1. 布尔运算符⊕的定义如下:1⊕1=0, 1⊕0=1, 0⊕1=1, 0⊕0=0。此算子称为"异或"(XOR) 算子。

化简下列表达式。

- a) **x⊕0**
- b) *x*⊕1
- c) *x*⊕*x*
- d) $x \oplus \bar{x}$
- a) Since $0\oplus 0=0$ and $1\oplus 0=1$, this expression simplifies to x.
- b) Since 0 \oplus 1 = 1 and 1 \oplus 1 = 0, this expression simplifies to x'.
- c) Looking at the definition, we see that $x \oplus x = 0$ for all x.
- d) This is similar to part (c); this time the expression always equals 1.
- 2. 定义布尔运算符⊙:1⊙1=1, 1⊙0=0, 0⊙1=0, 0⊙0=1, 证明下列各等式成立。(⊕ 为异或运算符)
 - a) $x \odot y = x \cdot y + \bar{x} \cdot \bar{y}$
 - b) $x \odot y = \overline{(x \oplus y)}$
 - c) $x \odot y = y \odot x$
 - (a) 根据定义,左边式子在x和y均相等时为1、否则为0; 同理,右边式子在x和y相等时为1、否则为0。
 - (b) 真值表:

x	у	$x \odot y$	$x \oplus y$	$\overline{(x \oplus y)}$
1	1	1	0	1
1	0	0	1	0
0	1	0	1	0
0	0	1	0	1

- (c)根据定义,⊙运算符具有对称性。
- 3. 证明下面的恒等式成立。
 - a) $x \oplus y = (x + y)\overline{(xy)}$
 - b) $x \oplus y = (x \cdot \bar{y}) + (\bar{x} \cdot y)$

x	y	$x \oplus y$	x + y	хy	$\overline{(xy)}$	$(x+y)\overline{(xy)}$	$x\overline{y}$	$\overline{x}y$	$x\overline{y} + \overline{x}y$
1	1	0	1	1	0	0	0	0	0
1	0	1	1	0	1	1	1	0	1
0	1	1	1	0	1	1	0	1	1
0	0	0	0	0	1	0	0	0	0

- 4. 求下列布尔表达式的对偶。
 - a) x+y
 - b) $\bar{x} \cdot \bar{y}$
 - c) $x \cdot y \cdot z + \bar{x} \cdot \bar{x} \cdot \bar{x}$
 - d) $x\bar{z} + x \cdot 0 + \bar{x} \cdot 1$
- 5. 证明下列等式成立或不成立。 a) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$
 - b) $x + (y \oplus z) = (x + y) \oplus (x + z)$
 - c) $x \oplus (y + z) = (x \oplus y) + (x \oplus z)$
 - a) True, as a table of values can show
 - **b)** False; take x = 1, y=1, z=1, for instance
 - c) False; take x=1, y=1, z=0, for instance
- 6. 用逻辑电路图表示以下逻辑函数

$$Y = AB + \overline{AC}\overline{B}$$

(a) xy (b) x' + y' (c) (x+y+z)(x'+x'+x') (d) (x+z')(x+1)(x'+0)

7. 代数法化简

$$(1) \overline{\overline{X}\overline{Y} + XYZ} + X(Y + X\overline{Y})$$

$$(A+B)(\overline{A}+C)(B+C)$$

$$XY + \overline{XZ} + X\overline{Y}Z(XY + Z)$$

- 8. 证明以下公式成立
 - $(1)XY + YZ + \bar{Y}Z = XY + Z$
 - $(2)AB + \bar{A}B + \bar{A}\bar{B} = \bar{A} + B$
 - $(3)A + \bar{A}B + A\bar{B} = A + B$
 - $(4)\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC = AB + BC + AC$

