Trabajo Práctico Nº 5: Variables Instrumentales.

Ejercicio 1.

Suponer un modelo de regresión simple:

$$y_i = \beta_0 + \beta_1 x_i + u_i,$$

donde x_i es, potencialmente, endógena. Además, suponer que el instrumento, z_i , es una variable binaria. Mostar que el estimador IV, en este caso, es:

$$\beta_1^{IV} = \frac{\bar{y}_1 - \bar{y}_0}{\bar{x}_1 - \bar{x}_0}$$

donde \bar{y}_1 , \bar{x}_1 (\bar{y}_0 , \bar{x}_0) representan las medias cuando z=1 (z=0).

$$\begin{split} \beta^{IV} &= (Z'X)^{-1} \, Z'y \\ \beta^{IV} &= \begin{pmatrix} \begin{bmatrix} 1_n \\ Z \end{bmatrix} [1_n & x] \end{pmatrix}^{-1} \begin{bmatrix} 1_n \\ Z \end{bmatrix} y \\ \beta^{IV} &= \begin{bmatrix} \begin{bmatrix} 1_n 1_n & 1_n x \\ Z'1_n & z'x \end{bmatrix}^{-1} \begin{bmatrix} 1_n y \\ Z'y \end{bmatrix} \\ \beta^{IV} &= \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n z_i & \sum_{i=1}^n z_i x_i \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n z_i y_i \end{bmatrix} \\ \beta^{IV} &= \begin{bmatrix} n & \sum_{i=1}^n x_i \\ n_1 & \sum_{i=1}^n x_i \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{z_i=1} y_i \end{bmatrix} \\ \beta^{IV} &= \begin{bmatrix} n & \sum_{i=1}^n x_i \\ n_1 & \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i \end{bmatrix} \begin{bmatrix} \sum_{z_i=1}^n x_i \\ -n_1 & n \end{bmatrix} \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{z_i=1} y_i \end{bmatrix} \\ \beta^{IV} &= \begin{bmatrix} \frac{\sum_{i=1}^n x_i}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} & \frac{-\sum_{i=1}^n x_i}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} \\ \frac{n}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} & \frac{n}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{z_i=1}^n y_i \end{bmatrix} \\ \beta^{IV} &= \frac{-n}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} \sum_{i=1}^n y_i + \frac{n}{n \sum_{z_i=1}^n x_i - n_1 \sum_{i=1}^n x_i} \sum_{z_i=1}^n y_i \\ \beta^{IV} &= \frac{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=1}^n y_i}{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=1}^n y_i} \sum_{z_i=1}^n y_i + \sum_{z_i=1}^n y_i \\ \beta^{IV} &= \frac{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=1}^n y_i}{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ n \sum_{z_i=1}^{IV} y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ \beta^{IV} &= \frac{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i}{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ \beta^{IV} &= \frac{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i}{n \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ n \sum_{z_i=1}^{IV} y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ n \sum_{z_i=1}^{IV} y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ n \sum_{z_i=1}^{IV} y_i - n_1 \sum_{z_i=1}^n y_i - n_1 \sum_{z_i=0}^n y_i} \\ n \sum_{z_i=1}^{IV} y_i - n_1 \sum_{z_i=0}^n y_i$$

$$\beta_1^{IV} = \frac{\bar{y}_1 - \bar{y}_0}{\bar{x}_1 - \bar{x}_0}.$$

Ejercicio 2.

En este ejercicio, se propone extender la simulación del Problem Set 1 a un marco en el que la asignación del tratamiento y quienes resultan tratados no son iguales.

(a) Inicializar una muestra con 100 observaciones. Generar resultados potenciales de no recibir el tratamiento como: $Y_0 \sim \mathcal{N}$ (100, 30).

Stata.

(b) Generar, ahora, un efecto de tratamiento constante e igual a 20 para todos, es decir, $TE_i = 20$, para todo i = 1, ..., n. Generar una variable aleatoria normal estándar. Generar una variable de tratamiento D_i igual a 1 para aquellas observaciones que poseen un valor positivo en la variable aleatoria normal.

Stata.

(c) Generar una aleatoria uniforme en el intervalo [0, 1]. Con ella, generar variables que indiquen el tipo de individuo. Utilizar: always taker si la variable es menor a 0,25, never taker si la variable está entre 0,25 y 0,5, defier si la variable está entre 0,5 y 0,75 y complier si la variable es mayor a 0,75. Generar la variable de si los individuos toman el tratamiento o no dependiendo del grupo en el que están.

Stata.

(d) Generar la variable Y observada como $Y = DY_1 + (1 - D) Y_0$.

Stata.

(e) Estimar el LATE y comparar con el ATE.

Stata.

Ejercicio 3.

(a) ¿Qué efectos intentan estimar en el paper?

(b) ¿Cuál es la estrategia de identicación? ¿Por qué no funciona la diferencia de medias simple?

(c) Replicar las resultados del paper.

Stata.