

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	АКУЛЬТЕТ <u>«СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ»</u>					
КАФЕДРА <u>«Р</u>	ФЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)					
Д	ІОМАШ І	нее задани	E			
Проектирова		исциплине: неских установок ра	кетного оружия			
НА ТЕМУ: Проектирование ИДК						
Выполнил: студент гр	оуппы <u>СМ6-92</u>	(подпись, дата)	А.А. Лазарев (И.О. Фамилия)			
Проверил		(подпись, дата)	А.А. Федоров (И.О. Фамилия)			

Оглавление

T	ехниче	еское задание	3
1.	Фо	рмирование недостающих исходных данных	4
	1.1	Конструктивная схема, определение габаритов ИДК	4
	1.2	Определение времени работы ИДК	5
	1.3	Действительное значение коэффициента тяги	6
	1.4	Величина тяги на квазистационарном участке	7
2	Выб	ор топлива и проектирование заряда	7
	2.1	Выбор топлива и расчет давлений	7
	2.2	Определение геометрических параметров сопла	8
	2.3	Расчет газодинамических параметров в выходном сечении	И
сопла	a		9
	2.4	Проектирование заряда	Э
3	Опре	еделение массы навески воспламенителя15	5
4	Реше	ение основной задачи внутренней баллистики	9

Техническое задание

Спроектировать блок из n=18 ИДК (3 ряда по 6 ИДК) для поперечной коррекции вращающегося ЛА калибром $D_{\rm ch}=195\,$ мм. Количество импульсов $N_{\kappa op}=6\,$ (по 3 ДУ), $N_{\kappa op}=12+6\,$ (6 по 2 ДУ + 6 по 1 ДУ) или $N_{\kappa op}=18\,$ (по 1 ДУ). Суммарный импульс коррекции не менее $J_{\Sigma}=140\,$ Н·с при телесном угле коррекции $2\phi=120^{\circ}$. Частота вращения ЛА $v_{\rm min}...v_{\rm max}=8...10\,$ об/с, скорость полета в момент коррекции $V_{\rm min}...V_{\rm max}=370...410\,$ м/с (дозвуковая скорость полета). Время выхода двигателя на режим не более $t_{\rm B}=4\,$ мс. Максимальная масса одного ИДК не более $m_{\rm дymax}=0,35\,$ кг. Диапазон рабочих температур $T_{\rm min}...T_{\rm max}=-50...+50^{\circ}{\rm C}.$

1. Формирование недостающих исходных данных

1.1 Конструктивная схема, определение габаритов ИДК

Конструктивная схема расположения ИДК в корпусе ЛА дана по условию (рис. 1.1). ИДК расположены радиально (3 ряда по 6 ИДК), сопла расположены под углом в $\gamma = 25^{\circ}$ к оси Y ЛА.

Рис. 1.1. Конструктивная схема ИДК

Примем внешний диаметр корпуса ИДК $D_{\rm дy}=45\,$ мм, минимальный зазор между ИДК $2h=4\,$ мм. Тогда максимальная длина цилиндрической части корпуса и соплового блока

$$L_{\max} = \frac{D_{\text{\tiny CH}} - \left(\sqrt{3} + \text{tg}\gamma\right) \cdot D_{\text{\tiny Ду}} - 4h}{2\cos\gamma} = \frac{195 - \left(\sqrt{3} + \text{tg}25^\circ\right) \cdot 45 - 8}{2\cos25^\circ} = 47 \text{ MM}.$$

Путем нескольких итераций установлено, что для размещения заряда в корпус необходимо использовать сферическое заднее днище. Чтобы сохранить зазор между ИДК, графически было определено, что максимальную длину $L_{\rm max}$ необходимо уменьшить на 4 мм. Тогда $L_{\rm max}=43$ мм .

Предварительная прорисовка расположения ИДК представлена на рис. 1.2.

