Scalability of Graph Neural Networks

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- Issues towards the large-scale GNNs
- Node-wise sampling with GraphSage
- Graph-wise sampling with ClusterGCN
- GraphSAINT

> Key idea: Generate node embeddings based on local neighborhoods.

Recap: Neighborhood Aggregation

> Intuition: Nodes aggregate information from their neighbors using neural networks.

Recap: Neighborhood Aggregation

> Intuition: Network neighborhood defines a computation graph

Recap: Neighborhood Aggregation

- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- \succ "layer-0" embedding of node A is its input feature, i.e. x_A

2) Define a loss function on the embeddings, $L(z_u)$

Graphs in the real-world can be very large

Large scale

Number of monthly active Facebook users worldwide as of 2nd quarter 2023 (in millions) 3,500 3,000 2,500 2,000 1,500 1,000 \$\tau_1 \langle_1 \langle_ Additional Information: Meta Platforms Worldwide; Meta Platforms; Q3 2008 to Q2 2023 © Statista 2023

Large number

ZINC Substances Catalogs Tranches Biological - More -

ZINC15

Welcome to ZINC, a free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable compounds in ready-to-dock, 3D formats. ZINC also contains over 750 million purchasable compounds you can search for analogs in under a minute.

Getting Started

- · Getting Started
- · What's New
- · About ZINC 15 Resources
- · Current Status / In Progress
- · Why are ZINC results "estimates"?

Ask Questions

You can use ZINC for general questions such as

- How many substances in current clinical trials have PAII
- How many natural products have names in ZINC and ar SMILES, names and calculated logP
- How many endogenous human metabolites are there? (

Graph Convolutional Network Limitations

Computationally Expensive:

- We need to generate the complete K-hop neighborhood computational graph and then need to aggregate plenty of information from its surroundings.
- > As we go deeper into the neighborhood computation graph becomes exponentially large.
- > problem while fitting these computational graphs inside GPU memory.

> The curse of Hub nodes or Celebrity nodes:

Hub nodes are those nodes which are very high degree nodes in the graph

Three paradigms toward large-scale GNNs

- Why the original GNN fails on large graph?
 - Large memory requirement.
 - Inefficient gradient update.
- > Three paradigms toward large-scale GNN:
 - Node-wise sampling
 - Layer-wise sampling
 - Graph-wise sampling

Node-wise Sampling

Layer-wise Sampling

Graph-wise Sampling

Two issues towards the large-scale GNNs

- ➤ How to design efficient sampling algorithm?
- ➤ How to guarantee the sampling quality?

GraphSAGE Idea

- ➤ So far, we have aggregated the neighbor messages by taking their (weighted) average, can we do better?
- ➤ **The idea:** not take the entire K-hop neighborhood of a target node but select few nodes at random from the K-hop neighborhood in order to generate computational graph.
 - This process is known as neighborhood sampling which provides the GraphSage algorithm its unique ability of scaling up to billions of nodes in the graph.

GraphSage is Inductive Representation Learning algorithm

- > GraphSage is an inductive version of GCNs which implies that it does not require the whole graph structure during learning, and it can generalize well to the unseen nodes.
- We don't need to learn the embeddings for each node.
- ➤ Learning an aggregation function (MEAN, POOLING, or LSTM) which when given an information (or features) from the local neighborhood of a node then it knows how to aggregate those features (learning takes place via stochastic gradient descent)

- GraphSAGE (SAmple and aggreGatE)
 - Instead of training individual embeddings for each node, generates embeddings by sampling features from neighborhoods
 - → Mini batch

- Train a set of aggregator functions that learn to aggregate feature information a node's local neighborhood
- → Aggregating

- > Mini batch: There are three steps.
 - Sample neighbourhood
 - Aggregate feature information from neighbours
 - > Predict graph context and label using aggregated information

- > Towards large-scale **GraphSAGE**:
 - Sampling mini-batch (sample target nodes as a mini-batch)
 - Sampling a fixed size set for each target nodes

> Any differentiable function that maps set of vectors to a single vector.

