PATENT SPECIFICATION

5

10

15

20

25

30

35

40

(21) Application No. 9443/73 (22) Filed 26 Feb. 1973

(44) Complete Specification published 14 May 1975

(51) INT CL² C07C 65/00 A61K 31/19 C07C 147/00 149/00

(52) Index at acceptance

C2C 200 220 226 227 22Y 231 237 240 292 29Y 30Y 311 313 314 31Y 326 338 351 355 35Y 360 361 364 366 367 368 36Y 373 376 37Y 389 396 397 463 464 465 490 491 496 500 50Y 552 613 624 625 628 62Y 634 644 652 655 65X 662 665 666 668 694 697 699 758 776 790 79Y BR BT MB QT RQ UQ UR

A5B 382 38Y 420 422 423 426 42Y 480 481 482 483 485 48Y 586 58Y 644 64Y

We, PFIZER INC., a Corporation organized under the laws of the State of Delaware, United States of America, of 235 East 42nd Street, New York 17. State of New York, United States of America, do hereby declare the invention, for which we pray that a Patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following state-

COMPOSITIONS CONTAINING THEM

Atherosclerosis, a form of arterioscerosis, is characterized by deposition of lipids in the aorta and in the coronary, cerebral and peripheral arteries of the lower extremities. As these masses increase in size, the risk of thrombosis and the ensuing occlusion arises.

Although the etiology of this disease is not fully understood, it has been found that those afflicted with atherosclerosis exhibit elevated levels of plasma lipoprotein, of which cholesterol and triglycerides are the major constituents. In addition to the recommendation that dietary habits leading to lower β -lipoprotein levels be observed, various therapeutic agents such as estrogens, thyroxine analogs, sitosterol preparations and, more recently, "Atromid"-S (ethyl p-chlorophenoxyisobutyrate) have been used to lower cholesterol levels in individuals prone to the condition. The word "Atromid" is a registered Trade Mark.

It has now been found that benzoic acids, and more particularly a series of polysubstituted benzoic acids are effective in reducing plasma lipid levels and can be expected to be useful in the treatment of atherosclerosis and related cardiovascular diseases associated with elevated lipid levels.

Benzoic acid derivatives have been known in the chemical literature for some time and have been reported to possess varied utilities, the most common of which is as intermediates leading to more complicated and diverse chemical structures. For example, S-phenacylthiosalicylic acids are reported, Netherlands Specification 6,607,608, to be useful in the synthesis of benzothiophenes reported to be valuable because of their analgetic, antipyretic, antiinflammatory, antitussive, local anesthetic, antispasmodic, and antihistaminic activity.

Benzoic acid derivatives are utilized in the synthesis of tricyclic dibenz[b,e]oxepines (Collect. Czech, Chem, Commun., 32, 3448, 1967; C.A., 68, 29677r, 1968) and dibenzo [b,f] thiepins (Collect. Czech. Chem. Commun., 33, 1852, 1968; C.A., 69, 86950u, 1968), useful as neurotropic and psychotropic agents.

Quinuclidinyl esters, claimed in United States Patent 3,405,134 as central nervous stimulants, utilizes m-benzyloxybenzoic acid in the preparation of final products.

Baker, et al., J. Med Chem., 10, 1129 (1967), has recently shown that certain phenacyloxy and acetonyloxy derivatives of benzoic acid are inhibitors of a-chymo-

Recently, m-fluorobenzoic acid has been reported, Belgium Patent 724,121, to possess analgesic, antipyretic and hypolipemic activity.

5

10

15

20

25

30

35

40

The hypolipemic agents of this invention are represented by the formulae:

10

15

20

25

30

5

10

15

20

25

and the pharmaceutically acceptable basic salts thereof, where:

X is fluorine, chlorine, bromine, methyl, methoxy or trifluoromethyl;
R₁ is methyl, benzyl or substituted benzyl where said substituent is fluorine, chlorine, methyl, methoxy, trifluoromethyl, 3,4-dimethoxy or acylmethyl of the formula

O || RCCH₂—

where R is alkyl containing from 1 to 4 carbon atoms, phenyl or substituted phenyl where said substituent is fluorine, chlorine, methyl, trifluoromethyl or methoxy;

R₂ is methyl 2-hydroxyethyl, allyl, methallyl, crotyl or acylmethyl of the formula

O || RCCH₂—

where R is alkyl containing from 1 to 4 carbon atoms, phenyl or substituted phenyl said substituent is fluorine, chlorine, methyl, trifluoromethyl or methoxy;

n is an integer from 0 to 2; and R_3 is fluorine, chlorine, bromine or methyl.

Of particular interest are compounds of formula I where X is chlorine and R_1 is benzyl, 3,4-dimethoxybenzyl or acylmethyl of the formula

O || RCCH₂—

where R is alkyl containing from 1 to 4 carbon atoms, and where X is trifluoromethyl and R_1 is methyl or benzyl.

A second group of preferred compounds are those of formula II where X is trifluoromethyl, n is 0 and R_2 is allyl, methallyl, or phenacyl, and where X is chlorine, n is 0 and R_2 is 2-hydroxyethyl or phenacyl.

In accordance with the process employed for synthsizing substituted benzoic acids of formulae I and II, wherein X is fluorine, chlorine, bromine, methyl and methoxy, n is 0 and R_1 and R_2 are as previously indicated, the following scheme, where Hal— is a suitable halogen, is illustrative:

$$X \longrightarrow CO_2H$$

$$X \longrightarrow$$

Both the above illustrated reactions are conducted under similar conditions well known to those skilled in the art and comprises heating a basic salt of the

phenol or thio-phenol with at least an equimolar amount of the appropriate halide, R₁—Hal or R₂—Hal, in a reaction-inert solvent. For convenience, the basic salt of the phenol or thiophenol, the preferred salt being sodium, is generated in situ employing one or more of the bases sodium 5 hydride, sodium methoxide, sodium hydroxide or sodium carbonate. At least one 5 equivalent of said base is used, with as much as a 100% excess. The solvent can vary considerably in nature and can comprise one or more of those selected from dimethylsulfoxide, dimethylformamide, hexamethylphosphoramide, acetone, ethanol, methanol and water. 10 In practice, a solution or suspension of the requisite phenol or thiophenol in 10 a reaction-inert solvent is treated with one or more of the aforementioned bases followed by the addition of the appropriate halide, R1-Hal or R2-Hal. In general, it is advantageous to conduct the reaction at elevated temperatures, the preferred range being from 75-150°C. Reaction time is not critical and is dependent 15 on temperature, concentration and reactivity of the starting reagents. Times of 1-12 15 hours have generally been adequate to provide the desired products in good to moderate yields. A convenient method for isolation of the product comprises dilution of the cooled reaction mixture with water followed by acidification with 6N hydrochloric acid. 20 The resulting precipitate is then filtered, dried and recrystallized from a suitable 20 Starting phenols and thiophenols wherein X is trifluoromethyl and the hydroxyl or mercapto group to be alkylated are ortho or para to said trifluoromethyl moiety represent a special case since said phenol or thiophenols cannot be alkylated under afore described basic reaction conditions. Compounds of the present invention related to I and II wherein X is trifluoromethyl and R_1O — or R_2S — are ortho 25 25 or para to said trifluoromethyl substituent are prepared by displacement of an aromatic halogen ortho or para to the trifluoromethyl substituent by the requisite alcohol, R₁OH, or mercaptan R₂SH. Further, it is frequently advantageous to employ, instead 30 of the trifluoromethyl substituted halobenzoic acid, the corresponding trifluoromethyl 30 substituted halobenzonitrile, which, after the reaction is complete, can be suitably hydrolyzed to the benzoic acid. The above-described reaction is generally carried out by contacting the appropriate trifluoromethyl-halobenzoic acid or nitrile with at least an equimolar amount 35 of the requisite alcohol or mercaptan, plus as much as a 10-50% excess, in an 35 aprotic solvent such as dimethylformamide, dimethylsulfoxide or hexamethylphosphoramide and employing from 1 to 2 molar equivalents of a base such as sodium methoxide or sodium hydride. Such reaction is generally conducted at elevated temperatures of from 80-150°C. for 2-10 hours. The desired product is isolated by dilution of the reaction mixture with water followed by adjustment of the pH to 3 with 40 40 6N hydrochloric acid. In those instances wherein the nitrile is employed, the benzoic acid is obtained by subsequent hydrolysis of the product employing aqueous ethanolic sodium hydroxide at steam bath temperatures and reaction times of 12 to 24 hours. Those trifluoromethyl benzoic acids wherein the hydroxy or mercapto are 45 45 situated meta to the trifluoromethyl substituent can be alkylated directly by the aforedescribed procedure. The requisite hydroxybenzoic acids employed as the starting materials leading to compounds of formula I are either available as commercial reagents or are well known in the chemical literature to those skilled in the art. 50 50 The corresponding mercaptobenzoic acids used as the starting compounds for the preparation of those acids related to formula II are either commercially available or can be synthesized either from the corresponding hydroxybenzoic acid employing the method of Newman, et al., J. Org. Chem., 31, 3980 (1966), which teaches the acylation of a phenol with dimethylthiocarbamyl chloride, thermal rearrangement to 55 55 the S-aryl dimethylthiocarbamate and subsequent hydrolysis to the thiophenol; or from the corresponding aminobenzoic acid using the procedure of Tarbell, et al., "Organic Synthesis", Coll. Vol. III, John Wiley & Sons, Inc., New York, 1955, page 809, which teaches the reaction of a diazonium salt with potassium ethyl xanthate followed by hydrolysis of the intermediate to the thiophenol. 60 60 The appropriate trifluoromethyl halobenzoic acid and benzonitriles are compounds fully disclosed in the chemical literature. Regarding the alkylating reagents employed in the process leading to compounds of the present invention, allyl, crotyl, methallyl and certain phenacyl and benzyl halides are commercially available. Those benzyl halides not available as commercial 65

