Universitat Oberta de Catalunya

Estudis d'Informàtica i Multimèdia

ASSIGNATURA: Grafs i Complexitat

Segona PAC. Mòduls 4 i 5.

Semestre de tardor de 2011 (del 2 al 23 de novembre).

Si us plau, feu cas de les instruccions següents:

- Envieu la solució en un fitxer que haureu d'anomenar:
 PAC2_Cognom1cognom2nom.pdf
- L'heu de lliurar a l'apartat "Lliurament i Registre d'AC" de l'aula.
- Numereu les respostes d'acord amb la numeració de les preguntes i els apartats.
- No us limiteu a donar les respostes als problemes proposats. Doneu, també, una explicació que justifiqui la resposta.

1. (Valoració d'un 20%)

- a) Un arbre d'ordre 12 té dos vèrtexs de grau 4 i cap de grau 2. Si sabéssim que té algun vèrtex de grau més gran o igual que 5, quina seria la seva seqüència de vèrtexs?
- b) Continuant amb l'apartat anterior, si, en canvi, sabéssim que no té cap vèrtex de grau més gran o igual que 5, quina seria llavors la seva seqüència de vèrtexs?
- c) Trobeu quants arbres generadors minimals diferents (no isomorfs) té $K_{3,3}$, quants té $K_{3,4}$, i quants $K_{3,5}$. Considereu que totes les arestes tenen pes 1.

Solució: Sigui x_i el nombre de vèrtexs de grau i. Tenim que $12 = x_1 + x_3 + 2 + x_5 + x_6 + \dots$ Pel lema de les encaixades, $22 = x_1 + 3x_3 + 8 + 5x_5 + 6x_6 + \dots$ Simplificant i restant les dues igualtats, obtenim $4 = 2x_3 + 4x_5 + 5x_6 + \dots$ Això implica que $x_6 = x_7 = \dots = 0$.

- a) De $4 = 2x_3 + 4x_5$ deduïm que $x_5 = 1$ i $x_3 = 0$, d'on s'obté que la solució és 1,1,1,1,1,1,1,1,1,4,4,5.
- b) De $4 = 2x_3 + 4x_5$ es dedueix $x_3 = 2$, i llavors $x_1 = 8$, sent la solució 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 4.

c) El nombre de solucions és 3, 7 i 10, respectivament. (Al final d'aquest document es mostren les solucions, a les que cal afegir T_6 i T_7).

2. (Valoració d'un 20%)

- a) Explorem un arbre amb arrel usant BFS i obtenim el següent ordre dels vèrtexs: A, B, C, D, E, F, G. Si l'explorem usant DFS obtenim la seqüència A, B, D, E, G, C, F. Dibuixeu l'arbre.
- b) Considereu l'expressió aritmètica següent: $3*x^2+(x-y)/9$. Dibuixeu l'arbre corresponent, tenint en compte la prioritat habitual dels operadors.
- c) Escriviu els recorreguts en preordre, inordre i postordre de l'arbre de l'apartat anterior.

Solució:

a) A ha de ser l'arrel, i B el primer fill d'A. Si A no tingués més fills, com BFS comença amb ABC, C ha de ser fill de B, però aleshores DFS també començaria amb ABC. Per tant, C també és fill d'A. Si A tingués un tercer fill, per BFS seria D, i contradiria DFS, on D va abans de C. En conclusió, A té fills B i C.

Ara podem deduir, a partir de DFS, que D, E i G pengen de B (és a dir, el subarbre que té arrel B els conté), mentre que F penja de C.

Finalment, a partir de BFS deduïm que els fills de B són D i E, i per DFS que G

penja de E.

b) La solució és la de la figura següent:

c) En preordre: $+ * 3 ^ x 2 / - x y 9$ En inordre: $3 * x ^ 2 + x - y / 9$ En postordre: $3 x 2 ^ * x y - 9 / +$

3. (Valoració d'un 20%)

- a) Trobeu un graf que compleixi totes les condicions del teorema 4 de la pàgina 19 del mòdul 5 (no cal que sigui bipartit), i tot i així no sigui hamiltonià.
- $b)\,$ Demostreu que el següent graf no és hamiltonià usant alguna condició necessària de hamiltoneïtat:

c) Utilitzeu l'algorisme de Hierholzer per trobar un recorregut eulerià en el graf de l'apartat anterior.

Solució:

a) Aquesta seria una solució possible.

Com que els vèrtexs 2,3 i 4 tenen grau 2, les dues arestes que surten de cadascun d'ells haurien d'estar incloses en qualsevol cicle hamiltonià, en cas d'existir. Això obliga a passar dos cops pel vèrtex central, cosa per la qual no podem tenir un cicle hamiltonià.

