



Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001

Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

## **TEST REPORT**

ACCORDING TO: FCC CFR 47 PART 15 subpart C, section 15.209

FOR:

Visonic Ltd.

Control panel of wireless alarm control system

Model:PowerMaxComplete

FCC ID:WP3PWRMCOMPLETEV2

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.



## **Table of contents**

| 1   | Applicant information                                               | 3  |
|-----|---------------------------------------------------------------------|----|
| 2   | Equipment under test attributes                                     |    |
| 3   | Manufacturer information                                            |    |
| 4   | Test details                                                        |    |
| 5   | Tests summary                                                       |    |
| 6   | EUT description                                                     |    |
| 6.1 | General information                                                 |    |
| 6.2 | Ports and lines                                                     |    |
| 6.3 | Changes made in the EUT                                             | 5  |
| 6.4 | Test configuration                                                  |    |
| 6.5 | Transmitter characteristics                                         |    |
| 7   | Transmitter tests according to 47CFR part 15 subpart C requirements | 7  |
| 7.1 | Field strength of emissions                                         | 7  |
| 7.2 | Antenna requirements                                                | 19 |
| 8   | APPENDIX A Test equipment and ancillaries used for tests            | 20 |
| 9   | APPENDIX B Measurement uncertainties                                | 21 |
| 10  | APPENDIX C Test laboratory description                              | 22 |
| 11  | APPENDIX D Specification references                                 | 22 |
| 12  | APPENDIX E Test equipment correction factors                        | 23 |
| 13  | APPENDIX F Abbreviations and acronyms                               | 31 |





### 1 Applicant information

Client name: Visonic Ltd.

Address: 24 Habarzel street, Tel Aviv 61920, Israel

 Telephone:
 +972 3645 6714

 Fax:
 +972 3645 6788

**E-mail:** aelshtein@visonic.com

Contact name: Mr. Arik Elshtein

#### 2 Equipment under test attributes

**Product name:** Control panel of wireless alarm control system

Product type: Transmitter

Model(s): PowerMaxComplete

Receipt date 1/02/2008

#### 3 Manufacturer information

Manufacturer name: Visonic Ltd.

Address: 24 Habarzel street, Tel Aviv 61920, Israel

 Telephone:
 +972 3645 6714

 Fax:
 +972 3645 6788

 E-Mail:
 aelshtein@visonic.com

 Contact name:
 Mr. Arick Elshtein

#### 4 Test details

Project ID: 17939

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

**Test started:** 1/02/2008 **Test completed:** 3/27/2008

Test specification(s): FCC Part 15, subpart C, §15.209



## 5 Tests summary

| Test                                                  | Status |
|-------------------------------------------------------|--------|
| FCC Part 15, Section 209, Field strength of emissions | Pass   |
| FCC Part 15, Section 203, Antenna requirements        | Pass   |

Testing was completed against the relevant requirements of the test standard. The test results relate only to the items tested. Pass / fail decision was based on nominal values.

|              | Name and Title                              | Date              | Signature |
|--------------|---------------------------------------------|-------------------|-----------|
| Tested by:   | Mr. S. Samokha, test engineer               | March 27, 2008    | Ca        |
| Reviewed by: | Mrs. M. Cherniavsky, certification engineer | December 27, 2011 | Chu       |
| Approved by: | Mr. M. Nikishin, EMC and radio group leader | December 28, 2011 | ff f      |



### 6 EUT description

#### 6.1 General information

The EUT is a control panel of a wireless alarm control system. The Powermax Complete has several states of alertness, such as "armed" and "disarmed", the reactions to each state differs and is explained in the manuals. Those various states are achieved via the on board/integrated keypad, via the RFID proximity sensor (131 kHz) and via the RF transmitter type MCT 234 operating at 315 MHz.

The EUT transmits alarm messages to Visonic's wireless siren and receives alarm messages from various wireless detectors. The device utilizes integral antennas, separate for each radio. Once event was encountered the system also automatically reports via a public telephone network or alternatively via GSM modem through the cellular network to a central monitoring station. The GSM module GE864Q2 (FCC ID:RI7GE864Q2), manufactured by Telit Communications S.p.A., operates in 824 – 849 MHz and 1850 – 1910 MHz frequency bands.

The EUT is powered from AC mains via external AC/DC adapter and is equipped with a rechargeable backup battery pack.

#### 6.2 Ports and lines

| Port type | Port        | С    | onnected | Connector type | Qtv. | Cable type | Cable  |
|-----------|-------------|------|----------|----------------|------|------------|--------|
| Fort type | description | From | То       | Connector type | Qty. | Cable type | length |
| Power     | AC mains    | EUT  | AC mains | Terminal block | 1    | Unshielded | 2 m    |

#### 6.3 Changes made in the EUT

No changes were implemented.

#### 6.4 Test configuration





#### 6.5 Transmitter characteristics

| Type of equipment                                               |                               |            |         |         |              |               |             |                 |                   |
|-----------------------------------------------------------------|-------------------------------|------------|---------|---------|--------------|---------------|-------------|-----------------|-------------------|
| X Stand-alone (Equipment                                        | with or witho                 | out its ow | vn cor  | trol pr | rovisions)   |               |             |                 |                   |
| Combined equipment (Ed                                          | quipment wh                   | ere the r  | radio p | oart is | fully integr | ated within a | nother typ  | oe of equipment | )                 |
| Plug-in card (Equipment intended for a variety of host systems) |                               |            |         |         |              |               |             |                 |                   |
| Intended use Co                                                 | Intended use Condition of use |            |         |         |              |               |             |                 |                   |
| fixed Al                                                        | ways at a dis                 | stance m   | nore th | nan 2   | m from all   | people        |             |                 |                   |
|                                                                 | ways at a dis                 |            |         |         |              |               |             |                 |                   |
| portable M                                                      | ay operate a                  | t a dista  | nce cl  | oser t  | han 20 cm    | to human bo   | dy          |                 |                   |
| Operating frequency                                             |                               | 131 kH:    | z       |         |              |               |             |                 |                   |
|                                                                 |                               | Х          | No      |         |              |               |             |                 |                   |
|                                                                 | 1                             |            |         |         | CC           | ontinuous var | iable       |                 |                   |
| Is transmitter output power var                                 | iable?                        |            | .,      |         | st           | epped variab  | le with ste | epsize          | dB                |
| Ye                                                              |                               |            | Yes     |         | ninimum RI   |               |             | dBm             |                   |
|                                                                 |                               |            |         |         |              |               |             | dBm             |                   |
| Antenna connection                                              |                               |            |         |         |              |               |             |                 | 1 2               |
| ieu.e eeueliee                                                  | oton                          | dard cor   |         |         | Х            | integral      |             | with temporar   | y RF connector    |
| unique coupling                                                 | stan                          | dard cor   | nnecio  | )ľ      | ^            | integral      | X           |                 | rary RF connector |
| Antenna characteristics                                         |                               |            |         |         |              |               |             |                 |                   |
| Type Mar                                                        | nufacturer                    |            |         | Model   | number       |               |             | Gain            |                   |
| Printed Visc                                                    | onic Ltd.                     |            |         | NA      |              |               |             | NA              |                   |
| Type of modulation                                              |                               |            |         | ASK     |              |               |             |                 |                   |
| Modulating test signal (baseband)                               |                               |            |         | ID cod  | le           | <u> </u>      | · ·         |                 |                   |
| Maximum transmitter duty cycl                                   | e                             |            |         | 100%    | ·            | -             |             | ·               |                   |
| Transmitter power source                                        |                               |            |         |         |              |               |             |                 | ·                 |
| X AC mains Nomina                                               | al rated volt                 | age        |         | 120 V   | AC           | Frequency     | 60          | Hz              |                   |
| Common power source for tran                                    | smitter and                   | receive    | er      |         |              | Χ             | yes         |                 | no                |



| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   | verdict: PASS                               |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

### 7 Transmitter tests according to 47CFR part 15 subpart C requirements

#### 7.1 Field strength of emissions

#### 7.1.1 General

This test was performed to measure field strength of fundamental and spurious emissions from the EUT. Specification test limits are given Table 7.1.1 and Table 7.1.2.

Table 7.1.1 Radiated fundamental emission limits

| Fundamental frequency, kHz   | Field strength at 3 m, dB(μV/m) |
|------------------------------|---------------------------------|
| i unuamentai irequency, kiiz | Average                         |
| 131                          | 105.2                           |

Table 7.1.2 Radiated spurious emissions limits

|                |               | Field strength at 3 m, o | dB(μV/m)              |
|----------------|---------------|--------------------------|-----------------------|
| Frequency, MHz |               | Wi                       | thin restricted bands |
|                | Peak          | Quasi Peak               | Average               |
| 0.009 - 0.090  | 148.5 – 128.5 | NA                       | 128.5 – 108.5**       |
| 0.090 - 0.110  | NA            | 108.5 – 106.8**          | NA                    |
| 0.110 - 0.490  | 126.8 – 113.8 | NA                       | 106.8 – 93.8**        |
| 0.490 - 1.705  |               | 73.8 – 63.0**            |                       |
| 1.705 - 30.0*  |               | 69.5                     |                       |
| 30 – 88        | NA            | 40.0                     | NA                    |
| 88 – 216       | INA           | 43.5                     | NA .                  |
| 216 – 960      |               | 46.0                     |                       |
| 960 - 1000     |               | 54.0                     |                       |
| Above 1000     | 74.0          | NA                       | 54.0                  |

<sup>\*-</sup> The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:  $\lim_{S^2} = \lim_{S^1} + 40 \log (S_1/S_2)$ ,

where  $S_1$  and  $S_2$  – standard defined and test distance respectively in meters.

