

Versione ♡0	
DATA	CLASSE
ALUNNO	

Il punteggio per ogni risposta corretta è di 4 punti, per ogni risposta omessa 1 punto, per ogni risposta sbagliata 0 punti. La durata della verifica è di un'ora. Si suggerisce di ricopiare le risposte nella tabella a seguire o in caso di difficoltà nella copia se ne segnali l'assenza.

TABEL	LA DEL	LE RISP	OSTE						
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

- 1 WHEN THERE IS AN ELECTRIC CURRENT PASSING THROUGH A WIRE, THE PARTICLES MOVING ARE:
 - A ELECTRONS.
 - B PROTONS.
 - C ATOMS.
 - D IONS.

2 The unit of current is:
A AMPERE.
B WATT.
C VOLT.
D COULOMB.
(3) A POSITIVE CHARGE RELEASED FROM REST:
A MOVES TOWARDS THE REGIONS OF LOWER POTENTIAL.
B MOVES TOWARDS THE REGIONS OF HIGHER POTENTIAL.
C MOVES TOWARDS THE REGIONS OF EQUAL POTENTIAL.
D DOES NOT MOVE.
4 THE AMOUNT OF CHARGE FLOWING THROUGH A CROSS-SECTIONAL AREA OF A WIRE PER UNIT OF TIME IS CALLED:
A CURRENT.
B VOLTAGE.
C POWER.
D RESISTANCE.
5 DETERMINE THE DIRECTION OF THE CONVENTIONAL CURRENT THROUGH THE LIGHT BULB IN THE CIRCUIT PRESENTED IN FIGURE 1 AT THE END OF THE TEXT.
A TO THE RIGHT.
B TO THE LEFT.
C DOWNWARD.
D UPWARD.
6 A BATTERY IS USED TO:
A MAINTAIN A POTENTIAL DIFFERENCE.
B MEASURE ELECTRIC CURRENT.
C MEASURE ELECTRIC POTENTIAL.
D SAFEGUARD AGAINST SHORT-CIRCUIT.

7 THE WORK DONE IN MOVING A UNIT POSITIVE CHARGE ACROSS TWO POINTS IN AN ELECTRIC CIRCUIT IS A MEASURE OF:	
A POTENTIAL DIFFERENCE.	
B CURRENT.	
C RESISTANCE.	
D POWER.	
8 JOULE/COULOMB IS SAME AS:	
A VOLT.	
B WATT.	
C AMPERE.	
D OHM.	
9 Complete the following statement: "The electromotive force is:	
A THE MAXIMUM POTENTIAL DIFFERENCE BETWEEN THE TERMINALS OF A BATTERY".	
B THE FORCE THAT ACCELERATES ELECTRONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".	
C THE FORCE THAT ACCELERATES PROTONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".	
D THE MAXIMUM ELECTRIC POTENTIAL ENERGY STORED WITHIN A BATTERY'	.
$\stackrel{\textstyle \frown}{10}$ Compute the number of electrons flowing through a battery that delivers a current of 3.0 A for 12 s.	
$\boxed{A} \ \ 2.2 \times 10^{20}.$	
B 36.	
$\boxed{\mathbf{C}} 4.8 \times 10^{15}.$	
\boxed{D} 6.4 × 10 ¹⁸ .	
(1) A 10 A CURRENT IS MAINTAINED IN A SIMPLE CIRCUIT. COMPUTE THE NET CHARGE THAT PASSES THROUGH ANY POINT IN THE CIRCUIT DURING A 1 MINUT INTERVAL.	Έ
A 600 C.	
B 200 C.	
C 500 C.	
D 400 C.	

12	OHM'S LAW RELATES POTENTIAL DIFFERENCE WITH:
	A CURRENT.
	B POWER.
	C ENERGY.
	D TIME.
13	THE CURRENT IN A WIRE:
	A DEPENDS ON BOTH RESISTANCE AND POTENTIAL DIFFERENCE.
	B DEPENDS ONLY ON THE POTENTIAL DIFFERENCE APPLIED.
	C DEPENDS ONLY ON THE RESISTANCE OF THE WIRE.
	D DOES NOT DEPEND ON RESISTANCE AND POTENTIAL DIFFERENCE.
14)	DETERMINE WHICH OF THE FOLLOWING STATEMENTS DOES NOT REPRESENT OHM'S LAW.
	$\boxed{\mathbf{A}}$ CURRENT = RESISTANCE \times POTENTIAL DIFFERENCE.
	B CURRENT / POTENTIAL DIFFERENCE = CONSTANT.
	C POTENTIAL DIFFERENCE / CURRENT = CONSTANT.
	$\boxed{\mathbf{D}}$ POTENTIAL DIFFERENCE = CURRENT \times RESISTANCE.
15)	The potential difference required to pass a current $0.2\ A$ in a wire of resistance $20\ \Omega$ is:
	A 4 V.
	B 100 V.
	C 1 V.
	D 40 V.
16	The resistance of an electric bulb drawing $1.2\ A$ current at $6.0\ V$ is:
	A 5 W.
	B 0.5 W.
	C 0.2 W.
	D 2 W.

- 17 DETERMINE WHICH OF THE GRAPHS IN FIGURE 2 AT THE END OF THE TEXT REPRESENTS OHM'S LAW FOR A SOLID CONDUCTOR.
 - (C).
 - B (A).
 - (B).
 - D (D).
- 18 THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED BY THE GRAPH IN FIGURE 3. COMPUTE THE RESISTANCE OF THE WIRE.
 - $\boxed{\mathbf{A}}$ 1.7 $\mathbf{\Omega}$.
 - B 1 Ω.
 - $\boxed{\mathsf{C}}$ 0.8 Ω .
 - \boxed{D} 0.4 Ω .
- $\widehat{(19)}$ The unit of resistivity is:
 - A OHM·M.
 - В онм.
 - С онм/м.
 - \bigcirc OHM/M².
- 20 The resistivity of a wire depends on:
 - A MATERIAL.
 - B LENGTH.
 - C AREA OF CROSS-SECTION.
 - D LENGTH, MATERIAL AND AREA OF CROSS-SECTION.
- 21) A WIRE OF LENGTH L AND CROSS-SECTIONAL AREA A HAS A RESISTIVITY ρ . DETERMINE WHICH OF THE FOLLOWING FORMULAS CAN BE USED TO CALCULATE THE RESISTANCE OF THE WIRE.
 - $\boxed{\mathbf{A}} \quad R = \frac{\rho L}{A}.$
 - $\boxed{\mathbf{B}} \ R = \frac{\rho A}{L}.$
 - $\boxed{\mathbf{C}} R = \frac{L}{\rho A}.$
 - $\boxed{\mathbf{D}} \ R = \frac{A}{\rho L}.$

- 22 All of the wires in Figure 4 at the end of the text are made of the same material but are different sizes. Identify the wire with the lowest resistance.
 - (B).
 - B (A).
 - (C).
 - D (D).
- 23 Two copper wires have the same cross-sectional area but have different lengths. Wire X has a length L and wire Y has a length 2L. The ratio between the resistance of wire Y and wire X is:
 - $\boxed{\mathbf{A}} \quad \frac{R_Y}{R_X} = \frac{2}{1}.$
 - $\boxed{\mathbf{B}} \ \frac{R_Y}{R_X} = \frac{1}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_Y}{R_X} = \frac{1}{2}.$
 - $\boxed{\mathbf{D}} \ \frac{R_Y}{R_X} = \frac{1}{4}.$
- 24 Two aluminum wires have the same length and different cross-sectional area. Wire B has twice the radius of that of wire A. Determine how the resistance of wire B compares to the resistance of wire A.
 - $\boxed{\mathbf{A}} \quad \frac{R_B}{R_A} = \frac{1}{4}.$
 - $\boxed{\mathbf{B}} \ \frac{R_B}{R_A} = \frac{1}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_B}{R_A} = \frac{1}{2}.$
 - $\boxed{\mathbf{D}} \ \frac{R_B}{R_A} = \frac{2}{1}.$
- (25) The unit of electric power is:
 - A WATT.
 - B AMPERE.
 - C VOLT.
 - D JOULE.

