Warm-up: sums

Compute

1.
$$\sum_{i=2}^{4} (2i+1)$$

2.
$$\sum_{i=2}^{4} 2i + 1$$

3.
$$\sum_{j=2}^{4} (2i+1)$$

Write these sums with Σ notation

1.
$$1^5 + 2^5 + 3^5 + 4^5 + \ldots + 100^5$$

2.
$$\frac{2}{4^2} + \frac{2}{5^2} + \frac{2}{6^2} + \frac{2}{7^2} + \ldots + \frac{2}{N^2}$$

3.
$$\cos 0 - \cos 1 + \cos 2 - \cos 3 + \ldots \pm \cos(N+1)$$

4.
$$\frac{1}{0!} + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \ldots + \frac{1}{(2N)!}$$

5.
$$\frac{1}{1!} - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \ldots + \frac{1}{81!}$$

6.
$$\frac{2x^3}{4!} + \frac{3x^4}{5!} + \frac{4x^5}{6!} + \ldots + \frac{999x^{1000}}{1001!}$$

Re-writing sums

1.
$$\sum_{i=1}^{100} \tan i - \sum_{i=1}^{50} \tan i = \sum_{i=1}^{50}$$

2.
$$\sum_{i=1}^{N} (2i-1)^5 = \sum_{i=0}^{N-1}$$

3.
$$\left[\sum_{k=1}^{N} x^k\right] + \left[\sum_{k=0}^{N} k x^{k+1}\right] = \left[\sum_{k=0}^{N} x^k\right] + \left[\sum_{k=0}^{N} x^k\right]$$

Hint: Write out the sums on the left hand side first, simplify if possible, then write them back into sigma notation.

Telescopic sum

Calculate the exact value of

$$\sum_{i=1}^{137} \left[\frac{1}{i} - \frac{1}{i+1} \right]$$

Hint: Write down the first few terms.

Telescopic sum

Calculate the exact value of

$$\sum_{i=1}^{137} \left[\frac{1}{i} - \frac{1}{i+1} \right]$$

Hint: Write down the first few terms.

Calculate the exact value of

$$\sum_{i=1}^{10,000} \frac{1}{i(i+1)}$$

Double sums

Compute:

1.
$$\sum_{i=1}^{N} \sum_{k=1}^{N} 1$$

$$\sum_{i=1}^{N}\sum_{k=1}^{I}1$$

3.
$$\sum_{i=1}^{N} \sum_{j=1}^{i} i$$

4.
$$\sum_{i=1}^{n} \sum_{k=1}^{n} k$$

$$\sum_{i=1}^{N} \sum_{k=1}^{i} (ik)$$

Useful formulas:

$$\sum_{j=1}^{N} j = \frac{N(N+1)}{2}, \quad \sum_{j=1}^{N} j^2 = \frac{N(N+1)(2N+1)}{6}, \quad \sum_{j=1}^{N} j^3 = \frac{N^2(N+1)^2}{4}$$

Harmonic sums

We define the N-th Harmonic term as the sum

$$H_N = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{N} = \sum_{i=1}^{N} \frac{1}{i}.$$

Write the following sums in terms of harmonic terms.

1.
$$\sum_{i=k}^{N} \frac{1}{i}$$

2.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2N}$$
 4. $\sum_{i=1}^{2N} \frac{(-1)^{i+1}}{i}$

3.
$$\sum_{i=1}^{N} \frac{1}{2i-1}$$

4.
$$\sum_{i=1}^{2N} \frac{(-1)^{i+1}}{i}$$

Fubini-Tonelli

- $A_{i,k}$ is a function of 2 variables. For example, $A_{i,k} = \frac{i}{k+i^2}$.
- Decide what to write instead of each "?" so that the following identity is true:

$$\sum_{i=1}^{N} \sum_{k=1}^{i} A_{i,k} = \sum_{k=?} \sum_{i=?} A_{i,k}$$

Warm up: suprema and infima

Find the supremum, infimum, maximum, and minimum of the following sets (if they exist):

- 1. A = [-1, 5)
- 2. $B = (-\infty, 6] \cup (8, 9)$
- 3. $C = \{2, 3, 4\}$
- $4. D = \left\{ \frac{1}{n} : n \in \mathbb{Z}, n > 0 \right\}$
- 5. $E = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{Z}, n > 0 \right\}$
- 6. $F = \{2^n : n \in \mathbb{Z}\}$

Suprema from a graph

Calculate, for the function g on the interval [0.5, 1.5]:

- 1. supremum 2. infimum 3. maximum 4. minimum

Trig suprema

Let $f(x) = \sin x$.

