Certain standard symbols

Voltmeter connections in circuit

Variac connections in circuit

Wattmeter connections in circuit

Ammeter connections in circuit

Note: - The standard symbols must be used in the circuit diagram in the report to be submitted.

Precautions and Safety Measures:

- 1. All students should wear shoes with rubber sole.
- 2. **Dress should be suitable for working safely near the rotating machines** (Loose clothes are NOT allowed).
- 3. Get your circuit connections approved by the instructors, before switching the power supply ON.
- 4. Do not touch any live terminals or wires. For making any changes in the connections, you must switch-off the power supply.
- 5. Be alert and proceed with caution at all times in the laboratory.

INSTRUCTIONS REGARDING CONDUCTION OF THE LAB COURSE NO. EEE/INSTR F211: Electrical Machines

- 1. General instructions will be given in the first lab session.
- 2. Familiarize yourself with the laboratory with the help of instructors.
- 3. Note down the Name Plate Rating (NPR) of the device(s) / machine(s) for the experiment to be conducted.
- 4. Read the procedure carefully and be prepared to conduct the experiment.
- 5. Before starting the experiment:
 - (a) Draw the circuit diagram on a separate sheet of paper without consulting the manual. Get it verified by the instructor.
 - (b) Write down the instruments and accessories that you need to conduct the experiment (along with their ranges, rating etc.).
- 6. Connect the circuit components as per the circuit diagram. **Get the circuit connections** verified by the instructor before you conduct the experiment.
- 7. Carry out the experiment as per the steps given in the manual and record the readings.
- 8. All the necessary computations are to be carried out in the laboratory itself.
- 9. Get the readings and subsequent computations verified by the instructor.
- 10. If you have any suggestions/queries regarding the conduction of the experiment(s), consult the lab instructor prior to the lab session.

EXPERIMENT No. 1 TESTS ON A SINGLE-PHASE TRANSFORMER

Name		_ ID No	
Sec.No	Batch No	Marks obtai	ned
Date			
1. Introduction			
Equivalent Circuit			
Taking into account eac	th winding resistance and	leakage reactance, r	nagnetizing current and
no-load losses, a transforme	er can be represented by t	he equivalent circui	t shown in Fig.1.1. The
equivalent circuit, though a	oproximate, is quite accura	ate for practical purp	ooses.
V ₁	er can be represented by to proximate, is quite accurate to the proximate accurate accurate to the proximate		V'2
$R_{eq} = R_1 + R_2$			$X_{eq} = X_1 + X_2$
1	esistance and inductance	of primary windin	1
resistance and inductance	ee of secondary winding re	eferred to the primar	y side.
2. Objective			
and estimate the	e parameters of the equiv	cs.	ingle-phase transformer
3. Name plate ratings o	i the transformer to be	testea:	

4. Range of instruments and accessories (standard format)

S. No.	DESCRIPTION	TYPE	RANGE	MFR. NAME	MFR. NO.

Note: In O.C. test, voltage applied is rated while current drawn is 5-8% of full-load current.

In S.C. test, full-load current is drawn while the voltage applied is 5-8% of rated-voltage.

5. Circuit Diagrams

Fig.1.2 O.C. Test; conducted from LV side

(a) Circuit diagram

(b) Equivalent circuit

Fig.1.3 S.C. Test; conducted from HV side

6. Methodology

The parameters of the equivalent circuit of Fig.1.1 can be determined by the non-loading tests.

Open Circuit Test – for determining shunt parameters (G_i and B_m)

Short Circuit Test – for determining series parameters (\mathbf{R}_{eq} and \mathbf{X}_{eq})

a) Voltage ratio (≈ turns ratio) Test

Now, temporarily connect a voltmeter (of appropriate rating) on HV side (open) and record V_2 .

Then, voltage ratio (
$$\approx$$
 turns ratio) = $\frac{V_2}{V_1}$ = (1.4)

b) Open Circuit (O.C.) Test

Connect the transformer as in Fig.1.2 (a), keeping the HV side open and LV side to be excited from mains. Switch on the mains and take the following readings.

Readings

Applied voltage (rated), $V_1 =$

No load current, $I_0 =$

No load power (= core loss), P_i =

c) Short-Circuit

Conduct the test from HV side with LV short-circuited as in the diagram of Fig.1.3 (a). To circulate full–load current through the transformer, reduced voltage of about 5 -8% of the rated voltage is needed. This supply is obtained from a variac.

