

Visual Data Analytics Data Representation

Dr. Johannes Kehrer – Siemens Technology, Munich

Disclaimer

These lecture slides and materials are for personal use by students and are intended for educational purposes only. Distribution or reproduction of the material is prohibited.

The views and opinions expressed by any individual during the course of these lecturers are their own and do not necessarily represent the views, opinions, or positions of Siemens or the Technical University of Munich.

Although reasonable efforts have been made to ensure the information in these lecture slides is current and accurate, we do not assume any responsibility for the content of the posted material.

These slides also contain links to websites of third parties. As the content of these websites is not under our control, we cannot assume any liability for such external content.

Visualization Examples

- Classification of visualization techniques according to
 - Dimension of the domain of the problem (independent variables)

 Type and dimension of the data to be visualized (dependent variables)

independent variables
(e.g., 2D/3D space, time)

dependent variables
(e.g., temperature, density values, velocity vectors)

scientific data $\subseteq R^{n+m}$

Multidimensional data

Car name	MPG	Cylinders	Horse- power	Weight	Accel- eration	Model year	Origin
chevrolet woody	24,5	4	98	2164	22,1	1976	US
vw rabbit	29,0	4	90	Attribu	14,2	1976	Europe
honda civic	33,0	4	91	Dimen	sion ₄	1976	Japan
dodge aspen se	20,0	6	225	3651	17,7	1976	US
ford granada ghia	18,0	6	250	3574	21	1976	US
pontiac ventura sj	18,5	6	250	3645	16,2	1976	US
amc pacer d/l	17,5	6	258	3193	17,8	1976	US
volkswagen rabbit	29,5	4	97	1825	12,2	1976	Europe
Record/Item	32,0	4	85	1990	17	1976	Japan
toyota corolla	28,0	4	97	2155	16,4	1976	Japan
ford pinto	26,5	4	140	2565	13,6	1976	US
volvo 245	20,0	4	130	3150	15,7	1976	Europe
plymouth volare premier v8	13,0	8	318	3940	13,2	1976	US
peugeot 504	19,0	4	120	3270	21,9	1976	Europe
toyota mark ii	19,0	6	156	2930	15,5	1976	Japan
mercedes-benz 280s	16,5	6	168	3820	16,7	1976	Europe
cadillac seville	16,5	8	350	4380	12,1	1976	US

Multidimensional data

1	Vienna	108.6
2	Zurich	108.0
3	Geneva	107.9
4	Vancouver	107.4
4	Auckland	107.4
6	Dusseldorf	107.2
7	Frankfurt	107.0
7	Munich	107.0
9	Bern	106.5
10	Sydney	106.3
11	Copenhagen	106.2
13	Amsterdam	105.7
15	Brussels	105.4
17	Berlin	105.0
19	Luxembourg	104.6
26	Dublin	103.6
28	Singapore	103.5
34	Paris	102.9
39	London	101.6
40	Tokyo	101.4
49	New York City	100.0

- Characteristics of data values
 - Attribute types (quantitative vs. qualitative)
 - Domain (continuous vs. discrete)
 - Value range (includes precision of values)
 - Data type (categorical, scalar, vector, tensor data)
 - Dimension (number of components)
 - Error and uncertainty
 - (physical) interpretation

Attribute types

Quantitative (numerical, measurable)

- Objective data produced through a systematic process, not subject to interpretation (e.g., length, mass, temperature)
- Metric scale allows measure of distance
- Continuous (real) or discrete (distinct & separate values)
- Qualitative (categorical data, not measurable)
 - No metric scale; cannot be measured
 - Requires a subjective decision in order to be categorized
 - Discrete

Attribute types

- Qualitative (categorical data)
 - Nominal

- No natural ordering or indication of values, only equivalence and membership (=, ≠)
- Eye color (blue, green, brown)

Ordinal

- Logical order relation (<,>), but no relative size or degree of difference
- Judgment of size (small, medium, large, etc.)
- Attitudes (strongly disagree, disagree, neutral, agree, strongly agree)
- Living quality (very high, high, medium, low, very low)

