Information Theory. Shannon-fano and Huffman coding p... probability of occurance of a message I... Information gained from the message

if P=1 then I=0

and if P=0 then $I=\infty$

 $P(\pi_i)$, $I(\pi_i)$ $I(\pi_i) = \log_2 \frac{1}{P(\pi_i)} \dots \text{bits}$

if $P(x_1) \angle P(x_2) \Rightarrow I(x_1) > I(x_2)$

Entropy: ... overage amount of information contained in each message received.

Entropy is defined as a measure of randomness

average information per message.

$$\times \dots \otimes \mathbb{R}^{n}$$
 $\times \mathbb{R}^{n}$ $\times \mathbb{R}^{n}$

$$H(X) = E(I(X)) = \sum_{i=1}^{n} P(x_i) I(x_i)$$

$$H(x) = E(I(x)) = \sum_{i=1}^{n} P(x_i) I(x_i)$$

$$H(x) = \sum_{i=1}^{n} P(x_i) I(x_i) I(x_i)$$

$$= -\sum_{i=1}^{n} P(x_i) I(x_i) I(x_i)$$
bits/message
$$= -\sum_{i=1}^{n} P(x_i) I(x_i) I(x_i)$$
bits/symbol.

Entropy is maximum when all messages are equiprobable.

	ltuffman				
ر کر	A 80	outce 'S' en	nits symbol	81, 82, 83	, Sy, S5
	with	probability	٥٠٤, ٥٠٥, ٥	1.ه راه ر۶۰	. It is coded
	with	Huffman coo	ding find it	efficiency	J
	Jodanya	stage 1	8-tage 2	8-tage 3	% तम्बुस् प
	8,	0.4	→ o.4 <u></u>	→ 0·4 → 0·4 →	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	& ₂	0.2	0,5	_\ ' ,	J
	83	0,2	70.5 -	70.5	
	84	0.1) O. 2 _1		
	\$ ₅	0.1 ~1			

code

h=P(&i)

۶i

redundancy = 7=1-1

code length (li)

Shannon - Fano coding: \$i > &1, &2, &3, &4, &5, &6, &7, &8 5 ... sonce Ex P(8i) > 0.5, 0.15, 0.15, 0.08, 0.08, 0.02, 0.01, 0.01 probability Source 0 81 0.5 0 0.15 82 0.15 83 6.08 1 84 土 0 0.08 7 85 0 1 0.02 1 86 0 0.0 1 L 87 I 0.01 158

code

 $b_{i'} = P(\beta_{i'})$

Si:

tength (li)