Quantum Grothendieck ring isomorphisms for quantum affine algebras of type A and B

Hironori OYA

Université Paris Diderot, IMJ-PRG

Based on a joint work with David HERNANDEZ

Algebraic Lie Theory and Representation Theory 2018 Karuizawa, May 27, 2018

Motivation (1)

Topic : Finite dimensional representations of affine quantum groups

Question 1

Dimensions/q-characters of simple modules?

- ∃ Classification of simple modules [Chari-Pressley 1990's]
 "Highest weight theory"
- However, there are no known closed formulae of their dimensions and q-characters in general. (e.g. $\not\equiv$ analogue of Weyl-Kac character formulae...)

Question 2

Description of representation rings and their "deformations"?

 Some (deformed) representation rings are known to be described nicely as (quantum) cluster algebras...

Motivation (2)

Question 1

Dimensions/q-characters of simple modules?

- \underline{ADE} case \exists algorithm to compute them ! [Nakajima '04] "Kazhdan-Lusztig algorithm" The tool is t-deformed q-characters, and the geometric construction (via quiver varieties) of simple modules guarantees this algorithm.
- Arbitrary (untwisted) case [Hernandez '04]
 - ∃ t-deformed q-characters, defined algebraically
 (∄ geometry for non-symmetric cases)
 - Kazhdan-Lusztig algorithm gives conjectural q-characters of simple modules

However, they are still candidates in non-symmetric cases.

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?

– [Hernandez-Leclerc '10 –, Kang-Kashiwara-Kim-Oh '15, Oh-Suh '16] The category of finite dimensional modules of affine quantum groups has several interesting monoidal subcategories $(\mathcal{C}_{\mathbb{Z}},\,\mathcal{C}_{\mathbb{Z}}^-,\,\mathcal{C}_\ell,\,\ell\in\mathbb{Z},\,\mathcal{C}_\mathcal{Q}$ etc.), which are expected to be "monoidal categorifications" of cluster algebras (this fact is indeed proved in many cases).

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?

- X = ADE case Let
 - $K_t(\mathcal{C}_{\mathcal{Q},\mathbf{X}_n^{(1)}})$ the t-deformed Grothendieck ring (=quantum Grothendieck ring) of $\mathcal{C}_{\mathcal{Q},\mathbf{X}_n^{(1)}}$ for type $\mathbf{X}_n^{(1)}$
 - $\mathcal{A}_v[N_-^{\mathbf{X}_n}]$ the quantized coordinate algebra of the unipotent group of type \mathbf{X}_n (\exists quantum cluster algebra structure !) (Each terminology will be explained later.)

Theorem (Hernandez-Leclerc '15)

$$K_t(\mathcal{C}_{\mathcal{Q},\mathbf{X}_n^{(1)}}) \simeq \mathcal{A}_v[N_-^{\mathbf{X}_n}], \left\{egin{array}{l} (q,t)\text{-characters of} \\ \textit{simple modules} \end{array}
ight\} \leftrightarrow \textit{dual canonical basis}.$$

Does it also hold in non-symmetric cases?

In this talk, we consider the case of type $B_n^{(1)}$. Let $\mathcal{C}_{\mathcal{Q},B_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $B_n^{(1)}$.

Theorem (Hernandez-O.)

Remark

There are no known direct relations between the quantum affine algebras of type ${\bf B}_n^{(1)}$ and ${\bf A}_{2n-1}^{(1)}$ themselves !

In this talk, we consider the case of type $B_n^{(1)}$. Let $\mathcal{C}_{\mathcal{Q},B_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $B_n^{(1)}$.

Theorem (Hernandez-O.)

Kashiwara-Oh established an isomorphism between $K_{t=1}(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$ and $\mathbb{C}[N_-^{\mathbf{A}_{2n-1}}]$ by a different method. Combining this result with our theorem above, we obtain the following :

Let $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathrm{B}_n^{(1)}$.

Theorem (Hernandez-O.)

Kashiwara-Oh established an isomorphism between $K_{t=1}(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$ and $\mathbb{C}[N_-^{\mathbf{A}_{2n-1}}]$ by a different method. Combining this result with our theorem above, we obtain the following :

Theorem (Hernandez-O.)

The (q,t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ specialize to the corresponding q-characters.

Let $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathrm{B}_n^{(1)}.$

Theorem (Hernandez-O.)

$$K_{t}(\mathcal{C}_{\mathcal{Q},\mathbf{B}_{n}^{(1)}}) \qquad \simeq \qquad \mathcal{A}_{v}[N_{-}^{\mathbf{A}_{2n-1}}] \qquad \stackrel{[\mathsf{HL}]}{\simeq} \qquad K_{t}(\mathcal{C}_{\mathcal{Q}',\mathbf{A}_{2n-1}^{(1)}}) \\ \qquad \qquad \qquad \qquad \qquad \qquad \cup \\ \left\{ \begin{array}{c} (q,t)\text{-characters of} \\ \textit{simple modules} \end{array} \right\} \qquad \leftrightarrow \qquad \textit{dual canonical basis} \stackrel{[\mathsf{HL}]}{\longleftrightarrow} \left\{ \begin{array}{c} (q,t)\text{-characters of} \\ \textit{simple modules} \end{array} \right\}$$

Theorem (Hernandez-O.)

The (q,t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ specialize to the corresponding q-characters.

 \leadsto The Kazhdan-Lusztig algorithm gives "correct" answers in $\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}!$

Quantum affine algebras

Let

- $\bullet \ \mathfrak{g}$ a finite dimensional simple Lie algebra / \mathbb{C}
- $\mathcal{L}\mathfrak{g}:=\mathfrak{g}\otimes_{\mathbb{C}}\mathbb{C}[t^{\pm 1}]$ its loop algebra $[X\otimes t^m,Y\otimes t^m]=[X,Y]\otimes t^{m+m'}$
- $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ the Drinfeld-Jimbo quantum loop algebra / \mathbb{C} with a parameter $q \in \mathbb{C}^{\times}$ not a root of unity generators : $\{k_i^{\pm 1}, x_{i\,r}^{\pm}, h_{i,s} \mid i \in I, r \in \mathbb{Z}, s \in \mathbb{Z} \setminus \{0\}\}$

Properties

- $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ has a Hopf algebra structure.
- $\bullet \ \mathcal{U}_q(\mathfrak{g}) \underset{\mathsf{Hopf alg.}}{\hookrightarrow} \mathcal{U}_q(\mathcal{L}\mathfrak{g}), e_i \mapsto x_{i,0}^+, f_i \mapsto x_{i,0}^-, k_i^{\pm 1} \mapsto k_i^{\pm 1}.$

Let $\mathcal C$ be the category of finite-dimensional $\mathcal U_q(\mathcal L\mathfrak g)$ -modules of type 1 (i.e. the eigenvalues of the actions of $\{k_i\mid i\in I\}$ are of the form q^m , $m\in\mathbb Z$).

