

算法设计与分析

第3章 动态规划 (2)

谢晓芹 哈尔滨工程大学计算机科学与技术学院

动态规划算法设计步骤

- 找最优子结构性质
- 递归定义最优值
- 自底向上计算最优值
- 构造最优解

最优子结构:原问题,子问题

递归⇒值

填表

递归⇒解

■ 应用

- 基于几何相似特征的石窟造像装饰图案生成方法
 - 计算机辅助设计与图形学学报, 20230816, 网络首发
- 一种基于LCS的物体碎片自动拼接方法
 - 计算机学报,2005,28(3)
- 带约束最长公共子序列快速算法
 - 南京大学学报(自然科学), 2009, 45(5)
 - 2010年第3期,416~425页。
- 多维时序数据中的相似子序列搜索研究。
 - 计算机研究与发展 , 2010,47(3):416-425 (国防科学技术大学计算机学院)
- Winnowing算法和动态规划算法在作业剽窃检测中的应用和比较
 - 计算机工程与科学,2009,31(6)

- 比较两个不同生物体的 DNA
 - 一个 DNA串:多个分子bases以不同的组合方式构成一个 DNA 串
 - bases (Adenine, Guanine, Cytosine 〔氧氨嘧啶〕, Thymine)
 - a strand of DNA \in finite set {A, C, G, T}
- 例如,两个生物体的 DNA
 - S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
 - S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA
- 研究目标:确定两个DNA序列的相似程度?

- 如何定义S1 和S2 的相似度?
 - 如果一个串S2是另一个串S1的子串,则S1和S2相似
 - S1= GTCGTCGGAA S2= GTCGTCG
 - 如果将一个串变换为另一个串,变换数最少

编辑距离Levenshtein距离

- 寻找第3个串 S_3 , S_3 中的所有bases都包含在 S_1 和 S_2 中,这些bases在 S_1 和 S_2 中不一定连续排列,但必须是按顺序排列的。 S_3 越长,则 S_1 和 S_2 的相似度就越大。
 - 以这种相似性意义作为最长公共子序列问题的形式化定义

 S_1 BDCABA S_2 ABCBDA

 S_3 BCB A

最长公共子序列 🕇

- 最长公共子序列 (Longest Common Subsequence, LCS) 问 题
 - 给定两个序列 X= <x₁, x₂, ..., x_m> and Y= <y₁, y₂, ..., y_n>, 如何寻找 X 和 Y 的长度最大的公共子序列.
- 输入:X={x₁,x₂,...,x_m}, Y={y₁,y₂,...,y_n}
- 輸出: Z=X和Y—↑最长公共子序列
- 例如
 - X: A B C B D A B
 Y: B D C A B A

 - 最长公共子序列:
 - B C B A= LCS (X, Y)
 - BDAB, BCAB

- 子序列: 给定序列 X , 如果存在 X 的索引的一个严格增序列 < i_1 , i_2 , ..., i_k > , 使得对所有的 j = 1, 2, ..., k, 其中 i_j ∈ {1, 2, ... , m} , 且都有 $x[i_i]$ = z_i , 则称Z = z_1 , z_2 , ..., z_k > 是 X 的子序列
- 例如
 - X = A, B, C, B, D, A, B
 - X的子序列Z = B, C, D, B
 - Z中元素在X中的索引序列为:

$$< i_1, i_2, i_3, i_4 > = 2, 3, 5, 7.$$

■ Z中元素的索引序列为: <1,2,3,4>

■ 例 X={A,B,C,B,D,A,B}

- Z={B, C, D, B}是子序列,相应的下标 {2,3,5,7}。
- W={C, A, B, D}不是子序列,相应的下标{3,1,2,5}

■ 最长:指子序列的元素个数最多

例如,

$$X = A, B, C, B, D, A, B$$
 $X = A, B, C, B, D, A, B$

$$Y = B, D, C, A, B, A$$

$$Y = B, D, C, A, B, A$$

•
$$Z_1 = B, C, A$$
 $Z_2 = B, C, B, A$

- Z₁ 是公共子序列,但不是a **LCS** of X and Y.
- Z₂ is a LCS of X and Y
 - <B, D, A, B> ,<B, C, A, B>也是一个LCS

