Разработка и программная реализация системы мониторинга и анализа контента на видео и изображениях в интернет-пространстве

Руденко Марина Анатольевна

кандидат технических наук, доцент кафедры компьютерной инженерии и моделирования, Физико-технический институт ФГАОУ ВО "Крымский федеральный университет им. В.И.Вернадского", г. Симферополь

Милюков Виктор Васильевич

заведующий кафедрой компьютерной инженерии и моделирования, кандидат технических наук, доцент,

Физико-технический институт

ФГАОУ ВО "Крымский федеральный университет им. В.И.Вернадского", г. Симферополь

Крапивина Милада Андреевна

студент направления подготовки «09.04.01 Информатика и вычислительная техника», Физико-технический институт ФГАОУ ВО "Крымский федеральный университет им. В.И.Вернадского", г. Симферополь

Руденко Андрей Владимирович,

ФАБЛАБ, ФГАУО ВО «Крымский федеральный университет им. В.И. Вернадского»

Аннотация. Статья посвящена исследованию технологии компьютерного зрения и решению задач мониторинга и анализа контента на видео и изображениях в интернет-пространстве. С этой целью получена модель нейронной сети с высокими оценками точности, предложена модель анализа контента на основе комплекса математических метрик.

Ключевые слова: мониторинг, контент, противоправный контент, обработка изображений, анализ метрик, сверточные нейронные сети, YOLO.

Введение. Сегодня, в эпоху активного развития цифровых технологий, информация стала более доступной, её создание и распространение все более упрощается. Этот факт имеет как и очевидные положительные, так и отрицательные стороны. Согласно области СМИ исследованиям В массовых телекоммуникаций: «Высокая доступность и широкий охват являются ключевыми факторами использования возможностей социальных медиа различными деструктивными сообществами организациями частности, (B экстремистскими)» [1].

Современные системы контроля противоправного контента в сети Интернет в большинстве своем опираются на анализ текстового содержимого, проверке всевозможных фильтров и ручном формировании списков ресурсов экспертами. В это же время особенностью экстремистского контента является явная самоидентификация авторов контента. Как правило, экстремистские группировки явно признаются своих преступлениях, показывают свою атрибутику. К атрибутике, в частности, относятся флаги, эмблемы, нашивки. То есть в экстремистских материалах часто есть ограниченный набор символики на иллюстрирующих изображениях и видео.

В связи с этим актуальной задачей является разработка и программная реализация системы мониторинга и анализа контента на видео и изображениях в интернет-пространстве. Эта система может применяться как самостоятельное решение, и как дополнительный инструмент.

Обзор используемых инструментов

В настоящее время разработан целый ряд инструментов и библиотек для обработки изображений и создано множество алгоритмов распознавания изображений.

В последнее время для решения задачи поиска объектов на изображениях широкое распространение получили алгоритмы, основанные на применении региональных глубоких сверточных нейронных сетей (Regional Convolutional Neural Networks, R-CNN) и сетей детектирования YOLO (You Only Look Once), которые

принципиально ориентированы на решение указанной задачи с одновременной классификацией найденных объектов. Архитектура YOLO была выбрана как наиболее оптимальное решение по совокупности точности и быстродействия [2, 3].

Понятие противоправного контента

Многие страны и межгосударственные организации описывают понятие «противоправного контента» по-разному. Еврокомиссия о мерах по эффективной борьбе с незаконным контентом в Интернете в своих рекомендациях определяет: «незаконный контент означает любую информацию, которая не соответствует законодательству Союза или законодательству соответствующего государства-члена» [4].

Иными словами, противоправным контентом является информация, содержание которой не соответствует законодательству государства.

Особая категория противоправного контента — экстремистские материалы. Материалы, которые призывают к экстремистской деятельности, либо оправдывают ее, являются экстремистскими.

Так, согласно федеральному закону от 25 июля 2002 г. № 114-ФЗ "О противодействии экстремистской деятельности": «экстремистская деятельность (экстремизм):

- насильственное изменение основ конституционного строя и (или) нарушение территориальной целостности Российской Федерации (в том числе отчуждение части территории Российской Федерации), за исключением делимитации, демаркации, редемаркации Государственной границы Российской Федерации с сопредельными государствами;
- публичное оправдание терроризма и иная террористическая деятельность; ...» и «экстремистская организация общественное или религиозное объединение либо иная организация, в отношении которых по основаниям, предусмотренным настоящим Федеральным законом, судом принято вступившее в законную силу решение о ликвидации или запрете деятельности в связи с осуществлением экстремистской деятельности» [5].

Экстремистская деятельность, как правило, имеет четкую региональную локализацию, то есть при борьбе с распространением экстремистских материалов важно учитывать географию деятельности таких группировок.

