		1
		\
Divide and Conquer	Examples	
lable of Contents:	•	
1. Master's Theorem	2	
2. Max Subarray problem 3. Strassen's Algo 4. Karatsuba's Algo 5. Counting Inversions 6. Closest Pair in R ²	5	
3. Strassen's Algo	8	
4. Karatsuba's Algo	\3	
5. Counting Inversions	\6	
6. Closest Pair in R2	\8	
+. Quicksort	19	
8. Mergesort	20	

Master's Theorem

Let a 21 and b>1 be constants. Let fon be an asymptotically positive function.

Let T(n) = a T(f) + O(f(n)) be a recurrence relation.

Then:

1. If f(n) = O(n logba - E) for some constant E>o, then T(n) = O(n logsa)

- 2. If $f(n) = \Theta(n^{\log_b \alpha} \cdot \log^k n)$ for some Constant $k \ge 0$, then $T(n) = O(n^{\log_b \alpha} \cdot \log^{k+1} n)$
- If $f(n) = \Lambda(n^{\log_b a} + \epsilon)$ for some constant E>0 and f satisfies the regularity condition then Ton = O(fin)

The regularity condition states that: For some constant C<1, and all sufficiently large n, a. f(&) = c.f(n)

T(n) = O(n2)

- Examples:

1. T(n) = 9T(3) +n

Soln:

0=9

Based on case 1, where E=1,

b=3

 $d = \log_b \alpha$ $= \log_3 9$

= 2

fcn)=n

nd = n2 -

2. $T(n) = T(\frac{2n}{3})+1$ Solo: a = 1 $b = \frac{3}{2}$ $d = \log_b a$

= 0 f(n) = 1 nd = n°

= 1

Based on case 2, where k=0, $T(n) = O(\log n)$

3. T(n) = 3T(2) +nlgn Soln:

Q = 3

b=4

d = logb a

= logy 3 × 0.79

 $f(n) = n \lg n$ $n^d = n \log_4 3$ $\approx n^{0.79}$

We see that $E \approx 0.2$ as $n^{0.79+0.2} \approx n$. Now, we have to prove that F satisfies the regularity condition.

0. $f(f) \leq c$. f(n), for some constant c<1 $3(\frac{a}{4} \cdot \log(\frac{a}{4})) \leq c \cdot \log n$ $3(\frac{a}{4} (\log n - \log 4)) \leq c \cdot \log n$ $\frac{3a}{4} \log n - \frac{3a}{4} \log 4 \leq c \cdot \log n$ We see that $c = \frac{3}{4} \cdot s$ satisfies it.

4. $T(n) = 2T(\frac{n}{2}) + nlgn$ Soln: $\alpha = 2$

p=3

d= logb a =1

fin = nlgn

nd = n

We can't use Master's Theorem here because Ig n is not polynomially bigger than n, so we can't find an E to satisfy case 3.

5, T(n) = 2T(4)+5n

Soln:

0=2

6=4

d = logb a = = =

f(n) = 5n = n/2

nd = n/2

Use case 2, k=0. T(n) = O(\int \lg n)

6. T(n) = 2T(=)+n2

Soln:

a = 2

b = 4

d=logba= = =

 $f(n) = n^2$

nd = n/2

Use case $3 \rightarrow \varepsilon = \frac{3}{3}$

Regularity Condition Proof

3(2)2 FC. US

3n2 6 C·U3

16

 $C = \frac{2}{16}$

:. T(n) = 0(n2)

Max Subarray Problem
- Problem: Given an array of ints, we want
to find the max sum of any valid subarray.

Solution 1 (Naive Way):
The "naive" approach is to loop the array for each element in the array and find the sum each time and update the max sum if the sum is bigger than it.

Time Complexity: O(n2)

Code:

def max Sub Array (a):
max_sum = -inf

for i in range (len(a)):

Sum = 0

For j in range (i, len(a)):

Sum t = a CjJ

max = sum = max (max - sum, sum)

return max-sum

Solution 2 (Divide and Conquer)
The divide and conquer way is to break
the array into halves, find the max
subarray value of each halve and then see
if a bigger subarray sum that spans the
2 halves exist.

