Encuentro Futuro 1903-25

Jornada de Proyectos y Prototipos

PETinador - Extrusora de filamento de PET

Introducción

Nuestro proyecto responde a la creciente problemática global de los residuos plásticos, en un contexto donde aproximadamente el 79% de las 6.3 billones de toneladas de plástico producido desde 1950 hasta 2015 se acumula en vertederos o contamina el entorno natural. Presentamos un prototipo de extrusora de filamento que transforma botellas de plástico en material para impresión 3D. En este póster, exploraremos:

los aspectos técnicos del desarrollo de este dispositivo

sus beneficios ambientales y alineación con los Objetivos de Desarrollo Sostenible

Nuestro proyecto se posiciona como una solución fundamental para abordar la necesidad de una fuente sostenible de filamento, contribuyendo así a la construcción de un futuro más ecológico y limpio.

Descripción del problema

La creación de una extrusora de filamento a partir de botellas de plástico se basa en la urgente necesidad de abordar la contaminación plástica. Según el informe Global Plastics Outlook de la OCDE, solo el 9% del plástico se recicla a nivel mundial, lo que da lugar a que casi 13 millones de toneladas métricas de plástico entren al mar cada año. Equivalente a un camión de basura cada minuto.

Impactos

Medioambientales

- Reducción de desechos plásticos en vertederos y océanos.
- Conservación de recursos hídricos y energéticos en el proceso de extrusión.
- Promoción de la economía circular
- Posible consumo de energía en la operación de la extrusora.
- Necesidad de un manejo adecuado de componentes mecánicos y seguridad en el proceso.

Sociales

- Fomento de conceptos relacionados con el reciclaje y la sostenibilidad.
- Apertura a la potencial colaboración con la comunidad estudiantil y organizaciones comprometidas con la sostenibilidad.
- Inversión inicial y final superior al presupuesto proyectado.
- Impacto limitado en áreas sin acceso a tecnología de impresión 3D.

Jornada de Proyectos y Prototipos TPI + Expoideas

Taller de ingeniería electrónica - 2016509
Integrantes

| Camilo Guevara juguevarah@unal.edu.co | Paula Rubiano mrubianot@unal.edu.co | Preiman Cepeda fcepedas@unal.edu.co | Luis Rodriguez Juirodriguezar@unal.edu.co | Jhonny German Cubides Castro jgcubidescq@unal.edu.co | jgcub

Resultados

El dispositivo ha sido diseñado y desarrollado de manera satisfactoria, superando desafíos significativos en su proceso de creación. Una de las innovaciones clave en esta solución fue la sustitución del termocontrolador y el regulador convencionales por el ESP32.

Su funcionamiento se basa en un motor que gira la botella en dirección a una cuchilla, cortando de manera que una fina franja de plástico sea conducida a través de una boquilla calentada, donde el plástico se moldea y dobla para ser utilizado como filamento. Una vez transformado, el filamento es recogido de manera eficiente por un carril, donde se almacena para su uso posterior.

Objetivos

Reducir los costos de impresión 3D al proporcionar una fuente de filamento económico y sostenible, en línea con el ODS 9, para proyectos de impresión 3D en la comunidad estudiantil, promoviendo así la sostenibilidad en la manufactura aditiva.

Reducir la cantidad de desechos plásticos en vertederos y océanos mediante la conversión de botellas de plástico en material para impresión 3D, en congruencia con el ODS 12, impulsando así la economía circular y la producción sostenible.

Discusión

Nuestra iniciativa de creación de filamento de impresión 3D a partir de botellas de PET no solo aborda la sostenibilidad y la reducción de costos, sino que también tiene el potencial de convertirse en una plataforma educativa para estudiantes de diversas disciplinas. Además, podemos explorar la colaboración con la comunidad local y otras organizaciones para llevar la tecnología de impresión 3D a un público más amplio, promoviendo un enfoque más sostenible y colaborativo.

Lista de Referencias

