

FINAL DESIGN REPORT

FALL 2014

Design Team: Ana Gouveia, Matthew Laskey, Zach Zavalianos

TABLE OF CONTENTS

Contents

Table of Contents	2
Project Summary	3
Design Team	4
Company Information	4
Design Criteria	5
Design Criteria and Constraints	5
References and Regulations	5
Methods of Design and Analysis	6
Building Information and Requirements	6
Classifications	6
Building Layout	6
Loads	6
Lateral Load Resisting Systems	7
Floor Systems	7
Roof Systems	7
Exterior Wall Systems	7
Scope of Work	8
Overview	8
Members	8
Lateral Load Resisting Systems	9
Composite Deck	9
Roof Design	9
Connections	9
Schedule	9
Cost Estimate	9
Appendix A: Calculations	1
Appendix B: Drawings	2

PROJECT SUMMARY

Project Summary

Project Riverside is a two-story, steel-framed, office building located in Lowell, MA. GLZ Design has assigned the design team composed by Structural Engineers: Matthew Laskey, Ana Gouveia and Zachary Zavalianos to perform the structural analysis, evaluation and design of this project.

Guided by local regulations, the design team used of the most up to date references, associated to outstanding optimization analysis, along efficient construction practices as the project's design criteria. A more accurate overview of these values can be found in page 7 of this report. Building classifications and initial information can be found in page 8 of this report.

Riverside's design process started through a complete identification vertical and lateral loads, which were further analyzed by the Load & Resistance Factor Design (LRFD). These initial values were used in the preliminary-sizing of project horizontal and vertical members.

In the second phase of the project, these preliminary members were further evaluated and analyzed. Final framing plans for both first and roof floor were obtained. Two different lateral load resisting systems (LLRS) were designed: a moment-frame resists longitudinal loads, and braced-frames are responsible for transverse loads. Given building risk categories, per code used, ordinary moment-frame and braced-frame were allowed in the design, reducing the project's final budget.

In the project's final phase, composite floor deck, roof joists, girders and diaphragms, and connections were designed. For quality assurance and control, all of the project's information, calculations, analysis and drawings were further back checked. The final results of this project can be found in this report. Calculations, Analysis and Drawings are referred in its respective section on the report and can also be found at this report's appendixes.

GLZ Design appreciates your business and hope to continue serving your Structural Engineering needs in the future.

Sincerely,		
Ana Gouveia, EIT	Matt Laskey, EIT	Zac Zavalianos, EIT

GLZ Design

Always Going Farther

DESIGN TEAM

Design Team

We are pleased to introduce you Riverside's design team:

MATTHEW LASKEY, EIT STRUCTURAL ENGINEER

ANA GOUVEIA, EIT STRUCTURAL ENGINEER

ZAC ZAVALIANOS, EIT STRUCTURAL ENGINEER

m.laskey@yahoo.com

Matt continued working as a Structural Engineer at CDM Smith after his summer internship at the firm Matt has a bachelor's degree in Environmental and Resources Economics from UNH and a Civil Engineering degree from UMass Lowell.

acgouveia@live.com

Ana was born in Brazil where she started her college education in Civil Engineering.

As a challenge-seeker, she immigrated to Massachusetts in 2009. Since then studied at Harvard University Extension School, acquired an associate's degree in Engineering from Bunker Hill Community College, a bachelor's degree in Civil Engineering from the University of Massachusetts Lowell.

Zachary_Zavalianos@student.uml.edu

Hardworking and enthusiastic structural engineer with experience in design and inspection of bridge structures. Certified in bridge inspection and proficient in inspection databases such as PONTIS and 4-D, as well as MDX and CSI-bridge analysis programs. Seeking to progress career by obtaining a masters degree and working towards a PE license through the upcoming years.

Company Information

GLZ Design
Always Going Farther

GLZ Design, LLC

1 University Ave, Lowell, MA www.glzdesign.com

DESIGN CRITERIA

Design Criteria

Design Criteria and Constraints

The following figure represents the design criteria which guided the team:

Figure A - Riverside's guiding criteria.

In order to satisfy the above criteria and constraints the following items were used:

References and Regulations

The following literature was used in reference and support of the work done in this project. Please note that names in parentheses are abbreviations commonly cited throughout this project.

- Massachusetts Building Code (CMR 780)
- 2012 International Building Code (2012 IBC)
- Minimum Design Loads for Buildings and Other Structures, (ASCE/SEI 7-10)
- 14th Edition of the Steel Construction Manual (AISC 14th)
- American Concrete Institute Manual (ACI)

DESIGN CRITERIA

- 2007 Steel Deck Institute Design Manual (2007 SDI)
- Vulcraft Joists and Girders (VJG)
- 5th Edition Structural Steel Design, McCormac & Csernak (SSD 5th)

Methods of Design and Analysis

The following methods of design and analysis were thoroughly applied to the different parts of this project.

- Loads: Load & Resistance Factor Design (LRFD) and ASCE 7-10 guidelines.
- Wind Loads: Directional Method (ASCE 7-10)
- Seismic Loads: (ASCE 7-10)
- Preliminary-Sizing: Principles of Structural Engineering Analysis
- Lateral Load Resisting Systems: Direct Analysis Method (DAM) and Effective Length Method (ELM)
- Composite Deck
- Roof Elements
- Connections

Building Information and Requirements

Classifications

- Occupancy: Group B, Office
- Construction: Type IIB
- · Risk Category: II
- Seismic Site Class: C
- Environmental Exposure: C

Building Layout

- Total Area = Approx. 17,000 sf (gross)
- Floor Plan: 110 ft. x 74ft
- Column Grid: 36 ft. x 24 ft.

Loads

- The building shall be designed in accordance with 2012 IBC structural provisions and as modified by the Massachusetts Building Code (CMR780).
- Snow, wind, and seismic loads shall be calculated for the Lowell, MA location.

DESIGN CRITERIA

• Minimum Uniform Live Load shall be 100 psf.

Lateral Load Resisting Systems

- Braced Frame in one direction
- Moment Frame in opposite direction
- Rigid Floor and Roof Diaphragms

Floor Systems

- 4,000 psi concrete Floor
- Metal deck
- Composite Steel W-shaped A992 beams
- Steel Girders (W)

Roof Systems

- Single-ply 60 mil EPDM membrane
- 4" rigid insulation
- Metal deck
- Option 1: Open-web steel joists w/ steel girders (W)

Exterior Wall Systems

- Primary Support: 6" Metal stud
- Exterior cladding: 2" Exterior Insulated Finishing Systems
- Fiberglass Batt. Insulation (6")

SCOPE OF WORK

Scope of Work

Overview

In order to perform this project, GLZ Design determined the criteria and team mentioned in the previous pages.

During Phase 1 of the design process (30% Submittal), members were given the naming convention mentioned in Figures 1-4 below, load evaluations and analysis were done. Calculations can be found within appendix A, Section A-1 to A-10. Preliminary sizes were determined and are catalogued in Calculations Section A-11.

During Phase 2, preliminary sizes were used to determine the building's lateral load resisting system. New member sections were obtained, results catalogued in Calculations Section A-11, and building framing plans and elevations were drafted. Drawings S-2 to S-4 can be found within appendix B. Further, the building composite deck and roof open-web joists and girders were also designed. Calculations can be found in Section A-21 and A-22, respectively.

During Phase 3, connections and other details were designed. Calculations can be found in Sections A-23 to A-24, while final drawings can be found within appendix B.

Members

The members in the project were labeled as shown in the figures below:

Figure 1 - First Floor Plan

Figure 2 - Roof Floor Plan

SCOPE OF WORK

Figure 3 - Braced-Elevation

Figure 4 - Moment Frame - Elevation

Lateral Load Resisting Systems

Through the Direct Analysis and Effective Analysis methods, two frame systems were designed. Longitudinally a braced frame can be found, while transversely the project uses of a moment frame. The designed connections calculations can be found within Appendix A, section A-30.

Connections

The designed connections calculations can be found within Appendix A, section A-40.

Composite Deck & Roof Design

Using a parallel panels to the girders the buildings composite floor consists of 6" of concrete poured in 18" g.a. steel sheets. Calculations are found in appendix A. Further, GLZ Design team determined and used of open-web joists and girders for the roof. Calculations are found in appendix A, section A-50 Additional Details.

Schedule

The project was completed within schedule.

Cost Estimate

[Removed by Professor]

APPENDIX A: CALCULATIONS

Appendix A: Calculations

- 1.1 Project Information
- 1.2 Project Loads & Combinations
- 1.3 Load Analysis: Dead, Snow and Seismic Weight
- 1.4 Wind Load Analysis: Moment and Braced Frame
- 1.5 Seismic Load Analysis: Moment-Frame
- 1.6 Seismic Load Analysis: Braced-Frame
- 1.7 Moment-Frame Internal Forces: Wind Load
- 1.8 Moment-Frame Internal Forces: Seismic Load
- 1.9 Brace-Frame Internal Forces: Wind Load
- 1.10 Brace-Frame Internal Forces: Seismic Load
- 1.11 Preliminary Sizing Summary

A-30 Lateral Load Resisting System:

- 1.12 Lateral Load Resisting System Analysis
- 1.13 Lateral Load Resisting System Analysis: Braced-Frame
- 1.14 Lateral Load Resisting System Analysis: Moment-Frame

A-40 Connections:

- 1.15 Connections: Base Plate Design
- 1.16 Connections: Gusset Plate Design
- 1.17 Connections: Moment-Connections Design
- 1.18 Connections: Shear-Connections Design
- 1.19 Member: Hanger Design
- 1.20 Connections: Hanger Connections Design

A-50 Additional Details:

- 1.21 Composite Deck Design
- 1.22 Floor Vibration
- 1.23 Roof Joists & Girders Design

Project Information

Designed by: ARGouveia **Checked by:** Matt Laskey

1. BUILDING SPECIFICATIONS:

A. CLASSIFICATIONS:

Occupancy: B Office Construction Type: II B

Risk Category:

Seismic Site Class: C
Environmental Exposure: C

Importance Factor: 1

B. BUILDING LAYOUT

Number Columns: 3 End Clearance: in ft^2 Total Area: 8140 Floor Plan: 110 ft ft 74 Х Column Grid: 36 24 ft ft

Total Height: 30 ft

Finish Floor to Fin. Floor Height: 15 ft # Stories: 2

Structural Allowance: 4 ft

C. LATERAL LOAD RESISTING SYSTEMS:

D. FLOOR SYSTEMS:

Concrete Floor Strength: 4 ksi $\gamma =$ 0.15 kcf

Concrete Floor Thickness: 6 in

Metal Deck

Composite Steel Beams: W Type: A992

Steel Girders:

E. ROOF SYSTEM

Single-ply 60 mil EPDM membrane

Rigid Insulation Thickness: 4 in

Metal Deck

Option 1: Open-web steel joists w/ steel girders (W)

W

F. EXTERNAL WALL SYSTEM

Primary Suport:Metal StudThickness:4inInsulation:Fiberglass Batt. InsulationThickness:6inExterior Cladding:Ex. Insulated Finishing SystemsThickness:2in

Designed by: ZZavalianos **Checked by:** ARGouveia

1. BUILDING LOADS AS REQUIRED BY CODE:

Loads are in accordance to: 2012 IBC

Modified by: Massachusetts Building Code (CMR780)

Snow Lowell MA
Wind Lowell MA
Seismic Lowell MA
Construction Live Load: 20 psf

Construction Live Load: 20 psf Uniform Live Load: 100 psf

2.1 BUILDING VERTICAL LOADS:

	Roof		1st Floor	
2.1. Dead Load (D)	46.5	psf	93	psf
2.2. Live Load (L)	50.0	psf	100	psf
2.3. Roof Live Load (Lr)	20.0	psf		psf
2.4. Snow Load (S)	31.5	psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)		psf		psf
2.7. Wind Load (W)	-23.5	psf		psf

Total / Service Load: 124.5 193 psf

2.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	Roof		_	1st Floor	
1. 1.4D	65.1	psf	130	.2 psf	
2. 1.2D + 1.6L + .5(Lr or S or R)	151.6	psf	271	.6 psf	
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	156.2	psf	211	.6 psf	
4. 1.2D + 1.0W + L + .5(Lr or S or R)	48.1	psf	111	.6 psf	
5. 1.2D + 1.0E + L + .2S	112.1	psf	211	.6 psf	
6. 0.9D + 1.0W	18.4	psf	83.	7 psf	
7. 0.9D + 1.0E	41.9	psf	83.	7 psf	

Controlling Load: 156.2 psf 271.6 psf

3.1 BUILDING LATERAL LOAD ON LONGITUDINAL DIRECTION: BRACED-FRAME

	R	oof			1st Floor	
2.1. Dead Load (D)		kip	_		kip	
2.2. Live Load (L)		kip			kip	
2.3. Roof Live Load (Lr)		kip			kip	
2.4. Snow Load (S)		psf			psf	
2.5. Rain Load (R)		psf			psf	
2.6. Seismic Load (E)	10.7	kip	10.7	10.4	kip	10.437
2.7. Wind Load (W)	6.4	kip	_	12.9	kip	

Total / Service Load: 17.1 psf 23.3 psf

Designed by: ZZavalianos Checked by: ARGouveia

3.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	oof	<u>_</u>	:	1st Floor
1. 1.4D	0.0	kip		0.0	kip
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	kip	C	0.0	kip
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	3.2	kip	ϵ	5.4	kip
4. 1.2D + 1.0W + L + .5(Lr or S or R)	6.4	kip	1	2.9	kip
5. 1.2D + 1.0E + L + .2S	10.7	kip	1	0.4	kip
6. 0.9D + 1.0W	6.4	kip	1	2.9	kip
7. 0.9D + 1.0E	10.7	kip	1	0.4	kip
Controlling Load:	10.7	kip	1	2.9	kip

4.1 BUILDING LATERAL LOAD ON TRANSVERSE DIRECTION: MOMENT-FRAME

	Ro	of		1st Floor
2.1. Dead Load (D)		kip		kip
2.2. Live Load (L)		kip		kip
2.3. Roof Live Load (Lr)		kip		kip
2.4. Snow Load (S)		kip		kip
2.5. Rain Load (R)		kip		kip
2.6. Seismic Load (E)	3.2	kip 8.03	12.6	kip
2.7. Wind Load (W)	9.8	kip	19.6	kip
				•

Total / Service Load: 13.0 kip 32.2 kip

4.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	loof	1st Floor
1. 1.4D	0.0	psf	0.0 psf
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf	0.0 psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	4.9	psf	9.8 psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	9.8	psf	19.6 psf
5. 1.2D + 1.0E + L + .2S	3.2	psf	12.6 psf
6. 0.9D + 1.0W	9.8	psf	19.6 psf
7. 0.9D + 1.0E	3.2	psf	12.6 psf

Controlling Load: 9.8 19.6 psf psf

Load Analysis: Dead, Snow and Seismic

Designed by: Matt Laskey **Checked by:** Zac Zavalianos

Reference: Section

3

875

ASCE

Eq/Fig/Table/Notes

7-10

875

DEAD LOAD

Roof Floor: 2nd Quantity Units **Jnit Weigh** Weight Quantity **Unit Weight** Weight Item Units Item (ksf or klf) (Area) (kip) (Area) (ksf or klf) (kip) **Concrete Slab** sf 0.075 8140 611 sf 20 Metal Deck 18 g.a sf 0.0025 20 **Metal Deck** 8140 0.0025 8140 **EPDM** sf sf 0.0155 8140 0.001 8 **Additional Load** 8140 126 Membrane sf Insulation 8140 0.006 49 0 Mechanical sf 8140 0.005 41 0 Equipment 0 Subtotal 118 0.047 118 757 0.093 757

