PUBLIC-KEY CRYPTOGRAPHY (Introduction)

Ratna Dutta

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Autumn, 2019

Outline

Some basic public key cryptosystems

- Encryption Rabin, RSA, Merkle-Hellman, Paillier, Goldwasher-Micali, ElGamal, Generalised ElGamal
- Signature RSA, ElGamal, DSA
- Key agreement Diffie-Hellman, Burmester-Desmedt

Public Key Encryption

- Setup: Generates system parameters and for each entity a pair of encryption and decryption key.
 - The system parameters and the encryption key are public.
 - The decryption key corresponding to the encryption key is kept private to the corresponding entity.
- *Encrypt*: Encrypts message using the public encryption key.
- *Decrypt*: Decrypts the message using the private decryption key of the corresponding public encryption key.

Rabin's Cryptosystem

• Setup: n = pq, p, q large primes, both p, $q \equiv 3 \pmod{4}$,

$$\mathsf{PK} = n, \mathsf{SK} = (p, q)$$

• Encrypt: Message $x \in \mathbb{Z}_n^*$, public key PK

$$y = x^2 \mod n$$

• Decrypt: Ciphertext y, secret key SK

$$x = \sqrt{y} \mod n$$

(requires knowledge of p, q to extract square roots modulo n = pq using CRT)

Chinese Remainder Theorem (CRT)

- m_1, \ldots, m_r pairwise relatively prime, $a_1, \ldots, a_r \in Z$
- System of congruences:

$$x = a_1 \mod m_1$$
$$x = a_2 \mod m_2$$
$$\vdots$$

$$x = a_r \mod m_r$$

• Unique solution modulo $M = m_1 m_2 \dots m_r$

$$x = \sum_{i=1}^{r} a_i M_i y_i \mod M$$

where $M_i = \frac{M}{m_i}$, $y_i = M_i^{-1} \mod m_i$ for $1 \le i \le r$

• Quadratic residue modulo p: Let p be an odd prime and $x \in \mathbb{Z}_p^*$. x is defined to be a quadratic residue or square modulo p if the congruence

$$y^2 \equiv x \pmod{p}$$

has a solution $y \in \mathbb{Z}_p$.

- Example: $QR_{11} = \{1, 3, 4, 5, 9\}.$
- Euler's Criterion: x is a quadratic residue modulo p if and only if $x^{\frac{p-1}{2}} \equiv 1 \pmod{p}$
- Suppose z is a quadratic residue and $p \equiv 3 \pmod{4}$. Then, the two square roots of z modulo p are $\pm z^{\frac{p+1}{4}} \mod p$.

Correctness

• both $p, q \equiv 3 \pmod{4}$ - this restriction simplifies computation of square roots modulo n

$$\left(\pm y^{\frac{p+1}{4}}\right)^2 = y^{\frac{p+1}{2}} = y \ y^{\frac{p-1}{2}} \equiv y \ \left(\frac{y}{p}\right) \equiv y \ (\text{mod } p)$$

(Legendre symbol $\binom{y}{p} \equiv y^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ by Euler's criterion if $y \in \mathsf{QR}_p$)

- $\pm y^{\frac{p+1}{4}}$ are the square roots of $y \mod p$
- $\pm y^{\frac{q+1}{4}}$ are the square roots of $y \mod q$
- find 4 square roots modulo n = pq using CRT

- Security: Hardness of integer factorization
- **Disadvantage:** Decryption ambiguous 4 possible plaintexts as 4 square roots modulo a valid ciphertext y modulo n
- if $p \equiv 1 \pmod{4}$, no polynomial time deterministic algorithm to compute the square roots of QR_p
- restriction on p, q can be omitted at the expense of computation cost

