148. La valeur de y pour que la distance de la droite d'équation

$$3 x + 4y - 5 = 0$$
 au point A(2, y) soit 5 vaut:

- (B-2011) 5.13 4.11 3.6 1. -112. -6
- 149. Le triangle a pour sommets les points A(0, 9), B(-4, -1) et C(3, 2). La base étant le segment AB, en unités de mesure, la hauteur et la surface valent respectivement:

1.
$$\frac{6\sqrt{10}}{5}$$
 et 12 3. $\frac{37}{5}$ et $\frac{37}{2}$

1.
$$\frac{6\sqrt{10}}{5}$$
 et 12 3. $\frac{37}{5}$ et $\frac{37}{2}$ 5. $13\sqrt{5}$ et 31 2. $\frac{6\sqrt{65}}{13}$ et 15 4. $\sqrt{29}$ et 29 (B-2012)

150. Trois droites d₁, d₂ et d₃ ont pour équations respectives : $(d_1) 4x + y - 1 = 0$; $(d_2) 2x - 5y + 3 = 0$ et $(d_3) x - 3y - 7 = 0$. La droite d est perpendiculaire à di et qui passe par l'intersection de d1 et d2.

(B-2012)

L'équation de d est :
1.
$$y - 4x - 159 = 0$$

2. $4y - x + 24 = 0$
3. $y + 4x + 193 = 0$
4. $4y - x - 24 = 0$
5. $4y + x + 112 = 0$
(B-2012)

1.
$$y - 4x - 159 = 0$$

2.4 $y - x + 24 = 0$