Dealing with Continuous Action Set

Continuous Action Set

Full-information feedback

Given: Action set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $a_t \in \Omega$

Environment reveals a reward function $r_t : \Omega \to \mathbb{R}$

Bandit feedback

Given: Action set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $a_t \in \Omega$

Environment reveals a reward value $r_t(a_t)$

Continuous Multi-Armed Bandits

With a mean estimator

	MAB	СВ
VB	•	
PB		

Value-Based Approach (mean estimation)

• Use supervised learning to learn a reward function $R_{\phi}(a)$

- How to perform the exploration strategies (like ϵ -Greedy)?
 - How to find $\operatorname{argmax}_a R_{\phi}(a)$?
 - Usually, there needs to be another **policy learning procedure** that helps to find $\arg\max_a R_{\phi}(a)$
 - Then we can explore as $a_t = \operatorname{argmax}_a R_{\phi}(a) + \mathcal{N}(0, \sigma^2 I)$

Value-Based Approach (mean estimation)

The mean estimator R_{ϕ} essentially gives us a full-information reward function

For t = 1, 2, ..., T:

Take action $a_t = \mathcal{P}_{\Omega}(\mu_t + \mathcal{N}(0, \sigma^2 I))$

Receive $r_t(a_t)$

Update the mean estimator:

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \left[\left(R_{\phi}(a_t) - r_t(a_t) \right)^2 \right] \qquad a \longrightarrow \phi \longrightarrow R_{\phi}(a)$$

Update policy:

$$\mu_{t+1} = \mathcal{P}_{\Omega} \left(\mu_t + \eta \nabla_{\mu} R_{\phi}(\mu_t) \right)$$

Think of this as a continuous-action counterpart of ϵ -Greedy

Continuous Contextual Bandits

With a regression oracle

	MAB	СВ
VB		•
РВ		

Combining with Regression Oracle (a bandit version of DDPG)

For t = 1, 2, ..., T:

Receive context x_t

Take action $a_t = \mathcal{P}_{\Omega}(\mu_{\theta}(x_t) + \mathcal{N}(0, \sigma^2 I))$

Receive $r_t(x_t, a_t)$

Update the regression oracle:

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \left[\left(R_{\phi}(x_t, a_t) - r_t(x_t, a_t) \right)^2 \right] \qquad x \longrightarrow \phi$$

Update policy:

$$\theta \leftarrow \theta + \eta \nabla_{\theta} R_{\phi}(x_t, \mu_{\theta}(x_t))$$

Continuous Multi-Armed Bandits

Pure policy-based algorithms

	MAB	СВ
VB		
РВ	•	

Pure Policy-Based Approach

Gradient Ascent (full-information)

For t = 1, 2, ..., T:

Choose action μ_t

Receive reward function $r_t : \Omega \to \mathbb{R}$

Update action $\mu_{t+1} \leftarrow \mathcal{P}_{\Omega}(\mu_t + \eta \nabla r_t(\mu_t))$

We face a similar problem as in EXP3: if we only observe $r_t(a_t)$, how can we estimate the **gradient**?

(Nearly) Unbiased Gradient Estimator

Goal: construct $g_t \in \mathbb{R}^d$ such that $\mathbb{E}[g_t] \approx \nabla r_t(\mu_t)$ with only $r_t(a_t)$ feedback

(Nearly) Unbiased Gradient Estimator (1/3)

Consider d = 1

$$\nabla r(\mu) \approx \frac{r(\mu + \delta) - r(\mu - \delta)}{2\delta}$$

$$= \frac{1}{2} \left(\frac{r(\mu + \delta)}{\delta} \right) + \frac{1}{2} \left(-\frac{r(\mu - \delta)}{\delta} \right)$$

$$= \mathbb{E}_{\beta \sim \text{unif}\{-1,1\}} \left[\frac{\beta \cdot r(\mu + \beta \delta)}{\delta} \right]$$

$$= \mathbb{E}_{a \sim \text{unif}\{\mu - \delta, \mu + \delta\}} \left[\frac{(a - \mu)r(a)}{\delta^2} \right]$$

