ECON 7710

Econometrics I

Lecture notes 1.

Elements of set theory:

- Set is arbitrary collection of items; subset of items A of set S is called its subset, denote $A \subset S$
- The set with no elements is called an empty set (denoted \emptyset)
- In probability usually deal with sets of "outcomes" (subsets of sample space Ω) called events
- Set operations $A \cup B = \{x : x \in A \text{ or } x \in B\}$ $A \cap B = \{x : x \in A \text{ and } x \in B\}$
 - 1. $A \cup B = B \cup A$, $A \cap B = B \cap A$
 - 2. $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$
 - 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\bullet \ A \setminus B = \{x : x \in A, x \notin B\}$
- For each $A \subset \Omega$, complement $A^c = \Omega \setminus A$
- Sigma-algebra defines "order" of sets
 - 1. $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$.
 - 2. $A_1, A_2, \ldots, \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$
 - 3. $\emptyset \in \mathcal{F}$.

Question: Show that the above conditions imply $\Omega \in \mathcal{F}$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

- Sigma algebra induced by all segments of real line is called Borel sigma-algebra
- (Ω, \mathcal{F}) is called measurable space

• Function $f: A \mapsto B$ with A- sigma algebra on A and B- sigma algebra on B such that for any $S_a \in \mathcal{B}, f^{-1}(S_a) \in A$ is called measurable function

Probability Space: (Ω, \mathcal{F}, P)

- Random variable is a measurable function on algebra of events
- Probability measure P is a set function on \mathcal{F} such that
 - 1. $\forall A \in \mathcal{F}, P(A) \geq 0$
 - 2. $P(\Omega) = 1$
 - 3. $\forall \{A_i\}_{i=1}^{\infty}$ such that $A_i \cap A_j = \emptyset$, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- Properties of probability measure
 - 1. $P(\emptyset) = 0, P(A) \le 1, P(A^c) = 1 P(A)$
 - 2. $P(A \cup B) = P(A) + P(B) P(A \cap B), P(A) \le P(B)$ if $A \subseteq B$
 - 3. $P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)$
- A measurable space with probability measure is called the probability space

Basic combinatorics

- Factorial $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ (convention 0! = 1)
- Binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

$$- (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

- Basic problem: an urn has n different balls. How many possible combinations of k balls can be drawn from the urn.
 - 1. Ordered with replacement n^k
 - 2. Ordered without replacement n!/(n-k)!
 - 3. Unordered with replacement $\binom{n+k-1}{k}$
 - 4. Unordered without replacement $\binom{n}{k}$

Independence and conditional probability

- Events A and B are independent iff $P(A \cap B) = P(A) P(B)$
- Let (Ω, \mathcal{F}, P) be the probability space and $A, B \in \mathcal{F}$. If P(B) > 0 then conditional probability of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Let $A \in \mathcal{F}$ and $\{B_k\}_{k=1}^n$ such that $B_k \in \mathcal{F}$ and $B_i \cap B_j = \emptyset$ such that $A = \bigcup_{j=1}^n B_j$ then the law of total probability is

$$P(A) = \sum_{k=1}^{n} P(A|B_k) P(B_k).$$

• Suppose that $\{B_k\}_{k=1}^n$ satisfy conditions above, then if P(A)>0 then the Bayes' law is

$$P(B_i | A) = \frac{P(A|B_i)P(B_i)}{\sum_{k=1}^{n} P(A|B_k)P(B_k)}$$

Random variables and distributions

- Recall that a real-valued random variable on (Ω, \mathcal{F}, P) (or, simply, a random variable) is a measurable function $\xi : \Omega \mapsto \mathbb{R}$, i.e. such that for any element of the Borel sigma algebra $B, \xi^{-1}(B) = \{\omega : \xi(\omega) \in B\}$ is an element of σ -algebra \mathcal{F}
- Notion of random variable allows us to abstract from (possibly complex) measurable space (Ω, \mathcal{F}) and instead work with $(\mathbb{R}, \mathcal{B})$
- The distribution of random variable ξ is the probability measure $P_{\xi}(B) = P(\xi(\omega) \in B)$
- Random variable induces the probability space $(\mathbb{R}, \mathcal{B}, P_{\xi})$
- Setting $B = (-\infty, x)$, we define the distribution function of random variable ξ as

