

EMC TEST REPORT

Applicant

: Miwa Lock Co., Ltd

3-1-12, Shiba, Minato-ku, Tokyo, Japan, 105-8510

Type of Equipment

: ALV2S

Model Number

: ALV2 (Slim)

FCC ID

: VBU-ALV2S

Standard

: 47 CFR Part 15 Subpart C Section 15.225

Receipt Date of Sample

: 2010-07-22

Date Tested

: 2010-08-02, 2010-08-03 and 2011-04-19

Date Report Issued

: 2011-05-31

Report Number

: EMC11125

This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government. The report shall not be reproduced, except in full, without the written approval of IPS Corporation.

APPROVED by:

TESTS SUPERVISED by:

Tetsushi Yamaguchi / Manager

Hidemasa Fujimoto

IPS Corporation

1878-1 Harumiya Ono Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601, Japan.

Phone: +81-266-44-5200 Fax: +81-266-44-5300

KF

$\underline{Contents}$

Page

1 GENERAL INFORMATION	3
1.2 Summary of Test Result1.3 Measurement Uncertainty1.4 Tested Systems Details	
2 SYSTEM TEST CONFIGURATION	6
2.2 Special Accessories	
3 RADIATED EMISSION TEST 0.15MHz-3	30MHz (Part15.225(a),(b),(c))7
3.2 Testing Instrumentation	
4 RADIATED EMISSION TEST 30MHz – 1	000MHz (Part 15.209, 225(d))9
4.2 Test Instrumentation	
5 FREQUENCY STABILITY TEST (Part 15	5.225(e))
5.2 Test Instrumentation	
6 TEST DATA	
6.2 Radiated Emission 0.15MHz - 30MHz Comm 6.3 Radiated Emission 30MHz - 1000MHz Detec	tion mode
7 TEST CONFIGURATION PHOTOS	21
7.2 Photos of Radiated Emission Test (above 30)	Hz)

1 GENERAL INFORMATION

1.1 Product Description and Specification

The Equipment Under Test (EUT) Model: ALV2S is a low power transmitter for hotel card lock and its fundamental frequency is 13.56MHz. Its has two 13.56MHz transmitters. One is for detection of the approach of RFID card, the other is for communication with RFID card. They do not work simultaneity.

Model No.	ALV2S(Slim)
Serial No.	Sample 2
Product Type	Pre-production
Rated Power	3.0VDC (AA type Alkaline batteries)
Transmitting Engage	Transmitter A: 13.56MHz
Transmitting Frequency	Transmitter B: 13.56MHz
Modulation	Transmitter A: Non modulation
Wiodulation	Transmitter B : ASK

Operation mode

Detection mode	Detecting the approach of RFID card (by using transmitter A)
Communication mode	Communication with RFID card (by using transmitter B)

< Block Diagram >

1.2 Summary of Test Result

Transmitter A (Detection mode)

Item	Specification	Deviation	Worst Margin	Results	Remarks
Radiated Emission	15.225(a)	N/A	56.9dB	PASS	
(Fundamental)	15.225(b)	N/A	54.3dB	PASS	
(Fundamental)	15.225(c)	N/A	43.4dB	PASS	
Radiated Emission	15.225(d)	N/A	11.9dB	PASS	
(Spurious)	15.209	IN/A	11.905	LHOO	
Frequency Stability	15.225(e)	N/A	0.00054%	PASS	

Transmitter B (Communication mode)

Item	Specification	Deviation	Worst Margin	Results	Remarks
Radiated Emission	15.225(a)	N/A	42.7dB	PASS	
(Fundamental)	15.225(b)	N/A	42.7dB	PASS	
(Fundamentai)	15.225(c)	N/A	43.3dB	PASS	
Radiated Emission	15.225(d)	N/A	10.7dB	PASS	
(Spurious)	15.209	IN/ A	10.700	rass	
Frequency Stability	15.225(e)	N/A	0.00021%	PASS	

