LUNDS TEKNISKA HÖGSKOLA MATEMATIK

Svar och lösningar, 2012–03–29 Tredimensionell vektoranalys

1 a) Vi finner att $\nabla \cdot \boldsymbol{u} = 1$. Nu ger Gauß sats att flödet ut ur K ges av

$$\iiint_{\partial K} \boldsymbol{u} \cdot d\boldsymbol{S} = \iiint_{K} dx dy dz = \pi.$$

Svar: Flödet är π .

b) Flödet blir noll, ty $\iint_{\partial K} \nabla \times \mathbf{f} \cdot d\mathbf{S} = \iiint_{K} \nabla \cdot \nabla \times \mathbf{f} \, dx dy dz$ och $\nabla \cdot \nabla \times \mathbf{f} = 0$ överallt.

Svar: Flödet är 0.

2. a) Differentialformen udx+vdy+wdz är exakt om det finns en funktion U så att $(u, v, w) = \nabla U$.

Låt U(x, y, z) = 0. Då är tydligen $\nabla U = (0, 0, 0)$, och differentialformen 0 = 0dx + 0dy + 0dz är exakt.

Om en differentialform udx + vdy + wdz är exakt så är $\nabla \times (u, v, w) = (0, 0, 0)$. Sålunda är ydx inte exakt, ty $\nabla \times (y, 0, 0) = (0, 0, -1) \neq (0, 0, 0)$.

b) Vi använder Stokes sats. Låt Y vara den cirkelskiva i π som har γ som rand, och orienterad så att normalen är (1,0,1). Vi har då att

$$\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = \int \int_{Y} \nabla \times \boldsymbol{u} \cdot \boldsymbol{N} dS,$$

där $N = \frac{1}{\sqrt{2}}(1,0,1)$. Sålunda är

$$\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = \int \int_{Y} \sqrt{2} y \, dS.$$

Av symmetri följer nu att $\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = 0$ om (a,b,c) = (1,0,0). (Integranden är inte identiskt noll, men positiva delar tar ut negativa delar.)

Svar: Det blir 0.

c) Vi använder ånyo att

$$\int_{\mathcal{V}} \boldsymbol{u} \cdot d\boldsymbol{r} = \iint_{Y} \sqrt{2} y \, dS.$$

Av symmetri följer att

$$\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = \sqrt{2}b \iint_{Y} dS = \sqrt{2}b\pi$$

Svar: Det blir $\sqrt{2}b\pi$.