Метод резолюций

Разрешимость исчислений

«Извини, Теодор, но это ты очень странно рассуждаешь. Бессмыслица — искать решение, если оно и так есть. Речь идет о том, как поступить с задачей, которая решения не имеет. Это глубоко принципиальный вопрос, который, как я вижу, тебе, прикладнику, к сожалению, не доступен.»

А. и Б. Стругацкие, «Понедельник начинается в субботу»

- Разрешимы: КИВ, ИИВ.
- ▶ Неразрешимы: всё остальное (ИП, ФА, ZF(С), ...)

Однако, (1) разрешимости хочется и (2) человек как-то умеет.

Ищем доказательство в исчислении предикатов: упрощение задачи

- ▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.
- ▶ Что мешает:
 - 1. слишком сложные формулы кванторы по бесконечным множествам:
 - 2. слишком больше разнообразие D, включая несчётные;
 - 3. даже $D=\mathbb{N}$ в формальной арифметике представляет проблему.
- Будем последовательно бороться:
 - 1. упростим формулу (борьба с кванторами);
 - 2. заменим произвольное D на какое-то рекурсивно-перечислимое множество, устроенное некоторым фиксированным образом (борьба с разнообразием D);
 - 3. устроим правильный перебор, позволяющий быстро находить решения, если они есть (борьба с бесконечностью

Упрощаем формулу α . Сколемизация

1. Предварённая форма (поверхностные кванторы) — *для примера* возьмём чередующиеся:

$$\beta := \forall x_1. \exists x_2. \forall x_3. \exists x_4... \forall x_{n-1}. \exists x_n. \varphi$$

2. Убрать кванторы существования: заменим x_{2k} функциями Сколема $e_{2k}(x_1, x_2, \dots, x_{2k-1})$. Получим:

$$\gamma := \forall x_1. \forall x_3... \forall x_{n-1}. \varphi[x_2 := e_2(x_1), x_4 := e_4(x_1, x_3), ..., x_n := e_n(x_1, x_2)$$

3. ДНФ (c конъюнктов, в каждом d(c) дизъюнктов):

$$\delta := \forall x_1. \forall x_3 \dots \forall x_{n-1}. \bigwedge_c \left(\bigvee_{i=\overline{1,d(c)}} (\neg) P_i(\theta_i) \right)$$

4. $\vdash \alpha$ эквивалентно $\models \alpha$ и эквивалентно выполнимости δ при всех D (найдутся e_i , что $\llbracket \delta \rrbracket = \mathsf{N}$).

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- 2. Заменяем *D*.
- 3. Правильный перебор

Эрбранов универсум.

Определение

```
H_0(\varphi) — все константы в формуле \varphi (либо особая константа а, если констант в \varphi нет) H_{k+1}(\varphi) — H_k(\varphi) и все функции от значений H_k(\varphi) (как строки) H=\cup H_n(\varphi) — основные термы.
```

Пример

```
P(a) \lor Q(f(b)):
H_0 = \{a, b\}
H_1 = \{a, b, f(a), f(b)\}
H_2 = \{a, b, f(a), f(b), f(f(a)), f(f(b))\}
...
H = \{f^{(n)}(x) \mid n \in \mathbb{N}_0, x \in \{a, b\}\}
```

Выполнимость не теряется. Заменяем D на H

Теорема

Формула выполнима тогда и только тогда, когда она выполнима на Эрбрановом универсуме.

Доказательство.

 (\Rightarrow) Пусть $M \models \forall \overline{x}.\varphi$. Тогда построим отображение eval : $H \to M$ (смысл названия вдохновлён языками программирования: eval("f(f(b))") перейдёт в f(f(b)), где f и b — из M).

Предикатам дадим согласованную оценку: $P_H(t_1,\ldots,t_n)=P_M(h(t_1),\ldots,h(t_n))$. Очевидно, любая формула сохранит своё значение, кванторы всеобщности по меньшему множеству также останутся истинными. (\Leftarrow) Очевидно.

Противоречивость системы дизъюнктов

Определение

Система дизъюнктов $\{\delta_1,\ldots,\delta_n\}$ противоречива, если для каждой интерпретации M найдётся δ_k и такой набор $d_1\ldots d_v$, что $[\![\delta_k]\!]^{x_1:=d_1,\ldots,x_v:=d_v}=\mathcal{I}\![]$.

Теорема

Система дизъюнктов противоречива, если она невыполнима на Эрбрановом универсуме.

Доказательство.

Контрапозиция теоремы о выполнимости + разбор определения.

Основные примеры.

Определение

Дизъюнкт с подставленными основными термами вместо переменных называется основным примером. Системой основных примеров $\mathcal E$ назовём множество основных примеров. А именно, рассмотрим $\delta_1 \& \delta_2 \& \cdots \& \delta_n$.

 $\mathcal{E} = \{$ все возможные основные примеры $\delta_k \mid \mathcal{M} \not\models \delta_k, \mathcal{M}$ из $H \,\}$

Теорема

Система дизъюнктов S противоречива тогда и только тогда, когда система всевозможных основных примеров $\mathcal E$ противоречива

Доказательство.

