Định luật Ôm cho đoạn mạch chứa nguồn điện, máy thu

A. Phương pháp & Ví dụ

- + Định luật Ohm chứa nguồn (máy phát):
- Đối với nguồn điện (máy phát): dòng điện đi vào cực âm và đi ra từ cực dương.
- U_{AB} : tính theo chiều dòng điện đi từ A đến B qua mạch ($U_{AB} = -U_{BA}$).
 - + Đinh luật Ohm cho đoạn mạch chứa máy thu điện:
- Đối với máy thu Et: dòng điện đi vào cực dương và đi ra từ cực âm.
- U_{AB}: tính theo chiều dòng điện đi từ A đến B qua mạch.
 - + Định luật Ohm cho đoạn mạch chứa cả nguồn và máy thu:

Chú ý:

- + Dòng I có chiều AB, do đó nếu chưa có chiều I thì ta giả sử dòng I theo chiều A → B.
- + Tại một điểm nút ta luôn có: $\sum I_{\text{dén}} = \sum I_{\text{di}}$ (nút là nơi giao nhau của ít nhất 3 nhánh).
 - + Hiệu điện thế giữa hai điểm A, B:
- Lấy dấu "+" trước I khi dòng I có chiều AB
- Lấy dấu "-" trước I khi dòng I ngược chiều AB
- Khi đi từ A đến B gặp nguồn nào lấy nguồn đó, gặp cực nào trước lấy dấu cực đó.
 - + Khi mach kín thì định luật Ohm cho đoạn mạch chứa cả nguồn và máy thu:

Ví dụ 1: Cho mạch điện như hình vẽ, trong đó: $E_1 = 8$ V, $r_1 = 1,2$ Ω, $E_2 = 4$ V, $r_2 = 0,4$ Ω, R = 28,4 Ω, hiệu điện thế hai đầu đoạn mạch đo được là $U_{AB} = 6$ V

- a) Tính cường độ dòng điện chạy qua đoạn mạch và cho biết chiều của nó.
- b) Cho biết mạch điện này chứa nguồn điện nào và chứa máy thu nào ? Vì sao ?
- c) Tính hiệu điện thế U_{AC} và U_{CB} .

Hướng dẫn:

- a) Giả sử dòng điện trong đoạn mạch có chiều từ A đến B. Khi đó E₁ là máy phát, E₂ là máy thu.
 - + Áp dung định luật ôm cho đoạn mạch AB ta có:
 - + Vì I > 0 nên dòng điện có chiều từ A đến B.
- b) E₁ là máy phát vì dòng điện đi ra từ cực dương. Còn E₂ là máy thu vì dòng điện đi vào từ cực dương.
- c) Hiệu điện thế giữa hai điểm A và C:
 - + Hiệu điện thế giữa hai điểm C và B:

Ví dụ 2: Cho 2 mạch điện như hình vẽ: Nguồn điện 1 có E_1 = 18V, điện trở trong r_1 = 1Ω. Nguồn điện 2 có suất điện động E_2 và điện trở trong r_2 . Cho R = 9Ω; I_1 = 2,5A; I_2 = 0,5A. Xác định suất điện động và điện trở r_2 .

Hướng dẫn:

+ Vổi hình a ta thấy máy 1 và máy 2 đều là máy phát nên định luật ôm viết cho mạch kín chứa máy phát là:

```
\Rightarrow 2,5(9 + 1 + r<sub>2</sub>) = 18 + E<sub>2</sub> \Rightarrow E<sub>2</sub> - 2,5r<sub>2</sub> = 7 (1)
```

+ Với hình b ta thấy máy 1 là máy phát còn máy 2 là máy thu nên định luật ôm viết cho mạch kín chứa máy phát và máy thu là là:

```
\Rightarrow 0,5(9 + 1 + r<sub>2</sub>) = 18 - E<sub>2</sub> \Rightarrow E<sub>2</sub> + 2,5r<sub>2</sub> = 13 (2) + Giải (1) và (2) ta có: = 12 V và r<sub>2</sub> = 2 Ω
```

