Floating Point Numbers

Lecture 1 - 2015 Mads Chr. Olesen

Credits to Alexandre David (AAU),
Randy Bryant & Dave O'Hallaron (CMU)

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{i=1}^{n} t_{i}$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.11₂

2 7/8 10.111₂

63/64 1.0111₂

- Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0ε

Fixed point numbers available in some DSP.

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

Value

1/3

- **1/5**
- **1/10**

Representation

- 0.0101010101[01]...₂
- 0.001100110011[0011]...2
- 0.0001100110011[0011]...2

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats, emphasis on performance and ease of implementation, not precision
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^s * M * 2^E$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

	S	ехр	frac
--	---	-----	------

Precisions

Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

S	exp	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
Value: Float F = 15213.0;
15213<sub>10</sub> = 11101101101101<sub>2</sub>
= 1.1101101101101, x 2<sup>13</sup>
```

Significand

```
M = 1.101101101101_2
frac = 11011011011010000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

```
0 10001100 1101101101101000000000 s exp frac
```

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Summary

1. Normalized

 $s \neq 0 \& \neq 255$

2. Denormalized

3a. Infinity

3b. NaN

(Tiny Floating Point Example)

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $\blacksquare x +_f y = Round(x + y)$
- $\blacksquare x \times_f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

What are the advantages of the modes?

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

```
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
```

1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" such that least significant bit becomes 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 011 ₂	10.002	(<1/2—down)	2
2 3/16	10.00 110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 100 ₂	11.002	(1/2—up)	3
2 5/8	10.10 100 ₂	10.102	(1/2—down)	2 1/2

FP Multiplication

- $-(-1)^{s1} * M1 * 2^{E1} x (-1)^{s2} * M2 * 2^{E2}$
- Exact Result: (-1)^s * M * 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 * M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $-(-1)^{s1} * M1 * 2^{E1} + (-1)^{s2} * M2 * 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s * M * 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

(Floating Point in C)

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Ariane 5

- Convert 64-bit floating point to 16-bit signed integer
- Overflow occurred.
- \$500 million firework

Patriot Missile

- First Gulf War
- Time kept as 1/10 second, as an integer
 To find time in seconds, multiply by 1/10
- 1/10 second = 0.000110011001100110011001100.... (small rounding error)
- After 100 hours: total rounding error of 0.34secs => missed Scud missile by more than 0.5 km => 28 dead

