Examen de Teoría de Percepción - Segundo Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos:	Nombre:	

Profesor: \Box Jorge Civera \Box Carlos Martínez

Cuestiones (1.5 puntos, 30 minutos, sin apuntes)

- B Indicar cuál de las siguientes fórmulas se corresponde a una distribución Bernoulli unidimensional de parámetro p siendo x una variable binaria:
 - A) $p(x) = p^{1-x}$
 - B) $p(x) = (1-p)^{1-x}p^x$
 - C) $p(x) = p^x (1-p)^x$
 - D) $p(x) = p^x (1-p)^{x-1}$
- C Dado un problema de clasificación en un espacio tridimensional en tres clases equiprobables, con probabilidades condicionadas gaussianas de parámetros $\mu_A = (-1 \ 3 \ -2)$, $\mu_B = (1 - 1 \ 2)$ y $\mu_C = (0 \ 0 \ 1)$, con $\Sigma = I$ común, el vector $\mathbf{x} = (1 \ 1 \ 0)$ se clasificaría en la clase (Nota: $c^*(\mathbf{x}) = \arg\max_c \mu_c^t \Sigma^{-1} \mathbf{x} + \log P(c) - \frac{1}{2} \mu_c^t \Sigma^{-1} \mu_c$):
 - A) A
 - B) B
 - C) C
 - D) Hay empate
- A Dado el siguiente conjunto de muestras en $\{0,1\}^4$:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
$\overline{x_{n1}}$	0	1	1	1	1	1
x_{n2}	1	0	1	1	0	1
x_{n3}	0	0	1	1	1	1
x_{n4}	1	0	1	1	1	1
С	A	A	A	В	В	В

la estimación de los parámetros por máxima verosimilitud de distribuciones Bernouilli daría como resultado:

A)
$$\mathbf{p}_A = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right), \ \mathbf{p}_B = \left(\frac{3}{3}, \frac{2}{3}, \frac{3}{3}, \frac{3}{3}\right)$$

B)
$$\mathbf{p}_A = \begin{pmatrix} \frac{2}{4} & \frac{1}{4} & \frac{4}{4} \end{pmatrix}, \ \mathbf{p}_B = \begin{pmatrix} \frac{4}{4} & \frac{3}{4} & \frac{4}{4} \end{pmatrix}$$

C)
$$\mathbf{p}_A = (\frac{5445}{6666}), \mathbf{p}_B = (\frac{1221}{6666})$$

A)
$$\mathbf{p}_{A} = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right), \ \mathbf{p}_{B} = \left(\frac{3}{3}, \frac{2}{3}, \frac{3}{3}, \frac{3}{3}\right)$$

B) $\mathbf{p}_{A} = \left(\frac{2}{4}, \frac{1}{4}, \frac{4}{4}\right), \ \mathbf{p}_{B} = \left(\frac{4}{4}, \frac{3}{4}, \frac{4}{4}\right)$
C) $\mathbf{p}_{A} = \left(\frac{5}{6}, \frac{4}{6}, \frac{4}{6}, \frac{5}{6}\right), \ \mathbf{p}_{B} = \left(\frac{1}{6}, \frac{2}{6}, \frac{2}{6}, \frac{1}{6}\right)$
D) $\mathbf{p}_{A} = \left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right), \ \mathbf{p}_{B} = \left(\frac{3}{11}, \frac{2}{11}, \frac{3}{11}, \frac{3}{11}\right)$

