

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

دان صحیحان. x; y حیث x و y عددان صحیحان. (x; y) خات المجهول (x; y) دات المعادلة

$$(2020 = 4 \times 505)$$
 و $2019 = 3 \times 673$

ين أنّه من أجل كلّ ثنائية (x;y) حل للمعادلة (E) فإنّ: x و y من نفس الإشارة.

$$\begin{cases} v_0 = 4 \\ v_{n+1} = v_n + 673 \end{cases}$$
 و
$$\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 505 \end{cases}$$
 بعتبر المتتاليتين (u_n) و (u_n) المعرفتين على (u_n) بعتبر المتتاليتين (3)

. اكتب α عددان طبيعيان α عددان طبيعيان u_{lpha} اكتب u_{lpha} عددان طبيعيان

 (w_n) عين الحدود المشتركة للمتتاليتين (u_n) و (u_n) ثم بيّن أنّ هذه الحدود المشتركة تشكّل متتالية حسابية ولا عين الطلب تعيين أساسها وحدها الأول.

$$X_n = \frac{1}{505}(w_n - 2023): n$$
 ينضع من أجل كلّ عدد طبيعي (ب

 $p = X_1.X_2....X_n$ الجداء الجداء الجداء

التمرين الثاني: (04 نقاط)

C(1;2;3) و B(1;-2;0) ، A(1;0;-1) الفضاء منسوب إلى المعلم المتعامد والمتجانس $(O;\vec{i},\vec{j},\vec{k})$ ، نعتبر

- A قائم في ABC قائم في (1
- ك. اكتب معادلة للمستوى (Q) الذي يشمل A و \overrightarrow{AC} شعاع ناظمي له.
- معادلة له. (m-1)x + 2y z m = 0 مستو حيث: (P_m) معادلة له.
- أ) أثبت أنّه عندما يتغير m في \mathbb{R} فإنّ المستوي (P_m) يحوي مستقيما ثابتا (Δ) يطلب تعيين تمثيل وسيطي له. تحقّق أنّ A و A نقطتان من المستقيم (Δ) .
 - (Q) يعامد المستوي (P_m) فإنّ المستوي فإنّ المستوي المستوي المستوي بتحقّق أنّه مهما كان

اختبار في مادة: الرياضيات// الشعبة: الرياضيات// بكالوريا 2019

. (P_m) المسافة بين النقطة B و المستوي (4

 (P_m) على (B_m) على النقطة A هي المسقط العمودي للنقطة (B_m) على النقطة (D_m)

التمرين الثالث: (05 نقاط)

$$D$$
 و C ، B ، A في المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{u},\vec{v})$ نعتبر النقط $z_{B}=1$ و $z_{D}=\overline{z_{B}}$ ، $z_{C}=\overline{z_{A}}$ ، $z_{B}=i$ ، $z_{A}=1+i\sqrt{2}$ حيث:

 $(z^2+1)(z^2-2z+3)=0$: z المعادلة ذات المجهول (1 المعادلة ذات المجهول (1 المعادلة خات المعادلة المعادلة دات المعادلة ذات المعادلة (1 المعادلة خات المعادلة دات المعادلة دات المعادلة دات المعادلة (1 المعادلة دات المعادلة دا

و C ، B ، A نتمي الدائرة التي يطلب تعيين مركزها و طول نصف قطرها.

بين أنّ:
$$z_B - z_E = \frac{\sqrt{2}}{2}(1+i)(z_A - z_E)$$
 ثم استنتج أنّ $z_B - z_E = \frac{\sqrt{2}}{2}$ ثم استنج أنّ عنين عناصره المميزة.

