Symmetries in quantum theory : Old and New

Antoine Bourget

IPhT, CEA, Saclay Ecole Normale Supérieure, Paris

April 11, 2023

Why Symmetries?

Uses in classical and quantum physics:

• In classical electromagnetism:

• In Particle physics:

Why Symmetries?

Physics is hard. Need to simplify it to make computations.

Plan

Today:

- Symmetries in Classical and Quantum physics
- @ Generalized Symmetries
- Applications and further extensions

References:

- Gaiotto-Kapustin-Seiberg-Willet, Generalized Global Symmetries, 2014.
- Aharony-Seiberg-Tachikawa, Reading between the lines of four-dimensional gauge theories, 2013.
- See the Snowmass White Paper 2205.09545 for a complete list of references.

Antoine Bourget Geometry and SCFTs April 11, 2023

Conservation laws

In electromagnetism, electric charge contained in a volume V:

$$Q = \iiint_V \rho(x) \, \mathrm{d}^3 x$$

with ρ the charge density.

Conservation equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho + \mathrm{div}\,\vec{j} = 0$$

with \vec{j} the electric current. This gives

$$\frac{\mathrm{d}}{\mathrm{d}t}Q = -\iiint_{V} \mathrm{div}\,\vec{j}\,\mathrm{d}^{3}V = -\iint_{\partial V} \vec{j}\cdot\mathrm{d}^{2}\vec{S}$$

Noether's Theorem in Classical Mechanics

This is a general motto:

Noether's Theorem:

Symmetries imply conservation laws.

Today, add another motto:

Symmetries are topological operators.

Noether's Theorem in Classical Mechanics

Let (M, L) be a Lagrangian system, i.e.

- *M* is a smooth finite-dimensional manifold, the configuration space.
- $L: TM \to \mathbb{R}$ the Lagrangian function.

Among all paths $\gamma: [t_0, t_1] \to M$ with $\gamma(t_i) = q_i$, i = 0, 1, those which describe physical motions are the critical points of the action

$$S(\gamma) = \int_{t_0}^{t_1} L(\gamma'(t)) dt$$

In standard coordinates on TM, Euler-Lagrange:

$$\frac{\partial L}{\partial q}(q(t), \dot{q}(t)) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t)) \right)$$

System of second order ODE, very difficult in general.

◆□ → ◆□ → ◆ = → ◆ = → へへ 7/33

Noether's Theorem in Classical Mechanics

A symmetry of the system is a diffeomorphism $g: M \to M$ such that $L(g_{\star}v) = L(v)$ for all $v \in TM$.

If there is a 1-parameter group $\{g_s\}_{s\in\mathbb{R}}$ of symmetries, then there is an integral of motion

$$Q(q,\dot{q}) = \sum_{\mu} rac{\partial L}{\partial \dot{q}^{\mu}}(q,\dot{q}) \left(rac{\mathrm{d}g_{s}^{\mu}(q)}{\mathrm{d}s}|_{s=0}
ight)$$

i.e. for all extremals γ of the action functional,

$$\frac{\mathrm{d}}{\mathrm{d}t}Q(\gamma'(t))=0$$

Examples:

- Invariance under time translations ⇒ Conservation of energy
- Invariance under translations ⇒ Conservation of momentum
- Invariance under rotations ⇒ Conservation of angular momentum

Antoine Bourget

Noether's Theorem in Classical Field Theory

Classical Mechanics:

$$\frac{\mathrm{d}}{\mathrm{d}t}Q=0 \qquad \mathrm{with} \qquad Q=rac{\partial L}{\partial \dot{\mathsf{q}}}\delta_{\mathsf{s}}\mathsf{q}$$

Classical Field Theory:

$$\partial_{\mu}J^{\mu} = 0$$
 with $J^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta_{\mathfrak{s}}\phi$

Conserved current implies existence of a conserved charge

$$Q = \int_{\text{space}} J^0 \, \mathrm{d}^{d-1} x = \int_{\text{space}} \star J$$

provided the fields vanish at infinity fast enough.

Symmetries in Quantum Mechanics

In Quantum Mechanics, a symmetry is implemented by unitary and linear (or antiunitary and antilinear) operators $U: \mathcal{H} \to \mathcal{H}$.

For a 1-parameter group,

$$U_{\alpha} = \exp(i\alpha Q)$$

where

$$[Q,H]=0.$$

In QFT, for a 1-parameter group, current J satisfying $d \star J = 0$,

$$U_{\alpha}(M^{d-1}) = \exp(i\alpha Q(M^{d-1}))$$

with

$$Q(M^{d-1}) = \int_{M^{d-1}} \star J.$$

Consider a Euclidean QFT in spacetime dimension d.

Definition. The theory has a global symmetry group G iff there is a topological defect $U_g(M^{d-1})$ for each $g \in G$ and each d-1 dimensional submanifold, satisfying the group law:

$$U_g(M^{d-1})U_{g'}(M^{d-1}) = U_{gg'}(M^{d-1})$$

The charged objects are local operators.

Important properties:

• The symmetry is *invertible* (consequence of the group law).

