

Novel Propargylether Derivatives for Controlling Phytopathogenic Microorganisms

The present invention relates to novel propargylether derivatives of formula I below. It relates to the preparation of those substances and to agrochemical compositions comprising at least one of those compounds as active ingredient. The invention relates also to the preparation of the said compositions and to the use of the compounds or of the compositions in controlling or preventing the infestation of plants by phytopathogenic microorganisms, especially fungi.

Certain amino acid carbamates, mandelic acid derivatives and alkoximino acid derivatives have been proposed for controlling plant-destructive fungi, (for example, in EP-A-398072, WO 94/29267 and WO 96/17840). The action of those preparations is not, however, satisfactory in all aspects of agricultural needs. Surprisingly, with the compound structure of formula I, new kinds of microbicides having a high level of activity have been found.

The invention relates to propargylether derivatives of the general formula I

$$R_{1} = \begin{array}{c} R_{2} \\ R_{3} \end{array} = \begin{array}{c} C - R_{4} \\ R_{5} \\ R_{6} \end{array} = \begin{array}{c} C - R_{4} \\ R_{8} \end{array}$$
 (1)

including the optical isomers thereof and mixtures of such isomers, wherein

R₁ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl or optionally substituted aryl;

 R_2 , R_3 , R_5 , R_6 , and R_7 are each independently of each other hydrogen or optionally substituted alkyl;

R₄ is optionally substituted alkyl;

X is O or $N-R_7$; and

R₈ is a group

R₉ is optionally substituted aryl or optionally substituted heteroaryl;

-2-

R₁₀ and R₁₁ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl or optionally substituted alkynyl;

R₁₂ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl or optionally substituted heteroaryl;

 R_{13} is hydrogen or optionally substituted alkyl, alkenyl or alkynyl; and R_{14} is optionally substituted alkyl or optionally substituted amino.

In the above definition aryl includes aromatic hydrocarbon rings like phenyl, naphthyl, anthracenyl, phenanthrenyl, with phenyl being preferred.

Heteroaryl stands for aromatic ring systems comprising mono-, bi- or tricyclic systems wherein at least one oxygen, nitrogen or sulfur atom is present as a ring member. Typically heteroaryl comprises 1 to 4 identical or different heteroatoms selected from nitrogen, oxygen and sulfur, wherein the number of oxygen and sulfuratoms normally does not exceed one. Examples are furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, phthalazinyl, quinoxalinyl, quinazolinyl, cinnolinyl and naphthyridinyl.

The above aryl and heteroaryl groups may carry one or more identical or different substituents. Normally not more than three substituents are present at the same time. Examples of substituents of aryl or heteroaryl groups are: alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, phenyl and phenyl-alkyl, it being possible in turn for all of the preceding groups to carry one or more identical or different halogen atoms; alkoxy; alkenyloxy; alkynyloxy; alkoxyalkyl; haloalkoxy, alkylthio; haloalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; alkylamino; dialkylamino; carboxyl; alkoxycarbonyl; alkenyloxycarbonyl; alkynyloxycarbonyl.

Optionally substituted alkyl, alkenyl, alkynyl or cycloalkyl groups may carry one or more substituents selected from halogen, alkyl, alkoxy, alkylthio, nitro, cyano, hydroxy, mercapto, alkylcarbonyl or alkoxycarbonyl. Preferably, the number of substituents is no more than three with the exception of halogen, where the alkyl groups may be perhalogenated. In the

above definitions "halogen" or the prefix "halo" includes fluorine, chlorine, bromine and iodine.

The alkyl, alkenyl and alkynyl radicals may be straight-chain or branched. This applies also to the alkyl, alkenyl or alkynyl parts of other alkyl-, alkenyl- or alkynyl-containing groups.

Depending upon the number of carbon atoms mentioned, alkyl on its own or as part of another substituent is to be understood as being, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the isomers thereof, for example isopropyl, isobutyl, tert-butyl or sec-butyl, isopentyl or tert-pentyl.

Cycloalkyl is, depending upon the number of carbon atoms mentioned, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.

Depending upon the number of carbon atoms mentioned, alkenyl as a group or as a structural element of other groups is to be understood as being, for example, ethenyl, allyl, 1-propenyl, buten-2-yl, buten-3-yl, penten-1-yl, penten-3-yl, hexen-1-yl, 4-methyl-3-pentenyl or 4-methyl-3-hexenyl.

Alkynyl as a group or as a structural element of other groups is, for example, ethynyl, propyn-1-yl (-CH₂-CΞCH), prop-2-ynyl (-C(-CH₃)ΞCH), butyn-1-yl (-CH₂-CΞC-CH₃), 1-methyl-2-butynyl (-CH(CH₃)-CΞC-CH₃), hexyn-1-yl (-[CH₂]₄-CΞCH), 1-ethyl-2-butynyl (-CH(CH₂-CH₃)-CΞC-CH₃), or octyn-1-yl.

A haloalkyl group may contain one or more (identical or different) halogen atoms, and for example may stand for CH₂Cl, CHCl₂, CCl₃, CH₂F, CHF₂, CF₃, CH₂CH₂Br, C₂Cl₅, C₂F₅, CH₂Br, CHClBr, CF₃CH₂, etc..

The presence of at least one asymmetric carbon atom in the compounds of formula I means that the compounds may occur in optically isomeric and enantiomeric forms. As a result of the presence of a possible aliphatic C=C double bond, geometric isomerism may also occur. Formula I is intended to include all those possible isomeric forms and mixtures thereof.

Preferred subgroups of compounds of formula I are those wherein

R₁ is hydrogen, alkyl, cycloalkyl, phenyl or naphthyl; phenyl and naphthyl being optionally substituted by substituents selected from the group comprising alkyl, alkenyl,

alkynyl, cycloalkyl, cycloalkyl-alkyl, phenyl and phenylalkyl, where all these groups may in turn be substituted by one or several halogens; alkoxy, alkenyloxy, alkynyloxy; alkoxy-alkyl; haloalkoxy; alkylthio; haloalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; alkylamino; dialkylamino; carboxy; alkoxycarbonyl; alkenyloxycarbonyl; or alkynyloxycarbonyl; or

 R_1 is hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, phenyl or naphthyl; phenyl and naphthyl being optionally substituted by one to three substituents selected from the group comprising C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkylthio, C_1 - C_8 -haloalkylthio, C_1 - C_8 -alkylsulfonyl, halogen, cyano and nitro; or

R₁ is hydrogen, C₁-C₆-alkyl or C₃-C₆-cycloalkyl; or

R₂ and R₃ are hydrogen or C₁-C₆-alkyl; or

R₂ and R₃ are hydrogen; or

R₄ is C₁-C₆-alkyl; or

R₅ and R₆ are hydrogen or C₁-C₆-alkyl; or

R₅ and R₆ are hydrogen

X is oxygen or nitrogen; nitrogen being optionally substituted by hydrogen or C_1 - C_8 -alkyl; or R_8 is $C(R_9R_{10})$ - OR_{11}

R₉ is aryl or heteroaryl, each optionally substituted by substituents selected from the group comprising alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, phenyl and phenylalkyl, where all these groups may be substituted by one or several halogens; alkoxy, alkenyloxy, alkynyloxy; alkoxy-alkyl; haloalkoxy; alkylthio; haloalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; alkylamino; dialkylamino; carboxy; alkoxycarbonyl; alkenyloxycarbonyl and alkynyloxycarbonyl; or

 R_9 is phenyl, naphthyl, 1,3-biphenyl or 1,4-biphenyl, each optionally substituted by one to three substituents selected from the group comprising C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkylthio, C_1 - C_8 -alkylsulfonyl, halogen, cyano, nitro and C_1 - C_8 -alkoxycarbonyl; or

 R_9 is phenyl, naphthyl, 1,3-biphenyl or 1,4-biphenyl, each optionally substituted by one to three substituents selected from the group comprising C_1 - C_6 -alkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, halogen, cyano, nitro and C_1 - C_6 -alkoxycarbonyl; or

 R_{10} is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, C_3 - C_8 -alkenyl or C_3 - C_8 -alkynyl; or R_{10} is hydrogen or C_1 - C_8 -alkyl; or

R₁₀ is hydrogen; or

 R_{11} is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, C_3 - C_8 -alkenyl or C_3 - C_8 -alkynyl; or R_{11} is hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -alkenyl or C_3 - C_8 -alkynyl; or

R₁₁ is hydrogen, C₁-C₆-alkyl or C₃-C₆-alkynyl; or

 R_{12} is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, phenyl or naphthyl; phenyl and naphthyl being optionally substituted by one to three substituents selected from the group comprising C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkylthio, C_1 - C_8 -haloalkylthio, C_1 - C_8 -alkylsulfonyl, aryl, halogen, cyano and nitro; or

R₁₂ is C₁-C₆-alkyl or C₃-C₆-cycloalkyl; or

 R_{13} is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, C_3 - C_8 -alkenyl or C_3 - C_8 -alkynyl; or

R₁₃ is hydrogen or C₁-C₆-alkyl; or

R₁₃ is hydrogen; or

 R_{14} is C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkylamino or C_1 - C_8 -dialkylamino; or R_{14} is C_1 - C_6 -alkyl or C_1 - C_6 -dialkylamino.

•

One preferred subgroup of the compounds of formula I consists of those compounds wherein R₁₀ is hydrogen or alkyl,

X is oxygen, and

 R_8 is $-C(R_9R_{10})-OR_{11}$ and

R₁₁ is hydrogen or alkynyl; or wherein

X is oxygen,

 R_8 is $-C(R_{12}R_{13})NH-SO_2-R_{14}$, and

R₁₂ is alkyl or branched alkyl.

Further preferred subgroups of the compounds of formula I are those wherein

R₁ is hydrogen, alkyl, cycloalkyl, phenyl or naphthyl; phenyl and naphthyl being optionally substituted by substituents selected from the group comprising alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, phenyl and phenylalkyl, where all these groups may in turn be substituted by one or several halogens; alkoxy; alkenyloxy; alkynyloxy; alkoxy-alkyl; haloal-koxy; alkylthio; haloalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; alkylamino; dialkylamino; carboxy; alkoxycarbonyl; alkenyloxycarbonyl; or alkynyloxycarbonyl; and R₄ is alkyl; and R₈ is a group -C(R₉R₁₀)-OR₁₁, R₉ is aryl or heteroaryl, each optionally substituted by substituents selected from to group comprising alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, phenyl and phenylalkyl, where all these groups may be substituted by one or several halogens; alkoxy, alkenyloxy, alkynyloxy; alkoxy-alkyl; haloal-

koxy; alkylthio; hałoalkylthio; alkylsulfonyl; formyl; alkanoyl; hydroxy; halogen; cyano; nitro; amino; alkylamino; dialkylamino; carboxy; alkoxycarbonyl; alkenyloxycarbonyl and alkynyloxycarbonyl; and R₁₁ is hydrogen; alkyl or alkynyl; or R₈ is a group -C(R₁₂R₁₃)NH-SO₂-R₁₄, R₁₄ is alkyl or alkylamino; or wherein

 R_1 is hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl; and R_2 , R_3 , R_5 and R_6 are hydrogen; and R_4 is C_1 - C_6 -alkyl; and R_9 is phenyl, naphthyl, 1,3-biphenyl or 1,4-biphenyl, each optionally substituted by one to three substituents selected from the group comprising C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkoxy, C_1 - C_8 -alkyl-thio, C_1 - C_8 -haloalkylthio, C_1 - C_8 -alkylsulfonyl, halogen, cyano, nitro and C_1 - C_8 -alkoxycar-bonyl; and R_{10} is hydrogen or C_1 - C_4 -alkyl; and R_{11} is hydrogen, C_1 - C_8 -alkyl or C_2 - C_8 -alkynyl; and R_{12} is C_1 - C_8 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -alkynyl; phenyl or benzyl wherein the phenyl and benzyl is optionally substituted by one to three substituents selected from the group comprising C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_1 - C_8 -haloalkoxy, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxylthio, C_1 - C_8 -haloalkylthio, C_1 - C_8 -alkylsulfonyl, halogen, cyano, nitro and C_1 - C_8 -alkoxycarbonyl; and R_{13} is hydrogen or C_1 - C_4 -alkyl; and R_{14} is C_1 - C_6 -alkyl; C_1 - C_6 -monoalkylamino or C_1 - C_6 -dialkylamino; or wherein

 R_1 is hydrogen or C_1 - C_6 -alkyl, and R_2 , R_3 , R_5 and R_6 are hydrogen; and R_4 is methyl or ethyl; and R_9 is phenyl or naphthyl each optionally substituted by one to three substituents selected from the group comprising C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, halogen, cyano, nitro and C_1 - C_6 -alkoxycarbonyl; and R_{10} and R_{13} are each hydrogen; and R_{11} is hydrogen or C_2 - C_6 -alkynyl; and R_{12} is C_2 - C_6 -alkyl or C_3 - C_6 -cycloalkyl; and R_{14} is C_1 - C_6 -alkyl or C_1 - C_6 -dialkylamino.

