Lecture 6 String Matching

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

String Definition

String:

- Sequence of characters over some alphabet
- \bullet Binary {0,1}: S1 = "10000101010101010101"
- DNA {ACGT}: S2 = "ACGTACGTACGTTCGA"
- English Characters {a...z, A..Z}: S3 = "Hello World"

Applications

- Word processors
- Virus scanning
- Text retrieval
- Natural language processing
- Web search engine

String Operators

- append: append to string
- assign: assign content to string
- insert: insert to string
- erase: erase characters from string
- replace: replace portion of string
- swap: swap string values
- find: find the specific char in the string
- Give string s="SUSTechCS203", how many sub string it has?

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

Why String Searching?

Applications in Computational Biology

- DNA sequence is a long word (or text) over a 4-letter alphabet
- **⋄** GTTTGAGTGGTCAGTCTTTTCGTTTCGACGGAGCCC.....
- Find a Specific pattern W

Finding patterns in documents formed using a large alphabet

- Word processing
- Web searching
- Desktop search (Google, MSN)

Matching strings of bytes containing

- Graphical data
- Machine code

grep in unix

grep searches for lines matching a pattern.

String Searching

u

Parameter

- n: # of characters in text
- m: # of characters in pattern
- ▼ Typically, n >> m
 - e.g., n = 1 Billion, m = 100

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

Brute Force

- Brute force
 - Check for pattern starting at every text position
- Algorithm: BruteForce(T, P):

```
    n ← len(T), m ← len(P)
    for i ← 0 to n-m-1
    for j ← 0 to m-1
    if P[j] != T[i+j] then
    break;
    if j = m-1
    pattern occurs with shift i
```

Time complexity?

Analysis of Brute Force

- Analysis of brute force
 - Running time depends on pattern and text
 - Can be slow when strings repeat themselves
 - Worst case: mn comparisions
 - Too slow when m and n are large

Can we do better?

- How to avoid re-computation?
 - Pre-analyze search pattern
 - Example: suppose the first 4 chars of pattern are all a's
 - If t[0..3] matches p[0..3] then t[1..3] matches p[0..2]
 - No need to check i=1, j=0,1,2
 - Saves 3 comparisons
 - Need better ideas in general

	Search Text														
a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	b
a	a	a	a	b											
	a	a	a	a	b										

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

Given search text T and search pattern P as follows:

Any idea?

General idea

- Convert search pattern to a number p
- © Convert search text to an array of numbers t[0],...,t[n-m-1]
- Compare p with t[i], for each i in [0,n-m-1]
- if p=t[i], pattern p occurs

Example

- p = 1359
- Array t is:

2468	4680	6801	8012	121	1213	2135	1359	3597	5972
------	------	------	------	-----	------	------	------	------	------

* t[7] = p \rightarrow T[7,8,9,10]=P[0,1,2,3]

- How to convert size-m characters to a number?
 - \bullet E.g., the alphabet $\Sigma = \{a,...,z,A,...,Z\}$
 - \diamond Solution: radix-d (d=| Σ |) Horner's rule
 - p = P[m-1]+d(P[m-2]+d(P[m-3]+...+d(P[1]+dP[0])))
- When m is large, p may be too large to work
 - Modulo a proper prime number q
 - $p = P[m-1]+d(P[m-2]+d(P[m-3]+...+d(P[1]+dP[0]))) \mod q$
- Compute t[0],t[1],...,t[n-m-1] in time O(n-m)
 - Compute t[i+1] by using t[i] in O(1) time
 - \bullet t[i+1] = d(t[i]-d^{m-1}T[i])+T[i+m]
 - $t[i+1] = ((t[i]-hT[i])+T[i+m]) \mod q, \text{ where } h ≡ d^{m-1} \pmod q$
 - \bullet t[0] \rightarrow t[1] \rightarrow t[2] \rightarrow t[3] \rightarrow ... \rightarrow t[n-m-1] in O(n-m)

3

- Correctness analysis
 - $p \not\equiv t[i] \pmod{q}$ we have $p \neq t[i]$, thus, P[0,..m-1] != T[i,i+m-1]
 - $p \equiv t[i] \pmod{q}$, it does not imply p = t[i] (spurious hit)

1

Example: search P:

4

5

- Additional test to check
 - P[0,...,m-1] = T[i, i+m-1]

Algorithm: Rabin-Karp(T, P, d, q):

```
1. n \leftarrow len(T), m \leftarrow len(P)
2. h \leftarrow d^{m-1} \pmod{q}, p \leftarrow 0, t0 \leftarrow 0
3. for j \leftarrow 0 to m-1
             p \leftarrow (dp + P[j]) \mod q
           t_a \leftarrow (dt_a + T[j]) \mod q
6. for i \leftarrow 0 to n-m
   if p != t; then
7.
                     t_{i+1} \leftarrow (d(t_i - T[i]h) + T[i+m]) \mod q
8.
9.
             else
10.
                      If P[0, ...m-1] = T[i, i+m-1]
                              pattern occurs with shift i
11.
12.
                      Else
                              t_{i+1} \leftarrow (d(t_i - T[i]h) + T[i+m]) \mod q
13.
```

Analysis of Rabin-Karp Alg.

