Cezary Wernik

Asystent, KAKiT, WI, ZUT

6. Demodulacja dyskretna

Uwaga: Studencie! – na koniec zajęć laboratoryjnych **bezwzględnie zaktualizuj** swoje repozytorium/e-dysk, zawierające prace z zajęć laboratoryjnych tego przedmiotu. Brak systematycznych aktualizacji repozytorium może zostać uznany za brak dokumentacji postępu w realizacji zadań laboratoryjnych, co może skutkować oceną niedostateczną.

Skrót z teorii:

Dla poznanych na poprzednich zajęciach modulacji dyskretnych demodulacja odbywa się następująco:

dla $z_A(t)$ i $z_P(t)$ (ASK i PSK) :

dla $z_F(t)$ (FSK):

gdzie $\overline{m}'(t) \in \{0,1\}$ – sygnał zdemodulowany, p(t) – sygnał całkowy, h – próg komparatora.

Zadanie:

Wykonaj w formie programistycznej implementacji poniżej przedstawione zadania.

- 1) Wykorzystaj sygnały $z_A(t)$, $z_P(t)$ i $z_F(t)$ z poprzednich zajęć laboratoryjnych.
- 2) Zaimplementuj powyżej przedstawione demodulatory.
- 3) Na podstawie obserwacji sygnału p(t) dobierz eksperymentalnie wartość proguh.

W wyniku porównania z wartością progową na wyjściu komparatora wygenerować odpowiedź postacji:

$$\overline{m}'(t) = \begin{cases} 0 & p(t) < h \\ 1 & p(t) \ge h \end{cases}$$

4) Wygeneruj wykresy przedstawiajace wynik demodulacji dla rozpatrywanych sygnałów zmodulowanych (sygnały wejściowe: $x(t)/x_1(t)$, $x_2(t)$, p(t) oraz sygnał wynikowy $\overline{m}'(t)$).

Łącznie w wyniku działania twojego kodu powinno zostać wygenerowanych 13 wykresów z prawidłowo oznaczonymi osiami i wartościami. Następujące zestawy wykresów:

$$\{z_A(t), x(t), p(t), \overline{m}'(t)\}\$$

 $\{z_P(t), x(t), p(t), \overline{m}'(t)\}\$
 $\{z_F(t), x_1(t), x_2(t), p(t), \overline{m}'(t)\}\$

Kody i wykresy spakuj w katalog i umieść na swoim repozytorium.

< Poprzedni temat

Wydrukuj instrukcję

Następny temat >