

GEAM Grupo de Estudos de Aprendizado de Máquina

Introdução ao Algoritmo de Boosting

- Bolsista: Ítalo Lima Dantas
- Curso: Engenharia de Software
- Orientador: Regis Pires Magalhães

Sumário

O Algoritmo		3
Funcionamento	わりんし かりん	4
Dificuldades		
Vantagens		6
Caso de Estudo	MWWa	7
Prática no Orange		
Exemplo no Orange		16

Algoritmo Boosting

- No encontro de hoje, estudaremos o conceito de Algoritmo de Boosting, com introdução ao AdaBoost, também conhecido como Adaptive Boosting.
- O introdução ao estudo do Algoritmo será contextualizada, explicada e exemplificada na resolução de um problema na ferramenta Orange Data Mining.
- A ideia do algoritmo de agrupamento Boosting é construir hipóteses sucessivas, de modo que as hipóteses seguintes devem ser melhoradas, de acordo com os erros das hipóteses anteriores. Esse processo é feito através de pesos que são atribuídos à conjunto de dados.
 - Quanto mais alto é um exemplo, maior é a importância dada pelo algoritmo.

Funcionamento do Algoritmo

- O Boosting começa com um peso P = 1 para todos exemplos base.
 - A partir do conjunto inicial é gerada a primeira hipótese H1.
 - Ocorrerá então a primeira classificação. Haverá erros e acertos nessa classificação.
 - Os erros devem receber maiores pesos, para que a próxima hipótese se encarregue de melhorar a classificação. Os acertos devem receber menores pesos.
 - A partir desse novo conjunto, é gerada a hipótese H2, e assim por diante.
- O processo continua até que sejam geradas H hipóteses.

O AdaBoost

- O AdaBoost é um algoritmo de aprendizado de máquina, criado por Yoav Freund e Robert Schapire, em 1996. É um algoritmo meta-heurístico. Pode ser utilizado com o intuito de aumentar a performance de outros algoritmos de aprendizagem. É uma variação do algoritmo de boosting.
- De forma bem simples, o algoritmo funciona da seguinte maneira: A cada iteração, há a adaptação, baseada nas classificações feitas anteriormente, o ajuste acontece em relação às instâncias atribuídas com viés negativo.
- O AdaBoost chama um "aprendiz fraco" em n iterações, para cada chamada a distribuição de pesos Dn é atualizada, indicando a importância do exemplo no conjunto de dados.

Dificuldades do AdaBoost

O algoritmo é sensível a ruído dos dados e a outliers.

• Suscetível ao Overfitting, que é a perda da capacidade de generalização, após o aprendizado de muitos padrões de treino.

Vantagens do AdaBoost

- Flexibilidade
- Facilidade na implementação, em diversas áreas
- Em relação a maioria dos outros algoritmos, o AdaBoost é menos suscetível ao overfitting.

Caso de Estudo

- Dissertação de Mestrado de Bruno Butilhão Chaves, aluno da USP.
- "O objetivo desta dissertação é estudar e desenvolver o conhecimento do algoritmo AdaBoost para aplicação em sensores, de forma a aprimorar a sensibilidade e precisão das medições, tanto de sensores isolados como de sistemas complexos com vários sensores, sem que seja necessário realizar modificações no próprio sensor. Para demonstrar a utilidade da técnica, foi realizado um estudo de caso utilizando um sistema composto de sensores capacitivos inter digitalizados e micro fabricados, sensores de temperatura e sensor a fibra óptica, para verificar adulterações em combustíveis automotivos, em especial, do etanol combustível. Sete experimentos são apresentados no trabalho. Índices acima de 90% de classificações corretas foram obtidos, indicando a viabilidade da utilização do algoritmo para calibração de sensores ou rede de sensores".

Boosting illustration (perceptron as weak learner)

Boosting illustration (perceptron as weak learner)

Final classifier is a combination of weak classifiers

Prática no Orange

- O algoritmo de AdaBoost é utilizado no Orange através do Widget AdaBoost.
- Os parâmetros do mesmo são:
 - Estimador Base
 - Número de Estimadores
 - Taxa de Aprendizado (Entre 0 e 1)
 - Semente Fixa para Gerador Aleatório
- No método Boosting, há a seguinte subdivisão:
 - Algoritmo de Classificação
 - SAMME
 - SAMME.R
- Função da Regressão (Se houver Regressão) :
 - Linear
 - Quadrada
 - Exponencial

Exemplo no Orange

- Exemplo do Dataset Irís, já utilizado no grupo de estudos.
 - 4 Feactures:
 - Comprimento da sépala em cm
 - Largura da sépala em cm
 - Comprimento da pétala em cm
 - Largura da pétala em cm
- 3 Classes possíveis:
 - Iris Setosa
 - Íris Versicolour
 - Iris Virginica
- As imagens a seguir exemplificam todo o fluxo seguido no Orange, e exibem o Test and Score realizado dos 3 algoritmos utilizados: Tree, Logistic Regression e AdaBoost

