Раздел 2. Нейронные сети

- Модель искусственного нейрона
- Полносвязные нейронные сети
- Сверточные нейронные сети
- Реккурентные нейронные сети

Идея:

- •моделирование процессов, происходящих в нервной системе живых организмов при обработке поступающей информации.
- •мозг гораздо быстрее и точнее компьютера может обрабатывать аналоговую информацию: распознавать изображения, вкус, звуки, читать чужой почерк, оперировать качественными понятиями.

- Дендриты отвечают за получение нервных импульсов от других нейронов. Далее под их воздействием сома испытывает специфическое возбуждение, которое затем распространяется по аксону.
- Нейронная сеть множество нейронов, взаимодействующих между собой.
- Синапс область контакта аксона одного нейрона с дендритами других нейронов.

Мозг человека состоит из белого и серого веществ: белое — это тела нейронов, а серое — это соединительная ткань между нейронами, или *аксоны и дендриты*. Мозг состоит примерно из 10¹¹ нейронов, связанных между собой.

Нейрон может иметь до 10000 дендритов. Таким образом, мозг содержит примерно 10¹⁵ взаимосвязей.

Нейроны взаимодействуют посредством серий импульсов, длящихся несколько миллисекунд, каждый импульс - сигнал с частотой 1-100 герц.

Нейронная сеть

- Совокупность соединенных между собой нейронов;
- Сеть осуществляет преобразование входного сигнала с рецепторов в выходной, являющейся реакцией организма на внешнюю среду.
- Мозг система из параллельных «процессоров».
- Большое число параллельно функционирующих простых устройств работает гораздо эффективнее, чем сложные последовательные устройства.

2.1. Модель кибернетического нейрона

активации

McCulloch, W. and Pitts, W. (1943)

Функции активации нейронов

Название	Формула	График
Пороговая	$f(u) = \begin{cases} 0 & u < 0 \\ 1 & u \ge 0 \end{cases}$	
Знаковая	$f(u) = \begin{cases} 1 & u > 0 \\ -1 & u \le 0 \end{cases}$	1 🕇
(сигнатурная)		0
Полулинейная	$f(u) = \begin{cases} u & u > 0 \\ 0 & u \le 0 \end{cases}$	1 /
rectifier linear unit (ReLU)	$ \begin{array}{c c} & 0 & u \leq 0 \end{array} $	0 i
Линейная	f(u) = u	1 1
		<u> </u>

Функции активации нейронов

Линейный дискриминант Фишера: $f(x) = sign\left(\sum_{j} w_{j}x_{j} - w_{0}\right)$

Модель линейного персептрона (персептрон Розенблатта):

$$f(x,w) = \sigma(\sum_{j} w_{j}x_{j} - w_{0}),$$

где $\sigma(\cdot)$ функция активации (в частности, sign). Можно ввести

где
$$\sigma(\cdot)$$
 функция активации (в частности, s
$$x_0 \equiv -1 \quad \Rightarrow \sum_{j=1}^n w_j x_j - w_0 = \sum_{j=0}^n w_j x_j = \langle w, x \rangle$$

Пример. Функции И, ИЛИ, НЕ от булевых переменных X_1 и X_2 :

$$X_{1} \wedge X_{2} = \left[X_{1} + X_{2} - \frac{3}{2} > 0 \right];$$

$$X_{1} \vee X_{2} = \left[X_{1} + X_{2} - \frac{1}{2} > 0 \right];$$

$$\neg X_{1} = \left[-X_{1} + \frac{1}{2} > 0 \right];$$

 $([\cdot])$ – индикаторная функция.

Задача обучения персептрона:

- подобрать веса *w* так, чтобы ошибка на обучающей выборке была минимальной.

Алгоритм Розенблатта (коррекции ошибок):

Пусть t = 1, 2, ... - номер шага (эпохи);

- 1. Случайным образом задаются веса w(0);
- 2. По очереди предъявляются объекты выборки; для каждого объекта $x^{(i)}$ вычисляется выход (расстояние до разделяющей гиперплоскости с учетом знака)

$$\tilde{y}^{(i)} = \left\langle w, x^{(i)} \right\rangle;$$

- 3. Если $\tilde{y}^{(i)} \cdot y^{(i)} > 0$, то веса не изменяются;
- 4. Если $\tilde{y}^{(i)} \cdot y^{(i)} \leq 0$, то проводится коррекция (правило Хебба):

$$w(t+1) = w(t) + \eta x^{(i)} \cdot y^{(i)},$$

где $\eta > 0$ - параметр (темп обучения).

