

Vorhersage des Verschleißes von Fräswerkzeugen durch RNNs

Abschlusspräsentation – Team 4

Teamvorstellung

Tom

Körner

Christian

Weimann

Hannah

Krippner

Agenda

- 1. Motivation
- 2. Aufgabenstellung
- 3. Ergebnisse
 - A0: Umgang mit fehlenden Daten
 - A1: Prozessfenster ermitteln
 - A2: Datenvorverarbeitung und Datenaufteilung
 - A3: Merkmalsgenerierung
 - A4: Merkmalsauswahl
 - A5: Dimensionsreduktion
 - A6: Überwachung des Werkzeugzustands
 - A7: RNN
- 4. Ausblick

Motivation

Vorhersage des Verschleißes von Fräswerkzeugen durch RNNs

Qualitätseinbußen durch fortschreitenden

Werkzeugverschleiß

- Erhöhung der Rauheit [4.1]
- Verstärkte Gratbildung
- Nichteinhaltung von Toleranzen [4.2]
- Beeinflussung der Werkstoffeigenschaften [4.3]
- → Werkzeuge werden frühzeitig und vorsorglich ausgetauscht
- → höhere Rüst- und Standzeiten [4.4]
- **→** Einsatz von Vorhersagemodellen

Aufgabenstellung

Vorhersage des Verschleißes von Fräswerkzeugen durch RNNs

Gegeben: NASA Milling Datensatz

- Aufbereitung des Datensatzes
- Überwachung des Werkzeugzustands
- Vorhersage des Werkzeugverschleißes auf Basis des bisherigen und des aktuellen Verschleißzustandes

Aufgabenstellung

Vorhersage des Verschleißes von Fräswerkzeugen durch RNNs

Aufgabenstellung

Vorhersage des Verschleißes von Fräswerkzeugen durch RNNs

NASA Milling Datensatz

- Aufzeichnung von
 - AC-/ und DC-Spindelmotorströmen
 - Schallemissionen
 - Vibrationen an Tisch und Spindel
- → 5 verschiedenen Sensordaten mit 9000 Datenpunkten

A0: Umgang mit fehlenden Daten

A0: Umgang mit fehlenden Daten

Aufbereitung des Datensatzes

MICE-Verfahren

Interpolation

A0: Umgang mit fehlenden Daten

Aufbereitung des Datensatzes

Entscheidung: MICE-Verfahren

A1: Prozessfenster ermitteln

A1: Prozessfenster ermitteln

A2: Datenvorverarbeitung & Datenaufteilung

Vorbereiten des Datensatzes

A3: Merkmalsgenerierung

A4 & A5: Feature Selection & Dimensionsreduktion

Aufbereitung des Datensatzes

Institut für Produktions te chnik

A4 & A5: Feature Selection & Dimensionsreduktion

Aufbereitung des Datensatzes

[21.1]

A6:Überwachung des Werkzeugzustandes

Definition der Methoden aus A4 & A5 Erstellung von Dictionaries für die Encodings MLPClassifier() Berechnung der Modelle SVC() GaussianNB() RandomForestClassifier() GridSearch für Hyperparameter nothing standard scaler PCA correlation minmax Finale Vorhersage mit Hyperparameter Classification Metrics precision_macro recall_macro f1_score accuracy

A7: RNN

A6: Überwachung des Werkzeugzustandes

A6: Überwachung des Werkzeugzustandes

Recall		Nothing	Correlation	Standard scaler	MinMax	PCA
	SVC	0.51	0.83	0.80	0.80	0.58
-03	GaussianNB	0.85	0.84	0.84	0.84	0.59
\ \ \ \ \ \	RandomForestClassifier	0.84	0.77	0.83	0.82	0.58
	MLPClassifier	0.78	0.76	0.81	0.83	0.59
	SVC	0.5	0.52	0.59	0.59	0.5
-05	GaussianNB	0.80	0.61	0.82	0.82	0.48
VB,	RandomForestClassifier	0.67	0.66	0.67	0.67	0.5
	MLPClassifier	0.63	0.5	0.59	0.75	0.5

