Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

Курсовая работа

по дисциплине «Дифференциальные уравнения»

Подводный старт ракеты

Выполнил студент группы ФН2-41

Разумов Т.Е.

Научный руководитель

профессор кафедры ФН-2

Кувыркин Г.Н.

Постановка задачи

Исследовать вертикальное движение баллистической ракеты на подводном участке траектории после ее выталкивания на глубине H_0 с начальной скоростью v_0 из стартовой шахты подводной лодки. Сила сопротивления движению ракеты в воде $F=kv^n$, где k — коэффициент сопротивления, v — скорость, n>0. На глубине $H_1 \leq H_0$ включается ракетный двигатель, развивающий силу тяги $P=P_0-aH$, где P_0 — сила тяги на поверхности воды, H — текущее значение глубины, a>0. Объем V_0 и массу m_0 ракеты принять постоянными на подводном участке траектории.

Построить математическую модель вертикального движения ракеты и получить точное аналитическое решение при n=1,2. Провести численный анализ этой модели при n=7/4 и согласованных с руководителем значениях остальных параметров.

Решение задачи

Дифференциальное уравнение, описывающее движение для произвольного n

Силы, действующие на ракету

Векторное дифференциальное уравнение:

$$m\boldsymbol{a} = \boldsymbol{F}_{\rm apx} + m\boldsymbol{g} + \boldsymbol{R}_{\rm comp} + \boldsymbol{P}.$$

В проекции на вертикальную ось, направленную вниз:

$$m \frac{dv}{dt} = C + kv^n - P$$
, где $C = mg - F_{\rm apx}$.

Решение при n=1 и отсутствии силы тяги

Пусть
$$n=1, H_1 \leq H \leq H_0$$
, тогда $P\equiv 0$, $m\frac{dv}{dt}=C+kv$ – уравнение с разделяющимися переменными. $\frac{1}{k}Ln|C+kv|=\frac{t}{m}+C_1$, При $t=0, v=v_0$, $C_1=\frac{1}{k}Ln|C+kv|$, тогда $v(t)=\frac{C+kv_0}{k}e^{\frac{k}{m}t}-\frac{C}{k}$. В безразмерном виде $v^*=(A+1)e^{-t^*}-A$, где $v^*=\frac{v}{v_0}$, $t^*=-\frac{k}{m}t$, $A=\frac{C}{kv_0}$.

Решение при n=1 и отсутствии силы тяги

$$v(t)=rac{dH}{dt}=rac{C+kv_0}{k}e^{rac{k}{m}t}-rac{C}{k}$$
 - уравнение с разделяющимися переменными. $H(t)=rac{m(C+kv_0)}{k^2}e^{rac{k}{m}t}-rac{C}{k}t+C_2,$ При $t=0$, $H=H_0$, $C_2=H_0-rac{m(C+kv_0)}{k^2}$, тогда $H(t)=rac{m(C+kv_0)}{k^2}(e^{rac{k}{m}t}-1)-rac{C}{k}t+H_0$. В безразмерном виде $H^*=(A+B)ig(e^{-t^*}-1ig)+At^*+1$, где $H^*=rac{H}{H_0}$, $-t^*=rac{k}{m}t$, $A=rac{mC}{k^2H_0}$, $B=rac{mv_0}{kH_0}$.

Решение при n=1 и отсутствии силы тяги

Найдем зависимость
$$H(v)$$
. $m\frac{dv}{dt}\frac{dH}{dH}=C+kv$, $v\frac{dv}{dH}=\frac{C+kv}{m}$ - уравнение с разделяющимися переменными.
$$\frac{v}{k}-\frac{C}{k^2}Ln|C+kv|=\frac{H}{m}+C_3,$$
 При $H=H_0$, $v=v_0$, $C_3=\frac{v_0}{k}-\frac{C}{k^2}Ln|C+kv_0|-\frac{H_0}{m}$, тогда $H(v)=\frac{m(v-v_0)}{k}-\frac{Cm}{k^2}Ln\left|\frac{C+kv_0}{C+kv}\right|+H_0$. В безразмерном виде $H^*=A(v^*-1)-ABLn\left|\frac{B+v^*}{B+1}\right|+1$, где $H^*=\frac{H}{H_0}$, $v^*=\frac{v}{v_0}$, $A=\frac{v_0m}{kH_0}$, $B=\frac{C}{kv_0}$.