Time Complexity: O(nlgn)

Code:

def MSA (a):

if lenca) L 2:

return a Co]

mid = len ca)/12

return max (MSA (at: mid +13),

MSA (a Emidti: J),

merge (a, mid)

det merge (array, mid):

Cur Sum = 0

max L Sum = -inf

for i in range (mid, -1, -1):

cur Sum += array [i]

max LSum = max (cursum, max LSum)

8 Strassen's Algorithm: - Used to multiply matrices (Suppose that both matrices are nxn where n is a power of 2.) Solution 1 (Naive Approach): Here, we're using the traditional approach for multiplying matrices. Time Complexity: O(n3) Code: def MM (a, az): new-arr = [] — Assume we initalized new-arr properly (o(n2)) N=lenca) for i in range (): for j in range (N): Gets the elements of the rows for k in range (N): new-arr CiJ GiJt= a, CiJ CkJ x az CkJ Gj Gets the element of the cols return new-arr

9

Solution 2 (Divide and Conquer) Here, we aim to use divide and conquer

to solve the problem.

We will recursively divide the array into arrays until the dimensions are at most 2x2.

Then, we'll merge the different pieces together.

Time Complexity: O(n3)

Code: def MM (A,B): N= len(A)

> if N==1: return ATOJTOJ X BTOJTOJ

Compute A11, A12, A21, A22, B11, B12, B21, B22

C, = MM (AII, BII)

Cz = MM (A11, B21)

C3 = MM (A12, B12)

C4 = MM (A12, B22)

C5 = MM (A21, B11)

C6 = MM (A21, B21)

C7 = MM (A22, B12)

C8 = MM (A22, B22)

return [[[Ci+cz], [cs+c4]], [[cs+c6], [cc++c8]]]

10	
Consider 2 2x2 matrices A and B	
Constact of the marries 1. and 8	
_ A _ B	
An An Bn Bn Bn	
An Anz Bn Bnz Azn Azz Ban Baa	
We know that:	
C1 C2 C3 C4	
C3 C4	
Azi. Bij + Azz. Baj Azi. Big + Azz. Bag Cs C6 C7 C8	
Cs C6 C7 C8	
For n>2, we just recurse.	
Time Complexity:	
Notice we make 8 recursive calls.	
Furthermore, we're	
multiplying 2 = x 2 matrices with each recursive cally	
so we get $T(\frac{n}{2})$. In is the length of the array.	
Lastly, adding the matrices take O(n2) time.	
Overall, we get Ton = 8 T(2) + O(n2).	
Use Master's Thm:	
a=8	
b=2	
$d = \log_b \alpha = 3$	
$f(n) = \Theta(n^2)$	
$n^{d} = n^{3}$	

		11
	- Solution 3 (Strassen's Algo):	
	Strassen removed 1 by using more additions/subtractions. recursive call	
	$P_1 = A_{11} \left(B_{12} - B_{22} \right)$	
	P2 = (A11 + A12) B22	
	$P_3 = (A_{21} + A_{22})B_{11}$	
	$P_4 = A_{22}(B_{21} - B_{11})$	
	P5 = (A11 + A22) (B11 + B22)	
	P6 = (A12 - A22)(B21 + B22)	
	P7 = (A11 - A21)(B11 + B12)	
	$C_1 = P_5 + P_4 - P_2 + P_6$	
	$Cz = P_1 + P_2$	
_	$C_3 = P_3 + P_4$	
	$C_4 = P_1 + P_5 - P_3 - P_7$	
	Time Complexity: O(n 1927)	
	Code:	
	def Strassen (A, B):	
	N = len(A)	
	it N==1:	
	return A COJ COJ X B COJ COJ	
	Compute All, Ala, Azi, Azz, Bli, Bla, Bai, Bas	
	Pi = Strassen (Aii Biz-Baz)	
	P2 = Strassen (A11 + A12 B22)	
	P7 = Strassen (A11-A21, B11+B12)	
	$C_1 = P_5 + P_4 - P_2 + P_6$	
	$C_2 = P_1 + P_2$	
	$C_3 = P_3 + P_4$	
	$C4 = P_1 + P_5 - P_3 - P_7$	
	return T ICI. Co.J. ICO. Co.J.	