1.3 Measurement Uncertainty

Radiated Emission Test	Antenna	Frequency range	Polarization	10m U (dB)	3m U (dB)
	Biconical	30MHz-300MHz	Horizontal	3.9	3.9
Radiated Emission	(BBA9106) 30WH 12 300WH 1		Vertical	4.1	4.0
Radiated Lillission	LogPeriodic	LogPeriodic 300MHz-1GHz		4.1	4.1
	(UHALP9108-A)		Vertical	4.2	4.2
Magnetic Field Emission	Loop (HLA6120)	9kHz-30MHz	-	-	2.6

Note : Covera

: Coverage factor k=2

: 1) Applied for Code of Federal Regulation 47 Part 15

1.4 Tested Systems Details

<u>EUT</u>

	Equipment Manufacturer		Model No.	Serial No.	Note
ID	Name	ivialiulactul el	wiodel No.	Serial NO.	Note
А	ALV2(Slim)	MIWA	ALV2S	Sample 2	

<u>Peripherals</u>

	Equipment	Manufacturar	Model No.	Serial No.	FCC ID & Note
ID	Name	Manufacturer Model No.	Serial No.	I CC ID & Note	
В	DCU Power supply	KIKUSUI	PAN35-5A		

IPS Corp. Page 4 of 21

1.5 Test Facility

The test facilities are located in following places of IPS Corporation.

- EMC Center 1878-1 Harumiya Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken 399-0601 Japan.
- Open Test Site
 4593 Hosohora Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken 399-0601 Japan.

Above facilities have been registered at FCC with registration number 171180. Also test facilities are accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) by United States Department of Commerce, National Institute of Standard and Technology (NIST) for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. These criteria encompass the requirements of ISO/IEC 17025 and the relevant requirements of ISO 9002:1994 as suppliers of calibration or test results. Accreditation awarded for specific services, ANSI C63.4 with FCC 47CFR Part 15B and other, listed on the Scope of Accreditation for: ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS.

NVLAP LAB CODE: 200012-0 Effective until: December 31, 2011.

2 SYSTEM TEST CONFIGURATION

2.1 Justification

- All tests were performed without any deviation from the ANSI C63.4:2003.
- The system was configured for testing a typical fashion (as a customer would normally use it). The test data Radiated emission are presented for the "worst case" measurements, that test program as clause 2.2 should be working and the cable routing was attempted to maximize the emission.
- EUT was tested in three orthogonal orientation for Radiated emission in order to present "the worst case".
- EUT was set to transmit continuously during test by using one of two RF circuit.

2.2 Special Accessories

None.

2.3 Equipment Conditions

The condition at the time of receipt of EUT: Good
The condition at the time of return of EUT: Good
Limited conditions: None

EUT has a DIP switch which can control to set to transmit 13.56MHz continuously. This DIP switch has placed for test purpose only.

IPS Corp. Page 6 of 21

3 RADIATED EMISSION TEST 0.15MHz-30MHz (Part15.225(a),(b),(c))

3.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The table size was $0.8 \text{ m high} \times 1.8 \text{ m wide} \times 1.0 \text{ m deep.}$

3.2 Test Instrumentation

Test Date:2010-07-25

Equipment	Manufacturer	Model S/N	S/NI	Calibration	
Equipment	Manufacturei		Date	Due	
Semi-Anechoic Chamber	Otsuka Science	10m	No.3	2010-02-04	2011-02-28
EMI Test Receiver	Rohde & Schwarz	ESCS30	836858/002	2010-04-21	2011-04-30
Spectrum Analyzer	ADVANTEST	R3132	131201410	2009-11-26	2010-11-30
Loop Antenna	Chase	HLA6120	1131	2010-04-01	2011-04-30
Cable System	IPS Corporation	CE(1)	N/A	2009-10-28	2010-10-31

Test Date:2011-04-19

Equipment	Manufacturer Model	S/N	Calibration		
Equipment	Manufacturei	Wiodel 5/14	5/14	Date	Due
Semi-Anechoic Chamber	Otsuka Science	10m	No.3	2011-02-07	2012-02-28
EMI Test Receiver	Rohde & Schwarz	ESCS30	836858/002	2011-04-12	2012-04-30
Spectrum Analyzer	Agilent	N9020A	MY49100247	2010-06-02	2011-06-30
Loop Antenna	Chase	HLA6120	1131	2011-03-31	2012-03-31
Cable System	IPS Corporation	RE(28)	N/A	2011-02-04	2012-02-28

3.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:-

$$FS = RA + c.f. = RA + AF + CL - AG$$

c.f.	Correction Factor	AF	Antenna Factor
FS	Field Strength (Emission Level - Result)	CL	Cable Loss
RA	Receiver Amplitude (Reading Level)	AG	Amplifier Gain or Attenuator Loss

This measurement was performed at distance of 3m. The limit was extrapolated by using the square of an inverse linear distance extrapolation factor (40 dB/decade). Also the field strength is calculated by converting 30m and 3m distance limit.

