Análise de Sistemas

Aula 6

Prof. Emerson Klisiewicz

CONTEXTUALIZAÇÃO

Aula 6

- Diagrama de Casos de Uso
- Diagrama de Classes e Diagrama de Objetos
- Diagrama de Sequencia
- Diagrama de Máquina de Estados

O Sucesso...

Clientes satisfeitos

Eles estão satisfeitos quando você:

- Atende às expectativas
- ■Entrega no prazo
- Entrega no tudo

dentro do orçamento.

O Sucesso...

E para isso acontecer precisamos

estar auxiliados por uma boa

metodologia. A UML nos

ajuda nisso!!

INSTRUMENTALIZAÇÃO

- Descreve o que o sistema faz do ponto de vista do observador externo.
- Ajuda a esclarecer os requisitos do sistema.

Ajuda a dividir o desenvolvimento do sistema em tarefas.

Caso de Uso: Representa as funcionalidades que o sistema disponibiliza aos usuários.

Atores: são diferentes usuários que operam o sistema. Sistemas

externos que interagem com o

sistema.

Associação: Representa a comunicação entre o ator e o caso de uso. Também existem associações entre casos de usos.

Inclusão: quando dois ou mais casos de usos incluem uma sequencia comum de interações, esta sequencia pode

ser descrita em

outro caso de uso.

➤ Inclusão: Somente entre Casos de Usos. Vários casos de uso podem incluir o comportamento deste caso de uso comum.

> Inclusão:

Extensão: Somente entre Casos de Usos. Serve pra Modelar situações em que diferentes seqüências de interações podem

ser inseridas em um

mesmo caso de uso.

Extensão: Estas seqüências representam um comportamento eventual.

- Generalização: Pode existir entre 2
 casos de Uso ou entre dois atores.
 Permite que um caso de uso (ou um ator) herde o
 - comportamento de
 - outro case de uso
 - (ou ator).

Generalização: É recomendado que o caso de uso pai sempre seja abstrato para evitar problemas na especificação.

Generalização: o caso de uso pai é utilizado apenas para representar a natureza dos casos de uso filho.

- > Largamente utilizado.
- Descreve os diferentes tipos de objeto e o relacionamentos entre eles.

- Composto por:
 - ✓ Classes.
 - ✓ Associações Relacionamento entre as classes.

- > ATRIBUTOS E MÉTODOS
 - ✓ Atributos Armazenam os "dados" dos objetos.
 - ✓ Métodos Funções
 - que uma instância da
 - classe pode executar.

Visibilidade:

"+" = Visibilidade pública - pode ser utilizado por qualquer classe.

Visibilidade:

```
"#" = Visibilidade protegida –
somente a própria classe ou suas
subclasses podem ter
acesso.
```

Visibilidade:

"-" = Visibilidade privada - Somente a classe possuidora do atributo poderá utilizá-lo.

- > RELACIONAMENTOS
 - ✓ ASSOCIAÇÕES: vínculo que ocorre normalmente entre duas classes,
 - entre uma classe
 - com ela mesma e
 - entre várias classes.

- > RELACIONAMENTOS
 - ✓ AGREGAÇÃO: Tipo especial de
 - associação onde tenta-se demonstrar
 - informações de um
 - objeto precisam ser
 - complementadas...

- > RELACIONAMENTOS
 - ✓ AGREGAÇÃO: pelas informações contidas em um ou mais objetos de outra classe.

- > RELACIONAMENTOS
 - ✓ COMPOSIÇÃO: Variação da
 - associação de agregação. Vínculo
 - mais forte entre
 - Objetos-Todo e
 - Objetos-Parte.

> RELACIONAMENTOS

Especialização: Tipo especial de relacionamento. Identificar

classes-mãe (gerais)

e classes-filha

(especializadas).

- > RELACIONAMENTOS
 - ✓ DEPENDÊNCIA: Demonstra certo
 - grau de dependência de uma classe a
 - Outra. A mudança
 - numa classe deverá
 - refletir na outra.

- > RELACIONAMENTOS
 - ✓ CLASSE ASSOCIATIVA: quando da ocorrência de associações que
 - possuem multiplicidade
 - muitos em todas as
 - suas extremidades.

Diagrama de Objetos

- Complemento do Diagrama de Classes.
- Exibe os valores armazenados pelos objetos de um
 - Diagrama de Classes.

Diagrama de Objetos

Diagrama de Seqüência

- Preocupa-se com a ordem temporal em que as mensagens são trocadas.
- Baseia-se em um Caso de Uso.

Diagrama de Seqüência

- Costuma identificar o Evento gerador do processo modelado, bem como, o Ator responsável por este evento.
- Dá ênfase à seqüência de mensagens.

Objetos: Representa uma instância de uma determinada classe.

Mensagens: Representa troca de mensagens entre os objetos.

Fragmentos: Servem para separar blocos de mensagens condicionadas a teste ou laço.

Diagrama de Estados

- Exibe os possíveis estados de um objeto.
- Exibe também as transições que causam a mudança de estado.

Diagrama de Estados

Aplicação

Diagrama de Casos de Uso

Diagrama de Classe

Diagrama de Estados

Síntese

Um modelo pode ser visto como uma representação idealizada de um sistema a ser construído.

Uma simplificação da realidade que nos ajuda a entender um problema complexo.

A modelagem de sistemas de software consiste na utilização de notações gráficas e textuais para construir modelos

que representam o

essencial de

um sistema.

Ajuda no gerenciamento da complexidade inerente ao desenvolvimento de software.

- Ajuda na comunicação entre as pessoas envolvidas.
- ➤ Ajuda na predivisão do futuro comportamento do

sistema.