Name:	
Mat 120	EXAM II

Show relevant work, where appropriate, answers without support may receive little or no credit.

Total: 105 points

1. (11 points) Use the set operations or Venn diagram to solve the following question.

In a survey of 60 people, it was found that:

25 read Newsweek magazine, 26 read Time, 26 read Fortune

9 read *Newsweek* and *Fortune*, 11 read *Newsweek* and *Time*, 8 read *Fortune* and *Time* 3 read all

Use Venn Diagram and label the numbers inside (5 points)

- (a) (2 point) Find the number of people who read none of these three magazines
- (b) (2 point) Find the number of people who read exactly one magazine.
- (c) (2 point) Find the number of who read at least one of the three magazines. 52

- 2. Let $U = \{n \in Z^+ \mid n \le 13\}$ be the universal set and let $A = \{n \in U \mid n \text{ is prime}\}$, $B = 2^+$, $\{n \in U \mid n \text{ is even}\}$, and $C = \{n \in U \mid n < 7\}$. List all of the elements in the following sets. (12 points)

 - b) A-C
 - c) $B \cup \overline{C} = \overline{C} : \{7.8,9,10,11,12,13\}$ $\{2,4,6,7,8,9,10,11,12,13\}$
 - d) $\overline{A \cup B \cup C}$

AUBUC = 11 120304, 5, 6, 7, 8, 11, 12, 13]

AUBUC = 393

- 3. (12 points) Suppose that: $g: A \to B$ and $f: B \to C$ where $A = B = C = \{1,2,3,4\}, g = \{(1,4),(2,1),(3,1),(4,2)\},$ and $f = \{(1,3),(2,2),(3,4),(4,2)\}$ (i.e. f(1) = 3, f(2) = 2, f(3) = 4, f(4) = 2...)
 - a) Find $f \circ g$ f(g(1)) = f(4) = 2 f(g(2)) = f(1) = 3f(g(2)) = f(1) = 3 f(g(4)) = f(2) = 2
 - b) Does $g^{-1} \circ f$ exist? If it exists, find it. If it doesn't exist, explain why.

$$g^{-1}(f(1)) = g^{-1}(3) = ?$$
 $g^{-1}(f(3)) = g^{-1}(4)$
 $g^{-1}(f(2)) = g^{-1}(2)$ $g^{-1}(f(4)) = g^{-1}(2)$

g is Not 1-1 correspondence

c) Find $g \circ (g \circ g)$ g(g(g(1))) = g(g(4)) = g(2) = 1 g(g(g(2))) = g(g(1)) = g(4) = 2 g(g(g(3))) = g(g(1)) = g(4) = 2 g(g(g(4))) = g(g(2)) = g(1) = 4g(g(g(4))) = g(g(2)) = g(1) = 4

4. (13 points) Find the first five terms of the sequence
$$a_n$$
, $n \ge 0$

(a)
$$a_n = 2^n + (-2)^n$$

 $\mathcal{O}_0 = 2^0 + (-2)^0 = 2$
 $\mathcal{O}_1 = 2^1 + (-2)^1 = 0$
 $\mathcal{O}_2 = 2^2 + (-2)^2 = 8$
 $\mathcal{O}_3 = 2^3 + (-2)^3 = 0$

$$a_4 = 2^4 + (-2)^4 = 16 + 16 = 32$$

(b)
$$a_n = \lfloor n/2 \rfloor + \lceil n/2 \rceil$$

$$A_0 = \lfloor 0 \rfloor + \lceil 0 \rceil = 0$$
 $A_1 = \lfloor \frac{1}{2} \rfloor + \lceil \frac{1}{2} \rceil = 1$
 $A_2 = \lfloor 1 \rfloor + \lceil 1 \rceil = 2$
 $A_3 = \lfloor \frac{3}{2} \rfloor + \lceil \frac{3}{2} \rceil = 1 + 2 = 3$
 $A_4 = \lfloor 2 \rfloor + \lceil 2 \rceil = 4$