$$(1)XY + YZ + \bar{Y}Z = XY + (Y + \bar{Y})Z = XY + Z$$

$$(2)AB + \bar{A}B + \bar{A}\bar{B} = AB + \bar{A} = AB + \bar{A}(1+B)$$

$$= AB + \bar{A} + \bar{A}B = \bar{A} + B$$

$$(3)A + \bar{A}B + A\bar{B} = A(1+\bar{B}) + \bar{A}B = A + \bar{A}B$$

$$= A(1+B) + \bar{A}B = A+B$$

$$(4)\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

$$= \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC + ABC + ABC$$

$$= (\bar{A} + A)BC + A(B + \bar{B})C + AB(C + \bar{C})$$

$$=AB+BC+AC$$

9. 将逻辑函数 F(A, B, C, D) = A + D 分别表示为最小项之和的形式以及最大项之积的形式。

$$\begin{array}{l} ABCD + ABC\overline{D} + AB\overline{C}D + AB\overline{C}\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D} \\ + A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + \overline{A}BCD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD \end{array}$$

$$(A+B+C+D)(A+B+C+D)$$
• $(A+B+C+D)(A+B+C+D)$

- 10. 用反相器、与门和或门构造产生下列输出的电路。
 - a) $\bar{x} + y$
 - b) $\overline{(x+y)} \cdot x$
 - c) $xyz + \bar{x} \cdot \bar{y} \cdot \bar{z}$
 - d) $\overline{(\bar{x}+z)\cdot(y+\bar{z})}$

11. 与非(NAND) 门和或非(NOR)门也是电路中常用的两种门,如果使用这两种门来表示电路,就没有必要使用其他类型的门了。这两种门的记号如下:

使用与非门构造具有下列输出的电路:

- a) \bar{x}
- b) x + y
- c) x y
- d) *x*⊕*y*

- 12. 定义运算符"|"或 "NAND"如下: 1|1=0 且 1|0=0|1=0|0=1。证明下列式子:
 - a) $\bar{x} = x | x$
 - b) $x \cdot y = (x|y)|(x|y)$
 - c) x + y = (x|x)|(y|y)

答案:

- a) 使用"|"的定义。如果 x=1,那么 $x \mid x=0$,如果 x=0,那么 $x \mid x=1$. 因此 $\bar{x}=x \mid x$ 。
- b) 真值表。

\underline{x}	y	$\underline{x \mid y}$	$(x \mid y) \mid (x \mid y)$	\underline{xy}
1	1	0	1	1
1	0	1	0	0
0	1	1	0	0
0	0	1	0	0

c) 真值表。

\underline{x}	\underline{y}	$x \mid x$	$y \mid y$	$\underline{(x\mid x)\mid (y\mid y)}$	$\underline{x+y}$
1	1	0	0	1	1
1	0	0	1	1	1
0	1	1	0	1	1
0	0	1	1	0	0

13. 用卡诺图化简以下逻辑函数 (d 表示无关项)

$$F(A, B, C, D) = \sum m(1,3,5,8,9,11.15) + d(2,13)$$

The minimized logic expression in SOP form is $F = A \overline{B} \overline{C} + \overline{C}D + \overline{B}D + AD$

14. 构造 $F(x,y,z) = x \cdot \bar{z} + x \cdot y \cdot z + y \cdot \bar{z}$ 的卡诺图。使用此卡诺图找出F(x,y,z)的蕴含项、 质蕴含项和实质蕴含项。

答案:

	yz	ȳz̄	$\bar{y}\bar{z}$	$\bar{y}z$
x	1	1	1	
\bar{x}		1		

蕴含项: $x \cdot y \cdot z$, $x \cdot y \cdot \bar{z}$, $x \cdot \bar{y} \cdot \bar{z}$, $\bar{x} \cdot y \cdot \bar{z}$, $x \cdot y$, $x \cdot \bar{z}$, $y \cdot \bar{z}$

质蕴含项: $x \cdot y$, $x \cdot \bar{z}$, $y \cdot \bar{z}$ 实质蕴含项: $x \cdot y$, $x \cdot \bar{z}$, $y \cdot \bar{z}$

- 15. 实现一个楼梯间的灯泡控制系统,灯泡可以分别用楼下和楼上的两个开关 S_1 和 S_2 控制:
 - (1) 写出这个系统的真值表。
 - (2) 写出 SOP 形式的逻辑表达式。

S_1	S_2	L
0	0	0
0	1	1
1	0	1
1	1	0

逻辑表达式:
$$L = \overline{S_1} S_2 + S_1 \overline{S_2}$$

16.