- ما طبيعة المثلّث ABE؟

- \overrightarrow{ABDE} و محدّدا طبيعة الرباعي \overrightarrow{BD} و عيّن لاحقتي الشّعاعين \overrightarrow{BD} و المحدّد \overrightarrow{ABDE}
 - . z_2 و $\overline{w_2}$ شعاعان من المستوي لاحقتاهما على الترتيب $\overline{w_2}$ و $\overline{w_1}$ (4 . ($z_1.\overline{z_2}+\overline{z_1}.z_2=0$) يكافئ ($\overline{w_2}$ متعامدان) يكافئ (أ
- $(z-z_A)(z-z_D) + (z-z_B)(z-z_C) = 0$ عيّن مجموعة النقط M من المستوي ذات اللاحقة z حيث:

التمرين الرابع: (07 نقاط)

.
$$\begin{cases} f(x) = x - x^2 \ln x , x > 0 \\ f(0) = 0 \end{cases}$$
 : $= [0; +\infty[$ على $= [0; +\infty[$

3~cm الوحدة $.(O; \vec{i}, \vec{j})$ منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس البياني في المستوي

1) برهن أنّ:

$$1 - x - 2x \ln x < 0$$
: فإن $x > 1$

$$1-x-2x\ln x>0$$
 فإن: $0< x<1$

- (C_f) للمنحنى (Δ) للمنحنى (أي أثبت أنّ الدالة f قابلة للاشتقاق عند d من اليمين ثم اكتب معادلة لنصف المماس (Δ) للمنحنى (أي أثبت أنّ الدالة d) عند مبدأ المعلم.
 - $\cdot(C_f)$ و $(\Delta): L$ ادرس الوضع النسبي ال
 - $\lim_{x\to +\infty} f(x) + \int (3)^{-1} (3)^{-1} dx$
 - . f أدرس اتجاه تغير الدالة f ثمّ شكّل جدول تغيرات الدالة

اختبار في مادة: الرياضيات// الشعبة: الرياضيات// بكالوريا 2019

. (Δ) الموازي لـ (C_f) المنحنى (T) الموازي لـ (4

- - . $(\alpha;0)$ الذي يوازي (Δ) ويشمل النقطة ذات الإحداثيين (d) الذي يوازي (Δ)
 - . [0;lpha] على المجال (C_f) و (Δ) و (Δ) ، (T) على المجال –
- . $[0; \alpha]$ في المجال $x^2 \ln x + m = 0$ عدد حلول المعادلة: α في المجال عدم المجال α
 - $A(\lambda) = \int_{\lambda}^{1} -x^2 \ln x dx$: نعتبر $0 < \lambda < 1$ عدد حقیقي حيث λ (6
 - λ باستعمال المكاملة بالتجزئة احسب $A(\lambda)$ بدلالة λ
 - ب) احسب $\lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda)$ ثم فسّر النتيجة هندسيا.

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع على صفحتين (02) (من الصفحة 4 من 5 إلى الصفحة 5 من 5)

التمرين الأول: (04 نقاط)

صندوقان غير شفافين U_1 و U_2 ، يحتوي الصندوق U_1 على 4 كريات حمراء و 3 كريات سوداء ويحتوي الصندوق U_1 على 5 كريات حمراء و كريتين سوداوين (الكريات كلها متشابهة لا نفرق بينها عند اللمس) نرمى نردا غير مزيف ذا ستة أوجه مرقمة من 1 إلى 6 .

 $U_1 = \begin{bmatrix} \frac{2}{7} & -A \\ \frac{1}{7} & -B \\ \vdots & C \end{bmatrix}$

 U_1 إذا ظهر الرقمان 2 أو 4 نسحب عشوائيا كريتين في آن واحد من الصندوق U_1 وفي باقى الحالات نسحب عشوائيا كربتين في آن واحد من الصندوق U_2

نعتبر الأحداث A:B و C المعرفة بـ: A:"سحب كريتين حمراوين"

سحب کریتین سوداوین" و C:"سحب کریتین من لونین مختلفین" B

- 1) أنقل، وأكمل شجرة الاحتمالات.
- C و B ، A و B ، B و B

نعتبر X المتغير العشوائي الذي يرفق بكل سحب عدد الكريات الحمراء المسحوبة.

