Vorlesung Analysis II im Sommersemester 2013 ${\rm Wilhelm\ Singhof}$

Teil I: Differenzialrechnung mehrerer Veränderlicher

1. Normierte und metrische Räume: Definitionen und Beispiele

Def. Sei V ein (reeller) Vektorraum. Eine Norm auf V ist eine Abbildung

$$\|\cdot\|: V \to \mathbb{R}, v \mapsto \|v\|,$$

die die folgenden Eigenschaften hat:

- (1) $||v|| \ge 0$ für alle $v \in V$.
- $(2) \parallel v \parallel = 0 \Longleftrightarrow v = 0.$
- (3) $\|\alpha v\| = |\alpha| \cdot \|v\|$ für $v \in V$ und $\alpha \in \mathbb{R}$.
- (4) $\|v+w\| \le \|v\| + \|w\|$ für alle $v, w \in V$ (Dreiecksungleichung).

Ein normierter Raum ist ein Paar $(V, \|.\|)$, wobei V ein Vektorraum und $\|.\|$ eine Norm auf V ist. Meist sagt man: "Sei V ein normierter Raum" statt "sei $(V, \|.\|)$ ein normierter Raum".

Beispiel: Auf $V = \mathbb{R}^n$ erhält man Normen $\| \cdot \|_1$, $\| \cdot \|_{\infty}$ und $\| \cdot \|_2$ folgendermaßen: Ist $v = (x_1, \dots, x_n) \in \mathbb{R}^n$, so sei

$$||v||_1 := |x_1| + \ldots + |x_n|,$$

 $||v||_{\infty} := \max\{|x_1|, \ldots, |x_n|\},$
 $||v||_2 := (x_1^2 + \ldots + x_n^2)^{1/2}.$

Um die Dreiecksungleichung für $\| \cdot \|_2$, die sog. *Euklidische Norm*, nachzuweisen, braucht man:

Satz 1. (Cauchy-Schwarzsche Ungleichung)

Sind $v = (x_1, \ldots, x_n), w = (y_1, \ldots, y_n) \in \mathbb{R}^n$, so ist

$$|x_1y_1 + \ldots + x_ny_n| \le ||v||_2 \cdot ||w||_2$$
.

Bem. Für $v \in \mathbb{R}^n$ ist $||v||_{\infty} \le ||v||_2 \le ||v||_1 \le n \cdot ||v||_{\infty}$.

Allgemeiner gilt: Zwei Normen $\| . \|$ und | . | auf einem endlich-dimensionalen reellen Vektorraum V sind äquivalent in dem Sinn, dass es positive reelle Zahlen a,A gibt mit

$$a \parallel v \parallel \leq \mid v \mid \leq A \parallel v \parallel \forall v \in V.$$

Def. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \longrightarrow \mathbb{R}$$

mit den folgenden vier Eigenschaften:

- (I) $d(x,y) \ge 0$ für alle $x, y \in X$.
- (II) $d(x,y) = 0 \iff x = y$.
- (III) d(x,y) = d(y,x) für alle $x, y \in X$.

(IV) $d(x,z) \leq d(x,y) + d(y,z)$ für alle $x,y,z \in X$ (Dreiecksungleichung).

Ein $metrischer\ Raum$ ist ein Paar (X,d), wobei X eine Menge und d eine Metrik auf X ist. Man sagt oft "X ist metrischer Raum" statt "(X,d) ist metrischer Raum".

Beispiel: Sei V ein normierter Raum. Definiere $d: V \times V \to \mathbb{R}$ durch

$$d(x,y) := ||x - y||.$$

Dann ist V ein metrischer Raum.

Beispiel: Ist (X, d) ein metrischer Raum und $Y \subseteq X$, so wird Y mit der Einschränkung von d auf $Y \times Y$ ein metrischer Raum.

Def. Sei X ein metrischer Raum, $a \in X$ und $r \in \mathbb{R}$ mit r > 0. Dann heißt die Menge

$$B_r(a) := \{ x \in X \mid d(a, x) < r \}$$

die offene Kugel und

$$\overline{B}_r(a) := \{ x \in X \mid d(a, x) \le r \}$$

die abgeschlossene Kugel mit Mittelpunkt a und Radius r.

2. Einige grundlegende topologische Begriffe

Def. Sei X ein metrischer Raum und $A \subseteq X$. Dann heißt A offen in X, wenn gilt: Ist $x \in A$, so existiert ein r > 0 mit $B_r(x) \subseteq A$.

Satz 1. Eine offene Kugel in einem metrischen Raum X ist offen in X.

Satz 2. Sei X ein metrischer Raum. Dann gilt:

- a) X und \emptyset sind offen in X.
- b) Ist I irgendeine Menge und sind die A_i mit $i \in I$ offen in X, so ist auch $\bigcup_{i \in I} A_i$ offen in X.
- c) Ist $n \in \mathbb{N}$ und sind A_1, \ldots, A_n offen in X, so ist $A_1 \cap \ldots \cap A_n$ offen in X.

Beispiel: $]-\frac{1}{n},\frac{1}{n}[$ ist offen in \mathbb{R} . Aber $\bigcap_{n\in\mathbb{N}}]-\frac{1}{n},\frac{1}{n}[$ = $\{0\}$ ist nicht offen in \mathbb{R} .

Def. Sei X ein metrischer Raum, $x \in X$. Eine Teilmenge U von X heißt Umgebung von x in X, wenn es eine offene Teilmenge A von X gibt mit

$$x \in A \subseteq U$$
.

Eigenschaften von Umgebungen:

- (1) Sei $x \in X$ und $U \subseteq X$. Dann sind äquivalent:
 - (a) U ist Umgebung von x.
 - (b) Es gibt ein r > 0 mit $B_r(x) \subseteq U$.
- (2) Eine Menge ist genau dann offen, wenn sie Umgebung aller ihrer Punkte ist.
- (3) Ist U Umgebung von x und $V \supseteq U$, so ist V Umgebung von x.
- (4) Der Durchschnitt endlich vieler Umgebungen von x ist eine Umgebung von x.

Beispiel: Betrachte \mathbb{R}^n mit den Normen $\| \cdot \|_p$, $p=1,2,\infty$. Diese drei Normen besitzen dieselben offenen Mengen.

Def. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$.

x heißt $H\ddot{a}ufungspunkt$ von A, falls in jeder Umgebung von x ein von x verschiedener Punkt von A liegt.

x heißt $Ber\ddot{u}hrungspunkt$ von A, falls in jeder Umgebung von x ein Punkt von A liegt.

Bem. x ist Berührungspunkt von $A \iff x \in A$ oder x ist Häufungspunkt von A.

Satz 3. und Def. Sei X metrischer Raum, $A \subseteq X$. Dann sind äquivalent:

- (a) A enthält alle Häufungspunkte von A.
- (b) A enthält alle Berührungspunkte von A.
- (c) $X \setminus A$ ist offen in X.

Wenn A diese Eigenschaften hat, so heißt A abgeschlossen in X.

Satz 4. Sei X ein metrischer Raum. Dann gilt:

- 1) \emptyset und X sind abgeschlossen.
- Der Durchschnitt von beliebig vielen abgeschlossenen Mengen ist abgeschlossen.
- 3) Die Vereinigung von endlich vielen abgeschlossenen Mengen ist abgeschlossen.

Satz 5. Sei X ein metrischer Raum und A eine endliche Teilmenge von X. Dann ist A abgeschlossen in X.

Def. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in einem metrischen Raum X. Ein Punkt $x_0 \in X$ heißt Grenzwert der Folge (x_n) , wenn eine der vier folgenden äquivalenten Bedingungen erfüllt ist:

- 1. Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $d(x_n, x_0) < \varepsilon$ für $n \ge N$.
- 2. $\lim_{n \to \infty} d(x_n, x_0) = 0$ im Sinne von Analysis I.
- 3. Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $x_n \in B_{\varepsilon}(x_0)$ für $n \geq N$.
- 4. Für jede Umgebung U von x_0 existiert ein $N \in \mathbb{N}$ mit $x_n \in U$ für $n \geq N$.

Eine Folge besitzt höchstens einen Grenzwert. Wenn (x_n) den Grenzwert x_0 besitzt, so sagt man, dass (x_n) gegen x_0 konvergiert und schreibt $\lim_{n\to\infty} x_n = x_0$ oder $x_n \to x_0$.

Beispiel: Sei $X = \mathbb{R}^n$ mit einer der Normen $\| \cdot \|_p$, $p = 1, 2, \infty$. Sei $(x^k)_{k \in \mathbb{N}}$ eine Folge in \mathbb{R}^n mit $x^k = (\xi_1^k, \dots, \xi_n^k)$ und sei $x^0 = (\xi_1^0, \dots, \xi_n^0) \in \mathbb{R}^n$.

Genau dann ist $\lim_{k\to\infty}x^k=x^0$, wenn für jedes ν mit $1\le\nu\le n$ gilt: $\lim_{k\to\infty}\xi^k_\nu=\xi^0_\nu$.

