Optimization for Machine Learning CS-439

Lecture 10: Accelerated Gradient Descent

Martin Jaggi

EPFL - github.com/epfml/OptML_course

May 18, 2018

Re-visiting gradient descent

Property of <i>f</i>	Learning Rate γ	Number of steps
$\ \mathbf{x}_0 - \mathbf{x}^\star\ \le R,$	$\frac{R}{L\sqrt{T}}$	$\mathcal{O}(1/\varepsilon^2)$
$\ \nabla f(\mathbf{x})\ \leq L \text{ for all } \mathbf{x}$	$L\sqrt{T}$	
f is L -smooth	$\frac{1}{L}$	$\mathcal{O}(1/\varepsilon)$
f is L -smooth	1	$\mathcal{O}(\log(1/\varepsilon))$
and μ -strongly convex	$\frac{1}{L}$	$O(\log(1/\epsilon))$

Improving gradient descent

Problem: Can we do any better? In particular, can we accelerate gradient descent?

Solution: Nesterov's accelerated gradient methods come to the rescue.

Momentum

Idea:

Use momentum from "movement" so far

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) + \nu \big[\mathbf{x}_t - \mathbf{x}_{t-1} \big]$$

 $\nu>0$ is called the momentum parameter

Accelerated Gradient Method - AGD

$$\mathbf{x}_0 := \mathbf{y}_0 := \mathbf{z}_0$$

$$\mathbf{x}_{t+1} := \tau \mathbf{z}_t + (1 - \tau) \mathbf{y}_t$$

$$\mathbf{y}_{t+1} := \mathbf{x}_{t+1} - \frac{1}{L} \nabla f(\mathbf{x}_{t+1})$$

$$\mathbf{z}_{t+1} := \mathbf{z}_t - \gamma \nabla f(\mathbf{x}_{t+1})$$

Accelerated Gradient Method - Analysis

Problem: What about the values of γ and τ ?

Solution: We start with analysis and set them so as to get the best results.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^\star ; furthermore, suppose that f is smooth with parameter L, $\|\mathbf{x}_0 - \mathbf{x}^\star\| \le R$ and $|f(\mathbf{x}_0) - f(\mathbf{x}^\star)| \le d$. Then, after $T = 4R\sqrt{\frac{L}{d}}$ steps and setting $\gamma = \frac{R}{\sqrt{dL}}$ and τ such that $\frac{1-\tau}{\tau} = \gamma L$, the average of the first T iterates satisfies

$$f\left(\frac{1}{T}\sum_{t=0}^{T-1}\mathbf{x}_t\right) - f(\mathbf{x}^*) \le \frac{d}{2}$$

Proof.

(i)

Recall from Lecture 3 that the updates of the type $\mathbf{y}_{t+1} := \mathbf{x}_{t+1} - \frac{1}{L} \nabla f(\mathbf{x}_{t+1})$ are always monotone decreasing:

$$f(\mathbf{y}_t) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

(ii)

Use the fact that $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$ to obtain

$$\gamma \nabla f(\mathbf{x}_{t+1})^{\top} (\mathbf{z}_t - \mathbf{x}^{\star}) = \frac{\gamma^2}{2} \|\nabla f(\mathbf{x}_{t+1})\|^2 + \frac{1}{2} \|\mathbf{z}_t - \mathbf{x}^{\star}\|^2 - \frac{1}{2} \|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^2$$

Using the first equation we get

$$\gamma \nabla f(\mathbf{x}_{t+1})^{\top} (\mathbf{z}_t - \mathbf{x}^{\star}) \leq \gamma^2 L(f(\mathbf{x}_{t+1}) - f(\mathbf{y}_{t+1})) + \frac{1}{2} \|\mathbf{z}_t - \mathbf{x}^{\star}\|^2 - \frac{1}{2} \|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^2$$
(1)