26)	If D is the intensity of current circulating in a conductor and P is the voltage across the conductor, the power dissipated is described by the formula:
27)	If D is the intensity of current circulating in a resistor with resistance F , the power dissipated by the resistor is described by the formula:
28)	When a current I flows through a resistance R for time t the electrical energy spent is given by: A I^2Rt . B IRt . C IR^2t . D I^2R/t .
29	HEAT PRODUCED IN A CURRENT CARRYING WIRE IN 5s is 60 J. The same current is passed through another wire of half the resistance. The heat produced in 5 s will be: A 30 J. B 60 J. C 15 J. D 120 J.
30)	The electric current as a function of voltage of a wire is presented by the graph in Figure 3. Compute the power dissipated in the resistor when the applied voltage is 5 V. A 15 W. B 5 W. C 10 W. D 20 W.

(31) DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN SERIES IS <i>true</i> .
A THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
B THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
D THE TOTAL CURRENT THROUGH THE RESISTORS IS THE SUM OF THE CURRENT THROUGH EACH RESISTOR.
32 DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN PARALLEL IS <i>true</i> .
A THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
B THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
D THE TOTAL VOLTAGE ACROSS THE RESISTORS IS THE SUM OF THE VOLTAGE ACROSS EACH RESISTOR.
(33) Two resistances of 100 Ω and zero ohm are connected in parallel. The overall resistance will be:
$oxed{A} 0 \Omega.$
$lacksquare$ 100 Ω .
$\boxed{\mathrm{C}}$ 50 Ω .
D 25 Ω.
$\ensuremath{\mathfrak{I}}$ Two resistances of 100 Ω and zero ohm are connected in series. The overall resistance will be:
$oxed{A}$ 100 $oldsymbol{\Omega}$.
$\boxed{\mathrm{B}}$ 50 Ω .
$\boxed{\mathrm{C}}$ 25 Ω .
$\boxed{D} \ \ 0 \ \Omega.$
(35) Three resistors 2 Ω , 3 Ω and 4 Ω are connected so that the equivalent resistance is 9 $\Omega.$ The resistors are connected:
A ALL IN SERIES.
B ALL IN PARALLEL.
$\boxed{\mathbb{C}}$ 2 Ω and 3 Ω in parallel and the combination in series with 4 Ω .
\boxed{D} 2 Ω and 3 Ω in series and the combination in parallel to 4 Ω .

(36) In Figure 5 at the end of the text,
\boxed{A} 3 Ω , 6 Ω are in parallel and 9 Ω is in series.
$\boxed{\mathrm{B}}$ 6 Ω , 3 Ω and 9 Ω are in series.
\boxed{C} 9 Ω and 6 Ω are in parallel and the combination is in series with 3 $\Omega.$
\boxed{D} 3 Ω , 6 Ω and Ω are in parallel.
\bigcirc In Figure 6 at the end of the text, the resistance across <i>AB</i> is:
$oxed{A}$ 1 $oldsymbol{\Omega}$.
$oxed{B}$ 4 Ω .
$\boxed{C} \ 2\ \Omega.$
$\boxed{D} \ \ 0.5 \ \Omega.$
Three equal resistances when combined in series are equivalent to 90 Ω . Their equivalent resistance when combined in parallel will be:
$oxed{A}$ 10 $oldsymbol{\Omega}$.
$oxed{B}$ 270 Ω .
$\boxed{\mathbf{C}}$ 30 $\mathbf{\Omega}$.
D 810 Ω.
(39) Two resistors $R_1=3~\Omega$ and $R_2=6~\Omega$ are connected in parallel. Compute the net resistance in the circuit.
$oxed{A}$ 2 $oldsymbol{\Omega}$.
$oxed{B}$ 1 Ω .
$\boxed{\mathbf{C}}$ 3 Ω .
\boxed{D} 6 Ω .
Two resistors $R_1=6~\Omega$ and $R_2=12~\Omega$ are connected in parallel to each other and in series to $R_2=2~\Omega$. Compute the net resistance in the circuit.
$oxed{A} oxed{6} \Omega.$
$\begin{bmatrix} \mathbf{B} \end{bmatrix} 1 \Omega$.
$\begin{bmatrix} \mathbf{C} \end{bmatrix}$ 3 $\mathbf{\Omega}$.
$[\underline{\mathrm{D}}] \ \ 2 \ \Omega.$

I (A) 9 10 V (V)

FIGURA 3

Figura 4

FIGURA 5

Figura 6

Versione ♡1		
DATA	CLASSE	_
ALUNNO		

Il punteggio per ogni risposta corretta è di 4 punti, per ogni risposta omessa 1 punto, per ogni risposta sbagliata 0 punti. La durata della verifica è di un'ora. Si suggerisce di ricopiare le risposte nella tabella a seguire o in caso di difficoltà nella copia se ne segnali l'assenza.

TABEL	LA DEL	LE RISP	OSTE						
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

- (1) Two resistances of 100 Ω and zero ohm are connected in parallel. The overall resistance will be:
 - Α 100 Ω.
 - $B \cup \Omega$.
 - C 25 Ω.
 - $D 50 \Omega$.

- 2 The electric current as a function of voltage of a wire is presented by the graph in Figure 1. Compute the power dissipated in the resistor when the applied voltage is 5 V.
 - A 5 W.
 - B 10 W.
 - C 20 W.
 - D 15 W.
- (3) The resistance of an electric bulb drawing 1.2 A current at 6.0 V is:
 - A 5 W.
 - B 2 W.
 - C 0.5 W.
 - D 0.2 W.
- (4) THE UNIT OF CURRENT IS:
 - A COULOMB.
 - B AMPERE.
 - C WATT.
 - D VOLT.
- (5) In Figure 2 at the end of the text,
 - $\overline{\mathbf{A}}$ 6 Ω, 3 Ω and 9 Ω are in series.
 - \boxed{B} $3~\Omega$, $6~\Omega$ and Ω are in parallel.
 - \boxed{C} 3 Ω , 6 Ω are in parallel and 9 Ω is in series.
 - \boxed{D} 9 Ω and 6 Ω are in parallel and the combination is in series with 3 $\Omega.$
- $\stackrel{\textstyle (6)}{}$ Two aluminum wires have the same length and different cross-sectional area. Wire B has twice the radius of that of wire A. Determine how the resistance of wire B compares to the resistance of wire A.
 - $\boxed{\mathbf{A}} \quad \frac{R_B}{R_A} = \frac{1}{2}.$
 - $\boxed{\mathbf{B}} \ \frac{R_B}{R_A} = \frac{2}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_B}{R_A} = \frac{1}{1}.$
 - $\boxed{\mathbf{D}} \ \frac{R_B}{R_A} = \frac{1}{4}.$

