Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures

SIMD or MIMD?

- · Based on past history, the book predicts that for x86
 - We will get two additional cores per chip per year
 - · Linear growth
 - We will get twice as wide SIMD instructions every 4 years
 - · Exponential growth
 - Potential speedup from SIMD to be twice that from MIMD!

Introduction: Focusing on SIMD

- SIMD architectures can exploit significant data- level parallelism for:
 - matrix-oriented scientific computing
 - media-oriented image and sound processors
- · SIMD is more energy efficient than MIMD
 - Only needs to fetch one instruction per data operation
 - Makes SIMD attractive for personal mobile devices
- · SIMD allows programmer to continue to think sequentially
 - "Backwards compatibility"
- Three major implementations
 - Vector architectures
 - SIMD extensions
 - Graphics Processor Units (GPUs)

Vector Architecture Basics

- · The underlying idea:
 - The processor does everything on a set of numbers at a time
 - · Read sets of data elements into "vector registers"
 - · Operate on those vector registers
 - · Disperse the results back into memory in sets
- · Registers are controlled by compiler to...
 - ...hide memory latency
 - The price of latency paid only once for the first element of the vector
 - · No need for sophisticated prefetcher
 - Always load consecutive elements from memory (unless gather-scatter)
 - ...leverage memory bandwidth

ILP vs. SIMD vs. MIMD ... MIMD

Example Architecture: VMIPS

- · Loosely based on Cray-1
- · Vector registers
 - Each register holds a 64-element, 64 bits/element vector
 - Register file has 16 read ports and 8 write ports
- · Vector functional units
 - Fully pipelined: new instruction every cycle
 - Data and control hazards are detected
- · Vector load-store unit
 - Fully pipelined
 - One word per clock cycle after initial latency
- · Scalar registers
 - 32 general-purpose registers of MIPS
 - 32 floating-point registers of MIPS

How Vector Processors Work: Y=a*X+Y

L.D F0, a F0, a DADDIU R4, Rx, #512 V1, Rx MULVS.D V2, V1, F0 Loop: V3, Ry L.D F2, O(Rx) MUL.D F2, F2, F0 ADDVV.DV4, V2, V3 F4, O(Ry) L.D V4, Ry ADD.D F4, F4, F2 F4, 9(Ry) S.D DADDIU Rx, Rx, #8 DADDIU Ry, Ry, #8 DSUB R20, R4, Rx **BNEZ**

600 instructions 6 instructions, no loop

Vector Execution Time

- · Execution time depends on three factors:
 - Length of operand vectors
 - Structural hazards
 - Data dependencies
- · In VMIPS:
 - Functional units consume one element per clock cycle
 - Execution time is approximately the vector length
- Convoy
 - Set of vector instructions that could potentially execute together
 - · No structural hazards
 - · RAW hazards are avoided through chaining
 - In superscalar RISC it is called forwarding
 - Number of convoys gives an estimate of execution time

Example Calculation of Execution Time

LV V1,Rx MULVS.D V2,V1,F0 LV V3,Ry ADDVV.D V4,V2,V3 SV Ry,V4

;load vector X ;vector-scalar multiply ;load vector Y ;add two vectors ;store the sum

Convoys:

1 LV MULVS.D 2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 For 64 element vectors, requires $64 \times 3 = 192$ clock cycles

Vector Execution Challenges

· Start up time

- Latency of vector functional
- Assume the same as Cray-1
 - Floating-point add → 6 cycles
 - Floating-point multiply → 7 cycles
 - Floating-point divide → 20 cycles
 - Vector load → 12 cycles

Needed improvements

- > 1 element per clock cycle
 - Compare with CPI < 1
- Non-64 wide vectors
- IF statements in vector code
- Memory system optimizations to support vector processors
- Multiple dimensional matrices
- Sparse matrices
- Programming a vector computer

11

Chaining and Chimes

Chaining

- Like forwarding in superscalar RISC
- Allows a vector operation to start as soon as the individual elements of its vector source operand become available
- Flexible chaining chaining with any other instruction in execution, not just the once sharing a register

· Chime

- Unit of time to execute one convoy
- m convoys executes in m chimes
- For vector length of n, it is required m*n clock cycles
- Ignores some processor specific overheads
 - · Better at estimating time for longer vector processors
- Chime is an underestimate