- X عيّن قيم المتغير العشوائي X
- ب) عين قانون الاحتمال للمتغير العشوائي X.
 - $\cdot E(X)$ أحسب الأمل الرباضياتي (4

التمرين الثاني: (04 نقاط)

- $u_1=0$ متتالية عددية حدودها موجبة معرفة بحدها الأول $u_1=0$ حيث $u_1=0$ متتالية عددية حدودها موجبة معرفة بحدها الأول . $u_{n+1}=u_n+2\sqrt{u_n}+1$
 - $\sqrt{u_{n+1}} \sqrt{u_n} = 1$ ، n معدوم غير معدوم عدد طبيعي غير أ(1
 - n بدلالة u_n استنتج كتابة الحد العام بدلالة
 - $u_n = n(n-2)+1$ ، n نحقق أنّه: من أجل كل عدد طبيعي غير معدوم (2
 - n-5 عيّن قيم العدد الطبيعي n التي من أجلها: n-2 يقسم (3
 - $PGCD(n-2;u_n)=1$ ، بیّن أنّ: $n\geq 2$ حیث $n\geq 2$ عدد طبیعی n حیث (4
 - $(n-5)u_n$ يقسم $(n-2)(n^2+1)$ يقسم التي من أجلها $(n-5)u_n$ يقسم العدد الطبيعي التي من أجلها

التمرين الثالث: (05 نقاط)

- $P(z) = z^4 6z^3 + 29z^2 24z + 100$ ، z عدد مركب عدد مركب (1
- P(z)=0 عدد مرکب z، استنتج أنّه إذا كان z حلا للمعادلة $\overline{P(z)}=P(\overline{z})$ ، ثم استنتج أنّه إذا كان z حلا للمعادلة فإنّ \overline{z} حل لها.
 - ب) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة P(z)=0 علما أنّها تقبل حلا تخيليا صرفا.

 $\cdot |z'| = 2$ التي يكون من أجلها M(z) التي يكون من أجلها (E) لتكن

بيّن أن (النقطة M من M عيّن M عيّن M عيّن أن (النقطة M من بيّن أن (النقطة M بيّن أن (النقطة M من M

جـ) لتكن (Γ) مجموعة النقط (z) التي يكون من أجلها (Γ) عدد صحيح (Γ) عدد صحيح (Γ) لتكن (Γ) مجموعة النقطة (Γ) التي يكون من أجلها (Γ) ، ثمّ عيّن وأنشئ (Γ) .

. (Γ) و (E) عين الشكل الجبري للِلحقة النقطة G تقاطع المجموعتين (E) و (3

التمرين الرابع: (07 نقاط)

- وسيط حقيقي. $f_k(x) = (x+1)^2 e^{-kx}$ ي ي ي وسيط حقيقي. $f_k(x) = (x+1)^2 e^{-kx}$ ي يكن $f_k(x) = (x+1)^2 e^{-kx}$ يكن $f_k(x) = (x+1)^2 e^{-kx}$
 - . بيّن أنّ كل المنحنيات (\mathcal{C}_k) تمر من نقطتين ثابتتين يطلب تعيينهما (1
 - . (k وعند $-\infty$ عند $+\infty$ عند $+\infty$
 - f_k الحسب $f_k'(x)$ ، ثم حدّد حسب قيم الوسيط الحقيقي $f_k'(x)$ اتجاه تغير الدالة f_k من أجل f_k عدد حقيقي موجب تماما.
 - (\mathcal{C}_{k+1}) و (\mathcal{C}_k) ناقش حسب قيم الوسيط الحقيقي k الأوضاع النسبية للمنحنيين (4
 - $f\left(x
 ight)=\left(x+1
 ight)^{2}e^{-2x}$ بيد \mathbb{R} بيد الدالة المعرفة على $f\left(II
 ight)$ نسمي $\left(\mathcal{C}_{f}\right)$ تمثيلها البياني في المعلم المتعامد والمتجانس $\left(\mathcal{C}_{f}\right)$
 - . $\left[-\frac{3}{2} ; +\infty\right[$ المجال على المجال المنحنى (\mathcal{C}_f) على المجال الدالة f، ثم أرسم المنحنى (1
- -1,28 < α حيث: α حيث α تقبل حلّين في α أحدهما α تقبل حلّين أنّ المعادلة α
 - ب) عيّن قيّم العدد الحقيقي m التي من أجلها تقبل المعادلة $\left| \frac{x+1}{e^x} \right| = \left| \frac{m+1}{e^m} \right|$ حلا وحيدا.
 - . $g(x) = (x+1)e^{-2x}$:ب \mathbb{R} على g (3