Рис. 1.2. Предварительная прорисовка

Предварительно назначим максимальное давление в камере $p_{\rm Imax} = \! 80 \; {\rm M\Pi a} \; . \; {\rm Torдa} \; {\rm толщинa} \; {\rm ctehku}$

$$\delta_{\text{ct}} = \eta \frac{p_{\text{Imax}} D_{\text{дy}}}{2\sigma_{\text{m}}} = 1, 3 \frac{80 \cdot 45}{2 \cdot 1000} = 2, 3 \text{ mm},$$

Внутренний диаметр КС

$$D_{\text{km}} = D_{\text{ty}} - 2\delta_{\text{ct}} = 40,4 \text{ mm}.$$

1.2 Определение времени работы ИДК

Время коррекции (работы ИДК) для вращающегося ЛА определяется по формуле:

$$t_{\text{min}} = \frac{1}{v_{\text{max}}} \frac{2\varphi}{2\pi} = 0,033 \text{ c},$$

$$t_{\text{mmax}} = \frac{1}{v_{\text{min}}} \frac{2\phi}{2\pi} = 0,042 \text{ c.}$$

Принимаем для дальнейших расчетов $t_{_{\rm J}}=0,033$ с.

Время горения заряда (в первом приближении)

$$t_{\Gamma} = \frac{t_{\pi}}{4} (5\xi(t_{\pi}) - 1) - \frac{3}{8}t_{\text{B}},$$

где $t_{_{\rm B}} \approx 0,004$ с — время выхода на режим, $\xi \left(t_{_{\rm J}}\right)$ - коэффициент заполнения индикаторной кривой давления ИДК, который выбирается в соответствии с рис. 2.

$$t_{r} = \frac{0.033}{4} (5 \cdot 0.65 - 1) - \frac{3}{8} \cdot 0.004 = 0.018 \text{ c.}$$

Время последействия тяги

$$t_{_{\rm II}} = t_{_{\rm JI}} - t_{_{\rm F}} - t_{_{\rm B}} = 0,011 \text{ c.}$$

1.3 Действительное значение коэффициента тяги

Назначаем коэффициент расширения сопла $\zeta=1,4$. Тогда теоретический коэффициент тяги согласно таблице 1.1 $K_{_{\mathrm{T}}}\left(\zeta\right)=1,46$.

Таблица 1.1. Значения ζ и соответствующий им $K_{_{\mathrm{T}}}$

ζ	1,4	1,6	1,8	2,0	2,2	2,4	2,6
$K_{_{\mathrm{T}}}$	1,46	1,51	1,56	1,6	1,62	1,64	1,67

Дополнительные потери на тепло и скорость учитываются введением коэффициентов $\phi_1=0.95$ и $\phi_2=0.95$ соответственно.

Действительное значение коэффициента тяги

$$K_{_{\mathrm{I}}} = K_{_{\mathrm{T}}}(\zeta) \varphi_1 \varphi_2 = 1,318.$$

1.4 Величина тяги на квазистационарном участке

Необходимая тяга на квазистационарном участке

$$P = \frac{J_{\Sigma}}{K_1 K_2 \xi(t_{\Lambda}) t_{\Lambda}},$$

где $K_1=0,92$ (телесный угол $2\phi=120^\circ=2\pi/3$), $K_2=1,08$ (скорость ЛА $V_{\min}...V_{\max}=370...410$ м/с или M=1,09...1,21). Подставляя значения, получаем

$$P = \frac{140}{0.92 \cdot 1,08 \cdot 0.65 \cdot 0.033} = 6556 \text{ H}.$$

Так как коррекция поперечная, а вектор тяги наклонен под углом $\gamma = 25^{\circ}$, ИДК должен развивать тягу больше потребной

$$P = \frac{P}{\cos \gamma} = \frac{6556}{\cos 25^{\circ}} = 7234 \text{ H}.$$

2 Выбор топлива и проектирование заряда

2.1 Выбор топлива и расчет давлений

Из приведенного в условии домашнего задания банка топлив все решения с топливами П-1, П-3 и Б-1, Б-2 не подходили из-за низкого коэффициента заполнения камеры сгорания и большой длины заряда. Решений с топливом П-2 не было найдено из-за неустойчивого процесса горения. Поэтому приведенные ниже расчеты справедливы для топлива Б-3, так как для него было найдено решение. Параметры топлива приведены в таблице 2.1.

