Contents

- 1. Introduction
- 2. System Structures
- 3. Process Concept
- 4. Multithreaded Programming
- 5. Process Scheduling
- 6. Synchronization
- 7. Deadlocks
- 8. Memory-Management Strategies
- 9. Virtual-Memory Management

pp. 455-485.

- 11. Mass-Storage Structures
- 12. I/O Systems
- 13. Protection, Security, Distributed Systems

Why Storage Management

- Motivations
 - Main memory is too small to accommodate all the data and programs permanently → Secondary Storage
 - A mechanism is needed for on-line storage of and access to both program and data residing on the secondary storage → File System
- Device Variety
 - Speed, Dedication, Read/Write, Char/Block Transfer, Synchronous Mode, etc.

A System Architecture

* All rights reserved, Tei-Wei Kuo, National Taiwan University.

File Concept – A File System

- Files
 - Each is a named collection of related information.
 - Each is a logical unit often with its interpretation left for applications, creators, or users.
 - Text, Source, Object, Executable Files
- A Directory Structure
 - Meta data & File Organization

File Concept – File Attributes

- File attributes vary from one OS to another:
 - Name Case-Sensitive or Not?
 - The only information must be kept in human-readable form
 - Identifier A Unique Tag
 - Type
 - It is only for systems that support file types.
 - Location
 - Size Current and Max Sizes
 - Protection Access Control
 - Time, Date, and User Identification
- File attributes are usually kept in the directory structure.

File System – 4.4BSD i-node

^{* &}quot;Operating system concept", Silberschatz and Galvin, Addison Wesley, pp. 411.

File Concept – File Operations

- Basic Directory Operations:
 - File Creation Space Allocation & Directory-Structure-Entry Creation
 - File Writing Write Pointer
 - File Reading Read Pointer
 - File Reposition Seek-Like Operations
 - File-Position Pointer
 - File Deletion Space Reclaiming & Directory-Structure-Entry Deletion
 - File Truncating File-Length Reseting

File Concept – File Operations

- Open, Close, Read and Write among Multiple Processes
 - File Descriptors and Tables
 - File Position Pointer, File-Open Count
 - Disk Location and Access Rights

File Concept – File Operations

- Extensions
 - File Renaming, Appending, Copying, etc.
- Other Operations
 - Attribute Retrieval and Setting
 - File Locking
 - Shared or Exclusive Locks
 - Mandatory (Windows) or Advisory (Unix) Locks
 - Search of a file
 - A File-System Traversal

File Concept – File Types

- Key Issue
 - The Recognition of File Types by OS?
- Common Technique
 - Types as Parts of File Names
 - .doc, .txt, .rtf, .mpeg, .mp3, .avi, .pdf, .ps, .tex, .exe, .com, .bin, .c, .cc, .java, .asm, .a, .bat, .sh, .o, .obj, .lib, .dll, .zip, .tar, .arc, etc.
 - Links between Files Makefile
 - A Magic Number at the Beginning of a File
 - Enforcement or Hints? → Application Duty

File Concept – File Structure

- Why File Structure?
 - File Structure versus Program Expectation
 - Extensions by Operating Systems
 - Example: Directories and Special System Calls
- Disadvantages
 - Operating System Size
 - Portability
 - A minimum number of file structures?!
 - Executable Files and Files of a Sequence of 8-Bit Bytes by Unix; A Resource Fork and a Data Fork per File by Mac

File Concept – File Structure

- Implementation
 - Packing of Logical Records into Physical Blocks by OS or Application Programs
 - Internal Fragmentation

Access Methods

- Sequential Access
 - Read-Next and Write-Next Operations
 - Reset or N-Record Skipping (Forward or Backward) – Rewinding
- Direct Access (/Relative Access)
 - A file is considered as a numbered sequence of blocks or records.
 - Read-N, Write-N, and Position-N Operations
 - Relative Block/Record Number
 - Fixed-Size Records?! Deletion Issues?!
 - Easy Simulation of Sequential Access

Access Methods

- Index-Based Access
 - Index Searching and then Record Access
 - Index Files versus Searching Methods
 - Disk-Resident Index Files?
 - Primary and Secondary Indices
 - Logical Index K_P in <K, K_P > is used to access records through the primary file organization

Directory Structure

- A hierarchical arrangement of directories and files
 - starting at root /
 - File: An abstract data type
 - Volume: A chunk of storage that holds a file system
- Several Types, e.g., SVR4: Unix System V Filesystems (S5), Unified File System (UFS)

i-list

System V:

Disk drive partition partition partition

Filesystems
boot block
super block

i-node i-node ... i-node

dir/data blocks

File Systems

- i-node:
 - Version 7: 64B, 4.3+BSD:128B, S5:64B, UFS:128B
 - File type, access permission, file size, data blocks, etc.
- Basic File Operations
 - Create, Write, Read, Reposition, Delete, Truncate.

