$12a_{0924} (K12a_{0924})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -47905927u^{73} + 611463177u^{72} + \dots + 3439853568b + 11169010901668, \\ &- 4109478614099u^{73} + 27248497195437u^{72} + \dots + 29824677052416a + 129084806711241884, \\ &u^{74} - 8u^{73} + \dots - 216611u + 52022 \rangle \\ I_2^u &= \langle u^3 + b + 2u, \ -8u^3 - 3u^2 + 5a - 17u - 7, \ u^4 + 3u^2 + 1 \rangle \\ I_3^u &= \langle a^2 + b - a, \ a^3 - 2a^2 + a + 1, \ u + 1 \rangle \\ I_4^u &= \langle b^6 a^3 - 3b^5 a^2 + \dots - a^2 + 1, \ u + 1 \rangle \\ I_1^v &= \langle a, \ b^6 - b^5 + 2b^4 - 2b^3 + 2b^2 - 2b + 1, \ v - 1 \rangle \\ I_2^v &= \langle a, \ b^3 + b^2 + 2b + 1, \ v - 1 \rangle \end{split}$$

^{* 5} irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

^{* 1} irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.79 \times 10^7 u^{73} + 6.11 \times 10^8 u^{72} + \dots + 3.44 \times 10^9 b + 1.12 \times 10^{13}, \ -4.11 \times 10^{12} u^{73} + 2.72 \times 10^{13} u^{72} + \dots + 2.98 \times 10^{13} a + 1.29 \times 10^{17}, \ u^{74} - 8u^{73} + \dots - 216611u + 52022 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.137788u^{73} - 0.913623u^{72} + \dots + 16267.3u - 4328.12 \\ 0.0139267u^{73} - 0.177758u^{72} + \dots + 9142.14u - 3246.94 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00499643u^{73} + 0.0350880u^{72} + \dots - 833.787u + 264.234 \\ 0.0000461649u^{73} - 0.000532115u^{72} + \dots + 23.8243u - 7.51639 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.00140672u^{73} - 0.0127174u^{72} + \dots + 521.516u - 198.382 \\ -0.00563162u^{73} + 0.0396538u^{72} + \dots - 889.693u + 268.556 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.151715u^{73} - 1.09138u^{72} + \dots + 25409.5u - 7575.06 \\ 0.0139267u^{73} - 0.177758u^{72} + \dots + 9142.14u - 3246.94 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00526992u^{73} - 0.0422065u^{72} + \dots + 1460.05u - 545.028 \\ -0.00530723u^{73} + 0.0369747u^{72} + \dots - 859.358u + 270.028 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0114518u^{73} + 0.0715137u^{72} + \dots - 1087.20u + 313.766 \\ 0.103761u^{73} - 0.693948u^{72} + \dots + 13273.7u - 3725.94 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0202394u^{73} + 0.0938447u^{72} + \dots + 1301.88u - 735.830 \\ -0.0939198u^{73} + 0.678803u^{72} + \dots + 15904.3u + 4756.89 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0629844u^{73} - 0.398283u^{72} + \dots + 5636.71u - 1251.79 \\ 0.0577805u^{73} - 0.401753u^{72} + \dots + 8772.09u - 2612.98 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{143175559}{644972544}u^{73} + \frac{416881405}{286654464}u^{72} + \dots - \frac{130085081890987}{5159780352}u + \frac{17208542618977}{2579890176}$$

Crossings	u-Polynomials at each crossing
c_1	$64(64u^{74} - 128u^{73} + \dots - 2725866u + 511569)$
c_2, c_5	$u^{74} - 8u^{73} + \dots - 216611u + 52022$
c_3, c_9	$27(27u^{74} - 27u^{73} + \dots - 170u + 61)$
c_4,c_{10}	$27(27u^{74} - 27u^{73} + \dots + 208u + 61)$
<i>c</i> ₆	$64(64u^{74} + 128u^{73} + \dots + 1.69976 \times 10^7 u + 3434427)$
c_7, c_{11}, c_{12}	$u^{74} - 4u^{73} + \dots - 255u + 62$
c_8	$u^{74} + 4u^{73} + \dots + 777216u + 285696$