RSA Cryptosystem

- Setup: n = pq, p, q are large primes
 - choose e, with $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$
 - $\operatorname{set} d \equiv e^{-1} \pmod{\phi(n)}$
 - $-\mathsf{PK} = (n, e), \, \mathsf{SK} = (d)$
- Encrypt: Message $M \in \mathbb{Z}_n^*$, PK

$$C \equiv M^e \pmod{n}$$

• Decrypt: Ciphertext C, SK

$$M \equiv C^d \pmod{n}$$

• Correctness:

- $-ed = k\phi(n) + 1, k \in \mathbb{Z} \text{ as } d \equiv e^{-1} \pmod{\phi(n)}$
- (Euler's theorem) $M^{\phi(n)} \equiv 1 \pmod{n}$ as $M \in \mathbb{Z}_n^*$
- $-C^{d} \equiv (M^{e})^{d} \equiv (M)^{k\phi(n)+1} \equiv M \ (M^{\phi(n)})^{k}$ $\equiv M \ (\text{mod } n)$
- Computational Aspects: primality test, gcd computation, modular inverse computation, fast exponentiation
- Security: Hardness of facorization problem.
 - if one knows n (always public) and $\phi(n)$, then the factorization n = pq can be readily obtained

Merkle-Hellman Knapsack Cryptosystem

- Based on the Subset Sum (Knapsack) problem
 - **Instance:** $I = (\vec{a} = (a_1, a_2, \dots, a_n), S)$, where a_1, \dots, a_n and S are positive integers. The a_i 's are called sizes and S is called the target sum.
 - Question: Is there a 0-1 vector $\vec{x} = (x_1, x_2, \dots, x_n)$ such that

$$\vec{a} \cdot \vec{x} = \sum_{i=1}^{n} a_i x_i = S?$$

• Subset sum problem is NP-complete problem, *i.e.*, there is no polynomial-time algorithm that solves it.

- However, certain special cases can be solved in polynomial time.
- Superincreasing sequence: A list of sizes (a_1, \ldots, a_n) is superincreasing if

$$a_j > \sum_{i=1}^{j-1} a_i$$

for $2 \le j \le n$.

• If the list of sizes in superincreasing, then Subset sum search problem can be solved in time O(n), and a solution \vec{x} (if it exists) must be unique.

• Algorithm for the subset sum problem

- 1. for i = n downto 1 do
- 2. if $S \geq a_i$ then
- $3. S = S a_i$
- 4. $x_i = 1$
- 5. else
- 6. $x_i = 0$
- 7. end do
- 8. if S=0 then $X=(x_1,\ldots,x_n)$ is the solution
- 10. **else** there is no solution

- Setup: $PK = (\vec{a}, m)$, SK = (w) generated as follows:
 - choose $\vec{a}' = (a'_1, \dots, a'_n)$, a superincreasing list of integers
 - choose m and w, two positive integers such that

$$m > \sum_{i=1}^{n} a'_i$$
 and $gcd(w, m) = 1$

- $\sec \vec{a} = (a_1, \dots, a_n) = w\vec{a}', i.e. \ a_i = wa_i' \mod m$
- Encrypt: Message $\vec{x} = \{x_1, \dots, x_n\} \in \{0, 1\}^n$, $\mathsf{PK} = (\vec{a}, m)$

$$C = \vec{a} \cdot \vec{x} = \sum_{i=1}^{n} x_i a_i \mod m$$

- Decrypt: Ciphertext $C = \vec{a} \cdot \vec{x} \in Z_m$, SK = (w)
 - compute $\vec{a}' = w^{-1}\vec{a}$
 - $\operatorname{set} S = w^{-1}C \mod m$
 - solve the subset sum problem $(\vec{a}' = (a'_1, \dots, a'_n), S)$ and recover the message $\vec{x} = (x_1, \dots, x_n)$
- Correctness: As \vec{a}' is superincreasing and

$$S = w^{-1}C = w^{-1}(\vec{a} \cdot \vec{x}) = (w^{-1}\vec{a}) \cdot \vec{x} = \vec{a}' \cdot \vec{x} \mod m$$
,
the subset sum problem $(\vec{a}' = (a'_1, \dots, a'_n), S)$ can be solved and the message $\vec{x} = (x_1, \dots, x_n)$ can be recovered

