Lecture 14 EE 421 / C\$ 425 Digital System Design

Fall 2025
Shahid Masud

Topics

MIDTERM
Thursday 23 Oct

- Fractional Multiplication Leftover
- Different Cases of Signed Multiplication in Fractional Binary Numbers

- Booth Encoded Multipliers
- Advantages of Booth Multipliers
- Limitations of Booth Multipliers
- STG Control for Booth Multipliers
- Examples of Booth Multiplication
- Introduce Radix-4 Multiplication
- QUIZ 3 on MONDAY

Recap – Fractional and Signed Multiplication

Multiplication of Fractions

Convert from decimal to binary

$$(\frac{3}{4})$$

= 0.75

 $0.75 \times 2 = 1.5$, keep 1

 $0.5 \times 2 = 1.0$, keep 1

 $0 \times 2 = 0 \text{ keep } 0$

And only zeros afterwards

$$= 2^{-1} + 2^{-2} + 0 + 0$$

= 0.1100; assigning four fractional bits

2's Complement of Binary Fractional Nos.

- Given binary fractional number = (0.1100)
- Method 1:
- Decide on the number of total bits, eg. 5 bits; Invert all bits; add +1 to LSB
- 2's Complement = 1.0011
- + 1
- •
- = 1.0100
- Method 2:
- Look from right to left; when you Encounter first 1; invert all bits to the left
- For (0.1100), the 2's Complement = (1.0100)

Question?

- Represent 9/16 using five fractional bits:
- Hint: 9/16 = 0.xxxxx
- Keep multiplying by 2; if answer is greater than 1, keep 1

```
• Solve: 0.562 x 2 = 1.125, keep 1
```

- 0.125 x 2 = 0.25, keep 0
- $0.25 \times 2 = 0.5$, keep 0
- 0.5 x 2 = 1.0, keep 1
- 0 x 2 = 0, keep 0, and same for more terms
- Answer = 0.10010 in binary

Finally, 2's Complement of "0.10010" is (look right to left) "1.01110" that is [-9/16]

Convert Fraction Number to Binary

- Represent 9/16 using five fractional bits:
- Hint: 9/16 = 0.5625
- Keep multiplying by 2; if answer is greater than 1, keep 1
- Solve: 0.5625 x 2 = 1,125, keep 1
- $0.125 \times 2 = 0.25$, keep 0
- $0.25 \times 2 = 0.5$, keep 0
- $0.5 \times 2 = 1.0$, keep 1
- $0 \times 2 = 0$, keep 0, and same for more terms
- Answer = 0.10010 in binary

Finally, 2's Complement of "0.10010" is (look right to left) "1.01110" that is [-9/16]

Multiplication of Signed Fractions

- Fractions are multiplied like whole numbers, but overflow is not possible
- A 4-bit fractional number is represented as minimum 5-bit fixed point number with MSB holding the sign bit in 2's Complement format
- The product of two 5-bit numbers will produce 10-bit result
- MSB will be sign-extended (bit replication) for negative multiplicand

Example 1: Positive multiplicand, positive multiplier, fraction multiplication

Show binary multiplication of $(3/4)_{10} \times (1/2)_{10}$ Use 5-bits to represent each number

$$3/4 = 0.1100$$

1/2 = 0.1000

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

Answer =
$$(0.0110000000) = +(3/8)$$

Example 2: Negative multiplicand, positive multiplier, fraction multiplication

Show binary multiplication of $(-3/4)_{10} \times (3/8)_{10}$ Use 5-bits to represent each number

Negative multiplicand

Positive multiplier

(first 0 only shift, then 1, Add multiplicand)
(next 1, Add Multiplicand, then 0 shifts only)

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)Answer = (11.10111000), take 2's complement = -(0.01001000) = (-9/32)

Example 3: Positive multiplicand, negative multiplier, fraction multiplication

Show binary multiplication of $(3/4)_{10} \times (-3/8)_{10}$ Use 5-bits to represent each number