Directory/Storage Structure

- Example File System Type of the Solaris
 - ufs, zfs general-purpose file systems
 - tmpfs a temporary file system created in DRAM
 - objfs a "virtual" file system as an interface to the kernel for debugging
 - ctfs a virtual file system that maintain "contract" information to manage which processes start when the system boots and must continue to run during operation

Directory Structure

- Directory Overview
 - Directory A Symbol Table that Translate
 File Names into Their Directory Entries.
 - Operations on a Directory
 - Searching for a File
 - Create a File
 - Delete a File
 - List a Directory
 - Rename a File
 - Traverse the File System

Directories

- Single-Level Directory
 - All files are in the same directory.
 - Problems occur when the number of files increases or when the system has more than one user.
- Two-Level Directory
 - The Master File Directory (MFD) → Multiple User File Directories (UFD's) → Files
 - - Volume:[sst.jdeck]login.com;1 & Search Path

Tree-Structured Directories

- The Root Directory → Subdirectories and/or files (Example: MS-DOS)
- Current and Home Directories
 - A child process usually inherits the current directory of its parent.
- Absolute and Relative Path Names
 - Examples: /root/spell/mail and spell/mail
 - File Searching: Executable Files or Others?
- Policies
 - Directory Deletion: Only Empty Directories?
 rm –r xxx

Acyclic-Graph Directories

- File-Sharing Implementations
 - Links A Pointer to another File or Subdirectory
 - Hard and Soft Links
 - Information Duplication
 - Consistency Issue
 - Potential Problems
 - Multiple Path Names -> Traversal and Deletion Problems

Acyclic-Graph Directories

Hard Link

 Each directory entry creates a hard link of a filename to the inode that describes the file's contents.

Symbolic Link (Soft Link)

- It is implemented as a file that contains a pathname.
- Filesize = pathname length
- Example: Shortcut on Windows
- * Problem infinite loop in tracing a path name with symbolic links 4.3BSD, no 8 passings of soft links
- * Dangling pointers

General Graph Directory

- Potential Problems:
 - Problems in Correctness and Performance in Searching Any Components.
 - Limitation on the Number of Accessed Directories?
 - Problems in File Deletion
 - Self-Referencing or a Cycle?
 - Garbage Collection: Traversing and Marking; Deletion → Extremely Time-Consuming
 - Bypassing Links during Directory Traversal?

File-System Mounting

- A Device and its Mounting Point
 - The Attached Location within the File Structure for a File System
- Features/Constraints:
 - Multiple Mounting per File System
 - Automatic Mounting
 - Device-letter:\path\file
 - Mounting over a Directory that alice
 Contains Files

- Issues for Multi-User File Sharing
 - Access Privileges of Shared Files
 - Owner, Group, Other, etc.
 - A subset of allowed operations
- Remote File Systems
 - Manual File Transfers ftp
 - Anonymous and Authenticated Access
 - Remote Directory Access Distributed File Systems; Tight Integration
 - A Browser-Based Access World Wide Web

- The Client-Server Model
 - Servers Machines that Contains Files
 - Clients Machines that Seek Access
 - Security versus Compatibility
 - Network File System (NFS) of UNIX lets the server trust the user ID presented by a client.
- Distributed Information Systems/Distributed Naming Services
 - The Domain Name System (DNS)
 provides host-name-to-network-address
 translation

- Network Information Service (NIS or yellow pages from SUN) centralizes the storage of user names, host names, printer info, etc.
- Common Internet File System (CIFS from Microsoft) is used with authentication to create a network login for file access.
- Lightweight Directory-Access Protocol (LDAP) provides a secure distributed naming mechanism.
 - Secure Single Sign-On

- **Failure Modes**
 - Disk failure, directory/metadata corruption, disk-controller failure, cable failure, hostadaptor failure, user/systems administrator failure, network failure, etc.
 - Stateless DFS ←→ Security
- Consistency Semantics
 - They specify how multiple users of a system are to access a shared file simultaneously.
 - Their enforcement needs light-weighted implementation of process synchronization.
- A file session is the series of accesses between * All rights reserved, Tei-Wei Kuo, National Taiwan University.

- UNIX Semantics
 - Writes to an open file are visible immediately to other users.
 - Some sharing mode allows the sharing of a file pointer.
- Session Semantics Andrew File System
 - Writes to an open file are not visible immediately to other users.
 - Once a file is close, the changes made to it are visible only to sessions starting later.
- Immutable-Shared-Files Semantics
 - No name reusing and contents altering.

File Sharing – UNIX Semantics

- Each "independently opened file" has its offset.
- Examples
 - Write → offset is incremented!
 - O_APPEND → offset = current file size before each write
 - Iseek() causes no I/O (only on the system open file table)
 - dup() and fork causes the sharing of entries in the (system open) file table.
 - filedes flags versus file status flags

Protection

- Motivation:
 - Keep stored information safe from physical damage (reliability) and improper access (protection).
 - Reliability versus Redundancy
 - Protection versus Controlled Access
- Types of Access:
 - Read, Write, Execute, Append, Delete, Listing of File Name and Attributes, etc
 - Higher-Level Functions such as renaming, copying, editing
 - Protection is often offered at a lower level.

Protection – Access Control

- Access Control List (ACL)
 - Access rights per user for each file/directory
 - Advantage:
 - Enable complex access methodologies.
 - Disadvantages:
 - List Length
 - Tedious Construction
 - A Variable Directory Entry

Protection

- A Condensed Version of ACL
 - Owner, Group, and Universe
 - Rights and the Owner/Group Info for Each File
 - Group List for Each User
- A password per file/subdirectory/path
 - Disadvantages:
 - A number of passwords to remember versus one password for a set of files
 - Passwords for Different Operations?

File/Storage System Implementations

- Directory Implementations
 - A Linear List <File Name, Pointers to Data Blocks>
 - Sorted Data Structures, e.g., a B-Tree, and Cache
 - Hash Table
 - Collision Problems
- Storage Systems
 - Space Allocation
 - Contiguous Allocation
 - Linked Allocation
 - Indexed Allocation