Remark : C is a non-semisimple abelian \otimes -category.

q-characters (1)

Let $V \in \mathcal{C}$. Frenkel-Reshetikhin showed that

{Generalized simultaneous eigenvalues of all
$$k_i^{\pm 1}, h_{i,s} \curvearrowright V$$
 } $\stackrel{1:1}{\longleftrightarrow}$ {Laurent monomials m in $Y_{i,a}$'s $(i \in I, a \in \mathbb{C}^{\times})$ }

 $\leadsto V = \bigoplus_m V_m$, called the ℓ -weight space decomposition.

 $Y_{i,a}$ is an "affine analogue" of e^{ϖ_i} , ϖ_i fundamental weight.

Define the q-character of V as

$$\chi_q(V) := \sum_m \dim(V_m) m.$$

Then χ_q defines an injective algebra homomorphism

$$\chi_q \colon K(\mathcal{C}) \to \mathbb{Z}[Y_{i,a}^{\pm 1} \mid i \in I, a \in \mathbb{C}^{\times}] =: \mathcal{Y}_{\mathbb{C}^{\times}},$$

here $K(\mathcal{C})$ be the Grothendieck ring of \mathcal{C} [Frenkel-Reshetikhin].

 $K(\mathcal{C})$ is commutative. (However sometimes $V \otimes W \not\simeq W \otimes V$ in \mathcal{C} .)

q-characters (2)

Set
$$\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \geq 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$$
 dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Type
$$A_n^{(1)}$$

$$A_{i,a} = Y_{i,aq^{-1}} Y_{i,aq} Y_{i-1,a}^{-1} Y_{i+1,a}^{-1} \ (\iff e^{\alpha_i} = e^{2\varpi_i - \varpi_{i-1} - \varpi_{i+1}})$$

$$(Y_{0,a} = Y_{n+1,a} := 1, \ e^{\varpi_0} = e^{\varpi_{n+1}} := 1.)$$

q-characters (2)

Set
$$\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \geq 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$$
 dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Type $B_n^{(1)}$

$$A_{i,a} = \begin{cases} Y_{i,aq^{-2}}Y_{i,aq^2}Y_{i-1,a}^{-1}Y_{i+1,a}^{-1} & \text{if } i \leq n-2 \\ Y_{n-1,aq^{-2}}Y_{n-1,aq^2}Y_{n-2,a}^{-1}Y_{n,aq^{-1}}^{-1}Y_{j,aq}^{-1} & \text{if } i = n-1 \\ Y_{n,aq^{-1}}Y_{n,aq}Y_{n-1,a}^{-1} & \text{if } i = n. \end{cases}$$

q-characters (2)

Set $\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \geq 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$ dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Define the partial ordering on the set of Laurent monomials in $\mathcal{Y}_{\mathbb{C}^{\times}}$ as $m \geq m' \Leftrightarrow m^{-1}m'$ is a product of $A_{i,a}^{-1}$'s.

Theorem (Frenkel-Mukhin)

 $\chi_q(L(m)) = m + \text{(sum of terms lower than } m\text{)}, \ \forall m \in \mathcal{B}_{\mathbb{C}^{\times}}.$

q-characters (3)

 \mathcal{C}_{\bullet} :=the full subcategory of \mathcal{C} such that object : V with $\chi_q(V) \in \mathbb{Z}[Y_{i,q^r}^{\pm 1} \mid i \in I, r \in \mathbb{Z}] =: \mathcal{Y}$.

Properties

- \mathcal{C}_{\bullet} is a (non-semisimple) abelian \otimes -subcategory.
- $\bullet \ \ \mathcal{C} = \bigotimes_{a \in \mathbb{C}^\times/q^\mathbb{Z}} \left(\mathcal{C}_\bullet\right)_a \ ((\mathcal{C}_\bullet)_a \text{ is obtained from } \mathcal{C}_\bullet \text{ by shift of the spectral parameter by } a).$

From now on, we always work in \mathcal{C}_{\bullet} , and write

$$Y_{i,r} := Y_{i,q^r} \qquad A_{i,r} := A_{i,q^r} \qquad \mathcal{B} := \mathcal{B}_{\mathbb{C}^{\times}} \cap \mathcal{Y}.$$

Example

•
$$\mathfrak{g} = \mathfrak{sl}_2$$
, $I = \{1\}$, $\chi_q(L(Y_{1,r})) = Y_{1,r} + Y_{1,r+2}^{-1} = Y_{1,r}(1 + A_{1,r+1}^{-1})$.

$$\bullet \ \mathfrak{g}=\mathfrak{so}_5, I=\{1,2\},$$

$$\chi_q(L(Y_{1,r})) = Y_{1,r} + Y_{2,r+1}Y_{2,r+3}Y_{1,r+4}^{-1} + Y_{2,r+1}Y_{2,r+5}^{-1} + Y_{1,r+2}Y_{2,r+3}^{-1}Y_{2,r+5}^{-1} + Y_{1,r+6}^{-1}.$$

q-characters (3)

 \mathcal{C}_{ullet} :=the full subcategory of \mathcal{C} such that object : V with $\chi_q(V) \in \mathbb{Z}[Y_{i,q^r}^{\pm 1} \mid i \in I, r \in \mathbb{Z}] =: \mathcal{Y}$.

Properties

- \mathcal{C}_{\bullet} is a (non-semisimple) abelian \otimes -subcategory.
- $\bullet \ \ \mathcal{C} = \bigotimes_{a \in \mathbb{C}^\times/q^\mathbb{Z}} \left(\mathcal{C}_\bullet\right)_a \ ((\mathcal{C}_\bullet)_a \text{ is obtained from } \mathcal{C}_\bullet \text{ by shift of the spectral parameter by } a).$

From now on, we always work in C_{\bullet} , and write

$$\begin{array}{ccc} Y_{i,r}:=Y_{i,q^r} & A_{i,r}:=A_{i,q^r} & \mathcal{B}:=\mathcal{B}_{\mathbb{C}^\times}\cap\mathcal{Y}. \\ \text{For } m=\prod_{i\in I,r\in\mathbb{Z}}Y_{i,r}^{u_{i,r}}\in\mathcal{B}, \text{ a standard module is defined as} \end{array}$$

$$M(m) := \bigotimes_{r \in \mathbb{Z}} \left(\bigotimes_{i \in I} L(Y_{i,r})^{\otimes u_{i,r}} \right).$$

 $\leadsto \{[L(m)] \mid m \in \mathcal{B}\} \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and } \{[M(m)] \mid m \in \mathcal{B}\} \text{ are } \mathbb{Z}\text{-bases of } K(\mathcal{C}_{\bullet}), \text{ and }$

Quantum Grothendieck rings (1)

We recall Hernandez's algebraic construction of quantum Grothendieck rings here.

Remark

 \exists other (geometric) constructions given by Varagnolo-Vasserot or Nakajima for ADE cases, and all constructions produce equivalent rings in these cases.

Quantum Grothendieck rings (1)

We recall Hernandez's algebraic construction of quantum Grothendieck rings here.