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

concatenate self embedding and neighbor embedding $\mathbf{h}^k_v = \sigma\left(\left[\mathbf{A}_k \cdot \overline{\mathbf{AGG}(\{\mathbf{h}^{k-1}_u, \forall u \in N(v)\})}, \mathbf{B}_k \mathbf{h}^{k-1}_v\right]\right)$ generalized aggregation Neighborhood sampling

> How to aggregate information from neighbourhood

Mean:

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

Pooling: Transform neighbor vectors and apply symmetric vector function.

$$\operatorname{AGG} = \gamma \left(\left\{ \mathbf{Q}\mathbf{h}_{u}^{k-1}, \forall u \in N(v) \right\} \right)$$

LSTM: random permutation of neighbors

$$AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$


```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
   Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                  \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                  AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
                                                                                                      Generalized Aggregators:
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};

    Mean aggregator (GCN)

2 for k = 1...K do

    Pooling aggregator

         for v \in \mathcal{V} do

    LSTM aggregator

             \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
              \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
      \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V}
                                                                                                       Use Concertation instead of SUM
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```


GraphSAGE: Weighting factor

- Weighting factor in GraphSAGE
 - $\succ \alpha_{uv}$ (importance) is defined explicitly based on the structure properties of graph.
 - All neighbors $u \in N(v)$ are equally important to node v

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

Weighting factor $\alpha_{vu} = \frac{1}{|N(v)|}$

3. Predict graph context and label using aggregated information

Node-wise Sampling: GraphSAGE

> Pros:

- Generalized aggregator.
- Mini-batch training and fixed-size neighbor sampling.

> Cons:

- Neighborhood expansion on deeper GNNs.
- No guarantees for the sampling quality.

GraphSAGE: Sample code

- > DataLoader uses **NeighborSampler** to create mini-batches.
- ➤ Each mini-batch contains a node index and local graph information about that index. The key here is to sample local graph information for each mini-batch.

> For example:

- ➤ Sampling neighboring nodes in each layer. sizes=[10, 5] means that 10 and 5 neighboring nodes are sampled in each layer.
- ➤ We also use batch_size=32 to process 32 nodes in each batch.

