Evaluation of search-enabled Pre-trained Large Language Models on retrieval tasks for the PubChem Database

Ash Sze and Soha Hassoun Tufts University

Supporting File 1

This file contains snippets of the gold answer and the GPT response for each of the eight protocols. The GPT prompt is listed in Figures 1-8. For reference, the complete gold answers are provided in Supporting File 2.

Protocol 1: Finding Genes and Proteins that Interact with a Given Compound

Snippet of Gold Answer

id	cid	dsn	cmpdname	srccmpd	srccmpdname
446239	3961	DrugBank	Losartan	DB00678	Losartan
446240	3961	DrugBank	Losartan	DB00678	Losartan
446436	3961	DrugBank	Losartan	DB00678	Losartan
446437	3961	DrugBank	Losartan	DB00678	Losartan
446438	3961	DrugBank	Losartan	DB00678	Losartan
446439	3961	DrugBank	Losartan	DB00678	Losartan
446440	3961	DrugBank	Losartan	DB00678	Losartan
446441	3961	DrugBank	Losartan	DB00678	Losartan
446442	3961	DrugBank	Losartan	DB00678	Losartan

GPT Generation (Bottom-Left of Figures 1-8)

"Based on information from PubChem and DrugBank, Losartan interacts with several genes and proteins.

Here are the key interactions:

- Angiotensin II Type 1 Receptor (AT1R): Losartan acts primarily by blocking the AT1 receptor, which prevents angiotensin II from binding and causing vasoconstriction. This action helps lower blood pressure and reduce the workload on the heart.
- 2. Cytochrome P450 Enzymes (CYP2C9, CYP3A4): Losartan is metabolized in the liver by cytochrome P450 enzymes, particularly CYP2C9 and CYP3A4. This metabolism is crucial for converting Losartan into its active metabolite, E-3174, which has a more potent effect on blocking the AT1 receptor.
- 3. UGT Enzymes (UGT1A1, UGT1A3, UGT1A10, UGT2B7, UGT2B17): These UDP-glucuronosyltransferase (UGT) enzymes are involved in the glucuronidation of Losartan, facilitating its excretion from the body.
- 4. **Renin-Angiotensin-Aldosterone System (RAAS)**: Losartan impacts this system by inhibiting the effects of angiotensin II, leading to decreased aldosterone secretion, reduced sodium reabsorption, and ultimately lower blood pressure.
- 5. **Plasma Renin Activity**: By blocking the feedback mechanism of angiotensin II, Losartan indirectly increases plasma renin activity. This increase is a compensatory response to the blockade of the RAAS pathway.

These interactions highlight the multi-faceted role of Losartan in treating hypertension and related cardiovascular conditions by targeting specific receptors and enzymes in the body (<u>DrugBank</u>) (<u>DrugBank</u>) (<u>Wikipedia</u>)."

Protocol 2: Finding Drug-Like Compounds Similar to a Query Compound through a Two-Dimensional (2-D) Similarity Search

Snippet of Gold Answer

cid	cmpdname	cmpdsynonym	mw	mf	polararea	complexity	xlogp	ŀ
3961	Losartan	losartan 114798-26-4	422.9	C22H23CIN6O	92.5	520	4.3	
108185	Losartan carboxylic	Losartan carboxylic	436.9	C22H21CIN6O2	110	590	5	
9823584	4-Chloro-2-propyl-1-[SCHEMBL855 CHEM	422.9	C21H19CIN6O2	110	576	4.5	
9844369	[5-chloro-2-propyl-3-	SCHEMBL962 L0019	408.9	C21H21CIN6O	92.5	506	3.7	
9846177	[2-propyl-3-[[4-[2-(2H	CHEMBL171524 SC	442.4	C22H21F3N6O	92.5	589	3.7	
9867801	Losartan metabolite	141675-57-2 Losarta	438.9	C22H23CIN6O2	113	552	3	
9911047	Losartan metabolite	141675-59-4 Losarta	438.9	C22H23CIN6O2	113	552	3	
9979425	[5-butyl-2-(hydroxym	ethyl)-1-[[4-[2-(2H-tetra	418.5	C23H26N6O2	113	532	2.5	
10341959	[5-butyl-2-(hydroxym	ethyl)-3-[[4-[2-(2H-tetra	418.5	C23H26N6O2	113	532	2.5	
11270805	[2-butyl-5-chloro-3-[4	SCHEMBL2927903	408.9	C21H21CIN6O	92.5	506	4.4	
11531866	[2-[(E)-but-1-enyl]-5-c	SCHEMBL683439 S	420.9	C22H21CIN6O	92.5	558	4	
11598393	[5-(1,1,2,2,2-pentaflu	CHEMBL170944 SC	492.4	C23H21F5N6O	92.5	677	4.4	
14962867	[5-(2,5-dimethylpyrro	CHEMBL307432 BD	467.6	C27H29N7O	97.4	649	4.3	