Probabilistic Encryption

- many possible encryption of each plaintext
- not feasible to test whether a given ciphertext is an encryption of a particular plaintext
- no information about the plaintext should be computable from the ciphertext (in polynomial time)

Goldwasser-Micali Cryptosystem

- Setup: n = pq, p, q are large primes
 - pseudosquare $m \in_R \widetilde{\mathsf{QR}}_n$, i.e. $\left(\frac{m}{p}\right) = \left(\frac{m}{q}\right) = -1$
 - $-\mathsf{PK} = (m,n),\,\mathsf{SK} = (p,q)$
- Encrypt: Message $x \in \{0, 1\}$, PK, $r \in_R Z_n^*$ $y = m^x r^2 \mod n$
- Decrypt: Ciphertext $y \in QR_n \cup QR_n$, SK $x = \begin{cases} 0 & \text{if } y \in QR_n \\ 1 & \text{if } y \notin QR_n \end{cases}$

(requires p, q to decide whether $y \in QR_n$ or not)

Correctness

• Jacobi symbol $(\frac{y}{n}) = 1$ as $y \in QR_n \cup \widetilde{QR}_n$. Then

$$y \in \mathsf{QR}_n \Longleftrightarrow \left(\frac{y}{p}\right) = 1$$

(i.e. No need to check $\left(\frac{y}{q}\right) = 1$)

- Compute $\left(\frac{y}{p}\right) \equiv y^{\frac{p-1}{2}} \pmod{p}$ by Euler's criterion, check whether $\left(\frac{y}{p}\right) = 1$. If so, conclude $y \in \mathbb{QR}_n$ and recover the message as x = 0
- Thus explicit knowledge of p (or q) is required for correct decryption

- **Security:** Simantically secure assuming Decisional Quadratic Residuosity (DQR) problem is hard.
- **DQR problem:** Given n = pq and $(\frac{y}{n}) = 1$, where p, q large unknown primes, decide whether $y \in QR_n$ or not.
- Homomorphic property: If y_0, y_1 are encryptions of x_0, x_1 respectively, then y_0y_1 is the encryption of $x_0 \oplus x_1$.

ElGamal Cryptosystem in \mathbb{Z}_p^*

- Setup: $Z_p^* = \langle \alpha \rangle$, p is a large primes so that DLP in Z_p is intractable
 - $\operatorname{set} \beta \equiv \alpha^a \pmod{p}$, where $0 \leq a \leq p-2$
 - $-\mathsf{PK} = (p, \alpha, \beta), \mathsf{SK} = (a)$
- Encrypt: Message $x \in \mathbb{Z}_p^*$, PK, $k \in_{\mathbb{R}} \mathbb{Z}_{p-1}^*$

$$C = (y_1, y_2), y_1 = \alpha^k \bmod p, y_2 = x \beta^k \bmod p$$

• Decrypt: Ciphertext $C = (y_1, y_2) \in Z_p^* \times Z_p^*$, SK

$$x = y_2(y_1^a)^{-1} \mod p$$

• Correctness:

$$y_2(y_1^a)^{-1} \equiv (x\beta^k)\{(\alpha^k)^a\}^{-1} \equiv x\{(\alpha)^a\}^k(\alpha^{ka})^{-1} \equiv x \pmod{p}$$

- Security: Simantically secure assuming Discrete Logarithm Problem (DLP) is hard in Z_p .
- **DLP problem:** Given $I = (p, \alpha, \beta)$, where p is prime, $\alpha \in Z_p$ is a primitive element, and $\beta \in Z_p^*$, find the unique integer $a, 0 \le a \le p-2$, such that

$$\alpha^a \equiv \beta \pmod{p}$$

(This integer a is denoted by $\log_{\alpha} \beta$)

