

CS-3002: Information Security

Lecture # 11: Network Security Protocols and Defensive Mechanisms (Firewall, IDS, DNSSEC, DDoS)

Department of Software Engineering FAST-NUCES

This Lecture

- Firewall
- Intrusion Detection System (IDS)
- DNSSEC
- Distributed Denial Of Service (DDoS)

Firewall

Firewall

A firewall is any security system protecting the boundary of an Intranet against the Internet

Tasks of a firewall:

- Access control based on sender or receiver address or on addressed services (i.e. application layer protocol)
- Behavior control, e.g. virus checking on incoming files
- User control, i.e. authentication based on the source of traffic
- · Hiding the internal network, e.g. topology, addresses, etc.
- · Logging of passing traffic

Two fundamental concepts implemented by firewalls are

- Packet filter
- Proxy server

Types of Firewalls

1. Packet Filter

- Analyzing of network traffic and filtering due to certain rules on layer 3 and 4. A filtering can use one or a combination of the following information: source address, destination address, used protocol, connection
- If the firewall is realized in combination with a router, it is also called Screening Router
- Cheap and simple (all types of connections can be controlled), but filtering rules are hard to define (correctly)

2. Proxy Server (Gateway)

- "Controlled access" to a service: the firewall intercepts a requests up to layer 7 and decides, if to forward it to the receiver
- · The proxy is the only computer known to the outer world
- An access control could be done basing on user identity, used protocol, and content
- More possibilities (Logging of detailed information, authentication, ...), but for each application protocol (HTTP, SMTP, FTP, ...) an own proxy is needed

Packet Filter

Two possible principles:

- Everything that is not explicitly allowed, is denied
- Everything that is not explicitly denied, is allowed
- E.g. for your SMTP server with address 137.226.12.67 on port 25 you could define

```
From (IP * ), (port *)

To (IP 137.226.12.67), (port 25)

DENY

From (IP 137.226.12.67), (port 25)

To (IP *), (port *)

ALLOW
```

(I.e.: your mail server can send mails to everybody, but nobody is allowed to send mails to your mail server)

· In the order of their entry, all rules are applied till a matching one is found

Characteristics:

- Fast processing of packets, but only limited control on address level
- Static packet filter only has a fixed set of such rules
- Dynamic packet filter also considers a state:
 - > Deny all packets from outer world
 - Only after a connection establishment from inside (set SYN flag), response packets coming from outside are accepted

Proxy Server

Again two possible types:

Circuit-Level Proxy

- Works on layer 3/4 only (e.g. port numbers)
- Proxy which can be used for each type of application
- The firewall intercepts all connections, thus the network structure is hidden

Application-Level Proxy

- Also checks information on layer 7
- An own proxy is needed for each application protocol (SMTP, FTP, HTTP, ...)
- A user maybe has to authenticate before usage
- Most possibilities, but most expensive

Packet Filter vs Proxy Server

Packet Filter

- + Simple
- + Low cost implementation
- Correctly specifying packet filters is a difficult and error-prone process
- Reordering packet filter rules makes specifying rules correctly even more difficult

Proxy Server

- + User authentication is possible
- + Application protocol control (e.g. virus detection) can be integrated
- + Logging of detailed information
- + Accounting
- Proxy needed for each application protocol (expensive)
- Circuit level proxies are cheaper than application level proxies, but not able to scan application data

Security Architectures

Question: which firewall to install? Where and how to implement it due to the security requirements?

- Personal Firewall
- Dual-Homed Host Firewall
- Screened Hosts Firewall
- Screened Subnet Firewall (Demilitarized Zone)
- Honeypot
- ...

Personal firewall

- Not an own component, but a software installed on a host to protect exactly this host
- Part of operating systems to protect a user's machine at home
- Learning filter which can interact with the user to define filtering rules
- Normally not necessary because even at home the usual DSL router today has an intergrated firewall

Dual-Homed Host Firewall

Simplest implementation: realize packet filter or proxy server as an own machine:

- Machine with two network interfaces
- Routes packets and processes them according to its security rules
- "All-in-one" firewall: can provide packet filter and proxy server
- Clients in the internal network can access services on the Internet either by using a proxy server in the firewall or by logging on to the firewall directly

Screened Hosts Firewall

Introduce another special machine:

- Consists of a screening router and a bastion host on the internal network
- Bastion host: a single machine which provides all publicly accessible servers (e.g. in principle a less protected machine because we need to allow accesses to it)
- Screening router performs packet filtering of incoming Internet traffic
- Screening router sends all permitted incoming traffic to the bastion host, where further access control decision can be made before packets are forwarded to other hosts
- Screening router accepts internal packets only from the bastion host

Demilitarized Zone

Combination of the two former variants:

- All resources which have to be contacted from outside (without restrictions) are placed in an own network segment (DMZ – Demilitarized Zone) instead on a bastion host
- This segment is protected against the Internet only by a simple firewall (usually a screening router for packet filtering of uncritical systems, e.g. web server)
- The private network is protected by a more powerful firewall (dynamic packet filter and/or application-level proxy)

Additional: Honeypot

- Although possible: provide a weak faked server in your DMZ to attract attackers
- The honeypot does heavy logging and provides alarm systems instead of the real application services
- Goal: get knowledge about the attackers

Intrusion Detection

Intrusion Detection

Firewalls...

