METHOD AND DEVICE FOR COATING AND METHOD AND DEVICE FOR MANUFACTURE OF COLOR FILTER

Publication number: JP10216598 (A)

Publication date: 1998-08-18

Inventor(s): KITAMURA YOSHIYUKI; IDO HIDEO; GOTO TETSUYA +

Applicant(s): TORAY INDUSTRIES +

Classification: - international:

B05C11/00; B05C5/02; B05D1/26; G02B5/20; G09F9/00; B05C11/00; B05C5/02; B05D1/26; G02B5/20; G09F9/00; (IPC1-7): B05C11/00; B05C5/02; B05D1/26;

G02B5/20; G09F9/00 - European:

Application number: JP19970021449 19970204 Priority number(s): JP19970021449 19970204 PROBLEM TO BE SOLVED: To provide a coating

Abstract of JP 10216598 (A)

device and a coating method for removing securely the adhered matter such as a coating liquid adhered on the periphery of a jet opening of a coating instrument regardless of the kind of the coating liquid while minimizing the wear of a cleaning head and securing the dustproof properties and long life and forming a high quality film frea from film defects, and also provide a manufacturing device and a manufacturing method thereof for a color filter in which the above coating davice and the coating method are usad. SOLUTION: A cleaning component 94 moving along the longitudinal direction of a jet opening while being brought into contact slidably with a jet opening peripheral section 10 of a coating instrument 40 and ramoving a coating liquid adhered on the jet opening peripharal section is provided, and also a sansing means for sensing the position of the jet opening of the coating instrument is provided, and based on the measured value of the jet opaning position sensed by the sensing means, the relative position between both of the cleaning component 94 and tha coating instrument 40 at the time of being brought into contact slidably is controlled to be constant on the basis of the jet opening position of the coating instrument as a reference.

Data supplied from the espacenet database - Worldwide

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-216598 (43)公開日 平成10年(1998) 8 月18日

(21)出願番号						
			答查請求	未請求	請求項の数13 O	L (全 18 頁)
G09F	9/00	3 2 1		9/00	3 2 1 D	
G 0 2 B	5/20	101	G02B 5	5/20	101	
B 0 5 D	1/26		B05D	1/26	z	
	11/00		11	1/00		
B 0 5 C	5/02		B05C	5/02		
(51) Int.Cl. ⁵		識別記号	FΙ			

接對馬大排市開山 丁丁目 1番 1号 東レ株 式会 社被資事業場內 (72)発明者 共戸 美夫 接賀馬大排市開山 1丁目 1番 1号 東レ株 式会 社被資事業場內 (72)発明者 後繼 哲哉 按賀馬大津市開山 1丁目 1番 1号 東レ株 式会 社被資事業場內

(72)発明者 北村 義之

(54) 【発明の名称】 塗布方法および塗布装置並びにカラーフィルターの製造方法および製造装置

(57)【要約】 (修正有)

【課題】 洗浄ヘッドの維料を扱小にして、防療性と長 労命を確保しつつ、塗布液の種類に関係なく塗布器の吐 由口間迅速に付着している整体液等の付金物を確認 まできるとともに、途膜欠点のない品質の高い途殿の形 成を行うことができる管布装置および整布方法、並びに これらの装置および塗布方法を用いたカラーフィルター の製造業置および整布方法を用いたカラーフィルター の製造業置および製造方法と提供すること。

【解決手段】整布器の吐出口制辺部に開接しながら吐出 口の長手方向に沿って移動し、吐出口周辺部に付着して いる盤布液を除去する清掃部材り 4を設けるとともに、 塗布器の吐出口位置を検知する検知手段を設け、この検 知手段による吐出口位置の測定値により、塗布器の吐出 口位置を基準にして、清掃部材9 4と塗布器との指接時 における両者間の相対位置を一定に制御する。

【特許請求の範囲】

【請求項1】 塗布液を供給する手段と、

前記供給手段から供給された塗布液を吐出するための一 方向に延びる吐出口を有する塗布器と、

カーに難いる吐出口を有する盛布器と、 前記塗布器および前記塗布部材のうちの少なくとも一方 を相対的に移動させて前記塗布部材上に塗膜を形成する

ための移動手段とを備えた塗布装置において、
(A)前記塗布器の吐出口周辺部に摺接しながら吐出口の長手方向に沿って移動し、時間口周辺がは付着してい

- の長手方向に沿って移動し、吐出口周辺部に付着している塗布液を除去する清掃部材と、
- (B) 前記塗布器の吐出口位置を検知する検知手段と、
- (C) 前記検知手段による吐出口位置の測定値により、 塗石新の吐出口位置を基準にして、滑掃部材と塗布器と の褶接時における両者間の相対位置を一定に制御する制 御手段とを備えたことを特徴とする塗布装置。

【請求項2】 塗布液を供給する手段と、

前記供給手段から供給された塗布液を吐出するための一 方向に延びる吐出口を有する塗布器と、

前記塗布器および前記塗布部材のうちの少なくとも一方 を相対的に移動させて前記塗布部材上に塗膜を形成する ための移動手段とを備えた塗布装置において、

- (A)洗浄液を前記塗布器の吐出口周辺部に付着させる 洗浄液付着手段と、
- (B) 前記吐出口周辺部に摺接しながら吐出口の長手方 向に沿って移動し、吐出口周辺部に付着している途布被 を除去する清掃部材とを備えたことを特徴とする途布装 置。

【請求項3】 塗布液を供給する手段と、 前記供給手段から供給された塗布液を吐出するための一 方向に延びる吐出口を有する塗布器と

前記塗布器および前記塗布部材のうちの少なくとも一方 を相対的に移動させて前記塗布部材上に塗膜を形成する ための移動手段とを備えた塗布装置において、

- (A)前記塗布器の吐出口を包囲する包囲手段と、
- (B) 前記包囲手段の内部に位置し、途布液の溶剤素気を発生させる溶剤素気発生手段とを備えたことを特徴と する途布装置。

【請求項4】 塗布液を供給する手段と、

前記供給手段から供給された塗布液を吐出するための一 方向に延びる吐出口を有する途布器と

前記塗布器および前記塗布部材のうちの少なくとも一方 を相対的に移動させて前記塗布部材上に塗膜を形成する ための移動手段と、

前記塗布器の吐出口周辺部に摺接しながら吐出口の長手 方向に沿って移動し、吐出口周辺部に付着している塗布 液を除去する消傷部材とを備えた途布装置において、 前記塗布器の吐出口周辺部に、除去した塗布液を溜める 液だめ部を備よたことを特徴とする途布装置。

【請求項5】 請求項4の塗布装置において、前記液だめ部には、溜まっている塗布液を排出する排出ユニット

を備えていることを特徴とする塗布装置。

【請求項6】 塗布液を供給する手段と、

前記供給手段から供給された塗布液を吐出するための一 方向に延びる吐出口を有する塗布器と、

前記塗布器および前記塗布部材のうちの少なくとも一方 を相対的に移動させて前記塗布部材上に塗膜を形成する ための移動手段と、

前記塗布器の吐出口周辺部に摺接しながら吐出口の長手 方向に沿って移動し、吐出口周辺部に付着している塗布 液を除去する清掃部材とを備えた塗布装置において.

前記清掃部材の接触領域外にはみ出し、吐出口周辺部に 残存している塗布液を排出する排出器を備えたことを特 徴とする塗布装置。

版にする至中など。 【請求項7】 請求項1~6のいずれかに記載の途布装 置を備えることを特徴とするカラーフィルターの製造装 置。

【請求項8】 塗布器の一方向に延びる吐出口から塗布 液を吐出しながら、前記塗布器および被塗布部材のうち の少なくとも一方を相対的に移動させて前記被塗布部材 上に塗膜を形成する塗布方法において。

前記吐出口の清掃部材を吐出口に対して初期位置決めした後に、清掃部材を吐出口周辺部に指接させつつ吐出口 の長手方向に沿って移動させることにより、前記吐出口 周辺部に付着している釜布液を除去することを特徴とす る遂布方法.

【請求項9】 請求項8の塗布方法において、前記吐出口の清掃解材を吐出口に対して初期位置決めするとも に、前記吐出口に洗浄液を付着させた後に、前記清掃部 材を吐出口の長手方向に沿って移動させることを特徴と する塗布方法。

【請求項10】 請求項8の整布方法において、前配吐出口の清掃部材を吐出口に対して初期位置決めするとと もに、前配吐出口周辺部に該市港の溶列蒸気を充満させ た後に、前記清掃部材を吐出口の長手方向に沿って移動 させることを特徴とする除布方法

【請求項11】 徳春器の一方向に延びる吐出口から途 布液を吐出しながら、前記徳市器さまび被連布部材のう ちのかなくとも一方を相対的に移動させて前記姫市器 材上に途頭を形成するとともに、清掃部材を前記煙市器 の吐出口周辺都に摺接させつつ吐出口の長手方向に沿っ で務めさせることにより、吐出口周辺部に付着している 途布裁を除去する遂布方法において、

塗布液の除去中に清掃部材の接触範囲外にはみ出る塗布 液を、塗布器に設けた液溜め部に溜めることを特徴とす る塗布方法。

【請求項12】 塗布器の一方向に延びる吐出口から塗布液を吐出しながら、前記途布器および敷壁布部材のうちの少なくとも一方を相対的に移動させて前記峻を布部材も計上に塗敷を形成するとともに、清掃部材を前記塗布器の吐出口周辺部に摺接させつつ吐出口の長手方向に沿っ

て移動させて、吐出口周辺部に付着している塗布液を除 去する塗布方法において、

塗布液の除去中に清掃部材の接触範囲外にはみ出る塗布 液を排除することを特徴とする塗布方法。

【請求項13】 請求項8~12に記載のいずれかの塗布方法を用いて、カラーフィルターを製造することを特徴とするカラーフィルターの製造方法。

【発明の詳細な説明】

[0001]

【発明の献すを技術分野」この発明は、例えばカラー液 晶ディスアレイ用カラーフィルター、光学フィルタ、プリント基板、集積回路、半導体等の敷造分野に使用され もものであり、詳しくはガラス基板などの放弦布部材表 面に壁布液を吐出しながら建版を形成する途布装置およ び塗布方法並びにこれら装置および方法を使用したカラ ーフィルターの敷造装置および製造方法の改良に関する ものである。

[0002]

[0003] それ核、カラーフィルターの影響には、ガラス基板上に黒、赤、青、棒の塗布液を塗布し、これらの遮臓を順光形成していく施工工程が必要不可欠となる。この棚の施工工程には、従来域布装置としてスピナー、バーコータろもいはロールコータなどが使用されていたが、塗布液の消費量を削減し、また、塗販の物性向上を図るために近年に至ってはダイコータの使用が検討されている。

【0004】この種のゲイコータの一例はたとえば特問 平5-208154号公翰に開示されている。この公知のゲイコ 一夕は釜布器としてのスリットゲイを有し、このスリッ トゲイの吐出口から塗布液を吐出しながら、一方向に走 行するフィルムなどの被塗布部材に塗膜を形成するもの となっている。

[0005] そして、近年ではこれらダイコータの吐出 口には、常に正常を吐出口でもって整布すべく、吐出口 間辺部に洗浄へッドが備えられて愁り、この洗浄へッド はスリットダイの吐出口周辺部と接触しながら、その吐 出口の長手方向に移動し、この移動に伴い、吐出口周辺 部に付着している塗布液を拭き取るものとなっている。 [0006]

【発明が解決しようとする課題】例えば、上述した洗浄 ヘッドは亮泡性ポリエチレンからなる弾性支持部を有 し、この弾性支持部がスリットゲイの単出口にエアーシ リング・で一定圧力で押し付けられるようになってお り、この際、弾性支持部は自身の弾性変形により、スリ ットゲイの吐出口を防ぐようにして、その吐出口に沿っ て延びる周辺部にも密着することができる。

[0007] この場合、エアーシリンダーによる一定圧 力付勢は口金の上下方向の寸法変化に容易に追従できる。 ので観覚であるが、微妙な付勢力調整ができないな点が ある。 板取りを完全に行うと共に、洗浄ツッドの摩耗に よるけずれを扱いにして、防魔性と共寿命を得るために は、最適の付勢圧力にしなければならない。これを実現 するには、洗浄ペッドのスリットダイへの付勢を圧力で 制御するのではなくて、両者の相対位置関係で制御せね ばならない。

【0008】さんに、実際のスリットタイコークによる 塗布製品仕産にあっては、塗液種類、塗布積が品種毎に 異なるから、複数の形状寸法の異なる口金を用意して、 それを品種ごとにきりかえていくのが半道である。また た、同一品種であっても不測の事態に備えて予備のスリットケイを有する。これらのスリットタイのの長さがは、 上下方向、すなわち洗浄ヘッドの付勢方向の長さがはと たど同じならば四酸化が、現なることが多いので口金 ごとに相対位置関係の調整をやりなおさなければならな いことにでる。すなわち、ここでも両者の相対位置関係 制御が必要となる。

【0009】さら伝公知の液やヘッドでは、アクリル系 塗液など揮発性の高いものに対して、何ら考慮されてい ない。これの強敵では試取りを実施する前にスリット ゲイ大海に付着した塗液が破壊するので単なる終免取り けげては世田に安全をは洗浄できない、付着物が戻って いると盤布時の基板とスリットゲイ間の液だまり形状が 安定なものとならず、縦前等の虚版大金移り残する 【0010】この外明は、上途の事情に基づいて行った もので、その第10目的は、洗浄ヘッドの導柱を最小に して、財産性と長寿命を罹保しつつ、塗布液の種類に関 係なく盤布器の出出口周辺能に付着している健療法等の 付着的高速度形態を考りことができる核布接着対よが

ことにある。
[0011]また。本発明の第2の目的は、途市流の枯度に関係なく、下向きの建布器の吐出口周辺部に付着している整布液等の付着物を選集に除去でき、建原火点のない場面の高、速度の形成ま行うことができる途布表証および整布方法。といこれらの装置および整布方法を提供することにある。

塗布方法、並びにこれらの装置および塗布方法を用いた

カラーフィルターの製造装置および製造方法を提供する

[0012]

【課題を解決するための手段】上記本発明の目的は、以 下に述べる手段によって達成される。

【0013】請求項1の塗布装置は、塗布液を供給する 手段と、前記供給手段から供給された塗布液を吐出する ための一方向に延びる吐出口を有する塗布器と、前記塗 布器および前記憶布部村のうちの少なくとも一方を相対 的に移動させて前記憶布部村上に遠腹を形成するための 移動手段とを備えた監布装置といて、(A) 前記布 器の吐出口周辺部に間接しながら吐出口の長手方前に治 って移動し、吐出口周辺部に付着している途布液を除去 する前部部村と、(B) 前電節布器の吐出口位置を検知 する検知手段と、(C) 前記検知手段による吐出口位置 の測定値により、途布器の出出口位置を基準にして、清 掃部村と境布器との部接時における両者間の相対位置を 一定に前的する制料手段とを備えたことを特徴とする途 布装置である。

【0014】請求項1の統布装置によれば、清掃時の途 布器と清掃部材の相対位置関係が塗布器の吐出口位置の 検知手段と制御手段によって、塗布器の上下方向の寸法 がいかなるものであっても、一定に設定されるので常に 同じ状態で実践消損することが可能となる。

【0015] 請求項2の途本業置は、並布液を供給する 手段と、前記供給手段から供給された進布液を出出する ための一方向に近くは出口はそする途布器と、出か があり、方面に近くは出口はそする途布器と、出か 布器もよび前記途布部的社上に建設を形成するための 新記途布器の吐出口用辺部に付着させる法浄液付着手段 とり、前記地は田周辺部に摺接しながら吐出口の長 手方向に沿って移動し、吐出口周辺部に付着している途 布液を除去する精神部材とを備えたことを特徴とする途 布液を除去する精神部材とを備えたことを特徴とする途

【0016】請求項2の塗布装置によれば、塗布器吐出口から吐出後、すぐに乾燥するような標準性の高い塗布液であっても、その洗浄液を付着させてから清積するのであるから吐出口付近の付着物を完全に除去することができる。