Use convexity and set $\frac{1-\tau}{\tau}=\gamma L$ to obtain

$$\gamma \nabla f(\mathbf{x}_{t})^{\top} ((\mathbf{x}_{t+1} - \mathbf{x}^{*}) - (\mathbf{z}_{t} - \mathbf{x}^{*})) = \gamma \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{z}_{t})
= \frac{1 - \tau}{\tau} \gamma \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{y}_{t} - \mathbf{x}_{t+1})
\leq \gamma^{2} L(f(\mathbf{y}_{t}) - f(\mathbf{x}_{t+1}))$$
(2)

Add (1) and (2) to obtain

$$\gamma \nabla f(\mathbf{x}_{t+1})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}^{\star}) \leq \gamma^{2} L(f(\mathbf{y}_{t}) - f(\mathbf{y}_{t+1})) + \frac{1}{2} \|\mathbf{z}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{1}{2} \|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^{2}$$

We know that

$$f\left(\frac{1}{T}\sum_{t=0}^{T-1}\mathbf{x}_{t}\right) - f(\mathbf{x}^{\star}) \leq \frac{1}{T}\sum_{t=0}^{T-1}\nabla f(\mathbf{x}_{t+1})^{\top}(\mathbf{x}_{t+1} - \mathbf{x}^{\star})$$

Using the telescoping sum in the previous slide, the proposed substitutions give the desired result.

Theorem

By repeatedly restarting the AGD algorithm, we can find an ε -optimal solution in $\mathcal{O}(1/\sqrt{\varepsilon})$ updates.

Proof.

Use the previous theorem (Exercise).

AGD - Analysis for strongly convex smooth functions

Theorem

Along with the previous assumptions, if we assume that the function f is μ -strongly convex, then we can find a point $\mathbf x$ with $\mathcal{O}(\sqrt{\frac{L}{\mu}})$ updates such that

$$\|\mathbf{x} - \mathbf{x}^{\star}\|^2 \le \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2$$

Proof.

Use the results of previous theorem with $\varepsilon = \frac{\mu}{4} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2$ to find a point \mathbf{x} such that

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le \frac{\mu}{4} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \tag{3}$$

This will take $\mathcal{O}(\sqrt{\frac{L}{\mu}})$ update steps.

AGD - Analysis for strongly convex smooth functions, cont.

Proof.

Use strong convexity of f to obtain

$$\frac{\mu}{2} \|\mathbf{x} - \mathbf{x}^{\star}\|^2 \le f(\mathbf{x}) - f(\mathbf{x}^{\star}) \tag{4}$$

Combine (3) and (4) to get the desired result.

AGD - Analysis for strongly convex smooth functions, cont.

Theorem

Convergence in Iterate -

By repeatedly starting the AGD algorithm, for a $\mu\text{-strongly convex}$ and $L\text{-smooth function, we can find an }\varepsilon\text{-optimal solution in the}$ value of iterate in $\mathcal{O}(\log(1/\varepsilon))$ updates where the constant in the big- \mathcal{O} is $\sqrt{\frac{L}{\mu}}$ compared to vanilla GD where the constant is $\frac{L}{\mu}.$

Overview of Accelerated Gradient Method

Properties of f	GD steps	AGD steps
f is L -smooth	$\mathcal{O}(1/arepsilon)$	$\mathcal{O}(1/\sqrt{\varepsilon})$
f is L -smooth	$\mathcal{O}(\frac{L}{2}\log(1/\epsilon))$	$\mathcal{O}(\sqrt{\frac{L}{\mu}}\log(1/\varepsilon))$
and μ -strongly convex	$\bigcup_{\mu} \log(1/\varepsilon)$	$V(V_{\mu} \log(1/\varepsilon))$

Table: A comparison of Gradient descent and Accelerated Gradient Method for convex functions - number of updates to obtain an ε -optimal solution

Acceleration in practice

Application to a Lasso problem

Acceleration in practice

Excellent illustration and simulation:

https://distill.pub/2017/momentum/

Potential issues

requires tuning of a new hyperparameter (the momentum param)