Homework - October 1, 2024

Student: Ayrton Chilibeck, achilibe@ualberta.ca Lecturer: Lili Mou, UoA.F24.466566@gmail.com

Problem 1: The Epsilon-Neighbourhood

Prove that, given

$$\lambda = 1 - \frac{\epsilon}{2||y - x||}$$

and

$$z = \lambda x + (1 - \lambda)y$$

That z is in the ϵ -neighbourhood of x.

In order to prove that z is in the ϵ -neighbourhood of λ , it suffices to prove that the distance z - x is less than ϵ . First we can rearrange the formulae to get a clear picture of the inequality:

$$z = \lambda x + (1 - \lambda)y$$
$$z - x = (\lambda x + (1 - \lambda)y) - x$$
$$= (1 - \lambda)(y - x)$$

$$\lambda = 1 - \frac{\epsilon}{2||y - x||}$$
$$\epsilon = (1 - \lambda)2\sqrt{y^2 - x^2}$$

We can now prove that $\epsilon > z - x$ by contradiction:

Suppose that $\epsilon < z - x$. Then

$$\epsilon = z - x$$

$$(1 - \lambda)2\sqrt{y^2 - x^2} = (1 - \lambda)(y - x)$$

$$2\sqrt{y^2 - x^2} = (y - x)$$

This is false, since we can take some y=3, x=2 and arrive at 10 < 1. Thus it holds that z is in the epsilon-neighbourhood of x.

Problem 2: Global optimum of a Convex Function

Prove that the global optimum of a convex function f is where $\nabla f = 0$.

Recall the definition of convexity with respect to the first-order principle from last week:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$

Figure 1: Graph of $x^2 + sin(x^3)$ depicting an annealing schedule where gradient descent will converge to a local optimum instead of a global one.

where $f: \mathbb{R}^n \to \mathbb{R}^n$. Note that this is the extension from the scalar equation from last week to n-dimensions.

Since we are given $\nabla f(x) = 0$ at our point x, we can substitute into the convexity function:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$

$$f(y) \ge f(x) + 0$$

$$f(y) \ge f(x)$$

So $\forall x,y \in \mathbb{R}^n$, $f(y) \geq f(x)$, which is the required condition to find a global optimum for a function.

Problem 3: Learning-Rate Annealing Schedule

In the gradient descent algorithm, $\alpha > 0$ is the learning rate. If is small enough, then the function value guarantees to decrease. In practice, we may anneal α , meaning that we start from a relatively large α , but decrease it gradually.

Show that α cannot be decreased too fast. If α is decreased too fast, even if it is strictly positive, the gradient descent algorithm may not converge to the optimum of a convex function.

Consider the loss contour of $x^2 + sin(x^3)$ as shown in figure 1. If we take an annealing schedule of $\alpha = \{4, 0.6\}$, then we fail to find the global optimum for this function, rather settling at a local optimum.