118

Cummulative

118

W LOAD				Reference: Section	ASCE Eq/Fig/To	7-10 able/Notes	
WLOAD				1			
Exposure Factor	C _e =	0.90			Table	7-2	
Thermal Factor	C _t =	1.00			Table	7-3	
Importance Factor	I _s =	1.00			Table	1.5-2	
Ground Snow Load	ρ_{g} =	50.00	psf		Figure	7-1	
Flat Roof Snow Load	ρ_f =	31.50	psf		Eq	7.3-1	

^{*}Unit Weights per ASCE 7-10

Load Analysis: Dead, Snow and Seismic

Designed by: Matt Laskey **Checked by:** Zac Zavalianos

Reference: Section ASCE

Eq/Fig/Table/Notes

7-10

SEISMIC LOAD

12

Number of Floors:

2

Floor:			Roof					2nd		
	Item	Quantity	Units	Jnit Weigh	Weight	Item	Quantity	Units	Unit Weight	Weight
		(Area)		(ksf or klf)	(kip)		(Area)		(ksf or klf)	(kip)
	Same as dead	8140		0.047	379	Same as dead load	8140	sf	0.093	757
						Partitions	8140	sf	0.01	81
	20% Snow	8140	sf	0.0063	51					
Subtotal	430				430	838				838
Cummulative	430				430	1268				1268

Mass (kip*s^2/ft) 107 58

Wind Load Analysis

Designed by: ZZavalianos Moment and Braced-Frame Checked by: ARGouveia

WIND LOAD ANALYSIS

				Reference: Section	ASCE Eq/Fig/Table,	7-10 Notes
1. BUILDING INFORMATIO	N RELATED TO WI	ND LOAD	O ANALYSIS	26/27/28	_q,g, . u.o.c,	- Totes
Mean roof height	H _{roof} =	30	ft	Height of heigh	nest level of structur	e
Floor-Floor Height	h _n =	15	ft			
Building Length	L =	112	ft			
Building Width	W =	76 2	ft			
Number of Braces/Level Number of Moment Frame	s/Level	2				
Number of Moment Frame	Sy Level					
2. WIND EXPOSURE, ROUG	SHNESS AND OCCU	JPANCY (CATEGORY	26.4		
Occupancy Category:		В			Table	1-1
Ground Surface Roughness	::	В				26.7.2
Exposure Category:		С				26.7.2
3. ENVIRONMENTAL CHAR	ACTERISTICS AND	FACTOR	S	26.5		
Wind Speed	V =	120	mph	26.5	Figure	26.5-1A
Zone A	P _{s30} =	22.8	psf		Figure	28.6-1
Zone C	P _{s30} =	15.1	psf		Figure	28.6-1
	a ₁ =	7.6	ft	.1*W		
	a ₂ =	12	ft	.4*H _{roof}		
	a =	7.6	ft	Min Value		
	2.a =	15.2	ft			
Weighted Average for P _{s30}	:					
Longitudinal _		16.1	psf			
Transverse		16.6	psf			
4. DESIGN WIND PRESSUR	E			26.8		
Adjustment Fastar	λ =	1.4			F:	20 (1
Adjustment Factor	$\kappa = K_{zt} =$	1.4 1		26.8	Figure	28.6-1
Design wind pressure,	P _{s-longitudinal} =	22.6	kip	20.8		
Design wind pressure,	-		-			
Design wind pressure,	P _{s-transverse =}	23.3	kip			
5. LOAD APPLIED TO EACH	LEVEL			26.8		
Roof	$F_{u-longitudinal} =$	12.9	kip		Figure	28.6-1
	F _{u-transverse} =	19.6	kip	26.8	0	-
	2 3 4110 (6106 -		•			

Wind Load Analysis Moment and Braced-Frame

Designed by: ZZavalianos Checked by: ARGouveia

28.6-1

28.6-1

28.6-1 28.6-1

Level 1

$F_{u-longitudinal} =$	25.8	kip
F _{u-transverse} =	39.1	kip

6. LATERAL LOAD APPLIED TO BRACED AND MOMENT FRAME

		Roof	Level 1	
Braced Frame	(Longitudinal)	6.44	12.88	kip
Moment Frame	(Transverse)	9.78	19.57	kip

7. VERTICAL UPLIFT PRESSURES ON ROOF

Zone E P	s30	-27.4	psf	Figure
Zone F F	s30	-15.6	psf	Figure
Zone G F	s30	-19.1	psf	Figure
Zone H F	s30	-12.1	psf	Figure
Design wind pressure Zone E,	P_s	-38.36	psf	
Design wind pressure Zone F,	P_s	-21.84	psf	
Design wind pressure Zone G,	P_s	-26.74	psf	
2 co.6a p. cooa. e 2011e e)		20.7	p31	

-16.94 psf

7. UPLIFT PRESSURE (TRANSVERSE LOADING)

Design wind pressure Zone H,

577.6	ft ²
577.6	ft ²
3678.4	ft ²
3678.4	ft ²
8512	ft ²
	577.6 3678.4 3678.4

Transverse

Weighted Uplift Pressure from Transverse -22.96 psf

Wind Load

14.551 Advanced Steel Design **Term Project**, 12/1/2014

Wind Load Analysis Moment and Braced-Frame

Designed by: ZZavalianos **Checked by:** ARGouveia

8. UPLIFT PRESSURE (LONGITUDINAL LOADING)

Area, Zone E 851.2 ft² Area, Zone F 851.2 ft² Area, Zone G 3404.8 ft² Area, Zone H 3404.8 ft² Total Roof Area 8512 ft²

Longitudinal

Weighted Uplift Pressure from Longitudinal

Wind Load

-23.49 psf

9. MAXIMUM UPLIFT PRESSURE

Controlling Uplift Pressure

-23.49 psf

Largest Absolute Value

Seismic Load Analysis Moment-Frame

Designed by: ARGouveia **Checked by:** Matt Laskey

ASSUMPTIONS:

Building Frame System: Steel moment-resisting frame

1. SEISMIC GROUD MOTI	ON VAL	LUES		Reference: Section 11.4	ASCE <i>Eq/Fig_/</i>	7-10 /Table/Notes
Seismic Site Class:		С		11.4.2	Sail Prana	rties / Ch. 20
Maximum Considered Ea	rthqual		Response:	11.4.2	3011 FTOPE	rties / Cii. 20
	$S_s =$	0.250		11.4.1	Fig	22-1 / 22-4
	S ₁ =	0.077		11.4.1	Fig	22-1 / 22-4
Adjusted MCE Spectral R	_				J	•
	F _a =	1.200		11.4.3	Table	11.4-1
	F _v =	1.700		11.4.3	Table	11.4-2
S _{MS} =	$F_aS_s =$	0.3		11.4.3	Eq	11.4-1
	F _v S ₁ =	0.131		11.4.3	Eq	11.4-2
Design Spectral Response	· -		meters:		7	
$S_{DS} = 2/3$		0.2		11.4.4	Eq	11.4-3
$S_{D1} = 2/3$	3 S _{M1} =	0.087		11.4.4	Eq	11.4-4
Design Response Spectru	ım:				·	
$T_{O} = 0.2 S_{D}$			S	11.4.5		
$T_S = S_{D}$	₁ /S _{DS} =	0.436	S	11.4.5		
Long Period Transition	T _L =	6	s	11.4.5	Fig	22-15
_	T =	0.60	S	Fundamental Pe	_	re
$S_a = if T < T_O : S_{DS}(0.4+0.6T)$	Γ/T _O) =			11.4.5	Eq	11.4-5
if $T_0 < T < T_S$: S _{DS} =			11.4.5		
if $T_S < T < T_L : S$	S _{D1} /T =	0.147		11.4.5	Eq	11.4-6
if $T > T_1 : S_{D1}^{*}$				11.4.5	Eq	11.4-7
	. [/ .			11.113	-4	11.17
2. IMPORTANCE FACTOR	AND O	CCUPANCY	CATEGORY	11.5		
Occupancy Category:					Table	1-1
Importance Factor:		1			Table	11.5-1
3. SEISMIC DESIGN CATE	GORY			11.6		
SDC based on short perio	d:	В			Table	11.6-1
SDS based on 1-s period:		В			Table	11.6-2
SDC =		В		Maximum from	values above	
4. EQUIVALENT LATERAL	FORCE	PROCEDUR	E	12.8		
R =		8		12.8.1	Table	12.2-1
Ω_{O} =		3		12.8.1	Table	12.2-1
C _D =		3		12.8.1	Table	12.2-1

Seismic Load Analysis Moment-Frame

Designed by: ARGouveia Checked by: Matt Laskey

Approximate Fundamenta	l Period, T _a :
------------------------	----------------------------

C _t =	0.028	
x =	0.8	
h _n =	30	ft
C h X	0.435	

$$T_a = C_t h_n^x = 0.425$$
 s

Seismic Response Coefficient:

$$C_{Scalc} = S_{DS}/(R/I) = 0.025$$

$$C_{Smax} = \text{if T} <= T_L : S_{D1}/(T^*(R/I) = 0.018$$

$$\text{if T} > T_L : S_{D1}^*T_L/(T^{2*}(R/I) = 0.018$$

$$C_{Smin} = \frac{0.01}{C_S} = 0.025$$

Seismic Base Shear:

Seismic Weight	W =	1268	kip
Seismic Base Shear	V =	31.7	kip

Vertical Distribution of Seismic Forces:

Lateral force per level $F_x = C_{vx}V$

$$C_{vx} = (w_x h_x^k)/(\sum w_i h_i^k)$$
$$k = \frac{1.00}{}$$

Horizontal Distribution of Seismic Forces:

$$V_x = \sum F_i =$$

1	1	O	1	1
	,	×	,	- 1

Dependent on structure Table	12.8-2
Table	12.8-2

Height of heighest level of structure

12.8.2.1	Eq	12.8-7
12.8.1.1		

Revised Sup. 2	Eq	12.8-5/12.8-6
Beware of mins an	d max	

12.8.1

12.7.2		Table Below
12 8 1	Fa	12 8-1

12.8.3

12.8-11 Eq

$C_{vx} = (w_x h_x^k) / (\sum w_i h_i^k)$			Vertical Distribution Facto		
k =	1.00	0.96	12.8.3		

12.8.4

Eq 12.8-13

Floor	Height	Weight	w _x h _x ^k	C _{vx}	F _x	V _x	Overturning Moment	Total Height
	(ft)	(kip)			(kip)	(kip)	(kip.ft)	(ft)
Roof	15	430	12894	0.506	16.1	16.1		30
						16.1		15
2nd	15	838	12576	0.494	15.7	31.7	241	15
						31.7		0
Podium	0	0	0	0	0	31.7	716	0
SUM	30	1268	25470	1	31.7	47.8		0

3. SEISMIC DESIGN CATEGORY

 $C_D =$

4. EQUIVALENT LATERAL FORCE PROCEDURE

Seismic Load Analysis Braced-Frame

Designed by: ARGouveia Checked by: Matt Laskey

ASSUMPTIONS:

Building Frame System: Eccentrically braced steel frame Reference: **ASCE** 7-10 Section Eq/Fig/Table/Notes 1. SEISMIC GROUD MOTION VALUES 11.4 С **Seismic Site Class:** 11.4.2 Soil Properties / Ch. 20 **Maximum Considered Earthquake Spectral Response:** 0.250 11.4.1 Fig 22-1 / 22-4 $S_1 =$ 0.077 11.4.1 Fig 22-1 / 22-4 **Adjusted MCE Spectral Response:** 11.4.3 Table $F_a =$ 1.200 11.4-1 $F_v =$ 11.4.3 Table 11.4-2 1.700 $S_{MS} = F_a S_s =$ 0.300 11.4.3 11.4-1 Eq $S_{M1} = F_v S_1 =$ 11.4-2 0.131 11.4.3 Eq **Design Spectral Response Acceleration Parameters:** $S_{DS} = 2/3 S_{MS} =$ 11.4.4 11.4-3 0.2 Eq $S_{D1} = 2/3 S_{M1} =$ 0.087 11.4.4 11.4-4 Eq **Design Response Spectrum:** $T_0 = 0.2 S_{D1}/S_{DS} =$ S 11.4.5 $T_S = S_{D1}/S_{DS} =$ 0.436 11.4.5 **Long Period Transition** $T_1 =$ 11.4.5 6 Fig 22-15 0.54 Fundamental Period of Structure $S_a = if T < T_O : S_{DS}(0.4+0.6T/T_O) =$ 11.4.5 Eq 11.4-5 if $T_0 < T < T_S : S_{DS} =$ 11.4.5 if $T_S < T < T_L : S_{D1}/T =$ 0.162 11.4.5 Eq 11.4-6 if $T > T_L : S_{D1} * T_L / T^2 =$ 11.4.5 11.4-7 Eq 2. IMPORTANCE FACTOR AND OCCUPANCY CATEGORY 11.5 Occupancy Category: Table 1-1 Ш Importance Factor: 1 Table 11.5-1

SDC based on short period: В Table 11.6-1 SDS based on 1-s period: Table В 11.6-2

11.6

12.8

12.8.1

Table

12.2-1

SDC = В Maximum from values above

R =	6	12.8.1	Table	12.2-1
Ω_{O} =	2	12.8.1	Table	12.2-1

3.25

Approximate Fundamental Period, Ta:

C _t =	0.03	
x =	0.75	
h _n =	30	ft
- C h ^x -	U 36E	_

$T_a = C_t h_n^x =$ 0.385

Seismic Response Coefficient:

$$\begin{split} C_{Scalc} &= S_{DS}/(R/I) = & 0.033 \\ C_{Smax} &= \text{if T} <= T_L : S_{D1}/(T^*(R/I) = & 0.027 \\ &\text{if T} > T_L : S_{D1^*}T_L/(T^{2*}(R/I) = & \end{split}$$

$$C_{Smin} = \frac{0.01}{C_S} = 0.033$$

Seismic Base Shear:

Seismic Weight	W =	1268	kip
Seismic Base Shear	V =	42.3	kip

Vertical Distribution of Seismic Forces:

Lateral force per level $F_x = C_{vx}V$

$$C_{vx} = (w_x h_x^k) / (\sum w_i h_i^k)$$

 $k = 1.00$

Horizontal Distribution of Seismic Forces:

$$V_x = \sum F_i =$$

1	2	O	2	1
1	,	×	,	1

12.8.2.1

Dependent on structure	Table	12.8-2
	Table	12.8-2
Height of heighest leve	el of structi	ire

12.8.1.1		
	Eq	12.8-2
	Eq	12.8-3

Eq

12.8-7

12.7.2		Table Below
12 8 1	Fa	12 8-1

12.8.3

12.8-11 Eq

Vertical Distribution Factor

12.8.3 12.8.4

Eq 12.8-13

Floor	Height	Weight	w _x h _x ^k	C _{vx}	F _x	V _x	Overturning Moment	Total Height
	(ft)	(kip)			(kip)	(kip)	(kip.ft)	(ft)
Roof	15	430	12894	0.506	21.4	21.4		30
						21.4		15
2nd	15	838	12576	0.494	20.9	42.3	321	15
						42.3		0
Podium	0	0	0	0	0	42.3	955	0
SUM	30	1268	25470	1	42.3	63.7		0

Moment-Frame Wind

Designed by: ZZavalianos Checked by: ARGouveia

1. MOMENT FRAME INFORMATION

Fr 24.00ft 24.00ft 24.00ft 24.00ft 27 15.00ft 24.00ft 27 15.00ft 27 15.00ft 27 15.00ft 24.00ft 27 15.00ft 27 1

Figure 1 - Moment Frame

Story Height, H =
$$15$$
 ft
Bay Width, W = 24 ft
 $F_{r=}$ 9.78 kip
 $F_{1=}$ 19.57 kip

Figure 2 - Member Reference

2.1 MEMBER FORCES DISTRIBUTION

Compute Shear Forces

 $\sum F_x = 0$

$$\begin{array}{ccc} F_{r\,=} & 9.78 & \text{kips} \\ \text{\# of shear forces} & 2 & \\ V_{1\,=} & 4.89 & \text{kips} \end{array}$$

