

Parameters Automation of Dynamic Range Compressor

Literature Review - Project Work

Aritra Mazumdar

20 December 2018

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

Introduction

Dynamic Range Compressor

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

Motivation:

Project work involved building DRC application

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

- Project work involved building DRC application
- Application accepts static set of parameters

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

- Project work involved building DRC application
- Application accepts static set of parameters
- Adapting parameters to signal dynamics gives better results

Dynamic range of a signal is defined as the logarithmic ratio of maximum to minimum amplitude of a signal and is expressed in dB.

Dynamic Range of a signal can be controlled using an process named as **Dynamic Range Compressor**.

- Project work involved building DRC application
- Application accepts static set of parameters
- Adapting parameters to signal dynamics gives better results
- Compressor with automated parameters is better approximation

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

TheoryBlock Diagram

The figure above represents a basic Dynamic Range Compressor system.

TheoryBlock Diagram

The figure above represents a basic Dynamic Range Compressor system.

$$y(n) = x(n-D) \cdot g(n) \tag{1}$$

Parameters for Automation

Threshold (T)

- Threshold (T)
- Ratio (R)

- Threshold (T)
- Ratio (R)
- Knee Width (W)

- Threshold (T)
- Ratio (R)
- Knee Width (W)
- Attack Time (τ_A)

- Threshold (T)
- Ratio (R)
- Knee Width (W)
- Attack Time (τ_A)
- Release Time (τ_R)

- Threshold (T)
- Ratio (R)
- Knee Width (W)
- Attack Time (τ_A)
- Release Time (τ_R)
- Make-up Gain (g)

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

HELMUT SCHMIDT LINIVERSITÄT

Based on signal

Automation

Goals and Approaches

- Based on signal
 - Calculate signal metrics

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning
 - Extract audio features from reference audio

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning
 - Extract audio features from reference audio
 - Train Regression Model based on dataset

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning
 - Extract audio features from reference audio
 - Train Regression Model based on dataset
 - Map features to effect Compressor parameters

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning
 - Extract audio features from reference audio
 - Train Regression Model based on dataset
 - Map features to effect Compressor parameters
 - Process target audio with estimated parameters for similar effect

- Based on signal
 - Calculate signal metrics
 - Find a relation between calculated metrics and Compressor parameters
- Based on Supervised Learning
 - Extract audio features from reference audio
 - Train Regression Model based on dataset
 - Map features to effect Compressor parameters
 - Process target audio with estimated parameters for similar effect
 - Music similarity measure between reference and processed audio

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

Attack and Release Times

Attack and Release Times

Crest Factor Method:

- Ratio of Peak to RMS signal level

Attack and Release Times

- Ratio of Peak to RMS signal level
- Low for steady state signal

Attack and Release Times

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients

Attack and Release Times

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients
- Can locate transient parts

Attack and Release Times

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients
- Can locate transient parts
- Calculation:

Attack and Release Times

Crest Factor Method:

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients
- Can locate transient parts
- Calculation:

$$y_C[n] = y_{PEAK}[n]/y_{RMS}[n]$$

2)

Attack and Release Times

Crest Factor Method:

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients
- Can locate transient parts
- Calculation:

$$y_C[n] = y_{PEAK}[n]/y_{RMS}[n]$$
 (2)

$$\tau_A[n] = 2 \cdot \tau_{Amax}[n] / y_C^2[n] \tag{3}$$

Attack and Release Times

Crest Factor Method:

- Ratio of Peak to RMS signal level
- Low for steady state signal
- High for signal with transients
- Can locate transient parts

- Calculation:

$$y_C[n] = y_{PEAK}[n]/y_{RMS}[n]$$

$$\tau_A[n] = 2 \cdot \tau_{Amax}[n] / y_C^2[n]$$

$$\tau_R[n] = 2 \cdot \tau_{Rmax}[n] / y_C^2[n] - \tau_A[n]$$

Attack and Release Times (contd..)

Attack and Release Times (contd..)