Let $C=(c_{ij})_{i,j\in I}$ be the Cartan matrix of \mathfrak{g} , and $D=(\delta_{ij}r_i)_{i,j\in I}$ such that $r_i\in\mathbb{Z}_{>0}$, $\gcd_{i\in I}(r_i)=1$ and DC is symmetric.

Define $C(z)=(C(z)_{ij})_{i,j\in I}, \widetilde{C}(z)=(\widetilde{C}(z)_{ij})_{i,j\in I}$ (z: indeterminate) by

$$C(z)_{ij} = \begin{cases} z^{r_i} + z^{-r_i} & \text{if } i = j \\ [c_{ij}]_z & \text{if } i \neq j \end{cases}, \qquad \widetilde{C}(z) = C(z)^{-1}.$$

Here $[m]_z := \frac{z^m - z^{-m}}{z - z^{-1}}$.

We can regard $\widetilde{C}(z)_{ij}$ as an element of $\mathbb{Z}((z^{-1}))$, and write

$$\widetilde{C}(z)_{ji} = \sum_{r \in \mathbb{Z}} \widetilde{c}_{ji}(r) z^r \in \mathbb{Z}((z^{-1})).$$

Example

If
$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$
 (type B_2), then

$$C(z) = \begin{pmatrix} z^2 + z^{-2} & -1 \\ -z - z^{-1} & z + z^{-1} \end{pmatrix} \qquad \widetilde{C}(z) = \frac{1}{z^3 + z^{-3}} \begin{pmatrix} z + z^{-1} & 1 \\ z + z^{-1} & z^2 + z^{-2} \end{pmatrix}.$$

Hence

$$\widetilde{C}(z)_{11} = \sum_{k \ge 0} (-1)^k (z^{-6k-2} + z^{-6k-4}), \qquad \widetilde{C}(z)_{12} = \sum_{k \ge 0} (-1)^k z^{-6k-3},$$

$$\widetilde{C}(z)_{21} = \sum_{k \ge 0} (-1)^k (z^{-6k-2} + z^{-6k-4}), \qquad \widetilde{C}(z)_{22} = \sum_{k \ge 0} (-1)^k (z^{-6k-1} + z^{-6k-5}).$$

Hence $\widetilde{c}_{ji}(r)$'s are summarized as follows (blanks stand for 0):

Quantum Grothendieck rings (2)

The quantum torus \mathcal{Y}_t associated with C(z) is defined as the $\mathbb{Z}[t^{\pm 1/2}]$ -algebra given by

- $\bullet \ \ \text{generators} : \ \widetilde{Y}_{i,r}^{\pm 1} \ (i \in I, r \in \mathbb{Z})$
- relations :
 - (1) $\widetilde{Y}_{i,r}\widetilde{Y}_{i,r}^{-1} = 1 = \widetilde{Y}_{i,r}^{-1}\widetilde{Y}_{i,r}$,
 - (2) for $i, j \in I$ and $r, s \in \mathbb{Z}$,

$$\widetilde{Y}_{i,r}\widetilde{Y}_{j,s} = t^{\gamma(i,r;j,s)}\widetilde{Y}_{j,s}\widetilde{Y}_{i,r},$$

where
$$\gamma\colon (I\times\mathbb{Z})^2 \to \mathbb{Z}$$
 is given by
$$\gamma(i,r;j,s) = \widetilde{c}_{ji}(-r_j-r+s) + \widetilde{c}_{ji}(r_j+r-s) \\ - \widetilde{c}_{ji}(r_j-r+s) - \widetilde{c}_{ji}(-r_j+r-s).$$

Quantum Grothendieck rings (2)

The quantum torus \mathcal{Y}_t <u>t-commutation relation:</u> $\widetilde{Y}_{i,r}\widetilde{Y}_{j,s} = t^{\gamma(i,r;j,s)}\widetilde{Y}_{j,s}\widetilde{Y}_{i,r}$ $\gamma(i,r;j,s) = \widetilde{c}_{ji}(-r_j-r+s) + \widetilde{c}_{ji}(r_j+r-s) - \widetilde{c}_{ji}(r_j-r+s) - \widetilde{c}_{ji}(-r_j+r-s).$

There exists a \mathbb{Z} -algebra homomorphism $\operatorname{ev}_{t=1} \colon \mathcal{Y}_t \to \mathcal{Y}$ given by

$$t^{1/2}\mapsto 1$$

$$\widetilde{Y}_{i,r} \mapsto Y_{i,r}$$
.

This map is called the specialization at t = 1.

There exists a \mathbb{Z} -algebra anti-involution (\cdot) on \mathcal{Y}_t given by

$$t^{1/2} \mapsto t^{-1/2}$$

$$\widetilde{Y}_{i,r} \mapsto t^{-1}\widetilde{Y}_{i,r}.$$

This map is called the bar-involution.

 $\forall m \in \mathcal{Y} \text{ monomial } \leadsto \exists ! \ \underline{m} \in \mathcal{Y}_t \text{ monomial (with coefficient in } t^{\mathbb{Z}})$ such that $\overline{\underline{m}} = \underline{m}$. (e.g. $Y_{i,r} = t^{-1/2}\widetilde{Y}_{i,r}$.) Set $\widetilde{A}_{i,r} := A_{i,r}$.

Quantum Grothendieck rings (3)

For $i \in I$, set

$$K_{i,t} := \langle \widetilde{Y}_{i,r}(1 + t\widetilde{A}_{i,r+r_i}^{-1}), \widetilde{Y}_{j,r}^{\pm 1} \mid j \in I \setminus \{i\}, r \in \mathbb{Z} \rangle_{\mathbb{Z}[t^{\pm 1/2}]-\text{alg.}} \subset \mathcal{Y}_t.$$

Define the quantum Grothendieck ring of \mathcal{C}_{\bullet} as

$$K_t(\mathcal{C}_{\bullet}) := \bigcap_{i \in I} K_{i,t}.$$

Remark

Indeed, $K_{i,t}$ = the kernel of a t-analogue of "the screening operator associated to $i \in I''$ [Hernandez]. This is an affine (and t-deformed) analogue of invariance under the simple reflection s_i . $\rightsquigarrow K_t(\mathcal{C}_{\bullet})$ is an affine analogue of the space of "W-invariant"

functions".

Theorem (Varagnolo-Vasserot, Nakajima, Hernandez)

$$\operatorname{ev}_{t=1}(K_t(\mathcal{C}_{\bullet})) = K(\mathcal{C}_{\bullet}).$$

$\overline{(q,t)}$ -characters (1)

- \exists a $\mathbb{Z}[t^{\pm 1/2}]$ -basis $\{M_t(m) \mid m \in \mathcal{B}\}$ of $K_t(\mathcal{C}_{\bullet})$ such that $\mathrm{ev}_{t=1}(M_t(m)) = \chi_q(M(m))$ [Nakajima Hernandez]. $\leadsto M_t(m)$ is called the (q,t)-character of M(m).
- All $M_t(m)$ can be explicitly calculated once we know $M_t(Y_{i,0}), i \in I$.