(c)
$$a_n = na_{n-1} + n^2 a_{n-2}$$
, $a_0 = 1$, $a_1 = 1$. (Find a_2 , a_3 , a_4)

$$Q_{2}=2Q_{1}+2^{2}Q_{0}=2+4=6$$
 $Q_{3}=3Q_{2}+9Q_{1}=3(6)+9(1)=27$
 $Q_{4}=4Q_{3}+16Q_{2}=4(27)+16(6)$

$$= 108 + 96$$

$$= 204$$

5. (20 points) What are the values of these sums?

a)
$$\sum_{k=4}^{112} 2+k$$

$$= \sum_{k=4}^{112} 2 + \sum_{k=4}^{112} k$$

$$= 2(109) + \sum_{k=1}^{111} k - (1+2+3)$$

$$= 218 + \frac{112(113)}{2} - 6$$

$$= 218 + 6328 - 6$$

$$= 6540$$

b)
$$\sum_{n=0}^{\infty} \frac{2^{n}+3^{n}}{5^{n}}$$

= $\sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^{n} + \sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^{n}$

= $\frac{1}{1-\frac{2}{5}} + \frac{1}{1-\frac{2}{5}}$

= $\frac{1}{3} + \frac{5}{2} = 5(\frac{5}{6}) = \frac{25}{6}$

c)
$$\sum_{i=0}^{4} \sum_{j=2}^{5} i^{3} j^{2}$$

$$= \sum_{i=0}^{4} (4 i^{3} + 9 i^{3} + 16 i^{3} + 25 i^{3})$$

$$= \sum_{i=0}^{4} (54 i^{3})$$

$$= 54 (0^{3} + 1^{3} + 2^{3} + 3^{3} + 4^{3})$$

$$= 54 (1 + 8 + 27 + 64)$$

$$= 5400$$

d) $\sum_{j=0}^{9} (2^{j+1} - 2^j)$ (This is called the telescoping series. Hint: Instead of calculating all the numbers out, you may want to list all the terms first)

$$(2 - 2^{\circ}) + (2 - 2^{\circ}) + (3 - 2^{\circ}) + \cdots + (3^{\circ} - 2^{\circ})$$

$$= 2^{1^{\circ}} - 2^{\circ}$$

$$= 1024 - 1 = (023)$$

e)
$$\sum_{i=2}^{9} 3(2^{i-1})$$

$$= 3 \cdot (2) \cdot \left[2^{g} - 1 \right]$$

$$= 2 \cdot 1530$$

f) Extra credits: (5 points) Express $0.\overline{8}$ as a ratio of integers. ($0.\overline{8} = 0.88888888...$ it is a repeated decimal number, but you can also rewrite $0.\overline{8} = 0.8 + 0.08 + 0.008 + ...$)

$$0.8 = 0.8 + 0.8 \times \frac{1}{10} + 0.8 \times \frac{1}{10}^{10} + \cdots$$

$$= \sum_{k=0}^{\infty} 0.8 (\frac{1}{10})^{k}$$

$$= \frac{0.8}{10-1} = \frac{8}{9}$$

g) Extra credits: (5 points) Simplify the following function to the simplest form.

$$\frac{1}{x-1} + \frac{\sum_{k=0}^{2020} (k+1)x^{k}}{\sum_{k=0}^{2021} x^{k}}$$

$$\frac{1}{x-1} + \frac{1+2x+3x^{2}+\cdots 2021x^{2020}}{1+x+x^{2}+x^{3}+\cdots +x^{2n+1}}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+2x+3x^{2}+\cdots 2021x^{2n+1})}{(x-1)(1+x+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+2x+3x^{2}+\cdots 2021x^{2n+1})}{(x+x^{2}+x^{3}+\cdots +x^{2n+1}) - (1+x+x^{2}+x^{2}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2}+3x^{2}+\cdots 2021x^{2n+1})}{(x+x^{2}+x^{3}+\cdots +x^{2n+1}) - (1+x+x^{2}+x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots 2021x^{2n+1})}{(x+x^{2}+x^{2}+\cdots +x^{2n+1}) - (1+x+x^{2n+1}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots +x^{2n+1})}{(x+x^{2}+x^{2}+\cdots +x^{2n+1}) - (1+x+x^{2n+1}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots +x^{2n+1})}{(x+x^{2}+x^{2}+\cdots +x^{2n+1}) - (1+x+x^{2n+1}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots +x^{2n+1})}{(x+x^{2}+x^{2}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots +x^{2n+1})}{(x+x^{2}+x^{2}+\cdots +x^{2n+1})}$$

