The ShorTeX package

Trevor Campbell, Jonathan Huggins, and Jeff Negrea

Updated April 18, 2023

Abstract

The purpose of the ShorTeX (meta) package is to make the process of typesetting typical mathematical documents in LaTeX more efficient, and the resulting code easier to read. It achieves this by (1) providing an extensive, internally consistent, and easy to learn set of macro shorthands and custom commands, and (2) incorporating a set of packages that are dedicated to reducing manual coding effort.

Contents

		ge and package options	
2	Sho	rthands for existing commands	
	2.1	Environments	
	2.2	Delimiters	
	2.3	Font styles and accents	
	2.4	Greek characters and variants	
	2.5	Referencing figures, equations, tables, etc	
	2.6	Automatic equation numbers	
3	Cus	tom macros	
	3.1	Shrinking whitespace in math	
	3.2	Wide bar	
	3.3	Commenting	
	3.4	Sets and set operations	
	3.5	Linear algebra	
	3.6	Calculus	
	3.7	General mathematics	
	3.8	Common words and names with accents	
	3.9	Probability and statistics	
		L_p Spaces and Operators	
		Paired Delimiters	
4	Exa	mple Document	1

1 Usage and package options

Include ShorTeX by adding \usepackage{shortex} to the preamble of your document. ShorTeX will include and configure many common packages for you (e.g., graphicx, subcaption, hyperref, algorithm, algpseudocode, amsmath, among others), so you do not need to explicitly include and set these up yourself. If you are writing a document that must use a specific style file (e.g., for a conference or journal) that itself includes some of these packages, we recommend editing those style files to remove the package imports.

The ShorTeX package has a few options:

manualnumbering Do not include autonum.sty. This disables automatic equation numbering.

blackhypersetup Switch hyperlinks, citations, references, etc. to be typeset in black font. The default is dark blue.

You must compile your document 4 times when using ShorTeX to ensure that equation numbers and references update properly.

2 Shorthands for existing commands

2.1 Environments

LATEX documents often includes a lot of verbose code related to creating environments (\begin{blah}...\end{blah}). ShorTeX provides a set of shortened macros for common environments. Note that all theorem-like environments (theorem, lemma, proposition, etc.) are numbered by default; unnumbered versions can be obtained by appending a u. For example, \bthmu...\ethmu creates an unnumbered theorem environment, while \blemu...\elemu creates an unnumbered lemma environment.

Environment	Syntax
abstract	\babs\eabs
itemize enumerate description	\bitems\eitems \benum\eenum \bdesc\edesc
algorithm algorithmic	\balg\ealg \balgc\ealgc
table subtable tabular	\btab\etab \bsubtab\esubtab \btabr\etabr
figure figure* subfigure	\bfig\efig \bfigs\efigs \bsubfig\esubfig
center	\bcent\ecent
align inline math	\[\] \$\$

Note: These are numbered theorem-like environments. For unnumbered, append a u: e.g., bthmu...ethmu.

theorem	\bthm\ethm
lemma	\blem\elem
proposition	\bprop\eprop
corollary	\bcor\ecor
conjecture	\bconj\econj
definition	\bdef\edef
assumption	\bassump\eassump
example	\bexa\eexa
remark	\brmk\ermk
fact	\bfact\efact
exercise	\bexer\eexer
proof	\bprf\eprf
proofof	\bprfof{\cref{theorem_label}}\eprfof
matrix	\bmat\emat
bmatrix	\bbmat\ebmat
pmatrix	\pbmat\epmat

2.2 Delimiters

Mathematics in LATEX often includes quite a few delimiters (parentheses, brackets, curly brackets, etc.). A very common usage of these involves the \left...\right commands for automatic sizing. One can also use \bigl...\bigr, \Biggl...\Biggr...\B

Description	Syntax
automatic	\lt\rt
big	\lb\rb
Big	\1B\rB
bigg	\lbg\rbg
Bigg	\lBg\rBg

These can be applied to all the usual delimiter characters. The following tables demonstrate usage for automatically sized delimiters.

