How Can a Wellness Technology Company Play It Smart?

Chinazom Jennifer Okoli

2023-12-09

Introduction

Bellabeat is a high-tech company that manufactures health-focused smart products for women. Collecting data on activity, sleep, stress, and reproductive health has allowed Bellabeat to empower women with knowledge about their own health and habits. Bellabeat products comprises of the Bellabeat app, Leaf (which is worn as a bracelet, necklace, or clip), Time (wellness watch) and Spring (water bottle). All the other products are connected to the Bellabeat App.

Urška Sršen, co-founder and Chief Creative Officer of Bellabeat, believes that analyzing smart device fitness data could help unlock new growth opportunities for the company. Sršen asks to analyze smart device usage data in order to gain insight into how consumers use non-Bellabeat smart devices. We're to focus on Bellabeat's product, **Time**, and examine data from **fitness tracker**—a smart device similar to Bellabeat's, made by a different company called **Fitbit**. This analysis aims to understand how consumers are utilizing these smart devices.

A dataset which has a total of 18 data files, named (CC0: Public Domain, dataset made available through Mobius) was given which contains personal fitness tracker from thirty eligible Fitbit users who consented to the submission of personal tracker data. This includes information about daily activity, steps, tracker distance, calories, heart rate, sedentary time and sleep monitoring, that can be used to explore users' habits.

The tool we're using for this study is RMarkdown within RStudo. This will enable us to conduct analysis, create visualizations, document our work, and facilitate seamless sharing of results.

Buisness Goal

- To find some trends in smart device usage.
- How these trends could apply to Bellabeat customers.
- How these trends could help influence Bellabeat marketing strategy.

Installing and loading common packages and libraries for our analysis.

First off, we set a CRAN mirror; this specifies the location from which R will download packages when we install them. CRAN (Comprehensive R Archive Network) is a network of servers worldwide that mirror the same collection of R packages. By setting a CRAN mirror, we are telling R where to fetch the packages from.

The code below is a combination of R code and Markdown syntax and is typically used in R Markdown (Rmd) documents.

```
knitr::opts_chunk$set(echo = TRUE)
# Set a CRAN mirror
options(repos = c(CRAN = "https://cloud.r-project.org"))
```

```
# Install packages
install.packages("tidyverse")
## Installing package into 'C:/Users/ADMIN/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'tidyverse' successfully unpacked and MD5 sums checked
## The downloaded binary packages are in
## C:\Users\ADMIN\AppData\Local\Temp\RtmpqgC2Aw\downloaded_packages
install.packages("dplyr")
## Installing package into 'C:/Users/ADMIN/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'dplyr' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'dplyr'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying
## C:\Users\ADMIN\AppData\Local\R\win-library\4.3\00LOCK\dplyr\libs\x64\dplyr.dll
## to C:\Users\ADMIN\AppData\Local\R\win-library\4.3\dplyr\libs\x64\dplyr.dll:
## Permission denied
## Warning: restored 'dplyr'
##
## The downloaded binary packages are in
## C:\Users\ADMIN\AppData\Local\Temp\RtmpqgC2Aw\downloaded_packages
library("tidyverse")
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr
                                   2.1.4
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.4.4 v tibble 3.2.1
## v lubridate 1.9.3
                       v tidyr
                                  1.3.0
## v purrr
             1.0.2
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(dplyr)
library(magrittr)
```

```
##
## Attaching package: 'magrittr'
##
## The following object is masked from 'package:purrr':
##
## set_names
##
## The following object is masked from 'package:tidyr':
##
## extract
library(purrr)
```

Loading and exploring our CSV files

Here we created data frames with the same name as our CSV files from the dataset and import them using the file path; Typed in the data frame name, the assignment operator(<-), then the read.csv() which is the function for importing CSV files in R finally the file path which was gotten by clicking on the data file then copy as path. Paste in the parenthesis of the read.csv.

```
dailyActivity_merged <- read.csv("C:/Users/ADMIN/OneDrive/Documents/Fitabase Data 4.12.16-5.12.16/daily
View(dailyActivity_merged)
sleepDay_merged <- read.csv("C:/Users/ADMIN/OneDrive/Documents/Fitabase Data 4.12.16-5.12.16/sleepDay_view(sleepDay_merged)</pre>
```

We will concentrate on specific CSV files for this analysis among the provided 18, as many share identical data, and a few contain incomplete data which won't be relevant for this study.