أ) بيّن أنّه من أجل كل عدد حقيقي x فإنّ: $g'(x) + 2g(x) - e^{-2x} = 0$ ثمّ استنتج دالة أصلية له g على $g'(x) + 2g(x) - e^{-2x} = 0$ على $g'(x) + 2g(x) - e^{-2x} = 0$ باستعمال المكاملة بالتجزئة، احسب A مساحة الحيز المستوي المحدّد بالمنحنى $g'(x) + 2g(x) - e^{-2x} = 0$ ومحور الفواصل والمستقيمين اللّذين معادلتا هما x = 0 و x = 0

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
•		التمرين الأول: (04 نقاط)
	0.5	$(x_0;y_0)$ = $(4;3)$ الحل الخاص $\mathbb{Z} imes\mathbb{Z}$ حل المعادلة في $\mathbb{Z} imes\mathbb{Z}$ الحل الخاص
02	0.75 0.75	$k \in \mathbb{Z}$ ومنه: $(x; y) = (673k + 4; 505k + 3)$ ومنه: $PGCD(673; 505) = 1$
0.5	0.5	يبان أن x و y لهما نفس الإشارة:
0.5	0.5	$k \in \mathbb{Z}$ محققة من أجل كل (673k+4) محققة من أجل كل)>0
01	2×0.25	$u_{\alpha}=3+505\alpha$; $\alpha\in\mathbb{N}$ متتالية حسابية، $(u_{n}):\alpha$ عتابة u_{α} بدلالة u_{α}
VI	2×0.25	v_{eta} = $4+673eta$; $eta\in\mathbb{N}$ ، متتالية حسابية $\left(v_{n} ight):eta$ عتابة $\left(v_{n} ight):$
		نا) تعيين الحدود المشتركة بين (u_n) و (v_n) :
	0.25	$505lpha-673eta=1$ تكافئ $u_{lpha}=4+673eta$ ومنه: $u_{lpha}=v_{eta}$
0.5	0.20	$k\in\mathbb{N}$ ومنه: $(lpha;eta)=(673k+4;505k+3)$ مع
	0.25	$w_n = 339865n + 2023$. $k \in \mathbb{N}$ مع $u_k = 339865k + 2023$. أي $u_{\alpha} = 505\alpha + 3$
	0.23	وهي حدود متتابعة لمتتالية حسابية أساسها $r=339865$ وحدها الأول 2023
		$p = X_1.X_2X_n = (673)^n n!$
التمرين الثاني: (04 نقاط)		
1.05	2×0.25	$\overrightarrow{AC}(0;2;4)$ ، $\overrightarrow{AB}(0;-2;1)$: A قائم في ABC قائم في (1
1.25	0.5	$\overrightarrow{ABc}=0$ ومنه: \overrightarrow{ABC} قائم فی \overrightarrow{AB} و
	0.25	
0.75	0.75	(2) كتابة معادلة المستوي (Q) : $y+2z+2=0$
		ن اثبات أن (P_m) يشمل مستقيما ثابتا (Δ) مع تعيين تمثيل وسيطي له:
	0.25	ومنه: $m(x-1)+(-x+2y-z)=0$ تكافئ $(P_m):(m-1)x+2y-z-m=0$
		$\begin{bmatrix} x=1 \end{bmatrix}$
	0.25	$t\in\mathbb{R}$ ومنه: $\begin{cases} x-1 \\ 0 \end{cases}$ إذن:
		$t \in \mathbb{R}$ عند (Δ) : $\begin{cases} x=1 \\ y=t \\ z=2t-1 \end{cases}$ إذن: $\begin{cases} x=1 \\ z=2y-1 \end{cases}$ ومنه: $\begin{cases} x-1=0 \\ -x+2y-z=0 \end{cases}$ و
01		(Δ) التحقق أن A و C نقطتان من (Δ) :
		$\begin{cases} x = 1 \end{cases}$
	0.25	$C \in (\Delta): \begin{cases} x = 1 \\ y = t = 2 \end{cases} \qquad A \in (\Delta): \begin{cases} x = 1 \\ y = t = 0 \end{cases}$
		$\begin{vmatrix} z & z & z & z & z & z & z & z & z & z $
	0.25	$C \in (\Delta): \begin{cases} x = 1 \\ y = t = 2 \\ z = 2(2) - 1 = 3 \end{cases}$ $A \in (\Delta): \begin{cases} x = 1 \\ y = t = 0 \\ z = 2(0) - 1 = -1 \end{cases}$ $(Q) \text{ i.i. } (P_m) \text{ i.i. } (P_m)$
		$\overrightarrow{n_{(P_m)}} \bullet \overrightarrow{n_{(Q)}} = 0$ ومنه $\overrightarrow{n_{(Q)}} (0;1;2)$ و $\overrightarrow{n_{(P_m)}} (m-1;2;-1)$ \bullet
		$d(m) = \frac{5}{\sqrt{m^2 - 2m + 6}}$ أ. تبيان أن (4
01	0.25	VIII = 111 1 0
		$d(m) = \frac{\left (m-1)(1) + 2(-2) - 0 - m \right }{\sqrt{(m-1)^2 + 2^2 + (-1)^2}} = \frac{5}{\sqrt{m^2 - 2m + 6}}$
		$\sqrt{(m-1)^2+2^2+(-1)^2}$ $\sqrt{m^2-2m+6}$

