

Home Gameboard Chemistry Analytical Chromatography Chromatography Types

## **Chromatography Types**



Chromatography is a versatile technique that may be used to separate and identify compounds. Part A Dissolved solids Name the type of chromatography that can be used to separate and identify dissolved solids on a plate coated with silica gel. Identifying dissolved solids Part B State what quantitative value may be determined from the chromatogram to identify the solids present in the solution: Items: Gases and vapours Part C Name a type of chromatography that could be used to separate and identify gases and vapours.

### Part D Identifying gases and vapours

| Different components in the mixture have different                                                    | , and by integrating (finding the         |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------|
| each peak, alongside a curve, to                                                                      | he concentration of the components can be |
| estimated. Rather than relying on                                                                     | alone for identification, nowadays the    |
| chromatography technique is often coupled to                                                          | : this is known as GC-MS.                 |
| Items:  area under calibration retention times NMR  circumference of line height of mass spectrometry | reduction infrared spectroscopy           |
|                                                                                                       |                                           |

Adapted with permission from UCLES, A Level Modular Sciences, December 1993, Methods of Analysis and Detection, Question 1

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.



Home Gameboard Chemistry Analytical Chromatography Raffinose

## Raffinose



A sugar named raffinose was reacted with dilute hydrochloric acid. The resulting solution, Y, together with four known sugar solutions for reference, was analysed by chromatography. The following chromatogram was obtained.



Figure 1: Chromatogram

The chromatogram shows that dilute hydrochloric acid breaks down raffinose into

| glucose, maltose and galactose.                                  |
|------------------------------------------------------------------|
| only two sugars: glucose and maltose.                            |
| glucose, galactose and fructose.                                 |
| glucose, galactose and one sugar not among the reference sugars. |
| glucose, maltose and fructose.                                   |

Adapted with permission from UCLES GCSE Chemistry June 1990, Paper 1, Question 3.

Gameboard:

**STEM SMART Chemistry Week 44** 

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.



Home Gameboard Chemistry Analytical Chromatography Food Additive

## **Food Additive**



This question is about chromatography of colourings in food additives.

- $S_1$ ,  $S_2$  and  $S_3$  are three colourings which are safe to eat.
- $\mathbf{P}_1$ ,  $\mathbf{P}_2$  and  $\mathbf{P}_3$  are three colourings which are poisonous.
- X is a food additive which is under test to see if it is safe to eat.

The diagram shows the chromatogram obtained.



Figure 1: Chromatogram

| Using this | information, | which sta | atement is | correct? |
|------------|--------------|-----------|------------|----------|
|            |              |           |            |          |

| $S_2$ and $P_2$ are the only mixtures of colourings tested.                       |
|-----------------------------------------------------------------------------------|
| $S_3$ contains the colouring which is most soluble in the solvent used.           |
| X is safe to eat.                                                                 |
| X appears to contain $S_1$ , $S_2$ and $P_3$ .                                    |
| P <sub>3</sub> contains the colouring which is least soluble in the solvent used. |



<u>Home</u> <u>Gameboard</u> Chemistry Analytical Chromatography Improving Separation

# **Improving Separation**



A student tried to separate a mixture of food dyes by chromatography. Separation was poor, as shown in the chromatogram below.



Figure 1: Chromatogram

Which change to the process would improve the result?

| using a smaller piece of chromatography paper           |
|---------------------------------------------------------|
| putting a larger spot of the dye mixture onto the paper |
| using enough solvent to cover the baseline              |
| allowing the solvent to rise further up the paper       |
| using a larger piece of chromatography paper            |

Adapted with permission from UCLES GCSE Chemistry June 1994, Paper 1, Question 4.

Gameboard:

**STEM SMART Chemistry Week 44** 



<u>Home</u> <u>Gameboard</u> Chemistry Analytical Chromatography TLC

# TLC



| Chromatography may separate substances because they have different affinities for a mobile and a stationary phase.                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part A Phases in TLC                                                                                                                                                                                                                                                                            |
| Name the physical state of the mobile phase used in thin layer chromatography, TLC.                                                                                                                                                                                                             |
| Name the physical state of the stationary phase used in thin layer chromatography, TLC.                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                 |
| Part B Speed of travel                                                                                                                                                                                                                                                                          |
| Some molecules travel faster than others in TLC. This is based on their different ability to interact with the solid and mobile phases. A more substance forms interactions with the solid phase, and this adsorption is harder to overcome, meaning it travels less far up the plate and has a |
| $R_f$ value. The solvent used cannot be too as all components will then travel up too far up the plate without separation being achieved.                                                                                                                                                       |
| Items:                                                                                                                                                                                                                                                                                          |
| light     polar     weaker     stronger     lower     higher                                                                                                                                                                                                                                    |



 ${\color{red} {\sf Home}}$   ${\color{red} {\sf Gameboard}}$  Chemistry Analytical Chromatography  ${\color{red} {\sf R}_f}$  Values

# $R_f$ Values



In chromatography, an  $\mathrm{R}_f$  value is defined as

$$\mathbf{R}_f = \frac{\text{distance travelled by a substance from start}}{\text{distance travelled by solvent front from start}}$$

In the following chromatogram, calculate the  $\mathbf{R}_f$  value of each substance.



