WSTĘP DO SZTUCZNEJ INTELIGENCJI

*Ćwiczenie 5 – Algorytm Q-learning*JAKUB KWAŚNIAK 331396

Wstep

- 1. Zaimplementować algorytm Q-learning, a następnie użyć go do wytrenowania agenta rozwiązującego problem Cliff Walking https://gymnasium.farama.org/environments/toy_text/cliff_walking/
- 2. Stworzyć wizualizację wyuczonej polityki i umieścić ją w sprawozdaniu. Wzór wizualizacji https://gymnasium.farama.org/tutorials/training_agents/FrozenLake_tuto/#visualization
- 1. Zaimplementowany został zachłanny algorytm Q-learning (Epsilon-Greedy), który wyznacza najlepszą dla siebie akcję w danym stanie według formuły Bellmana:

Bellman's Equation:

```
Update Q(s,a) := Q(s,a) + Ir [R(s,a) + gamma * max Q(s',a') - Q(s,a)]
delta = [R(s,a) + gamma * max Q(s',a') - Q(s,a)]
Q(s,a) := Q(s,a) + Ir * delta
```

w prostych przypadkach takich jak cliff walking często w pierwszych epizodach (kiedy świat nie jest jeszcze oceniony) max Q(s',a') == Q(s,a) więc gamma nie powinna być równa 1

W zaimplementowanym środkowsiku z pakietu gymnasium nagrody są nas†epujące:

Każdy krok -> -1

Dojście do celu -> 0

Spadnięcie z klifu -> -100

Dlatego ustawienie gamma=1 uniemożliwiłoby algorytmowi ocene środowiska I naukę dobrej taktyki

Użycie Epsilon – Greedy pozwala w pewnym stopniu rozwiązać problem "Exploration-exploitation dilemma" – jako parametr epsilon przyjmuje wartość będącą prawdopodobieństwem eksploracji, zwyczajowo jest to mała wartość by uczeń mógł eksploatować najlepszą znalezioną część środowiska a jednocześnie czasami eksplorował resztę środowiska i nie zamykał się na inne możliwości – może znajdzie równie dobrą lub lepszą część środowiska.

Eksperyment 1:

Qtable

Cumulative Rewards

Eksperyment 2:

Qtable

Cumulative Rewards

1.1	2 20404202	2 20205000	2 20724161	2 204015461
ιi	-3.30404283	-3.30285886	-3.30724161	-3.30481546]
į	-3.29949508	-3.29579959	-3.29755676	-3.3028931]
Ţ	-3.28993866	-3.28380758	-3.28382005	-3.29386627]
[-3.27349714	-3.26535106	-3.26623946	-3.27818769]
[-3.24770803	-3.23805532	-3.23820355	-3.26916839]
[-3.21845516	-3.19815318	-3.19848691	-3.22871627]
[-3.16761751	-3.14083524	-3.14091436	-3.20263571]
Ī	-3.10978442	-3.05863626	-3.05873024	-3.1365486]
	-3.00139488	-2.94108126	-2.94109053	-3.07208961]
] [-2.88122739	-2.77306742	-2.77307537	-2.9368804 1
	-2.69128056	-2.53299655	-2.53299262	-2.77875136]
ŀ	-2.29597689	-2.28138357	-2.18999999	-2.439912291
Ļ	-3.30831945	-3.301037	-3.301037	-3.308481931
Ļ	-3.30326102	-3.28719571	-3.28719571	-3.308709831
Ļ				
Ļ	-3.29250852	-3.26742244	-3.26742244	-3.29964667]
ŗ	-3.27847186	-3.23917492	-3.23917492	-3.28485522]
Ĺ	-3.25908415	-3.19882131	-3.19882131	-3.26642959]
Į	-3.2328314	-3.1411733	-3.1411733	-3.23328171]
[-3.19525134	-3.058819	-3.058819	-3.19228358]
]]]]	-3.13435293	-2.94117	-2.94117	-3 . 12953143]
[-3.05127697	-2.7731	-2.7731	-3.0545467]
[-2.91942065	-2.533	-2.533	-2.92703244]
]	-2.75461334	-2.19	-2.19	-2.74774221]
]]]]	-2.50463882	-2.18438753	-1.7	-2.476284051
Ī	-3.3107259	-3.28719571	-3.3107259	-3.301037 l
i	-3.301037	-3.26742244	-102.3107259	-3.301037]
i	-3.28719571	-3.23917492	-102.3107259	-3.28719571
į	-3.26742244			-3.26742244]
j	-3.23917492	-3.1411733	-102.3107259	-3.239174921
į	-3.19882131	-3.058819	-102.3107259	-3.19882131]
į	-3.1411733	-2.94117	-102.3107259	-3.1411733]
į	-3.058819	-2.7731	-102.3107259	-3.058819]
ť	-2.94117	-2.7731 -2.533	-102.3107259	-2.94117]
į	-2.94117 -2.7731	-2.555 -2.19	-102.3107259	-2.9411/] -2.7731]
ļ				
	-2.533	-1.7	-102.3107259	
]	-2.19	-1.7	-1.	-2.19]
	-3.301037	-102.3107259	-3.3107259	-3.3107259]
[0.	0.	0.	0.]
Ī	0.	0.	0.	0.]
]	0.	0.	0.	0.]
Ī	0.	0.	0.	0.] 0.] 0.] 0.] 0.] 0.] 0.] 0.]
]	0.	0.	0.	0.]
Ī	0.	0.	0.	0.]
[0.	0.	0.	0.]
[0.	0.	0.	0.]
Ī	0.	0.	0.	0.]
ĵ	0.	0.	0.	0. j
í	0.	0.	0.	ø. jj
_ •				

