Esercizi sulla Dinamica del punto materiale (29/03/2018)

Esercizio 1

Una molla AB con costante elastica K_1 e lunghezza a riposo l_1 è appesa a una estremità A al soffitto, mentre un punto con massa m_1 è appeso all'altra estremità B in posizione verticale. Un'altra molla CD con costante elastica K_2 e lunghezza a riposo l_2 è appesa ad una estremità C alla massa m_1 , mentre all'altra estremità D in posizione verticale è appesa la massa m_2 . Una terza molla EF con costante elastica K_3 lunghezza a riposo l_3 è appesa alla massa m_2 in corrispondenza dell'estremità E, mentre all'altra estremità F è appesa la massa m_3 in posizione verticale. Il sistema riportato in Fig.1 è in equilibrio con la forza di gravità. Trovare gli allungamenti Δl_1 , Δl_2 , Δl_3 delle molle.

Dati: $m_1 = 1[kg]$; $K_1 = 100 [N/m]$; $m_2 = 2[kg]$; $K_2 = 200 [N/m]$; $m_3 = 3[kg]$; $K_3 = 300 [N/m]$;

Fig.1

Esercizio 2

Un cilindro cavo, il cui diametro interno è d, può ruotare attorno al suo asse verticale. Un uomo di massa M ha la schiena a contatto con la superficie interna (chiamiamola parete) del cilindro e si erge su una piattaforma orizzontale attaccato alla parete nella posizione A (vedi figura 2). Il coefficiente di attrito statico tra la schiena dell'uomo e la parete è μ_s . Al tempo t=0 il cilindro inizia a ruotare attorno al proprio asse con una accelerazione angolare α . Dopo un tempo $t=t_1$ un dispositivo meccanico sposta la piattaforma nella posizione B, 20 cm sotto i piedi dell'uomo e l'accelerazione angolare diventa uguale a 0. Trovare il valore di t_1 tale che l'uomo non scivoli verso il basso lungo la parete .

Dati: M=80/kg]; $\mu_s=0.8$; $\alpha=0.07/rad/s^2$]; $g=9.81/m/s^2$] d=32/m];

Esercizio n.3

Un cavo di lunghezza l ha un'estremità fissata al punto O su un piano orizzontale ruvido. Una massa m avente un coefficiente di attrito viscoso β , è collegata all'altra estremità del cavo. I coefficienti di attrito statico e dinamico tra m ed il piano sono rispettivamente μ_s e μ_d . La massa viene colpita e acquista una velocità iniziale v_0 perpendicolare al cavo.

Trovare

- 1) in quale istante t₀ e a quale distanza s dal punto di partenza m si ferma
- 2) la tensione della corda quando m è nel punto di mezzo della traiettoria.

Dati: m=1[Kg];
$$\mu_d$$
 =0.4; μ_s =0.5; =10 [m/s]; l=1 [m]; β = 2·10⁻³[Kg/s]

Esercizio n.4

Tre masse m_A = 10 kg, m_B =15 kg, m_C = 10 kg sono posizionate come riportato in figura 4 con angolo θ = 30° e sono connesse attraverso una fune ideale. Si suppone che le puleggie attraverso cui le masse sono connesse siano anch'esse ideali (senza massa e senza attrito).

Assumiamo inoltre che l'attrito con il piano orizzontale e inclinato sia del tutto trascurabile.

Calcolare le tensioni delle funi e stabilire qual'è la direzione del moto delle tre masse.

Fig. 4

Esercizio n.5

Su un piano inclinato (riportato in Fig. 5) ruvido di lunghezza l=2 m, inclinato di $\alpha=10^0$ rispetto alla superficie orizzontale, è posta una massa m=1 kg.

I coefficienti di attrito statico e dinamico tra m ed il piano sono rispettivamente μ_s =0.5 e μ_d = 0.4. La massa viene spinta e acquista una velocità iniziale di modulo v_0 = 2 m/s. Trovare l'istante t_0 in cui la massa giunge al fondo del piano inclinato Fig.5 e la posizione dove la massa si arresta.

Esercizio n.6

Su un piano ruvido con coefficienti di attrito dinamico e statico $\mu_d = 0.1$ e $\mu_s = 0.3$ si trova un cubo di massa M connesso, come rappresentato in figura, ad una corda che passa attraverso una puleggia priva di massa per poi essere connessa ad una molla verticale con lunghezza a riposo l_0 e costante elastica k. Una massa m e' a sua volta connessa alla molla come mostrato in figura. All'istante iniziale tutte le masse sono mantenute in quiete con una mano e la

lunghezza della molla e' pari ad l_0 . Ad un certo istante la massa m viene lascita libera di muoversi e cade verso il basso. Trovare il massimo valore della massa m che permette alla massa M di rimanere in quiete.

Dati: M=0.1[kg]; k=200[N/m];

Esercizio n.7

Consideriamo un tavolo privo di attriti ABCD come mostrato nella figura seguente e immerso in un campo magnetico costante uniforme \vec{B} , perpendicolare al tavolo ed entrante rispetto al piano, come rappresentato in figura. Una piccola massa sferica m carica con carica q giunge sul tavolo nel punto D con una velocita' \vec{v}_0 parallela a DA.

La sfera tocca nel punto S un piccolo strumento di rivelazione, rappresentato come un rettangolo grigio scuro in figura e che e' allineato ad AB, producendo un segnale che misura la distanza *d*=AS.

Trovare il valore della carica q della sfera di massa m.

Dati:
$$m = 0.05$$
 [Kg],
 $B = 0.8$ [T],
 $DA = h = 2[m]$,
 $AS = d = 1[m]$
 $v_0 = 10[m/s]$