3.4 Test Detail

Test data and spectrum chart : Refer to section 6.1. and 6.2

Test configuration photo: Refer to section 7.1

4 RADIATED EMISSION TEST 30MHz - 1000MHz (Part 15.209, 225(d))

4.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The table size was $0.8 \text{ m high} \times 1.8 \text{ m wide} \times 1.0 \text{ m deep.}$

4.2 Test Instrumentation

Equipment	Manufacturer	Model	S/N	Calibration	
Equipment	Manufacturer	Wiodei	3/1	Date	Due
Semi-Anechoic Chamber	Otsuka Science	3m	No.2	2009-12-25	2010-12-31
EMI Test Receiver	Rohde & Schwarz	ESIB40	100208	2010-06-04	2011-06-30
Biconical Antenna	Schwarzbeck	BBA9106	1586	2010-05-08	2011-05-31
LogPeriodic Antenna	Schwarzbeck	UHALP9108-A	0942	2010-06-03	2011-06-30
Cable System	IPS Corporation	RE(33)	N/A	2010-02-24	2011-02-28

4.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:-

$$FS = RA + c.f. = RA + AF + CL - AG$$

c.f.	Correction Factor	AF	Antenna Factor
FS	Field Strength (Emission Level - Result)	CL	Cable Loss
RA	Receiver Amplitude (Reading Level)	AG	Amplifier Gain or Attenuator Loss

4.4 Test Detail

4.4.1 Detection Mode

EUT was tested in three orthogonal orientations and it was found that "Pattern 2" orientation is the worst-case orientation.

No.	Frequency [MHz]	Reading [dB(uV)]	c.f. [dB]	Result [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]	H/V	Height [cm]	Angle [°]	Axial
1	339.003	35.0	-3.2	31.8	46.0	14.2	Н	100.0	4.0	Pattern 2
2	366.123	36.7	-2.6	34.1	46.0	11.9	Н	100.0	8.0	Pattern 2
3	366.125	34.8	-2.6	32.2	46.0	13.8	V	142.5	0	Pattern 1
4	366.122	35.7	-2.6	33.1	46.0	12.9	Н	100.0	0	Pattern 3
5	393.243	35.0	-2.2	32.8	46.0	13.2	Н	100.0	1.0	Pattern 2
6	420.362	34.6	-1.9	32.7	46.0	13.3	Н	100.0	346.0	Pattern 2
7	881.400	25.1	4.7	29.8	46.0	16.2	Н	100.0	201.0	Pattern 2
8	447.483	25.6	-1.7	23.9	46.0	22.1	V	100.0	31.0	Pattern 2

Page 9 of 21

4.4.1 Detection Mode (Continued)

Individual test data and spectrum chart: Refer to section 6.3.

Test configuration photo: Refer to section 7.2

4.4.2 Communication Mode

EUT was tested in three orthogonal orientations and it was found that "Pattern 2" orientation is the worst-case orientation.

No.	Frequency [MHz]	Reading [dB(uV)]	c.f. [dB]	Result [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]	H/V	Height [cm]	Angle [°]	Axial
1	352.565	36.5	-2.9	33.6	46.0	12.4	Н	100.0	4.0	Pattern 2
2	366.125	36.2	-2.6	33.6	46.0	12.4	Н	100.0	4.0	Pattern 2
3	949.499	29.4	5.9	35.3	46.0	10.7	Н	100.0	8.0	Pattern 2
4	949.206	28.3	5.9	34.2	46.0	11.8	V	100.0	359.0	Pattern 1
5	949.202	28.7	5.9	34.6	46.0	11.4	Н	100.0	122.0	Pattern 3
6	216.836	33.3	-2.1	31.2	46.0	14.8	Н	142.3	192.0	Pattern 2
7	67.804	33.7	-13.0	20.7	40.0	19.3	Н	295.3	256.0	Pattern 2
8	67.805	28.0	-13.0	15.0	40.0	25.0	V	279.0	166.0	Pattern 2

Individual test data and spectrum chart: Refer to section 6.3.

