Linear Algebra

A summary for MIT 18.06SC

Jiaxin Hu

June 27, 2020

1 Matrices & Spaces

1.1 Basic concepts

- Given vectors $v_1, ..., v_n$ and scalars $c_1, ..., c_n$, the sum $c_1v_1 + \cdots + c_nv_n$ is called the *linear combination* of $v_1, ..., v_n$.
- The vectors $v_1, ..., v_n$ are linearly independent (or just independent) if $c_1v_1 + \cdots + c_nv_n = 0$ holds only when all $c_1, ..., c_n = 0$. If the vectors $v_1, ..., v_n$ are dependent, there exist scalars $c_1, ..., c_n$ which are not all equal to 0 and satisfy $c_1v_1 + \cdots + c_nv_n = 0$.
- Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, the multiplication Ax is a linear combination of the columns of A and $x^T A$ is a linear combination of the rows of A.
- Matrix multiplication is not communicative, i.e. $AB \neq BA$.
- Suppose A is a square matrix. The matrix A is invertible or non-singular if there exists a A^{-1} such that $A^{-1}A = AA^{-1} = I$. Otherwise, the matrix A is singular, i.e. its determinant is 0 and does not have inverse matrix.
- The inverse of a matrix product AB is $(AB)^{-1} = B^{-1}A^{-1}$. The product of invertible matrices is still invertible.
- The transpose of a matrix product AB is $(AB)^T = B^T A^T$. For any invertible matrix A, $(A^T)^{-1} = (A^{-1})^T$.
- A matrix Q is orthogonal if $Q^T = Q^{-1}$. A matrix Q is unitary if $Q^* = Q^{-1}$, where Q^* is the conjugate transpose of Q.

1.2 Permutation of matrices

For any matrix A, we can swap its rows by multiplying a permutation matrix P on the left of A. For example,

$$\boldsymbol{P}\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_3 \\ a_1 \\ a_2 \end{bmatrix}$$

where a_k refers to the k-th row of A. The inverse of permutation matrix P is $P^{-1} = P^T$, which implies the orthogonality of permutation matrix. For an $n \times m$ matrix, there are n! different row permutation matrix and these permutation matrices form a multiplicative group.

Similarly, we can also swap the columns of the matrix A by multiplying a permutation matrix on the right of A.

1.3 Elimination of matrices

Elimination is an important technique in linear algebra. We eliminate the matrix by multiplications and subtractions. Take a 3-by-3 matrix A as example.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow{\text{step 1}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow{\text{step 2}} \mathbf{U} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

In step 1, we choose the number 1 in row 1 column 1 as a *pivot*, then we recopy the first row and multiply an appropriate number (in this case, 3) and subtract those values from the numbers in the second row. We have thus eliminated 3 in row 2 column 1. Similarly, in step 2, we choose 2 in row 2 column 2 as a pivot and eliminate the number 4 in row 3 column 2. The number 5 in row 3 column 3 is also a pivot. The matrix U is an upper traingular matrix.

The *elimination matrix* used to eliminate the entry in row m column n is denoted E_{mn} . In previous example,

$$m{E}_{21}m{A} = egin{bmatrix} 1 & 0 & 0 \ -3 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 2 & 1 \ 3 & 8 & 1 \ 0 & 4 & 1 \end{bmatrix} = egin{bmatrix} 1 & 2 & 1 \ 0 & 2 & -2 \ 0 & 4 & 1 \end{bmatrix}; \quad m{E}_{32}(m{E}_{21}m{A}) = m{U}.$$

Pivots can not be 0. If there is a 0 in the pivot position, we must exchange the row with one below to get a non-zero value in pivot position. If there is not non-zero value below the 0 pivot, then we skip this column and find a pivot in next column.

Since matrix multiplication is associative, we can write $E_{32}(E_{21}A) = (E_{32}E_{21})A = U$. Let E denote the product of all elimination matrices. If we need to permute the rows during the process, we have EPA = U, where P is the product of all the needed permutation matrices.

