1 Structures

1.1 Words

- alphabet Σ
- Σ^* , Σ^{ω}
- ω -word $(\alpha : \mathbb{N} \to \Sigma) \in \Sigma^{\omega}$
- $Occ(\alpha) = {\alpha(n) \mid n \in \mathbb{N}}$
- $\operatorname{Inf}(\alpha) = \bigcap_{i \in \mathbb{N}} \{\alpha(n) \mid n > i\}$

1.2 Finite Ranked Trees

- ranked alphabet $\Sigma_0, \ldots, \Sigma_m$
- trees T_{Σ}
- trees (inductive definition) $a \in \Sigma_i, t_1, \ldots, t_i \in T_{\Sigma} \Rightarrow a(t_1, \ldots, t_i) \in T_{\Sigma}$
- trees (labeled definition)
 - tree $t = (dom_t, val_t)$
 - $-\operatorname{dom}_t\subseteq(\mathbb{N}_{>0}^*)$
 - $-\operatorname{val}_t: \operatorname{dom}_t \to \Sigma$
 - if $\operatorname{val}_t(w) \in \Sigma_i$, then $wi \in \operatorname{dom}_t$ and $w(i+1) \notin \operatorname{dom}_t$
 - if $w = uv \in dom_t$, then $u \in dom_t$
 - if $w(i+1) \in \text{dom}_t$, then $wi \in \text{dom}_t$

1.3 Finite Special Trees

- $S_{\Sigma} = \{t \in T_{\Sigma \cup \{\circ\}} \mid \circ \text{ occurs exactly once in } t\}$
- Notation, $s \in S_{\Sigma}$, $t \in T_{\Sigma}$, $u \in \text{dom}(s)$:
 - $-s \cdot t$: replace \circ in s by t
 - $-s|_u$: subtree of s with root u
 - $-s[\circ/u]$: replace u and its subtree by \circ

1.4 Finite Unranked Trees

- alphabet Σ
- trees T_{Σ}
- trees (inductive definition)
 - $-h \in (T_{\Sigma})^*$ is a **hedge**
 - $-a \in \Sigma, h \text{ hedge} \Rightarrow a(h) \in T_{\Sigma}$
- trees (labeled definition)
 - tree $t = (dom_t, val_t)$
 - $-\operatorname{dom}_t \subseteq (\mathbb{N}_{>0}^*)$
 - $\operatorname{val}_t : \operatorname{dom}_t \to \Sigma$
 - if $w = uv \in dom_t$, then $u \in dom_t$
 - if $w(i+1) \in \text{dom}_t$, then $wi \in \text{dom}_t$

1.5 Infinite Trees

- alphabet Σ
- trees T_{Σ}
- tree $t: \{0,1\}^* \to \Sigma$
- path $\pi \in \{0,1\}^{\omega}$
- $t|_{\pi} \in \Sigma^{\omega} : n \mapsto t(\pi(0) \cdots \pi(n))$

1.6 Game Arenas

- arena / game graph $G = (V_0, V_1, E, c)$
 - V_0, V_1 player vertices, $V = V_0, V_1$
 - $E \subseteq V \times V$
 - colors C finite
 - colors $c:V\to C$
- winning condition Win $\subseteq C^{\omega}$
- game G = (G, Win)
- play $\alpha \in V^{\omega}$
- winner of $\alpha = \begin{cases} 0 & \text{if } c(\alpha) \in \text{Win} \\ 1 & \text{else} \end{cases}$

2 Acceptance Conditions

 $\begin{array}{l} Q \text{ set of states/colors} \\ \rho \in Q^{\omega} \end{array}$

E $F \subseteq Q$. ρ accepted iff $F \cap \text{Occ}(\rho) \neq \emptyset$

A $F \subseteq Q$. ρ accepted iff $Occ(\rho) \subseteq F$

Staiger-Wagner $\mathcal{F} \subseteq 2^Q$. ρ accepted iff $Occ(\rho) \in \mathcal{F}$

weak Parity $c: Q \to C$. ρ accepted iff $\max \operatorname{Occ}(c(\rho))$ is even