[0017] 請求明3の協市総額は、整布該を供給する 再役と、前記録を刊から係めされて施市液を出出する ための一方向に延びる吐出口を有する整布器と、前記徳 布器はおび前記號市部材のうちの少なくとも一方を相對 的に移動せせて無望を有部とは主観を光域するための 移動手段とを備えた途布護軍において、(A) 前記態再一段 の内部に位置し、塗布液の溶消蒸気を発生さる落構築 気発生年段とを備えたことを特徴とする塗布装置であ る。

【0018】請求項3の総布装置によれば、途布器の吐出口近傍が溶析蒸気で清たされ、蒸発しやすい離類の途 布液でも途布液の蒸発による間化が防止でき、液体のま まであるので、清掃部材による拭取りによって付着物を 完全に除去できる。

【0019】請求項4の塗布装置は、塗布器の吐出口周 辺部に、除去した塗布液を溜める液だめ部を備えたこと を特徴とする塗布装置である。 【0020】請求項4の途市装置によれば、粘度が低く 流動しやすい途市液が塗布器斜面をを伝わって吐出口に 再付着することと、残留途市液が固体化して清掃部材と 塗布器の器接を妨することを防止できる。

【0021】請求項5の塗布装置は、 請求項4の塗布 装置において、液だめ部に償まっている塗布液を排出す る排出ユニットを備えていることを特徴とする塗布装置 である。

【0022】請求項6の塗布装置は、清掃部材の接触領 域外にはみ出し、吐出口局辺部に残存している塗布液を 排出する排出器を備えたことを特徴とする塗布装置であ る。

【0023】請求項6の塗布装置によれば、請求項9の 塗布装置と同様の効果がえられる。請求項7のカラーフ ィルターの製造装置は、請求項1~6のいずれかに記載 の塗布装置を備えることを特徴とするカラーフィルター の製造装置である。

【0024】請求項7のカラーフィルター製造装置に請求項1~6に記載のいず化かの強布装置を使用してカラーフィルターを製造するので、高い品質のカラーフィルターがえられる。

[0025] 請求項8の塗布方法は、塗布器の一方向に 延びる吐出口から塗布液を吐出しながら、前配金布器3 よび検塗布部がりちの少なくとも一方を相対的であ させて前配被塗布部材上に塗腰を形成する塗布方法において、前配吐出口の海掃部材を吐出口に対して初期を世 少級した後に、海綿部材を吐出口に対して初期を世 かした後に、海綿部材を吐出口に対して初期で 吐出口の長手方向に沿って移動させることにより、前配 吐出口周更部に付着している塗布液を除去することを特 後とする塗布方法でする。

【0026】請求項8の途布方法によれば、途布器の上 下方向寸法が異なっても、遂布器吐出口と清掃部材の相 対位置を常に同じ最適な付勢力で清掃ができ、清掃部材 の防塵・長寿命化を達成しつつ確実に吐出口の付着物を 完全除去できる。

【0027】請求項9の塗布方法は、前記吐出口の清掃 部材を吐出口に対して初期化置決めするとともに、前記 吐出口に洗浄液を付着させた後に、前記清掃部材を吐出 口の長手方向に沿って移動させることを特徴とする途布 方法である。

【0028】請求項9の途布方法によれば、吐出後、吐出口に乾燥して付着する揮発性の高い途布液であって も、洗浄液によってその付着物を溶かしてから清掃を行 うので、付着物を確実に除去することができる。

【0029】請求項10の途布方法は、前記吐出口の清掃部材を吐出口に対して初期位置決めするとともに、前記吐出口周辺部に塗布液の溶剤素気を充満させた後に、前記浩掃部材を吐出口の長手方向に沿って移動させることを特徴とする禁布方法である。

【0030】請求項10の塗布方法によれば、揮発性の

高い塗布液であっても吐出口付近に付着した残留塗布液 の蒸発が防止され、固化せずに液体の状態を保っている から、摺接によって残留付着物を完全に清掃除去するこ とができる。

【0031】請求項11の塗布方法は、塗布液の除去中 に清掃部材の接触範囲外にはみ出る塗布液を、塗布器に 設けた液溜め部に溜めることを特徴とする塗布方法であ ま

【0032】請求項11の塗布方法によれば、粘度が低 く流動しやすい塗布液が塗布器網面をを伝わって吐出口 に再付着することと、残留塗布液が固体化して清掃部材 と塗布器の摺接を妨げることを防止できる。

【0033】請求項12の塗布方法は、塗布液の除去中 に清掃部材の接触範囲外にはみ出る塗布液を排除することを特徴とする塗布方法である。

【0034】請求項12の塗布方法によれば、請求項1 1の塗布方法と同様の効果がえられる。

【0035】請求項13のカラーフィルターの製造方法 は、請求項8~12に記載のいずれかの塗布方法を用い て、カラーフィルターを製造することを特徴とするカラ ーフィルターの製造方法である。

【0036】請求項13のカラーフィルターの製造方法 は、請求項8~12に記載のいずれかの塗布方法を用い マカラフィルターを製造するので、高い品質のカラー フィルターを製造できる。

[0037]

【発明の実施の態様】以下、この発明の好ましい一実施 形態を図面に基づいて説明する。

【0038】図1は、この発明に係る塗布装置の全体斜視図、図2は図1のステージ6とスリットダイ40回りの模式図である。

[009] 図1には、本発明になるカラー液晶ディスプレイ用カラーフィルクーの製造に適用される造物装 大力を対したり、このダイコータは基合2を構えている。基格2上には一州のガイド湯レールイを設けられており、これらガイド湯レールイには採持体としてのステージらが配置され、このステージらの上面はまだ方前に対して長く、変交吸引によって2枚の被を部斜れ、Bが設定可能をサランをしまって2枚の被を部斜れ、Bが設定可能をサランをしまって2枚の被で部斜れ、Bが設定可能をサランドの単して構成されている。ステージ6は一州のスライド脚8を介してガイド湾レールイ上を水平方向に往便動自在となっている。

【0040】一州のガイド海トールイ間には、図2に示す送りね比機精12、14、16を内蔵したケーシング 12が配置されており、ケーシング12はガイド海トール4に沿って水平方向に延びている。送りね比機構1 ル4に沿って水平方向に延びている。送りね比機構1 よ、16、18は、図2に完まれているようにボールね じからなるフィードスクリュー14を有しており、フィードスクリュー14はステージの介面に固定されたり ット状のコネクラ16におした341、このコネクラ16に を貫通して延びている。フィードスクリュー14の両端 部は図示しない軸受に回転自在に支持されており、その 一端にはACサーボモータ18が連結されている。

【00411図1に示されているように、差台2の上町には1321中央に並上を形かが42柱24が配置されている。ダイ支柱24の先端はステージ6の往復動経路の上方に位置付けられており、その先端には昇降機構26が、取り付けられている。昇機構26は図3のようにつかりです。1314層域者26が、この将降プラケット31は昇降機構26におけるケーシング28内の一対のガイドロッドに昇降自在に取り付けられている。また、ケーシング28内にはガイドロット間にボールはしからなるフィードスクリューのメードスクリューに対しサット型のコネクタを力、そのフィードスクリューに対しサット型のコネクタを力、それで連結されている。フィードスクリューに対しサット型のコネクタを力、イボモーク30が、接続されており、このACサーボモーク30が、接続されており、このACサーボモーク30は

を介してダイホルグ3 2か取り付けられており、このダイホルグ3 2はコ字形をなしかつ一対のガイド溝ルール 4の上方をこれらレール4間に亘って水平に延げている。ダイホルグ3 2の支持軸は昇降プラケットドにて回 転自在に支持されており、これにより、ダイホルグ3 2 は支持軸と 5 もに乗り、ダイホルグ3 2 は支持軸と 5 もに乗している。「0 0 4 3 1 昇降プラケットには水平バー3 6 が固定されており、この水平バー3 6 はダイホルグ3 2 0 上方に位置し、ダイホルグ3 2 に治って延びている。水平バー3 6 の両端部には、電磁件整型のリニアアクチェエータ 3 5 の両端部には、電磁件整型のリニアアクチェエータ 5 エニータ3 8 は水平バー3 6 の 下販から突出する仲離

【0042】昇降ブラケットには支持軸 (図示しない)

【0044】ダイホルダ32内には塗布器としてのスリットダイ40が保持されてむり、図1から明らかなよう にスリットダイ40はステージ60が住機動力を直交で る方向、つまり、ダイホルダ32の長手力向に水平に延 び、そして、その両端にてダイホルダ32に支持されて いな

ロッドを有している。これらの伸縮ロッドは下端がダイ

ホルダ32の両端にそれぞれ当接されている。

【0045】図2に示されているように、スリットダイ 40からは塗布液の供給ホース42が延びており、この 供給ホース42の先端はシリンジボンブ44、つまり、 その電磁切換え弁46の供給ボートに接続されている。 電磁切換え弁46の吸引ボートからは殴引ボース48が 延びており、20両引ホース48の先端部は、塗布液を 蓄えたタンク50内に挿入されている。

【0046】シリンジボンプ44のボンプ本体52は、電磁切損え弁46の切換え作動により、供給ホース42 および吸引ホース48の一方に選択的に接続可能となっている。そして、これら電磁切換え弁46およびボンプ 本体52はコンピュータ54に電気的に接続されてお り、このコンピュータ54からの制御信号を受けて、こ れらの作動が制御されるようになっている。

【0047】さらに、シリンジボンプ44の作動を制御 するため、コンピュータ54にはシーケンサ56もまた 電気的に接続されている。このシーケンサ56は、ステ ージ6側のフィードスクリュー14のためのACサーボ モータ18や、昇降機構26側のACサーボモータ3 0、また、リニアアクチュエータ38の作動をシーケン ス制御するものであり、そのシーケンス制御のために、 シーケンサ56にはACサーボモータ18、30の作動 状態を示す信号、ステージ6の移動位置を検出する位置 センサ58からの信号、そして、スリットダイ40の作 動状態を検出するセンサ (図示しない) からの信号など が入力されるようになっており、一方、シーケンサ56 からはシーケンス動作を示す信号がコンピュータ54に 出力されるようになっている。なお、位置センサ58を 使用する代わりに、ACサーボモータ18にエンコーダ を組み込み、このエンコーダから出力されるパルス信号 に基づき、シーケンサ56にてステージ6の移動位置を 検出することも可能である。また、シーケンサ56自体 にコンピュータ54による制御を組み込むことも可能で ある。

【0048】図2に概略的に示されているように、スリ ットダイ40はステージの往復動方向に直交する方 向、才なわる機方向に長尺かフロックであるフロリ ップ59およびリアリップ60を有している。これらリ ップ59、60はステージ6の往復動方向に向かい合わ おれ、因示したい機変の連絡がトにより相互に向い に結合されている。両リップ59、60の結合により、 スリットゲイ40の下部は光幅形状をなしたノズル部と して形成されている。

[0049] スリットダイ40内にはその中央部分に位置してマニホード62が形成されており、このマニホールド62はスリットダイ40内航海へ水平延延だいる。マニホールド62は計並した途布液の供給ホース42に内部通路(図示しない)を介して常時接続されており、これにより、マニホールド62は塗布液の供給を受けることができる。

【0050】スリットダイ40の内部にはその上端がマニホールド62に達遇したスリット64が形成されており、このスリット64の下端がスリットダイ40の下面にて開口している。すなわち、スリット64の下端開口がスリットゲ40の吐出口として形成されている。具体的には、スリット64はアコントリップ59とリアリップ60との間に挟み込んだシムによって確保されている。

【0051】再度、図1を参照すると、基白2の上面にはダイ支柱24よりも手前側にセンサ柱20が配置されている。このセンサ支柱20もまた前述したダイ支柱2

4と同様に逆L字形をなし、その先端がステージ6の往 復動経路の上方に位置付けられている。 【0052】センサ支柱20の先端には昇降アクチュエ

ータ21を介して厚みセンサ22が取り付けられてい る。この厚みセンサ22は、ステージ6上にカラーフィ ルターの基板、つまり、ガラス基板Aが載置されたと き、昇降アクチュエータ21により所定の位置まで降下 され、この降下位置にて、ステージ6上のガラス基板A の厚さを光学的に検出し、その厚さに対応した検出信号 をコンピュータ54に出力する。具体的には、厚みセン サ22は、測定対象であるガラス基板Aに向けて測定光 を出射する光源と、ガラス基板Aの上面および下面から の反射光をそれぞれ受光する受光部と、受光部への反射 光の入射位置の差に基づき、ガラス基板Aの厚みを演算 する演算回路部とから構成されている。なお、昇降アク チュエータ21の作動はコンピュータ54によって制御 されるようになっており、また、厚みセンサ22として は上述のタイプに限らず、レーザ変位計、電子マイクロ 変位計、超音波厚さ計などを使用することができる。 【0053】ステージ6の先端には、ステージの吸着面 とスリットダイ40の吐出口先端68との距離を測るう ず電流式のセンサー202が左右一対ブラケット204 を介して備えられている。このセンサーの上面はステー ジの吸着面と同一になるよう設置されている。このセン サーの検出範囲は2mmであり、分解能は10 mであ る。なおセンサーとしては光電センサー、超音波センサ 一、静電容量センサーなどの非接触形のほか、差動トラ ンス式の接触型センサーを用いてもよい。 【0054】さらに図3に示されているように、スリッ トダイ40の前述した昇降プラケット31とダイも料2 4との間には、光学式のリニアスケール206が設けら れており、このリニアスケール206によって、昇降ブ ラケット31すなわちダイホルダ32の上下方向の位置 を検知し、その検知信号を出力できるものとなってい る。上述した一対のセンサー202およびリニアスケー ル206は前述したコンピュータ54に電気的に接続さ れており、それらの検知信号を受信することができる。 【0055】図1をさらに参照すると、センサ支柱20 とダイ支柱24との間には、塗布液のための同収・清掃 機構70が設けられている。この回収・清掃機構70は

サブ基台72を備えており、このサブ基台72は前述し

た基台2の外側面から側方に延びている。サブ基台72

上にはキャリアガイド74が配置されており、このキャ

り、ステージ6の往復動方向と直交する方向に延びてい

る。キャリアガイド74上には矩形のキャリア76が細

動自在にして取り付けられており、このキャリア76に

はボールねじからなるフィードスクリュー78が貫涌さ

れている。フィードスクリュー78はキャリア76の概

動方向、すなわち、キャリアガイド74に沿って延びて

リアガイド74はスリットダイ40の長手方向、つま

おり、その両端部は一対の軸受80に回転自在に支持されている。これら軸受80はキャリアガイド74上に立 抜きれている。さらに、基合2から返ご輸化が腸のフィ ードスクリュー78の一端は軸受80から突出し、電動 モータ82の出力軸に連結されている。この電動モータ 82はモーク数付け板84を介してサブ基台72に支持 されている。

【0056】キャリア76の四隅からは4本のがイドロッド86が上方に向けて突出されており、これらガイドロッド86には昇降プラケット88が昇降自在にして取り付けられている。この昇降プラケット88とキャリア76とは、図4から明らかでようにキャリア76の中央に位置したエアシリング90を介して相互に連結されており、このエアシリング90を介して相互に連結されており、このエアシリング90を介し来を支持するとともに、昇巻ボラケット88のかには立た関節をする。そして、昇巻ボラケット88のかにはこれが開口したガター92が取り付けられている。ガター92は回収打98分があり、固定されていないチューブを通してガター92が取り付けられている。ガター92は回収打98分があり、固定されていないチューブを通してガター92たまった液を増出する。

【0057】図4には前述したスリットダイ40もまた 示されており、この実施例の場合、スリットダイ40の ノズル部40aはその下面にスリット64の下端、すな わち、吐出口が開口されている。ノズル部40aの下面 は水平な平坦面である。

[0058] 昇降プラケット88には、上面が開口した ガクータ2が受け節材として取り付けられており、この ガクー92は電動モータ82側とは反対側で水平は ている。図5から明らかなようにガター92はスリット ダイ40よりも十分に大きく、このスリット40を下方 から覆うことができる。

【0059】ガター92円にはその光端底に値置して板状か一対の清掃部村94が配置されており、これら清掃部村94が配置されており、これら清掃部村94は近かっとの手下声に小阪空間付けられている。これら清掃部村94はガター920天下方に小阪空間付けられており、これら清掃部村940上回はスリットゲイ40のノズル部40aと含まする形状を有し、これにより、そのノズル部40aに密着することができる。スリットゲ40のノズル部40aに関係するに表情を表し、ストロンスル部40aに関係するに表情を表し、大いないの大変に対していた。