- do not protect against internal attacks
- do not protect against errors in software
- do not protect against configuration errors
- do not protect against errors of external servers
- do not protect against connection hijacking
- can be eluded
- → Intrusion Detection to deal with these problems

Additionally to a firewall, let run an *Intrusion Detection System* (IDS) in your network to detect against attacks

Needed:

- Monitoring of the network traffic and generate events if something happens (i.e. constantly process a network audit)
- Processing of events, generating alarms
- Defining actions to be taken in presence of certain alarms

Intrusion detection

- Many intrusion detection systems
 - Close to 100 systems with current web pages
 - Network-based, host-based, or combination
- Two basic models
 - Misuse detection model
 - Maintain data on known attacks
 - Look for activity with corresponding signatures
 - Anomaly detection model
 - Try to figure out what is "normal"
 - Report anomalous behavior
- Fundamental problem: too many false alarms

Example: Snort

http://www.snort.org/

From: Rafeeq Ur Rehman, Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache, MySQL, PHP, and ACID.

Snort components

- Packet Decoder
 - input from Ethernet, SLIP, PPP...
- Preprocessor:
 - detect anomalies in packet headers
 - packet defragmentation
 - decode HTTP URI
 - reassemble TCP streams
- Detection Engine: applies rules to packets
- Logging and Alerting System
- Output Modules: alerts, log, other output

Snort detection rules

Snort challenges

- Misuse detection avoid known intrusions
 - Database size continues to grow
 - Snort version 2.3.2 had 2,600 rules
 - Snort spends 80% of time doing string match
- Anomaly detection identify new attacks
 - Probability of detection is low

Difficulties in anomaly detection

- Lack of training data
 - Lots of "normal" network, system call data
 - Little data containing realistic attacks, anomalies
- Data drift
 - Statistical methods detect changes in behavior
 - Attacker can attack gradually and incrementally
- Main characteristics not well understood
 - By many measures, attack may be within bounds of "normal" range of activities
- False identifications are very costly
 - Sys Admin spend many hours examining evidence

DNSSEC

Topic

- Securing Internet naming
 - DNS security extensions (DNSSEC)

Goal and Threat Model

- Naming is a crucial Internet service
 - Binds host name to IP address
 - Wrong binding can be disastrous ...

Goal and Threat Model (2)

- Goal is to secure the DNS so that the returned binding is correct
 - Integrity/authenticity vs confidentiality
- Attacker (Trudy) can intercept/tamper with messages on the network

DNS Spoofing

- Hang on how can a network attacker corrupt the DNS?
- Trudy can trick a nameserver into caching the wrong binding
 - By using the DNS protocol itself
 - This is called DNS spoofing

DNS Spoofing (2)

- To spoof, Trudy returns a fake DNS response that appears to be true
 - Fake response contains bad binding

DNS Spoofing (3)

- Lots of questions!
 - 1. How does Trudy know when the DNS query is sent and what it is for?
 - 2. How can Trudy supply a fake DNS reply that appears to be real?
 - 3. What happens when the real DNS reply shows up?
- There are solutions to each issue ...

DNS Spoofing (4)

- 1. How does Trudy know when the query is sent and what it is for?
- Trudy can make the query herself!
 - Nameserver works for many clients
 - Trudy is just another client

DNS Spoofing (5)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- A bit more difficult. DNS checks:
 - Reply is from authoritative nameserver (e.g., .com)
 - Reply ID that matches the request
 - Reply is for outstanding query
- (Nothing about content though ...)

DNS Spoofing (6)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- Techniques:
 - Put IP of authoritative nameserver as the source IP address
 - ID is 16 bits (64K). Send many guesses! (Or if a counter, sample to predict.)
 - Send reply right after query
- Good chance of succeeding!

DNS Spoofing (7)

- 3. What happens when the real DNS reply shows up?
- Likely not be a problem
 - There is no outstanding query after fake reply is accepted
 - So real reply will be discarded

DNSSEC (DNS Security Extensions)

- Extends DNS with new record types
 - RRSIG for digital signatures of records
 - DNSKEY for public keys for validation
 - DS for public keys for delegation
 - First version in '97, revised by '05
- Deployment requires software upgrade at both client and server
 - Root servers upgraded in 2010
 - Followed by uptick in deployment

DNSSEC (2) – New Records

- As well as the usual A, NS records
- RRSIG
 - Digital signatures of domain records
- DNSKEY
 - Public key used for domain RRSIGs (for validation of signatures)
- DS
 - Public keys for delegated domain
- NSEC/NSEC3
 - Authenticated denial of existence (answer from an authoritative NS that really there is no domain)

DNSSEC (3) – Validating Replies

- Clients query DNS as usual, then validate replies to check that content is authentic
- Trust anchor is root public keys
 - Part of DNS client configuration
- Trust proceeds down DNS hierarchy
 - Similar concept to SSL certificates

DNSSEC (4) – Validating Replies

- Client queries www.uw.edu as usual
 - Replies include signatures/keys
- Client validates answer:
 - 1. KROOT is a trust anchor
 - 2. Use KROOT to check KEDU
 - 3. Use KEDU to check KUW.EDU
 - 4. Use KUW.EDU to check IP

DNSSEC (5)

- Other features too:
 - Authoritative answers a domain record doesn't exist (NSEC/NSEC3)
 - Optional anti-spoofing to bind query and reply
 - Flags related to deployment ...