Compute moments at top of columns

 $M_{JG} = 36.69 \text{ kip*ft}$ $M_{KF} = 36.69 \text{ kip*ft}$

METHOD OF JOINTS:

Joint J: Joint K:

	$M_{JK} =$	36.69	kip*ft		$M_{KJ} =$	36.69	kip*ft	
\sum Fx=0	F _{JK =}	4.89	kips	С	F _{JK =}	4.89	kips	С
Σ M/W	$V_{J=}$	3.06	kips		V _{K =}	3.06	kips	
\sum Fy=0	$F_{JG} =$	3.06	kips	T	F _{KF =}	3.06	kips	С
					M _{KF =}	36.69	kips	

Designed by: ZZavalianos **Checked by:** ARGouveia

Section 2

Joint G:		Joint F			
(F1+FR)/2	$V_2 = 14.68$ kips	$(F1+FR)/2$ $V_{2}=$	14.68	kips	
FJG	$F_{GJ} = 3.06$ kips T	FKF $F_{FK} =$	3.06	kips	Т
V2*H/2	$M_{GB} = 110.1 \text{ kip*ft}$	$V2*H/2$ $M_{FC}=$	110.1	kip*ft	
(MJG)	$M_{GJ} = 36.69$ kip*ft	MKF $M_{FK} =$	36.69	kip*ft	
(FJG)	$F_{GJ} = 3.06$ kips	FKF F _{FK} =	3.06	kips	
\sum Fx=0	$F_{GF} = 4.89$ kips C	FGF F _{FG =}	4.89	kips	С
\sum M	$M_{GF} = 146.76 \text{ kip*ft}$	\sum M M _{FG} =	146.76	kip*ft	
\sum M/W	$V_{G=}$ 12.23 kips	\sum M/W $V_{G} =$	12.23	kips	
\sum Fy=0	$F_{GB} = 15.29$ kips	\sum Fy=0 $F_{FC}=$	15.29	kips	

Designed by: ZZavalianos

Checked by: ARGouveia

3. RESULTS

	Member	lember Frame		Floor Function		T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	29	Moment	First	Beam	4.89	С	146.76
JK	26	Moment	Roof	Beam	4.89	С	36.69
BG	21	Moment	First	Column	15.29	Т	110.07
CF	23	Moment	First	Column	15.29	С	110.07
JG	22	Moment	Roof	Column	4.89	Т	36.69
KF	24	Moment	Roof	Column	4.89	С	36.69

Moment-Frame Seismic

Designed by: ZZavalianos **Checked by:** ARGouveia

1. MOMENT FRAME INFORMATION

Figure 1 - Moment Frame

Story Height, H = 15 ft
Bay Width, W = 24 ft $F_{r=} 3.23 \text{ kip}$ $F_{1=} 12.62 \text{ kip}$

Figure 2 - Member Reference

2.1 MEMBER FORCES DISTRIBUTION

Compute Shear Forces

 $\sum F_x = 0$

$$\begin{array}{ccc} F_{r\,=} & 3.23 & \text{kips} \\ \text{\# of shear forces} & 2 & \\ V_{1\,=} & 1.62 & \text{kips} \end{array}$$

Compute moments at top of columns

 $M_{JG} = 12.11 \text{ kip*ft}$ $M_{KF} = 12.11 \text{ kip*ft}$

METHOD OF JOINTS:

Joint J: Joint K: $M_{JK=} \quad 12.11 \quad kip*ft$ $M_{KJ} =$ 12.11 kip*ft \sum Fx=0 $F_{JK} = 1.62$ kips $F_{JK} =$ 1.62 C С kips \sum M/W $V_{J=}$ 1.01 kips $V_{K=}$ 1.01 kips \sum Fy=0 $F_{JG} = 1.01$ kips $F_{KF} =$ 1.01 Т С kips $M_{KF} =$ 12.11 kips

Designed by: ZZavalianos **Checked by:** ARGouveia

Section 2

Joint G:			Joint F		
(F1+FR)/2	V _{2 =} 7.9 kip	ps	(F1+FR)/2	V _{2 =} 7.9	kips
FJG	$F_{GJ} = 1.01$ kip	ps T	FKF	F _{FK =} 1.0	kips C
V2*H/2	M _{GB =} 59.44 kip	p*ft	V2*H/2 N	1 _{FC =} 59.4	kip*ft
(MJG)	$M_{GJ} = 12.11$ kip	p*ft	MKF N	12.1 M _{FK =}	kip*ft
(FJG)	$F_{GJ} = 1.01$ kip	ps	FKF	F _{FK =} 1.01	kips
\sum Fx=0	F _{GF =} 4.70 kip	ps T	FGF I	F _{FG =} 4.70	kips T
\sum M	M _{GF =} 71.6 kip	p*ft	\sum M N	1 _{FG =} 71.6	kip*ft
\sum M/W	$V_{G=}$ 6.0 kip	ps	\sum M/W	V _{G =} 6.0	kips
\sum Fy=0	F _{GB =} 7.0 kip	ps	\sum Fy=0	F _{FC =} 7.0	kips

Designed by: ZZavalianos

Checked by: ARGouveia

3. RESULTS

	Member	Member Frame		Floor Function		T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	29	Moment	First	Beam	4.70	Т	71.55
JK	26	Moment	Roof	Beam	1.62	С	12.11
BG	21	Moment	First	Column	6.97	Т	59.44
CF	23	Moment	First	Column	6.97	С	59.44
JG	22	Moment	Roof	Column	4.70	Т	12.11
KF	24	Moment	Roof	Column	4.70	С	12.11

Designed by: ZZavalianos Checked by: ARGouveia Wind 1. MOMENT FRAME INFORMATION

Figure 1 - Braced-Frame Member Reference

Diagonal, D	39	ft	
Story Height, H	15	ft	
Bay Width, W	36	ft	
F_r	9.78	kip	6.
F_1	19.57	kip	0.

2.1 MEMBER FORCES DISTRIBUTION

Find Reactions												
	Cy=		kip	up								
	Ву=	0.00	kip	down								
	Cx=	-14.68	kip	west								
	Bx=	-14.68	kip	west								
Joint B								Jo	oint C			
(Fr+F1)/2	V_1	14.68	kip						V_1	14.68	kip	
	F_{BFy}	-6.12	kip						F_GCy	-6.12	kip	С
Brace Force	F_{BF}	15.90	kip	Т					F_GC	15.90	kip	С
Vertical Force	F_{BG}	-6.1152	kip	Т					F_{FC}	-6.12	kip	С
To solve system:												
Moment Equation	15	F_GF	27.69		F_{GK}	-36		F_GJ	=	-72.06	513.69	
Forces in X	-1	F_GF	-0.923		\mathbf{F}_{GK}	0		F_GJ	=	-4.8	-4.89	
Forces in Y	0	F_{GF}	-0.385		F_{GK}	1		F_GJ	=	4	-12	
Inverse Matrix								S	olution			
	61.533	922	2215.2						\mathbf{F}_{GF}	1.13		
	-66.666	-1000	-2400.0						$\mathbf{F}_{\mathbf{GK}}$	3.95		
	-25.666	-385	-923.0						F _{GJ}	5.49		
Joint G							Joint F					
Brace Force	F_GK	3.95	kip	С					\mathbf{F}_{FJ}	14.67	kip	С
Horizontal Force	F_GF	1.13	kip	С					F_{GF}	1.13	kip	С
Vertical Force	F_GJ	5.49	kip	T					F _{FK}	1.52	kip	Т

Joint J Joint K

14.551 Advanced Steel Design **Term Project**, 12/1/2014

Braced-Frame Wind

Designed by:	ZZavalianos
Checked by	: ARGouveia

Brace Force	F _{JF}	14.7	kip	С	F_GK	4.0	kip	С
Horizontal Force	\mathbf{F}_{JK}	3.6	kip	Т	F _{KJ}	3.6	kip	Т
Vertical Force	F_{JG}	5.49	kip	T	F_KF	1.5	kip	Т

3. RESULTS

	Member	Frame	Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	10	Braced	First	Beam	14.67	С	
JK	13	Braced	Roof	Beam	3.65	Т	
JF	15	Braced	Roof	Brace	14.67	С	
GK	16	Braced	Roof	Brace	3.95	С	
BF	17	Braced	First	Brace	15.90	Т	
GC	18	Braced	First	Brace	15.90	С	
BG	3	Braced	First	Column	-6.12	Т	
JG	4	Braced	Roof	Column	5.49	Т	
CF	5	Braced	First	Column	-6.12	С	
KF	6	Braced	Roof	Column	1.52	Т	

Designed by: ARGouveia **Checked by:** Matt Laskey

1. MOMENT FRAME INFORMATION

Figure 1 - Braced-Frame Member Reference

Diagonal, D	39	ft
Story Height, H	15	ft
Bay Width, W	36	ft
F_r	4.31	kip
F_1	16.82	kip

2.1 MEMBER FORCES DISTRIBUTION

Find Reactions											
	Cy=		kip	up							
	By=	0	kip	down							
		-10.565	•	west							
	Bx=	-10.565	kip	west							
Joint B	.,							Joint C			
(Fr+F1)/2	V_1	10.57	kip					V_1	10.57	kip	
	F_{BFy}	-4.40	kip					F_{GCy}	-4.40	kip	С
Brace Force	F_{BF}	11.45	kip	T				F_{GC}	11.45	kip	С
Vertical Force	F_{BG}	-4.40	kip	T				F_FC	-4.40	kip	С
To solve system:											
Moment Equation	15	F_GF	27.69		F_GK	-36	F_G	J =	29.1	####	Ħ
Forces in X	-1	F_{GF}	-0.923		\mathbf{F}_{GK}	0	F_G	J =	-6.25	-6.26	
Forces in Y	0	F_GF	-0.385		F_GK	1	F_{G}	J =	1.796	-8.80)
Inverse Matrix								Solution			
	61.533	922	2215.2					\mathbf{F}_{GF}	6.61		
	-66.666	-1000	-2400.0					F_{GK}	-0.38		
	-25.666	-385	-923.0					F _{GJ}	1.66		
Joint G							Joint F				
Brace Force	F_GK	-0.38	kip	С				\mathbf{F}_{FJ}	4.29	kip	С
Horizontal Force	F_GF	6.61	kip	С				F _{GF}	6.61	kip	С
Vertical Force	F_GJ	1.66	kip	Т				F _{FK}	-0.15	kip	Т
	0.3		•							'	

Joint J Joint K

14.551 Advanced Steel Design **Term Project**, 12/1/2014

Braced-Frame Seismic

Designed by: ARGouveia **Checked by:** Matt Laskey

Brace Force	F_{JF}	4.3	kip	С	F_GK	-0.4	kip	С
Horizontal Force	\mathbf{F}_{JK}	-0.4	kip	Т	F _{KJ}	-0.4	kip	Т
Vertical Force	F_{JG}	1.66	kip	Т	F_{KF}	-0.1	kip	Т

3. RESULTS

	Member	Frame	Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	10	Braced	First	Beam	4.29	С	
JK	13	Braced	Roof	Beam	-0.35	Т	
JF	15	Braced	Roof	Brace	4.29	С	
GK	16	Braced	Roof	Brace	-0.38	С	
BF	17	Braced	First	Brace	11.45	Т	
GC	18	Braced	First	Brace	11.45	С	
BG	3	Braced	First	Column	-4.40	Т	
JG	4	Braced	Roof	Column	1.66	Т	
CF	5	Braced	First	Column	-4.40	С	
KF	6	Braced	Roof	Column	-0.15	Т	

GIVEN:

Figure 4 - Moment Frame - Elevation

Preliminary Sizing Summary

1. MEMBERS FOR ANALYSIS:

Member Ref.	Frame	Floor	Member	Section	New Section	Length	Unit Weight	Spacing or a	Beams/Bay	Qty of Members	Amount of Steel	New Amount	Difference
(#)	(type)	(Units)		(Shape)		(ft)	(plf)	(ft)	(Units)	(Units)	(kips)	(kips)	(%)
1	Braced	First	Column	W8X40	W12X50	15	40	12		2	1.20	1.50	0.25
2	Braced	Roof	Column	W8X40	W12X50	15	40	1.7		2	1.20	1.50	0.25
3	Braced	First	Column	W12X40	W12X50	15	40	5		2	1.20	1.50	0.25
4	Braced	Roof	Column	W12X40	W12X40	15	40			2	1.20	1.20	0
5	Braced	First	Column	W12X40	W12X50	15	40			2	1.20	1.50	0.25
6	Braced	Roof	Column	W12X40	W12X50	15	40			2	1.20	1.50	0.25
7	Braced	First	Column	W8X40	W12X50	15	40			2	1.20	1.50	0.25
8	Braced	Roof	Column	W8X40	W12X50	15	40			2	1.20	1.50	0.25
1m	Moment	First	Column	W8X40	W10X68	15	40			2	1.20	2.04	0.7
2m	Moment	Roof	Column	W8X40	W10X68	15	40			2	1.20	2.04	0.7
7m	Moment	First	Column	W8X40	W10X68	15	40			2	1.20	2.04	0.7
8m	Moment	Roof	Column	W8X40	W10X68	15	40			2	1.20	2.04	0.7
9	Braced	First	Beam	W14X30	W14X30	36	30			2	2.16	2.16	0
10	Braced	First	nterior Bean	W14X30	W14X30	36	30			2	2.16	2.16	0
11	Braced	First	Beam	W14X30	W14X30	36	30			2	2.16	2.16	0
12	Braced	Roof	Beam	W10X19	W10X19	36	19			2	1.37	1.37	0
13	Braced	Roof	nterior Bean	W10X19	W10X19	36	19			2	1.37	1.37	0
14	Braced	Roof	Beam	W10X19	W10X19	36	19			2	1.37	1.37	0
15	Braced	Roof	Braces	WT9X48.5	W10X33	39	48.5			2	3.78	2.57	-0.32
16	Braced	Roof	Braces	WT9X48.5	W10X33	39	48.5			2	3.78	2.57	-0.32
17	Braced	First	Braces	WT9X48.5	W10X33	39	48.5			2	3.78	2.57	-0.32
18	Braced	First	Braces	WT9X48.5	W10X33	39	48.5			2	3.78	2.57	-0.32
19	Interior	Roof	Roof Columr	W8X40	W8X40	15	40			2	1.20	1.20	0.00
20	Interior	First	nterior Colum	W8X40	W8X40	30	40			2	2.40	2.40	0.00
21	Moment	First	Column	W10X39	W10X68	15	39			2	1.17	2.04	0.74
22	Moment	Roof	Column	W10X39	W10X68	15	39			2	1.17	2.04	0.74

14.551 Advanced Steel Design Term Project, 12/2/2014					P	reliminary Summa	-						; : ARGouveia : Matt Laskey		
	23	Moment	First	Column	W10X39	W10X68	15	39			2	1.17	2.04	0.74	l
	24	Moment	Roof	Column	W10X39	W10X68	15	39	5		2	1.17	2.04	0.74	İ
	25	Moment	Roof	Beam	W14X30	W14X30	24	30	8		2	1.44	1.44	0.00	İ
	26	Moment	Roof	nterior Bean	W8X40	W10X39	24	40			2	1.92	1.87	-0.02	İ
	27	Moment	Roof	Beam	W14X30	W14X30	24	30			2	1.44	1.44	0.00	ĺ
	28	Moment	First	Beam	W8X40	W8X40	24	40			2	1.92	1.92	0.00	ĺ
	29	Moment	First	nterior Bean	W8X40	W12X53	24	40			2	1.92	2.54	0.33	ĺ
	30	Moment	First	Beam	W8X40	W8X40	24	40			2	1.92	1.92	0.00	İ
	31	Interior	First	Beam	W21X44	W21X44	36	44			0	0.00	0.00		İ
	32	Interior	First	Beam	W21X44	W21X44	36	44			0	0.00	0.00		i
	33	Interior	First	nterior Bean	W21X44	W21X44	36	44			0	0.00	0.00		İ
	34	Interior	First	nterior Bean	W21X44	W21X44	36	44	12	6.00	18	28.51	28.51	0.00	ļ
	35	Interior	First	Girder	W30X108	W30X108	24	108	8		2	5.18	5.18	0.00	ļ
	36	Interior	First	Girder	W30X108	W30X108	24	108	8		2	5.18	5.18	0.00	ļ
	37	Interior	Roof	Beam	W14X22	W14X22	36	22			0	0.00	0.00		ļ
	38	Interior	Roof	nterior Bean	W14X22	W14X22	36	22	12	8.00	24	19.01	19.01	0.00	İ
	39	Interior	Roof	Girder	W27X84	W27X84	48	84			2	8.06	8.06	0.00	i
	40	Interior	First	Girder	W27X84	W27X84	24	84			2	4.03	4.03	0	i