[0060] さらに、清掃部料94の表面は流分子機能からなり、その高ケ子樹脂としてはテフロン機能、ウルクン機能、アクリル樹脂、ボリブロジレン機能、エリアロビレン機能、エリアコンゴム、エチレン・ 静軽ビエル共進合体などの一種または二種以上を混合しためを用いることができる。また、これらの中でも、スリットダイ40のノスル部40aに対して新着性や能冷却中に含まれる溶剤に対する開性、さらには網久性に使れたものが解ましく。これらの成立参考すると、サリコーンゴムが最もしく、これらの変き増末ると、サリコーンゴムが最もしく、これらの成立参増すると、サリコーンゴムが最も

好ましいものとなる。なお、清掃部材94の表面以外の 都分はその表面に同様な高分子樹脂であってもよいし、 また、全く異なる材質であってもよい。さらにまた、ス リットダイ40におけるノスル部40aの密着性を十分 に確保するため、清掃部材94はその厚さが2mm以 上、たとえば5mmに設定され、所定の壁さが確保され ている。

【0061】また、図4に示すように清掃部材94の間の中央には、洗浄液吐出ノズル208が備えられている。このノズルは対621mm、外径2mのステンレス製パイプであり、その上流側は図示されてない洗浄液ナン上洗浄液タンに接続されている。洗浄液はこのノズルから房定の高さで噴き出し、その高さは洗浄液オンプの吐出量を変化させることで任意に調節できる。このノズルにバイブではなくて洗浄液が顕水に広がる噴霧タイプのものを使用してもよい。

【0062】ガター9 2の内底面にはその中央部分の2 ケ所に排出口98 (図59順) が形成されており、これ 対射出口98 (図59順) が形成されており、これ 対出口9 4(図50年) でプル100を介しては カー9 2の外底面に沿ってキャリア76まで遊び、そし て、このキャリア76おなびキャリアガイド74を質通 して、サブ基台72内まで遊びている。なお、図示され ていないけれども、キャリアガイド74には排出ホース 102をサブ基台72内は下34に対象されており、この間にはフィードスクリュー78に沿って延び でいる。

【0063】サブ基白72内において、排出ホース10 2はキャリア76の移動を許容するのに十分な長さを有 しており、その先端は廃液クシク104の整を貫通し て、この廃液タシク104内に挿入されている、廃液タ ンク104の整には吸引ホース106が貫通して取り付けられており、この吸引ホース106は真空ポンプ10 8に接続されている。

【0064】上述した回収・清掃機構70の電動モータ 82、エアシリング90を伸縮作動させる方向切換え弁 および真空ポンプ108は前述したシーケンサ56に電 気的に接続され、このシーケンサ56は回収・清掃機構 70の作動をも制御する。

【0065】次にカラーフィルターの製造に係わる一工程、つまり上途したダイコータを使用して行われる塗布 方法を説明する。まず、スリットダイ40をダイホルグ 32にとりつけて管布が整備工程を実行する。すな場 6、センザー202がスリットダイ40の空出円で場合 8の直下にくるようステージ6を移動させる。ついでス リットダイ40を昇降ブラケット31を下除させること によってゆっくり下側に移動させ、左右のセンサー 22と、吐出口先端68との距離K1L、K1Rを測定する。

【0066】この測定結果に基づき、第1間隔K1L,

K1R間の差が所定値以上であると、コンピュータ54 はシーケンサ56を介して昇降機構26におけるリニア アクチュエータ38 aを駆動し、第1間隔K1L, K1 間間の表が所定値以内たとえば3μm以内に収まるベイ ダイホルグ32を図14年2月にで示する。これにより、ダイホルグ32を図14年2日で示する。これにより、ダイホルグ32に取り付けられたスリットダイ40の世出口68はその幅方向でみてほぼ水平となるように調整される。調整が終了すれば、ブレーキ (図示せず)がイホルグ32を固定する。

【0067】このようにレてスリットゲイ40における 吐出日先端68の水平調整が完了すると、コンピェータ ち4はこの時にへの開解り1と毎間距離に多とは 定し(距離測定プロセス)、同時にリニアスケール20 6からの娩出信等に基づき、ダイホルゲ32のレベル位 置2を普列み近しくバル検出フロセス)、

【0068】そして、コンピュータ54は、離間距離K 3およびレベルZに基づき、参照レベルYを次式に基づいて算出する(算出プロセス)。

[0069]Y=Z-K3

ここで、参照レベルドは上式から明らかなようにスリットダイ4のの出出口68がステージのの上面まで降下したとき、リニアスケール86から起力される機能信号、つまり、ダイホルダ32のレベル位置を示している。ついて、清掃節材とスリットダイ40の出出口68が係合する係舎参照レベルドCを

YC = Y + a

れている。

で計算する。aはコータに固有の値であり、一定値とし てコンピュータち4に覚え込ませておくものでスリット ダイ4 0がいかなるものであってもその値はかわらな い。aの値はあらかじめ事前に消揚を行って、ゴムの摩 耗、拡取り能力を評価指揮にして最適な値を決めておか なけけばならなり、

【0070】上途したようにして参照レベルソと係合参 照レベルヤびが決定されると(セッティングステッ ア)、スリットゲイ40およびステージ6は原点復帰さ れる。つまり、スリットゲイ40は所定の位置まで上昇 され、ステージ6は初期位置まで復動される。

【0071】ダイホルダ32の参照レベルYを設定する にあたり、昇降機構26およびステージ6の作動制御 は、前述したシーケンサ56本来のシーケンス制御とは 独立して実施される。

[0072]次に整布工程に入る。ここではまず割1に 示す如く基台2に対して側方の待機位置に位置付けられ ていたガター92を、回収・清掃機構70の電動モータ 82によりフィードスクリュー78を一方向に回転し て、キャリア76とともに特機位置から回収位置まで移 動させる。この回収位置では、ガター92の清掃部材9 4はスリットダイ40の一方の熔部の下方に位置付ける

【0073】この状態で、シリンジボンプ44の電磁切

換え奔46がボンア本体52と吸引ホース48との間を接続すべく切換え作動され、ボンア本体52はその内部 にタング50内砂造布液を吸引ホース48を適じた分 する。この後、シリンジボンア44の電磁切換え非46 はボンア本体52と供給ホース42との間を接続すべく 切換え作動され、ホンア本体52はその内部の途が 供給ホース42を週じてスリットダイ40に向けて吐出 する。この吸引・吐出動作を繰り返して経路内の空気を 全で無由する。

【0074】スリットダイ40の吐出口から吐出された 整布施はガタータ2に受け取られ、そして、このガター タ2から耕出ホース102を通じて販液タンク104に 排出される。ここで、販液タンク104内は衰乏ホンプ 108および吸引ホース106により排気されているの で、ガター92内の健布液以販流タンク104に良好に 嫌かれる。

【0075】上述したようにしてスリットダイ40内が 途布液で満れされると、直前の途市準備作動として、シ リンジボンブ44の電磁切換え非46はボンブ本体52 と吸引ホース48とを接続すべく切換え作動され、ボン 本体52はタンク50内の途市液を吸引ホース48を 通じて、その内部に貯量量の施液を吸引ホース48を にて、その内部に貯量量の施液を吸引ホース48を よりメジボンブ44はその電磁切換え非46がボンブ本 体52と保熱ホース42とを接続すべく切換え作動され た状態で特慮する。

【0076】この状態でダイホルダ32のレベル位置を 係合参照レベルYCまで下降させ、スリットダイ40の 吐出口先端68が清掃のための最適位置にセットされ ?

【0077】そして、回収・清掃機構70において、そのエアシリング90がその最終点まで伸張されることにより、ガター92がスリットダイ40に向けて上昇され、一対の清掃部材94がスリットダイ40の端部に当接される。

【0078】この後、ガター92がその特機位置に向けて移動させると、一対の清時語材94がスリットタイ4ののノスル部40a、すなわち、スリットゲイ40の世出口を含む吐出口周辺部に密着した状態で、このノズル部40aに対して振発し、これら清掃器材94はスリットダイ4ののノズル部40aの外面に付着している塗布液を接き取りながら除去する。

【0079】一州の清掃部材94はノスル部40aに対 して指接するときには完全に密着した状態にあるから、 ノズル部40aと傾斜面との間の境目も含め、ノズル部 40aの全域に亘ってその外面に付着している建市液を 完全に除去することができる。 ここで、口金形状が上 下方向、すなわた清掃部材の付勢方向に寸法変化して も、それに応じて自動的に係合参照レベルソビがセット されるから、清掃部材とノズル部40aの密着性が再致 でき、同様に残倒している虚布液を完全に除去すること ができる。また、清掃部材のスリットダイへの付勢力を 圧力ではなくて位置レベルで細かく制御できるので最適 な付勢力で、摺接でき、清掃部材の摩耗を最小にするこ とができる。

【0080】さて、スリットダイ40のノズル部40aから除去された塗布液は、清掃部材94および支持ユニット96の外面を伝ってガター92に受け取られる。 【0081】ガター92が特機位置のト方まで戻される。

と、この後、前述のエアシリング90が収縮される。 【0082】一方、ステージ6には関示しないローダを 介してガラス基板Aが位置決めされた状態で裁置され、 このガラス基板Aはステージ6の上面にサクションによ

り吸着保持される。 【0083】ガラス基板Aのローディング完了すると、 厚みセンサ22が下降し、この厚みセンサ22によりス テージ6上のガラス基板Aの厚さが光学的に検出され、

厚みセンサ22が下降し、この厚みセンサ22によりステージ6上のガラス基板Aの厚さが光学的に検出され、 その検出信号がコンピュータ54に供給される。厚みの 測定が完了すると、厚みセンサ22は元の位置まで上昇 される。

【0084】この後、ステージ6がスリットダイ40に 向けて往動され、そのガラス基板A上への塗膜の形成開 始ラインがスリットダイ40の吐出口位置に達した時点 で、ステージ6の往動が一旦停止される。

【0085】そして、スリットダイ401は、既に瀕定さ れているガラス基板Aの厚みを考慮して下降され、スリ ットダイ40の吐出口とガラス基板Aとの間に所定のク リアランスが確保される。ここで、ガター92は特機位 置に戻されているから、ガター92がスリットダイ40 の下降を阻奪することはない。

[0086] クリアランスが確保されたら、シリンジボンブ44を吐出動作させて、スリットダイ40から能布 液を吐出し、吐出口先端68とガラス基板Aとの間に液 溜まりCを形成する。このような液溜まりCの形成と同 命流ので出と維続してがら、ステージ6を一定の速度で 往動方向に進行させると、図2に示されているようにガ ラス基係Aの上面に途布液の途原Dが連続して形成される。

【0087】ステージ6の進行に伴い、ガラス基族人上 にて惍服りの形成を終了すべき形成族でラインがスリットダイ40の出出口の直前位置に到達すると、この時点 で、シリンジボンア44の出出動情や呼吐される。この ようにしてスリットダイ40からの整布液の出出が停止 されても、ガラス基板人上においてはその液で置まりCの 途布液を消費(スキージ)しながら、整原Dの形成が形 成終了ラインまで軌続される。なお、グラス基板人上の 形成終了ラインがスリットダイ4の中出日を連進した 時点で、シリンジボンア44の中出動作を停止するよう にしてもい、シリンジボンア44の中出動作を停止するよう にしてもい、シリンジボンア44の中出動作が停止する にしてもい、シリンジボンア44の中出動作が停止する れると、このシリンジボンア44の中出動作が停止する 行い、スリットダイ40におけるスリット64内の途布 液をマニホールド62側に吸い戻す。このようなシリン ジボンア44の吸い戻し動作と同時に、スリットダイ4 0は元の位置まで上昇される。

【0088】一方、ステージ6の往動はスリットダイ4 のからの途布液の吐出が停止されてく観載され、ステー 送6がダイドボレール4の禁煙に野地上で時点で、その 往動が停止される。この後、ステージ6上へのガラス基 板Aのサクションが解除され、塗膜りが形成されたガラ ス基板Aはアンローダによりステージ6から取り外さ れ、そして、次工程に向けて供給される。

[0089] ステージ6がスリットダイ40を通過した 後、ガター9 2は再び特機位置から回収位置に移動され る、ごの状態で、シリンジボンプ44は吸い限した量だ け、整布液を吐出し、スリットダイ40のスリット64 内に空気が残るのを防止する。この際、スリットダイ4 の吐出口から陸布液が吐出されても、その陸布液はガ ター9 2に受けとられる。

【0090】この後、スリットダイ40は、ダイホルダ 32が係合参照ルベルになる位置まで形し、その時上 昇した清緒節材と指接する。ついてガター92が、 6機位置に戻されるので清掃部材94は割送しようにス リットダイ40のノズル番40まに付着している施布液 を接収取って除去する。

【0091】ガター92が特機位置に戻されると、ステ ージらは図1に示す初期位置まで戻され、これにより、 油砂塩布工型が停下する。なお、初期位置にて、ステ ージ6は新たなガラス基板Aがローディングされるまで 特徴し、そして、シリンジボンブ44は削速した筺布準 機動作を行って修練する。

[0092]また、アクリル系盤布液等、落剤に増発性の高いものを吐出した後には、図4のノズル208から 洗浄液、たとえば整布液に使用しているのと同じ溶剤を吐出させる。すなわち清掃のためにガケーが回収位置にあり、スリットダイ40が絡舎郷ルインペン208の口から2mmの高さまで噴出しつつ、エアシリンダー90を伸長させ一州の清掃部が94をスリットダイ40の鑑鉱に当後させる。

【0093】この状態でガター92を特機位置に向けて 移動させると、一対の清掃部材のうち、進行方向前方側 の部材94 aがノズル部40 aの残留塗布液を除去しつ つ、除去した面にノズル208から洗浄液を付着させ て、その洗浄液を一対の清掃器材の進行方向後方側のの

材94 bで試験とることになる。この時、前方側の部材 94 a では液体状のものは接き取れるが、排発性の高い 大かに流発して関係化しメンがあくり a に付着している 付着物は除去できない。それがソズル208から鳴出さ れる記得液で、再び溶解して液体状となり。それを後方 動の部材94 b で除去するので、発発性が高く間化しゃ すい塗液の場合でも容易にノズル部40aの消糧を行う ことができる。また前方側の部材94aを有能して残留 途布液と洗浄を同時に使力側の部材94bで除去して もよい。洗浄液は、塗布液の溶剤が蒸発して残った付着 物を溶かすものなら何でもよく、塗布液の溶剤の他、塗 布液自身でもしい。

[0094] 図らは揮発しやすい塩布液に対する別の実施態様を示すスプージ走行方向の断回図であり、図7は 回信のステージ海行向の断回図である。ことではオター92上に、図7に示すようにガター92の走行方向に清掃部村94に開発した位置に溶剤素洗機220を設けている。この蒸売機となり、サイイのの吐出口光色8を包み込むカバー222と側面カバー223よりなる遮閉ユニット225、名が一の光端にあってスリットダイ40と当接して外欠と適門ユニット内部との流が断さるシール224、さらに、遮閉ユニットの内部にあって孔間227より溶和蒸気を噴出するパイプ226から構成されている。

【0095】なお、適関ユニットのシール224とスリ ットダイ40の接触点は、清掃部材による拭取り時にシ ール224とスリットダイ40の干渉をさけるために、 清掃部材の底面95より下方になければならない。さら にまた、側面カバー223のシールはスリットダイ40 の幅方向の吐出口のないところ310に接触するように 配置する。パイプ226への溶剤蒸気の供給は図8の溶 剤蒸気供給装置240で行う。この溶剤蒸気供給装置2 40は、ヒータ等よりなる加熱源232と蒸気の流出を 制御する開閉バルブ234から構成されている。そして バルブ234からチューブ236を通じてパイプ226 に溶剤蒸気が供給される。チューブ236は結露防止の ために保温するかヒータ等で適切な温度に加熱する。 【0096】ここで、発生蒸気量の制御は加熱源232 の温度を制御することによって行う。この実施態様によ れば、塗液の溶剤の蒸気を遮閉ユニット225、スリッ トダイ40で閉じられた空間 (閉空間) にみたすので、 そこでの溶剤の湿度が飽和し、スリットダイ40の叶出 口に塗液があっても蒸発できなくなる。

