香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九五年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1995

數學 試卷一 MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上並原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

在今年考試結束後,各科評卷參考將存放於北角教師中心,供教師參閱。
Each year after the examinations, marking schemes will be available for reference at the North Point Teachers' Centre.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1995

95-CE-MATHS I-1

Hong Kong Certificate of Education Examination Mathematics Paper I

NOTES FOR MARKERS

- It is very important that all markers should adhere as closely as possible to the marking scheme. In
 many cases, however, candidates will have obtained a correct answer by an alternative method not
 specified in the marking scheme. In general, a correct answer merits all the marks allocated to that
 part, provided that the method used is sound.
- 2. In a question consisting of several parts each depending on the previous parts, marks may be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answers should NOT be awarded. In the marking scheme, marks are classified as:

'M' marks -

awarded for correct methods being used;

'A' marks -

awarded for the accuracy of the answers;

Others -

awarded for correctly completing a proof or arriving at an answer given

in a question.

- 3. Use of notation different from those in the marking scheme should not be penalised.
- 4. Each mark deducted for poor presentation (p.p.) should be denoted by pp-1:
 - a. At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - b. For similar p.p., deduct 1 mark for the first time that it occurs.
 i.e. do not penalise candidates twice in the paper for the same p.p.
- 5. Each Mark deducted for wrong/no unit (u.) should be denoted by u-1:
 - a. No mark can be deducted for u. in Section A.
 - b. At most deduct 1 mark for u. for the whole paper.
- 6. Marks entered in the Page Total Box should be the NET total scored on that page.

		只吸乳刷多度 FUR LEACHERS	U2E	UNLY
		Solution	Marks	Remarks
1.	(a)		1A	
	(b)	$(x-1)^2(x+5)$	1A	
	(c)	135° (or $\frac{3\pi}{4}$)	1A	
	(d)	13	1A	
	(e)	6	1A (5)	
2.	(a)	$(a+b)^2-(a-b)^2 = (a^2+2ab+b^2)-(a^2-2ab+b^2)$ = 4ab	1A 1A	
		OR $(a+b)^2-(a-b)^2 = [(a+b)+(a-b)][(a+b)-(a-b)]$	1A	
		= 4ab	1A	
	(b)	Remainder = $(-2)^3+1$	1A	_
		OR By long division	1A	Or by synthetic division
		$x^2 - 2x + 4$		
		$\frac{x^2 - 2x + 4}{x+2) x^3 + 0 + 0 + 1}$		
		$\frac{x^3+2x^2}{-2x^2}$		
		$-2x^2-4x$		
		4x + 1 $4x + 8$		
		- 7	2A	
			(4)	†
2	/ ->	g = ²⁰ (2/1) (4/20 1)]	1A	
3.	(4)	$S_{20} = \frac{20}{2} [2(1) + 4(20 - 1)]$		
		= 780	1A	
	(b)	$S_{\bullet} = \frac{9}{1 - \frac{1}{3}}$	1A	
		$= 13\frac{1}{2}$ (or 13.5)	1A	
		2	(4)	
				i

		> () () () () () () () () () (ILACILIA) UJL	. UILI
		Solution		Marks	Remarks
4.	·(a)	Mr. Lee paid			
		\$2400000×(1+30%)		1A	
		= \$3120000	:	1A	
	(b)	3000000-3120000 3120000 ×100%		1M	
		≈ -3.85%		1A	r.t3.85%
		i.e. Mr. Lee lost 3.85%.		(4)	-
				(4)	
5.	(a)	x: y+1 = 4:5			
		$\frac{x}{y+1} = \frac{4}{5}$		1A	Can be omitted
		$x = \frac{4(y+1)}{5}$		1A	Or other equivalent forms
	(h)	Sub. $x = \frac{4(y+1)}{5}$ into $2x+9y = 97$,			or outer equivalent forms
	(B)	•			
		$\frac{8(y+1)}{5} + 9y = 97$		1M	
		y=9 and x=8		1A + 1	<u> </u>
		OR Let $x=4k$, $y+1=5k$ for some $k\neq 0$.		_	
		Then $2(4k) + 9(5k-1) = 97$ k=2		1M	
		x=8 and $y=9$		1A + 1	١
				(5)	**************************************
				(3)	
6.	2sin	²0+5sin0-3 = 0			
		$n\theta - 1) (\sin\theta + 3) = 0$	·	1A	Can be omitted
	sin0	$=\frac{1}{2}$ or $\sin\theta=-3$ (rej.)		1A + 1	
	θ = 3	0° or 150° $(\frac{\pi}{6} \text{ or } \frac{5\pi}{6})$		1A + 1	Deduct 1A for each excess answer
				(5)	•
				į	
					•