Time Complexity:
T(n) = 7T(2)+0(n2)
Q = 1
b = 2
d = logb a = log27
$f(n) = n^2$
nd = nlogz7
≈ n 2.81

Use case 1 of Moster's Theorem. $T(n) = O(n^{1}g_2^{+})$ $\approx O(n^{2.81})$

Karatsuba's Algo - Used to multiply 2 n-digit ints, both in base r. - Solution 1 (Naive Approach): This is the algorithm taught in school. Time Complexity: O(n2) Divide and Conquer): We divide each number into 2 halves $X = X_H r^{n/2} + X_L$ y = YH 5 12 + YL Then xy = (XHr"/2 + XL)(YHr"/2 + YL) = XHr"/2 YHr"/2 + XHr"/2 YL + YH FMZ XL + XLYL = (XHYH) ~ + XH ~ ~ 2 4 + YHT XL + XLYL = (XHYH) r + (XHYL + YHXL) r 12 + XLYL Since there are 4 multiplications, there are 4 recursive calls. Time Complexity: O(n2) T(n) = 4 T(2) + 0(n) 0=4 d = log, a = log, 4 = 2 fin) = o(n) Use Master's Thm -> Case 1

.'. T(n) = O(n2)

		14
	Code:	
	def Multiply (a, b):	
	if (lenca) == 1):	
	return axp	
	n = len(a)//2	
We need to m	0/2	b are
and be by	$lo^{n/2}$ $Q_R = Q_R =$	0 0.0
E.g. 1234	bL = b [:n]. 10"2	
→ 12×102		
	b _L	
	return Multiply (al, bl) +	
	Multiply (al, br) +	
	Multiply (ar, bu) +	
	Multiply (ar, br)	
	- Solution 3 (karatsuba's Algo):	
	Uses 3 recursive calls instead of 4.	
	$\alpha = \chi_H g_H$	
	$d = X_L \mathcal{G}_L$	
	e = (xH+XL)(9H+9L)-a-8	
	Then, $xy = a - r^n + e - r^{n/2} + d$	
	100 3	
	Time Complexity: O(nlog23) ~ O(n1.584)	
	$T(n) = 3T(\frac{n}{2}) + o(n)$	
	0=3	
	b=2	
	$d = \log_b \alpha$	
	= log23	
	nd = n 10923	
	fun = 0(n)	
	By Master's Thm -> Casel -> T(n) = O(n 1823)

15	
Code:	
def Multiply (a, b):	
if $(len(a) == 1)$:	
return axb	
$n = \frac{\ln(\alpha)}{12}$	
$XH = \alpha \left[\frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} \right]$	
$X_L = \alpha \text{In} \cdot J$	
YH = b [:n]. 10"/2	
YL = b[n:]	
a = multiply (XH, YH)	
d = multiply (XL, SC)	
e = multiply ((XH+XL), (YH+YL))-a-d	
return at dte	

Counting Inversions:

- Given an array a of length n, count the number of pairs (i,j) s.t. izj but a tizzatjz.

- Naive Soln:

Loop through the array for each element in the array and check how many inversions there are.

Time Complexity: O(n2)

Code:

def counting Inversions (a):

num-inversions = 0

for i in range (len (a)):

inversions = 0

for j in range (it, len ca):
if (a TiJ > a TiJ):

inversions t=1

num-inversions += inversions

return num-inversions

- Divide and Conquer Soln:

Divide the array into half and count the number of inversions in each half as well as the number of inversions straddling bluen the halves. For that last bit, we'll sort each half to make it easier.

