America First Credit Union Cedar Hills Traffic Impact Analysis

4800 West and Cedar Hills Drive

Cedar Hills, Utah

March 2014

Prepared by:

Falcon Traffic 9221 South Falcon Way Sandy, Utah 84093 801-395-4054

America First Credit Union Cedar Hills Traffic Study

TABLE OF CONTENTS

		page
I. II.	Introduction Trip Generation	1
III.	Origin/Destination and Trip Distribution	5
IV.	Traffic Analysis	10
	A. Unsignalized Accesses and Intersections	10
	B. Signalized Analysis	12
	C. Queue Analysis	13
V. Co	onclusions/Recommendations	14
Appe	endices	

America First Credit Union Cedar Hills Traffic Study

LIST OF TABLES

	page
Table One	Trip Generation5
Table Two	Trip Distribution5
Table Three	Origin Destination and Trip Distribution Access Assumptions6
Table Four	Origin Destination and Trip Distribution Access Projections
Table Five	Intersection LOS-Delay Relationship
Table Six	Hart's and 4800 West
	PM Peak HCM Delay / LOS Analysis for Unsignalized Intersection 10
Table Seven	Walmart and Cedar Hills Drive
	PM Peak HCM Delay / LOS Analysis for Unsignalized Intersection11
Table Eight	Access A and Hart Street
	PM Peak HCM Delay / LOS Analysis for Unsignalized Intersection11
Table Nine	4800 West and Cedar Hills Drive
	HCM Delay / LOS Analysis for Signalized Intersection12

America First Credit Union Cedar Hills Traffic Study

LIST OF FIGURES

	page
Figure One: Project Site Location.	2
Figure Two: Conceptual Site Plan	
Figure Three: Existing PM Peak Traffic Counts	
Figure Four: Site Generated Traffic at Accesses	
Figure Five: Site Generated Plus Existing Traffic	

I. Introduction

The proposed site is planned to develop as a 4,948 square foot America First Credit Union with six drive-through bays. In addition to this, two retail buildings are planned for the east portion of the site: 4,400 square feet and 8,800 square feet. The site is located on the southeast corner of 4800 West and Cedar Hills Drive in Cedar Hills, Utah. The proposed site is currently vacant. The site has approximately 300 feet of frontage along 4800 West and 470 feet along Cedar Hills Drive. 4800 West is a five-lane facility (two lanes in each direction with a center turn lane) and Cedar Hills Drive being a three-lane facility (one lane in each direction with a center turn lane). A local street exists immediately south of the site. This street, hereafter known as Hart's street, is between the America First Credit Union and the existing Hart's Gas Station and Convenience Store. Another road will be constructed to the east of the site to line up with the main Walmart Access (approximately 4700 West). The peak hour of traffic was analyzed for the PM Peak Hour (one hour between 4:00 and 6:00 p.m.). The AM Peak Hour was not analyzed as it occurs before the America First Credit Union opens.

A full movement access is proposed for Hart's Street (Access A), a right-in/right-out access is proposed for Cedar Hills Drive (Access B) and a full access is proposed for 4700 West (Access C). A second access to Hart's Street is proposed for the rear retail (Access D). Figure One shows the location of the proposed development and Figure Two shows the conceptual site plan of the proposed development.

Traffic Counts were made for all movements at the 4800 West and Cedar Hills Drive during the PM Peak Hour on Tuesday, March 4th. Turning movement counts for the Hart's Street intersection with 4800 West and for the Walmart Access with Cedar Hills Drive were made for the PM Peak Hour on Wednesday, March 5th. Through movements for these intersections were based on balancing traffic from the 4800 West and Cedar Hills Drive intersection. The PM Peak Hour was 5:00 p.m. to 6:00 p.m. Figure Three shows the existing 2014 traffic counts for the study intersections and accesses in the area. Full traffic counts are provided in Appendix A.

II. Trip Generation

The Institute of Transportation Engineers (ITE) Trip Generation (9th Edition) handbook was used to estimate trips. Table One shows the PM Peak Hour Trips and Daily Trips as taken from ITE.

Cedar Hills America First Credit Union Traffic Study Table One PM Peak Hour Trip Generation								
Facility Size ITE Land Peak Hour Total Use Trip Rate Trips								
America First Credit Union	4.5	912	25.82	116				
Retail Building A 4.4 820 3.73 1								
Retail Building B	8.8	820	3.73	33				

Cedar Hills America First Credit Union Traffic Study Table Two PM Peak Hour Trip Distribution								
Facility Total Trips % In % Out Inbound Outbound								
America First Credit Union	116	50%	50%	58	58			
Retail Building A	16	49%	51%	8	8			
Retail Building B	33	49%	51%	16	17			

Pass-by traffic reductions could be taken along 4800 West and along Cedar Hills Drive, but these reductions would not affect the turning movements. The pass-by traffic has not been considered separately and therefore, this analysis is conservative.

III. Origin/Destination and Trip Distribution

The origin/destination assumptions were made with an understanding of roadways in the area and patterns from the existing counts. The counts showed more traffic coming from the west. Of the traffic that travels from the east, the majority was from the south. Based on these assumptions, it was assumed that the Origin/Destination Assumptions would be as follows:

- 10% West
- 30% East
- 30% North
- 30% South

It was estimated from previous Credit Union studies that 70 percent of the trips were drive-in related trips. For the purposes of this study, it was simply assumed that the drive-in related trips were the main pattern of credit union traffic.

