

UNIVERSITY OF JORDAN Ayman Al-Attili

Capstone Project: Sign Language Translation System

BY: AYMAN AL-ATTILI

Outline

Introduction

Introduction

Who are deaf and mute people?

Deaf and mute individuals are those who experience both hearing and speech impairments

Global Prevalence of Hearing Loss:

- According to the World Health Organization (WHO), approximately 466
 million individuals worldwide are affected by hearing loss, including 34
 million children.
- The number of individuals affected by hearing loss is projected to exceed 900 million by 2050

Introduction

Challenges

The deaf and hard of hearing community faces communication challenges and limited availability of communication methods. Also, Seeking medical or security assistance without an interpreter presents a significant obstacle.

Understanding Arabic Sign Language

Arabic Sign Language (ArSL) is the primary method of communication used by the deaf community in Arabic speaking areas. It is a visual language that relies on hand movements, facial expressions, and body language to convey meaning. ArSL has its own distinct grammar and structure, which are separate from spoken Arabic. It is used for everyday conversation, education, and cultural expression within the Deaf community.

Understanding Arabic Sign Language

The biggest obstacle in such a system lies in the difficulty of representing the Arabic language through a fixed data set that lacks many simple and complex sentences and expressions. Also, the process requires attention to various details, such as facial expressions accompanying gestures and signals.

System Workflow

STAGE: 1

Input stream video from the webcam

STAGE: 2

Divide the video into frames

STAGE: 3

Entering each frame into the model

STAGE: 4

Display the translation on screen

About The Data

We faced challenges in finding data that represented the gestures and movements of Arabic sign language. However, we found a collected dataset that included Arabic alphabet signs

About The Data

However, this set of data contained only signs of the Arabic alphabet only, but sign language is characterized by the presence of gestures and signs indicating complex sentences and expressions that must be considered during the process of building the translated system.

Therefore, a group of complex expressions were collected to form meaningful sentences, as more than 500 images of several people in several different places were collected.

About The Data

Roboflow Work:

- image annotation.
- Image augmentation
- After the augmentation process the dataset was increased to 1770 images after these operations.
- Total Number of images 9264.

Modeling

Where the YOLOv5 algorithm was used for training the model weights and torch.hub.load was used to access the model in Inference.

The YOLO (You Only Look Once) algorithm is a real-time object detection system that aims to localize and classify objects in images.

```
model_name = 'best_final_2.onnx'
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_name)
model.conf = 0.7
model.max_det = 1
```


Modeling

!pytho	on /conte	ent/drive/	MyDrive/AIO	_Project/yol	lov5/train.	<u>py</u> data <u>/</u>	/content/drive/MyDrive/AIO_Project/yolov5/data/custom.yamlepochs 20weights /content/drive/MyDrive/AIO_Project/yolov5s.ptimg
	Epoch 13/19	GPU_mem 4.31G Class all	0.0268	obj_loss 0.01086 Instances 1397	cls_loss 0.03091 P 0.848	Instances 2 R 0.895	Size 640: 100% 411/411 [03:31<00:00, 1.94it/s] mAP50 mAP50-95: 100% 44/44 [00:18<00:00, 2.33it/s] 0.924 0.732
	Epoch 14/19	GPU_mem 4.31G Class all	0.02673	obj_loss 0.01088 Instances 1397	cls_loss 0.02979 P 0.888	Instances 3 R 0.87	Size 640: 100% 411/411 [03:33<00:00, 1.92it/s] mAP50 mAP50-95: 100% 44/44 [00:18<00:00, 2.40it/s] 0.935 0.75
	Epoch 15/19	GPU_mem 4.31G Class all	0.02627	obj_loss 0.01057 Instances 1397	cls_loss 0.02946 P 0.88	Instances 4 R 0.923	Size 640: 100% 411/411 [03:31<00:00, 1.94it/s] mAP50 mAP50-95: 100% 44/44 [00:18<00:00, 2.38it/s] 0.948 0.769
	Epoch 16/19	GPU_mem 4.31G Class all	0.02516	obj_loss 0.0105 Instances 1397	cls_loss 0.02838 P 0.898	Instances 1 R 0.915	Size 640: 100% 411/411 [03:31<00:00, 1.94it/s] mAP50 mAP50-95: 100% 44/44 [00:21<00:00, 2.02it/s] 0.953 0.777
	Epoch 17/19	GPU_mem 4.31G Class all	0.02436	obj_loss 0.01034 Instances 1397	cls_loss 0.02686 P 0.922	Instances 1 R 0.925	Size 640: 100% 411/411 [03:27<00:00, 1.98it/s] mAP50 mAP50-95: 100% 44/44 [00:18<00:00, 2.38it/s] 0.966 0.801
	Epoch 18/19	GPU_mem 4.31G Class all	box_loss 0.02269 Images 1397	obj_loss 0.01005 Instances 1397	cls_loss 0.02524 P 0.915	Instances 2 R 0.936	Size 640: 100% 411/411 [03:26<00:00, 1.99it/s] mAP50 mAP50-95: 100% 44/44 [00:19<00:00, 2.21it/s] 0.97 0.808
	Epoch 19/19	GPU_mem 4.31G Class all	0.02213	obj_loss 0.01 Instances 1397	cls_loss 0.02463 P 0.933	Instances 1 R 0.949	Size 640: 100% 411/411 [03:29<00:00, 1.96it/s] mAP50 mAP50-95: 100% 44/44 [00:19<00:00, 2.28it/s] 0.976 0.816

Applications and Impact

Shows and presentation

In hospitals and security centers

Government departments

Education

Project TimeLine

PHASE ONE

Project Concepti<mark>o</mark>n and Initiation and Planning

PHASE TWO

Start Working on Coding Part

PHASE THREE

Project Testing and Launch of Execution

PHASE FOUR

Preparing For The Competion

16

Thank You