Ví dụ 3: Ví dụ 3: Điện trở R mắc vào nguồn ($E_1 = 15V$, r_1) có dòng điện 1A đi qua. Dùng thêm nguồn ($E_2 = 10V$, r_2) mắc song song hoặc nối tiếp với nguồn trước, cường độ dòng điện qua R không đổi. Tìm R, r_1 , r_2

– Khi chỉ có nguồn E₁ (hình a):

```
Ta có:
```

$$\Rightarrow$$
 R + r₁ = 15 Ω (1)

- Khi E₂ nối tiếp với E₁ (hình b):
 - + Vì cường độ dòng điện qua R không đổi nên:

```
\Rightarrow R + r_1 + r_2 = 25 (2)
```

+ Thay (1) vào (2), ta được: $15 + r_2 = 25 \Rightarrow r_2 = 10\Omega$.

– Khi E₂ song song với E₁ (hình c), ta có:

```
\begin{array}{l} U_{AB} = E_1 - I_1 r_1 \ (3) \\ U_{AB} = E_2 - I_2 r_2 \ (4) \\ U_{AB} = IR \ (5) \\ I_1 + I_2 = I = 1 \ (6) \\ &+ Thay \ (5) \ v\`{ao} \ (3) \colon IR = E_1 - I_1 r_1 \Rightarrow 1.R = 15 - I_1 r_1 \ (7) \\ &+ Thay \ (1) \ v\`{ao} \ (7) \colon 15 - r_1 = 15 - I_1 r_1 \Rightarrow r_1 = I_1 r_1 \Rightarrow I_1 = 1A. \\ &+ T\grave{u}' \ (6) \ suy \ ra: \ 1 + I_2 = 1 \Rightarrow I_2 = 0. \\ &+ K\acute{e}t \ hợp \ (4) \ v\`{a} \ (5) \colon 1.R = E_2 \Rightarrow R = E_2 = 10\Omega. \\ &+ T\grave{u}' \ (1) \ suy \ ra: \ r_1 = 15 - 10 = 5\Omega. \\ Vẩy: R = 10\Omega; \ r_1 = 5\Omega; \ r_2 = 10\Omega. \end{array}
```

Ví dụ 4: Cho mạch điện như hình vẽ: $E_1 = 9$ V, $E_2 = 3$ V, $E_3 = 10$ V, $r_1 = r_2 = r_3 = 1$ Ω , $R_1 = 3$ Ω , $R_2 = 5$ Ω , $R_3 = 36$ Ω , $R_4 = 12$ Ω

- a) Tính tổng trở mạch ngoài và điện trở toàn phần của mạch.
- b) Xác định độ lớn và chiều dòng điện trong mạch chính. Cho biết đâu là máy thu đâu là máy phát.

Hướng dẫn:

a) Giả sử chiều của dòng điện trong mạch như hình bên

- + Kho đó E₁ và E₂ là máy phát, E₃ là máy thu
- + Tổng trở mạch ngoài là:
- + Tổng trở toàn phần của mạch điện:

 $R_{tp} = R_{ng} + r_1 + r_2 + r_3 = 20\Omega$

b) Cường độ dòng điện trong mạch chính:

Vậy E₁ và E₂ là máy phát, E₃ là máy thu

Ví dụ 5: Cho mạch điện như hình vẽ, E_1 = 12 (V); r_1 = 1 (Ω); E_2 = 6 (V); r_2 = 2 (Ω); E_3 = 9 (V); r_3 = 3 (Ω), R_4 = 6 (Ω), R_1 = 4 (Ω), R_2 = R_3 = 3 (Ω). Tìm hiệu điện thế giữa A và B.

Hướng dẫn:

- + Giả sử chiều các dòng điện trong mạch như hình bên
- + Ta có:
- + Lai có: $I_4 = I_1 + I_2 + I_3$
- + Vì l₂ < 0 nên chiều dòng l₂ ngược lại với chiều giả sử.
- + Ta có:

Ví dụ 6: Cho sơ đồ mạch điện: nguồn E_1 = 10V, r_1 = 0,5 Ω ; E_2 = 20V, r_2 = 2 Ω ; E_3 = 12V, r_3 = 2 Ω ; R_1 = 1,5 Ω ; R_3 = 4 Ω .