【0097】したがって、整布した直検に図6の実施駆機のように溶剤素気の雰囲気にスリットゲイ40の吐出口をさらせば、整部が破壊せず固化しないので、この状態で清掃解材を樹着させばかられば光金に飛着物をしたスリットゲイ40のメルボイ40のようである。なお試き取った残留釜布液はガター92の排出口98、排出ホース102を通って、販売タンクル場かも。一方、海町エニット225円で結構した溶解や、途布準機動作中にスリットゲイ40から転出した塩布液6ガター併出口98、排出ホース302、図示しな小網がレブを通じて販売タンク、導かれる。本実・連携がリンデュビア・原売タンク、導かれる。本実・連携を受った消傷の手順は次のようになる。まず、清積の手順に対していた。

2を回収位置にだす。この時、渡閉ユニット225とス リットダイ40は上下方向にはなれた位置にあり、両者 は干渉しない。ここでの回収位置とは、図7のように活 掃部材94が幅方向でスリットダイより飛び出し、遮閉 カバー208がスリットダイと密着できる領域にある位 置をいう、この位置で途布準備動作中の途液の吐出を行 う。塗液の吐出を終了したらスリットダイ40を適閉ユ ニットについているシール226に当接するまで下降さ せて、閉空間を構成する。ついで溶剤蒸気供給装置24 0のバルブ234を開き、溶剤蒸気をパイプ226から 噴出させ、閉空間を溶剤の蒸気で満たす。これによって 塗布液の蒸発が防止できる。つぎに一連の準備が完了し、 たらバルブ234を閉じて、溶剤蒸気の供給をやめ、ス リットダイ40を一度原点位置まで上昇させる。ついで 清掃部材94をスリットダイ40の端部の直下にくるよ う移動してからスリットダイ40をダイホルダ32が係 合参照レベルYCになるまで下降させる。そして清掃部 材94を上昇させて清掃部材94をスリットダイ40の ノズル部40aに密着させ、その状態でガター92を待 機位置まで移動させ、ノズル部40aの付着物を完全に 除去する。本実施態様ではスリットダイの叶出口を添布 液溶剤蒸気で充満した雰囲気にするので叶出口の残留途 布液は蒸発せず、液体の状態のままにあるから、この状 態で清掃部材で拭き取れば残留付着物を完全に除去でき δ.

【0098】上述した中で、清挿部材は遮閉カバーの中側にあってもよい、さらに遮閉カバーとスリットダイのシールを行わず、勝間を開けている時に陰布動作準備等で塗布線の吐出を行ってもよい、遮閉カバーとスリットダイで構成した間空間内の溶解形態度をセンサーを設けて一定のものに制酵することも可能である。さらに、遮閉ユーットとスリットダイ4の下触では変化素気になっていることが望ましいから、スリットダイ4の下面で結晶して浴剤が付着するほど溶剤蒸気を供給してもよい、また、パイア226の内怪は1~3 を供給してもよい、また、パイア226の内怪は1~3 70階は0.5~5 mm、パイア226 内径

【0099】なお、遮蔽カバー222、側面カバー22 3は、電動あるいはエアーシリンダー等で自動開閉する ようにしてもよい。

【0100】次に、図9〜図13を参照して、上途した 実施部様とは別の本発明の実施配様を以下に説明する。 【0101】図9は、スリットゲイ40と回収清掃機構 の相互関係を示した概略斜視図、図10は清掃部材94 とスリットゲイ40の下端面が接触した時の離方向断面 図である。

【0102】図10を参照すると、清掃部材94の上端 面の近くにスリットダイのノズル部40aにみぞ301 a、301bがスリットダイ先端両側に設けられてい

- る。このみぞ301a、301bはスリット64方向に 向かうにしたがって下方向にたれ下がる角みぞであり、 図9のようにスリットダイの長手方向にかたって延びて いる。そしてスリットダイの長手方向ではガター92支 持部分に向かう、即も図9の矢印方向に向かうにしたが って下降する傾倒が設けられている。傾斜角は1~30 が望ましい。
- 【0103】次にカラーフィルターの製造に係わる一工程、つまり上述したダイコータを使用して行われる塗布方法を説明する。
- [0104]まず図1に示す如くテーブルらが期税屋 にあり、さらに基白2に対して関方の枠機位置に位置付 けられていたガター92を、回収・請制機構7のの電動 モータ82によりフィードスクリュー78を一方向に回 転して、キャリア76とともに特し強から回収を通 で移動させる。この回収位置では、ガター92の清掃部 材94はスリットダイ40の一方の端部の下方に位置付 けられている。
- [0105] この疾態で、シリンジホンア4 4の電磁制 検急力466がバンア本体52 20時1ホース48と39 接続すべく切換え作動され、ボンア本体52 2はその内部 にタンク50 内の塩布液を吸引ホース48を通じて吸引 する、この後、シリンジホンア44の電磁り換え乗46 はボンア本体52 と 技格がホース42 との間を接続すべく 切換え作動され、ボンア本体52 2はその内部の遠布液を 供給ホース42 を選じてスリットダイ40 に同けて吐出 する、この吸引・吐出動件を繰り返して経路内の空気を 全て排出する。
- 【0107】この状態でダイホルダ32を所定位置をまで下降させ、スリットダイ40の吐出口先端68が清掃のための最適位置にセットされる。
- [0108] そして、同収、清掃機構了のにおいて、そのエアシリングが最終点まで伸張されることにより、ガター9 2がスリットゲイ40に向けて上昇され、一対の清掃部村9 4 がスリットゲイ4 0 の端部に当接される。
 [0109] この後、ガラー9 2 がその特徴位置に向けて移動させると、一対の清掃部村9 4 がスリットゲイ4 0のノズル都4 0 a、すなわち、スリットゲイ4 0 の

- 出口を含む吐出口周辺部に管着した状態で、このノズル 部40 aに対して摺接し、これら清掃部材94はスリット ゲイ40のノズル部40 aの外面に付着している途布 液を接き取りながら除去する。
- 【0110】この時、清掃部材94のブレード部302 a、302bより上方にいく塗液はスリットダイのみぞ 301a. 301bに入り補掃される。そしてこの滞が といとなって捕捉された液が図9の矢印方向に向かって 流れ、スリットダイの側部から排出されることになる。 この効果により、除去した塗液がスリットダイの斜面が 304a、304bをつたわって落下し、叶出口付近を 再び汚すことはない。吐出口付近を一度除去した塗液で 汚染されると、ガラス基板の先頭でその部分だけが途布 厚みが厚くなり、走行方向の厚みむらが増大するばかり でなく、膜厚が許容値以下で有効に利用できる製品範囲 が狭くなったり、塗布すじ等の塗膜欠点が発生するなど 不都合が生じる。さらにノズル部40aの斜面に残存し た塗布液が固体化して付着物となり、これが清掃部材り 4のブレード部302の上面305に接触して清掃部材 の上昇が妨げられて、清掃部材94と吐出口先端68が 接触せず、吐出口の拭取りができないという不都合も本 発明により防止できる。
- 【0111】さて、スリットダイ40のノズル部40aから除去された塗布液は、ガター92に受け取られる。 【0112】ガター92が特殊位置の上方まで戻される と、この後、前述のエアシリンダが収縮し、ガター92 に伴って清掃部が494が下陸する。
- 【0113】一方、ステージ6には図示しないローダを 介してガラス基板Aが位置決めされた状態で載置され、 このガラス基板Aはステージ6の上面にサクションによ り吸着保持される。
- 【0114】ガラス基板Aのローディング完了すると、厚み プロインサン2か下降し、この厚みセンサン2でよりス テージら上のガラス基板Aの房ごが完守的に検出され、 その検出信号がコンピュータ54に供給される。厚みの 測定が完了すると、厚みセンサン2は元の位置まで上昇 される。
- 【0115】この後、ステージ6がスリットダイ40に 向行で往動され、そのガラス基板A上への建版の形成開 動ラインがスリットダイ40の吐出口位置に達した時点 で、ステージ6の往動が一旦停止される。
- [0116] そして、スリットダイ40は、既に測定されているガラス基板の厚みを考慮して下降され、スリットダイ40か出口とガラス基板Aとの間に所定のクリアランスが確保される。ここで、ガター92がスリットダイ40の下降を阻害することはない。
- 【0117】クリアランスが確保されたら、シリンジボンプ44を吐出動作させて、スリットダイ40から途布液を吐出し、吐出口先端68とガラス基板Aとの間に液

溜まりCを形成する。

[0118] そしてこのような液溜まりこの形成と同時 に、スリットダイ40、つまり、その吐出口からの塗布 液の吐出を継続しながら、ステージ6を一定の速度で往 動方向に進行させると、図2に示されているようにガイ ド基板人の上面に塗布液の塗膜りが連続して形成され ス

【0119】ステージ6の進行に伴い、ガラス基板A上にて建原Dの形成を終了すべき形成終了ラインがスリットグイ4のの出土田の直航位置は発達すると、このようにしてスリットグイ4 のからの整布液の出土が停止される。このようにしてスリットグイ4 のからの整布液の出土が停止されても、ガラス板板A上においばもつ液溶造りの影成が形成終了ラインまで観然される。なお、ガラス基板A上の形成するアインまで観光される。なお、ガラス基板A上の形成すでラインまで観光される。なお、ガラス基板A上の形成すでラインまで観光される。なお、ガラス基板A上の形成すでラインまで観光される。なた、ガラス基板A上の形成すでラインなで観光である。

【0120】一方、ステージ6の柱動はスリットゲイ4 のからの塗布液の吐出が停止されて5種酸され、ステージ6がガイド溝レール4の炭増に到慮した時点で、その 往動が停止される。この後、ステージ6上へのガラス基 板Aのヴウションが解除され、塗膜Dが形成されたガラ ス基板人はアンローグによりステージ6から取り外さ れ、そして、次工程に向けて供給される。

【0121】ついでステージ6は図1に示す初期位置まで戻され、これにより、一連の塗布工程が完了する。なお、初期位置に、ステージ6は新ながラス基板人がローディングされるまで特徴し、そして、シリンジボンブ44は前近した塗布準備動作を行って待機し、以下同じ動作を終り表す。

【0122】図11、12は本発明にかかる別の実施理 様を示したもので、図11はステージを行方向にスリットグ4 40をみための大型の大型機能正同型。図12は図11 のソ方向からながめた図である。ここではみぞ301 a、301bがスリットゲイ長手方向(矢印方向)に下 向きに傾射してもり、その機能がであるスリットグの 側面310付近に塗液の流れをせき止めるせき止め板3 11 a、311bを設け、さらにこのせき止め板311 a、311bをたにパイプ306。306bを設り付け、せき止め板311a、311b付近になまった塗液 をバイブ306a、306bを通じて図示しないポンツ で吸引用出する。これによって除るませべき液があい時に もノズル部40a清掃時にみぞ301a、301bにた まって洗液があれることなく、効果的に外部に排出される。

【0123】以上の実施例でのみぞのスリットダイ長手 方向に垂直な断面内での形状・大きさは特に限定される ものではなく、三角形、半円形状などいかなる断面状で も良い。

【0124】また実施例ではみぞはスリットに向かって

傾斜をつけ、一度みぞ301に入った塗液が外部にもれ 出すのを防ぐようにしているが、この傾斜角は特に限定 はなく、製作のしやすさと傾斜の効果により5~60° が軽ましい。

【0125】また図10でのみぞの開口幅、深さa、b も除去すべき塗液量、スリットダイ開性を損なわない形 状などを考慮して定めればよいが、a=2~20mm、 b=5~30mm程度が好ましい。

【0126】さらに清掃部材94のブレード部302 a、302b上面308a、308bとみぞ301a、

a、302b上期308a、308bと水子301a、301bの下端305a、305bの上下方向の関係はアレード302a、302bがみぞ301a、301bの下端第305a、305bがみぞ301a、301bの下端第302a、305bがみその上方にあるアレード部302a、302b上期308a、308btでの数据表が、水ぞ301a、301bの開口幅402/3以下の範囲に設定するのが望ましい。この位置関係によって、清掃部村で上向きに排除された塗液が別果的によって、清掃部村で上向きに排除された塗液が別果的に入そ301a、301bに著奏が出ることになる。

【0127】また、ブレード部302a、302bの上面308a、308bは、みぞ301a、301b下婚 部305a、305bはり下側にあってもよいが、この 配置は、除去すべきノズル部40aに付着している途液 が多い場合に適している。

【0128】図 3はさらに別の実施彫様をステージ走行方向の断面で示した図である。こでは清掃解材94次リットダイム 0 「図と機能する動のプレード302 a、302 b上面付近に吸引ノズル400a、400 bを設けており、ダイの形状によってはみぞを作ることが 困難である場合でも、面 304 bに対した液がたれないようにしている。この吸引ノズル400a、400 bはプラケット410a、410 bによってスリットダイに配定されている。

【0129】また吸引ノズルには、スリットダイ側に向かって関印部401a、401bがあり、その間口部の 長手方がの長さはスリットダイの吐出口長手方向の長さよりやや大きく、好ましくは2~20mm大きくするのがよい。間口部401a、401b間線は清掃部材で除去した強落を容易に吸引できるように0.5~20mm 程度がよい、

【0130】そしてこの吸引ノズル400a、400b の一端には、接続口403a、403bがあり、これに 図示しない吸引ポンプがつながっており、清掃部材94 のブレード302a、302b上面にある塗液を10~ 5000mm4程度の吸引圧で吸引する。

【0131】この吸引ノズル400a、400bを使っての動作は次のようになる。

【0132】清掃部材94とスリットダイ40の下端面 が接触し、清掃部材94が移動を開始すると、スリット ダイ下端面に残っていた塗液がかきおとされ、一部残留 したものが、清掃部材94のブレード302a、302 bより上面にあふれ出す。

【0133】このあふれ出した塗液は吸引ノズル400 a、401bの開口部401a、401b、接続口40 a、403bを通って図示しない吸引ポンプによって 外部まで排出される。

【0134】したがってノズル部40aの斜面304 a、304bに、清掃後でも塗液は残らず、残留した塗 液が落下して吐出に再付着して、塗布開始部の厚みむら を大きくしたり、塗布すじ等の塗膜欠点を生じるなど悪 い影響を及ばすことはない。

【0135】さらにノズル部40aの斜面に残存した塗 布液が固体化して、滑稽部材94の上昇を妨げ、清掃部 材94と吐出口先端68が接触できず、吐出口の拭取り が不可能という不額合も本発明により防止できる。

【0136】また上配のものとは別に、ノズルの長手方向間口部を清掃部材940駅みより2-20mm大きくした吸引ノズルと、清掃部材94と同時にスリットダイ40の長手方向に移動できるようにし、清掃部材94のプレード304。、304もの上面にある景留監査のみを吸引して排出できるようにしてもよい。この場合は、清播部材を吸引ノズルの同時移動によって、スリットダイ40の下端面の清積と残留塗液の回収が長手方向にわたって同時に実行されることになり、上配のものと同じ効果が得られる。

[0137]

【発明の効果」以上説明したように、請求項1、8の途 布装置きよび途市方法によれば、旅市器の出口位置を 発露市場で」とは晩知して、旅市器の出口しき清掃総材の 相対位置関係を一定に保って両者を預接させるので、常 に一提の付勢力で摺接でき、途市器の出口付近に付着 した資格金市後を会と除金すると上ができ、同時で 勢力を細かく位置でかえて最適なものにできるので、清 掃添材の季耗を扱小にでき、防塵と滑掃部材の寿命を向 上できる。

[0138]また、請求項2.9、10の途布装置およ び発布方法によれば、揮発性の高い途布液使用時に、こ の塗布液の溶剤を塗布器の出田付好近に付着させてから 清掃を行うので、塗布液を焼して固砂物が付着しても容 場に、しかも完全に付着物を除去できるので、塗膜欠点 のない品質の高い塗工製品が得れる。