Find four open intervals I_1 , I_2 , I_3 , I_4 such that

- 1. f has a supremum and an infimum on I_1 .
- 2. f has a supremum and no infimum on I_2 .
- 3. f has a maximum and a minimum on I_3 .
- 4. f has a maximum and no minimum on I_4 .

Empty set

- 1. Does \emptyset have an upper bound?
- 2. Does \emptyset have a supremum?
- 3. Does ∅ have a maximum?
- 4. Is \emptyset bounded above?

Equivalent definitions of supremum

Assume S is an upper bound of the set A.

Which of the following is equivalent to "S is the supremum of A"?

- 1. If R is an upper bound of A, then $S \leq R$.
- 2. $\forall R \geq S$, R is an upper bound of A.
- 3. $\forall R \leq S$, R is not an upper bound of A.
- 4. $\forall R < S$, R is not an upper bound of A.
- 5. $\forall R < S$, $\exists x \in A$ such that R < x.
- 6. $\forall R < S$, $\exists x \in A$ such that $R \leq x$.
- 7. $\forall R < S$, $\exists x \in A$ such that $R < x \le S$.
- 8. $\forall R < S$, $\exists x \in A$ such that R < x < S.
- 9. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S \varepsilon < x$.
- 10. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S \varepsilon < x \le S$.

Fix these FALSE statements

1. Let f and g be bounded functions on [a, b]. Then

2. Let a < b < c. Let f be a bounded function on [a, c]. Then

3. Let f be a bounded function on [a, b]. Let $c \in \mathbb{R}$. Then:

$$\begin{array}{ccc} \sup \ \text{of} \ (cf) \\ \text{on} \ [a,b] \end{array} = c \ \left(\begin{array}{c} \sup \ \text{of} \ f \\ \text{on} \ [a,b] \end{array} \right)$$

True or False - Suprema and infima

Let $A, B, C \subseteq \mathbb{R}$. Assume $C \subseteq A$. Which statements are true? If possible, fix the false statements

- 1. IF A is bounded above, THEN C is bounded above.
- 2. IF C is bounded below, THEN A is bounded below.
- 3. IF A and C are bounded above, THEN sup $C \leq \sup A$.
- 4. IF A and C are bounded below, THEN inf $C \leq \inf A$.
- 5. IF A and B are bounded, $\sup B \leq \sup A$, and $\inf A \leq \inf B$, THEN $B \subseteq A$.
- 6. IF A and B are bounded above, THEN $\sup(A \cup B) = \max\{\sup A, \sup B\}$.
- 7. IF A and B are bounded above, THEN $\sup(A \cap B) = \min\{\sup A, \sup B\}$.

Warm up: partitions

Which ones are partitions of [0, 2]?

- 1. [0, 2]
- 2. {0.5, 1, 1.5}
- **3**. {0, 2}
- **4**. {1, 2}
- 5. {0, *e*, 2}
- **6**. {0, 1.5, 1.6, 1.7, 1.8, 1.9, 2}
- 7. $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\} \cup \{2\}$

Partitions of different intervals

Let a < b < c. Which of these statements are true? If any are false, fix them.

- 1. IF P and Q are partitions of [a, b], THEN $P \cup Q$ is a partition of [a, b].
- 2. IF P and Q are partitions of [a, b], THEN $P \cap Q$ is a partition of [a, b].
- 3. IF P is a partition of [a, b] and Q is a partition of [b, c] THEN $P \cup Q$ is a partition of [a, c]
- 4. IF P is a partition of [a, c], THEN $P \cap [a, b]$ is a partition of [a, b]

Warm up: lower and upper sums

Let $f(x) = \sin x$.

Consider the partition $P = \{0, 1, 3\}$ of the interval [0, 3].

Calculate $L_P(f)$ and $U_P(f)$.

Equations for lower and upper sums

Let f be a **decreasing**, bounded function on [a, b]. Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b]

Which ones are a valid equation for $L_P(f)$? For $U_P(f)$?

1.
$$\sum_{i=0}^{N} f(x_i) \Delta x_i$$
 3. $\sum_{i=0}^{N-1} f(x_i) \Delta x_i$ 5. $\sum_{i=1}^{N} f(x_{i-1}) \Delta x_i$

2.
$$\sum_{i=1}^{N} f(x_i) \Delta x_i$$
4.
$$\sum_{i=1}^{N} f(x_{i+1}) \Delta x_i$$
6.
$$\sum_{i=0}^{N-1} f(x_i) \Delta x_{i+1}$$

Recall: $\Delta x_i = x_i - x_{i-1}$.

Easier than it looks

Let f be a bounded function on [a, b].

Assume f is not constant.

Prove that there exists a partition P of [a, b] such that

$$L_P(f) \neq U_P(f)$$
.

