模擬與統計計算 HW4 N26120838 吳定洋

Method 1

按照法一的要求

STEP 1: t = 0, I = 0.

STEP 2: Generate a random number U.

STEP 3: $t = t - \frac{1}{\lambda} \log U$. If t > T, stop.

STEP 4: I = I + 1, S(I) = t.

STEP 5: Go to Step 2.

我進行了 3 個 λ 参數測試,分別為 $1.0 \times 4.0 \times 10.0$,而 T 我皆固定為 1,每個實驗我都進行了 1M 次,並將結果畫成折線圖,來觀察 PDF 機率質量函數圖。

圖 一 λ = 1.0 取樣 1M 次 Poisson distribution

圖 二 λ = 4.0 取樣 1M 次 Poisson distribution

圖 $\geq \lambda$ = 10.0 取樣 1M 次 Poisson distribution 之所以取這些 λ 是因為可以從 wikipedia 中對照 Poisson distribution

圖 四 維基百科 Poisson distribution 圖

Method 2

- Generate n=N(T)
- Generate $u_1, u_2, \dots u_n$ Uniform (0,1) random numbers, each is Uniform(0,1)
- $\mathbf{u_1}\mathbf{T}, \mathbf{u_2}\mathbf{T}, ..., \mathbf{u_n}\mathbf{T}$ are the unordered Poisson arrival times

用法二的方法,一樣我進行了 3 個 λ 參數測試,分別為 1.0、4.0、10.0,而 T 我皆固定為 1,每個實驗我都進行了 1M 次,並將結果畫成折線圖,來觀察 PDF 機率質量函數圖。

圖 五 λ = 4.0 取樣 1M 次 Poisson distribution

圖 七 λ = 10.0 取樣 1M 次 Poisson distribution

由法二畫出來的圖所示,其實和法一畫出來的圖幾乎一模一樣。

由此可以觀察出這兩個方法都是 based on Poisson distribution,因為這兩個方法都有用到上課提到的 inverse transform algorithm。

$$F(x) = 1 - e^{-x}$$

$$n \qquad F(x) = 1 - e^{-x}$$

$$u = F(x) = 1 - e^{-x}$$

$$1 - u = e^{-x}$$

$$x = -\log(1 - u)$$