$\fill \fill \fil$
${\overline {\bf A}}$ 2 ${\bf \Omega}$ and 3 ${\bf \Omega}$ in series and the combination in parallel to 4 ${\bf \Omega}.$
B ALL IN PARALLEL.
C ALL IN SERIES.
$\boxed{D} \ 2 \ \Omega$ and 3 Ω in parallel and the combination in series with 4 $\Omega.$
8 The unit of resistivity is:
A OHM·M.
В онм.
С онм/м.
$\boxed{\mathrm{D}}$ OHM/M ² .
9 HEAT PRODUCED IN A CURRENT CARRYING WIRE IN 5S IS 60 J. THE SAME CURRENT IS PASSED THROUGH ANOTHER WIRE OF HALF THE RESISTANCE. THE HEAT PRODUCED IN 5 S WILL BE:
A 60 J.
B 120 J.
C 30 J.
D 15 J.
Two resistors $R_1=6~\Omega$ and $R_2=12~\Omega$ are connected in parallel to each other and in series to $R_2=2~\Omega$. Compute the net resistance in the circuit.
$oxed{A}$ 1 Ω .
$\overline{\ \ \ \ \ \ }$ 2 Ω .
$\overline{\mathbb{C}}$ 6 Ω .
\Box 3 Ω .
(1) Determine the direction of the conventional current through the light bulb in the circuit presented in Figure 3 at the end of the text.
A TO THE RIGHT.
B DOWNWARD.
C TO THE LEFT.
D UPWARD.

(12)	THE WORK DONE IN MOVING A UNIT POSITIVE CHARGE ACROSS TWO POINTS IN AN ELECTRIC CIRCUIT IS A MEASURE OF:
	A CURRENT.
	B POWER.
	C RESISTANCE.
	D POTENTIAL DIFFERENCE.
13)	A 10 A CURRENT IS MAINTAINED IN A SIMPLE CIRCUIT. COMPUTE THE NET CHARGE THAT PASSES THROUGH ANY POINT IN THE CIRCUIT DURING A 1 MINUTE INTERVAL.
	A 400 C.
	B 600 C.
	C 500 C.
	D 200 C.
14	Two resistances of 100 Ω and zero ohm are connected in series. The overall resistance will be:
	$oxed{A}$ 25 Ω .
	$oxed{B}$ 100 Ω .
	\boxed{C} 50 Ω .
	$\boxed{D} \ \ 0 \ \Omega.$
<u>(15)</u>	THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED BY THE GRAPH IN FIGURE 1. COMPUTE THE RESISTANCE OF THE WIRE.
	$oxed{A}$ 0.4 $oldsymbol{\Omega}$.
	B 1.7 Ω.
	$\overline{\mathbf{C}}$ 1 Ω .
	D 0.8 Ω.
16	DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN SERIES IS <i>true</i> .
	A THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
	B THE TOTAL CURRENT THROUGH THE RESISTORS IS THE SUM OF THE CURRENT THROUGH EACH RESISTOR.

 \fbox{C} The voltage across each resistor is the same.

 \boxed{D} The current through each resistor is the same.

(17) In Figure 4 at the end of the text, the resistance across AB is: $|A| 4 \Omega$. $B 2 \Omega$. $C = 0.5 \Omega.$ $D 1 \Omega$. (18) TWO COPPER WIRES HAVE THE SAME CROSS-SECTIONAL AREA BUT HAVE DIFFERENT LENGTHS. WIRE X HAS A LENGTH L AND WIRE Y HAS A LENGTH 2L. THE RATIO BETWEEN THE RESISTANCE OF WIRE Y AND WIRE X IS: $\boxed{\mathbf{A}} \quad \frac{R_Y}{R_X} = \frac{1}{2}.$ $\boxed{\mathbf{B}} \ \frac{R_Y}{R_X} = \frac{1}{1}.$ $\boxed{\mathbf{C}} \quad \frac{R_Y}{R_X} = \frac{1}{4}.$ $\boxed{\mathbf{D}} \ \frac{R_Y}{R_Y} = \frac{2}{1}.$ (19) A POSITIVE CHARGE RELEASED FROM REST: A MOVES TOWARDS THE REGIONS OF HIGHER POTENTIAL. B MOVES TOWARDS THE REGIONS OF EQUAL POTENTIAL. C DOES NOT MOVE. D MOVES TOWARDS THE REGIONS OF LOWER POTENTIAL. (20) The amount of charge flowing through a cross-sectional area of a WIRE PER UNIT OF TIME IS CALLED: A VOLTAGE. B RESISTANCE. C CURRENT. D POWER. (21) ALL of the wires in Figure 5 at the end of the text are made of the SAME MATERIAL BUT ARE DIFFERENT SIZES. IDENTIFY THE WIRE WITH THE LOWEST RESISTANCE. |A| (A). B (B). (D). D (C).

22	WHEN THERE IS AN ELECTRIC CURRENT PASSING THROUGH A WIRE, THE PARTICLES MOVING ARE:
	A IONS.
	B ATOMS.
	C PROTONS.
	D ELECTRONS.
23	COMPLETE THE FOLLOWING STATEMENT: "THE ELECTROMOTIVE FORCE IS:
	A THE MAXIMUM ELECTRIC POTENTIAL ENERGY STORED WITHIN A BATTERY".
	B THE MAXIMUM POTENTIAL DIFFERENCE BETWEEN THE TERMINALS OF A BATTERY".
	C THE FORCE THAT ACCELERATES ELECTRONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
	D THE FORCE THAT ACCELERATES PROTONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
24)	JOULE/COULOMB IS SAME AS:
	A OHM.
	B AMPERE.
	C VOLT.
	D WATT.
25)	If D is the intensity of current circulating in a resistor with resistance F , the power dissipated by the resistor is described by the formula:
	\triangle $D \cdot F^2$.
	$\boxed{\mathtt{B}} \ D \cdot F$.
	$\boxed{\mathbb{C}} \ D^2/F$.
	$\boxed{D} \ D^2 \cdot F$.
26	DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN PARALLEL IS <i>true</i> .
	A THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
	B THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
	C THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
	D THE TOTAL VOLTAGE ACROSS THE RESISTORS IS THE SUM OF THE VOLTAGE ACROSS EACH RESISTOR.

32	A BATTERY IS USED TO:
	A MEASURE ELECTRIC POTENTIAL.
	B SAFEGUARD AGAINST SHORT-CIRCUIT.
	C MEASURE ELECTRIC CURRENT.
	D MAINTAIN A POTENTIAL DIFFERENCE.
33	THE CURRENT IN A WIRE:
	A DEPENDS ONLY ON THE POTENTIAL DIFFERENCE APPLIED.
	B DOES NOT DEPEND ON RESISTANCE AND POTENTIAL DIFFERENCE.
	C DEPENDS ON BOTH RESISTANCE AND POTENTIAL DIFFERENCE.
	D DEPENDS ONLY ON THE RESISTANCE OF THE WIRE.
34)	DETERMINE WHICH OF THE GRAPHS IN FIGURE 6 AT THE END OF THE TEXT REPRESENTS OHM'S LAW FOR A SOLID CONDUCTOR.
	A (B).
	B (A).
	C (c).
	D (D).
35)	Two resistors $R_1=3~\Omega$ and $R_2=6~\Omega$ are connected in Parallel. Compute the net resistance in the circuit.
	Α 1 Ω.
	$\boxed{\mathrm{B}}$ 3 Ω .
	$\boxed{\mathbb{C}}$ 2 Ω .
	D 6 Ω.
36)	THE RESISTIVITY OF A WIRE DEPENDS ON:
	A LENGTH.
	B AREA OF CROSS-SECTION.
	C LENGTH, MATERIAL AND AREA OF CROSS-SECTION.
	D MATERIAL.

