Cervical Spine Fracture Detection

Team FineSpine: Himanshu, Aayush, Saurabh

Problem Definition

- There has been a rise in the incidence of spinal fractures in the elderly and in this population, fractures can be more difficult to detect on imaging due to superimposed degenerative disease and osteoporosis.
- Quickly detecting and determining the location of any vertebral fractures is essential to prevent neurologic deterioration and paralysis after trauma.

Me in my 20s with my 63 year old back pain

Proposed Solution

- Creating an application that assists radiologists with Cervical Spine Fracture detection.
- Improve fracture detection accuracy.
- Reduce reporting time.
- Reduce workload.

Project Scope

Proof Of Concept (POC)

- Work on the RSNA kaggle competition
- Perform EDA
- Experiment on some baseline models.
- Compare models on different metrics. (ROC/AUC/Inference)
- Segmentation and Explainable Al

Prototype

- Create a mockup of screens to see how the app could look like
- Deploy one model to Fast API to service model predictions as an API

Minimum Viable Product (MVP)

- Create an app to detect cervical spine fracture
- API Server for uploading CT scan and predicting and segmenting the fracture.

Data

- We are using the data provided by RSNA kaggle challenge
- It has 2019 CT scans(dicom and nii files ~300 GB)
- Label Counts:
 - fractured vertebrae: 1058
 - normal vertebrae: 961

DICOM and **NIFTI** files

.dcm - DICOM file: A DCM file is an image file saved in the Digital Imaging and Communications in Medicine (DICOM) image format. It stores a medical image, such as a CT scan or ultrasound, and may also include patient information to pair the image with the patient.

. nii - NIFTI file format - A nibabel image object is the association of three things:an N-D array containing the image data;a (4, 4) affine matrix mapping array coordinates to coordinates in some RAS+ world coordinate space (Coordinate systems and affines);image metadata in the form of a header.

Data

Input data (.dcm and .nii files) are slices of the vertebrae in axial plane.

7

Data Preprocessing

EDA

Protopapas, Jayaram

- The overall target is roughly balanced (52/48 split).
- C7 has the highest proportion of fractures (19%) whereas
 C3 has the lowest (4%).

AI-5

EDA

- We are only given bounding boxes for a subset of the data. In particular, only 12% of patients in the train set have any bounding box measurements.
- This information is useful in telling us exactly where the fractures have occured.

AI-5

Fracture Detection

Sr. No	Model	Validation Accuracy
1.	Exception	60%
2.	Resnet	55%
3.	EfficientNet	52.8%
4.	ConvNet model v1	61%
5.	ConvNet model v2	47.6%
6.	AlexNet	47.6%

GradCam & Smooth Grad

Fracture Identification

Sr. No	Model	Validation Accuracy
1.	Exception	6%
2.	Resnet	5.2%
3.	EfficientNet	7.6%
4.	ConvNet model v1	13.3%
5.	ConvNet model v2	12.9%
6.	AlexNet	20.5%

Screenflow & Wireframes

AI-5

Solution Architecture

Collect data from Kaggle Data Processing and EDA Process (People) Model training/tuning **Upload dicom files** View prediction and explainability results **Build App** Request customer id and extract customer dicom files **Execution (Code)** from GCP **Apply same preprocessing** steps Use the best model to make prediction Return results to user **Spine Fracture or not** Save images to GCP **Show model explainability** bucket Save model weights **State (Source, Data, Models)** Information on preprocessing

Solution Architecture - Group 18 - FineSpine

Technical Architecture

Wireframe Demo (Figma)

- We have created a simple wireframe for our FineSpine appusing Figma.
- Go to the link
- Click on the clickable tabs (user/admin login) to navigate through the pages
- Press R to go back to the main page
- Click here

Running Containers (localhoast)

Upload Page (Bootstrap)

21

Predict Page (Bootstrap)

Production App

- We used React.js for the production.
- Component based framework
- High Performance

Deployment

Create a standard docker container for deployment

Ansible to automate creating and running GCR, GKE

```
- name: "Build docker images and push them to GCR"
hosts: localhost
gather_facts: false
tasks:
- name: "Get timestamp for docker tag"
    shell: "(date +%Y%m%d%H%M%S)"
    register: tag
- name: Print tag
    debug:
        var: tag
```

Deployment (GCR and GKE)

GCR for storing and versioning of the docker containers.

GKE cluster for Auto Scaling and Self Service.

