

Varianta 071

Subjectul I:

a)
$$d = \sqrt{2}$$
. b) $\left| \frac{1+i}{1-i} \right| = 1$. c) $\cos \frac{\pi}{2} \cdot \sin \frac{\pi}{2} = 0$.d) $\sin x = \frac{\sqrt{3}}{2}$ e) x-y+3z-3=0.f) $x + y = 2$.

Subjectul II:

1. a) 6 functii b)
$$f(g(x)) = x^2$$
.c) $C_5^3 = 10$. d) $\hat{1} + \hat{3} + \hat{5} + ... + \hat{11} = \hat{0}$

e)
$$\hat{x} \in \mathbf{Z}_{12}$$
: $\hat{x^2} = \hat{x} \Rightarrow \hat{x} \in \{\hat{0}, \hat{1}, \hat{4}, \hat{9}\} \Rightarrow P(e) = \frac{4}{12} = \frac{1}{3}$

2. a)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x (1 - \frac{x}{e^x} - \frac{1}{e^x}) = \infty$$
. b) $f'(x) = e^x - 1$.

- c) f''(x)= $e^x > 0$, $(\forall)x \in R => f$ convexă pe **R**.
- d) din (b)=> $f'(x) \ge 0$, $(\forall) x \ge 0$ => f strict crescatoare pe $[0, \infty]$
- e) din f'<0, $(\forall)x < 0$ si d) => f'(0)=0 si isi schimba semnul in vecinatatea lui 0 => x_0 punct de minim local pentru. f

$$=> f(x) \ge 0, (\forall) x \in \mathbf{R} <=> e^x - x - 1 \ge 0, \forall x \in \mathbf{R} <=> e^x \ge x + 1; (\forall) x \in \mathbf{R}$$

Subjectul III:

- a)Verificare
- b) Fie A,B \in *G*

Avem
$$(A \cdot B) \cdot (AB)^t = (AB) \cdot (B^t A^t) = A(BB^t)A^t = AA^t = I_3 si \det(A \cdot B) = \det A \det B > 0 \Rightarrow (AB) \in G, (\forall)A, B \in G$$

c)
$$A \cdot A^{t} = A^{t} \cdot A = I_{3} \Rightarrow A^{-1} = A^{t}$$

d)
$$\det(A \cdot A^t) = \det A \cdot \det A^t = (\det A)^2 \det (A \cdot A^t) = \det I_3 = 1 = 0$$

$$(\det A)^2 = 1, \det A > 0 \Longrightarrow \det A = 1$$

e)
$$\forall A \in G$$
 avem $(A^t - I_3) \cdot A = A^t \cdot A - I_3 \cdot A = I_3 - A$

f) Din e)
$$\det(A^t - !_3) \det A = \det(I_3 - A)$$
 si $\det(A^t - !_3) = \det(A - I_3) = -\det(I_3 - A) = > \det(I_3 - A) = -\det(I_3 - A) = > \det(A - I_3) = 0.$

g) Fie A=
$$\begin{pmatrix} a & b & c \\ m & n & p \\ n & v & t \end{pmatrix} \in G \text{ si } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq O_3, a.i.A \cdot X = X \Leftrightarrow A \cdot X - X = O_3 \Rightarrow$$

sistemul are matricea $(A-I_3) \Rightarrow \det(A-I_3) = 0$. Deoarece sistemul este liniar şi omogen, admite şi solutii diferite de cea banală $\Rightarrow (\forall) A \in G$, $(\exists) X \in M_3(\mathbf{R}) a.i. AX = X$ şi $X \neq O_{3,1}$

Subjectul IV:

a)
$$f_1(x) = [(x^2 - 1)]' = 2x, (\forall) x \in \mathbf{R}$$
.

b)
$$f_2'(x) = 24x$$
.

c)
$$\int_{-1}^{1} f_1(x) dx = 0$$
.

$$d) f_n(x) = \left[(x^2 - 1)^n \right]^{(n)} = (x^{2n} + \dots)^{(n)} = (2n)(2n - 1) \cdot \dots \cdot (n + 1)x^n + \dots \Rightarrow a_n = \frac{(2n)!}{n!}$$

e)
$$f_n(x) = [(x-1)^n (x+1)^n]^{(n)} = [t_n(x)]^{(n)}$$

Functia t_n(x) are pe 1 si pe - 1 radacini multiple de ordinul n, de unde rezulta relatia ceruta.

f) Integram succesiv prin parti:

$$\int_{-1}^{1} f_n(x) \cdot g(x) dx = \int_{-1}^{1} \left[\left(x^2 - 1 \right)^n \right]^{n} \cdot g(x) dx = \int_{-1}^{1} \left[\left(t_n^{(n-1)}(x) \right) \right] \cdot g(x) dx =$$

$$= t_n^{(n-1)}(x) \cdot g(x) \Big|_{-1}^{1} - \int_{-1}^{1} t_n^{(n-1)}(x) \cdot g'(x) dx = 0 - \int_{-1}^{1} \left[\left(t_n^{(n-2)}(x) \right) \right] \cdot g'(x) dx =$$

$$= -t_n^{(n-2)}(x) \cdot g'(x) \Big|_{-1}^{1} + \int_{-1}^{1} t_n^{(n-2)}(x) \cdot g''(x) dx = 0 + \int_{-1}^{1} t_n^{(n-2)}(x) \cdot g''(x) dx = \dots = (-1)^n \int_{-1}^{1} t_n(x) \cdot g^{(n)}(x) dx = 0$$
g) Daca luam $g = h$ in f) avem $g^{(n)}(x) = 0, x \in [-1,1]$, $\text{deci} \int_{-1}^{1} f_n(x) \cdot h(x) dx = 0$.