Métodos Numéricos para Equações de Derivadas Parciais

Caderno de Exercícios

Mestrado em Matemática e Computação

2022/23

Conteúdo

1	Fund	damentos	1
	1.1	Normas vetoriais e matriciais	1
	1.2	Valores Próprios	3
	1.3	Diferenças finitas para aproximar derivadas	4
	1.4	Classificação de EDP de 2ª ordem	5
	1.5	Fórmulas de diferenças finitas	5
	1.6	MATLAB	6
	1.7	Alguns resultados de Análise	7
	1.8	Alguns resultados de Álgebra Linear	9
	1.9	Soluções de alguns exercícios	10
2	Equ	ações parabólicas	16
	2.1	Método explícito	16
	2.2	Método de Crank-Nicolson	17
	2.3	Erro de truncatura local	18
	2.4	Consistência, estabilidade, convergência	19
	2.5	Condições de fronteira envolvendo derivadas	20
	2.6	Soluções de alguns exercícios	21
3	Equ	ações elípticas	34
	3.1	Problemas de Dirichlet	34
	3.2	Diferenças finitas em coordenadas polares	37
	3.3	Problemas com condições de Neumann	38
	3.4	Considerações computacionais	39
	3.5	Soluções de alguns exercícios	41
4	Equ	ações hiperbólicas	55
	4.1	Método das características para equações de $1^{\underline{a}}$ ordem	55
	4.2	Métodos de diferenças finitas para equações de 1ª ordem	56
	4.3	Equação das ondas	58
	4.4	Soluções de alguns exercícios	59
Re	eferên	ncias	70

#1 Fundamentos

Neste primeiro capítulo serão recordados alguns resultados de Análise, Álgebra Linear e Análise Numérica relevantes para o curso. É também introduzida a classificação de EDP de 2ª ordem e são deduzidas as fórmulas de diferenças finitas para EDP.

1.1 Normas vetoriais e matriciais

Seja X um espaço vetorial sobre um corpo \mathbb{K} (\mathbb{R} ou \mathbb{C}). Uma aplicação $\| \cdot \| : X \longrightarrow \mathbb{R}$ diz-se uma norma¹ se satisfizer as seguintes propriedades:

N1.
$$\forall x \in X$$
, $||x|| \ge 0$ e $||x|| = 0 \Leftrightarrow x = 0$;

N2.
$$\forall x \in X, \forall \alpha \in \mathbb{K}, \|\alpha x\| = |\alpha| \|x\|;$$

N3.
$$\forall x, y \in X$$
, $||x + y|| \le ||x|| + ||y||$.

Uma norma matricial $\| . \| : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}$ diz-se

- submultiplicativa se $||AB|| \le ||A|| \, ||B||, \, \forall A, B \in \mathcal{M}_n(\mathbb{K});$
- \longrightarrow compatível (ou consistente) com uma dada norma vetorial $\|.\|_v$, se

$$||Ax||_{n} \leq ||A|| ||x||_{n}, \ \forall A \in \mathcal{M}_{n}(\mathbb{K}), \forall x \in \mathbb{K}^{n};$$

wo induzida por (ou subordinada a) uma dada norma vetorial $\| \, . \, \|_v$, se for definida por

$$||A|| = \max\left\{\frac{||Ax||_v}{||x||_v} : x \in \mathbb{K}^n, x \neq 0\right\}, \quad \forall A \in \mathcal{M}_n(\mathbb{K}).$$

Normas induzidas pelas normas vetoriais usuais²

Norma vetorial	Designação	Norma matricial induzida	Designação
$ x _1 = \sum_{i=1}^n x_i $	norma 1 ou da soma	$ A _1 = \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} $	norma da soma por colunas
$\ x\ _{\infty} = \max_{1 \le i \le n} x_i $	norma infinita ou do máximo	$ A _{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} $	norma da soma por linhas
$ x _2 = \left(\sum_{i=1}^n x_i ^2\right)^{1/2}$	norma 2 ou euclidiana	$\ A\ _2 = \sqrt{\rho(A^*A)}$	norma 2 ou espetral

¹Se $X = \mathbb{K}^n$, falamos de norma vetorial e quando $X = \mathcal{M}_n(\mathbb{K})$ (espaço das matrizes quadradas de ordem n com elementos em \mathbb{K}) falamos numa norma matricial.

 $^{^2}$ As normas matriciais induzidas pelas normas vetoriais $\|\cdot\|_p$ com $p=1,2,\infty$ são denotadas pelo mesmo símbolo $\|\cdot\|_p$

Na tabela anterior, $x=(x_1,x_2,\ldots,x_n)$, $A=(a_{ij})_{n\times n}$, A^* representa a matriz transconjugada de A e $\rho(A)$ designa o raio espetral de A, i.e. $\rho(A)=\max\Bigl\{|\lambda|:\lambda$ é valor próprio de $A\Bigr\}$.

Exercício 1.1. Duas normas $\|\cdot\|_A$ e $\|\cdot\|_B$ sobre o mesmo espaço vetorial X dizem-se *equivalentes* se existirem constantes reais positivas c_1 e c_2 ($c_1 \le c_2$) tais que:

$$c_1 ||x||_A \le ||x||_B \le c_2 ||x||_A, \ \forall x \in X.$$

Mostre que

$$||x||_{\infty} \le ||x||_1 \le n||x||_{\infty} \text{ e } ||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}, \ \forall x \in \mathbb{K}^n.$$

Conclua³ que as normas $||\cdot||_1$, $||\cdot||_2$ e $||\cdot||_\infty$ são normas equivalentes em \mathbb{K}^n .

Exercício 1.2. ® Propriedades das normas subordinadas

Seja $\|.\|_v$ uma dada norma vetorial e seja $\|.\|$ a norma matricial induzida por essa norma vetorial. Mostre que:

- a) $||Ax||_v \leq ||A|| \, ||x||_v$, $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall x \in \mathbb{K}^n$ (ou seja, a norma matricial subordinada a uma norma vetorial é compatível com a norma vetorial que a define).
- b) $||AB|| \le ||A|| \, ||B||$, $\forall A, B \in \mathcal{M}_n(\mathbb{K})$, (ou seja, a norma matricial subordinada a uma norma vetorial é submultiplicativa).
- c) $||I_n|| = 1$, onde I_n é a matriz identidade de ordem n.

Exercício 1.3. Considere as funções $n_i:\mathcal{M}_n(\mathbb{K}) \to \mathbb{R}$ definidas por

$$n_1(A) = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|, \qquad n_2(A) = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}, \qquad n_3(A) = \max_{1 \le i, j \le n} |a_{ij}|,$$

onde $A=(a_{ij})$. Mostre que n_1 e n_2 são normas matriciais em $\mathcal{M}_n(\mathbb{K})$, mas n_3 não define uma norma de matriz.

A norma n_2 é habitualmente designada por *norma de Frobenius* e representa-se por $\|\cdot\|_F$.

Exercício 1.4. ®

- a) Mostre que, se $\|\cdot\|$ é uma norma matricial compatível com uma norma vetorial, então $\|I_n\| \geq 1.$
- b) Conclua que a norma matricial de Frobenius (e também a norma n_1 do exercício anterior) não é subordinada a nenhuma norma vetorial.
- c) Mostre que $||A||_2 \le ||A||_F \le \sqrt{n}||A||_2$. (Sugestão: Observe que AA^* é uma matriz simétrica semidefinida positiva e relembre que o traço de uma matriz é igual à soma dos seus valores próprios.)
- d) Conclua que a norma de Frobenius é compatível com a norma vetorial euclidiana.

Exercício 1.5. ® Mostre que, sendo $A \in \mathcal{M}_n(\mathbb{C})$, se tem $\rho(A) \leq ||A||$, para qualquer norma matricial compatível com uma norma vetorial.

 $^{^3}$ Na verdade, se X é um espaço vetorial de dimensão finita, então todas as normas são equivalentes.

1.2 Valores Próprios

Exercício 1.6. ® Teorema dos círculos de Gerschgörin⁴

Seja $A=(a_{ij})$ uma matriz quadrada de ordem n. Considere os círculos C_i ; $i=1,\ldots,n$, de centros nos pontos a_{ii} e raios

$$R_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

isto é,

$$C_i = \{ \lambda \in \mathbb{C} : |\lambda - a_{ii}| \le R_i \}.$$

Mostre que os valores próprios de A estão na união dos círculos C_i . Estes círculos C_i são chamados círculos (ou discos) de Gerschgörin.

Exercício 1.7. Demonstre os seguintes corolários do Teorema dos Círculos de Gerschgörin:

- a) se λ é valor próprio de A, então $|\lambda a_{jj}| \leq \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}|$, para pelo menos um j.
- b) uma matriz estritamente de diagonal dominante é não singular.
- c) uma matriz hermitiana tal que $a_{ii} > \sum_{\substack{j=1 \ i \neq j}}^{n} |a_{ij}|$; $i = 1, \dots, n$, é definida positiva.

Exercício 1.8. Use o Teorema dos Círculos de Gerschgörin para localizar geometricamente os valores próprios das seguintes matrizes.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \\ 1 & 1 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -1 & 0 \\ -1 & -3 & 1 \\ 1 & -1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & i & i \\ -i & 2 & 3 - 4i \\ -i & 3 + 4i & 3 \end{pmatrix}.$$

Exercício 1.9. Considere uma matriz tridiagonal $T_{d,e}=(t_{i,j})$ tal que

$$t_{ii} = d; i = 1 \cdots, n,$$
 $t_{i,i+1} = t_{i+1,i} = e, i = 1, \cdots, n-1.$

a) Verifique que, se $A = T_{0.1}$, então

$$Ax^{(j)} = 2\cos[j\pi/(n+1)]x^{(j)}; \ j=1,\dots,n,$$

onde $x^{(j)}$, $j=1,\cdots,n$ é o vetor cuja i-ésima componente é:

$$x_{i}^{(j)} = \text{sen}[ij\pi/(n+1)]; i = 1, \dots, n.$$

b) Mostre que os valores próprios de $T_{d,e}$ são

$$\lambda_j = d + 2e \cos[j\pi/(n+1)]; \ j = 1, \dots, n.$$

 $^{^4}$ Se a união de m círculos de Gerschgörin é disjunta dos restantes círculos, essa união contém exatamente m valores próprios (contando multiplicidades). Em particular, se um círculo é disjunto dos restantes, ele contém exatamente um valor próprio; a demonstração deste resultado pode ser vista em Wilkinson, J. H., *The Algebraic Eigenvalue Problem*, 1965.

1.3 Diferenças finitas para aproximar derivadas

Sejam x, x - h e x + h três pontos de um intervalo onde uma determinada função y (suficientemente regular) está definida. A tabela seguinte contém aproximações para a derivada y'(x), obtidas considerando as expansões em série de Taylor de y(x + h) e y(x - h).

Designação	Fórmula	Erro	Interpretação geométrica
Diferenças progressivas	$y'(x) \approx \frac{y(x+h) - y(x)}{h}$	$\mathcal{O}(h)$	x-h x $x+h$
Diferenças regressivas	$y'(x) \approx \frac{y(x) - y(x - h)}{h}$	$\mathcal{O}(h)$	x-h x $x+h$
Diferenças centrais	$y'(x) \approx \frac{y(x+h) - y(x-h)}{2h}$	$\mathcal{O}(h^2)$	x-h x $x+h$

Exercício 1.10. Obtenha a seguinte fórmula para aproximar y'(x):

$$y'(x) = \frac{2y(x+h) + 3y(x) - 6y(x-h) + y(x-2h)}{6h} + \mathcal{O}(h^3).$$

Exercício 1.11. Obtenha a seguinte fórmula centrada (de segunda ordem) para aproximar y''(x):

$$y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} + \mathcal{O}(h^2).$$

Exercício 1.12. $^{\circledast}$ Diga, justificando, se as fórmulas de diferenças progressivas, regressivas e centrais são as únicas fórmulas para aproximar y'(x) que envolvem combinações lineares de y(x+h), y(x) e/ou y(x-h).

1.4 Classificação de EDP de 2^a ordem

Consideremos uma EDP de segunda ordem linear, envolvendo duas variáveis x e y:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} = g(x, y, u) \ .$$

Por analogia com as cónicas, dizemos que a equação é $\left\{ \begin{array}{l} {\rm elíptica,\ se}\ B^2-4AC<0 \\ {\rm parabólica,\ se}\ B^2-4AC=0 \\ {\rm hiperbólica,\ se}\ B^2-4AC>0 \end{array} \right.$

Os parâmetros $A,\ B,\ C,\ D$ e E podem ser funções de x e y, o que significa que o sinal do discriminante $\Delta:=b^2-4ac$ pode variar de um ponto para outro, i.e. a equação pode mudar de regime.

Exercício 1.13. © Classifique as seguintes equações de derivadas parciais:

a)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$b) \quad \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$$

c)
$$\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x}$$

$$d) \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial x}$$

$$e) \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = g(x,y)$$

Exercício 1.14. Encontre as regiões onde as seguintes equações são parabólicas, elípticas e hiperbólicas e esboce as regiões resultantes no plano xy.

a)
$$y \frac{\partial^2 u}{\partial x^2} + 2x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = 0$$

b)
$$\frac{\partial^2 u}{\partial x^2} + 3x^2y^2\frac{\partial^2 u}{\partial x \partial y} + (x+y)\frac{\partial^2 u}{\partial y^2} = u$$

1.5 Fórmulas de diferenças finitas

Exercício 1.15. Seja u uma função de duas variáveis independentes x e y. Considere o plano XOY dividido em retângulos iguais de lados h e k, paralelos aos eixos coordenados OX e OY, respetivamente (ver figura abaixo), onde a origem coincide com um vértice dos retângulos. Seja P um ponto genérico desta rede (i.e., um vértice de um dos retângulos) de coordenadas

 $x_i=ih$, $y_j=jk$, com i e j inteiros. Denotemos o valor de u em P por $u_{i,j}:=u(ih,jk)$. Tendo em conta os resultados da Secção 1.3, obtenha as fórmulas da tabela abaixo. Assuma que u é suficientemente diferenciável.

Fórmula	Erro
$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$	$\mathcal{O}(h^2)$
$\left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}$	$\mathcal{O}(k^2)$
$\left(\frac{\partial u}{\partial y}\right)_{i,j} = \frac{u_{i,j+1} - u_{i,j}}{k}$	$\mathcal{O}(k)$
$\left(\frac{\partial u}{\partial y}\right)_{i,j} = \frac{u_{i,j+1} - u_{i,j-1}}{2k}$	$\mathcal{O}(k^2)$

1.6 MATLAB

Normas vetoriais e matriciais no MATLAB

Exercício 1.16. ® Defina no MATLAB, de forma simples, o vetor x e a matriz A seguintes:

$$x = (1, 2, 4, 8, 16) \qquad \mathsf{e} \qquad A = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 \\ 0 & -1 & 4 & 2 & 0 \\ 0 & 0 & -1 & 8 & 2 \\ 0 & 0 & 0 & -1 & 16 \end{pmatrix}.$$

Use a função norm do MATLAB para obter as seguintes normas:

a)
$$||x||_1$$
, b) $||x||_2$, c) $||x||_{\infty}$, d) $||A||_1$, e) $||A||_2$, f) $||A||_{\infty}$, g) $||A||_F$.

Diferenças Finitas

Exercício 1.17. © Considere a função $f(x) = \sin x$. Obtenha aproximações para f'(1) (i.e. $\cos 1$), considerando sucessivamente $h = 10^{-1}, \ 5 \times 10^{-2}, \ 10^{-2}, \ 5 \times 10^{-3}, \ 10^{-3}$ e as fórmulas de diferenças progressivas, regressivas, centrais e ainda a fórmula do Exercício 1.10.