$$F_{\xi}(x) = P(\xi < x)$$

• Example: (Bernoulli r.v.) $\Omega = \{0,1\}$, "Probability of success" $p \in [0,1]$. $P(\omega) = p^{\omega}(1-p)^{1-\omega}$. Random variable $X(\omega) = \omega$ for $\omega \in \Omega$.

- Example: (binomial r.v.) Sum of the sequence of k Bernoulli trials with probability of success p. $\Omega = \{\text{all sequences of } k \text{ zeros and ones}\}$. X takes integer values from 0 to k. Probability $P(X = r) = \binom{k}{r} p^r (1-p)^{k-r}$, $F(x) = \sum_{r < x} \binom{k}{r} p^r (1-p)^{k-r}$
- Distribution function F(x) of r.v. X has the following properties
 - 1. Monotonicity: If $x_1 \leq x_2$ then $F(x_1) \leq F(x_2)$
 - 2. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$
 - 3. Left-continuity: $\lim_{x \uparrow x_0} F(x) = F(x_0)$
- (Kolmogorov's theorem) If function $F(\cdot)$ satisfies conditions 1-3 above, then there exists a probability space (Ω, \mathcal{F}, P) and random variable X defined on this space such that $F_X(x) = F(x)$
- Common probability distributions
 - 1. Degenerate distribution: $F_a(x) = \mathbf{1}\{x > a\}$ $(\mathbf{1}\{\cdot\} \in \{0,1\})$ is the indicator of \cdot), support on \mathbb{R}
 - 2. Binomial distribution: $F(x) = \sum_{r < x} {k \choose r} p^r (1-p)^{k-r}$, support on $\{0, 1, \dots, k\}$
 - 3. Poisson distribution: $P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$, support on $\{0, 1, \dots, k, \dots\}$
 - 4. Uniform distribution on [a,b]: $P(X \in B) = \int_{B \cap [a,b]} dx$
 - 5. Normal distribution: $P(X \in B) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_B e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$
 - 6. Exponential law: $P(X \in B) = \alpha \int_{B \cap (0,+\infty)} e^{-\alpha x} dx$
- The distribution of random variable X is discrete if X can take a countable number of values, such that $p_k = P(X = x_k)$ and $\sum p_k = 1$
- Which listed distributions are discrete?
- Distribution P of r.v. X is called absolutely continuous if for any Borel set B

$$P(B) = P(X \in B) = \int_{B} f(x) dx,$$

where $f(x) \ge 0$ and $\int_{-\infty}^{+\infty} f(x) dx = 1$

- Function $f(\cdot)$ is called the distribution density of X.
- Suppose that g(x) is a measurable function. Then if X is a r.v. then Y = g(X) is also a random variable

$$F_{g(X)}(x) = P(g(X) < x) = P(X \in g^{-1}(-\infty, x))$$

1. If $g(\cdot)$ is non-decreasing and its inverse is well-defined, then

$$F_{q(X)}(x) = F_X(g^{-1}(x))$$

2. If $g(\cdot)$ is strictly monotone and differentiable and X has a density f(x) then

$$f_{q(X)}(y) = f(g^{-1}(y)) |(g^{-1}(y))'|$$

3. Useful analytic tool is Leibnitz' rule:

$$\frac{d}{dt} \int_{a(t)}^{b(t)} f(x,t) \, dx = f(b(t),t)b'(t) - f(a(t),t)a'(t) + \int_{a(t)}^{b(t)} \frac{\partial}{\partial t} f(x,t) \, dx.$$

- 4. **Example:** $X \sim U[0, 1], Y = -\log X$
- 5. **Example:** $X \sim N(0,1), Y = X^2$ (use cdf approach to get the answer, and recall that $|x| < a \Leftrightarrow -a < x < a!$)