Bem. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$.

- a) x ist Berührungspunkt von $A \iff$ es existiert eine Folge (x_n) in A mit $x_n \to x$.
- b) x ist Häufungspunkt von $A \iff$ es existiert eine Folge (x_n) in A mit $x_n \neq x$ für $n \in \mathbb{N}$ und $x_n \to x$.
- c) A ist abgeschlossen in $X \iff \text{ist } (x_n)$ eine Folge in A, so dass $x_0 = \lim x_n$ in X existiert, so ist $x_0 \in A$.

Def. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$. Dann heißt x ein innerer Punkt von A, wenn A eine Umgebung von x ist. Sei \mathring{A} die Menge aller inneren Punkte von A; sie heißt das Innere von A.

Satz 6. Sei X ein metrischer Raum und $A \subseteq X$. Dann ist \mathring{A} die größte offene Teilmenge von X, die in A enthalten ist.

Satz 7. Ist V ein normierter Raum, $x \in V$, r > 0 und $A := \overline{B}_r(x)$, so ist $\mathring{A} = B_r(x)$.

Def. Sei X ein metrischer Raum, $A \subseteq X$. Sei \overline{A} die Menge aller Berührungspunkte von A in X. Sie heißt der Abschluss von A.

Satz 8. a) $X \setminus \overline{A} = (X \setminus A)^{\circ}$.

b) \overline{A} ist die kleinste abgeschlossene Teilmenge von X, die A umfasst.

Def. Sei X ein metrischer Raum, $A \subseteq X$, $x \in X$.

x heißt Randpunkt von A in X, wenn x Berührungspunkt von A und von $X \setminus A$ ist.

Sei ∂A die Menge der Randpunkte von A in X, also $\partial A = \overline{A} \cap \overline{X \setminus A}$. ∂A heißt der Rand von A in X.

Bem. ∂A ist abgeschlossen in X.

X ist die disjunkte Vereinigung von \mathring{A} , ∂A und $(X \setminus A)^{\circ}$.

3. Stetige Abbildungen

Def. Seien (X,d),(Y,d') metrische Räume, $f:X\to Y$ eine Abbildung, $x_0\in X$. Dann heißt f stetig im Punkt x_0 , wenn eine der folgenden 3 äquivalenten Bedingungen erfüllt ist:

- 1. Zu jedem $\varepsilon > 0$ existiert $\delta > 0$, so dass gilt: Ist $x \in X$ mit $d(x_0, x) < \delta$, so ist $d'(f(x_0), f(x)) < \varepsilon$.
- 2. Zu jedem $\varepsilon > 0$ existiert $\delta > 0$ mit $f(B_{\delta}(x_0)) \subseteq B_{\varepsilon}(f(x_0))$.
- 3. Zu jeder Umgebung V von $f(x_0)$ gibt es eine Umgebung U von x_0 mit $f(U) \subseteq V$.

Die Abbildung $f: X \to Y$ heißt stetig, wenn sie in jedem Punkt von X stetig ist.

Beispiele:1) Eine konstante Abbildung ist stetig.

- 2) Die identische Abbildung $id_X: X \to X$ ist stetig.
- 3) Seien X, Y, Z metrische Räume, $f: X \to Y$ und $g: Y \to Z$ Abbildungen, $x_0 \in X$. Wenn f in x_0 und g in $f(x_0)$ stetig ist, so ist $g \circ f: X \to Z$ in x_0 stetig.

Satz 1. Seien X, Y metrische Räume, $f: X \to Y$. Dann sind äquivalent:

- a) f ist stetig.
- b) Ist A offen in Y, so ist $f^{-1}(A)$ offen in X.
- c) Ist B abgeschlossen in Y, so ist $f^{-1}(B)$ abgeschlossen in X.
- d) Ist (x_n) eine konvergente Folge in X, so ist $(f(x_n))$ konvergente Folge in Y und $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

Satz 2. Seien X, Y metrische Räume, $f, g: X \to Y$ stetig. Dann ist $A := \{x \in X \mid f(x) = g(x)\}$ abgeschlossen in X.

Satz 3. Sei X ein metrischer Raum, $f, g: X \to \mathbb{R}$ stetig. Dann ist $A := \{x \in X \mid f(x) \le g(x)\}$ abgeschlossen in X.

Bem. Sei X ein metrischer Raum und $f:X\to\mathbb{R}^n$ eine Abbildung. Dann ist $f(x)=(f_1(x),\ldots,f_n(x))$ mit Abbildungen $f_k:X\to\mathbb{R}$. Wir versehen \mathbb{R}^n mit einer der Normen $\| . \|_{\infty} , \| . \|_{2} , \| . \|_{1}$.

Genau dann ist f stetig, wenn alle f_k stetig sind.

Def. Eine Teilmenge X eines normierten Raumes V heißt beschränkt, wenn es ein M > 0 gibt mit ||v|| < M für alle $v \in X$.

Satz 4. Sei X eine beschränkte, abgeschlossene Teilmenge von \mathbb{R}^n , und $f: X \to \mathbb{R}$ sei stetig. Dann ist f(X) eine beschränkte und abgeschlossene Teilmenge von \mathbb{R} . Insbesondere nimmt f auf X sein Maximum und sein Minimum an.

4. Partielle Ableitungen

Def. Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}$ eine Abbildung, $x=(x_1,\ldots,x_n)\in U$. Für $i = 1, ..., n \text{ sei } U_i := \{t \in \mathbb{R} \mid (x_1, ..., x_{i-1}, t, x_{i+1}, ..., x_n) \in U\}.$

Dann ist U_i eine offene Umgebung von x_i in \mathbb{R} .

Man definiert $F_i:U_i\to\mathbb{R}$ durch

$$F_i(t) := f(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_n).$$

f heißt im Punkt x partiell differenzierbar, wenn für $i=1,\ldots,n$ die Funktion F_i in x_i differenzierbar ist. Schreibe dann

$$D_i f(x) := \frac{\partial f}{\partial x_i}(x) := \frac{\partial f(x)}{\partial x_i} := \frac{\partial}{\partial x_i} f(x) := F_i'(x),$$

und nenne dies die i-te partielle Ableitung von f in x.

f heißt $partiell\ differenzierbar$, wenn es in jedem Punkt von U partiell differenzierbar

Bem. a) Man berechnet die i-te partielle Ableitung, indem man f als Funktion der

i-ten Variablen allein auffasst und die anderen Variablen konstant hält. b) Für n=2 schreibt man meist (x,y) statt (x_1,x_2) und $\frac{\partial f}{\partial x}$ statt $\frac{\partial f}{\partial x_1}$ und $\frac{\partial f}{\partial y}$ statt $\frac{\partial f}{\partial x_2}$. Für n=3 schreibt man oft (x,y,z) statt (x_1,x_2,x_3) .

Beispiel: $f(x,y) = e^{xy} \Longrightarrow \frac{\partial f}{\partial x}(x,y) = ye^{xy}$, $\frac{\partial f}{\partial y}(x,y) = xe^{xy}$.

Beispiel: Betrachte $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

In jedem Punkt $(x,y) \neq (0,0)$ ist f offensichtlich partiell differenzierbar. f ist aber auch in (0,0) partiell differenzierbar:

 $f_1(\xi) = f(\xi, 0) = 0 \text{ und } f_2(\xi) = f(0, \xi) = 0 \text{ für alle } \xi \in \mathbb{R} \Longrightarrow D_1 f(0, 0) = 0 \text{ und}$ $D_2 f(0,0) = 0.$

f ist also auf ganz \mathbb{R}^2 partiell differenzierbar.

Aber f ist in (0,0) nicht stetig: Denn für $x \in \mathbb{R}, x \neq 0$, ist $f(x,x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}$, während f(0,0) = 0.

Def. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ partiell differenzierbar in U. Wenn alle partiellen Ableitungen $D_1f,\ldots,D_nf:U\to\mathbb{R}$ wieder partiell differenzierbar sind, so kann man $D_jD_if:=D_j(D_if)$ bilden und sagt, dass f zweimal partiell differenzierbar ist. Induktiv definiert man, was es für $k\in\mathbb{N}$ bedeutet, dass f k-mal partiell differenzierbar ist. Schreibe auch

$$\frac{\partial^2 f}{\partial x_i \partial x_i} := D_j D_i f \ , \ \frac{\partial^2 f}{\partial x_i^2} := D_i^2 f := D_i D_i f \text{ usw.}$$

Wenn f k-mal partiell differenzierbar ist und wenn alle partiellen Ableitungen der Ordnung $\leq k$ stetig sind (dazu gehört insbesondere, dass f selbst als partielle Ableitung der Ordnung 0 stetig ist), so sagt man, f sei von der Klasse C^k . Wenn f stetige partielle Ableitungen von jeder Ordnung hat, so heißt f von der Klasse C^{∞} oder glatt. Schließlich heißt f von der Klasse C^0 , wenn es stetig ist.