- $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
- 穷举法(A brute-force approach)
 - 列举出 X 的所有子序列,逐项核查这些子序列是否为 Y 的子序列
- 分析
 - 怎么检查?
 - 例如:检查BCBA 是否是BDCABA的子串?
 - 检查时间?
 - 检查每个子序列的时间: O(n)
 - 共有2^m个 X 的子序列: 一个子序列对应一个长为m的位向量, 对于 X 的一个索引的子集{1, 2, ..., m}
 - \blacksquare 最坏情况运行时间: $O(n2^m)$: 指数运算时间,当序列较大时实际不可行

BDCABA

BCBA: 101011

- 问题简化方法:
 - 先找LCS的长度: | LCS()|
 - 再找LCS本身
- ■策略
 - 子问题? 考虑X和Y的前缀
- 定义(第i前缀)
 - 设 $X=(x_1, x_2, ..., x_m)$ 是一个序列,X的第i 前缀 X_i 是一个序列,定义为 $X_i=(x_1, ..., x_i)$
 - 例如:X=(A, B, D, C, A),
 - $X_1 = (A), X_2 = (A, B), X_3 = (A, B, D)$
 - X₀ 是空序列

最优值

最优解

- 原问题
 - 求X = $\langle x_1, x_2, ..., x_m \rangle$ 和Y = $\langle y_1, y_2, ..., y_n \rangle$ 的最长公共子序列
- 子问题的自然分类:前缀
 - $X_i = \langle x_1, x_2, ..., x_i \rangle$, X的第i前缀, i = 0, 1, ..., m
 - $Y_j = \langle y_1, y_2, ..., y_j \rangle$, Y的第j前缀, j = 0, 1, ..., n
- 问题转化为

最长公共子序列-求解步骤

- 动态规划算法问题求解的步骤
 - 步骤1:最长公共子序列的最优子结构性质
 - 步骤2:子问题的递归结构
 - 步骤3:计算最优值
 - 步骤4:构造最优解

- $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
- LCS问题具有最优子结构属性

✓定理(最优子结构)

设序列X= $\{x_1,x_2,...,x_m\}$ 和Y= $\{y_1,y_2,...,y_n\}$ 的最长公共子序列为 Z= $\{z_1,z_2,...,z_k\}$,则

(1) 若 $x_m = y_n$, 则 $z_k = x_m = y_n$, 且 Z_{k-1} 是 X_{m-1} 和 Y_{n-1} 的LCS, 即LCS (X,Y) = LCS(X_{m-1}, Y_{n-1})+ $< x_m = y_n >$

例如: X=ABE

X=ABECDF

Y=BAEDF

Z=BEDF

- 定理: (LCS的最优子结构) 设 $Z = \langle z_1, z_2, ..., z_k \rangle$ 是 $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ 的LCS.
- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- 证明:
 - 设 $Z_k \neq x_m$,令 $Z' = \langle z_1, z_2, ..., z_k, x_m \rangle$,则 Z' 是X和Y的**公共子序列**,且 length(Z')= $k+1 \Rightarrow Z'$ 是比 Z更长的子序列 \Rightarrow 与题设 Z 是LCS矛盾
 - 显然, Z_{k-1} 是 X_{m-1} 和 Y_{n-1} 的 a CS, length(Z_{k-1})=k-1。假设 Z_{k-1} 不是最优,设W 是 X_{m-1} 和 Y_{n-1} 的 a CS,且 length(W)≥k,将 x_m 附加到W后面得到W',则W'是 X_m 和 Y_n 的 a CS,且length(W')≥k+1 ⇒ 与题设置是LCS矛盾 $X=< x_1, \dots, x_i, \dots, x_m > x_m >$

 $Z = \langle z_1, \ldots, z_k \rangle$

 $Y = \langle y_1, \ldots, y_i, \ldots, y_n \rangle$

✓定理(最优子结构)

设序列X={x₁,x₂,...,x_m}和Y={y₁,y₂,...,y_n}的最长公共子序列为Z={z₁,z₂,...,z_k}, ,则

- (1) 若 $x_m = y_n$, 则 $z_k = x_m = y_n$, 且 Z_{k-1} 是 X_{m-1} 和 Y_{n-1} 的LCS, 即LCS(X,Y) = LCS(X_{m-1}, Y_{n-1})+ $< x_m = y_n >$ 。
- (2) 若 $x_m \neq y_n$ 且 $z_k \neq x_m$,则Z是 X_{m-1} 和Y的LCS, 即LCS(X,Y)=LCS(X_{m-1},Y)

