Primitive grafice. Faţa şi spatele unui poligon convex

Mihai-Sorin Stupariu

Sem. I, 2021 - 2022

Condiții pentru poligoane

Vector normal. Fața și spatele unui poligon convex

► Codul sursă 03_01_poligoane3d.cpp

- ► Codul sursă 03_01_poligoane3d.cpp
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?

- Codul sursă 03_01_poligoane3d.cpp
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - ▶ NU: reguli pentru aplicarea reguli pentru aplicarea funcției GL_POLYGON
 - se presupune că vârfurile determină un poligon convex

- Codul sursă 03_01_poligoane3d.cpp
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - NU: reguli pentru aplicarea reguli pentru aplicarea funcției GL_POLYGON
 se presupune că vârfurile determină un poligon convex
 - ▶ DA: faţa şi spatele unui poligon convex

Reguli pentru aplicarea funcției GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

1. Punctele trebuie să fie coplanare, dar nu coliniare.

Reguli pentru aplicarea funcției GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia pologonală să nu aibă autointersecții.

Reguli pentru aplicarea funcției GL_POLYGON

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia pologonală să nu aibă autointersecții.
- 3. Poligonul trebuie să fie convex.

1. Coplanaritatea

De verificat: condiția de coplanaritate

$$\operatorname{rang} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{P_1} & x_{P_2} & x_{P_3} & \dots & x_{P_N} \\ y_{P_1} & y_{P_2} & y_{P_3} & \dots & y_{P_N} \\ z_{P_1} & z_{P_2} & z_{P_3} & \dots & z_{P_N} \end{pmatrix} = 3$$
 (1)

sau faptul că

$$\dim_{\mathbb{R}}\langle \overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \dots, \overrightarrow{P_1P_N} \rangle = 2. \tag{2}$$

Fapt: O condiție alternativă este coliniaritatea vectorilor $\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3}$, $\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4}, \ldots, \overrightarrow{P_{N-1}P_N} \times \overrightarrow{P_NP_1}, \overrightarrow{P_NP_1} \times \overrightarrow{P_1P_2}$. Altfel spus: punctele P_1, P_2, \ldots, P_N sunt coplanare dacă și numai dacă vectorii $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ $(i=1,\ldots,N,$ cu convenții modulo N) sunt coliniari.

Exemplu

Punctele $P_1 = (7,1,1), P_2 = (-3,3,9), P_3 = (1,-1,9), P_4 = (8,-4,5)$ sunt coplanare.

$$\begin{array}{lll}
\overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = (32,32,32) & \text{vectorii sunt} \\
\overrightarrow{P_{2}P_{3}} \times \overrightarrow{P_{3}P_{4}} = \dots = (16,16,16) & \text{proportionali}, \\
\overrightarrow{P_{3}P_{4}} \times \overrightarrow{P_{4}P_{1}} = \dots = (32,32,32) & \text{deci aliniari}; \\
\overrightarrow{P_{4}P_{1}} \times \overrightarrow{P_{1}P_{2}} = \dots = (48,48,48) & \text{deci punctule} \\
\overrightarrow{P_{1}P_{2}} = P_{2} - P_{1} = (-10,2,8) & \text{deci punctule} \\
\overrightarrow{P_{1}P_{2}} = P_{3} - P_{2} = (4,-4,0) & \text{deci aliniari} \\
\overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = \begin{vmatrix} -10 & 4 & \text{explane} \\ 2 & -4 & \text{explane} \\ 8 & 0 & \text{explane} \end{vmatrix} = 32 e_{1} + 32 e_{2} + 32 e_{3} = (32,32,32)$$

Exemplu

Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9), P_4 = (11, -3, 1)$ sunt coplanare.

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (32, 32, 32)$$

$$\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4} = (16, 16, 16)$$

$$\overrightarrow{P_3P_4} \times \overrightarrow{P_4P_1} = (32, 32, 32)$$

$$\overrightarrow{P_4P_1} \times \overrightarrow{P_1P_2} = (48, 48, 48)$$

2. Linie poligonală fără autointersecții

De verificat: intersecții de segmente.

Varianta 1 Segmentele [AB] și [CD] se intersectează $\Leftrightarrow A$ și B sunt de o parte și de alta a dreptei CD și C și D sunt de o parte și de alta a dreptei AB. Două puncte M și N sunt de o parte și de alta a dreptei D de ecuație D0 D1 D2 D3 sunt de o parte și de alta a dreptei D3 de ecuație D4 D5 sunt de o parte și de alta a dreptei D6 de ecuație D7 sunt de o parte și de alta a dreptei D8 sunt de o parte și de alta a dreptei D9 sunt de o parte și D9 sunt de o parte

Varianta 2 Se folosește reprezentarea segmentelor cu ajutorul combinațiilor afine. Segmentele [AB] și [CD] se intersectează \Leftrightarrow

$$\exists s_0, t_0 \in [0,1]$$
 a.î. $(1-t_0)A + t_0B = (1-s_0)C + s_0D$.