Модель нейронной сети

Применяемая классификация объектов основана на наиболее опасных в РФ и особо актуальных для Республики Крым, в виду граничного положения с Украиной, содержит следующие классы:

- ColSwast свастика (ЦВ);
- GraySwast свастика (ЧБ);
- Igil Игил;
- RSector -Правый сектор;
- Taliban Талибан;
- Ichkeria Ичкерия;
- Azov Aзов.

Модель обучена на датасете, содержащем 163 изображения с достаточно равномерным распределением по классам (рис.1) и показывает хорошие результаты точности (рис.2).

Рис. 1 Распределение классов первой версии обученной модели нейросети

Рис. 2 Точность обученной модели

Модель анализа объектов на изображениях и видео Оригинальные метрики детектирования YOLO:

$$Dyolo = (n, x, y, w, h, confidence),$$
 (1)

где п – номер класса;

х и у – относительные координаты bounding box объекта;

w и h – относительные ширина и высота bounding box объекта, соответственно;

c – confidence (коэффициент уверенности сети).

На основе этих метрик была разработана модель анализа объектов на изображениях и видео.

Математические метрики рассматриваемой модели: площадь объекта, центр фокусировки объекта, количество объектов, максимальный конфидент, средний конфидент, максимальная площадь, средняя площадь, площадь покрытия, дисперсия абсцисс и дисперсия ординат.

Площадь – метрика для одного отдетектированного объекта. Центр фокусировки, количество объектов, максимальный конфиденс (confidence), площадь покрытия могут считаться не

только в рамках одного детектируемого объекта заданного класса, но и для всех найденных объектов одного класса (это происходит, когда в результате отдетектировано несколько изображений). Все остальные считаются в рамках одного класса.

Площадь объекта (S) — геометрическая площадь объекта, представляющее из себя произведение ширины и высоты ограничивающей рамки (bounding box) объекта на отдетектированном изображении. Величина относительна размеру изображения. Площадь объекта явно показывает какую часть от всего изображения занимает отдетектированный объект.

$$S = w * h, \tag{2}$$

где w- относительная ширина bounding box объекта, h – относительная высота bounding box объекта.

Центр фокусировки (X,Y) – средняя точка центров bounding box найденных объектов; координаты точки – среднее арифметическое относительных координаты bounding box объектов:

$$X = \frac{\sum_{k=1}^{n} x_k}{n},\tag{3}$$

где х- относительная абсцисса объекта, n - количество объектов класса.

$$Y = \frac{\sum_{k=1}^{n} y_k}{n},\tag{4}$$

где у- относительная ордината объекта, п - количество объектов класса.

Если координаты центра фокусировки равны (или очень близки) к координатам (0,5;0,5) это значит, что объекты (объект) занимают центральное положение на изображении. Чем центральнее находится объект на изображении, тем большую смысловую нагрузку он несет для человеческого восприятия. Если рассматривать интерпретацию значения метрики в предметной

области поиска противоправного контента, можно определить следующее: чем ближе центр фокуса отдетектированного объекта к центру фокуса всего изображения, тем более неслучайно нахождение объекта и «более противоправно» само изображение.

Количество объектов (n) — число найденных объектов одного класса или общее число найденных объектов. Эту метрику можно интерпретировать по-разному, к примеру, большое n объектов класса «флаг» может свидетельствовать, что на источнике изображено шествие или парад.

Максимальный конфиденс (C_{max}) — максимальное значение конфиденса для объектов одного класса или для всех найденных объектов. Конфиденс (confidence, коэффициент уверенности) — это метрика качества прогнозирования, которая показывает, на сколько сеть уверена (не уверена) в своих собственных результатах, представляет собой число от 0 до 1 эквивалентное проценту уверенности.

$$C_{max} = \max(Ck), \tag{5}$$

где $Ck = \{C0, C1, \dots Cn\}$ последовательность значений коэффициента уверенности объектов. Очевидно, C_{max} может принимать значение от 0 до 1. Если значение максимального конфиденса близко к 1 — это значит, что с высокой точностью распознан как минимум один объект. Значение этой метрики может использоваться как граничное значение определения наличия экстремистского контента. К примеру, если Cmax < 0.3, то на изображениях скорее всего нет экстремистского контента.

Средний конфиденс (C_{avg}) - среднее значение конфиденса для объектов одного класса; считается как среднее арифметическое и принимает значение от 0 до 1. Может интерпретироваться как уверенность нахождения класса объекта.

$$C_{avg} = \frac{\sum_{k=1}^{n} Ck}{n},\tag{6}$$

где С - значение коэффициента уверенности объекта,

n - количество объектов класса.