Büchi $F \subseteq Q$. ρ accepted iff $F \cap \text{Inf}(\rho) \neq \emptyset$

Generalized Büchi $F_1, \ldots, F_k \subseteq Q$. ρ accepted iff for all $1 \le i \le k$: $F_i \cap \text{Inf}(\rho) \ne \emptyset$

coBüchi $F \subseteq Q$. ρ accepted iff $Inf(\rho) \subseteq F$

Rabin $\Omega \subseteq 2^Q \times 2^Q$. ρ accepted iff there is $(E,F) \in \Omega$ s.t. $\operatorname{Inf}(\rho) \cap E = \emptyset$ and $\operatorname{Inf} \cap F \neq \emptyset$

• Rabin Chain: $\Omega = \{(E_i, F_i) \mid 1 \le i \le k\}$ with $E_k \subseteq F_k \subseteq E_{k-1} \subseteq \cdots \subseteq E_1 \subseteq F_1$

Streett $\Omega \subseteq 2^Q \times 2^Q$. ρ accepted iff for all $(E,F) \in \Omega$: $\operatorname{Inf}(\rho) \cap E \neq \emptyset$ or $\operatorname{Inf} \cap F = \emptyset$

Parity $c: Q \to C$. ρ accepted iff $\max \operatorname{Inf}(c(\rho))$ is even

Muller $\mathcal{F} \subseteq 2^Q$. ρ accepted iff $Occ(\rho) \in \mathcal{F}$

3 Word Automata

$$(Q, \Sigma, q_0, \Delta, Acc)$$

 $L(A) = accepted words$

Deterministic $\delta: Q \times \Sigma \to Q$

Non-Deterministic $\Delta \subseteq Q \times \Sigma \times Q$

Alternating $\delta: Q \times \Sigma \to B_+(Q)$ where $B_+(Q)$ are boolean formulas over $Q \cup \{0,1\}$ without negation

3.1 Deterministic Word Automata

- DBA
- \bullet weak DBA
- \bullet coDBA
- E-automaton
- A-automaton
- ullet Staiger-Wagner automaton
- DMA
- DRA
- DPA

3.2 Nondeterministic & Alternating Word Automata

- \bullet NBA
- ABA

4 Finite Tree Automata

4.1 Ranked Top-Down Automata

 (Q,Σ,Δ,F) where $\Delta\subseteq\bigcup\limits_{i=0}^{m}Q^{i}\times\Sigma_{i}\times Q$ or deterministic δ

- DTA
- NTA

Size
$$|\mathcal{A}| = |Q| + \sum_{\tau \in \delta} |\tau|$$

4.2 Ranked Bottom-Up Automata

 (Q, Σ, Q_0, Δ) where $Q_0 \subseteq Q$ initial states, $\Delta \subseteq \bigcup_{i=0}^m Q \times \Sigma_i \times Q^i$ or deterministic δ

- \downarrow DTA ($|Q_0| = 1$)
- ↓NTA

4.3 Unranked Bottom-Up Automata

$$(Q, \Sigma, \Delta, F)$$
 where $\Delta \subseteq \text{Reg}(Q) \times \Sigma \times Q$

Normalized For all $(L_1, a_1, q_1), (L_2, a_2, q_2)$: If $a_1 = a_2$ and $q_1 = q_2$, then $L_1 = L_2$

Deterministic For all $(L_1, a_1, q_1), (L_2, a_2, q_2)$: $L_1 \cap L_2 = \emptyset$ or $a_1 \neq a_2$ or $q_1 = q_2$

- DUTA
- NUTA

4.4 Ranked Tree Walking Automata

$$\begin{aligned} & \text{Types} = \{ \text{root}, 1, \dots, m \} \\ & \text{Dir} = \{ \uparrow, 0, 1, \dots m \} \\ & \text{type}_t(u) = \begin{cases} \text{root} & \text{if } u = \epsilon \\ i & \text{if } u = vi \end{cases} \end{aligned}$$

 $(Q, \Sigma, q_0, \Delta, F)$ where $\Delta \subseteq Q \times \text{Types} \times \Sigma \times Q \times \text{Dir}$ (current state, current type, current symbol, new state, movement) $\in \Delta$

- \bullet TWA
- DTWA

4.5 Tree Transducers

- Bottom-up Tree Transducer (BTT)
- Top Down Transducer (TDT)

