手征微扰场论

王旭

2021年10月10日

目录

1	有效	[量子力学]	2
	1	1D 散射	2
		1.1 利用 δ 函数来模仿方势阱	2
	2	3D 散射	3
		2.1 3D 散射中的 δ 函数	4
2	手征	· ·拉氏量	4
	1	流代数	5
	2	Goldstone 玻色子的实现	6

1 有效量子力学 2

1 有效量子力学

该章主要参考 [?]。当我们在描述低能理论时,我们不需要知道其在高能区的表现。代价就是需要引入大量参数,而这些参数只能由实验给出。在考察有效量子场论前,我们先看看有效量子力学。

由于在相对论量子力学中,粒子与粒子的相互作用是点点相互作用,因此我们希望通过 δ 函数来模拟散射势。

1 1D 散射

考虑量子力学中的一维散射问题,假设有一方势阱,其函数为

$$V(x) = \begin{cases} -\frac{\alpha^2}{2m\Delta}, & 0 \le x \le \Delta \\ 0, & \text{其余情况} \end{cases}$$
 (1.1)

其中m为粒子质量, Δ 为势阱宽度, $\frac{\alpha^2}{2m\Delta^2}$ 为势阱深度。可以通过计算薛定谔方程得到反射系数R为

$$R = \left[\frac{4\kappa^2 k^2 \csc^2(\kappa \Delta)}{(k^2 - \kappa^2)} + 1\right]^{-1} \tag{1.2}$$

其中

$$k = \sqrt{2mE}, \ \kappa = \sqrt{k^2 + \frac{\alpha^2}{\Delta^2}}$$
 (1.3)

在低能时,我们可以按照k展开反射系数,

$$R = -\frac{4}{\alpha^2 \sin^2 \alpha} \Delta^2 k^2 + \mathcal{O}(\Delta^4 k^4) \tag{1.4}$$

可以看到当 $k \to 0$ 时, $R \to 1$,称这种相互作用为相关相互作用。

1.1 利用 δ 函数来模仿方势阱

考虑此时有一 δ 势阱,

$$V(x) = -\frac{g}{2m\Delta}\delta(x) \tag{1.5}$$

此处引入 Δ 来保证 g 是无量纲的。依旧通过薛定谔方程可以计算得出反射系数为,

$$R = \left[1 + \frac{4k^2\Delta^2}{g^2}\right]^{-1} = 1 - \frac{4k^2\Delta^2}{g^2} + \mathcal{O}(k^4)$$
 (1.6)

在低能情况下,与(1.4)比较可得,

$$g = \alpha \sin \alpha \tag{1.7}$$

称为"匹配条件"。

1 有效量子力学 3

2 3D 散射

首先,可以普遍证明,对于任意势场,kcotδ 可以展开为

$$k\cot\delta = -\frac{1}{a_0} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$
(1.8)

考虑一s波的散射,势函数如下,

$$V = \begin{cases} -\frac{\alpha^2}{m\Delta^2}, & r < \Delta \\ 0, & r > \Delta \end{cases}$$
 (1.9)

其中 a 是散射长度,r 是有效力程。同样可以通过求解薛定谔方程得到 $k\cot\delta$ 的关系式,为

$$k\cot\delta = \frac{k(k\sin\kappa\Delta + \kappa\cot k\Delta\cos\kappa\Delta}{k\cot k\Delta\sin\kappa\Delta - \kappa\cos\kappa\Delta}$$
(1.10)

将其按照 k^2 展开可得,

$$k\cot\delta = \frac{1}{\Lambda} \left(\frac{\tan\alpha}{\alpha} - 1\right)^{-1} + \mathcal{O}(k^2) \tag{1.11}$$

与 (1.8) 比较可得,

$$a = -\Delta \left(\frac{\tan \alpha}{\alpha} - 1\right) \tag{1.12}$$

其关系如图所示,

可以看到,势 α 随散射长度 a 的变化,当 $\alpha_c=(2n+1)\pi/2$ 时,a 出现奇异性,对应着束缚态的出现。

2.1 3D 散射中的 δ 函数

我们首先给出 3D 散射下散射振幅

$$f = \frac{1}{k \cot \delta - ik} \tag{1.13}$$

观察 (1.12),由于 α 是 $\mathcal{O}(1)$,因此 $a \sim \mathcal{O}(\Delta)$,因此当势阱宽度趋于 0 时,散射振幅也趋于 0,这种相互作用称为无关相互作用。因此无法用 δ 函数来模拟球势阱。

如果我们用场 ψ 表示散射粒子, 拉氏密度为

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{4} \left(\psi^{\dagger} \psi \right)^2$$
 (1.14)

2 手征拉氏量

该章主要参考[?]

