Logrank test for k samples	
Logrank test	
We have introduced the logrank test and weighted logrank test for comparing two	
survival time distributions. • We can extend the tests to compare survival	
distributions of more than two groups.	
An example	_
BMT data of 137 bone marrow transplant patients extracted. (SAS manual)	
At the time of transplant, each patient is classified into one of three risk categories: ALL	
(acute lymphoblastic leukemia), AML (acute myeloctic leukemia)-Low Risk, and AML-High	
Risk. • Of interest to compare the disease-free survival	
time for patients in three different risk categories.	

Hypothesis

- Suppose we wish to simultaneously compare survival functions of k ($k \ge 2$) populations.
- Consider the following two-sided hypothesis.

 $H_0: S_1(t) = S_2(t) = \dots = S_k(t)$ for all $t \in \tau$ H_1 : at least one of $S_i(t)$'s is different for some $t \in \tau$.

Data

- The data available to test the above hypothesis consists of independent right-censored samples for each of the \boldsymbol{k} populations.
- Let $t_1 < t_2 < \dots < t_D$ be the distinct event times in the pooled sample.
- At time t_i define
- $-Y_i$:total # of subjects at risk just prior to t_i among all k samples
- d_i : total # of deaths at t_i among all k samples
- Y_{ij} : total # of subjects at risk from the jth sample just prior to t_i d_{ij} : total # of deaths at t_i from the jth sample

 Note that $Y_i = \sum_{j=1}^k Y_{ij}$, and $d_i = \sum_{j=1}^k d_{ij}$.

Data at time t_i

ullet At each event time t_i , we have the following contingency table for all subjects in the risk set:

Group 1 Group k Total Death d_{ik} d_i $Y_{i1}-d_{i1}$ $Y_{ik} - d_{ik}$ Total

Logrank test statistics

· Given the margins of the contingency table at time t_i , if the null hypothesis is true, then

 (d_{i1}, \cdots, d_{ik}) \sim Multivariate Hypergeometric

• Under H_0 ,

$$e_{ij} = d_i \frac{Y_{ij}}{Y_i}$$

$$v_{ij} = d_i \frac{Y_{ij}}{Y_i} \frac{Y_{i-1}Y_{ij}}{Y_{i-1}} \frac{Y_{i-1}d_i}{Y_{i-1}}$$

Test Statistic

• For each group j = 1, ..., k, define

$$Z_j = \sum_{i=1}^D W(t_i) \left\{ d_{ij} - \frac{Y_{ij}}{Y_i} d_i \right\}$$

- $-Z_j$ measures the difference between observed and expected (under null hypothesis) for group j.

• Note that
$$Z_1,Z_2,\dots,Z_k$$
 are linearly dependent that
$$\Sigma_{j=1}^k Z_j = \Sigma_{j=1}^k \Sigma_{i=1}^D W(t_i) \left\{ d_{ij} - \frac{\gamma_{ij}}{\gamma_i} d_i \right\} = 0.$$

- The test statistic is constructed by selecting k-1 of the Z_j 's.
- The test statistics is the same for any k 1 of the Z_j's.
 Without loss of generality, we take the first k 1 elements with Z = (Z₁,...,Z_{k-1})^T.

Test Statistic

- Let $\mathbf{Z} = (Z_1, ..., Z_{k-1})^T$.
- Let the variance-covariance matrix of Z be $\Sigma = \left(\sigma_{jj'}\right)_{j,j'=1}^{k-1}.$
- Then Log-rank test statistics for comparing \boldsymbol{k} survival curves is defined as

$$Logrank = \mathbf{Z}^T \mathbf{\Sigma}^{-1} \mathbf{Z}.$$

• Under null hypothesis,

Logrank=
$$\mathbf{Z}^T \mathbf{\Sigma}^{-1} \mathbf{Z} \to \chi_{k-1}^2$$
.

Summary

- Log-rank test for comparing two or more groups
- Weighted Log-rank test by including weights
- Powerful nonparametric test for survival data