

Pacific geoduck Panopea generosa

- Large and long lived infauna clam
 - longest recorded as 168 years of age

- Native range from Alaska Baja, California
 - intertidal to 100+ m depth

 Cultural and economic importance for tribal and local communities of PNW

Sustainable production

Geoduck aquaculture

- Prevents overexploitation of wild populations
- Satisfy growing demand in recent decades for international trade

- approx. 90% global geoduck produced from WA state
 - annual revenue > 24 million USD year-1
 - \$14 pound⁻¹ (as of 2015)

Sustainable production

HATCHERY

- Broodstock spawned
- Reared for approx. 4-5 months

Grown on mudflat for 2-3 years
 until adults are harvested

Bottleneck of hatchery rearing

- Early-life stage bivalves are highly susceptible to stress
- Biotic and abiotic challenges limit hatchery production:
 - pathogens
- harmful algae

- diet

- temperature
- pH / Ωarag.
- salinity

Threat to aquaculture

- records of **pH-induced mass mortality** at shellfish hatcheries (Barton et al. 2012)

Undisputed **sub-lethal effects** important for commercial production:

- metabolism
- shell growth
- development

How can we enhance resilience and increase hatchery production?

What is "stress conditioning"?

Priming organisms with sub-lethal exposure to increase stress-resilience and performance under a **subsequent encounter**

Level of stress exposure

Response model under initial exposure...

Level of stress exposure

Negative linear or threshold response

Response model under <u>initial exposure</u>...

Positive effect on performance

Negative linear or threshold response

Level of stress exposure

Response model under **subsequent exposure**...

"Hormetic priming"
prior stress exposure
increases performance
under a <u>subsequent</u>
encounter

Level of stress exposure

Is hormetic priming a viable enhancement strategy for aquaculture?

Level of stress exposure

<u>Intragenerational exposure</u> – targets stress-acclimation **within** a generation

- a.) Acute
- b). Long-term

<u>Intragenerational exposure</u> – targets stress-acclimation **within** a generation

- a.) Acute relatively simple to integrate in hatchery practice; coastal/estuarine dynamics
- b). Long-term costly and labor intensive; seasonal or future acidification scenarios

<u>Intragenerational exposure</u> – targets stress-acclimation within a generation

a.) Acute – relatively simple to integrate in hatchery practice; coastal/estuarine dynamics

- Shell growth
- Acid-base status / ion regulation
- Development & morphology
- Ingestion rate
- Regulation of gene expression

<u>Intragenerational exposure</u> – targets stress-acclimation within a generation

a.) Acute – relatively simple to integrate in hatchery practice; coastal/estuarine dynamics

- Cellular respiration
- Shell growth
- Acid-base status / ion regulation
- Development & morphology
- Ingestion rate
- Regulation of gene expression

Responses particularly relevant for commercial production

Stress conditioning in a commercial hatchery

Q1: How do juvenile geoduck respond metabolically under repeated exposure to acidification?

Q2: How is shell growth affected by repeated encounters?

Animal collection and exposure treatments

• Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Animal collection and exposure treatments

Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Experimental approach

8 heath trays (n = 30 geoduck per tray)

Target treatments

V.

Ambient pCO₂ pCO₂ Hq Ω aragonite

Elevated pCO₂

pCO₂ = 2400 Hq = 7.3 Ω aragonite = 0.4

500 L conicals

Elevated

Ambient

Constants:

Total alkalinity: approx. 2050 µmol kg⁻¹ Diet: 5×10⁷ live algae cells d⁻¹ ind⁻¹

Temperature:15.4 ± 1.1°C Salinity: 28.9 ± 0.2 psu Flow rate: 480 mL min-1

Animal collection and exposure treatments

Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Experimental approach

8 heath trays (n = 30 geoduck per tray)

Target treatments

V.

Ambient	pC	CO 2
pCO ₂	=	570
рН	=	7.9
Ω aragonite	=	1.4

Elevated pCO₂

 pCO_2 = **2400** pH = 7.3 Ω aragonite = 0.4

Animals in an isolated dish for physiological assessment

Constants:

Total alkalinity: approx. 2050 µmol kg⁻¹ Diet: 5×10⁷ live algae cells d⁻¹ ind⁻¹

Temperature:15.4 ± 1.1°C Salinity: 28.9 ± 0.2 psu Flow rate: 480 mL min⁻¹

- Initial exposure (10 days)
 n = 4 trays treatment⁻¹
- Ambient common garden
- Secondary exposure (6 days)
 n = 2 trays treatment⁻¹

Ambient pCO₂

pH = 7.9

Elevated pCO₂

pH = 7.3

- n = 4 trays treatment⁻¹
- Ambient common garden
 - Secondary exposure (6 days)
 n = 2 trays treatment⁻¹

Ambient pCO₂

pH = 7.9

Elevated pCO₂

pH = 7.3

- Initial exposure (10 days) n = 4 trays treatment⁻¹
- Ambient common garden
- Secondary exposure (6 days)
 n = 2 trays treatment⁻¹
 (initial × secondary)