Understanding some summary statistics

In this analysis, we are consolidating our data by computing the average of each variable. Data is aggregated and averaged in analysis to provide a summary measure that represents the central tendency of a set of values. This simplifies complex datasets, highlights overall trends, and facilitates easier interpretation of the information.

Averaging helps smooth out variations, making it a commonly used method for obtaining a representative value from a larger dataset.

The syntax used in the first analysis was explained below as a guide for the subsequent analysis.

To create a new data frame 'calculated_average_activity' to know the average activity of each participant for this period of time.

```
calculated_average_activity <- dailyActivity_merged %>%
  group_by(Id) %>%
  summarise(
    AVGVeryActive = mean(as.integer(VeryActiveMinutes), na.rm = TRUE),
```

```
AVGFairlyActive = mean(as.integer(FairlyActiveMinutes), na.rm = TRUE),
AVGLightActive = mean(as.integer(LightlyActiveMinutes), na.rm = TRUE),
AVG_Activity = mean(
    as.integer(VeryActiveMinutes) +
    as.integer(FairlyActiveMinutes) +
    as.integer(LightlyActiveMinutes),
    na.rm = TRUE
)
)
```

Let's break down the syntax and understand each part:

Calculation of Average Activity:

- AVGVeryActive: Average value of VeryActiveMinutes for each ID.
- AVGFairlyActive: Average value of FairlyActiveMinutes for each ID.
- AVGLightActive: Average value of LightlyActiveMinutes for each ID.

Calculation of Total Activity:

• AVG_Activity: Average total activity, which is the sum of VeryActiveMinutes, FairlyActiveMinutes, and LightlyActiveMinutes for each ID.

Integer Conversion: The **as.integer function** is applied to the calculated averages to ensure they are integers.

Data Frame Creation:

- The results are stored in a new data frame named 'calculated average activity'.
- Each row of this data frame corresponds to a unique ID, and the columns represent the calculated average values.

```
# Print the result
print(calculated_average_activity)
```

```
## # A tibble: 33 x 5
              Id AVGVeryActive AVGFairlyActive AVGLightActive AVG_Activity
##
                                                                         <dbl>
##
           <dbl>
                          <dbl>
                                           <dbl>
                                                           <dbl>
##
   1 1503960366
                        38.7
                                          19.2
                                                           220.
                                                                         278.
    2 1624580081
                         8.68
                                           5.81
                                                           153.
                                                                         168.
##
##
   3 1644430081
                         9.57
                                          21.4
                                                           178.
                                                                         209.
##
   4 1844505072
                         0.129
                                           1.29
                                                           115.
                                                                         117.
  5 1927972279
                         1.32
                                           0.774
                                                            38.6
                                                                         40.7
##
##
    6 2022484408
                        36.3
                                          19.4
                                                           257.
                                                                         313.
                         0.0968
                                           0.258
##
   7 2026352035
                                                           257.
                                                                         257
   8 2320127002
                         1.35
                                           2.58
                                                           198.
                                                                         202.
## 9 2347167796
                        13.5
                                          20.6
                                                           252.
                                                                         287.
## 10 2873212765
                        14.1
                                           6.13
                                                           308
                                                                         328.
## # i 23 more rows
```

To create a table 'calculated_average_inactivity' using SedentaryTime from the daily-Active_merged data frame, TotalMinutesAsleep and TotalTimeInBed from the sleep-Day_merged data frame to know the average inactivity time of the participants.

