Практическая работа 1

Выполнила: Бабаян Анастасия, ММР214

Будем анализировать датасет с данными об успеваемости из двух средних школ в Португалии. Он содержит два набора данных об успеваемости по математике и по португальскому языку. Но анализировать будем один датасет - только по математике.

Цель - проанализировать влияние алкоголя на успеваемость учеников

Подключаем нужные библиотеки

```
In [1]: import pandas as pd # библиотека для обработки и анализа данных import numpy as np # для работы с многомерными массивами import seaborn as sns # еще одна библиотека для визуализации данных import matplotlib.pyplot as plt # библиотека для визуализации данных двумерной граф from sklearn.preprocessing import LabelEncoder # для матрицы корреляции, когда г
```

Вычитываем данные из нашей таблицы и выводим их

```
In [2]: df_maths = pd.read_csv("Maths.csv") # читаем наш csv с данными по математике df_maths.head(10) # выводим первые 10 строк данных
```

Out[2]:		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	•••	famrel
	0	GP	F	18	U	GT3	А	4	4	at_home	teacher		4
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		5
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		4
	3	GP	F	15	U	GT3	Т	4	2	health	services		3
	4	GP	F	16	U	GT3	Т	3	3	other	other		4
	5	GP	М	16	U	LE3	Т	4	3	services	other		5
	6	GP	М	16	U	LE3	Т	2	2	other	other		4
	7	GP	F	17	U	GT3	А	4	4	other	teacher	•••	4
	8	GP	М	15	U	LE3	А	3	2	services	other		4
	9	GP	М	15	U	GT3	Т	3	4	other	other		5

10 rows × 33 columns

Проанализируем имеющиеся данные

```
In [3]: print(df_maths.info()) # Выведим данные о нашем датасете, чтобы понять, что мы б print("\n Колличество объектов:", df_maths.shape)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 395 entries, 0 to 394 Data columns (total 33 columns):

#	Column	Non-	-Null Count	Dtype
0	school	395	non-null	object
1	sex	395	non-null	object
2	age	395	non-null	int64
3	address	395	non-null	object
4	famsize	395	non-null	object
5	Pstatus	395	non-null	object
6	Medu	395	non-null	int64
7	Fedu	395	non-null	int64
8	Mjob	395	non-null	object
9	Fjob	395	non-null	object
10	reason	395	non-null	object
11	guardian	395	non-null	object
12	traveltime	395	non-null	int64
13	studytime	395	non-null	int64
14	failures	395	non-null	int64
15	schoolsup	395	non-null	object
16	famsup	395	non-null	object
17	paid	395	non-null	object
18	activities	395	non-null	object
19	nursery	395	non-null	object
20	higher	395	non-null	object
21	internet	395	non-null	object
22	romantic	395	non-null	object
23	famrel	395	non-null	int64
24	freetime	395	non-null	int64
25	goout	395	non-null	int64
26	Dalc	395	non-null	int64
27	Walc	395	non-null	int64
28	health	395	non-null	int64
29	absences	395	non-null	int64
30	G1	395	non-null	int64
31	G2	395	non-null	int64
32	G3	395	non-null	int64
	es: int64(16			
$m \cap m \cap$	rv 110200 10	つ リエ	VD	

memory usage: 102.0+ KB

None

Колличество объектов: (395, 33)

Видим, какие у нас есть столбцы в таблице, и видим общее число данных для анализа

```
In [4]: is_null_cols = df_maths.isnull() # получаем информацию по нулевым данных в столбц
         is_null_cols.sum() # получаем общий результат по кол-ву нулей в конкретных столбиках
```

```
school
                        0
Out[4]:
                        0
         sex
                        0
         age
         address
                        0
                        0
         famsize
         Pstatus
                        0
         Medu
                        0
                        0
         Fedu
         Mjob
                        0
         Fjob
                        0
                        0
         reason
         guardian
                        0
                        0
         traveltime
         studytime
                        0
         failures
         schoolsup
                        0
         famsup
                        0
         paid
                        0
         activities
         nursery
                        0
         higher
         internet
                        0
         romantic
                        0
         famrel
                        0
         freetime
                        0
         goout
                        0
         Dalc
                        0
         Walc
                        0
         health
                        0
         absences
                        0
                        0
         G1
         G2
                        0
         G3
                        0
         dtype: int64
```

In [5]: Видим, что у нас нет нулевых столбцов и все данные заполнены, означает, что мы можем их

