Chương 3

VÀNH ĐA THỨC

- **3.1.** Chứng minh rằng đa thức $x^2 + 14 \in \mathbb{Z}_{15}[x]$ có bốn nghiệm phân biệt trong \mathbb{Z}_{15} .
- **3.2.** Xác định các số thực a, b, c sao cho đa thức $f(x) = 2x^4 + ax^2 + bx + c$ chia hết cho x + 2 và chia cho $x^2 1$ thì dư x.
- **3.3.** Cho $f \in \mathbb{R}[x]$ và $m, n \in \mathbb{N}^*$.
 - a) Chứng minh rằng nếu $(x-1)|f(x^n)$ thì $(x^n-1)|f(x^n)$.
- b) Chứng minh rằng nếu $a\in\mathbb{R}^*$ thỏa $(x-a)^m|f(x^n)$ thì $(x^n-a^n)^m|f(x^n)$.
- c) Giả sử $(x^2 + x + 1)|f(x)$ và có $g, h \in \mathbb{R}[x]$ thỏa $f(x) = g(x^3) + xh(x^3)$. Chứng minh rằng (x-1)|g(x) và (x-1)|h(x).
- **3.4.** Cho F là một trường và K là một trường con của F. Chứng minh rằng với $f, g \in K[x]$, f là ước của g trong K[x] khi và chỉ khi f là ước của g trong F[x].
- **3.5.** Chứng minh rằng trong vành $\mathbb{C}[x]$, f(x)|g(x) khi và chỉ khi mọi nghiệm của f(x) đều là nghiệm của g(x) và mọi nghiệm bội cấp k của f(x) đều là nghiệm bội cấp l với $l \geq k$ của g(x).
- **3.6.** Trong các trường hợp sau hãy chứng minh f|g trong $\mathbb{Q}[x]$.
 - a) f(x) = x(x+1)(2x+1) và $g(x) = (x+1)^{2n} x^{2n} 2x 1$.
 - b) $f(x) = x^2 x + 1$ và $g(x) = (x 1)^{n+2} + x^{2n+1}$.
 - c) $f(x) = x^2 + x + 1$ và $g(x) = x^{3k} + x^{3m+1} + x^{3n+2}$.

trong đó k, m, n là các số nguyên dương.

- **3.7.** Tìm điều kiện của $k, m, n \in \mathbb{N}$ để f|g trong $\mathbb{Q}[x]$ cho mỗi trường hợp sau:
 - a) $f(x) = x^2 + x + 1$ và $g(x) = x^{2n} + x^n + 1$.
 - b) $f(x) = x^2 + x + 1$ và $g(x) = (x+1)^n + x^n + 1$.
 - c) $f(x) = x^2 x + 1$ và $g(x) = (x 1)^n + x^n + 1$.