Crossings	Riley Polynomials at each crossing
<i>c</i> ₁	$4096 \\ \cdot (4096y^{74} - 135168y^{73} + \dots - 338930953884y + 261702841761)$
c_2, c_5	$y^{74} - 42y^{73} + \dots + 4426533163y + 2706288484$
c_3, c_9	$729(729y^{74} + 43011y^{73} + \dots + 40884y + 3721)$
c_4, c_{10}	$729(729y^{74} + 28431y^{73} + \dots + 91668y + 3721)$
<i>c</i> ₆	$4096 \\ \cdot (4096y^{74} - 118784y^{73} + \dots - 146351267872524y + 11795288818329)$
c_7, c_{11}, c_{12}	$y^{74} + 66y^{73} + \dots + 4787y + 3844$
c_8	$y^{74} - 6y^{73} + \dots + 199138738176y + 81622204416$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.956855 + 0.323244I		
a = 1.58587 - 1.46932I	-2.11972 - 1.41825I	0
b = 0.254516 + 0.831849I		
u = 0.956855 - 0.323244I		
a = 1.58587 + 1.46932I	-2.11972 + 1.41825I	0
b = 0.254516 - 0.831849I		
u = -0.392834 + 0.936221I		
a = 0.387039 + 1.005900I	-1.76313 - 1.05065I	0
b = -0.481180 - 0.404568I		
u = -0.392834 - 0.936221I		
a = 0.387039 - 1.005900I	-1.76313 + 1.05065I	0
b = -0.481180 + 0.404568I		
u = 0.349178 + 0.959515I		
a = 0.37166 - 1.52102I	10.04650 - 1.75472I	0
b = -0.098677 + 1.279600I		
u = 0.349178 - 0.959515I		
a = 0.37166 + 1.52102I	10.04650 + 1.75472I	0
b = -0.098677 - 1.279600I		
u = -1.039710 + 0.243499I		
a = 0.250091 - 0.954693I	0.82573 + 1.48951I	0
b = -0.332462 - 0.537886I		
u = -1.039710 - 0.243499I		
a = 0.250091 + 0.954693I	0.82573 - 1.48951I	0
b = -0.332462 + 0.537886I		
u = 0.853927 + 0.261180I		
a = -1.54106 + 2.19678I	2.19115 + 2.07020I	-1.61287 + 2.28344I
b = -0.135462 - 0.805847I		
u = 0.853927 - 0.261180I		
a = -1.54106 - 2.19678I	2.19115 - 2.07020I	-1.61287 - 2.28344I
b = -0.135462 + 0.805847I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.280504 + 0.832280I		
a = -0.514278 - 0.776313I	-4.77010 + 3.14743I	-13.70473 - 3.39156I
b = 0.682562 + 0.166619I		
u = -0.280504 - 0.832280I		
a = -0.514278 + 0.776313I	-4.77010 - 3.14743I	-13.70473 + 3.39156I
b = 0.682562 - 0.166619I		
u = -1.141320 + 0.128617I		
a = -0.208428 + 0.721747I	-2.36891 - 0.94403I	0
b = 0.188973 + 0.757335I		
u = -1.141320 - 0.128617I		
a = -0.208428 - 0.721747I	-2.36891 + 0.94403I	0
b = 0.188973 - 0.757335I		
u = 1.090800 + 0.370077I		
a = -1.24076 + 0.89624I	0.85631 - 4.70807I	0
b = -0.514177 - 0.873216I		
u = 1.090800 - 0.370077I		
a = -1.24076 - 0.89624I	0.85631 + 4.70807I	0
b = -0.514177 + 0.873216I		
u = 0.364310 + 0.761476I		
a = -0.37557 + 1.45470I	3.44887 - 0.05340I	-0.84658 + 2.45920I
b = 0.204448 - 1.123950I		
u = 0.364310 - 0.761476I		
a = -0.37557 - 1.45470I	3.44887 + 0.05340I	-0.84658 - 2.45920I
b = 0.204448 + 1.123950I		
u = 0.191646 + 0.815527I		
a = -0.59145 + 1.38561I	7.47797 + 7.12202I	-0.64413 - 4.63750I
b = 0.438339 - 1.274520I		
u = 0.191646 - 0.815527I		
a = -0.59145 - 1.38561I	7.47797 - 7.12202I	-0.64413 + 4.63750I
b = 0.438339 + 1.274520I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.216626 + 0.805515I		