مة	العلا	مناه الأمامة (المصنوب الأمام)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0.25	- تعیین قیمهٔ m حتی تکون $d(m)$ أعظمية:
	0.25	أعظمية من أجل $m=1$ (تقبل أي إجابة صحيحة). $d(m)$
	0.23	$d(1) = \sqrt{5}$ ومنه:
		ب. استنتاج أنه إذا كان $d(m)$ أعظميا فإن A المسقط العمودي لـ B على (P_m) : من أجل
	0.25	B ومنه A المسقط العمودي لـ $A \in \{P_m\}$ ومنه $A \in \{P_m\}$
		$A \in (p_m)$ ومنه $A \in (p_m)$ و
	T	التمرين الثالث: (05 نقاط)
		① $(z^2+1)(z^2-2z+3)=0$: \mathbb{C} : \mathbb{C}
1.50	6×0.25	$\left\{egin{array}{ll} z_1=i & ; & z_2=\overline{z_1} \ z_3=1+i\sqrt{2} & ; & z_4=\overline{z_3} \end{array} ight.$ ومنه: $\left\{egin{array}{ll} z^2+1=0 \ z^2-2z+3=0 \end{array} ight.$
		$\begin{cases} z_3 = 1 + i\sqrt{2} & ; \ z_4 = \overline{z_3} \end{cases} \begin{cases} z^2 - 2z + 3 = 0 \end{cases}$
	0.75	$ z_D-z_E $ و $ z_C-1 $ ، $ z_A-1 $ د رو ا
	0.75	$ z_D - z_E = \sqrt{2}$ $ z_C - 1 = \sqrt{2}$ $ z_A - 1 = \sqrt{2}$
		استنتاج أن النقط C ، B ، A و C تنتمي إلى نفس الدائرة -
	0.25	$ z_A - z_E = z_C - z_E = z_D - z_E = \sqrt{2}$ لدينا:
	0.25	و بما أن B نظيرة C بالنسبة إلى محور الفواصل فإن:
1.50		ومنه: النقط A ، B و منه: النقط $AE=CE=DE=BE=\sqrt{2}$
		مرکزها E و طول نصف قطرها $\sqrt{2}$.
		$z_B-z_E=igg(rac{\sqrt{2}}{2}+irac{\sqrt{2}}{2}igg)ig(z_A-z_Eig)$ ب. تبیان أن
	0.25	$\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(z_A - z_E) = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(i\sqrt{2}) = i - 1 = z_B - z_E$
		- الاستنتاج:
	0.5	$a = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = e^{i\frac{\pi}{4}} z_B - z_E = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(z_A - z_E)$
0.75		ومنه B صورة A بدوران مرکزه E و زاویته $rac{\pi}{4}$.
		AE = BE
	0.25	$\left\{ (\overrightarrow{EA}; \overrightarrow{EB}) \equiv \frac{\pi}{4} [2\pi] \right\}$ لدينا ABE لدينا ABE المثلث ABE
		ومنه المثلث ABE متساوي الساقين رأسه E . (E ومنه المثلث E متساوي الساقين رأسه