例如: X=ABADEF , Y=BAED $x_6=F$, $y_4=D$, Z=BAE

可以看到: $X_6 \neq Y_4 \perp Z_3 \neq X_6$

则: Z=BAE 是X去掉最后一位即X₅=ABADE 和Y=BAED的LCS

√定理(最优子结构)

设序列X={ $x_1,x_2,...,x_m$ }和Y={ $y_1,y_2,...,y_n$ }的最长公共子序列为Z={ $z_1,z_2,...,z_k$ },则

- (1) 若 $x_m = y_n$, 则 $z_k = x_m = y_n$, 且 Z_{k-1} 是 X_{m-1} 和 Y_{n-1} 的LCS, 即LCS(X_{m-1}, Y_{n-1})+ $< x_m = y_n >$ 。
- (2) 若 $x_m \neq y_n$ 且 $z_k \neq x_m$,则Z是 X_{m-1} 和Y的LCS,即LCS(X,Y)=LCS(X_{m-1},Y)
- (3) 若 $x_m \neq y_n$ 且 $z_k \neq y_n$,则Z是X和 Y_{n-1} 的LCS,即LCS(x,y)=LCS(xy_{n-1})

- 定理: (LCS的最优子结构) 设 $Z = \langle z_1, z_2, ..., z_k \rangle$ 是 $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ 的LCS
- 2. If $x_m \neq y_n$, and $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y 子问题2
- 3. If $x_m \neq y_n$, and $z_k \neq y_n \Rightarrow Z$ is an LCS of **X** and Y_{n-1} 子问题3
- 证明:
 - 2. 若 $z_k \neq x_m$, 则 Z 是 X_{m-1} 和 Y 的 a CS. 设存在一个 X_{m-1} 和 Y 的公共子序列 W , 其 length(W)>k, 那么 , W 是 X 和 Y 的 a CS \Rightarrow 与题设 Z 是 an LCS 矛盾
 - 3. Symmetric to 2.

动态规划基本要素1:

最优子结构:问题的最优解包含着其子问题的最优解。

- LCS问题具有最优子结构性质:
 - 两个序列的 an LCS 包含了这两个序列的前缀的 an LCS
- For example

$$X = \langle x_1, x_2, \dots, x_m \rangle$$
 $Z = \langle z_1, z_2, \dots, z_k \rangle$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

有没有子问题重 叠性质?

$$X_{m-1} = \langle x_1, x_2, \dots, x_{m-1} \rangle$$
 $Z_{k-1} = \langle z_1, z_2, \dots, z_{k-1} \rangle$
 $Y_{n-1} = \langle y_1, y_2, \dots, y_{n-1} \rangle$

$$X_{m-1} = \langle x_1, x_2, \dots, x_{m-1} \rangle$$

$$Z = \langle z_1, z_2, \dots, z_k \rangle$$

$$Y = \langle y_1, y_2, \dots, y_n \rangle$$

$$X = \langle x_1, x_2, \dots, x_m \rangle$$
 $Z = \langle z_1, z_2, \dots, z_k \rangle$
 $Y_{n-1} = \langle y_1, y_2, \dots, y_{n-1} \rangle$

$$x_m = y_n$$

$$x_m \neq y_n$$

$$z_k \neq x_m$$

$$x_m \neq y_n$$
$$z_k \neq y_n$$

■ LCS问题具有重叠子问题性质

■ 例如:X=(A, B, C, D) m=4 Y=(A, C, D) n=3

动态规划基本要素2:

重叠子问题:递归算法自顶向下解问题时,有些子问题被反复计算多次。

✓最优解结构

(1) LCSxy = LCSx_{m-1}Y_{n-1}+
$$<$$
x_m=y_n $>$ if x_m=y_n

(2)
$$LCSxy = LCSx_{m-1}Y$$

$$if x_m \neq y_n \exists z_k \neq x_m$$

if
$$x_m \neq y_n \exists z_k \neq y_n$$

✓重叠子问题

原问题: X和Y的最长公共子序列 X_i , Y_j

$x_i = y_j$	原问题	X_i, Y_j	Z [1k]
	子问题	X_{i-1}, Y_{j-1}	Z[1k-1]
$x_i \neq y_j$	原问题	X_i, Y_j	Z [1k]
	子问题	X_{i-1}, Y_{j} 或 X_{i}, Y_{j-1}	Z[1k]