a = 0.625128 + 0.613776I	-0.12800 + 7.13488I	-8.36711 - 5.76742I
b = -0.810740 - 0.031535I		
u = -0.216626 - 0.805515I		
a = 0.625128 - 0.613776I	-0.12800 - 7.13488I	-8.36711 + 5.76742I
b = -0.810740 + 0.031535I		
u = -0.019667 + 1.177440I		
a = 0.22341 + 1.62438I	3.47740 - 11.84660I	0
b = -0.478486 - 1.241690I		
u = -0.019667 - 1.177440I		
a = 0.22341 - 1.62438I	3.47740 + 11.84660I	0
b = -0.478486 + 1.241690I		
u = 0.220938 + 0.770110I		
a = 0.48419 - 1.33432I	2.19132 + 3.60535I	-4.61334 - 4.48567I
b = -0.393339 + 1.167180I		
u = 0.220938 - 0.770110I		
a = 0.48419 + 1.33432I	2.19132 - 3.60535I	-4.61334 + 4.48567I
b = -0.393339 - 1.167180I		
u = 1.116020 + 0.448323I		
a = -1.01041 + 1.01076I	1.08886 - 4.47773I	0
b = -0.551215 - 1.123180I		
u = 1.116020 - 0.448323I		
a = -1.01041 - 1.01076I	1.08886 + 4.47773I	0
b = -0.551215 + 1.123180I		
u = -0.062871 + 1.206620I		
a = -0.25251 - 1.53863I	-1.94478 - 7.53049I	0
b = 0.474532 + 1.147300I		
u = -0.062871 - 1.206620I		
a = -0.25251 + 1.53863I	-1.94478 + 7.53049I	0
b = 0.474532 - 1.147300I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.128650 + 0.526095I		
a = 0.915681 - 1.068180I	7.55452 - 3.52374I	0
b = 0.386717 + 1.327900I		
u = 1.128650 - 0.526095I		
a = 0.915681 + 1.068180I	7.55452 + 3.52374I	0
b = 0.386717 - 1.327900I		
u = 1.163190 + 0.452050I		
a = 0.922106 - 0.983293I	-0.68826 - 8.14483I	0
b = 0.72737 + 1.24040I		
u = 1.163190 - 0.452050I		
a = 0.922106 + 0.983293I	-0.68826 + 8.14483I	0
b = 0.72737 - 1.24040I		
u = -1.241260 + 0.141904I		
a = 0.296574 - 0.534537I	2.60736 - 3.89508I	0
b = -0.199203 - 0.922535I		
u = -1.241260 - 0.141904I		
a = 0.296574 + 0.534537I	2.60736 + 3.89508I	0
b = -0.199203 + 0.922535I		
u = 1.176930 + 0.463093I		
a = -0.902180 + 1.007980I	4.46422 - 11.80280I	0
b = -0.75759 - 1.34685I		
u = 1.176930 - 0.463093I		
a = -0.902180 - 1.007980I	4.46422 + 11.80280I	0
b = -0.75759 + 1.34685I		
u = -0.143657 + 1.278550I		
a = 0.24276 + 1.40588I	-0.08646 - 2.61917I	0
b = -0.405638 - 1.018490I		
u = -0.143657 - 1.278550I		
a = 0.24276 - 1.40588I	-0.08646 + 2.61917I	0
b = -0.405638 + 1.018490I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.279230 + 0.234772I		
a = -0.642765 - 0.276219I	0.24329 - 4.29843I	0
b = -0.580762 - 0.124608I		
u = 1.279230 - 0.234772I		
a = -0.642765 + 0.276219I	0.24329 + 4.29843I	0
b = -0.580762 + 0.124608I		
u = 1.311670 + 0.369854I		
a = 0.092483 - 0.294979I	-4.77612 - 11.28530I	0
b = 1.288210 - 0.094940I		
u = 1.311670 - 0.369854I		
a = 0.092483 + 0.294979I	-4.77612 + 11.28530I	0
b = 1.288210 + 0.094940I		
u = 1.324880 + 0.364823I		
a = -0.060136 + 0.199915I	-9.63709 - 7.30911I	0
b = -1.207270 + 0.187553I		
u = 1.324880 - 0.364823I		
a = -0.060136 - 0.199915I	-9.63709 + 7.30911I	0
b = -1.207270 - 0.187553I		
u = -1.147840 + 0.773330I		
a = 0.232086 + 1.254660I	-2.33044 - 1.74529I	0
b = 0.436399 - 0.614895I		
u = -1.147840 - 0.773330I		
