Lecture 8 – Pandas, matplotlib

Mr. Yousif G. Arshak
University of Zakho
Computer Science Department
yousif.arshak@uoz.edu.krd

OUTLINES

- Pandas
 - Access rows and columns in DataFrame
 - Dropna and fillna
 - Operations
- Matplotlib

Access DataFrame index

import pandas as pd
import numpy as np
from numpy.random import randn
np.random.seed(101) # to get the same random numbers
df = pd.DataFrame(randn(5,4),['A','B','C','D','E'], ['W','X','Y','Z'])
print(df)

Access columns

- Access one column
 - df['W']
- Access list of Columns
 - df[['W','Y']]

Access rows

- Access one row
 - df.loc['A']
- Access list of rows
 - df.loc[['A','B']]

Access rows and columns by index

- Access one column
 - df.iloc[:,0]
- Access one row
 - df.iloc[0,:]
- Access one cell
 - df.iloc[0,0]
- Access number of rows and columns
 - df.iloc[0:2,1:3]

Missing Data

- In pandas we use dropna() to remove any rows or columns with non values
- d={'A':[1,2,np.nan],'B':[3,np.nan,np.nan],'C':[1,2,3]}
- df=pd.DataFrame(d)
- df.dropna()

 A B C

 0 1.0 3.0 1

Df.dropna() By default any rows with non value will be removed, we can remove columns: Df.dropna(axis=1)

Drop any rows with two or more missing values

df.dropna(thresh=2)

Α	В	С	
0	1.0	3.0	1
1	2.0	NaN	2

Fill in non values

• df.fillna(999)

	C	В	Α
1	3.0	1.0	0
2	999.0	2.0	1
3	999.0	999.0	2

df.fillna(df.mean())

A	В	C	
0	1.0	3.0	1
1	2.0	3.0	2
2	1.5	3.0	3

Operations

• df.head(2)

	col3	col2	col1	
abc	44	1	0	
def	55	2	1	

- df['col2'].unique() #array([44, 55, 66], dtype=int64)
- df['col2'].nunique() #3
- df['col2'].value_counts()

```
#55 2
66 1
44 1 Name: col2, dtype: int64
```

- df['col1'].sum() #10
- def times(x):return x*2

- df['col1'].apply(times)

Drop Rows and Columns

- Drop row by inded
 - df.drop(0)
- Drop Column
 - df.drop('col1',axis=1) #use inplace = True to remove from its source

Sorting

df.sort_values('col2')

13

Matplotlib

- It's the most famous plotting library for python
- It gives you control over every aspect of a figure
- To install it use the below code
 - Python –m pip install matplotlib
 - Or
 - Coda install matplotlib
- To know more check out matplotlib.org

example

- import matplotlib.pyplot as plt
- %matplotlib inline # to show the figures inside jupyter notebook
- import numpy as np
- x=np.linspace(0,5,11)
- y=x**2
- #Functional method to show figures
- plt.plot(x,y)
- plt.show() # to printing out figure

#Functional method to show figures

plt.plot(x,y)
plt.xlabel('X Label')
plt.ylabel('Y Label')
plt.title('Test figure')

Showing multiple plot

- plt.subplot(1,2,1)
- plt.plot(x,y,'r')
- plt.subplot(1,2,2)
- plt.plot(y,x,'g')

plt.subplot(number of row, number of column, plot position)

Object Oriented method to show figures

- fig = plt.figure()
- axes = fig.add_axes([0.1,0.1,0.8,0.8])

fig.add_axes([left,bottom,width,height])

- fig = plt.figure()
- axes = fig.add_axes([0.1,0.1,0.8,0.8])
- axes.plot(x,y)
- axes.set_xlabel('X Label')
- axes.set_ylabel('Y Label')
- axes.set_title('Test figure')

Nested figures

- fig = plt.figure()
- $axes1 = fig.add_axes([0.1,0.1,0.8,0.8])$
- axes1.plot(x,y)
- $axes2 = fig.add_axes([0.2,0.5,0.4,0.3])$
- axes2.plot(y,x)

Rows and columns

fig,axes = plt.subplots(nrows=1,ncols=2)

fig,axes = plt.subplots(nrows=1,ncols=2)
axes[0].plot(x,y)

axes[0].set_title('first plot')

axes[1].plot(y,x)
axes[1].set_title('second plot')

- fig,axes = plt.subplots(nrows=1,ncols=2)
- axes[0].plot(x,y, label='X line')
- axes[0].set_title('first plot')
- axes[0].legend(loc=0)
- axes[1].plot(y,x, label='Y line')
- axes[1].set_title('second plot')
- axes[1].legend(loc=4)

- fig,axes = plt.subplots(nrows=1,ncols=2)
- axes[0].plot(x,y, label='X line', color='red',linewidth=4)
- axes[0].set_title('first plot')
- axes[0].legend(loc=0)

- axes[1].plot(y,x, label='Y line', color='#00AABB', linewidth=2)
- axes[1].set_title('second plot')
- axes[1].legend(loc=4)

- fig,axes = plt.subplots(nrows=1,ncols=2)
- axes[0].plot(x,y, label='X line', color='red',linewidth=4, alpha=0.6)
- axes[0].set_title('first plot')
- axes[0].legend(loc=0)
- axes[1].plot(y,x, label='Y line', color='#00AABB', linewidth=2, alpha=0.3)
- axes[1].set_title('second plot')
- axes[1].legend(loc=4)

- fig,axes = plt.subplots(nrows=1,ncols=2)
- axes[0].plot(x,y, label='X line', color='red', linestyle='--')
- axes[0].set_title('first plot')
- axes[0].legend(loc=0)

- axes[1].plot(y,x, label='Y line', color='#00AABB', ls='dotted')
- axes[1].set_title('second plot')
- axes[1].legend(loc=4)

Marker attribute

fig = plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.plot(x,y, ls='dashed', label='Y line', color='#00AABB',

marker='X',markersize=10)

fig = plt.figure()

 $ax=fig.add_axes([0,0,1,1])$

ax.plot(x,y, ls='dashed', label='Y line',lw=1,color='#00AABB', marker='o',

markersize=20, markerfacecolor='yellow', markeredgewidth=3,

markeredgecolor='green')

Scatter

fig = plt.figure()
ax=fig.add_axes([0,0,1,1])
ax.scatter(x,y)

