Testing Nested Models

- ullet Two models are nested if both contain the same terms and one has at least one additional term.
- Example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon \tag{1}$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \epsilon \tag{2}$$

- Model (1) is nested within model (2).
- Model (1) is the **reduced** model and model (2) is the **full** model.

- How do we decide whether the more complex (full) model contributes additional information about the association between y and the predictors?
- In example above, this is equivalent to testing $H_0: \beta_4 = \beta_5 = 0$ versus $H_a:$ at least one $\beta \neq 0$.
- Test consists in comparing the SSE for the reduced model (SSE_R) and the SSE for the complete model (SSE_C) .
- $SSE_R > SSE_C$ always so question is whether the drop in SSE from fitting the complete model is 'large enough'.

Stat 328 - Fall 2004 2

- We use an F-test to compare nested models, one with k parameters (reduced) and another one with k+p parameters (complete or full).
- Hypotheses: $H_0: \beta_{k+1} = \beta_{k+2} = ... = \beta_{k+p} = 0$ versus $H_a:$ At least one $\beta \neq 0$.
- Test statistic: $F = \frac{(SSE_R SSE_C)/ \# \text{ of additional } \beta's}{SSE_C/[n-(k+p+1)]}$
- At level α , we compare the F-statistic to an F_{ν_1,ν_2} from table, where $\nu_1=p$ and $\nu_2=n-(k+p+1)$.
- If $F \geq F_{\alpha,\nu_1,\nu_2}$, reject H_0 .

- See Example 4.10 on page 233.
- Steps are:
 - 1. Fit complete model with $k + p \beta$'s and get SSE_C .
 - 2. Fit reduced model with k β 's and get SSE_R .
 - 3. Set up hypotheses and choose α value.
 - 4. Compute F-statistic and compare to table F_{α,ν_1,ν_2} .
- If test leads to rejecting H_0 , then at least one of the additional terms in the model contributes information about the response.

Stat 328 - Fall 2004

- Parsimonious models are preferable to big models as long as both have similar predictive power.
- A parsimonious model is one with a small number of predictors.
- If models are not nested, cannot use the F-test above to choose between one and another. Must rely on other sample statistics such as R_a^2 and RMSE.
- In the end, choice of model is subjective.

Stat 328 - Fall 2004 5