London Business School

Equatorial Sea Level Rise

what drives it and why it matters

AM10 – Data Visualization, Study Group 3

Introduction

Overview

Sea level rise (SLR) has been considered one of the most severe impacts of climate change. Observations show that global mean sea level is on the rise, with rate accelerating in recent years.¹

Problem Statement

What are the **drivers** and **implications** of SLR?

Drivers

- 1 Thermal Expansion
- Polar Ice Melting

(National Geographic, 2019)

Implications

- 1 GDP
- ² Land
- 3 Population

Ocean Temperatures have spiked globally

Drivers of Sea Level Rise

Thermal Expansion: Sea Levels are rising as ocean surface temperatures warm up and expand in volume. 1

Average Annual Sea Surface Temperature Anomaly - By Region

- Positive temperature anomalies indicate observed temperature is warmer than the baseline
- 1977 is the beginning of high ocean temperatures, affecting mostly the Northern Hemisphere
- Warming of ocean surface caused roughly 1/3 of global sea level rise since 2004

The plot of median of Annual Sea Surface Temperature Anomaly for years 1850-2021, relative to the average temperature from 1961-1990. Color shows details about Entity. The view is filtered on Entity, which keeps Northern Hemisphere, Southern Hemisphere, Tropics and the World.

london.edu

Polar warming has wiped out ice extent

Drivers of Sea Level Rise

The future of Sea Level Rise

Driver analysis and prediction

Time Series Decomposition & Prediction

Key Driver Analysis

Linear Regression Model¹

Variable	Estimate (mm)	P-Value
Temperature Anomaly (C°)	65.408	< 2e-16 ***
Sea Ice Extent Anomaly (M Km²)	-14.734	7.41e-11 ***

84%	R^2
83.8%	Adjusted R ²
168	Number of observations

Decomposition of additive time series

- 1 There is a **clear increasing** trend in sea level
- 2 Monthly average sea level has obvious seasonal characters
- HoltWinters: Sea level will increase by 1 m by 2120 in 95% confidence interval upper level

london.edu

SLR most impactful surrounding equator

Conclusion

Key Takeaways and Limitations

What drives it

Thermal Expansion

2020 witnessed 0.7C rise in sea surface temperature

Polar Ice Melting

Average Arctic Sea Ice Extent has decreased

Why it matters

If trends continue...

57m people affected

220k km² land flooded

Sea level will rise by 1m

Limitations

Limited confidence about prediction due to insufficient historical data of key drivers

Overlooking critical implications due to analysis of only two main drivers

london.edu

London Business School