

rtpcr package

'rtpcr' package was developed for amplification efficiency calculation, statistical analysis and graphical display of real-time PCR data in R.

Α

Analysis type	Column arrangement of the input data frame (x)				
Amplification efficiency	Dilutions - targetCt - refCt				
t-test (accepts multiple genes)	condition (control level first) - gene (ref gene(s) last)- efficiency - Ct				
ANOVA or	factor1 - rep - targetE - targetCt - refE - refCt				
ANCOVA (Up to three factors)	factor1 - factor2 - rep - targetE - targetCt - refE - refCt factor1 - factor2 - factor3 - rep - targetE - targetCt - refE - refCt				
ANOVA or	factor1 - block - rep - targetE - targetCt - refE - refCt				
ANCOVA with	factor1 - factor2 - block - rep - targetE - targetCt - refE - refCt				
blocking	factor1 - factor2 - factor3 - block - rep - targetE - targetCt - refE - refCt				
with two reference genes	rep - targetE - targetCt - ref1E - ref1Ct - ref2E - ref2Ct				
calculating biological	biologicalRep - techcicalRep - Etarget - targetCt - Eref - refCt				
replicated	biolRep - techRep - Etarget - targetCt - ref1E - ref1Ct - ref2E - ref2Ct				

NOTE: For ANOVA and ANCOVA analysis, each line in the input data set belongs to a separate individual (reflecting a non-repeated measure experiment).

В

Repeated measure data structure

Column arrangement of the input data	Example in the package
id - time - targetE - targetCt - ref1E - ref1Ct	data_repeated_measure_1
id - time - targetE - targetCt - ref1E - ref1Ct - ref2E - ref2Ct	
id - treatment - time - targetE - targetCt - ref1E - ref1Ct	data_repeated_measure_2
id - treatment - time - targetE - targetCt - ref1E - ref1Ct - ref2I	E - ref2Ct

NOTE: In the "id" column of a repeated measure data frame, a unique number is assigned to each individual, e.g. all the three number 1 indicate one individual.

res <- qpcrANOVA(x)\$Result

Output tables & objects

qpcrTTEST()

Raw data table Fold Change statistics

qpcrANOVA()

Raw data table CRD-based Im and ANOVA table Relative Expression statistics

qpcrANCOVA()

Raw data table factorial-based Im and ANOVA **ANCOVA** table Fold Change statistics

qpcrREPEATED()

Raw data table Im and ANOVA Fold Change statistics

meanTech()

Table with mean of technical replicates

multiplot()

Producing multiple plots plate using ggplot objects

efficiency()

standard curves Slope, Efficiency, & R2

qpcrREPEATED

	contrast	FC	pvalue	sig	LCL	UCL	se
1	time1	1.0000	1.0000		0.00000	0.0000	0.703589
2	<pre>time2 vs time1</pre>	1.2555	0.5540		0.43805	3.5987	0.532338
3	time3 vs time1	2.5432	0.0350	*	0.88731	7.2895	0.707415

qpcrANCOVA()

C	ontrast	FC	pvalue	sıg	LCL	UCL	se
1	D0	1.0000	1.0000		0.0000	0.0000	0.3445
2 D	1 vs D0	1.0705	0.8051		0.5266	2.1762	0.2631
3 D	2 vs D0	3.5967	0.0003	***	1.7693	7.3116	0.3576

apcrTTEST()

dif Gene FC LCL UCL pvalue 2 C2H2-01 -2.0067 4.0185 2.4598 6.5649 0.0014 0.2193

qpcrANOVA()

	factor1	factor2	RE	LCL	UCL	letters	se
R:0	R	0	0.28519	0.19834	0.41008	d	0.02082
R:0.25	R	0.25	0.62706	0.43609	0.90166	bc	0.43880
R:0.5	R	0.5	0.98851	0.68746	1.42140	b	0.08413
S:0	S	0	0.79554	0.55326	1.14392	b	0.21284
S:0.25	S	0.25	0.41466	0.28837	0.59625	cd	0.25403
S:0.5	S	0.5	2.96905	2.06482	4.26925	а	0.05508

efficiency()

Ef	Efficiency_Analysis_Results						
	Gene	Slope	Е	R2			
1	C2H2.26	-3.388	1.973	0.997			
2	GAPDH	-3.415	1.963	0.999			
¢¢	Slone of	differer	ncas				

\$\$lope_of_differences [1] 0.0264574

K

qpcrTTESTplot(x, order = "none", numberOfrefGenes, paired = FALSE, var.equal = TRUE, width = 0.5, fill = "skyblue", y.axis.adjust = 0, y.axis.by = 2, letter.position.adjust = 0.3, vlab = "Average Fold Change", xlab = "none", fontsize = 12, fontsizePvalue = 7,

efficiency(x)

meanTech(x, groups)

axis.text.x.angle = 0,

axis.text.x.hjust = 0.5

qpcrANCOVA(x, numberOfrefGenes, analysisType = "ancova", mainFactor.column,

letter.position.adjust = 0.1,

ylab = "Fold Change",

fontsizePvalue = 7,

axis.text.x.angle = 0,

axis.text.x.hjust = 0.5,

x.axis.labels.rename = "none",

block = NULL,

fill = "#BFEFFF",

y.axis.adjust = 1,

y.axis.by = 1,

xlab = "none",

fontsize = 12,

p.adj = "none")

width = 0.5,

mainFactor.level.order = NULL,

oneFACTORplot(res, width = 0.2, fill = "skyblue", y.axis.adjust = 0.5, y.axis.by = 2errorbar = "std", show.letters = TRUE, letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0,

axis.text.x.hjust = 0.5

qpcrANOVA(x,

block = NULL,

p.adj = "none", ...)

twoFACTORplot(res, numberOfrefGenes,

x.axis.factor, group.factor, width = 0.5, fill = "Blues", y.axis.adjust = 0.5, y.axis.by = 2, show.errorbars = TRUE, errorbar = "std", show.letters = TRUE, show.points = FALSE, letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", legend.position = c(0.09, 0.8), fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0, axis.text.x.hjust = 0.5

threeFACTORplot(res,

arrangement = c(1, 2, 3), bar.width = 0.5, fill = "Reds", xlab = "none", ylab = "Relative Expression", errorbar = "std", y.axis.adjust = 0.5, y.axis.by = 2, letter.position.adjust = 0.3, legend.title = "Legend Title", legend.position = c(0.4, 0.8), fontsize = 12, fontsizePvalue = 7, show.letters = TRUE, axis.text.x.angle = 0, axis.text.x.hjust = 0.5)

multiplot(..., cols = 1)

qpcrTTEST(x, numberOfrefGenes, paired = FALSE, var.equal = FALSE)

p.adj = "none",

qpcrREPEATED(x, numberOfrefGenes, factor, block = NULL, fill = "#BFEFFF", y.axis.adjust = 1, y.axis.by = 1, ylab = "Fold Change", xlab = "none", fontsizePvalue = 7, axis.text.x.angle = 0,axis.text.x.hjust = 0.5,x.axis.labels.rename = "none", letter.position.adjust = 0,