133.62

6.55

128.94

118

TOTAL

Calculated By: ZZ Checked By: ML

Moment Frame Connection Design-Roof Level

Given:

3	W10x68	Column	W10x39	Girder
4 in	10.4	depth, d	9.92	depth, d
7 in	0.77	t _f	0.53	t_f
1 in	10.1	b_f	7.99	b_f
7 in	0.47	t_w	0.315	t_w
7 in	1.27	k		

Flange Plates

t	1/2	in F _y	36	ksi $F_{\rm u}$	58	ksi
W	8	in <0.15*bf (c	olumn)?	CHECK FLANGE LOC	AL BENDING	J10.1
unbraced length, L _p	3	in				
# of rows	2	Gage	6	in Spacing	3	in
A325N, bolt dia.	7/8	in Hole	std	# bolts	4	per flange
				Conn. Length	3	in
				Edge Distance	2	in

Flange-Column Weld

Electrode Strength	າ, F _u	70	ks
Flange CJP Weld:			
	Length	8	in

Length	8	in
Size	1/2	in

Double Angle Connection

Thickness, t	1/4	in	weld size	1/4	in	
# bolts/row, n	3		Weld Lengt	8.5	in (L	.)
A325N, bolt dia.	3/4	in	Hole	std		

Beam End Forces (LRFD)

Shear, V	35.73	kips
Moment, M	77.18	kip*ft

Determine:

Connection adequacy and need for column stiffeners

Calculated By: ZZ Checked By: ML

Solution

Determine Flange and Web Shear Forces

Flange Force, T=C 93.36 kips M/d Web Shear Force 35.73 kips Given

Tensile Strength of Flange Plate

a. Tensile Yield, P_n

b. Tensile Rupture, P_n

Effective Area,
$$A_e$$
 3.00 in²

Nom. Tensile Rupt., P_n 174.00 kips

 Φ 0.75

 ΦP_n 130.50 kips

OK

Flange Plate Block Shear

ОК

Flange Plate Bolt Bearing

Find Minimum clear distance, L_c

 $\begin{array}{ccc} \text{Interior } L_c & 2.00 \text{ in} \\ \text{Edge } L_c & 1.50 \text{ in} \\ \text{Min } L_c & 1.50 \text{ in} \end{array}$

Tearout Deformation

52.20 kips/bolt 60.9 kips/bolt Eq J3-6A

Nominal Strength, R_n 52.20 kips/bolt

Nominal Plate Bearing

Strength, P_n 208.8 kips

 $\begin{array}{ccc} \Phi & & 0.75 \\ \Phi P_n & & 156.6 \text{ kips} \end{array}$

OK

Bolt Shear

Bolt Area, A_b 0.60 in²

A325N, F_{nv} 54 ksi Table J3.2

 R_n 32.47 kips/bolt

Bolt Shear Strength 129.89 kips Φ 0.75

 ΦP_{n} 97.41

OK

Flange Plate Compressive Strength

K 0.65 Table C-A-7.1 r_v 0.14 in t/sqrt(12)

KL_p/r 13.51 Eq J-4-6 Applies

Effective Plate width, I_w 8 in

Effective gross area, A_{ge} 4 in²

P_n 144 kips Nominal Compressive Strength, Eq J4-6

F_{cr} 32.3 ksi Table 4-22

 Φ 0.9 ΦP_n 129.6

OK

Calculated By: ZZ Checked By: ML

Evaluate Double-angle connection

Strength of welds 48.1 kips Table 10-2 (Case II)

ОК

Bolt/Angle Strength 76.4 kips Table 10-1

ОК

Bolt bearing on web 263 k/in 82.85 kips Table 10-1

ОК

Check Column with concentrated forces

Flange local bending

R_n 133.40 kips J10-1

Φ 0.9

 ΦR_n 120.06 kips

ОК

Web Local Yielding

R_n 104.48 kips J10-3

Φ 1

 ΦR_n 104.48 kips

ОК

Web Crippling Parameters

R_n 326.50 J10-4

Φ 0.75

 $\Phi R_{n} \hspace{0.5cm} 244.87$

ОК

Advanced Steel Calculated By: ZZ 100% Submittal Checked By: ML

Girder: W10x39 M_u 77.18 kip*ft Column: W10x68 V_u 35.73 kips

Flange Plate:

Thickness, t 1/2 in F_y 36 ksi F_u 58 ksi

width, w 8 in # of rows 2 Hole std

noie st

A325N, bolt dia. 7/8 in

bolts 4 per flange

Gage 6 in

Flange-Column Weld:

Electrode Strength, F_u 70 ksi

Flange CJP Weld:

Length 8 in Size 1/2 in

Double Angle Connection:

Weld to column, bolt to girder

Angle properties:

t 1/4 in

L 8.5 in

Leg Connect. to Column 3 in Leg connect. To girder 3.5 in

weld size 1/4 in

Hole std

bolts/row, n 3 (Bolts spaced at 3" O.C.)

A325N, bolt dia. 3/4 in

North Braced Frame Design

NORTH BRACED FRAME (COLUMN LINE A)

50 ksi

Sizing (From 30%)

Level 2 Beams/Girders W14x132 Roof Level Beams/Girders W14x90 Columns W12x40 Bracing W10x33

Vertical	Loading
v Ci ticai	Louaning

Vertical Loading	
Roof	
Roof Live Load, W _{RLL}	0.6 klf
Snow, W _s	0.38 klf
Wind Uplift, W _{wu}	-0.28 klf
Roof Dead Load=self weight of beam	
Level 2	
Floor Dead Load, W _{DL}	1.12 klf
Floor Live Load, W _{FIL}	1.2 klf
Girder Reactions on Interior Columns	295.97 kips
Girder Reactions on Exterior Columns	35.73 kips
Lateral Loading	
Seismic Force, Roof Level	4.31 kips
Seismic Force, Level 2	16.82 kips
Wind Force, Roof Level	6.27 kips
Wind Force, Level 2	12.54 kips

Determine Notional Loads

Roof	0.5.115	
Roof Live Load	0.6 klf	
Snow Load	0.38 klf	
Wind Uplift	-0.28 klf	
Dead Load (Beam Self Weight)	0.09 klf	
W_{u-roof}	1.07 klf	
Girder Reactions	331.70 kips	
Level 2		
Floor System Load	1.12 klf	
Beam Self weight	0.132 klf	
Dead Load	1.25 klf	
Live Load	1.20 klf	
W_{u-2}	3.42 klf	
Y_R	447.26 kips	
Y_2	369.36 kips	
α	1	
N_R	0.895 kips	Eq C2-2
N_2	0.739 kips	Eq C2-1
Eccentricity		
Column Web Thickness, t _w	0.295 in	
Connection Distance (Assumed)	2.5 in	
e	2.6475 in	
Say 3" eccentricity		
,		

Run Computer model in SAP2000

Design of Bottom Columns (Members 3 & 5)

First Order Analysis Forces	Тор		Bottom	
Ultimate Axial Load, P _{unt}	283.85	kips	283.85	kips
Ultimate Moment, M _{uni}	14.2	kip*ft	0	kip*ft
Unbraced Length, L	15	ft		
Braced Frame Bay Width, W	36	ft	Plan Length, L	108 ft
Moment Frame Bay Width, W_{m}	24	ft	Plan Width, W	72 ft

Section Properties (Table 1-1)

Plastic Section Modulus strong axis, Z,	71.9	in ³	S _x	64.2 in ³
Moment of Inertia, I,	391	in ⁴	r _{ts}	2.25 in
r,	5.18	in	h _o	11.6 in
A_{g}	14.6	in2	J	1.71 in ⁴
b _i	8.08	in	C _w	1880 in ⁶
t _i	0.64	in		
h	9.25	in		
t _w	0.37	in		

Beam Properties			
Full plastic yielding unbraced length, L _p	6.92 ft	Table 3-2	
Elastic/Inelastic LTB unbraced length, L _r	23.8 ft	Table 3-2	
фВF	5.98 kips	Table 3-2	
ϕM_px	270 kip*ft	Table 3-2	
Г	Flexure	Compression	
Slenderness Characteristics	λ_{p} λ_{r}	λ_r	
	9.15 24.08	13.49	
Flanges —	NONCOMPACT	NONSLENDER	
Web	90.55 137.27	35.88	
web	COMPACT	NONSLENDER	
Axial Capacity			
K	1	K=1 for columns in DAM	
KI	15 ft		
P_c	355 kips	Table 4-1	
Flexure Capacity			
Zone?	ZONE 2		
M_{max}	14.20 kip*ft	M_{ult}	
M_A	4.50 kip*ft	SAP	
M_B	10.40 kip*ft	SAP	
M_{c}	15.59 kip*ft	SAP	
C _b	1.29	Eq F1-1	
Zone 1, M _c	270 kip*ft	Eq F2-1	
Zone 2, M _c	270.00 kip*ft	Eq F2-2	
Zone 3, F _{cr}	84.66 ksi	Eq F2-4	
Zone 3, M _c	452.92 kip*ft	Eq F2-3	
M _c	270.00 kip*ft	Eq 12 3	
····c	270.00 KIP IT		
Determine τ_{b}			
P_r	283.85 kips	P _{unt}	
P_{y}	730.00 kips	A_g*F_y	
α	1		
$\alpha P_r/P_y$	0.39		
$ au_{b}$	1.00	Eq C2-2a	
Determine B1			
P_{e1}	2763.25 kips	Eq A-8-5	
Modification Coefficient, C _{mx}	0.60	0.6-0.4*(M1/M2)	
B_1	1.00	Eq A-8-3	
Summary			
M _r	14.20 kip*ft	Eq A-8-1	
M_c	270.00 kip*ft	Referenced Above	
P_r	283.9 kips	Eq A-8-2	
P _c	355 kips	Referenced Above	
Combined Forces Ineraction Equation			
P _r /P _c	0.80		
$P_{r}/P_{c}>0.2$	0.85	Eq H1-1a	
P _r /P _c <0.2	0.45	Eq H1-1b	
Design Check	0.85 SECTION OK		

Design of Top Columns (Members 4 & 6)

First Order Analysis Forces	Тор		Bottom		
Ultimate Axial Load, P _{unt}	284.8	kips	284.8 kips		
Ultimate Moment, M _{unt}	15.09	kip*ft	0 kip*ft		
Unbraced Length, L _b	15	ft			
Braced Frame Bay Width, $W_{ m b}$	36	ft	Plan Length, L	108 ft	
Moment Frame Bay Width, $W_{\rm m}$	24	ft	Plan Width, W	72 ft	
Section Used	W12x50				
Section Properties (Table 1-1)					
Plastic Section Modulus strong axis, Z _x	71.9	in ³	S _x		64.2 in ³
Moment of Inertia, I_x	391		r _{ts}		2.25 in
	5.18		h _o		11.6 in
r _x					1.71 in ⁴
A_g	14.6		J		
b_f	8.08		c_w		1880 in ⁶
t_f	0.64				
h	9.25				
t_{w}	0.37	in			
Beam Properties					
Full plastic yielding unbraced length, Lp	6.92	ft	Table 3-2		
Elastic/Inelastic LTB unbraced length, L _r	23.8	ft	Table 3-2		
фВF	5.98	kips	Table 3-2		
ϕM_px	270	kip*ft	Table 3-2		
	Flex	ure	Compression		
Slenderness Characteristics	λ_{p}	λ_{r}	λ_{r}		
Flanges	9.15	24.08	13.49		
ridinges	NONCO		NONSLENDER		
Web	90.55	137.27	35.88		
	СОМ	PACT	NONSLENDER		

Axial Capacity K	1	K=1 for columns in DAM	
KI	15 ft		
P_c	355 kips	Table 4-1	
Flexure Capacity Zone?	ZONE 2		
M _{max}	15.09 kip*ft	M_{ult}	
M _A	5.42 kip*ft	SAP	
M _B	10.84 kip*ft	SAP	
M _C	16.26 kip*ft	SAP	
C _b	1.29	Eq F1-1	
	1.23	Eq. 17-1	
Zone 1, M _c	270 kip*ft	Eq F2-1	
Zone 2, M _c	270.00 kip*ft	Eq F2-2	
Zone 3, F _{cr}	84.57 ksi	Eq F2-4	
Zone 3, M _c	452.47 kip*ft	Eq F2-3	
M_c	270.00 kip*ft		
Determine τ_b			
P_{r}	284.80 kips	P _{unt}	
P_{y}	730.00 kips	$A_g^*F_y$	
α	1		
$\alpha P_r/P_y$	0.39		
$ au_{b}$	1.00	Eq C2-2a	
Determine B1			
P_{e1}	2763.25 kips	Eq A-8-5	
Modification Coefficient, C_{mx}	0.60	0.6-0.4*(M1/M2)	
B ₁	1.00	Eq A-8-3	
Gummary			
M_r	15.09 kip*ft	Eq A-8-1	
M_c	270.00 kip*ft	Referenced Above	
P_{r}	284.8 kips	Eq A-8-2	
P_c	355 kips	Referenced Above	
Combined Forces Ineraction Equation			
P_r/P_c	0.80		
$P_r/P_c>0.2$	0.85	Eq H1-1a	
$P_r/P_c < 0.2$	0.46	Eq H1-1b	
Design Check	0.85 SECTION OK		

South Braced Frame Design

SOUTH BRACED FRAME (COLUMN LINE D)

50 ksi

Sizing (From 30%)

Level 2 Beams/Girders W14x132 Roof Level Beams/Girders W14x90 Columns W12x40 Bracing W10x33

ertical Loading		
Roof		
Roof Live Load, W_{RLL}	0.6	klf
Snow, W _s	0.38	klf
Wind Uplift, W _{WU}	-0.28	klf
Roof Dead Load=self weight of beam		
Girder Reactions on Interior Columns	71.46	kips
Girder Reactions on Exterior Columns	35.73	kips
Level 2		
Floor Dead Load, W _{DL}	1.12	klf
Floor Live Load, W_{FIL}	1.2	klf
Girder Reactions on Interior Columns	156.44	kips
Girder Reactions on Exterior Columns	78.22	kips

Lateral Loading

Seismic Force, Roof Level	4.31	kips
Seismic Force, Level 2	16.82	kips
Wind Force, Roof Level	6.27	kips
Wind Force, Level 2	12.54	kips

Determine Notional	Loads				
Roof					
Roof Live Load	0.6	klf			
Snow Load	0.38	klf			
Wind Uplift	-0.28				
Dead Load (Beam Self Weight)	0.09				
W_{u-roof}	1.07				
Girder Reactions	107.19	kips			
Level 2					
Floor System Load	1.12	klf			
Beam Self weight	0.132				
Dead Load	1.25				
Live Load	1.20				
W_{u-2}	3.42	klf			
Girder Reactions	234.66				
\mathbf{Y}_{R}	222.75	kips			
Y ₂	369.36	kips			
α	1				
N_R	0.446	kips	Eq C2-2		
N_2	0.739	kips	Eq C2-1		
Eccentricity					
Column Web Thickness, t _w	0.295	in			
Connection Distance (Assumed)	2.5	in			
e	2.6475	in			
Say 3" eccentricity					
	Run Coi	mputer mo	del in SAP2000		
esign of Bottom Columns (Members 3 &	5)				
irst Order Analysis Forces	Тор		Bottom		
Ultimate Axial Load, P _{unt}	295.93	kips	295.93 kip	S	
Ultimate Moment, M _{unt}	13.37	kip*ft	0 kip	*ft	
Unbraced Length, $L_{\!_{D}}$	15	ft			
Braced Frame Bay Width, W _b	36	ft	Plan Length, L	108	ft
Moment Frame Bay Width, $W_{\rm m}$	24	ft	Plan Width, W	72	ft
Section Used	W12x50				
	11 12/100				
ection Properties (Table 1-1)		in ³			can in ³
Plastic Section Modulus strong axis, Z _x	71.9		S _x		64.2 in ³
Moment of Inertia, I _x	391		\mathbf{r}_{ts}		2.25 in
r_x	5.18	in	h_o		11.6 in
A_g	14.6	in2	J		1.71 in ⁴
b_{f}	8.08	in	c_w		1880 in ⁶
t _f	0.64		w		
h	9.25				
."'					