Description	Example	Text style	Display style
parentheses	\lt(\frac{x}{y}\rt)	$\left(\frac{x}{y}\right)$	$\left(\frac{x}{y}\right)$
curly brackets	$\left(\frac{x}{y}\right)$	$\left\{\frac{x}{y}\right\}$	$\left\{\frac{x}{y}\right\}$
square brackets	<pre>\lt[frac{x}{y}\rt]</pre>	$\left[rac{x}{y} ight]$	$\left[\frac{x}{y}\right]$
pipes	$\left \int_{x}^{y} \left \right $	$\left \frac{x}{y} \right $	$\left \frac{x}{y}\right $
double pipes	$\left \int_{x}^{y} \left \right dx$	$\left\ \frac{x}{y} \right\ $	$\left\ \frac{x}{y} \right\ $
angle brackets	\lt <frac{x}{y}\rt></frac{x}{y}\rt>	$\left\langle \frac{x}{y} \right\rangle$	$\left\langle \frac{x}{y} \right\rangle$

2.3 Font styles and accents

Applying accents (e.g., hats \widehat{a} , tildes \widetilde{a} , bars \overline{a}) and changing fonts (e.g., double-stroke \mathbb{A} , caligraphic \mathcal{A} , and bold \mathbf{A}) is quite cumbersome in standard LaTeX. For example, the code to make a tilde caligraphic \mathbb{A} , $\widetilde{\mathcal{A}}$ is \widetilde{\mathcal{A}}. By itself that code is not too bad, but many such characters in a large mathematical expression results in unreadable code.

ShorTeX defines an efficient syntax for changing fonts and applying accents to characters. The syntax takes the form \f[modifiers] character, where modifiers is a set of single characters that represent font/accent modifications to character. For example, the code for tilde caligraphic A is \f[tc]A where t represents "tilde," c represents "caligraphic," and A is the character to typeset.

Note: modifiers are applied in the reverse of the order in which they appear; the modifier furthest to the right is applied first. This matches the order that the corresponding commands would appear in TeX code.

Style/Accent	Modifier	Example	Typeset Example
caligraphic (mathcal)	С	\f[c]A	\mathcal{A}
bold (mathbf)	k	f[k]A	$oldsymbol{A}$
doublestroke (mathbb)	d	f[d]A	\mathbb{A}
hat (widehat)	h	f[h]A	\widehat{A}
tilde (widetilde)	t	f[t]A	\widetilde{A}
bar (widebar)	Ъ	\f[b]A	\overline{A}

These style modifiers can be combined; the underlying code is flexible enough that it will happily produce a wide variety of combinations, including those that aren't very sensible.

Style/Accent	Modifier	Example	Typeset Example
caligraphic tilde	ct	\f[ct]A	$\widetilde{\mathcal{A}}$
bold hat	kh	f[kh]A	\widehat{A}
hat tilde	ht	\f[ht]A	$\widehat{\widetilde{A}}$
tilde hat	th	f[th]A	$\widetilde{\widehat{A}}$

We can avoid typing [] for commonly used patterns by parsing the font style string in advance. For example, if we use "bold hat" symbols frequently, we might want to use commands like \fkh... instead of \f[kh].... We can accomplish this using the \parsefontstylestrings command, with syntax

\parsefontstylestrings{{<fstr1>}{<fstr2}...}{<alphabet>}

For example, to define "bold hat" and "caligraphic hat" styles for the characters A, B, C, and D, we would use the command

\parsefontstylestrings{{kh}{ch}}{ABCD}

and then in the LATEX document, use the commands \fkhA \fkhB \fkhC \fkhD and \fchA \fchB \fchC \fchD to obtain the following symbols:

$\hat{A}\hat{B}\hat{C}\hat{D}\hat{A}\hat{B}\hat{C}\hat{D}$

As another example, for "bold hat" applied to α , β , and γ , we would use the syntax

\parsefontstylestrings{{kh}}{\alpha\beta\gamma}

and then in the LATEX document, use the commands \fkhalpha \fkhbeta \fkhgamma to obtain the following symbols:

$$\widehat{\alpha}\widehat{\beta}\widehat{\gamma}$$

For convenience we also provide a few common alphabets of symbols for use in the \parsefontstylestrings command. Note that not every Greek character has an uppercase version (in cases where it is identical to its Roman counterpart).

Syntax	Characters
\lowercaseRoman \uppercaseRoman \lowercaseGreek	abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ alpha,beta,gamma,delta,epsilon,zeta,eta,theta
\uppercaseGreek	iota,kappa,lambda,mu,nu,xi,omicron,pi,rho sigma,tau,upsilon,phi,chi,psi,omega Gamma,Delta,Theta,Lambda,Xi,Pi,Sigma Upsilon,Phi,Psi,Omega

2.4 Greek characters and variants

ShorTeX defines a number of shorthands for Greek characters and variants.

