Artificial Neural Network

AKA. ANN

What artificial neural network is ???

A neural network is a model inspired by the structure and function of biological neural networks in the brains of living organisms.

So far so good, How we can apply the ANN in real life???

Let's Say, you want to predict the value of the lottery.

From The Historical Data of Lottery

$x_1(Date)$	$x_2(Month)$	y(2nd Last Digit)
16	4	98
1	4	81
16	3	26

We're going to build a model that can accurately predict the 2nd last digit of a lottery number.

Let's do Forward Propagation

First at first, Just random the weight and bias.

First at first, Just random the weight and bias.

$$h_1 = (x_1w_1 + x_2w_3) + b_1$$

 $h_1 = ((16)(0.5) + (4)(0.1)) + 4 = 12.4$

$$h_2 = (x_1w_2 + x_2w_4) + b_2$$

 $h_2 = ((16)(-0.3) + (4)(2)) + 2 = 5.2$

$$h_1 = 12.4$$

 $h_2 = 5.2$

$$h_2 = 5.2$$

What if we use matrix for calculation ???

$$[h_1 \quad h_2] = [(x_1w_1 + x_2w_3) \quad (x_1w_2 + x_2w_4)] + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [((16)(0.5) + (4)(0.1)) \quad ((16)(-0.3) + (4)(2))] + [4 \quad 2]$$

$$[h_1 \quad h_2] = [12.4 \quad 5.2]$$

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [12.4 \quad 5.2] \times {2 \brack 3} + [3] = [43.4]$$

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [12.4 \quad 5.2] \times {2 \brack 3} + [3] = [43.4]$$

Let' calculate the loss

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Where: N is numbers of train data

Then, N = 3

$x_1(Date)$	$x_2(Month)$	y(2nd Last Digit)
16	4	98
1	4	81
16	3	26

i	x_1	x_2	у	h_1	h_2	ŷ	$(y_i - \hat{y}_i)$
1	16	4	98	12.4	5.4	43.4	54.6
2	1	4	81				
3	16	3	26				

$$Error = (y_1 - \hat{y}_1)^2 = ((98) - (43.4))^2 = 2981.16$$

End of Iteration: 1 Epoch: 1

$$[h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [1 \quad 4] \times \begin{bmatrix} 0.5 & -0.3 \\ 0.1 & 4 \end{bmatrix} + [4 \quad 2] = [4.9 \quad 9.7]$$

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [4.9 \quad 9.7] \times {2 \brack 3} + [3] = [41.9]$$

i	x_1	x_2	у	h_1	h_2	ŷ	$(y_i - \hat{y}_i)$
1	16	4	98	12.4	5.4	43.4	54.6
2	1	4	81	4.9	9.7	41.9	39.1
3	16	3	26				

$$Error = (y_2 - \hat{y}_2)^2 = ((81) - (41.9))^2 = 1528.81$$

End of Iteration: 2 Epoch: 1

$$[h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [16 \quad 3] \times \begin{bmatrix} 0.5 & -0.3 \\ 0.1 & 4 \end{bmatrix} + [4 \quad 2] = [12.3 \quad 3.2]$$

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [12.3 \quad 3.2] \times {2 \brack 3} + [3] = [41.9]$$

i	x_1	x_2	у	h_1	h_2	ŷ	$(y_i - \hat{y}_i)$
1	16	4	98	12.4	5.4	43.4	54.6
2	1	4	81	4.9	9.7	41.9	39.1
3	16	3	26	12.3	3.2	37.2	-11.2

$$Error = (y_3 - \hat{y}_3)^2 = ((26) - (37.2))^2 = 125.44$$

End of Iteration: 3 Epoch: 1

Time to calculate total loss and do Backpropagation

i	x_1	x_2	у	h_1	h_2	$\widehat{\mathcal{Y}}$	$(y_i - \hat{y}_i)$
1	16	4	98	12.4	5.4	43.4	54.6
2	1	4	81	4.9	9.7	41.9	39.1
3	16	3	26	12.3	3.2	37.2	-11.2

Total Loss

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{3}(54.6^2 + 39.1^2 + (-11.2)^2) = 4635.41$$

Backpropagation

We're going to use **Gradient Descent** to minimize the MSE and update all weights and bias.

Apply Gradient Descent

$$w_{new} = w_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w}$$
 For weights
$$b_{new} = b_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b}$$
 For biases

Given: $\alpha = 0.001$

$$w_{new} = w_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w}$$

$$w_{new} = w_{current} - \alpha \left(\frac{\partial MSE_1}{\partial w} + \frac{\partial MSE_2}{\partial w} + \frac{\partial MSE_3}{\partial w} \right)$$

$$b_{new} = b_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b}$$

$$b_{new} = b_{current} - \alpha \left(\frac{\partial MSE_1}{\partial b} + \frac{\partial MSE_2}{\partial b} + \frac{\partial MSE_3}{\partial b} \right)$$

For weights

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{1}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{2}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{3}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{4}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{5}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{6}}$$

For biases

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{1}} = \begin{bmatrix} \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{1}} \\ \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{2}} \\ \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{3}} \end{bmatrix}$$

$$w_{new} = w_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w}$$

$$b_{new} = b_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b}$$
Find this!!!