10

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

chemicals can easily be prepared by those skilled in the art according to the methods as taught by Fuson and McKeever, "Organic Reactions", Vol. I, John Wiley & Sons, Inc., New York, New York, 1954, Chapter 3; and Wagner and Zook, "Synthetic Organic Chemistry", John Wiley & Sons, Inc., New York, New York, 1956, Chapter 4. Phenacyl halides and α-halomethyl alkyl ketones are synthesized according to the methods as outlined by Wagner & Zook, "Synthetic Organic Chemistry", John Wiley & Sons, Inc., New York, New York, 1956, Chapter 4.

The requisite benzyl alcohols are either commercial chemicals or are prepared by a lithium aluminum hydride reduction of the corresponding alkyl benzoate according to the methods outlined by Brown, "Organic Reactions", Vol. 6, John Wiley & Sons, Inc., New York, New York, 1951, Chapter 10. The requisite acylcarbinols,

O || RCCH₂OH,

are prepared via hydrolysis of the corresponding acylimethyl halides according to the procedure of Straus, Ann., 393, 331 (1912), while the corresponding mercaptomethyl ketones,

O ∥ R—CCH₂SH,

are synthesized from the appropriate acylmethyl halides according to the methods reported by Reid, "Organic Chemistry of Bivalent Sulphur", Vol. I, Chemical Publishing Co., Inc., New York, New York, 1958, Chapter 4, page 390.

The sulfoxides and sulfones of formula II, wherein n=1 or 2, are synthesized by oxidation, employing standard oxidizing agents such as hydrogen peroxide or potassium permanganate.

The structurally novel hypolipemic compounds of the present invention comprise those of formula I and their pharmaceutically acceptable basic salts, wherein X is fluorine, chlorine, bromine or trifluoromethyl and R₁ is benzyl or substituted benzyl wherein said substituent is fluorine, chlorine, methyl, methoxy, trifluoromethyl or 3,4-dimethoxy or acylmethyl of the formula

O || R—CCH₂—

wherein R is alkyl containing from 1 to 4 carbon atoms, or phenyl or substituted phenyl wherein said substituent is fluorine, chlorine, methyl, methoxy or trifluoromethyl.

Also structurally novel are hypolipemic agents of the present invention represented by formula II and their pharmaceutically acceptable basic salts, wherein X is fluorine, bromine or trifluoromethyl; R₂ is allyl, methallyl, crotyl or acylmethyl

O || RCCH₂---

wherein R is alkyl containing from 1 to 4 carbon atoms, phenyl or substituted phenyl wherein said substituent is fluorine, chlorine, methyl, trifluoromethyl or methoxy; and n is an integer from 0 to 2.

Compounds of the present invention of formula III and their pharmaceutically acceptable basic salts are all either commercially available or described in the chemical literature and are synthesized according to known standard procedures, for example, those outlined and reported by Moffett, et al., J. Med. Chem., 11, 1020 (1968), Karler, et al., Arch. Intern. Pharmacodyn., 173, 270 (1968), Hansch, et al., Biochem. Pharmacol., 19, 2193 (1970), Muir, et al., Plant Physiol., 26, 369 (1951), Zimmerman, et al., Contr. Boyce Thompson Inst., 12, 321 (1942) and in "Dictionary of Organic Compounds", Oxford University Press, New York, New York, 1965, Volumes 1—5.

As has been previously noted, a characteristic feature of the acidic compounds

5	of the present invention is their ability to form basic salts. Acids of the present invention are converted to basic salts by the interaction of said acid with an appropriate base in an aqueous or non-aqueous medium. Said basic reagents suitably employed in the preparation of said salts can vary in nature, and are meant to include such bases as organic amines, ammonia, alkali metal hydroxides, carbonates, bicarbonates, hydrides and alkoxides, as well as alkaline earth metal hydroxides, hydrides, alkoxides and carbonates. Representative of such bases are ammonia, primary amines such as n-propylamine, n-butylamine, aniline, cyclohexylamine, benzylamine, p-	5
10	pyrrolidine, N-methylmorpholine and 1,5 - diazabicyclo - [4,3,0] - nonene; sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium ethoxide, potassium methoxide, magnesium hydroxide, calcium hydride and barium hydroxide. In the utilization of the chemotherapeutic activity of those compounds of the	10
15	acceptable salts. Although water-insolubility, high toxicity, or lack of crystalline nature may make some salt species unsuitable or less desirable for use as such in a given pharmaceutical application, the water insoluble or toxic salts can be converted to the corresponding acids by decomposition of the salts as described above	15
20	or alternatively they can be converted to any desired pharmaceutically acceptable basic salt. The said pharmaceutically acceptable salts preferred are those wherein the cation is ammonium, sodium or potassium. As previously indicated, the benzoic acids of the present invention are all readily adapted to therapeutic use as hypolipemic agents in mammals. Outstanding	20
25	5 - trifluoromethylbenzoic acid, 2 - benzyloxy - 5 - chlorobenzoic acid, 2 - dimethoxybenzyloxy) - 5 - chlorobenzoic acid, 2 - acetonyloxy - 5 - chlorobenzoic acid, 2 - methoxy - 5 - trifluoromethylbenzoic acid, 3	25
30	trifluoromethylbenzoic acid, 3 - phenacylthio - 5 - trifluoromethylbenzoic acid, 2 - (2 - hydroxyethylthio) - 5 - chlorobenzoic acid and 2 - phenacylthio - 5 - chlorobenzoic acid. The products of the invention are tested in vivo for hypolipemic activity in	30
35	male rats weighing from 160 to 220 grams are fed rat chow containing the compound under test for two overnight feeding periods. On the morning of the third day the animals are anesthetized and bled from the abdominal aorta. The total plasma cholesterol is then determined by the method of J. J. Carr and I. J. Drekter, reported in Clin. Chem., 2, 353 (1956). Most of the tests are conducted at a feed concentration of 0.15 to 0.25 weight per cent of the compound.	35
40	particularly high potency is anticipated. The plasma cholesterol level of the treated animals is found to be significantly reduced when compared to animals not receiving the test compound.	40
45	This pharmacological test for measuring hypochloesteremic activity is a reliable indication that similar activity in humans can be expected because those compounds effective in the rat which have been tested in humans have demonstrated similar activity. p-Chlorophenoxyisobutyric acid, ethyl ester, marketed as Atromid-S, a well-known and clinically effective hypocholesteremic agent, causes a 30—35% cholesterol fall in the rat test when administered at a level of 0.25% in the feed.	45
50	the treatment of mammals in general, the preferred subject is humans. In determining an efficacious dose for human therapy, results of animal testing are frequently extrapolated and a correlation is assumed between extrapolated and a correlation is assumed by the correlation is assumed by the correlation of the correlation of the correlation of th	50
55	level of the clinical candidate in humans is frequently determined by comparison of its performance with the standard in an animal test. For example, Atromid-S is employed as a standard hypolipemic agent and is administered to humans at the rate of 2.0 g. daily in individual doses. It is assumed that if	55
60	present invention have activity comparable to Atromid-S in the test assay, that similar doses will provide comparable responses in humans. Obviously, the physician will ultimately determine the dosage which will be most suitable for a particular individual, and it will vary with the age, weight and response of the particular patient as well as with the nature and extent of the symptoms and the pharmacodynamic characteristics.	60
65	toms and the pharmacodynamic characteristics of the particular agent to be administered. Generally, small doses will be administered initially, with a gradual	65

