Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

f(0, 0):-!.

f(I,Y):-J is I-1, $\underline{f(J,V)}$, V>1, !, K is I-2, Y is K.

f(I,Y):-J is I-1, $\underline{f(J,V)}$, Y is V+1.

Rescrieți această definiție pentru a evita apelul recursiv **f(J,V)** în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Să se scrie un program PROLOG care generează lista submulţimilor formate cu elemente unei liste listă de numere întregi, având suma elementelor număr impar și număr impar de elemente impare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista $[2,3,4] \Rightarrow [[2,3],[3,4],[2,3,4]]$ (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminaţi toţi atomii numerici pari situaţi pe un nivel impar. Nivelul superficial se consideră a fi 1. Se va folosi o funcţie MAP.
<u>Exemplu</u>
a) dacă lista este (1 (2 A (4 A)) (6)) => (1 (2 A (A)) (6))
b) dacă lista este (1 (2 (C))) => (1 (2 (C)))