Table Three shows the detailed trip distribution assumptions for traffic to the site.

(lls Ame	Ta	ble Th	ree			•	S	
	Access A (Hart's Street West)					Access C (4700 West)					
	j	In	Out	In	Out	In	Out		In	C	Out
	EB Left	WB Right	SB Right	EB Left	SB Right	EB Right	NB Right	NB Left	SB Right	EB Left	EB Right
America First											
10% West					10%	10%					
30% East		30%					30%				
30% North	30%				8%		22%				
30% South	30%		17%		13%						
Retail Pads											
10% West						10%				10%	
30% East									30%	30%	
30% North						30%				30%	
30% South				30%	30%			_			

Cedar Hills America First Credit Union Traffic Study Table Four Origin Destination and Trip Distribution Access Projections (PM Peak)

	Access A (Hart's Street West)			Access D (Hart' Street East)		Access B (Cedar Hills Drive)		Access C (4700 West)			
		In		In	Out	In	Out	In		Out	
	EB Left	WB Right	SB Right	EB Left	SB Right	EB Right	NB Right	NB Left	SB Right	EB Left	EB Right
America First (58 in, 58 Out)											
10% West					6	6					
30% East		17					17				
30% North	√17				5		12				
30% South	17		10		7						
America First Total	34	17	10		18	6	29				
Retail Pads (24 in, 24 Out)											
10% West						2				3	
30% East									7	8	
30% North						7				8	
30% South	_			7	8						
Retail Pads Total				7	8	9			7	19	
Total For Site	34	17	10	7	26	15	29		7	19	

The above tables show the projections for the accesses to the site. The figures also show the site generated movements for the nearby intersections.

Figure Four shows the site projected traffic. Figure Five shows the existing plus site generated traffic.

IV. Traffic Analysis

The unsignalized accesses and intersections are analyzed using HCS software to evaluate the impacts of the project on the surrounding traffic network. Table Five shows the Level of Service delay ranges for intersections as defined by the 2000 Highway Capacity Manual.

A. Unsignalized Accesses and Intersections

Cedar Hills America First Credit Union Traffic Study Table Five Intersection LOS-Delay Relationship						
Level of Service Unsignalized Signalized						
	Total Delay per Vehicle (sec)	Total Delay per Vehicle (sec)				
A	≤ 10.0	≤ 10.0				
В	$> 10.0 \text{ and} \le 15.0$	$> 10.0 \text{ and} \le 20.0$				
C	$> 15.0 \text{ and } \le 25.0$	> 20.0 and ≤ 35.0				
D	$> 25.0 \text{ and} \le 35.0$	$> 35.0 \text{ and} \le 55.0$				
Е	$> 35.0 \text{ and} \le 50.0$	> 55.0 and ≤ 80.0				
F	> 50.0	> 80.0				

Table Six shows the HCM Delay / LOS Evaluation for the PM Peak Period for the Hart's Street and 4800 West intersection. The center median along 4800 West was modeled as a two-way left turn.

Cedar Hills America First Credit Union Traffic Study Table Six HCM PM Peak Period Intersection Analysis - Delay/LOS Evaluation Hart's and 4800 West					
Delay / LOS 2014 Existing 2014 with Site (in sec)					
Southbound Left 9.5/A 9.7/A					
Westbound Left 17.3/C 17.9/C					
Westbound Right	11.5/B	11.6/B			

The results indicate that this intersection will have LOS levels of C or better. The unsignalized intersection HCM analyses are included in Appendix B.

Table Seven shows the analysis for the Walmart and Cedar Hills Drive intersection, with and without the proposed development.

Cedar Hills America First Credit Union Traffic Study Table Seven HCM PM Peak Period Intersection Analysis - Delay/LOS Evaluation Walmart and Cedar Hills Drive						
Delay / LOS 2014 Existing 2014 with Site (in sec)						
Eastbound Left 8.2/A 8.2/A						
Westbound Left	Westbound Left N/A 8.1/A					
Northbound Left N/A 23.5/C						
Northbound Thru/Right N/A 10.3/B						
Southbound Left	24.1/C	39.3/E				
Southbound Thru/Right	10.2/B	10.2/B				

The table shows that the addition of the fourth leg of the intersection impacts the southbound left turn (this is because it introduces opposing traffic with impacts the level of service). While the southbound left turn has a fairly high volume that is generated from the Walmart Store, the new development will not have high volumes. Detailed HCM analyses are included in Appendix B.

Cedar Hills America First Credit Union Traffic Study Table Eight HCM PM Peak Period Intersection Analysis - Delay/LOS Evaluation Access A (America First Access on Hart Street)				
Delay / LOS 2014 with Site (in sec)				
Eastbound Left	7.5/A			
Westbound Left 7.3/A				
Northbound Approach 9.2/A				
Southbound Approach	8.8/A			

The Hart's accesses were not counted, but it was assumed that traffic would use the east access. This shows that this access is LOS A or better and there is little to no queuing.

The other minor accesses to the site were not analyzed as they were either right-in/right-out or such low volumes that the analysis was not necessary.

