EEN115 - RMSA Project Final Report

Group 6

Jingcheng Wang, Tianqi Zhao, Mengyuan Zhou, Weirui Zhao, Tingting Zhao

March 7, 2025

Abstract

This report presents our approach to solving the Routing, Modulation, and Spectrum Assignment (RMSA) problem with the objective of minimizing the maximum Shannon entropy in the optical network. Shannon entropy is a key metric for evaluating spectrum fragmentation, and reducing its maximum value can lead to improved spectral efficiency. Our developed heuristic algorithm is compared against the benchmarking algorithm Fixed Shortest Path + First Fit SA, evaluating performance based on entropy levels, spectrum utilization, and network load distribution. The results demonstrate the trade-offs and effectiveness of our approach.

1 Introduction

The Routing, Modulation, and Spectrum Assignment (RMSA) problem is a critical issue in optical network design, affecting resource efficiency and network fragmentation. In this project, our goal is to minimize the maximum Shannon entropy to achieve a more structured and predictable spectrum allocation. Reducing entropy helps in preventing excessive fragmentation, leading to better spectral efficiency and reducing blocking probability.

2 Problem Definition

2.1 Inputs

There are two inputs to this project assignment, which are state below:

- Network infrastructure: The physical network infrastructure consists of nodes and links, with each link having a finite capacity that can be divided into frequency slots of fixed or varying sizes. A flex-grid or elastic optical network (EON), which is the focus of this project, divides the spectrum into smaller frequency slot units (FSUs).
- Traffic demands: Each request is characterized by a source and one or multiple destinations, as well as the requested traffic volume.

2.2 Objectives

The RMSA process is typically aimed at minimizing the network resource usage. Our objective is to minimize the maximum Shannon entropy [1] in the network, which is calculated as:

$$H = -\sum_{i} p_i \log_2 p_i \tag{1}$$

where p_i represents the proportion of spectrum slots occupied in different sections of the network. High Shannon entropy indicates high fragmentation, making future spectrum allocation inefficient.

2.3 Constraints

- Spectrum continuity: A connection must use the same set of spectral slots on all physical links included in its path.
- Spectrum contiguity: The slots that are assigned to a connection must be adjacent.
- Spectrum clash: No two lightpaths that share any common link can use the same spectrum.

3 Developed Approach

3.1 Routing Strategy

3.1.1 Fixed Shortest Path

The benchmark algorithm adopts a fixed shortest path approach, which directly selects the shortest available path.

3.1.2 K-Shortest Paths with Least Loaded Selection

The developed algorithm applies K-shortest paths with least-loaded selection to minimize maximum Shannon entropy. With K = 5, the algorithm returns five shortest paths and selects the one with the lowest average occupied FSU per link.

This strategy helps reduce maximum Shannon entropy by:

1. Balancing Load to Avoid Hotspot Links

Frequently used links tend to generate spectral fragments. Least-loaded selection distributes traffic more evenly, reducing entropy peaks.

2. Minimizing Fragmentation Spread

To meet spectrum continuity constraints, some assignments may create fragments on other links. Choosing cleaner paths helps prevent this, effectively lowering maximum Shannon entropy.

3.2 Modulation Constraint

3.2.1 Routing Considerations

When selecting the least-loaded path, modulation constraints must be incorporated. Specifically, the algorithm prioritizes paths that allow for higher-order modulation formats to avoid excessive spectrum usage. Using longer paths often forces the system to switch to lower-order modulation, increasing the number of required FSUs, which exacerbates fragmentation.

Avoiding long paths allows the use of higher modulation formats, which in turn enables a higher line rate. A higher line rate reduces the bandwidth demand per request, leading to fewer FSUs being required. Consequently, the lower FSU usage helps minimize spectral fragmentation.

3.2.2 FSU Calculation

The modulation format directly impacts the required number of FSUs. The calculation follows:

$$\eta = \frac{R}{B} \tag{2}$$

$$N_{\rm req} = \frac{D}{n} / W_{\rm slot} \tag{3}$$

- η represents the **spectrum efficiency**, which measures how efficiently the available bandwidth is used. It is determined by the chosen modulation.
- R represents the line rate (Gbps), which refers to the data transmission rate.
- B represents the **bandwidth** (GHz), which refers to the allocated frequency range for transmission.
- D represents the **demand**, which is the required data transmission rate.
- W_{slot} represents the bandwidth of each slot, it is 12.5 GHz in this project.