Letter	Syntax	Symbol
epsilon	\eps	ϵ
upsilon	\ups	v
variant epsilon	\veps	ε
variant theta	$\$ vtheta	ϑ
variant pi	\vpi	ϖ
variant rho	\vrho	ϱ
variant sigma	\vsigma	ς
variant phi	\vphi	φ
variant kappa	\vkappa	\varkappa

2.5 Referencing figures, equations, tables, etc.

ShorTeX includes the cleveref package, which simplifies the process of typesetting references. Use the \cref command to automatically typeset the names of the objects you reference (including properly handling multiple references). For example, if \label{fig:first} is applied to the first figure in the document,

In \cref{fig:first}, you can see...

would typeset as "In Figure 1, you can see..." Similarly, if \label{thm:first} references a theorem and \label{second_result} references a lemma,

\cref{thm:first,lem:second} show that...

will typeset as "Theorem 1 and Lemma 2 show that..." This works for many different reference types (Figure, Algorithm, Equation, Table, etc), and can be extended if needed. See the cleveref documentation at https://ctan.org/pkg/cleveref?lang=en and the homepage at https://www.dr-qubit.org/cleveref.html for more information.

2.6 Automatic equation numbers

ShorTeX includes the autonum package, which simplifies the process of equation numbering. Typically when you typeset equations, you have to choose between \$...\$, \$\$...\$\$, \begin{align}...\end{align}, \begin{aligned}...\end{aligned}, \begin{equation}...\end{equation}, not to mention starred versions of those environments and \nonumber/\notag commands, depending on whether/where you want equation numbers,

The autonum package automatically decides which equations to provide numbers based on which equations you reference. So when using ShorTeX, you only need two commands for math mode: single dollar signs \$...\$ for inline math, and align environments (redefined in ShorTeX to be \[...\]) for display math.¹

For example, if you create the following display math,

```
\[
   a+b = c \label{eq:the_equation}
\]
```

then if you use the command \cref{eq:the_equation} somewhere in the document, that equation will automatically be assigned a number. If not, it won't get a number. See the autonum package documentation https://ctan.org/pkg/autonum?lang=en for more information.

3 Custom macros

3.1 Shrinking whitespace in math

The command \squish{<frac>} in math mode enables you to shrink whitespace in mathematics, where <frac> represents the fraction of whitespace reduction. Below, the first line is regularly spaced, the second line has \squish{0.5}, and the third has \squish{0.0}.

$$\sqrt{\frac{1^2}{0.111222}}(0.111222\times1.111163+0.066987^2\times0.111222)-1=\sqrt{0.111222}$$

$$\sqrt{\frac{1^2}{0.111222}}(0.111222\times1.111163+0.066987^2\times0.111222)-1=\sqrt{0.111222}$$

$$\sqrt{\frac{1^2}{0.111222}}(0.111222\times1.111163+0.066987^2\times0.111222)-1=\sqrt{0.111222}$$

The code for \squish was taken from https://tex.stackexchange.com/questions/467942/how-to-squeeze-a-long-equation.

¹There are differences between how align and other math display environments typeset equations. I have not ever encountered a case where it mattered much. If you are very picky about typesetting, note that ShorTeX does not *disable* any functionality, so you can use other environments anywhere you feel it is necessary.

3.2 Wide bar

ShorTeX provides the \widebar command to typeset a wide bar accent on top of a character (similar to the usual \widebat and \widebat and \widebar commands). Compare to the usual \bar and \overline commands:

widebar: \overline{A} overline: \overline{A} bar: \overline{A}

The code for \widebar was taken from https://tex.stackexchange.com/questions/16337/can-i-get-a-widebar-without-using-the-mathabx-package.

3.3 Commenting

ShorTeX defines two types of comments that can be used (*remarks* and *problems*), and provides an inline and margin style for each.

Comment Type	Syntax
remark	\RMK{Example remark}
margin remark	<pre>\mRMK{Example margin remark}</pre>
problem	\PRB{Example problem}
margin problem	<pre>\mPRB{Example margin problem}</pre>

Here is an example of how these look in a typical paragraph:

Lorem ipsum dolor sit amet (!) Here is an inline remark, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation (!!) Here is an inline problem ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in ⁽¹⁾ voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat ⁽⁽²⁾⁾ cupidatat non proident, sunt...