Calculating the AVGSedentaryTime

```
averageSedentary_time <- dailyActivity_merged %>%
  group_by(Id) %>%
  summarise(
    AVG_SedentaryMinutes = as.integer(mean(as.integer(SedentaryMinutes), na.rm = TRUE))
)
```

Calculating the average of TotalMinutesAsleep and TotalTimeInBed as 'average_BedTime'

```
average_BedTime <- sleepDay_merged %>%
  group_by(Id) %>%
  summarise(
    AVG_TotalMinutesAsleep = as.integer(mean(as.integer(TotalMinutesAsleep), na.rm = TRUE)),
    AVG_TotalTimeInBed = as.integer(mean(as.integer(TotalTimeInBed), na.rm = TRUE))
)
```

To merge the both data frame as average_Inactivity

```
average_Inactivity <- inner_join(average_BedTime, averageSedentary_time, by = "Id")
# Print the result
print(average_Inactivity)
## # A tibble: 24 x 4
##
              Id AVG_TotalMinutesAsleep AVG_TotalTimeInBed AVG_SedentaryMinutes
##
                                                      <int>
           <dbl>
                                  <int>
                                                                            <int>
## 1 1503960366
                                    360
                                                        383
                                                                             848
## 2 1644430081
                                    294
                                                        346
                                                                            1161
## 3 1844505072
                                    652
                                                        961
                                                                            1206
## 4 1927972279
                                    417
                                                        437
                                                                            1317
## 5 2026352035
                                    506
                                                        537
                                                                             689
## 6 2320127002
                                                         69
                                                                            1220
                                     61
## 7 2347167796
                                    446
                                                        491
                                                                             687
## 8 3977333714
                                    293
                                                        461
                                                                             707
## 9 4020332650
                                    349
                                                        379
                                                                             1237
                                                                             735
## 10 4319703577
                                    476
                                                        501
## # i 14 more rows
```

To calculate the average TotalSteps and TrackerDistance as 'averageSteps_Distance'

```
averageSteps_Distance <- dailyActivity_merged %>%
  group_by(Id) %>%
  summarise(
    AVG_TotalSteps = as.integer(mean(as.integer(TotalSteps), na.rm = TRUE)),
    AVG_TrackerDistance = mean(TrackerDistance, na.rm = TRUE),
)
```

```
# Print the result
print(averageSteps_Distance)
```

```
## # A tibble: 33 x 3
##
              Id AVG_TotalSteps AVG_TrackerDistance
##
           <dbl>
                          <int>
                                              <dbl>
## 1 1503960366
                          12116
                                              7.81
## 2 1624580081
                          5743
                                              3.91
## 3 1644430081
                           7282
                                              5.30
## 4 1844505072
                           2580
                                              1.71
## 5 1927972279
                            916
                                              0.635
## 6 2022484408
                          11370
                                              8.08
## 7 2026352035
                           5566
                                              3.45
## 8 2320127002
                           4716
                                              3.19
## 9 2347167796
                                              6.36
                           9519
## 10 2873212765
                           7555
                                              5.10
## # i 23 more rows
```

To calculate average Calories

```
average_Calories <- dailyActivity_merged %>%
  group_by(Id) %>%
  summarise(
    AVG_Calories = as.integer(mean(as.integer(Calories), na.rm = TRUE))
)
```

print(average_Calories)

```
## # A tibble: 33 x 2
##
             Id AVG_Calories
##
          <dbl>
                        <int>
## 1 1503960366
                        1816
## 2 1624580081
                        1483
## 3 1644430081
                        2811
## 4 1844505072
                        1573
## 5 1927972279
                        2172
## 6 2022484408
                        2509
## 7 2026352035
                        1540
## 8 2320127002
                        1724
## 9 2347167796
                        2043
## 10 2873212765
                        1916
## # i 23 more rows
```

