

BUNDESREPUBLIK DEUTSCHLAND

EP04 / 51424

REC'D	23 AUG 2004
WIPO	PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 30 953.5

Anmeldetag: 8. Juli 2003

Anmelder/Inhaber: Continental Teves AG & Co oHG,
60488 Frankfurt/DE

Bezeichnung: Verfahren zur Erkennung des am Fahrzeug
installierten Reifentyps

IPC: B 60 C 23/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1 (a) OR (b)

A 9161
03/00
EDV-L

München, den 16. Juli 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Letang

Continental Teves AG & Co. oHG
Continental AG

08.07.2003
GP/JC
EM 2003/168

Dr. S. Kluge
Dr. I. Runge
Dr. A. Köbe
Dr. M. Grießer
F. Edling

Verfahren zur Erkennung des am Fahrzeug installierten Reifentyps

Die Erfindung betrifft ein Verfahren zur Erkennung des am Fahrzeug installierten Reifentyps gemäß Oberbegriff von Anspruch 1.

Es ist bekannt die Schwingungseigenschaften eines Fahrzeugreifens mittels einer Fourier-Analyse oder ähnlichen Verfahren zu bestimmen. In Fig. 1 ist hierzu ein typisches Beispiel eines Reifens mit einer ausgeprägten Peak-Frequenz f_p bei etwa 40 Hz dargestellt.

Aufgabe der Erfindung ist es ein Verfahren bereitzustellen, welches die an dem Fahrzeug installierten Reifentypen aufgrund ihrer Schwingungseigenschaften erkennt.

Diese Aufgabe wird erfindungsgemäß durch das Verfahren nach Anspruch 1 gelöst.

Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens gehen aus der nachfolgenden Beschreibung der Figuren hervor.

Hierbei zeigt:

Fig. 1 ein bekanntes Frequenzspektrum eines Reifens,
Fig. 2 unterschiedliche Reifentypen/-dimensionen mit unterschiedlichen Peak-Frequenzen bei einer betrachteten Geschwindigkeit, und

- 2 -

Fig. 3 die Abhangigkeit der Druckempfindlichkeit von der Peak-Frequenz bei einer betrachteten Geschwindigkeit.

In Fig. 1 ist ein typisches Frequenzspektrum eines Reifens dargestellt. Auf der Abszisse ist die Frequenz in Hertz aufgetragen und auf der Ordinate die Amplitude in einer willkurlichen Einheit. In dem gezeigten Beispiel sieht man eine ausgepragte Peak-Frequenz f_p bei etwa 40 Hz.

Fig. 2 zeigt unterschiedliche Reifentypen/-dimensionen A, B, C welche jeweils unterschiedliche Peak-Frequenzen f_A , f_B , f_C aufweisen. Fig. 2 stellt hierbei nur die Abhangigkeit zwischen dem Reifentyp und der Peak-Frequenz bei einer betrachteten Geschwindigkeit fur das betrachtete Fahrzeug dar.

In Fig. 3 ist die Druckempfindlichkeit des Reifenabrollumfangs dU/dp gegen die Peak-Frequenz f_p bei einer betrachteten Geschwindigkeit fur das betrachtete Fahrzeug aufgetragen.

Das in Fig. 1 dargestellte Frequenzspektrum wird auf bekannte Weise aus z. B. am Fahrzeug vorhandenen ABS-Sensoren, welche die Dreheigenschaften (z. B. Drehgeschwindigkeit) der Fahrzeugegrader ermitteln, mittels einer Fourier-Analyse bestimmt. Hierbei ergibt sich eine ausgepragte Peak-Frequenz f_p bei etwa 40 Hz. Die Lage der Peak-Frequenz f_p ist hierbei abhangig von den Reifeneigenschaften, wie z. B. dem Reifendruck, und der Geschwindigkeit des Fahrzeugs.