Для некоторой эрбрановой интерпретации дизъюнкт δ_k опровергается тогда и только тогда, когда соответствующая ему подстановка в $\mathcal E$ опровергается.

Теорема Гёделя о компактности

Теорема

Если Γ — некоторое семейство бескванторных формул, то Γ имеет модель тогда и только тогда, когда любое его конечное подмножество имеет модель.

Доказательство.

(⇐): очевидно

 (\Rightarrow) : пусть каждое конечное подмножество имеет модель.

Тогда Г непротиворечиво:

Иначе, для любой σ выполнено $\Gamma \vdash \sigma$. В частности, для $\gamma \in \Gamma$ выполнено $\Gamma \vdash \neg \gamma$. Доказательство имеет конечную длину, и использует конечное количество формул $\gamma_1, \ldots, \gamma_n \in \Gamma$. Тогда рассмотрим $\Sigma = \{\gamma, \gamma_1, \ldots, \gamma_n\}$, и модель $\mathcal S$ для неё. Тогда:

- 1. $\models_S \gamma$ (определение модели)
- 2. $\models_S \neg \gamma$ (теорема о корректности: $\Sigma \vdash \neg \gamma$, значит $\Sigma \models \neg \gamma$ в любой модели)

Значит, Г имеет модель (вспомогательная теорема к теореме Гёделя о полноте).

Теорема Эрбрана

Теорема (Эрбрана)

Система дизъюнктов S противоречива тогда и только тогда, когда существует конечное противоречивое множество основных примеров системы дизъюнктов S

Доказательство.

 (\Leftarrow) Пусть $\delta_1[\overline{x}:=\overline{\theta}],\dots,\delta_k[\overline{x}:=\overline{\theta}]$ — противоречивое множество примеров дизъюнктов. Тогда интерпретация $\overline{\theta}$ опровергает хотя бы один из δ_k и система противоречива. (\Rightarrow) Если S противоречива, то значит, множество основных примеров S противоречиво (по теореме о выполнимости Эрбранова универсума). Тогда по теореме компактности в нём найдётся конечное противоречивое подмножество.

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- 2. Упрощаем D заменили на H, свели к перебору основных примеров.
- 3. Правильный перебор.

Пример: как проверяем выполнимость формулы?

Допустим, формула: $(\forall x. P(x) \& P(x')) \& \exists x. \neg P(x'''')$

- 1. Поверхностные кванторы, сколемизация, ДНФ: $(\forall x. P(x)) \& (\forall x. P(x')) \& (\neg P(e))$
- 2. Строим Эрбранов универсум: $H = \{e, e', e'', e''', \dots\}$
- 3. Если есть противоречие, то среди основных примеров:

$$\mathcal{E} = \{ P(e), P(e'), P(e''), P(e'''), P(e''''), \neg P(e''''), \dots \}$$

Напомним, \mathcal{E} — подстановки элементов H вместо переменных под кванторами. Причём, либо $\models \& E$, либо противоречие достигается на конечном подмножестве (т. Эрбрана). Добавляем по примеру и проверяем. P(e) при $\llbracket P(e) \rrbracket = \mathsf{M}$. P(e') при $\llbracket P(e') \rrbracket = \mathsf{M}$.

P(e'''') при $\llbracket P(e'''')
rbracket = \mathsf{V}$.

Правило резолюции (исчисление высказываний)

Пусть даны два дизъюнкта, $\alpha_1 \vee \beta$ и $\alpha_2 \vee \neg \beta$. Тогда следующее правило вывода называется правилом резолюции:

$$\frac{\alpha_1 \vee \beta \qquad \alpha_2 \vee \neg \beta}{\alpha_1 \vee \alpha_2}$$

Теорема

Система дизъюнктов противоречива, если в процессе всевозможного применения правила резолюции будет построено явное противоречие, т.е. найдено два противоречивых дизъюнкта: β и $\neg \beta$.

Расширение правила резолюции на исчисление предикатов

Заметим, что правило резолюции для исчисления высказываний не подойдёт для исчисления предикатов.

$$S = \{P(x), \neg P(0)\}$$

Здесь P(x) противоречит $\neg P(0)$, но правило резолюции для исчисления высказываний здесь неприменимо, потому что x можно заменять, это не константа:

$$\frac{P(\mathbf{x}) \qquad \neg P(\mathbf{0})}{777}$$

Нужно заменять P(x) на основные примеры, и искать срединих. Модифицируем правило резолюции для этого.

Алгебраические термы

Определение

Алгебраический терм

$$\theta := x | (f(\theta_1, \dots, \theta_n))$$

где x- переменная, $f(\theta_1,\ldots,\theta_n)-$ применение функции. Напомним, что константы — нульместные функциональные символы, собственно переменные будем обозначать последними буквами латинского алфавита.

Определение

Система уравнений в алгебраических термах
$$\begin{cases} heta_1 = \sigma_1 \\ \vdots \\ heta_n = \sigma_n \end{cases}$$
 где $heta_i$ и σ_i — термы

Уравнение в алгебраических термах

Определение

 ${x_i} = X$ -множество переменных, ${\theta_i} = T$ -множество термов.