Test configuration photo: Refer to section 7.2

5 FREQUENCY STABILITY TEST (Part 15.225(e))

5.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The EUT was placed in a temperature and humidity chamber.

 The near field magnetic sensor was placed near the EUT inside the chamber.

Temperature & Humidity chamber

5.2 Test Instrumentation

Equipment	Manufacturer	Model	S/N	Calib	ration
Equipment	Manulacturei	Model	5/11	Date	Due
Temp. & Humi. Chamber	ESPEC	PL-4S	13002260	Non Cal	libration
Near Field Magnetic Sensor	Anritsu	MA2601C	MA01	2010-01-07	2011-01-07
Spectrum Analyzer	ADVANTEST	R3132	131201410	2009-11-26	2010-11-30
Power supply	KIKUSUI	PAN35-5A	EH000852	Non Cal	libration

5.3 Test Detail

Test configuration photo: Refer to section 7.3

5.3.1 Detection Mode

″ D	Frequency iviation"/"Ca	/ stability rrier Frequenc	у ″	0.0005	3 9 %
Tem perature		-	Γim e		Diviation
- 2 0 °C	start up	2.m in.	5 m in.	10 m in	(Max)-(Min)
Frequency (MHz)	13.560018	13.560018	13.560016	13.560016	0.000002
Frequency	stability: "Di	viation"/"Car	rier Frequency	″ @ -20°C	0.000015%
Tem perature		-	Γim e		Diviation
20℃	start up	2 .m in .	5 m in.	1 0 m in	(Max)-(Min)
Frequency (MHz)	13.560003	13.560005	13.559999	13.560010	0.000011
Frequency	stability : "D	iviation"/"Ca	rrier Frequency	″ @ 20°C	0.000081%
Tem perature		-	Γim e		Diviation
50℃	start up	2 .m in .	5 m in.	1 0 m in	(Max)-(Min)
Frequency (MHz)	13.559945	13.559949	13.559949	1 3 .5 5 9 9 4 9	0.000004
Frequency	stability: "D	iviation"/"Caı	rier Frequency	″ @ 50°C	0.000030%

5.3.2 Communication Mode

″ [Frequency Diviation"/"Carr			0.000	207%
Tem perature		Time	<u> </u>		Diviation
-20℃	start up	2.m in.	5 m in.	10 m in	(Max)-(Min)
Frequency (MHz)	13.560035	13.560031	13.560029	13.560027	0.000008
Frequency	stability : "Divia	tion"/"Carrier	Frequency" @	- 2 0 ℃	0.000059%
Temperature		Time	<u> </u>		D iviation
20℃	start up	2.m in.	5 m in .	10 m in	(Max)-(Min)
Frequency (MHz)	13.560025	13.560027	13.560031	13.560035	0.000010
Frequency	stability : "Divia	ation"/"Carrier	Frequency" @	20℃	0.000074%
Temperature		Time)		D iviation
5 0 ℃	start up	2.m in.	5 m in.	10 m in	(Max)-(Min)
Frequency (M H z)	13.560009	13.560007	13.560009	13.560011	0.000004
Frequency	stability: "Divia	tion"/"Carrier	Frequency" @	50℃	0.000030%