Arbitrary Length Loops with Vector-Length Register

- for (i=0; i < N; ++i) Y[i] = a * X[i] + Y[i]
- What if N < 64 (=Maximum Vector Length)?
- · Use a Vector-Length Registers
 - Load N into VLR
 - Vector instructions (loads, stores, arithmetic, ...) use VLR for the maximum number of iterations
 - By default, VLR=64
 - If VLR<64 then the registers are not fully utilized
 - · Vector startup time is a greater portion of the instruction
 - Use Amdahl's law to calculate the effect of diminishing vector length

Example: Vector Mask Register

• for
$$(i=0; i<64; ++i)$$

 $if(X[i]!=0)$
 $X[i] = X[i] - Y[i]$

LV V1, Rx
 LV V2, Ry
 L.D F0, #0
 SNEVS.DV1, F0
 SUBVV.DV1, V1, V2
 SV V1, Rx

 Vector register utilization drops with the dropping count of 1's in mask register

16

Arbitrary Length Loops with Strip Mining

- for (i=0; i < N; ++i) Y[i] = a * X[i] + Y[i]
- What if N > 64?
- · Use strip mining to split the loop into smaller chunks

for
$$(j = 0; j < (N/64)*64; j += 64) {//N - N%64}$$

for $(i=0; i < 64; ++i)$
 $Y[j+i] = a * X[j+i] + Y[i]$

· Clean-up code for N not divisible by 64

14

Strided Access and Multidimensional Arrays

- C[0,0] = A[0,0]*B[0,0]+A[0,1]*B[1,0]+A[0,2]*B[2,0]+...
- · A is accessed by rows and B is accessed by columns
- · Two most common storage formats:
 - 1. C: row-major (store matrix by rows)
 - 2. F: column-major (store matrix by columns)
- There is a need for non-unit stride for accessing memory
 - Best handled by memories with multiple banks
 - Stride: 64 elements * 8 bytes = 512 bytes

Handling Conditional Statements with Mask Regs.

• for
$$(i=0; i < 64; ++i)$$

 $if(X[i]!=0)$
 $X[i] = X[i] - Y[i]$

- Values of X are not known until runtime
- · The loop cannot be analyzed at compile time
- · Conditional is the inherent part of the program logic
- Scientific codes are full of conditionals and hardware support is a must
- Vector mask register is used as to prohibit execution of vector instructions on some elements of the vector

```
for (i = 0; i < 64; ++i)

VectorMask[i] = (X[i] == 0)

for (i = 0; i < 64; ++i)

X[i] = X[i] - Y[i] only if VectorMask[i] != 0
```

Strided Access and Memory Banks

- Special load instructions just for accessing strided data
 - LVWS=load vector with stride and SVWS
 - The stride (distance between elements) is loaded in GPR (general purpose register) just like vector address
- Multiple banks help with fast data access
 - Multiple loads and/or store can be active at the same time
 - Critical metric: bank busy time (minimum period of time between successive accesses to the same bank)
- For strided accesses, compute LCM (least common multiple) of stride and number of banks to see if bank conflict occurs

#banks LCM(stride, #banks) < bank busy time cycles

Vector Processors and Compilers

- Vector machine vendors supplied good compilers to take advantage of the hardware
 - High profit margins allowed investment in compilers
 - Without well vectorized code, hardware cannot deliver high Gflop/s rates
- · Vector compilers were...
 - Good at recognizing vectorization opportunities
 - Good at reporting vectorization process failures and successes
 - Good at taking hints from the programmer in form of vendorspecific language extensions such as pragmas

00

Example: Memory banks for Cray T90

- · Design parameters
 - 32 processors
 - Each processor: 4 loads and 2 stores per cycle
 - Processor cycle time: 2.167 ns
 - Cycle time for SRAMs: 15 ns
- How many memory banks required to keep up with the processors?
 - 32 processors * 6 references = 192 references per cycle
 - SRAM busy time: 15/2.167 = 6.92 ~ 7 CPU cycles
 - Required cycles: 192 * 7 = 1344 memory banks
 - Original design had only 1024 memory banks.
 - A subsequent memory upgraded introduced synchronous SRAMs with half the cycle time