Preferred individual compounds are:

2-hydroxy-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-2-phenyl-acetamide,
N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-2-phenyl-2-prop-2-ynyloxy-acetamide,
2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-2-phenyl-acetamide,
N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-2-phenyl-2-prop-2-ynyloxy-acetamide,
2-(4-chloro-phenyl)-2-hydroxy-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-acetamide,
2-(4-chloro-phenyl)-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-acetamide,
2-(4-chloro-phenyl)-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide,
2-(4-chloro-phenyl)-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide,
2-(4-bromo-phenyl)-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-acetamide,
2-(4-bromo-phenyl)-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-2-prop-2-ynyloxy-acetamide,

- 2-(4-bromo-phenyl)-2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide, 2-(4-bromo-phenyl)-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-2-prop-2-ynyloxy-acetamide, 2-(3,4-dichloro-phenyl)-2-hydroxy-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-acetamide, 2-(3,4-dichloro-phenyl)-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-2-prop-2-ynyloxy-
- 2-(3,4-dichloro-phenyl)-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-2-prop-2-ynyloxy-acetamide,
- 2-(3,4-dichloro-phenyl)-2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide, 2-(3,4-dichloro-phenyl)-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-2-prop-2-ynyloxy-acetamide,
- (S)-2-methylsulfonylamino-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-3-methyl-butyramide,
- (S)-2-methylsulfonylamino-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-3-methyl-butyramide,
- (S)-N-{4-[3-(4-chloro-phenyl)-prop-2-ynyloxy]-3-methoxy-benzyloxy}-2-methylsulfonylamino-3-methyl-butyramide,
- (S)-2-ethylsulfonylamino-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-3-methyl-butyramide,
- (*S*)-N-{4-[3-(4-chloro-phenyl)-prop-2-ynyloxy]-3-methoxy-benzyloxy}-2-N,N'-dimethylamino-sulfonylamino-3-methyl-butyramide,
- 2-(4-ethyl-phenyl)-2-hydroxy-N-(3-methoxy-4-prop-2-ynyloxy-benzyloxy)-acetamide,
- 2-(4-ethyl-phenyl)-2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide.
- (S)-2-ethylsulfonylamino-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-3-methyl-butyramide,
- (*S*)-N-{4-[3-(4-chloro-phenyl)-prop-2-ynyloxy]-3-methoxy-benzyloxy}-2-ethanesulfonylamino-3-methyl-butyramide,
- hydroxy-phenyl-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, phenyl-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, hydroxy-phenyl-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide, phenyl-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide, (4-chloro-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, (4-chloro-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, hydrazide,
- (4-chloro-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide, (4-chloro-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide,
- (4-bromo-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, (4-bromo-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide,

- (4-bromo-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide, (4-bromo-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide,
- (3,4-dichloro-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide, (3,4-dichloro-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide,
- (3,4-dichloro-phenyl)-hydroxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide, (3,4-dichloro-phenyl)-prop-2-ynyloxy-acetic acid N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazide,
- N-{(S)-1-[N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazinocarbonyl]-2-methyl-propyl}-methylsulfonamide,
- N-{(S)-1-[N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazinocarbonyl]-2-methyl-propyl}-methylsulfonamide,
- $N-[(S)-1-(N'-\{4-[3-(4-chloro-phenyl)-prop-2-ynyloxy]-3-methoxy-benzyl\}-hydrazinocarbonyl)-2-methyl-propyl]-methylsulfonamide,$
- $N-\{(S)-1-[N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazinocarbonyl]-2-methyl-propyl}-ethylsulfonamide,$
- N-{(S)-1-[N'-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydrazinocarbonyl]-2-methyl-propyl}-ethylsulfonamide, and
- N-[(S)-1-(N'-{4-[3-(4-chloro-phenyl)-prop-2-ynyloxy]-3-methoxy-benzyl}-hydrazinocarbonyl)-2-methyl-propyl]- ethylsulfonamide.

The propargylether derivatives of formula I may be obtained according to one of the processes of Schemes 1 to 3:

Scheme 1:

HOOC
$$-R_8$$

$$(III)$$

$$Step A$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_2 \longrightarrow R_8$$

$$(IV)$$

$$R_3 \longrightarrow R_8$$

$$(IV)$$

$$R_4 \longrightarrow R_8$$

$$(IV)$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_2 \longrightarrow R_8$$

$$(IV)$$

$$R_3 \longrightarrow R_8$$

$$(IV)$$

$$R_4 \longrightarrow R_8$$

$$(IV)$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_2 \longrightarrow R_8$$

$$(IV)$$

$$R_3 \longrightarrow R_8$$

$$(IV)$$

$$R_4 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$(IV)$$

$$R_1 \longrightarrow R_8$$

$$R_2 \longrightarrow R_8$$

$$(IV)$$

$$R_3 \longrightarrow R_8$$

$$(IV)$$

$$R_4 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$(IV)$$

$$R_4 \longrightarrow R_8$$

$$R_5 \longrightarrow R_8$$

$$R_7 \longrightarrow R_8$$

$$R_8 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_2 \longrightarrow R_8$$

$$R_3 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_2 \longrightarrow R_8$$

$$R_3 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_1 \longrightarrow R_8$$

$$R_2 \longrightarrow R_8$$

$$R_3 \longrightarrow R_8$$

$$R_4 \longrightarrow R_8$$

$$R_5 \longrightarrow R_8$$

$$R_7 \longrightarrow R_8$$

$$R_8 \longrightarrow R_8$$

$$R_8 \longrightarrow R_8$$

$$R_8 \longrightarrow R_$$

<u>Step A:</u> An acid of formula II or a carboxy-activated derivative of an acid of formula II wherein R_8 is as defined for formula I is reacted with an amino-derivative of formula III wherein R_4 , R_5 , R_6 and X are as defined for formula I, optionally in the presence of a base and optionally in the presence of an inert solvent.

Carboxy-activated derivatives of the acid of formula II for the purpose of this invention encompass all derivatives of compounds of formula II having an activated carboxyl group like an acid halide, such as an acid chloride, like symmetrical or mixed anhydrides, such as mixed anhydrides with O-alkylcarbonates, like activated esters, such as p-nitrophenylesters or N-hydroxysuccinimidesters, as well as in-situ-formed activated forms of the acid of formula II with condensating agents, such as dicyclohexylcarbodiimide, carbonyldiimidazole, benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate, O-benzotriazol-1-yl N,N,N',N'-bis(pentamethylene)uronium hexafluorophosphate, O-benzotriazol-1-yl N,N,N',N'-bis(tetramethylene)uronium hexafluorophosphate, O-benzotriazol-1-yl N,N,N',N'-tetramethyluronium hexafluorophosphate or benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate. The mixed anhydrides of the acids of the formula II may be prepared by reaction of an acid of formula II with chloroformic acid esters like chloroformic acid alkylesters, such as ethyl chloroformate or isobutyl chloroformate, optionally in the presence

of an organic or inorganic base like a tertiary amine, such as triethylamine, N,N-diisopropylethylamine, pyridine, N-methyl-piperidine or N-methyl-morpholine.

The present reaction is preferably performed in an inert solvent like aromatic, non-aromatic or halogenated hydrocarbons, such as chlorohydrocarbons e.g. dichloromethane or toluene; ketones e.g. acetone; esters e.g. ethyl acetate; amides e.g. N,N-dimethylformamide; nitriles e.g. acetonitrile; or ethers e.g. diethylether, tert-butyl-methylether, dioxane or tetrahydrofurane or water. It is also possible to use mixtures of these solvents. The reaction is performed optionally in the presence of an organic or inorganic base like a tertiary amine, e.g. triethylamine, N,N-diisopropyl-ethylamine, pyridine, N-methyl-piperidine or N-methyl-morpholine, like a metal hydroxide or a metal carbonate, preferentially an alkali hydroxide or an alkali carbonate, such as lithium hydroxide, sodium hydroxide or potassium hydroxide at temperatures ranging from -80°C to +150°C, preferentially at temperatures ranging from -40°C to +40°C.

Step B: The compounds of formula I may then finally be prepared by reaction of a phenol of formula IV wherein R_4 , R_5 , R_6 , R_8 and X are as defined for formula I with a compound of formula V wherein R_1 , R_2 and R_3 are as defined for formula I and wherein Y is a leaving group like a halide such as a chloride or bromide or a sulfonic ester such as a tosylate, mesylate or triflate.

The reaction is advantageously performed in an inert solvent like aromatic, non-aromatic or halogenated hydrocarbons, such as chlorohydrocarbons e.g. dichloromethane or toluene; ketones e.g. acetone or 2-butanone; esters e.g. ethyl acetate; ethers e.g. diethylether, tert-butyl-methylether, dioxane or tetrahydrofurane, amides e.g. dimethylformamide, nitriles e.g. acetonitrile, alcohols e.g. methanol, ethanol, isopropanol, n-butanol or tert-butanol, sulfo-xides e.g. dimethylsulfoxide or water. It is also possible to use mixtures of these solvents. The reaction is performed optionally in the presence of an organic or inorganic base like a tertiary amine, such as triethylamine, N,N-diisopropyl-ethylamine, pyridine, N-methyl-piperidine or N-methyl-morpholine, like a metal hydroxide, a metal carbonate or a metal alkoxide, preferentially an alkali hydroxide, an alkali carbonate or an alkali alkoxide, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide or potassium tert-butoxide at temperatures ranging from -80°C to +200°C, preferentially at temperatures ranging from 0°C to +120°C.

<u>Step C:</u> Alternatively to the sequence of steps A and B, an acid of formula II or a carboxy-activated derivative of an acid of formula II wherein R_8 is as defined for formula I may be reacted with an amino-derivative of formula VI wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and X are as defined for formula I under the same conditions as defined for step A, optionally in the presence of a base and optionally in the presence of a diluting inert solvent.

Scheme 2:

Example for the preparation of intermediates of formula IV (wherein X is nitrogen and R_6 is hydrogen)

Step D: An acid hydrazide of formula VII wherein R₈ is as defined for formula I is reacted with a carbonyl compound of formula VIII wherein R₄ and R₅ are as defined for formula I. The reaction corresponds to a standard hydrazone formation and is with advantage performed in an inert solvent capable of forming azeotropic evaporates. The reaction may further be catalyzed by the presence of a mineral acid such as hydrochloric acid or sulfuric acid or an organic acid like formic acid or acetic acid. Water is eliminated during the condensation reaction, which preferably is continuously separated from the reaction mixture by azeotropic destillation , e.g. by using a Dean-Stark trap. Suitable solvents for this purpose include aromatic hydrocarbons like benzene, toluene and xylene or chlorinated hydrocarbons like methylene chloride or chloroform.

<u>Step E:</u> An acylhydrazone of formula IX wherein R_4 , R_5 and R_8 are as defined for formula I is reduced to a compound of formula IVa wherein R_4 , R_5 and R_8 are as defined for formula I by reaction with reducing agents like hydrogen or hydrazine in the presence of a suitable catalyst such as rhodium, platinum or palladium on carbon, or by reductive transformation with a metal hydride such as sodium borohydride, sodium cyanoborohydride or lithium

aluminumhydride under conditions known per se (K. Shanker et al., *Arch. Pharm.* (Weinheim), **317**, 890 (1984). The hydrogenation reaction is preferably performed in a solvent like esters e.g. ethyl acetate; amides e.g. N,N-dimethylformamide; or carboxylic acids, e.g. acetic acid; the transformations with metal hydride are preferably performed in a solvent like ethers e.g. diethylether, tert-butyl-methylether, dioxane or tetrahydrofurane; alcohols e.g. methanol or ethanol. It is also possible to use mixtures of these solvents. Furthermore the hydrogenation reaction can be performed at pressures between atmospheric pressure and 120 bar, preferentially at pressures ranging from 1 to 80 bar.