Joining partitions

Assume

$$L_P(f) = 2, \quad U_P(f) = 6$$

 $L_Q(f) = 3, \quad U_Q(f) = 8$

- 1. Is $P \subseteq Q$?
- 2. Is $Q \subseteq P$?
- 3. What can you say about $L_{P\cup Q}(f)$ and $U_{P\cup Q}(f)$?

A tricky question

Let f be a bounded function on [a, b]. Which statement is true?

1. There exists a partition P of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f)$$
 and $\overline{I_a^b}(f) = U_P(f)$.

2. There exist partitions P and Q of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f)$$
 and $\overline{I_a^b}(f) = U_Q(f)$.

A tricky question

Let f be a bounded function on [a, b]. Which statement is true?

1. There exists a partition P of [a, b] such that

$$I_a^b(f) = L_P(f)$$
 and $\overline{I_a^b}(f) = U_P(f)$.

2. There exist partitions P and Q of [a, b] such that

$$\underline{I_{\underline{a}}^{b}}(f) = L_{P}(f)$$
 and $\overline{I_{\underline{a}}^{b}}(f) = U_{Q}(f)$.

3. There exists a partition P of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f).$$

An alternative definition

Let f be a bounded function on the interval [a, b]. Let $M \in \mathbb{R}$. Some of these four statements imply others. What implies what?

- 1. \forall partition P of [a,b], $L_P(f) \leq M$,
- 2. $\forall \varepsilon > 0$, \exists partition P of [a, b] s.t. $M \varepsilon < L_P(f)$
- 3. $M \leq \underline{I}_a^b(f)$
- 4. $\underline{I_a^b}(f) \leq M$

An alternative definition

Let f be a bounded function on the interval [a, b]. Let $M \in \mathbb{R}$. Some of these four statements imply others. What implies what?

- 1. \forall partition P of [a,b], $L_P(f) \leq M$,
- 2. $\forall \varepsilon > 0$, \exists partition P of [a, b] s.t. $M \varepsilon < L_P(f)$
- 3. $M \leq \underline{I}_a^b(f)$
- 4. $\underline{I}_a^b(f) \leq M$

Based on this exercise, we could have defined $\underline{I_a^b}(f)$ as "the only number $M \in \mathbb{R}$ satisfying these two properties: ..."

Use the same idea to write an alternative definition of $\overline{I_a^b}(f)$.

The " ε -characterization" of integrability

True or False?

Let f be a bounded function on [a, b].

- 1. IF " $\forall \varepsilon > 0$, \exists a partition P of [a, b] s.t. $U_P(f) L_P(f) < \varepsilon$ ", THEN f is integrable on [a, b]
- 2. IF f is integrable on [a, b]

THEN " $\forall \varepsilon > 0$, \exists a partition P of [a,b] s.t. $U_P(f) - L_P(f) < \varepsilon$ ".

The " ε -characterization" of integrability - Part 1

True or False?

Let f be a bounded function on [a, b].

- IF " $\forall \varepsilon > 0$, \exists a partition P of [a,b] s.t. $U_P(f) L_P(f) < \varepsilon$ ",
- THEN f is integrable on [a, b]

Hints:

- 1. Recall the definition of "f is integrable on [a, b]".
- 2. Let *P* be a partition.

Order the numbers $U_P(f)$, $L_P(f)$, $\overline{I_a^b}(f)$, $\underline{I_a^b}(f)$.

(Draw a picture of these numbers in the real line.)

The " ε -characterization" of integrability - Part 2

True or False?

Let f be a bounded function on [a, b].

- IF f is integrable on [a, b]
- THEN " $\forall \varepsilon > 0$, \exists a partition P of [a,b] s.t. $U_P(f) L_P(f) < \varepsilon$ ".

Hints: Assume f is integrable on [a,b]. Let I be the integral. Fix $\varepsilon > 0$.

- 1. Recall the definition of "f is integrable on [a, b]".
- 2. There exist a partition P_1 s.t. $U_{P_1}(f) < I + \frac{\varepsilon}{2}$. Why?
- 3. There exist a partition P_2 s.t. $L_{P_2}(f) > I \frac{\varepsilon}{2}$. Why?
- 4. What can you say about $U_{P_1}(f) L_{P_2}(f)$?
- 5. Construct a partition P s.t. $L_{P_2}(f) \leq L_P(f) \leq U_P(f) \leq U_{P_1}(f)$.

Example 1: a constant function

Consider the function f(x) = 2 on [0, 4].

- 1. Given $P = \{0, 1, e, \pi, 4\}$, compute $L_P(f)$ and $U_P(f)$.
- 2. Explicitly compute *all* the upper sums and *all* the lower sums.
- 3. Compute $I_0^4(f)$
- 4. Compute $\underline{I_0^4}(f)$
- 5. Is *f* integrable on [0, 4]?

