From local to global specifications: the spin-flop transition in the XY model on \mathbb{Z}^2 under decimation

Franco-Dutch Workshop: Stat-Mech in Créteil 2023

13th June 2023, 9:30 AM (Paris Time)

Matteo D'Achille

joint with A.C.D. van Enter & A. Le Ny

1 Introduction

/27

Statistical mechanics and the ensembles of Gibbs

"to derive the laws of thermal equilibrium [...] using only the equations of mechanics and the probability calculus"

Elementary Principles in Statistical Mechanics **Gibbs** 1902

Einstein 1902

For describing the **Gibbs** (equilibrium) measure(s) of **spatially** ∞ lattice spin systems, **two main problems**:

- 1. Microscopic hamiltonian is divergent
- 2. Uniqueness in phase transitions (Kolmogorov extension Thm)

1. Dobrushin-Lanford-Ruelle (DLR) approach

Dobrushin 1968

Lanford-Ruelle 1969

Marginal probabilities \Longrightarrow Conditional probabilities wrt prescribed boundary conditions

Put on rigorous ground by Georgii

(Friedli-Velenik 2017)

2. Phase transitions and the renormalisation group

- Critical opalescence, Cagniard de Latour 1822
- Para-ferromagnetic transition, Pierre Curie 1895

Kadanoff 1966

Wilson 1983

J. Zinn-Justin 2005

A few motivations

Aim: different global behaviors compatible w. given local laws. Observables are local functions on a configuration space (Ω, \mathcal{F}) .

$$\mathscr{F}=\mathscr{P}(\{-1,+1\})$$
 for Ising, a Borel σ -algebra (continuous spins)

Physical states are modeled by Gibbs measures, which are well understood if $|\Omega| < \infty$. For Λ a finite subset of a lattice \mathcal{L} :

- Measurability for events supported outside Λ, which can be interpreted as boundary conditions;
- Concentration of the resulting measure on Λ (**properness**);
- "Nested" conditioning (consistency).

The synthesis is called **local specification** (Georgii 1988)

Local specifications

Def. (Föllmer 1975, Preston 1976). A local specification is a family $(\gamma_{\Lambda})_{\Lambda \subseteq \mathscr{L}}$ of probability kernels $\gamma_{\Lambda} : \mathscr{F} \times \Omega \to [0,1]$ satisfying properness and consistency.

- 1. \forall config. $\omega \in \Omega$: $\gamma_{\Lambda}(\cdot | \omega)$ is a **probab. measure**;
- 2. \forall event $A \in \mathscr{F}$: $\gamma_{\Lambda}(A|\cdot)$ is \mathscr{F}_{Λ^c} -measurable;
- 3. \forall config. $\omega \in \Omega$: $\gamma_{\Lambda}(B|\omega) = \mathbf{1}_{B}(\omega)$, $B \in \mathscr{F}_{\Lambda^{c}}$ (properness);
- **4**. \forall boxes $\Lambda \subset \Lambda'$, finite, $\gamma_{\Lambda'} \gamma_{\Lambda} = \gamma_{\Lambda'}$ (consistency).

Gibbs specification, measures, and the set $\mathscr{G}(\gamma)$

Gibbs specification: for $\beta > 0$, Λ finite and a priori measure ρ

$$\gamma_{\Lambda}(d\sigma \mid \omega) \stackrel{\mathsf{def}}{=} \frac{1}{Z_{\Lambda}^{\beta\Phi}(\omega)} e^{-\beta H_{\Lambda}^{\Phi}(\sigma \mid \omega)} (\rho_{\Lambda} \otimes \delta_{\omega_{\Lambda^c}})(d\sigma).$$

A measure μ is **specified** by (or **consistent with**) γ_{Λ} if it satisfies the following **DLR equations**

$$\mu[A\mid \mathscr{F}_{\Lambda^c}](\sigma)=\gamma_{\Lambda}(A\mid \sigma),\ \mu ext{-a.e.}\ \sigma\in\Omega$$
 .

A **Gibbs measure** is a measure specified by a **Gibbs specification**.

