Analiza Statystyczna: Projekt 5

Prorok Kacper, Popkiewicz Szymon

2024-05-22

Celem naszego projektu jest oszacowanie modelu, który na podstawie zmiennych objaśniających takich jak: gęstość zaludnienia, ludność powiatu, przystanki na 10 tys. mieszkańców, odsetek ludności powyżej 65 lat, średniej ceny za metr kwadratowy, liczba parków na 10 tys. mieszkańców, średni dochód oszacuje liczbę samochodów o napędzie zielonym na 10,000 mieszkańców.

Analiza wszystkich danych

Analizę występowania obserwacji odstających

Pod uwagę weźmiemy odległość Cooka, dffits oraz dfbeats.

DFFITS

Kolorem czerwonym została zaznaczona wartość progowa - 2 * sqrt(k*/n).

DFFITS

DFFITS Przyblizenie na pierwsze 100 wierszy

Na powyższym wykresie dla lepszej czytelności pokazujemy pierwsze 100 wierszy, ponieważ wystąpiło w nich najwięcej wartości odstających.

Im(samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 + odsetek

DFBETAS:

Po analizie powyższych wykresów decydujemy się na usunięcie tylko poniższych powiatów:

index	powiat
2	Powiat m. Wrocław
3	Powiat m. Gdynia
14	Powiat m. Sopot
63	Powiat m. Świętochłowice
65	Powiat jasielski
66	Powiat tarnowski
69	Powiat sandomierski
75	Powiat brzeski
76	Powiat krośnieński
82	Powiat dąbrowski
86	Powiat leski
87	Powiat sztumski
92	Powiat bieszczadzki
93	Powiat ząbkowicki
218	Powiat tatrzański

Powodem dlaczego nie usuwamy więcej zmiennych jest fakt, że mogłoby dojść do sytuacji gdzie usunelibyśmy większość powiatów grodzkich, a wtedy model straciłby sens.

Badanie współliniowości przy pomocy VIF

Inaczej określany jako współczynnik wariancji inflacji (Variance Inflation Factor) to wskaźnik, który pozwala określić czy między badanymi predyktorami występuje współliniowość.

	$vif(model_wszystkie)$
gestosc	2.114212
ludnosc	1.863545
przystanki_na_10000	1.351219
odsetek65	1.407667
cenyMieszkan	1.698685
parki_na_10000	1.067267
zarobki	1.375714

Wysokie wartości VIF, (np. VIF > 10) wskazują na występowanie współliniowości. Można spokojnie uznać, że w naszych danych nie występuje współliniowość.

Regresja krokowa

W metodzie krokowej model regresji jest stopniowo budowany przez dodawanie lub usuwanie zmiennych w kolejnych krokach na podstawie określonych kryteriów statystycznych.

Kryterium AIC

Kryterium Akaikego (AIC) jest miarą stosowaną do oceny jakości modeli statystycznych, z uwzględnieniem zarówno dopasowania modelu, jak i liczby parametrów. Niższa wartość AIC wskazuje na lepszy model, który dobrze dopasowuje się do danych przy jednoczesnym minimalizowaniu liczby parametrów.

Wsteczna Po użyciu funkcji $step(model_wszystkie, direction="backward")$, dostajemy:

```
samochody_na_10000 ~ gestosc + ludnosc + odsetek65 + cenyMieszkan
               Df Sum of Sq
                                      AIC
                               RSS
                            5349990 3485.5
 <none>
 - odsetek65
                      47076 5397066 3486.7
                     53863 5403852 3487.2

    gestosc

               1
 - ludnosc
                     74257 5424246 3488.5
               1
 - cenyMieszkan 1
                     280458 5630448 3502.0
 lm(formula = samochody_na_10000 ~ gestosc + ludnosc + odsetek65 +
    cenyMieszkan, data = df)
Coefficients:
                   gestosc
  (Intercept)
                               ludnosc
                                           odsetek65 cenyMieszkan
   1.369e+02
                 2.713e-02
                              1.567e-04
                                           -5.391e+00
                                                          4.359e-04
W przód
## Start: AIC=3487.77
## samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
       odsetek65 + cenyMieszkan + parki na 10000 + zarobki
##
##
## Call:
## lm(formula = samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
##
       odsetek65 + cenyMieszkan + parki_na_10000 + zarobki, data = df)
##
## Coefficients:
##
           (Intercept)
                                     gestosc
                                                           ludnosc
            81.5716501
                                   0.0299000
                                                         0.0001310
##
## przystanki_na_10000
                                   odsetek65
                                                      cenyMieszkan
             0.1898727
                                  -6.1599222
                                                         0.0004104
##
##
        parki na 10000
                                     zarobki
##
            -1.4891138
                                   0.0134671
```

