MOCU Methodology

Anthony DeGennaro

April 2019

1. Cost and Optimality

- Assume we have a cost function $C(\theta, \psi)$ that quantifies a cost related to our experimental design objective
- Our experimental design, then, is to seek a $\psi_{IBR}^{\Theta} \in \Psi$ that is optimal on average over all Θ w.r.t. this cost:

$$\mathbb{E}_{\theta}[C(\theta, \psi_{IBR}^{\Theta})] \le \mathbb{E}_{\theta}[C(\theta, \psi)] \quad \forall \psi \in \Psi$$

• Of course, if we had perfect knowledge of θ , then we could design a classifier ψ_{θ} for that specific value that would almost certainly be better than ψ_{IBR}^{Θ} . We can quantify this by computing the cost difference between the two choices, averaged over all of Θ , called the MOCU:

$$M_{\Psi}(\Theta) = \mathbb{E}_{\theta}[C(\theta, \psi_{IBR}^{\Theta}) - C(\theta, \psi_{\theta})]$$

where $\psi_{\theta} \in \Psi$ denotes the classifier that is optimal for the particular choice of θ . Thus, we should choose experiments in a way that seeks to minimize this MOCU.

2. Adaptive Experimental Selection

• Given a new piece of data $(x, y) \in (x, y)$, we can compute a new MOCU conditioned on that new piece of information. For ease of notation, let $\xi = (x, y)$, and hence $\mathbb{E}_{\xi}[\cdot]$ refers to the expectation over $\rho(y|x)$ (i.e., the probability that y occurred, given x):

$$M_{\Psi}(\Theta|\xi) = \mathbb{E}_{\theta|\xi}[C(\theta, \psi_{IBR}^{\Theta}) - C(\theta, \psi_{\theta})]$$

• Averaging this over many experiments gives the average conditional MOCU:

$$D_{\Psi}(\Theta, \xi) = \mathbb{E}_{\xi}[M_{\Psi}(\Theta|\xi)]$$

• The experiment x^* that minimizes this quantity is said to be optimal:

$$x^* = \operatorname{argmin}_{x \in X} D_{\Psi}(\Theta, \xi)$$

= $\operatorname{argmin}_{x \in X} \mathbb{E}_{\xi} [\mathbb{E}_{\theta \mid \xi} [C(\theta, \psi_{IBR}^{\Theta}) - C(\theta, \psi_{\theta})]]$

• Because x^* also minimizes the quantity $D_{\Psi}(\Theta, \xi) - M_{\Psi}(\Theta)$, one can show after some algebra that it also minimizes this quantity:

$$x^* = \operatorname{argmin}_{x \in X} \mathbb{E}_{\xi}[\mathbb{E}_{\theta \mid \xi}[C(\theta, \psi_{IBR}^{\Theta \mid \xi})]] - \mathbb{E}_{\theta}[C(\theta, \psi_{IBR}^{\Theta})]$$

• And, because the cost $C(\theta, \psi)$ does not vary with x, we may eliminate it to obtain:

$$x^* = \operatorname{argmin}_{x \in X} \mathbb{E}_{\xi}[\mathbb{E}_{\theta|\xi}[C(\theta, \psi_{IBR}^{\Theta|\xi})]]$$

3. MOCU-Specific Calculus

- The equation for x^* involves the double-nested expectation $\mathbb{E}_{\xi}[\mathbb{E}_{\theta|\xi}[\cdot]]$
- Outer loop: $\mathbb{E}_{\xi}[F] = \int_{\xi} F(\xi) \rho(\xi) d\xi$ where:

$$\rho(\xi) = \mathbb{E}_{\theta}[\rho(\xi|\theta)] = \int_{\theta} \rho(\xi|\theta)\rho(\theta)d\theta$$

Thus, we must know $\rho(\xi|\theta)$ (or be able to sample from it e.g. with a computer model) a priori (assumption)

• Inner loop: $\mathbb{E}_{\theta|\xi}[F] = \int_{\xi} F(\xi) \rho(\theta|\xi) d\xi$ where, by Bayes' law:

$$\rho(\theta|\xi) = \frac{\rho(\xi|\theta)\rho(\theta)}{\rho(\xi)}$$

Thus, we must also know $\rho(\theta)$ (uncertain parameter distribution) a priori (assumption)

4. Software Algorithmic Implementation

inputs:

- (1) enumerable set of discrete values $\Theta = \{\theta_1 \dots \theta_k\}$ with associated probability distribution $\rho(\Theta)$
- (2) enumerable set of discrete actions $\Psi = \{\psi_1 \dots \psi_p\}$
- (3) cost function $C(\theta, \psi)$
- (4) set of experimental choices $X = \{x_1 \dots x_n\}$ with possible outcomes $Y = \{y_1 \dots y_m\}$
- (5) conditional distribution $\rho(Y|X,\Theta)$ (possibly gotten by MC sampling a surrogate)

algorithm (single step of MOCU experimental choice loop):

for all x_i in X:

for all y_j in Y:

Compute $\rho(\theta|x_i=y_j)$ via Bayes with priors $\rho(\theta)$, $\rho(y_j|x_i,\theta)$

Compute $\psi(\Theta|x_i = y_j) = \operatorname{argmin}_{\psi} \mathbb{E}_{\theta|x_i = y_j}[C(\theta, \psi)]$

Compute
$$\omega(x_i = y_j) = \mathbb{E}_{\theta|x_i = y_j}[C(\theta, \psi(\Theta|x_i = y_j))]$$

Compute $\mathbb{E}_{y|x_i}[\omega(x_i)]$ (i.e., averaged over the *m* outcomes in *Y*)

Compute $x^* = \operatorname{argmin}_X \mathbb{E}_{y|x}[\omega(x)]$ (i.e., minimization over the *n* experiments in *X*)

outputs:
$$x^*$$
, $\psi(\Theta|x^*,Y)$, $\rho(\theta|x^*,Y)$

- (1) x^* (optimal experiment)
- (2) $\psi(\Theta|x^*,Y)$ (robust action for every possible outcome of x^*)
- (3) $\rho(\theta|x^*,Y)$ (conditional posterior of θ for every possible outcome of x^*)