Algorithm: Rabin-Karp(T, P, d, q):

```
Cost of Line 1:
Cost of Line 2:
Cost of Line 3:
Cost of Line 4:
Cost of line 11:
Cost of Line 12:
Cost of Line 13:
Overall Cost:
```

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

Midterm Exam (tentative)

- Time: 6 Nov. 16:20-18:20
- Venue: Teaching Building 1 101,102,202,203
- Scope: Lecture 1 to 6

Finite State Automata

- A finite State automaton is defined by:
 - Q, a set of states
 - $q_0 \in Q$, the start state
 - \diamond $A \subseteq Q$, the accepting states
 - \bullet Σ , the input alphabet
 - \bullet δ , the transition function, from $Q \times \Sigma$ to Q

	0	1
a	1	2
b	0	0

FSA idea for String Matching

- \diamond Start in state q_0
- Perform a transition from q_0 to q_1 if next character of T = P[1]
- \bullet State q_i means first i characters of P match.
- ♦ Transition from q_i to q_{i+1} if the next character of T = P[i+1]

Search Pattern								
a	a	р	a	a	a			

	0	1	2	3	4	5
a	1	2	٠.	4	5	6
b	٠ .	% .	3	% .	٠.	٠.

- How to fill these ???
 - \diamond Reset to q_0 ? Why not?

- FSA construction
 - FSA builds itself
- Example. Build FSA for aabaaabb
 - State 6. P[0..5]=aabaaa
 - assume you know state for p[1..5] = abaaa
 - if next char is b (match): go forward
 - if next char is a (mismatch): go to state for abaaaa X + 'a' = 2
 - update X to state for p[1..6] = abaaab

$$X = 2$$

$$6 + 1 = 7$$

$$X + 'a' = 2$$

$$X + 'b' = 3$$

- FSA construction
 - FSA builds itself
- Example. Build FSA for aabaaabb

- FSA construction
 - FSA builds itself
- Example. Build FSA for aabaaabb
 - State 7. p[0..6]=aabaaab
 - assume you know state for p[1..6] = abaaab
 - if next char is b (match): go forward
 - if next char is a (mismatch): go to state for abaaaba X + 'a' = 4
 - update X to state for p[1..7] = abaaabb

- X = 3
- 7 + 1 = 8
- - X + 'b' = 0

- FSA construction
 - FSA builds itself
- Example. Build FSA for aabaaabb

- FSA construction
 - FSA builds itself
- Crucial Insight
 - To compute transitions for state n of FSA, suffices to have:
 - FSA for state 0 to n-1
 - State X that FSA ends up in with input p[1..n-1]
 - To compute state X' that FSA ends up in with input p[1..n], it suffices to have
 - FSA for states 0 to n-1
 - State X that FSA ends up in with input p[1..n-1]

Search Pattern								
a	a	р	a	a	a	b	b	

a b

Search Pattern									
a	a	þ	a	a	a	þ	b		

j	pa	tte	rn[1	j]	X
0						0

Search Pattern								
a	a	ь	a	a	a	р	b	

	j		pa	tte	rn[1	j]	X
,	0							0
	1	a						1

	0	1
a	1	2
b	0	0

Search Pattern										
a	a a b a a a b b									

j		<pre>pattern[1j]</pre>								
0								0		
1	a							1		
2	a	b						0		

	0	1	2
a	1	2	2
b	0	0	3

Search Pattern										
a	a	b	a	a	a	р	b			

	0	1	2	3
a	1	2	2	4
b	0	0	3	0

j		<pre>pattern[1j]</pre>							
0								0	
1	a							1	
2	a	b						0	
3	a	b	a					1	

Search Pattern										
a	a	b	a	a	a	b	b			

	0	1	2	3	4
a	1	2	2	4	5
b	0	0	3	0	0

j		pattern[1j]								
0								0		
1	a							1		
2	a	b						0		
3	a	b	a					1		
4	a	b	a	a				2		

