Einführung in Visual Computing

186.822

Ray Tracing

Surface-Rendering Methods

- polygon rendering methods
- ray tracing
- global illumination
- environment mapping
- texture mapping
- bump mapping

Ray Tracing in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing (.,vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates viewport transformation rasterization pixel stage shading ("fragment shader") raster image in pixel coordinates

Ray Tracing Properties

- highly realistic images
- very time consuming
- multiple light sources
- visible-surface detection
- shadows
- reflections
- transparency

Ray Tracing

primary ray = eye point + $t \cdot (pixel - eye point)$

Shading: Diffuse Shading

$$I_d = xxx$$

 $I_d \dots$ illumination caused by diffuse shading xxx ... any shading model (Phong, Blinn-Phong, Cook-Torrance,...)

Ray Tracing: Shadows

ray = intersection point $+ t \cdot \text{vector to light source}$

$$ray = \mathbf{p} + \mathbf{t} \cdot (\mathbf{s} - \mathbf{p})$$

p ... intersection point

s ... light source position

a light source influences the result only if there is no intersection with 0 < t < 1

Ray Tracing: Shadows and Shading

- shadow ray along ℓ
- \blacksquare ambient light k_aI_a
- diffuse reflection $k_d(\mathbf{n}\cdot\boldsymbol{\ell})$
- ightharpoonup specular reflection $k_s(\mathbf{h}\cdot\mathbf{n})^p$

$$I_{\mathbf{d}} = k_{\mathbf{a}}I_{\mathbf{a}} + k_{\mathbf{d}}(\mathbf{n}\cdot\boldsymbol{\ell}) + k_{\mathbf{s}}(\mathbf{h}\cdot\mathbf{n})^{\mathbf{p}}$$

Ray Tracing: Reflection

$$I_{\mathbf{r}} = k_{\mathbf{r}} \cdot X_{\mathbf{r}}$$

 I_r ... illumination caused by reflection k_r ... reflection coefficient of the material

 X_r ... shading in the reflected direction

Ray Tracing: Reflection Ray

calculation of reflection ray

$$\mathbf{r} + \mathbf{v} = (2\mathbf{n} \cdot \mathbf{v})\mathbf{n}$$

$$\mathbf{r} = (2\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$$

Ray Tracing: Transparency

$$I_t = k_t \cdot X_t$$

 I_t ... illumination caused by transparency k_t ... transparency coefficient of the material X_t ... shading in the transparency direction

 $\sin\theta_1 : \sin\theta_2 = \eta_2 : \eta_1$

Ray Tracing: Transparency Ray

calculation of transparency ray

$$\sin \theta_2 = \frac{\eta_1}{\eta_2} \sin \theta_1$$

$$\mathbf{t} = -\frac{\eta_1}{\eta_2} \mathbf{v} - (\cos \theta_2 - \frac{\eta_1}{\eta_2} \cos \theta_1) \mathbf{n}$$

Ray Tracing: A Complete Shading Method

$$I = I_d + I_r + I_t$$

additional requirement: $k_d + k_r + k_t \le 1$

Ray Tracing: Rays & Ray Tree

primary and secondary rays

 R_3

reflection and refraction ray paths for one pixel

corresponding binary ray tracing tree

Ray Tracing: Basic Algorithm

FOR all pixels \mathbf{p}_0 DO

- 1.trace primary ray from eye e to p_0 find closest intersection p
- 2.FOR all light sources s DO
 trace shadow feeler from p to s
 IF no intersection between p & s
 THEN shading += influence of s
- 3.IF surface of **p** is reflective
 THEN trace **secondary ray**;
 shading += influence of reflection
- 4.IF surface of **p** is transparent
 THEN trace **secondary ray**;
 shading += influence of transparency

Ray Tracing Examples

Ray Tracing Examples

True Global Illumination Example

Requirements for Object Data

(to use them for ray tracing)

- 1. intersection calculation ray \leftrightarrow object must be possible
- 2. surface normal calculation must be possible

- → simple for B-Rep
- > recursive evaluation for CSG

Ray-Surface Intersection

ray equation:

$$\mathbf{p}(\mathbf{t}) = \mathbf{p_0} + \mathbf{t} \cdot \mathbf{d}$$

for primary rays:

$$\mathbf{d} = \frac{\mathbf{p_0} - \mathbf{e}}{\mid \mathbf{p_0} - \mathbf{e} \mid}$$

for secondary rays:

$$d = r$$
 $d = t$

describing a ray with an initial-position vector $oldsymbol{p}_0$ and unit direction vector $oldsymbol{d}$