Таблица 2.1. Характеристики топлива Б-3

Показатель	Значение
Плотность $\rho_{\scriptscriptstyle \rm T}$, кг/м ³	1640
Сила пороха f , МДж/кг	1,04
Газовая постоянная R , Дж/(кг·К)	338
Температура торможения T_0 , К	3080
Показатель адиабаты k	1,25
Единичный импульс $I_{yд}$, м/с	2300
Термохимическая константа B_T , К	370
Скорость горения $F_1(p)$, м/с	$0,00085 \cdot (9,81p)^{0,69}$
(р в МПа)	$(16$

Из уравнения Бори по значению максимального давления определим минимальное p_{Imin} и номинальные p_{IN} давления в камере:

$$\begin{cases} \frac{F_{1}(p_{\text{IN}})}{p_{\text{IN}}} = \frac{F_{1}(p_{\text{Imax}}) \cdot F_{3}(T_{\text{max}})}{p_{\text{Imax}}}; \\ \frac{F_{1}(p_{\text{Imin}})}{p_{\text{Imin}}} = \frac{F_{1}(p_{\text{Imax}}) \cdot F_{3}(T_{\text{max}})}{p_{\text{Imax}} \cdot F_{3}(T_{\text{min}})}, \end{cases}$$

где $F_1(p)$ — зависимость скорости горения от давления, где F_3 — температурная зависимость скорости горения топлива

$$F_{_{3}}(T_{_{\rm H}}) = \frac{B_T}{B_T - (T_{_{\rm H}} - 291,15)}.$$

Из системы уравнений получаем $p_{\text{IN}} = 59,7\,$ МПа и $p_{\text{Imin}} = 34,7\,$ МПа.

2.2 Определение геометрических параметров сопла

Площадь критического сечения сопла

$$F_{\text{kp}} = \frac{P}{K_{\pi} p_{\text{Imin}}} = 1,562 \cdot 10^{-4} \text{ m}^2.$$

Отсюда определим диаметр критического сечения сопла:

$$D_{
m kp} = \sqrt{\frac{4F_{
m kp}}{\pi}} = 14,1 \ {
m mm}.$$

Для ИДК в большинстве случаев сопло коническое с прямолинейными образующими. Примем угол входной части $\phi_{\text{вх}}=70^{\circ}$ и угол наклона образующей сопла к его оси $\phi_{\text{c}}=20^{\circ}$.

Длины участков сопла:

$$L_{1} = \frac{D_{_{\mathrm{KM}}} - D_{_{\mathrm{KP}}}}{2 \mathrm{tg} \phi_{_{\mathrm{BX}}}} = 5 \mathrm{\ mm};$$
 $L_{2} = 2 ... D_{_{\mathrm{KP}}} \mathrm{\ (MM)} = 2 \mathrm{\ mm};$
 $L_{3} = \frac{D_{_{\mathrm{KP}}}}{2 \mathrm{tg} \phi_{_{\mathrm{C}}}} = 8 \mathrm{\ mm}.$

Итого, длина соплового блока

$$L_{\rm c} = L_1 + L_2 + L_3 = 15$$
 mm.

Тогда допустимая длина заряда

$$L_{_{3 \, \text{max}}} = L_{_{\text{max}}} - L_{_{\text{c}}} = 28 \, \text{mm}.$$

2.3 Расчет газодинамических параметров в выходном сечении сопла

Безразмерная скорость потока определяется из газодинамической функции $q(\lambda)$ при заданном коэффициенте расширения сопла $\zeta=2$

$$q(\lambda) = \frac{S}{S^*} = \frac{1}{\lambda} \frac{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}{\left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{1}{k-1}}} = \frac{1}{\zeta^2}.$$

Численно решая уравнение, находим значение безразмерной скорости потока в выходном сечении $\lambda_a = 1,772$.

Критическая скорость звука

$$c^* = \sqrt{\frac{2k}{k+1}RT_0} = 1076 \text{ m/c}.$$

Скорость звука в выходном сечении

$$V_a = \lambda_a \cdot c^* = 1906 \text{ m/c}.$$

Давление в выходном сечении сопла

$$p_a = \pi(\lambda_a) \cdot p_{IN} = \left(1 - \frac{k-1}{k+1} \lambda^2\right)^{\frac{k}{k-1}} \cdot p_{IN} = 6,994 \text{ M}\Pi a.$$

Температура в выходном сечении сопла

$$T_a = \tau(\lambda_a) \cdot T_0 = \left(1 - \frac{k-1}{k+1}\lambda^2\right) \cdot T_0 = 2005 \text{ K}.$$

Плотность потока в выходном сечении сопла

$$\rho_a = \frac{p_a}{RT_a} = 10,32 \text{ KF/M}^3.$$

2.4 Проектирование заряда

Проектирование заряда сводится к выбору топлива и формы заряда, определению параметров заряжания двигателя, а также расчету всех его геометрических размеров, параметров и характеристик. Форма заряда должна обеспечивать максимальное заполнение корпуса двигателя при условии допустимых скоростей газового потока, омывающего заряд. Считается, что коэффициент заполнения поперечного сечения КС $\varepsilon_s > 0,5$.