Important properties:

- The symmetry is *invertible* (consequence of the group law).
- $U_g(M^{d-1})$ is topological. For continuous symmetries, this is Noether's theorem:

$$Q(M^{d-1}) - Q(\tilde{M}^{d-1}) = \int_{\partial X^d} \star J = \int_{X^d} d \star J = 0$$

with
$$M^{d-1} - \tilde{M}^{d-1} = \partial X^d$$
.

• In particular if $M^{d-1} = \partial X^d$ then

$$Q(M^{d-1})=0.$$

• For discrete symmetries, this generalizes Noether's theorem.

- For discrete symmetries, this generalizes Noether's theorem.
- Action of $U_g(M^{d-1})$ on local operators:

• Equal time commutation relation:

$$U_g(M^{d-1})\mathcal{O}_i(p) = R_i^j(g)\mathcal{O}_j(p)U_g(M^{d-1}) \qquad \text{at equal time.}$$

Problem to interpret electromagnetism in this relativistic framework:

$$Q_{
m elec} = \int_{M^3} {
m d} \, \star_3 \, j_{
m elec} = \int_{(\partial M)^2} \star_3 j_{
m elec}$$

Mismatch by 1 dimension!

Need to extend the formalism...

Antoine Bourget

Consider a Euclidean QFT in spacetime dimension d.

Definition. The theory has a q-form global symmetry group $G^{(q)}$ iff there is a topological defect $U_g(M^{d-q-1})$ for each $g \in G^{(q)}$ and each d-q-1 dimensional submanifold, satisfying the group law:

$$U_g(M^{d-q-1})U_{g'}(M^{d-q-1}) = U_{gg'}(M^{d-q-1})$$

The charged objects are q-dimensional operators.

April 11, 2023

Important properties:

ullet For continuous symmetries, we have a q+1-form Noether current:

$$Q(M^{d-q-1}) = \int_{M^{d-q-1}} \star J.$$

Important properties:

• For continuous symmetries, we have a q + 1-form Noether current:

$$Q(M^{d-q-1}) = \int_{M^{d-q-1}} \star J.$$

• The topological property implies that for q > 0, $G^{(q)}$ is Abelian.

• Action on q-dimensional operators:

• Equal time commutation relation:

$$U_g(M^{d-q-1})\mathcal{O}(N^q)=g(\mathcal{O})^\#\mathcal{O}(N^q)U_g(M^{d-q-1})$$
 at equal time with $\#$ the linking number between M^{d-q-1} and N^q .

Example: Maxwell theory

In pure Maxwell theory, two 2-form conserved currents:

• $j_{\rm magn} = \star F$. Conservation ${\rm d}F = 0$ is the absence of magnetic charge (spatial form ${\rm div}\vec{B} = 0$). Symmetry operator is

$$U_{\alpha}(M^2) = \exp\left(i\alpha\int_{M^2}F\right).$$

On a 2-sphere, $\int_{S^2} F$ is the magnetic flux $\iint_S^2 \vec{B} \cdot d\vec{S}$! The charged objects are the 't Hooft lines (world-lines of magnetic monopoles).

Example: Maxwell theory

In pure Maxwell theory, two 2-form conserved currents:

• $j_{\text{magn}} = \star F$. Conservation dF = 0 is the absence of magnetic charge (spatial form $div\vec{B} = 0$). Symmetry operator is

$$U_{\alpha}(M^2) = \exp\left(i\alpha\int_{M^2}F\right).$$

On a 2-sphere, $\int_{S^2} F$ is the magnetic flux $\iint_S^2 \vec{B} \cdot d\vec{S}$! The charged objects are the 't Hooft lines (world-lines of magnetic monopoles).

• $j_{\rm elec}=F$. The conservation ${\rm d}\star F=0$ is the absence of electric charge. It is broken in QED. Symmetry operator is

$$U_{\alpha}(M^2) = \exp\left(i\alpha \int_{M^2} \star F\right).$$

On a 2-sphere, $\int_{S^2} F$ is the magnetic flux $\iint_S^2 \vec{E} \cdot d\vec{S}$! The charged objects are the Wilson lines (also world-lines of electric charges).

Conclusion : pure Maxwell has $U(1)^{(1)}_{\mathrm{elec}} \times U(1)^{(1)}_{\mathrm{magn}}$ symmetry.

Antoine Bourget Geometry and SCFTs April 11, 2023

Standard Model based on Yang-Mills theory. What is the gauge group?

$$SU(3) \times SU(2) \times U(1)$$
 ?

Standard Model based on Yang-Mills theory. What is the gauge group?

$$SU(3) \times SU(2) \times U(1)$$
 ?

This is enough provided:

- One considers only local operators. But then we can't study the phase of the theory.
- We consider only topologically trivial spacetime geometries. But then we can't compute indices, sphere partition functions, finite temperature, etc.

Standard Model based on Yang-Mills theory. What is the gauge group?

$$SU(3) \times SU(2) \times U(1)$$
 ?

