Clase teórica 4

Las reducciones y otros temas de computabilidad

Repaso

Hemos probado cómo se ubican algunos primeros lenguajes dentro de la jerarquía de la computabilidad:

- Para probar pertenencia a R y RE hemos construido MT.
- Para probar no pertenencia a R y RE hemos utilizado el método de diagonalización.
- En esta clase, que cierra la parte de computabilidad, vamos a estudiar otro método para probar no pertenencia a R y RE, en general más sencillo que la diagonalización: la reducción.

Reducciones de lenguajes

• Dados dos lenguajes L_1 y L_2 , una reducción de L_1 a L_2 es una función total computable $f: \Sigma^* \to \Sigma^*$ (función definida para todas las cadenas de Σ^* y computable por una MT M_f), que para toda cadena w:

- Objetivo: reducir (relacionar) el lenguaje L₁ al lenguaje L₂, con la idea de construir una MT M₁ que acepte L₁ utilizando una MT M₂ ya conocida que acepta L₂, en lugar de construir M₁ de cero.
- ¿A qué técnica de programación se asemeja esto? A la invocación a una subrutina.
- La notación L₁ ≤ L₂ expresa que existe una reducción de L₁ a L₂.

Formalizando la utilidad de las reducciones (caso 1: $L_2 \in R$)

Si $w \in L_1$, entonces $f(w) \in L_2$, entonces M_2 acepta f(w), entonces M_1 acepta w. Si $w \notin L_1$, entonces $f(w) \notin L_2$, entonces M_2 rechaza f(w), entonces M_1 rechaza w.

- En lugar de construir de cero una MT M₁ para decidir L₁, se la puede construir a partir de una MT M₂ conocida que decide L₂ (noción de invocación a una subrutina en programación).
- Formalmente: $si L_1 \le L_2$, entonces $L_2 \in R \to L_1 \in R$ O lo mismo: $si L_1 \le L_2$, entonces $L_1 \notin R \to L_2 \notin R$ ur

Encontrando una reducción de un lenguaje L₁ que no está en R a un lenguaje L₂, se prueba que L₂ tampoco está en R.

Formalizando la utilidad de las reducciones (caso 2: $L_2 \in RE$)

Si $w \in L_1$, entonces $f(w) \in L_2$, entonces M_2 acepta f(w), entonces M_1 acepta w. Si $w \notin L_1$, entonces $f(w) \notin L_2$, entonces M_2 rechaza f(w) (puede loopear), entonces M_1 rechaza w (puede loopear).

- En lugar de construir de cero una MT M₁ para aceptar L₁, se la puede construir a partir de una MT M₂ conocida que acepta L₂ (noción de invocación a una subrutina en programación).
- Formalmente: si L₁ ≤ L₂, entonces L₂ ∈ RE → L₁ ∈ RE
 O lo mismo: si L₁ ≤ L₂, entonces L₁ ∉ RE → L₂ ∉ RE

Encontrando una reducción de un lenguaje L₁ que no está en RE a un lenguaje L₂, se prueba que L₂ tampoco está en RE.

Ejemplo 1

 $HP = \{(\langle M \rangle, w) \mid M \text{ para a partir de } w\}$ y $L_U = \{(\langle M \rangle, w) \mid M \text{ acepta } w\}$.

Vamos a probar $HP \leq L_U$. Idea general:

Sabemos que: si $L_1 \le L_2$, entonces $L_1 \notin R \longrightarrow L_2 \notin R$ Así, de $HP \le L_1$ y $HP \notin R$, probamos $L_1 \notin R$

Reducción (gráfico): M_2 es como M_1 , salvo que los estados q_R de M_1 se cambian en M_2 por estados q_A .

Computabilidad: M_f copia ($<M_1>$, w) pero cambiando los estados q_R de M_1 por estados q_A en M_2 .