By considering both routing and modulation constraints, the algorithm ensures an optimized balance between spectral efficiency and fragmentation minimization.

3.3 Spectrum Assignment Strategy

3.3.1 First Fit

The First Fit strategy assigns spectrum by selecting the first available contiguous block of FSUs that satisfies the demand, which is used in benchmark algorithm.

3.3.2 Best Fit

The Best Fit strategy is implemented in developed algorithm. It selects the smallest available FSU block that meets the required bandwidth demand. This approach aims to minimize spectral fragmentation by efficiently utilizing the available spectrum.

Best fit minimize the maximum Shannon entropy by:

1. Prioritizing the Smallest Available Block

Ensures that larger free spectrum blocks remain unused, which is particularly important for high-demand traffic that requires continuous FSUs.

2. Even Distribution of Spectrum Usage

Compared to First Fit, Best Fit helps to preserve lower-index FSUs and promotes more uniform utilization of the entire spectrum, preventing early depletion of specific frequency regions.

4 Performance Analysis

This section presents a comparative analysis of our developed RMSA algorithm against the benchmark approach and examines the impact of different constraints and protection mechanisms.

4.1 Analysis for Questions 1 and 2: Algorithm Performance Comparison

To evaluate our algorithm, we compare its performance against the benchmark which is Fixed Shortest Path + First Fit Spectrum Assignment on different parameters.

4.1.1 Spectrum Fragmentation Metrics

According to Figure 1, The own designed algorithm has less fragmentation compared to the benchmark algorithm. In the benchmark algorithm, there are many small, scattered free spectrum slots (yellow areas), which create fragmentation and reduce the efficiency of future spectrum allocation. In contrast, the designed algorithm results in larger, more continuous free

blocks, making it easier to accommodate new traffic and improving spectral efficiency. This shows that the designed algorithm effectively reduces fragmentation by compacting spectrum usage.

Figure 1: Spectrum Matrix Comparison between Benchmark and Own Designed

4.1.2 FSU Usage

Highest used FSU on any link The highest FSU index is lower when the entropy goes down. This indicates that spectral resources are used more compactly, with fewer spectral fragments. The reason is that the *Best Fit* strategy helps fill the existing spectral gaps, making usage more continuous and therefore reducing the highest FSU index.

Total number of used FSUs As the entropy decreases, the total number of used FSUs increases slightly (within about 5%). This happens because the *k-shortest with least-loaded* approach does not always choose the shortest path. Hence, even with modulation-aware protection, the number of traversed links may increase, requiring additional guard bands (typically 1 FSU each). Thus, the total FSU usage goes up, but only by a small margin.

TO 11 4 CO 37 -	1 70 1 11	T . 1 . 1 . 1	/ .	1.
Table 1: Germany-7 Network	rk - Benchmarking vs	s Designed Al	gorithm (A	(scending)

Traffic Matrix	$\begin{array}{c} {\bf Algorithm} \\ {\bf Used} \end{array}$	Highest FSU Used	Total FSUs	Resource Increase	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
G7-matrix-1	Benchmarking K-shortest	16 14	168 172	2.4%	$0.2266 \\ 0.1180$	92.0%	$0.0060 \\ 0.0056$
G7-matrix-2	Benchmarking K-shortest	44 44	426 446	4.7%	0.4486 0.3875	15.8%	0.0077 0.0070
G7-matrix-3	Benchmarking K-shortest	80 76	848 888	4.7%	0.6005 0.5283	13.7%	0.0071 0.0083
G7-matrix-4	Benchmarking K-shortest	128 112	1392 1502	7.9%	0.7192 0.8250	-12.8%	0.0074 0.0078
G7-matrix-5	Benchmarking K-shortest	188 140	2073 2139	3.2%	1.2121 1.1136	8.7%	0.0063 0.0068

Table 2: Italian-10 Network - Benchmarking vs Designed Algorithm (Ascending)

