Control y Sistemas

Trabajo práctico: Estimación de estados

Resuelva los siguientes ejercicios en MATLAB o SIMULINK.

1) Cálculo de la ganancia del observador (L).

El siguiente sistema mecánico está descripto por el sistema de ecuaciones.

donde m=1 y c=1 y x1 es la posición de la masa, x2 es la velocidad de la masa, u es la fuerza e y es la posición.

- a) Determine si el sistema es observable.
- b) Verifique si el sistema es observable para $C=[0\ 1]$. ¿Qué conclusión puede sacar?.
- c) Si es sistema es observable con alguno de los sensores analizados, determine la ganancia del observador $L=[11\ 12]^{\Lambda}T$ para el polinomio característico deseado $pdes(s)=(s+p)^{\Lambda}2$.

El principio de diseño (rule of thumb) indica que los polos del observador deben ser entre 4 y 5 veces más rápidos que los polos del sistema realimentado. ¿Dónde ubicaría los polos del observador según esta regla?

2) Matriz de observabilidad

Considere el siguiente sistema de transmisión de un automovil:

El sistema está descripto por las siguientes ecuaciones en espacio de estados:

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \end{bmatrix} = egin{bmatrix} -rac{d_s}{J_f i^2} & rac{d_s}{J_f i} & -rac{c_s}{J_f i} \ rac{d_s}{J_c i} & -rac{d_s}{J_c} & rac{c_s}{J_c} \ rac{1}{i} & -1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} + egin{bmatrix} rac{1}{J_f} \ 0 \ 0 \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ y = egin{bmatrix} 0 & 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix} u \ \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ \end{bmatrix}$$

donde x_1 es la velocidad del motor, x_2 es la velocidad en las ruedas, x_3 es el torque en árbol de transmisión (driveshafts), Δu es la señal de entrada, el torque del motor, y Δd_1 es la perturbación, las variaciones en la superficie de la calzada.

Los parámetros del modelo son:

Description	Parameter	Value [unit]
Chassis inertia	J_c	6250 [kgm ²]
Engine flywheel inertia	J_f	0.625 [kgm ²]
Driveshaft damping coefficient	d_s	1000 [Nms/rad]
Driveshaft spring coefficient	c_s	75000 [Nm/rad]
Gear ratio	i	57 [-]

- a) Encuentre la matriz de observabilidad. ¿Es el sistema observable?
- b) Verifique si el sistema es observable para C=[1 0 0] y C=[0 0 1].
- c) Luego de analizar los 3 escenarios posibles de observabilidad, ¿qué sensor o sensores de salida elegiría para este sistema?

3) Matriz de observabilidad

Un sistema de suspensión activa se puede modelar como,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -\frac{c_w + c_s}{m_w} & -\frac{d_s}{m_w} & \frac{c_s}{m_w} & \frac{d_s}{m_w} & -\frac{1}{m_w} \\ 0 & 0 & 0 & 1 & 0 \\ \frac{c_s}{m_c} & \frac{d_s}{m_c} & -\frac{c_s}{m_c} & -\frac{d_s}{m_c} & \frac{1}{m_c} \\ 0 & 0 & 0 & 0 & -\frac{1}{\tau} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{\tau} \end{bmatrix} u + \begin{bmatrix} 0 \\ \frac{c_w}{m_w} \\ 0 \\ 0 \\ 0 \end{bmatrix} d$$

$$y = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ \frac{c_s}{m_c} & \frac{d_s}{m_c} & -\frac{c_s}{m_c} & -\frac{d_s}{m_c} & \frac{1}{m_c} \\ \frac{c_s}{m_c} & \frac{d_s}{m_c} & -\frac{c_s}{m_c} & -\frac{d_s}{m_c} & \frac{1}{m_c} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

donde x_1 es la posición de la rueda, x_2 es la velocidad de la rueda, x_3 es la posición del chasis, x_4 es la velocidad del chasis y x_5 es la fuerza del actuador. d es la perturbación del sistema, la posición de la superficie del terreno.

