Total No. of	Questions	:	4]
--------------	-----------	---	------------

SEAT No. :	SEAT No.:	
------------	-----------	--

PC-54

[Total No. of Pages: 2

[6360]-55

T.E. (Information Technology) (Insem) THEORY OF COMPUTATION

(2019 Pattern) (Semester - I) (314441)

Time: 1 Hour]

[Max. Marks : 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4.
- 2) Neat Diagrams must be drawn wherever necessary.
- 3) Figure to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Design a Moore machine to find 2's complement of any binary number.Write the definition of a Moore Machine. [4]
 - b) Find the final DFA (Deterministic Finite Automata) by performing the DFA minimization process. [5]

State/input	00	1
$\rightarrow q_0$	q ₁	q_0
q_1	\mathbf{q}_0	q_2
q_2	q_3	q_1
q.35	q_3	q_0
q_4	q_3	q_5
q_5	q_6	q_4
q_6	q_5	q_6
q ₇	q_6	q_3

c) Write the formal definitions for the following:

[6]

- i) DFA (Deterministic Finite Automata)
- ii) Finite State Machine
- iii) NFA (Non- Deterministic Finite Automata) with ε moves

OR

- Q2) a) Construct a Moore machine for a binary input sequence such that if it has a substring '110', the machine outputs A; if it has a substring '101', the machine outputs B, otherwise machine outputs C. [5]
 - b) Show that following DFAs (Deterministic Finite Automata) are equivalent or not. [5]

- c) Justify that there can be the equivalent Mealy machine for any Moore machine by suitable example. [5]
- Q3) a) For the following regular expressions, draw the FA (Finite Automata) recognizing the corresponding language. [5]
 - i) $ab^* + ba^* + b^*a + (a^*b)^*$
 - ii) b*a (a+b)*ab*
 - b) State and explain Pumping Lemma for a regular language. [5]
 - c) Find the regular Expression for the FA (Finite Automata) using Arden's Theorem. [5]

OR

- Q4) a) Use pumping lemma to check whether the language $L = \{0^n \ 1^n | \ n > = 0\}$ is regular or not. [5]
 - b) Represent the following language using regular expression over $\Sigma = \{0,1,2\}$ for the following [5]
 - i) At least one occurrence of 0 followed by at least one occurrence of 1 followed by at least one occurrence of 2.
 - ii) Any number of 0's followed by at least one occurrence of 1 followed by at least one occurrence of 2
 - c) Prove that if R = P + RQ or R = RQ + P then $R = PQ^*$ (Arden's Theorem) Where, P,Q and R are regular expressions. [5]