We also prove the invertibility of the elimination matrix.

Lemma 1 (Invertiblity of elimination matrix). Suppose there is an elimination matrix $\mathbf{E}_{ij} \in \mathbb{R}^{n \times n}$ that means multiplying a scalar -c to the j-th row and subtracting the row from i-th row, where $i \neq j$. Then, \mathbf{E}_{ij} is invertible.

Proof. The elimination matrix can be written as:

$$\boldsymbol{E}_{ij} = \boldsymbol{I}_n + c\boldsymbol{e}_i\boldsymbol{e}_j^T,$$

where $e_i \in \mathbb{R}^n$ is identity vector with value 1 on the *i*-th entry and value 0 on the other entries. Note that $e_i^T e_j = 0$ because $i \neq j$. Therefore, we have

$$(\mathbf{I}_n + ce_i e_j^T)(\mathbf{I}_n - ce_i e_j^T) = \mathbf{I}_n - c^2 e_i e_j^T e_i e_j^T = \mathbf{I}_n; \quad (\mathbf{I}_n - ce_i e_j^T)(\mathbf{I}_n + ce_i e_j^T) = \mathbf{I}_n$$

Thus, $I_n - ce_i e_i^T$ is the inverse of E_{ij} and E_{ij} is invertible.

1.4 Gauss-Jordan Elimination

Consider an invertible matrix $A \in \mathbb{R}^{n \times n}$, one of the effective ways to find the inverse of A uses elimination.

The inverse of A, A^{-1} , satisfies $AA^{-1} = I_n$. Suppose there is an elimination E such that $EA = I_n$. Multiplying E on the both side of the equation, we have $EAA^{-1} = A^{-1} = E$. To obtain an such E, we do elimination to the *augmented matrix* $[A|I_n]$ until A becomes I_n .

We call the elimination process of finding E as Gauss-Jordan Elimination.

1.5 Factorization of matrices

By elimination, for any square matrix A, we have EPA = U where U is an upper triangular matrix. By "canceling" the elimination matrix E, we get $PA = E^{-1}U$. Because E is invertible, the inverse E^{-1} exists. Note that E is lower triangular matrix, the inverse of E is also a lower triangular matrix. We use E to denote E^{-1} . Therefore, we can decompose an arbitrary square matrix E as:

$$PA = LU$$
,

where U is an upper triangular matrix with pivots on the diagonal, L is lower triangular matrix with ones on the diagonal, and P is a permutation matrix. Note that, there may exist other ways to decompose PA into LU, where U and L have different settings.

1.6 Time complexity of elimination

For an *n*-by-*n* matrix, multiplying one row and then subtracting it from another row require 2n operations. There are *n* rows in the matrix, so the total number of operations used in elimination the first column is $2n^2$. The second row and column are shorter, which may cost $2(n-1)^2$ operations and so on. Therefore, the time complexity to factorize \boldsymbol{A} into $\boldsymbol{L}\boldsymbol{U}$ is about $\mathcal{O}(n^3)$:

$$1^{2} + 2^{2} + \dots + (n-1)^{2} + n^{2} = \sum_{i=1}^{n} i^{2} \approx \int_{0}^{n} x^{2} dx = \frac{1}{3}n^{3}.$$

1.7 Reduced row echelon form of matrices

By continuing to use the method of elimination, we can convert U to a matrix R in reduced row echelon form, with pivots equal to 1 and zeros above and below the pivots. The matrix R is called the reduced row echelon form of matrices (RREF) of A. In previous example,

$$\boldsymbol{U} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix} \xrightarrow{\text{make pivots} = 1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{0 \text{ above and below pivots}} \boldsymbol{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

For an another example,

$$\boldsymbol{U} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{make pivots} = 1} \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{0 \text{ above and below pivots}} \boldsymbol{R} = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

With proper permutation, the matrix \mathbf{R} can be written in form $\begin{bmatrix} \mathbf{I} & \mathbf{F} \end{bmatrix}$, $\begin{bmatrix} \mathbf{I} & \mathbf{F} \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \mathbf{I} \\ 0 \end{bmatrix}$, or just \mathbf{I} , where \mathbf{F} can be arbitrary matrix in proper dimension. The columns in \mathbf{A} which correspond to the identity matrix \mathbf{I} are called *pivot columns* and the other columns are *free columns*.