Summary

- DNS spoofing is possible without added security measures
 - Large problem in practice!
- DNSSEC adds authentication (only) of replies to the DNS
 - Using a hierarchy of public keys

New Record Types:

- •RRSIG: Holds digital signatures for DNS records, proving they are authentic.
- •DNSKEY: The public key used to validate RRSIG signatures.
- •DS (Delegation Signer): Used when delegating domains, providing a secure link to the public key of a subdomain.
- •NSEC/NSEC3: Authenticates "negative answers" (e.g., proving a domain doesn't exist).
- Validation Process:
- •DNSSEC doesn't change how you query DNS but adds a step: clients (or resolvers) validate responses using cryptographic keys.
- •It starts with a **trust anchor** at the root level (the root public key, KROOT).
- •Validation proceeds step by step down the DNS hierarchy, similar to verifying SSL certificates:
 - Root key validates the key of the Top-Level Domain (TLD, e.g., .edu).
 - •TLD key validates the domain key (e.g., uw.edu).
 - •Domain key validates individual record responses (e.g., the IP of www.uw.edu).

DNS Rebinding Attack

[DWF'96, R'01]

DNS Rebinding Defenses

- Browser mitigation: DNS Pinning
 - Refuse to switch to a new IP
 - Interacts poorly with proxies, VPN, dynamic DNS, ...
 - Not consistently implemented in any browser
- Server-side defenses
 - Check Host header for unrecognized domains
 - Authenticate users with something other than IP
- Firewall defenses
 - External names can't resolve to internal addresses
 - Protects browsers inside the organization

DDoS

Topic

- Distributed Denial-of-Service (DDOS)
 - An attack on network availability

Topic

- Distributed Denial-of-Service (DDOS)
 - An attack on network availability

Motivation

- The best part of IP connectivity
 - You can send to any other host
- The worst part of IP connectivity
 - Any host can send packets to you!

Motivation (2)

- Flooding a host with many packets can interfere with its IP connectivity
 - Host may become unresponsive
 - This is a form of denial-of-service

Goal and Threat Model

- Goal is for host to keep network connectivity for desired services
 - Threat is Trudy may overwhelm host with undesired traffic

Internet Reality

- Distributed Denial-of-Service is a huge problem today!
 - Akamai Q3-12 reports DDOS against US banks peaking at 65 Gbps of traffic flooding the bank
- There are no great solutions
 - CDNs, network traffic filtering, and best practices all help

Denial-of-Service

- Denial-of-service means a system is made unavailable to intended users
 - Typically because its resources are consumed by attackers instead
- In the network context:
 - "System" means server
 - "Resources" mean bandwidth (network) or CPU/memory (host)

Host Denial-of-Service

- Strange packets can sap host resources!
 - "Ping of Death" malformed packet (bug the kernel and system crash)
 - "SYN flood" sends many TCP connect requests and never follows up
 - Few bad packets can overwhelm host

- Patches exist for these vulnerabilities
 - Read about "SYN cookies" for interest

Network Denial-of-Service

- Network DOS needs many packets
 - To saturate network links
 - Causes high congestion/loss

 Helpful to have many attackers or Distributed Denialof-Service

Distributed Denial-of-Service (DDoS)

- Botnet provides many attackers in the form of compromised hosts
 - Hosts send traffic flood to victim
 - Network saturates near victim

Complication: Spoofing

- Attackers can falsify their IP address
 - Put fake source address on packets
 - Historically network doesn't check
 - Hides location of the attackers
 - Called IP address spoofing

Spoofing (2)

- Actually, it's worse than that
 - Trudy can trick Bob into really sending packets to Alice
 - To do so, Trudy spoofs Alice to Bob

Best Practice: Ingress Filtering

- Idea: Validate the IP source address of packets at ISP boundary (Duh!)
 - Ingress filtering is a best practice, but deployment has been slow

Flooding Defenses

- 1. Increase network capacity around the server; harder to cause loss
 - Use a CDN for high peak capacity
- 2. Filter out attack traffic within the network (at routers)
 - The earlier the filtering, the better
 - Ultimately what is needed, but ad hoc measures by ISPs today

Acknowledgements

Material in this lecture are taken from the slides prepared by:

- Prof. Dan Boneh (Standford)
- Prof. O. Spaniol (RWTH Aachen)
- Prof. David Wetheral (University of Washington)

