

HPM6000 系列微控制器 BOOT MODE 指南

目录

1	简介		4
		OT 模式说明	
	2.1	主启动模式	5
	2.2	串行启动模式	5
	2.3	在系统编程模式	5
3	ВОС	OT 模式管脚	5
4	BOC	OT 模式管脚功能复用	6

版本:

日期	版本号	说明
2022-7-10	1.0	初版

1 简介

HPM6000 系列 MCU 是来自上海先楫半导体科技有限公司的高性能实时 RISC-V 微控制器,为工业自动化及边缘计算应用提供了极大的算力、高效的控制能力。上海先楫半导体目前已经发布了如 HPM6700/6400、HPM6300 等多个系列的高性能微控制器产品。

HPM6000系列MCU目前提供了不同的启动方式,方便客户在研发生产等不同阶段使用。

本文提供了 HPM6000 系列微控制器的 BOOT 模式的说明以及相应的外部 电路设计建议。

2 BOOT 模式说明

HPM6000 系列高性能 MCU 目前提供了 3 种启动模式, 分别是

- 主启动模式 (XPI NOR 启动)
- 串行启动模式 (通过 UART, USB-HID)
- 在线编程模式 (ISP) (通过 UART, USB-HID)

芯片上电后, BOOT ROM 首先查看 OTP 中相应的 BOOT MODE 位, 并根

据相应的值进入相应启动模式:

OTP BOOT MODE[1:0]	
00	通过 BOOT MODE PIN 选择
01	主启动模式
10	串行启动模式
11	保留

当 OTP 中的 BOOT MODE[1:0]为 00 时, 系统将由 BOOT MODE 管脚来选

择启动模式:

BOOT MODE PIN[1:0]	
00	主启动模式

01	串行启动模式
10	在线编程模式
11	保留

2.1 主启动模式

当系统进入主启动模式后, BOOT ROM 会通过储存在 OTP 中的相应配置信息,来读取外部挂接的 Flash。

2.2 串行启动模式

当系统进入串行启动模式后,BOOT ROM 会通过 UARTO 或者 USBO 来响应上位机发出的指令。

	管脚	管脚
UART0	PY06(TXD)	PY07(RXD)
USB0	USB0_DP	USB0_DM

用户可以通过参考微控制器用户手册启动章节的第 2 节第 3 小节 (以 HPM6700/HPM6400 系列微控制器用户手册和 HPM6300 系列微控制器用户手册为例,章节 19.2.3)。

2.3 在系统编程模式

同上,当系统进入编程模式后,BOOT ROM 同样会通过 UARTO 或者 USBO 来响应上位机发出的指令,用户可以参考用户手册启动章节的第 2 节第 4,5 小节 (以 HPM6700/HPM6400 系列微控制器用户手册和 HPM6300 系列微控制器用户手册为例,章节 19.2.4 和 19.2.5)。

3 BOOT 模式管脚

HPM6000系列微控制器的在上电后,会首先执行BOOT ROM中的代码,进行条件判断。BOOT ROM 会首先判断 OTP 中的 BOOT MODE 值,当此时

的 BOOT_MODE 值为 00 时,才会进一步检测 BOOT_MODE 管脚的值。OTP中 BOOT MODE 的默认情况下为 00。

HPM6000 系列微控制器提供了 2 个硬件管脚作为 BOOT MODE 选择。

● 在 HPM63xx 系列中,

	管脚	电源域	上电状态
BOOT_MODE[0]	PA20	VIO_01	输入高阻
BOOT_MODE[1]	PA21	VIO_01	输入高阻

● 在 HPM67xx/HPM64xx 系列中,

	管脚	电源域	上电状态
BOOT_MODE[0]	PZ06	VBAT	输入下拉
BOOT_MODE[1]	PZ07	VBAT	输入下拉

在系统上电后,HPM63xx 系列的 BOOT ROM 会将 BOOT_MODE 管脚设置为输入下拉,下拉电阻为 100k 欧姆。而对于 HPM67xx/HPM64xx 系列,BOOT ROM 选择默认状态即输入下拉,下拉电阻为 76.7k 欧姆。

由此,对于所有的 HPM6000 系列的芯片,其 BOOT_MODE 管脚在上电后均为输入下拉的设置。用户在设计电路的时候,如果这 2 个管脚仅做 BOOT MODE 的配置的话,置高的时候可以选择直接连接管脚的电源域。如果需要使用其复用功能,在置高的时候,可以将其串接一个电阻 (10k 欧姆)到该管脚的电源域。此外,必须要注意与管脚相应的电源域适配,由于 HPM63xx 系列和 HPM67xx/HPM64xx 系列的电源域不同,因此用户在设计时要注意此差别。

4 BOOT 模式管脚功能复用

如同 HPM6000 系列微控制器的每一个管脚,BOOT_MODE 管脚本身还可以有多种功能可以复用

● 在 HPM63xx 系列中,

管脚	功能	
PA20	GPIO_A_20(ALT0) GPTMR0_CAPT_1(ALT1) UART7_TXD(ALT2) I2C2_SDA(ALT4) DAOR_N(ALT10) TRGM1_P_00(ALT16) ETH0_TXD_0(ALT18)	
PA21	GPIO_A_21(ALT0) GPTMR0_COMP_0(ALT1)	

UART7_RXD(ALT2)
I2C3_SCL(ALT4)
CANO_TXD(ALT7)
DAOL_P(ALT10)
TRGM1_P_01(ALT16)
ETHO TXD 1(ALT18)

● 在 HPM67xx/HPM64xx 系列中,

管脚	功能
PZ06	GPIO_Z_06(ALT0) GPTMR7_COMP_1(ALT1) UART12_RXD(ALT2) I2S0_BCLK(ALT8) PDM0_CLK(ALT10)
PZ07	GPIO_Z_07(ALT0) UART12_TXD(ALT2) I2S0_TXD_0(ALT8) PDM0_CLK(ALT10)

BOOT_MODE 功能本身不会影响用户自身程序对管脚的相应的功能的使用。但是如果用户选择使用 BOOT_MODE 对应管脚的功能,就要明确外部电路对 BOOR_MODE 的影响。例如,如果在 HPM63xx 中,PA20/PA21 使用了 I2C 功能,那么总线上的上拉电阻势必会产生分压,使得 BOOT ROM 对 BOOT MODE 管脚的识别产生误判。同理,连接在相关管脚的芯片的默认状态,也会对管脚的识别产生影响。因此,用户必须明确外部电路对 BOOT MODE 管脚的影响,在使用外部引脚进行 BOOT 模式判断时,硬件工程师需要确保外部电路对于 BOOT 模式的判断不产生不良影响。