Revue

Que signifie une équation de la forme $\mathbf{A}\mathbf{x} = \mathbf{b}$?

1. C'est une façon d'écrire un système d'équations linéaires

$$\begin{array}{rcl} a_{11}x_1 & + & a_{12}x_2 & = & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & = & b_2 \end{array}$$

 $\fbox{2.}$ C'est une façon de représenter une combinaison linéaires de vecteurs. Par exemple, avec $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2]$

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \Rightarrow \qquad x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$$

3. C'est une façon de représenter une transformation linéaire.

Par exemple, soit $\mathbf{b} \in \mathbb{R}^2$ et $\mathbf{x} \in \mathbb{R}^3$ alors on peut avoir

$$\mathbf{A}_{2\times 3}\mathbf{x}_{3\times 1} = \mathbf{b}_{2\times 1}$$

4. C'est également une façon de représenter un changement de base.

Ceci est nouveau.

Changement de base

Tout vecteur dans ce plan peut être écrit comme une combinaison linéaire de deux vecteurs de la base habituelle, également appelée base canonique. On peut vérifier que ${\bf v}=7{\bf e}_1+4{\bf e}_2$

Superposons les deux systèmes de coordonnées :

Dans le plan cartésien, on écrit habituellement :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{v} = 7\mathbf{e}_1 + 4\mathbf{e}_2 = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$

Dans ce système de coordonnées, défini par cette base canonique, on peut vérifier que

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \qquad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{v} = 2\mathbf{b}_1 + 5\mathbf{b}_2 = 2\begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} + 5\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2+5 \\ -1+5 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$

Notez que, utilisant la notation de la multiplication des matrices qu'on a vu jusqu'à présent, on a également l'égalité suivante :

$$2\begin{bmatrix}1\\-\frac{1}{2}\end{bmatrix}+5\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1&1\\-\frac{1}{2}&2\end{bmatrix}\begin{bmatrix}2\\5\end{bmatrix}$$

La multiplication d'une matrice par un vecteur est égale à une combinaison linéaire des colonnes de la matrice.

Supposons que l'on veuille exprimer le vecteur \mathbf{v} comme une matrice colonne, de taille 2×1 , sans faire référence aux coordonnées du plan cartésien, mais en utilisant la base $B = \{\mathbf{b}_1, \mathbf{b}_2\}$

$$\mathbf{v} = 2\mathbf{b}_1 + 5\mathbf{b}_2$$

Ce qu'on peut faire est de définir les matrices suivantes :

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_B \qquad \mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_B \qquad \mathbf{v} = 2\mathbf{b}_1 + 5\mathbf{b}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}_B$$

où l'indice $_B$ fait référence à la base B.

On a une relation entre les coordonnées cartésiennes et celles de la base B:

$$2\begin{bmatrix}1\\-\frac{1}{2}\end{bmatrix} + 5\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1&1\\-\frac{1}{2}&2\end{bmatrix}\begin{bmatrix}2\\5\end{bmatrix}_B = P_B\begin{bmatrix}2\\5\end{bmatrix}_B$$

La matrice P_B est appelée la matrice de passage de la base B à la base cartésienne habituelle. Les colonnes de P_B sont les vecteurs $\mathbf{b}_1, \mathbf{b}_2$ exprimés dans les coordonnées cartésiennes.

De façon plus générale, supposons que l'on veuille obtenir les coordonnées d'un vecteur v dans une base C, on aura :

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}_C = \begin{bmatrix} (\mathbf{b}_1)_C & (\mathbf{b}_1)_C \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_B = \begin{bmatrix} \begin{pmatrix} b_{11} \\ b_{12} \end{pmatrix}_C & \begin{pmatrix} b_{21} \\ b_{22} \end{pmatrix}_C \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}_B$$

On peut vérifier que

$$\begin{bmatrix} b_{11} \\ b_{12} \end{bmatrix}_C = \begin{bmatrix} \begin{pmatrix} b_{11} \\ b_{12} \end{pmatrix}_C & \begin{pmatrix} b_{21} \\ b_{22} \end{pmatrix}_C \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_B$$

 et

$$\begin{bmatrix} b_{21} \\ b_{22} \end{bmatrix}_C = \begin{bmatrix} \begin{pmatrix} b_{11} \\ b_{12} \end{pmatrix}_C & \begin{pmatrix} b_{21} \\ b_{22} \end{pmatrix}_C \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_B$$

Notation

On utilise parfois la notation suivante :

$$[\mathbf{x}]_C = \underset{C \leftarrow B}{P} \quad [\mathbf{x}]_B$$

Pour désigner la matrice de passage de la base B à la base C.

Dans les cas où la matrice de passage est inversible, on peut vérifier que

$$\underset{C \leftarrow B}{P} = \underset{B \leftarrow C}{P}^{-1}$$

Dans notre cours, on utilisera seulement la matrice de passage pour les transformations d'une base formée des vecteurs propres (si cette base existe) à la base cartésienne. On la désignera simplement par P, et son inverse par P^{-1} comme d'habitude.