

Sep 03, 2024

RNA purification and cDNA synthesis

DOI

dx.doi.org/10.17504/protocols.io.ewov1nnzogr2/v1

Vicki Deng¹, Fredrick leon², David Booth³

¹UT Austin; ²UCSF; ³University of California, San Francisco

BioBooth

Tech. support phone: +1 (719) 429-6547 email: dbooth@berkeley.edu

Vicki Deng

UT Austin

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.ewov1nnzogr2/v1

Protocol Citation: Vicki Deng, Fredrick leon, David Booth 2024. RNA purification and cDNA synthesis . protocols.io https://dx.doi.org/10.17504/protocols.io.ewov1nnzogr2/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: February 04, 2022

Last Modified: September 03, 2024

Protocol Integer ID: 57845

Keywords: choanoflagellate, reverse transcription, cDNA, RNA purification

Abstract

This protocol compiles multiple methods for purifying RNA from an S. rosetta lysate and provides a modified reverse transcriptase protocol to robustly synthesize cDNA from transcripts with higher GC content.

Culture cells for lysate

1 Grow enough culture for ~50x10⁷ cells.

2d

- for swimming cultures: seed 40 mL acclimated cells at ~ [M] 8*10^4 cells/ml then culture at 27 °C for 24:00:00
- for thecate cultures: seed ▲ 100 mL acclimated cells in culture plate then culture at ② 27 °C for ② 24:00:00

Number of cells doesn't necessarily matter. You just want enough cells to extract sufficient nucleic acid from taking in account the loss of yield in subsequent steps.

2 Follow preferential lysis protocol

Extract RNA

3 You can extract total RNA (go to step 3.1) or mRNA (go to step 3.2)

3.1 Trizol LS total RNA extraction

1h 15m 30s

- 1. Add 3:1 Trizol LS to lysate and incubate for 00:05:00
- 3. Centrifuged sample at 12000 x g, 4°C, 00:15:00
- 4. Collect aqueous layer

RNA precipitation

- 1. Add \perp 500 μ L cold isopropanol per \perp 750 μ L of added Trizol LS to collected aqueous layer and incubate on ice for \bigcirc 00:10:00
- 2. Centrifuge sample at 12000 x g, 4°C, 00:30:00
- 3. Washed pellet with cold 75% ethanol

- 5. Resuspend with [м] 1 millimolar (mM) citrate , Срн 6.4.
- 6. Measure RNA concentration

or

RNeasy Cleanup

we use the RNeasy MinElute Cleanup Kit

- 1. Adjust the sample to a volume of \mathbb{Z} 100 μ L
- 2. Add ☐ ∠ 250 µL 96-100% ethanol to the diluted RNA, and mix
- 3. Transfer the sample (🚨 700 µL) to an RNeasy MinElute spin column placed in a 2 ml collection tube. Centrifuge for 8000 x g, Room temperature, 00:00:15. Discard the flowthrough.
- 4. Place the RNeasy MinElute spin column in a new 2 ml collection tube. Add 4 500 uL Buffer RPE to the spin column. Close the lid gently, and centrifuge for
- **8** 8000 x g, Room temperature, 00:00:15
- 5. Add \perp 500 µL of 80% ethanol to the RNeasy MinElute spin column. Close the lid gently, and centrifuge for 8000 x g, Room temperature, 00:02:00
- 6. Place the RNeasy MinElute spin column in a new 2 ml collection tube. Open the lid of the spin column, and centrifuge at full speed for (5) 00:05:00.
- 7. Place the RNeasy MinElute spin column in a new 1.5 ml collection tube. Add 🛴 14 μL RNase-free water directly to the center of the spin column membrane. Close the lid gently, and centrifuge for 1 min at full speed to elute the RNA
- 8. For long-term storage, supplement the RNA with [M] 1 millimolar (mM) sodium citrate ,

(рн 6.4

3.2 mRNA extraction

13m

We use the **NEB Magnetic mRNA Isolation Kit**

- 1. Equilibrate \perp 100 μ L beads with \perp 200 μ L binding buffer
- 2. Add lysate and mix for 👏 00:10:00
- 3. Pull down beads with magnet and remove supernatant
- 4. Add <u>Δ</u> 500 μL Wash Buffer 1 and mix for (5) 00:01:00
- 5. Pull down beads with magnet and remove supernatant
- 6. Repeat step 4-5
- 7. Add \perp 500 μ L Wash Buffer 2 and mix for \bigcirc 00:01:00
- 8. Pull down beads with magnet and remove supernatant
- 9. Repeat step 7-8
- 10. Add Δ 500 μL Low Salt Buffer and mix for 👏 00:01:00
- 11. Pull down beads with magnet and remove supernatant
- 12. Add <u>L</u> 20 µL elution buffer (can vary elution volume for desired concentration; can vary elution buffer, we have used Nano-pure water or nylon filtered 10 mM Tris-acetate pH 8.0)
- 13. Measure mRNA concentration
- 14. For long-term storage, supplement the RNA with [M] 1 millimolar (mM) sodium citrate ,
 - **ф**н 6.4

cDNA synthesis

6m

- 4 We use Invitrogen SuperScript™ IV Reverse Transcriptase kit
- 4.1 Anneal oligo $d(T)_{20}$ primer to RNA sample

6m

1. Assemble the reaction according to this table:

	A	В
Г	Component	Volume
	50 µM oligo d (T)20 primer o r 2 µM gene-s pecific reverse primer	1 μΙ
	10 mM dNTP mix	1 μΙ
	RNA sample (10pg-5µg tot al RNA or 10p g-500 ng mRN A)	up to 11 μl
	DEPC-treated water or nucle ase-free water	to 13 µl

- 2. Mix and incubate reaction at \$\circ\$ 65 °C for \(\circ\$\) 00:05:00
- 3. Place on ice for (5) 00:01:00

4.2 Reverse transcription to make cDNA

1. Vortex 5x SSIV Buffer

2. To the annealed RNA templates from go to step #4.1, add the following components:

A	В
Component	Volume
5x SSIV Buffer	4 µl
100 mM DTT	1 µl
RNaseOUT™ R ecombinant R Nase Inhibitor	1 μΙ
SuperScript I V Reverse Tra nscriptase (20 0 U/µL)	1 μΙ

4. Incubate reaction at 4 60 °C for 10 minutes (IMPORTANT: reaction temperature is

increased from kit

instructions to account for higher GC content in some transcripts)

- 5. Inactivate reaction by incubation at 80 °C or 00:10:00
- 6. Remove RNA with incubation with 🚨 1 µL of RNase H at 🖁 37 °C for 🚫 00:20:00

5 Clone gene of interest with cDNA

30m

Use generated cDNA in PCR reaction with gene specific primers. To verify that the RNA purfication and cDNA synthesis was successful, amplify a highly expressed transcript, such as cofillin (PTSG_01554).