Для импульсных ракетных двигателей чаще всего используют вкладные трубчатые заряды.

Заряд ИДК является трубчатым многошашечным. Наибольшая плотность укладки шашек определяется формулой

$$n = 1 + 3\lceil (m-1) + (m-3) + (m-5) + (m-7) + \dots \rceil$$

где m — модуль, целое число шашек, укладывающие по диаметру камеры.

Постоянная расхода

$$A(k) = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} = 0,658.$$

Расход газов через сопло

$$G_{\rm p} = \frac{\mu_{\rm c} A(k) F_{\rm kp} p_{\rm Imin}}{\sqrt{RT_0}} = 2,919 \text{ kg/c},$$

где $\mu_c = 0.95$ — коэффициент расхода сопла.

Запас топлива

$$\omega_{_{\mathrm{T}}} = G_{_{\mathrm{p}}}t_{_{\mathrm{\Gamma}}} = 0,042$$
 кг.

Для выполнения коррекции траектории ИДК должен сработать за время не более $t_{_{\rm I}}$. Следовательно, для выполнения этого условия проектирование заряда необходимо вести для минимальной температуры окружающей среды

$$e_0 = 2F_1(p_{\text{Imin}})F_3(T_{\text{min}})t_{\text{r}} = 1,4 \text{ MM}.$$

Потребная площадь горения

$$S_{\Gamma} = \frac{\omega_{\Gamma}}{\rho_{\Gamma} u_{\Gamma} t_{\Gamma}} = 0,0331 \text{ m}^2.$$

Так как не существует аналитического решения по определению значения параметров n, L_3 , $D_{_{\rm H}}$, $D_{_{\rm B}}$, то будем последовательно задавать количество пороховых элементов и рассчитывать необходимые геометрические размеры. Критерием оценки оптимальности того или иного варианта является максимум коэффициента заполнения поперечного сечения (минимум массы конструкции) при заданных ограничениях:

- значения параметров Победоносцева для внешней и внутренней поверхностей не должны превышать $\kappa_{\text{пред}} = 180$;
- значение критерия Шварца не должно превышать 0,75.

— длина заряда не должна превышать предельно допустимого значения $L_{_{3\,\mathrm{max}}} = 30\,\,\mathrm{mm}\,.$

Наружный диаметр заряда находится по формуле:

$$D_{\rm H} = \frac{D_{\rm \tiny KM} - {\rm d}z}{m},$$

где dz = 1 мм — зазор между стенкой и зарядом, вводится для уменьшения значения параметра Победоносцева по наружной стенке или учета зазора для теплового расширения заряда.

Внутренний диаметр заряда определяется как

$$D_{\scriptscriptstyle\rm B} = D_{\scriptscriptstyle\rm H} - 2e_0 \,.$$

Длина заряда определяется из потребной площади горения

$$L_{\text{\tiny 3ap}} = \frac{S_{_{\Gamma}}}{\pi \cdot n \left(D_{_{
m H}} + D_{_{
m B}}\right)}.$$

Значения параметров Победоносцева для внешней и внутренней поверхности:

$$\kappa_{\rm\scriptscriptstyle BH} = \frac{4L_{\rm\scriptscriptstyle 3ap}}{D_{\scriptscriptstyle\scriptscriptstyle \rm B}};$$

$$\kappa_{\text{\tiny Hap}} = \frac{4n \cdot D_{\text{\tiny H}} L_{\text{\tiny 3ap}}}{D_{\text{\tiny FM}}^2 - n D_{\text{\tiny H}}^2}.$$

Коэффициент заполнения поперечного сечения

$$\varepsilon_s = \frac{D_{\text{H}}^2 - D_{\text{B}}^2}{D_{\text{res}}^2} n > 0, 5.$$

Критерий Шварца

Sh =
$$\frac{4F_{\text{kp}}}{\pi D_{\text{KM}}^2 (1 - \varepsilon_s)} < 0.75.$$

Результаты вычислений приведены в таблице 2.2.

Таблица 2.2. Результаты вычислений параметров заряжания

m	3	5	7	9	11
n	7	19	37	61	91

$D_{_{ m H}}$, mm	13,1	7,9	5,6	4,4	3,6
$D_{_{ m B}}$, mm	10,3	5,1	2,8	1,6	0,8
L_{3ap} , MM	87,0	58,0	45,0	39,0	36,0
$\kappa_{_{ m BH}}$	33,51	45,47	64,26	99,23	183,2
$\kappa_{_{ m Hap}}$	74,94	76,45	82,29	90,28	100,47
$\mathbf{\epsilon}_{s}$	0,282	0,422	0,537	0,623	0,681
Sh	0,172	0,214	0,267	0,328	0,387

По результатам расчетов ни одно решение по ограничению по длине заряда не подходит. Выберем вариант с m=9 и подберем длины трубок так, чтобы их суммарная площадь горения была равна потребной. Также для размещения воспламенителя 7 трубок будет убрано.

Примем для первого ряда с $n_{\!\scriptscriptstyle 1}=12\,$ длину заряда $L_{\!\scriptscriptstyle 3ap1}=40\,$ мм , для второго с $n_{\!\scriptscriptstyle 2}=18\,$ – $L_{\!\scriptscriptstyle 3ap2}=36\,$ мм и для последнего с $n_{\!\scriptscriptstyle 3}=24\,$ – $L_{\!\scriptscriptstyle 3ap3}=26\,$ мм .

Площади горения каждого ряда:

$$\begin{split} S_{_{\Gamma 1}} &= \pi \big(D_{_{\rm H}} + D_{_{\rm B}}\big) n_1 L_{_{\rm 3ap1}} = 0,0090 \text{ m}^2; \\ S_{_{\Gamma 2}} &= \pi \big(D_{_{\rm H}} + D_{_{\rm B}}\big) n_2 L_{_{\rm 3ap2}} = 0,0123 \text{ m}^2; \\ S_{_{\Gamma 3}} &= \pi \big(D_{_{\rm H}} + D_{_{\rm B}}\big) n_3 L_{_{\rm 3ap3}} = 0,0118 \text{ m}^2; \end{split}$$

Суммарная площадь горения совпала с потребной

$$S_{\Gamma} = \sum_{i=1}^{4} S_{\Gamma i} = 0,0331 \text{ m}^2.$$

Размещение заряда в КС приведен на рис. 2.1.

Рис. 2.1. Размещение заряда в КС

Закон горения многошашечного вкладного заряда в нашем случае выглядит следующим образом

$$\begin{split} S(e) &= \sum_{i=1}^{3} \pi n_{i} \left(D_{_{\mathrm{B}}} + e\right) \! \left(L_{_{\mathrm{3ap}i}} - e\right) + \sum_{i=1}^{3} \pi n_{i} \left(D_{_{\mathrm{H}}} - e\right) \! \left(L_{_{\mathrm{3ap}i}} - e\right) + \\ &+ \frac{\pi \! \sum_{i=1}^{3} \! n_{i}}{2} \! \left(\! \left(D_{_{\mathrm{H}}} - e\right)^{\! 2} - \! \left(D_{_{\mathrm{B}}} + e\right)^{\! 2}\right) \! . \end{split}$$

Закон горения заряда приведен на рис. 2.2.

Рис. 2.2. Закон горения заряда

3 Определение массы навески воспламенителя

Рациональной массой воспламенителя является такая масса $\omega_{_{\rm B}}$, при которой обеспечивается гарантированное воспламенение топлива во всем диапазоне начальных температур $T_{_{\rm H}}$ заряда. Если воспламенителя недостаточно – существует опасность отсутствия воспламенения заряда.

При выборе воспламенителя рассматривается наиболее неблагоприятная ситуация при минимальной начальной температуре. При такой начальной температуре наблюдается затянутый процесс горения, выражающийся в недостаточном газоприходе.