<sup>\*\*-</sup> The limit decreases linearly with the logarithm of frequency.





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   | verdict: PASS                               |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            | -                                           | -                     |  |  |  |

#### 7.1.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.
- 7.1.2.2 The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis
- 7.1.2.3 The worst test results (the lowest margins) were recorded in Table 7.1.3 and shown in the associated plots.

#### 7.1.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.1.3.1 The EUT was set up as shown in Figure 7.1.2, energized and the performance check was conducted.
- 7.1.3.2 The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.1.3.3 The worst test results (the lowest margins) were recorded in Table 7.1.4 and shown in the associated plots.

Test distance Loop antenna Wooden EUT table e U 0.8 m Flush mounted turn table Ground plane Spectrum Auxilliary Power analyzer/ equipment supply EMI receiver

Figure 7.1.1 Setup for spurious emission field strength measurements below 30 MHz



| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | - Verdict: PASS                             |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

Figure 7.1.2 Setup for spurious emission field strength measurements above 30 MHz





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict:                                    | PASS                  |  |  |  |
| Date:               | 1/2/2008                   | verdict.                                    | FAGG                  |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

#### Table 7.1.3 Field strength of fundamental emission

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION:
MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:
Maximum

INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz) ≥ Resolution bandwidth

VIDEO BANDWIDTH:≥ Resolution bandwidthTEST ANTENNA TYPE:Active loop (9 kHz – 30 MHz)

| ſ | Frequency, | Peak                  | Ave             | rage        | Antenna      | Antenna      | Turn-table             |         |
|---|------------|-----------------------|-----------------|-------------|--------------|--------------|------------------------|---------|
|   | kHz        | emission,<br>dB(μV/m) | Limit, dB(μV/m) | Margin, dB* | polarization | height,<br>m | position**,<br>degrees | Verdict |
| I | 131.57     | 68.75                 | 105.2           | -36.55      | Vertical     | 1.0          | 179                    | Pass    |

<sup>\*-</sup> EUT front panel refers to 0 degrees position of turntable.

#### Reference numbers of test equipment used

|         |         | • •     |        |         |  |  |
|---------|---------|---------|--------|---------|--|--|
| HL 0415 | HL 0446 | HL 1553 | HL1566 | HL 2697 |  |  |

Full description is given in Appendix A.

<sup>\*\*-</sup> Margin (dB) = measured result - specification limit.

<sup>\*\*-</sup> Margin = dB below (negative if above) specification limit.



| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 |                                             |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   | verdict.                                    | FAGG                  |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

#### Table 7.1.4 Field strength of spurious emissions

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION:
MODULATING SIGNAL:
BIT RATE:
TRANSMITTER OUTPUT POWER SETTINGS:

ASK
ID code
3 kbps
Maximum

INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1 kHz (9 kHz – 150 kHz) 9.0 kHz (150 kHz – 30 MHz)

120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH: ≥ Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

| ſ | _ Peak                  | Quasi-peak            |                             |                    | Antenna        | Turn-table           |              |                        |         |
|---|-------------------------|-----------------------|-----------------------------|--------------------|----------------|----------------------|--------------|------------------------|---------|
|   | Frequency,<br>MHz       | emission,<br>dB(μV/m) | Measured emission, dB(μV/m) | Limit,<br>dB(μV/m) | Margin,<br>dB* | Antenna polarization | height,<br>m | position**,<br>degrees | Verdict |
| I | No emissions were found |                       |                             |                    |                |                      |              | Pass                   |         |

<sup>\*-</sup> Margin = Measured emission - specification limit.

#### Table 7.1.5 Restricted bands

| MHz               | MHz                 | MHz                   | MHz             | MHz           | GHz           |
|-------------------|---------------------|-----------------------|-----------------|---------------|---------------|
| 0.09 - 0.11       | 8.37625 - 8.38675   | 73 - 74.6             | 399.9 - 410     | 2690 - 2900   | 10.6 - 12.7   |
| 0.495 - 0.505     | 8.41425 - 8.41475   | 74.8 - 75.2           | 608 - 614       | 3260 - 3267   | 13.25 - 13.4  |
| 2.1735 - 2.1905   | 12.29 - 12.293      | 108 - 121.94          | 960 - 1240      | 3332 - 3339   | 14.47 - 14.5  |
| 4.125 - 4.128     | 12.51975 - 12.52025 | 123 - 138             | 1300 - 1427     | 3345.8 - 3358 | 15.35 - 16.2  |
| 4.17725 - 4.17775 | 12.57675 - 12.57725 | 149.9 - 150.05        | 1435 - 1626.5   | 3600 - 4400   | 17.7 - 21.4   |
| 4.20725 - 4.20775 | 13.36 - 13.41       | 156.52475 - 156.52525 | 1645.5 - 1646.5 | 4500 - 5150   | 22.01 - 23.12 |
| 6.215 - 6.218     | 16.42 - 16.423      | 156.7 - 156.9         | 1660 - 1710     | 5350 - 5460   | 23.6 - 24     |
| 6.26775 - 6.26825 | 16.69475 - 16.69525 | 162.0125 - 167.17     | 1718.8 - 1722.2 | 7250 - 7750   | 31.2 - 31.8   |
| 6.31175 - 6.31225 | 16.80425 - 16.80475 | 167.72 - 173.2        | 2200 - 2300     | 8025 - 8500   | 36.43 - 36.5  |
| 8.291 - 8.294     | 25.5 - 25.67        | 240 - 285             | 2310 - 2390     | 9000 - 9200   | Above 38.6    |
| 8.362 - 8.366     | 37.5 - 38.25        | 322 - 335.4           | 2483.5 - 2500   | 9300 - 9500   | ADUVE 30.0    |

#### Reference numbers of test equipment used

| HL 0415 | HL 0446 | HL 0521 | HL 0589 | HL 0604 | HL 1553 | HL1566 | HL 2009 |
|---------|---------|---------|---------|---------|---------|--------|---------|
| HL 2697 |         |         |         |         |         |        |         |

Full description is given in Appendix A.

<sup>\*\*-</sup> EUT front panel refer to 0 degrees position of turntable.



| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            | -                                           | -                     |  |  |  |

Plot 7.1.1 Radiated emission measurements at the fundamental frequency

TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical

EUT POSITION: Typical (Vertical)

(A)



Plot 7.1.2 Radiated emission measurements at the fundamental frequency

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Typical (Vertical)

<u>@</u>





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 |                                             |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

Plot 7.1.3 Radiated emission measurements from 9 to 150 kHz

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Typical (Vertical)





Plot 7.1.4 Radiated emission measurements from 0.15 to 30 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Typical (Vertical)

**®** 





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            | -                                           | -                     |  |  |  |

Plot 7.1.5 Radiated emission measurements from 30 to 1000 MHz

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Typical (Vertical)





Plot 7.1.6 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Typical (Vertical)







| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            | -                                           | -                     |  |  |  |

Plot 7.1.7 Radiated emission measurements at the second harmonic frequency

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

**(%)** 



Plot 7.1.8 Radiated emission measurements at the third harmonic frequency

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

**@** 





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 |                                             |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

Plot 7.1.9 Radiated emission measurements at the fourth harmonic frequency

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

**(49)** 



Plot 7.1.10 Radiated emission measurements at the fifth harmonic frequency

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 n

EUT POSITION: Typical (Vertical)

**@** 





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | Verdict: PASS                               |                       |  |  |  |
| Date:               | 1/2/2008                   |                                             |                       |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            | -                                           | -                     |  |  |  |

Plot 7.1.11 Radiated emission measurements at the sixth harmonic frequency

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

**(49**)

ACTU DET: PEAK MEAS DET: PEAK OP AVG MKR 754,74 kHz 44,71 dBμV/m





| Test specification: | Section 15.209, Field stre | Section 15.209, Field strength of emissions |                       |  |  |  |
|---------------------|----------------------------|---------------------------------------------|-----------------------|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4 | ANSI C63.4, Section 13.1.4                  |                       |  |  |  |
| Test mode:          | Compliance                 | - Verdict: PASS                             |                       |  |  |  |
| Date:               | 1/2/2008                   | verdict.                                    | FASS                  |  |  |  |
| Temperature: 22 °C  | Air Pressure: 1003 hPa     | Relative Humidity: 44 %                     | Power Supply: 120 VAC |  |  |  |
| Remarks:            |                            |                                             |                       |  |  |  |

Plot 7.1.12 Transmission pulse duration



Plot 7.1.13 Transmission pulse period





| Test specification: | Section 15.203, Antenna requirement |                                          |                       |  |  |  |  |
|---------------------|-------------------------------------|------------------------------------------|-----------------------|--|--|--|--|
| Test procedure:     | Visual inspection / supplier de     | Visual inspection / supplier declaration |                       |  |  |  |  |
| Test mode:          | Compliance                          | Verdict:                                 | PASS                  |  |  |  |  |
| Date:               | 3/27/2008                           | verdict.                                 | FASS                  |  |  |  |  |
| Temperature: 21°C   | Air Pressure: 1010 hPa              | Relative Humidity: 46 %                  | Power Supply: 120 VAC |  |  |  |  |
| Remarks:            |                                     |                                          |                       |  |  |  |  |

