Unpaired T test

Miaoyan Wang

Department of Statistics UW Madison

Example: Dog bark distance

Table: Bark distance (m)

urban	rural
29	40
10	47
15	38
41	59
18	45
18	52
12	57
45	50
34	50
30	49
22	50
26	43
18	
	1

Notation

- Y_{1i} : Random variable of the *i*th response in the first sample for $i = 1, ..., n_1$.
- Y_{2i} : Random variable of the *i*th response in the second sample for $i = 1, ..., n_2$.
- $\mu_1 = E(Y_{1i})$: Population mean response of the first group.
- $\mu_2 = E(Y_{2i})$: Population mean response of the second group.
- Our goal is to test

$$H_0: \mu_1 = \mu_2$$
 vs. $H_A: \mu_1 \neq \mu_2$.

Assumptions

- #1 The first sample $Y_{11}, Y_{12}, \ldots, Y_{1n_1}$ is an i.i.d. sample of size n_1 from $N(\mu_1, \sigma_1^2)$.
- #2 The second sample $Y_{21}, Y_{22}, \ldots, Y_{2n_2}$ is an i.i.d. sample of size n_2 from $N(\mu_2, \sigma_2^2)$.
- #3 The two samples $\{Y_{1i}\}$ and $\{Y_{2i}\}$ are independent.
- #4 The (unknown) variances are the same $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

Test Statistic

To test

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_A: \mu_1 \neq \mu_2.$$

• The main idea is to consider the difference in mean

$$\bar{Y}_1 - \, \bar{Y}_2,$$

and construct a T-type test statistic

$$\mathcal{T} = \frac{\left(\bar{Y}_1 - \bar{Y}_2\right) - \mathbb{E}_0(\bar{Y}_1 - \bar{Y}_2)}{\sqrt{\textit{Var}(\bar{Y}_1 - \bar{Y}_2)}}.$$

Test Statistic

Under the null hypothesis:

• What is the distribution of \bar{Y}_1 ?

$$ar{Y}_1 \sim \mathcal{N}(\mu_1, rac{\sigma^2}{n_1})$$

• What is the distribution of \bar{Y}_2 ?

$$\bar{Y}_2 \sim N(\mu_2, \frac{\sigma^2}{n_2})$$

• What is the expectation of $\bar{Y}_1 - \bar{Y}_2$?

$$\mu_{\bar{Y}_1 - \bar{Y}_2} = E(\bar{Y}_1 - \bar{Y}_2) = E(\bar{Y}_1) - E(\bar{Y}_2) = \mu_1 - \mu_2$$

• What is the variance of $\bar{Y}_1 - \bar{Y}_2$?

$$\sigma^2_{\bar{Y}_1 - \bar{Y}_2} = Var(\bar{Y}_1) + Var(\bar{Y}_2) = \sigma^2(\frac{1}{n_1} + \frac{1}{n_2})$$

Estimated Variance of $\bar{Y}_1 - \bar{Y}_2$

• If S_p^2 is an estimator of $\sigma^2 = \text{Var}(Y_1) = \text{Var}(Y_2)$, then we can estimate $\sigma^2_{\bar{Y}_1 - \bar{Y}_2}$ by

$$\operatorname{\mathsf{Var}}(ar{Y}_1 - ar{Y}_2) = S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right).$$

• We propose a **pooled variance estimate** of σ^2 :

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2},$$
 where
$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (Y_{1i} - \bar{Y}_1)^2, \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_{2i} - \bar{Y}_2)^2$$

• Interpretation of S_p^2 : A weighted average of the two sample variances, weighted by the d.f.'s.

T Test Statistic

Our goal is to test

$$H_0: \mu_1 = \mu_2 \text{ vs } H_A: \mu_1 \neq \mu_2$$

• Under the H_0 , the test statistic follows t-distribution with $df = n_1 + n_2 - 2$.

$$t = \frac{\bar{Y}_1 - \bar{Y}_2 - 0}{\sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim T_{n_1 + n_2 - 2}.$$

Example: Bark Distance

- From the bark distance data, we have $\bar{y}_1 = 48.33$, $s_1^2 = 38.97$, $n_1 = 12$ and $\bar{y}_2 = 24.46$, $s_2^2 = 118.77$, $n_2 = 13$.
- The pooled sample variance is:

$$s_p^2 = \frac{(12-1) \times 38.97 + (13-1) \times 118.77}{12+13-2} = 80.60$$

• The observed test statistic is:

$$t = \frac{48.33 - 24.46 - 0}{\sqrt{80.60 \left(\frac{1}{12} + \frac{1}{13}\right)}} = 6.642$$

- The degrees of freedom are: df = 12 + 13 2 = 23.
- The p-value is: The p-value is $2 \times P(T_{23} \ge 6.642)$, which is less than 0.002.
- The conclusion is: Reject H_0 at the 5% level. There is very strong evidence that the mean bark distances for rural and urban prairie dogs are different.