Для марок воспламенителей, используемых на практике, можно считать, что скорость горения воспламенителя $u_{_{\rm B}}$ не зависит от давления и составляет $0.05~{\rm m/c}.$

Принимается, что площадь горения поверхности воспламенения изменяется во времени t по следующему закону

$$S_{\scriptscriptstyle \rm B} = S_{\scriptscriptstyle \rm OB} \exp\biggl(-m\frac{t}{t_{\scriptscriptstyle \rm B}}\biggr),$$

где $S_{0{\scriptscriptstyle B}}$ — начальная площадь горения воспламенителя, m — показатель дегрессивности горения воспламенителя, $t_{\scriptscriptstyle B}=e_{\scriptscriptstyle B}/u_{\scriptscriptstyle B}$ — время горения воспламенителя, $e_{\scriptscriptstyle B}$ — толщина горящего свода.

Давление вспышки

$$p_{\text{\tiny BCII}} = \frac{c_{\text{\tiny T}} \rho_{\text{\tiny T}}}{\sigma_{\text{\tiny T}}} u(p_{\text{min}}, T_{\text{\tiny H}}) R_{\text{\tiny B}} T_{\text{\tiny B}} \frac{T_{\text{\tiny S}} - T_{\text{\tiny H}}}{T_{\text{\tiny R}} - T_{\text{\tiny S}}}, \tag{3.1}$$

где $c_{_{\rm T}}=1250~{\rm Дж/(кг\cdot K)}~-$ удельная теплоемкость топлива, u — скорость горения топлива, $p_{\rm min}=1~{\rm M\Pi a}~-$ минимальное давление устойчивого горения топлива, $R_{_{\rm B}}$ — газовая постоянная воспламенителя, $T_{_{\rm S}}=550~{\rm K}~-$ температура вспышки топлива, $T_{_{\rm H}}$ — начальная температура топлива, $T_{_{\rm B}}$ — температура продуктов сгорания воспламенителя в момент вспышки топлива

$$T_{\scriptscriptstyle\rm B} = \frac{k-1}{k} \frac{Q_{\scriptscriptstyle\rm B}}{R_{\scriptscriptstyle\rm B}}.$$
 (3.2)

Уравнение, описывающее изменение давления в камере за счет автономного горения воспламенителя

$$p_{_{\rm B}} = \left(p_{_{\rm H}} + \frac{b_{_{\rm l}}}{\frac{m}{t_{_{\rm B}}} - b_{_{\rm 2}}}\right) e^{-b_{_{\rm 2}}t} - \frac{b_{_{\rm l}}}{\frac{m}{t_{_{\rm B}}} - b_{_{\rm 2}}} e^{-\frac{m}{t_{_{\rm B}}}t},$$

где коэффициенты b_1 и b_2 :

$$b_{1} = \frac{k-1}{W_{0}} Q_{_{\rm B}} S_{0_{\rm B}} u_{_{\rm B}} \rho_{_{\rm B}};$$

$$b_{2} = \frac{k}{W_{0}} \sqrt{R_{_{\rm B}} T_{_{\rm B}}} A(k) F_{_{\rm KP}} + \frac{k-1}{W_{0}} \frac{\sigma_{_{\rm T}} v_{_{\rm T}} F_{_{\rm OXJI}}}{R_{_{\rm B}}},$$

где $Q_{_{\rm B}}$ — калорийность воспламенителя, $S_{_{0{\rm B}}}$ — начальная площадь горения воспламенителя, $W_{_0}$ — начальный свободный объем камеры сгорания двигателя

$$W_0 = \frac{\pi}{4} D_{\text{\tiny KM}}^2 L_{\text{\tiny 3ap1}} + \frac{\pi}{8} D_{\text{\tiny KM}}^3 - \frac{\omega}{\rho_{\text{\tiny T}}} = 3,517 \cdot 10^{-5} \text{ M}^3.$$

Площадь охлаждаемой поверхности

$$F_{\text{\tiny OXJI}} = 1,2\pi D_{\text{\tiny KM}} L_{\text{\tiny 3ap1}} + \pi \left(D_{\text{\tiny B}} + D_{\text{\tiny H}}\right) \sum_{i=1}^{3} n_i L_{\text{\tiny 3ap}i} + \frac{\pi \sum_{i=1}^{3} n_i}{2} \left(D_{\text{\tiny B}}^2 + D_{\text{\tiny H}}^2\right) = 0,0524 \text{ M}^2.$$