### 7.2 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.2.1.

Table 7.2.1 Antenna requirements

| Requirement                                        | Rationale         | Verdict |
|----------------------------------------------------|-------------------|---------|
| The transmitter antenna is permanently attached    | Visual inspection |         |
| The transmitter employs a unique antenna connector | NA                | Comply  |
| The transmitter requires professional installation | NA                |         |

Photograph 7.2.1 Antenna assembly





## 8 APPENDIX A Test equipment and ancillaries used for tests

|                                                                       |                                                                                                                                                                                                                                                                                         | Model                                                                                                                                                                                                                                                                                                                                                | Ser. No.                                                                                                                                                                                                                                                                                                                                                                                                                                            | Last Cal.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Due Cal.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cable, Coax, RF, RG-214                                               | HL                                                                                                                                                                                                                                                                                      | CC-3                                                                                                                                                                                                                                                                                                                                                 | 056                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02-Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Antenna, Loop, Active, 10 kHz - 30 MHz                                | EMCO                                                                                                                                                                                                                                                                                    | 6502                                                                                                                                                                                                                                                                                                                                                 | 2857                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28-Jun-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28-Jun-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz | Hewlett<br>Packard                                                                                                                                                                                                                                                                      | 8546A                                                                                                                                                                                                                                                                                                                                                | 3617A<br>00319,<br>3448A002<br>53                                                                                                                                                                                                                                                                                                                                                                                                                   | 26-Sep-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26-Sep-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable Coaxial, GORE A2P01POL118, 2.3 m                                | HL                                                                                                                                                                                                                                                                                      | GORE-3                                                                                                                                                                                                                                                                                                                                               | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02-Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Antenna BiconiLog Log-Periodic/T Bow-<br>TIE 26 - 2000 MHz            | EMCO                                                                                                                                                                                                                                                                                    | 3141                                                                                                                                                                                                                                                                                                                                                 | 9611-1011                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-Jan-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-Jan-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable Coax, RG-214, 11.5 m, N-type connectors                         | HL                                                                                                                                                                                                                                                                                      | C214-11                                                                                                                                                                                                                                                                                                                                              | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02-Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable RF, 3.5 m                                                       | Alpha Wire                                                                                                                                                                                                                                                                              | RG-214                                                                                                                                                                                                                                                                                                                                               | 1553                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22-May-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22-May-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable RF, 2 m                                                         | Huber-Suhner                                                                                                                                                                                                                                                                            | Sucoflex<br>104PE                                                                                                                                                                                                                                                                                                                                    | 13094/4PE                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02-Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable RF, 8 m                                                         | Alpha Wire                                                                                                                                                                                                                                                                              | RG-214                                                                                                                                                                                                                                                                                                                                               | C-56                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02-Dec-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Antenna, 30 MHz - 3.0 GHz                                             | Sunol<br>Sciences.<br>Corp.<br>Pleasanton,                                                                                                                                                                                                                                              | JB3                                                                                                                                                                                                                                                                                                                                                  | A022805                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-Jan-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-Jan-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                       | Antenna, Loop, Active, 10 kHz - 30 MHz EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz  Cable Coaxial, GORE A2P01POL118, 2.3 m Antenna BiconiLog Log-Periodic/T Bow-TIE 26 - 2000 MHz Cable Coax, RG-214, 11.5 m, N-type connectors Cable RF, 3.5 m Cable RF, 2 m | Antenna, Loop, Active, 10 kHz - 30 MHz  EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz  Cable Coaxial, GORE A2P01POL118, 2.3 M  Antenna BiconiLog Log-Periodic/T Bow-TIE 26 - 2000 MHz  Cable Coax, RG-214, 11.5 m, N-type connectors  Cable RF, 3.5 m  Cable RF, 2 m  Alpha Wire  Antenna, 30 MHz - 3.0 GHz  Sciences. Corp. | Antenna, Loop, Active, 10 kHz - 30 MHz  EMCO  EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz  Cable Coaxial, GORE A2P01POL118, 2.3 M  Antenna BiconiLog Log-Periodic/T Bow-TIE 26 - 2000 MHz  Cable Coax, RG-214, 11.5 m, N-type Cable RF, 3.5 m  Cable RF, 3.5 m  Alpha Wire  Cable RF, 2 m  Alpha Wire  Cable RF, 8 m  Alpha Wire  Alpha Wire  Alpha Wire  RG-214  Antenna, 30 MHz - 3.0 GHz  Sciences.  Corp. Pleasanton, | Antenna, Loop, Active, 10 kHz - 30 MHz  EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz  Cable Coaxial, GORE A2P01POL118, 2.3 m  Antenna BiconiLog Log-Periodic/T Bow-TIE 26 - 2000 MHz  Cable Coax, RG-214, 11.5 m, N-type connectors  Cable RF, 3.5 m  Cable RF, 2 m  Alpha Wire  Alpha Wire  Cable RF, 8 m  Alpha Wire  Cable RF, 8 m  Alpha Wire  Alpha Wire  Cable RF, 8 m  Alpha Wire  Alpha Wire  Cable RF, 8 m  Alpha Wire  Cable RF, 2 m  Alpha Wire  Cable RF, 8 m  Alpha Wire  RG-214  C-56  Corp. Pleasanton, | Antenna, Loop, Active, 10 kHz - 30 MHz  EMCO  EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz  Cable Coaxial, GORE A2P01POL118, 2.3 m  Antenna BiconiLog Log-Periodic/T Bow-TIE 26 - 2000 MHz  Cable Coax, RG-214, 11.5 m, N-type connectors  Cable RF, 3.5 m  Alpha Wire  Alpha Wire  Cable RF, 2 m  Alpha Wire  Cable RF, 8 m  Alpha Wire  Alpha Wire  Alpha Wire  Cable RG-214  Alpha Wire  Cable RF, 8 m  Alpha Wire  Alpha Wire  Alpha Wire  Cable RG-214  Alpha Wire  Alpha Wire  Cable RG-214  Alpha Wire  Alpha Wire |

<sup>\*</sup> The calibration was valid at the testing time.



#### 9 APPENDIX B Measurement uncertainties

#### Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

| Test description                              | Expanded uncertainty                 |
|-----------------------------------------------|--------------------------------------|
| Conducted emissions with LISN                 | 9 kHz to 150 kHz: ± 3.9 dB           |
|                                               | 150 kHz to 30 MHz: ± 3.8 dB          |
| Radiated emissions at 10 m measuring distance |                                      |
| Horizontal polarization                       | Biconilog antenna: ± 5.0 dB          |
|                                               | Biconical antenna: ± 5.0 dB          |
|                                               | Log periodic antenna: ± 5.1 dB       |
|                                               | Double ridged horn antenna: ± 5.3 dB |
| Vertical polarization                         | Biconilog antenna: ± 5.5 dB          |
|                                               | Biconical antenna: ± 5.5 dB          |
|                                               | Log periodic antenna: ± 5.6 dB       |
|                                               | Double ridged horn antenna: ± 5.8 dB |
| Radiated emissions at 3 m measuring distance  |                                      |
| Horizontal polarization                       | Biconilog antenna: ± 5.3 dB          |
|                                               | Biconical antenna: ± 5.0 dB          |
|                                               | Log periodic antenna: ± 5.3 dB       |
| Vertical polarization                         | Double ridged horn antenna: ± 5.3 dB |
| Vertical polarization                         | Biconilog antenna: ± 6.0 dB          |
|                                               | Biconical antenna: ± 5.7 dB          |
|                                               | Log periodic antenna: ± 6.0 dB       |
|                                               | Double ridged horn antenna: ± 6.0 dB |
| Conducted emissions at RF antenna connector   | 9 kHz to 2.9 GHz: ± 2.6 dB           |
|                                               | 2.9 GHz to 6.46 GHz: ± 3.5 dB        |
|                                               | 6.46 GHz to 13.2 GHz: ± 4.3 dB       |
|                                               | 13.2 GHz to 22.0 GHz: ± 5.0 dB       |
|                                               | 22.0 GHz to 26.8 GHz: ± 5.5 dB       |
|                                               | 26.8 GHz to 40.0 GHz: ± 4.8 dB       |
| Duty cycle, timing (Tx ON / OFF) and average  |                                      |
| factor measurements                           | ± 1.0 %                              |
| Occupied bandwidth                            | ± 8.0 %                              |

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.



#### 10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

#### 11 APPENDIX D Specification references

47CFR part 15: 2010 Radio Frequency Devices.

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40

GHz.