Graal of statistical mechanics: to understand the set of all Gibbs measures $\mathcal{G}(\gamma)$ depending on parameters (temperature, coupling...)

Quasilocality

A function f is **quasilocal** iff it is a limit (in the sup norm) of a sequence of **local** functions. Equivalently,

$$\lim_{\Lambda\uparrow\mathscr{L}}\sup_{\sigma,\omega:\sigma_{\Lambda}=\omega_{\Lambda}}\mid f(\omega)-f(\sigma)\mid=0.$$

Remark: In any model with finite state space (e.g. Ising, Potts)

quasilocality
$$\iff$$
 (uniform) continuity

The Kozlov–Sullivan Theorem

Action of a local specification on functions: for $\omega \in \Omega$,

$$\gamma_{\Lambda}f(\pmb{\omega}) = \int_{\Omega}f(\pmb{\sigma})\gamma_{\Lambda}(d\pmb{\sigma}|\pmb{\omega}) = \gamma_{\Lambda}[f|\pmb{\omega}]$$
 (sums for Ising)

A specification is **quasilocal** if it preserves quasilocal functions

f is quasilocal $\Longrightarrow \gamma_{\Lambda} f$ is quasilocal

 μ is a Gibbs measure $\iff \mu$ is specified by a **non–null** and **quasilocal** specification.

Kozlov 1974, Sullivan 1973

(see also Barbieri et al. 2021)

Renormalization group and local specifications

Let $v = T\mu$, where T a renorm. group transformation (decimation, majority rule...)

- Existence of *v* (**Griffiths**, **Pearce**, **Israel**)
- RG pathologies interpreted as loss of Gibbs property (van Enter-Fernandez-Sokal 1993)

"The other way round": v not quasilocal $\implies v$ non-Gibbsian

How: points of ess. discontinuity of renormalized measures

D'A-Le Ny 2022 for a majority rule in Ising on Cayley tree $\mathcal{T}^{(2)}$

Conditioning wrt some $\Lambda^c \subset \mathcal{L}$, where $|\Lambda| = \infty$?

Global specifications

Fernandez-Pfister 1997

A global specification is a local specification in which consistency holds also for ∞ subsets of the lattice \mathcal{L} : $\forall \Lambda_1, \Lambda_2 \subset \mathcal{L}$

$$\gamma_{\Lambda_2}\gamma_{\Lambda_1}=\gamma_{\Lambda_2},\quad \Lambda_1\subset\Lambda_2$$
.

Fernandez–Pfister addressed the problem of existence of global specifications when quasilocality \iff continuity (**Ising model**,...).

Today: extend FP to XY models, which have continuous spins.

XY model: definitions

A ferromagnetic spin model on \mathbb{Z}^2 enjoying a O(2) symmetry.

Configuration space, events, a priori measure:

$$\Omega = (\mathbb{S}_1)^{\mathbb{Z}^2} \;, \; \mathscr{F} = \left[\mathscr{E}(\mathbb{S}^1)
ight]^{\otimes \mathbb{Z}^2} \quad ext{with} \quad
ho = \left(rac{d\, heta}{2\pi}
ight)^{\otimes \mathbb{Z}^2}$$

ullet Ferromagnetic, two-body potential: for a config. $\overrightarrow{\sigma}$ and J(i,j)>0

$$\Phi_{\{i,j\}}(\overrightarrow{\sigma}) = -J(i,j) \ \overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} = -J(i,j) \ \cos(\theta_j - \theta_i)$$

• Hamiltonian in finite volume $\Lambda \subseteq \mathbb{Z}^2$ and boundary condition $\overrightarrow{\omega}$:

$$H_{\Lambda}^{\Phi}(\overrightarrow{\sigma}\mid\overrightarrow{\omega})\stackrel{\mathsf{def}}{=} \sum_{\{i,j\},\Lambda\cap\{i,j\}
eq\emptyset} \Phi_{\{i,j\}}(\overrightarrow{\sigma}_{\Lambda}\overrightarrow{\omega}_{\Lambda^c}).$$

