18.06 Exam III Professor Strang May 7, 2014

Your	PRINTED	Name is:	

Please circle your section:

R01	${\bf T}$	10	36-144	Qiang Guang
R02	\mathbf{T}	10	35-310	Adrian Vladu
R03	\mathbf{T}	11	36 - 144	Qiang Guang
R04	\mathbf{T}	11	4-149	Goncalo Tabuada
R05	\mathbf{T}	11	E17-136	Oren Mangoubi
R06	\mathbf{T}	12	36 - 144	Benjamin Iriarte Giraldo
R07	\mathbf{T}	12	4-149	Goncalo Tabuada
R08	Τ	12	36-112	Adrian Vladu
R09	Τ	1	36 - 144	Jui-En (Ryan) Chang
R10	Τ	1	36 - 153	Benjamin Iriarte Giraldo
R11	Τ	1	36 - 155	Tanya Khovanova
R12	Τ	2	36 - 144	Jui-En (Ryan) Chang
R13	Τ	2	36 - 155	Tanya Khovanova
R14	\mathbf{T}	3	36 - 144	Xuwen Zhu
ESG	\mathbf{T}	3		G. Stoy

Grading 1:

2:

3:

4:

1. (28 points) This question is about the differential equation

$$\frac{dy}{dt} = Ay = \begin{bmatrix} 5 & 2 \\ 8 & 5 \end{bmatrix} y \text{ with } y(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- (a) Find an eigenvalue matrix Λ and an eigenvector matrix S so that $A = S\Lambda S^{-1}$. Compute the matrix exponential e^{tA} by using $e^{t\Lambda}$.
- (b) Find y(t) as a combination of the eigenvectors of A that has the correct value y(0) at t = 0.

- **2.** (a) (24 points) Suppose a symmetric n by n matrix S has eigenvalues $\lambda_1 > \lambda_2 > \ldots > \lambda_n$ and orthonormal eigenvectors q_1, \ldots, q_n . If $x = c_1q_1 + c_2q_2 + \cdots + c_nq_n$ show that $x^Tx = c_1^2 + \cdots + c_n^2$ and $x^TSx = \lambda_1c_1^2 + \cdots + \lambda_nc_n^2$.
 - (b) What is the largest possible value of $R(x) = \frac{x^T S x}{x^T x}$ for nonzero x?

 Describe a vector x that gives this maximum value for this ratio R(x)?

- **3.** (24 points)
- (a) Show that the matrix $S = A^T A$ is positive semidefinite, for any matrix A. Which test will you use and how will you show it is passed?
- (b) If A is 3 by 4, show that A^TA is **not** positive definite.

- **4.** (24 points)
- (a) Show that none of the singular values of A are larger than 3.

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

(b) Why does B = AQ have the same singular values as A? (Q is an orthogonal matrix.)

Scrap Paper