

Lecture 04 – Dot product and applications

Recap

- Geometric & algebraic meaning of a n-vector
- Formula for magnitude of a vector
- Vector is always column vector for convenience
- Scalar multiplication, vector addition, & subtraction
- Averaged vector is centroid vector
- Subtraction gives difference vector.
- Magnitude of difference vector is distance between vectors
- Word count vector
- Dot product projection link
- Leads to single number for similarity in n-dimensions

Mandatory Homework for today

- •Read:
 - To read entire chapter 1 from Stephen Boyd
 - Except linear combination
- •Solve:
 - Work out a few problems at end of Chapter 1
- •Incentive for solving the chapter end problems:
 - Your exam problems will be of this type

Approach

- Keep slide deck handy while reading book chapter
- Cursory look at minor topics skipped in lecture
 - E.g. Properties of vector addition, subtraction
- **Prove** $(a+b)^T(c+d) = a^Tc + a^Td + b^Tc + b^Td$
- Understand the formulas intuitively
- •Focus on examples in book and slide deck
 - Your exam problems will be like examples and chapter end problems

1. Dot product intuition & examples

Dot Product (Inner product) definition

Dot product of two vectors a and b

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- •Two interpretations:
- Measures the projection of one vector on another
- Single number measure of 2-vector similarity in higher dimension

Standard unit vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$e_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Some dot product examples

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \quad a^T a = a_1 * a_1 + a_2 * a_2 + \dots + a_n * a_n \\ = a_1^2 + a_2^2 + \dots + a_n^2 \\ = \|a\|^2 \qquad \Longrightarrow \|a\| = \sqrt{a^T a}$$

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$e_1^T a = 1 * a_1 + 0 * a_2 + 0 * a_3 = a_1$$

$$e_i^T a = a_i$$

Picks out the ith entry of vector a

Some dot product examples (contd.)

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \qquad \mathbf{1}^T a = 1 * a_1 + 1 * a_2 + \dots + 1 * a_n \\ = a_1 + a_2 + \dots + a_n$$

Sum of vector entries

Average of vector entries

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \qquad \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \qquad \frac{1}{n} \mathbf{1}^T a = \frac{1}{n} (a_1 + a_2 + \dots + a_n)$$

Dot product toy applications

Given Price & quantity vectors

$$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \quad q = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix} \quad p^T q = \quad p_1 * q_1 + p_2 * q_2 + \ldots + p_n * q_n$$
•Total cost of goods

$$p_1 * q_1 + p_2 * q_2 + \dots + p_n * q_n$$

Evaluating a polynomial x=b

Evaluating a polynomial x=D
$$p(x) = a_1 * x + a_2 * x^2 + \ldots + a_n * x^n = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \ c = \begin{bmatrix} b \\ b^2 \\ \vdots \\ b^n \end{bmatrix}$$

$$p(x) = a^T c$$

$$10$$

1. Dot product usage

Real world example snippets of applying dot product

- Reminder: Your exam problems are of this type
- Some examples worked out on the board today
 - Make notes
- Expected value of discrete probability distribution
- *Hypothesis function of Linear regression & prediction
 - Matrix vector multiplication
 - Neural network single unit in a layer
 - Anomaly detection in log file messages using cooccurrence vectors

