Lecture 4 Optimized Implementation of Logic Functions

吳文中

Karnaugh Map

•
$$f = m_0 + m_2 + m_4 + m_5 + m_6$$

• $= \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3} + x_1 \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1$

Karnaugh Map

	x_1	x_2	x_3	
m_0	0	0	0	${\mathbf{v} \cdot \mathbf{v}}$
m_2	0	1	0	$\overline{x_1x_3}$
m_4	1	0	0	$\gamma_{1}\overline{\gamma_{2}}$
m_6	1	1	0	$x_1\overline{x_3}$

	x_1	x_2	x_3
m_4	1	0	0
m_5	1	0	1

Two-variable Karnaugh Map

$$\bullet m_2 + m_3 = x_1 \overline{x_2} + x_1 x_2$$

$$\bullet = x_1(\overline{x_2} + x_2)$$

$$\bullet = x_1$$

x_1	x_2	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Three-Variable Karnaugh Map

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

x_1x_2				
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

Three-Variable Example

Four Variable Karnaugh Map

Five-Variable Map

Examples of Four-Variable Map

Prime-Number Detector (again)

- Literal : A given product term consists of some number of variables, each of which may appear either in uncomplemented or complemented form. e.g. $x_1\overline{x_2}x_3$ has three literals
- Implicant: A product term that indicates the input valuations(s) for which is given function is equal to 1 is called an implicant of the function. The most basic implicants are the minterms, and the terms combining pairs of minterms with consensus theorem are also implicants.

• Prime Implicant: An implicant is called a prime implicant if it cannot be combined into another implicant that has fewer literals.

 Cover: A collection of implicants that account for which a given function is equal to 1 is called a cover of that function, e.g.

$$\bullet = \overline{x_1 x_3} + x_1 \overline{x_3} + x_1 \overline{x_2}$$

$$\bullet = \overline{x_3} + x_1 \overline{x_2}$$

- Cost: The cost of a logic circuit is the number of gates plus the total number of inputs to all gates in the circuit.
- $f = x_1 \overline{x_2} + x_3 \overline{x_4}$ has a cost of 9 because it can implanted using two AND gates and one OR gate with six inputs to the AND and OR gates.
- If an inversion is needed inside a circuit, then the corresponding NOT gate and its input are included in the cost. Ex. $g = \overline{x_1}\overline{x_2} + x_3$ ($\overline{x_4} + x_5$) has cost of 14.

Essential Prime Implicants

• If a prime implicant includes a minterm for which f=1 that is not included in any other prime implicant, then it must be included in the cover and is called an essential prime implicants. x_3x_4 x_1x_2 x_2 x_3 x_4 x_1 x_2 x_3 x_4

Minimized Procedure for Minimum Cost

- 1. Generate all prime implicants for the given function *f*.
- 2. Find the set of essential prime implicants.
- 3 If the set of essential prime implicants covers all valuations for which *f*=1, then this set is the desired cover of *f*. Otherwise, determine the nonessential prime implicants that should be added to form a complete minimum-cost cover.

Examples

All Prime-Implicants are Essential

$$\mathsf{F} = \Sigma_{\mathsf{W},\mathsf{X},\mathsf{Y},\mathsf{Z}}(2,3,4,5,6,7,11,13,15)$$

Another Example

Minimization of Product-of-Sums

Incomplete Specified Functions

•
$$f(x_1, ..., x_4) = \sum m(2,4,5,6,10) + D(12,13,14,15)$$

(a) SOP implementation

(b) POS implementation

Example 4.1 Gate Sharing

(a) Function f_1

(c) Combined circuit for f_1 and f_2

Example 4.4 Minimized Gate Sharing SOP

(a) Optimal realization of 3

(b) Optimal realization of f_4

(c) Optimal realization of f_3 and f_4 together

Multilevel Synthesis

- A two-level realization is usually efficient for functions of a few variables.
- As the number of inputs increases a two-level circuit may result in fan-in problems (no enough inputs, variables for specific implementations)
- To solve the fain-in problem, f must be expressed in a form that has more than two levels of logic operations.

Factoring

The distributive law allows

$$f = x_1 \overline{x_6}(x_3 + x_4 x_5) + x_2 x_7 (x_3 + x_4 x_5)$$

= $(x_1 \overline{x_6} + x_2 x_7)(x_3 + x_4 x_5)$

• Fan-in problem: e.g. a 7-input product term are refactoring to 2 four-input AND gates.

A Factored Circuit

Example 4.6 Function Decomposition

•
$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1x_2}x_4$$

 $= (\overline{x_1}x_2 + x_1\overline{x_2})x_3 + (x_1x_2 + \overline{x_1x_2})x_4$
• Let $g(x_1, x_2) = \overline{x_1}x_2 + x_1\overline{x_2}$
 $\bar{g} = \overline{\overline{x_1}x_2 + x_1\overline{x_2}}$
 $= \overline{x_1}x_2 \cdot \overline{x_1}\overline{x_2}$
 $= (x_1 + \overline{x_2})(\overline{x_1} + x_2)$
 $= x_1\overline{x_2} + x_1x_2 + \overline{x_1x_2} + x_2\overline{x_2}$
 $= x_1x_2 + \overline{x_1x_2}$
• $f = gx_3 + \bar{g}x_4 = h[g(x_1, x_2), x_3, x_4]$

Example 4.6 Function Decomposition

Example 4.7

- The patterns, "rows" defines $k = X_3' X_4 + X_3 X_4'$
- Within the patterns (blue stripes), "columns" of 1s defines $g = x_1 + x_2 + x_5$ (columns 2,3,4 in x_5 =0 plane and all columns in x_5 = 1 plane)
- From Ex 4.6 $k' = X_3' X_4' + X_3 X_4$

Example 4.7

Thus decomposition of

$$f = kg$$
 (rows 2,4 & columns 2,3,4 in $x_5 = 0$ plane and all columns in $x_5 = 1$ plane) + $k'g'$ (rows 1,3 & columns 1 in $x_5 = 0$ plane)

Conversion of NAND Circuit

(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

NOR Conversion

Example 4.10 Multilevel Circuits

•
$$P_1 = x_2x_3$$
; $P_2 = x_5 + x_6$; $P_3 = x_1 + P_1$

•
$$P_4 = x_4 P_2 = x_4 (x_5 + x_6)$$

•
$$P_5 = P_4 + x_7 = x_4(x_5 + x_6) + x_7$$

•
$$f = P_3 P_5 = x_1 x_4 x_5 + x_1 x_4 x_6 + x_1 x_7 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_6 + x_2 x_3 x_7$$
 (cost=6A+1O+25i)