Es hat sich gezeigt, dass die Lage der Peak-Frequenz f_p geeignet ist zur Bestimmung des vorliegenden Reifentyps. In Fig. 2 sind exemplarisch drei verschiedene Reifentypen/-dimensionen A, B, C dargestellt, welche unterschiedliche Peak-Frequenzen f_A , f_B , f_C aufweisen. Die Peak-Frequenzen konnen hierbei als feste Werte (z. B. 40 Hz) oder als Wertebereiche (z. B. 38 Hz - 42

- 3 -

Hz) definiert sein, um z. B. auch vorhandene Herstellungstoleranzen der Reifen zu berücksichtigen. Der ermittelte Reifentyp kann an weitere Fahrzeugsysteme wie z. B. ABS weitergegeben werden um dort zur Anpassung von Regelalgorithmen verwendet zu werden.

Dieses Verfahren zur Erkennung des Reifentyps ist auch ganz besonders geeignet zur Charakterisierung der Reifen für ein Reifendruckkontrollsystem welches auf Basis der druckbedingten Änderung des Reifenabrollumfangs U oder auf Basis der druckabhängigen Peak-Frequenz f_p arbeitet. Für diese Reifendruckkontrollsysteme stellt sich das Problem, dass die Druckempfindlichkeit des Reifenabrollumfangs dU/dp bzw. die Druckempfindlichkeit der Peak-Frequenz df_p/dp stark vom Reifen abhängt. Zu beachten ist hierbei, dass die den Reifen charakterisierende Peak-Frequenz f_p geschwindigkeitsabhängig ist. Es ist also sicherzustellen, dass die Bestimmung der Peak-Frequenz f_p jeweils bei der selben Geschwindigkeit oder innerhalb desselben Geschwindigkeitsbereichs erfolgt. Da das betrachtete Fahrzeug nicht nur mit identischen Reifen an allen Rädern ausgestattet sein kann, können sich u. U. auch unterschiedliche Peak-Frequenzen ergeben.

Es besteht allerdings eine Abhängigkeit zwischen der Lage der Peak-Frequenz f_p und der Druckempfindlichkeit der Reifen. Diese Abhängigkeit bzw. Korrelation zwischen der Peak-Frequenz f_p und der Druckempfindlichkeit des Abrollumfangs dU/dp ist in Fig. 3 dargestellt. Peak-Frequenzen mit einer höheren Frequenz weisen auch eine höhere Druckempfindlichkeit des Reifenabrollumfangs dU/dp auf. Diese Erkenntnis wird bei dem erfundungsgemäßen Verfahren berücksichtigt um die Erkennungsschwellen für einen Reifenluftdruckverlust festzulegen. Bei bisherigen Reifendruckkontrollsystemen wurden die Erkennungsschwellen unabhängig von den Reifeneigenschaften festgelegt, was bei manchen Systemen je nach Auslegung zu Fehlwarnungen oder ausbleibenden Warnungen

führte. Die Berücksichtigung der Reifeneigenschaften bei einem Reifendruckkontrollsyste m dient somit zum verbesserten Erkennen eines Reifendruckverlustes und zwar bei nahezu gleichen Druckschwellen für alle Reifen. Hierbei ist die Abhängigkeit zwischen der Peak-Frequenz f_p und der Druckempfindlichkeit des Abrollumfangs dU/dp z. B. in Form eines Kennfelds oder über eine mathematische Funktion abgelegt. Dieses Kennfeld kann man sich z. B. als Tabelle oder Diagramm vorstellen, wobei über die Fahrzeuggeschwindigkeit v und die Peak-Frequenz f_p die unterschiedlichen Reifentypen gemäß einer Funktion $f(f_p, v)$ aufgetragen sind. Aus diesem Kennfeld kann einerseits direkt die Peak-Frequenz f_p bei einer bestimmten Geschwindigkeit v abgelesen bzw. entnommen werden und andererseits kann auch eine Peak-Frequenz f_p bei einer bestimmten Fahrzeuggeschwindigkeit v aus der Funktion $f(f_p, v)$ ermittelt werden, z. B. per Interpolation oder Betrachtung der Steigung. Der Verlauf der Peak-Frequenz f_p über die Fahrzeuggeschwindigkeit v gibt somit einen direkten Aufschluss über den vorliegenden Reifentyp. Ein solches Kennfeld muss fahrzeugspezifisch ermittelt werden.