XY model: golden age

- '64 **Schultz–Mattis–Lieb**: coined the name *XY* (quantum case)
- '70 **Ginibre**: Griffiths inequalities, including XY model (model 3)
- '71 Berezinsky, Kosterlitz-Thouless ('73): free vortices to vortices-antivortices transition (Nobel Prize in Physics 2016)
- '77 **Fröhlich–Spencer** ('81): proof of existence of these two phases (*Dannie Heineman Prize 1991*)
- '80 **Aizenmann–Simon**: lower bound on the BKT transition temperature in any lattice dimension (**Simon** 2022)

Portrait of the two phases of the XY model

$$\beta \gg \beta_{\rm BKT}$$
 (low T)

 $\beta \ll \beta_{\rm BKT}$ (high T)

Numerical protocol: Metropolis–Hastings, free bc, $\Lambda = [0,25]^2 \cap \mathbb{Z}^2$, J(i,j) = const > 0

Angle representation and partial preorder

• Angle representation of $\vec{\sigma}$:

for
$$\overrightarrow{e_1} = (1,0)^T$$
, define the angle at $i \in \mathbb{Z}^2$ as
$$\theta_i = \theta(\overrightarrow{\sigma_i}) = \underbrace{(\overrightarrow{\sigma_i}, \overrightarrow{e_1})}_{\text{angle bw } \overrightarrow{\sigma_i} \text{ and } \overrightarrow{e_1}} \in]-\pi, +\pi] \; .$$

Partial preorder on configurations:

for
$$\overrightarrow{\sigma}, \overrightarrow{\sigma}' \in \Omega$$
,
$$\overrightarrow{\sigma} \leq_{\sin} \overrightarrow{\sigma}' \iff \sin \theta_i \leq \sin \theta_i', \ \forall \ i \in \mathbb{Z}^2 \ .$$

Gibbs specification and extremal measures

Gibbs (local) **specification** for the XY model: for $\Lambda \in \mathbb{Z}^2$ finite

$$\gamma_{\Lambda}^{J}(d\overrightarrow{\sigma}\mid\overrightarrow{\omega}) \stackrel{\mathsf{def}}{=} \frac{1}{Z_{\Lambda}(\overrightarrow{\omega})} \exp\left[-\beta H_{\Lambda}^{\Phi}(\overrightarrow{\sigma}\mid\overrightarrow{\omega})\right] \left(\rho_{\Lambda} \times \delta_{\overrightarrow{\omega}_{\Lambda}^{c}}\right) (d\overrightarrow{\sigma})$$

Fact: take the configs. $\overrightarrow{\pm} = \left(\pm \frac{\pi}{2}\right)_{i \in \mathbb{Z}^2}$. The Gibbs measures obtained as weak limits are **extremal** wrt \leq_{\sin} : $\forall f: \Omega \to \mathbb{R}$

$$\mu^{-}[f] \le \mu[f] \le \mu^{+}[f]$$

See talks by Külske and Coquille.

Global specification for XY model

Let $S \subset \mathbb{Z}^2$ **infinite**, and let us *freeze* into $\overrightarrow{\omega}$ on S^c

$$\mu_S^{+,\overrightarrow{\omega}}(\cdot) = \lim_{\Lambda \uparrow S} \gamma_{\Lambda}^{J}(\cdot \mid \overrightarrow{+}_S \overrightarrow{\omega}_{S^c}).$$

For all boundary condition $\overrightarrow{\omega} \in \Omega$, $\Gamma_S^+(d\overrightarrow{\sigma}|\overrightarrow{\omega}) \stackrel{\text{def}}{=} \mu_S^{+,\overrightarrow{\omega}} \otimes \delta_{\overrightarrow{\omega}_{S^c}}(d\overrightarrow{\sigma})$.

Theorem (D'A-van Enter-Le Ny 2022a)

$$\Gamma^+ = \left(\Gamma_S^+
ight)_{S\subset \mathbb{Z}^2}$$
 is a **global** specification.

