The boundaries between the good and the bad are always blurred

Introduction to classification

What is a classifier?

Binary Multi-Class Multi-Label (Special case)

The basic construct - Rows, Columns and the Labels

	Date	Avg Temperature	Previous Day Rain	Humidity	 Rain or Not		→Features
Day	20-Nov	27	Yes	35%	Yes		
wise rows	21-Nov	29	Yes	40%	No		Labels
	22-Nov	30	No	37%	No		
	23-Nov	28	No	38%	No		

Given data like average temperature (for the first 3 hours), previous day rain, humidity etc predict the rain for the day

The useful probabilities

Date	Avg Temperature	Previous Day Rain	Humidity	 P(Rain)
24-Nov	30	No	38%	80%
25-Nov	30	Yes	42%	10%
26-Nov	31	No	39%	30%
27-Nov	27	No	36%	40%

The different probabilities can help us take more granular action

<10% - Plan for Picnic whole day 10 -30% - Picnic nearby place 30 - 50% - A long walk >50% - Be indoors, finish some work today

Multiclass Problem

	Date	Avg Temperature	Previous Day Rain	Humidity	 Level of Rain		→Features
Day	15-Nov	23	Yes	37%	High		
wise rows	16-Nov	27	Yes	42%	Medium		Labels
	17-Nov	30	Yes	37%	Low		
	18-Nov	28	No	38%	Low		

The useful probabilities

Date	Avg Temper ature	Previou s Day Rain	Humidit y	 P(Low Rain)	P(Med Rain)	P(High Rain)
19-Nov	32	No	38%	10%	70%	20%
20-Nov	32	Yes	42%	90%	3%	2%
21-Nov	30	No	39%	70%	15%	15%
22-Nov	27	No	36%	60%	20%	20%

Case Study 1

Credit card company wants to pre-approve its customers. It has many relevant details about the customers, we need to decide whether they should approve or not

Rows: Customers

Columns: CIBIL score, user location, age, income, gender, income, device etc

Labels: 'Good', 'Bad'

As we start....

- 1. Look at the data Understand the data
- 2. Pay attention to Y labels and distribution
- 3. EDA
- 4. Any quick features that you can think of
- 5. Train test split
- 6. Label encoding
- 7. Model
- 8. Investigate
- 9. Explain

Look at the data

income	age	experience	bureau_score	married	house_ownership	car_ownership	risk_flag	profession
2514921	31.0	4.0	651.0	single	rented	no	0	Psychologist
7047674	28.0	4.0	526.0	single	rented	yes	0	Economist
2749317	30.0	2.0	526.0	single	rented	no	0	Secretary
7378274	24.0	0.0	764.0	single	rented	no	0	Flight attendant
9574585	27.0	5.0	739.0	single	rented	yes	0	Technician

ur Maharashtra	272		
ar manaraonta	4.0	14.0	Oppo
7] Telangana	3.0	13.0	Xiaomi
7] Telangana	2.0	14.0	samsung
ni Andhra Pradesh	0.0	11.0	samsung
al Manipur	5.0	10.0	Vivo
2	Telangana Andhra Pradesh	27] Telangana 2.0 oni Andhra Pradesh 0.0	27] Telangana 2.0 14.0 2.0 14.0 2.0 14.0 2.1 Andhra 2.1 Pradesh 2.0 14.0

- 1. Numeric
- 2. Low level categorical columns
- 3. Problematic Columns high granularity categorical columns

Pay attention to Y-Labels

236567

0

```
1    43433
Name: risk_flag, dtype: int64

0    0.844882
1    0.155118
Name: risk_flag, dtype: float64
```

Slight class imbalance

Expected in real world datasets

Baseline accuracy is at 84%:)

EDA: Exploratory data analysis

- 1. Attempt to explore and understand data
- Univariate Distributions
- 3. Bi-Variate Distributions
- 4. Abnormalities
- 5. Key tipping points or categorical values that determine outcome

EDA

EDA with Sweetviz

Html : here

PDF Annotated: here

Observations

Key trends

- 1 . Age (without outlier), Income, Bureau Score, house years
- 2. Favorable trend for car ownership, married,

EDA - noticing abnormalities

EDA - Granular categories

EDA - Granular Categories

Exercise -

What are the insights you can derive?