To merge all calculated data frames into a data frame 'FitbaseData_Calculated' for easy visualization

```
# List of data frames
df_list <- list(average_BedTime, average_Calories, average_Inactivity, averageSedentary_time, averageSt</pre>
```

```
# Merge data frames in the list based on the common column (Id)
FitbaseData_Calculated <- reduce(df_list, merge, by = "Id",all = TRUE)
# Resulting data frame (FitbaseData_Calculated)
print(FitbaseData_Calculated)</pre>
```

##		TA	AVG_TotalMinut	togAgloon w	AVC Total	TimoInDod w	AVC Coloring
	1	1503960366	AVG_TOCALMINU	360	AVG_TOTAL	383	1816
##		1624580081		NA		NA	1483
##		1644430081		294		346	2811
##		1844505072		652		961	1573
##	5	1927972279		417		437	2172
##	6	2022484408		NA		NA	2509
##	7	2026352035		506		537	1540
##	8	2320127002		61		69	1724
##		2347167796		446		491	2043
		2873212765		NA		NA	1916
		3372868164		NA		NA	1933
		3977333714		293		461	1513
		4020332650		349		379	2385
		4057192912		NA 476		NA FO1	1973
		4319703577		476		501	2037 3093
##		4388161847 4445114986		403 385		426 416	2186
##		4558609924		127		140	2033
		4702921684		421		441	2965
##		5553957443		463		505	1875
##		5577150313		432		460	3359
##		6117666160		478		510	2261
##	23	6290855005		NA		NA	2599
##	24	6775888955		349		369	2131
##	25	6962181067		448		466	1982
##	26	7007744171		68		71	2544
##		7086361926		453		466	2566
##		8053475328		297		301	2945
##		8253242879		NA		NA	1788
##		8378563200		443		483	3436
##		8583815059		NA		NA	2732
##		8792009665 8877689391		435 NA		453	1962 3420
## ##	33		inutesAsleep.y		maInRad w	NA AVC Sedents	
##	1	AVG_IOCAIN	360	AVG_IOCAIII	383	Avd_bedence	848
##			NA		NA		NA
##			294		346		1161
##	4		652		961		1206
##	5		417		437		1317
##	6		NA		NA		NA
##	7		506		537		689
##	8		61		69		1220
##			446		491		687
	10		NA		NA		NA
	11		NA		NA		NA
##	12		293		461		707

## 13	349	9	379		1237
## 14	1 NA	I	NA		NA
## 1	5 476	3	501		735
## 10	3 403	3	426		836
## 1	7 385	5	416		829
## 18	3 127	7	140		1093
## 19	9 421	L	441		766
## 20) 463	3	505		668
## 2	L 432	2	460		754
## 2	2 478	3	510		796
## 23	3 NA	A	NA		NA
## 2	1 349	9	369		1299
## 2	5 448	3	466		662
## 20			71		1055
## 2	7 453	3	466		850
## 28			301		1148
## 29			NA		NA
## 30			483		716
## 3			NA		NA
## 3			453		1060
## 33			NA		NA
##	AVG_SedentaryMinutes.y A		AVG_Tracke		
## 1	848	12116		7.8096774	38.70967742
## 2	1257	5743		3.9148387	8.67741935
## 3	1161	7282		5.2953334	9.56666667
## 4	1206	2580		1.7061290	0.12903226
## 5	1317	916		0.6345161	1.32258065
## 6	1112	11370		8.0841935	36.29032258
## 7	689	5566		3.4548387	0.09677419
## 8	1220	4716		3.1877419	1.35483871
## 9	687	9519		6.355555	13.50000000
## 10		7555		5.1016129	14.09677419
## 1		6861		4.7070000	9.15000000
## 1:		10984		7.5169999	18.90000000
## 13		2267		1.6261290	5.19354839
## 14		3838		2.8625000	0.75000000
## 1		7268		4.8922580	3.58064516
## 10		10813		8.3932259	23.16129032
## 1' ## 18		4796 7685		3.2458064	6.61290323
## 19				5.0806452 6.9551613	10.38709677
## 2		8572 8612		5.6396774	5.12903226 23.41935484
## 2		8304		6.2133333	87.333333333
## 2		7046		5.3421429	1.57142857
## 2		5649		4.2724138	2.75862069
## 2		2519		1.8134615	11.00000000
## 2		9794		6.5193549	22.80645161
## 20		11323		7.5757692	31.03846154
## 2		9371		6.3880645	42.58064516
## 2		14763	1	11.4751612	85.16129032
## 29		6482	-	4.6673685	20.52631579
## 3		8717		6.9135485	58.67741935
## 3		7198		5.6154838	9.67741935
## 3:		1853		1.1865517	0.96551724
0.	1000	1000			