1.8 Vector space, Subspace and Column space

- Vector space is a collection of vectors that are closed under linear combination (addition and multiplication by any real number); i.e. for any vectors in the collection, all the combinations of these vectors are still in the collection.
- Subspaces of the vector space is a vector space that is contained inside of another vector space.

Note that any vector space or subspace must include an origin. For a vector space \mathcal{A} , the subspace of \mathcal{A} can be \mathcal{A} itself or can only contain a zero vector.

- Vectors $v_1, ..., v_n$ span a space that consists all the combination of those vectors.
- Column space of matrix A is the space spanned by the columns of A. Let C(A) denote the column space of A.

Note that if $v_1, ..., v_n$ span a space \mathcal{S} , then \mathcal{S} is the smallest space that contain those vectors.

- Basis of a vector space is a sequence of vectors $v_1, ..., v_n$ satisfies: (1) $v_1, ..., v_n$ are independent; (2) $v_1, ..., v_n$ span the space.
- Dimension of the space is the number of vectors in a basis of the space.

1.9 Matrix rank

The rank of a matrix A is defined as the dimension of the columns space of A. Rank is also equal to the number of pivot columns of A. That means:

$$rank(\mathbf{A}) = \#$$
 of pivot columns of $\mathbf{A} = dimension$ of $C(\mathbf{A})$.

We use r to denote the rank of A. If $A \in \mathbb{R}^{m \times n}$, then we have $r \leq m, r \leq n$. We say the matrix is full rank if r = n or r = m.

The rank of a square matrix is closely related to its invertibility.

Lemma 2 (Full rankness and invertibility). A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is full rank, if and only if \mathbf{A} is an invertible matrix.

Proof. First, assume A is full rank, we prove that A has an inverse. We can get find a RREF(A) by eliminations and permutations. There are E and P such that

$$EPA = R$$
.

Since A is full rank, A have n pivots columns and that implies $R = I_n$. By lemma 1, E is invertible. The permutation matrix P is also invertible. Therefore, EP is invertible and $AEP = I_n$. This implies A is invertible.

Second, assume A has an inverse, we prove that A is full rank. We show this by contradiction. Assume A has an inverse A^{-1} and A is not full rank. Because the rank of A is equal to the dimension of C(A), the columns of A are linearly dependent without full rankness. So, there exist a non-zero vector v such that

$$\mathbf{A}v = 0$$
.

Multiplying A^{-1} on the both sides of the equation, we have

$$v = A^{-1}0 = 0$$

However, it contradicts to non-zeroness of v. Therefore, \boldsymbol{A} must be full rank.

The rank of A also effects the number of solutions to the system Ax = b. We will discuss it in next section.

2 Solving Ax = b

Here we discuss the solution situation of the linear system Ax = b. Without specific explanation, the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and the vector $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

2.1 Solving Ax = 0: Nullspace

The nullspace of matrix A is the collection of all solutions x to the system Ax = 0. Let N(A) denote the nullspace of A.

Lemma 3 (Nullspace). The nullspace of matrix \mathbf{A} is a vector space.

Proof. To show the $N(\mathbf{A})$ is a vector space, we need to show $N(\mathbf{A})$ is close to linear combination. For any integer k, take arbitrary vectors $v_1, ..., v_k \in N(\mathbf{A})$ and arbitrary scalars $c_1, ..., c_k$. We have,

$$\mathbf{A}(c_1v_1+\cdots+c_kv_k)=c_1\mathbf{A}v_1+\cdots+c_k\mathbf{A}v_k=0.$$

Therefore, the linear combination $(c_1v_1 + \cdots + c_kv_k) \in N(\mathbf{A})$. Then $N(\mathbf{A})$ is a vector space. \square

Lemma 4 (The rank of nullspace). Suppose the rank of A is r, then the rank of N(A) is n-r.