Correctitud:

 $(\langle M_1 \rangle, w) \in HP \longrightarrow M_1$ para desde $w \longrightarrow M_2$ acepta w (¿por qué?) $\longrightarrow (\langle M_2 \rangle, w) \in L_U$ $(\langle M_1 \rangle, w) \notin HP \longrightarrow \underline{si} (\langle M_1 \rangle, w)$ es una cadena válida: M_1 no para desde $w \longrightarrow M_2$ no para desde w (¿por qué?) $\longrightarrow (\langle M_2 \rangle, w) \notin L_U$ $\underline{si} (\langle M_1 \rangle, w)$ no es una cadena válida:

 $(\overline{M}_2>, w)$ tampoco es una cadena válida $\rightarrow (\overline{M}_2>, w) \notin L_U$

Ejemplo 2

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$
 y $L_{EQ} = \{ (\langle M_1 \rangle, \langle M_2 \rangle) \mid L(M_1) = L(M_2) \}.$

Vamos a probar L_{Σ^*} ≤ L_{EQ} . Idea general (*comentario*: se prueba que $L_{\Sigma} \notin RE$):

Sabemos que: Si $L_1 \le L_2$, entonces $L_1 \notin RE \longrightarrow L_2 \notin RE$ Así, de $L_{\Sigma^*} \le L_{FO}$ y $L_{\Sigma^*} \notin RE$, probamos $L_{FO} \notin RE$

Reducción (gráfico): <T> es una MT que acepta el lenguaje Σ* (¿cómo sería la MT T?)

Computabilidad: M_f copia <M> y le concatena <T>.

Correctitud:

$$\begin{split} <\mathsf{M}> \in \mathsf{L}_{\Sigma^*} & \to \mathsf{L}(\mathsf{M}) = \Sigma^* \to \mathsf{L}(\mathsf{M}) = \mathsf{L}(\mathsf{T}) \to (<\mathsf{M}>, <\mathsf{T}>) \in \mathsf{L}_{\mathsf{EQ}} \\ <\mathsf{M}> \notin \mathsf{L}_{\Sigma^*} & \to \underbrace{\mathsf{si}} <\mathsf{M}> \ \mathsf{es} \ \mathsf{una} \ \mathsf{cadena} \ \mathsf{v\'{a}lida} \\ & \mathsf{L}(\mathsf{M}) \neq \Sigma^* \to \mathsf{L}(\mathsf{M}) \neq \mathsf{L}(\mathsf{T}) \to (<\mathsf{M}>, <\mathsf{T}>) \notin \mathsf{L}_{\mathsf{EQ}} \\ & \underbrace{\mathsf{si}} <\mathsf{M}> \ \mathsf{no} \ \mathsf{es} \ \mathsf{una} \ \mathsf{cadena} \ \mathsf{v\'{a}lida} \\ & (<\mathsf{M}>, <\mathsf{T}>) \ \mathsf{tampoco} \ \mathsf{es} \ \mathsf{una} \ \mathsf{cadena} \ \mathsf{v\'{a}lida} \to (<\mathsf{M}>, <\mathsf{T}>) \notin \mathsf{L}_{\mathsf{EQ}} \\ \end{split}$$

Otros ejemplos clásicos de reducciones

Como $L_U^C \notin RE$, entonces $L_{\Sigma^*} \notin RE$.

También se cumple $L_U \le L_{\Sigma^*}$ (se prueba en la práctica). Como $L_1 \le L_2$ sii $L_1^C \le L_2^C$, entonces $L_U^C \le L_{\Sigma^*}^C$, y así $L_{\Sigma^*}^C \notin RE$.

En definitiva: $L_{\Sigma^*}y L_{\Sigma^*}^c$ están en \mathcal{L} – (RE U CO-RE).

Como $L_U^C \notin RE$, entonces $L_\emptyset \notin RE$.

Por otro lado, ya probamos que $L_{\varnothing}^{c} \in RE$ (se puede detectar si una MT acepta al menos una cadena).

En definitiva: L_{\varnothing} está en CO-RE y L_{\varnothing} ^c está en RE.

Prueba de indecibilidad en la lógica de predicados (Turing, 1936)

Reducción de HP a | - Θ

M para a partir de w sii φ es una fórmula demostrable en la lógica de predicados.

Sabemos que $L_1 \le L_2$ implica $(L_1 \notin R \to L_2 \notin R)$. Por lo tanto, **como HP** \notin **R**, **entonces** \vdash **O** \notin **R**.

La lógica de predicados es indecidible, porque el halting problem es indecidible.

Prueba de indecibilidad en la aritmética (alternativa a la prueba de Gödel de 1931)

Reducción de HP a N |= Θ

M para a partir de w sii Θ es un enunciado verdadero de la aritmética.

