

Tolérancement dimensionnel II

Chanfreins et congés par défaut, tolérances ISO, ajustements, chaînes de cotes

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir ce que sont les chanfreins et rayons de congé par défaut

... Et la condition de montage qui les lie

... Définir ce qu'est le système ISO de tolérances

- ... Fournir les tabelles de valeurs pour les arbres et alésages
- ... Lister les classes de tolérances ISO usuelles

... Définir la notion d'ajustement

- ... Concept d'ajustement avec jeu / incertain / serré
- ... Calcul du jeu / du serrage, si tolérances sur les pièces
- ... Ajustements en notation ISO et valeurs usuelles
- ... Calcul de chaîne de cotes

Chanfreins et congés par défaut

Chanfrein par défaut

Arêtes vives (90°) sont coupantes

Rayon de congé par défaut

Rayon d'outil en usinage (0,2 < R < 0,8)

→ Rayon de congé sur arêtes rentrantes

 $R_{\text{max}} = 0.4 \text{ mm}$ $R_{\text{min}} = 0.2 \text{ mm}$

Règle de non-interférence

Système ISO de tolérances (1/4)

Principe = système codifié

- 84 -0,035 --> 84h7
- Remplace l'écriture explicite des tolérances
- Valable uniquement pour les cotes linéaires

- 84h7
- Surtout utilisé pour le tolérancement des diamètres
- 1 lettre + 1 nombre = « Classe de tolérance »
 - Dimension nominale + Classe de tol. → écarts lim. sup. & inf.
 - → Voir tableaux slides suivants
 - Lettre → Position de la tolérance vs. cote nominale
 - → Minuscule (a ... zc) si dimension extérieure (arbre)
 - → Majuscule (A ... ZC) si dimension intérieure (alésage)
 - Nombre → Largeur de la tolérance (classe « IT »)
 - → IT compris entre 1 (le + précis) et 18 (le précis)

S. Soubielle

Système ISO de tolérances (2/4)

Écarts limites pour les dimensions extérieures (arbres)

