5.6. SUBESPACIOS INVARIANTES DE ENDOMORFISMOS

Todo endomorfismo $f: V \rightarrow V$ tiene siempre das subespacios invariantes, a seber, 10} y V. En algunos casos, estos son los das nivios subespacias invariantes de un endomorfismo g: S.C.1. Prueba que $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$, dada por $O(X) = 10^{-1}(X) = 10^{-1}$

 $f(x) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}$

salotere (B) y IR2 como sobespacios invariantes.

51 Si tuviera un subespeció musicante de dim=1, sería $V_4 = \langle \vec{V} \rangle$ con $\vec{V} \neq 0$. Entones $f_i(\vec{V}) \in V_i$ y, por tanto, $f_i(\vec{V}) = 1\vec{V}$ para algun $A \in \mathbb{R}$. Es dever, \vec{V} seria autorestor de f_i con autoresto $f_i(\vec{V}) = 1\vec{V}$ para algun $f_i(\vec{V}) = 1\vec{V}$ para autores reactes :

 $|A-2I|=\left|\begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}\right|=1^2+1=0$, no there solutiones reales

Proposition 5.6.1.

Sea V e.v. de dim. finita sobre I y f & End (V). El endomoxfismo f trere un subespació invariante de dim 1.

D/ Si dim V=n, $p_{\mathcal{G}}(\lambda)=|\mathcal{F}-1|I|$ es un polinomio en λ de gredo λ . Por el terrema fundamental del d'egebre existe λ es λ tel que λ p $(\lambda_0)=0$, es deux λ 0 es autordor de λ 1. Sea λ 1 un autordor λ 2 es inversionte por λ 3 y toere dim=1 parque λ 4 λ 5:

f(av) = af(v) = a 200 6 200.

Proposition 5.6.2.

Sea V e.v. de dim. finita sobr R y fo End(V). El ondomozfismo f trere un subespand inveniente de dim =1 02.

D/ Si dim (V)=1 el resultado es claro. Si $p_{\phi}(\lambda)=|f-2I|$ trere una raiz real, se procede como en la demostrenon de la Brop. 56.1 para obtener un sub. converiente de dim=1.

Supongamos que $p_{\varphi}(\lambda)$ no tecne scaices sacales y va $\lambda = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$

in las operawores

$$(\vec{u}_1 + \hat{v}_2) + (\vec{u}_2 + \hat{v}_2) = (\vec{u}_1 + \vec{u}_2) + \hat{v}(\vec{v}_2 + \vec{v}_2)$$

 $(d + \hat{v}_3)(\vec{u}_1 + \hat{v}_2) = (d \vec{u}_1 - \beta \vec{v}_1) + \hat{v}(\beta \vec{u}_1 + d \vec{v}_2) +$

Con ester operationes, $(V_{\mathcal{C}}, +, \bullet)$ es un espacio vectoral sobre \mathcal{C} . Sea

 $f_{C}: V_{C} \rightarrow V_{C}$, $f_{C}(\vec{u}+i\vec{v})=f(\vec{u})+if(\vec{v})$. Se compriseba facilimente que fa es lineal (pq f lo es). Si $f(\vec{v})=A\vec{v}$ con $A=M(f,\beta)$, entonom β es tembren bax as V_{C} y $f_{C}(\vec{z})=f_{Z}(\vec{u}+i\vec{v})=f(\vec{u})+if(\vec{v})$ $=A\vec{u}+iA(\vec{v})=A(\vec{u}+i\vec{v})$; es duin $A=M(f_{C},\beta)$. Paz temb, $P_{C}(\lambda)=(A-1)=P_{C}(\lambda)$

Pox tanto, $\lambda_0 = \alpha - \lambda \beta$ ($\beta \neq 0$) es tembion autoralor de f_{α} . Sea $\vec{\beta}_0 = \vec{\lambda}_0 + i\vec{y}_0 \neq \vec{0}$ un autorator de f_{α} on autoralor λ_0 .