Wybór zmiennych

Step: AIC=3485.55

Dodatkowo zobaczymy jak wyglądają statystyki dla metody Hellwiga:

```
## $ludnosc_odsetek65_cenyMieszkan_parki_na_10000
## [1] 0.1783194
##
## $gestosc_ludnosc_cenyMieszkan_parki_na_10000
## [1] 0.1786377
##
## $ludnosc_cenyMieszkan
## [1] 0.1794827
##
## $ludnosc_cenyMieszkan_parki_na_10000
## [1] 0.1803378
```

Wyniki uległy poprawnie w stosunku do projektu 4, gdzie najwyższe kryterium informacyjne uzyskane metodą Hellwiga wyniosło: 0.0891. Oznacza to, że pozbycie się zmiennych odstających w tym projekcie przyniosło lepsze rezulaty niż w projekcie 4.

Biorąc pod uwagę wszystkie kryteria, dochodzimy do wniosku, by wybrać model składający się z gęstość, odsetków ludności powyzej 65 roku życia oraz ceny mieszkań.

Weryfikacja założeń Gaussa-Markowa

Heteroskedatyczność

~ Wariancja błędów modelu (reszt) nie jest stała dla wszystkich obserwacji. Oznacza to, że rozproszenie błędów różni się w zależności od wartości zmiennych niezależnych.

	Gold.Quand
p-value	0

Odrzucamy hiptezę zerową, na korzyść hipotezy alternatywnej mówiącej o heteroskedastyczności modelu - model jest heteroskedastyczny.

Autokorelacja

W przypadku danych, które nie są szeregiem czasowym, badanie autokorelacji wydaje się być zbędne.

Liniowość

Model liniowy zakłada, że zmiany w zmiennych niezależnych przekładają się na proporcjonalne zmiany w zmiennej zależnej, co sprawia, że relacja między nimi jest liniowa.

Wykonamy test RESET.

```
##
## RESET test
##
## data: model_wszystkie
## RESET = 2.5606, df1 = 2, df2 = 356, p-value = 0.07868
```

Ze względu na p-value większe niż 0.05, możemy stwierdzić liniowość modelu.

Normalność reszt modelu

Do sprawdzenia normalności wykonamy test Shapiro-Wilka oraz w Jarque-Bera. Poniżej znajduje się rozkład reszt:

Histogram of resid(model_wszystkie)

Już po samym wykresie można stwierdzić, że rozkład reszt raczej nie będzie zgodny z rozkładem normalnym. Przeprowadzamy jeszcze testy statystyczne:

	shapiro	JB
p-value	0	0

Odrzucamy hipotezę zerową o normalności rozkładu reszt. Reszty nie mają rozkładu normalnego.

Dane grodzkie

Analizę występowania obserwacji odstających

DFFITS

Kolorem czerwonym została zaznaczona wartość progowa - 2 * $\operatorname{sqrt}(\mathbf{k}^*/\mathbf{n}).$

Im(samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 + odsetek

DFBETAS

Z racji że danych o powiatach grodzkich jest dużo mniej niż o powiatach ziemskich usuniemy tylko najbardziej odstające obserwacje, aby mieć ich więcej.