0.37 in

Beam Properties				
Full plastic yielding unbraced length, Lp	6.92 ft		Table 3-2	
Elastic/Inelastic LTB unbraced length, 니	23.8 ft		Table 3-2	
фВF	5.98 kip	os	Table 3-2	
ϕM_{px}	270 kip	o*ft	Table 3-2	
	Flexure		Compression	
Slenderness Characteristics	λ _p	λ _r	λ _r	
Flanges —	9.15 NONCOM	24.08 PACT	13.49 NONSLENDER	
	90.55	137.27	35.88	
Web	СОМРА		NONSLENDER	
Avial Canacity				
Axial Capacity K	1		K=1 for columns in	n DAM
KI	15 ft			
P_c	355 kir	os	Table 4-1	
Flavora Canacity				
Flexure Capacity Zone?	ZONE 2			
M_{max}	13.37 kir	o*ft	M_{ult}	
M_A	4.79 kir		SAP	
M _B	9.58 kip		SAP	
M _C	14.37 ki		SAP	
C _b	1.29			eq F1-1
5 ₀	1.23		_	
Zone 1, M _c	270 ki	o*ft	E	iq F2-1
Zone 2, M _c	270.00 kiş	o*ft	E	q F2-2
Zone 3, F _{cr}	84.73 ks	i	E	q F2-4
Zone 3, M _c	453.32 kip	o*ft	E	q F2-3
M_c	270.00 kir	o*ft		
Determine τ_b	205.02.11		D.	
P _r	295.93 kip		P _{unt}	
P_{y}	730.00 kip	os	A_g*F_y	
α	1			
$\alpha P_r/P_y$	0.41			
$ au_{b}$	1.00		Eq C2-2a	
Determine B1				
P _{e1}	2763.25 kip	os	Eq A-8-5	
Modification Coefficient, C_{mx}	0.60		0.6-0.4*(M1/M2)	
B_1	1.00		Eq A-8-3	
Summary				
Summary M _r	13.37 kiş	o*ft	Eq A-8-1	
M _c	270.00 kir		Referenced Above	•
P _r	295.9 kir		Eq A-8-2	
P _c	355 kir		Referenced Above	•
	·			
Combined Forces Ineraction Equation P_{r}/P_{c}	0.83			
			Ea U1 1a	
$P_{\rm r}/P_{\rm c} > 0.2$	0.88		Eq H1-1a	
P _r /P _c <0.2	0.47 0.88 SE	CTION OK	Eq H1-1b	
Design Check	U.00 3 E	CHON UK		

Design of Top Columns (Members 4 & 6)

First Order Analysis Forces	Тор		Bottom			
Ultimate Axial Load, P _{unt}	103.15	kips	103.15 ki	ps		
Ultimate Moment, M _{unt}	12.57	kip*ft	0 kij	p*ft		
Unbraced Length, $L_{\!_D}$	15	ft				
Braced Frame Bay Width, W_b	36	ft	Plan Length, L	108 ft	İ	
Moment Frame Bay Width, W _m	24	ft	Plan Width, W	72 ft	İ	
Section Used	W12x40					
	77 <u>1</u> 2 17 70					
Section Properties (Table 1-1)		. 3			. 3	
Plastic Section Modulus strong axis, Z _x		in ³	S_x		51.5 in ³	
Moment of Inertia, I _x	307	in ^⁴	r_ts		2.21 in	
r_x	5.13	in	h _o		11.4 in	
A_g	11.7	in2	J		0.906 in ⁴	
b_f	8.01	in	C _w	,	1440 in ⁶	
t_f	0.515	in				
h	9.25	in				
t _w	0.295	in				
Beam Properties						
Full plastic yielding unbraced length, L_0	6.85	ft	Table 3-2			
Elastic/Inelastic LTB unbraced length, L	21.1		Table 3-2			
фВF	5.54		Table 3-2			
ϕM_{px}		kip*ft	Table 3-2			
		'				
	Flex		Compression			
Slenderness Characteristics	λ_{p}	λ _r	λ _r			
Flanges	9.15	24.08	13.49			
	90.55	137.27	SLENDER 35.88			
Web		PACT	NONSLENDER			
Axial Capacity						
Axial Capacity K	1		K=1 for columns in	DAM		
KI	15					
P_c		kips	Table 4-1			

7	70NF 2		
Zone?	ZONE 2	N4	
M _{max}	12.57 kip*ft	M _{ult}	
M _A	14.37 kip*ft	SAP	
$M_{\mathtt{B}}$	9.58 kip*ft	SAP	
M _c	4.79 kip*ft	SAP	
C _b	1.24	Eq F1-1	
Zone 1, M _c	214 kip*ft	Eq F2-1	
Zone 2, M _c	219.14 kip*ft	Eq F2-2	
Zone 3, F _{cr}	71.46 ksi	Eq F2-4	
Zone 3, M _c	306.68 kip*ft	Eq F2-3	
M_c	219.14 kip*ft	-4. - 3	
Determine $ au_b$			
P _r	103.15 kips	P _{unt}	
P_{y}	585.00 kips	$A_g^*F_\gamma$	
α	1		
$\alpha P_r/P_y$	0.18		
$ au_{b}$	1.00	Eq C2-2a	
Determine B1			
P_{e1}	2169.61 kips	Eq A-8-5	
Modification Coefficient, C_{mx}	0.60	0.6-0.4*(M1/M2)	
B_1	1.00	Eq A-8-3	
Summary			
M_r	12.57 kip*ft	Eq A-8-1	
M_c	219.14 kip*ft	Referenced Above	
P_{r}	103.2 kips	Eq A-8-2	
P_c	281 kips	Referenced Above	
Combined Forces Ineraction Equation			
P_r/P_c	0.37		
$P_r/P_c > 0.2$	0.42	Eq H1-1a	
$P_r/P_c < 0.2$	0.24	Eq H1-1b	

ConnectionsBase Plate Design

Designed by : ARGouveia Checked by: Zac Zavalianos

CONNECTIONS

Member Ref:

Frame:

Moment
Floor:

First

Member:

Column

Ref. 2:

1-M

ASSUMPTIONS:

Footing dimensions	B=	9	ft
	L=	9	ft
	Λ-	Q1	f+ ²

*Loads

1. MATERIAL PROPERTIES:

Modulus of Elasticity:	E =	29000	ksi
Shear Modulus:	G =	11200	ksi
Yield Strength:	F _{y=}	36	ksi
Concrete Compressive	f'c =	3	ksi

2. LOADS:

Dead Load	DL=	200	kip
Live Load	LL=	300	kip
Factors	ϕ_t =	0.9	
	ϕ_r =	0.75	
Compression	ϕ_c =	0.65	

LRFD

Connections Base Plate Design

15 Project Information Least volume

Designed by: ARGouveia Checked by: Zac Zavalianos

1) Demand:

Load

Pu = 295 ki	C
-------------	---

1. PREVIOUS MEMBER GEOMETRIC INFORMATION:

Demand

Previous Selection:		W10X68	
Plastic Modulus	Z =	85.3	in ³
Flange Width	bf =	10.1	in
Depth:	d =	10.4	in

2. NEW MEMBER GEOMETRIC INFORMATION:

Base Plate:

Width	Bw =	12	in
Length	NI=	12	in
Area	A =	144	in ²
Thickness	t =	1.00	in

Minimal Area Check: Amin = 89.0

> A>Amin ? OK

Ratio Check 31.18

> V(A2/A1)=OK

Given Column Used: 1.06 m= in

> 1.96 n= in n'= 2.56 in **|** = 2.56 in

D = 0.90 N = 10.33 B= 8.61 Acheck= 88.99 in² in² bf.d = 105.04

Acheck>bf.df? YES

Concrete Bearing Strength Check

Check

φ _{c.} P=	477.36	k
φ. P > Pu ?	YFS	

14.551 Advanced Steel Design Term Project **Connections**Base Plate Design

Designed by : ARGouveia Checked by: Zac Zavalianos

USE

1 12.00 12 in

ANSWER

Prepared by: Matthew Laskey Date: 11/29/2014

Checked by: Ana Gouveia

This calculation is representative of all second floor bracing connections. This is due to the symmetrical values and the loading characteristics. The connection is also over designed, so any irregularities will be ok by inspection The tensile forces acting on the connection from the brace below. Will also reduce the forces on the connection

Connection Information:

Grid Line: 2
Column Line: A
Elevation: 2nd Floor

 $\begin{array}{ccc} \text{Story ht} & & 15 \text{ ft} \\ \text{Run} & & 36 \text{ ft} \\ \text{Angle from vert} & & 67.38 \text{ deg} \end{array}$

P(t/c) 16 k E 29000 ksi

	Column			Beam			Brace		
Section	W12	2x50	Section	W14	1x30	section L6x4x.5			
dbm	12.2	in	dbm	13.8	in	wbr		6	in
Fy	50	ksi	Fy	50	ksi	Fy		46	ksi
tf	0.64	in	k	0.785	in	Weld1 (br to gpl)		3	/16 in
tw	0.37	in	tw	0.27	in	lw=lamin		6	in

Gusset plate						
hpl lpl tpl fy	18	in				
lpl	12	in				
tpl	0.375	in				
fy	36	ksi				
Weld2 (gpl to bm)	6	/16 in				
L1 (whit sec)	12.40	in				

Note: 1) highest edge of brace set at 2" above top of beam

2) left most edge of brace set at 1" from edge of connection angle

			Angle				Fy	Bolts	
			size			Length	Fu		
				leg2 /					
Connection angles	Desc	n rows	osl / gage	weld	Thick	in	ksi	diam	spec
Gusset pl to column	dbl angle	5	4	3	0.5	15	36	0.75	A325
			2.81	3			58		
Beam to column	dbl angle	5	4	3	0.5	15	36	0.75	A325
			2.81	3			58		

Phi 0.75

1. Brace to gusset connection

lamin load		1.077586 i	n >	6 ?	USE 6 in
Use lamin=	6	in			

2. calc min plate size

Check Iplmin (min length to fit brace)

lplmin=(leg2-.5"setback)+1"clear+(wbrcos(theta))+(lamin)sin(theta)

IpImin
Check hplmin (min height to fit brace) hplmin= 2" clear + (wbrsin(theta))+(laminCos(theta)) hplmin= 9.85 in > 18 Use hplmir 18.00 in
3. Whitmore section check 0.449219 Lwmin= 12.9282 in
calc tension yielding on whit sec (assumes all Lw in Gpl) Ra 130.8981 k > 16 ? Plate OK
calc compr buckling on whit sec of GpI (assume all Lw in GpI) K 0.5 L1 12.40 r 0.108253 KL/r 57.27279 check if KI/r<>25 eq for Ra buclking Lambda c 0.642319 Fcr 30.29056
Ra bucklinį 110.1382 k > 16 ? Plate OK
Geometry and force parameters tan(theta): 2.399984 eb=dbm/2 6.9 in ec=dcol/2 0.185 in Beta= (((ng-1)+3")/2)+ 9 in alphaideal=ebtan(theta)-ec+betatan(theta) alphaideal 37.97 in aphaactual= lp/2+.5"setback alphaactua 6.5 in Difference -31.47 in
4. Forces r=sqrt((alpahi+ec)^2+(beta+eb)^2) r= 41.33977 in
At gsset to col Vnc=(beta/r)Pn
At gusset to beam Vnb= (eb/r)Pn
At beam to col H= Hnc+Hnb 14.76922 k V=Vnb+Vnc 6.153881 k
5. Gusset to column Check bolts:

Check bolts:

tensile force per bolt rnt=Hc/2n 0.00716 k/bolt < 19.9 allowable Bolts OK

Shear force per bolt rnv=Vnc/2 0.348333 k/bolt < 7.38 (slip critical)

Bolts OK

fv=rnv/Abolt 0.788464 ksi

```
Check bearing strength at bolt holes
```

rbrg=phi*2.4*dbolt*tl*Fu 29.3625 k/bolt 0.348332885 Bearing strength OK

6. Check Angle

Prying action b=g-tl/2 2.56 in 1.19 in a=osl-g b'=b-d/22.185 in a'=a+d/21.565 in p=b'/a' 1.396166 0.8125 in d'=d+1/16 p=L/n 3 in 0.729167 in small delta=1-(d'/p)

> Beta = (1/p)*(B/T)-1) 3.581236 if Beta>1 set alpa'= 1

treq=sqrt((4.44*rnt*b')/(p*Fu*(1+deltaalpha')))

treq= 0.022273 in 0.5 Angle thickness OK

7. Check Weld of Angle to Gusset Plate

fillet welds on 3 sides of both angles

Pnc=sqrt(Hnc^2+Vnc^2) Pnc= 3.484065

Theta= arctan(Hnc/Vnc) theta= 34.13 deg

Length of Dbl Angle= 15 in kl= leg2-1/2" setback = 2.5 in k=kI/I=0.167

From Table 8-8 w/ theta=30 Find x by interpolation.

0.022 x= 0.33 in xl= al= leg2-xl 2.67 in a=al/l= 0.178

Find C by interpolation: 0.1 0.167 0.2 C= 2.43 2.7784 2.95 2.69 0.15 0.178 2.69

ф= 0.75 0.2 2.29 2.625 2.79

φRn= 181.575 k

Pnc= 3.484065 Weld OK φRn>

8. Check strength of angles

Check shear yielding due to Vnc

ф= 1

7.5 in2 Ag 1 angle=

324 k φRn= φ.6Fy2Ag= > Vnc?= 3.483328849 OK (J4-3)

Check Shear Rupture

ф= 0.75

Anv= 5.46875

φ.6Fu2Anv= φRn= 285.4688 k > Vnc?= 3.483328849 OK (J4-4)

Check Block Shear Rupture

φ[.6FuAnv + UbsFuAnt < .6FyAgv+UbsFuAnt]*2 φRn=

0.75 ф=

Ubs= 1 Tension stress uniform .6FuAnv + UbsFuAnt= 507.5 .6FyAgv+UbsFuAnt= 479.1875

φRn= 718.7813 k >Vnc?= 3.483329 OK (J4-5)

Check Column Flange

tflange= 0.64 > treq= 0.022273 OK

9. Gusset to Beam Design

Hnb= 14.69761 k [From Above] Vnb= 2.670552 k [From Above]

Mb=Hbeb= 101.4135 kin

Sx=(hpl-1)^2/3 96.33333 in^2 Weld treated as a line.

Check gusset stress

fv=Hb/lpltpl= $3.266137 < \phi.6Fy$?= 21.6 OK

fa= 0.773649 ksi < Φ Fy= 36 OK

User note on pg 16.1-126: When required stress is less than 30% of available stress, combinec effects of stress need not be considered.