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

Answer = (1.10111000), take 2's Complement = -(0.01001000) = -(9/32)

Example 4: Negative multiplicand, negative multiplier, fraction multiplication

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

To Remember in Signed Multiplication

 When Multiplicand is Negative, do a sign extension to cover the possible bit-width of Answer

When Multiplier is Negative, there is a final 2's Complement Addition
 Step corresponding to the MSB of multiplier

13

Algorithmic Improvement in Multipliers

Booth Encoding

Booth Multiplication Process

Booth Encoded Multipliers

Object: To reduce the number of 'Add' steps required in complete multiplication cycle

MSB '1' shows negative number

2's Complement of
$$7_{10} = (1 \ 0 \ 0 \ 1)_2$$

$$1 \times 2^0 = 1$$

$$0 \times 2^1 = 0$$

Allow both +ive and –ive signs to be used in conversion

$$0 \times 2^2 = 0$$

$$-1 \times 2^3 = -8$$

Decimal value of $(1001)_2 = (-8+1) = -7 = (\underline{l} \ 0 \ 0 \ 1)$ or $(-1 \ 0 \ 0 \ 1)$

Booth's algorithm is valid for both positive and negative numbers in 2's complement format

Booth Recoding of a 2's Complement Number

m _i	m _{i-1}	Booth Recoded C _i	Value	Status
0				String of 0s
0	1	1	+1	End of string of 1s
1		<u>l</u>	-1 or <u>l</u>	Begin string of 1s
1	1			Midstring of 1s

-65 = (10111111)

Booth Recoding of -65₁₀

 $-65_{10} =$ 1 0 1 1 1 1 1 0 +65 = (01000001) 2's Complement

Append '0' on right, if LSB=1

2's Complement notation

m _i	m _{i-1}	Booth Recoded Ci
0	0	0
0	1	1
1	0	<u>l</u>
1	1	0

-65₁₀ = Booth Recoded notation

Or

Question?

Convert decimal number –78 to Booth Encoded format using 8 binary bits

+78 = 01001110 Take 2's Complement -78 = 10110010

m _i	m _{i-1}	Booth Recoded Ci
0	0	0
0	1	1
1	0	<u>l</u>
1	1	0

LUMS

Booth Encoded Multiplication

m _i	m _{i-1}	Booth Recoded C _i	Value	Multiplication Action			
0	0	0	0	No Operation			
0	1	1	+1	Add Multiplicand to Accumulator			
1	0	<u>l</u>	-1 or <u>l</u>	Subtract Multiplicand from Accumulator (= 2's Complement Add)			
1	1	0	0	No Operation			

Show Booth Encoded multiplication of 6 x 5, using 4 bits for both numbers

Imagine Zero bit if LSB = 1 Multiplicand **Extra** Check 2-bits at a time, Right to Left 6 Shift Left by 1 after every step **x**5 Multiplier bits 1[0] = Subtract = Add 2's Compl of Multiplicand to Acc 01 = Add Multiplicand to Acc = Subtract = Add 2's Compl of Multiplicand to Acc = Add Multiplicand to Acc = No Op, Shift Left by 1 00 = No Op, Shift Left by 1

Show Booth Encoded multiplication of 6 x -5, using 4 bits for both numbers

6 Multiplicand

X - 5 Multiplier

Imagine Zero bit if LSB = 1

Check 2-bits at a time, Right to Left Shift Left by 1 after every step

1[0] = Subtract = Add 2's Compl of Multiplicand to Acc

11 = No Op, Shift Left, Add 0 to Acc

01 = Add Multiplicand to Acc

.0 = Subtract = Add 2's Compl of Multiplicand to Acc

11 = No Op, Shift Left by 1, Add 0 to Acc

Show Booth Encoded multiplication of 6 x 5, using 4 bits for both numbers

Show Booth Encoded multiplication of 6 x -5, using 4 bits for both numbers

Show Booth Encoded multiplication of B3 x C3, using 8 bits for both numbers

B3 = 1011 0011 = 2's Compl of = 0100 1101 =
$$(4D)_{16}$$
 = 77_{10}

C3 = 1100 0011 = 2's Compl of = 0011 1101 = (3D) =
$$61_{10}$$

Answer = $(0001\ 0010\ 0101\ 1001)2 = (1259)$ Hex = $(1x16^3 + 2x16^2 + 5x16^1 + 9x16^0) = 4697_{10}$