Generalized ElGamal Encryption

- Setup: Let G be a finite group with group operation \circ
 - choose $H = \langle \alpha \rangle$, a subgroup of G, DLP is hard in H
 - choose $a \in_R Z_{|H|}$ and set $\beta = \alpha^a = \alpha \circ \alpha \circ \ldots \circ \alpha$
 - $-\mathsf{PK} = (p, \alpha, \beta), \mathsf{SK} = (a)$
- Encrypt: Message $x \in G$, $PK = (p, \alpha, \beta)$, $k \in_R Z_{|H|}$

$$C = (y_1, y_2), y_1 = \alpha^k, y_2 = x \circ \beta^k$$

• Decrypt: Ciphertext $C = (y_1, y_2) \in G \times G$, SK = (a)

$$x = y_2 \circ (y_1^a)^{-1}$$

• Correctness:

$$y_2 \circ (y_1^a)^{-1} = (x \circ \beta^k) \circ \{(\alpha^k)^a\}^{-1} = x \circ \{(\alpha)^a\}^k \circ (\alpha^{ka})^{-1} = x$$

- **Security:** Simantically secure assuming Discrete Logarithm Problem (DLP) is hard in (G, \circ) .
- **DLP problem in** (G, \circ) : Given $\langle G, \alpha \in G, \beta \in H \rangle$, where $H = \langle \alpha \rangle$ is a subgroup of G, find the unique integer $a, 0 \le a \le |H| 1$, such that $\alpha^a = \beta$.
- **Homomorphic property:** If C_0, C_1 are encryptions of x_0, x_1 respectively, then $C_0 \circ C_1$ is the encryption of $x_0 \circ x_1$.

Paillier Cryptosystem

- Setup: n = pq, p, q are large primes and $\gcd(n, \phi(n)) = 1$
 - $-\lambda = \mathsf{lcm}(p-1, q-1)$
 - choose $g \in \mathbb{Z}_{n^2}^*$ such that $n|\operatorname{ord}_{n^2}(g)$ to ensure

$$\gcd(L(g^{\lambda} \mod n^2), n) = 1, L(u) = \frac{u-1}{n}$$

- $-\mathsf{PK} = (n,g), \mathsf{SK} = (\lambda)$
- Encrypt: Message $m \in Z_n^*$, PK, $r \in Z_n^*$ $c = q^m \cdot r^n \mod n^2$

• Decrypt: Ciphertext $c \in Z_{n^2}^*$, $SK = (\lambda)$

$$m = \frac{L(c^{\lambda} \mod n^2)}{L(a^{\lambda} \mod n^2)} \mod n$$

• Correctness: (choosing $g = (n+1)^t \in Z_{n^2}^*$)

$$L(c^{\lambda} \mod n^2) = \frac{c^{\lambda} - 1}{n} = \frac{(1 + tnm\lambda) - 1}{n} = tm\lambda$$

$$L(g^{\lambda} \mod n^2) = \frac{(n+1)^t \lambda - 1}{n} = \frac{1 + nt\lambda - 1}{n} = t\lambda$$

$$\frac{L(c^{\lambda} \mod n^2)}{L(g^{\lambda} \mod n^2)} = \frac{mt\lambda}{t\lambda} = m \mod n$$

- **Security:** Simantically secure assuming Decisional Composite Residuosity (DCR) problem is hard.
- **DCR assumption:** Given n = pq and an integer z, where p, q large unknown primes, decide whether z is an n-residue modulo n^2 or not, i.e., whether there exists y such that

$$z \equiv y^n \mod n^2$$

• Given the Paillier encryptions of two messages, there is no known way to compute an encryption of the product of these messages without knowing the private key.