A més, compleix totes les condicions del teorema. La més difícil de comprovar és la tercera: hem de veure que si traiem k vèrtexs el nombre de components connexos és, com a molt, k. Els valors de k per als quals cal fer la comprovació són 1, 2 i 3 (per k més gran no ens quedarien prou vèrtexs per tenir més de k components). Podem veure que, si no eliminem el vèrtex central, podem treure fins a tres vèrtexs sense que el graf deixi de ser connex. Si, en canvi, traiem el vèrtex central, obtenim el graf següent:

Es pot veure que traient un segon vèrtex no poden quedar més de dos components connexos (s'obtenen dos si, per exemple, traiem el vèrtex 5). Si, a més de treure el vèrtex central (vegeu figura), traiem dos vèrtexs més, com a molt obtindrem tres components (se n'obtenen tres traient el 5 i el 6, per exemple).

b) Traient els dos vèrtexs de grau 4 queden tres components connexos, quan segons una condició necessària no n'haurien de quedar més de dos.

c) Si numerem els vèrtexs de manera que els d'ordre 4 siguin l'1 i el 2, i els d'ordre 2 siguin 3, 4 i 5, els passos de l'algorisme ens donen com a una solució $\{1, 4, 2, 5, 1, 2, 3, 1\}$:

Iteració	v	C'	C	A
0	1	_	{1}	$\{12, 13, 14, 15, 23, 24, 25\}$
1	1	$\{1, 2, 3, 1\}$	$\{1, 2, 3, 1\}$	$\{14, 15, 24, 25\}$
2	1	$\{1,4,2,5,1\}$	$\{1,4,2,5,1,2,3,1\}$	Ø

Recordeu que la solució depèn de quin cicle triem en cada pas.

4. (Valoració d'un 20%) La següent taula representa el cost aproximat (en milions d'euros) de connectar dues poblacions amb una carretera. El cost no és proporcional a la distància, ja que hi ha diferents patrocinadors que abarateixen l'obra depenent de quines poblacions es comuniquin:

	B	C	D	E	F
A	12	7	8	3	9
B		4	11	9	7
C			2	7	8
D				9	4
E					13

- a) Com ho hem de fer si volem connectar les sis ciutats amb el menor cost possible? Quin serà aquest cost?
- b) Com que no es poden fer tots els trams alhora per falta de pressupost, es decideix d'anar-los fent progressivament, començant des del punt F. Quins trams es faran, i en quin ordre? Quin serà el cost en aquest cas?
- c) Si volguessim fer un circuit que passés per les sis ciutats i tornés al punt inicial, podríem usar l'algorisme TSP-aproximat? Justifiqueu la resposta.

Solució:

- a) Si considerem el graf que té com a vèrtexs les diferents ciutats, ens estan demanant que calculem un arbre generador minimal. Si apliquem l'algorisme de Kruskal obtenim les arestes: CD, AE, BC, DF, AC amb un cost total de 20.
- b) Si apliquem l'algorisme de Prim començant des de F obtenim les arestes: FD, DC, BC, CA, AE. El cost total també és 20.
- c) No, perquè no es verifica la designaltat triangular. Per exemple, c(C, D) + c(D, F) < c(C, F), on c representa el cost de connectar les dues ciutats.
- 5. (Valoració d'un 20%) Considerem el següent conjunt de punts sobre el pla: $\{A = (0,5), B = (2,7), C = (5,7), D = (4,3), E = (8,3), F = (2,0)\}.$

La següent taula ens dóna les distàncies entre parells de punts:

	B	C	D	E	F
A	$\sqrt{8}$	$\sqrt{29}$	$\sqrt{20}$	$\sqrt{68}$	$\sqrt{29}$
B		3	$\sqrt{20}$	$\sqrt{52}$	7
C			$\sqrt{17}$	5	$\sqrt{58}$
D				4	$\sqrt{13}$
E					$\sqrt{45}$

Volem fer un recorregut que passi per tots els punts una sola vegada i torni al punt inicial, i que tingui la menor longitud possible. Usant la teoria de grafs, respongueu les següents questions:

- a) Què és el que cerquem?
- b) Apliqueu l'algorisme adient per a trobar una fita superior. Justifiqueu que es pot aplicar. A partir d'aquesta fita superior, obtingueu una fita inferior.
- c) Expliqueu com calcularíeu una fita inferior de la longitud del recorregut aplicant un algorisme diferent al de l'apartat anterior (no cal que feu el càlcul, només que indiqueu el procediment).

Solució:

- a) Un cicle hamiltonià de pes mínim, és a dir, una solució al problema del TSP.
- b) Usem TSP-aproximat, ja que es verifica la desigualtat triangular per ser punts del pla euclidià. Si apliquem l'algorisme de Prim des d'A obtenim, en aquest ordre, les arestes AB, BC, AD, DF i DE. L'arbre en preordre queda ABCDFE. Aleshores el cicle és ABCDFEA, amb longitud $\sqrt{8} + 3 + \sqrt{17} + \sqrt{13} + \sqrt{45} + \sqrt{68} = 26,68$, que és la fita superior. La fita inferior és la meitat, o sigui, 13,34.
- c) Aplicaríem l'algorisme de Kruskal, que ens dóna un arbre generador minimal, la longitud del qual és una fita inferior de la longitud buscada.

APÈNDIX: Solucions de l'exercici1c

Cas $K_{3,3}$: (a més de T_6)

Cas $K_{3,4}$: (a més de T_7)

Cas $K_{3,5}$:

