Алгебра и теория чисел

Курс Жукова И. Б.

осень 2021 г.

Оглавление

O	глав.	ление	i			
Ι	Ал	гебраические структуры	1			
1	Множества					
	1.1	Нотация	3			
	1.2		4			
	1.3	Отображение	4			
	1.4	Композиция	6			
	1.5	Тождественное отображение	7			
2	Гру	ппы	9			
	2.1	Введение	9			
	2.2	Определение группы	10			
	2.3	Подгруппы	11			
	2.4	Таблицы Кэли	12			

Часть I Алгебраические структуры

глава 1

Множества

1.1. Нотация

Стандартная запись

$$A' = \{1, 3, 5, 7\}$$

 $A = \{1, 3, 5, ..., 99\}$

Общий вид

$$B = \{2, 4, 6, \dots 0\} = \{2n : n \in \mathbb{N}\}\$$

Стандартные числовые множества

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\} \\ \mathbb{Z} &= \{...,-1,0,1,2,\ldots\} \\ \mathbb{Q} &= \left\{\frac{p}{q}: p,q \in \mathbb{Z}, q \neq 0\right\} \\ \mathbb{R}, \mathbb{C} \end{split}$$

Подмножества

$$A' \subset A \subset \mathbb{N}, A' \not\subset B$$

$$C = \{1, 2, 3\}$$
 $\emptyset, \{1\}, \{2\}, \{3\}$
$$\{1, 2\}, \{1, 3\}, \{2, 3\}$$

$$\{1, 2, 3\} = C$$

Предикат для подмножеств: $\{n \in \mathbb{N} : n < 5\} = \{1, 2, 3, 4\}$

1.2. Операции на множествах

 $\oplus \Leftrightarrow \triangle$

Пусть А, В — множества

$$A \cap B = \{a \in A \land a \in B\}$$

$$A \cup B = \{a : a \in A \lor a \in B\}$$

$$A \setminus B = \{a \in A \land a \notin B\}$$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

$$A = \{1, 2, 3\} \quad B = \{-1, 1\}$$

$$A \times B = \{(1, -1), (1, 1), (2, -1), (2, 1), (3, -1), (3, 1)\}$$

$$\bigcap_{i=1}^{n} A_{i} \quad \bigcup_{i=1}^{n} A_{i}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

1.3. Отображение

A, B — множества

Определение 1. Задать отображение A в B, значит для каждого $a \in A$ задать некоторый элемент B (т.н. образ элемента A)

$$A = \{1, 2, 3, 4\}$$

$$B = \mathbb{R}$$

$$\begin{array}{c|c} a & f(a) \\ \hline 1 & \sqrt{2} \\ 2 & 0 \\ 3 & 7^5 \\ 4 & 0 \end{array}$$

$$f: \mathbb{R} \to \mathbb{Z}$$

$$a \mapsto \begin{cases} 1, & a > 0 \\ 0, & a = 0 \\ -1, & a < 0 \end{cases}$$

$$\varphi: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto |\{m \in \mathbb{N} : m \leqslant n \ \& \ (m,n) = 1\}|$$

 $|M|=\#M={\rm Card}\ M$ — мощность множества 2^M — множество всех подмножеств M, его мощность $|2^M|=2^{|M|}$

Свойства

 $f:A\to B$ называется инъекцией, если $\forall a_1,a_2\in A:a_1\neq a_2\Rightarrow f(a_1)\neq f(a_2)$

отображение называется сюръекцией, если $\forall b \in B, \exists a \in A: f(a) = b$ отображение называется биекцией, если оно одновременно инъекция и сюръекция

$$f:A\to B$$
 $b\in B$ полный прообраз b относительно $f:$
$$f^{-1}(b)=\{a\in A:f(a)=b\}$$

$$\mathbb{R} \to \mathbb{R}$$

$$f:x\mapsto x^2 \qquad \qquad f^{-1}(4)=\{-2,2\}$$

$$f^{-1}(0)=\{0\}$$

$$f^{-1}(-3)=\varnothing$$

$$f$$
 – инъекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| \leqslant 1$
 f – сюръекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| \geqslant 1$
 f – биекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| = 1$