a = 0.232086 - 1.254660I	-2.33044 + 1.74529I	0
b = 0.436399 + 0.614895I		
u = 1.348690 + 0.354551I		
a = 0.0290628 - 0.0464895I	-7.05936 - 3.20770I	0
b = 1.057490 - 0.302589I		
u = 1.348690 - 0.354551I		
a = 0.0290628 + 0.0464895I	-7.05936 + 3.20770I	0
b = 1.057490 + 0.302589I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.011995 + 0.576995I		
a = -0.030862 + 0.532816I	3.82003 + 1.44123I	-2.42911 - 4.15844I
b = 0.490221 - 0.663405I		
u = 0.011995 - 0.576995I		
a = -0.030862 - 0.532816I	3.82003 - 1.44123I	-2.42911 + 4.15844I
b = 0.490221 + 0.663405I		
u = 1.41066 + 0.30363I		
a = 0.054757 + 0.271556I	-6.22916 - 2.87126I	0
b = 0.689456 - 0.390814I		
u = 1.41066 - 0.30363I		
a = 0.054757 - 0.271556I	-6.22916 + 2.87126I	0
b = 0.689456 + 0.390814I		
u = -1.27089 + 0.74232I		
a = -0.359829 - 1.266690I	-7.10664 + 2.78984I	0
b = -0.511628 + 0.814875I		
u = -1.27089 - 0.74232I		
a = -0.359829 + 1.266690I	-7.10664 - 2.78984I	0
b = -0.511628 - 0.814875I		
u = -1.37156 + 0.56271I		
a = 0.88834 + 1.25590I	-0.7782 + 17.9224I	0
b = 0.63563 - 1.37097I		
u = -1.37156 - 0.56271I		
a = 0.88834 - 1.25590I	-0.7782 - 17.9224I	0
b = 0.63563 + 1.37097I		
u = -1.36978 + 0.57557I		
a = -0.82799 - 1.26798I	-6.1011 + 13.7362I	0
b = -0.63976 + 1.31414I		
u = -1.36978 - 0.57557I		
a = -0.82799 + 1.26798I	-6.1011 - 13.7362I	0
b = -0.63976 - 1.31414I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.37394 + 0.59852I		
a = 0.73720 + 1.24846I	-4.11337 + 9.11039I	0
b = 0.607699 - 1.232080I		
u = -1.37394 - 0.59852I		
a = 0.73720 - 1.24846I	-4.11337 - 9.11039I	0
b = 0.607699 + 1.232080I		
u = -1.34574 + 0.68489I		
a = 0.502680 + 1.250270I	-4.54187 + 7.58769I	0
b = 0.549270 - 0.995359I		
u = -1.34574 - 0.68489I		
a = 0.502680 - 1.250270I	-4.54187 - 7.58769I	0
b = 0.549270 + 0.995359I		
u = 1.51230 + 0.35184I		
a = 0.130676 - 0.429581I	-7.49574 + 1.47115I	0
b = -0.537934 + 0.676409I		
u = 1.51230 - 0.35184I		
a = 0.130676 + 0.429581I	-7.49574 - 1.47115I	0
b = -0.537934 - 0.676409I		
u = -1.44576 + 0.60502I		
a = -0.683032 - 1.047140I	4.06899 + 8.19584I	0
b = -0.417484 + 1.229110I		
u = -1.44576 - 0.60502I		
a = -0.683032 + 1.047140I	4.06899 - 8.19584I	0
b = -0.417484 - 1.229110I		
u = -0.274408 + 0.263174I		
a = -0.697845 + 0.975456I	-0.560147 + 0.862728I	-9.95266 - 7.82530I
b = -0.135972 + 0.391654I		
u = -0.274408 - 0.263174I		
a = -0.697845 - 0.975456I	-0.560147 - 0.862728I	-9.95266 + 7.82530I
b = -0.135972 - 0.391654I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.58981 + 0.44139I		
a = -0.230102 + 0.549729I	-1.65458 + 5.47067I	0
b = 0.422808 - 0.863129I		
u = 1.58981 - 0.44139I		
a = -0.230102 - 0.549729I	-1.65458 - 5.47067I	0
b = 0.422808 + 0.863129I		
u = -0.26331 + 1.73526I		
a = -0.098629 - 1.231090I	8.73121 - 0.63574I	0
b = 0.154343 + 0.965654I		
u = -0.26331 - 1.73526I		
a = -0.098629 + 1.231090I	8.73121 + 0.63574I	0
b = 0.154343 - 0.965654I		