- Dada la distribución multinomial con parámetro $\mathbf{p} = \left(\frac{1}{10} \frac{7}{10} \ 0 \ \frac{2}{10}\right)$, al aplicar suavizado por descuento absoluto y posterior *backoff* usando $\epsilon = \frac{1}{20}$ y la distribución uniforme, ¿qué afirmación es correcta respecto al parámetro suavizado resultante?
 - A) La componente que inicialmente tiene mayor valor no se ve alterada
 - B) Las componentes que originalmente no son nulas no se ven alteradas
 - C) La componente de menor valor sigue siendo la misma que inicialmente tenía menor valor
 - D) La componente de menor valor resultante no es la misma que en el original
- A Dada la función Kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^t \mathbf{y})^2$, la matriz Gramm para el par de muestras $\mathbf{x} = (1\ 1)^t$ y $\mathbf{y} = (-1\ 1)^t$ es:
 - A) Una matriz diagonal
 - B) La matriz identidad
 - C) La matriz nula
 - D) Una matriz no simétrica
- C Si se tienen un par de kernels $K_1(\mathbf{x}, \mathbf{y})$ y $K_2(\mathbf{x}, \mathbf{y})$, ¿cuál de las siguientes combinaciones sería un kernel?
 - A) $K_1(\mathbf{x}, \mathbf{y}) K_2(\mathbf{x}, \mathbf{y})$
 - B) $K_1(\mathbf{x}, \mathbf{y}) + K_2(\mathbf{x}, \mathbf{y})^{-1}$
 - C) $K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y})$
 - D) $K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y})^{-1}$
- B A la hora de combinar reducciones de dimensión por PCA seguida por LDA hay que tener en cuenta que:
 - A) PCA tiene su dimensión destino limitada por el número de muestras
 - B) La dimensión final está restringida por el número de clases
 - C) Sólo debe hacerse cuando las clases son originalmente linealmente separables
 - D) La dimensión intermedia está restringida por el número de clases
- D Las fuentes de error en clasificación sobre las que puede actuar la combinación de clasificadores son:
 - A) Ruido y varianza
 - B) Sesgo y ruido
 - C) Sesgo, ruido y varianza
 - D) Sesgo y varianza

Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos: Nombre:

Profesor: □ Jorge Civera □ Carlos Martínez

Problemas (2 puntos, 90 minutos, con apuntes)

1. (1 punto) Se tiene el conjunto de datos siguiente:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8
$\overline{x_{n1}}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
x_{n2}	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{3}{2}$	$-\frac{1}{2}$	2	1
x_{n3}	$\frac{1}{7}$	$-\frac{3}{7}$	$-\frac{5}{7}$	1	$-\frac{2}{7}$	$-\frac{6}{7}$	$-\frac{8}{7}$	$\frac{4}{7}$
c_n	A	A	A	A	В	В	В	В

Se pide lo siguiente:

- a) Calcular todos los parámetros del clasificador gaussiano por máxima verosimilitud para ese conjunto de datos. (0.5 puntos)
- b) Establecer la frontera de decisión entre las dos clases. (0.3 puntos)
- c) Clasificar el punto $\mathbf{y} = (1 \frac{1}{2} 1)^t$. (0.2 puntos)

Solución:

a)
$$P(A) = P(B) = 0.5$$
, $\mu_A = (0\ 0\ 0)$, $\mu_B = (\frac{1}{2}\ 1\ -\frac{3}{7})$
 $\Sigma_A = \Sigma_B = \begin{pmatrix} \frac{3}{32} & 0 & 0\\ 0 & \frac{7}{8} & 0\\ 0 & 0 & \frac{3}{7} \end{pmatrix}$

Como se puede ver, la matriz de covarianzas es común para ambas clases

b) Para matriz de covarianzas común y al ser las clases equiprobables, las funciones discriminantes son:

$$g_c(\mathbf{x}) = \mu_c^t \Sigma^{-1} \mathbf{x} - \frac{1}{2} \mu_c^t \Sigma^{-1} \mu_c$$

Por tanto:

$$g_A(\mathbf{x}) = 0$$
 $g_B(\mathbf{x}) = \frac{16}{3}x_1 + \frac{8}{7}x_2 - x_3 - \frac{89}{42}$

Por tanto, la frontera de decisión es: $\frac{16}{3}x_1+\frac{8}{7}x_2-x_3-\frac{89}{42}=0$

c) Calculamos el valor de las funciones discriminantes para el punto dado:

$$g_A(\mathbf{y}) = 0 \qquad g_B(\mathbf{y}) = \frac{201}{42}$$

Con lo cual se clasifica en la clase B

2. (0.5 puntos) Dado el conjunto de datos siguiente:

	\mathbf{x}_1			\mathbf{x}_4		
x_{n1}	0	2	-1	-2 0	3	2
x_{n2}	1	2	-2	0	0	-2
c_n	A	2 A	В	В	С	\mathbf{C}

Se pide:

- a) Calcular las matrices S_b y S_w asociadas a los mismos. (0.4 puntos)
- b) ¿Es necesario aplicar una reducción de dimensión por LDA a una única dimensión para mejorar una clasificación basada en clasificadores lineales? (0.1 puntos)

Solución:

a)
$$\mu = (\frac{2}{3} - \frac{1}{6}), \mu_A = (1 \frac{3}{2}), \mu_B = (-\frac{3}{2} - 1), \mu_C = (\frac{5}{2} - 1),$$

$$S_b = 2(\mu_A - \mu)(\mu_A - \mu)^t + 2(\mu_B - \mu)(\mu_B - \mu)^t + 2(\mu_C - \mu)(\mu_C - \mu)^t = \begin{pmatrix} \frac{49}{3} & \frac{5}{3} \\ \frac{5}{3} & \frac{25}{3} \end{pmatrix}$$

$$\Sigma_A = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix}, \ \Sigma_B = \begin{pmatrix} \frac{1}{4} & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}, \ \Sigma_C = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}, \ S_w = \Sigma_A + \Sigma_B + \Sigma_C = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{9}{4} \end{pmatrix}$$

A la vista de la representación gráfica de los datos en la di-

b) mensionalidad original, ya existe una separación lineal entre las clases, y por lo tanto no sería necesario.

3. (0.5 puntos) Se tiene el siguiente conjunto de datos y clasificadores lineales:

$$\mathbf{x}_1 = ((0,0,0),-1), \mathbf{x}_2 = ((1,1,1),+1), \mathbf{x}_3 = ((-1,0,1),-1), \mathbf{x}_4 = ((-1,-1,1),+1)$$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 > 0 \\ -1 & z_1 \le 0 \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 > -1 \\ -1 & z_2 \le -1 \end{cases} \qquad g_3(\mathbf{z}) = \begin{cases} +1 & z_3 > 1 \\ -1 & z_3 \le 1 \end{cases} \qquad g_4(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 + z_3 \ge 0 \\ -1 & z_1 + z_2 + z_3 < 0 \end{cases}$$

Se pide realizar una primera iteración de AdaBoost sobre estos datos y clasificadores, indicando la tabla de acierto y fallo por clasificador, el clasificador escogido, el error en primera iteración (ϵ_1), el peso del clasificador escogido (α_1) y los pesos de las muestras en la siguiente iteración ($\mathbf{w}^{(2)}$).

Solución:

Tabla acierto/fallo:

	g_1	g_2	g_3	g_4
x_1	√	X	√	X
x_2	✓	✓	X	✓
x_3	✓	X	\checkmark	X
x_4	X	X	X	X

Vector de pesos de muestras inicial: $\mathbf{w}^{(1)} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$

Error ponderado por clasificador: $g_1:\frac{1}{4},\,g_2:\frac{3}{4},\,g_3:\frac{2}{4},\,g_4:\frac{3}{4}$

Clasificador escogido: g_1

Error de clasificación: $\epsilon_1 = \frac{1}{4}$

Peso del clasificador: $\alpha_1 = \frac{1}{2} \log 3$

Pesos de las muestras en la siguiente iteración:

	$w_n^{(1)} \exp(-c_n \alpha_1 C_1(\mathbf{x}_n))$	$\mathbf{w}^{(2)}$
\mathbf{x}_1	$\frac{1}{4} \frac{1}{\sqrt{3}}$	$\frac{1}{6}$
\mathbf{x}_2	$\frac{1}{4}\frac{1}{\sqrt{3}}$	$\frac{1}{6}$
\mathbf{x}_3	$\frac{1}{4}\frac{1}{\sqrt{3}}$	$\frac{1}{6}$
\mathbf{x}_4	$\frac{1}{4}\sqrt{3}$	$\frac{1}{2}$
Suma	$\frac{3}{4}\frac{1}{\sqrt{3}} + \frac{1}{4}\sqrt{3} = \frac{\sqrt{3}}{2}$	