Example 2: a non-continuous function

Consider the function $f(x) = \begin{cases} 0 & x = 0 \\ 5 & 0 < x \le 1 \end{cases}$, defined on [0, 1].

- 1. Let $P = \{0, 0.2, 0.5, 0.9, 1\}$. Calculate $L_P(f)$ and $U_P(f)$ for this partition.
- 2. Fix an arbitrary partition $P = \{x_0, x_1, \dots, x_N\}$ of [0, 1]. What is $U_P(f)$? What is $L_P(f)$? (Draw a picture!)
- 3. Find a partition P with exactly 3 points (2 subintervals) such that $L_P(f)=4.99$.
- 4. What is the upper integral, $\overline{I_0^1}(f)$?
- 5. What is the lower integral, $I_0^1(f)$?
- 6. Is *f* integrable on [0, 1]?

Example 3: a very non-continuous function

Consider the function f defined on [0,1]:

$$f(x) = \begin{cases} 1/2 & \text{if } 0 \le x \le 1/2\\ 1 & \text{if } 1/2 < x \le 1 \text{ and } x \in \mathbb{Q}\\ 0 & \text{if } 1/2 < x \le 1 \text{ and } x \notin \mathbb{Q} \end{cases}$$

- 1. Draw a picture!
- 2. Let $P=\{0,0.2,0.4,0.6,0.8,1\}$. Calculate $L_P(f)$ and $U_P(f)$. 3. Construct a partition P such that $L_P(f)=\frac{1}{4}$ and $U_P(f)=\frac{3}{4}$
- 4. What is the upper integral, $I_0^1(f)$?
- 5. What is the lower integral, $I_0^1(f)$?
- 6. Is *f* integrable on [0, 1]?

Sum of non-integrable functions

Find bounded functions f and g on [0,1] such that

- f is non-integrable on [0,1],
- g is non-integrable on [0,1],
- f + g is integrable on [0, 1].

or prove this is impossible.

Properties of the integral

Assume we know the following

$$\int_0^2 f(x)dx = 3, \qquad \int_0^4 f(x)dx = 9, \qquad \int_0^4 g(x)dx = 2.$$

Compute:

1.
$$\int_0^2 f(t)dt$$

$$2. \int_0^2 f(x) dx$$

3.
$$\int_0^2 f(t) dx$$

4.
$$\int_{2}^{0} f(x) dx$$

$$5. \int_2^4 f(x) dx$$

$$6. \int_{-2}^{0} f(x) dx$$

7.
$$\int_0^4 [f(x) - 2g(x)] dx$$

The norm of a partition

- 1. Construct a partition P of [0,1] such that $||P|| = \frac{\pi}{10}$.
- 2. Construct a sequence of partitions of [0,1]

$$P_1, P_2, P_3, \dots$$

as simple as possible, such that $\lim_{n\to\infty} ||P_n|| = 0$.

3. Construct a *different* sequence of partitions of [0,1]

$$Q_1, Q_2, Q_3, \ldots$$

such that $\lim_{n\to\infty}||Q_n||=0$.

Compute $\int_{1}^{2} x^{2} dx$ using Riemann sums

Let $f(x) = x^2$ on [1,2]. Let P_n be the partition that breaks [1,2] into n subintervals of equal length.

- 1. Write a explicit formula for P_n .
- 2. What is Δx_i ?
- 3. Write the Riemann sum $S_{P_n}^*(f)$ with sigma notation (choose x_i^* as the right endpoint).
- 4. Add the sum
- 5. Compute $\lim_{n\to\infty} S_{P_n}^*(f)$.
- 6. Repeat the last 3 questions when we choose x_i^* as the left endpoint.

Helpful identities:
$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}, \qquad \sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6}$$

Riemann sums backwards

Interpret the following limits as integrals:

1.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \frac{i}{n}$$
 2.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{n+i}{n^2}$$

$$2. \lim_{n\to\infty}\sum_{i=1}^{\infty}\frac{n+i}{n^2}$$

Hint: Let f be a continuous function on [0,1]. Write a formula for $\int_{1}^{1} f(x)dx$ as a limit of Riemann sums, making the simplest choices you can.

The Mean Value Theorem for integrals

Prove the following theorem.

Theorem

Let a < b. Let f be a continuous function on [a, b].

There exists $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

The Mean Value Theorem for integrals

Prove the following theorem.

Theorem

Let a < b. Let f be a continuous function on [a, b].

There exists $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(t) dt$$

Hints:

- 1. Compute $L_P(f)$ and $U_P(f)$ for the partition $P = \{a, b\}$.
- 2. Use that $L_P(f) \leq \int_a^b f(t)dt \leq U_P(f)$ to prove that $??? \leq \frac{1}{b-a} \int_a^b f(t)dt \leq ???$
- 3. Use EVT and IVT.