Scheme 3: Example for the preparation of intermediates of formula VI(X = O)

HO
$$(X)$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{$$

<u>Step F:</u> A phenol of formula X wherein R_4 , R_5 and R_6 are as defined for formula I is reacted with a compound of formula V wherein R_1 , R_2 and R_3 are as defined for formula I and wherein Y is a leaving group like a halide such as a chloride or bromide or a sulfonic ester such as a tosylate, mesylate or triflate under the same conditions as defined for step B in Scheme 1.

<u>Step G:</u> An alcohol of formula XI wherein R_1 , R_2 , R_3 , R_4 , R_5 and R_6 are as defined for formula I is transformed into a compound of formula XII wherein R_1 , R_2 , R_3 , R_4 , R_5 and R_6

are as defined for formula I and wherein Y is a leaving group like a halide such as a chloride or bromide or a sulfonic ester such as a tosylate, mesylate or triflate. The reaction can be achieved by converting the compound of formula XI e.g. with hydrochloric acid, hydrogen bromide, phosphorus tetrabromide or thionyl chloride as reagent to a halide; or with mesyl chloride or tosyl chloride as reagent to a sulfonic ester.

<u>Step H:</u> A compound of formula XII wherein R_1 , R_2 , R_3 , R_4 , R_5 and R_6 are as defined for formula I is reacted with a compound of formula XIII wherein R_{15} and R_{16} are hydrogen, halogen, methyl or part of an annelated benzene ring under conditions known per se for the formation of N-alkoxyimides (G. L. Verdine et al., *J. Am. Chem. Soc.*, **123**, 398 (2001).

<u>Step I:</u> A compound of formula XIV wherein R₁, R₂, R₃, R₄, R₅ and R₆ are as defined for formula I and R₁₅ and R₁₆ are hydrogen, halogen, methyl or part of an annelated benzene ring is reacted with an amine derivative, like methylamine or butylamine or a hydrazine derivative, such as hydrazine, hydrazine hydrate or methylhydrazine under conditions known per se for the cleavage of N-alkoxyimides (M. P. Kirkup, *Tetrahedron Lett.*, **30**, 6809 (1989).

The compounds of formula I are oils or solids at room temperature and generally stable when stored at ambient temperatures in a warehouse. These compounds are distinguished from known compounds of the chemical class by their valuable microbicidal properties. They can be used in the agricultural sector or related fields preventively and curatively in the control of phytopathogenic or plant-destructive microorganisms. The compounds of formula I according to the invention are distinguished at low rates of concentration not only by outstanding microbicidal, especially fungicidal activity but also by being especially well tolerated by plants.

Surprisingly, it has now been found that the compounds of formula I have for practical purposes a very advantageous biocidal spectrum in the control of phytopathogenic microorganisms, especially fungi. They possess very advantageous curative and preventive properties and are used in the protection of numerous crop plants. With the compounds of formula I it is possible to inhibit or destroy phytopathogenic microorganisms that occur on various crops of useful plants or on parts of such plants (fruit, blossom, leaves, stems, tubers, roots), while parts of the plants which grow later also remain protected, for example, against phytopathogenic fungi.

- 14 -

The novel compounds of formula I prove to be effective against specific genera of the fungus class Fungi imperfecti (e.g. Cercospora), Basidiomycetes (e.g. Puccinia) and Ascomycetes (e.g. Erysiphe and Venturia) and especially against Oomycetes (e.g. Plasmopara, Peronospora, Pythium and Phytophthora). They therefore represent in plant protection a valuable addition to the compositions for controlling phytopathogenic fungi. The compounds of formula I can also be used as dressings for protecting seed (fruit, tubers, grains) and plant cuttings from fungal infections and against phytopathogenic fungi that occur in the soil.

The invention relates also to compositions comprising compounds of formula I as active ingredient, especially plant-protecting compositions, and to the use thereof in the agricultural sector or related fields.

In addition, the present invention includes the preparation of those compositions, wherein the active ingredient is homogeneously mixed with one or more of the substances or groups of substances described herein. Also included is a method of treating plants which is distinguished by the application of the novel compounds of formula I or of the novel compositions.

Target crops to be protected within the scope of this invention comprise, for example, the following species of plants: cereals (wheat, barley, rye, oats, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, stone fruit and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucurbitaceae (marrows, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamon, camphor) and plants such as tobacco, nuts, coffee, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, and also ornamentals.

The compounds of formula I are normally used in the form of compositions and can be applied to the area or plant to be treated simultaneously or in succession with other active ingredients. Those other active ingredients may be fertilisers, micronutrient donors or other preparations that influence plant growth. It is also possible to use selective herbicides or

- 15 -

insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of those preparations, if desired together with further carriers, surfactants or other application-promoting adjuvants customarily employed in formulation technology.

The compounds of formula I may be readily mixed with other fungicides in prefabricated compositions or as so-called tank-mixtures, exhibiting resulting in some cases unexpected resulting synergistic activities.

As ad-mixing components which are particularly suitable the azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbinole, such as ancymidol, fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines. such as dodemorph, fenpropidine, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinii, mepanipyrim, pyrimethanii; pyrroles, such as fenpicionii, fludioxonii; phenylamides, such as benalaxyl, R-benalayxl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name pyraclostrobin), BAS 520; HEC 5725 (proposed common name fluoxastrobin), orysastrobin (proposed common name), dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper; nitrophenol-derivatives, such as dinocap. nitrothal-isopropyl; organo-P-derivatives, such as edifenphos, iprobenphos, isoprothiolane. phosdiphen, pyrazophos, tolclofos-methyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph or flumorlin), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, DPX-KQ 926 (proposed comon name proquinazid), JAU 6476 (proposed common name prothioconazole), IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, boscalid (nicobifen), pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281).

Suitable carriers and surfactants may be solid or liquid and correspond to the substances ordinarily employed in formulation technology, such as e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilisers. Such carriers and additives are described, for example, in WO 95/30651.

A preferred method of applying a compound of formula I, or an agrochemical composition comprising at least one of those compounds, is application to the foliage (foliar application), the frequency and the rate of application depending upon the risk of infestation by the pathogen in question. The compounds of formula I may also be applied to seed grains (coating) either by impregnating the grains with a liquid formulation of the active ingredient or by coating them with a solid formulation.

The compounds of formula I are used in unmodified form or, preferably, together with the adjuvants conventionally employed in formulation technology, and are for that purpose advantageously formulated in known manner e.g. into emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules, and by encapsulation in e.g. polymer substances. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

Advantageous rates of application are normally from 1 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, especially from 25 g to 750 g a.i./ha. When used as seed dressings, rates of from 0.001 g to 1.0 g of active ingredient per kg of seed are advantageously used.

The formulations, i.e. the compositions, preparations or mixtures comprising the compound(s) (active ingredient(s)) of formula I and, where appropriate, a solid or liquid

adjuvant, are prepared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredient with extenders, e.g. solvents, solid carriers and, where appropriate, surface-active compounds (surfactants).

Further surfactants customarily used in formulation technology will be known to the person skilled in the art or can be found in the relevant technical literature.

The agrochemical compositions usually comprise 0.01 to 99 % by weight, preferably 0.1 to 95 % by weight, of a compound of formula I, 99.99 to 1 % by weight, preferably 99.9 to 5 % by weight, of a solid or liquid adjuvant, and 0 to 25 % by weight, preferably 0.1 to 25 % by weight, of a surfactant.

Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients, such as stabilisers, antifoams, viscosity regulators, binders and tackifiers, as well as fertilisers or other active ingredients for obtaining special effects.

The Examples which follow illustrate the invention described above, without limiting the scope thereof in any way. Temperatures are given in degrees Celsius.

Preparation Examples

<u>Example A1.1 : 2-(4-Chloro-phenyl)-2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide</u>

a) (3-Methoxy-4-pent-2-ynyloxy-phenyl)-methanol

Sodium methoxide (36 ml of a 5.4 M solution in methanol, 0.20 mol) is added to a solution of 4-hydroxymethyl-2-methoxy-phenol (25 g, 0.16 mol) in 250 ml of methanol. Pentinyl chloride (18.5 g, 0.18 mol) is added and the mixture is heated to reflux for 4 hours. After evaporation of the solvent, the residue is taken up in ethyl acetate and washed with water and brine. The organic layer is dried over magnesium sulfate and evaporated. The residue is submitted to flash-chromatography on silica gel (ethyl acetate / hexane 1 : 2) to give (3-.methoxy-4-pent-2-ynyloxy-phenyl)-methanol as yellow oil.

 $\frac{1}{\text{H-NMR}}$ (CDCl₃, 300 MHz): 1.12 (t, 3H, Me), 2.20 (q, 2H, CH₂), 3.84 (s, 3 H, OMe), 4.58 (s, 2H, CH₂OH), 4.69 (d, 2H, OCH₂CΞC), 6.82 – 7.01 (m, 3H, ar).

b) 4-Chloromethyl-2-methoxy-1-pent-2-ynyloxy-benzene

A solution of (3-methoxy-4-pent-2-ynyloxy-phenyl)-methanol (27 g, 0.12 mol) in 450 ml of dioxan is added dropwise to 240 ml of concentrated hydrochloric acid. The reaction mixture is stirred for 1.5 hours at room temperature. Subsequently it is poured on water and extracted with ethyl acetate. The combined organic layer is washed with brine, dried over magnesium sulfate and evaporated in vacuo to obtain 4-chloromethyl-2-methoxy-1-pent-2-ynyloxy-benzene as yellow oil.

 $\frac{1}{\text{H-NMR}}$ (CDCl₃, 300 MHz): 1.11 (t, 3H, Me), 2.21 (q, 2H, CH₂), 3.88 (s, 3 H, OMe), 4.57 (s, 2H, CH₂Cl), 4.72 (d, 2H, OCH₂CEC), 6.90 – 6.99 (m, 3H, ar).

c) 2-(3-Methoxy-4-pent-2-ynyloxy-benzyloxy)-isoindole-1,3-dione

4-Chloromethyl-2-methoxy-1-pent-2-ynyloxy-benzene (28 g, 0.12 mol) and N-hydroxyphthal-imide (19.5 g, 0.12 mol) are dissolved in 180 ml of N,N-dimethylformamide. The reaction mixture is heated to +70°C and potassium hydroxide (24 ml of a 5 M solution in methanol, 0.12 mol) is added at this temperature. The reaction is stirred for 1 hour at +70°C, subsequently cooled to room temperature and poured on water. This mixture is stirred for one further hour and filtered. The resulting crystalls are washed with water and

recrystallized from methanol / acetone (8 : 1) to yield 2-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-isoindole-1,3-dione as colourless crystalls.

<u>1H-NMR (CDCl₃, 300 MHz):</u> 1.09 (t, 3H, Me), 2.19 (q, 2H, CH₂), 3.90 (s, 3 H, OMe), 4.72 (d, 2H, OCH₂CΞC), 5.18 (s, 2H, CH₂ON), 6.97 – 7.82 (m, 7H, ar).

d) O-(3-Methoxy-4-pent-2-ynyloxy-benzyl)-hydroxylamine

2-(3-Methoxy-4-pent-2-ynyloxy-benzyloxy)-isoindole-1,3-dione (27 g, 74 mmol) is suspended in a mixture of 500 ml of methanol and 50 ml of N,N-dimethylformamide. After heating this mixture to +60°C, hydrazine hydrate (8.5 g, 0.17 mol) is added. The reaction is stirred for 3 hours at +60°C and subsequently cooled down to room temperature. A mixture of 28 ml of concentrated hydrochloric acid and 80 ml of water is added to acidify the resulting suspension. Then it is filtered to remove a precipitation and the solid is washed with water / methanol. The filtrate is concentrated *in vacuo* to one third of its original volume. Sodium hydroxide (18 g, mol in 90 ml water) is added to the remainder and this mixture is extracted with diethyl ether. The combined organic layer is washed with water and brine, dried over magnesium sulfate and evaporated to give O-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydroxylamine as yellow oil.