Proof. Let R denote the RREF(A). The matrix R can be written in form $R = \begin{bmatrix} I_r & F \\ 0 & 0 \end{bmatrix}$ where

 $F \in \mathbb{R}^{r \times (n-r)}$ and 0 are zero matrices with proper dimensions. Let $X = \begin{bmatrix} -F \\ I_{n-r} \end{bmatrix}$. Then we have

$$\boldsymbol{R}\boldsymbol{X} = \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{F} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\boldsymbol{F} \\ \boldsymbol{I}_{n-r} \end{bmatrix} = 0$$

Therefore, each column X is a special solution to the system Ax = 0. Next, we want to show other solutions to Ax = 0 are linear combinations of those special solutions.

Suppose there is a $x = (x_1, x_2) \in N(\mathbf{A})$. Then

$$\mathbf{R}x = \begin{bmatrix} \mathbf{I}_r & \mathbf{F} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + \mathbf{F}x_2 \\ 0 \end{bmatrix} = 0.$$

That implies $x_1 = -\mathbf{F}x_2$ and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\mathbf{F} \\ \mathbf{I}_{n-r} \end{bmatrix} x_2 = \mathbf{X}x_2$. Therefore, arbitrary $x \in N(\mathbf{A})$ is a linear combination of special solutions, i.e. $C(\mathbf{X}) = N(\mathbf{A})$.

Since X contains an identity matrix, the special solutions are independent and the rank of C(X) is n-r. Therefore, the rank of N(A) is n-r.

Recall that the columns in \mathbf{A} correspond to the \mathbf{I}_r in \mathbf{R} are called pivot columns and other columns are free columns. In $\mathbf{A}x = b$, the variables in x that correspond to pivot columns are called *pivot variables* and others are *free variables*. As the proof shows, the way to find special solutions of $\mathbf{A}x = 0$ is to let one of the free variables is 1 while other free variables are 0 and then solve the equation $\mathbf{A}x = 0$. There are total n - r special solutions.

2.2 Solving Ax = b: complete solutions

Lemma 5 (Solvability of Ax = b). The system Ax = b is solvable only when $b \in C(A)$.

Proof. For any x, $Ax \in C(A)$. Therefore, to satisfy Ax = b, $b \in C(A)$.

Lemma 6 (Complete solution). The complete solution of $\mathbf{A}x = b$ is given by $x_{comp} = x_p + x_n$, where x_p is a particular solution that $\mathbf{A}x_p = b$ and $x_n \in N(\mathbf{A})$.

Proof. Suppose $x = x_p + x_0$ is an arbitrary solution to $\mathbf{A}x = b$. Then we have

$$\mathbf{A}x - \mathbf{A}x_p = \mathbf{A}(x - x_p) = \mathbf{A}x_0 = 0.$$

Then
$$x_0 \in N(\mathbf{A})$$
.

One way to find a particular solution is to let all the free variables be 0 and solve the equations.

Here is a summary table that discusses the rank of A, the form of R and the situation about the solutions.

	r = m = n	r = n < m	r = m < n	r < m, r < n
R	I	$\begin{bmatrix} \boldsymbol{I} \\ 0 \end{bmatrix}$	$egin{bmatrix} egin{bmatrix} \egn{bmatrix} \e$	$\begin{bmatrix} \boldsymbol{I} & \boldsymbol{F} \\ 0 & 0 \end{bmatrix}$
dimension of $N(\mathbf{A})$	0	0	n-r	n-r
$\#$ solutions to $\mathbf{A}X = b$	1	0 or 1	infinitely many	0 or infinitely many