STOR 455 STATISTICAL METHODS I

Jan Hannig

Model Selection (Chapter 7)

- Model selection methods
 - All subset selection
 - Forward selection, backward elimination, stepwise regression

Criteria for Variable Selection

- Variance based: minimize root-MSE
- SSE based criterion: maximize
 R² =1-SSE(model)/SSTO
- MSE based criterion: maximize adjusted-R²=1-MSE(model)/MSTO accounting for d.f. of the model
- Mallow's Cp: minimizing the bias of sub-model
- PRESS_p: minimizing prediction error

Automatic search procedures

- When p large, can't do all subset
- Stepwise type procedures
 - Forward selection (Step up)
 - Backward elimination (Step down)
 - Stepwise: combines forward and backward procedure allowing for removal of variables after adding new variables.
- Many other alternatives, but NONE guarantees the optimal solution (NP-hard problem)

Forward Selection

- Start with an intercept
- At each step add the "best" variable (using some criteria R^2 , adj R^2 , C_p , partial correlation, SSE, ...)
- Compare the p-value for the test whether the just added variable is 0 with some pre-selected value.
 - If smaller add the variable and repeat the procedure
 - If larger stop. You have arrived at the final model.
- This is purely exploratory see the book for comments

Backwards Elimination

- Start with the full model
- At each step delete the "worst" variable (using some criteria – smallest increase in SSE, largest pvalue,...)
- Compare the p-value for the test whether the just deleted variable is 0 with some pre-selected value.
 - If larger delete the variable and repeat the procedure
 - If smaller stop. You have arrived at the final model.

Stepwise Regression

- Combines the forward and backward algorithm
- Starts at some model (empty or full is usual)
- First eliminates as many parameters as possible using backwards rule (using a minimum allowable p-value= alpha-delete)
- Than attempt to add one variable (using a maximum allowable p-value=alpha-add)
- If a variable is added repeat, if not stop (alphaadd<alpha-delete required for convergence).

Summary

- No method is the best for all model selection problems
- Consider more than one criterion
- "Best model" from automatic search procedures should be used as the starting point
- Apply knowledge of the subject matter to make a final selection – use your head!

Model validation

- Three approaches to checking the validity of the model
 - Collect new data, does it fit the model
 - Compare with theory, other data, simulation
 - Use some of the data for the basic analysis and some for validity check, compare SSE with PRESS, MSE with MSPE

Model does not fit?

- If model does not fit we need to do something needs to be done.
- Several remedial measures are available
 - Consider bigger model (add predictors)
 - Delete outliers
 - Transform the data

— ...

Remedial Measures

- Discard outlier
 - or alternatively use robust procedure such as weighted least squares, Generalized linear models, nonparametric methods, ...
- Transformation data to
 - Linearize mean response
 - Stabilize variance/Achieve normality

Nonlinear relationships

 As we know, some nonlinear relationships can be approximated by linear models with added predictors

- Quadratic Y = $\beta_0 + \beta_1 X + \beta_2 X^2 + \xi$
- Higher order polynomials
- Other functions $Y = \beta_0 + \beta_1 \sin(X) + \beta_2 \cos(X) + \xi$
- Key non-linear in predictors but linear in parameters!

Nonlinear (2)

- Sometimes we can transform a nonlinear problem into a linear form
 - Transform X: $Y = \beta_0 + \beta_1 \log(X) + \xi$
 - Transform Y: $log(Y) = \beta_0 + \beta_1 X + \xi$
 - Transform both: $log(Y) = \beta_0 + \beta_1 log(X) + \xi$
- Power/log transformation most common
- Note change in assumption about the error

Non constant error variance

- Log/square root transformations often used to stabilize (make constant) variance
- Alternatively, we can model the way in which the error variance changes (it may be linearly related to X) and use weighted least square

Box-Cox Transformations

Also called power transformations

$$Y' = Y^{\lambda}$$
 or $Y' = (Y^{\lambda} - 1)/\lambda$

— In the second form, the limit as λ approaches zero is the (natural) log

Important Special Cases

- $\lambda = 1$, Y' = Y¹, no transformation
- $\lambda = .5$, Y' = Y^{1/2}, square root
- $\lambda = -.5$, Y' = Y^{-1/2}, one over square root
- $\lambda = -1$, Y' = Y⁻¹ = 1/Y, inverse
- $\lambda = 0$, $(Y' = (Y^{\lambda} 1)/\lambda)$, log is the limit