```
from torch_geometric.loader import NeighborSampler

loader = NeighborSampler(data.edge_index, sizes=[10, 5], batch_size=32, shuffle=True, num_nodes=data.num_nodes)
```

Lets do some example codes in the Sample code file

GCN is not trivial:

- > In standard neural networks (e.g., CNN), loss function can be decomposed as $\sum_{i=0}^{N} loss(x_i, y_i)$
- > In GCN, loss on a node not only depends on itself but all its neighbors.
- This dependency brings difficulties when performing SGD on GCN.

- > Issues come from high computation costs.
- > Suppose we desire to calculate a target node's loss with a 2-layer GCN.
- ➤ To obtain its final representation, needs all node embeddings in its 2-hop neighborhood.
- > For example: 9 nodes' embeddings needed but only get 1 loss (low utilization).

- > Idea: subsample a smaller number of neighbors
 - For example, GraphSAGE (NeurIPS'17) considers a subset of neighbors per node
 - > But it still suffers from recursive neighborhood expansion.

> Problems:

- The induced subgraph removes between group links.
- ➤ As a result, messages from other groups will be lost during message passing, which could hurt the GNN's performance.

Ways to improve the Embedding Utilization:

➤ If considering all losses at one time (full-batch), 9 nodes' embedding used and got 9 losses.

$$GCN_{2-layer}(A,X) = A\sigma(AXW^{(0)})W^{(1)}$$

- Embedding Utilization: optimal.
- > The key is to re-use nodes' embeddings as many as possible
- Focus on dense parts of the graph.

> Idea: apply graph clustering algorithm (e.g., METIS) to identify dense subgraphs.

Large graph

Sampled subgraph (small enough to be put on a GPU)

Layer-wise node embeddings update on the GPU

Original graph

Subgraphs (both 4-node induced subgraph)

> Extract small clusters based efficient clustering algorithms.

$$\bar{G} = [G_1, \cdots, G_c] = [\{V_1, \mathcal{E}_1\}, \cdots, \{V_c, \mathcal{E}_c\}],$$

$$\bar{A} = \begin{bmatrix} A_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_{cc} \end{bmatrix}, \Delta = \begin{bmatrix} 0 & \cdots & A_{1c} \\ \vdots & \ddots & \vdots \\ A_{c1} & \cdots & 0 \end{bmatrix},$$

> Random batching at the subgraph level.

> Idea: apply graph clustering algorithm (e.g., METIS) to identify dense subgraphs.

Cluster-GCN

- > Partition the graph into several clusters, remove between-cluster edges
- > Each subgraph is used as a mini-batch in SGD
- Embedding utilization is optimal because nodes' neighbors stay within the cluster

➤ Neighbor expansion control:

Only consider the nodes in the same clusters

Fix-size neighbor sampling S=2

Only sample the nodes in the clusters

> Pros:

- Good performance / Good memory usage.
- > Alleviate the neighborhood expansion problem in traditional mini-batch training.

> Cons:

Empirical results without analyzing the sampling quality.

- > Partition the graph into several clusters, remove between-cluster edges.
- > Each subgraph is used as a mini-batch in SGD.
- > Embedding utilization is optimal because nodes' neighbors stay within the cluster.
- ➤ Even though 20% edges are removed, the accuracy of GCN model remains similar.

CiteSeer	Random partitioning	Graph partitioning
1 (no partitioning)	72.0	72.0
100 partitions	46.1	71.5 (~20% edges removed)

- Issues: imbalanced label distribution
 - nodes with similar labels are clustered together.
 - Hence the label distribution within a cluster could bedifferent from the original data.
 - > Leading to a biased SGD.

> Multiple Clusters:

> A randomly select multiple clusters as a batch has been proposed.

> Two advantages:

- Balance label distribution within a batch
- > Recover some missing edges between-cluster

Mini-batch training:

- For each mini-batch, randomly sample a set of q node groups: $\{V_{t_1}, ..., V_{t_q}\} \subset \{V_1, ..., V_C\}$.
- Aggregate all nodes across the sampled node groups: $V_{aggr} = V_{t_1} \cup \cdots \cup V_{t_d}$
- Extract the induced subgraph

$$G_{aggr} = (V_{aggr}, E_{aggr}),$$

where $E_{aggr} = \{(u, v) \mid u, v \in V_{aggr}\}$

• E_{aggr} also includes between-group edges!

GraphSAINT: Problem Statements

- "Neighbour explosion", GCNs rely on aggregating neighbor information to update nodes.
- ➤ It is very intuitive that the more layers of GCNs, the more neighbors need to be considered when updating nodes; while the number of layers is fixed
- > The higher the average degree, the more neighbors need to be considered.

- ➤ Directly sample a subgraph for mini-batch training according to subgraph sampler.
- Sampler construction

Random walk sampler

Sample edge with probably $p_{u,v} \propto \pmb{B}_{u,v} + \pmb{B}_{v,u}$

 B_{u,v}: the probability of a random walk to start at u and end at v in L hops.

- Sample a small subgraph, then build a complete GNN
- Constant neighborhood size
- ➤ Not an I.I.D data sampler
- > Why?
 - > Popular users will be sampled more frequently, i.e., influencers, ...
- > How?
 - Normalize aggregration and mini batch loss by edge/node sampling frequency.

- How to eliminate the bias introduce by the sampler?
 - Normalize minibatch loss by probability of sampling each node:

$$\mathcal{L}_{\mathrm{batch}} = \sum_{v \in G_{s}} L_{v} / \lambda_{v}$$
 , $\lambda_{v} = |V| p_{v}$.

 p_v : the probability of a node $v \in V$ being sampled. p_{uv} : the probability of an edge $u, v \in E$ being sampled.

Normalize neighbor aggregation by probability of sampling each edge :

$$a(u,v) = p_{u,v}/p_v$$

- ➤ Another issue: Need to preserve connectivity → Variance reduction.
- ➤ How?
 - Important" neighbors to be sampled more frequently.
 - > Independent edge sampling: optimal edge probability for variance minimization

Sample "——" more Sample "——" less

- Extension
 - ➤ Multi-layer version of random edge sampling → Random walk sampler.
 - ➤ Variations of random walk sampler → Multi-dimensional RW, etc.

Random walk sampler

Sample edge with probably $p_{u,v} \propto$

$\boldsymbol{B}_{u,v} + \boldsymbol{B}_{v,u}$

• $B_{u,v}$: the probability of a random walk to start at u and end at v in L hops.

Given a graph, this class samples nodes and constructs subgraphs that can be processed in a mini — batch fashion.