```
File "/var/folders/vj/4g1d36hj2gzdryygw0tx0l0c0000gq/T/ipykernel_39580/302 5400.py", line 1
Видим, что у нас нет нулевых столбцов и все данные заполнены, означает, что мы може м их проанализировать

^
SyntaxError: invalid syntax
```

Определимся, какие у нас есть столбы и что они означают

Binary - двоичный вариант, либо одно, либо другое

school - навзание школы (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira)

sex - пол (binary: 'F' - девочка or 'M' - мальчик)

age - возраст (numeric: from 15 to 22)

address - место проживания студента (binary: 'U' - город or 'R' - деревня)

famsize - размер семьи (binary: 'LE3' - меньше или равно 3 или 'GT3' - больше 3)

Pstatus - статус совместного проживания родителей (binary: 'T' - живут вместе or 'A' - раздельно)

Medu - образование матери (numeric: 0 - нет образования, 1 - начальное (4 класса), 2 - с 5 по 9 класс, 3 - среднее от 4 - высшее образование)

Fedu - образование отца (numeric: 0 - нет образования, 1 - начальное (4 класса), 2 - с 5 по 9 класс, 3 - среднее от 4 - высшее образование)

Mjob - работа матери (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')

Fjob - работа отца (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')

reason - причина выбора школы (nominal: close to 'home', school 'reputation', 'course' preference or 'other')

guardian - опекун студента (nominal: 'mother', 'father' or 'other')

traveltime - время в пути до школы (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour)

studytime - еженедельное учебное время (numeric: 1 - < 2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - > 10 hours)

failures - кол-во раз, когда оставался на второй год (numeric: n if 1<=n<3, else 4)

schoolsup - посещает ли дополнительные кружки в школе (binary: yes or no)

famsup - посещает ли дополнительные занятия вне школы (binary: yes or no)

paid - дополнительные платные занятия по предмету курса (Math or Portuguese) (binary: yes or no)

activities - внеклассные занятия (binary: yes or no)

nursery - посещал ли детский сад (binary: yes or no)

higher - хочет получить высшее образование (binary: yes or no)

internet - Есть ли доступ в интернет дома (binary: yes or no)

romantic - состоит в романтических отношениях (binary: yes or no)

famrel - качество отношения в семье (numeric: from 1 - very bad to 5 - excellent)

freetime - свободное время вне школы (numeric: from 1 - very low to 5 - very high)

goout - оценка кол-во прогулок с друзьями (numeric: from 1 - very low to 5 - very high)

Важные:

Dalc - потребление алкоголя в рабочие дни (numeric: from 1 - very low to 5 - very high)

Walc - потребление алкоголя в выходные (numeric: from 1 - very low to 5 - very high)

health - текущее состояние здоровья (numeric: from 1 - very bad to 5 - very good)

absences - количество пропусков занятий (numeric: from 0 to 93)**

Оценки по курсу:

- G1 оценка за первый период (numeric: from 0 to 20)
- **G2** оценка за второй период (numeric: from 0 to 20)
- G3 оценка за последний период (numeric: from 0 to 20, output target)

Переименуем наши столбики, чтобы стало нагляднее

```
In [6]:
         df maths.rename (columns = {'school': 'Навзание школы',
                                          'sex': 'Пол',
'age': 'Возраст',
                                          'address': 'Место проживания студента',
                                          'famsize': 'Размер семьи',
                                          'Pstatus': 'Совместное проживания родителей',
                                          'Medu': 'Образование матери',
                                          'Fedu': 'Образование отца',
                                          'Мјов': 'Работа матери',
                                          'Fjob': 'Работа отца',
                                          'reason': 'Причина выбора школы',
                                          'guardian': 'Опекун студента',
                                          'traveltime': 'Время в пути до школы',
                                          'studytime': 'Еженедельное учебное время',
                                          'failures': 'Кол-во оставления на второй год',
                                          'schoolsup': 'Посещение доп. кружков в школе',
                                          'famsup': 'Посещение доп. занятий вне школы',
                                          'paid': 'Посещение платных занятий',
                                          'activities': 'Посещение внеклассных занятий',
                                          'nursery': 'Посещал ли дет. сад',
                                          'higher': 'Желание получить высшее образование',
                                          'internet': 'Есть ли доступ в интернет',
                                          'romantic': 'Состоит ли в отношениях',
                                          'famrel': 'Качество отношения в семье',
                                          'freetime': 'Свободное время вне школы',
                                          'goout': 'Кол-во прогулок с друзьями',
                                          'Dalc': 'Потребление алкоголя в рабочие дни',
                                          'Walc': 'Потребление алкоголя в выходные',
                                          'health': 'Текущее состояние здоровья',
                                          'absences': 'Количество пропусков занятий',
                                          'G1': 'Оценка за первый период',
                                          'G2': 'Оценка за второй период',
                                          'G3': 'Оценка за последний период'
                                         }, inplace = True) # замена названий колонок
```

Проверим вывод, и убедимся, что сделали все правильно

