest. This co-transfection generates the infectious particles used to infect 293GP^{SD} cells to generate the packaging cell lines. This Example describes the production of pseudotyped LNBOTDC virus. This general method may be used to produce any of the vectors described in Example 1.

a) Cell Lines and Plasmids

The packaging cell line, 293GP^{SD} was grown in alpha-MEM-high glucose medium containing 10% FCS. The titer of the pseudo-typed virus may be determined using either 208F cells (Quade, Virol. 98:461 [1979]) or NIH/3T3 cells (ATCC CRL 1658); 208F and NIH/3T3 cells are grown in DMEM-high glucose medium containing 10% CS.

The plasmid LNBOTDC contains the gene encoding BOTD under the transcriptional control of cytomegalovirus intermediate-early promoter followed by the gene encoding neomycin phosphotransferase (Neo) under the transcriptional control of the LTR promoter. The plasmid pHCMV-G contains the VSV G gene under the transcriptional control of the human cytomegalovirus intermediate-early promoter (Yee *et al.*, Meth. Cell Biol. 43:99 [1994]).

b) Production of stable packaging cell lines, pseudotyped vector and
Titering of Pseudotyped LNBOTDC Vector

LNBOTDC DNA (SEQ ID NO: 13) was co-transfected with pHCMV-G DNA into the packaging line 293GP^{SD} to produce LNBOTDC virus. The resulting LNBOTDC virus was then used to infect 293GP^{SD} cells to transform the cells. The procedure for producing pseudotyped LNBOTDC virus was carried out as described (Yee *et al.*, *Meth. Cell Biol.* 43:99 [1994].

This is a retroviral gene construct that upon creation of infectious replication defective retroviral vector will cause the insertion of the sequence described above into the cells of interest. Upon insertion the CMV regulatory sequences control the expression of the botulinum toxin antibody heavy and light chain genes. The IRES sequence allows both the heavy and the light chain genes to be translated from the same mRNA. The 3' viral LTR provides the poly-adenylation sequence for the mRNA.

Both heavy and light chain protein for botulinum toxin antibody are produced from this signal mRNA. The two proteins associated to form active botulinum toxin antibody. The heavy and light chain proteins also appear to be formed in an equal molar ratio to each other.

Briefly, on day 1, approximately 5×10^4 293GP^{SD} cells were placed in a 75 cm² tissue culture flask. On the following day (day 2), the 293GP^{SD} cells were transfected with 25 µg of pLNBOTDC plasmid DNA and 25 µg of VSV-G plasmid DNA using the standard calcium phosphate co-precipitation procedure (Graham and Van der Eb, *Virol.* 52:456 [1973]). A range of 10 to 40 µg of plasmid DNA may be used. Because 293GP^{SD} cells may take more than 24 hours to attach firmly to tissue culture plates, the 293GP^{SD} cells may be placed in 75 cm² flasks 48 hours prior to transfection. The transfected 293GP^{SD} cells provide pseudotyped LNBOTDC virus.

On day 3, approximately 1×10^5 293GP^{SD} cells were placed in a 75 cm² tissue culture flask 24 hours prior to the harvest of the pseudotyped virus from the transfected 293GP^{SD} cells. On day 4, culture medium was harvested from the transfected 293GP^{SD} cells 48 hours after the application of the pLNBOTDC and VSV-G DNA. The culture medium was filtered through a 0.45 µm filter and polybrene was added to a final concentration of 8 µg/ml. The culture medium containing LNBOTDC virus was used to infect the 293GP^{SD} cells as follows. The culture medium was removed from the 293GP^{SD} cells and was replaced with the LNBOTDC virus containing culture medium.

Polybrene was added to the medium following addition to cells. The virus containing medium was allowed to remain on the 293GP^{SD} cells for 24 hours. Following the 16 hour infection period (on day 5), the medium was removed from the 293GP^{SD} cells and was replaced with fresh medium containing 400 µg/ml G418 (GIBCO/BRL). The medium was changed approximately every 3 days until G418-resistant colonies appeared approximately two weeks later.

The G418-resistant 293 colonies were plated as single cells in 96 wells. Sixty to one hundred G418-resistant colonies were screened for the expression of the BOTDC antibody in order to identify high producing clones. The top 10 clones in 96-well plates were transferred 6-well plates and allowed to grow to confluence.

The top 10 clones were then expanded to screen for high titer production. Based on protein expression and titer production, 5 clonal cell lines were selected. One line was designated the master cell bank and the other 4 as backup cell lines. Pseudotyped vector was generated as follows. Approximately 1×10^6 293GP^{SD}/LNBOTDC cells were placed into a 75cm² tissue culture flask. Twenty-four hours later, the cells were transfected with 25 µg of pHCMV-G plasmid DNA using calcium phosphate co-precipitation. Six to eight hours after the calcium-DNA precipitate was applied to the cells, the DNA solution was replaced with fresh culture medium (lacking G418). Longer transfection times (overnight) were found to result in the detachment of the majority of the 293GP^{SD}/LNBOTDC cells from the plate and are therefore avoided. The transfected 293GP^{SD}/LNBOTDC cells produce pseudotyped LNBOTDC virus.

The pseudotyped LNBOTDC virus generated from the transfected 293GP^{SD}/LNBOTDC cells can be collected at least once a day between 24 and 96 hr after transfection. The highest virus titer was generated approximately 48 to 72 hr after initial pHCMV-G transfection. While syncytium formation became visible about 48 hr after transfection in the majority of the transfected cells, the cells continued to generate pseudotyped virus for at least an additional 48 hr as long as the cells remained attached to the tissue culture plate. The collected culture medium containing the VSV G-pseudotyped LNBOTDC virus was pooled, filtered through a 0.45 µm filter and stored at -80°C or concentrated immediately and then stored at -80°C.

The titer of the VSV G-pseudotyped LNBOTDC virus was then determined as follows. Approximately 5×10^4 rat 208F fibroblasts cells were plated into 6 well plates. Twenty-four hours after plating, the cells were infected with serial dilutions of the

LNBOTDC virus-containing culture medium in the presence of 8 μ g/ml polybrene. Twenty four hours after infection with virus, the medium was replaced with fresh medium containing 400 μ g/ml G418 and selection was continued for 14 days until G418-resistant colonies became visible. Viral titers were typically about 0.5 to 5.0 \times 10⁶ colony forming units (cfu)/ml. The titer of the virus stock could be concentrated to a titer of greater than 10⁹ cfu/ml as described below.

Example 4

Concentration of Pseudotyped Retroviral Vectors

The VSV G-pseudotyped LNBOTDC viruses were concentrated to a high titer by one cycle of ultracentrifugation. However, two cycles can be performed for further concentration. The frozen culture medium collected as described in Example 2 which contained pseudotyped LNBOTDC virus was thawed in a 37°C water bath and was then transferred to Oakridge centrifuge tubes (50 ml Oakridge tubes with sealing caps, Nalge Nunc International) previously sterilized by autoclaving. The virus was sedimented in a JA20 rotor (Beckman) at 48,000 x g (20,000 rpm) at 4°C for 120 min. The culture medium was then removed from the tubes in a biosafety hood and the media remaining in the tubes was aspirated to remove the supernatant. The virus pellet was resuspended to 0.5 to 1% of the original volume of culture medium DMEM. The resuspended virus pellet was incubated overnight at 4°C without swirling. The virus pellet could be dispersed with gentle pipetting after the overnight incubation without significant loss of infectious virus. The titer of the virus stock was routinely increased 100- to 300-fold after one round of ultracentrifugation. The efficiency of recovery of infectious virus varied between 30 and 100%.

The virus stock was then subjected to low speed centrifugation in a microfuge for 5 min at 4°C to remove any visible cell debris or aggregated virions that were not resuspended under the above conditions. It was noted that if the virus stock is not to be used for injection into oocytes or embryos, this centrifugation step may be omitted.

The virus stock can be subjected to another round of ultracentrifugation to further concentrate the virus stock. The resuspended virus from the first round of centrifugation is pooled and pelleted by a second round of ultracentrifugation which is performed as described above. Viral titers are increased approximately 2000-fold after the second

round of ultracentrifugation (titers of the pseudotyped LNBOTDC virus are typically greater than or equal to 1×10^9 cfu/ml after the second round of ultracentrifugation).

The titers of the pre- and post-centrifugation fluids were determined by infection of 208F cells (NIH 3T3 or bovine mammary epithelial cells can also be employed) followed by selection of G418-resistant colonies as described above in Example 2.

Example 5

Preparation of Pseudotyped Retrovirus For Infection of Host Cells

The concentrated pseudotyped retroviruses were resuspended in 0.1X HBS (2.5 mM HEPES, pH 7.12, 14 mM NaCl, 75 μ M Na₂HPO₄·H₂O) and 18 μ l aliquots were placed in 0.5 ml vials (Eppendorf) and stored at -80°C until used. The titer of the concentrated vector was determined by diluting 1 μ l of the concentrated virus 10⁻⁷- or 10⁻⁸-fold with 0.1X HBS. The diluted virus solution was then used to infect 208F and bovine mammary epithelial cells and viral titers were determined as described in Example 2.

Example 6

Expression of MN14 by Host Cells

This Example describes the production of antibody MN14 from cells transfected with a high number of integrating vectors. Pseudotyped vector were made from the packaging cell lines for the following vectors: CMV MN14, α -LA MN14, and MMTV MN14. Rat fibroblasts (208F cells), MDBK cells (bovine kidney cells), and bovine mammary epithelial cells were transfected at a multiplicity of infection of 1000. One thousand cells were plated in a T25 flask and 10⁶ colony forming units (CFU's) of vector in 3 ml media was incubated with the cells. The duration of the infection was 24 hr, followed by a media change. Following transfection, the cells were allowed to grow and become confluent.

The cell lines were grown to confluence in T25 flasks and 5ml of media was changed daily. The media was assayed daily for the presence of MN14. All of the MN14 produced is active (an ELISA to detect human IgG gave the exact same values as the CEA binding ELISA) and Western blotting has shown that the heavy and light chains

are produced at a ratio that appears to be a 1:1 ratio. In addition, a non-denaturing Western blot indicated that what appeared to be 100% of the antibody complexes were correctly formed (See Figure 1: Lane 1, 85 ng control Mn14; Lane 2, bovine mammary cell line, α -LA promoter; Lane 3, bovine mammary cell line, CMV promoter; Lane 4, bovine kidney cell line, α -LA promoter; Lane 5, bovine kidney cell line, CMV promoter; Lane 6, 208 cell line, α -LA promoter; Lane 7, 208 cell line, CMV promoter)).

Figure 2 is a graph showing the production of MN14 over time for four cell lines. The Y axis shows MN14 production in ng/ml of media. The X-axis shows the day of media collection for the experiment. Four sets of data are shown on the graph. The comparisons are between the CMV and α -LA promoter and between the 208 cells and the bovine mammary cells. The bovine mammary cell line exhibited the highest expression, followed by the 208F cells and MDBK cells. With respect to the constructs, the CMV driven construct demonstrated the highest level of expression, followed by the α -LA driven gene construct and the MMTV construct. At 2 weeks, the level of daily production of the CMV construct was 4.5 μ g/ml of media (22.5 mg/day in a T25 flask). The level of expression subsequently increased slowly to 40 μ g/day as the cells became very densely confluent over the subsequent week. 2.7 L of media from an α -lac-MN14 packaging cell line was processed by affinity chromatography to produce a purified stock of MN14.

Figure 3 is a western blot of a 15% SDS-PAGE gel run under denaturing conditions in order to separate the heavy and light chains of the MN14 antibody. Lane 1 shows MN14 from bovine mammary cell line, hybrid α -LA promoter; lane 2 shows MN14 from bovine mammary cell line, CMV promoter; lane 3 shows MN14 from bovine kidney cell line, hybrid α -LA promoter; lane 4 shows MN14 from bovine kidney cell line, CMV promoter; lane 5 shows MN14 from rat fibroblast cell line, hybrid α -LA promoter; lane 6 shows MN14 from rat fibroblast, CMV promoter. In agreement with Figure 1 above, the results show that the heavy and light chains are produced in a ratio of approximately 1:1.

Example 7**Quantitation of Protein Produced Per Cell**

This Example describes the quantitation of the amount of protein produced per cell in cell cultures produced according to the invention. Various cells (208F cells, MDBK cells, and bovine mammary cells) were plated in 25 cm² culture dishes at 1000 cells/dish. Three different vectors were used to infect the three cells types (CMV-MN14, MMTV-MN14, and α -LA-MN14) at an MOI of 1000 (titers: 2.8×10^6 , 4.9×10^6 , and 4.3×10^6 , respectively). Media was collected approximately every 24 hours from all cells. Following one month of media collection, the 208F and MDBK cells were discarded due to poor health and low MN14 expression. The cells were passaged to T25 flasks and collection of media from the bovine mammary cells was continued for approximately 2 months with continued expression of MN14. After two months in T25 flasks, the cells with CMV promoters were producing 22.5 pg/cell/day and the cells with α -LA promoters were producing 2.5 pg MN14/cell/day.

After 2 months in T25 flasks, roller bottles (850 cm²) were seeded to scale-up production and to determine if MN14 expression was stable following multiple passages. Two roller bottles were seeded with bovine mammary cells expressing MN14 from a CMV promoter and two roller bottles were seeded with bovine mammary cells expressing MN14 from the α -LA promoter. The cultures reached confluence after approximately two weeks and continue to express MN14. Roller bottle expression is shown in Table 1 below.

Table 1
Production of MN14 in Roller Bottles

Cell Line	Promoter	MN14 Production/ Week (µg/ml)	MN14 Production/ Week - Total (µg/ml)
Bovine mammary	CMV	2.6	1 - 520
Bovine mammary	CMV	10.6	2 - 2120
Bovine mammary	CMV	8.7	3 - 1740
Bovine mammary	CMV	7.8	4 - 1560
Bovine mammary	α -LA	0.272	1 - 54.4
Bovine mammary	α -LA	2.8	2 - 560
Bovine mammary	α -LA	2.2	3 - 440
Bovine mammary	α -LA	2.3	4 - 460

Example 8

Transfection at Varied Multiplicities of Infection

This Example describes the effect of transfection at varied multiplicities of infection on protein expression. 208F rat fibroblast and bovine mammary epithelial cells (BMEC) were plated in a 25 cm² plates at varied cell numbers/25 cm². Cells were infected with either the CMV MN14 vector or the α LA MN14 vector at a MOI of 1,10, 1000, and 10,000 by keeping the number of CFUs kept constant and varying the number of cells infected.

Following infection, medium was changed daily and collected approximately every 24 hours from all cells for approximately 2 months. The results of both of the vectors in bovine mammary epithelial cells are shown in Table 2 below. Cells without data indicate cultures that became infected prior to the completion of the experiment. The "# cells" column represents the number of cells at the conclusion of the experiment. The results indicate that a higher MOI results in increased MN14 production, both in terms of the amount of protein produced per day, and the total accumulation.

Table 2
MOI vs. Protein Production

Cell Line	Promoter	MOI	% cell Confluence	MN14 (ng/ml)	# Cells	MN14 Production /day (pg/cell)
BMEC	CMV	10000	100%	4228	4.5E5	47
BMEC	CMV	1000	100%	2832	2.0E6	7.1
BMEC	CMV	100				
BMEC	CMV	10	100%	1873	2.5E6	3.75
BMEC	CMV	1				
BMEC	α LA	10000	100%	1024	1.5E6	3.4
BMEC	α LA	1000				
BMEC	α LA	100	100%	722	1.8E6	1.9
BMEC	α LA	10	100%	421234	2.3E6	.925
BMEC	α LA	1	100%		1.9E6	.325

Example 9

Transfection at Varied Multiplicities of Infection

This experiment describes protein production from the CMV MN14 vector at a variety of MOI values. Bovine mammary cells, CHO cells, and human embryo kidney cells (293 cells) were plated in 24 well plates (2 cm^2) at 100 cells/ cm^2 well. Cells were infected at various dilutions with CMV MN14 to obtain MOI values of 1, 10, 100, 1000, and 10000. The CHO cells reached confluence at all MOI within 11 days of infection. However, the cells infected at a MOI of 10,000 grew more slowly. The bovine mammary and 293 cells grew slower, especially at the highest MOI of 10,000. The cells were then passaged into T25 flasks to disperse cells. Following dispersion, cells reached confluence within 1 week. The medium was collected after one week and analyzed for MN14 production. The CHO and human 293 cells did not exhibit good growth in extended culture. Thus, data were not collected from these cells. Data for bovine mammary epithelial cells are shown in Table 3 below. The results indicate that production of MN14 increased with higher MOI.

Table 3
MOI vs. Protein Production

Cell Line	Promoter	MOI	% confluence	MN14 Production (ng/ml)
BMEC	CMV	10000	100%	1312
BMEC	CMV	1000	100%	100
BMEC	CMV	100	100%	7.23
BMEC	CMV	10	100%	0
BMEC	CMV	1	100%	0

Example 10

Expression of LL2 Antibody by Bovine Mammary Cells

This Example describes the expression of antibody LL2 by bovine mammary cells. Bovine mammary cells were infected with vector CMV LL2 (7.85×10^7 CFU/ml) at MOI's of 1000 and 10,000 and plated in 25cm² culture dishes. None of the cells survived transfection at the MOI of 10,000. At 20% confluence, 250 ng/ml of LL2 was present in the media.

Example 11

Expression of Botulinum Toxin Antibody by Bovine Mammary Cells

This Example describes the expression of Botulinum toxin antibody in bovine mammary cells. Bovine mammary cells were infected with vector α -LA Bot (2.2×10^2 CFU/ml) and plated in 25cm² culture dishes. At 100% confluence, 6 ng/ml of Botulinum toxin antibody was present in the media.

Example 12

Expression of Hepatitis B Surface Antigen by Bovine Mammary Cells

This Example describes the expression of hepatitis B surface antigen (HBSAg) in bovine mammary cells. Bovine mammary cells were infected with vector LSRNL (350 CFU/ml) and plated in 25cm² culture dishes. At 100% confluency, 20 ng/ml of HBSAg was present in the media.

Example 13

Expression of cc49IL2 Antigen Binding Protein by Bovine Mammary Cells

This Example describes the expression of cc49IL2 in bovine mammary cells. Bovine mammary cells were infected with vector cc49IL2 (3.1 X 10⁵ CFU/ml) at a MOI of 1000 and plated in 25cm² culture dishes. At 100% confluency, 10 µg/ml of cc49IL2 was present in the media.

Example 14

Expression of Multiple Proteins by Bovine Mammary Cells

This Example describes the expression of multiple proteins in bovine mammary cells. Mammary cells producing MN14 (infected with CMV-MN14 vector) were infected with cc49IL2 vector (3.1 X 10⁵ CFU/ml) at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluency, the cells expressed MN14 at 2.5 µg/ml and cc49IL2 at 5 µg/ml.

Example 15

Expression of Multiple Proteins by Bovine Mammary Cells

This Example describes the expression of multiple proteins in bovine mammary cells. Mammary cells producing MN14 (infected with CMV-MN14 vector) were infected with LSNRL vector (100 CFU/ml) at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluency, the cells expressed MN14 at 2.5 µg/ml and hepatitis surface antigen at 150 ng/ml.

Example 16**Expression of Multiple Proteins by Bovine Mammary Cells**

This Example describes the expression of multiple proteins in bovine mammary cells. Mammary cells producing hepatitis B surface antigen (infected with LSRNL vector) were infected with cc49IL2 vector at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluency, the cells expressed MN14 at 2.4 µg/ml and hepatitis B surface antigen at 13 ng/ml. It will be understood that multiple proteins may be expressed in the other cell lines described above.

Example 17**Expression of Hepatitis B Surface Antigen and Botulinum Toxin Antibody in Bovine Mammary Cells**

This Example describes the culture of transfected cells in roller bottle cultures. 208F cells and bovine mammary cells were plated in 25cm² culture dishes at 1000 cells/25cm². LSRNL or α -LA Bot vectors were used to infect each cell line at a MOI of 1000. Following one month of culture and media collection, the 208F cells were discarded due to poor growth and plating. Likewise, the bovine mammary cells infected with α -LA Bot were discarded due to low protein expression. The bovine mammary cells infected with LSRNL were passaged to seed roller bottles (850 cm²). Approximately 20 ng/ml hepatitis type B surface antigen was produced in the roller bottle cultures.

Example 18**Expression in Clonally Selected Cell Lines**

This experiment describes expression of MN14 from clonally selected cell lines. Cell lines were grown to confluence in T25 flasks and 5ml of media were collected daily. The media was assayed daily for the presence of MN14. All the MN14 produced was active and Western blotting indicated that the heavy and light chains were produced at a ratio that appears to be almost exactly 1:1. In addition, a non-denaturing western blot indicated that approximately 100% of the antibody complexes were correctly formed.

After being in culture for about two months, the cells were expanded into roller bottles or plated as single cell clones in 96 well plates.

The production of MN14 in the roller bottles was analyzed for a 24 hour period to determine if additional medium changing would increase production over what was obtained with weekly medium changes. Three 24 hour periods were examined. The CMV promoter cells in 850 cm² roller bottles produced 909 ng/ml the first day, 1160 ng/ml the second day and 1112 ng/ml the third day. The α -LA promoter cells produced 401 ng/ml the first day, 477 ng/ml the second day and 463 ng/ml the third day. These values correspond well to the 8-10 mg/ml/week that were obtained for the CMV cells and the 2-3 mg/ml that were obtained for the α -LA cells. It does not appear that more frequent media changing would increase MN14 production in roller bottles.

Single cell lines were established in 96 well plates and then passaged into the same wells to allow the cells to grow to confluence. Once the cells reached confluence, they were assayed for MN14 production over a 24 hour period. The clonal production of MN14 from CMV cell lines ranged from 19 ng/ml/day to 5500 ng/ml/day. The average production of all cell clones was 1984 ng/ml/day. The α -LA cell clones yielded similar results. The clonal production of MN14 from α -LA cell lines ranged from 1 ng/ml/day to 2800 ng/ml/day. The average production of these cell clones was 622 ng/ml/day. The results are provided in Table 4 below.

Table 4
Expression in Clonal Cell Lines

CMV Clonal Cell Line Number	MN14 Production (ng/ml)	Alpha-lactalbumin Clonal Cell Line Number	MN14 Production (ng/ml)
22	19	27	0
6	88	29	0
29	134	12	0.7
34	151	50	8
32	221	28	55

Table 4
Expression in Clonal Cell Lines

CMV Clonal Cell Line Number	MN14 Production (ng/ml)	Alpha-lactalbumin Clonal Cell Line Number	MN14 Production (ng/ml)
23	343	43	57
27	423	8	81
4	536	13	154
41	682	48	159
45	685	7	186
40	696	36	228
11	1042	39	239
8	1044	51	275
5	1066	31	283
19	1104	54	311
48	1142	38	317
12	1224	21	318
26	1315	16	322
39	1418	47	322
37	1610	17	325
20	1830	37	367
21	1898	45	395
47	1918	25	431
35	1938	5	441

Table 4
Expression in Clonal Cell Lines

CMV Clonal Cell Line Number	MN14 Production (ng/ml)	Alpha-lactalbumin Clonal Cell Line Number	MN14 Production (ng/ml)
15	1968	20	449
3	1976	19	454
28	1976	22	503
1	2166	55	510
16	2172	14	519
17	2188	41	565
33	2238	46	566
30	2312	23	570
38	2429	1	602
2	2503	9	609
14	2564	53	610
24	2571	56	631
9	2708	2	641
42	2729	40	643
44	2971	32	653
7	3125	24	664
43	3125	26	671
25	3650	52	684
46	3706	6	693

Table 4
Expression in Clonal Cell Lines

CMV Clonal Cell Line Number	MN14 Production (ng/ml)	Alpha-lactalbumin Clonal Cell Line Number	MN14 Production (ng/ml)
50	3947	33	758
49	4538	42	844
18	4695	10	1014
31	4919	3	1076
10	5518	44	1077
		35	1469
		34	1596
		18	1820
		30	2021
		11	2585
		4	2800

Example 19
Estimation of Insert Copy Number

This example describes the relationship of multiplicity of infection, gene copy number, and protein expression. Three DNA assays were developed using the INVADER Assay system (Third Wave Technologies, Madison, WI). One of the assays detects a portion of the bovine α -lactalbumin 5' flanking region. This assay is specific for bovine and does not detect the porcine or human α -lactalbumin gene. This assay will detect two copies of the α -lactalbumin gene in all control bovine DNA samples and also in bovine mammary epithelial cells. The second assay detects a portion of the extended

packaging region from the MLV virus. This assay is specific for this region and does not detect a signal in the 293 human cell line, bovine mammary epithelial cell line or bovine DNA samples. Theoretically, all cell lines or other samples not infected with MLV should not produce a signal. However, since the 293GP cell line was produced with the extended packaging region of DNA, this cell line gives a signal when the assay is run. From the initial analysis, it appears that the 293GP cell line contains two copies of the extended packing region sequence that are detected by the assay. The final assay is the control assay. This assay detects a portion of the insulin-like growth factor I gene that is identical in bovine, porcine, humans and a number of other species. It is used as a control on every sample that is run in order to determine the amount of signal that is generated from this sample for a two copy gene. All samples that are tested should contain two copies of the control gene.

DNA samples can be isolated using a number of methods. Two assays are then performed on each sample. The control assay is performed along with either the bovine α -lactalbumin assay or the extended packaging region assay. The sample and the type of information needed will determine which assay is run. Both the control and the transgene detection assay are run on the same DNA sample, using the exact same quantity of DNA.

The data resulting from the assay are as follows (Counts indicate arbitrary fluorescence units):

- Extended Packaging Region or α -Lactalbumin Background counts
- Extended Packaging Region or α -Lactalbumin counts
- Internal Control background counts
- Internal Control counts

To determine net counts for the assay the background counts are subtracted from the actual counts. This occurs for both the control and transgene detection assay. Once the net counts are obtained, a ratio of the net counts for the transgene detection assay to

the net counts of the control assay can be produced. This value is an indication of the number of copies of transgene compared to the number of copies of the internal control gene (in this case IGF-I). Because the transgene detection assay and the control assay are two totally different assays, they do not behave exactly the same. This means that one does not get an exact 1:1 ratio if there are two copies of the transgene and two copies of the control gene in a specific sample. However the values are generally close to the 1:1 ratio. Also, different insertion sites for the transgene may cause the transgene assay to behave differently depending on where the insertions are located.

Therefore, although the ratio is not an exact measure of copy number, it is a good indication of relative copy number between samples. The greater the value of the ratio the greater the copy number of the transgene. Thus, a ranking of samples from lowest to highest will give a very accurate comparison of the samples to one another with regard to copy number. Table 5 provides actual data for the EPR assay:

Table 5

Sample #	Control Counts	Control Backgroun d Counts	Net 1 Counts	Transgen e Counts	Transgene Backgroun d Counts	Net Transgen e Counts	Net Ratio
293	116	44	72	46.3	46	0.3	0
293GP	112	44	68	104	46	58	.84
1	74	40	34	88	41	47	1.38
2	64	40	24	83	41	43	1.75
3	62	44	18	144	46	98	5.57

From this data, it can be determined that the 293 cell line has no copies of the extended packaging region/transgene. However the 293 GP cells appear to have two copies of the extended packaging region. The other three cell lines appear to have three or more copies of the extended packaging region (one or more additional copies compared to 293GP cells).

Invader Assay Gene Ratio and Cell Line Protein Production

Bovine mammary epithelial cells were infected with either the CMV driven MN14 construct or the α -lactalbumin driven MN14 construct. The cells were infected at a 1000 to 1 vector to cell ratio. The infected cells were expanded. Clonal cell lines were established for both the α -LA and CMV containing cells from this initial pooled population of cells. Approximately 50 cell lines were produced for each gene construct. Individual cells were placed in 96 well plates and then passaged into the same well to allow the cells to grow to confluence. Once the cell lines reached confluence, they were assayed for MN14 production over a 24 hour period. The clonal production of MN14 from CMV cell lines ranged from 0 ng/ml/day to 5500 ng/ml/day. The average production of all cell clones was 1984 ng/ml/day. The α -LA cell clones showed similar trends. The clonal production of MN14 from α -LA cell lines ranged from 0 ng/ml/day to 2800 ng/ml/day. The average production of these cell clones was 622 ng/ml/day.

For further analysis of these clonal lines, fifteen CMV clones and fifteen α -LA clones were selected. Five highest expressing, five low expressing and five mid-level expressing lines were chosen. These thirty cell lines were expanded and banked. DNA was isolated from most all of the thirty cell lines. The cell lines were passed into 6 well plates and grown to confluence. Once at confluence, the media was changed every 24 hours and two separate collections from each cell line were assayed for MN14 production. The results of these two assays were averaged and these numbers were used to create Tables 6 and 7 below. DNA from the cell lines was run using the Invader extended packaging region assay and the results are shown below. The Tables show the cell line number, corresponding gene ratio and antibody production.

Table 6

CMV Clonal Cell Line Number	Invader Gene Ratio	MN14 Production (ng/ml)
6	0.19	104
7	1.62	2874
10	2.57	11202
18	3.12	7757
19	1.62	2483
21	1.53	3922
22	0	0
29	0.23	443
31	3.45	5697
32	0.27	346
34	0.37	305
38	1.47	2708
41	1.54	5434
49	2.6	7892
50	1.56	5022
Average of All Clones	1.48	3746

Table 7

α -LA Clonal Cell Line Number	Invader Gene Ratio	MN14 Production (ng/ml)
4	4.28	3600
6	1.15	959
12	0.35	21
17	0.54	538
28	0.75	60
30	1.73	2076
31	0.74	484
34	4.04	3332
41	1.33	771
Average of All Clones	1.66	1316

The graphs (Figs. 17 and 18) show the comparison between protein expression and invader assay gene ratio. The results indicate that there is a direct correlation between invader assay gene ratio and protein production. It also appears that the protein production has not reached a maximum and if cells containing a higher invader assay gene ratio were produced, higher protein production would occur.

Invader Assay Gene Ratio and Multiple Cell Line Infections

Two packaging cell lines (293GP) produced using previously described methods were used to produce replication defective retroviral vector. One of the cell lines contains a retroviral gene construct that expresses the botulinum toxin antibody gene from the CMV promoter (LTR-Extended Viral Packaging Region-Neo Gene-CMV Promoter-Bot Light Chain Gene-IRES-Bot Heavy Chain Gene-LTR), the other cell line contains a retroviral gene construct that expresses the YP antibody gene from the CMV promoter (LTR-Extended Viral Packaging Region-Neo Gene-CMV Promoter-YP Heavy Chain Gene-IRES-YP Light Chain

Gene-WPRE-LTR). In addition to being able to produce replication defective retroviral vector, each of these cell lines also produce either botulinum toxin antibody or YP antibody.

The vector produced from these cell lines was then used to re-infect the parent cell line. This procedure was performed in order to increase the number of gene insertions and to improve antibody production from these cell lines. The botulinum toxin parent cell line was infected with a new aliquot of vector on three successive days. The titer of the vector used to perform the infection was 1×10^8 cfu/ml. Upon completion of the final 24 hour infection, clonal selection was performed on the cells and the highest protein producing line was established for botulinum toxin antibody production. A similar procedure was performed on the YP parent cell line. This cell line was also infected with a new aliquot of vector on three successive days. The titer of the YP vector aliquots was 1×10^4 . Upon completion of the final 24 hour infection, clonal selection was performed on the cells and the highest protein producing line was established for YP production.

Each of the parent cell lines and the daughter production cell lines were examined for Invader gene ratio using the extended packaging region assay and for protein production. The Bot production cell line which was generated using the highest titer vector had the highest gene ratio. It also had the highest protein production, again suggesting that gene copy number is proportional to protein production. The YP production cell line also had a higher gene ratio and produced more protein than its parent cell line, also suggesting that increasing gene copy is directly related to increases in protein production. The data is presented in Table 8.

Table 8

Cell Line	Invader Gene Ratio	Antibody Production (Bot/YP)
Bot Parent Cell Line	1.12	4.8 mg/ml
Bot Production Cell Line	3.03	55 mg/ml
YP Parent Cell Line	1.32	4 mg/ml
YP Production Cell Line	2.04	25 mg/ml

Example 20

Transfection with Lentivirus Vectors

This example describes methods for the production of lentivirus vectors and their use to infect host cells at a high multiplicity of infection.

Replication-defective viral particles are produced by the transient cotransfection of the plasmids described in U.S. Pat. No. 6,013,516 in 293T human kidney cells. All plasmids are transformed and grown in *E. coli* HB101 bacteria following standard molecular biology procedures. For transfection of eukaryotic cells, plasmid DNA is purified twice by equilibrium centrifugation in CsCl-ethidium bromide gradients. A total of 40 µg DNA is used for the transfection of a culture in a 10 cm dish, in the following proportions: 10 µg pCMVΔR8, 20 µg pH', and 10 µg env plasmids, either MLV/Ampho, MLV/Eco or VSV-G. 293T cells are grown in DMEM supplemented with 10% fetal calf serum and antibiotics in a 10% CO₂ incubator. Cells are plated at a density of 1.3×10⁶/10 cm dish the day before transfection. Culture medium is changed 4 to 6 hrs before transfection. Calcium phosphate-DNA complexes are prepared according to the method of Chen and Okayama (Mol. Cell. Biol., 7:2745, 1987), and incubated overnight with the cells in an atmosphere of 5% CO₂. The following morning, the medium is replaced, and the cultures returned to 10% CO₂. Conditioned medium is harvested 48 to 60 hrs after transfection, cleared of cellular debris by low speed centrifugation (300×g 10 min), and filtered through 0.45 µm low protein binding filters.

To concentrate vector particles, pooled conditioned medium harvested as described above is layered on top of a cushion of 20% sucrose solution in PBS and centrifuged in a Beckman SW28 rotor at 50,000×g for 90 min. The pellet is resuspended by incubation and gentle pipetting in 1-4 ml PBS for 30-60 min, then centrifuged again at 50,000×g for 90 min in a Beckmann SW55 rotor. The pellet is resuspended in a minimal volume (20-50 µl) of PBS and either used directly for infection or stored in frozen aliquots at -80° C.

The concentrated lentivirus vectors are titered and used to transfect an appropriate cell line (e.g., 293 cells, HeLa cells, rat 208F fibroblasts) at a multiplicity of infection of 1,000. Analysis of clonally selected cell lines expressing the exogenous protein will reveal that a portion of the selected cell lines

contain more than two integrated copies of the vector. These cell lines will produce more of the exogenous protein than cell lines containing only one copy of the integrated vector.

Example 21

Expression and Assay of G-protein Coupled Receptors

This example describes the expression of a G-Protein Coupled Receptor protein (GPCR) from a retroviral vector. This example also describes the expression of a signal protein from an IRES as a marker for expression of a difficult to assay protein or a protein that has no assay such as a GPCR. The gene construct (SEQ ID NO: 34; Figure 19) comprises a G-protein-coupled receptor followed by the IRES-signal peptide-antibody light chain cloned into the MCS of pLBCX retroviral backbone. Briefly, a PvuII/PvuII fragment (3057 bp) containing the GPCR-IRES-antibody light chain was cloned into the StuI site of pLBCX. pLBCX contains the EM7 (T7) promoter, Blasticidin gene and SV40 polyA in place of the Neomycin resistance gene from pLNCX.

The gene construct was used to produce a replication defective retroviral packaging cell line and this cell line was used to produce replication defective retroviral vector. The vector produced from this cell line was then used to infect 293GP cells (human embryonic kidney cells). After infection, the cells were placed under Blasticidin selection and single cell Blasticidin resistant clones were isolated. The clones were screened for expression of antibody light chain. The top 12 light chain expressing clones were selected. These 12 light chain expressing clones were then screened for expression of the GPCR using a ligand binding assay. All twelve of the samples also expressed the receptor protein. The clonal cell lines and their expression are shown in Table 9.

Table 9

Cell Clone Number	Antibody Light Chain Expression	GPCR Expression
4	+	+
8	+	+
13	+	+
19	+	+
20	+	+
22	+	+
24	+	+
27	+	+
30	+	+
45	+	+
46	+	+
50	+	+

Example 22

Multiple infection of 293 cells with replication defective retroviral vector

This example describes the multiple serial transfection of cells with retroviral vectors. The following gene construct was used to produce a replication defective retroviral packaging cell line.

5' LTR = Moloney murine sarcoma virus 5' long terminal repeat.

EPR = Moloney murine leukemia virus extended packaging region.

Blast = Blasticidin resistance gene.

CMV = Human cytomegalovirus immediate early promoter.

Gene = Gene encoding test protein

WPRE = RNA transport element

3' LTR = Moloney murine leukemia virus 3' LTR.

This packaging cell line was then used to produce a replication defective retroviral vector arranged as follows. The vector was produced from cells grown in T150 flasks and frozen. The frozen vector was thawed at each infection. For infection # 3 a concentrated solution of vector was used to perform the infection. All other infections were performed using non-concentrated vector. The infections were performed over a period of approximately five months by placing 5 ml of vector/media solution on a T25 flask containing 30% confluent 293 cells. Eight mg/ml of polybrene was also placed in the vector solution during infection. The vector solution was left on the cells for 24 hours and then removed. Media (DMEM with 10% fetal calf serum) was then added to the cells. Cells were grown to full confluence and passaged into a new T25 flask. The cells were then grown to 30% confluence and the infection procedure was repeated. This process was repeated 12 times and is outlined Table 10 below. After infections 1, 3, 6, 9 and 12, cells left over after passaging were used to obtain a DNA sample. The DNA was analyzed using the INVADER assay to determine an estimate of the number of vector inserts in the cells after various times in the infection procedure. The results indicate that the number of vector insertions goes up over time with the highest level being after the 12th infection. Since a value of 0.5 is approximately an average of one vector insert copy per cell, after twelve infections the average vector insert copy has yet to reach two. These data indicates that the average vector copy per cell is a little less than 1.5 copies per cell. Also, there was no real change in gene copy number from infection #6 to infection #9. Furthermore, these data indicate that transfection conducted at a standard low multiplicity of infection fail to introduce more than one copy of the retroviral vector into the cells.

Table 10

Cell Line or Infection Number	Vector Titer (CFU/ml)	"Invader" Gene Ratio
293		0.053
Infection #1	1.05 X 10 ³	0.39
Infection #2	1.05 X 10 ³	
Infection #3	7.6 X 10 ³	0.45
Infection #4	1.05 X 10 ³	
Infection #5	1.05 X 10 ³	
Infection #6	1.05 X 10 ³	0.54
Infection #7	1.05 X 10 ³	
Infection #8	1.05 X 10 ³	
Infection #9	1.05 X 10 ³	0.52
Infection #10	1.05 X 10 ³	
Infection #11	1.05 X 10 ³	
Infection #12	1.05 X 10 ³	0.69

Example 23
Production of YP antibody

This Example demonstrates the production of *Yersinia pestis* antibody by bovine mammary epithelial cells and human kidney fibroblast cells (293 cells). Cells lines were infected with the α -LA YP vector. Both of the cell lines produced YP antibody. All of the antibody is active and the heavy and light chains are produced in a ratio approximating 1:1.

Example 24
Transduction of Plant Protoplasts

This Example describes a method for transducing plant protoplasts. Tobacco protoplasts of *Nicotiana tabacum* c.v. Petit Havanna are produced according to conventional processes from a tobacco suspension culture (Potrykus and Shillito, Methods in Enzymology, vol. 118, Plant Molecular Biology, eds. A. and H. Weissbach, Academic Press, Orlando, 1986). Completely unfolded leaves are removed under sterile conditions from 6-week-old shoot cultures and thoroughly wetted with an enzyme solution of the following composition: Enzyme solution: H₂O, 70 ml; sucrose, 13 g; macerozyme R 10, 1 g; cellulase, 2 g; "Onozuka" R 10 (Yakult Co. Ltd., Japan) Driselase (Chemische Fabrik Schweizerhalle, Switzerland), 0.13 g; and 2(n-morpholine)-ethanesulphonic acid (MES), 0.5 ml pH 6.0

Leaves are then cut into squares from 1 to 2 cm in size and the squares are floated on the above-mentioned enzyme solution. They are incubated overnight at a temperature of 26°C in the dark. This mixture is then gently shaken and incubated for a further 30 minutes until digestion is complete.