Satz 1. (Satz von H. A. Schwarz) Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ von der Klasse C^2 . Sei $a\in U$ und $i,j\in\{1,\ldots,n\}$. Dann ist

$$D_j D_i f(a) = D_i D_j f(a).$$

Von nun an schreiben wir die Elemente von \mathbb{R}^n als Spaltenvektoren. Wir schreiben also

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (x_1, \dots, x_n)^T.$$

Ist X eine Menge und $f: X \to \mathbb{R}^m$ eine Abbildung, so ist f von der Form

$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix} = (f_1, \dots, f_m)^T$$

mit $f_i: X \to \mathbb{R}$.

Bez. Ist U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ partiell differenzierbar, so erhält man eine Abbildung

$$\nabla f = \operatorname{grad} f: U \to \mathbb{R}^n$$

durch $\nabla f(x) := (\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x))^T$.

 ∇f heißt der *Gradient* von f.

Def. Sei U offen in \mathbb{R}^n und $f = (f_1, \dots, f_m) : U \to \mathbb{R}^m$. f heißt partiell differenzierbar (bzw. von der Klasse C^k), wenn alle f_i partiell differenzierbar (bzw. von der Klasse C^k) sind. Man schreibt dann für $x \in U$:

$$Df(x) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}$$

Df(x) heißt die Funktionalmatrix oder die Jacobimatrix oder die Ableitung von f an der Stelle x.

Df(x) ist eine $m \times n$ - Matrix; ihre i-te Zeile ist der transponierte Gradient von f_i an der Stelle x.

Ist $\xi \in \mathbb{R}^n$, so ist $Df(x) \cdot \xi \in \mathbb{R}^m$.

5. Differenzierbare und stetig differenzierbare Abbildungen

Satz 1. Sei U offen in \mathbb{R}^n und $f = (f_1, \dots, f_m)^T : U \to \mathbb{R}^m$ eine partiell differenzierbare Abbildung, so dass alle Funktionen $D_j f_i : U \to \mathbb{R}$ stetig sind. Sei $x \in U$ fest.

Ist $\xi \in \mathbb{R}^n$ mit $x + \xi \in U$, so definiere $\varphi(\xi) \in \mathbb{R}^m$ durch

$$f(x+\xi) - f(x) = Df(x) \cdot \xi + \varphi(\xi).$$

Dann ist

$$\lim_{\xi \to 0} \frac{\varphi(\xi)}{\parallel \xi \parallel} = 0.$$

(Dies soll heißen: Für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$, so dass für jedes $\xi \in \mathbb{R}^n$ mit $\|\xi\| < \delta$ und $\xi \neq 0$ gilt:

$$x + \xi \in U \text{ und } \frac{\parallel \varphi(\xi) \parallel}{\parallel \xi \parallel} < \varepsilon.$$

Def. Ist U offen in \mathbb{R}^n , $x \in U$ und $f: U \to \mathbb{R}^m$ eine Abbildung, so heißt f differenzierbar in x, wenn f in x partiell differenzierbar ist und wenn Folgendes gilt:

Definiert man $\varphi(\xi) \in \mathbb{R}^m$ für alle $\xi \in \mathbb{R}^n$ mit $x + \xi \in U$ durch

$$f(x+\xi) - f(x) = Df(x) \cdot \xi + \varphi(\xi),$$

so ist
$$\lim_{\xi \to 0} \frac{\varphi(\xi)}{\parallel \xi \parallel} = 0.$$

Satz 2. Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}^m$ eine Abbildung und $x\in U$. Wenn f in x differenzierbar ist, so ist f in x stetig.

Für den Beweis braucht man:

Lemma Eine lineare Abbildung $A : \mathbb{R}^n \to \mathbb{R}^m$ ist stetig. Es gibt ein $\alpha \geq 0$ mit $\parallel A\xi \parallel \leq \alpha \parallel \xi \parallel$ für alle $\xi \in \mathbb{R}^n$.

Folgerung aus Satz 1 und Satz 2: Ist $f: U \to \mathbb{R}^m$ partiell differenzierbar und sind die partiellen Ableitungen $D_j f_i$ alle stetig, so ist f stetig, d.h. f ist von der Klasse C^1 , m.a.W. f ist stetig differenzierbar.

Allgemeiner: Ist f k-mal partiell differenzierbar und sind alle k-ten partiellen Ableitungen stetig, so ist f von der Klasse C^k .

Beispiel: Sei A eine reelle $m \times n$ -Matrix. Definiere $f: \mathbb{R}^n \to \mathbb{R}^m$ durch $f(x) := A \cdot x$. Dann ist f von der Klasse C^{∞} . Für alle $x \in \mathbb{R}^n$ ist Df(x) = A, denn ist $f = (f_1, \ldots, f_m)^T$, so

$$f_i(x) = \sum_{j=1}^n a_{ij} x_j \text{ für } x = (x_1, \dots, x_n)^T \in \mathbb{R}^n,$$

also $\frac{\partial f_i}{\partial x_j}(x) = a_{ij}$. Alle höheren partiellen Ableitungen von f sind 0.

Für den Beweis der Kettenregel brauchen wir:

Satz 3. Sei U offen in \mathbb{R}^n , $x \in U$ und $f: U \to \mathbb{R}^m$. Es gebe eine $m \times n$ -Matrix A mit

$$\lim_{\xi \to 0} \frac{1}{\|\xi\|} (f(x+\xi) - f(x) - A \cdot \xi) = 0.$$

Dann ist f differenzierbar in x und Df(x) = A.

Dies zeigt, wie man den Begriff der Differenzierbarkeit weiter verallgemeinern kann: Sind V, W endlich dimensionale normierte Räume, ist U offen in V, ist $f: U \to W$ eine Abbildung und ist $x \in U$, so heißt f differenzierbar an der Stelle x, wenn es eine lineare Abbildung $A: V \to W$ gibt, so dass

$$\lim_{\xi \to 0} \frac{1}{\|\xi\|} (f(x+\xi) - f(x) - A \cdot \xi) = 0.$$

Dieses A ist dann eindeutig bestimmt; man bezeichnet es mit Df(x) und nennt es die Ableitung von f an der Stelle x.

Satz 4. (Kettenregel) Sei U offen in \mathbb{R}^n , V offen in \mathbb{R}^m und seien $g: U \to \mathbb{R}^m$ und $f: V \to \mathbb{R}^p$ differenzierbar mit $g(U) \subseteq V$. Dann ist die Abbildung $f \circ g: U \to \mathbb{R}^p$ differenzierbar und

$$D(f \circ g)(x) = Df(g(x)) \cdot Dg(x) \ \forall x \in U.$$

(Dabei steht auf der rechten Seite das Produkt der Matrizen Df(g(x)) und Dg(x).) Sind f und g von der Klasse C^k mit $k \in \mathbb{N} \cup \{\infty\}$, so ist auch $f \circ g$ von der Klasse C^k .

Spezialfall: Ist p = 1, also $f \circ g : U \to \mathbb{R}$, so ist

$$\frac{\partial (f \circ g)}{\partial x_i}(x) = \sum_{i=1}^m \frac{\partial f}{\partial y_j}(g(x)) \cdot \frac{\partial g_j}{\partial x_i}(x).$$

Dabei sind die Variablen in \mathbb{R}^m mit y_1, \ldots, y_m bezeichnet.

Def. Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}$ eine Funktion, $x\in U$ und $v\in\mathbb{R}^n$. Dann ist $U_v:=\{t\in\mathbb{R}\,|\,x+tv\in U\}$ eine offene Umgebung von 0 in \mathbb{R} . Definiere $F_v:U_v\to\mathbb{R}$ durch

$$F_v(t) := f(x + tv).$$

Wenn F_v in 0 differenzierbar ist, so heißt

$$D_v f(x) := F'_v(0) = \lim_{t \to 0} \frac{1}{t} (f(x+tv) - f(x))$$

die Richtungsableitung von f im Punkt x in Richtung v.

Bem. $D_{e_i}f = D_if$.

Bez. Für $v = (v_1, \dots, v_n)^T$, $w = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ sei

$$\langle v, w \rangle := \sum_{i=1}^{n} v_i w_i,$$

also $||v||_2 = \langle v, v \rangle^{\frac{1}{2}}$.

Satz 5. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ differenzierbar. Sei $x\in U$ und $v\in\mathbb{R}^n$. Dann existiert die Richtungsableitung von f im Punkt x in Richtung v und

$$D_v f(x) = \langle v, \nabla f(x) \rangle$$
.

Anschauliche Interpretation des Gradienten: Der Vektor grad f(x) gibt die Richtung des stärksten Anstiegs von f an.

6. Mittelwertsatz und Taylor-Formel

Der Mittelwertsatz aus Analysis I lautet: Sei $f:[a,b]\to\mathbb{R}$ stetig und differenzierbar auf] a,b [. Dann gibt es ein $\xi\in$] a,b [mit

$$(\star) \qquad f(b) - f(a) = f'(\xi) \cdot (b - a).$$

In dieser Form lässt sich der Mittelwertsatz nicht auf vektorwertige Funktionen verallgemeinern. Betrachte z.B. $f: \mathbb{R} \to \mathbb{R}^2$ mit

$$f(x) = (\cos x, \sin x).$$

Dann ist $f(0) = f(2\pi)$, aber $Df(x) \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ für $x \in \mathbb{R}$.