```
In [7]: df_maths.columns
```

Out[7]: Index(['Навзание школы', 'Пол', 'Возраст', 'Место проживания студента', 'Размер семьи', 'Совместное проживания родителей', 'Образование матери', 'Образование отца', 'Работа матери', 'Работа отца', 'Причина выбора школы', 'Опекун студента', 'Время в пути до школы', 'Еженедельное учебное время', 'Кол-во оставления на второй год', 'Посещение доп. кружков в школе', 'Посещение доп. занятий вне школы', 'Посещение платных занятий', 'Посещение внеклассных занятий', 'Посещал ли дет. сад', 'Желание получить высшее образование', 'Есть ли доступ в интернет', 'Состоит ли в отношениях', 'Качество отношения в семье', 'Свободное время вне школы', 'Кол-во прогулок с друзьями', 'Потребление алкоголя в рабочие дни', 'Потребление алкоголя в выходные', 'Текущее состояние здоровья', 'Количество пропусков занятий', 'Оценка за первый период', 'Оценка за второй период', 'Оценка за последний период', 'Оценка за второй период', 'Оценка за последний период'],

In [8]: df_maths.head()

Out[8]:

	Навзание школы	Пол	Возраст	Место проживания студента	Размер семьи	Совместное проживания родителей	Образование матери	Образова о
0	GP	F	18	U	GT3	А	4	
1	GP	F	17	U	GT3	Т	1	
2	GP	F	15	U	LE3	Т	1	
3	GP	F	15	U	GT3	Т	4	
4	GP	F	16	U	GT3	Т	3	

5 rows × 33 columns

Отлично, теперь выглядит хорошо, можно приступать к анализу данных

Анализ данных

```
In [9]: df_maths['Потребление алкоголя в рабочие дни'].hist()
Out[9]: <AxesSubplot:>
```


Видим, что большинство употребляют алкоголь в рабочие дни редко

Ситуация с выходными другая, видно, что кол-во людей употребляющих алкоголь больше, чем тех, которые употребляют алкоголь в рабочие дни

Теперь проанализурем, сколько студентов живет в деревне и в городе, но для

начала заменим данные

```
In [11]: # binary: 'U' - город or 'R' - деревня
    df_maths["Mecto проживания студента"].replace({"U": "Город", "R": "Деревня"}, inpl
In [12]: colors = ['#FFB07A', '#B22222']
    places = df_maths.groupby("Mecto проживания студента").size()
    places.plot.pie(autopct='%1.0f%%', colors = colors, title = 'Место проживания
Out[12]: <matplotlib.legend.Legend at 0x7fc283ba9a90>
```

Место проживания студента

Видим, что большенство людей проживают в городе, давайте теперь построим гистограмму по алкоголю для людей из деревни и из города, поймем, есть ли зависимость.

Будем брать людей с потреблением алкоголя от 2 до 5, что позволит понять где больше пьющих людей (будем считать в процентах от общего числа конкретной местности (город или деревня))

```
In [13]: country_alco = df_maths.query("`Mecto проживания студента` == 'Деревня' and `Потр
country_alco.hist(color = '#B22222')

Out[13]: <AxesSubplot:>
```



```
In [14]: # Считаем для деревни в будние
mdata = df_maths.query("`Mесто проживания студента` == 'Деревня' and `Потребление a
drink_from_country_work_day = len(mdata)
drink_from_country_work_day
```

Out[14]: 3

```
In [15]: # Считаем для деревни в выходные
mdata = df_maths.query("`Mесто проживания студента` == 'Деревня' and `Потребление a
drink_from_country_weekend_day = len(mdata)
drink_from_country_weekend_day
```

Out[15]: 63

Анализируем для города