Максимальное давление воспламенителя

$$p_{\text{\tiny Bmax}} = \frac{b_1}{b_2} \left(\frac{m}{b_2 t_{\text{\tiny B}}} \right)^{\frac{m}{b_2 t_{\text{\tiny B}} - m}}.$$

Начальная площадь поверхности горения воспламенителя

$$S_{0B} = \frac{p_{\text{Bmax}} b_2 \left(\frac{m}{b_2 t_{\text{B}}}\right)^{-\frac{m}{b_2 t_{\text{B}} - m}}}{(k-1)Q_{\text{B}} u_{\text{B}} \rho_{\text{B}}} W_0.$$
(3.3)

Для надежного воспламенения при температуре $-50^{\circ}\mathrm{C}$ давление $p_{\scriptscriptstyle \mathrm{Bmax}}$ необходимо выбирать из условия

$$p_{\text{Bmax}} = (1,1...1,2) p_{\text{BCII}-50},$$

где $p_{_{\rm BCII}-50}$ — давление вспышки основного заряда при температуре окружающей среды $t_{_{\rm H}}=-50^{\circ}{\rm C}$.

Масса навески воспламенителя определяется по следующей формуле

$$\omega_{_{\rm B}} = \rho_{_{\rm B}} e_{_{\rm B}} S_{_{0\rm B}} \frac{1 - e^{-m}}{m}.$$
(3.4)

Параметры воспламенителя приведены в таблице 3.1.

Таблица 3.1. Параметры воспламенителя

Показатель	Значение
Теплота сгорания $Q_{_{\mathrm{B}}}$, кДж/кг	3050
Скорость горения $u_{\scriptscriptstyle \rm B}$, м/с	0,05
Показатель адиабаты k	1,25
Плотность $\rho_{\text{в}}$, $\kappa \Gamma / \text{м}^3$	1700
Показатель дегрессивности т	3
Толщина горящего свода зерна воспламенителя $e_{_{\mathrm{B}}}$, мм	2

Температура продуктов сгорания воспламенителя в момент вспышки основного заряда определяется по формуле (3.2)

$$T_{\rm B} = \frac{1,25-1}{1,25} \frac{3050000}{314} = 1943 \text{ K}.$$

Давление вспышки основного заряда при температуре -50°C по формуле (3.1)

$$p_{\text{\tiny BCII-50}} = \frac{1250 \cdot 1640}{300} \cdot 0,0034 \cdot 314 \cdot 1943 \frac{550 - 223,15}{1943 - 550} = 3,395 \text{ M}\Pi\text{a},$$

а максимальное давление воспламенителя

$$p_{\text{втах}} = 1,1 \cdot 3,395 = 3,735 \text{ МПа.}$$

Кривая автономного горения воспламенителя представлена на рис. 3.1.

Рис. 3.1. Кривая автономного горения воспламенителя

Начальная площадь поверхности горения воспламенителя согласно формуле (3.3) $S_{0\rm B}=0,0069~{\rm m}^2,$ масса навески воспламенителя по (3.4) составляет $\omega_{\rm B}=0,007~{\rm kr}.$

Длина навески воспламенителя

$$L_{_{\rm B}} = \frac{4\omega_{_{\rm B}}}{\rho_{_{\rm B}}\pi D_{_{\rm KMB}}^2} = 43.0 \text{ mm},$$

где $D_{\text{\tiny KMB}} = 13 - 2 \cdot 1, 2 = 10,6$ мм — внутренний диаметр ФВУ, 1,2 мм — толщина стенки перфорированной трубки.

4 Решение основной задачи внутренней баллистики

Система дифференциальных уравнений внутренней баллистики имеет следующий вид:

$$\begin{cases} \frac{dp}{dt} = \left[(k-1) \frac{Q_{_{\rm B}}}{\rho_{_{\rm T}} S_{_{\rm \Gamma}} u_{_{\rm \Gamma}}} G_{_{\rm B}} + (k-1) Q_{_{\rm K}} - k \left(\mu_{_{\rm C}} A(k) \frac{F_{_{\rm KP}} p}{\rho_{_{\rm T}} S_{_{\rm \Gamma}} u_{_{\rm \Gamma}}} \right)^2 - \right. \\ \left. - (k-1) \frac{\sigma_{_{\rm T}} v_{_{\rm T}} F_{_{\rm OXII}} p}{R \rho_{_{\rm T}} S_{_{\rm T}} u_{_{\rm \Gamma}}} - \frac{kp}{\rho_{_{\rm B}} \rho_{_{\rm T}} S_{_{\rm T}} u_{_{\rm \Gamma}}} G_{_{\rm B}} - \frac{kp}{\rho_{_{\rm T}}} \right] \frac{\rho_{_{\rm T}} S_{_{\rm T}} u_{_{\rm \Gamma}}}{W}; \\ \frac{dW}{dt} = \frac{G_{_{\rm T}}}{\rho_{_{\rm T}}} + \frac{G_{_{\rm B}}}{\rho_{_{\rm B}}}; \\ \frac{de}{dt} = u_{_{\rm T}} \Phi_{_{p}} \Phi_{_{e}}. \end{cases}$$