6 TEST DATA

6.1 Radiated Emission 0.15MHz - 30MHz Detection mode

Final Result

Vertical Po	larization	(QP)					
Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
13. 110	3. 9	22. 1	26.0	69. 5	43. 5	100.0	5.0
13.410	4.0	22. 2	26. 2	80. 5	54. 3	100.0	5.0
13. 553	11.4	22. 2	33.6	90. 5	56. 9	100.0	5.0
13. 560	23.0	22. 2	45. 2	124. 0	78.8	100.0	5.0
13. 567	9. 7	22. 2	31.9	90. 5	58.6	100.0	5.0
13.710	4.0	22. 2	26. 2	80. 5	54. 3	100.0	5.0
14.010	3.8	22. 3	26. 1	69. 5	43.4	100.0	5.0
	Frequency [MHz] 13.110 13.410 13.553 13.560 13.567 13.710	$ \begin{array}{cccc} \text{Frequency} & \text{Reading} \\ [\text{MHz}] & [\text{dB}(\mu\text{V})] \\ 13.110 & 3.9 \\ 13.410 & 4.0 \\ 13.553 & 11.4 \\ 13.560 & 23.0 \\ 13.567 & 9.7 \\ 13.710 & 4.0 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

6.2 Radiated Emission 0.15MHz - 30MHz Communication mode

Final Result

	Vertical Po	larization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	13. 110	3. 9	22. 1	26.0	69. 5	43.5	100.0	4.0
2	13.410	4.0	22. 2	26. 2	80. 5	54. 3	100.0	4.0
3	13. 553	25.6	22. 2	47.8	90. 5	42.7	100.0	4.0
4	13. 560	39. 7	22. 2	61. 9	124. 0	62. 1	100.0	4.0
5	13. 567	23.4	22. 2	45.6	90. 5	44. 9	100.0	4.0
6	13.710	4. 1	22. 2	26. 3	80. 5	54. 2	100.0	4.0
7	14.010	3. 9	22. 3	26. 2	69. 5	43.3	100.0	4.0

6.3 Radiated Emission 30MHz - 1000MHz Detection mode

Axial Direction of EUT: Pattern 1

1E10204018. dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2S S/N : Sample2 Product Name : ALV2(Slim)

File No : 018

Power Source : DC 3V from Dry Battery

Temp /Humi : 25deg / 53%
Test Mode : Detection
Remarks : Pattern 1
Operator : M. Furihata

 No.	Horizontal Frequency [MHz] 366.122	Polarizatio Reading [dB(μV)] 28.8	on (QP) c.f [dB(1/m)] -2.6	Result [dB(μV/m)] 26.2	Limit [dB(µV/m)] 46.0	Margin [dB] 19.8	Height [cm] 184.3	Angle [°] 275.0
	Vertical Po	larization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	366. 125	34.8	-2.6	32.2	46.0	13.8	142.5	0.0
2	393. 244	34.4	-2.2	32.2	46.0	13.8	132.0	0.0
3	420.363	34. 3	-1.9	32.4	46.0	13.6	120.5	0.0
4	433. 926	30.4	-1.8	28.6	46.0	17.4	118.6	0.0
5	447. 782	32.8	-1.7	31.1	46.0	14.9	115.0	0.0

Axial Direction of EUT: Pattern 2

*********** IPS Corporation *************************** <<Radiated Emission>> 3 August, 2010 11:13

1E10204017. dat

: FCC Part15 SubpartB ClassB Standard

Mode1 : ALV2S S/N: Sample2 : ALV2(S1im) Product Name

: 017 File No

: DC 3V from Dry Battery

Power Source Temp /Humi : 25deg / 53% Test Mode : Detection Remarks : Pattern 2 : M. Furihata Operator

Final Result

447.483

1

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	339. 003	35. 0	-3.2	31.8	46.0	14. 2	100.0	4.0
2	366. 123	36. 7	-2.6	34. 1	46.0	11.9	100.0	8.0
3	393. 243	35. 0	-2.2	32.8	46.0	13. 2	100.0	1.0
4	420. 362	34. 6	-1.9	32. 7	46.0	13. 3	100.0	346.0
5	881.400	25. 1	4. 7	29.8	46.0	16. 2	100.0	201.0
	Vertical Po	olarization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	$[\mathrm{MHz}]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]

23. 9

25.6

-1.7

100.0

31.0

22. 1

46.0

Axial Direction of EUT: Pattern 3

************ IPS Corporation ******************************** <<Radiated Emission>> 3 August, 2010 10:03

1E10204016. dat

: FCC Part15 SubpartB ClassB : ALV2S Standard

Mode1 S/N Sample2 Product Name : ALV2(S1im)