【0139】さらに、請求項3の途布装置によれば、塗 布器の吐出口近傍を素発しにくい雰囲気にして清掃を行 うので揮発性の高い途布液でも固化せずに液体のままで 清掃でき、残存途布液を完全に除去できる。

【0140】請求項4、11の塗布装置および塗布方法 によれば、塗布器の周辺の清掃部材のプレード上面付近 の位置に清掃部材で除去した時に残留する塗液をためる 添だめみぞを設けたので粘度の低く流動しやすい塗液が 塗布器斜脚を伝わって世出口に再付着することや、塗布 器斜面に残存した塗布液が固体化して、清掃部材と吐出 口先端68の接触を妨げて吐出口の拭取りが不可能とい う不都合も防止できる。

[0141] ごれによってスリットダイ下面が清浄な状態で強減を吐出してビードを形成しコーティングを開始できるので、釜布野みを均一に、しから厚さむらが容値内となる有効頻域を広くすることができ、収率が上がり、全座性を向してきる。また徳布すじ等の途襲欠点が発生せず、品質り向上する。

【0142】さらに、請求項5、6、12の途布装置および建布方法によれば、液だかにたまる塗液を明出する 排出ユニットをつけ加えたり、指導部材からよれば 液を直接ノズルで吸引したりして、より効果的に余剰途 液を開除できように改善しているので、生産性を一層向 上できる。

【0143】請求項7、13のカラーフィルターの製造 装置および製造方法によれば、上記途布装置、途布方法 を使用しているので、品質の高いカラーフィルターの製 並が可能となり、生産性も向上させることができる。 【図面の簡単公数明】

【図1】本発明の一実施態様のダイコータの概略斜視図である。

【図2】図1のダイコータを塗布液の供給系を含めて示した概略構成図である。

【図3】図1のダイコータのスリットダイおよびその昇降機構の概略構成図である。

【図4】図1のダイコータの回収・清掃機構を示した正面図である。

【図5】図4のガターの一部を示した斜視図である。

【図6】別の実施例の回収・清掃機構を示したステージ 走行方向の断面図である。

【図7】図6のステージ幅方向の断面図である。

【図8】本発明による一要素ユニットを示した概略図で ある。

【図9】別の実施例のダイコータの回収・清掃機構を示 した斜視図である。

【図10】図9のステージ走行方向の断面図である。 【図11】別の実施例の回収・清掃部を示した正面図である。

【図12】図11のステージ走行方向の断面図である。 【図13】本発明の別の実施例の回収・清掃機構を示したステージ走行方向の機略断面図である。 【符号の説明】

6 ステージ 202 セ ンサー 208 14 フィードスクリュー 208 ノズル 22 厚みセンサ 220 溶み機 40 スリットダイ (塗布器) 222

遮閉カバー		パイプ	
44 シリンジボンプ	225	88 昇降ブラケット	310
遮閉ユニット		側面	
50 <i>タンク</i>	226	90 エアシリンダ	311
パイプ		せき止め板	
62 マニホールド	232	92 ガター	400
加熱源		吸引ノズル	
64 スリット	234	94 清掃部材	401
バルブ		開口部	
68 吐出口先端	240	96 支持ユニット	403
溶剂蒸気供給装置		接続口	
70 回収·清掃機構	301	98 排出口	410
みぞ		ブラケット	
76 キャリア	302	102 排出ホース	
ブレード		104 廃液タンク	
78 フィードスクリュー	304	106 吸引ホース	
斜面		108 真空ポンプ	
82 電動モータ	306		

【図6】

[図8]

【図5】

.....

【図11】

【図13】

JP 10-216598 A

* NOTICES *

JPO and INPIT are not responsible for any

damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]An applicator which has a delivery which extends in one way for carrying out the regurgitation of a means characterized by comprising the following to supply coating liquid, and the coating liquid supplied from said feeding means, A coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member.

- (A) A cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, ****ing to a delivery periphery of said applicator, and has adhered to a delivery periphery.
- (B) A detection means to detect a delivery position of said applicator.
- (C) A control means which controls uniformly a relative position between both at the time of a slide contact to a cleaning member and an applicator by measured value of a delivery position by said detection means on the basis of a delivery position of an applicator.

[Claim 2]An applicator which has a delivery which extends in one way for carrying out the regurgitation of a means characterized by comprising the following to supply coating liquid, and the coating liquid supplied from said feeding means, A coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member.

- (A) A penetrant remover adhering means which makes a penetrant remover adhere to a delivery periphery of said applicator.
- (B) A cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, ****ing to said delivery periphery, and has adhered to a delivery periphery.

[Claim 3]An applicator which has a delivery which extends in one way for carrying out the regurgitation of a means characterized by comprising the following to supply coating liquid, and the coating liquid supplied from said feeding means, A coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member.

(A) An envelopment means to surround a delivery of said applicator.

(B) A solvent vapor generating means which is located in an inside of said envelopment means, and generates solvent vapor of coating liquid.

[Claim 4]A means to supply coating liquid.

An applicator which has a delivery which extends in one way for carrying out the regurgitation of the coating liquid supplied from said feeding means.

A transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member.

A cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, ****ing to a delivery periphery of said applicator, and has adhered to a delivery periphery.

It had a sump part which is the coater provided with the above and collects coating liquid removed to a delivery periphery of said applicator.

[Claim 5]A coater equipping said sump part with a discharge unit which discharges collected coating liquid in a coater of Claim 4.

[Claim 6]An applicator which has a delivery which extends in one way for carrying out the regurgitation of a means to supply coating liquid, and the coating liquid supplied from said feeding means, A transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member, In a coater provided with a cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, ****reing to a delivery periphery of said applicator, and has adhered to a delivery periphery, A coater provided with an excretory organ which discharges coating liquid which overflows outside a surface of action of said cleaning member, and remains in a delivery periphery.

[Claim 7]A manufacturing installation of a light filter provided with the coater according to any one of claims 1 to 6.

[Claim 8]In a coating method which moves relatively either [at least] said applicator or the coated members, and forms a coat on said coated member while breathing out coating identifier on a delivery which extends in one way of an applicator, A coating method removing coating liquid which has adhered to said delivery periphery by making it move along with a longitudinal direction of a delivery after carrying out the initial position arrangement of the cleaning member of said delivery to a delivery, making a cleaning member **** to a delivery periphery.

[Claim 9]A coating method characterized by moving said cleaning member along with a longitudinal direction of a delivery after making a penetrant remover adhere to said delivery in a coating method of Claim 8, while carrying out the initial position arrangement of the cleaning member of said delivery to a delivery.

[Claim 10]A coating method characterized by moving said cleaning member along with a longitudinal direction of a delivery after making said delivery periphery filled with solvent vapor of coating liquid in a coating method of Claim 8, while carrying out the initial position arrangement of the cleaning member of said delivery to a delivery.

[Claim 11]While moving relatively either [at least] said applicator or the coated members and forming a coat on said coated member, breathing out coating liquid from a delivery which extends in one way of an applicator, By making it move along with a longitudinal direction of a delivery, making a cleaning member **** to a delivery periphery of said applicator, A coating method accumulating coating liquid which overflows outside a contact range of a cleaning member during removal of coating liquid in a liquid pool part provided in an applicator in a coating method which removes coating liquid adhering to a delivery periphery.

[Claim 12]While moving relatively either [at least] said applicator or the coated members and forming a coat on said coated member, breathing out coating liquid from a delivery which extends in one way of an applicator, A coating method eliminating coating liquid which overflows outside a contact range of a cleaning member during removal of coating liquid in a coating method which removes coating liquid which made it move along with a longitudinal direction of a delivery, making a cleaning member **** to a delivery periphery of said applicator, and has adhered to a delivery periphery.

[Claim 13]A manufacturing method of a light filter characterized by manufacturing a light filter using one of the coating methods according to claim 8 to 12.

[Detailed Description of the Invention]

[0001]

[Field of the Invention]This invention is used, for example for the manufacturing field of the light filter for color liquid crystal displays, a light filter, a printed circuit board, an integrated circuit a semiconductor, etc.

It is related with the manufacturing installation of a light filter and improvement of a manufacturing method which use the coater which forms a coat, a coating method, these devices, and a method, breathing out coating liquid to coated member surfaces, such as a glass substrate, in detail.

[0002]

[Description of the Prior Art]The light filter for color liquid crystal displays has a trichromatic fine lattice pattern on the glass substrate.

After such a lattice pattern forms a black coat first on a glass substrate, it is acquired by distinguishing it by different color with by red and a blue and green coat.

[0003]So, black, red, and blue and green coating liquid are applied on a glass substrate, and the coating process which forms these coats one by one becomes indispensable at manufacture of a light filter. Although a spinner, bar coater, or a roll coater was conventionally used for this fail of coating process as a coater, if it continues till recent years in order to reduce the amount of consumption of coating liquid and to aim at improvement in physical properties of a coat, use of the die coater is considered.

[0004]An example of this kind of die coater is indicated by JP,H5-208154,A. This publicly known die coater has a slit die as an applicator, and it forms the coat in coated members, such as a film it runs to one way, breathing out coating liquid from the delivery of this slit die.

[0005] And in recent years, the delivery periphery is equipped with the cleaning head that it should apply that it is also in an always normal delivery to the delivery of these die coaters.

Contacting the delivery periphery of a slit die, this cleaning head moved to the longitudinal direction of that delivery, and has wiped off the coating liquid adhering to a delivery periphery with this movement.

T00061

[Problem(s) to be Solved by the Invention]For example, the cleaning head mentioned above has an elastic support part which consists of fizz polyethylene, This elastic support part is forced on the delivery of a slit die by a constant pressure by an air cylinder, and in this case, by own elastic deformation, as an elastic support part straddles the delivery of a slit die, it can stick it also to the periphery prolonged along that delivery.

[0007]In this case, since the constant-pressure energization by an air cylinder can follow the dimensional change of the sliding direction of a cap easily, it is convenient, but there is a fault which cannot perform delicate energizing force adjustment. In order to wipe off thoroughly, and to make ***** by wear of a cleaning head into the minimum and to acquire protection-against-dust nature and a long life, it must be made the optimal powered pressure power. In order to realize this, the energization to the slit die of a cleaning head must not be controlled by a pressure, and it must control by both relative position relation.

[0008]If it is in the coated product production by a actual slit die coater, since a coating liquid kind differs from application width for every variety, the cap from which two or more shape dimensions differ is prepared, and, usually it is changed for every variety. Even if it is an identical type, in preparation for an unexpected situation, it has a spare slit die. If the length of the shape of these slit dies, especially a sliding direction, i.e., the energizing direction of a cleaning head, is the same, it is hardly problematic, but since it differs in many cases, adjustment of relative position relation must be redone for every cap. That is, both relative-position-relation control is needed also here.

[0009]In a still more publicly known cleaning head, it is not taken into consideration at all to volatile high things, such as acrylic coating liquid. In these coating liquid, since the coating liquid which adhered at the tip of a slit die dries before wiping off, only mere wiping cannot wash a delivery thoroughly, when the affix remains, they are a substrate at the time of spreading, and the liquid between slit dies — ball shape will not become stable but will induce coat faults, such as a vertical reinforcement.

[0010]Are what performed this invention based on the above-mentioned situation, and that 1st purpose, While affixes, such as coating liquid which has adhered to the delivery periphery of an applicator regardless of the kind of coating liquid, are certainly removable, making wear of a cleaning head into the minimum and securing protection-against-dust nature and a long life, it is in providing the manufacturing installation and manufacturing method of a light filter using the coater which can form the high coat of quality without a coat fault, coating methods, these devices, and a coating method.

[0011]The 2nd purpose of this invention can remove certainly affixes, such as coating liquid which has adhered to the delivery periphery of a downward applicator regardless of the viscosity of coating liquid, It is in providing the manufacturing installation and manufacturing method of a light filter using the coater which can form the high coat of quality without a coat fault, coating methods, these devices, and a coating method.

[0012]

[Means for Solving the Problem]The purpose of above-mentioned this invention is attained by means described below.

[0013]An applicator which has a delivery which extends in one way for a coater of Claim 1 to carry out the regurgitation of a means to supply coating liquid, and the coating liquid supplied from said feeding means, In a coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member, (A) A cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, ****ing to a delivery periphery of said applicator, and has adhered to a delivery periphery, (B) a detection means to detect a delivery position of said applicator, and (C)—it is a coater having a control means which controls uniformly a relative position between both at the time of a slide contact to a cleaning member and an applicator on the basis of a delivery position of an applicator with measured value of a delivery position by said detection means.

[0014]According to the coater of Claim 1, no matter a size of a sliding direction of an applicator may be what thing, since an applicator at the time of cleaning and relative position relation of a cleaning member are set up uniformly, a detection means and a control means of a delivery position of an applicator enable it to carry out wiping cleaning in the always same state.

[0015]An applicator which has a delivery which extends in one way for a coater of Claim 2 to carry out the regurgitation of a means to supply coating liquid, and the coating liquid supplied from said feeding means, In a coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member, (A) It is a coater provided with a penetrant remover adhering means which makes a penetrant remover adhere to a delivery periphery of said applicator, and a cleaning member which removes coating liquid which moved along with a longitudinal direction of a delivery, *****ing to the (B) aforementioned delivery periphery, and has adhered to a delivery periphery.

[0016] According to the coater of Claim 2, even if it is volatile high coating liquid which is immediately dried after regurgitation from an applicator delivery, since it cleans after making the penetrant remover adhere, an affix near a delivery is thoroughly removable.

[0017]An applicator which has a delivery which extends in one way for a coater of Claim 3 to carry out the regurgitation of a means to supply coating liquid, and the coating liquid supplied from said feeding means, In a coater provided with a transportation device for moving relatively either [at least] said applicator or said applying members, and forming a coat on said applying member, (A) It is a coater provided with an envelopment means to surround a delivery of said applicator, and a solvent vapor generating means which is located in an inside of the (B) aforementioned envelopment means, and generates solvent vapor of coating liquid.

[0018]According to the coater of Claim 3, the neighborhood of a delivery of an applicator is filled with solvent vapor, coating liquid of a kind which evaporates easily can also prevent solidification by evaporation of coating liquid, and since it continues being a fluid, an affix is thoroughly removable by wiping by a cleaning member.

[0019]A coater of Claim 4 is a coater provided with a sump part which accumulates removed coating liquid in a delivery periphery of an applicator.

[0020]According to the coater of Claim 4, it can prevent that coating liquid in which viscosity flows easily low is transmitted, and carries out the reattachment of the applicator ****** to a delivery, and remains coating liquid solidifying and barring a slide contact of a cleaning member and an applicator.

[0021] In a coater of Claim 5, and a coater of Claim 4, it is a coater provided with a discharge unit which discharges coating liquid collected on a sump part.

[0022]A coater of Claim 6 is a coater provided with an excretory organ which discharges coating liquid which overflows outside a surface of action of a cleaning member, and remains in a delivery periphery.

[0023] According to the coater of Claim 6, the same effect as a coater of Claim 9 is acquired. A manufacturing installation of a light filter of Claim 7 is a manufacturing installation of a light filter provided with the coater according to any one of claims 1 to 6.

[0024] Since a light filter is manufactured to a light filter manufacturing installation of Claim 7 using one of the coaters according to claim 1 to 6, a light filter of high quality is obtained.

[0025]In a coating method which moves relatively either [at least] said applicator or the coated members, and forms a coat on said coated member while a coating method of Claim 8 breathes out coating liquid from a delivery which extends in one way of an applicator, After carrying out the initial position arrangement of the cleaning member of said delivery to a delivery, it is a coating method removing coating liquid adhering to said delivery periphery by making it move along with a longitudinal direction of a delivery, making a cleaning member **** to a delivery periphery.

[0026]According to the coating method of Claim 8, even if sliding direction sizes of an applicator differ, cleaning can do an applicator delivery and a relative position of a cleaning member in the always same, optimal energizing force, and the complete removal of the affix of a delivery can be carried out certainly, attaining protection against dust and reinforcement of a cleaning member.

[0027]Å coating method of Claim 9 is a coating method moving said cleaning member along with a longitudinal direction of a delivery, after making a penetrant remover adhere to said delivery while carrying out the initial position arrangement of the cleaning member of said delivery to a delivery.