Traffic Matrix	$\begin{array}{c} \textbf{Algorithm} \\ \textbf{Used} \end{array}$	Highest FSU Used	Total FSUs	Resource Increase	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
IT10-matrix-1	Benchmarking K-shortest	27 21	248 266	7.3%	$0.3861 \\ 0.3214$	20.1%	0.0079 0.0100
IT10-matrix-2	Benchmarking K-shortest	53 46	686 723	5.4%	0.6111 0.5581	9.5%	0.0135 0.0163
IT10-matrix-3	Benchmarking K-shortest	110 92	1266 1315	3.9%	$\begin{array}{c} 1.2870 \\ 0.9500 \end{array}$	35.5%	0.0167 0.0164
IT10-matrix-4	Benchmarking K-shortest	163 122	2069 2122	2.6%	1.4926 1.0614	40.6%	0.0181 0.0183
IT10-matrix-5	Benchmarking K-shortest	247 187	3047 3137	3.0%	1.7990 1.4873	21.0%	0.0192 0.0207

Table 3: Germany-7 Network - Benchmarking vs Designed Algorithm (Descending)

Traffic Matrix	Algorithm Used	Highest FSU Used	Total FSUs	Resource Increase	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
G7-matrix-1	Benchmarking K-shortest	18 13	168 172	2.4%	$0.1650 \\ 0.1650$	0%	0.0056 0.0063
G7-matrix-2	Benchmarking K-shortest	38 33	426 447	4.9%	0.4144 0.4595	-10.9%	0.0068 0.0083
G7-matrix-3	Benchmarking K-shortest	80 66	848 848	0%	0.6116 0.5766	6.1%	0.0077 0.0071
G7-matrix-4	Benchmarking K-shortest	120 108	1392 1416	1.7%	0.9287 0.8758	6.0%	0.0085 0.0076
G7-matrix-5	Benchmarking K-shortest	194 182	2073 2169	4.6%	1.0189 1.0078	1.1%	0.0083 0.0085

Table 4: Italian-10 Network - Benchmarking vs Designed Algorithm (Descending)

Traffic Matrix	$\begin{array}{c} {\bf Algorithm} \\ {\bf Used} \end{array}$	Highest FSU Used	Total FSUs	Resource Increase	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
IT10-matrix-1	Benchmarking K-shortest	25 17	$\frac{248}{263}$	6.0%	0.4278 0.2932	45.9%	0.0092 0.0093
IT10-matrix-2	Benchmarking K-shortest	50 44	686 727	6.0%	0.6783 0.5492	23.5%	0.0149 0.0149
IT10-matrix-3	Benchmarking K-shortest	105 86	1266 1327	4.8%	1.2823 0.8204	56.3%	0.0144 0.0182
IT10-matrix-4	Benchmarking K-shortest	158 152	2069 2069	0.0%	1.4448 1.4203	1.7%	0.0159 0.0158
IT10-matrix-5	Benchmarking K-shortest	231 230	3047 3047	0.0%	1.8592 2.0421	-8.9%	0.0176 0.0186

4.1.3 Distribution of Transponder Cost

The transponder cost [2] is calculated as:

Total Cost =
$$C_m \times \left(\frac{\text{Demand}}{10}\right)$$
.

Both the designed and benchmark algorithms yield the same transponder cost distribution, because under modulation constraints, the same demand typically ends up using the same

modulation format. Consequently, they share the same basic cost C_m , indicating no direct causal relationship between fragmentation levels and transponder cost.

Figure 2: Transponder Cost Distribution Comparison between Benchmark and Own Designed

4.1.4 Link Usage Distribution

From the figure 3, the "benchmark" (blue bars) shows many links whose usage ratio is either very low (e.g., 0.01) or relatively high (e.g., 0.05). Meanwhile, the "designed" algorithm (orange bars) more often concentrates link usage in a moderate range (e.g., 0.02–0.03). In other words, the benchmark method results in some links being barely used while others are heavily occupied, whereas the designed method balances the usage more evenly across links. This more uniform distribution of spectral resources helps reduce fragmentation.

Figure 3: Link Usage Distribution Comparison between Benchmark and Own Designed

4.1.5 Path Length Distribution

According to Figure 4, compared to the benchmark (blue bars), the designed algorithm (orange bars) uses longer paths for some demands. This is because the *k-shortest with least-loaded* approach may avoid links that are heavily occupied or prone to fragmentation, and therefore sometimes resorts to "detours" in order to find less congested links.