GPT Response

"Based on information from PubChem and other databases, several drug-like compounds structurally similar to Losartan satisfy Lipinski's rule of five. These compounds have a molecular weight of less than 500 g/mol, no more than 5 hydrogen bond donors, no more than 10 hydrogen bond acceptors, and an octanol-water partition coefficient (log P) that does not exceed 5. Here is a list of such compounds along with their molecular properties:

1. Candesartan

o Molecular Weight: 440.46 g/mol

• Heavy Atom Count: 32

Rotatable Bond Count: 6

• Hydrogen Bond Donor Count: 2

• Hydrogen Bond Acceptor Count: 8

Polar Surface Area: 126.5 Ų

Molecular Complexity: 676

• XLogP: 3.7

2. Irbesartan

o Molecular Weight: 428.53 g/mol

- o Heavy Atom Count: 31
- o Rotatable Bond Count: 6
- Hydrogen Bond Donor Count: 1
- Hydrogen Bond Acceptor Count: 6
- o Polar Surface Area: 95.9 Å²
- o Molecular Complexity: 579
- o XLogP: 4.1

3. Valsartan

- o Molecular Weight: 435.5 g/mol
- Heavy Atom Count: 30
- o Rotatable Bond Count: 8
- o Hydrogen Bond Donor Count: 2
- Hydrogen Bond Acceptor Count: 5
- o Polar Surface Area: 111 Å²
- o Molecular Complexity: 602
- o XLogP: 3.9

4. Eprosartan

- O Molecular Weight: 424.5 g/mol
- Heavy Atom Count: 30
- o Rotatable Bond Count: 8
- Hydrogen Bond Donor Count: 1
- Hydrogen Bond Acceptor Count: 7
- o Polar Surface Area: 104.7 Å²
- o Molecular Complexity: 557
- o XLogP: 4.5

5. Telmisartan

Molecular Weight: 514.6 g/mol (slightly exceeds the 500 g/mol rule)

• Heavy Atom Count: 38

o Rotatable Bond Count: 6

Hydrogen Bond Donor Count: 1

• Hydrogen Bond Acceptor Count: 6

O Polar Surface Area: 83.9 Å²

• Molecular Complexity: 668

• XLogP: 7.0 (exceeds the log P rule)

While Telmisartan does not strictly satisfy the rule of five due to its molecular weight and log P value, it is structurally similar to Losartan and included for comparative purposes.

These compounds are selected based on their structural similarity to Losartan and compliance with most of the criteria of Lipinski's rule of five. Each compound has unique properties that might be beneficial for different therapeutic applications, particularly in managing hypertension and related cardiovascular conditions (DrugBank) (DrugBank) (ChemSpider)."

Protocol 3: Finding Compounds Similar to a Query Compound through a Three-Dimensional (3-D) Similarity Search

