or R₁ and R₂ are joined to form a ring;

 R_3 and R_4 are independently selected from the group consisting of H, R, and ArR-, or R_3 and R_4 are joined to form a ring; 2 \longrightarrow MeVN bens

R₅ is selected from the group consisting of H, R, ArR-, and Ar;

R₆ is selected from the group consisting of H, R, and ArR-;

 R_7 and R_8 are independently selected from the group consisting of: H, R, and ArR-; and

R₉ is:

$$z-C-y-$$

R is a saturated or unsaturated moiety having a linear, branched, or non-aromatic cyclic skeleton containing one to ten carbon atoms, zero to four nitrogen atoms, zero to four oxygen atoms, and zero to four sulfur atoms, and the carbon atoms are optionally substituted with: =O, =S, -OH, -OR₁₀, -O₂CR₁₀, SH, -SR₁₀, -SOCR₁₀, -NH₂, -NHR₁₀, -N(R₁₀)₂, -NHCOR₁₀, -NR₁₀COR₁₀, -I, Br, -C1, -F, -CN, -CO₂H, -CO₂R₁₀, -CHO, -COR₁₀, -CONH₂, -CONHR₁₀, -CON(R₁₀)₂, -COSH, -COSH₁₀, -NO₂, -SO₃H, -SOR₁₀, -SO₂R₁₀, wherein R₁₀ is a linear, branched or cyclic, one

to ten carbon atom saturated or unsaturated alkyl group; the ring formed by joining R_1 and R_2 or by joining R_3 and R_4 is a three to seven

member non-aromatic cyclic skeleton within the definition of R,

X is a moiety selected from the group consisting of -OH, -OR, =O, =S, -O₂CR, -SH, -SR, -SOCR, -NH₂, -NHR, -N(R)₂, -NHCOR, -NRCOR, -I, -Br, -CI, -F, -CN, -CO₂H, -CO₂R, -CHO, -COR, -CONH₂, -CONHR, -CON(R)₂, -COSH, -COSR, -NO₂, -SO₃H, -SOR, and -SO₂R;

Ar is an aromatic ring selected from the group consisting of phenyl, naphthyl, anthracyl, phenanthryl, furyl, pyrrolyl, thiophenyl, benzofuryl, benzothiophenyl, quinolinyl, isoquinolyl, imidazolyl, thiazolyl, oxazolyl, and pyridinyl, optionally substituted with R or X;

Y is a linear, unsaturated, two to six carbon atom alkyl group, optionally substituted with R, ArR-, or X; and,

Z is a moiety selected from the group consisting of: -OH, -OR; -SH; -SR; -NH₂; -NRCH(R_{II})COOH; and -NRCH(R₁₁)COOH, wherein R₁₁ is a moiety having the formula: R, or -(CH₂)_nNR₁₂R_{I3}, wherein n=1-4 and R₁₂ and R₁₃ are independently selected from the group consisting of H; R; and -C(NH) (NH₂);

and wherein:

if R₈ is H, Y may only be substituted with R' or Ar'R'-, in which

R' is a saturated linear, branched, or cyclic skeleton containing one to ten carbon atoms, and which be side which of the saturation of the saturated linear, branched, or cyclic skeleton containing one to ten carbon atoms, and

Ar' is an aromatic ring selected from the group consisting of phenyl, napthyl, anthracyl and phenanthryl, optionally substituted with R'

or pharmaceutically acceptable salt thereof

- 23. (New) The compound of claim 22, wherein Ar is phenyl, naphthyl, anthracyl, or pyrrolyl.
- 24. (New) The compound of claim 22, where R₅ is naphthyl, anthracyl, or pyrrolyl.
- 25. (New) The compound of claim 22, wherein R_5 is phenyl.
- 26. (New) The compound of claim 22, wherein R_5 is H.
- 27. (New) The compound of claim 22, wherein R_5 is R.
- 28. (New) The compound of claim 27, wherein R_5 is methyl.
- 29. (New) The compound of claim 22, wherein one of R_3 and R_4 is H and the other of R_3 and R_4 is ArR-.
- 30. (New) The compound of claim 22, wherein R_3 and R_4 are each R.
- 31. (New) The compound of claim 30, wherein R_3 and R_4 are independently selected from the group consisting of: methyl, ethyl, n-propyl and n-butyl.

- 32. (New) The compound of claim 31, wherein R₃ and R₄ are each -CH₃.
- 33. (New) The compound of claim 32, wherein R_5 is Ar.
- 34. (New) The compound of claim 22, wherein R_3 and R_4 are joined and form a moiety selected from the group consisting of β -cyclopropyl, β -cyclobutyl, β -cyclopentyl and β -cyclohexyl.
- 35. (New) The compound of claim 22, wherein R_1 and R_2 are independently selected from the group consisting of H, methyl, ethyl, propyl, n-butyl and acetyl.
- 36. (New) The compound of claim 22, wherein R₁ and R₂ are joined and form a moiety selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- 37. (New) The compound of claim 22, wherein R_1 and R_2 are independently H, CH_3 or acetyl.
- 38. (New) The compound of claim 22, wherein R₁ and R₂ are independently H or CH₃.
- 39. (New) The compound of claim 38, wherein R₁ is H, and R₂ is -CH₃.

