CS 6160 Cryptology Lectu Pseudorandom Functions & Security

Maria Francis

September 11, 2025

Security for Multiple Encryptions

We looked at a weak model of passive eavesdrop ciphertext.

Next we consider communicating parties sending

- ciphertexts to each other using same key and an observing all of them.
- Description of multiple encryption ttack game:
 - 1. \mathcal{A} outputs a pairs of equal length lists of messay $M_0 = m_0$, m_{0t} and $M = m_0$, m_{0t} , m_{0t}
 - 2. k is generated and a uniform bit $b \in \{0,1\}$ is ch $c_i \leftarrow Enc_k \ m_{b\ i}$) and the list C = c, c_t) is
 - 3. \mathcal{A} outputs a bit b .
 - 4. $MultSec^*_{A \mathcal{E}} 1^n$) the corresponding advantage winning this bit guessing game better than 1/2.

Security for Multiple Encryptions

 How do this experiment come in the picture of se definitions?

efinition

cipher $\mathcal{E} = Gen, Enc, Dec$) has indistinguishable mencryptions in the presence of an eavesdropper if for a polynomial-time adversaries \mathcal{A} ,

 $MultSec^*_{A \mathcal{E}} 1^n \le negl n$

Security for Multiple Encryptions

- stronger?
 - ny scheme that is secure w.r.t. the ttack gam encryptions is also secure w.r.t. ttack Game of security. The list has only one message.
 - But is our new definition strictly stronger?

Theorem

There is a cipher that has indistinguishable encryption presence of an eavesdropper but not indistinguishable encryptions in the presence of an eavesdropper.

- sematically secure scheme that is $rac{\mathsf{deterministic}}{\mathsf{outputting}} \ M_0 = \ 0^\ell, 0^\ell)$ and $M = \ 0^\ell, 1^\ell).$
- Let $C=\ c\ , c_2)$ be the ciphertexts ${\cal A}$ receives.
- If $c = c_2$, then \mathcal{A} says b' = 0 else 1.

Security for Multiple Encryptions stronger?

- What is the probability that b' = b?
- The same message encrypted twice will yield the ciphertext.
- Thus if b=0 then $c=c_2$ and so ${\mathcal A}$ outputs 0 i
- If b=1 then a different message is encrypted ea so $c
 eq c_2$ and ${\cal A}$ outputs 1.
- So probability is $\mathbf{1}$ that the adversary will succeed
- We need probabilistic encryption.

Theorem

 $f \mathcal{E}$ is a encryption scheme in which Enc is a determine of the key and message then \mathcal{E} cannot have indistingumultiple encryptions in the presence of an eavesdropp

Chosen-Plaintext ttacks

Bob

Mallory

Mallory gets lice to encrypt m, m_2 , and eavesdrops for the corresponding cip

Chosen-Plaintext ttacks

 $c = Enc_k m$), m is m_0 or m

lice

Mallory

Can Mallory tell which message was enc with probability better random guessing?

CP in the real world

- CP encompasses known-plaintext attacks and the see in the real world.
- How can adversary have significant influence ove messages got encrypted?
- ${\cal A}$ types on a terminal which in turns encrypts who using the shared key of the server.
- In WWII, British placed mines in certain location locations will get encrypted by Germans and they to break the scheme.
- More examples from WWII and real world!

CP security

- $\mathcal A$ has access to an encryption oracle Enc_k), it is blackbox that encrypts messages of $\mathcal A$'s choice us but won't show how it is done to $\mathcal A$.
- ${\cal A}$ queries this oracle with m and ${\it Enc}_k$) returns ${\it optimize}$
- For a randomized encryption, the oracle also uses randomness each time.
- \mathcal{A} can interact with this oracle as many times as long as its polynomial in the security parameter).
- We do not worry about the efficiency of the orac

CP indistinguishability experime

- 1. key k is generated considering the security par
- 2. \mathcal{A} has oracle access Enc_k) and outputs a pair of m_0, m of the same length.
- 3. uniform bit $b \in \{0,1\}$ is chosen and then a cip $c \leftarrow Enc_k \ m_b$) given to \mathcal{A} .
- 4. \mathcal{A} continues to have oracle access to Enc_k) and b' .
- 5. CP $adv_{A \mathcal{E}}^* 1^n$) is defined as usual.

private-key encryption scheme \mathcal{E} has indistinguishabunder a CP or is CP -secure if for all PPT \mathcal{A} CP anegligible.