- $\widehat{37}$ If D is the intensity of current circulating in a conductor and P is the voltage across the conductor, the power dissipated is described by the formula:
 - \bigcirc A D^2/P .
 - $\boxed{\mathbf{B}} D^2 \cdot P.$
 - $C D \cdot P^2$.
 - $D D \cdot P$.
- (38) A WIRE OF LENGTH L AND CROSS-SECTIONAL AREA A HAS A RESISTIVITY ρ . DETERMINE WHICH OF THE FOLLOWING FORMULAS CAN BE USED TO CALCULATE THE RESISTANCE OF THE WIRE.
 - $\boxed{\mathbf{A}} \ R = \frac{A}{\rho L}.$
 - $\boxed{\mathbf{B}} \ R = \frac{\rho L}{A}.$
 - $\boxed{\mathbf{C}} R = \frac{\rho A}{L}.$
 - $\boxed{\mathbf{D}} \ R = \frac{L}{\rho A}.$
- 39 When a current I flows through a resistance R for time t the electrical energy spent is given by:
 - A IRt.
 - $\boxed{\mathbf{B}}$ IR^2t .
 - C I^2R/t .
 - \Box I^2Rt .
- 40 Three equal resistances when combined in series are equivalent to 90 Ω . Their equivalent resistance when combined in parallel will be:
 - Α 30 Ω.
 - B 270 Ω.
 - C 810 Ω.
 - D 10 Ω.

FIGURA 1

FIGURA 2

FIGURA 3

L L 2A (b) 2A (c) (d)

FIGURA 5

VERS	ONE	m_2
V 1215.0		

DATA	CLASSE	
ALUNNO		

Il punteggio per ogni risposta corretta è di 4 punti, per ogni risposta omessa 1 punto, per ogni risposta sbagliata 0 punti. La durata della verifica è di un'ora. Si suggerisce di ricopiare le risposte nella tabella a seguire o in caso di difficoltà nella copia se ne segnali l'assenza.

TABELLA DELLE RISPOSTE									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

 \bigcirc A wire of length L and cross-sectional area A has a resistivity ρ . Determine which of the following formulas can be used to calculate the resistance of the wire.

$$A R = \frac{\rho L}{\Delta}$$
.

$$\boxed{\mathbf{B}} \ R = \frac{\rho A}{L}.$$

$$\boxed{\mathbf{C}} R = \frac{L}{\rho A}.$$

$$\boxed{\mathbf{D}} \ R = \frac{A}{\rho L}.$$

2 DETERMINE THE DIRECTION OF THE CONVENTIONAL CURRENT THROUGH THE LIGHT BULB IN THE CIRCUIT PRESENTED IN FIGURE 1 AT THE END OF THE TEXT.
A TO THE LEFT.
B TO THE RIGHT.
C DOWNWARD.
D UPWARD.
\bigcirc If D is the intensity of current circulating in a conductor and P is the voltage across the conductor, the power dissipated is described by the formula:
$oxed{A} D \cdot P^2$.
$oxed{B} D \cdot P$.
$\boxed{\mathbb{C}} \ D^2/P.$
$\boxed{\mathrm{D}} \ D^2 \cdot P.$
4 In Figure 2 at the end of the text,
\boxed{A} 9 Ω and 6 Ω are in parallel and the combination is in series with 3 $\Omega.$
$[B]$ 6 Ω , 3 Ω and 9 Ω are in series.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
\boxed{D} 3 Ω , 6 Ω are in parallel and 9 Ω is in series.
(5) A BATTERY IS USED TO:
A MEASURE ELECTRIC POTENTIAL.
B SAFEGUARD AGAINST SHORT-CIRCUIT.
C MAINTAIN A POTENTIAL DIFFERENCE.
D MEASURE ELECTRIC CURRENT.
6 The unit of current is:
A COULOMB.
B AMPERE.
C VOLT.
D WATT.

7 A POSITIVE CHARGE RELEASED FROM REST:
A MOVES TOWARDS THE REGIONS OF HIGHER POTENTIAL.
B MOVES TOWARDS THE REGIONS OF EQUAL POTENTIAL.
C DOES NOT MOVE.
D MOVES TOWARDS THE REGIONS OF LOWER POTENTIAL.
(8) Three equal resistances when combined in series are equivalent to 90 $\Omega.$ Their equivalent resistance when combined in parallel will be:
$oldsymbol{A}$ 270 $oldsymbol{\Omega}$.
B 810 Ω.
$\boxed{\mathbf{C}}$ 10 $\mathbf{\Omega}$.
$\boxed{\mathbf{D}}$ 30 $\mathbf{\Omega}$.
(9) If D is the intensity of current circulating in a resistor with resistance F , the power dissipated by the resistor is described by the formula:
$oxed{A} D^2 \cdot F$.
$\overline{\mathbb{B}} D \cdot F^2$.
$\overline{\mathbb{C}}$ D^2/F .
$\boxed{D} \ D \cdot F$.
10 The resistance of an electric bulb drawing 1.2 A current at 6.0 V is:
A 2 W.
B 0.5 W.
C 0.2 W.
D 5 W.
(11) THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED BY THE GRAPH IN FIGURE 3. COMPUTE THE RESISTANCE OF THE WIRE.
$oxed{A} 0.8 \Omega.$
$oxed{B} 0.4 \Omega.$
D 1 Ω.

12 DETERMINE WHICH OF THE GRAPHS IN FIGURE 4 AT THE END OF THE TEXT REPRESENTS OHM'S LAW FOR A SOLID CONDUCTOR.
A (C).
B (D).
$\overline{\mathbb{C}}$ (A).
D (B).
When a current I flows through a resistance R for time t the electrical energy spent is given by:
$oxed{A} I^2Rt$.
$oxed{B}$ IRt.
$\overline{\mathbb{C}}$ IR^2t .
$\boxed{\mathrm{D}} I^2 R/t$.
14) Two resistances of $100~\Omega$ and zero ohm are connected in parallel. The overall resistance will be:
$oldsymbol{A}$ 50 $oldsymbol{\Omega}$.
$oxed{B} oxed{0} \Omega.$
$\overline{\mathbb{C}}$ 25 Ω .
$\boxed{\mathrm{D}}$ 100 Ω .
(15) THE AMOUNT OF CHARGE FLOWING THROUGH A CROSS-SECTIONAL AREA OF A WIRE PER UNIT OF TIME IS CALLED:
A VOLTAGE.
B POWER.
C RESISTANCE.
D CURRENT.
(16) DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN SERIES IS <i>true</i> .
A THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
B THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
D THE TOTAL CURRENT THROUGH THE RESISTORS IS THE SUM OF THE
CURRENT THROUGH EACH RESISTOR.

\bigcirc In Figure 5 at the end of the text, the resistance across AB is:
$egin{array}{cccccccccccccccccccccccccccccccccccc$
(18) Three resistors 2 Ω , 3 Ω and 4 Ω are connected so that the equivalent resistance is 9 Ω . The resistors are connected:
A $2~\Omega$ and $3~\Omega$ in series and the combination in parallel to $4~\Omega$. B all in parallel.
\square 2 Ω and 3 Ω in parallel and the combination in series with 4 Ω . \square all in series.
19 HEAT PRODUCED IN A CURRENT CARRYING WIRE IN 5s is 60 J. The same current is passed through another wire of half the resistance. The heat produced in 5 s will be:
A 120 J.
B 15 J.
C 30 J. D 60 J.
$\ensuremath{\bigcirc} 0$ The potential difference required to pass a current 0.2 A in a wire of resistance 20 Ω is:
A 40 V.
B 1 V.
[C] 100 V.
D 4 V.
(21) DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN PARALLEL IS <i>true</i> .
A THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
B THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
C THE TOTAL VOLTAGE ACROSS THE RESISTORS IS THE SUM OF THE VOLTAGE ACROSS EACH RESISTOR.
D THE CURRENT THROUGH EACH RESISTOR IS THE SAME.

