Biology 4605/7220
Exam #1b

Name	
_	6 October 2004

1. Sandler <i>et al.</i> (1985, <i>American Journal of E</i> frequency of cancer in non smokers with spouse yes) and spouses who did not smoke cigarettes (es with sn	noke cigarettes (F	ported the assive smo	okers:
<i>y</i> ,		Cancer in n Yes	on-smoker No	S
C (D	Yes	120	80	
Spouse smokes (Passive smokers)	No	111	155	
Calculate the percent of non smokers who devel if their spouse smokes	loped can	$p_{\text{smoking spouse}} =$	=	[1]
Calculate the percent of non smokers who devel if their spouse does not smoke	loped can	$\begin{array}{c} \text{cer} \\ p_{\text{nonsmoking spouse}} = \end{array}$	=	[1]
The odds of cancer in the sample are Odds = p/q Read the expression (Odds = p/q : 1) as "odds	q where are	q = 1 - p. to 1."		
What are the odds of developing cancer, for non smokers with a spouse who smokes:		Odds =		[1]
What are the odds of developing cancer, for non smokers with a spouse who does not sm	ioke:	Odds =		[1]
The odds ratio (OR), for one population relative one population, divided by the odds for the othe can be inferred from the sample to a larger popu	er populat			
What is the odds ratio, for passive smoking relative to no passive smok	ting?	OR =		[1]

2.	Hypothesis	testing is	carried ou	t with	frequency	distributions,	either	observed o	or
the	eoretical.								

What is the principal advantage of using a theoretical distribution? [1]

What is the principal advantage of using an observed distribution? [1]

What is the principal disadvantage (or cost) or using an observed distribution? [1]

3. Complete the following computations. [3]

$$(25 \text{ kg}^2)^{0.5} = \underline{\hspace{1cm}}$$

$$(10 \text{ kg})^{1.5} =$$

$$R = (100 \text{ km})/\text{km} \log_{10}(R) =$$

4. List the 5 parts of a well-defined biological quantity, then construct an example. [5]

5. According to Hattori (1973 Microbial Life in the Soil p.384) oxygen uptake in the soil $[M = ml/(ml\text{-second})]$ depends on oxygen concentration at the soil surface ($C_o = ml O_2$ per ml liquid) the diffusion coefficient of oxygen ($D = cm^2/\text{second}$) the thickness of the oxidative surface layer ($z = cm$)
$M = C_o z^2 / 2D$
What dimensions does D have ?[1]
What dimensions does z^2 have ?[1]
Is the equation dimensionally correct?[1]
Show how you arrived at this conclusion [1]
6. Type I error is a potential problem when rejecting the null (just chance) hypothesis, while Type II error is a potential problem when accepting the null hypothesis. Circle either I or II to indicate the potential problem with each of the following decisions. [4]
A pathologist chooses 8 rats at random, exposes 4 of them to a new drug, then examines all 8 for lesions 2 years later. No lesions were detected, and the pathologist concludes that the drug does not cause lesions.
A government agency analyzes highly variable catch data and concludes there has been a decline in a lobster catch rate.
A government agency analyzes highly variable data on cancer rates in relation to amount of butter in the diet and concludes that there is a relation.
A tobacco company produces statistics showing that smoking does not increase the risk of lung cancer.

