Group Number:

NAMES (FIRST AND LAST NAME):

In-Class Assignment 1

ELEN 21/COEN 21 – Fall 2022 Instructor: Maria Kyrarini

Date: 10/4/2022

Time: 1 hour and 20 minutes Number of Problems: 3

Important Notes:

- Be sure to read all the problems carefully and answer all questions.
- Be sure to answer all parts of each question.
- Submit only one answer for each question. Multiple solutions for one question will NOT be graded.
- Clearly show all the steps of your work.
- Answers without detailed explanations will NOT be graded.
- The Engineering School Honor Code applies.

Problem 1 (30 points)

Implement the following function using only 2-to-1 multiplexers and NOT gates:

$$f = \overline{w}_2 w_3 + \overline{w}_1 w_2 \overline{w}_3 + w_2 \overline{w}_3 w_4 + w_1 \overline{w}_2 \overline{w}_4$$

Note: AND, NAND, OR, NOR, XOR gates are not available.

Problem 2 (35 points)

For the logic function $f(w,x,y,z) = \prod M(1,7,12,13,14,15) \cdot d(0,2,8,10)$ (Note: the *d* represents the don't cares):

- a) Show the truth table. [5 points]
- b) Draw a completely labeled K-map. [5 points]
- c) Write the algebraic expression for the minimized Sum of Products (SoP) and minimized Product of Sum (PoS) implementation of this function using the K-map. **Note:** Show the circles on the K-map. [10 points]
- d) Write a Verilog program using structural code that implements the SoP. [5 points]

Problem 3 (35 points)

Simplify the following circuit by using Boolean Algebra properties. Assume that you have **only** 2-input and 3-input NAND gates. It is known that $\overline{x+y+z} = \bar{x} \cdot \bar{y} \cdot \bar{z}$. Draw the simplified circuit.

Note: NOT, AND, OR, NOR, XOR gates are not available.

Note: Simplification by K-maps will NOT be graded.

Boolean Algebra Properties

5*a*.
$$x \cdot 0 = 0$$

10a.
$$x \cdot y = y \cdot x$$

Commutative

5*b*.
$$x + 1 = 1$$

$$10b. \quad x + y = y + x$$

$$6a. \quad x \cdot 1 = x$$

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Associative

$$6b. \quad x + 0 = x$$

11b.
$$x + (y + z) = (x + y) + z$$

Distributive

7a.
$$x \cdot x = x$$

12a.
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

12b. $x + y \cdot z = (x+y) \cdot (x+z)$

7*b*. x + x = x

$$13a. \quad x + x \cdot y = x$$

Absorption

8a.
$$x \cdot \overline{x} = 0$$

8b. $x + \overline{x} = 1$

13b.
$$x \cdot (x + y) = x$$

$$14a. \quad x \cdot y + x \cdot \overline{y} = x$$

Combining

9.
$$\overline{\overline{x}} = x$$

14b.
$$(x+y) \cdot (x+\overline{y}) = x$$

15*a*.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15b.
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

16a.
$$x + \overline{x} \cdot y = x + y$$

16b. $x \cdot (\overline{x} + y) = x \cdot y$

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

Consensus

17*b*.
$$(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$$