Time Complexity: O(nlgn)

Code: def counting-inversion (a): n=len(a) if (n==1): return (a,o) mid = n/12 left, left-inv = counting_inversion (ac. mid 3) right, right-inv = c-i(acmid: 7) merge, merge_inv = merge_inv (left, right) return (merge, left-inv + right-inv + merge-inv) def merge_inversion (a, az): az = az. sort() j we can sort be we know all az = az. sort() indexes of a, c indexes of az num_inv = o for num in az: idx = binary - search(a, num) = Find the index of num_inv += len(a) - idx -1 the, element smaller this means that there => if (len(a) - idx -1 ==0): than or equal to num ire no elements in a break igger than num. ince az is sorted, return (a, +az, num-inv) rethow future numbers az all numbers			17
def counting-inversion (a): n=len(a) if (n=z1); return (a,0) mid = n//2 left, left-inv = counting-inversion (at mid)) right, right-inv = C-i(atmid:3) merge, merge-inv = merge-inv (left, right) return (merge, left-inv + right-inv + merge-inv) def merge-inversion (a, az): a = a, sort() we can sort be we know all a = a, sort() indexes of a, c indexes of az num-inv = 0 This means that there = if (len(a) - idx - 1 the linguest to num income as is sorted, return (a, home-inv)		Code:	
n=len(a) if (n==1); return (a, o) mid = n//2 left, left-inv = counting-inversion (ac: mid) right, right-inv = c-i(acmid: 1) merge, merge_inv = merge_inv (left, right) return (merge, left-inv + right-inv + merge_inv) def merge_inversion (a, az): Q_1 = a_1.sort() \ightarrow we can sort be we know all az = az.sort() \ightarrow indexes of a, \(\) indexes of a num_inv = 0 for num in az: idx = binary_search(a_1, num) \ightarrow Find the index of num_inv + len(a_1) - idx - 1 the element smaller this means that there \(\) if (len(a_1) - idx - 1 = 0): than or equal to num, are no elements in a_1 break ingaer than num. ince az is sorted, return \((a_1 + az, num_inv) \) ive know Future numbers			
if (n=z): return (a,0) mid = n/12 left, left-inv = counting-inversion (ac:mid) right, right-inv = C-i(acmid:3) merge, merge_inv = merge_inv (left, right) return (merge, left-inv + right-inv + merge_inv) def merge_inversion (a, az): az = az, sort()] We can sort be we know all az = az, sort() indexes of a, c indexes of az num_inv = 0 for num in az: idx = binary_search(a, num) = Find the index of num_inv += len(a) - idx -1 the element smaller This means that there => if (len(a) - idx -1 ==0): than or equal to num, where no elements in a, break ingaer than num. ince az is sorted, return = (a, +az, num_inv) ine know Future numbers			
return (a, o) mid = n//2 left, left-inv = counting-inversion (at. mid)) right, right-inv = C-i(atmid: 1) merge, merge_inv = merge_inv (left, right) return (merge, left-inv + right-inv + merge_inv) def merge_inversion (a, az): az = az. sort() we can sort be we know all az = az. sort() indexes of a < indexes of az num_inv = o This means that there => if (len(a) - idx - 1 = o):			
mid = n//2 left, left_inv = countring_inversion (at: mid 3) right, right-inv = C-i(atmid: 3) merge, merge_inv = merge_inv (left, right) return (merge, left_inv + right_inv + merge_inv) def merge_inversion (a, az): az = a. sorte) \indexes of a. c indexes of az num_inv = 0 for num in az: idx = binary_search(a, num) <= Find the index of num_inv += len(a,) -idx -1 the element smaller num_inv += len(a,) -idx -1 than or equal to num. ince no element in a break ingger than num. (a + az, num_inv) re know future number az > au number			
left, left-inv = counting-inversion (at: mid3) right, right-inv = c-i(atmid: 3) merge, merge_inv = merge_inv(left, right) return (merge, left-inv + right-inv + merge-inv) def merge_inversion (a, az): a = a. sort() we can sort be we know all az = az. sort() indexes of a indexes of az num_inv = 0 for num in az: idx = binary-search(a, num) = find the index of num_inv t = len(a) - idx - 1 the element smaller num_inv t = len(a) - idx - 1 the element smaller this means that there = if (len(a) - idx - 1 ==0): than or equal to num, use no elements in a, break ingger than num, ince az is sorted, return (a, +az, num-inv) e know future number			
left, left-inv = counting-inversion (at: mid3) right, right-inv = c-i(atmid: 3) merge, merge_inv = merge_inv(left, right) return (merge, left-inv + right-inv + merge-inv) def merge_inversion (a, az): a = a. sort() we can sort be we know all az = az. sort() indexes of a indexes of az num_inv = 0 for num in az: idx = binary-search(a, num) = find the index of num_inv t = len(a) - idx - 1 the element smaller num_inv t = len(a) - idx - 1 the element smaller this means that there = if (len(a) - idx - 1 ==0): than or equal to num, use no elements in a, break ingger than num, ince az is sorted, return (a, +az, num-inv) e know future number		mid = n//a	TVO STORY
right, right-inv = $C-i(\alpha \text{ Tmid}: 3)$ merge, merge_inv = merge_inv(left, right) return (merge, left-inv + right-inv + merge_inv) def merge_inversion (a, az): $a_1 = a_1.sort()$ We can sort be we know all az = $a_2.sort()$ indexes of $a_1 < indexes$ of $a_2 < indexes$ of $a_1 < indexes$ of $a_2 < indexes$ of $a_3 < indexes$ of $a_4 < indexes$ of $a_5 < indexes$ of $a_6 < indexes$			n (at: mids)
