Scaling Geometric Monitoring Over Distributed Streams

Alexandros D. Keros

June 23, 2016

Supervised by: Prof. V.Samoladas

Table of contents

Introduction

Theoretical Background

The Geometric Monitoring Method

Related Work

Theoretical Tools

Problem Statement & Implementation

Problem Statement Implementation

Experimental Results

Data & Setup

Experiments

Conclusions & Future Work

Conclusion

Future Work

Introduction

Theoretical Background

The Geometric Monitoring Method Related Work Theoretical Tools

Problem Statement & Implementation

Problem Statement

Experimental Results

Data & Setup

Experiments

Conclusions & Future Work

Conclusion Future Work Introduction

Data Stream Systems

(Brian Babcock et al. "Models and Issues in Data Stream Systems". In: 21st ACM SIGMOD-SIGACT-SIGART. PODS '02. 2002)

- Data streams: Continuous, high volume, size unbound, violative, probably distributed
- Pull paradigm
- ▶ Centralizing and/or polling → prohibitive in terms of communication overhead
- Examples: telecommunication, sensor networks

The Geometric Monitoring Method

(Izchak Sharfman, Assaf Schuster, and Daniel Keren. "A Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams". In: 2006 ACM SIGMOD ICMD. SIGMOD '06. 2006)

- Threshold monitoring
- Nodes communicate when needed
 - Local constraints
 - Violation resolution (false alarms)
- Arbitrary function monitoring
- Tight accuracy bounds
- ▶ A promising framework for distributed data stream monitoring

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions

Overview

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ▶ incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ▶ incremental/real-time operation
- Minimize communication while retaining accuracy bounds

Overview

Introduction

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE TKDE (2014))
- throughout method evaluation on synthetic and real-world datasets

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE TKDE (2014))
- throughout method evaluation on synthetic and real-world

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE TKDE (2014))
- throughout method evaluation on synthetic and real-world datasets

Theoretical Background

The Geometric Monitoring Method Related Work Theoretical Tools

Geometric Threshold Monitoring

- ▶ Izchak Sharfman, Assaf Schuster, and Daniel Keren. "A Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams". In: 2006 ACM SIGMOD ICMD. SIGMOD '06, 2006
- **Threshold monitoring**: arbitrary function $f(\cdot)$, threshold T

$$f(\cdot) < T \text{ or } f(\cdot) > T$$

▶ Idea: decompose into local constraints at the nodes

Occordance Control of the Geometric Monitoring Method

System Architecture

Centralized Scenario

Figure: **Star-like network topology** example of the centralized scenario. The bold node represents the coordinator node. Dashed lines represent data streams and half arrows represent message exchanges.

Computational Model

Statistics vectors

- ▶ the monitoring function $f : \mathbb{R}^d \to \mathbb{R}$
- the threshold $T \in \mathbb{R}$
- ▶ the monitoring node set : $P = \{p_1, ..., p_n\}$ with weights w_1, \ldots, w_n
- ▶ the data streams : $S = \{s_1, \ldots, s_n\}$
- ▶ the d-dimensional local statistics vectors : $\vec{v_1}(t), \dots, \vec{v_n}(t)$ represent each node's data stream at time t

Global statistics vector

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v}_i(t)}{\sum_{i=1}^{n} w_i}$$

Computational Model

Estimate vector

Infrequent communication between nodes/nodes-coordinator:

Estimate vector

$$\vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v_i}'}{\sum_{i=1}^{n} w_i}$$

- the last communicated *local statistics vector* of node $p_i: \vec{v_i}'$
- Local statistics divergence: $\Delta \vec{v_i}(t) = \vec{v_i}(t) \vec{v_i}', i = 1, \dots, n$

Centralized drift vector

$$ec{u_i}(t) = ec{e}(t) + \Delta ec{v_i}(t) + rac{ec{\delta_i}}{w_i}$$

Computational Model

Balancing Process

Centralized scenario

Purpose: resolve possible false alarms

Balancing vector

$$\vec{b} = \frac{\sum_{p_i \in P'} w_i \vec{u_i}(t)}{\sum_{p_i \in P'} w_i}$$

- \blacktriangleright the balancing set P': a subset of nodes
- the slack vector at the nodes $\vec{\delta_i} = \vec{\delta_i}' + \Delta \vec{\delta_i}$, $\sum_{p \in P'} \Delta \vec{\delta_i} = \vec{0}$:

$$\Delta \vec{\delta_i} = w_i \vec{b} - w_i \vec{u_i}(t) \ \forall \ p_i \in P'$$

, readjusts the drift vectors.

