Homework Assignment 5 - Introduction To Cryptography

Ton That Tam Dinh

October 28, 2017

Problem DSDC-2.

Proof. 0) Firstly we test the this operation is close. If we have $x, y \in Z$ then $x * y \in Z$.

- 1) Identity Law: We have $e = 0 \in Z$ such that $e^*x = x = x^*e$.
- 2) Inverse Law: For every $a \in Z$ there is a $a^{-1} \in Z$. If a is odd number we have $a^{-1} = a$. Because a*a-1=a-a=0 If a is even number we have $a^{-1}=-a$. Because $a*a^{-1}=a+a=0$
- 3) When a and b are even numbers we have: (a*b)*c = (a+b) + c = a*(b+c) = a + (b+c)

if both a and b are odd numbers we have: (a*b)*c = (a - b) + c = a - (b - c) = a*(b*c) when a is even and b is odd we have: (a*b)*c = (a + b) - c = a + (b - c) = a*(b*c) when a is odd and b is even we have: (a*b)*c = (a - b) - c = a - (b + c) = a*(b*c). So for all $a, b, c \in \mathbb{Z}$ we have (a*b)*c = a*(b*c). It means operaton * sastify Commutative Law. Finnally, we have $(\mathbb{Z}, *)$ is a group.

Problem DSDC-3.

Proof. 3a) With x = -1, we can't find $y = x^{-1}$ in Q so (Q, *) is not a group. 3b) Let's define $Q1 = Q - \{1\}$

- 0) If $x, y \in Q1$ so $x + y + xy \in Q1$ it means this operation is close in Q1.
- 1) We have $e = 0 \in Q1$ sastify that x * e = e * x = x + e + x * e = x, so this operation sastifies Identity Law.
- 2) For each $x \in Q1$ 1 there is exist $y = \frac{-x}{x+1} \in Q1$ such that x * y = x + y + xy = x + y(x + 1) = 0 = e. It means this operation sastifies Inverse Law.
- 3) For all $x, y, z \in Q1$ we have $(x^*y)^*z = (x+y+xy)^*z = (x+y+xy) + z + (x+y+xy)z = x + y + xy + z + xz + yz + xyz <math>x^*(y^*z) = x + (y^*z) + x(y^*z) = x + y + z + yz + x(y + z + yz) = x + y + z + yz + xy + xz + xyz = (x^*y)^*z$ So this operaton sastifies the Communative Law. Finally, (Q1, *) is a group.

Problem DSDC-14.

Proof. Let's define $6Z = \{ 6 * x \mid x \in Z \}$ and $15Z = \{ 15 * y \mid y \in Z \}$. So $6Z \cap 15Z = \{ gcd(6, 15) * y \mid y \in Z \} = \{ 3 * y \mid y \in Z \}$ so 3 is a generator of $6Z \cap 15Z$.

Problem 1.32.

Proof. (a) 2 is primitive root modulo p when p = 7 and p = 13.

- (b) 3 is primitive root modulo p when p = 5 and p = 7.
- (c) (i) g = 5,
- (ii) g = 2,
- (iii) g = 6,
- (iv) g = 3
- (d) There are 4 primitive roots modulo 11. All of them are: 2, 6, 7, 8. The number of primitive roots modulo 11 equal to $\phi(10)$

Problem 31.

Proof. Firstly we easily test that (C - $\{1\}$, *) is the group and $G \subset C - \{1\}$. And then if we want to proof $G = \{m + n * i | m, nQ, i^2 = 1\} - \{0\}$ we just test that:

- (i) if $x, y \in G$ then $xy \in G$
- (ii) if $x \in G$ then $x^{-1} \in G$

Firstly, we will test the (i) condition. When $x, y \in G$ it means $x = m_1 + n_1 i$ and $y = m_2 + n_2 i$ so $x * y = m_1 * m_2 - n_1 * n_2 + (m_1 n_2 + m_2 n_1)i$. Since $m_1, m_2, n_1, n_2 \in Q$ so $m_1 * m_2 - n_1 * n_2 \in Q$ and $m_1 n_2 + m_2 n_1 \in Q$. It proves that $x * y \in G$ In the next step, we will test the second condition. With $x \in G$, we easily find that $x^{-1} = \frac{m-ni}{m^2-n^2}$. Since $m, n \in Q$ so that $\frac{m}{m^2-n^2}$ and $\frac{-n}{m^2-n^2} \in Q$. It means $x^{-1} \in G$