Решение при n=1 с силой тяги

Пусть $H \leq H_1$, тогда $P = P_0 - \alpha H$,

$$\frac{d^{2}H}{dt^{2}}-\frac{k}{m}\frac{dH}{dt}-\frac{a}{m}H=\frac{C-P_{0}}{m}$$
 - дифференциальное уравнение второго порядка с правой частью.

$$H_{\mathrm{0.0.}} = \mathsf{C}_1 e^{lpha_1 t} + \mathsf{C}_2 e^{lpha_2 t}$$
, где $lpha_{1,2} = rac{rac{k}{m} \pm \sqrt{rac{k^2}{m^2} + 4rac{a}{m}}}{2}$; $H_{\mathrm{q.h.}} = rac{P_0 - C}{a}$; $H_{\mathrm{0.h.}} = \mathsf{C}_1 e^{lpha_1 t} + \mathsf{C}_2 e^{lpha_2 t} + rac{P_0 - C}{a}$. При $t = t_1$, $H = H_1$, $v = v_1$, $C_1 = rac{v_1 - lpha_2 rac{(H_1 - rac{P_0 - C}{a})lpha_1 - v_1}{lpha_1 - lpha_2}}{lpha_1 - lpha_2}$, $C_2 = rac{(H_1 - rac{P_0 - C}{a})lpha_1 - v_1}{(lpha_1 - lpha_2)e^{lpha_2 t_1}}$, тогда

При
$$t=t_1$$
, $H=H_1$, $v=v_1$, $C_1=\frac{v_1-\alpha_2\frac{(H_1-\frac{P_0-C}{a})\alpha_1-v_1}{\alpha_1e^{\alpha_1t_1}}}{\alpha_1e^{\alpha_1t_1}}$, $C_2=\frac{(H_1-\frac{P_0-C}{a})\alpha_1-v_1}{(\alpha_1-\alpha_2)e^{\alpha_2t_1}}$, тогда
$$H(t)=(\frac{v_1}{\alpha_1}-\frac{\alpha_2}{\alpha_1}\frac{(H_1-\frac{P_0-C}{a})\alpha_1-v_1}{\alpha_1-\alpha_2})e^{\alpha_1(t-t_1)}+\frac{(H_1-\frac{P_0-C}{a})\alpha_1-v_1}{\alpha_1-\alpha_2}e^{\alpha_2(t-t_1)}+\frac{P_0-C}{a}.$$

В безразмерном виде $H^* = Ae^{t^*} + Be^{-t^*} + D$.

Решение при n=1 с силой тяги

$$\frac{d\mathit{H}}{dt} = v(t) = (v_1 - \alpha_2 \frac{(\mathit{H}_1 - \frac{P_0 - \mathit{C}}{a})\alpha_1 - v_1}{\alpha_1 - \alpha_2})e^{\alpha_1(t - t_1)} + \alpha_2 \frac{(\mathit{H}_1 - \frac{P_0 - \mathit{C}}{a})\alpha_1 - v_1}{\alpha_1 - \alpha_2}e^{\alpha_2(t - t_1)}.$$
 В безразмерном виде $v^* = (1 - \mathit{A})e^{t^*} + \mathit{A}e^{-t^*}.$

Решение при n=2 и отсутствии силы тяги

Пусть n=2, $H_1 \leq H \leq H_0$, тогда $P\equiv 0$, $mv\frac{dv}{dH}=C+kv^2$ — уравнение с разделяющимися переменными. $H(v)=\frac{m}{2k}Ln|C+kv^2|+C_1$,

При
$$H=H_0$$
 , $v=v_0$, $C_1=H_0-\frac{m}{2k}Ln\big|C+kv_0^2\big|$, тогда $H(v)=\frac{m}{2k}Ln\left|\frac{C+kv^2}{C+kv_0^2}\right|+H_0$.