Aus (\star) folgt: Wenn es ein $M \geq 0$ gibt mit $|f'(\xi)| \leq M$ für alle $\xi \in]a,b[$, so ist $|f(b)-f(a)| \leq M \cdot |b-a|$. Dies lässt sich verallgemeinern.

Def. Seien $a, b \in \mathbb{R}$ mit a < b und sei $f = (f_1, \dots, f_m) : [a, b] \to \mathbb{R}^m$. Dann heißt f (Riemann-) integrierbar, wenn alle f_i integrierbar sind. Man setzt dann

$$\int_a^b f(x) dx := \left(\int_a^b f_1(x) dx, \dots, \int_a^b f_m(x) dx \right) \in \mathbb{R}^m.$$

Bem. Ist $f:[a,b]\to\mathbb{R}^m$ Riemann-integrierbar, so ist $\parallel f \parallel:[a,b]\to\mathbb{R}$ Riemann-integrierbar und

$$\left\| \int_{a}^{b} f(x) \, dx \right\| \le \int_{a}^{b} \left\| f(x) \right\| \, dx.$$

(Dabei ist $\| . \|$ eine der Normen $\| . \|_{\infty}, \| . \|_{1}, \| . \|_{2}.$) Dies benutzen wir beim Beweis des folgenden Satzes.

Satz 1. (Mittelwertsatz) Sei U offen in \mathbb{R}^n und $f: U \to \mathbb{R}^m$ von der Klasse C^1 . Seien $x, \xi \in \mathbb{R}^n$, so dass die Strecke

$$\{x + t\xi \mid 0 \le t \le 1\}$$

zwischen x und $x + \xi$ ganz in U liegt. Dann gibt es ein $M \geq 0$, so dass

$$||Df(x+t\xi)\cdot v|| \le M||v|| \ \forall \ t \in [0,1], \ \forall \ v \in \mathbb{R}^n,$$

und für jedes solches M ist

$$||f(x+\xi) - f(x)|| \le M \cdot ||\xi||.$$

Satz 2. Sei U offen in \mathbb{R}^n und habe die folgende Eigenschaft:

Je zwei Punkte von U können durch einen Streckenzug verbunden werden, der ganz in U verläuft. Sei $f: U \to \mathbb{R}^m$ partiell differenzierbar mit Df(x) = 0 für alle $x \in U$. Dann ist f konstant.

Bez. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ eine Abbildung.

a) Ist
$$\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$$
, so sei

$$|\alpha| := \alpha_1 + \ldots + a_n,$$

$$\alpha! := \alpha_1! \cdot \ldots \cdot \alpha_n!.$$

Ein solches α heißt n-Multiindex.

b) Ist α wie in a) und f von der KLasse $C^{|\alpha|}$, so sei

$$D^{\alpha}f := D_1^{\alpha_1} \dots D_n^{\alpha_n}f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}.$$

Dabei ist $D_i^0 f := f$ zu setzen.

c) Ist $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, so sei $x^{\alpha} := x_1^{\alpha_1} \dots x_n^{\alpha_n} \in \mathbb{R}$.

Satz 3. (Taylor -Formel) Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ von der Klasse C^{k+1} .

a) Seien $x, \xi \in \mathbb{R}^n$, so dass die Strecke zwischen x und $x + \xi$ in U liegt. Dann ist

$$f(x+\xi) = \sum_{|\alpha| \le k} \frac{D^{\alpha} f(x)}{\alpha!} \xi^{\alpha} + (k+1) \sum_{|\alpha| = k+1} \int_{0}^{1} (1-t)^{k} \frac{D^{\alpha} f(x+t\xi)}{\alpha!} \cdot \xi^{\alpha} dt.$$

b) Ist $x \in U$ und definiert man

$$R(\xi) := f(x+\xi) - \sum_{|\alpha| \le k+1} \frac{D^{\alpha} f(x)}{\alpha!} \xi^{\alpha}$$

für alle $\xi \in \mathbb{R}^n$ mit $x + \xi \in U$, so ist

$$\lim_{\xi \to 0} \frac{R(\xi)}{\|\xi\|^{k+1}} = 0.$$

7. Extremwerte und kritische Stellen

Def. Sei X ein metrischer Raum, $x_0 \in X$, $f: X \to \mathbb{R}$ eine Abbildung. f besitzt in x_0 ein lokales Maximum, wenn es eine Umgebung U von x_0 gibt mit

$$f(x_0) \ge f(x) \ \forall x \in U.$$

fbesitzt in x_0 ein striktes lokales Maximum, wenn es eine Umgebung <math display="inline">U von x_0 gibt mit

$$f(x_0) > f(x) \ \forall \ x \in U \setminus \{x_0\}.$$

Entsprechend definiert man, wann f in x_0 ein (striktes) lokales Minimum bzw. Extremum besitzt.

Satz 1. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ partiell differenzierbar. Wenn f in $x_0\in U$ ein lokales Extremum besitzt, so ist

$$\operatorname{grad} f(x_0) = 0.$$

Def. Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}$ partiell differenzierbar. Ist $x_0\in U$ mit $\operatorname{grad} f(x_0)=0$, so heißt x_0 eine kritische Stelle von f.

Def. Sei U offen in \mathbb{R}^n und $f: U \to \mathbb{R}$ von der Klasse C^2 . Ist $x \in U$, so sei Hf(x) die reelle $n \times n$ -Matrix (a_{ij}) mit

$$a_{ij} := D_i D_j(x).$$

Hf(x) heißt die Hessesche Matrix von f an der Stelle x.

Bem. Nach dem Satz von Schwarz ist $a_{ij} = a_{ji}$, d.h. Hf(x) eine symmetrische Matrix.

Def. Sei A eine symmetrische reelle $n \times n$ -Matrix.

A heißt positiv definit, wenn $\langle A(x), x \rangle > 0 \ \forall \ x \in \mathbb{R}^n \setminus \{0\}.$

A heißt negativ definit, wenn $\langle A(x), x \rangle < 0 \ \forall \ x \in \mathbb{R}^n \setminus \{0\}.$

A heißt indefinit, wenn es ein $x \in \mathbb{R}^n$ mit $\langle A(x), x \rangle > 0$ und ein $y \in \mathbb{R}^n$ mit $\langle A(y), y \rangle < 0$ gibt.

Satz 2. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ von der Klasse C^2 . Sei x_0 eine kritische Stelle von f.

- a) Ist $Hf(x_0)$ positiv definit, so besitzt f in x_0 ein striktes lokales Minimum.
- b) Ist $Hf(x_0)$ negativ definit, so besitzt f in x_0 ein striktes lokales Maximum.
- c) Ist $Hf(x_0)$ indefinit, so besitzt f in x_0 kein lokales Extremum.

Erinnerungen an die Lineare Algebra:

Sei A eine reelle $n \times n$ -Matrix. Eine komplexe Zahl λ heißt Eigenwert von A, wenn es ein $x \in \mathbb{C}^n \setminus \{0\}$ gibt mit $Ax = \lambda x$. Mit

$$\chi_A(t) = \det(tI - A)$$

bezeichnen wir das charakteristische Polynom von A. Die Eigenwerte von A sind genau die Nullstellen von χ_A .

Ist A eine symmetrische Matrix, so sind alle Eigenwerte von A reell, und es gilt:

- A ist positiv definit genau dann, wenn alle Eigenwerte von A positiv sind.
- A ist negativ definit genau dann, wenn alle Eigenwerte von A negativ sind.
- ullet A ist indefinit genau dann, wenn A einen positiven und einen negativen Eigenwert besitzt.

Kriterium von Hurwitz: Sei $A = (a_{ij})$ symmetrisch,

$$\Delta_k := \det \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}, \quad k = 1, \dots, n.$$

A positiv definit $\iff \Delta_k > 0$ für k = 1, ..., n.

A negativ definit $\iff (-1)^k \Delta_k > 0$ für $k = 1, \dots, n$.

Beispiel 1. $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2 - y^2$ (Sattelfläche)

 $\nabla f(x,y) = (2x, -2y)$. Einzige kritische Stelle: (0,0).

$$Hf(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 ist indefinit. Also besitzt f

überhaupt keine lokalen Extrema

Beispiel 2. $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^3 - y^3$.

 $\operatorname{grad} f(x,y) = (3x^2, -3y^2)$. Einzige kritische Stelle: (0,0).

$$Hf(x,y) = \begin{pmatrix} 6x & 0 \\ 0 & -6y \end{pmatrix}$$
, insbesondere $Hf(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Dies ist weder positiv definit noch negativ definit noch indefinit. In jeder Umgebung von (0,0) nimmt f positive und negative Werte an, besitzt also auch in (0,0) kein lokales Extremum.

Beispiel 3. $f(x,y) = x^3 + y^3 - 3xy$.

