Construct	Short Name	Scale Level	Range/ Values	Anchors	Distribution	Formulas/Parameter-Anchors
Distribution of prior knowledge in the group	GPK	continuous	[0, 1]	Für eine Realisation pk gilt: 0 = kein Vorwissen 1 = Absoluter Experte	truncnorm(n, a=0 b=1, mean = µ, sd = 1) wobei µ für das erwartete Vorwissen in der Gruppe steht und in der Simulation variiert wird	
A person's prior knowledge regarding the estimation task	PK	continuous	[0,1]	0 = kein Vorwissen 1 = Absoluter Experte	Keine Verteilung	
Individual Distribution of independent First Estimates of a quantity	IFE	continuous (da eine quantity geschätzt wird)	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	IFE ~ Lognormal(μ , σ) μ = ln(T) - σ^2 /2 Für PK = 0 ist σ = 1 und für PK = 1 ist σ = 0.05 σ = -0,95 * PK + 1	Orientierung an Jayles für PK = 0 und aufgrund fehlender Literatur haben wir für uns plausible Werte bei PK = 1 angenommen Lognormalverteilung (siehe Madirolas, Jayles)
Distribution of independent First Estimates in the Group	GFE	continuous (da eine quantity geschätzt wird)	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Calculated via first estimates	
Social Information a person receives	SI	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Keine Verteilung	mean of n -1 first estimates, where i is the index of the person receiving the social information

Individual Distribution of revised second estimate of a quantity	ISE	continuous	(0, +Inf)	Keine Anker, weil numerische Schätzung	truncnorm(n, a=0, mean = µ, sd = 1)	IFE realisiert sich für eine Person in ife μ = WOA * SI + (1 - WOA) * ife (aus Jayles, Madirolas)
Distribution of Second Estimates in the Group	GSE	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Calculated via first estimates	
Weight of Advice	WOA	continuous	[0,1]	0 = Bleiben bei erster Schätzung 1 = Übernehmen der sozialen Information	Keine Verteilung	WOA ist abhängig von advice quality: AQ Low: WOA = 0,32 AQ Neutral: WOA = 0,37 AQ High: WOA = 0,48
Advice Quality	AQ	ordinal	low, neutral, high	Keine Anker, kann willkürlich manipuliert werden	Keine Verteilung	wird vorgegeben
True Value	Т	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Keine Verteilung	
Collective Accuracy	ACC	continuous	(0, +Inf)	0 = Maximale Accuracy, alle Estimates stimmen mit T überein	Keine Verteilung	mean(abs(c(D1, D2, D3,))) D = T - FE or T - SE