Spectral Flux Method:

- Rapidity in change of power spectrum of signal

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor
- Calculation:

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor
- Calculation:

$$SF(n) = \frac{\sum_{k=-N/2}^{N/2-1} H(|X(n,k)| - |X(n-1,k)|)}{\sum_{k=-N/2}^{N/2-1} |X(n,k)|}$$
(5)

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor
- Calculation:

$$SF(n) = \frac{\sum_{k=-N/2}^{N/2-1} H(|X(n,k)| - |X(n-1,k)|)}{\sum_{k=-N/2}^{N/2-1} |X(n,k)|}$$
(5)

$$SF_{smooth}[n] = max(x[n], \alpha \cdot SF_{smooth}[n-1] + (1-\alpha) \cdot SF[n])$$
 (6)

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor
- Calculation:

$$SF(n) = \frac{\sum_{k=-N/2}^{N/2-1} H(|X(n,k)| - |X(n-1,k)|)}{\sum_{k=-N/2}^{N/2-1} |X(n,k)|}$$
(5)

$$SF_{smooth}[n] = max(x[n], \alpha \cdot SF_{smooth}[n-1] + (1-\alpha) \cdot SF[n])$$
 (6)

$$\tau_{A}[n] = 2 \cdot \tau_{Amax}[n] / SF_{smooth}[n] \tag{7}$$

Attack and Release Times (contd..)

- Rapidity in change of power spectrum of signal
- Low for steady state signal
- High for signal with transients
- More sensitive than Crest Factor
- Calculation:

$$SF(n) = \frac{\sum_{k=-N/2}^{N/2-1} H(|X(n,k)| - |X(n-1,k)|)}{\sum_{k=-N/2}^{N/2-1} |X(n,k)|}$$
(5)

$$SF_{smooth}[n] = max(x[n], \alpha \cdot SF_{smooth}[n-1] + (1-\alpha) \cdot SF[n])$$
 (6)

$$\tau_{A}[n] = 2 \cdot \tau_{Amax}[n] / SF_{smooth}[n] \tag{7}$$

$$\tau_R[n] = 2 \cdot \tau_{Rmax}[n] / SF_{smooth}^{\gamma}[n] - \tau_A[n]$$
(8)

Attack and Release Times - Evaluation

Subjective evaluation based on human preference of parameters

Attack and Release Times - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

Attack and Release Times - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

Attack and Release Times - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

- (-) Median value of response
- (•) Crest Factor Automation
- (+) Spectral Flux Automation

Threshold and Ratio

Threshold:

Threshold and Ratio

Threshold:

- Defines desired compression

Threshold and Ratio

Threshold:

- Defines desired compression
- To be controlled by user

Threshold and Ratio

- Threshold:
 - Defines desired compression
 - To be controlled by user
- Ratio:

Threshold and Ratio

Threshold:

- Defines desired compression
- To be controlled by user

Ratio:

To be set to infinity

Threshold and Ratio

Threshold:

- Defines desired compression
- To be controlled by user

Ratio:

- To be set to infinity
- Soft Knee with variable width equivalent to automatic ratio

Knee Width

• Basic Method: Bases on gain reduction of input signal

Knee Width

• Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

Knee Width

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$
 (10)

Knee Width

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$
 (10)

$$g_{Est} = T \cdot (1 - 1/R)/2$$

HELMUT SCHMIDT UNIVERSITÄT

• Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$

$$g_{Est} = T \cdot (1 - 1/R)/2$$
(10)

Optimized Method: Bases on SF information of input signal

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$

$$g_{Est} = T \cdot (1 - 1/R)/2$$
(10)

■ **Optimized Method:** Bases on SF information of input signal $SF_{min}[n] = min(|SF[n]|, \alpha \cdot SF_{min}[n-1] + (1-\alpha) \cdot SF[n])$ (11)

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$

$$g_{Est} = T \cdot (1 - 1/R)/2$$
(10)

