Chapter 8

Antiferromagnetic spintronics

韩伟 量子材料科学中心 2017年12月8日

- 1. Topology
- 2. Quantum anomalous Hall effect
- 3. Skyrmions
- 4. Spin-momentum locking of 3D TI
 - > Spin injection
 - > Spin orbit torque
 - > Spin Seebeck effect

2. Quantum anomalous Hall effect

3. Skyrmions

4. Spin-momentum locking of 3D TI

Outline |

- 1. Antiferromagnetism and Exchange bias
- 2. Spin Seebeck effect in AFM
- 3. AMR of AFM
- 4. Switching of AFM
- 5. Anomalous Hall effect in AFM
- 6. Spin orbit torque in AFM

Outline 1 and 1 an

1. Antiferromagnetism and Exchange bias

W. H. Meiklejohn and C. P. Bean Physical Review **102**, 1413 (1956).

J. Nogue and I. K. Schuller JMMM **192**, 203 (1999).

NiFe(15nm)/Cu(2.6nm)/ NiFe(15nm)/FeMn(10nm)

B. Dieny et al PRB, **43** 1297 (1991).

Fig. 1. Spin-dependent transport structures. (A) 5

Yang & Parkin, Nature Nanotech (2014)

Table 6.1. Some common antiferromagnets				
	Structure	$T_N(K)$	θ_p (K)	$\mu_0 M_{\alpha} (T)$
Cr	sdw	311		0.20
Mn	Complex	96	~ -2000	0.20
NiO	Néel	524	-1310	0.54
$\alpha \text{Fe}_2\text{O}_3$	Canted	958	-2000	0.92
MnF_2	Néel	67	-80	0.78
FeMn	Néel	510		0.53
IrMn ₃	Néel	690		0.50

sdw - spin density wave; Néel - two collinear sublattices.

Antiferromagnetic CoO spins are 90° coupled to Fe spins.

Only 5 % of the Frozen spins are needed for exchange bias.

Collinear exchange coupling

He, et al, Nature Materials (2010)

Electric field to tune Exchange bias

Electric field to tune Exchange bias

Collinear exchange coupling

Yuan, et al, Scientific Reports (2016)

Outline |

Seebeck effect

Spin Seebeck effect in FM metal

Spin Seebeck effect in FM insulator

Uchida, et al. Nature Mater. (2010)

Question:
How about AFM
insulator?

Question:
How about AFM
insulator?

YES!

$$1.6 \,\mu\text{V/K} \longrightarrow 211 \,\mu\text{V/K}$$

Outline

3. AMR of AFM

AMR of a Nickel

Discovered by William Thompson (1857)

Measurement of AMR for a thin film.

Marti, et al, Nature Materials (2014)

Advantage: Signal robust in magnetic field

Maat, et al, PRB (2006)

Larger AMR in the AFM state

Smaller AMR in the FM state

休息10分钟

Outline |

4. Switching of AFM

Switching of FM by spin torque

Liu, et al., Science (2012)

Inverse spin-galvanic effect

Before writing pulses

After writing pulses

Writing current: during time=50ms, amplitude=4*10⁻⁶Acm⁻².

51

Advantage: Signal robust in magnetic field

Outline |

5. Anomalous Hall effect in AFM

PRL 112, 017205 (2014)

PHYSICAL REVIEW LETTERS

week ending 10 JANUARY 2014

Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism

Hua Chen, Qian Niu, and A. H. MacDonald

Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

(Received 3 October 2013; published 10 January 2014)

FIG. 1 (color online). Structure of Mn_3Ir . (a) Unit cell of Mn_3Ir with triangular antiferromagnetic order. (b) An individual (111) plane of Mn_3Ir . The Mn atoms form a kagome lattice.

- > Large spin orbit coupling of Ir transfer to Mn.
- > Non-collinear antiferromagnetism

a) Intrinsic deflection

Interband coherence induced by an external electric field gives rise to a velocity contribution perpendicular to the field direction. These currents do not sum to zero in ferromagnets.

$$\frac{d\langle \vec{r} \rangle}{dt} = \frac{\partial E}{\hbar \partial \vec{k}} \left(+ \frac{e}{\hbar} E \times b_n \right)$$

Electrons have an anomalous velocity perpendicular to the electric field related to their Berry's phase curvature

Mn Sn
$$z = 0$$
 $z = 1/2$ $z = 1/2$

$$\Omega_n(\mathbf{k}) = i \langle \nabla_{\mathbf{k}} u_{n\mathbf{k}} | \times | \nabla_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

Non-collinear antiferromagnetic structure

LETTER

doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Satoru Nakatsuji^{1,2}, Naoki Kiyohara¹ & Tomoya Higo¹

 Mn_3Sn is a hexagonal antiferromagnet (AFM) that exhibits noncollinear ordering of Mn magnetic moments at the Néel temperature of $T_N \approx 420 \text{ K}$

The canting of the other two spins towards the local easy-axis is considered to be the origin of the weak ferromagnetic moment.

