2A Multivariable Calculus 2020

Tutorial Exercises

T1 Sketch the wedge shaped region W (in the first octant) enclosed by the five planes x = 0, y = 0, z = 0, x = 1 and y + z = 1. Then evaluate

$$\iiint_W xy\ dxdydz.$$

Solution

Hence the integral is

$$I = \int_0^1 dx \int_0^1 dy \int_0^{1-y} xy \, dz = \int_0^1 x \, dx \int_0^1 y \left[z\right]_0^{1-y} dy$$
$$= \int_0^1 x \, dx \int_0^1 y - y^2 \, dy = \int_0^1 x \left[\frac{y^2}{2} - \frac{y^3}{3}\right]_0^1 dx$$
$$= \int_0^1 \frac{1}{6} x \, dx = \frac{1}{6} \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{12}.$$

T2 Sketch the solids whose volume is given by the following integrals

(a)
$$\int_0^2 dx \int_0^{3-3x/2} dy \int_0^{6-3x-2y} 1 dz$$
 (b) $\int_{-1}^1 dx \int_0^{1-x} dy \int_0^{1-x^2} 1 dz$

Solution

A solid shell of variable density is in the form of the region lying between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 9$. The density ρ of the shell at the point (x, y, z) is given by $\rho(x, y, z) =$ $\sqrt{x^2 + y^2 + z^2}$. Find the mass of the shell.

- Solution -

Mass is given by the triple integral of the density $(\sqrt{x^2 + y^2 + z^2})$ over the volume V. Hence,

$$\begin{split} \text{Mass} &= \int \int \int_{V} \sqrt{x^2 + y^2 + z^2} \, dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{\pi} d\phi \int_{1}^{3} \rho^3 \sin\phi \, d\rho \\ &= 2\pi \int_{0}^{\pi} \sin\phi \, d\phi \int_{1}^{3} \rho^3 \, d\rho = 4\pi \big[\frac{\rho^4}{4} \big]_{1}^{3} = 80\pi. \end{split}$$

T4 Evaluate

$$\iiint z^2 \, dx dy dz$$

throughout

- a) the part of the sphere $x^2 + y^2 + z^2 = a^2$ (a > 0) in the first octant,
- b) the complete interior of the sphere $x^2 + y^2 + z^2 = a^2$ (a > 0).

Solution

(a) Hence the integral is

$$\begin{split} I &= \int_0^{\pi/2} d\theta \int_0^{\pi/2} d\phi \int_0^a \rho^4 \cos^2 \phi \sin \phi \, d\rho \\ &= \int_0^{\pi/2} d\theta \int_0^{\pi/2} \cos^2 \phi \sin \phi \, d\phi \int_0^a \rho^4 \, d\rho = \frac{\pi}{2} \cdot \frac{1.1}{3.1} \left[\frac{\rho^5}{5} \right]_0^a = \frac{\pi a^5}{30}. \end{split}$$

(b) Hence the integral is

$$I = \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^a \rho^4 \cos^2 \phi \sin \phi \, d\rho$$

$$= \int_0^{2\pi} d\theta \int_0^{\pi} \cos^2 \phi \sin \phi \, d\phi \int_0^a \rho^4 \, d\rho$$

$$= 4\pi \int_0^{\pi/2} \cos^2 \phi \sin \phi \, d\phi \cdot \frac{a^5}{5} = \frac{4\pi a^5}{5} \cdot \frac{1.1}{3.1} = \frac{4\pi a^5}{15}.$$

T5 **Evaluate**

$$\iiint_T y \ dxdydz$$

throughout the tetrahedron *T* given by $x \ge 0$, $y \ge 0$, $z \ge 0$, $x + y + z \le 0$

Solution

Hence the integral is

$$I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} y \, dz = \int_0^1 dx \int_0^{1-x} y \left[z\right]_0^{1-x-y} dy$$

$$= \int_0^1 dx \int_0^{1-x} y ((1-x) - y) \, dy = \int_0^1 \left[\frac{1}{2} y^2 (1-x) - \frac{1}{3} y^3\right]_0^{1-x} \, dx$$

$$= \int_0^1 \frac{1}{6} (1-x)^3 \, dx = -\frac{1}{6} \left[\frac{(1-x)^4}{4}\right]_0^1 = \frac{1}{24}.$$

Use triple integration to express the volume of the solid that is bounded by the given surfaces and evaluate the volume:

a)
$$z = x^2 + y^2 - 3$$
, $z = -x^2 - y^2 + 5$,

b)
$$y = x^2$$
, $z = -y + 4$, $z = 0$.

