Aircraft Design -

Assignment [52, Assignment (: Stability, Control, Weight and Balance]

Student Names and Study Numbers:

Instance [first delivery]

Aircraft type: Passenger Transport Airliner

Aircraft number: 52

Requirement type	Value	Unit
Payload	190	passengers
Range	5500	km
Cruise altitude	11800	m
Cruise speed	0.82	Mach
Take-off distance	2100	m
Landing distance	1650	m
(at maximum weight)		

Table 1.1: Matrix Requirements

Table of Contents

Chapter 1: Introduction	4
Chapter 2: Tail Plane Geometry	4
2.1 Volume coefficients	4
2.2 The vertical tail	5
2.3 The horizontal tail	6
Chapter 3: The load factor	7
3.1 Maneuver loading	
3.1.1. The maximum maneuver loads	
3.1.2. Plot manoeuvre V-n Diagram	
3.2 Gust loading	
Chapter 4: OEW estimation using a class II method	
4.1 The airframe structure	
4.2 The wing weight	
4.3 The Tail group weight	
4.4 Fuselage body group:	14
4.5 The Alighting Gear group weight	
4.6 Surface controls group	
4.7 Engine nacelle group	
4.8 The propulsion group weight	
4.9 The weight of the airframe services group	
Chapter 5: Center of Gravity Estimation	
5.1 The empty aircraft	
5.2 The loading diagram	
5.3 The loading diagram with 2 new wing positions	
Chapter 6: The scissor plot	
6.1 The stability Curve	
6.1.1. The aircraft Lift coefficient without the tail	
6.1.2. The wing downwash gradient effect	
6.1.3. The lift-rate coefficient of the horizontal tail	
6.1.4 The aerodynamic centre of the aircraft without th	
6.2 Forward control limit	
6.3.1. The zero lift pitching moment coefficient	
6.3.2. Controllability curve	
6.3 The Scissor plot	
Chapter 7: Evaluation and conclusion	
References	
Appendices	
1 Aircraft parameters	
2 Aircraft technical drawings	
3 T/W – W/S Diagram	
4 Reference aircraft table	
4.1 Airbus aircraft parameters	
4.2 Boeing aircraft parameters	43

Chapter 1: Introduction

In this report, the stability, control, weight and balance of the aircraft with specifications given in table 1.1 will be discussed. For this, several steps are necessary. The first chapter (chapter 2) will go through the calculations that are needed to estimate the tail size and properties using the V-bar method. Next, in chapter 3, the ultimate load factor will be determined for further design. This load factor will be then used in chapter 4 when estimating the aircraft OEW and cog. position using the Torenbeek Class II handbook. Then in chapter 5 a reasonable position of the center of gravity with respect to the fuselage (X_{LEMAC}) will be proposed. In chapter 6, the Scissor plot will be made. This will finally be used in chapter 7, where the final tail is checked against its initial v-bar values.

Chapter 2: Tail Plane Geometry

In this chapter, the V-bar method will be used to size the horizontal and vertical tail-planes. The tail-planes, as can be seen in the drawings, are conventional tail-planes, intersecting with the fuselage in the tail-cone.

2.1 Volume coefficients

The V-bar method is used early in the design stages, to determine a preliminary sizing of the tail, which allows a quick startup for the weight and aerodynamic group. The following formulas come from statistical data concerning vertical and horizontal tail planes, and allow sizing of the volume coefficients of the tail-planes. \bar{V}_h is the horizontal tail volume coefficient, \bar{V}_v is the vertical tail coefficient.

$$\overline{V}_{h} = \frac{S_{h}l_{h}}{S \cdot \overline{c}}$$

$$\overline{V}_{v} = \frac{S_{v} l_{v}}{S_{v} b}$$
Eq. 2.2

In these equations, S is the surface of the wing, S_h and S_v are the surfaces of the horizontal and vertical tail planes respectively, l is the distance between the quarter chord point of the mean aerodynamic centre of the wing and the quarter chord point of the mean aerodynamic centre of the tail plane, c is the mean chord and b is the wing span. These values can be obtained from tables 8.7a, 8.7b and 8.7c in Roskam.

Since our aircraft, from overall characteristics is very narrowly related to the Boeing 737-300, the these values are used for the design of the volume coefficients. The values for the 737 are summarized below.

$$\overline{\overline{V}}_{\hspace{-0.05cm} h}$$
 1.35 $\overline{\overline{V}}_{\hspace{-0.05cm} v}$ 0.1

Table 2.1: Volume coefficients of the Boeing 737

The actually used values differ slightly from the 737, this is to ensure better results later on in the assignment. The chosen values are shown below.

$$\bar{V}_{h}$$
 1.10

$$\overline{V}_{
m v}$$
 0.085

Table 2.2: Design volume coefficients of our aircraft

Now the tail plane geometry can be calculated.

2.2 The vertical tail

First an estimation is done to find the surface of the tail plane using reference aircraft. From the closely related 737-800 from the references and the values for the 737-300 from Roskam, the following surfaces are found.

S _v Roskam	22.20 m ²
S _v 737-800 ref	23.13 m ²

Table 2.3: Reference Surfaces

For our aircraft, since it is slightly larger, a surface of 25 m² is chosen. Using equation 2.2, the length between the two quarter points of the aerodynamic chords can be found.

$$1_{v} = \frac{S \cdot b \cdot \overline{V}_{v}}{S_{v}} = 20.247 \text{m}$$

The rest of the geometry can be determined with some more parameters found from lecture notes. The following values of quarter chord sweep angle, aspect ratio, taper ratio and thickness ratio can be found for jet aircraft. The sweep angle is chosen, using the average of the reference aircraft. This is 39 degrees.

> Taper Ratio Aspect ratio Sweep angle (0.25c) | 35-45 degrees (39) Table 2.4: Vertical tail parameters.

For the thickness to chord ratio, a value of 0.13 is chosen. This is slightly lower than the value for the wing, which was 0.14. this should postpone shock induced separation. The length of the root and tip chord can now be determined from the taper ratio and aspect ratio. This is the same method as for the wing design. First the span is calculated:

$$b_{y} = \sqrt{A_{y}S_{y}} = 6.892m$$

From the reference aircraft, the average height is found to be 7.3m, so this height of the tail is acceptable. The root and tip chord can then be found from equations 2.4 and 2.5.

$$C_{rv} + C_{tv} = \frac{2 \cdot S}{b}$$

$$C_{rv} = \frac{C_{rv} + C_{tv}}{1 + \lambda}$$

$$Eq. 2.4$$

Or, solving for Cr and Ct gives:

$$C_{rv} = \frac{2 \cdot S}{b \cdot (1 + \lambda)} = 5.581 \text{m}$$

$$C_{rv} = \lambda \cdot C_{rv} = 1.674 \text{m}$$

The mean aerodynamic chord can be calculated then with equation 2.6.

$$\overline{c} = \frac{2c_r(1+\lambda+\lambda^2)}{3\cdot(1+\lambda)} = 3.978m$$
 Eq. 2.6

2.3 The horizontal tail

In the same manner, the horizontal tail can be sized. From the values of the 737-300 in Roskam and the 737-800 we again get that the surface equals:

$$S_h$$
 Roskam 36.23 m²
 S_h 737-800 ref 32.40 m²
Table 2.5: Reference Surfaces

For our aircraft, again, a larger surface of 45 m² is chosen. Using equation 2.1, the length between the two quarter points of the aerodynamic chords can be found.

$$l_{h} = \frac{S \cdot \overline{c} \cdot \overline{V}_{h}}{S_{h}} = 18.601 \text{m}$$

Again, using the following values from the lecture notes:

Taper Ratio	0.4 -
Aspect ratio	5 -
Sweep angle (0.25c)	10° more than wing (36.7°)

Table 2.6: Horizontal tail parameters.

The thickness to chord ratio is 1 percent smaller than that of the wing, and is chosen at 0.13. Using the same equations as in chapter 2.2, the span, tip root, chord root and mean aerodynamic cord can be found. These values are summarized in table 2.7.

Span	15.000m
Root Chord	4.286m
Tip chord	1.714m
MAC-htail	3.184m

Table 2.7: Horizontal tail parameters.

Now, the rudder and elevator need to be sized. Using reference aircraft, it is found that the flap area is about 25pct of the horizontal and vertical tail surfaces. They will be drawn as such on the technical drawings. The span of these surfaces will be the whole exterior part of the tail surfaces, from the tip till the interception with the fuselage

Chapter 3: The load factor

In this chapter the generation of the V-n diagram will be treated. With this diagram the maximum load factor, n_{max} , of the aircraft can be determined. This maximum load factor is used in the weight calculations of the wing and other components. Table 3.1, gives the Characteristic values of maximum load factors of transport aircraft.

Aircraft Type	Load factor				
Commercial Transport	1.5	≤	n	≤	3.5

Table 3.1: Characteristic values of maximum load factors of commercial aircraft

In order to determine the maximum load factor, two cases must be evaluated first; the load factor during maneuvers and during gust. The largest one, multiplied by a safety factor of 1.5, determines the limit load factor which will be used for class II weight estimation method in chapter 4.

3.1 Maneuver loading

3.1.1. The maximum maneuver loads

The loading during maneuvers are specified in the Airworthiness certification specifications. For different flight conditions different requirements are set. According to the airworthiness-regulations, this aircraft, a transport aircraft, falls under the CS/FAR-25 regulations.

CS	Aircraft type		n _{max}
	Normal + C	ommuter	2.1+ 24,000 / W _{TO} +10,000
CS-23	Utility		4.4
	Aerobatic		6.0
		≤ 4100 [lbs]	3.8
CS-25	Transport	$4100 < W_{TO} \le 50,000 \text{ [lbs]}$	2.1+ 24,000/ W _{TO} +10,000
		> 50,000 [lbs]	2.5

Table 3.2: Maximum positive load factor

CS	Aircraft type	$-n_{\text{max}}$
CS 22	Normal + Commuter + Utility	-0.4·n _{max}
CS-23	Aerobatic	-0.5· <i>n</i> _{max}
CS-25	Transport	-1

Table 3.3: Maximum negative load factor

Since this aircraft has a MTOW of 219107 Lbs, it can be seen in Table 3.2 and Table 3.3 that the maximum maneuver loads <u>are 2.5 and -1</u> as positive and negative loads respectively.

3.1.2. Plot manoeuvre V-n Diagram

These load factors can be given as a function of the velocity of the aircraft and a V-n Diagram, Figure 3.1, can be plotted to show the load factor envelope for the maneuvering of the aircraft.

Manoeuvre Load Diagram

Figure 3.1: Reference maneuver load diagram.

Curve 0-A

In the V-n Diagram, Figure 3.1, curve 0-A represents the maximum normal component load due to a high angle of attack and thus the maximum positive lift. This curve is defined by equation Eq.3.1:

$$n = \frac{qC_{L_{\text{max}}}}{W/S}$$

Where the wing loading W/S is equal to 6572.3 N/m^2 , as determined in assignment 2, $C_{Lmax,clean}$ is the maximum lift coefficient at low speed (=1.7) and q is the dynamic pressure taken at sea level with an air density of 1.225 kg/m3 and airspeed v is variable.

The stall speed is visualized in Figure 3.2 there where curve 0-A crosses the n=1 line and it is equal to 77 m/s, a little bit higher than the assumed value of 66 m/s in assignment 2. The limit of curve 0-A is imposed by the value of the maximum limit load factor of line A-D. This value is specified in CS-25 for transport aircraft categories to be 2.5 as specified in Table 3.2.

