Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1

2 Bode Plot

_	Mason's Gain Formula		1	2 DODE I LOI
1				2.1 Introduction
2	Bode Plot		1	2.2 Example
	2.1	Introduction	1	3 Second order System
	2.2	Example	1	3.1 Damping
				3.2 Example
3	Secon	d order System	1	4 Routh Hurwitz Criterio
	3.1	Damping	1	4.1 Routh Array
	3.2	Example	1	4.2 Marginal Stability
4	Routh	n Hurwitz Criterion	1	4.3 Stability
	4.1	Routh Array	1	5 STATE-SPACE MODEL
	4.2	Marginal Stability	1	5.1 Controllability and Observability
	4.3	Stability	1	5.2 Second Order System
5	State	Space Model	1	6 Nyquist Plot
		State-Space Model5.1 Controllability and Observability	1	7 Compensators
	5.2	Second Order System	1	8 Routh Hurwitz Criterio
	3.2	second order system	1	8.1 Stability
6	Nyqui	ist Plot	1	8.1. For a unity feedback system sho
7	Compensators		1	$G(s) = \frac{K}{s(s+2)(s+4)(s+6)}$
8	Routh Hurwitz Criterion		1	Design a lag lead compensator

Abstract-This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

8.1

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

CRITERION

Criterion

stem shown in Fig. 1

$$G(s) = \frac{K}{s(s+2)(s+4)(s+6)}$$
 (8.1.1)

pensator to yield a K_{ν} = 2 and a phase margin of 30°. First we will design a lead compensator and for that whole system we will design a lag compensator which will finally be the lag lead compensator of the orignal transfer function.

Solution: For unity feedback we have Velocity error constant (K_{ν})

$$K_{v} = \lim_{s \to 0} sG(s) \tag{8.1.2}$$

$$\lim_{s \to 0} \left(\frac{K}{(2+s)(4+s)(6+s)} \right) = 2 \qquad (8.1.3)$$

$$\implies K = 96 \tag{8.1.4}$$

Check the phase margin and gain crossover frequency by running the following code

codes/es17btech11019 1.py

- The Phase margin: 19.76°
- Gain Crossover Frequency:1.469 rad/sec

The plot of system is as shown,

Fig. 8.1

Therefor amount of phase to be added: 30-19.76=10.24

Transfer function:

$$C(s) = \beta \left(\frac{1 + j\tau\omega}{1 + j\beta\tau\omega} \right)$$
 (8.1.5)

Find the values of β and τ

Solution: The maximum phase lead compensated by a lead compensator is given by

$$\phi = \sin^{-1} \frac{1 - \beta}{1 + \beta} \tag{8.1.6}$$

at

$$\omega = \frac{1}{\sqrt{\beta}\tau} \tag{8.1.7}$$

Now we know that from Gain crossover frequency

$$\omega = 1.469 rad/sec \tag{8.1.8}$$

and the phase margin to be added:

$$\phi = 10.24^{\circ} \tag{8.1.9}$$

But to compensate for the added magnitude of lead compensator, a correction factor of 10° – 20° is added.Hence

$$\phi = 30.24^{\circ} \implies \beta = 0.33$$
 (8.1.10)

From the bode plot ω is chosen at which gain of original system is

$$-20\log(1/\sqrt{\beta}) = -4.81 \tag{8.1.11}$$

Find the plot using the following code

Fig. 8.1

From plot ω =2.009 rad/sec Solving equations 8.1.6 and 8.1.7

$$\tau = 0.828 \tag{8.1.12}$$

$$\beta = 0.33 \tag{8.1.13}$$

New Transfer Function:

$$G(s) = \frac{96(1+0.828s)}{(s)(2+s)(4+s)(6+s)(1+0.273s)}$$

8.2. Verify your results from the following code:

- The Phase margin: 29.269°
- The Gain Crossover Frequency: 2.02 rad/sec The plot is as shown,

Fig. 8.2

Now for lag compensator of this whole lead compensated part Transfer function:

$$C'(s) = \left(\frac{1 + j\tau\omega}{1 + j\alpha\tau\omega}\right) \tag{8.2.1}$$

Find the values of α **Solution:**

$$\alpha = \frac{1}{8} \tag{8.2.2}$$

Solving equations 8.2.2

New Transfer Function:

$$G(s) = \frac{96(1+0.828s)(1+0.828s)}{(s)(2+s)(4+s)(6+s)(1+0.273s)(1+2.50884s)}$$
(8.2.3)

Final plot is,

 $\alpha = 3.03$

Find the plot using the following code