## 12 APPENDIX E Test equipment correction factors

#### Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

| Frequency,<br>MHz | Magnetic antenna factor, dB | Electric antenna factor,<br>dB |
|-------------------|-----------------------------|--------------------------------|
| 0.009             | -32.8                       | 18.7                           |
| 0.010             | -33.8                       | 17.7                           |
| 0.020             | -38.3                       | 13.2                           |
| 0.050             | -41.1                       | 10.4                           |
| 0.075             | -41.3                       | 10.2                           |
| 0.100             | -41.6                       | 9.9                            |
| 0.150             | -41.7                       | 9.8                            |
| 0.250             | -41.6                       | 9.9                            |
| 0.500             | -41.8                       | 9.8                            |
| 0.750             | -41.9                       | 9.7                            |
| 1.000             | -41.4                       | 10.1                           |
| 2.000             | -41.5                       | 10.0                           |
| 3.000             | -41.4                       | 10.2                           |
| 4.000             | -41.4                       | 10.1                           |
| 5.000             | -41.5                       | 10.1                           |
| 10.000            | -41.9                       | 9.6                            |
| 15.000            | -41.9                       | 9.6                            |
| 20.000            | -42.2                       | 9.3                            |
| 25.000            | -42.8                       | 8.7                            |
| 30.000            | -44.0                       | 7.5                            |

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB( $\mu$ V) to convert it into field intensity in dB( $\mu$ V/m).





#### Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

| Frequency, MHz | Antenna Factor,<br>dB(1/m) | Frequency, MHz | Antenna Factor,<br>dB(1/m) |  |  |
|----------------|----------------------------|----------------|----------------------------|--|--|
| 26             | 7.8                        | 940            | 24.0                       |  |  |
| 28             | 7.8                        | 960            | 24.1                       |  |  |
| 30             | 7.8                        | 980            | 24.5                       |  |  |
| 40             | 7.2                        | 1000           | 24.9                       |  |  |
| 60             | 7.1                        | 1020           | 25.0                       |  |  |
| 70             | 8.5                        | 1040           | 25.2                       |  |  |
| 80             | 9.4                        | 1060           | 25.4                       |  |  |
| 90             | 9.8                        | 1080           | 25.6                       |  |  |
| 100            | 9.7                        | 1100           | 25.7                       |  |  |
| 110            | 9.3                        | 1120           | 26.0                       |  |  |
| 120            | 8.8                        | 1140           | 26.4                       |  |  |
| 130            | 8.7                        | 1160           | 27.0                       |  |  |
| 140            | 9.2                        | 1180           | 27.0                       |  |  |
| 150            | 9.8                        | 1200           | 26.7                       |  |  |
| 160            | 10.2                       | 1220           | 26.5                       |  |  |
| 170            | 10.4                       | 1240           | 26.5                       |  |  |
| 180            | 10.4                       | 1260           | 26.5                       |  |  |
| 190            | 10.3                       | 1280           | 26.6                       |  |  |
| 200            | 10.6                       | 1300           | 27.0                       |  |  |
| 220            | 11.6                       | 1320           | 27.8                       |  |  |
| 240            | 12.4                       | 1340           | 28.3                       |  |  |
| 260            | 12.8                       | 1360           | 28.2                       |  |  |
| 280            | 13.7                       | 1380           | 27.9                       |  |  |
| 300            | 14.7                       | 1400           | 27.9                       |  |  |
| 320            | 15.2                       | 1420           | 27.9                       |  |  |
| 340            | 15.4                       | 1440           | 27.8                       |  |  |
| 360            | 16.1                       | 1460           | 27.8                       |  |  |
| 380            | 16.4                       | 1480           | 28.0                       |  |  |
| 400            | 16.6                       | 1500           | 28.5                       |  |  |
| 420            | 16.7                       | 1520           | 28.9                       |  |  |
| 440            | 17.0                       | 1540           | 29.6                       |  |  |
| 460            | 17.7                       | 1560           | 29.8                       |  |  |
| 480            | 18.1                       | 1580           | 29.6                       |  |  |
| 500            | 18.5                       | 1600           | 29.5                       |  |  |
| 520            | 19.1                       | 1620           | 29.3                       |  |  |
| 540            | 19.5                       | 1640           | 29.2                       |  |  |
| 560            | 19.8                       | 1660           | 29.4                       |  |  |
| 580            | 20.6                       | 1680           | 29.6                       |  |  |
| 600            | 21.3                       | 1700           | 29.8                       |  |  |
| 620            | 21.5                       | 1720           | 30.3                       |  |  |
| 640            | 21.2                       | 1740           | 30.8                       |  |  |
| 660            | 21.4                       | 1760           | 31.1                       |  |  |
| 680            | 21.9                       | 1780           | 31.0                       |  |  |
| 700            | 22.2                       | 1800           | 30.9                       |  |  |
| 720            | 22.2                       | 1820           | 30.7                       |  |  |
| 740            | 22.1                       | 1840           | 30.6                       |  |  |
| 760            | 22.3                       | 1860           | 30.6                       |  |  |
| 780            | 22.6                       | 1880           | 30.6                       |  |  |
| 800            | 22.7                       | 1900           | 30.6                       |  |  |
| 820            | 22.9                       | 1920           | 30.7                       |  |  |
| 840            | 23.1                       | 1940           | 30.9                       |  |  |
| 860            | 23.4                       | 1960           | 31.2                       |  |  |
| 880            | 23.8                       | 1980           | 31.6                       |  |  |
| 900            | 24.1                       | 2000           | 32.0                       |  |  |



Antenna calibration Sunol Sciences Inc., model JB3, serial number A022805, HL 2697