Сужение отображения

$$\begin{array}{ccc} f:A\to B & A'\subset A & f:\mathbb{R}\to\mathbb{R} \\ f|_{A'}:A'\to B & x\mapsto x^2 \\ a\mapsto f(a) & f|_{\mathbb{R}_{\geqslant 0}}:\mathbb{R}_{\geqslant 0}\to\mathbb{R} \end{array}$$

Образ подмножества

$$f:A\to B$$

$$M\subset A \qquad \qquad f(M)=\{f(m):m\in M\}$$

$$f(A)=\mathrm{Im}A$$

1.4. Композиция

$$f: A \to B \quad g: B \to C$$
$$g \circ f: A \to C$$
$$a \mapsto g(f(a))$$

— композиция f и g

$$\begin{split} f,g:\mathbb{R} &\to \mathbb{R} \\ f(x) &= x+1 \\ g(x) &= 2x \\ g \circ f: \mathbb{R} &\to \mathbb{R} \qquad f \circ g: \mathbb{R} \to \mathbb{R} \\ x &\mapsto 2x+2 \qquad x \mapsto 2x+1 \end{split}$$

1.5. Тождественное отображение

Пусть M – множество

$$\mathrm{id}_M:M\to M$$

$$m\mapsto m$$

Пусть $f:X\to Y$, тогда отображение $g:Y\to X$ называется обратным, если $g\circ f=\mathrm{id}_X, f\circ g=\mathrm{id}_Y$

Теорема 1. У $f: X \to Y$ есть обратное $\Leftrightarrow f$ – биекция

Доказательство.

$$\Rightarrow g:Y\to X \qquad \qquad g\circ f=\operatorname{id}_X \\ f\circ g=\operatorname{id}_Y \\ g(y):=x \qquad \qquad f^{-1}(y)=\{x\} \\ (g\circ f)(x)=g(f(x))=x \qquad f^{-1}(f(x))=\{x\} \\ (f\circ g)(y)=f(g(y))=y \qquad \qquad \Leftrightarrow g\circ f=\operatorname{id}_X \qquad \qquad f\circ g=\operatorname{id}_Y \\ \downarrow \uparrow \qquad \qquad \downarrow \uparrow \\ f-\text{ инъекция} \qquad \qquad f\circ g=\operatorname{id}_Y \\ \downarrow \uparrow \qquad \qquad \downarrow \uparrow \\ f\circ g=\operatorname{id}_Y \qquad \qquad \downarrow \uparrow$$

глава 2

Группы

2.1. Введение

Определение 2. Бинарная операция на множестве M – отображение из $M \times M \to M$

Примеры

- 1. +, -, · на \mathbb{Z}
- 2. + на векторном пространстве

3.
$$M = X^X = \{f : X \to X\}$$

 $(f,g) \mapsto f \circ g$
 $M \times M \mapsto M$

Свойства

Есть операция $M \times M \to M$, обозначим ее $(a,b) \mapsto a * b$

- 1. Если $\forall a, b \in M : a * b = b * a$, то * коммутативна
- 2. * ассоциативна, если $\forall a,b,c\in M:(a*b)*c=a*(b*c)$
- 3. $e \in M$ называется левым нейтральным, если $\forall a \in M : e*a = a$ В вычитании це $e \in M$ называется правым нейтральным, если $\forall a \in M : a*e = a$ лых чисел ноль $e \in M$ называется нейтральный, если он и левый, и правый нейтрален спранейтральный ва

Лемма 1. Пусть * – операция, e_L, e_R – нейтральные слева и справа относительно *, тогда $e_L = e_R$.

