HAI6011 - Exercices de révisions

Benoît Huftier

2022

Benoît Huftier HA|601| - révisions 2022 1/15

Suppression de la récursivité à gauche

Enoncé

Soit la grammaire $G = (\{a, b\}, \{X_1, X_2, X_3\}, R, X_1)$ avec les règles R suivantes :

$$egin{array}{lll} X_1 &
ightarrow & X_2 a | X_3 b \ X_2 &
ightarrow & X_2 a b | X_1 a \ X_3 &
ightarrow & b b | X_1 b \ \end{array}$$

Calculer G_{NR} la grammaire G sans récursivité à gauche.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Pour appliquer la suppression de la récursivité à gauche il faut que la grammaire soit sans cycle et sans ε -production.

Le principe de la suppression de la récursivité à gauche, c'est que pour chaque règle de la grammaire, le premier symbole de la partie droite doit être :

un symbole terminal,

Benoît Huftier

• un symbole non terminal *plus grand* que le non terminal de la partie gauche.

Par exemple, si on ordonne les non terminaux $X_1 \prec X_2 \prec X_3$, la règle $X_1 \to X_2$ est valide mais $X_2 \to X_1$ ne l'est pas.

On va donc changer nos règles en partant du plus petit non terminal (X_1) , jusqu'au plus grand (X_3) et en remplaçant les symboles plus petits par leurs propres règles.

HAI6011 - révisions

< □ > 4 团 > 4 团 > 4 전 > 4 전 > 4 전 > 1 전

2022

3 / 15

Par exemple, si on a les règles.

$$\begin{array}{ccc} X_1 & \rightarrow & a|b \\ X_2 & \rightarrow & X_1b|X_2a \end{array}$$

On va remplacer le X_1 dans $X2 o X_1 b$ par toutes les règles de X_1 . On aura donc

$$egin{array}{lll} X_1 &
ightarrow & a|b \ X_2 &
ightarrow & ab|bb|X_2a \end{array}$$

Il faut ensuite faire attention à la récursivité immédiate. $X_2 \to X_2 a$, cela risque d'engendrer une boucle infinie (imaginons une règle $X_3 \to X_2$, remplacer X_2 par ses règles reviendrait à réengendrer X_2 !). L'algorithme du cours montre comment faire assez simplement en ajoutant un non terminal gérant le reste :

$$\begin{array}{ccc} X_1 & \rightarrow & a|b \\ X_2 & \rightarrow & abR_{X_2}|bbR_{X_2} \\ R_{X_2} & \rightarrow & aR_{X_2}|\varepsilon \end{array}$$

Benoît Huftier HAI601| - révisions 2022 4/15

Revenons à l'exercice.

Posons R' notre ensemble de nouvelles règles.

 X_1 ne possède ni récursivité de non terminaux inférieurs (normal c'est le premier) ni récursivité immédiate. On ajoute donc les règles de R concernant X_1 dans R'.

$$X_1 o X_2 a, X_1 o X_3 b \in R'$$

Benoît Huftier HA|601| - révisions 2022 5/15

 X_2 possède une récursivité avec X_1 dans la règle $X_2 o X_1 a$. On remplace donc X_1 par les règles de R' ayant X_1 en partie gauche.

$$X_2
ightarrow X_2 ab | X_2 aa | X_3 ba$$

On se retrouve à présent avec deux récursivités immédiates qui peuvent se supprimer de la manière suivante :

$$egin{array}{lll} X_2 &
ightarrow & X_3 baR_{X_2} \ R_{X_2} &
ightarrow & abR_{X_2} |aaR_{X_2}| arepsilon \end{array}$$

Et on ajoute ces règles à R'.

