

ОСНОВЫ ЭЛЕКТРО-МАТЕРИАЛОВЕДЕНИЯ

Проводники

Полупроводники

Диэлектрики

Хорошо проводят электрический ток Занимают по проводимости промежуточное положение

Практически не проводят электрический ток

Проводниковые материалы

КЛАССИФИКАЦИЯ ПРОВОДНИКОВЫХ МАТЕРИАЛОВ Проводниковые материалы Твердые Жидкие Металлические Неметаллические Металлы высокой Угольные материалы проводимости Композиционные материалы Сверхпроводники Высокотемпературные сверхпроводники Криопроводники Сплавы высокого сопротивления Металлы и сплавы специальных назначений

Температуры

плавления

металлов

Металл	Обоз-	Температура	
	начение	плавления,	
		°C	
Медь	Cu	1083	
Серебро	Ag	961	
Золото	Au	1063	
Вольфрам	W	3400	
Олово	Sn	231.9	
Свинец	Pb	327.4	
Германий	Ge	936	
Железо	Fe	1539	
Кобальт	Co	1494	
Никель	Ni	1455	
Цинк	Zn	906	
Ртугь	Hg	- 38.89	
Натрий	Na	886	
Титан	Ti	1665	
Алюминий	Al	657	

Температуры плавления некоторых сплавов

Сплав	Состав	Температура плавления, °С
Сталь	Железо (Fe), углерод (C)	1150-1200
Чугун	Железо (Fe), углерод (C)	1320-1700
Бронза	Медь (Си) олово(Sn)	
Сплав Вуда	Свинец (Pb) олово (Sn) висмут (Bi) кадмий (Cd)	60

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему

Чем ниже сопротивление проводника тем выше ток, электрическая энергия расходуемая на преодоление сопротивления превращается в тепловую энергию

Электрическое сопротивление проводника прямо пропорционально произведению удельного сопротивления материала из которого сделан проводник на его длину, и обратно пропорционально его сечению.

Сопротивление проводника зависит от:

- 1- его длины,
- 2- площади поперечного сечения
- 3- от вещества из которого он изготовлен,

Удельное сопротивление физическая величина которая определяет сопротивление проводника из данного вещества длиной 1м, и площадью поперечного сечения 1мм²

 Удельное сопротивление обозначается буквой – р (Ом •м/мм²)

$$R = \rho \frac{l}{S}$$

Получим еще несколько разновидностей формул:

$$l = \frac{RS}{\rho} \quad S = \frac{\rho l}{R} \quad \rho = \frac{RS}{l}$$

S – площадь поперечного сечения

R – сопротивление проводника

р – удельное сопротивление проводника

l - длина проводника

Электрическая проводимость (электропроводность) количественно характеризует способность проводника пропускать электрический ток.

Единица проводимости в СИ - сименс (См):

1 См - проводимость участка электрической цепи сопротивлением 1 Ом.

Величину, обратную удельному сопротивлению называют удельной электрической проводимостью.

$$\gamma$$
= 1/ ρ

У- Электрическая проводимость

 ρ - Удельное сопротивление (Ом •м/мм²)

Справочные данные

Материал проводника	Удельное со- противление ρ, (Ом·мм²)/м	Удельная про- водимость у, м/(Ом·мм²)	Температур- ный коэффи- циент α, 1/°С
Проводниковая медь	0,0176	57	0,004
Алюминий	0,0278	35	0,0045
Латунь	0,04	25	0,002
Вольфрам	0,0612	16,34	0,0047
Стальная проволока	0,13	7,7	0,00625
Манганин	0,42	2,4	0,000006
Константан	0,49	2,0	0,000005
Нихром	0,98	1,01	0,0003
Фехраль	1,2	0,83	0,00028

Задача.

Определить сопротивление(R) медного провода длинной 260 метров если его диаметр (d) 1,8 мм

