Homework 1

Math 607 (Section 0101), Spring 2022 Due Wednesday, February 16

You are encouraged to think about problems marked with a (*), but they are not to be handed in.

- 1. (Hartshorne Ex 5.7 in II.5) Let X be a noetherian scheme and \mathcal{F} a coherent sheaf (i.e. locally $\mathcal{F} = \tilde{M}$ for a finitely generated module M.) Prove the following statements
 - (a) If the stalk \mathcal{F}_x is a free $\mathcal{O}_{X,x}$ for one point $x \in X$, then there is an open neighborhood U of x such that $\mathcal{F}|_U$ is free.
 - (b) \mathcal{F} is locally free iff the stalks \mathcal{F}_x are free for all points $x \in X$
 - (c) \mathcal{F} is invertible (i.e. locally free of rank 1) iff there is a coherent sheaf \mathcal{G} on X such that $\mathcal{F} \otimes \mathcal{G} \cong \mathcal{O}_X$
- **2.** (Hartshorne Ex 5.8 in II.5) Let X be a noetherian scheme and \mathcal{F} a coherent sheaf. Consider the function $\phi: X \to \mathbb{R}$ defined as $\phi(x) = \dim_{k(x)} \mathcal{F}_x \otimes k(x)$. We call $\phi(x)$ the rank of \mathcal{F} at x. Prove the following statements about the rank function
 - (a) The function ϕ is semi-continuous i.e. the sets $\{x \in X | \phi(x) \ge n\}$ are closed in X.
 - (b) If \mathcal{F} is locally free and X is connected, then ϕ is a constant function
 - (c) Conversely if X is reduced and ϕ is a constant function, then \mathcal{F} is a locally free shear.
- **3.** Consider the cuspidal cubic $X = \operatorname{Spec} k[x, y](/y^2 x^3)$.
 - (a) Calculate the normalization \tilde{X} of X.
 - (b) Calculate the fibre of the cusp at the origin of X inside the normalization \tilde{X}
- **4.** Let R be a commutative ring and M is an R-module. Prove
 - (a) M is flat R-module iff its localizations
 - (a) M is flat R-module iff its localizations $M_{\mathfrak{p}}$ at all primes \mathfrak{p} is a flat $R_{\mathfrak{p}}$ -module
 - **(b)** M is flat iff $\operatorname{Tor}_1(M, R/I) = 0$ for all ideals $I \subset R$
 - (c) Assume R is a noetherian ring, then M is flat iff $Tor_1(M, R/\mathfrak{p}) = 0$ for all primes \mathfrak{p}
 - (d) Assume R is noetherian and M is finitely generated, then M is flat iff $\operatorname{Tor}_1(M, k(\mathfrak{p})) = 0$ for all max ideals \mathfrak{p}
- **5.** Consider $A = k[x, y, x]/(z^2 xy)$, $X = \operatorname{Spec} A$, and the point $\mathfrak{p} = (x, z) \in X$.
 - (a) Prove $A_{\mathfrak{p}} \cong k[y,z](z)$
 - (b) Prove that $A_{\mathfrak{p}}$ is regular ring of dimension 1.
- **6.** Prove the isomorphism in the localization $(k[x,y]/(xy-1))_{(x-1,y-1)} \cong k[x-1]_{(x-1)}$. Note that we are localizing at prime ideals i.e. at points!
- 7. (*) (Hartshorne Ex 3.22 in II.3) Let $f: X \to Y$ be a dominant morphism of integral schemes of finite type over a field k.

- (a) Let Y' be a closed irreducible subset of Y, whose generic point η' is contained in f(X). Let Z be any irreducible component of $f^{-1}(Y')$ such that $\eta' \in f(Z)$ and show that $\operatorname{codim}(Z,X) \leq \operatorname{codim}(Y',Y)$
- (b) Let $e = \dim X \dim Y$ be the relative dimension of X over Y. For any point $y \in f(X)$ show that every irreducible component of the fibre X_y has dimension $\geq e$ (Hint: Let Y' = V(y) and use (a) and the fact that for integral schemes W of finite type over k we have dim W = tr.d.K(W/)/k.
- (c) Show that there is a dense open subset $U \subset X$ such that for any $y \in f(U)$, $\dim U_y = e$. Hint: First reduce to the case where X and Y are affine, say $X = \operatorname{Spec} A$ and $Y = \operatorname{Spec} B$. Then A is finitely generated B-algebra. Take $t_1, \ldots, t_e \in A$ which form a transcendence base of K(X) over K(Y) and let $X_1 = \operatorname{Spec} B[t_1, \ldots, t_e]$. Then X_1 is isomorphic to affine e-space over Y an the morphism $X \to X_1$ is generically finite. Now use Ex 3.7
- (d) Going back to out original morphism $f: X \to Y$ for any integer h, let E_h be the set of points $x \in X$ such that y = f(x), there is an irreducible component Z of the fibre X_y , containing x, and having dim $Z \ge h$. Show that (1) $E_e = X$ (use (b) above); (2) if h > e, then E_h is not dense in X (use (c) above); (3) E_h is closed, for all h (use induction on dim X).
- (e) Prove the following theorem of Chevalley see Cartan and Chevalley [1, expose 8]. For each integer h, let C_h be the set of points $y \in Y$ such that $\dim X_y = h$. Then the subsets C_h are constructible, and C_e contains dense subset of Y.
- 8. (*) (Hartshorne Ex 10.1 in III.10) Given a nonperfect field, smooth and regular are not equivalent. For example, let k_0 be a field of characteristic p > 0, let $k = k_0(t)$ and let $X \subset \mathbb{A}^2_k$ be the curve defined by $y^2 = x^p t$. Show that every local ring of X is a regular local ring but X is not smooth over k.