Curve A-D

Then line A-D follows parallel to the x-axis until the dive velocity. This dive velocity is also defined in the certification specifications CS-25 to satisfy the relation : $V_c/M_c \le 0.8 \cdot V_D/M_D$. But in general M_D is 0.05M higher than M_c , which gives a dive velocity of $V_D = 1.05 * V_{cruise} = 262.6 \text{ m/s}$.

Curve 0-H

Line 0-H represents the maximum load produced by a high angle of attack flight in negative direction and is also given by Equation 3.1.

Curve H-F

Line H-F represents the largest negative load factor of this aircraft as specified in CS-25 to be -1.

Finally from point F, at the cruise velocity of 247 m/s, a line runs to zero load to the dive velocity.

3.2 Gust loading

In this section, the second part of the V-n diagram, given by the load factor during a gust, will be generated. In Figure 3: the gust load diagram of this aircraft is given.

Figure 3.2: Gust load diagram

First, the gust at 3 velocities was evaluated: the speed at which highest lift and maximum angle of attack occurs (V_B), the cruise speed (V_C) and the dive speed (V_D). The corresponding gust speeds vary with the condition and with altitude. The maximum load factor due to gust is then given by equation **Fout! Verwijzingsbron niet gevonden.** The value of 1 represents the mean load factor. It is assumed that the aircraft has this load factor of 1 before the gust occurs.

$$n_{peak} = 1 + \Delta n$$

The value of Δn is the incremental load factor and can be obtained by equation Eq.3.3:

$$\Delta n = \frac{\rho VC_{L_{\alpha}} u}{2(W/S)}$$
Eq.3.3

To be able to calculate this incremental load factor the normal component of the gust velocity u is required. This value can be calculated using statistical gust velocities $(\hat{\mathbf{u}})$ and the so-called load alleviation factor K in equation Eq.3.4.

$$u = K\hat{u}$$

For subsonic aircraft, K changes according to equation Eq.3.5:

$$K = \frac{0.88\mu}{5.3 + \mu}$$

Where μ is an equivalent mass ratio and is defined in equation Eq.3.6:

$$\mu = \frac{2W / S}{\rho g \overline{c} C_{L_a}}$$

With $g = 9.81 \text{ m/s}^2$ the gravitational constant, $\overline{c} = 4.818 \text{ m}$ the mean aerodynamic chord and C_{L_u} the slope of the lift curve and varies with different conditions. Then the values for \hat{u} , based on statistics and change with altitude and flight condition, are presented in Table 3.4 and Figure 3.3.

Flight condition	Altitude range [f]	û [f/s]
Lich and of attack	0-20,000	66
High angle of attack	50,000	38
Loyal flight	0-20,000	50
Level flight	50,000	25
Dive condition	0-20,000	25
Dive condition	50,000	12.5

Table 3.4: Gust velocities for different conditions

Figure 3.3: Variation of gust velocity û with altitude and flight condition

For High angle, the aircraft is assumed to be flying at sea level conditions, giving a statistical gust velocities $\hat{\mathbf{u}}$ of 66 ft/s. Then the level flight condition is assumed to be at cruise altitude (11800 m) and $\hat{\mathbf{u}}$ becomes 38 ft/s. Finally, during dive, the aircraft is assumed to be flying at a lower altitude than the cruise altitude. For dive condition, an altitude of 3440 m is assumed which gives an air density of 0.8689 kg/m3 and $\hat{\mathbf{u}} = 25$ ft/s. Then using these values and equation 3.2 up to 3.6 the maximum load factor can be calculated for different conditions as summarized in Table 3.5.

Symbol	Definition	Unit	High angle	Level flight	Dive
Н	Altitude	{m}	0	11800	3440
V	Velocity	$\{m/s\}$	66	248	263
6	Air density	{kg/m3}	1.225	0.321	0.590
C_{La}	Lift Slope flapped	{1/rad}	5.455	5.622	5.622
u	u equivalent mass ratio	-	39	145	79
K	K load alleviation factor	-	0.775	0.849	0.825
û	statistical gust velocities ()	{ft/s}	66	38	25
		$\{m/s\}$	20	11.6	7.62
u	normal component of the gust velocity	$\{m/s\}$	15.590	9.832	6.283
Δn	the incremental load factor	-	1.827	0.356	0.443

Table 3.5 Incremental load factor calculations for different conditions

Plot Gust V-n Diagram

The maximum and minimum load factors during gust can be finally derived and are found by a high angle of attack to be (1+ 1.827 =) 2.8 as maximum and -0.82 as minimum. This means that this aircraft has a higher wing loading and a lower $C_{L_{\alpha}}$ values and is less sensitive to gust. This can be easily explained by the fact that a higher $C_{L_{\alpha}}$ or higher wing surface S (for a given aircraft weight) yield a higher C_L with a certain angle of attack, and thus a larger increment of lift. By superimposing the maneuver and gust diagrams from section 0 the final V-n diagram can be generated as presented in Figure 3.4:

Manoeuvre & Gust Load Diagram

Figure 3.4: Combined load diagram

To obtain the load factors for the further design (n_{design}) the largest values in Figure 3.4 must be multiplied with the standard safety factor 1.5 which gives the ultimate design load factor. As it can be seen in Figure 3.4 and with eq.3.7, the design load factors obtained are 4.2 and -1.5.

$$n_{design} = 1.5 \cdot n_{max} = 1.5 * 2.8 = 4.2$$

$$n_{design} = 1.5 \cdot n_{max} = 1.5 * -1 = -1.5$$
Eq. 3.7

Chapter 4: OEW estimation using a class II method

Weight minimization in aircraft design is of the utmost importance. Now that most components of this aircraft have been scaled and designed since the first assignment, a more proper and close look at the weight of each section is necessary for a higher accuracy of the initial weight prediction. There are many methods to approach this, in this chapter, the operating empty weight and center of gravity position will be estimated, using methods described in a class II handbook. In this case, the Torenbeek method was used.

The Torenbeek method

The Torenbeek weight prediction data & methods provides 9 weight groups for a conventional transport aircraft, presented in Table 4.1 together with their respective percentages of the take off weight:

weight groups	% WTO
The airframe structure	-
The wing weight	10-14
The Tail group weight	1.9-2.7
The Fuselage body group:	9-13
The Alighting Gear group weight	3.4-4.5
The Surface controls group	0.8-2.1
The Engine nacelle group	0.8-2
The Propulsion group	5-10
The weight of the airframe services group	8-11

Table 4.1 The Torenbeek weight prediction of 9 weight groups

Using the positive ultimate load n_{ult} of 4.2 calculated in chapter 3, the weight prediction of each of these components can now be looked into more closely in terms of the takeoff weight and the estimated empty weight in assignment 2 of 99.4 tons and 52409 kg respectively. In the following subsections, this method will be briefly summarized.

4.1 The airframe structure

The airframe structure weight can be calculated using eq. 4.1.

$$\frac{W_s}{W_{to}} = k_s \sqrt{n_{ult}} \left(\frac{b_f h_f I_f}{W_{to}}\right)^{0.24}$$
Eq.4.1

Where

Total air	rframe structure weight	<u>28056</u>	Kg
n_{ult}	= ultimate load factor	4.2	-
I_f	= fuselage length	42.5	m
h_f	= fuselage height	4.16	m
$oldsymbol{b}_f$	= fuselage width	4.16	m
k_s	= structure	0.447	-
W_{to}	= Take off weight	99.4	Tons
W_{s}	Total airframe structure weight		

Table 4.2 The input parameters and group weight

4.2 The wing weight

The weight of the wing group can be calculated using eq 4.2:

$$\frac{W_{W}}{W_{G}} = k_{w} b_{s}^{0.75} \left\{ 1 + \sqrt{\frac{b_{ref}}{b_{s}}} \right\} n_{ult}^{0.55} \left(\frac{b_{s} / t_{r}}{W_{G} / S} \right)^{0.30} \cdot f_{NE}$$
Eq.4.2

Where

W_{G}	W _{MZFW} (maximum zero-fuel weight)	69512	kg
k_w	constant	0.01	-
\boldsymbol{b}_{s}	Structural Span	41.01	m
b_{ref}	reference span	37.70	m
t_r	root chord thickness	0.98	m
W_{G}	Spoilers and speedbrakes factor	1.02	-
$f_{\scriptscriptstyle NE}$	Reduction factor 2-engines mounted on wing	0.95	-
S	Wingsurface	158	m^2
<u>Total</u>	Wing weight W_W	<u>15504</u>	<u>kg</u>

Table 4.3 The input parameters and group weight

.3 The Tail group weight

According to Torenbeek, the Tail group weight is consists of the summation of the weights of the vertical and horizontal tails. First, for the **horizontal** tail:

$$\frac{W_h}{S_h} = k_h f \left(\frac{S_h^{0.2} v_D}{\sqrt{\cos(\wedge_h)}} \right)$$
Where

Total Horizontal Tail weight 1460 kg

Table 4.4 The input parameters and horizontal tail weight

For the **vertical** Tail, eq 4.4 can be used:

$$\frac{W_{\nu}}{S_{\nu}} = k_{\nu} f \left(\frac{S_{\nu}^{0.2} v_{D}}{\sqrt{\cos(\wedge_{\nu})}} \right)$$
Eq.4.4

Where

$$k_h$$
1 for conventional tail1 - $f\left(\frac{S_v^{0.2}v_o}{\sqrt{\cos(\wedge_v)}}\right)$ 29 Kg/m³TotalVertical Tail weight Wy725 kg

Table 4.5 The input parameters and vertical tail weight

Then the total Tail group weight becomes 2185 kg.

4.4 Fuselage body group:

The weight of the fuselage body group is calculated as following:

$$W_f = k_{wf} \sqrt{v_D \frac{l_t}{b_f + h_f}} S_G^{1.2}$$
 Eq.4.5

Where

k_{wf}	Fuselage constant	0.23 _
I_t	0.25MAC tail and wing distance	18.601 m
λ	Fuselage fineness	10.216 -
S_G	Gross Shell area	485 m^2
	$S_G = \pi b_f I_f \left(1 - \frac{2}{\lambda} \right)^{(2/3)} \left(1 + \frac{1}{\lambda^2} \right)$ Calculated using	and
	Add 8 % for Pressurized cabin	1.08 -
V_D	dive speed	263 kts
\boldsymbol{b}_f	Fusalage diameter	4.1 m
h_f	Fuselage height	4.1 m
I_f	Fuselage length	33 m
<u>Total</u>	Fuselage (body) group weight W_f	<u>10055</u> kg

Table 4.6 The input parameters and group weight

Then eq. 4.5, gives 10055 kg for the Fuselage (body) group weight.

4.5 The Alighting Gear group weight

The Alighting Gear group weight consists of the weight of the main gear and of the front gear. This can be calculated using eq 4.6:

$$W_{uc} = k_{uc} A + B \cdot W_{to}^{3/4} + C \cdot W_{to} + D \cdot W_{to}^{3/2}$$
 Eq.4.6

Where

k_{uc}	for low wing aircraft	1.00	-
A	For retractable Main gears	18.1	-
В	Coefficient Main gear	0.131	-
C	Coefficient Main gear	0.019	-
D	Coefficient Main gear	0.0000223	-
	Main gear	<u>3340</u>	<u>kg</u>
A	For retractable Front gears	9.1	-
В	Coefficient Front gear	0.082	-
C	Coefficient Front gear	0	-
D	Coefficient Front gear	0.00000297	-
	Front gear	<u>561</u>	<u>kg</u>
Total Gear	weight	<u>3901</u>	<u>kg</u>

Table 4.7 The input parameters and group weight

Then the total Alighting Gear group weight becomes 3901 kg.

