A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

2.3. Hydrogen-Potassium ATPase (H/KATPase)

Hydrogen-Potassium ATPase (H/KATPase)	Ref
	[39]
$J_{Na,HK-ATPase}^{net} = k_{Na}^{lc} [P_i N a]_l - k_{Na}^{cl} [P_i N a]_c $ (115)	
$J_{K,HK-ATPase}^{net} = k_K^{lc}[K]_l - k_K^{cl}[K]_c $ (116)	
$J_{H,HK-ATPase}^{net} = k_H^{lc}[P_i H]_l - k_H^{cl}[P_i H]_c $ (117)	
$J_{NH4,HK-ATPase}^{net} = k_{NH4}^{lc}[NH4]_l - k_{NH4}^{cl}[NH4]_c $ (118)	

Table 12: The corresponding equations describing the flux and current transported via Hydrogen-Potassium ATPase (H/KATPase) pumps across the cell membrane