Optimized Method: Bases on SF information of input signal

$$SF_{min}[n] = min(|SF[n]|, \alpha \cdot SF_{min}[n-1] + (1-\alpha) \cdot SF[n])$$
 (11)

$$SF_{min,avg}[n] = (1 - \alpha_2) \cdot SF_{min}[n] + \alpha_2 \cdot SF_{min,avg}[n-1])$$
 (12)

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$
(9)

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$

$$g_{Est} = T \cdot (1 - 1/R)/2$$
(10)

Optimized Method: Bases on SF information of input signal

$$SF_{min}[n] = min(|SF[n]|, \alpha \cdot SF_{min}[n-1] + (1-\alpha) \cdot SF[n])$$
 (11)

$$SF_{min,avg}[n] = (1 - \alpha_2) \cdot SF_{min}[n] + \alpha_2 \cdot SF_{min,avg}[n-1])$$
 (12)

$$W[n] = 2.5 \cdot g_{Avg}^{k}[n] \tag{13}$$

Basic Method: Bases on gain reduction of input signal

$$g_{Dev}[n] = \alpha \cdot g_{Dev}[n-1] + (1-\alpha) \cdot (g[n] - g_{Est})$$

$$W[n] = 2.5 \cdot (g_{Dev}[n] + g_{Est})$$

$$(10)$$

$$g_{Est} = T \cdot (1 - 1/R)/2$$

• Optimized Method: Bases on SF information of input signal

$$SF_{min}[n] = min(|SF[n]|, \alpha \cdot SF_{min}[n-1] + (1-\alpha) \cdot SF[n])$$
 (11)

$$SF_{min,avg}[n] = (1 - \alpha_2) \cdot SF_{min}[n] + \alpha_2 \cdot SF_{min,avg}[n-1])$$
 (12)

$$W[n] = 2.5 \cdot g_{Avg}^{k}[n] \tag{13}$$

$$k = \begin{cases} 0.6, & SF_{min,avg} > 0.1\\ 0.05, & SF_{min,avg} <= 0.1 \end{cases}$$
 (14)

Knee Width - Evaluation

Subjective evaluation based on human preference of parameters

Knee Width - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

Knee Width - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

Knee Width - Evaluation

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

- (-) Median value of response
- (•) Gain Reduction Dependent Automation
- (+) Signal Information Dependent Automation

Compression based Method:

Compression based Method:

$$g_{make-up}[n] = -(g_{Dev}[n] + g_{Est})$$

$$\tag{15}$$

Compression based Method:

$$g_{make-up}[n] = -(g_{Dev}[n] + g_{Est})$$
(15)

Loudness based Method:

Compression based Method:

$$g_{make-up}[n] = -(g_{Dev}[n] + g_{Est})$$
 (15)

- Loudness based Method:
 - Compares perceived loudness before and after compression

Compression based Method:

$$g_{make-up}[n] = -(g_{Dev}[n] + g_{Est})$$
(15)

Loudness based Method:

- Compares perceived loudness before and after compression
- Calculates make-up gain from loudness difference

Subjective evaluation based on human preference of parameters

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

- Subjective evaluation based on human preference of parameters
- Evaluation results compared with automated parameters

- (-) Median value of response
- (•) Compression based Automation
- (+) Loudness based Automation

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{var} = Var\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right]$$
(17)

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{var} = Var\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right]$$
(17)

$$SV_{mean} = E[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (18)

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{var} = Var\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right]$$
(17)

$$SV_{mean} = E[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (18)

$$SV_{var} = Var[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (19)

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{var} = Var\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right]$$
(17)

$$SV_{mean} = E[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (18)

$$SV_{var} = Var[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (19)

$$RMS_{mean} = E\left[\sqrt{\frac{1}{M} \cdot \sum_{m=0}^{M-1} x(m)^2}\right]$$
 (20)

$$SC_{mean} = E\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right], Y(n, k) = |X(n, k)|$$
(16)

$$SC_{var} = Var\left[\frac{\sum_{k=0}^{K-1} k \cdot Y(n, k)}{\sum_{k=0}^{K-1} Y(n, k)}\right]$$
(17)

$$SV_{mean} = E[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (18)

$$SV_{var} = Var[\sqrt{E[Y(n,k)^2] - (E[Y(n,k)])^2}]$$
 (19)

$$RMS_{mean} = E\left[\sqrt{\frac{1}{M} \cdot \sum_{m=0}^{M-1} x(m)^2}\right]$$
 (20)

$$RMS_{var} = Var\left[\sqrt{\frac{1}{M} \cdot \sum_{m=0}^{M-1} x(m)^2}\right]$$
 (21)

