8.2 列出图 8-17 所示关系满足的所有函数依赖。

A	В	C
a_1	b_1	c1
a ₁	b_1	C2
a ₂	b_1	C1
a ₂	b_1	C3

图 8-17 实践习题 8.2

的关系

$A \rightarrow A$	AB→A	AC->AC ABC->B
A →B	$A B \rightarrow B$	AC ->BC ABC ->C
A >AB	AB ->AB	AC ->ABC ABC -> AB
B →B	$A \subset \rightarrow A$	BC -> B ABC -> AC
$C \rightarrow B$	AC -> B	BC -> C ABC->BC
C -> C	AC >C	BC -> BC ABC->ABC
c > BC	A C →AB	ABC->A

8.6 计算关于关系模式 r(A, B, C, D, E) 的如下函数依赖集 F 的闭包。

$$A \to BC$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

列出 R 的候选码。

证: 若RoCRCRT.则RT=Rot

若 R= Po[†], 由计算 Ro[†] 와 result 不 设计算 R H 初始 result = R=Ro[†], 品知 R[†]=Ro[†]

以 RSCR, 易知 Rot ⊆ R+, 同理 R⊆(Rot) += Rot ∴ R+= Rot

A = { A , B , C , D , E}

八若有「A了 S R S [A, B, C,D,E],有 R+= [A, B. C.D.E] B+= {B,D}

```
、若有「B3CR⊆「B,D3,有 R+=「B,D3
C+ = { C}
D+ = 8 D3
E'= 1 E , A, B, C , Dj
八岩有(E) C R S [A, B, C,D, E], 有 R+= [A, B, C,D, E]
BC = {B,C,D,E,A}
· 名有(B.C) ⊆R⊆ fA,B,C,D,图,有 R+= fA, B, C,D, E)
CD+= CO, D. E, A, B?
小考有{C,D3⊆Q⊆fA,B,C,D,E3,有 R+=fA,B,C,D,E3
∴F+= fa>β|Vα⊆fA,B,C,D,Ej, VB⊆ α+3
小候洗码: A. E, BC, CD
8.7 用习题 8.6 中的函数依赖计算正则覆盖 F。。
合新建不変
 スオチ A-> BC 的B
 用 A→C,··· 質 A+= fA,C3、B €A+
 对于 A -> BC的 C
 用A→B, ... 算A+=fA, B,D3 小C #A+
 对于CD>E的C
 用戶室 DT=「DI (, E&DT
 对FCD-E的D
 用F算C+=fCq 小E¢Ct
 1 Fr=F
 8.30 列出关系数据库设计的三个目标,并解释为什么要达到每个目标。
 BC范式:用尽量少的空间
 无损分解:保持正确性(自然join后不会这化)
```

依赖保持、快速检查正确性					