Sabemos que $L_1 \le L_2$ implica $(L_1 \notin R \to L_2 \notin R)$. Por lo tanto, **como HP** \notin **R**, **entonces N** \models **Q** \notin **R**.

La aritmética es indecidible, porque el halting problem es indecidible.

En particular, ya mostramos antes que tanto N |= Θ como (N |= Θ)^c están en \mathcal{L} – (RE U CO-RE).

Resumiendo

Caso 1

Si $L_1 \le L_2$ entonces $(L_2 \in R \longrightarrow L_1 \in R)$ O bien, por el contrarrecíproco:

Si $L_1 \le L_2$ entonces $(L_1 \notin R \longrightarrow L_2 \notin R)$

Caso 2

Si $L_1 \le L_2$ entonces ($L_2 \in RE \rightarrow L_1 \in RE$) O bien, por el contrarrecíproco:

Si $L_1 \le L_2$ entonces $(L_1 \notin RE \longrightarrow L_2 \notin RE)$

Expresado de otra manera:

Si $L_1 \le L_2$, entonces L_2 es tan o más difícil que L_1

Si $L_1 \notin R$, no puede suceder que $L_2 \in R$

Si $L_1 \notin RE$, no puede suceder que $L_2 \in RE$

Algunas propiedades de las reducciones

Reflexividad. Para todo lenguaje L se cumple L ≤ L.
 La reducción es la función identidad.

Transitividad. Si $L_1 \le L_2$ y $L_2 \le L_3$, entonces $L_1 \le L_3$.

• Otra propiedad: $L_1 \le L_2$ sii $L_1^C \le L_2^C$. La reducción es la misma.

sii

No se cumple la simetría.

 $L_1 \le L_2$ no implica $L_2 \le L_1$.

Otra manera de probar que HP está entre los lenguajes más difíciles de RE

- En la clase anterior lo vimos construyendo una MT.
- Lo mismo se puede ver por medio de las reducciones. Se prueba que todo lenguaje L de RE cumple L ≤ HP:

Sea M una MT que acepta L.

M´ es como M, salvo que todo q_R de M se reemplaza en M´ por un loop.

De esta manera:

 $w \in L \rightarrow M$ acepta $w \rightarrow M'$ para a partir de w. ¿por qué? $w \notin L \rightarrow M$ rechaza $w \rightarrow M'$ no para a partir de w. ¿por qué?

HP es tan o más difícil que cualquier lenguaje de RE.

Resolviendo HP se resuelve cualquier Li.

Si HP estuviera en R se cumpliría R = RE.

HP identifica la dificultad de la clase RE, es RE-completo.

Una última mirada a problemas clásicos de la computabilidad

- ACC, problema de accesibilidad: ¿El grafo no dirigido G tiene un camino de su primer a su último vértice?
- SAT, problema de satisfactibilidad: ¿La fórmula booleana φ es satisfactible?
- HP, problema de la parada: ¿La MT M para a partir de la cadena de entrada w?
- L_U, problema de aceptación: ¿La MT M acepta la cadena de entrada w?
- |– ⊖, **problema de decisión en la lógica de predicados (LP):** ¿La fórmula ⊖ es un teorema de la LP?
- L_∅: ¿El lenguaje aceptado por la MT M es el lenguaje vacío?
- L_{Σ*}: ¿El lenguaje aceptado por la MT M es el lenguaje Σ*?
- L_{EO}, **problema de equivalencia**: ¿Las MT M y M´ son equivalentes?
- N |= ⊖, **problema de decisión en la aritmética**: ¿El enunciado aritmético ⊖ es verdadero?

Anexo

Máquinas de Turing restringidas

AUTÓMATAS FINITOS (AF)

- Una cinta de sólo lectura.
- Sólo movimiento a la derecha.
- Conjunto F de estados finales.

• Cuando alcanza el símbolo B (blanco), el AF para, y acepta sii el estado alcanzado es un estado final.

- El AF constituye un tipo de algoritmo muy utilizado. Por ejemplo:
 - o Para el análisis sintáctico a nivel palabra de los compiladores (if, then, else, while, x, 10, =, +, etc).
 - Para las inspecciones de código en el control de calidad del software.