4.6 Surface controls group

Using eq. 4.7, an approximation can be made:

$$W_{sc} = k_{sc}W_{to}^{(2/3)} * L_{dumperSlat}$$

$$Eq. 4.7$$

With

k_{sc}		0.49152 -	
$L_{\text{dumperSlat}}$	Lift dumper and slats	1.35 -	
<u>Total</u>	Surface control group W_{sc}	<u>1424 </u>	3

Table 4.8 The input parameters and group weight

The Surface control group weight is found to be 1424 kg.

4.7 Engine nacelle group

In using the Torenbeek method, the weights of firewalls, splitter plattes and flaps and baffles are neglected since they are not relevant for this aircraft. Then the weight of the engine nacelle group consists of different parts as listed below.

Weight Definition	Equation	Values [kg]
Weight Absorbers 5% W _{eng}	$W_{eng_absorbers} = 0.05 \cdot N_e \cdot W_e$	161
Nacelle structrure	$W_{str_nacelle} = 0.03\sqrt{(v_D \cdot 1.94)}S_{nacelle_nacelle}$	650
Pylons and struts	$W_{Pylons_struts} = 0.405 \sqrt{V_D} S_{wet_nacelle}^{1.3}$	541
Engines cowlings	$W_{eng_cowling} = 0.9S_{wet_nacelle}$	35
Gas generator	$W_{Gas_gen} = 0.14S_{wet_nacelle}$	48
Nacelle walls	$W_{nacelle_wall} = 0.9S_{wet_nacelle}$	72
Noise suppression	$W_{noise_suppression} = 1.71S_{wet_nacelle}$	124
Extra material weight	$W_{extra_material} = 8.53S_{wet_nacelle}$	768

Table 4.9 The group components

Where the parameters are given as:

Symbol	Definition	Equations	Values	Unit
N_e	Number of engines		2	-
N_e	Dive velocity		260	m/s
$\mathcal{S}_{wet_nacelle}$	nacelle Wetted area	$S_{wet_nacelle} = \pi D_{nacelle} I_{nacelle}$	35	m2
I nacelle	Length nacelle		4.5	m
$D_{nacelle}$	Diameter nacelle		2.5	m

Table 4.10 The input parameters

Then summing up all the weights, the total engine nacelle group weight becomes 2326 kg.

4.8 The propulsion group weight

The weight of the propulsion group consist also of different parts, including the weight of the two CFM56-5B1P installed turbofan engines, as listed below. Note again, that the weights of a water injection is neglected since they are not relevant for the selected engines. Then the weights of different components are defined as:

Weight Definition	Equation	Values [kg]
Engine installation	$W_{eng_install} = N_e \cdot W_{eng}$	4024
Accessory gear boxes and drives	$W_{acc_gearbox_drives} = 0.0343 \cdot N_e \cdot W_{fto}$	81
Tailpipes	$W_{tailpipes} = 14.63 \cdot D_t \cdot I_t \cdot \pi$	46
Silencers	$W_{silencers} = 0.01 \cdot N_e \cdot T_{to}$	258
Oil system and cooler	$W_{oil_cooler_system} = 0.01 \cdot N_e \cdot W_{engine}$	40
Fuel system	$W_{fs} = 36.3(N_e + N_{ft}) + 4.366N_{ft}^{0.5}V_{ft}^{0.333}$	376
Thrust reversers	$W_{thrust_reverser} = 0.18 \cdot N_e \cdot W_{engine}$	724

Table 4.11 The group components

Where the parameters are defined as follow:

Symbol	Definition	Values	Units
W_{fto}	Fuel flow/engine during TO	428	kg/sec
D_t	Diameter pipe	1	m
I_t	Length pipe	1	m
T_{to}	Thrust at take-off	126	kN
N_{ft}	Number of integral fuel tanks	3	-
V_{ft}	Volume fuel tanks	28797	L

Table 4.12 The input parameters

The total propulsion weight is then found to be 5550 kg.

4.9 The weight of the airframe services group

The weight of the airframe services group has different contributions are defined as following:

Weights	Equations	Values [kg]
APU	$W_{APU} = 11.7 \cdot k_{APU} \cdot (W_{ba} \cdot I_{cabin})^{3/5}$	126
Instruments and electronics group	$W_{ieg} = k_{ieg} \cdot W_{DE}^{5/9} \cdot R_D^{1/4}$	1274
Triplex hydraulics	$W_{hydr} = 0.015 \cdot W_{DE} + 272$	1053
Electrical system	$W_{el} = 16.3 \cdot P_{el} \ 1 - 0.033 \cdot \sqrt{P_{el}}$	1817
Fournishing equip.	$W_{fournishing} = 0.196 \cdot W_{zf}^{0.91}$	4995
Airco and anti-ice	$W_{airco_anti_icing} = 14.0 \cdot I_{cabin}^{1.28} - I_{cabin}$	1197
Miscellaneous	$W_{miscellaneous} = 0.01 \cdot W_{DE}$	260
Crew previsions	$W_{crew_previsions} = 93 \cdot N_{fc} + 68 \cdot N_{CC}$	458
Computers	$W_{Compters} = 0.453 \cdot pax$	72
Snacks	$W_{snacks} = 2.27 \cdot pax$	359
Main meal	$W_{main_meal} = 6.35 \cdot pax$	1003
Portable water and WC	$W_{portable_water/chemicals} = 1.36 \cdot pax$	215
Safety requirements	$W_{safety_requirements} = 3.4 \cdot pax$	537
Residual fuel	$W_{residual_fuel} = 0.151 \cdot V_{ft}^{2/3}$	145

Table 4.13 The group components

Where the parameters are defined as follows:

Symbol	Definition	Formula	Values	Unit
W_{DE}	Aircraft delivery weight		52084	kg
$k_{_{APU}}$	Installation factor (2 2,5)		2.000	
W_{ba}	The bleed airflow for high density layout		0.500	kg/min/m3
I_{cabin}	Cabin length		33	m
$k_{_{ieg}}$	Constant		0.347	-
$R_{\scriptscriptstyle D}$	The maximum range		6000	km
V_{pc}	passenger cabin volume	$V_{\rho c} = \pi \cdot \frac{D_f^2}{4} \cdot I_f$	578	m3
D_f	Diameter passenger cabin		4.1	m
I_f	Length passenger cabin		26	m
P_{el}	electrical power	$P_{el} = 3.64 \cdot V_{pc}^{0.7}$	217	-
N_{fc}	Number flight crew		2	
N_{cc}	Number cabin crew members		4	
рах	Number passengers		158	
V_{ft}	Mission Fuel Weight		29918	kg

Table 4.14 The input parameters

Then the total airframe services group weight becomes 10809 kg.

In Table 4.2, the weights of the 9 components of Torenbeek weights prediction method are summarized with their percentage contributions to the takeoff weight. Organized from large to small contribution, and with normal percentages to compare the weight contribution.

Components	Weight [kg]	% Wto	Normal % Wto
Wing weight	15504	15.59%	10-14%
Airframe Services Group	10809	10.87%	11 - 13,6%
Fuselage (body) group weight	10055	10.11%	9 -13%
Propulsion	5550	5.58%	10%
Main gear	3340	3.36%	
Nacelle engine group	2326	2.34%	1,3 - 2,1%
Surface control group	1424	2.20%	1,4 - 2,1%
Horizontal Tail	1460	1.47%	
Vertical Tail	725	0.73%	
Front gear	561	0.56%	

Table 4.15 Summarization of previous obtained values and normal WTO percentages

As can be seen from the table, the wing weight is high compared to the normal percentages. The airframe services, fuselage body group,nacelle group and surface control group are within good range of normal values. The propulsion group is, however, low for our aircraft. The gear summed gear weight is 3.92% of the Wto, and this value is good, since it is between the recommended 3.5 and 4.5 percent. The same outcome is achieved when looking to the tail group: the horizontal and vertical tail combined is 2.2% of the Wto, where it should be somewhere between 1.9 and 2.7%. So, except from the high wing weight, and low engine weight, this aircraft is in good ranges, with respect to the key group weights. Now. Summing the values and comparing to the Weight class 1 estimation gives:

Total empty weight class II	<u>51754</u>	<u>Kg</u>
Total empty weight class I	52408	Kg
Difference	655	Kg Kg or 1.25%Wto

Table 4.16: Comparison of class I and class II weight estimation values

The total empty weight of the aircraft is only 655 kg lighter than the empty weight obtained with the class I estimation method. Since there is only a 1.25 % difference, one can neglect this difference and continue with the values of the previous weight estimation.

Chapter 5: Center of Gravity Estimation

In this chapter, the location of the centre of gravity will be discussed. This will be done using all the weight groups that have been calculated in chapter 4. When loading the aircraft with pilots, passengers, luggage and fuel the location of the centre of gravity will change a certain range. The travel of the location of the centre of gravity has to be determined for further designing of the gear and tail. This will be done using a loading diagram.

5.1 The empty aircraft

To find the CoG of the aircraft, it is divided in components weights in two categories: the fuselage and wing group. This is shown in table. 5.1 and 5.2 where the weight of the fuselage group consists of the weights of the airframes services, the fuselage landing gear, the fuselage and of the tail. The distance to the front of the aircraft is also indicated, since that is required to find the cg.

$$COG = \frac{\sum W_{element} \cdot COG_{element}}{\sum W_{element}}$$
Eq. 5.1

Using the simplification that the aircraft is symmetric, and that all elements are on the longitudinal axis, together with equation 5.1, gives that the Center of gravity of the Body group is 20.499 meters from the nose.

Fuselage Group	Weight [kg]	X _{front} [m]
Fuselage (1)	10055	21.25
Airframe services (2)	10809	17.00
Horizontal tail (3)	1460	39.00
Vertical tail (4)	725	37.00
Nose landing gear (5)	561	5.00

Table 5.1: The components weights of the fuselage group

The total mass of the body group is 23610kg. All distances above are derived from the technical drawings that were made up in earlier assignments.

Figure 5.1: Body group contributions to the COG (axes show distance in m)

As a visual aid, the body group is represented in the image above, with the most contributing points on the aircraft.

The second group is the wing group. The elements in this group are mainly the wing itself, the propulsion, the nacelles and main landing-gear. The total mass of the wing group is 28144kg, the individual components are shown below.

Wing Group	Weight [kg]	X _{front} [m]
Wing (6)	15504	21.91
Propulsion (7)	5550	17.00
Main landing gear (8)	3340	22.5
Nacelle (9)	2326	18.00
Surface controls (10)	1424	23.35

Table 5.2: The components weights of the wing group

Again using equation 5.1 and figure 5.1, the COG can be determined to be 21.91m from the front of the aircraft.

The COG of the whole aircraft is then, again using eq 5.1, located at 21.266m from the nose of the aircraft. From the drawings, it is found that the X_{lemac} is 19.5m from the front of the nose.

The ratio of the leading edge of the MAC over the length of the fuselage $\frac{x_{LeMAC}}{L_{fus}}$ is then 0.46.

The COG position can thus be rewritten in terms of X_{lemac} : the Empty weight CoG is then at 36.35%* MAC past the X_{lemac} , or the CoG is at 36.35% X_{lemac} /MAC. This, together with the empty-weight of 51754kg, as earlier found using the Class 2 method, is the starting point of the Loading diagram.

