BINGHAMTON UNIVERSITY

Growth of Carbon Nanotubes by Chemical Vapor **Deposition for Supercapacitor Applications**

Quintan S. Gerhardstein^{1,2}, Ganesh Sainadh Gudavalli^{3,4}, Tara P. Dhakal^{3,4}

STATE UNIVERSITY OF NEW YORK

BINGHAMTON UNIVERSITY

Introduction

Supercapacitors/Ultracapacitors:

- -Long life cycle
- -Rapid charging
- -Pulse power supply
- -Higher energy

Storage¹ for capacitors

*Ragone Plot showing Energy Density vs Power Density for

s energy storage systems Uses and Applications:

- -Hybrid and Electric cars
- -Subzero energy storage
- -Industrial energy management
- -Could eventually replace batteries

Principle for Capacitance:

Simple Parallel plate

€0.001

- d is separation between electrodes
- A is the surface area of the electrodes
- ε is the dielectric medium permittivity

Carbon Nanotubes (CNT) Properties:

- -Fast ion and electron transportation
- -High specific surface area (120-500 m²g⁻¹)

Chemical Vapor Deposition Set-up: Ethylene (C₂H₄) Sample (Carbon Fabric Substrate) Quartz Tube Hydrogen (H₂) 0×0 () () Exhaust H_2O Furnace parts Water H_2 Ethylene (sccm)/volume **Bubbler** Sample A 10/1 50/5 20/2 10/1 20/2 Sample B 20/2 Electrode Structure

Results

0.2 0.2

0.1

Results Cont.

Specific Capacitance (F/a) =

area under CV curve

2 * mass * (Potential Window) * (Scan Rate)

Specific Capacitance (F/g) at 5 mV/s	
Sample A	Sample B
9.33	24.41

Reflections on data:

- -Adjusting the H₂O to H₂ ratio optimized the reaction growth mechanism, thereby increasing the density of
- This increase in density reflects in more surface area of the electrode material leading to more capacitance
- Reduced water vapor (weak oxidizer) during CNT deposition removes amorphous carbon on the catalyst thereby increasing the life time of catalyst particles²

SEM Images:

-The CVD process was optimized for the growth of CNT by adjusting the water to H₂ ratio.

-By reducing the water content, highly dense CNTs were produced leading to increase in specific capacitance from 9.33 F/g to 24.41 F/g

Funding & Acknowledgements

