Langages Formels, Calculabilité, Complexité

Mickaël Thomazo Lucas Larroque

5 octobre 2023

1

Table des matières

I Cours 1 28/09

1	Langages, Automates, RegExp, Monoïdes finis	1	
Π	Cours 2 - 5/10	2	
2	Lemme de Pompage	2	
3	Langages Quotients 3.1 Quotients d'un Langage à Gauche	3 3 3 3	
Première partie ${ m Cours} 1 28/09$			
1	Langages, Automates, RegExp, Monoïdes finis		
Définition 1.0.1. On appelle alphabet un ensemble fini Σ de lettres. On appelle mot une suite finie de lettres. On appelle langage un ensemble de mots			
ét Fo	Définition 1.0.2. On appelle automate sur l'alphabet Σ un graphe orienté dont les arêtes sont étiquetées par les lettres de l'alphabet Σ Formellement, c'est un quadruplet $\mathcal{A} = (Q, \Sigma, I, F, \delta)$ ou : — Q est un ensemble fini d'états		
	$\begin{array}{l} - \ \Sigma \ est \ un \ alphabet \\ - \ I \subseteq Q \\ - \ F \subseteq Q \\ - \ \delta : Q \times \Sigma \to 2^Q \end{array}$		
O	Un calcul de \mathcal{A} sur $w = a_0 \dots a_n$ est une séquence $q_0 \dots q_n$ telle que $q_0 \in I$, $\forall i \geq 1$, $q_i = q_{i-1}, a_i$) In appelle Langage reconnu par \mathcal{A} l'ensemble $\mathcal{L}(\mathcal{A}) = \{w \in \Sigma^* \mid \exists q_0 \dots q_n \text{ calcul de } \mathcal{A} \text{ sur } w \text{ où } n \text{ dit que } \mathcal{A} \text{ est déterministe } si :$		

$$- |I| = 1$$

Définition 1.0.3. Une expression régulière est de la forme :

- $-a \in \Sigma$
- \emptyset
- $-r+r \ (+ \ d\acute{e}signe \ l'union : L_1+L_2 = \{w \in L_1 \cup L_2\})$
- $r \cdot r$ (· désigne la concaténation : $L_1 \cdot L_2 = \{w_1 w_2 \mid w_1 \in L_1, w_2 \in L_2\}$)
- $r^* \ (* \ \textit{désigne l'étoile de Kleene}, \ L^* = \left\{ \underset{w \in s}{\bigodot} w \ \mid \ s \in \underset{n \in \mathbb{N}}{\bigcup} L^n \right\})$

Définition 1.0.4 (Automate des Parties). On pose, si $A = (Q, \Sigma, I, F, \delta)$ est un automate :

- $-\hat{Q} = 2^Q = \{q_S \mid S \subset Q\}$
- $-\hat{I} = \{q_I\}$
- $-\hat{F} = \{q_S \mid S \cap F \neq \varnothing\}$
- $-\hat{\delta}(q_S, a) = \{q_{S'}\} \text{ avec } S' = \bigcup_{q \in S} \delta(q, a)$

Alors, $\hat{A} = (\hat{Q}, \Sigma, \hat{I}, \hat{F}, \hat{\delta})$ est un automate déterministe reconnaissant $\mathcal{L}(A)$

Démonstration. On procède par double inclusion :

- (\subset) On introduit un calcul de $w \in \mathcal{L}(\mathcal{A})$ sur $\hat{\mathcal{A}}$ et on vérifie par récurrence que son dernier état est final.
- On procède de même pour la réciproque.

Définition 1.0.5. Un monoïde est un magma associatif unifère.

Un morphisme de monoïde est une application $\varphi:(N,\cdot_N)\to(M,\cdot_M)$ telle que :

- $-\varphi(1_N)=1_M$
- $\varphi(n_1 n_2) = \varphi(n_1) \varphi(n_2)$

Un langage L est reconnu par (M,\times) ssi il existe $P\subset M$ tel que $L=\varphi^{-1}(P)$ où φ est un morphisme de Σ^* dans M

Proposition 1.0.1. $L \subseteq \Sigma^*$ est reconnu par un automate ssi L est reconnu par un monoïde fini.

Démonstration. — Soit L reconnu par un monoïde fini (M, \times) . Soit φ un morphisme tel que $L = \varphi^{-1}(P), \ P \subset M$. On pose $\mathcal{A} = (M, \Sigma, \{1\}, P, \delta)$ où $\delta(q, a) = q \times \varphi(a)$. Alors, \mathcal{A} reconnaît L

— Soit \mathcal{A} , déterministe, complet, reconnaissant L. Pour $a \in \Sigma$, $a \to \varphi_a : q \in Q \mapsto \delta(q, a)$ induit par induction un morphisme de (Σ^*, \cdot) dans (Q^Q, \circ) . Alors, avec $P = \{f \in Q^Q \mid f(i) \in F_{\mathcal{A}}\}$. On a défini le monoïde des transitions de \mathcal{A} .

Deuxième partie

Cours 2 - 5/10

2 Lemme de Pompage

Théorème 2.0.1 (Lemme de Pompage/Lemme de l'Etoile). Si L est un langage régulier, $\exists n \in \mathbb{N}$ $\forall w \in L, |w| \geq n \Rightarrow \exists x, y, z \ tels \ que$:

- -w = xyz
- $-|xy| \le n$
- $-y \neq \varepsilon$
- $\ \forall n \ge 0, xy^nz \in L$

Démonstration. Faire un calcul de \mathcal{A} sur w tel que $|w| \geq n$. Celui-ci passe deux fois par le même état.

3 Langages Quotients

3.1 Quotients d'un Langage à Gauche

Définition 3.1.1 (Quotient à Gauche). Soit $L, K \subseteq \Sigma^*, u \in \Sigma^*$. Le quotient à gauche de L par u noté $u^{-1}L$ est : $\{v \in \Sigma^* \mid uv \in L\}$ Le quotient à gauche de L par K, $K^{-1}L$ est $\bigcup_{u \in K} u^{-1}L$

$$\begin{split} & \textbf{Proposition 3.1.1.} & - w^{-1}(K+L) = w^{-1}K + w^{-1}L \\ & - (wa)^{-1}L = a^{-1}(w^{-1}L) \\ & - w^{-1}(KL) = (w^{-1}K \cdot L) + \sum_{u \in L, v \in \Sigma^* w = uv} v^{-1}L \end{split}$$

3.2 Quotient d'un Automate à Gauche

Définition 3.2.1. On définit le quotient à gauche d'un automate par un mot u comme celui obtenu en remplaçant les états initiaux par les résultats d'un calcul de l'automate sur u.

Proposition 3.2.1. L'est régulier si et seulement si il a un nombre fini de quotients à gauche.

 $D\acute{e}monstration.$ — Un automate reconnaissant L a au plus un quotient par état.

— Posons $A_L = (\Sigma, \{u^{-1}L \mid u \in \Sigma^*\}, I = L = \varepsilon^{-1}L, F =, \delta(w^{-1}L, a) = a^{-1}(w^{-1}L))$ Par récurrence, le calcul de A_L sur w termine en $w^{-1}L$

3.3 Construction de l'Automate Minimal

Définition 3.3.1. Deux états q_1, q_2 sont distingables $si : \exists w \in \Sigma^*, \delta(q_1, w) \in F, \delta(q_2 \notin F)$.

Proposition 3.3.1. q_1 et q_2 sont distingables s'ils n'ont pas même quotient à gauche. Si $\delta(q, a)$ est distingable $\delta(q', a)$, q, q' sont distingables. La relation q, q' sont distingables est une relation d'équivalence.