При этом будет выполняться:

$$\tilde{y}^{(i)}(t+1) \cdot y^{(i)} = \left\langle w(t+1), x^{(i)} \right\rangle \cdot y^{(i)} = \left\langle w(t) + \eta x^{(i)} \cdot y^{(i)}, x^{(i)} \right\rangle \cdot y^{(i)} = \left\langle w(t), x^{(i)} \right\rangle \cdot y^{(i)} + \eta \left\langle x^{(i)} \cdot y^{(i)}, x^{(i)} \cdot y^{(i)} \right\rangle = \tilde{y}^{(i)} \cdot y^{(i)} + \eta \|x^{(i)}\|_{\mathcal{Y}}$$

сдвиг в «правильном» направлении

- 5. Повторяются 2)-4) пока не выполнится правило останова:
 - а) веса w(t) перестали изменяться; или
 - б) ошибка распознавания стала меньше заданного параметра.

Теорема (Новиков, 1962).

Пусть выборка $\left\{\left(x^{(i)},y^{(i)}\right)\right\}_{i=1}^{N}$ линейно разделима, т.е.

$$\exists \tilde{w}, \exists \delta > 0 : \langle \tilde{w}, x^{(i)} \rangle y^{(i)} > \delta$$
 для всех $i = 1, ..., N$.

Тогда алгоритм Розенблатта находит вектор весов w:

- разделяющий обучающую выборку без ошибок;
- при любом w(0);
- при любом темпе обучения $\eta > 0$;
- независимо от порядка объектов;
- за конечное число итераций;
- если w(0) = 0, то число итераций $t_{\max} \le \frac{1}{\delta^2} \max \| x^{(i)} \|$.

Правило Розенблатта ("delta-rule", "error-correcting learning")

$$w(t+1) = w(t) + \eta \, \delta^{(i)} x^{(i)},$$

где
$$\delta^{(i)}(t) = y^{(i)} - \tilde{y}^{(i)}(t)$$
.

Веса изменяются так, чтобы уменьшить разницу между выходом $(\tilde{y}^{(i)})$ и целевым значением $(y^{(i)})$.

Качество персептрона (суммарная ошибка):

$$Q(w) = \frac{1}{2} \sum_{i} Q_{i} = \frac{1}{2} \sum_{i} (y^{(i)} - \tilde{y}^{(i)})^{2} \rightarrow \min$$

чтобы локально минимизировать Q, на каждом шаге нужно

корректировать веса:
$$w_j(t+1) = w_j(t) - \eta \frac{\partial Q_i}{\partial w_j}$$
;

$$\frac{\partial Q_i}{\partial w_j} = \frac{\partial Q_i}{\partial \tilde{y}^{(i)}} \frac{\partial \tilde{y}^{(i)}}{w_j} = \underbrace{(y^{(i)} - \tilde{y}^{(i)})}_{\delta^{(i)}} (-x^{(i)}) \Rightarrow w(t+1) = w(t) + \eta \, \delta^{(i)} x^{(i)}$$

Направления дальнейшего развития алгоритма Розенблатта:

- использование произвольной функции потерь (частота ошибки => риск);
- поиск наилучшего способа инициализации весов;
- изменить порядок рассмотрения объектов:
- •а) случайный;
- •б) оказывать большее внимание объектам, которые дают ошибку;
- •в) не рассматривать объекты выбросы;
- изменение темпа обучения ($\eta_t = 1/t$); скорейший градиентный спуск; пробные случайные шаги;

2.2. Полносвязные нейронные сети

Основной недостаток линейного персептрона:

алгоритм работает только для линейно разделимых

образов

Выход: использовать многослойный персептрон

Пример: функция XOR

Функция $X_1 \oplus X_2 = [X_1 \neq X_2]$ не реализуется одним нейроном.

Два способа реализации

- добавление нелинейного признака:

$$X_1 \oplus X_2 = [X_1 + X_2 - 2X_1X_2 - 1/2 > 0];$$

- Сеть (суперпозиция) функций И, ИЛИ, НЕ:

$$X_1 \oplus X_2 = [(X_1 \lor X_2) - (X_1 \land X_2) - 1/2 > 0]$$

Верхние индексы в скобках (m), m=1,2 - номер слоя нейрона. Для обозначения структуры сети используется кодировка "n-L-K".

