Plenumsregning

$$\frac{5.3!}{1}$$
, $\frac{1}{2}$, $\frac{3}{5}$

$$\frac{5.1!}{7}$$
 b) $\int (x) = e^{x^2} \ln x$, i punkt $x = 2$.

x² er kont. overatt, og e ex kont. overatt. Derfor er den sammen sætte funksjonen e x² kont. overatt.

In x er kont, der den er def., dvs. for alle positive x. Siden x=2>0, er ln x hont. i x=2. Dermed er produktet e^{x^2} ·ln x=f(x) kont. i x=2.

9) c)
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{noir } x \neq 0 \\ 0 & \text{noir } x = 0 \end{cases}$$

 $\sin \frac{1}{x}$ er kont. når den er definert, dvs. for $x \neq 0$. Dermed er eneste mulige diskontinuitet for f i x = 0. Vil vise at f er diskont. ved å finne en fólge $\{\frac{1}{X_n}\}$ som konvergerer mot 0, men som oppfyller $\sin \frac{1}{X_n} = 1$ for alle $n \in IN$.

$$\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi \quad \text{for alle n}$$

$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi} \quad \text{, ne N}$$

for X_n trave def. som over for $n \in \mathbb{N}$. Do vil $X_n \xrightarrow[n \to \infty]{} 0$, men $\sin X_n = \sin \left(\frac{\pi}{2} + 2n\pi\right) = 1$

for alle nEN. Dermed or

 $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} 1 = 1 \neq 0 = f(0)$

så f er diskontinuerlig i X=0.

5.2: 1)b)
$$f(x) = e^{x} - x - 2$$
, [0,2]:

f(x) er en kont. funksjon.

$$f(0) = e^{0} - 0 - 2 = 1 - 2 = -1 < 0$$

$$f(2) = e^{0} - 2 - 2 = e^{0} - 4 > 0$$

$$e^{0} = 2 - 3 - 2 = e^{0} - 4 > 0$$

Skjæringssetningen gir at f har et nullpunkt (oller flere) i [0,2].

3.) b)
$$f(x) = \sin x$$
, $g(x) = x^3$, $i \left[\frac{\pi}{6}, \frac{\pi}{3} \right]$:

Jog g er kont. Junksjoner.

$$g\left(\frac{\pi}{6}\right) = \left(\frac{\pi}{6}\right)$$

$$f\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \implies g\left(\frac{\pi}{3}\right) > f\left(\frac{\pi}{3}\right)$$

$$g\left(\frac{\pi}{3}\right) = \left(\frac{\pi}{3}\right)^{3}$$

Korollaret til skjæringssetningen gir at f og g skjærer hverandre i (7, 7).

6.) La
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$= x^n \left(a_n + \underbrace{a_{n-1}}_{x} + \dots + \underbrace{a_0}_{x^n}\right)$$
trave et polymonn au grad n (så $a_n \neq 0$). Hnis
$$n \text{ ex et oddetall vil faltoren } x^n \text{ ever endre}$$

$$fortegn \text{ ned } x \text{ (siden } (-1)^n = (-1)^{2k+1} = ((-1)^2)^k (-1)$$

$$k \in \mathcal{U} = -1$$

For store verdier av |x| vil parantesfaktoren ha samme fortegn som a_n (siden $\frac{a_{n-1}}{x}$,..., $\frac{a_o}{x^n}$ vil gå mot 0 når $|x| \to \infty$). Detfor fins det et stort tall $x_o > 0$ s. a. $f(x_o)$ og $f(-x_o)$ har motsatte fortegn. Siden f er kont. overatt, spes. på $[-x_o, x_o]$, har den et nullpunkt i intervallet $(-x_o, x_o)$, des. minst en reel rot.

10.) D: g(x)=høyde over havet x cm inn på sithelln

h(x) = hoyde over havet x cm etter passerte halve sirkelen

La a voire lengdon au halve sitteden,

g, h er kont. funk. (ingen hopp i høyde)

på [0, a].

Hvis g(0) = h(0), we ex det

ingenting à vise (x=0, x=a er diametre

motsatte, og h (0) suaver til h.o.h. i pkt. a).

Anta at g(0) < h(0) (his omvenet; la g og h bytte plass)

Da er g(a) > h(a), og dermed fins, fra $(\lambda(0))$ $(\beta(0))$

korollard hl skjænnysetningen, $c \in (0, a)$ 5.a. q(c) = h(c). Dis. fins to diametrate mobatle punkter

(c, a+c) s.a. h.o.h. er den samme.

(c) otc

(c) D: Kart

(c) otc

(c) O

(c) O

(c) Fiel, h.o.h. 10m

Fiel, h.o.h. 5m

$$5.3:1)c)$$
 $f(x) = tan(x^2+1)$ på $[0, \frac{1}{\sqrt{2}}]:$

[0, 12] er et lukket og begrenset intervall.

$$x^2 + 1$$
 for $x = 0$; 1

$$x^2 + 1$$
 for $x = \frac{1}{\sqrt{2}}$: $\frac{1}{2} + 1 = \frac{3}{2}$

Så at f er kont på $[0, \frac{1}{2}]$ er dat samme som at: g(y) = tony er kont, på $[1, \frac{3}{2}]$. Men det er jo $g(tany = \frac{siny}{cony})$ og cony er ulik 0 for alle $y \in [1, \frac{3}{2}]$ Denned gir ekstremalverdisetningen at f har max og minverdier $i[0, \frac{1}{12}]$.

2) a) $f(x) = \frac{1}{x}$: g(x) = 1 og h(x) = x er kont. overalt Fra Sef. 5.1.5 er dæ $f(x) = \frac{g(x)}{h(x)}$ kont. (der vi bruker Def. 5.1. 11 siden f ikke er def. der h(x) = 0). b) Nåt X->0, vil $\pm (= f(x)) -> \infty$, så derfor er f ikke begrenset på [-1,1].

Fordi økstremalverdisetningen sier att funksjonen må være <u>definert</u> på et lukket og begrenset intervall.

J er ikke definert på hele [-1,1] (ikke def. i 0),
så elestremal-verdi-setningen kan ikke brukes i dette # filfellet.

- 3.) f: R-> R, kont., lim f(x), lim f(x)
- a) obsisterer. <u>Visi</u> for begrevoet.

 $\int_{X\to\infty} f(x) = a_{+}.$

lim f(x) = a.

La $\varepsilon = 1$. De fins (fre def. av lim) $N_{+} \in \mathbb{N}$ s.a. $\times \gg N_{\perp} \implies |f(\times) - a_{+}| < \varepsilon = 1$

Tilsvarende fins N_ ∈ N s.a. X ≤ N_ ⇒ $|f(x)-a_{-}|<1$ (= E). for begrenset (av |a+)+1 og |a-|+1 hhv.) på hhv.

 $(-\infty, N_{-})$ og $\mathbb{E}N_{+}, \infty$).

Holder derfor å begrense N₊ [N₋, N₊]. Jerkont. på

(N_, N+) og dette er et lukket og begrenset intervall der f er definert. Dermed gir Set. 5.3.2 at f er begrenset her, si av M. Da er & begrenset au max { |a_+|+1, |a_+|, M}.

b) j:R-DR, kont., både pos. og neg. verdier.

 $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 0. \text{ Vis: } f \text{ how max og}$

bar pos. og neg. verdier, så det f_{1} X_{+} , X_{-} s.a. $f(x_{+}) > 0$, $f(x_{-}) < 0$