

CATEGORISEZ AUTOMATIQUEMENT DES QUESTIONS

Projet 6

Azim Makboulhoussen 23 Mai 2018

Sommaire

- Introduction
- Les données
- Prédiction en utilisant le topic modeling
- Prédiction par apprentissage supervisé
- Résultat et implémentation
- Conclusion

Introduction

Objectif du projet

- Suggestion automatique de tags
- Traitement de données textuelles
- Approches supervisées et non supervisés
- Interface web

Les données

Collecter les données

Récupération des questions

- Outil d'export des données Stack Overflow
- POST avec score > 5
- Limitation temps exécution → plusieurs requêtes

POST

- Nos données = Questions
- Question = Titre + Corps + Tags
- Entre 1 à 5 tags par question
- Tag HTML dans le corps de la question

Les données

- 64 000 questions
- Title, Body et Tags : données textuelles
- Pas de valeur vide
- Score : note attribuée au post par les utilisateurs

TAGS	SCORE	BODY	TITLE	
<java><generics></generics></java>	6	At the moment I am using the following code	Java generics variable <t> value</t>	0
<swift><function><value-type></value-type></function></swift>	6	<blookquote>\n Swift's string type is a va</blookquote>	How a value typed variable is copied when it i	1
<android><android-studio><android-emulator><avd></avd></android-emulator></android-studio></android>	6	I am a freshman for the development of the	Error while waiting for device: The emulator p	2
<javascript><node.js><npm><gulp><gulp-watch></gulp-watch></gulp></npm></node.js></javascript>	10	I am using gulp-inject to auto add SASS imp	gulp-inject not working with gulp-watch	3
<reactjs><react-router></react-router></reactjs>	12	My TranslationDetail component is passed an	React - Call function on props change	4

Traitement des données

Suppression tags HTML

Hello World

 Hello World

Tokenisation

texte avec plusieurs mots texte, avec, plusieurs, mots

Unicode → ASCII

Données enregistrées Donnees enregistrees

Stop Words

pour ajouter du texte

ajouter texte

Uniquement caractères alphabétiques

Nombre > 1 occurrence Nombre occurrence

Stemming

joueront petites jouer petit

Minuscule

Texte Majuscule texte majuscule

Body et Tags

- Séparation code et texte dans BODY
- Code: suppression accents, caractères spéciaux, tokenization

TAGS

javascript, android, python mots clés les plus courants

Préparation pour modélisation

Transformation des données

- Algorithmes d'apprentissage ne savent pas traiter du texte brut
- Il faut traduire le texte en objet interprétable
- Transformer des données textuelles en matrice
- Stratégie de modélisation sur les données transformées

Matrices de représentation du texte

Bag Of Words:

- 1. Détermination vocabulaire du corpus
- 2. Vecteur de document : occurrence de chaque mot
- 3. Matrice Documents / Mots

N-Gramme:

- Séquence de n mots dans le corpus
- Bi-gramme: le chat, change mange, mange la souris

TF-IDF:

- Méthode de pondération pour évaluer l'importance d'un document dans un document
- TF-IDF = TF x IDF
- TF: Fréquence d'un mot dans le document
- IDF : Fréquence inverse du document

Notre démarche

 Découpage des données en jeu d'entrainement et de validation

- Recherche des tags les plus courants
- Filtre des données sur ces tags :
 - Réduction de la volumétrie
 - Meilleur performance
 - Prédiction plus pertinente
- Données validation pas filtrés sur tags fréquents

Apprentissage non supervisé

Topic Modeling

- Modèle permettant de déterminer des sujets (topics) dans un ensemble de documents
- Extraction des sujets de façon non supervisée
- Capable de déterminer les sujets présents dans un document en observant tous les mots de celui-ci et en produisant une distribution des sujets

Apprentissage

Input:

Matrice Documents / Mots

Output:

- Une matrice associant les documents aux topics
- Une matrice associant les topics aux mots de notre vocabulaire