SIMD Extensions for Multimedia Processing

- Modern SIMD extensions in x86 date back to early desktop processing of multimedia
- · Typical case of Amdahl's law:
 - Speedup the common case or the slowest component
 - Image processing: operates on 8 bit colors, 3 components, 1 alpha transparency
 - Typical pixel length: 32 bits
 - Typical operations: additions
 - Audio processing: 8 bit or 16 bit samples (Compact Disc)
- SIMD extensions versus vector processing
 - Fixed vector length encoded in instruction opcode for SIMD
 - Limited addressing modes in SIMD
 - No mask registers in early SIMD

23

Sparse Matrices and Gather-Scatter Instruction

- Sparse vector add uses index vector:
 for (i = 0; i < n; ++i)
 A[K[i]] = A[K[i]] + C[M[i]]
- Index vector is unknown during compilation
 - Index values may overlap
 - Hardware support: gather (LVI) scatter (SVI) instructions
- Assembly for VMIPS:

IV Vk, Rk load K Va, (Ra, Vk) load A[K[]] LVI load M LV Vm, Rm load C[M[]] LVI Vc, (Rc, Vm) ADDVV.D Va, Va, Vc add Va and Vc (Ra+Vk), Va SVI store A[K[]]

SIMD Extensions History

1996

- Intel MMX

• 8 * 8-bit or 4 * 16-bit integer ops

· 1999

 SSE (Streaming SIMD Extensions)

- New 128-bit registers
 - 16 * 8-bit or 8 * 16-bit integer ops
 - Integer and single precision floating point
- 2001
 - SSE2
 - Double precision floating point

- 2004
 - SSE3
- 2007
 - SSE4
- · 2010
 - AVX
 - Register width: 256-bits
 - FMA, permutations, shuffles
 - Possibilities for 512- and 1024-bit registers
- 2013
 - Intel Xeon Phi
 - 512-bit registers

Roofline Performance Model

· From:

- F1/2: A parameter to characterize memory and communication bottlenecks
- by Roger W. Hockney and Ian J. Currington

Application

- Plot arithmetic intensity vs. peak floating point throughput
- Benefit: correlates floating-point performance with memory bandwidth

· Arithmetic density:

- Floating-point operations per bytes read

From GPUs to GPGPUs to Hardware Accelerators

- · CPUs are older than GPUs
- · GPUs were specialized for graphics
- · CPUs and GPUs were driven by different software interfaces
 - CPUs: systems languages and assembly
 - GPUs: OpenGL and DirectX
- · Convergence happened around 2000
 - Realistic graphics requires continuous color models
 - · Pixel colors represented by floating-point values not just 8-bit tuples
 - Special lighting effects cannot be fixed in hardware
 - Artists and designers drive realism of visualization effects
 - · Accuracy and detail of visuals is game-dependent
 - This leads to programmable shaders, e.g. OpenGL shader language $\,$
 - Programmability is limited, based on graphics vocabulary, and hard to debug
 - Until CUDA happened and then OpenCL and the OpenACC

CUDA = Compute Unified Device Architecture

· CUDA includes

- Programming language
 - · C++ syntax
 - · Pragmas and extra syntax
- Programming model
 - · Heterogeneous execution
 - Host and device
 - SIMT Single Instruction Multiple Thread
 - Thread: an abstraction of (any) parallelism
- Programming interface
 - Initialization
 - Memory management
 - Data communication
 - Synchronization
 - Atomics

Example CUDA Program: DAXPY

```
void daxpy(int n, double a, double *x, double y) {
  for (int i = 0; i < n; ++i) y[i] = a*x[i] + y[i]
} // invocation: daxpy( 1024, 2.0, x, y )
  __device__
void daxpy(int n, double a, double *x, double *y) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
} // invocation:
  __host__
    int nblocks = (n+255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
```

GPUs vs. Vector Processors

· Similarities

· Before CUDA...

- Brook

- Cg - C for graphics

- Shader languages

· No IEEE compliance

- Works well with data-level parallel problems
- Scatter-gather transfers
- Mask registers
- Large register files

Differences

- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units

Programming Model

- · Device(s) execute kernels
- · Parallelism (SIMT) expressed as CUDA Thread
 - Multithreading
 - MIMD
 - SIMD
 - ILP
- Threads are managed by GPU hardware (not OS, not user)
- Threads executed in groups of 32 threads = thread blocks
- · Block of threads executed on multithreaded SIMD processor
- · Blocks of threads organized into a grid
- By comparison, 8-core Sandy Bridge with AVX has 64 GPU cores