Ejemplo

$$Q = \{q_0, q_1, q_2, q_3\}, \quad \Sigma = \{0, 1\}, \quad \text{Estado inicial } q_0,$$

$$\Sigma = \{0, 1\},\$$

1.
$$\delta(q_0, 1) = q_1$$
 2. $\delta(q_1, 1) = q_0$
3. $\delta(q_1, 0) = q_3$ 4. $\delta(q_3, 0) = q_1$
5. $\delta(q_3, 1) = q_2$ 6. $\delta(q_2, 1) = q_3$

3.
$$\delta(q_1, 0) = q_3$$

5.
$$\delta(q_3, 1) = q_2$$

7.
$$\delta(q_2, 0) = q_0$$

2.
$$\delta(q_1, 1) = q_0$$

 $F = \{q_0\}$

4.
$$\delta(q_3, 0) = q_1$$

6.
$$\delta(q_2, 1) = q_3$$

8.
$$\delta(q_0, 0) = q_2$$

Diagrama de transición de estados

La ejecución arranca desde la flecha.

Los estados con doble contorno son los estados finales.

El AF descripto acepta todas las cadenas de 1 y 0 con una cantidad par de 1 y una cantidad par de 0.

Algunas características de los AF

- Los AF siempre paran.
- Aceptan un tipo limitado de cadenas (no tienen memoria).
 No pueden aceptar cadenas con igual cantidad de a y b.
 No pueden chequear si una cadena es un palíndromo.
 Etc. (en general, no pueden calcular).
- Los lenguajes que aceptan se llaman regulares o de tipo 3.
- A diferencia de las MT generales, siempre se puede decidir si un AF:

Acepta una cadena w.

Acepta el lenguaje ∅.

Acepta el lenguaje Σ^* .

Es equivalente a otro.

Etc.

AUTÓMATAS CON PILA (AP)

- Una cinta de input de sólo lectura.
- Una cinta de lectura/escritura que se comporta como una pila.
- En un paso se pueden procesar las dos cintas.
- En la cinta de entrada siempre se va a la derecha.
- Cuando alcanza el símbolo B (blanco) en la cinta de entrada, el AP para y acepta sii la pila está vacía.

- Problemas típicos que resuelve un AP:
 - o Análisis sintáctico a nivel instrucción de los compiladores.
 - Evaluación de expresiones en la ejecución de programas.

Ejemplo. Reconocimiento de cadenas **waw^c**, tales que w tiene símbolos 0 y 1 y w^c es la inversa de w. Supongamos la entrada **001a100**:

configuración final

Algunas características de los AP

- Los AP siempre paran.
- Los lenguajes que aceptan se llaman libres de contexto o de tipo 2.
- A diferencia de las MT generales, siempre se puede decidir si un AP:

Acepta una cadena w.

Acepta el lenguaje Ø.

Etc.

Jerarquía de lenguajes de Chomsky:

De tipo 0 (recursivamente enumerables)

De tipo 1 (sensibles al contexto)

De tipo 2 (libres de contexto)

De tipo 3 (regulares)

Enumeración de los lenguajes recursivamente enumerables

Todo lenguaje L de RE se puede enumerar:

Sea M₁ una MT que acepta L. Vamos a construir una MT M₂ que genera L:

- 1. Hacer n := 1.
- 2. Generar todas las cadenas de longitud a lo sumo n en el orden canónico.
- 3. Por cada cadena generada ejecutar a lo sumo n pasos de la MT M₁. Si M₁ acepta, imprimir la cadena.
- 4. Hacer n := n + 1 y volver al paso 2.

¿Las cadenas quedan en orden canónico? ¿Se pueden repetir? ¿Se puede evitar que se repitan? (ejercicio)

Todo lenguaje L de R se puede enumerar en el orden canónico:

Sea M₁ una MT que decide L. Vamos a construir una MT M₂ que genera L en el orden canónico:

- 1. Generar la primera cadena en el orden canónico.
- 2. Ejecutar M₁ sobre la cadena generada. Si acepta, imprimirla.
- 3. Generar la siguiente cadena en el orden canónico y volver al paso 2.
- Dada una MT que enumera un lenguaje, se puede construir otra MT que lo acepta (ejercicio)

Turing-reducciones

- Las Turing-reducciones generalizan las reducciones descriptas antes (conocidas como m-reducciones).
- Se definen en términos de MT con oráculo:

- La MT M cuenta con un oráculo del lenguaje L, dispositivo capaz de responder en un paso si una cadena v pertenece o no pertenece a L.
- La MT y el oráculo en conjunto se denotan con M^L.
- M puede invocar al oráculo cero o más veces.
- Se define que existe una Turing-reducción de L₁ a L₂ (L₁ ≤_T L₂) sii existe una MT con oráculo de L₂ que decide L₁.
- Por ejemplo, se prueba que $L_{\varnothing} \leq_T L_U$ y que $L_U \leq_T L_{\varnothing}$. Esto significa que $L_{\varnothing} \in R$ sii $L_U \in R$. En este marco, se dice que L_{\varnothing} y L_U son recursivamente equivalentes.
- La propiedad de ser recursivamente equivalente determina una jerarquía de la computabilidad distinta de la que describimos antes. Se define en términos de grados de Turing.

Clase práctica 4

Ejemplo de reducción

Sea el problema: dada una MT M, ¿acaso M acepta todas las cadenas de Σ^* ?

El lenguaje que representa el problema es: $L_{\Sigma^*} = \{ <M > \mid L(M) = \Sigma^* \}$. Probaremos con una reducción que $L_{\Sigma^*} \notin R$.

Ejercicio: Intuitivamente, ¿puede ser $L_{\Sigma^*} \in \mathbb{R}$?. Más aún, ¿puede ser $L_{\Sigma^*} \in \mathbb{RE}$?

Usaremos: **si** $L_1 \le L_2$ **y** $L_1 \notin R$, **entonces** $L_2 \notin R$. Así, hay que encontrar una reducción de la forma $L_1 \le L_{\Sigma^*}$, de modo tal que $L_1 \notin R$. Elegimos como L_1 el lenguaje L_U .

Reducción:

Se define: $f((<M>,w)) = <M_w>$, tal que M_w es una MT que:

- a) Reemplaza su entrada por w.
- b) Ejecuta M sobre w.
- c) Acepta sii M acepta.

Computabilidad:

Existe una MT M_f que computa f: genera <M_w>, agregando al código <M> un fragmento inicial que borra su entrada y la reemplaza por w.

Correctitud:

 $(<M>, w) \in L_U \rightarrow M$ acepta $w \rightarrow M_w$ acepta todas sus entradas $\rightarrow L(M_w) = \Sigma^* \rightarrow <M_w> \in L_{\Sigma^*}$ $(<M>, w) \notin L_U \rightarrow \underline{caso\ de\ cadena\ válida}$: M rechaza $w \rightarrow M_w$ rechaza todas sus entradas $\rightarrow L(M_w) \neq \Sigma^* \rightarrow <M_w> \notin L_{\Sigma^*}$ $\underline{caso\ de\ cadena\ no\ válida}$: M_w tampoco es una cadena válida $\rightarrow L(M_w) \neq \Sigma^* \rightarrow <M_w> \notin L_{\Sigma^*}$

No simetría de las reducciones

Las reducciones en general no cumplen la propiedad de simetría:

- Sea cualquier L ∈ R. Y sea M una MT que decide L.
- Por un lado, no se cumple L_U ≤ L (¿por qué?)
- Pero por otro lado, se cumple L ≤ L_u:

Computabilidad: existe una MT M_f que, dada una cadena w, le concatena a la izquierda el código <M>

Correctitud: w ∈ L sii M acepta w sii (<M>, w) ∈ L_U

Simetría de las reducciones dentro de la clase R

- En particular, en R se cumple que las reducciones son simétricas (sin considerar los lenguajes especiales Σ* y Ø).
- En otras palabras, en el marco de la computabilidad todos los lenguajes de R tienen la misma dificultad.
- La prueba es la siguiente:

Sean L_1 y L_2 distintos de Σ^* y \emptyset .

Sean $a \in L_2$ y $b \notin L_2$.

Y sean M_1 y M_2 dos MT que deciden L_1 y L_2 , respectivamente.

Veamos que $L_1 \le L_2$:

Reducción:

$$f(w) = a \text{ si } w \in L_1$$

 $f(w) = b \text{ si } w \notin L_1$

Computabilidad:

Dada w, la MT M_f que computa f ejecuta M₁ sobre w, si acepta w genera *a* y si rechaza w genera b.

Correctitud:

$$w \in L_1 \text{ sii } f(w) \in L_2$$