|                   |              |                |              |                   |               |              |              | nc., mod          |              |                   |              | er A02280         |              | 2697              |              |                   |                   |              |                     |
|-------------------|--------------|----------------|--------------|-------------------|---------------|--------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|-------------------|--------------|---------------------|
| Frequency,<br>MHz | ACF,         | Gain,<br>dBi   | Num gain     | Frequency,<br>MHz | ACF,<br>dB    | Gain,<br>dBi | Num gain     | Frequency,<br>MHz | ACF,         | Gain,             | Num gain     | Frequency,<br>MHz | ACF,         | Gain,             | Num gain     | Frequency,<br>MHz | ACF,              | Gain,<br>dBi | Num                 |
| 30<br>30          | dB<br>22.2   | -22.5          | 0.01         | 620               | 19.7          | 6.3          | 4.27         | 1215              | dB<br>24.9   | <b>dBi</b><br>7.0 | 5.05         | 1810              | dB<br>28.3   | <b>dBi</b><br>7.1 | 5.08         | 2405              | <b>dB</b><br>30.9 | 6.9          | <b>gain</b><br>4.93 |
| 40                | 14.7         | -22.5<br>-12.5 | 0.01         | 630               | 19.7          | 6.6          | 4.27         | 1215              | 25.1         | 6.9               | 4.91         | 1820              | 28.6         | 6.8               | 4.74         | 2405              | 31.0              | 6.9          | 4.93                |
| 45                | 11.3         | -8.1           | 0.16         | 635               | 19.7          | 6.5          | 4.48         | 1230              | 25.2         | 6.8               | 4.82         | 1825              | 28.7         | 6.8               | 4.75         | 2420              | 31.0              | 6.8          | 4.82                |
| 45                | 11.3         | -8.1           | 0.16         | 640               | 19.9          | 6.4          | 4.40         | 1235              | 25.1         | 7.0               | 4.96         | 1830              | 28.7         | 6.8               | 4.76         | 2425              | 31.1              | 6.8          | 4.81                |
| 50                | 8.9          | -4.7           | 0.34         | 645               | 19.9          | 6.5          | 4.45         | 1240              | 25.0         | 7.1               | 5.09         | 1835              | 28.7         | 6.7               | 4.72         | 2430              | 31.0              | 6.9          | 4.87                |
| 55<br>60          | 7.9<br>7.8   | -2.8<br>-2.1   | 0.52<br>0.62 | 650<br>655        | 19.9<br>19.9  | 6.5<br>6.6   | 4.51<br>4.60 | 1245<br>1250      | 25.0<br>25.0 | 7.1<br>7.1        | 5.12<br>5.15 | 1840<br>1845      | 28.8<br>28.6 | 6.7               | 4.69<br>4.90 | 2435<br>2440      | 31.0<br>31.2      | 6.9          | 4.88<br>4.74        |
| 70                | 9.0          | -1.9           | 0.64         | 665               | 19.9          | 6.7          | 4.70         | 1260              | 24.9         | 7.3               | 5.36         | 1855              | 28.5         | 7.0               | 5.07         | 2450              | 31.0              | 7.0          | 4.96                |
| 75                | 8.8          | -1.1           | 0.78         | 670               | 20.0          | 6.7          | 4.71         | 1265              | 25.0         | 7.3               | 5.31         | 1860              | 28.6         | 7.0               | 5.01         | 2455              | 31.0              | 7.0          | 5.01                |
| 80                | 8.4          | -0.2           | 0.97         | 675               | 20.1          | 6.7          | 4.71         | 1270              | 25.1         | 7.2               | 5.26         | 1865              | 28.5         | 7.1               | 5.17         | 2460              | 30.9              | 7.2          | 5.19                |
| 85<br>90          | 8.0<br>8.2   | 0.8            | 1.20         | 680<br>685        | 20.1          | 6.7<br>6.8   | 4.71<br>4.79 | 1275<br>1280      | 25.3<br>25.5 | 7.0<br>6.8        | 5.05<br>4.84 | 1870<br>1875      | 28.4<br>28.4 | 7.3<br>7.2        | 5.33<br>5.28 | 2465<br>2470      | 31.1<br>31.3      | 6.9          | 4.95<br>4.76        |
| 95                | 9.2          | 0.5            | 1.13         | 690               | 20.1          | 6.9          | 4.79         | 1285              | 25.4         | 7.0               | 4.97         | 1880              | 28.5         | 7.2               | 5.22         | 2475              | 31.4              | 6.7          | 4.69                |
| 100               | 10.6         | -0.4           | 0.92         | 695               | 20.2          | 6.8          | 4.82         | 1290              | 25.3<br>25.2 | 7.1               | 5.10         | 1885              | 28.5         | 7.2               | 5.22         | 2480              | 31.3              | 6.8          | 4.79                |
| 110               | 12.6         | -1.6           | 0.70         | 705               | 20.4          | 6.8          | 4.75         | 1300              |              | 7.3               | 5.33         | 1895              | 28.6         | 7.2               | 5.24         | 2490              | 31.1              | 7.0          | 4.99                |
| 115<br>120        | 13.3<br>13.9 | -1.9           | 0.65<br>0.62 | 710<br>715        | 20.5<br>20.5  | 6.8          | 4.75<br>4.80 | 1305<br>1310      | 25.3         | 7.2<br>7.1        | 5.21<br>5.09 | 1900<br>1905      | 28.6<br>28.5 | 7.2<br>7.3        | 5.27<br>5.36 | 2495<br>2500      | 31.2<br>30.9      | 7.0<br>7.2   | 4.99<br>5.27        |
| 125               | 14.2         | -2.1<br>-2.0   | 0.62         | 720               | 20.5          | 6.9          | 4.85         | 1315              | 25.5<br>25.4 | 7.1               | 5.23         | 1910              | 28.5         | 7.4               | 5.45         | 2505              | 31.1              | 7.1          | 5.15                |
| 130               | 14.2         | -1.7           | 0.68         | 725               | 20.6          | 6.8          | 4.81         | 1320              | 25.3         | 7.3               | 5.36         | 1915              | 28.5         | 7.3               | 5.38         | 2510              | 31.0              | 7.2          | 5.22                |
| 135               | 13.8         | -1.0           | 0.79         | 730               | 20.7          | 6.8          | 4.77         | 1325              | 25.5         | 7.2               | 5.21         | 1920              | 28.6         | 7.3               | 5.31         | 2515              | 31.0              | 7.2          | 5.26                |
| 140               | 13.4         | -0.3           | 0.94         | 735               | 20.9          | 6.7          | 4.65         | 1330              | 25.6         | 7.0               | 5.06         | 1925              | 28.6         | 7.3               | 5.35         | 2520              | 31.2              | 7.0          | 5.05                |
| 150<br>155        | 12.9<br>12.7 | 0.8<br>1.3     | 1.21         | 745<br>750        | 21.0<br>21.0  | 6.6<br>6.7   | 4.59<br>4.64 | 1340<br>1345      | 25.7<br>25.7 | 7.1<br>7.1        | 5.09<br>5.13 | 1935<br>1940      | 28.5<br>28.4 | 7.4<br>7.6        | 5.54<br>5.70 | 2530<br>2535      | 31.0<br>31.2      | 7.3<br>7.0   | 5.37<br>5.06        |
| 160               | 12.7         | 1.6            | 1.44         | 755               | 21.0          | 6.8          | 4.74         | 1350              | 25.7         | 7.1               | 5.17         | 1945              | 28.5         | 7.5               | 5.59         | 2540              | 31.2              | 7.1          | 5.09                |
| 165               | 12.5         | 2.0            | 1.59         | 760               | 21.0          | 6.8          | 4.83         | 1355              | 25.8         | 7.0               | 5.06         | 1950              | 28.6         | 7.4               | 5.48         | 2545              | 31.0              | 7.3          | 5.43                |
| 170<br>175        | 12.2<br>11.8 | 2.6            | 1.83<br>2.13 | 765<br>770        | 21.1<br>21.3  | 6.8          | 4.73<br>4.64 | 1360<br>1365      | 25.9<br>26.0 | 6.9<br>6.9        | 4.95<br>4.95 | 1955<br>1960      | 28.6<br>28.6 | 7.5<br>7.5        | 5.57<br>5.65 | 2550<br>2555      | 31.0<br>31.1      | 7.3<br>7.2   | 5.39<br>5.30        |
| 180               | 11.6         | 3.3<br>3.7     | 2.13         | 775               | 21.3          | 6.7          | 4.68         | 1370              | 26.0         | 7.0               | 4.95         | 1965              | 28.7         | 7.4               | 5.47         | 2560              | 31.0              | 7.4          | 5.47                |
| 185               | 11.5         | 4.0            | 2.54         | 780               | 21.3          | 6.7          | 4.72         | 1375              | 26.0         | 7.0               | 5.01         | 1970              | 28.9         | 7.2               | 5.29         | 2565              | 30.8              | 7.6          | 5.70                |
| 190               | 11.6         | 4.2            | 2.61         | 785               | 21.3          | 6.8          | 4.77         | 1380              | 26.0         | 7.0               | 5.06         | 1975              | 28.9         | 7.2               | 5.22         | 2570              | 31.1              | 7.3          | 5.37                |
| 195               | 12.1         | 3.9            | 2.47         | 790<br>705        | 21.3          | 6.8          | 4.82         | 1385              | 26.0         | 7.0               | 4.99         | 1980              | 29.0         | 7.1               | 5.16         | 2575              | 31.5              | 7.0          | 4.96                |
| 200               | 13.1<br>12.0 | 3.2<br>4.4     | 2.07         | 795<br>800        | 21.4<br>21.5  | 6.8          | 4.79<br>4.77 | 1390<br>1395      | 26.1<br>26.2 | 6.9               | 4.92<br>4.94 | 1985<br>1990      | 29.1<br>29.1 | 7.1<br>7.0        | 5.11<br>5.06 | 2580<br>2585      | 31.6<br>31.6      | 6.9          | 4.87<br>4.79        |
| 210               | 11.0         | 5.6            | 3.66         | 805               | 21.6          | 6.7          | 4.71         | 1400              | 26.2         | 7.0               | 4.96         | 1995              | 29.1         | 7.1               | 5.09         | 2590              | 31.6              | 6.9          | 4.88                |
| 215               | 11.3         | 5.6            | 3.59         | 810               | 21.7          | 6.7          | 4.65         | 1405              | 26.1         | 7.0               | 5.02         | 2000              | 29.1         | 7.1               | 5.11         | 2595              | 31.5              | 7.0          | 4.97                |