Weld Load

fr= 0.629346 k/in

For ductility multiply by 1.4 = 0.881085 k/in

Weld Capacity AISC Part 8

 $\begin{array}{lll} \text{D=} & 0.375 \text{ in} \\ \varphi = & 0.75 \\ \theta = & 71.10 \\ \end{array}$

∆u= 0.024192 < .17D= 0.6375

 \triangle i= 0.024192 \triangle m= 0.019848 p= 1.218859 f(p)= 0.993585

Weld Cap= 12.11488 k/in > 1.4fr?= 0.881 OK

Check beam web yielding @ gusset plate

fb= 1.286635 ksi <φFybm?= 37.5 OK

10. Beam to Column

Hnc= 14.76922 [From Above] Vnc= 6.153881 [From Above]

n= 5

Check Bolts

Abolt= 0.441786 in2 Tensile force per bolt

rnt= 1.476922 k/bolt < 19.9 <mark>OK</mark>

Shear force per bolt

rnv= 0.615388 k/bolt < 7.38 **OK**

fv= 1.392954 ksi

Tension-shear interaction

ft= 114.3534 < 90 Use 90 prn= 29.82059 k >rnt? OK

Check Angle

Prying

Because using same sized angle, all values same as section 6.

treq= 0.022273 in

check weld of angles to column

fillet welds on 3 sides of both angles

Pnc= 16 k θ = 30.00

Length of Dbl Angle= 15 in k = leg2-1/2" setback = 2.5 in k = k | l = 0.167

From Table 8-8 w/ theta=30 Find x by interpolation.

x= 0.022 xl= 0.33 in al= leg2-xl 14.67 in a=al/l= 0.978

Find C by interpolation: 0.1 0.167 0.2 C= 2.69 0.15 2.43 2.7784 2.95 C1= 1 0.178 2.69

φ= 0.75 0.2 2.29 2.625 2.79

φRn= 181.575 k

φRn> Pnc= 16 Weld OK

Check Strength of angles

Check shear yielding due to Vnc

φ= 1

Ag 1 angle= 7.5 in2

 ϕ Rn= ϕ .6Fy2Ag= 324 k > Vnc?= 6.153880967 OK (J4-3)

Check Shear Rupture

φ= 0.75 Anv= 5.46875

 ϕ Rn= ϕ .6Fu2Anv= 285.4688 k > Vnc?= 6.153880967 OK (J4-4)

Check Block Shear Rupture

 ϕ Rn= ϕ [.6FuAnv + UbsFuAnt < .6FyAgv+UbsFuAnt]*2

φ= 0.75

Ubs= 1 Tension stress uniform

.6FuAnv + UbsFuAnt= 507.5 .6FyAgv+UbsFuAnt= 479.1875

φRn= 718.7813 k >Vnc?= 6.153881 OK (J4-5)

Check Column Flange

tflange= 0.64 > treq= 0.022273 OK

Prepared by:

Matthew Laskey

Checked by:

Ana Gouveia

Date:

11/29/2014

This calculation is representative of all first floor bracing connections. This is due to the symmetrical values and the loading characteristics. The connection is also over designed, so any irregularities will be ok by inspection.

Connection Information:

Grid Line: 2
Column Line: A
Elevation: 1st Floor

Story ht 15 ft
Run 36 ft
Angle from vert 67.38 deg

P(t/c) 16 k E 29000 ksi

Column					
Section	W12x50				
dbm	12.2 in				
Fy	50 ksi				
tw	0.37	in			
tbplate	0.75	in			
wbplate	16	in			

Gusset plate						
hpl	18	in				
hpl lpl tpl fy	12	in				
tpl	0.375	in				
fy	36	ksi				
Weld2 (gpl to bm)	6	/16 in				
L1 (whit sec)	12.40	in				

e Ibk(T)

		Brace				
section	L6x4x.5					
wbr	6 in					
Fy		46	ksi			
Weld1 (br to gpl)		3	/16 in			
lw=lamin		8	in			

Note: 1) highest edge of brace set at 2" above top of beam

6?

2) left most edge of brace set at 1" from edge of connection angle

Phi 0.75

1. Brace to gusset connection

lamin load 1.077586 in >
Use lamin= 6 in
U= 0.75
Lamin= 8 in

USE 6 in

2. calc min plate size

Check Iplmin (min length to fit brace)

 $\begin{array}{lll} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Use lplmin 12.00 = 12 in

Check hplmin (min height to fit brace)

hplmin= 2" clear + (wbrsin(theta))+(laminCos(theta))

hplmin= 10.62 in > 18

Use hplmir 18.00 in

3. Whitmore section check 0.449219

Lwmin= 15.2376 in

calc tension yielding on whit sec (assumes all Lw in Gpl)

Ra 154.2807 k > 16 ? Plate OK

calc compr buckling on whit sec of Gpl (assume all Lw in Gpl)

K 0.5 L1 12.40 r 0.108253 KL/r 57.27279 Lambda c 0.642319 Fcr 30.29056

Ra bucklinį 129.8125 k > 16 ? Plate OK

Geometry and force parameters

tan(theta): 2.40 eb=dbm/2 0.75 in ec=dcol/2 0.375 in

Beta= 1.242722 in

alphaactua 4.41 in

Beta actl= 9

alphaactua 4.41 in

Difference: 7.76 in

4. Forces

r=sqrt((alpahi+ec)^2+(beta+eb)^2)

r= 10.85978 in

At gsset to col

Vnc=(beta/r)Pn 13.25994 k Hnc=(ec/r)Pn 0.552497 k

At gusset to base plate

Vnb= (eb/r)Pn 1.104995 k Hnb= (alpha ideal/r)Pn 6.493686 k

5. Gusset to column Design

Hnc= 0.552497 k [From Above] Vnc= 13.25994 k [From Above]

Sx=(hpl-1)^2/3 96.33333 in^2 Weld treated as a line.

Check weld strength of vertical weld

fx=fa= 0.06074 k/in fy=fv= 0.389998 k/in

fr= 0.3947 k/in

For ductility, multiply by 1.4= 0.55258 k/in

Weld Capacity AISC Part 8

 $\begin{array}{lll} \text{D=} & 0.375 \text{ in} \\ \varphi = & 0.75 \\ \theta = & 9.86 \end{array}$

 $\triangle u = 0.067608 < .17D = 0.6375$

 \triangle i= 0.067608 \triangle m= 0.035516 p= 1.903577 f(p)= 0.733282

Weld Cap= 8.94 k/in > 1.4fr?= 0.553 OK

6. Gusset to Base Plate

Hnb= 6.493686 k [From Above] Vnb= 1.104995 k [From Above]

Check weld strength of horizontal weld

lwh= 6.815 in fx=fv= 0.48 k/in fy=fa= 0.08 k/in

fr= 0.48 k/in

for ductility, multiply by 1.4= 0.677 k/in

Weld Capacity AISC Part 8

D= 0.375 in $\Phi=$ 0.75 $\theta=$ 9.66

 $\triangle u = 0.068 < .17D = 0.6375$

 $\triangle i$ = 0.068 $\triangle m$ = 0.036 p= 1.909 f(p)= 0.727998

Weld Cap= 8.88 k/in > 1.4fr?= 0.677 OK

7. Gusset plate stresses

a. Normal load

normal load = larger of fxtop or fybott

fxtop= 0.06 fybott= 0.08

Normal load= 0.08 k/in

Plate stress= normalload* 2welds* 1in long/tpl*1in long

plate stress= 0.432378 ksi < φFy?= 32.4 OK

b. Shear Load

Shear load larger of fytop or fxbott

fytop 0.389998 fxbott 0.48 shear load 0.48 k/in

Plate stress= shearload*2welds*1in long / tpl*1in long

Plate stress= 2.540939 ksi < \phi.6Fy?= 19.44 OK

Moment Frame Design

MOMENT FRAME

Sizing (From 30%)

Members 10 & 14 W18x40 Member 12 W12x19 Members 9 & 13 W24x68 Member 11 W18x35 Exterior Columns W8x40 Interior Columns W8x40

Braced Frame Bay Width, W_b 36 ft Plan Length, L 108 ft Plan Area 7776 ft^2 Moment Frame Bay Width, W_m 24 ft Plan Width, W 72 ft

Vertical Loading

Roof
Roof Live Load, W_{RLL}
Snow, W_s
0.57 klf
Wind Uplift, W_{WU}
-0.42 klf
Roof Dead Load=self weight of beam
Level 2

Floor Dead Load, W_{DL} 1.67 klf Floor Live Load, W_{FlL} 1.8 klf

Girder Reactions on Interior Columns 0 kips
Girder Reactions on Exterior Columns 0 kips

Lateral Loading

Seismic Force, Roof Level 3.23 kips
Seismic Force, Level 2 12.62 kips
Wind Force, Roof Level 9.61 kips
Wind Force, Level 2 19.22 kips

Advanced Steel Design					Checked By;
Determine Notional Loads					
Roof					
Roof Live Load	0.9 klf				
Snow Load	0.57 klf				
Wind Uplift	-0.42 klf				
Dead Load (Beam Self Weight)	0.04 klf				
W_{u-roof}	1.49 klf				
Level 2					
Floor System Load	1.67 klf				
Beam Self weight	0.068 klf				
Dead Load	1.74 klf				
Live Load	1.80 klf				
W_{u-2}	4.99 klf				
Y_R	107.14 kips				
Y ₂	358.99 kips				
α	1				
N _R	0.214 kips	Eq C2-2			
N ₂	0.718 kips	Eq C2-1			
		·			
F_{y}	50 ksi				
	Run C	Computer model in SAF	22000		
			.	-	
Design of Columns (Data from Members 3 & 5	5)				
First order analysis forces					
t	юр	bottom			

				_		
	top		bottom	_		
Ultimate Axial Load, P _{unt}	57.15	kips	57.15	kips	SAP	
Ultimate Axial Load, P _{ult}	29.35	kips	29.35	kips	SAP	
Ultimate Moment, M _{untx}	31.08	kip*ft	0	kip*ft	SAP	
Ultimate Moment, M _{ultx}	158.84	kip*ft	0	kip*ft	SAP	
Unbraced Length, L _{bx}	15	ft				
			Effective Length	Factor, K.,		

P_{story} & P_{mf}

Roof Level Uniform Pressure 0.08 ksf Level 2 Uniform Pressure 0.27 ksf

 $\begin{array}{ll} P_{story\text{-}r} & 622.08 \text{ kips} \\ P_{story\text{-}2} & 2111.96 \text{ kips} \\ P_{story} & 2734.04 \text{ kips} \end{array}$

Moment Frame Column Tributary Area 432.00 ft²

P_{mf} 607.56 kips

TRIAL SECTION W10x68

Section Properties (Table 1-1)

i Properties (Table 1-1)					
Plastic Section Modulus strong axis, Z_x	85.3	in ³	S_x	26.4	in ³
Moment of Inertia, I_x	394	in ⁴	r_{ts}	2.59	in
r_{χ}	4.44	in	h_o	9.63	in
r_{y}	2.59	in	J	3.56	in ⁴
A_g	19.9	in2			
b_f	10.1	in			
t_f	0.77	in			
h	7.5	in			
t _w	0.47	in			

Beam	Prope	rties
------	-------	-------

Full plastic yielding unbraced length, L_{p}	9.15	ft	Table 3-2
Elastic/Inelastic LTB unbraced length, L _r	40.6	ft	Table 3-2
фВF	3.85	kips	Table 3-2
ϕM_{px}	320	kip*ft	Table 3-2

	Flex	ure	Compression
Slenderness Characteristics	λ_{p}	λ_{r}	λ_{r}
Flanges	9.15	24.08	13.49
rialiges	NONCO	MPACT	NONSLENDER
Web	90.55	137.27	35.88
web	COM	PACT	NONSLENDER

Axial Capacity

K	1	K=1 for columns in DAM
KI	15 ft	
KL/r	69.50	4.71*sqrt(E/Fy) 113.4318
F_e	59.26 ksi	
F_{cr}	35.12 ksi	E3-2
F_{cr}	51.97 ksi	E3-3
F_{cr}	35.12 ksi	
φ	0.90	
P_c	629.06 kips	Table 4-1

Flexure Capacity

Zone?	ZONE 2			
M_{max}	158.84	kip*ft	M_{ult}	
M_A	23.54	kip*ft	SAP	
M_B	54.31	kip*ft	SAP	
M_{c}	81.47	kip*ft	SAP	
C _b	2.14			Eq F1-1
Zone 1, M_{c}	320	kip*ft		Eq F2-1
Zone 2, M_{c}	320.00	kip*ft		Eq F2-2
Zone 3, F _{cr}	317.14	ksi		Eq F2-4
Zone 3, M_{c}	697.72	kip*ft		Eq F2-3
M_{c}	320.00	kip*ft		

Determine τ_{b}		
P _r	86.50 kips	P _{nt} +P _{lt}
P_{y}	995.00 kips	A_g*F_y
α	1	
$\alpha P_r / P_y$	0.09	
τ_{b}	1.00	Eq C2-2a
Determine B1		
P_{e1}	2784.45 kips	Eq A-8-5
Modification Coefficient, C_{mx}	0.60	Eq A-8-4
B_1	1.00	Eq A-8-3
Determine B2		
R_{M}	0.97	Eq A-8-8
P_{estory}	8762.35 kips	Eq A-8-7
B ₂	1.45	Eq A-8-6
M_r	261.96 kip*ft	Eq A-8-1
M_c	320.00 kip*ft	Referenced Above
P_{r}	99.8 kips	Eq A-8-2
P_c	629.06 kips	Referenced Above
Combined Forces Ineraction Equation		
P _r /P _c	0.16	
$P_r/P_c > 0.2$	0.89	Eq H1-1a
P_{r}/P_{c} <0.2	0.90	Eq H1-1b
Design Check	0.90 SECTION	I ОК

Design of Level 2 Beam (Member 11)

First order analysis for

Ult	imate Axial Load, P _{unt}	11.62	kips	SAP	Δ_{h}	/L	0.003		
Ult	timate Axial Load, P _{ult}	5.69	kips	SAP		Н	30.215	kips	SAP
Ult	imate Moment, M _{untx}	74.27	kip*ft	SAP					
Ult	timate Moment, M _{ultx}	112.88	kip*ft	SAP					
	Unbraced Length, $L_{\rm bx}$	24	ft						
				Effective Le	ength Factor, K _y		1		

70.6 in³

2.79 in 11.5 in

1.58 in⁴

 S_{x}

 $h_{o} \\$

P_{story} & P_{mf}

Roof Level Uniform Pressure 0.08 ksf Level 2 Uniform Pressure 0.27 ksf

 $\begin{array}{ll} P_{story\text{-}r} & 622.08 \text{ kips} \\ P_{story\text{-}2} & 2111.96 \text{ kips} \\ P_{story} & 2734.04 \text{ kips} \end{array}$

Moment Frame Column Tributary Area 432.00 ft²

P_{mf} 607.56 kips

TRIAL SECTION W12x53

Section Properties (Table 1-1)

Plastic Section Modulus strong axis, Z _x	77.9	in ³
Moment of Inertia, I _x	425	in ⁴
r _x	5.23	in
r _v	2.48	in
A_g	15.6	in2
b_{f}	10	in
t_f	0.575	in
h	9.25	in
t_w	0.345	in

Beam Properties

Full plastic yielding unbraced length, L_{p}	8.76	ft	Table 3-2	
Elastic/Inelastic LTB unbraced length, L _r	28.2	ft	Table 3-2	
фВF	5.5	kips	Table 3-2	
ϕM_{px}	292	kip*ft	Table 3-2	

	Flex	ure	Compression
Slenderness Characteristics	λ_{p}	λ_{r}	λ_{r}
Flanges	9.15	24.08	13.49
Flanges	NONCO	MPACT	SLENDER
Web	90.55	137.27	35.88
web	COM	PACT	NONSLENDER

Axial Capacity

1	K=1 for columns	in DAM
24 ft		
116.13	4.71*sqrt(E/Fy)	113.4318
21.22 ksi		
18.65 ksi	E3-2	
18.61 ksi	E3-3	
18.61 ksi		
0.90		
261.33 kips		
	24 ft 116.13 21.22 ksi 18.65 ksi 18.61 ksi 18.61 ksi 0.90	24 ft 116.13