BTT

```
\begin{array}{l} (Q,\Sigma,\Gamma,\Delta,F) \\ \Sigma,\Gamma \text{ input }/ \text{ output alphabet} \\ \Delta \text{: tree transition } \& \ \varepsilon \text{ transition} \\ F\subseteq Q \\ \text{Tree with variables } X \text{ at leafs: } T_\Sigma(X) \\ \\ \text{Tree transitions: } f(q_1(x_1),\ldots,q_n(x_n)) \to q(u) \\ \text{for some } f\in \Sigma_n,\,q,q_1,\ldots,q_n\in Q,\,x_1,\ldots,x_n\in X,\,u\in T_\Gamma(\{x_1,\ldots,x_n\}) \\ \varepsilon \text{ transitions: } q(x)\to q'(u) \\ \text{for some } q,q'\in Q,\,x\in X,\,u\in T_\Gamma(\{x_1\}) \\ \\ \text{Configurations are trees over } \Sigma\cup\Gamma\cup Q. \\ \text{BTTs define relations } R(\mathcal{A})=\{(t,t')\mid \exists q\in F:t\to_{\mathcal{A}}^*q(t')\}. \\ \text{Transition relation: } s\cdot f(q_1(t_1),\ldots,q_n(t_n))\to_{\mathcal{A}} s\cdot q(u[x_1\leftarrow t_1,\ldots,x_n\leftarrow t_n]) \\ \text{Deterministic BTT: no } \varepsilon\text{-rules and no rules share the same left side.} \\ \text{Linear BTT: In every transition, each variable occurs at most once.} \end{array}
```

TDT

Similar properties as BTT but incomparable class of relations

5 Infinite Tree Automata

$$\begin{split} &(Q, \Sigma, q_0, \Delta, \operatorname{Acc}) \\ &\Delta \subseteq Q \times \Sigma \times Q \times Q \\ &\operatorname{Acc} \subseteq Q^\omega \\ &\operatorname{Run} \, \rho : \{0,1\}^* \to Q \text{ accepting iff } \rho|_\pi \in \operatorname{Acc} \text{ for all paths } \pi \\ &T(A) = \operatorname{accepted trees} \end{split}$$

5.1 Nondeterministic

- \bullet BTA
- MTA
- PTA

5.2 Deterministic

$$|\{(q,a,q_1,q_2)\mid q_1,q_2\}|=1$$
 for all q,a

 \bullet DTBA

5.3 Regular Tree Automata

$$(Q_{\mathcal{B}}, \{0, 1\}, q_0^{\mathcal{B}}, \delta_{\mathcal{B}}, f_{\mathcal{B}})$$
 reads $\{0, 1\}$ -words $\delta_{\mathcal{B}}: Q \times \{0, 1\} \to Q$ $f_{\mathcal{B}}: Q_{\mathcal{B}} \to \Sigma$

Defines tree $t_{\mathcal{B}}: u \mapsto f_{\mathcal{B}}(\delta_{\mathcal{B}}^*(u))$

6 Infinite Games

- Reachability (E-condition)
- Safety (A-condition)
- ullet Staiger-Wagner
- weak Parity (assuming $C \subset \mathbb{N}$)
- \bullet Büchi
- Parity (assuming $C \subset \mathbb{N}$)
- \bullet Muller
- \bullet Rabin
- Streett

6.1 Strategy Automata

```
(M,C,m_0,\sigma^u,\sigma^n) strategy for player 0
Memory states M
Input colors C
Transition / memory update function \sigma^u:M\times C\to M
Next move function \sigma^n:M\times V_0\to V
Strategy \sigma_{\mathcal{A}}(v_0\dots v_n)=\sigma^n((\sigma^u)^*(v_0\dots v_{n-1}),v_n)
```

7 Logics

7.1 LTL

 $\varphi ::= p_i \mid \neg \varphi \mid \varphi \vee \varphi \mid X\varphi \mid F\varphi \mid G\varphi \mid \varphi U\varphi$ $(\alpha, i) \models \varphi$

- ω -languages
- Game winning conditions

7.2 FO

$$\varphi ::= t_1 = t_2 \mid R\overline{t} \mid \neg \varphi \mid \varphi \vee \varphi \mid \exists x \varphi \mid \forall x \varphi$$