The suspension is then filtered through a steel sieve having a mesh width of 100 µm, rinsed thoroughly with 0.6M sucrose (MES, pH 5.6) and subsequently centrifuged for 10 minutes at from 4000 to 5000 rpm. The protoplasts collect on the surface of the medium which is then removed from under the protoplasts, for example using a sterilized injection syringe.

The protoplasts are resuspended in a K₃ medium [sucrose (102.96 g/l); xylose (0.25 g/l); 2,4-dichlorophenoxyacetic acid (0.10 mg/l); 1-naphthylacetic acid (1.00 mg/l); 6-benzylaminopurine (0.20 mg/l); pH 5.8] (Potrykus and Shillito, *supra*) that contains 0.4M sucrose.

To carry out the transformation experiments, the protoplasts are first of all washed, counted and then resuspended, at a cell density of from 1 to 2.5×10⁶ cells per ml, in a W₃ medium [154 mM NaCl, 125 mM CaCl₂ x 2H₂O, 5 mM KCl, 5 mM glucose, pH 5.6], which ensures a high survival rate of the isolated protoplasts.

After incubation for 30 minutes at from 6 to 8°C, the protoplasts are then used for the transduction experiments.

The protoplasts are exposed to a pseudotyped retroviral vector (e.g., a lentiviral vector) encoding a protein of interest driven by a plant specific promoter. The vector is prepared as described above and is used at an MOI of 1,000. The protoplasts are then resuspended in fresh K₃ medium (0.3 ml protoplast solution in 10 ml of fresh K3 medium). Further incubation is carried out in 10 ml portions in 10 cm diameter petri dishes at 24°C in the dark, the population density being from 4 to 8×10₄ protoplasts per ml. After 3 days, the culture medium is diluted with 0.3 parts by volume of K₃ medium per dish and incubation is continued for a further 4 days at 24°C and 3000 lux of artifical light. After a total of 7 days, the clones that have developed from the protoplasts are embedded in nutrient medium that contains 50 mg/l of kanamycin and has been solidified with 1% agarose, and are cultured at 24°C in the dark in accordance with the "bead-type" culturing method (Shillito, *et al.*, Plant Cell Reports, 2, 244-247 (1983)). The nutrient medium is replaced every 5 days by a fresh amount of the same nutrient solution. Analysis of the clones indicates that express the gene of interest.

Example 25

Stability of Vector Insertions in Cell Lines Over Time

Two cell lines that contain gene inserts of the LN-CMV-Bot vector were analyzed for there ability to maintain the vector inserts over a number of passages with and without neomycin selection. The first cell line is a bovine mammary epithelial cell line that contains a low number of insert copies. The second cell line is a 293GP line that contains multiple copies of the vector insert. At the start of the experiment, cell cultures were split. This was at passage 10 for the bovine mammary epithelial cells and passage 8 for the 293GP cells. One sample was continually passaged in media containing the neomycin analog G418, the other culture was continually passaged in media without any antibiotic. Every 3-6 passages, cells were collected and DNA was isolated for determination of gene ratio using the INVADER assay. Cell were continually grown and passaged in T25 flasks. The results of the assays are shown below:

Table 11
Low Gene Copy Cell Line

Cell Line and Treatment	Passage Number	INVADER Gene Ratio
BMEC/Bot #66 + G418	10	0.67
BMEC/Bot #66 - G418	10	0.89
BMEC/Bot #66 + G418	16	0.67
BMEC/Bot #66 - G418	16	0.64
BMEC/Bot #66 + G418	21	0.62
BMEC/Bot #66 - G418	21	0.58
BMEC/Bot #66 + G418	27	0.98
BMEC/Bot #66 - G418	27	0.56
BMEC/Bot #66 + G418	33	0.80
BMEC/Bot #66 - G418	33	0.53

Table 12
High Gene Copy Cell Line

Cell Line and Treatment	Passage Number	INVADER Gene Ratio
293GP/Bot #23 + G418	8	3.46
293GP/Bot #23 - G418	8	3.73
293GP/Bot #23 + G418	14	3.28
293GP/Bot #23 - G418	14	3.13
293GP/Bot #23 + G418	17	3.12
293GP/Bot #23 - G418	17	2.91
293GP/Bot #23 + G418	22	3.6
293GP/Bot #23 - G418	22	2.58
293GP/Bot #23 + G418	28	2.78
293GP/Bot #23 - G418	28	3.44
293GP/Bot #23 + G418	36	2.6
293GP/Bot #23 - G418	36	2.98

These data show that there are no consistent differences in gene ratio between cells treated with G418 and those not treated with antibiotic. This suggests that G418 selection is not necessary to maintain the stability of the vector gene insertions. Also, these vector inserts appear to be very stable over time.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology, protein fermentation, biochemistry, or related fields are intended to be within the scope of the following claims.

CLAIMS

What is claimed is:

1. A host cell comprising a genome, said genome comprising at least two integrated integrating vectors, wherein said integrating vectors comprise at least one exogenous gene operably linked to a promoter.
2. The host cell of Claim 1, wherein said integrating vectors further comprise a secretion signal sequence operably linked to said exogenous gene.
3. The host cell of Claim 1, wherein said integrating vectors further comprise an RNA stabilizing element operably linked to said exogenous gene.
4. The host cell of Claim 1, wherein said integrating vectors comprise at least two exogenous genes.
5. The host cell of Claim 4, wherein said at least two exogenous genes are arranged in a polycistronic sequence.
6. The host cell of Claim 5, wherein said at least two exogenous genes are separated by at least one internal ribosome entry site.
7. The host cell of Claim 5, wherein two exogenous genes are arranged in said polycistronic sequence.
8. The host cell of Claim 7, wherein said two exogenous genes encode a heavy chain of an immunoglobulin molecule and a light chain of an immunoglobulin molecule.

9. The host cell of Claim 4, wherein one of said at least two exogenous genes is a selectable marker.
10. The host cell of Claim 1, wherein said integrating vector is a retroviral vector.
11. The host cell of Claim 10, wherein said retrovirus vector is a pseudotyped retroviral vector.
12. The host cell of Claim 11, wherein said pseudotyped retroviral vector comprises a G glycoprotein.
13. The host cell of Claim 12, wherein the G glycoprotein is selected from the group consisting of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus and Mokola virus G glycoproteins.
14. The host cell of Claim 10, wherein said retroviral vector comprises long terminal repeats selected from the group consisting of MoMLV, MoMuSV, and MMTV long terminal repeats.
15. The host cell of Claim 11, wherein said retroviral vector is a lentiviral vector.
16. The host cell of Claim 15, wherein said lentiviral vector comprises long terminal repeats selected from the group consisting of HIV and equine infectious anemia virus long terminal repeats.
17. The host cell of Claim 1, wherein said host cell is present in a culture system selected from the group consisting of *in vitro* and *in vivo* cultures.
18. The host cell of Claim 1, wherein said host cell is selected from Chinese hamster ovary cells, baby hamster kidney cells, and bovine mammary epithelial cells.

19. The host cell of Claim 1, wherein said host cell is clonally derived.
20. The host cell of Claim 1, wherein said host cell is non-clonally derived.
21. The host cell of Claim 1, wherein genome is stable for greater than 10 passages.
22. The host cell of Claim 21, wherein said genome is stable for greater than 50 passages.
23. The host cell of Claim 21, wherein said genome is stable for greater than 100 passages.
24. The host cell of Claim 1, wherein said integrated exogenous gene is stable in the absence of selection.
25. The host cell of Claim 1, wherein said promoter is selected from the group consisting of alpha-lactalbumin promoter, cytomegalovirus promoter and the long terminal repeat of Moloney murine leukemia virus.
26. The host cell of Claim 1, wherein said at least one exogenous gene is selected from the group consisting of genes encoding antigen binding proteins, pharmaceutical proteins, kinases, phosphatases, nucleic acid binding proteins, membrane receptor proteins, signal transduction proteins, ion channel proteins, and oncoproteins.
27. The host cell of Claim 1, wherein said genome comprises at least 3 integrated integrating vectors.
28. The host cell of Claim 1, wherein said genome comprises at least 4 integrated integrating vectors.
29. The host cell of Claim 1, wherein said genome comprises at least 5 integrated integrating vectors.

30. The host cell of Claim 1, wherein said genome comprises at least 7 integrated integrating vectors.

31. The host cell of Claim 1, wherein said genome comprises at least 10 integrated integrating vectors.

32. The host cell of Claim 1, wherein said genome comprises at least 20 integrated integrating vectors.

33. The host cell of Claim 1, wherein said genome comprises at least 1000 integrated integrating vectors.

34. The host cells of Claim 1, further comprising at least 2 integrated copies of a first integrating vector comprising a first exogenous gene, and at least 1 integrated copy of a second integrating vector comprising a second exogenous gene.

35. The host cell of Claim 1, wherein said host cell expresses greater than about 10 picograms of said exogenous protein per day.

36. A method for transfecting host cells comprising:
1) providing:
a) a host cell comprising a genome, and
b) a plurality of integrating vectors; and
2) contacting said host cell with said plurality of integrating vectors under conditions such that at least two integrating vectors integrate into said genome of said host cell.

37. The method of Claim 36, wherein said conditions comprise contacting said host at a multiplicity of infection of greater than 10.

38. The method of Claim 36, wherein said conditions comprise contacting said host at a multiplicity of infection of from about 10 to 1000.

39. The method of Claim 36, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 3 integrating vectors integrate into said genome of said host cell.

40. The method of Claim 36, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 4 integrating vectors integrate into said genome of said host cell.

41. The method of Claim 36, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 5 integrating vectors integrate into said genome of said host cell.

42. The method of Claim 36, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 7 integrating vectors integrate into said genome of said host cell.

43. The method of Claim 36, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 10 integrating vectors integrate into said genome of said host cell.

44. The method of Claim 36, wherein said integrating vectors comprise at least one exogenous gene operably linked to a promoter

45. The method of Claim 36, wherein said integrating vectors further comprise a secretion signal sequence operably linked to said exogenous gene.

46. The method of Claim 36, wherein said integrating vectors further comprise an RNA stabilizing element operably linked to said gene exogenous gene.

47. The method of Claim 36, wherein said integrating vectors comprises at least two exogenous genes.

48. The method of Claim 47, wherein said at least two exogenous genes are arranged in a polycistronic sequence.

49. The method of Claim 36, wherein said integrating vector is a retroviral vector.

50. The method of Claim 49, wherein said retroviral vector is a pseudotyped retroviral vector.

51. The method of Claim 49, wherein said retroviral vector is a lentiviral vector.

52. The method of Claim 51, wherein said lentiviral vector is a pseudotyped lentivirus vector comprising a G glycoprotein.

53. The method of Claim 36, wherein said host cell is selected from Chinese hamster ovary cells, baby hamster kidney cells, and bovine mammary epithelial cells.

54. The method of Claim 36, further comprising clonally selecting said transfected host cells.

55. The method of Claim 36, further comprising transfecting said host cells with at least two integrating vectors, each of said two integrating vectors comprising a different exogenous gene.

56. A method of producing a protein of interest comprising:

1) providing a host cell comprising a genome, said genome comprising at least two integrated copies of at least one integrating vector comprising an exogenous gene operably linked to a promoter, wherein said exogenous gene encodes a protein of interest, and

2) culturing said host cells under conditions such that said protein of interest is produced.

57. The method of Claim 56, wherein said integrating vector further comprises a secretion signal sequence operably linked to said exogenous gene.

58. The method of Claim 56, further comprising step
3) isolating said protein of interest.

59. The method of Claim 57, wherein said conditions are selected from the group consisting of roller bottle cultures, perfusion cultures, batch fed cultures, and petri dish cultures.

60. The method of Claim 56, wherein said genome of said host cell comprises greater than 3 integrated copies of said integrating vector.

61. The method of Claim 56, wherein said genome of said host cell comprises greater than 4 integrated copies of said integrating vector.

62. The method of Claim 56, wherein said genome of said host cell comprises greater than 5 integrated copies of said integrating vector.

63. The method of Claim 56, wherein said genome of said host cell comprises greater than 7 integrated copies of said integrating vector.

64. The method of Claim 56, wherein said genome of said host cell comprises greater than 10 integrated copies of said integrating vector.

65. The method of Claim 56, wherein said genome of said host cell comprises between about 2 and 20 integrated copies of said integrating vector.

66. The method of Claim 56, wherein said genome of said host cell comprises between about 3 and 10 integrated copies of said integrating vector.

67. The method of Claim 56, wherein said integrating vector is a retroviral vector.

68. The method of Claim 67, wherein said retroviral vector is a pseudotyped retroviral vector.

69. The method of Claim 67, wherein said retroviral vector is a lentiviral vector.

70. The method of Claim 56, wherein said host cell is selected from Chinese hamster ovary cells, baby hamster kidney cells, and bovine mammary epithelial cells.

71. The method of Claim 56, wherein said host cells synthesize greater than about 1 picograms per cell per day of said protein of interest.

72. The method of Claim 56, wherein said host cells synthesize greater than about 10 picograms per cell per day of said protein of interest.

73. The method of Claim 56, wherein said host cells synthesize greater than about 50 picograms per cell per day of said protein of interest.

74. The method of Claim 56, wherein said cells are clonally selected.

75. A method for screening compounds comprising:

1) providing:

a) providing a host cell comprising a genome, said genome comprising at least two integrated copies of at least one integrating vector comprising an exogenous gene operably linked to a promotor, wherein said exogenous gene encodes a protein of interest; and

b) one or more test compounds;

2) culturing said host cells under conditions such that said protein of interest is expressed;

3) treating said host cells with said one or more test compounds; and

4) assaying for the presence of a response in said host cells to said test compound.

76. The method of Claim 75 wherein said exogenous gene encodes a protein selected from the group consisting of membrane receptor proteins, nucleic acid binding proteins, cytoplasmic receptor proteins, ion channel proteins, signal transduction proteins, protein kinases, protein phosphatases, and proteins encoded by oncogenes.

77. The method of Claim 76, wherein said host cell further comprises a reporter gene.

78. The method of Claim 77, wherein said reporter gene is selected from the group consisting of green fluorescent protein, luciferase, beta-galactosidase, and beta-lactamase.

79. The method of Claim 75, wherein said assaying step further comprising detecting a signal from said reporter gene.

80. The method of Claim 75, wherein said genome of said host comprises at least two integrating vectors, wherein each of said at least two integrating vectors comprises a different exogenous gene.

81. The method of Claim 75, wherein said integrating vector is a pseudotyped retroviral vector.

82. The method of Claim 75, wherein said host cell is selected from chinese hamster ovary cells, baby hamster kidney cells, and bovine mammary epithelial cells.

83. A method for comparing protein function comprising:

- 1) providing
 - a) a first host cell comprising a first integrating vector comprising a promoter operably linked to a first exogenous gene, wherein said first exogenous gene encodes a first protein of interest;
 - b) at least a second host cell comprising a second integrating vector comprising a promoter operably linked to a second exogenous gene, wherein said second exogenous gene encodes a second protein of interest that is a variant of said first protein of interest;
- 2) culturing said host cells under conditions such that said first and second proteins of interest are produced; and
- 3) comparing the activities of said first and second proteins of interest.

84. The method of Claim 83, wherein said exogenous gene encodes a protein selected from the group consisting of membrane receptor proteins, nucleic acid binding proteins, cytoplasmic receptor proteins, ion channel proteins, signal transduction proteins, protein kinases, protein phosphatases, cell cycle proteins, and proteins encoded by oncogenes.

85. The method of Claim 83, wherein said first and second proteins of interest differ by a single nucleotide polymorphism.

86. The method of Claim 83, wherein said first and second proteins of interest are greater than 95% identical.

87. The method of Claim 83, wherein said first and second proteins of interest are greater than 90% identical.

88. The method of Claim 83, wherein said genomes of said first and second host cells each comprise greater than 3 integrated copies of said integrating vector.

89. The method of Claim 83, wherein said genomes of said first and second host cells each comprise greater than 4 integrated copies of said integrating vector.

90. The method of Claim 83, wherein said genomes of said first and second host cells comprises greater than 5 integrated copies of said integrating vector.

91. The method of Claim 83, wherein said integrating vector is a retroviral vector.

92. The method of Claim 91, wherein said retrovirus vector is a pseudotyped retroviral vector.

93. The method of Claim 91, wherein said retroviral vector is a lentiviral vector.

94. A method comprising:

1) providing:

a) a host cell comprising a genome comprising at least one integrated exogenous gene; and

b) a plurality of integrating vectors; and

2) contacting said host cell with said plurality of integrating vectors under conditions such that at least two of said integrating vectors integrate into said genome of said host cell.

95. The method of Claim 94, wherein said integrated exogenous gene comprises an integrating vector.

96. The method of Claim 94, wherein said host cell is clonally selected.

97. The method of Claim 94, wherein said host cell is non-clonally selected.

98. The method of Claim 94, wherein said conditions comprise contacting said host at a multiplicity of infection of greater than 10.

99. The method of Claim 94, wherein said conditions comprise contacting said host at a multiplicity of infection of from about 10 to 1000.

100. The method of Claim 94, wherein said host cells are contacted with said plurality of integrating vectors under conditions such that at least 3 integrating vectors integrate into said genome of said host cell.

101. The method of Claim 94, wherein said integrating vector is a retroviral vector.

102. The method of Claim 101, wherein said retroviral vector is a pseudotyped retroviral vector.

1/35

Figure 1

Figure 2

Figure 3

Figure 4
SEQ ID NO:1
Hybrid Human-Bovine Alpha-Lactalbumin Promoter

```

1  GATCAGTCCTGGGGTGTCACTGAAAGGACTGATGCTGAAGTTGAAGCTCC
51  AATACTTTCGGCACCTGATCCGAAGAACTGACTCATGTTGATAAGACCTCG
101 ATACCTGGAAAGATTAAGCCAGGGAGCAAGGGATGACAGAGGTGGAA
151 GAGTTGGATGGAATCACCACCTCGATGGGACATGAAGTTTGAGCAAGCTTCC
201 AGGAGTTGGTAACTGGGAGGGAAACCTGGCTGTGCACTCCATGGGTT
251 GCAAAAGAGTTGGACACTACTGAGTGACTGAACGTGATAGTGTAAATC
301 CATTGGTACAGAAATATAGGATAAAAAGAGGAAGAGATTGCGCTGATTCTG
351 AAGACTTGTAGGATATAAAAAGTTAGAATACCTTTAGTTGGAAGTCTTA
401 ATTATTTACTTAGGATGGTACCCACTGCAATATAAGAAAATCAGGCTTT
451 AGAGACTGATGTAGAGGAATGACCCCTGGCATACAGAACGCTAAACAGCT
501 ATTGTTTATAGCTTTATAACCAATATAACCATATAATTGCTTATATA
551 GCATGAAGCTTGATGCCAACATTGAAGGAACCATTTAGAACTAGTATC
601 CTAACACTCTAATGTCCTGGGACACTGTATCTAAAGCTCAGGTTCAAGAAT
651 CTGGTTTATAGGCTCTAGGTGTTATGTGGGCTTCCTGGCTCA
701 GATGGTAAAGCTGTCGCTCTGGCAATGTGGGTGATCTGGGATCTGGCTCA
751 CTGGGAAGATCCCTGGAGAAGGAAATGGCAACCCACTCTAGTACTCTT
801 ACCTGGAAATTCCATGGACAGAGGAGGCTTGTAGTACAGTCATGGG
851 ATTGCAAAGAGTTGAACACAACTGAGCAACTAAGCACAGCACAGTACAGT
900 ATACACCTGTGAGCTGAAGTGAAGCTGAAGGTTCACTGCAGGGTCTCTGC
951 ATTGCGAAAGATTCCTTACCATCTGATAGCCTGGGACCCAGGGAAAGCCAA
1001 CTGGAGTGGGTGACCTTATTCCTTCCAGGGGATCTCCATCCRGAGAA
1051 TTGAACTGGAGTCTCTGGCTTCTGGGATTCTTCCACAGCTGAAACTA
1101 CCAGGTGGATACTCTCAATATAAAGTGTAAAGTCTCAGTTTCCCA
1151 CCTTCCAAAAGGGTCACTCTTAACTTCTGGCTTCTGGCTTA
1201 CTGAGGCTGTCTACAACTTATATATGAAACACATTATGCAAGTT
1251 GTTGTAGTTTAACTGTGATCTGGCTTATTTAGTGTGTTATTGGT
1301 GTTGGGGATGGGGGGCTGATAGCATCTCAGAGGGCAGCTAGATACTGTC
1351 ATACACACTTTCAAGTCTCCATTGGAAATAGAAGTCTGTTGAT
1401 CTAAGTTATATGATGATTCCTAGCTCTGGTCAATTCTATTCTACTCC
1451 TGACCACTCAACAAAGGAAACCAAGATATCAAGGGACACTGTTTGT
1501 TGCCTGGGGTGGAGCTGACATATGTTCTGGGCTTGTGATATGGC
1551 TGGATTGGGGTGGCAACTGGCAGCTCTGATCTGGGACTGTGGCATGTGA
1601 TGACATACACCCCCCTCCACATTGCTGATCTAGGGGGAGGGGG
1651 AAAGCTGGTATAGAACCTTATTTCTGATGCTCCTACTCTTAT
1701 ATTCGGCCCATGGCTCTTGTCTCTGGCACTAACAGACAGTCTTC
1751 CCAGAACCAACCCCTACAGAACAAAGGGCTAAACAAAGCCAATGGAA
1801 GCAGGATCATGGTTGAACCTTCTGGCCAGAGAACATAACTCTGAT
1851 GACTAGATACTGGGAGGGAAAGGAAAATGAGGTGATTATGGAGGA
1901 AGCTGGCAGGCTCAGCTTCTGCTGGCATGACAGTCTCTTCAATT
1951 CTCTTCTCATGATGTAGGCTTGGTACAGAGCCCTGAGGCTTCTGCA
2001 GAATATAAAATATGAAACTGAGTGATCTCCATTCTGGTTCTGGGG
2051 GCGCGGAATTCTGAGCTCGTACCCGGGATCTCGAGGGGGGCCGTAC
2101 C

```

1 - 1525 Bovine alpha lactalbumin 5' flanking region (-2000 to -550 from the bovine alpha-lactalbumin transcription start point)

1526 - 2056 Human alpha-lactalbumin 5' flanking region (-600 to +15 from the human alpha-lactalbumin transcription start point)

2057 - 2101 Multiple cloning site

Figure 5
SEQ ID NO:2
Mutated PPE Sequence

1 GATTACTTACTGGCAGGTGCTGGGGGCTTCCGAGACAATCGCGAACATCT
51 ACACCAACACACACCGCTCGACCAAGGTGAGATATCGGCCGGGGACCGC
101 GCGGTGGTAATTACAAGCGAGGATCCGATTACTTACTGGCAGGTGCTGG
151 GGCTTCCGAGACATCGCGAACATCTACACACACACACACCCGCTCGACC
201 AGGGTAGATATCGGCCGGGACCGCGCGTGTAAATTACAAGCG

1 - 119 Mutated PPE
120 -126 Linker
127 - 245 Mutated PPE

Figure 6
SEQ ID NO:3
IRES-Signal Peptide Sequence

1 GGAATTGCCCCCTCCTCCCCCCCCCTAACGTTACTGGCCGAAGCCG
51 CTTGGAATAAAGGCCGGTGTCCGTTTGCTATATGTTATTTCCACCATAT
101 TGCCTCTTTGGCAATGTGAGGGCCGGAAACCTGGCCCTGCTTCTTG
151 ACGACATTCCTAGGGCTCTTCCCTCTCCCAAAGGAATGCAAGGTCT
201 GTTGAATGTCGTGAAGGAAGCAGTCTCTGGAAAGCTCTTGAAAGACAAA
251 CAACGCTCTAGGGACCCCTTGAGGCAGGGAAACCCCCCACCTGGCGAC
301 AGGTCTCTGGCCCAAAGCCACGTGTATAAGATAACACCTGCAAAAGGC
351 GGCAAAACCCCACTGCCACCTGGTGAAGTTGGATAGTTGTGAAAGAGTCA
401 AATGGCTCTCTCAAGGTATTCAAACAGGGCTGAAGGATGCCAGAAG
451 GTACCCCATTTGATGGGATCTGATCTGGGCCCTCGGTGCACATGCTTAC
501 ATGTGTTTAACTGAGGTAAAAAACGCTAGGCCCCCGRAACCAAGGGG
551 ACGTGGTTTCTTGTAAAAACGATGATAATATGGCTCCTTGTCTC
601 TCTGCTCTGGTAGGCATCTTATTCATGCCACCCAGGCCGGCGCCATGG
651 GATATCTAGATCTCGAGCTCGCGAAAGCTT

1 - 583 IRES
584 - 640 Modified bovine alpha-lactalbumin signal peptide coding region
641 - 680 Multiple cloning site

Figure 7a
 SEQ ID NO:4
 CMV MN14 Vector

1 CGGATCCGCCATTAGCCATATTATTATTGGGTTATAGCCATAATC
 51 TATTGGCTATTGGCATTGCACTAGTTCTATCCATATCATATAATATCTACA
 101 TTATATATTGGCTCATGCCAACATTACGCCATGGTACATTGATTATATG
 151 ACTAGTTAATTAATAGTAAATCAATTACGCCGGTCATTAGTTCATAGCCCAT
 201 TAGGGAGTCGGCTTACATAACTTACGGTAATGCCCGCCCTGGCTGAC
 251 CGCCCAACGACCCCGCCATTGACGCAAAATAGCGGTATGTTCCCAT
 301 GTAAACCCCATAGGGACTTCCATTGACGTCAATGGGTGAGTATTAGC
 351 GTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGC
 401 CCCCTATTGACGTCATAATGCCGTAATGCCCGCCCTGGCATATTGCCAG
 451 TACATGACCTTATGGGACTTCTTCACTTGGCAGTACATCTACGTTATTAGT
 501 CATCGCTTATTACCATGGTGTGGCAGTACATCAATGGCCGTG
 551 GATAGGGGTGTTGACTCACGGGATTCTCAAGTCTCACCCATTGACGTC
 601 AATGGGAGTTGGTTTGGCACAAAATCACGGGACTTCCAAAATGTG
 651 TAACAATCGGCCCATGGCCTAGACCTGGGGCTAGGCTATGACGGGG
 701 AGCTCTATATAAGCAGCTGTTTGTGAAGCTCAGATCGCTGGAGA
 751 CGCCATCCAGCTGTTTGGCTTATAGAAAGACACCCGGGACCTACAGC
 801 CCTCCGGGCCCCAGCTTCTGACGGATCCCCGGGAAATTAGGACCTCA
 851 CCATGGGATGGAGCTGTATCATCTCTCTGGTAGCAACAGCTACAGG
 901 GTCCACTCCAGGGTCAACTGTGGAGGGCTGGAGGGTGTGCAACC
 951 TGCCCGGGCTCTGGCCCTGCTCTCGCATCTGGCTCTGATTACCA
 1001 CATATTGGATGAGTTGGTGGAGACAGGACCCCTGGGAAAGGCTTGGATG
 1051 ATTGGAGAAATTCTACAGATGGCAGTACGTTAACATATGCCGCTCT
 1101 AAAGGATAGATTTCATAATGGCAGGACAACGCCAAAGAACATTGTC
 1151 TGCAATGGCAGCGTGGAGACCGGAAAGACCGGGCTTATTGGCA
 1201 AGCCTTACTTCGGCTTCCCTGGTTTGCTTATTGGGCAAGGGACCC
 1251 GGTACCCGCTCTGGCCATGGCTCTGGCCATGGGCCCCATGGCTTCCCG
 1301 CACCCCTCTTCAAGGACCTCTGGGCCACAGGCCCTGGCTCTCG
 1351 GTCAAGGGACTACTTCCCGAAGCCCTGGGGCTGACGGTGTCTGGAAACTCAGGGC
 1401 CCTGACCGGGCGCTCACCTTCCGGCTCTCTAGTCTCAGGAC
 1451 TCTACTCCCTCAGCAGCTGGTGGACCGTGGCCCTCCAGCAGCTGGGACC
 1501 CAGACCTACATCCGCAACTGGTAATCAAGGCCAGAACACCAAGGG
 1551 CAAGAGATGGAGGCAAAATCTGTGACAAAATCACACATGCCAACCGT
 1601 GCCAGCACCTGACCTGGGGGGACGGTCAAGTCTCTCTTCCCCC
 1651 AAAACCAAGGACACCTCATGATCTCCGGACCCCTGAGGTACATGGCT
 1701 GGTGTTGGACTGGCCACRGAGACCCCTGAGGTCAAGTTCAACTGGTAG
 1751 TGAGCAGGGTGGAGGTGAAATGGCAGGACAAGAACAGCGGGGGAGGAGCAG
 1801 TACACAGCAGCTGGCTGTGGTCAAGCTCAGGCTCTGACCAAGG
 1851 CTGGCTGAATGGCAGGAGTGAATCTGCAAGGTTCTCCAAACAAAGCCCTCC
 1901 CAGGCCCCCATGAGAAAATCTCCAAAGGCAAGGGCAGCCCCGAGAA
 1951 CCACAGGTGACACCTGGCCCATCCGGGGAGGAGTACCAAGGAGCCA
 2001 GGTGCGCTGACCTCTGGCTCAAGGCTTCTATCCCAGCGACATCGCCG
 2051 TGAGGTGGAGGAGCAATGGCAGGGGAAGAACACTACAAAGGCCGCT
 2101 CCCGTGCTGACTGGCGCTCTCTCTCTCTATAGCAAGGCTACCGT
 2151 GGACAAGGAGCTGGCAGGGGAACGTCATGCTCGTGTAGTC
 2201 ACAGGGCTCTGCAACACCAACTACACCCAGAAGAGCTCTCCCTGTC
 2251 GGGAAATGAGGCAATTGGCCCTCTCCCTCCCCCCCCCTAACGTTA
 2301 CTGGCCGAAGGGCTGGATAAAGGCCGTTGCGTTTGTCTATATGTTA
 2351 TTTCACCATATTGGCTCTTGGCAATGTGAGGGGGGGGAAACCTGG
 2401 CCCTGCTTCTGAGGACCATCTCTAGGGCTTCTCCCTCTGCCAAG
 2451 GAATGCAAGGTCTGTAATGTCGTGAAGGAAAGCAGTCTCTGGAGCT
 2501 TCTTGAAGACAAACACGCTGACGGCAGGGCTTGAGGAGGACCC
 2551 CCCACCTGGCGCACGGTGCCTCTGGCCAAAGGCCAGTGTATAAGATA
 2601 CACCTGCAAAAGGCCAGACCCAGTGCACAGTGTGAGTTGGATAGTT
 2651 GTGGAAAGAGCTCAATGGCTCTCTCAACGGTATTCAACAAAGGGCTGAA
 2701 GGATGCTTACATGTTAGTGTGAGGTTAAAAAAACCTCTAGGCCCC
 2751 GCACATGCTTACATGTTAGTGTGAGGTTAAAAAAACCTCTAGGCCCC
 2801 CGGAACACGGGGAGCTGGTTTCTTGGAAAAACAGTGTATAATGG

Figure 7b

2851 CCTCCCTTGTCTCTGCTCCTGGTAGGCATCCTATTCCATGCCACCCAG
 2901 GCCGACATCCACGGACCCAGAGCCCAAGCAGCCTGAGCGCCAGGGTGG
 2951 TGACAGTGTACCATCTGAGGCAGTCAAGGATGTTCTGGGACTCTG
 3001 TAGGGTGTACCCAGAGGAGGGCAGGTAAAGGCTCCAAGACTGCTGATCTAC
 3051 TGGACATCCACCCGGACACTGGTGTCCAAGCAGATTCAAGGGTAGGG
 3101 TAGGGTACCGACTCTACCTTCCACCATCAGCAGCTCCAGGCCAGGACA
 3151 TCGCCCAACTACTCGCACGAAATATAGCCTCTATCGGTGTTGGCCAA
 3201 GGGACCAAGGTGAAATCAAAGACTGTGGCTGCACCATCTGCTTCA
 3251 CTTCCCGCATGTGAGCAGTTGAAATCTGGAACCTGCCTCTGTGTG
 3301 GCCTGCTGAATAACTCTATCCAGAGGGCAAAAGTACAGTGGAAAGGTG
 3351 GATAACGCCCTCAATCGGGTAACCTCCAGGAGAGTGTACAGAGCAGGA
 3401 CAGCAAGGACACCCATAGCCTCAGCACCCACCTGAGCTGAGCAAAAG
 3451 CAGACTCAGAAAACACAAAGTCTACGGCTCGGAAGTCACCCATCAGGGC
 3501 CTGAGCTGCCCTCAACAAAGGCTCAACAGGGGAGAGTGTAGAGATC
 3551 TAGGCTCTAGGCTGACATCGATAAAATAAAAGATTTTATTAGTC
 3601 AGAAAAAGGGGGAAATGAAAGACCCACCTGTAGGTGGCAAGCTAGCT
 3651 TAAGTAAACCCATTGCAAGGCATGGAAAATACATAACTGAGAAATAGA
 3701 GAAGTTCAGATCAAGGTCAAGGAACAGATGGAACAGCTGAATATGGGCCAA
 3751 ACAGGATACTGTGGAAGCAGTTCTGGCCCGGCTCAGGGCCAAGAACAA
 3801 GATGGAACAGCTGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGITC
 3851 CTGCCCCGGCTCAGGGCCAGAACAGATGGTCCCCAGATCGGTCCAGCC
 3901 CTCAAGTGGAGGACCATCTGAGAAGCTCAATAAAAGAGGCCAACAC
 3951 CTGAAATGACCCCTGTCCTTATTGAACTAACCATCAGTTGGCTCTCG
 4001 CCTCTGTTGGCGCTTCTGCTCCCCGAGCTCAATAAAAGAGGCCAACAC
 4051 CCCCACTCGGGCGGCCAGTCCCTCCGATTGACTGAGTCGCCGGTACCC
 4101 GTGATCCAATAAACCTCTTGCAAGTTGACATCGACTGTGGTCTCGCTG
 4151 TTCCCTGGGAGGTTCTCTGAGTGAATGACTACCCGTCAAGGGGGGTC
 4201 TTTCAATT

1 - 812 CMV promoter/enhancer
 853-855 MN14 antibody heavy chain gene signal peptide start codon
 2257 - 2259 MN14 antibody heavy chain gene start codon
 2271 - 2846 EMCV IRES
 2847 - 2849 Bovine alpha-lactalbumin signal peptide start codon
 2904 - 2906 First codon mature MN14 antibody light chain gene
 3543 - 3544 MN14 antibody light chain gene stop codon
 3614 - 4207 MoMuLV 3' LTR

Figure 8a
SEQ ID NO:5
CMV LL2 Vector

1 GGATCCGGCCATTAGCCATTATTAATTAGGTATATAGCATAAATCAAT
 51 ATTGGCTATTGGCCATTGCACTGTTGATCCATATCATAAATATGTACAT
 101 TTATATTGGCTCATGTCACACATTACCGCCATGTTGACATTGATTATG
 151 CTAGTTATTAAATAGTAAATCAATTACCGGGCTATTAGTTCATAGCCCCAT
 201 ATGGACTTCGGCTATCATAACTACCGTAAATGCCCGCTGGCTGACC
 251 GCCAACGACCCCGCCATTGACCTAAATAATGACGTATGTTCCCATAG
 301 TAACGCCATTAGGGACTTTCCATTGACCTCAATGGGTTGGAGTTAACGG
 351 TAAGACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC
 401 CCTTATGAGCTCAATGACGGTAATGGCCGGCTTGGCATTATGCCAGT
 451 ACATGACCTATGGACTTCCACTTGGCAGTACATCACTACATTAATAGTC
 501 ATGCTATTACCATGGTGTGGCATTAGTCAATCAATGGGGTGTGG
 551 ATAGCGTTTGTACTCACGGGATTTCCTCAGTCTCACCCATTGAGCTCA
 601 ATGGGATTTGGCACCRAATCAACGGGACTTCCAAATGTCGT
 651 AACAACTGCCCTGACATGGGACTTGGCAGTGTACGGTGGGA
 701 GGTCTATATAAGCAGACTCTGGTTAGTGAACCGTCAAGTCGGCTGGAGAC
 751 GGCATCCACGCTTGTGGCTTCAGGCTTCAAGAACGACACGGGACCGATCCAC
 801 CTCCGGGGCCCAAGGCTCTCAGGCTACGGGAAATTCAAGGACTTCAC
 851 CTGGGATGGAGGTGTATCATCTCTTGTAGCAACAGGTACAGGTG
 901 TCCACTCCAGGTCCAGCTGGCTCAAGGCTTAATCAGGGCTGAAGTCRAAGAACCT
 951 GGTCTCATCAGTGAAGGCTCTCGCAAGGCTTGTCTACACCTTACTAG
 1001 CTACTGGCTACTGGTCAAGGGCACCCTGGACAGGGTCTGGGAATGG
 1051 TTGGATACATTAATCTAGGATGATTATATCTGACTACAACTAGAACCTC
 1101 AAAGGCAAGGCAACAAATCTGCAAGGACATCCAAATACAGCTTACAT
 1151 GGAGCTGAGCAGCTGGGTCTGGAGACACGGCATTTTATTTTGTGCAA
 1201 GAAGGGATATTACTACGTTACTGGGGCAAGGCACACGGTCAAGCTC
 1251 TCTCAGCCCTCAACCAAGGCCATTGCGCTTCTCCCGCTGGCACCCCTCCTC
 1301 CRAGACCACTCTGGGGCAAGGGCCTGGCAGGGCCCTGGCTGGTCAAGGACT
 1351 ACTCTCCCAGACGGCTGAGCTGTCTGGAAACTCTAGGGGGCTTGAACAGC
 1401 GGGCTGACACCTTCTGGGGCTGCTCTACAGTCTCAGGACTCTACTCC
 1451 CAGCAGCTGGTGGTGGCTGCCCCCTCAGCAGCTTGGGACCCAGACCTACA
 1501 TCTGCAACGTGAATCACAGGCCAGCACACCAAGGTGGACAAGAGAGTT
 1551 GACCCAAAATCTGTGACAAAATCTCACATGCCACCGTGGCCAGCAC
 1601 TGAACTCTGGGGGACGGCTCAGTCCTCTCTTCCCCCCTGGCACCCCTC
 1651 ACACCCCTCATGATCTCCGGGACCCCTGGAGGTACATGCTGTGGTGGAC
 1701 GTGAGGCTCACGAAGGCCCTGAGGTCAAGTCAACTGGTACGTGGACGGCT
 1751 GGAGGTGCAATATGGCAAGAACAGGCTGGGGAGGGAGCTACAAACAGCA
 1801 CGTACCGTGTGGTCAAGGCTCTCACCGTCTGCAACAGACTGGCTGAAT
 1851 GCAAGGAGTACRAGTCAAGGCTTCAACAAAGGCTTCCACAGGCCCCCAT
 1901 CGAGAAAACCATCTTCAAAAGGGCAAGGGCAGCCCCGAGAACACAGTGT
 1951 ACACCTTGGCCCCCATCCGGGAGGAGATGACCAAGAACAGCTCAGCTG
 2001 ACCTGGCTGTCAAGGGTCTTATCCCAGCGACATCGCCGTGGAGTGGGA
 2051 GACCAATGGCAGGGAGAACAACTCAAGAACGACGCCCTGGCTGCTGG
 2101 ACTCCGACGGCTCTCTCTCTCTCTCTATAGCAAGGCTCACCGTGGACAAGAGC
 2151 AGGTGGCAGCAGGGGAACGTCCTCICATGCTCTGTGATGACAGGCTCT
 2201 GCAACACCCTACACGCAAGAACGCTCTCCCTGTCTCCCGGGAAATGAA
 2251 AGCCGAATTCCCCCTTCTCTCCCCCCCCCTAACGTTACTGGCCGAAG
 2301 CCCCTTGGATAAAGGGGGTGTGGCTTGTCTATATGTTATTTTCAACCA
 2351 TATGGCGCTCTTGGCAATGTGAGGGGCCGGAAACCTTGCCCCCTGTCTC
 2401 TTGAGCAGCATCTCTAGGGGTCTTCTCCTCTGCCAAAGGAATGCAAGG
 2451 TCTGTTGAATGCTGGAAAGGAGCTTCTCTGGAGGCTTCTTGAAGAC
 2501 AACAAACGCTGTAGCGACCTTTGCAAGCAGCAGGAAACCCCCACTGG
 2551 GCAAGGTGCTCTGGCCCAAAAGGCCACGTGTATAAGATAACACCTGCAA
 2601 GGGGCAACACCCAGTCAGCTGGAGTGTGAGTTGGAGTATGTTGGAAGAG
 2651 TCAATGCTCTCTCAAGCTTATCAACAGGCTGAGGATGCCAG
 2701 AAAGTACCCCATGTATGAGATCTGATCTGGGGCCCTCGGTGCAACATGCT
 2751 TACATGTTAGTGTGGAGTTAAAAAAAGCTTAGGCCCCCGAACACAG
 2801 GGGACGTGGTTTCTCTTGTAAAAACACGATGATAATATGCCCTCCTTGT