LUMS

STG for a 4 Bit Booth Encoded Sequential

Multiplier

Data Path Architecture of a Booth Sequential Multiplier

Question?

Perform the following multiplication using Booth Encoding.

Multiplicand = 35, Multiplier = 19

How many Adds and Shifts are required in this multiplication?

How does this compare to a simple binary array multiplier?

Modified Booth / Radix-4 Multiplication

Bit-Pair Encoding Modified Booth Encoding Radix-4 Encoding

m _{i+1}	m _i	m _{i-1}	Code	BRC _{i+1}	BRC _i	Value	Status	Multiply Actions
0	0	0	0	0	0	0	String of 0s	Shift by 2
0	0	1	1	0	1	+1	End of string of 1s	Add
0	1	0	2	0	1	+1	Single 1	Add
0	1	1	3	1	0	+2	End of string of 1s	Shift by 1, Add, Shift by 1
1	0	0	4	1	0	-2	Begin of string of 1s	Shift by 1, Subtract, Shift by 1
1	0	1	5	0	<u>l</u>	-1	Single 0	Subtract
1	1	0	6	0	<u>l</u>	-1	Begin of string of 1s	Subtract
1	1	1	7	0	0	0	Midstring of 1s	Shift by 2

Bit-Pair / Radix-4 Recoding of -65₁₀

▼ Imaginary '0' if LSB=1

2's Complement notation

m _{i+1}	m _i	m _{i-1}	BRC _{i+1}	BRC _i	Value
0	0	0	0	0	0
0	0	1	0	1	+1
0	1	0	0	1	+1
0	1	1	1	0	+2
1	0	0	<u>l</u>	0	-2
1	0	1	0	<u>l</u>	-1
1	1	0	0	<u>l</u>	-1
1	1	1	0	0	0

Bit-Pair Recoded notation

0

0

Question of Bit-Pair/Radix-4 Encoding

Express -75₁₀ in Radix-4 Encoded format using 8 bits to express the given number

m _{i+1}	m _i	m _{i-1}	BRC _{i+1}	BRC _i	Value
0	0	0	0	0	0
0	0	1	0	1	+1
0	1	0	0	1	+1
0	1	1	1	0	+2
1	0	0	<u>l</u>	0	-2
1	0	1	0	<u>l</u>	-1
1	1	0	0	<u>l</u>	-1
1	1	1	0	0	0

 $+75_{10} = (64+8+2+1) = (0100\ 1011)_2$

Thus 2's Complement

$$= (1011\ 0101)_2 = -75$$

2; coded 01

2; coded 01

6; coded 0 -1

5; coded 0 -1

Radix 4 Encoded =
$$0 \underline{1} 0 \underline{1} 0 1 0 1$$

Bit-Pair Encoding Modified Booth Encoding Radix-4 Encoding

Shifting by 2 in each step

m _{i+1}	m _i	m _{i-1}	Code	BRC _{i+1}	BRC _i	Value	Status	Multiply Actions
	0		0	•		0		
0	0	0	0	0	0	0	String of 0s	Shift Left by 2
0	0	1	1	0	1	+1	End of string of 1s	Add, Shift Left by 2
0	1	0	2	0	1	+1	Single 1	Add, Shift Left by 2
0	1	1	3	1	0	+2	End of string of 1s	Shift by 1, Add, Shift by 1
1	0	0	4	Ī	0	-2	Begin of string of 1s	Shift by 1, Subtract, Shift by 1
1	0	1	5	0	<u>I</u>	-1	Single 0	Subtract, Shift Left by 2
1	1	0	6	0	<u>I</u>	-1	Begin of string of 1s	Subtract, Shift Left by 2
1	1	1	7	0	0	0	Mid-string of 1s	Shift Left by 2

