HƯỚNG DẪN GIẢI

Câu 1. $u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{2} > 0$, $\forall n \ge 1 \Rightarrow$ chuỗi đã cho là chuỗi dương.

Ta có:
$$u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{n} = \frac{\frac{2}{\sqrt{n+1} + \sqrt{n-1}}}{n} \stackrel{n \to \infty}{\sim} \frac{\frac{2}{2\sqrt{n}}}{n} = \frac{1}{n^{3/2}},$$

Mà
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
 là chuỗi dương hội tụ (vì $\alpha = \frac{3}{2} > 1$)

$$\Rightarrow \sum_{n=1}^{\infty} u_n$$
 hội tụ theo tiêu chuẩn so sánh.

Câu 2. Điều kiện:
$$x \ne 1$$
. Đặt $Y = \frac{2x+1}{1-x}$ thì chuỗi hàm trở thành:
$$\sum_{n=2}^{\infty} \frac{n+1}{n(n-1)} Y^n$$
 (1).

Ta có: $a_n = \frac{n+1}{n(n-1)}$, $\forall n \ge 2$. Bán kính hội tụ của chuỗi luỹ thừa (1) là:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{n+1}{n(n-1)}}{\frac{n+2}{(n+1)n}} \right| = \lim_{n \to \infty} \frac{\frac{n+1}{n(n-1)}}{\frac{n+2}{(n+1)n}} = \lim_{n \to \infty} \frac{\frac{n}{n^2}}{\frac{n}{n^2}} = 1.$$

Khoảng hội tụ của (1) là (-1, 1).

– Tại
$$Y = 1$$
, ta có chuỗi $\sum_{n=2}^{\infty} \frac{n+1}{n(n-1)}$, có $u_n = \frac{n+1}{n(n-1)} > 0$, $\forall n \ge 2$.

Ta có:
$$u_n \stackrel{n \to \infty}{\sim} \frac{n}{n^2} = \frac{1}{n}$$
, mà $\sum_{n=2}^{\infty} \frac{1}{n}$ phân kỳ (vì $\alpha = 1$)

$$\Rightarrow \sum_{n=2}^{\infty} \frac{n+1}{n(n-1)}$$
 là chuỗi dương phân kỳ theo tiêu chuẩn so sánh.

ĐẶT MUA GIẢI ĐỀ THI, ĐỂ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (7)/AHUSTpage

– Tại
$$Y=1$$
, ta có chuỗi $\sum_{n=2}^{\infty} \frac{n+1}{n(n-1)} (-1)^n$. Xét $v_n = \frac{n+1}{n(n-1)}$, $\forall n \ge 2$.

+) Vì
$$v_n = \frac{n+1}{n(n-1)} > 0$$
, $\forall n \ge 2 \Rightarrow \sum_{n=2}^{\infty} (-1)^n v_n$ là cuhỗi đan dấu.

Giải Đề số 5 – Giải tích 3 (Nhóm ngành 2) – Học kỳ 20192

+)
$$v_n - v_{n+1} = \frac{n+1}{n(n-1)} - \frac{n+2}{(n+1)n} = \frac{n+3}{n(n-1)(n+1)} > 0, \ \forall n \ge 2$$

$$\Rightarrow v_n > v_{n+1}, \ \forall n \ge 2 \Rightarrow \{v_n\}$$
 là dãy đơn điệu giảm khi $n \to \infty$.

+)
$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} \frac{n+1}{n(n-1)} = \lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\Rightarrow \sum_{n=2}^{\infty} \frac{n+1}{n(n-1)} (-1)^n \text{ hội tụ theo tiêu chuẩn Leibnitz.}$$

Vậy chuỗi (1) hội tụ $\Leftrightarrow -1 \le Y < 1 \Leftrightarrow -1 \le \frac{2x+1}{1-x} < 1 \Leftrightarrow -2 \le x < 0$.

Vậy miền hội tụ cần tìm là $\begin{bmatrix} -2; 0 \end{bmatrix}$.

Câu 3.

Với T = 4, khai triển Fourier của f(x) là $f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{4} + b_n \sin \frac{n\pi x}{4} \right)$.