步骤2: 子问题的递归结构

- 当求 an LCS时,定理表明了有一个或两个子问题需要考虑
- 定义:c[i, j]记录序列 X_i 和 Y_i 的最长公共子序列的长度
 - $c[i,j] = |LCS(X_i, Y_i)|$
 - $c[i,j]=0, i\cdot j=0$

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$
 $Z_k = \langle z_1, z_2, ..., z_k \rangle$
 $Y_j = \langle y_1, y_2, ..., y_j \rangle$

$$c[i,j]$$

$$X_{i-1} = \langle x_1, x_2, ..., x_{i-1} \rangle$$
 $Z_{k-1} = \langle z_1, z_2, ..., z_{k-1} \rangle$
 $Y_{i-1} = \langle v_1, v_2, ..., v_{k-1} \rangle$

$$\begin{array}{c|c} x_i \neq y_j \\ \hline z_k \neq x_i \end{array} \qquad \begin{array}{c|c} X_{i-1} \\ Z_k = \\ Y_i = \end{array}$$

$$x_i \neq y_j$$
$$z_k \neq y_j$$

$$X_{i-1} = \langle x_1, x_2, ..., x_{i-1} \rangle$$

 $Z_{k-1} = \langle z_1, z_2, ..., z_{k-1} \rangle$
 $Y_{i-1} = \langle y_1, y_2, ..., y_{i-1} \rangle$

$$X_{i-1} = \langle x_1, x_2, ..., x_{i-1} \rangle$$
 $Z_k = \langle z_1, z_2, ..., z_k \rangle$
 $Y_j = \langle y_1, y_2, ..., y_j \rangle$

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

 $Z_k = \langle z_1, z_2, ..., z_k \rangle$
 $Y_{i-1} = \langle y_1, y_2, ..., y_{i-1} \rangle$

$$c[i,j]=c[i-1,j-1]+1$$

 $c[i,j]=\max(c[i-1,j], c[i,j-1])$

步骤2: 子问题的递归结构

- LCS问题的最优子结构可导出递归公式
 - $X_i = \{x_1, x_2, ..., x_i\} ; Y_j = \{y_1, y_2, ..., y_j\}.$
 - 用c[i][j]记录序列X_i和Y_i的最长公共子序列的**长度**
 - 当i=0或j=0时,空序列是Xi和Yi的最长公共子序列,C[i][j]=0。

步骤3: 计算最优值

■ LCS的递归算法

■ 输入: Xi, Yj

• 输出:数组c

```
\begin{split} LCSLength(X,Y,i,j) \{ \\ if (i=0 \text{ or } j=0) \text{ c}[i][j]=0; \\ if (X[i]=Y[j]) \\ then \text{ c}[i][j] \leftarrow LCSLength(X,Y,i-1,j-1)+1; \\ else \text{ c}[i][j] \leftarrow max \{LCSLength(X,Y,i-1,j), \\ LCSLength(X,Y,i,j-1)\}; \\ \} \end{split}
```

```
c[i][j] = \begin{cases} 0 & i = 0, j = 0 \\ c[i-1][j-1] + 1 & i, j > 0; x_i = y_j \\ \max\{c[i][j-1], c[i-1][j]\} & i, j > 0; x_i \neq y_j \end{cases}
```

- 分析
 - 直接利用递归式容易写出指数级的递归算法.