العلامة		/ 1 Št. c. : ti)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	2×0.25	$z_{\overline{AE}} = -i\sqrt{2}$ عبين $z_{\overline{BD}}$ عبين $z_{\overline{BD}} = -2i$ $z_{\overline{BD}} = -2i$
0.75	0.25	$ABDE$ تحديد طبيعة الرباعي $ABDE$. $ABDE$. $ABDE$ $Z_{\overline{AE}} = \frac{\sqrt{2}}{2} \in \mathbb{R}$. $AE \neq BD$. $Z_{\overline{BD}} = \frac{1}{2}$ ومنه: الرباعي $ABDE$ شبه منحرف.
	0.25	$z_1\overline{z_2} + \overline{z_1}z_2 = 0$ أ. تبيان أنه $w_1 \perp w_2$ معناه $w_1 \perp w_2$ معناه $\overline{w_1} \perp \overline{w_2}$ معناه $\overline{w_1} \perp \overline{w_2}$ معناه $\overline{z_2} = -\frac{\overline{z_1}}{\overline{z_2}} = -\frac{\overline{z_1}}{\overline{z_2}} = -\frac{\overline{z_1}}{\overline{z_2}}$ معناه $\overline{z_1}\overline{z_2} = -\overline{z_1}\overline{z_2}$ معناه أي: $\overline{z_1}$ تخيلي صرف
0.5		$(\overrightarrow{w_2};\overrightarrow{w_1})\equiv rac{\pi}{2}[2\pi]$ ، أي $lpha\in\mathbb{R}$. $(\overrightarrow{w_2};\overrightarrow{w_1})\equiv rac{\pi}{2}[2\pi]$ ، أي $lpha\in\mathbb{R}$ ، أي $lpha\in\mathbb{R}$. أي $lpha$ نقبل أي طريقة أخرى صحيحة) محيحة $\overrightarrow{w_1}=\overrightarrow{0}$ أو $\overrightarrow{w_2}=\overrightarrow{0}$ فإن التكافؤ صحيح
	0.25	M(z) ب. تحدید طبیعة مجموعة النقط $M(z)$. $M(z)$ ب. $M(z)$ ومنه مجموعة النقط $M(z)$ هي الدائرة ذات القطر $M(z)$.
		التمرين الرابع: (07 نقاط)
		$1-x-2x\ln x < 0$ البرهان أنه من أجل كل $x > 1$ فإن $x > 1$
0.5	0.25	$1-x-2x\ln x<0$ ومنه: $1-x-2x\ln x<0$ ومنه: $x>1$ هن أجل $x>1$
0.5		$1-x-2x\ln x>0$ فإن $0< x<1$ البرهان أنه من أجل كل
	0.25	$1-x-2x\ln x>0$ ومنه: $1-x-2x\ln x>0$ ومنه: $0< x<1$ هن أجل $0< x<1$
		ن أ إثبات أن f قابلة للاشتقاق عند العدد $\widehat{0}$ من اليمين:
01	0.25	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 1 = f_d(0)$
	0.25	$O(0;0)$ عند Δ) عند Δ عند Δ : λ عند Δ : λ

