Modele równowagi ogólnej - lista 2 termin oddania: zajęcia 20 listopada

Zadanie 1 (2p) Znajdź zbiór alokacji Pareto-optymalnych dla gospodarki z 2 konsumentami, każdy z preferecjami: $u_i(x_i^1, x_i^2, x_i^3) = x_i^1 + \sqrt{x_i^2} + \sqrt{x_i^3}$ i każdy z wyposażeniem początkowym: $\omega_i = (0, 0, 12)$ oraz jedną firmą ze zbiorem technologicznym $Y = \{(y^1, y^2, y^3) \in \mathbf{R} : y^1 + \beta y^2 \leq 2\sqrt{-y^3}; y^3 \leq 0\}, gdzie \beta > 1.$

Zadanie 2 (2p) Rozpatrz gospodarkę wymiany: $u_1(x_A, x_B) = 2\sqrt{x_A x_B}$, $u_2(x_A, x_B) = 3 \ln(x_A) + \ln(x_B)$, $e_1 = (2, 0)$, $e_2 = (0, 4)$.

- Policz ceny w równowadze Walrasowskiej z ceną dobra A znormalizowaną do jedności oraz mnożniki Lagrangea dla ograniczeń budżetowych (użyj wskaznaych funkcji użyteczności, a nie ich transformacji).
- Wyznacz wartości λ_i, aby alokacja w równowadze Walrasowskiej maksymalizowała społeczną funkcję celu na zbiorze alokacji dopuszczalnych. Skomentuj wyniki w świetle twierdzenia Negishi.

Zadanie 3 (2p) Rozpatrz gospodarkę wymiany z dwoma dobrami x, y oraz z I = [0, 1] gospodarstwami domowymi, każde i-te o preferencjach $u_i(x, y) = x^i y^{1-i}$. Wyposażenie początkowe każego konsumenta wynosi (3, 3).

- Przyjmij, ze ceny sumują się do jedności. Wyprowadź popyt i-tego konsumenta jako funkcję i oraz p_x, p_y .
- Wyznacz cenę w równowadze zrównując sumę podaży z sumą popytu.
- Wyznacz alokacje w równowadze dla i-tego gospodarstwa domowego.

Zadanie 4 (2p) Rozpatrzmy gospodarkę wymiany E z dwoma konsumentami 1,2 oraz dwoma dobrami A,B, gdzie konsumenci mają użyteczność postaci: $u_1(x_1) = \min\{x_1^A, x_1^B\}$ a $u_2(x_2) = x_2^A + x_2^B$. Niech wyposażenie początkowe wynosi: $\omega_1 = \omega_2 = (5,5)$. Znajdź jądro gospodarki E i alokacje w równowadze Walrasowskiej.

Zadanie 5 (2p) Niech $S_i = \{0, 1\}^2$ dla $i \in I = \{1, ..., 100\}$.

- $Podaj \sum_{i=1}^{I} S_i \ oraz \ con \sum_{i=1}^{I} S_i$,
- Zilustruj twierdzenie Shapleya-Folkmana dla pary (42.3, 1.7) $\in con \sum_{i=1}^{I} S_i$.