Figure 8b

2851 CTCCTGCTCTGGTAGGCATCCTATTCCATGCCACCCAGGCCGACATCC
 2901 AGCTGACCCAGTCCTCATCATCTCTGAGCGCATCTGTTGGAGATAGGGTC
 2951 ACTATGAGCTGTAAGTCCAGTCAAAGTGTATAACAGTCAAATCACAA
 3001 GAACTACTGGCTGGTACAGCAGAAACCCAGGAAAGCACCTAAACTGC
 3051 TGATCTACTGGCATCCACTAGGGATCTGGTGTCCCTTCGCGATTCCT
 3101 GGCAGGGATCTGGACAGATTTACTTCCACCATCAGCTCTTCAACC
 3151 AGAAGACATTGCAACATAATTATGTCACCAATACCTCTCTCGTGGACGT
 3201 TCGTGGAGGGACCAAGGTCCAGATCAAACGAACGTGGCTGCACCAT
 3251 GTCTCATCTCCGCCATGTGAGCAGTTGAAATCTGGAACATGCTC
 3301 TTGTTGTCGCTGAATAACTCTATCCCAGAGAGCCAAAGTACAGT
 3351 GGAAGTGGATAACGCCCTCAATCGGTAACTCCAGGAGAGTGTACA
 3401 GAGCAGGACAGCAAGGACGACACTACAGCCTCAGCAGCACCCCTGACGCT
 3451 GAGCAAGCAGACTCAGAGAAACACAAGATCTACGCCCTGCGAAGTCACCC
 3501 ATCAAGGCTTGACTCCAGGGCTCACAAAGAGCTTCAACAGGGGAGAGTGT
 3551 TAGAGATCTAGGCTCTAGTCGACATCGATAAAATAAAAGATTTTATT
 3601 TAGTCTCCAGAAAAGGGGGATGAAAGGCCACCTGTAGGTTGGCA
 3651 AGCTAGCTTAAGTAACGCCATTTCGARGGCRATGAAAATACATAACTG
 3701 AGAATAGAGAAGTTCGATCAAGGTCAAGGAACAGATGGAACAGCTGAATA
 3751 TGGCCAAACAGGATATCTGGTAACTAGCAGTTCTGCCCGGCTCAGGGC
 3801 CAAGAACAGATGGAAACAGCTGAATATGGCCAAACAGGATATCTGTGTA
 3851 AGCAGTTCTGCCCGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCG
 3901 GTCCAGGCTTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGC
 3951 CCAAGGACCTGAAATGACCCCTGCTCTATTGACTAACCAATCAGTT
 4001 GCTCTCGCTCTGTTGGCGCTCTGCTCCCGAGCTCAATAAAAGAG
 4051 CCCAAACCCCTCACTGGGGCGCAGTCCTCCGATTGACTGAGTGGCC
 4101 GGTTACCCGTGATTCAAATAACCCCTTTCGAGTTGCATCCGACTTGTGG
 4151 TCTCGCTGTTCTGGAGGGTCTCCCTCTGAGTGAATGACTACCCGTCAG
 4201 GCTTTTCAATT

1 - 812 CMV promoter/enhancer
 852 - 854 LL2 antibody heavy chain signal peptide start codon
 2247 - 2249 LL2 antibody heavy chain stop codon
 2261 - 2836 EMCV IRES
 2837 - 2839 Bovine alpha-lactalbumin signal peptide start codon
 2894-2896 First codon of mature LL2 antibody light chain gene
 3551 - 3553 LL2 antibody light chain gene stop codon
 3622 - 4210 MoMuLV 3' LTR

Figure 9a
SEQ ID NO:6
MMTV MN14 Vector

1 CGAGCTTGGCAGAAATGGTTGAACCTCCGAGAGTGTCTTACACCTAGGGG
 51 AGAACGAGCCAAGGGTTGTTCACCAAGGACGCCGCTGCGCACA
 101 AACGGATGAGCCCATCAGACAAAGACATATTCAATTCTCTGTCGAAACTT
 151 GGCAATAGCTCTGCTTGGCTGGGCTATGGGGAAAGTGGGGTCTGTG
 201 TCGCAGGGCTCACCCTTGACTCTTCAATAATAACTCTGTGCAAG
 251 ATTACAATCTAACAACTTCCGGAGAACCTCCCTCTGAGGGCAAGGA
 301 CCACAGCCAACCTCTTACAACGCCCATCGATTTCCTCTGAGGGCAAGGA
 351 AGAAATAAGAATGCTTGCTAAAAATTATATTACCAATAAGACCAATC
 401 CAATAGGTAGATATTAGTACTATGTTAAAGAATGAATCATTATCTTT
 451 AGTACTATTTTACTAAATCTCAAGAATTTAGAAATGGGAATAGAAAATAG
 501 AAAGAGACGCTAACCTCAATTGAGACACGGGTCAAGGACTATTGGACCA
 551 CAGGCTCTAGAAGTAAAAGGGAAAAAGAGTGTGTTTGTCAAATAGGA
 601 GACAGGTGTTGCCAACAGGACTTATAGGGGACCTTACATCTACAGACC
 651 AACAGATGCCCTTACCATATACAGAACAGGATATGACTTAAATTGGGATA
 701 GGGGGTTTACAGTCAATGGCTTAAAGTGTATATAGATCCTCCCTTT
 751 CGTGAAGACTGCCAGGGCTAGACCTCTGGTGTATGTTGTCAGAAG
 801 AAAAGAACAGCATGAAACAAACAGGTACATGATTATATTATCTAGGAA
 851 CAGGAATGCACTTGTGGGAAAGATTTCACCAAGGAGGGGACAGTG
 901 GCTGGACTAATAGAACATTATCTGCAAAACTTATGGCATGAGTTATTA
 951 TGATTTAGCCTTGATTGCCCCAACCTTGCCTTCCAAAGCTTAAAGTAAGT
 1001 TTTTGTGTTACAAACTCTTGTCTTAAAGGATGTGACACAAGTGGTTTC
 1051 TGACTTGGTTGGTATCAAAGGTTCTGATCTGAGCTCTGACTGTTCTATT
 1101 TTCTCATGTCTTGGAAATTTCTCAAATCTTATGTAATGCTTATGTA
 1151 AACCAAAGATATAAAAGATGCTGATTTTTGAGTAACCTTGCACAGTCC
 1201 TAACATTACCTCTGTGTTGTCTGTTCCGCTTCCGCTCTCCGCT
 1251 CGTCACTTACCTCTACTTCCAGGCTTCCGGAGGTCCCCCGAGACAGCCGGCAG
 1301 CCTCAGGTCGGCGCATGCGCAGCTGGCCCGAACAGGACCTCGGA
 1351 TAAGTGACCCCTCTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT
 1401 CTCTATCTGCTGCTGTTATCACAAAGAGGGAAACGGACTCACTCAGG
 1451 GAAACCAAGTCTAGCCGGGGTGCAGGGATCCGATTACTACTGGCAGGTGC
 1501 TGGGGCTCCGGGAGAACATGCGAACATCTACACCAACAAACAGGCTC
 1551 GACCGGGTGGAGATATCGGGGGGGAGCCGGCGTGGTAATTACAGGGA
 1601 GATCCGATTACTTACTGGCAGGTCTGGGGCTTCCGGAGAACATCGCGAA
 1651 CATCTACACCCACACAACAGGCCCTCGACCGAGGTGAGATATCGCCGGAA
 1701 ACGGCCGGTGGTAAATCAAGGGAGATCCCCGGGAATTCAAGGACTCTCAC
 1751 CATGGGATGGAGCTGTATCATCTCTCTTCTGGTAGCAACAGCTACAGGTG
 1801 TCCACTCGAGGTCACACTGTGGAGAGCGGTGGAGGTGTGCAACACT
 1851 GGGCGCTCCGGCTCTCCGGCATCTGGCTTCTGGATTTCACACAC
 1901 ATATTGGATGAGTTGGGGTGGAGAACAGGCGACCTTGGAAAAGGTCTTGAGTGG
 1951 TTGGAGAAATTCTACCCAGATAGCAGTACGGATTAACTATGCCGTCTCTA
 2001 AAGGATAGATTACACATATCGCGAACACAGCCAAGAACACATTGTCT
 2051 GCAATGGACAGCTGAGACCCGAAGACACCGGGGTCTATTGTGCAA
 2101 GCCTTACTCTCGGGCTCCCTGGTTCTATTGGGGCAAGGGACCCCG
 2151 GTCACCGCTCTCCGACTCCGGGCTACAGGCGGCTGGGGCTGCCGTG
 2201 ACCCTCTCAGGAGACGACCTCTGGGGCACAGGGCCCTGGGGCTGCCGTG
 2251 TCAAGGACTACTCCCCGACCCGTGACGGTGTCTGGAAACTCAGGGCC
 2301 CTGACCGAGCGGTGACACCTTCCGGCTGTCTACAGTCTCAGGACT
 2351 CTACTCCCTCAGGAGCGGTGGTGACCGTGGCTTCCAGCAGCTGGGCACCC
 2401 AGACCTACATCTGCAACGTTGAATCACACAGGCCACACACAAAGGTGAC
 2451 AAGAGAGTGAGCCCAACCTCTGGGGCACAGGGCCCTGGGGCTGCCGTG
 2501 CCCAGCACCTGAACTCTGGGGGGACCGTCAAGTCTTCTCTTCTCCCAA
 2551 AACCCAAGGACACCTCATGATCTCCGGGACCCCTGGGTACATGCGGTG
 2601 GTGGTGGAGCTGGGGACAGGAGACAGGCTGGAGGTCAAGTCAACTGTGAGT
 2651 GGACGGCGTGGAGGTGCAATAGTCAGAACAAAGCCGGGAGGAGCAGT
 2701 ACAACAGCAGTCACTGTGCTGTCAGCTCCGGCTACCCGTCACCCAGGAC
 2751 TGGCTGAATGGCAAGGGAGTACAAGTCAAGGCTTCCAAACAAAGCCCTCCC
 2801 AGCCCCCATCGAGAAAACATCTCCAAAGCCAAGGGCAGCCCCGAGAAC

Figure 9b

2851 CACAGGTGTACACCTGCCCCATCCGGGAGGAGATGACCAAGAACAG
 2901 GTCACGCTGACCTGCTGGTCAAAGGCTTCTATCCAGCGACATCGCGT
 2951 GGAGTGGAGAGCAATGGCAGCGGAGAACAACTACAAGACCAAGCCTC
 3001 CCGCGTGGACTCCGACGGCTCCTCTCTATAGCAAGCTCACCGTG
 3051 GACAAGAGCAGGTGCGACAGGGGAACGCTCTCATGCTCCGTGATGCA
 3101 CGAGGCTCTGCACAACCAACTACAGCAGAAAGACCTCTCCGTCTCCCG
 3151 GGAATGAAAGCCGAATTGGCCCTCTCCCTCCCCCCCCCTAACGTTAC
 3201 TGGCGGAAGCCCTTGGATAAAGCCCGTGTGGTTGTCTATATGTTAT
 3251 TTTCCACCATATTGGCTTGGCAATGTGAGGGCCCGGAAACCTGGC
 3301 CCTCTCTCTGGACGACATTCTCTAGGGGTCTTCCCCCTCGCCAAGG
 3351 ATGCAAGGTCTGTGAATGTGCTGAGGAAGCAGTCTCTGGAAGCTT
 3401 CTGAAGACAAACAGCTGTAGCGACGCCCTTGAGGGCAGGAACCC
 3451 CCACCTGGCAGCGGTGCTCTGGGCCAAAACCCACGTGATAGATAC
 3501 ACCTGCAAAAGGGGAAACCCCGTCCAGCTGTGAGTTGGATAGTTG
 3551 TGGAAAGAGTCAAATGGCTCTCTCAAGCTATTACAACAGGCTGAAAG
 3601 GATGCCAGAAGTACCCATTGTATGGATCTGATCTGGGCTCTCGGTG
 3651 CACATGCTTACATGTGTTAGTGAGGTTAAAAAACGCTCTAGGCCCC
 3701 CGAACACGGGGACGTGGTTTCTTCTTGTAAAAACACGATGATAATATGG
 3751 CTCCCTTGTCTCTGCTGGTGTAGGCAATCTATTCCATGCCACCCAGG
 3801 CGACACATCCTGGCAGGCAACGGCCAAAGCAGCGCTGAGGGCAGCGTGGG
 3851 GACAGTGGACCATCACCTGTAAAGGCCAGGTAAAGGCTCAAAGCTGCTGATCTACT
 3901 AGCTGGTACCGAGAAGCAGGTAAAGGCTCAAAGCTGCTGATCTACT
 3951 GGACATCACCAGGCAACACTGGTGTGCAAGCAGATTAGGGTAGCGGT
 4001 AGCGGTACCGACTTACCTTACCCATCAGCAGGCTCAGCCAGAGGACAT
 4051 CGCCACCTACTAGCCTGCAAGCATATAGCTCTATCGTCTGTCGCCAAG
 4101 GGCAAAAGGTGAAATCACAACGAATCTGGCTGCACCATCTGTCTTCATC
 4151 TTCCGGCATCTGTAGCAGGTTGAATCTGGAACTGCCTCTGTGTTGTG
 4201 CCTGCTGAATAACTCTATCCAGAGGCCCCAAGTACAGTGGAGGTGG
 4251 ATAAGCCCTTCAATGGGGTAACCTGGGGTAACCTCCAGGAGAGTGTCAAGAGCAGGAC
 4301 AGCAAGGACAGCACCACGGCTCAGCAGCACCCCTGAGCTGAGCAAAGC
 4351 AGAGTACGGAGAAACCAAAGTCTAGCAGGCTGGGAAGTCACCCATCAGGGCC
 4401 TGAGCTCGCCCTCAAGGCTTCAACAGGGAGAGTGTAGAGATTC
 4451 CCCGGGCTGAGGAATTCTGATATCAAGCTTATCGATAATCACCTCTGA
 4501 TTACAAAATTGTGAGAAGTGTACTGGTATTCATAACTATGTTGCTCTT
 4551 TTACCTATGCGTATGCGTTAATGCGTTGTATCATGCTATTGCT
 4601 TCCCGTATGGCTTATTCCTCTCTCTGTATAAAATCTGGTTGCTGTC
 4651 TCTTATGAGGAGTTGTGGCCGTGTGCAAGCTGGCTGGTGTGCA
 4701 CTGTTTGTCTGACCGAACCCCCACTGGTTGGGCATTGCCAACACCTGT
 4751 CAGCTCTTCCGGGACTTCTGCTTCTCCCTCCATTGCGAACGGCGGA
 4801 ACTCATCGCGCTGCTGGTGGCCGCTCTGGACAGGGCTCGCTGTGG
 4851 GCATCTGACAATTCCGGGGTGTGCTGGGAAATCATCGTCTCTTCTTGTGG
 4901 CTGCTCGCTGTGCTGGCACCTGGATCTGGCGGGAGCTCTTGTGTA
 4951 CGTCCCCTGGCCCTCAATCCAGGGACCTTCCCTTCCGGGGCTGCTG
 5001 CGCTCTGGCCCTCTCCGGCTCTGGCCCTCGCCCTCAGAGCAGTGG
 5051 ATCTCTTGGGCCCTCGCCGCTGATCGATAACCGTCAACATCGATA
 5101 AAATAAAAGATTTTATTGCTGGCAAAGGGGGAAATGAAAGACCC
 5151 CACCTGTAGTTGGCAAGCTAGCTTAAGTAACCCATTGTCAGGCA
 5201 GGAAAATACATAACTGAGAATAGGAAGGCTAGATAACGGGCA
 5251 GATGGAAACAGCTGAATATGGGCAAACAGGATATCTGGGTAAGCAGTTC
 5301 CTGCCCCGGCTCAGGGCAGAACAGATGGAACAGCTGAATATGGGCAA
 5351 ACAGGATATCTGGTGAAGCAGTTCCTGGCCCGCTCAGGGCAAGAACAA
 5401 GATGTTCCCGCAGATGGGGTCCAGCCCTCAGCAGTTCTAGAGAACCATCA
 5451 GATGTTCCAGGTGCCCCAAGGACACTGAAATGACCCCTGTGCTTATTG
 5501 AACTAAACCATGTTCTGCTCTGCTCTGTTGGCCGCTCTGCTCC
 5551 CGAGCTCAATAAGAGGCCACACCCCTCACTCGGGGCCAGCTCTCC
 5601 GATTGACTGAGTGGCTCTGCTGCTGCTGTTGGGAGGGTCTCTGAG
 5651 TTGACATCGGACTGTGCTGCTGCTGTTGGGAGGGTCTCTGAGT
 5701 GATTGACTACCCGTAGCGGGGGTCTTCATT

Figure 9c

1752 - 1754	MN14 heavy chain signal peptide start codon
3156 - 3158	MN14 heavy chain stop codon
3170 - 3745	EMCV IRES
3746 - 3748	Bovine alpha-lactalbumin signal peptide start codon
3803 - 3805	First codon of mature MN14 light chain gene
4442 - 4444	MN14 antibody light chain gene stop codon
4487 - 5078	WPRE sequence
5133 - 5372	MoMuLV 3' LTR

Figure 10a
SEQ ID NO:7
Alpha-Lactalbumin MN14 Vector

1 AAAGACCCCACCCGTAGGTGGCAAGCTAGCTTAAGTAAAGCCACTTGC
 51 AGGCATGAAAAAAATACATAACTGAGAATAGAAAAGTTAGATCAAGGT
 101 GGAACAAAAGAACAGCTGAATACCAAAACGGGATATCTGTGTAAGCGGT
 151 CCTGCCCGCCTCAGGGCAAGACAGATGAGACAGCTGAGTGATGGCC
 201 AACACGGATATCTGTGTAAGCAGTTCTGCCCGGCTCGGGGCCAGAA
 251 CAGATGGTCCCAGATGGCTCAGGCCCTCAGCAGTTCTAGTGAATCAT
 301 CAGATGTTCCAGGTGCCCCCAAGGACTGAAATGACCTGTGACCTTAT
 351 TTGAACAAACCAATCAGTTCTGCTTCTGCTCTGTTCCGGCGCTTCCCGT
 401 CTCCGAGCTCAATAAGGCCCCAACACCCCTCACTCGGCCGCCAGTCT
 451 TCCGATAGACTGCGTCCCCTGGTACCCGTATTCCAAATAAGCCTCTG
 501 CTGTTGATCGGATCGGACTGGTGTCTCTGTTGGGAGGGTCTCCCT
 551 GAGTGAATTGACTACCCACGACGGGGTCTTCAATTGGGGCTCGTCCGG
 601 GATTGGGAGACCCCTGCCAGGACACCCGACCCACCCGGAGGTTAAG
 651 CTGGCAGCAACTTATCTGTGCTGCTGCGATTGTCTAGTCTATGTTG
 701 ATGTTATGGCCTGCTCTGACTAGTTAGCTAACTAGCTCTGTATCTGG
 751 CGGACCGTGGTGGACTGAGCAGGTTGACACCCGGCCGAAACCCCTGG
 801 GAGAGCTCCAGGACTTGGGGCCGTTTTGTGGCCGACCTGAGGAA
 851 GGGAGTCTGATGTGGACACCCGGTCAAGGATATGTGGTTCTGGTAGGA
 901 GAGCAGAACCTTAAACAGATGGCCGCTCCGCTGAAATTGCTTCGGT
 951 TTGAGAACCGAAAGCCGGCTCTGCTGCTGCAAGCGCTGAGCATCGTC
 1001 TGTGTTGTCCTGCTGACTGTTCTGTTATTGCTGAAATTATAGGGC
 1051 CAGACTGTTAACCTCTTAAAGTTGACCTTAGTCACTGGAAAGATGT
 1101 CGGAGGATCGCTGCTAACCCAGTCAGGATGAGATGTCAGAAGAGACCTTGG
 1151 TTACCTCTGCTCTGAGATGCCAACCTTAACTGCGATGGCCGCGA
 1201 GACCGCTACCTTAAACGGACACTTCACCCAGGTTAAAGTCAAGGTT
 1251 TTCAACTGGCCCCCATGGCACCCAGCACCGTCCCCATACTCGTCACCT
 1301 GGGAGCCTGCTTGTACCCCCCTCCCTGGGTCAGCCCTTGTACAC
 1351 CCTAACCTCCGCTCTCTCTCCATCGGCCCGCTCTCTCCCTCTGGA
 1401 ACCTCTCTGCTGCCGGCCGCTCGATCTCCCTTATCAGCCCTCAGTC
 1451 CTTCTCTAGGGCCGGAAATTCGGCATCTGATCAAGAGACAGGATGAGGATC
 1501 GTTGGCATGATTGAAAGATGGATGGTGTGGCAGGGTCTCCGGCGCTT
 1551 GGGTGGAGGGTATTGGCTATGACTGGCACAACAGACAATCGGCTGC
 1601 TCTGATGCCGGCTGTCCGGCTGTCAGCGCAGGGGGCCGCTTCTT
 1651 TGTCAGAACGCCACTCTGGGCTGCCCTGATGAACCTCAGGACAGGGCAG
 1701 CGCGGCTATCGCTGGGGCACGGGGCTTCTTGGCAGCTGTGTC
 1751 GACGTTGCACTGAAGCGGGAAAGGGACTGGCTGCTATTGGCGAAGTGCC
 1801 GGGGAGGATCTCTGCTCATCTCACCTTCTGCTCTGCCGAGAAAGTATCCA
 1851 TCATGGCTATGTCATGCCGGCTCATAGCGTTGATCCGGTACCCG
 1901 CCATTCGACCAACGAAATCCTGACGGACACACTCGGAT
 1951 GGAAGCCGGCTTGTGCTGAGGATCTGGACGAGCATCAGGGGC
 2001 TCGGCCAGCGGAACCTGTCAGGCTCAAGGCCCATGCCGACGGC
 2051 GAGGATCTGCTGACCATGGCAGTGGCTGCTTGGGAAATATCATGG
 2101 GGAARATGGCCGCTTCTGATTCTGACTGTGGCCGCTGGGTGTTG
 2151 CGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAAGAG
 2201 CTTGGCGGAATGGCTGACCCGTTCTCTGCTTACGGTATGCCCG
 2251 TCCGATTGCGACCCATCGCTTCTGATGCCCTTCTGACGAGTTCTT
 2301 GAGCGGGACTCTGGGTTGAAATGACGCCAACGGCACGCCAACCTGG
 2351 CATCACAGAGATTCTGATTCCACGCCGCCCTCTATGAAAGGTTGGGCTC
 2401 GGAATCTGTTTCCGGGACGCCGGCTGGATGATCTCCAGCGGGGATCT
 2451 CATGCTGGAGTCTGCGGACCCACCCGGCTGATGCCCCCTGCCGAGTTGTT
 2501 TCAGCTGCTGCCGAGCTGGAGACCTCCGGAGTTCTACCGCAGTGC
 2551 AAATCAGGCTCCAGGAAACCCAGGGCTATGCCGCACTCATGTC
 2601 CCCCCAAGTGGCAGGACTGGGAGGCCAGATGGCCGCTTGTGAGGGCG
 2651 ATCTAGAAGTACGGAAAATGCAAGAGCAAGACGAAAACATGCCACCA
 2701 TGAGGAATGCGATTCCTCTCAATTAACTATCAGGGCAGTATCTGGGCT
 2751 TAAAAGCAGAAGTCCACCCAGATAACGATCATACATGTTCTCTCCA
 2801 GAGGTTATTACTGAAACACTCGTCCGAGAATAACGACTGGATCAGTCTC

Figure 10b

2851 GGTGGTCATTGAAAGGACTGTGCTGAAGTGTCAACTACTTGGC
 2901 CACCTGATGGGAAACTGACTCATGTGATAAGACCTGTATCGGGAAA
 2951 GATGAGGGCAGGGAGGGATGACAGAGGTGAGAAGAGTTGGATGG
 3001 AACATCACCACCTGATGGACATGAGTTGGCAAGCTTCCAGGAGTTGGTA
 3051 ATGGCAGGGAAACCTGGCTGCTGCACTCCATGGGTTGCAAAGAGTTG
 3101 GACACTACTGAGTGACTGAACTGATAGTGTAAATCAGGTACAGA
 3151 ATATAGGATAAAAAGAGGAAGAGTTGGCTGTGAAAGAGTTGTAG
 3201 GATAATAAAATTTAGATAACCTTTAGTTGGAAAGTCTTAAATTATTACT
 3251 TAGGATGGGACCCACTGCAATAAGAAAATCAGGCTTAGAGACTGATG
 3301 TAGAGGAATGACCCCTGGCATACAGAACGCTAACAGCTATTGGTTATAG
 3351 CTGTTATAACCAATATAACCAATTATGGTTATATAGCATGAAGCTT
 3401 GATGCCAGCAATTGGAGGAAGGACATTGAGAATCTACTCTAAACTCTAC
 3451 ATGTTCCAGGACACTGATCTAAAGCTCAGGTTCAAGAATCTGTTTTATA
 3501 GGCTCTAGGTGATATGTTGGGCTTCTCTGGTGGCTCAGATGGTAAGT
 3551 GTCTGCTGCAATGTGGTGATCTGGGTCATGCTGGCTGGAAAGAT
 3601 CCCCTGGAGAAGGAATGGCAACCCACTCTAGTACTCTTACCTGGAAAAT
 3651 TCCATGGACAGGGCCTTGAAGCTACAGCTCATGGGATTGCAAGAG
 3701 TTGAAACCAACTGAGGCAACTAAAGCAGCAGTCAGTATACACCTGTTG
 3751 AGGTGAAGTGAAGTGAAGGTCTATGCGAGGCTCTGCAATTGCAAAG
 3801 ATTCTTACCATCTGAGGCCACAGGGAGGCCAAGAAATCTGGAGTGGGT
 3851 AGCTTATTCTTCAGGGGATCTCCATCCACAGGAACTCTGGAGAAGTGGAG
 3901 TCTCTGCAATTCAAGGGTGGATCTTCAACAGCTGAACCTACAGGTGGATA
 3951 CTACTCCAAATTAAAGTGTCTAAAGTCCATTTCACCTGGGACCTTCCAAA
 4001 AAAGTTGGGTCACTCTTTAACCTTCTGTGGCTACTCTGAGGCTGTG
 4051 TACAAGCTTATATTTATGAAACATTATGCAAGTTGTTAGTTTAG
 4101 ATTCAATGTGTTCTGCTTATTAGTGTATTGGTGTGTTGGGATG
 4151 GGGAGCTGATAGCATCTCAGAGGCCACTGATAGTACTGTCATACACATT
 4201 CTCAAGTCTGGTGTGAAATGAGTCTCTGGATCTAAGTTTATAT
 4251 GTGATTCTCAGTCTCTGCTCATATTCTATTCTACTCTGACCACTCAA
 4301 CAAGGAACCAAGGATATCAGGGCACCTGTTTTGTCTATGCTGGGTTG
 4351 AGTGGGCCATGACATTAAGTCTGGGCTTGTGTCATCTGGCTGGATTGGTTG
 4401 GACAAGTGGCAGCCTGATCTGGGACTGTGGCATGTGATGACATAACCC
 4451 CCCTTCCACATTCGATCTCTGCTTAAGGGGGAAAGGGGAAGCTCGGTAT
 4501 AGAACCTTTATTGTATTCTGATTGCTCATCTTATATTGCCCCCAT
 4551 CTGGCTTCTCTGCTCAAGTAAACAGAGACAGTCTTCCAGAACCAC
 4601 CCTACAGAAACAAAGGGCTAAACAAACGCAATGGGAAGCAGGATCATG
 4651 GTTGAACTCTTCTGGCCAGAGAACATACTGCTATGACTAGATAC
 4701 GGAGAGGGAAAGGAAAATGAGGTGAATTATGGAGGAAGCTGGCAGGC
 4751 TCAGCCTTCTGCTTGGCATGACCTGCTCTCTCATCTCTCTCTAGA
 4801 TGTAGGGCTTGGTACAGGACGCCCTGAGGCTTCTGCTGATGAATATAAATA
 4851 TATGAAACCTTGTGATCTCTCATTTCTGATGGCTCATCTTATATTGCCCCCAT
 4901 GAGCTGGTACCCGGGATCTGACGGGATCCGATTACTTACTGGCAGGTG
 4951 CTGGGGCTCCCGGACATACTGGCAACATCTACACACACACCCGGCT
 5001 CGACCAAGGGTGGAGATATCGGGGGGGGGGGGGGGGGGGGGGGGGGG
 5051 AGATGGCAGTACTACTGGCAGGTGCTGGGGGCTTCCGGAGAACATCGGCA
 5101 ACATCTACACCAACACCGCTTGCACAGGGTGAGATATCGGGGGGGGG
 5151 GACGG
 5201 CCTATGGGATGGAGCTGTATCATCTCTCTCTGGTGTGACACGCTACAGGT
 5251 GTCCACTCCGGTCAACTGGTGGAGGGCGGTGGGGGTGTTGTGCAACC
 5301 TGGGGGGTCCCTGGGCTGTCTCTGGGATCTGGCTTGGATTTTACCCA
 5351 CATATTGGATGAGTGGGTGAGACAGGCACTTGGAAAAGTCTTGAGTGG
 5401 ATTGGGAAAATTCACTCCAGATAGCAGTACGATTAACCTATGCCCGTCTCT
 5451 AAAGGATAGATTCAATATCGCGAGAACACGCCAGAACACATTGTTC
 5501 TGCACATGGACACCTGAGACGCCAGAACACCGGGGCTATTTTGTC
 5551 GCTCTTACTCTGGGGCTCTCTCTGGGGCTTATGGGGCCAAGGGGACCC
 5601 GGTGACCGTCTCTCAGGCTCAGGCTCAACAGGGCCCATGGCTTCCCTCTGG
 5651 CACCCCTCTCCAAAGGACACTCTGGGGCAAGCGGGGGGGGGCTGCTCTG
 5701 GTCAAGGACTACTCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 5751 CCTGACCAAGGGGGTGACACCTTCCGGCTGCTCTAGTCTCAGGAC
 5801 TCTACTCCCAAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 5851 CAGACGACTACATCTGCAACAGTGAATCACAGGCCAGAACACCAAGGG
 5901 CAAGAGAGTGTGAGGCCAAATCTGTGACAAAACATCACACATGCCACCGT

Figure 10c

5951 GCCCAGCACCTGAACCTCCTGGGGGACCGTCAGTCTCCCTTCCCCCA
 6001 AAACCCAAAGGCCCTCATGATCTCCGGGACCCCTGAGGTCAAGTCACATGGCT
 6051 GGTGGTGGACGTGAGCCAGAACCCCTGAGGTCAAGTCACATGGTACG
 6101 TTGAGCCGGCTGGAGGTGCAATTAGCAAGGCAAAGCCGCGGGAGGAGCAG
 6151 TACAAACAGCACGTACCGCTGGTCAGGGTCTCCACCGCTCAGCAGGA
 6201 CTGGCTGAATGCCAGGAGTACAAGTGCAGGTCTCAACAAAGCCCTCC
 6251 CAGCCCCCATGGAGAAACCATCTCAGGCCAAAGGGCAGCCCGAGAA
 6301 CCACAGGTATACACCTGGCCCCATCCGGGAGGAGATGACCAAGAACCA
 6351 GTCAGCCTGACTGCTCTGGTAAAGGCTTATCCAGCGACATCGCCG
 6401 TTGGAGTGGGAGGCAATGGGAGCAGGGAGAACAACTACAAAGCACGCGT
 6451 CCCGTGCTGACTCGACGGCTCTTCTTCTTCTATAGCAAGCTCACCGT
 6501 GGACAAAGCAGGGTCAGCAGGGAAAGCTCTTCTATAGCTCCGGTATGC
 6551 ACAGGGCTCTGCACAAACACTACACGCCAGAAAGCCCTCTCCCTGCTCC
 6601 GGAAATGAAAGCCGAAATTGCCCCATTCTCCCTCCCCCCCCCTAACGTTA
 6651 CTGGCCGAAGGCCGCTGGATAAGCCGGTGTGCGTTTGTCTATATGTTA
 6701 TTTCACCATATTCGGCTTGTGGCAATGTGAGGGCCGGAAACCTGG
 6751 CCCGTCTTCTTGACGAGCATTCTAGGGGTCTTCCCTCTCGCCAAAG
 6801 GAATCAAGGGCTGGTGAATGCTGAAGGAAGCAGTCTCTCTGGAAAGCT
 6851 TCTGAAGACAAACAGCTGTGAGCACCCTTGGCAGGCCAGGGAAACCC
 6901 CCCACCTGGCGACAGGTGCTCTGGGCCAAAGCCACGTGATAAGATA
 6951 CACCTGCAAGGCCAACCCCAAGGGTCAAGCAGGTGTGAGTGGATAAGTT
 7001 GTGAAAGAGTCAATGGCTCTCTCAAGCTTATTCACAAAGGGCTGAA
 7051 GGATGCCAGAAGGTACCCCATGTATGGATCTGATCTGGGCTCTGGT
 7101 GCACATGCTTACATGTTTACTGGAGGTTAAAAAACGCTTAGGGCCC
 7151 CGAACCCACGGGACCTGGTTTCTCTGGAAACACGATGATAATATGG
 7201 CCTCTTGTCTCTGCTCTGGTCTGGTAGGCATCTATTCCATGCCACCCAG
 7251 CGGCACATCCAGTGTGCCCCAGGCCAACGGCTGAGCGCCAGCTGGGG
 7301 TGACAGAGTGAACCTACCTGTAAGGCCAGTCAAGGATGTGGTACTCTG
 7351 TAGCCCTGGTACCCAGCAGAACGGCAGTAAAGGCTTCAAAAGCTGTATC
 7401 TGGACATCCACGGGCAACACTGGTGTGCCAAGCAGATTCAAGGGTAGGG
 7451 TAGCGGTACCGACTACCTACCCATCTGAGCAGCTCCAGGGAGGACA
 7501 TCCGACACTACTGCGGCAAAATTAACCTCTATCCGCTGTGGCCCAA
 7551 GGGACCAAGGTGGAAATCAAACGACTGTGGCTGACCATCTGCTTCAT
 7601 CTTCGGGACATCTGAGTGAAGCAGTGAATCTGGACACTCTCTGTGTG
 7651 GCCTGTAATAACTTATCTTACAGGAGGGCAAAGTACAGTGGAAAGGTG
 7701 GATAACGGGCTTCAAGGTTAATCTCCAGGAGAGTGTACAGGACAGGA
 7751 CACCAAGGAAGCACCTACAGCTTCAGCAGCACCTGAGCTGAGCAAAG
 7801 CAGACTACGAGAAACACAAAAGTCTACGGCTGGRAAGTCACCCATCAGGGC
 7851 CTGAGCTGGCCGTACAAAAGAGCTTCAACAGGGGAGGTGTTAGAGATC
 7901 CCCGGGCTGCAAGGATTCTGATACTACAGCTTATCTGATAATCACCTCTGG
 7951 ATTACAAAATTGTAAGGATTGCTGTTACTTAACTATGTTCTCTCT
 8001 TTACGCTATGGCTACGCTGCTTATGCTTGTATCAIGCTATTG
 8051 TTCCGTTATGGCTTATTTCTCTCTTGTATAAATCTGGTTCTGT
 8101 CTCTTATGAGGACTGTGGGGCTTGTCAAGGCAACTGGCTGGCTGTG
 8151 ACTGTGTTGCTGACGCCACCCCACTGGTTGGGCAITGCCACACCTG
 8201 TCACTCTGGCTTGGGGCTTCTGGCTTCTGGCTCTGGACAGGGCTGGCG
 8251 AACTCATCGCCGCTGGCTTCTGGCTCTGTGACAGGGCTGGCTGGT
 8301 GGCACTGACAATTCTGGTGTGTTCTGGGGAAATCATGTCCTTCTCTG
 8351 GCTGCTGGCTGTGGCTTGTGGCAACTGGATTCTGGGGAGCTCTCTGCT
 8401 ACGTCCCTCTGGCCCTCAATCCAGGGACCTTCCCTCCGGCCGCTGCTG
 8451 CGCGCTCTGGGGCTCTCCGGCCTTCCGGCTTCCGGCTCAGACGAGTCG
 8501 GATCTCCCTTGGGCCCTCCGGCTGATGATCACCTCAACATCGAT
 8551 AAAATAAAAGATTTTTACTGCTCCAGAAAAAAGGGGGAAATGAAAGAC
 8601 CCACCTGTAAGCTTGGCAAGGCTAGCTTAAAGTAAACGCCATTGGCAAGGCA
 8651 TGGAAAAATACATAACTGAGAAATAGAGAAGTTCAGATCAAGGTCAAGAAC
 8701 AGATGGRAACAGCTGAATATTGGCAAAACAGGATATCTGTGGTAAGCAGTT
 8751 CCTGGCCCGGCTCAGGGCAAGAACAGATGGAAACAGCTGAATATGGGCA
 8801 AACAGGATATCTGGTGAAGCAGTCTCCAGAAAAAAGGGGGAAATGAAAGAC
 8851 AGATGGTCCCCAGTGGCTTCCAGGCCCTAGCAGTTCTAGAGAACCATC
 8901 AGATGTTTCAAGGTGCCCCAAGGACCTGAAATGACCCGTGCTTATTT
 8951 GAACTAACCAATCAGTTGCTCTCTGCTCTGTGCGCGCTCTGCTCC
 9001 CGAGCTCAATAAAGAGGCCAACACCCACTCGGGCGCAGCTC

Figure 10d

9051 CGATTGACTGAGTCGCCCGGGTACCCGTGTATCCAATAACCCCTTGC
9101 GTTGCATCCGACITGTGGTCTCGCTGTTCCCTGGGAGGGCTCCCTGTAG
9151 TGATTGACTACCCGTCAAGCGGGGGTCTTCATT

1 - 658	MoMuSV 5' LTR
659 - 1468	Extended packaging region
1512 - 2306	Neomycin resistance gene
2661 - 4896	Bovine/human alpha-lactalbumin 5' flanking region
5084 - 5327	Double mutated PPE sequence
6207 - 6209	MN14 antibody heavy chain gene signal peptide start codon
6611-6613	MN14 antibody heavy chain stop codon
6625 - 7200	EMCV IRES
7201 - 7203	Bovine alpha-lactalbumin signal peptide start codon
7258 - 7260	First codon of mature MN14 antibody light chain gene
7897 - 7899	MN14 antibody light gene stop codon
7938 - 8529	WPRE sequence
8600 - 9138	Moloney murine leukemia virus 3' LTR