Sketch of proof

- \leq_{sin} preserves attractivity/monotonicity (FKG inequalities)
- Continuous spin maintain measurability of kernels (basis...)

Choose $\Gamma_{\Lambda}^{+} \equiv \gamma_{\Lambda}^{J}$ for Λ finite.

A very useful fact: For all configuration $\overrightarrow{\sigma}$

$$\overrightarrow{\sigma} \leq_{\sin} \overrightarrow{\sigma}_{\Lambda} \overrightarrow{+}_{\Lambda^c}$$

Consistency: $\forall f_1, f_2^* \Lambda_1$ -local & Λ_2 -local, $\Lambda_1 \subset D_1$, $\Lambda_2 \subset D_2 \setminus D_1$:

$$\mathbb{E}_{\mu^{+}}(f_{1}f_{2}) = \mathbb{E}_{\mu^{+}}(\Gamma_{D_{1}}^{+}(f_{1} \mid \cdot)f_{2})$$

Proof: \leq and \geq .

^{*} f_1 and f_2 positive and increasing in the sense of \leq_{\sin} .

Essential discontinuity/bad configuration

Essential discontinuities or **bad configurations** model the effect that changes at ∞ have deep into the bulk.

A configuration $\overrightarrow{\sigma}_{bad} \in \Omega$ is an **essential discontinuity** for a cond. proba μ , if the cond. expectations of a local function wrt. two configurations coinciding in a finite box **cannot be made arbitrarily close**.

If we are able to exhibit such configuration(s), we can easily prove **non-Gibbsianness** via Kozlov–Sullivan Theorem!

Non-Gibbsianness of decimated measure

Decimation is the map in which we read spins at a sub-lattice.

$$T\colon (\Omega,\mathscr{F}) \longrightarrow (\Omega',\mathscr{F}') = (\Omega,\mathscr{F})$$
 acting as follows

$$\overrightarrow{\omega} \longmapsto \overrightarrow{\omega}' = (\overrightarrow{\omega}_i')_{i \in \mathbb{Z}^2}, \text{ with } \overrightarrow{\omega}_i' = \overrightarrow{\omega}_{2i}.$$

The **decimated measure** is defined as, $\forall A' \in \mathscr{F}'$

$$v^+(A') = \mu^+(T^{-1}A')$$

Fact: We can drop the + (or any θ ..) and write just v (or μ)!

Mermin-Wagner "ban" and the spin-flop transition

The n.n. XY model does not spontaneously break O(2) symmetry when $\beta \to \infty$ due to the **Mermin-Wagner Theorem**.

If spontaneous magnetization = 0 then unique (extremal) phase in the equilibrium states (**Bricmont–Fontaine–Landau** 1977)

By choosing a particular configuration to condition for the primed spins, the O(2) symmetry for the non-primed spins **gets reduced** to a discrete one.

XY model: recent works using spin-flop transition

- '08 van Enter-Ruszel: "transient" Gibbsianness in diffusive dynamics
- '10 van Enter-Külske-Opoku-Ruszel: review (O(n) models)
- '11 Crawford: Random centered ext. field in one direction $\forall d \geq 2$

'16 Collet-Ruszel: mean-field XY w dichotomic external random field

The doubly alternating configuration $\overrightarrow{\sigma}'_{dblyalt}$

$$\overrightarrow{\sigma}'_{\text{dblyalt}} = (-1)^{\lfloor \frac{i'}{2} \rfloor + \lfloor \frac{j'}{2} \rfloor}, \quad i'j' \in \mathbb{Z}$$

Theorem (D'A-van Enter-Le Ny 2022b)

 $\overrightarrow{\sigma}'_{\mathrm{dblyalt}}$ is a **bad configuration** for $v=T\mu$ at low temperature.