```
In [16]: city_alco = df_maths.query("`Mecто проживания студента` == 'Город' and `Потреблени city_alco.hist(color = '#FFB07A')
```

Out[16]: <AxesSubplot:>


```
In [17]: # Считаем для города в будние
mdata = df_maths.query("`Mесто проживания студента` == 'Город' and `Потребление алк
drink_from_city_work_day = len(mdata)
drink_from_city_work_day
```

Out[17]: 8

```
In [18]: # Считаем для города в выходные
mdata = df_maths.query("`Mесто проживания студента` == 'Город' and `Потребление алк
drink_from_city_weekend_day = len(mdata)
drink_from_city_weekend_day
```

Out[18]: 181

Промежуточные итоги: Видим, что кол-во человек употребляющих алкоголь в деревне с уровнем потребления выше или равной 2 для деревни составляет 35, а для города 84 человека. Посчитаем процент от общего числа

```
In [19]: # общее число людей из деревни и города
count_of_country = len(df_maths.query("`Mесто проживания студента` == 'Деревня'")
count_of_city = len(df_maths.query("`Mесто проживания студента` == 'Город'"))

# процент для будней
percent_in_country_work_day = (drink_from_country_work_day * 100) / count_of
percent_in_city_work_day = (drink_from_city_work_day * 100) / count_of_city

# процент для выходных
percent_in_country_weekend_day = (drink_from_country_weekend_day * 100) / co
percent_in_city_weekend_day = (drink_from_city_weekend_day * 100) / count_of

print('B деревне. Будние: %f%% Выходные: %f%%' % (percent_in_country_work_day,
print('B городе. Будние: %f%% Выходные: 71.590909%
В деревне. Будние: 39.772727% Выходные: 71.590909%
В городе. Будние: 27.361564% Выходные: 58.957655%
```

```
In [20]: labels = ['Будни', 'Выходные']
          county_data = [percent_in_country_work_day, percent_in_country_weekend_day]
          city data = [percent in city work day, percent in city weekend day]
          x = np.arange(len(labels))
          width = 0.35
          fig, ax = plt.subplots()
          rects1 = ax.bar(x - width/2, county data, width, label='Деревня')
          rects2 = ax.bar(x + width/2, city_data, width, label='Γοροχ')
          # Добавляем текстовки для графика
          ax.set ylabel('%')
          ax.set title('Употребление алкоголя по местности')
          ax.set xticks(x, labels) # проставляем названия для графика
          ax.set ylim([0, 100]) # выправляем график для того, чтобы было в процентах
          ax.legend()
          # добавляем проценты на график
          ax.bar label(rects1)
          ax.bar label(rects2)
          plt.show()
```


Делаем вывод, что в деревне студенты пьют алкоголь больше, в процентом соотношении. В выходные, 71% людей из деревни пьют алкоголь

Хочется так же понять, кто больше употребляет алкоголя мальчики или девочки

```
In [21]: female_drinks_day = df_maths.query("`Пол` == 'F' and (`Потребление алкоголя в ра female_drinks_count = len(female_drinks_day)

male_drinks_day = df_maths.query("`Пол` == 'M' and (`Потребление алкоголя в рабом male_drinks_count = len(male_drinks_day)
```

