1 Tipos de datos y medidas de tendencia central

Nombre	Edad	Área de trabajo
Ana	25	Ventas
Luis	30	Administración
Marta	40	Producción
Carlos	35	Ventas
Elena	28	Recursos Humanos
Juan	50	Producción
Sofia	45	Administración
Pedro	38	Ventas
Daniel	33	Producción
Laura	27	Recursos humanos

- Clasifique las variables en cualitativas o cuantitativas:
 El nombre y la área de trabajo son variables cualitativas, la edad es una variable cuantitativa
- 2. Determine la media, mediana y moda de la variable "Edad" Moda: No hay una moda ya que no se repite ninguna edad Media: $\frac{25+30+40+35+28+50+45+38+33+27}{10} = 35.1$

Mediana: $25,28,27,30,33,35,38,40,45,50 \rightarrow \frac{33+35}{2} = 34$

3. Interprete los resultados Las edad de un empleado se encuentra comúnmente cerca de los 34 o 35

2 Medidas de dispersión

Dado el siguiente conjunto de datos correspondientes a las calificaciones de 8 estudiantes en un examen:

$$X = \{70, 86, 90, 95, 88, 92, 75, 80\}$$

1. Calcule la varianza y la desviación estándar de los datos Calculamos la media $\bar{x} = \frac{70+86+90+95+88+92+75+80}{8} = 84.5$ Y con la media obtenemos la suma de los cuadrados $\sum_{n=1}^{i=1} (x_i - \bar{x})^2$ la suma se ve algo así

$$(70 - 84.5)^2 + (86 - 84.5)^2 + (90 - 84.5)^2 + \dots + (80 - 84.5)^2 = 532$$

La varianza se calculara de la siguiente forma: $s^2 = \frac{\sum_{n=1}^{i=1} (x_i - \bar{x})^2}{n-1}$, entonces

$$s^2 = \frac{532}{8 - 1} = \frac{532}{7} = 76$$

P(P) 0.6 P(D) 0.4 P(IA) ? P(IA|P) 0.7 P(IA|D) 0.3

y la desviación estándar es simplemente s

$$s = \sqrt{76} = 8.7177$$

2. Interprete la dispersión de los datos Las calificaciones están muy dispersas, cada calificación esta comúnmente desviada de la media por 8.71

3 Probabilidades y teorema de bayes

Una empresa de tecnología ha identificado que el 60% de sus empleados son programadores, y el 40% son diseñadores. Se sabe que el 70% de los programadores tienen conocimientos de inteligencia artificial (IA), mientras que solo el 30% de los diseñadores tienen estos conocimientos.

Si se elige un empleado al azar y se sabe que tiene conocimientos de IA, cual es la probabilidad de que sea programador?

Datos:

Para calcular la probabilidad deseada necesitamos la formula

$$P(P|IA) = \frac{P(IA|P)P(P)}{P(IA)}$$

Ya tenemos todos los valores, solo tenemos que calcular la probabilidad de que un empleado tenga conocimientos en IA

Calculamos la probabilidad total con:

$$P(IA) = P(IA|P)P(P) + P(IA|D)P(D)$$

Sustituyendo

$$P(IA) = 0.6 * 0.7 + 0.3 * 0.4 = 0.54$$

Ahora sustituimos todos los valores en nuestra primera formula:

$$P(P|IA) = \frac{0.7 * 0.6}{0.54} = 0.77$$

La probabilidad de que un empleado sea programador si se sabe que tiene conocimientos en IA es de 77%

4 Distribuciones de probabilidad

Suponga que el numero de defectos en un lote de producción sigue una distribución Poisson con una media $\lambda=3$ defectos por lote.