Snippet of Gold Answer

cid	cmpdname	cmpdsynonym	mw	mf	polararea	complexity	xlogp
3961	Losartan	losartan 114798-26-4	422.9	C22H23CIN6O	92.5	520	4.3
10597249	[1-butyl-3-methyl-5-[[CHEMBL440358 BD	402.5	C23H26N6O	92.5	514	3.7
19815401	2-butyl-5-hydroxymet	CHEMBL315094 2-b	456.5	C23H23F3N6O	92.5	603	4.2
15698108	5-[2-[4-[[2-butyl-4-chl	CHEMBL86207 SCH	446.9	C24H23CIN6O	103	635	4.5
130762	4'-((2-Butyl-4-chloro-	Exp7711 114798-27	398.9	C22H23CIN2O3	75.4	498	4.6
10453569	3-[4-[[2-Butyl-4-chlor	CHEMBL129225 BD	399.9	C21H22CIN3O3	88.2	501	3.9
10363575	2-[4-[[2-Butyl-4-chlor	CHEMBL129170 BD	399.9	C21H22CIN3O3	88.2	501	3.6
10001012	3-[4-[[2-Butyl-4-chlor	CHEMBL340682 BD	399.9	C21H22CIN3O3	88.2	501	3.5
11756211	[2-butyl-5-iodo-3-[[4-	CHEMBL313715 BD	514.4	C22H23IN6O	92.5	520	4

GPT Generation

"To identify compounds structurally similar to Losartan using PubChem's 3-D similarity search, we utilize the "Similar Conformers" approach. This method relies on two main 3-D similarity metrics: the shape Tanimoto (ST) and color Tanimoto (CT) scores. Compounds are considered similar if they have an ST score of 0.8 or greater and a CT score of 0.5 or greater.

Based on the tier 1 criteria (compounds with annotations, using up to ten conformers per compound), here are some hit compounds structurally similar to Losartan:

1. Candesartan (CID 10844100)

3-D Structural Features: Candesartan shares a biphenyl tetrazole structure similar to
Losartan, with additional ester and carboxyl groups enhancing its pharmacophoric
features. The rigid biphenyl and tetrazole ring systems align closely with Losartan's
structure, contributing to high shape and feature similarity.

2. Valsartan (CID 60846)

3-D Structural Features: Valsartan has a similar biphenyl structure with a tetrazole ring.
 Its additional aliphatic side chain and valine-derived moiety provide slightly different conformations but maintain overall structural similarity to Losartan.

3. Irbesartan (CID 3749)

 3-D Structural Features: Irbesartan contains a biphenyl tetrazole core, like Losartan, but features an imidazole ring which adds unique spatial orientation. This contributes to a high degree of 3-D similarity while providing distinct pharmacological properties.

4. Olmesartan (CID 667490)

 3-D Structural Features: Olmesartan features a similar biphenyl tetrazole structure but with an additional benzimidazole ring. This complex ring system closely mimics
 Losartan's 3-D conformation, ensuring significant overlap in pharmacophore features.

5. Eprosartan (CID 5281035)

3-D Structural Features: Eprosartan has a thiophene ring attached to a biphenyl
tetrazole structure, differing slightly from Losartan but maintaining key pharmacophoric
alignments. The unique orientation of its side chains still falls within the similarity
threshold.

These compounds were identified based on their ability to match Losartan's 3-D structural features, such as ring systems and functional groups, which are crucial for their biological activity. The tier 1 approach ensures that these compounds have well-documented biological and pharmacological annotations, enhancing their relevance for further studies.

For more detailed information on these compounds and their structural features, you can explore the PubChem database directly (BioMed Central) (BioMed Central) (Oxford Academic) (BioMed Central)."

Protocol 4: Getting the Bioactivity Data for the Hit Compounds from Substructure Search

Snippet of Gold Answer

GPT Generation

"The bioactivity data for compounds related to the substructure search of 5-(2-phenylphenyl)-2H-tetrazole with the SMILES string C1=CC=C(C=C1)C2=CC=CC=C2C3=N[N]N=N3 can be found on PubChem. Here's a summary of the key information:

- AID (Assay Identifier): The bioactivity data includes information on various assays used to test
 the compounds.
- 2. Activity Outcomes: The results of these assays, such as active, inactive, or inconclusive.
- Activity Concentrations: The concentration at which the compound exhibits activity, typically in micromolar (μM) units.
- 4. **Activity Names**: Names of specific bioactivity assays or targets, e.g., enzyme inhibition, receptor binding.