Максимальная площадь (S_{max}) - максимальное значение площади для объектов одного класса. Может принимать значение от 0 до 1.

$$S_{max} = \max(S_k), \tag{7}$$

где $Sk = \{S0, S0, \dots Sn\}$ последовательность значений площадей объектов.

Средняя площадь (S_{avg}) - среднее значение площади объектов одного класса; считается как среднее арифметическое, принимает значение от 0 до 1.

$$S_{avg} = \frac{\sum_{k=1}^{n} S_k}{n},\tag{8}$$

где S - значение площади объекта,

п - количество объектов класса.

Площадь покрытия (S_{com}) — сумма площадей для объектов одного класса или для всех найденных объектов. Так как объекты на изображении могут перекрывать друг друга, возможно, что $S_{com} > 1$. Это свидетельствует о кучности отдетектированных объектов.

$$S_{com} = \sum_{k=1}^{n} S_k, \tag{9}$$

где S - значение площади объекта,

n - количество объектов класса.

Дисперсия — это число, равное среднему квадрату отклонений значений случайной величины от ее среднего значения. Здесь считается дисперсия абсцисс и ординат. Чем больше эти значения, тем разрозненней объекты на изображении. Так как координаты - относительные величины, дисперсии также относительны.

Дисперсия абсцисс (D_x) — показывает отклонения объектов от центра фокусировки по оси абсцисс. В случае единичного распознанного изображения принимает значение 0.

$$D_{x} = \frac{\sum_{k=1}^{n} (x_{k} - X)^{2}}{n},$$
(10)

где х- относительная абсцисса объекта,

Х- абсцисса центра фокусировки,

n - количество объектов класса.

Дисперсия ординат (D_y) — показывает отклонения объектов от центра фокусировки по оси абсцисс. В случае единичного распознанного изображения принимает значение 0.

$$D_{y} = \frac{\sum_{k=1}^{n} (y_{k} - Y)^{2}}{n},$$
(11)

где х- относительная ордината объекта,

Ү- ордината центра фокусировки,

n - количество объектов класса.

Реализация системы мониторинга и анализа контента на видео и изображениях

Предложенные математические модели были реализованы в алгоритмах и программных модулях разработанной системы мониторинга и анализа контента на видео и изображениях (рис 3).

Модуль анализа принимает заявку в виде JSON-файла, где анализируемый прописана pecypc. Модуль ссылка на предварительной подготовки скачивает все файлы pecypca, фильтрует их по типу, конвертирует оставшиеся изображения и видео в формат, совместимый для детектирования, и запускает детектирование подготовленных ресурсов. результате директория с определенной детектирования формируется внутренней структурой (рис.4).

Структура системы мониторинга и анализа контента

Рис.3 Структура системы

Рис.4 Структура директории

Модуль анализа метрик принимает расположение директории и в зависимости от содержимого, формирует текстовый отчет.

Рассмотрим две тестовые ситуации: распознано одно изображение (рис.5, 6,7) и распознано несколько изображений (рис.8, 9).

Одно изображение.

Рис. 5 Распознанное изображение Метрики изображения: 3 0.544156 0.756067 0.228525 0.331402 0.943758

Рис. 6 Интерфейс приложения при одном изображении

Рис. 7 Отчет по запросу с одним изображением Несколько изображений.

Пусть распознаны следующие изображения:

Рис. 8 Распознанные изображения

Текстовые метрики распознанных изображений имеют следующий вид:

5	1 0.7	0.5	0.2	0.3	0.7	0.0
.txt	0744	7326	16898	07692	61032	66738
	1 0.2	0.1	0.2	0.3	0.9	0.1
	9256	97802	67339	77289	55227	00864
6	1 0.7	0.2	0.0	0.2	0.4	0.0
.txt	88672	16667	92969	36111	99497	21951
	2 0.0	0.2	0.0	0.2	0.8	0.0
	39063	30556	78125	5	43372	19531
	í 0.9	0.2	0.1	0.2	0.9	0.0
	32422	60417	30469	43056	12715	31711
1	(0.7	0.4	0.0	0.0	0.8	0.0
2.txt	23866	8963	4142	60741	96578	02516

Так как изображений несколько, стал доступен список изображений с объектами, имеющими максимальные значения конфиденса и площади.

