Chapitre 2

Acidité et boisson

De nombreuses boissons sont acides, qu'elles soient naturelles comme le vinaigre, le vin, le Perrier* ou le jus de citron, ou qu'elles soient artificielles comme le Coca-Cola* ou la limonade. Comparée à l'acidité de l'estomac, cette acidité, même quand elle vaut moins de 3, reste modeste. On distingue toujours l'acidité volatile due essentiellement à CO_2 ou à SO_2 de l'acidité totale, qui considère tous les H+ libérables une fois que l'acidité volatile a été décomptée.

2.1 ACIDITÉ DU VINAIGRE

Prép.	Prés.	Compr.
1	2	1

On veut doser l'acide présent dans le vinaigre ; c'est principalement de l'acide éthanoïque formé par oxydation enzymatique de l'éthanol d'une boisson alcoolisée. Un vinaigre à 8° contient 8 % en masse d'acide éthanoïque, ce que nous allons vérifier par dosage.

Matériel et produits : erlen de 150 mL, pipette de 1 mL, burette, phénolphtaléine, vinaigre d'alcool, solution de soude 0,10 mol.L⁻¹.

Mode opératoire

\bullet On pipette exactement $v_a=1.0$ mL de vinaigre d'alcool ou de vin blanc que l'on introduit dans un erlen.

Signification

- Un vinaigre incolore ne masque pas le virage de l'indicateur coloré.
- On utilise un erlen quand on n'a pas besoin de tremper des électrodes; cette

^{*} Marque déposée.

- On ajoute quelques mL d'eau et quelques gouttes de phénolphtaléine.
- On dose avec de la soude de concentration $c_b = 0.10 \text{ mol.L}^{-1}$.

forme de verrerie limite les éclaboussures maladroites.

- On prélève très peu de vinaigre car c'est une solution assez concentrée d'acide éthanoïque.
- Cet indicateur vire à partir de pH 8,5, ce qui est approprié dans un dosage acide faible par base forte ; ici, le pH théorique à l'équivalence vaut 8.
- C'est une concentration adaptée à la quantité d'acide éthanoïque, voir calcul ci-dessous.

L'équation-bilan du dosage est :

$$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$$

CALCULS

Si v_{eq} est le volume de soude ajouté, exprimé en mL, la quantité d'ions hydroxyde ajoutée est $0.1.v_{eq}$ mmol ; cela correspond à l'acide éthanoïque dans 1 mL de vinaigre. Dans 1 L de vinaigre il y a $0.1.v_{eq}$ mol soit $0.1.v_{eq}$.60 = $6.v_{eq}$ gramme par litre (la masse molaire de l'acide éthanoïque est M=60 g.mol $^{-1}$ et sa densité d=1). Le degré indiqué sur l'étiquette est, par définition, en g (ou mL) pour 100 mL de vinaigre. On doit donc trouver :

degré indiqué =
$$0.1 \times v_{eq} \times c_b \times M/v_a$$

en exprimant les volumes en mL, la concentration en $mol.L^{-1}$ et la masse molaire en $g.mol^{-1}$.

VARIANTE

Si l'on suit l'évolution du pH pendant le dosage (pH-mètre), on peut en plus déterminer le pK_a (4,8) de l'acide contenu dans le vinaigre (éthanoïque). Il faut alors diluer au minimum pour que les électrodes trempent. La valeur du pH à la demi-équivalence est égale au pK_a seulement si la dilution initiale n'est pas trop importante¹.

^{1.} On comprend intuitivement que si la dilution initiale amène le pH initial au-dessus de 4,8, jamais le pH de la demi-équivalence ne pourra valoir 4,8.