Map Visualization

Create a Busan map

Import folium and draw a map

```
import folium
busan =[35.1797957, 129.0727983]
m = folium.Map(location = busan, \
          zoom_start = 12, width=800, height=500)
m
```


Create a Busan map

• Use branca.element

```
from branca.element import Figure
fig = Figure(width=600, height=400)
busan =[35.1797957, 129.0727983]
m = folium.Map(location = busan, zoom start = 12 )
fig.add child(m)
```

Layers and Tiles in Folium

Default: OpenStreetMap

https://pythonvisualization.github.io/folium/latest/user_guide /raster_layers/tiles.html

Layers and Tiles in Folium

Default: OpenStreetMap

```
fig2 = Figure(width=600, height=400)
busan =[35.1797957, 129.0727983]

m2 = folium.Map(location = busan, zoom_start = 12)
folium.TileLayer('Stamen Terrain').add_to(m2)
folium.TileLayer('Stamen Toner').add_to(m2)
folium.TileLayer('Stamen Water Color').add_to(m2)
folium.TileLayer('cartodbpositron').add_to(m2)
folium.TileLayer('cartodbdark_matter').add_to(m2)
folium.LayerControl().add_to(m2)
fig2.add_child(m2)
```


Plotting Marker on the map

- Use Marker()
 - Options: Icon, popup, tooltip

```
fig3 = Figure (width=600, height=400)
# Infos
pnu = [35.23379098528912, 129.08090997889803]
pnu station=[35.22884833731382, 129.09063225747852]
# map
m3 = folium.Map( pnu, zoom start=15, tiles='Stamen Toner')
# Marker for PNU
folium.Marker(pnu, popup='PNU', \
             tooltip='Click here to see Popup', \
             icon=folium.Icon(icon='bookmark', color='red', prefix='fa')).add to(m3)
# Makrer for PNU subway
folium.Marker(pnu_station, popup='PNU Subwary', \
             icon=folium.Icon(icon='subway', color='blue', prefix='fa')).add to(m3)
fig3.add child(m3)
```


Marker Cluster (1/2)

Import MarkerCluster

```
import pandas as pd
import folium
from folium import Marker
from folium.plugins import MarkerCluster
```

Load data

from google.colab import files	Unnamed:	0	Name	LineName	Lat	Long	LatLong
<pre>file_uploaded = files.upload()</pre>	0	0	다대포해수욕장	부산도시철도 1호선	35.048670	128.964100	[35.04867, 128.9641]
	1	1	다대포항역	부산도시철도 1호선	35.057820	128.971300	[35.05782, 128.9713]
<pre>df = pd.read_csv('subway.csv')</pre>	2	2	낫개역	부산도시철도 1호선	35.065265	128.979873	[35.065265, 128.979873]
df.head()	3	3	신장림역	부산도시철도 1호선	35.074433	128.977041	[35.074433, 128.977041]
	4	4	장림역	부산도시철도 1호선	35.081090	128.977500	[35.08109, 128.9775]

Marker Cluster (2/2)

Draw a map with MarkerCluster

```
fig = Figure (width=1024, height=768)
submap = folium.Map(location = busan, \
               zoom start = 13)
cluster = MarkerCluster()
for , i in df.iterrows():
   cluster.add child(
       Marker(location = [i['Lat'], i['Long']],
              popup =folium.Popup("" + "LineName: " + str(i['LineName']) \
                 + "<br>" + "StationName: " + str(i['Name']) + " <br>" + "", \
                 max width=300,min width=300))
   ).add to(submap)
fig.add child(submap)
```


Add a GeoJSON file for boundaries (1/3)

Import packages

```
import pandas as pd
import folium
from folium import Marker
from folium.plugins import MarkerCluster
import json
```

Load a GeoJson file

```
from google.colab import files
file_uploaded = files.upload()
```

```
busan_geojson = json.load(open('busan_gu.json', encoding='utf-8'))
```

Add a GeoJSON file for boundaries (2/3)