首先 QCD 的拉氏量具有如下形式 (仅考虑 u、d、s 夸克)

$$\mathcal{L} = \sum_{i=1}^{3} (\bar{q}_i i \not D q_i - m_i \bar{q}_i q_i) - \frac{1}{4} \mathcal{G}^a_{\mu\nu} \mathcal{G}^{a\mu\nu}$$
(2.1)

其中 $D_{\mu} = \partial_{\mu} - igT^a A^a_{\mu}$, $T^a = \lambda^a/2$ 。仅考虑动能项时,具有 $U(3)_L \times U(3)_R$ 的对称性。量子化之后 $U(1)_A$ 被破坏,系统的对称群为 $SU(3)_L \times SU(3)_R \times U(1)_V$,其中 $U(1)_V$ 对应着重子数。由于质量项的存在, $SU(3)_L \times SU(3)_R$ 遭到了破坏,但当粒子质量相同时,依旧会保持 $SU(3)_V$ 的对称性。

考虑质量项,

$$\sum_{i} m_{i} \bar{q}_{i} q_{i} = \sum_{i,j} \bar{q}_{R,i} M_{ij} q_{L,j}$$
(2.2)

其中 $M = diag(m_u, m_d, m_s)$ 。如果我们将质量项升级为场,在最后结果的时候在取回常数,并假设其在手征变换下进行如下变换,

$$M \to RML^{\dagger}$$
 (2.3)

则拉氏量依然在 $SU(3)_L \times SU(3)_R$ 变换下不变。

除质量项的显式破缺外,当考虑夸克凝聚的时候,也会产生自发破缺,考虑 QCD 真空

$$\langle 0|\bar{q}_{R,i}q_{L,j}|0\rangle = \Lambda^3 \delta_{ij} \tag{2.4}$$

其中 Λ 具有质量量纲。其在 $SU(3)_L \times SU(3)_R$ 下按照 $(3,\bar{3})$ 变换。在手征变换下,

$$L_{im}\langle 0|\bar{q}_{R,n}q_{L,m}|0\rangle R_{nj}^{\dagger} = \Lambda^{3}U_{ij}$$
(2.5)

其中 $U_{ij} = (LR^{\dagger})_{ij}$ 。当 L = R 时,真空没有变化,此时恰好对应 $SU(3)_V$ 。 我们可以采用和质量类似的方式,将 U 升格为场,并将其参数化为

$$U(x) = exp\left[\frac{i}{f}\phi(x)\right], \ \phi(x) = T^a\phi^a(x)$$
(2.6)

其中, $\phi^a(x)$ 为破缺生成的 8 个 Goldstone 玻色子。

当 N=2 时,

$$\phi \equiv \sum_{i=1}^{3} \phi_a \sigma^a = \begin{pmatrix} \phi_3 & \phi_1 - i\phi_2 \\ \phi_1 + i\phi_2 \end{pmatrix} = \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\pi^- & \pi^0 \end{pmatrix}$$
(2.7)

当 N=3 时,

$$\phi \equiv \begin{pmatrix} \pi^0 + \frac{\eta}{3} & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{\eta}{3} & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2\eta}{3} \end{pmatrix}$$
(2.8)

1 流代数

在正式考虑手征拉氏量的写法之前,我们首先讨论与手征相关的流代数。在手征极限下,拉 氏量可以写为

$$\mathcal{L}_{0} = \sum_{l=u,d,s} (\bar{q}_{R,l} i \not \!\! D q_{R,l} + \bar{q}_{L,l} i \not \!\! D q_{L,l}) - \frac{1}{4} \mathcal{G}_{a\mu\nu} \mathcal{G}_{a}^{\mu\nu}$$

$$(2.9)$$

在 $U(3)_L \times U(3)_R$ 群下,场的变化如下

$$\begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \mapsto U_L \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} = exp\left(-i\sum_{a=1}^8 \varepsilon_{La} \frac{\lambda_a}{2}\right) e^{-i\varepsilon_L} \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix}$$

$$\begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} \mapsto U_R \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} = exp\left(-i\sum_{a=1}^8 \varepsilon_{Ra} \frac{\lambda_a}{2}\right) e^{-i\varepsilon_R} \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix}$$
(2.10)

则拉氏量的变换为

$$\delta \mathcal{L}_0 = \bar{q}_R \left(\sum_{a=1}^8 \partial_\mu \varepsilon_{Ra} \frac{\lambda_a}{2} + \partial_\mu \varepsilon_R \right) \gamma^\mu q_R + \bar{q}_L \left(\sum_{a=1}^8 \partial_\mu \varepsilon_{La} \frac{\lambda_a}{2} + \partial_\mu \varepsilon_R \right) \gamma^\mu q_L \tag{2.11}$$