Search Pattern									
a	a	b	a	a	a	q	q		

	0	1	2	3	4	5
a	1	2	2	4	5	6
b	0	0	3	0	0	3

j		pattern[1j]								
0								0		
1	a							1		
2	a	b						0		
3	a	b	a					1		
4	a	b	a	a				2		
5	a	b	a	a	a			2		

Search Pattern										
a	a	b	a	a	a	b	b			

	0	1	2	3	4	5	6
a	1	2	2	4	5	6	2
b	0	0	3	0	0	3	7

j		X						
0								0
1	a							1
2	a	b						0
3	a	b	a					1
4	a	b	a	a				2
5	a	b	a	a	a			2
6	a	b	a	a	a	b		3

Search Pattern									
a	a	b	a	a	a	þ	þ		

	0	1	2	3	4	5	6	7
a	1	2	2	4	5	6	2	4
b	0	0	3	0	0	3	7	8

j		X						
0								0
1	a							1
2	a	b						0
3	a	b	a					1
4	a	b	a	а				2
5	a	b	a	a	a			2
6	a	b	a	a	a	b		3
7	a	b	a	a	a	b	þ	0

Transition function

 \bullet Algorithm: Transition(P, Σ):

```
1. m \leftarrow len(P)
2. X \leftarrow 0
3. Initialize \delta(0,a) for each a \in \Sigma
4. for j \leftarrow 1 to m-1
             for each character a \in \Sigma
5.
                      if P[j+1] = a then // char match
6.
                               \delta(j,a) \leftarrow j + 1
7.
8.
                     else
                                                // char mismatch
9.
                               \delta(j,a) \leftarrow \delta(X,a)
10. X \leftarrow \delta(X,P[j+1])
11. return \delta
```

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
- → ⊗ Build FSA from pattern.
 - Run FSA on text.

Search Pattern						
a	a	b	a	a	a	

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern							
a	a	b	a	a	a		

Search Text										
a	a	a	b	a	a	b	a	a	a	b

- FSA-matching algorithm
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern							
a	a	b	a	a	a		

Search Text										
a	a	a	b	a	a	b	a	a	a	b

- FSA-matching algorithm
 - Use knowledge of how search pattern repeats itself.
 - Build Finite State Automata (FSA) from pattern.
- → Run FSA on text.

Search Pattern						
a	a	b	a	a	a	

	Search Text								
a a	a	b	a	a	b	a	a	a	b

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- Run FSA on text.

Search Pattern						
a	a	b	a	a	а	

	Search Text							
a a a	b	a	a	b	a	a	a	b

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- Run FSA on text.

Search Pattern						
a	a	b	a	a	a	

Search Text								
a a a	d	a	a	þ	a	a	a	b

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern							
a	a	b	a	a	a		

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern						
a	a	b	a	a	a	

Search	Tex	†			
a a a b a a	b	a	a	a	b

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern					
a	a	b	a	a	а

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern					
a	a	b	a	a	а

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- Run FSA on text.

Search Pattern					
a	a	b	a	a	а

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern						
a	a	b	a	a	a	

- FSA-matching algorithm.
 - Use knowledge of how search pattern repeats itself.
 - Build FSA from pattern.
- → Run FSA on text.

Search Pattern					
a	a	b	a	a	а

- FSA used in KMP has special property
 - If match, go to next state
 - Only need to keep track of where to go upon character mismatch.
 - go to state next[j] if character mismatches in state j

	Seai	rch	Pat	terr	1
a	a	b	a	a	a

		0	1	2	3	4	5
	a	1	2	2	4	5	6
	b	0	0	3	0	0	3
next		0	0	2	0	0	3

FSA algorithm

Algorithm: FSA(T, P):

```
    n ← len(T), m ← len(P)
    δ ← Transition(P, Σ)
    q ← 0 // q is the state of the FSA.
    for i ← 1 to n
    q ← δ(q,T[i])
    if q = m
    pattern occurs with shift i - m
```

Analysis of FSA

Algorithm: FSA(T, P):

```
Cost of Line 1:
Cost of Line 2:
Cost of Line 3:
Cost of Line 4:
...
Cost of Line 7:
Overall Cost:
```

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

History of KMP

- Inspired by the theorem of Cook that says O(m+n) algorithm should be possible
- Discovered in 1976 independently by two groups
- Knuth-Pratt
- Morris was hacker trying to build an editor
- Resolved theoretical and practical problem
 - Surprise when it was discovered
 - In hindsight, seems like right algorithm