merge, merge_inv = merge_inv(left, right) return (merge, left_inv + right_inv + merge_inv) def merge_inversion (a, az): $a_1 = a_1.sort()$ We can sort be we know all $a_2 = a_2.sort()$ indexes of a, a indexes of az num_inv = 0 for num in az: idx = binary-search(a, num) \leftarrow Find the index of num_inv += len(a,)-idx -1 the element smaller This means that there \rightarrow if (len(a,) - idx-1 ==0): than or equal to num, are no elements in a, break ingger than num, ince as is sorted, return (a, +az, num_inv) we know future numbers			
return (merge, left-inv + right-inv + merge-inv) def merge-inversion (a, az): a_1 = a_1.sort() \ we can sort be we know all az = az.sort() \ indexes of a, \(\) indexes of az num_inv = 0 for num in az: idx = binary-search(a, num) \(\) Find the index of num_inv += len(a,) - idx -1 \text{ the element smaller} This means that there \(\) if (len(a,) - idx -1 ==0): \text{ than or equal to num,} are no element in a, break ingger than num. innee az is sorted, return \((a_1 + az, num_inv) \) we know future numbers			left, right)
def merge_inversion (a, az): (a) = a, sort() \ we can sort be we know all (az = az, sort() \ indexes of a, \(\) indexes of a, \[\text{num_inv} = 0 \] for num in az: idx = binary - search(a, num) \(- \) Find the index of num_inv t = len(a) - idx -1 the element smaller \text{This means that there} \(- \) if (len(a,) - idx -1 ==0): than or equal to num, are no elements in a, break ingger than num, ince az is sorted, return \((a, + az, num_inv) \) The know Future numbers is az all numbers			
def merge_inversion (a, az): (a) = a, sort() \ we can sort be we know all (az = az, sort() \ indexes of a, \(\) indexes of a, \[\text{num_inv} = 0 \] for num in az: idx = binary - search(a, num) \(- \) Find the index of num_inv t = len(a) - idx -1 the element smaller \text{This means that there} \(- \) if (len(a,) - idx -1 ==0): than or equal to num, are no elements in a, break ingger than num, ince az is sorted, return \((a, + az, num_inv) \) The know Future numbers is az all numbers		return (merge left-in + right-	inut merge_inu)
$Q_1 = Q_1$, sort() we can sort be we know all $Q_2 = Q_2$, sort() indexes of $Q_1 < indexes$ of $Q_2 < indexes$ of $Q_1 < indexes$ of $Q_2 < ind$			
as = as, sorter) indexes of a, c indexes of as num inv = 0 for num in as: idx = binary - search(a, num) < Find the index of num-inv t = len(a) - idx -1 the element smaller This means that there \rightarrow if (len(a) - idx-1 ==0): than or equal to num, are no element in a, break bigger than num, nince as is sorted, return (a, +as, num-inv) we know tutre numbers i as all numbers		def merge_inversion (a, az):	
as = as, sorter) indexes of a, c indexes of as num inv = 0 for num in as: idx = binary - search(a, num) < Find the index of num-inv t = len(a) - idx -1 the element smaller This means that there \rightarrow if (len(a) - idx-1 ==0): than or equal to num, are no element in a, break bigger than num, nince as is sorted, return (a, +as, num-inv) we know tutre numbers i as all numbers		a, = a, sorte) \ We can sort be	we know all
For num in as: $idx = binary - search(a_1, num) \leftarrow Find the index of$ $num - inu + = len(a_1) - idx - 1$ the element smaller This means that there \rightarrow if (len(a_1) - idx - 1 = = 0): than or equal to num, are no elements in a break ingger than num, ince as is sorted, return (a_1 + a_2, num - inu) we know future numbers in as all numbers			
idx = binary_search(a, num) \leftarrow Find the index of num_inv t = len(a) - idx = 1 the element smaller. This means that there \rightarrow if (len(a)) - idx-1 ==0): than or equal to num are no elements in a, break binary num. Therefore a is sorted, return (a+az, num-inv) The know Future number (az a all number)		numinu = 0	
idx = binary_search(a, num) \leftarrow Find the index of num_inv t = len(a) - idx = 1 the element smaller. This means that there \rightarrow if (len(a)) - idx-1 ==0): than or equal to num are no elements in a, break binary num. Therefore a is sorted, return (a+az, num-inv) The know Future number (az a all number)			
idx = binary_search(a, num) \leftarrow Find the index of num_inv t = len(a) - idx = 1 the element smaller. This means that there \rightarrow if (len(a)) - idx-1 ==0): than or equal to num are no elements in a, break binary num. Therefore a is sorted, return (a+az, num-inv) The know Future number (az a all number)			
This means that there - if (len(a,) - idx-1 ==0): than or equal to num, are no elements in a, break sigger than num, since as is sorted, return (a, + az, num-inu) se know future numbers in az I all numbers		for num in az:	
This means that there - if (len(a,) - idx-1 ==0): than or equal to num, are no elements in a, break sigger than num, since as is sorted, return (a, + az, num-inu) se know future numbers in az I all numbers		idx = binary - search (a, num) ←	Find the index of
This means that there - if (len(a,) - idx-1 ==0): than or equal to num, are no elements in a, break sigger than num, since as is sorted, return (a, + az, num-inu) se know future numbers in az I all numbers		num-inv + = len(a) - idx = -1	the element smaller
are no elements in a, break sigger than num. since as is sorted, return (a, + az, num-inu) se know future numbers a az dall numbers	This means !		
return (a, +az, num-inu) le know Future numbers az > all numbers			
return (a, +az, num-inu) le know Future numbers az > all numbers			
az Dall number	00		
az Dall number			
	in a ₁ .		
		The state of the s	