B. Signalized Analysis

A similar HCM analysis was performed for the 4800 West and Cedar Hills Drive signalized intersection. The signal timing was based on a 60 second cycle length. Signal phases were estimated assuming efficient flow with a one minute cycle length. This was based on permitted phasing only, although the intersection also includes protected/permitted phasing if necessary. Therefore, the analysis is conservative.

Table Nine shows the results of the analysis.

Cedar Hills America First Credit Union Traffic Study Table Nine PM Peak Hour HCM Delay / LOS Analysis for Signalized Intersection					
Delay / LOS (in sec)	4800 West and Cedar Hills Street				
Period	2014 Existing	2014 with Site			
Eastbound Left	13.7/B	13.7/B			
Eastbound Thru	12.8/B	12.9/B			
Eastbound Right	0.0/A	0.0/A			
Eastbound Approach	11.6/B	11.7/B			
Westbound Left	17.0/B	17.1/B			
Westbound Thru	12.9/B	12.9/B			
Westbound Right	0.1/A	0.1/A			
Westbound Approach	12.5/B	12.0/B			
Northbound Left	7.2/A	7.4/A			
Northbound Thru	8.8/A	8.9/A			
Northbound Right	0.1/A	0.1/A			
Northbound Approach	6.9/A	7.0/A			
Southbound Left	14.0/B	14.9/B			
Southbound Thru	8.5/A	8.6/A			
Southbound Right	0.0/A	0.0/A			
Southbound Approach	10.0/B	10.3/B			
Intersection	9.2/A	9.3/A			

The results of the analysis indicate that the development will have no significant impact on the 4800 West and Cedar Hills Drive signal.

C. Queue Analysis

For this portion of the report, only critical queuing was reviewed.

For unsignalized intersections a two minute storage requirement (the projected movement divided by 60 minutes x 2 minutes has been assumed x 25 feet per car) has been assumed. The queue lengths are rounded to the next nearest 25-foot interval and represent a minimum that should be provided.

For the Hart's Street and 4800 West intersection, the southbound left turn queue is of interest because of the short distance between this intersection and the traffic signal to the north (approximately 280 feet of left turn storage space between the two intersections). Based on the southbound left turn, 50 feet of storage would be required (59 left turns per hour/60 minutes x 2 minutes x 25 feet).

For the northbound left turn at 4800 West and Cedar Hills Drive, the signalized HCS software was used to calculate the queuing. The software showed that the 95 percentile queue was .5 cars or 15 feet. This was based on permitted phasing only, although the intersection also includes protected/permitted phasing if necessary. Therefore, the analysis is conservative.

Therefore, the available distance between these two intersections is sufficient for back to back left turn storage. This analysis only considers the PM Peak hour. The AM Peak hour should not be at issue as the America First Credit Union is not open. There may be hours of the day, future growth, changes in traffic patterns or trip distributions that are different that have been assumed in this report. Therefore, it is recommended that these turns/intersections be monitored for conflicts between the left turn movements, by the City. Due to the short distance available between intersections, future mitigation should be considered if necessary.

V. Conclusions/Recommendations

The results of the highway capacity analysis show that the existing intersections and proposed accesses will continue to operate at acceptable levels of service with the addition of the America First Credit Union. As per the queue analysis, there is sufficient storage to accommodate the back to back left turns on 4800 West (northbound left at Cedar Hills Drive and Southbound left at Hart Street).

The accesses, streets, signing and striping should be constructed to Cedar Hills standards and MUTCD standards.

APPENDICES

Appendix A Appendix B Traffic Counts

Access and Intersection Analyses

Appendix A

Traffic Counts

WEEKDAY PEAK HOUR VOLUMES

INTERSECTION:

N-S STREET: 4800 West

E-W STREET: Convenience Store

PK HR VOLUME: 113
PHF: 0.81
PEAK HOUR:

FROM: TO:

5:00 PM | 6:00 PM

COUNT DATE:

1/20/2009

NOTES:

COUNT TIME:

FROM: 4:00 PM TO: 6:00 PM Convenience Store 0

NORTH

С

6

Weekday Traffic

COUNT DATA INPUT:

4800 West	
-----------	--

TIME PER	RIOD		Southboun	d		Westbound	t		Northbound	1		Eastbound		TOTAL
FROM:	TO:	L	Т	R	L	Т	R_	L	Т	R	· L	Т	R	VOLUMES
4:00 PM	4:15 PM	11			4		18			0				33
4:15 PM	4:30 PM	12		-	2		15			1				30
4:30 PM	4:45 PM	10			1		16			0				27
4:45 PM	5:00 PM	7			2		12			0				21
5:00 PM	5:15 PM	13			2		20			0				35
5:15 PM	5:30 PM	10			11		8			0				19
5:30 PM	5:45 PM	9			1		14			0				24
5:45 PM	6:00 PM	10			2		12			0				24

WEEKDAY HOURLY TOTALS:

TIME PER	IOD		Southbound	t		Westbound	t		Northbound	t		Eastbound		TOTAL
FROM:	TO:	L	Т	R	L	T	R	L	T	R	L	Т	<u> </u>	VOLUMES
4:00 PM	5:00 PM	40	0	0	9	0	61	0	0	1	0	0	0	111
4:15 PM	5:15 PM	42	0_	0	7	0	63	0	0	1	0	0	0	113
4:30 PM	5:30 PM	40	0	0	6	0	56	0	0	0	0	0	0	102
4:45 PM	5:45 PM	39	0	0	6	0	54	0	0	0	0	0	0_	99
5:00 PM	6:00 PM	42	0	0	6	0	54	0	0	0	0	0	0	102
							J						L	

^{*}NOTE* PHF IS BASED ON 15 MIN. PEAK WITHIN THE PEAK HOUR.