	+(8,686,1	5
5	increase in the dosage until the optimum level is determined. It will often be found that when the comparison is administered orally, larger quantities of the active ingredient will be required to produce the same level as produced by a small quantity administered parenterally. Having full regard for the foregoing factors it is considered that an effective daily dosage of the compounds of the present invention in humans will generally range from 0.3 to 5 g. per day in single or divided doses. These values are illustrative, and there may, of course, be individual cases where higher or lower dose ranges are merited.	5
10	The henzoic acids of this issued:	
15	The benzoic acids of this invention can be administered either alone, or, preferably, in combination with a pharmaceutically acceptable carrier. They may be combined with various pharmaceutically acceptable, inert carriers in the form of tablets, capsules, lozenges, troches, powders, aqueous suspensions or solutions, elixirs, syrups and the like. Suitable carriers include solid diluents or aqueous media and non-toxic organic solvents. The oral pharmaceutical compositions of the carriers and non-toxic	10
20	suitably sweetened and flavored by means of various agents commonly employed for such a purpose. For parenteral administration, solutions or suspensions of the herein described benzoic acids in sesame or pennyt oil agents.	15
20	salts. Such solutions are suitable for intramuscular and subcutaneous administration. Sterile aqueous solutions are additionally useful for intravenous injection, provided that their pH is suitably adjusted and buffered, if necessary, and the liquid diluent	20
30	The herein disclosed compounds may also be useful in other aspects of abnormal metabolism, the latter possibly accounting for clinical problems in diabetes, parpolysubstitutedbenzoic acids of this invention to regulate lipid metabolism might find	25
30	The following examples are provided solely for the purpose of illustration and are not to be construed as limitations of this invention.	30
35	EXAMPLE 1 3-Benzyloxy-5-chlorobenzoic Acid To a solution of 173 mg. (1 m mole) of 3-hydroxy-5-chlorobenzoic acid in 2 ml. of dimethylformamide is added 85 mg. (2 m moles) of 56.6% sodium hydride in an oil suspension. After ten minutes, the resulting suspension is treated with 130 mg. (1 m mole) of benzyl chloride and the mixture heated to 100°C. for one hour. The reaction mixture is then cooled, diluted with 5 ml. of water, and extracted with ether. The aqueous phase is separated acidified with 6 M l. of water, and extracted with	35
40	product extracted with ether. The other solvent is removed in vacuo and the product triturated with water and filtered. The dried product is sublimed at 125°C. and 0.02 mm of pressure to provide 50 mg. of the desired product, m.p. 127—129°C.	40
45	Anal. Calcd. for $C_{14}H_{11}O_3Cl$: C, 64.00; H, 4.22. Found: C, 64.05; H, 4.31.	
	EXAMPLE 2 2-(3,4-Dimethoxybenzyloxy)-5-chlorobenzoic Acid To a suspension resulting from 5.15 g. (0.03 mole) of 5-chlorosalicylic acid and 2.5 g. (0.06 mole) of sodium hydride (56.6% oil dispersion) in 50 ml. of dimethylformamide is added 11 g. (0.065 mole) of 3.4 dimethylformamide is added 11	45
50	mixture heated to 100—107°C. for 40 minutes. The reaction mixture is cooled, with 150 ml. of water and extracted with ether. The ether layer is washed residual product 3.4 dimension, water and finally evaporated to dryness. The	50
55	salicylate is triturated with isopropanol, 7.5 g., m.p. 70—83°C. A small sample is recrystallized from isopropanol, m.p. 90—91.5°C.	55
	Anal. Calcd. for C ₂₃ H ₂₅ O ₇ Cl: C, 63.49; H, 5.33. Found: C, 63.84; H, 5.43.	
60	The above intermediate, 7.5 g. (15.8 m moles) in 50 ml. of acetone is treated with 50 ml. of 1N aqueous sodium hydroxide solution and 25 ml. of methanol and the solution heated on a steam bath for 3—4 minutes and stirred at room temperature	60

50

55

for 15 minutes. Twenty-five milliliters of water is added and the acetone and methanol are removed under reduced pressure. The aqueous solution is extracted with ether and finally acidified with 6N hydrochloric acid. The resulting precipitate is filtered and dried, 4.8 g., m.p. 101—105°C. The desired product is purified by recrystallization from methanol containing a small amount of methylene chloride, m.p. 110—112°C.

5

Anal. Cald. for C₁₆H₁₅O₅Cl: C, 59.54; H, 4.68. Found: C, 59.60; H, 4.86.

EXAMPLE 3

Following the procedure of Example 1 or Example 2, and starting with the appropriate hydroxybenzoic acid and benzyl halide, the following compounds are synthesized:

10

		_	Position of	•	•
15	X	R_1	Substituent—OR ₁	Procedure	15
	F	C ₆ H ₅ CH ₂ —	2	Example 2	
	F F F	$C_6H_5CH_2$	4	Example 4	
	F	4-ClC ₆ H ₄ CH ₂ —	3	Example 1	
	F	2-FC,H,CH2—	2	Example 2	
20	F	3-CF ₃ C ₆ H ₄ CH ₂ —	4	Example 2	20
	F	2-ClC ₆ H ₄ CH ₂	4 3	Example 1	
	7 7 7	4-CH ₃ C ₆ H ₄ CH ₃ —	6	Example 2	
	F	4-CH ₃ OC ₆ H ₄ CH ₂ —	6	Example 2	
	F	3-BrC _a H ₄ CH ₂ —	6 2 3 2 2	Example 2	
25	F	4-BrC ₆ H ₄ CH ₂ —	3	Example 1	25
	F	3-CH ₃ OC ₆ H ₄ CH ₂ —	2	Example 2	
	Cl	$C_6H_3CH_2$ —		Example 2	
	Çl	$C_6H_5CH_2$ —	6	Example 2	
	Cl	4-ClC ₆ H ₄ CH ₂ —	6 3 2	Example 1	
30	CI	4-FC ₆ H ₄ CH ₂ —	2	Example 2	30
	C1	4-FC ₆ H ₄ CH ₂ —	4	Example 2	
	Cl	4-CH ₃ C ₆ H ₄ CH ₂ —	3 3	Example 1	
	Cl	4-CH ₃ OC ₆ H ₄ CH ₂		Example 1	
25	CI	2-BrC ₆ H ₄ CH ₂ —	6	Example 2	
35	Cl	3-CF ₃ C ₆ H ₄ CH ₂ —	2	Example 2	35
	CI	4-FC ₆ H ₄ CH ₂ —	2	Example 2	
	Br	C ₄ H ₅ CH ₂	6 2 2 2 3 2	Example 2	
	Br	C ₆ H ₅ CH ₂ —	3	Example 1	
	Br	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ —		Example 2	
40	Br	3,4-(CH ₃ O) ₃ C ₆ H ₃ CH ₂	4	Example 2	40
	Br	4-FC ₆ H ₄ CH ₂ —	3	Example 1	
	Br	4-FC ₆ H ₄ CH ₂ —	6 2 2 2 2	Example 2	
	Br	3-CF ₃ C ₆ H ₄ CH ₂ —	2	Example 2	
	Br	4-CH ₃ OC ₆ H ₄ CH ₂ —	2	Example 2	
45	Br	4-CH ₃ C ₆ H ₄ CH ₂ —	2	Example 2	45
	Br	4-CH ₃ C ₆ H ₄ CH ₂ —	4	Example 2	
	Br	4-CH ₃ C ₆ H ₄ CH ₂ —	3	Example 1	

EXAMPLE 4 2-Benzyloxy-5-trifluoromethylbenzoic Acid

To a solution of 10.8 g. (0.1 mole) of benzyl alcohol in 50 ml. of dimethyl-sulfoxide is added 4.2 g. (0.1 mole) of a 56.6% suspension of sodium hydride in oil, and the mixture stirred until the evolution of hydrogen ceases. 4 - Chloro - 3 - cyanobenzotrifluoride (18.6 g.; 0.09 mole) is added and the resulting mixture heated 3—4 hours at steam bath temperatures. The reaction is cooled, diluted with 200 ml. of water and the resulting precipitate filtered and dried. The inter-

55

10

15

20

25

5

10

15

20

mediate, 4 - benzyloxy - 3 - cyanobenzotrifluoride, is recrystallized from isopropanol, 10.8 g., m.p. 69—70.5°C.

To 10 ml. of ethanol containing 4 ml. of 5N aqueous sodium hydroxide solution is added 600 mg. of the above intermediate and the resulting solution heated to 90°C. overnight. The reaction mixture is cooled, extracted with ether, and the aqueous layer acidified with 12N hydrochloric acid. The precipitate which forms is filtered, washed with water and dried, 570 mg., m.p. 92—94°C. A small sample is recrystallized for analysis from etherhexane, m.p. 94.5—96°C.

