WHAT IS CLAIMED IS:

1	The second	A met	hod for reducing stiction in a MEMS device having a moveable element
2		movea	bly coupled to a substrate, the method comprising:
3		(a)	providing the substrate with an anti-stiction member; and
4		p)	interposing the anti-stiction member between the moveable element and the
5			substrate.
1		2.	The method of claim 1 wherein step b) includes actuating the moveable
2			element to interpose the anti-stiction member between the moveable element
3			and the substrate.
1		3.	The method of claim 2 wherein step b) includes substantially immersing the
2			moveable element in a liquid during actuation of the moveable element.
1		4.	The method of claim 1, wherein step a) includes providing an anti-stiction
2			member that overhangs the moveable element.
1		5.	The method of claim 4, wherein the anti-stiction member includes one or more
2			flexible portions.
1		6.	The method of claim 5, wherein the one or more flexible portions includes at
2			least one double-serpentine portion.
1		7.	The method of claim 4 wherein the anti-stiction member is made of a flexible
2			material.
1		8.	The method of claim 4 wherein step b) includes actuating the moveable
2			element whereby the moveable element engages the anti-stiction member
3			causing the anti-stiction member to flex.
1		9.	The method of claim 8 wherein step b) includes flexing the anti-stiction
2			member sufficiently to interpose the anti-stiction member between the
3			moveable element and the substrate
1		10.	The method of claim 1 wherein step a) includes:

2	A	providing a silicon-on-insulator (SOI) substrate;
3		defining the moveable element from a device layer of the SOI substrate; and
4		depositing a flexible material over the device layer and the moveable element
5		such that the flexible material overhangs the moveable element.
1	11.	The method of claim 1 further comprising: minimizing an area of contact
2		between the anti-stiction member and the moveable element
√ 1	12.	The method of claim 1 further comprising electrically isolating the moveable
		element from a portion of the substrate.
¥ 1	13.	The method of claim 12 wherein the isolating step includes interposing an
2		insulating material between the anti-stiction member and an electrically
3		conductive portion of the moveable element.
1	14.	The method of claim 12 wherein the isolating step includes interposing an
2		insulating material between the anti-stiction member and the portion of the
3		substrate.
1	15. An ap	paratus for reducing stiction in a MEMS device having a moveable element
2	move	ably coupled to a substrate, the apparatus comprising:
3	an ant	ri-stiction member that is interposable between the moveable element and the
4	substr	ate.
1	16.	The apparatus of claim 15 wherein the anti-stiction member is attached to the
2		substrate.
1	17.	The apparatus of claim 16 wherein the anti-stiction member is not attached to
2		the moveable element.
1	18.	The apparatus of claim 15 wherein the anti-stiction member is cantilevered
2		such that the anti-stiction member overhangs the moveable element.
1	19.	The apparatus of claim 15 wherein the anti-stiction member is made from a
2	·	flexible material.
1	20.	The apparatus of claim 15 wherein the anti-stiction member includes one or
2		more flexible portions disposed between a fixed end and a free end

COST CALL CALL

BEST AVAILABLE COPY

1	1	21.	The apparatus of claim 20 wherein the one or more flexible portions include at	
2	,	1,	least one serpentine portion.	
1	,	22	The apparatus of claim 20 wherein the one or more flexible portions include at	
2			least one double serpentine portion.	
1 2		23.	The apparatus of claim 15 further comprising a standoff attached to a free end of the anti-stiction member.	
2 1 2		24.	The apparatus of claim 15, further comprising means for electrically isolating the moveable element from a portion of the substrate.	
1		25.	The apparatus of claim 24, wherein the means for electrically isolating	
2			includes an electrically insulating standoff attached to a free end of the anti-	
3			stiction member.	
1		26.	The apparatus of claim 24, wherein the means for electrically isolating	
2			includes an electrically insulating portion of the moveable element.	
1		27.	The apparatus of claim 15, wherein the anti-stiction member includes a	
2	•		serpentine shaped portion that is disposed between a free end and a fixed end	
3			of the anti-stiction member.	
1		28.	The apparatus of claim 15, wherein the anti-stiction member includes one or	
2			more double-serpentine shaped portions that are disposed between a free end	
3			and a fixed end of the anti-stiction member.	
1	29.	A MI	EMS device, comprising:	
2		a substrate;		
3	•	a moveable element moveably coupled to the substrate, and		
4		an an	ti-stiction member that is interposable between the moveable element and the	
5		subst	rate.	
1		30.	The MEMS device of claim 28 wherein the anti-stiction member is attached to	
. 🤈			the substrate	