```
In [22]:
          # общее число девочек и мальчиков
          count of female = len(df maths query(" Ποπ == 'F'"))
          count of male = len(df maths.query("`Ποπ` == 'M'"))
          # процент для будней
          percent female drinks = (female drinks count * 100) / count of female
          percent male drinks = (male drinks count * 100) / count of male
          print('Употребляют в процентах Девочки: %f%% Мальчики: %f%%' % (percent female dr
         Употребляют в процентах Девочки: 54.807692% Мальчики: 70.053476%
         labels = ['Девочки', 'Мальчики']
In [23]:
          drinks data = [percent female drinks, percent male drinks]
          x = np.arange(len(labels))
          fig, ax = plt.subplots()
          rect = ax.bar(x, drinks data, 0.5, label='Употребление алкоголя')
          # Добавляем текстовки для графика
          ax.set ylabel('%')
          ax.set title('Употребление алкоголя по полу')
          ax.set xticks(x, labels) # проставляем названия для графика
          ax.set ylim([0, 100]) # выправляем график для того, чтобы было в процентах
          ax.legend()
          # добавляем проценты на график
          ax.bar label(rect)
          plt.show()
```


Промежуточные итоги

- 1. У мальчиков уровень употребления алкоголя выше, чем у девочек на 16%
- 2. Больше алкоголя употребляют в деревне

Построим матрицу корреляции для понимания того, что большего всего влияет на оценку

In [24]:

df_maths.corr()

Out[24]:

	Возраст	Образование матери	Образование отца	Время в пути до школы	Еженедельное учебное время	Ко оставл на вто
Возраст	1.000000	-0.163658	-0.163438	0.070641	-0.004140	0.24
Образование матери	-0.163658	1.000000	0.623455	-0.171639	0.064944	-0.23
Образование отца	-0.163438	0.623455	1.000000	-0.158194	-0.009175	-0.25(
Время в пути до школы	0.070641	-0.171639	-0.158194	1.000000	-0.100909	0.09
Еженедельное учебное время	-0.004140	0.064944	-0.009175	-0.100909	1.000000	-0.17
Кол-во оставления на второй год	0.243665	-0.236680	-0.250408	0.092239	-0.173563	1.00
Качество отношения в семье	0.053940	-0.003914	-0.001370	-0.016808	0.039731	-0.04
Свободное время вне школы	0.016434	0.030891	-0.012846	-0.017025	-0.143198	0.09
Кол-во прогулок с друзьями	0.126964	0.064094	0.043105	0.028540	-0.063904	0.12
Потребление алкоголя в рабочие дни	0.131125	0.019834	0.002386	0.138325	-0.196019	0.13
Потребление алкоголя в выходные	0.117276	-0.047123	-0.012631	0.134116	-0.253785	0.14
Текущее состояние здоровья	-0.062187	-0.046878	0.014742	0.007501	-0.075616	0.06
Количество пропусков занятий	0.175230	0.100285	0.024473	-0.012944	-0.062700	0.06
Оценка за первый период	-0.064081	0.205341	0.190270	-0.093040	0.160612	-0.35
Оценка за второй период	-0.143474	0.215527	0.164893	-0.153198	0.135880	-0.35
Оценка за последний период	-0.161579	0.217147	0.152457	-0.117142	0.097820	-0.36

In [25]: plt.figure(figsize=(20,12)) # настроим размеры
sns.heatmap(df_maths.corr(), annot=True)

Out[25]: <AxesSubplot:>

Мы видим, что не все значения попали в матрицу корреляции, это произошло изза того, что не все они были преобразованы в числа, нужно это исправить

```
In [26]:
         # выполняем преобразование колонок, которые не являются числами
          new df maths = df maths.copy()
          encoder = LabelEncoder()
          new df maths['<mark>Навзание школы</mark>'] = encoder.fit transform(new df maths['<mark>Навзание п</mark>
          new df maths['\Pi \circ \pi'] = encoder.fit transform(new df maths['\Pi \circ \pi'])
          new df maths['Совместное проживания родителей'] = encoder.fit transform(new df ma
          new df maths['Посещение платных занятий'] = encoder.fit transform(new df maths[
          new df maths['Образование отца'] = encoder.fit transform(new df maths['Образован
          new df maths['Образование матери'] = encoder.fit transform(new df maths['Образов
          new_df_maths['Желание получить высшее образование'] = encoder.fit_transform(new_d
          new_df_maths['Cocтouт ли в отношениях'] = encoder.fit_transform(new_df_maths['C
          new df maths['Есть ли доступ в интернет'] = encoder.fit transform(new df maths['
          new_df_maths['Посещение доп. кружков в школе'] = encoder.fit_transform(new_df_m
          new df maths['Посещение доп. занятий вне школы'] = encoder.fit transform(new df
          new df maths['Причина выбора школы'] = encoder.fit transform(new df maths['При
          new df maths['Посещение внеклассных занятий'] = encoder.fit transform(new df matl
          new df maths['Посещал ли дет. сад'] = encoder.fit transform(new df maths['Посец
In [27]:
          plt.figure(figsize=(20,12)) # настроим размеры
          sns.heatmap(new df maths.corr(), annot=True)
          <AxesSubplot:>
Out [27]:
```


Вывод по алкоголю

Исходя из того, что употребление алкоголя и оценки за первый период, второй период и последний СЛАБО коррелируют, то можно сделать вывод, что алкоголь даёт незначительное влияние на успеваемость.

А точнее

Корреляция Оценки за первый период и употребление алкоголя в будние дни: -0.094159

Корреляция Оценки за второй период и употребление алкоголя в будние дни: -0.064120 Корреляция Оценки за последний период и употребление алкоголя в будние дни: -0.054660

Такая же ситуация и с выходными днями

Корреляция Оценки за первый период и употребление алкоголя в выходные дни: -0.126179 Корреляция Оценки за второй период и употребление алкоголя в выходные дни: -0.084927 Корреляция Оценки за последний период и употребление алкоголя в выходные дни: -0.051939

Вывод по корреляции с оценкой

Самую высокую корреляцию дают другие данные, давайте их найдем