CP indistinguishability experime

- Big advantage for CP -security enough to show single encryption.
- Security against CP is a minimal requirement for schemes!
- ny private-key encryption scheme that is CP -s
 CP -secure for multiple encryptions.
- We skip the proof.

Block Ciphers

- Block ciphers are the "work horse" of practical cr
- They are used to build ciphers with stronger secu
 - stronger than semantic security.
- For all practical purposes we want block ciphers random permutation.
 - the definition of security of block cipher is like a test.
 - The adversary is given a black box, instead of we permutation f that can be either $E(k,\cdot)$ for a regenerated k or f is a truly random permutation uniformly from all permutations on the domain.

 \mathcal{A} cannot see inside the box but can probe it wipolynomial number of them.

Infinite (?) Pseudo randomness

- We want to have an infinite amount of shared rai just a short key.
- So when we get a message of length ℓ we can sp randomness into blocks of length ℓ and use each
 - lice just tells Bob which location of the shared she used to encrypt and then Bob decrypts using information.
- s long as lice does not repeat the block, we ar eavesdroppers.
- Infinite means exponential amount! Typically a lo 2^l OTP keys!

- Pseudorandom functions are a neat abstraction ociphers.
- High level idea:

PRG: short random seed s gives G(s) a long random output.

PRF: short random key K gives E_k \dot{j} random lo

- We have keyed functions E_k with key length(ℓ_k length(ℓ_{in} 1ⁿ)) and output length(ℓ_{out} 1ⁿ)).
- We assume all are length preserving, $\ell_k \ 1^n) = \ell_{in} \ 1^n) = \ell_{out} \ 1^n) = n$, but not necessa permutation!

- E_k induces a natural distribution E on functions choosing a uniform key $k \in \{0,1\}^n$.
- We call E pseudorandom if the function E_k is income from a function f chosen uniformly at random from all functions with the same domain and range (i.e. $f: \{0,1\}^n \to \{0,1\}^n$).
- How to choose a function at random? How big is $|\operatorname{unc}_n| = 2^{n} 2^n$.

pseudorandom function (PRF) is a family of function $\{E_k:\{0,1\}^{\ell_{in}}\}^n\to\{0,1\}^{\ell_{out}}\}^n$ where $n\in\{0,1\}^{\ell_{out}}$ that:

- Efficiency: One can compute $E_K \times$) in poly n)-ti and x.
- Security: For any PPT adversary A:

$$|Pr[\mathcal{A}^{-k-)}|1^n)=1]-Pr[\mathcal{A}^{f-)}|1^n)=1]|\leq$$

where $k \leftarrow \{0,1\}^n$ and $f \leftarrow Func_n$, where $Func_n$ all the functions mapping ℓ_{in} bits to ℓ_{out} bits.

- function is specified by giving its value on each domain.
- We can view the function f as a lookup table that in the row of the table labeled x.
- For each $f \in \text{unc }_n$, the look-up table for f has one for each string in the domain $\{0,1\}^n$.
- Each row contains an *n*-bit string since the range $\{0,1\}^n$.
- If we concatenate all the entries of this table, we function in unc_n can be represented by a string $2^n \times n$.
- Each string of length $2^n \cdot n$ is a unique function i $|\operatorname{unc}_n| = 2^{n \cdot 2^n}$.

- pseudorandom function is a keyed function, i.e E_k ·) is a function from E_k : $\{0,1\}^n \to \{0,1\}^n$ s $k \in \{0,1\}^n$ is indistinguishable from f for a unifor $f \in \mathrm{unc}_n$.
 - The former is a chosen from a distribution of 2^n whereas the latter is chosen from 2^{n} functions!
 - Despite this, every polynomial time distinguisher receives the *description* of pseudorandom functio 1 with "almost" same probability as when it is gi description of random function f.

Oracle to avoid exponential descrip

- But description of f could be exponential since $|\operatorname{unc}_n| = 2^{n \cdot 2^n}$, we need lookup table of $n \cdot 2^n$.
- We give ${\mathcal A}$ an access to oracle ${\mathcal O}$ which is either
- \mathcal{A} queries oracle at any point with x and the ora $\mathcal{O}(x)$.
- The oracle is a black-box but deterministic and g output for same input.
- ${\cal A}$ can only do polynomial number of queries.
- \mathcal{A} is not given key k, else distinguishing is trivial \mathcal{A} will query oracle with x, obtain y,

heck $E_k(x) = y$ if yes then conclude it was the else oracle for f.