Turn the variac wheel to zero voltage output position and then switch on the supply for the transformer under test. Raise the variac voltage gradually till input current to transformer reaches it's full –load value. Record meter readings.

Readings

Applied Voltage, $V_{SC} =$

Input current, I_{SC} =

Input power (=copper loss at rated current), P_{SC} =

7. Calculations

$$Y_0 = \frac{I_0}{V_1} = \tag{1.5}$$

$$G_i = \frac{P_i}{V_1^2} =$$
 (1.6)

$$B_m = \sqrt{(Y_0^2 - G_i^2)} = \tag{1.7}$$

$$Z_{eq} = \frac{V_{sc}}{I_{sc}} = \tag{1.8}$$

$$R_{eq} = \frac{P_{sc}}{I_{sc}^2} = \tag{1.9}$$

$$X_{eq} = \sqrt{\left(Z_{eq}^2 - R_{eq}^2\right)} = \tag{1.10}$$

Table 1.1

		Tab	ie 1.1					
Serial No.	1	2	3	4	5	6	7	8
Different transformer Loading (K)	0.15	0.30	0.45	0.6	0.75	0.90	1.05	1.20
Copper loss (K ² .P _{SC}) in kW								
Iron loss (P _i) in kW								
Total loss(P_L) = ($P_i + K^2.P_{SC}$) in kW								
Output Power (P_{out}) in kW = K.(Rated kVA).cos θ								
Input Power (P_{in}) in kW = $P_0 + P_L$								
Estimated Efficiency								
$\eta = \frac{Pout}{Pin}$								

a) Efficiency vs. Load characteristic at 0.8 power factor lag

Output power, $P_{out} = K.(Rated\ kVA).cos\ \theta = K.(Rated\ kVA).(0.80) = Iron\ loss\ (constant\ loss) = P_i =$ Copper loss = $K^2.P_{SC}$ =
Total loss, $P_L = (P_i + K^2.P_{SC}) =$ Input Power, $P_{in} = P_{out} + P_L =$ Efficiency, $\eta = \frac{Pout}{Pin} =$

b) Maximum Efficiency

Loading at which maximum efficiency occurs, $K_{\text{max}} = \sqrt{\frac{P_i}{P_{SC}}} =$

Maximum efficiency,
$$\eta_{\text{max}} = \left(\frac{K_{\text{max}} (\text{Rated kVA}) \cos \theta}{K_{\text{max}} (\text{Rated kVA}) \cos \theta + 2P_i}\right) =$$

 η_{max} at 0.8 power factor (lagging/leading) =

 $\eta_{max} \ at \ unity \ power \ factor =$

c) Regulation vs. Power factor

Determine the following either on LV or HV side

 $Rated\ voltage\ V = \\ \hspace{2cm} , \hspace{2cm} Rated\ current\ I = \\$

R =, X =

Table 1.2

Power factor, $\cos \theta$	1.0	0.8	0.6	0.4	0.2
R cos θ					
X sin θ					
Regulation (for lagging					
power factor) =					
$I(R\cos\theta + X\sin\theta) / V$					
Regulation (for leading					
power factor) =					
$I(R\cos\theta-X\sin\theta)/V$					

Mark the power factor corresponding to zero voltage regulation.

8. GRAPHS:

Draw: (a) Estimated Efficiency vs. output, at 0.8 power factor lag and unity power factor.

(b) Estimated Regulation vs. power factor.

9. RESULTS:

a. Load

Efficiency

 $\frac{1}{4}FL$

 $\frac{1}{2}FL$

 $\frac{3}{4}FL$

FL

b. Maximum efficiency =

Load at which maximum efficiency occurs =

c. Power factor at which regulation is zero =

EXPERIMENT No. 2

LOAD TEST ON A DC SHUNT GENERATOR

NameID No					
Sec.No _		Batch No.		_ Marks obtained	
1. Intro	duction				
Use th	ne circuit diagram as giv	ven in Fig. 2.	1. With the fie	eld resistance adju	isted to a cert
value by	means of the regulating	resistnce, the	e desired no lo	ad voltage can be	e obtained. The
external c	charactersistics (effect of	the load on the	he generated vo	oltage) can then b	e obtained by
load test v	with total field resistance	remaining fix	ed in the proces	ss. Speed is to be l	kept constant.
2. Obje	ctive				
To ob	tain external characteristi	ic of a DC shu	nt generator.		
3. Namo	e plate ratings:				
•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
4. Rang	e of instruments and	accessories (standard fori	mat)	
S.No.	DESCRIPTION	TYPE	RANGE	MFR. NAME	MFR. NO.
		† †			
		+			