	Episodes	Rewards	Steps	cum_rewards	map_size
0	0	-1498.0	310.0	-1498.0	4x12
1	1	-893.0	299.0	-2391.0	4x12
2	2	-52.0	52.0	-2443.0	4x12
3	3	-48.0	48.0	-2491.0	4x12
4	4	-45.0	45.0	-2536.0	4x12
39995	1995	-13.0	13.0	-102033.0	4x12
39996	1996	-13.0	13.0	-102046.0	4x12
39997	1997	-15.0	15.0	-102061.0	4x12
39998	1998	-13.0	13.0	-102074.0	4x12
39999	1999	-15.0	15.0	-102089.0	4x12

Eksperyment 3:

Q-Learning - Ir: 0.9, gamma: 0.5, epsilon: 0.2, epochs: 2000, n_runs: 20 Learned Q-values

Qtable

Cumulative Rewards

ı	1	-1.99992895	-1.99987792	-1.99987793	-1.99991949	1
Į					-1.99991949	
ı			-1.99975586	-1.99975586		
ı		-1.99972761	-1.99951172	-1.99951172	-1.99984119	
ı	. !	[-1.99945005 [-1.99896332 [-1.99798912	-1.99902344	-1.99902344	-1.99963212	
ı	ļ	_1.99896332	-1.99804687	-1.99804688	-1.99932922	
ı			-1.99609375	-1.99609375	-1.99890351	
ı	١	[-1.99571417	-1.9921875	-1.9921875	-1.99799439	
ı		[-1.99145251	-1.984375	-1.984375	-1.99560304	
ı	١	[-1.98279157	-1.96875	-1.96875	-1.99200894	
ı		-1.9666849	-1.9375	-1.9375	-1.98067256	
ı		[-1.93282019	-1.875	-1.875	-1.96640919	9]
ı		[-1.93282019 [-1.86616634	-1.86101123	-1.75	-1.92456297	7]
ı			-1.99975586	-1.99975586	-1.99987793	3]
ı	İ	[-1.99993879 [-1.99987793 [-1.99975586	-1.99951172	-1.99951172	-1.99987793	3]
ı	i	-1.99975586	-1.99902344	-1.99902344	-1.99975586	51
ı	i	-1.99951172	-1.99804688	-1.99804688	-1.99951172	
ı	i	-1.99902344	-1.99609375	-1.99609375	-1.99902344	
ı	i	-1.99804687	-1.9921875	-1.9921875	-1.99804687	
ı	i	-1.99609375	-1.984375	-1.984375	-1.99609375	
ı	i	-1.9921875	-1.96875	-1.96875	-1.9921875	
ı	·	[-1.9921875 [-1.984375	-1.9375	-1.9375	-1.984375	í
ı	·	[-1.96875	-1.875	-1.875	-1.96875	1
ı	·	[-1.96875 [-1.9375 [-1.87499896	-1.75	-1.75	-1.93749996	:1
ı	·	-1.9373 -1.87499896	-1.75 -1.75	-1.73 -1.5	-1.93749990 -1.875	'¦
ı	·	[-1.99987793	-1.99951172	-1.99987793	-1.99975586	:1
ı		[-1.99967793 [-1.99975586		-1.99967793	-1.99975586	
ı						
ı		-1.99951172		-100.99987793	-1.99951172	
ı		-1.99902344	-1.99609375		-1.99902344	
ı		-1.99804688	-1.9921875	-100.99987793	-1.99804688	
ı		-1.99609375	-1.984375	-100.99987793	-1.99609375	
ı	ļ	-1.9921875	-1.96875	-100.99987793	-1.9921875	
ı	ļ	_1.984375	-1.9375	-100.99987793	-1.984375	j
ı	ļ	[-1.9921875 [-1.984375 [-1.96875 [-1.9375 [-1.875	-1.875	-100.99987793	-1.96875	j
ı	١	[-1.9375	-1.75	-100.99987793	-1.9375]
ı			-1.5	-100.99987793	-1.875]
ı	١	[-1.75	-1.5	-1.	-1.75]
ı			-100.99987793	-1.99987793	-1.99987793	3]
ı		[0. [0.	0.	0.	0.]
ı			0.	0.	0.]
Į		[0. [0.	0.	0.	0.]
Į		[0.	0.	0.	0.]
ı		[0.	0.	0.	0.]
Į		[0.	0.	0.	0.]
Į		[0. [0. [0.	0.	0.	0.]
ı		0.	0.	0.	0.	i
Į		[0. [0.	0.	0.	0.	i _
Į		[0 .	ő.	0.	ő.	i _
ı	i		ő.	ő.	ő.]]]]]]