Доказательство.

$$e_R = e_L \cdot e_R = e_L$$

Обратное к a обозначается a^{-1}

4. Пусть e нейтральный относительно $*, a \in M$. Элемент $b \in M$ называется обратным к a, если b*a = a*b = e

Если $b*a=e\Rightarrow b$ обратный слева

Если $a*b=e\Rightarrow b$ обратный справа

Лемма 2. Если * ассоциативна и у а если левый и правый обратный, тогда они равны. b*a = e, a*c = e

Доказательство.

$$(b*a)*c = b*(c*a)$$
$$e*c = b*e$$
$$c = b$$

Если * – ассоциативная операция, $m \in \mathbb{Z}$:

$$a^m = \begin{cases} a_1 * a_2 * \dots * a_m & m > 0 \\ e & m = 0 \\ a_1^{-1} * a_2^{-1} * \dots * a_{-m}^{-1} & m < 0 \end{cases}$$

$$a^m * a^n = a^{m+n} \qquad (a^m)^n = a^{mn}$$

2.2. Определение группы

Определение 3. Группой называется множества G с операцией *, такие что:

- 1. * ассоциативна
- 2. У * есть нейтральный элемент
- 3. У любого $g \in G$ есть обратный

Группа G называется абелевой (коммутативной), если * коммутативна

11

Примеры

1. $(\mathbb{Z}, +)$

1–4 абелевы группы

- $2. (\mathbb{Q},+), (\mathbb{R},+)$
- 3. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot)$
- 4. $(\{1,-1\},\cdot)$
- 5. (X^X, \cdot) не группа, при |X| > 1
- 6. $(S(X),\cdot),$ что $S(x)=\{f:x\to x:x$ биекция $\}$ группа, не абелева при |X|=2

2.3. Подгруппы

 Π ример. $(\mathbb{Z},+)$ – группа, $2\mathbb{Z}=\{2n:n\in\mathbb{Z}\}$ – подгруппа

Определение 4. G – группа, $H \subset G$ называется подгруппой, если:

- 1. H замкнуто относительно умножения, т.е. $\forall h_1, h_2 \in H: h_1h_2 \in H$
- $2. e \in H$
- 3. H замкнуто относительно обратного, т.е. $\forall h \in H: h^{-1} \in H$

Примеры

 $\subset \Leftrightarrow <$

- $2\mathbb{Z} < \mathbb{Z}$
- $\{0\} < \mathbb{Z}$
- $\mathbb{Z} \in \mathbb{Q}$
- $(\{-1,1\},\cdot) < \mathbb{Q}^*$
- $\{2^n : n \in \mathbb{Z}\} < \mathbb{Q}^*$
- Группы самосовмещений (симметрий) фигур, Π плоскость, $S(\Pi)$, $T(\Pi) < S(\Pi)$ перемещения плоскости (движения)

Законы сокращения

Лемма 3. Пусть G - группа, $g,h_1,h_2\in G$

1.
$$gh_1 = gh_2 \Rightarrow h_1 = h_2$$

2.
$$h_1 q = h_2 q \Rightarrow h_1 = h_2$$

Доказательство.

$$g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2$$

2.4. Таблицы Кэли

Дана группа $G = \{g_1, g_2, \dots g_n\}$:

Дана группа $\mathbb{Z}^* = (\{\pm 1\}, \cdot)$:

$$\begin{array}{c|cccc} & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Таблица Кэли является латинским квадратом Дана группа самосовмещений правильного прямоугольника:

Группа абелева, т.к. симметрична относительно диагонали Рассмотрим $\mathbb{Z}^* \times \mathbb{Z}^* = \{(1,1),(1,-1),(-1,1),(-1,-1)\}$. Операции будем производить покомпонентно: (a,b)(a',b') = (aa',bb').

13

Последние 2 группы изоморфны (если заменить все элементы, например, буквами, то они и их таблицы Кэли будут идентичны) Теория групп изучает группы с точностью до изомфорфизма

Аксиома 1. Любые группы третьего порядка изоморфны.

С группами порядка 4 это уже не выполняется