Closest Pair in R2:

- Given n points in the form (Xi, Yi), find the closest pair of points.
- Naive Soln:

Compare each point with every point and calculate the distance and store the min distance.

Time Complexity: O(n2)

- Divide and Conquer Soln:

Divide the set of points into halves and find the shortest distance on each side. Let d be the shortest distance from both sides.

Then, when we see if there's points that straddle blun the divided line whose distance may be smaller, we just have to check the points that are within d distance of the divided line.

Ire.

Any points ortside at this area can be removed.

Time Complexity: O(nlg2n)

	10
	19
Quick Sort	
- Chooses a pivot and then puts all elements	
less than or equal to the pivot on the left	
side and all other elements on the right side.	
- Time Complexity: O(nlgn)	
- Code:	
def QS(a):	
if (lenca) == 1):	
return a	
CI-JD = toviq	
l=0	
f = en(a) - 2	
while (ler):	
if (a Te] > pivot and a Tr] < pivot):	
Swap (atez, atrz)	
1+=1	
1=-7	
elif (a [2] = pivot and a [7] = pivot).	
2+=1	
elif (a [2] > pivot and a [r] > pivot):	
(-=1	
else:	
2+=1	
(-=1	
if (l==r);	
if (a [e] = pivot):	
l+=1	
return QS(a[:2]) + [pivot] + QS(a[2:])	

return new-arr