- d) $f(x) = x^2 x + 1$ và $g(x) = x^{3k} x^{3m+1} + x^{3n+2}$.
- **3.8.** * Với mỗi số nguyên dương k, đặt $f_k(x)=x^k-1$ là đa thức với hệ số hữu tỉ. Chứng minh rằng với mọi $m,n\in\mathbb{N}^*$,
 - a) $f_m|f_n$ khi và chỉ khi m|n.
 - b) $(f_m, f_n) = f_d \text{ v\'oi } d = (m, n).$
- **3.9.** Cho F là trường \mathbb{Q} hay trường \mathbb{Z}_5 và $f, g \in F[x]$. Tìm h = (f, g); k = [f, g] và $u, v \in F[x]$ thỏa h = uf + vg trong các trường hợp sau:
 - a) $f(x) = 4x^4 2x^3 16x^2 + 5x + 9$ và $g(x) = 2x^3 x^2 5x + 4$.
 - b) $f(x) = x^5 + 3x^4 + x^3 + x^2 + 3x + 1$ và $g(x) = x^4 + 2x^3 + x + 2$.
 - c) $f(x) = 4x^4 8x^3 + 9x^2 5x + 1$ và $g(x) = 4x^4 + x^2 + 3x + 1$.
- **3.10.** Trong các trường hợp sau hãy tìm khai triển Taylor của đa thức $f \in \mathbb{R}[x]$ tại x_0 . Xét xem x_0 là nghiệm bội cấp mấy của f và tìm các đạo hàm $f^{(i)}(x_0)$ với $1 \le i \le 6$.
 - a) $f(x) = x^5 2x^4 5x^3 + 15x^2 16x + 12$ và $x_0 = 2$.
 - b) $f(x) = x^5 5x^4 + 4x^3 + 4x^2 + 3x + 9$ và $x_0 = 3$.
 - c) $f(x) = x^6 6x^5 + 13x^4 15x^3 + 18x^2 20x + 8$ và $x_0 = 2$.
 - d) $f(x) = 8x^6 12x^5 + 6x^4 + 7x^3 12x^2 + 6x 1$ và $x_0 = 1/2$.
- **3.11.** Trong các trường hợp sau hãy tìm tất cả các đa thức f thỏa điều kiện đã cho:
 - a) $f \in \mathbb{R}[x]$ thỏa f(2) = 4; f(3) = 6; f(4) = 8.
 - b) $f \in \mathbb{Z}_5[x]$ thỏa $f(\overline{2}) = \overline{1}$; $f(-\overline{1}) = \overline{3}$; $f(\overline{3}) = \overline{2}$.
 - c) $f \in \mathbb{Z}_{101}[x]$ thỏa $f(\overline{2}) = \overline{30}$; $f(\overline{5}) = \overline{21}$; $f(\overline{3}) = \overline{-13}$.
- **3.12.** Cho F là một trường và $a, b \in F$; $a \neq 0$. Chứng minh rằng $f(x) \in F[x]$ bất khả qui khi và chỉ khi f(ax + b) bất khả qui.
- **3.13.** * Cho $a_1, ..., a_n$ là các số nguyên phân biệt. Chứng minh rằng các đa thức sau bất khả qui trên \mathbb{Q} .
 - a) $f(x) = (x a_1)...(x a_n) 1$.
 - b) $g(x) = (x a_1)^2 ... (x a_n)^2 + 1$.
- **3.14.** Trong các trường hợp sau hãy phân tích f thành tích các đa thức bất khả qui trên \mathbb{Q} , trên \mathbb{R} và trên \mathbb{C} :
 - a) $f(x) = x^5 + 2x^4 2x^3 15x 18$.
 - b) $f(x) = x^5 + 2x^4 7x^3 14x^2 18x 36$.
 - c) $f(x) = x^5 2x^4 4x^3 + 4x^2 5x + 6$.
 - d) $f(x) = 16x^6 36x^5 84x^4 + 99x^3 + 201x^2 + 45x 25$.

- e) $f(x) = 9x^6 30x^5 + 49x^4 28x^3 4x^2 + 16x + 4$.
- f) $f(x) = -4x^6 23x^5 63x^4 85x^3 57x^2 8x 16$.
- **3.15.** Chứng minh rằng các đa thức sau bất khả qui trên \mathbb{Q} .
 - a) $x^4 8x^3 + 12x^2 6x + 3$.
 - b) $x^4 x^3 + 2x + 1$.
 - c) $x^{p-1} + ... + x + 1$ với p là số nguyên tố dương.
 - d) $5x^3 + 6x^2 + 5x + 25$.
 - e) $7x^3 + 6x^2 + 11x + 11$.
 - f) $x^3 3n^2x + n^3$ với n nguyên dương.
 - g) $3x^4 + 5x^3 4x + 1$.
 - h) $x^4 9x^3 + 6x 1$.
 - i) $x^4 + 8x^3 + x^2 + 2x + 5$.
- **3.16.** Giải các phương trình bậc 3 sau trong \mathbb{C} :
 - a) $4x^3 36x^2 + 84x 20 = 0$.
 - b) $x^3 x 6 = 0$.
 - c) $x^3 + 18x + 15 = 0$.
 - d) $x^3 + 3x^2 6x + 4 = 0$.
- **3.17.** Chứng minh rằng nếu x_1 , x_2 , x_3 là các nghiệm phức của phương trình $x^3 + px + q = 0$ thì

$$(x_2 - x_1)^2 (x_3 - x_2)^2 (x_1 - x_3)^2 = -4p^3 - 27q^2.$$

- **3.18.** Giải các phương trình bậc 4 sau trong \mathbb{C} :
 - a) $x^4 3x^3 + x^2 + 4x 6 = 0$.
 - b) $x^4 4x^3 + 3x^2 + 2x 1 = 0$.
 - c) $x^4 + 2x^3 + 8x^2 + 2x + 7 = 0$.
 - d) $x^4 + 6x^3 + 6x^2 8 = 0$.
- **3.19.** * Cho f(x) là một đa thức với hệ số nguyên có f(0) và f(1) đều lẻ. Chứng minh rằng f(x) không có nghiệm nguyên.
- **3.20.** Chứng minh rằng đa thức $x^4 + px^2 + q$ bất khả qui trên $\mathbb Q$ khi và chỉ khi các số $p^2 4q$; $2\sqrt{q} p$ không là bình phương của các số hữu tỉ.

3