ADIABATIC QUANTUM COMPUTATION

Vid Eržen

Advisor: Prof. Dr. Dragan Mihailović

Co-advisor: Dr. Jaka Vodeb

March 2022

Contents

- Introduction
- The algorithm
- The adiabatic theorem
- Encoding problems
 - Example: graph partitioning
- Experimental realization
- Ising spin glasses

Introduction

- Optimization algorithm
- Quantum annealing uses quantum fluctuations - tunneling for escaping local minima.
- Adiabatic quantum computer (AQC) uses adiabatic evolution to find the solution.

The algorithm

- 1. Initialize the system in the ground state of the Hamiltonian $H(0) = H_0$.
- 2. Vary the Hamiltonian for a period T. The final Hamiltonian $H(T) = H_p$ should encode the optimization problem.
- Final state of the system represents the solution of the encoded problem.

Comparison with the gate model

AQC

- Uses only the ground state of a time-dependent Hamiltonian.
- Equivalent to the gate model.

Gate model

- Series of quantum gates to manipulate qubits.
- Uses full Hilbert space.

Adiabatic theorem

- Define $s = t/T \in [0, 1]$.
- Assumptions:
 - b lowest two eigenvalues, $E_0(s), E_1(s)$, do not cross.
 - Zero temperature, isolated system
- $g_{min} = \min_{0 \le s \le 1} E_1(s) E_0(s)$
- System will remain in the instantaneous ground state if

$$T \gg h \max_{s} \frac{\left| \langle E_1; s \middle| \frac{\partial H}{\partial s} \middle| E_0; s \rangle \middle|}{g_{min}^2}$$

Spectrum of $H(s) = (1-s) \sum_i \sigma_i^x + s \sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z$ which is invariant under $\sigma^z \longrightarrow -\sigma^z$. Only eigenvalues from different sectors cross.

Problem Hamiltonian

- Ising Hamiltonian $H_p = \sum_{i < j} J_{ij} \sigma^z_i \sigma^z_j + \sum_i h_i \sigma^z_i$ is used by D-Wave.
 - A lot of optimization problems already translated into this form.
 - $^{\flat}$ Searching for the ground state of H_p is an NP-hard problem for classical computers.

Graph partitioning

- Cut a graph with vertices V and edges E into two partitions of equal size, such that the number of edges between them is minimal.
- We place a spin $\sigma_i^z=\pm 1$ on each vertex. Problem is equivalent to the minimization of

$$H_p = \left(\sum_i \sigma_i^z\right)^2 - \alpha \sum_{(i,j) \in E} \sigma_i^z \sigma_j^z = 2 \sum_{i,j>i} \sigma_i^z \sigma_j^z - \alpha \sum_{(i,j) \in E} \sigma_i^z \sigma_j^z.$$

• H_p is the Ising Hamiltonian with $J_{ij} = \begin{cases} 2 - \alpha; \ (i,j) \in E \\ 2; \ (i,j) \notin E \end{cases}$

Full Hamiltonian

- Initial Hamiltonian requirements:
 - Easily achievable ground state,
 - $^{>}$ Must not include only σ^z operators.
- D-Wave has chosen $H_0 = \sum_i \sigma_i^x$ with the ground state $\prod_i \frac{|0\rangle_i + |1\rangle_i}{\sqrt{2}}$.

D-Wave Systems, D-Wave Annealing implementations and controls

$$H(s) = -A(s) \sum_{i} \sigma_{i}^{x} + B(s) \left[\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right].$$

Complexity of AQC

- System size number of qubits: $n^p; p = 1, 2$ for most NP problems.
- Time complexity: scaling of time it takes to run an algorithm with problem size n:

$$T \gg h \max_{s} \frac{\left| \langle E_1; s \middle| \frac{\partial H}{\partial s} \middle| E_0; s \rangle \right|}{g_{min}^2(n)}$$

Scaling of the gap:

$$J_{ij} = \pm 1 \implies g_{min} \sim 1/n$$

 $J_{ij} = \pm 1 \implies g_{min} \sim 1/n$
 $J_{ij} = \pm 1 \implies g_{min} \sim 1/n$

- For general optimization problems, there is no exponential speedup compared to classical algorithms → improved methods: diabatic, reverse adiabatic computation.
- Polynomial speedup (e.g. Grover's problem: $\mathcal{O}(\sqrt{n})$ unordered list search)

Experimental realization

 D-Wave uses radio-frequency SQUIDs (superconducting quantum interference devices) to implement

$$H(s) = -A(s) \sum_{i} \sigma_{i}^{x} + B(s) \left[\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right].$$

- 5700 qubits: each connected with 15 others.
- 40000 couplers.
- Finite temperature
 (15mK), coupling to
 the environment and
 imperfect qubits
 worsen the results.

D-Wave Systems, D-Wave Annealing implementations and controls

R Harris et al., Physical Review B, vol. 82, no. 2, p. 024511 (2010)

Ising spin glasses

Simulation of Transverse field Ising model (TFIM) on 8x8x8 cubic lattice:

$$H = -\Gamma \sum_{i} \sigma_{i}^{x} + \mathcal{J} \sum_{\langle i,j \rangle} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

- Spin glass: TFIM with $J_{ij} = \begin{cases} -1 \text{ with propability } p \\ 1 \text{ with propability } 1-p \end{cases}$.
- Pause anneal schedule enables fixing parameters on the machine

$$H(s) = -A(s) \sum_{i} \sigma_{i}^{x} + B(s) \sum_{\langle i, j \rangle} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}.$$

R Harris et al., Science, vol. 361, no. 6398, pp. 162–165 (2018)

- Measurement problem:
 - ightharpoonup Duration: $1\,\mu\mathrm{s}$
 - ightharpoonup Energy scale: $h \cdot 10\,GHz$

Ising spin glasses

- Paramagnetic (PM), antiferromagnetic (AFM) and spin glass (SG) phases.
- SG: every instance $\{J_{ij}\}$ has many different approximate ground states. We determine the phase of the system by averaging results (e.g. magnetization) over many instances.
- Critical values $\Gamma_c,\,T_c,\,p_c$ agree with numerical data up to a few percent (less than 1% for $p_c=0.22$)

R Harris et al., Science, vol. 361, no. 6398, pp. 162-165 (2018)

Conclusion

- Optimization algorithm, can be used to simulate physics
- Theoretically equivalent to the gate model
- Usable in practice
- Ising Hamiltonian as the problem Hamiltonian
- $T = \mathcal{O}(g_{min}^{-2})$:
 - Only polynomial speedup compared to classical computation.