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عناصر الإنجابة (الموصوع الأون)
		$f(x)-x=-x^2\ln x$: (Δ) و (C_f) و النسبي لـ (C_f) و ركب در اسة الوضع النسبي لـ (C_f) و المراجع المراج
	0.5	$[0;1[$ أعلى (Δ) في المجال . (C_f)
		. $]1;+\infty[$ في المجال (Δ) في المجال (C_f)
		Oig(0;0ig) و $Nig(1;1ig)$ و في نقطتين $Oig(0;0ig)$ و $Nig(1;1ig)$
	0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x^2 \left(\frac{1}{x} - \ln x \right) \right] = -\infty \qquad : \lim_{x \to +\infty} f(x) $ (3)
4.70		$f'(x)=1-x-2x\ln x$: $[0;+\infty[$ على المجال المجال على المجال
1.50	2×0.5	متناقصة تماما على المجال $[0;1]$.
		متزايدة تماما على المجال $[1;+\infty]$.
	0.25	• جدول التغيرات.
		(Δ) أ. كتابة معادلة المماس (T) لـ (C_f) الموازي لـ (Δ) :
	3×0.25	$x_0 = \frac{1}{\sqrt{e}}$ ومنه: $y = x + \frac{1}{2}e^{-1}$ و بالتالي: $x_0 = \frac{1}{\sqrt{e}}$
	0.5	$\alpha\in]1;+\infty[$ تقبل حلا وحيد ا $f(x)=0$: نقبل حلا وحيد ا
		$\lim_{x o +\infty}f(x)\! imes\!f$ مستمرة و متناقصة تماما على المجال $[1;+\infty[$ و $f(x)\! imes\!f$
		$lpha\in]1;+\infty[$ ومنه حسب مبر هنة القيم المتوسطة $f\left(x ight)=0$ تقبل حل وحيد
	0.25	$lpha\in\left]1,76;1,77\right[$ التحقق أن $lpha$
		$\alpha \in]1,76;1,77[$ ومنه: $f(1,76) \times f(1,77) = (0,008)(-0,018) < 0$
03	0.25	(lpha;0) جـ. كتابة معادلة المستقيم (a) الموازي لا (a) و يشمل النقطة ذات الإحداثيين $(a;0)$
		$(d): y = x - \alpha$
	3×0.25 0.5	رسم (Δ) ، (Δ) على المجال (C_f) على المجال (C_f) . (Δ) ، (Δ) . (Δ)

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عقاصر الإجابة (الموصوع الأون)
	0.25	المناقشة الوسيطية لعدد حلول المعادلة في المجال $[0; \alpha]$: $x \neq 0$ و $f(x) = x + m$ و $x \neq 0$ و $f(x) = x + m = 0$
0.50	0.25	. ليس للمعادلة حل. $m\in \left]-\infty;-\alpha\right[\cup\left]rac{1}{2}e^{-1};+\infty\right[$ • $m\in \left[-\alpha;0 ight]$ • حل وحيد.
		. حلان متمایز ان. $m \in \left]0; \frac{1}{2}e^{-1}\right[$
		مناعف. $m = \frac{1}{2}e^{-1}$ •
	0.25	حساب $A(\lambda)$ بالتجزئة: $A(\lambda) = \frac{1}{9} - \frac{1}{9}\lambda^3 + \frac{1}{3}\lambda^3 \ln \lambda$
0.50	0.25	$\lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda)$ - $\lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda) = \lim_{\lambda \stackrel{>}{\longrightarrow} 0} \left(\frac{1}{9} - \frac{1}{9} \lambda^3 + \frac{1}{3} \lambda^3 \ln \lambda \right) = \frac{1}{9}$ - $\lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda) = \lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda) = \lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda) = \lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda) = 1cm^2$ و $\lim_{\lambda \stackrel{>}{\longrightarrow} 0} A(\lambda)$. (Δ)

