Gestion de Portefeuille

TP-7: Simulation d'une gestion selon un Budget Risque

Patrick Hénaff

Février-Mars 2020

L'objet de ce TP est de se familiariser avec les packages de "backtesting" disponibles dans R. pour cela, on propose de reproduire une analyse réalisée avec le package "riskParityPortfolio", mais en utilisant un nouveau jeu de données, et en portant quelques modifications à l'exemple proposé.

Question 1: Calcul du portefeuille tangent.

On rappelle que la frontière efficiente en présence d'un taux sans risque est la solution du problème:

$$\min_{w} \ w^{T} \Sigma w$$
 s.t.
$$\left(1 - w^{T} \mathbf{1}\right) r_{f} + w^{T} \mu = \mu^{*}$$

et que le portefeuille tangent est la solution de ce programme, avec des poids normalisés. De façon équivalente, le portefeuille tangent est la solution du programme qui maximise le ratio de Sharpe:

$$\max_{w} \frac{\mu^{T}w - r_{f}}{\sqrt{w^{T}\Sigma w}}$$
 s.t.
$$\mathbf{1}^{T}w = 1$$

$$w >= 0$$

L'algorithme proposé dans la vignette résoud par contre:

$$\min_{w} w^{T} \Sigma w$$
s.t.
$$w^{T} \mu = 1$$

$$w >= 0$$

Le portefeuille tangent étant obtenu en normalisant la solution.

- L'algorithme "Portefeuille Tangent", tel qu'il est programmé dans la vignette est-il correct? Sinon, indiquez la modification à apporter.
- Modifiez le programme pour prendre en compte des contraintes linéaires sur les poids, dans le calcul du portefeuille tangent:

$$A^T w \le b$$

• selon les conditions de marché, le portefeuille tangent n'est pas toujours défini. Veillez à bien prendre en compte ces conditions dans votre mise en oeuvre du programme.

Question 2: Comparaison de diverses stratégies d'allocation, sans contraintes

Pour les simulations historiques, on utilise les données hebdomadaires suivantes:

```
kable(table.Stats(weekly.price), "latex", booktabs=T, caption="Univers des titres") %>%
kable_styling(latex_options=c("scale_down", "HOLD_position"))
```

Table 1: Univers des titres

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	КО
Observations	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000	741.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	2.5327	36.8500	11.6809	0.9694	54.1402	23.4231	30.2404	30.1948	13.3597	31.5091	13.4239
Quartile 1	7.9867	137.1000	21.8975	6.6100	107.0507	45.1842	49.9781	61.9481	26.9171	46.2184	20.7813
Median	18.8456	312.5500	32.7671	8.9751	160.4149	81.2343	60.8535	109.3016	67.8348	64.1549	32.1200
Arithmetic Mean	27.5134	724.7291	57.5284	8.3669	172.6737	101.0868	58.5323	111.1555	94.2241	67.2982	31.7755
Geometric Mean	18.0171	367.0813	41.4975	7.8527	155.4727	81.9364	57.5419	98.7085	65.5687	63.0729	29.8709
Quartile 3	37.1323	987.7100	69.8410	10.3964	231.0827	140.3309	66.7727	156.5916	143.5218	77.5508	39.8951
Maximum	138.8625	3401.8000	244.4270	12.7610	392.6400	336.4500	76.8423	233.0639	286.1000	143.4149	58.1404
SE Mean	1.0115	30.7337	1.9803	0.0989	2.9305	2.5262	0.3825	1.9085	2.7801	0.9525	0.4024
LCL Mean (0.95)	25.5276	664.3934	53.6408	8.1728	166.9206	96.1274	57.7814	107.4088	88.7663	65.4282	30.9855
UCL Mean (0.95)	29.4991	785.0648	61.4160	8.5611	178.4268	106.0462	59.2832	114.9022	99.6819	69.1682	32.5655
Variance	758.1276	699920.2780	2905.8254	7.2484	6363.5735	4728.9306	108.4112	2698.9315	5727.1063	672.3233	119.9938
Stdev	27.5341	836.6124	53.9057	2.6923	79.7720	68.7672	10.4121	51.9512	75.6776	25.9292	10.9542
Skewness	1.9784	1.5217	1.7119	-0.7001	0.6902	1.2379	-0.4778	0.2757	0.8280	1.1131	0.1996
Kurtosis	4.0616	1.4817	2.0731	-0.1780	-0.4918	1.0327	-0.7707	-1.3051	-0.4312	0.5583	-0.9211

Le taux sans risque annualisé est fourni à une périodicité mensuelle:

```
tmp <- read.csv("FEDFUNDS.csv", header=TRUE, sep=",")
rf_rate <- xts(tmp$FEDFUNDS/100.0, date(tmp$DATE))</pre>
```

```
## Warning: tz(): Don't know how to compute timezone for object of class factor;
## returning "UTC". This warning will become an error in the next major version of
## lubridate.
```

```
colnames(rf_rate) <- "Rf"

# fonction pour interpoler la valeur correspondant à une date
get.rf <- function(dt) {
  approx(x=index(rf_rate), y=rf_rate, xout=dt, rule=2)$y
}</pre>
```


En suivant l'exemple donné dans la vignette "Risk Parity Portfolio", effectuer une simulation des stratégies suivantes, et commentez les résultats.

- 1/N
- Portefeuille tangent
- Portefeuille "risk parity"

Question 3: Comparaison de diverses stratégies d'allocation, avec contraintes de diversification

Ajoutez les contraintes suivantes aux portefeuilles "risk parity" et "tangent", et exécutez les simulations de gestion. Comparez ces résultats aux simulations de la question 2.

$$w_i \le 25\%$$

$$w_{AAPL} + w_{MSFT} + w_{AMZN} \le 40\%$$