PCT/GB00/03273

1 Claims

2

3

1. A catheter having a heat transfer device at or near its distal end, wherein the heat transfer device is layered or coated onto or into the catheter wall.

7 8

9

10

11

2. A catheter as claimed in Claim 1 wherein the heat transfer device is a flexible film having one or more electrical resistor flow paths thereon or therethrough, which film is locatable around the catheter wall.

12 13

14 3. A catheter as claimed in Claim 2 wherein the
15 film is a flexible metal film on which the one
16 or more electrical paths have been etched or
17 otherwise created.

18

19 4. A catheter as claimed in Claim 2 wherein the one 20 or more electrical paths are added onto a 21 plastic film backing.

22

5. A catheter as claimed in Chaim 4 wherein the one or more electrical paths are added by a deposition process.

26

27 6. A catheter as claimed in Claim wherein the one 28 or electrical paths are added by a coating 29 process.

30

29

		13
1	7.	A catheter as claimed in Claim 1 wherein the
2		heat transfer device is disposed directly onto
3		the catheter wall.
4		·
5	8.	A catheter as claimed in Claim 7 wherein the
. 6		heat transfer device is disposed onto the
7		catheter wall by a deposition process.
8		
9	9.	A catheter as claimed in Claim 8 where in the
10		deposition process is a plasma deposition
11		process.
12		
13	10.	A catheter as claimed in Claim 8 wherein the
14		deposition process is a printing process.
15		
16	17.	A catheter as claimed in Claim 10 wherein the
17/	/hV	printing process uses a conductive ink or a
ie		conductive layer, with subsequent etching.
19		
20	12.	A catheter as claimed in any one of Claims 7-11
21		wherein a temperature sensor material is also
22		disposed onto the catheter wall by a deposition
23		process.
24		
25	13.	A catheter as claimed in any one of the
26		preceding Claims wherein the heat transfer
27		device includes one or more temperature sensors
28		or sensor leads.

30

31

		14
1	14.	A catheter as claimed in any one of the
2		preceding Claims wherein one or more insulator
3		layers are located over the resistor structure.
4		
5	15.	A catheter as claimed in Claim 14 wherein one of
\\\ \rac{5}{7}	<i>y</i> .	the insulator layers is parylene C.
√ 8	16.	A catheter as claimed in any one of the
. 9		preceding Claims wherein the heat transfer
10		device comprises an outer or penultimate outer
11		layer of silver or gold/
12		
13	17.	A catheter as clauded in Claim 1 wherein a
14		length of the outer wall of the catheter is
15		wholly, substantially or partly formed from
16		doped material able to act as a heat transfer
17		device upon application of power therethrough.
18		
19	18.	A catheter as claimed in Chaim 17 wherein the
20		doped material is silver or gold.
21		
22	19.	A catheter wherein the catheter wall has one or
23		more metal wires therethrough. \
24		
25	20.	A catheter as claimed in Claim 19 wherein the or
26		each wire is copper.
27		
28	21.	A catheter as claimed in Claim 19 or Claim 20
29		wherein the or each wire is co-extruded within

the catheter body.

15

- 22. A catheter as claimed in any one of Claims 19-21 wherein the catheter wall includes one or more sets of wires.
- 23. A catheter as claimed in Claim 22 wherein the catheter body has three sets of wires, each set comprising two wires.

8

24. A catheter as claimed in any one of Claims 19-24 wherein they or each wire inside the catheter wall is easily exposable.

12

13 25. A catheter as claimed in any one of Claims 1-18
14 in combination with a catheter as claimed in any
15 one of Claims 19-24.

16

17 26. A catheter as claumed in any one of the above 18 Claims of size 3-5F.

19

20 27. A catheter as claimed in any one of the 21 preceding Claims having a single distal lumen.

22

23 28. A catheter as claimed in Claim 27 wherein the 24 lumen has a diameter of approximately 0.5-07 mm.