Levels of Scheduling and Threads

- Grid of thread blocks run on multithreaded SIMD Processors
 - Fermi: 7, 11, 14, 15, ...
 - Kepler: 7, 8, ..., 15, ...
 - Each multithreaded SIMD processor
 - Has 32 SIMD lanes
 - Is wide and shallow compared to vector processors
- Thread block scheduler schedules thread blocks (vectorized loop bodies) to multithreaded SIMD processors
 - Ensures local memory has the needed data
- · Threads of SIMD instructions
 - Machine object that is created, managed, scheduled, executed
 - Like traditional thread but with SIMD instructions only
 - Each thread has its own Program Counter
 - Thread scheduler uses scoreboard to dispatch ready threads
 - No data dependences between threads (only instructions)

Example: Multiply Two Vectors of Length 8192

- · Programmer provides CUDA code for the entire grid
 - This is the equivalent of a vectorized loop
- · The grid is composed of thread blocks
 - This is the equivalent of the body of loop
 - Up to 512 elements per thread block
 - Total thread blocks: 8192/512=16
- · SIMD instruction executes 32 elements at a time
- Block is equivalent of a strip-mined vector loop with vector length 32
- Each block is assigned to a multithreaded SIMD processor by the thread block scheduler

Simplified Block Diagram of GPU

- · Fermi: 7-15 multithreaded SIMD processors
- Kepler: 7-15

Fermi GPU

- 16 physical SIMD lanes
- Each lane contains 2048 registers (32-bit)
- · Total of 32768 registers!
- Each SIMD thread limited to 64 registers
- · But each SIMD thread has access to vector-like registers
 - 64 registers, 32 elements each, 32 bits per element

Instruction cache Warp scheduler (with scoreboard) Instruction register Instruction r

Local Memory: 64 KB

To Global Memory

(Gaming) Fermi vs. (Gaming) Kepler

- NVIDIA GeForce GTX 580
 - 512 SPs
 - 40 nm process
 - 192.4 GB/s memory b/w
 - 244 W TDP
 - 1/8 64-bit performance
 - 3 billion transistors
 - Die size: 100%

- NVIDIA GeForce GTX 680
 - 1536 SPs
 - 28 nm process
 - 192.2 GB/s memory b/w
 - 195 W TDP
 - 1/24 64-bit performance
 - 3.5 billion transistors
 - Die size: 56%

NVIDIA's Instruction Set Architectures

- · ISA is an abstraction of the hardware instruction set
 - "Parallel Thread Execution (PTX)"
 - Uses virtual registers
 - Translation to machine code is performed in software
- · Example:

```
shl.s32 R8, blockldx, 9 ; Thread Block ID * Block size (512 or 2^9) add.s32 R8, R8, threadldx ; R8 = i = my CUDA thread ID ld.global.f64 RD0, [X+R8] ; RD0 = X[i] ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i] mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a) add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i]) st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])
```

Conditional Branching

- Like vector architectures, GPU branch hardware uses internal masks
 - Vector processors rely more heavily on software for conditionals
- Per-thread-lane 1-bit predicate register, specified by programmer
- · Also uses a stack structure with markers for fast unwinding
 - Branch synchronization stack
 - · Entries consist of masks for each SIMD lane
 - · I.e. which threads commit their results (all threads execute)
 - <u>Instruction markers</u> to manage when a branch diverges into multiple execution paths
 - · Push on divergent branch
 - ...and when paths converge
 - · Act as barriers
 - · Pops stack

NVIDIA GPU Memory Structures

- · Each SIMD Lane has private section of off-chip DRAM
 - "Private memory"
 - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor also has local memory
 - Shared by SIMD lanes / threads within a block
- · Memory shared by SIMD processors is GPU Memory
 - Host can read and write GPU memory

40

Fermi Architecture Innovations

- · Each SIMD processor has
 - Two SIMD thread schedulers, two instruction dispatch units
 - 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
 - Thus, two threads of SIMD instructions are scheduled every two clock cycles
- · Fast double precision
 - Fully pipelined and IEEE compliant
- · Caches for GPU memory
- · 64-bit addressing and unified address space
- · Error correcting codes
- · Faster context switching
- · Faster atomic instructions