Kritische Stellen: (0,0) und (1,1).

Man kann Satz 2 anwenden: Kein lokales Extremum in (0,0), striktes lokales Minimum in (1,1).

Teil II: Gewöhnliche Differenzialgleichungen

8. Beispiele und Problemstellungen

Sei U offen in \mathbb{R}^2 und $f:U\to\mathbb{R}$ stetig. Sei I ein offenes Intervall in \mathbb{R} und $\varphi:I\to\mathbb{R}$ eine differenzierbare Funktion. Wenn für alle $x\in I$ gilt:

- (a) $(x, \varphi(x)) \in U$,
- (b) $\varphi'(x) = f(x, \varphi(x)),$

so heißt φ eine Lösung der Differenzialgleichung

(c)
$$y' = f(x, y);$$

man nennt (c) eine explizite gewöhnliche Differenzialgleichung 1. Ordnung. Ist $(x_0, y_0) \in U$ und ist $\varphi : I \to \mathbb{R}$ eine Lösung von (c) mit $x_0 \in I$ und $\varphi(x_0) = y_0$, so sagt man, dass φ die Anfangsbedingung

(d)
$$y(x_0) = y_0$$

erfüllt.

Beispiel 1: Sei $U = J \times \mathbb{R}$, wobei J ein offenes Intervall ist, und sei $g : J \to \mathbb{R}$ stetig. Definiere $f : U \to \mathbb{R}$ durch f(x,y) := g(x), d.h. betrachte die DGl.

$$y' = q(x)$$
.

Ihre Lösungen sind die Stammfunktionen von g.

Beispiel 2: Sei $U = \mathbb{R} \times \mathbb{R}$, und $f : U \to \mathbb{R}$ sei definiert durch f(x,y) := y, d.h. betrachte die DGl.

$$y' = y$$
.

Für $c \in \mathbb{R}$ definiere $\varphi_c : \mathbb{R} \to \mathbb{R}$ durch

$$\varphi_c(x) := c e^x$$
.

Dann ist φ_c eine Lösung, und jede andere Lösung entsteht durch Einschränken eines φ_c auf ein Teilintervall. Für jedes $(x_0, y_0) \in \mathbb{R}^2$ gibt es genau eine auf \mathbb{R} definierte Lösung mit der Anfangsbedingung $y(x_0) = y_0$.

Beispiel 3: Sei $U = \mathbb{R}^2$ und $f(x,y) = y^2$, d.h. betrachte die DGL

$$y' = y^2$$
.

Sei φ_0 die Nullfunktion. Für $c \in \mathbb{R}$ definieren wir $\varphi_c^+ :]c, +\infty [\to \mathbb{R}$ und $\varphi_c^- :]-\infty, c [\to \mathbb{R}$ durch

$$\varphi_c^{\pm}(x) := \frac{1}{c - x}.$$

Dann sind die Funktionen φ_0 , φ_c^+ und φ_c^- Lösungen von $y'=y^2$, und jede Lösung dieser DGl. entsteht daraus durch Einschränkung auf ein Teilintervall. Für jedes $(x_0, y_0) \in \mathbb{R}^2$ gibt es genau eine Lösung, die die Anfangsbedingung $y(x_0) = y_0$ erfüllt und die einen maximalen Definitionsbereich hat.

Beispiel 4: Sei $U = \mathbb{R}^2$ und $f(x, y) = 3y^{2/3}$, d.h. betrachte die DGl.

$$y' = 3\sqrt[3]{y^2}$$
.

Für $c \in \mathbb{R}$ sei $\varphi_c : \mathbb{R} \to \mathbb{R}$ definiert durch

$$\varphi_c(x) := (x - c)^3.$$

Dann ist φ_c eine Lösung mit $\varphi_c(c) = 0$ und $\varphi'_c(c) = 0$. Für $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$ mit a < b definiere $\varphi_{a,b} : \mathbb{R} \to \mathbb{R}$ durch

$$\varphi_{a,b}(x) := \left\{ \begin{array}{ll} \varphi_a(x) & \text{für} \quad x \leq a \\ 0 & \text{für} \quad a < x < b \\ \varphi_b(x) & \text{für} \quad b \leq x. \end{array} \right.$$

Dann ist $\varphi_{a,b}$ differenzierbar und Lösung von $y'=3\,y^{2/3}$. Für jede Anfangsbedingung gibt es also unendlich viele verschiedene Lösungen!

Verallgemeinerung: Sei U offen in $\mathbb{R} \times \mathbb{R}^n$ und $f_1, \ldots, f_n : U \to \mathbb{R}$ seien stetig. Sei I ein offenes Intervall und $\varphi_1, \ldots, \varphi_n : I \to \mathbb{R}$ seien differenzierbare Funktionen. Wenn für alle $x \in I$ gilt:

- (a) $(x, \varphi_1(x), \dots, \varphi_n(x)) \in U$,
- (b) $\varphi'_i(x) = f_i(x, \varphi_1(x), \dots, \varphi_n(x))$ für $i = 1, \dots, n$,

so heißen $\varphi_1, \dots, \varphi_n$ Lösungen des Differenzialgleichungssystems

$$y_1' = f_1(x, y_1, \dots, y_n)$$

(c) : $y'_n = f_n(x, y_1, ..., y_n)$.

Schreibt man $f := (f_1, \ldots, f_n)$ und $\varphi := (\varphi_1, \ldots, \varphi_n)$, so schreiben sich die Bedingungen (a) und (b) in der Form

- (a) $(x, \varphi(x)) \in U$,
- (b) $\varphi'(x) = f(x, \varphi(x)).$

Statt des Systems (c) schreibt man einfach wieder

$$y' = f(x, y)$$

und nennt weiterhin φ eine Lösung dieser expliziten gewöhnlichen DGl. erster Ordnung.

Existenzsatz von Peano. Sei U offen in $\mathbb{R} \times \mathbb{R}^n$, sei $f: U \to \mathbb{R}^n$ stetig und $(x_0, y_0) \in U$. Dann existiert eine Lösung $\varphi: I \to \mathbb{R}^n$ der DGl. y' = f(x, y) mit $x_0 \in I$ und $\varphi(x_0) = y_0$.

Def. Seien X, Y metrische Räume, $f: X \to Y$.

a) f heißt Lipschitz-stetig, wenn es ein $L \in \mathbb{R}$ gibt mit

$$d(f(x), f(y)) \le L \cdot d(x, y) \ \forall \ x, y \in X.$$

b) f heißt lokal Lipschitz-stetig, wenn es zu jedem Punkt $x \in X$ eine Umgebung U gibt, so dass f|U Lipschitz-stetig ist.

Bem.1: Lipschitz-stetig \Longrightarrow lokal Lipschitz-stetig \Longrightarrow stetig.

Bem.2: Sei X offen in \mathbb{R}^n und $f:X\to\mathbb{R}^m$ von der Klasse C^1 . Dann ist f lokal Lipschitz-stetig.

Def. Seien X, Y, Z metrische Räume, $U \subseteq X \times Y$ und $f: U \to Z$.

a) f heißt Lipschitz-stetig im 2. Argument, wenn es ein $L \in \mathbb{R}$ gibt mit

$$d(f(x,y), f(x,\tilde{y})) \le L \cdot d(y,\tilde{y}) \ \forall (x,y), (x,\tilde{y}) \in U.$$

b) f heißt $lokal\ Lipschitz$ -stetig im 2. Argument, wenn es für jedes $(x_0, y_0) \in U$ eine Umgebung V von (x_0, y_0) in U gibt, so dass f|V Lipschitz-stetig im 2. Argument ist.

Bem. Sei U offen in $\mathbb{R}^m \times \mathbb{R}^n$ und $f: U \to \mathbb{R}^k$. Wir bezeichnen die partiellen Ableitungen von f mit

$$\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_m}, \frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n}$$

(wenn sie existieren). Wenn $\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n}$ existieren und stetige Abbildungen $U \to \mathbb{R}^k$ sind, so ist f lokal Lipschitz-stetig im 2. Argument.

Lokaler Existenz- und Eindeutigkeitssatz. Sei U offen in $\mathbb{R} \times \mathbb{R}^n$, sei $f: U \to \mathbb{R}^n$ stetig und $(x_0, y_0) \in U$. Ferner sei f lokal Lipschitz-stetig im 2. Argument. Dann existieren ein offenes Intervall I mit $x_0 \in I$ und eine Lösung $\varphi: I \to \mathbb{R}^n$ der DGl. y' = f(x, y) mit folgenden Eigenschaften:

- a) $\varphi(x_0) = y_0$.
- b) Ist $\psi: J \to \mathbb{R}^n$ eine Lösung von y' = f(x, y) mit $\psi(x_0) = y_0$, so ist $J \subseteq I$ und $\psi = \varphi | J$.

Globaler Existenz- und Eindeutigkeitssatz. Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ sei stetig. Für jedes kompakte Teilintervall K von I sei $f|(K \times \mathbb{R}^n)$ Lipschitz-stetig im 2. Argument. Sei $(x_0, y_0) \in I \times \mathbb{R}^n$.