Рис. 9 Интерфейс приложения при нескольких изображениях

Текст отчета:

Тип: множество файлов

PATH ID: several

Всего найдено объектов: 6

Максимальный конфидент: 0.955227 Площадь покрытия: 0.24331118524477

Класс: 0 ColSwast Свастика (ЦВ)

Количество объектов: 1

Максимальный конфидент: 0.896578

Средний конфиденс: 0.896578

Максимальная площадь: 0.00251588586807

Средняя площадь: 0.896578

Площадь покрытия: 0.00251588586807 Центр фокусировки: 0.723866 0.48963

Дисперсия абсцисс: 0 Дисперсия ординат: 0 ****************

Объект с тах точностью:

Расположение изображения объекта:

C:\Users\milad\OneDrive\Pабочий стол\test\several\images\12.jpg

Точность: 0.896578

Площадь: 0.00251588586807 Центр фокуса: 0.723866 0.48963

Объект с тах площадью:

Расположение изображения объекта:

C:\Users\milad\OneDrive\Pабочий стол\test\several\images\12.jpg

Точность: 0.896578

Площадь: 0.00251588586807 Центр фокуса: 0.723866 0.48963

Класс: 2 Igil Игил

Количество объектов: 5

Максимальный конфидент: 0.955227

Средний конфиденс: 0.7943686

Максимальная площадь: 0.100864063971 Средняя площадь: 0.04815905987534 Площадь покрытия: 0.2407952993767 Центр фокусировки: 0.5520313 0.2957404 Дисперсия абсцисс: 0.11106202297516 Дисперсия ординат: 0.01967168195144

Объект с тах точностью:

Расположение изображения объекта:

C:\Users\milad\OneDrive\Pабочий стол\test\several\images\5.jpg

Точность: 0.955227

Площадь: 0.100864063971

Центр фокуса: 0.29256 0.197802

Объект с тах площадью:

Расположение изображения объекта:

C:\Users\milad\OneDrive\Pабочий стол\test\several\images\5.jpg

Точность: 0.955227

Площадь: 0.100864063971

Центр фокуса: 0.29256 0.197802

Аналитические расчеты, представленные в табличной форме на рис. 10, подтверждают корректность вывода модуля анализа.

	class	x	y	h	w	C	S
5.txt	2	0.70744	0.57326	0.216898	0.307692	0.761032	0.066738
	2	0.29256	0.197802	0.267339	0.377289	0.955227	0.100864
6.txt	2	0.788672	0.216667	0.092969	0.236111	0.499497	0.021951
	2	0.039063	0.230556	0.078125	0.25	0.843372	0.019531
	2	0.932422	0.260417	0.130469	0.243056	0.912715	0.031711
12.txt	0	0.723866	0.48963	0.04142	0.060741	0.896578	0.002516
общее	6					0.955227	0.243311
класс 0	1	Центр фокуса			Среднее:	0.896578	0.002516
		0.723866	0.48963		Макс:	0.896578	0.002516
		Дисперсия			Площадь покрытия		0.002516
		0	0				
класс 2	5	Центр фокуса			Среднее:	0.811404	0.040552
		0.552031	0.29574		Макс:	0.955227	0.100864
		Дисперсия			Площадь покрытия		0.240795
		0.111062	0.019672				

Рис. 10 Аналитические расчеты метрик отчета для нескольких изображений.

Модуль отправки заявки отправляет отчет пользователю, также в виде JSON файла.

Заключение. В результате исследования разработана модель анализа параметров детектированных объектов заданных классов на изображениях и видео, реализовано программное обеспечение, алгоритмически использующее данную модель. Тестирование показало высокую эффективность разработки, что позволяет использовать ее в государственных организациях, в особенности, общеобразовательных учреждениях для анализа контента на предмет наличия в первую очередь противоправного контента.

Список литературы:

- 1. Карданов, А. Р., Карданова, Д. А. Экстремистский контент в социальных медиа: анализ основных трендов и мер противодействия / А. Р. Карданов, Д. А. Карданова // Журнал прикладных исследований. 2022. № 11 т.2. С. 169-172.
- 2. Руденко М.А., Руденко А.В. Нечеткая модель классификации медицинских изображений на основе нейронных сетей // XXIV Международная конференция по мягким вычислениям и измерениям (SCM-2021). Сборник докладов. Санкт-Петербург. 26-28 мая 2021 г. СПб.: СПбГЭТУ «ЛЭТИ». 351 с. ISBN 978-5-7629-2864-92.
- 3. YOLOv5: state-of-the-art модель для распознавания объектов. Текст: электронный // neurohive.io: [сайт]. URL: https://neurohive.io/ru/papers/yolov5-state-of-the-art-model-dlyaraspoznavaniya-obektov/ (дата обращения: 28.04.2022).
- 4. European Commission, Secretariat-General Commission Recommendation (EU) 2018/334 of 1 March 2018 on measures to effectively tackle illegal content online / European Commission, Secretariat-General // 2018. N C/2018/1177. P. 50–61.
- 5. Об информации, информационных технологиях и о защите информации: Федеральный закон № 149-Ф3: [принят Государственной Думой 8 июля 2006 г.: одобрен Советом Федерации 14 июля 2006 г.]. Текст: непосредственный.