Дано:

$$d = 1,8 \text{ MM}$$

$$l = 260 \text{ M}$$

$$\rho_{(Medb)} = 0.0176 \text{ OM} \cdot \text{M/MM}^2$$

$$R = \rho \frac{l}{S}$$

S= площадь поперечного сечения провода мм²

$$S = \frac{\pi d^2}{4}$$
 где d=1,8мм

Сечение провода равно:

$$S = \frac{3.14 \cdot 1.8^2}{4} = 2.5 \text{Mm}^2$$

Справочные данные

Материал проводника	Удельное со- противление ρ, (Ом·мм²)/м	Удельная про- водимость у, м/(Ом·мм²)	Температур- ный коэффи- циент α, 1/°С
Проводниковая медь	0,0176	57	0,004
Алюминий	0,0278	35	0,0045
Латунь	0,04	25	0,002
Вольфрам	0,0612	16,34	0,0047
Стальная проволока	0,13	7,7	0,00625
Манганин	0,42	2,4	0,000006
Константан	0,49	2,0	0,000005
Нихром	0,98	1,01	0,0003
Фехраль	1,2	0,83	0,00028

$$R = \rho \frac{l}{S}$$

$$R = 0.0176 \cdot \frac{260}{2.5} = 1.76 Om$$

Ответ: Сопротивление медного провода длиной 260 метров равно R= 1,76 Ом

Задача.

Определить сопротивление(R) медного провода длинной 260 метров сложенного в двое если его диаметр (d) 1,8 мм

Дано:

$$l = 260 \text{ M}$$

$$\rho_{(Medb)} = 0.0176 \ OM \cdot M/MM^{2}$$

$$R = \rho \frac{l}{S}$$

S= площадь поперечного сечения провода мм

$$R = \rho \frac{l}{S}$$

При сложении провода пополам его длина уменьшается в 2 раза (на 1/2 или 50%) а общее сечение провода увеличивается в 2 раза

$$R = 0.0176 \bullet \frac{130}{5} = 0.45 Om$$

Ответ: Сопротивление медного провода равно R= 0,45 Ом

Расчетная работа №1

Электроматериаловедение

ТЕМА: Проводниковые материалы и изделия. Расчет сопротивления проводника

- 1. По полученным данным выданного задания произвести расчет сопротивления провода. (полная запись решения , округлять до 0,01)
- 2. Полученные данные занести в таблицу ответов.

S мм²	R (Ом)	<i>lso</i> % (M)	R <i>80%</i> (Ом)	$l_{1/3}$ (M)	R _{1/3} (OM)

Алюминиевый провод имеет длину 300 м и диаметр 1,6 мм. Найти сопротивление всего провода (R), Сопротивление провода в 80 % ($R_{80\%}$) от длины и сопротивление провода сложенного в три раза . ($R_{1/3}$)

Температура проводника и его сопротивление

• Удельное сопротивление металлов при нагревании увеличивается в результате увеличения скорости движения атомов в материале проводника с возрастанием температуры. Удельное сопротивление электролитов и угля при нагревании, наоборот, уменьшается, так как у этих материалов, кроме увеличения скорости движения атомов и молекул, возрастает число свободных электронов и ионов в единице объема.

Температурный коэффициент сопротивления **Ф** показывает на сколько увеличивается сопротивление проводника в 1 Ом при увеличении температуры (нагревании проводника) на 1 °C.

 $R = R_{\text{станд}} [1 + \alpha (T - T_{\text{станд}})]$

Где,

R = Сопротивление провода при температуре "Т"

 R_{ref} = Сопротивление провода при стандартной температуре $T_{craнд}$, обычно 20° C, но иногда 0° C.

α = Температурный коэффициент сопротивления для конкретного проводящего материала.

Т = Температура провода в градусах Цельсия.

T_{ref} = Стандартная температура, при которой даны значения α для проводящих материалов.

the contest of the second of the second of the second	e garaga erakan erak	Andrew State of State	es to ka libertule
Материал проводника	Удельное со-	Удельная про-	Температур-
	противление ρ,	водимость у,	ный коэффи-
	(Ом·мм²)/м	м/(Ом·мм²)	циент α, 1/°C
Проводниковая медь	0,0176	57	0,004
Алюминий	0,0278	35	0,0045
Латунь	0,04	25	0,002
Вольфрам	0,0612	16,34	0,0047
Стальная проволока	0,13	7,7	0,00625
Манганин	0,42	2,4	0,000006
Константан	0,49	2,0	0,000005
Нихром	0,98	1,01	0,0003
Фехраль	1,2	0,83	0,00028

Расчет проводников круглого сечения

$$R = \rho_{20} \frac{4l_{np}}{\pi d^{2}/(1 + \alpha_{t}(t - 20^{0}))}$$

Где:

R – сопротивление провода (Ом)

 ρ (20)- удельное сопротивление материала при t= 20 градусов

 $l_{np.}$ — длинна провода (м)

 $\pi - 3.14$

 a_t — температурный коэффициент материала провода.

d – диаметр провода (мм).