Anal. Calcd. for C₁₅H₁₁O₃F₃: C, 60.81; H, 3.74. Found: C, 60.64; H, 3.81.

EXAMPLE 5

3-Benzyloxy-5-trifluoromethylbenzoic Acid

To a solution resulting from 206 mg. (1 m mole) of 3 - hydroxy - 5 - trifluoromethylbenzoic acid* and 85 mg. (2 m moles) of a 56.6% oil suspension of sodium hydride in 2 ml. of dimethylsulfoxide is added 127 mg. (1 m mole) of benzyl chloride and the reaction mixture heated to 90°C. for 1—2 hours. The mixture is cooled to room temperature, diluted with 10 ml. of water and extracted with ether. The aqueous phase is separated and acidified with 6N hydrochloric acid. The precipitated product is filtered, dried and sublimed at 125°C. and 0.5 mm pressure, m.p. 143—145°C.

Anal. Calcd. for $C_{15}H_{11}O_3F_3$: C, 60.81; H, 3.74. Found: C, 60.80; H, 3.70.

*Hauptschein, et al., J. Am. Chem. Soc., 76, 1053 (1954).

EXAMPLE 6

Starting with the requisite reagents, and employing the procedures of Example 4 or Example 5, the following benzoic acids are prepared:

10	R ₁	Position of Substituent —OR ₁	Procedure	
35	4-FC ₆ H ₄ CH ₂ — 3-FC ₆ H ₄ CH ₂ — 3-FC ₅ H ₄ CH ₂ — 4-ClC ₆ H ₄ CH ₂ — 4-ClC ₆ H ₄ CH ₂ —	2 2 3 2 4	Example 4 Example 4 Example 5 Example 4 Example 4	30
	2-CIC ₆ H ₄ CH ₂ — 4-BrC ₆ H ₄ CH ₂ — 3-BrC ₆ H ₄ CH ₂ — 4-CH ₃ C ₆ H ₄ CH ₂ — 2-CH ₃ C ₆ H ₄ CH ₂ —	4 2 3 2	Example 4 Example 4 Example 5 Example 4	35
40	4-CH ₃ OC ₆ H ₄ CH ₂ — 4-CH ₃ OC ₆ H ₄ CH ₂ — 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ —	2 6 2 3	Example 5 Example 5 Example 4 Example 4 Example 5	40
45	3-CF ₃ C ₆ H,CH,— 3-CF ₃ C ₆ H,CH,— C ₆ H ₅ CH ₂ —	2 3 6	Example 4 Example 4 Example 5 Example 4	45

EXAMPLE 7
2-Benzyloxy-5-methoxybenzoic Acid

A solution of 5.0 g. (0.03 mole) of 2 - hydroxy - 5 - methoxybenzoic acid in 50 ml. of dimethylformamide is treated with 2.5 g. (0.06 mole) of sodium hydride in a 56.6% oil suspension, followed by the addition of 7.6 g. (0.06 mole) of benzyl

50

10

15

5

10

15

50

55

chloride. The resulting mixture is heated at 98-103°C. for one hour, after which the insolubles are filtered, the filtrate diluted with 100 ml. of water and the aqueous solution extracted with ether. The aqueous phase is discarded and the ether phase dried over sodium sulfate and evaporated to provide the intermediate, benzyl 2 benzyloxy - 5 - methoxybenzoate, as an oil 5.0 g.

The intermediate ester is dissolved in 35 ml. of ethanol containing 30 ml. of 1N aqueous sodium hydroxide solution and the resulting solution heated for 50 minutes on a steam bath. The ethanol is removed in vacuo and the mixture diluted with 20 ml. of water and extracted with ether. The water phase is acidified with 12N hydrochloric acid and the product extracted into ether. The ether is evaporated and the residual crude product is chromatographed over 40 g. of Silica Gel packed in ethyl acetate. The desired product is eluted with 100 ml. of ethyl acetate, 2.9 g., m.p. 88—92°C. and is finally recrystallized from methylene chloride-ether, 1.6

g., m.p. 93—94.5°C.

Anal. Calcd. for C₁₅H₁₄O₄: C, 69.75; H, 5.46. Found: C, 69.75; H, 5.59.

EXAMPLE 8

Employing the procedure of Example 7 and starting with the appropriate chemical reagents, the following analogues are synthesized:

20 20

		Position of	
X	R_i	Substituent —OR ₁	
CH ₃	$C_{s}H_{s}CH_{s}$ —	2	
CH ₃	$C_8H_8CH_2$ —	3	
	4-FC,H,CH,—	2	25
	4-FC.H.CH.—	4	_,
CH_3			
CH ₃			
	4-BrC _e H _e CH ₂ —	3	
CH ₃	3-CF ₃ C ₄ H ₄ CH ₂ —	3	30
CH_3	3,4-(CH ₃ O) ₂ C ₄ H ₃ CH ₂	2	50
CH ₃	3,4-(CH ₃ O) ₂ C ₄ H ₃ CH ₂ —	3	
CH ₃ O	$C_{s}H_{s}CH_{2}$ —	3	
CH ₃ O	C ₆ H ₅ CH ₂ —	6	
CH ₃ O	3-FC ₆ H ₄ CH ₂ —	2	35
CH ₃ O	4-FC,H,CH ₂ —	$\frac{\overline{4}}{4}$	33
CH ₃ O	2-ClC ₆ H ₄ CH ₂ —	2	
	4-ClC ₆ H ₄ CH ₂ —	2	
	4-BrC ₆ H ₄ CH ₂ —	3	
	3-CF ₃ C ₆ H ₄ CH ₂ —	2	40
CH₃O	4-CF ₃ C ₆ H ₄ CH ₂ —		
CH ₃ O	4-CH ₃ C ₆ H ₄ CH ₂ —	2	
CH ₃ O	2-CH ₃ C ₆ H ₄ CH ₂ —	2	
CH ₃ O	4-CH ₃ OC ₆ H ₄ CH ₂ —	2	
CH ₃ O	4-CH ₃ OC ₆ H ₄ CH ₂ —	3	45
CH ₃ O	$3,4-(CH_3O)_2C_4H_3CH_2$	2	
CH_3O	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ —	3	
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ C ₆ H ₆ CH ₂ — CH ₃ C ₆ H ₆ CH ₂ — CH ₃ 4-FC ₆ H ₄ CH ₂ — CH ₃ 4-FC ₆ H ₄ CH ₂ — CH ₃ 3-ClC ₆ H ₄ CH ₂ — CH ₃ 3-ClC ₆ H ₄ CH ₂ — CH ₃ 3-ClC ₆ H ₄ CH ₂ — CH ₃ 3-CF ₃ C ₆ H ₄ CH ₂ — CH ₃ 3-CF ₃ C ₆ H ₄ CH ₂ — CH ₃ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — CH ₃ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — CH ₃ O C ₆ H ₅ CH ₂ — CH ₃ O C ₆ H ₅ CH ₂ — CH ₃ O 3-FC ₆ H ₄ CH ₂ — CH ₃ O 4-FC ₆ H ₄ CH ₂ — CH ₃ O 4-ClC ₆ H ₄ CH ₂ — CH ₃ O 4-ClC ₆ H ₄ CH ₂ — CH ₃ O 4-ClC ₆ H ₄ CH ₂ — CH ₃ O 4-CF ₃ C ₆ H ₄ CH ₂ — CH ₃ O 4-CH ₃ O ₆ C ₆ H ₄ CH ₂ — CH ₃ O 4-CH ₃ O ₆ C ₆ H ₄ CH ₂ — CH ₃ O 4-CH ₃ O ₆ C ₆ H ₄ CH ₂ —	CH ₃ C ₆ H ₃ CH ₂ — 2 CH ₃ C ₆ H ₄ CH ₂ — 3 CH ₃ 4-FC ₆ H ₄ CH ₂ — 2 CH ₃ 4-FC ₆ H ₄ CH ₂ — 4 CH ₃ 3-ClC ₆ H ₄ CH ₂ — 4 CH ₃ 3-ClC ₆ H ₄ CH ₂ — 3 CH ₃ 4-BrC ₆ H ₄ CH ₂ — 3 CH ₃ 3-CF ₅ C ₆ H ₄ CH ₂ — 3 CH ₃ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — 2 CH ₃ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ — 3 CH ₃ O C ₆ H ₅ CH ₂ — 3 CH ₃ O C ₆ H ₅ CH ₂ — 3 CH ₃ O C ₆ H ₅ CH ₂ — 4 CH ₃ O 3-FC ₆ H ₄ CH ₂ — 4 CH ₃ O 3-FC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-FC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-FC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 2 CH ₃ O 4-ClC ₆ H ₄ CH ₂ — 3 CH ₃ O 4-Cl ₃ O ₆ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ H ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ CH ₂ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄ C ₄ C ₄ C ₄ C ₄ C ₄ — 3 CH ₃ O 3-4-Cl ₃ O ₆ C ₄

EXAMPLE 9

2-Acetonyloxy-5-chlorobenzoic Acid

To a solution of 5.16 g. (0.03 mole) of 5-chloro-salicylic acid in 60 ml. of ethanol and 40 ml. of water containing 1.2 g. (0.03 mole) of sodium hydroxide is added 2.8 g. (0.03 mole) of chloroacetone and the solution heated to reflux for 5 hours. The resulting solution is cooled in an ice bath and the precipitated product filtered, dried and recrystallized from ether, 800 mg., m.p. 90-91°C.