Matrizes esparsas no MATLAB

O método das diferenças finitas que vamos usar no curso origina matrizes esparsas, i.e., matrizes que contêm um número grande de zeros. O MATLAB tem alguns comandos que permitem trabalhar

com matrizes esparsas, armazenando apenas os elementos não nulos da matriz. O uso de matrizes esparsas para armazenar dados que contêm um grande número de elementos com valor zero pode economizar uma quantidade significativa de memória e acelerar o processamento desses dados.

Exercício 1.18. Considere a matriz
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

- a) Defina a matriz A no MATLAB, de forma simples.
- b) Execute as seguintes instruções e analise cuidadosamente o resultado de cada uma delas.

```
>> S=sparse(A)
>> nnz(A)
>> full(S)
```

>> spy(S)

Exercício 1.19. Analise cuidadosamente o seguinte código:

```
>> S = sparse([1 2 3], [3 1 2], [4 5 6])
>> full(S)
>> S = spdiags([(1:6)' (1:6)'], [-3,2], 6, 6);
>> A=full(S)
>> [B diag_ind]=spdiags(A)
```

Exercício 1.20. Use a função spdiags para construir uma matriz tridiagonal T de ordem 10, cujos elementos da diagonal são todos iguais a -4 e os outros elementos não nulos são iguais a 1. Obtenha a decomposição LU de T.

Gráficos 3D no MATLAB

Exercício 1.21. Faça help das funções plot3, surf e contourf do Matlab e use-as para obter representações gráficas da função $f(x,y) = x^2 - y^2$ em $[-2,2] \times [-2,2]$.

1.7 Alguns resultados de Análise

Teorema de Taylor

Teorema 1.1 (Teorema de Taylor com resto de Lagrange) Seja $f \in C^{n+1}[a,b]$ e seja x_0 um valor fixado no intervalo [a,b]. Então, para cada $x \in [a,b]$, existe um ponto ξ_x situado entre x_0 e x (ou seja, $\xi_x = x_0 + \theta(x - x_0)$, $0 < \theta < 1$) tal que

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x - x_0)^{n+1}.$$

É mais frequente escrever a expansão anterior na forma

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(\xi_x).$$
 (1.1)

Teorema 1.2 (Teorema de Taylor para funções de duas variáveis) $Sejam(x_0, y_0)$ $e(x_0+\xi, y_0+\eta)$ dois pontos dados e suponhamos que f(x,y) é uma função de classe n+1 num aberto que contém o segmento de reta cujas extremidades são (x_0,y_0) e $(x_0+\xi,y_0+\eta)$. Então,

$$f(x_0 + \xi, y_0 + \eta) = f(x_0, y_0) + \left(\sum_{j=1}^n \frac{1}{j!} \left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} \right)^j f(x, y) \right) \Big|_{\substack{x = x_0 \\ y = y_0}} + \frac{1}{(n+1)!} \left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} \right)^{n+1} f(x, y) \Big|_{\substack{x = x_0 + \theta \xi \\ y = y_0 + \theta \eta}},$$

para algum $\theta \in (0,1)$.

Símbolos de Landau $\mathcal{O}(.)$ e o(.)

Considerem-se duas funções $f,g:D\longrightarrow \mathbb{R},\ D\subset \mathbb{R}$, tais que $g(x)\neq 0,\ x\in D.$

• Dizemos que f é de ordem \mathcal{O} ("o grande") a respeito de g quando x tende para x_0 (finito ou $\pm \infty$), se existir uma constante K > 0 e um $\delta > 0$ tais que

$$\left| \frac{f(x)}{g(x)} \right| \le K,$$

para todo o $x \in D$, tal que $x \in B(x_0, \delta)^5$ e $x \neq x_0$. Escrevemos, então,

$$f(x) = \mathcal{O}(g(x)), \text{ quando } x \to x_0.$$

• Dizemos que f é de ordem o ("o pequeno") a respeito de g quando x tende para x_0 (finito ou $\pm \infty$), se a designaldade anterior for válida para qualquer constante positiva K, ou seja, se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

Escrevemos, então,

$$f(x) = o(g(x)),$$
 quando $x \to x_0.$

Por vezes, escrevemos apenas $f(x) = \mathcal{O}(g(x))$ ou f(x) = o(g(x)), se for claro, pelo contexto, qual o ponto x_0 a que nos estamos a referir.

Usando o símbolo \mathcal{O} é usual escrever a expansão de Taylor referida em (1.1), como

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + \mathcal{O}(h^{n+1}).$$

Seguem-se algumas propriedades que permitem operar com os símbolos $\mathcal O$ e o.

⁵Entende-se por $B(+\infty,\delta):=\{x:x>\frac{1}{\delta}\}$, definindo-se, de modo análogo, $B(-\infty,\delta):=\{x:x<-\frac{1}{\delta}\}$.

Teorema 1.3 (Operações com \mathcal{O} **e** o**)** Sejam f e g duas funções reais definidas em $D \subset \mathbb{R}$.

- 1. $f(x) = \mathcal{O}(f(x));$
- 2. $\mathcal{O}(\mathcal{O}(f(x))) = \mathcal{O}(f(x));$
- 3. $k\mathcal{O}(g(x)) = \mathcal{O}(g(x))$, com k constante;
- 4. $\mathcal{O}(g(x)) + \mathcal{O}(g(x)) = \mathcal{O}(g(x));$
- 5. $\mathcal{O}(g_1(x)).\mathcal{O}(g_2(x)) = \mathcal{O}((g_1.g_2)(x));$
- 6. $f(x) = o(g(x)) \Longrightarrow f(x) = \mathcal{O}(g(x))$.

As propriedades 1.-5. são também válidas com o símbolo $\mathcal O$ substituído por o.

Exemplo: Sejam $f(h) = \mathcal{O}(h^p)$ e $g(h) = \mathcal{O}(h^q)$ quando $h \to 0$, com $p, q \in \mathbb{N}$. Então, tem-se:

- 1. $f(h) = o(h^{p-1})$.
- 2. $f(h) + g(h) = \mathcal{O}(h^m), m = \min\{p, q\}.$
- 3. $f(h).q(h) = \mathcal{O}(h^{p+q}).$

1.8 Alguns resultados de Álgebra Linear

Teorema 1.4 Se A é uma matriz quadrada de diagonal estritamente diagonal dominante, ⁶ então A é invertível.

Teorema 1.5 Seja λ um valor próprio de uma matriz A e seja x um vetor próprio associado a λ . Então:

- 1. $\alpha\lambda$ é um valor próprio de αA , sendo x um vetor próprio associado a esse valor próprio;
- 2. λp é um valor próprio de A pI, sendo x um vetor próprio associado a esse valor próprio;
- 3. λ^k $(k \in \mathbb{N})$ é valor próprio de A^k , sendo x um vetor próprio associado a esse valor próprio.
- 4. Se A é invertível, então λ^{-1} é um valor próprio de A^{-1} e x é um vetor próprio associado a esse valor próprio.
- 5. Se x é também um vetor próprio de uma matriz B associado ao valor próprio β , então x é um vetor próprio de AB e de BA associado ao valor próprio $\beta\lambda=\lambda\beta$.

Teorema 1.6 Os valores próprios da matriz tridiagonal de ordem n,

$$T = \begin{pmatrix} a & b & & & \\ c & a & b & & & \\ & \ddots & \ddots & \ddots & \\ & & c & a & b \\ & & & c & a \end{pmatrix}$$

são

$$\lambda_j = a + 2\sqrt{bc}\cos\frac{j\pi}{n+1}; \ j = 1,\dots, n$$

Teorema 1.7 Se A é uma matriz tridiagonal cujos elementos fora da diagonal têm todos o mesmo sinal, então os valores próprios da matriz A são reais.

⁶Uma matriz $A=(a_{ij})$ de ordem n diz-se de diagonal estritamente dominante se $|a_{i,i}|>\sum_{\substack{j=1\\i\neq i}}^n|a_{i,j}|$.

1.9 Soluções de alguns exercícios

Exercício 1.2

a) Se x=0, o resultado é trivialmente verdadeiro. Seja $x\neq 0$; então tem-se

$$\frac{\|Ax\|}{\|x\|} \le \max \left\{ \frac{\|Ay\|}{\|y\|} : y \in \mathbb{K}^n, y \ne 0 \right\} = \|A\|,$$

ou seja, tem-se $||Ax|| \le ||A|| \, ||x||$, como se pretende mostrar.

b) Como

$$||AB|| = \max_{||x||_v = 1} ||ABx||_v = \max_{||x||_v = 1} ||A(Bx)||_v$$

e a norma matricial $||\cdot||$ é induzida pela norma vetorial $||\cdot||_v$, obtém-se

$$||AB|| \le \max_{||x||_v = 1} ||A|| ||Bx||_v \le \max_{||x||_v = 1} ||A|| ||B|| ||x||_v = ||A|| ||B||$$

c)
$$||I_n|| = \max_{||x||_v = 1} ||I_n x||_v = \max_{||x||_v = 1} ||x||_v = 1.$$

Exercício 1.4

a) Seja $x \in \mathbb{K}^n, x \neq 0$. Então, temos ||x|| > 0 e, uma vez que a norma matricial é compatível com a norma vetorial considerada, tem-se

$$||x|| = ||I_n x|| \le ||I_n|| ||x||,$$

de onde se segue de imediato que $||I_n|| \ge 1$.

- b) $||I_n||_F = \sqrt{n} > 1$ e $n_1(I_n) = n > 1$. Logo, pelo resultado do Exercício 1.2c), estas normas matriciais não são subordinadas a qualquer norma vetorial.
- c) Facilmente se verifica que a matriz AA^* é uma matriz hermitiana (i.e., $AA^* = (AA^*)^*$), semidefinida positiva (i.e., $x^*AA^*x \ge 0$, $\forall x \in \mathbb{K}^n$) e, por consequência, tem todos os valores próprios reais não negativos.

Seja $A=(a_{ij})$ e sejam λ_i os valores próprios de AA^* que já vimos que são reais não negativos. Então

$$\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(AA^*) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \bar{a}_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 = ||A||_F^2.$$

Seja k tal que $\lambda_k=|\lambda_k|\leq |\lambda_i|=\lambda_i$, i.e. $\lambda_k=\rho(AA^*)=\|A\|_2^2$. Então,

$$||A||_2^2 = \lambda_k \le ||A||_F^2 = \sum_{i=1}^n \lambda_i \le \sum_{i=1}^n \lambda_k = n\lambda_k = n||A||_2^2.$$

d) Pretende-se mostrar que $||Ax||_2 \le ||A||_F ||x||_2$. O resultado é imediato, tendo em conta que a norma matricial 2 é compatível com a norma vetorial euclidiana e, por c), $||A||_2 \le ||A||_F$.

Exercício 1.5 Seja λ um valor próprio de A e seja $x \in \mathbb{C}^n$ um vetor próprio associado a esse valor próprio λ , isto é, sejam $\lambda \in \mathbb{C}$ e $x \in \mathbb{C}^n$ tais que $x \neq 0$ e $Ax = \lambda x$. Então, tem-se

$$||Ax|| = ||\lambda x|| = |\lambda|||x||.$$

Mas,

$$||Ax|| \le ||A|| ||x||$$

logo, temos

$$|\lambda|||x|| \le ||A||||x||$$

e, uma vez que $\|x\|>0$, podemos concluir que $|\lambda|\leq \|A\|$. Vemos, assim, que todo o valor próprio λ de A satisfaz $|\lambda|\leq \|A\|$ e o resultado segue de imediato.

Exercício 1.6 Sejam λ um valor próprio de A e x um vetor próprio associado. Então, $Ax = \lambda x$, ou seja,

$$(\lambda - a_{ii})x_i = \sum_{\substack{j=1\\j \neq i}}^n a_{ij}x_j; \ i = 1, \dots, n.$$

Seja k tal que x_k é a componente de maior módulo de x, isto é, tal que $|x_k| = \|x\|_{\infty}$. Então,

$$|\lambda - a_{kk}| \le \sum_{\substack{j=1\\j\neq k}}^{n} |a_{kj}| \frac{|x_j|}{|x_k|} \le \sum_{\substack{j=1\\j\neq k}}^{n} |a_{kj}| = R_k,$$

isto é, o valor próprio λ está no círculo C_k . Podemos assim concluir que os valores próprios de A pertencem à união dos círculos C_i .

Exercício 1.8

Usando a função eig

1.9018, $\lambda_3 = 4.3794$.

A matriz B tem um valor próprio no círculo |z+3|<2 e dois valores próprios em |z-2|<2. O MATLAB produz os resultados $\lambda_1=1.5479+0.4337i,\ \lambda_2=1.5479-0.4337i$ e $\lambda_3=-3.0958.$

Observe-se que a matriz C é hermitiana, pelo que a aplicação do Teorema dos Círculos de Gerschgörin permite concluir que os valores próprios de C estão no intervalo]-4,9[. De facto, os valores próprios de C são $\lambda_1=-2.6406,\ \lambda_2=0.8781,\ \lambda_3=7.7625.$

Exercício 1.12 Consideremos fórmulas do tipo

$$D := Ay(x+h) + By(x) + Cy(x-h)$$

para aproximar y'(x). Usando as expansões em série de Taylor,

$$y(x+h) = y(x) + y'(x)h + \frac{1}{2}y''(x)h^2 + \frac{1}{6}y''(x)h^3 + \mathcal{O}(h^4)$$

e

$$y(x - h) = y(x) - y'(x)h + \frac{1}{2}y''(x)h^2 - \frac{1}{6}y''(x)h^3 + \mathcal{O}(h^4),$$

obtém-se

$$D = (A + B + C)y(x) + (A - C)y'(x)h + \frac{1}{2}(A + C)y''(x)h^2 + \frac{1}{6}(A - C)y'''(x)h^3 + \mathcal{O}(h^4).$$

Pretende-se determinar A, B e C de forma a que

$$D = y'(x) + \mathcal{O}(h^k), \ k \ge 1.$$

Resulta então que as seguintes duas condições têm que se verificar:

$$\begin{cases} A+B+C=0\\ (A-C)h=1 \end{cases} \Leftrightarrow \begin{cases} A=C+\frac{1}{h}\\ B=-2C-\frac{1}{h} \end{cases}$$

Se além disso, A+C=0, então a aproximação será de ordem $\mathcal{O}((A-C)h^3)$; note-se que esta será a melhor ordem possível, uma vez que $A-C\neq 0$. Como

$$\begin{cases} A = C + \frac{1}{h} \\ B = -2C - \frac{1}{h} \\ A + C = 0 \end{cases} \Leftrightarrow \begin{cases} A = \frac{1}{2h} \\ B = 0 \\ C = -\frac{1}{2h} \end{cases}$$

obtêm-se as fórmulas de diferenças centrais, com ordem $\mathcal{O}(h^2)$.

Se $A \neq -C$, então a aproximação será de ordem $\mathcal{O}((A+C)h^2) = \mathcal{O}(2Ch^2+h)$, que no máximo será $\mathcal{O}(h)$. Observe-se que, quando C=0, obtêm-se as diferenças progressivas, enquanto $C=-\frac{1}{h}$ resulta na fórmula de diferenças regressivas. Estas não são, contudo, as únicas fórmulas possíveis. Qualquer aproximação da forma

$$\frac{(Ch+1)y(x+h)-(2Ch+1)y(x)+Chy(x+h)}{h},$$

é uma aproximação $\mathcal{O}(h)$ para y'(x). A escolha $C=\frac{1}{h}$ produz a seguinte aproximação

$$y'(x) = \frac{2y(x+h) - 3y(x) + y(x+h)}{h} + \mathcal{O}(h),$$

a qual terá pouco interesse prático (envolve o valor da função em três pontos), comparada com a fórmula de diferenças centrais.

