The Relational Data Model

2. The Relational Data Model

• use a simple and uniform data structure: the relation

- has been implemented in most commercial database systems
- has a solid theoretic foundation.

2.1 Structures

- In the relational model, everything is described using relations.
- A relation can be thought of as a named table.
- Each column of the table corresponds to a named attribute.
- The set of allowed values for an attribute is called its domain.
- Each row of the table is called a tuple of the relation.
- N.B. There is no ordering of column or rows.

Example

PLAYER					
Name	Position	Goals	Age	Height	Weight
Heady	Half-forward	17	24	183	83
Sumich	Full-forward	59	26	191	92
Langdon	Utility	23	23	189	86

PLAYER					
Name	Age	Height	Weight	Goals	Position
Sumich	26	191	92	59	Full-forward
Langdon	23	189	86	23	Utility
Heady	24	183	83	17	Half-forward

Above two tables are the same relation ---- Player

- Mathematically,
 - a domain D is a set of atomic values (having some fixed data type) which represent some semantic meaning.
 - an attribute, A, is the name of a role played by a domain,
 dom(A).
 - a *relation schema R*, denoted by

 $R(A_1, A_2, ..., A_n)$, is a set of attributes

$$R = \{A_1, A_2, ..., A_n\}.$$

Composite and multivalued attributes are disallowed!

• A tuple, $t(A_1, A_2, ..., A_n)$, is a point in $dom(A_1) \times ... \times dom(A_n)$ where each $dom(A_i)$ is the domain of A_i .

• A relation (or a relation instance) is a set of tuples: a subset of $dom(A_1) \times \ldots \times dom(A_n).$

• A relation schema is used to describe a relation.

• The *degree* of a relation is the number of attributes of its relation schema.

Relational Data Model vs ER Model:

- Relation schema (intension) \rightleftharpoons entity or relationship type schema (intension).
- attributes

 attributes
- tuple ≠ instance of entity/relationship
- relation (instance, extension) ≠ entity/relationship extension
- composite and multivalued attributes are allowed in ER model, but not allowed in relational data model.

- *Keys* are used to identify tuples in a relation.
- A *superkey* is a set of attributes that uniquely determines a tuple.
- Note that this is a property of the relation that does not depend on the current relation instance.
- A candidate key is a superkey, none of whose proper subsets is a superkey.
- Keys are determined by the applications.
- E.g. if {Name} is unique then it is a candidate key for PLAYER; otherwise we need to use the whole tuple or create a candidate key, say PID.
- {Goals} usually cannot not be a candidate key since different players *might* have the same number of goals.
- {Name, Goals} is a superkey but not a candidate key if {Name} is a key.

• A primary key is a designated candidate key.

• In many applications it is necessary to invent a primary key if there is no natural one - often this would be a non-negative integer

• e.g. Person number.

• When a relation schema has several candidate keys, usually better to choose a primary key with a single attribute or a small number of attributes.

2.2 Integrity constraints

• There are several kinds of integrity constraints that are an integral part of the relational model:

• **2.2.1 Key constraint**: candidate key values must be unique for every relation instance.

• 2.2.2 Entity integrity: an attribute that is part of a primary key cannot be NULL.

• **2.2.3 Referential integrity:** The third kind has to do with "foreign keys".

• Foreign keys are used to refer to a tuple in another relation.

- A set, FK, of attributes from a relation schema R1 may be a foreign key if
 - the attributes have the same domains as the attributes in the primary key of another relation schema R₂, and
 - a value of FK in a tuple t_1 of R_1 either occurs as a value of PK for some tuple t_2 in R_2 or is null.
- Referential integrity: The value of FK must occur in the other relation or be entirely NULL.

2.2.4 Checking constraints on updates

- To maintain the integrity of the database, we need to check that integrity constraints will not be violated before proceeding with an update.
- Example: Suppose we have the following schema with foreign keys as shown:

<2, Dr. V. Ciesielski>

insert
7

RESEARCHER		
Person# Name		
1	Dr.C.C.Chen	
2	Dr.R.G.Wilkinson	

STUDENT		
Person#	Name	
1	Dr.C.C.Chen	
3	Ms.K.Juliff	
4	Ms.J.Gledill	
5	Ms.B.K.Lee	

COURSE		
Department	Name	
Psychology	Ph.D.	
Comp.Sci.	Ph.D.	
Comp.Sci.	M.Sc.	
Psychology	M.Sc.	

ENROLMENT

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

<Comp.Sci., NULL>

insert

RESEARCHER		
Person# Name		
1	Dr.C.C.Chen	
2	Dr.R.G.Wilkinson	

STUDENT			
Person#	Name		
1	Dr.C.C.Chen		
3	Ms.K.Juliff		
4	Ms.J.Gledill		
5	Ms.B.K.Lee		

COURSE		
Department	Name	
Psychology	Ph.D.	
Comp.Sci.	Ph.D.	
Comp.Sci.	M.Sc.	
Psychology	M.Sc.	

ENROLMENT

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

<5, 6, 2, Psychology, Ph.D>

insert

STUDENT		
Person#	Name	
1	Dr.C.C.Chen	
3	Ms.K.Juliff	
4	Ms.J.Gledill	
5	Ms.B.K.Lee	

RESEARCHER		
Person#	Name	
1	Dr.C.C.Chen	
2	Dr.R.G.Wilkinson	

COURSE		
Department	Name	
Psychology	Ph.D.	
Comp.Sci.	Ph.D.	
Comp.Sci.	M.Sc.	
Psychology	M.Sc.	