- 高度=m+n ⇒ 指数级别复杂度
- 子问题个数: Θ(nm)

动态规划基本要素2:

重叠子问题:递归算法自顶向下解问题时,有些子问题被反复计算多次。

步骤3: 计算最优值

- 改进:LCS备忘录方法
 - 求解完一个子问题后,把答案保存在表里,在下一次需要解此子问题时,直接到表中查表,而无需重新计算

```
LCSLength(X, Y, i, j){
  if c[i][j]=NIL then{
     if (i=0 \text{ or } j=0) \text{ c}[i][j]=0;
     if (X[i]=Y[j])
        then c[i][j] \leftarrow LCSLength(X,Y, i-1, j-1)+1;
        else c[i][j]\leftarrowmax{LCSLength (X,Y,i-1,j),
                      LCSLength (X,Y,i,j-1);
  return c[i][j]
```

复杂度分析:

时间复杂度= $\Theta(mn)$ 空间复杂度= $\Theta(mn)$

步骤3: 计算最优值

■ LCS的动态规划算法:按自底向上方法进行求解

输入:序列X和Y;

$$X_m = \langle x_1, x_2, ..., x_m \rangle$$

 $Y_n = \langle y_1, y_2, ..., y_n \rangle$

输出:数组c和b;

$$c[i, j] = \begin{cases} 0 & \text{(if } i = 0 \text{ or } j = 0), \\ c[i-1, j-1] + 1, \\ & \text{(if } i, j > 0 \text{ and } x_i = y_j), \\ \max(c[i-1, j], c[i, j-1]), \\ & \text{(if } i, j > 0 \text{ and } x_i \neq y_j). \end{cases}$$

使用表b [1..m, 1..n] 构造最优解

```
LCSLength(X, Y)
                                     //X and Y as inputs
1 m \leftarrow length[X];
2 n \leftarrow length[Y];
3 for i \leftarrow 1 to m // Table c[0..m, 0..n] stores c[i,j],
        do c[i, 0] \leftarrow 0; // computed in row-major order.
   for j \leftarrow 0 to n
        \mathbf{do}\ c[0,j] \leftarrow 0;
   for i \leftarrow 1 to m
        do for j \leftarrow 1 to n
                do if x_i = y_i
                       then c[i, j] \leftarrow c[i-1, j-1] + 1;
10
                              b[i,j] \leftarrow "\";
11
                       else if c[i-1, j] \ge c[i, j-1]
13
                               then \{c[i,j] \leftarrow c[i-1,j]; //\text{use } X_{i-1}, Y_i\}
14
                                       b[i,j] \leftarrow "\uparrow";
15
                               else \{c[i,j] \leftarrow c[i,j-1];
                                       b[i,j] \leftarrow \text{``}\leftarrow\text{''};
16
      return c and b
```

$$c[i][j] = \begin{cases} 0 & i = 0, j = 0 \\ c[i-1][j-1] + 1 & i, j > 0; x_i = y_j \\ \max\{c[i][j-1], c[i-1][j]\} & i, j > 0; x_i \neq y_j \end{cases}$$

```
X_i = \langle x_1, x_2, ..., x_i \rangle
          Y_i = \langle y_1, y_2, ..., y_i \rangle
         c[i,j] =
                (if i = 0 or j = 0),
           c[i-1, j-1]+1,
                (if i, j > 0 and x_i = y_j),
           \max(c[i-1, j], c[i, j-1]),
                (if i, j > 0 and x_i \neq y_i).
                              D
0
      X_i
                                                       O
                                               0
      A
      B
      D
       B
```

```
LCSLength(X, Y)
                                     // X and Y as inputs
1 m \leftarrow length[X]
2 n \leftarrow length[Y]
3 for i \leftarrow 1 to m // Table c[0..m, 0..n] stores c[i,j],
        do c[i, 0] \leftarrow 0 // computed in row-major order.
5 for j \leftarrow 0 to n
        do c[0,j] \leftarrow 0
7 for i \leftarrow 1 to m
        do for j \leftarrow 1 to n
                \mathbf{do} \ \mathbf{if} \ x_i = y_i
                        then c[i,j] \leftarrow c[i-1,j-1] + 1
10
11
                              b[i,j] \leftarrow " \setminus "
                        else if c[i-1, j] \ge c[i, j-1]
13
                                 then c[i,j] \leftarrow c[i-1,j] / \text{use } X_{i-1}, Y_i
14
                                       b[i,j] \leftarrow "\uparrow"
                                 else c[i,j] \leftarrow c[i,j-1] //use X_i, Y_{i-1}
15
                                        b[i,j] \leftarrow "\leftarrow"
16
     return c and b
```