Exercício 1.13 a) elítica; b) hiperbólica; c) parabólica; d) hiperbólica; e) elítica.

Exercício 1.14

Exercício 1.16

```
ans = 1x3
 3.1000e+01  1.8466e+01  1.6000e+01
```

```
[norm(A,1) norm(A) norm(A,"inf") norm(A,"fro")]
```

```
ans = 1x4

1.8000e+01   1.6125e+01   1.7000e+01   1.9000e+01
```

Exercício 1.17

```
Dp=@(x,y,h) (y(x+h)-y(x))./h;
Dr=@(x,y,h) (y(x)-y(x-h))./h;
Dc=@(x,y,h) (y(x+h)-y(x-h))./(2*h);
D10=@(x,y,h) (2*y(x+h)+3*y(x)-6*y(x-h)+y(x-2*h))./(6*h);
exata=cos(1);y=@(x) sin(x);
h=[1e-1 0.5e-2 1e-2 0.5e-2 1e-3]';

E_prog=abs(Dp(1,y,h)-cos(1));
E_regr=abs(Dr(1,y,h)-cos(1));
E_centrais=abs(Dc(1,y,h)-cos(1));
E_Q10=abs(D10(1,y,h)-cos(1));
T=table(h,E_prog,E_regr,E_centrais,E_Q10)
```

	h	E_prog	E_regr	E_centrais	E_Q10
1	0.1000	0.0429	0.0411	9.0005e-04	6.8207e-05
2	0.0050	0.0021	0.0021	2.2513e-06	8.7540e-09
3	0.0100	0.0042	0.0042	9.0050e-06	6.9941e-08
4	0.0050	0.0021	0.0021	2.2513e-06	8.7540e-09
5	0.0010	0.0004	0.0004	9.0050e-08	6.9979e-11

Exercício 1.20

```
n = 10;
e = ones(n,1);
A = spdiags([e -4*e e],-1:1,n,n);
[L,U]=lu(A);
```

Exercício 1.21

```
u=@(x, y) x.^2-y.^2;
h=0.05;
x=-2:h:2; y=-2:h:2;
[xx,yy]=meshgrid(x,y);
s=surf(xx,yy,u(xx,yy));
s.EdgeColor = 'none';
xlabel('x');ylabel('y');zlabel('z');
grid on
colorbar
```



```
plot3(xx,yy,u(xx,yy),'b')
xlabel('x');ylabel('y');zlabel('z');
grid on
```



```
contourf(xx,yy,u(xx,yy),10,'LineStyle','none')
xlabel('x');label('y');
colorbar
```


#2 Equações parabólicas

Neste capítulo, a equação parabólica que modela a variação da temperatura ao longo de um filamento de comprimento L, termicamente isolado,

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}, \quad \sigma > 0, \tag{2.1}$$

onde a constante σ representa o coeficiente de difusão térmica, considerando as condições iniciais e de fronteira

$$u(x,0) = \phi(x), \quad 0 < x < L,$$
 (2.2)

$$u(0,t) = u(L,t) = 0, \quad t \ge 0,$$
 (2.3)

será referido como problema modelo em alguns dos exercícios propostos.

2.1 Método explícito

Exercício 2.1. ® Considere o seguinte problema de valores iniciais e de fronteira:

$$\begin{split} \frac{\partial u}{\partial t} - \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2} &= 0, \ 0 < x < 1, \ t > 0, \\ u(x,0) &= \cos\left(\pi(x - \frac{1}{2})\right), \ 0 \le x \le 1, \\ u(0,t) &= u(1,t) = 0, \ \forall t \ge 0. \end{split}$$

Calcule uma aproximação para a solução do problema dado, no ponto (0.2,0.12), usando o método explícito com h=0.1 e k=0.04; compare o resultado obtido com a solução exata $u(x,y)=\exp(-t)\cos\pi(x-\frac{1}{2})$.

Exercício 2.2. Escreva uma função em MATLAB, calorExplicito, para implementar o método explícito simples associado ao problema modelo (2.1)-(2.3) no domínio $[0,L] \times [0,T]$. A função deverá aceitar como parâmetros de entrada a função ϕ com a distribuição inicial da temperatura, o coeficiente de difusão σ , o valor final de t, T, o comprimento do filamento, L, e o número de intervalos, m e n, que definem a malha nas direções espacial e temporal, respetivamente. Como resultado, a função deverá devolver o valor da solução do problema nos pontos $\left(i\frac{L}{m},j\frac{T}{n}\right),\ i=0,\ldots,m,\ j=0,\ldots,n$. A função deverá ainda produz um alerta, caso se prevejam problemas de instabilidade.

Comece por formular matricialmente o método explícito e construa a função tirando partido da estrutura especial da matriz correspondente.

Exercício 2.3. ® Considere o problema modelo (2.1)-(2.3), com $\sigma = 1$, L = 1 e

$$\phi(x) = \text{sen}(\pi x) + 3 \text{sen}(2\pi x), \ 0 \le x \le 1.$$

- a) Use a função calorExplicito para obter aproximações para a solução do problema no instante t=0.05, usando h=0.1 e k=0.005.
- b) Compare o resultado obtido em (a) com a solução exata

$$u(x,t) = \operatorname{sen}(\pi x) \exp(-\pi^2 t) + 3 \operatorname{sen}(2\pi x) \exp(-4\pi^2 t).$$

Exercício 2.4. ® Considere o problema modelo (2.1)-(2.3), com $\sigma = 1$, L = 1 e

$$\phi(x) = \text{sen}(\pi x), \ 0 < x < 1.$$

- a) Use a função calor<code>Explicito</code> para obter uma aproximação para a solução do problema dado, nos pontos (0.1i,t); $i=1,\ldots,5$, t=0.04,0.08,0.09, usando o método explícito com:
 - (i) h = 0.1 e k = 0.005; (ii) h = 0.05 e k = 0.0025.
- b) Ilustre graficamente os resultados obtidos, usando representações bi e tridimensionais (note que a solução é simétrica em relação a $x=\frac{1}{2}$).
- c) Sabendo que a solução analítica do problema é $u(x,t)=e^{-\pi^2t}\sin(\pi x)$, indique o erro das aproximações obtidas na alínea anterior e comente.

Exercício 2.5. Pretende-se resolver a equação parabólica:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 2\frac{\partial u}{\partial x}, \ 0 \le x \le 1, \ t \ge 0,$$

sujeita a

$$u(x,0) = \begin{cases} x, & 0 \le x \le \frac{1}{2} \\ 1 - x, & \frac{1}{2} \le x \le 1 \end{cases}$$

$$u(0,t)=u(1,t)=0, \text{ para } t\geq 0.$$

Formule um esquema explícito de diferenças finitas, usando aproximações de ordem $\mathcal{O}(h^2)$ para as derivadas na direção de x e de ordem $\mathcal{O}(k)$ para as derivadas na direção de t. Use h=0.1, k=0.0025 e obtenha a solução em t=0.02, usando o esquema obtido.

2.2 Método de Crank-Nicolson

Exercício 2.6. Resolva novamente o Exercício 2.1, usando agora o método de Crank-Nicolson.

Exercício 2.7. Escreva uma função em MATLAB, calorCN, para implementar o método Crank Nicolson associado ao problema modelo (2.1)-(2.3) no domínio $[0,L] \times [0,T]$. A função deverá aceitar como parâmetros de entrada a função ϕ com a distribuição inicial da temperatura, o coeficiente de difusão σ , o valor final de t, T, o comprimento do filamento, L, e o número de intervalos, m e n, que definem a malha nas direções espacial e temporal, respetivamente. Como resultado, a função deverá devolver o valor da solução do problema nos pontos $\left(i\frac{L}{m},j\frac{T}{n}\right)$, $i=0,\ldots,m,\ j=0,\ldots,n$. A função deve tirar partido da estrutura tridiagonal das matrizes envolvidas na formulação do método.

Exercício 2.8. [®] Use a função calorCN para resolver os Exercícios 2.3 e 2.4 propostos na secção anterior. Compare os resultados obtidos com os produzidos pelo método explícito.

2.3 Erro de truncatura local

Na resolução dos exercícios desta secção, serão especialmente úteis as seguintes expansões (que deverá deduzir previamente).

$$\Delta_x u_{i,j} := u_{i+1,j} - u_{i,j} = h \left. \frac{\partial u}{\partial x} \right|_{i,j} + \frac{h^2}{2} \left. \frac{\partial^2 u}{\partial x^2} \right|_{i,j} + \frac{h^3}{6} \left. \frac{\partial^3 u}{\partial x^3} \right|_{i,j} + \frac{h^4}{24} \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \frac{h^5}{120} \left. \frac{\partial^5 u}{\partial x^5} \right|_{i,j} + \cdots$$
 (2.4)

$$\nabla_{x} u_{i,j} := u_{i,j} - u_{i-1,j} = h \left. \frac{\partial u}{\partial x} \right|_{i,j} - \frac{h^{2}}{2} \left. \frac{\partial^{2} u}{\partial x^{2}} \right|_{i,j} + \frac{h^{3}}{6} \left. \frac{\partial^{3} u}{\partial x^{3}} \right|_{i,j} - \frac{h^{4}}{24} \left. \frac{\partial^{4} u}{\partial x^{4}} \right|_{i,j} + \frac{h^{5}}{120} \left. \frac{\partial^{5} u}{\partial x^{5}} \right|_{i,j} + \cdots$$
 (2.5)

$$(\Delta_x + \nabla_x)u_{i,j} := u_{i+1,j} - u_{i-1,j} = 2h \left. \frac{\partial u}{\partial x} \right|_{i,j} + \frac{h^3}{3} \left. \frac{\partial^3 u}{\partial x^3} \right|_{i,j} + \frac{h^5}{60} \left. \frac{\partial^5 u}{\partial x^5} \right|_{i,j} + \cdots$$
 (2.6)

$$\delta_x^2 u_{i,j} := u_{i+1,j} - 2u_{i,j} + u_{i-1,j} = h^2 \left. \frac{\partial^2 u}{\partial x^2} \right|_{i,j} + \left. \frac{h^4}{12} \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \left. \frac{h^6}{360} \left. \frac{\partial^6 u}{\partial x^6} \right|_{i,j} + \cdots \right.$$
(2.7)

$$\delta_{x}^{2}u_{i,j+1} := u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} = h^{2} \frac{\partial^{2}u}{\partial x^{2}}\Big|_{i,j} + \frac{h^{4}}{12} \frac{\partial^{4}u}{\partial x^{4}}\Big|_{i,j} + \frac{h^{6}}{360} \frac{\partial^{6}u}{\partial x^{6}}\Big|_{i,j} + \frac{h^{4}}{360} \frac{\partial^{6}u}{\partial x^{6}}\Big|_{i,j} + \frac{h^{4}}{2} \frac{\partial^{4}u}{\partial t^{2}\partial x^{2}}\Big|_{i,j} + \frac{h^{4}}{12} \frac{\partial^{5}u}{\partial t\partial x^{4}}\Big|_{i,j} + \frac{h^{2}h^{4}}{24} \frac{\partial^{6}u}{\partial t^{2}\partial x^{4}}\Big|_{i,j} + \cdots$$
 (2.8)

Exercício 2.9. ® Mostre que, se $r:=\frac{\sigma k}{h^2}=\frac{1}{6}$, o erro de truncatura local do método explícito para aproximar a solução da equação parabólica (2.1) é de ordem $\mathcal{O}(k^2+h^4)$. (Assuma u suficientemente derivável)

Exercício 2.10. Mostre que o erro de truncatura local do método de Crank-Nicolson para aproximar a solução da equação parabólica (2.1) é de ordem $\mathcal{O}(k^2 + h^2)$.

Exercício 2.11. Considere a classe de métodos definida por

$$\frac{U_{i,j+1} - U_{i,j}}{k} = \frac{\sigma}{h^2} \left(\theta \delta_x^2 U_{i,j+1} + (1 - \theta) \delta_x^2 U_{i,j} \right), \quad 0 \le \theta \le 1,$$
 (2.9)

para i = 1, ..., M; j = 1, 2,

- a) Que métodos se obtêm nos casos $\theta = 0$ e $\theta = \frac{1}{2}$?
- b) Mostre que o erro de truncatura local do método definido por (2.9) é dado por:

$$\sigma\left(\sigma(\frac{1}{2}-\theta)k - \frac{h^2}{12}\right) \left.\frac{\partial^4 u}{\partial x^4}\right|_{i,j} + \mathcal{O}(k^2 + h^4) + \mathcal{O}(kh^2).$$

c) Simplifique o resultado anterior, nos casos $\theta=\frac{1}{2}$ e $\theta=\frac{1}{2}-\frac{h^2}{12\sigma k}$.

Exercício 2.12.® A equação (2.1), com $\sigma=L=1$ é aproximada no ponto (ih,jk) pela equação de diferenças

$$\theta \frac{U_{i,j+1} - U_{i,j-1}}{2k} + (1 - \theta) \frac{U_{i,j} - U_{i,j-1}}{k} - \frac{1}{h^2} \delta_x^2 U_{i,j} = 0.$$

a) Mostre que o erro de truncatura nesse ponto é:

$$-\frac{1}{2}k(1-\theta)\frac{\partial^2 u}{\partial t^2} - \frac{1}{12}h^2\frac{\partial^4 u}{\partial x^4} + \mathcal{O}(k^2 + h^4).$$

b) Determine os valores de θ para os quais o método tem um erro da ordem $\mathcal{O}(k^2+h^4)$.

2.4 Consistência, estabilidade, convergência

Exercício 2.13. Discuta a consistência do método

$$\frac{U_{i,j+1} - U_{i,j-1}}{2k} = \frac{U_{i+1,j} - U_{i,j+1} - U_{i,j-1} + U_{i-1,j}}{h^2}$$

para resolver o problema modelo (2.1)-(2.3), com $\sigma = 1$, considerando vários valores de h e k.

Exercício 2.14. Verifique se o método explícito usado para resolver o Exercício 2.5 é consistente.

Exercício 2.15. Considere novamente o método definido pelas equações (2.9).

a) Mostre que a condição de estabilidade deste método é

$$r := \frac{\sigma k}{h^2} < \frac{1}{2 - 4\theta},$$

para valores de θ tais que $0 \le \theta < \frac{1}{2}$ e que este método é incondicionalmente estável para $\frac{1}{2} \le \theta \le 1$. Conclua que o método de Crank-Nicolson é estável para qualquer valor de r.

19

b) Prove que a escolha de $\theta=\frac{1}{2}-\frac{h^2}{12\sigma k}$ conduz a um método estável.

A análise de estabilidade deve ser feita usando o método matricial e o método das séries de Fourier.

Exercício 2.16. Use o teorema dos círculos de Gerschgorin para examinar a estabilidade do método do Exercício 2.5.

Exercício 2.17. $^{\circledast}$ Formule um esquema de diferenças finitas para aproximar a solução de (2.1), usando diferenças centrais na direção de t. Use o método de Fourier para analisar a estabilidade deste método.

Exercício 2.18. Deduza o método de Crank-Nicolson para aproximar a solução da equação

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t}$$

sujeita às condições

$$u(0,t) = u(1,t) = 0, \ t > 0$$

$$u(x,0) = f(x), 0 < x < 1.$$

Exprima matricialmente o problema a resolver e conclua que o método é incondicionalmente estável.

2.5 Condições de fronteira envolvendo derivadas

Exercício 2.19. © Considere a aplicação do método explícito para resolver a equação diferencial (2.1), com $\sigma = L = 1$, sujeita às condições iniciais (2.2) e às condições de fronteira

$$\frac{\partial u}{\partial x} = \alpha u - a$$
, para $x = 0$, (2.10)

$$\frac{\partial u}{\partial x} = -\beta u + b, \text{ para } x = 1, \tag{2.11}$$

onde α , β , a e b são constantes não negativas.

