αs Determination at the LHeC

2nd CERN-ECFA-NuPECC Workshop on the LHeC

Thomas Kluge, University of Liverpool

Introduction

- What is the potential for determining α_s with the LHeC?
- Motivation provided by Chris yesterday
- Fundamental parameter of QCD, need experimental input
- Precision: unification of forces?

as from DIS

- HERA inclusive: Eur.Phys.J.C21:33-61,2001
 - HI and BCDMS data
 - $\alpha_s(M_z) = 0.1150 \pm 0.0017 (exp)^{+0.0009} = 0.0005 (mod) \pm 0.005 (NLO scale)$
 - 1.5% exp error (4.5% w/o BCDMS)
- HERA jets: DESY 09-032
 - HI data
 - $\alpha_s(M_z) = 0.1168 \pm 0.0007 (exp) + 0.0046 (th) \pm 0.0016 (PDF)$
 - 0.6% exp error

"Data"sets

In the following using selection of data sets as provided by Max, from http://
hep.ph.liv.ac.uk/~mklein/simdis09/

config.	E(e)	E(N)	N	JL(e ⁺)	JL(e)	Pol	L/10 ³² P/	/MW	yea	rs type
A	20	7	p	1	1	-	1	10	1	SPL
В	50	7	p	50	50	0.4	25	30	2	RR hiQ ²
C	50	7	p	1	1	0.4	1	30	1	RR lo x
D	100	7	p	5	10	0.9	2.5	40	2	LR
Е	150	7	p	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	p		1		25	30	1	lowEp

Fit Method

- Use HI fit program (QCDNUM based)
- Simultaenous PDF and α_S fit
- Parameterisation and χ^2 like H12000 PDF
- Move data points to central PDF and $\alpha_S(m_Z)=0.118$
- Smear by statistical error, shift by correlated uncertainty, no cross correlation
- Luminosity 0.5%, half correlated btw datasets

Scenario B, NC

200 fb⁻¹data, ~144 data points, 1-2%uncertainty detector acceptance 5°...175°

Uncertainty: 1.08%

Scenario B, NC+CC

adding CC, ~110 data points, 2-3%uncertainty

Uncertainty: 0.92%

Scenario B+C, NC+CC

adding 4 fb-1data, 38 data points detector acceptance 1°...179°

Uncertainty: 0.51%

B+C+H, NC+CC

adding Ifb-Idata, I00 data points, I-2% uncertainty low E_p =ITeV

Uncertainty: 0.30%

B+C+H+F, NC+CC

adding 2 fb-1 data, 80 data points, 3-5% uncertainty deuterium

Uncertainty: 0.29%

Summary

- LHeC has potential for O(1%) experimental precision on $\alpha_s(m_Z)$ with inclusive data alone
- Challenge for theory to keep up
- Angular acceptance of the detector crucial, low E_p run also helps
- In progress: include jet production at LHeC in fits

Backup

From last year's workshop

LHeC Fits

<u>DATA</u>	exp. error on $lpha_{ m s}$
NC e ⁺ only	0.48%
NC	0.41%
NC & CC	0.23% :=(1)
$\gamma_{\rm h}>5^{\circ}$	0.36% :=(2)
(1) +BCDMS	0.22%
(2) +BCDMS	0.22%
(1) stat. *= 2	0.35%