4

GPU Predication Example

```
if (X[i] != 0) X[i] = X[i] - Y[i];
else X[i] = Z[i];
ld.global.f64
                              ; RDO = X[i]
               RD0, [X+R8]
setp.neq.s32
               P1, RD0, #0
                               P1 is predicate register 1
@!P1, bra
               ELSE1, *Push ; Push old mask, set new mask bits
                              ; if P1 false, go to ELSE1
ld.global.f64
               RD2, [Y+R8]
                                    RD2 = Y[i]
                                    ; Difference in RDO
               RD0, RD0, RD2
sub.f64
st.global.f64
               [X+R8], RD0
                                    X[i] = RD0
@P1, bra ELSE1: ENDIF1, *Comp
                                    ; complement mask bits
                                    ; if P1 true, go to ENDIF1
ELSE1:
Id.global.f64 RD0, [Z+R8]
                              ; RDO = Z[i]
st.global.f64 [X+R8], RD0
                              ; X[i] = RD0
ENDIF1: <next instruction>,*Pop
                                   ;pop to restore old mask
```

Loop-Level Parallelism in Code

- Focuses on determining whether data accesses in later iterations are dependent on data values produced in earlier iterations
 - Loop-carried dependence
- Example 1:
 for (i=999; i>=0; --i)
 x[i] = x[i] + s;
 - No loop-carried dependence

Example: Recognizing Dependences in Code

```
· Example 2:
    for (i=0; i<100; ++i) {
    A[i+1] = A[i] + C[i]; /* S1 */
    B[i+1] = B[i] + A[i+1]; /* S2 */
```

- · A, B are assumed disjoined arrays (as in Fortran)
- S1 and S2 use values computed by S1 in previous iteration
- S2 uses value computed by S1 in same iteration
- · What is the value of A[0]?

Example for GCD Test

- Determine dependence for the following loop: for (i=0; i<100; ++i) { X[2*i+3] = X[2*i] * 5.0;
- From the previous slide: a=2, b=3, c=2, d=0
- GCD(a,c) = 2 and d-b=-3
- 2 does not divide -3 hence no dependences exist

Example: Removing Dependence

```
Consider:
   for (i=0; i<100; ++i) {
    A[i] = A[i] + B[i]; /* S1 */
    B[i+1] = C[i] + D[i];/* S2 */
• S1 uses value computed by S2 in previous iteration but
```

dependence is not circular so loop is parallel

```
\dot{B}[100] = C[99] + D[99];
```

Weaknesses of the GCD Test

- GCD is sufficient to guarantee no dependences
 - But GCD is not a necessary condition
 - Even if GCD test succeeds there might not be dependence
 - Mostly due to loop bounds not being accounted for in GCD
- General dependence testing is NP-complete

Finding Dependences: Theoretical Analysis

- · Assume indices are affine:
 - Array index for storing data = a*i+b (i is loop index)
 - Array index for loading data = c*i+d (i is loop index)
- · Assume:
 - Store to a*i+b, then
 - Load from c*i+d
 - i runs from m to n
 - Dependence exists if:
 - Given j,k such that m≤j≤n,m≤k≤n
 - · Store to a*j+b, load from a*k+d, and a*j+b=c*k+d
- · Generally cannot determine at compile time
- Instead, test for absence of a dependence:
 - GCD test:
 - If a dependency exists, GCD(c,a) must evenly divide (d-b)

Types of Dependences in Loops

```
for (i=0; i<100; ++i) {
    Y[i] = X[i] / c; /* S1 */
    X[i] = X[i] + c; /* S2 */
    Z[i] = Y[i] + c; /* S3 */
    Y[i] = c - Y[i]; /* S4 */
```

- True dependences: $S1 \rightarrow S3$, $S1 \rightarrow S4$ because Y[i] but not loop-carried, so the loop is parallel
- Antidependences: S1 → S2 X[i], S3 → S4 Y[i]
- Output dependence: S1 → S4 Y[i]

No copying of arrays necessary to remove dependences

Parallelizing Reductions

```
Reduction operation:
    for (i=9999; i>=0; --i)
        sum = sum + x[i] * y[i];
Transform to...
    for (i=9999; i>=0; --i)
        sum [i] = x[i] * y[i];
for (i=9999; i>=0; --i)
        finalsum = finalsum + sum[i];
Do on p processors (p between 0 and 9):
        for (i=999; i>=0; --i)
            finalsum[p] = finalsum[p] + sum[i+1000*p];
Note: assumes associativity!
```