5.2 The loading diagram

In this section the change in centre of gravity position of the aircraft due to loading of passengers (and pilots), luggage and fuel will be considered. The pilots will be counted as part of the passengers. The plot will consist of 4 loading contributions (in the following order): loading of the cargo pallets, loading of the window-seat passengers, loading of the middle-seat passengers, loading of the aircraft, using the center tank, and the wing-tanks.

Using the previously determined starting point, and adding per row of the aircraft 160kg for 2 passengers, or 210 kg for a loaded cargo pallet (the mass of one loaded pallet was determined in assignment 1, and the mass in the fuel tanks in assignment 4). For completeness, the aircraft is loaded in the full economy position, seating 190 passengers, and holding 18 cargo pallets. In a similar method as the one described above for each fuselage or wing element, the weight is added, and the new cog position is calculated for the different steps in the loading process.

Since the process is trivial, it will not be explained further. The following image shows the loading of the aircraft, with the 5 contributions described above, in 2 loading conditions (front to back, and back to front). This gives 10 lines. Along which the COG travels. See figure 5.2. Note that the X-scale is set in X_{lemac}/MAC , as described above, and that the Y-axis is in kg.

Figure 5.2: Loading diagram of initial position

The maximum and the minimum location of the centre of gravity can be derived from the figure above. However, a 2% margin is added to account for the centre of gravity variations caused by the passengers and the attendants moving, landing gear retracting, food and drinks served etc.

This gives us a minimum CG of 0.22 and a maximum CG of 0.44 for this wing position and a COG range of 0.22 MAC. The gear position has been put at 22.5m, or 0.62 X_{gear}/MAC . Using the maximum aft cg position of 0.44, this gives a difference of 18.3%MAC between the max aft cg and the gear position. This value is larger than the minimum required of 15%, so the gear is at the correct position.

5.3 The loading diagram with 2 new wing positions

To determine the optimal wing position, the wings are shifted 5 meter to the front, and 5 meter to the rear, creating 2 new Loading conditions. Following similar procedure as in chapter 5.2, the 2 new loading conditions are shown below. (the legend is the same as figure 5.2).

Assembling the characteristics of these plots in one table, gives us table 5.3:

	X_cogLEMAC/MAC		
Xlemac/lfus	0.5760	0.4590	0.3410
Min cog	-0.3888	0.2228	0.7148
Max cog	-0.0539	0.4394	0.9761
Xlemac	24.5	19.5	14.5
Cog - Range	0.3350	0.2170	0.2610

Table 5.3 The centre of gravity shift for different positions

Figure 5.3: Loading diagram with the wing shifted forward 5m

0.6 Minimum Cg positions 0.55 Maximum Cg Positions 0.5 0.45 Xlemac/Lfus [-] 0.4 0.35 0.3 0.25 0.4 X_cogmac/MAC[-] 0.6 -0.2 0 0.2 0.8 1

From table 5.3, figure 5.5 can be made.

Figure 5.5: The wing effect of wing shift on centre of gravity travel

Chapter 6: The scissor plot

In this chapter the tail section will be evaluated more closely since the centre of gravity is now defined more properly.

6.1 The stability Curve

A stick-fixed neutral point is assumed for the rear centre of gravity. This stick-fixed stability is described with Equation 6.1.

$$\overline{x}_{np} = \overline{x}_{ac} + \frac{C_{L\alpha_h}}{C_{L\alpha}} \left(1 - \frac{d\varepsilon}{d\alpha} \right) \frac{S_h l_h}{S\overline{c}} \left(\frac{V_h}{V} \right)^2$$
Eq. 6.1

This equation investigates the relation between the horizontal tail size and the aerodynamic centre position to evaluate the neutral point. Many variables have their own formulas and will be elaborated.

The first variable x_{ac} -bar, in Eq. 6.1, represents the aerodynamic centre of the aircraft minus the tail, so far the aerodynamic centre of the wing has been calculated yet the addition of the fuselage is needed. The value $C_{L\alpha h}$ is the lift-rate coefficient of the horizontal tail itself, while $C_{L\alpha}$ is the final lift-rate coefficient of the total aircraft shown in Equation 6.2. The variable $d\epsilon/d\alpha$ is the downwash effect of the wing on the tail, while $(V_h/V)^2$ is the ratio of the tail to wing speed squared, which in this case is 0.85.

$$C_{L\alpha} = C_{L\alpha_{A-h}} + C_{L\alpha_{h}} \frac{S_{h}}{S} \left(1 - \frac{d\varepsilon}{d\alpha} \right) \left(\frac{V_{h}}{V} \right)^{2}$$
Eq. 6.2

6.1.1. The aircraft Lift coefficient without the tail

To find the final lift coefficient of the total aircraft $C_{L\alpha}$, some new variables are needed, $C_{L\alpha(A-h)}$ is the lift-rate coefficient of the aircraft without the tail. This can be found using Equation 6.3.

$$C_{L\alpha_{A-h}} = C_{L\alpha_{wf}} = C_{L\alpha_{w}} \left(1 + 2.15 \frac{b_f}{b} \right) \frac{S_{net}}{S} + \frac{\pi}{2} \frac{b_f^2}{S}$$
Eq.6.3

The lift-rate coefficient of the aircraft without the tail $C_{L\alpha(A-h)}$ or lift-rate coefficient of the wing fuselage system $C_{L\alpha(wt)}$ needs the variable b_f which is fuselage width which still remains 4.1 m. Also S_{net} is needed which is the equal to the main wing surface area S minus the projection of the central wing part inside the fuselage and comes out to 128 m^2 . The last variable is $C_{L\alpha(w)}$ which is the main wing lift-rate coefficient at high speed, this can be calculated according to Assignment 4 which comes is $5.622 C_L/\text{rad}$.

$C_{Llpha w}$	5.622 1/rad
$b_{\scriptscriptstyle f}$	4.16 m
b	37.7 m
S_{net}	128.825 m ²
S	157.9 m ²

Table 6.1: Variables used to calculate the lift coefficient without tail

Thus when using all values, the lift-rate coefficient of the wing fuselage system $C_{L\alpha(M-h)}$ is equal to 5.845 C_L/rad .

6.1.2. The wing downwash gradient effect

Now this value can be used back into Equation Eq. 6.2 once some other variables are calculated, first with the downwash $d\epsilon/d\alpha$ which is described in Equation Eq. 6.4.

$$\frac{d\varepsilon}{d\alpha} = \frac{K_{\varepsilon_{\Lambda}}}{K_{\varepsilon_{\Lambda=0}}} \left(\frac{r}{r^2 + m_{tv}^2} \frac{0.4876}{\sqrt{r^2 + 0.6319 + m_{tv}^2}} + \left[1 + \left\{ \frac{r^2}{r^2 + 0.7915 + 5.0734 m_{tv}^2} \right\}^{0.3113} \right] \left[1 - \sqrt{\frac{m_{tv}^2}{1 + m_{tv}^2}} \right] \frac{C_{L_{tw}}}{\pi A}$$

$$Eq. 6.4$$

The downwash $d\epsilon/d\alpha$ is also dependent on variable $K_{\epsilon(\Lambda)}$ and $K_{\epsilon(\Lambda=0)}$ which is given by Equation Eq. 6.5 and Eq. 6.6 and r which is given by Equation 2.7.

$$K_{\varepsilon_{\Lambda}} = \frac{0.1124 + 0.1265\Lambda + 0.1766\Lambda^{2}}{r^{2}} + \frac{0.1024}{r} + 2$$
Eq.6.5

$$K_{\varepsilon_{\Lambda=0}} = \frac{0.1124}{r^2} + \frac{0.1024}{r} + 2$$
 Eq.6.6

$$r = \frac{2L_h}{h}$$

The variable r is dependent on the distance between the main wing an horizontal tail aerodynamic centers which is estimated at around 18.601 m, which makes r equal to 0.987. This makes $K_{\epsilon(\Lambda)}$ equal to 2.337 and $K_{\epsilon(\Lambda=0)}$ equal to 2.219. Now looking back to Equation Eq. 6.4, all it needs is m_{tv} which is twice vertical distance between horizontal tail and the main wing (3.6m) devided by the wingspan (37.7m), and is found to be 0.191.

${\pmb K}_{arepsilon_{\Lambda}}$	2.337
$K_{arepsilon_{\Lambda=0}}$	2.219
r	0.987
m_{tv}	0.191
A	9

Table 6.2: Variables used to calculate wing downwash gradient effect

The same main wing lift-rate coefficient at high speed $C_{L\alpha(w)}$ can be used here. This finally leads to the downwash coefficient $d\epsilon/d\alpha$ which is then equal to 0.38.

6.1.3. The lift-rate coefficient of the horizontal tail

For Equation Eq. 6.2, the lift-rate coefficient of the horizontal tail C_{Lzh} also needs to be calculated and is given by Equation 6.8 and 6.9.

$$C_{L\alpha_h} = \frac{2\pi A_h}{2 + \sqrt{4 + \left(\frac{A_h \beta}{\eta}\right)^2 \left(1 + \left[\frac{\tan^2 \Lambda_{0.5c_h}}{\beta^2}\right]\right)}}$$

$$\beta = \sqrt{1 - M_h^2}$$
Eq.6.9

The Prandtl-Glauert compressibility correction factor β in Equation Eq. 6.9 is equal to 0.795, because the Mh is multiplied by $(Vh/V)^2$ (=0.85). The factor η equal to 0.95 for Equation Eq. 6.9. The only variable left for Equation Eq. 6.8 is $\Lambda_{0.5ch}$ which is the sweep angle at half chord of the horizontal tail which is calculated as 0.523 rad.

This formulates the lift-rate coefficient of the horizontal tail $C_{L\alpha h}$ to 5.845 C_L/rad .

Using equation 6.2,the final lift coefficient of the total aircraft $C_{L\alpha}$ turns out to be 6.445 1/rad, using all the previously calculated variables.

6.1.4 The aerodynamic centre of the aircraft without the tail

Next, the aerodynamic centre of the aircraft without the tail needs to be determined. This is done using three steps. Firstly, the contribution of the aerodynamic centre of wing and fuselage systems need to be determined, which is different than the position of the wing aerodynamic centre alone. Then the contribution of the nacelles is calculated and finally the contribution of the jet stream is determined.

The aerodynamic centre of the wing minus the tail x_{ac} -bar is given by Equation Eq. 6.10.

$$\overline{x}_{ac} = \overline{x}_{ac}_{wf} + \overline{x}_{ac}_{n} + \overline{x}_{ac}_{T}$$
 Eq.6.10

This variable is split up into the aerodynamic centre of the wing and fuselage $(x_{ac}-bar)_{wb}$ the nacelle contribution $(x_{ac}-bar)_n$ and the jet stream contribution $(x_{ac}-bar)_T$.

A: Wing & fuselage contribution

In order to find $(x_{ac}$ -bar)_{wf}, Equation Eq. 6.11 is needed.

$$\left(\frac{x_{ac}}{\overline{c}}\right)_{wf} = \left(\frac{x_{ac}}{\overline{c}}\right)_{w} - \frac{1.8}{C_{L_{\alpha wf}}} \frac{b_{f} h_{f} l_{fn}}{Sc_{MAC}} + \frac{0.273}{1+\lambda} \frac{b_{f} c_{av} b - b_{f}}{c_{MAC}^{2} b + 2.15b_{f}} \tan \Lambda_{0.25c}$$
Eq. 6.11

This equation needs the aerodynamic centre of the main wing $(x_{ac}\text{-bar})_w$ which is calculated using Figure 6.1. Since the sweep of the main wing Λ is 30°, the variable β from Figure 6.1 makes Λ_{β} equal to around 40°. The taper ratio of the main wing λ is 0.2 and the 3^d graph should be used since the aspect ratio of the main wing Λ times β is closest to 6, (namely 6.34).

