Introdução à algoritmos

1 - Programação de computadores

1.1 - Algoritmo

- Primeira forma de representação da solução de um problema.
- Lógica de programação.
- Seqüência de passos que visa atingir um objetivo bem definido.
- Estrutura seqüencial (começo-meio-fim).
- Variáveis e controle (declaração de variáveis, manipulação de variáveis e obtenção do resultado).

1.2 - Código fonte

- Tradução de um algoritmo para uma linguagem de programação.
- Escrito em uma linguagem específica que precisa ser traduzido para linguagem de máquina para que possa ser executado.
- Linguagem de programação: conjunto de convenções e regras que especificam como transmitir informações entre pessoas e máquinas. De forma simples, é composta por dois elementos: um conjunto de símbolos (vocabulário) e um conjunto de regras (gramática) para utiliza-lo. As linguagens de programação de dividem, basicamente, em linguagens de baixo nível e linguagens de alto nível, variando a proximidade da representação com a linguagem de máquina, a quantidade e qualidade dos recursos disponibilizados para a codificação, a facilidade de aprendizagem e a facilidade de manutenção de código.

1.3 - Compilação ou interpretação

- No processor de **compilação**, um compilador irá ler o código, fazer todas as análises sintáticas do código escrito pelo programador para, por fim, gerar um arquivo um arquivo executável.
- No processo de **interpretação**, nenhum arquivo ou código é gerado, e sim uma tradução instantânea em tempo de execução do código escrito pelo programador.

1.4 - Código de máquina

O código de máquina (também chamado de linguagem de máquina), popularmente conhecido como "zeros e uns", são as instruções que o processador interpreta e executa. São basicamente números que o processador do computador decodifica afim de executar as operações identificadas pelas intruções escritas pelo programado.

2 - Técnicas de programação

Na elaboração de programas complexos é necessário utilizar um método sistemático de programação que permita a obtenção de programas confiáveis, flexíveis e eficientes. Uma proposta de metodologia de programação estabelece os seguintes passos:

- 1. Análise do problema.
- 2. Projeto do programa (algoritmos e estruturas de dados).
- 3. Implementação (codificação) e teste do programa.

A descrição de um algoritmo pode ser feita através de um pseudocódigo (linguagem algorítmica) ou através de fluxogramas. A linguagem algorítmica apresenta vantagens sobre o uso de fluxogramas (feitos com desenhos) pois é mais fácil escrever do que desenhar (na maioria dos casos) e a codificação em uma linguagem de programação acaba se tornando uma simples transcrição de palavras-chave. O algoritmo pode ser implementado em qualquer linguagem de programação e essa implementação pode ser trivial ou mais trabalhosa, dependendo principalmente das características da linguagem escolhida e dos tipos de dados nela definidos.

3 - Dados

Os dados são representados pelas informações a serem processadas por um computador. Estas informações são caracterizadas por quatro tipos de dados básicos: inteiros, reais, caracteres e dados lógicos.

3.1 - Tipos de dados

- **Inteiro:** representam dados numéricos positivos ou negativos sem parte fracionária. Exemplos: 5, 0, -56.
- **Real:** representam dados numéricos positivos ou negativos com parte fracionária. Exemplos: 5.9, 0.5, -30.7.
- Caracter: representam seqüências de letras, números e símbolos especiais. Deve ser indicada entre aspas duplas. Esse tipo de dado também é conhecido como alfanumérico, string, literal ou cadeia de caracteres. Exemplos: "Ana Luísa", "CD98A", "Fone: 5555-6666", " ", "ab*10".
- **Lógico:** representam os valores VERDADEIRO e FALSO. Esse tipo de dados também é conhecido como tipo booleano. Exemplos: VERDADEIRO, FALSO.

3.2 - Características de armazenamento

3.2.1 - Variáveis

Todo dado a ser armazenado na memória de um computador deve ser previamente identificado, ou seja, primeiro é necessário saber qual o seu tipo para depois fazer o seu armazenamento adequado. Estando armazenado, o dado poderá ser utilizado e manipulado a qualquer momento, sendo que o seu valor pode variar.

Como a memória comporta o armazenamento de inúmeros dados, cada um deve ser identificado com um nome. O nome de uma variável identifica uma região específica da memória onde um dado está armazenado. Esse nome:

- Deve iniciar sempre com letra.
- Deve ser formado por letras, números ou *underline* (_).

- Deve ser único.
- Deve ser significativo.
- Não pode conter espaços em branco.
- Não pode ser o nome de uma palavra reservada de uma linguagem.
- Em geral, não deve ser acentuado ou ter ç.

3.2.2 - Declaração de variáveis em algoritmos

Basicamente, informar o tipo a ser usado e o nome da variável. Se mais de uma variável for declarada em uma linha, separa-las por vírgula (,). Exemplos:

```
INTEIRO: quantidade;
CARACTER: nome_cliente, data_compra;
REAL: preco_produto, valor_dolar;
LOGICO: resposta;
```

3.2.3 - Constantes

Representam um dado que não pode ser alterado, ou seja, que é fixo e estável como, por exemplo, o valor do pi (3.1416).