Regression Model - Training

Training Data: Violin Samples (RWC isolated note database)

Regression Model - Training

- Training Data: Violin Samples (RWC isolated note database)
- Training Set:

Training sets (size)	Conditions			
Training sets (Size)	Thr(dB)	Ratio	Att(ms)	Rel(ms)
A (60*50)	0:1:49	2	5	200
B (60*50)	37.5	1:0.4:20	5	200
C (60*100)	37.5	2	1:1:100	200
D (60*100)	37.5	2	5	50:10:1000

Regression Model - Training

- Training Data: Violin Samples (RWC isolated note database)
- Training Set:

Training sets (size)	Conditions				
Training sets (size)	Thr(dB)	Ratio	Att(ms)	Rel(ms)	
A (60*50)	0:1:49	2	5	200	
B (60*50)	37.5	1:0.4:20	5	200	
C (60*100)	37.5	2	1:1:100	200	
D (60*100)	37.5	2	5	50:10:1000	

Training Data Generation:

Regression Model - Training

- Training Data: Violin Samples (RWC isolated note database)
- Training Set:

Training sets (size)	Conditions				
Training sets (size)	Thr(dB)	Ratio	Att(ms)	Rel(ms)	
A (60*50)	0:1:49	2	5	200	
B (60*50)	37.5	1:0.4:20	5	200	
C (60*100)	37.5	2	1:1:100	200	
D (60*100)	37.5	2	5	50:10:1000	

Training Data Generation:

• Regression Models: Linear and Random Forest Regression

Automation Process

Approach 2Similarity Measure

Crest Factor Difference:

Similarity Measure

Crest Factor Difference:

$$D_{Crest}(A, B) = mean(|Crest(A) - Crest(B)|)$$

Similarity Measure

Crest Factor Difference:

$$D_{Crest}(A, B) = mean(|Crest(A) - Crest(B)|)$$

Violin	Threshold	Ratio	Attack	Release
$D_{Crest}(N_{pro}, R)$	60.31	94.13	104.93	85.31
$D_{Crest}(N_{pro},T)_{LR}$	12.53	39.72	46.76	48.62
$D_{Crest}(N_{pro},T)_{RF}$	15.27	38.24	45.23	47.19

Similarity Measure

Crest Factor Difference:

$$D_{Crest}(A, B) = mean(|Crest(A) - Crest(B)|)$$

Violin	Threshold	Ratio	Attack	Release
$D_{Crest}(N_{pro}, R)$	60.31	94.13	104.93	85.31
$D_{Crest}(N_{pro},T)_{LR}$	12.53	39.72	46.76	48.62
$D_{Crest}(N_{pro},T)_{RF}$	15.27	38.24	45.23	47.19

Kullback-Leibler Divergence:

Approach 2Similarity Measure

Crest Factor Difference:

$$D_{Crest}(A, B) = mean(|Crest(A) - Crest(B)|)$$

Violin	Threshold	Ratio	Attack	Release
$D_{Crest}(N_{pro}, R)$	60.31	94.13	104.93	85.31
$D_{Crest}(N_{pro},T)_{LR}$	12.53	39.72	46.76	48.62
$D_{Crest}(N_{pro},T)_{RF}$	15.27	38.24	45.23	47.19

Kullback-Leibler Divergence:

Between GMM distributions based on MFCC coefficients

Approach 2Similarity Measure

Crest Factor Difference:

$$D_{Crest}(A, B) = mean(|Crest(A) - Crest(B)|)$$

Violin	Threshold	Ratio	Attack	Release
$D_{Crest}(N_{pro}, R)$	60.31	94.13	104.93	85.31
$D_{Crest}(N_{pro},T)_{LR}$	12.53	39.72	46.76	48.62
$D_{Crest}(N_{pro},T)_{RF}$	15.27	38.24	45.23	47.19