Theorem (Nakajima (ADE cases), Hernandez (arbitrary))

- $\exists ! \{L_t(\underline{m}) \mid m \in \mathcal{B}\}$ a $\mathbb{Z}[t^{\pm 1/2}]$ -basis of $K_t(\mathcal{C}_{\bullet})$ such that
- (S1) $L_t(m) = L_t(m)$, and
- (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t) L_t(m')$ with $P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}].$

The element $L_t(m)$ is called the (q, t)-character of L(m).

(q,t)-characters (2)

(S1)
$$\overline{L_t(m)} = L_t(m)$$
 (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t) L_t(m'), P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}]$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m,m'}(t)$'s, called Kazhdan-Lusztig algorithm.

When \mathfrak{g} is of ADE type,

$$\operatorname{ev}_{t=1}(L_t(m)) = \chi_q(L(m))$$
 [Nakajima].

Its proof is based on his geometric construction using quiver varieties, and it is valid only in $\rm ADE$ case. Moreover, in this case,

$$P_{m,m'}(t) \in t^{-1}\mathbb{Z}_{\geq 0}[t^{-1}]$$
 (positivity).

$\overline{(q,t)}$ -characters (2)

(S1)
$$\overline{L_t(m)} = L_t(m)$$
 (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t) L_t(m'), P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}]$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m,m'}(t)$'s, called Kazhdan-Lusztig algorithm.

Conjecture (Hernandez)

For arbitrary cases, we also have

(1)
$$\forall m \in \mathcal{B}$$
, $\operatorname{ev}_{t=1}(L_t(m)) = \chi_q(L(m))$. (2) $P_{m,m'}(t) \in t^{-1}\mathbb{Z}_{\geq 0}[t^{-1}]$.

If Conjecture (1) holds (in particular, in ADE cases), we have

$$[M(m)] = [L(m)] + \sum_{m' < m} P_{m,m'}(1)[L(m')] \text{ in } K(\mathcal{C}_{\bullet}).$$

T-system

For $i \in I$, $r \in \mathbb{Z}$, $k \in \mathbb{Z}_{\geq 0}$, set $m_{k,r}^{(i)} := \prod_{s=1}^k Y_{i,r+2r_i(s-1)}$. $(m_{1,r}^{(i)} = Y_{i,r})$ \leadsto the simple module $L(m_{k,r}^{(i)})$ is called a Kirillov-Reshetikhin module.

The T-system of type B [Hernandez]

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathrm{B}_n^{(1)}$. For $i \in I$, $r \in \mathbb{Z}$, $k \in \mathbb{Z}_{>0}$, the following identity holds in $K(\mathcal{C}_{\bullet})$:

$$[L(m_{k,r}^{(i)})][L(m_{k,r+2r_i}^{(i)})] = [L(m_{k+1,r}^{(i)})][L(m_{k-1,r+2r_i}^{(i)})] + [S_{k,r}^{(i)}].$$

$$\begin{aligned} \textit{Here,} \quad [S_{k,r}^{(i)}] &= \begin{cases} [L(m_{k,r+2}^{(i-1)})][L(m_{k,r+2}^{(i+1)})] \; \text{if } i \leq n-2, \\ [L(m_{k,r+2}^{(n-2)})][L(m_{2k,r+1}^{(n)})] \; \text{if } i = n-1, \\ [L(m_{s,r+1}^{(n-1)})][L(m_{s,r+3}^{(n-1)})] \; \text{if } i = n \; \text{and} \; k = 2s \; \text{is even,} \\ [L(m_{s,r+1}^{(n-1)})][L(m_{s,r+3}^{(n-1)})] \; \text{if } i = n \; \text{and} \; k = 2s+1 \; \text{is odd.} \end{cases} \\ ([L(m_{**}^{(0)})] := 1). \end{aligned}$$

T-system

For $i \in I$, $r \in \mathbb{Z}$, $k \in \mathbb{Z}_{\geq 0}$, set $m_{k,r}^{(i)} := \prod_{s=1}^k Y_{i,r+2r_i(s-1)}$. $(m_{1,r}^{(i)} = Y_{i,r})$ \leadsto the simple module $L(m_{k,r}^{(i)})$ is called a Kirillov-Reshetikhin module.

The quantum T-system of type B [Hernandez-O.]

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathrm{B}_n^{(1)}$. Then $\exists \alpha, \beta \in \mathbb{Z}$ such that the following identity holds in $K_t(\mathcal{C}_{\mathcal{O},\mathrm{B}_n^{(1)}})$ (\leftarrow later):

$$L_t(m_{k,r}^{(i)})L_t(m_{k,r+2r_i}^{(i)}) = t^{\alpha/2}L_t(m_{k+1,r}^{(i)})L_t(m_{k-1,r+2r_i}^{(i)}) + t^{\beta/2}S_{k,r,t}^{(i)}.$$

$$\textit{Here,} \quad S_{k,r,t}^{(i)} = \begin{cases} L_t(m_{k,r+2}^{(i-1)})L_t(m_{k,r+2}^{(i+1)}) \text{ if } i \leq n-2, \\ L_t(m_{k,r+2}^{(n-2)})L_t(m_{2k,r+1}^{(n)}) \text{ if } i = n-1, \\ L_t(m_{s,r+1}^{(n-1)})L_t(m_{s,r+3}^{(n-1)}) \text{ if } i = n \text{ and } k = 2s \text{ is even,} \\ L_t(m_{s,r+1}^{(n-1)})L_t(m_{s,r+3}^{(n-1)}) \text{ if } i = n \text{ and } k = 2s+1 \text{ is odd.} \end{cases}$$

$$(L_t(m_{s,s}^{(0)}) := 1).$$

Remarks and examples

Remark

- Under the non-quantum settings, the T-systems (similar to the above equalities) have been established also for arbitrary cases [Nakajima, Hernandez].
- Under the quantum settings, the T-systems have been established also for ADE cases [Nakajima, Hernandez-Leclerc].
- In our proof, we use the property

"thinness of Kirillov-Reshetikhin modules".

This is true only for type $A_n^{(1)}$ and $B_n^{(1)}$.