As constantes são representadas em algoritmos por números ou textos fixos.

3.3 - Manipulação de dados

De acordo com o tipo do dado a ser manipulado, pode ser efetuado um determinado conjunto de operações.

3.3.1 - Operadores aritméticos

Em algoritmos, os operadores matemáticos que incluem as operações matemáticas mais comuns são mostrados a seguir.

Operador	Símbolo	Ação	Exemplo
Adição	+	Soma seus dois operandos	x + y
Subtração	_	Subtrai o segundo operando do primeiro operando	x – y
Multiplicação	*	Multiplica seus dois operandos	x * y
Divisão	/	Divide o primeiro operando pelo segundo operando	x / y

3.3.2 - Operadores especiais

Operador	Símbolo	Ação	Exemplo
Potência	POT	Potência entre operandos	POT(2, 3), POT(x, 10)
Raiz quadrada	RAIZ	Raiz quadrada do operando	RAIZ(25), RAIZ(x)
Resto	MOD	Resto da divisão entre os operandos	9 MOD 4, x MOD 2

3.3.3 - Operador de atribuição

Ao declarar uma variável, ela não possui valor inicial. Deve-se então atribuir um valor a esta variável e então manipula-la de acordo com o enunciado do problema. Obrigatoriamente, o tipo do valor a ser atribuído e o tipo da variável devem ser iguais.

Operador	Símbolo	Função	Exemplo
Atribuição	←	Atribuição de valor	a ← 5;

3.3.4 - Entrada e saída

Muitas vezes, uma variável é declarada no algoritmo e o valor de seu valor não é calculado via fórmula, mas sim capturado de uma entrada externa (ex.: teclado). Para tanto, utiliza-se o comando **LEIA**.

Além disso, na maioria das vezes, um resultado armazenado em uma variável ou de uma expressão deve ser divulgado ao usuário (ex.: monitor). Para tanto, utiliza-se o comando **ESCREVA**.

4 - Regras para o desenvolvimento de algoritmos

- 1. Ler o enunciado.
- 2. Entender o enunciado.
- 3. A partir do enunciado, identificar as variáveis explícitas e implícitas do problema.
- 4. A partir do enunciado, identificar o tipo e a ordem de processamento das variáveis.
- 5. Declarar o algoritmo com um nome único e significativo.
- 6. Sempre identar corretamente o algoritmo e seguir uma sintaxe/semântica pré-definida.
- 7. Iniciar a escrita do algoritmo pela criação das variáveis.
- 8. Identificar os valores iniciais das variáveis.
- 9. Efetuar a manipulação das variáveis, com uso de estruturas de decisão, repetição, leitura de valores, aplicação de fórmulas, apresentação de resultados, entre outros.
- 10. Efetuar o teste de mesa comparando o que foi feito com o que foi passado no enunciado.
- 11. Corrigir eventuais falhas.

5 - Estrutura genérica de um algoritmo

```
ALGORITMO nome_do_algoritmo

VAR

/* declaração de variáveis */

INICIO

/* inicialização de variáveis */

/* desenvolvimento (fórmulas, estruturas de decisão ou repetição, ...) */

FIM
```

5.1 - Exemplo 1

Escreva um algoritmo que leia dois números inteiros, calcule e apresente a sua soma.

Variáveis explícitas:

- Dois números (num1, num2).
- Tipo: inteiro.
- Valor inicial: leitura do teclado.

Variáveis implícitas:

- Resultado da soma (soma).
- Tipo: inteiro.
- Valor inicial: resultado da soma.

Processamento:

Ler dois valores quaisquer, calcular a soma, apresentar a soma.

Algoritmo:

```
ALGORITMO soma_de_dois_numeros

VAR

INTEIRO: num1, num2, soma;

INICIO

ESCREVA("Informe o primeiro número: ");

LEIA(num1);

ESCREVA("Informe o segundo número: ");

LEIA(num2);

soma ← num1 + num2;

ESCREVA("Resultado da soma: ", soma);

FIM
```

5.2 - Exemplo 2

Escreva um algoritmo que leia três notas de um aluno, calcule e apresente a sua média aritmética.

Variáveis explícitas:

- Três notas (nota1, nota2, nota3).
- Tipo: real.
- Valor inicial: leitura do teclado.

Variáveis implícitas:

- Média aritmética (media).
- Tipo: real.
- Valor inicial: resultado da média.

Processamento:

Ler três notas, calcular a média, apresentar a média.

Algoritmo:

```
ALGORITMO media_aritmetica

VAR

REAL: notal, nota2, nota3, media;

INICIO

ESCREVA("Informe a nota 1: ");

LEIA(notal);

ESCREVA("Informe a nota 2: ");

LEIA(nota2);

ESCREVA("Informe a nota 3: ");

LEIA(nota3);

media ← (notal + nota2 + nota3) / 3;

ESCREVA("Média do aluno: ", media);

FIM
```

5.3 - Exemplo 3

Escreva um algoritmo que calcule e apresente a área de uma circunferência cuja fórmula é pi * raio².