В безразмерном виде $H^* = ALn \left| \frac{B+v^*}{B+1} \right| + 1.$

Решение при n=2 и отсутствии силы тяги

$$ext{m} rac{dv}{dt} = C + kv^2$$
 - уравнение с разделяющимися переменными, $rac{dv}{C + kv^2} = rac{dt}{m}$.

Решение при $mg > F_{\rm apx}$ (C > 0)

$$\frac{\arctan(\sqrt{\frac{k}{C}v})}{\sqrt{Ck}} = \frac{t}{m} + C_2,$$
 При $t = 0$, $v = v_0$, $C_2 = \frac{\arctan(\sqrt{\frac{k}{C}v_0})}{\sqrt{Ck}}$, тогда $v(t) = \sqrt{\frac{c}{k}} \operatorname{tg}\left(\frac{\sqrt{Ck}}{m}t + \operatorname{arctg}\left(\sqrt{\frac{k}{C}}v_0\right)\right)$. В безразмерном виде $v^* = \operatorname{Atg}\left(\frac{t^*}{2} + B\right)$.

Решение при n=2 и отсутствии силы тяги Решение при $mg > F_{\rm apx} \ ({\rm C} > 0)$

$$v(t)=rac{dH}{dt}=\sqrt{rac{c}{k}}\mathrm{t}g\left(rac{\sqrt{ck}}{m}t+\mathrm{arct}g\left(\sqrt{rac{k}{c}}v_0
ight)
ight)$$
 - уравнение с разделяющимися переменными. $H(t)=rac{m}{k}Ln\left|rac{cos(B)}{cos\left(rac{\sqrt{ck}}{m}t+B
ight)}
ight|+H_0$, где $B=\mathrm{arct}g\left(\sqrt{rac{k}{c}}v_0
ight)$.

В безразмерном виде $H^* = ALn \left| \frac{cos(B)}{cos(t^* + B)} \right| + 1.$

Решение при n=2 и отсутствии силы тяги Решение при $mg < F_{\rm apx} \ ({\rm C} < 0)$

Обозначим
$$C=-b$$
, тогда $\frac{dv}{kv^2-b}=\frac{dt}{m}$ - уравнение с разделяющимися переменными.
$$\frac{m}{2\sqrt{kb}}Ln\left|1-\frac{2b}{\sqrt{kb}v+b}\right|=t+C_2,$$

При
$$t=0, v=v_0, C_2=rac{m}{2\sqrt{kb}}Ln\left|1-rac{2b}{\sqrt{kb}v+b}\right|$$
, тогда $v(t)=rac{2\sqrt{b}}{\sqrt{k}\left(1+rac{b-\sqrt{kb}v_0}{\sqrt{kb}v_0+b}e^{rac{2\sqrt{kb}}{m}t}\right)}-\sqrt{rac{b}{k}}.$

В безразмерном виде
$$v^* = \frac{2A(A+1)}{A+1+(A-1)e^{t^*}} - A.$$

Решение при n=2 и отсутствии силы тяги Решение при $mg < F_{\rm apx} \ ({\rm C} < 0)$

$$v(t) = rac{dH}{dt} = rac{2\sqrt{b}}{\sqrt{k}} rac{2\sqrt{kb}v_0}{\sqrt{kb}v_0 + b} e^{rac{2\sqrt{kb}}{m}t} - \sqrt{rac{b}{k}}$$
 - уравнение с разделяющимися переменными,

$$H(t) = \sqrt{\frac{b}{k}} t + \frac{m}{k} Ln \left| \frac{2b}{(b - \sqrt{kb}v_0)e^{\frac{2\sqrt{kb}}{m}t} + \sqrt{kb}v_0 + b} \right| + H_0.$$

В безразмерном виде $H^* = \frac{At^*}{2} - ALn \left| \frac{(1-B)e^{t^*} + B + 1}{2} \right| + 1.$

Решение при n=2 и отсутствии силы тяги Решение при $mg = F_{\rm apx} \ ({\rm C} = 0)$

$$rac{dv}{kv^2}=rac{dt}{m}$$
 - уравнение с разделяющимися переменными. $v(t)=-rac{1}{k\left(rac{t}{m}-rac{1}{kv_0}
ight)}.$