II.
$$I_2^u = \langle u^3 + b + 2u, -8u^3 - 3u^2 + 5a - 17u - 7, u^4 + 3u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{8}{5}u^{3} + \frac{3}{5}u^{2} + \frac{17}{5}u + \frac{7}{5} \\ -u^{3} - 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{4}{5}u^{3} - \frac{1}{5}u^{2} + \frac{11}{5}u - \frac{4}{5} \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{2}{5}u^{3} + \frac{2}{5}u^{2} - u + \frac{6}{5} \\ -\frac{1}{5}u^{3} - \frac{1}{5}u^{2} + \frac{1}{5}u - \frac{4}{5} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{5}u^{3} + \frac{3}{5}u^{2} + \frac{7}{5}u + \frac{7}{5} \\ -u^{3} - 2u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{2}{5}u^{3} + \frac{2}{5}u^{2} - u + \frac{11}{5} \\ -\frac{1}{5}u^{3} + \frac{4}{5}u^{2} - \frac{4}{5}u - \frac{4}{5} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{5}u^{3} + \frac{8}{5}u^{2} + \frac{7}{5}u + \frac{12}{5} \\ -u^{3} - 3u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{5}u^{3} + \frac{8}{5}u^{2} + \frac{3}{5}u + \frac{11}{5} \\ -\frac{3}{5}u^{3} - \frac{8}{5}u^{2} - \frac{7}{5}u - \frac{7}{5} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{5}u^{2} + \frac{6}{5}u + \frac{8}{5} \\ \frac{3}{5}u^{3} - \frac{2}{5}u^{2} - \frac{3}{5}u - \frac{3}{5} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1	$5(5u^4 - 10u^3 + 9u^2 - 4u + 1)$
$c_2, c_5, c_7 \\ c_{11}, c_{12}$	$u^4 + 3u^2 + 1$
c_3, c_4, c_9 c_{10}	$(u^2+1)^2$
<i>c</i> ₆	$5(5u^4 + u^2 + 2u + 1)$
<i>c</i> ₈	$u^4 + 7u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1	$25(25y^4 - 10y^3 + 11y^2 + 2y + 1)$
$c_2, c_5, c_7 \\ c_{11}, c_{12}$	$(y^2 + 3y + 1)^2$
c_3, c_4, c_9 c_{10}	$(y+1)^4$
<i>C</i> ₆	$25(25y^4 + 10y^3 + 11y^2 - 2y + 1)$
c ₈	$(y^2 + 7y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034I		
a = 1.17082 + 1.72361I	0.986960	-4.00000
b = -1.000000I		
u = -0.618034I		
a = 1.17082 - 1.72361I	0.986960	-4.00000
b = 1.000000I		
u = 1.61803I		
a = -0.170820 - 1.276390I	8.88264	-4.00000
b = 1.000000I		
u = -1.61803I		
a = -0.170820 + 1.276390I	8.88264	-4.00000
b = -1.000000I		

