Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

03.05.2024

Биометрия и нейротехнологии ЛР4

Раевский Григорий, группа Р3321 Козак Борис, группа Р3321

Содержание

Задачи	3
Просмотр файла ЭКГ	3
Контурный анализ ЭКГ	4
Результаты	5
Амплитудные параметры потенциалов	7
Анализ вариабельности сердечного ритма по записям ЭКГ	7

Э 1	кспорт/Импорт записей ЭКГ	8
	Экспорт в текстовый файл	ć
	Экспорт в EDF	11

Задачи

- 1. Анализ заранее записанной ЭКГ
- 2. Контурный анализ ЭКГ
- 3. Анализ вариабельности сердечного ритма ЭКГ

Просмотр файла ЭКГ

Для начала откроем заранее записанную ЭКГ.

Рис. 1: Заранее записанная кардиограмма

Окно просмотра позволяет изменять чувствительность и скорость измерений. Так же имеется возможность добавлять или отключать показания различных отведений и изменять их цвет.

Имеется так же раздел для печати замеров ЭКГ.

Контурный анализ ЭКГ

Контурный анализ позволяет быстро получить и проанализировать показатели работы сердца с точки зрения классической электрокардиографии.

Контурный анализ проводится во вкладке "Контурный анализ". Перед началом работы нужно выбрать отведение с наиболее различимыми зубцами кардиограммы.

Рис. 2: Контурный анализ

На данной вкладке доступны следующие действия:

- 1. Выбор анализируемого фрагмента ЭКГ в области "Выбор фрагмента"
- 2. Просмотр усреднённого значения одного периода на основе выбранного фрагмента
- 3. Просмотр одного периода кардиограммы на основе выбранного отведения

Для подробного анализа периода кардиограммы нужно выбрать подходящий фрагмент на основе следующих параметров:

- минимальный уровень шумов сигнала
- отсутствие артефактов движения и смещения изолинии

Рис. 3: Фрагмент 20-46 секунд, маркеры расставлены автоматически

Результаты

В результате контурного анализа программа предоставила отчет. В нем содержаться автоматически рассчитанные параметры (интервалы, сегменты, длительности QRS-комплекса и Р-зубца и Т-зубца), амплитудные параметры (потенциалы зубцов P, Q, R, S, T во всех зарегистрированных отведениях), а также значение электрической оси сердца (ЭОС), ЧСС и длительности интервала RR.

Из-за проблем с кодировкой результаты предоставлены не в виде скриншота.

Возможные заболевания

- Аритмия (1)
- Синдром Лайн—Генон—Ливайна (синдром преждевременного возбуждения желудочков) (18)

Пояснения к результатам

Электрическая ось сердца - нормограмма (13)

Параметр	Значение	Параметр	Значение
<ЧСС>, уд./мин	63	ЧСС(макс-	1.2
		мин)/<ЧСС>	
Интервал RR, с	0.96	ЭОС, °	63

Таблица 1: Основные результаты

Временные параметры

Параметр	Значение	Параметр	Значение
Интервал QT (T1-	0.36	Сегмент PQ (Q0-	0.04
Q0), c		P1), c	
Интервал QTc	0.36	Время ВЖ от-	0.046
(QT/sqrt(RR)), c		клон. (R-Q0), c	
Интервал ST (T1-	0.17	QRS комплекс (J-	0.19
J), c		Q0), c	
Зубец Р (Р1-Р0), с	0.065	Сегмент ST (Т0-	0.032
		J), c	
Интервал PQ (Q0-	0.11	Зубец Т (Т1-Т0), с	0.14
P0), c			

Таблица 2: Временные параметры сердечной деятельности

Амплитудные параметры потенциалов

Параметр	I	II	III	avR	avL	avF	V*
Потенциал Р0, мВ	-0.029	-0.04	-0.011	0.035	-0.0092	-0.026	-
Потенциал Р, мВ	0.026	0.061	0.035	-0.043	-0.0047	0.048	-
Потенциал Р1, мВ	-0.00096	-0.036	-0.035	0.019	0.017	-0.036	-
Потенциал Q0, мВ	-0.033	-0.11	-0.075	0.07	0.021	-0.091	-
Потенциал Q, мВ	-0.011	-0.19	-0.17	0.098	0.081	-0.18	-
Потенциал R, мВ	0.38	1.2	0.82	-0.79	-0.22	1	-
Потенциал S, мВ	-0.038	-0.14	-0.099	0.088	0.031	-0.12	-
Потенциал J, мВ	0.0041	-0.076	-0.08	0.036	0.042	-0.078	-
Потенциал Т0, мВ	0.037	-0.014	-0.051	-0.011	0.044	-0.032	-
Потенциал Т, мВ	0.13	0.24	0.12	-0.19	0.0061	0.18	-
Потенциал Т1, мВ	0.11	0.22	0.14	-0.21	0.02	0.19	-

Таблица 3: Амплитудные параметры потенциалов

Так же имеется возможность распечатать полученные значения.

Анализ вариабельности сердечного ритма по записям ЭКГ

Для проведения автоматического анализа BCP продолжительность записи должна быть не менее 5 минут. Анализ проходит во вкладке "Анализ BCP". В этой вкладке содержатся:

- Ритмограмма динамические R-R ряды интервалов
- Гистограмма вариационная ритмограмма, распределение длительностей кардиоинтервалов как случайных величин. Поверх гистограммы представлена аппроксимация кривой распределения кардиоинтервалов, как статистических величин.
- Скатерограмма последовательные пары кардиоинтервалов. По оси X откладывается длительность текущего кардиоинтервала RR_n , по оси Y следующего за ним (RR_{n+1})

• Дополнительная информация на основе анализа (вычисленные параметры, пояснения)

Рис. 4: Анализ ВСР

На основе анализа получены следующие значения:

- SI (Индекс напряжения) 131 о. е.
- Мо (Мода) 776 мс
- Ато (Амплитуда моды) 0,34
- SDNN (Среднеквадратичное отклонение) 33 мс
- СV (Коэффициент вариации) 4 %
- HBR (Средняя частота сердечных сокращений) 77,30 уд/мин

Экспорт/Импорт записей ЭКГ

Программа позволяет экспортировать записи кардиограммы в текстовые файлы/edf файлы. Это может быть полезно для дальнейшей обработки данных в различных приложениях.

Экспорт в текстовый файл

Экспорт в текстовый файл позволяет выбрать:

- Границы экспортируемого фрагмента
- Частоту дискретизации (100-2000 Гц)
- Нужно ли экспортировать кардиосигналы
- Нужно ли экспортировать ряд кардиоинтервалов и результаты статобработки

Все эти параметры влияют на размер экспортируемого файла.

Рис. 5: Экспорт в текстовый файл

На выходе получены 2 файла: На выходе получены 2 файла:

1. Кардиосигналы:

2. Ряд кардиосигналов и результаты статобработки:

Экспорт в EDF

Так же имеется возможность экспорта в файл формата edf. При этом доступны следующие параметры:

- Границы экспортируемого фрагмента
- Частота дискретизации (100-2000 Гц)
- Выбор отведений
- Дополнительные каналы

Рис. 6: Экспорт в edf файл