Matrice Topics/Mots

	Mot 1	Mot 2	 Mot m
Topic 1			
Topic 2			
•••			
Topic k			

Matrice Documents/Topics

	Topic 1	Topic 2	 Topic k
Doc 1			
Doc 2			
•••			
Doc n			

Prédiction des tags

- Création d'une matrice Topics / Tags
 - pour chaque tag i :
 - · chaque topic j :
 - SOMME probabilité d'appartenance au topic j des documents contenant le tag i
- Utilisation du modèle pour déterminer la distribution des sujets présents dans une question
- La multiplication va donner distribution des tags
- On va alors sélectionner les N tags les plus pertinents

Les algorithmes

Latent Dirichlet Allocation (LDA)

- modèle probabiliste
- fonctionne de manière itératif
- Bag of Words en entrée
- Recherche sur grille pour le tuning (min_df, max_df, nombre topics)

Evaluation algorithme:

- Validation avec données de tests
- Calcul du score de prédiction (moyenne des score_i)

Non Negative Matrix Factorization (NMF)

- modèle algébrique linéaire
- factorise les vecteurs à hautes dimensions
- TF-IDF en entrée
- Tuning manuel

$$score_i = \frac{T_i}{N_i}$$

T : nombre de tags identiques aux tags réels de la question i

N : nombre de tags total réel de la question i

Apprentissage supervisé

Variable cible

Target:

- Prédiction de plusieurs tags
- Classification multi-label
- Trouver un mapping entre X et un vecteur binaire Y

Multi label:

- Librairie sklearn implémente le multi-label
- Binarisation de la variable Y
- Entrainement d'un classifier à chaque label
- Combinaison pour prédire le résultat final One-vs-Rest

MultilabelBinarizer

D1	Tag 1, Tag 3, Tag 0	1	1	0	1	0
D2	Tag 2, Tag 3, Tag 4	0	0	1	1	1

Les algorithmes testés

Input:

- Matrice Documents / Mots
 - TF-IDF
 - Unigramme et Bigramme

Hyper-paramètres :

- min_df,
- max_df
- unigramme, Bigramme

SGD (optimisation SVM)
Régression Logistique
Gaussian Naives Bayes
Arbre de décision
Forêt Aléatoire
Gradient Boosting

Notre démarche d'évaluation de modèle

Evaluation de différentes valeurs d'hyper-paramètres par une rechercher sur grille et une validation croisée pour trouver la meilleure performance

On évalue notre algorithme sur les meilleures valeurs des hyperparamètres avec les données de test.

Comparaison algorithmes:

 Calcul du score de prédiction (idem non supervisé)

Prédiction et évaluation des algorithmes

Prédiction:

- Prédiction p(tag_k=1l d_i) pour tous les k de notre liste de tags
- Sélection de N (5) tags ayant le meilleur score

Comparaison entre les algorithmes:

- Score prédiction = équivalent à un score de rappel
- Utilisation du jeu de test

Résultats et implémentation

Résultats –Score prédiction jeu de test

Modèles supervisés

	Gaussian Naive Bayes	Decision Tree	SGD	Random Forest	Gradient Boosting
Scores	15.64 %	50.43 %	55.01 %	40.06 %	48.07 %

Modèles non supervisés

LDA NMF
Scores 24.65 % 26.83 %

SVM Linéaire optimisé avec une descente de gradient
 → 55% des tags correctement prédits (5 tags)

Tags

	3	4	5	6	7	8		
	48,86%	52,86%	55,01%	56,21%	56,90%	57,45%		

Implémentation interface WEB

Interface disponible ici: http://suggesttags.herokuapp.com/

Suggestion de 7 tags

Ask a question - Stack Overflow

Conclusion

Conclusion

- Evaluation de différentes approches pour implémenter un système de suggestion de tags
- Sélection d'un algorithme supervisé de classification multi label
- Le topic modeling n'a pas donné les meilleurs résultats mais a permis une bonne exploration des sujets
- Axes d'amélioration :
 - Word embedding et réseaux de neurones
 - Exploitation historique des utilisateurs
 - Proposition de tags non encore utilisés

Merci à mon mentor Amine Abdaoui pour sa disponibilité, ses explications et ses précieux conseils