This is enough provided:

- One considers only local operators. But then we can't study the phase of the theory.
- We consider only topologically trivial spacetime geometries. But then we can't compute indices, sphere partition functions, finite temperature, etc.

Need to be more precise...

Consider 4d gauge theory with gauge algebra \mathfrak{g} . Gauge group :

$$G = \tilde{G}/H$$

with \tilde{G} simply connected, H subgroup of the center Z. Line operators:

• Wilson lines are labeled by representations of G.

Wilson Lines
$$\leftrightarrow$$
 $\Lambda_{\text{weight}}(G)/W$

• 't Hooft lines are labeled by representations of G^{\vee} .

't Hooft Lines
$$\leftrightarrow$$
 $\Lambda_{\mathrm{weight}}(G^{\vee})/W$

Also dyonic lines are present:

Dyonic Lines
$$\leftrightarrow$$
 $(\Lambda_{\text{weight}}(G) \times \Lambda_{\text{weight}}(G^{\vee}))/W$

To study the spectrum of lines, it is enough to restrict to

$$\Lambda_{\mathrm{weight}}(\mathfrak{g})/\Lambda_{\mathrm{root}}(\mathfrak{g})=Z$$

For $\mathfrak{g} = \mathfrak{su}(N)$, $Z = \mathbb{Z}_N$. Mutual locality imposes that for any pair of lines of charges $(m, e), (m', e') \in Z \times Z$,

$$\left| \begin{array}{cc} m & m' \\ e & e' \end{array} \right| \in N \mathbb{Z}.$$

To study the spectrum of lines, it is enough to restrict to

$$\Lambda_{\mathrm{weight}}(\mathfrak{g})/\Lambda_{\mathrm{root}}(\mathfrak{g})=Z$$

For $\mathfrak{g} = \mathfrak{su}(N)$, $Z = \mathbb{Z}_N$. Mutual locality imposes that for any pair of lines of charges $(m, e), (m', e') \in Z \times Z$,

$$\left| \begin{array}{cc} m & m' \\ e & e' \end{array} \right| \in N \mathbb{Z}.$$

Examples:

Application: Confinement

Conclusion: pure SU(N) Yang-Mills has a $\mathbb{Z}_N^{(1)}$ symmetry.

Application:

- $\mathbb{Z}_N^{(1)}$ preserved \Leftrightarrow Confinement
- $\mathbb{Z}_{N}^{(1)}$ spontaneously broken \Leftrightarrow Deconfined phase

Application: Chern Simons Theories

In 3d, symmetry operators and charged objects are lines. In $U(1)_k$ Chern-Simons theory

$$S = \frac{k}{4\pi} \int A \wedge \mathrm{d}A$$

define

$$W_q(\gamma) = \exp\left(iq\int_{\gamma}A\right).$$

Application: Chern Simons Theories

In 3d, symmetry operators and charged objects are lines. In $U(1)_k$ Chern-Simons theory

$$S = \frac{k}{4\pi} \int A \wedge \mathrm{d}A$$

define

$$W_q(\gamma) = \exp\left(iq\int_{\gamma}A
ight).$$

Then we have the braiding relation

$$W_q(\gamma)W_{q'}(\gamma') = e^{2\pi i \frac{qq'}{k}}W_{q'}(\gamma')W_q(\gamma)$$

This is the commutation relations for the $\mathbb{Z}_k^{(1)}$ symmetry.

This symmetry is anomalous, and the story continues...

No Global symmetry conjecture. There are no global symmetries in quantum gravity (i.e. any symmetry is either broken or gauged).

No Global symmetry conjecture. There are no global symmetries in quantum gravity (i.e. any symmetry is either broken or gauged).

Cobordism conjecture. For QG theory in d dimensions compactified on a n-dimensional internal manifold,

$$\Omega_n^{QG} = 0$$
,

otherwise there would be a (d-n-1)-form global symmetry with charges in Ω_n^{QG} .

Leads to the prediction of new objects (see 2302.00007 and references therein).

$$\Omega_1 = 0$$

$$\Omega_2 = \mathbb{Z}_2$$

Beyond Higher Forms

Summary:

- New language to deal with symmetries, a fundamental concept in physics.
- Gives new ways to understand QFT, makes predictions in QG, etc.

Only the beginning of the story:

- Higher group symmetries: when there are both q-form and p-form symmetries with q < p, the subset of q-form symmetries might not close.
- Non invertible symmetries
- Categorical symmetries
- ...

Thank you for your attention!

Application : Neutrino Masses

In the standard model, it is possible to gauge the symmetry $U(1)_{\tau-\mu}$.

Then $U(1)_{e-\mu}$ becomes anomalous : the fusion of two codimension 1 symmetry operators leave behind codimension 2 operators

$$\mathcal{D}_{kN}[\Sigma_3] \times \overline{\mathcal{D}}_{kN}[\Sigma_3] \sim \sum_{\mathrm{two-cycles}\ S_2} U^M_{2\pi/N}[S_2]$$

This non-invertible symmetry protects the neutrino masses. A breaking by non-perturbative effects in the UV leads to exponentially small masses.

Antoine Bourget Geometry and SCFTs April 11, 2023