Vì f(x) là hàm chẵn, nên $b_n = 0$, $\forall n \in \mathbb{N}^*$.

$$A_0 = \frac{2}{T} \int_{-2}^{2} f(x) dx = \frac{4}{T} \int_{0}^{2} f(x) dx = \int_{0}^{2} x dx = \frac{x^2}{2} \Big|_{0}^{2} = 2.$$

$$a_n = \frac{2}{T} \int_{-2}^{2} f(x) \cos \frac{n\pi x}{2} dx = \frac{4}{T} \int_{0}^{2} f(x) \cos \frac{n\pi x}{2} dx = \int_{0}^{2} x \cos \frac{n\pi x}{2} dx = \int_{0}^{2} x d \left(\frac{-2}{n\pi} \sin \frac{n\pi x}{2} \right)$$

$$= \left(\frac{-2x}{n\pi}\sin\frac{n\pi x}{2}\right)\Big|_{0}^{2} - \int_{0}^{2}\frac{-2}{n\pi}\sin\frac{n\pi x}{2}dx = 0 + \left(\frac{2}{n\pi}\cdot\frac{2}{n\pi}\cos\frac{n\pi x}{2}\right)\Big|_{0}^{2}$$

$$=\frac{4}{n^2\pi^2}\left[\cos(n\pi)-1\right]=\frac{4\left[\left(-1\right)^n-1\right]}{n^2\pi^2}, \ \forall n \in \mathbb{N}^*$$

Vậy khai triển Fourier cần tìm là $f(x) = 1 + \sum_{n=1}^{+\infty} \frac{4\left[\left(-1\right)^n - 1\right]}{n^2 \pi^2} \cos \frac{n\pi x}{2}$.

 $\underline{Chú \, \dot{y}:} \, \text{Vì} \, \left(-1\right)^n - 1 = \begin{cases} 0, & \text{nếu } n \text{ chẵn} \\ -2 & \text{nếu } n \text{ lẻ} \end{cases}, \text{nên các bạn có thể làm đơn giản hoá kết quả cuối}$

cùng thành:
$$f(x) = 1 + \sum_{k=1}^{+\infty} \frac{-8}{(2k-1)^2 \pi^2} \cos \frac{(2k-1)\pi x}{2}$$
.

Câu 4.

a)
$$xydy = (y^2 + x)dx$$
.

ĐẶT MUA GIẢI ĐỀ THI, ĐỀ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (1)/AHUSTpage

Đặt $u = y^2 \Rightarrow du = 2ydy$. Phương trình trở thành: $x \frac{du}{2} = (u + x)dx$ (1).

Nhận xét nghiệm dưới dạng x = C của phương trình là x = 0.

Với
$$x \neq 0$$
, $dx \neq 0$ ta có: (1) $\Leftrightarrow \frac{du}{dx} = \frac{2}{x}(u+x) \Leftrightarrow u' = \frac{2}{x}u + 2 \Leftrightarrow u' - \frac{2}{x}u = 2$.

Đây là phương trình vi phân tuyến tính cấp 1, có $p(x) = \frac{-2}{x}$ và q(x) = 2.

Nghiệm tổng quát:

$$u = e^{-\int p(x) dx} \left[C + \int q(x) e^{\int p(x) dx} dx \right] = e^{\int \frac{2}{x} dx} \left[C + \int 2e^{\int \frac{-2}{x} dx} dx \right]$$

$$= e^{-2\ln|x|} \left[C + \int 2e^{-2\ln|x|} dx \right] = |x|^2 \left(C + \int 2 \cdot \frac{1}{|x|^2} dx \right) = x^2 \left(C + \int \frac{2}{x^2} dx \right)$$

$$= x^2 \left(C - \frac{2}{x} \right) = Cx^2 - 2x.$$

Thay $u = y^2 \Rightarrow y^2 = Cx^2 - 2x \Leftrightarrow y^2 - 2x - Cx^2 = 0$ là tích phân tổng quát của phương trình đã cho, cùng với một nghiệm là x = 0.

b)
$$y'' + 9y = 2\cos^2 x \Leftrightarrow y'' + 9y = 1 + \cos 2x$$
 (1)

+) Phương trình thuần nhất tương ứng: y'' + 9y = 0.