	Solution	Marks	Remarks
. (a)	$3^x = \frac{1}{3^{\frac{3}{2}}}$	1A	For $\sqrt{27} = 3^{\frac{3}{2}}$
	$=3^{-\frac{3}{2}}$	1м	For applying $\frac{1}{a^n} = a^{-n}$
	$x = -\frac{3}{2}$	1A	
	$OR 3^x \cdot 3^{\frac{3}{2}} = 1$	1A	÷
	$3^{x+\frac{3}{2}} = 1$	1м	
	$3^{x+\frac{3}{2}} = 1$ $x = -\frac{3}{2}$	1A	
(b)	$\log x = \log 48 - 2\log 4$		
	$= \log 48 - \log 4^2$	1M	For applying $n \log a = \log a^n$.
	$= \log \frac{48}{16}$	1M	For applying $\log a - \log b = \log$
	= log 3		
	x = 3	1A	
	$\mathbf{OR} \log x + \log 4^2 = \log 48$	1M	
	$\log (4^2 x) = \log 48$ $x = 3$	1M	
	X = 3	1A	
		(6)	
(a)	$x^2-3x-4=k$	1A	
	$x^2-3x-k-4=0$		
	$\therefore (i) \alpha + \beta = 3$ $(ii) \alpha \beta = -k-4$	1A 1	Answer only
	(11) up - 2 4	IA	
(b)	By section formula, $\frac{2\alpha+\beta}{3}=0$	1A	
	$2\alpha + \beta = 0.$		
	Solving $\begin{cases} \alpha + \beta = 3 \\ 2\alpha + \beta = 0 \end{cases}$, we have		
	$\alpha=-3$ (or $\beta=6$)	1A	
	$k = (-3)^2 - 3(-3) - 4$		
	= 14	1A	
	OR If $BP=2PA$, then $\beta=-2\alpha$	1A	
	By (a), $\begin{cases} \alpha - 2\alpha = 3 \\ \alpha (-2\alpha) = -k-4 \end{cases}$		
	⇒ α=-3	1A	
	k=14	1A	
		(6)	
	HS I-5		

		ATAHIP D DW			
	Sc	olution		Marks	Remarks
(a)	= 180	of students in		1A	
(b)	(i) The minimum y	early average		One 1A	
	(ii) The minimum y = 45 (or 44)	early average	acore in Group	1A	
(c)	Yearly average score (x	Class mark	Frequency		
	20 < x < 30	25	12		
	$30 < x \le 40$	35	20		
_	$40 < x \le 50$	45	28		
	$50 < x \le 60$	55	32		
	$60 < x \le 70$.65	28		
	$70 < x \le 80$	75	30		
	$80 < x \le 90$	85	22	1A 1A + 1	For the class marks For the frequencies, 1A for any
	$90 < x \le 100$	95	8		being correct
(d)	$\overline{x} = 59.6$			1A	r.t. 59.6
	s = 19.0			1A	r.t. 19.0
(e)	$\overline{x}-s = 40.6$ $\overline{x}+s = 78.6$ Number of students		lie within		
	\overline{x} -s and \overline{x} +s \approx 146 $=$ 112			1A + 1	1A for 146, accept 144-146 1A for 34, accept 32-34. Accept 110-114
	The percentage is	$\frac{112}{180} \times 100\% \approx 62$.2%	1A	Accept answers r.t. 61.1-63.3