Anal. Calcd. for C₁₀H₉O₄Cl: C, 52.53; H, 3.97. Found: C, 52.84; H, 4.04.

55

EXAMPLE 10

In a similar manner, employing the requisite starting materials and following the procedure of Example 11, the following compounds are prepared:

5		·	Position of Substituent O	5
••	X F F F	R CH₃— C₃H₅— C₂H₅—	—OCH₂ČR 2 2 3 3	
10	F F F Cl	n-C ₃ H ₇ i-C ₃ H ₇ — n-C ₄ H ₉ — CH ₃ —	4 6	10
15	CI CI CI CI CI	CH ₃ — n-C ₃ H,— i-C ₃ H,— s-C ₄ H ₉ —	2 3 3 3 4	15
20	Br Br Br Br	C ₂ H ₆ — n-C ₃ H, i-C ₃ H,— n-C ₄ H ₉ — CH ₃ — CH ₃ — n-C ₃ H,— i-C ₃ H,— s-C ₄ H ₉ — C ₂ H ₅ — C ₂ H ₅ — i-C ₃ H ₇ — i-C ₃ H ₇ — c ₂ H ₃ — i-C ₃ H ₇ — n-C ₄ H ₉ —		20
25	CH, CH, CH, CH,	n-C ₃ H ₇ — CH ₈ — CH ₃ — t-C ₄ H ₉ — n-C ₄ H ₉ — S-C ₄ H ₉ — C ₂ H ₆ n-C ₃ H ₇ n-C ₄ H ₉ — S-C ₄ H ₉ —	6 2 4 2 2 2 2 6 2 4 6 2 4 6 2 3 3	25
30	OCH ₃ OCH ₃ OCH ₃ OCH-	5-C ₄ H ₆ — C ₂ H ₆ n-C ₃ H ₇ n-C ₄ H ₆ — 5-C ₄ H ₄ —	6 2 3 3	30
35	CF ₃ CF ₃ CF ₃ CF ₃	CH ₃ — C ₂ H ₅ — i-C ₃ H ₇ — n-C ₄ H ₀ —	6 3 3 3 3	35

EXAMPLE 11

3-Phenacyloxy-5-trifluoromethylbenzoic Acid To 206 mg. (1 m mole) of 3 - hydroxy - 5 - trifluoromethylbenzoic acid dissolved in 2.5 ml. of dimethylsulfoxide is added 85 mg. (2 m moles) of a 56.6% sodium hydride suspension in oil. When the hydrogen evolution has ceased, 199 mg. 40 (1 m mole) of α -bromoacetophenone is added and the reaction mixture is allowed to stir at room temperature for 2 hours. The reaction is diluted with 10 ml. of water and extracted with ether. The aqueous phase is acidified and the product extracted with ether. Removal of the ether under reduced pressure followed by sublimation at 150°C. and 0.1 mm pressure provided the pure product, m.p. 180-45

Anal. Calcd. for $C_{16}H_{11}O_4F_3$: C, 59.26; H, 3.42. Found: C, 59.26; H, 3.60.

EXAMPLE 12

The procedure of Example 11 is repeated, starting with the appropriate hydroxybenzoic acid and phenacyl halide to provide the following compounds: 2 -

50

40

5	phenacyloxy - 5 - fluorobenzoic acid, 2 - (4' - fluorophenacyloxy) - 5 - fluorobenzoic acid, 2 - (2' - chlorophenacyloxy) - 5 - fluorobenzoic acid, 3 - (4' - methylphenacyloxy) - 5 - fluorobenzoic acid, 4 - (4' - methylphenacyloxy) - 5 - chlorobenzoic acid, 3 - (4' - methoxyphenacyloxy) - 5 - bromobenzoic acid, 3 - (4' - fluorophenacyloxy) - 5 - bromobenzoic acid, 3 - (2' - methylphenacyloxy) - 5 - trifluoromethylbenzoic acid, 3 - (4' - methoxyphenacyloxy) - 5 - trifluoromethylbenzoic acid, 3 - (3' - trifluoromethylbenzoic acid, 6 - (3' - methoxyphenacyloxy) - 5 - methylbenzoic acid, 4 - (2' - methoxyphenacyloxy) - 5 - methylbenzoic acid, 4 - (2' - methoxyphenacyloxy) - 5 - methylbenzoic acid, 4 - (2' - methoxyphenacyloxy)	5
10	phenacyloxy) - 5 - methylbenzoic acid, 2 - (4' - fluorophenacyloxy) - 5 - methoxybenzoic acid, 3 - (3' - chlorophenacyloxy) - 5 - methoxybenzoic acid, 6 - (4' - methoxyphenacyloxy) - 5 - methoxybenzoic acid, 2 - (3' - trifluoromethylphenacyloxy) - 5 - methoxybenzoic acid and 3 - phenacyloxy - 5 - methoxybenzoic acid.	10
15	EXAMPLE 13 2-Methylthio-5-trifluoromethylbenzoic Acid Into 75 ml. of dimethylformamide containing 20 ml. of 5N sodium hydroxide solution is bubbled methyl mercaptan until a weight increase of 6.3 g. (~30% excess) is noted, followed by the addition of 20.5 g. (0.1 mole) of 4 - chloro - 3 - cyanobenzotrifluoride. After allowing the reaction mixture to stir at room temperature for	15
20	water and extracted with ether. The ether layer is separated, dried over sodium sulfate and concentrated to a semi-solid which on trituration with hexane provides the desired intermediate, 4 - methylthio - 3 - cyanobenzotrifluoride, as a crystalline solid, 15.2 g., m.p. 68—72°C.	20
25	Thirteen grams of the above intermediate in 150 ml. of ethanol containing 200 ml. of 20% aqueous sodium hydroxide solution is heated at 90°C. for 18 hours. The reaction mixture is cooled and acidified with 12N hydrochloric acid, and the resulting precipitate filtered and dried, 14.2 g., m.p. 198—200°C. A small sample is sublimed at 125—135°C. and 0.02 mm pressure, m.p. 198.5—200°C.	25
30	Anal. Calcd. for C ₉ H ₇ O ₂ SF ₃ : C, 45.76; H, 2.99. Found: C, 46.09; H, 3.10.	30
35	In a similar manner are prepared: 2 - (2 - hydroxyethylthio) - 5 - trifluoro-methylbenzoic acid, m.p. 153—154°C.; 2 - crotylthio - 5 - trifluoromethylbenzoic acid, m.p. 139—141°C.; 2 - methallylthio - 5 - trifluoromethylbenzoic acid, m.p. 150—152°C. and 2 - allylthio - 5 - trifluoromethylbenzoic acid, m.p. 178—190°C.	35
40	EXAMPLE 14 3-Methylthio-5-trifluoromethylbenzoic Acid To a solution of 10 g. (0.045 mole) of 3 - mercapto - 5 - trifluoromethylbenzoic acid, and 100 ml. of 1N sodium hydroxide in 100 ml. of ethanol is added 3.8 ml. (0.06 mole) of methyliodide. After the reaction mixture has stirred at room temperature for one hour, it is acidified with 12N hydrochloric acid, and the precipitate of the final product is filtered and dried, 8.6 g., m.p. 135—140°C. A sample is sublimed at 175°C. and 0.03 mm pressure, m.p. 151—152.5°C.	40
45	Anal. Calcd. for C ₈ H ₇ O ₂ SF ₃ : C, 45.76; H, 2.99. Found: C, 45.85; H, 3.02.	45

20

EXAMPLE 15

Following the procedure of Example 13 or Example 14, and starting with the requisite chemical reagents, the following compounds are synthesized:

5	$\mathbf{R_2}$	Position of Substituent —SR ₂	Procedure	5
	CH ₃ —	· 4	Example 13	•
	CH ₃ —	6	Example 13	
	$CH_2 = CH - CH_2 -$	3	Example 14	
10	$CH_2 = CH - CH_2 -$	4	Example 13	10
	$CH_3CH = CHCH_2$	3	Example 14	10
	$CH_3CH = CH - CH_2 -$	6	Example 13	
	$CH_2 = C(CH_3)CH_2$	3	Example 14	
	$CH_2 = C(CH_3)CH_2$	· · · 4	Example 13	
15	$CH_3 = C(CH_3)CH_2$	6	Example 13	15
	HOCH ₂ CH ₂ —	3	Example 14	13
	HOCH ₂ CH ₂ —	6	Example 13	

EXAMPLE 16

3-Methylthio-5-chlorobenzoic Acid

In a manner similar to the procedure of Example 14, 3 - mercapto - 5 - chlorobenzoic acid is contacted with methyl iodide in methanol containing potassium hydroxide as the base to yield the desired product in 70% yield, m.p. 148—150°C.