Figure 4: Path Length Distribution Comparison between Benchmark and Own Designed

4.2 Analysis for Question 3: Impact of Spectrum Continuity and Contiguity Constraints

When removing the spectrum continuity constraint and spectrum contiguity constraint, the following impacts on optical network performance can be observed:

4.2.1 Effects of Removing the Spectrum Continuity Constraint

The spectrum continuity constraint mandates that a connection must use the same spectrum slots along its entire path. When this constraint is removed, several performance changes are observed:

Firstly, there is a reduction in the highest used FSU, as spectrum assignment can now be optimized per link rather than across the entire path. This flexibility leads to a decrease in total FSU usage, improving overall spectral efficiency. Additionally, it results in a more balanced link load distribution, reducing congestion on highly utilized links by allowing connections to take advantage of different spectral slots at different segments.

Another key impact is a decrease in spectrum fragmentation, as measured by lower Shannon entropy and utilization entropy values. Without this constraint, the spectrum can be allocated in a more structured manner across multiple connections. However, the trade-off comes in the form of increased implementation costs, as the network must now deploy wavelength converters at various nodes to handle spectrum transitions, leading to higher equipment and operational complexity.

4.2.2 Effects of Removing the Spectrum Contiguity Constraint

The spectrum contiguity constraint requires that spectrum slots assigned to a connection must be adjacent. Eliminating this constraint introduces additional flexibility, resulting in higher spectrum utilization, as fragmented spectrum slots can now be utilized even if they are not adjacent.

As a result, there is a potential reduction in total FSU usage, since previously unusable non-contiguous spectrum blocks can now be allocated. However, while physical fragmentation still

exists, its service impact is somewhat mitigated. Despite these advantages, removing this constraint introduces new challenges. Transponder costs increase, as multiple narrower bandwidth transponders may be required instead of a single wide-band transponder. Moreover, signal processing complexity rises, as handling non-contiguous spectrum allocations requires more sophisticated modulation and demodulation techniques.

4.2.3 Effects of Removing Both Constraints Simultaneously

When both constraints are removed together, maximum spectrum flexibility is achieved. This leads to optimal spectrum utilization, drastically reducing both the highest used FSU and total FSU usage. Additionally, link loads are more balanced, as connections can adapt their spectrum allocation dynamically across different network segments. The blocking rate decreases significantly, as more spectrum options become available for assignment.

However, this maximum flexibility comes at a cost. The equipment and control plane complexity increase substantially, requiring advanced wavelength converters at multiple nodes and a highly sophisticated control plane to manage fragmented spectrum assignments. Furthermore, energy consumption rises, as additional resources are needed for wavelength conversion and handling non-contiguous allocations.

4.2.4 Summary

While removing these constraints enhances network performance by reducing fragmentation and improving spectral efficiency, it introduces substantial challenges in terms of implementation complexity, equipment costs, and energy consumption. In practical network deployments, these factors must be balanced against network design objectives, available budget, and operational feasibility.

4.3 Analysis for Questions 4 and 5: Impact of 1+1 and Shared Path Protection

To assess the impact of 1+1 dedicated [3] path protection and shared path protection, we extend our algorithm to incorporate these mechanisms and compare them against the original implementation.

4.3.1 Comparison of 1+1 Dedicated vs. Shared Protection

The 1+1 dedicated protection reserves a fully redundant backup path for each connection, ensuring maximum reliability at the cost of increased resource usage. In contrast, shared protection allows multiple connections to share backup resources, optimizing overall spectrum utilization while still providing resilience.

The following tables and plots summarize the performance results for the Germany-7 and Italian-10 network topologies under different traffic matrices.

