

FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS

CARRERA DE INGENIERÍA EN SOFTWARE

TEMA:
DAX (DATA ANALYSIS EXPRESSIONS)

GRUPO # 1 - INTEGRANTES: CHÁVEZ JIMÉNEZ ANDRÉS ORTUÑO SÁNCHEZ JULIET CASTRO VÉLEZ JAHIRÍ

TUTORA:

ING. ZUMBA GAMBOA JOHANNA

ASIGNATURA:

INTELIGENCIA DE NEGOCIOS

PARALELO: SOF-S-VE-7-3

FECHA DE ENTREGA: 19/05/2025

PERÍODO LECTIVO 2025 – 2026 CI

Guayaquil, Mayo 2025

ÍNDICE

DAX (DATA ANALYSIS EXPRESSIONS)	3
Introducción	3
Desarrollo de los temas	3
¿Qué es DAX?	3
Funciones principales de DAX:	
Funciones Lógicas	
Funciones de Fecha y Hora	
Funciones de Texto	
Funciones de Filtrado y Contexto	5
Funciones de Inteligencia de Tiempo	5
Funciones Matemáticas y Estadísticas	6
Documentación y desarrollo de un proyecto en Power BI que implemente el	
(Ejemplos) de DAX en los siguientes elementos:	
Columnas calculadas	
Medidas	
Conclusión	10
Link del repositorio del proyecto	11
Bibliografía	11

DAX (DATA ANALYSIS EXPRESSIONS)

Introducción

DAX (Data Analysis Expressions) es un lenguaje de fórmulas desarrollado por Microsoft que permite realizar cálculos avanzados y análisis dinámicos en herramientas como Power BI, Power Pivot y Analysis Services. Gracias a su gran variedad de funciones, DAX facilita transformar datos crudos en información valiosa para la toma de decisiones, permitiendo crear columnas calculadas, medidas y tablas personalizadas que potencian los informes y dashboards. En este documento se presenta una investigación sobre las principales funciones de DAX y un proyecto práctico en Power BI que ejemplifica su aplicación.

Desarrollo de los temas

¿Qué es DAX?

DAX (Data Analysis Expressions) es un lenguaje de fórmulas utilizado en Power BI, Power Pivot y SSAS Tabular para crear cálculos personalizados y análisis de datos. Es parecido a las fórmulas de Excel pero mucho más potente para análisis multidimensionales y tabulares. (*Referencia de DAX Función - DAX | Microsoft Learn*, n.d.)

Funciones principales de DAX:

DAX (Data Analysis Expressions) es un lenguaje que incluye muchas funciones para realizar cálculos, transformaciones y análisis de datos en Power BI y otras herramientas de Microsoft. (*Listado de Las Funciones DAX En Power BI y Ejemplos*, n.d.)

A continuación, te detallo las categorías y ejemplos de sus funciones más usadas:

Funciones de Agregación

Estas funciones permiten resumir datos numéricos en columnas o tablas.

• **SUM**: Suma los valores de una columna.

TotalVentas = SUM(Ventas[Total])

• **AVERAGE**: Calcula el promedio de una columna.

PromedioPrecio = AVERAGE(Ventas[PrecioUnitario])

• **COUNT**: Cuenta el número de valores en una columna (no vacíos).

```
NumeroVentas = COUNT(Ventas[IdVenta])
```

• **COUNTROWS**: Cuenta el número de filas en una tabla.

```
TotalFilas = COUNTROWS(Ventas)
```

Funciones Lógicas

Evalúan condiciones y devuelven valores booleanos (VERDADERO/FALSO) o valores basados en esas condiciones.

• IF: Evalúa una condición y devuelve un resultado si es verdadera y otro si es falsa.

```
CategoriaPrecio = IF(Ventas[PrecioUnitario] > 100, "Alto", "Bajo")
```

• AND y OR: Combinan condiciones lógicas.

Funciones de Fecha y Hora

Manipulan fechas, calculan diferencias, extraen partes de fechas, etc.

• **TODAY**(): Devuelve la fecha actual.

```
FechaActual = TODAY()
```

• YEAR, MONTH, DAY: Extraen partes de una fecha.

```
AñoVenta = YEAR(Ventas[Fecha])
```

• **DATEDIFF**: Calcula la diferencia entre dos fechas en días, meses, años, etc.

Funciones de Texto

Manipulan texto: concatenar, extraer, convertir mayúsculas/minúsculas, etc.

CONCATENATE: Une dos textos.

• **LEFT**, **RIGHT**: Extraen caracteres desde la izquierda o derecha.

```
CodigoRegion = LEFT(Ventas[Region], 3)
```

• UPPER, LOWER: Convierte texto a mayúsculas o minúsculas.

```
NombreMayus = UPPER(Clientes[Nombre])
```

Funciones de Filtrado y Contexto

DAX es muy poderoso por su manejo del contexto de fila y filtro.