⁽¹⁾ Here is a margin remark

⁽⁽²⁾⁾ Here is a mar-

3.4 Sets and set operations

Name	Syntax	Symbol
reals	\reals	\mathbb{R}
rationals	\rats	\mathbb{Q}
integers	\ints	$\mathbb Z$
natural numbers	\nats	\mathbb{N}
complex numbers	\comps	\mathbb{C}
(big) intersection	\intersect, \Intersect	\cap , \bigcap
(big) union	\union, \Union	\cup , \bigcup
(big) disjoint union	\djunion, \djUnion	\sqcup , \sqcup
volume	\vol	vol
diameter	\diam	diam
boundary	\boundary	∂
closure	\closure	cl
span	\spann	span
cone	\cone	cone
convex hull	\conv	conv

To discuss:

$$\overline{\mathbb{R}}\mathbb{R}_{+}\overline{\mathbb{R}}_{+}\mathbb{R}_{++}\overline{\mathbb{R}}_{++}\mathbb{Z}_{+}\mathbb{Q}_{+}\mathbb{N}_{0}\mathcal{M}\mathcal{M}_{1}\mathcal{P}$$

3.5 Linear algebra

Name	Syntax	Symbol
trace	\tr A	$\operatorname{tr} A$
rank	\rank A	${\rm rank}A$
transpose	Α\T	A^{\top}
inverse transpose	$A \nT$	$A^{-\top}$
diagonal	\diag A	$\operatorname{diag} A$
adjoint	A\adj	A^\dagger
spectrum	\spec A	σA
kronecker product	A\kron B	$A \otimes B$

3.6 Calculus

$$\mathrm{d}\nabla\frac{\mathrm{d}x}{\mathrm{d}y}\frac{\mathrm{d}^2x}{\mathrm{d}y^2}\frac{\mathrm{d}}{\mathrm{d}y}\frac{\partial x}{\partial y}\frac{\partial^2x}{\partial y^2}\frac{\partial^ix}{\partial y^i}\frac{\partial}{\partial y}\frac{\partial^2a}{\partial x\partial y}\frac{\partial^2}{\partial x\partial y}\frac{\partial^2}{\partial x\partial y}$$

3.7 General mathematics

$$1 \operatorname{sgn} 3 \times 10^5 : |$$

improved square root

text in math?

 $:==: \frac{1}{2}\frac{1}{3}\frac{1}{4} \arg \max \operatorname{ess sup arg min ess inf}$

3.8 Common words and names with accents

càdlàg Grönwall Rényi Hölder Itô Nyström Schätten Matérn Fréchet Lévy

3.9 Probability and statistics

i.i.d. a.s. a.e.

 $\overset{a.s.}{\to} \overset{p}{\to} \overset{d}{\to} \overset{d}{=} \overset{a.s.}{=} \mathbb{PE} \mathcal{L} \operatorname{Var} \operatorname{Cov} \operatorname{Corr} \operatorname{supp} \sim \overset{\operatorname{iidind}}{\sim} \bot$

 $\label{eq:local_potential} \mathcal{NTWIW} Lap \chi^2 Unif Gam Gumbel GEV Categorical Inv Gam Poiss \\ Exp Beta Beta' Dir Binom Multi Bern Geom Cauchyv MF \\ BeP DP CRPPY GPPPBPBPPPPN \GammaPLPObs CRMN CRM$

$$\begin{aligned} \mathbf{D}_{\mathrm{KL}}(q||p)\mathbf{D}_{\mathrm{H}}(q,p)\mathbf{D}_{\mathrm{TV}}(q,p)\mathcal{H}(q) \\ \mathbf{D}_{\mathrm{H}}^{\mathrm{a}}(q,p)\mathbf{D}_{\mathrm{TV}}^{\mathrm{a}}(q,p)\mathbf{D}_{\mathrm{KL}}^{\mathrm{a}}(q||p) \end{aligned}$$