Geometric Interpretation

Convexity Property & Local Constraints

Convexity Property

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{u}_i(t)}{\sum_{i=1}^{n} w_i}$$

Figure: Example of a convex hull (light gray) defined by the drift vectors $\vec{u_i}$, i = 1, 2, 3, 4, 5and bounded by spheres.

Related Work

- Safe Zones: optimal local constraints fitted to nodes' data distributions (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Safe-Zones for Monitoring Distributed Streams". In: First International Workshop on Big Dynamic Distributed Data, Riva del Garda, Italy, 2013)
- Ellipsoidal bounding regions, decouplement of estimate vector from bounding ball construction (D. Keren et al. "Shape Sensitive Geometric Monitoring". In: IEEE TKDE (2012))
- Simple shapes as local constraints, hierarchical clustering of nodes for participation to the balancing operation (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE TKDE (2014))
- Prediction models based on velocity and acceleration

(Nikos Giatrakos et al. "Prediction-based Geometric Monitoring over Distributed Data Streams". In: 2012

ACM SIGMOD ICMD. SIGMOD '12. 2012)

Multi-objective Optimization

- ▶ Multiple, possibly conflicting objectives to be simultaneously optimized
- Pareto optimality(non-dominated solutions): optimal solutions where none of the objective functions can be optimized without the simultaneous degradation of other objective functions' values.
- ▶ Let vector of m objectives $F(x) = [F_1(x), F_2(x), \dots, F_m(x)]$:

$$\min_{x \in \mathbb{R}^n} F(x)$$
s.t. $l \le x \le u$

$$G_i = 0, i = 1, \dots, k_e$$

$$G_j \le 0, j = k_e + 1, \dots, k$$

Finding Pareto optimal solutions is generally NP-hard.

- ▶ The Lagrangian function: $\mathcal{L}(x,\lambda) = F(x) + \sum_{i=1}^k \lambda_i G_i(x)$
- Quadratic programming subproblems:

$$\min_{d \in \mathbb{R}^{n}} \frac{1}{2} d^{T} H_{t} d + \nabla F(x_{t})^{T} d$$

$$\nabla G_{i}(x_{t})^{T} d + G_{i}(x_{t}) = 0, i = 1, \dots, k_{e}$$

$$\nabla G_{i}(x_{t})^{T} d + G_{i}(x_{t}) \leq 0, i = k_{e} + 1, \dots k$$

,where:

 H_t : Hessian of the Lagrangian function at iteration t d: search direction

The Savitzky-Golay Low-Pass Smoothing Filter

- Convolution based smoothing, velocity and acceleration estimation
- ▶ Moving window averaging paradigm: $g_i = \sum_{n=-n}^{n_R} c_n f_{i+n}$
- Least-squares fit of polynomial:

$$y_i(x) = a_0 + a_1 \frac{x - x_i}{\Delta x} + a_2 (\frac{x - x_i}{\Delta x})^2 + \dots + a_M (\frac{x - x_i}{\Delta x})^M$$

, over window $n_L + n_R + 1$:

$$\sum_{j=i-n_l}^{i+n_R} (y_i(x_j) - f_j)^2 = \min$$

Set g_i to the value of the fitted point x_i.

Velocity and Acceleration Estimation via SG Filtering

Figure: Savitzky-Golay filtering of a signal with added Gaussian noise. The smoothing window is 50 points, centered at the far right.