String

- String: "HelloCS203"
- Substring: a substring of s string S is a string S' that occurs in S, e.g., P[2,...,4] = "ell"
- Prefix (P[1,...]): a prefix of a string S is a substring of S that occurs at the beginning of S, e.g., P[1,...,1] = "H" (note that P[1]='H'), P[1,...,2] = "He", P[1,...,5] = "Hello", we denote prefix as: P[1,...]
- **Suffix**: a suffix of a string S is a substring of S that occurs at the end of S, e.g., P[10,...,10]="3", P[8,...,10]="203", P[6,...,10] = "CS203", we denote suffix as: **P[...,m**]

Finite State Automata

- P = "ababaca"
- Transition function table

State	0	1	2	3	4	5	6	7
a	1	1	3	1	5	1	7	1
b	0	2	0	4	0	4	0	2
С	0	0	0	0	0	6	0	0
P	a	b	a	b	a	С	a	

State transition graph

Finite State Automata

P = "ababaca" and T = "abababacaba"

i	1	2	3	4	5	6	7	8	9	10	11
T	a	b	a	b	a	b	a	С	a	b	a
1	a	b	a	b	a	С	a				
2			a	b	a	b	a	С	a		
3									a	b	

After **failure**: at i=6, 'c' was expected, but not found in T[6], FSA transition to state $\delta(5,b)=4$, it means pattern prefix P[1..4] = "abab" has matched the text suffix T[2..6] = "abab"

	0	1	2	3	4	5	6	7
a	1	1	3	1	5	1	7	1
b	0	2	0	4	0	4	0	2
С	0	0	0	0	0	6	0	0

Finite State Automata

- In general, the FSA is constructed so that the state number tells us how much of a prefix of P has been matched.
- FSA transition function:
 - ⋄ 1) Find the longest prefix of P is also a suffix of T[...,i], denote as k, i.e., P[1,...,k]=T[i-k+1,...,i]
 - \diamond 2) Read the next character at "k+1" (i.e., T[i+1]), there are two kinds of transitions:
 - P[k+1] = T[i+1], it is matched, continues.
 - Otherwise, it is mismatched, go to $\delta(k,T[i+1])$

Prefix Function

- Consider the first step of FSA transition function:
 - ♦ Find the longest prefix of P is also a suffix of T[...i], denote as k, i.e., P[1,...,k]=T[i-k+1,...,i]
- Suppose it is mismatched at "P[k+1]", it means:
 - ⋄ *P[k+1] != T[i+1]* then,
 - we should find the longest prefix of P[1,...,k] is also a suffix of T[i-k+1,...,i].
- Prefix function (next array in general),

```
given P[1..m], the prefix function \pi for P is \pi : {1, 2 ..., m} -> {0, 1, ..., m-1} such that:
```

$$\pi[i]=max\{k, k < i \text{ and } P[1,..,k]=P[i-k+1,...,i]\}$$

Prefix Function

• **Prefix function,** given P, the prefix function π for P is π : $\{1, 2, ..., m\} \rightarrow \{0, 1, ..., m-1\}$ such that:

$$\pi[q] = \max\{k, k < q \text{ and } P[1,..,k] = P[q-k+1,...,q] \}$$

Example: P = "ababaca"

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	С	a
π[i]	0	0	1	2	3	0	1

Compute next array

Algorithm: NextArray(P):

```
1. m \leftarrow len(P)
2. Let \pi[1,...,m] be a new array
3. \pi[1] = 0, k \leftarrow 0
4. for q = 2 to m
          while k > 0 and P[k+1] != P[q]
5.
                  k \leftarrow \pi [k]
6.
          if P[k+1] = P[q]
7.
                  k \leftarrow k + 1
8.
9.
   π[q] ← k
10. return \pi
```

KMP algorithm

Algorithm: KMP(T, P):

```
1. n \leftarrow len(T), m \leftarrow len(P)
2. \pi \leftarrow \text{NextArray}(P)
3. q \leftarrow 0
4. for i = 1 to n
            while q > 0 and P[q+1] != T[i]
5.
                     q \leftarrow \pi[q]
6.
            if (P[q+1] = T[i])
7.
8.
                     q \leftarrow q + 1
9.
            if q == m
                     print "Pattern occurs with shift" i-m
10.
11.
                     q \leftarrow \pi[q]
```

Our Roadmap

- String Concepts
- String Searching Problem
 - Brute Force Solution
 - Rabin-Karp
 - Finite State Automata
 - Knuth-Morris-Pratt

Thank You!