```
In [1]: import numpy as np
        import pandas as pd
        from matplotlib import pyplot as plt
        from sklearn.datasets import make_classification
In [2]: dff = pd.DataFrame({
            'x': [2,3,4,5,6,7,5,3.5,4,8],
            'y': [3.5,5,6,7,8,4,9,7,6,1.2],
            'z': [3,4,5,7,8,5,6,7,6.6,5]
        plt.scatter(dff['x'],dff['y'],c=dff['z'])
        plt.scatter(4.5,6,color='blue')
Out[2]: <matplotlib.collections.PathCollection at 0x1d19f0a2df0>
         9
         8
         7
         6
         5
         4
         3
         2
In [3]: def ed(x1,x2,z1,z2):
            return np.sqrt((x2-x1)**2 + (z2-z1)**2)
        ed(3.4,5,7,9)
Out[3]: 2.5612496949731396
In [4]: ed(3.2,4,5,3)
Out[4]: 2.1540659228538015
In [5]: np.argmin([4,5,6,7])
```

Customer Purchase

Out[5]: 0

```
In [6]: df = pd.read_csv('Social_Network_Ads .csv')
df
```

Out[6]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [7]: df.drop(columns='User ID',inplace=True)
```

```
In [8]: from sklearn.preprocessing import LabelEncoder, StandardScaler
lb = LabelEncoder()
sc = StandardScaler()
df['Gender'] = lb.fit_transform(df['Gender'])
df[['Age','EstimatedSalary']] = sc.fit_transform(df[['Age','EstimatedSalary']])
```

In [9]: df

Out[9]:

	Gender	Age	EstimatedSalary	Purchased
(1	-1.781797	-1.490046	0
1	1	-0.253587	-1.460681	0
2	2 0	-1.113206	-0.785290	0
3	0	-1.017692	-0.374182	0
4	1	-1.781797	0.183751	0
395	0	0.797057	-0.844019	1
396	1	1.274623	-1.372587	1
397	0	1.179110	-1.460681	1
398	3 1	-0.158074	-1.078938	0
399	0	1.083596	-0.990844	1

400 rows × 4 columns

```
In [10]: ind = df.iloc[:,:3]
          dep = df.iloc[:,-1]
          dep
Out[10]: 0
                 0
                 0
          2
                 0
          3
                 0
          4
                 0
          395
                 1
          396
                 1
          397
                 1
          398
                 0
          399
                 1
          Name: Purchased, Length: 400, dtype: int64
```

In [11]: ind

Out[11]:

	Gender	Age	EstimatedSalary
0	1	-1.781797	-1.490046
1	1	-0.253587	-1.460681
2	0	-1.113206	-0.785290
3	0	-1.017692	-0.374182
4	1	-1.781797	0.183751
395	0	0.797057	-0.844019
396	1	1.274623	-1.372587
397	0	1.179110	-1.460681
398	1	-0.158074	-1.078938
399	0	1.083596	-0.990844

400 rows × 3 columns

```
In [12]: xx = df.iloc
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(ind,dep,test_size=0.2,random_state=0)
```

```
In [13]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=2)
knn.fit(x_train,y_train)
```

Out[13]: KNeighborsClassifier(n_neighbors=2)

```
In [16]: from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,knn.predict(x_test))
```

```
In [21]: Accuracy = ((55+19)/(55+3+3+19))
```

```
In [22]: Accuracy
```

Out[22]: 0.925

```
In [ ]:
```