Ostatecznie decydujemy się na usunięcie obserwacji pokazanych poniżej.

index	powiat
2	Powiat m. Wrocław
3	Powiat m. Gdynia
9	Powiat m. Szczecin
14	Powiat m. Sopot
63	Powiat m. Świętochłowice
12	Powiat m. Tarnów
16	Powiat m. Elbląg
8	Powiat m. Katowice
26	Powiat m. Kalisz

Badanie współliniowości przy pomocy VIF

	${\rm vif(model_grodzki)}$
gestosc	1.930833
ludnosc	4.244552
przystanki_na_10000	1.407447
odsetek65	1.126000
cenyMieszkan	3.159483
parki_na_10000	1.046499
zarobki	2.175126

Widzimy, że dla zmiennej 'ludnosc' oraz 'cenyMieszkan' występują wysokie wartości współczynnika VIF. Usuwamy zmienną 'ludnosc' i przedstawiamy ponownie wyniki:

vif(l	m(samochody_na_10000 ~ gestosc + przystanki_na_10000 + odsetek65 + cenyMieszkan + parki_na_10000 + zarobki, data = grodzkie))
gestosc	1.527923
przystanki_na_10000	1.402462
odsetek65	1.111280
cenyMieszkan	2.016630
parki_na_10000	1.043485
zarobki	1.851146

Wniosek: Usuwając ludność, pozbylibyśmy się współliniowości.

Regresja krokowa

Kryterium AIC

Kryterium Akaikego (AIC) jest miarą stosowaną do oceny jakości modeli statystycznych, z uwzględnieniem zarówno dopasowania modelu, jak i liczby parametrów. Niższa wartość AIC wskazuje na lepszy model, który dobrze dopasowuje się do danych przy jednoczesnym minimalizowaniu liczby parametrów.

Wsteczna .

```
Step: AIC=446.19
samochody_na_10000 ~ gestosc + przystanki_na_10000 + cenyMieszkan +
    zarobki
                     Df Sum of Sq
                                    RSS
                                           ATC
                                 152971 446.19
<none>
                             8197 161167 447.06
- zarobki
- gestosc
                             8461 161432 447.15
                      1
- przystanki_na_10000 1
                            12330 165301 448.45
- cenyMieszkan
                           206459 359430 491.17
lm(formula = samochody_na_10000 ~ gestosc + przystanki_na_10000 +
    cenyMieszkan + zarobki, data = grodzkie)
Coefficients:
                                                                                              zarobki
        (Intercept)
                               gestosc przystanki_na_10000
                                                                    cenyMieszkan
                              2.345e-02
                                                 1.530e+00
                                                                       9.544e-04
                                                                                            2.322e-02
         -3.188e+02
```

W przód

```
## Start: AIC=451.52
## samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
       odsetek65 + cenyMieszkan + parki na 10000 + zarobki
##
## Call:
## lm(formula = samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
       odsetek65 + cenyMieszkan + parki_na_10000 + zarobki, data = grodzkie)
##
## Coefficients:
##
           (Intercept)
                                    gestosc
                                                          ludnosc
            -2.490e+02
                                  1.875e-02
                                                        2.590e-05
##
## przystanki_na_10000
                                  odsetek65
                                                     cenyMieszkan
                                                        9.044e-04
##
             1.442e+00
                                 -1.364e+00
##
       parki_na_10000
                                    zarobki
##
            -5.845e-01
                                  2.081e-02
```

Wybór zmiennych

Dla przypomnienia pokażemy kryteria pojemności informacyjnej uzyskanych metodą Hellwiga:

```
## $cenyMieszkan_parki_na_10000
## [1] 0.7078229
##
## $ludnosc_cenyMieszkan_parki_na_10000
## [1] 0.7113471
##
## $ludnosc_cenyMieszkan
## [1] 0.738465
##
## $cenyMieszkan
## [1] 0.7675052
```

W przypadku danych grodzkich wyniki uzyskane metodą Hellwiga uległy lekkiej poprawie - najwyższa wartość uzyskana w projekcie 4 wyniosła: 0.7071838, a teraz 0.7675.

Biorąc pod uwagę wszystkie kryteria, dochodzimy do wniosku, by wybrać model składający się z cen mieszkań, zarobków oraz przystanków na 10000 mieszkańców.

Weryfikacja założeń Gaussa-Markowa

Heteroskedatyczność

	Gold.Quand
p-value	0.1387

Brak podstaw do odrzucenia hipotezy H0. Model jest homoskedastyczny

Liniowość

Model liniowy zakłada, że zmiany w zmiennych niezależnych przekładają się na proporcjonalne zmiany w zmiennej zależnej, co sprawia, że relacja między nimi jest liniowa.

Wykonamy test RESET.

```
##
## RESET test
##
## data: model_grodzki
## RESET = 0, df1 = 3, df2 = 48, p-value = 1
```

Przyjmujemy hipotezę zerową, stwierdzamy liniowość modelu.