(Nearly) Unbiased Gradient Estimator (2/3)

Uniformly randomly choose a direction $i_t \in \{1, 2, ..., d\}$

Uniformly randomly choose $\beta_t \in \{1, -1\}$

Sample $a_t = \mu_t + \delta \beta_t e_{i_t}$

Observe $r_t(a_t)$

Define $g_t = \frac{dr_t(a_t)}{\delta} \beta_t e_{i_t}$

(Nearly) Unbiased Gradient Estimator (3/3)

Choose $z_t \sim \mathcal{D}$ with $\mathbb{E}_{z \sim \mathcal{D}}[z] = 0$

Sample $a_t = \mu_t + z_t$

Observe $r_t(a_t)$

Define $g_t = r_t(a_t)H_t^{-1}z_t$

where $H_t := \mathbb{E}_{z \sim \mathcal{D}}[zz^{\mathsf{T}}]$

Baseline

$$g_t = (r_t(a_t) - b_t)H_t^{-1}z_t$$

Besides controlling the extent of exploration, it also affects the variance of the gradient

Arbitrarily initialize $\mu_1 \in \Omega$

For
$$t = 1, 2, ..., T$$
:

Let $a_t = \Pi_{\Omega}(\mu_t + z_t)$ where $z_t \sim \mathcal{D}$ (assume that $||z_t|| \leq \delta$ always holds)

Receive $r_t(a_t)$

Define

$$g_t = (r_t(a_t) - b_t)H_t^{-1}z_t$$
 where $H_t \coloneqq \mathbb{E}_{z \sim \mathcal{D}}[zz^{\mathsf{T}}]$

Update policy:

$$\mu_{t+1} = \Pi_{\Omega} \left(\mu_t + \eta g_t \right)$$

Continuous Contextual Bandits

Pure policy-based algorithms

	MAB	СВ
VB		
РВ		•

For
$$t = 1, 2, ..., T$$
:

Receive context x_t

Let
$$a_t = \mu_{\theta_t}(x_t) + z_t$$
 where $z_t \sim \mathcal{D}$

Receive $r_t(x_t, a_t)$

Define

$$g_t = (r_t(x_t, a_t) - b_t(x_t))H_t^{-1}z_t$$
 where $H_t := \mathbb{E}_{z \sim \mathcal{D}}[zz^{\mathsf{T}}]$

 $x \longrightarrow \theta \longrightarrow \mu_{\theta}(x)$

Recall:
$$g_t$$
 is an estimator for $\nabla_{\mu} r_t(x_t, \mu) \big|_{\mu = \mu_{\theta_t}(x_t)}$

Update policy:

$$\theta_{t+1} \leftarrow \theta_t + \eta$$
 [an estimator of $\nabla_{\theta} r_t(x_t, \mu_{\theta}(x_t))$ at $\theta = \theta_t$]

For
$$t = 1, 2, ..., T$$
:

Receive context x_t

Let
$$a_t = \mu_{\theta_t}(x_t) + z_t$$
 where $z_t \sim \mathcal{D}$

Receive $r_t(x_t, a_t)$

Define

$$g_t = (r_t(x_t, a_t) - b_t(x_t))H_t^{-1}z_t$$
 where $H_t := \mathbb{E}_{z \sim \mathcal{D}}[zz^{\mathsf{T}}]$

Recall:
$$g_t$$
 is an estimator for $\nabla_{\mu} r_t(x_t, \mu) \big|_{\mu = \mu_{\theta_t}(x_t)}$

Update policy:

$$\theta_{t+1} \leftarrow \theta_t + \eta \nabla_{\theta} \langle \mu_{\theta}(x_t), g_t \rangle |_{\theta = \theta_t}$$

c.f. finite action case
$$\nabla_{\theta} \langle \pi_{\theta}(\cdot | x_t), \hat{r}_t \rangle |_{\theta = \theta_t}$$