(22) Онм	'S LAW RELATES POTENTIAL DIFFERENCE WITH:
$\begin{bmatrix} \mathbf{A} \end{bmatrix}$ 1	POWER.

C ENERGY.

B CURRENT.

- D TIME.
- (23) The unit of resistivity is:
 - A OHM.
 - $\boxed{\mathrm{B}}$ OHM/M².
 - С онм.м.
 - D онм/м.
- 24 TWO COPPER WIRES HAVE THE SAME CROSS-SECTIONAL AREA BUT HAVE DIFFERENT LENGTHS. WIRE *X* HAS A LENGTH *L* AND WIRE *Y* HAS A LENGTH 2*L*. THE RATIO BETWEEN THE RESISTANCE OF WIRE *Y* AND WIRE *X* IS:
 - $\boxed{\mathbf{A}} \quad \frac{R_Y}{R_X} = \frac{1}{2}.$
 - $\boxed{\mathbf{B}} \ \frac{R_Y}{R_X} = \frac{2}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_Y}{R_X} = \frac{1}{4}.$
 - $\boxed{\mathbf{D}} \ \frac{R_Y}{R_X} = \frac{1}{1}.$
- 25 Joule/Coulomb is same as:
 - A WATT.
 - B AMPERE.
 - С онм.
 - D VOLT.
- 26 A 10 A CURRENT IS MAINTAINED IN A SIMPLE CIRCUIT. COMPUTE THE NET CHARGE THAT PASSES THROUGH ANY POINT IN THE CIRCUIT DURING A 1 MINUTE INTERVAL.
 - A 200 C.
 - B 600 C.
 - C 400 C.
 - D 500 C.

27 Complete the following statement: "The electromotive force is:
A THE MAXIMUM POTENTIAL DIFFERENCE BETWEEN THE TERMINALS OF A BATTERY".
B THE FORCE THAT ACCELERATES PROTONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
C THE MAXIMUM ELECTRIC POTENTIAL ENERGY STORED WITHIN A BATTERY".
D THE FORCE THAT ACCELERATES ELECTRONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
28 The work done in moving a unit positive charge across two points in an electric circuit is a measure of:
A CURRENT.
B RESISTANCE.
C POTENTIAL DIFFERENCE.
D POWER.
Two resistors $R_1=3~\Omega$ and $R_2=6~\Omega$ are connected in parallel. Compute the net resistance in the circuit.
$oxed{A}$ 3 $oldsymbol{\Omega}$.
B 6 Ω.
C 1 Ω .
D 2 Ω.
$\ensuremath{\mathfrak{30}}$ Two resistances of 100 Ω and zero ohm are connected in series. The overall resistance will be:
$oxed{A}$ 100 $oldsymbol{\Omega}$.
$oxed{B} 0 \Omega.$
C 50 Ω.
D 25 Ω.
31) When there is an electric current passing through a wire, the particles moving are:
A IONS.
B ATOMS.
C ELECTRONS.
D PROTONS.

(32) Compute the number of electrons flowing through a battery that
DELIVERS A CURRENT OF 3.0 A FOR 12 S.
$\boxed{A} 4.8 \times 10^{15}$.
$\boxed{\mathrm{B}} \ \ 2.2 \times 10^{20}.$
C 36.
\boxed{D} 6.4 × 10 ¹⁸ .
33 THE CURRENT IN A WIRE:
A DEPENDS ONLY ON THE POTENTIAL DIFFERENCE APPLIED.
B DOES NOT DEPEND ON RESISTANCE AND POTENTIAL DIFFERENCE.
C DEPENDS ON BOTH RESISTANCE AND POTENTIAL DIFFERENCE.
D DEPENDS ONLY ON THE RESISTANCE OF THE WIRE.
34 ALL OF THE WIRES IN FIGURE 6 AT THE END OF THE TEXT ARE MADE OF THE SAME MATERIAL BUT ARE DIFFERENT SIZES. IDENTIFY THE WIRE WITH THE LOWEST RESISTANCE.
A (A).
B (D).
C (B).
D (C).
(35) Determine which of the following statements does not represent Ohm's law.
A CURRENT / POTENTIAL DIFFERENCE = CONSTANT.
$\boxed{\mathbf{B}}$ CURRENT = RESISTANCE \times POTENTIAL DIFFERENCE.
$\boxed{\mathbf{C}}$ POTENTIAL DIFFERENCE = CURRENT \times RESISTANCE.
D POTENTIAL DIFFERENCE / CURRENT = CONSTANT.
36) The unit of electric power is:
A WATT.
B VOLT.
C AMPERE.
D JOULE.

- 37 Two resistors $R_1=6~\Omega$ and $R_2=12~\Omega$ are connected in parallel to each other and in series to $R_2=2~\Omega$. Compute the net resistance in the circuit.
 - $A \supset \Omega$.
 - B 6 Ω.
 - $C 2 \Omega$.
 - D 1 Ω.
- (38) Two aluminum wires have the same length and different cross-sectional area. Wire *B* has twice the radius of that of wire *A*. Determine how the resistance of wire *B* compares to the resistance of wire *A*.
 - $\boxed{\mathbf{A}} \quad \frac{R_B}{R_A} = \frac{1}{1}.$
 - $\boxed{\mathbf{B}} \ \frac{R_B}{R_A} = \frac{1}{2}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_B}{R_A} = \frac{2}{1}.$
 - $\boxed{\mathbf{D}} \ \frac{R_B}{R_A} = \frac{1}{4}.$
- (39) The electric current as a function of voltage of a wire is presented by the graph in Figure 3. Compute the power dissipated in the resistor when the applied voltage is 5 V.
 - A 20 W.
 - B 5 W.
 - C 10 W.
 - D 15 W.
- 40 The resistivity of a wire depends on:
 - A AREA OF CROSS-SECTION.
 - B LENGTH.
 - $\boxed{\mathsf{C}}$ LENGTH, MATERIAL AND AREA OF CROSS-SECTION.
 - D MATERIAL.

FIGURA 3

Figura 6

Versione ♥3		
DATA	CLASSE	
ALUNNO		

Il punteggio per ogni risposta corretta è di 4 punti, per ogni risposta omessa 1 punto, per ogni risposta sbagliata 0 punti. La durata della verifica è di un'ora. Si suggerisce di ricopiare le risposte nella tabella a seguire o in caso di difficoltà nella copia se ne segnali l'assenza.

TABELLA DELLE RISPOSTE									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

- 1 Two resistors $R_1=3~\Omega$ and $R_2=6~\Omega$ are connected in Parallel. Compute the net resistance in the circuit.
 - Α 6 Ω.
 - $\boxed{\mathbf{B}}$ 2 Ω .
 - C 3 Ω .
 - $D 1 \Omega$.

