

UEFI and RISC-V

Abner Chang, Dong Wei

The UEFI Forum Organization

UEFI Technology

Platform Initialization (PI)

 Interfaces produced & consumed by firmware only; promote interoperability between firmware components

UEFI

Pre-OS (and limited runtime program interfaces) between UEFI Applications (incl. OSes)/UEFI Drivers and system firmware

ACPI Technology

- Static tables and primary runtime interpreted control methods provided by system firmware to the OS for system configuration, power management and error handling
- Processor architecture agnostic

UEFI & ACPI History

UEFI History

1995	HP/Intel needed a boot architecture for Itanium servers that overcame BIOS PC-AT limitations				
1997 - 2000	Intel created EFI with HP and others in the industry, made it processor agnostic (x86, ia64)				
2004	tianocore.org, open source EFI community launched				
2005	Unified EFI (UEFI) The UEFI Forum, with 11 promoters, was formed to standardize EFI, extended to x64				
2009	UEFI extended to ARM AArch32				
2012	Windows 8 and ubiquitous native UEFI adoption for client PCs (Boot Performance, Secure Boot focused)				
2013	Linux Distros extended support for UEFI Secure Boot. First Linux Foundation hosted UEFI Plugfest. UEFI v2.4 extended to ARM AArch64.				

ACPI History

Intel/Microsoft/Toshiba 1996 created ACPI 1.0 for 16 and 32 bit PC client devices Compaq/Intel/Microsoft/Phoenix/Toshiba publishes ACPI 2.0 for 64-bit support as well 2000 as support for multiprocessor workstations and servers HP/Intel/Microsoft/Phoenix/Toshiba published 2004 ACPI 3.0 further enhancing the spec to support both client and server systems ACPI 4.0 is published providing additional 2009 support for both client and server systems Hardware-reduced ACPI model was introduced into the published ACPI 5.0 spec 2011 to include the support for SoC devices. ARM specific descriptions are also introduced

UEFI as the converged firmware infrastructure

ACPI Asset transferred to the UEFI Forum.

2014 ACPI v5.1 for ARM AArch64 support
(e.g., ARM SBSA/SBBR servers)

2015 UEFI v2.5, PI v1.4, ACPI v6.0 for NVDIMM support

2016 Ready for RISC-V?

2013

RISC-V UEFI Port on EDKII (EFI Development Kit II)

OVMF (Open Virtual Machine Firmware) RISC-V Package on QEMU

Reset Vector	Security SecMain.efi	Pre EFI Initialization	Driver Execution Environment	Boot Dev Select	Transient System	Runtime	After Life
(VTF)	(SEC)	(PEI)	(DXE)	(BDS)	Load (TSL)	(RT)	(AL)

FD, Flash Device (ROM)

Power on \longrightarrow [....Platform initialization..] \longrightarrow [....OS boot...] \longrightarrow Shutdown

RISC-V QEMU

- QEMU RISC-V PC/AT board
 Built up RISC-V PC/AT board on QEMU with some PC peripherals.
- QEMU PC/AT memory map devices (CMOS, PM, PCI and other devices)
 Changed these PC peripherals to memory map I/O device because RISC-V uses memory map I/O.
- RISC-V machine mode on RISC-V QEMU port Implemented RISC-V machine mode on RISC-V QEMU port.

Issues

How PECOFF support High 20bit/ Low 12bit relocations

Temp = &mRootBridgeDevicePathTemplate

| PE COFF |
| Relocation Directory |
| 12-bitRelocation Entry | 12-bitRelocation Entry |
|

- RISC-V relocation in GNU link
 When relative offset < 0x800, it forces to use X0 (hard wired to 0) as base address. This results in inconsistent register usage when load the target address.
- GNU link Optimization (no-relax support)

When relative offset < 0x800, it deletes AUIPC op-code.

Call Function -> auipc t0, 20-bit // U-type integer jalr t0, 12-bit // I-type integer

We need more in RISC-V spec

SP

- Timer, add periodical timer CSR
- RTC, provide date, time, year and alarm CSR
- PI Management Mode support
- MP support
- ACPI support
- Reset mechanism

UEFI/PI spec change for RISC-V

T

UEFI spec change for RISC-V

- 2.1.1. UEFI Images
- 2.3. Calling Conventions
- 2.3. RISC-V 32 (64) Platforms
- 17.2 EFI Debug Support Protocol

PI spec change for RISC-V

- Volume 1 : 5.4 RISC-V PEI Services Table Retrieval
- Volume 3 : PI Status code

Next step

- PE COFF image machine type for RISC-V
- PE COFF image relocation type for RISC-V
- EDKII RISC-V code review and commit
- QEMU RISC-V code review and commit
- GNU Link code change review and commit
- EDKII RISC-V OVMF: Add ACPI support
- QEMU: Keyboard/USB/ACPI on QEMU RISC-V PC/AT board
- QEMU : Boot to Linux on RISC-V UEFI port

Thank you

abner.chang@hpe.com dong.wei@hpe.com