For more detailed information, including specific assay data and related bioactivity outcomes, you can visit the following links on PubChem and ChemSpider:

- PubChem Bioactivity Data
- ChemSpider Substructure Search"

Protocol 5. Finding Drugs that Target a Particular Gene

Snippet of Gold Answer

id	cid	dsn	cmpdname	srccmpd	srccmpdname
205122	2540	DrugBank	Candesartan Cilexeti	DB00796	Candesartan cilexeti
362352	2541	DrugBank	Candesartan	DB13919	Candesartan
417821	3749	DrugBank	Irbesartan	DB01029	Irbesartan
446240	3961	DrugBank	Losartan	DB00678	Losartan
1476922	60846	DrugBank	Valsartan	DB00177	Valsartan
1278296	60919	DrugBank	Tasosartan	DB01349	Tasosartan
1278299	60921	DrugBank	Saprisartan	DB01347	Saprisartan
1524664	65999	DrugBank	Telmisartan	DB00966	Telmisartan
1461907	132706	DrugBank	Forasartan	DB01342	Forasartan
1382798	158781	DrugBank	Olmesartan	DB00275	Olmesartan
1412515	172198	DrugBank	angiotensin II	DB11842	Angiotensin II
1616669	5281037	DrugBank	Eprosartan	DB00876	Eprosartan
1820297	9870652	DrugBank	Fimasartan	DB09279	Fimasartan
2144739	135409642	DrugBank	Azilsartan medoxomi	DB08822	Azilsartan medoxom

GPT Generation

"Based on information from PubChem and related databases, several important drugs interact with the gene encoding the human type-1 angiotensin II receptor (AT1R), the target of losartan. These drugs, known as angiotensin receptor blockers (ARBs), are commonly used to manage conditions such as hypertension, heart failure, and diabetic nephropathy. Here are some of the key ARBs:

 Valsartan: Used to manage hypertension and heart failure. It works by blocking the effects of angiotensin II, reducing blood pressure and improving cardiovascular outcomes (<u>DrugBank</u>)
 (<u>DrugBank</u>).

- 2. **Olmesartan**: Effective in treating hypertension, it helps to lower blood pressure and improve heart function by blocking angiotensin II from binding to AT1R (<u>DrugBank</u>).
- 3. **Telmisartan**: This drug treats hypertension and diabetic nephropathy and is also used to reduce cardiovascular risk. It has a dual role as it also activates peroxisome proliferator-activated receptor gamma (PPARγ), which contributes to its beneficial effects on insulin sensitivity and lipid metabolism (DrugBank).
- 4. **Irbesartan**: Commonly prescribed for hypertension and diabetic nephropathy. It helps protect the kidneys from damage due to high blood pressure and diabetes (Drugs.com).
- 5. **Candesartan**: Used to treat hypertension and heart failure, it improves heart function and reduces hospitalizations for heart failure (<u>Drugs.com</u>).
- 6. **Eprosartan**: This ARB is used to manage hypertension and heart failure, helping to relax blood vessels and lower blood pressure (<u>DrugBank</u>).
- Azilsartan medoxomil: Effective for hypertension, often used alone or in combination with other antihypertensive agents (<u>DrugBank</u>).

These drugs, like losartan, inhibit the action of angiotensin II by blocking its binding to the AT1R, thus helping to control blood pressure and protect against various cardiovascular and renal diseases. For more detailed information on these drugs, you can visit DrugBank or other medical databases (<u>DrugBank</u>) (<u>DrugBank</u>) (<u>DrugBank</u>)."

Protocol 6. Getting Bioactivity Data of All Chemicals Tested Against a Protein

Snippet of Gold Answer

baid	activity	aid	sid	cid	geneid	pmid
99356196	Active	39051	103213931	10373777	185	2016730
99371148	Active	39666	103299812	10744859	185	10893306
99371149	Active	39666	103300260	10504330	185	10893306
99371151	Active	39666	103300188	10393016	185	10893306
99371152	Active	39666	103300252	10765881	185	10893306
99371153	Active	39666	103300113	11801362	185	10893306
99371154	Active	39666	103300372	5249743	185	10893306
99371155	Active	39666	103300688	10790819	185	10893306
99371157	Active	39666	103300303	10697700	185	10893306

baid	activity	aid	sid	cid	geneid	pmid	٤
99364399	Active	37983	103379628	44359782	81638	10579816	(
99364401	Active	37983	160704000	172198	81638	10579816	(
99364582	Active	37824	103379628	44359782	81638	10579816	(
99364584	Active	37824	103379951	10558021	81638	10579816	(
99364586	Active	37824	103546496	3961	81638	10579816	(
99364588	Active	37824	160704000	172198	81638	10579816	(
99364599	Active	37983	103379951	10558021	81638	10579816	(
99366829	Active	37823	160704000	172198	81638	10052967	(
99366930	Active	37822	160704000	172198	81638	10052967	(

