Token 化

テキスト分析

川田恵介

テキストデータ

実例

• 日本 & 経済学におけるコロナ研究リスト

A tibble: 120 x 2

Title Type <chr>

- 1 新型コロナ対策としてのマスク着用義務化――アメリカの政策評価と日本への示~ 一般
- 2 現状放置なら5月下旬に緊急事態宣言の恐れ

一般

- 3 接触確認アプリ COCOA を行動経済学で読み解く
- 4 新型コロナ対策がもたらす効果の定量的分析~緊急事態宣言解除後のシナリオ~ 一般
- 5 新型コロナ危機と経済政策

一般

一般

一般

- 6 感染症データにおける「従属性」と因果推論
- 7「疫学」と「マクロ経済学」の視点から ―最新論文に見る感染症対策と経済活~ 一般 8 コロナ危機は需要ショックなのか供給ショックなのか? —
- 9 コロナ危機の経済学 : 提言と分析

一般

- 10 新型コロナウイルスのマクロ経済学(1) 感染症拡大防止政策のトレードオフ 一般
- # i 110 more rows

テキスト分析

- 事例の多くは、"テキスト"で記録されてきた
 - 膨大な電子化されたテキストデータがより容易に入手可能(SNS, オンラインアンケート、口コミ 評価)
- テキスト分析への需要拡大
 - 統計・機械学習的手法の応用が急速に進む

例:自由記述欄

- 多くの調査には、自由記述欄が含まれる
 - 例:商品への感想を書いてください
- Open end question (回答結果を制約しない)
 - いろんな回答結果が記録できる
 - 分析者が想定していない情報を得られる可能性

例: 武蔵大学の印象

A tibble: 3 x 2

ID Text

<dbl> <chr>

- 1 1 キャンパスが綺麗
- 2 2 池袋から近い
- 3 3 キャンパスがおしゃれ

本講義での応用

- 特定のグループが使いがちな単語とは?
- - 機械学習に比較優位

前処理

復習: 母平均の推定問題

- 基本: "似ている"複数の事例を集計して、 $E_P[Y|X]$ を推定したい
- 予測変数 X の役割 = 似ている事例かどうかの判断基準
 - 統計・機械学習 = データから似ている度を判定する
- 伝統的な X:カテゴリー/連続変数
 - テキストは大きく異なる特徴を持つ

VS カテゴリー変数

- 性別、国籍、学部など
- カテゴリー変数 = "少数"の値しかとらない
 - 同じ値をとるサンプルが複数存在
 - "値が同じであれば似ている"
- テキスト変数 = 無限大の種類がある

VS 連続変数

- 年齢、身長など
- 連続変数 = 同じ値をとるサンプルは極めて少数
 - 値が近いかどうかは自明
- テキスト変数
 - テキストが近いかどうかは自明ではない

テキスト変数の難しさ

- テキストは情報が"豊富"すぎる
- 変数の値間の距離が定義できない
 - 似ている文章とは?
- → 何らかの単純化が必要

テキストデータを使った予測モデル構築

- 予測モデル g(X, Text) を構築
- 合わせ技でモデル構築
 - 事前に Text を単純化する (前処理)
 - 大量の X に対応した手法で推計

前処理: Token

- テキストを単語の羅列(Token 化)
- 日本語は単語化が難しい
 - 分かち書きをしない
 - quanteda パッケージを用いれば解決可能

例: 武蔵大学の印象

Tokens consisting of 3 documents and 1 docvar.

text1:

[1] "キャンパス" "が" "綺麗"

text2 :

[1] "池袋" "から" "近い"

text3:

[1] "キャンパス" "が" "おしゃれ"

前処理:Bag of words

- Token 化しただけでは、依然として、全ての事例が異なる値を有する
 - さらなる単純化が必須
- 代表的な手法は、Bag of words
 - 単語の出現頻度を数える
- 文脈や語順は捨象
 - 発展: N-gram, embedding

例: 武蔵大学の印象

Document-feature matrix of: 3 documents, 7 features (57.14% sparse) and 1 docvar. features

docs キャンパス が 綺麗 池袋 から 近い おしゃれ

text2	0	0	0	1	1	1	0
text3	1	1	0	0	0	0	1

頻度分析

- どのような単語が使われているか
 - グループごとに集計も可能
 - テキスト分析版、記述統計分析

全体

の	コロナ	ک	新型	感染	に	を	経済
167	96	64	55	39	31	29	29
症	:	・ウイ	ルス	_	分析	禍	影響
27	27	25	24	23	22	22	21
における	^	で	企業				
19	16	15	15				

• よくわからない

グループの特徴づけ

- 単純に集計すると助詞や助動詞など、"文章を特徴づける上で、そこまで重要ではない単語"が上位に 来る
- グループ (例: 満足度が高い VS 低い, **一般むけ** VS **専門むけ**) を特徴づける単語の探索
- chi2 指標: 単語がグループ間で偏りなく使用される場合に比べて、分布がどの程度偏っているのか?

一般

	feature cl	hi2	р	n_target	n_reference
1	Γ _{7.31896}	62 0.0068230	80	8	1
2	」7.31896	62 0.0068230	80	8	1
3	学 7.3189	962 0.006823	080	8	1
4	で 7.3023	326 0.006886	539	11	4
5	2 5.381	745 0.020348	513	5	0
6	pos 5.381	745 0.020348	513	5	0
7	みる 5.3817	45 0.020348	513	5	0
8	経済 4.5677	783 0.0325786	395	17	12

9	格差 3.888633 0.048613979	4	0
10	編 3.888633 0.048613979	4	0

専門

	feature	chi2	. p	n_target	n_reference
1	における	6.690888	0.009690694	17	2
2	調査	3.719224	0.053789379	12	2
3	た	3.692958	0.054642633	8	0
4	データ	3.070639	0.079718138	10	1
5	感染	2.081123	0.149130465	28	11
6	い	1.812277	0.178235280	5	0
7	による	1.812277	0.178235280	5	0
8	関係	1.812277	0.178235280	5	0
9	行動	1.739370	0.187218660	10	2
10	ウィルス	1.431780	0.231474161	7	1

OLS による予測モデル

- $E_P[Y|X, テキスト] \sim g(X, テキスト)$ を推定する
- 代表的な推定方法が、一般に機能しない
 - テキスト分析が難しかった理由

OLS の前提条件

- $Y_i \sim \beta_0 + ... + \beta_L X_L$
 - 経験則として、事例数 $> 3 \times$ 変数数であれば、ある程度の推定精度を期待できる
- 変数数 > 事例数であれば、原理的に推定できない
 - テキスト分析ではしばしば発生する

実例

- Y=1 一般むけの文章, Y=0 専門家向けの文章
- X = 論文のタイトル

実例

Call:

Risk Coef

SL.lm_All 209.6583759 0.00315369

SL.mean_All 0.2482596 0.00000000

SL.ranger_All 0.1943378 0.99684631

SL.glmnet_All 0.2266339 0.00000000

まとめ

- カジュアルなグループの特徴づけの手法がたくさんある
 - 単純な集計に比べれば、有意な情報が多い
- OLS は予測モデル構築の役に立たない