Electronics and Telecommunication Department Course Code: ETU601 Date: 28/01/2016 Time: 10.30-11.30 a.n Course: Electromagnetic Fields Duration: 1Hr Max Marks: 15 CT-I Attempt the following Given the vectors $M = -10a_x + 4a_y - 8a_z$ and $N = 8a_x + 7a_y - 2a_z$. Find a unit vector 1. (03)in the direction of -M + 2N; the magnitude of $5a_x + N - 3M$; |M||2N|(M + N)2. Consider the vector field $G = ya_x + 2.5xa_y + 3a_z$ and the point Q(4,5,2). Find the scalar (03)component of G at Q in the direction of $a_N = \frac{1}{3}(2a_x + a_y - 2a_z)$; the vector component of G at Q in the direction of a_N and the angle between $G(r_Q)$ and a_N 3. Express $D = (x^2 + y^2)^{-1}(xa_x + ya_y)$ in cylindrical coordinate system. (03)Point charges of 50nC each are located at A(1,0,0), B(-1,0,0), C(0,1,0) and D(0,-1,0) in 4. (03)free space. Find the total force on the charge at A. 5. A $2\mu C$ point charge is located at A(4,3,5) in free space. Find E_{ρ} , E_{ϕ} and E_z at P(8,12,2)(03)

Course Code: ETU601

ELECTRONICS AND TELECOMMUNICATION DEPARTMENT Date: 23/01/2017

Course: Electromagnetic Fields

Duration: 1Hr

Time: 10.30-11.30 a.m.

Max. marks: 15

Attempt the following (any FIVE)

<u>CT-1</u>

1	The vector from the origin to	
1	The vector from the origin to point A is given as $(6, -2, -4)$, and the unit vector directed from the origin towards point B is $(2, -2, 1)$ to $(2, -2, 1)$.	03
	the coordinates of point B . Show that the vector fields $A = \cos \theta$. The coordinates of point B .	
2.	Show that the vector fields $4 = agged$	
1	Show that the vector fields $A = \rho cos \phi a_{\rho} + \rho sin \phi a_{\phi} + \rho a_{z}$ and $B = \rho cos \phi a_{\rho} + \rho sin \phi a_{\phi} + \rho a_{z}$	03
<u> </u>	$psinva_0 - pa_z$ are everywhere perpendicular to each other.	
∤3.	A 2 μ C point charge is located at $A(4,3,5)$ in free space. Find E_{ρ} , E_{\emptyset} and E_{z} at $P(8,12,2)$.	03
4.		03
	extending from $r=3$ cm to $r=5$ cm . If $\rho_v=0$ elsewhere. Find the total charge	
	present throughout the shell.	
5.	The cylindrical surface $\rho = 8 cm$ contains the surface charge density,	03
	= -201zl = C (m ²) What is the total amount of charge present?	
-	$p = 0.3r^2a$ nC/m ² in tree space. Find E at $P(r = 2.00)$	03
6.		
	$25^{\circ}, \emptyset = 90^{\circ}$	ليتا

GOVERNMENT COLLEGE OF ENGINEERING, AMRAVATI

(An Autonomous Institute of Govt. of Maharashtra)

Electronics and Telecommunication department

Class test I

Sub: ETU 601 Electromagnetic fields

Marks: 15

Date: 2 Feb, 2015 Solve any three

Q1. Transform the vector field $\mathbf{F}=2\mathbf{r}\cos\varphi\mathbf{a}\mathbf{r}+\mathbf{a}\varphi$ into Cartesian co-ordinates & evaluate it at P (4,-2, 3). Also find \mathbf{a}_F at P. (5M)

Q2.Calculate D in rectangular co-ordinates at P (2,-3, 6) m produced by (5M)

- a) A point charge Q_a =5.4mC at Q(-200,300,-600)cm
- b) A uniform line charge ρ_l =22mC/m on the y-axis.
- c) A uniform surface charge density $\rho_s=126\mu C/m^2$ on the plane z=-8m

Q3. a) Write short note on i) Scalar field ii) Vector field (2+3M)

- Derive the expression for E due to infinite uniform line charge along zaxis
- Q4. a) Find the **E** at $(0,\varphi,h)$ in cylindrical co-ordinates due to the uniformly charged disc $r \le a$, z=0 (disc of radius a in xy plane).
 - b) Give the statement of Gauss's law and obtain relation between D and E.

(3+2M)

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Sixth Semester B. Tech. (Electronics and Telecommunication)

CT1 (2019-2020)

Course Code: ETU601

Course Name: Electromagnetic Fields

Time: 1 Hr

Max. Marks: 15

Instructions to Candidate

Attempt any FIVE of the following.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- the assumptions made.
 3) Diagrams/sketches should be given wherever necessary.
 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
 5) Figures to the right indicate full marks.
 6) All the symbols have their usual meaning.

1.	a)	Given the vectors $M = -10a_x + 4a_y - 8a_z$ and $N = 8a_x + 7a_y - 2a_z$, find: a) a unit vector in the direction of $-M + 2N$; b) the magnitude of $5a_x + N - 3M$;	3	CO1
	b)	c) M 2N (M + N) At point P(-3, -4,5), express that vector that extends from P to Q(2,0,-1) in: a) Rectangular coordinates b) Cylindrical coordinates c) Spherical coordinates	3	CO1

Esnid:

2.	a)	Let $Q_1 = 8\mu C$ be located at $P_1(2,5,8)$ while $Q_2 = -5\mu C$ is at $P_2(6,15,8)$. Let $\varepsilon = \varepsilon_0$. a) Find F_2 , the force on Q_2 b) Find the coordinates of P_3 if a charge Q_3 experiences a total force $F_3 = 0$ at P_3 .	CO2 CO3
	b)	A uniform volume charge density of $0.2\mu C/m^3$ is present throughout the spherical shell extending from $r=3cm$ to $r=5cm$. If $\rho_V=0$ elsewhere, find the total charge present throughout the shell.	CO2 CO3
3.		A point charge of $12nC$ is located at the origin. Four uniform line charges are located in the $x = 0$ plane as follows: $80nC/m$ at $y = -1$ and $-5m$, $-50nC/m$ at $y = -2$ and $-4m$. a) Find D at $P(0, -3, 2)$ b) How much electric flux crosses the plane $y = -3$, and in what direction? c) How much electric flux leaves the surface of a sphere, $4m$ in radius, centered at $C(0, -3, 0)$?	CO2 CO3
b)	sp	acc as $D_V = ZP$ foot $nC/m^3 C$	CO2 CO3