Figure 6.1: Finding the aerodynamic centre of the main wing

This means that from the graph the aerodynamic centre of the main wing $(x_{ac}$ -bar)_w is around 0.38. The height of the fuselage h_f is also needed and is equal to 4.16 m. The lift-rate coefficient of the fuselage $C_{L\alpha(wf)}$ is the same as previously mentioned. The variable l_{fn} is the distance from the front of the aircraft to the leading edge of the wing that is not attached to the fuselage and is equal to 16.5 m. The main wing sweep angle at quarter chord $\Lambda_{0.25c}$ is equal to 0.47 rad. The geometric average chord c_{av} is equal to 4.18 m. A summary of variables used in this calculation is given in table 6.3.

Wing Fuselage con	ntribution
$C_{L_{lpha_{wf}}}$	5.845 1/rad
b_{f}	4.16 m
h_f	4.16 m
$l_{\it fn}$	16.1 m
S	157.9 m2
λ	0.20
\overline{c}	4.818 m
C_g	4.18 m
b	37.7 m
$\overline{\Lambda_{1/4}}$	0.47 rad

Table 6.3. Variables used to calculate the aerodynamic centre of the w-f contribution

This makes the fuselage and wing aerodynamic centre $(x_{ac}$ -bar)_{wf} equal to \overline{x}_{ac} = 32.635% MAC.

B: Nacelle contribution

The nacelle have a negative contribution as demonstrated with Equation Eq. 6.12.

$$\overline{x}_{ac} = \sum \frac{k_n b_n^2 l_n}{S\overline{c}C_{L_{tawf}}}$$
Eq.6.12

There are 2 engines (thus this formula is multiplied by 2 for its final contribution), the nacelle distribution factor k_n is found to be 4 for wing mounted engines using Figure 6.2. The nacelle diameter of this aircraft is $b_n = 2.25$ m and the distance from the nacelle front to quarter MAC Ln is 5.70 m (this is for all 2 engines and is found using Ln =4.5+0.25MAC). Used variable are summarized in Table 6.2.2.

$$\Delta_{n} \frac{x_{ac}}{\bar{c}} = \sum k_{n} \frac{b_{n}^{2} l_{n}}{s\bar{c} \left(c_{L_{\alpha}}\right)_{wf}} \quad (c_{L_{\alpha}} in rad^{-1}) \quad (E-41)$$

where $k_n \sim -4.0$ for nacelles mounted in front of the LE of the wing or in the fuselage nose $k_n \sim -2.5 \ \ \text{for jet engine pods mounted}$ to the sides of the rear fuselage.

Figure 6.2: Kn values for wing mounted engines

k_n	-4
b_n	2.25 m
l_n	5.70 m
S	158 m^2
\overline{c}	4.818 m
$C_{L_{lpha_{wf}}}$	5.85 1/rad

Table 6.4: Variables used to calculate the nacelles contribution

This makes $(x_{ac}$ -bar)_n equal to -0.0519 %MAC with $C_{L\alpha h}$ is 5.85 C_L /rad. (Note the negative sign since it is a negative contribution).

C: Jet stream contribution

The jet stream contribution $(x_{ac}$ -bar)_T applies only to jet engines and can be calculated using Eq. 6.13.

$$\left(\frac{X_{ac}}{C}\right)_{T} = -\sum_{1}^{N} \frac{T}{W} \frac{z_{T}}{C}$$
Eq.6.13

The thrust to weight ratio T/W is calculated previously in assignment 2 which has a value of 0.26. A value of 1.5 m is chosen for z_T and the value for the MAC is equal to 4.818 m. Therefore, the jet stream contribution gives a negative contribution of -0.162.

D: The aerodynamic Center.

Revaluating Equation Eq. 6.10, the aerodynamic centre x_{ac} -bar is equal to $\overline{x}_{ac} = 0.115$ or 11.53% MAC.

Since all the variables of equation 6.1 are known, the neutral point graph can now be computed. Rewriting this equation gives:

$$\frac{S_{h}}{S} = \frac{1}{\left[\frac{C_{L\alpha_{h}}}{C_{L\alpha}}\left(1 - \frac{d\epsilon}{d\alpha}\right)\frac{l_{h}}{\overline{c}}\left(\frac{V_{h}}{V}\right)^{2}\right]}\overline{x}_{cg} - \frac{\overline{x}_{ac}}{\frac{C_{L\alpha_{h}}}{C_{L\alpha}}\left(1 - \frac{d\epsilon}{d\alpha}\right)\frac{l_{h}}{\overline{c}}\left(\frac{V_{h}}{V}\right)^{2}}$$

$$Eq. 6.14$$

Of which all parameters are known. Filling in these values gives the Neutral point line. However, for uncertainties, it is best if an additional 5% MAC is subtracted from these values, such that $\bar{x}_{np} - \bar{x}_{cg} = 0.05$. This gives the stability curve, given by following equation:

$$\frac{S_{h}}{S} = \frac{1}{\left[\frac{C_{L\alpha_{h}}}{C_{L\alpha}}\left(1 - \frac{d\epsilon}{d\alpha}\right)\frac{l_{h}}{\overline{c}}\left(\frac{V_{h}}{V}\right)^{2}\right]}\overline{x}_{cg} - \frac{\overline{x}_{ac} - 0.05}{\frac{C_{L\alpha_{h}}}{C_{L\alpha}}\left(1 - \frac{d\epsilon}{d\alpha}\right)\frac{l_{h}}{\overline{c}}\left(\frac{V_{h}}{V}\right)^{2}}$$

$$Eq. 6.15$$

Now it is possible to evaluate this equation and plot the position of the centre of gravity with reference to the surface ratio S_h/S . This is graphed in figure 6.6 further in this chapter. Note that the stick fixed neutral point is the just the rear centre of gravity limit with an added safety margin of 5% MAC.

6.2 Forward control limit

After examining the stability of the aircraft, the next thing to do is to determine the controllability of the aircraft. This can be found using equation 6.16.

$$\frac{S_{h}}{S} = \frac{1}{\frac{C_{L_{h}}}{C_{L_{h}}} \frac{1_{h}}{\overline{c}} \left(\frac{V_{h}}{V}\right)^{2}} \overline{x}_{cg} + \frac{\frac{C_{m_{ac}}}{C_{L_{A-h}}} - \overline{x}_{ac}}{\frac{C_{L_{h}}}{C_{L_{A-h}}} \frac{1_{h}}{\overline{c}} \left(\frac{V_{h}}{V}\right)^{2}}$$
Eq.6.16

For this, the zero lift pitching moment coefficient has to be determined.

6.3.1. The zero lift pitching moment coefficient

Equation Eq. 6.17, Eq. 6.18, Eq. 6.19 and Eq. 6.20 are the formulas for the zero pitching moment which are needed in order to find the controllability. The controllability is based on the forward centre of gravity limit. The value of C_{mACw} is -0.1 while $\Delta_{nac}C_{mAC}$ is -0.05 for wingmounted engines.

$$C_{m_{ac}} = C_{m_{ac_w}} + \Delta_f C_{m_{ac}} + \Delta_{fus} C_{m_{ac}} + \Delta_{nac} C_{m_{ac}}$$
Eq.6.17

$$\Delta_{\textit{fus}} C_{\textit{m}_{\textit{ac}}} = -1.8 \left(1 - \frac{2.5b_{f}}{l_{f}} \right) \frac{\pi b_{f} h_{f} l_{f}}{4S\overline{c}} \frac{C_{\textit{L}_{0}}}{C_{\textit{L}_{\textit{payf}}}}$$
 Eq. 6.18

$$\Delta_{f} C_{m_{0.25MAC}} = \mu_{2} \left\{ - \left[\mu_{1} \Delta C_{l_{\max}} \frac{c'}{c} \right] - \left[C_{L} + \Delta C_{l_{\max}} \left(1 - \frac{S_{wf}}{S} \right) \right] \frac{1}{8} \frac{c'}{c} \left(\frac{c'}{c} - 1 \right) \right\} + 0.7 \frac{A}{1 + 2/A} \mu_{3} \Delta C_{l_{\max}} \tan \Lambda_{0.25MAC}$$
Eq. 6.19

$$C_{m0.25c} = C_{mAC} + C_L \left(0.25 - \frac{x_{ac}}{\overline{c}} \right)$$
 Eq. 6.20

First the variables μ_1 , μ_2 and μ_3 need to be calculated using, Figure 6.2. figure 6.3 and figure 6.4 the required values for these plots were found in assignment 4.

1.4 1.2 1.0 8 8 6 4

Figure 6.2: calculation of μ 1

Figure 6.3: calculation of μ 2

Figure 6.4: calculation of μ 3

The values for μ_1 , μ_2 and μ_3 are found to be 0.22, 1.1 and 0.022 respectively. The zero lift pitching moment coefficient without tail C_{mAC} from Equation Eq. 6.17 is dependent on four variables. Next $\Delta_f C_{mAC}$ needs to be calculated from $\Delta_f C_{m0.25c}$ using Eq. 6.19 and Eq. 6.20. The value for the lift coefficient at landing C_L is 1.13 while the increase in airfoil C_{Lmax} by flaps at landing is 1.29. The value for $\Delta_f C_{m\ 0.25MAC}$ equals -0.5924. Both equations can be merged and simplified, thus $\Delta_f C_m$ and $\Delta_f C_m$ equals -0.748.

Now only $\Delta_{\text{fus}}C_{\text{mAC}}$ needs to be calculated. The zero angle lift C_{L0} is calculated as 1.29 according to Assignment 4. Applying all previous values, see Table 6.5, $\Delta_{\text{fus}}C_{\text{mAC}}$ is equal to -0.28.

$C_{m_{ac_w}}$	-0.1	μ_2	1.1
$\Delta_{\it nac} {m C}_{\it m_{\it ac}}$	-0.05	μ_3	0.022
$oldsymbol{b}_f$	4.16 m	$\Delta_f C_L$	0.963
l_f	16.1 m	$rac{C_f}{c'}$	0.24
h_f	4.16 m	$\frac{c'}{c'}$	1.23
S	157.8 m ²		1.13
\overline{c}	4.818 m	$egin{aligned} C_L \ \Delta_f c_l \end{aligned}$	0.465
C_{L_0}	1.29	A	9
$egin{aligned} C_{L_0} \ C_{L_{lpha_{wf}}} \end{aligned}$	4.775	$\Lambda_{1/4}$	0.467 rad
$\mu_{\scriptscriptstyle 1}$	0.22		1

Table 6.5: Variables used to calculate the zero lift pitching moment coefficient

Equation 6.15 can now be evaluated and simplified to find the zero lift pitching moment coefficient C_{mAC} equal to $C_{m_{nc}} = -1.174$.

6.3.2. Controllability curve

Since all the values are known the neutral point can be plotted. A figure with the forward controllability limit, rear centre of gravity limit and neutral point will be plotted using eq. 6.16:

$$\frac{S_{h}}{S} = \frac{\frac{\Delta x_{cg}}{\overline{c}} + \frac{x_{np} - x_{cg}}{\overline{c}} - \frac{C_{m_{ac}}}{C_{L_{max}}}}{\left\{\frac{C_{L_{h_{cc}}}}{C_{L_{w_{cc}}}} \left(1 - \frac{d\varepsilon}{d\alpha}\right) - \frac{C_{L_{h}}}{C_{L_{max}}}\right\} \left(\frac{V_{h}}{V}\right)^{2} \frac{l_{h}}{\overline{c}}}$$

The two unknowns on the formula are $\frac{S_h}{S}$ and $\frac{\Delta x_{cg}}{\overline{c}}$. The lift of the horizontal tail is C_{L_h} =-0.8.