Phương trình đặc trưng: $\lambda^2 + 9 = 0 \Leftrightarrow \lambda = 0 \pm 3i$.

⇒ nghiệm tổng quát của phương trình thuần nhất:

$$\overline{y} = e^{0x} \left[C_1 \cos(3x) + C_2 \sin(3x) \right] = C_1 \cos 3x + C_2 \sin 3x.$$

+) Do $f(x) = 1 + \cos 2x = 1.e^{0.x} + e^{0.x} \cos 2x$, trong đó $k_1 = 0$ và $k_2 = 0 \pm 2i$ đều **không** phải là nghiệm của phương trình đặc trưng ⇒ tìm nghiệm riêng dưới dạng:

$$Y = A + B\cos 2x + C\sin 2x \Rightarrow Y' = -2B\sin 2x + 2C\cos 2x \Rightarrow Y'' = -4B\cos 2x - 4C\sin 2x.$$

Thay Y, Y', Y'' vào (1), ta có:

$$-4B\cos 2x - 4C\sin 2x + 9(A + B\cos 2x + C\sin 2x) = 1 + \cos 2x$$

 \Leftrightarrow 9A+5Bcos 2x+5Csin 2x = 1+cos 2x

Giải Đề số 5 – Giải tích 3 (Nhóm ngành 2) – Học kỳ 20192

Giải đề: Hồ Văn Diên

#GT3Ex043

Tham gia nhóm AHUST - Giải tích & Đại số HUST để cập nhật thêm đề thị!

$$\Leftrightarrow \begin{cases} 9A = 1 \\ 5B = 1 \Leftrightarrow \begin{cases} A = 1/9 \\ B = 1/5 \Rightarrow Y = \frac{1}{9} + \frac{1}{5}\cos 2x. \\ C = 0 \end{cases}$$

Vậy nghiệm tổng quát của phương trình đã cho là:

$$y = \overline{y} + Y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{9} + \frac{1}{5} \cos 2x.$$

c) xy'' = y' + x. Đặt $u = y' \Rightarrow u' = y''$. Phương trình trở thành:

$$xu' = u + x \Leftrightarrow u' = \frac{u}{x} + x \Leftrightarrow u' - \frac{1}{x}u = 1.$$

Đây là phương trình vi phân tuyến tính cấp 1, có $p(x) = \frac{-1}{x}$ và q(x) = 1.

Nghiệm tổng quát:

$$u = e^{-\int p(x)dx} \left[C + \int q(x)e^{\int p(x)dx} dx \right] = e^{\int \frac{1}{x}dx} \left(C + \int 1 \cdot e^{\int \frac{-1}{x}dx} dx \right)$$

$$= e^{\ln|x|} \left(C + \int e^{-\ln|x|} dx \right) = |x| \left(C + \int \frac{1}{|x|} dx \right) = x \left(C + \int \frac{1}{x} dx \right)$$
(vì C là hằng số âm/dur

$$= x \left(C + \int \frac{1}{x} dx \right) = x \left(C + \ln |x| \right).$$

$$= e^{\ln|x|} \left(C + \int e^{-\ln|x|} dx \right) = |x| \left(C + \int \frac{1}{|x|} dx \right) = x \left(C + \int \frac{1}{x} dx \right)$$

$$= x \left(C + \int \frac{1}{x} dx \right) = x \left(C + \ln|x| \right).$$
(vì *C* là hằng số âm/dương tuỳ ý)
$$= x \left(C + \int \frac{1}{x} dx \right) = x \left(C + \ln|x| \right).$$
Thay $u = y'$ ta có $y' = x \left(C + x \right)$

$$\Leftrightarrow y = \int y' dx = \int x \left(C + \ln|x| \right) dx = \int \left(C + \ln|x| \right) d\left(\frac{x^2}{2} \right) = \frac{x^2}{2} \left(C + \ln|x| \right) - \int \frac{x^2}{2} d\left(\ln|x| \right)$$

$$= \frac{x^2}{2} \left(C + \ln|x| \right) - \int \frac{x^2}{2} \cdot \frac{dx}{x} = \frac{x^2}{2} \left(C + \ln|x| \right) - \int \frac{x}{2} dx$$

$$= \frac{x^2}{2} \left(C + \ln|x| \right) - \frac{x^2}{4} + C_2 = \left(\frac{C}{2} - \frac{1}{4} \right) x^2 + \frac{x^2}{2} \ln|x| + C_2.$$

Đặt $C_1 = \frac{C}{2} - \frac{1}{4}$, ta có nghiệm tổng quát cần tìm là $y = C_1 x^2 + C_2 + \frac{x^2}{2} \ln |x|$.