• CALCULATE: Modifica el contexto de evaluación aplicando filtros.

```
VentasNorte = CALCULATE(SUM(Ventas[Total]), Ventas[Region] = "Norte")
```

• **FILTER**: Devuelve una tabla filtrada basada en una condición.

```
VentasAltas = FILTER(Ventas, Ventas[Total] > 1000)
```

 ALL: Quita filtros para devolver todos los datos, útil para calcular porcentajes o totales generales.

```
TotalVentasGlobal = CALCULATE(SUM(Ventas[Total]), ALL(Ventas))
```

Funciones de Inteligencia de Tiempo

Permiten hacer análisis temporal, como comparaciones año contra año, acumulados, etc.

• **SAMEPERIODLASTYEAR**: Devuelve el mismo periodo pero del año anterior.

• TOTALYTD: Total acumulado desde el inicio del año hasta la fecha.

```
VentasAcumuladas = TOTALYTD(SUM(Ventas[Total]), Ventas[Fecha])
```

Funciones Matemáticas y Estadísticas

Incluyen funciones para redondeos, valores absolutos, desviaciones, etc.

• **ROUND**: Redondea un número a n decimales.

```
PrecioRedondeado = ROUND(Ventas[PrecioUnitario], 2)
```

• **ABS**: Devuelve el valor absoluto.

```
Diferencia = ABS(Ventas[PrecioUnitario] - Ventas[PrecioAnterior])
```

• **STDEVX.P**: Calcula la desviación estándar para una expresión evaluada en una tabla. (*Tutorial de Power BI DAX Para Principiantes | DataCamp*, n.d.)

Documentación y desarrollo de un proyecto en Power BI que implemente el uso (Ejemplos) de DAX en los siguientes elementos:

Tablas calculadas

La tabla calendario es una de las más comunes usar en este tipo de ejercicio de Tablas calculadas, desde la vista Modelo, se crea una nueva tabla, y en la barra de fórmulas se escribe el siguiente comando de funciones DAX:

Calendario =
CALENDARAUTO()

Esto nos permitirá crear una columna llamada Date que calcula las fechas de nuestra tabla.

Aquí ya la vemos desde otra perspectiva ya establecida como una tabla.

Columnas calculadas

Para este ejemplo, usamos los datos de la columna de Ventas y los datos de la columna de Cantidad, con la finalidad de calcular entre columnas un Total de Ventas, mediante el siguiente comando DAX:

Total-Ventas =

TablaVentas[Ventas (USD)]*TablaVentas[Cantidad]

Aquí ya aplicando los comandos correspondientes, damos enter.

Y se genera automáticamente la columna que nos devuelve el Valor Total de Ventas.

Medidas

En este ejemplo, realizamos la operación de la Cantidad Total de los productos vendidos, lo cual lo hacemos posicionándonos en la tabla y damos clic derecho sobre la misma.

Escogemos la opción de Nueva Medida y procedemos a ejecutar el siguiente comando de la función DAX:

CantTotal_Productos_Vendidos =
 SUM(TablaVentas[Cantidad])

MATEMATICAS

Finalmente visualizamos el resultado que nos brinda la tabla con una columna generada con la medida que fue solicitada.

Conclusión

DAX es una herramienta fundamental para el análisis de datos en Power BI, ya que permite crear cálculos personalizados que se adaptan a las necesidades específicas de negocio. Las funciones de DAX, desde las más simples como sumas y promedios hasta las

avanzadas de inteligencia de tiempo y manejo de contexto, ofrecen un amplio rango de posibilidades para enriquecer los informes. Implementar DAX en columnas calculadas, medidas y tablas calculadas mejora significativamente la capacidad de análisis y la calidad de la información presentada. Este proyecto demuestra cómo DAX facilita un análisis más profundo y dinámico en Power BI.

Link del repositorio del proyecto

https://github.com/Janan1998/DAX-en-Power-BI-Grupo-1.git

Bibliografía

Listado de las Funciones DAX en Power BI y Ejemplos. (n.d.). Retrieved May 18, 2025, from https://imaginaformacion.com/tutoriales/funciones-dax-power-bi

Referencia de DAX función - DAX / Microsoft Learn. (n.d.). Retrieved May 18, 2025, from https://learn.microsoft.com/es-es/dax/dax-function-reference

Tutorial de Power BI DAX para principiantes / DataCamp. (n.d.). Retrieved May 18, 2025, from https://www.datacamp.com/es/tutorial/power-bi-dax-tutorial-for-beginners