	Tailles nales en mm			Ecarts limites supérieurs et inférieurs (valeurs en μm; 1 μm = 0,001 mm = 1 micromètre)																															
au-dessus d	e jusqu'à et y ompris	d9	e8	f7	g6	h5	h6	h7	h8	h9	h11	js5	js6	js13	js14	k5	k6	m5	m6	n5	n6	р6	r6	s6	s7										
-	3	- 20 - 45	- 14 - 28	- 6 - 16	- 2 - 8	0 - 4	0 - 6	0 - 10	0 - 14	0 - 25	0 - 60	± 2	± 3	± 70	± 125	+ 4	+ 6	+ 6 + 2	+ 8 + 2	+ 8 + 4	+ 10 + 4	+ 12 + 6	+ 16 + 10	+ 20 + 14	+ 24 + 14										
3	6	- 30 - 60	- 20 - 38	- 10 - 22	- 4 - 12	- 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 75	± 2,5	± 4	± 90	± 150	+ 6 + 1	+ 9 + 1	+ 9 + 4	+ 12 + 4	+ 13 + 8	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 19	+ 31 + 19										
6	10	- 40 - 76	- 25 - 47	- 13 - 28	- 5 - 14	- 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 90	± 3	± 4,5	± 110	± 180	+ 7 + 1	+ 10 + 1	+ 12 + 6	+ 15 + 6	+ 16 + 10	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 32 + 23	+ 38 + 23										
10	18	- 50 - 93	- 32 - 59	- 16 - 34	- 6 - 17	0 - 8	0 - 11	0 - 18	0 - 27	0 - 43	0 - 110	± 4	± 5,5	± 135	± 215	+ 9 + 1	+ 12 + 1	+ 15 + 7	+ 18 + 7	+ 20 + 12	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 39 + 28	+ 46 + 28										
18	30	- 65 - 117	- 40 - 73	- 20 - 41	- 7 - 20	- 9	0 - 13	0 - 21	0 - 33	0 - 52	0 - 130	± 4,5	± 6,5	± 165	± 260	+ 11 + 2	+ 15 + 2	+ 17 + 8	+ 21 + 8	+ 24 + 15	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 48 + 35	+ 56 + 35										
30	50	- 80 - 142	- 50 - 89	- 25 - 50	- 9 - 25	0 - 11	0 - 16	0 - 25	- 39	0 - 62	0 - 160	± 5,5	± 8	± 195	± 310	+ 13 + 2	+ 18 + 2	+ 20 + 9	+ 25 + 9	+ 28 + 17	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 43	+ 68 + 43										
50	65	- 100	- 60	- 60	- 60	- 60	- 60	- 60	- 60	- 60	- 60	- 60	- 60	- 30	- 10	0	0	0	0	0	0		. 0.5	± 9,5 ± 230	+ 270	+ 15	+ 21	+ 24	+ 30	+ 33	+ 39	+ 51	+ 60 + 41	+ 72 + 53	+ 83 + 53
65	80	- 174	- 106	06 - 60	- 29	- 13	- 19	- 30	- 46	- 74	- 190	± 6,5	,5 ± 5,5	1 230	± 3/0	+ 2	+ 2	+ 11	+ 11	+ 20	+ 20	+ 32	+ 62 + 43	+ 78 + 59	+ 89 + 59										
80	100	- 120	- 72							- 12	0	0	0	0	0	0	. 75		. 270	. 125	+ 18	+ 25	+ 28	+ 35	+ 38	+ 45	+ 59	+ 73 + 51	+ 93 + 71	+ 106 + 71					
100	120	- 207	- 126							- 71	- 34	- 15	- 22	- 35	- 54	- 87	- 220	± 7,5	± 11	± 270	± 435	+ 3	+ 3	+ 13	+ 13	+ 23	+ 23	+ 37	+ 76 + 54	+ 101 + 79	+ 114 + 79				
120	140															17				329	39					J. E	+ 88 + 63	+ 117 + 92	+ 132 + 92						
140	160	- 145 - 245	- 85 - 148		- 14 - 39	0 - 18	0 - 25	0 - 40	0 - 63	0 -100	0 - 250	± 9	± 12,5	± 315		+ 21 + 3				+ 45 + 27			+ 90 + 65	+ 125 + 100	+ 140 + 100										
160	180															190							+ 93 + 68	+ 133 + 108	+ 148 + 108										
180	200															188							+ 106 + 77	+ 151 + 122	+ 168 + 122										
200	225	- 170 - 285	- 100 - 172	- 50 - 96	- 15 - 44	0 - 20	0 - 29	0 - 46	0 - 72	0 - 115	0 - 290	± 10	± 14,5	± 360	± 575	+ 24 + 4	+ 33 + 4	+ 37 + 17	+ 46 + 17	+ 51 + 31	+ 60 + 31	+ 79 + 50	+ 109 + 80	+ 159 + 130	+ 176 + 130										
225	250																				7		+ 113 + 84	+ 169 + 140	+ 186 + 140										
250	280	- 190	- 110	- 56	- 17	0	0	0	0	0	0					+ 27	+ 36	+ 43	+ 52	+ 57	+ 66	+ 88	+ 126 + 94	+ 190 + 158	+ 210 + 158										
280	315	- 320			100000	- 108	- 49	- 23	- 32	- 52	- 81	- 130	- 320	± 11,5	± 16	± 405	± 650	+ 4	+ 4	+ 20	+ 20	+ 34	+ 34	+ 56	+ 130 + 98	+ 202 + 170	+ 222 + 170								
315	355	- 210	- 125	- 62	- 18	0	0	0	0	0	0		-7.15			+ 29	+ 40	+ 46	+ 57	+ 62	+ 73	+ 98	+ 144 + 108	+ 226 + 190	+ 247 + 190										
355	400	- 350	- 214	- 119	- 54	- 25	- 36	- 57	- 89	- 140	- 360	± 12,5	± 18	± 445	± 700	+ 4	+ 4	+ 21	+ 21	+ 37	+ 37	+ 62	+ 150 + 114	+ 244 + 208	+ 265 + 208										