Ray-Sphere Intersection

parametric ray equation inserted into sphere equation

$$|\mathbf{p} - \mathbf{c}|^2 - R^2 = 0$$

$$|(\mathbf{e} + \mathbf{td}) - \mathbf{c}|^2 - R^2 = 0$$

$$\Delta \mathbf{p} = \mathbf{c} - \mathbf{e}$$

$$\Delta \mathbf{p} = \mathbf{c} - \mathbf{e}$$

$$\mathbf{t^2} - 2(\mathbf{d} \cdot \Delta \mathbf{p})\mathbf{t} + (|\Delta \mathbf{p}|^2 - \mathbf{R^2}) = 0$$

$$\mathbf{t} = \mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^2 - |\Delta \mathbf{p}|^2 + \mathbf{R}^2}$$

$$(d^2 = 1)$$

Ray-Sphere Intersection

 \blacksquare discriminant negative \Rightarrow no intersections

$$t = \mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^2 - |\Delta \mathbf{p}|^2 + R^2}$$

 \rightarrow roundoff errors when $R^2 << |\Delta p|^2$

"sphereflake"

Ray-Sphere Intersection

■ discriminant negative ⇒ no intersections

$$t = \mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^2 - |\Delta \mathbf{p}|^2 + R^2}$$

$$t = \mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{R^2 - |\Delta \mathbf{p} - (\mathbf{d} \cdot \Delta \mathbf{p}) \mathbf{d}|^2}$$

(to avoid roundoff errors when $R^2 << |\Delta \mathbf{p}|^2$)

"sphereflake"

Ray-Polyhedron Intersection

use **bounding sphere** to eliminate easy cases

ray does not hit bounding sphere

→ no intersection with object

further investigation necessary

ray hits bounding sphere but no intersection with object

ray hits bounding sphere and intersection with object

Ray-Polyhedron Intersection

- use bounding sphere to eliminate easy cases
- locate front faces $\mathbf{d} \cdot \mathbf{n} < 0$
- solve plane equation

$$Ax + By + Cz + D = 0$$

$$n = (A, B, C)$$

$$n \cdot p = -D$$

$$n \cdot (e + td) = -D$$

$$t = -\frac{D + n \cdot e}{n \cdot d}$$

Ray-Polyhedron Intersection

intersection point inside polygon boundaries?

perform inside-outside test

→ smallest t to inside point is first intersection point of polyhedron

Ray-Surface Intersection

quadric, spline surfaces:

- parametric ray equation inserted into surface definition
- methods like numerical root-finding, incremental calculations

ray-traced scene with NURBS surfaces and multiple reflection / refraction

Reducing Object-Intersection Calculations

bounding volumes and

Reducing Object-Intersection Calculations

space-subdivision methods

- regular grid
- octree

preprocess:

Reducing Object-Intersection Calculations

space-subdivision methods

- incremental grid traversal
 - 3D Bresenham

processing of potential exit faces

ray traversal through a subregion of a cube enclosing a scene

Incremental Grid Traversal

- lacktriangleq ray direction lacktriangle / ray entry position lacktriangle
- potential exit faces $\mathbf{d} \cdot \mathbf{n_k} > \mathbf{0}$
- normal vectors

$$\mathbf{n_k} = \begin{cases} (\pm 1, 0, 0) \\ (0, \pm 1, 0) \\ (0, 0, \pm 1) \end{cases}$$

check signs of components of d

Incremental Grid Traversal

calculation of exit positions, select smallest t_l.

$$\mathbf{p}_{\mathrm{out},k} = \mathbf{p}_{\mathrm{in}} + \mathbf{t}_{k}\mathbf{d}$$

$$\mathbf{n}_{\mathbf{k}} \cdot \mathbf{p}_{\text{out,k}} = -\mathbf{D}_{\mathbf{k}}$$

$$\mathbf{t}_{k} = \frac{-\mathbf{D}_{k} - \mathbf{n}_{k} \cdot \mathbf{p}_{in}}{\mathbf{n}_{k} \cdot \mathbf{d}}$$

example:
$$\mathbf{n_k} = (1,0,0)$$

$$x_k = -D_k \implies t_k = \frac{x_k - x_0}{x_d}$$

Incremental Grid Traversal

variation: trial exit plane

- perpendicular to largest component of u
- exit point in $0 \Rightarrow$ done
- \blacksquare {1, 2, 3, 4} \Rightarrow side clear
- \blacksquare {5, 6, 7, 8} \Rightarrow extra calc.

sectors of the trial exit plane

Ray Tracing Examples

Ray Tracing Example

1 Billion Ray Traced Triangles

