ZAD. 1.

Uzasadnić poniższe stwierdzenia, albo bezpośrednim argumentem, albo opierając się na poznanych faktach:

Funkcja niemalejąca $h: \mathbb{R} \to \mathbb{R}$ jest borelowska.

Niech $a \in \mathbb{R}$ oraz y = f(a), wtedy zbiór

$$\{x \in \mathbb{R} : f(x) \le f(a)\} = f^{-1}[(-\infty, y]]$$

przy czym $(-\infty, y] \in Bor(\mathbb{R})$, a wiemy, że to pociąga mierzalność funkcji.

Jeżeli zbiory A_n , $A \subseteq \mathbb{R}$ są borelowskie i $\lambda(A_n \Delta A) < \frac{1}{n}$ dla $n \in \mathbb{N}$, to istnieje ciąg $n_1 < n_2 < ...$ taki, że funkcje charakterystyczne $\chi_{A_{n_k}}$ zbiegają do χ_A prawie wszędzie.

Zbieganie $\chi_{A_{n_k}}$ prawie wszędzie do χ_A oznacza, że zbiór gdzie się nie zgadzają jest miary zero. Nie zgadzają się na zbiorze $A\Delta A_{n_k}$, którego miara zbiega do zera. Koniec?

Jeżeli A $\subseteq \mathbb{R}$ jest zbiorem mierzalnym i $\lambda(A) = 1$, to istnieje r > 0 takie, że $\lambda(A \cap (-r, r)) = \frac{3}{4}$.

Może najpierw zróbmy funkcje $f: \mathbb{R}_+ \to \mathbb{R}$ $f(x) = \lambda(A \cap (-x,x))$, gdzie dla x = 0 przypisujemy 0. Oczywiście taka funkcja jest zawsze nieujemna. Łatwo zobaczyć, że jest to funkcja ciągła oraz, że jej wartość nie może przekraczać 1, bo $A \cap (-x,x) \subseteq A \implies \lambda(A \cap (-x,x)) \le \lambda(A) = 1$. Dodatkowo, funkcja ta jest niemalejąca, bo dla x < y mamy $A \cap (-x,x) \subseteq A \cap (-y,y)$. Czyli w pewnym miejscu musi przyjąć wartość $\frac{3}{4}$.

ZAD. 2.

 $\textit{Niech} \ f_n, f: (0,1) \to \mathbb{R} \ \textit{będq funkcjami mierzalnymi, takimi, że} \ |f_n(x)| \le \frac{1}{\sqrt(x)} \ \textit{dla} \ x \in (0,1). \ \textit{Udowodnić, że jeżeli} \ f_n \xrightarrow{\lambda} f, \ \textit{to} \\ \lim_n \int_{[0,1]} |f_n - f| d\lambda.$

Po pierwsze, co to znaczy, że $f_n \xrightarrow{\lambda} f$:

$$\lim_{n} \lambda(\{x : |f_n(x) - f(x)| \ge \varepsilon\})$$

Ustalmy więc ε > 0 i niech

$$A = \{x : |f_n(x) - f(x)| \ge \varepsilon\}.$$

ZAD. 3.

Niech (X, Σ, μ) będzie przestrzenią miarową, a $f_n, g_n : X \to \mathbb{R}$ będą funkcjami mierzalnymi.

Udowodnić, że jeżeli $f_n \xrightarrow{\mu} f i g_n \xrightarrow{\mu} g$, to $f_n - g_n \xrightarrow{\mu} f - g$

Ustalmy ε > 0 i niech N będzie takie, że dla każdego n > N |f_n - f| < ε oraz |g_n - g| < ε .

$$|g_n - f_n - (g - f)| = |g_n - g + (f - f_n)| \le |g_n - g| + |f - f_n| < 2\varepsilon$$

Poza zbiorem miary zero *

Wyjaśnić, dlaczego warunki $f_n \stackrel{\mu}{\to} f$ i $f_n \stackrel{\mu}{\to} g$ implikują, że f = g prawie wszędzie.

Wiemy, że poza pewnym zbiorem miary zero A mamy $f_n(x) \to f(x)$ oraz poza B miary zero $f_n(x) \to g(x)$. Co jeśli teraz weźmiemy $A\Delta B$? jest to nadal zbiór miary zero oraz

$$\lambda((A\Delta B) \cup A \cup B) \leq \lambda(A\Delta B) + \lambda(A) + \lambda(B) = 0$$

ale $(A\triangle B) \cup A \cup B$ jest zbiorem gdzie $f_n(x)$ nie zbiega do f(x) lub $f_n(x)$ nie zbiega do g(x). Poza tym zbiorem mamy, że $f_n(x) \to f(x)$ oraz $f_n(x) \to g(x)$, więc f(x) = g(x) poza tym brzydkim zbiorem.

ZAD. 4.

Obliczyć i podać szczegółowe uzasadnienia rachunków:

Niech

$$f_n = \frac{nx^2 + 1}{nx^4 + n^2} = \frac{\frac{x^2}{n} + \frac{1}{n^2}}{\frac{x^4}{n} + 1},$$

wtedy $f_n \rightarrow 0$ prawie wszędzie, więc jak w zad. 2.

$$\lim_{n\to\infty}\int_{\mathbb{R}}\frac{nx^2+1}{nx^4+n^2}d\lambda(x)=0$$

$$\int_0^1 \sum_{n=1}^{\infty} n \cdot \chi_{\left(\frac{1}{n+1},\frac{1}{n}\right)} d\lambda$$

Niech

$$f_n = n \frac{1}{n(n+1)} = \frac{1}{n+1} = \int_{[0,1]} n \cdot \chi_{(\frac{1}{n+1},\frac{1}{n})} d\lambda.$$

Teraz popatrzmy na

$$g_N = \sum_{n=1}^N \frac{1}{n+1} = \sum_{n=1}^N f_n = \sum_{n=1}^N \int_0^1 n \cdot_{\left(\frac{1}{n+1}, \frac{1}{n}\right)} d\lambda = \int_0^1 \sum_{n=1}^N n \cdot_{\left(\frac{1}{n+1}, \frac{1}{n}\right)} d\lambda$$

oryginalnie bedzie ∞ ?

ZAD. 5.

Niech funkcje mierzalne f)n : $[0,1] \to \mathbb{R}$ spiełniają warunek $\int_0^1 |f_n| d\lambda \le 1$. Niech B będzie zbiorem tych $x \in [0,1]$, dla których szereg $\sum_n \frac{f_n(x)}{n^2}$ nie jest zbieżny. Udowodnić, że zbiór B jest miary zero; wyjaśnić, dlaczego spełniona jest zależność $\int_0^1 \sum_{n=1}^\infty$. Udowodnić, że zbiór B jest miary zero; wyjaśnić dlaczego spełniona jest zależność

$$\int_0^1 \sum_{n=1}^\infty \frac{f_n(x)}{n^2} d\lambda = \sum_{n=1}^\infty \int_0^1 \frac{f_n(x)}{n^2} d\lambda$$