В безразмерном виде $v^* = -\frac{1}{At^*-1}$.

$$v(t) = \frac{dH}{dt} = -\frac{1}{k\left(\frac{t}{m} - \frac{1}{kv_0}\right)},$$

$$H(t) = \frac{m}{k} Ln \left| \frac{1}{1 - \frac{kv_0}{m}t} \right| + H_0.$$
P. Gozpozna Rugo, $H^* = -AIn[1]$

В безразмерном виде $H^* = -ALn|1 - Bt^*| + 1$.

Решение при n=2 с силой тяги

Пусть
$$H \leq H_1$$
, тогда $P = P_0 - aH$, $mv\frac{dv}{dH} = C + kv^2 - P_0 + aH \leftrightarrow v\frac{dv}{dH} - \frac{k}{m}v^2 = \frac{C - P_0}{m} + \frac{aH}{m}$ - уравнение Бернулли.
$$v(H) = \sqrt{-\frac{C - P_0 + aH}{K} - \frac{am}{2k^2} + \left(v_1^2 + \frac{C - P_0 + aH_1}{k} + \frac{am}{2k^2}\right)e^{2\frac{k}{m}(H - H_1)}}.$$
 В безразмерном виде $v^* = \sqrt{-(A + BH^*) + (1 + A + B)e^{D(H^* - 1)}}.$

Численное решение при n=7/4 и отсутствии силы тяги

Пусть $n=7/4, H_1 \leq H \leq H_0$, тогда $P\equiv 0$, тогда векторное уравнение в проекции на вертикальную ось направленную вверх имеет вид $m\frac{dv}{dt}=-C-kv^{\frac{7}{4}}$. Для получения численного решения восполь-

зуемся пакетом Wolfram Mathematica.

$$v(t)$$
, $v_0 = 10 \, (\text{m/c})$

$$H(t), H_0 = 100(M), v_0 = 10 (M/c)$$

Численное решение при n=7/4 с силой тяги

Пусть $H \leq H_1$, тогда $P = P_0 - aH$, тогда $m \frac{dv}{dt} = -C - kv^{\frac{7}{4}} + P_0 - aH$,

$$H(t)$$
, $t_1 = 1(c)$, $H_1 = 90(M)$, $v_1 = 5(M/c)$

$$v(H)$$
, $H_1 = 90(M)$, $v_1 = 5 (M/c)$

Выводы

В работе была построена математическая модель вертикального движения баллистической ракеты. Разобраны частные случаи построенной модели и для каждого из них получено точное аналитическое решение и проведено его исследование. Проведен численный анализ этой модели при n=7/4.

$P \equiv 0$				$P = P_0 - aH$			
n	1	7/4	2	n	1	7/4	2
$v({ m M/c})$	90.56	93.61	95.05	<i>v</i> (м/с)	97.57	96.27	93.46
H(M)	102.48	103.21	104.80	H(M)	6.18	6.84	8.24
			Таблица 2				

Из таблиц 1,2 заметим, что при изменении параметра n скорость ракеты изменятеся нелинейно как с силой тяги, так и без неё. (В качестве остальных параметров были взяты: $m=2000(\mbox{кг}), V=10(\mbox{m}^3), v_0=100\left(\frac{\mbox{\tiny M}}{c}\right), v_1=90\left(\frac{\mbox{\tiny M}}{c}\right), H_0=200(\mbox{\tiny M}), H_1=100(\mbox{\tiny M}), P_0=250000(\mbox{\tiny H}), a=25, k=10$, а вычисления текущего значения глубины и скорости для таблиц 1,2 были проведены для моментов времени $t_1=1(c), t_2=3(c)$ соответственно).

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

Курсовая работа

по дисциплине «Дифференциальные уравнения»

Подводный старт ракеты

Выполнил студент группы ФН2-41

Разумов Т.Е.

Научный руководитель

профессор кафедры ФН-2

Кувыркин Г.Н.