Figure 11a
SEQ ID NO:8
Alpha-Lactalbumin Bot Vector

1 GATCAGTCCTGGTGGTCATTGAAAGGACTGATGCTGAAGITGAAGCTCC
 51 AATACITGGCACCTGATGCGAAAGACTGACTCATGTTGATAAGACCTG
 101 ATACTGGAAAGATTAAGGGCAGGGAGAAGGGATGACAGAGGTGGAA
 151 GAGTTGGATGGAACTCACCACCTCGATGGACATGAGTTGGACAAAGCTTC
 201 AGGAGTTGGTAAATGGCAGGGACGGCTGCTGCACTGGTT
 251 GCAAAGAGTTGGACACTACTGAGTGACTGAACITGATAGTGTAAATC
 301 CATGGTACAGAATATGGATAAAGAGGAGAAGAGTTGGCTGATTCTG
 351 AAAGTTGAGGATATAAAAGTTAGAATACCTTATAGTTGAAAGTCTTA
 401 AATTATTTACTTAGGTGGTACCTGGCAATATAAGAAATCAGGCTTT
 451 AGAGACTGATGTAGAGAGAAATGAGCCCTGGCATACCAAGAGCTAACAGCT
 501 ATGGTTTATAGCTTATAACCAATAATAACCAATATATTGGTTATATA
 551 GCATGAAGCTTGTGCGCAGCAATTGAGGAAACRTTAACTAGTATAC
 601 CTAACCTCACATGTTCCAGGACACTGATCTAAAGCTCAGGTTCAAGAT
 651 CTGGTTTATAGCTGCTGATGTTGGGCTTCCCTGGTGGCTCA
 701 GATGGTAAAGTGTCTGCTGCAATGTGGTGTATCTGGGTTGATCTGGGTTG
 751 CTGGGAAGATCTCTGGAGAAGGAATGGCAACCCACTCTAGTACTCTT
 801 ACTGAAAATTCACATGGACAGGAGGCTTGTANGTACACTCCATGGG
 851 ATTGCAAAAGAGTTGAAACACAACGTGAGCAACTAAGCACAGCACAGTACAGT
 901 ATACACCTGTGAGGAAAGTGAAGGTTGAGGTTCACTGCAAGGTTCTCTGC
 951 ATGGCAGAAAGATCTTAACTCTGAGGACCAAGGGGAAAGATA
 1001 CTGGACTGGTGCCTTATCTCTTCTGGAGGATCTTCCCCTCCAGGAA
 1051 TTGAAACTGGAGTCTCCGTCATCTTCAAGGTGTTCTCACCAGCTGAACATA
 1101 CCAGGTGGTAACTACTCCAATATTAAAGTGTAAAGTCCAGTTTCCCA
 1151 CCTTCCAAAAGGGTTGGTCACTTCTTAACTCTCTGGCCACT
 1201 CTGAGGCTGTCTACAGCTTATATATATGACACATTATGCAAGTT
 1251 GTTGTAGTTAGATTACATGTTGATCTGGTATTTAGTGTATTGGTG
 1301 GTGGGGATGGGGAGCTGATGACATCTCAGAGGGCAGTAGATACTGTC
 1351 ATACACACTTTCAAGTCTCCATTGTTGTGRAAATGAAAGTCTCTGGAT
 1401 CTAGTTATATGTGATTCTCAGTCTGTGGTCATAATTCTACTCC
 1451 TGACCACTCAACAGGAAACAGAATCAAGGGCACCTGTTGTTCTCA
 1501 TCCCTGGTGGAGGGCATGAGCTTGTGGCCCTTGTAACTATGGC
 1551 TGAGTTGGTGGACAGCTGGCAGCTGTATCTGGGACTGTGGCATGTGA
 1601 TGACATACACCCCCCTCTCACATTGTGCTCTAGGGGGAAAGGGGG
 1651 AAGCTCGGTATAGACCTTTTGTATTCTGATTGCTCTGCTCACTTCTTAT
 1701 ATTCGCCCCATGCCCTCTTGTCTCAAGTAACAGAGACAGTCTTC
 1751 CCAGAACACCCCTACAAGAACACAAGGCTAAACAAAGCCAATGGAA
 1801 CGAGGATCTGGTTGTTCTTGTGCAAGAACATACCTGCTATG
 1851 GACTAGATACTGGAGAGGAAAGAATAGGGTGAATTATGGAAAGGA
 1901 AGCTGGCAGGCTCAGCTTGTGCTTGCTGACAGCTCTCTCATT
 1951 CTCCTCTAGATGTAGGGCTTGGTACAGAGCCCTGAGGCTTCTGCTAT
 2001 GATATAAAATATGAAATCTGAGTGTGCTTCCATTCTGGTTCTGGGG
 2051 GCGCCGAATTCTGAGCTCTGGTACCCGGGATCTGAGGATCTGATTACTT
 2101 ACTGGCAGGTGCTGGGCTTCCGAGAACATCTGCAACATCTACACCA
 2151 CAACACCGCTCAGCAGGGTGGAGTATGCGGGGGGAGCCGGTGGT
 2201 AATTACAAAGCGAGATCCGATTACTTACTGGCAGGTCTGGGGCTTCCG
 2251 GACAATCGCAACATCTACACACACACCGCCCTGAGCCAGGGTGAGA
 2301 TATCGCCGGGGAGCCGGGGTGTAACTACAGCGAGATCTGGAGAAC
 2351 TTGTTGGGAATTCTGGCCATCTGGATCCCGCCGGCACCAGTGGAAATGGAGCTG
 2401 GGTCTTCTCTCTCTGTGAGTAACACTACAGGTGTCCTACCTGGACATCC
 2451 AGATGACCCAGTCAGCAGCTCCCTATCTGCACTCTGGGAGAAACTGTC
 2501 ACTATCACATGTGAGCAAGTGGGAAATTCACAATTATTTAGCATGGTA
 2551 TCAGCAGAAAGGGAAATCTCTCAGCTCTGGCTATAATGCAAAA
 2601 CCTTACAGAGATGGTGTGCCATCAAGCTTGTGGCAGTGGATCAGGAACA
 2651 CAATATTCTCTCAAGACCTGAGCTGAGGTTGGAGGTTGGAGGTTA
 2701 TTACTGTCAACATTGTTGGAGTACTCCGTGGAGCTTGGTGGAGGGACCA
 2751 AGCTGGAAATCAAACGGGCTGATGTGCAACCAACTGTATCCATCTTCCA
 2801 CCATCCAGTGGCAGTAAACATCTGGAGGTGCTCAGTGTGCTCTT

Figure 11b

2851 GAACAATTCTACCCAAAGACATCAATGTCAGTGGAAAGATTGATGGCA
 2901 GTGAACGACAAAATGGCGCTCTGAACAGTTGGACTGATCAGGACAGAAA
 2951 GACAGCACCTACAGCATGAGCAGCACCTCAACATTGACCAAGGAGAGTA
 3001 TGAGACGACAATACACGCTACCTGTGAGGGCACTACAAAGACATCAACCT
 3051 CACCCATTGTCAAGGAGCTTCAACAGGAATGACTGTGAAGGCATCGATTT
 3101 CCCCTGAATTCTGCCCTCTCCCTCCCCCCCCCTAACGTTACTGGCCGAA
 3151 GCGGCTTGGAAATAAGGCCGGTGTGGTTTGCTATATGTTATTTTCCACC
 3201 ATTATGCCGTCTTTGGCAATGTCAGGGCCCGAACCTGGCCCTGTCTT
 3251 CTGGACGAGCATTCCTGGGGTCTTCCCTCTCGCCAAGGAATGCAAG
 3301 GTCTGTGAATGTCAGGAAGCAGTCTCTGGAAAGCTTCTTGAAGA
 3351 CAAACACGTCTGTAGGCACCTTGTGAGGCGGAACCCCCCACCTGG
 3401 CGACAGGTGGCTCTGGGCCAACGGACACGTGATAAGATACACTGCAA
 3451 AGCCGGCACACCCCACTGGCACAGTGTGAGTTGGATAGTTGGAAAGA
 3501 GTCAATGGCTCTTCAACGGCTTCAACAAAGGGGCTGAAGGATEGCCCA
 3551 GAAGGTACCCCATGATGGGATCTGATCTGGGCTCTGGTCAACATGCT
 3601 TTACATGTTGAGGTTGGAGGTTAAAAAAACGCTAGGGCCCGAACAC
 3651 GGGGACGTGTTTCTTGTGGAAACACGATGATAATATGCTCTTGTG
 3701 TCTCTGCTCTGGTAGCATCCATTCCATGCCCCAGGGCAGGGTT
 3751 CAGCTTCAGCAGTGTGGGCCAGGGACTGGTCACTGCTCTGAGCTAA
 3801 GTTGTCTCTGACACCTCTGGCTTCAACATTAAAGACACCTTTATGCACT
 3851 GGTTGAAGCAGAGGCTGCAACAGGCCGCTGGAGTGGATTGGAAAGGATTTGAT
 3901 CCTGGCAATGGAAATCTGAATATGACCCGAAGTTCCAGGGCAAGGCC
 3951 TATAACAGCAGACACATCTCCAACACAGTCACACTGCGACTCAGCAGCC
 4001 TGACATCTGAGGACACTGGCTGTTACTGTGCTAGTGGAGGGAACTG
 4051 GGGTTTCTCTGGGGCAAGGGACTGGTCACTGCTCTGAGCTAA
 4101 AACAGCACCCCCCATGTCATCCACTGGCCCTGGATCTGGTCAAGGGCTATTCTCTGAG
 4151 CTAACCTCAAGTGGACACTGGGATCTGGTCAAGGGCTATTCTCTGAG
 4201 CCRAGTGAACACTGACCTGGAACTCTGGATCCCTGTCAGCGGTGTGACAC
 4251 CTTCCCACTGTCCTGGACTTTGACCTCTACACTCTGAGCAGCTCAGTGA
 4301 CTGCCCCCTCCAGCACCTGGGCCAGCGAGACCGTCACTGCAACGTG
 4351 CACCCGGGAGCACACCAAGGTGACAGAAAATTGGTCCCCAGGGATTG
 4401 TACTACTGGAGGTGGAGTGGACCCATCACCATTACCAATTATCTAGAG
 4451 TTAAAGCAGCGCTGAGATCTCGATCATCGATAATCACCCTCTGGATTACAA
 4501 AATTGTGAAAGATTGACTGGTATTCTTAACCTATGTTGCTCTTTTACGC
 4551 TATGTGGATACCGTCTTAAATGCTTGTATCAGTCTATTGCTTCCCGT
 4601 ATGGCTTCAATTCTCTCTCTTGTATAAATCTGGTCTGTCTCTTTA
 4651 TGAGGAGTTCTGGGGCGTGTGGAGCAACGTTGGCTGTGCACTGT
 4701 TTGCTGACGCAACCCCCACTGGTGGGAAATGCCACCCACTGTCAGCTC
 4751 CTTTCCGGGACTTTGCTTCCCCCTCCCTATTGCCACGGCGGAACCTCAT
 4801 CGCCGCTGCCTTCCCCTGGCGCTGCTGGACAGGGCTGGCTTGGGCACTG
 4851 ACATTCCTGGTTGTGGGGAAATCATCGTCCTTCTTGGCTCTGCTC
 4901 GCCTGTTTCCCACCTGGATTCCTGGCGGGAGCTTCTTGTCTACGTCCC
 4951 TTGGGCTCTAATCCAGGGGACCTTCTCCCGCGGCCCTGCTGCCGGCTC
 5001 TGCGGCTCTTCCCCTGGCTTCCCCTCGACGGATCGGATCTCC
 5051 CTTTGGGCCGCTCCCCGCTGATCGATAAAATAAAAGATTATTAGT
 5101 CTCCAGAAAAAGGGGGAAATGAAAGACCCCACTGTAGGTTGGCAAGCT
 5151 AGCTTAAGTAAACGGCATTTGCAAGGGATGGAAAATACATAACTGAGAA
 5201 TAGAGAAGTTCAAGTCAAGGTCAAGGAACAGATGGACACAGCTGAATATGG
 5251 CCAACAGGATATCTGTGGTAAGCAGTTCTGCCCGCGCTCAGGGCAAG
 5301 AACAGATGGACAGCTGAATATGGCAACAGGATATCTGTGCTAAGCA
 5351 GTTCTGGCCGGGCTCAGGGCAAGAGATGGTCCCCAGATGGGGTCC
 5401 AGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAA
 5451 GGACCTGAAATGACCTGTGGCTTATTGAACTAACCAATCAGTTCCCTT
 5501 CTGGCTCTGTGGCGGCCCTCTGCTCCCCAGCTCAATAAAAGAGGCCA
 5551 CACCCCTCACTGGGGGGCCAGTCTCGGATGACTGAGTCGCCCCGGT
 5601 ACCCGTGTATCCATAAAACCTCTTGCACTGGCATCTGTGGTCTC

Figure 11c

5651 GCTGTTCTTGGGAGGGTCTCCTCTGAGTGATTGACTACCCGTCAGCGGG
5701 GGTCTTTCATT

1 - 2053	Bovine/human alpha-lactalbumin 5' flanking region
2093 - 2336	Double mutated PPE sequence
2387 - 2443	cc49 signal peptide coding region
2444 - 3088	Bot antibody light chain Fab coding region
3112 - 3686	EMCV IRES
3687 - 3745	Bovine alpha-lactalbumin signal peptide coding region
3746 - 4443	Bot antibody heavy chain Fab coding region
4481 - 5072	WPRE sequence
5118 - 5711	Moloney murine leukemia virus 3' LTR

Figure 12a
 SEQ ID NO:9
 LSNRL Vector

1 TTTGAAAGACCCCACCGTAGGTGGCAAGCTAGCTTAAGTAAACGCCACTT
 51 TCGAAGGCATGGAAAAATACATACTGAGAATAGAAAAGTTCAAGTCAAG
 101 GTCAGGAACAAAGAACAGCTGAACTACAAAACAGGATATCTGTGGTAAGC
 151 GGTCTCTGCCCGGCTCAGGGGCAAGAACAGATGAGACAGCTGAGTGATG
 201 GCCAACACAGGATATCTGTGGTAAGCAGTCTGCCCGCCTCGGGGCA
 251 AGAACAGATGTCGCCAGAGTCGGCTCAGGCCCTCAGCAGTTCTAGTGA
 301 TCATCAGATGTTCCAGGGTGCCCAAGGACCTGAAAATGACCCCTGTAAC
 351 TTATTTGAACTAACCAATCAGTTGCTCTGCCCTCTGTTCTGGCCGCTTC
 401 CGCTCTCGAGCTCAATAAAAGGCCAACAACCCCTCACTCGGCCGCCA
 451 GTCTCCGATAGACTGCGTCCCGGGTACCCGTTACCTCCATAAAGCCT
 501 CTGGCTGTTTGGATCCGGAATCTGGTCTCGCTGTTCTGGGGGCTTC
 551 CTCTGAGTATTGACTACCCACGACGGGGCTTTCATTGGGGCTCGT
 601 CGGGATTTGGAGACCCCTGCCCAAGGACCAACGCCACCGGGGAG
 651 TAAGCTGGCGAACACTATTCATGTCGTTGCGATTGTTCTAGTGTATG
 701 TTTGATGTTATGCCCTGCGCTGTACTAGTTAGCTAACTAGCTGTAT
 751 CTGGCGGAGACCTCCAGGACTTCTGGGGCCCTTTTGTCGCCGACCTGA
 801 CTGGGAGACCTCCAGGACTTCTGGGGCCCTTTTGTCGCCGACCTGA
 851 GGAAGGGAGTCGATGTTGAAATCCGGACCCCGTCAGGATATGTTGGGT
 901 AGGAGCAGGAACTTAAACAGTCTCCCGCCTCGGTCTGAATTTCCTT
 951 CGGTTTGGAAACCGGAGCGCCGCTCTGCTGCTGAGCCAAGCITGGC
 1001 TGCAGGTCGAGGACTGGGAGACCTGCCAGGACATGGAAACACACATC
 1051 AGGATTCTCAGGACCCCTGCTGCTGTTACAGGGGGTTTTCTTGTGA
 1101 CAAAGATCCTCACACAACTACAGAGCTGATGACTCTGGTGGACTCTCT
 1151 AATTCTCTAGGGGAGCACCCAGGTTCTGGCCAAAATTCGAGTCCCC
 1201 AACCTCCAATCACTCACCAACCTCTGTCCTCACATTCTCTGGCTATC
 1251 GCTGATGTCGCTGCCCTTATTCATATTCTCTCATCTCTGGCTGCTA
 1301 TGCCATCATCTCTGGTCTCTGGACTACCAAGGTATGTCGCCGT
 1351 TTGCTCTTACTTCCAGGAAACATCAACTACCAAGGACCTGGGCAAGA
 1401 CCTGCAGGATTCCTGCTCAAGGACCTCTATGTTCTCTGGTCTGT
 1451 ACAAAACCTTGGAGGAAACTGCACTGTTATCCCATCCCATCATCTG
 1501 GGCTTTCGGCAAGATCTATGGAGCTGGCCCTCAGTCCTTTCTGGC
 1551 TCAGTTTACTAGTGCCTATTGTCAGTGGTCTGTAGGGCTTCCCCACT
 1601 GTTGGCTTTCAGTTATGATGTTGTTGGCCCAAGTCITGA
 1651 CAACATCTTGTGCTCTTTCACCTTATACCAATTTCCTTGTCTT
 1701 GGATATCATTTAAACCTTAAACCAAAACCTGGGCTACTCCCTTA
 1751 ACTCTGGGATATGTAATTGGATGTTGGGTACTTTACCGAAGAACAT
 1801 ATTGTACTAAAATCAAGCAATGTTTCGAAACTGCTGTAATAGACC
 1851 TATGTGTTGGAAAGTAATGCAAGACTGTTGGGTCTTGGGCTTGTG
 1901 CCCCTTTACACATGGCTATCTGGCTTATGCTTATATGCTATG
 1951 ATACAATCTAACGAGCTTCACTTCTGCCAACTTACAAGGCCCTTCT
 2001 GTCTAAACAAATCTGACCTTACCCCGTCTGCCAACTGGCTAGGTC
 2051 TCTGCCAAGTGTCTGCTGAGCAACCCACTGGATGGGCTTGGCTATC
 2101 GCCCATAGCGCATGCCGAGCCACTTGTGGCTCTCTGGATCCATACT
 2151 GCCGAACTCTAGCAGCTGTTCTGCTGCCAGGGCTGGAGCAAAACT
 2201 TATGGCACCAGAACACTGTTGCTCTCTCTGGAAATACACCTCTTTC
 2251 CATGGCTGCTAGGGTGTGCTGCCACTGGATCCCTCAGGATATGATG
 2301 TTGCTTTGCATAGGGAGGGGAATGTAGTCCTATGCAATACACTG
 2351 AGCTTGCACATGGTACCGATGACTGAGTTAGCAACATGCCCTAACAGGAG
 2401 AAAAGCACCGTGCATGCCATTGGTGGAGTAAGGGTGTACGATCTGC
 2451 CTATTAGGAAGGAAACAGCACAGGACTGACATGGATTGGACGAAACACTG
 2501 AATTCGGCATTCGAGAATATGTTATTAAGTCTGCTGATACAGC
 2551 AAACGCCATTGGACCATTCACCAACATGGTGTGCAACCTTCCAAAACCTT
 2601 CAGCGTGCCAACACTCAGGCCAACGGCTGCTAACGGAAACCG
 2651 ACCTAGAAAGCAGTCGCAGAACCGGTGCTGACCCGGATGAATGTCAG
 2701 CTACTGGGCTATCTGGACAAGGGGAAACGGCAAGCGCAAAGAGAAAGCAGG
 2751 TACCTTCCAGTGGGCTTACATGGCAGTACTAGACTGGGGGTTTATGG
 2801 ACAGCAAGCGAACCGAATTGCCAGCTGGGGCCCTCTGGTAAGGTTGG

Figure 12b

2851 GAAGCCCTGCAAAGTAACTGGATGGCTTCTTGCCGCCAAGGATCTGAT
 2901 GGCAGGGGATCAAGATCTGATCAGAGACAGGATGAGGATCGTTTGC
 2951 ATGATTGAAACAGATGGATTCAGCGCAGGTTCTCGGCCGCTTGGTGG
 3001 GAGGTATTGGCTATGACTGGCACAACAGACATCGGCCTCTGATG
 3051 CGCGTGTTCGGCTGTCAGCGCACGGGCGCCCGTTCTTGTCAAG
 3101 ACCGACTGTCGGCTGGAATGAATGAACTCAGGACGAGCGCGGCT
 3151 ATCGTGGCAGGGCACGCGGGCTTCCCTGGCAGCTGCTCGAGCTTG
 3201 TCACTGAAGCGGAAGGGACTGGCTGTAATGGGGAAGTGGCGGGAG
 3251 GATCTCTGTCATCACCTGGCTGCGAGGAAAAGTATTCATCATGGC
 3301 TGATGCAATGGCGGCTGCAATGCGCTGATCCGCTACCTGCCATTG
 3351 ACCACCAAGGAAACATCGCATCGAGCGAGCACGACTCGGATGGAAGCC
 3401 GGCCTTGTGATCAGGATGATCTGACGGAAGGACATCAGGGCTCGGCC
 3451 AGCCGAACCTTGTGGCGAGGTCAGGGCGCATGCCACGCGGAGGATC
 3501 TCGCTGACCCATGGCGATGCTGGCTGGCGAATATCATGTTGGAAGAAT
 3551 GCGCCCTTCTGGATTCATCGACTGTCGGCTGGGTGTCGCCAACCG
 3601 CTATCAGGACATACGGCTGGCTACCCCTGATATTGCTGAAGAGCTTGGG
 3651 GCGAATGGCTGACCGCTTCCTGCTGGCTTACGGTATGCCGCTCCGG
 3701 TCGCAGCGCATCCCTTCTATGCCCTTCTGACGAGTTCTTGTGACGGG
 3751 ACTCTGGGTTGCAAGATGACGGGCAAGCAGCAGGCCAACCTGCCATCAG
 3801 GAAATTGATTCACCCCGGCCCTCTATGAAGGTTGGCTTGGAAATCG
 3851 TTTCGGGAGCAGGGCTGGATGATCTCCAGCGGGGGATCTCATGCTG
 3901 GAGTTCTCGCCCAACCCCAACCTGGCTTACGGCTTATTGGTGGACTAACCA
 3951 TGGGGGAATTCGGCTGGAATAGGAAACAGGACTACTGCTTAATGCC
 4001 ACTCAGCAATTCCAGCAGCTCCAGGCCAGTACAGGATGATCTCAGGGA
 4051 GGTAAAAAAATCAATCTCAACCTAGAAAGACTCTCTACTTCCCTGCTG
 4101 AAATGTCCTACAGAATGCAAGGGCTTAGACTTGTATTTCTAAAGAA
 4151 GGAGGGCTGTGCTGCTCTAAGAAGAATGTTCTTCTATGCGGACCA
 4201 CACAGGACTAGTGAGGAGACGATGCCAATTGAGAGAGAGGCTTAATC
 4251 AGACAGAAACTTTTGTTGACTCTAACCTGATATCTACCAATTATGGGACCCCT
 4301 AACAGATCCCTTGGTTTACCCCTGATATCTACCAATTATGGGACCCCT
 4351 CATTGTACTCTAAATGATTGTCCTCGGACCCCTGCATTCTTAAATCGAT
 4401 TACTCCAATTGTTGAAGACAGGATATCAGTGCTCAGGCTCTAGTTTG
 4451 ACTCAACAATATCACCAGCTGAAGCCTATAGAGTACGAGCCATAGATAAA
 4501 ATAAAAGATTTTATTAGTCCTCAGAAAAAAAGGGGGAAATGAAAGACCCA
 4551 CCTGAGTTGGCAACCTAGCTTAAGTAACCCATTGGCAAGGATCTGG
 4601 AAAATACATAACTGAGAATAGAGAAGTCAAGATCAAGGTCAGGAACAGA
 4651 TGGAACAGCTGAATTCGGCCAAACAGGATATCTGGTAAGCAGTTCT
 4701 GCCCGCCTAGGGCAAGAACAGATGGAACAGCTGAATATGGGCAAAAC
 4751 AGGATATCTGTTAAGCAGTCTCTGCCCCGGCTCAGGGCAGAACAGA
 4801 TGTCCCCAGATGGGCTCACCCCTCAGCAGTTCTAGAAACCATCAG
 4851 TGTTTCAAGGGTGGCCCAAGGACCTGAAATGACCCCTGTCCTTATTGAA
 4901 CTAACCAATCAGTTGCTTCTGCTTCTGTTGGCGCTCTGCTCCCG
 4951 AGCTCRATAAAGAGGCCAACCCCTCACTGGGGCGCCAGTCCCTCCGA
 5001 TTGACTGAGTCGCCCGGTACCGTGTATCCARATAACCCCTTGCAAGTT
 5051 GCATCCGACTTGTGTCCTGGCTGTTCTGGGAGGGTCTCCCTGAGTGA
 5101 TTGACTACCCGTCAGCGGGGCTTTTCAATT

1 - 589 MoMuSV 5' LTR
 659 - 897 Retroviral packaging region
 1034 - 1714 Hepatitis B surface antigen
 2279 - 2595 RSV promoter
 2951 - 3745 Neomycin phosphotransferase gene
 4537 - 5130 MoMuLV 3' LTR

Figure 13a
 SEQ ID NO:10
 Alpha-Lactalbumin cc49IL2 Vector

```

1 GATCAGTCTGGGTGTCATTGAAAGGACTGATGCTGAAGTTGAAGCTC
51 ATACTTTGCCACCTGATGCCAAGAACTGACTCATGTGATAAGACCTG
101 ATACTGGGAAGAATGAAAGCAGGAGGAGAAGGGATGACAGAGGTGAA
151 GAGTTGGATGGAATCACCACCTCGATGGACATGAGTTGGAGCAACTTCC
201 AGGAGTGGTAATGGCAGGGACCTGGCTGCTGCACTGGGGT
251 GCAAAGAGTTGGACACTACTGAGTGGACTGAACCTGATAGTCTAATC
301 CATGGTACAGAATATAGATAAAAAGAGGAAGACTTGGCTGATTCTG
351 AAGAGTTGAGGATATAAAAGTTAGATAACCTTGTAGTTGGAAAGTCCTA
401 ATATTTACTTAGTGGATGCCACTGCAATATAAGAAATCAGGCTT
451 AGAGACTGATGTAGAGAAGACCCCTGGCATACAGAAGCTAACAGCT
501 ATGGTTATAGCTTGTATAACCAATATAACCAATATAACCAATATAAGGTTATA
551 GCATGAAGCTTGTGGACAAATTGAGGAACCTTGTAGAATGATC
601 CTAACCTCATGTCAGGACACTGATCTAAAGCTCAGGTTTCAAGAAT
651 CTTGGTTTATAGGCTTGTAGGTATATTGTTGGGCTTCCCTGGTGGCTCA
701 GATGGTAAAGTGTCTGGCTCAATGTGGGTGATCTGGGTTGATCCTGG
751 CTGGGAAACTCCCTGGAGAAGGATGGCAACCCACTGAGTACTCTT
801 ACCTGGAAAATTCATGGACAGGAGCTTGTAGCTACACTCCATGGG
851 ATGCAAAGAGTTGAAACAACTGAGCAACTAAGCACAGCAGTACAGT
901 ATACACCTGTGAGGTGAGTGTAGGTTCATGGGTTCTGGGTTCTCTGC
951 ATTCGAGAAAAGATTCTTACCATCTGCCAACCGAGGAGGCCAAAGATA
1001 CTGGAGTGGGCTTACCTTCTCCAGGGGATCTTCCATCCAGGAA
1051 TTGAACTGGAGTCTCCCTGATCTTCAAGGTGGTATCTCACCAGTCAACTA
1101 CCAGTGGATACTCCAACTTAAACTGCTTAAAGTCCAGTTTCCCA
1151 CCTTCCCCAAAAGGTGGGTCACTTCTTTTAACTTCTGTGGCTACT
1201 CTGAGGCTGTCTAACAGCTTATATATTATGAAACACATTATGCAAGTT
1251 GTTGTGTTAGATTTACAATGTGATCTGCTTATTTAGTGTATTTGGTG
1301 GTTGGGGATGGGGAGGCTGATGACATCTCAGAGGCCACTAGATATGTC
1351 ATCACACATTTCAGTCTGGCTTGTGAAATAGAAAGTCTCTGGAT
1401 CTAGTTATATGTGATTCTCAGTCTCTGGTCAATTCTTACTCTACCTC
1451 TGACCACTCRAACAGGACCAAGATATCAAGGGACACTTGTGTTTGTCA
1501 TGCCTGGGTTGAGTGGCCATGACATGTCTGGGCTTGTACATGGC
1551 TGATGGTGGGACACTGGCAGCTCTGATCTTGGGACTGTGCAATGTGA
1601 TGACATACACCCCCCTTCACATCTGATGTCTCTAGGGGAAAGGGG
1651 AACTCTGGTATAGAACCTTATTGTATTTCGATGGCTCACTTCTAT
1701 ATTCGCCCCATGCCCTTCTTGTCTCAAGTAACCAAGGCTAAGCTGGAT
1751 CCAGAACCAACCTACAGAACAAAGGGCTAACAAAGCCAATGGGAA
1801 CGAGGATCATGGTTGAACCTTCTTCAGGAGAACATACCTGCTATG
1851 GACTAGATACTGGGAGGAAAAGGAAAAGGAAAAGTGGGTGATTATGGAAAGGA
1901 AGCTGGCAGGCTCAGCTTCTGCTGGCATGACAGTCTCTCTCATT
1951 CTCTGGCTTGTAGTGAGGCTCTGGTACACAGGCCCCCTGAGGCTTCTGCT
2001 GAATATAATATATGAAACTGAGTGTGCTTCACTTCTGGGTTCTGGG
2051 GCGCCGAATTGGAGCTGGCTTCTTCTCTCTGGTCAAGTAACACTACAGTGTCTC
2101 GAATGGAGCTGGCTTCTTCTCTCTGGTCAAGTAACACTACAGTGTCTC
2151 CTCCAGGTTCTAGCTGGCAGCTGACGGTGTAGTTGGTGAACCTGGGG
2201 CTTCAGTGAAGATTCTCTGCAAGGGCTTCTGGCTACACCTTCACTGACACAT
2251 GCAATTCTCTGGTGAACACCTGAACAGGCCCTGGAAATGGATTTGG
2301 ATATTTCTCCGGAAATGATGATTTAAATACATGAGAGGTTCAAGG
2351 GCAAGGCCACACTGACTGAGCACAAATCTCCAGCAGCTGCCATCGTGCAG
2401 CTCACAGCTGACATCTGAGGATTCTCAGTGTATTTCTGATCAAGATC
2451 CTGAAATATGGCTTACTGGGCTAGGAAACCTCTAGTCACGGCTTCTCTCAG
2501 GAGGCCAGGAGGCCAGGAGGCGGTGGCTCGGAGGCCAGGCTGGACATT
2551 GTGATGTCACTGGCTGAGTCTCATCTCTTCACTCTGTGTGAGTTGGCAGAGGGT
2601 TACTTGAGCTGCAAGTCCAGTCAAGGCTTCTTATATGTTAATCAAA
2651 AGAAACTACTGGCTGTGAGCAGCAAAACAGGGCAGTCTCTAACATG
2701 CTGATTTACTGGCTGTGAGCAGATTCACTCTCATGAGCTGCTTCAC
2751 AGCCAGTGGATCTGGCAGACATTCACTCTCATGAGCTGTAAGAGA
2801 CTGAGAACCTGGCAGTTTAACTGTGTCAGTATTAGCTATCCCCTC

```

Figure 13b

2851 ACCTTCGGTGTGGGACCAAGCTGGTGTGAAACGGGCCGAGCCAA
 2901 ATCTCCGTGACAAAACATCACATGCCAACCGTCCCCAGCACCTGAACTCC
 2951 TGGGGGACCGTCACTCTCTCTCCCCCAAACCCAAGGACACCTC
 3001 ATGATCTCCGGACCCCTGGGTCAGGTACATGGTGTGGTGTGGACGTGAGCCA
 3051 CGAAGACCTGGGTCAAGTCAACTGTGACGGACGAGTACACAGCACGTACCGT
 3101 ATATGCCAAGACAAGCGCGGGAGGAGCAGTACACAGCACGTACCGT
 3151 GTGGTCAGCGTCTCACCGTCTCGACAGGACTGGCTGAATGCCAAGGA
 3201 GTACAAAGTGAAGGTCTCAAAACAGCCCTCCAGCCCCATCGAGAAAAA
 3251 CCATCCAAAAGCCAAGGGCACCCGGAGAACACCAAGGTGTACACCTG
 3301 CCCCATCCGGATGAGCTGACCAAGAACCCAGTCAGCTGACCTGCT
 3351 GGTCAAAGGCTTCTATCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG
 3401 GGCAGCCGAGCTTACAGGACACAGGCTCCCGTGTGGACTCCGAC
 3451 GGCTCTCTCTCTACAGCAAGCTCACCGTGGACAGACAGCTGGCA
 3501 GCAGGGAAAGCTCTCATGCTGCTGTGATGAGGCTCTGCACAAACC
 3551 ACTACACGGAGAACAGGCTCTCCCTCTCCGGTAAAGGAGCGGATCA
 3601 GGAGTGGCCGACCTACTCCAGTTACAAAAGAAAACACAGCTACACT
 3651 GGAGCATTTACTCTGGATTTCAGATGATTGGAAATTAAATAATT
 3701 ACAAGATCCAAAACCTACCAAGGATGTCACATTAAAGTTTACATGCC
 3751 AAGAGGGGACAGATGAAATCTTCACTGTTCTAGTGTCTAGAAGAAGAACCTAA
 3801 ACCTCTGGAGGAAGTGTCAAATTACTCAAAGAAAATTTCACTTAA
 3851 GACCCAGGGACTTACGCCAATTAACCTTAATAGTTCTGGAACTAAAG
 3901 GGATCTGAAACACATTCTGTTGAAATATGCTGATGAGACAGCAACCAT
 3951 TGTAGAATTCTGAAACAGATGGATTACCTTTGTCAAGCATCATCTCAA
 4001 CACTAACTTGAGGCTTGTAAACATCGATAAAATAAAAGATTTTATTAGT
 4051 CTCCAGAAAAGGGGGATGAAAGACCCACCTGTAGGTTGGCAACCT
 4101 AGCTTAAGTAAACGCCATTGTAAGGCGATGGAAAATACATAACTGAGAA
 4151 TAGAGAACCTTCAGATCAAGGTAGGGACAGATGGAACACAGCTGAATATGGG
 4201 CCAACAGGGATATCTGTGTAAGCAGTTCTGCCCGCTCAGGGCCAAG
 4251 AACAGATGGAACAGCTGAATATGGGAAACAGGATATCTGTGTAACCA
 4301 GTTCTGCCCCGCTCAGGGCAAGAACAGATGGTCCCCAGTCGGTCC
 4351 AGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCCCAA
 4401 GGACCTGAAATGACCTGTGCCATTGAACTAACCAATCAGTTCGCTT
 4451 CTCGCTTCTGTTCGCGCGCTTCTGTCCTCCCGAGCTCAATAAAAGAGGCCA
 4501 CAACCCCTCACTCGGGGCGCCAGTCCTCGGATTGACTGAGTCGCCGGGT
 4551 ACCCGTATCCAATAAACCCCTTCAGTTGATCAGCTTGTGACTTC
 4601 GCTGTTCTTGGGAGGGTCTCTCTGAGTGATTGACTACCCGTCAGCGGG
 4651 GGTCTTCATT

1 - 2055 Bovine/human alpha-lactalbumin 5' flanking region
 2098 - 4011 cc49-IL2 coding region
 4068 - 4661 MoMuLV 3' LTR

Figure 14a
SEQ ID NO:11
Alpha-Lactalbumin YP Vector

1 GATCAGTCTGGGGGGTCAATTGAAAGGACTGATGCTGAAGTTGAGCTCC
 51 ATACTTGGCACCTGATCGAAGGAACGTGACTCATGTATAAGACCTG
 101 ATACTGGAAAGATTGAAGGCAGGAGGAGAGGGATGACAGAGGATGAA
 151 GAGTTGGATGGAATCACAACCTGAGATGGACATGAGTTGAGCAAGCTCC
 201 AGGAGTTGGTAAATGGCAGGGAGGCTGGCTGCTCAGTCATGGGTT
 251 GCAAAGAGTTGGACACTACTGACTGACTGAGTAACTGAACTGATAGTGTAACTC
 301 CATGGTACAGAATAATAGATAAAAAGAGGAAGAGTTGGCAGTCTTA
 351 AAAGAGTTGAGGATAAAAGTTAGAATAACCTTGTAGTTGGAGTCTTA
 401 AAATTATTTACTTGTAGGTTGGGACACTGAGCTTAAAGAAATCAGGCTT
 451 AGAGACTGATGTAGAGAATGAGCCCTGGCATAACAGAACTAACAGCT
 501 ATGGTTATAGCTTAACTACAAATAATAACCAATAATTGGTTATATA
 551 GCATGAAGACTGTGAGCCTAAATTGAAGGAACCAATTAGAAGTACTAGTATC
 601 CTAAACACTCATGTCTCAGGACACTGATCTTAAAGCTCAGGTTCAAGAAT
 651 CTTGTGTTATAGGGCTCTAGGTGTATTGTGGGGCTTCCCTGGTGGCTCA
 701 GATGGTAAAGTGTCTGGCTGCAATGTGGGTGATCTGGGTTGATCCCTGG
 751 CTTGGGAAGATCCCTGGAGAAGGAATGCAACCCACTTGTAGTACTCTT
 801 ACTGGAAAATTCGATGGACAGAGGGCTTGTAAAGCTCAGCTTGTGGG
 851 ATTCGAAAGAGTGTGAAACAACTGACCAACTAAACCAACAGCAGCAGTAACTG
 901 ATACACCTGTAGGGTAACTGTAAAGTCAAGGTTCAATGCAGGGTCTCTG
 951 ATTGAGAAGATTCTTACCATCTGAGCCACCAAGGGAAACCCAAAGAATA
 1001 CTGGAGTCTGGCTTCTCTCTCCCTGGGGGATCTTCCCCTATCCCAAGGAA
 1051 TTGAACTGGACTCTCTGCTTACCTTCAGGTGGATTCTTACCAAGCTGAACTA
 1101 CCAGGTGGATACTCTCCAAATTTAAAGTGTCTTAAAGTCCAGTITTTCCA
 1151 CTTTTCCCCAAAAGGGTGGGACTCTTTTAAACCTTCTGTGGCTTACT
 1201 CTGAGGTGTCACAAAGCTTATATAATTATGAACACATTATGGCAAGTT
 1251 GTAGTTTAAAGTACATGTTGAGCTTGTGGTATTAGTGTGATTGGTG
 1301 GTGGGGATGGGGGGCTGATCACATCTCAGAGGGCAGCTGATACTGTC
 1351 ATACACATTTCAGCTTCCAGTTCTCCAGTTGTGAAATAGAAAAGTCTGGAT
 1401 CTAAAGTTTATGTGATTCTCAGTCCTGTGGTATATTCTATTCTACTCC
 1451 TGACCAACTCAACAGGAACCAAGATACTCAGGGACACTGTGTTTGTCA
 1501 TGGCTGGGGTGGAGCTGGGACATGACATATGTTCTGGGCTTGTACATGG
 1551 TGGATTGGTGGACACGGTGGCAGCTGTGATCTGGGACTGTGGCATGTGA
 1601 TGACATACACCCCTCTCCACATTCTGCTGATCTTGTGGGGGGAAAGGGG
 1651 AAAGCTGGTATAGAACCTTATTGTGATTCTGATTGCTCACTTCTTAT
 1701 ATGCCCTTACATGGCTTCTTGTGATTCTCTGGTATCTGGTCTGGG
 1751 CCAGAACCAACCTCAAAAGAACAAACAGGGCTAAACAAAGGCAAAATGGAA
 1801 GCAGGATCATGTTGAACTCTTCTGGCCAGAGAACAAATACCTGCTATG
 1851 GACTAGATACCTGGAGAGGAAAAGGAAAAGTGGGTGAATATTGGAAAGGA
 1901 AGCTGGCAGGGTCTGGCTTCTCTGGCATGACAGTCTCTTCTTATT
 1951 CTCTTCTAGATGTAGGGCTTGTACAGAGGCCCCCTGAGGCTTCTGCT
 2001 GAATATAATAATATGAACACTGTGATGCTTCCATTCTAGGTTCTTGGGG
 2051 GGCCGAATTGCGACTGGTCTGGGGGATCTGGAGGATCTGGGCTTCTGGG
 2101 ACTGAGGTGCTGGGGGAGGACACATCTGGCAACATCTACACCAAC
 2151 CAACACCCCTCGAACAGGGTGAAGATATCTGGGGGGACCGGGGTGTT
 2201 AATTACAAGCGGAGATCCGATTACTACTGGCAGGTCTGGGGGCTTCCGA
 2251 GACAACTCCGAACATCTACACCAACACCCCTCGAACAGGGTGAGA
 2301 TATCGGGGGGGACGGGGGGTGTAAATTACAAAGCGAGACTCGAGTTAA
 2351 CAGATCTAGGCTCTTAGGTCAGCGGAGTCCCCGGGAATTGGGGCCCGCA
 2401 CCATGATGTCCTTGTCTCTGCTCTGGTAGGATCTCCATTCTCATGTC
 2451 CTGAGGCTCAGTGGAGATATCTGCAAGGCTTCTGGCTACACCTTCACAA
 2501 TGGGACTCTAGTGGAGATATCTGCAAGGCTTCTGGCTACACCTTCACAA
 2551 GCTACTTACCTACGGGTGAAGCAAGGGCTGGACAGGGACTTGTAGTGG
 2601 ATTCGATGGATTACTCTGGAAATTGTATTACTACGTAACATGAGAAATT
 2651 CAAGGGCAAGGCCACACTGACTGACAGACAAATCTCCAGCACACCCCTACA
 2701 TGGGCTTACAGGGCTGAGGACTCTGGGGCTGAGCTGGTGAAGGCC
 2751 AGGGGTGACCATGATCTTGACTACTGGGGCAAGGCAACCAACTCTCACAGT
 2801 CTCCTCAGCCAAAAGACACCCCTACATGTCTATCCACTGGGGCTGGAT