Oracle to avoid exponential descrip

- No matter how big the table is since we only have polynomial number of queries we need to have or amount of the table.
- Basically we fill the table in a lazy/on-demand w
- The lookup table is initially uninitialized and valuently only when the calling program requests them.
- It changes when each entry is sampled (if at all) it is sampled (which is uniformly & independently

Security Definitions

- We have to define an attack game for security de PRF.
- We define two experiments just like before, but he adversary submits a sequence of queries x, x₂, challenger.
- C responds to query x_i with $f(x_i)$, where f in Ex and in Exp 1 it is randomly selected function from
- The same f is used to answer all the queries.
- When the adversary tires itself of querying (note adversary so it will tire for sure) it outputs a bit.

ttack Game

Experiment b:

- The challenger selects $f \in \mathrm{unc}_n$ as follows:

if
$$b = 0$$
 $k \leftarrow \mathcal{K}$, $f := E_k \cdot$)
if $b = 1$ $f \leftarrow \operatorname{unc}_n$

- \mathcal{A} submits a sequence of queries to the challenge $i = 1, 2, \dots$, the *i*th query is a data block x_i
- C computes $y_i = f(x_i)$ and gives y_i to A
- ${\mathcal A}$ computes and outputs a bit $\hat b \in \{0,1\}.$

ttack Game

- For b=0,1, let W_b be the event that $\mathcal A$ outputs Experiment b. We define $\mathcal A$'s advantage as :

$$PRFadv_{\mathcal{A} \ \mathcal{E}} \ 1^k) = |Pr[W_0] \ Pr[W]$$

- We say that ${\mathcal A}$ is a ${\mathcal Q}$ -query PRF adversary if ${\mathcal A}$ ${\mathcal Q}$ queries.
 - PRF \mathcal{E} is secure if for all PPT adversaries \mathcal{A} , $PRFadv_{\mathcal{A}} \mathcal{E} 1^k$) is negligible.
- The queries can be adaptive, i.e. they need not be advance and can be adapted to change based on

NOT a Pseudorandom Function

- Let $E_k(x) = k \oplus x$.
- If k is uniform $E_k \times$) is also uniformly distributed
- Consider the following adversary \mathcal{A} that queries (distinct points x, x_2 to get $y = \mathcal{O}(x)$) and $y_2 = \mathcal{O}(x)$

It outputs 1 iff $y \oplus y_2 = x \oplus x_2$

If $\mathcal{O} = E_k$, for any k, \mathcal{A} is correct is 1.

For $\mathcal{O} = f_k$, the probability $f(x) \oplus f(x_2) = x \oplus f(x_2)$

as probability $f(x_2) = x \oplus x_2 \oplus f(x)$, which is

The difference is $|1 - 2|^n$, not negligible.

PRFs and PRGs

- PRFs and PRGs are closely related.
 - PRG guarantees that a single output appears rainput is chosen at random, i.e. G(x) is pseudo-uniform.
 - PRF guarantees all its outputs appear random r input provided the function is drawn at random, by choosing a k at random, not its inputs!
- PRG can be constructed from PRF by simply evaluation different inputs.
- PRF from PRG? GGM construction given by Goldwasser, and Micali.

PRFs and PRGs

- PRFs are a compact representation of an expone pseudorandom string. PRGs always run in poly tie only have outputs which are poly k, the security
- PRFs remove the need of the sender and receiver state and stay in synch to make sure that the pse pad is not reused.
- PRFs allow for random-access, direct access to a output stream, output of a function f_k i), ith blc pseudorandom string with seed k.
- PRFs are a way to achieve random access to a very pseudorandom string.

CP -security from a Pseudorando Function

- PRFs give us access to infinite (not really infinite with one short key.
- How can one construct an encryption scheme fro pseudorandom function?
- $Enc_k m) = E_k m$, where E_k is a PRF.
- The encryption reveals nothing about *m*, so it is checkbox cleared but it is deterministic.

CP -security from a Pseudorando Function

Let F be a pseudorandom function. Define a fixed-length encryption scheme for messages of length n as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and ou
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$ and output the ciphertext

$$c := \langle r, F_k(r) \oplus m \rangle.$$

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext c = the message

$$m := F_k(r) \oplus s$$
.

