Seminari 1: Representació conforme i homografies

Arnau Mas — 77633181Q

21 de març de 2019

Problema 4

Sigui $\Pi^+ = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ el semiplà superior i $U = \mathbb{C} - [-1, 1]$. Volem trobar una representació conforme de Π^+ sobre U, és a dir, una bijecció conforme $T: \Pi^+ \to U$.

En primer lloc observem que l'aplicació

$$f \colon \Pi^+ \longrightarrow \mathbb{C} - [0, \infty)$$
$$z \longmapsto z^2$$

és una bijecció. En efecte, si $w \in \mathbb{C} - [0, \infty)$ aleshores sempre hi ha $z \in \Pi^+$ tal que $z^2 = w$. Si triem a $\mathbb{C} - [0, \infty)$ una determinació de l'argument entre 0 i 2π —de manera que -1 té argument π , i té argument $\frac{\pi}{2}$, etc.— aleshores podem escriure

$$w=|w|e^{i\theta}$$

amb $\theta \in (0, 2\pi)$, ja que un nombre complex té argument 0 o 2π si i només si és real positiu. Aleshores

$$z = \sqrt{|w|}e^{i\frac{\theta}{2}} \in \Pi^+,$$

ja que $\frac{\theta}{2} \in (0,\pi)$. I aleshores és clar que $z^2 = w$. Per tant f és exhaustiva. D'altra banda, si $z_1, z_2 \in \Pi^+$ satisfan $z_1^2 = z_2^2$ aleshores o bé $z_1 = z_2$ o bé $z_1 = -z_2$. Aixó és perquè tot nombre complex té només dues arrels quadrades, les quals tenen arguments que estan separats π , és a dir, l'una és l'oposat de l'altra. Però no pot ser que $z_1 = -z_2$, ja que, en general, si $z \in \Pi^+$ aleshores $-z \in \Pi^+$, perquè $\operatorname{Re} -z = -\operatorname{Re} z$. Així doncs ha de ser $z_1 = z_2$ i per tant f és injectiva.

És clar que f és holomorfa —de fet és entera— amb f'(z)=2z. Veiem doncs que f'només s'anul·la a 0, però $0 \in \Pi^+$. Per tant, com que és holomorfa amb derivada no nul·la a tot Π^+ , f és una aplicació conforme.

Ara només hem de trobar una representació conforme de $\mathbb{C} - [0, \infty)$ a U. Considerem l'homografia $T \colon \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ tal que

$$T(0) = -1,$$

$$T(1) = 0,$$

$$T(\infty) = 1,$$

sent \mathbb{C}_{∞} l'esfera de Riemann. Aleshores Testà donada per

$$T(z) = \frac{z-1}{z+1}.$$

És clar que la imatge de $[0,\infty)$ per T és [-1,1]. Per tant la imatge de $\mathbb{C}-[0,\infty)$ per T és $\mathbb{C}-[-1,1]=U$. Així doncs la composició $T\circ f$ és una representació conforme de Π^+ sobre U. Explícitament

$$(T \circ f)(z) = \frac{z^2 - 1}{z^2 + 1}.$$