Câu 5.
$$\mathcal{L}^{-1} \left\{ \frac{13s+14}{(s+2)^2(s-1)} \right\} (t) = \mathcal{L}^{-1} \left\{ \frac{3}{s-1} - \frac{3}{s+2} + \frac{4}{(s+2)^2} \right\} (t)$$

$$= 3e^t - 3e^{-2t} + 4\mathcal{L}^{-1} \left\{ \frac{1}{(s+2)^2} \right\} (t) = 3e^t - 3e^{-2t} + 4e^{-2t}\mathcal{L}^{-1} \left\{ \frac{1}{s^2} \right\} (t)$$

$$= 3e^t - 3e^{-2t} + 4e^{-2t}t = 3e^t + (4t-3)e^{-2t}.$$

Câu 6. $y^{(3)} + y' = e^t$, biết rằng y(0) = y'(0) = y''(0) = 0. Đặt $Y(s) = \mathcal{L}\{y(t)\}(s)$.

Tác động biến đổi Laplace lên phương trình đã cho với điều kiện ban đầu, ta có:

$$s^{3}Y(s) + sY(s) = \mathcal{L}\left\{e^{t}\right\}(s) \Leftrightarrow \left(s^{3} + s\right)Y(s) = \frac{1}{s-1} \Leftrightarrow Y(s) = \frac{1}{s(s-1)\left(s^{2} + 1\right)}.$$

Tác động biến đổi Laplace ngược lên phương trình trên, ta có:

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s(s-1)(s^2+1)} \right\} (t) = \mathcal{L}^{-1} \left\{ \frac{1}{2} \cdot \frac{1}{s-1} - \frac{1}{s} + \frac{1}{2} \cdot \frac{s-1}{s^2+1} \right\} (t)$$
$$= \frac{1}{2} e^t - 1 + \frac{1}{2} \mathcal{L}^{-1} \left\{ \frac{s}{s^2+1^2} - \frac{1}{s^2+1^2} \right\} (t) = \frac{e^t}{2} - 1 + \frac{1}{2} (\cos t - \sin t).$$

Vậy nghiệm của phương trình đã cho là $y = \frac{e^t}{2} - 1 + \frac{1}{2} (\cos t - \sin t)$.

Câu 7. $\sum_{n=1}^{+\infty} u_n, \sum_{n=1}^{+\infty} v_n \text{ là 2 chuỗi dương hội tụ} \Rightarrow \lim_{n \to \infty} u_n = 0, \ u_n > 0, \ v_n > 0, \ \forall n \ge 1.$

Vì $\lim_{n\to+\infty} u_n = 0 \Rightarrow$ tồn tại số nguyên dương N_0 sao cho $u_n < 1$, $\forall n \ge N_0$.

$$\Rightarrow 0 < u_n v_n < 1 \cdot v_n = v_n, \ \forall n \ge N_0, \ \text{mà} \ \sum_{n=N_0}^{+\infty} v_n \ \text{hội tụ (vì} \ \sum_{n=1}^{+\infty} v_n \ \text{hội tụ)}$$

$$\Rightarrow \sum_{n=N_0}^{+\infty} u_n v_n \ \text{hội tụ theo tiêu chuẩn so sánh} \Rightarrow \sum_{n=1}^{+\infty} u_n v_n \ \text{hội tụ (đpcm)}.$$

Cách giải khác: Sử dụng tiêu chuẩn so sánh 2 ở dạng giới hạn:

$$\sum_{n=1}^{+\infty} u_n, \sum_{n=1}^{+\infty} v_n \text{ là 2 chuỗi dương hội tụ} \Rightarrow \lim_{n \to \infty} v_n = 0, \ u_n > 0, \ v_n > 0, \ \forall n \ge 1.$$

Đặt
$$b_n = u_n v_n > 0$$
, $\forall n \ge 1$ và xét giới hạn $\lim_{n \to +\infty} \frac{b_n}{u_n} = \lim_{n \to +\infty} \frac{u_n v_n}{u_n} = \lim_{n \to +\infty} v_n = 0$.