- a) Substitua as equações (2.10)-(2.11) por uma fórmula de diferenças finitas, usando diferenças centrais na direção de x, introduzindo para isso os pontos "fictícios" (-h,jk) e ((M+1)h,jk), i.e. imaginando que o filamento para o qual estudamos a distribuição de temperatura se estende ligeiramente para a esquerda e para a direita.
- b) Exprima matricialmente o correspondente método de diferenças finitas, acrescentando as equações que se obtêm assumindo que a equação (2.1) é também satisfeita nos extremos do filamento.
- c) Use o Teorema dos círculos de Gerschgörin para estudar a estabilidade do método.

Exercício 2.20. ® Considere a equação diferencial (2.1), com $\sigma = 1$, L = 1, sujeita às condições

$$u(x,0)=1,\ 0\leq x\leq 1 \qquad \mathrm{e} \qquad \frac{\partial u}{\partial x}(0,t)=u(0,t);\ \frac{\partial u}{\partial x}(1,t)=-u(1,t),\ \forall t>0.$$

- a) Use o método explícito para obter uma aproximação para a solução do problema dado, nos pontos $(0.1i,0.02);\ i=0,\ldots,10$, escolhendo
 - (i) h = 0.1 e k = 0.0025;
 - (ii) h = 0.05 e k = 0.002.
- b) Represente graficamente a solução obtida em cada um dos casos e comente.

Exercício 2.21. Que alterações ocorrem na matriz do Exercício 2.19 se a condição de fronteira (2.11) for substituída por

$$u(1,t) = \beta$$
, para $t > 0$,

onde β é uma constante?

Exercício 2.22. Considere a equação diferencial (2.1), com $\sigma = 1$, sujeita às condições

$$u(x,0) = 1, \ 0 \leq x \leq 1 \qquad \text{e} \qquad \frac{\partial u}{\partial x}(0,t) = u(0,t), \ u(1,t) = 1; \ \forall t > 0.$$

- a) Calcule uma aproximação para a solução do problema dado, nos pontos (0.1i, 0.04); $i=0,\ldots,10$, usando o método explícito com h=0.1 e k=0.0025.
- b) Que comportamento esperaria deste método se usasse k = 0.01?

2.6 Soluções de alguns exercícios

Exercício 2.1

 $U_{2,3} = 0.52057 \text{ - solução aproximada}$ u(0.2,0.12) = 0.52132 - solução exata $|U_{2.3} - u(0.2,0.12)| = 7.5091 \times 10^{-4}$

Exercício 2.2

```
function [u,xx,tt] = calorExplicito(f,n,T,m,L,sigma)
% calorExplicito resolve a equação do calor 1D, usando o método
% explícito
     u = calorExplicito(f,m,n,T,L,sigma)
%
         resolve o problema modelo
%
                  u_t=sigma u_xx
%
                   u(x,0)=f(x), 0 < x < L (condições iniciais)
%
                   u(0,t)=u(L,t)=0, t>=0 (condições de fronteira)
%
%
         * f é a 'function handle' que define a distribuição
%
               inicial da temperatura
%
         * n é o número de intervalos na variável temporal
%
         * T é o instante final
         * m é o números de intervalos na variável espacial
%
%
         * L é o comprimento do filamento (por defeito é 1)
%
         * sigma é o coeficiente de difusão (por defeito é 1)
%
         * u é a aproximação para a solução do problema nos
%
               nós da malha
%
                (i*L/m, j*T/n); i=0,...,m; j=0,...,n
%
     [u,xx,tt] = calorExplicito(f,n,T,m,L,sigma) produz como
%
         output adicional as matrizes xx e tt que definem os
         nós da malha
% Versão: março 2023
% Autores: M. Irene Falcão e Fernando Miranda
% Valor dos argumentos por defeito
if nargin <6
    sigma = 1;
if nargin <5 || isempty(L)</pre>
    L = 1;
end
h=L/m; k=T/n; r=sigma*k/h^2;
if r>1/2
    warning('o método pode sofrer de instabilidade; r= ...
       %s',num2str(r))
end
% definição da malha
XX = 0 : h : L;
TT=0:k:T:
[xx,tt]=meshgrid(XX,TT);
```

```
% construção da matriz tridiagonal
e=ones(m-1,1);
A=spdiags([r*e (1-2*r)*e r*e],[-1 0 1],m-1,m-1);

% inicialização da solução e condição inicial
u=zeros(n+1,m+1);
u(1,:)=f(XX);

% Método explícito
for j=1:n
   b=u(j,2:m)';
   u(j+1,2:m)=A*b;
end
end
```

Exercício 2.3

x	0	0.1	0.2	0.3	0.3	0.5	0.6	0.7	0.8	0.9	1
$\tilde{u}(x, 0.05)$	0	0.3989	0.6986	0.8325	0.7876	0.6054	0.3640	0.1471	0.0132	-0.0247	0
u(x, 0.05)	0	0.4336	0.7552	0.8902	0.8256	0.6105	0.3357	0.0976	-0.0375	-0.0563	0
$ u-\tilde{u} $	0	0.0347	0.0566	0.0577	0.0380	0.0051	0.0283	0.0495	0.0507	0.0316	0

Exercício 2.4

```
----- h= 0.1 k=0.005 -----
```

t = 0.04

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.20684	0.20822	0.0013843
3	0.2	0.39343	0.39606	0.002633
4	0.3	0.54151	0.54514	0.003624
5	0.4	0.63659	0.64085	0.0042603
6	0.5	0.66935	0.67383	0.0044796

t = 0.08

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.13845	0.14031	0.0018593
3	0.2	0.26334	0.26688	0.0035366
4	0.3	0.36246	0.36733	0.0048677
5	0.4	0.4261	0.43182	0.0057223
6	0.5	0.44802	0.45404	0.0060168

t = 0.09

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.12523	0.12712	0.0018936
3	0.2	0.23819	0.2418	0.0036017
4	0.3	0.32785	0.3328	0.0049574
5	0.4	0.38541	0.39124	0.0058277
6	0.5	0.40524	0.41137	0.0061277

----- h= 0.05 k=0.0025 -----

Warning: o método pode sofrer de instabilidade; r=1 t=0.04

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.20737	0.20822	0.00085622
3	0.2	0.39444	0.39606	0.0016286
4	0.3	0.54289	0.54514	0.0022416
5	0.4	0.63821	0.64085	0.0026352
6	0.5	0.67105	0.67383	0.0027708

Warning: o método pode sofrer de instabilidade; r= 1 t=0.08

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.14993	0.14031	0.0096258
3	0.2	0.28217	0.26688	0.015287
4	0.3	0.38193	0.36733	0.014603
5	0.4	0.43981	0.43182	0.0079899
6	0.5	0.45272	0.45404	0.0013248

Warning: o método pode sofrer de instabilidade; r= 1 t= 0.09

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.89152	0.12712	0.7644
3	0.2	1.4829	0.2418	1.2411
4	0.3	1.5935	0.3328	1.2607
5	0.4	1.2415	0.39124	0.85028
6	0.5	0.63423	0.41137	0.22286

Warning: o método pode sofrer de instabilidade; r=1

Exercício 2.7

```
function [u,xx,tt] = calorCN(f,m,n,T,L,sigma)
...
% construção das matrizes tridiagonais
e=ones(m-1,1);
A1=spdiags([-r*e 2*(1+r)*e -r*e]/2,[-1 0 1],m-1,m-1);
A2=spdiags([r*e 2*(1-r)*e r*e]/2,[-1 0 1],m-1,m-1);
% inicialização da solução e condição inicial
u=zeros(n+1,m+1);
u(1,:)=f(XX);
% Método de Crank-Nicolson
for j=1:n
    b=A2*u(j,2:m)';
    u(j+1,2:m)=A1\b;
end;end
```

Exercício 2.8

Exercício 2.3

	aprox	valorexato	erro
1	0	0	0
2	0.44904	0.4336	0.015439
3	0.78037	0.75518	0.025193
4	0.91597	0.89024	0.025728
5	0.84256	0.82557	0.01699
6	0.61291	0.6105	0.0024148
7	0.32327	0.33567	0.012396
8	0.075746	0.097566	0.02182
9	-0.05985	-0.037495	0.022355
10	-0.070242	-0.056295	0.013947
11	0	-2.7306e-17	2.7306e-17

Exercício 2.4

----- h= 0.1 k=0.005 -----

t = 0.04

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.20888	0.20822	0.00065863
3	0.2	0.39732	0.39606	0.0012528
4	0.3	0.54686	0.54514	0.0017243
5	0.4	0.64287	0.64085	0.0020271
6	0.5	0.67596	0.67383	0.0021314

t = 0.08

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.1412	0.14031	0.00088901
3	0.2	0.26857	0.26688	0.001691
4	0.3	0.36965	0.36733	0.0023275
5	0.4	0.43455	0.43182	0.0027361
6	0.5	0.45692	0.45404	0.0028769

t = 0.09

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.12803	0.12712	0.0009065
3	0.2	0.24352	0.2418	0.0017243
4	0.3	0.33518	0.3328	0.0023733
5	0.4	0.39403	0.39124	0.0027899
6	0.5	0.4143	0.41137	0.0029335

t = 0.04

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.20839	0.20822	0.0001648
3	0.2	0.39638	0.39606	0.00031348
4	0.3	0.54557	0.54514	0.00043146
5	0.4	0.64135	0.64085	0.00050722
6	0.5	0.67436	0.67383	0.00053332

t = 0.08

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.14053	0.14031	0.00022219
3	0.2	0.2673	0.26688	0.00042263
4	0.3	0.36791	0.36733	0.00058169
5	0.4	0.4325	0.43182	0.00068382
6	0.5	0.45476	0.45404	0.00071901

$$t = 0.09$$

	abcissas	aprox	valorexato	erro
1	0	0	0	0
2	0.1	0.12735	0.12712	0.00022649
3	0.2	0.24223	0.2418	0.00043081
4	0.3	0.3334	0.3328	0.00059296
5	0.4	0.39193	0.39124	0.00069707
6	0.5	0.4121	0.41137	0.00073294

Exercício 2.9

$$\tau_{i,j} = F(u_{i,j}) = \frac{1}{k} \Delta_t u_{i,j} - \frac{\sigma}{k^2} \delta_x^2 u_{i,j}$$

Usando a relação (2.4) (com x substituído por t e h por k) e a relação (2.7), obtém-se

$$\tau_{i,j} = \frac{\partial u}{\partial t}\Big|_{i,j} + \frac{k}{2} \frac{\partial^2 u}{\partial t^2}\Big|_{i,j} + \mathcal{O}(k^2) - \sigma \left(\frac{\partial^2 u}{\partial x^2}\Big|_{i,j} + \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}\Big|_{i,j} + \mathcal{O}(h^4)\right)$$

$$= \left(\frac{\partial u}{\partial t}\Big|_{i,j} - \sigma \frac{\partial^2 u}{\partial x^2}\Big|_{i,j}\right) + \left(\frac{k}{2} \frac{\partial^2 u}{\partial t^2}\Big|_{i,j} - \sigma \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}\Big|_{i,j}\right) + \mathcal{O}(k^2 + h^4)$$

Como
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial t} \left(\sigma \frac{\partial^2 u}{\partial x^2} \right) = \sigma \frac{\partial^2}{\partial x^2} \left(\frac{\partial u}{\partial x} \right) = \sigma^2 \frac{\partial^4 u}{\partial x^4}$$
 e a equação é satisfeita em (ih, jk) , i.e., $\left. \frac{\partial u}{\partial t} \right|_{i,j} - \sigma \left. \frac{\partial^2 u}{\partial x^2} \right|_{i,j} = 0$, obtém-se

$$\tau_{i,j} = \sigma \left(\frac{k\sigma}{2} - \frac{h^2}{12} \right) \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \mathcal{O}(k^2 + h^4),$$

o que mostra que, em geral, o erro de truncatura do método explícito é de ordem $\mathcal{O}(k+h^2)$. Quando

$$\frac{k\sigma}{2} - \frac{h^2}{12} = 0 \Leftrightarrow \frac{\sigma k}{h^2} = r = \frac{1}{6},$$

o método é de ordem $\mathcal{O}(k^2 + h^4)$.

Exercício 2.12 Usando as relações (2.6) e (2.5) (com x substituído por t e h por k) e a relação (2.7), obtém-se

$$\tau_{i,j} = \frac{\theta}{2k} \left(2k \left. \frac{\partial u}{\partial t} \right|_{i,j} + \mathcal{O}(k^3) \right) + \frac{1 - \theta}{k} \left(k \left. \frac{\partial u}{\partial t} \right|_{i,j} - \frac{k^2}{2} \left. \frac{\partial^2 u}{\partial t^2} \right|_{i,j} + \mathcal{O}(k^3) \right)$$
$$- \frac{1}{h^2} \left(h^2 \frac{\partial^2 u}{\partial x^2} \right|_{i,j} + \frac{h^4}{12} \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \mathcal{O}(h^6) \right)$$
$$= -\frac{k}{2} (1 - \theta) \left. \frac{\partial^2 u}{\partial t^2} \right|_{i,j} - \frac{h^2}{12} \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \mathcal{O}(h^4) + \mathcal{O}(k^2).$$

Como $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^4 u}{\partial x^4}$ e a equação é satisfeita em (ih, jk), obtém-se

$$\tau_{i,j} = \left(-\frac{k}{2} (1 - \theta) - \frac{h^2}{12} \right) \left. \frac{\partial^4 u}{\partial x^4} \right|_{i,j} + \mathcal{O}(k^2 + h^4),$$

o método é de ordem $\mathcal{O}(k^2 + h^4)$ se

$$\frac{k}{2}(1-\theta) + \frac{h^2}{12} = 0 \Leftrightarrow \theta = 1 + \frac{h^2}{6k}$$

Exercício 2.15 Seja $r = \sigma \frac{k}{h^2}$. O método escreve-se como

$$-r\theta U_{i-1,j+1} + (1+2r\theta)U_{i,j+1} - r\theta U_{i+1,j+1}$$

$$= r(1-\theta)U_{i-1,j} + (1+2r(1-\theta))U_{i,j} + r(1-\theta)U_{i+1,j}$$
 (2.12)

Análise matricial

O método escreve-se matricialmente como

$$(I - r\theta T)\mathbf{U}_{j+1} = (I + r(1 - \theta)T)\mathbf{U}_j,$$

onde

$$\mathbf{U}_{j} = \begin{pmatrix} U_{1,j} \\ U_{2,j} \\ \vdots \\ U_{M-2,j} \\ U_{M-1,j} \end{pmatrix} \quad \text{e} \quad T = \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{pmatrix}.$$

Os valores próprios de T são

$$\lambda_j = -2 + 2\cos(\frac{j\pi}{M}) = -4\sin^2(\frac{j\pi}{2M}); \ j = 1,\dots, n,$$

(relembre o Exercício 1.9). Como

$$\mathbf{U}_{j+1} = \underbrace{(I - r\theta T)^{-1}(I + r(1 - \theta)T)}_{I} \mathbf{U}_{j},$$

conclui-se, usando os resultados do Teorema 1.5, que os valores próprios λ_j da matriz A são

$$\lambda_{j} = \frac{1 - 4r(1 - \theta) \operatorname{sen}^{2}(\frac{j\pi}{2M})}{1 + 4r\theta \operatorname{sen}^{2}(\frac{j\pi}{2M})}; \ j = 1, \dots, n.$$
(2.13)

Sabemos que o método será estável se $|\lambda_j| \leq 1$, o que equivale a

$$-1 - 4r\theta \operatorname{sen}^{2}(\frac{j\pi}{2M}) \le 1 - 4r(1-\theta)\operatorname{sen}^{2}(\frac{j\pi}{2M}),$$

ou ainda

$$\operatorname{sen}^{2}(\frac{j\pi}{2M})(-8r\theta + 4r) \leq 2,$$

o que naturalmente acontece quando $2r(1-2\theta) \leq 1$. Esta inequação pode escrever-se como

$$\begin{cases} r \leq \frac{1}{2(1-2\theta)}, & \text{se } 1 - 2\theta > 0 \\ 0 \leq 1, & \text{se } 1 - 2\theta = 0 \\ r \geq \frac{1}{2(1-2\theta)}, & \text{se } 1 - 2\theta < 0 \end{cases}$$

Conclui-se então que,

- se $0 \le \theta < \frac{1}{2}$, o método é estável quando $r \le \frac{1}{2(1-2\theta)}$;
- se $\frac{1}{2} \le \theta \le 1$, o método é estável para qualquer valor de r, dizendo-se por isso incondicionalmente estável.