Description	Parameter	Value [unit]
Quarter car chassis mass	m_c	401 [kg]
Wheel mass	m_w	48 [kg]
Suspension damping coefficient	d_s	2200 [N/m]
Suspension spring coefficient	c_s	23000 [N/m]
Wheel spring coefficient	c_w	250000 [N/m]
Actuator time constant	τ	0.001 [s]

- a) Encuentre la matriz de observabilidad. ¿Es el sistema observable?
- b) Verifique si el sistema es observable si solamente se mide la compresión del amortiguador,

$$y = [-1 \ 0 \ 1 \ 0 \ 0] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}?$$

c) Verifique si el sistema es

observable si solamente se mide la posición de la rueda,

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$
?

d) Luego de analizar los 3 escenarios posibles de observabilidad, ¿qué sensor o sensores de salida elegiría para este sistema?

4) Ubicación de polos por respuesta en el tiempo

Se propone el control por ubicación de polos de un sistema de velocidad constante o velocidad crucero. El objetivo del control es seguir la velocidad de referencia proporcionada. La perturbación del sistema está dada por un cambio en el ángulo del terrero (a).

El modelo matemático de la planta está dado por:

modelo del sistema dinámico linealizado cuando el vehículo se desplaza a 20 m/s en una carretera plana, viene dado por:

$$egin{bmatrix} \Delta\dot{x}_1\ \Delta\dot{x}_2 \end{bmatrix} = egin{bmatrix} -1.25 & 0 \ 0.00005 & -0.0024 \end{bmatrix} egin{bmatrix} \Delta x_1\ \Delta x_2 \end{bmatrix} + egin{bmatrix} 20000\ 0 \end{bmatrix} \Delta u + egin{bmatrix} 0\ -9.82 \end{bmatrix} \Delta d_1 \ \Delta y = egin{bmatrix} 0 & 1 \end{bmatrix} egin{bmatrix} \Delta x_1\ \Delta x_2 \end{bmatrix}$$

donde Δx_1 es la fuerza en las ruedas, Δx_2 es la velocidad en las ruedas, Δu es la señal de entrada y Δd_1 es la perturbación.

En el siguiente modelo de control de velocidad crucero,

- a) Verifique si el sistema es observable.
- b) Encuentre los valores de la matriz L.
- c) Verifique si el sistema es controlable.
- d) Determine el polinomio deseado con $\omega_n = 0.6$ y $\zeta = \frac{1}{\sqrt{2}}$. De valores arbitrarios al resto de los polos del polinomio deseado.

ΕI

- e) Encuentre el valor de la matriz K.
- f) Determine el valor de kr. El vehículo está viajando a 20 m/s sobre una ruta plana. La perturbación se considera nula.
- g) Utilice los archivos CruiseCtrl_StateFeedback.slx y CruiseCtrl StateFeedback design.m para graficar.

5) Filtro de Kalman

Considere que el sistema mecánico del ejercicio 1 está afectado por ruido según el modelo,

$$egin{aligned} egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \end{bmatrix} &= egin{bmatrix} 0 & 1 \ 0 & -1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} 0 \ 1 \end{bmatrix} u + egin{bmatrix} 0 \ 1 \end{bmatrix} v \ y &= egin{bmatrix} 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + w \end{aligned}$$

Los ruidos de proceso v y de medición w son gaussianos de media cero y varianzas Rv=0.1 y Rw=0.01. El ruido de proceso solo afecta a uno de los 2 estados, x2, esto debe ser incorporado en la solución de la ecuación de Riccati.

- 1) Encuentre el valor de la matriz de covarianza *P* al resolver la ecuación de Ricatti correspondiente.
- 2) Encuentre el valor de la matriz de ganancia de observación *L*.
- 3) Si se aumenta el ruido de proceso *Rv*, qué pasa con polos del estimador a lazo cerrado (*sI-A+LC*), ¿Se vuelven más rápidos, más lentos o no varían?.