© Extrait de Normes 2018, p. 106, Tableau 106/1

Système ISO de tolérances (3/4)

Écarts limites pour les dimensions intérieures (alésages)

	ailles les en mm	Ecarts limite							ites sup	supérieurs et inférieurs (valeurs en μm; 1 μm = 0,001 mm = 1 micromètre)																								
au-dessus de	jusqu'à et y ompris	D10	E9	F7	F8	G7	G9	Н6	H7	Н8	Н9	H11	H12	H13]57]59	K6	K7	M6	M7	N7	N9 1)	P7	P9	R7									
-	3	+ 60 + 20	+ 39 + 14	+ 16 + 6	+ 20 + 6	+ 12 + 2	+ 27 + 2	+ 6 0	+ 10 0	+ 14 0	+ 25 0	+ 60 0	+ 100 0	+ 140 0	± 5	± 12,5	- 6	0 - 10	- 2 - 8	- 2 - 12	- 4 - 14	- 4 - 29	- 6 - 16	- 6 - 31	- 10 - 20									
3	6	+ 78 + 30	+ 50 + 20	+ 22 + 10	+ 28 + 10	+ 16 + 4	+ 34 + 4	+ 8	+ 12	+ 18	+ 30	+ 75	+ 120	+ 180	± 6	± 15	+ 2	+ 3	- 1 - 9	- 12	- 4 - 16	- 30	- 8 - 20	- 12 - 42	- 11 - 23									
6	10	+ 98 + 40	+ 61 + 25	+ 28 + 13	+ 35 + 13	+ 20 + 5	+ 41 + 5	+ 9	+ 15 0	+ 22 0	+ 36	+ 90	+ 150	+ 220 0	± 7,5	± 18	+ 2	+ 5	- 3 - 12	- 15	- 4 - 19	0 - 36	- 9 - 24	- 15 - 51	- 13 - 28									
10	18	+ 120 + 50	+ 75 + 32	+ 34 + 16	+ 43 + 16	+ 24 + 6	+ 49 + 6	+ 11	+ 18 0	+ 27 0	+ 43	+ 110 0	+ 180	+ 270 0	± 9	± 21,5	+ 2	+ 6	- 4 - 15	0 - 18	- 5 - 23	0 - 43	- 11 - 29	- 18 - 61	- 16 - 34									
18	30	+ 149 + 65	+ 92 + 40	+ 41 + 20	+ 53 + 20	+ 28 + 7	+ 59 + 7	+ 13	+ 21 0	+ 33	+ 52	+ 130	+ 210 0	+ 330	± 10,5	± 26	+ 2	+ 6 - 15	- 4 - 17	0 - 21	- 7 - 28	0 - 52	- 14 - 35	- 22 - 74	- 20 - 41									
30	50	+ 180 + 80	+ 112 + 50	+ 50 + 25	+ 64 + 25	+ 34 + 9	+ 71 + 9	+ 16 0	+ 25	+ 39	+ 62	+ 160	+ 250 0	+ 390	± 12,5	± 31	+ 3	+ 7 - 18	- 4 - 20	0 - 25	- 8 - 33	0 - 62	- 17 - 42	- 26 - 88	- 25 - 50									
