

DESARROLLO DE UNA MESA DE MEZCLAS VIRTUAL PARA DISPOSITIVOS ANDROID

Grado en Ingeniería de Sistemas Audiovisuales y Multimedia

Autor: María de la Osa Martínez

Tutor: David Gualda Gómez

Escuela de Ingeniería de Eucolabrada

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

1. Introducción

Diseño y desarrollo de una mesa de mezclas virtual minimalista para dispositivos móviles.

Iconos Android y Kotlin combinados [1]

¿Por qué una mesa de mezclas?

- Potenciar los conocimientos adquiridos
- Afrontar un reto de programación

Mesa de mezclas [2]

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

2. Objetivos y fases de desarrollo

Diagrama de objetivos

2. Objetivos y fases de desarrollo

Diagrama de Gantt sobre las fases del proyecto

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

Android

- Sistema operativo de código abierto creado en 2005
- 13 versiones disponibles
- Diseño de interfaz intuitivo
- Se trata del sistema operativo más utilizado en el mundo

% de Ingresos desde móvil distribuido por sistema operativo

Comparativa usuarios de Android frente a iOS en 2022 [4]

Android Studio

- Entorno de desarrollo integrado oficial para Android
- Diferentes lenguajes válidos
- Posee editor de código, sistema de compilación y funciones adicionales para añadir recursos.
- Emuladores para diferentes dispositivos.

Vista Android Studio

Kotlin

- Google le da soporte desde 2017
- Versátil y moderno
- Curva de aprendizaje sencilla
- Elimina la redundancia que se puede encontrar en Java.
- Simplificación de las llamadas de red y acceso a base de datos
- Puede ser usado con programación lineal o con programación orientada a objetos
- Mayor seguridad que otros lenguajes

Logotipo Kotlin [5]

Extensiones de archivos de audio

Audio comprimido con pérdidas	Audio comprimido sin pérdidas
OGG (Ogg Vorbis)	FLAC (Free Lossless Audio Codec)
MP3 (MPEG-1 Audio Layer 3)	WAV (Waveform Audio File Format)
AAC (Advanced Audio Coding)	

Ganancia frente a volumen

Ganancia	Volumen
RAE: acción y efecto de ganar	RAE: intensidad del sonido
Se mide en decibelos (dB)	Se trata de una percepción subjetiva de la potencia del sonido
A mayor ganancia, mayor distorsión	A mayor volumen, no hay distorsión

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

4. Mesas de mezclas

Historia

4. Mesas de mezclas

Tipos de mesas

A pesar de que se pueden diferenciar por la tecnología utilizada o por la funcionalidad, todas trabajan de la misma manera.

Comparando tecnología utilizada
Analógicas
Digitales
Virtuales

Partes

Explicación de las partes [6]

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

Activity_main.xml

Diseño de Android Studio

Diagrama de constantes

MainActivity.kt

Diagrama de variables y funciones

MainActivity.kt → override fun onCreate

```
<u>qain1</u>.setOnSeekBarChangeListener(<mark>object</mark> : SeekBar.OnSeekBarChangeListener{
   override fun onProgressChanged(seekBar: SeekBar?, progress: Int, fromUser: Boolean) {
       volume1.text = progress.toString()
       vol1 = (progress * 0.01).toFloat()
           mediaPlayer1?.setVolume(vol1, vol1)
   override fun onStartTrackingTouch(seekBar: SeekBar?) {
   override fun onStopTrackingTouch(seekBar: SeekBar?) {
               Toast.LENGTH_SHORT).show()
```

```
startActivityForResult(Intent.createChooser(intent, title: "Select an audio file"), requestCode: 1)
tnPlay1.setOnClickListener{ (it: View!)
  if ((!booleanPlay) and (!booleanPlay2) and (!booleanPlay3)) {
tnStop1.setOnClickListener{ it: View!
tnReset1.setOnClickListener{    it: View!
```


MainActivity.kt → Private fun play y stop

```
private fun playAudio1(){
    if (media1 != null) {
        mediaPlayer1 = MediaPlayer.create(context: this, media1)
    }else{
        mediaPlayer1 = MediaPlayer.create(context: this, R.raw.piano)
    }
    mediaPlayer1!!.isLooping = true
    mediaPlayer1!!.start()
}
private fun stopAudio1(){
    if (mediaPlayer1?.isPlaying == true) {
        mediaPlayer1!!.stop()
        mediaPlayer1 = null
    }
}
```

Private fun play y stop pista 1

Flujograma de salida máster

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

6. Resultado

Resultado del prototipo

Demo

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

7. Costes

Costes materiales:

Ordenador: 350€

• Dispositivo móvil Android: 200€

• Auriculares: 30€

Tiempo estimado: 360 horas

Costes humanos:

• Ingeniero/a con conocimientos de programación: salario medio de 30€/h neto, 10.800€ para el proyecto (360 x 30)

Tipo de coste	Coste total en euros (€)
Mano de obra	10.800€
Material	580€
Total	11.380€

Tabla de costes

7. Costes

Costes materiales:

Ordenador: 350€

• Dispositivo móvil Android: 200€

Auriculares: 30€

Tiempo estimado: 360 horas

Costes humanos:

• Ingeniero/a con conocimientos de programación: salario medio de 30€/h neto, 10.800€ para el proyecto (360 x 30)

Tipo de coste	Coste total en euros (€)
Mano de obra	10.800€
Material	580€
Total	11.380€

Tabla de costes

- 1. Introducción
- 2. Objetivos y fases de desarrollo
- 3. Definiciones y conceptos
- 4. Mesa de mezclas
- 5. Desarrollo
- 6. Resultados
- 7. Costes
- 8. Conclusiones

8. Conclusiones

Objetivo principal:

Desarrollo de un prototipo

Competencias empleadas:

- Programación
- Conocimiento de audio
- Idioma Moderno

Competencias adquiridas:

- Kotlin y aplicaciones Android
- Ampliación del entendimiento del mundo del audio
- Recopilación y resumen de información

Trabajos futuros:

- Habilitar la vista para múltiples dispositivos
- Implementación de audios a partir de internet
- Rotación de la aplicación
- Introducción de filtros y herramientas de ecualización

Bibliografía

[1]	https://2.bp.blogspot.com/-e5SH_qsqwfc/Wguw5FFJ99I/AAAAAAAADZ4/TIktoHLI_9gdzR_INSsb-
	ulyewkkF3XDACLcBGAs/s640/jjhghjhj.jpg
[2]	https://www.gladoop.com
[3]	https://www.brandemia.org/wp-content/uploads/2012/10/logo_principal.jpg
[4]	https://marketing4ecommerce.net/android-o-ios-que-sistema-operativo-consigue-mas-conversiones
	<u>flat101/</u>
[5]	https://cdn.icon-icons.com/icons2/2699/PNG/512/kotlinlang_logo_icon_170356.png

El proyecto se encuentra disponible en:

Código fuente Kotlin:

https://github.com/mdelaosa/AudioKotlin

APK, demo, memoria y presentación:

https://github.com/mdelaosa/Memoria_TFG

¡Gracias!