Im Folgenden wird das erfindungsgemäße Verfahren in einzelnen Schritten vorgestellt.

Schritt 1: Einstellen des Solldrucks (empfohlener Reifenluftdruck) der Fahrzeugreifen und Betätigen eines Resetknopfs zum Starten des erfindungsgemäßen Verfahrens.

Schritt 2: Bestimmung der Peak-Frequenz f_p bei Solldruck der einzelnen Reifen unter Berücksichtigung der Fahrzeuggeschwindigkeit aus dem Frequenzspektrum der Fourier-Analyse auf an sich bekannte Weise.

Schritt 3: Bestimmung der charakteristischen Reifeneigenschaften wie z. B. die Druckempfindlichkeit des Reifenabrollumfangs oder die Druckempfindlichkeit der Peak-Frequenz f_p aus einem abgelegten Kennfeld (siehe Fig. 3).

Für die Verwendung des erfindungsgemäßen Verfahrens in anderen Fahrzeugsystemen können noch die folgenden Schritte notwendig sein.

Schritt 4: Auswahl der verwendeten Erkennungsschwellen/Warnschwellen in Abhängigkeit von z. B. der Druckempfindlichkeit des Reifenabrollumfangs oder der Druckempfindlichkeit der Peak-Frequenz f_p .

Schritt 5: Übermittlung der geschwindigkeitsabhängigen Peak-Frequenz f_p bei Solldruck und der Erkennungsschwellen/Warnschwellen an ein nachgeschaltetes System z. B. Reifendruckkontrollsystem, ABS, etc.

Grundsätzlich könnte die Druckempfindlichkeit des Abrollumfangs oder die Druckempfindlichkeit der Peak-Frequenz über korrelierende Schwingungseigenschaften des Reifens ermittelt werden, die auch auf andere Weise ausgewertet werden können, z. B. über Auswertung einer charakteristischen Radbeschleunigung.

Patentansprüche:

1. Verfahren zur Erkennung des am Fahrzeugs installierten Reifentyps, **gekennzeichnet durch** die Schritte
 - Einstellen des Solldrucks der Fahrzeugreifen,
 - Betätigen eines Resetknopfs zum Starten des erfundungsgemäßen Verfahrens,
 - Bestimmung der Peak-Frequenz f_p bei Solldruck der einzelnen Reifen und unter Berücksichtigung der Fahrzeuggeschwindigkeit,
 - Bestimmung mindestens einer charakteristischen Reifeeigenschaft, z. B. Druckempfindlichkeit des Abrollumfangs des Reifens, Druckempfindlichkeit der Peak-Frequenz f_p , etc., aus der Peak-Frequenz f_p .
2. Verfahren gemäß Anspruch 1, **dadurch gekennzeichnet**, dass die Peak-Frequenz f_p aus dem Frequenzspektrum einer Analysefunktion, wie z. B. der Fourier-Analyse, bestimmt wird.
3. Verfahren nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, dass die Peak-Frequenz f_p bei einer bestimmten Fahrzeuggeschwindigkeit oder innerhalb eines bestimmten Fahrzeuggeschwindigkeitsbereichs ermittelt werden.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, dass die charakteristische Reifeeigenschaft z. B. in einem Kennfeld oder über eine mathematische Funktion abgelegt ist, welches die Korrelation zwischen der Peak-Frequenz f_p der charakteristischen Reifeeigenschaft unter Berücksichtigung der Fahrzeuggeschwindigkeit beschreibt.

- 7 -

5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, **dadurch gekennzeichnet**, dass die Peak-Frequenz fp und/oder die mindestens eine charakteristische Reifeneigenschaft anderer Fahrzeugsystemen, wie z. B. einem Antiblockiersystem (ABS) oder einem Reifendruckkontrollsystem (DDS), zugeführt werden.
6. Computerprogrammprodukt, **dadurch gekennzeichnet**, dass dieses einen Algorithmus definiert, welcher ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 5 umfasst.

Fig. 1

Fig. 2

Fig. 3