Bestes Modell: GaussianNB

Definition der Methoden aus A4 & A5 A6: Überwachung des Werkzeugzustandes Erstellung von Dictionaries für die Encodings Berechnung der Modelle SVC() GaussianNB() RandomForesto GridSearch für Hyperparameter nothing standard s correlation Finale Vorhersage mit Hyperparameter Classification Metrics precision_macro accuracy Feature Selection 10 Features aus der Feature Selection A7: RNN Datenvorverarbeitung Optuna Hyperparameter Optimierung LSTM-Architektur mit optimierten Hyperparametern

rec

A7: Verschleißvorhersage mit RNN

Datenvorverarbeitung

- Aufteilung (70% Training, 20% Test, 10% Validierung)
- Normalisierung $z = \frac{x \mu}{std}$
- Datenfenster f
 ür Training und Plot

Dichteverteilungen der ausgewählten Features

Recurrent Neural Network (RNN) [26.1]

Parameter für Erstellung eines Datenfensters [26.2]

A7: Verschließvorhersage mit RNN

RNN mit Hyperparameter Optimierung

- Automatisierte Optimierung mit Optuna (ML-basierte Algorithmen) [27.1]
- Minimiere Validation Loss mit Parameterwerten für 15 Versuche

Parameter	Wertebereich	Beschreibung	
dropout_perc (float)	0.0 bis 0.4 in 0.1 steps	Prozentualer Anteil des Dropouts	
n_neurons (categorical)	[4, 8, 16]	Anzahl der Neuronen in der ersten Schicht	
secondLayer (categorical)	[0, 1]	Mit einer zweiten Schicht mit 2*n_neurons Neuronen	
activations (categorical)	["relu", "tanh"]	Aktivierungsfunktionen für zwei Schichten	

Hyperparameter und deren Wertebereich

Bedeutung von Hyperparameter für Modellperformance

Entscheidung: RNN mit optimierten Hyperparametern

A7: Verschleißvorhersage mit RNN

Ergebnisse RNN

Loss-Plot: kein Overfitting

- kurzfristig = Abweichungen
- mittelfristig = sehr gute Genauigkeit

Verlustkurven vom Training und Validation

Best trial: 14

Value: 0.22475197911262512

Params:

Dropout: 0.2

Neuronenanzahl: 16 Zweite Schicht: 1 Aktivierung: tanh

Optimale Hyperparameter des RNNs

Vergleich Modellvorhersagen und Labeln

Ausblick

Vielen Dank für eure Aufmerksamkeit! Fragen?