Proof ideas

First step: zero temperature ($\beta = \infty$) Local function: **magnetization** along the x axis $f = \overrightarrow{\sigma}_{\{0,0\}}^{f(1)}$. Technical estimate and use of XY global specification show that

 $\overrightarrow{\sigma}'_{\text{dblyalt}}$ is an essential discontinuity for $v = T\mu$ $(\implies v \text{ non-quasilocal} \implies v \text{ non-Gibbsian by Kozlov-Sullivan}).$

Second step: Extension to low temp. $\beta < \infty$ large by convexity Generalized contour method of Malyshev et al. 1983 (see also van Enter-Külske-Opoku 2011);

Conclusions

If $|\Lambda| = \infty$, cond. wrt configs supported on Λ^c requires extra care!

Fortunately, global specifications are very useful ...

For **XY** models, **global specifications** are central ingredient for showing non-Gibbsian of decimated measure even in absence of LRO of the original model.

Using a well-known **spin-flop mechanism** we have shown an explicit exemple

Some perspectives

- Extension of Malyshev Thm to long-range models
- Global specifications and essential enhancements in percolation with obstacles (Aizenman–Grimmett 1991)

- Gibbs specifications for Ising on Penrose lattices; and regular tiling of \mathbb{H}_2 (Series–Sinai, Gandolfo–Ruiz–Shlosman)
- Spin-flop mechanism for XY on regular trees?

Thanks!

The bad configuration, and conditioning

For a special configuration $\overrightarrow{\omega}'_{\mathrm{spe}}$, for ν^+ -a.e. $\overrightarrow{\omega}' \in \mathscr{N}_{\Lambda', \mathcal{E}}(\overrightarrow{\omega}'_{\mathrm{spe}})$

$$\mathbf{v}^+[f(\overrightarrow{\sigma}')|\mathscr{F}_{\{(0,0)\}^c}](\overrightarrow{\omega}') = \Gamma_S^+[f(\overrightarrow{\sigma}')|\overrightarrow{\omega}] \ \mu^+ - \text{a.e.}(\overrightarrow{\omega}),$$

with $S = (2\mathbb{Z}^2)^c \cup \{(0,0)\}$ and $\overrightarrow{\omega} \in T^{-1}\{\overrightarrow{\omega}'\}$ which coincide with $\overrightarrow{\omega}'_{\rm spe}$ over $2\mathbb{Z}^2$. $\forall \overrightarrow{\omega}' \in \mathscr{N}_{\Lambda'}(\overrightarrow{\omega}'_{\rm spe})$,

$$v^+[f(\overrightarrow{\sigma}')|\mathscr{F}_{\{(0,0)\}^c}](\overrightarrow{\omega}') = \mu_{(2\mathbb{Z}^2)^c \cup \{(0,0)\}}^{+,\overrightarrow{\omega}} \otimes \delta_{\overrightarrow{\omega}_{2\mathbb{Z}^2 \cap \{(0,0)\}^c}}[f(\overrightarrow{\sigma}')].$$

It is obtained as monotone weak limit with b.c. $+\frac{\pi}{2}$ fixed after freezing $\overrightarrow{\omega}$ on even sites: $\forall \overrightarrow{\omega}' \in \mathscr{N}_{\Lambda'}(\overrightarrow{\omega}'_{alt}), \forall \overrightarrow{\omega} \in T^{-1}\{\overrightarrow{\omega}'\},$

$$\mu_{(2\mathbb{Z}^2)^c \cup \{(0,0)\}}^{+,\overrightarrow{\boldsymbol{\omega}}}(\cdot) = \lim_{\Delta \in \mathscr{S}, \Delta \uparrow (2\mathbb{Z}^2)^c \cup \{0,0)\}} \gamma_{\Delta}^{J}(\cdot \mid \overrightarrow{+}_{(2\mathbb{Z}^2)^c \cup \{0,0)\}}) \, \overrightarrow{\boldsymbol{\omega}}_{2\mathbb{Z}^2 \cap \{0,0)\}^c}).$$

Essential discontinuity

Detailed definition

Def. A configuration $\overrightarrow{\omega} \in \Omega$ is an **essential discontinuity** for a conditional proba μ , if $\exists \Lambda_0 \in \mathscr{L}$, a local function f, and a real $\delta > 0$, s.t. $\forall \Lambda$ containing Λ_0 , 2 neighborhoods of $\overrightarrow{\omega}$ $\mathscr{N}_{\Lambda}^1(\overrightarrow{\omega})$ and $\mathscr{N}_{\Lambda}^2(\overrightarrow{\omega})$ exists s.t.