Dann gibt es eine eindeutig bestimmte Lösung $\varphi: I \to \mathbb{R}^n$ der DGl. y' = f(x, y) mit $\varphi(x_0) = y_0$.

Beispiel 5: (Differenzialgleichung mit getrennten Variablen)

Seien $I, J \subseteq \mathbb{R}$ offene Intervalle, $g: I \to \mathbb{R}$, $h: J \to \mathbb{R}$ seien stetig mit $h(y) \neq 0$ $\forall y \in J$. Definiere $f(x,y): I \times J \to \mathbb{R}$ durch f(x,y):=g(x)h(y), d.h. betrachte die DGl.

$$y' = g(x)h(y).$$

Heuristisches Lösungsverfahren:

$$\frac{dy}{dx} = g(x)h(y) \Rightarrow \frac{dy}{h(y)} = g(x) dx \Rightarrow \int \frac{dy}{h(y)} = \int g(x) dx + c$$

Die linke Seite ist eine Funktion von y, die rechte eine Funktion von x. Löse diese Gleichung nach y auf.

Exakt: Sei $(x_0, y_0) \in I \times J$. Definiere $G: I \to \mathbb{R}$ und $H: J \to \mathbb{R}$ durch

$$G(x) := \int_{x_0}^x g(t) dt, \quad H(y) := \int_{x_0}^y \frac{dt}{h(t)}.$$

Dann existiert ein offenes Intervall $I' \subseteq I$ mit $x_0 \in I$ und eine eindeutig bestimmte Lösung $\varphi: I' \to \mathbb{R}$ der DGl. y' = g(x)h(y) mit $\varphi(x_0) = y_0$, und $H(\varphi(x)) = G(x)$ für $x \in I'$.

Beispiel 6: (Homogene lineare DGl.)

Sei I offenes Intervall, $a:I\to\mathbb{R}$ stetig. Definiere $f:I\times\mathbb{R}\to\mathbb{R}$ durch f(x,y):=a(x)y. Die DGl. y'=f(x,y) lautet also

$$y' = a(x)y$$
.

Sei $(x_0, y_0) \in I \times \mathbb{R}$. Dann existiert genau eine Lösung $\varphi : I \to \mathbb{R}$ von y' = a(x)y miz $\varphi(x_0) = y_0$, und

$$\varphi(x) = y_0 \cdot \exp\left(\int_{x_0}^x a(t) dt\right).$$

Beispiel 7: (Lineare DGl.) Sei I offenes Intervall, $a, b: I \to \mathbb{R}$ stetig. Definiere $f: I \times \mathbb{R} \to \mathbb{R}$ durch f(x,y) := a(x)y + b(x). Betrachte also die DGl.

$$y' = a(x)y + b(x).$$

Sei $(x_0, y_0) \in I \times \mathbb{R}$. Dann existiert genau eine Lösung $\psi : I \to \mathbb{R}$ von y' =a(x)y + b(x) mit $\psi(x_0) = y_0$:

Sei $\varphi(x) := \exp\left(\int\limits_{-x}^{x}a(t)\,dt\right)$. Dann ist φ Lösung der "zugehörigen homogenen linea-

ren DGl." y' = a(x)y, also $\varphi'(x) = a(x)\varphi(x)$, und $\varphi(x) \neq 0 \ \forall \ x \in I$.

Ist ψ irgendeine Lösung von y' = a(x)y + b(x), so existiert eine C^1 -Funktion u mit $\psi(x) = \varphi(x)u(x).$

 $\Rightarrow \psi' = \varphi' u + \varphi u' = a\varphi u + \varphi u' = a\psi + \varphi u'.$

Es ist also $\psi' = a\psi + b$ genau dann, wenn $\varphi u' = b$, also $u' = \frac{b}{\varphi}$

$$\Rightarrow u(x) = \int_{x_0}^{x} \frac{b(t)}{\varphi(t)} dt + \text{const.}$$

Aus $\psi(x_0) = y_0$ folgt: $y_0 = \varphi(x_0)u(x_0) = u(x_0) \Rightarrow \text{const} = y_0$ $\Rightarrow \psi(x) = \varphi(x) \cdot \left(y_0 + \int_{x_0}^x \frac{b(t)}{\varphi(t)} dt\right).$

$$\Rightarrow \psi(x) = \varphi(x) \cdot \left(y_0 + \int_{x_0}^x \frac{b(t)}{\varphi(t)} dt\right).$$

(Methode der Variation der Konstanten.)

Differenzialgleichungen höherer Ordnung: Sei U offen in $\mathbb{R} \times \mathbb{R}^n$, $f: U \to \mathbb{R}$ stetig. Sei I ein offenes Intervall und $\varphi:I\to\mathbb{R}$ n-mal differenzierbar. Wenn für alle $x \in I$ gilt:

- (a) $(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n-1)}(x)) \in U$,
- (b) $\varphi^{(n)}(x) = f(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n-1)}(x)),$

so heißt φ eine Lösung der DGl.

(c)
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$

Man nennt (c) eine explizite gewöhnliche DGl. n-ter Ordnung.

Reduktion auf ein System von DGln. 1. Ordnung:

Definiere $F: U \to \mathbb{R}^n$ durch

$$F(x, y_0, y_1, \dots, y_{n-1}) := (y_1, \dots, y_{n-1}, f(x, y_0, \dots, y_{n-1})).$$

Mit $Y := (y_0, \dots, y_{n-1})$ lautet das System Y' := F(x, Y) ausgeschrieben:

$$y_0' = y_1$$

$$y_1' = y_2$$

$$y_{n-2}' = y_{n-1}$$

$$y'_{n-1} = f(x, y_0, \dots, y_{n-1})$$

Daher gilt:

- 1) Ist φ eine Lösung von $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$, so ist $(\varphi, \varphi', \dots, \varphi^{(n-1)})$ eine Lösung von Y' = F(x, Y).
- 2) Ist $\Phi = (\varphi, \varphi_1, \varphi_2, \dots, \varphi_{n-1})$ eine Lösung von Y' = F(x, Y), so ist φ eine Lösung von $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$.

Folgerung aus dem Lokalen Existenz- und Eindeutigkeitssatz:

Sei U offen in $\mathbb{R} \times \mathbb{R}^n$, $f: U \to \mathbb{R}$ sei stetig und lokal Lipschitz-stetig im 2. Argument. $(x_0, y_0, \ldots, y_{n-1})$ U. Dann existiert eine Lösung $\varphi: I \to \mathbb{R} \text{ der DGl.}$

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

mit

(a)
$$\varphi(x_0) = y_0,$$
$$\varphi'(x_0) = y_1,$$
$$\vdots$$
$$\varphi^{(n-1)}(x_0) = y_{n-1}.$$

(b) Ist $\psi: J \mapsto \mathbb{R}$ Lösung mit $\psi^{(k)}(x_0) = y_k$ für $k = 0, \dots, n-1$, so ist $J \subseteq I$ und $\psi = \varphi|J$.

Beispiel 8: y'' = -y.

Für $a, b \in \mathbb{R}$ definiere $\varphi_{a,b}(x) : \mathbb{R} \to \mathbb{R}$ durch

$$\varphi_{a,b}(x) := a\cos x + b\sin x.$$

Dann ist $\varphi_{a,b}$ eine Lösung und alle Lösungen sind von dieser Form.

9. Lineare Differenzialgleichungen

Vorbemerkung 1: Ein komplexer normierter Raum besteht aus einem \mathbb{C} - Vektorraum V und einer Abbildung $V \to \mathbb{R}$, $v \mapsto ||v||$ mit

- $(1) \parallel v \parallel \geq 0 \ \forall \ v \in V$
- $(2) \parallel v \parallel = 0 \Leftrightarrow v = 0$
- (3) $\|\alpha v\| = |\alpha| \cdot \|v\|$ für $v \in V$ und $\alpha \in \mathbb{C}$
- $(4) \| v + w \| \le \| v \| + \| w \| \quad \forall v, w \in V.$

Auf \mathbb{C}^n hat man die Normen $\| . \|_{\infty}, \| . \|_1, \| . \|_2$, die für $v = (z_1, \ldots, z_n) \in \mathbb{C}^n$ definiert sind durch

$$||v||_{\infty} := \max\{|z_1|, \dots, |z_n|\},$$

 $||v||_1 := |z_1| + \dots + |z_n|,$
 $||v||_2 := (|z_1|^2 + \dots + |z_n|^2)^{1/2}.$

Ist V ein komplexer normierter Raum, so ist der V zugrundeliegende \mathbb{R} -Vektorraum $V_{\mathbb{R}}$ ein reeller normierter Raum. Insbesondere gilt:

V wird durch $d(x,y) := \parallel x-y \parallel$ zu einem metrischen Raum; $\parallel . \parallel : V \to \mathbb{R}$ ist stetig; zwei Normen $\parallel . \parallel$ und $\parallel . \parallel'$ auf dem endlich-dimensionalen \mathbb{C} -Vektorraum V sind äquvalent in dem Sinn, dass es positive Zahlen a,A gibt mit

$$a \parallel v \parallel \leq \parallel v \parallel' \leq A \parallel v \parallel \quad \forall \ v \in V.$$

Vorbemerkung 2: Sei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Der \mathbb{K} -Vektorraum $M(m, n; \mathbb{K})$ der $m \times n$ -Matrizen mit Einträgen aus \mathbb{K} wird betrachtet als die Menge der \mathbb{K} -linearen Abbildungen $\mathbb{K}^n \to \mathbb{K}^m$.

