Modeling brain function The world of attractor neural networks

DANIEL J. AMIT

Racah Institute of Physics

SFB 185 Nichtlineare Dynamik

Cambridge University Press

Cambridge

New York Port Chester Melbourne

Sydney

Contents

P	Preface				
1	Inti	oduct	ion	1	
	1.1	Philos	sophy and Methodology	. 1	
		1.1.1	Reduction to physics and physics modeling		
			analogues	. 1	
		1.1.2	Methods for mind and matter		
		1.1.3	Some methodological questions	. 5	
	1.2	Neuro	physiological Background		
		1.2.1	Building blocks for neural networks		
		1.2.2	Dynamics of neurons and synapses	. 12	
		1.2.3	More complicated building blocks	. 15	
		1.2.4	From biology to information processing	. 17	
	1.3	Mode	ling Simplified Neurophysiological Information	. 18	
		1.3.1	Neuron as perceptron and formal neuron	. 18	
		1.3.2	Digression on formal neurons and perceptrons	. 20	
		1.3.3	Beyond the basic perceptron	. 25	
		1.3.4	Building blocks for attractor neural networks		
			(ANN)	. 27	
	1.4	The N	Network and the World	. 31	
		1.4.1	Neural states, network states and state space	. 31	
		1.4.2	Digression on the relation between measures	. 33	
		1.4.3	Representations on network states	. 35	
		1.4.4	Thinking about output mechanism	. 38	
	1.5	Spont	aneous Computation vs. Cognitive Processing	. 44	
		1.5.1	Input systems, transducers, transformers		
		1.5.2	ANN's as computing elements — a position	. 45	

		1.5.3	ANN's and computation of mental	48
	Bibli	ograph	representations	40 53
		0 1 .		
2			Attractor Neural Network	58
	2.1		rks of Analog, Discrete, Noisy Neurons	58
		2.1.1	Analog neurons, spike rates, two-state neural	
			models	58
		2.1.2	Binary representation of single neuron activity .	63
		2.1.3	Noisy dynamics of discrete two-state neurons	65
	2.2		nical Evolution of Network States	68
		2.2.1	Network dynamics of discrete-neurons	68
		2.2.2	Synchronous dynamics	70
		2.2.3	Asynchronous dynamics	72
		2.2.4	Sample trajectories and lessons about dynamics .	74
		2.2.5	Types of trajectories and possible interpretation	
			- a summary	79
	2.3	On At	tractors	81
		2.3.1	The landscape metaphor	81
		2.3.2	Perception, recognition and recall	84
		2.3.3	Perception errors due to spurious states –	
			possible role of noise	85
		2.3.4	Psychiatric speculations and images	87
		2.3.5	The role of noise and simulated annealing	89
		2.3.6	Frustration and diversity of attractors	91
	Bibli	iograph	v	95
3	Gen	eral Id	leas Concerning Dynamics	97
	3.1		tochastic Process, Ergodicity and Beyond	97
	0.1	3.1.1	Stochastic equation and apparent ergodicity	97
		3.1.2	Two ways of evading ergodicity	101
	3.2		rativity as an Emergent Property in Magnetic	101
	0.2	_	Z	105
		3.2.1	Ising model for a magnet – spin, field and	100
		J.4.1	interaction	105
		3.2.2	Dynamics and equilibrium properties	
		3.2.3	Noiseless, short range ferromagnet	
		3.2.3	Fully connected Ising model: real non-ergodicity	112
		11.4.4	THEY CONSCIENT ISSUE BROUGH, ICAL HOUSELED CHORV	11.9

Contents vii

	3.3	From	Dynamics to Landscapes – The Free Energy	125
		3.3.1	Energy as Lyapunov function for noiseless	
			dynamics	125
		3.3.2	Parametrized attractor distributions with noise .	126
		3.3.3	Free-energy landscapes – a noisy Lyapunov	
			function	127
		3.3.4	Free-energy minima, non-ergodicity, order-	
			parameters	129
	3.4	Free-F	Energy of Fully Connected Ising Model	131
		3.4.1	From minimization equation to the free-energy .	131
		3.4.2	The analytic way to the free-energy	133
		3.4.3	Attractors at metastable states	140
	3.5	Synap	otic Symmetry and Landscapes	141
		3.5.1	Noiseless asynchronous dynamics – energy	141
		3.5.2	Detailed balance for noisy asynchronous	
			dynamics	142
		3.5.3	Noiseless synchronous dynamics – Lyapunov	
			function	143
		3.5.4	Detailed balance for noisy synchronous dynamics	145
	3.6	Apper	ndix: Technical Details for Stochastic Equations .	146
		3.6.1	The maximal eigen-value and the associated	
			vector	146
		3.6.2	Differential equation for mean magnetization	147
		3.6.3	The minimization of the dynamical free-energy .	150
		3.6.4	Legendre transform for the free-energy	152
	Bibl	iograpł	ıy	153
4	C		a Namel Naturally at Law Manager	
4	-	ding	c Neural Networks at Low Memory	155
	4.1	rations and List of Results	155	
	4.1	4.1.1	Simplifying assumptions and specific questions	155
		4.1.1	Specific answers for low loading of random	100
		4.1.2	memories	158
		4.1.3	Properties of the noiseless network	162
		4.1.4	Properties of the network in the presence of fast	102
		4.1.4	noise	166
	4.2	Evplid	cit Construction of Synaptic Efficacies	169
	7.4	4.2.1	Choice of memorized patterns	169
		4.2.1 $4.2.2$	Ct	170
		4.4.4	Storage prescription – "Hebb's rule"	TIO

