

**AMENDMENTS TO THE CLAIMS**

**1-28. (Canceled)**

**29. (New)** A communication apparatus for data communication with at least one terminal, and for controlling a communication timing by detecting transmission characteristics, which vary periodically at a predetermined frequency, in a transmission path to the terminal, said communication apparatus comprising:

    a receiver operable to receive a plurality of packets from the terminal at a plurality of transmission timings of packets within one cycle of said predetermined frequency, and to generate information regarding a receiving condition of the received packets;

    a detector operable to detect, based on said information regarding the receiving condition of the received packets, an interval at which an error rate is higher than a specified threshold within said one cycle of said predetermined frequency; and

    a transmission controller operable to set said detected interval in subsequent cycles of said predetermined frequency as an interval for stopping data transmission with respect to the terminal.

**30. (New)** The communication apparatus as described in claim 29,  
wherein said receiver is operable to detect, for each of said received packets, whether or not an error exists, and to generate an error signal upon detection of each error, and  
wherein said detector detects an error rate distribution to detect the interval at which the error rate is higher than the specified threshold.

**31. (New)** The communication apparatus as described in claim 30, further comprising:  
a periodic signal generator operable to generate a periodic signal at said predetermined frequency,

wherein said receiver is operable to receive a plurality of packets transmitted from the terminal during a plurality of cycles of said predetermined frequency, and

wherein said detector detects a phase of each of the error signals relative to said periodic signal, and detects the error rate distribution by counting the number of errors at various phases during the plurality of cycles of said predetermined frequency.

**32. (New)** The communication apparatus as described in claim 31, wherein said periodic signal generator detects an AC power source voltage or current and generates said periodic signal based on the detected AC voltage or AC current.

**33. (New)** The communication apparatus as described in claim 29,  
wherein said receiver generates, upon receipt of packets from the terminal, transmission path information based on the received packets, and

wherein said detector detects the interval at which the error rate is higher than the specified threshold based on said transmission path information.

**34. (New)** A communication method for data communication with at least one terminal, and for controlling a communication timing by detecting transmission characteristics, which vary

periodically at a predetermined frequency, in a transmission path to the terminal, said communication method comprising:

receiving a plurality of packets from the terminal at a plurality of transmission timings of packets within one cycle of said predetermined frequency;

generating information regarding a receiving condition of the received packets;

detecting, based on the information regarding the receiving condition of the received packets, an interval at which an error rate is higher than a specified threshold within said one cycle of said predetermined frequency; and

setting said detected interval in subsequent cycles of said predetermined frequency as an interval for stopping data transmission with respect to the terminal.