GeJson example

busan geojson["features"][0]

```
{'type': 'Feature',
'id': '중구',
'properties': {'code': '21010',
 'name': '중구',
 'name eng': 'Jung-gu',
 'base year': '2013'},
'geometry': {'type': 'Polygon',
 'coordinates': [[[129.032, 35.116],
  [129.038, 35.112], [129.042, 35.111],
  [129.041, 35.108], [129.038, 35.104],
  [129.038, 35.098], [129.037, 35.097],
  [129.029, 35.096], [129.026, 35.096],
  [129.024, 35.1], [129.022, 35.102],
  [129.021, 35.106], [129.023, 35.109],
  [129.024, 35.109], [129.026, 35.111],
  [129.028, 35.11], [129.028, 35.115],
  [129.032, 35.116]]]}}
```

```
'중구","name_eng":"Jung-gu","base_year":"2013"},"geometry":{"type":"Polygon","coordinates":[[[129.032,35.116],[129.038,35.147]","name_eng":"Seo-gu","base_year":"2013"},"geometry":{"type":"Polygon","coordinates":[[[129.023,35.076],[129.021,35.67]","name_eng":"Dong-gu","base_year":"2013"},"geometry":{"type":"Polygon","coordinates":[[[129.043,35.146],[129.046,35.7]","name_eng":"Youngdo-gu","base_year":"2013"},"geometry":{"type":"Polygon","coordinates":[[[129.071,35.059],[129.081]],"geometry":{"type":"Polygon","coordinates":[[[129.071,35.059]],[129.081]],"geometry":{"type":"Polygon","coordinates":[[[129.083,35.224],[129.083]],"geometry":{"type":"Polygon","coordinates":[[[129.083,35.224],[129.083]],"geometry":{"type":"Polygon","coordinates":[[[129.083,35.224],[129.083]],"geometry":{"type":"Polygon","coordinates":[[[129.083,35.136],[129.11,35.136]],[129.11,35.136]],[129.11,35.136],[129.11,35.136]],[129.11,35.136],[129.11,35.136]],[129.11,35.136],[129.11,35.136]],[129.11,35.136],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.11,35.136]],[129.1
```

Add a GeoJSON file for boundaries (3/3)

Draw a map

```
fig3 = Figure(width=600, height=400)
busan =[35.1797957, 129.0727983]
m = folium.Map(location=busan, zoom_start=10)
folium.GeoJson(busan_geojson).add_to(m)

fig3.add_child(m)
```


Draw a choropleth map (1/3)

Choropleth map

Article Talk

From Wikipedia, the free encyclopedia

A **choropleth map** (from Greek $\chi \tilde{\omega} \rho o \varsigma$ (choros) 'area/region', and $\pi \lambda \tilde{\eta} \theta o \varsigma$ (plethos) 'multitude') is a type of statistical thematic map that uses pseudocolor, meaning color corresponding with an aggregate summary of a geographic characteristic within spatial enumeration units, such as population density or per-capita income.^{[1][2][3]}

 provide an easy way to visualize how a variable varies across a geographic area or show the level of variability within a region

Draw a choropleth map (2/3)

• 1. Prepare Data

```
from google.colab import files
file_uploaded = files.upload()
```

```
busan_df = pd.read_csv("busan.csv",index_col=0)
busan_df
```

	price	population	area	density
gu				
중구	15515	44852	2.83	15849
서구	28665	112621	13.98	8056
동구	20729	89144	9.74	9152
영도구	17024	121934	14.20	8587
부산진구	28781	365337	29.67	12313
동래구	35607	267735	16.63	16100
남구	29597	286093	26.81	10671
북구	23090	299547	39.37	7609

Draw a choropleth map (3/3)

2. Draw a map

Bike Sharing simulation

Bay Area Bike Share (1/2)

- Attributes
 - An ID for the rental
 - Duration of the rental, in seconds
 - Start date
 - Name of the Start Station and code for Start Terminal
 - Name of the End Station and code for End Terminal
 - A serial number for the bike
 - Subscriber type and zip code