Example ($B_3^{(1)}$ -case)

- $L_t(m_{2r}^{(1)})L_t(m_{2r+4}^{(1)}) = tL_t(m_{3r}^{(1)})L_t(m_{1r+4}^{(1)}) + L_t(m_{2r+2}^{(2)}).$

Quantized coordinate algebra of type A_N

Let
$$\mathcal{U}_v^-$$
 be the negative half of the QEA of type A_N over $\mathbb{Q}(v^{1/2})$. $\Big(:= \text{the } \mathbb{Q}(v^{1/2})\text{-algebra with } \underbrace{\{f_i\}_{i=1,\dots,N}, \ \text{relations}}_{\{f_i\}_{i=1,\dots,N}} \Big\{ \begin{aligned} f_i^2 f_j - (v+v^{-1})f_i f_j f_i + f_j f_i^2 &= 0 & \text{if } |i-j| = 1 \\ f_i f_j - f_j f_i &= 0 & \text{if } |i-j| > 1. \end{aligned} \Big\} \\ \sim \to \mathcal{A}_v[N_-^{A_N}] \underset{\mathbb{Z}[v^{\pm 1/2}]\text{-subalg}}{\subset} \mathcal{U}_v^- \text{ the quantized coordinate algebra}.$

Property

$$\mathbb{Q}(v^{\pm 1/2}) \otimes_{\mathbb{Z}[v^{\pm 1/2}]} \mathcal{A}_v[N_-^{\mathbf{A}_N}] \simeq \mathcal{U}_v^- \quad \mathbb{C} \otimes_{\mathbb{Z}[v^{\pm 1/2}]} \mathcal{A}_v[N_-^{\mathbf{A}_N}] \simeq \mathbb{C}[N_-^{\mathbf{A}_N}].$$
 Here $N_-^{\mathbf{A}_N} := \{(N+1) \times (N+1) \text{ unipotent lower triangular matrices}\}.$

- $\exists \text{ev}_{v=1} \colon \mathcal{A}_v[N_-^{A_N}] \to \mathbb{C}[N_-^{A_N}]$ a \mathbb{Z} -algebra homomorphism, called the specialization at v=1.
- \exists an \mathbb{Z} -algebra anti-involution σ' on $\mathcal{A}_v[N_-^{\mathrm{A}_N}]$, called the (twisted) dual bar involution (e.g. $v^{1/2}\mapsto v^{-1/2}$).

(:= the restriction of the \mathbb{Z} -algebra anti-involution on \mathcal{U}_v^- given by $v^{1/2}\mapsto v^{-1/2}, f_i\mapsto -f_i.$)

Dual canonical bases

Let $\pmb{i}=(i_1,i_2,\ldots,i_\ell)$ be a reduced word of the longest element w_0 of the Weyl group $W^{\mathbf{A}_N}\simeq\mathfrak{S}_{N+1}.$ (e.g. if N=2, then $\pmb{i}=(1,2,1)$ or (2,1,2).)

Dual canonical bases

Let $i=(i_1,i_2,\ldots,i_\ell)$ be a reduced word of the longest element w_0 of the Weyl group $W^{A_N}\simeq\mathfrak{S}_{N+1}$. Let Δ_+ be the set of positive roots of type A_N .

 $\Rightarrow \exists \{\widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) \mid \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+} \}$ a $\mathbb{Z}[v^{\pm 1/2}]$ -basis of $\mathcal{A}_v[N_-^{\mathrm{A}_N}]$ depending on \boldsymbol{i} , which is an analogue of the (dual) PBW-basis associated to \boldsymbol{i} [Lusztig].

Theorem (Lusztig, Saito, Kimura)

- ullet $\exists !\widetilde{\mathbf{B}}^{\mathrm{up}} := \{\widetilde{G^{\mathrm{up}}}(oldsymbol{c},oldsymbol{i}) \mid oldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+} \}$ a $\mathbb{Z}[v^{\pm 1/2}]$ -basis of $\mathcal{A}_v[N_-^{\mathrm{A}_N}]$ such that
 - (B1) $\sigma'(\widetilde{G^{\mathrm{up}}}(oldsymbol{c},oldsymbol{i})) = \widetilde{G^{\mathrm{up}}}(oldsymbol{c},oldsymbol{i})$, and
 - (B2) $\widetilde{F}^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}) = \widetilde{G}^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}) + \sum_{\boldsymbol{c}'} p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \widetilde{G}^{\mathrm{up}}(\boldsymbol{c}', \boldsymbol{i})$ with $p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \in v\mathbb{Z}[v]$.
- ullet $\widetilde{\mathbf{B}}^{\mathrm{up}}$ does not depend on the choice of i.

The basis B^{up} is called the (normalized) dual canonical basis.

Positivities

(B1)
$$\sigma'(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})$$
 (B2) $\widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) + \sum_{\boldsymbol{c}'} p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}', \boldsymbol{i}), p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \in v\mathbb{Z}[v]$

Theorem (Lusztig (i "adapted"), Kato, McNamara (arbitrary), (O. arbitrary))

 $p_{\boldsymbol{c},\boldsymbol{c}'}(v) \in \mathbb{Z}_{\geq 0}[v].$

Theorem (Lusztig)

For $oldsymbol{c}_1, oldsymbol{c}_2 \in \mathbb{Z}_{>0}^{\Delta_+}$, write

$$\widetilde{G}^{\mathrm{up}}(\boldsymbol{c}_1, \boldsymbol{i})\widetilde{G}^{\mathrm{up}}(\boldsymbol{c}_2, \boldsymbol{i}) = \sum_{\boldsymbol{c}} c_{\boldsymbol{c}_1, \boldsymbol{c}_2}^{\boldsymbol{c}} \widetilde{G}^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}).$$

Then $c_{c_1,c_2}^c \in \mathbb{Z}_{\geq 0}[v^{\pm 1/2}].$

Hernandez-Leclerc isomorphisms in type $A_N^{(1)}$ (1)

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathcal{A}_N^{(1)}$ $(I=\{1,\ldots,N\})$. Define $J_{\mathcal{Q}',\mathcal{A}_N^{(1)}}$ by

$$J_{\mathcal{Q}', \mathcal{A}_N^{(1)}} := \{(\imath, -\imath + 1 - 2k) \in I \times \mathbb{Z} \mid k = 0, 1, \dots, 2n - \imath - 1 \text{ and } \imath \in I\}.$$

Hernandez-Leclerc isomorphisms in type $A_N^{(1)}$ (1)

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathcal{A}_N^{(1)}$ $(I=\{1,\ldots,N\})$. Define $J_{\mathcal{O}',\mathcal{A}_N^{(1)}}$ by

$$J_{\mathcal{Q}',\mathcal{A}_N^{(1)}} := \{(\imath,-\imath+1-2k) \in I \times \mathbb{Z} \mid k=0,1,\dots,2n-\imath-1 \text{ and } \imath \in I\}.$$

Set

$$\mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}} := \left\{ \prod\nolimits_{(\imath,r)} Y_{\imath,r}^{u_{\imath,r}} \in \mathcal{B} \mid u_{\imath,r} \neq 0 \text{ only if } (\imath,r) \in J_{\mathcal{Q}',\mathcal{A}_N^{(1)}} \right\},$$

 $\mathcal{C}_{\mathcal{O}',A^{(1)}}:=$ the full subcategory of \mathcal{C}_{ullet} such that

$$\underline{\text{object}}: V \text{ with } [V] \in \sum\nolimits_{m \in \mathcal{B}_{\mathcal{Q}, \mathbf{A}_{v}^{(1)}}} \mathbb{Z}[L(m)].$$

Lemma (Hernandez-Leclerc)

 $\mathcal{C}_{\mathcal{O}',\mathbf{A}^{(1)}}$ is an abelian \otimes -subcategory.

