$ au_1^{\#2}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{-r_1 + 2r_3 + r_5} + \frac{6k^2}{t_1}$ $2(k+2k^3)^2$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{#2} + \alpha \beta$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1}^{#2}\alpha$
$\omega_1^{\#1} \dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{lpha}$	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>ī kt</u> 1 3
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

Lagrangian density $ \begin{array}{l} -\frac{1}{3}t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$ \begin{split} 2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\gamma} + \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\gamma} + \frac{1}{3} t_1 \omega_{\kappa\alpha}^{\ \alpha} \partial^\kappa f_{\gamma} + \frac{1}{3} t_1 \omega_{\kappa\alpha}^{\ \alpha} \partial^\kappa f_{\gamma} + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{\ \lambda} \partial^\kappa f_{\gamma} + \frac{1}{3} t_1 \partial^\alpha f_{\lambda}^{\ \lambda} \partial^\kappa f_{\gamma} + \frac{1}{2} t_1 \partial^\kappa f_{\lambda}^{\ \lambda} \partial^\kappa f_{\gamma} + \frac{1}{2} t_1 \partial^\alpha f_{\lambda}^{\ \lambda} \partial^\kappa f_{\gamma} + \frac{1}{2} t_1 \partial^\alpha f_{\kappa}^{\ \lambda} \partial^\kappa f_{\lambda\alpha} + \frac{1}{2} t_1 \partial^\alpha f_{\lambda}^{\ \lambda} \partial^\kappa f_{\lambda\alpha} + \frac{1}{2} t_1 \partial^\alpha f_{\lambda\alpha}^{\ \lambda} \partial^\kappa f_{\lambda\alpha} + \frac{1}{2} t_1 \partial^\alpha f_{\alpha\alpha}^{\ \lambda} \partial^\lambda G_{\alpha\alpha}^{\ \beta} - \frac{1}{2} t_1 \partial^\alpha f_{\lambda\alpha}^{\ \lambda} \partial^\lambda f_{\alpha\beta}^{\ \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\alpha\alpha}^{\ \lambda} \partial^\lambda f_{\alpha\beta}^{\ \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\alpha\alpha}^{\ \lambda} \partial^\lambda f_{\alpha\beta}^{\ \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\alpha\alpha}^{\ \lambda} \partial^\lambda G_{\alpha\beta}^{\ \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\alpha\alpha}^{\ \lambda} \partial^\lambda G_{\alpha\beta}^{\ \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\alpha\beta}^{\ \lambda} + \frac{1}{2} t_1 \partial^\alpha f_{\alpha\beta}^{\ \lambda} - \frac{1}{2} d^\alpha f_{\alpha\beta}^{\ \lambda}^{\ \lambda} - \frac{1}{2} d^\alpha f_{\alpha\beta}^{\ \lambda} - \frac{1}{2} d^\alpha f_{\alpha\beta}^$

$\sigma_{2^{-}}^{\#1} lpha_{eta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$	
$\tau_2^{\#1}_{+}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$t_2^{#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

_	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
	$\omega_{0}^{\#1}$	f #_	$f_{0}^{1} f_{0}^{#2} \omega_{0}^{#1}$
, #1 + C !	21		

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	-t ₁

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_0^{#2} = 0$	$t_0^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}^{\alpha\beta} - 2 \bar{l} k \sigma_{2+}^{\#1}^{\alpha\beta} = 0$	Total #:

	$\sigma_{0^+}^{\sharp 1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0	0	0
$ au_{0}^{\#1} +$	0	0	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

Unitarity conditions $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$