

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 9: SUCHEN & ERSETZEN

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 1. Dezember 2021

KMP-Algorithmus

Aufgabe 1

KMP-ALGORITHMUS

- Mustersuche in (großen) Texten
- Ziel: Verschiebung des Musters um mehr als eine Position bei Nichtübereinstimmung.
- Methode: Ermittlung einer Verschiebetabelle Tab[] inPhase 1
- Bedeutung des Eintrags Tab[i]=j:
 Bei Nichtübereinstimmung an Stelle i wird Position j des
 Musters an aktueller Vergleichsstelle angelegt.
- Suchprozess in Phase 2

j-algo: http://j-algo.binaervarianz.de/

KMP-ALGORITHMUS

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Erster Versuch:

aaabaaa**b**aaacaaabaaaa aaabaaa**a**

Tabelleneintrag an Position 7 ist 3, d.h. Tab[7]=3 — Lege Position 3 des Musters an aktueller Vergleichsposition an:

aaabaaaa **c**aaabaaaa aaabaaa**a**

Gleicher Prozess noch einmal: Missmatch an Position 7 des Musters — verschiebe Muster auf Position 3.

KMP-ALGORITHMUS (FORTSETZUNG)

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Wir legen das Muster also wieder an Position 3 an:

Wegen Tab[3]=2, lege Muster an Position 2 an:

aaabaaabaaaa aa**a**baaaa

Wegen Tab[2]=-1, lege Muster an Position -1 an:

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

- 1. Phase: Markieren der längsten Teilwörter im Pattern, die mit einem Präfix übereinstimmen
 - ▷ ein Zyklus beginnt an einer Patternposition i falls i ≠ 0 und Pat[0] = Pat[i]
 - ⊳ ein Zyklus endet an der kleisten Patternposition i+m,
 sodass Pat [m+1] ≠ Pat [i+m+1]

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

- ▶ 1. Phase: Markieren der längsten Teilwörter im Pattern, die mit einem Präfix übereinstimmen
 - ▷ ein Zyklus beginnt an einer Patternposition i falls i ≠ 0 und Pat[0] = Pat[i]
 - ein Zyklus endet an der kleisten Patternposition i+m, sodass Pat [m+1] ≠ Pat [i+m+1]
- 2. Phase: Bestimmung der Tabelleneinträge
 - \triangleright Tab[0] = -1
 - Tabelleneinträge nach einem Zyklus:
 Länge des längsten dort endenden Zyklus
 - Tabelleneinträgen in einem Zyklus:
 Tabelleneintrag der derzeitigen Position im längsten laufenden Zyklus
 - ▶ verbleibende Einträge: 0

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

Tab[i] = max
$$\{-1\}$$
 $\cup \left\{ m \middle| \begin{array}{ccc} 0 \leq m \leq i-1 \\ b_0 \dots b_{m-i} = b_{i-m} \dots b_{i-1} \\ b_m \neq b_j \end{array} \right\}$ (*)

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- linker Finger: wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat[i] ≠ Pat[m]
- ▶ Parallelverschiebung beider Finger bis zum linken Rand: wenn Pat[0...m-1] = Pat[i-m...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

AUFGABE 1

Те	il (a)	Pattern: aabaaacaab									
	Position	0	1	2	3	4	5	6	7	8	9
	Pattern	a	а	b	а	а	а	С	а	а	b
	Tabelle										

1	Teil (a)	Pattern: aabaaacaab									
	Position	0	1	2	3	4	5	6	7	8	9
	Pattern	a	a	b	a	a	a	С	a	a	b
	Tabelle	-1	-1	1	-1	-1	2	2	-1	-1	1

AUFGABE 1 — TEIL (B)

Teil (b)

Position	0	1	2	3	4	5
Pattern	С	b				a
Tabelle	-1	0	-1	1	0	2

Teil (b)

Position	0	1	2	3	4	5
Pattern	С	b	С	С	b	a
Tabelle	-1	0	-1	1	0	2

- Pat[0...1] = Pat[3...4] wegen Tab[5] = 2 (Zyklenmethode), d.h. Pat[3] = Pat[0] = c und Pat[4] = Pat[1] = b
- wegen Tab[3] = 1 ist Pat[2] = Pat[0] = c (Zyklenmethode)
- oder: wegen Tab[3] = 1 ist Pat[1] # Pat[3] und Pat[2] = Pat[0] = c (Parallelverschiebung in der Zwei-Finger-Methode bzw. Gleichung (*))

Levenshtein-Distanz

Aufgabe 2

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$\begin{split} d(0,i) &= i \\ d(j,0) &= j \\ d(j,i) &= \min \left\{ d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i} \right\} \end{split}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$d(0,i) = i$$

$$d(j,0) = j$$

$$d(j,i) = \min \{d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i}\}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

AUFGABE 2

Gegeben seien die Wörter w =espen und v =beispiele.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v). Geben Sie dazu die Berechnungsmatrix an. Tragen Sie alle Zelleneinträge zusammen mit den dazugehörigen Pfeilen ein.
- (b) Geben Sie die Levenshtein-Distanz d(espe, beispiel) an. Beachten Sie, dass espe und beispiel Präfixe von espen bzw. beispiele sind.
- (c) Geben Sie zwei Alignments zwischen espen und beispiele an, die zu den minimalen Kosten führen. Dabei sollen die Alignments die jeweils angewendeten Editieroperation enthalten.
- (d) Wieviele Alignments enthält die in Aufgabe (a) angegebene Berechnungsmatrix?

