1

Chapter-20- Vector Algebra and Three Dimensional Geometry

EE24BTECH11051 - Prajwal

(1995S)

I. MCQs and One Correct Answer

is

1) Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors such that $\mathbf{u} + \mathbf{v} + \mathbf{w} = 0$. If $|\mathbf{u}| = 3, |\mathbf{v}| = 4$ and $|\mathbf{w}| = 5$, then $\mathbf{u} \cdot \cdot \cdot \cdot \mathbf{v} + \mathbf{v} \cdot \cdot \cdot \cdot \mathbf{w} + \mathbf{u} \cdot \mathbf{w}$

a) 47 b) -25		c) 0 d) 25			
2) If a , b and c are	three non-coplanar vectors th	en $(\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdots [(\mathbf{a} - \mathbf{b} + \mathbf{c})]$	$+\mathbf{b}) \times (\mathbf{a} + \mathbf{c})$] equals	s (1995S)	
a) 0 b) [a b c]		c) 2[a b c] d) -[a b c]			
3) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{j}$. If \mathbf{c} is a vector such that $\mathbf{a} \dots \mathbf{c} = \mathbf{c} , \mathbf{c} - \mathbf{a} = 2\sqrt{2}$ and the angle between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c} is 30°, then $ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} =$ (1999 - 2 Marks)					
a) $\frac{2}{3}$ b) $\frac{3}{2}$		c) 2 d) 3			
4) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 1$ (1999 - 2 Marks	$\mathbf{k}, \mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and a unit vec	ctor c be coplanar. If	c is perpendicular to	\mathbf{a} , then $\mathbf{c} =$	
a) $\frac{1}{\sqrt{2}} (-\mathbf{j} + \mathbf{k})$ b) $\frac{1}{\sqrt{3}} (-\mathbf{i} - \mathbf{j} - \mathbf{k})$)	c) $\frac{1}{\sqrt{5}}$ $(\mathbf{i} - 2\mathbf{j})$ d) $\frac{1}{\sqrt{3}}$ $(\mathbf{i} - \mathbf{j} - \mathbf{k})$			
5) If the vectors a ,	b and c from the sides BC , CA	and AB respectively	of a triangle ABC, t	hen (2000S)	
a) $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = 0$ b) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \dots \mathbf{a}$		c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$ d) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = 0$			
	a, b, c and d be such that $(a \times a)$ ors a, b and c, d respectively.		=	etermined by (2000S)	
a) 0	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$		
7) If \mathbf{a} , \mathbf{b} and \mathbf{c} are unit coplanar vectors, then the scalar triple product $[2\mathbf{a} - \mathbf{b}, 2\mathbf{b} - \mathbf{c}, 2\mathbf{c} - \mathbf{a}] = (2000S)$					
a) 0	b) 1	c) $-\sqrt{3}$	d) $\sqrt{3}$		
8) Let $\mathbf{a} = \mathbf{i} - \mathbf{k}$, $\mathbf{b} = x\mathbf{i} + \mathbf{j} + (1 - x)\mathbf{k}$ and $\mathbf{c} = y\mathbf{i} + x\mathbf{j} + (1 + x - y)\mathbf{k}$. Then $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ depends on (2001S)					
a) only <i>x</i>b) only <i>y</i>		c) Neither x Nor y d) both x and y	V		
9) If \mathbf{a}, \mathbf{b} and \mathbf{c} are $ \mathbf{a} - \mathbf{b} ^2 + \mathbf{b} - \mathbf{c} ^2$	unit vectors, then $2 + \mathbf{a} - \mathbf{b} ^2$ does not exceed			(2001S)	
a) 4	b) 9	c) 8	d) 6		
10) If a and b are the angle between	wo unit vectors such that \mathbf{a} + en \mathbf{a} and \mathbf{b} is	$2\mathbf{b}$ and $5\mathbf{a} - 4\mathbf{b}$ are p	perpendicular to each	h other then (2002S)	

11) Let $\mathbf{V} = 2\mathbf{i} + \mathbf{j} -$ product $(U \ V \ V)$		J is a unit vector, then the ma	ximum value of the	scalar triple (2002S)		
a) -1 b) $\sqrt{10} + \sqrt{6}$		c) $\sqrt{59}$ d) $\sqrt{60}$				
12) The value of k such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane $2x - 4y + z = 7$, is (2003S)						
a) 7 b) -7		c) no real valued) 4				
13) The value of 'a' so that the volume of parallelopiped formed by $\mathbf{i} + a\mathbf{j} + \mathbf{k}$, $\mathbf{j} + a\mathbf{k}$ and $a\mathbf{i} + \mathbf{k}$ becomes minimum is (2003S)						
a) -3	b) 3	c) $\frac{1}{\sqrt{3}}$	d) $\sqrt{3}$			
14) If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a} \cdot \mathbf{b} = 1$ and $\mathbf{a} \times \mathbf{b} = \mathbf{j} - \mathbf{k}$. Then \mathbf{b} is (2004S)						
a) $\mathbf{i} - \mathbf{j} + \mathbf{k}$ b) $2\mathbf{j} - \mathbf{k}$		c) i d) 2 i				
15) If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of k is (2005)						
a) $\frac{3}{2}$	b) $\frac{9}{2}$	c) $\frac{2}{9}$	d) $\frac{-3}{2}$			

c) $\arccos \frac{1}{3}$ d) $\arccos \frac{2}{7}$

a) 45°b) 60°