Radix 4 Coding for Multiplication

m _{i+1}	m _i	m _{i-1}	Code	Multiply Actions
0	0	0	0	Shift Left by 2
0	0	1	1	Add Multiplicand, Shift Left by 2
0	1	0	2	Add Multiplicand, Shift Left by 2
0	1	1	3	Shift by 1, Add Multiplicand, Shift by 1
1	0	0	4	Shift by 1, Subtract Multiplicand, Shift by 1
1	0	1	5	Subtract Multiplicand, Shift Left by 2
1	1	0	6	Subtract Multiplicand, Shift Left by 2
1	1	1	7	Shift Left by 2

Radix 4 Multiplication – Example 1

Imagine Zero bit if LSB = 1

Show Radix 4 Encoded multiplication of 8 x 9, using 8 bits for both numbers

8 = 0000 1000

9 = 0000 1001

Convert 9 = 0000 1001 to Radix 4 Encoded bits

 $9 = 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ [0]$ RECODED $010 \rightarrow 01$ $100 \rightarrow -1 \ 0$ $001 \rightarrow 01$ $000 \rightarrow 00$

8 = Multiplicand

X 9 = Recoded Multiplier

									0	0	0	0	1	0	0	0
									0	0	0	1	-1	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	1	1	1	1	1	1	1				Х	Х	Х
0									1				Х	Х	Х	Х
												Х	Х	Х	Х	Х
0										1			1			

0 1 = Add Multiplicand, Shl2

$$-1 0 = Shl 1, Sub, Shl 1$$

$$0.1 = Add, Shl2$$

$$0.0 = Only Shl2$$
, No op

Answer = $(0100\ 1000) = +(64 + 8) = +72_{10}$

Radix 4 Multiplication – Example 2

Imagine Zero

Show Radix 4 Encoded multiplication of 68 x -19, using 8 bits for both numbers

-19 = 1 1 1 0 1 1 0 1 [0]

68 = 0100 0100 And 2's Compl is -68= 1011 1100 19 = 0001 0011 And 2's Compl is -19= 1110 1101

Convert -19 = 1110 1101 to Radix 4 Encoded bits

 $110 \rightarrow 0-1$ $110 \rightarrow 0-1$ $111 \rightarrow 00$

RECODED

 $010 \rightarrow 01$

Result

0 1 = Add Multiplicand, Shl2

0 - 1 = Sub, Shl2

0 - 1 = Sub, Shl2

0.0 = Only Shl2, No op

Take 2's Complement of Result = -(0101 0000 1100) = -(50C) Hex = $-(1292)_{10}$

Radix 4 Multiplication – Example 3

Imagine Zero

Show Radix 4 Encoded multiplication of 76 x 55, using 8 bits for both numbers

55 = 0 0 1 1 0 1 1 1 [0]

76 = 0100 1100 And 2's Compl is -76= 1011 0100

55 = 0011 0111 And 2's Compl is -55= 1100 1001

Convert 55 = 0011 0111to Radix 4 Encoded bits

 $110 \rightarrow 0-1$ $011 \rightarrow 10$

 $110 \rightarrow 0-1$

 $001 \rightarrow 01$

36

RECODED

0 - 1 = Sub, Shl2

0 - 1 = Sub, Shl2

10 = Shl1,Add,Shl1

Partial Sum

Partial Sum

Result

0.1 = Add, Shl2

Answer = 0001 0000 0101 0100 = (4+16+64+4096) = $(4180)_{10}$

