राष्ट्रीय प्रौधोगिकी संस्थान गोवा

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Farmagudi, Ponda, Goa – 403 401, India

Department of Electrical and Electronics Engineering

Website: http://www.nitgoa.ac.in Phone : 0832-2404218

EE152

Basic Electrical Science Lab

: 0832-2404202

$\underline{Session-2}$

Verification of Kirchhoff's Laws

1. A. Introduction:

This session makes students to understand Kirchhoff's Laws (KCL & KVL) and to verify through a simulation platform, MATLAB/Simulink.

1. B. Objectives:

- a. Acquire good knowledge on Kirchhoff's Laws
- b. Verification of the two laws in MATLAB/Simulink Platform
- **1. C.** Theory: Refer to the notes or necessary materials mentioned in EE151 course.

1. D. Statement of Experiments:

This session consists of two parts. [V = 100 V, $R_x = (10 \times x) \Omega$]

- a. Using the circuit diagram shown in Fig. 2.a, verify KVL in Matlab/Simulink platform.
- b. Using the circuit diagram shown in Fig. 2.b, verify KCL in Matlab/Simulink platform

Fig. 2.a

Fig. 2.b

- **1. E. Procedure:** The general procedure for the two parts of this experiment is same.
 - a. Convert the circuit shown in Fig. 2 into experimental circuit (necessary measuring instruments are to be incorporated in the circuit).
 - b. Construct the experimental circuits in MATLAB/Simulink domain, and simulate it.
 - c. Based on the simulation, fill up the Table-2.1 for KVL. Similarly, prepare a table for KCL experiment, and fill it.

Observation No.	Applied Voltage V (volts)			Voltage across R ₂ (volts) (V ₂)		Voltage across R ₃ (volts) (V ₃)		V ₁ +V ₂ +V ₃ (volts)	
		Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
1	100		16.67		33.33		50		100
2	150								
3	200								
4	50								

1. F. Assignments:

- 1. Replace constant voltage source by constant current source with the same magnitude in Fig. 2.a & 2.b, do the simulation again.
- 2. Replace constant voltage source by variable voltage source (sinusoidal source with the same magnitude, ramp input with slope 1) in Fig. 2.a & 2.b, do the simulation again.
- 3. Using circuit shown in Fig. 2.c, do the experiment again.

Fig. 2.c