Homomorphic property

Homomorphic addition of plaintexts:

$$\mathcal{D}(\mathcal{E}(m_1, r_1) \cdot \mathcal{E}(m_2, r_2) \mod n^2) = m_1 + m_2 \mod n$$

$$\mathcal{D}(\mathcal{E}(m_1, r_1) \cdot g^{m_2} \mod n^2) = m_1 + m_2 \mod n$$

Homomorphic multiplication of plaintexts

$$\mathcal{D}(\mathcal{E}(m_1, r_1)^{m_2} \mod n^2) = m_1 m_2 \mod n$$

$$\mathcal{D}(\mathcal{E}(m_2, r_2)^{m_1} \mod n^2) = m_1 m_2 \mod n$$

More generally,

$$\mathcal{D}(\mathcal{E}(m_1, r_1)^k \bmod n^2) = km_1 \bmod n$$

- Useful property to design *advanced* cryptographic primitives for outsourcing of private computations, for instance, in the context of cloud computing
- Partially homomorphic cryptosystems RSA, ElGamal, GM, Paillier
- Fully homomorphic encryption supports arbitrary computation on ciphertexts (lattice-based cryptography)

Other Important PKC

- McEliece: This is based on algebraic coding theory (uses Goppa codes) and the security is based on the problem of decoding a linear code (which is NP-complete).
- Elliptic Curve: Elliptic Curve Crytosystems (ECC) work in the domain of elliptic curves rather than finite fields. The ECC appears to remain secure for smaller keys than other public-key crytosystems.

Digital Signature Schemes

- A standard digital signature scheme $\mathsf{DSig} = (Setup, Sign, Verify)$ consists of three algorithms.
 - 1. Setup: generates randomly public system parameters params and public/secret key pair PK, SK of a signer.
 - 2. Sign: generates a signature on a given message m using the secret key SK of a signer.
 - 3. Verify: checks the validity of a signature on a given message using the public key of a signer.

RSA signature

- Setup: n = pq, p, q are large primes
 - choose $a, 1 < a < \phi(n)$ with $gcd(\phi(n), a) = 1$
 - $\operatorname{set} b \equiv a^{-1} \pmod{\phi(n)}$
 - $-\mathsf{PK} = (n,b), \mathsf{SK} = (a)$
- Sign: Message $m \in \mathbb{Z}_n^*$, signing key $\mathsf{SK} = (a)$
 - $\sigma \equiv m^a \; (\bmod \; n)$
- Verify: Message m, signature σ , verification key $\mathsf{PK} = (n, b)$, verify

$$m \equiv \sigma^b \pmod{n}$$

ElGamal signature

- Setup: $Z_p^* = \langle \alpha \rangle$, p is a large primes so that DLP in Z_p is intractable
 - $\operatorname{set} \beta \equiv \alpha^a \pmod{p}$, where $0 \leq a \leq p-2$
 - $-\mathsf{PK} = (p, \alpha, \beta), \mathsf{SK} = (a)$
- Sign: Message $x \in Z_p^*$, signing key $\mathsf{SK} = (a), k \in_R Z_{p-1}^*$, signature $\sigma = (\gamma, \delta) \in Z_p^* \times Z_{p-1}$ where

$$\gamma = \alpha^k \bmod p$$

$$\delta = (x - a\gamma)k^{-1} \mod (p - 1)$$

• Verify: Message m, signature $\sigma = (\gamma, \delta)$, verification key $\mathsf{PK} = (p, \alpha, \beta)$, verify

$$\beta^{\gamma} \gamma^{\delta} \equiv \alpha^x \pmod{p}$$

• Correctness:

$$\beta^{\gamma} \gamma^{\delta} \equiv (\alpha^a)^{\gamma} (\alpha^k)^{\delta} \equiv \alpha^{a\gamma + k(x - a\gamma)k^{-1}} \equiv \alpha^x \pmod{p}$$

Digital Signature Algorithm (DSA)

- Setup: $PK = (p, q, \alpha, \beta)$, SK = (a) where
 - -p, a 512-bit prime such that DLP in Z_p is intractable
 - -q|(p-1), a 160-bit prime
 - $-\alpha \in \mathbb{Z}_p^*$, a q-th root of unity modulo p(i.e. α generates a subgroup of \mathbb{Z}_p^* of order q)
 - $\operatorname{set} \beta \equiv \alpha^a \pmod{p}$, where $0 \leq a \leq q$