Maximum Weight Matching

Let G = (V, E) a graph:

- ▶ maximum weight matching $M \subseteq E$: a subset of edges where
 - no two edges share a common vertex
 - largest possible number of edges
 - maximizes the sum of weights

Maximum Weight Matching

The Primal-Dual Method

Constraints in Primal \iff Variables in Dual Constraints in Dual \iff Variables in Primal

The primal:

$$\max \sum_{(u,v)\in E} x_{u,v} w_{u,v}$$

s.t.
$$x_{u,v} \ge 0$$
 , $(u,v) \in E$
$$\sum x_e \le 1$$
 , $u \in V$

The dual:

$$\min \quad \sum_{u \in V} y_u$$

s.t.
$$y_u \ge 0$$

$$, u \in V$$

$$\begin{aligned} y_u &\geq 0 &, u \in V \\ y_u + y_v &\geq w_{u,v} &, \big(u,v\big) \in E \end{aligned}$$

Problem Statement & Implementation

Problem Statement Implementation

Problem Formulation

Reduce the communication burden of the Geometric Monitoring method by:

- Optimally position drift vectors during the balancing process
- Appropriate node selection for inclusion in the balancing set ,in order to increase scalability in terms of:
 - node popullation
 - stream dimensionality.

The Geometric Monitoring Framework

Assumptions

- Coordinator-based scenario
- Instantaneous, loss-less, reliable communication
- Iterative operation based on time-steps
- System pause during violation resolution
- Coordinator node does not monitor a stream

Introduction Theoretical Background Ooolo Ooolo

Implementation

The Distance-based Hierarchical Clustering

The Idea

Node selection for *violation resolution*:

- ► Elevate randomness of the initial geometric monitoring method (Izchak Sharfman, Assaf Schuster, and Daniel Keren. "A Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams". In: 2006 ACM SIGMOD ICMD. SIGMOD '06. 2006)
- Hierarchical node clustering scheme (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE TKDE (2014))
- Decouple matching from the data distribution at the nodes
 (Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous

 Streams." In: IEEE TKDE (2014))
- Accurately follow global statistics vector
- ▶ Node "cancel each other out" during the balancing process

The Distance-based Hierarchical Clustering

The Weight Function

Weight function

$$w_{i,j} = \sum_{t=t_0}^{t_{end}} \left[\left(f(\vec{v}_{global}(t)) - f(\frac{\vec{v}_i(t) + \vec{v}_j(t)}{2}) \right) + \left(|\vec{v}_i(t) - \vec{v}_j(t)| \right) \right]$$

The Distance-based Hierarchical Clustering

Example

Figure: Distance based node matching operating on 4 nodes $(\{n_0, n_1, n_2, n_3\})$. Distance d_1 : the distance of the data vector mean of the paired nodes n_0 and n_3 from the global mean (global data *vector*), distance d_2 : denotes the in-between distance of data vectors $\vec{v_0}(t)$ and $\vec{v_3}(t)$ of the node pair. Both distances are taking part in the edge weighting process.

The Heuristic Balancing

The Idea

In prior work:

- identical handling of nodes during the balancing process
- ignore stream idiosyncrasies and monitoring function peculiarities

The *heuristic balancing* method:

- optimally position drift vectors in space
- take into account stream behaviour (velocity and acceleration)

The Heuristic Balancing

The Optimizing Function

Weight function

$$\max\min\frac{(T-x_i)-accel_i(t_{lv})*t^2}{vel_i(t_{lv})}, \forall n_i \in P'$$

where:

t: the variable to optimize

T: monitoring threshold

 x_i : the maximum value of the monitoring function $f(\cdot)$ over the bounding ball $B(\vec{e}(t_{lv}), \vec{u_i}(t_{lv}))$

 $vel_i(t_{lv})$: the estimated velocity of the maximum value of the monitoring function $f(\cdot)$

 $accel_i(t_{l_V})$: the estimated acceleration of the maximum value of the monitoring function $f(\cdot)$

tly: time of Local Violation occurrence

P': the balancing set

Implementation

The Heuristic Balancing

Example

Figure: The classic balancing method.

Figure: The heuristic balancing method.

Experimental Results

Data & Setup Experiments

Acronyms for Implemented Methods

GM: the initial geometric monitoring method (Izchak Sharfman,

Assaf Schuster, and Daniel Keren. "A Geometric Approach to Monitoring Threshold Functions over

Distributed Data Streams". In: 2006 ACM SIGMOD ICMD, SIGMOD '06, 2006)

HM: the proposed heuristic balancing process

DIST: the proposed distance-based hierarchical node clustering

DISTR: the distribution-based hierarchical node clustering

(Daniel Keren, Guy Sagy, Amir Abboud, David Ben-David, et al. "Geometric Monitoring of Heterogeneous

Streams." In: IEEE TKDE (2014))

