

SCHOOL OF ADVANCED SCIENCES SCHOOL OF ADVANCED SCIENCES CONTINUOUS ASSESSMENT TEST - I CONTINUOUS SEMESTER 2019-2020 WINTER SEMESTER 2019-2020

Programme Name:

B. Tech

Course Name:

Applied Linear Algebra

Course Code:

MAT3004

Maximum Marks: 50

Gene	eral instruction(s): Attempt all questions. Questions	Marks
Q.N	river	5
	(a) For what values of k the given system has (i) no solution; (ii) unique solution and (iii) infinite number of solutions kx+2y=3	
	2x-4y=-6 (b) Solve the following system for x, y and z $2x-4y=-6$	5
	(b) Solve the following $\frac{1}{1+2-4} = 1$, $\frac{2}{1+4} + \frac{3}{1+4} = 0$, $-\frac{1}{1+4} + \frac{9}{10} = 5$	
	(c) Determine values of λ for which the matrix $\begin{bmatrix} 1 & \lambda & 0 \\ 1 & 3 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ is	5
	not invertible (a) Is $W = \{(a,b): a,b \text{ are rationals}\}$ a subspace of $\mathbb{R}^2(\mathbb{R})$ or	5
Profession and	mot?	5
	vector space V of all $n \times n$ matrices over R? (a) Let $\alpha = \{v_1, v_2,, v_n\}$ be a basis for a vector space V. Then show that each vector X in V can be uniquely expressed as a	5
1	The arcombination of $v_1, v_2,, v_n$. (b) Let $V = \mathbb{R}^2(\mathbb{R})$ and $W = \{(a, 0) : a \in \mathbb{R}\}$, $W_1 = \{(0, b) : b \in \mathbb{R}\}$ and $W_2 = \{(c, c) : c \in \mathbb{R}\}$. Show that $V = W \oplus W_1$ and $V = W \oplus W_2$.	5
	Determine whether or not the vectors (1,-3,2), (2,4,1) and	5
((1,1,1) are linearly independent. Find LU-Decomposition of [2 6 2]	10
	-3 -8 0 4 9 2	

Join 'VIT Question Papers 'Today By Scanning The QR Code Or By Simply Searching It On Telegram App.