

VLSI Physical Design with Timing Analysis

Lecture – 17: STA for Combinational Circuits – I

Bishnu Prasad Das

Department of Electronics and Communication Engineering

Contents

- Types of Path
- Arrival time and Required time
- Output Arrival time for (1) Inverting gate and (2) Non-inverting gate
- Input Required time for (1) Inverting gate and (2) Non-inverting gate

Types of Paths in Combinational Circuits

- 1 Critical Path or longest path in a design (Setup check)
- 2) Short Path or Min data path in a design/circuit (Hold Check)
- 3 False Path
- · Arrival time! Actual rise and fall times at different nodes due to the rise and fall delay of the logic gates
- Required time! Rise and fall arrival time required or needed due to the time constraist specified by the circuit designer

Inverting-type of gates:

O Single - input gates!

$$O/P A \cdot T (rise) = t_2 + trise$$

$$O/P$$
. A.T. (Rise) = $max(4,3) + 2 = 4 + 2 = 6$
 O/P A.T. (fall) = $max(3,5) + 3 = 5 + 3 = 8$

Non-Inverting type of gates

ilp

0/P

trise

O/P A.T. (Rise)

2) multiple-input gate

O/P. A.T. (fall)

of rise A.T. =
$$max(3,5) + 2 = 5 + 2 = 7$$

Input A.T. (Rise/fall)

hiven Parameters (1) Output A.T (Rise/Fall) @ Rise delay / Fall delay

1 Inverting - type gates

(ii) Multiple - Fan-out connected to op pin of the gates

input fall A.T. = Min (Output rise A.T.) - Rise delay

input Rise A-T. (a or b) = min (4, 3)
$$-\frac{1}{2} = 3 - 1 = 2$$

Non-Inverting gates:

(1) Single-input and Single-output!

i/ρ

Olp

trise

i/p rise A.T. = (t) - trise

ip rise A.T. = Op. Rise A.T. - Rise delay

if fall A.T. = to - tfall

if fall A.T. = Of fall A.T. - full delay

2 Multiple - Fan - Out

i/p. rise A.T. = min (0/p. Rise A.T.) - Rise delay

ife fall A.T. = min (0)p fall A-T.) - fall delay

Ex

i/p Rise A.T. = Min (o/p. Rise A.T.) - Rice delay
= Min
$$(3, 5)$$
 - $2 = 3-2=1$

$$i/p$$
. fall $A \cdot T$: = Min $(0/p$. fall $A \cdot T$) - fall delay = Min $(4, 3)$ - $1 = 3 - 1 = 2$

Thank You