File No : 016

: DC 3V from Dry Battery Power Source

Temp /Humi : 25deg / 53% Test Mode : Detection Remarks Pattern 3 Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	339.005	31.4	-3.2	28. 2	46.0	17.8	100.0	178.0
2	366. 122	35. 7	-2.6	33. 1	46.0	12.9	100.0	0.0
3	379.683	29.8	-2.4	27.4	46.0	18.6	100.0	1.0
4	393. 242	34.0	-2.2	31.8	46.0	14. 2	100.0	2.0
5	420. 364	32. 9	-1.9	31.0	46.0	15.0	100.0	179.0
	Vertical Po	olarization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	393. 244	29. 1	-2.2	26. 9	46.0	19. 1	106. 2	320.0

6.4 Radiated Emission 30MHz - 1000MHz Communication mode

Axial Direction of EUT: Pattern 1

*********** IPS Corporation ************************** <<Radiated Emission>> 2 August, 2010 16:21

1E10204013. dat

Standard : FCC Part15 SubpartB ClassB

Model: ALV2S S/N : Sample2 Product Name : ALV2(S1im)

File No : 013

Power Source : DC 3V from Dry Battery

Temp /Humi : 21deg / 44% Test Mode : Communication Remarks : Pattern 1 Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[° -]
1	67.808	35.6	-13.0	22.6	40.0	17.4	265.0	280.0
2	203.409	27.6	-2.3	25. 3	43.5	18.2	100.0	89.0
	Vertical Po	larization	(QP)					
		141 124 01 011	(QI)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	_			Result [dB(μV/m)]	Limit [dB(µV/m)]	Margin [dB]	Height [cm]	Angle [°]
	Frequency	Reading	c. f					Angle [°] 52.0
	Frequency [MHz]	Reading $[dB(\mu V)]$	c.f [dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
No.	Frequency [MHz] 67.806	Reading [dB(μV)] 34.5	c. f [dB(1/m)] -13.0	[dB(μ V/m)] 21.5	[dB($\mu V/m$)] 40.0	[dB] 18.5	[cm] 100.0	[°] 52. 0

IPS Corp.

Axial Direction of EUT: Pattern 2

2 August, 2010 16:21 1E10204014.dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2S S/N : Sample2 Product Name : ALV2(Slim) File No : 014

Power Source : DC 3V from Dry Battery

Temp /Humi : 21deg / 44%
Test Mode : Communication
Remarks : Pattern 2
Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)						
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle	
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	352. 565	36. 5	-2.9	33.6	46.0	12.4	100.0	4.0	
2	366. 125	36. 2	-2.6	33.6	46.0	12.4	100.0	4.0	
3	949. 499	29.4	5.9	35. 3	46.0	10.7	100.0	8.0	
4	216.836	33. 3	-2.1	31.2	46.0	14.8	142.3	192.0	
5	67.804	33.7	-13.0	20.7	40.0	19.3	295.3	256.0	
Vertical Polarization (QP)									
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle	

	vertical ro	1al 1Za t 1011	(61)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	67.805	28.0	-13.0	15.0	40.0	25.0	279.0	166.0

Axial Direction of EUT: Pattern 3

************ <<Radiated Emission>> 3 August, 2010 08:52 1E10204015. dat

: FCC Part15 SubpartB ClassB

: ALV2S Mode1 S/N: Sample2 Product Name : ALV2(S1im)

File No : 015

: DC 3V from Dry Battery : 25deg / 53%

Power Source Temp /Humi Test Mode : Communication Remarks : Pattern 3 : M. Furihata Operator

Final Result

Standard

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	949. 202	28. 7	5. 9	34.6	46.0	11.4	100.0	122.0
2	366. 123	35.8	-2.6	33. 2	46.0	12.8	100.0	8.0
3	352. 563	35. 7	-2.9	32.8	46.0	13.2	100.0	10.0
4	216.966	34.8	-2.1	32. 7	46.0	13.3	141.3	5.0
	Vertical Po	olarization	(QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	67.804	36. 3	-13.0	23.3	40.0	16.7	100.0	255.0
2	393. 243	29.0	-2.2	26.8	46.0	19.2	126. 1	221.0

7 TEST CONFIGURATION PHOTOS

TEST CONFIGURATION PHOTOS

were separated from this report