Hernandez-Leclerc isomorphisms in type ${ m A}_N^{(1)}$ (2)

Remark

Here we did not mention the meaning of \mathcal{Q}' . In fact, here \mathcal{Q}' is the following Dynkin quiver of type A_N

$$1 \longleftarrow 2 \longleftarrow \cdots \longrightarrow N - 1 \longleftarrow N$$

The "arrangement" of $J_{\mathcal{Q}',\mathcal{A}_N^{(1)}}$ is arising from the Auslander-Reiten quiver of $\mathbb{C}\mathcal{Q}'\text{-mod}.$

Actually, for any Dynkin quiver \mathcal{Q}' of type $A_N^{(1)}$, the abelian \otimes -subcategory $\mathcal{C}_{\mathcal{Q}',A_N^{(1)}}$ is defined, and all results in the following hold. e.g. If \mathcal{Q}' is $1 \longrightarrow 2 \longleftarrow 3 \longleftarrow 4$, then $J_{\mathcal{O}',A_N^{(1)}}$ is described as follows :

Hernandez-Leclerc isomorphisms in type ${\cal A}_N^{(1)}$ (2)

Remark

Here we did not mention the meaning of \mathcal{Q}' . In fact, here \mathcal{Q}' is the following Dynkin quiver of type A_N

$$1 \longleftarrow 2 \longleftarrow ---- \longrightarrow N-1 \longleftarrow N$$

The "arrangement" of $J_{\mathcal{Q}',\mathcal{A}_N^{(1)}}$ is arising from the Auslander-Reiten quiver of $\mathbb{C}\mathcal{Q}'\text{-mod}.$

Actually, for any Dynkin quiver \mathcal{Q}' of type $A_N^{(1)}$, the abelian \otimes -subcategory $\mathcal{C}_{\mathcal{Q}',A_N^{(1)}}$ is defined, and all results in the following hold.

The number of variants of such subcategories (up to shift of the spectral parameter) is 2^{N-1} .

Hernandez-Leclerc isomorphisms in type $A_N^{(1)}$ (3)

Set

$$K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Lemma

$$K_t(\mathcal{C}_{\mathcal{Q}', \mathcal{A}_N^{(1)}})$$
 is a $\mathbb{Z}[t^{\pm 1/2}]$ -subalgebra of $K_t(\mathcal{C}_{ullet})$.

 $\leadsto K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}})$ is called the quantum Grothendieck ring of $\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}$.

Hernandez-Leclerc isomorphisms in type $A_N^{(1)}$ (3)

Set

$$K_t(\mathcal{C}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$
 Write

$$J_{\mathcal{Q}',\mathcal{A}_N^{(1)}} = \{(\imath_s,r_s) \mid s=1,\ldots,\ell (=N(N+1)/2)\} \text{ with } r_1 \geq \cdots \geq r_\ell.$$

 $\leadsto \boldsymbol{i}_{\mathcal{Q}'} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathrm{A}_N}$.

Remark

The reduced word $i_{\mathcal{Q}'}$ depends on the choice of the total ordering on $J_{\mathcal{Q}',\mathbf{A}_N^{(1)}}$. However, its "commutation class" is uniquely determined.

The following results does not depend on this choice.

This $i_{\mathcal{Q}'}$ is "adapted to \mathcal{Q}' ".

Hernandez-Leclerc isomorphisms in type $A_N^{(1)}$ (3)

Set

$$K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

$$J_{\mathcal{Q}', \mathcal{A}_N^{(1)}} = \{(i_s, r_s) \mid s = 1, \dots, \ell (= N(N+1)/2)\} \text{ with } r_1 \ge \dots \ge r_\ell.$$

 $ightharpoonup oldsymbol{i}_{\mathcal{Q}'} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{A_N}$. In the following example, $oldsymbol{i}_{\mathcal{Q}'} = (1, 2, 1, 3, 2, 4, 1, 3, 2, 1)$ etc.

Hernandez-Leclerc isomorphisms in type ${ m A}_N^{(1)}$ (3)

$$\begin{split} K_t(\mathcal{C}_{\mathcal{Q}',\mathbf{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathbf{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathbf{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m). \\ J_{\mathcal{Q}',\mathbf{A}_N^{(1)}} = \{(\imath_s,r_s) \mid s = 1,\dots,\ell (=N(N+1)/2)\} \text{ with } r_1 \geq \dots \geq r_\ell. \end{split}$$

 $\leadsto \boldsymbol{i}_{\mathcal{Q}'} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathrm{A}_N}$.

Theorem (Hernandez-Leclerc)

There exists a \mathbb{Z} -algebra isomorphism

$$\Phi_{\mathbf{A}} \colon \mathcal{A}_v[N_-^{\mathbf{A}_N}] \xrightarrow{\sim} K_t(\mathcal{C}_{\mathcal{Q}',\mathbf{A}_N^{(1)}})$$

given by

$$v^{\pm 1/2} \mapsto t^{\mp 1/2} \qquad \widetilde{F}^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}'}) \mapsto M_t(m(\boldsymbol{c})) \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+},$$

here
$$m(c) = \prod_{k=1}^{\ell} Y_{i_k, r_k}^{c(s_{i_1} \cdots s_{i_{k-1}} \alpha_{i_k})}$$
. Moreover,

$$\Phi_{\mathcal{A}}(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}'})) = L_t(m(\boldsymbol{c})). \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+}.$$

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathrm{B}_n^{(1)}$ $(I=\{1,\ldots,n\})$. Let $\widetilde{I}:=\{1,\ldots,2n-1\}$. Define $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ by

$$\begin{split} \widetilde{J}_{\mathcal{Q}, \mathbf{B}_n^{(1)}} := & \{ (\imath, -\imath + 2 - 2k) \mid k = 0, \dots, 2n - 1 - \imath \text{ and } \imath = n + 1, \dots, 2n - 1 \} \\ & \cup \{ (n, -n + \frac{3}{2} - k) \mid k = 0, \dots, 2n - 2 \} \\ & \cup \{ (\imath, -\imath + 1 - 2k) \mid k = 0, \dots, 2n - 2 - \imath \text{ and } \imath = 1, \dots, n - 1 \}. \end{split}$$

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathrm{B}_n^{(1)}$ $(I=\{1,\ldots,n\})$. Let $\widetilde{I}:=\{1,\ldots,2n-1\}$. Define $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ by

$$\begin{split} \widetilde{J}_{\mathcal{Q},\mathbf{B}_n^{(1)}} := & \{ (\imath, -\imath + 2 - 2k) \mid k = 0, \dots, 2n - 1 - \imath \text{ and } \imath = n + 1, \dots, 2n - 1 \} \\ & \cup \{ (n, -n + \frac{3}{2} - k) \mid k = 0, \dots, 2n - 2 \} \\ & \cup \{ (\imath, -\imath + 1 - 2k) \mid k = 0, \dots, 2n - 2 - \imath \text{ and } \imath = 1, \dots, n - 1 \}. \end{split}$$

