\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min	
	✓ Herzlichen Glückwunsch! Sie haben bestanden! ZUM BESTEHEN 75 % oder höher Lernen Sie weiter	BEWERTUNG 100 %
	Practice quiz on Bayes Theorem and the Binomia Theorem	al
	GESAMTPUNKTZAHL 9	1 / 1 Punkten
\leftarrow	 A jewelry store that serves just one customer at a time is concerned about the safety of its isolated customers Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min 	1/1 Punkten
	 10% of the times that a jewelry store is robbed, a customer is in the store. A jewelry store has a customer on average 20% of each 24-hour day. The probability that a jewelry store is being robbed (anywhere in the world) is 1 in 2 million. 	
	What is the probability that a robbery will occur while a customer is in the store? \[\text{begin {align}\frac{1}{500000}\end {align}}\]	
	 ○ \begin {align}\\frac{1}{2000000}\end {align} ○ \begin{align}\\frac{1}{4000000}\end{align} 	
	○ \begin {align}\frac{1}{5000000}\end {align}	
	What is known is:	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem $_{\text{Übungsquiz}} \cdot _{25 \text{ min}}$ $B: \text{"a robbery is occurring," } P(B) = \frac{1}{2,000,000}$	
	$P(ext{a customer is in the store} \mid ext{a robbery occurs}) = P(A \mid B)$ $P(A \mid B) = 10\%$	1
	What is wanted:	
	$P(ext{a robbery occurs} \mid ext{a customer is in the store}) = P(B \mid A)$ By the product rule:	
	$\label{eq:begin} $$ \left(A \right) = \frac{P(A,B)}{P(A)} \ \ \ \ \ \ \ \ \ \ \ \ \ $	
\leftarrow	and $P(A,B) = P(A \mid B)P(B)$ Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz \cdot 25 min	
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	
	2. If I flip a fair coin, with heads and tails, ten times in a row, what is the probability that I will get exactly six	1 / 1 Punkten
	heads? O 0.021 O 0.187	
	0.20510.305	
	✓ Richtig By Rinomial Theorem equals	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min	
	\begin{align}&=\left(\frac {10!}{4! \times 6!}\right) \left(\frac {1}{1024}\right)\\&=0.2051\end{align}	
	 If a coin is bent so that it has a 40% probability of coming up heads, what is the probability of getting exactly 6 heads in 10 throws? 0.0974 	1 / 1 Punkten
	0.10450.1115	
	 ○ 0.1219 ✓ Richtig 	
\leftarrow	${10\choose 6}\times 0.4^6\times 0.6^4=0.1115$ Practice quiz on Bayes Theorem and the Binomial Theorem $_{\rm \ddot{U}bungsquiz}\cdot {\rm 25min}$	
	what is the probability that I get at least 8 heads?	17 Funkten
	0.03120.0132	
	0.02130.0123	
	✓ Richtig The answer is the sum of three binomial probabilities:	
	$\binom{\binom{10}{8}}{\times} (0.4^8) \times (.6^2) + \binom{\binom{10}{9}}{\times} (0.4^9) \times (0.6^1) + \binom{\binom{10}{8}}{\times} \times (0.4^{10}) \times (0.4^{10}) \times (0.6^0)$	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min 5. Suppose I have a bent coin with a 60% probability of coming up heads. I throw the coin ten times and it	1 / 1 Punkten
	comes up heads 8 times. What is the value of the "likelihood" term in Bayes' Theorem the conditional probability of the data given	
	the parameter.0.120932	
	0.1228850.0439450.168835	
	✓ Richtig Bayesian "likelihood" the p(observed data parameter) is	
	Practice quiz on Bayes Theorem and the Binomial Theorem	
	Übungsquiz • 25 min	
	6. We have the following information about a new medical test for diagnosing cancer. Before any data are observed, we know that 5% of the population to be tested actually have Cancer.	1 / 1 Punkten
	Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer. The other 10% get a false test result of "Negative" for Cancer.	
	Of the people who do not have cancer, 90% of them get an accurate test result of "Negative" for cancer. The other 10% get a false test result of "Positive" for cancer.	