[0028]According to the coating method of Claim 9, after regurgitation, since it cleans after melting the affix with a penetrant remover even if it is volatile high coating liquid which dries and adheres to a delivery, an affix is certainly removable.

[0029]While a coating method of Claim 10 carries out the initial position arrangement of the cleaning member of said delivery to a delivery, after making solvent vapor of coating liquid full [coating method] of said delivery periphery, it is a coating method moving said cleaning member along with a longitudinal direction of a delivery.

[0030]According to the coating method of Claim 10, even if it is volatile high coating liquid, evaporation of remains coating liquid which adhered near the delivery is prevented, and since a state of a fluid is maintained without solidifying, cleaning removal of the remains affix can be thoroughly carried out by slide contact.

[0031]Å coating method of Claim 11 is a coating method accumulating coating liquid which overflows outside a contact range of a cleaning member during removal of coating liquid in a liquid pool part provided in an applicator.

[0032]According to the coating method of Claim 11, it can prevent that coating liquid in which viscosity flows easily low is transmitted, and carries out the reattachment of the applicator ******* to a delivery, and remains coating liquid solidifying and barring a slide contact of a cleaning member and an applicator.

[0033]A coating method of Claim 12 is a coating method eliminating coating liquid which overflows outside a contact range of a cleaning member during removal of coating liquid.

[0034] According to the coating method of Claim 12, the same effect as a coating method of Claim 11 is acquired.

[0035]A manufacturing method of a light filter of Claim 13 is a manufacturing method of a light filter characterized by manufacturing a light filter using one of the coating methods according to claim 8 to 12.

[0036]Since a manufacturing method of a light filter of Claim 13 manufactures a light filter using one of the coating methods according to claim 8 to 12, it can manufacture a light filter of high quality.

[0037]

[A mode of implementation of an invention] Hereafter, one desirable embodiment of this invention is described based on Drawings.

[0038]The whole coater perspective view which <u>drawing 1</u> requires for this invention, and <u>drawing 2</u> are the stage 6 of <u>drawing 1</u>, and a mimetic diagram of a circumference of the slit die 40.

[0039]A coater applied to manufacture of a light filter for color liquid crystal displays which becomes this invention, i.e., what is called a die coater, is shown in drawing 1, and this die coater is provided with the pedestal 2. The guide groove rail 4 of a couple is formed on the pedestal 2, the stage 6 as a supporter is arranged at these guide groove rail 4, and to a running direction, the upper surface of this stage 6 is long, and is constituted by vacuum suction as a section face which can fix the coated members A and B of two sheets. The stage 6 can reciprocate the guide groove rail 4 top freely horizontally via the sliding legs 8 of a couple.

[0040]Between the guide groove rails 4 of a couple, the casing 12 which built in the feed screw mechanisms 12, 14, and 16 shown in <u>drawing 2</u> is arranged, and the casing 12 is horizontally prolonged along with the guide groove rail 4. The feed screw mechanisms 14, 16, and 18 have the feed screw 14 which consists of ball screws as shown in <u>drawing 2</u>, the feed screw 14 was thrust into the connector 16 of the shape of a nut fixed to the undersurface of the stage 6, and penetrated this connector 16, and are prolonged. Both ends of the feed screw 14 are supported by bearing which is not illustrated, enabling free rotation, and AC servo motor 18 is connected with the end.

[0041]The die support 24 of an inverted-L character form is mostly arranged in the center at the upper surface of the pedestal 2 as shown in drawing 1. At ip of the die support 24 is positioned above a reciprocation course of the stage 6, and the rising and falling mechanism 26 is attached at the tip. The rising and falling mechanism 26 is provided with the rise-and-fall bracket 31 which can go up and down like drawing 3, and this rise-and-fall bracket 31 is attached to a guide rod of a couple in the casing 28 in the rising and falling mechanism 26, enabling free rise and fall. In the casing 28, rotation also of the feed screw 33 which consists of ball screws between guide lots is enabled, it is arranged, and a rise-and-fall bracket is connected via a nut type connector to the feed screw. AC servo motor 30 is connected to an upper bed of a feed screw, and this AC servo motor 30 is attached to the upper surface of the casing 28.

[0042]The die holder 32 is attached to a rise-and-fall bracket via a supporting spindle (not shown), and this die holder 32 made KO type, and the upper part of the guide groove rail 4 of a couple is horizontally extended for these rails 4. A supporting spindle of the die holder 32 is supported within a rise-and-fall bracket, enabling free rotation, and, thereby, the die holder 32 is pivotable in a vertical plane in a supporting spindle.

[0043]The horizontal bar 36 is being fixed to a rise-and-fall bracket, and this horizontal bar 36 was located above the die holder 32, and is prolonged along with the die holder 32. The electromagnetic-action type linear actuator 38 is attached to both ends of the horizontal bar 36, respectively, and these linear actuators 38 have an elastic rod which projects from the

undersurface of the horizontal bar 36. As for these elastic rods, a lower end is contacted by both ends of the die holder 32, respectively.

[0044]The slit die 40 is prolonged at a level with a direction which intersects perpendicularly with a reciprocating direction of the stage 6, i.e., a longitudinal direction of the die holder 32, and is supported by the die holder 32 at the both ends so that clearly [the slit die 40 as an applicator may be held in the die holder 32 and] from drawing 1.

[0045]The feed hose 42 of coating liquid is prolonged from the slit die 40, and a tip of this feed hose 42 is connected to a supply port of the syringe pump 44 46, i.e., that electromagnetism change-over valve, as shown in <u>drawing 2</u>. The suction hose 48 is prolonged from a suction port of the electromagnetism change-over valve 46, and a tip part of this suction hose 48 is inserted into the tank 50 in which coating liquid was stored.

[0046]The pump body 52 of the syringe pump 44 is selectively connectable with either the feed hose 42 or the suction hose 48 by the change operation of the electromagnetism change-over valve 46. And these electromagnetism change-over valve 46 and the pump body 52 are electrically connected to the computer 54, and these operations are controlled in response to a control signal from this computer 54.

[0047]In order to control an operation of the syringe pump 44, the sequencer 56 is also electrically connected to the computer 54. This sequence 56 AC servo motor 18 for the feed screw 14 by the side of the stage 6, Carry out sequence control of the operation of AC servo motor 30 by the side of the rising and falling mechanism 26, and the linear actuator 38, and for the sequence control, a signal which shows an operating state of AC servo motors 18 and 30 to the sequencer 56, and a signal from the position sensing device 58 which detects a movematic zone of the stage 6 — and, A signal from a sensor (not shown) which detects an operating state of the slit die 40, etc. are inputted, and, on the other hand, a signal which shows sequence operation is outputted to the computer 54 from the sequencer 56. It is also possible to detect a movement zone of the stage 6 by the sequencer 56 based on a pulse signal which builds an encoder into AC servo motor 18, and is outputted from this encoder instead of using the position sensing device 58. It is also possible to include control by the computer 54 from the very thing.

[0048]The slit die 40 has the front lip 59 and the rear lip 60 which are long picture blocks in a direction which intersects perpendicularly with a reciprocating direction of the stage 6, i.e., the cross direction, as roughly shown in <u>drawing 2</u>. These lips 59 and 60 are together put toward a reciprocating direction of the stage 6, and are mutually combined in one by two or more joint bolts which are not illustrated. The lower part of the slit die 40 is formed by combination of both the lips 59 and 60 as a nozzle part which made taper shape.

[0049]In the slit die 40, it is located at that center portion, the manifold 62 is formed, and this manifold 62 is prolonged horizontally crosswise [of the slit die 40]. The manifold 62 is always connected to the feed hose 42 of coating liquid mentioned above via an aisleway (not shown), and, thereby, the manifold 62 can receive supply of coating liquid.

[0050]The slit 64 which that upper bed opened for free passage to the manifold 62 is formed in an inside of the slit die 40, and a lower end of this slit 64 is carrying out the opening on the undersurface of the slit die 40. That is, a lower end opening part of the slit 64 is formed as a delivery of the slit die 40. Specifically, the slit 64 is secured by SIMM put between the front lip 59 and the rear lip 60.

[0051] Again, reference of <u>drawing 1</u> arranges the sensor pillar 20 rather than the die support 24 at a near side at the upper surface of the pedestal 2. An inverted-L character form is made like

the die support 24 which also mentioned this sensor support 20 above, and that tip is positioned above a reciprocation course of the stage 6.

[0052]The thickness sensor 22 is attached at a tip of the sensor support 20 via the rise-and-fall actuator 21. When a substrate of a light filter, i.e., glass substrate A, is laid on the stage 6 as for this thickness sensor 22, It descends to a position with the rise-and-fall actuator 21, thickness of glass substrate A on the stage 6 is detected optically in this lowered position, and a detecting signal corresponding to that thickness is outputted to the computer 54. A light source in which the thickness sensor 22 specifically emits a measuring beam towards glass substrate A which is a measuring object, it comprises a light sensing portion which receives catoptric light from the upper surface and the undersurface of glass substrate A, respectively, and an arithmetic circuit part which calculates thickness of glass substrate A based on a difference of an incidence position of catoptric light to a light sensing portion. An operation of the rise-and-fall actuator 21 is controlled by the computer 54, and can use not only an above-mentioned type but a laser displacement gauge, an electronic micro displacement gage, an ultrasonic thickness meter, etc. as the thickness sensor 22.

[0053]It has the eddy current-type sensor 202 which measures distance at an adsorption face of a stage, and the tip 68 of a delivery of the slit die 40 at a tip of the stage 6 via the right-and-left couple bracket 204. The upper surface of this sensor is installed so that it may become the same as that of an adsorption face of a stage. A detection range of this sensor is 2 mm, and resolution is 10micro. As a sensor, a differential-transformer-type [besides non-contact forms, such as a photoelectronic sensor, a supersonic sensor, and a capacitance sensor,] contact type sensor may be used.

[0054]Between the rise-and-fall bracket 31 and the die support 24 which the slit die 40 mentioned above, as furthermore shown in drawing 3, The optical linear scale 206 is formed, with this linear scale 206, a position of a sliding direction of the rise-and-fall bracket 31 32, i.e., a die holder, is detected, and that detection signal can be outputted. It is electrically connected to the computer 54 mentioned above, and the sensor 202 and the linear scale 206 of a couple which were mentioned above can receive those detection signals.

[0055]If <u>drawing 1</u> is referred to further, between the sensor support 20 and the die support 24, recovery and the cleaning system 70 for coating liquid are formed. This recovery and cleaning system 70 are provided with the sub pedestal 72, and this recovery and the clonged in the side from lateral surface of the pedestal 2 mentioned above. The carrier guide 74 is arranged on the sub pedestal 72, and this carrier guide 74 is prolonged in a longitudinal direction of the slit die 40, i.e., the direction which intersects perpendicularly with a reciprocating direction of the stage 6. On the carrier guide 74, the rectangular career 76 makes it slidable, and is attached, and the feed screw 78 which consists of ball screws has penetrated on this career 76. The feed screw 78 is prolonged along the sliding direction 74 of the career 76, i.e., a carrier guide, and the both ends are supported by the bearing 80 of a couple, enabling free rotation. These bearings 80 are set up on the carrier guide 74. An end of the feed screw 78 of a side left distantly [pedestal / 2] is projected from the bearing 80, and is connected with an output shaft of the electric motor 82. This electric motor 82 is supported by the sub pedestal 72 via the motor adapter plate 84.

[0056]From four corners of the career 76, the four guide rods 86 are projected towards the upper part, and the rise-and-fall bracket 88 makes rise and fall free, and is attached to these guide rods 86. This rise-and-fall bracket 88 and career 76 are mutually connected via the air cylinder 90 located in the center of the career 76 so that clearly from drawing 4, and this air cylinder 90 adjusts a level position of the rise-and-fall bracket 88 while supporting the rise-and-fall bracket

88. And the gutter 92 in which the upper surface carried out the opening is attached at a tip of the rise-and-fall part bracket 88. The gutter 92 discharges liquid which there is the recovery hole 98 and accumulated in the gutter 92 through a tube which is not illustrated.

[0057] The slit die 40 mentioned above is also shown in <u>drawing 4</u>, and, as for the nozzle part 40a of the slit die 40, in the case of this working example, the opening of a lower end of the slit 64, i.e., the delivery, is carried out to that undersurface. The undersurface of the nozzle part 40a is a level flat face.

[0058]The gutter 92 in which the upper surface carried out the opening receives in the rise-and-fall bracket 88, it is attached to it as a member, and this gutter 92 is prolonged at a level [in an opposite hand] with the electric motor 82 side. The gutter 92 is larger than the slit die 40 enough, and can cover this slit 40 from a lower part so that clearly from drawing 5.

[0059]In the gutter 92, it is located at the tip part, the cleaning member 94 of a tabular couple is arranged, and these cleaning members 94 are attached to the gutter 92 via the support unit 96 mentioned later. These cleaning members 94 consist in a longitudinal direction of the gutter 92, it positions a predetermined interval, the upper surface of these cleaning members 94 has the shape which agrees with the nozzle part 40a of the slit die 40, and, thereby, they can stick it to the nozzle part 40a. As for the nozzle part 40a of the slit die 40, the both-sides side consists an angle of 45 degrees as opposed to the level surface.

[0060]The surface of the cleaning member 94 consists of polymer resin, and as the polymer resin Teflon resin, What mixed kinds, such as urethane resin, an acrylic resin, polyester resin, polypropylene resin, a fluoro-resin, a polybutadiene resin, nitrile rubber, silicone rubber, and an ethylene-vinyl acetate copolymer, or two sorts or more can be used. Tolerance over a solvent contained in adhesion or coating liquid to the nozzle part 40a of the slit die 40 also in these and a thing which was further excellent in endurance are preferred, and silicone rubber will become the most desirable if these points are taken into consideration. Portions other than the surface of the cleaning member 94 may be the same polymer resin as the surface, and may be completely different construction material. In order to fully secure the adhesion of the nozzle part 40a in the slit die 40, the thickness is set, for example as 5 mm not less than 2 mm, and, as for the cleaning member 94, predetermined stiffness is secured further again.

[0061]As shown in drawing 4, it has the penetrant remover regurgitation nozzle 208 in the center between the cleaning members 94. This nozzle is a with 1 mm in inside diameter, and an outer diameter of 2 m pipe made from stainless steel, and that upstream is connected to a cleaning liquid pump and a cleaning fluid tank which are not illustrated. A penetrant remover blows off from this nozzle to predetermined height, and that height can be arbitrarily adjusted by changing discharge quantity of a cleaning liquid pump. Not a pipe but a penetrant remover may use a thing of a spraying type which spreads in a flabellate form for this nozzle.

[0062] The outlet 98 (refer to <u>drawing 5</u>) is formed in an inner bottom of the gutter 92 at two places of the center portion, and these outlets 98 are connected to a discharging hose via the nipple 100 like <u>drawing 4</u>. This discharging hose 102 extended to the career 76 along an outer bottom surface of the gutter 92, and penetrated this career 76 and carrier guide 74, and is prolonged in the sub pedestal 72. Although not illustrated, an opening for leading the discharging hose 102 in the sub pedestal 72 is formed in the carrier guide 74, and this opening is prolonged along with the feed screw 78.

[0063] Into the sub pedestal 72, it has sufficient length to permit movement of the career 76, that tip penetrates a lid of the waste liquid tank 104, and the discharging hose 102 is inserted into this

waste liquid tank 104. The suction hose 106 is penetrated and attached to a lid of the waste liquid tank 104, and this suction hose 106 is connected to the vacuum pump 108.

[0064]A direction switching valve and the vacuum pump 108 which carry out the elastic operation of the electric motor 82 of recovery and the cleaning system 70 mentioned above and the air cylinder 90 are electrically connected to the sequencer 56 mentioned above, and this sequencer 56 also controls an operation of recovery and the cleaning system 70.

[0065]Next, a coating method performed using a die coater concerning manufacture of a light filter which was got blocked one process and mentioned above is explained. First, the slit die 40 is attached to the die holder 32, and a preliminary process before spreading is performed. That is, the stage 6 is moved so that the sensor 202 may come directly under the delivery tip 68 of the slit die 40. Subsequently, the slit die 40 is slowly moved to the bottom by dropping the rise-and-fall bracket 31, and the sensor 202 on either side, the distance K1L with the tip 68 of a delivery, and K1R are measured.