Anal. Calcd. for C₈H₇O₂SCl: C, 47.41; H, 3.48. Found: 47.55; H, 3.56.

25

Again, the procedure of Example 14 is employed, starting with the appropriate starting reagents to provide the following analogs:

25

30	x	R_2	Position of Substituent —SR ₂	30
	<u>F</u>	CH ₃ —	2	
	<u>F</u>	CH ₃ —	4	
	<u>F</u>	$CH_2 = CH - CH_2 -$	3	
	<u>F</u>	CH ₃ CH=CH—CH ₂ —	3	
35	\mathbf{F}	$CH_3CH = CH - CH_2 -$	4	35
	F	HOCH ₂ CH ₂ —	3	
	Cl	CH ₃ —	2	
	Cl	$CH_3 = C(CH_3)CH_2$	2	
	CI	$CH_2 = C(CH_3)CH_2$	3	
40	Cl	$CH_2 = C(CH_3)CH_2$	6	40
	Cl	HOCH, CH,	2	
	Br	CH ₃ —	2	
	Br	CH ₃ —	3 .	
	Br	CH ₃ —	4	
45	Br	HOCH ₂ CH ₂ —	2	45
	Br	$CH_2 = CH - CH_2 -$	$\bar{\mathbf{z}}$	••
	CH ₃	CH ₃ —	2	

						13
		_		_	Position of	
	X	R_2		S	ubstituent —SR ₂	
	CH_3	CH ₃ —			6	
_	CH ₃	CH ₃ CH=CH	$-CH_2$		2	
5	CH₃	$CH_2 = C(CH_3)$)CH ₂ —		2	5
	CH ₃	HOCH ₂ CH ₂ —	-		2 2 2 2 2 3	
	CH₃O	CH ₃	***		2	
	CH ₃ O	CH ₂ =CH—C	H ₂ —		3 .	
10	CH ₃ O	CH ₂ =CH—C			4	
	CH ₃ O	CH ₃ CH=CH			0	10
	CH ₃ O	CH ₃ CH=CH	CH ₂		6 2 3	
	-	• • • • • • • • • • • • • • • • • • • •			,	
		EX.	AMPLE 1	18		
1.5		2-Phenacylthio-5-ti	rifluorome	thylbenzoic A	cid	
15	A suspension	of 14 g. (0.06 mole)) of methy	l 2 - chloro	- 5 - trifluorobenzoate,	15
	y.u g. (u.uo mole	c) of α-mercaptoaceto	phenone a	ind 4.2 g. (0.	03 mole) of potassium	
	for 2 hours often	mi. of dimethylforma	mide is a	llowed to sti	r at room temperature	
	with water The e	which 200 ml. of ethe	er is added	i and the resu	lting mixture extracted	
20	to an oil, which	crustallizes on treatme	u, anea o	over sodium s	ulfate and concentrated c, 1.6 g., m.p. 128.5—	20
	130°C. The analy	vtical sample of the	intermedi	sopropyr erner	- phenacylthio - 5 -	20
	trifluoromethylben	zoate, is purified by	sublimatio	n at 120°C.	and 0.01 mm pressure,	
	m.p. 127—129°C.	,			ma vivi man pressure,	
	A	mal Calad for C TY	0.00	0.45.40		
25	A	nal. Calcd. for C ₁₇ H	13O3SF3:	C, 57.62;	H, 3.70.	
			round:	C, 57.66;	H, 3.70.	25
	The desired acid	is prepared from the	crude este	r through mi	d base hydrolysis.	
		EXA	MPLE 1	9		
	A mixture of	3-Phenacylthio-5-tr	illuoromet	hylbenzoic Ac	id	
30	acid, 12 ml. of 1A	I sodium bydrovide s	olution on	ercapto -) -	trifluoromethylbenzoic m moles) of a-chloro-	40
	acciophenone in z	o illi. Oi ethanoi is	allowed to	a ctir at room	temperatura for and	30
	nour. The reaction	inixiure is anuted w	'ith water.	extracted wit	h ether and the secule	
	mg aqueous phase	acidilicu with 12/V	ロヤロアのぐわしのす	ncacid lhe	light wellow oil which	
25	scharates Kradinatty	crystallizes and is	nitered. I	X o. mn 1	35—150°C. A sample	
35	is sublimed at 165°	C. and 0.05 mm press	ure, m.p. 1	.53—155°C.		35
	Δ,	nal Calcd for C II	O CE	0.5645		
	111	nal. Calcd. for C ₁₆ H ₁	Found:	C, 56.84;	H, 3.26. H 200	
			x oung.	C, 70.07,	11, 2.00.	
	The 1 1 1 1	EXA	MPLE 20	כ		
40	employing the	e procedure of Exam	ple 18 or	Example 19,	and starting with the	
40	appropriate reagent	s, the following benzoi	c acid deri	vatives are pro	epared:	40
			_			
		CF3 .		a a		
		\		•		
		4	L b			
		*	X,			
			3 SAZ			
	n		Positio			
	R ₂		Substituer	nt —SR ₂	Procedure	
	O _{II}					
	CH CCH		_			-
	CII3CCII3		. 3		Example 19	
	0					
	¥					

Example 19

		-,0-0,001		7.4
	x	R ₂	Position of Substituent —SR ₂	
	O (CH ₃) ₂ CHCCH ₂ —	4	Example 18	
	O C ₆ H ₅ CCH ₂ —	4	Example 18	
5	C°H°CCH³— O	6	Example 18	5
	4-FC ₆ H ₄ CCH ₂ —	3	Example 19	
	4-FC ₆ H ₄ CCH ₂ —	6	Example 18	
	3-CIC ₀ H ₄ CCH ₂ —	2	Example 18	· ·
	4-CIC,H,CCH,	. 3	Example 19	
10	4-CH ₃ C ₆ H ₄ CCH ₂ —	3 .	Example 19	10
	3-CH ₂ OC ₆ H ₄ CCH ₂ —	3	Example 19	
	O 4-CH3OC6H4CCH2—	3	Example 19	
	O 4-CH ₃ OC ₆ H ₄ CCH ₂ —	6	Example 18	
	O 3-CF ₃ C ₆ H ₄ CCH ₂ —	3	Example 19	
15	2-Ph	EXAMPLE 21 nenacylthio-5-chlorobenzoic Ac	- c id	15
20	of α -chloroacetophenone and ethanol containing 45 ml. of one-fourth the alcohol under chloric acid and the resulting The analytical sample has a me	water is heated to reflux for reduced pressure, the mixture precipitated product filtered.	hydroxide in 200 ml. of or 2 hours. After removing re is acidified with hydroxide.	20
	Anal. Calcd.	for C ₁₅ H ₁₁ O ₃ SCl: C, 58.7 Found: C, 58.5	2; H, 3.62. 9; H, 3.74.	
25	In a similar manner to acetone for chloroacetophenon is prepared, m.p. 139—140°C	EXAMPLE 22 the procedure of Example 2 te, the corresponding 2-aceton	1, but substituting chloro- ylthio-5-chlorobenzoic acid	25
30	Anal. Calcd.	for C ₁₀ H ₉ O ₃ SCl: C, 49.08 Found: 49.23	3; H, 3.71. 1; H, 3.80.	30

10

15

30

35

5

10

15

20

25

35

EXAMPLE 23

Starting with the appropriate chemical reagents and following the procedure of Example 21, the following benzoic acids are prepared:

2 - acetonylthio - 5 - fluorobenzoic acid, 4 - phenacylthio - 3 - fluorobenzoic acid, 3 - (4' - fluorophenacylthio) - 5 - fluorobenzoic acid, 3 - (4' - methoxyphenacylthio) - 5 - fluorobenzoic acid, 2 - (3' - methylphenacylthio) - 5 - chlorobenzoic acid, 2 - (4' - methoxyphenacylthio) - 5 - chlorobenzoic acid, 3 - acetonylthio - 5 - chlorobenzoic acid, 2 - isobutyrylmethylthio - 5 - chlorobenzoic-acid, 2 - acetonylthio - 5 - bromobenzoic acid, 3 - (4' - methoxyphenacylthio) - 5 - bromobenzoic acid, 4 - (3' - trifluoromethylphenacylthio) - 5 - bromobenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - bromobenzoic acid, 2 - phenacylthio - 5 - methylbenzoic acid, 2 - quertylbenzoic acid, 2 - (4' - fluorophenacylthio) - 3 - methylbenzoic acid, 2 - (4' - methoxyphenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - chlorophenacylthio) - 5 - methoxybenzoic acid, 2 - (4' - methoxybenzoic acid, 3 -

EXAMPLE 24

3-Phenacylsulfinyl-5-trifluoromethylbenzoic Acid
A solution of 2.6 g. (7.5 m moles) of 3 - phenacylthio - 5 - trifluoromethylbenzoic acid and .75 ml. of 30% hydrogen peroxide in 15 ml. of acetic acid is heated on a steam bath for one hour, after which the reaction mixture is cooled and diluted with water to the turbidity point. The crystalline product which forms on standing is filtered, 1.0 g., m.p. 148—151°C., and finally recrystallized from acetone-isopropyl ether, 850 mg., m.p. 154—155°C.

