Numerical Solution for the Fokker Planck Equation

Shane Gervais

Department of Mathematics & Statistics, for the curriculum of Numerical Methods for Differential Equations (Math4503) with Dr. Sanjeev Seahra, UNB

Introduction

The Brownian motion of particles can be treated as the rate of Brownian particles approaching a state of equilibrium which is provided by the Master equation. A simplified version of this is the Fokker Planck Equation.

Fokker Planck Equation

From the master equation, we arise with the FPE where we have some function f, λ being the restoring force, B being the modulus, T being the temperature and k being the Boltzmann constant

$$\frac{\partial f}{\partial t} = \lambda B \nabla (rf) + kBT \nabla^2 f$$

Methods

The method used was the Forward Time Centered Space (FTCS) method. Where we can write the FPE numerically as such.

Boundary and initial conditions

Considering a function where the parameters of its position x and y to be given by

$$f = f(r,t)$$

$$r = r(x,y) = \sqrt{x^2 + y^2}$$

With a grid space s and time step h. Numerically our position functions are defined as.

$$x_{j} = x_{0} + j\Delta x$$

$$y_{k} = y_{0} + k\Delta y$$

$$r_{j}^{k} = \sqrt{x_{j}^{2} + y_{k}^{2}}$$

Where the change in x and y are defined by the following. Where we have n being the number of grid spaces in i/j. Along with a length of L = 2.

$$\Delta x = \frac{n}{n_j}$$

$$\Delta y = \frac{S}{n_k}$$

$$f(0,t) = f(L,t) = 0$$

Results

From Figure 1 and 2, our computations shows a generated solution using a exponential test function decreases the density function along the y-axis.

Conclusions

We can see that the FPE can be described for a Brownian particle approaching equilibrium over time. Further work would be to look at an animation of the function over time with a gaussian approaching to an equilibrium state.

Link to Github for code:

https://github.com/ShaneGervais/Fokker-Planck-Equation-Using-FTCS-Method

References

- Statistical Mechanics by R.K.
 Pathria, Butterworth Heinemann,
 Elsevier Science & Technology,
 1996
- Computational Physics by Mark Newmann, University of Michigan, 2012

Figure 2. 3D representation of FPE

$$\frac{f_{i+1,j}^{k} - f_{i-1,j}^{k}}{s} = \lambda B \left[\frac{r_{j}^{k} (f_{i,j+1}^{k} - f_{i,j-1}^{k})}{2\Delta x} + \frac{f_{i,j}^{k} (r_{j+1}^{k} - r_{j-1}^{k})}{2\Delta x} + \frac{r_{j}^{k} (f_{i,j}^{k+1} - f_{i,j}^{k-1})}{2\Delta y} + \frac{f_{i,j}^{k} (r_{j}^{k+1} - r_{j}^{k-1})}{2\Delta y} \right] + kBT \left(\frac{f_{i,j+1}^{k} - 2f_{i,j}^{k} + f_{i,j-1}^{k}}{\Delta x^{2}} + \frac{f_{i,j}^{k+1} - 2f_{i,j}^{k} + f_{i,j}^{k-1}}{\Delta y^{2}} \right)$$