WEEKDAY PEAK HOUR VOLUMES

INTERSECTION:

N-S STREET:

Walmart

E-W STREET:

Cedar Hills Parkway

FROM: TO:

COUNT DATE:

1/20/2009

NOTES:

COUNT TIME:

FROM: TO:

4:00 PM 6:00 PM

6:00 PM

30

PK HR VOLUME: 318 PHF: 1.01

PEAK HOUR:

5:00 PM | 6:00 PM

Cedar Hills Parkway

Walmart

112

20

NORTH

67

Weekday Traffic

COLINT DATA INPLIT:

5:45 PM

OCCIVI DATA IN C	1.													
TIME PER	RIOD		Southbound	d		Westbound	d		Northbound	d		Eastbound		TOTAL
FROM:	TO:	L	Т	R	L	T	_ R	L	_T	R	L	T	R _	VOLUMES
4:00 PM	4:15 PM	32		11			13				24			80
4:15 PM	4:30 PM	36		10			15				16			77
4:30 PM	4:45 PM	19		14			15	-	_		21			_69
4:45 PM	5:00 PM	33		12			13				29			87
5:00 PM	5:15 PM	24		13			12				29			78_
5:15 PM	5:30 PM	31		13			13				22			79
5:30 PM	5:45 PM	27		10			17				20			74

12

WEEKDAY HOURLY TOTALS:

TIME PER	RIOD		Southboun		,	Westboun	d		Northbound	<u>d</u>		Eastbound		TOTAL
FROM:	TO:	L L	Т	R	L	Т	R	L	T	R	L	Т	_R	VOLUMES
4:00 PM	5:00 PM	120	0	47	0	0	56	0	0	0	90	0	0	313
4:15 PM	5:15 PM	112	0	49	0	0	55	0	0	_0	95	0	0	311
4:30 PM	5:30 PM	107	0	52	0	0	53	0	0	0	101	0	0	313
4:45 PM	5:45 PM	115	0	48	0	0	55	0	0	0	100	0	0	318
5:00 PM	6:00 PM	112	0	41	0	0	54	0	0	0	91	0	0	298
												<u> </u>		
												<u> </u>		
			İ	J		l	l _		_					

^{*}NOTE* PHF IS BASED ON 15 MIN. PEAK WITHIN THE PEAK HOUR.

WEEKDAY PEAK HOUR VOLUMES

INTERSECTION:

PK HR VOLUME:

1,763

N-S STREI 4800 West

PHF:

0.84

E-W STRE Cedar Hills Parkway PEAK HOUR:

FROM: TO:

4:45 PM | 5:45 PM

COUNT D/ 1/30/1995

NOTES:

COUNT TIME:

FROM: 4:00 PM TO: 6:00 PM

Cedar Hills Parkway

54

14

178

NORTH

17

461

Weekday Traffic

COUNT DATA INPUT:

48	00 West	

TIME P	PERIOD		Southbound			Westbound			Northbound			Eastbound		TOTAL
FROM:	TO:	Ĺ	Т	R	L	T	R	L	T	R	L	T	R_	VOLUMES
4:00 PM	4:15 PM	26	116	0	34	0	_36	3	98	36	6	2	9	366
4:15 PM	4:30 PM	45	136	2	39	5	23	2	126	54	13	4	3	452
4:30 PM	4:45 PM	26	128	0	40	1	36	1	108	55	6	3	4	408
4:45 PM	5:00 PM	40	121	2	32	2	29	0	116	38	6	4	2	392
5:00 PM	5:15 PM	42	105	0	46	2	20	3	119	43	5	1	_ 1	387
5:15 PM	5:30 PM	46	109	1	41	9	26	3	144	56	9	1	7	452
5:30 PM	5:45 PM	54	139	3	45	1	30	4	148	66	23	6	3	522_
5:45 PM	6:00 PM	36	108	0	44	5	18	2	121	39	17	6	6	402

WEEKDAY HOURLY TOTALS:

TIME P	PERIOD		Southbound	d d		Westbound	<u></u>		Northbound	<u> </u>		Eastbound	i	TOTAL
FROM:	TO:	L	Т	R	L	Т	R	Ĺ	56	R	L	Τ	R	VOLUMES
4:00 PM	5:00 PM	137	501	4	145	8	124	6	448	183	31	13	18	1,618
4:15 PM	5:15 PM	153	490	4	157	10	108	6	469	190	30	12	10	1,639
4:30 PM	5:30 PM	154	463	3	159	14	111	7	487	192	26	9	14	1,639
4:45 PM	5:45 PM	182	474	6	164	14	105	10	527	203	43	12	13	1,753
5:00 PM	6:00 PM	178	461	4	176	17	94	12	532	204	54	14	17	1,763
		_									Ī			

^{*}NOTE* PHF IS BASED ON 15 MIN. PEAK WITHIN THE PEAK HOUR.