3 - (3' - trifluoromethylphenacylthio) - 5 - methoxybenzoic acid.

Anal. Calcd. for C₁₆H₁₁O₄SF₃: C, 53.93; H, 3.11. Found: C, 54.11; H, 3.29.

EXAMPLE 25

2-Phenacylsulfonyl-5-chlorobenzoic Acid

In a manner similar to the procedure of Example 24, 1.0 g. (3 m moles) of 2 - phenacylthio - 5 - chlorobenzoic acid and 3 ml. of 30% hydrogen peroxide in 40 ml. of acetic acid yielded 800 mg. of the desired sulfone, m.p. 170—171°C.

Anal. Calcd. for C₁₅H₁₁O₅SCI: C, 53.18; H, 3.27. Found: C, 53.16; H, 3.32.

EXAMPLE 26

The following sulfoxides and sulfones are prepared, starting with the requisite chemicals, by repeating the procedure of Examples 24 and 25 respectively:

	X	R ₂	. n	Position	
40	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	CH ₃ — HOCH ₂ CH ₂ — HOCH ₂ CH ₂ — CH ₂ =CH—CH— CH ₃ —	1 1 2 1	2 2 2 2	40
45	F F F F	CH ₃ — CH ₃ — CH ₃ CH=CH—CH ₂ — HOCH ₃ CH.—	2 1 2 2 1	4 4 4 3 3	45
50	CI CI CI CI	CH_3 — CH_3 — CH_2 = $C(CH_3)CH_2$ — CH_2 = $C(CH_3)CH_2$ —	1 2 1 1	2 2 6 3	50

	16	: .	1,393,854			16
		X	R ₂	n	Position	
	5	Br Br Br CH, CH, OCH, OCH, OCH, OCH,	CH ₃ — CH ₃ — CH ₄ — HOCH ₂ CH ₂ — HOCH ₂ CH ₂ — CH ₂ =C(CH ₃)CH ₂ — CH ₃ =CHCH ₂ — CH ₃ =CHCH ₂ — CH ₃ =CHCH ₃ — CH ₂ =CHCH ₂ — CH ₂ =CHCH ₂ — CH ₃ CH=CHCH ₂ — CH ₃ CH=CHCH ₃ —	2 2 1 2 1 2 1 2 1 2	2 3 2 2 2 2 2 3 3 4 3	5 10
		CF ₃	O C _e H _e CCH ₂ —	2	3	
		CF,	O C ₂ H ₄ CCH ₂ —	1	3	
1	5	CF _s	O C ₂ H ₄ CCH ₂ —	2	3	15
	٠.	CF _s	O 4-FC ₆ H ₄ CCH ₂ —	1	6	·
		CF ₃	O 3-CIC _b H ₄ CCH ₂ — O	1	2	
		CF ₃	3-CIC ₆ H ₄ CCH ₂ —	2	2	
		CF ₃	O 3-CH ₂ OC ₂ H ₂ CCH ₂ — O	1	3	
20		CF ₃	3-CF ₂ C ₆ H ₄ CCH ₂ —	2	3	20
		F	CH₃CCH₂— O	2	2	
٠		F	C ₆ H ₆ CCH ₂ —	2	4	,
		F	4-CH,OC,H,CCH ₂ — O	1	3	
		Cl	3-CH ₂ C ₆ H ₄ CCH ₂ — O	1 .	2	
25		CI	3-CH ₃ C ₆ H ₄ CCH ₂ —	2	2	25

	х	R ₂	n	Position	
	Cl	4-CH₃OC₅H₄CCH₂—	2	2	
	Cl	CH3CCH3—	1	3	
	Ci	O CH ₃ CCH ₂ —	2	3	
5	Br	O 4-CH3OC6H4CCH2—	2	3	5
÷	Br	O 	1	4	
	Br	O 4-CIC ₆ H ₄ CCH ₂ —	2	2	
•	CH ₃	O 2-C ₆ H ₆ CCH ₂	2	2	
	СНз	CH3CCH2—	1	2	
10	CH ₃	O CH3CCH2—	2	<u>′</u> 2	10
٠	CH ₃	O 4-FC ₆ H ₄ CCH ₂ —	1	2	
	CH ₈ O	O 	1	2	
	CH ₃ O	O C ₆ H ₅ CCH ₂ —	2	3	
	CH ₃ O	O 4-CIC ₆ H ₄ CCH ₂ —	1	2	
15	CH₃O	O 4-ClC ₆ H ₄ CCH ₂ —	2	2	15
		TTALLEY T AT			

EXAMPLE 27

3-Methoxy-5-trifluoromethylbenzoic Acid

This product is prepared according to the procedure of Example 5 and comprises contacting 3 - hydroxy - 5 - trifluoromethylbenzoic acid with methyl iodide in methanol containing sodium methoxide as the base, m.p. 131—135°C.

Anal. Calcd. for $C_9H_7O_3F_3$: C, 49.11; H, 3.20. Found: C, 49.28; H, 3.30.

5

10

15

20

EXAMPLE 28

2-Methoxy-5-trifluoromethylbenzoic Acid

Starting with 4 - chloro - 3 - cyanobenzotrifluoride and sodium methoxide and following the procedure of Example 4, the above product is prepared, m.p. 105—106.5°C. Netherlands Application 6,507,712 (C.A., 64 12606 g) reports a melting point of 103—105°C. for this compound.

In a similar manner are prepared 2 - methoxy - 3 - trifluoromethylbenzoic acid and 3 - trifluoromethyl - 4 - methoxybenzoic acid.

Groups, each comprising 4 animals, of normal (Sprague-Dawley Charles River) male rats weighing from 160 to 220 grams are fed rat chow containing the test compounds for two overnight feeding periods. On the morning of the third day cholesterol is then determined by the method of J. J. Carr and I. J. Drekter reported in Clin. Chem., 2, 353 (1956). Most of the tests are conducted at a concentration in levels are employed in some instances. The total quantity of test compound consumed is computed from feed consumption over the two-day period and is tabulated, cholesterol fall measured:

•.:		•		20
	Compound	% Cholesterol Fall	Daily Dosage mg./kg.	
	2-Methoxy-5-trifluoromethyl-benzoic		g./ kg.	
25	2-Benzyloxy-5-trifluoromethyl-benzoic acid	42	223	
	2-Chloro-5-trifluoromethyl-benzoic acid	41	256	25
	2-Benzyloxy-5-chlorobenzoic acid	19	231	
30	3-Denzyloxy-3-trifluoromethyl-henzoic	17	208	
	aciu	18	144	30
•	2-Methoxy-5-chlorobenzoic acid	28	164	
	acid	•	217	
35	2-Acetonyloxy-5-chlorobenzoia	48	214	
	2-(4'-Chlorobenzyloxy)-5-chlorobenzoic acid	. 32	158	35
	2-Methoxy-4-trifluoromethyl-benzoic	14	240	
40	3-Repartment 5-111	39	227	
	3-Benzylovy-5-chlorobenzoic acid	20		
	2-Benzyloxy-5-methoxybenzoic acid 2-(3',4'-Dimethoxybenzyloxy)-5-	17	178 242	40
	chlorobenzoic acid	36	227	
45	2,5-Dimethoxybenzoic acid	20	227	
	3-Chloro-5-trifluoromethyl-benzoic acid		243	45
	2-Bromo-5-trifluoromethyl-benzoic acid	13	141	43
	2,4-Dichlorobenzoic acid	15	140	
50	2-Bromo-5-chlorobenzoic acid	42	149	
	2-Methylthio-5-trifluoromethyl-benzoic acid	16	106	50
	2-Methylsulfinyl-5-trifluoromethyl- benzoic acid	27	255	
55	2-Allylthio-5-trifluoromethyl-benzoic acid	14	265	
	aciu	40	100	55
	2-Phenacylthio-5-chloro-benzoic acid	31	185	
		21	219	
60	acid acid		233	
	3-Phenacylsulfinyl-5-trifluoro-methyl- benzoic acid	20	229	60
		20	247	