AUFGABE 2

Teil (a)

Teil (a) d(espen, beispiele) = 5

d(j,i)		b	е	i	S	р	i	е	1	е
									→ 8 →	
е									→ 7 →	
S									→ 6 →	
р	3	3	3 ,	3	3	2 →	3 -	4 -	→ 5 →	6
е									→ 4 →	
n	5 3	Š	4	4 →	5	4	4	4	4 →	5

Teil (b)

d(espe, beispiel) = 4

AUFGABE 2

Teil (c) Alignments mit minimaler Levenshtein-Distanz:

Teil (d)

Teil (c) Alignments mit minimaler Levenshtein-Distanz:

```
* e * s p * e * n
| | | | | | | | | | |
b e i s p i e l e
i i i i s

* e * s p * e n *
| | | | | | | | | |
b e i s p i e l e
i i s i
```

Teil (d) 2 Alignments = 2 Backtraces

mit Lösungen

Weitere Aufgaben aus der

Aufgabensammlung

AUFGABE 7.1.13 (AGS)

- (a) Bestimmen Sie die mit Hilfe des KMP-Algorithmus berechnete Verschiebetabelle für das Pattern abbabbaa.
- (b) Mit Hilfe des KMP-Algorithmus ist unten stehende Verschiebetabelle berechnet worden. Die mit einem "?" markierten Einträge sind unbekannt. Vervollständigen Sie das aus den Symbolen a, b und c bestehende Pattern.

Position	0	1	2	3	4	5
Pattern	b					С
Tabelle	-1	?	?	0	?	3

AUFGABE 7.1.13 (AGS)

Teil (a) Pattern: abbabbaa Position 0 2 3 4 5 6 7 Pattern b b b b a а а а

Tabelle

Te	eil (a)	Patter	Pattern: abbabbaa										
	Position	0	1	2	3	4	5	6	7				
-	Pattern	a	b	b	a	b	b	a	a				
	Tabelle	-1	0	0	-1	0	0	-1	4				
Te	Teil (b)												
	Position	0		1	2	3		4	5				
	Pattern	b							С				
	Tabelle	-1		?	?	0		?	3				

16	eii (a)	Pattern, appappaa								
	Position	0	1	2	3	4	5	6	7	
	Pattern	а	b	b	a	b	b	a	а	_
	Tabelle	-1	0	0	-1	0	0	-1	4	_

Teil (b)

Position	0	1	2	3	4	5
Pattern	b	a	b	a	b	С
Tabelle	-1	?	?	0	?	3

- ▶ Pat[0 ... 2] = Pat[2 ... 4] wegen Tab[5] = 3 (Zyklenmethode), d.h. Pat[2] = Pat[0] = Pat[4] = b
- ▶ wegen Tab[3] = 0 ist Pat[3] ≠ Pat[0] = b und wegen Tab[5] = 3
 ist Pat[3] ≠ Pat[5] = c (Zwei-Finger-Methode bzw. Gleichung (*))
 ⇒ Pat[3] = Pat[1] = a

AUFGABE 7.2.1 (AGS)

Gegeben seien die Wörter w = Dinstas und v = Distanz.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v) zwischen w und v. Geben Sie die Berechnungsmatrix vollständig an.
- (b) Geben Sie alle Alignments mit minimaler Levenshtein-Distanz zwischen w und v an.

AUFGABE 7.2.1 (AGS)

d(j,i)	D	i	S	t	a	n	Z
D							
i							
n							
S							
t							
a							
S							

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	↓ ↓ 1	0 →		2 →		4 → 5
n	3	<u>.</u>	1			. 3	3 → 4
S	4	3	2		2 →	3 →	4 4
t	5	4	3	<u>†</u>	1 →	2 →	3 → 4
a	6	↓ 5 -	4	3	2		2 → 3
S	† 7	ě	↓ \ 5	↓ 4	↓ 3	↓ ↓ 2	2 → 3

d(Dinstas, Distanz) = 3

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	. 1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →			3 →	
n	3	<u>†</u>					3 → 4
S	4	3	2		2 →	3 <i>→</i>	4 4
t	5	4	3	<u>2</u>		2 →	3 → 4
a	6	5	4	↓ 3	2		2 → 3
S	7	∳	↓ \ 5	↓ 4	→ 3	↓ \ 2	2 → 3

d(j,i)		D	i	S	t	а	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →			3 →	
n	3	<u></u>	1				3 → 4
S	4	→ 3	2	1 →	2 →	3 →	4 4
t	5	4	↓ 3	2	1 →	2 →	3 → 4
a	6	↓ 5	4	3	2		2 → 3
S	↓	6	↓ \ 5	↓ 4	↓ 3	↓ 2	2 → 3

