ALGORÍTMICA

Segundo Curso del Grado en Informática Problemas de eficiencia y recurrencias

1. El tiempo de ejecución de un algoritmo A está descrito por la recurrencia

$$T(n) = 7T(n/2) + n^2$$

Otro algoritmo B tiene un tiempo de ejecución dado por

$$T'(n) = aT'(n/4) + n^2$$

¿Cuál es el mayor valor de la constante a que hace a B asintóticamente más rápido que A?

2. Resolved las siguientes recurrencias:

a)
$$T(n) = 3T(n-1) + 4T(n-2), n \ge 2, T(0) = 0, T(1) = 1$$

b)
$$T(n) = T(n-1) + T(n-2), n \ge 2, T(0) = 0, T(1) = 1$$

c)
$$T(n) = 5T(n-1) + 8T(n-2) + 4T(n-3), n \ge 3, T(0) = 0, T(1) = 1$$

d)
$$T(n) = 2T(n-1) + 1$$
, $n \ge 1$, $T(0) = 0$

e)
$$T(n) = 2T(n-1) + n$$
, $n \ge 1$, $T(0) = 0$

f)
$$T(n) = 2T(n-1) + n + 2^n$$
, $n > 1$, $T(0) = 0$

$$q) T(n) = 4T(n/2) + n, n > 2, T(1) = 1, T(2) = 6$$

h)
$$T(n) = 4T(n/2) + n^2$$
, $n > 1$

i)
$$T(n) = 2T(n/2) + n\log(n), n > 1$$

j)
$$T(n) = 3T(n/2) + cn$$
, $n > 1$, c es una constante

k)
$$T(n) = 2T(n/2) + \log(n), n \ge 2, T(1) = 1$$

l)
$$T(n) = 2T(\sqrt{n}) + \log(n), n \ge 4, T(2) = 1$$

$$m) T(n) = 5T(n/2) + (n \log(n))^2, n \ge 2, T(1) = 1$$

n)
$$T(n) = T(n/2)T^2(n/4)$$
 $n > 4$, $T(1) = 1$, $T(2) = 4$

$$\tilde{n}$$
) $T(n) = nT^2(n/2)$ $n > 2$, $T(1) = 6$, $T(2) = 72$

o)
$$T(n) = \sqrt{n}T(\sqrt{n}) + n, \ n \ge 4$$

$$p) T(n) = 2T(n-1) + 3^n, n > 1$$