Quelques rappels sur les fonctions mesurables

On m'a demandé un minitopo sur les questions de mesurabilité. Voici quelques choses à savoir.

Stabilité par composition Si f et g sont des fonctions mesurables, alors $f \circ g$ est mesurable. Cela est valable entre des espaces mesurables quelconques, pas du tout besoin de parler de ${\bf R}$ ou de boréliens. La seule contrainte (légitime pour envisager la composée) est que ce soit le même espace (E,\mathscr{E}) qui soit au but de g et à la source de f.

Indicatrices de parties mesurables Si on travaille sur un espace mesurable (E, \mathcal{E}) , alors pour tout $A \in \mathcal{E}$, la fonction indicatrice $\mathbf{1}_A$ est mesurable.

Stabilité par opérations usuelles Soient f et g deux fonctions mesurables définies sur un même espace mesurable (E, \mathcal{E}) et à valeurs dans \mathbf{R} . Alors f+g et le produit fg sont mesurables.

Stabilité par opérations usuelles, forme générale Si on a f_1, \ldots, f_n des fonctions mesurables de E dans \mathbf{R} et h une fonction mesurable de \mathbf{R}^n vers \mathbf{R} , alors la fonction $x \mapsto h(f_1(x), \ldots, f_n(x))$ est mesurable. Cela est en particulier valide dès que f_1, \ldots, f_n sont prises comme ci-dessus et que h est continue de \mathbf{R}^n vers \mathbf{R} — voir prochain item.

Continu implique mesurable Toute fonction continue de \mathbf{R}^n vers \mathbf{R}^m est mesurable. Attention, si on a un espace mesurable quelconque à la place soit de \mathbf{R}^n , soit de \mathbf{R}^m , alors l'énoncé ne fonctionne plus. Ce n'est pas qu'il devient faux mais, pire encore, qu'il devient dépourvu de sens : on sait parler de convergence, de topologie, de continuité sur \mathbf{R}^n ou \mathbf{R}^m mais on ne sait pas le faire sur un ensemble simplement muni d'une tribu. Le cadre \mathbf{R}^n permet de parler à la fois de continuité et de mesurabilité alors que le cadre général « espace mesurable » ne permet de parler que de mesurabilité.

Stabilité par limite simple Soit (f_n) une suite de fonctions mesurables définies sur un espace mesurable (E,\mathscr{E}) et à valeurs dans \mathbf{R} . On suppose que, pour tout $x \in E$, la limite $\lim_{n\to\infty} f_n(x)$ existe. Alors la fonction $x \longmapsto \lim_{n\to\infty} f_n(x)$ est mesurable.

On constate que les fonctions mesurables permettent une plus grande souplesse que les fonctions continues. Par exemple, $\mathbf{1}_{[0,1]}$ est une fonction de \mathbf{R} vers \mathbf{R} qui est mesurable mais pas continue. De plus, une limite simple de fonctions mesurables est automatiquement mesurable, ce qui n'est pas le cas pour les fonctions continues. ¹

^{1.} Les fonctions continues sont stables par limite uniforme, pas par limite simple. Par exemple, on peut travailler sur [0,1] et constater que $x\longmapsto x^n$ converge simplement vers $\mathbf{1}_{\{1\}}$. La fonction $\mathbf{1}_{\{1\}}$ n'est pas continue mais est bien mesurable.