The maximum lift coefficient of the aircraft is 2.21 and the lift rate coefficient of the aircraft without tail at Low speed is $C_{L\alpha_{A-h}} = 4.775$ 1/rad given by Eq.6.3 where the variables are summarized the table below. Since the rest of the variables are known, Figure 6.5 can be plotted.

$C_{L\alpha w}$	4.561
$\frac{b_f}{b}$	0.110 m
$\frac{S_{net}}{S}$	0.816 m

6.3 The Scissor plot

Using equations 6.14, 6.15, 6.16 and all the calculated values, the scissor plot can be made. This is shown in figure 6.5.

Figure 6.5: The obtained scissor plot.

Chapter 7: Evaluation and conclusion

In this chapter the tail section will be evaluated more closely since all plots are made. Combining figure 5.5 with figure 6.6 gives figure 7.1. The x-values of the point of intersection represent the optimal forward and aft centre of gravity limit. The y-values of the point of intersection represent the optimal x_{LEMAC}/L_{flus} and S_h/S . These values give the optimal position of the wing. See graph 7.1 below.

The optimal value are Sh/S = 0.29 for the ratio between the horizontal tail area and the wing area which results in an area of 45.8 m². The difference between the area calculated by means of the V-method (Sh/h=0.285) and the area found from the figure is 1.79%, which is smaller than the 10% criteria.

Figure 7.1: Overlaying the scissor plot with the cg-ranges plot gives the optimum position.

The optimal value found X_{leMAC}/L_{fus} is indicated at 0.46. This leads to a value of 19.55m for the distance between the leading edge of the MAC and the nose of the aircraft. The value used previously in the calculations is 19.50m, however since the difference is only 1.79% the value used in the calculations is assumed to have sufficient accuracy. To obtain an even better value, the leading edge of the mean aerodynamic chord should be moved to the rear by 5 cm.

References

Websites

General information on aircraft design & Information on existing aircraft. http://www.janes.com

Lectures notes

Files:

- PowerPoint sheets,
- Design of Aircraft: Thomas, Corke, Torenbeek
- Synthesis of Subsonic Airplane Design: E.Torenbeek

Books

Aircraft Design: Synthesis and Analysis Desktop aeronautics, Version 0.99

Appendices

1 Aircraft parameters

Symbol	Parameters	Value	Unit
	Cabin characteristics		
	Cabin length	33	m
	Maximum diameter	4.16	m
	Maximum cabin height	2.53	m
	Maximum width	4.1	m
	Aisle width	0.66	m
	Aisle height	2.35	m
	Wall thickness	0.08	m
	Chair width	0.48	m
	Chair Pitch	0.83	m
	Design configuration	3-class	_
	Total passengers for design configuration	158	-
	Cockpit Characteristics		
	Overnose angle	15	О
	Overside angle	35	O
	Grazing angle	32	O
	Upward angle	20	O
	Divergence angle	19	O
	Flight deck length	2.5	m
	Fuselage Characteristics		
L	Total length	42.5	m
	Fineness	10.73	-
	Nose fineness	1.92	-
	After body fineness	2.56	-
	Tail length	10.66	m
	Wing airfoil geometry		
	NACA Airfoil series	64-214	-
MAC	Mean aerodynamic Chord	4.818	m
Y	MAC location, engine suspension point	7.318	m
dCl/dα	Lift curve slope	0.10	1/rad
A_{0L}	Zero lift angle of attack	-1.8	О
C_{d0}	Minimum drag coefficient	0.0062	-
C_{lmax}	Maximum lift coefficient	1.45	-
C _{lmax clean}	Maximum clean lift coefficient	1.70	_
θ	Zero Angle of attack lift coefficient	0.229	-
T/c	Thickness to chord ratio	0.14	-
M_{cr}	Critical Mach number	0.736	_
C_{ldes}	Design lift coefficient	0.203	-
	Aircraft Wing geometry		

b	Wing span	37.703	m
S S	Wing area	157.945	m^2
A	Aspect ratio	9	-
$\Lambda_{ ext{LE}}$	Leading Edge Wing sweep angle	30	O
	Quarter chord wing sweep angle	26.77	0
1 0.25C			0
$\Lambda_{0.5 ext{C}}$	Half chord wing sweep angle	23.183	0
	Incidence angle	0	0
	Twist angle	0	0
_	Dihedral angle	5	
Re	Reynolds number at cruise	2.688E+07	-
C_{r}	Root Chord	7	m
	Taper ratio	0.197	-
$\Gamma_{\rm r}$	Root thickness	210.000	m
R_c	Cantilever Ratio	20.926	-
$ m M_{Dd}$	Mach of drag divergence	0.757	-
X _{trim}	Trim angle	-0.249	0
$C_{ m Llpha}$	Lift curve slope, low speed	0.080	1/deg
$C_{ m Lmax}$	Maximum wing lift coefficient	1.131	m
$ m M_{fuelmax}$	Total fuel tank capacity	32928	kg
	Engine location	on MAC	
	Front spar location	0.20	c
	Rear spar location	0.65	С
	Weights and loadings		
	Cargo weight	4300	kg
	Fuel weight	29918	kg
	Payload weight	17010	kg
$W_{\rm E}$	Empty weight	52409	kg
$ m W_{MTO}$	Maximum take-off weight	99431	kg
W/S	(maximum) Wing loading	6174	N/m^2
Γ/W	Thrust to weight ratio	0.26	-
	Flight parameters		
n _{cruise}	Cruise altitude	11800	m
V _{cruise}	Cruise speed	0.82	Mach
CLcruise	Cruise lift coefficient	0.152	_
	M ' 1'C CC' ' . /. 1 CO		
Lmax	Maximum lift coefficient (take-off)	2.4	-
	Take-off distance	2.4 2100	m
S _{TO}	,		
S _{TO}	Take-off distance Landing distance	2100	m
C _{Lmax} S _{TO} S _L R	Take-off distance	2100 1650	m m
8 _{to} R E	Take-off distance Landing distance Range Loiter Endurance	2100 1650 5500	m m km min
STO SL R E V _{stallL.and}	Take-off distance Landing distance Range	2100 1650 5500 45	m m km
S _{TO} S _L R E V _{stallL.and}	Take-off distance Landing distance Range Loiter Endurance Landing stall speed Cruise stal speed	2100 1650 5500 45 60	m m km min m/s
STO SL R E V stallLand V stallCr	Take-off distance Landing distance Range Loiter Endurance Landing stall speed Cruise stal speed Vertical tailplane geometry	2100 1650 5500 45 60 77	m m km min m/s m/s
S _{TO} S _L R E V _{stallLand} V _{stallCr}	Take-off distance Landing distance Range Loiter Endurance Landing stall speed Cruise stal speed Vertical tailplane geometry Area	2100 1650 5500 45 60 77	m m km min m/s m/s
s _{to} s _l	Take-off distance Landing distance Range Loiter Endurance Landing stall speed Cruise stal speed Vertical tailplane geometry	2100 1650 5500 45 60 77	m m km min m/s m/s

	т .·	0.2	
	Taper ratio	0.3	-
	Thickness to chord ratio	0.13	-
	Tail height	6.892	m
	Root chord	5.581	m
	Tip chord	1.674	m
	MAC-V-Tail	3.978	m
	Horizontal tailplane geometry		
	quarter chord sweep angle	36.69	О
Sh	Area	45	m^2
	Aspect ratio	5	-
	Taper ratio	0.4	-
	Thickness to chord ratio	0.13	-
	Span	15.000	m
	Root chord	4.286	m
	Tip chord	1.714	m
	MAC-H-Tail	3.184	m

2 Aircraft technical drawings

See the following 3 pages.

3 T/W – W/S Diagram

4 Reference aircraft table

4.1 Airbus aircraft parameters

Manufacturer	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS	AIRBUS
Type	A300-	A310-	A319-	A320-	A321-	A330-	A330-	A340-	A340-	A340-	A340-
Model	600R	300	100	200	200	200	300	200	300	500	600
Initial service date	1974	1983	1995	1988	1993	1998	1994	1993	1994	2002	2002
In service (ordered)											
Africa	28	11	2(1)	27(6)	4		-		8(1)		(2)
Middle East/Asia/Pacific	205(5)	69(5)	(4)	162(47)	17(32)		59(47)		54(10)		(6)
Europe & CIS	83	87(1)	48(82)	244(105)	84(68)		17(42)		69(15)		(27)
North & South America	72(37)	57	57(264)	237(146)	-		4(42)		9(8)		(5)
Total aircraft	388(42)	224(6)	107(351)	670(304)	105(102)		80(131)		140(34)		(40)
Engine Manufacturer	P&W	P&W	CFMI	CFMI	CFMI	GE	GE	CFMI	CFMI	R-R	R-R
			CFM56-	CFM56-	CFM56-	CF6-	CF6-	CFM-56-	CFM-56-		
Model / Type	4158	4152	5A4	5A3	5B3	80E1A4	80E1A2	5C2	5C4	Trent 553	Trent 556
No. of engines	2	2	2	2	2	2	2	4	4	4	4
Static thrust (kN)	257,0	231,0	99,7	111,2	142,0	310,0	300,0	139,0	151,0	235,8	249,1
Operational Items: Accomodation:											
Max. seats (single class)	375	280	153	179	220	380	440	440	440	440	475
Two class seating	266	218	124	150	186	293	335	303	335	350	440
Three class seating	228	187	-	-	-	253	295	262	295	313	380
No. abreast	9	9	6	6	6	9	9	9	9	9	9
Hold volume (m³)	116,00	79,90	27,00	38,76	51,76	136,00	162,90	136,00	162,90	134,10	187,74
Volume per passenger	0,31	0,29	0,18	0,22	0,24	0,36	0,37	0,31	0,37	0,30	0,40
Mass (Weight) (kg):											
Ramp	171400	150900	64400	73900	89400	230900	217900	257900	271900	365900	365900
Max. take-off	170500	150000	64000	73500	89000	230000	217000	257000	271000	365000	365000
Max. landing	140000	123000	61000	64500	73500	177150	179000	181000	190000	236000	254000
Zero-fuel	130000	113000	57000	60500	71500	165142	169000	172000	178000	222000	240000
Max. payload	41100	33300	17390	19190	22780	36400	48400	49400	48150	51635	63000
Max. fuel payload	27100	21500	5360	13500	19060	0	18600	21220	33160	31450	29311
Design payload	25270	20710	11780	14250	17670	24035	28025	24890	28025	29735	36100
Design fuel load	56330	49624	13020	17940	23330	85765	70786	111882	113125	164875	151890
Operational empty	88900	79666	39200	41310	48000	120200	118189	120228	129850	170390	177010
Weight Ratios: Ops empty/Max. T/O	0,521	0,531	0,613	0,562	0,539	0,523	0,545	0,468	0,479	0,467	0,485
Max. payload/Max. T/O	0,241	0,222	0,272	0,261	0,256	0,158	0,223	0,192	0,178	0,141	0,173
Max. fuel/Max. T/O	0,316	0,322	0,275	0,256	0,210	0,478	0,358	0,430	0,412	0,423	0,423
Max. landing/Max. T/O	0,821	0,820	0,953	0,878	0,826	0,770	0,825	0,704	0,701	0,647	0,696
Fuel (litres):	0,021	0,020	0,755	0,070	0,020	0,770	0,023	0,704	0,701	0,047	0,070
Standard	68150	61100	23860	23860	23700	139090	98250	140000	141500	195620	195620
Optional	75350	68300	25000	23000	26600	13,000	70230	110000	148700	213120	175020
DIMENSIONS	73330	30300			20000				110700	213120	
Fuselage:											
Length (m)	53,30	45,13	33,84	37,57	44,51	57,77	62,47	58,21	62,47	65,60	69,57
Height (m)	5,64	5,64	4,14	4,14	4,14	5,64	5,64	5,64	5,64	5,64	5,64

