Delaunay Triangulations

Pawel Winter

Motivation

Triangulation is made of triangles

- Outer polygon must be convex hull
- Internal faces must be triangles, otherwise they could be triangulated further

Triangulation Details

For P consisting of n points, all triangulations contain 2n-2-k triangles, 3n-3-k edges

- n = number of points in P
- k = number of points on convex hull of P

Angle Optimal Triangulations

- Create *angle vector* of the sorted angles of triangulation T, $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_{3m}) = A(T)$ with α_1 being the smallest angle
- A(T) is larger than A(T') iff there exists an i such that $\alpha_j = \alpha_j'$ for all j < i and $\alpha_j > \alpha_i'$
- Best triangulation is a triangulation that is angle optimal, i.e., has the largest angle vector. Maximizes minimum angle.

Angle Optimal Triangulations

Consider two adjacent triangles of T:

• If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an *edge flip* on their shared edge.

Illegal Edges

• Edge *e* is illegal if:

$$\min_{1\leqslant i\leqslant 6} \alpha_i < \min_{1\leqslant i\leqslant 6} \alpha_i'$$

• Only difference between *T* containing *e* and *T*' with *e* flipped are the six angles of the quadrilateral.

Illegal Triangulations

- If triangulation T contains an illegal edge e, we can make A(T) larger by flipping e.
- A triangulation *T* is an *illegal triangulation* if it contains an illegal edge.

Thales's Theorem

• We can use *Thales's Theorem* to test if an edge is legal without calculating angles

Let C be a circle, l a line intersecting C in points a and b and p, q, r, and s points lying on the same side of l. Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then:

 $\angle arb > \angle apb = \angle aqb > \angle asb.$

Testing for Illegal Edges

• If p_i , p_j , p_k , p_l form a convex quadrilateral and do not lie on a common circle, exactly one of $p_i p_j$ and $p_k p_l$ is an illegal edge.

• The edge $p_i p_j$ is illegal iff p_l lies inside circle C through p_i , p_j and p_k .

Computing Legal Triangulations

- 1. Compute a triangulation of input points *P*.
- 2. Flip illegal edges of this triangulation until all edges are legal.
- Algorithm terminates because there is a finite number of triangulations.
- Too slow to be interesting...

Voronoi Diagrams

Delaunay Graph

Delaunay Triangulations

- Delaunay graph is the dual of Voronoi diagram
- Some sets of more than 3 points of Delaunay graph may lie on the same circle.
- These points form empty convex polygons, which can be triangulated.
- *Delaunay triangulation* is a triangulation obtained by adding 0 or more edges to the Delaunay graph.

Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

• Three points p_i , p_j , p_k w P are vertices of the same face of the DT(P) iff the circle through p_i , p_j , p_k contains no point of P on its interior.

Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

• Two points p_i , p_j iv P form an edge of DT(P) iff there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point of P.

Legal Triangulations, revisited

A triangulation T of P is legal iff T is a DT(P).

- DT ==> Legal: Empty circle property and Thales's Theorem implies that all DT are legal
- Legal ==> DT: See Theorem 9.8

DT and Angle Optimal

- The angle optimal triangulation is legal and therefore it is a DT.
- If *P* is in general position, DT is unique. Hence there is only one legal triangulation and it is angle optimal.
- If multiple DT exist, not all of them are angle optimal.
- However, by Thales's Theorem, the minimum angle of each of the DT is the same.
- Thus, all DT maximize the minimum angle.

How do we compute DT(P)?

- We could compute Vor(*P*), and then dualize into DT(*P*).
- Instead, we will compute DT(*P*) using a randomized incremental method.

Algorithm Overview

- 1. Initialize triangulation T with a "big enough" helper bounding triangle that contains all points P.
- 2. Randomly choose a point p_r from P.
- 3. Find the triangle Δ that p_r lies in.
- 4. Subdivide Δ into smaller triangles that have p_r as a vertex.
- 5. Flip edges until all edges are legal.
- 6. Repeat steps 2-5 until all points have been added to *T*.

Let's skip steps 1, 2, and 3 for now...

Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle Δ that p_r lives in, subdivide Δ into smaller triangles that have p_r as a vertex.

Two possible cases:

1) p_r lies in the interior of Δ

Triangle Subdivision: Case 2 of 2

2) p_r falls on an edge between two adjacent triangles

Which edges are illegal?

- Before subdivision, all edges are legal.
- After new edges is added, some of the edges may become illegal.
- Added edges are legal.

Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed.
- Outer edges of the incident triangles $\{p_j p_k, p_i p_k, p_k p_j\}$ or $\{p_i p_l, p_l p_j, p_j p_k, p_k p_i\}$ may have become illegal.

Flip Illegal Edges

- Flip the outer edges if they are illegal.
- Note that flipped edges are all incident to the added point p_r.

New Flipped Edges are Legal

Consider a new edge $p_r p_1$ caused by a flip.

Before adding $p_r p_l$,

- p₁ was part of some triangle p_ip_ip₁
- Circumcircle C of p_i , p_j , and p_l did not contain any other points of P in its interior.
- If we shrink C, we can find a circle C' that passes through $p_r p_1$
- C' contains no points in its interior.
- Therefore, $p_r p_l$ is legal.

Recursive Flipping

- However, after the edges have been flipped, outer edges of the new triangles may now be illegal.
- So we need to recursively flip edges...

LegalizeEdge

 p_r = point being inserted $p_i p_j$ = edge that may need to be flipped

LegalizeEdge(p_r , p_ip_i , T)

- **if** $p_i p_j$ is illegal
- then Let $p_i p_j p_l$ be the triangle adjacent to $p_r p_i p_i$ along $p_i p_i$
- Replace $p_i p_j$ with $p_r p_l$
- LegalizeEdge $(p_r, p_i p_l, T)$
- LegalizeEdge(p_r , p_lp_j , T)

Bounding Triangle

Let $\{p_{-2}, p_{-1}, p_0\}$ be the vertices of the bounding triangle: p_0 is the top point of given n points. p_{-1} is below given n points sufficiently far to the right. p_{-2} is above given n points sufficiently far to the left.

This triangle

- contains all points of P in its interior.
- will not destroy edges between points in P: consecutive vertices of the convex hull together with a big point have an empty circumscribing circle.

Triangle Location Step

- 3. Find the triangle T that p_r lies in.
- Take an approach similar to Point Location approach.
- Maintain a point location structure D, a directed acyclic graph.

Triangle Location

Time and Space Complexity

O(nlogn) expected time.

O(n) expected space.

See Section 9.4