 $|\Delta \rho_{\rm H}| \approx 6 \,\mu\Omega$ cm a small field of ~300 Oe

The similar anisotropic and hysteretic behaviours found in both $\rho_{\rm H}({\rm B})$ and $M({\rm B})$ indicate that the existence of the small and soft ferromagnetic component allows us to switch the sign of the Hall effect.

$$\rho_{\rm H} = R_0 B + R_{\rm s} \mu_0 M$$

 R_0 and R_s are the ordinary and anomalous Hall coefficients, and μ_0 is the permeability.

 R_0 = 3.0×10⁻⁴ cm³ C⁻¹ indicates that R_0 B is negligibly small

$$\rho_{\mathrm{H}} = R_0 B + R_{\mathrm{s}} \mu_0 M + \rho_{\mathrm{H}}^{\mathrm{AF}}$$

the large $AHEP_{H}^{AF}$, must have a distinct origin driven by the antiferromagnetic order.

$$S_{\rm H} = \mu_0 R_{\rm s}/\rho^2$$
 $\sigma_{\rm H} = -\rho_{\rm H}/\rho^2$
 $\rho_{\rm H} = R_0 B + R_{\rm s} \mu_0 M$
 $S_{\rm H}^0 = -\sigma_{\rm H}(B=0)/M(B=0)$

In a magnetic conductor with relatively high resistivity, the AHE is dominated by $S_{\rm H}\,.$

14 V⁻¹ (Mn₃Sn) at 100 K >> 0.01–0.1 V⁻¹(like Fe, Ni, Co...)

AHE in AFM Mn₃Ge

AHE in AFM Mn₃Ge

AHE in AFM MnGe₃

AHE in AFM Mn₃Ge

Outline

6. Spin orbit torque in AFM

Spin Hall orbit torque to FM

PRL 113, 196602 (2014)

PHYSICAL REVIEW LETTERS

week ending 7 NOVEMBER 2014

Spin Hall Effects in Metallic Antiferromagnets

Wei Zhang, Matthias B. Jungfleisch, Wanjun Jiang, John E. Pearson, and Axel Hoffmann Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Frank Freimuth and Yuriy Mokrousov

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany (Received 12 August 2014; published 4 November 2014)

Crystal structure of CuAu- I -type Afs

Schematic of spin pumping and spin Hall effect

Thickness dependence shows spin diffusion length to be short ~1nm

Fe₅₀Mn₅₀ Pd₅₀Mn₅₀

Ir50Mn50 Pt50Mn50

Comparison between with and without a Cu spacer,

Showing an additional damping enhancement due to exchange coupling at FM/AF interface

Spin orbit torque FMR

Liu et al., PRL 106, 036601 (2011)

Spin orbit torque FMR

 $Ir_{1-x}Mn_x$

➤ Large effective SHA observed in IrMn- IrMn3

Related work on $Ir_{20}Mn_{80}$ and IrMn have also been reported by other groups.

IrMn: Zhang, et al. PRL (2014).

Ir₂₀Mn₈₀: Mendes, et al. PRB (2014).

IrMn₃

- (100) on MgO
- > (111) on Al2O3
- Grown by magneton sputtering

- The effective SHA is the largest for (100) IrMn₃
- (111) and polycrystalline IrMn3 show similar SHA.

Non-collinear AFM spin structure

Little facet dependence in collinear AFM

Strong Facet dependence in non-collinear AFM

Annealing IrMn₃ in perpendicular magnetic field

Effect:

Tune the AFM domains configurations on the IrMn₃ surface.

(100) IrMn₃

- The SHA increases from 0.20 up to 0.35 for 3 nm (100) lrMn₃
- > For 2 nm and 8 nm, the enhancement effect is

(111) IrMn₃

Zhang, Han, et al, Science Advances (2016)

Qiu, et al, Nat. Commun. 7, 12670 (2016)

- 1. Antiferromagnetism and Exchange bias
- 2. Spin Seebeck effect in AFM
- 3. AMR of AFM
- 4. Switching of AFM
- 5. Anomalous Hall effect in AFM
- 6. Spin orbit torque in AFM

 $\frac{1}{2}0.05$

2. Spin Seebeck effect in AFM

3. AMR in AFM

0 μ_οΗ (T)

4. Switching of AFM

5. Anomalous Hall effect in AFM

6. Spin orbit torque in AFM

下一节课: Dec. 15th, 22th

Student Presentations

~ 15 mins/ Per person

12 mins talk + 3 mins questions

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

下一节课: Dec. 15th, 22th

Date	Names
Dec. 15 th	江鹏;彭泽龙;李鑫;蔡冉冉;陈光 毅;江丙炎
Dec. 22 th	刘星辰;吕超;闫姣婕;闫青;杨宁 选;张志斌
Dec. 29 th	交期末考试(电子版和纸版都可以)

谢谢!