07. Functions and recursion

- **7.01.** Write a function which takes three numbers and returns if the smallest one of them is prime.
- 7.02. Write a function which takes a character and returns if the character is either digit or letter.
- **7.03.** Write a function which takes four numbers coordinates of two 2D points $A(x_1,y_1)$, $B(x_2,y_2)$ and returns the distance between A and B.
- **7.04.** Write a function which takes six numbers coordinates of three points in 2D, and returns if they lie on a straight line.
- **7.05.** Write a function which takes three numbers coordinates of a 3D vector, and returns the length of the vector.
- **7.06.** Write a function which by a given real number x and a non-negative integer n returns x raised to the n-th power. Use Karatsuba multiplication method (recursion).
- **7.07.** Write a program which asks the user for a non-negative integer n and gives the n-th number of Fibonacci.
- **7.08.** Write a program which asks the user for a number n and prints the first n numbers of Tribonacci.
- **7.09.** Write a program which asks the user for a non-negative integer n and gives the n-th number of the sequence $a_{n+2} = 5a_{n+1} 6a_n + 6^n$, with $a_0 = 0$ $a_1 = 1$.
- **7.10.** Write a function which takes one integer n and returns n!.
- **7.11.** Write a program which asks the user for the numbers $0 \le k \le n$ and prints the number of combinations $\binom{n}{k}$. Hints: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = C_n^k$, also $C_n^0 = C_n^n = 1$ and $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$.

7.12. Write a function which by given n, finds the number of solutions of the system in natural numbers $\mathbb{N} \cup 0$:

$$\begin{cases} x_1 + x_2 + x_3 + X_4 + x_5 = n \\ x_1 < 10 \\ 1 - \le x_2 < 30 \\ x_4 > 20 \\ x_5 < 30 \end{cases}$$

Example input	Expected output
30	0
31	1
32	5
100	249000

- 7.13. Write a function which takes two integers, which are not all zero, and returns the largest positive integer that divides each of the integers (greatest common divisor). For example, the GCD of 8 and 12 is 4. Use [Euclid's algorithm] (https://en.wikipedia.org/wiki/Euclidean_algorithm "Markdown Tutorial").
- 7.14. Write a function which calculates the value of a given polynomial using [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method "Markdown Tutorial").

github.com/andy489