Figure 14b

2851 CTGCTGCCAAACTAACTCCATGGTACCCCTGGGATGCCCTGGTCAAGGGC
 2901 TATTTCCCTGAGCAGTCAGACTGGAAACTCTGGATCCCTGTCCAG
 2951 CGGTGTCACACCTTCCAGCTGTCCTGAGCTGACCTCTAACACTCTGA
 3001 GCAGCTCAGTGACTGCCCCCTCCAGACCTGGCCAGCAGAGACCGTCACC
 3051 TGCAACCTTGGCCACCCGGCAGCAGCACCAGAAGTGGACAGAAAATGTT
 3101 GCCCAGGGATTGTACTAGTGAGGTGGAGGTAGCTAAGGGAGATCTGCAC
 3151 GGATCCCCGGGAATTGCGCCCTCTCCCTCCCCCCCCCTAACGTTACTGG
 3201 CGGAAGCCGCTTGAATAAGGGCGTGTGCGTTGTCTATATGTTATTT
 3251 CCACATATTGCGCTCTGGCAATGTTGGGGCCGGAAACCTGGCCCT
 3301 GTCTTCTTGAGCAGGATTCTAGGGGTCTTCCCCCTCTCCCAAAGGAAT
 3351 GCAAGGCTGTGAATGCTGTGAAGGAAGCAGTCTCTGGAAAGCTTCTT
 3401 GAAGACAAAACACGTCTGTAGCGGACCTTGTGAGGAGCAGGGAAACCCCC
 3451 CCTGGCGACAGGTGCTCTGGCCCAAAGGACAGTGTATAAGATACACC
 3501 TGCAACCTGGCAGGAACTCCCGGAACTGGCAGCTGGAGTTGGATAGTTGTGG
 3551 AAAGACTCAATGGCTCTCAACGGTATTCAACAAAGGGCTGAAGGAT
 3601 GCGGAGAAGGTTACCCATTGTATGGATCTGATCTGGGGCTCGGTGAC
 3651 ATGCTTAACTGTGTTTACTGAGGTAAAAAAACGCTAGGGCCCCCGA
 3701 ACCACGGGGAGCTGTTTCTTGGAAAACACGATGATAATATGGCTC
 3751 CTTGTCTCTGCTCTGGTAGGACATCTTCCATGCCACCCAGGGCG
 3801 ACATTTGTCGACAACTTCCAGCAATCATGTCGATCTCCATCTCAGGGGAG
 3851 AAAGTCACCATGAGCTGCGAGTCGGACCTCCAACTGTAAGTTACATACATG
 3901 GTACACGAGRAGTCAGGCCACCTCCAAAAGATGGATTATGACACAT
 3951 CCAAACCTGGCTCTGGAGTCCCTGCTCGCTTCACTGGGCTCTGGG
 4001 ACCTCTACACTCTCACACTCGACGACATGGAGGCTGAAGATGCTGCCAC
 4051 TTAACTGCGAGCAGTGGGGTAGTTACTTCAGTGTGGCGGGGACCA
 4101 AGCTGGAGCTGAAACGGCTGTGCAACCAACTGTATCCATCTTCCCA
 4151 CCATCCAGTGGAGCTTACATTTGGAGGTGCTCATGCTGTGCTTCTT
 4201 GAACAATTCTACCCCCAAAGACATCAATGTCAGTGGAAAGATTGATGGCA
 4251 GTGAGCAGCAAAATGGCTCTGGAGCTGGAGCTGATCAGGACAGCAAA
 4301 GACAGCACCTACAGCATGAGCACGACCCCCACGTTGACCAAGGACGAGTA
 4351 TGAGCAGCATCTACACTTACCTGTGAGGGCTATCACAAGACATCAACTT
 4401 CACCCATTGTCAGGAGCTTCAACAGGAATGAGTTAATAGGGAGATCT
 4451 CGRCATCGATAATTCRACCTCTGGATTACAAAATTGTAAGGTTGACTG
 4501 GTATTCTTAACATGTTGCTCTTACCTGCTATGTTGAGTACGCTGCTTAA
 4551 ATGCTTGTATCATGCTTACATGCTCTTCTGGCTTATGCTTCTCCTC
 4601 CTGGTATAAATCTGGTGTGCTCTTATGAGGAGTTGTGCCCCGGTGT
 4651 TCAGGCAACGTCGGCTGGTGTGACTGTGTGCTGACGCAACCCCCACT
 4701 GGTGGGGCATGGCACCCACTCTGAGCTTGTGAGGACTTTCGGGACTTTGCTT
 4751 CCCCTCCCTATTGCCAGGGCAACTCATCGCCGCGCTGCCCTGGCCCGCT
 4801 GCTGGACAGGGCTCGCTGTGGGACTGACATTCGCGCTGGTGTGCTG
 4851 GGGAAATCATGCTCTTCTTGTGCTGCTGGCTGTGTTTCCACCTGGAT
 4901 TCTGGCGGGAGCTCTTGTGCTACCTTCTGGGCTCAATCCAGGG
 4951 ACCTCTTCCCGGGCTGCTGGCGCTGTGGGGCTCTCCCGCTTCTGG
 5001 CGCTTCTGCCCTCAAGRAGTCGGATCTCCCTTGGGCCGCTCCCCCCC
 5051 TGATCGATAAAATAAAAGATTTTAGTCCTCGAGAAAAGGGGGGAGAT
 5101 GAAAGACCCCACCTGTAGGTTTGGCAAGCTAGCTTAAGTAACGCCATT
 5151 GCAGGAGCATGGAAAATACATAACTGAGATAGAGAAGTTGAGATCAAGG
 5201 TCAGGAAAGATGGAAACAGCTGAATATGGCCAAAACAGGATATCTGTGTT
 5251 AACAGATTCTGCCCGGCTCAAGGCCAAGAACAGATGGAAACAGCTGAAAT
 5301 ATGGGCAAACAGGATATCTGTGCTAAGCAGTCTCTGGCCGGCTCAGGG
 5351 CCAGAACAGATGTCGGCCAGTGGCTCAGGCCCTAGCAGTTCTAGA
 5401 GAACCATCAGATGTTTCCAGGGTGGCCCAAAGGACTGAAATGACCCCTGTG
 5451 CCTTATTGAACTAACCATCAGTGCCTCTGGCTTCTGTGCTGGCT
 5501 TCTGCTCCCGAGCTCAATAAAAGGCCAACACCCCTACTCGGGGGC
 5551 CAGTCCCTCGGATTGACTGAGTCGGCCGGTACCCGTATCCAAATAACC
 5601 CTCTTGAGCTTGCACTCCGACTTGTGCTCTGGCTTCTGGAGGGCT

Figure 14c

5651 CCTCTGAGTGATTGACTACCCGTCAGCGGGGTCTTCATT

1 - 2053	Bovine/Human Alpha-lactalbumin 5' flanking region
2093 - 2336	Double mutated PPE sequence
2403 - 2459	Bovine alpha-lactalbumin signal peptide coding region
2460 - 3137	Yersenia pestis heavy chain Fab gene coding region
3167 - 3742	EMCV IRES
3743 - 3799	Bovine alpha-lactalbumin signal peptide coding region
3800 - 4441	Yersenia pestis light chain Fab gene coding region
4461 - 5052	WPRE sequence
5098 - 5691	Moloney murine leukemia virus 3' LTR

Figure 15
SEQ ID NO:12
IRES-Casein Signal Peptide Sequence

1 GGATTCCCCCTCTCCCTCCCCCCCCCTAACGTTACTGGCCGAAGCCG
51 CTTGGATAAAGGCGGCTGTGCGTTGCTATATGTTTTTCCACCATAT
101 TGCCTCTTTGCAATGTGAGGGCCGGAAACCTGGCCCTGTCTCTG
151 ACGAGCAATTCCTAGGGGCTTTCCTCCCTCGCCAAAGGAATGCAAGGCT
201 GTTGAATGTCGTGAAGGAAGCACTTCTCTGGAAAGCTTCTTGAAGACAAA
251 CAAAGCTCTGTAGCCACCCCTTGCAAGGGAAACCCCCCACCCTGGCAGC
301 AGGTGCCCTCGGGGCCCCAAAGCCACCTGTATAAGATAACCTGCAAAGGC
351 GGCACAAACCCAGTGCACAGTGTGAGTTGGATAGTTGTGAAAGAGTCA
401 AATGGCTCTCCCAAGCGTATTCAACAAAGGGCTGAAGGGATGCCCCAGAAG
451 GTACCCCATTTGTATGGGATCTGATCTGGGCCCTGGTGCACATGCTTAC
501 ATGTTTAGTCGAGGTTAAAAAAACGCTAGGCCCCCCCAGAACACGGGG
551 ACGTGTTTCTTTGAAAAAACAGTGTATAATATGGCCTTGGCTCATCTT
601 TACCTGTCCTGTGGCTGTGCTTGCCTGGATATCTAGATC
651 TCGAGCTCGCGAAAGCTT

1 - 583 IRES

584 - 628 Modified bovine alpha-S1 casein signal peptide coding region

629 - 668 Multiple cloning site

Figure 16a

SEQ ID NO: 13

LNBOTDC Vector

1 TTTGAAAGACCCACCGTAGGTGCGAAGCTAGCTTAAGTAACGCCACTT
 51 TCGAAAGCATGGAAAATACATACTGAGAATAGAAAAGTTCAGATCAAG
 101 GTCAAGGAACAAAAGAACAGCTGAACTAAACAGGATATCTGTGTAAGC
 151 GCTTCTGCCCCGGCTCAGGGCAAGAACAGATGAGCACGCTGAGTGC
 201 GGCRAACAGGATATCTGTGTAAGCAGCTTCCTGCCCGGCTGGGGCA
 251 AGAACAGATGGTCCCCAGATGCGGCTCAGGAGTTCAGTGAAG
 301 TCATCAGATGTTCCAGGGCAGGACACTAAATGACCTGTAC
 351 TTATTTGAACAACTAACATCAGTGGCTCTCGGTTCTTGGCGCGCTTC
 401 CGCTCTCGAGCTCAATAAAAGACCCACACCCACTCGGGCGCCA
 451 GTCTCCAGTACAGTGGCTCCGGTACCCGTATTCCAATRAAGCCT
 501 CTTGGTGTTCATCGGAATCTGGTCCTGGCTGTTCTGGAGGGCTC
 551 CTCTGAGTATTGACTACCCACAGCGGGGTCTTCATTTGGGGCTCGT
 601 CGGGATTGGACCCCTCCGGGACCCACCGACCCACCCGGGAGG
 651 TAAGCTGGCCAGCAACTATCTGTGTCGGATTGCTAGTGTCTATG
 701 TTGATGTTATGGCTCTGCTGACTAGTTAGCTAACTAGCTGTATG
 751 CTGGCGGACCCGGTGGTGAACGAGTTCTGAACACCCGGCGCAACC
 801 CTGGGGAGACGTCCCAGGGACTTGGGGCGTTTGTGGCCGACCTGA
 851 GGAAGGGAGTGTGGAGATCCGACCCCGTCAGGATATGTGGTCTGGT
 901 AGGAGACGAGAACCTTAAACAGTCCGGCCTCCGCTGAATTTCGTT
 951 CGGGATTGGACCCAGGGCGGCTCTGGTCTGTCAGCGCTGAGCATC
 1001 GTTCTGTGTTGCTCTGCTGACTGTGTTCTGTATTGTCTGAAATTAA
 1051 GGGCCAGACTGTGACCTACCCCTTAAGTTGACCTTAGGTACTGGAAARG
 1101 ATGTGGAGGGATGCTCACAACCCAGTGGTAGATGTCAGAAAGAGACGT
 1151 TGGGTTACCTCTGCTGCAAGATGCCAACCTTAACCTGCGATGGCC
 1201 GCGAGACGCCACTTTAACGGAGACTCATACCCAGGTTAAAGATCAAGG
 1251 TCTTTTCACTGGCCCGCATGGACACCCAGCAGGTCTCCATACCTG
 1301 ACCTGGGAGCCCTGGCTTTGACCCCCCTCCCTGGGTCAAAGCCTTGT
 1351 ACACCTTAAGGCTCCGGCTCTCTCCATCGGCCCCGCTCTCC
 1401 TTGAACTCTCTGTTGACCCGGCTCAGATCTCCCTTATCCACCCCTC
 1451 ACTCCCTTCTAGGCCGGGAATTCGGATCTGATCAAGAGACAGGATGAG
 1501 GATCGTTTCCGATGTAAGAACAGATGGATTGCAAGCAGGTTCTCGGCC
 1551 GCTTGGGTGGAGGAGCTTCGGCTATGACTGGCACACAGACATCGG
 1601 CTGCTGTGATGCCGGCTGTCGGGCTGTGCAAGGGGCCGGGTTTC
 1651 TTTTGTCAAGACCGACCTGTCGGCTCTGAATGAACCTCAGGAG
 1701 GCAGCGCGCTATCGTGGCTGGCAGACGGGGCTCTTCGGCAGCTGT
 1751 GCTCGACGGTCTGACTGAACGGGAAGGGACTGGCTCTATTGGCGAAAG
 1801 TGCGGGGAGGATCTCTGCTCATCACCCTTGCTCTGCCAGAAAGTA
 1851 TCCATCATGGCTGTGCAATGGCGGCGTGCATACCGTTGATCCGGCTAC
 1901 CTGCCCATTCGACCAACCGAACATCGCATCGAGCGACAGTACTC
 1951 GGATGGAAAGCCGCTTGGCTGATCAGGATGATTCGGACGAAAGCATCG
 2001 GGGCTCGGCCAACCGGAAACTCTGGCAGGCTCAAGGGGCCATCCCGA
 2051 CGCGAGGATCTGCTGTCGACCCATGGCGATGCTGCTGCGGAATATCA
 2101 TGTTGGAAAATGGCCCTTTCTGGATCATCGATGTGGCGGCTGGGT
 2151 GTGGGGAGCGCTATCAGGACATGGCTTGCTACCGTGTATTTGCTGA
 2201 AGAGCTTGGCGGAATGGGCTTGCGATGGCTCTCTGCTGCTTACGGTATCG
 2251 CGCTCCGATTGCGACGCGATCGCTCTCATCGCTCTTGTGACGAGTTC
 2301 TTCTGAGCGGGACTCTGGGTTCTGAAATGACCGAACAGCGACGCCAAC
 2351 CTGGCATCACGAGATTCTGATTCACCCAGGCGGCTCTCATGAAGGTTGG
 2401 CTTCGGAAATCTGTTCTGGGAGCCGGCTGGATGATCTCCAGCGGGGG
 2451 ATCTCATGCTGGAGATTCTGCCCCACCCGGCTGATCCCTCGCGAGT
 2501 TGGTCACTGGCTGGCCATGGCGACCTCGGGAGTCTACCGCA
 2551 GTGCAATCGGTGGCATCAGGAAACCCAGCGGGCTATCGGCCATCG
 2601 ATGCCCGGAACTGCGAGCTGGGGAGGCGACGATGGCGCTTGTGAG
 2651 GCGGATCCGGCCATTAGCCATTATTTGCTATGCTACCATATCATAAATGTAC
 2701 ATATTGGCTATTGGCCATTGCGATCACGGTGTATCCATATCATAAATGTAC
 2751 ATTATATGGCTCATGTCACCATGGCGCATGTTGACATTGATT

Figure 16b

2801 GACTAGTTATAATAGTAATCAATTACGGGGTCATTAGTCATAGCCAT
 2851 ATATGGAGTTCGGCTTACATAACTTACGGTAAATGGCCCGCTGGCTGA
 2901 CCCCCCACAGACCCCCCCCCATTGACGTCAATAATGACCTATGTCAT
 2951 AGTAACGCAAATAGGGACTTCCATTGACGTCAATGGTGGAGTATTAC
 3001 GGTAAACTGCCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTAG
 3051 CCCCTTATTGACGTCAATGACGGTAATGGCCCGCTGGCATTATGCCA
 3101 GTACATGACCTTATGGGACTTCTCACTTGGCAGTACATCTACGTTTAC
 3151 TCATGGCTATTACCATGGTATGGGTTTGGCACTACATCAATGGCGT
 3201 GGTAGCGGTTGACTCACGGGATTTCAGACTTCCACCCATTGACGT
 3251 CATTGGGAGTTTGTGGCACCRAAATCAACGGGACTTCCAAAATGTC
 3301 GTAAACACTCGCCCCATTGACGCAAATGGGGTAGGCATGACGGTGG
 3351 GAGGTATATAACAGCAGCTGGTTAGTGAACCTCAGATGCCCTGGAG
 3401 ACGCCATCAGCGTGTTCAGGCCTCAGATCAGAAAGCACCGGGACGATCCA
 3451 GCCTCCGGCCGGCCAAAGCTTCTGCAGCGATCCCCGGGAATTCAAGGCCATC
 3501 GATCCCCGGCCACCATGGAGATGGCTGGGTCTTCTCTTCTCGTGC
 3551 AGTAACATCAGGTGTCACCTGGACATCCAGATGACCCAGTCAGCT
 3601 CCTCACTGGCATCTGGCAGGAACTGGCACTATCACATGTCAGCAAGT
 3651 GGGAAATATTCAACATATTAGCATGGTATCAGCAGAAACAGGGAAAATC
 3701 TCTCAGCTCTGTCTAATAGCAGGAAACTTACAGATGGTGTCCAT
 3751 CAAAGGTTACGGCAGTGGATCAGGAACACAATTCTCTCAAGATCAC
 3801 AGCCTGCAGCCTGAAGATTGGGGAGTTACTGTCAACATTGGGAG
 3851 TACTCCGTGGACCTGGCAGGAGGACCAAGCTGGAAATCAACGGCTG
 3901 ATGCTCACCACACTGATTCATCTCCACCATCAGTGGAGTAAACA
 3951 TCTGGAGGTGCTCAGTGGCTTGTGGCAGAACACTTCAACCCAAAGA
 4001 CATCAATGTCAGGGAAAGATTGTGGCAGTAACGACAAATGGCTCC
 4051 TGACACGGTGGACTGATCAGGACAGCAAAGACAGCACCTACGATGAGC
 4101 AGCACCCATCAGGACAGGAGTATGAACGACATAACAGCTTAC
 4151 CTGGAGGCACTCAACAGACATCAACTTCACCATGTCAAGGCTTCA
 4201 ACAGGAATGAGTGTGGAAAGGCACTGGATTTCCCTGAATTGGCCCTCTCC
 4251 CTCCCCCCCCCTAACCTTACTGGCCAGCGCTTGGAAATAAGGGCGGT
 4301 GTGCGTTTGTCTATGTTTTCACCATATTGCGCTTTTGGCAAT
 4351 GTGAGGGCCGGAAACCTGGCCCTGCTTCTTGACGAGCATTCTAGGGG
 4401 CTCTCCCTCTCCAGAAAGATGCAAGGTCTGTTGAATGTGCTGAGG
 4451 AACAGTCTCTGGAAAGCTCTTGAAGACAAACACGCTGTAGCGGACC
 4501 CTTGGAGGAGCGGGACCCCCACCTGGCACAGGTGCTCTGGGCCA
 4551 AAAGCCACGTGATAAGACACCTGCAAAAGGGGCCAACACCCCAAGTGGC
 4601 ACCTGTGAGTTGATACTTGTGGAAAGAGTCATGGCTCTCTCAAGC
 4651 GTATTCAACAGGGCTGAAGGATCCCAGAAGGTACCCATTGATGGG
 4701 ATCTGATCTGGGGCTCTGGTGCACATGCTTACATGTTAGTGTGAGGT
 4751 TAAAACACCTGCTGGAAACTTGTGGCTCTTGTCTCTGGCTCTGGTGA
 4801 AAAACACGATGATAATAGCCTCTTGTCTCTGGCTCTGGTGA
 4851 TCTTATTCCATGCCAACCGGGCGAGGTTCAGCTTACAGTGTGGGCA
 4901 GAGCTGTGAAGCCAGGGGCTCACTCAAGTTGCTCTGCACAGCTTCTGG
 4951 CTTCACCATAAAGACACCTTATGCTTACGGTGAAGCAGGGCTGAAC
 5001 AGGGCTGGAGTGGAGGATGATCTGGATGGAAACTTGTGGAAACTGAA
 5051 TATGACCCGAAGTTCAGGGCCACTATAAACAGCACAGACACATCTC
 5101 CAAACAGCTAACCTGAGCTCAGCAGCTGACATCTGGGAAACTGGCG
 5151 TCTTACTGTCTAGTGGAGGGGAACTGGGGTTCTTACTGGGCCAA
 5201 GGAGACTCTGGTCACTGTCTCAGCCAAAAGACACCCCCAATCTGCTA
 5251 TCCACTGGCCCCCTGGATCTGTCGCCAAACTAACTTCAATGGTACCCCTGG
 5301 GATGCCCTGGTCAAGGGCTATTCCCTGAGCCAGTGCACAGTGACCTGGAAAC
 5351 TCTGGATCTCTGGCTCAGGGTGTGACACCTTCCACGCTGCTCTGGCAGTC
 5401 TGACCTTCAACTCTGAGCGCTAGTGCAGTGTCCCTCCAGCACCTGGC
 5451 CCAGCGAGACCGTCACTGCAACGTTGGCCACCCGGCAGCACACCAAG
 5501 GTGGCAAGAAAATGTCGCCAGGATTGTACTGTGGAGGTGGAGGTAG
 5551 CCACATCACCATCACCATTAATCTAGACTTAAAGGGGGCTCGAGAATCTA
 5601 GGGCTCTAGGTGCACTGATCAAATAAAAGATTTTTACTGTCTCCAG
 5651 AAAAGGGGGAAATGAAAGACCCCACTGTAGGTTTGGCAAGGTAGCTTA
 5701 AGTAACGCCATTGGTCAAGGATGGAAAAATACATAACTGAGAATAGAGA
 5751 AGTTCAGATCAAGGTCAAGAACAGATGGACAGCTGAATATGGCCARAC
 5801 AGGATATCTGTGGTAAGCAGTCTCTGGCCGGCTCAGGGCCAAAGAACAGA
 5851 TGGAAACAGCTGAATATGGCCAAACAGGATATCTGTGGTAAGCAGTTCT

Figure 16c

5901 GCCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCAGCCCT
5951 CAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGGCCCAAGGACCT
6001 GAAATGACCCCTGCGCTTATTGAACTAACCAATCAGTTCGCTTCTCGCT
6051 TCTGTTGGCGGGCTCTGCTCCCCAGCTCAATAAAAGAGCCCCACACACCC
6101 CTCACTCGGGGGCCAGTCCTCCGATTGACTGAGTCGCCCCGGGTACCCGT
6151 GTATCCAATAAACCCCTTGCAGTTGCATCCGACTTGTGGTCTCGCTGTT
6201 CCTTGGGAGGGTCTCTCTGAGTGACTACCCCTCAGCGGGGGTCTT
TCATT

Moloney Murine Sarcoma Virus 5' LTR	1 - 589
Moloney Murine Leukemia Virus Extended Packaging Region	659 - 1468
Neomycin Resistance Gene	1512 - 2306
CMV Promoter	2656 - 3473
cc49 Signal Peptide Coding Region	3516 - 3572
Bot Fab 5 Light Chain	3573 - 4217
EMCV IRES (Clonetech)	4235 - 4816
Modified Bovine α -LA Signal Peptide Coding Region	4817 - 4873
Bot Fab 5 Heavy Chain	4874 - 5572
Moloney Murine Leukemia Virus 3' LTR	5662 - 6255

Figure 17. CMV construct containing cell lines.

Figure 18: α -Lactalbumin construct containing cell lines

Figure 19a
 SEQ ID NO: 34
 LNBOTDC Vector

1 GAATTAATTCTACCCAGATCACCGAAAAGTGTCTCCAAATGTGTCCCCC
 51 TCACACTCCAAATTGCGGGCTTCGCTCTTAGACCACTCTACCCCTAT
 101 TCCCCACACTCACCGAGGCCAAAGCCGCCCTTCGTTTCTTGTCTT
 151 TGAAGGACCCCACCGTAGGTGCGAACGCTAGCTTAAGTAACGCCACTTTG
 201 CAAGGATGGAAAAATACATAACTGAGAAATGAAAAGTTCAGATCAAGGT
 251 CAGGAACAAAGAAAACAGCTGAATACCAAAACAGGATATCTGTTGTAAGGGG
 301 TTCTGGCCCGCTCAGGGCAAGAACAGATGAGACAGCTGAGTGTATGGG
 351 CCAAAACAGGATATCTGTGTAAGCAGTTCTGCCCCCGCTCGGGGCCAAG
 401 AACAGATGGTCCCCAGATGCGGTTAGGCCCTCAGCAGTTCTAGTGAATC
 451 ATCAGATTTTCCAGGGTCCCCAAGGACCTGAAAATGACCTGTACCTT
 501 ATTGTAACCTAACCAAACTGTTCTCTTCGTTCTGTTGGGGCTTCCG
 551 CTCTCGAGCTCAATAAAAGGCCCAACCCCTCACTCGCCGCCCACT
 601 CTTCCGAGACTGCTCCGGCGGAGTACCGTATTCCAAATAAGCCCTT
 651 TCGCTTTGATCAGGAAATCGTGTCTCGCTGTCTTCTGGGAGGGTCTCT
 701 CTGAGTGTGACTACCCAGCAGGGGGTCTTCATTGGGGCTCGTCC
 751 GGGATTGGAGAGGCCAGGGCCAGGACCCAGGCCACACGGGGAGGTA
 801 AGCTGGCAGCAACTTATCTGTCTGTCGATGTCTAGTGTCTATGTT
 851 TGATGTTATGCGCTCGTGTACTAGTTAGGTAACTAGTCTGTATCT
 901 GGGGGACCGCTGGTGGACTGCGAGTTCTGACACCCGGCCRAACCT
 951 GGGGAGACGTCCCAGGACTTGGGGGCCGTTTGTGGCCGACCTGAGG
 1001 AAGGGAGTCGATGTGAATGCGGCTCAGGATATGTTGTTCTGGTAG
 1051 GAGACGAGAACCTAAACAGTCTCCCGCTCGTGTGAAATTTCGTTCTG
 1101 GTTGTGAAACCGGAGGCCAGGGCTGCTGTCTGAGCATCGT
 1151 TCTGTGTTCTCTGTACTGTTCTGTTCTGTTATTTGCTGAAATTAAGG
 1201 GCCAGACTTACCAACTCCCTTAAGTTGACCTTGGCTAGGTCACTGAAAGAT
 1251 GTCGAGCGGATGCGTACACRAACAGCTGGTAGATGTCAGAAAGACGTG
 1301 GGTACCTCTCTGCTCGAGAACCTTAAACCTCGGATGCCC
 1351 GAGACGGCACCTTAAACCGAACCTCATCACCCAGGTTAACGATCAAGGT
 1401 TTTTACCTGGCCCGCATGGACACCAGACAGGCTCCCTACATCGTAC
 1451 CTGGAAAGCCTTGGCTTGTGACCCCTCCCTGGGTCAAGCCCTTGTAC
 1501 ACCCTAACGCTCCGGCTCTTCCTCATCCGCCCCGCTCTCCTCCCTT
 1551 GAACTCTCGTCTGGACCCGGCTCGATCTCCCTTATCAGCCCTAC
 1601 TCTCTCTAGGGCCGGAACTTGGCTGATCAAGAGACAGGATGAGGG
 1651 AGCTGTATATCCATTCTTCGGAATCTGACAGCAGTGTGACAATTAACT
 1701 ATCCGCATAGTATATCGCAGTATTAATCGAACAGGTGAGGAACCTAA
 1751 CCATGGCRAAGCTTGTCTCAAGAAGATCACCCTCATGGAAAGAGCA
 1801 ACGGCTACAATCACAGCATCCCATCTCTGAAGACTACAGCGTCCAG
 1851 CGCAGCTCTCTAGGGCCGGCATCTTCACTGGTGTCAATGTATATC
 1901 ATTACTGTTGGGGACCTTGTGCGAAGACTCTGGTGTCTGGCACTGTG
 1951 GCTGGCGCAGCTGGCACCTGACTGTATCTCCGATCGGAAATGAGAA
 2001 CAGGGGCATCTTGTGGCCCTCGGGACGGCTGTCGACAGGTGCTCTGATC
 2051 TGCATCCTGGGATCAAAGCGATAGTGAAGGACAGTGTGAGCACGGCAGC
 2101 GCAGTGGGATTCTGGAATTCTGCTCTCTGGTTATGTTGGGAGGGCTA
 2151 AGACACTCTGGCCGAGGACGACGACTGACAGTGTCTACAGATTTCTGAT
 2201 TCCACCGCCGGCTCTATGAAAGGTGTTGGCTTCCGGAATCTGTTTCCGGGA
 2251 CGCCGGCTGGATGATCTCCAGGGGGATCTCATGCTGGAGTTCTCG
 2301 CCCACCCRACTGTTATTGCACTTATAATGGTACAAATAAGCAAT
 2351 AGCATCACAAATTCACAAATAAAGCATTTTTCACTGCAATTCTAGTIG
 2401 TGGTTGTCCAACCTCATCAATGTATCTTATCATGCTGTACGAGTTGGT
 2451 TCACTGCTGCTGAGGCTGGACCCCTCGGGAGATTCTACCGGCACTG
 2501 AAATCGTGGCATGGCAAGAACACAGCGCCTATCCGCGCATCCATG
 2551 CCCGAACCTGAGGATGTTGGGGAGGACGGATGGCCCTTGGTCAAGGGG
 2601 ATCCGGCCATTACCAATTATCTGTTATATAGGATAATAATCAATAT
 2651 TGGCTATTGGCCATTGCACTGTTGATCCATATCATATAATGACATTT
 2701 ATATGGCTCATGCTTCAACCGGCGATGTTGACATTGATTATGACT
 2751 AGTATTATAGTAATCAATTACCGGGTCAATTGTCATAGCCATATAT
 2801 GGAGTTCCGGTACATAACTTACGGTAAATGGCCCGCTGGCTGACCCG
 2851 CCAACGACCCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTA

Figure 19b

2901 ACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTTACGGTA
 2951 AACAGCCCACTTGGCAGTACATCAACTGATCATATGCCAAGTACGGCCC
 3001 CTATTGACGTCAATGCGGAAATGGCCGCCCTGGCATTATGCCAGTAC
 3051 ATGACCTTATGGGACTTTCTACTTGGCAGTACATCACTGATTTAGTCAT
 3101 CGCTATTACCATGGTGAATGGCGGTTTGGCAGTACATCAATGGGCTGGAT
 3151 AGCGTTTGACTCACGGGATTTCAGAAGTCTCCACCCATTGACGTCAAT
 3201 GGGAGTTTGTGTTGGCACCCTAAATCAACGGGACTTTCCAAAATGTCGTAA
 3251 CAACTCCGCCATTGACCAATGGCCGTAGGCAGTGTAGGGGGAGG
 3301 TCTATAAGCAGCTGTTAGTGAACCGTCAAGATGCCCTGGAGAACCC
 3351 CATCCACGCTGTTAGTCACTCCTAGAGCACCAGGACCATCAGCCT
 3401 CCGGGGCCCAAGCTCTGAGTTAACAGATCTAGGTGGCACGACAGGT
 3451 TTCCCGAGCTGGAAAGGGCAGTGGCGCAACGCCAATTAATGTGAGTTAG
 3501 CTACTCATGGCCACCCAGGTTACACTTATGTTCCGGCTGTAT
 3551 GTTGTTGTGGAATTTGTGAGCGATAACCAATTTCACACAGGAAACGCTATG
 3601 ACCATGATAACGCCAAGCTTGTGCAAGGTCAGGTGACGGTCAACTAAGC
 3651 GCGCCGACTGTGCTGGAAATCACCATGGGCAACCCGGGAACGGCAGGGC
 3701 CTTCTTGCTGGCACCAATTGGAGAAGCATGGGCCGGACACGACGTCAAGC
 3751 AGCAAGGGAGCAGGGTGTGGTTGGCATGGGCATGTGATCTGCTCTC
 3801 ATCGTCTCGCCCATCTGTGGCAATGTGCTGTGTCATCACAGGCCATTG
 3851 CAAGTTGAGCGCTGTCAGACGTCACCAACTACTTCATCACAAAGCTTGG
 3901 CCTGTCGATCTGGTCATGGGCTAGCAGTGGTGCCTTGGGGCCGCC
 3951 CATATTCTCATGATGTGGACTTGGGACTTGGCAACTTCTGGTGCAGTTCTG
 4001 GACTTCATTGATGTGCTGTGCTGCAAGGCATCGATTGAGACCTTGTGG
 4051 TGATGCGACTGACGCCCTATTTGCCATTACTGCTTCAAGTACCGAG
 4101 AGCGCTGCTGACCAAGATAAGGCCCGGGTGTGATCATCTGTGATGGAT
 4151 TGTGTTGCGCTTACCTCTCTGCCCCATTGAGATGCACTGGTACAGGG
 4201 CACCCCCACAGGAAGGACATCAACTGCTATGCCAATGAGACCTGCTGTGAC
 4251 TTCTTCAGCAACCAAGCTATGCCATTGCTCTTCCCATCTGCTGTCTCTA
 4301 CGTCCCCCTGGTATGATCTGGCTCTCTACTCCAGGGTCTTCAGGGAG
 4351 CAAAAGGGAGCTGCAAGAATGACAACATTGAGGGCCCTTCATGTC
 4401 CAGAACCTTGGCAGGGAGCAGGATGGGGGAGCAGGGGATCTGGACTCCG
 4451 CAGATCTTCCAATTCTGCTGTGAGGAGCACAAACGCCCTCAAGACGTTAG
 4501 GCATCATCATGGGCACTTCCACCTCTGCTGGCTGCCCTTCTCATCGTT
 4551 AACATTTGTCATGTGACCGAGAACTCTCATCGGTAAGGAAGTTAACAT
 4601 CCTCTTAAATTGGATAGCTGTCAATTCTGGTTCACTCCCTTATATCT
 4651 ACTGGGGAGCCGAAATTGGCTAGGTTCTCTCCAGGACTTCTGTGCTCTG
 4701 CGCAGGTCTCTTGGAGGGCTATGGCAATGGCTACTCCACACGGCAA
 4751 CACAGGGAGCAGAGTGGATATCACGTGGAACAGGAGAAAGAAATAAC
 4801 TGTGTGTAAGACCTCCAGGAGCAGGAAAGACTTTGTGGGCATCAAGGT
 4851 ACTGTCGCTGAGCTAATCTGATTCAACAGGGAGAAATGTAGTACAAA
 4901 TGACTCACTGCTCTGAGAACTCTGAGGAGGGCCACCCATCATCACCACG
 4951 TGAGCCCCGGGAGTCAAAAGGATGACGATGACAAGTAAGCTTATCCATC
 5001 ACATGGCGGGCCCTGAGCAGTCTAGCGGGCCTCGAGGCCGCGCRA
 5051 GCCGGATCTCCGGGAATTGGCCCTTCCCTCTCCCCCCCCCTAACGTTA
 5101 CTGGCGGAAGCCGCTTGGAAATAAGCCGGTGTGGTTTGTCTATATGTTA
 5151 TTTCACCATATGGCTCTTGGCAATGTGAGGGCCGGAAACCTGG
 5201 CCTGTTCTCTGACGAGCATCTCTAGGGTCTTCCCTCTCGCAGGAAAG
 5251 GAATGCAAGGTCCTGTTGAATGTGCTGAGGAAAGCAGTTCTCTGGAAAGT
 5301 TCTGAAAGCAAAACAAAGCTGTAGCCGACCCCTTGCAGGCACGGGAAACCC
 5351 CCCACTGGCGACAGGTGCCCTCGGGCAAAGGCACGTGTATAAGATA
 5401 CACCTGCAAAAGGGGACACCCCACTGGCAGTGTGAGTTGGATAGTT
 5451 GTGGAAGAGTCAATGGCTCTCTCAAGCTTATCAACAGGGCTGAA
 5501 GGATGCCCCAGAAGGTACCCCATGTTGAGGATCTGATCTGGGGCCCTCGGT
 5551 GCAATGCTTACATGTTAGTGTGAGGTTAAAAAAACGCTTAGGCC
 5601 CGAACACCGGGGAGTGGTTTCTCTGGAGGATCTTCAACCCAG
 5651 CCTCTTGTCTCTGCTCTGGTCTGGAGGATCTTCAACCCAG
 5701 CGCGAGCTCACCGACTCTCAGACTCTGGCTGTGCTCTGGCGAGG
 5751 GCGCAGGACTCAACTGGCAGGGAGCTGGTGTGAGCTCCACCAACCA
 5801 ATAAGAAACTTATTAGCTGGTATGAGCAAGAAACAGGACAGCTCTAAAG
 5851 CTGCTCATTTACTGGGCACTACCCGGAAATCGGGGCTTGGACGGATT
 5901 CAGTGGCAGGGCTGGGAGCAGATTTCACTCTCACCATCAGCAGCTGC
 5951 AGGCTGAGATGTGGCAGTTTATTACTGTCAGCAATATTAGTACTCG

