CS542 LAB 6

TensorFlow Tutorial

What is TensorFlow

- open-source software library
- dataflow programming
- symbolic math library

Comparison Between Lists Numpy vs. TensorFlow

Implementation	Elapsed Time
Pure Python with list comprehensions	18.65s
NumPy	0.32s
TensorFlow on CPU	1.20s

CPU vs. GPU

Up to 16x More Inference Perf/Watt

The Basics

import tensorflow as tf

High Level APIs

- TF Learn (tf.contrib.learn): simplified interface that helps users transition from the the world of one-liner such as scikit-learn.
- TF Slim (tf.contrib.slim): lightweight library for defining, training and evaluating complex models in TensorFlow.
- High level API: Keras, TFLearn, Pretty Tensor

Data Flow Graphs

TensorFlow separates definition of computations from their execution.

Tensor

Similar to numpy arrays.

TF automatically names the nodes when you don't explicitly name them.

Graph

```
import tensorflow as tf a = tf.add(3, 5)
```

Constructs a TF Graph.

Why graphs

- Save computation (only run subgraphs that lead to the values you want to fetch)
- Break computation into small, differential pieces to facilitates autodifferentiation
- Facilitate distributed computation, spread the work across multiple CPUs,
 GPUs, or devices
- Many common machine learning models are commonly taught and visualized as directed graphs already

Installing TensorFlow

- On Windows open the Start menu and open an Anaconda Command Prompt
- On MacOS or Linux open a terminal window

Conda install tensorflow

A simple NN using tensorflow

http://cs-people.bu.edu/sbargal/cs542/beginner.ipynb

Reference

Stanford CS20SI 2017