$$\forall \overrightarrow{\omega}^{1} \in \mathcal{N}_{\Lambda}^{1}(\overrightarrow{\omega}), \ \forall \overrightarrow{\omega}^{2} \in \mathcal{N}_{\Lambda}^{2}(\overrightarrow{\omega}),$$

$$\left| \mu \left[f | \mathscr{F}_{\Lambda^{c}} \right] (\overrightarrow{\omega}^{1}) - \mu \left[f | \mathscr{F}_{\Lambda^{c}} \right] (\overrightarrow{\omega}^{2}) \right| > \delta.$$

Equivalently:

$$\lim_{\Delta\uparrow\mathbb{Z}^2}\sup_{\overrightarrow{\omega}^1,\overrightarrow{\omega}^2\in\Omega}\left|\mu\left[f|\mathscr{F}_{\Lambda^c}\right](\overrightarrow{\varpi}_{\!\Delta}\omega^1_{\!\Delta^c})-\mu\left[f|\mathscr{F}_{\Lambda^c}\right](\overrightarrow{\varpi}_{\!\Delta}\overrightarrow{\varpi}^2_{\!\Delta^c})\right|>\delta.$$

End of proof of Thm 1 (DVLI)

$$\mathbb{E}_{u^+}(f_1 f_2) \ge \mathbb{E}_{u^+}(\Gamma_{D_1}^+(f_1 \mid \cdot) f_2)$$

Use FP 1997 for Ising model & $\vec{\sigma} \leq_{\sin} \vec{\eta}_{\Lambda} + \vec{\uparrow}_{\Lambda^c}$.

 $orall f_1, f_2$, Λ_1 -local and Λ_2 -local, with $\Lambda_1 \subset D_1$, $\Lambda_2 \subset D_2 \setminus D_1$:

- 1. $\Gamma_{D_1}^+(f_1 \mid \overrightarrow{\eta}) \leq \gamma_{\Lambda}^J \left(f_1(\overrightarrow{\sigma}_{\Lambda}) \mid \overrightarrow{+}_{D_1} \overrightarrow{\eta}_{D_1^c} \right);$
- 2. $\mathbb{E}_{\mu^+}(\Gamma_{D_1}^+(f_1\mid\cdot)f_2) \leq \int \gamma_{\Lambda_2}^J(d\overrightarrow{\eta}\mid\overrightarrow{+})\gamma_{\Lambda}^J\left(f_1\mid\overrightarrow{+}_{D_1}\overrightarrow{\eta}_{D_1^c}\right)f_2(\overrightarrow{\eta});$
- 3. Take a set Λ_2 s.t. $\Lambda_2 \cap D_1 = \Lambda$. Then

$$\int \gamma_{\Lambda_2}^J(d\overrightarrow{\eta} \mid \overrightarrow{+}) \gamma_{\Lambda}^J \left(f_1 \mid \overrightarrow{+}_{D_1} \overrightarrow{\eta}_{D_1^c} \right) f_2(\overrightarrow{\eta}) = \int \gamma_{\Lambda_2}^J(d\overrightarrow{\eta} \mid \overrightarrow{+}) f_1(\overrightarrow{\eta}) f_2(\overrightarrow{\eta}),$$

and hence $\mathbb{E}_{\mu^+}(\Gamma_{D_1}^+(f_1 \mid \cdot) f_2) \leq \mathbb{E}_{\mu^+}(f_1 f_2)$.