Table 5: Germany-7 Network - 1+1 Dedicated vs Shared Protection (Ascending)

Traffic Matrix	Protection Type	Highest FSU Used	Total FSUs	Resource Reduction	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
G7-matrix-1	1+1 Dedicated Shared	51 25	583 336	42.4%	0.5837 0.3077	47.3%	0.0172 0.0118
G7-matrix-2	1+1 Dedicated Shared	130 50	1735 643	62.9%	1.3457 0.5358	60.2%	0.0282 0.0187
G7-matrix-3	1+1 Dedicated Shared	220 87	3326 1093	67.1%	$\begin{array}{c} 1.4488 \\ 0.5879 \end{array}$	59.4%	0.0331 0.0184
G7-matrix-4	1+1 Dedicated Shared	319 129	4849 1671	65.5%	1.4562 1.1209	23.0%	0.0291 0.0184
G7-matrix-5	1+1 Dedicated Shared	317 186	5835 2373	59.3%	1.4322 1.6643	-16.2%	0.0248 0.0194

Table 6: Italian-10 Network - 1+1 Dedicated vs Shared Protection (Ascending)

Traffic Matrix	Protection Type	Highest FSU Used	Total FSUs	Resource Reduction	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
IT10-matrix-1	1+1 Dedicated Shared	60 36	844 585	30.7%	$0.7480 \\ 0.5235$	30.0%	0.0283 0.0212
IT10-matrix-2	1+1 Dedicated Shared	131 75	2307 1120	51.5%	1.3714 0.8758	36.1%	0.0512 0.0306
IT10-matrix-3	1+1 Dedicated Shared	257 117	4531 1788	60.5%	1.9061 1.1551	39.4%	0.0597 0.0349
IT10-matrix-4	1+1 Dedicated Shared	318 147	6760 2571	62.0%	1.9935 1.8147	9.0%	0.0653 0.0356
IT10-matrix-5	1+1 Dedicated Shared	319 217	7443 3703	50.3%	1.7270 2.8029	-62.3%	0.0598 0.0445

Table 7: Germany-7 Network - 1+1 Dedicated vs Shared Protection (Descending)

Traffic Matrix	Protection Type	Highest FSU Used	Total FSUs	Resource Reduction	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
G7-matrix-1	1+1 Dedicated Shared	44 22	634 322	49.2%	0.5251 0.2745	47.7%	0.0188 0.0104
G7-matrix-2	1+1 Dedicated Shared	116 45	1687 669	60.3%	1.1976 0.5978	50.1%	0.0291 0.0154
G7-matrix-3	1+1 Dedicated Shared	233 78	3117 1135	63.6%	1.7022 1.1817	30.6%	0.0264 0.0199
G7-matrix-4	1+1 Dedicated Shared	319 129	5145 1707	66.8%	1.8998 1.4661	22.8%	0.0294 0.0192
G7-matrix-5	1+1 Dedicated Shared	317 197	5589 2406	57.0%	1.3009 1.8887	31.1%	0.0167 0.0215

Table 8: Italy-10 Network - 1+1 Dedicated vs Shared Protection (Descending)

Traffic Matrix	Protection Type	Highest FSU Used	Total FSUs	Resource Reduction	Max Shannon Entropy	Entropy Improvement	Utilization Entropy
IT10-matrix-1	1+1 Dedicated Shared	44 34	786 542	31.0%	$0.5636 \\ 0.5162$	9.4%	0.0261 0.0184
IT10-matrix-2	1+1 Dedicated Shared	112 67	2252 1104	50.9%	1.3188 0.8295	37.1%	0.0449 0.0293
IT10-matrix-3	1+1 Dedicated Shared	223 110	4571 1806	60.5%	2.1128 1.2537	40.7%	0.0627 0.0341
IT10-matrix-4	1+1 Dedicated Shared	319 152	6867 2631	61.7%	1.8702 1.8547	27.7%	0.0577 0.0359
IT10-matrix-5	1+1 Dedicated Shared	318 232	7543 3597	52.3%	1.4627 2.0894	30.0%	0.0425 0.0340

1+1 Dedicated Path Protection - Transponder Cost Distribution

Own Designed Algorithm - Transponder Cost Distribution

Own Designed Algorithm

Figure 5: Transponder Cost Distribution Comparison between Dedicated and Shared Protection

Figure 6: Link Usage Distribution Comparison between Dedicated and Shared Protection

Figure 7: Path Length Distribution Comparison between Dedicated and Shared Protection

4.3.2 Discussion and Analysis

From the results, we observe that shared protection significantly reduces resource consumption compared to 1+1 dedicated protection. Topology complexity also influences resource consumption. The Germany-7 network exhibits a higher potential for resource sharing, with an average 60% reduction in FSUs, compared to 51% in the Italian-10 network. This suggests that topologies with fewer nodes and more shared paths can leverage the benefits of shared protection more effectively than networks with more complex connectivity.