3.10 L_p Spaces and Operators

Description	Example	Text style	Display
$\overline{L_p \text{ space}}$	\Lp{2}	L_2	L_2
L_p space for specified measure	$\label{lem:lpmeas} $$ \propto f(h) = f(h) $$ (h) $	$L_2(\widehat{\mu})$	$L_2(\widehat{\mu})$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$L_2\Big(\widehat{\mu}\Big)$	$L_2(\widehat{\mu})$
L_p norm	\Lpnorm{\f[h]\Gamma}{2}	$\ \widehat{\Gamma}\ _{L_2}$	$\ \widehat{\Gamma}\ _{L_2}$
	\Lpnorm*{\f[h]\Gamma}{2}	$\left\ \widehat{\Gamma} \right\ _{L_2}$	$\left\ \widehat{\Gamma} \right\ _{L_2}$
	\Lpnorm*{\Gamma}{2}	$\ \Gamma\ _{L_2}$	$\ \Gamma\ _{L_2}$
	\left\Vert{\f[h]\Gamma}\right\Vert_{2}	$\left\ \widehat{\Gamma} \right\ _2$	$\left\ \widehat{\Gamma} ight\ _2$
	\left\Vert{\Gamma}\right\Vert_{2}	$\left\ \Gamma\right\ _2$	$\left\ \Gamma\right\ _2$
L_p norm for specified measure	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ \widehat{\Gamma}\ _{L_2(\widehat{\mu})}$	$\ \widehat{\Gamma}\ _{L_2(\widehat{I})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\left\ \widehat{\Gamma}\right\ _{L_2(\widehat{\mu})}$	$\ \widehat{\Gamma}\ _{L_2($
L_p inner product	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \widehat{\Gamma}, \Gamma \rangle_{L_2}$	
	\Lpinner*{\f[h]\Gamma}{\Gamma}{2}	$\left\langle \widehat{\Gamma}, \Gamma \right\rangle_{L_2}$	$\left\langle \widehat{\Gamma}, \Gamma \right\rangle$
L_p inner product for specified measure	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \widehat{\Gamma}, \Gamma \rangle_{L_2(\widehat{\mu})}$	$\langle \widehat{\Gamma}, \Gamma \rangle_L$
•	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \widehat{\Gamma}, \Gamma \rangle_{L_2(\widehat{\mu})}$	$\left\langle \widehat{\Gamma}, \Gamma \right\rangle_I$

3.11 Paired Delimiters

You can specify a bracket size using * for $\ensuremath{\texttt{left}}$ and $\ensuremath{\texttt{right}}$ or one of the standard size choices ($\ensuremath{\texttt{big}}$, $\ensuremath{\texttt{Bigg}}$).

Description	Example	Text style	Display style
Round brackets	\rbra{\frac{x}{y}}	$\left(\frac{x}{y}\right)$	$(\frac{x}{y})$
Curly brackets	\cbra*{\frac{x}{y}}	$\left\{\frac{x}{y}\right\}$	$\left\{\frac{x}{y}\right\}$
Square brackets	\sbra[\bigg]{\frac{x}{y}}	$\left[rac{x}{y} ight]$	$\left[\frac{x}{y}\right]$

Many other bracket-like, semantic commands are also available:

Description	Example	Text style	Display style
Absolute value	$\abs{\frac{x}{y}}$	$\left \frac{x}{y}\right $	$ \frac{x}{y} $
Set	$\ensuremath{\texttt{x}}{y}, \ensuremath{\texttt{y}}{z}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$	$\{\frac{x}{y}, \frac{y}{z}\}$
Floor	\floor{\frac{x}{y}}	$\lfloor \frac{x}{y} \rfloor$	$\lfloor \frac{x}{y} \rfloor$
Ceiling	$\c \frac{x}{y}$	$\lceil \frac{x}{y} \rceil$	$\lceil \frac{x}{y} \rceil$
Norm	<pre>\norm{\frac{x}{y}}</pre>	$\ \frac{x}{y}\ $	$\ \frac{x}{y}\ $
Inner product	$\label{linear} $$ \displaystyle \lim_{x}{y}}{\frac{y}}{z}}$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$
Cardinality	\card{\f[h]A}	$ \widehat{A} $	$ \widehat{A} $

The norm and inner product commands also have versions with a subscript argument:

Description	Example	Text style	Display style
Norm with subscript	$\verb normsub*{ \{x}{y}}{2} $	$\left\ \frac{x}{y} \right\ _2$	$\left\ \frac{x}{y} \right\ _2$
Inner product with subscript	$\label{linersub*} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\langle \frac{x}{y}, z \right\rangle_2$	$\left\langle \frac{x}{y}, z \right\rangle_2$

4 Example Document

TODO: a full example in basic latex versus shortex