¹H-NMR (CDCl₃, 300 MHz): 1.10 (t, 3H, Me), 2.21 (q, 2H, CH₂), 3.88 (s, 3 H, OMe), 4.65 (d, 2H, OCH₂CΞC), 4.73 (s, 2H, CH₂ON), 6.83 − 7.01 (m, 3H, ar).

e) O-(3-methoxy-4-pent-2-ynyloxy-benzyl)-hydroxylamine (5.0 g, 21 mmol) and N-ethyldiisopropylamine (Hünig's base, 5.5 g, 42 mmol) are dissolved in 60 ml of N,N-dimethylformamide. 4-chloro-DL-mandelic acid (4.1 g, 22 mmol) and (benzotriazol-1-yloxy)-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP, Castro's reagent, 10 g, 23 mmol) are added successively and the mixture is stirred for 16 h. After pouring the mixture on ice / water, it is extracted with ethyl acetate. The combined organic layer is washed with brine, dried over magnesium sulfate and evaporated under reduced pressure. The remaining oil is purified by chromatography on silica gel (ethyl acetate / hexane (4:6)) to obtain 2-(4-chloro-phenyl)-2-hydroxy-N-(3-methoxy-4-pent-2-ynyloxy-benzyloxy)-acetamide as yellow resin.

 1 H-NMR (CDCl₃, 300 MHz): 1.12 (t, 3H, Me), 2.19 (q, 2H, CH₂), 3.83 (s, 3 H, OMe), 4.69 – 4.78 (m, 4H, OCH_2CEC , CH_2ON), 5.03 (s, 1H, CHOH), 6.72-7.33 (m, 7H, ar).

According to the example A1.1 described above the compounds listed in table A1 are obtained.

Table A1:

No.	R ₁	R ₈	physico-chemical data
A1.01	4-CI-Ph-	H ₃ C CH ₃ CH ₃	m.p. 99-102
A1.02	Н	H ₃ C-CH ₃ OCH ₃	m.p. 142-145
A1.03	4-CI-Ph-	H ₃ C—CH ₃ OCH ₃ CH ₃	m.p. 149-151
A1.04	H-	H ₃ C—CH ₃ CH ₃ CH ₃	Oil
A1.05	CH ₃ -CH ₂ -	H ₃ C — CH ₃ CH ₃ CH ₃	m.p. 96-98
A1.06	CH₃-CH₂-	H ₃ C CH ₃ O CH ₃	m.p. 132-133

A1.07	4-Cl-Ph-	\ H .o.	m.p. 147-150
		H³C-CH³ O, CH³	
A1.08	H-	OH CH ₃	Oil
A1.09	CH₃-CH₂-	OH CH ₃	Oil
A1.10	CH₃-CH₂-	с⊢€	Oil
A1.11	H-	OH CI	Oil
A1.12	CH₃-CH₂-	—H	Oil
A1.13	CH₃-CH₂-	OH CI	Oil
A1.14	H-	——H	m.p. 118-120
A1.15	H-	OH Br	Oil
A1.16	CH ₃ -CH ₂ -	OH Br	Oil
A1.17	CH₃-CH₂-	OH CI	Oil .
A1.18	H-	с	m.p. 125-127

Example A2.1 : Hydroxy-(4-methoxy-phenyl)-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide

a) Hydroxy-(4-methoxy-phenyl)-acetic acid hydrazide

To a solution of hydroxy-(4-methoxy-phenyl)-acetic acid (45 g, 0.25 mol) in 300 ml of methanol are added 30 drops of concentrated sulfuric acid at room temperature and the resulting mixture is heated to reflux for 4 hours. Subsequently the mixture is cooled and evaporated in vacuo. The remainder is taken up in water and extracted with ethyl acetate. The combined organic layer isn washed with brine, dried over magnesium sulfate and evaporated. The residue, which is hydroxy-(4-methoxy-phenyl)-acetic acid methyl ester, is dissolved in 350 ml of diethyl ether. Hydrazine monohydrate (47 ml, 0.95 mol) is added dropwise at room temperature and the mixture is stirred for 1 hour. The reaction mixture is poured on water and extracted with ethyl acetate. The combined organic layer is washed with brine, dried over magnesium sulfate and evaporated, the remaining hydroxy-(4-methoxy-phenyl)-acetic acid hydrazide is sufficiently pure to be used directly in the next step.

1H-NMR (CDCl₃, 300 MHz): 3.79 (s, 3 H, OMe), 4.92 (d, 1H, CHOH), 5.91 (d, 1H, OH), 6.92 (d, 2H, ar), 7.36 (d, 2H, ar).

b) Hydroxy-(4-methoxy-phenyl)-acetic acid [1-(4-hydroxy-3-methoxy-phenyl)-meth-(E)-ylidenel-hydrazide

Vanillin (23 g, 0.15 mol) is added to a solution of hydroxy-(4-methoxy-phenyl)-acetic acid hydrazide (30 g, 0.15 mol) in 300 ml of ethanol at room temperature. After heating this mixture to reflux for 4 hours, the reaction is poured on water and extracted with ethyl acetate. The combined organic layer is washed with brine, dried over magnesium sulfate

and evaporated. The residue, which is hydroxy-(4-methoxy-phenyl)-acetic acid [1-(4-hydroxy-3-methoxy-phenyl)-meth-(E)-ylidene]-hydrazide, is sufficiently pure to be directly used in the next step.

1H-NMR (CDCl₃, 300 MHz): 3.72 (s, 3 H, OMe), 3.80 (s, 3 H, OMe), 4.99 (s, 1H, CHOH), 6.21 (d, 1H, CH=N), 6.79 – 7.42 (m, 7H, ar).

c) Hydroxy-(4-methoxy-phenyl)-acetic acid N'-(4-hydroxy-3-methoxy-benzyl)-hydrazide

A solution of hydroxy-(4-methoxy-phenyl)-acetic acid [1-(4-hydroxy-3-methoxy-phenyl)-meth-(E)-ylidene]-hydrazide (21 g, 63 mmol) in 500 ml of ethanol is hydrogenated under atmospheric pressure with hydrogen and a mixture of 5 % of palladium on charcoal (10.5 g) as catalyst. The reaction is stirred for 6 hours at room temperature. Subsequently, the mixture is filtered under argon and the solvent is evaporated to yield hydroxy-(4-methoxy-phenyl)-acetic acid N'-(4-hydroxy-3-methoxy-benzyl)-hydrazide as colourless tarr.

1H-NMR (CDCl₃, 300 MHz): 3.56 (s, 3 H, OMe), 3.63 (s, 3 H, OMe), 3.71 (d, 2H, CH₂N), 4.73 (s, 1H, CHOH), 6.55 – 6.19 (m, 7H, ar).

d) A 80 % propargyl bromide solution in toluene (2.1 g, 14.5 mmol) is added slowly at room temperature to a mixture of hydroxy-(4-methoxy-phenyl)-acetic acid N'-(4-hydroxy-3-methoxy-benzyl)-hydrazide (4.0 g, 12 mmol), 30 % sodium hydroxide solution (3.5 ml, 14.5 mmol) and catalytic amounts of tetrabutylammonium bromide in 35 ml of dichloromethane. The reaction is stirred for 16 hours at +40°C. Subsequently the mixture is evaporated and the residue is diluted with water and dichloromethane. The phases are separated and the aqueous phase is extracted three times with dichloromethane. The combined organic phase is washed with brine, dried over sodium sulfate and evaporated. The remaining oil is purified by chromatography on silica gel (ethyl acetate / hexane 7 : 3) to obtain hydroxy-(4-methoxy-phenyl)-acetic acid N'-(3-methoxy-4-prop-2-ynyloxy-benzyl)-hydrazide.

1-NMR (CDCl₃, 300 MHz): 2.35 (dt, 1H, CΞCH), 3.79 (s, 3 H, OMe), 3.82 (s, 3 H, OMe), 3.91 (d, 2H, CH₂N), 4.78 (d, 2H, OCH₂CΞC), 4.93 (s, 1H, CHOH), 6.70 – 7.26 (m, 7H, ar).

According to the example A2.1 described above the compounds listed in table A2 are obtained.

Table A2:

No.	R ₁	R ₈	physico-chemical data
A2.01	Н	OH CI	Oil
A2.02	CH ₃ -CH ₂ -	OH CI	Oil
A2.03	Н	OH CH3	Oil
A2.04	CH₃-CH₂-	OH CH3	Oil
A2.05	Н	OH CH3	Oil
A2.06	CH₃-CH₂-	OH CH3	Oil
A2.07	Н	>— ○H	Oil
A2.08	CH₃-CH₂-	>—(C)	Oil

Analogously to the above examples the compounds of tables 1 to 30 are obtained. Ph stands for phenyl

Table 1: Compounds represented by the Formula I.1

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 2: Compounds represented by the Formula I.2

$$H = \begin{array}{c} CH_3 \\ H \\ \hline \end{array} \begin{array}{c} CH_3 \\ \hline \\ H_6 \end{array} X - \begin{array}{c} H \\ \hline \\ R_{10} \end{array} O - R_{11} \end{array}$$
 (1.2)

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 3: Compounds represented by the Formula I.3

$$H = \begin{array}{c|c} CH_3 & CH_$$

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 4: Compounds represented by the Formula I.4

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

- 26 -

Table 5: Compounds represented by the Formula 1.5

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_5
 H_5
 H_6
 H_{10}
 H_{10}
 H_{11}
 H_{11}
 H_{12}
 H_{13}
 H_{14}
 H_{15}
 H_{15}

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 6: Compounds represented by the Formula I.6

$$H_3C$$
 H_3C H_4 H_5 H_6 H_{10} H_{10} H_{11} H_{10} H_{10

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 7: Compounds represented by the Formula I.7

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 8: Compounds represented by the Formula I.8

wherein the combination of the groups R₅ R₆, R₉, R₁₀, R₁₁ and X corresponds each to one row in table A.

Table 9: Compounds represented by the Formula I.9

$$H_3C - Si - H O - CH_3$$
 $R_5 - H O - R_9$
 $R_9 - CH_{11}$
 R

wherein the combination of the groups R_5 R_6 , R_9 , R_{10} , R_{11} and X corresponds each to one row in table A.

Table 10: Compounds represented by the Formula I.10

$$H_3C-O$$
 H
 $O-CH_3$
 R_5
 $X-N$
 H
 $O-R_{11}$
 $O-R_{11}$
 $O-R_{11}$
 $O-R_{12}$
 $O-R_{13}$
 $O-R_{14}$
 $O-R_{15}$
 $O-R_$

wherein the combination of the groups R_5 R_6 , R_9 , R_{10} , R_{11} and X corresponds each to one row in table A.