End of proof of Thm 1 (DVLI)

$$\mathbb{E}_{u^{+}}(f_{1}f_{2}) \leq \mathbb{E}_{u^{+}}(\Gamma_{D_{1}}^{+}(f_{1} \mid \cdot)f_{2})$$

For $M \subset \Lambda_2 \cap D_1$,

$$\begin{split} \mathbb{E}_{\mu^{+}}\left(f_{1}f_{2}\right) & \leq & \lim_{\Lambda_{2}} \int \gamma_{\Lambda_{2}}^{J}(d\overrightarrow{\eta}\mid\overrightarrow{+})f_{1}(\overrightarrow{\eta})f_{2}(\overrightarrow{\eta}) = \lim_{\Lambda_{2}} \int \gamma_{\Lambda_{2}}^{J}(d\overrightarrow{\eta}\mid\overrightarrow{+})\gamma_{M}^{J}(f_{1}|\overrightarrow{\eta})f_{2}(\overrightarrow{\eta}) \\ & \leq & \lim_{\Lambda_{2}} \int \gamma_{\Lambda_{2}}^{J}(d\overrightarrow{\eta}\mid\overrightarrow{+})\gamma_{M}^{J}(f_{1}|\overrightarrow{+}_{D_{1}}\overrightarrow{\eta}_{D_{1}^{c}})f_{2}(\overrightarrow{\eta}) \\ & = & \int \mu^{+}(d\overrightarrow{\eta})\gamma_{M}^{J}(f_{1}|\overrightarrow{+}_{D_{1}}\overrightarrow{\eta}_{D_{1}^{c}})f_{2}(\overrightarrow{\eta}) \; . \end{split}$$

The conclusion follows from Beppo Levi theorem:

$$\mathbb{E}_{\mu^{+}}(f_{1}f_{2}) \leq \lim_{M\uparrow D_{1}} \int \mu^{+}(d\overrightarrow{\eta})f_{2}(\overrightarrow{\eta})\gamma_{M}(f_{1}\mid \overrightarrow{+}_{D_{1}}\overrightarrow{\eta}_{D_{1}^{c}})$$
$$= \mathbb{E}_{\mu^{+}}\left(f_{2}\Gamma_{D_{1}}^{+}(f_{1}\mid \cdot)\right)$$

hence consistency is extended to **infinite** sets, $\Gamma_{D_1}^+ = \Gamma_{D_1}^+ \Gamma_{D_2}^+$.

Proof of essential discontinuity (DVL2022a) - detail

Let $\Lambda_L'=([-L,+L]\cap\mathbb{Z})^2$, $\Delta_N'=([-N,+N]\cap\mathbb{Z})^2$, with N>L. Then a bound uniform in L holds for energy differences with b.c. ω_1^+ and ω_2^+ : it is enough to choose $N=N(L)=O(L^{\frac{2}{\alpha-1}})$. More precisely:

$$\delta H_L^{+,\omega_{1/2}'} := \left| H_{\Lambda,\omega_1^+}(\sigma_{\Lambda}) - H_{\Lambda,\omega_2^+}(\sigma_{\Lambda}) \right| \leq \sum_{x \in \Lambda_{2L}} 2 \sum_{k > 2N} \frac{1}{k^{\alpha}} < C < \infty.$$

Lemma (DVL2022a). Let $\Lambda' \subset \Delta' \in \mathscr{S}$ and let $\omega'^+ \in \mathscr{N}^+_{\Lambda',\Delta'}(\omega'_{\text{alt}})$ and $\omega'^- \in \mathscr{N}^-_{\Lambda',\Delta'}(\omega'_{\text{alt}})$. Then $\exists \delta > 0$ and $\exists \Lambda'_0$ large enough s.t. $\Delta' \supset \Lambda' \supset \Lambda'_0$ with $\Delta' \setminus \Lambda'$ much larger than Λ' , s.t. $\forall \omega^+ \in T^{-1}\{\omega'^+\}$ and $\forall \omega^- \in T^{-1}\{\omega'^-\}$,

$$\left|\mu_{(2\mathbb{Z}^2)^c\cup\{0\}}^{+,\omega^+}[\sigma_0]-\mu_{(2\mathbb{Z}^2)^c\cup\{0\}}^{+,\omega^-}[\sigma_0]\right|>\delta \qquad \text{(essential discontinuity)}.$$