Synthetic Data

$$v_i(t_{k+1}) = v_i(t_k) + (1 - \lambda)u_k + \lambda u_{k+1}$$

- ▶ 1-dimensional
- Velocities sampled from user-specified Gaussian distribution
- $\triangleright \lambda$ smoothing parameter
- Additive Gaussian noise
- 3 sets of datasets: LIN, INT, NOISE
- ► First 20% of data streams used as training data, when needed

Examples

Synthetic Data

Figure: LIN local statistics streams of 20 nodes

Figure: INT local statistics streams of 20 nodes

Figure: NOISE local statistics streams of 20 nodes

Real-world Data

- "European Environmental Agency AQ e-Reporting" database (European Environmental Agency - AQ e-Reporting.)
- \triangleright Hourly measurements of NO_2 and NO, in micro-grams per cubic meter, averaged over a window of five days for a whole year.
- Nodes correspond to randomly selected air quality measurement stations across Austria.
- ▶ First month of measurements used as training data, when needed.

Real-world Data

Examples

Figure: Streams of 8 nodes monitoring the ratio NO/NO_2 .

Figure: Streams of 8 nodes monitoring the variance of NO_2 air pollutant.

GM, DIST, DISTR Comparison

LIN dataset

Figure: Communication costs of methods GM, DISTR and DIST for the LIN dataset.

GM, DIST, DISTR Comparison

INT dataset

Figure: Communication costs of methods GM, DISTR and DIST for the INT dataset.

GM, DIST, DISTR Comparison

NOISE dataset

Figure: Communication costs of methods GM, DISTR and DIST for the NOISE dataset.

LIN dataset

Figure: Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the *LIN* dataset.

GM, DIST, DISTR Comparison

INT dataset

Figure: Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the *INT* dataset.

Theoretical Background Problem Statement & Implementation Society Statement & Implemen

Experiments

GM, DIST, DISTR Comparison

NOISE dataset

Figure: Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the *NOISE* dataset.

GM, HM Comparison

Messages

Figure: Communication cost of methods GM and HM for the *LIN* dataset.

Figure: Communication cost of methods GM and HM for the NOISE dataset.

GM, HM Comparison

Drift vectors

Figure: Drift vectors of 2 nodes, as formulated by the GM algorithm.

Figure: Drift vectors of 2 nodes, as formulated by the HM algorithm.

000000

Experiments

GM, HDM Comparison

Figure: Communication cost of methods GM and HDM for the *LIN* dataset.

GM, HDM Comparison INT

Figure: Communication cost of methods GM and HDM for the INT dataset.

0 000

GM, HDM Comparison

NOISE

Experiments

Figure: Communication cost of methods GM and HDM for the *NOISE* dataset.

GM, HDM Comparison

NOISE - window

Figure: Communication cost of methods GM and HDM for the *NOISE* dataset. Approximation order is set to 1.

GM, HDM Comparison

NOISE - order

Figure: Communication cost of methods GM and HDM for the *NOISE* dataset. The Savitzky-Golay window size is set to 24.

GM, HDM Comparison

Dimensions - Quadratic Function

Figure: Communication cost of methods GM and HDM for the *LIN* dataset.

Figure: Communication cost of methods GM and HM for the NOISE dataset.

GM, HDM Comparison

Air Pollution Monitoring

Figure: 4 to 16 nodes, variance monitoring of NO_2 . The Savitzky-Golay window size is set to 6, the order is set to 2.

Figure: 4 to 16 nodes, when monitoring NO/NO_2 . The Savitzky-Golay window size is set to 10, the order is set to 1.

Conclusions & Future Work

Conclusion Future Work

Conclusion

Summary & Concluding Remarks

The Geometric monitoring method:

- An efficient framework for monitoring distributed data streams
- ightharpoonup Scalability can be improved \rightarrow reduce communication costs

Our contributions:

- Distance-based hierarchical node clustering
- Heuristic balancing method based on SQP and Savitzky-Golay Filtering
- Detailed evaluation of proposed methods

Comments.

- + Communication reduction of up to 60%
- Methods fully compatible with the rest of the work
- Parameter tweaking for satisfactory results
- Multi-objective optimization can be computationally expensive

Future Work

- Multi-objective optimization solvers
- More elaborate optimizing fuctions
- Sophisticated prediction models (Gaussian processes)
- Parameter estimation techniques

The End

Thank you Questions?