[0066]Based on this measurement result, if a difference between the 1st interval K1L and K1R is beyond a predetermined value, The computer 54 drives the linear actuator 38a in the rising and falling mechanism 26 via the sequencer 56, and as the drawing1 Nakaya seal R shows, it rotates the die holder 32, so that a difference between the 1st interval K1L and K1R may be settled less than in less than a predetermined value, for example, 3 micrometers. Thereby, the delivery 68 of the slit die 40 attached to the die holder 32 is adjusted so that it may see in the cross direction and may become almost level. If adjustment is completed, a brake (not shown) fixes the die holder 32.

[0067]Thus, if horizontal adjustment at the tip 68 of a delivery in the slit die 40 is completed, The computer 54 sets up the interval K1L in this time as the clearance K3 (range measurement process), and reads level position Z of the die holder 32 based on a detecting signal from the linear scale 206 simultaneously (level detection process).

[0068] And the computer 54 computes reference level Y based on a following formula based on the clearance K3 and the level Z (calculation process).

[0069]Y=Z-K3 -- here, reference level Y shows a level position of the detecting signal 32 outputted from the linear scale 86, i.e., a die holder, when the delivery 68 of the slit die 40 descends to the upper surface of the stage 6 so that clearly from an upper type. Subsequently, the engagement reference level YC with which the delivery 68 of a cleaning member and the slit die 40 engages is calculated by YC=Y+a. a is a value peculiar to coater, it is made to learn to the computer 54 as constant value, and no matter the slit die 40 may be what thing, the value does not change. The value of a must clean a priori beforehand, must make wear of rubber, and wiping capability an evaluation index, and must determine optimal value.

[0070]If reference level Y and the engagement reference level YC are determined as it mentioned above (setting step), the return to origin of the slit die 40 and the stage 6 will be carried out. That is, the slit die 40 goes up to a position, and double action of the stage 6 is carried out to an initial position.

[0071]In setting up reference level Y of the die holder 32, operation control of the rising and falling mechanism 26 and the stage 6 is independently carried out with original sequence control of sequencer 56 mentioned above.

[0072]Next, it goes into an application process. Here, the feed screw 78 is rotated to one way with the electric motor 82 of recovery and the cleaning system 70, and the gutter 92 positioned in a position in readiness of the side to the pedestal 2 as first shown in <u>drawing 1</u> is moved from a

position in readiness to a recovery position with the career 76. As for the cleaning member 94 of the gutter 92, in this recovery position, one end of the slit die 40 is positioned caudad.

[0073]In this state, it switches, the electromagnetism change-over valve 46 of the syringe pump 44 operates that between the pump body 52 and the suction hose 48 should be connected, and the pump body 52 attracts coating liquid in the tank 50 through the suction hose 48 to that inside. Then, that between the pump body 52 and the feed hose 42 should be connected, it switches, the electromagnetism change-over valve 46 of the syringe pump 44 operates, and the pump body 52 carries out the regurgitation of the coating liquid of that inside towards the slit die 40 through the feed hose 42. This suction and discharging are repeated and all air within a course is discharged. [0074]Coating liquid breathed out from a delivery of the slit die 40 is received by the gutter 92,

[0074]Coating liquid breathed out from a delivery of the slit die 40 is received by the gutter 92, and is discharged by the waste liquid tank 104 through the discharging hose 102 from this gutter 92. Here, since inside of the waste liquid tank 104 is exhausted with the vacuum pump 108 and the suction hose 106, coating liquid in the gutter 92 is led to the waste liquid tank 104 good.

[0075]As it mentioned above, when inside of the slit die 40 is filled with coating liquid, as a last spreading preparation operation, as for the electromagnetism change-over valve 46 of the syringe pump 44, it switching and operating that the pump body 52 and the suction hose 48 should be connected, and the pump body 52 attracting coating liquid of the specified quantity to the inside, and inside, coating liquid in the tank 50 through the suction hose 48, The syringe pump 44 stands by, after it switched and the electromagnetism change-over valve 46 has operated that the pump body 52 and the feed hose 42 should be connected.

[0076]A level position of the die holder 32 is dropped to the engagement reference level YC in this state, and the delivery tip 68 of the slit die 40 is set to an optimal position for cleaning.

[0077] And in recovery and the cleaning system 70, by elongating the air cylinder 90 till the final point, the gutter 92 goes up towards the slit die 40, and the cleaning member 94 of a couple is contacted by end of the slit die 40.

[0078]Then, when the gutter 92 made it move towards that position in readiness, after the cleaning member 94 of a couple has stuck to the nozzle part 40a of the slit die 40, i.e., a delivery periphery including a delivery of the slit die 40, ****ing to this nozzle part 40a, these cleaning members 94 remove coating liquid adhering to an outside surface of the nozzle part 40a of the slit die 40 with scraping.

[0080]Now, coating liquid removed from the nozzle part 40a of the slit die 40 is transmitted to an outside surface of the cleaning member 94 and the support unit 96, and is received by the gutter 92.

[0081] If the gutter 92 is returned to the upper part of a position in readiness, the abovementioned air cylinder 90 will be contracted after this. [0082]On the other hand, where glass substrate A is positioned via a loader which is not illustrated, it is laid in the stage 6, and adsorption maintenance of this glass substrate A is carried out by suction at the upper surface of the stage 6.

[0083]Loading completion, then the thickness sensor 22 of glass substrate A descend, thickness of glass substrate A on the stage 6 is optically detected by this thickness sensor 22, and that detecting signal is supplied to the computer 54. Completion of measurement of thickness will raise the thickness sensor 22 to the original position.

[0084]Then, when the stage 6 is moved forwardly towards the slit die 40 and a formation start line of a coat to that glass substrate A top reaches a delivery position of the slit die 40, forward movement of the stage 6 stops.

[0085]And the slit die 40 descends in consideration of thickness of already measured glass substrate A, and predetermined clearance is secured between a delivery of the slit die 40, and glass substrate A. Here, since the gutter 92 is returned to a position in readiness, the gutter 92 does not check descent of the slit die 40.

[0086]If clearance is secured, discharging of the syringe pump 44 will be carried out, coating liquid will be breathed out from the slit die 40, and liquid reservoir C will be formed between the delivery tip 68 and glass substrate A. If the stage 6 is advanced to a forwardly moving direction at a fixed speed simultaneously with formation of such liquid reservoir C, continuing regurgitation of the slit die 40, i.e., coating liquid from the delivery, the coat D of coating liquid will be continued and formed in the upper surface of glass substrate A as shown in drawing 2.

[0087]If a formation end line which should end formation of the coat D on glass substrate A arrives at a just before position of a delivery of the slit die 40 with advance of the stage 6, discharging of the syringe pump 44 will be suspended at this time. Thus, formation of the coat D is continued to a formation end line, consuming coating liquid of the liquid reservoir C on glass substrate A, even if regurgitation of coating liquid from the slit die 40 is stopped (squeegee). When a formation end line on glass substrate A passes through a delivery of the slit die 40, it may be made to suspend discharging of the syringe pump 44. If discharging of the syringe pump 44 will perform suctioning operation slightly, and will return coating liquid in the slit 64 in the slit die 40 to the manifold 62 side. Such a syringe pump 44 inhales and, simultaneously with return operation, the slit die 40 goes up to the original position.

[0088]On the other hand, when forward movement of the stage 6 is continued even if regurgitation of coating liquid from the slit die 40 was stopped, and the stage 6 reaches a termination of the guide groove rail 4, the forward movement is suspended. Then, glass substrate A in which a suction of glass substrate A to the stage 6 top was canceled, and the coat D was formed is removed from the stage 6 by unloader, and is supplied towards a next process.

[0089]After the stage 6 passes the slit die 40, the gutter 92 is again moved to a recovery position from a position in readiness. In this state, only returned quantity breathes out coating liquid and the syringe pump 44 prevents air from remaining in the slit 64 of the slit die 40. Under the present circumstances, even if coating liquid is breathed out from a delivery of the slit die 40, that coating liquid is received by the gutter 92.

[0090]Then, the die holder 32 descends to a position set to engagement reference level, and the slit die 40 ****s to a cleaning member which went up then. Subsequently, since it is returned to the position in readiness, the gutter 92 scratches coating liquid which has adhered to it mentioning above at the nozzle part 40a of the slit die 40, and removes the cleaning member 94. [0091]If the gutter 92 is returned to a position in readiness, the stage 6 will be returned to an initial position shown in drawing 1, and, thereby, a series of application processes will complete

it. The stage 6 stands by until loading of the new glass substrate A is carried out, and the syringe pump 44 performs spreading housekeeping operation mentioned above, and stands by in an initial position.

[0092]After breathing out a volatile high thing to solvents, such as acrylic coating liquid, the same solvent as using it for a penetrant remover, for example, coating liquid, from the nozzle 208 of drawing 4 is made to breathe out. Namely, blowing off a penetrant remover from the nozzle 208 from a mouth of the nozzle 208 to a height of 2 mm, while a gutter is in a recovery position for cleaning and the slit die 40 is descending to the engagement reference level YC. The air cylinder 90 is expanded and the cleaning member 94 of a couple is made to contact an end of the slit die 40.

[0093] The member 94a of direction-of-movement front sides removing remains coating liquid of the nozzle part 40a among cleaning members of a couple, if the gutter 92 is turned to a position in readiness and it is made to move in this state. A penetrant remover will be made to adhere to a removed field from the nozzle 208, and the penetrant remover will be wiped with the member 94b by the side of direction-of-movement back of a cleaning member of a couple. Although a liquid thing can be scratched by the member 94a of front sides at this time, since volatility is high, an affix which evaporated, solidified and has adhered to the nozzle part 40a is unremovable. Since it dissolves again, becomes liquid with a penetrant remover which blows off from the nozzle 208 and removes it by the member 94b by the side of back, even when volatility is coating liquid which is easy to solidify highly, the nozzle part 40a can be cleaned easily. The member 94a of front sides may be omitted and remains coating liquid and a penetrant remover may be simultaneously removed by the member 94b by the side of back. A penetrant remover may be good and coating liquid itself [besides a solvent of coating liquid] may be [anything which melts an affix which a solvent of coating liquid evaporated and remained] sufficient as it. [0094]Drawing 6 is a sectional view of a stage running direction showing another embodiment over coating liquid which volatilizes easily, and drawing 7 is a sectional view of the stage cross direction of drawing 6. Here, the solvent evaporation machine 220 is formed on the gutter 92 at a position which adjoined the cleaning member 94 in a running direction of the gutter 92 as shown in drawing 7. This evaporation machine to the shielding unit 225 which consists of the covering 222 which wraps in the delivery tip 68 of the slit die 40, and the frame side cover 223, the seal 224 which exists at a tip of each covering and intercepts a flow the open air and inside a shielding unit in contact with the slit die 40, and a pan. It comprises the pipe 226 which is in an inside of a shielding unit and spouts solvent vapor from the pore 227.

[0095]The seal 224 of a shielding unit and a point of contact of the slit die 40 are more indispensable than the bottom 95 of a cleaning member caudad, in order to avoid interference of the seal 224 and the slit die 40 at the time of wiping by a cleaning member. A seal of the frame side cover 223 is arranged further again so that 310 may be contacted a place which does not have a delivery of the cross direction of the slit die 40. The solvent vapor feed unit 240 of drawing 8 performs supply of solvent vapor to the pipe 226. This solvent vapor feed unit 240 comprises the switching valve 234 which controls an outflow of the source 232 of heating and a steam which consist of heaters etc. And solvent vapor is supplied to the pipe 226 through the tube 236 from the valve 234. The tube 236 keeps it warm for preventing dew condensation, or is heated to a suitable temperature with a heater etc.

[0096]Here, control of a generated steam amount is performed by controlling temperature of the source 232 of heating. Humidity of a solvent of a there is saturated, and even if coating liquid is in a delivery of the slit die 40, it becomes impossible to evaporate, since a steam of a solvent of coating liquid is filled to space (closed space) closed by the shielding unit 225 and the slit die 40 according to this embodiment.

[0097]immediately after [therefore, / applying] -- an operative condition of drawing 6 -- since coating liquid will not dry and solidify if a delivery of the slit die 40 is exposed to atmosphere of solvent vapor so that like, if a cleaning member is stuck and it wipes with this state, the nozzle part 40a of the slit die 40 can be thoroughly cleaned without a residue. Wiped-off remains coating liquid passes along the outlet 98 of the gutter 92, and the discharging hose 102, and is led to a waste liquid tank. On the other hand, a solvent which dewed within the shielding unit 225. and coating liquid breathed out from the slit die 40 during spreading housekeeping operation are also led to a waste liquid tank through the gutter outlet 98, the discharging hose 302, and a switching valve that is not illustrated. A procedure of cleaning using a device of this embodiment is as follows. First, when performing coating liquid regurgitation by cleaning, spreading housekeeping operation, etc., the gutter 92 is taken out to a recovery position. At this time, the shielding unit 225 and the slit die 40 are in a position which got used to a sliding direction, and both do not interfere in them. The cleaning member 94 jumps out of a recovery position here from a slit die crosswise like drawing 7, and a position which has the shielding covering 208 in a field which can be stuck with a slit die is said. Regurgitation of coating liquid under spreading housekeeping operation is performed in this position. It is made to descend until it will contact the seal 226 which attaches the slit die 40 to a shielding unit, if regurgitation of coating liquid is ended, and a closed space is constituted. Subsequently, open the valve 234 of the solvent vapor feed unit 240, solvent vapor is made to blow off from the pipe 226, and a closed space is filled with a steam of a solvent. Evaporation of coating liquid can be prevented by this. If a series of preparations are completed next, the valve 234 will be closed, supply of solvent vapor is stopped, and the slit die 40 is once raised to a home position. Subsequently, it is made to descend after moving the cleaning member 94 so that it may come directly under an end of the slit die 40 until the die holder 32 is set to the engagement reference level YC in the slit die 40. And the cleaning member 94 is raised, the cleaning member 94 is stuck to the nozzle part 40a of the slit die 40, the gutter 92 is moved to a position in readiness in the state, and an affix of the nozzle part 40a is removed thoroughly. In this embodiment, since a delivery of a slit die is made into atmosphere filled with coating liquid solvent vapor, remains coating liquid of a delivery does not evaporate. but since it is with a state of a fluid, if it wipes off by a cleaning member in this state, a remains affix is thoroughly removable.

[0098]In having mentioned above, a cleaning member may be in the inside side of shielding covering. Furthermore a seal of shielding covering and a slit die could be performed, but a crevice may be opened. When a closed space is constituted from shielding covering, regurgitation of coating liquid may be performed by spreading operation preparation etc. It is also possible to form a sensor and to control solvent humidity in a closed space constituted from shielding covering and a slit die to a fixed thing. In a closed space which comprised contact of a shielding unit and the slit die 40, since it is desirable that it is a saturated vapor, solvent vapor may be supplied, so that it dews on the slit-die 40 undersurface and a solvent adheres. As for a path of the hole 227 on 0.5-5 mm and the pipe 226, 0.5-3 mm is [an inside diameter of the pipe 226 / 1-30 mm and thickness] desirable.

[0099]The cover covering 222 and the frame side cover 223 are electric, or it may be made to open and close them automatically by an air cylinder etc.

[0100]Next, with reference to <u>drawing 9</u> - <u>drawing 13</u>, an embodiment of this invention different from an embodiment mentioned above is explained below.

[0101]An outline perspective view and <u>drawing 10</u> which <u>drawing 9</u> showed correlation of the slit die 40 and a recovery cleaning system are a crosswise sectional view when a lower end surface of the cleaning member 94 and the slit die 40 contacts.

[0102]Reference of drawing 10 forms the grooves 301a and 301b in the nozzle part 40a of a slit die near the upper bed side of the cleaning member 94 at slit-die tip both sides. These grooves 301a and 301b are angle grooves which hang down downward as they go in the slit 64 direction, and they are prolonged over a longitudinal direction of a slit die like drawing 9. And in a longitudinal direction of a slit die, an inclination which goes to gutter 92 supporting section, namely, descends as it goes to an arrow direction of drawing 9 is provided. 1-30 degrees of an angle of inclination are desirable.