Shannon entropy and utilization entropy measure the fragmentation level of the link spectrum. Analyzing Shannon entropy, we observe that in most cases, shared protection results in lower Shannon entropy values, indicating less fragmentation. However, in high-load scenarios (G7-matrix-5 and IT10-matrix-5), shared protection exhibits higher Shannon entropy, suggesting that under extremely heavy loads, fragmentation increases due to the dynamic nature of resource-sharing.

By examining the highest FSU indices from individual reports, we find that shared protection consistently requires lower maximum FSU indices than dedicated protection. This allows for more efficient spectrum usage, meaning that shared protection can support the same traffic demands using a smaller overall spectrum window.

Link usage and path length distribution for both cases are the same, since we use the same algorithm for path selection and spectrum assignment.

Although shared protection significantly improves resource efficiency, it comes with trade-offs in network resilience. While it minimizes total FSU usage and enhances spectrum utilization, its fault tolerance is lower than that of 1+1 dedicated protection. In scenarios where network reliability is the top priority, dedicated protection remains the preferred choice despite its higher spectrum requirements.

These findings highlight an inherent trade-off between network resource efficiency and fault tolerance. The selection of a protection strategy should be tailored to the network's operational constraints and reliability requirements. Shared protection is most effective under moderate traffic loads, but under extreme congestion, its fragmentation impact must be carefully managed.

5 Conclusion

- Our heuristic algorithm effectively minimizes maximum Shannon entropy, reducing spectrum fragmentation.
- The performance comparison shows a significant reduction in entropy while maintaining a reasonable total spectrum usage.
- Future improvements could involve integrating adaptive routing strategies, taking sorting traffic demand in descending order into consideration based on our own algorithm and objective.

A Annex 1: Statement of Contributions

- **Jingcheng Wang:** Optimized parameters and structure of the designed algorithm, tested benchmarking and designed algorithm, evaluated performance parameters of spectrum fragmentation metrics, participated in the writing of reports.
- **Tianqi Zhao:** Tested the performance of different routing and spectrum assignment strategies. Participated in the design of dedicated and shared protection. Contributed to the final report with teammates.
- Mengyuan Zhou: Developed our own RMSA algorithm, tested the performance of benchmark, our own algorithm, 1+1 dedicated and shared path protection, implemented the visualization of performance parameters of interest. Participated in completing the final report.
- Weirui Zhao: Implemented topology processing and traffic matrix management, developed First Fit spectrum assignment strategy, researched, implemented Shannon entropy and utilization entropy calculation, analyzed performance metrics based on referenced papers and team discussions.
- Tingting Zhao: Tested 1+1 dedicated and shared path protection using our RMSA algorithm, evaluated performance across different topologies and traffic matrices, contributed to writing the final project report with corresponding parts.

B Annex 2: Reflection on Group Work

- Strengths: Effective and enjoyable discussions, regular meetings ensuring steady progress, strong algorithmic improvements through collaboration and idea-sharing. Working in a group allowed team members to exchange insights, refine problem-solving approaches, and improve both technical and communication skills.
- Challenges: Understanding the project problem setup and modeling, developing an RMSA
 algorithm that outperformed the benchmark (as the benchmark initially performed better), and debugging data type issues. These challenges required extensive troubleshooting,
 discussions, and iterations, which helped in strengthening analytical thinking and debugging skills.
- Improvements for future: Collaborating in a group improved our ability to divide tasks efficiently and leverage each member's expertise. If we were to start again, we would allocate more time for initial problem formulation and benchmarking analysis to accelerate algorithm development. Additionally, exploring machine learning-based methods for RMSA could be a future direction to enhance optimization performance.

References

- [1] M. Quagliotti, et al., "SPECTRUM FRAGMENTATION METRICS AND THEIR USE IN OPTICAL CHANNEL ALLOCATION ALGORITHMS," IEEE, 2018.
- [2] Ronald Romero Reyes, Omair Ali, Thomas Bauschert, "Infrastructure Costs in Dynamic Optical Networks," IEEE, 2018.
- [3] Z. Xu et al., "1+ 1 dedicated optical-layer protection strategy for filterless optical networks," IEEE Commun. Lett., vol. 18, no. 1, pp. 98–101, Jan. 2014.