III.
$$I_3^u = \langle a^2 + b - a, \ a^3 - 2a^2 + a + 1, \ u + 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$
$$a_4 = \begin{pmatrix} a^2 - a \\ a \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a^2 - a \\ a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$
$$a_{10} = \begin{pmatrix} -a^2 + 2a \\ -a^2 + a \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -a \\ a^2 - a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -a^2 + a \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_9, c_{10}	$u^3 + u + 1$
c_2, c_5	$(u+1)^3$
c_6	$u^3 + 2u^2 + u - 1$
c_7, c_8, c_{11} c_{12}	u^3

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_9, c_{10}	$y^3 + 2y^2 + y - 1$
c_{2}, c_{5}	$(y-1)^3$
c_6	$y^3 - 2y^2 + 5y - 1$
c_7, c_8, c_{11} c_{12}	y^3

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.23279 + 0.79255I	-1.64493	-6.00000
b = 0.341164 - 1.161540I		
u = -1.00000		
a = 1.23279 - 0.79255I	-1.64493	-6.00000
b = 0.341164 + 1.161540I		
u = -1.00000		
a = -0.465571	-1.64493	-6.00000
b = -0.682328		

IV.
$$I_4^u = \langle b^6 a^3 - 3b^5 a^2 + \dots - a^2 + 1, \ u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -ba+1 \\ -b^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -b^{2}a^{2} + 2ba - 1 \\ -b^{3}a + b^{2} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b+a \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -ba-a^{2}+1 \\ -ba+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b^{4}a^{3} + 3b^{3}a^{2} - a^{3}b^{2} - 3b^{2}a + 2a^{2}b + b \\ -b^{5}a^{2} + 2b^{4}a - b^{3}a^{2} - b^{3} + 2b - a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -b^{5}a^{3} - b^{4}a^{4} + 3b^{4}a^{2} - 2a^{4}b^{2} - 3b^{3}a + 2b^{2}a^{2} + a^{3}b - a^{4} + b^{2} + a^{2} - 1 \\ -b^{5}a^{3} + 3b^{4}a^{2} - 2b^{3}a^{3} - 4b^{3}a + 4b^{2}a^{2} - a^{3}b + 2b^{2} - 2ba + a^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^2a 4b + 4a 12$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	1.37919 - 2.82812I	-15.0195 + 0.I
$b = \cdots$		

V.
$$I_1^v = \langle a, b^6 - b^5 + 2b^4 - 2b^3 + 2b^2 - 2b + 1, v - 1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -b^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} b^2 + 1 \\ -b^4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} b^2 + 1 \\ b^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} b^5 + 2b^3 + b \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2b^5 + b^4 - 4b^3 + 3b^2 - 3b + 3 \\ -b^5 - 2b^3 + b^2 - b + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4b^3 + 4b 6$

Crossings	u-Polynomials at each crossing
c_1	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_5	u^6
c_3, c_4, c_6 c_9, c_{10}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_7, c_{11}, c_{12}	$(u^3 + u^2 + 2u + 1)^2$
c ₈	$(u^3 - u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_{2}, c_{5}	y^6
c_3, c_4, c_6 c_9, c_{10}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_7, c_{11}, c_{12}	$(y^3 + 3y^2 + 2y - 1)^2$
<i>c</i> ₈	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	3.02413 - 2.82812I	-2.49024 + 2.97945I
b = -0.498832 + 1.001300I		
v = 1.00000		
a = 0	3.02413 + 2.82812I	-2.49024 - 2.97945I
b = -0.498832 - 1.001300I		
v = 1.00000		
a = 0	-1.11345	-9.01951 + 0.I
b = 0.284920 + 1.115140I		
v = 1.00000		
a = 0	-1.11345	-9.01951 + 0.I
b = 0.284920 - 1.115140I		
v = 1.00000		
a = 0	3.02413 - 2.82812I	-2.49024 + 2.97945I
b = 0.713912 + 0.305839I		
v = 1.00000		
a = 0	3.02413 + 2.82812I	-2.49024 - 2.97945I
b = 0.713912 - 0.305839I		

VI.
$$I_2^v = \langle a, \ b^3 + b^2 + 2b + 1, \ v - 1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -b^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -b^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} b^2 + 1 \\ b^2 - b - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} b^2 + 1 \\ b^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1\\2b^2 + 2b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -b \\ -3b - 2 \end{pmatrix}$$

- (ii) Obstruction class =-1
- (iii) Cusp Shapes = $-4b^2 4b 10$

Crossings	u-Polynomials at each crossing
c_1	$u^3 + 3u^2 + 2u - 1$
c_2, c_5	u^3
c_3, c_4, c_6 c_7, c_9, c_{10} c_{11}, c_{12}	$u^3 + u^2 + 2u + 1$
<i>c</i> ₈	$u^3 - u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^3 - 5y^2 + 10y - 1$
c_2, c_5	y^3
c_3, c_4, c_6 c_7, c_9, c_{10} c_{11}, c_{12}	$y^3 + 3y^2 + 2y - 1$
c ₈	$y^3 - y^2 + 2y - 1$