Kullback-Leibler Divergence:

Between GMM distributions based on MFCC coefficients

Violin	Threshold	Ratio	Attack	Release
$D(N_{pro}, R)$	38.122	53.187	44.018	55.206
$D(N_{pro},T)_{LR}$	19.799	20.911	22.852	20.994
$D(N_{pro},T)_{RF}$	19.742	20.856	22.213	20.807

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

• Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music
- Preference Chart:

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music
- Preference Chart:

Comp	Fast	Slow	Fast	Slow
	Attack	Attack	Release	Release
EDM	0.38	0.62	0.65	0.35
Hip-hop	0.48	0.52	0.46	0.55
Rock	0.29	0.71	0.51	0.54
Jazz	0.25	0.78	0.25	0.77

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music
- Preference Chart:

Comp	Fast	Slow	Fast	Slow
	Attack	Attack	Release	Release
EDM	0.38	0.62	0.65	0.35
Hip-hop	0.48	0.52	0.46	0.55
Rock	0.29	0.71	0.51	0.54
Jazz	0.25	0.78	0.25	0.77

Deduction:

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music
- Preference Chart:

Comp	Fast	Slow	Fast	Slow
	Attack	Attack	Release	Release
EDM	0.38	0.62	0.65	0.35
Hip-hop	0.48	0.52	0.46	0.55
Rock	0.29	0.71	0.51	0.54
Jazz	0.25	0.78	0.25	0.77

Deduction:

Different preference of Attack and Release across different styles

- Music Samples: 4 drum samples (EDM, Hip-Hop, Rock, Jazz)
- Subjective evaluation: Human preference of Attack and Release times across different styles of music
- Preference Chart:

Comp	Fast	Slow	Fast	Slow
	Attack	Attack	Release	Release
EDM	0.38	0.62	0.65	0.35
Hip-hop	0.48	0.52	0.46	0.55
Rock	0.29	0.71	0.51	0.54
Jazz	0.25	0.78	0.25	0.77

Deduction:

- Different preference of Attack and Release across different styles
- Machine Learning approach can make use of this information

Outline

- Introduction
- Theory
- Automation
- Approach 1
- Approach 2
- Discussions
- Conclusion

Conclusion Summary

 Better results with approaches using Spectral Flux, SF based Optimization and Loudness

Conclusion Summary

- Better results with approaches using Spectral Flux, SF based Optimization and Loudness
- Better results with Random Forest Regression

Conclusion Summary

- Better results with approaches using Spectral Flux, SF based Optimization and Loudness
- Better results with Random Forest Regression
- Variation of preference of ballistics across styles

ConclusionFuture Work

 Include additional audio features mentioned in Approach 1 to train Regression Model in Approach 2 for better results

ConclusionFuture Work

- Include additional audio features mentioned in Approach 1 to train Regression Model in Approach 2 for better results
- Include human preference information for parameters across different styles while training Regression Model

ConclusionFuture Work

- Include additional audio features mentioned in Approach 1 to train Regression Model in Approach 2 for better results
- Include human preference information for parameters across different styles while training Regression Model
- Evaluation on more complex tracks

Conclusion

References

- Dimitrios Giannoulis, Michael Massberg, Joshua D. Reiss, "Parameter automation in a dynamic range compressor", J. Audio Eng. Soc., Vol. 61, No. 10, October 2013
- Di Sheng, György Fazekas ,"Automatic control of the dynamic range compressor using a regression model and a reference sound", Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5-9, 2017
- Gary Bromham, David Moffat, Mathieu Barthet, György Fazekas ,"The impact of compressor ballistics on the perceived style of music", Audio Engineering Society, Convention Paper 10080, presented at the 145th Convention New York, NY, USA, October 17-20, 2018

Conclusion Thank You

Thanks for your time

Any Question or Suggestion?