Università degli Studi di Verona Master Degree in Scienze e Ingegneria Informatica

A Rule-Based Approach for Safe Information-Oriented Planning.

Date: 15/03/2022

Presented by

Nereo Sorio

Supervisor **Prof. Alessandro Farinelli** Co-Supervisor **Giulio Mazzi**

CONTENTS

- 1. Motivation
- 2. Basic Knowledge
- **3.** Thesis Contribution
- 4. Evaluation
- 5. Conclusions & Future Works

MOTIVATION

Mars Rover

Autonomous Self Driving Car

Planning is crucial to devise a sequence of actions to achieve a given goal.

We focus on a specific problem:

sequential decision making under uncertainty (POMDPs / ρ-POMDPs).

Overview of POMDPs

Extension of Markov Decision Processes that handles partial observability.

ACTIONS:

- OPEN-LEFT
- OPEN-RIGHT
- LISTEN

The uncertainty influences the reward indirectly.

SEQUENCE 1

- Listen
- Open Right

REWARD = +9 / -101

SEQUENCE 2

- Listen
- Listen
- Listen
- Open Right

REWARD = +7 / -103

Overview of POMCP

- Monte Carlo based.
- It generates approximate and online policies.
- It scales to large instances.
- Hard to explain.

Overview of Explainable POMCP (XPOMXP)

- Extract rules that give a compact representation of the POMCP policy.
- It uses traces that collects belief action pairs.

Overview of Explainable POMCP (XPOMXP)

- The goal is to define the missing elements (the confidence level of the door we want to open).
- The algorithm automatically find them observing the traces.

RULE TEMPLATE FORMULA

```
declare - var x , x , x , x prob;
declare - rule
action Listen \leftarrow \rightarrow p (right) < x_1 \land p (left) < x_2;
action Open \leftarrow \rightarrow p \text{ (right)} > x ;
action Open \leftarrow \rightarrow p \text{ (left)} > x_{4};
where (x_1 = x_2) \wedge (x_3 = x_4) \wedge (x_3 > 0.9).
```

Overview of ρ-POMDPs

Extension of POMDPs that directly quantifies the influence of the belief (belief dependent).

Allow to define not only control oriented objectives, but also information-oriented ones.

A recent work for solve ρ-POMDPs is ρ-POMCP which is an extension of POMCP.

REWARD = 0.15 + 0.85

Overview of p-POMCPs

0.15

ACTIONS:

- OPEN-LEFT
- OPEN-RIGHT
- LISTEN

SEQUENCE 1

- Listen
- Open Right

REWARD =

SEQUENCE 2

- Listen
- Listen
- Listen
- Open Right

REWARD =

1.

POMCP to
Handle
ρ-POMDPs &
Rule Synthesis.

2

Application Domains.

3.

Generation of **Extended Traces.**

1. Extending POMCP to Handle ρ-POMDPs

Implementation available on GitHub.

1. Extending POMCP to Handle ρ-POMDPs

Implementation available on GitHub.

2. Application Domains

ρ - TIGER

REWARD = 0.85 + 0.15

2. Application Domains

ρ - ROCKSAMPLE

ACTIONS:

- NORTH
- SOUTH
- WEST
- EAST
- CHECK_ROCK_I
- SAMPLE_ROCK

3. Generation of Extended Traces with STANDARD TRACES

- Belief of the Root Node
- Action taken
- Perceived Observation
- Reward Obtained

3. Generation of Extended Traces with STANDARD TRACES

- Belief of the Next Node
- Action that will be taken
- Observation that will be perceive
- Reward that will be obtain
- List of values of all possible actions starting from the next node

- ρ TIGER
- ρ ROCKSAMPLE

ρ - TIGER

c	x_1	x_3	n_E	total
20	0.762881	0.918019	53	214
50	0.825119	0.958646	32	475
80	0.95794	0.962695	1	525
110	0.955195	0.955373	0	514

RESULT AFTER RULE SYNTHESIS.

c	Discounted return	Undiscounted Return
20	-8.53	-8.74
50	2.02	2.95
80	4.22	5.75
110	3.24	4.56

REWARDS.

ρ-ROCKSAMPLE

Run	Standard Traces			Extended Traces		
	τ	n_E	total	τ	n_E	total
10	1	10	122	0.829703	15	140
20	0.757	14	256	0.711	27	291
30	0.735	21	399	0.711	39	450
40	0.735	26	528	0.701	49	594
50	0.735	34	631	0.701	61	709
60	0.725	43	782	0.701	81	884
70	0.701	51	915	0.701	95	1038
80	0.701	61	1059	0.701	106	1197
90	0.701	72	1203	0.701	120	1352
100	0.701	82	1381	0.701	133	1546

REWARD RANGE = 100

ρ-ROCKSAMPLE

CONCLUSION

This Integration between p-POMCP algorithm and XPOMCP is particularly relevant in complex problems, such as rock-sample, which contain thousands of possible states.

Thanks to the new method we can build rules that explain the behaviour the policy using fewer runs than POMCP.

Rule generation can be useful to better understand p-POMCP generated policies, and it is possible to use the properties to improve the process of trace generation.

FUTURE WORKS

1.

Apply the

extended

framework to

other domains.

2.

Defines rules that specify temporal properties.

3.

Implement extended traces in classical POMCP.

THANK YOU FOR YOUR ATTENTION.