Flexure Capacity		
Zone?	ZONE 2	
C_b	1.14	Table 3-1
Zone 1, M _c	292 kip*ft	
Zone 2, M _c	249.06 kip*ft	
Zone 3, F _{cr}	49.54 ksi	
Zone 3, M _c	291.47 kip*ft	
M _c	249.06 kip*ft	
Determine $ au_b$		
P_{r}	17.31 kips	P _{nt} +P _{lt}
P_{y}	780.00 kips	$A_g * F_y$
α	1	
$\alpha P_r/P_y$	0.02	
$ au_{b}$	1.00	Eq C2-2a
Determine B1		
P_{e1}	1173.25 kips	Eq A-8-5
Modification Coefficient, C_{mx}	0.99	Eq A-8-4
B_1	1.01	Eq A-8-3
Determine B2		
R _M	0.97	Eq A-8-8
P _{estory}	8762.35 kips	Eq A-8-7
B_2	1.45	Eq A-8-6
M_r	239.01 kip*ft	Eq A-8-1
M_c	249.06 kip*ft	Referenced Above
P_r	19.9 kips	Eq A-8-2
P_c	261.33 kips	Referenced Above
Combined Forces Ineraction Equation		
P_r/P_c	0.08	
n /n · n n		

 $P_r/P_c>0.2$

 P_{r}/P_{c} <0.2

Design Check

0.93

1.00

0.998 **SECTION OK**

Eq H1-1a

Eq H1-1b

Design of Roof Level Beam (Member 12)

First order analysis for

7.29	kips	SAP	Δ_{h}/L	0.003	
2.35	kips	SAP	Н	30.215	kips SAF
14.41	kip*ft	SAP			
43.08	kip*ft	SAP			
24	ft				
		Effective Length Factor,	, K _y	1	
	2.35 14.41 43.08	2.35 kips 14.41 kip*ft 43.08 kip*ft	2.35 kips SAP 14.41 kip*ft SAP 43.08 kip*ft SAP 24 ft	2.35 kips SAP H 14.41 kip*ft SAP 43.08 kip*ft SAP	2.35 kips SAP H 30.215 14.41 kip*ft SAP 43.08 kip*ft SAP 24 ft

P_{story} & P_{mf}

Roof Level Uniform Pressure 0.08 ksf Level 2 Uniform Pressure 0.27 ksf

 $\begin{array}{ll} P_{story\text{-}r} & 622.08 \text{ kips} \\ P_{story\text{-}2} & 2111.96 \text{ kips} \\ P_{story} & 2734.04 \text{ kips} \end{array}$

 $\begin{array}{ccc} \mbox{Moment Frame Column Tributary Area} & \mbox{432.00 ft}^2 \\ & \mbox{P_{mf}} & \mbox{607.56 kips} \end{array}$

TRIAL SECTION W10x39

Section Properties (Table 1-1)

Section Properties (Table 1-1)		
Plastic Section Modulus strong axis, Z _x	46.8	in ³
Moment of Inertia, I _x	209	in ⁴
r_x	4.27	in
r_y	1.98	in
A_g	11.5	in2
b_{f}	7.99	in
t_f	0.53	in
h	7.5	in
t.,,	0.315	in

S _x	42.1	in ³
r_{ts}	2.24	in
h _o	9.39	in
J	0.976	in ⁴

Beam Properties

Full plastic yielding unbraced length, L_{p}	6.99	ft	Table 3-2
Elastic/Inelastic LTB unbraced length, L _r	24.2	ft	Table 3-2
фВF	3.78	kips	Table 3-2
ϕM_{px}	176	kip*ft	Table 3-2

	Flex	ure	Compression
Slenderness Characteristics	λ_p	λ_{r}	λ_{r}
Flanges	9.15	24.08	13.49
Flanges	NONCO	MPACT	SLENDER
Web	90.55	137.27	35.88
web	COM	PACT	NONSLENDER

Axial Capacity

K	1	K=1 for columns i	n DAM
Kl	24 ft		
KL/r	145.45	4.71*sqrt(E/Fy)	113.4318
F_e	13.53 ksi		
F_{cr}	10.64 ksi	E3-2	
F_{cr}	11.86 ksi	E3-3	
F_{cr}	11.86 ksi		
φ	0.90		
P_{c}	122.80 kips		

Flexure Capacity

Flexure Capacity		
Zone?	ZONE 2	
C_b	1.14	Table 3-1
Zone 1, M _c	176 kip*ft	E
Zone 2, M _c	136.34 kip*ft	E
Zone 3, F _{cr}	40.37 ksi	E
Zone 3, M _c	141.64 kip*ft	E
M_c	136.34 kip*ft	
Determine τ_b		
P _r	9.64 kips	P _{nt} +P _{lt}
P_{y}	575.00 kips	A_g*F_y
α	1	
$\alpha P_r/P_y$	0.02	
$ au_{b}$	1.00	Eq C2-2a
Determine B1		
P_{e1}	576.96 kips	Eq A-8-5
Modification Coefficient, C_{mx}	0.99	Eq A-8-4
B_1	1.01	Eq A-8-3
Determine B2		
R_{M}	0.97	Eq A-8-8
P _{estory}	8762.35 kips	Eq A-8-7
B_2	1.45	Eq A-8-6
M_r	77.18 kip*ft	Eq A-8-1
M_c	136.34 kip*ft	Referenced Above
P_{r}	10.7 kips	Eq A-8-2
P_c	122.80 kips	Referenced Above
Combined Forces Ineraction Equation		
P_r/P_c	0.09	
$P_r/P_c>0.2$	0.59	Eq H1-1a
P _r /P _c <0.2	0.61	Eq H1-1b
Design Check	0.61 SECTION	N OK

Calculated By: ZZ Checked By: ML

Moment Frame Connection Design-Level 2

Given:

Girder	W12x53		Column	W10x68	
depth, d	12.1	in	depth, d	10.4	in
t_f	0.575	in	t_f	0.77	in
b_f	10	in	b_f	10.1	in
t_w	0.345	in	t_w	0.47	in
			k	1.27	in

Flange Plates

5 26 Let 5 50 Let	
t $3/4$ in F_y 36 ksi F_u 58 ks	(SI
w 10 in <0.15*bf (column)? CHECK FLANGE LOCAL BENDING J1	10.1
unbraced length, L _p 3 in	
# of rows 2 Gage 7 in Spacing 3 in	n
A325N, bolt dia. 7/8 in Hole std # bolts 10 pe	er flange
Conn. Length 12 in	n
Edge Distance 2 in	n

Flange-Column Weld

Flange-Column Weld		
Electrode Strength, F _u	70	ksi
Flange CJP Weld:		
Length	10	in
Size	1/2	in

Double Angle Connection

t	1/4	in we	eld size	1/4	in	
# bolts/row, n	4	W	eld Lengt	11.5	in (L)	
A325N, bolt dia.	3/4	in Ho	ole	std		

Beam End Forces (LRFD)

Shear, V	78.22	kips
Moment, M	239.01	kip*ft

Determine:

Connection adequacy and need for column stiffeners

Calculated By: ZZ Checked By: ML

Solution

Determine Flange and Web Shear Forces

Flange Force, T=C 237.03 kips M/d Web Shear Force 78.22 kips Given

Tensile Strength of Flange Plate

a. Tensile Yield, P_n

Gross Area,
$$A_g$$
 7 1/2 in^2

Nom. Tensile Yield, P_n 270 kips Eq D2-1

 Φ 0.9

 ΦP_n 243 kips

OK

b. Tensile Rupture, P_n

Effective Area, A_e 6.00 in^2 Nom. Tensile Rupt., P_n 348.00 kips Φ 0.75 ΦP_n 261.00 kips OK

Flange Plate Block Shear

ОК

Advanced Steel Calculated By: ZZ 100% Submittal Checked By: ML

Flange Plate Bolt Bearing

Find Minimum clear distance, L_c

Interior L 2.00 in Edge L_c 1.50 in Min L_c 1.50 in

> Deformation **Tearout**

> > 78.30 kips/bolt 91.35 kips/bolt Eq J3-6A

Nominal Strength, R_n 78.30 kips/bolt

Nominal Plate Bearing

Strength, P_n 783 kips

> Φ 0.75 ΦP_{n} 587.25 kips OK

Bolt Shear

0.60 in² Bolt Area, A_b A325N, F_{nv} 54 ksi

Table J3.2

32.47 kips/bolt **Bolt Shear Strength** 324.71 kips 0.75 ΦP_{n} 243.53

ОК

Flange Plate Compressive Strength

Κ 0.65 Table C-A-7.1 0.22 in t/sqrt(12) r_v KL_p/r Eq J-4-6 Applies 9.01 10 in

Effective Plate width, I_w 7.5 in² Effective gross area, Age

> 270 kips Nominal Compressive Strength, Eq J4-6

 \mathbf{F}_{cr} 32.3 ksi Table 4-22

Φ 0.9 ΦP_n 243

OK

Calculated By: ZZ Checked By: ML

Evaluate Double-angle connection

Strength of welds 79.9 kips Table 10-2 (Case II)

ОК

Bolt/Angle Strength 101 kips Table 10-1

ОК

Bolt bearing on web 351 k/in 121.10 kips Table 10-1

ОК

Check Column with concentrated forces

Flange local bending

R_n 133.40 kips J10-1

Φ 0.9

 ΦR_n 120.06 kips

ОК

Web Local Yielding

R_n 104.48 kips J10-3

Φ 1

 ΦR_n 104.48 kips

ОК

Web Crippling Parameters

 R_n 326.50 J10-4

Φ 0.75

 $\Phi R_{n} \hspace{0.5cm} 244.87$

ОК

If L>18", 4" Otherwise 3" Advanced Steel Calculated By: ZZ 100% Submittal Checked By: ML

Girder: W12x53 M_u 239.01 kip*ft Column: W10x68 V_u 78.22 kips

Flange Plate:

Thickness, t 3/4 in F_y 36 ksi F_u 58 ksi

width, w 10 in # of rows 2 Hole std

A325N, bolt dia. 7/8 in

bolts 10 per flange

Gage 7 in

Flange-Column Weld:

Electrode Strength, F_u 70 ksi

Flange CJP Weld:

Length 10 in Size 1/2 in

Double Angle Connection:

Weld to column, bolt to girder

Angle properties:

t 1/4 in

L 11.5 in

Leg Connect. to Column 3 in Leg connect. To girder 3.5 in

weld size 1/4 in

Hole std

bolts/row, n 4 (Bolts spaced at 3" O.C.)

A325N, bolt dia. 3/4 in

Simple Shear Connection Design - Level 2

BEAM CONNECTIONS

Connections highlighted below:

 $P_{\rm u}$ 39.11 kips Shear reaction

Use all welded double angle connections

Table 10-3: Available Weld Strength of All-Welded Double Angle Connections

Advanced Steel Design

Originated by: ZZ

100% Submittal

Checked by: ML

Welds with the following specifications meet requirements:

L	6	in	
Weld B	5/16	in	
Angle Width on Supporting			
element	3	in	
Weld A	3/16	in	
Angle Thickness	0.25	in	Weld size+(1/16)

Use (2) 3.5x3x1/4 angles

GIRDER CONNECTIONS

Connections highlighted below:

LEVEL 2

Use all bolted double angle connection

Table 10-1: All Bolted Double-Angle Connections

Following bolt specifications meet requirements: 5 rows, 3/4" bolts
Group A, threads included, STD hole
3/8" angle thickness

Advanced Steel Design

Originated by: ZZ

100% Submittal

Checked by: ML

Leg Length bolted to

girder: 3.5 in (Gage+1")

Use 3.5 in

Leg length bolted to

column: 4.00 in $(t+H_2+C_1+1")$

Use 4 in Angle Length 14

Use (2) 4 x 3.5 x 3/8 x 1'-2" angles

Simple Shear Connection Design - Roof Level

GIRDER CONNECTIONS

Connections highlighted below:

ROOF LEVEL

P_u 295.97 kips

Use all bolted double angle connection

Table 10-1: All Bolted Double-Angle Connections

Following bolt specifications meet requirements: 9 rows, 3/4" bolts
Group A, threads included, STD hole
3/8" angle thickness

Size angle:

Advanced Steel Design			Originated by: ZZ
100% Submittal			Checked by: ML
Leg Length bolted to			
girder:	3.5 in	(Gage+1")	
Use	3.5 in		

column: 4.00 in $(t+H_2+C_1+1")$ Use 4 in

Angle Length 26

Use (2) 4 x 3.5 x 3/8 x 2'-2" angles

Leg length bolted to

ROOF LEVEL

P_u 71.46 kips

Use all bolted double angle connection

Table 10-1: All Bolted Double-Angle Connections

Following bolt specifications meet requirements: 4 rows, 3/4" bolts
Group A, threads included, STD hole
1/4" angle thickness

Number of spaces, N	3	
Girder t _w	0.43	in
Angle thickness, t	1/4	in
H ₂	1 3/8	in Table 7.16
C_1	1 1/4	in Table 7.16
Gage	2.5	in Assumed
Min. edge distance	1	in Assumed

Leg Length bolted to		
girder:	3.5 in	(Gage+1")
Use	3.5 in	
Leg length bolted to		
column:	3.88 in	$(t+H_2+C_1+1")$
Use	4 in	
Angle Length	11	

Originated by: ZZ

Checked by: ML

Use (2) 4 x 3.5 x 1/4 x 11" angles

Advanced Steel Design

100% Submittal

Prepared by: 11/29/2014 Matthew Laskey Date:

Checked by: Ana Gouveia

Hanger Tension MemberDesign

Loading Referenced from "Hanger Connection Design"

The tension member will consist of two narrow steel plates bolted together at the WT member. The only forces acting on this member is tension.