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	4×0.25	التمرين الأول: (04 نقاط)
	4^0.23	1) إكمال الشجرة
	3×0.5	p(C) و $p(B)$ ، $p(A)$ حساب (2
4	0.5	3) أ) قيم X هي 0، 1 و2.
	3×0.25	ب)توزيع قانون الاحتمال
	3^0.23	$X = x_i \qquad 0 \qquad 1 \qquad 2$
		$P(X = x_i)$ $\frac{12}{105}$ $\frac{62}{105}$ $\frac{31}{105}$
	0.25	$E(X) = \frac{124}{105}$: الأمل الرياضياتي
	01	التمرين الثاني: (04 نقاط)
02	01 01	1) أ) التحقق
		$u_n = (n-1)^2$ بستنتاج کتابه $(n-1)^2$
01	01	$u_n = n(n-2)+1$:التحقق من أن (2
0.5	0.5	يقسم 3 و $n-2\in\{-3;-1;1;3\}$ وقيم n المطلوبة هي: 1، 3، 5. $n-2$
0.5	0.25	لاينا: $u_n - n(n-2) = 1$ تطبيق مبرهنة بيزو وتقبل أي طريقة أخرى سليمة.
0.5	0.25	n-5يقسم $n-2$ يقسم مبرهنة غوص: $n-2$
		قيم n المطلوبة هي:1، 5.
		التمرين الثالث:(05 نقاط)
01	0.5	$\overline{P(z)} = P(\overline{z}) \text{ (f (1))}$
	0.5	\overline{z} تبرير الاستنتاج: إذا كان z حلا فإن \overline{z} هو حل كذلك
1.75	0.75	(انتحلیل $P(\alpha i)=0$) أي $P(z)=(z^2+\alpha)(az^2+bz+c)$
1./5	1	$3+4i\cdot -2i\cdot 3-4i\cdot 2i$ حلول المعادلة هي: 3 $-4i\cdot 2i$
	0.5 x2	$z_{J} = -3 + 8i$ و $z_{I} = 1$ (1) (2)
2	0.25	ب) برهان التكافؤ
	0.25	تعیین (E) و إنشاؤها
	2x0.25	ج) التحقق أن $D \in (\Gamma)$ و تعيين Γ
0.25	0.25	G الشكل الجبري للاحقة النقطة (3
	0.23	

العلامة		/ *1**ti - * * ti\ " 1 b*i
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
01	2x0.5	التمرين الرابع:(07 نقاط) التمرين الرابع: (C_k) تقاط) المنحنيات (C_k) تمر من النقطتين (C_k) و $(0;1)$ (تقبل كل الطرائق السليمة)
	0.5	$\lim_{x \to +\infty} f_k(x) = +\infty \qquad \qquad \lim_{x \to -\infty} f_k(x) = 0 \qquad \qquad k < 0 $ (2
01.50	0.5	$\lim_{x \to +\infty} f_k(x) = +\infty \qquad \text{o} \qquad \lim_{x \to -\infty} f_k(x) = +\infty \qquad k = 0$
	0.5	$\lim_{x \to +\infty} f_k(x) = 0 \qquad \text{o} \qquad \lim_{x \to -\infty} f_k(x) = +\infty \qquad k > 0$
	0.25	$f_k'(x)$ أي حساب (أ (3
	0.25	$f'_k(x) = (x+1)(-kx+2-k)e^{-kx}$
1.50	0.25	الحالة $k=0:1$ الخالة $k=0$ الخالة التغير
1.50	0.25	$k \neq 0$ مقارنة العددين -1 و علم حالة $k \neq 0$
	0.25	الحالة $k>0$:2 الخارة $k>0$ الجاه التغير
	0.25	الحالة $k < 0:3$ الحالة $k < 0:3$
0.25	0.25	k > 0ب جدول التغيرات لما
		(وضعیة المنحنیین) $f_{k+1}(x) - f_k(x)$ حساب (4
	0.25	$:f_{k+1}ig(xig)-f_kig(xig)$ إشارة
0.25		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		$ f_{k+1}(x) - f_k(x) $ + 0 -
		تحديد الوضعية
1.50		f الدالة f جدول تغيرات الدالة f
1.50	01	ملاحظة: تعطى العلامة الكاملة اذا استعمل التاميذ النتائج السابقة و تجزء العلامة في حالة
		دراسة تغيرات الدالة من جديد كما يلي (0.25+0.25+0.25)
	0.5	$\left(C_{f}^{} ight)$ رسم المنحنى
	0.25	اً) تحدید الحل $x=0$ من جدول التغیرات $x=0$
0.50	0.25	lpha تطبيق مبرهنة القيم المتوسطة لحصر
	0.25	$m\in\left[-rac{3}{2};lpha ight[$ بقبل حلا وحيدا من أجل $f\left(x ight)=f\left(m ight)$

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات //الشعب(ة): رياضيات // بكالوريا: 2019

	0.25	$g'(x)+2g(x)-e^{-2x}=0$ التحقق (أ (3)
0.5	0.25	$x\mapsto -rac{1}{4}(2x+3)e^{-2x}$:استنتاج الدالة الأصلية $A=\left(rac{e^2-5}{4} ight)u.a$ (الأولى $A=\int\limits_{-1}^{0}f\left(x ight)dx$ (ب