Given: $\alpha = 0.001$

 W_5

$$w_{5new} = w_{5current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_5}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{5}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_{5}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_5} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y}_i)^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial w_5}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_5} = -\frac{2}{3} \sum_{i=1}^{n} (y_i - \hat{y}_i) \cdot h_1$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_5} = -\frac{2}{3} [(54.6)(12.4) + (39.1)(4.9) + (-11.2)(8.3)] = -341.65$$

 W_5

$$w_{5new} = 2 - (0.001)(-341.65) = 2.34$$

 W_6

$$w_{6new} = w_{6current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_6}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{6}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_{6}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_6} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y}_i)^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial w_6}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_6} = -\frac{2}{3} \sum_{i=1}^{n} (y_i - \hat{y}_i) \cdot h_2$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_6} = -\frac{2}{3} [(54.6)(12.4) + (39.1)(4.9) + (-11.2)(8.3)] = -345.43$$

 W_6

$$w_{6new} = 3 - (0.001)(-345.43) = 3.35$$

 b_3

$$b_{3new} = b_{3current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_3}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{3}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial b_{3}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_3} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y}_i)^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial b_3}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_3} = -\frac{2}{3} \sum_{i=1}^{n} (y_i - \widehat{y_i})$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_3} = -\frac{2}{3} [(54.6) + (39.1) + (-11.2)] = -55$$

 $\boldsymbol{b_3}$

$$b_{3new} = 3 - (0.001)(-55) = 3.06$$

 W_1

$$w_{1new} = w_{1current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_1}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{1}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial w_{1}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_1} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_1} \cdot \frac{\partial (x_1 w_1 + x_2 w_3 + b_1)}{\partial w_1}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_1} = -\frac{2}{3} \cdot w_5 \sum_{i=1}^{n} (y_i - \widehat{y}_i) \cdot x_1$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_1} = -\frac{2}{3}(2)[(54.6)(16) + (39.1)(1) + (-11.2)(16)] = -978$$

 W_1

$$w_{1new} = 0.5 - (0.001)(-978) = 1.48$$

W_2

$$w_{2new} = w_{2current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_2}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{2}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{2}} \cdot \frac{\partial h_{2}}{\partial w_{2}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_2} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_2} \cdot \frac{\partial (x_1 w_2 + x_2 w_4 + b_2)}{\partial w_2}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_2} = -\frac{2}{3} \cdot w_6 \sum_{i=1}^{n} (y_i - \widehat{y}_i) \cdot x_1$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_2} = -\frac{2}{3}(3)[(54.6)(16) + (39.1)(1) + (-11.2)(16)] = -1467$$

 W_2

$$w_{2new} = -0.3 - (0.001)(-1467) = 1.17$$

W_3

$$w_{3new} = w_{3current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_3}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{3}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial w_{3}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_3} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_1} \cdot \frac{\partial (x_1 w_1 + x_2 w_3 + b_1)}{\partial w_3}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_3} = -\frac{2}{3} \cdot w_5 \sum_{i=1}^{n} (y_i - \widehat{y}_i) \cdot x_2$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_3} = -\frac{2}{3}(2)[(54.6)(4) + (39.1)(4) + (-11.2)(3)] = -454.93$$

 W_3

$$w_{3new} = 0.1 - (0.001)(-454.93) = 0.55$$

 W_4

$$w_{4new} = w_{4current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_4}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w_{4}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{2}} \cdot \frac{\partial h_{2}}{\partial w_{4}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_4} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_2} \cdot \frac{\partial (x_1 w_2 + x_2 w_4 + b_2)}{\partial w_4}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_4} = -\frac{2}{3} \cdot w_6 \sum_{i=1}^{n} (y_i - \widehat{y}_i) \cdot x_2$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial w_4} = -\frac{2}{3}(3)[(54.6)(4) + (39.1)(4) + (-11.2)(3)] = -682.4$$

 W_4

$$w_{4new} = 2 - (0.001)(-682.4) = 2.68$$

$\boldsymbol{b_1}$

$$b_{1new} = b_{1current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_1}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{1}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial b_{1}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_1} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_1} \cdot \frac{\partial (x_1 w_1 + x_2 w_3 + b_1)}{\partial b_1}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_1} = -\frac{2}{3} \cdot w_5 \sum_{i=1}^{n} (y_i - \widehat{y_i})$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_1} = -\frac{2}{3}(2)[(54.6) + (39.1) + (-11.2)] = -110$$

b_1

$$b_{1new} = 4 - (0.001)(-110) = 4.11$$

$\boldsymbol{b_2}$

$$b_{2new} = b_{2current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_2}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b_{2}} = \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_{2}} \cdot \frac{\partial h_{2}}{\partial b_{2}}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_2} = \frac{1}{3} \sum_{i=1}^{n} \frac{\partial (y_i - \hat{y_i})^2}{\partial \hat{y}} \cdot \frac{\partial (h_1 w_5 + h_2 w_6 + b_3)}{\partial h_2} \cdot \frac{\partial (x_1 w_2 + x_2 w_4 + b_2)}{\partial b_2}$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_2} = -\frac{2}{3} \cdot w_6 \sum_{i=1}^{n} (y_i - \hat{y_i})$$

$$\sum_{i=1}^{n} \frac{\partial MSE_i}{\partial b_2} = -\frac{2}{3}(3)[(54.6) + (39.1) + (-11.2)] = -165$$

