

CE245-Data Structure and Algorithms

Unit-3

Non-Linear Data Structure Graph

Devang Patel Institute of Advance Technology and Research

Graphs

- What is Graph?
- Representation of Graph
 - → Matrix representation of Graph
 - Linked List representation of Graph
- ► Elementary Graph Operations
 - Breadth First Search (BFS)
 - → Depth First Search (DFS)
 - → Spanning Trees
 - Minimal Spanning Trees
 - → Shortest Path

Adjacency matrix

- ▶ A diagrammatic representation of a graph may have limited usefulness. However such a representation is not feasible when number of nodes an edges in a graph is large
- It is easy to store and manipulate matrices and hence the graphs represented by them in the computer
- Let G = (V, E) be a simple diagraph in which $V = \{v_1, v_2, ..., v_n\}$ and the nodes are assumed to be ordered from v_1 to v_n
- An n x n matrix A is called Adjacency matrix of the graph G whose elements are aii are given by

$$\mathbf{a}_{ij} = \begin{cases} 1 & if(V_i, V_j) \in E \\ 0 & otherwise \end{cases}$$

Adjacency matrix

- ▶ An **element** of the adjacency matrix is either **0** or **1**
- ▶ Any matrix whose elements are either 0 or 1 is called bit matrix or Boolean matrix
- ► For a given graph G =m (V, E), an **adjacency matrix** depends upon the ordering of the elements of V
- ▶ For different ordering of the elements of V we get different adjacency matrices.

Adjacency matrix

- ▶ The number of elements in the ith row whose value is 1 is equal to the out-degree of node Vi
- ▶ The number of elements in the jth column whose value is 1 is equal to the in-degree of node V_j
- For a **NULL graph** which consist of only n nodes but no edges, the **adjacency matrix** has **all its elements 0**. i.e. the adjacency matrix is the NULL matrix

Power of Adjacency matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{2} = \mathbf{A} \times \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{3} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{4} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

- Entry of 1 in ith row and jth column of A shows existence of an edge (Vi, Vj), that is a path of length 1
- ▶ Entry in A² shows no of different paths of exactly length 2 from node V_i to V_j
- ▶ Entry in A³ shows no of different paths of exactly length 3 from node V_i to V_j

Path matrix or reachability matrix

- ▶ Let **G** = (**V**,**E**) be a simple diagraph which contains **n** nodes that are assumed to be ordered.
- ▶ A n x n matrix P is called path matrix whose elements are given by

$$P_{ij} = \begin{cases} 1, if \ there \ exists \ path \ from \ node \ V_i \ to \ V_j \\ 0, otherwise \end{cases}$$

Adjacency List Representation

Graph Traversal

- ▶ Two Commonly used Traversal Techniques are
 - → Breadth First Search (BFS)
 - → Depth First Search (DFS)

Breadth First Search (BFS)

- ▶ This methods **starts** from vertex **V**₀
- \triangleright V₀ is marked as visited. All vertices adjacent to V₀ are visited next
- ▶ Let vertices adjacent to V₀ are V₁, V₂, V₄
- \triangleright V₁, V₂, V₃ and V₄ are marked visited
- ▶ All unvisited vertices adjacent to V₁, V₂, V₃, V₄ are visited next
- ▶ The method continuous until all vertices are visited
- ▶ The algorithm for BFS has to maintain a list of vertices which have been visited but not explored for adjacent vertices
- ▶ The vertices which have been visited but not explored for adjacent vertices can be stored in **queue**

Breadth First Search (BFS)

V₀| **V**₁ **V**₂ | **V**₄ **V**₆ **V**₃ | **V**₅

Depth First Search (DFS)

- ▶ It is like preorder traversal of tree
- Traversal can start from any vertex V_i
- ▶ V_i is visited and then all vertices adjacent to V_i are traversed recursively using DFS

Depth First Search (DFS)

ABDCFE

Write DFS & BFS of following Graphs

Procedure : DFS (vertex V)

- ▶ This procedure traverse the graph G in DFS manner.
- ▶ V is a starting vertex to be explored.
- Visited[] is an array which tells you whether particular vertex is visited or not.
- W is a adjacent node of vertex V.
- ▶ S is a Stack, PUSH and POP are functions to insert and remove from stack respectively.

Procedure : DFS (vertex V)

```
1. [Initialize TOP and Visited]
   visited[] \leftarrow 0
   TOP ← 0
2. [Push vertex into stack]
   PUSH (V)
3. [Repeat while stack is not Empty]
   Repeat Step 3 while stack is not empty
       v \leftarrow POP()
       if visited[v] is 0
       then visited [v] \leftarrow 1
             for all W adjacent to v
                if visited [w] is 0
               then PUSH (W)
             end for
       end if
```

Procedure : BFS (vertex V)

- ▶ This procedure **traverse the graph G in BFS** manner
- ▶ **V** is a **starting vertex** to be explored
- Q is a queue
- visited[] is an array which tells you whether particular vertex is visited or not
- W is a adjacent node f vertex V.

Procedure : BFS (vertex V)

```
1. [Initialize Queue & Visited]
   visited[] \leftarrow 0
   F \leftarrow R \leftarrow 0
2. [Marks visited of V as 1]
   visited[v] \leftarrow 1
3. [Add vertex v to Q]
   InsertQueue(V)
4. [Repeat while Q is not Empty]
   Repeat while Q is not empty
     v ← RemoveFromQueue()
      For all vertices W adjacent to v
        If visited[w] is 0
       Then visited[w] \leftarrow 1
             InsertQueue(w)
```