Análise de Fourier

Denotemos por $\varepsilon_{i,j}$ os erros nos pontos x=ih, t=jk e assumamos que

$$\varepsilon_{i,j} = e^{\mathbf{i}\beta ih} \zeta^j. \tag{2.14}$$

Relembrando que a fórmula para a propagação dos erros é igual à do cálculo de $U_{i,j}$, podemos escrever (cf. (2.12))

$$-r\theta\varepsilon_{i-1,j+1} + (1+2r\theta)\varepsilon_{i,j+1} - r\theta U_{i+1,j+1} = r(1-\theta)\varepsilon_{i-1,j} + (1+2r(1-\theta))\varepsilon_{i,j} + r(1-\theta)\varepsilon_{i+1,j}.$$

Usando (2.14), a equação anterior escreve-se como

$$-r\theta e^{\mathbf{i}\beta(i-1)h}\zeta^{j+1} + (1+2r\theta)e^{\mathbf{i}\beta ih}\zeta^{j+1} - r\theta e^{\mathbf{i}\beta(i+1)h}\zeta^{j+1} = r(1-\theta)e^{\mathbf{i}\beta(i-1)h}\zeta^{j} + (1+2r(1-\theta))e^{\mathbf{i}\beta ih}\zeta^{j} + r(1-\theta)e^{\mathbf{i}\beta(i+1)h}\zeta^{j}.$$

Dividindo por $e^{\mathbf{i}\beta ih}\zeta^j$, obtém-se

$$-r\theta e^{-\mathbf{i}\beta ih}\zeta + (1+2r\theta)\zeta - r\theta e^{\mathbf{i}ih}\zeta = r(1-\theta)e^{-\mathbf{i}\beta ih} + 1 + 2r(1-\theta) + r(1-\theta)e^{\mathbf{i}ih}.$$

ou seja

$$-2r\theta\cos(\beta h)\zeta + (1+2r\theta)\zeta = 2r(1-\theta)\cos(\beta h) + 1 - 2r(1-\theta)$$

Simplificando esta última equação e resolvendo em ordem a ζ obtém-se

$$\zeta = \frac{1 - 4r(1 - \theta) \operatorname{sen}^{2}(\frac{\beta h}{2})}{1 + 4r\theta \operatorname{sen}^{2}(\frac{\beta h}{2})}.$$

Sabemos que o método é estável quando $|\zeta| \le 1$ e esta inequação é a que se obtém na análise matricial (cf. (2.13)).

Exercício 2.17 O esquema pretendido é da forma

$$\frac{1}{2k}(U_{i,j+1} - U_{i,j}) = \frac{\sigma}{h^2}(U_{i+1,j} - 2U_{i,j} + U_{i-1,j}).$$

Logo, a fórmula para propagação dos erros $\varepsilon_{i,j}$ é

$$\frac{1}{2k}(\varepsilon_{i,j+1} - \varepsilon_{i,j}) = \frac{\sigma}{h^2}(\varepsilon_{i+1,j} - 2\varepsilon_{i,j} + \varepsilon_{i-1,j}).$$

Assumindo que $\varepsilon_{i,j}=e^{\mathbf{i}\beta ih}\zeta^j$, podemos escrever

$$e^{\mathbf{i}\beta ih}\zeta^{j+1} - e^{\mathbf{i}\beta(i-1)h}\zeta^{j+1} = 2r(e^{\mathbf{i}\beta(i+1)h}\zeta^j - 2e^{\mathbf{i}\beta ih}\zeta^j + e^{\mathbf{i}\beta(i+1)h}\zeta^j).$$

Dividindo por $e^{\mathbf{i}\beta ih}\zeta^j$, obtém-se

$$\zeta - \zeta^{-1} = 2r(e^{-i\beta(i-1)h} - 2 + e^{i(i+1)h}).$$

ou seja

$$\zeta^2 + 8r \operatorname{sen}^2(\frac{\beta h}{2})\zeta - 1 = 0.$$

Esta equação do 2º grau tem duas soluções ζ_1 e ζ_2 que satisfazem

$$\zeta_1 \zeta_2 = -1 \tag{2.15}$$

$$\zeta_1 + \zeta_2 = -8r \operatorname{sen}^2(\frac{\beta h}{2}).$$
 (2.16)

Sabemos que o método é estável quando $|\zeta_1| \le 1$ e $|\zeta_2| \le 1$. Mas, quando $|\zeta_1| < 1$, resulta de (2.15) que $|\zeta_2| = \frac{1}{|\zeta_1|} > 1$. Quando $\zeta_1 = \pm 1 = \mp \zeta_2$, resulta de (2.16) que r = 0. Logo o método é instável para todos os valores de r > 0.

Exercício 2.19 Consideremos a equação do calor $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, sujeita às condições iniciais

$$u(x,0) = \phi(x), \quad 0 < x < 1$$

e às condições de fronteira

$$\frac{\partial u}{\partial x}(0,t) = \alpha u - a$$
 e $\frac{\partial u}{\partial x}(1,t) = -\beta u + b$,

A condição inicial dá-nos os valores $U_{i,0}$; $i=0,\ldots,M$. Os valores $U_{0,j}$ e $U_{M,j}$ não são agora conhecidos, mas podemos aproximar as condições de fronteira por

$$\frac{U_{1,j} - U_{-1,j}}{2h} = \alpha U_{0,j} - a, \tag{2.17}$$

$$\frac{U_{M+1,j} - U_{M-1,j}}{2h} = -\beta U_{M,j} + b. {(2.18)}$$

Como $U_{-1,j}$ e $U_{M+1,j}$ (pontos "fictícios") são necessárias duas condições extra para a sua determinação. Estas são obtidas assumindo que a equação de diferenças

$$U_{i,j+1} = rU_{i+1,j} + (1-2r)U_{i,j} + rU_{i-1,j}; i = 1,...,M-1$$

é também válida nos extremos do filamento, i.e., para i=0 e i=M. Temos então

$$U_{0,j+1} = rU_{1,j} + (1-2r)U_{0,j} + rU_{-1,j}$$
(2.19)

е

$$U_{M,j+1} = rU_{M+1,j} + (1-2r)U_{M,j} + rU_{M-1,j}$$
(2.20)

Eliminando $U_{-1,j}$ de (2.17) e (2.19) e $U_{M+1,j}$ de (2.18) e (2.20), obtém-se

$$U_{0,j+1} = 2rU_{1,j} + (1 - 2r - 2h\alpha r)U_{0,j} + 2rha$$

$$U_{M,j+1} = (1 - 2r - 2h\beta r)U_{M,j} + 2rU_{M-1,j} + 2hrb.$$

O esquema pode então descrever-se matricialmente como

$$\mathbf{U}_{i+1} = A\mathbf{U}_i + v,$$

onde A é a matriz de ordem M+1

$$A = \begin{pmatrix} 1 - 2r(1 + \alpha h) & 2r & & & \\ r & 1 - 2r & r & & & \\ & \ddots & \ddots & \ddots & \\ & & r & 1 - 2r & r \\ & & & 2r & 1 - 2r(1 + \beta h) \end{pmatrix}$$

e $v=(2rah,0,\dots,0,2rbh)^T$. Como o vetor v é constante, apenas A determina a propagação do erro.

Os círculos de Gerschgörin (distintos) são

$$C_1: |\lambda - (1 - 2r(1 + \alpha h))| \le 2r$$

$$C_2: |\lambda - (1 - 2r)| \le 2r$$

$$C_3: |\lambda - (1 - 2r(1 + \beta h))| \le 2r$$

Como os valores próprios de A são reais (ver Teorema 1.7), se $\lambda \in C_1$, então

$$-4r + 1 - 2r\alpha h \le \lambda \le \underbrace{1 - 2r\alpha h}_{<1}$$
.

Então $|\lambda| \leq 1$ se

$$-4r+1-2r\alpha h \ge -1 \Leftrightarrow r \le \frac{1}{2+\alpha h}.$$

Se $\lambda \in C_2$, então $|\lambda| \le 1$, se $r \le \frac{1}{2}$ e se $\lambda \in C_3$, então $|\lambda| \le 1$ se $r \le \frac{1}{2+\beta h}$. Logo, se

$$r \leq \min\left\{\frac{1}{2+\alpha h}, \frac{1}{2}, \frac{1}{2+\beta h}\right\} = \min\left\{\frac{1}{2+\alpha h}, \frac{1}{2+\beta h}\right\},\,$$

o método é estável.

Exercício 2.20

Х	t=0.02 (i)	t=0.02 (ii)
0	0.85902	12.644
0.1	0.92962	9.2894
0.2	0.97075	4.436
0.3	0.99021	1.7354
0.4	0.99717	1.0601
0.5	0.99678	1.0000
0.6	0.98523	1.6614
0.7	0.94409	8.4159
8.0	0.83903	30.418
0.9	0.63343	52.343
1.0	0.31844	31.081

Note-se que no caso da alínea (i), $r=\frac{1}{4}<\min\{\frac{1}{2+\alpha h},\frac{1}{2+\beta h}\}=0.47619$. Já na alínea (ii), $r=0.8>\min\{\frac{1}{2+\alpha h},\frac{1}{2+\beta h}\}=0.4878$

#3 Equações elípticas

3.1 Problemas de Dirichlet

Exercício 3.1. Considere a equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < 0.5, \ 0 < y < 0.5$$

sujeita às condições de fronteira

$$u(x, 0.5) = 200x$$
 e $u(x, 0) = 0$, $0 < x < 0.5$

$$u(0,y) = 0$$
 e $u(0.5,y) = 200y$, $0 < y < 0.5$.

- a) Use a fórmula dos cinco pontos, com h=1/6, para resolver o problema dado.
- b) Compare a solução obtida com a solução exata u(x,y) = 400xy.

Exercício 3.2.® Considere a equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < \pi, \ 0 < y < \pi$$

sujeita às condições

$$u(x,0)=0 \quad \text{e} \quad u(x,\pi)=\sin x, \quad 0 \leq x \leq \pi,$$

$$u(0, y) = u(\pi, y) = 0, \quad 0 \le y \le \pi.$$

- a) Calcule uma aproximação para a solução do problema anterior, considerando $h=\pi/3$.
- b) Comente os resultados obtidos na alínea anterior, sabendo que a solução exata do problema é

$$u(x,y) = \frac{\sin y \sin x}{\sin \pi}.$$

Exercício 3.3. ® Resolva a equação de Laplace em cada uma das regiões indicadas nas figuras abaixo, onde também se apresentam as condições de fronteira e os nós da malha a usar.

Exercício 3.4.® Fórmula dos nove pontos

Determine os coeficientes a, b e c de forma que o *stencil* abaixo produza um erro de truncatura $\mathcal{O}(h^4)$ para aproximar $\Delta u = 0$.

Exercício 3.5. ® Considere a equação de Poisson

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{5}{4}e^{x + \frac{y}{2}}, \ 0 < x < 1, \ 0 < y < 1$$

sujeita às condições de fronteira

$$u(x,0) = e^x$$
 e $u(x,1) = e^{x+\frac{1}{2}}$, $0 \le x \le 1$,

$$u(0,y) = e^{\frac{y}{2}}$$
 e $u(1,y) = e^{1+\frac{y}{2}}$, $0 \le y \le 1$,

cuja solução exata é $u(x,y)=e^{x+\frac{y}{2}}$. Use a fórmula dos cinco pontos para obter a solução do problema, usando $h=\frac{1}{3}$, e calcule o erro associado às aproximações obtidas.

Exercício 3.6. ® Pretende-se resolver a equação $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2$, na região indicada em cada uma das figuras abaixo, onde também se apresentam as condições de fronteira. Use, em ambos os casos, $h = \frac{1}{2}$ e tire partido da simetria da região.

Exercício 3.7. $^{\circledast}$ Considere a equação de Laplace na região e com as condições de fronteira indicadas na figura abaixo. A fronteira da região Ω é formada por segmentos de reta e um arco de circunferência, centrada em (1,1) e raio 1.

a) Mostre que equação de Laplace pode ser aproximada, no nó fronteiro O, pela fórmula

$$-\frac{4}{\theta}U_1 + \frac{2}{1+\theta}U_2 + \frac{2}{1+\theta}U_4 = -\frac{2}{\theta(1+\theta)}(U_A + U_B),$$

onde $\theta=-1+2\sqrt{0.75},\ U_A=U_B=75$ (use a ordenação natural dos nós).

b) Escreva as equações correspondentes aos nós da grelha e obtenha a solução do problema dado.

Exercício 3.8. Pretende-se resolver a equação de Laplace na região semicircular e com as condições de fronteira indicadas na figura abaixo.

- a) Assinale na figura os nós interiores e os nós fronteiros.
- b) Obtenha a solução do problema dado, tendo em consideração a simetria do problema.

3.2 Diferenças finitas em coordenadas polares

Exercício 3.9. ® Considere a região circular $\Omega = \{x^2 + y^2 \le 1, y \ge 0\}$ e a equação de Laplace sujeita às condições de fronteira $u = x^2 + y^2$ em $\partial\Omega$.

a) Use coordenadas polares para escrever a equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

na forma

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ 0 \le r \le 1, \ 0 \le \theta \le \pi.$$

b) Defina, de acordo com a figura ao lado, uma rede no plano r- θ formada pelos semicírculos $r=i\delta_r;~i=1,2,\ldots,M$, onde $M\delta_r=1$ e pelas retas $\theta=j\delta_\theta;~j=1,2,\ldots,N$, onde $N\delta_\theta=\pi.$ Supondo que os valores de u são conhecidos na fronteira, escreva, na forma matricial, o sistema

que permite obter o valor da solução da equação de Laplace nos nós, usando fórmulas de diferenças finitas.

Exercício 3.10. Resolva novamente o Exercício 3.9, usando agora coordenadas polares.

Exercício 3.11. Pretende-se resolver a equação de Laplace nas condições indicadas na figura, usando coordenadas polares.

37

- a) Represente o domíno apresentado no plano r- θ .
- b) Obtenha a solução do problema, usando $\delta_r=1$ e $\delta_{\theta}=\frac{\pi}{6}$.

3.3 Problemas com condições de Neumann

Exercício 3.12. ® Resolva a equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < 1, \ 0 < y < 1$$

sujeita às condições de fronteira

$$\frac{\partial u}{\partial y} = 0, \text{ em } y = 0, \ 0 < x < 1 \qquad \text{e} \qquad u(x,1) = 100, \ 0 \leq x \leq 1$$

$$u(0,y) = 75, 0 \le y < 1$$
 e $u(1,y) = 50, 0 \le y < 1$,

usando $h = \frac{1}{4}$.

