Generalization and Function Approximation

COMP4211

Generalization and Function Approximation

Example $(9 \times 9 \text{ Go})$

- $|S| = 10^{38}$ and |A| = 81
- too many states to visit them all in training
- too many states to hold the Q-tables in memory

what should we do?

- learn about a few states from experience
- generalize that experience to new, similar states

Replace \hat{Q} table with a function approximator

Deep Reinforcement Learning

Example (function approximator= neural net)

deep reinforcement learning

Examples

good or bad?

Feature-Based Representations

describe a state using a vector of features

- features are functions from states to real numbers that capture important properties of the state
- example features:
 - distance to closest ghost
 - distance to closest dot
 - number of ghosts
 - 1/(dist to dot)²
- can also describe a Q-state (s, a) with features
 - · e.g., action moves closer to food

Function Approximation

linear feature functions

$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \cdots + w_n f_n(s, a)$$

• advantage: experience is summed up in a few numbers

Recall Q-learning

- $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha$ [difference]
- difference = $r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t)$

how to update wi's?

Function Approximation...

error(w) =
$$\frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

 $\frac{\partial \text{error}(w)}{\partial w_{i}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{i}(x)$
 $w_{i} \leftarrow w_{i} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{i}(x)$

In Q-learning

- target: $r_t + \gamma \max_a Q(s_{t+1}, a)$
- prediction: $Q(s_t, a_t)$
- $w_i \leftarrow w_i + \alpha[\text{difference}]f_i(s_t, a_t)$

Q-learning with Linear Approximators

```
begin
    initialize parameter values;
    repeat
        select an action a and execute it;
         receive immediate reward r:
        observe the new state s':
        difference = r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t);
        for i = 1 to n do
            w_i \leftarrow w_i + \alpha[\text{difference}]f_i(s_t, a_t);
        end
        s \leftarrow s':
    until;
end
```

Deep Q-Network in Atari

Deep Q-Network in Atari...

- learning of values Q(s, a) from pixels s
- input state s is stack of raw pixels from last 4 frames
- output is Q(s, a) for 18 joystick/button positions
- reward is change in score for that step

Deep Q-Network in Atari...

Performance

• performance is normalized with respect to a professional human games tester (100% level) and random play (0% level)