Figure 1: Chromatogram

#### Part A Substance A

To 1 significant figure, what is the  $\mathrm{R}_f$  value of substance **A**?

| Part B Substance B                                                                                           |
|--------------------------------------------------------------------------------------------------------------|
| To 1 significant figure, what is the $\mathrm{R}_f$ value of substance <b>B</b> ?                            |
|                                                                                                              |
|                                                                                                              |
| Part C Substance C                                                                                           |
| To 1 significant figure, what is the $\mathrm{R}_f$ value of substance C?                                    |
|                                                                                                              |
|                                                                                                              |
| Part D Substance D                                                                                           |
| To 1 significant figure, what is the $\mathrm{R}_f$ value of substance <b>D</b> ?                            |
|                                                                                                              |
|                                                                                                              |
| Part E Substance E                                                                                           |
| To 1 significant figure, what is the $\mathrm{R}_f$ value of substance <b>E</b> ?                            |
|                                                                                                              |
|                                                                                                              |
| Adapted with permission from UCLES GCSE Chemistry June 1994, Paper 1, Question 4.                            |
| Gameboard:  STEM SMART Chemistry Week 44                                                                     |
|                                                                                                              |
| All materials on this site are licensed under the <b>Creative Commons license</b> , unless stated otherwise. |



Home Gameboard Chemistry Analytical Chromatography Onion Chromatogram

# **Onion Chromatogram**



Ferulic acid is a plant derivative. It is a natural antioxidant because it terminates free-radical chain reactions. It is used commercially to give photo-protection in skin lotions and sunscreens as well as a range of medical applications. Ferulic acid is an active ingredient in many ancient Chinese herbal remedies.

Ferulic acid occurs in onions with related acids having the structures given below.

Figure 1: Structures of acids found in onions.

### Part A Water solubility

Rank the four acids in order of *decreasing* water solubility.

#### Available items



#### Part B pH

An extract from onions is subjected to chromatographic analysis. The mobile phase is water and the stationary phase consists of small beads made from inert silane macromolecules to which  $\rm C_{18}H_{37}$  alkyl groups are attached.

The water is kept at a pH of 2.0 for reproducibility of retention times. Suggest a chemical reason why a higher pH is not used by filling in the missing word in the following statement:

At a higher pH, the molecules could be \_\_\_\_\_.

### Part C Water volume



Figure 2: Onion chromatogram

The flow rate of the water is  $0.5\,\mathrm{cm^3\,min^{-1}}$ . Calculate the volume of water which flowed through the chromatograph before the acid with the longest retention time was detected by the recorder.

| Part D Retent       | tion times       |                          |                          |                      |
|---------------------|------------------|--------------------------|--------------------------|----------------------|
| The v               | vater-soluble ac | id will have the longest | retention time in the ch | romatograph. This is |
| because it will she | ow an increase   | d preference for being   | the                      | phase as opposed to  |
| being               | the              | phase. This means it t   | ravels through the chro  | matograph more .     |
| Items:  most least  | dissolved in     | adsorbed to stationary   | mobile quickly           | slowly               |

Adapted with permission from UCLES A-Level Chemistry June 1998, Paper 1, Question 24.

Gameboard:

**STEM SMART Chemistry Week 44** 



Home Gameboard Chemistry Analytical Chromatography Gas-liquid Chromatography

# **Gas-liquid Chromatography**



The diagram below represents an apparatus used for gas-liquid chromatography (also known as gas chromatography).



Figure 1: Gas-liquid chromatography instrument

### Part A Carrier gas

| Which of these would be suitable carrier gases for gas-liquid chromatography? |  |
|-------------------------------------------------------------------------------|--|
| helium                                                                        |  |
| oxygen                                                                        |  |
| fluorine                                                                      |  |
| argon                                                                         |  |
|                                                                               |  |

### Part B Whisky chromatogram

The gas chromatogram of a sample of whisky (an alcoholic beverage) is given below.



Figure 2: Gas chromatogram of whisky

| The small peaks 1, 2, 3 and 4 ar             | e due to propan-1-ol, ethyl ethan | oate, methanol | and ethanal, respectively.   |
|----------------------------------------------|-----------------------------------|----------------|------------------------------|
| The elution time on the above di             | agram increases from              | to             | . The compound with the      |
| lowest elution time is                       | , because it forms the            | interactions w | rith the stationary phase as |
| well as having the bo                        | oiling point.                     |                |                              |
| Items:    left right propan-1-ol e   highest | thyl ethanoate methanol ethana    | al strongest   | weakest lowest               |

| uggest the identity of the substance responsible for the left major peak (to the left of 1). |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
|                                                                                              |
|                                                                                              |
| uggest the identity of the substance responsible for the right major peak (between 1 and 2). |
|                                                                                              |
|                                                                                              |
| pted with permission from UCLES A-Level Chemistry June 1991, Paper 4, Question 6.            |

Gameboard:

STEM SMART Chemistry Week 44

All materials on this site are licensed under the  $\underline{\textbf{Creative Commons license}}$ , unless stated otherwise.