Exercício 3.13. ® Considere a equação de Poisson

$$\frac{\partial^2 u}{\partial x^2} + 3\frac{\partial^2 u}{\partial y^2} = -16, -1 \le x \le 1, -1 \le y \le -1$$

sujeita às condições de fronteira

$$\frac{\partial u}{\partial y}=-u, \text{ em } y=1 \qquad \text{e} \qquad \frac{\partial u}{\partial y}=u, \text{ em } y=-1, \ -1< x<1.$$

$$u(-1,y)=u(1,y)=0, \ -1\leq y\leq 1$$

- a) Descreva matricialmente o processo para aproximar a solução do problema dado.
- b) Use $h=\frac{1}{4}$ e resolva o problema, tendo em conta a sua simetria.

Exercício 3.14. ® Resolva a equação

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4xy^2,$$

na região e com as condições de fronteira indicadas na figura ao lado.

3.4 Considerações computacionais

Exercício 3.15. Sejam $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{p \times q}$. O produto de kronecker de A e B, $A \otimes B$ é a matriz em $\mathbb{R}^{mp \times nq}$ definida como

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}.$$

Seja \mathcal{M}_N a matriz que se obtém por aplicação da fórmula dos cinco pontos para resolver a equação de Poisson no quadrado $[0,1] \times [0,1]$, conhecidos os valores da solução na fronteira, usando a ordenação natural.

a) Mostre que \mathcal{M}_N pode ser escrita como

$$\mathcal{M}_N = I \otimes T + T \otimes I,$$

onde T é a matriz tridiagonal

$$T = \begin{pmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{pmatrix}.$$

.

b) Use a função kron do Matlab para definir a matriz \mathcal{M}_N associada ao Exercício 3.5.

Exercício 3.16. Uma script em Matlab poisson2.m para resolver o problema do Exercício 3.5 pode ser obtida em http://faculty.washington.edu/rjl/fdmbook/, onde se encontra disponível também material associado ao livro [3].

- a) Escreva uma função, baseada em poisson2, para resolver uma equação de Poisson em $[a,b] \times [a,b]$, sujeita a condições de fronteira do tipo de Dirichlet.
- b) Teste a sua função resolvendo novamente alguns dos exercícios anteriores e apresentando também a representação gráfica da solução.

Exercício 3.17. Para além da ordenação usual dos nós (ver figura seguinte à esquerda), natural para computação sequencial, existe uma outra ordenação designada por ordenação *Red-Black*, considerada uma boa escolha para computação paralela.

Na ordenação Red-Black, os nós da malha são divididos em dois conjuntos de cor, como o esquema do lado direito da figura seguinte ilustra.

Se for usado um método iterativo para a resolução do sistema, a ideia é primeiro atualizar todos os pontos vermelhos, cujo cálculo envolve apenas os pontos vizinhos pretos. Para calcular os pontos pretos, apenas os pontos vermelhos recentemente calculados estão envolvidos.

- a) Escreva a matriz que se obtém por aplicação da fórmula dos cinco pontos para resolver a equação de Poisson no quadrado $[0,1] \times [0,1]$, conhecidos os valores da solução na fronteira, quando é usada a ordenação Red-Black; considere M=3 e M=4.
- b) Repita o Exercício 3.5, considerando agora esta ordenação.

Exercício 3.18. © Considere as funções numgrid e delsq do Matlab.

- a) Obtenha as matrizes \mathcal{M}_N e \mathcal{M}_{RB} correspondentes à aplicação da fórmula dos cinco pontos (nas condições do exercício anterior), com a ordenação natural e com a ordenação Red-Black, respetivamente; considere M=3 e M=4.
- b) Use a função spy para visualizar as matrizes \mathcal{M}_N e \mathcal{M}_{RB} , considerando vários valores de M.
- c) Verifique que as matrizes \mathcal{M}_n e \mathcal{M}_{RB} são semelhantes. Qual é a matriz P tal que $P\mathcal{M}_NP^{-1}=\mathcal{M}_{RB}$?

Exercício 3.19. Relembre de o sistema de equações da forma Ax = b, com $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ e $b = (b_i) \in \mathbb{R}^n$, pode ser resolvido usando o seguinte método iterativo:

Para
$$k = 0, 1, 2, ...$$

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right); i = 1, \dots, n,$$

com
$$x_i^{(0)}$$
; $i = 1, ..., n$, dados

conhecido por método de sobre-relaxação sucessiva $SOR(\omega)$, onde ω é um parâmetro¹ designado por parâmetro de relaxação.

 $^{^1 \}text{Recorde}$ que é condição necessária de convergência do método SOR(ω) que o parâmetro de relaxação ω satisfaça $0<\omega<2.$

Considere a aplicação do método $SOR(\omega)$ na resolução do sistema que se obtém para resolver a equação de Poisson $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$ em $[a,b] \times [a,b]$, sujeita a condições de fronteira do tipo de Dirichlet. Mostre que o correspondente esquema iterativo $SOR(\omega)$ se escreve:

a) usando a ordenação natural dos nós,

$$U_{i,j}^{(k+1)} = (1-\omega)U_{i,j}^{(k)} + \tfrac{1}{4}\omega \left(U_{i,j-1}^{(k+1)} + U_{i-1,j}^{(k+1)} + U_{i+1,j}^{(k)} + U_{i,j+1}^{(k)} - h^2 f(ih,jh) \right)$$

- b) usando a ordenação Red-Black,
 - nós vermelhos (i + j par)

$$U_{i,j}^{(k+1)} = (1-\omega)U_{i,j}^{(k)} + \frac{1}{4}\omega \left(U_{i,j-1}^{(k)} + U_{i-1,j}^{(k)} + U_{i+1,j}^{(k)} + U_{i,j+1}^{(k)} - h^2 f(ih,jh) \right)$$

- nós pretos (i + j impar)

$$U_{i,j}^{(k+1)} = (1-\omega)U_{i,j}^{(k)} + \tfrac{1}{4}\omega\left(U_{i,j-1}^{(k+1)} + U_{i-1,j}^{(k+1)} + U_{i+1,j}^{(k+1)} + U_{i,j+1}^{(k+1)} - h^2f(ih,jh)\right)$$

- Exercício 3.20. a) Escreva uma função em Matlab, poissonSOR para resolver a equação de Poisson, em $[a,b] \times [a,b]$, sujeita a condições de fronteira do tipo de Dirichlet, usando o método de sobre-relaxação sucessiva para resolver o sistema de equações (considere a ordenação natural dos nós).
 - b) Repita a alínea anterior, usando agora a ordenação Red-Black; designe a sua função por poissonRB.
- Exercício 3.21. Considere novamente o problema apresentado no Exercício 3.5.

Compare, em termos de tempo de execução e precisão dos resultados, as soluções obtidas usando as funções poisson2 (que tira partido da estrutura esparsa da matriz e usa a função predefinida $\$ do Matlab) e as poissonSOR e poissonRB (que implementam o método SOR para resolução do sistema, usando duas ordenações diferentes); use vários valores de h e de ω .

3.5 Soluções de alguns exercícios

Exercício 3.2

a) Pretende-se obter a solução do problema dado nos pontos $a,\ b,\ c$ e d assinalados na figura seguinte.

A aplicação da fórmula dos cincos pontos conduz ao sistema

$$\begin{cases}
-4U_a + U_b + U_c &= 0 \\
U_a - 4U_b &+ U_d = 0 \\
U_a &- 4U_c + U_d = -\sqrt{3}/2 \\
U_b + U_c - 4U_d = -\sqrt{3}/2
\end{cases}$$

cuja solução é:

$$\left\{ \begin{array}{l} U_a = 0.108253 \\ U_b = 0.108253 \\ U_c = 0.324760 \\ U_d = 0.324760 \end{array} \right.$$

b)

(x, y)	Solução Aproximada	Solução Exata	Erro
\overline{a}	0.093688	0.108253	0.015
b	0.093688	0.108253	0.015
c	0.299857	0.324760	0.025
d	0.299857	0.324760	0.025

As aproximações obtidas em a) estão de acordo com a solução exata, uma vez que o erro de truncatura local deste método é de ordem $\mathcal{O}\left(h^2\right)$.

Exercício 3.3

a) Usando a ordenação natural dos nós interiores:

$$A = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -4 & 0 \\ 1 & 0 & -4 \end{pmatrix}, \qquad b = \begin{pmatrix} -0.2500 \\ -0.7500 \\ -1.7500 \end{pmatrix}, \quad U = \begin{pmatrix} 0.2500 \\ 0.2500 \\ 0.5000 \end{pmatrix}$$

b) Usando a ordenação natural dos nós interiores e a simetria do problema:

$$A = \begin{pmatrix} -4 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -4 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -4 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -4 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & -4 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -4 \end{pmatrix}, \quad b = \begin{pmatrix} -0.3333 \\ -1.6667 \\ 0 \\ -1.0000 \\ 0 \\ -1.0000 \\ 0 \\ -1.0000 \\ 0 \\ -1.0000 \\ -2.0000 \end{pmatrix}, \quad U = \begin{pmatrix} 0.3445 \\ 0.6766 \\ 0.3680 \\ 0.6952 \\ 0.6249 \\ 0.8175 \\ 0.9087 \end{pmatrix}$$

Exercício 3.4

Exercício 3.5

$$A = \begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix}, \quad b = \begin{pmatrix} -2.348 \\ -4.8394 \\ -3.4261 \\ -6.6274 \end{pmatrix}, \quad U = \begin{pmatrix} 1.6498 \\ 2.3022 \\ 1.9489 \\ 2.7196 \end{pmatrix}, \quad \text{erro} = \begin{pmatrix} 0.0010402 \\ 0.0012244 \\ 0.0011276 \\ 0.0013335 \end{pmatrix}$$

Exercício 3.6 Atendendo à simetria da região:

só é necessário calcular a solução em 3 pontos.

$$U_1 = 0.3438, \quad U_2 = 0.4375, \quad U_3 = 0.5625$$

Atendendo à simetria da região:

só é necessário calcular a solução em 5 pontos.

$$U_1 = 0.7368$$
, $U_2 = 0.7237$, $U_3 = 0.9539$, $U_4 = 0.6579$, $U_5 = 0.4539$.

Exercício 3.7

a) Os pontos A e B têm coordenadas

$$A = (0.5, 1 - \sqrt{0.75})$$
 e $B = (1 - \sqrt{0.75}, 0.5)$.

Como

$$\frac{\partial^2 u}{\partial x^2} = \frac{2}{\theta + 1} U_2 - \frac{2}{\theta} U_1 + \frac{2}{\theta (1 + \theta)} U_B,$$

onde $\theta h = -0.5 + \sqrt{0.75}$, i.e., $\theta = -1 + 2\sqrt{0.75}$ e

$$\frac{\partial^2 u}{\partial y^2} = \frac{2}{\theta + 1} U_4 - \frac{2}{\theta} U_1 + \frac{2}{\theta (1 + \theta)} U_A,$$

o resultado obtém-se de imediato.

b) O sistema correspondente aos nós da grelha é $\mathcal{M}U=b$, onde

$$\mathcal{M} = \begin{pmatrix} -2(1+\theta) & \theta & 0 & \theta & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ \end{pmatrix} \quad \text{e} \quad b = \begin{pmatrix} -150 \\ -75 \\ -125 \\ -75 \\ 0 \\ -50 \\ -175 \\ -100 \\ -150 \end{pmatrix}.$$

A solução do sistema é

$$U = \begin{pmatrix} 75.0000 \\ 72.7679 \\ 66.0714 \\ 77.2321 \\ 75.0000 \\ 66.5179 \\ 83.9286 \\ 83.4821 \\ 75.0000 \end{pmatrix}$$

Exercício 3.8

a) Os nós fronteiros são os nós 3, 5 e 6 marcados na figura e os pontos simétricos em relação a x=0.

b) Os pontos assinalados na figura têm coordenadas:

$$A=(\tfrac{\sqrt{8}}{3},\tfrac{1}{3}),\ B=(\tfrac{\sqrt{5}}{3},\tfrac{2}{3}),\ C=(\tfrac{2}{3},\tfrac{\sqrt{5}}{3}),\ D=(\tfrac{1}{3},\tfrac{\sqrt{8}}{3}).$$

A solução nesses pontos é:

$$u_A = \frac{8}{9}, \ u_B = \frac{5}{9}, \ u_C = \frac{4}{9}, \ u_D = \frac{1}{9}.$$

O sistema correspondente aos nós da grelha é $\mathcal{M}U=b$, onde

$$\mathcal{M} = \begin{pmatrix} -4 & 2 & 0 & 1 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -4 & 2 & 0 \\ 0 & 2\theta_1 & -2(1+\theta_1)^2 & 0 & 0 & \theta_1(1+\theta_1) \\ 0 & 2\theta_1 & 0 & \theta_1(1+\theta_1) & -2(1+\theta_1)^2 & \theta_1(1+\theta_1) \\ 0 & 0 & 2\theta_2 & 0 & 2\theta_2 & -4(1+\theta_2) \end{pmatrix},$$

$$b = \begin{pmatrix} -1 & -1 & 0 & -\frac{16}{9} - \theta_1(1+\theta_1) & -\frac{2}{9} & -2 \end{pmatrix}^T,$$

$$\theta_1 = \sqrt{8} - 2 \quad \text{e} \quad \theta_2 = \sqrt{5} - 2.$$

A solução do sistema é

$$U = \begin{pmatrix} 0.7126 & 0.7311 & 0.7914 & 0.3882 & 0.4202 & 0.5202 \end{pmatrix}^T$$

Exercício 3.9

a) Seja $x=r\cos\theta$ e $y=r\sin\theta$. Então $r=\sqrt{x^2+y^2}$ e $\theta=\arctan\frac{y}{x}$. Assumindo u de classe C^2 , tem-se

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cos \theta - \frac{\partial u}{\partial \theta} \frac{\sin \theta}{r} \qquad \mathbf{e} \qquad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \sin \theta + \frac{\partial u}{\partial \theta} \frac{\cos \theta}{r}$$

$$\frac{\partial^2 u}{\partial x^2} = \cos^2\theta \frac{\partial^2 u}{\partial r^2} + \frac{2 \sin\theta \cos\theta}{r^2} \frac{\partial u}{\partial \theta} - \frac{2 \sin\theta \cos\theta}{r} \frac{\partial^2 u}{\partial r \partial \theta} + \frac{\sin^2\theta}{r} \frac{\partial u}{\partial r} + \frac{\sin^2\theta}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \sin^2 \theta \frac{\partial^2 u}{\partial r^2} - \frac{2 \sin \theta \cos \theta}{r^2} \frac{\partial u}{\partial \theta} + \frac{2 \sin \theta \cos \theta}{r} \frac{\partial^2 u}{\partial r \partial \theta} + \frac{\cos^2 \theta}{r} \frac{\partial u}{\partial r} + \frac{\cos^2 \theta}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

e o resultado obtém-se de imediato.