 $\boldsymbol{b_2}$

$$b_{2new} = 2 - (0.001)(-165) = 2.17$$

End of Epoch: 1

Iteration: 1, Epoch: 2

$$[h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [16 \quad 4] \times \begin{bmatrix} 1.48 & 1.17 \\ 0.55 & 2.68 \end{bmatrix} + [4.11 \quad 2.17] = [29.99 \quad 31.61]$$

Iteration: 1, Epoch: 2

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [29.99 \quad 31.61] \times \begin{bmatrix} 2.34 \\ 3.35 \end{bmatrix} + [3.06] = [179.13]$$

Iteration: 2, Epoch: 2

$$[h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [16 \quad 1] \times \begin{bmatrix} 1.48 & 1.17 \\ 0.55 & 2.68 \end{bmatrix} + [4.11 \quad 2.17] = [28.34 \quad 23.57]$$

Iteration: 2, Epoch: 2

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [28.34 \quad 23.57] \times \begin{bmatrix} 2.34 \\ 3.35 \end{bmatrix} + [3.06] = [148.33]$$

Iteration: 3, Epoch: 2

$$[h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]$$

$$[h_1 \quad h_2] = [16 \quad 3] \times \begin{bmatrix} 1.48 & 1.17 \\ 0.55 & 2.68 \end{bmatrix} + [4.11 \quad 2.17] = [29.44 \quad 28.93]$$

Iteration: 3, Epoch: 2

$$[\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]$$

$$[\hat{y}] = [29.44 \quad 28.93] \times {2.34 \brack 3.35} + [3.06] = [168.86]$$

i	x_1	x_2	у	h_1	h_2	ŷ	$(y_i - \hat{y}_i)$
1	16	4	98	39.99	31.61	179.13	-81.13
2	1	4	81	4.9	28.34	148.33	-67.33
3	16	3	26	29.44	28.93	168.86	-142.86

Total Loss

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{3} ((-81.13)^2 + (-67.33)^2 + (-142.86)^2) = 10508.13$$

Ahhhhh!!!

Time to code in

1. Import Library

2. Define Train|Test Data

2. Define Train|Test Data

Put training data into **DataLoader**

3. Define Model

```
class ANNModeler(nn.Module):
                def __init__(self, input_size, output_size):
                      super(ANNModeler, self).__init__()
                     self.linear1 = nn.Linear(input_size, 2, bias=True)
                     self.linear2 = nn.Linear(2, output_size, bias=True)
                def forward(self, x):
                     out = self.linear1(x)
                     return self.linear2(out)
       ✓ 0.0s
[6]
                                                                                            [h_1 \quad h_2] = [x_1 \quad x_2] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + [b_1 \quad b_2]
                                                                                            [\hat{y}] = [h_1 \quad h_2] \times \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + [b_3]
              Forward propagation
```

4. Setup Loss Function and Optimizer

```
D ~
        losses = []
        model = ANNModeler(2, 1).to(device)
        loss_function = nn.MSELoss()
        optimizer = optim.SGD(model.parameters(), lr=0.000001)
        print(model)
      ✓ 0.7s
[7]
     ANNModeler(
       (linear1): Linear(in_features=2, out_features=2, bias=True)
       (linear2): Linear(in features=2, out features=1, bias=True)
```

Train model using GPU

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$w_{new} = w_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial w}$$

$$b_{new} = b_{current} - \alpha \sum_{i=1}^{n} \frac{\partial MSE_{i}}{\partial b}$$

5. Training Step

```
D ~
      epochs = 1000
      for epoch in range(epochs):
         total_loss = 0
         for (x, y) in train_loader:
            Training data
            model.zero_grad() ___
                                                                         Zero gradient check
            y_hat = model(x)
            loss = loss_function(y, y_hat)
                                                                                Comparing losses
            loss.backward()
            optimizer.step()
                                                                         Backpropagation
            total_loss += loss.item()
         losses.append(total_loss)
    ✓ 2.7s
```

6. Losses Plotting

7. Result Inspection

```
for x, y in zip(testing_x, testing_y):
            # Get predicted vector
            pred = model(torch.tensor(x).to(device))
            print(f"y_true: {int(y.item())}, y_hat: {int(pred.item())}")
     ✓ 0.0s
[12]
    y_true: 3, y_hat: 11
    C:\Users\HashTable\AppData\Local\Temp\ipykernel 18900\76514697.py:3: Use
      pred = model(torch.tensor(x).to(device))
```