Width (m)	5,64	5,64	3,95	3,95	3,95	5,64	5,64	5,64	5,64	5,64	5,64
Finess Ratio	9,45	8,00	8,57	9,51	11,27	10,24	11,08	10,32	11,08	11,63	12,34
Wing:	1	,	,	ŕ	· ·	, i	,	,	,	,	
Area (m²)	260,00	219,00	122,40	122,40	122,40	363,10	363,10	363,10	363,10	437,30	437,30
Span (m)	44,84	43,89	33,91	33,91	33,91	58,00	58,00	58,00	58,00	61,20	61,20
MAC(m)	6,44	5,89	4,29	4,29	4,29	7,26	7,26	7,26	7,26	8,35	8,35
Aspect Ratio	7,73	8,80	9,39	9,39	9,39	9,26	9,26	9,26	9,26	8,56	8,56
Taper Ratio	0,300	0,283	0,240	0,240	0,240	0,251	0,251	0,251	0,251	0,220	0,220
Average (t/c) %	10,50	11,80	٠,= ٠٠	*,= . *	•,= · •	*,=**	0,20	0,20	0,20	*,==*	*,==*
1/4 Chord Sweep (°)	28,00	28,00	25,00	25,00	25,00	29,70	29,70	29,70	29,70	31,10	31,10
High Lift Devices:	20,00	20,00	20,00	20,00	25,00	->,,, 0	27,70	27,70	27,70	31,10	31,10
Trailing Edge Flaps Type	F2	F1	F1	F1	F2	S2	S2	S2	S2	S2	S2
Flap Span/Wing Span	0,800	0,840	0,780	0,780	0,780	0,665	0,665	0,665	0,665	0,625	0,625
Area (m²)	47,3	36,68	21,1	21,1	21,1	0,003	0,003	0,003	0,003	0,023	0,023
Leading Edge Flaps Type	slats	slats	slats	slats	slats	slats	slats	slats	slats	slats	slats
Area (m²)	30,3	28,54	12,64	12,64	12,64	51465	51465	51465	51465	51415	51465
Vertical Tail:	50,5	۵۵,5۳	12,07	12,07	12,07						
Area (m²)	45,20	45,20	21,50	21,50	21,50	47,65	45,20	45,20	45,20	47,65	47,65
Height (m)	8,60	8,10	6,26	6,26	6,26	9,44	8,45	8,45	8,45	9,44	9,44
Aspect Ratio	1,64	1,45	1,82	1,82	1,82	1,87	1,58	1,58	1,58	1,87	1,87
Taper Ratio	0,365	0,395	0,303	0,303	0,303	0,350	0,350	0,350	0,350	0,350	0,350
1/4 Chord Sweep (°)	40,00	40,00	34,00	34,00	34,00	45,00	45,00	45,00	45,00	45,00	45,00
Tail Arm (m)	24,90	20,20	10,67	12,53	15,20	25,20	27,50	25,50	27,50	27,50	27,50
$S_{\rm v}/S$	0,174	0,206	0,176	0,176	0,176	0,131	0,124	0,124	0,124	0,109	0,109
$S_{\rm v}L_{\rm v}/S_{\rm b}$	0,097	0,095	0,055	0,065	0,079	0,057	0,059	0,055	0,059	0,049	0,049
Horizontal Tail:	•,••	•,•••	,,,,,	*,***	•,•••	*,***	•,•••	0,000	•,•••	٠,٠.٠	•,•
Area (m²)	69,45	64,00	31,00	31,00	31,00	31,00	72,90	72,90	72,90	93,00	93,00
Span (m)	16,26	16,26	12,45	12,45	12,45	12,45	19,06	19,06	19,06	21,50	21,50
Aspect Ratio	3,81	4,13	5,00	5,00	5,00	5,00	4,98	4,98	4,98	4,97	4,97
Taper Ratio	0,420	0,417	0,256	0,256	0,256	0,256	0,360	0,360	0,360	0,360	0,360
1/4 Chord Sweep (°)	34,00	34,00	29,00	29,00	29,00	29,00	30,00	30,00	30,00	30,00	30,00
Tail Arm (m)	25,60	22,50	11,67	13,53	16,20	16,20	28,60	26,50	28,60	28,60	28,60
S_h/S	0,267	0,292	0,253	0,253	0,253	0,253	0,201	0,201	0,201	0,213	0,213
$S_{\rm h}L_{\rm h}/S_{\rm c}$	1,062	1,116	0,689	0,799	0,957	0,957	0,791	0,733	0,791	0,729	0,729
Undercarriage:	-,~~-	-,	*,***	*,***	****	.,	•,,,,	٠,, ٠٠٠	•,,,,	*,	*,
Track (m)	9,60	9,60	7,60	7,60	7,60	7,60	10,70	10,70	10,70	10,70	10,70
Wheelbase (m)	18,60	15,21	12,60	12,63	16,90	16,90	25,40	23,20	25,40	28,53	32,50
Turning radius (m)	34,00	31,40	20,60	21,90	29,00	29,00	41,40	, ,	40,60	,	,-
No. of wheels	,	- ,	,	, ,	,	,-	. , , , ,		,		
(nose;main)	2;8	2;8	2;4	2;4	2;4	2;8	2;8	2;10	2;10	2;12	2;12
Main Wheel diameter (m)	1,245	1,168	1,143	1,143	1,270	,	,-	, ,	, ,		, -
Main Wheel width (m)	0,483	0,406	0,406	0,406	0,455						
Nacelle:	<i>′</i>	<i>'</i>	<i>'</i>	<i>'</i>	ĺ						
Length (m)	6,70	6,30	4,44	4,44	4,44	7,00	7,00	4,95	4,95	6,10	6,10
Max. width (m)	2,70	2,70	2,37	2,37	2,37	3,10	3,10	2,37	2,37	3,05	3,05
Spanwise location	0,359	0,352	0,338	0,338	0,338	0,312	0,312	0.312/0.672	0.312/0.672	0.296/0.62 5	0.296/0.62 5
PERFORMANCE	-,	,	,	.,	- ,	-,-		,	,		
Loadings:											

Max. power load	1	ĺ	I	i I	I		1	ĺ	1	1	
(kg/kN)	331,71	324,68	320,96	330,49	313,38	370,97	361,67	462,23	448,68	386,98	366,32
Max. wing load (kg/m²)	655,77	684,93	522,88	600,49	727,12	633,43	597,63	707,79	746,35	834,67	834,67
Thrust per engine	,	ĺ	,	,	,	,	,	,	,	,	,
Thrust/Weight Ratio	0,3073	0,3140	0,3176	0,3084	0,3253	0,2748	0,2819	0,2205	0,2272	0,2634	0,2783
Take-off (m):	,	,	,	,	,	,	,	,	,	,	,
ISA sea level	2280	2290	1750	2180	2000	2470	2320	2790	3000	3100	3100
ISA +20°C SL.	3189	2450	2080	2590	2286	2590	2680	3260	3380	3550	3550
ISA 5000ft		2950	2360	2950	3269	3900	3840	4320	4298	4250	4250
ISA +20°C 5000ft		3660	2870	4390							
Landing (m):											
ISA sea level.	1489	1490	1350	1440	1580	1750	1600	1856	1964	2090	2240
ISA +20°C SL.	1489	1490	1350	1440	1580	1750	1600	1856	1964	2090	2240
ISA 5000ft	1701	1686	1530	1645	1795	1970	1920	2094	2227	2390	
ISA +20°C 5000ft	1701	1686	1530	1645	1795	1970	1920	2094	2227	2390	
Speeds (kt/Mach):											
V_2	153	156	133	143	143	158	144	154	158		
$V_{ m app}$	136	138	131	134	138	135	136	134	136	139	144
	335/M0.8	360/M0.8									
$V_{\rm no}/M_{\rm mo}$	2	4	381/M0.89	350/M0.82	350/M0.82	330/M0.86	330/M0.86	330/M0.86	330/M0.86	330/M0.86	330/M0.86
·	395/M0.8	420/M0.9	·	·	TBD/M0.8	•		•			
$V_{\rm ne}/M_{\rm me}$	8	0	350/M0.82	381/M0.89	9	365/M0.93	365/M0.93	365/M0.93	365/M0.93	365/M0.93	365/M0.93
$C_{L_{\max}}$ (T/O)	2,44	2,45	2,58	2,56	3,10	2,21	2,51	2,60	2,61		
$C_{L_{max}}$ (L/D @ MLM)	2,98	3,02	2,97	3,00	3,23	2,74	2,73	2,84	2,89	2,86	2,87
Max. cruise :											
Speed (kt)	480	484	487	487	487		500	500	500		
Altitude (ft)	31000	35000	33000	28000	28000		33000	33000	33000		
Fuel consumption (kg/h)	5120	4690	3160	3200	3550		5000	7180	7300		
Long range cruise:											
Speed (kt)	456	458	446	448	450	470	465	475	475		
Altitude (ft)	35000	37000	37000	37000	37000	39000	39000	39000	39000		
Fuel consumption (kg/h)	4300	3730	1980	2100	2100		4700	5400	5700		
Range (nm):											
Max. payload	3283	3645	1355	637	1955	4210	3888	6393	6371	7050	5700
Design range	4000	4300	1900	2700	2700	6370	4500	7350	7150	8500	7500
Max. fuel (+ payload)	4698	5076	4158	3672	2602		7046	8834	8089	9000	7800
Ferry range										9800	8800
Design Parameters:											
W/SC_{Lmax}	2160,21	2227,23	1726,69	1962,27	2211,48	2269,21	2150,33	2445,04	2529,97	2865,71	2857,63
W/SC _{LtoST}	2678,25	2702,77	2071,39	2423,85	2590,29	3146,34	2906,75	4224,13	4242,69	4144,91	3912,54
Fuel/pax/nm (kg)	0,0529	0,0529	0,0553	0,0443	0,0465	0,0460	0,0470	0,0502	0,0472	0,0554	0,0460
Seats x Range (seats.nm)	1064000	937400	235600	405000	502200	1866410	1507500	2227050	2395250	2975000	3300000