Table A (Ph stands for phenyl):

No.	R ₅	R ₆	X	R ₉	R ₁₀	R ₁₁
001	Н	Н	0	Ph	Н	Н
002	Н	Н	0	Ph	Н	CH ₃
003	Н	Н	0	Ph	Н	CH₂CH₃
004	Н	Н	0	Ph	Н	CH₂CECH
005	CH₃	Н	0	Ph	Н	CH₂CECH
006	Н	Н	0	Ph	CH₃	CH₂CΞCH
007	Н	Н	NH	Ph	Н	Н
800	Н	Н	ИН	Ph	Н	CH₃
009	Н	Н	NH	Ph	Н	CH₂CH₃
010	Н	Н	NH	Ph	Н	CH₂CΞCH
011	CH₃	Н	NH	Ph	Н	CH₂CECH
012	Н	Н	NH	Ph	CH₃	CH₂CΞCH
013	Н	Н	NCH ₃	Ph	Н	Н
014	Н	Н	NCH₃	Ph	Н	CH₃
015	H	H	NCH₃	Ph	Н	CH₂CH₃
016	Н	Н	NCH₃	Ph	Н	CH₂CΞCH
017	CH₃	Н	NCH ₃	Ph	Н	CH₂C∃CH

018	Н	Н	NCH₃	Ph	CH₃	CH₂CΞCH
019	Н	Н	0	4-F-Ph	H	H
020	Н	Н	ō	4-F-Ph	H	CH₃
021	Н	Н	o	4-F-Ph	Н	CH₂CH₃
022	Н	Н	0	4-F-Ph	Н	CH ₂ CECH
023	CH ₃	Н	Ō	4-F-Ph	Н	CH ₂ CECH
024	Н	Н	0	4-F-Ph	CH ₃	CH₂CECH
025	Н	Н	NH	4-F-Ph	Н	Н
026	Н	Н	NH	4-F-Ph	Н	CH ₃
027	Н	Н	NH	4-F-Ph	Н	CH₂CH₃
028	Н	Н	NH	4-F-Ph	Н	CH₂CECH
029	CH ₃	Н	NH	4-F-Ph	Н	CH₂CECH
030	Н	Н	NH	4-F-Ph	CH₃	CH₂CECH
031	Н	Н	NCH₃	4-F-Ph	Н	Н
032	Н	Н		4-F-Ph	Н	CH ₃
033	Н	Н	NCH ₃	4-F-Ph	Н	CH₂CH₃
034	Н	Н		4-F-Ph	Н	CH₂CECH
035	CH₃	Н	NCH₃	4-F-Ph	Н	CH₂CΞCH
036	Н	Н		4-F-Ph	CH₃	CH₂C∃CH
037	Н	Н	0	4-CI-Ph	Н	Н
038	Н	Н	0	4-CI-Ph	Н	CH ₃
039	Н	Н	0	4-Cl-Ph	Н	CH₂CH₃
040	Н	Н	0	4-CI-Ph	Н	CH₂CECH
041	CH₃	Н	0	4-CI-Ph	Н	CH₂CECH
042	Н	Н	0	4-Cl-Ph	CH₃	CH₂CECH
043	Н	Н	NH	4-CI-Ph	Н	Н
044	Н	Н	NH	4-Cl-Ph	Н	CH ₃
045	Н	Н	NH	4-CI-Ph	Н	CH₂CH₃
046	Н	Н	NH	4-Cl-Ph	Н	CH₂CECH
047	CH₃	Н	NH	4-Cl-Ph	Н	CH₂CΞCH
048	Н	Н	NH	4-CI-Ph	CH₃	CH₂CΞCH
049	Н	Н	NCH ₃	4-CI-Ph	Н	Н
050	Н	Н	NCH₃	4-Cl-Ph	Н	CH ₃
051	Н	Н	NCH ₃	4-CI-Ph	Н	CH₂CH₃
052	Н	Н	NCH₃	4-CI-Ph	Н	CH₂CECH
053	CH ₃	Н	NCH₃	4-CI-Ph	Н	CH₂CΞCH
054	Н	Н	NCH₃	4-Br-Ph	CH₃	CH₂CECH
055	Н	Н	0	4-Br-Ph	Н	Н
056	Н	Н	0	4-Br-Ph	H	CH₃
057	Н	Н	0	4-Br-Ph	Н	CH₂CH₃
058	Н	Н	0	4-Br-Ph	Н	CH₂CΞCH
059	CH ₃	Н	0	4-Br-Ph	Н	CH₂CΞCH
060	Н	Н	0	4-Br-Ph	CH₃	CH₂CECH

061	Ш	li.i	INU I	4 D. D.	1	Ţ.,
061	H	H	NH	4-Br-Ph	H	H
062	Н	Н	NH	4-Br-Ph	Н	CH₃
063	Н	H	NH	4-Br-Ph	H	CH ₂ CH ₃
064	Н	H	NH	4-Br-Ph	Н	CH₂CECH
065	CH₃	Н	NH	4-Br-Ph	H	CH₂C∃CH
066	H	H	NH	4-Br-Ph	CH₃	CH₂CΞCH
067	H	Н	NCH₃	4-Br-Ph	Н	Н
068	Н	H	NCH₃	4-Br-Ph	H	CH ₃
069	Н	Н	NCH₃	4-Br-Ph	Н	CH₂CH₃
070	Н	Н	NCH₃	4-Br-Ph	Н	CH₂CECH
071	CH ₃	Н	NCH₃	4-Br-Ph	Н	CH₂CΞCH
072	Н	Н	NCH₃	4-Br-Ph	CH₃	CH₂CΞCH
073	Н	Н	0	4-CH₃-Ph	Н	Н
074	Н	Н	0	4-CH₃-Ph	Н	CH₃
075	Н	H_	0	4-CH ₃ -Ph	Н	CH₂CH₃
076	Н	Н	0	4-CH ₃ -Ph	Н	CH₂CECH
077	CH₃	Н	0	4-CH ₃ -Ph	Н	CH₂CECH
078	H	Н	0	4-CH ₃ -Ph	CH ₃	CH₂CECH
079	Н	Н	NH	4-CH ₃ -Ph	Н	Н
080	Н	Н	NH	4-CH ₃ -Ph	Н	CH ₃
081	Н	Н	NH	4-CH ₃ -Ph	Н	CH₂CH₃
082	Н	Н	NH	4-CH₃-Ph	Н	CH₂CECH
083	CH₃	Н	NH	4-CH₃-Ph	Н	CH₂CECH
084	Н	Н	NH	4-CH ₃ -Ph	CH ₃	CH₂CΞCH
085	Н	Н	NCH ₃	4-CH ₃ -Ph	Н	Н
086	Н	Н	NCH ₃	4-CH ₃ -Ph	Н	CH ₃
087	Н	Н	NCH ₃	4-CH₃-Ph	Н	CH ₂ CH ₃
088	Н	Н	NCH₃	4-CH ₃ -Ph	Н	CH₂CECH
089	CH₃	Н		4-CH₃-Ph	Н	CH₂CECH
090	Н	Н	NCH ₃	4-CH₃-Ph	CH₃	CH₂CΞCH
091	Н	Н	0	4-CH₃CH₂-Ph	H	Н
092	Н	Н	0	4-CH₃CH₂-Ph	H	CH ₃
093	Н	Н	0	4-CH ₃ CH ₂ -Ph	H	CH₂CH₃
094	Н	Н	0	4-CH ₃ CH ₂ -Ph	H	CH ₂ CECH
095	CH ₃	Н	0	4-CH ₃ CH ₂ -Ph	H	CH₂CECH
096	H	H	0	4-CH ₃ CH ₂ -Ph	CH ₃	CH₂CECH
097	H	H	NH	4-CH ₃ CH ₂ -Ph	Н	H
098	H	H	NH	4-CH ₃ CH ₂ -Ph	Н	CH ₃
099	Н	H	NH	4-CH ₃ CH ₂ -Ph	Н	
100	H	H	NH	4-CH ₃ CH ₂ -Ph	H	CH₂CH₃
101	CH₃	H	NH	4-CH ₃ CH ₂ -Ph		CH₂CECH
	Н				H	CH₂CECH
102	<u> </u>	Н	NH	4-CH₃CH₂-Ph	CH₃	CH₂CECH

103	Н	Н	NCH ₃	4-CH ₃ CH ₂ -Ph	Н	Н
104	Н	Н		4-CH ₃ CH ₂ -Ph	Н	CH ₃
105	Н	Н		4-CH ₃ CH ₂ -Ph	Н	CH₂CH₃
106	Н	Н		4-CH ₃ CH ₂ -Ph	Н	CH₂C∃CH
107	CH ₃	Н	NCH ₃	4-CH₃CH₂-Ph	Н	CH₂C∃CH
108	Н	Н	NCH ₃	4-CH ₃ CH ₂ -Ph	CH₃	CH₂CECH
109	Н	Н	0	4-CF ₃ -Ph	Н	Н
110	Н	Н	0	4-CF ₃ -Ph	Н	CH ₃
111	Н	Н	0	4-CF ₃ -Ph	Н	CH₂CH₃
112	Н	Н	0	4-CF ₃ -Ph	Н	CH₂CECH
113	CH₃	Н	0	4-CF ₃ -Ph	Н	CH₂CECH
114	Н	Н	0	4-CF₃-Ph	CH ₃	CH ₂ CECH
115	Н	Н	NH	4-CF₃-Ph	Н	Н
116	Н	Н	NH	4-CF ₃ -Ph	Н	CH ₃
117	Н	Н	NH	4-CF ₃ -Ph	Н	CH₂CH₃
118	Н	Н	NH	4-CF ₃ -Ph	Н	CH₂CΞCH
119	CH ₃	Н	NH	4-CF₃-Ph	Н	CH₂CΞCH
120	Н	Н	NH	4-CF₃-Ph	СН₃	CH₂C∃CH
121	Н	Н	NCH ₃	4-CF ₃ -Ph	Н	Н
122	Н	Н	NCH ₃	4-CF₃-Ph	Н	CH₃
123	Н	Н	NCH₃	4-CF ₃ -Ph	Н	CH₂CH₃
124	Н	Н	NCH₃	4-CF ₃ -Ph	Н	CH₂CΞCH
125	CH₃	Н	NCH₃	4-CF ₃ -Ph	Н	CH₂CΞCH
126	Н	Н	NCH₃	4-CF ₃ -Ph	CH₃	CH₂CΞCH
127	Н	H	0	4-CH₃O-Ph	Н	Н
128	Н	Н	0	4-CH₃O-Ph	Н	CH₃
129	Н	Н	0	4-CH₃O-Ph	Н	CH₂CH₃
130	Н	Н	0	4-CH₃O-Ph	Н	CH₂CΞCH
131	CH₃	Н	0	4-CH₃O-Ph	Н	CH₂CΞCH
132	Н	Н	0	4-CH₃O-Ph	CH₃	CH₂CΞCH
133	Н	Н	NH	4-CH₃O-Ph	Н	Н
134	Н	Н	NH	4-CH₃O-Ph	Н	CH₃
135	Н	Н	NH	4-CH₃O-Ph	Н	CH₂CH₃
136	Н	Н	NH	4-CH₃O-Ph	Н	CH₂CΞCH
137	CH₃	Н	NH	4-CH₃O-Ph	Н	CH₂CΞCH
138	Н	Н	NH	4-CH₃O-Ph	CH ₃	CH₂CΞCH
139	Н	Н	NCH₃	4-CH₃O-Ph	Н	Н
140	Н	Н	NCH₃	4-CH₃O-Ph	Н	CH₃
141	Н	Н	NCH₃	4-CH₃O-Ph	Н	CH₂CH₃
142	Н	Н	NCH₃	4-CH₃O-Ph	Н	CH₂CΞCH
143	CH₃	Н	NCH ₃	4-CH₃O-Ph	Н	CH₂CΞCH
144	Н	Н	NCH ₃	4-CH₃O-Ph	CH₃	CH₂CΞCH

						,
145	Н	Н	0	4-CF₃O-Ph	Н	H
146	Н	Н	0	4-CF₃O-Ph	Н	CH₃
147	Н	Н	0	4-CF₃O-Ph	Н	CH₂CH₃
148	Н	Н	0	4-CF₃O-Ph	H	CH₂CΞCH
149	CH₃	Н	0	4-CF₃O-Ph	Н	CH₂CECH
150	Н	Н	0	4-CF₃O-Ph	CH₃	CH₂CΞCH
151	Н	Н	NH	4-CF₃O-Ph	Н	Н
152	H	Н	NH	4-CF₃O-Ph	Н	CH₃
153	Н	Н	NH	4-CF₃O-Ph	Н	CH₂CH₃
154	H	Н	NH	4-CF₃O-Ph	Н	CH₂CΞCH
155	CH₃	Н	NH	4-CF₃O-Ph	Н	CH₂CΞCH
156	Н	Н	NH	4-CF₃O-Ph	CH₃	CH₂CΞCH
157	Н	Н	NCH₃	4-CF₃O-Ph	Н	Н
158	Н	Н	NCH₃	4-CF₃O-Ph	Н	CH₃
159	Н	Н	NCH₃	4-CF₃O-Ph	Н	CH₂CH₃
160	Н	Н	NCH₃	4-CF ₃ O-Ph	Н	CH₂CΞCH
161	CH₃	Н	NCH₃	4-CF₃O-Ph	Н	CH₂CΞCH
162	Н	Н	NCH₃	4-CF₃O-Ph	CH₃	CH₂CΞCH
163	Н	Н	0	3,4-Cl ₂ -Ph	Н	Н
164	Н	Н	0	3,4-Cl ₂ -Ph	Н	CH₃
165	Н	Н	0	3,4-Cl ₂ -Ph	Н	CH₂CH₃
166	Н	Н	0	3,4-Cl ₂ -Ph	Н	CH₂CΞCH
167	CH₃	Н	0	3,4-Cl₂-Ph	Н	CH₂CΞCH
168	Н	Н	0	3,4-Cl ₂ -Ph	CH₃	CH₂CΞCH
169	Н	Н	ИН	3,4-Cl₂-Ph	Н	Н
170	Н	Н	ИН	3,4-Cl₂-Ph	Н	CH₃
171	Н	Н	NH	3,4-Cl₂-Ph	Н	CH₂CH₃
172	Н	Н	NH	3,4-Cl₂-Ph	Н	CH₂CΞCH
173	CH₃	Н	NH	3,4-Cl₂-Ph	Н	CH₂CΞCH
174	Н	Н	NH	3,4-Cl ₂ -Ph	CH₃	CH₂CΞCH
175	Н	Н	NCH₃	3,4-Cl ₂ -Ph	Н	Н
176	Н	Н	NCH₃	3,4-Cl₂-Ph	Н	CH₃
177	Н	Н	NCH₃	3,4-Cl₂-Ph	Н	CH₂CH₃
178	Н	Н	NCH₃	3,4-Cl₂-Ph .	Н	CH₂CΞCH
179	CH₃	Н	NCH₃	3,4-Cl ₂ -Ph	Н	CH₂CΞCH
180	Н	Н	NCH₃	3,4-Cl₂-Ph	CH₃	CH₂CΞCH
181	Н	Н	0	3,4-F₂-Ph	Н	Н
182	Н	Н	0	3,4-F₂-Ph	Н	CH₃
183	Н	Н	0	3,4-F ₂ -Ph	Н	CH₂CH₃
184	Н	Н	0	3,4-F ₂ -Ph	Н	CH₂CΞCH
185	CH₃	Н	0	3,4-F ₂ -Ph	Н	CH₂CΞCH
186	Н	Н	0	3,4-F ₂ -Ph	CH₃	CH₂CΞCH