```
In [28]: corr_matrix = new_df_maths.corr()
```

Изолируем нашу оценку
corr_target = corr_matrix[['Оценка за первый период', 'Оценка за второй период', 'С
corr_target

Out[28]:

	Оценка за первый период	Оценка за второй период	Оценка за последний период
Навзание школы	-0.025731	-0.050086	-0.045017
Пол	0.091839	0.091099	0.103456
Возраст	-0.064081	-0.143474	-0.161579
Совместное проживания родителей	-0.016868	-0.041382	-0.058009
Образование матери	0.205341	0.215527	0.217147
Образование отца	0.190270	0.164893	0.152457
Причина выбора школы	0.099491	0.117775	0.121994
Время в пути до школы	-0.093040	-0.153198	-0.117142
Еженедельное учебное время	0.160612	0.135880	0.097820
Кол-во оставления на второй год	-0.354718	-0.355896	-0.360415
Посещение доп. кружков в школе	-0.212607	-0.117385	-0.082788
Посещение доп. занятий вне школы	-0.084569	-0.059166	-0.039157
Посещение платных занятий	0.039079	0.105198	0.101996
Посещение внеклассных занятий	0.057010	0.050552	0.016100
Посещал ли дет. сад	0.069263	0.068146	0.051568
Желание получить высшее образование	0.178264	0.179129	0.182465
Есть ли доступ в интернет	0.071619	0.119439	0.098483
Состоит ли в отношениях	-0.037188	-0.111774	-0.129970
Качество отношения в семье	0.022168	-0.018281	0.051363
Свободное время вне школы	0.012613	-0.013777	0.011307
Кол-во прогулок с друзьями	-0.149104	-0.162250	-0.132791
Потребление алкоголя в рабочие дни	-0.094159	-0.064120	-0.054660
Потребление алкоголя в выходные	-0.126179	-0.084927	-0.051939
Текущее состояние здоровья	-0.073172	-0.097720	-0.061335
Количество пропусков занятий	-0.031003	-0.031777	0.034247

In [29]: plt.figure(figsize=(20,12)) # настроим размеры sns.heatmap(corr_target, annot=True)

Out[29]: <AxesSubplot:>

Видим, что данных, которые не коррелирует много, предлагаю отфильтровать их по корреляции выше 0.1

In [30]: corr_target = corr_matrix[['Оценка за первый период']].drop(labels=['Оценка за пе corr_target

Out[30]:

Оценка за первый период

Образование матери	0.205341
Образование отца	0.190270
Еженедельное учебное время	0.160612
Желание получить высшее образование	0.178264
Оценка за второй период	0.852118
Оценка за последний период	0.801468

In [31]: sns.heatmap(corr_target, annot=True)

Out[31]: <AxesSubplot:>

Выводы по тому, что коррелирует

Исходя из матрицы, можно понять, что на оценку, в большей степени влияет образование матери, образование отца, затраченное время на обучения, посещение платных занятий и желание получить высшее образование.

Алкоголь не попал в этот анализ, так же как и остальные малорешающие факторы

Общие выводы

- 1. Уровень употребления алкоголя не влияет на успеваемость студента
- 2. Большее влияние на оценку студента оказывает образование родителей и уделямое время учебе
- 3. Уровень употребления алкоголя в деревне выше, чем в городе (71.5% против 58.9%)
- 4. Достаточной корреляции между желанием получить высшее образование и употреблением алкоголя нет
- 5. Уровень употребления алкоголя у мальчиков выше, чем у девочек на 16%

```
In []: In
```