Solution Equation of AB: $\frac{y-9}{x-1} = \frac{7-9}{9-1}$ $y-9 = -\frac{1}{4}(x-1)$	Marks	Remarks
$y-9=-\frac{1}{4}(x-1)$	1A	
•		
x 37	1	
$y = -\frac{x}{4} + \frac{37}{4}$ (or $x + 4y = 37$)	1A	or other equivalent forms
Mid-point of $AB = (5,8)$ Slope of the perpendicular bisector of $AB = 4$ Equation of the perpendicular bisector of AB is $y-8=4(x-5)$	1A 1M	Or letting eqtn. be $y=4x+k$
y=4x-12	1A	or other equivalent forms
OR $(x-1)^2 + (y-9)^2 = (x-9)^2 + (y-7)^2$ 16x-4y-48=0 4x-y-12=0	2A 1A	
Solving $y=4x-12$ and $4x-3y+12=0$, we have $4x-3(4x-12)+12=0$ x=6, $y=12\therefore G=(6,12)$	1M 1A	For reducing into 1 unknown
Equation of the girale is		
$(x-6)^2 + (y-12)^2 = (6-1)^2 + (12-9)^2$	1M	
$(x-6)^2 + (y-12)^2 = 34$ or $x^2 + y^2 - 12x - 24y + 146 = 0$	1A	
(i) Let the mid-point of DE be (x,y) , then $\frac{x+5}{2}=6, \frac{y+8}{2}=12$	1M	For both eqtns.
x=7, y=16	1A	
(ii) Equation of DE is		_
$y-16=-\frac{1}{4}(x-7)$,
x+4y-71=0	1A	or other equivalent forms
l: 4x - 3y + 12 = 0 $A = 0$ $B(9,7)$		
	$y-8=4(x-5)$ $y=4x-12$ OR $(x-1)^2+(y-9)^2=(x-9)^2+(y-7)^2$ $16x-4y-48=0$ $4x-y-12=0$ Solving $y=4x-12$ and $4x-3y+12=0$, we have $4x-3(4x-12)+12=0$ $x=6, y=12$ $\therefore G=(6,12)$ Equation of the circle is $(x-6)^2+(y-12)^2=(6-1)^2+(12-9)^2$ $(x-6)^2+(y-12)^2=34$ or $x^2+y^2-12x-24y+146=0$ (i) Let the mid-point of DE be (x,y) , then $\frac{x+5}{2}=6, \frac{y+8}{2}=12$ $x=7, y=16$ (ii) Equation of DE is $y-16=-\frac{1}{4}(x-7)$ $x+4y-71=0$	$y-8=4(x-5)$ $y=4x-12$ OR $(x-1)^2+(y-9)^2=(x-9)^2+(y-7)^2$ $16x-4y-48=0$ $4x-y-12=0$ Solving $y=4x-12$ and $4x-3y+12=0$, we have $4x-3(4x-12)+12=0$ $x=6, y=12$ $\therefore G=(6,12)$ Equation of the circle is $(x-6)^2+(y-12)^2=(6-1)^2+(12-9)^2$ $(x-6)^2+(y-12)^2=34$ or $x^2+y^2-12x-24y+146=0$ (i) Let the mid-point of DE be (x,y) , then $\frac{x+5}{2}=6, \frac{y+8}{2}=12$ $x=7, y=16$ (ii) Equation of DE is $y-16=-\frac{1}{4}(x-7)$ $x+4y-71=0$ 1A $l: 4x-3y+12=0$

		只阪敦即参阅 I UN TEACHERS	UOL	OILI
		Solution	Marks	Remarks
11. (a)	(i)	$p = 1 - \frac{4}{5}$ $= \frac{1}{5} (\text{or } 0.2)$	1 A	
	(ii)	q = 0	1A	Accept answers given in reasonable
	(/	r = 1	1A	order
(b)	(i)	The probability that China will win the Championship 11	1м	M for 1 vp are he amined
		$= \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{4} (\text{or } 0.25)$	1A	1M for $\frac{1}{2} \times p_1$, can be omitted
<u>~</u> ,	(ii)	(I) The probability that Wai Ming will	,	
		study for the test $= \frac{1}{2} \times \frac{1}{3} + \frac{1}{2}$	1M+1M+1	A 1M for $\frac{1}{2} \times p_2$, 1M for $p_3 + p_4$
		$=\frac{2}{3}$ (or 0.667)	1A	r.t. 0.667
		(II) The probability that Wai Ming passes the test		
		$= \frac{2}{3} \times \frac{4}{5}$	1M+1A	1M for answer of (b)(ii)(I) ≯ ₅
		$=\frac{8}{15}$ (or 0.533)	1A	r.t. 0.533
~				
•				