##	33		1112	16040	13.2129031	66.06451613
##		${\tt AVGFairlyActive}$	${\tt AVGLightActive}$	AVG_Activity		
##	1	19.1612903	219.93548	277.80645		
##	2	5.8064516	153.48387	167.96774		
##	3	21.3666667	178.46667	209.40000		
##	4	1.2903226	115.45161	116.87097		
##	5	0.7741935	38.58065	40.67742		
##	6	19.3548387	257.45161	313.09677		
##	7	0.2580645	256.64516	257.00000		
##	8	2.5806452	198.19355	202.12903		
##	9	20.555556	252.50000	286.55556		
##	10	6.1290323	308.00000	328.22581		
##	11	4.1000000	327.90000	341.15000		
##	12	61.2666667	174.76667	254.93333		
##	13	5.3548387	76.93548	87.48387		
##		1.5000000	103.00000	105.25000		
##	15	12.3225806	228.77419	244.67742		
##		20.3548387	229.35484	272.87097		
##	17	1.7419355	209.09677	217.45161		
##	18	13.7096774	284.96774	309.06452		
##	19	26.0322581	237.48387	268.64516		
##	20	13.0000000	206.19355	242.61290		
##	21	29.8333333	147.93333	265.10000		
##	22	2.0357143	288.35714	291.96429		
##	23	3.7931034	227.44828	234.00000		
##	24	14.8076923	40.15385	65.96154		
##	25	18.5161290	245.80645	287.12903		
##	26	16.2692308	280.73077	328.03846		
##	27	25.3548387	143.83871	211.77419		
##	28	9.5806452	150.96774	245.70968		
##		14.3157895	116.89474	151.73684		
##	30	10.2580645	156.09677	225.03226		
##	31	22.1935484	138.29032	170.16129		
##	32	4.0344828	91.79310	96.79310		
##	33	9.9354839	234.70968	310.70968		

Note: We use the $\mathbf{all} = \mathbf{TRUE}$ to return all records from all the data frames, no data was filtered out. This is because the data frames do not have the same number of records, All except 'average_BedTime which has 24, has 33 records. Also as a result of this merging, columns that exist in more than one data frame are labeled with ".x" and ".y" for differentiation.

Plotting some explorations using Scatter plot and Smoothing.

The relationship between two variables in a scatter plot provides valuable insights into overall activity levels. A negative correlation suggests that as one variable increases, the other decreases, indicating a potential link between them. Conversely, a positive correlation implies that higher values in one variable are associated with higher values in the other. A zero correlation suggests the absence of a linear relationship between two variables. It indicates that changes in one variable are not systematically associated with changes in the other, meaning that as values of one variable vary, there is no consistent pattern or trend in the values of the other variable.

Adding Smoothing to a scatter plot enhances the interpretability of the plot, making it easier to identify general patterns and draw insights.

Understanding this correlation helps tailor health recommendations and customize product messaging and features to address the specific needs of different customer segments, enhancing overall user engagement and satisfaction.