t — температура провода

Определить сопротивление(R) медного
провода длинной 260 метров если его
диаметр (d) при измерении ШЦ-1 составил
1,8 мм нагретого до температуры 280
градусов C⁰

Дано:

$$l = 260 \text{ M}$$

$$ho$$
(медь) = 0,0176 Ом \bullet м/мм 2 $a_t - 0,004$ $d - 1.8$ мм

the contest of the second of the second of the second	e garaga erakan erak	Andrew State of State	es to ka libertule
Материал проводника	Удельное со-	Удельная про-	Температур-
	противление ρ,	водимость у,	ный коэффи-
	(Ом·мм²)/м	м/(Ом·мм²)	циент α, 1/°C
Проводниковая медь	0,0176	57	0,004
Алюминий	0,0278	35	0,0045
Латунь	0,04	25	0,002
Вольфрам	0,0612	16,34	0,0047
Стальная проволока	0,13	7,7	0,00625
Манганин	0,42	2,4	0,000006
Константан	0,49	2,0	0,000005
Нихром	0,98	1,01	0,0003
Фехраль	1,2	0,83	0,00028

$$R = \rho_{20} \frac{4l_{np}}{\pi d^{2} (1 + \alpha_{t}(t - 20^{0}))}$$

$$R = 0.0176 \frac{4 \cdot 260}{3.14 \cdot 1.8^2 / (1 + 0.004(280 - 20))} =$$

Расчетная работа №2 Электроматериаловедение

ТЕМА: Расчет сопротивления проводника в зависимости от температуры

- 1. По данным задания произвести расчет сопротивления провода при изменении его температуры (полная запись решения , округлять до 0,1)
- 2. По полученным данным построить график зависимости температуры провода от его сопротивления.

Стальной провод имеет длину 1200 м и диаметр 0,35 мм. Найти сопротивление всего провода (R) ,при температуре $0 \text{т} 0 - 500 \text{ C}^0$ шаг изменения температуры 50 градусов. Построить график зависимости изменения сопротивления проводника от повышения температуры

Нихро́м — общее название группы <u>сплавов</u>, состоящих, в зависимости от марки сплава, из 55—78 % <u>никеля</u>, 15—23 % <u>хрома</u>, с добавками <u>марганца</u>, <u>кремния</u>, <u>железа</u>, <u>алюм</u> иния.

Huxpoм X20H80 — Cr 20 %, Ni 80 %.

Huxpoм X15H60 — Ni 60 %, Cr 16 %, Fe 24 %.

Фехра́ль — прецизионный сплав на основе железа состоящий из следующих элементов: <u>Cr</u> (12—27 %); <u>Al</u> (3,5—5,5 %); <u>Si</u> (1 %); <u>Mn</u> (0,7 %); остальное — <u>Fe</u>. 26—28 % Хром, ~65-68 % Железо, X27Ю5Т 5—5,8 % Алюминий, 0,15—0,4 %

Константан

Константан, в отличие от манганина, содержит больше никеля — от 39 до 41%, меньше меди — 60-65%, значительно меньше марганца — 1-2%, - это тоже медно-никелевый сплав. Температурный коэффициент сопротивления у константана приближается к нулю — это главное достоинство данного сплава.

Манганин

Для изготовления точных сопротивлений традиционно используют манганины. Манганины состоят из никеля, меди и марганца. Меди в из составе — от 84 до 86%, марганца — от 11 до 13%, никеля — от 2 до 3%. Самый же популярный из манганинов сегодня содержит 86% меди, 12% марганца и 2% никеля.

Нейзи́льбер (от нем. Neusilber — «новое серебро») — сплав меди с 5—35 % никеля и 13—45 % цинка. Благодаря содержанию цинка сплав несколько дешевле аналогичного по внешнему виду и механическим свойствам

МНЦ 15-20 (Ni — 15 %, Zn — 20 %, остальное — Cu)

Материал	Плотность, 10³кг/ м³	Температура плавления, °C	, Наибольшая рабочая температура, °C	Удельное электрическое сопротивление при 20 °С, 10°60м-м	Температурный коэффициент сопротивления при 20°C, 1/град	Применение
Нихром	8,2	1360	1000	1,1	1,7⋅10-⁴	Лабораторные и про- мышленные печи с ра- бочей температурой до 900°C
Фехраль	7,6	1450	850	1,2	5·10 -4	Бытовые электронагре- вательные приборы и промышленные электропечи с рабочей температурой до 650 °C
Константан	8,8	1270	450—500	0,5	(0,2—5)·10 ⁻³	Реостаты и резисторы приборов низкого каче- ства точности. Нагрева- тельные элементы с температурой до 450 °C
Манганин	8,3	940	250—300	0,46	±(3—6)·10 ⁻³	Эталонные и образ- цовые сопротивления, магазины сопротив- лений и сопротивления приборов высокой точности
Нейзильбер	8,4	1050	200—250	0,35	2,9-10-6	Реостаты