| 220               | 11.6         | 5.5            | 3.52         | 815               | 21.7          | 6.7          | 4.72         | 1410              | 26.1         | 7.1               | 5.09         | 2005              | 29.1         | 7.1               | 5.16         | 2600              | 31.6              | 6.9          | 4.86                |
| 225<br>230        | 11.7<br>11.9 | 5.5<br>5.5     | 3.55<br>3.57 | 820<br>825        | 21.7<br>21.7  | 6.8<br>6.8   | 4.80<br>4.82 | 1415<br>1420      | 26.2<br>26.3 | 7.0<br>7.0        | 5.02<br>4.96 | 2010<br>2015      | 29.1<br>29.2 | 7.1<br>7.1        | 5.15<br>5.13 | 2605<br>2610      | 31.3<br>31.4      | 7.2<br>7.1   | 5.30<br>5.15        |
| 240               | 12.3         | 5.5            | 3.54         | 825<br>835        | 21.7          | 6.8          | 4.82         | 1420              | 26.1         | 7.0               | 5.25         | 2015              | 29.2         | 7.1               | 5.08         | 2620              | 31.4              | 7.1          | 4.97                |
| 245               | 12.3         | 5.7            | 3.71         | 840               | 21.9          | 6.8          | 4.80         | 1435              | 26.1         | 7.2               | 5.24         | 2030              | 29.3         | 7.0               | 5.05         | 2625              | 31.4              | 7.1          | 5.17                |
| 250               | 12.3         | 5.9            | 3.88         | 845               | 21.9          | 6.8          | 4.83         | 1440              | 26.2         | 7.2               | 5.24         | 2035              | 29.3         | 7.1               | 5.07         | 2630              | 31.6              | 7.0          | 5.00                |
| 260               | 12.7         | 5.8            | 3.83         | 855               | 22.0          | 6.8          | 4.80         | 1450              | 26.5         | 7.0               | 4.98         | 2045              | 29.2         | 7.2               | 5.23         | 2640              | 31.7              | 7.0          | 4.98                |
| 265<br>270        | 13.2         | 5.5<br>5.2     | 3.54<br>3.27 | 860<br>865        | 22.1<br>22.0  | 6.8          | 4.74         | 1455<br>1460      | 26.4<br>26.4 | 7.1<br>7.1        | 5.07<br>5.17 | 2050<br>2055      | 29.2<br>29.3 | 7.2<br>7.2        | 5.27<br>5.21 | 2645<br>2650      | 31.7<br>31.8      | 6.9          | 4.93<br>4.85        |
| 275               | 13.7         | 5.3            | 3.39         | 870               | 21.9          | 7.1          | 5.11         | 1460              | 26.4         | 7.1               | 5.17         | 2060              | 29.5         | 7.0               | 5.02         | 2655              | 31.8              | 6.9          | 4.85                |
| 280               | 13.7         | 5.4            | 3.50         | 875               | 22.0          | 7.1          | 5.08         | 1470              | 26.4         | 7.2               | 5.22         | 2065              | 29.4         | 7.1               | 5.08         | 2660              | 31.7              | 7.0          | 5.02                |
| 285               | 13.7         | 5.6            | 3.61         | 880               | 22.1          | 7.0          | 5.05         | 1475              | 26.4         | 7.1               | 5.17         | 2070              | 29.4         | 7.1               | 5.10         | 2665              | 32.0              | 6.7          | 4.71                |
| 290               | 13.7         | 5.7            | 3.72         | 885               | 22.1          | 7.0          | 5.06         | 1480              | 26.5         | 7.1               | 5.12         | 2075              | 29.5         | 7.0               | 5.01         | 2670              | 32.0              | 6.7          | 4.67                |
| 295<br>300        | 13.8<br>13.9 | 5.8<br>5.8     | 3.77<br>3.81 | 890<br>895        | 22.1<br>22.2  | 7.0<br>7.1   | 5.06<br>5.09 | 1485<br>1490      | 26.5<br>26.5 | 7.1<br>7.1        | 5.14<br>5.17 | 2080<br>2085      | 29.8<br>29.7 | 6.8               | 4.76<br>4.89 | 2675<br>2680      | 31.9<br>31.7      | 6.8<br>7.0   | 4.81<br>5.04        |
| 305               | 14.0         | 5.9            | 3.85         | 900               | 22.2          | 7.1          | 5.12         | 1495              | 26.5         | 7.2               | 5.24         | 2090              | 29.7         | 6.9               | 4.86         | 2685              | 31.9              | 6.8          | 4.83                |
| 310               | 14.1         | 5.9            | 3.88         | 905               | 22.3          | 7.1          | 5.09         | 1500              | 26.5         | 7.2               | 5.31         | 2095              | 29.8         | 6.8               | 4.78         | 2690              | 32.1              | 6.7          | 4.72                |
| 315               | 14.3         | 5.9            | 3.89         | 910               | 22.3          | 7.0          | 5.05         | 1505              | 26.5         | 7.2               | 5.27         | 2100              | 29.9         | 6.8               | 4.75         | 2695              | 32.1              | 6.7          | 4.71                |
| 320               | 14.4         | 5.9            | 3.90         | 915               | 22.4          | 7.0          | 4.99         | 1510              | 26.6         | 7.2               | 5.23         | 2105              | 29.8         | 6.8               | 4.81         | 2700              | 32.0              | 6.8          | 4.81                |
| 325               | 14.5<br>14.6 | 5.9<br>5.9     | 3.92<br>3.93 | 920               | 22.6          | 6.9          | 4.92         | 1515              | 26.6         | 7.2               | 5.30<br>5.38 | 2110              | 29.9         | 6.8<br>6.8        | 4.78<br>4.76 | 2705              | 32.0              | 6.8<br>6.8   | 4.80<br>4.79        |
| 330<br>335        | 14.7         | 6.0            | 4.02         | 925<br>930        | 22.7<br>22.8  | 6.8          | 4.85<br>4.77 | 1520<br>1525      | 26.5<br>26.6 | 7.3<br>7.3        | 5.37         | 2115<br>2120      | 29.9<br>29.9 | 6.8               | 4.84         | 2710<br>2715      | 32.1<br>32.1      | 6.7          | 4.79                |
| 340               | 14.7         | 6.2            | 4.12         | 935               | 22.8          | 6.8          | 4.83         | 1530              | 26.6         | 7.3               | 5.36         | 2125              | 29.9         | 6.9               | 4.89         | 2720              | 32.4              | 6.5          | 4.47                |
| 350               | 15.1         | 6.0            | 3.99         | 945               | 22.8          | 6.9          | 4.87         | 1540              | 26.5         | 7.4               | 5.53         | 2135              | 29.8         | 6.9               | 4.94         | 2730              | 31.9              | 7.0          | 5.05                |
| 355               | 15.3         | 5.9            | 3.88         | 950               | 22.9          | 6.9          | 4.85         | 1545              | 26.5         | 7.5               | 5.58         | 2140              | 29.8         | 7.1               | 5.08         | 2735              | 31.6              | 7.4          | 5.44                |
| 360               | 15.6         | 5.8            | 3.78         | 955               | 23.0          | 6.8          | 4.81         | 1550              | 26.5         | 7.5               | 5.63         | 2145              | 29.9         | 6.9               | 4.92         | 2740              | 31.6              | 7.1          | 5.46                |
| 365<br>370        | 15.5<br>15.5 | 5.9<br>6.0     | 3.89<br>4.01 | 960<br>965        | 23.1<br>23.1  | 6.8<br>6.7   | 4.77<br>4.73 | 1555<br>1560      | 26.7<br>26.9 | 7.3<br>7.1        | 5.39<br>5.16 | 2150<br>2155      | 29.9<br>29.8 | 7.0<br>7.1        | 4.98<br>5.10 | 2745<br>2750      | 31.9<br>32.0      | 7.0<br>6.9   | 5.06<br>4.94        |
| 375               | 15.6         | 6.1            | 4.03         | 970               | 23.2          | 6.7          | 4.69         | 1565              | 26.9         | 7.2               | 5.23         | 2160              | 29.8         | 7.1               | 5.09         | 2755              | 32.0              | 7.0          | 4.98                |
| 380               | 15.7         | 6.1            | 4.05         | 975               | 23.3          | 6.6          | 4.62         | 1570              | 26.9         | 7.2               | 5.30         | 2165              | 29.9         | 7.0               | 5.00         | 2760              | 32.0              | 7.0          | 5.06                |
| 385               | 15.7         | 6.2            | 4.15         | 980               | 23.5          | 6.6          | 4.54         | 1575              | 27.0         | 7.2               | 5.23         | 2170              | 29.9         | 7.1               | 5.07         | 2765              | 32.2              | 6.8          | 4.80                |
| 390<br>395        | 15.7<br>15.9 | 6.3            | 4.25<br>4.22 | 985<br>990        | 23.5<br>23.6  | 6.6<br>6.5   | 4.52<br>4.50 | 1580<br>1585      | 27.0<br>27.0 | 7.1<br>7.2        | 5.17<br>5.20 | 2175<br>2180      | 29.8<br>29.8 | 7.2<br>7.2        | 5.20<br>5.27 | 2770<br>2775      | 32.3<br>32.3      | 6.8          | 4.73<br>4.77        |
| 400               | 16.0         | 6.2            | 4.18         | 995               | 23.6          | 6.5          | 4.48         | 1590              | 27.0         | 7.2               | 5.22         | 2185              | 29.8         | 7.2               | 5.27         | 2780              | 32.3              | 6.8          | 4.82                |
| 405               | 16.3         | 6.1            | 4.07         | 1000              | 23.7          | 6.5          | 4.46         | 1595              | 27.0         | 7.2               | 5.29         | 2190              | 29.8         | 7.2               | 5.28         | 2785              | 32.7              | 6.4          | 4.41                |
| 410               | 16.5         | 6.0            | 3.96         | 1005              | 23.7          | 6.5          | 4.51         | 1600              | 27.0         | 7.3               | 5.36         | 2195              | 29.8         | 7.2               | 5.30         | 2790              | 32.8              | 6.3          | 4.25                |
| 415               | 16.5         | 6.0            | 4.00         | 1010              | 23.7          | 6.6          | 4.57         | 1605              | 27.0         | 7.3               | 5.38         | 2200              | 29.7         | 7.3               | 5.38         | 2795              | 32.8              | 6.4          | 4.33                |