ENROLMENT

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

RESEARCHER		
Person#	Name	
1	Dr.C.C.Chen	
2	Dr.R.G.Wilkinson	

STUDENT		
Person#	Name	
1	Dr.C.C.Chen	
3	Ms.K.Juliff	
4	Ms.J.Gledill	
5	Ms.B.K.Lee	

COURSE		
Department	Name	
Psychology	Ph.D.	
Comp.Sci.	Ph.D.	
Comp.Sci.	M.Sc.	
Psychology	M.Sc.	

ENROLMENT

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

- *Insertions*: When inserting, we need to check
 - that the candidate keys are not already present,
 - that the value of each foreign key either
 - -is all null, or
 - is all non-NULL and occurs in the referenced relation.

Examples:

1. Insert < 2, *Dr.V.Ciesielski* > into RESEARCHER

Allowed? No. Violates a key constraint.

Action? Reject or allow the user to correct.

2. Insert < *Comp.Sci.,NULL* > into COURSE

Allowed? No. Violates the entity integrity constraint.

Action: Reject or correct.

3. Insert < 5, 6, 2, *Psychology, Ph.D.* > into

ENROLMENT

Allowed? No. Violates a referential integrity constraint (There is no person number 6).

Action: Reject, correct or accept after insertion of person number 6.

• *Deletions*: When deleting, we need to check referential integrity – check whether the primary key occurs in another relation.

Examples:

1. Delete tuple with Person# = 2 from RESEARCHER

Allowed? No. Violates the referential integrity.

Action: Reject, correct or modify the ENROLMENT tuple by

- deleting it (note that the this requires another integrity check, possibly causing a cascade of deletions), or
- setting the foreign key value to NULL (note this can't be done if it is part of a primary key), or
- setting the foreign key value to another acceptable value.

Modifications:

If the modified attribute is a

- primary key: this is similar to deleting and then reinserting.
- foreign key: check that the new value refers to an existing tuple.
- neither: no problems can arise.

2.2.5 Relational database definition

- A relational database schema, is a set of relation schema $\{R_1, \ldots, R_m\}$ and a set of integrity constraints.

- A relational database instance is a set of relation instances $\{r_1, \ldots, r_m\}$ such that each r_i is an instance of R_i , and the integrity constraints are satisfied.

2.3 ER to Relational Data Model Mapping

- One technique for database design is to first design a conceptual schema using a high-level data model, and then map it to a conceptual schema in the DBMS data model for the chosen DBMS.
- Here we look at a way to do this mapping from the ER to the relational data model.
- It involves the following 7 steps.

• Example: ER—RDB

*

• Step 1: For each regular (not weak) entity type E, create a relation R with

- Attributes : All simple attributes (and simple components of composite attributes) of E.
- Key: Choose one of the keys of E as the primary key for the relation.

- Step 1a: For each specialised entity type E, with parent entity type P, create a relation R with
 - Attributes: The attributes of the key of P, plus the simple attributes of E.
 - Key: The key of P.

• Example: ER→RDB

Employee

SSN Fname Lname Birdate

Department

Name Location

Project

Pname Pnumber

28

- Step 2: For each weak entity type W, with owner entity type E, create a relation R with
 - Attributes: All simple attributes (and simple components of composite attributes) of W, and include as a foreign key the prime attributes of the relation derived from E.
 - Key: The foreign key plus the partial key of W.

• Example: ER—RDB

• Step 3: For each 1:1 relationship type B. Let E and F be the participating entity types. Let S and T be the corresponding relations.

- Choose one of S and T (prefer one that participates totally), say S.
- Add the attributes of the primary key of T to S as a foreign key.
- Add the simple attributes (and simple components of composite attributes) of B
 as attributes of S.

(Alternative: merge the two entity types and the relationship into a single relation, especially if both participate totally and do not participate in other relationships).

• Example: ER—RDB

• Step 4: For each regular 1:N relationship type B.

- Let E and F be the participating entity types.
- Let E by the entity type on the 1 side, F the one on the N side.
- Let S and T be the corresponding relations.
- Add the attributes of the primary key of S to T as a foreign key.
- Add to T any simple attributes (or simple components of composite attributes) of the relationship.

(Notice that this doesn't add any new tuples, just attributes.)

• Example: ER—RDB

• Step 5: For each N:M relationship type B. Create a new relation R. Let E and F be the participating entity types. Let S and T be the corresponding relations.

- Attributes: The key of S and the key of T as foreign keys, plus the simple attributes (and simple components of composite attributes) of B.

Key: The key of S and the key of T.

• Example: ER—RDB

• Step 6: For each multivalued attribute A. Create a new relation R. Let A be an attribute of E.

- Attributes :

- 1. A (if A is a simple attribute) together with the key of E as a foreign key.
- 2. The simple components of A (if A is a composite attribute), together with the key of E as a foreign key.

- Key: All attributes.

• Example: ER—RDB

• Step 7: For each n-ary relationship type (n > 2). Create a new relation with

- Attributes : as for Step 5.

- Key: as for Step 5, except that if one of the participating entity types has participation ratio 1, its key can be used as a key for the new relation.