Assignment 6 -- Tuning

Initial Rounds Sweep

First, I did a hyperparameter sweep over the number of rounds for ADABoost to use, with maxDepth = 2.

rounds	accuracy	lower bound	upper bound	runtime
5	0.838845	0.837295	0.840395	51.8927
10	0.849143	0.847633	0.850652	96.5881
20	0.85136	0.849861	0.85286	174.495
50	0.855083	0.853599	0.856568	404.734
100	0.856786	0.855309	0.858263	774.219
200	0.857697	0.856224	0.85917	1426.38
1000	0.85948	0.858014	0.860945	5973.96
2000	0.864193	0.862748	0.865637	11860.1

The accuracy does seem to continue to improve at very high values of rounds, but considering the time tradeoff and the accuracy bounds, 50 seems like the best hyperparameter from this sweep moving forward

(lower bound is greater than the upper bound at 20 rounds, upper bound is greater than the lower bounds at both 100 and 200 rounds).

Exploring the use of numeric features

Exploring Normalization

Even though numeric feature normalization is specifically useful for logistic regression, I first quickly investigated whether normalization would make a difference in the boosted tree fitting process (it doesn't, as expected.)

Here is the table and chart with maxDepth = 2

rounds	accuracy	lower bound	upper bound	runtime
5	0.838845	0.837295	0.840395	42.5733
10	0.849143	0.847633	0.850652	83.1104
20	0.85136	0.849861	0.85286	161.211
50	0.855083	0.853599	0.856568	377.536
100	0.856786	0.855309	0.858263	692.538

The accuracies in the table above are the same as those in the previous sweep. i.e. normalization had no effect.

Use of numeric features

Next, I examined the utility of numeric features all up.

maxDepth = 2 useNumericFeatures=False

rounds	accuracy	lower bound	upper bound	runtime
5	0.812428	0.810782	0.814074	37.4716
10	0.823676	0.822069	0.825283	73.1835
20	0.824944	0.823341	0.826546	143.017
50	0.826805	0.825209	0.828401	329.919
100	0.82831	0.82672	0.8299	588.824

As show by the table/chart above, numeric features improve accuracy in all examined values of rounds. I will be using them moving forward.

Optimizing maxDepth

rounds = 50

 maxDepth	accuracy	lower bound	upper bound	runtime
1	0.852034	0.850537	0.853531	198.981
2	0.855083	0.853599	0.856568	402.624

maxDepth	accuracy	lower bound	upper bound	runtime
3	0.85841	0.85694	0.85988	601.846
5	0.860509	0.859048	0.86197	904.82
7	0.859836	0.858372	0.8613	1153.54
9	0.85944	0.857974	0.860905	1430.44

Additional Sweeps of rounds

maxDepth = 5

rounds	accuracy	lower bound	upper bound	runtime
50	0.860509	0.859048	0.86197	917.781
100	0.861777	0.860321	0.863232	1846.25
150	0.864945	0.863504	0.866386	2734.42
200	0.865777	0.864339	0.867214	3619.67

ROC Curves

Best parameter settings

- AdaBoost:
 - Rounds: 150maxDepth: 5
 - Accuracy:
 - **0.864945**
 - Upper bound: 0.866386Lower Bound: 0.863504
- Decision Tree
 - o maxDepth: 8
 - Accuracy
 - **0.85488**
 - Upper Bound: 0.856365
 - Lower Bound: 0.853394
- Logistic Regression
 - o convergence: 0.0001
 - o stepSize: 3.0
 - Accuracy
 - **0.846008**
 - Upper Bound: 0.84753Lower Bound: 0.844486