Appendix B Access and Intersection Analyses

	TWO	-WAY STOP	CONTR	OL SUM	MARY			
General Information			Site I	nforma	tion			
Analyst Agency/Co. Date Performed Analysis Time Period	Falcon Tra 3/10/2014 PM Peak		Interse Jurisdio Analys	ction		Hart's and Cedar Hil 2014		/
Project Description Am		dit Union			_			
East/West Street: Hart's			North/S	South Stre	eet: 4800 V	Vest		
Intersection Orientation:	North-South		Study I	Period (hi	rs): 0.25			
Vehicle Volumes and	d Adjustme	ents	All Challeng and a Charmacolf house					7.00
Major Street		Northbound				Southboo	und	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume	0	694	0		42	612		0
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR	0	771	0		46	680	$-\!$	0
Percent Heavy Vehicles	0		<u> </u>		0			
Median Type		- 		Vay Left T	Turn Lane	,		
RT Channelized		 	0		,	_		0
Lanes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Upstream Signal	-	0	<u> </u>			0		
Minor Street		Westbound				Eastbou		
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume	6	0	54		0	0		0
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR	6	0	60		0	0		0
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0	ı		_	0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	1	0	1		0	0		0
Configuration	L		R					
Delay, Queue Length, ai	nd Level of S	ervice						
Approach	NB	SB	,	Westbou	nd	1	Eastboun	d
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v (vph)		46	6	i –	60	1	<u> </u>	†
C (m) (vph)		853	299		618			+
v/c		0.05	0.02	-	0.10	<u> </u>		+
95% queue length		0.03	0.02	 	0.70	 	 	
Control Delay		9.5	17.3		11.5		<u> </u>	
LOS		Α	С		В	<u> </u>		
Approach Delay				12.0				
Approach LOS		<u></u>		В				

Rights Reserved

Version 4.1d

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

_	TWO	-WAY STOP	CONTR	OL SU	MMARY				
General Information	TWO-WAY STOP CONTROL SUMMARY Site Information Falcon Traffic Intersection Hart's and 4800 V Jurisdiction Cedar Hills								
Analyst Agency/Co. Date Performed Analysis Time Period	3/10/2014	affic		ction			ls		
Project Description Am		dit Union			_				
East/West Street: Hart's	Street		North/S	South St	reet: 4800 k	Vest			
Intersection Orientation:	North-South		Study F	Period (hrs): <i>0.25</i>				
Vehicle Volumes an	d Adjustme	ents		·					
Major Street		Northbound		Southbound 5					
Movement	1	2	3		4	5		6	
	L	Т	R		L	T		R	
Volume	0	694	24		59	612		0	
Peak-Hour Factor, PHF	0.90	0.90	0.90	-+	0.90	0.90		0.90	
Hourly Flow Rate, HFR	0	771	26	_	65	680	-	0	
Percent Heavy Vehicles	0			/ov.1 = 50	O Tum I and				
Median Type				ay Left	Tum Lane	1			
RT Channelized		+	0					0	
Lanes	0	2	0 TD		1	T			
Configuration		T 0	TR		L				
Upstream Signal	-					0 Fastbound			
Minor Street		Westbound				Eastbound			
Movement	7	8 -	_	9 10					
	L	Т	R		<u> </u>	T		R	
Volume	6	0	54		0	0		0	
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90	
Hourly Flow Rate, HFR	6	0	60		0	0		0	
Percent Heavy Vehicles	0		0		0	0		0	
Percent Grade (%)		0	<u> </u>			0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	1	0	1		0	0		0	
Configuration	L		R						
Delay, Queue Length, aı	nd Level of S	ervice							
Approach	NB	SB		Westbo	und	E	Eastbound		
Movement	1	4	7	8	9	10	11	12	
Lane Configuration		L	L		R				
v (vph)	1	 65	6		60			1	
C (m) (vph)		834	285		607			+	
ν/c	-	0.08	0.02		0.10				
	+								
95% queue length		0.25	0.06		0.33			+	
Control Delay		9.7	17.9		11.6				
LOS		A	С		В				
Approach Delay				12.2					
Approach LOS	_	B							