50	65	+ 220	+ 134	+ 134	+ 134	+ 134	+ 134	+ 134	+ 134	+ 60	+ 76	+ 40		+ 19	+ 30	+ 46	+ 74	+ 190	+ 300	+ 460				+ 9	- 5	0	- 9	0	- 21	- 32	- 30 - 60			
65	80	+ 100		+ 30					+ 30	+ 10		0	0	0	0	0	0	0	± 15	± 37	- 15	- 21	- 24	- 30	- 39	- 74	- 51	- 106	- 32 - 62					
80	100	+ 260	+ 159	+ 71	+ 90	+ 47		+ 22	+ 35	+ 54	+ 87	+ 220	+ 350	+ 540			+ 4	+ 10	- 6	0	- 10	0	- 24	- 37	- 38 - 73									
100	120	+ 120		+ 36									+ 36	+ 12		0	0	0	0	0	0	0	± 17,5	± 43,5	- 18	- 25	- 28	- 35	- 45	- 87	- 59	- 124	- 41 - 76	
120	140		103												- 13																			- 48 - 88
140	160	+ 305 + 145			+ 106 + 43	+ 54 + 14		+ 25	+ 40	+ 63 0	+ 100	+ 250	+ 400	+ 630 0	± 20	± 50	+ 4	+ 12	- 8 - 33	0 - 40	- 12 - 52	0 - 100	- 28 - 68	- 43 - 143	- 50 - 90									
160	180							Ů	U				1	78				20	33	40					- 53 - 93									
180	200																					13			- 60 - 106									
200	225	+ 355 + 170	+ 215 + 100	+ 96 + 50	+ 122 + 50	+ 61 + 15		+ 29	+ 46	+ 72	+ 115	+ 290	+ 460	+ 720 0	± 23	± 57,5	+ 5	+ 13	- 8 - 37	0 - 46	- 14 - 60	0 - 115	- 33 - 79	- 50 - 165	- 63 - 109									
225	250																					F			- 67 - 113									
250	280	+ 400	+ 400	+400	+ 400			+ 260	+ 2/10	+ 108 + 56	+ 137	+ 69		+ 32	+ 52	+ 81	+ 130	+ 320	+ 520	+ 810			+ 5	+ 16	- 9	0	- 14	0	- 36	- 56	- 74 - 126			
280	315	+ 190						10 + 56	1 1 1 1 1 1 1 1 1			+ 56	+ 17		0	0	0	0	0	0	0	± 26	± 65	- 27	- 36	- 41	- 52	- 66	- 130	- 88	- 186	- 78 - 130		
315	355	+ 440	+ 265	+ 119	+ 151	+ 75		+ 36	+ 57	+ 89	+ 140	+ 360	+ 570	+ 890			+ 7	+ 17	- 10	0	- 16	0	- 41	- 62	- 87 - 144									
J 355	400	+ 210		+ 62	+ 62	+ 18		0	0	0	0	0	0	0	± 28,5	± 70	- 29	- 40	- 46	- 57	- 73	- 140	- 98	- 202	- 93 -150									