Attribute types

- Categorical data
 - Values from a fixed number of categories
- Scalar data
 - Given by a function $f(x_1,...,x_n)$: \mathbb{R}^n → \mathbb{R} with n independent variables x_i
- Vector data
 - Represent direction and magnitude and given by an n-tupel $(f_1, ..., f_n)$ with $f_k = f_k(x_1, ..., x_n)$
 - 2D vector field where every sample represents a 2D vector (u, v) with u = f(x, y) and v = g(x, y)
- Tensor data
 - A multi-dimensional matrix

- In many cases, the visualization data represent a continuous real object
 - e.g., oscillating membrane, velocity field around a body, human organ or tissue, etc.
 - This object lives in an n-dimensional space the domain
- Usually, the data is only given at a finite set of locations in space and/or time
 - Think of measurement devices & numerical simulations (note similarity to pixel images)

 We call this a discrete representation of a continuous object

Scientific Visualization

- Deals with the reconstruction of a continuous real object from a given discrete representation
- Data that has some physical or geometric correspondence

Information Visualization / Visual Analytics SIEMENS

- Deal with data that is discrete and more abstract
 - Does not have a physical or geometric correspondence
 - Symbolic, tabular, networked, graphs, textual information

Flavor compounds shared by culinary ingredients

Tableau Software

Visualization – Major Areas

- VolumeVisualization
- FlowVisualization

Scientific Visualization

Inherent spatial reference

3D

- InformationVisualization
- Visual Analytics

nD

Usually no spatial reference

Scientific Visualization
Prof. Dr. R. Westermann / Dr. J. Kehrer

SIEMENS
Ingenuity for life

- Discrete representations
 - Data samples (values) typically given on meshes/grids consisting of cells
 - Compact/efficient data representation

Primitives in different dimensions

dimension	cell	mesh
0D	points	
1D	lines (edges)	polyline
2D	triangles, quadrilaterals (rectangles)	2D mesh
3D	tetrahedra, prisms, hexahedra	3D mesh or grid

Tetrahedron

Hexahedron

- Grids: Cartesian or equidistant grid
 - Samples at equidistant intervals along
 Cartesian coordinate axes
 - Neighboring samples are connected via edges
 - Cells formed by 4 (2D) or 8 (3D) samples
 - Cells and samples (grid vertices) are numbered sequentially with respect to increasing coordinates

- Some properties of Cartesian grids
 - Assuming N_x and N_y vertices along x- and y-axis
 - Number of vertices = $N_x \cdot N_y$
 - Number of cells = $(N_x 1) \cdot (N_y 1)$
 - Vertex positions are given implicitly from indices [i,j]:
 - $P[i,j].x = origin + i \cdot dx$
 - $P[i,j].y = origin + j \cdot dy$
 - It is a structured grid
 - Neighboring information (topology) is given implicitly
 - Neighbors obtained by incrementing/decrementing indices

- Uniform or Regular Grid
 - Orthogonal, equidistant grid
 - $-dx \neq dy$

Rectilinear Grid

Varying sampledistances x[i], y[j]

Curvilinear Grid

- Non-orthogonal grid
- Grid-points specified explicitly (P[i,j])
- Implicit neighborhood relationship

Curvilinear Grid

Example: Region betw.Greenland & Iceland

Grid spacings between

5 and 40 km

- Unstructured grid
 - Grid points and neighborhood specified explicitly
 - Cells: tetrahedra, hexahedra

- Unstructured grid
 - Example: Exhaust Manifold with general (non-convex) polyhedra

Scattered Data

- Grid-free data
- Data points given without neighborhood-relationship
- Influence on neighborhood defined by spatial proximity
- Scattered data interpolation

Contact information

Dr. Johannes Kehrer

Siemens AG
Technology
T DAI HCA-DE
Otto-Hahn-Ring 6
81739 München, Deutschland

E-mail:

kehrer.johannes@siemens.com

Internet

siemens.com/innovation