 $x \longrightarrow \theta \longrightarrow \mu_{\theta}(x)$

An alternative expression:

When $\mathcal{D} = \mathcal{N}(0, H_t)$, we have

$$\nabla_{\theta} \langle \mu_{\theta}(x_t), g_t \rangle = \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) (r_t(x_t, a_t) - b_t(x_t))$$

$$g_{t} = (r_{t}(x_{t}, a_{t}) - b_{t}(x_{t}))H_{t}^{-1}z_{t} \qquad \pi_{\theta}(\cdot | x_{t}) = \mathcal{N}(\mu_{\theta}(x_{t}), H_{t})$$

$$H_{t} = \mathbb{E}_{z \sim \mathcal{D}}[zz^{\top}]$$

$$a_{t} = \mu_{\theta}(x_{t}) + z_{t} \qquad \pi_{\theta}(a | x_{t}) = \frac{1}{(2\pi)^{\frac{d}{2}} \det(H_{t})^{\frac{1}{2}}} e^{-\frac{1}{2}(a - \mu_{\theta}(x_{t}))^{\top} H_{t}^{-1}(a - \mu_{\theta}(x_{t}))}$$

 $\nabla_{\theta} \log \pi_{\theta}(a_t|x_t)(r_t(x_t,a_t)-b_t(x_t))$ is a general and direct way to construct gradient estimator in the parameter space:

$$V(\theta) = \int \pi_{\theta}(a|x_t) r_t(x_t, a) da$$

$$\nabla_{\theta} V(\theta) = \int \nabla_{\theta} \pi_{\theta}(a|x_t) \, r_t(x_t, a) \, \mathrm{d}a = \int \pi_{\theta}(a|x_t) \frac{\nabla_{\theta} \pi_{\theta}(a|x_t)}{\pi_{\theta}(a|x_t)} r_t(x_t, a) \, \mathrm{d}a$$

Unbiased estimator for $\nabla_{\theta}V(\theta)$:

Sample
$$a_t \sim \pi_{\theta}(\cdot | x_t)$$
 and define estimator $= \frac{\nabla_{\theta} \pi_{\theta}(a_t | x_t)}{\pi_{\theta}(a_t | x_t)} r_t(x_t, a_t) = \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) r_t(x_t, a_t)$

```
For t = 1, 2, ..., T:

Receive context x_t

Let a_t \sim \pi_{\theta_t}(\cdot | x_t)

Receive r_t(x_t, a_t)

Update policy:

\theta_{t+1} \leftarrow \theta_t + \eta \left. \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) \left( r_t(x_t, a_t) - b_t(x_t) \right) \right|_{\theta = \theta_t}
```

PPO

PPO update

$$\theta_{t+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left\{ \frac{\pi_{\theta}(a_t|x_t)}{\pi_{\theta_t}(a_t|x_t)} (r_t(x_t, a_t) - b_t(x_t)) - \frac{1}{\eta} \operatorname{KL} \left(\pi_{\theta}(\cdot | x_t), \pi_{\theta_t}(\cdot | x_t) \right) \right\}$$

$$\approx \underset{\theta}{\operatorname{argmax}} \left\{ \langle \mu_{\theta}(x_t), g_t \rangle - \frac{1}{2\eta \sigma^2} \left\| \mu_{\theta}(x_t) - \mu_{\theta_t}(x_t) \right\|^2 \right\}$$

c.f. PG update

$$\begin{aligned} \theta_{t+1} &\leftarrow \theta_t + \eta \left. \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) \left(r_t(x_t, a_t) - b_t(x_t) \right) \right|_{\theta = \theta_t} \\ &\approx \left. \operatorname{argmax} \left\{ \left\langle \mu_{\theta}(x_t), g_t \right\rangle - \frac{1}{2\eta} \|\theta - \theta_t\|^2 \right\} \end{aligned}$$

Summary for Bandits

3 main challenges in online RL: Exploration, Generalization, (Temporal) Credit Assignment