187	Н	Н	NH	3,4-F ₂ -Ph	Н	Н
188	Н	H	NH	3,4-F ₂ -Ph	H	CH ₃
189	Н	H	NH	3,4-F ₂ -Ph	H	CH ₂ CH ₃
190	Н	H	NH	3,4-F ₂ -Ph	H	CH ₂ CECH
191	CH ₃	H	NH	3,4-F ₂ -Ph	Н	CH ₂ CECH
192	H	H	NH	3,4-F ₂ -Ph	CH₃	CH₂CECH
193	H	H		3,4-F ₂ -Ph	H	H
194	H	H		3,4-F ₂ -Ph	H	CH ₃
195	Н	H		3,4-F ₂ -Ph	H	CH ₂ CH ₃
196	Н	H		3,4-F ₂ -Ph	H	CH ₂ CECH
197	CH ₃	H		3,4-F ₂ -Ph	H	CH ₂ CECH
198	H	H		3,4-F ₂ -Ph	CH₃	CH₂CECH
199	Н	H	0	3-Cl-4-F-Ph	H	H
200	Н	H	0	3-Cl-4-F-Ph	Н	CH ₃
201	Н	H	0	3-Cl-4-F-Ph	Н	CH₂CH₃
202	H	H	0	3-Cl-4-F-Ph	Н	CH₂CECH
203	CH ₃	Н	0	3-Cl-4-F-Ph	Н	
204	H	H	0	3-Cl-4-F-Ph		CH₂CECH
205	Н	H	NH	3-CI-4-F-Ph	CH₃ H	CH₂CΞCH
206	H	Н	NH	3-CI-4-F-Ph		Н
207	Н	H	NH	3-Cl-4-F-Ph	Н	CH₃
208	H	Н	NH	3-Cl-4-F-Ph	H	CH₂CH₃
209	CH ₃	Н	NH		Н	CH₂CECH
210	H	H	NH	3-Cl-4-F-Ph 3-Cl-4-F-Ph	H	CH₂CECH
211	H	H			CH₃	CH₂C∃CH
212	H	Н	NCH ₃	3-Cl-4-F-Ph 3-Cl-4-F-Ph	H	Н
213	Н	H	NCH ₃	3-Cl-4-F-Ph	H	CH₃
214	H	H	NCH ₃	3-Cl-4-F-Ph	H	CH₂CH₃
215	CH ₃	Н	NCH ₃	3-CI-4-F-Ph	H	CH₂CECH
216	H	H	NCH ₃	3-Cl-4-F-Ph	Н	CH₂C∃CH
217	Н	H	0		CH₃	CH₂C∃CH
218	H	H	0	4-Cl-3-F-Ph 4-Cl-3-F-Ph	H	H
219	H	H	0	4-Cl-3-F-Ph	H	CH₃
220	Н	H	0	 	H	CH₂CH₃
221	CH₃	H		4-Cl-3-F-Ph	Н	CH₂CECH
222	H	H	0	4-Cl-3-F-Ph	Н	CH₂CECH
223	Н	H	O	4-Cl-3-F-Ph	CH₃	CH₂C∃CH
223	Н	H	NH	4-Cl-3-F-Ph	Н	Н
225	Н	H	NH	4-Cl-3-F-Ph	H	CH₃
	Н	H	NH	4-Cl-3-F-Ph	H	CH₂CH₃
226	 		NH	4-Cl-3-F-Ph	H	CH₂CΞCH
227	CH₃	Н	NH	4-Cl-3-F-Ph	Н	CH₂C∃CH
228	Н	Н	NH	4-CI-3-F-Ph	CH₃	CH₂CΞCH

229	H	Н	NCH₃	4-CI-3-F-Ph	Н	[H
230	Н	Н		4-CI-3-F-Ph	Н	CH ₃
231	Н	Н	NCH₃	4-Cl-3-F-Ph	Н	CH₂CH₃
232	Н	Н	NCH ₃	4-CI-3-F-Ph	Н	CH₂CΞCH
233	CH₃	Н	NCH₃	4-Cl-3-F-Ph	Н	CH₂CECH
234	Н	Н	NCH₃	4-Cl-3-F-Ph	CH₃	CH₂CECH
235	H	Н	0	CO	Н	Н
236	Н	Н	0	CO	Н	CH₃
237	Н	Н	0	CO	Н	CH₂CH₃
238	Н	H	0	CO	Н	CH₂CΞCH
239	CH₃	Н	0	CO	Н	CH₂CΞCH
240	Н	H	0	CO	CH₃	CH₂CΞCH
241	Н	Н	NH	CO	Н	Н
242	Н	Н	NH	CO	Н	CH₃
243	Н	Н	NH	CO	Н	CH₂CH₃
244	Н	Н	NH	CO	Н	CH₂C∃CH
245	CH₃	Н	NH	CO	Н	CH₂CΞCH
246	Н	Н	NH	.00	СН₃	CH₂CΞCH
247	Н	Н	NCH₃	CO	Н	Н

248	Н	Н	NCH ₃	CO	Н	CH₃
249	Н	Н	NCH₃	CO	Н	CH₂CH₃
250	H	H	NCH₃	CO	Н	CH₂CΞCH
251	CH₃	H	NCH₃		Н	CH₂CΞCH
252	Н	Н	NCH₃		CH₃	CH₂CΞCH
253	Н	H	0		H	Н
254	Н	H	0		Н	CH₃
255	Н	Н	0		H	CH₂CH₃
256	H	H	0		Н	CH₂CΞCH
257	CH₃	Н	0		Н	CH₂CΞCH
258	H	Н	0		CH₃	CH₂CΞCH
259	Н	Н	NH		Н	Н
260	H	H	NH		Н	CH₃
261	H	Н	NH		Н	CH₂CH₃
262	Н	Н	NH		Н	CH₂CΞCH

- 35 -

	1	1	1	···		
253	CH₃	Н	NH		Н	CH₂CΞCH
264	Н	Н	NH		CH₃	CH₂CΞCH
265	H	Н	NCH₃		Н	Н
266	Н	Н	NCH₃		Н	CH₃
267	Н	Н	NCH₃		Н	CH₂CH₃
268	Н	Н	NCH₃		Н	CH₂C∃CH
269	CH₃	Н	NCH₃		Н	CH₂CΞCH
270	Н	Н	NCH₃		CH₃	CH₂CΞCH
271	H	Н	0	√ _s _cı	Н	Н
272	Н	H	0	√ _s _cı	Н	CH₃
273	Н	Н	0	√ _s C₁	Н	CH₂CH₃
274	Н	H	0	SCI	Н	CH₂CΞCH
275	CH₃	Н	0	√s cı	Н	CH₂CΞCH
276	Н	Н	0	√s cı	CH₃	CH₂CΞCH
277	Н	H	NH	√ _s C _I	H	Н

278	Н	H	NH	√ _s _cı	Н	CH₃
279	Н	Н	NH	√ _s \ cı	Н	CH₂CH₃
280	Н	Н	NH	√ _s \ cı	Н	CH₂CΞCH
281	CH₃	H	NH	√ _s \ cı	Н	CH₂CΞCH
282	Н	Н	NH	S CI	CH₃	CH₂CΞCH
283	Н	Н	NCH₃	S CI	Н	Н
284	Н	Н	NCH₃	√ _s Cı	Н	CH₃
285	Н	Н	NCH ₃	√ _s d	Н	CH₂CH₃
286	Н	Н	NCH₃	√ _s C _I	Н	CH₂CΞCH
287	CH₃	Н	NCH₃	√ _s C _I	Н	CH₂CΞCH
288	Н	Н	NCH₃	√ _s C₁	CH₃	CH₂CΞCH
289	Н	Н	0	———CI	Н	Н
290	Н	Н	0	-CI	Н	CH₃
291	Н	Н	0	-CI	Н	CH₂CH₃
292	Н	Н	0	-CI	Н	СН₂СΞСН
L				l		

293 CH ₃ H O							
295 H H NH NH	293	CH₃	Н	0	————CI	H	CH₂CΞCH
296 H H NH NH CH ₃ 297 H H NH NH CH ₂ CECH 298 H H NH NH CH ₂ CECH 299 CH ₃ H NH CH ₂ CECH 300 H H NH CH ₃ CI 301 H NCH ₃ CI 302 H H NCH ₃ CI 303 H H NCH ₃ CI 304 H H NCH ₃ CI 305 CH ₃ H NCH ₃ CH ₂ CECH 306 H H NCH ₃ CH ₂ CECH 307 CI 308 CH ₂ CECH 309 CH ₃ CH ₂ CECH 300 CH ₃ CH ₂ CECH 301 CH ₂ CECH 301 CH ₂ CECH 302 CH ₃ CH ₂ CECH	294	Н	Н	0	———CI	CH₃	CH₂CΞCH
297 H H NH NH	295	H	Н	NH	———CI	Н	Н
298 H H NH NH ← CI H CH₂CECH 299 CH₃ H NH NH ← CI H CH₂CECH 300 H H NH NCH₃ ← CI H CH₂CECH 301 H H NCH₃ ← CI H CH₃ 302 H H NCH₃ ← CI H CH₃ 303 H H NCH₃ ← CI H CH₂CECH 304 H H NCH₃ ← CI H CH₂CECH 305 CH₃ H NCH₃ ← CI H CH₂CECH 306 H H NCH₃ ← CI H CH₂CECH 307 CI H CH₂CECH	296	Н	Н	NH	-CI	Н	CH₃
299 CH ₃ H NH — CI H CH ₂ CECH 300 H H NH — CI CH ₃ CH ₂ CECH 301 H H NCH ₃ — CI H H 302 H H NCH ₃ — CI H CH ₃ 303 H H NCH ₃ — CI H CH ₂ CECH 304 H H NCH ₃ — CI H CH ₂ CECH 305 CH ₃ H NCH ₃ — CI H CH ₂ CECH 306 H H NCH ₃ — CI H CH ₂ CECH	297	H	Н	NH	———CI	Н	CH₂CH₃
300 H H NH NH CH ₃ CH ₂ CECH 301 H H NCH ₃ CI H CH ₃ 302 H H NCH ₃ CI H CH ₃ 303 H H NCH ₃ CI H CH ₂ CECH 304 H H NCH ₃ CI H CH ₂ CECH 305 CH ₃ H NCH ₃ CI H CH ₂ CECH	298	Н	Н	NH	————cı	Н	CH₂CΞCH
301 H H NCH₃	299	CH₃	H	NH	————cı	Н	CH₂CΞCH
302 H H NCH ₃	300	Н	H	NH	————CI	CH₃	CH₂CΞCH
303 H H NCH ₃ \longrightarrow CI H CH ₂ CH ₃ 304 H H NCH ₃ \longrightarrow CI H CH ₂ CECH 305 CH ₃ H NCH ₃ \longrightarrow CI H CH ₂ CECH 306 H H NCH ₃ \longrightarrow CH ₃ CH ₂ CECH	301	Н	Н	NCH₃	———CI	H	Н
304 H H NCH ₃ H CH ₂ CECH 305 CH ₃ H NCH ₃ H CH ₂ CECH 306 H H NCH ₃ CH ₃ CH ₂ CECH	302	Н	Н	NCH₃	———CI	Н	CH₃
305 CH ₃ H NCH ₃ H CH ₂ CECH 306 H H NCH ₃ CH ₂ CECH	303	H	Н	NCH₃	————CI	Н	CH₂CH₃
306 H H NCH ₃ CH ₂ C≡CH	304	Н	Н	NCH ₃	-CI	H	CH₂CΞCH
	305	CH ₃	Н	NCH ₃	————cı	Н	CH₂CΞCH
	306	Н	Н	NCH ₃	————CI	CH₃	CH₂CΞCH

