Informatica - Mod. Programmazione Lezione 11

Prof. Giuseppe Psaila

Laurea Triennale in Ingegneria Informatica Università di Bergamo

Programma Applicativo
Interprete dei Comandi
File System
Gestore delle Periferiche
Gestore della Memoria
Nucleo (Kernel)
Macchina Fisica

Organizzazione a Buccia di Cipolla

- Ogni strato è una Macchina Virtuale, una macchina (realizzata da programmi) che fornisce servizi complessi ai livelli superiori
- Non è una Macchina Fisica, perché è realizzata attraverso programmi, ma è pur sempre una macchina

II Nucleo (Kernel)

- Gestisce l'Esecuzione dei Programmi, che diventano **Processi**
- Processo: Programma (Codice) + Memoria (Variabili)
- In un certo istante, un processo ha un certo Stato, cioè l'istruzione in esecuzione in quel momento, i valori nei registri e i valori nei blocchi di memoria
- Ma quanti sono i processi contemporaneamente in esecuzione?

Il Nucleo (Kernel)

Sistema Multi-Programmato - Mono-Processo (Mono-Task)

Tanti processi avviati, ma uno solo in esecuzione (gli altri sono fermi in attesa che finisca)

Sistema Multi-Programmato - Multi-Processo (Multi-Task)

Tanti processi attivati e in esecuzione contemporanea Ma come fare se la CPU è UNA?

si adotta il **Time Sharing** (**Partizione di Tempo**)

II Time Sharing

- La CPU viene assegnata ad eseguire un processo (in Esecuzione) per un tempo limite, detto
 Quanto di Tempo
- Terminato questo tempo, il sistema operativo mette il processo in **Pronto**, in attesa che sia di nuovo il suo turno, e assegna la CPU ad un altro processo che si trovata ello stato di Pronto
- Quando un processo deve accedere ad una periferica, viene messo in Attesa
- Quando la periferica è pronta, il processo in attesa viene rimesso in **Pronto**

Stati di Esecuzione

Interruzioni (Interrupt)

Interruzione Esterna

Un'interruzione è un segnale che arriva dall'esterno del processo in esecuzione: il S.O. lo mette nello stato di **Pronto**, per gestire l'interruzione

Interruzione Interna

Il processo ha bisogno dei servizi del sistema operativo (per accedere alle periferiche): genera un'Interruzione per invocare il S.O. (che lo mette **In Attesa**)

Il Gestore della Memoria

- Gestisce l'allocazione della Memoria
 Ripartisce la memoria tra i vari processi
- Gestisce il posizionamento in memoria del codice e dei dati

RILOCAZIONE

Rilocazione

STATICA

Quando il programma viene caricato in memoria, tutti gli indirizzi nel codice vengono cambiati

DINAMICA

Si usano dei registri di appoggio:

Code: indirizzo base per il codice

Data: indirizzo base per i dati

Meccanismo di Ripartizione della Memoria

PAGINAZIONE

La memoria viene suddivisa in blocchi di memoria tutti della stessa dimensione (pagine)

SEGMENTAZIONE

La memoria è suddivisa in blocchi di memoria di dimensione variabile, a seconda delle necessità (segmenti)

Paginazione

Paginazione

- Indirizzo: Indirizzo Base + Offset (spiazzamento)
- Con la paginazione:
 Indirizzo: pf × 2^k + o
 Indirizzo: pagina fisica pf giustapposto con offset con pagine da 2^k Byte
- Esempio: 24 bit di indirizzamento, con pagine da 1 KByte (2^{10} , k=10) 00000000001110000000011 = 0000000001110 000000011 $pf=0000000001110=14_{10}$ $o=0000000011=3_{10}$

Paginazione

Indirizzo Logico: Usa dei numeri (logici) di pagina che sono diversi dai numeri di pagina fisica
 Tabella delle Pagine: mantiene la corrispondenza tra la pagina logica e la pagina fisica
 MMU: Memory Management Unit, componente

elettronico situato tra registro AR e bus indirizzi, converte l'indirizzo logico in indirizzo fisico

Paginazione

Paginazione

• Esempio: 24 bit di indirizzamento, con pagine da 1 KByte (2^{10} , k = 10) Nella tabella delle pagine, $7 \rightarrow 14$ Indirizzo logico 000000000001110000000011 =00000000000111 0000000011 $pl = 0000000000111 = 7_{10}$ $o = 000000011 = 3_{10}$ la pagina fisica corrispondente $pf = 14_{10} = 00000000001110$ Indirizzo fisico: 00000000001110 0000000011

Memoria Virtuale

- Far credere ai processi di avere più memoria centrale di quanta effettivamente disponibile
- Come?
 Spostando su disco le pagine non utilizzate da più tempo (di utilizzo meno recente)
- Nella tabella delle pagine, se una pagina logica è stata spostata su disco, il numero di pagina fisica non c'è

Tabella delle Pagine

Pagina Logica	Pagina Fisica
0	1025
1	123
2	_

Memoria Virtuale

- Che si fa se un processo deve accedere ad una pagina logica non in memoria centrale?
- Si carica la pagina richiesta da disco, facendo posto scaricando un'altra pagina logica Questo scambio si chiama Swapping
- Problema: quando la memoria virtuale è quasi piena, si rischia il
 Fenomeno del **Thrashing**

Reti e Internet

- Scopo: far parlare tra di loro due dispositivi (computer)
- Dove?
 in un ambiente ristretto
 o a grande distanza

Modello ISO-OSI

Livello Applicazione
Livello Presentazione
Livello Sessione
Livello Trasporto
Livello Rete
Livello Collegamento Dati
Livello Fisico

Modello ISO-OSI

SOAP e-commerce
codifiche lingue cifratura
ETD The DNG
FTP, Telnet, DNS SMTP, POP3, IMAP
HTTP, HTTPS
TCP, VoIP
IP
Ethernet-CSMA/CD
Token Ring, PPP
Wi-Fi 802.11, GPRS
Doppino Telefonico Cavo coassiale
Fibra Ottica, Onde Radio