Timing skew extraction by time derivative

Shigenobu Kimura

August 2, 2023

Abstract

Study note on timing skew extraction/correction of time-interleaving ADC by the use of time derivative of sub-ADC output.

Introduction

We attempt to correct timing skews of sub-ADCs of an time-interleaving ADC under the assumption that mean-square of time-derivative of ADC output sampled at $t_n = t_0 + nT_s$,

$$\left\langle \left(\frac{dx}{dt}\right)^2\right\rangle = \lim_{M\to\infty} \frac{1}{M} \sum_{n=0}^{M-1} \left(\frac{dx}{dt}\right)_{t=t_n}^2,$$

does not depend on initial time t_0 , where T_s is the sampling period and n is an integer and x is ADC output.

Skew extraction

Suppose that we have an N-way time-interleaving ADC working at sampling frequency of F_s or sampling period of $T_s = 1/F_s$. Therefore each sub-ADC is working at sampling frequency of F_s/N or sampling period of NT_s .

Let us number each sub-ADC from 0 to N-1 and suppose that each sub-ADC works in this order, i.e., the 1st sub-ADC is activated after 0-th ADC, and the 2nd

is activated after the 1st and so on, then finally 0th sub-ADC is activated after the (N-1)th ADC. Let δt_j be the timing skew of the j-th sub-ADC, where $j = \{0, ..., N-1\}$. Time of m-th sampling is, with n which satisfies m = Nn + j,

$$t_m = T_s (Nn + j) + \delta t_j.$$
 $(m = Nn + j)$

Time interval ΔT_j from (m-1)-th sample to m-th sample is

$$\Delta T_j = t_m - t_{m-1} = T_s + \delta T_j,$$

= $T_s \left(1 + \frac{\delta T_j}{T_s} \right),$

where

$$\delta T_{j} = \begin{cases} \delta t_{0} - \delta t_{N-1} & (j=0), \\ \delta t_{j} - \delta t_{j-1} & (j \neq 0). \end{cases}$$
 (1)

One can easily show that

$$\delta T_0 + \dots + \delta T_{N-1} = 0. \tag{2}$$

Let Δx be difference between two adjacent time points and Δx_i is subset of it:

$$\Delta x = x[m] - x[m-1],$$

$$\Delta x_j = \begin{cases} x[Nn] - x[Nn-1], & (j=0), \\ x[Nn+j] - x[Nn+j-1], & (j \neq 0). \end{cases}$$

When x[m] is moving slowly over the time period of T_s , they can also be written as

$$\Delta x = \left(\frac{\Delta x}{\Delta T}\right) \cdot \Delta T,$$

$$\Delta x_j = \left(\frac{\Delta x}{\Delta T}\right) \cdot \Delta T_j,$$

where $\left(\frac{\Delta x}{\Delta T}\right)$ is the time derivative of ADC output and $\Delta T = t_m - t_{m-1}$. Let's take mean square of Δx_j , since ΔT_j is deterministic, it can be brought out from the average:

$$\left\langle (\Delta x_j)^2 \right\rangle = \left\langle \left(\frac{\Delta x}{\Delta T}\right)^2 \right\rangle \cdot (\Delta T_j)^2,$$

$$= \left\langle \left(\frac{\Delta x}{\Delta T}\right)^2 \right\rangle \cdot T_s^2 \cdot \left(1 + \frac{\delta T_j}{T_s}\right)^2,$$

$$= \left\langle \left(\frac{\Delta x}{\Delta T}\right)^2 \right\rangle \cdot T_s^2 \cdot \left(1 + 2 \cdot \frac{\delta T_j}{T_s}\right),$$
(3)

where we used the fact that $\delta T_j/T_s$ is much smaller than unity and dropped its second order term. On the other hand, $\langle (\Delta x)^2 \rangle$ is average of $\langle (\Delta x_j)^2 \rangle$ over j.

$$\left\langle (\Delta x)^2 \right\rangle = \left\langle \frac{1}{N} \sum_{j=0}^{N-1} (\Delta x_j)^2 \right\rangle,$$

$$= \left\langle \frac{1}{N} \sum_{j=0}^{N-1} \left(\frac{\Delta x}{\Delta T} \right)^2 \cdot T_s^2 \cdot \left(1 + 2 \cdot \frac{\delta T_j}{T_s} \right) \right\rangle,$$

$$= \left\langle \left(\frac{\Delta x}{\Delta T} \right)^2 \right\rangle \cdot T_s^2 + \frac{1}{N} \sum_{j=0}^{N-1} 2 \cdot \frac{\delta T_j}{T_s} \cdot \left\langle \left(\frac{\Delta x}{\Delta T} \right)^2 \right\rangle \cdot T_s^2.$$

Because of Eq. (2), the last term vanishes. Therefore

$$\left\langle (\Delta x)^2 \right\rangle = \left\langle \left(\frac{\Delta x}{\Delta T}\right)^2 \right\rangle \cdot T_s^2.$$

Here, $\langle (\frac{\Delta x}{\Delta T})^2 \rangle$ in Eq. (3) is mean square of subset of $\frac{\Delta x}{\Delta T}$ associated only to the index j, but we assume it gives the same value for all j. Therefore, above $\langle (\frac{\Delta x}{\Delta T})^2 \rangle$, which is mean square of full set, gives the same value as $\langle (\frac{\Delta x}{\Delta T})^2 \rangle$ in Eq. (3). Combining this and Eq. (3) yields,

$$\frac{\delta T_j}{T_s} = \frac{1}{2} \left(\frac{\left\langle (\Delta x_j)^2 \right\rangle}{\left\langle (\Delta x)^2 \right\rangle} - 1 \right).$$

Recalling the definition of δT_j , Eq. (1), δt_j can be written using δT_j as follows:

$$\begin{split} \delta t_0 &= \delta T_0, \\ \delta t_1 &= \delta T_0 + \delta T_1, \\ \delta t_2 &= \delta T_0 + \delta T_1 + \delta T_2, \\ \dots \\ \delta t_{N-1} &= \delta T_0 + \delta T_1 + \delta T_2 + \dots + \delta T_{N-1} = 0, \end{split}$$

where we set $\delta t_{N-1} = 0$ to make (N-1)-th sub-ADC's as the reference of skew. With $\delta_j = \delta t_j / T_s$, t_m can be written as follows,

$$t_m = T_s \left(Nn + j + \delta_j \right).$$

Note that δ_j is not a function of T_s and can be calculated solely from ADC's output. Finally, $\delta t_j = T_s \, \delta_j$ is the extracted timing skew.