Rights Reserved

Version 4.1d

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

	1 440	D-WAY STOP	CONTR	<u> </u>	ALIAIVALA				
General Information			Site I	nforma	tion				
Analyst	Falcon Tra	ffic	Interse	ction		Cedar Hill	s and Wal	mart	
Agency/Co.	Cedar Hills		Jurisdi	ction					
Date Performed	3/10/2014		Analys	is Year		2014			
Analysis Time Period	PM Peak			*					
Project Description	·								
East/West Street: Cedar					eet: Walma	rt Access			
ntersection Orientation:	East-West		Study F	Period (h	rs): 0.25				
/ehicle Volumes and	d Adjustmen	ts							
Major Street		Eastbound				Westbou	nd		
Movement	1	2	3		4	5		6	
	L	Т	R		L	Т		R	
/olume (veh/h)	91	305	0		0	246		54	
Peak-hour factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90	
Hourly Flow Rate (veh/h)	101	338	0		0	273		60	
Proportion of heavy	0				0				
vehicles, P _{HV}			1						
Median type		-		Undivid	ded	ı	1		
RT Channelized?		 	0					0	
anes	1 1	1	0		0	1		0	
Configuration		T						TR	
Jpstream Signal	<u> </u>	0				0			
Minor Street		Northbound				Southbou	ınd		
Movement	7	8	9		10	11		12	
	L	T	R		L	T		R	
/olume (veh/h)	0	0	0		112	0		41	
Peak-hour factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90	
Hourly Flow Rate (veh/h)	0	0	0		124	0		45	
Proportion of heavy vehicles, P _{HV}	О	0	0		0	0		0	
Percent grade (%)		0				' 0			
Flared approach		<u> </u>				T N			
Storage		0	+		-	0			
RT Channelized?		 	 			 	-	0	
	0	0	0			0			
Lanes Configuration	+ -	+	+		1	+ -	-+	1	
	1 1 1 1 1	<u> </u>			<u>L</u>	<u> </u>		R	
Control Delay, Queue Le			_	NI - 41 1	. 1	1 -			
Approach	EB	WB		Northbo			Southboun	_	
Movement	1	4	7	8	9	10	11	12	
ane Configuration	L					L		R	
Volume, v (vph)	101					124		45	
Capacity, c _m (vph)	1238					310		741	
//c ratio	0.08					0.40		0.06	
Queue length (95%)	0.27					1.85		0.19	
Control Delay (s/veh)	8.2			-		24.1			
								10.2	
LOS	Α			<u> </u>		С	L	В	
Approach delay (s/veh)							20.4		
Approach LOS			I				С		

1 44	U-WAT 310F	•			te Information ersection Cedar Hill			
		Site Ir	nfor <u>m</u> a	ation				
Falcon Tr	affic	Interse	ction			Cedar Hill	s and Wa	almart
	!	Analys	is Year			2014	_	
PM Peak								
						Access	_	
		Study F	Period (I	hrs):	0.25		_	
<u>l Adjustme</u> i								
							nd	
								6
		_						R
	_							54
								0.90 60
 	33/	+				2/0		00
0		_			0			
+			Lindiy	idad				
		1 0	Ondivi	lueu				0
1	 				1	1		$-\frac{\sigma}{\sigma}$
+			-			,		TR
 		+ "	_			0		
+			_				ınd	
7		Т о	 +		10		ina T	12
† '								R
11				- 1		-		41
			<u> </u>					0.90
		_					- 	45
- '	-	 	_					-10
0	0	0			0	0		0
	0					0		
}		Т	-					
+		+	_			.		
+		 				· · · · · ·		
-			\rightarrow		4			0
	7		\rightarrow			7		0
		<u> </u>			L			TR
				ound				_
			8				11	12
			<u> </u>					TR
					8			45
1232	1206	207			689	224		737
0.09	0.02	0.06			0.01	0.55		0.06
0.28	0.07	0.18			0.04	3.00		0.19
8.2	8.1	23.5			10.3	39.3		10.2
A	Α	С		\neg	В	Ε		В
					_		ı	
			18.2	2			31.6	
	Falcon Tr Cedar Hill 3/10/2014 PM Peak Hills Drive East-West Adjustmen 1 L 96 0.90 106 0 1 L 7 L 11 0.90 12 0 1 L mgth, Level of EB 1 L 106 1232 0.09 0.28 8.2	Falcon Traffic Cedar Hills 3/10/2014 PM Peak	Falcon Traffic	Falcon Traffic	Falcon Traffic Intersection Jurisdiction Analysis Year PM Peak	Cedar Hills 3/10/2014 PM Peak Jurisdiction Analysis Year	Falcon Traffic	Site Information Falcon Traffic Cedar Hills Sintersection Cedar Hills Jurisdiction Analysis Year 2014 Falcon Traffic Jurisdiction Analysis Year 2014 Falcon Traffic Jurisdiction Analysis Year 2014 Falcon Traffic Analysis Year 2014 Analysis Year 2014

 $HCS2000^{\text{TM}}$

Copyright © 2003 University of Florida, All Rights Reserved

	TW	D-WAY STOP	CONTRO	OL SUN	MARY							
General Information			Site Information									
Analyst	Falcon Tra	ffic	Interse			Hart's / Aı	Hart's / America First					
Agency/Co.			Jurisdi					_				
Date Performed	3/10/2014		Analys	is Year	•	2014 With	2014 With					
Analysis Time Period	PM Peak						4					
Project Description Ame	rica First Ceda	r Hills										
East/West Street: Hart's S	Street		North/S	outh Stre	eet: Americ	a First						
Intersection Orientation:	East-West		Study Period (hrs): 0.25									
Vehicle Volumes and	l Adjustmen	ts										
Major Street		Eastbound				Westbou	nd					
Movement	1	2	3		4	5		6				
	L	Т	R		L	T		R				
Volume (veh/h)	34	7	42		0	93		17				
Peak-hour factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90				
Hourly Flow Rate (veh/h)	37	7	46		0	103		18				
Proportion of heavy	0				0							
vehicles, P _{HV}				11-6-1								
Median type			T	Undivid	ea	1						
RT Channelized?		+ -	0			+ -		0				
Lanes	1	1	0 TD		1	1		<u>0</u>				
Configuration	L		TR		L			TR				
Upstream Signal		0				0						
Minor Street	_	Northbound	T 0			Southbou	ınd					
Movement	7	8	9		10	11		12				
	L	Т	R		L	T		R				
Volume (veh/h)	1	0	1		0	0		10				
Peak-hour factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90				
Hourly Flow Rate (veh/h) Proportion of heavy	1	0	1		0	0		11				
vehicles, P _{HV}	0	0	0		0	0		0				
Percent grade (%)		0	_			0						
Flared approach		N				N						
Storage		0				0						
RT Channelized?			0					0				
Lanes	0	1	0		0	1		0				
Configuration	1	LTR				LTR		-				
Control Delay, Queue Le	nath. Level of	Service										
Approach	EB	WB		Northbou	ind	.5	Southbound	<u> </u>				
Movement	1	4	7	8	9	10	11	12				
Lane Configuration	L		•	LTR		1	LTR	 				
Volume, v (vph)	37	0		2		-	11	 				
Capacity, c _m (vph)	1479	1566		851			947					
v/c ratio	0.03	0.00		0.00			0.01	 				
Queue length (95%)	0.08	0.00		0.01	_	1 -	0.04	†				
Control Delay (s/veh)	7.5	7.3	-	9.2		+ -						
						1	8.8	-				
LOS	Α	Α		A		-	A	<u> </u>				
Approach delay (s/veh)				9.2		-	8.8					
Approach LOS				A			A					

