Epreuve écrite

Examen de fin d'études secondaires 2004

Section: B

Branche: Mathématiques II

Durée: 3 heures ginn

Nom et prénom du candidat	
111 113 1 11 5	

- I) A) On considère la fonction numérique f définie par $f(x) = (x+1)^2 e^{-x}$.
 - 1) Étudier la fonction f (Domaine de définition et de dérivabilité, limites et asymptotes, sens de variation et tableau de variation, représentation graphique (C_f) dans un R.O.N.d'unité : 2cm)
 - 2) a) Justifier que f admet des primitives sur \mathbb{R} .
 - b) Déterminer la primitive F de f qui s'annule pour x = 1.
 - c) En déduire l'aire $A(\lambda)$ de la surface délimitée par (C_f) , l'axe (Ox), la droite (D_1) d'équation x = 1 et la droite (D) d'équation $x = \lambda$, avec $\lambda \in [1, +\infty]$.
 - d) Calculer $\lim_{\lambda \to +\infty} A(\lambda)$
 - B) 1) Résoudre dans \mathbb{R} l'équation suivante où k désigne un paramètre réel: $e^{3x} = -k^2 e^x + 2 k e^{2x}$
 - 2) Résoudre dans \mathbb{R} l'équation suivante : $\ln 24 + \ln(3-x) < \ln(x+1) + \ln(25x-49)$.

(22 points)

- 11) 1) Définir la fonction Arctangente
 - 2) Démontrer : $Arc \tan \frac{1}{\sqrt{x}} = Arc \cot \sqrt{x} \quad (\forall x \in \mathbb{R}_0^+)$
 - 3) On donne la fonction définie par $f(x) = Arc \tan \frac{1-x^2}{5x-x^2}$

Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 1} f(x)$ et $\lim_{x \to 0} f(x)$ et $\lim_{x \to 1} \frac{f(x)}{x-1}$

(14 points)

III) 1) Calculer l'intégrale indéfinie suivante : $I = \int \frac{2x^3 + x^2 + 2x + 2}{x^4 + 3x^2 + 2} dx$.

Indication: Calculer les réels a, b, c et d tels que pour tout x qui n'annule pas le dénominateur on ait $\frac{2x^3 + x^2 + 2x + 2}{x^4 + 3x^2 + 2} = \frac{ax + b}{x^2 + 1} + \frac{cx + d}{x^2 + 2}$

- 2) a) Calculer l'intégrale indéfinie suivante : $J = \int \frac{x^2}{1+x^2} dx$
 - b) De a), déduire le calcul de l'intégrale indéfinie $K = \int \frac{x^2}{1+x^2} \cdot Arc \tan x \ dx$.
- 3) Calculer l'aire de la surface délimitée par la parabole (P) d'équation $y^2=2x$ et la droite (D) d'équation y = x-4.
- 4) On considère la surface (S) délimitée par la courbe (C) et les droites (D₁) et (D₂) d'équations respectives : $y = \frac{1}{3} \sqrt{x} (3-x)$ et x = 0 et x = 3.

Calculer le volume du solide engendré par la rotation de (S) autour de l'axe Ox.

(24 points)