- a) Tính cường độ dòng điện chạy trong mạch chính.
- b) Xác định số chỉ của Vôn kế.

Hướng dẫn:

- a) Giả sử dòng điện trong mạch có chiều như hình bên
 - + Ta có:
 - + Lại có: $I_3 = I_1 + I_2 \Rightarrow I_1 + I_2 I_3 = 0$ (3)
 - + Giải hệ 3 phương trình (1), (2) và (3)

ta có:

+ Vì I_1 < 0 nên dòng I_1 ngược lại với giả sử nên dòng điện thực trong mạch như hình

b) Dễ nhận thấy giữa hai đầu vôn kế bên đường đi qua B không có điện trở nào nên $U_v = 0$

Chú ý: Có thể tính số chỉ vôn kế theo công thức: $U_v = -E_2 + E_1 + I_2r_2 + I_1(R_1 + r_1) = 0$ **Ví dụ 7:** Cho mạch điện như hình vẽ: $E_1 = 1,5V$, $E_2 = 2V$, R_V rất lớn, vôn kế chỉ 1,7V.

Hỏi khi đảo cực nguồn E₁, vôn kế chỉ bao nhiêu? có cần đảo lại cực vôn kế không? **Hướng dẫn:**

Ban đầu (khi chưa đảo cực nguồn E₁) :

 $U_{BA} = E_1 + Ir_1$ (1) và $U_{BA} = E_2 - Ir_2$ (2)

Từ (2) suy ra:

- Khi đảo cực nguồn E₁, ta có:

Mà

 \Rightarrow U'_{BA} = -0,1V

Vậy: Số chỉ của vôn kế bằng 0,1V và ta cần phải đảo cực của vôn kế.

B. Bài tập

Bài 1. Cho mạch điện như hình vẽ, trong đó: $E_1 = 8 \text{ V}$, $r_1 = 1,2 \Omega$, $E_2 = 4 \text{ V}$, $r_2 = 0,4 \Omega$, $R = 28,4 \Omega$, hiệu điện thế hai đầu đoạn mạch đo được là $U_{AB} = 6 \text{ V}$

- a) Tính cường độ dòng điện chạy qua đoạn mạch và cho biết chiều của nó.
- b) Cho biết mạch điện này chứa nguồn điện nào và chứa máy thu nào? Vì sao?
- c) Tính hiệu điện thể U_{AC} và U_{CB}.

Lời giải:

- a) Giả sử dòng điện trong đoạn mạch có chiều từ A đến B. Khi đó E_1 và E_2 đều là máy thu.
 - + Áp dung định luật ôm cho đoạn mạch AB ta có:
 - + Vì I < 0 nên dòng điện có chiều từ B đến A.
- b) E₁ và E₂ đều là máy phát vì dòng điện đi ra từ cực dương
- c) Hiệu điện thế giữa hai điểm A và C: U_{AC} = E₁ I.r₁ = 7,76V
 - + Hiệu điện thế giữa hai điếm C và B: $U_{CB} = E_2 I.(r_2 + R) = -1,76(V)$

Bài 2. Cho mạch điện như hình vẽ: $E_1 = 6V$, $E_2 = 4,5V$, $r_1 = 2\Omega$, $R = 2\Omega$, $R_A = 0$.

Ampe kế chỉ 2A. Tính r₂.

Lời giải:

- + Giả sử dòng điện có chiều như hình vẽ, ta có: $U_{AB} = IR = 2.2 = 4V$.
- + Xét nhánh trên, ta có: $U_{AB} E_1 + I_1 r_1 = 0$

+ Xét nhánh dưới, ta có:
$$U_{AB} - E_2 + I_2 r_2 = 0$$

 $\Rightarrow I_2.r_2 = E_2 - U_{AB} = 4,5 - 4 = 0,5$

- + Mặt khác, tại nút A: $I = I_1 + I_2 \Rightarrow I_2 = I I_1 = 2 1 = 1A$
- + Thay vào (2) ta được: $r_2 = 0.5\Omega$.