Multivariate random variables and distributions

- Let X_1, \ldots, X_n be r.v. defined on (Ω, \mathcal{F}, P) . Mapping $\Omega \mapsto \mathbb{R}^n$ is called a random vector or a multivariate random variable
- $P_X(B)$ is the distribution of r.v. X (v. stands for vector). Function

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n)$$

is the distribution function of r.v. X (or the joint distribution function of X)

Joint distribution function maintains the properties 1-3 for one-dimensional case. In addition:

1.
$$\lim_{x_n \to +\infty} F_{X_1,\dots,X_n}(x_1,\dots,x_n) = F_{X_1,\dots,X_{n-1}}(x_1,\dots,x_{n-1})$$

2.
$$\lim_{x_n \to -\infty} F_{X_1, \dots, X_n}(x_1, \dots, x_n) = 0$$

- As in one-dimensional case we can consider discrete and absolutely continuous distributions
- For absolutely continuous distributions we can provide equivalent definition of the cdf

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \int_{\infty}^{x_1} \ldots \int_{\infty}^{x_n} f(t_1,\ldots,t_n) dt_1 \ldots dt_n.$$

• Whenever the density exists, we can write an expression for it almost everywhere

$$\frac{\partial^n F_{X_1,\dots,X_n}(x_1,\dots,x_n)}{\partial x_1\dots\partial x_n} = f(x_1,\dots,x_n).$$

• If X has the density then any of its subvectors has a density. The density of a given subvector is called its *marginal density* and can be found as

$$f(x_1,\ldots,x_s) = \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} f(x_1,\ldots,x_s,t_{s+1},\ldots,t_n) dt_n$$

• Suppose that in some $A \subset \mathbb{R}^n$ there are n continuously differentiable functions $y_i = g_i(x_1, \ldots, x_n)$ which are bijective in x_1, \ldots, x_n , i.e. there exist functions γ_i such that $x_i = \gamma_i(y_1, \ldots, y_n)$ and the Jacobian, defined as

$$J = \det \begin{pmatrix} \frac{\partial \gamma_1}{\partial y_1} & \dots & \frac{\partial \gamma_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \gamma_n}{\partial y_1} & \dots & \frac{\partial \gamma_n}{\partial y_n} \end{pmatrix} \neq 0 \text{ in } A.$$

Then $Y_i = g_i(X_1, \dots, X_n)$ are random variables with joint density

$$f_Y(y_1,\ldots,y_n)=f_X(x_1,\ldots,x_n)|J|$$

- Example: Consider joint distribution of $X_1 \sim U[0, 2\pi]$ and $X_2 \sim \text{Exponential}(1)$ and consider random variables $Y_1 = X_2 \cos(X_1)$ and $Y_2 = X_2 \sin(X_1)$
- Random variables X_1, \ldots, X_n are called *independent* if

$$P(X_1 \in B_1, \dots, X_n \in B_n) = P(X_1 \in B_1) \dots P(X_n \in B_n)$$

• Theorem: Random variables X_1, \ldots, X_n are independent iff

$$F_{X_1...X_n}(x_1,...,x_n) = F_{X_1}(x_1)...F_{X_n}(x_n)$$

• Corollary: Suppose that r.v. X_1, \ldots, X_n have a joint density. Then they are independent iff

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\ldots f_{X_n}(x_n)$$

Characteristics of random variables

ullet The expectation of random variable X is the quantity

$$E[X] = \int_{\Omega} X(\omega) P(d\omega)$$

- 1. Equivalently $E[X] = \int x dF(x)$
- 2. If F(x) has density f(x) then $E[X] = \int x f(x) dx$
- 3. Expectation of X exists if $E[|X|] < \infty$ (this is violated if 1 F(x) > 1/x)
- 4. **Example:** Standard Cauchy distribution has density $f(x) = \frac{1}{\pi(1+x^2)}$. Verify that E[X] does not exist noticing that $\frac{1}{2}(1+x^2)' = x$.
- Main properties of expectations
 - 1. If a, b are constants then E[a+bX]=a+bE[X]
 - 2. $E[X_1 + X_2] = E[X_1] + E[X_2]$ (if expectations exist)
 - 3. If $a \le X \le b$ then $a \le E[X] \le b; E[X] \le E[|X|]$
 - 4. If $X \ge 0$ and E[X] = 0 then $X \equiv 0$ with probability 1.
 - 5. Probability can be defined via expectation