Copyright © 2003 University of Florida, All Rights Reserved

Detailed Report Page 1 of 2

General Inf	ormotio-				.03		, ,,			O REI					_		_	
Analyst Falcon Traffic Agency or Co. Date Performed 3/10/2014 Time Period PM Peak									Site Information Intersection 4800 West and Cedar Hills Area Type All other areas Jurisdiction Cedar Hills Analysis Year 2014 Project ID America First									
Volume and	d Timing	Inpu	ıt							_								-
				E		DT		WE	_				NB	T 5.	_		SB	БТ
Number of la	anes N		LT 1	T⊦ 1	+	RT 1	LT 1	TH 1	\dashv	RT 1	LT 1	+	H	1 R		LT 1	TH 2	RT 1
Lane group	1	_	L	T	+	<u>'</u> R	L	+ +	\dashv			+	- 	R		L	T	R
Volume, V (vph)		54	14	+	17	176	17	\dashv	94	12	53		20		178	461	4
% Heavy ve	<u> </u>	HV	0	0	+	0	0	0	\dashv	0	0			0		0	0	0
Peak-hour f			0.90	0.90		.90	0.90	0.90		0.90	0.90	0.9		0.9		0.90	0.90	0.90
Pretimed (P (A)			Р	Р		P	P	P		P	P	F		P		P	P	Р
Start-up lost	t time, I ₁		2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.	2.0)	2.0	2.0	2.0
Extension of effective green, e		-	2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.	2.0)	2.0	2.0	2.0
Arrival type, AT			3	3		3	3	3		3	3	3	}	3		3	3	3
Unit extension, UE			3.0	3.0	1	3.0	3.0	3.0	,	3.0	3.0	3	.0	3.	0	3.0	3.0	3.0
Filtering/metering, I			1.000	1.00	00 1.000		1.000	1.00	0	1.000	1.000	1.0	1.000		00	1.000	1.000	1.000
Initial unmet	demand,	Q_b	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.	0	0.0	0	0.0	0.0	0.0
Ped / Bike / volumes	RTOR	-	0			5	0			30	0			50)	0		1
Lane width			12.0	12.0		2.0	12.0	0 12.0		12.0	12.0	12.0		12.0		12.0	12.0	12.0
Parking / Gr	ade / Par	king	N	0 N		N	N	0		N	N	C	0		_	N	0	N
Parking mai	neuvers, I	N _m																
Buses stopp			0	0		0	0	0		0	0		0 0)	0	0	0
Min. time fo	•			3.2				3.2	?			3	.2				3.2	
Phasing	EW Peri	-	02			03	+	04	4	NS P			06			07		80
Timing	G = 21.0 $Y = 4$	_	3 = (=		G = Y =	_	G =		+	G = 3 $Y = 4$		G = Y =		_	G Y:		G = Y ≃	
Duration of							_ <u>_</u>		!			_	le Le	engt		C = 60		
Lane Group	o Capacit	y, C			y, aı	nd LC			ati	on								
		LT	EI	_	RT	+-		WB TH	R	, -	LT	NE		RT	_	LT	SB TH	RT
Adjusted flow rate, v 60		_	16		RT LT 3 196		19	7		13	591	TH 591		ᅥ	198	512	3	
Lane group		496		十					16		39			171 1615		393		1615
v/c ratio, X 0.12													_				Ь	

Detailed Report Page 2 of 2

Total green ratio, g/C	0.35	0.35	1.00	0.35	0.35	1.00	0.52	0.52	1.00	0.52	0.52	1.00
Uniform delay, d ₁	13.2	12.8	0.0	14.7	12.8	0.0	7.1	8.4	0.0	9.5	8.2	0.0
Progression factor, PF	1.000	1.000	0.950	1.000	1.000	0.950	1.000	1.000	0.950	1.000	1.000	0.950
Delay calibration, k	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Incremental delay, d ₂	0.5	0.1	0.0	2.3	0.1	0.1	0.1	0.4	0.1	4.6	0.4	0.0
Initial queue delay, d ₃												
Control delay	13.7	12.8	0.0	17.0	12.9	0.1	7.2	8.8	0.1	14.0	8.5	0.0
Lane group LOS	В	В	Α	В	В	Α	Α	Α	Α	В	Α	Α
Approach delay	11.6			12.5				6.9		10.0		
Approach LOS	В			В				A	_	В		
Intersection delay	9	9.2			$X_{c} = 0.46$			ection LO	os –	A		