	Trip ID	Duration	Start Date	Start Station	Start Terminal	End Date	End Station	End Terminal	Bike #	Subscriber Type	Zip Code
0	913460	765	8/31/2015 23:26	Harry Bridges Plaza (Ferry Building)	50	8/31/2015 23:39	San Francisco Caltrain (Townsend at 4th)	70	288	Subscriber	2139
1	913459	1036	8/31/2015 23:11	San Antonio Shopping Center	31	8/31/2015 23:28	Mountain View City Hall	27	35	Subscriber	95032
2	913455	307	8/31/2015 23:13	Post at Kearny	47	8/31/2015 23:18	2nd at South Park	64	468	Subscriber	94107
3	913454	409	8/31/2015 23:10	San Jose City Hall	10	8/31/2015 23:17	San Salvador at 1st	8	68	Subscriber	95113

Bay Area Bike Share (2/2)


```
import pandas as pd
import matplotlib
matplotlib.use('Agg')
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
import numpy as np
```

```
url = "https://raw.githubusercontent.com/data-
8/textbook/main/assets/data/trip.csv"
trip = pd.read_csv(url)
trip
```

	Trip ID	Duration	Start Date	Start Station	Start Terminal	End Date	End Station	End Terminal	Bike #	Subscriber Type	Zip Code
0	913460	765	8/31/2015 23:26	Harry Bridges Plaza (Ferry Building)	50	8/31/2015 23:39	San Francisco Caltrain (Townsend at 4th)	70	288	Subscriber	2139
1	913459	1036	8/31/2015 23:11	San Antonio Shopping Center	31	8/31/2015 23:28	Mountain View City Hall	27	35	Subscriber	95032
2	913455	307	8/31/2015 23:13	Post at Kearny	47	8/31/2015 23:18	2nd at South Park	64	468	Subscriber	94107
3	913454	409	8/31/2015 23:10	San Jose City Hall	10	8/31/2015 23:17	San Salvador at 1st	8	68	Subscriber	95113

Histogram

- focus only on the free trips
 - trips that last less than 1800 seconds (half an hour)

```
commute = trip[trip.Duration < 1800]
fig, ax = plt.subplots()
ax=sns.histplot(data=commute, x = "Duration", bins=60)
ax.set_xlabel("Duration")
ax.set_ylabel("Count")
ax.set_title("Histogram", size=20, color="red")
plt.show()</pre>
```


Drawing a station map (1/3)

• 1. Prepare stations' geographical info

```
url = "https://raw.githubusercontent.com/data-
8/textbook/main/assets/data/station.csv"
stations = pd.read_csv(url)
stations
```

	station_id	name	lat	long	dockcount	landmark	installation
0	2	San Jose Diridon Caltrain Station	37.329732	-121.901782	27	San Jose	8/6/2013
1	3	San Jose Civic Center	37.330698	-121.888979	15	San Jose	8/5/2013
2	4	Santa Clara at Almaden	37.333988	-121.894902	11	San Jose	8/6/2013
3	5	Adobe on Almaden	37.331415	-121.893200	19	San Jose	8/5/2013
4	6	San Pedro Square	37.336721	-121.894074	15	San Jose	8/7/2013

Drawing a station map (2/3)

2. Draw a map with markers

Drawing a station map (3/3)

Draw a map representing points on a map by colored circles.