	2,322,034			19
	Compound	% Cholesterol Fall	Daily Dosage mg./kg.	
	3-Methylsulfonyl-5-trifluoro-methyl-		5. C	
5	benzoic acid 2-(2'-Hydroxyethylthio)-5-trifluoromethyl-	13	255	_
_	benzoic acid 2-(2'-Hydroxyethylthio)-5-chlorobenzoic	22	253	5
	acid	29	245	
10	2-Acetonylthio-5-chloro-benzoic acid	21	229	
10	2-Crotylthio-5-trifluoromethylbenzoic acid 2-Methallylthio-5-trifluoro-methyl benzoic acid	16	255	10
	3-Methylthio-5-chlorobenzoic acid	25 22	244	
_	3-Fluorobenzoic acid	0	199 - 228	
15	5-Chloro-2-(4'-chlorophenyl-ureylene)	ŭ	220	15
	benzoic acid 5-Trifluoromethyl-2-benzyl-amino-	32	249	
	benzoic acid	17	148	
20	5-Chloro-2-(<i>n</i> -propylureylene)-benzoic acid	10	. 100	-
· ·	5-Trifluoromethyl-2-(3-methyl-piperidino) benzoic acid	10 27	199	20
	5-Trifluoromethyl-2-(3,5-di-methyl-	21 .	196	
25	piperidino)benzoic acid 5-Trifluoromethyl-2-acetamido-benzoic	19	144	25
	acid 5-Trifluoromethyl-2-benzamido-benzoic	7	127	23
10	acid 5-Trifluoromethyl-2-diethyl-aminobenzoic	26	128	
30	acid	6	141	30
35 40	In a similar manner, when tested by the abacids also lower chloesterol levels: 3,5 - diffuoracid, 2 - chloro - 5 - fluorobenzoic acid, 3 - 1 fluoro - 4 - bromobenzoic acid, 2,3 - dibromobenzoic acid, 3,5 - dibromobenzoic acid, 3 - fluorobenzoic acid, 3 - fluorobenzoic acid, 2,5 - dimethyl acid, 2 - methylthio - 5 - fluorobenzoic acid, 2 - 1 acid, 3 - fluoro - 5 - methoxybenzoic acid, 3 - tacid, 2 - chloro - 5 - methylbenzoic acid, 3 - methylthio - 5 - bromobenzoic acid, 3 - methylthio - 5 - bromobenzoic acid, 3 - fluoro - 5 - methylbenzoic acid acid, 3 - fluoro - 5 - methylbenzoic acid and 3 - methyl - 4 - bromob	fluoro - 4 - chlorenzoic acid, 2,3 fluoro - 4 - methy lbenzoic acid, 2 - b uoro - 4 - methy lbenzoic acid, 2,3 - methylthio - 5 methylthio - 5 - r rifluoromethyl - 6 hloro - 5 - methy yl - 5 - methoxy	o - difluorobenzoic robenzoic acid, 3 - romo - 5 - fluoro-ribenzoic acid, 2 - dimethylbenzoic - methoxybenzoic acid, 4 - methylbenzoic acid, 4 - methylbenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 2 - robenzoic acid, 2 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 2 - robenzoic acid, 3 - robenzoic acid, 4	35
45	EXAMPLE 2	9		
45	A dry solid pharmaceutical composition is ing materials in the indicated weight proportions:	prepared by com	bining the follow-	45
	2 - benzyloxy - 5 - trifluoromethylben calcium carbonate polyethylene glycol, average molecular		50 20 30	
50	The dry mixture is thoroughly agitated to Soft elastic and hard gelatin capsules containing employing sufficient material to provide each capsulation.	obtain a complete	ly uniform blend.	50
55	A dry solid pharmaceutical composition is materials together in the specified weight proportion	O	•	26
	3 - methoxy - 5 - trifluoromethylbenzodium citrate		50 25	55
	alginic acid		10	
50	polyvinylpyrrolidone magnesium stearate		10	
	······Busculli Stealate	•	5	60

10

15

After the dried composition is thoroughly blended, tablets are punched from the mixture, each tablet being of such size as to contain 100 mg. of the active ingredient. Tablets are also prepared containing, respectively, 5, 10, 25 and 50 mg. of the active ingredient, by employing the appropriate proportions of 3 - methoxy - 5 - trifluoromethyl - benzoic acid and excipient blend in each case.

5

EXAMPLE 31

2-Benzyloxy->-trifluoromethylbenzoic Acid

Sodium Salt

To a solution of 400 mg. (0.01 mole) of sodium hydroxide in 30 ml. of water is added, in portions and with stirring, 2.96 g. (0.01 mole) of 2 - benzyloxy - 5 - trifluoromethylbenzoic acid. The slightly hazy solution is filtered and the filtrate concentrated at room temperature and under reduced pressure to dryness. The residual sodium salt is triturated with acetone and filtered.

10

In a similar manner the products of the present invention are converted to their pharmaceutically acceptable basic salts.

15

WHAT WE CLAIM IS: -

1. A benzoic acid compound of the formulae:

and the pharmaceutically acceptable basic salts thereof, wherein:

X is fluorine, chlorine, bromine or trifluoromethyl;

20

R, is benzyl or substituted benzyl wherein the substituent is fluorine, chlorine, methyl, methoxy, trifluoromethyl or 3,4-dimethoxy or acylmethyl of the formula

25

20

wherein R is alkyl containing from 1 to 4 carbon atoms or phenyl or substituted phenyl wherein the substituent is fluorine, chlorine, methyl, methoxy or trifluoromethyl;

Y is fluorine, bromine or trifluoromethyl;

R₂ is allyl, methallyl, crotyl or acylmethyl of the formula

30

35

40

30

35

40

25

wherein R is as defined above and; n is 0, 1 or 2.

2. A compound of claim 1 or formula I wherein X is trifluoromethyl and R_1 is benzyl.

3. A compound of claim 1 of formula I wherein X is chloro, and R₁ is benzyl, 3,4 - dimethoxybenzyl or acylmethyl of the formula

wherein R is alkyl containing from 1 to 4 carbon atoms.

4. A compound of claim 1 of formula II wherein Y is trifluoromethyl, n is 0, and R_2 is allyl, methallyl or phenacyl.

5. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of the formulae:

· 10

20

25

30

5

10

15

20

25

and the pharmaceutically acceptable salts thereof, wherein:

X is fluorine, chlorine, bromine, methyl, methoxy or trifluoromethyl;

R₁ is methyl, benzyl or substituted benzyl wherein the substituent is fluorine, chlorine, methyl, methoxy, trifluoromethyl or 3,4-dimethoxy or acylmethyl of the formula

wherein R is alkyl containing from 1 to 4 carbon atoms or phenyl or substituted phenyl wherein the substituent is fluorine, chlorine, methyl, trifluoromethyl or methoxy;

R₂ is methyl, 2-hydroxyethyl, allyl, methallyl, crotyl or acylmethyl of the formula

wherein R is as defined above and: 15 n is 0, 1 or 2; and R₃ is fluorine, chlorine, bromine or methyl.

> 6. The composition of claim 5, in which said compound is of the formula I, wherein R_1 is benzyl or methyl and X is trifluoromethyl.

7. The composition of claim 5, in which said compound is of the formula I, wherein X is chloro and R₁ is benzyl, 3,4-dimethoxybenzyl or acylmethyl of the formula

wherein R is alkyl containing from 1 to 4 carbon atoms.

8. The composition of claim 5, in which said compound is of the formula II, wherein X is trifluoromethyl, n is 0 and R_2 is allyl, methallyl or phenacyl.

9. The composition of claim 5, in which said compound is of the formula II,

wherein X is chlorine, n in 0 and R_2 is 2-hydroxyethyl or phenacyl.

10. The composition of claim5, in which said compound is of the formula III, wherein X is trifluoromethyl and R₃ is chlorine.

11. A pharmaceutical composition substantially as described in Examples 29 and 30 30.

> STEVENS, HEWLETT & PERKINS, Chartered Patent Agents, 5, Quality Court, Chancery Lane, London, W.C.2.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1975. Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

THIS PAGE MLANT. (USPTO)