2017 ELMO #2

Tristan Shin

15 Nov 2017

Let ABC be a triangle with orthocenter H, and let M be the midpoint of \overline{BC} . Suppose that P and Q are distinct points on the circle with diameter \overline{AH} , different from A, such that M lies on line PQ. Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC$.

Let A' be the antipode of A in (ABC) and H' be the orthocenter of $\triangle APQ$. Reflecting A' over M gives H, but reflecting H over the midpoint of PQ gives H', so A' is on the line through H' parallel to PQ, hence $\angle A'H'A = 90^{\circ}$ and we're done.