K= число образов.

Выходные сигналы нейронных слоев:

Функции активации всех нейронов сети одинаковы.

Можно ли произвольную функцию представить нейросетью?

Решение тринадцатой проблемы Гильберта:

Теорема (Колмогоров, 1957)

Любая непрерывная функция n аргументов на единичном кубе $\left[0,1\right]^n$ представима в виде суперпозиции непрерывных функций одного аргумента и операции сложения:

$$f(x_1,...,x_n) = \sum_{k=1}^{2n+1} h_k \left(\sum_{i=1}^n \varphi_{i,k}(x_i) \right),$$

где $h_k, \phi_{i,k}$ - непрерывные функции одного аргумента.

Андрей Колмогоров, «О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных», *Известия АН СССР*, 108 (1956), с. 179—182; английский перевод: Amer. Math. Soc. Transl., 17 (1961), р. 369—373.

Теорема (Цыбенко, 1989)

Любая непрерывная функция n аргументов на единичном кубе $[0,1]^n$ сколь угодно близко представима искусственной нейронной сетью прямой связи (feedforward; в которых связи не образуют циклов) с одним скрытым слоем:

$$\exists \alpha_k, w_k, b_k$$
:

$$f(x_1,...,x_n) = \sum_{k=1}^{N} \alpha_k \sigma(w_k^T x + b_k),$$

$$f(x_1,...,x_n) = \sum_{k=1}^N \alpha_k \sigma\Big(w_k^T x + b_k\Big),$$
 где $\sigma(t) = \frac{1}{1+e^{-t}}$ - функция активации сигмоида.

Cybenko, G. V. Approximation by Superpositions of a Sigmoidal function // Mathematics of Control Signals and Systems. — 1989. — T. 2, № 4. — C. 303—314.

С помощью суперпозиции линейных функций и нелинейной функции активации можно аппроксимировать любую непрерывную функцию с любой заданной точностью

Обучение многослойного персептрона

Задача: найти такие веса, чтобы суммарная ошибка обучения была минимальной

$$Q_{\Sigma}(w) = \frac{1}{2} \sum_{i=1}^{N} \sum_{q=1}^{K} \left(\tilde{y}_{q}(x^{(i)}) - y_{q}^{(i)} \right)^{2} \to \min_{w}.$$

Алгоритм стохастического градиента:

- 1.Задать случайные веса $(w_{li}^{(1)}(0), w_{ql}^{(2)}(0)), l = 1, ..., L, q = 1, ..., K;$
- 2.Повторять для t = 1, 2, ...:
- 3.Вычислить критерий $Q_{\Sigma}(w(t));$
- 4.Для каждого i-го объекта (i = 1, ..., N): положим

$$w_{mk}^{(h)}(t+1) = w_{mk}^{(h)}(t) - \eta \frac{\partial Q(w(t))}{\partial w_{mk}^{(h)}(t)};$$

5.Продолжать 2)-4), пока либо критерий, либо веса не стабилизируются.

Нахождение градиента – трудоемкая операция.

Метод обратного распространения ошибок – позволяет эффективно его вычислять.

Суммарная ошибка для объекта $x^{(i)}$: $Q(\tilde{y}) = \frac{1}{2} \sum_{q=1}^{K} (\tilde{y}_q(x^{(i)}) - y_q^{(i)})^2$.

Частная производная:

$$\frac{\partial Q(\tilde{y})}{\partial \tilde{y}_q} = \tilde{y}_q - y_q^{(i)} = \tilde{\mathcal{E}}_q^{(i)}$$
 - ошибка для объекта $x^{(i)}$ на выходе

сети.

Частные производные по выходам скрытого слоя:

$$\frac{\partial Q(g)}{\partial g_{l}} = \frac{1}{2} \frac{\partial}{\partial g_{l}} \sum_{q=1}^{K} \left(\int_{l=0}^{\tilde{y}_{q}} w_{ql}^{(2)} \cdot g_{l} \right) - y_{q}^{(i)} \right)^{2} = \sum_{q=1}^{K} (\tilde{y}_{q} - y_{q}^{(i)}) f_{q}' w_{ql}^{(2)} = \sum_{q=1}^{K} (\tilde{y}_{q} - y_{q}^{q$$

$$=\sum_{q=1}^K ilde{\mathcal{E}}_q^{(i)} f_q' \ w_{ql}^{(2)} = \mathcal{E}_l^{(i)}$$
 - ошибка на l -м выходе скрытого слоя, $l=1,\dots,L$.