$$P(A) = E[\mathbf{1}\{A\}]$$

- Suppose that X, Y are r.v. and g(x,y) is a measurable function.
 - 1. Then if E[g(X,Y)] exists, then

$$E[g(X,Y)] = E[E[x,Y]_{x=X}]$$

2. If $g(x,y) = g_1(x)g_2(y)$, then

$$E[g(X,Y)] = E[g_1(X)]E[g_2(Y)]$$

• Examples:

- 1. Bernoulli r.v. $E[X] = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) = p$
- 2. Binomial r.v. $X = X_1 + \ldots + X_k$ where $X_i \sim \text{Bernoulli}(p)$. Then E[X] = k p
- 3. Poisson r.v.

$$E[X] = \sum_{i=0}^{\infty} i \frac{\lambda^i}{i!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} = \lambda,$$

given that $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$.

4. Normal r.v. with parameters (μ, σ^2)

$$E[X] = \int_{-\infty}^{+\infty} x \, \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \, dt$$

Change of variable $t = \frac{x-\mu}{\sigma}$:

$$E[X] = \mu \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt + \sigma \int_{-\infty}^{+\infty} t \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

first integral = 1 by definition of density, second integral = 0 given that integrand is an odd function.

5. Uniform [a, b] r.v.: note for U[0, 1]. $E[X] = \int_0^1 x \, dx = \frac{1}{2}$. $Y = a + (b - a) X \sim U[a, b]$. Thus $E[Y] = \frac{a+b}{2}$

Conditional expectations

• Let (Ω, \mathcal{F}, P) be the probability space and event $B \in \mathcal{F}$ is such that P(B) > 0. We can then form a new probability space $(\Omega, \mathcal{F}, P_B)$ where for each $A \in \mathcal{F}$

$$P_B(A) = P(A|B)$$

• We can verify that $(\Omega, \mathcal{F}, P_B)$ is indeed a probability space and any r.v. X in (Ω, \mathcal{F}, P) is also a r.v. in $(\Omega, \mathcal{F}, P_B)$

• The expectation of X in $(\Omega, \mathcal{F}, P_B)$ is called the *conditional expectation* of random variable X conditional on B:

$$E[X \mid B] = \int_{\Omega} X(\omega) P(d\omega)$$

- Function $F(x|B) = P_B(X < x) = P(X < x|B)$ is a distribution function of X on $(\Omega, \mathcal{F}, P_B)$. It is called the *conditional distribution function* of X
- Example: Suppose that $F_X(x) = 1 e^{-\mu x}$. Find $F(x|X \ge a)$.

Variance of r.v.'s

• Variance of r.v. X

$$V[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

• Can define variance as a minimum

$$V[X] = \min_{a} E[(X - a)^{2}]$$

- 1. Verify by using properties of expectation
- 2. Conclude that mean is the most accurate approximation of the random variable in mean square
- $\sqrt{V[X]}$ is called the standard deviation
- Examples:
 - 1. Bernoulli r.v. $V[X] = E[X^2] E[X]^2$ and $X^2 = X$, thus V[X] = p(1-p)
 - 2. Poisson r.v. $V[X] = E[X^2] E[X]^2$, $E[X^2] = e^{-\lambda} \sum_{i=0}^{\infty} i^2 \frac{\lambda^i}{i!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{(\lambda^i)'}{(i-1)!} = \lambda e^{-\lambda} \left(\sum_{i=1}^{\infty} \frac{\lambda^i}{(i-1)!} \right)'$. Since $\sum_{i=1}^{\infty} \frac{\lambda^i}{(i-1)!} = \lambda e^{\lambda}$, then

$$E[X^2] = \lambda e^{-\lambda} \left(\lambda e^{\lambda}\right)' = \lambda + \lambda^2.$$

Thus $V[X] = \lambda$.