Normalność reszt modelu

Do sprawdzenia normalności wykonamy test Shapiro-Wilka oraz w Jarque-Bera. Poniżej znajduje się rozkład reszt:

Histogram of resid(model_grodzki)

 $\label{eq:przyjmujemy} \text{Przyjmujemy hipotezę zerową o normalności rozkładu reszt.} \textbf{Reszty modelu mają rozkład normalny}$

Dane ziemskie

Analiza występowania obserwacji odstających

DFFITS Przyblizenie na pierwsze 50 wierszy

Im(samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 + odsetek

DFBETAS

Wśród otrzymanych rekordów mamy m.in:

index	powiat
1	Powiat jasielski
5	Powiat sandomierski
11	Powiat brzeski
18	Powiat dąbrowski
22	Powiat leski
23	Powiat sztumski
28	Powiat bieszczadzki
46	Powiat lubiński
51	Powiat wodzisławski
215	Powiat bieruńsko-lędziński
154	Powiat tatrzański

Jako, że danych grodzkich jest dość sporo, usuniemy około 100 wierszy

Zmienne odstające wybraliśmy na podstawie wyboru zmiennych, których dystans Cook'a wyniósł więcej niż 0.01. Operację tą powtórzyliśmy 5 razy, za każdym razem tworząc model na nowych zmiennych.

Badanie współliniowości przy pomocy VIF

	$vif(model_ziemski)$
gestosc	1.842439
ludnosc	1.906340
przystanki_na_10000	1.168457
odsetek65	1.151934
cenyMieszkan	1.204182
parki_na_10000	1.127211
zarobki	1.112423

Wartości nie przekraczają wartości 2. Możemy stwierdzić brak współliniowości.

Regresja krokowa

Kryterium AIC

Wsteczna .

```
Step: AIC=1204.62 samochody_na_10000 ~ przystanki_na_10000 + odsetek65 + cenyMieszkan + parki_na_10000 + zarobki
                                 Df Sum of Sq RSS AIC 72271 1204.6
<none>
                                          722/1 1204.6
1321.6 73593 1206.3
1673.1 73944 1207.3
8171.6 80443 1224.4
9294.9 81566 1227.2
- parki_na_10000 1
- przystanki_na_10000 1
- cenyMieszkan 1
- zarobki
                                   1 12034.0 84305 1233.9
Call:
lm(formula = samochody_na_10000 ~ przystanki_na_10000 + odsetek65 + cenyMieszkan + parki_na_10000 + zarobki, data = ziemskie)
Coefficients:
            (Intercept) przystanki_na_10000
                                                                               odsetek65
                                                                                                            cenyMieszkan
                                                                                                                                         parki_na_10000
                                                                                                                                                                                   zarobki
              -1.514e+01
                                                                                                                                               -5.433e-01
                                                                                                                                                                                 1.974e-02
                                                                              -1.418e+00
                                                                                                                1.171e-04
```

W przód

```
## Start: AIC=1207.36
## samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
       odsetek65 + cenyMieszkan + parki_na_10000 + zarobki
##
##
## Call:
## lm(formula = samochody_na_10000 ~ gestosc + ludnosc + przystanki_na_10000 +
       odsetek65 + cenyMieszkan + parki_na_10000 + zarobki, data = ziemskie)
##
##
## Coefficients:
##
           (Intercept)
                                                          ludnosc
                                    gestosc
##
            -1.630e+01
                                  7.319e-04
                                                        4.951e-05
## przystanki_na_10000
                                                     cenyMieszkan
                                  odsetek65
             3.025e-01
                                 -1.338e+00
                                                        1.085e-04
##
        parki_na_10000
##
                                    zarobki
##
            -4.809e-01
                                  1.926e-02
```

Wybór zmiennych

Hellwig:

```
## $przystanki_na_10000_cenyMieszkan_parki_na_10000_zarobki
## [1] 0.2243831
##
## $ludnosc_przystanki_na_10000_cenyMieszkan_parki_na_10000_zarobki
## [1] 0.2264111
##
## $przystanki_na_10000_cenyMieszkan_zarobki
## [1] 0.2314234
##
## $ludnosc_przystanki_na_10000_cenyMieszkan_zarobki
## [1] 0.234629
```

W porównaniu do projektu 4 wyniki uległy poprawie - najwyższa wartość w projekcie 4 wyniosła: 0.02832488.