GPT Generation

"Summary of Human Type-1 Angiotensin II Receptor (AT1R)

The human type-1 angiotensin II receptor (AT1R), encoded by the **AGTR1 gene**, is a G protein-coupled receptor (GPCR) that plays a crucial role in the renin-angiotensin system, primarily regulating blood pressure and fluid balance. This receptor mediates various physiological responses, including vasoconstriction, aldosterone synthesis and secretion, increased vasopressin release, cardiac hypertrophy, and modulation of the sympathetic nervous system. AT1R is activated by the peptide hormone angiotensin II (Ang II), which triggers downstream signaling pathways involving G proteins and β-arrestins, leading to diverse cellular responses such as cell proliferation, fibrosis, and inflammation (DrugBank) (Wikipedia).

Bioactivity Data of Key Chemicals Tested Against AT1R

Human AT1R

- Losartan: A widely used AT1R antagonist (angiotensin receptor blocker, ARB), effective in treating hypertension and heart failure by preventing angiotensin II from binding to AT1R, thereby reducing vasoconstriction and aldosterone release.
- 2. **Olmesartan**: Another ARB that binds to AT1R, it is used for managing high blood pressure and has a high affinity for the receptor, providing long-lasting effects.
- 3. Candesartan: Known for its strong binding to AT1R, this ARB helps in reducing blood pressure and improving heart function by blocking angiotensin II effects.

Rat AT1R

- 1. **Valsartan**: Commonly tested in rat models, this ARB blocks AT1R effectively, used to study the effects on blood pressure regulation and cardiac hypertrophy.
- 2. **Irbesartan**: Similar to other ARBs, it inhibits the action of angiotensin II on AT1R in rats, used to understand its pharmacodynamics and therapeutic potential in cardiovascular diseases.

Significance in Research

The AT1R is extensively studied due to its critical role in cardiovascular and renal physiology.

Understanding the interactions of various ARBs with AT1R has led to significant advancements in managing hypertension, heart failure, and kidney diseases. Research continues to explore genetic mutations in AT1R and their implications in diseases such as atrial fibrillation, as well as the development of new therapeutic agents targeting this receptor (DrugBank) (Wikipedia) (Frontiers).

For more detailed bioactivity data and further information, please visit PubChem's comprehensive entries on these chemicals and their interactions with AT1R."

Protocol 7. Finding Compounds Annotated with Classifications or Ontological

Terms

Snippet of Gold Answer

cid	cmpdname	cmpdsynonym	mw	mf	polararea	complexity	x
1978	Acebutolol	acebutolol 37517-30	336.4	C18H28N2O4	87.7	401	
2119	Alprenolol	alprenolol 13655-52-	249.35	C15H23NO2	41.5	231	
2249	Atenolol	atenolol 29122-68-7	266.34	C14H22N2O3	84.6	263	
2351	Bepridil	bepridil 64706-54-3	366.5	C24H34N2O	15.7	382	
2475	Bupranolol	BUPRANOLOL Opht	271.78	C14H22CINO2	41.5	242	
2583	Carteolol	CARTEOLOL 51781	292.37	C16H24N2O3	70.6	354	
2663	Celiprolol	celiprolol 56980-93-	379.5	C20H33N3O4	90.9	474	
3333	Felodipine	felodipine 72509-76-	384.2	C18H19Cl2NO4	64.599	614	
3961	Losartan	losartan 114798-26-4	422.9	C22H23CIN6O	92.5	520	
4171	Metoprolol	metoprolol 51384-51	267.36	C15H25NO3	50.7	215	
4411	Solgol	42200-33-9 5-[3-(tert-	309.4	C17H27NO4	82	344	
4631	Oxprenolol	oxprenolol 6452-71-7	265.35	C15H23NO3	50.7	246	
4946	Propranolol	propranolol Propano	259.339	C16H21NO2	41.5	257	
5417	DL-Tetrahydropalma	tetrahydropalmatine	355.4	C21H25NO4	40.2	475	
6100	Bretylium Tosylate	Bretylium tosylate 61	414.4	C18H24BrNO3S	65.6	349	

Refer to supporting information 7 for the full answer

GPT Generation

"...