\bigcirc The resistance of an electric bulb drawing 1.2 A current at 6.0 V is:
A 0.5 W.
B 5 W.
C 0.2 W.
D 2 W.
(3) THE AMOUNT OF CHARGE FLOWING THROUGH A CROSS-SECTIONAL AREA OF A WIRE PER UNIT OF TIME IS CALLED:
A VOLTAGE.
B CURRENT.
C POWER.
D RESISTANCE.
\bigcirc In Figure 1 at the end of the text, the resistance across AB is:
$oxed{A}$ 1 Ω .
$oxed{B}$ 4 Ω .
$\boxed{\mathbb{C}}$ 0.5 Ω .
$\boxed{D} \ 2 \ \Omega.$
$\fill \fill \fil$
$\boxed{\mathbf{A}}$ 10 $\mathbf{\Omega}$.
$oxed{B}$ 270 Ω .
$\boxed{\mathbf{C}}$ 810 $\mathbf{\Omega}$.
D 30 Ω.
6 Ohm's law relates potential difference with:
A CURRENT.
B ENERGY.
C TIME.
D POWER.

- 7 DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN SERIES IS *true*.
 - A THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
 - B THE TOTAL CURRENT THROUGH THE RESISTORS IS THE SUM OF THE CURRENT THROUGH EACH RESISTOR.
 - THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
 - D THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
- (8) The potential difference required to pass a current 0.2 A in a wire of resistance 20 Ω is:
 - A 40 V.
 - B 100 V.
 - C 4 V.
 - D 1 V.
- 9 A WIRE OF LENGTH L AND CROSS-SECTIONAL AREA A HAS A RESISTIVITY ρ . DETERMINE WHICH OF THE FOLLOWING FORMULAS CAN BE USED TO CALCULATE THE RESISTANCE OF THE WIRE.
 - $\boxed{\mathbf{A}} \quad R = \frac{A}{\rho L}.$
 - $\boxed{\mathbf{B}} \ R = \frac{\rho L}{A}.$
 - $\boxed{\mathbf{C}} R = \frac{L}{\rho A}.$
 - $\boxed{\mathbf{D}} R = \frac{\rho A}{L}.$
- 10 Three resistors 2 Ω , 3 Ω and 4 Ω are connected so that the equivalent resistance is 9 $\Omega.$ The resistors are connected:
 - ALL IN PARALLEL.
 - $\ B\ 2~\Omega$ and 3 Ω in series and the combination in parallel to 4 $\Omega.$
 - \boxed{C} 2 Ω and 3 Ω in parallel and the combination in series with 4 Ω .
 - D ALL IN SERIES.
- $\widehat{(11)}$ The unit of current is:
 - A AMPERE.
 - B COULOMB.
 - C VOLT.
 - D WATT.

12	DETERMINE WHICH OF THE GRAPHS IN FIGURE 2 AT THE END OF THE TEXT REPRESENTS OHM'S LAW FOR A SOLID CONDUCTOR.
	A (A).
	B (C).
	$\overline{\mathbb{C}}$ (D).
	D (B).
$\widehat{(13)}$	THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED
	BY THE GRAPH IN FIGURE 3. COMPUTE THE POWER DISSIPATED IN THE RESISTOR WHEN THE APPLIED VOLTAGE IS 5 V.
	A 10 W.
	B 5 W.
	C 20 W.
	D 15 W.
14)	DETERMINE WHICH OF THE FOLLOWING STATEMENTS DOES NOT REPRESENT OHM'S LAW.
	A POTENTIAL DIFFERENCE / CURRENT = CONSTANT.
	B CURRENT / POTENTIAL DIFFERENCE = CONSTANT.
	C POTENTIAL DIFFERENCE = CURRENT × RESISTANCE.
	$\boxed{\mathbf{D}}$ CURRENT = RESISTANCE \times POTENTIAL DIFFERENCE.
15)	A POSITIVE CHARGE RELEASED FROM REST:
	A MOVES TOWARDS THE REGIONS OF EQUAL POTENTIAL.
	B MOVES TOWARDS THE REGIONS OF LOWER POTENTIAL.
	C MOVES TOWARDS THE REGIONS OF HIGHER POTENTIAL.
	D DOES NOT MOVE.
16)	If D is the intensity of current circulating in a conductor and P is the voltage across the conductor, the power dissipated is described by the formula:
	$oxed{A} D^2 \cdot P.$
	$\overline{\mathbb{B}} D \cdot P^2$.
	$\overline{\mathbb{C}}$ D^2/P .
	$\overline{\mathbb{D}}$ $D \cdot P$.

17)	When a current I flows through a resistance R for time t the electrical energy spent is given by:
	$A IR^2t$.
	\Box I^2R/t .
	C IRt.
	$\boxed{D} I^2 Rt$.
(18)	WHEN THERE IS AN ELECTRIC CURRENT PASSING THROUGH A WIRE, THE PARTICLES MOVING ARE:
	A ATOMS.
	B ELECTRONS.
	C IONS.
	D PROTONS.
19	A BATTERY IS USED TO:
	A SAFEGUARD AGAINST SHORT-CIRCUIT.
	B MEASURE ELECTRIC CURRENT.
	C MEASURE ELECTRIC POTENTIAL.
	D MAINTAIN A POTENTIAL DIFFERENCE.
20	DETERMINE THE DIRECTION OF THE CONVENTIONAL CURRENT THROUGH THE LIGHT BULB IN THE CIRCUIT PRESENTED IN FIGURE 4 AT THE END OF THE TEXT.
	A UPWARD.
	B TO THE RIGHT.
	C DOWNWARD.
	D TO THE LEFT.
<u>(21)</u>	In Figure 5 at the end of the text,
•	
	A $\Theta \Omega$, $\Omega \Omega$ and $\Omega \Omega$ are in series.
	$[B]$ 3 Ω , 6 Ω and Ω are in parallel.
	$[C]$ 9 Ω and 6 Ω are in parallel and the combination is in series with 3 Ω .
	\boxed{D} 3 Ω , 6 Ω are in parallel and 9 Ω is in series.

22)	Compute the number of electrons flowing through a battery that delivers a current of 3.0 A for 12 s.
	$ A 2.2 \times 10^{20}$.
	\boxed{B} 4.8 × 10 ¹⁵ .
	C 36.
	$\boxed{D} 6.4 \times 10^{18}$.
_	
23	If D is the intensity of current circulating in a resistor with resistance F , the power dissipated by the resistor is described by the formula:
	$A D \cdot F^2$.
	$\overline{ \mathbf{B} } \ D^2/F$.
	$C D^2 \cdot F$.
	$D D \cdot F$.
	<u>D</u> D 1.
24)	A $10~\text{A}$ current is maintained in a simple circuit. Compute the net charge that passes through any point in the circuit during a $1~\text{minute}$ interval.
	A 500 C.
	B 600 C.
	C 200 C.
	D 400 C.
(25)	THE CURRENT IN A WIRE:
	A DEPENDS ONLY ON THE POTENTIAL DIFFERENCE APPLIED.
	B DEPENDS ON BOTH RESISTANCE AND POTENTIAL DIFFERENCE.
	C DOES NOT DEPEND ON RESISTANCE AND POTENTIAL DIFFERENCE.
	D DEPENDS ONLY ON THE RESISTANCE OF THE WIRE.
(26)	HEAT PRODUCED IN A CURRENT CARRYING WIRE IN 5S IS 60 J. THE SAME CURRENT IS PASSED THROUGH ANOTHER WIRE OF HALF THE RESISTANCE. THE HEAT PRODUCED IN 5 S WILL BE:
	A 15 J.
	B 120 J.
	C 60 J.
	D 30 J.