Figure 19c

6001 ACCTTCGGCCAAGGGACCAAGGTGGAATCAAACGAACTGTGGCTGCACC
 6051 ATCTGTCTTCATCTCCGCCATCTGATGAGCAGTGGAAATCTGGAACTG
 6101 CCTCTGTTGTCGCTGTAATAACTCTATCCCAAGAGGCCAAGATA
 6151 CAGTGGAAAGTGTATAACGCCCTCCAACTGGGTAACTCCAGGAGAGGT
 6201 CACAGAGCAGGACGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGA
 6251 CGCTGACAAAGCAGACTACAGAAAACACAAACTCTACGCCCTGCAGAGTC
 6301 ACCCATCAGGCCCTGAGATCGCCCTCACAAAAGACGTTCAAACAGGGAG
 6351 AGTGTAGTCTAGATAATTAAATTAGAGGGAGATCTCGAGCTGGCAAAG
 6401 CTGGCAGTGGCCCTGCTTACACGTCGTGACTGGAAAACCCCTGGG
 6451 TTACCAACTAATGCCCTTCAGGACATCCCCCTTTCGCCAGCCCTCTA
 6501 GGTGAGATCGATAAAAATAAAGATTATTATTTAGTCTCCAGAAAAGGGG
 6551 GGAAATGGGAAAGGCCCTCTGAGGTGGCAAGCTAGCTTAAAGTAAAGCC
 6601 ATTTCAGAAGGCAAGGAAAATACTATACTAGAGAAATAGAGAATTCTAGAT
 6651 CAAGTCAGGAAACAGATGGCAAGCAGTGAATATGGGCCAAAACAGGATAATCT
 6701 GTGCTAAGCAGTCTGCCGCCGCTCAGGGCAAGAACAGATGGAAACAGC
 6751 TGAATATGGCCAAACAGGATATCTGTGTTAAGCAGTTCTGCCCGGCT
 6801 CAGGGCAAAAGAACAGAATGGTCCCCAGATGGCTCCAGGCCCTCAGCAGTT
 6851 CTAGAGAACCATCGAGATTTTCCAGGGTCCCCAAAGGACCTGAATAGACC
 6901 CTGTGCTTCTTAACTGAACTAACCTAATCAGTTCGCTTCTCGGCTTCTGTCG
 6951 GCGCTTCTGCTCCCCAGCTCAATAAAAAGGCCAACACCCCTCAGCTGG
 7001 GGCGCCAGTCCTCCGATGACTGACTGCCCCGGGTACCCGTATCCAAAT
 7051 AAACCTCTTGCAGTCACTGGCAAGTGGCTTCTGGTCTCTGTCTTCTGGGAG
 7101 GGTCTCTCTGAGTGAATTGACTACCCGTCAAGGGGGTCTTCTTATTTGG
 7151 GGCTCGTCCGGATGACCCCTGGCAGGGACCCCTGGCAGGGACCCACAC
 7201 CGGGAGGTTAACGCTGGCTTCTGCCCTTCAGGTGAAAGGAGTGGAAAACC
 7251 TCTGACACATCGAGCTCCGGAGACGGTACACGCTGCTGTAAAGCGGAT
 7301 GCGGGGGAGCACAGAACAGGGCTCAGGGGGCGTCAAGCTGGGGTGTGGGG
 7351 TCGGGGGCAGCCATGACCGAGTCAGTAGCATAGCGGAGGTATACATG
 7401 GCTTAATATGGCCATCACAGAGCAGTGGTAAAGGAGAAAATACCCATCAGCGC
 7451 GGTGAAATACCCAGCACAGATGGTAAAGGAGAAAATACCCATCAGCGC
 7501 TCTCCGGCTTCTGCCACTGACTGCTGGCTCGCTCGTCTGGCTGGCG
 7551 CGAGCGGTATCAGCTCACAAAGGGTAATACGGTTATCCACAGAT
 7601 CAGGGATAACCGAGAAAAGCACGTGAGCAAAGGCCAGAAAAGGCC
 7651 AGGACCGTAAAAGGCCGTTGTGGCTTCTTCCATAGGCTCCGCC
 7701 CCCTGACGAGCATCACAAAATCAGCGCTCAAGTCAGAGGTGGCAAAACC
 7751 CGAAGGACTATAAAGATCACCGGGTTTCCCGCTGGAAAGCTCCCTCGT
 7801 CGCTCTCTGTCGGACCTGGCTTACGGTAACTCTGTCCTGGCTTCT
 7851 CCCTCGGGAGAGCTGGCGTTCTCATAGTCACGCTGTAGGTATCTA
 7901 GTTGGGTAGGGCTGGCTTCAGCTGGCTTCTGAGCTGGCTGTGGCAACCCCCC
 7951 GTTACGGCCGACCGCTGGCTTCTATCGGTAACTATGTTCTGAGTC
 8001 CCCGTAAGACACGACTTATCGGCACTGGCAGCAGCCACTGGTAACAGGA
 8051 TTAGCAGAGGGAGTTGTGGCTGTCAGAGTTCTTGAAGTGTGG
 8101 CCTAATCAGCGGACTACAGTGGAGCAGTTGGTATCTGCGCTCTGCT
 8151 GAAGCCAGTTACCTCGGAAAAGAGTTGGTACCTCTGATCCGGCAAC
 8201 AAAACCCAGCTGGTACGGCTGGTTTTTTGGTCAAGCAGCAGATTACG
 8251 CGCAGAAAAGGATCTCAGAAGATCTTGTGATCTTCTGAGGGTC
 8301 TGAGCGCTCAGTGGAAACAAAATCAGGTTAAGGGATTGGTATGAGAT
 8351 TATCAAAGGATCTCAGGTTAATGGTAAACCTGGCTGAGTTACCAATG
 8401 AAATCAATCTAAAGTATATGGTAAACCTGGCTGAGTTACCAATG
 8451 CTTAATCAGTGAGGCCACTATCTCAGCGATCTGCTTATTCGTTCA
 8501 TAGTGGCTGACTCCCGCTGTTGAGATAACTACGATACGGAGGGCTTA
 8551 CCATCTGGCCCGATGCTCAATGATACGGCAGACCCACGGCTACCCGC
 8601 TCCAGATTTATCAGGAATAAACCAAGGCCAGCCGAAGGGCCAGGGCAAA
 8651 GTGGTCTCTGCACTTATCCGCCATCAGCTTATTATTTGTGTC
 8701 GAAGCTAGAGTAAGTAGTGTGGCTGAGTTAATAGTTGGCAACGTTGTC
 8751 CATTGCTCAGGCCATGTTGTCAGGCTGGCTGTGTTGGTATGGCTCAT
 8801 TCAGCTCCGGTCTTCAACAGTCAAGGGAGTTACATGATCCCCATCTG
 8851 TGCAAAAGGGTTAGCTCTCCGGTCTCCGATCTGGTCAAGAAGTAA
 8901 GTTGGCCCGAGTGTATCAGTGGTTATGGCAGACTGCATAATTCTC
 8951 TTAATGTCATGCCATCCGTAAGATGCTTCTGTCAGTGGTGAATCTCA
 9001 ACCAGTCATCTGAGAAATGTTAGCTGGCGACCGAGTTGCTCTGGCC
 9051 GGCTCAACACGGATAATACCCGCCACATAGCAGAACATTAAAGTC

Figure 19d

9101 TCATCATTGGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTACCG
9151 CTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC
9201 AGCATCTTACATTCAACAGCGTTCTGGGTGAGCAAAAACAGGAAGGC
9251 AAAATGCCGCAAAAAGGGATAAGGGGACACGGAAATGTTGAATACTC
9301 ATACTCTTCTTTCAATATTATGAGCATTATCAGGGTTATTGTCT
9351 CATGAGCGGATACATATTGAATGTATTAGAAAATAAACAAATAGGGG
9401 TTCCGGGCACATTCCCCGAAAAGTGCCACTGACGCTTAAGAAACCTT
9451 ATTATCATGACATTAAACCTATAAAAATAGGCGTATCACGAGGCCCTTCG
1. TCTTCAGAAT

Features:

149-737 Moloney murine sarcoma virus 5' LTR
807-1616 Extended Packaging Region
1680-1735 EM7 promoter (bacteriophage T7 promoter)
1754-2151 Elasticidin resistance gene coding sequence
2310-2440 SV40 poly A signal and site
2603-3420 CMV IE promoter
3675-4988 G-protein-coupled receptor (GPCR)
5071-5646 IRES
5647-5703 Bovine a-lactalbumin signal peptide
5704-6372 'Humanized' antibody light chain
6553-7146 MoMuLV 3' LTR
7683origin of replication
9302-8442 b-Lactamase coding sequence

SEQUENCE LISTING

<110> Bleck, Gregory
Bremel, Robert
Miller, Linda
York, Donna
<120> Host Cells Containing Multiple Integrating Vectors
<130> GALA-04198
<150> 60/215,925
<151> 2000-07-03
<160> 36
<170> PatentIn version 3.0
<210> 1
<211> 2101
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 1
gatacgttctt ggggtgtcat tgaaaggact gatgtctgaag ttgtttcc aatactttgg 60
ccacactgtat cggaaactg actcatgtat ttggccctgt atactggaa agattgttgg 120
caggaggaga agggatgttca gaggatggaa gagttggatg gaatccaccaat ctcgtggac 180
atggatgttca gcaaggttcc aggatgttggt aatggggcagg gaagccgttc gtgtcgatgt 240
ccatgggggtt gcaaaagatgtt ggactactt gatgtacttca actgtacttca tagtgtatcc 300
catggatgttca aatataaggat aaaaaagagg aagatgttgc cctgttttca aagatgttca 360
ggatataaaa gttttagata cttttttttt ggaatgttca aattttttttt ttagatggg 420
tacccacttca aatataagaa atcaggatgtt agagactgtat gtatgtatcc tgagccctgg 480
cataccagaa gctaaatgtt atggatgttca gatgtttata ccaatataatcc accaataatcc 540
tggatgttca gatgtatgtt tgatgttccggc aatgttcaagg aaccatgttca aactgttcc 600
ctttaatgttca catgttccggc gacactgttca tttaatgttca gatgttccggc aatgttcc 660
aggctttagt tgatgttccggc ggggtttccggc tggatgttca gatgttccggc aatgttcc 720
caatgttccggc gatgttccggc cttttttttt ggggtttccggc tggatgttca gatgttcc 780
caaccatgttca tagtacttca acctggaaat ttccatgttca agaggatgttca aatgttcc 840
agtccatgttca attgttccggc gttttagatgttca gatgttccggc aatgttcc 900
atacaccatgttca qaaqtqaaqt qaaqtqaaqt ttcaatgttca qgttccatgttca attgttcc 960

gattcttac	catctgagcc	accaggaaag	ccaaagaata	ctggagtgg	tagccttac	1020
cttctccagg	ggatctccc	atcccaaggaa	ttgaactgga	gtctcctgca	tttcagggtgg	1080
attcttcacc	agctgaaacta	ccaggtggat	actactccaa	tattaaagtg	cttaaagtc	1140
agttttccca	ccttcccaa	aaagggttggg	tcactcttt	ttaaccttct	gtggcctact	1200
ctgaggctgt	ctacaagctt	atataattat	gaacacattt	attgcaagtt	tttagttta	1260
gatttacaat	gtggtatctg	gttatattgt	ggtattgggt	gttggggatg	gggaggctga	1320
tagcatctca	gagggcagct	agataactgtc	atacacactt	ttcaagttct	ccattttgt	1380
gaaatagaaa	gtctctggat	ctaagttata	tgtgattctc	agtctctgtg	gtcatatct	1440
attctactcc	tgaccactca	acaaggaacc	aaagatataaa	gggacacttg	ttttgttca	1500
tgccctgggtt	gagtggggca	tgacatatgt	tctgggcctt	gttacatggc	ttggattgggt	1560
ggacaagtgc	cagctctgt	cctggactg	ttggcatgtga	tgacatacac	ccctcttcca	1620
cattctgcat	gtctctaggg	gggaaggggg	aaagctcgta	tagaacctt	attgtattt	1680
ctgattgcct	cactttttat	attgccccca	tgcccttctt	tgttctctaa	gtAACCGAG	1740
acagtgcctc	ccagaaccaa	ccctacaaga	aacaaagggc	taaacaaaagc	caaatggaa	1800
gcaggatcat	ggtttgaact	ctttctggcc	agagaacaat	acctgtctatg	gactagatac	1860
ttggagaggg	aaaggaaaag	tagggtaat	tatggaaagg	agctggcagg	ctcagcggtt	1920
ctgtcttggc	atgaccagtc	tctcttattt	ctcttcctag	atgtagggt	ttgttaccaga	1980
gccccctgagg	ctttctgcat	aatataaaat	atatgaaact	gagtgtatgt	ttccatttcag	2040
gttcttgggg	gcgcgcgaaatt	cgagctcggt	acccggggat	ctcgaggggg	ggcccggtac	2100
c						2101

<210> 2

<211> 245

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 2						
gattacttac	tggcagggtgc	tggggggttc	cgagacaatc	gagaacatct	acaccacaca	60
acaccgcctc	gaccagggtg	agatatccgc	cggggacgcg	gggggtgtta	ttacaagcga	120
ggatccgatt	acttaactggc	agggtgttggg	ggcttccag	acaatcgca	acatctacac	180
cacacaacac	cgccctcgacc	agggtgagat	atcggccggg	gacgcggcgg	ttgtaattac	240
aagcg						245

<210> 3

<211> 680

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 3		
ggaaattcgc cctctccctc cccccccct aacgttactg gccgaagccg cttgaaataa	60	
ggccgtgtg cttttgtcta tatgttattt tccaccat tgcgcgtctt tggcaatgtg	120	
agggcccgaa aacctggccc tgcgttctt acgagcatc ctgggttct tttcccttc	180	
gccaaggaa tgcaagggtt gttgaatgtc gtgaaggaag cagttccctt ggaagcttct	240	
tgaagacaaa caacgtctgt agcgaccctt tgcaggcagc ggaacccccc acctggcagc	300	
aggtgcctct gcccggaaaa gccacgtgta taagatacac ctgcaaaggc ggcacaaccc	360	
cagtgcacg ttgtgagttt gatagttgt gaaagagtca aatggcttc ctcaagcgtta	420	
ttcaacaagg ggctgaagga tgcccagaag gtacccattt gatggatc tgatctgggg	480	
cctcggtca catgtttac atgtgttttgcgaggtaa aaaaacgtctt agggccccc	540	
aaccacgggg acgtgggtttt ctttggaaaa acacgatgt aatatggctt ctttgcctc	600	
tctgcctctg gttaggcatttccattccatgc caccaggcc ggcgcattgg gatatctaga	660	
tctcgagtc gcgaaagctt	680	

<210> 4

<211> 4207

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 4		
cggatccggc cattagccat attattcatt ggttatatacgataaaatcaa tattggctat	60	
tggccattgc atacgttgta tccatcatcat aatatgtaca ttatgttgg ctcatgtcca	120	
acattaccgc catgttgaca ttgattatttgcgttacat aacttacggg aatagcgggg	180	
tcatttagtc atagccata tatggagttc cgccgttacat aacttacggg aatggcccg	240	
cctggctgac cgcccaacga ccccccggca ttgacgtcaa taatgacgta tggttccata	300	
gtaaacgcca tagggactt ccattgacgt caatgggtgg agtatttacg gtaaactgccc	360	
cacttggcag tacatcaatg gtatcatatg ccaagtaacgc ccccttattga cgtcaatgac	420	
ggtaaatggc cgcgttggca ttatgcccacg tacatgacactt tatggactt tccatcttgg	480	
cagtcacatct acgttattgtt catcgatattt accatgggtga tgccgggttttgcgttacatc	540	
aatggggctgtg gatagcgggtt tgacttcacgg ggatttccaa gtctccaccc cattgacgtc	600	
aatggggatgtt tggtttggca cccaaatcaa cgggactttc caaaatgtcg taacaactcc	660	
gccccattga cgcaaatggg cggtaggcat gtacgggtgg aggtctatataa aagcagagctt	720	

cgtttagtga accgtcagat cgcctggaga cgccttccac gctgtttga cttccataga	780
agacacccgg accgatccag cttccggc cccaaacctt tggaggatc cccggaaatt	840
caggacctca ccatgggatg gagctgtatc atcccttctt tgtagcaac agctcaggt	900
gtccactccg aggtcaact ggtggagac ggtggagggt ttgtgcaacc tggccggcc	960
ctggccctgt cctgtctcgc atctggcttc gatttccacca catattggat gagttgggtg	1020
agacaggcac ctggaaaagg tcttggatgg attggagaaa ttcatccaga tagcagtacg	1080
attaactatg cgccgtctct aaaggataga tttaacaatcg cgcgagacaa cgccaaagac	1140
acattgttcc tgcaaatttgc cagcctgaga cccgaagaca cccgggtcta tttttgtca	1200
agccttact tcgggttccc ctgggttgc tattggggcc aaggggaccc ggtccacggc	1260
tcctcagccct ccaccaaggg cccatcggtc ttccccctgg caccctctc caagagcacc	1320
tctggggcga cagcggccct gggctgcctg gtcaggact acttcccgaa accgggtgacg	1380
gtgtcggttga actcaggcgc cttgaccacg ggcgtgcaca cttccggc tgcctacag	1440
tcctcaggac tctactccct cagcagcggtc gtgaccgtgc cttccagcag cttgggcacc	1500
cagacctaca tctgcaacgt gaatcacaag cccagcaaca ccaagggtgaa caagagat	1560
gagcccaaat ctgtgtacaa aactcacaca tggccaccgt gcccggcacc tgaactctcg	1620
gggggacccgt cagtttctt cttccccca aaacccaagg acaccctcat gatctccgg	1680
acccttgagg tcacatcggt ggtgggtggac gtgagccacg aagaccctga ggtcaagttc	1740
aactggtagc tggacggcgt ggagggtcat aatgccaaga caaaggccgcg ggaggagcag	1800
tacaacagca cgttaccgtgt ggtcagcggtc ctcaccgtcc tgcaccaggaa ctgggtgaat	1860
ggcaaggagt acaagtgcac ggtctccaaac aaaggccctcc cagcccccat cgagaaaacc	1920
atctccaaag ccaaaggcga gccccggaaa ccacagggtt acaccctgc cccatccgg	1980
gaggagatga ccaagaacca ggtcaggctg acctgcctgg tcaaaggctt ctatccagc	2040
gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgc	2100
cccggtctgg actccgcacgg ctcccttctt ctctatagca agtcaccgt ggacaagagc	2160
agggtggcgcg aggaaaaacgt ctctctatgc tccgtgtatgc acggaggctct gcacaaccac	2220
tacacgcaga agaccccttc cctgtctccc gggaaatgaa agccgaattc gcccctctcc	2280
ctccccccctt cctaaacgttta ctggccgaaag ccgttggaa taaggccgggt gtgegtttgt	2340
ctatatgtta ttttccacca tattggcggtc ttttggcaat gtgaggggcc gggaaacctgg	2400
ccctgtcttc ttgacggaga ttccctagggg tttttccctt ctggccaaag gaatgcacgg	2460
tctgttgaat gtcgtgaagg aagcagttcc tctggaaagct tcttggaaagac aaacaacgtc	2520
tgttagcgcacc ctggcaggac ggcggaaaccc cccacctggc gacagggtgcc tctggccca	2580
aaaggccacgt gtataagata cacctgcacaa ggcggcacaac ccccaactgtgcc acgttggtag	2640
ttggatagtt gtggaaagag tcaatggct ctccctcaacg gtattcaaca aggggctgaa	2700
ggatgcccacg aaggtacccc attgtatggg atctgtatcg gggccctcggt gcacatgttt	2760

tacatgtgtt tagtcgaggt taaaaaaacg tctaggcccc cggAACACAG gggACGTGGT	2820
tttccTTGA aaaACACGT gataatatgg CCTCCTTGT ctctctgtc ctggtaggca	2880
tccttattca tgccACCCAG gcccACATCC agCTGACCCA gagCCCAAGC agCCTGAGCG	2940
ccAGCGTGGG tgacAGAGTG accatCACCT gtaAGGCCAG tcAGGATGTG ggtACTTGTG	3000
tagcCTGGTA ccAGCAGAAG ccAGGTAAGG ctCCAAAGCT gctgtatcAC tggACATCCA	3060
cccGGCACAC tggTGTGCCA agcAGATTCA gCGGTAGCGG tagCGGTACc gACTTCACCT	3120
tcaccatCAG cAGCCTCAG ccAGGAGACA tcGCCACCTA ctACTGCCAG caATATAGCC	3180
tctatCGGTc gtTCGGCCAA gggACCAAGG tggAAATCAA acGAACATGTG gCTGCACCAT	3240
ctgtttcat ctTCCCGCA tctgtatGAGC agttGAAATC tggAACTGCC tctgttGTGT	3300
gcctgCTGAA taACTTCTAT cccAGAGAGG ccaaAGTACA gtGGAAGGTG gataACGCC	3360
tccAAATCGGG taACTCCCGAG gagAGTGTCA cAGAGCAGGA cAGCAAGGAC agcACCTACA	3420
gcctcAGCAG cACCTGAGC ctGAGCAAG cAGACTACGA gAAACACAAA gtCTACGCC	3480
gcgaAGTCAC cCATCAGGGC ctGAGCTCGC ccgtcACAAAG gagCTTCACAC agggGAGAGT	3540
gttagAGATC taggcCTCT aggtGAGATC cgATAAAATA aaAGATTTA ttTAGTCTCC	3600
agaaaaAGGG gggATGAAA gACCCACCT gtAGGTTTG caAGCTAGCT taAGTAACGC	3660
cattttGCAA ggcATGGAAA aatacataAC tgAGAAATAGA gaAGTTAGA tcaAGGTAG	3720
gaACAGATGG aACAGCTGAA tatGGGCCAA acAGGATATC tGTTGTAAGC agttCCTGCC	3780
ccggGCTCAGG gccaAGAAACA gATGGAACAG ctGAAATATGG gccaAAACAGG atATCTGTGG	3840
taAGCAGTTC ctGCCCCGGC tcAGGGCCAA gaACAGATGG tccccAGATG cggTCCAGCC	3900
ctcAGCAGTT tctAGAGAAC catCAGATGT ttCCAGGGTG ccccaAGGAC ctGAAATGAC	3960
cctGTGCTTt atTTGAACTA accAACTAGT tcGTTTCTCG ctTCTGTTG cgcGCTTGT	4020
ctccccGAGC tcaATAAAAG agCCCAACAC ccctCACTCG gggGCGCAGT cctccGATTG	4080
actGAGTCGc ccggGTACCC gtGtATCCAA taaACCTCT tGcAGTTGCA tccGACTTTG	4140
ggTCTCGTGTG ttccTTGGGA gggTCTCTC TGAGTGTGTTG actACCCGTC agcGGGGGTc	4200
tttCATT	4207
<210> 5	
<211> 4210	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 5	
ggatccGGCC attAGCCATA ttATTCATTG gttATATAGC atAAATCAAT attGGCTATT	60
ggccATTGCA tacGTGTAT ccATATCATA atATGTACAT ttATATGGC tcatGTCCAA	120
cattACCGCC atGTTGACAT tgATTATTGA ctGTTTATTA atAGTAATCA attACGGGGT	180

cattagtca tagcccatat atggagtcc gcgttacata acttacgta aatggccgc	240
ctggcgacc gccccacgac ccccgcccat tgacgtcaat aatgacgtat gttcccatag	300
taacgc当地 agggacttc cattgacgtc aatgggttga gtatggc当地 taaaactgccc	360
acttggc当地 acatcaatgt tatcatatgc caagtacgccc ccctatttgc gtaatgacgc	420
gtaaaatggcc cgcctggcat tatgccc当地 acatgacctt atggacttt cctacttggc	480
atgtacatcta cgtttagtgc atcgcttata ccatgggtat gcggttttgg cagtagatca	540
atgggc当地 atagcggtt gactcacggg gatttccaaag tctccacccc attgacgtca	600
atgggagtt gtttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg	660
ccccatttgc gcaatgggc ggtaggcatg tacgggttgg ggtctatata agcagagtc	720
gttttagtgc cgc当地 cgc当地 gtc当地 gtc当地 ctccatagaa	780
gacaccggga cgc当地 cgc当地 ctccgoggcc ccaagcttgc cgacggatcc cgggaaattc	840
aggacotc当地 catggatgg agctgtatca tccctttttt ggtacaaaca gctacagggt	900
tccactccca ggtccagctg gtccaaatcag gggctgaatg caagaaacct gggctatcag	960
tgaagggtctc ctgcaaggt tctggctaca ccttacttag ctactggctg cactgggtca	1020
ggcaggcacc tggacagggt ctggaatgg tggatcatat taatcttagg aatgattata	1080
ctgagtagtcaaa tcagaacttc aaggacaagg ccacaataac tgcagacgaa tccaccaata	1140
cagc当地 cagc当地 ggagctgagc agcctgagggt ctgaggacac ggc当地 ttttgc当地	1200
gaagggatata tactacgtt tactggggcc aaggcaccac ggtcaccgtc tccctcagct	1260
ccaccaaggcc cccatcggtc ttccccctgg cacccttccca caagagcacc tctggggca	1320
cagc当地 ccccttgg ggtctgc当地 gtcaaggact acttccccca acccggtgacg gtgtc当地	1380
actcaggc当地 cctgaccaggc ggc当地 caca ccttcccccc tgc当地 tccctcagac	1440
tctactccct cagc当地 cgtg tgc当地 cctccaggcagg cttgggacc cagacccata	1500
tctgcaacgt gaatcacaag cccagcaaca ccaagggttga caagagatg gagcccaat	1560
cttgc当地 aactcacaaca tgccc当地 cgc当地 tgaactccctg gggggaccgt	1620
cagtc当地 cttccccccca aaaccccaagg acaccctcat gatctcccg accccctgagg	1680
tcacatcggt ggtgggtggac gtgaggccacg aagaccctga ggtcaaggatc aactgggtac	1740
tggacggc当地 ggagggtcat aatgccaaga caaagccgcg ggaggagcag tacaacagca	1800
cgtaccgtgt ggtc当地 ctc当地 tgc当地 ccccttgg cttggctgaat ggcaaggagt	1860
acaagggtcaaa ggttccaaac aaagccctcc cagccccc当地 cgaaaaacc atctccaaag	1920
ccaaaggggca gccccaggaa ccacagggtgt acaccctgc cccatcccg gaggagatga	1980
ccaaagggtcaaa ggtc当地 ctc当地 acctgc当地 tcaaagggtt ctatcccgac gacatcgccg	2040
tggagttggga gagcaatggg cagccggaga acaactacaa gaccacgct cccgtgctgg	2100
actccgacgg ctcccttcc ctctatagca agctcacggt ggacaagacg aggtggc当地	2160
aggggaaacgt ctctcatgc tccgtgatgc acgaggctc gacaaaccac tacacgc当地	2220

agagcctc	cctgtctccc	gggaaatgaa	agccgaattc	gccccctc	ctcccccc	2280
cctaacgtt	ctggccga	cgcttgaa	taagggcgt	gtcggtt	ctatatgtt	2340
tttccacca	tattccgtc	ttttggca	gtgagggcc	ggaaacctgg	ccctgtctc	2400
ttgacgagca	ttccctaggg	tctttccct	ctcgccaa	gaatgcaagg	tctgttgaat	2460
gtcgtgaagg	aaggcgttc	tctggaa	gt	aaacaacgtc	tgtagc	2520
ctttgcaggc	agcgaa	cccac	ctggc	gacagg	gtcc	2580
gtataagata	cacctgcaaa	ggcggcacaa	ccccagtgcc	acgtt	gtgagtagtt	2640
gtggaaagag	tcaa	atgg	ctcc	caagc	gtattcaaca	2700
aaggta	tttgtatgg	atctgatctg	gggc	ctcggt	gcacatgtt	2760
tagtcaggt	taaaaaaa	ad	tctagg	ccga	accacg	2820
aaaacacat	gataatatgg	cctc	tttgc	tctgt	ctggtagca	2880
tgccaccc	cc	cc	gacatcc	agctgac	ccat	2940
agatagg	gt	actatg	actatg	gtca	aaatc	3000
gaactact	gc	ctgg	tacc	agc	aaact	3060
ggcatcc	act	gg	atct	ggc	tgat	3120
ttttactt	tc	ccat	ca	ctt	act	3180
atac	tc	tc	tc	tc	tttgc	3240
tgcac	at	ccat	ccat	tc	tttgc	3300
tgtt	tc	tc	tc	tc	tttgc	3360
taac	cc	cc	cc	cc	tttgc	3420
cac	ca	at	cc	cc	tttgc	3480
ctac	cc	cc	cc	cc	tttgc	3540
gggag	at	cc	cc	cc	tttgc	3600
taga	cc	cc	cc	cc	tttgc	3660
agta	ttt	cc	cc	cc	tttgc	3720
aagg	tc	cc	cc	cc	tttgc	3780
ttc	cc	cc	cc	cc	tttgc	3840
atct	tc	cc	cc	cc	tttgc	3900
gtcc	cc	cc	cc	cc	tttgc	3960
gaa	at	cc	cc	cc	tttgc	4020
tgt	cc	cc	cc	cc	tttgc	4080
tcc	cc	cc	cc	cc	tttgc	4140
cgact	ttt	cc	cc	cc	tttgc	4200
gtctcg	ttt	cc	cc	cc	tttgc	4210

<210> 6

<211> - 5732

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

gggtgagata	tcggccgggg	acgcggcggt	ggtaattaca	agcgagatcc	ccgggaattc	1740
aggacctac	catggatgg	agctgtatca	tccttttt	ggtagcaaca	gctacagggt	1800
tccactcga	ggtcaactg	gtggagagcg	gtggagggtgt	tgtcaaccc	ggccgggtccc	1860
tgcgctgtc	ctgctccca	tctggcttcg	atttcaccac	atattggatg	agttgggtga	1920
gacaggcacc	tggaaaggt	ctttagtggta	ttggagaaat	tcatccagat	agcagtaega	1980
ttaactatgc	gcgcgtctca	aaggatagat	ttacaatata	gcgagacaac	gcacaagaaca	2040
cattgttct	geaaatggac	agcctgagac	ccgaagacac	cggggcttat	ttttgtcaaa	2100
gcctttactt	cggcttcccc	tggtttgctt	attggggcca	agggaccccg	gtcaccgtct	2160
cctcagccctc	caccaagggc	ccatcggtct	tccccctggc	accctccccc	aagagcacct	2220
ctgggggcac	agcggccctg	ggctgcttgg	tcaaggacta	cttcccccga	ccgggtgacgg	2280
tgttgtggaa	ctcaggcgtcc	ctgaccagcg	gcgtgcacac	cttcccccgt	gtcctacagt	2340
cctcaggact	ctactccctc	agcagcgtgg	tgaccgtgcc	cttcagcagc	ttgggcaccc	2400
agacctacat	ctgcaacgtg	aatcacaagc	ccagcaacac	caaggtggac	aagagatgtg	2460
agccccaaatc	tgtgtacaaa	actcacacat	gccccccctg	cccagcacct	gaactccctgg	2520
ggggacgcgtc	agtcttcctc	ttccccccaa	aacccaagga	caccctcatg	atctcccgga	2580
ccccctgaggt	cacatcgctg	gtgggtggacg	tgagccacga	agccctgtag	gtcaagttca	2640
actggtagt	ggacggcggt	gaggtgcata	atgccaagac	aaagccgggg	gaggagcagt	2700
acaacagcac	gtaccgtgt	gtcagcgtcc	tcaccgtct	gcaccaggac	tggctgaatg	2760
gcaaggagta	caagtgcacag	gtctccaaaca	aagccctccc	agccccccatc	gagaaaacca	2820
tctccaaagc	caaaggccag	ccccgagaaac	cacagggtta	caccctgccc	ccatcccccgg	2880
aggagatgac	caagaaccag	gtcagcgtga	cctggcttgg	caaaggcttc	tateccagcg	2940
acatcgccgt	ggagtgggg	agcaatgggc	agccggagaa	caactacaag	accacgcctc	3000
ccgtgcttga	ctccgacggc	tccttcttcc	tctatagcaa	gctaccgtg	gacaagagca	3060
ggtggcagca	ggggAACgtc	ttctcatgtc	ccgtgatgca	cgaggctctg	cacaaccact	3120
acacgcgacaa	gagcccttcc	ctgtctcccg	ggaaatgaaa	gccaatttcg	ccccctctcc	3180
tccccccccc	ctaacgttac	ttggccgaac	cgcttggaaat	aaggccgggt	tgctgtttgc	3240
tatatgttat	tttccacccat	attggccgtct	tttggcaatg	tgaggggcccg	gaaaccttggc	3300
cctgtcttct	tgacgagcat	tccttaggggt	cttcccccctc	tcgccaaagg	aatgcaaggt	3360
ctgttgatg	tcgtgaagga	agcaggcttct	ctggaagctt	tttgaagaca	aacaacgtct	3420
gtagcgaccc	tttgcaggca	ggcggacccc	ccacctggcg	acaggtgcct	ctgccccca	3480
aagccacgtg	tataagatac	acctgcaaaag	ggggcacaac	cccagtgcct	cgttgtgagt	3540
tggatagttg	tggaaagagt	caaattggctc	tcctcaagcg	tattcaacaa	ggggctgtaag	3600
gatgccaga	aggttacccca	ttgtatggga	tctgtatctgg	ggccctcggt	cacatgttct	3660
acatgtgttt	agtcgagggtt	aaaaaaacgt	ctaggcccccc	cgaaccacgg	ggacgtgttt	3720

tccctttgaa	aaacacgatg	ataatatatggc	ctcccttgc	tctctgc	ttggtaggcat	3780
ctatccat	gccacccagg	ccgacatcca	gtgtacccag	agcccaagca	gcctgagggc	3840
cagcgtgggt	gacagagtga	ccatcacctg	taaggccagt	caggatgtgg	gtacttcgt	3900
agcctggta	cagcagaagc	caggtaaaggc	tccaaagctg	ctgatctact	ggacatccac	3960
ccggcacact	ggtgtccaa	gcagattcag	cggttagccgt	agccgttaccc	acttcaccc	4020
caccatcagc	agccctccagc	cagaggacat	cgccacccat	tactgcccagc	aatatacgct	4080
ctatcggtcg	tccggccaa	ggaccaagg	ggaaatcaaa	cgaactgtgg	ctgcaccatc	4140
tgttccatc	tccceggccat	ctgatgagca	gttgaatct	ggaactgcct	ctgttgcgt	4200
cctgtgtaa	aacttctatc	ccagaggaggc	caaagtacag	tggagggtgg	ataacgcct	4260
ccaatcggtt	aactcccaagg	agagtgtcac	agagcaggac	agcaaggaca	gcacccatag	4320
cctcagcgc	accctgcacgc	tgagcaaagc	agactacag	aaacacaag	tctacgcctg	4380
cgaagtacc	catcaggggc	tgagtcgc	cgtcacaag	agcttcaca	ggggagagtg	4440
ttagagatcc	cccggtgtgc	aggaattcga	tatcaagctt	atcgataatc	aacctctgg	4500
ttacaaaatt	tgtgaagat	tgactgttat	tcttaactat	gttgcctt	ttacgctatg	4560
tggatacgt	gtcttaatgc	ctttgtatca	tgctattgt	tcccgatgg	cttcatttt	4620
ctccctcttg	tataaaatct	gttgtgtgc	tctttatgag	gagttgtggc	ccgttgtcag	4680
gcaacgtggc	gttgtgtgc	ctgtgttgc	tgacgc	ccactgttt	ggggcattgc	4740
caccacctgt	cagctccctt	ccgggactt	cgtttcccc	ctccctattt	ccacggcgga	4800
actcatgc	gcctgcctt	cccgctgtc	gacaggggct	cggtgttgg	gcactgcaca	4860
ttccgtgggt	ttgtcgggga	aatcatcg	cttcccttgg	ctgctgcct	gtgttgcac	4920
ctggattctg	cgcgggacgt	ccttctgt	cgtcccttcg	gccc	tcatac	4980
tccttcccg	ggcctgtgc	cggctctcg	gcctttccg	cgttgc	ttcgcctca	5040
gacgagtccg	atctccctt	ggccgcctc	ccgcctgtat	cgatccgtc	aacatcgata	5100
aaataaaaga	tttttatttg	tctccagaaa	aaggggggaa	tgaaagaccc	cacctgttag	5160
tttggcaagc	tagcttaagt	aacgcattt	tgcaaggat	ggaaaaatac	ataactgaga	5220
atagagaagt	tcagatcaag	gtcaggaaca	gatggaaacag	ctgaatatgg	gccaacacgg	5280
atatctgtgg	taagcagg	tc	tcaggggccaa	gaacagatgg	aacagctgaa	5340
tatggccaa	acaggatatac	tgtggtaagc	agttcctgc	ccggcgtcagg	gccaagaaca	5400
gatggtcccc	agatgcggc	cagccctcag	cagtttctag	agaaccatca	gatgtttca	5460
gggtgcccc	aggacctgaa	atgaccctgt	gccttattt	aactaacc	tcagttcg	5520
tctcgcttct	gttcgcgcgc	ttctgttccc	cgactcaat	aaaagagccc	acaacccctc	5580
actcggggcg	ccagtcctcc	gattgactga	gtcgccggg	tacccgtta	tccataaaac	5640
cctcttgcag	ttgcattccg	cttgcgttct	cgctgttct	tggagggtc	tcctctgagt	5700
gattgactac	ccgtcagcg	gggtcttca	tt			5732