• Finite tree languages

Finite Tree Structure

Ranked
$$\underline{t} = (\text{dom}_t, (S_i^t)_{1 \leq i \leq m}, \sqsubseteq^t, (P_a^t)_{a \in \Sigma})$$

Unkranked $\underline{t} = (\text{dom}_t, S^t, \sqsubseteq^t, <^t, (P_a^t)_{a \in \Sigma})$
 \sqsubseteq prefix order; $<$ sibling order

7.3 MSO

$$\varphi ::= FO + (\exists X \mid \forall X)$$

set quantification

- Finite tree languages
- S1S, S2S

7.4 wMSO

MSO with only finite set quanitification

• ω -tree languages

7.5 S1S

MSO over $(\mathbb{N}, +1, <, 0)$

- ω -languages
- Game winning conditions

$S1S_0$

S1S - element variables +
$$(X \subseteq Y \mid \text{Sing}(X) \mid \text{Succ}(X))$$

7.6 S2S

MSO over
$$\underline{T}_2 = (\{0,1\}^*, \varepsilon, S_0, S_1)$$

• ω -tree languages

$S2S_0$

S2S - element variables + (X
$$\subseteq Y \mid \mathrm{Sing}(X) \mid \mathrm{Succ}_0(X) \mid \mathrm{Succ}_1(X))$$

8 Grammars

8.1 DTD

Document Type Definitions $D = (\Sigma, P, S)$ with $P \subseteq \Sigma \times \text{Reg}(\Sigma)$. T(D) is the set of derivation trees starting from S with rules in P.

8.2 EDTD

 $E = (\Sigma, P, S)$ with $P \subseteq \Sigma' \times \text{Reg}(\Sigma')$ and $\Sigma' = \{a^{(n)} \mid a \in \Sigma, n \in \mathbb{N}\}.$ T(E) is the set of derivation trees starting from S with rules in P, and replacing every $a^{(n)}$ by a.

single-type EDTD: no two $a^{(i)}$ and $a^{(j)}$ with $i \neq j$ occur in the same regular expression of a rule.

 $deterministic\ EDTD$: every regular expression in a rule can be transformed to a DFA in polynomial time.

8.3 Regular Tree Grammar

 $G = (N, \Sigma, S, P)$ with

- $N \cap \Sigma = \emptyset$
 - $S \in N$
 - $P \subseteq N \times T_{\Gamma}$
 - $\bullet \ \Gamma_i = \begin{cases} \Sigma_i & \text{if } i > 0 \\ \Sigma_i \cup N & \text{else} \end{cases}$

8.4 Regular Tree Expressions

Inductive definition:

- Every $t \in T_{\Sigma \cup C}$ is a regular expression.
- If r and s are regular expressions, then r + s is a regular expression. (union)
- If r and s are regular expressions and $c \in C$, then $r \cdot c$ is a regular expression. (replace c-leafs in T(r) by trees in T(s))
- If r is a regular expression and $c \in C$, then r^{*_c} is a regular expression. (iteration)

8.5 XPath

- cxp ::= path | /path
- path ::= step | path/path
- step ::= label | axis::label | label[pred] | axis::label[pred]

- label = $\Sigma \cup \{*\}$
- \bullet pred ::= cxp | not pred | pred and pred | pred or pred

```
\begin{array}{l} (\text{default axis: "child"}) \\ \text{axes} = \end{array}
```

- self := $\{(x, x) \mid x \in \text{dom}_t\}$
- firstchild := $\{(x, x1) \mid x, x1 \in dom_t\}$
- next sibling := $\{(xi, x(i+1)) \mid xi, x(i+1) \in dom_t\}$
- $\bullet \ \, child := firstchild \cdot nextsibling^*$
- $descendant := child^+$
- $descendant-or-self := child^*$
- following-sibling := nextsibling⁺
- ullet following := ancestor-or-self \cdot following-sibling \cdot descendant-or-self
- parent := $child^{-1}$
- $ancestor := descendant^{-1}$
- $\bullet \ \ ancestor\text{-or-self} := descendant\text{-or-self}^{-1} \\$
- \bullet preceding-sibling := following-sibling⁻¹
- preceding := $following^{-1}$