AUFGABE 7.2.1 (AGS)

Alignments mit minimaler Levenshtein-Distanz:

Alignments mit minimaler Levenshtein-Distanz:

AUFGABE 7.2.2 (AGS)

- (a) Berechnen Sie die Levenshtein-Distanz d(bürste, schürze). Geben Sie die Berechnungsmatrix vollständig an. Wieviele Backtraces enthält die Berechnungsmatrix?
- (b) Geben Sie zwei Alignments mit minimaler Levenshtein-Distanz zwischen den Wörtern bürst und sch an.

AUFGABE 7.2.2 (AGS) — **TEIL (A)**

d(j,i)	S	С	h	ü	r	Z	е
b							
ü							
r							
S							
t							
е							

	d(j,i)			S		C		h		ü		r		Z		е
		0	\rightarrow	1	\rightarrow	2	\rightarrow	3	\rightarrow	4	\rightarrow	5	\rightarrow	6	\rightarrow	7
	L	↓	\nearrow		\checkmark		\checkmark		\checkmark		\checkmark		\searrow		\checkmark	
	b	I ↓	¥	1	\rightarrow	2	\rightarrow	3	\rightarrow		\rightarrow	5	\rightarrow	6	\rightarrow	7
į	ü	2		2		2	\rightarrow	3		3	\rightarrow	4	\rightarrow	5	\rightarrow	6
	r	3	¥	3	×	3	¥	3	\rightarrow	↓ 4	×	3	\rightarrow	4	\rightarrow	5
,	5	↓ 4	\nearrow	3	\rightarrow	↓ 4	¥	↓ 4	¥	4		↓ 4	¥	4	\rightarrow	5
	t	↓ 5		\downarrow	¥	4	\rightarrow	↓ 5	¥	↓ 5	\nearrow	\$ 5	\checkmark	↓ 5	7	5
	L	→		4 ↓	¥	4 ↓	\rightarrow	3	¥	J ↓	×	J ↓	×	J ↓	¥	5
	е	6		5		5		5	\rightarrow	6		6		6		5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 →	7
b	1 4	\(\frac{\frac{1}{1}}{1}\)		3 →				7
	↓ ¾	\uparrow \nearrow		A		. ⊃ →		•
ü	2	2 ↓ ↘	2 → ↓ \		3 →		5 →	6
r	3	3	3	3 →	4	3 →		5
S	4	3 →	4	4	4	4	4 →	5
t	↓ 5	↓ ↓ 4	4 →	•	↓ ↓ 5	↓ ↓ 5	↓ \ 5	5
е	6	↓ \ 5	↓ ↓ 5	5 →		↓ \ 6	↓ ↓ 6	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i) s c	h ü r z e
$0 \rightarrow 1 \rightarrow 2 \rightarrow$	$3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
b	$3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
$\ddot{\mathbf{u}} \qquad \begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 2 & 2 \rightarrow \end{vmatrix}$	$3 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
r 3 3 3	$3 \rightarrow 4$ $3 \rightarrow 4 \rightarrow 5$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓ ¼↓ ¼↓ ¼4 4 4 → 5
t 5 4 4 →	5 5 5 5 5
e 6 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	5 →	6 →	7
b	1	1 →	2 →	3 →			6 →	
ü	2	↓ ¾ 2	2 →	3	3 →	4 →	5 →	6
r	3	3	3	3 →		3 →		5
S	4	3 →	4	4	4	4	4 →	5
t	5	4	4 →	_	5	5	5	5
е	6	↓ \ 5	↓ \ 5	5 →	↓	↓ \ 6	↓ <u>↓</u> 6	5

 $d(b \ddot{u} rste, sch \ddot{u} rze) = 5$ Anzahl der Backtraces = 3 * 2 = 6

AUFGABE 7.2.2 (AGS) — **TEIL (B)**

d(j,i)			S		C		h
	0	\rightarrow	1	\rightarrow	2	\rightarrow	3
b	↓ 1	A	1	\rightarrow	2	\rightarrow	3
ü	2	A	↓ 2	A	2	\rightarrow	3
r	3	7	\ 3	7	+ 3	A	3
s	↓ 4	¥	3	$\overset{\textstyle \rightarrow}{}$	↓ 4	A	↓ 4
t	↓ 5		↓ 4	A	4	$\overset{\textstyle \rightarrow}{}$	↓ 5

AUFGABE 7.2.2 (AGS) — **TEIL (B)**

```
      b ü r s t
      b ü r s t

      | | | | | |
      | | | | |

      s c h * *
      * * s c h

      s s s d d
      d d s s s
```