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

				ICS2	2000) [™] DE	_	_	D RE		<u>T</u>				_		
General Information		_				_	\rightarrow		nform								
Analyst Falco Agency or Co. Date Performed 3/10/. Time Period PM F	Are Jui An	Intersection 4800 West and Cedar Hills Area Type All other areas Jurisdiction Cedar Hills Analysis Year 2014 Project ID America First															
Volume and Timing	Input					_			-								
		-	E				WE	_				NB				SB	
	_	LT		_	₹T	LT	TH		RT	LT	4	TH	R	Γ	LT	TH	RT
Number of lanes, N ₁		1	1		1	1	1		1	1	_	2	1		1	2	1
Lane group		L	Τ	F	₹	L	T		R	L		<u></u>	R		L	T	R
Volume, V (vph)		54	22	1	7	176	20		107	18		544	204	4	185	478	4
% Heavy vehicles, %I	ΗV	0	0	()	0	0		0	0		0	0		0	0	0
Peak-hour factor, PHI	= <i>c</i>	0.90	0.90	0.	90	0.90	0.90)	0.90	0.90	,	0.90	0.9	0	0.90	0.90	0.90
Pretimed (P) or actua (A)	ted	Р	Р	,		Р	Р		P	P		Р	Р		Р	Р	Р
Start-up lost time, I ₁	1	2.0	2.0	2.	2.0		2.0		2.0	2.0		2.0	2.0)	2.0	2.0	2.0
Extension of effective green, e		2.0	2.0	2	.0	2.0	2.0		2.0	2.0		2.0	2.0 2.0		2.0	2.0	2.0
Arrival type, AT		3	3	,	3	3	3		3	3		3	3		3	3	3
Unit extension, UE		3.0	3.0	3.	3.0 3.0		3.0)	3.0	3.0	3.0		3.0		3.0	3.0	3.0
Filtering/metering, I		.000	1.00	00 1.0	1.000 1.0		1.00	0	1.000	1.00	0	1.000	1.000		1.000	1.000	1.000
Initial unmet demand,	Q _b	0.0	0.0	0	.0	0.0	0.0		0.0	0.0	1	0.0	0.0	,	0.0	0.0	0.0
Ped / Bike / RTOR volumes		0			5	0			30	0			50)	О		1
Lane width	1	12.0	12.0	0 12	2.0	12.0	12.0		12.0	12.0	,	12.0	12.0		12.0	12.0	12.0
Parking / Grade / Parking	king	N	0	7	v	N	0		N	N	1	0	N		N	0	N
Parking maneuvers, N	\									 	7						
Buses stopping, N _B		0	0	7	0 0		0		0	0		0	0		0	0	0
Min. time for pedestria	ans,		3.2	<u>_</u>			3.2	?				3.2			3.2		•
Phasing EW Perr	_	02			3		04		NS F	erm		06			07		80
Timing $G = 21.0$	-			G =		G =			G = 3		G		\Box	G:		G =	
Y = 4	<u> Y</u>		_	Y =		Y =			Y = 4	<u> </u>	Y		200	Y =		<u> </u>	
Duration of Analysis, Lane Group Capacit			Do!o	1/ 25	<u> </u>	S Dat	ormi-	106	ior		<u>Γυ</u>	ycle Le	engti	Ι, С	c = 60	.0	_
Lane Group Capacit	y, CO	E		y, aii	T		WB	iali	<u> </u>	 -	j	NB		Т		SB	
	LT	TH	_	RT	L		TH	R	T	LT		H	RT	╛	LT	TH	RT
Adjusted flow rate, v	60	24		13	19	6 2	22	8	6	20	60	04	171		206	531	3
Lane group capacity, c	494	665	5	1615	49	3 6	65	1615		127	18	65	1615		386	1865	1615
v/c ratio, X 0.12			0.01		0.4		.03	0.05		0.05	١,	0.32 0.			0.53	0.28	0.00

Detailed Report Page 2 of 2

Total green ratio, g/C	0.35	0.35	1.00	0.35	0.35	1.00	0.52	0.52	1.00	0.52	0.52	1.00
Uniform delay, d ₁	13.2	12.8	0.0	14.7	12.8	0.0	7.2	8.4	0.0	9.7	8.2	0.0
Progression factor, PF	1.000	1.000	0.950	1.000	1.000	0.950	1.000	1.000	0.950	1.000	1.000	0.950
Delay calibration, k	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Incremental delay, d ₂	0.5	0.1	0.0	2.4	0.1	0.1	0.2	0.5	0.1	5.2	0.4	0.0
Initial queue delay, d ₃	:											
Control delay	13.7	12.9	0.0	17.1	12.9	0.1	7.4	8.9	0.1	14.9	8.6	0.0
Lane group LOS	В	В	Α	В	В	Α	Α	Α	Α	В	Α	Α
Approach delay	11.7			12.0				7.0		10.3		
Approach LOS	В			В				Α		В		
Intersection delay	9.3			$X_{c} = 0.48$			Interse	ection LC	os	Α		

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved