INTERMOLECULAR FORCES AND POLARITY

INTRA- VS. INTERMOLECULAR FORCES

INTRAMOLECULAR FORCES

- Forces of electrostatic attraction within a molecule
- Occurs between the nuclei of atoms & their electrons making up the molecule (i.e. covalent bonds)
- Must be broken by chemical means
- Form new substances when broken

INTERMOLECULAR FORCES

Forces of attraction between two molecules

Ex: - London dispersion

- Dipole-dipole
- Hydrogen bonds
- Much weaker than intramolecular forces so much easier to break
- Physical changes break or weaken these forces
- Do not form new substances when broken

TYPES OF INTERMOLECULAR FORCES

			Force	Model	Nature of Attraction	Energy (kJ/mol)	Example
1			ionic		cation-anion	400-4000	NaCl
	INCREASING STRENGTH	Intramolecular	covalent	•:•	nuclei-shared electron pair	150-1100	н—н
			metallic	000	cations- delocalized electrons	75–1000	Fe
	SING		ion-dipole	·	ion charge- dipole charge	40-600	Na+OH
	INCRE		hydrogen bond	-A-H:B-	polar bond to hydrogen- dipole charge (lone pair, high EN of N, O, F)	10-40	:ö—н:ö—н Н Н
		Intermolecular —	dipole-dipole		dipole charges	5-25	I—ClI—Cl
		3	ion-induced dipole	⊕⊕	ion charge- polarizable electrons	3–15	Fe ²⁺ O ₂
			dipole-induced dipole	——	dipole charge- polarizable electrons	2–10	H—ClCl—Cl
			dispersion (London)		polarizable electrons	0.05-40	F—FF

- Attraction between nonpolar molecules

- Attraction comes from <u>temporary</u> dipoles produced from the *random* movement of electrons

By chance, electrons will disperse unevenly and generate a temporary dipole in the molecule.

-A temporary dipole can induce a temporary dipole in a neighbouring molecule

Strength of LDF depends on:

-The size of the atoms

-The number of electrons

-Molecule size

Strength of LDF depends on:

The size of the atoms

- The larger an atom, the more loosely held are its outer electrons, and the more readily will the electron cloud will polarize.

The number of electrons

 Larger atoms have more electrons to disperse, creating stronger temporary dipoles when the electron cloud is polarized

Halogen	Molecular Weight (amu)	Boiling Point (K)	Noble Gas	Molecular Weight (amu)	Boiling Point (K)
F ₂	38.0	85.1	He	4.0	4.6
Cl ₂	71.0	238.6	Ne	20.2	27.3
Br ₂	159.8	332.0	Ar	39.9	87.5
I_2	253.8	457.6	Kr	83.8	120.9
			Xe	131.3	166.1

Strength of LDF depends on:

Molecule size:

 Dispersion force attractions exist all along the regions where two elongated molecules are close (the forces are additive)

2. DIPOLE-INDUCED DIPOLE FORCES

- Attraction between a polar and a non-polar molecule
- Attraction comes from a permanent dipole inducing a temporary dipole in a neighbouring non-polar molecule

3. ION-INDUCED DIPOLE FORCES

Attraction between an ion and a non-polar molecule

- Attraction comes from a *charged molecule* inducing a *temporary* dipole in a neighbouring non-polar molecule

Ion-induced Dipole

4. DIPOLE-DIPOLE FORCES

- Attraction between polar molecules
- Molecules with dipoles are characterized by oppositely charged ends that are due to an unequal distribution of charge on the molecule
- •Polarity is determined by both the polarity of the bond & the shape of the molecule

4. DIPOLE-DIPOLE FORCES

 Based on the simultaneous attraction of the electrons of one dipole by the dipoles of neighbouring molecules

 Strength of the force is related to polarity of the given molecule

Which molecule will make stronger dipole-dipole forces?

 $\Delta EN = 1.5$

4. DIPOLE-DIPOLE FORCES

5. HYDROGEN BONDS

- strong dipole-dipole bonds
- exist between molecules with oxygen, nitrogen, and/or fluorine bound to hydrogen.
- -O, N, and F are very electronegative and pull electrons shared with hydrogen towards themselves, producing an unusually strong dipole.

6. DIPOLE-ION BONDS

- attraction between an ion and a polar molecule
- the partial charges (dipoles) of polar molecules exert attraction for charged particles

6. DIPOLE-ION BONDS

The strength and number of ion-dipole bonds determines if they can overcome the stronger ionic attraction between the positive and negative ions, and determine if an ionic compound is soluble in the polar substance.

hydrated ions

SUMMARY OF INTERMOLECULAR FORCES

H bond

Dipole-dipole

Ion-induced dipole

Dipole-induced dipole

Dispersion

SUMMARY OF INTERMOLECULAR FORCES

Туре	Present in	Molecular perspective	Strength
Dispersion	All molecules and atoms	δ - δ + \cdots δ - δ +	
Dipole-dipole	Polar molecules	$\delta + $	
Hydrogen bonding	Molecules containing H bonded to F, O, or N	δ^+ δ^+ δ^+ δ^+ $\delta^ \delta^+$ δ^-	

PROPERTIES BASED ON INTERMOLECULAR FORCES

Intermolecular forces affect:

- Melting point
- Boiling point
- Capillary action
- Surface tension
- Solubility

PREDICTING BOILING POINTS

- Molecules that are isoelectronic (same # of electrons) have the same strength of London dispersion forces
- More polar molecules have stronger dipole dipole interaction

 Higher melting & boiling points
- The more electrons per molecule, the stronger the London forces
 & the higher the melting & boiling point

		Mr	°C		Mr	°C	
B 10	CH ₄	16	-161	H ₂ O	18	+100	
Boiling points	SiH ₄	32	-117	H ₂ S	34	-61	_
of hydrides	GeH ₄	77	-90	H₂Se	81	-40	
Those in red	SnH ₄	123	-50	H ₂ Te	130	-2	
illustrate	NH ₃	17	-33	HF	20	+20	
hydrogen	PH ₃	34	-90	HCI	36.5	-85	
bonding	AsH ₃	78	-55	HBr	81	-69	
	SbH ₃	125	-17	н	128	-35	

POLARITY AND SOLUBILITY

- Solution is formed when a solute dissolves in solvent
- Solution formation is independent on the intermolecular forces of all molecules involved
- Remember: 'Like Dissolves Like'

- Polar liquids dissolve in other polar liquids
 - Share same type of intermolecular forces
- Example: methanol in water
 - Both have hydrogen bonds between each

Methanol (in blue) is attracted to the water molecules (black) through hydrogen bonds (red).

- Example: carbon tetrachloride in water
 - Will not dissolve as it is nonpolar & does not contain the same intermolecular forces

- Solids behave similarly to liquids
- Example: sugar in water
 - Sugar is slightly polar (H bonds) & dissolves in water (H bonds)

Soluble: Sugar (glucose) in water

Insoluble: Hexane in water

Water preferentially forms H-bonds with other water molecules than induced-dipole forces with non-polar molecules.

SOLUBILITY: IONIC MOLECULES

- Rarely soluble in nonpolar or low polar solvents
- Sometimes soluble in water
- Example: NaCl
 - Consists of Na+ & Cl- ions
 - When placed in water the partial negative charges from O
 in the water are attracted to the Na+
 - Partial positive charge from H is attracted to Cl-

SOLUBILITY: IONIC MOLECULES

A crystal of salt is dropped into a glass of water.

OTHER PHYSICAL PROPERTIES

Surface tension

Viscosity

INTERMOLECULAR FORCES & SOLUBILITY

Homework

• Page 247 #1 − 8

Complete pre-lab for access to lab tomorrow