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	3.02413 + 2.82812I	-2.49024 - 2.97945I
b = -0.215080 + 1.307140I		
v = 1.00000		
a = 0	3.02413 - 2.82812I	-2.49024 + 2.97945I
b = -0.215080 - 1.307140I		
v = 1.00000		
a = 0	-1.11345	-9.01950
b = -0.569840		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$320(u^{3} + u + 1)(u^{3} + 3u^{2} + 2u - 1)(5u^{4} - 10u^{3} + 9u^{2} - 4u + 1)$ $\cdot (u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)$
	$\cdot (64u^{74} - 128u^{73} + \dots - 2725866u + 511569)$
c_2, c_5	$u^{9}(u+1)^{3}(u^{4}+3u^{2}+1)(u^{74}-8u^{73}+\cdots-216611u+52022)$
c_3, c_9	$27(u^{2}+1)^{2}(u^{3}+u+1)(u^{3}+u^{2}+2u+1)$ $\cdot (u^{6}-u^{5}+2u^{4}-2u^{3}+2u^{2}-2u+1)(27u^{74}-27u^{73}+\cdots-170u+6)$
c_4, c_{10}	$27(u^{2}+1)^{2}(u^{3}+u+1)(u^{3}+u^{2}+2u+1)$ $\cdot (u^{6}-u^{5}+2u^{4}-2u^{3}+2u^{2}-2u+1)(27u^{74}-27u^{73}+\cdots+208u+6)$
<i>C</i> ₆	$320(u^{3} + u^{2} + 2u + 1)(u^{3} + 2u^{2} + u - 1)(5u^{4} + u^{2} + 2u + 1)$ $\cdot (u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (64u^{74} + 128u^{73} + \dots + 16997580u + 3434427)$
c_7, c_{11}, c_{12}	$u^{3}(u^{3} + u^{2} + 2u + 1)^{3}(u^{4} + 3u^{2} + 1)(u^{74} - 4u^{73} + \dots - 255u + 62)$
<i>C</i> ₈	$u^{3}(u^{3} - u^{2} + 1)^{3}(u^{4} + 7u^{2} + 1)(u^{74} + 4u^{73} + \dots + 777216u + 285696)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$102400(y^{3} - 5y^{2} + 10y - 1)(y^{3} + 2y^{2} + y - 1)$ $\cdot (25y^{4} - 10y^{3} + 11y^{2} + 2y + 1)(y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)$
	$ \cdot (4096y^{74} - 135168y^{73} + \dots - 338930953884y + 261702841761) $
c_2, c_5	$y^{9}(y-1)^{3}(y^{2}+3y+1)^{2}$ $\cdot (y^{74}-42y^{73}+\cdots+4426533163y+2706288484)$
c_3,c_9	$729(y+1)^{4}(y^{3}+2y^{2}+y-1)(y^{3}+3y^{2}+2y-1)$ $\cdot (y^{6}+3y^{5}+4y^{4}+2y^{3}+1)(729y^{74}+43011y^{73}+\cdots+40884y+3721)$
c_4, c_{10}	$729(y+1)^{4}(y^{3}+2y^{2}+y-1)(y^{3}+3y^{2}+2y-1)$ $\cdot (y^{6}+3y^{5}+4y^{4}+2y^{3}+1)(729y^{74}+28431y^{73}+\cdots+91668y+3721)$
c ₆	$102400(y^{3} - 2y^{2} + 5y - 1)(y^{3} + 3y^{2} + 2y - 1)$ $\cdot (25y^{4} + 10y^{3} + 11y^{2} - 2y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (4096y^{74} - 118784y^{73} + \dots - 146351267872524y + 11795288818329)$
c_7, c_{11}, c_{12}	$y^{3}(y^{2} + 3y + 1)^{2}(y^{3} + 3y^{2} + 2y - 1)^{3}$ $\cdot (y^{74} + 66y^{73} + \dots + 4787y + 3844)$
c_8	$y^{3}(y^{2} + 7y + 1)^{2}(y^{3} - y^{2} + 2y - 1)^{3}$ $\cdot (y^{74} - 6y^{73} + \dots + 199138738176y + 81622204416)$