<u>Home</u> <u>Gameboard</u> Chemistry Analytical Chromatography Peptide Chromatogram

# **Peptide Chromatogram**



The table below gives data about a number of amino acids which occur in proteins.

| name          | relative molecular mass | $\mathrm{R}_f$ value in Solvent I | $\mathrm{R}_f$ value in Solvent II |
|---------------|-------------------------|-----------------------------------|------------------------------------|
| alanine       | 89                      | 0.43                              | 0.38                               |
| aspartic acid | 133                     | 0.13                              | 0.24                               |
| glycine       | 75                      | 0.33                              | 0.26                               |
| leucine       | 131                     | 0.66                              | 0.73                               |
| lysine        | 146                     | 0.62                              | 0.14                               |
| phenylalanine | 165                     | 0.64                              | 0.68                               |
| serine        | 105                     | 0.30                              | 0.27                               |
| valine        | 117                     | 0.58                              | 0.40                               |

A small polypeptide was hydrolysed with concentrated acid and, after neutralisation, the resulting amino acids were separated by two-way chromatography. The chromatogram is shown below.



Figure 1: Two-way chromatogram showing spots for five amino acids.

### Part A Identifying A

By determining the  $\mathrm{R}_f$  values of  ${\bf A}$  in both solvents, identify the amino acid.

### Part B Identifying B

By determining the  $\mathbf{R}_f$  values of  $\mathbf{B}$  in both solvents, identify the amino acid.

## Part C Methodology

| It would be difficult to reliably identify all 8 amino acids using chromatography in one solvent alone. In                        |
|-----------------------------------------------------------------------------------------------------------------------------------|
| Solvent I, while a naive reading of an $\mathrm{R}_f$ value of $0.64$ might suggest the amino acid is $\overline{}$ , allowing    |
| for a small $(0.02)$ uncertainty in this measured value, it could be $oxedown$ or $oxedown$ instead. If we                        |
| only used Solvent II, there is similarly a cluster of three amino acids with $\overline{ m R}_f$ values within $0.03$ of one      |
| another that could be easily confused, with $oxedown$ on the low end, $oxedown$ $0.02$ higher, and                                |
| another $0.01$ higher according to the table.                                                                                     |
| However, by using the combination of $\mathrm{R}_f$ values in both solvents, we can tell many of the amino acids apa              |
| more reliably: out of the Solvent I cluster, $oxed{baselineskip}$ has a much lower $\mathrm{R}_f$ value than the others in Solven |
| II, while from the cluster in Solvent II, $oxed{oxed{Bar}}$ has a much lower $\mathrm{R}_f$ value than the others in Solvent I.   |
| Items:                                                                                                                            |
| alanine     aspartic acid     glycine     leucine     lysine     phenylalanine     serine     valine                              |
|                                                                                                                                   |

Adapted with permission from UCLES A-Level Modular Sciences June 1993, Biochemistry Paper, Question 1.

Gameboard:

**STEM SMART Chemistry Week 44** 

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.



Home Gameboard Chemistry Analytical Chromatography Cypermethrin

## Cypermethrin



One technique used to accurately determine the concentration of substances in food is liquid chromatography followed by mass spectrometry (LC-MS). Here, the chromatography is used to separate different compounds and mass spectrometry to identify and quantify them.

The calibration line showing the peak size of the molecular ion peaks for five different concentrations of cypermethrin ( $M_r=416.30$ ) in pureed blueberries is shown below. The equation for the line of best fit for the data is:

 $ext{Peak area} = 44.547 imes ext{(Concentration of cypermethrin}/\mu ext{mol dm}^{-3} ext{)} + 2.403$ 



Figure 1: Calibration curve for cypermethrin quantification

The amount of cypermethrin that can be consumed without risk, the MRL (minimum risk level), is  $0.020\,\mathrm{mg\,kg^{-1}\,day^{-1}}$ . Four blueberries were ground into a sample that had a volume of  $15\,\mathrm{cm^3}$  and the peak area was observed to be 4.8

| Part A Concentration                                                                                         |
|--------------------------------------------------------------------------------------------------------------|
| What is the concentration of cypermethrin in the sample in $\mathrm{mol}\mathrm{dm}^{-3}$ ?                  |
|                                                                                                              |
| Part B Mass                                                                                                  |
| Calculate the mass of cypermethrin in the sample.                                                            |
|                                                                                                              |
| Part C Safe number                                                                                           |
| How many blueberries can a $15\mathrm{kg}$ toddler consume per day without exceeding the MRL?                |
|                                                                                                              |
| Adapted with permission from the Cambridge Chemistry Challenge 2016, Question 2                              |
| All materials on this site are licensed under the <b>Creative Commons license</b> , unless stated otherwise. |