	What is the conditional probability that I have Cancer, if I get a "Positive" test result for Cancer? **Formulas in the feedback section are very long, and do not fit within the standard viewing window. Therefore, the font is a bit smaller and the word "positive test" has been abbreviated as DT.	
\leftarrow	is a bit smaller and the word "positive test" has been abbreviated as PT. Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min	
	 4.5% 32.1% probability that I have cancer 	
	\checkmark Richtig I still have a more than $\frac{2}{3}$ probability of not having cancer	
	Posterior probability:	
	p(I actually have cancer receive a "positive" Test) By Bayes Theorem:	
9	= \frac{\text{(chance of observing a PT if I have cancer)(prior probability of having cancer)}}{\text{(marginal likelihood of the observation of a PT)}} Practice quiz on Bayes Theorem and the Binomial Theorem	
\leftarrow	### Practice quiz on Bayes Theorem and the Binomial Theorem ### Ubungsquiz • 25 min = (90%)(5%) / ((90%)(5%) + (10%)(95%)	
	=32.1%	
	7. We have the following information about a new medical test for diagnosing cancer.	1 / 1 Punkten
	Before any data are observed, we know that 8% of the population to be tested actually have Cancer. Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer.	
	The other 10% get a false test result of "Negative" for Cancer. Of the people who do not have cancer, 95% of them get an accurate test result of "Negative" for cancer.	
\leftarrow	Of the people who do not have cancer, 95% of them get an accurate test result of "Negative" for cancer. Practice quiz on Bayes Theorem and the Binomial Theorem 000000000000000000000000000000000000	
	What is the conditional probability that I have cancer, if I get a "Negative" test result for Cancer? $ \bigcirc 0.9\% $	
	○ .80%○ 88.2%○ 99.1%	
	✓ Richtig	
	$p(ext{cancer} \mid ext{negative test}) = \\ p(ext{negative test} \mid ext{Cancer}) p(ext{Cancer}) p(ext{Cancer}) p(ext{cancer}) p(ext{cancer}) p(ext{no cancer}) p(ext{no cancer}) p(ext{no cancer})$	
92	(10%)(8%) (10%)(8%)+(95%)(92%) Practice quiz on Bayes Theorem and the Binomial Theorem	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem $\frac{0.8\%}{88.2\%}$	
	$\overline{88.2\%}$ $=0.9\%$	
	 An urn contains 50 marbles – 40 blue and 10 white. After 50 draws, exactly 40 blue and 10 white are observed. 	1 / 1 Punkten
	You are not told whether the draw was done "with replacement" or "without replacement."	
	What is the probability that the draw was done with replacement? $ \bigcirc \ 12.27\% $	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min	
	○ 13.98%✓ Richtig	
	p(40 blue and 10 white draws without replacement) = 1 [this is the only possible outcome when 50 draws are made without replacement]	
	p(40 blue and 10 white draws with replacement) $S = 40$	
	N = 50	
	P = .8 [for draws with replacement] because 40 blue of 50 total means p(blue) = 40/50 = .8 $ {\binom{50}{40}}(0.8^{40})(0.2^{10}) $	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min	
	By Bayes' Theorem: p(draws with replacement observed data) =	
	13.98%(.5) $(13.98%)(.5)+(1)(.5)$	
	$= {0.1398 \atop 1.1398}$ $= 12.27\%$	
\leftarrow	Practice quiz on Bayes Theorem and the Binomial Theorem Übungsquiz • 25 min The majority of all Smugglers at the border (65%) appear nervous and sweaty.	
	Only 8% of innocent people at the border appear nervous and sweaty.	
	If someone at the border appears nervous and sweaty, what is the probability that they are a Smuggler? $ \hline 0.58\% \\ \hline 0.8.57\% $	
	○ 8.57%○ 92.42%○ 7.92%	
	✓ Richtig By Bayes' Theorem, the answer is	
	\begin {align} \frac {(.65)(.01)}{ ((.65)(.01) + (.08)(.99))}\end {align}	