Определение

Подстановка—отображение вида: $\pi_0: X \to T$, тождественное почти везде.

$$\pi_0(x)$$
 может быть либо $\pi_0(x)= heta_i$, либо $\pi_0(x)=x$.

Доопределим $\pi:T\to T$, где

- 1. $\pi(x) = \pi_0(x)$
- 2. $\pi(f(\theta_1,\ldots,\theta_k)) = f(\pi(\theta_1),\ldots,\pi(\theta_k))$

Определение

Решить уравнение в алгебраических термах—найти такую наиболее общую подстановку π , что $\pi(\theta_1) = \pi(\theta_2)$. Наиболее общая подстановка — такая, для которой другие подстановки являются её частными случаями.

Задача унификации

Определение

Пусть даны формулы α и β . Тогда решением задачи унификации будет такая наиболее общая подстановка $\pi = \mathcal{U}[\alpha, \beta]$, что $\pi(\alpha) = \pi(\beta)$. Также, η назовём наиболее общим унификатором.

Пример

- Формулы P(a, g(b)) и P(c, d) не имеют унификатора (мы считаем, что a, b, c, d нульместные функции, af одноместная функция).
- Проверим формулу на соответствие 11 схеме аксиом:

$$(\forall x. P(x)) \to P(f(t, g(t), y))$$

Пусть
$$\pi = \mathcal{U}[P(x), P(f(t, g(t), y))]$$
, тогда $\pi(x) = f(t, g(t), y)$.

Правило резолюции для исчисления предикатов

Определение

Пусть σ_1 и σ_2 — подстановки, заменяющие переменные в формуле на свежие. Тогда правило резолюции выглядит так:

$$\frac{\alpha_1 \vee \beta_1}{\pi(\sigma_1(\alpha_1) \vee \sigma_2(\alpha_2))} \pi = \mathcal{U}[\sigma_1(\beta_1), \sigma_2(\beta_2)]$$

 σ_1 и σ_2 разделяют переменные у дизъюнктов, чтобы π не осуществила лишние замены, ведь

$$\vdash (\forall x. P(x) \& Q(x)) \leftrightarrow (\forall x. P(x)) \& (\forall x. Q(x)),$$
 но $egtharpoonup (\forall x. P(x) \lor Q(x)) \rightarrow (\forall x. P(x)) \lor (\forall x. Q(x)).$

Пример

$$rac{Q(x)ee P(x) \quad
eg P(a)ee T(x)}{Q(a)ee T(x'')}$$
 подстановки: $\sigma_1(x)=x', \sigma_2(x)=x'', \pi(x)$

Метод резолюции

Ищем $\vdash \alpha$.

- 1. будем искать опровержение $\neg \alpha$.
- 2. перестроим $\neg \alpha$ в ДНФ.
- 3. будем применять правило резолюции, пока получаем новые дизъюнкты и пока не найдём явное противоречие (дизъюнкты вида β и $\neg \beta$).

Если противоречие нашлось, значит, $\vdash \neg \neg \alpha$. Если нет — значит, $\vdash \neg \alpha$. Процесс может не закончиться.

SMT-решатели

Обычно требуется не логическое исчисление само по себе, а теория первого порядка. То есть, «Satisfability Modulo Theory», «выполнимость в теории» — вместо SAT, выполнимости.

Иногда можно вложить теорию в логическое исчисление, даже в исчисление высказываний: $\overline{S_2S_1S_0}=\overline{A_1A_0}+\overline{B_1B_0}$

$$S_0 = A_0 \oplus B_0$$
 $C_0 = A_0 \& B_0$
 $S_1 = A_1 \oplus B_1 \oplus C_0$ $C_1 = (A_1 \& B_1) \lor (A_1 \& C_0) \lor (B_1 \& C_0)$
 $S_2 = C_1$

А можно что-то добавить прямо на уровень унификации / резолюции: Например, можем зафиксировать арифметические функции — и производить вычисления в правиле резолюции вместе с унификацией. Тогда противоречие в $\{x=1+3+1, \neg x=5\}$ можно найти за один шаг.

Уточнённые типы (Refinement types), LiquidHaskell

Определение

```
(Неформальное) Уточнённый тип — тип вида \{\tau(x) \mid P(x)\}, где P — некоторый предикат.
```

Пример на LiquidHaskell:

```
data [a]  a -> Prop> where
    | [] :: [a] 
    | (:) :: h:a -> [a] -> [a]
```

- ▶ h:a голова (h) имеет тип a
- ▶ [a] хвост состоит из значений типа <math>a, уточнённых $p \{t : a \mid p \ h \ t\}$ (карринг: a).

```
{-@ type IncrList a = [a] <{\xi xj -> xi <= xj}> @-}
{-@ insertSort :: (Ord a) => xs:[a] -> (IncrList a) @-}
insertSort [] = []
insertSort (x:xs) = insert x (insertSort xs)
```