Let's find trends using visualization, we first load our plotting package - ggplot2

```
library("ggplot2")
```

How are the number of steps taken related to the duration of sedentary minutes?

```
# Creating scatter plot
ggplot(data=FitbaseData_Calculated, aes(x=AVG_SedentaryMinutes.y, y=AVG_TotalSteps))+
geom_point() +
labs(title = "Scatter Plot", x = "AVG_SedentaryMinutes.y", y = "AVG_TotalSteps")+
geom_smooth()
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Scatter Plot

The trend in this scatter plot shows that as **Average Total Steps** increases, **average Sedentary Minutes** decreases. This suggests that there is a **negative relationship** between Average Total Steps and average Sedentary Minutes. In other words, the more steps a person takes, the less time they spend sitting. This could imply that physical activity is inversely related to sedentary behavior.

A summarized explanation of the above syntax which will guide as a reference for subsequent ones.

The syntax employs functions from the "ggplot2" package in R. The ggplot() function initializes the plot, aes() specifies the aesthetic mappings that is which variable takes either the x or y axis. The geom_point() for scattered plot, adds points to the plot, labs() sets the title and axis labels, and geom_smooth() incorporates a smoothed trend line. Additionally, drop_na() is used for handling missing values in the data.

Relationship between activity and sleep

```
ggplot(data=FitbaseData_Calculated, aes(x=AVG_Activity, y=AVG_TotalMinutesAsleep.x,drop_na()))+
    geom_point() +
    labs(title = "Scatter Plot", x = "AVG_Activity", y = "AVG_TotalMinutesAsleep.x")+
    geom_smooth()

## 'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

## Warning: Removed 9 rows containing non-finite values ('stat_smooth()').

## Warning: Removed 9 rows containing missing values ('geom_point()').
```

Scatter Plot

The trend in this scatter plot shows that as **Average Activity** increases, **average Minutes Asleep** decreases. This relationship is an **inverse relationship**, meaning that as one variable increases, the other decreases. The graph shows that people who have higher levels of physical activity tend to sleep less than those who have lower levels of physical activity. This could be because active people have more energy, need less rest, are more occupied or have different lifestyles than less active people.

However, this graph does not imply causation, only correlation. There could be other factors that affect both variables, such as age, health, or environment.

To check relationship between Tracker Distance and Total Steps

```
ggplot(data=FitbaseData_Calculated, aes(x=AVG_TrackerDistance, y=AVG_TotalSteps,))+
geom_point() +
labs(title = "Scatter_plot", x = "AVG_TrackerDistance", y = "AVG_TotalSteps")+
geom_smooth()
```

'geom_smooth()' using method = 'loess' and formula = 'y \sim x'

Scatter_plot

The trend in this scatter plot shows that as the **average tracker distance** increases, the **average total steps** also increases. This suggests that there is a **positive relationship** between the two variables. In other words, the more distance a person covers with their tracker, the more steps they are likely to take. This could imply that people who use trackers are more motivated to walk or exercise more.

To check relationship between Calories and Activity

```
ggplot(data=FitbaseData_Calculated, aes(x=AVG_Calories, y=AVG_TrackerDistance,))+
geom_point() +
labs(title = "Scatter_plot", x = "AVG_Calories", y = "AVG_TrackerDistance")+
geom_smooth()
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Scatter_plot

The above scatter plot shows the relationship between average calories burned and average tracker distance. The trend in the scatter plot is **positive**, meaning that as the average tracker distance increases, the average calories burned also increases. The relationship between the two variables is **linear**, meaning that they change at a constant rate. The points are **fairly close** to the line of best fit, indicating a **strong** correlation between the two variables. This suggests that there is a **direct** and **proportional** relationship between average calories burned and average tracker distance, and that the fitness tracker app is **accurate** in measuring both variables.

Conclusion

Analyzing trends in Fitbit fitness tracker data offers valuable insights applicable to Bellabeat's customers:

The data suggests a correlation between increased steps and reduced sedentary time, indicating that Bellabeat's products could encourage a more active lifestyle by minimizing sedentary behavior. Additionally, the inverse relationship between physical activity and sleep duration implies that Bellabeat's offerings may cater to individuals with active lifestyles, guiding potential adjustments in sleep-related features or recommendations.

