- 1 a Yes (satisfies triangle inequality)
 - Yes (satisfies triangle inequality) b
 - Yes (satisfies triangle inequality)
 - No (does not satisfy triangle inequality) d
- 2 a Scalene
 - Isosceles b
 - Equilateral C
- Must be greater than 10 cm 3
- 4 a 6, 6.5, 7
 - b No

 - If 2n-1=3n-9 then n=8 and the sides are 15, 15, 15
 - If 3n-9=n+7 then n=8 and the values are 15, 15, 15

If 2n-1=n+7 Then n=8 and the values are 15, 15, 15

- 6 a $\theta = 46^{\circ}$, straight angle;
 - $\beta = 70^{\circ}$, complementary to $\angle EBC$;
 - $\gamma = 64^{\circ}$, alternate angles ($\angle CBD$);
 - $\alpha = 46^{\circ}$, corresponding angles ($\angle EBD$)
 - $\gamma = 80^{\circ}$, angle sum of triangle;
 - $\beta = 80^{\circ}$, vertically opposite (γ) ;
 - $\theta = 100^{\circ}$, supplementary to β ;
 - $\alpha = 40^{\circ}$, alternate angles ($\angle BAD$)
 - $\alpha = 130^{\circ}$, supplementary to $\angle ADC$;
 - $\beta = 65^{\circ}$, co-interior angles $\angle CDA$;
 - $\gamma=65^\circ$, co-interior angles $\angle ACD$
 - $\alpha = 60^{\circ}$, equilateral triangle
 - $\alpha = 60^{\circ}$, straight angle;
 - $\beta = 60^{\circ}$, angle sum of triangle
 - $a=55^{\circ}$, straight angle;
 - $b=55^{\circ}$, corresponding angles (a);
 - $g=45^{\circ}$, vertically opposite;
 - $c = 80^{\circ}$, angle sum of triangle;
 - $e=100^{\circ}$, straight angle;
 - $f = 80^{\circ}$, corresponding angles (c)
 - $m=68^{\circ}$, corresponding angles;
 - $n = 60^{\circ}$, angle sum of triangle;
 - $p=52^{\circ}$, straight angle;
 - $q = 60^{\circ}$, alternate angles (n);
 - $r=68^{\circ}$, alternate angles (m)

- **b** Sum = 1800° ; Angles = 150°
- 2 24... 2000 , 7 ... 8.00 200

 $\text{Sum} = 720^{\circ}\text{; Angles} = 120^{\circ}$

- **c** Sum = 3240° ; Angles = 162°
- **8 a** Together they form 10 straight angles
 - $b 360^{\circ}$

7 a

- 9 The exterior angles plus the interior angles add to $n imes 180^\circ$ The interior angles sum to $(n-2)180^\circ$ Therefore the sum of the exterior angles is 360°
- **10** $(n-2)180 = 4 \times 360$
 - n 2 = 8
 - n = 10
- **11** $(n-2)180^{\circ} = k360^{\circ}$
 - $\therefore 180n 360 = 360k$
 - Solving for n
 - n=2(k+1)