	只限教師參閱 FOR TEACHER	rs' us	E ONLY
	Solution	Marks	Remarks
2. (a)	 (i) 20x+40y≥240 (or x+2y≥12) (ii) 25x+37.5y≤300 (or 2x+3y≤24) (iii) x+y≤10 	1A 1A 1A	Withhold 1A for missing equal signs
(p)	(3,5), (3,6), (4,4), (4,5), (5,4), (6,3), (6,4), (7,3	1A + 1	1A for any 4 correct answers
(c)	Let C be the amount Mrs. Chiu has to paid, then $C=25x+37.5y$	1A	Can be omitted
	C(3,5)=262.5 $C(6,3)=262.5C(3,6)=300$ $C(6,4)=300C(4,4)=250$ $C(7,3)=287.5$		
	Optional: C(4,5)=287.5 C(5,4)=275	1M+1A	1M for correctly substituting 1 point in (b)
	OR By drawing parallel lines of $25x+37.5y=0 (\text{or } 2x+3y=0)$	1M+1A	·
	The least amount = $\$(25 \times 4 + 37.5 \times 4)$ = $\$250$	1	
(d)	(i) (3,6), (6,4)	1A	
	(ii) Let N be the number of chocolates, then $N=20x+40y$	1A	Can be omitted
	<pre>∴ N(3,6)=300 N(6,4)=280 ∴ The greatest number of chocolates that Mrs. Chiu can buy is 300.</pre>	1	
		,	

· ·	Sol	ution		Marks	Remarks
.13. (a)	Volume of water = $\frac{1}{3}$	$\pi(6)^2(12)$ cm ³			
	= 14	4π cm ³		1A	
(b)	$\frac{11-d}{4} = \frac{12}{6}$ (or $\frac{d}{6}$	· <u>6</u> 12)		1M + 1A	•
	11-d = 8				
	d = 3			1A	
(c)	• •	ter that has lea in the cylindric	aked out when the cal reaches A		
	$= 48\pi \text{ cm}^3$			1A	
\sim	(ii) $\pi(4)^2(h+3) - \frac{1}{3}$	$\frac{1}{2}\pi\left(\frac{h}{2}\right)^2h=104\pi$	·	1A	·
	$16h + 48 - \frac{h^3}{12}$	= 104			
	$h^3 - 192h + 672$	= 0	••••(*)	1	•
	(iii) Let $f(h) = h^3 - f(0) = 672 > 0$ and			1M	Testing the signs are different
	\therefore equation (*)	has a root betw	ween 0 and 6.		
	Interval	mid-value (h_i)	f(h _i)		
	0 < h < 6	3	+ve (123)	1M + 1A	1 M for testing sign at mid-value
	3 < h < 6	4.5	-ve (-100.875)	1M	1A for the correst sign of the
	3 < h < 4.5	3.75	+ve (4.734)		function at mid-value 1M for the correct choice of the next interval
	3.75 < h < 4.5	4.125	-ve (-49.811)		
	3.75 < h < 4.125	3.9375	-ve (-22.953)		
	3.75 < h < 3.9375	3.84375	-ve (-9.211)		
	∴ 3.75 < h < 3.84375 h = 3.8 (correct t		ce)	1	Check whether it is bounded by the last interval
	12 cm 12 cm 4 cm	12 cm cm h cm 4 cm	11 cm		