Скорость горения основного заряда

$$u_{\Gamma} = u_1 p^{\nu} F_{3}(T_0),$$

Газоприходы основного заряда и воспламенителя определяются по формулам:

$$G_{\scriptscriptstyle \mathrm{T}} = \rho_{\scriptscriptstyle \mathrm{T}} S_{\scriptscriptstyle \mathrm{T}} u_{\scriptscriptstyle \mathrm{T}} \Phi_{\scriptscriptstyle p} \Phi_{\scriptscriptstyle e};$$

$$G_{\scriptscriptstyle\rm B} = \rho_{\scriptscriptstyle\rm B} S_{\scriptscriptstyle 0_{\rm B}} \exp \left(-m \frac{t}{t_{\scriptscriptstyle\rm B}} \right) u_{\scriptscriptstyle\rm B} \Phi_{\scriptscriptstyle\rm B}.$$

Параметры Φ_p , Φ_e и $\Phi_{\rm B}$ являются функциями Хэвисайда и отвечают за следующее. Функция Φ_p отвечает за момент вспышки основного заряда

$$\Phi_p = \begin{cases} 1, & \text{если } p \geq p_{\text{всп}} \text{ или } e > 0; \\ 0, & \text{в остальных случаях}. \end{cases}$$

Функция $\Phi_{\scriptscriptstyle e}$ отвечает за горение основного заряда

$$\Phi_e = \begin{cases} 1, & e \leq e_3; \\ 0, & \text{в остальных случаях.} \end{cases}$$

И, наконец, функция $\Phi_{_{\rm B}}$ отвечает за горение воспламенителя

$$\Phi_{_{\mathrm{B}}} = \begin{cases} 1, & t \leq t_{_{\mathrm{B}}}; \\ 0, & \text{в остальных случаях.} \end{cases}$$

Интегрирование системы ДУ проводится при следующих начальных условиях:

$$\begin{cases} p = p_{_{\rm H}}; \\ W = W_{_{0}}; \\ e = 0. \end{cases}$$

Система уравнений интегрируется с шагом $\Delta t = 5 \cdot 10^{-5} \, \text{c.}$

Индикаторные кривые давлений при трех температурах $t_0 = -50^{\circ}\mathrm{C}$, $t_0 = +18^{\circ}\mathrm{C}$ и $t_0 = +50^{\circ}\mathrm{C}$ приведены на рис. 5.1 и 5.2.

Рис. 4.1. Индикаторные кривые давлений при трех температурах

Тяга определяется по следующей формуле

$$P = G_{\scriptscriptstyle \mathrm{T}} V_a + (p_a - p_{\scriptscriptstyle \mathrm{H}}) F_a,$$

где F_a — площадь выходного сечения

$$F_a = \frac{\pi \zeta D_{\text{kp}}^2}{\Delta} = 2,187 \cdot 10^{-4} \text{ m}^2.$$

Тяга двигателя при трех начальных температурах приведена на рис. 4.2.

Рис. 4.2. Тяга двигателя при трех начальных температурах

Суммарный импульс ИДК определяется как

$$J_{\Sigma} = \int_{0}^{t_{\rm p}} P(t)dt.$$

Результаты расчета суммарных импульсов для трех температур приведены в таблице 4.1.

Таблица 4.1. Результаты расчета суммарных импульсов

t, °C	-50	+18	+50
$J_{\scriptscriptstyle \Sigma}$, H·c	143,30	155,07	162,31

Из рис. 4.1 и таблицы 4.1 видно, что двигательная установка обеспечивает создание удельного импульса более $140~{
m H\cdot c}$.