- 40. (New) The compound of claim 38, wherein R_5 is Ar.
- 41. (New) The compound of claim 38, wherein R_3 and R_4 are each -CH₃.
- 42. (New) The compound of claim 41, wherein R_5 is Ar.
- 43. (New) The compound of claim 42, wherein R_5 is phenyl.
- 44. (New) The compound of claim 22, wherein R₆ is H or CH₃.
- 45. (New) The compound of claim 42, wherein R₆ is H or CH₃.
- 46. (New) The compound of claim 45, wherein R₆ is H.
- 47. (New) The compound of claim 22, wherein R₈ is H or CH₃.
- 48. (New) The compound of claim 42, wherein R₈ is H or CH₃.
- 49. (New) The compound of claim 45, wherein R₈ is H or CH₃.
- 50. (New) The compound of claim 49, wherein R₈ is CH₃.

- 51. (New) The compound of claim 22, wherein R_6 is H and R_8 is CH_3 .
- 52. (New) The compound of claim 42, wherein R_6 is H and R_8 is CH_3 .
- 53. (New) The compound of claim 22, wherein R_7 is a three to six carbon atom, branched alkyl group.
- 54. (New) The compound of claim 42, wherein R_7 is a three to six carbon atom, branched alkyl group.
- 55. (New) The compound of claim 45, wherein R_7 is a three to six carbon atom, branched alkyl group.
- 56. (New) The compound of claim 49, wherein R_7 is a three to six carbon atom, branched alkyl group.
- 57. (New) The compound of claim 53, wherein R_7 is $-C(CH_3)_3$.
- 58. (New) The compound of claim 22, wherein R_6 is H, R_7 is $-C(CH_3)_3$, and R_8 is $-CH_3$.

- 59. (New) The compound of claim 22, wherein Z is -NHCH(R_{11})COOH or -NCH₃CH(R_{11})COOH, wherein R_{11} is R; or, -(CH₂)_nNHC(NH)(NH₂).
- 60. (New) The compound of claim 22, wherein Z is $-OR_{14}$ in which R_{14} is a linear or branched one to six carbon alkyl group.
- 61. (New) The compound of claim 22, wherein Z is OH.
- 62. (New) The compound of claim 22, wherein Z is -OCH₃.
- 63. (New) The compound of claim 22, wherein R₉ has the formula:

$$-_{CH} - _{C} = _{C} - _{C} - _{OH}$$

wherein R_{15} is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, tert-butyl, iso-butyl, and sec-butyl; and R_{16} is selected from the group consisting of H, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl and sec-butyl.

- 64. (New) The compound of claim 63, wherein R_{16} is methyl.
- 65. (New) The compound of claim 63, wherein R_{15} is isopropyl and R_{16} is methyl.
- 66. (New) The compound of claim 55, wherein R₉ has the formula:

$$-CH - C = C - C - OH$$
 R_{15}
 R_{16}

wherein R_{15} is selected from the group consisting of: methyl, ethyl, n-propyl, isopropyl, tert-butyl, iso-butyl, and sec-butyl; and R_{16} is selected from the group consisting of H, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl and sec-butyl.

- 67. (New) The compound of claim 66, wherein Z is OH or $-OR_{14}$ in which R_{14} is a linear or branched one to six carbon alkyl group.
- 68. (New) The compound of claim 22, having the configuration:

69. (New) The compound of claim 22, wherein Y comprises a chiral centre having an s-configuration.

103

70. (New) The compound of claim 22, having the configuration:

71. (New) The compound of claim 70, wherein R_5 is Ar; R_3 and R_4 are each CH_3 ; R_1 , R_2 , R_6 and R_8 are independently H or CH_3 ; R_7 is a three to six carbon branched alkyl group; and, R_9 has the formula

$$-CH-C=C-C-OH$$
 $| R_{15} | R_{16}$

wherein R₁₅ is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, tert-butyl, iso-butyl, and sec-butyl; and R₁₆ is selected from the group consisting of H, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl and sec-butyl.

72. (New) The compound of claim 22, wherein the compound has the structure:

conclude

in which Me is CH₃.

- 73. (New) A pharmaceutical composition suitable for treating tumors comprising an anti-tumor effective amount of at least one compound of claim 1 and acceptable pharmaceutical excipient.
- 74. (New) A method of treating tumors by arresting cell mitosis in a patient in need of such treatment comprising administering to said patient an anti-mitotic effective amount of at least one compound of claim 11--

<u>REMARKS</u>

Claims 1-21 are pending in the application. Claims 19-21 have been withdrawn from consideration as being directed to a non-elected invention and are cancelled without prejudice by this amendment. Claims 1-18 are also cancelled without prejudice by this