Ambient pCO₂

pH = 7.9

Elevated pCO₂

pH = 7.3

Physiology

- Geoduck removed periodically during exposure to measure:
- Metabolic rate: μg hr⁻¹ mm⁻¹
- Shell growth: mm length

Physiology

- Geoduck removed periodically during exposure to measure:
- Metabolic rate: μg hr⁻¹ mm⁻¹
- Shell growth: mm length

Statistical approach

		DF	Sum Sq	Mean Sq	F value	p-value
Initial exposure	Two-way ANOVA					
Respiration rate	time	1	0.03229	0.011	0.822	0.485
respanden rate	p CO ₂	3	0.09834	0.098	7.512	0.007
	$p CO_2 \times time$	3	0.04753	0.016	1.120	0.311

Metabolic rate:

		DF	Sum Sq	Mean Sq	F value	p-value
Initial exposure	Two-way ANOVA					
Respiration rate	time	1	0.03229	0.011	0.822	0.485
•	p CO ₂	3	0.09834	0.098	7.512	0.007
	$p CO_2 \times time$	3	0.04753	0.016	1.120	0.311

Metabolic rate:

 25% reduction in respiration rate under elevated pCO₂

		DF	Sum Sq	Mean Sq	F value	p-value
Initial exposure	Two-way ANOVA					
Respiration rate	time	1	0.03229	0.011	0.822	0.485
	p CO ₂	3	0.09834	0.098	7.512	0.007
	$p CO_2 \times time$	3	0.04753	0.016	1.120	0.311

Metabolic rate:

25% reduction in respiration rate

under elevate

INITIAL EXPOSURE: METABOLIC RATE

Suppressed metabolic state under a short-term period (10 days)

Growth:

No response under to elevated pCO₂

		DF	Sum Sq	Mean Sq	F value	p-value
Initial exposure	Two-way ANOVA					
Shell length	time	3	4.250	1.415	3.392	0.018
	$p \mathrm{CO}_2$	1	0.000	0.000	0.001	0.973
	$p \text{ CO}_2 \times \text{time}$	3	0.170	0.058	0.138	0.937

		DF	Sum Sq	Mean Sq	F value	p-value
Initial exposure	Two-way ANOVA					
Shell length	time	3	4.250	1.415	3.392	0.018
	$p \mathrm{CO}_2$	1	0.000	0.000	0.001	0.973
	$p CO_2 \times time$	3	0.170	0.058	0.138	0.937

Growth:

No response under to elevated pCO₂

INITIAL EXPOSURE: SHELL GROWTH

No observed effect of short-term metabolic suppression on shell growth (10 days)

INITIAL EXPOSURE

INITIAL EXPOSURE

Pacific geoduck under short-term acidification

- Suppressed metabolic activity
- Shell growth not affected

		DF	t	p-value
	Welch Two Sample t-test			
Respiration rate	$p CO_2$	19.833	2.673	0.015

Metabolic rate:

 Continued metabolic suppression prior to exposure

Metabolic rate:

 No effect of treatment, metabolic <u>recovery</u> under subsequent encounter

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Respiration rate	time	2	0.072	0.036	3.267	0.045
	p CO _{2 initial}	1	0.017	0.017	1.554	0.217
	p CO _{2 secondary}	1	0.037	0.037	3.339	0.073
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.027	0.027	2.435	0.124
	p CO _{2 initial} × time	2	0.019	0.009	0.850	0.433
	$p CO_{2 \text{ secondary}} \times \text{time}$	2	0.004	0.002	0.199	0.820
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}} \times \operatorname{time}$	2	0.040	0.020	1.842	0.167

Metabolic rate:

 No effect of treatment, metabolic <u>recovery</u> under subsequent encounter

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Respiration rate	time	2	0.072	0.036	3.267	0.045
	p CO _{2 initial}	1	0.017	0.017	1.554	0.217
	p CO _{2 secondary}	1	0.037	0.037	3.339	0.073
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.027	0.027	2.435	0.124
	p CO _{2 initial} × time	2	0.019	0.009	0.850	0.433
	$p \operatorname{CO}_{2 \text{ secondary}} \times \operatorname{time}$	2	0.004	0.002	0.199	0.820
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}} \times \text{time}$	2	0.040	0.020	1.842	0.167

Metabolic rate:

No effect of treametabolic rec

SECONDARY EXPOSURE: METABOLIC RATE

Elevated pCO2 did not affect respiration rate

Potential for metabolic recovery

Mean 5q	1 value	p-value
0.036	3.267	0.045
0.017	1.554	0.217
0.037	3.339	0.073
0.027	2.435	0.124
0.009	0.850	0.433
0.002	0.199	0.820
0.020	1.842	0.167

		DF	t	p-value
	Welch Two Sample t-test			
Shell length	$p CO_2$	1.146	236.680	0.253

Growth:

No treatment effect prior to exposure

Growth:

Initial and secondary treatment effects

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Shell length	time	2	0.190	0.095	0.152	0.859
	p CO _{2 initial}	1	9.910	9.910	15.821	< 0.001
	p CO _{2 secondary}	1	6.210	6.212	9.917	0.002
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.060	0.063	0.100	0.752
	$p CO_{2 initial} \times time$	2	0.000	0.001	0.002	0.998
	$p \mathrm{CO}_{2 \mathrm{secondary}} imes \mathrm{time}$	2	0.460	0.231	0.368	0.692
	$p CO_{2 initial} \times p CO_{2 secondary} \times time$	2	0.100	0.048	0.076	0.927

Growth:

- Initial and secondary treatment effects
- <u>Initial treatment</u>:
 - 4.02% (mm length) smaller shells under elevated

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Shell length	time	2	0.190	0.095	0.152	0.859
	p CO _{2 initial}	1	9.910	9.910	15.821	< 0.001
	p CO _{2 secondary}	1	6.210	6.212	9.917	0.002
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.060	0.063	0.100	0.752
	$p CO_{2 initial} \times time$	2	0.000	0.001	0.002	0.998
	$p \operatorname{CO}_{2 \text{ secondary}} \times \operatorname{time}$	2	0.460	0.231	0.368	0.692
	$p CO_{2 \text{ initial}} \times p CO_{2 \text{ secondary}} \times \text{time}$	2	0.100	0.048	0.076	0.927

Growth:

- Initial and secondary treatment effects
- Second treatment:
 - 3.20% (mm length) smaller shells under elevated

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Shell length	time	2	0.190	0.095	0.152	0.859
	p CO _{2 initial}	1	9.910	9.910	15.821	< 0.001
	p CO _{2 secondary}	1	6.210	6.212	9.917	0.002
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.060	0.063	0.100	0.752
	$p CO_{2 initial} \times time$	2	0.000	0.001	0.002	0.998
	$p \operatorname{CO}_{2 \text{ secondary}} \times \operatorname{time}$	2	0.460	0.231	0.368	0.692
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}} \times \text{time}$	2	0.100	0.048	0.076	0.927

Growth:

- Initial and secondary treatment effects
- Second treatment:
 - 3.20% (mm length) smaller shells under elevated

		DF	Sum Sq	Mean Sq	F value	p-value
Secondary exposure	Three-way ANOVA					
Shell length	time	2	0.190	0.095	0.152	0.859
	p CO _{2 initial}	1	9.910	9.910	15.821	< 0.001
	p CO _{2 secondary}	1	6.210	6.212	9.917	0.002
	$p CO_{2 initial} \times p CO_{2 secondary}$	1	0.060	0.063	0.100	0.752
	$p CO_{2 initial} \times time$	2	0.000	0.001	0.002	0.998
	$p \mathrm{CO}_{2 \mathrm{secondary}} imes \mathrm{time}$	2	0.460	0.231	0.368	0.692
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}} \times \text{time}$	2	0.100	0.048	0.076	0.927

Growth:

Initial and secondary treatment offects

Second treat 3.20% (mm k

SECONDARY EXPOSURE: SHELL GROWTH

Shell growth negatively affected by elevated pCO2

- carry over from initial exposure
- potential age or treatment effect

Secondary exposure

time

p CO_{2 initial}

p CO_{2 secondary}

p CO_{2 initial} × time

Shell length

14 days in ambient

0.190

9.910

6.210

0.060

0.000

DF

Three-way ANOVA

p CO_{2 initial} × p CO_{2 secondary}

Secondary

0.152

15.821

9.917

0.100

0.002

0.368

0.076

0.859

< 0.001

0.002

0.752

0.998

0.692

0.927

Sum Sq Mean Sq F value

0.095

9.910

6.212

0.063

0.001

0.231

0.048

Conclusions

Metabolic resilience

- Suppressed metabolic state
 under initial exposure to elevated pCO₂
- Metabolic recovery under subsequent exposure to elevated pCO₂

Negative impact on shell growth

 Slowed shell growth under repeated short-term exposure elevated pCO₂

Conclusions

Metabolic resilience

- Suppressed metabolic state
 under initial exposure to elevated pCO₂
- Metabolic recovery
 under subsequent exposure to elevated pCO₂

Negative impact on shell growth

• Slowed shell growth under repeated short-term exposure elevated *p*CO₂

Take-home message for Pacific geoduck production..

- (1) Metabolic trends demonstrate <u>potential recovery</u> and compensatory response under <u>repeated</u> exposure
- (2) Growth responses demonstrate susceptibility to acidification:
 - impeded growth can carry over from prior stress
 - potential age dependence and sensitivity to stress intensity

Future research

- Need a holistic baseline response under acidification to determine life stages critical for environmental priming
- What are costs and drivers of metabolic alterations (i.e. suppression/recovery) under long-term acidification?
- Can parental conditioning enhance reproductive performance and offspring fitness?

Use complex network of stress responses

Genetics

Acknowledgements

Hollie Putnam, PhD (PI) Emma Strand Maddie Sherman

Steven Roberts, PhD (PI)
Brent Vadopalas, PhD (PI)
Kaitlyn Mitchell

Kurt Grinnell
Matt Henderson
Josh Valley
Clara Duncan
Jim Parsons, PhD