Literaturverzeichnis

[4.1]	F. Akhavan Niaki and L. Mears, "A comprehensive study on the effects of tool wear on surface roughness, dimensional integrity and residual stress in turning IN718 hard-tomachine alloy," <i>J Manuf Process</i> , vol. 30, pp. 268–280, Dec. 2017, doi: 10.1016/j.jmapro.2017.09.016
[4.2]	M. J. Njuguna, D. Gao, and Z. Hao, "Tool Wear, Surface Integrity and Dimensional Accuracy in Turning Al2124SiCp (45%wt) Metal Matrix Composite using CBN and PCD Tools," Research Journal of Applied Sciences, Engineering and Technology, vol. 6, no. 22, pp. 4138–4144, Dec. 2013, doi: 10.19026/rjaset.6.3523
[4.3]	X. Liang, Z. Liu, and B. Wang, "State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review," <i>Measurement</i> , vol. 132, pp. 150–181, Jan. 2019, doi: 10.1016/j.measurement.2018.09.045
[4.4]	R. K. Mobley, "Predictive Maintenance Techniques," in An Introduction to Predictive Maintenance, Elsevier, 2002, pp. 99–113. doi: 10.1016/B978-075067531-4/50006-3
[4.5]	Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions SAMEER SAYYAD 1, SATISH KUMAR 2, ARUNKUMAR BONGALE 1, POOJA KAMAT 1, SHRUTI PATIL 2, AND KETAN KOTECHA 2
[5.1]	https://machinetools-use1.s3.amazonaws.com/variants/61hUsgHpER8p4V4FW87aS61N/a82f7eeb84491c52d7fc0e4815dc399dbd6fed83508bbfc200fd579a38d31b25?response-content-disposition=inline%3B%20filename%3D%2220220217_124501.jpg%22%3B%20filename%2A%3DUTF-8%27%2720220217_124501.jpg&response-content-type=image%2Fjpeg&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVIOIALQ4WKV6J7Q%2F20230729%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230729T134721Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=7d746dab846aef43ca43aa4774a93213a7490d8a027604e03f5bf5a838bf081c
[16.1]	S. van Buuren, K. Groothuis-Oudshoorn, "Mice: Multivariate Imoutation by Chained Equations in R", 2011, doi: 10.18637/jss.v045.i03
[18.1]	J. Caiado, N. Crato, and D. Peña, "A periodogram-based metric for time series classification," Comput Stat Data Anal, vol. 50, no. 10, pp. 2668–2684, Jun. 2006, doi: 10.1016/j.csda.2005.04.012.
[18.2]	RD. Hilgers, N. Heussen, and S. Stanzel, "Standardfehler des Mittelwertes," 2019, pp. 2208–2209. doi: 10.1007/978-3-662-48986-4_2888.
[20.1]	P. Sedgwick, "Pearson's correlation coefficient", <i>BMJ</i> , Bd. 345, Nr. jul04 1, S. e4483–e4483, Juli 2012, doi: 10.1136/bmj.e4483.
[20.2]	Max Kuhn und Kjell Johnson, Applied Predictive Modeling, 2. (2018). Springer, 2013.
[20.3]	R. Tibshirani, "Regression shrinkage and selection via the lasso", JR Stat Soc Series B Stat Methodol, Bd. 58, Nr. 1, S. 267–288, 1996.

Literaturverzeichnis

[20.4]	M. Ringnér, "What is principal component analysis?", Nat Biotechnol, Bd. 26, Nr. 3, S. 303–304, März 2008, doi: 10.1038/nbt0308-303.
[21.1]	D. Wollschläger, Grundlagen der Datenanalyse mit R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-53670-4.
[21.2]	XGBRegressor(): https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
[21.3]	KernelRidge(): https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
[21.4]	SGDRegressor(): https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
[21.5]	LinearRegression(): https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
[23.1]	https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:SVM_margin.png
[23.2]	https://towardsdatascience.com/learning-by-implementing-gaussian-naive-bayes-3f0e3d2c01b2
[23.3]	https://www.ibm.com/topics/random-forest
[23.4]	https://scikit-learn.org/stable/modules/neural_networks_supervised.html
[23.5]	https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
[26.1]	https://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn/
[26.2]	https://www.tensorflow.org/tutorials/structured_data/time_series
[27.1]	https://arxiv.org/abs/1907.10902
[29.1]	https://towardsdatascience.com/how-to-make-a-pytorch-transformer-for-time-series-forecasting-69e073d4061e
[29.2]	https://medium.com/@get_excelsior/big-data-explained-the-5v-s-of-data-ae80cbe8ded1
[29.3]	https://www.moveworks.com/hubfs/34-MW-BLOG%20Adaptive%20Response-01-v3-invert%20%281%29.jpeg
[29.4]	Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023, June). Are transformers effective for time series forecasting? In <i>Proceedings of the AAAI conference on artificial intelligence</i> (Vol. 37, No. 9, pp. 11121-11128).
[29.5]	Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., & Xu, H. (2020). Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478.

