# **Assignment 2- Introduction To Data Science**

22L-7503

**BDS-3A** 

## Part A. Preprocessing

1. In this step, you are required to apply the preprocessing steps that you've covered in the course. Specifically, for each of the input dimensions, fill in the following (add rows and complete the table for all input dimensions).

#### Iris:

| Dim<br>Name     | Data<br>Type | Total<br>Instances | Number<br>of Nulls | Number<br>of<br>Outliers | Min.<br>Value | Max<br>Value | Mode | Mean | Median | Variance | Std_<br>Dev |
|-----------------|--------------|--------------------|--------------------|--------------------------|---------------|--------------|------|------|--------|----------|-------------|
| SepalL<br>ength | Float<br>64  | 150                | 0                  | 0                        | 4.30          | 7.90         | 5.0  | 5.84 | 5.80   | 0.672    | 0.82        |
| Sepal<br>Width  | Float<br>64  | 150                | 0                  | 1                        | 2.0           | 4.40         | 3.0  | 3.05 | 3.00   | 0.185    | 0.43        |
| PetalW<br>idth  | Float<br>64  | 150                | 0                  | 0                        | 0.10          | 2.50         | 0.2  | 1.12 | 1.30   | 0.578    | 0.76        |

### Titanic:

| Dim<br>Name | Data<br>Type       | Total<br>Instances | Number<br>of Nulls | Number<br>of<br>Outliers | Min.<br>Value | Max<br>Value | Mode | Mean | Median | Variance | Std_<br>Dev |
|-------------|--------------------|--------------------|--------------------|--------------------------|---------------|--------------|------|------|--------|----------|-------------|
| Age         | Float<br>64        | 714                | 177                | 0                        | 0.42          | 80.0         | 24.0 | 29.7 | 28.0   | 210.25   | 14.5        |
| SibSp       | Int64 (Disc. Data) | 891                | 0                  | 30                       | 0.00          | 8.00         | 0.00 | 0.52 | 0.00   | 1.21     | 1.10        |
| Fare        | Float<br>64        | 891                | 0                  | 20                       | 0.00          | 51.32        | 8.05 | 32.2 | 14.4   | 2470     | 49.7        |

# **Housing Prices**

| Dim<br>Name  | Data<br>Type | Total<br>Instances | Number<br>of Nulls | Number<br>of<br>Outliers | Min.<br>Value | Max<br>Value | Mode | Mean | Median | Variance | Std_<br>Dev |
|--------------|--------------|--------------------|--------------------|--------------------------|---------------|--------------|------|------|--------|----------|-------------|
| Area         | int64        | 545                | 0                  | 7                        | 1650          | 16200        | 6000 | 5.1k | 4600   | 4.7M     | 2.1k        |
| Price        | int64        | 545                | 0                  | 6                        | 1.75M         | 3.43M        | 3.5M | 4.7M | 4.3M   | 3.45B    | 4.7M        |
| Bedroo<br>ms | int64        | 545                | 0                  | 2                        | 1             | 6            | 3    | 2.96 | 3      | 0.544    | 2.96        |

2. For each of the input dimension, plot histogram and comment the type of distribution the dimension exhibits. Further, visualize each dimension using a Box Plot. Specifically, for each of the input dimension, you're required to fill the following table (duplicate it for each of the 15 dimensions).

#### Iris:



Comments: Values are clustered on the left side, this means that the values are positively skewed. Also mentioning that, most of the data lies in the lower quartiles.



Comments: The graph is almost and nearly symmetric, but it is Positively Skewed as the mean, median and mode are almost the same.



# Titanic:



Comments:The Graph is Positively skewed, most the people in the ship were aged 20 to 40 as the data lies more in these percentiles.





## **Housing Prices:**





Comments: Positively Skewed Graphs that represent that the prices above 2M are most common.



Comments: It is a discrete data, yet the data is positively skewed, with 3 as the most houses with these number of bedroom.

3. Find the missing values in each of the dimension (do this for both input and output dimensions), and fill these using an "appropriate" methodology that we've discussed in the class. You may also choose to drop a certain sample based on your analysis. Mention your approach and its justification.

Iris: .

| Dim Name    | Number of Missing<br>Values | Filled using OR Dropped | Reason for selecting a certain approach |
|-------------|-----------------------------|-------------------------|-----------------------------------------|
| SepalLength | 0                           | -                       | -                                       |
| SepalWidth  | 0                           | -                       | -                                       |
| PetalWidth  | 0                           | -                       | -                                       |

#### Titanic:

| Dim Name | Number of Missing<br>Values | Filled using OR Dropped | Reason for selecting a certain approach                                                                                                                       |
|----------|-----------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age      | 177                         | Filled using median     | The median is less sensitive to outliers than mean, replacing it with mean will disturb the graph and median will also help in maintaining the age frequency. |
| SibSp    | 0                           | -                       | -                                                                                                                                                             |
| Fare     | 0                           | -                       | -                                                                                                                                                             |

# **Housing Prices:**

| Dim Name | Number of Missing<br>Values | Filled using OR<br>Dropped | Reason for selecting a certain approach |
|----------|-----------------------------|----------------------------|-----------------------------------------|
| Area     | 0                           | -                          | -                                       |
| Price    | 0                           | -                          | -                                       |
| Bedrooms | 0                           | -                          | -                                       |

# 4. For each of the dimension, find out the outliers (noisy data) and handle these appropriately.

## Iris:

| Dim Name    | Number of Outliers | Smooth using/<br>Dropped        | Reason for selecting a certain approach                                                                                                                                                                                      |
|-------------|--------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SepalLength | 0                  | -                               | -                                                                                                                                                                                                                            |
| SepalWidth  | 1                  | Replacing the Value with Median | The median is less sensitive to outliers than mean, replacing it with mean will disturb the graph and median will also help in maintaining the age frequency. And we cannot afford dropping because of the quantity of data. |
| PetalWidth  | 0                  | -                               | -                                                                                                                                                                                                                            |

### Titanic:

## (Post Removing Nulls)

| Dim Name | Number of Outliers | Smooth using/<br>Dropped | Reason for selecting a certain approach                               |
|----------|--------------------|--------------------------|-----------------------------------------------------------------------|
| Age      | 7                  | Smooth using median      | Maintaining the Graph                                                 |
| SibSp    | 30                 | Smooth using median      | Discrete Data                                                         |
| Fare     | 20                 | Smooth using median      | Dropping many values is not possible, it can affect the total result. |

# **Housing Prices:**

| Dim Name | Number of Outliers | Smooth using/<br>Dropped | Reason for selecting a certain approach                                                                 |
|----------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------|
| Area     | 7                  | Dropped                  | Already have Data, and the Data depends on multiple factors, it can result to false and miscalculations |
| Price    | 6                  | Dropped                  | Already have Data, and the Data depends on multiple factors, it can result to false and miscalculations |
| Bedrooms | 2                  | Dropped                  | Already have Data, and the Data depends on multiple factors, it can result to false and miscalculations |