	Chemical	Therapeutic Uses
0	Chemical A	['Hypertension', 'Heart Failure']
1	Chemical B	['Hypertension', 'Diabetic Nephropathies']
2	Chemical C	['Diabetic Nephropathies', 'Left Ventricular Hypertrophy']
3	Chemical D	['Heart Failure',

	'Hypertension']
II.	-

Here is the list of chemicals with therapeutic uses similar to Losartan based on PubChem's MeSH annotations. If you need further details or a different format, please let me know!"

Protocol 8. Finding Stereoisomers and Isotopomers of a Compound through Identity Search

Snippet of Gold Answer

cid	cmpdname	cmpdsynonym	mw	mf	polararea	complexity	xlogp
60846	Valsartan	valsartan 137862-53-	435.5	C24H29N5O3	112	608	4.4
5650	N-pentanoyl-N-{[2'-(1	N-pentanoyl-N-{[2'-(1	435.5	C24H29N5O3	112	608	4.4
5284633	D-Valsartan	137862-87-4 D-Valse	435.5	C24H29N5O3	112	608	4.4

Refer to supporting document information 8 part 1 for the full answer

cid	cmpdname	cmpdsynonym	mw	mf	polararea	complexity	xlogp
60846	Valsartan	valsartan 137862-53-	435.5	C24H29N5O3	112	608	4.4
25134333	(2S)-2-[[dideuterio-[4	-[2-(2H-tetrazol-5-yl)ph	437.5	C24H29N5O3	112	608	4.4
25134334	(2S)-3-methyl-2-[pen	tanoyl-[[4-[2,3,4,5-tetr	439.5	C24H29N5O3	112	608	4.4
25135160	(2S)-2,3,4,4,4-pentac	deuterio-2-[[3-deuterio	444.6	C24H29N5O3	112	608	4.4
25135222	Valsartan D9	Valsartan D9 Valsarta	444.6	C24H29N5O3	112	608	4.4
25135224	(2S)-3-methyl-2-[pen	1089736-75-3 DTXS	439.5	C24H29N5O3	112	608	4.4
45040680	Valsartan-d3	Valsartan-d3 133190	438.5	C24H29N5O3	112	608	4.4
87103049	(2S)-4-deuterio-3-me	SCHEMBL405203	436.5	C24H29N5O3	112	608	4.4
118856187	Valsartan-d8	Valsartan-d8 108973	443.6	C24H29N5O3	112	608	4.4
131674069	(2S)-2,3,4,4,4-pentadeuterio-2-[[4-[2-(2-deu		444.6	C24H29N5O3	112	608	4.4
156699635	(2S)-2-[5-deuterioper	ntanoyl-[[4-[2-(2H-tetra	436.5	C24H29N5O3	112	608	4.4

Refer to supporting information 8 part 2 for the full answer

GPT Generation

"Based on the information from PubChem and related sources, valsartan (CID 60846) has several stereoisomers and isotopomers. Here are the key details:

Stereoisomers of Valsartan

Valsartan has a single stereocenter, and its most commonly known stereoisomer is the (S)-enantiomer. The IUPAC name for this specific stereoisomer is (2S)-3-methyl-2-[pentanoyl-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]amino]butanoic acid (<u>ChemSpider</u>) (<u>Fisher Scientific</u>).

Isotopomers of Valsartan

Isotopomers are isomers that differ only in the isotopic composition of their atoms. For valsartan, common isotopomers include versions labeled with stable isotopes such as deuterium or tritium. Examples include:

- Valsartan-d3
- [3H]valsartan (tritiated valsartan) (MacsenLab) (NNLM Guides).

These isotopomers are useful in various research applications, including pharmacokinetics and metabolic studies, because they allow for the tracking and quantification of the drug's behavior in biological systems without altering its chemical properties.

For further details, you can refer to the compound's information on PubChem and ChemSpider."