1. Connection Diagram

Fig.2.1

6. Methodology:

- 1. Connect as shown in Fig.2.1.
- 2. Switch on the supply and run the set at rated speed.
- 3. Adjust the no-load voltage to the rated value with the help of field regulating resistance $R_{\rm f}$ in the generator field circuit and note the speed.
- 4. Connect the load. Increase the load. For each load, note down the load current and voltage across load. Maintain the speed of the set at its no-load value and field resistance of generator is kept constant.

Readings

Generator field resistance =

No-load speed, $n_0 =$ (to be kept constant)

No-load voltage, $V_0 =$

Table 2.1

$V_{\rm L}$					
I_L					

7. Calculations: NIL

8. Graph to be drawn

(1) V_L vs. I_L

9. Results

The external characteristic of the given DC shunt generator is shown in graph.

EXPERIMENT No. 3

OC AND SC TESTS ON A SYNCHRONOUS MACHINE

Name	ID	No
Sec.No	Batch No	Marks obtained
Date	Instructor's signature	

1. Introduction

A synchronous machine can be represented by its equivalent circuit (per phase) as in Fig.3.1. The machine is run at rated (synchronous) speed.

The synchronous impedance (Z_s) can be determined by means of O.C. and S.C. tests.

OC Test

The machine is run (as a generator) at synchronous speed with armature terminals open. The graph of V_{OCL} vs. I_f is the O.C.C. (open-circuit-characteristic) which indeed is the magnetization characteristic of the machine. It exhibits the saturation effects.

SC Test

The armature terminals are shorted. The machine is run at synchronous speed and I_f is gradually increased, starting from zero value. The field current needed for $I_{SCL} = I_{FL}$ (rated) is very small. The graph of I_{SCL} vs. I_f is S.C.C. (short-circuit-characteristic). The field current being very small, this operates in linear region. So S.C.C. is a straight line, only one point on S.C.C. corresponding to $I_{SCL} = I_{FL}$ need to be determined experimentally.

2. Objective:

To determine the equivalent circuit parameters of a synchronous machine and hence to estimate the percentage regulation at different power factors.

3.	Name plate ratings:

4. Range of instruments and accessories (standard format)

S.No.	DESCRIPTION	TYPE	RANGE	MFR. NAME	MFR. NO.

5. Connection Diagram

Fig.3.2 Connection diagram for conducting O.C. and S.C. test.

6. Methodology and Readings

The synchronous machine you are required to test is mechanically coupled to a DC shunt motor. Connect the synchronous machine with DC shunt motor as shown in Fig.3.2

O.C. Test

- Keep the TPST switch of the synchronous machine circuit in open state. Start the DC shunt motor of motor- generator (M-G) set. Adjust its speed to the synchronous speed.
- Adjust the potentiometer of synchronous machine field circuit so as to have minimum voltage across the field winding. Then, switch ON the DC mains of the field circuit.
- The synchronous machine is now running as a generator.
- Gradually increase I_f and read the line voltage V. Record the observations in Table
 3.1 and plot open circuit characteristic (O.C.C).

Table 3.1 (O.C.C.)

$I_{\mathrm{f}}(A)$				
$V_{OCL}(line)(V)$				
V_{OC} (phase) (V)				

SC Test

- With the set running at n_s, switch off the DC excitation of the synchronous machine.
- Close the TPST switch to short circuit the generator terminals.
- Adjust the potentiometer of synchronous machine field circuit so as to have minimum voltage across the field winding. Then, switch ON the DC mains of the field circuit.
- Gradually raise the I_f. Go on till the ammeter reads 15% above the rated value of AC current of the armature.
- Record I_f, I_{SCL} at this value and plot the short circuit characteristic (S.C.C).