Wir wählen Normen auf \mathbb{K}^n und \mathbb{K}^m , die beide mit $\| \cdot \|$ bezeichnet werden. Ist $A \in M(m, n; \mathbb{K})$, so sei

$$\parallel A\parallel := \max\{\parallel Ax\parallel \mid x\in \mathbb{K}^n \text{ und } \parallel x\parallel = 1\}.$$

(Beachte: $S := \{x \in \mathbb{K}^n \mid ||x|| = 1\}$ ist beschränkt und abgeschlossen in \mathbb{K}^n . Daher nimmt die stetige Funktion $x \mapsto ||Ax||$ auf S ihr Maximum an.) Es gilt:

(1) Damit hat man eine Norm auf $M(m, n; \mathbb{K})$.

(2) Für alle $x \in \mathbb{K}^n$ und alle $A \in M(m, n; \mathbb{K})$ ist $||Ax|| \le ||A|| \cdot ||x||$.

Ist m = n, so wählt man die beiden Ausgangsnormen gleich. Es ist dann:

(3) $||AB|| \le ||A|| \cdot ||B||$ für alle $A, B \in M(n, n; \mathbb{K})$.

Def. Sei I ein offenes Intervall, $A: I \to M(n, n; \mathbb{R})$ und $b: I \to \mathbb{R}^n$ stetig. Definiere $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ durch

$$f(x,y) := A(x) \cdot y + b(x).$$

Dann heißt y' = f(x, y) ein System von n linearen DGln. 1. Ordnung oder kurz eine lineare DGl. 1. Ordnung. Ist dabei $b(x) = 0 \ \forall x \in I$, so heißt das System homogen.

Satz 1. Sei I ein offenes Intervall, $A: I \to M(n, n; \mathbb{R})$ und $b: I \to \mathbb{R}^n$ seien stetig. Sei $(x_0, y_0) \in I \times \mathbb{R}^n$.

Dann besitzt das System y' = A(x)y + b(x) eine eindeutig bestimmte Lösung $\varphi: I \to \mathbb{R}^n$ mit $\varphi(x_0) = y_0$.

(In Zukunft verstehen wir unter einer Lösung einer solchen linearen DGl. immer eine auf ganz I definierte Lösung.)

Bem. Wir identifizieren \mathbb{C}^n mit \mathbb{R}^{2n} vermöge

$$(z_1,\ldots,z_n)\longleftrightarrow (\operatorname{Re} z_1,\cdots,\operatorname{Re} z_n,\operatorname{Im} z_1,\ldots,\operatorname{Im} z_n).$$

Eine C-lineare Abbildung $A: \mathbb{C}^n \to \mathbb{C}^n$, also ein $A \in M(n, n; \mathbb{C})$, wird dann mit einer \mathbb{R} -linearen Abbildung $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$, also einer Matrix aus $M(2n, 2n; \mathbb{R})$, identifiziert: Ist A = C + iD mit $C, D \in M(n, n; \mathbb{R})$, so wird A identifiziert mit

$$\left(\begin{array}{cc} C & -D \\ D & C \end{array}\right) \in M(2n, 2n; \mathbb{R}).$$

Def. Sei I ein offenes Intervall (in \mathbb{R}), $A:I\to M(n,n;\mathbb{C})$ und $b:I\to\mathbb{C}^n$ seien stetig. Definiere $f:I\times\mathbb{C}^n\to\mathbb{C}^n$ durch $f(x,y):=A(x)\cdot y+b(x)$. Dann ist y'=f(x,y) mit obigen Identifikationen ein System von 2n linearen DGln. 1. Ordnung. Wir nennen es ein System von n linearen komplexen DGln. 1. Ordnung oder kurz lineare DGln. 1. Ordnung.

Satz 2. Sei I ein offenes Intervall, $A: I \to M(n, n; \mathbb{K})$ sei stetig, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . a) Die Lösungen der DGl.

$$y' = A(x)y$$

bilden einen \mathbb{K} -Vektorraum L der Dimension n.

b) Wählt man ein festes $x_0 \in I$, so erhält man einen Isomorphismus von L auf \mathbb{K}^n durch $\varphi \mapsto \varphi(x_0)$.

Bem. Bei einem homogenen System von n linearen DGln. 1. Ordnung handelt es sich also darum, n linear unabhängige Lösungen $\varphi^1, \ldots, \varphi^n$ zu finden. Alle anderen Lösungen ergeben sich dann als Linearkombinationen. Für n > 1 gibt es kein allgemeines Verfahren, um Lösungen zu finden!

Beispiel: $y'_1 = y_2$

$$y_2' = -y_1$$

Zwei Lösungen φ^1, φ^2 sind gegeben durch

$$\varphi^1(x) = \begin{pmatrix} \sin x \\ \cos x \end{pmatrix}, \quad \varphi^2(x) = \begin{pmatrix} \cos x \\ -\sin x \end{pmatrix}.$$

Dann bilden φ^1 und φ^2 eine Basis des Lösungsraums.

Satz 3. Sei I ein offenes Intervall, $A:I\to M(n,n;\mathbb{K})$ und $b:I\to\mathbb{K}^n$ seien stetig. Sei L der Lösungsraum der homogenen DGl.

$$y' = A(x) \cdot y$$

und M die Menge aller Lösungen von

$$y' = A(x) \cdot y + b(x).$$

Ist $\psi_0 \in M$, so ist $M = \psi_0 + L := \{\psi_0 + \varphi | \varphi \in L\}$.

Bem. Hat man also eine Basis $\varphi^1, \ldots, \varphi^n$ des Lösungsraums der homogenen DGl. y' = A(x) y, so muss man nur noch eine Lösung ψ der inhomogenen DGl. y' = A(x) y + b(x) finden. Dies geschieht mit der Methode der Variation der Konstanten:

Man definiert $\Phi: I \to M(n, n; \mathbb{K})$ durch $\Phi:=(\varphi^1, \ldots, \varphi^n)$ und sucht ψ in der Form $\psi(x) = \Phi(x) u(x)$ mit $u: I \to \mathbb{K}^n$. Man erhält

$$u(x) = \int_{x_0}^{x} \Phi(t)^{-1} b(t) dt + \text{const.}$$

Beispiel: $y_1' = y_2$

$$y_2' = -y_1 + x$$

$$\Phi(x) = \begin{pmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{pmatrix} = \Phi(x)^{-1}$$

$$u(x) = \begin{pmatrix} \cos x + x \sin x - 1 \\ -\sin x + x \cos x \end{pmatrix}$$

 $\psi(x) = \Phi(x) u(x) = \begin{pmatrix} x - \sin x \\ 1 - \cos x \end{pmatrix}$

Def. Sei I ein offenes Intervall und seien

$$a_0, a_1, \ldots, a_{n-1}, b: I \to \mathbb{K}$$

stetige Funktionen. Dann heißt

$$y^{(n)} = a_0(x) y + a_1(x) y' + \ldots + a_{n-1}(x) y^{(n-1)} + b(x)$$

eine lineare DGl. n-ter Ordnung. Ist b=0, so heißt sie homogen.

Satz 4. a) Sei L die Menge aller Lösungen der homogenen DGl.

$$y^{(n)} = a_0(x) y + \ldots + a_{n-1}(x) y^{(n-1)}.$$

Dann ist L ein n-dimensionaler \mathbb{K} -Vektorraum.

b) Sind $\varphi_1, \ldots, \varphi_n \in L$, so bilden $\varphi_1, \ldots, \varphi_n$ genau dann eine Basis von L, wenn für ein und damit für alle $x \in I$ gilt:

$$\det \begin{pmatrix} \varphi_1(x) & \dots & \varphi_n(x) \\ \varphi'_1(x) & \dots & \varphi'_n(x) \\ \vdots & & \vdots \\ \varphi_1^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{pmatrix} \neq 0.$$

c) Ist M die Menge aller Lösungen der inhomogenen DGl.

$$y^{(n)} = a_0(x) y + \ldots + a_{n-1}(x) y^{(n-1)} + b(x)$$

und ist $\psi_0 \in M$, so ist $M = \psi_0 + L$.

Bem. Auch für die lineare DGl. 2. Ordnung gibt es kein allgemeines Lösungsverfahren.

10. Lineare Differenzialgleichungen mit konstanten Koeffizienten

Sei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Def. Ist $A \in M(n; \mathbb{K}) := M(n, n; \mathbb{K})$ und $b \in \mathbb{K}^n$, so heißt

$$y' = Ay$$

eine homogene lineare DGl. mit konstanten Koeffizienten. Ihre Lösungen sind auf ganz \mathbb{R} definiert.