(27)	THE UNIT OF ELECTRIC POWER IS:
	A WATT.
	B JOULE.
	C VOLT.
	D AMPERE.
28)	THE WORK DONE IN MOVING A UNIT POSITIVE CHARGE ACROSS TWO POINTS IN AN ELECTRIC CIRCUIT IS A MEASURE OF:
	A RESISTANCE.
	B POWER.
	C CURRENT.
	D POTENTIAL DIFFERENCE.
29	Two resistances of 100 Ω and zero ohm are connected in parallel. The overall resistance will be:
	$oxed{A}$ 50 Ω .
	B 25 Ω.
	C 100 Ω.
	$\boxed{D} \ \ 0 \ \Omega.$
30	ALL OF THE WIRES IN FIGURE 6 AT THE END OF THE TEXT ARE MADE OF THE SAME MATERIAL BUT ARE DIFFERENT SIZES. IDENTIFY THE WIRE WITH THE LOWEST RESISTANCE.
	A (B).
	B (C).
	$\overline{\mathbf{C}}$ (A).
	D (D).
31)	Two resistances of 100 Ω and zero ohm are connected in series. The overall resistance will be:
	$oxed{A} 0 \Omega.$
	$\boxed{\mathrm{B}}$ 100 Ω .
	$\boxed{\mathbb{C}}$ 25 Ω .
	D 50 Ω.

- (32) The resistivity of a wire depends on:
 - A MATERIAL.
 - B AREA OF CROSS-SECTION.
 - C LENGTH.
 - D LENGTH, MATERIAL AND AREA OF CROSS-SECTION.
- (33) THE UNIT OF RESISTIVITY IS:
 - \boxed{A} OHM/M².
 - В онм.
 - С онм-м.
 - D онм/м.
- 34 Two aluminum wires have the same length and different cross-sectional area. Wire B has twice the radius of that of wire A. Determine how the resistance of wire B compares to the resistance of wire A.
 - $\boxed{\mathbf{A}} \quad \frac{R_B}{R_A} = \frac{1}{2}.$
 - $\boxed{\mathbf{B}} \ \frac{R_B}{R_A} = \frac{1}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_B}{R_A} = \frac{2}{1}.$
 - $\boxed{\mathbf{D}} \ \frac{R_B}{R_A} = \frac{1}{4}.$
- 35 DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN PARALLEL IS *true*.
 - A THE TOTAL VOLTAGE ACROSS THE RESISTORS IS THE SUM OF THE VOLTAGE ACROSS EACH RESISTOR.
 - B THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
 - THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
 - D THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
- 36 Two resistors $R_1=6~\Omega$ and $R_2=12~\Omega$ are connected in parallel to each other and in series to $R_2=2~\Omega$. Compute the net resistance in the circuit.
 - \triangle 6 Ω .
 - B 1 Ω.
 - C 3 Ω.
 - $D 2 \Omega$.

- (37) JOULE/COULOMB IS SAME AS:
 - A OHM.
 - B VOLT.
 - C WATT.
 - D AMPERE.
- 38 THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED BY THE GRAPH IN FIGURE 3. COMPUTE THE RESISTANCE OF THE WIRE.
 - Α 1 Ω.
 - $\boxed{\mathsf{B}}$ 0.8 Ω .
 - C 0.4 Ω .
 - \boxed{D} 1.7 Ω .
- Two copper wires have the same cross-sectional area but have different lengths. Wire *X* has a length *L* and wire *Y* has a length 2*L*. The ratio between the resistance of wire *Y* and wire *X* is:
 - $\boxed{\mathbf{A}} \quad \frac{R_Y}{R_X} = \frac{2}{1}.$
 - $\boxed{\mathbf{B}} \ \frac{R_Y}{R_X} = \frac{1}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_Y}{R_X} = \frac{1}{4}.$
 - $\boxed{\mathbf{D}} \ \frac{R_Y}{R_X} = \frac{1}{2}.$
- (40) Complete the following statement: "The electromotive force is:
 - A THE MAXIMUM POTENTIAL DIFFERENCE BETWEEN THE TERMINALS OF A BATTERY".
 - B THE MAXIMUM ELECTRIC POTENTIAL ENERGY STORED WITHIN A BATTERY".
 - C THE FORCE THAT ACCELERATES PROTONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
 - D THE FORCE THAT ACCELERATES ELECTRONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".

Figura 1

I (A)

9

8

7

6

5

4

3

2

1

V (V)

FIGURA 3

LICEO STATALE "NICCOLÒ MACHIAVELLI" DI ROMA 5° anno – Verifica di Fisica n. 2 – CLIL Electric Currents

Versione ♥4	
DATA	CLASSE
ALUNNO	

Il punteggio per ogni risposta corretta è di 4 punti, per ogni risposta omessa 1 punto, per ogni risposta sbagliata 0 punti. La durata della verifica è di un'ora. Si suggerisce di ricopiare le risposte nella tabella a seguire o in caso di difficoltà nella copia se ne segnali l'assenza.

TABEL	LA DEL	LE RISP	OSTE						
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

(1)	THE	UNIT	OF	ELECTRIC	POWER	IS:

- A JOULE.
- B volt.
- C WATT.
- D AMPERE.

(2) Two resistors $R_1=3~\Omega$ and $R_2=6~\Omega$ are connected in parallel. Compute the net resistance in the circuit.
$oxed{A}$ 1 Ω .
$f B$ 3 $f \Omega$.
$\boxed{ extbf{C}}$ 2 Ω .
\boxed{D} 6 Ω .
$\ensuremath{ \begin{tabular}{c} \ensuremath{ \begin{tabular}{c} \ensuremath{ \begin{tabular}{c} \ensuremath{ \ensuremath$
$oxed{A}$ 50 $oldsymbol{\Omega}$.
$oldsymbol{B} = 0 \; \Omega.$
$\boxed{\mathbf{C}}$ 25 Ω .
D 100 Ω.
4 DETERMINE WHICH OF THE GRAPHS IN FIGURE 1 AT THE END OF THE TEXT REPRESENTS OHM'S LAW FOR A SOLID CONDUCTOR.
A (D).
B (A).
C (B).
D (C).
(5) THE CURRENT IN A WIRE:
A DEPENDS ON BOTH RESISTANCE AND POTENTIAL DIFFERENCE.
B DEPENDS ONLY ON THE RESISTANCE OF THE WIRE.
C DEPENDS ONLY ON THE POTENTIAL DIFFERENCE APPLIED.
D DOES NOT DEPEND ON RESISTANCE AND POTENTIAL DIFFERENCE.
6 The resistivity of a wire depends on:
A MATERIAL.
B AREA OF CROSS-SECTION.
C LENGTH, MATERIAL AND AREA OF CROSS-SECTION.
D LENGTH.

(7) THE AMOUNT OF CHARGE FLOWING THROUGH A CROSS-SECTIONAL AREA OF A WIRE PER UNIT OF TIME IS CALLED:
A POWER.
B CURRENT.
C VOLTAGE.
D RESISTANCE.
8 JOULE/COULOMB IS SAME AS:
A OHM.
B VOLT.
C WATT.
D AMPERE.
9 In Figure 2 at the end of the text,
\boxed{A} 6 Ω , 3 Ω and 9 Ω are in series.
$\ B\ 9\ \Omega$ and $6\ \Omega$ are in parallel and the combination is in series with 3 $\ \Omega.$
\boxed{C} 3 Ω , 6 Ω are in parallel and 9 Ω is in series.
\boxed{D} 3 Ω , 6 Ω and Ω are in parallel.
(10) The electric current as a function of voltage of a wire is presented by the graph in Figure 3. Compute the power dissipated in the resistor when the applied voltage is 5 V.
A 20 W.
B 15 W.
C 10 W.
D 5 W.
(1) When a current I flows through a resistance R for time t the electrical energy spent is given by:
$oxed{A}$ IR^2t .
$oxed{B} I^2Rt$.
$oxed{C}$ IRt.
$\boxed{\mathrm{D}} \ I^2R/t$.