Assume that
$$\mathcal{U}_q(\mathcal{L}\mathfrak{g})$$
 is of type $\mathrm{B}_n^{(1)}$ $(I=\{1,\ldots,n\}).$ Let $\widetilde{I}:=\{1,\ldots,2n-1\}.$ Define $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}.$ Consider the map $\widetilde{I}\to I, \imath\mapsto \overline{\imath}:=\begin{cases} \imath & \text{if } \imath\leq n, \\ 2n-\imath & \text{if } \imath>n. \end{cases}$ "folding"

Set

$$\mathcal{B}_{\mathcal{Q},\mathbf{B}_n^{(1)}} := \left\{ \prod\nolimits_{(i,r)} Y_{i,r}^{u_{i,r}} \in \mathcal{B} \mid \begin{array}{c} u_{i,r} \neq 0 \text{ only if } (i,r) = (\overline{\imath},2s) \\ \text{for some } (\imath,s) \in \widetilde{J}_{\mathcal{Q},\mathbf{B}_n^{(1)}} \end{array} \right\},$$

 $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}:=$ the full subcategory of \mathcal{C}_ullet such that

$$\underline{\text{object}}: \ V \ \text{with} \ [V] \in \sum\nolimits_{m \in \mathcal{B}_{\mathcal{O},\mathbf{B}^{(1)}}} \mathbb{Z}[L(m)].$$

Lemma (Oh-Suh, Hernandez-O.)

 $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ is an abelian \otimes -subcategory.

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $\mathrm{B}_n^{(1)}$ $(I=\{1,\ldots,n\})$. Let $\widetilde{I}:=\{1,\ldots,2n-1\}$.

Consider the map
$$\tilde{I} \to I, \imath \mapsto \bar{\imath} := \begin{cases} \imath & \text{if } \imath \leq n, \\ 2n - \imath & \text{if } \imath > n. \end{cases}$$
 "folding"

Set

$$\mathcal{B}_{\mathcal{Q},\mathbf{B}_n^{(1)}} := \left\{ \prod\nolimits_{(i,r)} Y_{i,r}^{u_{i,r}} \in \mathcal{B} \mid \begin{array}{c} u_{i,r} \neq 0 \text{ only if } (i,r) = (\overline{\imath},2s) \\ \text{for some } (\imath,s) \in \widetilde{J}_{\mathcal{Q},\mathbf{B}_n^{(1)}} \end{array} \right\}.$$

Remark

Here we did not mention the meaning of \mathcal{Q} . In fact, $\mathcal{Q}=(\mathcal{Q}',<)$, here \mathcal{Q}' is the previous Dynkin quiver of type A_{2n-2} and < is the "auxiliary datum".

In fact, if we remove the points on "n-th row" from $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$, then we obtain $J_{\mathcal{Q}',\mathrm{A}_{2n-2}^{(1)}}$. The datum < indicates the place of "extremal points" on n-th row. This correspondence can be generalized to arbitrary \mathcal{Q}' [Oh-Suh].

 $\underline{\text{e.g.}}$ If \mathcal{Q}' is $\ _1 \longrightarrow _2 \longleftarrow _3 \longleftarrow _4$, then $\widetilde{J}_{\mathcal{Q}, \mathcal{B}_n^{(1)}}$ with $\mathcal{Q} = (\mathcal{Q}', >)$ is described as follows :

Remark

Here we did not mention the meaning of \mathcal{Q} . In fact, $\mathcal{Q}=(\mathcal{Q}',<)$, here \mathcal{Q}' is the previous Dynkin quiver of type A_{2n-2} and < is the "auxiliary datum".

In fact, if we remove the points on "n-th row" from $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$, then we obtain $J_{\mathcal{Q}',\mathrm{A}_{2n-2}^{(1)}}$. The datum < indicates the place of "extremal points" on n-th row. This correspondence can be generalized to arbitrary \mathcal{Q}' [Oh-Suh].

The number of variants of $\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ (up to shift) is $2^{2n-3}\times 2=2^{2n-2}$, and the corresponding nice subcategory $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ is always defined.

Set

$$K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Lemma

$$K_t(\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}})$$
 is a $\mathbb{Z}[t^{\pm 1/2}]$ -subalgebra of $K_t(\mathcal{C}_ullet)$.

 $\rightsquigarrow K_t(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$ is called the quantum Grothendieck ring of $\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}}$.

Set

$$K_t(\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$
 Write

$$\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}} = \{(\imath_s,r_s) \mid s=1,\ldots,\ell (=2n(2n-1)/2)\} \text{ with } r_1 \geq \cdots \geq r_\ell.$$

 $\leadsto \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}} := (\imath_1, \imath_2, \dots, \imath_{\ell})$ is a reduced word of $w_0 \in W^{\mathrm{A}_{2n-1}}$.

Remark

The reduced word $i_{\mathcal{Q}}^{\mathrm{tw}}$ depends on the choice of the total ordering on $J_{\mathcal{Q}, \mathbf{B}_{n}^{(1)}}$. However, its "commutation class" is uniquely determined.

The following results does not depend on this choice.

This $i_{\mathcal{Q}}^{\text{tw}}$ is always "non-adapted".

Set

$$K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

$$\widetilde{J}_{\mathcal{Q}, \mathcal{B}_n^{(1)}} = \{(\imath_s, r_s) \mid s = 1, \dots, \ell (= 2n(2n-1)/2) \} \text{ with } r_1 \ge \dots \ge r_\ell.$$

 $\leadsto \boldsymbol{i}^{\mathrm{tw}}_{\mathcal{Q}} := (\imath_1, \imath_2, \dots, \imath_\ell) \text{ is a reduced word of } w_0 \in W^{\mathrm{A}_{2n-1}}.$

In the following example, $\pmb{i}_{\mathcal{Q}}^{\text{tw}}=(1,2,3,1,4,3,2,5,3,1,4,3,2,3,1)$ etc.

$$K_t(\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathrm{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathrm{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

$$\widetilde{J}_{\mathcal{Q},\mathrm{B}_n^{(1)}} = \{(\imath_s,r_s) \mid s = 1,\ldots,\ell (= 2n(2n-1)/2)\} \text{ with } r_1 \geq \cdots \geq r_\ell.$$

 $\leadsto m{i}_{\mathcal{Q}}^{ ext{tw}} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathrm{A}_{2n-1}}$.

Theorem (Hernandez-O.)

