# Сверточные нейронные сети

## Идея сверточных сетей



Эксперимент Дэвида Хьюбела и Торстена Визеля (1962)

#### Результаты эксперимента

- Соседние нейроны обрабатывают сигналы с соседних областей сетчатки;
- Нейроны образуют иерархическую структуру;
- Нейроны организованы в так называемые колонки вычислительные блоки, которые трансформируют и передают информацию от уровня к уровню.



# Ян ЛеКун и LeNet-5 (1998)



# LeNet + теория обучения + большие данные + *железо* = AlexNet (2012)



#### Успех сверточных нейронных сетей

## ILSVRC top-5 error on ImageNet



#### Задача классификации



What We See

What Computers See

#### Структура



# Операция свертки



#### Пример ядра свертки



 $Multiplication \ and \ Summation = (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600 \ (A \ large \ number!)$ 

# Padding и Striding





Padding (добавление рамки)

Striding (размер шага ядра)

#### Считаем размер выхода сверточного слоя

- ullet Вход: тензор  $H_{in} \cdot W_{in} \cdot F_{in}$
- ullet Выход: тензор  $H_{out} \cdot W_{out} \cdot F_{out}$
- 4 гиперпараметра:
  - F: число фильтров
  - Н, W : пространственный размер фильтров
  - S: шаг
  - Р: количество заполнения нулями
- Соотношение размеров входа и выхода:

$$H_{out} = (H_{in} - H_k + 2P)/S + 1$$
  
 $W_{out} = (W_{in} - W_k + 2P)/S + 1$   
 $F_{out} = F$ 

#### Даунсемплинг

- Замена выхода нейрона статистикой, подсчитанной по его соседям
  - max pooling
  - (weighted) average pooling
- Обеспечивает приблизительную инвариантность выхода к малому переносу входа
- Наличие признака важнее, чем его точная позиция



2 4 2 0

Пример















#### Считаем размер выхода pooling слоя

- ullet Вход: тензор  $H_{in} \cdot W_{in} \cdot F_{in}$
- ullet Выход: тензор  $H_{out} \cdot W_{out} \cdot F_{out}$
- 3 гиперпараметра:
  - F: пространственный размер объединения
  - S: шаг объединения
- Соотношение размеров входа и выхода:

$$H_{out} = (H_{in} - F)/S + 1$$

$$W_{out} = (W_{in} - F)/S + 1$$

$$F_{out} = F$$

#### Полносвязный слой



#### Пример работы сверточной сети



#### **VGG-16**



#### Недостатки VGG

- Очень медленная скорость обучения.
- Сама архитектура сети весит слишком много (появляются проблемы с диском и пропускной способностью)

#### Inception



#### Inception слой



(a) Inception module, naïve version



(b) Inception module with dimension reductions

# Архитектура Inception-V1



#### ResNet



#### Блок ResNet



#### DenseNet



#### Вопросы

- 1. Вход размера 224х224х3, применяем фильтр размера 11х11х96 с шагом 4 и дополнением 3. Какого размера будет выход?
- 2. Зачем делать даунсемплинг?
- Отличия ResNet от LeNet?

#### Источники

- 1. <a href="https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67">https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67</a>
  <a href="bb41454e1">bb41454e1</a>
- 2. <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf">http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf</a>
- 3. <a href="https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf">https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf</a>
- 4. <a href="https://neurohive.io/ru/osnovy-data-science/glubokaya-svertochnaja-nejronnaja-set/">https://neurohive.io/ru/osnovy-data-science/glubokaya-svertochnaja-nejronnaja-set/</a>
- 5. <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>
- 6. <a href="https://arxiv.org/pdf/1409.1556">https://arxiv.org/pdf/1409.1556</a>
- 7. <a href="https://arxiv.org/pdf/1409.4842">https://arxiv.org/pdf/1409.4842</a>