3. Normal r.v. $V[X] = \int_{-\infty}^{+\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$. Change of variable $t = (x-\mu)/\sigma$, leading to

$$V[X] = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^2 \, e^{-t^2/2} \, dt = -\frac{\sigma^2}{\sqrt{2\pi}} t \, e^{-t^2/2}|_{-\infty}^{+\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-t^2/2} = \sigma^2$$

- Selected properties of the variance
 - $-V[X] \ge 0$ and V[X] = 0 iff $P(X(\omega) = c) = 1$ (c is a constant)
 - If a, b are constants then

$$V[a+bX] = b^2 V[X]$$

- If X, Y are independent, then

$$V[X+Y] = V[X] + V[Y]$$

Covariance, correlation and moments

- Covariance between r.v. X, Y is the number Cov(X,Y) = E[(X E[X])(Y E[Y])]
- Correlation coefficient between r.v. X, Y with $V[X], V[Y] \neq 0$ is the number $\rho(X, Y) = \text{Cov}(X, Y) / \sqrt{(V[X]V[Y])}$
 - 1. $|\rho(X,Y)| \leq 1$
 - 2. If X, Y are independent then $\rho(X,Y)=0$
 - 3. $|\rho(X,Y)| = 1$ iff there exist constants a, b such that P(Y = a + bX) = 1
 - 4. If $\rho(X,Y) > 0$, then X, Y are positively correlated
- The k-th moment of r.v. X is $E[X^k]$
- The central k-th moment of r.v. X is $E[(X E[X])^k]$
- The mixed k-th moment of r.v. X is $E[X_1^{k_1} \cdot \ldots \cdot X_n^{k_n}]$ with $\sum_{i=1}^n k_i = k$

Inequalities

- Cauchy-Schwarz inequality: $E[|XY|] \le \sqrt{E[X^2] E[Y^2]}$
 - Obtain from $2|ab| \leq a^2 + b^2$ with $a = X^2/E[X^2]$ and $b = Y^2/E[Y^2]$
- Hölder's inequality: for r > 1 and $r^{-1} + s^{-1} = 1$ $E[|XY|] \le (E[X^r])^{1/r} (E[Y^s])^{1/s}$
 - Obtain from convexity of function x^r (r > 1) which leads to $r(x 1) \le x^r 1$ and set $x = (a/b)^{1/r}$

- Jensen's inequality: for convex function $g(\cdot)$, $g(E[X]) \leq E[g(X)]$
 - Obtain from $g(x) \ge g(y) + (x y)g'(y)$ and set x = X and y = E[X]
- $P(|X| \ge \epsilon) \le \frac{E[|X|]}{\epsilon}$
- Chebychev's inequality: $P(|X E[X]| \ge \epsilon) \le \frac{V[X]}{\epsilon^2}$

Characteristic functions

- Complex numbers are extension of real numbers
 - 1. Equation $x^k = -1$ does not have solutions for even k but has solutions for odd
 - 2. To resolve this asymmetry introduce the complex domain, denoted C
 - 3. Basic construct is imaginary unit $i = \sqrt{-1}$
 - 4. Complex domain is constructed from numbers $z=x+i\,y$, where $x,y\in\mathbb{R}$ and $i=\sqrt{-1}$
 - 5. x is called the real part of z (denoted Re(z)) and y is called the imaginary part of z (denoted Im(z))
 - 6. The absolute value of complex number is $\rho = |z| = \sqrt{x^2 + y^2}$
 - 7. The expression for complex numbers in polar form $z = \rho(\cos \phi + i \sin \phi)$, where $\phi = \tan^{-1}(y/x)$
 - 8. Euler's formula: $z = \rho e^{i\phi}$
 - 9. Using Euler's formula, we can easily solve equations like $x^k=-1$, since $\cos(\pi+2\pi r)=-1$ for $r\in\{\ldots,-1,0,1,2,\ldots\}$
- Using complex numbers also helps with analysis of random variables (recall issues with Cauchy distribution)
- The characteristic function of real-valued r.v. X is a complex-valued function

$$\phi_X(t) = E[e^{itX}] = \int e^{itx} dF(x)$$

c.f. exists for any r.v.