© Extrait de Normes 2018, p. 107, Tableau 107/1

Système ISO de tolérances (4/4)

Constat et problématique

- 28 × 18 = 504 classes de tolérances possible !
- Outils spécifiques à chaque classe de tolérance!

On va travailler en priorité avec ces classes de tolérances là

Classes de tolérance usuelles

© Extrait de Normes 2018, p. 109, Fig. 109/1 et 109/2

Exercice d'application

$$30h7 \rightarrow E_{sup} =$$

$$\rightarrow E_{inf} =$$

30H7
$$\rightarrow E_{sup} =$$
 $\rightarrow E_{inf} =$

30g6
$$\rightarrow E_{sup} =$$
 $\rightarrow E_{inf} =$

30H11
$$\rightarrow E_{sup} =$$
 $\rightarrow E_{inf} =$

125H7
$$\rightarrow E_{\text{sup}} =$$

 $\rightarrow E_{\text{inf}} =$

Tolérances et assemblage (1/3)

Mise en situation : « Ça se monte ou pas ? »

Cotes indiquées = dimensions réelles)

- Notions d'ajustement et de jeu J
 - → Ajustement « avec jeu » (ou « glissant ») si J > 0
 - → Ajustement « avec serrage » (ou « serré ») si J < 0

© Extrait de Normes 2018, p. 98, Fig. 98/1 et 98/2

Tolérances et assemblage (2/3)

Tolérances vs. jeu min. / max.

$$J_{\min} = D_{\min} - d_{\max}$$

= Situation au maximum de matière

$$J_{\text{max}} = D_{\text{max}} - d_{\text{min}}$$

= Situation au minimum de matière

Trois types d'ajustements

- Si J_{\min} ≥ 0 \rightarrow « Avec jeu »
- Si J_{max} ≤ 0 \rightarrow « Avec serrage »
- Si J_{max} ≥ 0 & J_{min} ≤ 0
 → « Incertain »

 $\ensuremath{\mathbb{G}}$ Guide des Sciences et Technologies Industrielle, J.-L. Fanchon \Rightarrow

D: dimension intérieure (pièce femelle, p. ex. alésage) d: dimension extérieure (pièce mâle, p. ex. arbre)

Tolérances et assemblage (2/3)

Exercice d'application : quel type d'ajustement ?

Ajustements ISO (1/4)

Définition

Assemblage de deux pièces de même cote nominale, chacune étant affectée d'une tolérance ISO

Notation

Dim. nominale + Tol. ISO alésage / Tol. ISO arbre

Plutôt pour le tolérancement des diamètres (mais pas exclusivement)

IT arbre = IT alésage – 1 (en général)

Ajustements ISO (3/4)

- Système d'ajustement ISO à alésage normal (« H »)
 - → Le plus utilisé
 - → Toujours à privilégier, quand c'est possible
- Valeurs usuelles d'ajustements en alésage normal

Ajuste-	Н8	H7	Caractère de l'ajustement	Exemples d'utilisation					
ment	Ar	bre		antions, and optimization, as the					
	d9		Grand jeu	Arbre à plusieurs paliers, palier lisse pour large gamme de température, palier de levier					
	e8		Jeu perceptible	gamme de température, palier de levier					
	h9	11 711 11	Facilement déplaçable	Embrayage coulissant, entretoise					
Jen	f7		Petit jeu	Coulisseau, glissière de tête de bielle					
		g6	Jeu non perceptible	Palier lisse de précision					
	h7	h6	Déplacement encore possible par l'emploi de lubrifiants	Bague d'arrêt, roue interchangeable, centrage, contre-pointe de tour					
_		js6	Encore mobile sous légère pression	Centrage précis					
Incertain		k6	Assemblé sans besoin de force importante	Volant, accouplement, poulie					
Ince	with a saled if	n6	Assemblé sous pression	Transmission d'un couple avec sécurité supplémentaire contre la rotation					
a		р6	Assemblé au moyen de presses	Transmission de petits couples sans					
Serrage	r6		ou fretté	sécurité supplémentaire contre la rotation					
ň		s6							

© Extrait de Normes 2018, p. 112, Tableau 112/1

Ajustements ISO (3/4)

- Système d'ajustement ISO à arbre normal (« h »)
 - → Utilisé lorsque la tolérance sur l'arbre est imposée (h)
 - → P. ex. barre étirée (h9), rectifiée (h9, h8 ou h6)
- Valeurs usuelles d'ajustements en alésage normal