Biorąc pod uwagę wszystkie kryteria, dochodzimy do wniosku, by wybrać model składający się z: przystanki_na_10000, cenyMieszkan, zarobki.

Weryfikacja założeń Gaussa-Markowa

Heteroskedatyczność

	Gold.Quand
p-value	0.888616

Przyjmujemy hiptezę zerową. Model jest homoskedastyczny

Liniowość

Test RESET.

```
##
## RESET test
##
## data: model_ziemski
## RESET = 1.0692, df1 = 2, df2 = 197, p-value = 0.3453
```

Przyjmujemy hipotezę zerową, stwierdzając liniowość modelu. Model jest liniowy

Normalność reszt modelu

Do sprawdzenia normalności wykonamy test Shapiro-Wilka oraz w Jarque-Bera. Poniżej znajduje się rozkład reszt:

Histogram of resid(model_ziemski)

	shapiro	JB
p-value	0.0026762	0.0269317

Odrzucamy hipotezę zerową. Reszty modelu nie mają rozkładu normalnego

Próba poprawy modelu

Aby poprawić sytuację naszego modelu przeprowadzimy transformacje danych. Testowane przez nas metody transformacji obejmują:

- Logarytmowanie: Używanie logarytmu zmiennej objaśnianej i/lub zmiennych objaśniających.
- Pierwiastkowanie: Używanie pierwiastka kwadratowego lub innego stopnia zmiennej.

Logarytm zmiennej objaśnianej

Zobaczmy na wyniki testów statystycznych, gdy 'zlogarytmujemy' zmienną objaśnianą:

Table 14: log(y)

	grodzkie	ziemskie	wszystkie
Gold.Quand	0.1855820	0.0070932	0.0000000
$RESET_TEST$	0.0761829	0.7039811	0.0968058
shapiro	0.1207080	0.0536207	0.0000000

Dla wszystkich powiatów oraz dla grodzkich nie widać poprawy. W przypadku powiatów ziemskich model stał się heteroskedastyczny, ale za to reszty mają rozkład normalny.

Pierwiastkowanie zmiennej objaśnianej

Spróbujmy spierwastkować zmienną objaśnianą.

Table 15: sqrt(y)

	grodzkie	ziemskie	wszystkie
Gold.Quand RESET_TEST shapiro	0.9462192 0.4737318 0.3642724	0.0525598 0.7932179 0.2558609	0.000000 0.091421 0.000000

Duża poprawa modelu dla powiatów ziemskich - tym razem wszystkie założenia Gaussa-Markova zostałyby spełnione.

Ważona metoda najmniejszych kwadratów

Na koniec spróbujemy spróbujemy skorzystać z bardziej zaawansowanej metody -'Weighted Least Squares Regression',to technika statystyczna używana do estymacji parametrów modelu regresji, w której różne obserwacje mają różne wagi.

Wagi obserwacji przypisujemy w taki sposób, by zrównoważyć obserwacje bardziej oraz mniej odstające.

Table 16: WLS

	grodzkie	ziemskie	wszystkie
Gold.Quand	$\begin{array}{c} 0.1387000 \\ 0.8722356 \\ 0.6668795 \end{array}$	0.2159493	0.0000000
RESET_TEST		0.8642258	0.0786789
shapiro		0.1993464	0.0000000

w tym przypadku również widzimy ewidentną poprawę modelu dla powiatów ziemskich - ponownie model spełniłby założenia Gaussa-Markova.

Podsumowanie

Na podstawie analizy przeprowadzonej w tym projekcie wybraliśmy najlepsze zestawy zmiennych objaśniających dla każdego z modeli. Ostatecznie **model dla danych grodzkich** okazuje się być najbardziej wiarygodnym modelem spośród wszystkich - ma on najwyższe wartości AIC oraz kryteriów informacyjnych Hellwiga oraz spełnione wszystkie założenia Gaussa-Markova. Model dla powiatów ziemskich po spierwiastkowaniu zmiennej objaśnianej również uległ poprawie i spełnia założenia Gaussa-Markova.