Tutorial Problem Set-7

PHY103 HCV/SMT 8th Sept 2015

It is proposed to set up a current density $\mathbf{J} = J_0 \frac{\mathbf{r}}{R}$ in a region where J_0 and R are constants.

- (a) Does it represent a steady current? (b) Find the rate at which the charge density is changing at ${\bf r}$.
- 2. Show that magnetic moment of a plane current loop can be written as $\mathbf{m} = \frac{1}{2} \oint_{loop} \mathbf{r} \times I d\mathbf{l}$. This can be generalized for a current distribution in volume τ as $\mathbf{m} = \frac{1}{2} \int_{volume} \mathbf{r} \times \mathbf{J} d\tau$.
- 3. Wire loop ABCDA carries a current I. As suggested in the figure ABC is a semicircle of radius R in the x-y plane and CDA is a semicircle of radius a in the y-z plane . Calculate the magnetic dipole moment of the loop.

- 4. A particle having mass m and charge q is released from the origin in a region where fields $\mathbf{E}=E_0\hat{k}$ and $\mathbf{B}=B_0\hat{j}$ exist.
 - (a) Discuss qualitatively the nature of the path.
 - (b) Find the speed of the particle as a function of its z- coordinate.
 - (c) Find velocity of the particle as a function of time.
 - (d) Find the position of the particle as a function of time.
 - (e) Find the value of z for which the particle's velocity becomes perpendicular to the electric field.

More Problems

1. A region has uniform electric and magnetic fields given by $\mathbf{E} = E_0 \,\hat{i}$, $\mathbf{B} = \mathbf{\hat{j}}$. A particle having charge q and mass m is started from the origin with an initial velocity $\mathbf{v}_0 = v_0 \,\hat{j}$. Find the position as function of time and sketch the path.

[Ans. (b)
$$x = \frac{v_0}{\omega} \sin \omega t - v_0 t$$
, $y = v_0 t$, $z = \frac{v_0}{\omega} (1 - \cos \omega t)$]

- 2.A uniformly charged solid sphere with total charge q and mass m is spinning with an angular velocity ω about one of its diameter. Find (a) the magnetic moment of this sphere (b) the angular momentum of the sphere. [Ans.(a) $\frac{q\omega R^2}{5}\hat{k}$]
- 3.Consider two parallel wires carrying currents I_1 and I_2 placed parallel to each other at separation d. Consider two elements dl_1 and dl_2 in the two wires (Figure). What is the force on the element dl_2 due to the current in dl_1 ? What is the force on the element dl_1 due to the current in dl_2 ? Is this consistent with Newton's third law?

4.A cylindrical magnet is kept with its axis along the z-axis. Close to the axis, the z-component of the field outside of the magnet can be approximated as $B_z = B_0 e^{-\alpha z^2}$. Using the symmetry, the ϕ component of the magnetic field is zero. Find the s-component of the field as a function of z for points close to the axis.

[Ans.
$$B_0 \alpha sze^{-\alpha z^2}$$
]

5. Charge is distributed uniformly with density ρ in a long cylindrical region of radius R. The whole distribution rotates with a constant angular velocity ω about its axis. Find the magnetic field everywhere due to this rotating distribution.

[Ans.
$$\frac{1}{2}\mu_0 \rho \omega (R^2 - s^2)$$
 for $s < R$, zero for $s > R$]

- 6.An infinite cylinder of radius a carries a current with current density $\mathbf{J} = \mathbf{J}_0 \left(\frac{s}{a} \right) \hat{k}$. A thin wire placed along the axis of the cylinder, carries a current in the opposite direction equal to that carried by the cylinder.
 - a) Compute the magnetic field $\bf B$ everywhere.
 - b) Show explicitly that divergence of this magnetic field is zero.

[Ans.
$$\frac{2\pi J_0}{3a} (s^3 - a^3)$$
]