Exercício 3.11

```
t=pi/6; teta=3*sqrt(3)/2-2; teta1=teta+1; t2=t^2; pi2=pi^2;
A=[-2*(1+1/t2), 3/2, 1/t2, ...
0; 2/teta1-teta/(2*teta1), -2/teta-(1-teta)/(2*teta)-18/pi2, ...
0, 9/pi2; 1/t2, 0, -2*(1+1/t2), 3/2; 0, ...
1/(4*t2), 3/4, -2*(1+1/(4*t2))]
b=[-1/t2; -6/(teta*teta1)-3/(2*teta*teta1)-18/(pi2); -1/t2; ...
-15/4-1/(2*t2)]
U=A\b
```

U = 4x1

1.2697

2.3790

1.2572

2.2716

Exercício 3.12

U = 9x1

75.3027

71.8888

63.2835

77.1610

77.1010

74.4845 65.6225

83.8567

00.0001

83.2658

74.7221

Exercício 3.13

4.5176	4.2761	3.5197	2.1498	4.4314	4.1953	3.4553
2.1131	4.1692	3.9491	3.2583	2.0000	3.7204	3.5266
2 9170	1 8008	2 9093	2 4114	1 4964		

Exercício 3.14

U = 5x1

0.8875

0.7427

0.6214

0.9037

0.7310

Exercício 3.15

```
a=[-4 1 1 0;1 -4 0 1;1 0 -4 1;0 1 1 -4]; % matriz do ...
    exercício 3.5
M=3;
m=M-1;
I = speye(m);
e = ones(m,1);
T = spdiags([e -2*e e],[-1 0 1],m,m); A = (kron(I,T) + ...
    kron(T,I));
full(A)
```

Exercício 3.16

poisson2.m - resolve o problema de Poisson

```
\begin{split} &u_-\{xx\}\,+\,u_-\{yy\}=f(x,y)\text{ em }[a,b]\times[a,b],\\ &\text{com condições de Dirichlet}\\ &u(x,a){=}f0(x)\text{ e }u(x,b){=}f1(x)\text{ }u(a,y){=}g0(y)\text{ e }u(b,y){=}g1(x) \end{split}
```

usando a fórmula dos 5 pontos.

Esta função foi adaptada de http://www.amath.washington.edu/~rjl/fdmbook/chapter3

```
function U=poisson2(f,a,b,m,f0,f1,g0,g1)
h = (b-a)/(m+1);
x = linspace(a,b,m+2); % pontos malha x incluindo a fronteira
y = linspace(a,b,m+2); % pontos malha y incluindo a fronteira
U=zeros(m+2,m+2);
[X,Y] = meshgrid(x,y);
X = X';
                         % transposta de modo que ...
  X(i,j),Y(i,j) são
Y = Y';
                         % coordenadas (i,j) pontos
Iint = 2:m+1;
                         % índices dos pontos interiores em x
Jint = 2:m+1;
                         % indices dos pontos interiores em y
Xint = X(Iint, Jint);
                         % pontos interiores
Yint = Y(Iint, Jint);
b = h^2*f(Xint, Yint); % avaliação de f nos pontos ...
   interiores para formar vetor b (vão ser alterados pelas ...
   condições de fronteira).
```

(continuação do código)

```
% definir as condições de fronteira:
U(:,1) = fO(x); % y=a
U(:,m+2) = f1(x); \% y=b
U(1,:) = g0(y); % x=a
U(m+2,:) = g1(y); \% x=b
% ajustar b para incluir condições de fronteira:
b(:,1) = b(:,1) - U(Iint,1);
b(:,m) = b(:,m) - U(Iint,m+2);
b(1,:) = b(1,:) - U(1,Jint);
b(m,:) = b(m,:) - U(m+2, Jint);
% converter b num vetor coluna:
B = reshape(b, m*m, 1);
% formar a matriz A:
I = speye(m);
e = ones(m,1);
% usar produto de kronecker (ver Exercício 3.15)
T = spdiags([e -2*e e], [-1 0 1], m, m);
A = (kron(I,T) + kron(T,I));
% Resolver o sistema
uvec = A \setminus B;
% fazer o reshape do vetor solução de forma a ter uma grelha ...
   com os valores da solução
U(Iint, Jint) = reshape(uvec, m, m);
end
```

Resolução Exercício 3.5, usando a função poisson2

```
f=@(x,y) 1.25*exp(x+y/2);
f0=@(x) exp(x);% y=0
f1=@(x) exp(x+1/2); % y=1
g0=@(y) exp(y/2); % x=0
g1=@(y) exp(1+y/2); %x=1
a=0;b=1;m=2;
U=poisson2(f,a,b,m,f0,f1,g0,g1) % os elementos U(i,j) são a ...
solução nos pontos ((i-1)h,(j-1)h); i,j=1,...,m+2
```

```
U = 4x4
         1.0000
                   1.1814
                              1.3956
                                         1.6487
                   1.6498
                              1.9489
                                         2.3010
         1.3956
         1.9477
                   2.3022
                              2.7196
                                         3.2113
                              3.7937
         2.7183
                   3.2113
                                         4.4817
```

```
x = linspace(a,b,m+2);
y = linspace(a,b,m+2);
[X,Y] = meshgrid(x,y);
X = X';
Y = Y';
exata=@(x,y) exp(x+y/2);
err = max(max(abs(U-exata(X,Y))));
fprintf('Erro = %10.3e \n',err)
```

Erro = 1.333e - 03

```
clf
surf(X,Y,U)
xlabel('x')
ylabel('y')
zlabel('U')
```



```
clf
surf(X,Y,exata(X,Y))
```


Exercício 3.17

```
M=3;
N=(M-1)^2;
natural = numgrid('S',M+1);
p=[1:2:N 2:2:N];
rb=zeros(M-1,M-1);
rb(p)=natural(2:M,2:M);
redBlack=zeros(M+1,M+1);
redBlack(2:M,2:M)=rb;
ARB=full(-delsq(redBlack))
```

```
h=1/M;

f=@(x,y) 1.25*exp(x+y/2);

% vetor exercício 3.5

b= [h^2*f(1/3,1/3)-exp(1/3)-exp(1/6);

h^2*f(2/3,1/3)-exp(7/6)-exp(2/3);

h^2*f(1/3,2/3)-exp(5/6)-exp(1/3);

h^2*f(2/3,2/3)-exp(4/3)-exp(7/6)];

b=b(p);

U=ARB\b;

U(p)
```

```
ans = 4x1
1.6498
2.3022
1.9489
2.7196
```

Exercício 3.18

a)

```
M=3;
N=(M-1)^2;
natural = numgrid('S',M+1);
Anatural=full(-delsq(natural))
```

```
Anatural = 4x4
        -4
              1
                    1
                           0
             -4
                    0
         1
                           1
         1
              0
                    -4
                          1
                   1
         0
              1
                          -4
```

spy(Anatural)


```
p=[1:2:N 2:2:N];
rb=zeros(M-1,M-1);
rb(p)=natural(2:M,2:M);
redBlack=zeros(M+1,M+1);
redBlack(2:M,2:M)=rb;
ARB=full(-delsq(redBlack))
```

```
ARB = 4x4
          -4
                  1
                          1
                                 0
                 -4
           1
                          0
                                 1
           1
                  0
                         -4
                                 1
           0
                  1
                          1
                                -4
```

spy(ARB)


```
M=4;
N=(M-1)^2;
natural = numgrid('S',M+1);
Anatural=full(-delsq(natural))
```

```
Anatural = 9x9
           -4
                     1
                              0
                                       1
                                                0
                                                         0
                                                                  0
                                                                           0
                                                                                    0
             1
                    -4
                              1
                                       0
                                                         0
                                                                  0
                                                                           0
                                                                                    0
                                                1
             0
                      1
                             -4
                                       0
                                                0
                                                         1
                                                                  0
                                                                           0
                                                                                    0
             1
                      0
                              0
                                      -4
                                                1
                                                         0
                                                                  1
                                                                           0
                                                                                    0
             0
                      1
                              0
                                       1
                                               -4
                                                                  0
                                                                                    0
                                                         1
                                                                           1
             0
                      0
                              1
                                       0
                                                1
                                                        -4
                                                                  0
                                                                           0
                                                                                    1
             0
                      0
                              0
                                       1
                                                0
                                                         0
                                                                 -4
                                                                           1
                                                                                    0
             0
                      0
                              0
                                       0
                                                1
                                                         0
                                                                  1
                                                                          -4
                                                                                    1
             0
                      0
                              0
                                       0
                                                0
                                                         1
                                                                  0
                                                                           1
                                                                                   -4
```

```
spy(Anatural)
```



```
p=[1:2:N 2:2:N];
rb=zeros(M-1,M-1);
rb(p)=natural(2:M,2:M);
redBlack=zeros(M+1,M+1);
redBlack(2:M,2:M)=rb;
ARB=full(-delsq(redBlack))
```

```
ARB = 9x9
                     0
                              0
                                       0
                                                0
                                                         1
                                                                  1
                                                                          0
                                                                                   0
             0
                    -4
                              0
                                       0
                                                0
                                                         1
                                                                  0
                                                                           1
                                                                                   0
                     0
             0
                             -4
                                       0
                                                0
                                                         1
                                                                  1
                                                                           1
                                                                                   1
             0
                     0
                              0
                                      -4
                                                0
                                                         0
                                                                  1
                                                                          0
                                                                                   1
             0
                      0
                              0
                                       0
                                               -4
                                                         0
                                                                  0
                                                                                   1
                                                                           1
             1
                      1
                              1
                                       0
                                                0
                                                        -4
                                                                  0
                                                                          0
                                                                                   0
                      0
                              1
                                                                                   0
             1
                                       1
                                                         0
                                                                -4
                                                                          0
```

spy(ARB)

b)

[Anatural,ARB]=MatrizLaplace(30); spy(ARB)

[Anatural,ARB] = MatrizLaplace(31); spy(ARB)

c)

```
M=3;
N=(M-1)^2;
[Anatural,ARB]=MatrizLaplace(M);
p=[1:2:N 2:2:N];
P=eye(size(Anatural));
P=P(p,:);
% As matrizes sao semelhantes
isequal(P*Anatural*P',ARB)
```

ans =

1

```
M=4;
N=(M-1)^2;
[Anatural,ARB]=MatrizLaplace(M);
p=[1:2:N 2:2:N];
P=eye(size(Anatural));
P=P(p,:);
% As matrizes sao semelhantes
isequal(P*Anatural*P',ARB)
```

ans =

1

#4 Equações hiperbólicas

4.1 Método das características para equações de 1^a ordem

Exercício 4.1. ® Considere a equação

$$\sqrt{x} \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = -u^2,$$

com condições iniciais u = 1 em y = 0, $0 < x < \infty$.

- a) Determine a equação da característica que passa no ponto $R=(x_R,0), x_R>0.$
- b) Use um método de integração numérica para obter uma primeira aproximação para u e y, no ponto P=(1.1,y), ao longo da característica que passa em R=(1,0).
- c) Calcule uma segunda aproximação para os valores obtidos na alínea anterior e compare com a solução analítica.

Exercício 4.2. ® Repita o exercício anterior, considerando a equação

$$x^2 u \frac{\partial u}{\partial x} + e^{-y} \frac{\partial u}{\partial y} = -u^2,$$

com condições iniciais u = 1 em y = 0, $0 < x < \infty$.

Exercício 4.3. Considere a equação

$$\frac{\partial u}{\partial x} + \frac{x}{\sqrt{u}} \frac{\partial u}{\partial y} = 2x,$$

com condições u=0 em x=0, $y\geq 0$ e u=0 em y=0, x>0.

- a) Obtenha a solução analítica do problema nos pontos P=(2,5) e Q=(5,4).
- b) Represente graficamente as características que passam em P e Q.
- c) Calcule aproximações $u_p^{(1)}$ e $y_P^{(1)}$ para u e y, no ponto P=(4.05,y), ao longo da característica que passa em R=(4,0), supondo que a condição inicial ao longo de y=0 é substituída por u=x. Compare os valores obtidos com a solução analítica.

4.2 Métodos de diferenças finitas para equações de 1^a ordem

Nos exercícios 4.5-4.8 consideramos a equação de advecção

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \ a > 0 \tag{4.1}$$

e a aplicação de alguns dos esquemas de diferenças finitas apresentados na Tabela 1, onde $C=\frac{k}{h}a$ representa o número de Courant, com h e k, designando, como habitualmente, as dimensões da malha (uniforme) nas direções de x e t.

Tabela 1. Esquemas de diferenças finitas para resolver a equação de advecção

Método	Esquema
Euler progressivo	$U_{i,j+1} = \frac{C}{2}U_{i-1,j} + U_{i,j} - \frac{C}{2}U_{i+1,j}$
Upwind	$U_{i,j+1} = CU_{i-1,j} + (1-C)U_{i,j}$
Lax-Friedrichs	$U_{i,j+1} = \frac{1+C}{2}U_{i-1,j} + \frac{1-C}{2}U_{i+1,j}$
Lax Wendroff	$U_{i,j+1} = \frac{C^2 + C}{2} U_{i-1,j} + (1 - C^2) U_{i,j} + \frac{C^2 - C}{2} U_{i+1,j}$
Warming-Beam	$U_{i,j+1} = U_{i,j} - \frac{C}{2}(3U_{i,j} - 4U_{i-1,j} + U_{i-2,j}) + \frac{C^2}{2}(U_{i,j} - 2U_{i-1,j} + U_{i-2,j})$
Leap-Frog	$U_{i,j+1} = U_{i,j-1} - C(U_{i+1,j} - U_{i-1,j})$

Exercício 4.4. ® Considere a equação (4.1), com condições iniciais $u(x,0) = \phi(x)$.

- a) Mostre que a solução deste problema é $u(x,t) = \phi(x-at)$.
- b) Sejam $(x_i,t_j)=(ih,jk)$, nós da malha de dimensões h e k na direção de x e t, respetivamente. Verifique que, se $a=\frac{h}{k}$, então

$$u(x_i, t_{j+1}) = u(x_{i-1}, t_j).$$

c) Quais os métodos da Tabela 1 que satisfazem a condição anterior?

Exercício 4.5. ® Considere a aplicação de cada um dos métodos indicados na Tabela 1 para resolver em [0,1] a equação de advecção (4.1), com a=1 e condições

$$u(x,0) = e^{-0.5(50x-5)^2}, \ 0 \le x \le 1, \qquad u(0,t) = 0, t > 0.$$

Represente graficamente a solução obtida, em t=0(0.25)1, usando

- a) C = 1 e k = 0.01 e k = 0.001;
- b) C = 0.8 e k = 0.01 e k = 0.001.

Exercício 4.6. Repita o exercício anterior, considerando agora as condições iniciais

$$u(x,0) = \begin{cases} \cos(5\pi(x-0.1)), & 0 \le x < \frac{1}{5} \\ 0, & \frac{1}{5} \le x \le 1. \end{cases}$$

Exercício 4.7. ® Considere o método de Lax-Wendroff (L-W) para resolver a equação (4.1).

- a) Use o método de Fourier para analisar a estabilidade deste método.
- b) Mostre que o erro de truncatura local do método L-W é de ordem $\mathcal{O}(k^2 + h^2)$.

Exercício 4.8. ® Considere a equação

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0,$$

com condições iniciais e condições de fronteira, respetivamente,

$$u(x,0) = \begin{cases} x(x-2), & 0 \le x \le 2\\ 2(x-2), & x \ge 2 \end{cases} \qquad u(0,t) = 2t, \ t > 0.$$

- a) Obtenha a solução analítica do problema.
- b) Calcule a solução numérica nos pontos (x,t), com x=0(1)7 e t=0(0.5)3, usando o método de Lax-Wendroff explícito, com h=0.25 e k=0.125.

Exercício 4.9. ® No método de Wendroff implícito, a equação

$$a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = c$$

é aproximada no ponto $(i+\frac{1}{2},j+\frac{1}{2})$ por

$$(b+ap)U_{i+1,j+1} + (b-ap)U_{i,j+1} - (b-ap)U_{i+1,j} - (b+ap)U_{i,j} - 2kc = 0,$$
 (4.2)

onde $p = \frac{k}{h}$.

- a) Mostre que este esquema é incondicionalmente estável.
- b) Mostre que o erro de truncatura local de (4.2) é de ordem $\mathcal{O}(k^2+h^2)$.

Exercício 4.10. Repita o Exercício 4.8, usando agora o método L-W implícito.