viii Contents

		4.2.3	A decorrelating (but nonlocal) storage	
			prescription	172
	4.3	Stabil	ity Considerations at Low Storage	174
		4.3.1	Signal to noise analysis – memories, spurious	
			states	174
		4.3.2	Basins of attraction and retrieval times	178
		4.3.3	Neurophysiological interpretation	180
	4.4	Mean	Field Approach to Attractors	181
		4.4.1	Self-consistency and equations for attractors	181
		4.4.2	Self-averaging and the final equations	187
		4.4.3	Free-energy, extrema, stability	189
		4.4.4	Mean-field and free-energy – synchronous	
			dynamics	
	4.5	Retrie	eval States, Spurious States – Noiseless	
		4.5.1	Perfect retrieval of memorized patterns	
		4.5.2	Noiseless, symmetric spurious memories	
		4.5.3	J I	
		4.5.4	Are spurious states a free lunch?	
	4.6	Role o	of Noise at Low Loading	
		4.6.1	Ergodicity at high noise levels - asynchronous	
		4.6.2		201
		4.6.3	Positive role of noise and retrieval with no fixed	
			points	
	4.7		ndix: Technical Details for Low Storage	
		4.7.1	Free-energy at finite p – asynchronous	208
		4.7.2	Free-energy and solutions – synchronous	
			dynamics	
		4.7.3	Bound on magnitude of overlaps	
		4.7.4	J 1	
	Bibl	iograpl	hy	213
5	Sto	rage a	nd Retrieval of Temporal Sequences	215
	5.1	Motiv	vations: Introspective, Biological, Philosophical	
		5.1.1	The introspective motivation	
		5.1.2		
		5.1.3	±	
	5.2		ng and Retrieving Temporal Sequences	
		5.2.1	Functional asymmetry	
		5.2.2	Early ideas for instant temporal sequences	221

Contents ix

	5.3	Temp	oral Sequences by Delayed Synapses	226
		5.3.1	A simple generalization and its motivation	226
		5.3.2	Dynamics with fast and slow synapses	229
		5.3.3	Simulation examples of sequence recall	231
		5.3.4	Adiabatically varying energy landscapes	235
		5.3.5	Bi-phasic oscillations and CPG's	238
	5.4	Tenta	tive Steps into Abstract Computation	239
		5.4.1	The attempt to reintroduce structured	
			operations	239
		5.4.2	ANN counting chimes	241
		5.4.3	Counting network – an exercise in connectionist	
			programming	241
		5.4.4	The network	243
		5.4.5	Its dynamics	245
		5.4.6	Simulations	248
		5.4.7	Reflections on associated cognitive psychology	251
	5.5	Seque	nces Without Synaptic Delays	253
		5.5.1	Basic oscillator - origin of cognitive time scale	253
		5.5.2	Behavior in the absence of noise	255
		5.5.3	The role of noise	256
		5.5.4	Synaptic structure and underlying dynamics	259
		5.5.5	Network storing sequence with several patterns .	262
	5.6	Apper	ndix: Elaborate Temporal Sequences	262
		5.6.1	Temporal sequences by time averaged synaptic	
			inputs	262
		5.6.2	Temporal sequences without errors	266
	Bibl	iograph	ny	267
6	Stor	rage (Capacity of ANN's	271
•	6.1		ration and general considerations	271
	0.1	6.1.1	Different measures of storage capacity	271
		6.1.2	Storage capacity of human brains	273
		6.1.3	Intrinsic interest in high storage	275
		6.1.4	List of results	$\frac{275}{275}$
	6.2		tical Estimates of Storage	
	V-2	6.2.1	Statistical signal to noise analysis	
		6.2.2	Absolute informational bounds on storage	
		U.=.=	capacity	283
		6.2.3	Coupling (synaptic efficacies) for optimal storage	285
		J	compared the contraction of the contract protection	-00