Solution -

(a) The projection of the volume onto the x, y-plane is given by a circle centre o radius 2. This is because the two surfaces meet at the widest point of the volume. They meet when $x^2 + y^2 - 3 = -x^2 - y^2 + 5$, rearranging this gives $x^2 + y^2 = 4$. We will call this region D. As we wish to find a volume the

Volume =
$$\iint_D dx \, dy \int_{x^2+y^2-3}^{-x^2-y^2+5} 1 \, dz = \iint_D -2x^2 - 2y^2 + 8 \, dx \, dy$$

Since D is a disc we carryout the remaining double integral using polar coordinates. D can be described by $0 \le r \le 2$ and $0 \le \theta \le 2\pi$ giving:

volume =
$$\int_0^{2\pi} d\theta \int_0^2 (-2r^2 + 8)r dr = 2\pi \left[-\frac{2r^4}{4} + 4r^2 \right]_0^2 = 16\pi.$$

(b) The projection of the volume onto the x, y-plane is given by $x^2 \le y \le 4$ and $-2 \le x \le 2$. This is because the widest point where z = -y + 4 meets the plane $y = x^2$ is at z = 0. The top and bottom of the volume are given by the surfaces z = -y + 4 and z = 0 respectively. Taking the integrand to be 1 because we wish to find the volume gives:

Volume
$$= \int_{-2}^{2} dx \int_{x^{2}}^{4} dy \int_{0}^{-y+4} 1 dz = \int_{-2}^{2} dx \int_{x^{2}}^{4} -y + 4 dy$$
$$= \int_{-2}^{2} \left[\frac{-y^{2}}{2} + 4y \right]_{x^{2}}^{4} dx = \int_{-2}^{2} 8 + \frac{x^{4}}{2} - 4x^{2} dx = \frac{256}{15}$$

Find the mass of the solid of constant density ρ that is bounded by the parabolic cylinder $x = y^2$ and the planes x = z, z = 0 and x = 1.

The mass is found by integrating the density over the volume.

$$\text{mass} = \iiint \rho \ dV = \int_{-1}^{1} dy \int_{y^{2}}^{1} dx \int_{0}^{x} \rho \ dz$$
$$= \rho \int_{-1}^{1} dy \int_{y^{2}}^{1} x \ dx = \rho \int_{-1}^{1} \left[\frac{x^{2}}{2} \right]_{y^{2}}^{1} \ dy$$
$$= \frac{\rho}{2} \int_{-1}^{1} 1 - y^{4} \ dy = \frac{4\rho}{5}.$$

T8 Evaluate

$$\iiint_{R} \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dxdydz$$

where *R* is the interior of the sphere $x^2 + y^2 + z^2 = 1$.

Solution •

$$\begin{split} I &= \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^1 \rho^3 e^{-\rho^2} \sin\phi \, d\rho \\ &= 2\pi \int_0^{\pi} \sin\phi \, d\phi \int_0^1 \rho^3 e^{-\rho^2} \, d\rho \\ &= 4\pi \int_0^1 u e^{-u} \frac{1}{2} \, du, \qquad \text{(using } u = \rho^2 \text{ and } \frac{1}{2} du = \rho \, d\rho \text{)} \\ &= 2\pi \big[-u e^{-u} + \int e^{-u} .1 \, du \big]_0^1, \qquad \text{(using integration by parts.)} \\ &= 2\pi \big[-u e^{-u} - e^{-u} \big]_0^1 = 2\pi \big[1 - \frac{2}{e} \big]. \end{split}$$

Let V be the interior of the sphere $x^2 + y^2 + z^2 = 1$. Without doing any integration, explain why

$$\iiint_{V} x^{2} dxdydz = \iiint_{V} y^{2} dxdydz = \iiint_{V} z^{2} dxdydz,$$

and why

$$\iiint_V z \, dx dy dz = 0 \quad \text{and} \quad \iiint_V z^3 \, dx dy dz = 0.$$

 $\int \int \int z^2 dx dy dz$ gives the mass of a sphere $x^2 + y^2 + z^2 \le 1$, which is symmetrical about (0,0,0) and has density z^2 at (x, y, z). Turning the x, y, z axes so that x becomes the y, the y the z, and z the x, then in the new coordinates the density will be x^2 at (x, y, z), but the mass of the sphere will be unchanged, because all we have done is change coordinates. The mass is now expressed as $\int \int \int x^2 dx dy dz$ in the new coordinates and so the two integrals are equal. Similarly for y^2 .

For $\int \int z \, dx \, dy \, dz$ the integrand is as often positive as it is negative, and in a symmetrical way. So the answer is zero. For the same reason, the same is true when the integrand is any odd power of z.

T10 **Evaluate**

$$\iiint_{R} \frac{z}{\sqrt{x^2 + y^2 + z^2}} \, dx dy dz$$

where *R* is the interior of the sphere $x^2 + y^2 + z^2 = 2z$.