题目16. 用尽量少的门电路实现异或函数: $Y = A\overline{B} + \overline{A}B$

解答.
$$Y = (A+B)\overline{AB}$$

17.

题目17. 写出Fig.1所示逻辑电路的布尔表达式,并将其化简。

解答.
$$Y = (AB)' + (A' + B)' = A' + B'$$

- 18. 用卡诺图找出下列关于变元 w、x、y 和 z 的函数的一个极小展开式,且此展开式具有积之和的形式。
 - a) $w \cdot x \cdot y \cdot z + w \cdot x \cdot \bar{y} \cdot z + w \cdot x \cdot \bar{y} \cdot \bar{z} + w \cdot \bar{x} \cdot y \cdot \bar{z} + w \cdot \bar{x} \cdot \bar{y} \cdot z$
 - b) $w \cdot x \cdot y \cdot \bar{z} + w \cdot x \cdot \bar{y} \cdot z + w \cdot \bar{x} \cdot y \cdot z + \bar{w} \cdot x \cdot \bar{y} \cdot z + \bar{w} \cdot \bar{x} \cdot y \cdot \bar{z} + \bar{w} \cdot \bar{x} \cdot \bar{y} \cdot z$
 - c) $w \cdot x \cdot y \cdot z + w \cdot x \cdot y \cdot \bar{z} + w \cdot x \cdot \bar{y} \cdot z + w \cdot \bar{x} \cdot \bar{y} \cdot z + w \cdot \bar{x} \cdot \bar{y} \cdot \bar{z} + \overline{w} \cdot x \cdot \bar{y} \cdot z + \overline{w} \cdot \bar{x} \cdot \bar{y} \cdot z + \overline{w} \cdot \bar{x} \cdot \bar{y} \cdot z$
 - d) $w \cdot x \cdot y \cdot z + w \cdot x \cdot y \cdot \bar{z} + w \cdot x \cdot \bar{y} \cdot z + w \cdot \bar{x} \cdot y \cdot z + w \cdot \bar{x} \cdot y \cdot \bar{z} + \overline{w} \cdot x \cdot y \cdot z + \overline{w} \cdot \bar{x} \cdot y \cdot z + \overline{w} \cdot \bar{x} \cdot y \cdot z + \overline{w} \cdot \bar{x} \cdot \bar{y} \cdot z$

答案:

(a)

	yz	уZ	ÿΞ	ÿΖ
WX		1		U
WX	1			
₩¤		1		
₩×				

(b)

19. 给定布尔变元 $x_1, x_2, ..., x_n$ 的一组输入值,阈值门产生输出y,其中y为 0 或 1。每个阈值门都有一个**阈值** T 以及一组权 $\omega_1, \omega_2, ..., \omega_n$,其中 T 和 $\omega_1, \omega_2, ..., \omega_n$ 都是实数。阈值们的输出y是 1 当且仅当 $\omega_1 x_1 + \omega_2 x_2 + ... + \omega_n x_n \ge T$ 。具有阈值 T 和权 $\omega_1, \omega_2, ..., \omega_n$ 的阈值门如下入所示:

阈值门表示了一个布尔函数。试找出由下面阈值门表示的布尔函数的布尔表达式。

答案: $x_3 + x_2 \cdot \overline{x_1}$

20. 在 n 个输入变量上可以定义多少个逻辑函数?

答案: 2^{2^n}