4.2 Boeing aircraft parameters

Manufacturer	BOEING	BOEING	BOEING	BOEING	BOEING	BOEING	BOEING	BOEING	BOEING	BOEIN
Type	707-	717-	727-	737-	737-	737-	737-	737-	737-	737
Model	320C	200	200Adv	200	300	400	500	600	700	80
Initial service date	1962	1999	1970	1967	1967	1967	1967	1998	1997	199
In service (ordered)										
Africa	53	-	58	85	14(1)	7	17	(7)	(2)	2(1)
Middle East/Asia/Pacific	31	-	52	114	194(19)	142(5)	49(2)	-	9(24)	7(4
Europe & CIS	9	-	94	147	272(12)	216(4)	145(1)	6(49)	21(35)	20(11
North & South America	25	(60)	799	532	573(11)	97(5)	165(1)	-	36(146)	13(21
Total aircraft	120	(60)	1003	878	1053(43)	462(14)	376(4)	6(56)	66(207)	42(37
Engine Manufacturer	P&W	BMW R-R	P&W	P&W	CFMI	CFMI	CFMI	CFMI	CFMI	CFI
					CFM56-3-	CFM56-3B-	CFM56-3-	CFM56-	CFM56-	CFM:
Model / Type	JT3D-7	715	JT8D-15A	JT8D-15A	B1	2	B1R	7B18	7B20	7E
No. of engines	4	2	3	2	2	2	2	2	2	
Static thrust (kN)	84,5	97,9	71,2	71,2	89,0	97,9	82,3	82,0	89,0	10
Operational Items:										
Accomodation:										
Max. seats (single class)	219	110	189	130	149	170	130	132	149	1
Two class seating	147	106	136	115	128	146	108	108	128	1
Three class seating	-	-	-	-	-	-	-	-	-	
No. abreast	6	5	6	6	6	6	6	6	6	
Hold volume (m³)	50,27	25,00	43,10	24,78	30,20	38,90	23,30	23,30	30,2	4
Volume per passenger	0,23	0,23	0,23	0,19	0,20	0,23	0,18	0,18	0,20	0
Mass (Weight) (kg):										
Ramp	152405	52110	95238	52615	56700	63050	52620	65310	69610	784
Max. take-off	151315	51710	95028	52390	56470	62820	52390	65090	69400	782
Max. landing	112037	46266	72575	46720	51710	54880	49900	54650	58060	653
Zero-fuel	104330	43545	63318	43091	47630	51250	46490	51480	54650	610
Max. payload	38100	12220	18597	15445	16030	17740	15530	9800	11610	140
Max. fuel payload	12852	8921	24366	9118	8705	13366	5280	7831	10996	159
Design payload	13965	10070	12920	10925	12160	13870	10260	10260	12160	152
Design fuel load	71126	9965	35944	13819	12441	15580	11170	18390	19655	215
Operational empty	66224	31675	46164	27646	31869	33370	30960	36440	37585	41
Weight Ratios:										
Ops empty/Max. T/O	0,438	0,613	0,486	0,528	0,564	0,531	0,591	0,560	0,542	0,5
Max. payload/Max. T/O	0,252	0,236	0,196	0,295	0,284	0,282	0,296	0,151	0,167	0,1
Max. fuel/Max. T/O	0,471	0,212	0,255	0,341	0,281	0,253	0,303	0,316	0,296	0,2
Max. landing/Max. T/O	0,740	0,895	0,764	0,892	0,916	0,874	0,952	0,840	0,837	0,8
Fuel (litres):					•				•	
Standard	90299	13892	30622	19532	20105	20105	20105	26024	26024	260
Optional		16065	40068	22598	23170	23170	23170			
DIMENSIONS										
Fuselage:										
Length (m)	44,35	33,00	41,51	29,54	32,30	35,30	29,90	29,88	32,18	38
Height (m)	3,76	3,61	3,76	3,73	3,73	3,73	3,73	3,73	3,73	3
Width (m)	3,76	3,61	3,76	3,73	3,73	3,73	3,73	3,73	3,73	3
Finess Ratio	7,30	4,30	7,00	7,40	7,40	7,40	7,40	7,40	7,40	7
Wing:	,,50	1,50	7,00	,,,,,	7,40	7,40	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7, 10	,

Area (m²)	283,40	92,97	157,90	91,04	91,04	91,04	91,04	124,60	124,60	124,60
Span (m)	44,42	28,40	32,92	28,35	28,90	28,90	28,90	34,30	34,30	34,30
MAC (m)	7,36	3,88	5,46	3,80	3,73	3,73	3,73	4,17	4,17	4,17
		3,66 8,68			9,17	9,17	9,17			9,44
Aspect Ratio	6,96		6,86	8,83				9,44	9,44	0,278
Taper Ratio	0,259	0,196	0,309	0,266	0,240	0,240	0,240	0,278	0,278	0,278
Average (t/c) %	10,00	11,60	11,00	12,89	12,89	12,89	12,89	25.00	25.00	25.00
1/4 Chord Sweep (°)	35,00	24,50	32,00	25,00	25,00	25,00	25,00	25,00	25,00	25,00
High Lift Devices:	***	0.5	***							0.5
Trailing Edge Flaps Type	F1	S2	F3	F3	S3	S3	S3	S2	S2	S2
Flap Span/Wing Span	0,670	0,650	0,740	0,740	0,720	0,720	0,720	0,599	0,599	0,599
Area (m²)	44,22		36,04							
Leading Edge Flaps Type	flaps	slats	slats/flaps	slats/flaps	slats/flaps	slats/flaps	slats/flaps	slats/flaps	slats/flaps	slats/flaps
Vertical Tail:										
Area (m²)	30,47	19,50	33,07	19,70	23,13	23,13	23,13	23,13	23,13	23,13
Height (m)	7,20	4,35	4,60	5,85	6,00	6,00	6,00	6,00	6,00	6,00
Aspect Ratio	1,70	0,97	0,64	1,74	1,56	1,56	1,56	1,56	1,56	1,56
Taper Ratio	0,410	0,780	0,780	0,288	0,310	0,310	0,310	0,310	0,310	0,310
1/4 Chord Sweep (°)	30,00	45,00	53,00	35,00	35,00	35,00	35,00	35,00	35,0	35,0
Tail Arm (m)	21,00	12,80	14,20	12,10	13,68	14,90	12,90	13,55	14,7	17,7
$S_{\rm v}/S$	0,108	0,210	0,209	0,216	0,254	0,254	0,254	0,186	0,186	0,186
$S_{\rm v}L_{\rm v}/S_{\rm b}$	0,051	0,095	0,090	0,092	0,120	0,131	0,113	0,073	0,080	0,096
Horizontal Tail:	,	,	,	,	,	,	,	,	,	,
Area (m²)	58,06	24,20	34,93	31,31	31,31	31,31	31,31	32,40	32,40	32,40
Span (m)	13,95	10,80	10,90	12,70	12,70	12,70	12,70	13,40	13,40	13,40
Aspect Ratio	3,35	4,82	3,40	5,15	5,15	5,15	5,15	5,54	5,54	5,54
Taper Ratio	0,400	0,380	0,380	0,260	0,260	0,260	0,260	0,186	0,186	0,186
1/4 Chord Sweep (°)	36,00	30,00	36,00	30,00	30,00	30,00	30,00	30,00	30,00	30,00
Tail Arm (m)	20,50	14,30	20,10	14,78	14,78	16,00	14,00	13,58	14,73	17,68
S_h/S	0,205	0,260	0,221	0,344	0,344	0,344	0,344	0,260	0,260	0,260
$S_{\rm h}/S_{\rm c}$	0,571	0,200	0,814	1,338	1,363	1,475	1,291	0,847	0,200	1,102
Undercarriage:	0,371	0,939	0,014	1,556	1,505	1,473	1,291	0,047	0,919	1,102
· ·	(72	4.00	F 70	F 22	F 2F	F 2F	E 25	F 70	F 7	5,7
Track (m)	6,73	4,88	5,72 19,28	5,23	5,25	5,25	5,25	5,70	5,7	3,/
Wheelbase (m)	17,98	17,60		11,38	12,40	14,30	11,00		12,4	
Turning radius (m)	2.0	2.4	25,00	2.4	19,50	2.4	2.4	2.4	19,5	2.4
No. of wheels (nose;main)	2;8	2;4	2;4	2;4	2;4	2;4	2;4	2;4	2;4	2;4
Main Wheel diameter (m)	1,117		1,245		1,016	1,016	1,016	1,016	1,016	1,016
Main Wheel width (m)	0,406		0,432		0,368	0,368	0,368	0,368	0,368	0,368
Nacelle:			= 00	= 00	4.50	4.50	4.50	4.50	4.70	4.50
Length (m)	6,00	6,10	7,00	7,00	4,70	4,70	4,70	4,70	4,70	4,70
Max. width (m)	1,60	1,75	1,50	1,50	2,00	2,00	2,00	2,06	2,06	2,06
Spanwise location	0.44/0.71	-	-	0,350	0,340	0,340	0,340	0,282	0,282	0,282
PERFORMANCE										
Loadings:										
Max. power load (kg/kN)	447,47	264,10	444,89	367,91	317,25	320,84	318,29	396,89	389,89	365,51
Max. wing load (kg/m²)	533,93	556,20	601,82	575,46	620,28	690,03	575,46	522,39	556,98	627,77
Thrust per engine										
Thrust/Weight Ratio	0,2278	0,3860	0,2291	0,2884	0,3133	0,3203	0,3203	0,2568	0,2615	0,2789
Take-off (m):										
ISA sea level	3054		3033	1829	1939	2222	1832			

ISA +20°C SL.	1	1	3658	1859	2109	2475	2003	1878	2042	2316
ISA 5000ft			3962	2886	2432		2316			
ISA +20°C 5000ft			4176	3292	2637		2649			
Landing (m):										
ISA sea level.	1905	1445	1494	1350	1396	1582	1362	1268	1356	1600
ISA +20°C SL.			1494	1350	1396	1582	1362	1268	1356	1600
ISA 5000ft			1661	1615	1576	1695	1533			
ISA +20°C 5000ft			1661	1615	1576	1695	1533			
Speeds (kt/Mach):										
V_2		150	166	147	148	159	142			
$V_{ m app}$	135	130	137	131	133	138	130			
$V_{\rm no}/M_{\rm mo}$	383/M0.90	438/M0.76	390/M0.90	350/M0.84	340/M0.82	340/M0.82	340/M0.82	392/M0.84	392/M0.84	392/M0.84
$V_{ m ne}/M_{ m me}$	425/M0.95		M0.95							
$C_{L_{\max}}$ (T/O)		2,15	1,90	2,32	2,47	2,38	2,49			
$C_{L_{\max}}$ (L/D @ MLM)	2,22	3,01	2,51	3,06	3,28	3,24	3,32			
Max. cruise:										
Speed (kt)	521		530	488	491	492	492			
Altitude (ft)	25000		25000	25000	26000	26000	26000	41000	41000	41000
Fuel consumption (kg/h)			4536	4005	3890	3307	3574			
Long range cruise:										
Speed (kt)	478	438	467	420	429	430	429	450	452	452
Altitude (ft)		35000	33000	35000	35000	35000	35000	39000	39000	39000
Fuel consumption (kg/h)			4309	2827	2250	2377	2100	1932	2070	2186,84
Range (nm):										
Max. payload	3150		2140	1549	1578	1950	1360			
Design range		1375	2400	1900	2850	2700	1700	3191	3197	2897
Max. fuel (+ payload)	5000			2887	3187	2830	3450	3229	3245	2927
Ferry range										
Design Parameters:										
W/SC_{Lmax}	2360,53	1811,43	2356,82	1845,48	1852,54	2090,56	1701,59			
W/SC_{LtoST}	3947,87	1788,04	3918,96	2537,71	2196,64	2506,93	2024,27			
Fuel/pax/nm (kg)		0,0684	0,1101	0,0632	0,0341	0,0395	0,0608	0,0534	0,0480	0,0465
Seats x Range (seats.nm)		145750	326400	218500	364800	394200	183600	344628	409216	463520