Această variantă poate fi aplicată și în context 3D.

3. Convexitatea poligonului - figura

3. Convexitatea poligonului

De verificat: convexitatea (folosind produse vectoriale).

Observație. (i) Fie $=(P_1, P_2, \dots, P_N)$ un poligon (sensul de parcurgere este important!). Poligonul \mathcal{P} este convex dacă și numai dacă pentru orice trei vârfuri consecutive P_{i-1}, P_i, P_{i+1} (modulo N) ale poligonului sensul vectorul $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ este independent de *i*.

(ii) Vectorii menționați au toți aceeași direcție (perpendiculari pe planul poligonului), deoarece punctele sunt coplanare (vezi condiția 1).

(iii) Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\parallel \overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}} \parallel}$$

este independent de i.

Exemplu. Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9),$ $P_4 = (11, -3, 1)$ determină un poligon convex.

Definiție - vector normal

Lemă. Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\parallel \overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}} \parallel}$$

este independent de *i*.

Definiție. Fie (P_1, P_2, \dots, P_N) un poligon convex. Se alege $i = 1, \dots, n$. Vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\|\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}\|}$$

se numește **vector normal (normală)** la planul poligonului / poligonul (P_1, P_2, \ldots, P_N) .

Modalitate de calcul (I)

1. Se aleg trei vârfuri consecutive, de exemplu P_1 , P_2 , P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1})$, $A_2 = (x_{P_2}, y_{P_2}, z_{P_2})$, respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3})$.

Modalitate de calcul (I)

- 1. Se aleg trei vârfuri consecutive, de exemplu P_1, P_2, P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1}), A_2 = (x_{P_2}, y_{P_2}, z_{P_2}),$ respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3}).$
- 2. Se scrie ecuația planului determinat de cele trei puncte sub forma

$$Ax + By + Cz + D = 0,$$

unde coeficienții A, B, C și D sunt dați de formulele

$$A = \left| \begin{array}{cc|c} y_{P_1} & z_{P_1} & 1 \\ y_{P_2} & z_{P_2} & 1 \\ y_{P_3} & z_{P_3} & 1 \end{array} \right|, \qquad B = - \left| \begin{array}{cc|c} x_{P_1} & z_{P_1} & 1 \\ x_{P_2} & z_{P_2} & 1 \\ x_{P_3} & z_{P_3} & 1 \end{array} \right| = \left| \begin{array}{cc|c} x_{P_1} & 1 & z_{P_1} \\ x_{P_2} & 1 & z_{P_2} \\ x_{P_3} & 1 & z_{P_3} \end{array} \right|,$$

$$C = \left| \begin{array}{cc} x_{P_1} & y_{P_1} & 1 \\ x_{P_2} & y_{P_2} & 1 \\ x_{P_3} & y_{P_3} & 1 \end{array} \right|, \qquad D = - \left| \begin{array}{cc} x_{P_1} & y_{P_1} & z_{P_1} \\ x_{P_2} & y_{P_2} & z_{P_2} \\ x_{P_3} & y_{P_3} & z_{P_3} \end{array} \right|,$$

fiind deduși din condiția de coliniaritate

$$\begin{vmatrix} x & y & z & 1 \\ x_{P_1} & y_{P_1} & z_{P_1} & 1 \\ x_{P_2} & y_{P_2} & z_{P_2} & 1 \\ x_{P_3} & y_{P_3} & z_{P_3} & 1 \end{vmatrix} = 0.$$

Pe scurt: se dezvoltă după linia I determinantul de mai șuș. Propositi de mai suș.

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

4 În final:

$$n = \frac{1}{\sqrt{A^2 + B^2 + C^2}}(A, B, C).$$

Conceptul de față / spate al unui poligon convex

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

• M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0;$

Conceptul de față / spate al unui poligon convex

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

- M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0$;
- M = (x, y, z) se află în spatele planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) < 0.$

Interpretare - "normala indică fața poligonului"

Presupunem că D=0, adică planul trece prin originea O=(0,0,0).