1. Calcule la probabilidad de que un lote tenga exactamente 2 defectos Se calcula $P(X=x)=\frac{\lambda^x e^{-\lambda}}{x!}$

$$P(X=2) = \frac{3^2 e^{-3}}{2!} = 0.224$$

La probabilidad de que haya exactamente 2 defectos es del 22.4%

2. Calcule la probabilidad de que tenga al menos 1 defecto. Se calculara de la siguiente manera: P(X >= 1) = 1 - P(X = 1)

$$P(X=1) = \frac{3^1 e^{-3}}{1!} = 0.1494$$

$$P(X >= 1) = 1 - 0.1494 = 0.8506$$

La probabilidad de que haya al menos un defecto es del 85%

5 Funciones de densidad y distribución acumulativa

Sea X una variable aleatoria con distribución normal de media $\mu = 50$ y desviación estándar $\sigma = 10$

1. Determinar la probabilidad de que X tome un valor menor que 45 $P(x < 45) \Rightarrow P(z < \frac{x-\mu}{\sigma})$ Calculamos $z = \frac{x-\mu}{\sigma}$

$$z = \frac{45 - 50}{10} = -0.5$$

$$P(z < -0.5) = 0.3085$$

La probabilidad es de 30.85%

2. Determinar la probabilidad de que X este entre 40 y 60 Se calcula como P(x < 60) - P(x < 40) Calculamos $P(x < 60) \Rightarrow P(z < \frac{60 - 50}{10})$

$$P(z < 1) = 0.8413$$

Calculamos $P(x < 40) \Rightarrow P(z < \frac{40-50}{10})$

$$P(z < -1) = 0.1587$$

Entonces P(z < 1) - P(z < -1) = 0.8413 - 0.1587 = 0.6826 La probabilidad es de 68.26%

6 Probabilidad Condicional

Un dado de justo seis caras se lanza dos veces

- 1. ¿Cual es la probabilidad de obtener un numero par en el segundo lanzamiento, dado que en el primero salio un numero impar? La probabilidad es de $\frac{1}{6}$
- 2. Interprete los resultados obtenidos La probabilidad no cambia, el lanzamiento aleatorio es un evento independiente, o sea que un lanzamiento anterior no tiene efecto en los siguientes

7 Distribución binomial

Un examen de opción múltiple tiene 5 preguntas, cada una con 4 posibles respuestas, de las cuales solo una es correcta. Un estudiante responde al azar

1. Cual es la probabilidad de que el estudiante acierte exactamente 3 respuestas La calcularemos con la siguiente formula $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ Entonces calculemos

$$P(X=3) = {5 \choose 3} 0.25^3 (0.75)^2 = 0.0879$$

La probabilidad de acertar tres respuestas es de 8.79%

2. Cual es la probabilidad de que acierte al menos una respuesta Para calcularla sumaremos las probabilidades de acertar 1 pregunta

$$P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

$$\binom{5}{1} 0.25^{1} (0.75)^{4} + \binom{5}{2} 0.25^{2} (0.75)^{3} + \dots + \binom{5}{5} 0.25^{5} (0.75)^{0} = 0.7627$$

La probabilidad de acertar por lo menos una respuesta es de 76.27%

8 Regla de laplace

Una unra contiene 5 bolas rojas y 6 bolas azules. se extrae una bola al azar

 Determine la probabilidad de que la bola extraída sea roja
 Son en total 11 pelotas y solo 5 son rojas, la probabilidad de obtener una roja se calcula dividendo los casos favorables entre los casos posibles, o sea:

$$\frac{5}{11} = 0.\overline{45}$$

La probabilidad de extraer una roja es de 45%

2. Si se extraen dos bolas sin remplazo, ¿cual es la probabilidad de que ambas bolas sean rojas? Calculamos

$$\frac{6}{11} = 0.5455$$

y volvemos a calcular, pero quitando uno de cada caso

$$\frac{5}{10} = 0.5$$

La probabilidad de que ambos casos ocurran es la multiplicación de ambos

$$\frac{6}{11} * \frac{5}{10} = 0.\overline{27}$$

la probabilidad de que ambas bolas sean azules es de $27.\overline{27}\%$