Vậy: $r_2 = 0.5Ω$.

Bài 3. Cho mạch điện như hình vẽ. Biết $E_1 = 2,1$ V; $E_2 = 1,5$ V; r_1 , r_2 không đáng kể, $R_1 = R_3 = 10 \Omega$ và $R_2 = 20 \Omega$. Tính cường độ dòng điện chạy qua mạch chính và qua các điện trở.

Lời giải:

- + Giả sử chiều các dòng điện đi như hình
- + Ta có:
- + Tại nút A ta có: $I_1 = I_2 + I_3 \Rightarrow I_1 I_2 I_3 = 0$ (3)
- + Giải hệ 3 phương trình (1), (2) và (3)

ta có:

+ Vì I_2 < 0 nên chiều dòng điện I_2 ngược với chiều giả sử ban đầu **Bài 4.** Cho mạch điện như hình vẽ. Trong đó: E_1 = 20V, E_2 = 32V, r_1 = 1 Ω , r_2 = 0,5 Ω , R = 2 Ω . Tìm cường độ dòng điện qua mỗi nhánh.

Lời giải:

- + Giả sử chiều dòng điện trong các nhánh như hình
- + Ta có:
- + Tại nút A ta có: $I = I_1 + I_2$
- + Vì I_1 < 0 nên dòng điện I_1 có chiều ngược lại với giả thiết **Bài 5.** Cho mạch điện như hình vẽ: E_1 = 12 V, r_1 = 1 Ω , E_2 = 6 V, r_2 = 2 Ω , E_3 = 9 V, e_4 = 3 e_5 , e_6 = 2 e_6 , e_7 = 2 e_8 , e_8 = 3 e_8 , e_8 = 3 e_8 , e_8 = 3 e_8 , e_9 = 3 e_8 , e_9 = 6 V, e_9 = 6 V, e_9 = 6 V, e_9 = 6 V, e_9 = 9 V, e_9 = 7 e_9 = 9 V, e_9 = 9 V,

Lời giải:

- + Giải sử chiều dòng điện trong mạch như hình
- + Áp dụng định luật ôm cho mạch kín ta có:
- + Vì I > 0 nên điều giả sử là đúng
- + Hiệu điện thế giữa hai điểm A, B:

 $U_{AB} = E_1 + I(R_1 + R_3 + r_1) = 13,6V$

Bài 6. Cho mạch điện như hình vẽ. Tìm E₁ để:

- a) $U_{AB} > 0$.
- b) $U_{AB} < 0$.
- c) $U_{AB} = 0$.

Lời giải:

Ta có $U_{AB} = E_1 - Ir_1 = (2)$

- a) Để $U_{AB} > 0$: Từ (2), để $U_{AB} > 0$ thì: $(R + r_2)E_1 E_2r_1 > 0$
- b) Để $U_{AB} < 0$: Từ (2), để $U_{AB} < 0$ thì: $(R + r_2)E_1 E_2r_1 < 0$
- c) Để $U_{AB} = 0$: Từ (2), để $U_{AB} = 0$ thì: $(R + r_2)E_1 E_2r_1 = 0$

Bài 7. Cho mạch điện như hình vẽ. Trong đó: $E_1 = E_2 = 6V$; $r_1 = 1\Omega$; $r_2 = 2\Omega$, $R_1 = 5\Omega$; $R_2 = 4\Omega$. Vôn kế V (điện trở rất lớn, cực dương mắc vào điểm M) chỉ 7,5V. Tính:

- a) Hiệu điện thế UAB giữa A và B.
- b) Điện trở R.

Lời giải:

- + Giải sử chiều các dòng điện như hình
- a) Ta có:

+ Lại có:
$$U_{AB} = E_1 - I_1(R_1 + r_1) = 6 - 0.5(5 + 1) = 3(V)$$

b) Ta có: $U_{AB} = IR$

+ Mà I =
$$I_1$$
 + I_2 = 1 A \Rightarrow R = 3 Ω