- Sign: Message $x \in \mathbb{Z}_p^*$, signing key $\mathsf{SK} = (a)$,
 - choose $k, 1 \le k \le q 1$ and set signature $\sigma = (\gamma, \delta) \in Z_q \times Z_q$ where

$$\gamma = (\alpha^k \bmod p) \mod q$$

$$\delta = (x + a\gamma)k^{-1} \mod q$$

• Verify: Message m, signature $\sigma = (\gamma, \delta)$, verification key $\mathsf{PK} = (p, q, \alpha, \beta)$, verify

$$(\alpha^{e_1}\beta^{e_2} \mod p) \mod q = \gamma$$

where

$$e_1 = x\delta^{-1} \mod q$$
$$e_2 = \gamma\delta^{-1} \mod q$$

• Correctness:

as

$$\alpha^{e_1} \beta^{e_2} = \alpha^{x\delta^{-1}} (\alpha^a)^{\gamma\delta^{-1}} = \alpha^{(x+a\gamma)\delta^{-1}}$$

$$= \alpha^k = \gamma \mod p \mod q$$

$$\gamma = (\alpha^k \mod p) \mod q$$

$$\delta = (x + a\gamma)k^{-1} \mod q$$

Two-Party Key Agreement

(Diffie-Hellman, IEEE-IT, 1976)

• $G = \langle g \rangle$, order of G is q, a large prime

- security: hardness of DDH problem.
- DDH (Decision Diffie-Hellman) Problem in $G = \langle g \rangle$: given $\langle g, g^a, g^b, g^c \rangle$ for some $a, b, c \in Z_q^*$, decide whether $c = ab \mod q$.
- unauthenticated

Man-in-the-middle Attack

$$key_{1} = (g^{a})^{c}, key_{2} = (g^{b})^{c}$$

$$key_{1} = (g^{c})^{a} \quad g^{a}$$

$$A \quad g^{c}$$

$$a \quad g^{b}$$

$$B \quad b$$

• authentication - digital signature

Burmester-Desmedt Group Key Agreement (variant

Consider participants U_1, \ldots, U_n are on a *virtual* ring, $G = \langle g \rangle$ be a multiplicative group of some large prime order q and $\mathcal{H}: \{0,1\}^* \to Z_q^*$ be a hash function

- Round 1: U_i picks $x_i \in_R Z_q^*$ and broadcasts $X_i = g^{x_i}$
- Round 2: U_i on receiving X_{i-1} and X_{i+1} computes
 - $-K_i^L = X_{i-1}^{x_i}$, its left key
 - $-K_i^R = X_{i+1}^{x_i}$, its right key

and broadcasts $Y_i = \frac{K_i^R}{K_i^L}$

- Key Computation:
 - $-U_i$ computes

$$K_{i+1}^R = Y_{i+1} K_i^R \left(= \frac{K_{i+1}^R}{K_{i+1}^L} K_i^R \right)$$

$$K_{i+2}^R = Y_{i+2} K_{i+1}^R (= \frac{K_{i+2}^R}{K_{i+2}^L} K_{i+1}^R)$$

:

$$K_{i+(n-1)}^{R} = Y_{i+(n-1)} K_{i+(n-2)}^{R} \left(= \frac{K_{i+(n-1)}^{R}}{K_{i+(n-1)}^{L}} K_{i+(n-2)}^{R} \right)$$

Cryptography and Network Security, IIT Kharagpur, Autumn 2019

- U_i then verifies if $K_{i+(n-1)}^R = K_i^L (= K_{i+(n-1)}^R)$
- if verification fails, U_i aborts
- else U_i has correct right keys of all the users
- $-U_i$ computes the session key

$$\mathsf{sk} = K_1^R K_2^R \dots K_n^R = g^{x_1 x_2 + x_2 x_3 + \dots + x_n x_1}$$

- security: hardness of DDH problem.
- unauthenticated