1. For any r.v. $X \phi_X(0) = 1$ and $|\phi_X(t)| \leq 1$

- 2. $\phi_{aX+b}(t) = e^{itb}\phi_X(at)$
- 3. If X_1, \ldots, X_n are independent r.v. then

$$\phi_{X_1+\ldots+X_n}(t) = \phi_{X_1}(t)\ldots\phi_{X_n}(t)$$

- 4. $\phi_X(t)$ is uniformly continuous
- 5. If k-th moment of X exists, then $\phi_X(t)$ has a continuous k-th derivative and $(\phi_X(0))^{(k)} = i^k E[X^k]$

• Examples:

- 1. Degenerate r.v. X = a w.p. 1, then $\phi_X(t) = e^{ita}$
- 2. Bernoulli (p) r.v. $\phi_X(t) = p(e^{it} 1) + 1$
- 3. Normal (0, 1) r.v.

$$\phi_X(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{itx - \frac{x^2}{2}} dx$$

Differentiate by t and integrate by parts

$$\phi_X'(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} ix e^{itx - \frac{x^2}{2}} dx = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{itx - \frac{x^2}{2}} dx = -t \,\phi_X(t)$$

This means that

$$(\log \phi_X(t))' = -t, \log \phi_X(t) = -\frac{t^2}{2} + c$$

 $\phi_X(t) = e^{-t^2/2}$

4. Poisson (λ) r.v.

$$\phi_X(t) = \sum_{k=0}^{\infty} e^{itk} \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{k!} e^{-\lambda} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda(e^{it}-1)}$$

- 5. Standard Cauchy r.v. $\phi_X(t) = e^{-|t|}$
- Theorem Continuous function $\phi(t)$ with $\phi(0) = 1$ is a characteristic function iff it is positive semi-definite, i.e. for any $t_1, \ldots, t_n \in \mathbb{R}$ and any $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$

$$\sum_{k,j=1}^{n} \phi(t_k - t_j) \lambda_k \lambda_j^* \ge 0$$

 $(\lambda^* \text{ is the complex conjugate})$

• Sufficiency is clear, since if $\phi(t) = E[e^{itX}]$, then

$$\sum_{k,j=1}^{n} \phi(t_k - t_j) \lambda_k \lambda_j^* = E\left[\sum_{k,j=1}^{n} e^{i(t_k - t_j)X} \lambda_k \lambda_j^*\right] = E\left[\left|\sum_{k=1}^{n} \lambda_k e^{it_k X}\right|^2\right] \ge 0$$

- Theorem If X has a density then $\lim_{t\to\infty} \phi_X(t) = 0$
- Intuition for the proof: If f(x) has a derivative or order k, then

$$\phi_X(t) = \int e^{itx} f(x) \, dx = \frac{1}{it} \int e^{itx} f'(x) \, dx = \dots = \frac{1}{(it)^k} \int e^{itx} f^{(k)}(x) \, dx.$$

Thus $|\phi_X(t)| \leq \frac{c}{|t|^k}$

 \bullet **Theorem:** The characteristic function of X uniquely defines its distribution.

Moment-generating functions

• The moment-generating function of r.v. X is a real-valued function

$$M_X(t) = E[e^{tX}]$$

- 1. It is not guaranteed to exist
- 2. If k-th moment of r.v. X exists then $(M_X(0))^{(k)} = E[X^k]$
- $3. \ M_{aX+b}(t) = e^{tb} M_X(at)$
- 4. If X_1, \ldots, X_n are independent r.v.and their m.g.f. exist then

$$M_{X_1+...+X_n}(t) = M_{X_1}(t)...M_{X_n}(t)$$