<u>расчет диаметра и длины нагревательного</u> <u>элемента</u>

Исходные данные:

Устройство мощностью P = 800 Вт; напряжение сети U = 220 В; температура нагревателя 800 °C. В качестве нагревательного элемента используется нихромовая проволока X20H80.

1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент:

$$I = P / U = 800 / 220 = 3,63 A.$$

2. Теперь нужно найти сопротивление нагревателя: R = U / I = 220 / 3,63 = 61 Ом;

3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель, нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0.35 мм и площадью поперечного сечения $S = 0.096 \text{ MM}^2$.

Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока.

Допустимая сила тока, проходящего через нагреватель из нихромовой проволоки, соответствующая определенным температурам нагрева проволоки, подвешенной горизонтально в спокойном воздухе нормальной температуры

Диаметр нихромовой проволоки,	Площадь поперечного сечения	Температура нагрева нихромовой проволоки, °C								
мм	нихромовой проволоки, мм ²	200	400	600	700	800	900	1000		
	пихромовой проволоки, им		Максимальная допустимая сила тока, А							
5	19,6	52	83	105	124	146	173	206		
4	12,6	37,0	60,0	80,0	93,0	110,0	129,0	151,0		
3	7,07	22,3	37,5	54,5	64,0	77,0	88,0	102,0		
2,5	4,91	16,6	27,5	40,0	46,6	57,5	66,5	73,0		
2	3,14	11,7	19,6	28,7	33,8	39,5	47,0	51,0		
1,8	2,54	10,0	16,9	24,9	29,0	33,1	39,0	43,2		
1,6	2,01	8,6	14,4	21,0	24,5	28,0	32,9	36,0		
1,5	1,77	7,9	13,2	19,2	22,4	25,7	30,0	33,0		
1,4	1,54	7,25	12,0	17,4	20,0	23,3	27,0	30,0		
1,3	1,33	6,6	10,9	15,6	17,8	21,0	24,4	27,0		
1,2	1,13	6,0	9,8	14,0	15,8	18,7	21,6	24,3		
1,1	0,95	5,4	8,7	12,4	13,9	16,5	19,1	21,5		
1,0	0,785	4,85	7,7	10,8	12,1	14,3	16,8	19,2		
0,9	0,636	4,25	6,7	9,35	10,45	12,3	14,5	16,5		
0,8	0,503	3,7	5,7	8,15	9,15	10,8	12,3	14,0		
0,75	0,442	3,4	5,3	7,55	8,4	9,95	11,25	12,85		
0,7	0,385	3,1	4,8	6,95	7,8	9,1	10,3	11,8		
0,65	0,342	2,82	4,4	6,3	7,15	8,25	9,3	10,75		
0,6	0,283	2,52	4	5,7	6,5	7,5	8,5	9,7		
0,55	0,238	2,25	3,55	5,1	5,8	6,75	7,6	8,7		
0,5	0,196	2	3,15	4,5	5,2	5,9	6,75	7,7		
0,45	0,159	1,74	2,75	3,9	4,45	5,2	5,85	6,75		
0,4	0,126	1,5	2,34	3,3	3,85	4,4	5,0	5,7		
0,35	0,096	1,27	1,95	2,76	3,3	3,75	4,15	4,75		
0,3	0,085	1,05	1,63	2,27	2,7	3,05	3,4	3,85		
0,25	0,049	0,84	1,33	1,83	2,15	2,4	2,7	3,1		
0,2	0,0314	0,65	1,03	1,4	1,65	1,82	2,0	2,3		
0,15	0,0177	0,46	0,74	0,99	1,15	1,28	1,4	1,62		
0,1	0,00785	0,1	0,47	0,63	0,72	0,8	0,9	1,0		

4. Далее определим длину нихромовой проволоки.

$$R = \rho \cdot I / S_i$$

где R - электрическое сопротивление проводника (нагревателя) [Ом], ρ - удельное электрическое сопротивление материала нагревателя [Ом · мм² / м], I - длина проводника (нагревателя) [мм], S - площадь поперечного сечения проводника (нагревателя) [мм²].