	Endandos	Daysanda	Ctono		
	Episodes	Rewards	Steps	cum_rewards	map_size
0	0	-1807.0	520.0	-1807.0	4x12
1	1	-27.0	27.0	-1834.0	4x12
2	2	-215.0	116.0	-2049.0	4x12
3	3	-179.0	80.0	-2228.0	4x12
4	4	-48.0	48.0	-2276.0	4x12
39995	1995	-130.0	31.0	-221996.0	4x12
39996	1996	-229.0	31.0	-222225.0	4x12
39997	1997	-13.0	13.0	-222238.0	4x12
39998	1998	-17.0	17.0	-222255.0	4x12
39999	1999	-15.0	15.0	-222270.0	4x12
39997 39998	1997 1998	-13.0 -17.0	13.0 17.0	-222238.0 -222255.0	4x12 4x12

Obserwacje i wnioski

- 1. Stan 35 w którym odnotować można najwięcej wykonanych kroków/akcji podczas treningu to stan początkowy, w którym gracz/uczeń pojawia się zaczynając epizod, natomiast stan 24, który ma równie wysoką liczbę odwiedzin to jedyny stan do którego można przejść ze stanu początkowego (nie wpadając z klifu), są to dwa kroki które uczeń musi zrobić by kontynuować naukę. Najczęściej odwiedzane stany są w przedziale 24-36, czyli stany bliskie klifu reprezentujące najlepszą ścieżkę. Pokazuje to że uczeń w trakcie treningu uczył się najlepszej ścieżki i eksploatował jej możliwości z niewielką eksploracją pozostałych miejsc.
- 2. Również najczęściej podejmowane przez ucznia akcje to pójście w prawo, co jest zgodne z wizualizacją na heatmap (średnio w większości stanów z oceny środowiska wychodzi, że największą wygraną (tu: jako najmniejszą stratę) zapewni pójście w lewo)
- 3. Współczynnik gamma (w kodzie: discount_factor) wpływa na to jak istotny w ocenie wybranej akcji/przejścia ze stanu s0 -> s1 jest nagroda jaką można dostać robiąc krok s1->s2. W skrócie powinna być gamma != 1 jeśli gamma byłaby równa 1 to algorytm nie brałby w ogóle pod uwagę przy wyborze przejścia przyszłych możliwych nagród, z kolei nawet przy dosyć niskim współczynniku gamma (jak gamma=0.5) a odpowiednio dobranych pozostałych hiperparametrach algorytm w niewielkim stopniu modyfikuje q-table (Eksperyment 3) a jest w stanie nauczyć się najelpszej strategii.
- 4. Algorytm Q-learning jest dobrym wyborem w przypadku rozwiązywania niezbyt skomplikowanych problemów w prostych środowiskach np. w takim jak Cliff Walking, dodatkowo w małych środowiskach nauka jest bardzo szybka. Uczeń 'zapamiętuje' najlepszą ścieżkę (jako wartości qtable) i podczas każdego epizodu/epoki modyfikuje ją na podstawie nowych 'obserwacji' w ten sposób wyznaczając optymalne rozwiązanie. Natomiast algorytm nie dałby dobrych rezultatów w bardziej złożonych problemach gdzie np. środowisko modyfikuje się w każdej epoce.