Since, $x^2 + y^2 + z^2 = 2z$, in spherical coordinates this is $r = 2\cos\phi$.

$$\begin{split} I &= \int_0^{2\pi} d\theta \int_0^{\pi/2} d\phi \int_0^{2\cos\phi} \rho^2 \cos\phi \sin\phi \, d\rho \\ &= 2\pi \int_0^{\pi/2} \cos\phi \sin\phi \, d\phi \int_0^{2\cos\phi} \rho^2 \, d\rho = 2\pi \int_0^{\pi/2} \cos\phi \sin\phi \left[\frac{\rho^3}{3}\right]_0^{2\cos\phi} \, d\phi \\ &= 2\pi \int_0^{\pi/2} \cos\phi \sin\phi \, \frac{8\cos^3\phi}{3} \, d\phi = \frac{16\pi}{3} \int_0^{\pi/2} \cos^4\phi \sin\phi \, d\phi = \frac{16\pi}{3} \frac{3.1}{5.3.1} = \frac{16\pi}{15}. \end{split}$$

T11 **Evaluate**

$$\iiint_R \frac{1}{(x^2+y^2+z^2)^2} \ dxdydz$$

where *R* is the region in the first octant *outside* the sphere $x^2 + y^2 +$ $z^2 = 1$.

$$\begin{split} I &= \int_0^{\pi/2} d\theta \int_0^{\pi/2} d\phi \int_1^{\infty} \frac{1}{\rho^2} \sin\phi \, d\rho \\ &= \frac{\pi}{2} \int_0^{\pi/2} \sin\phi \, d\phi \int_1^{\infty} \frac{1}{\rho^2} \, d\rho = \frac{\pi}{2} \cdot \frac{1}{1} \left[\frac{-1}{\rho} \right]_1^{\infty} = \frac{\pi}{2}. \end{split}$$

Find the volume of the region lying inside the cylinder x^2 + $4y^2 = 4$ above the *xy*-plane, and below the plane 2 + x.

Solution

Volume =
$$\int \int \int_{V} 1 \, dx \, dy \, dz = \int_{-2}^{2} dx \int_{-\sqrt{1-x^{2}/4}}^{\sqrt{1-x^{2}/4}} dy \int_{0}^{2+x} 1 \, dz$$
$$= \int_{-2}^{2} \left[2y + xy \right]_{y=-\sqrt{1-x^{2}/4}}^{y=-\sqrt{1-x^{2}/4}} dx = 4\pi.$$

The final integral can be done using the substitution $x = 2\cos u$.

T13 Find $\iiint_R z \, dV$, over the region R satisfying $x^2 + y^2 \le z \le \sqrt{2 - x^2 - y^2}$.

Solution

The domain of integration consists of a paraboloid with a spherical top. So we use spherical polar coordinates to solve the problem. To do the integration we split up the domain into two sections, A and B. Firstly the sphere meets the paraboloid when $x^2 + y^2 = z = \sqrt{2 - x^2 - y^2} = \sqrt{2 - z}$, so $z^2 + z - 2 = 0$, since $z \ge 0$ we have z = 1 is the only solution. Considering the x = 0 cross section of the paraboloid we determine y = 1 when z = 1, hence the sphere and paraboloid meet at the angle $\phi = \pi/4$. So region *A* is given by $0 \le \rho \le \sqrt{2}$, $0 \le \phi \le \pi/4$ and $0 \le \theta \le 2\pi$. For $\phi > \pi/4$ the radius is determined by the paraboloid, $z = x^2 + y^2$, in spherical polar coordinates this gives $\rho = \frac{\cos \phi}{\sin^2 \rho}$. So the second section of the domain, B, is given by $0 \le \rho \le \frac{\cos \phi}{\sin^2 \rho}$, $\pi/4 \le \phi \le \pi/2$ and $0 \le \theta \le 2\pi$.

Hence, $\iiint_V z \, dx dy dz = \iiint_A z \, dx dy dz + \iiint_B z \, dx dy dz$

$$\iiint_A z \, dx dy dz = \int_0^{2\pi} d\theta \int_0^{\pi/4} d\phi \int_0^{\sqrt{2}} \rho^3 \cos\phi \sin\phi \, d\rho$$
$$= 2\pi \int_0^{\pi/4} \cos\phi \sin\phi \, d\phi \left[\frac{\rho^4}{4}\right]_0^{\sqrt{2}} = \pi/2.$$

$$\iiint_{B} z \, dx dy dz = \int_{0}^{2\pi} d\theta \int_{\pi/4}^{\pi/2} d\phi \int_{0}^{\cos\phi} \rho^{3} \cos\phi \sin\phi \, d\rho$$
$$= 2\pi \int_{\pi/4}^{\pi/2} \cot^{5}\phi \csc^{2}\phi \, d\phi = \pi/(12).$$

(The last integral is calculated using the substitution $u = \cot \phi$.) Hence the integral is $\pi/2 + \pi/12 =$ $7\pi/12$.