Таким образом, получим длину нагревателя:

$$I = R \cdot S / \rho = 61 \cdot 0,096 / 1,11 = 5,3 \text{ M}.$$

В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с <u>ГОСТ 12766.1-90</u> "Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия" номинальное значение удельного электрического сопротивления нихромовой проволоки марки X20H80 составляет 1,1 Ом \cdot мм² / м (ρ = 1,1 Ом \cdot мм² / м),

Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр - 0,35 мм.

Удельное электрическое сопротивление нихрома (номинально	ое значение) - по ГОСТ 12766.1-
90	

	90	
Марка сплава	Диаметр, мм	Удельное электрическое сопротивление р _{ном} , Ом мм

от 0,1 до 0,5 включ.

1,08

X20H80-H

от 0,5 до 3,0 включ.

Св. 3,0

1,11

от 0,1 до 3,0 включ.

1,13 1,11

X15H60, X15H60-H

Св. 3,0

Х23Ю5Т

Все диаметры

1,12 1,39

Диаметр <u>нихромовой</u>	сечения нихромовой								
		200	400	600	700	800	900	1000	
проволоки, мм	проволоки, мм²	Максимальная допустимая сила тока, А							
5	19,6	52	83	105	124	146	173	206	
4	12,6	37,0	60,0	80,0	93,0	110,0	129,0	151,0	
3	7,07	22,3	37,5	54,5	64,0	77,0	88,0	102,0	
2,5	4,91	16,6	27,5	40,0	46,6	57,5	66,5	73,0	

19,6

16,9

14,4

13,2

12,0

10,9

9,8

8,7

7,7

6,7

5,7

5,3

4,8

4,4

4

3,55

3,15

2,75

2,34

1,95

1,63

1,33

1,03

0,74

0,47

28,7

24,9

21,0

19,2

17,4

15,6

14,0

12,4

10,8

9,35

8,15

7,55

6,95

6,3

5,7

5,1

4,5

3,9

3,3

2,76

2,27

1,83

1,4

0,99

0,63

11,7

10,0

8,6

7,9

7,25

6,6

6,0

5,4

4,85

4,25

3,7

3,4

3,1

2,82

2,52

2,25

2

1,74

1,5

1,27

1,05

0,84

0,65

0,46

0,1

Допустимая сила тока, проходящего через нагреватель из нихромовой проволоки, соответствующая определенным температурам нагрева проволоки, подвешенной

Температура нагрева нихромовой проволоки, °С

33,8

29,0

24,5

22,4

20,0

17,8

15,8

13,9

12,1

10,45

9,15

8,4

7,8

7,15

6,5

5,8

5,2

4,45

3,85

3,3

2,7

2,15

1,65

1,15

0,72

39,5

33,1

28,0

25,7

23,3

21,0

18,7

16,5

14,3

12,3

10,8

9,95

9,1

8,25

7,5

6,75

5,9

5,2

4,4

3,75

3,05

2,4

1,82

1,28

0,8

47,0

39,0

32,9

30,0

27,0

24,4

21,6

19,1

16,8

14,5

12,3

11,25

10,3

9,3

8,5

7,6

6,75

5,85

5,0

4,15

3,4

2,7

2,0

1,4

0,9

51,0

43,2

36,0

33,0

30,0

27,0

24,3

21,5

19,2

16,5

14,0

12,85

11,8

10,75

9,7

8,7

7,7

6,75

5,7

4,75

3,85

3,1

2,3

1,62

1,0

горизонтально в спокойном воздухе нормальной температуры

3,14

2,54

2,01

1,77

1,54

1,33

1,13

0,95

0,785

0,636

0,503

0,442

0,385

0,342

0,283

0,238

0,196

0,159

0,126

0,096

0,085

0,049

0,0314

0,0177

0,00785

2

1,8

1,6

1,5

1,4

1,3

1,2

1,1

1,0

0,9

0,8

0,75

0,7

0,65

0,6

0,55

0,5

0,45

0,4

0,35

0,3

0,25

0,2

0,15

0,1

Расчетная работа №3 Электроматериаловедение

TEMA: расчет диаметра и длины провода для нагревательного элемента *Исходные данные:*

Устройство мощностью P = 1500 Вт; напряжение сети U = 380 В; температура нагревателя 900 °С. В качестве нагревательного элемента используется

нихромовая проволока Х20Н80.