| 420<br>425        | 16.6<br>16.6 | 6.1<br>6.1     | 4.03<br>4.10 | 1015<br>1020      | 23.7<br>23.8  | 6.6          | 4.55<br>4.54 | 1610<br>1615      | 27.0<br>27.1 | 7.3<br>7.3        | 5.41<br>5.33 | 2205<br>2210      | 29.7<br>29.7 | 7.3<br>7.4        | 5.41<br>5.47 | 2800<br>2805      | 32.5<br>32.5      | 6.7          | 4.66<br>4.62        |
| 425               | 16.7         | 6.2            | 4.10         | 1020              | 23.8          | 6.6          | 4.62         | 1620              | 27.1         | 7.2               | 5.33         | 2215              | 29.7         | 7.4               | 5.54         | 2810              | 32.5              | 6.7          | 4.62                |
| 435               | 16.9         | 6.1            | 4.05         | 1030              | 23.7          | 6.7          | 4.70         | 1625              | 27.2         | 7.2               | 5.30         | 2220              | 29.7         | 7.5               | 5.57         | 2815              | 32.3              | 6.9          | 4.85                |
| 440               | 17.1         | 5.9            | 3.93         | 1035              | 23.7          | 6.8          | 4.81         | 1630              | 27.2         | 7.3               | 5.33         | 2225              | 29.8         | 7.3               | 5.43         | 2820              | 32.2              | 7.0          | 5.01                |
| 445               | 17.2         | 6.0            | 3.97         | 1040              | 23.6          | 6.9          | 4.92         | 1635              | 27.2         | 7.3               | 5.35         | 2230<br>2235      | 29.8         | 7.4<br>7.5        | 5.45         | 2825              | 32.3              | 7.0          | 4.96                |
| 450<br>455        | 17.2<br>17.3 | 6.0<br>6.1     | 4.00<br>4.04 | 1045<br>1050      | 23.7<br>23.7  | 6.9          | 4.91<br>4.91 | 1640<br>1645      | 27.2<br>27.3 | 7.3<br>7.2        | 5.36<br>5.22 | 2235              | 29.7<br>29.5 | 7.5               | 5.61<br>5.86 | 2830<br>2835      | 32.4<br>32.5      | 6.8          | 4.80<br>4.68        |
| 460               | 17.4         | 6.1            | 4.07         | 1055              | 23.7          | 7.0          | 5.01         | 1650              | 27.5         | 7.1               | 5.09         | 2245              | 29.8         | 7.4               | 5.53         | 2840              | 32.5              | 6.8          | 4.78                |
| 465               | 17.5         | 6.1            | 4.05         | 1060              | 23.6          | 7.1          | 5.11         | 1655              | 27.5         | 7.1               | 5.11         | 2250              | 30.0         | 7.3               | 5.35         | 2845              | 32.6              | 6.6          | 4.62                |
| 470               | 17.6         | 6.1            | 4.04         | 1065              | 23.7          | 7.0          | 5.06         | 1660              | 27.5         | 7.1               | 5.13         | 2255              | 30.0         | 7.2               | 5.28         | 2850              | 32.6              | 6.7          | 4.70                |
| 475<br>480        | 17.7<br>17.9 | 6.0<br>5.9     | 3.99         | 1070<br>1075      | 23.8<br>23.8  | 7.0<br>7.0   | 5.01<br>5.01 | 1665<br>1670      | 27.6<br>27.7 | 7.0<br>7.0        | 5.06<br>4.99 | 2260<br>2265      | 30.1<br>30.1 | 7.2<br>7.2        | 5.24<br>5.20 | 2855<br>2860      | 32.4<br>32.4      | 6.9<br>7.0   | 4.88<br>4.98        |
| 480<br>485        | 17.9         | 5.9            | 3.93         | 1075              | 23.8          | 7.0          | 5.01         | 1675              | 27.7         | 7.0               | 4.99<br>5.02 | 2265<br>2270      | 30.1         | 7.2               | 5.20         | 2860              | 32.4              | 6.5          | 4.98                |
| 490               | 18.2         | 5.8            | 3.82         | 1085              | 24.0          | 7.0          | 4.96         | 1680              | 27.7         | 7.0               | 5.05         | 2275              | 30.3         | 7.0               | 5.05         | 2870              | 33.0              | 6.3          | 4.30                |
| 495               | 18.0         | 6.0            | 4.02         | 1090              | 24.0          | 6.9          | 4.91         | 1685              | 27.7         | 7.0               | 5.01         | 2280              | 30.0         | 7.0               | 5.06         | 2875              | 33.0              | 6.4          | 4.38                |
| 500               | 17.9         | 6.3            | 4.23         | 1095              | 24.1          | 6.9          | 4.86         | 1690              | 27.8         | 7.0               | 4.98         | 2285              | 30.3         | 7.0               | 5.05         | 2880              | 32.5              | 6.9          | 4.87                |
| 505<br>510        | 17.9<br>18.0 | 6.3<br>6.4     | 4.29<br>4.36 | 1100<br>1105      | 24.2<br>24.3  | 6.8          | 4.82<br>4.80 | 1695<br>1700      | 27.8<br>27.8 | 7.0<br>7.0        | 5.01<br>5.03 | 2290<br>2295      | 30.3<br>30.3 | 7.1<br>7.1        | 5.07<br>5.13 | 2885<br>2890      | 33.0<br>33.1      | 6.4          | 4.40<br>4.28        |
| 510               | 18.1         | 6.4            | 4.34         | 1110              | 24.3          | 6.8          | 4.80         | 1700              | 27.8         | 7.0               | 5.03         | 2300              | 30.3         | 7.1               | 5.13         | 2895              | 33.1              | 6.4          | 4.28                |
| 520               | 18.2         | 6.4            | 4.32         | 1115              | 24.3          | 6.8          | 4.79         | 1710              | 27.7         | 7.1               | 5.16         | 2305              | 30.3         | 7.2               | 5.20         | 2900              | 33.0              | 6.4          | 4.41                |
| 525               | 18.2         | 6.4            | 4.36         | 1120              | 24.4          | 6.8          | 4.80         | 1715              | 27.8         | 7.1               | 5.08         | 2310              | 30.2         | 7.3               | 5.35         | 2905              | 32.9              | 6.6          | 4.58                |
| 530               | 18.3         | 6.4            | 4.39         | 1125              | 24.3          | 6.9          | 4.90         | 1720              | 27.9         | 7.0               | 5.00         | 2315              | 30.1         | 7.4               | 5.45         | 2910              | 32.9              | 6.5          | 4.51                |
| 535<br>540        | 18.3<br>18.4 | 6.4            | 4.41<br>4.41 | 1130<br>1135      | 24.3<br>24.4  | 7.0<br>6.9   | 5.00<br>4.90 | 1725<br>1730      | 28.0<br>28.0 | 7.0<br>7.0        | 4.99<br>4.98 | 2320<br>2325      | 30.3<br>304  | 7.2<br>7.2        | 5.27<br>5.22 | 2915<br>2920      | 33.1<br>33.3      | 6.4          | 4.33<br>4.16        |
| 545               | 18.4         | 6.5            | 4.41         | 1140              | 24.4          | 6.8          | 4.90         | 1735              | 28.0         | 7.0               | 5.02         | 2320              | 30.4         | 7.1               | 5.13         | 2920              | 33.3              | 6.5          | 4.15                |
| 550               | 18.4         | 6.6            | 4.53         | 1145              | 24.6          | 6.8          | 4.76         | 1740              | 28.0         | 7.1               | 5.07         | 2335              | 30.5         | 7.0               | 5.07         | 2930              | 33.0              | 6.5          | 4.51                |
| 560               | 18.8         | 6.4            | 4.37         | 1155              | 24.7          | 6.8          | 4.76         | 1750              | 28.1         | 7.0               | 5.01         | 2345              | 30.6         | 7.0               | 5.07         | 2940              | 33.0              | 6.5          | 4.52                |
| 565               | 18.9         | 6.4            | 4.33         | 1160              | 24.7          | 6.8          | 4.80         | 1755              | 27.9         | 7.1               | 5.17         | 2350              | 30.5         | 7.1               | 5.12         | 2945              | 33.1              | 6.5          | 4.42                |
| 570<br>575        | 19.0<br>19.1 | 6.3<br>6.3     | 4.28<br>4.31 | 1165<br>1170      | 24.7<br>24.7  | 6.8          | 4.81<br>4.81 | 1760<br>1765      | 27.8<br>27.9 | 7.3<br>7.3        | 5.34<br>5.31 | 2355<br>2360      | 30.6<br>30.9 | 7.1<br>6.8        | 5.08<br>4.79 | 2950<br>2955      | 33.2<br>33.3      | 6.4          | 4.32<br>4.27        |
| 5/5<br>580        | 19.1         | 6.4            | 4.31         | 1170              | 24.7          | 6.8          | 4.81         | 1765              | 27.9         | 7.3               | 5.31         | 2360              | 30.9         | 6.8               | 4.79         | 2955<br>2960      | 33.3              | 6.3          | 4.27                |
| 590               | 19.1         | 6.6            | 4.52         | 1185              | 24.8          | 6.9          | 4.92         | 1780              | 27.9         | 7.3               | 5.35         | 2375              | 31.1         | 6.6               | 4.60         | 2970              | 33.3              | 6.4          | 4.36                |
| 595               | 19.0         | 6.6            | 4.62         | 1190              | 24.7          | 7.0          | 4.99         | 1785              | 28.1         | 7.2               | 5.21         | 2380              | 31.1         | 6.6               | 4.61         | 2975              | 33.0              | 6.6          | 4.60                |
| 600               | 19.0         | 6.7            | 4.72         | 1195              | 24.7          | 7.0          | 5.02         | 1790              | 28.2         | 7.0               | 5.07         | 2385              | 31.1         | 6.7               | 4.62         | 2980              | 32.9              | 6.8          | 4.74                |
| 605<br>610        | 19.1<br>19.1 | 6.8            | 4.74<br>4.76 | 1200<br>1205      | 24.7<br>24.08 | 7.0<br>7.1   | 5.05<br>5.08 | 1795<br>1800      | 28.2<br>28.3 | 7.0<br>7.0        | 5.07<br>5.06 | 2390<br>2395      | 31.2<br>31.2 | 6.6<br>6.6        | 4.56<br>4.60 | 2985<br>2990      | 32.8<br>32.9      | 6.9          | 4.93<br>4.82        |
| 615               | 19.1         | 6.5            | 4.76         | 1205              | 24.08         | 7.1          | 5.08         | 1800              | 28.3         | 7.0               | 5.06         | 2395              | 31.2         | 6.9               | 4.60         | 3000              | 32.9              | 6.4          | 4.82                |
|                   |              |                |              |                   | 1.0           |              |              |                   |              |                   |              | 00                |              |                   |              |                   |                   |              |                     |



