Introduction to Logic, Part I, Chapter I by Patrick Suppes - exercises

Dominik Lenda

April 15, 2021

Exercise 4.

In the following examples determine the truth value of the compoind sentences from the given truth values of the component sentences.

- (i) "Galileo was born before Descartes" is true.
- (ii) "Descartes was born in the sixteenth century" is true.
- (iii) "Newton was born before Shakespeare" is false.
- (iv) "Racine was a compatriot of Galileo" is false.
- (a) If Galileo was born before Descartes, then Newton was not born before Shakespeare.
 - Answer: $true \rightarrow \neg false$ is true
- (b) If either Racine was a compatriot of Galileo or Newton was born before Shakespeare, then Descartes was born in the sixteenth century. Answer: $(false \lor false) \to true$ is true
- (c) If Racine was not a compatriot of Galileo, then either Descartes was not born in the sixteenth century or Newton was born before Shakespeare. Answer: $\neg false \rightarrow (\neg true \lor false)$ is false

Exercise 5.

Let

N =New York is larger than Chicago

W =New York is north of Washington

C =Chicago is larger than New York

N, W are true and C is false.

Which of the following sentences are true?

- (a) $N \vee C$ is true
- (b) $N \wedge C$ is false
- (c) $-N \wedge -C$ is false
- (d) $N \leftrightarrow -W \lor C$ is false
- (e) $W \vee -C \rightarrow N$ is true

- (f) $(W \vee N) \rightarrow (W \rightarrow -C)$ is true
- (g) $(W \leftrightarrow -N) \leftrightarrow (N \leftrightarrow C)$ is true
- (h) $(W \to N) \to [(N \to -C) \to (-C \to W)]$ is true

Exercise 6.

Let

P =Jane Austen was contemporary of Beethoven

Q =Beethoven was a contemporary of Gauss

R = Gauss was a contemporary of Napoleon

S= Napoleon was a contemporary of Julius Caesar

P, Q, and R are true, and S is false.

Find the truth values of the following sentences:

- (a) $(P \wedge Q) \wedge R$ is true
- (b) $P \wedge (Q \wedge R)$ is true
- (c) $S \to P$ is true
- (d) $P \to S$ is false
- (e) $(P \wedge Q) \wedge (R \wedge S)$ is false
- (f) $P \wedge Q \leftrightarrow R \wedge -S$ is true
- (g) $(P \leftrightarrow Q) \rightarrow (S \leftrightarrow R)$ is false
- (h) $(-P \leftarrow Q) \leftarrow (S \leftarrow R)$ is true
- (i) $(P \rightarrow -Q) \rightarrow (S \leftrightarrow R)$ is true
- (j) $(P \to Q)[(Q \to R) \to (R \to S)]$ is false
- (k) $P \to [Q \leftrightarrow (R \to S)]$ is false

Exercise 7.

Let P be a sentence such that for any sentence Q the sentence $P \vee Q$ is true. What can be said about the truth value of P.

Answer: P is true

Exercise 8.

Let P be a sentence such that for any sentence Q the sentence $P \wedge Q$ is false. What can be said about the truth value of P.

Answer: P is false

Exercise 9.

If $P \leftrightarrow Q$ is true, what can be said about the truth value of $P \lor -Q$?

Answer: $P \lor -Q$ is true

Exercise 10.

(a) $P \vee Q$ is **not** a tautology.

(b) $P \vee -P$ is a tautology

$$\begin{array}{|c|c|c|} \hline p & p \lor -p \\ \hline T & T \\ \hline F & T \\ \hline \end{array}$$

(c) $P \lor Q \to Q \lor P$ is a tautology.

P	Q	$P \lor Q \to Q \lor P$
T	T	T
$\mid T \mid$	F	T
F	T	T
F	F	T

(d) $P \to (P \lor Q) \lor R$ is a tautology.

P	\dot{Q}	R	$P \to (P \lor Q) \lor R$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T

(e) $P \to (-P \to Q)$ is a tautology.

P	Q	$P \rightarrow (-P \rightarrow Q)$
T	T	T
T	F	T
F	T	T
F	F	T

(f)
$$(P \to Q) \to (Q \to P)$$
 is **not** a tautology.
$$\begin{vmatrix} P & Q & P \to Q \to Q \to P \\ \hline T & T & & T \\ T & F & & T \\ F & T & & F \\ F & F & & T \end{vmatrix}$$

(g) $[(P \to Q) \leftrightarrow Q] \to P$ is **not** a tautology.

	P	Q	$ \mid [(P \to Q) \leftrightarrow Q] \to P \mid $
	T	T	T
	T	F	T
	F	T	F
	$egin{array}{c} T \\ F \\ F \end{array}$	F	T
(h)	P -	$\rightarrow [Q$	$\rightarrow (Q \rightarrow P)$] is a tautology. $\mid P \rightarrow [Q \rightarrow (Q \rightarrow P)] \mid$
	P	Q	$P \rightarrow [Q \rightarrow (Q \rightarrow P)]$

P Q	$P \to [Q \to (Q \to P)]$
T T	T
T F	T
$\mid F \mid T$	$T \mid T$
$\mid F \mid F$	T