	9	
1	31.	The MEMS device of claim 30 wherein the anti-stiction member is not
2	1	attached to the moveable element.
1	32.	The MEMS device of claim 28 wherein the anti-stiction member is
2		cantilevered such that the anti-stiction member overhangs the moveable
3		element.
1	33.	The MEMS device of claim 29 wherein the anti-stiction member is made from a flexible material.
W W		a nexional material.
60	34.	The MEMS device of claim 29 wherein the anti-stiction member includes one
W ₂ `		or more flexible portions disposed between a fixed end and a free end of the
\3		anti-stiction member.
1	35.	The MEMS device of claim 29, wherein the one or more flexible portions
2		include a serpentine portion.
1	36.	The MEMS device of claim 29, wherein the one or more flexible portions
2		include at least one double-serpentine portion.
1	37.	The MEMS device of claim 29 further comprising a standoff attached to a free
2		end of the anti-stiction member.
1	38.	The MEMS device of claim 29 further comprising means for electrically
2		isolating the moveable element from a portion of the substrate.
1	39.	The MEMS device of claim 38, wherein the means for electrically isolating
2		includes an electrically insulating standoff attached to a free end of the anti-
3		stiction member.
	40	The MCN (S. Le inc. of alain 20 at heaving the same for all attribution letting
1	40.	The MEMS device of claim 39, wherein the means for electrically isolating
2		includes an electrically insulating portion of the moveable element.
1	41.	The MEMS device of claim 29 wherein the moveable element includes a light-
2		deflecting component.
1	42.	The MEMS device of claim 41, wherein the light-deflecting component is
2		plane reflecting (or partially reflecting) surface, curved reflecting (or partially

3			reflecting) surface, prismatic reflector, refractive element, prism, lens,
4			diffractive element, grating, fresnel lens, dichroic coated surface, waveguide or
5			some combination of these.
1	,	43.	The MEMS device of claim 41 wherein the light-deflecting component is a
2			mitror.
1 (2		44.	The MEMS device of claim 29, wherein the moveable element is configured to rotate.
		45	
§ 1 2		45.	The MEMS device of claim 29, wherein the moveable element is configured to translate.
1	46.	A me	ethod for fabricating a MEMS device, comprising:
2		provi	ding a silicon-on-insulator (SOI) substrate;
3		defin	ing a moveable element from a device layer of the SOI substrate; and
4		depos	siting a flexible material over the device layer and the moveable element such
5		that c	one or more portions of the flexible material overhang the moveable element,
6		where	ein the flexible material is deposited such that the anti-stiction member is
7		attacl	hed to one end to a portion of the device layer,
8		where	ein the flexible material is deposited such that the anti-stiction member is not
9		attacl	hed to the moveable element;
10		where	eby the flexible material forms one or more anti-stiction members.
1		47.	The method of claim 46 wherein an insulating material is deposited between
2			defining the moveable element and depositing the flexible material.
1		48.	The method of claim 47, further comprising etching the insulating material to
2			release the moveable element.
1		49.	The method of claim 48, wherein the flexible material is resistant to an etchant
2			that is used to remove the insulating material.
1	50.	An o	ptical switch, comprising:
2		a sub	strate;
3		one o	or more moveable elements moveably coupled to the substrate, and

4	an ant	i-stiction member that is interposable between at least one of the moveable
5	eleme	nts and the substrate.
1	5)	The optical switch of claim 50 wherein at least one of the moveable elements
2	. 1	includes a light-deflecting component.
1	52.	The optical switch of claim 51 wherein the light-deflecting component is a
2		plane reflecting (or partially reflecting) surface, curved reflecting (or partially
3		reflecting) surface, prismatic reflector, refractive element, prism, lens,
4		diffractive element, grating, fresnel lens, dichroic coated surface, waveguide
5		or some combination of these.
1	53.	The optical switch of claim 51 wherein the light-deflecting component is a
$\sqrt{2}\sqrt{k}$		mirror.
3100	54.	The optical switch of claim 50 wherein the anti-stiction member is attached to
1/22		the substrate.
1	55.	The optical switch of claim 54 wherein the anti-stiction member is not
2		attached to the moveable element.
1	56.	The optical switch of claim 50 wherein the anti-stiction member is
2		cantilevered such that the anti-stiction member overhangs the moveable
3		element.
1	57.	The optical switch of claim 50 wherein the anti-stiction member is made from
2		a flexible material.
1	58.	The optical switch of claim 50 wherein the anti-stiction member includes one
2		or more flexible portions disposed between a fixed end and a free end of the
3		anti-stiction member.
1	59 .	The optical switch of claim 58, wherein the flexible portion includes a
2		serpentine portion.
1	60.	The optical switch of claim 58, wherein the exible portion includes at least
2		one double serpentine portion.

1 2

The optical switch of claim 50 further comprising a standoff attached to a free end of the anti-stiction member.