# Cable loss Cable Coaxial, RG-58/RG-214, s/n 056, HL 0415 + Cable Coaxial, RG-214, 11.5m, s/n 148, HL 0812

| No. | Frequency,<br>MHz | Cable loss,<br>dB | Measured uncertainty,<br>dB |
|-----|-------------------|-------------------|-----------------------------|
| 1   | 20                | 0.73              |                             |
| 2   | 30                | 0.91              |                             |
| 3   | 50                | 1.2               |                             |
| 4   | 80                | 1.56              |                             |
| 5   | 100               | 1.76              |                             |
| 6   | 200               | 2.59              |                             |
| 7   | 300               | 3.26              |                             |
| 8   | 400               | 3.93              | ±0.12                       |
| 9   | 500               | 4.42              |                             |
| 10  | 600               | 4.92              |                             |
| 11  | 700               | 5.36              |                             |
| 12  | 800               | 5.88              |                             |
| 13  | 900               | 6.41              |                             |
| 14  | 1000              | 6.71              |                             |
| 15  | 1500              | 8.63              |                             |
| 16  | 2000              | 10.39             |                             |



## Cable loss Cable Coaxial, GORE A2P01POL118, 2.3 m, model:GORE-3, HL 0589 + Cable Coaxial, ANDREW PSWJ4, 6m, model: ANDREW-6, HL 1004

| No. | Frequency,<br>MHz | Cable loss,<br>dB | Tolerance<br>(Specification),<br>dB | Measurement uncertainty, dB |
|-----|-------------------|-------------------|-------------------------------------|-----------------------------|
| 1   | 30                | 0.33              |                                     |                             |
| 2   | 50                | 0.40              |                                     |                             |
| 3   | 100               | 0.57              |                                     |                             |
| 4   | 300               | 0.97              |                                     |                             |
| 5   | 500               | 1.25              |                                     |                             |
| 6   | 800               | 1.59              |                                     |                             |
| 7   | 1000              | 1.81              |                                     |                             |
| 8   | 1200              | 1.97              | ≤ 6.5                               | ±0.12                       |
| 9   | 1400              | 2.15              |                                     |                             |
| 10  | 1600              | 2.28              |                                     |                             |
| 11  | 1800              | 2.43              |                                     |                             |
| 12  | 2000              | 2.61              |                                     |                             |
| 13  | 2200              | 2.75              |                                     |                             |
| 14  | 2400              | 2.89              |                                     |                             |
| 15  | 2600              | 2.97              |                                     |                             |
| 16  | 2800              | 3.21              | ≤ 6.5                               | ±0.12                       |
| 17  | 3000              | 3.32              |                                     |                             |
| 18  | 3300              | 3.47              |                                     |                             |
| 19  | 3600              | 3.62              |                                     |                             |
| 20  | 3900              | 3.84              |                                     |                             |
| 21  | 4200              | 3.92              |                                     | ±0.17                       |
| 22  | 4500              | 4.07              |                                     |                             |
| 23  | 4800              | 4.36              |                                     |                             |
| 24  | 5100              | 4.62              |                                     |                             |
| 25  | 5400              | 4.78              |                                     |                             |
| 26  | 5700              | 5.16              |                                     |                             |
| 27  | 6000              | 5.67              |                                     |                             |
| 28  | 6500              | 5.99              |                                     |                             |



## Cable loss RF cable 3.5 m, Alpha Wire, model RG-214, S/N 149, HL 1553

| No. | Frequency,<br>MHz | Cable loss,<br>dB | Measurement uncertainty, dB |
|-----|-------------------|-------------------|-----------------------------|
| 1   | 1                 | 0.01              |                             |
| 2   | 10                | 0.07              | 1                           |
| 3   | 30                | 0.12              |                             |
| 4   | 50                | 0.22              | 1                           |
| 5   | 100               | 0.26              |                             |
| 6   | 200               | 0.40              |                             |
| 7   | 300               | 0.52              | 1                           |
| 8   | 400               | 0.60              | ±0.05                       |
| 9   | 500               | 0.70              | 1                           |
| 10  | 600               | 0.77              | 1                           |
| 11  | 700               | 0.84              | 1                           |
| 12  | 800               | 1.00              |                             |
| 13  | 900               | 1.00              | 1                           |
| 14  | 1000              | 1.05              | 1                           |
| 15  | 2000              | 1.70              | 7                           |



#### Cable loss Cable RF, 2m, model: Sucoflex 104PE, S/N 13094/4PE, HL 1566

| No. | Frequency,<br>MHz | Cable loss,<br>dB | Tolerance,<br>dB | Measurement uncertainty, dB |
|-----|-------------------|-------------------|------------------|-----------------------------|
| 1   | 30                | 0.10              |                  |                             |
| 2   | 50                | 0.13              |                  |                             |
| 3   | 100               | 0.20              |                  |                             |
| 4   | 300               | 0.33              |                  |                             |
| 5   | 500               | 0.45              |                  |                             |
| 6   | 800               | 0.60              |                  |                             |
| 7   | 1000              | 0.65              | ≤ 5.0            | ±0.12                       |
| 8   | 1500              | 0.91              |                  |                             |
| 9   | 2000              | 1.08              |                  |                             |
| 10  | 2500              | 1.19              |                  |                             |
| 11  | 3000              | 1.28              |                  |                             |
| 12  | 3500              | 1.49              | 7                |                             |
| 13  | 4000              | 1.63              | 7                |                             |
| 14  | 4500              | 1.63              |                  |                             |
| 15  | 5000              | 1.66              | 7                |                             |
| 16  | 5500              | 1.88              | 7                |                             |
| 17  | 6000              | 1.96              | 7                |                             |
| 18  | 6500              | 1.93              |                  |                             |
| 19  | 7000              | 2.07              |                  |                             |
| 20  | 7500              | 2.37              |                  |                             |
| 21  | 8000              | 2.34              |                  | 10.47                       |
| 22  | 8500              | 2.64              | ≤ 5.0            | ±0.17                       |
| 23  | 9000              | 2.68              | 7                |                             |
| 24  | 9500              | 2.64              |                  |                             |
| 25  | 10000             | 2.70              | 7                |                             |
| 26  | 10500             | 2.84              | 7                |                             |
| 27  | 11000             | 2.88              | 7                |                             |
| 28  | 11500             | 3.19              | 7                |                             |
| 29  | 12000             | 3.15              | 7                |                             |
| 30  | 12500             | 3.20              |                  |                             |
| 31  | 13000             | 3.22              | 7                |                             |
| 32  | 13500             | 3.47              | 1                |                             |
| 33  | 14000             | 3.41              | 7                |                             |
| 34  | 14500             | 3.59              | 1                |                             |
| 35  | 15000             | 3.79              | 1 ,50            | 10.00                       |
| 36  | 15500             | 4.24              | ≤ 5.0            | ±0.26                       |
| 37  | 16000             | 4.12              | 7                |                             |
| 38  | 16500             | 4.46              | 1                |                             |
| 39  | 17000             | 4.50              | 1                |                             |
| 40  | 17500             | 4.49              | 7                |                             |
| 41  | 18000             | 4.45              | 7                |                             |



#### Cable loss RF cable 8 m, model RG-214, HL 2009

| No. | Frequency,<br>MHz | Cable loss,<br>dB | Tolerance (Specification), dB | Measurement uncertainty, dB |
|-----|-------------------|-------------------|-------------------------------|-----------------------------|
| 1   | 1                 | 0.10              |                               |                             |
| 2   | 10                | 0.14              |                               |                             |
| 3   | 30                | 0.25              |                               |                             |
| 4   | 50                | 0.34              |                               |                             |
| 5   | 100               | 0.53              |                               |                             |
| 6   | 300               | 0.99              |                               |                             |
| 7   | 500               | 1.31              |                               |                             |
| 8   | 800               | 1.73              |                               |                             |
| 9   | 1000              | 1.98              |                               |                             |
| 10  | 1100              | 2.11              | NA                            | ±0.12                       |
| 11  | 1200              | 2.21              |                               |                             |
| 12  | 1300              | 2.35              |                               |                             |
| 13  | 1400              | 2.46              |                               |                             |
| 14  | 1500              | 2.55              |                               |                             |
| 15  | 1600              | 2.68              |                               |                             |
| 16  | 1700              | 2.78              |                               |                             |
| 17  | 1800              | 2.88              |                               |                             |
| 18  | 1900              | 2.98              |                               |                             |
| 19  | 2000              | 3.09              |                               |                             |



#### 13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)
BB broad band
cm centimeter
dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$ 

 $\begin{array}{ll} dB(\mu V/m) & \qquad decibel \ referred \ to \ one \ microvolt \ per \ meter \\ dB(\mu A) & \qquad decibel \ referred \ to \ one \ microampere \end{array}$ 

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz k kilo kHz kilohertz

LISN line impedance stabilization network

LO local oscillator

meter m MHz megahertz min minute millimeter  $\mathsf{mm}$ millisecond ms μS microsecond NA not applicable NB narrow band **OATS** open area test site

 $\Omega$  Ohm

PCB printed circuit board PM pulse modulation ppm part per million (10<sup>-6</sup>)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive
s second
T temperature
Tx transmit
V volt
WB wideband

## **END OF DOCUMENT**