Injectivité

www.cafeplanck.com info@cafeplanck.com

Injection

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est *injective* si sa courbe a maximum un point

d'intersection avec les droites parallèles à $\mathit{Ox}\,$ qui coupent $\mathit{Oy}\,$ dans la zone représentant $\mathit{B}\,$.

La fonction $\,f\,$ est $\it injective\,$ lorsque :

$$\not\exists x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$$

Ou:

$$\forall x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Ou:

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Non Injection

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est *non injective* si sa courbe a plus d'un point

d'intersection avec les droites parallèles à $\mathit{Ox}\,$ qui coupent $\mathit{Oy}\,$ dans la zone représentant $\mathit{B}\,$.

La fonction $\,f\,$ est $\,$ non injective $\,$ lorsque :

$$\exists x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$$