Таким образом, $\mathcal{E}_l^{(i)}$ можно вычислить по $\tilde{\mathcal{E}}_q^{(i)}$, q=1,...,K:

$$\varepsilon_l^{(i)} = \sum_{q=1}^K \tilde{\varepsilon}_q^{(i)} f_q' \ w_{ql}^{(2)}.$$

То есть как бы в обратном направлении:

Нахождение производной f': например, для сигмоидальной переходной функции:

$$f'(u) = \left(\frac{1}{1+e^{-u}}\right)' = -\frac{-e^{-u}}{\left(1+e^{-u}\right)^2} = \frac{1}{1+e^{-u}}\left(1-\frac{1}{1+e^{-u}}\right) = f(u)\left(1-f(u)\right).$$

Найдем частные производные по весам (как производные сложной функции):

$$\frac{\partial Q(\tilde{y}(w))}{\partial w_{ql}^{(2)}} = \frac{\partial Q(\tilde{y})}{\partial \tilde{y}_q} \frac{\partial \tilde{y}_q}{\partial w_{ql}^{(2)}} = \tilde{\varepsilon}_q^{(i)} f_q' g_l, \ q = 1, ..., K, \ l = 1, ..., L,$$

$$\frac{\partial Q(g(w))}{\partial w_{lj}^{(1)}} = \frac{\partial Q(g)}{\partial g_l} \frac{\partial g_l}{\partial w_{lj}^{(1)}} = \varepsilon_l^{(i)} f_l' x_j, l = 1, \dots, L, j = 0, 1, \dots, n,$$

где

$$f_q' = f' \left(\sum_{l=0}^{L} w_{ql}^{(2)} \cdot g_l \right),$$

$$f_l' = f' \left(\sum_{j=0}^{n} w_{lj}^{(1)} \cdot x_j \right).$$

Алгоритм обратного распространения

- 1. Задать случайным образом начальные веса $w_{mk}^h(0)$;
- 2. Для t = 1, 2, ... повторять:
- 3. Для всех объектов $x^{(i)}$, i = 1,...,N повторять:
- 4. Прямой ход: $g_l = f\left(\sum_{j=0}^n w_{l\,j}^{(1)} \cdot x_j^{(i)}\right), \ l=1,...,L;$ $\tilde{y}_q = f\left(\sum_{l=0}^L w_{ql}^{(2)} \cdot g_l\right), \ \tilde{\mathcal{E}}_q^{(i)} = \tilde{y}_q^{(i)} y_q^{(i)}, \ q=1,...,K;$ $Q\big(w(t)\big) = \sum_{q=1}^K \left(\tilde{\mathcal{E}}_q^{(i)}\right)^2;$
- 5. Обратный ход: $\mathcal{E}_l^{(i)} = \sum_{q=1}^K \tilde{\mathcal{E}}_q^{(i)} f_q' \ w_{ql}^{(2)}, \ l=1,...,L;$ $w_{ql}^{(2)}(t+1) = w_{ql}^{(2)}(t) \eta \ \tilde{\mathcal{E}}_q^{(i)} f_q' g_l, \ q=1,...,K, \ l=1,...,L;$ $w_{li}^{(1)}(t+1) = w_{li}^{(1)}(t) \eta \ \mathcal{E}_l^{(i)} f_l' x_i^{(i)}, \ \ l=1,...,L, \ j=0,1,...,n$.
- 6. Повторять 2)-5) пока либо критерий Q, либо веса w не стабилизируются.

Достоинства алгоритма

- градиент вычисляется за небольшое число шагов;
- алгоритм можно обобщить на произвольную функцию потерь и произвольную функцию активации;
- можно обучаться в динамике;
- можно распараллелить процесс обучения.

Недостатки алгоритма

- возможна медленная сходимость; «застревание» в локальном минимуме;
- зависимость от порядка объектов;
- проблема переобучения;
- непонятно, как задавать архитектуру сети, параметры алгоритма обучения;
- персептрон «черный ящик»!