Variáveis explícitas:

- Raio (raio).
- Tipo: real.
- Valor inicial: leitura do teclado.

Variáveis implícitas:

- Área (area).
- Tipo: real.
- Valor inicial: resultado do cálculo.

Constante explícitas:

• Pi (3.1416).

Processamento:

Ler o valor do raio, calcular a área, apresentar a área.

Algoritmo:

```
ALGORITMO area_da_circunferencia

VAR

REAL: raio, area;

INICIO

ESCREVA("Informe o raio: ");

LEIA(raio);

area ← 3.1416 * POT(raio,2);

ESCREVA("Área da circunferência: ", area);

FIM
```

6 - Atividades

- 1. Escreva um algoritmo que calcule a área de um triângulo cuja fórmula é base x altura / 2.
- 2. Escreva um algoritmo que leia horas, minutos e segundos do teclado e apresente o tempo total em segundos.
- 3. Escreva um algoritmo que leia um número inteiro e apresente o seu antecessor e o seu sucessor.
- 4. Escreva um algoritmo que leia a nota de três provas de um aluno, calcule e escreva a média final deste aluno. Considere que a média é ponderada e que o peso das provas é 2 para a primeira prova, 3 para a segunda prova e 5 para a terceira prova.
- 5. Escreva um algoritmo que leia uma temperatura em graus Celsius e a apresente convertida em graus Fahrenheit.
- 6. Escreva um algoritmo que apresente a conversão de um valor em reais para dólar, de acordo com a taxa de câmbio informada pelo usuário.
- 7. Escreva um algoritmo que calcule e mostre o consumo médio e a autonomia que um veículo ainda teria antes de um abastecimento de combustível. Considere que o veículo sempre seja abastecido até encher o tanque e que são fornecidas apenas a capacidade do tanque, a quantidade de litros abastecidos e a quilometragem percorrida desde o último abastecimento.
- 8. Escreva um algoritmo que pergunte ao usuário a quantidade de km percorridos por um carro alugado e a quantidade de dias pelos quais ele foi alugado. Calcule e mostre o valor a pagar, sabendo que o carro custa R\$ 70,00 por dia e R\$ 0,15 por km rodado.
- 9. Todo restaurante, embora por lei não possa obrigar o cliente a pagar, cobra 10% de comissão para o garçom. Escreva um algoritmo que leia o valor gasto pelo cliente em um restaurante e mostre o valor da gorjeta e o valor total a ser pago.
- 10. Um vendedor de uma loja de sapatos recebe como pagamento 20% de comissão sobre as vendas do mês e R\$ 5,00 por cada par de sapatos vendido. Escreva um algoritmo que, dado o valor total das vendas do mês e o número de sapatos vendidos, mostre qual será o salário do vendedor naquele mês.
- 11. Escreva um algoritmo que leia o número de votos brancos, o número de votos nulos e o número de votos válidos em um município. Em seguida, calcule e escreva o percentual de votos brancos, nulos e válidos em relação ao total de eleitores do município.
- 12. Escreva um algoritmo que leia dois números inteiros e faça a troca de valores entre eles, apresentando as variáveis com seus valores trocados.

- 13. Num dia de sol, você deseja medir a altura de um prédio, porém, a trena não é suficientemente longa. Assumindo que seja possível medir sua sombra e a sombra do prédio no chão, e que você lembre de sua altura, escreva um algoritmo para ler os dados necessários e calcular a altura do prédio.
- 14. Antes do racionamento de energia ser decretado, quase ninguém falava em quilowatts; mas, agora, todos incorporaram essa palavra em seu vocabulário. Sabendo-se que 100 quilowatts de energia custa um sétimo do salário mínimo, escreva um algoritmo que receba o valor do salário mínimo e a quantidade de quilowatts gasta por uma residência e mostre na tela: a) o valor em reais de cada quilowatt e b) o valor total a ser pago.
- 15. Uma fabrica de refrigerantes vende seu produto em três formatos: lata de 350 ml, garrafa de 600 ml e garrafa de 2 litros. Tomando por base que um comerciante compre uma determinada quantidade de cada um dos formatos disponíveis, escreva um algoritmo para calcular quantos litros de refrigerante ele comprou.
- 16. Escreva um algoritmo que solicite do usuário o valor de um saque em caixa eletrônico, sendo que estarão disponíveis cédulas de 5, 10, 20, 50 e 100. O algoritmo deve apresentar a menor quantidade de cédulas possível de acordo com o saque. Exemplos:
 - **400,00:** 4 cédulas de 100, 0 cédulas de 50, 0 cédulas de 20, 0 cédulas de 10 e 0 cédulas de 5.
 - **350,00:** 3 cédulas de 100, 1 cédulas de 50, 0 cédulas de 20, 0 cédulas de 10 e 0 cédulas de 5.
 - **385,00:** 3 cédulas de 100, 1 cédula de 50, 1 cédula de 20, 1 cédula de 10 e 1 cédula de 5.