[0103]Next, a coating method performed using a die coater concerning manufacture of a light filter which was got blocked one process and mentioned above is explained.

[0] 04] As first shown in <u>drawing 1</u>, the table 6 is located in an initial position, and the feed screw 78 is rotated for the gutter 92 further positioned in a position in readiness of the side to the Bedestal 2 to one way with the electric motor 82 of recovery and the cleaning system 70, It is made to move from a position in readiness to a recovery position with the career 76. As for the cleaning member 94 of the gutter 92, in this recovery position, one end of the slit die 40 is positioned caudad.

[0105]In this state, it switches, the electromagnetism change-over valve 46 of the syringe pump 44 operates that between the pump body 52 and the suction hose 48 should be connected, and the pump body 52 attracts coating liquid in the tank 50 through the suction hose 48 to that inside. Then, that between the pump body 52 and the feed hose 42 should be connected, it switches, the electromagnetism change-over valve 46 of the syringe pump 44 operates, and the pump body 52 carries out the regurgitation of the coating liquid of that inside towards the slit die 40 through the feed hose 42. This suction and discharging are repeated and all air within a course is discharged. [0106] Coating liquid breathed out from a delivery of the slit die 40 is received by the gutter 92. and is discharged by waste liquid tank which is not illustrated through the recovery hole 98 from this gutter 92. As it mentioned above, when inside of the slit die 40 is filled with coating liquid, as a last spreading preparation operation, as for the electromagnetism change-over valve 46 of the syringe pump 44, it switching and operating that the pump body 52 and the suction hose 48 should be connected, and the pump body 52 attracting coating liquid of the specified quantity to the inside, and inside, coating liquid in the tank 50 through the suction hose 48, The syringe pump 44 stands by, after it switched and the electromagnetism change-over valve 46 has operated that the pump body 52 and the feed hose 42 should be connected.

[0107] the until descent of the prescribed position is carried out for the die holder 32 in this state, and the delivery tip 68 of the slit die 40 is set to an optimal position for cleaning.

[0108]And in recovery and the cleaning system 70, by elongating the air cylinder till a final point, the gutter 92 goes up towards the slit die 40, and the cleaning member 94 of a couple is contacted by end of the slit die 40.

[0109]Then, when the gutter 92 made it move towards that position in readiness, after the cleaning member 94 of a couple has stuck to the nozzle part 40a of the slit die 40, i.e., a delivery periphery including a delivery of the slit die 40, ****ing to this nozzle part 40a, these cleaning members 94 remove coating liquid adhering to an outside surface of the nozzle part 40a of the slit die 40 with scraping.

[0110]At this time, from the blade parts 302a and 302b of the cleaning member 94, coating liquid which goes up goes into the grooves 301a and 301b of a slit die, and is caught. And liquid

caught by this slot serving as a flume will flow toward an arrow direction of drawing 9, and it will be discharged from a flank of a slit die. By this effect, a slant face whose removed coating liquid is a slit die falls 304a and 304b as ******, and does not soil near a delivery again. If polluted with coating liquid which removed near the delivery once, inconvenience — a product range which thickness unevenness of a running direction not only increases, but only the portion can use effectively [thickness] by coating thickness becoming thick at the head of a glass substrate below at an acceptable value becomes narrow, or coat faults, such as spreading ****, occur — will arise. Coating liquid which furthermore remained on a slant face of the nozzle part 40a solidifies, and it becomes an affix, This contacts the upper surface 305 of the blade part 302 of the cleaning member 94, a rise of a cleaning member is barred, and the cleaning member 94 and the delivery tip 68 do not contact, but inconvenience that wiping of a delivery cannot be performed can also be prevented by this invention.

- [0111] Now, coating liquid removed from the nozzle part 40a of the slit die 40 is received by the gutter 92.
- [0112]If the gutter 92 is returned to the upper part of a position in readiness, after this, the abovementioned air cylinder will contract and the cleaning member 94 will descend in connection with the gutter 92.
- [01] [01] (On the other hand, where glass substrate A is positioned via a loader which is not illustrated, it is laid in the stage 6, and adsorption maintenance of this glass substrate A is carried out by suction at the upper surface of the stage 6.
- [0114]Loading completion, then the thickness sensor 22 of glass substrate A descend, thickness of glass substrate A on the stage 6 is optically detected by this thickness sensor 22, and that detecting signal is supplied to the computer 54. Completion of measurement of thickness will raise the thickness sensor 22 to the original position.
- [0115]Then, when the stage 6 is moved forwardly towards the slit die 40 and a formation start line of a coat to that glass substrate A top reaches a delivery position of the slit die 40, forward movement of the stage 6 stors.
- [0116]And the slit die 40 descends in consideration of thickness of already measured glass substrate A, and predetermined clearance is secured between a delivery of the slit die 40, and glass substrate A. Here, since the gutter 92 is returned to a position in readiness, the gutter 92 does not check descent of the slit die 40.
- [0117]If clearance is secured, discharging of the syringe pump 44 will be carried out, coating liquid will be breathed out from the slit die 40, and liquid reservoir C will be formed between the delivery tip 68 and glass substrate A.
- [0118]And if the stage 6 is advanced to a forwardly moving direction at a fixed speed simultaneously with formation of such liquid reservoir C, continuing regurgitation of the slit die 40, i.e., coating liquid from the delivery, the coat D of coating liquid will be continued and formed in the upper surface of guide board A as shown in drawfage2.
- [0119]If a formation end line which should end formation of the coat D on glass substrate A arrives at a just before position of a delivery of the slit die 40 with advance of the stage 6, discharging of the syringe pump 44 will be suspended at this time. Thus, formation of the coat D is continued to a formation end line, consuming coating liquid of the liquid reservoir C on glass substrate A, even if regurgitation of coating liquid from the slit die 40 is stopped (squeegee). When a formation end line on glass substrate A arrives at a delivery of the slit die 40, the slit die 40 goes up to the original position.

[0120]On the other hand, when forward movement of the stage 6 is continued even if regurgitation of coating liquid from the slit die 40 was stopped, and the stage 6 reaches a termination of the guide groove rail 4, the forward movement is suspended. Then, glass substrate A in which a suction of glass substrate A to the stage 6 top was canceled, and the coat D was formed is removed from the stage 6 by unloader, and is supplied towards a next process.

[0121]Subsequently, the stage 6 is returned to an initial position shown in drawing 1, and, thereby, a series of application processes complete it. The stage 6 stands by until loading of the new glass substrate A is carried out, and the syringe pump 44 performs spreading housekeeping operation mentioned above, and it stands by, and repeats the same operation below in an initial position.

[0122] Drawing 11 and 12 are what showed another embodiment concerning this invention, and an outline front view seen when drawing 11 saw the slit die 40 to a stage running direction, and drawing 12 are the figures at which it looked from the direction of Y of drawing 11. The grooves 301a and 301b incline downward in a slit-die longitudinal direction (arrow direction) here, The antitussive board 311a which dams up a flow of coating liquid near [side 310] a slit die which is the trailer, 311b is provided, the pipes 306a and 306b are further attached to this antitussive board 311a and 311b of each, and suction discharging is carried out with the antitussive board 311a and a pump which does not illustrate coating liquid which accumulated near 311b through the pipes 306a and 306b. It is discharged outside effectively, without accumulating in the grooves 301a and 301b at the time of nozzle part 40a cleaning, and coating liquid overflowing, also when there is much liquid which should be removed by this.

[0123]In particular shape and a size in a section vertical to a slit-die longitudinal direction of a groove in the above working example may not be limited, and what kind of section shape, such as a triangle and semicircle shape, may be sufficient as it.

[0124]Although a groove attaches an inclination toward a slit and he is trying to prevent coating liquid which went into the groove 301 once beginning to leak outside in working example, limitation in particular does not have this angle of inclination, and its 5-60 degrees are preferred by the ease of carrying out of manufacture, and an effect of an inclination.

[0125]Although what is necessary is just to set in consideration of paint volume which should also remove aperture width of a groove in drawing 10, depth, and b, shape which does not spoil slit-die rigidity, etc., a= 2-20 mm and about b= 5-30 mm are preferred.

[0126]Furthermore, the blade part 302a of the cleaning member 94, the 302b upper surface 308a, A relation of a sliding direction of 308b and the lower end parts 305a and 305b of the grooves 301a and 301b The braid 302a, 302b does not plug up an opening of the grooves 301a and 301b thoroughly, but it The groove 301a, It is desirable for the shortest length to the blade part 302a which is in the upper part from the lower end parts 305a and 305b of 301b, and the 302b upper surfaces 308a and 308b to set it as the 2/3 or less range of the aperture width a of the grooves 301a and 301b. By this physical relationship, coating liquid eliminated upward by a cleaning member will be effectively led to the grooves 301a and 301b.

[0127]Although the upper surfaces 308a and 308b of the blade parts 302a and 302b may be below the groove 301a and the 301b lower end parts 305a and 305b, this arrangement is suitable when there is much coating liquid adhering to the nozzle part 40a which should be removed.

[0128]Drawing 13 is a figure showing another embodiment in a section of a stage running direction. The braid 302a in case the cleaning member 94 contacts the slit-die 40 following figure here, The suction nozzles 400a and 400b are formed near the 302b upper surface, and even when it is difficult to make a groove depending on shape of a die, liquid removed to the fields

304a and 304b is kept from dripping. These suction nozzles 400a and 400b are being fixed to a slit die by the brackets 410a and 410b.

[0129]There are the openings 401a and 401b in a suction nozzle toward the slit-die side, it is slightly larger than the length of a delivery longitudinal direction of a slit die, and the length of a longitudinal direction of the opening is good desirable to enlarge 2-20 mm. As for the opening 401a and a 401b gap, about 0.5-20 mm is good so that coating liquid removed by a cleaning member can be attracted easily.

[0130]And there are the end connections 403a and 403b in an end of these suction nozzles 400a and 400b, a suction pump which is not illustrated to this is connected, and coating liquid on the braid 302a of the cleaning member 94 and the 302b upper surface is attracted with suction force of about 10-5000 mmAq.

[0131]Operation using these suction nozzles 400a and 400b is as follows.

[0132]If a lower end surface of the cleaning member 94 and the slit die 40 contacts and the cleaning member 94 starts movement, what coating liquid which remained in a slit-die lower end surface failed to be written, and remained in part will overflow on the upper surface from the braids 302a and 302b of the cleaning member 94.

[0133]This overflowed coating liquid is discharged to the exterior by a suction pump which is not illustrated through the openings 401a and 401b of the suction nozzles 400a and 400b, and the end connections 403a and 403b.

[0134]Therefore, after cleaning, coating liquid which remained all falls, the reattachment is carried out to regurgitation and coating liquid does not have influence bad [to enlarge thickness unevenness of an application starting part, or to produce coat faults, such as spreading ****, etc.] on the slant faces 304a and 304b of the nozzle part 40a.

[0135]Coating liquid which furthermore remained on a slant face of the nozzle part 40a solidifies, a rise of the cleaning member 94 is barred, it cannot contact but inconvenience that wiping of a delivery is impossible can also prevent the cleaning member 94 and the delivery tip 68 by this invention.

[0136]A suction nozzle which made a longitudinal direction opening of a nozzle larger 2-20 mm than thickness of the cleaning member 94 apart from the above-mentioned thing, It enables it to move to a longitudinal direction of the slit die 40 simultaneously with the cleaning member 94, only remains coating liquid on the upper surface of the braids 304a and 304b of the cleaning member 94 is attracted, and it may enable it to discharge. In this case, by simultaneous movement of a cleaning member and a suction nozzle, cleaning of a lower end surface of the slit die 40 and recovery of remains coating liquid will be simultaneously performed over a longitudinal direction, and the same effect as the above-mentioned thing is acquired.

[Effect of the Invention]Since according to Claim 1, the coater of 8, and the coating method the delivery position of an applicator is detected for every applicator, the delivery of an applicator and the relative position relation of a cleaning member are kept constant and both are made to **** as explained above, Since can always ***** by fixed energizing force, the residual coating liquid which adhered near the delivery of an applicator can be removed thoroughly, energizing force is finely changed in a position simultaneously and it is made to the optimal thing, wear of a cleaning member is made to the minimum and the life of protection against dust and a cleaning member can be improved.

[0138]Since according to the coater and coating method of Claims 2, 9 and 10 it cleans at the time of volatile high coating liquid use after making the solvent of this coating liquid adhere near

the delivery of an applicator, Since an affix is easily and thoroughly removable even if coating liquid desiccation is carried out and a solid adheres, the high coating products of quality without a coat fault are obtained.

[0139]According to the coater of Claim 3, since it cleans by making the neighborhood of a delivery of an applicator into the atmosphere which does not evaporate easily, it can clean with a fluid, without also solidifying volatile high coating liquid, and residual coating liquid can be removed thoroughly.

[0140]Since the sump groove in which the coating liquid which remains when it removes by a cleaning member in the position near the braid upper surface of the surrounding cleaning member of an applicator is accumulated was provided according to Claim 4, the coater of 11, and the coating method, the coating liquid which viscosity is low and flows easily is transmitted, and carries out the reattachment of the applicator slant face to a delivery, The coating liquid which remained on the applicator slant face solidifies, contact at a cleaning member and the tip 68 of a delivery is barred, and the inconvenience that wiping of a delivery is impossible can also be prevented.

[0141]Since the slit-die undersurface breathes out coating liquid in the pure state, forms a bead and can start coating by this, the effective area where thickness unevenness moreover becomes in an acceptable value uniformly about coating thickness can be made large, yield increases, and productivity can be improved. Coat faults, such as spreading *****, do not occur but quality also improves.

[0]42]Since according to the coater and coating method of Claims 5, 6 and 12 the discharge unit which discharges the coating liquid which accumulates in a sump was added, or coating liquid overflowing from a cleaning member was directly attracted with the nozzle and it has improved for surplus coating liquid to be eliminated more effectively, productivity can be improved further.

[0143]Since the above-mentioned coater and the coating method are used according to the manufacturing installation and manufacturing method of Claim 7 and the light filter of 13, manufacture of the high light filter of quality can be attained and productivity can also be raised.

[Brief Description of the Drawings]

[Drawing 1] It is an outline perspective view of the die coater of one embodiment of this invention.

[Drawing 2]It is an outline lineblock diagram showing the die coater of <u>drawing 1</u> including the supply system of coating liquid.

[Drawing 3] They are a slit die of the die coater of <u>drawing 1</u>, and an outline lineblock diagram of the rising and falling mechanism.

[Drawing 4]It is a front view showing recovery and the cleaning system of the die coater of drawing 1.

[Drawing 5] It is a perspective view showing a part of gutter of drawing 4.

[Drawing 6]It is a sectional view of a stage running direction showing recovery and the cleaning system of another working example.

Drawing 7] It is a sectional view of the stage cross direction of drawing 6.

[Drawing 8] It is a schematic diagram showing an element unit by this invention.

[Drawing 9]It is a perspective view showing recovery and the cleaning system of the die coater of another working example.

[Drawing 10] It is a sectional view of the stage running direction of drawing 9.

[Drawing 11] It is a front view showing recovery and the cleaning part of another working example.

[Drawing 12] It is a sectional view of the stage running direction of drawing 11.

[Drawing 13] It is an outline sectional view of a stage running direction showing recovery and the cleaning system of another working example of this invention.

[Description of Notations]

- 6 Stage 202 Sensor
- 14 Feed screw 208 Nozzle
- 22 thickness sensor 220 -- a solvent evaporation machine
- 40 Slit-die (applicator) 222 shielding covering
- 44 Syringe-pump 225 Shielding unit
- 50 Tank 226 Pipe
- 62 Manifold 232 Source of heating
- 64 Slit 234 Valve
- 68 Delivery tip 240 solvent-vapor feed unit
- 70 Recovery and cleaning system 301 groove
- 76 Career 302 Braid
- 78 Feed screw 304 Slant face
- 82 Electric motor 306 pipe
- 88 Rise-and-fall bracket 310 Side
- 90 Air cylinder 311 antitussive board
- 92 Gutter 400 suction nozzle
- 94 Cleaning member 401 opening
- 96 Support unit 403 end connection
- 98 Outlet 410 bracket
- 102 Discharging hose
- 104 Waste liquid tank
- 106 Suction hose
- 108 Vacuum pump