Mà $\sum_{n=1}^{+\infty} u_n$ là chuỗi dương hội tụ $\Rightarrow \sum_{n=1}^{+\infty} b_n$ là chuỗi dương hội tụ theo tiêu chuẩn so sánh.

Câu 8.
$$S = \sum_{n=0}^{\infty} \frac{2^{n+2}}{(n+2)n!}$$

Xét
$$G(x) = \sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)n!}, \forall x \in \mathbb{R}$$
. Ta có:

$$G'(x) = \left(\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)n!}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+2}}{(n+2)n!}\right)' = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n!} = x \sum_{n=0}^{\infty} \frac{x^n}{n!} = xe^x, \ \forall x \in \mathbb{R}.$$

Lấy nguyên hàm hai vế theo x, ta có:

$$G(x) = \int xe^x dx = \int xd(e^x) = xe^x - \int e^x dx = xe^x - e^x + C, \ \forall x \in \mathbb{R}.$$

Mặt khác, ta lại có:
$$G(0) = \sum_{n=0}^{\infty} \frac{0^{n+2}}{(n+2)n!} = 0 \Leftrightarrow 0.e^0 - e^0 + C = 0 \Leftrightarrow C = 1.$$

$$\Rightarrow G(x) = xe^{x} - e^{x} + 1, \ \forall x \in \mathbb{R}. \ \text{Ta c\'o:} \ S = \sum_{n=0}^{\infty} \frac{2^{n+2}}{(n+2)n!} = G(2) = e^{2} + 1.$$

TAILIËULÖPHOCAHUST

ĐÊ 5

ĐỀ THI CUỐI KỲ MÔN GIẢI TÍCH 3 – Học kỳ 20192

Khóa: K64. Nhóm ngành 2. Mã HP: MI1132. Thời gian: 90 phút.

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi.

Câu 1. (1 điểm) Xét sự hội tụ, phân kỳ của chuỗi số $\sum_{n=0}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{n}$.

Câu 2. (1 điểm) Tìm miền hội tụ của chuỗi hàm số $\sum_{n=2}^{\infty} \frac{n+1}{n(n-1)} \left(\frac{2x+1}{1-x}\right)^n$.

Câu 3. (1 điểm) Cho hàm số f(x) = |x| khi $-2 \le x \le 2$ và tuần hoàn chu kỳ T = 4. Khai triển f(x) thành chuỗi Fourier.

Câu 4. (3 điểm) Giải các phương trình vi phân:

a)
$$xydy = (y^2 + x)dx$$
.

b)
$$y'' + 9y = 2\cos^2 x$$
.

c)
$$xy'' = y' + x$$
.

Câu 5. (1 điểm) Tìm biến đổi Laplace ngược $\mathcal{L}^{-1}\left\{\frac{13s+14}{(s+2)^2(s-1)}\right\}(t)$.

Câu 6. (1 điểm) Sử dụng phương pháp toán tử Laplace giải phương trình vi phân $y^{(3)} + y' = e^t$, biết rằng y(0) = y'(0) = y''(0) = 0.

Câu 7. (1 điểm) Cho 2 chuỗi số dương hội tụ $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$. Chứng minh chuỗi số

$$\sum_{n=1}^{+\infty} \left(u_n . v_n \right) \text{ hội tụ.}$$

 $\sum_{n=1}^{+\infty} \left(u_n.v_n\right) \text{ hội tụ.} \qquad \frac{\text{Đặt mua giải để thi, để cương tại page}}{\text{AHUST - Giải Tích và đại số tuyến tính}}$ (7)/AHUSTpage

Câu 8. (1 *điểm*) Tính tổng $S = \sum_{n=0}^{\infty} \frac{2^{n+2}}{(n+2)n!}$