Benoît Huftier HA|601| - révisions 2022 6/15

 X_3 possède une récursivité avec X_1 dans la règle $X_3 \to X_1 b$. On remplace donc X_1 par les règles de R' ayant X_1 en partie gauche.

$$X_3 \rightarrow bb|X_2ab|X_3bb$$

On se retrouve à présent avec une récursivité avec X_2 dans la règle $X_3 \to X_2 ab$. On remplace donc X_2 par les règles de R' ayant X_2 en partie gauche.

$$X_3 \rightarrow bb|X_3baR_{X_2}ab|X_3bb$$

Maintenant on gère la récursivité immédiate :

$$X_3 \rightarrow bbR_{X_3}$$

 $R_{X_3} \rightarrow baR_{X_2}abR_{X_3}|bbR_{X_3}|\varepsilon$

→□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Benoît Huftier HA|601| - révisions 2022 7 / 15

On se retrouve à présent avec notre grammaire sans récursivité à gauche :

$$G_{NR}=(\{a,b\},\{X_1,X_2,R_{X_2},X_3,R_{X_3}\},R',X_1)$$
 avec les règles R' suivantes :
$$egin{array}{ccc} X_1&\to&X_2a|X_3b\\ X_2&\to&X_3baR_{X_2}\\ R_{X_2}&\to&abR_{X_2}|aaR_{X_2}| arepsilon \end{array}$$

$$X_3 \rightarrow bbR_{X_3}$$

$$R_{X_3} \rightarrow baR_{X_2}abR_{X_3}|bbR_{X_3}|\varepsilon$$

Benoît Huftier HA|601| - révisions 2022 8 / 15

Suppression de la récursivité à gauche

Enoncé

Soit la grammaire $G = (\{a, b\}, \{X_1, X_2\}, R, X_1)$ avec les règles R suivantes :

$$egin{array}{lll} X_1 &
ightarrow & X_2 a \ X_2 &
ightarrow & X_2 X_1 X_1 a |b| X_1 \end{array}$$

Calculer G_{NR} la grammaire G sans récursivité à gauche.

9 / 15

Benoît Huftier HA|601| - révisions

 X_1 ne possède aucune récursivité avec des non terminaux inférieurs ou lui même.

 X_2 possède une récursivité avec X_1 qui est inférieur, on remplace donc X_1 par la seule règle avec X_1 en partie gauche de $R': X_2 \to X_2 a$ X_2 possède une récursivité avec lui même. On gère donc cette récursivité immédiate :

$$\begin{array}{ccc} X_2 & \rightarrow & bR_{X_2} \\ R_{X_2} & \rightarrow & X_1X_1aR_{X_2}|aR_{X_2}|\varepsilon \end{array}$$

On a donc la grammaire sans récursivité à gauche suivante :

$$G_{NR}=\left(\{a,b\},\{X_1,X_2,R_{X_2}\},R',X_1
ight)$$
 avec les règles R' suivantes :

$$\begin{array}{ccc} X_1 & \rightarrow & X_2 a \\ X_2 & \rightarrow & b R_{X_2} \\ R_{X_2} & \rightarrow & X_1 X_1 a R_{X_2} |a R_{X_2}| \varepsilon \end{array}$$

Benoît Huftier HA|601| - révisions

10 / 15

Voici une façon de faire en suivant l'algo du cours (d'abord faire la suppression de la récursivité à gauche immédiate puis supprimer la récursivité à gauche).

 X_2 possède une récursivité immédiate donc on l'enlève :

$$egin{array}{lll} X_2 &
ightarrow & bR_{X_2}|X_1R_{X_2} \ R_{X_2} &
ightarrow & X_1X_1aR_{X_2}|arepsilon \end{array}$$

On a donc la grammaire sans récursivité à gauche immédiate suivante :

$$G_{NRI}=(\{a,b\},\{X_1,X_2,R_{X_2}\},R',X_1)$$
 avec les règles R' suivantes :

$$\begin{array}{ccc} X_1 & \rightarrow & X_2 a \\ X_2 & \rightarrow & b R_{X_2} | X_1 R_{X_2} \\ R_{X_2} & \rightarrow & X_1 X_1 a R_{X_2} | \varepsilon \end{array}$$

Benoît Huftier

 X_1 ne possède aucune récursivité avec des non terminaux inférieurs ou lui même.