<210> 7

<211> 9183

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 7		
aaagacccca cccgttagtg gcaagctagc ttaagtaacg ccacttgca aggcattggaa	60	
aaatacataa ctgagaataag aaaagtttagtca ggaacaaaga aacagctgaa	120	
taccaaacag gatatctgtg gtaagcggtt cctgccccgg ctcagggcca agaacatgt	180	
agacagctga gtgatgggcc aaacaggata tctgtgttgc gcaagttctg ccccggtcg	240	
gggccaagaa cagatggtcc ccagatgcgg tccagccctc agcagttctt agtgaatcat	300	
cagatgttcc caggggtcccc caaggacccgaaaatgaccc tgcgttccat ttgaactaac	360	
caatcagttc gettctcgct tctgttcccg cgcgttccgt ctccgagctc aataaaagag	420	
cccacaaaccc ctcactcggc ggcgcgtct tcogatagac tgcgccgccc gggtaaccgt	480	
atccccaaata aagccttcc tctgtttgc tccaaatcg tgcgtcgctgt tccctggag	540	
ggtctccctt gagtgtatga ctacccacga cgggggtctt tcattttgggg gtcgtccgg	600	
gattttggaga cccctgcccc gggaccacccg acccaccacc gggaggttaag ctggccagca	660	
acttattctgt gtctgtccga ttgttctgt tctatgtttt atgttatgtcg ctcgtcgctg	720	
tactatgttag ctaactatgt ctgtatctgg cggaccccggt gttttttttt gtcgtcgctgt	780	
acaccccgcc gcaacccctgg gagacgtccc agggactttt gggccgggtt ttgtggcccg	840	
acctgaggaa gggaggtcgat gtggaaatccg acccgtcgtccgat gatatgtgtt tctgttagga	900	
gacgagaacc taaaacatgtt cccgcctccg tctgtatgtt tgctttccgtt ttgtggccgg	960	
agcccgccgtt ctgttctgtgttgc tgcgtcgctgc agcatcggtt tctgttccgtt ctgttctgt	1020	
gtgtttctgtt atttgttctgttgc aaatttagggc cagactgttca ccactccctt aagtttgacc	1080	
tttaggttactt gggaaatgtt cttttttttt tttttttttt tttttttttt tttttttttt	1140	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1200	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1260	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1320	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1380	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1440	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1500	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1560	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1620	
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1680	

tgaactgcag	gacgaggcag	cgcggctatc	gtggctggcc	acgacggcg	ttccctgcgc	1740
agctgtgctc	gacgttgtca	ctgaaggcg	aaggactgg	ctgttatgg	gccaatgtgc	1800
ggggcaggat	ctccctgtcat	ctcacettgc	tcctgcccag	aaagtatcca	tcatggctga	1860
tgcaatgcgg	cggctgcata	cgcttgatcc	ggctacctgc	ccattcgacc	accaagcgaa	1920
acatcgcatc	gagcgaggac	gtactcgat	ggaagcccg	cttgcgatc	aggatgatct	1980
ggacaaagag	catcaggggc	tcgcgcacgc	cgaactgttc	gccaggctca	aggcgccat	2040
gccccgacggc	gaggatctcg	tcgtgaccca	tggcgatgc	tgcttgcga	atatcatggt	2100
ggaaaatggc	cgcttttctg	gattcatgca	ctgtggccgg	ctgggtgtgg	cggaccgcta	2160
tcaggacata	cgcttggtca	cccgatgat	tgctgaagag	cttggcgccg	aatgggctga	2220
cccgcttcctc	gtgtttaacg	gtatcgccgc	tcccgattcg	cagcgcatcg	ccttctatcg	2280
ccttttgcac	gagttcttct	gagcgggact	ctggggttcg	aatgaccga	ccaagcgacg	2340
cccaacccatc	catcacgaga	tttcgatcc	accgcgcct	tctatgaaag	gttgggcttc	2400
ggaatcgitt	tccgggacgc	cggctggat	atccctccagc	gccccggatct	catgtcgag	2460
ttcttcgccc	accccggtct	cgatccccctc	gcgagttgtt	tcagctgtcg	cctgaggctg	2520
gacgacccatc	cgaggatctca	ccggcagtc	aaatccgtcg	gcatccagga	aaccaggcgc	2580
ggctatccgc	gcatccatgc	ccccgaactg	caggagtggg	gaggcacat	ggccgccttg	2640
gtcgaggcg	atcctagaac	tagcgaaaat	gcaagagaca	agacgaaaac	atgccacaca	2700
tgagaaatac	cgattctctc	attaacat	tcagggcagt	tatctggct	taaaagcaga	2760
agtccaaacc	agataacatg	catacatg	gttctctca	gagggttatt	actgaacact	2820
cgatccgagaa	taacgagtg	atcagtccctg	gggtgtcatt	gaaaggactg	atgctgaagt	2880
tgaagctcca	atactttggc	cacctgtatc	gaagaactga	ctcatgtat	aagaccctga	2940
tactggggaa	gattgaaggc	aggaggagaa	gggatgacag	aggatggaaag	agttggatgg	3000
aatcaccaac	tcgatggaca	tgagtttgag	caagcttca	ggagttgtta	atggcagg	3060
aagcctggcg	tgctgcagtc	catggggttg	caaagagttg	gacactactg	agtgactgaa	3120
ctgaaactgtat	agtgtatcc	atggtacaga	atataaggata	aaaaagagga	agatgttgc	3180
ctgattctgtat	agagttgtat	gatataaaag	ttttagatac	ctttagtttg	gaagtctta	3240
attattttact	taggtatgggt	acccactgtca	atataagaaa	tcaggcttta	gagactgtat	3300
tagagagaat	gagccctggc	ataccagaag	ctaacagct	ttgggttata	ctgttataac	3360
caatatataa	ccaaatataatt	ggttatata	catgaagtt	gatgccagca	atttgaagga	3420
accatattgtat	acttagtatacc	taaactctac	atgttccagg	acactgtatct	taaagctcag	3480
gttcagaatc	ttgtttata	ggctctatgt	gtatatttg	gggctccct	ggtggtctcg	3540
atggtaaagt	gtctgcctgc	aatgtgggt	atctgggttc	gatccctggc	ttggaaagat	3600
ccccctggaga	aggaaatggc	aaccactct	agtactctt	cctggaaaat	tccatggaca	3660
gaggagccctt	gtaagctaca	gtccatggg	ttgcaaagag	ttgaacaca	ctgagcaact	3720

aaggcagacca cagtacagta tacacctgtg aggtgaagtg aagtgaagggt tcaatgcagg 3780
gttccctgcga ttgcagaaag attctttacc atctcgagcca ccaggaaagc ccaagaataac 3840
tggagttgggt agccatttcc ttctccaggg gatcttccca tcccgagaat tgaacttggag 3900
tctctctgtat ttccagggttgc ttcttcacca gctgaactac caggtggata ctactccat 3960
attaaagtgc ttaaagtccca gttttccac ctttcccaa aagggtgggt cactctttt 4020
taacccctgtg tggccctactc tgaggctgtc tacaagcttata tattttatg aacacattta 4080
ttgcaagttt ttatgggtttag atttacaatg tggatctgg ctatggatgt gtattgggtt 4140
ttggggatgg ggaggctgtat agcatctcg agggcagcta gatactgtca tacacatttt 4200
tcaagttctc cattttgtg aaatagaaag tctctggatc taagttatata tggattctca 4260
gtctctgtgg tcatattcttca tctctactctt gaccactcaa caaggaacca agatatacaag 4320
ggacacttgtt tttgtttcat gcctgggtt agtggccatc gacatatgtt ctggcccttg 4380
ttacatggct ggattgggtt gacaagtgcc agctctgtatc ctggactgtt ggcattgtat 4440
gacatacacc ccctctccac attctgcatttgc tctctagggg ggaagggggaa agctcggtat 4500
agaacccat tttgtatccat tgattgcctt acttcttata ttggcccttgccttgcctt 4560
gttccctcaag taaccagaga cagtcttc cagaacccaa cctacaagaa acaaagggtt 4620
aaacaaagcc aaatgggaag caggatcatg gtttgaactc tttctggcca gagaacaata 4680
cctgtatgg actagataact gggagaggaa aaggaaaagt aggggttgaattt atggaaaggaa 4740
gctggcaggc tcagctttc tggcttggca tgaccaggatct ctcttcattt tcttcctttaga 4800
tgttagggctt ggttaccagag cccttgaggc tttctgcattt aatataaaata tatgaaactg 4860
agtgtatgtt ccatttcagg ttcttggggcc cgcgcatttgc gagetctggta cccggggatc 4920
tcgacggatc cgattactt ctggcagggtt ctgggggctt ccggagacatc cgcgcacatc 4980
tacaccacac aacaccgcctt ccggagggtt gagatatcgg ccggggacgc ggcgggttga 5040
attacaagcg agatccgattt acttactggc aggtgttggg ggttcccgatc acaatcgca 5100
acatcttacac cacacaacac cccttcgacc aggggtgatc atccggccgg gacgcggccgg 5160
tggtaattac aaggcgatc ccggggattt caggacatc ccatgggtatc gagetctgtatc 5220
atcccttctt tggtagcaac agtacagggtt gtccacttgc aggttcaactt ggttggagatc 5280
ggtggagggtt ttgttgcacc tggccggccctt ctggcgttgc tctgttccgc atctggctt 5340
gatttccatcca catattggat gagttgggtt agacaggccat ccggaaaagg tcttgatgtt 5400
atggagaaa ttcatccaga tagcgttacg attaactatg ccgcgttctt aaaaaggataga 5460
tttacaatataat ccgcgatc ccggccaaac acatttttgc tgcatttttgc cagccttgc 5520
cccgaaagaca ccggggctt tttttgttgc agcccttactt ccggcttccctt ctgggttgc 5580
tatttggggcc aaggggatccc ggttaccatc tcttcgttgc cccatccatc cgcgttgc 5640
tttcccttgc cacccttgc tgcatttttgc cagcggccctt ccgggttgc 5700
ccgcggactt acgtttccgc acccggttgc tttttgttgc acgttggccctt ccgttgc 5760

ggcgtgcaca	ccttccggc	tgtcctacag	tcctcaggac	tctactccct	cagcagctg	5820
gtgaccgtgc	cctccagcag	cttgggcacc	cagacctaca	tctgcaacgt	gaatcacaa	5880
cccagcaaca	ccaagggtga	caagggagtt	gagccaaat	cttgcacaa	aactcacaca	5940
tgcccacccgt	gcccagcacc	tgaactctcg	gggggacccgt	cagtcttct	cttccccca	6000
aaacccaagg	acaccctcat	gatctcccg	accctgagg	tcacatgcgt	gggtggac	6060
gtgagccacg	aagaccctga	ggtcaagttc	aactggtagc	tggacggcgt	ggaggtgcac	6120
aatgccaaga	caaagcccg	ggaggagcag	tacaacagca	cgtaccgtgt	ggtcagcgtc	6180
ctcacccgtcc	tgcacccagg	ctggctgaat	ggcaaggagt	acaagtgcac	ggtctccaa	6240
aaagccctcc	cagccccat	cgagaaaacc	atctccaaag	ccaaaggcga	gccccgagaa	6300
ccacagggtgt	acaccctgc	ccatcccg	gaggagatga	ccaagaacca	ggtcagcctg	6360
acctgcctgg	tcaaaggctt	ctatccacg	gacatcccg	tggagtggg	gagcaatggg	6420
cagccggaga	acaactacaa	gaccacgc	cccggtctgg	actccgacgg	ctcccttc	6480
ctctatacg	agtcacccgt	ggacaagagc	aggtggcagc	aggggaacgt	cttctcatgc	6540
tccgtatgc	acgaggctct	gcacaaccac	tacaecgaga	agagectctc	cctgtctccc	6600
ggaaaatgaa	agccgaat	gcccctctcc	ctcccccc	cctaaccgta	ctggccgaag	6660
cccgcttggaa	taaggccgg	gtgcgttgt	ctatgtta	ttttccacca	tattgcgtc	6720
ttttggcaat	gtgagggccc	ggaaacctgg	ccctgtcttc	ttgacgagca	ttccttaggg	6780
tcttccct	ctcgccaaag	gaatgcagg	tctgttgaat	gtcgtgaagg	aagcagtcc	6840
tctggaaat	tcttgaagac	aaacaacgtc	tgtagcggacc	ctttgcaggc	agcggaaaccc	6900
cccacctggc	gacagggtgc	tctgcggcca	aaagccacgt	gtataagata	cacctgcaaa	6960
ggcggccacaa	ccccagtgcc	acgttgtgag	ttggatagtt	gtggaaagag	tcaaattggt	7020
ctcctaagc	gtattcaaca	aggggctgaa	ggatgcccg	aaggtaaaaa	attgtatgg	7080
atctgatctg	gggcctcggt	gcacatgtt	tacatgttt	tagtcgggt	taaaaaaacg	7140
tctaggcccc	ccgaaccacg	gggacgtgg	tttcccttga	aaaacacgt	gataatatgg	7200
cctcccttgc	ctctctgtc	ctggtaggca	tcctattcca	tgccaccc	ggccgacatcc	7260
agctgaccca	gagcccaacg	agcctgagcg	ccagctggg	tgacagatg	accatcacct	7320
gttaaggccag	tcaggatgt	ggtaacttctg	tagctggta	ccagcagaag	ccaggttaagg	7380
ctccaaatgt	gtgtatctac	tggacatcca	cccgccacac	tgggtggca	agcagatcc	7440
ggcgttagcg	tagcggtacc	gacttcaact	tcacccatcg	cagcctcag	ccagaggaca	7500
tcgcccaccta	ctactgcac	caatatacg	tctatcggtc	gttcggccaa	gggaccaagg	7560
tggaaatcaa	acgaactgt	gtgcacccat	ctgtcttcat	cttccggca	tctgtatgac	7620
agttgaaatc	tggaaactgc	tctgttgcgt	gcctgtcga	taacttctat	cccagagagg	7680
ccaaagtaca	gtgaaaggtg	gataacgccc	tccaaatcg	taactccag	gagagtgtca	7740
cagagcagga	cagcaaggac	agcacctaca	gcctcagcag	caccctgacg	ctgagcaaag	7800

cagactacga	gaaacacaaa	gtctacgcct	gcgaagtca	ccatcagggc	ctgagctcg	7860
ccgtcacaaa	gagcttcaac	aggggagagt	gttagagatc	ccccgggctg	caggaatcg	7920
atatcaagct	tatcgataat	caacctctgg	attacaaaat	ttgtgaaaga	ttgactgta	7980
tttcttaacta	tgttgcctt	tttacgctat	gtggatacgc	tgctttaatg	cctttgtatc	8040
atgctattgc	ttcccgatg	gtcttcattt	tctcctcctt	gtataaatcc	ttggtgctgt	8100
ctctttatga	ggagttgtgg	cccggttca	ggcaacgtgg	cgtgggtgtc	actgtgtttg	8160
ctgacgcaac	ccccactgtt	tggggcattt	ccaccacctg	tcagetcctt	tccgggactt	8220
tcgtttttcc	cctccctatt	gccccggcgg	aactcatcg	cgccctgcctt	gccccgtgt	8280
ggacaggggc	tcgggtgttg	ggcactgaca	attccgttgtt	ttgtgtgggg	aaatcatcg	8340
cctttccctt	gtctgtcgcc	tgtgttgcca	cctggatttt	gwgccggaaacg	tccttctgt	8400
acgtcccccc	ggccctcaat	ccagcggacc	ttcctcccg	cgccctgtgt	ccggctctgc	8460
ggcccttcc	gctgtttcg	tttcgcctc	agacgagtc	gatctccctt	tggccggct	8520
ccccgcctga	tgcataccgt	caacatcgat	aaaataaaaag	attttattta	gtctccagaa	8580
aaagggggg	atgaaagacc	ccacctgttag	gtttggcaag	ctagcttaag	taacgcatt	8640
ttgcaaggca	tggaaaaata	cataacttag	aatagagaag	ttcagatcaa	ggtcaggaa	8700
agatgaaaca	gctgaatatg	ggccaaacag	gatatctgtg	gttgcgtgtt	cctgccccgg	8760
ctcaggggcca	agaacagatg	gaacagctga	atatgggcca	aacaggatata	ctgtgttaag	8820
cagttccctc	cccggtctag	ggccaaagaac	agatggtccc	cagatgcgg	ccagccctca	8880
gcagtttcta	gagaaccatc	agatgttcc	agggtcccc	aaggaccta	aatgaccctg	8940
tgccttattt	gaactaacca	atcagttcg	ttctcggttc	tgttgcgcg	cttctgtcc	9000
ccgagctcaa	taaaagagcc	cacaacccct	cactcggggc	gcccgtctc	cgattgactg	9060
agtcgccccg	gttcccggt	atccaataaa	cccttgc	gttgcgttcc	acttgcgtt	9120
tcgtgttcc	ttgggagggt	ctctctgt	tgattgacta	cccgta	ggggctttc	9180
att						9183

<210> 8

<211> 5711

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 8	gatcagtcc	gggtggcat	tgaaggact	gatgctgaag	ttgaagctcc	aatactttgg	60
ccacctgtat	cgaagaactg	actccatgt	taagaccctg	atactggaa	agattgaagg		120
caggaggaga	agggatgaca	gaggatggaa	gagttggatg	gaatcacaa	ctcgatggac		180
atgagttga	gcaagctcc	aggagtttgtt	aatggcagg	gaagcctggc	gtgtcgact		240

ccatggggtt gcaaaggagtt ggactactact gaggactgat actgaaactga tagtgtaata 300
catggtagacat aataataggat aaaaaagagg aagaggttgc cctgattctg aagagggtga 360
ggatataaaa gtttagaata ccttagttt ggaagtctta aattattttac ttaggatggg 420
tacccactgc aatataagaa atcaggctt agagactgtat gtagagagaa tgagccctgg 480
cataccagaa gctaacaagctt atgggtata gttgttataa ccaatata accaatata 540
tggttatata gcatgaagct tggatgcccgc aatttgaagg aaccatttag aactgtatc 600
cttaactctca catgttccag gacactgtatc ttaaagctca ggttcaaat ctgtttttat 660
aggctctagg tggatattgtt ggggcttccc tgggtggctca gatggtaaag tggctgcctg 720
caatgtgggt gatctgggtt cgatccctgg ctggggaaaga tcccccggag aaggaaatgg 780
caaccactc tagtactctt acctggaaaa ttccatggac agaggagctt tgtaagctac 840
agtccatggg attgcaaaaga gttgaacaca actgagcaac taagcacagc acagtagct 900
atcacactgt gaggtaagt gaagtgaagg ttcaatgcag ggttccctgc attgcagaaa 960
gattctttac catctgagcc accagggaaag ccaagaata ctggagttgg tagcctattc 1020
cttccagg ggttccccc atcccgagaa ttgaactgga gtctctgca ttccagggtgg 1080
attcttcacc agtgaacta ccagggtgat actactccaa tattaaagtg cttaaagtcc 1140
agtttccca ccttcccaa aaagggtggg tcaactttt ttaacccctt gtggccact 1200
ctgaggctgt ctacaagctt atatattttat gaacacattt attgaagttt gttagttta 1260
gatttacaat gtggatctg gctattttat ggttgggtg gttggggatg gggaggctga 1320
tagcatctca gaggcagct agataactgtc atacacactt ttcaagttct ccattttttgt 1380
gaaatagaaa gtctctggat ctaagtata ttgttattc actgtctctgtg gtcatattct 1440
attctactcc tgaccactca acaaggaaacc aagatatacaa gggacacttg ttttgggttca 1500
tgccctgggtt gaggggccca tgacatatgt tctggggctt gttacatggc tggattgggt 1560
ggacaagtgc cagctctgat cctggactg tggcatgtga tgacatacac cccctctccaa 1620
cattctgcat gtctctaggg gggaaaggggg aagctcggtt tagaaccttt attgtatttt 1680
ctgatttgctt cacttcttat attggccccc tgcccttctt tggttctcaaa gttaaccagag 1740
acagtgttcc ccagaaccaa ccctacaaga aacaaaggcc taaacaaagc caaatggggaa 1800
gcaggatcat ggttgaact ctttctggcc agagaacaat acctgtatg gactagatacc 1860
ttggagaggg aaaggaaaag tagggtaat tatggaaagga agctggcagg ctcagcggtt 1920
ctgtcttgcc atgaccagtc tctcttcatt ctcttccttag atgttagggct tggtaaccaga 1980
ccccctgggg ctttctgcat gaatataat atatgaaact gaggatgtatc tccatttcag 2040
gttcttgccc ggcggcaatt cgagctcggtt accccggggat ctcgacggat ccgattactt 2100
actggcaggat gctgggggtt tccgagacaa tcgcaacat ctacaccaca caacaccggc 2160
tcgaccaggg tgagatatacg gccggggacg cggcggtgg aattacaagc gagatccgat 2220
taacttactcg caaggctcgat gggcttccca gacaaatcgat aacatctaca ccacacaaca 2280

ccca	ccatcgaga	ccgtcacctg	caacgttgc	cacccggcca	gcagcacaa	ggtgtggacaag	4380
aaa	aaatgtgc	ccagggattt	tactagtgg	ggtgagggtt	gccaccatca	ccatcacat	4440
taat	taatctagag	ttaagcggcc	gtcgagatct	cgacatcgat	aatcaaccc	tggattacaa	4500
aattt	gttggaa	agattgactg	gtattctta	ctatgttgc	cctttacgc	tatgtggata	4560
cgct	cgctgttta	atgccttgt	atcatgtat	tgcttcccg	atgggttca	ttttcttc	4620
ctt	ttgtataaa	tcctgggtgc	tgtcttta	tgaggagtt	tgcccccgtt	tcaggcaacg	4680
tgg	tggctgggt	tgcactgbgt	ttgctgacgc	aaccccaact	ggttggggca	ttgccacac	4740
ctg	ctgtagctc	cttccggga	cttgcgttt	ccccctccct	attgcacgg	cggaactcat	4800
cgcc	cgccgctgc	cttgcggcgt	gctggacagg	ggctcggtt	ttggggactg	acaattccgt	4860
gg	gggttgtcg	gggaaatcat	cgtccttcc	ttggctgttc	gctgtgttgc	ccacccgtat	4920
tct	tctgcgggg	acgtccttct	gtaegtccc	ttcgcccttc	aatccaggg	accttccttc	4980
ccgg	ccggccctgc	ctggggcttc	tgcggctt	tccgcgttt	ccgccttcgc	ctcagaacag	5040
tcgg	tcggatctcc	ctttggggcg	cetccccgc	tgatcgataa	aataaaagat	tttatttagt	5100
ctcc	ctccagaaaa	aggggggaat	gaaagacccc	acctgttagt	ttggcaagct	agcttaagta	5160
acgc	acgcatttt	gcaaggcatg	aaaaataca	taactgagaa	tagagaagtt	cagatcaagg	5220
tcagg	tcaggaaacag	tgaatatgg	ccaaacagga	tatctgttgt	aaggcagtcc	5280	
tgccc	tgcccggct	cagggccaag	aacagatgg	acagctgaat	atgggccaaa	caggatatct	5340
gtgg	gtggtaagca	gttctggcc	cggctcaggg	ccaagaacag	atggtcccc	gatgcggtcc	5400
agcc	agccctcagc	agtttctaga	gaaccatcg	atgtttccag	ggtgcccaa	ggacctgaaa	5460
tgacc	tgaccctgt	ccttatttga	actaaccat	cagttcgctt	ctcgcttctg	tgcgcgogct	5520
tct	tctgtcccc	gagctcaata	aaagagccca	caacccctca	ctcgccggc	cagtcctccg	5580
att	attgacttag	tgcgggggt	accctgtat	ccaataaacc	ctcttgca	tgcatccgac	5640
ttgt	ttgtggtctc	gtgttccctt	gggagggtct	cctctgagtg	attgactacc	cgtcagcggg	5700
gg	ggtcttcat t						5711

<210> 9

<211> 5130

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400>	9	tttgaagac	cccacccgtt	ggtgtggcaagc	tagcttaagt	aacgcacatt	tgcaaggcat	60
gg	ggaaaaatac	ataactgaga	atagaaaagt	tcagatcaag	gtcaggaaaca	aagaaacacg		120
taa	taataccaa	acaggatatac	tgtggtaage	ggttctgc	ccggctcagg	gccaagaaca		180
at	atgtagacag	ctgagtgatg	ggccaaacag	gatatctgt	gtaagcagtt	cctgccccgg		240

ccgcctcgac	cagggtgaga	tatcgccgg	ggacgcggcg	gtggtaatta	caagcgagat	2340
ctcgagaagc	ttgttggaa	ttcaggccat	cgatcccgc	gccaccatgg	aatggagctg	2400
ggtccttctc	ttcttcctgt	cagtaactac	agggtccac	tccgacatcc	agatgaccca	2460
gtctccagcc	tccctatctg	catctgtggg	agaaaactgtc	actatcacat	gtcgagcaag	2520
tggaaatatt	cacaattatt	tagcatggt	tcagcagaaa	caggaaat	ctcctcagct	2580
cctggctat	aatgcaaaaa	ccttagcaga	tggtgtgcca	tcaaggttca	gtggcagttg	2640
atcaggaaca	caatattctc	tcaagatcaa	cagcctgcag	cctgaagatt	ttgggaggtt	2700
ttactgtcaa	catttttgg	gtactccgt	gacgttcgg	ggaggccacca	agctggaaat	2760
caaacgggct	gatgtgcac	caactgtatc	catttccca	ccatccatgt	agcagttaac	2820
atctggaggt	gcctcagteg	tgtgttttt	gaacaacttc	taccccaaa	acatcaatgt	2880
caagtggaa	attgtatggc	gtgaacgaca	aatggcgtc	ctgaacagtt	ggactgtatca	2940
ggacagcaaa	gacagcaact	acagcatgag	cagcacccctc	acattgacca	aggacgagta	3000
tgaacgcacat	aacagctata	cctgtgaggc	cactcacaag	acatcaactt	cacccatgt	3060
caagagcttc	aacaggaatg	agtgttggaa	gcatcgat	cccctgaatt	cggccctctc	3120
cctccccccc	ccctaacg	actggccgaa	gccgcttgg	ataaggccgg	tgtgegtt	3180
tctatatgtt	attttccacc	atattgcgt	cttttggca	tgtgagggcc	cgaaaacctg	3240
gccctgtctt	cttgacgagc	attccctaggg	gtctttcccc	tctcgccaaa	ggaatgcag	3300
gtctgttga	tgtctgttga	gaagcagttc	ctcttggaa	ttcttgaaga	caaacaacgt	3360
ctgtacgcac	cctttgcagg	cagcggaaacc	ccccacctgg	cgacagg	ctctgcggcc	3420
aaaagccac	tgtataagat	acac	ctgc	ac	cacgtt	3480
gttggatagt	tgtggaaaga	gtcaa	atggc	tctc	tca	3540
aggatgc	ca	tttgc	tttgc	tttgc	tttgc	3600
ttacatgtgt	ttatgtc	ttatgtc	ttatgtc	ttatgtc	ttatgtc	3660
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	3720
atcctatcc	atgc	atgc	atgc	atgc	atgc	3780
aagcc	cc	cc	cc	cc	cc	3840
cctc	act	act	act	act	act	3900
cctgc	gta	gta	gta	gta	gta	3960
ggaat	act	act	act	act	act	4020
gacacat	ctt	ctt	ctt	ctt	ctt	4080
ccaa	acac	acac	acac	acac	acac	4140
gtctt	act	act	act	act	act	4200
gtct	act	act	act	act	act	4260
gtct	act	act	act	act	act	4320

tccccctcagg atatagttagt ttgcgttttg catagggagg gggaaatgt a gtcttatgc	2340
atacaactgt agtcttgaa catggtaacg atgagttacg aacatgcctt acaaggagag	2400
aaaaagcacc gtgcattgcgg attgggtggaa gtaagggtgt acgatcggtc cttatttagga	2460
aggcaacaga caggctctgac atggatggaa cgaaccactg aattccgcatt tgccagagata	2520
atgttattta agtgccttgc tcgatacagc aaacgcattt tttgaccatt caccacattg	2580
gtgtgcaccttccaaagctt cacgtcgccg caagcactca gggcgcaagg gctgttaaag	2640
gaagcgaaac acgttagaaag ccagtccgca gaaacgggtc tgaccccgga tgaatgtcag	2700
ctactgggtt atctggacaa gggaaaacgc aagcgtcaaaag agaaaaggcagg tagcttgcag	2760
tgggttaca tggcgatagc tagactgggc ggttttatgg acagcaagcg aaccggatt	2820
gccagctggg ggcgcctctg gtaaggttgg gaagccctgc aaagtaaact ggatggctt	2880
cttgcgcgc aaggatctgtt ggcgcagggg atcaagatct gatcaagaga caggatgagg	2940
atcggttcgc atgattgaac aagatggatt gcacgcagggtt ttcggccgc cttgggttga	3000
gaggctattt ggcgtatgtt gggcacaaca gacaatggc tgctctgtat cccgcgtgtt	3060
ccggctgtca ggcgcaggggc gcccggttctt ttttgcgtcaag accggactgtt cccgtgcct	3120
gaatgaactg caggacgagg cagcgcggct atcgtggctg gccacgcgg ggcgttcttgc	3180
cgccagctgttgc tccgcacgttgc tcactgttgc gggaggac tggctgtat tggcgttgc	3240
gcccgggcgc gatctctgtt catctcacct tgctctgtcc gagaaggatccatcatcatggc	3300
tgtatgtcaatg cggcggttgc atacgttgc tccggcttacc tgccatttcg accaccaagc	3360
gaaacatgcg atcgcgcgcg cactgtactcg gatggaaagcc ggtcttgcgtt atcaggatgt	3420
tctggacgaa gggatcgagg ggctcgccgc agccgaaactg ttcggccaggc tcaaggcgcg	3480
catgcccgcg ggcgcaggatc tcgtgtgtac ccatggcgttgc gctgtctgc cgaatatcat	3540
gggtggaaat ggcgcgtttt ctggattcat cgttgcgttgc cggctgggtt tggcgttgc	3600
ctatcaggac atagcgttgc ctaccgttgc tatttgcgttgc gagcttgcgc gcaatgggc	3660
tgaccgttcc ttcgtgtttt acggatctgc cgttgcgttgc tccgcaggc tccgcatttca	3720
tccgcattttt gacgagtgttgc ttcgtgggg actctgggtt tccaaatgtc cgaccaagcg	3780
acggcccaacc tgcctatgtc agatgttgc tccaccggcg ctttctatgt aagggtgggc	3840
ttcggaaatggg ttttccggggc cgcgggttgc atgatcttcc acgcgggggc tctcatgttgc	3900
gagttcttcg cccaccccaaa ccctggccctt attattgggtt ggactaaacc tggggggaaat	3960
tgcgcgttgc atagggacac gggactactgc ttcataatggcc actcagcaat tccagcgttgc	4020
ccaaaggccgcgttgc gtacaggatc atctcagggttgc ggttggaaaatc tcaatgttgc accttgcgttgc	4080
gtctctcaacttccctgttgc aagttgttgc tcaatgttgc acagaatgttgc agggggccgttgc acttgcgttgc	4140
tctaaaggaa ggagggttgcgttgc ttcgtgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc	4200
cacaggacta gtgagagacatc gcatggccaa attggagagatc agggcttacatc agagacagaa	4260
actgttttgcgttgc tcaactcaatgttgc gggactgtttt aacagatccc cttgggttac	4320

caccttata	tctaccattta	tgggaccctt	cattgtactc	ctaatgattt	tgccttcgg	4380
acccctgcatt	cttaatcgat	tagtccaatt	tgttaaagac	aggatatacg	tggtccaggc	4440
tctagtttg	actcaacaat	atcaccagct	gaagcctata	gagtacgagc	catagataaa	4500
ataaaaagatt	ttathtagtc	tccagaaaaa	ggggggaaatg	aaagacccca	cctgttagtt	4560
tggcaagcta	gcttaagtaa	cgcattttg	caaggcatgg	aaaaatacat	aactgagaat	4620
agagaagttc	agatcaagg	caggaacaga	tggAACAGCT	gaatatggc	caaacaggat	4680
atctgtggta	agcagttct	gccccggctc	agggccaaga	acagatggaa	cagctgaata	4740
tggccaaac	aggatatctg	tggtaagcag	ttcctgcccc	ggcteaggcgc	caagaacaga	4800
tggtccccag	atgcgttcca	gcctcagca	gttcttagag	aaccatcaga	tgtttccagg	4860
gtgccccaa	gacctgaaat	gaccctgtgc	cttatttggaa	ctaaccaatc	agttcgcttc	4920
tgcgttctgt	tcgcgcgtt	ctgctccccc	agtcataaa	aaagagccac	aacccctcac	4980
tccggggcgc	agtccctcga	ttgactgagt	cgcggggta	cccggttata	caataaaacc	5040
tcttgcagtt	gcatccgact	tgtggtctcg	ctgttcttg	ggagggtctc	ctctgagtg	5100
ttgactaccc	gtcagcgggg	gtctttcatt				5130

<210> 10

<211> 4661

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 10	gatcagtct	gggtggtcat	tgaaaggact	gatgctgaag	ttgaagctcc	aatactttgg	60
ccacctgtat	cgaagaactg	actcatgtga	taagaccctg	atactggaa	agattgaagg		120
caggaggaga	aggatgaca	gaggatggaa	gagttggatg	gaatcacca	ctcgatggac		180
atagatttga	gcaagcttcc	aggagtttgtt	aatggcagg	gaagcctggc	gtgctgcagt		240
ccatgggggt	gcaaagagt	ggacactact	gagtactga	actgaactga	tagtgaatc		300
catggtacag	aatataggat	aaaaaaagagg	aagagtttgc	cctgattctg	aagagtttga		360
ggatataaaa	gtttagaata	ccttagttt	ggaagtcctt	aattatttac	ttaggatggg		420
tacccactgc	aatataagaa	atcaggcttt	agagactgt	gtagagagaa	tgagccctgg		480
cataccagaa	gctaacagct	attggttata	gctgttataa	ccaatataata	accaatataat		540
tggttatata	gcatgaact	tgtgccagc	aatttgaagg	aaccatttag	aactagtata		600
ctaaactcta	catgttccag	gacactgtc	ttaaagctca	ggtcagaat	cttggtttat		660
aggctctagg	tgtatatatgt	ggggcttccc	tggtgccctca	gatggtaaag	tgtctgcctg		720
caatgtgggt	gatctgggtt	cgatccctgg	cttgggaaga	tcccctggag	aaggaaatgg		780
caacccactc	tagtactctt	acctggaaaa	ttccatggac	agaggagct	tgtaaagctac		840

atgccccatggg attgcaaaaga gttgaacaca actgagcaac taagcacacg acagatcactg 900
atacacctgt gaggtgaagt gaagtgaaagg ttcaatgcag ggtctccctgc attgcagaaa 960
gattcttac catctgagcc accaggaaag cccaagaata ctggagtgaa tagccattc 1020
cttccctcagg ggtatctccc atcccaggaa ttgaactgga ttctctgc ttccagggtgg 1080
attcttcacc agctgaacta ccagggtggat actactccaa tattaaagtg cttaaaggcc 1140
agttttccca cttttcccaa aaagggttggg tcactctttt ttaaccttct gtggccact 1200
ctgaggctgt ctacaagctt atatatttataa gaacacattt attgcaagttt gttatgtttt 1260
gatttacaat gtggatctgt gctatgttggt ggttggggatg gggaggctga 1320
tagcatctca gaggcagct agataactgtc atacacactt ttcaagttct ccatttttgt 1380
gaaatagaaa gtcctctggat ctaagtataa tggttgcattt agtctctgtg tcataatttt 1440
attctactcc tgaccactca acaaggaaacc aagatatacaa gggacacttg ttttgggttca 1500
tgcctgggtt gagttggccca tgacatatgt tctggccctt gttacatggc tggattgggt 1560
ggacaagtgc cagctctgtat cctggactg tggcatgtga tgacatacac cccctctcca 1620
cattctgcat gtctcttaggg gggaaaggggg aagctcggtt tagaacctttt attgtatttt 1680
ctgattgttcc cacttcttat attggcccca tgcccttctt tggttctcaa gtaaccagag 1740
acagtgcctc ccagaaccaa ccctacaaga aacaaaggcc taaacaaagc caaatggggaa 1800
gcaggatcat gggttgaact ctctctggcc agagaacaat acctgtatg gactagatac 1860
tggagagggg aaaggaaaag tagggtaat tatggaaagga agctggcagg ctcagcgttt 1920
ctgtcttggc atgaccagtc tctcttcatt ctcttccttag atgttagggct tggtaaccaga 1980
gccccctgagg ctctctgcat gaatataaat atatgaaact gagtgtatgtt ccatttcag 2040
gttcttgggg ggcgcgaatt cgagctcggtt acccggggatg ctgcagaagc ttacccatgt 2100
gaatggagct gggttcttctt ctcttcctgt tcgatgacta cagggtgtcca ctccctgggtt 2160
cagttgcgc agtctgacgc tgatgttgggaa acacctgggg cttcagtgaa gatttcgtc 2220
aaggctctg gtcacacccctt cactgaccat gcaatttactt gggtaaaaca gaaccctgaa 2280
caggccctgg aatggattgg atattttctt cccggaaatg atgattttaa atacaatgag 2340
aggttcaagg gcaaggccac actgactgca gacaaatctt ccagcactgc ctacgtcgac 2400
ctcaacagcc tgacatctga ggattctgca tgatgttctt gtacaagatc cctgtatgt 2460
gcctactggg gtcaagggac ctcagtcacc gtctccctgc gaggcggagg cagcggaggc 2520
ggggctcg gaggcggagg ctggacattt gtatgtcact agtctccatc ctccctact 2580
gtgtcagttt gcgagaaggt tactttgagc tgcaagtgca gtcagacccctt ttatataatgt 2640
ggtatcaaa agaactactt ggcctggatc cagcagaaac caggcagtc ttctaaactg 2700
ctgatattactt gggcatccgc tagggatctt ggggtccctg atcgcttcac aggcaatgg 2760
tctggacag atttactctt ctccatcgc agtgtaaaga ctgaagacccctt ggcagttat 2820
tactctcagg actattatgtt ctatcccttc acgttgcgtt cttggacccaa ctggatctt 2880

aaacggggcc	ccgagccaa	atctcctgac	aaaactcaca	catgccacc	gtgcccgca	2940
cctgaactcc	tgggggacc	gtcagtcctc	cttcccccc	caaacccaa	ggacaccctc	3000
atgatctccc	ggacccctga	ggtcacatgc	gtgggtgtgg	acgtgagcc	cgaagaccct	3060
gaggtcaagt	tcaactggta	cgtggacggc	gtggagggtc	ataatccaa	gacaaaggcc	3120
cgggaggagc	agtacaacag	cacgtaccgt	gtggtcageg	tcctcacccgt	cctgcacccag	3180
gactggctga	atggcaagga	gtacaagtgc	aaggcttcca	acaaaggccc	cccagcccc	3240
atcgagaaaa	ccatctccaa	agccaaagg	cagccccgag	aaccacaggt	gtacaccctg	3300
cccccatccc	gggatgagct	gaccaagaac	caggtcagcc	tgacccgtct	ggtaaaggc	3360
ttctatccca	cgacatccgc	cgtggaggtgg	gagacaatg	ggcagccgga	gaacaactac	3420
aagaccacgc	ctccctgtct	ggactccgcac	ggctcttctt	tcctctacag	caagtcacc	3480
gtggacaaga	gcaggtggca	gcaggggaaac	gtcttctcat	gtccgtgtat	gcatgaggct	3540
ctgcacaccc	actacacgc	gaagagccctc	tcctgtctc	cggtaaagg	aggcgatca	3600
ggaggtggcg	cacctacttc	aagttctaca	aagaaaacac	agctacaact	ggagcattta	3660
ctgctggatt	tacagatgt	tttgaatgga	attaataatt	acaagaatcc	caaactcacc	3720
aggatgctca	catttaagtt	ttacatgccc	aagaaggcca	cagaactgaa	acatcttcag	3780
tgtctagaaag	aagaactcaa	acctctggag	gaagtgtctaa	attagctca	aagcaaaaac	3840
tttcaactta	gaccaggga	cttaatcagc	aatatcaacg	taatagtct	ggaactaaag	3900
ggatctgaaa	caacattcat	gtgtgaatat	gctgtgaga	cagcaaccat	tgtagaattt	3960
ctgaacagat	ggattacctt	ttgtcaagc	atcatctca	cactaacttg	aagcttgtta	4020
acatcgataa	aataaaagat	tttattttagt	ctccagaaaa	agggggaaat	gaaagaccct	4080
acctgttaggt	ttggcaagct	agcttaagta	acgcccattt	gcaaggcatg	aaaaatacata	4140
taacttgagaa	tagagaagtt	cagatcaagg	tcaggAACAG	atggAACAGC	tgaatatggg	4200
ccaaacagga	tatctgtgtt	aagcagtcc	tgcggcggt	caggcCAAAG	aacagatgg	4260
acagctgaat	atgggccaaa	caggatatct	gtggtaagca	gttccccc	cggctcagg	4320
ccaaagaacag	atggccccca	gatgcggtcc	agccctcagc	agtttctaga	gaaccatcag	4380
atgtttccag	ggtgcccaa	ggacctgaaa	tgaccctgt	ctttatttga	actaaccat	4440
cagttcgctt	ctcgcttctg	ttcgcgcgt	tctgtcccc	gagctcaata	aaagaccct	4500
caaccctca	ctcggggcgc	cagtccctcc	attgactgag	tcgccccgg	acccgttat	4560
ccaataaacc	ctcttgca	tgcacccac	ttgtgttctc	gtgtttctt	gggagggtct	4620
cctctgagtg	attgactacc	cgtcagccgg	ggtcttccat	t		4661