(12)	Three equal resistances when combined in series are equivalent to 90 Ω . Their equivalent resistance when combined in parallel will be:
	$\overline{\mathbf{A}}$ 270 $\mathbf{\Omega}$.
	$\overline{\mathbf{B}}$ 810 Ω .
	$\overline{\mathbf{C}}$ 30 Ω .
	D 10 Ω.
13)	A BATTERY IS USED TO:
	A MEASURE ELECTRIC POTENTIAL.
	B MEASURE ELECTRIC CURRENT.
	C MAINTAIN A POTENTIAL DIFFERENCE.
	D SAFEGUARD AGAINST SHORT-CIRCUIT.
14)	The resistance of an electric bulb drawing 1.2 A current at 6.0 V is:
	A 0.2 W.
	B 0.5 W.
	C 2 W.
	D 5 W.
15)	ALL OF THE WIRES IN FIGURE 4 AT THE END OF THE TEXT ARE MADE OF THE SAME MATERIAL BUT ARE DIFFERENT SIZES. IDENTIFY THE WIRE WITH THE LOWEST RESISTANCE.
	A (A).
	B (C).
	C (B).
	D (D).
16	THE WORK DONE IN MOVING A UNIT POSITIVE CHARGE ACROSS TWO POINTS IN AN ELECTRIC CIRCUIT IS A MEASURE OF:
	A CURRENT.
	B POTENTIAL DIFFERENCE.
	C POWER.
	D RESISTANCE.

- (17) Complete the following statement: "The electromotive force is:
 - A THE MAXIMUM ELECTRIC POTENTIAL ENERGY STORED WITHIN A BATTERY".
 - B THE FORCE THAT ACCELERATES PROTONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
 - THE FORCE THAT ACCELERATES ELECTRONS THROUGH A WIRE WHEN A BATTERY IS CONNECTED TO IT".
 - D THE MAXIMUM POTENTIAL DIFFERENCE BETWEEN THE TERMINALS OF A BATTERY".
- 18 Two aluminum wires have the same length and different cross-sectional area. Wire B has twice the radius of that of wire A. Determine how the resistance of wire B compares to the resistance of wire A.
 - $\boxed{\mathbf{A}} \quad \frac{R_B}{R_A} = \frac{2}{1}.$
 - $\boxed{\mathbf{B}} \ \frac{R_B}{R_A} = \frac{1}{4}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_B}{R_A} = \frac{1}{2}.$
 - $\boxed{\mathbf{D}} \ \frac{R_B}{R_A} = \frac{1}{1}.$
- (19) Three resistors 2 Ω , 3 Ω and 4 Ω are connected so that the equivalent resistance is 9 $\Omega.$ The resistors are connected:
 - A ALL IN SERIES.
 - \boxed{B} 2 Ω and 3 Ω in parallel and the combination in Series with 4 $\Omega.$
 - C ALL IN PARALLEL.
 - \boxed{D} 2 Ω and 3 Ω in series and the combination in parallel to 4 $\Omega.$
- (20) A 10 A CURRENT IS MAINTAINED IN A SIMPLE CIRCUIT. COMPUTE THE NET CHARGE THAT PASSES THROUGH ANY POINT IN THE CIRCUIT DURING A 1 MINUTE INTERVAL.
 - A 500 C.
 - B 400 C.
 - C 200 C.
 - D 600 C.

- 31) DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN PARALLEL IS *true*.
 - A THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
 - B THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
 - THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
 - D THE TOTAL VOLTAGE ACROSS THE RESISTORS IS THE SUM OF THE VOLTAGE ACROSS EACH RESISTOR.
- 32 WHEN THERE IS AN ELECTRIC CURRENT PASSING THROUGH A WIRE, THE PARTICLES MOVING ARE:
 - A PROTONS.
 - B ATOMS.
 - C IONS.
 - D ELECTRONS.
- 33) The potential difference required to pass a current 0.2 A in a wire of resistance 20 Ω is:
 - A 40 V.
 - B 100 V.
 - C 1 V.
 - D 4 V.
- 34) A WIRE OF LENGTH L AND CROSS-SECTIONAL AREA A HAS A RESISTIVITY ρ . Determine which of the following formulas can be used to calculate the resistance of the wire.
 - $\boxed{\mathbf{A}} R = \frac{\rho L}{A}.$
 - $\boxed{\mathbf{B}} \ R = \frac{A}{\rho L}.$
 - $\boxed{\mathbf{C}} R = \frac{L}{\rho A}.$
 - $\boxed{\mathbf{D}} \ R = \frac{\rho A}{L}.$
- (35) DETERMINE THE DIRECTION OF THE CONVENTIONAL CURRENT THROUGH THE LIGHT BULB IN THE CIRCUIT PRESENTED IN FIGURE 6 AT THE END OF THE TEXT.
 - A TO THE RIGHT.
 - B UPWARD.
 - C TO THE LEFT.
 - D DOWNWARD.

- DETERMINE WHICH ONE OF THE FOLLOWING STATEMENTS CONCERNING RESISTORS IN SERIES IS *true*.
 - A THE POWER DISSIPATED BY EACH RESISTOR IS THE SAME.
 - B THE TOTAL CURRENT THROUGH THE RESISTORS IS THE SUM OF THE CURRENT THROUGH EACH RESISTOR.
 - THE CURRENT THROUGH EACH RESISTOR IS THE SAME.
 - D THE VOLTAGE ACROSS EACH RESISTOR IS THE SAME.
- $\ensuremath{\mathfrak{F}}$ Two resistances of $100~\Omega$ and zero ohm are connected in parallel. The overall resistance will be:
 - $A 0 \Omega$.
 - Β 50 Ω.
 - C 25 Ω.
 - $D 100 \Omega$.
- (38) Two copper wires have the same cross-sectional area but have different lengths. Wire *X* has a length *L* and wire *Y* has a length 2*L*. The ratio between the resistance of wire *Y* and wire *X* is:
 - $\boxed{\mathbf{A}} \quad \frac{R_Y}{R_X} = \frac{2}{1}.$
 - $\boxed{\mathbf{B}} \ \frac{R_Y}{R_X} = \frac{1}{1}.$
 - $\boxed{\mathbf{C}} \quad \frac{R_Y}{R_X} = \frac{1}{4}.$
 - $\boxed{\mathbf{D}} \ \frac{R_Y}{R_X} = \frac{1}{2}.$
- 39 THE ELECTRIC CURRENT AS A FUNCTION OF VOLTAGE OF A WIRE IS PRESENTED BY THE GRAPH IN FIGURE 3. COMPUTE THE RESISTANCE OF THE WIRE.
 - $\boxed{\mathbf{A}}$ 1.7 $\mathbf{\Omega}$.
 - Β 0.8 Ω.
 - C 1 Ω.
 - $D = 0.4 \Omega$.
- 40 The unit of current is:
 - A WATT.
 - B VOLT.
 - C COULOMB.
 - D AMPERE.

I (A)

9

8

7

6

5

4

3

2

1

FIGURA 3

9 10 V (V)

1Ω 1Ω В 1Ω 1Ω

FIGURA 5