Ajuste-	h9	h6	Caractère de l'ajustement	Exemples d'utilisation					
ment	Alés	sage							
	H11		Très souvent grand jeu	Pièces s'emboîtant facilement					
	D10		Très grand jeu	Clavetage libre avec clavette inclinée					
	E9		Grand jeu	Raccordement emboîté, palier de levier					
Jeu	F8		Jeu perceptible	Palier lisse					
		G7	Jeu non perceptible	Glissière de précision					
	Н9		Encore juste mobile	Clavetage libre (arbre et moyeu)					
		H7	à la main	Embrayage coulissant					
]59		Encore mobile sous légère	Clavetage léger dans moyeu					
ii.	grader.]57	pression	Pièces souvent démontées et remontées					
Incertain	I Lake	K7	Assemblé sans besoin de force importante	Volant, accouplement, poulie					
드	A Printegral	N7	Assemblé sous pression	Goupille cylindrique					
	P9		Ajustage éventuellement nécessaire	Clavetage serré (arbre et moyeu)					
Serrage		P7	Assemblé au moyen de presses ou fretté	Transmission de petits couples sans sécurité supplémentaire contre la rotation					
S	10	57	Emmanchement par frettage	Transmission de couples plus importants					

© Extrait de Normes 2018, p. 112, Tableau 112/2

Ajustements ISO (4/4)

Donner les valeurs de jeux (ou serrages) extrêmes pour les ajustements 30H7/g6 et 125H7/k6. Préciser le type d'ajustement.

Chaîne de cotes (1/2)

Définition

- Généralisation du concept d'ajustement (nb de pièces > 2)
- Calcul uniaxial (linéaire)

Méthodologie de calcul (ex. : 3 pièces)

Soit le vecteur
$$\boldsymbol{J}$$
 tq : $J = \sum_i L_i - \sum_j L_j$

L_i : vecteurs de même dir. que J Avec

L_i: vecteurs de dir. opposée à J

$$J_{\text{Max}} = \sum_{i} (L_i)_{\text{Max}} - \sum_{i} (L_j)_{\text{min}} \quad \text{et} \quad J_{\text{min}} = \sum_{i} (L_i)_{\text{min}} - \sum_{i} (L_j)_{\text{Max}}$$

$$J_{\min} = \sum_{i} (L_i)_{\min} - \sum_{i} (L_j)_{\text{Ma}}$$

Chaîne de cotes (2/2)

Exercice d'application

Soit l'assemblage ci-contre, selon ISO 2768-m.

De quel type d'ajustement s'agit-il (avec jeu / incertain / avec serrage) ? Donner les valeurs extrêmes de jeu et/ou de serrage.

Tolérances et coût de fabrication

Plan de fabrication = contrat

Le donneur d'ordre peut refuser la réception (et le paiement) d'une pièce si une ou plusieurs exigences ne sont pas satisfaites.

Coût de fabrication

- Chaque tolérance a un coût
- Coût proportionnel au niveau de précision demandé
 - ISO 2768-m → coût faible
 - ISO 2768-f → coût modéré
 - IT < 8 → coût ↑ exponentiellement

Règle d'or en construction mécanique = spécifier le strict nécessaire

© Guide des Sciences et Technologies Industrielle, J.-L. Fanchon

Des questions?

Références normatives principales

ISO 129-1	Documentation technique de produit – Représentation des dimensions et tolérances – Partie 1 : Principes généraux
ISO/DIS 129-2	Documentation technique de produit – Indication des cotes et tolérances – Partie 2: Cotation dans le domaine de la construction mécanique
ISO 286-1	Spécification géométrique des produits (GPS) – Système de codification ISO pour les tolérances sur les tailles linéaires – Partie 1: Base des tolérances, écarts et ajustements
ISO 286-2	Spécification géométrique des produits (GPS) – Système de codification ISO pour les tolérances sur les tailles linéaires – Partie 2: Tableaux des classes de tolérance normalisées et des écarts limites des alésages et des arbres
ISO 2768-1	Tolérances générales – Partie 1: Tolérances pour dimensions linéaires et angulaires non affectées de tolérances individuelles
ISO 13715	Dessins techniques — Arêtes de forme non définie — Vocabulaire et indications sur les dessins
ISO 14405-1	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 1 : Tailles linéaires
ISO 14405-2	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 2 : Dimensions autres que tailles linéaires ou angulaires
ISO 14405-3	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 3 : Tailles angulaires
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

S. Soubielle