Intrepretare - sinteză

- Presupunem că D=0, deci planul trece prin origine, iar ecuația sa este $\pi(x,y,z)=Ax+By+Cz=0$.
- Considerând vectorul n = (A, B, C) care direcționează normala la plan, avem $\pi(A, B, C) > 0$, deci vectorul n indică partea din față a poligonului (planului).
- ▶ În general, un vector (x,y,z) este orientat înspre partea din față a planului dacă $\pi(x,y,z)>0$, i.e. $\langle (x,y,z),n,\rangle>0$, ceea ce înseamnă că proiecția vectorului (x,y,z) pe N este la fel orientată ca și n.
- ▶ Prin translație, aceste rezultate pot fi extinse pentru un plan arbitrar. Mai mult, presupunând că parcurgem poligonul (A₁, A₂,..., A_n) în sens trigonometric și că rotim un burghiu drept în sensul indicat de această parcurgere, acesta se va deplasa în sensul indicat de vectorul N, deci înspre fața poligonului (vezi figura).
- ► Altfel spus, din față un poligon este văzut ca fiind parcurs în sens trigonometric, iar din spate un poligon este văzut ca fiind parcurs în sens orar.

Exemplul 1. Cod sursă 03_01_poligoane3d.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

Exemplul 1. Cod sursă 03_01_poligoane3d.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

Exemplul 1. Cod sursă $03_01_poligoane3d.cpp$ $A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$

Explicate algebrica:
$$\overline{\pi}(x, y, z) = -100z + 500$$
; $\overline{\pi}(0, 0, 0) = 500 > 0$; $\overline{\pi}(0, 0, 0) = 0$;

Exemplul 1. Cod sursă 03_01_poligoane3d.cpp

$$A_1 = (5, -5, 5), A_2 = (-5, -5, 5), A_3 = (-5, 5, 5), A_4 = (5, 5, 5)$$

Am obtinut equation
$$-100 \neq +500 = 0$$

$$(A, B, C) = (0, 0, -100) = >$$

$$n = (0, 0, -1) = > deci fota poligonului
exte in jos$$

Exemplul 2. Cod sursă 03_02_poligoane3d_exemplu2.cpp

Fie punctele $P_1 = (6, 2, 0), P_2 = (-4, 4, 8), P_3 = (0, 0, 8)$ (toate trei situate în planul de ecuație x + y + z = 8).

a) Să se aleagă P_4 astfel ca patrulaterul $P_1P_2P_3P_4$ să fie concav.

$$P_4 = (2, 2, 4)$$

? P₄ care sa fe combinates
converá a pet P₁, P₂, P₃

Alegem P₄ =
$$\frac{1}{2}$$
P₁ + $\frac{1}{4}$ P₂ + $\frac{1}{4}$ P₃

= $\left(\frac{1}{2}$ P₁ + $\frac{1}{2}$ $\left(\frac{1}{2}$ P₂ + $\frac{1}{2}$ P₃ $\right)$

mighoud lui [P₂P₃]

Exemplul 2. Cod sursă 03_02_poligoane3d_exemplu2.cpp

Fie punctele $P_1 = (6, 2, 0), P_2 = (-4, 4, 8), P_3 = (0, 0, 8)$ (toate trei situate în planul de ecuație x + y + z = 8).

b) Să se aleagă P_5 astfel ca patrulaterul $P_1P_2P_3P_5$ să fie convex.

Exemplul 2. Cod sursă 03_02_poligoane3d_exemplu2.cpp

Fie punctele $P_1 = (6, 2, 0), P_2 = (-4, 4, 8), P_3 = (0, 0, 8)$ (toate trei situate în planul de ecuație x + y + z = 8).

c) Să se determine puncte O_1 și O_2 astfel ca poligonul $P_1P_2P_3P_5$ să fie văzut din față, respectiv din spate.

P₁ -
$$\frac{1}{10}$$
 P₂ - $\frac{1}{10}$ P₃ - $\frac{1}{10}$ P₁ P₂ × P₂P₃ = ... = (32,32,32)
($\frac{1}{15}$ · $\frac{1}{15}$ · $\frac{1}{15}$) $\frac{1}{15}$) $\frac{1}{15}$) = - $\frac{1}{15}$ · $\frac{1}{15}$ · $\frac{1}{15}$) = - $\frac{1}{15}$ · $\frac{1}{15}$) = - $\frac{1}{15}$ · $\frac{1}{15}$ · $\frac{1}{15}$) = - $\frac{1}{15}$ · $\frac{1}{15}$ · $\frac{1}{15}$) = - $\frac{1}{15}$ · $\frac{1}$

Linii poligonale închise cu autointersecții: interior/exterior Regula par-impar (odd-even rule)

Linii poligonale închise cu autointersecții: interior/exterior Regula indexului nenul (non-zero winding number rule)

Linii poligonale închise cu autointersecții: interior/exterior

Observație.

Legatira lintre cele doua reguli.

Obs. $(m_+ + m_-) = mumanul total de intersectii,$ i ar paritatea lui me la regula par/impar

P exterior ptr. regula indexului => $m_+ = m_-$ => $(m_+ + m_-)$ este par => P exterior ptr. por/impar

< = NU e meaparat adevarat

Linii poligonale închise cu autointersecții: interior/exterior

Exemplu