Pu= 117.33 k

Pu= 58.665 k/tension member

Steel Plates WT12x96 Member

d= tpl= 1 in 12.7 in 14 in k= 1.96 in wpl= Fy= 36 ksi d-k= 10.74 in

58 ksi Fu=

Plates

Allowable tensile yielding (AISC 16.D.2)

0.9 ф= Ag= 14 in2 504 k Pn=

453.6 k/member φPn=

Allowable Tensile rupture

ф= 0.75 An= 11.375 in2

U= 1 Table D3.1

Ae= 11.375 in2 Pn= 659.75 k

494.8125 k/member φPn=

Block Shear of Plates

ф= 0.75

Ubs= 1 Uniform tension stress

Rn=.6FuAnv+UbsFuAnt<.6FyAgv+UbsFuAnt .6FuAnv+UbsFuAnt=

> .6FyAgv+UbsFuAnt= 659.75 k

659.75 k

395.85 k/member φRn=

Check

yield 453.6 k/member 58.665 OK Rupture 494.8125 k/member 58.665 OK **Block** 395.85 k/member 58.665 OK >

Bolts

Using A325N 3/4" diameter bolts

n= 3 dia= 0.75 in Ab= 0.44 in2

Fnt= 90 ksi Table J3.2 Fnv= 54 ksi Table J3.3

Tensile Strength of Bolts AISC J3.6

 ϕ = 0.75 Rnt= 39.76 k ϕ Rnt= 29.82 k/bolt

Shear Strength of Bolts (double Shear) AISC J3.6

φ= 0.75Rnv= 23.86 kφRnv= 17.89 k/bolt

Check shear force per bolt

rnv=Pu/2n 9.78 < 17.89 OK

Check Tension force per bolt

rnt=Pu/n 19.56 < 29.82 **OK**

Hanger Connection Design

Dead Load, DL	93	psf
Live Load, LL	100	psf

Tributary width	36	ft
Tributary Length	12	ft
Tributary Area	432	ft^2

 W_u 271.6 psf P_u 117.33 kips/hanger

Specify WT:	WT12x96		
Hanger will bear on	a W30 girder		
ф	0.9		
Ω	1.67		
$F_{\rm u}$	58	ksi	Table 2-4
b_f	13	in	Table 1-8
t_f	1.46	in	Table 1-8
t _w	0.81	in	Table 1-8
bolt diameter, d _b	3/4	in	
hole diameter, d_h	7/8	in	+1/8
Edge distance	2	in	
Gage	8.13	in	b_f -(2*Edge distance)-(2* d_h /2)
a	2.44	in	
a'	2.00	in	
b	3.66	in	
b'	3.22	in	
S	8.13	in	
Р	8.13	in	
Т	58.67	kips	
t_{min}	1.33	in	
$t_f > t_{min}$?	YES		

Composite Beam Design Deck

Designed by : ARGouveia Checked by: Matt Laskey

1. Given:

Unshored Construction:

Steel beams must support all loads prior to .75f'c

Floor Slab/Deck Details

Steel Beam Properties:

Section:	W	W21X44	
	d	20.7	in
	b_f	6.5	in
	t_{f}	0.45	in
	$t_{\sf w}$	0.35	in
	Α	13	in²
	S_x	81.6	in ³
	Z	95.4	in ³
	Zy	10.2	in
	S.	6.37	in ³

Ε	29000	ksi
F_y	50	ks
r_{ts}	2.81	in
h_0	11.6	in
I_{xw}	843	in ⁴
I_{yw}	20.7	in⁴
J_w	0.77	in⁴
r_{xw}	8.06	in
ryw	1.26	in

Beam/Slab Properties:

Beam Yield Stress, Fy	50	ksi
Beam Spacing	9	ft
Beam Span Length	36	ft
Deck height, hr	1.5	in
Overall Slab thickness, Ycon	5	in
Deck orientation	Perpendicular	
Thickness of Concrete, tc	4.25	in
effective slab width	108	in

Bay Width	24	ft	
rib spacing	6	in	OK
rib width	3.5	in	

Concrete Properties:

14.551 Advanced Steel Desigr Term Project, 2/14	1			Composite Beam Deck	Design			Designed by : ARGouveia Checked by: Matt Laskey
Compressive Strength, f'c	4	ksi						
Unit Weight of Concrete	145	pcf						
Elastic Modulus, Ec	3492	ksi						Eq. 18-1
Load Transfer Device								
Max Headed stud diameter	3/4	in		Stud Used	3/4	in	OK	18.2d
Min Length	3	in		length	4	in	OK	
ASTM A108, Tensile Strength, Fu	65.00	ksi		Stud position	weak			
Minimum longitudinal spacing	4.5	in		Rp	0.6			18.2d
Maximum longitudinal spacing	36	in		Rg	1			18.2d
Minimum transverse spacing	3	in		clearance	1.5	in		18.2d
Loads								
Superimposed Floor Live Load	150	psf		LRFD, φ	0.9			
Superimposed Dead Load	171.5	psf		•				
Construction Live Load (staging)	20.00	psf						
Metal Deck	2	psf						
Beam Self Wt	44	psf		from beam used a	above			
Ceilling and utilities	10	psf						
Partitions	20	psf					8100	
Method/Solution								
1. Design Loads on Beam			Service Load	ds (plf)				
1,1 Construction Phase			D	L	TOTAL		Assumptions:	
Live Load				180			Value given * bea	m spacing (twidth)
Dead Loads:								
Metal Deck			18					
Beam Self Weight			44					
Wet Concrete			462				Calculated value b	pased on beam spacing
Total with concrete			524	180	704		Concrete Thickne	SS
Total without concrete			62	180	242			
Total Uniform Construction Design Lo	oad, wc		Factored Lo	ads (plf)	TOTAL	7		

Section A-50-1-21 2/14

14.551 Advanced Steel Design	
Term Project, 3/14	

Composite Beam Design Deck

Designed	by	: ARG	ouveia
Checked	bv:	Matt	Laskev

LRFD, with concrete, wc-c	629	288	917
LRFD, without concrete, wc-wc	74	288	362

1,2 Superimpose Loads (post Construction)	D	L	TOTAL
Superimpose Floor Live Load		1543.5	
Superimpose Dead Loads:	288		
Total with concrete	288	1543.5	1832

Total Uniform Construction Design Load, wc	Factored Load	ds (plf)	
LRFD, with concrete, wc-c	346	2470	2815

2, Determine Required Beam Strength

2.1. Construction Phase

Live Moment, Mrcll	46.656	k-ft	total live load
Total Moment, Mrc	148.6	k-ft	with concrete
Total Shear, Vrc	16.5	kips	with concrete
Total Moment, Mr+rc	58.7	k-ft	Prior to fastening deck (no conc)

2,2 Superimposed (post-construction)

Moment, Mrs	456.06	k-ft
Shear, Vrs	50.67	kips

3. Select Feasible shapes assuming 100% composite action and superimposed loads

3,1 PNA is located in slab, estimate a= ,4 x tc	1.7	in
3,2 Calculate Y2 = Ycon - a/2	4.15	in

3,3 Select Feasible shapes

Required Superimposed Moment	456.06 k-ft

4,0, Check Construction Phase Required Strength/Capacity

4.1 Construction w/ DL + LL (before bracing top flange with unfastened deck)

Check Elastic Lateral Torsional Capacity and temporary bracing requirements

Composite Beam Design Deck

Designed by : ARGouveia Checked by: Matt Laskey

Required Moment

Mr-nc 58.7	k-ft
------------	------

-easible S	Shape	Lb	Sx	rts (in)	ho	J	Lb/rts	Eq. F2-4 Fcr (ksi)	Mn (k-ft)	$Φ_{b}$ Μ _n (k-ft)	Check Mr- nc/ФbMn	Is Temp. Bracing Req'd?
W18)	(35	36	57.6	1.42	15.5	0.506	304.2	6.98	33.5	30.1	1.95	Yes
W18)	(35	30	57.6	1.51	17.3	0.506	238.4	9.08	43.6	39.2	1.50	No

4.2 Construction w/ DL + LL (with fastened deck) + Assume Fully Braced Top Flange

Construction Dead Load Deflection

Superimposed Load, wu

Md=

0.704 kips

Required Moment

Mrc	148.6	k-ft	

114.08 k-ft

easible Shap	$\Phi_{\rm b} M_{\rm px}$ (k-ft)	lx	$\Phi_{\rm b} M_{\rm n}$ (k-in)	Mrc/ФbM n	$\Phi_{b}V_{n}$ (k)	Vrc/ФbVn	Check ∆cdl (in)	Camber? (D>,75 in)
W18X35	125	510	361.7	0.41	94.5	0.17	1.80	YES
W18X35	166	510	470.7	0.32	106	0.16	1.80	YES

Table 3-2 Table 3-2

5. Check Adequacy of Composite Sections

5.1 Flexure & Shear

easible Shape:	As	d	а	Y2	Mn (k-ft)	$\Phi_{\rm b} M_{\rm n}$ (k-in)	Mrs/ФbMn	< 1,0 ?	$\Phi_{b}V_{n}$ (k)	Vrs/ФbVn	< 1,0 ?
W18X35	10.3	17.7	1.40	4.30	515	463.5	0.98	OK	94.5	0.54	OK
W18X35	10.3	17.7	1.40	4.30	515	463.5	0.98	OK	106	0.48	OK

5.2 Deflection/Serviceability

C1= 161

(1/360) =

1.2

in

(1/240) =

1.8

in

easible Shape	Y2	Y1	Table 3-20 I _{LB}	Camber (in)	D (l/360) = Camber - Δcdl (in)	∆sdl (in)	∆sll (in)	Check ΔsII (in) < (I/360)	Δtl (in)	Check ΔtI (in) < (I/240)
W18X35	4.30	0	1055	1	-0.20	0.36	1.20	OK	1.500	OK
W18X35	4.30	0	875	0	0.00	0.43	2.30	NG	2.730	NG

14.551 Advanced Steel Desig	gn	Composite Bean Deck	n Design			•	ed by : ARGouveia d by: Matt Laskey
6.0 Design Steel Anchor Studs	Area of Steel Anchor, Asa	Asa =	0.44	in ²	ea.		
6.1 Strength of Steel Headed Ancho	Qn1	26.1				Eq. 18-1	
		Qn2	17.2				Eq. 18-1
		Qn	17.2	Control			
		W18X35	W18X35		RESULTS	W1	8X35
Total Required Shear Transfer, SQn	= Fy.As	515	515		CAMBER	1	in
Number Steel Headed Anchors Req	uired, Ns	29.9	29.9		# STUDS	60	studs
	USE:	30	30		STUD Φ	0.75	in
					STUD LENGTH	4	in
Distance between max and zero mo	oment = L/2	216	216		SPACING	EQUAL	
Required Stud Spacing		7.2	7.2		TEMPORARY BR	RACING	Yes
	CHECK:	OK	ОК		ΔsII (in)	1.20	in

60

60

TOTAL ANCHORS REQUIRED:

Originated by: ZZ Checked by: ML

Floor System Vibration Calculation

Interior Beam/Slab System:

Find:

- 1) Fundamental natural frequency of the interior beam, girder, and combined panels modes of the second floor.
- 2) Adequacy of the floor system for vibration due to walking excitation.

Originated by: ZZ Checked by: ML

_	/~!!	_	
Raam	CION	Dran	Artiac
Beam/	JIAN	FIUN	ei ties

Beam Yield Stress, F _y	50	ksi
Elastic Modulus, E _s	29000	ksi
Beam Spacing	8	ft
Beam Span Length	36	ft
Deck Height, h _r	1.5	in
Overall Slab Thickness, Y_{con}	5.5	in
Deck Orientation on Beam	Perp.	
Concrete Thickness, t _c	4	in
Rib Spacing	6	in
Rib Width	3.5	in

Concrete Properties

4 ksi	
145 pcf	
3492 ksi	(wc^1.5*sqrt(f'c))
4714 ksi	(1.35*Ec)
6.15	(Es/1.35Ec)
	145 pcf 3492 ksi 4714 ksi

Loads

Floor Live Load		100 psf	
Dead Load (No Conc.)		18 psf	
Concrete Dead Load		33.23 psf	$(Y_{con}/2)/12*w_c$
Deck Dead Load		2.5 psf	Vulcraft Manual
	$\mathbf{W}_{\text{total}}$	153.73 psf	Total uniform load

Dynamic Parameters

Excitation force, P _o	65 lbs	Table 4.1
Damping Ratio, β	0.05 lbs	Table 4.1

Solution:

Determine I $_{transformed}$ of Beams and Girders

	Girder	Beam		
	W30x108	W21x44		
Span, L	24 ft	36 ft		
Tributary Width	36 ft	8 ft		
Self Weight	108 plf	44 plf		
l _x	4470 in ⁴	843 in ⁴		
A	31.7 in ²	13 in ²		
d	29.8 in	20.7 in		
effective slab depth, $d_{\rm e}$	4.75 in	4 in		
Effective w of conc., b _e	115.2 in	96 in		
Transformed Conc., A _{TC}	88.95 in ²	62.42 in ²	b _e *d _e /n	
dist. To centroid, y'	2.38 in	2 in	$d_e/2$	(from top of slab)
Area of Steel, A _s	31.7 in ²	13 in ²		
dist to centroid, y'	20.4 in	15.85 in	$Y_{con}+d/2$	(from top of slab)
Dist to Trans, N.A., y"	7.11 in	4.39 in		(from top of slab)
I_x of transformed conc., I_{TC}	1028.85 in ⁴	512 in ⁴		
$A_{TC}(y'-y'')^2$	1995.04 in ⁴	355.73 in ⁴		
$A_s(y'-y'')^2$	5598.30 in⁴	1708.15 in ⁴		
I _x	4470 in ⁴	843 in ⁴		
۰٪ ا _x (transformed)	13092.20 in ⁴	3418.88 in ⁴		

Determine	effective	panel	width
Determine	2,, 221, 72	Parier	****

	Girder		_	
Coefficient, C	1.8	2		
D_s	17.42 in ⁴ /ft	10.40 in ⁴ /ft		16
$D_{j/g}$	363.67 in⁴/ft	427.36 in ⁴ /ft		
Effective Panel width, B	44.98 ft	28.44 ft	4.3a or b	

Originated by: ZZ

Checked by: ML

Determine max deflection, Δ

	Girder	Beam	Combined
Uniform load, w	5642.25 plf	1273.83 plf	
L_g/B_j	0.84 <1?	YES	
max deflection, Δ (ft)	0.094 ft	0.410 ft	0.50 ft
max deflection, Δ (in)	1.12 in	4.92 in	6.04 in

Determine Fundamental Frequency of each panel, f_n

Gire	der	Beam	Combined
f_n	3.34 Hz	1.59 Hz	4.93 Hz

Determine peak acceleration ratio, a/g

	Girder	Beam	Combined
Total uniform floor load	153.73 psf	153.73 psf	
Girder/beam self weight	108 plf	44 plf	
Self Weight uniform load	0.125 psf	0.153 psf	
w	153.85 psf	153.88 psf	
$W_j \& W_g$	166083.02 lbs	157551.89 lbs	
Comb. Equiv panel weight	30888.9841 lbs	128249.5719 lbs	159138.6 lbs
peak acceleration ratio, a/g	0.24%	0.47%	0.15%
Peak accel <accel limit<="" td=""><td>0.50% OK</td><td>0.50% OK</td><td>0.50% OK</td></accel>	0.50% OK	0.50% OK	0.50% OK

Roof Deck Specification (Vulcraft)

1) Determine suitable metal roof deck to accommodate construction and permenant loads

_			
(.or	ıstrı	ıction	Loads

CONSTRUCTION LOUGS			
Construction Live Load	20 μ	psf	(Assumed)
Metal Deck Self Weight	1.6 ;	psf	(Assumed)
W_{a}	16.6	psf	ASD LC3
Superimposed Loads			
Roof Live Load	30 ן	psf	_
Dead Roof	20 ן	psf	
Snow	31.5	psf	
W_{a}	43.625	osf	ASD LC3

Vulcraft Steel Roof and Floor Deck:

3 Span, B18 meets capacity (83/71 psf)

2) Determine fastening details for roof diaphragm to accommodate the design lateral loads in each direction By inspection, wind force control over seismic

> Wind Force, F_{roof} 6.27 kips (per frame) Linear Load, W_{roof} 87.08 plf $0.6*W_{roof}$

52.25 plf

Vulcraft B18 table:

36/3 fastener layout

Linear Load (Allowable)

Support Fasteners: 5/8" puddle welds Side Lap Fasteners (2) #10 tek screws Shear Strength 278 plf

Shear Strength>Linear Load YES

3) Determine maximum diaphragm deflection in each orthogonal direction

Vertical Diaphragm Deflection

w 43.625 psf L 8 ft E 2950000 psi I 0.289 in⁴/ft Δ 0.001446 in

Lateral Diaphragm Deflection

W	0.09	klf
D_B	1084	
K_1	0.573	
K_2	1398	
Span	8	ft
G'	24.03	k/in
L	108	ft
В	72	ft
Δ_{CL}	0.073	in

Roof Joist Specification (Vulcraft)

Superimposed Loads

Roof Live Load	30 psf
Dead Roof	20 psf
Snow	31.5 psf

1) Design open web joist and girder system for the roof

Joists

Joist Spacing, S	8	ft	
Joist Length, L	36	ft	
P_{U}	74.4	psf	(LRFD LC 3)
W_{U}	595.20	plf	
W_{U}	0.0041	pli	
Moment, M_u	96.42	kip*in	
Shear, V_u	10,713.60	lbs	

Use KCS joist:

26KCS3 meets capacity

$$M_c$$
 1662 kip*in
> M_u ? YES
 V_c 12600 lbs
> V_u ? YES

APPENDIX B: DRAWINGS

Appendix B: Drawings

- S-1. General Notes
- S-2. First Floor Framing Plan
- S-3. Roof Framing Plan
- S-4. Elevations
- S-5. Connection Details