More Informative Maps: An Application of join (1/4)

Use group to identify all the cities

```
cities = stations.groupby('landmark')['landmark'].count()
cities
```

```
cities = stations.groupby('landmark')['landmark'].count().reset_index
  (name='count').rename(columns={'landmark': 'city'})
  cities
```

city count

	City	Count
0	Mountain View	7
1	Palo Alto	5
2	Redwood City	7
3	San Francisco	35
4	San Jose	16

More Informative Maps: An Application of join (2/4)

Copy cities to colors then a new columns

```
colors = cities.copy()
colors['color'] = np.array(['blue', 'red', 'green', 'orange', 'purple'])
colors
```

	city	count	color
0	Mountain View	7	blue
1	Palo Alto	5	red
2	Redwood City	7	green
3	San Francisco	35	orange
4	San Jose	16	purple

More Informative Maps: An Application of join (3/4)

join stations and colors by landmark

color	name	Long	lat	
purple	San Jose Diridon Caltrain Station	-121.901782	37.329732	0
purple	San Jose Civic Center	-121.888979	37.330698	1
purple	Santa Clara at Almaden	-121.894902	37.333988	2
purple	Adobe on Almaden	-121.893200	37.331415	3
purple	San Pedro Square	-121.894074	37.336721	4
orange	Steuart at Market	-122.394434	37.794139	62
orango	Machanics Plaza (Market at Ratton)	-122 200051	27 701200	62

More Informative Maps: An Application of join (4/4)

Draw joined data

```
fig = Figure(width=800, height=600)
colored map = folium.Map(location = [colored['lat'].mean(axis='rows'),\
      colored['long'].mean(axis='rows')],zoom start = 10)
for markerData in colored.values:
    folium.Marker([markerData[0],markerData[1]] ,
      icon=folium.Icon(color=markerData[3],icon color='blue'),
     popup=markerData[2]).add to(colored map)
fig.add child(colored map)
```

Most popular bike rental station (1/6)

Make a group

```
starts = commute.groupby('Start Station')['Start Station'].count()
starts
```

Make a dataframe with group by and sorting

```
starts = commute.groupby('Start Station')['Start Station'].count().
reset_index(name='count').sort_values(by='count', ascending=False)
starts
```

	Start Station	count
49	San Francisco Caltrain (Townsend at 4th)	25858
50	San Francisco Caltrain 2 (330 Townsend)	21523
23	Harry Bridges Plaza (Ferry Building)	15543
65	Temporary Transbay Terminal (Howard at Beale)	14298
2	2nd at Townsend	13674

... ..

Most popular bike rental station (2/6)

Include geo data to start station by join

	station_id	name	lat	long	dockcount	landmark	installation	count
0	2	San Jose Diridon Caltrain Station	37.329732	-121.901782	27	San Jose	8/6/2013	4899
1	3	San Jose Civic Center	37.330698	-121.888979	15	San Jose	8/5/2013	574
2	4	Santa Clara at Almaden	37.333988	-121.894902	11	San Jose	8/6/2013	1888
3	5	Adobe on Almaden	37.331415	-121.893200	19	San Jose	8/5/2013	522
4	6	San Pedro Square	37.336721	-121.894074	15	San Jose	8/7/2013	1321

Most popular bike rental station (3/6)

- Adding a color and an area size
 - will use a circle marker, the computed area size means the size of a circle

```
# Extract columns 'lat', 'long', 'name' from station starts to star
ts map data
starts map data = station starts.loc[:, ['lat', 'long', 'name']].co
py()
# Set color
starts map data['colors'] = ['blue'] * 68 # 68 rows
# Set size
starts_map_data['areas'] = station starts['count'] * 0.3
starts map data
```

Most popular bike rental station (4/6)

Selector a color based on an area size

```
def color_select(areas):
    if areas > 3000:
        return 'red'
    elif areas > 2000:
        return 'yellow'
    elif areas > 1000:
        return 'green'
    else:
        return 'dodgerblue'
```

Most popular bike rental station (5/6)

Draw a circle marker

```
fig = Figure(width=800, height=600)
stataion starts map = folium.Map(location = [starts map data['lat']
.mean(axis='rows'), starts map data['long'].mean(axis='rows')],
              zoom start = 10)
for markerData in starts map data.values:
    folium.CircleMarker([markerData[0],markerData[1]],
     fill = True, color = color select(markerData[4]),
     radius = (markerData[4]**(1/2))/2).add to(station starts map)
fig.add child(station starts map)
```

Most popular bike rental station (6/6)

Results

Q&A