 X_2 possède une récursivité avec X_1 qui est inférieur. on remplace donc X_1 par la seule règle avec X_1 en partie gauche de $R': X_2 \to X_2 a R_{X_2}$ X_2 possède maintenant une récursivité avec lui même. On gère donc cette récursivité immédiate :

$$\begin{array}{ccc} X_2 & \rightarrow & bR_{X_2}R'_{X_2} \\ R'_{X_2} & \rightarrow & aR_{X_2}R'_{X_2}|\varepsilon \end{array}$$

 $R_{X_2}^{-1}$ possède une récursivité avec X_1 qui est inférieur. on remplace donc X_1 par la seule règle avec X_1 en partie gauche de $R': RE_{X_2} \to X_2aX_1aR_{X_2}$ R_{X_2} possède maintenant une récursivité avec X_2 qui est inférieur. on remplace donc X_2 par la seule règle avec X_2 en partie gauche de $R': R_{X_2} \to bR_{X_2}R'_{X_2}aX_1aR_{X_2}$

1. Normalement on pourrait placer R_{X_2} en temps que première règle car les règles peuvent être dans n'importe quel ordre et que celle ci ne se situe jamais en première position d'une partie gauche, mais pour la beauté du bordel-j'ai laissé l'ordre-logique 9.30

Benoît Huftier HA|601| - révisions 2022 12 / 15

On a donc la grammaire sans récursivité à gauche suivante :

$$G_{NR}=(\{a,b\},\{X_1,X_2,R_{X_2},R_{X_2}'\},R',X_1)$$
 avec les règles R' suivantes :

$$\begin{array}{cccc} X_1 & \rightarrow & X_2 a \\ X_2 & \rightarrow & bR_{X_2}R'_{X_2} \\ R'_{X_2} & \rightarrow & aR_{X_2}R'_{X_2}|\varepsilon \\ R_{X_2} & \rightarrow & bR_{X_2}R'_{X_2}aX_1aR_{X_2}|\varepsilon \end{array}$$

Les deux grammaires obtenues engendrent le même langage et sont toutes deux non récursives à gauche.

Benoît Huftier HA|601| - révisions 2022 13 / 15

Suppression de la récursivité à gauche

Enoncé

Soit la grammaire $G = (\{a, b\}, \{X_1, X_2\}, R, X_1)$ avec les règles R suivantes :

$$egin{array}{lll} X_1 &
ightarrow & aX_1|X_2b \ X_2 &
ightarrow & X_2X_2b|X_1a \end{array}$$

Calculer G_{NR} la grammaire G sans récursivité à gauche.

14 / 15

Benoît Huftier HA|601| - révisions 2022

 X_1 ne possède aucune récursivité avec des non terminaux inférieurs ou lui même.

 X_2 possède une récursivité avec X_1 qui est inférieur, on remplace donc X_1 par les règles où X_1 est en partie gauche de $R': X_2 \to aX_1 a | X_2 ba$ X₂ possède une récursivité avec lui même. On gère donc cette récursivité immédiate :

$$\begin{array}{ccc} X_2 & \rightarrow & aX_1aR_{X_2} \\ R_{X_2} & \rightarrow & X_2bR_{X_2}|baR_{X_2}|\varepsilon \end{array}$$

On a donc la grammaire sans récursivité à gauche suivante :

$$\mathcal{G}_{NR} = (\{a,b\},\{X_1,X_2,R_{X_2}\},R',X_1)$$
 avec les règles R' suivantes :

$$\begin{array}{ccc} X_1 & \rightarrow & aX_1|X_2b \\ X_2 & \rightarrow & aX_1aR_{X_2} \\ R_{X_2} & \rightarrow & X_2bR_{X_2}|baR_{X_2}|\varepsilon \end{array}$$

Benoît Huftier HAI6011 - révisions

15 / 15