Table 11: Compounds represented by the Formula I.11

$$H \xrightarrow{O-CH_3} R_5 \times H \xrightarrow{O-R_{12}} H \xrightarrow{O-R_{14}} (I.11)$$

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 12: Compounds represented by the Formula I.12

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 13: Compounds represented by the Formula I.13

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 14: Compounds represented by the Formula I.14

$$H_{3}C \xrightarrow{H} O \xrightarrow{R_{5}} X \xrightarrow{H} \xrightarrow{N} \begin{array}{c} O & R_{12} & O \\ R_{13} & O & R_{14} \end{array}$$
 (1.14)

Table 15: Compounds represented by the Formula I.15

$$H_{3}C \longrightarrow H \longrightarrow R_{5} \longrightarrow H \longrightarrow R_{12} \longrightarrow R_{14} \longrightarrow R_{14} \longrightarrow R_{14} \longrightarrow R_{14} \longrightarrow R_{14} \longrightarrow R_{14} \longrightarrow R_{15} \longrightarrow R_{14} \longrightarrow R_{15} \longrightarrow R_{14} \longrightarrow R_{15} \longrightarrow R_{$$

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 16: Compounds represented by the Formula I.16

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 17: Compounds represented by the Formula 1.17

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 18: Compounds represented by the Formula 1.18

Table 19: Compounds represented by the Formula I.19

$$H_{3}C - Si - H O - CH_{3} - H O - R_{12} - R_{14} - R_$$

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 20: Compounds represented by the Formula I.20

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 21: Compounds represented by the Formula I.21

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 22: Compounds represented by the Formula I.22

WO 2004/033413

Table 23: Compounds represented by the Formula I.23

- 41 -

wherein the combination of the groups R₅ R₆, R₁₂, R₁₃, R₁₄ and X corresponds each to one row in table B.

Table 24: Compounds represented by the Formula I.24

wherein the combination of the groups R₅ R₆, R₁₂, R₁₃, R₁₄ and X corresponds each to one row in table B.

Table 25: Compounds represented by the Formula I.25

$$H_{3}C \longrightarrow \begin{array}{c} H \\ H \\ \end{array} \longrightarrow \begin{array}{c} H \\ H \\ \end{array} \longrightarrow \begin{array}{c} O \\ H \\ \end{array} \longrightarrow \begin{array}{c} H_{5} \\ H_{6} \end{array} \times \begin{array}{c} H \\ H \\ H_{13} \end{array} \longrightarrow \begin{array}{c} O \\ H_{14} \\ H_{14} \end{array} \longrightarrow \begin{array}{c} (1.25)$$

wherein the combination of the groups R₅ R₆, R₁₂, R₁₃, R₁₄ and X corresponds each to one row in table B.

Table 26: Compounds represented by the Formula I.26

$$F_{3}C \longrightarrow \begin{array}{c} H \\ H \\ \end{array} \longrightarrow \begin{array}{c} O - CH_{3} \\ R_{5} \\ R_{6} \end{array} \times \begin{array}{c} O - R_{12} \\ R_{13} \\ R_{13} \\ \end{array} \longrightarrow \begin{array}{c} O - R_{14} \\ R_{14} \\ \end{array} (1.26)$$

wherein the combination of the groups R₅ R₆, R₁₂, R₁₃, R₁₄ and X corresponds each to one row in table B.

Table 27: Compounds represented by the Formula I.27

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 28: Compounds represented by the Formula 1.28

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 29: Compounds represented by the Formula 1.29

wherein the combination of the groups R_5 R_6 , R_{12} , R_{13} , R_{14} and X corresponds each to one row in table B.

Table 30: Compounds represented by the Formula I.30

WO 2004/033413 PCT/EP2003/011218

- 43 -

Table B (Ph stands for phenyl):

No.	R ₅	R ₆	X	R ₁₂	R ₁₃	R ₁₄
001	Н	Н	0	CH₃	Н	CH₃
002	Н	Н	0	CH₃	Н	CH₂CH₃
003	Н	Н	0	CH₃	Н	N(CH ₃) ₂
004	CH₃	Н	0	CH₃	Н	CH₃
005	CH₃	Н	0	CH₃	Н	CH₂CH₃
006	CH₃	Н	0	CH₃	Н	N(CH ₃) ₂
007	Н	Н	NH	CH₃	Н	CH₃
800	Н	H	NH	CH₃	Н	CH₂CH₃
009	Н	Н	NH	CH₃	Н	N(CH ₃) ₂
010	CH₃	Н	ИН	CH₃	Н	CH₃
011	CH₃	Н	NH	CH₃	Н	CH₂CH₃
012	CH₃	Н	NH	CH₃	Н	N(CH ₃) ₂
013	Н	Н	NCH ₃	CH₃	Н	CH₃
014	Н	Н	NCH₃	CH₃	Н	CH₂CH₃
015	Н	Н	NCH₃	CH₃	Н	N(CH ₃) ₂
016	CH ₃	Н	NCH ₃	CH₃	Н	CH ₃
017	CH ₃	Н	NCH ₃	CH₃	Н	CH₂CH₃
018	CH₃	Н	NCH ₃	CH₃	Н	N(CH ₃) ₂
019	Н	Н	0	CH₂CH₃	Н	CH₃
020	H	Н	0	CH₂CH₃	Н	CH₂CH₃
021	H	Н	0	CH₂CH₃	Н	N(CH ₃) ₂
022	CH₃	Н	0	CH₂CH₃	Н	CH₃
023	CH₃	Н	0	CH₂CH₃	Н	CH₂CH₃
024	CH ₃	Н	0	CH₂CH₃	Н	N(CH ₃) ₂
025	Н	Н	NH	CH₂CH₃	H	CH₃
026	Н	Н	NH	CH₂CH₃	Н	CH₂CH₃
027	Н	Н	NH	CH₂CH₃	H	N(CH ₃)₂
028	CH ₃	Н	NH	CH₂CH₃	Н	CH₃
029	CH ₃	Н	NH	CH₂CH₃	Н	CH₂CH₃
030	CH₃	Н	NH	CH₂CH₃	Н	N(CH ₃) ₂
031	Н	H		CH₂CH₃	Н	CH₃
032	H	Н	NCH₃	CH₂CH₃	Н	CH₂CH₃
033	H	Н	NCH ₃	 	Н	N(CH ₃) ₂
034	CH₃	Н	NCH₃	CH ₂ CH ₃	H	CH ₃
035	CH ₃	Н	NCH₃	CH ₂ CH ₃	H	CH₂CH₃
036	CH₃	Н	NCH₃	CH₂CH₃	H	N(CH ₃) ₂
037	H	Н	0	CH₂CH₂CH₃	<u> </u>	CH ₃
038	Н	Н	0	CH₂CH₂CH₃	Н	CH₂CH₃
039	Н	Н	0	CH₂CH₂CH₃	<u>H</u>	N(CH ₃) ₂

040	СН₃	Н	0	CH ₂ CH ₂ CH ₃	Н	CH ₃
041	CH ₃	Н	0	CH ₂ CH ₂ CH ₃	H	CH₂CH₃
042	CH₃	H	0	CH ₂ CH ₂ CH ₃	Н	N(CH ₃) ₂
043	H	Н	NH	CH ₂ CH ₂ CH ₃	H	CH ₃
044	Н	Н	NH	CH ₂ CH ₂ CH ₃	Н	CH ₂ CH ₃
045	Н	Н	NH	CH ₂ CH ₂ CH ₃	Н	N(CH ₃) ₂
046	CH₃	Н	NH	CH ₂ CH ₂ CH ₃	Н	CH₃
047	CH ₃	Н	NH	CH ₂ CH ₂ CH ₃	Н	CH₂CH₃
048	CH₃	Н	NH	CH₂CH₂CH₃	Н	N(CH ₃) ₂
049	Н	Н	NCH ₃	CH₂CH₂CH₃	Н	CH₃
050	Н	Н	NCH₃	CH₂CH₂CH₃	Н	CH₂CH₃
051	Н	Н	NCH₃	CH₂CH₂CH₃	Н	N(CH ₃) ₂
052	CH₃	Н	NCH₃	CH₂CH₂CH₃	Н	CH₃
053	CH₃	H	NCH₃	CH₂CH₂CH₃	Н	CH₂CH₃
054	CH₃	Н	NCH₃	CH₂CH₂CH₃	Н	N(CH ₃) ₂
055	H	Н	0	CH(CH₃)₂	Н	CH₃
056	Н	Н	0	CH(CH ₃) ₂	Н	CH₂CH₃
057	Н	Н	0	CH(CH ₃) ₂	Н	N(CH ₃) ₂
058	CH ₃	Н	0	CH(CH ₃) ₂	Н	CH ₃
059	CH₃	Н	0	CH(CH ₃) ₂	Н	CH₂CH₃
060	CH₃	Н	0	CH(CH ₃) ₂	Н	N(CH ₃) ₂
061	Н	Н	NH	CH(CH₃)₂	Н	CH₃
062	H	Н	NH	CH(CH ₃) ₂	Н	CH₂CH₃
063	Н	Н	NH	CH(CH₃)₂	Н	N(CH ₃) ₂
064	CH₃	Н	NH	CH(CH ₃) ₂	Н	CH₃
065	CH ₃	Н	NH	CH(CH₃)₂	H	CH₂CH₃
066	CH₃	Н	NH	CH(CH₃)₂	Н	N(CH ₃)₂
067	Н	Н	NCH₃	CH(CH₃)₂	Н	CH₃
068	Н	Н	NCH₃	CH(CH₃)₂	Н	CH₂CH₃
069	Н	Н	NCH₃	CH(CH ₃) ₂	Н	N(CH ₃) ₂
070	CH₃	Н		CH(CH₃)₂	Н	CH₃
071	CH₃	Н	NCH₃	CH(CH₃)₂	Н	CH₂CH₃
072	CH₃	Н	NCH₃	CH(CH ₃) ₂	Н	N(CH ₃) ₂
073	Н	Н	0	C ₃ H ₅ -cycl	Н	CH₃
074	Н	Н	0	C₃H₅-cycl	Н	CH₂CH₃
075	Н	H	0	C₃H₅-cycl	Н	N(CH ₃) ₂
076	CH₃	Н	0	C ₃ H ₅ -cycl	Н	CH₃
077	CH₃	Н	0	C₃H₅-cycl	Н	CH₂CH₃
078	CH ₃	Н	0	C ₃ H ₅ -cycl	Н	N(CH ₃) ₂
079	Н	Н	NH	C ₃ H ₅ -cycl	Н	CH₃
080	Н	Н	NH	C ₃ H ₅ -cycl	Н	CH₂CH₃
081	Н	Н	NH	C ₃ H ₅ -cycl	Н	N(CH ₃) ₂
082	CH₃	Н	NH	C₃H₅-cycl	Н	CH₃