因此产生的左手流和右手流分别为

$$L_a^{\mu} = \bar{q}_L \gamma^{\mu} \frac{\lambda_a}{2} q_L, R_a^{\mu} = \bar{q}_R \gamma^{\mu} \frac{\lambda_a}{2} q_R$$

$$L^{\mu} = \bar{q}_L \gamma^{\mu} q_L, R^{\mu} = \bar{q}_R \gamma^{\mu} q_R$$

$$(2.12)$$

其中带有下指标 a 的流称为八重态,不带有的称为单态。定义两个单态矢量流和轴矢流为

$$V^{\mu} = R^{\mu} + L^{\mu} = \bar{q}\gamma^{\mu}q, A^{\mu} = R^{\mu} - L^{\mu} = \bar{q}\gamma^{\mu}\gamma_5q \tag{2.13}$$

定义两个八重态矢量流和轴矢流为

$$V_a^{\mu} = R_a^{\mu} + L_a^{\mu} = \bar{q}\gamma^{\mu}\frac{\lambda_a}{2}q, A_a^{\mu} = R_a^{\mu} - L_a^{\mu} = \bar{q}\gamma^{\mu}\gamma_5\frac{\lambda_a}{2}q$$
 (2.14)

单态矢量流即使在量子化之后依旧守恒,对应重子数守恒,而单态轴矢流在量子化之后出现反常。

定义三个荷算符

$$Q_{La}(t) = \int d^3x q_L^{\dagger}(t, \vec{x}) \frac{\lambda_a}{2} q_L(t, \vec{x})$$

$$Q_{Ra}(t) = \int d^3x q_R^{\dagger}(t, \vec{x}) \frac{\lambda_a}{2} q_R(t, \vec{x})$$

$$Q_V(t) = \int d^3x q^{\dagger}(t, \vec{x}) q(t, \vec{x})$$
(2.15)

三个荷算符之间的对易关系恰好对应着 $SU(3)_L \times SU(3)_R \times U(1)_V$ 的李代数

$$[Q_{La}, Q_{Lb}] = i f_{abc} Q_{Lc}, [Q_{Ra}, Q_{Rb}] = i f_{abc} Q_{Rc}$$

$$[Q_{La}, Q_{Rb}] = [Q_{La}, Q_{V}] = [Q_{Ra}, Q_{V}] = 0$$
(2.16)

2 Goldstone 玻色子的实现

在手征极限下,系统拉氏量 (2.9) 具有 $SU(3)_L \times SU(3)_R \times U(1)_V$ 的对称性,但当考虑 夸克凝聚的时候,基态只有 $SU(3)_V \times U(1)_V$ 的对称性,系统的对称性发生了自发破缺,生成了 8 个无质量的 Goldstone 玻色子。由于真实的夸克带有微小质量,因此拉氏量不具备严格的 $SU(3)_L \times SU(3)_R \times U(1)_V$ 的对称性,破缺得到的 Goldstone 玻色子带有质量。

一般考虑,假设有大群 G,以及它的子群 H,拉氏量具有群 G 对称性,基态具有群 H 对称性,则会生成 $n = n_G - n_H$ 个 Goldstone 玻色子,每个 Goldstone 玻色子用 ϕ_i 标记,为光滑实函数,i = 1, ..., n,定义一个 n 分量的矢量 $\Phi = (\phi_1, ..., \phi_n)$,接着定义一个实向量空间

$$M_1 = \{ \mathbf{\Phi} : M^4 \to \mathbb{R}^{\kappa} | \phi_i : M^4 \to R \}$$
 (2.17)

定义一个映射 $\varphi: G \times M_1 \to M_1$, 满足

- $\varphi(e, \Phi) = \Phi$
- $\varphi(g_1, \varphi(g_2, \mathbf{\Phi})) = \varphi(g_1g_2, \mathbf{\Phi})$

用 Φ 表示 M_1 中的原点,对应系统的基态构型,则对于 $\forall h \in H$,存在 $\varphi(h,0) = 0$,从而可以建立起 G/H 陪集与 Goldstone 玻色子之间的同构关系。可以验证,对于同一陪集中的元素,原点被映射到同一矢量,而不同陪集中的元素将原点映射到不同矢量。

考查 Goldstone 玻色子在群 G 下的变换行为,对于每一个 Φ 有一个陪集 $\tilde{g}H$ 与之对应,表示为

$$\varphi(g, \mathbf{\Phi}) = \varphi(\tilde{g}h, 0)$$

接着用 $\varphi(g)$ 作用到 Φ 上

$$\varphi(g, \mathbf{\Phi}) = \varphi(g, \varphi(\tilde{g}h, 0)) = \mathbf{\Phi}'$$

即存在关系

$$\begin{array}{ccc} \boldsymbol{\Phi} \stackrel{g}{\longrightarrow} & \boldsymbol{\Phi}' \\ \downarrow & \uparrow \\ \tilde{g}H \stackrel{g}{\longrightarrow} & g\tilde{g}H \end{array}$$