Lab Tasks

Consider the following subdivision of 20 bit Virtual Address into 3 Segments as follows

	2-bits	8-bits	10-bits
--	--------	--------	---------

- 1. What is the Page Size in the above setting?
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xE21C
- 2. 0x3A9D
- 3. 0xA9D9
- 4. 0x7001
- 5. 0xACA1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Page	Frame
8	-1
9	0
10	10
11	13
12	-1
13	-1
14	14
15	8

Consider the following subdivision of 32 bit Virtual Address into 4 Segments as follows

6-bits 8-bits 10-bits 8-bits

- 1. What is the Page Size in the above setting?
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xF74C
- 2. 0x8B9D
- 3. 0x19B9
- 4. 0x190F
- 5. 0x5CB1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Page	Frame
8	-1
9	0
10	10
11	13
12	-1
13	-1
14	14
15	8

Consider the following subdivision of 16 bit Virtual Address into 3 Segments as follows

2-bits	10-bits	4-bits
--------	---------	--------

- 1. What is the Page Size in the above setting?
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xB61C
- 2. 0x849D
- 3. 0x5AD9
- 4. 0xB901
- 5. 0x3BA1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Page	Frame
8	-1
9	0
10	10
11	13
12	-1
13	-1
14	14
15	8

Consider the following subdivision of 32 bit Virtual Address into 4 Segments as follows

8-bits 8-bits	10-bits	6-bits
---------------	---------	--------

- 1. What is the Page Size in the above setting?
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xF12C
- 2. 0x49BD
- 3. 0xB1F9
- 4. 0x4D19
- 5. 0xBCA1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Page	Frame
8	-1
9	0
10	10
11	13
12	-1
13	-1
14	14
15	8

Consider the following subdivision of 32 bit Virtual Address into 2 Segments as follows

10-bits 10	-bits	12-bits
------------	-------	---------

- 1. What is the Page Size in the above setting?
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xF21C
- 2. 0xBA9D
- 3. 0x19D9
- 4. 0x5001
- 5. 0xDCA1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Frame	
-1	
0	
10	
13	
-1	
-1	
14	
8	

Consider the following subdivision of 16 bit Virtual Address into 2 Segments as follows

10-bits	6-bits
---------	--------

- 1. How many pages are in Virtual Address Space.
- 2. If each page table entry takes 4 bytes, how much minimum memory is required by the program?

Convert Following VA to PA assuming a 2 Level page table (1bit-3bit-12bit) with each page of 4kB.

- 1. 0xA21C
- 2. 0x4A9D
- 3. 0xB9D9
- 4. 0x3001
- 5. 0x7CA1

Level 1 Page Table	
0	0xA925F233
1	0x6B73A49F

A @ 0xA925F233	
Page	Frame
0	9
1	1
2	3
3	5
4	-1
5	4
6	2
7	15

B @ 0x6B73A49F	
Page	Frame
8	-1
9	0
10	10
11	13
12	-1
13	-1
14	14
15	8