Furthermore, the positive correlation between tracker usage and physical activity emphasizes the motivational aspect of Bellabeat's products, suggesting they inspire users to be more active consistently. The positive relationship between tracker distance and calories burned indicates that Bellabeat's products accurately measures and supports users in achieving fitness goals, providing a comprehensive tool for managing and monitoring calorie expenditure.

In summary, these insights will enable Bellabeat to customize communication with users, improve product features, and offer recommendations thereby enhancing user engagement and satisfaction. By promoting an

active lifestyle, addressing sleep patterns, emphasizing tracker usage, and highlighting accurate fitness metric measurements, Bellabeat can effectively support its customers' holistic approach to health and well-being.

Recommendation

Bellabeat, as a company, can leverage these insights to tailor its product features and marketing strategies. Based on the analysis of Fitbit fitness tracker data, the following recommendations are made for Bellabeat:

- 1. **Promote Active Lifestyle:** Emphasize products as catalysts for an active lifestyle, focusing on features that encourage increased steps and reduced sedentary time.
- 2. Tailor Sleep Support: Acknowledge the inverse relationship between physical activity and sleep duration. Consider tailoring sleep-related features or recommendations for users with active lifestyles.
- 3. **Highlight Tracker Motivation:** Leverage the positive correlation between tracker usage and physical activity. Emphasize how Bellabeat's products motivate users to maintain consistent physical activity through regular tracker use.
- 4. Emphasize Calorie Management: Capitalize on the positive relationship between tracker distance and calories burned. Promote Bellabeat's fitness tracker app as an accurate tool for managing and monitoring calorie expenditure.
- 5. **Promote Stress Management:** Integrate stress-related notifications in Bellabeat's Wellness watch, guiding users on optimal break times for enhanced well-being and productivity. Encourage a healthy work-life balance through personalized stress-aware notifications. Incorporating gamification elements, such as challenges and rewards, can further motivate users to manage stress effectively and maintain a balanced lifestyle.
- 6. **Encourage Hydration:** Implement hydration-related reminders in the Time product using Bellabeat's Spring product for drinking water. Notifying users to maintain adequate water intake for improved health and vitality most especially during intense activities. This supports a healthier lifestyle, with timely hydration prompts tailored to individual needs.
- 7. Optimizing Female Health Features: Proactive Notifications Bellabeat being a female-focused company can enhance female health features with proactive notifications for menstruation, ovulation, and mood fluctuations using the **Time wellness watch** in addition to the Bellabeat app by;
 - Emphasizing on real-time, personalized notifications for menstrual cycles, ovulation, and mood. Position the product as a comprehensive health companion that actively supports and informs users about their unique female health journey.
 - Communicate how Bellabeat empowers women with informed decisions about their health. Share user testimonials or stories that showcase how the inclusion of proactive notifications has positively impacted their wellness journeys.
 - Provide content educating users on the significance of notifications for proactive health.
 - Foster a supportive community for women to share experiences and tips. Facilitate discussions on social platforms or within the Bellabeat community to create a supportive space for women to exchange insights and tips, illustrating instances where timely notifications contributed to their improved health management and overall well-being.

By incorporating these recommendations, Bellabeat can align its marketing strategy and product features with the observed trends, enhancing user engagement and satisfaction among its customers. This will position Bellabeat as a brand that not only provides fitness tracking but also actively supports users in adopting a healthier and more balanced lifestyle. Tailoring messages to resonate with these trends can enhance user engagement and attract a wider audience seeking holistic health solutions.

While these trends offer valuable insights, it's crucial to acknowledge that correlation does not imply causation. Bellabeat may consider further research to understand the nuanced factors influencing these trends and refine its offerings accordingly.