CP -security from a Pseudorando Function

- Two things to note here that we have not previous the other ciphers:

For a given key k, every message m has 2^n correciphertexts and still the receiver can decrypt correction. The ciphertext is longer than the plaintext.

- To prove :If F is a (secure) PRF, then the above is a CP -secure symmetric encryption scheme.

Proof idea:

- Using the assumption that F is a PRF, we can expression replace F by a truly random function.
- We assume A is an efficient CP adversary that most q n) queries to the challenger, we argue the negligible probability, no two r values are ever the

Games 0 and 1

- Game 0 considers the pseudorandom function and considers f from $\,\mathrm{unc}.$
- The bit *b* referred in these games denotes the ranchosen by the challenger.
- \hat{b} chooses the output bit of the adversary $\mathcal{A}.$
- Let W_j be the event that $\hat{b} = b$ in Game j.
- We show that the $|Pr[W] Pr[W_0]|$ is same as which we assume is negligible for a secure PRF.

Game 0 corresponding to encryption scheme \mathcal{E}

- Choose $k \leftarrow \mathcal{K}$ and E be a PRF and message ler
 - \mathcal{A} queries the Enc-oracle on several messages. For $m \in \{0,1\}^n$, the oracle answers the query:

hoose
$$r \leftarrow \{0,1\}^n$$

Returns $E_k \ r) \oplus m$

- \mathcal{A} outputs $m_0, m \in \{0,1\}^n$ to the challenger \mathcal{C}
- Challenger chooses $b \leftarrow \{0,1\}$ and $r \leftarrow \{0,1\}^n$.
- Returns $\langle r, E_k | r \rangle \oplus m_b \rangle$
- \mathcal{A} returns $\hat{b} \in \{0,1\}$
- W_0 is the event that $\hat{b} = b$ in Game 0.

Game 1 corresponding to encryption scheme \mathcal{E}'

- Choose $f \leftarrow \mathrm{unc}_n$, where message length is n.
- \mathcal{A} queries the Enc-oracle on several messages. For $m \in \{0,1\}^n$, the oracle answers the query:

hoose
$$r \in \{0,1\}^n$$

Returns $\langle r, f | r \rangle \oplus m \rangle$

- \mathcal{A} outputs $m_0, m \in \{0,1\}^n$ to the challenger \mathcal{C} .
- Challenger chooses $b \leftarrow \{0,1\}$ and $r \leftarrow \{0,1\}^n$.
- Returns $\langle r, f | r \rangle \oplus m_b \rangle$
- \mathcal{A} returns $\hat{b} \in \{0,1\}$
- W is the event that $\hat{b} = b$ in Game 1.

Claim 1 : $|Pr[W] Pr[W_0]| = negl 1^n$

- We show in the next figure that $|Pr[W] Pr[W_0]| = PRFadv \mathcal{B}$) where \mathcal{B} is an wrapper around \mathcal{A} that attacks the underlying Pl
 - Since we assume E to be a secure PRF, PRFadv negligible implies $|Pr[W]| = Pr[W_0]| = negl \ 1^n$).

Claim: [Pr[W] - Pr[Wo] = PRFach

Claim 2: $Pr[W] \le 1/2 + q n/2^n$

- Every time m is encrypted (either by Enc-oracle ciphertext), a uniform r is chosen and ciphertext $\langle r, f | r \rangle \oplus m \rangle$.
- Let r^* be used for the challenge ciphertext (m_b) . two cases:
 - 1. r^* is never used when answering any of \mathcal{A} 's Enc

 \mathcal{A} learns nothing about f(r) by interacting we For \mathcal{A} , f(r) m_b is uniformly distributed and the experiment so probability that $= \hat{f}(r)$ is 1

<u>CP</u> -security proof contd.

2. r^* came up at least once in \mathcal{A} 's Enc-oracle queries

 \mathcal{A} gets $\langle r^*, s \rangle$ as response for $m, \Rightarrow f(r^*) = s \oplus r$ Probability of that happening: $q(n)/2^n$, $r^* \in \{0, 1\}$

Let Repeat be the event corresponding to Case 2.

$$egin{aligned} Pr[W \] &= Pr[W \ \cap Repeat] + Pr[W \ \cap \overline{Rep} \ &\leq Pr[Repeat] + Pr[W \ | \overline{Repeat}] \ &\leq q \ n)/2^n + 1/2 \end{aligned}$$

This implies $|Pr[W_0] - 1/2| = CP \ adv_{\mathcal{A} \mathcal{E}^{-n}}^* = negl$