Probaremos que

es un subespació unvariante de V mediante f. En efecto.

 \Leftrightarrow

Igualando las partes reales y las partes imaginarias

51 $\hat{\chi}_0 = \hat{6}$, W trene dim = 1 parque $\hat{y}_0 \neq 0$ ($\hat{Z} = \hat{X}_0 + 1\hat{y}_0 \neq \hat{0}$). Si $\hat{\chi}_0 \neq \hat{0}$, W trene dimensión 2. Si tuviera dim = 1, existèria YER 6.9, $\hat{y}_0 = \hat{y}_0 \hat{x}_0$. Entones,

 $f(x_0) = dx_0 - p_0y_0 = dx_0 - p_0y_0 = (d-p_0y_0)x_0$ If tendrue who autovalor $d-p_0y_0 \in (R-t_0)x_0$ in impossible p_0y_0 .

Themos supresto que f no treve autovalores reales.

 $\xi' = 5.6.2$. i luch es la mobaix de $f|_{W}$ en la bex $f_{i} = \{\vec{x}_{0}, \vec{y}_{0}\}$ de la demostración antoción? È y on la bex $f_{2} = \{\vec{x}_{0}, -\vec{y}_{0}\}$? Ey en la bex $f_{3} = \{\vec{y}_{0}, x_{0}\}$?

Como f(xo) = dxo+B(-yo) 4 f(-yo) =-Bxo+d(-yo),

Finalmente,

$$M(\xi|_{\mathbf{w}};\beta_3) = \begin{pmatrix} d - \beta \\ \beta & d \end{pmatrix}$$
.

Ej. 5.6.3 Halla un subespació invariante de dem 2 del endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (x-y, 5x+3y, 2x-4z)

S/
$$W = \langle \vec{u}_1 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \rangle$ es linv. para f y de dim = 2.

Lema 5.6.3

Sea V e.v. de dim. finita sobre lk y $f \in End(V)$. Se' $\lambda \in K$ es un valor propio de f, para todo $r = 1, 2, 3, \dots$ se treve que $Kor((f - \lambda I)^r)$ es convariante por f.

D/ Rewarda que $(f\rightarrow 2I)^r = (f\rightarrow 2I) \circ ... \circ (f\rightarrow 2I) ...$ Si $\vec{V} \in \text{Kerl}((f\rightarrow 2I)^r)$, teremos que proban que $f(\vec{V}) \in \text{Kerl}((f\rightarrow 2I)^r)$. Teremos

$$(f-2I)^{r}(f(\vec{v})) = (f-2I)^{r}(3\vec{v} + (f-2I)\vec{v})$$

 $= \lambda (f-2I)^{r}(\vec{v}) + (f-2I)^{r+1}(\vec{v})$
 $= \lambda (f-2I)^{r}(\vec{v}) + (f-2I)(f-2I)^{r}(\vec{v}) =$
 $= \lambda (\vec{v} + (f-2I)(\vec{v}) = \vec{v}$
porque $(f-2I)^{r}(\vec{v}) = \vec{o}$ pq. $\vec{v} \in \text{Ker}(f-2I)^{r}$.

Esta es una observación sobre como se puede escribir la matriz de $f: V \to V$ en una base especial hi $V = V_1 \oplus \ldots \oplus V_n$ (soma directa)

Sea
$$\beta_5 = \{\vec{n}_{5,1,\dots}, \vec{u}_{5,n_5}\}$$
 base de V_5 , $S=1,\dots, r$. Como $V = \bigoplus_{i=1}^r V_i$ (soma directa)

β=β1 U β2U. U Br es beze de V.

En la best
$$\beta$$
,
$$M(f,\beta) = \begin{pmatrix} A_1 & 0 \\ A_2 & A_2 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 & A_2 & A_2 \\ A_1 & A_2 & A_2 \end{pmatrix}$$

donde Ag es la matroit de fly en la bax \$5 (huadreda de arden $n_5 \times n_5$).