Table 3.2

I _f (A)			
$I_{SC}(A)$			

Measurement of Armature Resistance

Using a DC source, voltmeter and ammeter, take a few readings across two terminals of Synchronous Machine. Record in Table 3.3

Table 3.3

V				
I				

- 7. Calculations & Results (all calculations are done on per phase basis)
 - 1. Plot the O.C.C. (V_{OCL} vs. I_f)
 - 2. Plot on the same graph S.C.C. (I_{SCL} vs. I_f)
 Using the above graph, calculate the following parameters.
 - 1. $Z_s(unsaturated) = \left(\frac{V_{OC}}{I_{SC}}\right) =$ $I_f = constant$
 - 2) Calculate Z_s for all values of I_f . Plot Z_s against I_f . Comment on the variation of Z_s and explain reasons for the same.

I_{f}					
Z_{s}					

1) Calculate

$$Z_{s}(adjusted) = \left(\frac{V_{OC}(rated)}{I_{SC}}\right) =$$

$$I_{f} \text{ corresponding to V}_{OC} \text{ (rated value)}$$

$$X_{s}(adjusted) = \sqrt{\left(Z_{s}(adj)^{2} - R_{e}^{2}\right)} =$$

Observe that in your calculation of X_s (adj), effect of R_e (phase) can be ignored so that $X_s(adj) = Z_s(adj)$

2) Calculate the percentage regulation at full load 0.8 power factor lag/ lead and unity power factor for synchronous generator.

8. Graphs

O.C.C., S.C.C. and $Z_{S}\ vs.\ I_{f}.$

9. Results

Percentage regulation at upf

at 0.8 pf lag

at 0.8 pf lead =

EXPERIMENT NO.4

MEASUREMENT OF POWER IN THREE-PHASE CIRCUIT

Name		ID No						
Sec.No		Batch N	Vo	Marks obtained	l			
Date		Instructor's signature						
generato	circuit diagram show or is used as the load. er measurement - acti	The load is gr	adually increase	d. Two- wattmeter				
	e the active power, re- wo-wattmeter method	-	apparent power	& power factor in	the three phase			
	plate ratings:							
S.No.	of instruments an DESCRIPTION	TYPE	RANGE	MFR. NAME	MFR. NO.			

5. Connection diagram

Fig 4.1: Power measurement by using two-wattmeter method

6. Methodology and Readings

- 1. Make the connections as per circuit diagram given in Fig.4.1.
- 2. Consider two watt meters as W1 and W2.
- 3. Calculate multiplication factor of each watt meter by observing ranges which you have selected.
- 4. Check the circuit connections. Switch on the main supply.
- 5. Note that you connected COM terminal of watt meters to one of its pressure coil terminals i.e. M and voltage range terminal (V--) to third phase line(Y).
- 6. You observe that the pointer of one of the wattmeter gives some reading. (If you do not observe it, then immediately switch off the supply and check the connections once again).
- 7. Now in the watt meter which kicks back, interchange the connections of the two terminals of its pressure coil (i.e. connect COM terminal to third phase line (Y) and voltage range terminal to 'M'). Assume the reading of this wattmeter is negative,
- 8. Note readings of the wattmeter's, ammeter& voltmeter.

Multiplication Factor (MF) of Wattmeter (WM)
$$= \frac{(P.C. \text{ range} \times C. C. \text{ range} \times \text{pf})}{(\text{Total no. of divisions on the scale})}$$

1.	Multiplication factor (M.F.) of W1 =
- •	1/10/10/pii/00/10/1/10/1/1/1/1/1/1/1/1/1/1/1/1/1/

7. Observations:

Table 4.1

S.NO		Ammeter (I _L) Amps	Voltmeter (V _L) Volts	Active Power (KW)	Reactive Power (KVAR)	Apparent Power (KVA)	Power Factor CosΦ
Load 0							
Load I							
Load II							
Load III							
Load IV							
Load V							

8. Calculations

1.	Reading of wattmeter 1
7	$V_1 = \text{No. of Div.} \times \text{M.F.} = \underline{\hspace{1cm}}$

3. Active power in three phase load;
$$P = W_1 + W_2 = \underline{\hspace{1cm}}$$

4. Reactive power in three phase load;
$$Q=\sqrt{3}$$
 (W_2-W_1) Vars =

5. Apparent power in three phase load

$$S=\sqrt{P^2+Q^2}$$

6. Power factor of the load p.f. =
$$\cos (\tan^{-1}(Q/P)) =$$

9. Graphs: NIL

10. Results

-	1	9	_