Box-Cox Details

- We can estimate λ by including it as a parameter in a non linear model
- $Y^{\lambda} = \beta_0 + \beta_1 X + \xi$
- Choose λ that give the best fit

Box-Cox Solution

- Standardized transformed Y is
 - $K_1(Y^{\lambda} 1)$ if λ neq 0
 - $K_2\log(Y)$ if $\lambda = 0$
- where $K_2 = (\Pi Y_i)^{1/n}$, the geometric mean and $K_1 = 1/(\lambda K_2^{\lambda-1})$
- Run regressions with X as explanatory variable
- Choose λ that minimizes SSE
- SAS code is in macro boxcox.sas or proc transreg

Plutonium Example

- Detecting plutonium 238 using alpha counts
- X: plutonium activity
- Y: observed alpha counts per second
- Relationship depend on measurement device
- Four standard aluminum/plutonium rods tested, each 4 to 10 times

```
/* Plutonium example */
data plu;
infile 'C:\...\CH03TA10.TXT';
input y x;
run;

symbol1 v=circle h=.8 c=blue i=none;
* scatter plot;
proc gplot data=plu;
plot y*x;
run;
```


12/14/10

```
* first model with residual/QQ
   plot;
proc reg data=Plu;
 model y = x;
* scatter plot;
 plot y*x;
* Plot residuals by predicted
  values;
 plot (r. student. rstudent.) *
  p.;
* Plot Normal quantile plot of
  residuals;
 plot r. * nqq.;
run;
```



```
* remove outlier;
proc reg data=Plu;
* following command removes
  the outlier;
where NOT (x EQ 0 AND y GE
  0.09);
 model y = x;
* Plot residuals by predicted
  values;
 plot rstudent. * p.;
* Plot Normal quantile plot of
  residuals;
 plot r. * nqq.;
run;
```



```
proc transreg data=plu;
model boxcox(y)=identity(x);
run;
```

The TRANSREG Procedure Box-Cox Transformation Information for y								
Lambda	R-Squ	iare Log Like						
	·	-						
-3.00	0.09	-22.8128						
-2.75	0.10	-10.5162						
-2.50	0.12	1.5873						
-2.25	0.14	13.4530						
-2.00	0.17	25.0222						
-1.75	0.20	36.2187						
-1.50	0.25	46.9457						
-1.25	0.31	57.0871						
-1.00	0.38	66.5173						
-0.75	0.47	75.1246						
-0.50	0.57	82.8497						
-0.25	0.67	89.7200						
0.00	0.76	95.8371						
0.25	0.84	101.2188						
0.50 +	0.90	105.2423 *						
0.75	0.92	105.7181 <						
1.00	0.92	100.6558						
1.25	0.89	91.9689						
1.50	0.84	82.2649						
1.75	0.79	72.5284						
2.00	0.74	62.9473						
2.25	0.69	53.5043						
2.50	0.65	44.1498						
2.75	0.61	34.8407						
3.00	0.58	25.5459						

< - Best Lambda

^{* - 95%} Confidence Interval

^{+ -} Convenient Lambda

```
*Data transformation;
data plu1;
  set plu;
   where NOT (x EQ 0 AND y GE
   0.09);
   sqy=sqrt(y);
   sqx=sqrt(x);
   run;
proc print data=plu1;
run;
* Transformed y;
proc reg data=Plu1;
 model sqy = x;
 plot sqy*x rstudent.*p. r.*nqq.;
run;
```



```
* transform x;
proc reg data=Plu1;
model sqy = sqx;
plot sqy*sqx rstudent.*p. r.*nqq.;
run;
```


Root MSE 0.02477 R-Square 0.9450
Dependent Mean 0.18483 Adj R-Sq 0.9424
Coeff Var 13.40098
Parameter Estimates

Parameter Standard							
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	0.07301	0.00783	9.32	<.0001		
sqx	1	0.05731	0.00302	19.00	<.0001		

- The final model we fit is $sqrt(y)=0.07301+0.05731*sqrt(x)+\xi$
- Be careful when interpreting the predicted values are sqrt(y), to get a predicted value for y need to square!