$$= \frac{(1+x+x^{2}+x^{2}+\cdots +x^{2n+1}) + (x-1)(1+x+x^{2n+1}+\cdots +x^{2n+1}+\cdots +x^{2n+$$

6. (9 points) Which of the following functions are: one-to-one, onto, both, or neither. Justify your answers. (\mathbb{Z}^2 means $m \in \mathbb{Z}$, $n \in \mathbb{Z}$, $n \in \mathbb{Z}$ is the set of all integers.)

a)
$$f: N \rightarrow N, f(x) = 4x + 1$$

Not onto

one-to-one

b)
$$g: \mathbb{R} \to \mathbb{R}, g(x) = 2x + 1$$

c)
$$p: \mathbb{Z}^2 \to \mathbb{Z}, p(x,y) = x^2 + y^2$$

Note onto $p(x,y) = -1$

(but one-to-one $x=1,y=-1$
 $x=1,y=-1$

7. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 4A + 7I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (Recall: $A^2 = A \times A$, I is the identity matrix.) (8 points)
$$A^2 = A \cdot A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix}$$

$$4A = 4\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$7I = 7I\begin{bmatrix} 0 & 1 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 7 \end{bmatrix}$$

8. (10 points) Use the iterative approach to find the solution to the recurrence relation with the given initial condition.

$$a_n = 3a_{n-1} + 4$$
, $a_0 = 1$

$$\begin{aligned}
& a_{n} = 3 a_{n-1} + 4 \\
&= 3 (3 a_{n-2} + 4) + 4 \\
&= 3^{2} a_{n-2} + 3 \cdot 4 + 4 \\
&= 3^{3} a_{n-3} + 3^{2} \cdot 4 + 3 \cdot 4 + 4 \\
&= 3^{6} \cdot a_{0} + 3^{6} \cdot 4 + 3^{6} \cdot 4 + 3 \cdot 4 + 4 \\
&= 3^{6} \cdot a_{0} + 3^{6} \cdot 4 + 3^{6} \cdot 4 + 3^{6} \cdot 4 + 3 \cdot 4 + 4 \\
&= 3^{6} \cdot a_{0} + 3^{6} \cdot 4 + 3^{6} \cdot 4$$

- 9. True or False. (Explanations are not required) (10 points)
 - a) $f(x) = x^3 + 1$ is a bijection from \mathbf{R} to \mathbf{R}
 - b) $f(x) = \cos(x)$ is a onto function but not one to one function for $0 \le x \le 2\pi, -1 \le f(x) \le 1$.
 - c) $f(x) = \tan(x)$ is a one to one but not onto for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, $f(x) \in R$.
 - d) Let $f: R \to R$ and let f(x) > 0 for all $x \in R$. If f(x) is strictly increasing then $g(x) = \frac{1}{f(x)}$ is strictly decreasing.
 - e) Assume that A is a subset of some underlying universal set U. Then $A \cup U = U$, $A \cap U = A$ and $\emptyset A = \emptyset$.
 - f) {0}⊂ Ø
 - g) $\{\emptyset\} \subseteq \{\emptyset\}$
 - h) $2 \in \{\{2\}, \{\{2\}\}\}$
 - i) $A = \{a, b, c, d\}, B = \{y, z\}, then A \times B = B \times A$
 - j) If matrix $\begin{bmatrix} x & 1 & 3 \\ 1 & 0 & 3a b \\ a + b & 4 & y \end{bmatrix}$ is a symmetric matrix, then $a = \frac{7}{4}$, $b = \frac{5}{4}$

$$3 = a + b$$
 $a = \frac{7}{4} b^{2} = \frac{5}{4}$