	CH₃	Н	NH	C H aval	Н	ICH CH
		Н		C ₃ H ₅ -cycl		CH₂CH₃
		Н	NH	C ₃ H ₅ -cycl	H	N(CH ₃) ₂
<u> </u>			NCH₃	C ₃ H ₅ -cycl	H	CH₃
		H	NCH₃	C₃H₅-cycl	Н	CH₂CH₃
		H		C₃H₅-cycl	H	N(CH ₃) ₂
		Н	NCH₃	C₃H₅-cycl	H	CH ₃
		H		C₃H₅-cycl	Н	CH₂CH₃
		H	NCH₃	C₃H₅-cycl	H	N(CH ₃) ₂
		H	0	CHCH₃(CH₂CH₃)	Н	CH₃
		Н	0	CHCH₃(CH₂CH₃)	H	CH₂CH₃
		Н	0	CHCH₃(CH₂CH₃)	Н	N(CH ₃) ₂
		Н	0	CHCH₃(CH₂CH₃)	Н	CH₃
		Н	0	CHCH₃(CH₂CH₃)	Н	CH₂CH₃
		Н	0	CHCH₃(CH₂CH₃)	Н	N(CH ₃) ₂
		Н	NH	CHCH₃(CH₂CH₃)	Н	CH₃
		Н	NH	CHCH₃(CH₂CH₃)	Н	CH₂CH₃
<u> </u>		Н	NH	CHCH₃(CH₂CH₃)	Н	N(CH ₃) ₂
		Н	NH	CHCH₃(CH₂CH₃)	Н	CH₃
		Н	NH	CHCH₃(CH₂CH₃)	H	CH₂CH₃
		Н	NH	CHCH₃(CH₂CH₃)	Н	N(CH ₃) ₂
L			NCH₃	CHCH₃(CH₂CH₃)	H	CH₃
		Н	NCH₃	CHCH₃(CH₂CH₃)	H	CH₂CH₃
		H	NCH₃	CHCH₃(CH₂CH₃)	Н	N(CH ₃) ₂
		Н	NCH₃	CHCH₃(CH₂CH₃)	Н	CH₃
		H	NCH₃	CHCH₃(CH₂CH₃)	Н	CH₂CH₃
		Н	NCH₃	CHCH₃(CH₂CH₃)	H	N(CH ₃) ₂
	H	Н	0	Ph	Н	CH₃
		H	0	Ph	H	CH₂CH₃
		Н	0	Ph	H	N(CH ₃) ₂
		Н	0	Ph	Н	CH₃
113		H	0	Ph	Н	CH₂CH₃
114	CH₃	I	0	Ph	Н	N(CH ₃) ₂
115	Н	Н	NH	Ph	Н	CH₃
	Н	Н	NH	Ph	Н	CH₂CH₃
117	H	Н	NH	Ph	Н	N(CH ₃) ₂
118	CH₃	H	NH	Ph	Н	CH₃
119	CH₃	Н	NH	Ph	H	CH₂CH₃
120	CH₃	Н	NH	Ph	Н	N(CH ₃) ₂
121	Н	H	NCH₃	Ph	Н	CH₃
122	Н	Н	NCH ₃	Ph	Н	CH₂CH₃
123	Н	Н	NCH ₃	Ph	Н	N(CH ₃) ₂
124	CH₃	Н	NCH₃	Ph	Н	CH ₃

125	CH ₃	Н	NCH₃	Ph	Н	CH₂CH₃
126	CH₃	Н	NCH ₃	Ph	Н	N(CH ₃) ₂
127	Н	Н	0	4-CH₃-Ph	Н	CH ₃
128	Н	Н	0	4-CH ₃ -Ph	H	CH₂CH₃
129	Н	Н	0	4-CH ₃ -Ph	H	N(CH ₃) ₂
130	CH ₃	Н	0	4-CH ₃ -Ph	H	CH ₃
131	CH₃	Н	0	4-CH ₃ -Ph	H	CH ₂ CH ₃
132	CH₃	Н	0	4-CH ₃ -Ph	H	N(CH ₃) ₂
133	Н	Н	NH	4-CH ₃ -Ph	Н	CH ₃
134	Н	H	NH	4-CH ₃ -Ph	H	CH ₂ CH ₃
135	H	Н	NH	4-CH ₃ -Ph	Н	N(CH ₃) ₂
136	CH₃	Н	NH	4-CH ₃ -Ph	Н	CH ₃
137	CH₃	Н	NH	4-CH ₃ -Ph	Н	CH₂CH₃
138	CH ₃	Н	NH	4-CH ₃ -Ph	H	
139	H	H	NCH ₃	4-CH ₃ -Ph	Н	N(CH ₃) ₂
140	Н	Н	NCH ₃	4-CH ₃ -Ph	Н	CH₃
141	H	Н	NCH ₃	4-CH ₃ -Ph		CH₂CH₃
142	CH ₃	H .		4-CH ₃ -Ph	H	N(CH ₃) ₂
143	CH ₃	H			H	CH₃
144	CH ₃	Н		4-CH₃-Ph	H	CH₂CH₃
145	Н			4-CH₃-Ph	H	N(CH ₃) ₂
146	H	H	0	4-Br-Ph	Н	CH₃
		H	0	4-Br-Ph	H	CH₂CH₃
147	Н	H	0	4-Br-Ph	H	N(CH ₃) ₂
148	CH₃	Н	0	4-Br-Ph	Н	CH₃
149	CH₃	H	0	4-Br-Ph	Н	CH₂CH₃
150	CH₃	H	0	4-Br-Ph	Н	N(CH ₃) ₂
151	Н	Н	NH	4-Br-Ph	Н	CH ₃
152	Н	H	NH	4-Br-Ph	Н	CH₂CH₃
153	Н	Н	NH	4-Br-Ph	Н	N(CH₃)₂
154	CH₃	Н	NH	4-Br-Ph	Н	CH₃
155	CH₃	Н	NH	4-Br-Ph	Н	CH₂CH₃
156	CH₃	Н	NH	4-Br-Ph	Н	N(CH ₃) ₂
157	Н	H		4-Br-Ph	Н	CH₃
158	H	Н		4-Br-Ph	Н	CH₂CH₃
159	Н	Н		4-Br-Ph	Н	N(CH ₃) ₂
160	CH₃	H		4-Br-Ph	H	CH₃
161	CH₃	Н		4-Br-Ph	Н	CH₂CH₃
162	CH₃	Н	NCH₃	4-Br-Ph	Н	N(CH ₃) ₂
163	Н	Н	0	4-CI-Ph	Н	CH₃
164	Н	Н	0	4-Cl-Ph	Н	CH₂CH₃
165	Н	Н	0	4-CI-Ph	Н	N(CH ₃) ₂
166	CH₃	Н	0	4-CI-Ph	Н	CH₃

167	CH₃	Н	0	4-Cl-Ph	Н	CH₂CH₃
168	CH₃	Н	0	4-CI-Ph	Н	N(CH ₃) ₂
169	Н	Н	NH	4-CI-Ph	Н	CH ₃
170	Н	Н	NH	4-CI-Ph	Н	CH₂CH₃
171	Н	Н	NH	4-CI-Ph	Н	N(CH ₃) ₂
172	CH₃	Н	NH	4-CI-Ph	Н	CH₃
173	CH₃	Н	NH	4-CI-Ph	Н	CH ₂ CH ₃
174	CH ₃	Н	NH	4-CI-Ph	Н	N(CH ₃) ₂
175	Н	Н	NCH₃	4-CI-Ph	Н	CH₃
176	Н	Н	NCH₃	4-CI-Ph	Н	CH₂CH₃
177	Н	Н	NCH₃	4-CI-Ph	Н	N(CH ₃) ₂
178	CH₃	Н	NCH₃	4-CI-Ph	Н	CH ₃
179	CH₃	Н	NCH ₃	4-CI-Ph	Н	CH₂CH₃
180	CH₃	Н	NCH ₃	4-CI-Ph	Н	N(CH ₃) ₂
181	Н	Н	0	3,4-Cl₂-Ph	Н	CH ₃
182	Н	Н	0	3,4-Cl₂-Ph	Н	CH₂CH₃
183	H	Н	0	3,4-Cl ₂ -Ph	Н	N(CH ₃) ₂
184	CH₃	Н	0	3,4-Cl ₂ -Ph	Н	CH ₃
185	CH₃	Н	0	3,4-Cl ₂ -Ph	Н	CH₂CH₃
186	CH₃	Н	0	3,4-Cl₂-Ph	Н	N(CH ₃) ₂
187	Н	Н	NH	3,4-Cl ₂ -Ph	Н	CH₃
188	Н	Н	NH	3,4-Cl₂-Ph	Н	CH₂CH₃
189	Н	Н	ИН	3,4-Cl ₂ -Ph	Н	N(CH ₃) ₂
190	CH ₃	Н	NH	3,4-Cl₂-Ph	Н	CH₃
191	CH₃	Н	NH	3,4-Cl ₂ -Ph	H	CH₂CH₃
192	CH₃	Н	NH	3,4-Cl₂-Ph	Н	N(CH ₃) ₂
193	Н	Н		3,4-Cl ₂ -Ph	Н	CH₃
194	Н	Н		3,4-Cl₂-Ph	Н	CH₂CH₃
195	Н	Н		3,4-Cl ₂ -Ph	Н	N(CH ₃) ₂
196	CH₃	Н		3,4-Cl₂-Ph	Н	CH₃
197	CH₃	Н		3,4-Cl₂-Ph	Н	CH₂CH₃
198	CH₃	Н		3,4-Cl ₂ -Ph	Н	N(CH ₃) ₂
199	H	Н	О		Н	CH₃
200	Н	Н	0		Н	CH₂CH₃
201	Н	Н	0		Н	N(CH₃)₂

		···				
202	CH₃	Н	0	CO	Н	CH₃
203	СН₃	Н	0	CO	Н	CH₂CH₃
204	CH₃	H	0	CO	Н	N(CH₃)₂
205	Н	Н	NH	CO	Н	CH₃
206	Н	H	NH	CO	Н	CH₂CH₃
207	Н	Н	NH	CO	Н	N(CH ₃) ₂
208	CH₃	Н	NH	CO	Н	CH₃
209	CH₃	H	NH	CO	Н	CH₂CH₃
210	CH₃	Н	NH	CO	Н	N(CH ₃) ₂
211	H	Н	NCH₃	CO	Н	СН₃
212	H	Н	NCH₃	CO	H	CH₂CH₃
213	Н	H	NCH₃	CO	H	N(CH₃)₂
214	CH₃	Н	NCH₃	CO	Н	CH₃
215	CH ₃	Н	NCH₃	CO	Н	CH₂CH₃
216	CH₃	Н	NCH₃	CO	Н	N(CH₃)₂

Formulations may be prepared analogously to those described in, for example,

WO 95/30651, which is incorporated by reference in its entirety for all useful purposes.

Biological Examples

D-1: Action against Plasmopara viticola (downy mildew) on vines

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound in a spray chamber. One day after application grape plants are inoculated by spraying a sporangia suspension (4 x 10⁴ sporangia/ml) on the lower leaf side of the test plants. After an incubation period of 6 days at +21°C and 95% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Tables 1 to 30 exhibit a good fungicidal action against Plasmopara viticola on vines. Compounds 1.004, 1.040, 5.004, 5.037, 5.040, 5.091, 23.055 and 23.056 at 200 ppm inhibit fungal infestation in this test to at least 80%, while under the same conditions untreated control plants are infected by the phytopathogenic fungi to over 80%.

D-2: Action against Phytophthora (late blight) on tomato plants

3 week old tomato plants cv. Roter Gnom are treated with the formulated test compound in a spray chamber. Two day after application the plants are inoculated by spraying a sporangia suspension (2 x 10⁴ sporangia/ml) on the test plants. After an incubation period of 4 days at +18°C and 95% r. h. in a growth chamber the disease incidence is assessed. Compounds of Tables 1 to 30 exhibit a long-lasting effect against fungus infestation. Compounds 1.004, 1.040, 1.055, 1.091, 5.004, 5.037, 5.040, 5.055, 5.091, 5.163, 23.055, 23.056 and 23.057 at 200 ppm inhibit fungal infestation in this test to at least 80%, while under the same conditions untreated control plants are infected by the phytopathogenic fungi to over 80%.

D-3: Action against Phytophthora (late blight) on potato plants

5 week old potato plants cv. Bintje are treated with the formulated test compound in a spray chamber. Two day after application the plants are inoculated by spraying a sporangia suspension (14 x 10⁴ sporangia/ml) on the test plants. After an incubation period of 4 days at +18°C and 95% r. h. in a growth chamber the disease incidence is assessed. Fungal infestation is effectively controlled with compounds of Tables 1 to 30. Compounds 1.040, 5.004, 5.040 and 23.055 at 200 ppm inhibit fungal infestation in this test to at least 80%, while under the same conditions untreated control plants are infected by the phytopathogenic fungi to over 80%.