打印输出: BCBA

```
void LCSLength(int m, int n, char *x, char *y,
int **c, int **b){
    int i, j;
    for (i = 1; i \le m; i++) c[i][0] = 0;
    for (i = 1; i \le n; i++) c[0][i] = 0;
    for (i = 1; i \le m; i++)
      for (j = 1; j \le n; j++)
         if (x[i]==y[j]) {
            c[i][j]=c[i-1][j-1]+1;
            b[i][i]="\";}
         else if (c[i-1][j] > = c[i][j-1]) {
               c[i][j]=c[i-1][j]; b[i][j]="\uparrow";
         else \{c[i][j]=c[i][j-1]; b[i][j]= "\leftarrow";\}
```

算法复杂度分析:

算法的计算时间上界为 O(mn)。 算法所占用的空间显然为 O(mn)。

- 由于每个数组单元的计算耗费O(1)时间,LCSLength算法耗时O(mn)
- 使用b表(b[i, j])来重构 an LCS 的元素,路径用阴影或连线标注

步骤4:构造最优解

- 初始调用是 LCS(b, X, m, n)
 - 只要在 b[i, j]中遇到 " $^{\prime\prime}$ ", 表示 $x_i = y_j$ 是LCS的一个元素
 - 每次递归时, i和j至少有一个减值,算法的运行时间为O(m+n)


```
LCS(b, X, i, j)

1 if i=0 or j=0

2 then return

3 if b[i,j] = " \setminus "

4 then LCS(b, X, i-1, j-1)

5 print x_i

6 else if b[i,j] = " \uparrow "

7 then LCS(b, X, i-1, j)

8 else LCS(b, X, i, j-1)
```

打印输出为: BCBA

算法的改进

- 给定一个算法,可以考虑改进其时间和空间开销
- 一些改变能简化代码,改进其常系数,但不能改进渐近性能
 - 例如, 在重构an LCS 可以仅使用表 c, 而去掉b表格. 每一个 c[i, j]只依赖: c[i-1, j-1], c[i-1, j], and c[i, j-1]。给定c[i, j]的值, 可以用O(1)时间来确定是哪三个值用来计算 的c[i, j], 而无需去检查表b
 - 不使用表 b 可以节省Θ(mn)的空间开销,但算法的空间开销不会渐近减少,因为表 c 需要Θ(mn)的存储空间
- 一些算法能产生实质性的、在时间和空间上的渐近性能的提高
 - 可以减少LCS-LENGTH的空间的渐近开销。因为每次计算c[i,j]时仅需要表 c 的两行,正在计算的行和上一行。甚至可以仅使用比表 c 的一行稍多一点的空间来计算 c
 - 如果我们仅需要求 an LCS 的长度时,上述改进的算法有效。若需要重构 an LCS 的每个元素,上述改进算法不能保留足够的信息

最长公共子序列-小结

- 理解动态规划算法的概念
- 掌握动态规划算法的基本要素
 - 最优子结构性质
 - 重叠子问题性质
- 掌握设计动态规划算法的步骤
 - (1)找出最优解的性质,并刻划其结构特征。
 - (2) 递归地定义最优值。
 - (3)以自底向上的方式计算出最优值。
 - (4) 根据计算最优值时得到的信息,构造最优解。
- 重点难点
 - 基本要素和步骤

- 假设准备开始一次长途旅行。以0公里作为起点,一路上共有n座旅店,距离起点的公里数分别为a₁<a₂<...<a_n。旅途中,您只能在这些旅店停留,在哪里停留完全由您决定。最后一座旅店(a_n)是您的终点。
- 理想情况下,您每天可以行进200公里,不过考虑到旅店间的实际距离,有时候可能达不到这么远。如果您某天走了x公里,那么您将受到(200-x)²的惩罚。您需要计划好行程,以使得总的惩罚也即每天所受惩罚的总和最小。请给出一个高效的算法,用于确定一路上最优的停留位置序列。

■ 给你一张里面*n×n*个格子组成的二维表格,每个格子里有一个正整数。让你从左上角的格子出发,只能**向下**或**向右**,走到右下角的格子,路径上经过的数字之和作为收益。如何最大化你的收益?请1)给出问题的最优解的递归表达式。 2)设计一个动态规划算法求解该问题,并分析算法的时间和空间复杂性。

■ 输入:二维数组reward[*n*][*n*]

100	200	200	200
300	100	100	200
200	500	600	400
100	400	500	800