Q1.Solve the questions in R programming using the Diamond Price dataset

```
In [ ]: install.packages(c("ggplot2", "dplyr", "tidyverse", "caret", "cluster", "future"
         library(ggplot2)
         library(dplyr)
         library(tidyverse)
         library(caret)
         library(cluster)
         library(future)
         library(foreach)
         library(e1071)
         Loading Diamond Price Dataset
In [2]: diamond_data <- read.csv("https://raw.githubusercontent.com/mwaskom/seaborn-data</pre>
           1. What are the different columns in the dataset?
In [3]: colnames(diamond_data)
      'carat' · 'cut' · 'color' · 'clarity' · 'depth' · 'table' · 'price' · 'x' · 'y' · 'z'
           2. How many rows and columns are there?
In [4]: dim(diamond_data)
      53940 · 10
           3. Remove the missing values
In [5]: diamond_data <- na.omit(diamond_data)</pre>
           4. What are the data types of each column?
In [6]: str(diamond_data)
```

5. The average price of diamonds

```
In [7]: mean(diamond_data$price)
```

3932.79972191324

6. The highest and lowest price recorded in the dataset

```
In [8]: max(diamond_data$price)
min(diamond_data$price)
```

18823

326

7. The distribution of diamond carat sizes

```
In [9]: hist(diamond_data$carat, main="Distribution of Diamond Carat Sizes", col="blue")
```

Distribution of Diamond Carat Sizes

8. The correlation between carat and price

In [10]: cor(diamond_data\$carat, diamond_data\$price)

0.921591301193477

9. Which cut type has the highest average price?

In [11]: diamond_data %>% group_by(cut) %>% summarize(avg_price = mean(price)) %>% arrang

A tibble: 5 × 2

cut avg_price

<chr> <dbl>
Premium 4584.258

Fair 4358.758

Very Good 3981.760

Good 3928.864

10. How do diamond prices vary by color?

3457.542

Ideal

11. The most common clarity level in the dataset

12. The percentage of diamonds belong to each cut category

A data.frame: 5×3

cut	n	percentage
<chr></chr>	<int></int>	<dbl></dbl>
Fair	1610	2.984798
Good	4906	9.095291
Ideal	21551	39.953652
Premium	13791	25.567297
Very Good	12082	22.398962

13. Plot a histogram of diamond prices

14. Visualize the relationship between carat and price using a scatter plot

In [23]: ggplot(diamond_data, aes(x=carat, y=price)) + geom_point() + geom_smooth(formula

15. Create a boxplot of diamond prices across different cut types

```
In [17]: ggplot(diamond_data, aes(x=cut, y=price)) + geom_boxplot()
```


16. Is there a pattern in diamond price fluctuations based on color?

17. Visualize diamonds by clarity and their price distribution

Ġ color

18. Predict the price of a diamond using linear regression based on carat, cut, clarity, and color

```
In [20]: lm_model <- lm(price ~ carat + cut + clarity + color, data=diamond_data)
summary(lm_model)</pre>
```

```
Call:
lm(formula = price ~ carat + cut + clarity + color, data = diamond_data)
Residuals:
    Min
           1Q Median
                           3Q
                                    Max
-16813.5 -680.4 -197.6
                          466.4 10394.9
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -7362.80
                       51.68 -142.46 <2e-16 ***
                      12.03 738.44 <2e-16 ***
carat
          8886.13
                      33.63 19.50 <2e-16 ***
cutGood
           655.77
                     30.66 32.56 <2e-16 ***
30.93 28.11 <2e-16 ***
cutIdeal
            998.25
            869.40
cutPremium
                      31.28 27.14 <2e-16 ***
cutVery Good 848.72
                      52.14 103.95 <2e-16 ***
clarityIF
           5419.65
claritySI1
                       44.60 80.13 <2e-16 ***
            3573.69
claritySI2 2625.95
                      44.79 58.63 <2e-16 ***
clarityVS1 4534.88
                      45.54 99.59 <2e-16 ***
clarityVS2 4217.83
                      44.84 94.06 <2e-16 ***
clarityVVS1 5072.03
                       48.21 105.20 <2e-16 ***
clarityVVS2 4967.20
                      46.89 105.93 <2e-16 ***
                      18.32 -11.56 <2e-16 ***
colorE
           -211.68
                      18.51 -16.39 <2e-16 ***
colorF
           -303.31
colorG
           -506.20
                       18.12 -27.93 <2e-16 ***
                      19.27 -50.78 <2e-16 ***
           -978.70
colorH
colorI
          -1440.30
                      21.65 -66.54 <2e-16 ***
           -2325.22
                       26.72 -87.01 <2e-16 ***
colorJ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1157 on 53921 degrees of freedom
Multiple R-squared: 0.9159,
                            Adjusted R-squared: 0.9159
F-statistic: 3.264e+04 on 18 and 53921 DF, p-value: < 2.2e-16
```

19. Cluster the diamonds into different price groups using K-Means clustering

```
In [21]: diamond_cluster <- kmeans(diamond_data$price, centers=3)
    diamond_data$cluster <- as.factor(diamond_cluster$cluster)
    ggplot(diamond_data, aes(x=carat, y=price, color=cluster)) + geom_point()</pre>
```


20. Features that contribute the most to predicting the diamond price?

In [22]: varImp(lm_model)

A data.frame: 18 × 1

Overall

	Overall
	<dbl></dbl>
carat	738.43711
cutGood	19.49714
cutldeal	32.56293
cutPremium	28.10755
cutVery Good	27.13545
clarityIF	103.95177
claritySI1	80.13173
claritySI2	58.63016
clarityVS1	99.59064
clarityVS2	94.06104
clarityVVS1	105.20509
clarityVVS2	105.93158
colorE	11.55732
colorF	16.38674
colorG	27.93292
colorH	50.78361

colorl 66.53814

87.01342

colorJ