<210> 11

<211> 5691

<212> DNA

<213> Artificial Sequence

5220>

<223> Synthetic

ctgtcttggc atgaccagtc tcttcttatt ctcttcttag atgttagggct tggtaaccaga	1980
gccccctgagg ctttctgcatt gaatataat atatgaaact gagtgatgt tccattttcag	2040
gttcttgggg ggcggcgaatt cgagctcggt accccggggat ctcgcacggat ccgattactt	2100
actggcagggt gctgggggct tccgagacaa tcgcgaacat ctacaccaca caacaccgccc	2160
tcgaccaggg tgagatatcg gcccggggacg cggcggttgg aattacaagc gagatccgat	2220
tacttactgg caggtgtcgg gggctccga gacaatcgcg aacatctaca ccacacaaca	2280
ccgcctcgac cagggtgaga tateggccgg ggacgcggcg gtggtaatta caagcgagat	2340
ctcgagttaa cagatctagg cctcttaggt cgacggatcc ccggaaattt ggcgcggca	2400
ccatgatgtc ctttgcgtct ctgctcttgg taggcattctt attccatgcc acccaggccc	2460
agggttcaact gcagcgatct gggcttgagc ttgtgaagcc tgggacttca gtgaggat	2520
cctgcaaggc ttctggctac accttcacaa gctactattt acactgggtt aagcgagggc	2580
ctggacaggg acttgcgtt attgcattttt tttatcttgg aaatgtttt actacgttaca	2640
atgagaagtt caagggcaag gcccacactga ctgcagacaa atcctccagc acagccttaca	2700
tgcaccccaa cagcctgacc tcttgcgttctt ctgcgttca agggggttgc	2760
atgatcttgc ctactggggc caaggcacca ctctcagactt ctcccttgc aaaaacgacac	2820
ccccatctgt ctatccactg gcccctggat ctgcgtccca aactaactcc atgggtaccc	2880
tgggatgcctt ggtcaagggc tattttccctg agccagtgtac agtgcacccgg aactctggat	2940
ccctgtccagg cggtgtgcac accttccctg ctgcgttca gtgcacccctt tacactctgt	3000
gcagctcagg gactgtcccc tccagcacctt ggcggcaggcg aaccgttccacc tgcaacgttgc	3060
cccccccgcc cagcagcacc aagggtggaca agaaaattgt gcccgggat tggacttagtgc	3120
gagggtggagg tagctaaaggg agatctcgac ggatccccgg gaatttgcggcc ctctccctcc	3180
ccccccctta acgttactgg ccgaaggccgc ttggataaa gcccgggttgc gttttctat	3240
atgttattttt ccaccatattt ggcgttctttt ggcaatgtga gggccggaa acctggccct	3300
gtcttcttgc ctgcgttcc taggggttctt tccctctcg ccaaggaaat gcaagggttgc	3360
ttgaatgtcg tgaaggaagc agtttcttgc gaagtttctt gaagacaaac aacgttgc	3420
gcccacccctt gcaggcaggcg gaaccccccata cctggcgaca ggtgcctcg cggccaaaag	3480
ccacgtgtat aagatacacc tgcaaggccgc gcacaacccccc agtgcacgt tggatgttgg	3540
atagttgtgg aaaggttcaat atggcttcc tcaaggctat tcaacaaggg gctgaaggat	3600
gcccccaagg tacccttattt tatggatctt gatctggggc ctgcgttgcac atgttttaca	3660
tgtgttttagt cgagggtttaaa aaaaacgttca gggcccccga accacggggat cgtggtttttc	3720
ctttggaaaaa cacgtatata atatggccctt ctggcttctt ctgctcttgg taggcattctt	3780
attccatgcc acccaggccgc acattgtgttgc gacacaatctt ccagcaatca tggatgtc	3840
tccaggggag aagggttccca tgacccgttgcag tgccacccatca agtgcgttgc acataactg	3900
gttaccaggcag aagtgcggca cctcccccacaa aagatggattt tatgcacatccat cccaaactggc	3960

ttctggagtc	cctgctcgct	tcagtggcag	tgggtctggg	acctctact	ctctcacact	4020
cagcagcatg	gaggetgaag	atgctgcac	ttattactc	cagcagtggg	gtagttacct	4080
cacgttccgt	gccccccatca	agctggagct	gaaacccggct	gatgtgcac	caactgtatc	4140
catctccca	ccatccatgt	agcagttAAC	atctggaggt	gcctcagtcg	tgtgttttt	4200
gaacaacttc	taccccaaag	acatcaatgt	caagtggaaag	attgtatggca	gtgaacgaca	4260
aaatggcgctc	ctgaacagtt	ggactgatca	ggacagcaaa	gacagcacct	acagcatgag	4320
cagcaccctc	acggttgcacca	aggacgagta	tgaacgcacat	aacagctata	cctgtgaggc	4380
cactcacaag	acatcaactt	cacccatgt	caagagcttc	aacaggaatg	agtgttaata	4440
ggggagatct	cgacatcgat	aatcaaccc	tggattacaa	aattttgtgaa	agattgactg	4500
gtattctaa	ctatgttgc	ccttttacgc	tatgtggata	cgctgctta	atgcctttgt	4560
atcatgtat	tgcttcccg	atgggtttca	tttttcctc	cttgtataaa	tcctgggtgc	4620
tgtctctta	tgaggaggtt	tggcccggtt	tcaggcaacg	tggcgtggtg	tgcactgtgt	4680
ttgctgacgc	aaccccaact	ggttggggca	ttgccaccc	ctgtcagtc	cttccggga	4740
ctttagcttt	ccccctccct	attggccacgg	cggaaactcat	cgccgcctgc	cttgcggcgt	4800
gctggacagg	ggctcggtgt	ttgggactg	acaattcgt	ggtgttgcg	ggaaatcat	4860
cgtcccttcc	ttggctgctc	gcctgtgtt	ccacctggat	tctgcgcggg	acgttccttc	4920
gctacgtccc	ttcggcaccc	aatccagcg	accttccttc	ccgcggctcg	ctgcccgtc	4980
tgcggccctt	tccgcgttt	cgccctcgcc	ctcagacag	tggatctcc	ctttggcccg	5040
cctcccccgc	tgatcgataa	aataaaagat	tttattttagt	ctccagaaaa	aggggggaat	5100
gaaagacccc	acctgttagt	ttggcaagct	agcttaagta	acgcatttt	gcaaggcatg	5160
aaaaaaataca	taactgagaa	tagagaagtt	cagatcaagg	tcaggaacag	atggAACAGC	5220
tgaatatgg	ccaaacacgg	tatctgtgtt	aaggcgtcc	tgcggccgt	caggggcaag	5280
aacagatgga	acagctgaat	atggggccaa	caggatatct	gtggtaagca	gttcctgc	5340
cggctcaggg	ccaagaacag	atgggtcccc	gatgcggtcc	agccctcagc	agtttctaga	5400
gaaccatcag	atgtttccag	ggtgccccaa	ggacctgaaa	tgaccctgt	ccttatttga	5460
actaaccat	cagttcgctt	ctcgtttctg	tgcgcgtct	tctgtcccc	gagctcaata	5520
aaagagccca	caacccctca	ctcgccgcgc	cagtcctccg	attgactgag	tgcggccgggt	5580
acccctgtat	ccaataaacc	ctcttgcagt	tgcacccgac	ttgtggtctc	gtgttcctt	5640
gggagggtt	cctctgagtg	attgactacc	cgtcagcggg	ggttttcat	t	5691

<210> 12

<211> 668

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 12

ggaaattcggcc	cctctccctc	ccccccccct	aacgttactg	gccgaagccg	cttggataaa	60
ggccgggtgc	cgtttgcata	tatgttattt	tccaccat	tgcgcgtt	tggcaatgt	120
aggggccgga	aacctggccc	tgtcttctt	acgagcatc	ctaggggtct	ttcccccttc	180
gccaaggaa	tgcaaggct	gttgaatgtc	gtgaaggaaag	cagttccct	ggaagctct	240
tgaagacaaa	caacgtctgt	acgcaccctt	tgcaggcagc	ggaaccccc	acctggcagc	300
aggtgcctct	ggggccaaaa	gccacgtgt	taagatacac	ctgcaaggc	ggcacaaccc	360
cagtgcacag	ttgtgagtt	gatagttgt	gaaagagtca	aatggctct	ctcaagcgta	420
ttcaacaagg	ggctgaagga	tgcccagaag	gtacccatt	gtatggatc	tgatctgggg	480
cctcggtgc	catgtttac	atgtgtttag	tgcaggtaaa	aaaaacgtct	aggccccccg	540
aaccacgggg	acgtgttttt	ccttgaaaaa	acacgtat	aatatggct	tgctcatct	600
tacctgtctt	gtggctgtt	ctcttgcgg	cgccatggg	tatctagatc	tgcagctcgc	660
gaaagctt.						668

<210> 13

<211> 6255

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 13

tttgaagac	cccacccgta	ggtggcaagc	tagcttaagt	aacgccactt	tgcaaggcat	60
ggaaaatac	ataactgaga	atagaaaagt	tcagatcaag	gtcaggaca	aagaaacagc	120
tgaataccaa	acaggatatac	tgtggtaagc	ggttctgtcc	ccggctcagg	gccaagaaca	180
gatgagacag	ctgagtgtat	ggccaaacag	gatatctgt	gtaaggcgtt	cctgccccgg	240
ctcggggcca	agaacagatg	gtcccaagat	gcccccaagc	cctcagcagt	ttctagtgaa	300
tcatcagat	tttccaggg	gccccaaagga	cctgaaaatg	accctgtacc	ttatgttgaac	360
taaccaatca	gttcgttct	cgcttctgtt	cgcgcccttc	cgctctccga	gctcaataaa	420
agagcccaca	accctctact	cgcgcccca	gtttccgat	agactcgctc	gccccggatc	480
ccgtattccc	aataaaagct	cttgcgtttt	gatcggaaat	cgtggctcg	ctgttccctt	540
ggagggtctc	ctctgagtg	ttgactaccc	acgacgggg	tctttcattt	gggggctcg	600
ccgggattt	gagacccctg	cccaggacc	acgacccac	caccgggagg	taagctggcc	660
agcaacttat	ctgtgtctgt	ccgattgtct	agtgtctat	tttgcgttta	tgcgcctgcg	720
tctgtactag	ttagctact	agctctgtat	ctggcgacc	cgtggtgaa	ctgacgagtt	780
ctgaacaccc	ggccgcaacc	ctgggagacg	tcccaggac	tttggggcc	gtttttgtgg	840

cccgacctga	ggaagggagt	cgatgtgaa	tccgaccccg	tcaggatatg	tggttctgg	900
aggagacgag	aacctaaaac	agtcccgc	tccgtctgaa	tttttgc	tttggaa	960
ccgaagccgc	gcgttttgc	tgctgcagcg	ctgcagcatc	gttctgtgtt	gtctctgtct	1020
gactgtgtt	ctgttattgt	ctgaaaattta	gggccagact	gttaccactc	ccttaagttt	1080
gaccttaggt	cactggaaag	atgtcgagcg	gatcgctac	aaccagtccg	tagatgtcaa	1140
gaagagacgt	tgggttacct	tctgtctgc	agaatggca	acctttaac	tcggatggcc	1200
gcgagacggc	acctttaacc	gagacctcat	caccagg	tttcaagg	tctttcacc	1260
tggcccgcat	ggacacccag	accagg	tttccatcg	acctggaaag	ccttggctt	1320
tgacccccc	ccctgggtca	agcccttgt	acaccctaag	cctccgc	cttccctcc	1380
atccgc	ccctgggtca	ttgaacctcc	tcgttgcacc	ccgcctcgat	cctcccttta	1440
tccagccctc	actccttctc	taggegcgg	aattccgatc	tgatcaagag	acaggatgag	1500
gatcgttcg	catgttggaa	caagatgt	tgcacgcagg	tttccggcc	gttgggtgg	1560
agaggctatt	cggtatgac	tgggcacaaac	agacaatcg	ctgtctgtat	ggccgcgtgt	1620
tccggctgtc	agcgcagg	ggccgggttc	tttttgc	gaccgac	tccgggtcccc	1680
tgaatgaact	gcaggacag	gcagcgcggc	tatgtgtct	ggccacgac	ggcggttctt	1740
gegcagctgt	gtcgacgtt	gtcaactgaa	cgggaaaggga	ctggctgtat	ttgggcgaa	1800
tgcggggca	ggatctctg	tcatetcaacc	ttgcctctgc	cgagaaagta	tccatcatgg	1860
ctgatgcaat	ggggcggtc	catacgctt	atccggctac	ctggccat	gaccacaaag	1920
cgaaacatcg	catcgagcga	gcacgtactc	ggatggaaac	cggtcttgc	gatcgaggat	1980
atctggacga	agagcatcg	gggctcg	cagccgaact	gttgc	caggctca	2040
gcatgcccga	cgccgaggat	ctcg	ctgcgtga	ccatgg	tgcctgttgc	2100
tggtggaaaa	tggcgctt	tctggattca	tcgactgtgg	ccggctgggt	gtggcgacc	2160
gctatcgga	catagcggtt	gctaccctgt	atattgtat	agagcttggc	ggcgaatggg	2220
ctgaccgtt	cctcg	tacggtatecg	ccgttcccg	ttcg	caggcgc	2280
atcgcttct	tgacgagg	ttctgagcgg	gactctgggg	ttcgaaat	ccgaccaac	2340
gacgccccaa	ctgc	ccatcac	gagatttga	ttccacccgc	gccttctat	2400
cttcggaaatc	gtttccgg	acggcggt	gatgttctc	cagegcgggg	atctcatgt	2460
ggagttcttgc	gcccaccccg	ggctcgatcc	cctcg	cgatgt	gttgccttag	2520
gttggacac	ctcg	cggtt	tctaccgg	gtgcaat	gtcgccatcc	2580
cagcggtat	ccgcgc	catcc	atgc	cgaggag	tggggaggca	2640
tttggatccgg	gcggatccgg	ccat	tttgc	tatata	gcataatca	2700
atattgtatc	ttggccat	tat	atccat	atata	taatatgtac	2760
gtctatgtcc	aacattacccg	ccatgttgc	attgattt	gactagttat	taatagtaat	2820
caattacggg	gtcattagtt	catagccat	atatggagtt	ccgcgttaca	taacttacgg	2880

taaatggccc	gcctggctga	ccggccaaacg	accccccggcc	attgacgtca	ataatgacgt	2940
atgttcccat	agtaacgcga	atagggactt	tccattgacg	tcaatgggtg	gagttttac	3000
ggtaaactgc	ccacttggca	gtacatcaag	tgtatcatat	gccaagtacg	ccccctattg	3060
acgtcaatga	cggtaaatgg	ccgcctggc	attatgccc	gtacatgacc	ttatggact	3120
ttccatcttg	gcagtagacatc	tacgtattag	tcategtat	taccatggtg	atgcgggttt	3180
ggcagtagcat	caatgggcgt	ggatagccgt	ttgactcagc	gggatttcca	agtctccacc	3240
ccattgacgt	caatgggagt	ttgttttggc	acccaaatca	acgggacttt	ccaaaatgtc	3300
gtaacaactc	cgccccattg	acgcaaatgg	gcccgttagca	tgtacgggtg	gaggctata	3360
taagcagacg	tcgttttagt	aaccgtcaga	tcgcctggag	acgccccatca	cgctgttttg	3420
acctccatag	aagacacccgg	gaccgatcca	gcctccgggg	ccccaaagtt	ctcgacggat	3480
ccccgggaat	tcaggccatc	gatccggccg	ccaccatgg	atggagctgg	gtctttctct	3540
tcttcctgtc	agtaactaca	ggtgtccact	ccgacatcca	gatgacccag	tctccagect	3600
ccctatctgc	atctgtggga	gaaactgtca	ctatcacatg	tccgagaatgt	gggaatattc	3660
acaattat	agcatggat	cagcagaaaac	agggaaaatc	tcctcagctc	ctggctata	3720
atgcaaaaac	cttagcagat	ggtgtccat	caagggttag	tggcagttgg	tccggacac	3780
aatattctct	caagatcaac	agcctgcagc	ctgaagattt	tgggagttat	tactgtcaac	3840
atttttggag	tactccgtgg	acgttcggtg	gaggcacaa	gctggaaatc	aaacgggctg	3900
atgctgcacc	aactgtatcc	atcttccac	catccagtga	gcaatgttaca	tctggaggtg	3960
cctcagtcgt	gtgcttcctt	aacaacttt	accccaaaga	catcaatgtc	aagtggaaaga	4020
tttgcgttgc	tgaacgacaa	aatggcgatcc	tgaacagttt	gactgtatcg	gacagcaag	4080
acagcaccta	cagcatgagc	agcacccatca	cattgacca	ggacgagttat	gaacgacata	4140
acagctatac	ctgtgaggcc	actcacaaga	catcaacttc	acccattgtc	aagagcttca	4200
acaggaatga	gtgttggaaag	catcgatttc	ccctgaattt	gccccctctcc	ctcccccccc	4260
cctaacgtt	ctggccgaaag	ccgcttggaa	taaggccgg	gtgcgtttgt	ctatatgtta	4320
ttttccacca	tatttgcgtc	ttttggcaat	gtgaggggcc	ggaaacctgg	ccctgttttc	4380
tttgcgttgc	ttccttaggg	tctttccctt	ctgcaccaag	gaatgtcaagg	tctgttgaat	4440
gtcgtgttgc	aaggcgttcc	tcttggaaat	tcttggaaac	aaacaacgttc	tgtacggacc	4500
ctttgcggc	agcggaaatcc	cccacccatgg	gacaggttcc	tctgcggcca	aaagccacgt	4560
gtataagata	cacccgttcaaa	ggcggcacaa	ccccagtgcc	acgttggtag	tttggatagt	4620
gtggaaagag	tcaatggct	ctccctcaagc	gtattcaaca	agggggttga	ggatggccac	4680
aaggtaatcc	attgtatggg	atctgtatgt	gggcctcggt	gcacatgttt	tacatgtt	4740
tagtcggat	taaaaaaaacg	tctaggcccc	ccgaaccacg	gggacgttgg	tttccatttga	4800
aaaacacat	gataatatgg	cctccattgt	ctctctgtctc	ctggtaggtca	tccttattcca	4860
tgccacccag	gccgagggtt	agcttcagca	gtctggggca	gagcttgc	agccaggggc	4920

ctcagtcaag ttgtcctgca cagttctgg cttcaacatt aaagacacct ttatgcactg	4980
ggtaaaggcag aggctgaaac agggcctgga gtggatttggaa aggattgatc ctgcgaatgg	5040
gaatactgaa tatgccccga agttccaggaa caaggccact ataacagcag acacatccctc	5100
caacacagtc aacacctgca gtcagcagct gacatctgag gacactgccc tctattactg	5160
tgcttagtggaa ggggaaactgg gggttcccta ctggggccaa gggactctgg tcactgttcc	5220
tgcagccaaa acgcacacccc catctgttca tccactggcc cctggatctg ctgccccaaac	5280
taactccatg gtgaccctgg gatgcctggat caagggttat ttcctgagc cagtgcacagt	5340
gacactggaaac tctggatccc tgcacccgggg tgcacacc ttcccagctg tcctgcgtc	5400
tgacactctac actctgtggca gctcagtgtac tgcctccctcc agcacctggc ccagcggagac	5460
cgtcacttc aacgttggcc accccggccag cagcaccaag gtggacaaga aaattgtgcc	5520
cagggattgtt actagtggag gtggaggtag ccaccatcac catcaccatt aatctagagt	5580
taaggccggc tcgagatcta ggcctcttag gtcgacatcg ataaaataaa agatttttt	5640
tagtctccag aaaaagggggg gaatgaaaga ccccacctgtt aggtttggca agcttagctt	5700
agtaacgcca ttttgcaggcatggaa tacataactg agaatagaga agttcagatc	5760
aagggtcagga acagatggaa cagctgaata tggggccaaac aggatatctg tggtaagcag	5820
ttccctgcccc ggctcaggcga caagaacaga tggacacagct gaatatggc caaacaggat	5880
atctgtggta agcagttctt gccccggctc agggccaaga acagatggc cccagatgcg	5940
gtccagccct cagcagtttca tagagaacca tcagatgtttt ccagggtgcc ccaaggacct	6000
gaaatgaccc tgcgttcaatc caatcagttc gcttcgtct tctgttgcgc	6060
cgcgttctgtt ccccgagtc aataaaagag cccacaaccc ctcactcggtt ggcggcgtcc	6120
tccgattgtac tgatgcggcc gggtaaccgt gtatccaata aacccttgc cagttgcattc	6180
cgcactgtgg tctcgctgtt ctttggagg gtcctcctgtt agtatttttgc taccctgttag	6240
cgggggtctt tcatt	6255

<210> 14

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 14

ctttgaaaaaa cacgtatata atatggccctc cttttgtctct ctg

43

<210> 15

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 15
ttcgcgagct cgagatctag atatccatg

30

<210> 16

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 16
ctacagggtgt ccacgtcgac atccagctga cccag

35

<210> 17

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 17
ctgcagaaata gatctctaac actctccctt gttg

34

<210> 18

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 18
cagtgtgatc tcgagaattc aggacctcac catggatgg agctgtatca t

51

<210> 19

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 19
aggctgtatt ggtggattcg tct

23

<210> 20
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 20
agcttctcga gttAACAGAT ctaggcctcc taggtcgaca t 41
<210> 21
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 21
cgatgtcgac ctaggaggcc tagatctgtt aactcgaga 39
<210> 22
<211> 64
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 22
cgaggctctg cacaaccact acacgcagaa gagcctctcc ctgtctcccg ggaaatgaaa 60
ggcg 64
<210> 23
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 23
aattcggctt tcatttcccg ggagacaggg agaggctctt ctgcgtgtag tggttgtca 60
gagcctctgtc ca 72
<210> 24
<211> 41

<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 24
aaagcatatg ttctgggcct tgttacatgg ctggatttgt t 41
<210> 25
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 25
tgaatttcggc gcccccaaga acctgaaatg gaagcatcac tcagtttcat atat 54
<210> 26
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 26
ctacaggtgt ccacgtcgac atccagctga cccag 35
<210> 27
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 27
ctgcagaata gatctctaac actctccctt gttg 34
<210> 28
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic

<400> 28
cagtggtatc tcgagaattc aggacctcac catggatgg agctgtatca t 51
<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 29
gtgtcttcgg gtctcaggct gt 22
<210> 30
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 30
agtttctcga gttaacagat ctaggctcc taggtcgaca t 41
<210> 31
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 31
cgatgtcgac ctaggaggcc tagatctgtt aactcgaga 39
<210> 32
<211> 64
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 32
cgaggctctg cacaaccact acacgcgaa gagcctctcc ctgtctcccg ggaaatgaaa 60
gcgg 64
<210> 33

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 33	aattcggttt tcattttccgg ggagacaggg agaggctttt ctgcgtgttag tggttgtca	60
	gaggcctcgta ca	72
<210> 34		
<211> 9511		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 34	gaatttaattc ataccagatc accgaaaact gtcctccaaa tgggtcccccc tcacactccc	60
	aaatttcgcgg gcttctgcctt ctttagaccac tcttacccat tccccacact caccggagcc	120
	aaagccgcgg cccttcgggtt tctttgtttt tggaaagaccc caccggatgg tggcaagctt	180
	gtttaagtaa cggccatgg caaggcatgg aaaaatacat aactgagaat agaaaatgttcc	240
	agatcaaggat cggaaacaaa gaaacagctg aataccacaaac aggtatctg tggtaaggg	300
	ttcttcggccgg ggcctcaggcc caagaacaga tgagacagct ggttgcgttggg ccaaacaggaa	360
	tatctgtgtt aaggcgttcc tggccgggtt cggggccaaag aacagatgtt cccatgttc	420
	ggtccagcccc tcagcgtttt ctgttgcattc atcagatgtt tccagggtgc cccaaaggacc	480
	tgaaaatgtt cctgttacattt atttgttgcattt accaatcgtg tgcgttctcg ctgttgcgttgc	540
	cgccgttccgc ctctccggcc tcaataaaag agcccaacac cccttactcg ggcggccagt	600
	cttccggatag actgcgttccgc cccgggttaccgc gtattcccaaa taaaggcgttcc tggcgtttgc	660
	atccgaatcg tggctctcggtt gttcccttggg agggcttcctt ctgttgcgttgc gactaccac	720
	gacggggggc ttccatgggg gggctctcggtt gggatttggaa gaccccttgc cggggaccac	780
	cgacccacca cccggggatggaa agctggcccg caactttatctt gtgttgcgttgc gattgttgc	840
	tgttgcgttgcgtt tggatgttgcgtt ggttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	900
	ggcggaccccg tgggttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	960
	ccaggggactt tggggggccgtt ttttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	1020
	cgaccccgccgc tggggggccgtt ttttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	1080
	cgttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	1140
	cgaccccgccgc ttttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt gtttgcgttgcgtt	1200

aatgtcgtaa	caactccgcc	ccattgacgc	aatggccgg	taggcatgt	cggtgggagg	3300
tctatataag	cagagctcg	ttagtgaacc	gtcagatcg	ctggagacgc	catccacgt	3360
gttttgcct	ccatagaaga	caccgggacc	gatccagct	ccgcggcccc	aagcttctcg	3420
agttaacaga	tctaggctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	3480
aegcaattaa	tgttaggttag	ctcaactcatt	aggcacccca	ggctttacac	tttatgcttc	3540
cggctcgat	gttgtgtgga	atttgtgacg	gataacaatt	tcacacagga	aacagctatg	3600
accatgatta	cgc当地gatc	ggctgcaggt	cgacggatcc	actagtaacg	gccgc当地gt	3660
tgctgaaatt	caccatgggg	caaccggga	acggcagcgc	cttcttgcgt	gcacccaatg	3720
gaagccatgc	gccc当地acc	gacgtc当地c	agcaaaaggga	cgagggtgtgg	gtgggtggca	3780
tgggc当地gt	catgtctctc	atcgtcttgg	ccatcgatgtt	tggcaatgt	ctggatcatca	3840
cagccatgc	caagttcgag	cgtctcgaga	cggtcaccaa	ctacttcatc	acaagcttgg	3900
cctgtgtga	tctggatcatg	gggtctagcg	tgggtccctt	tggggccgcc	catattctca	3960
tgaaaatgt	gacttttggc	aacttctgtt	gctggatgttgc	gacttccatt	gatgtgtgt	4020
gctgc当地gc	atcgattgag	accctgtgcg	tgatcgatgt	cgaccgc当地	tttgc当地tta	4080
ctagtc当地ttt	caagtaccag	agcctgtga	ccaagaataa	ggccccc当地gt	atcattctga	4140
tgggtgtggat	tgtgtcaggc	cttacctctt	tcttgc当地at	tcagatgcac	tggtagatggg	4200
ccacccacca	ggaagccatc	aactgtatg	ccaatgagac	ctgctgtgc	tttgc当地acga	4260
accaagccata	tgccattgccc	tcttc当地atcg	tgtcccttct	cgatccctgt	gtgatcatgg	4320
tcttc当地tct	ctccagggtc	tttcaaggagg	ccaaaaggca	gctccagaaag	attgacaaat	4380
ctgaggggccg	cttccatgtc	cagaacccat	gccaggtgg	gcaggatggg	cgacggggc	4440
atggactccg	cagatcttcc	aagttctgt	tgaaggagca	caaagccctc	aagacgttag	4500
gcatcatcat	gggc当地tcc	accctctgt	gctgc当地t	cttc当地atcg	tttgc当地tgc	4560
atgtgatcca	ggataaccc	atccgtatgg	aagtttacat	cctccataat	tggatagatgt	4620
atgtcaatcc	tgggttcaat	cccccttatct	actgc当地gg	ccc当地atgtt	aggatgttgc	4680
tccaggagct	tctgtgc当地t	cgc当地gtt	ctttaagg	ctatggcaat	ggctactcca	4740
gcaacggcaa	cacaggggag	cagagtggat	atcacgtgg	acaggagaaaa	gaaaataaac	4800
tgctgtgtga	agacatccca	ggcacggaa	actttgtgg	ccatcaagg	actgtgc当地t	4860
gacataacat	tgattcaca	gggaggaaatt	gtatgtacaa	tgactca	ctctcgagaa	4920
tgc当地ggcg	gc当地ccat	catcacca	tc当地cccg	ggactacaag	gatgc当地atcg	4980
acaagta	tttacccatc	acactggc	ccgctcg	atgc当地atcg	cgccgc当地tgc	5040
aggccggcaa	ggccggatcc	ccggaaat	ccccc当地tcc	cttccccc	cctaacgtt	5100
ctggccgaa	ccgcttgaa	taaggccgt	gtgc当地t	ctatgtt	tttccacca	5160
tattgc当地tgc	tttgc当地at	gtgagg	ggaaac	cttgc当地tcc	ttgacgagca	5220
tttccatgggg	tcttccct	ctgc当地aa	gaatgc当地	tctgtt	gaatgtgaa	5280

aagcagtcc	tcttgaagact	tcttgaagac	aaacaacgtc	tgttagcgacc	ctttgcaggc	5340
agcggaa	cccacccggc	gacagggtgc	tctgcggca	aaaggccacgt	gtataagata	5400
cacctgc	aaa	ggcggcaca	ccccagtgcc	acgttgttag	tttggatagtt	5460
tcaa	atgtgcgt	ctctcaagc	gtattcaaca	aggggctgaa	ggatgcccag	5520
attgtatgg	atctgatctg	gggcctcggt	gcacatgtct	tacatgtttt	tagtcgggt	5580
taaaaaaaac	tetaggcccc	ccgaaccacg	gggacgtgtt	tttccttga	aaaacacgat	5640
gataat	atgg	cctccttgt	ctctctgtc	ctggtaggc	ttctattcca	5700
gccc	gagctca	cccagtctcc	agactccctg	gtctgtctc	tgggcegagag	5760
aact	gcaga	ccagccagag	tggtttgtac	agctccaaca	ataagaacta	5820
tatc	agcaga	aaccaggaca	gcctcttaag	ctgctcattt	actgggcac	5880
tc	cgccgtcc	ctgaccgatt	cagtggcagc	gggtctggga	cagatttcac	5940
agcag	ctgtc	aggctgaaga	tgtggcaattt	tattactgtc	agcaatattt	6000
acgtt	cgcc	aaggcacca	ggtggaaatc	aaacgaactg	tggctgcac	6060
atcttccc	cg	catctgatga	cgagtggaaa	tctggaaatc	cctctgtgt	6120
aataactt	atccc	agaga	ggccaaagta	cagtggaaagg	ttggataacgc	6180
ggtaact	ccc	aggagaggt	cacagagcag	gacagcaagg	acagcaccta	6240
agcac	ccctg	cgctgagca	agcagactac	gagaaacaca	aactctacgc	6300
acc	ccatcagg	gcctgagatc	gcccgtqaca	aagagctca	acaaggggag	6360
ctagataatt	aatt	attaggagg	agatctcgag	ctcgcgaag	cttggcaact	6420
taca	acgtc	tgactggaa	aaccctg	ttacccaact	taatcgctt	6480
ccc	cttc	cg	cgtcacatc	gataaaataa	aagattttat	6540
aaaaa	gggg	ggaatgaa	accccac	taggttgc	aagctagtt	6600
at	tttgc	ag	ctgtc	aatggaa	aaatcact	6660
aac	agat	acat	atggccaa	caggatatct	ttggtaagca	6720
cgg	gtc	cg	ccaagaacag	atggaaacagc	tgaatatgg	6780
aag	cagt	cc	gcca	aaacatgtgt	cccaacagga	6840
tc	agc	gt	ggcc	ttcc	tatctgtgt	6900
ct	agaga	act	ggca	agggttgc	cccaaggacc	6960
ct	gtgc	act	tttgc	ttctgttc	tgaaaatgacc	7020
cccc	gag	aaataa	gccc	actcg	cgccgcagtc	7080
ct	gatc	gggt	aca	aaacccctt	ctccgat	7140
ttc	tttgg	cc	cc	cgacttgc	ttctgttc	7200
cgg	gggt	cc	cc	cgatgtac	gggtgaaaacc	7260
cgag	ctcc	cc	cc	gtctgtct	tctgacacat	7320

tcagggcgcg	tcagcgggtg	ttggcgggtg	tcggggcgca	gccccatgaccc	agtcacgtag	7380	
cgatagcgga	gtgtatactg	gtttaactat	gccccatcg	agcagatgt	actgagatg	7440	
caccatatgc	ggtgtgaaat	accgcacaga	tgcgtaaagga	aaaaataccg	catcaggcg	7500	
tcttcggctt	cctcgctcac	tgactcgctg	cgctcggtcg	ttcggctcg	gccccggta	7560	
tcagtcact	caaaggcggt	aatacggtt	tccacagaat	cagggataa	cgccaggaaag	7620	
aacatgtgag	aaaaaggcca	gcaaaaggcc	aggaaccgt	aaaaggccg	gttgctggcg	7680	
ttttccata	ggctccggcc	ccctgacgag	catcacaaaa	atcgacgct	aagtcaagg	7740	
tggcgaaacc	cgacaggact	ataaaagatac	caggcgttt	ccccctggaa	ctccctcg	7800	
cgctctcg	ttccgaccc	gcccgttacc	ggatactgt	ccgccttct	cccttcgg	7860	
agcgtggcgc	tttctcatag	ctcacgctgt	aggtatctca	gttcgggt	ggtcgttcgc	7920	
tccaagctgg	gctgtgtca	cgaaaa	gttcagcccg	accgcgtgc	cttacccgt	7980	
aactatcg	ttgagtccaa	cccgtaaga	cacgactat	cgccactgg	agcagccact	8040	
ggtaacagga	tttagcagagc	gaggatgt	ggccgtgtca	cagagtctt	gaagtgg	8100	
cctaactacg	gctacactag	aaggacagta	tttggtatct	gcccgtctgt	gaaggccag	8160	
accttcgaa	aaagagtgg	tagctctt	tccggcaac	aaaccaccc	tggtagcgg	8220	
ggtttttttg	tttgcacgca	gcagattacg	cgccgggg	aaggatctca	agaagatct	8280	
tttgatcttt	ctacggggtc	tgacgctc	tggacggaaa	actcacgtt	agggat	8340	
gtcatgagat	tatcaaaaag	gatctt	accatcc	tagatc	ttttaaaat	atgaagt	8400
aatcaatct	aaagtatata	tgagtaa	acttgg	tgtgtcaca	gttaccaat	cttaatc	8460
gagggcacca	tctcagcgat	ctgtctt	cggtt	catcc	tagttgc	actccccc	8520
gtgtagataa	ctacgatacg	ggagggg	ccatctgg	ccagtg	ctgc	aatgatacc	8580
cgagaccac	gctcaccggc	tcc	ccat	tgc	cc	cggaagg	8640
gagcgcagaa	gtggcctgc	aactt	tcc	ccat	cc	ttgtgc	8700
gaagcttagag	taagtatgtc	gccc	at	tttgc	cc	tatgtc	8760
ggc	catcg	tg	tgc	at	gg	ttccaa	8820
tcaaggc	gag	tt	atc	at	gtt	cc	8880
ccgatcg	tt	g	atc	at	cc	tttgc	8940
cataattc	tc	act	gtc	at	cc	at	9000
accaagtc	at	t	tc	at	cc	at	9060
tc	t	tc	at	cc	at	cc	9120
tc	gg	gg	cc	cc	cc	cc	9180
tc	gg	gg	cc	cc	cc	cc	9240
ac	agg	gg	cc	cc	cc	cc	9300
at	act	ttt	ca	at	ttt	ca	9360
cc	ttt	ca	at	ttt	ca	at	

tacatatttg aatgtatTTT gaaaaataaa caaatagggg ttccgcgcac atttccccga 9420
aaagtccac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 9480
cgtatcacga ggccttTcg tcttcaagaa t 9511

<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 35
gatccactag taacggccgc cagaattcgc 30
<210> 36
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 36
cagagagaca aaggaggcca tattatcatc gtgttttca aag 43

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 January 2002 (10.01.2002)

PCT

(10) International Publication Number
WO 02/02738 A3(51) International Patent Classification⁷: C12N 15/85. (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US01/20710

(22) International Filing Date: 29 June 2001 (29.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/215,925 3 July 2000 (03.07.2000) US

(71) Applicant (for all designated States except US): GALA DESIGN, INC. [US/US]; 280 Washington Street, Prairie du Sac, WI 53578 (US).

(72) Inventors and

(75) Inventors/Applicants (for US only): BREMEL, Robert, D. [US/US]; E3352 Chapel Road, Hillpoint, WI 53937 (US); MILLER, Linda, U. [US/US]; N1301 O'Conner Road, Lodi, WI 53555 (US); BLECK, Gregory, T. [US/US]; 1111 Silver Drive, Baraboo, WI 53913 (US); YORK, Donna [US/US]; E9923 Trout Road, Dells, WI 53965 (US).

(74) Agents: JONES, J., Mitchell et al.; Medlen & Carroll, LLP, Suite 350, 101 Howard Street, San Francisco, CA 94105 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
30 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/02738 A3

(54) Title: HOST CELLS CONTAINING MULTIPLE INTEGRATING VECTORS

(57) Abstract: The present invention relates to the production of proteins in host cells, and more particularly to host cells containing multiple integrated copies of an integrating vector. Suitable integrating vectors for use in the present invention include retrovirus vectors, lentivirus vectors, transposon vectors, and adeno-associated virus vectors. Methods are provided in which the host cells are prepared by using the integrating vectors at a high multiplicity of infection. The host cells are useful for producing pharmaceutical proteins, variants of proteins for use in screening assays, and for direct use in high throughput screening.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/2070A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 C12N15/86 C12N5/10 601N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N GO1N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 93 02108 A (IDEC PHARMA CORP) 4 February 1993 (1993-02-04)	1-4, 9, 17-36, 39-47, 53-66, 70-74, 94-100
Y	page 25, line 30 -page 26, line 4	5-8, 10-16, 37, 38, 48-52, 67-69, 101, 102
	---	-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other relevant facts (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 March 2002

28/03/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

Galli, I

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/20710

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 24870 A (BIOTRANSPLANT INC ; GEN HOSPITAL CORP (US); SEED BRIAN (US); BANERJ) 10 November 1994 (1994-11-10) figures 1-3; examples 1-4	75-93
Y		5-8, 10-16, 37,38, 48-52, 67-69, 101,102
A	SIJIAN W ET AL: "Development of a VSV-G protein pseudotyped retroviral vector system expressing dominant oncogenes from a lacO-modified inducible LTR promoter" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 182, no. 1-2, 5 December 1996 (1996-12-05), pages 145-150, XP004071943 ISSN: 0378-1119 the whole document	11-13, 50,52, 81,92, 102
A	US 5 850 000 A (BLECK GREGORY T ET AL) 15 December 1998 (1998-12-15) cited in the application abstract	25
A	WO 96 11013 A (IMMUNOMEDICS INC) 18 April 1996 (1996-04-18) cited in the application the whole document	1-102

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

Continuation of Box I.2

Present claims 1-102 relate to an extremely large number of possible integrating vectors and their applications (including host cells). Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of them. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to

- (i) retroviral vectors (for integration) capable of expressing exogenous proteins in a polycistronic manner,
- (ii) host cells in which at least two of such vectors have been integrated and
- (iii) specifically, for the production of recombinant antibodies.

Please note that claims 75-93, relating to screening methods, are particularly defective, as they do not at all relate to the production, or at least use in analysis, of recombinant antibodies. The examples do not shed light on the extent of the coverage sought with these claims. For these claims, the search has been limited to their express technical problem: the screening of compounds for, and comparison of, certain proteins (listed in claims 76 and 84).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/20710

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9302108	A 04-02-1993	AP 307 A AU 673499 B2 AU 2425592 A BG 62656 B1 BG 98411 A BR 9206313 A CA 2114015 A1 CZ 9400149 A3 CZ 289472 B6 EP 0605442 A1 FI 940336 A HU 70272 A2 HU 211881 B3 IE 922437 A1 JP 3048640 B2 JP 6509708 T KR 137806 B1 MX 9204374 A1 NO 940219 A NZ 243706 A OA 9879 A PT 100735 A ,B RO 116404 B1 SG 67924 A1 SK 8894 A3 TW 393489 B WO 9302108 A1 US 5658570 A US 5756096 A US 5750105 A US 5681722 A US 5693780 A US 6136310 A ZA 9205615 A	31-01-1994 14-11-1996 23-02-1993 28-04-2000 28-02-1995 11-04-1995 04-02-1993 13-07-1994 16-01-2002 13-07-1994 10-03-1994 28-09-1995 28-12-1995 27-01-1993 05-06-2000 02-11-1994 30-04-1998 01-03-1993 25-03-1994 26-08-1994 15-09-1994 29-10-1993 30-01-2001 19-10-1999 07-09-1994 11-06-2000 04-02-1993 19-08-1997 26-05-1998 12-05-1998 28-10-1997 02-12-1997 24-10-2000 28-04-1993
WO 9424870	A 10-11-1994	AU 6230394 A CA 2162056 A1 EP 0706319 A1 WO 9424870 A1	21-11-1994 10-11-1994 17-04-1996 10-11-1994
US 5850000	A 15-12-1998	US 5530177 A AT 185596 T AU 663101 B2 AU 2411992 A CA 2093659 A1 DE 69230135 D1 DE 69230135 T2 DK 555435 T3 EP 0555435 A1 JP 6502550 T NZ 243930 A WO 9304165 A1	25-06-1996 15-10-1999 28-09-1995 16-03-1993 14-02-1993 18-11-1999 21-06-2000 25-04-2000 18-08-1993 24-03-1994 24-02-1995 04-03-1993
WO 9611013	A 18-04-1996	US 5874540 A AU 689331 B2 AU 3719695 A AU 7320998 A CA 2200868 A1	23-02-1999 26-03-1998 02-05-1996 13-08-1998 18-04-1996

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/20710

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9611013	A	EP 0783313 A1 JP 10508466 T WO 9611013 A1 US 2002018750 A1	16-07-1997 25-08-1998 18-04-1996 14-02-2002