	6.3	Theory	y Near Memory Saturation	289
		6.3.1	Mean-field equations with replica symmetry	289
		6.3.2	Retrieval in the absence of fast noise	294
		6.3.3	Analysis of the $T = 0$ equations	299
	6.4	Memo	ry Saturation with Noise and Fields	304
		6.4.1	A tour in the T - α phase diagram	
		6.4.2	Effect of external fields – thresholds and PSP's .	
		6.4.3	Fields coupled to several patterns	
		6.4.4	Some technical details related to phase diagrams	312
	6.5	Balanc	ce Sheet for Standard ANN	315
		6.5.1	Limiting framework and analytic consequences .	315
		6.5.2	Finite-size effects and basins of attraction:	
			simulations	318
	6.6	Beyon	d the Memory Blackout Catastrophe	324
		6.6.1	Bounded synapses and palimpsest memory	324
		6.6.2	The 7 ± 2 rule and palimpsest memories	
	6.7	Appen	dix: Replica Symmetric Theory	330
		6.7.1	The replica method	
		6.7.2	The free-energy and the mean-field equations	
		6.7.3	Marginal storage and palimpsests	339
	Bibl	iograph	y	342
7			ss - Getting Closer to Biology	345
	7.1		tic Noise and Synaptic Dilution	345
		7.1.1	Two meanings of robustness	
		7.1.2	Noise in synaptic efficacies	
		7.1.3		
	7.2		inear Synapses & Limited Analog Depth	
		7.2.1	Place and role of non-linear synapses	
		7.2.2	Properties of networks with clipped synapses	
		7.2.3	Non-linear storage and the noisy equivalent	
		7.2.4	Clipping at low storage level	
	7.3		om vs. Functional Synaptic Asymmetry	
		7.3.1	Random asymmetry and performance quality	
		7.3.2	Asymmetry, noise and spin-glass suppression	
		7.3.3	Neuronal specificity of synapses - Dale's law	
		7.3.4	Extreme asymmetric dilution	
		7.3.5	Functional asymmetry	375

Contents xi

	7.4	Effect	ive Cortical Cycle Times	375
		7.4.1	Slow bursts and relative refractory period	375
		7.4.2	Neuronal memory and expanded scenario	377
		7.4.3	Simplified scenario for relative refractory	
			period	378
	7.5	Apper	ndix: Technical Details	
		7.5.1	Digression - the mean-field equations	
		7.5.2	Dilution requirement	
	Bibl	iograpl	•	
8	Mei	mory]	Data Structures	387
_	8.1	-	gical and Computational Motivation	387
	0.1	8.1.1	Low mean activity level and background-	001
		0.1.1	foreground asymmetry	387
		8.1.2	Hierarchies for biology and for computation	
	8.2		Treatment of Low Activity Patterns	
	0.2	8.2.1	Demise of naive standard model	
		8.2.2	Modified ANN and a plague of spurious states	391
		8.2.3	Constrained dynamics – monitoring thresholds .	396
		8.2.4	Properties of the constrained biased network	398
		8.2.5	Quantity of information in an ANN with low	000
		0.2.0	activity	403
		8.2.6	More effective storage of low activity (sparse)	100
		0.2.0	patterns	405
	8.3	Hiera	rchical Data Structures in a Single Network	409
	0.0	8.3.1	Early proposals	409
		8.3.2	Explicit construction of hierarchy in a single	100
		0.0.2	ANN	410
		8.3.3	Properties of hierarchy in a single network	
		8.3.4	Prosopagnosia and learning class properties	
		8.3.5	Multy-ancestry with many generations	
	8.4		rchies in Multi-ANN: Generalization First	
	0.4	8.4.1	Organization of the data and the networks	
		8.4.2	Hierarchical dynamics	
		8.4.3	Hierarchy for image vector quantization	
	8.5		ndix: Technical Details for Biased Patterns	
	0.0	8.5.1	Noise estimates for biased patterns	
		8.5.2	Mean-field equations in noiseless biased network	
		8.5.3	Retrieval entropy in biased network	
		0.0.0	TOO DITO AND CHARLOD AND DISCOUNTED MANY TO THE TOO DITO.	747

xii Contents

	Bibl	8.5.4 iograph	Mean-square noise in low activity network	
0		0 1	•	
9	ьеа 9.1	rning	and and aff	428
	9.1		ontext of Learning	
		9.1.1	General comments and a limited scope	
		9.1.2	Modes, time scales and other constraints	
		9.1.3	The need for learning modes	
	0.0	9.1.4	Results for learning in learning modes	
	9.2		ng in Modes	
		9.2.1	Perceptron learning	
		9.2.2	ANN learning by perceptron algorithm	
		9.2.3	Local learning of the Kohonen synaptic matrix .	
	9.3		al Learning - Double Dynamics	
		9.3.1	General features	
		9.3.2	Learning in a network of physiological neurons .	
		9.3.3	Learning to form associations	
		9.3.4	Memory generation and maintenance	
	9.4	Techn	ical Details in Learning Models	455
		9.4.1	Local Iterative Construction of Projector Matrix	455
		9.4.2	The free energy and the correlation function	458
	Bibl	iograph	у	458
10			Implementations of Neural Networks	461
	10.1		ing Artificial Neural Networks	
			The role of hardware implementations	
			Motivations for different designs	
	10.2	The V	LSI Neural Network	465
		10.2.1	High density high speed integrated chip	465
		10.2.2	Smaller, more flexible electronic ANN's	469
	10.3	The E	lectro-Optical ANN	474
	10.4	Shift I	Register (CCD) Implementation	477
	Bibl	iograph	y	479
\mathbf{G}	lossa	ry		481
In	dex			487