Any new features you could think of?

https://docs.google.com/document/d/1YBzdB-crWZLv8t-qbtdZrYc8RB OO27iJf7hngkh_AyA/edit

Plan for features - Categorical

Heuristic way: Based on prior knowledge

Bi-variate plot based:

1. Combine based on frequency and risk propensity (For instance low risk states and high risk states. Low risk professions and high risk professions)

Putting the onus back on the ML model

- 2. Simple Label encoding (use this only with trees) /
- 3. One hot encoding /
- 4. Vectorizers
- 5. Combination (Low granular ones One hot, High granular ones Vectorizers)

Example Label Encoding

	profession	married	house_ownership	car_ownership	city	state
0	23	1	2	0	94	25
1	8	1	2	0	219	18
2	41	1	2	0	131	2
3	17	1	2	0	52	13
4	47	0	1	1	14	14

One hot encode all the variables

	x0_air traffic controller	x0_analyst	x0_architect	x0_army officer	x0_artist	x0_aviator	X
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
4	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	

5 rows × 402 columns

Plan for features: Numeric Processing

Missing Values

- 1. Come up with hard-coded values for each variable (0,1,100,-9999)
- Mean/Median/PX Impute ✓
- Using in XGB ✓

Outliers

- 1. Come up with hard-coded values for each variable
- 2. Capping
- 3. Dropping values
- 4. Using in XGB 🗸

Missing Values Impute Example

income	0	
age	211	
experience	187	
current_job_years	0	
current_house_years	0	
bureau_score	31	
dtype: int64		

	index	Unnamed: 0	income	age	experience	k
501	212332	99856	373948	nan	nan	
1622	38707	99864	1263508	nan	nan	
2605	16703	99893	3001270	nan	nan	
2831	91802	99808	1189098	nan	3.00000	
3065	67802	99808	1189098	nan	3.00000	

	income	age	E
501	373948.00000	26.66658	
1622	1263508.00000	26.66658	
2605	3001270.00000	26.66658	
2831	1189098.00000	26.66658	
3065	1189098.00000	26.66658	

Split Data

In Sample
Out of Sample
Out of time Sample

Random Split

Stratified Split

Process Features after train-test split to avoid leakage

Build Model

Logistic Regression

Random Forest Trees

XGB Trees <

SVM

Features: Selected numeric (Age, Income, Experience, etc) + Label Encoded Categorical (One hot encoding, numeric with imputation)

Label encoded variable: risk_flag

Class Weights: For class imbalance. Risk - 85% vs 15%

ML models are very sensitive to distribution. Class weights penalize misclassification on poorer classes

Investigate: Measure & Measure & Measure

Baseline:

- We need baseline current logic or a naive logic.
- 2. Measurement over baseline

Classification

Confusion Matrix, F1 Score (Macro, Micro)

AUC

AUC PR

Metrics Explained more...

False Positive - We are rejecting customers, when we should not be. Impacts user experience and Growth

$$TPR = TP/(TP+FN)$$

 $FPR = FP/(FP+TN)$

Capturing the 'bad' customers at the cost of 'good'

False Negative- We are accepting customers, when we should be rejecting.

$$F1 = 2*P*R/(P+R)$$

Higher the better

This model is aggressive and if thresholds are not balanced well, it could result in user dissatisfaction

How do we select the model?

Compare the AUCs and AUC PR of different model

AUC = Area under the curve

How do we select the model? - AUC PR

AUC-PR - Single
Value to
measure >
Positive Rate

```
0 0.84530
1 0.15470 Positive Rate
Name: risk_flag, dtype: float64
```

Precision

Explain the model

- 1. Get Feature importances SHAP is proven better to explain
- 2. Find correlations
- Think and see if these make sense
- Are there features that is explaining too much of variation?. What would happen if you drop that variable checkk

Metrics comparing with methods

mode	auc_pr	f1	auc	accuracy	
xgb_im	0.58405	0.67524	0.86704	0.75255	0
xgb_oh	0.41183	0.52425	0.77328	0.56898	0
xg	0.58456	0.67629	0.86746	0.75486	0

Conclusion

Converting the metrics to business related cost function

- 1. False Positives impact user retention?, if so what is the cost.
- 2. False Negatives Higher cost of default

The Model is explainable and no leakage is found

Pay attention to interventions - Hard decline, Decline with reason.

Pilot, Deploy and Listen to users