Def. Sei X ein metrischer Raum.

- a) Eine Folge (x_n) in X heißt Cauchy-Folge, wenn es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt mit $d(x_n, x_m) < \varepsilon$ für alle $m, n \ge N$.
- b) X heißt vollständig, wenn jede Cauchy-Folge in X konvergiert.
- c) Ein normierter Raum heißt Banach-Raum, wenn er vollständig ist.

Bem. Jeder endlich-dimensionale normierte Raum ist ein Banach-Raum.

Def. Sei V ein normierter Raum und (a_n) eine Folge in V.

- a) Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt konvergent, wenn die Folge $(a_1 + \ldots + a_k)_k$ in V konvergiert.
- b) Die Reihe $\sum\limits_{n=1}^{\infty}a_n$ heißt absolut konvergent, wenn die Reihe $\sum\limits_{n=1}^{\infty}\parallel a_n\parallel$ reeller Zahlen konvergiert.

Bem. In einem Banach-Raum ist jede absolut konvergente Reihe konvergent, und man kann mit absolut konvergenten Reihen wie in \mathbb{R} umgehen.

Def. Sei $A \in M(n; \mathbb{K})$. Im Banach-Raum $M(n; \mathbb{K})$ konvergiert die Reihe $\sum_{k=0}^{\infty} \frac{1}{k!} A^k$ absolut. Dabei setzt man $A^0 = I_n$ für alle $A \in M(n; \mathbb{K})$. Sei

$$e^A := \exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^k \in M(n; \mathbb{K}).$$

Satz 1. Ist $A \in M(n; \mathbb{K})$ und $y_0 \in \mathbb{K}^n$, so ist die einzige Lösung φ von y' = Ay mit $\varphi(0) = y_0$ gegeben durch

$$\varphi(x) = e^{xA} y_0.$$

Bem. Ist $v_0 \in \mathbb{K}^n$ ein Eigenvektor von A zum Eigenwert λ , so ist $x \mapsto e^{\lambda x} v_0$ eine Lösung von y' = Ay.

Wenn A diagonalisierbar ist, so gibt es eine Basis v_1, \ldots, v_n von \mathbb{K}^n und $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ mit

$$A v_i = \lambda_i v_i$$
.

Dann bilden die n Funktionen

$$x \longmapsto e^{\lambda_j x} v_j$$

eine Basis des Lösungsraums der DGl. y' = Ay.

Beispiel 1: $y'_1 = 5y_1 + 3y_2$

$$y_2' = -6y_1 - 4y_2$$

Die Lösungen sind von der Form

$$y_1(x) = \alpha e^{2x} + \beta e^{-x}$$

$$y_2(x) = -\alpha e^{2x} - 2\beta e^{-x}$$

mit Konstanten $\alpha, \beta \in \mathbb{R}$.

Satz 2. Sei $A \in M(n; \mathbb{C})$ und $\varphi = (\varphi_1, \dots, \varphi_n) : \mathbb{R} \to \mathbb{C}^n$ eine Lösung der DGl. y' = Ay. Dann ist jedes φ_i eine komplexe Linearkombination der Funktionen

$$x \longmapsto x^k e^{\lambda x}$$
.

wobei λ ein Eigenwert von A und k kleiner als die algebraische Vielfachheit des Eigenwerts λ (sogar kleiner als die Größe des größten Jordan-Kästchens zum Eigenwert λ) ist.

Satz 3. Sei $A \in M(n; \mathbb{R})$ und $\varphi = (\varphi_1, \dots, \varphi_n) : \mathbb{R} \to \mathbb{R}^n$ eine Lösung von y' = Ay. Dann ist jedes φ_i reelle Linearkombination der Funktionen

$$x \longmapsto x^k e^{ax} \cos bx$$
 und $x \longmapsto x^k e^{ax} \sin bx$,

wobei a+bi die komplexen Eigenwerte von A mit $b\geq 0$ durchläuft und k eine nichtnegative ganze Zahl ist, die kleiner als die algebraische Vielfachheit des Eigenwerts a+bi von A ist.

Beispiel 2: $y_1' = y_1 + y_2$

$$y_2' = y_2$$

Die Lösungen sind von der Form

$$y_1(x) = \alpha e^x + \beta x e^x$$

$$y_2(x) = \beta e^x$$
.

mit Konstanten $\alpha, \beta \in \mathbb{R}$.

Satz 4. Seien $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$. Wir betrachten die DGl.

$$y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0.$$

Es sei

$$x^{n} + a_{n-1} x^{n-1} + \ldots + a_{1} x + a_{0} = \prod_{j=1}^{m} (x - \lambda_{j})^{k_{j}}$$

mit paarweise verschiedenen $\lambda_j \in \mathbb{C}$.

Dann bilden die Funktionen

$$x^k e^{\lambda_j x}$$
 mit $1 < j < m$, $0 < k < k_j$

eine Basis des Lösungsraums.

Satz 5. Seien $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Wir betrachten die DGl.

$$y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0.$$

Seien $\lambda_1, \ldots, \lambda_r$ die paarweise verschiedenen rellen Nullstellen des Polynoms

$$g(x) := x^n + a_{n-1} x^{n-1} + \dots + a_0.$$

Seien $\lambda_{r+1}, \ldots, \lambda_s$ die paarweise verschiedenen nicht-reellen Nullstellen von g mit Im $\lambda_j > 0$. Für $j = 1, \ldots, s$ sei k_j die Vielfachheit der Nullstelle λ_j . Für $j = r+1, \ldots, s$ sei $\lambda_j = \mu_j + i \nu_j$ mit $\mu_j, \nu_j \in \mathbb{R}$. Dann bilden die Funktionen

$$\left. \begin{array}{ll} x^{p} \, e^{\lambda_{j} x} & (1 \leq j \leq r \; , \; 0 \leq p < k_{j}) \\ x^{p} \, e^{\mu_{j} x} \, \cos \nu_{j} x \\ x^{p} \, e^{\mu_{j} x} \, \sin \nu_{j} x \end{array} \right\} \quad (r < j \leq s \; , \; 0 \leq p < k_{j})$$

eine Basis des Lösungsraums.

Beispiel: Die DGl. der gedämpften Schwingung:

$$y'' + 2\mu y' + \omega_0^2 y = 0$$

mit $\mu \geq 0$, $\omega_0 > 0$. Man nennt 2μ den Dämpfungsfaktor und ω_0 die Frequenz der ungedämpften Schwingung.

11. Der Fixpunktsatz von Banach

Def. Sei X eine Menge und $f: X \to X$ eine Abbildung. Dann heißt ein Element $x \in X$ ein Fixpunkt von f, wenn f(x) = x.

Def. Sei X ein metrischer Raum. Eine Abbildung $f: X \to X$ heißt kontrahierend, wenn es ein $C \in \mathbb{R}$ mit C < 1 gibt, so dass gilt:

$$d(f(x), f(y)) \le C d(x, y) \ \forall \ x, y \in X.$$

Bem. Eine kontrahierende Abbildung ist (Lipschitz-) stetig.

Satz 1. Sei X ein vollständiger metrischer Raum und $f: X \to X$ eine kontrahierende Abbildung. Dann besitzt f genau einen Fixpunkt.

Beweisidee: Man wählt einen beliebigen Startpunkt $x_0 \in X$. Dann ist $\lim_n f^n(x_0)$ der Fixpunkt.

Satz 2. Sei X ein vollständiger metrischer Raum, $x_0 \in X$, R > 0 und $B := \{x \in X | d(x_0, x) < R\}$. Sei $G : B \to X$ eine Abbildung und es gebe ein C < 1, so dass

- (1) $d(G(x), G(y)) \le C d(x, y) \quad \forall x, y \in B,$
- (2) $d(G(x_0), x_0) < R(1 C)$.

Dann gibt es genau ein $x \in B$ mit G(x) = x.

12. Der lokale Existenz- und Eindeutigkeitssatz

Wir formulieren die DGl. y' = f(x, y) mit der Anfangsbedingung $y(x_0) = x_0$ um in ein Fixpunktproblem:

Lemma 1. Sei I ein offenes Intervall, H offen in \mathbb{R}^n , $f: I \times H \to \mathbb{R}^n$ sei stetig, $(x_0, y_0) \in I \times H$. Sei J ein offenes Teilintervall von I mit $x_0 \in J$.

Für eine stetige Abbildung $\varphi:J\to\mathbb{R}^n$ mit $\varphi(J)\subseteq H$ definieren wir eine stetige Abbildung $G(\varphi):J\to\mathbb{R}^n$ durch

$$(G(\varphi))(x) := y_0 + \int_{x_0}^x f(t, \varphi(t)) dt.$$

Für ein solches φ sind äquivalent:

- 1) φ ist Lösung von y' = f(x, y) mit $\varphi(x_0) = y_0$.
- 2) $G(\varphi) = \varphi$.