4.3 Equação das ondas

Exercício 4.11. Mostre que a solução da equação

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2},\tag{4.3}$$

sujeita às condições iniciais

$$u(x,0) = f(x), \tag{4.4}$$

$$\frac{\partial}{\partial t}u(x,0) = g(x),$$
 (4.5)

para $x, t \in \mathbb{R}$, é dada por

$$u(x,t) = \frac{1}{2}(f(x+ct) + f(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds.$$

Exercício 4.12. © Considere o modelo para o movimento de uma corda elástica flexível uniforme num plano, dado pela equação das ondas (4.3), com c=1. Suponha que inicialmente a corda está em repouso (g(x)=0) e que um impulso é aplicado numa região centrada em torno de $x=4\pi$, dado por

$$f(x) = \begin{cases} \cos^3(x - 4\pi), & x \in (3.5\pi, 4.5\pi) \\ 0, & \text{nos outros casos} \end{cases}$$

- a) Represente graficamente a solução analítica deste problema, para $x \in [0, 30]$ e $t \in [1, 5]$.
- b) Represente graficamente a solução numérica, usando o método explícito com $h=0.3\ {\rm e}$ k=0.125.

Exercício 4.13. Repita o exercício anterior, considerando agora que $c=\sqrt{\pi}$, a corda está esticada (f(x)=0) e com um perfil de velocidades, no instante t=0, dado por $g(x)=e^{-(x-4\pi)^2}$.

Exercício 4.14. © Considere o modelo para o movimento de uma corda, com extremidades fixas, de comprimento L=0.5 cm, esticada no instante t=0 e com velocidade inicial $g(x)=\sin(4\pi x)$.

- a) Escreva o problema que descreve o movimento desta corda, considerando a velocidade de propagação da onda de $\frac{1}{4\pi}$ cm/segundo.
- b) Represente graficamente, em $[0,0.5] \times [0,2]$, a solução numérica, usando o método explícito com $h=\ k=\ 0.01.$

Exercício 4.15. © Considere o problema de uma corda esticada entre os pontos x=0 e x=1. Inicialmente, deixe a corda ser deslocada de modo que u=x(1-x)/2. Acompanhe o comportamento da corda à medida que o tempo avança, a partir do momento em que a corda sai do repouso (considere c=1). Use o método explícito com h=0.1 e k=0.05. Apresente uma tabela de valores para t=0:0.1:1.

Exercício 4.16. Considere uma corda com comprimento de 8 cm, com ambas as extremidades mantidas à mesma altura. A corda é posta em movimento pelo ato de puxá-la e soltá-la, ou seja, segurando-a no seu ponto médio, puxando-a para cima por uma distância de 2 cm e soltando-a¹. Escreva o problema que descreve o movimento desta corda, considerando a velocidade de propagação da onda de 1 cm/segundo, e resolva-o numericamente.

Exercício 4.17. A equação das ondas (4.3), com c=1, é aproximada no ponto (ih,jk) pelo esquema implícito

$$\frac{1}{k^2}\delta_t^2 U_{i,j} = \frac{1}{4h^2} \left(\delta_x^2 U_{i,j+1} + 2\delta_x^2 U_{i,j} + \delta_x^2 U_{i,j-1} \right),$$

onde δ denota o operador usual de diferenças centrais.

- a) Use o método de Fourier para concluir que este esquema é incondicionalmente estável.
- b) Considere as condições iniciais (4.4)-(4.5), para $x \in [0,1]$, e as condições de fronteira

$$u(x,0) = u(x,1) = 0.$$

Descreva matricialmente o método anterior para resolver este problema e faça a análise matricial da sua estabilidade.

c) Mostre que o erro de truncatura local do método implícito é dado por

$$\tau_{i,j}=-\frac{1}{12}h^2+k^2(1+2r^2)\left.\frac{\partial^4 u}{\partial x^4}\right|_{i,j}+\text{termos de ordem superior}.$$

4.4 Soluções de alguns exercícios

Exercício 4.1

Equação da característica que passa em $(x_R,0)$: $y=\log(2\sqrt{x}-2\sqrt{x_R}+1)$

Solução:
$$u=\dfrac{1}{2\sqrt{x}-2\sqrt{x_R}+1}$$

Aproximações:
$$\begin{array}{c|cccc} k & y_p^{(k)} & U_p^{(k)} \\ \hline 1 & 0.1 & 0.9 \\ 2 & 0.09314 & 0.91106 \\ \end{array}$$

Exercício 4.2

Equação da característica que passa em $(x_R,0)$: $y=rac{1}{x_R}-rac{1}{x}$

Solução:
$$u=e^{\frac{1}{x}-\frac{1}{x_R}}$$

$$\begin{tabular}{lll} {\sf Aproxima} {\it c} {\it \tilde{o}} {\it es} {\it i} & y_p^{(k)} & U_p^{(k)} \\ \hline 1 & 0.1 & 0.9 \\ 2 & 0.0912 & 0.9131 \\ \hline \end{tabular}$$

¹Este ato de puxar e soltar é essencialmente o que acontece quando se toca, por exemplo, uma guitarra.

Exercício 4.4 Equação de advecção:
$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \ a>0$$

Condição inicial: $u(x,0) = \phi(x)$

a) Equação diferencial da família de características: $\frac{dx}{a}=\frac{dt}{1},$ Equação da família de características que passa em $(x_R,0)$: $x=at+x_R.$ Solução ao longo da curva característica: $u=k_2$, com k_2 constante para cada característica. Para a característica que passa em $(x_R,0)$, tem-se que $k_2=u(x_R,0)=\phi(x_R)$. Logo

$$u(x,t) = \phi(z - at).$$

Exercício 4.5

0.2

0

0

0.5

Exercício 4.7

a) O esquema pretendido é da forma

$$U_{i,j+1} = \frac{C^2 + C}{2}U_{i-1,j} + (1 - C^2)U_{i,j} + \frac{C^2 - C}{2}U_{i+1,j}$$

Logo, a fórmula para propagação dos erros $\varepsilon_{i,j}$ é

$$\varepsilon_{i,j+1} = \frac{C^2 + C}{2} \varepsilon_{i-1,j} + (1 - C^2) \varepsilon_{i,j} + \frac{C^2 - C}{2} \varepsilon_{i+1,j}.$$

Assumindo que $\varepsilon_{i,j}=e^{\mathbf{i}\beta ih}\zeta^j$, podemos escrever

$$e^{{\bf i}\beta ih}\zeta^{j+1} = \frac{C^2 + C}{2}e^{{\bf i}\beta(i-1)h}\zeta^j + (1-C^2)e^{{\bf i}\beta ih}\zeta^j + \frac{C^2 - C}{2}e^{{\bf i}\beta(i+1)h}\zeta^j.$$

Dividindo por $e^{\mathbf{i}\beta ih}\zeta^j$, obtém-se

$$\zeta = \frac{C^2 + C}{2}e^{-\mathbf{i}\beta h} + (1 - C^2) + \frac{C^2 - C}{2}e^{\mathbf{i}\beta h}.$$

Simplificando a expressão anterior, podemos escrever

$$\zeta = 1 - 2C^2 \operatorname{sen}^2 \frac{\beta h}{2} + 2C \operatorname{sen} \frac{\beta h}{2} \cos \frac{\beta h}{2} \mathbf{i}.$$

Logo,

$$|\zeta|^2 = \dots = 1 - 4C^2(1 - C^2) \operatorname{sen}^4 \frac{\beta h}{2}.$$

Sabemos que o método é estável quando $|\zeta| \leq 1$, i.e., quando $0 < C = \frac{k}{h}a \leq 1$.

Exercício 4.8

a) Seia f(x) = u(x, 0) e g(t) = u(0, t).

A equação da característica que passa em $R = (x_R, 0)$ é $t = x - x_R$.

A solução da equação diferencial ao longo da característica é $u=u_R=u(x_R,0)=f(x-t)$, i.e.,

$$u(x,t) = \begin{cases} (x-t)(x-t-2), & 0 \le x-t \le 2\\ 2(x-t-2), & x-t \ge 2 \end{cases}.$$

A equação da característica que passa em $S=(0,t_S)$ é $t=x+t_S$.

A solução da equação diferencial ao longo da característica é $u=u_S=u(0,t_S)=g(t-x)$, i.e.,

$$u(x,t) = 2(t-x).$$

b) Solução aproximada

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	x = 6	x = 7
		-1.0000						
		-0.7500			3.0000	5.0000	7.0000	9.0000
t = 1.0	2.0000	-0.0223	-1.0022	0.0246	2.0000	4.0000	6.0000	8.0000
t = 1.5	3.0000	0.9846	-0.7499	-0.7325	1.0014	3.0000	5.0000	7.0000
t = 2.0	4.0000	2.0074	-0.0389	-1.0092	0.0405	2.0001	4.0000	6.0000
t = 2.5	5.0000	2.9999	0.9651	-0.7537	-0.7133	1.0040	3.0000	5.0000
t = 3.0	6.0000	3.9987	2.0103	-0.0504	-1.0112	0.0540	2.0003	4.0000

Erro:

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	x = 6	x = 7
t = 0.0	0	0	0	0	0	0	0	0
t = 0.5	0	0	-0.0005	0	0	0	0	0
t = 1.0	0	0.0223	0.0022	-0.0246	0	0	0	0
t = 1.5	0	0.0154	-0.0001	-0.0175	-0.0014	0	0	0
t = 2.0	0	-0.0074	0.0389	0.0092	-0.0405	-0.0001	0	0
t = 2.5	0	0.0001	0.0349	0.0037	-0.0367	-0.0040	-0.0000	0
t = 3.0	0	0.0013	-0.0103	0.0504	0.0112	-0.0540	-0.0003	-0.0000

Exercício 4.10

a) A fórmula para a propagação dos erros $\varepsilon_{i,j}$ é

$$(b+ap)\varepsilon_{i+1,j+1} + (b-ap)\varepsilon_{i,j+1} - (b-ap)\varepsilon_{i+1,j} - (b+ap)\varepsilon_{i,j} = 0$$

Assumindo que $arepsilon_{i,j}=e^{{f i}eta ih}\zeta^j$ e dividindo por $e^{{f i}eta(i+rac12)h}\zeta^j$ obtém-se

$$(b+ap)e^{\mathbf{i}\frac{\beta}{2}h}\zeta + (b-ap)e^{-\mathbf{i}\frac{\beta}{2}h}\zeta - (b-ap)e^{\mathbf{i}\frac{\beta}{2}h} - (b+ap)e^{-\mathbf{i}\frac{\beta}{2}h} = 0$$

ou seja

$$(b\cos(\tfrac{\beta}{2}h)+\mathbf{i}ap\sin(\tfrac{\beta}{2}h))\zeta=b\cos(\tfrac{\beta}{2}h)-\mathbf{i}ap\sin(\tfrac{\beta}{2}h),$$

donde resulta que $|\zeta| = 1$.

Exercício 4.10 Solução aproximada

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	x = 6	x = 7
t = 0.0	0	-1.0000	0	2.0000	4.0000	6.0000	8.0000	10.0000
t = 0.5	1.0000	-0.7554	-0.7492	1.0054	2.9992	4.9999	7.0000	9.0000
t = 1.0	2.0000	0.0182	-0.9957	-0.0192	1.9962	4.0012	5.9995	7.9999
t = 1.5	3.0000	1.0007	-0.7514	-0.7537	1.0014	3.0025	5.0004	7.0005
t = 2.0	4.0000	2.0000	0.0290	-1.0036	-0.0274	2.0048	3.9977	5.9986
t = 2.5	5.0000	3.0000	1.0020	-0.7413	-0.7466	0.9912	2.9928	5.0015
t = 3.0	6.0000	4.0000	2.0001	0.0380	-1.0135	-0.0436	2.0123	4.0076

Exercício 4.11 Sabemos que a solução da equação (4.3) é dada por

$$u(x,t) = F(x+ct) + G(x-ct),$$
 (4.6)

onde F e G são funções arbitrárias de uma variável (ver slides aulas teóricas). Então

$$\frac{\partial u}{\partial t}(x,t) = cF'(x+ct) - cG'(x-ct).$$

Usando as condições iniciais (4.5), obtém-se

$$\frac{\partial u}{\partial t}(x,0) = g(x) = cF'(x) - cG'(x),$$

ou seja,

$$\int_0^x F'(s) - G'(s) \, ds = \frac{1}{c} \int_0^x g(s) \, ds.$$

Logo

$$F(x) - G(x) - (F(0 - G(0))) = \frac{1}{c} \int_0^x g(s) \, ds.$$

Usando agora as condições iniciais (4.4), i.e.,

$$F(x) + G(x) = f(x),$$

podemos escrever

$$G(x) = \frac{1}{2}f(x) - \frac{1}{2}(F(0 - G(0)) - \frac{1}{2c} \int_0^x g(s) ds$$

е

$$F(x) = \frac{1}{2}f(x) + \frac{1}{2}(F(0 - G(0)) + \frac{1}{2c} \int_0^x g(s) \, ds.$$

De (4.6) vem então,

$$u(x,t) = \frac{1}{2}f(x+ct) + \frac{1}{2c} \int_0^{x+ct} g(s) \, ds + \frac{1}{2}f(x-ct) - \frac{1}{2c} \int_0^{x-ct} g(s) \, ds$$

e o resultado obtém-se de imediato.

Exercício 4.12

Método explícito :: h=0.1 e k=0.05

Exercício 4.13

A solução exata pode ser escrita em termos da função erro,

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

como

$$u(x,t) = \frac{1}{4} \left(\operatorname{erf}(x - 4\pi + ct) + \operatorname{erf}(-x + ct + 4\pi) \right)$$

(Prove!)

Método explícito :: h=0.3 e k=0.125

Exercício 4.14

a) Equação das ondas

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{16\pi^2} \frac{\partial^2 u}{\partial x^2},$$

sujeita às condições iniciais

$$u(x,0) = 0, \ 0 \le x \le 0.5$$

$$\frac{\partial}{\partial t}u(x,0) = \operatorname{sen}(4\pi x),$$

e condições de fronteira

$$u(0,t) = u(0.5,t) = 0.$$

Método explícito :: h=k=0.01

Exercício 4.15 A solução é simétrica em relação a $x=\frac{1}{2}$.

	x = 0	x = 0.1	x = 0.2	x = 0.3	x = 0.4	x = 0.5
t = 0.0	0	0.0450	0.0800	0.1050	0.1200	0.1250
t = 0.1	0	0.0403	0.0750	0.1000	0.1150	0.1200
t = 0.2	0	0.0301	0.0605	0.0850	0.1000	0.1050
t = 0.3	0	0.0198	0.0403	0.0607	0.0750	0.0800
t = 0.4	0	0.0101	0.0197	0.0305	0.0409	0.0452
t = 0.5	0	0.0000	0.0001	-0.0004	0.0008	0.0021
t = 0.6	0	-0.0101	-0.0199	-0.0298	-0.0393	-0.0432
t = 0.7	0	-0.0199	-0.0399	-0.0585	-0.0740	-0.0809
t = 0.8	0	-0.0298	-0.0585	-0.0839	-0.1002	-0.1055
t = 0.9	0	-0.0385	-0.0735	-0.1004	-0.1155	-0.1193
t = 1.0	0	-0.0437	-0.0805	-0.1054	-0.1198	-0.1250

Referências

- 1. W. Ames, Numerical Methods for Partial Differential Equations, Academic Press, 2014.
- 2. D. F. Griffiths, J. W. Dold and D. J. Silvester, *Essential partial differential equations*, Springer 2015.
- 3. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differetial Equations, SIAM, 2007.
- 4. A. Quarteroni and A. Valli, *Numerical Approximation of Partial Differential Equations*, Springer, 2009.
- 5. G. D. Smith, *Numerical Solution of Partial Differential Equations: Finite Difference Methods*, Oxford University Press, 1986.
- 6. M. J. Soares, *Métodos Numéricos para Equações de Derivadas Parciais*, Universidade do Minho, 1999.