Задание 3. Модели числовых структур

1. Пусть \mathbb{N} — наименьшее по включению индуктивное множество, $x < y \leftrightarrow x \in y$, + — единственная бинарная операция на \mathbb{N} такая, что x + 0 = x и x + y' = (x + y)', \cdot — единственная бинарная операция на \mathbb{N} такая, что $x \cdot 0 = 0$ и $x \cdot y' = x \cdot y + x$.

Докажите, что: $+, \cdot$ ассоциативны и коммутативны; \cdot дистрибутивна относительно $+, \cdot; 0, 1$ нейтральны относительно $+, \cdot; 0 < 1 < 2 < \cdots$ и между соседями нет других элементов.

2. Пусть $\mathbb{Z} := (\mathbb{N} \times \mathbb{N})/_{\sim}$, где $(a,b) \sim (c,d) \leftrightarrow a+d = b+c$, $[a,b] \tilde{+} [c,d] := [a+c,b+d]$, $[a,b] \tilde{\cdot} [c,d] := [ac+bd,ad+bc]$, $[a,b] \tilde{\leq} [c,d] \leftrightarrow a+d \leq b+c$, $\tilde{0} := [0,0]$, $\tilde{1} := [1,0]$.

Докажите, что: \sim — эквивалентность на \mathbb{Z} ; определения $\tilde{+}, \tilde{\cdot}, \tilde{\leq}$ корректны; $(\mathbb{Z}; \tilde{+}, \tilde{\cdot}, \tilde{\leq}, \tilde{0}, \tilde{1})$ есть упорядоченное кольцо, любой элемент которого является разностью двух натуральных чисел.

3. Пусть $\mathbb{Q} := (\mathbb{Z} \times \mathbb{N} \setminus \{0\}) /_{\sim}$, где $(a,b) \sim (c,d) \leftrightarrow ad = bc$, [a,b] + [c,d] := [ad + bc,bd], [a,b] + [c,d] := [ac,bd], $[a,b] + [c,d] \leftrightarrow ad \leq bc$, 0 := [0,1], 1 := [1,1].

Докажите, что: \sim — эквивалентность на \mathbb{Q} ; определения $\tilde{+}, \tilde{\cdot}, \tilde{\leq}$ корректны; $(\mathbb{Q}; \tilde{+}, \tilde{\cdot}, \tilde{\leq}, \tilde{0}, \tilde{1})$ есть упорядоченное поле (т.е. упорядоченное кольцо, в котором $\forall x \neq 0 \exists y (x \cdot y = 1)$) такое, что любой элемент является отношнием целого числа и положительного целого числа.

4. Пусть $\mathbb{R}:=S/_{\sim}$, где S — множество всех последовательностей Коши $\{q_i\}$ рациональных чисел (т.е. $\forall n\exists m \forall i,j>m(|q_i-q_j|<2^{-n})), \, \{q_i\}\sim \{r_i\}\leftrightarrow \lim_i(q_i-r_i)=0, \, [\{q_i\}]\tilde{+}[\{r_i\}]:=[\{q_i+r_i\}], \, [\{q_i\}]\tilde{\cdot}[\{r_i\}]:=[\{q_i\cdot r_i\}], \, [\{q_i\}]\tilde{\cdot}[\{r_i\}]\leftrightarrow \exists n,m\forall i>m(q_i-r_i<-2^{-n}), \, \tilde{0}:=[0,0,\ldots], \, \tilde{1}:=[1,1,\ldots].$

Докажите, что: \sim — эквивалентность на S; определения $\tilde{+}, \tilde{\cdot}, \tilde{<}$ корректны; $(\mathbb{R}; \tilde{+}, \tilde{\cdot}, \tilde{\leq}, \tilde{0}, \tilde{1})$ есть упорядоченное поле, в котором любое непустое ограниченное сверху множество имеет супремум.

5. Пусть $\mathbb{C} := \mathbb{R} \times \mathbb{R}$, $(x,y)\tilde{+}(x_1,y_1) := (x+x_1,y+y_1)$, $(x,y)\tilde{\cdot}(x_1,y_1) := (xx_1-yy_1,xy_1+yx_1)$, $\tilde{0} := (0,0)$, $\tilde{1} := (1,0)$, $\tilde{i} := (0,1)$.

Докажите, что $(\mathbb{C}; \tilde{+}, \tilde{\cdot}, \tilde{0}, \tilde{1})$ есть поле, являющееся наименьшим расширением поля вещественных чисел (точнее, "копии" $\mathbb{R} := \{(x,0) \mid x \in \mathbb{R}\}$ этого поля "внутри" \mathbb{C}), в котором уравнение $z^2 = -1$ имеет решение.