There exists a \mathbb{Z} -algebra isomorphism

$$\Phi_{\mathrm{B}} \colon \mathcal{A}_v[N_-^{\mathrm{A}_{2n-1}}] \stackrel{\sim}{\to} K_t(\mathcal{C}_{\mathcal{O},\mathrm{B}_n^{(1)}})$$

given by

$$v^{\pm 1/2} \mapsto t^{\mp 1/2}$$
 $\widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}) \mapsto M_t(m'(\boldsymbol{c})) \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+},$

here
$$m'({m c})=\prod_{k=1}^\ell Y_{\imath_k,r_k}^{{m c}(s_{\imath_1}\cdots s_{\imath_{k-1}}\alpha_{\imath_k})}$$
 . Moreover,

$$\Phi_{\mathrm{B}}(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}})) = L_{t}(m'(\boldsymbol{c})). \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}.$$

Positivities in $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$

By our theorem, the positivities of the dual canonical bases $\widetilde{\bf B}^{\rm up}$ can be transported to those of (q,t)-characters.

Corollary (Positivity of Kazhdan-Lusztig type polynomials)

For $m \in \mathcal{B}_{\mathcal{Q}, \mathcal{B}_n^{(1)}}$, write

$$M_t(m) = \sum_{m' \in \mathcal{B}_{\mathcal{O}, \mathbf{B}_t^{(1)}}} P_{m,m'}(t) L_t(m').$$

as before. Then $P_{m,m'}(t) \in \mathbb{Z}_{\geq 0}[t^{-1}]$.

This is the affirmative answer to Conjecture (2) for $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$.

Corollary (Positivity of structure constants)

For $m_1, m_2 \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}$, write

$$L_t(m_1)L_t(m_2) = \sum_{\in \mathcal{B}_{O(\mathbf{R}^{(1)})}} c_{m_1,m_2}^m L_t(m).$$

Then we have $c_{m_1,m_2}^m \in \mathbb{Z}_{\geq 0}[t^{\pm 1/2}]$.

Comparison with Kashiwara-Oh

The following remarkable theorem is recently proved by means of the celebrated *generalized quantum affine Schur-Weyl dualities*, which is developed by Kang, Kashiwara, Kim and Oh:

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z} -algebra isomorphism

$$[\mathscr{F}]: \operatorname{ev}_{v=1}(\mathcal{A}_v[N_-^{\mathbf{A}_{2n-1}}]) \stackrel{\sim}{\to} K(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$$

which maps the dual canonical basis $\operatorname{ev}_{v=1}(\widetilde{\mathbf{B}}^{\operatorname{up}})$ specialized at v=1 to the set of classes of simple modules $\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{O},\mathbf{B}_n^{(1)}}\}$.

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}\mid_{v=t=1}=[\mathscr{F}].$$

Comparison with Kashiwara-Oh

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}\mid_{v=t=1}=[\mathscr{F}].$$

Remark

Our construction of $\Phi_{\rm B}$ does not imply Kashiwara-Oh's theorem because, a priori,

- ullet $\Phi_{\mathrm{B}}|_{v=t=1}$ maps $\mathrm{ev}_{v=1}(\widetilde{\mathrm{B}}^{\mathrm{up}})$ to $\{\mathrm{ev}_{v=1}(L_t(m))|m\in\mathcal{B}_{\mathcal{Q},\mathrm{B}_n^{(1)}}\}$, but
- ullet $[\mathscr{F}]$ maps $\mathrm{ev}_{v=1}(\widetilde{\mathbf{B}}^{\mathrm{up}})$ to $\{[\underline{L(m)}]\mid m\in\mathcal{B}_{\mathcal{Q},\mathbf{B}_n^{(1)}}\}$,

(The coincidence of these images is nothing but Hernandez's conjecture (1)!) Hence our result and Kashiwara-Oh's result are independent.

Our comparison theorem above is proved by looking at the images of dual PBW-bases.

Comparison with Kashiwara-Oh

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z} -algebra isomorphism

$$[\mathscr{F}]: \operatorname{ev}_{v=1}(\mathcal{A}_v[N_-^{\mathbf{A}_{2n-1}}]) \stackrel{\sim}{\to} K(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$$

which maps the dual canonical basis $\operatorname{ev}_{v=1}(\widetilde{\mathbf{B}}^{\operatorname{up}})$ specialized at v=1 to the set of classes of simple modules $\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{O},\mathbf{B}^{(1)}_{o}}\}$.

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}\mid_{v=t=1}=[\mathscr{F}].$$

Corollary

$$\chi_q(L(m)) = \operatorname{ev}_{t=1}(L_t(m)), \forall m \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}.$$

This is the affirmative answer to Conjecture (1) for $\mathcal{C}_{Q,B_n^{(1)}}$.

Comments on further results and proofs (1)

By combining our $\Phi_{\rm B}$ with $\Phi_{\rm A}$ for ${\rm A}_{2n-1}^{(1)}$, we can obtain a $\mathbb{Z}[v^{\pm 1/2}]$ -algebra isomorphism $K_t(\mathcal{C}_{\mathcal{Q}',{\rm A}_{2n-1}^{(1)}})\simeq K_t(\mathcal{C}_{\mathcal{Q},{\rm B}_n^{(1)}})$. This isomorphism preserves the set of (q,t)-characters of simple modules. (It does not preserve the set of (q,t)-characters of standard modules.) Moreover, if we go to $\mathcal{A}_v[N_-^{{\rm A}_{2n-1}}]$ via $\Phi_{\rm A}$ and $\Phi_{\rm B}$, then

"highest monomial parametrization of $L_t(m)$'s" \mapsto "PBW-parametrization of $\widetilde{\mathbf{B}}^{\mathrm{up}}$ "

Hence, the correspondence between simple modules above = the change of PBW-parametrizations. For the choices of $\mathcal{C}_{\mathcal{Q}', \mathbf{A}_{2n-1}^{(1)}}$ and $\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}$ in this talk, we know explicit braid moves between $\boldsymbol{i}_{\mathcal{Q}'}$ and $\boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}$. (e.g. $\underline{\mathbf{A}_3^{(1)}/\mathbf{B}_2^{(1)}}$ $\boldsymbol{i}_{\mathcal{Q}'} = (1, 2, 3, 1, 2, 1) \leftrightarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}} = (1, 2, 3, 2, 1, 2)$.) \leadsto We can describe the explicit correspondence of simple modules !

Comments on further results and proofs (2)

Sketch of the proof of the existence of $\Phi_{\rm B}$

- 0) We have
 - $\bullet \ K_t(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}}) \overset{\text{``truncate''}}{\hookrightarrow} \text{ the quantum torus of finitely many variables}.$
 - $\mathcal{A}_v[N_-^{\mathbf{A}_{2n-1}}] \hookrightarrow$ the quantum torus arising from the "quantum initial seed" associated with $i_{\mathcal{O}}^{\mathrm{tw}}$ (\Leftarrow quantum cluster algebra).
- 1) Prove the isomorphism between ambient tori in Step 0. (Here we also use the cluster algebraic observation " $A_{i,r}$'s are \hat{Y} -variables")
- 2) Show the coincidence between quantum T-system and quantum determinantal ientities (\Leftarrow mutation sequence. Every algebra generator appears as a cluster variable in this sequence).

 $\underline{Reference}: arXiv:1803.06754v1$