	スルスストル 参阅 FUN TENGTENS	USE	ONLI
	Solution	Marks	Remarks
4. (a)(i)	$\therefore \angle PMA = \angle PRQ \qquad (corr. \angle s, AC//QR)$	1A	"同位角・AC QR"
	and $\angle PRQ = \angle PQA$, (\(\sum_{\text{in alt. segment}}\))	1A	"弦切角定理"或
	$\therefore \angle PMA = \angle PQA \ .$		"交錯弓形的圓周角"
	Hence M , P , A and Q are concyclic. (converse of \angle s in same segment)		
(ii)	$\angle RQM = \angle AMQ , \qquad (alt. \angle s, AC//QR)$	1A	"內錯角・AC QR"
	$\angle AMQ = \angle APQ$ (\(\angle \sin \) same segment)	1A	"同 抓 上的圆周角"或 "同弓形內的圓周角"
	and $\angle APQ = \angle PRQ$, (\angle in alt. segment)	1 A	_,,,,
	$\therefore \angle RQM = \angle PRQ \ .$		
	Hence $MR = MQ$. (sides opp. equal $\angle s$)	1A	Or "converse of base ∠s, isos. \Delta", "base ∠s equal", "equal ∠s, equa sides"
	C M B SO A		"等角對邊相等" 或 "等腰三角形底角等的一 逆定理"或"底角相 等"或"等逸對等角" 或"等角對等邊"
(b)	∠QPR = ∠QAM = 50°	1A	
	$/AOP = \frac{180^{\circ} - 20^{\circ} - 50^{\circ}}{(\text{or } \angle APQ = 55^{\circ})}$		
	, 2		
	$= 55^{\circ}$ $\angle MQR = \angle MRQ = \angle AQP = 55^{\circ}$	1A 1A	For $\angle MQR = 55^{\circ}$ or $\angle MRQ = 55^{\circ}$
	OR / PMQ = 180°-20°-50° = 110°	1A	
	$\angle MQR = \frac{110^{\circ}}{2} = 55^{\circ} \text{ (or } \angle MRQ = 55^{\circ}\text{)}$		_
	$L MQR = \frac{1}{2} = 55^{\circ} (OF \ L MRQ = 55^{\circ})$	1A	
	$\angle PQR = \angle MQR + \angle PQM = \angle MQR + \angle PAM = 55^{\circ} + 20^{\circ} = 75^{\circ}$	1A	
(c)	(i) ∴ ∆RMQ is isosceles		
	(OR RM=QM		
	OR ΔMHR≃ΔMHQ) ∴RH=QH	1	,
	(ii) The perpendicular bisector of a chord of		•
	a circle passes through the centre of the		
	circle. (OR MH is the perpendicular bisector	1	
	of RQ.)		
95-CE-MA	ATHS I-11	1	l

	只败教師参阅 FUN TEACHENS	USE	UNLT
	Solution	Marks	Remarks
l5. (a)	$OA' = \frac{2}{\tan 30^{4}} \text{ m}$		
	$\approx 3.46 \text{ m}$ (or $2\sqrt{3} \text{ m}$)	1A	r.t. 3.46
•	$OB' = \frac{2.6}{\tan 30^6} \text{ m}$	1A	
	≈ 4.50 m (or $(2.6)\sqrt{3}$ m)		
	$A'B' = 1.04 \text{ m} (\text{or } (0.6)\sqrt{3} \text{ m})$	1A	r.t. 1.04
(b)	$\cos \angle BAC = \frac{(0.6)^2 + (0.7)^2 - (0.8)^2}{2(0.7)(0.6)}$	1A	
	$= \frac{1}{4}$		
	LBAC ≈ 75.5° (or 75°30′ / 75°31′)	1A	r.t. 75.5
-	$\sin 75.5^{\circ} = \frac{OD}{0.7m}$	1M	
	OD ≈ 0.678 m	1 A	r.t. 0.678
(c)	Area of the shadow $A'B'C' = \frac{1}{2}(A'B')(OD)$ m ²	1M	With substitution
. ,	$\approx 0.352 \text{ m}^2 \text{ (or 0.353 m}^2\text{)}$	1A	r.t. 0.352 / 0.353
. (q)	If the angle of elevation of the sun is less than 30°. (i) the shadow of AB will be longer than A'B'. (ii) : (1) the base of the triangle will be increased; (2) the height of the triangle will remain	1 A	,
	unchanged. the area of the shadow of the road sign will be larger than that of A'B'C'.	1+1	for correct conclusion with one reason for all being correct
	Sun rays 0.8 m 0.7 m North		