Algoritmos de Busca na Resolução de Problemas

Prof. Ademir A. Constantino DIN/UEM

Busca na Resolução de Problemas

- Objetivo:
 - dado um *estado inicial* de um problema,
 encontrar o conjunto de operações que leve à solução (*estados finais*).

- O *espaço de estados* é representado por um grafo, onde:
 - vértice (ou nodo) é um estado;
 - aresta é uma possibilidade de transição.

Algoritmo de Busca

- Algoritmo de Busca:
 - um procedimento de exploração do espaço de estados.

- Operador de transição.
 - a transição de um estado (vértice) para outro é definida por um *operador*.
 - *operador* = gerador de sucessores.

Busca em largura (breadth-first)

```
Algoritmo Geral:

nodos <-- CRIAR-FILA(estado-inicial)

loop

se nodos é vazio retorna falha
nodo <-- TIRAR-PRIMEIRO(nodos)
se TESTE-SUCESSO(nodo) tem sucesso
retorna nodo

novos-nodos <-- EXPANDIR(nodo)
nodos <-- ACRESCENTAR-NO-FIM(nodos,novos-nodos)
```

fim

Nota: a função EXPANDIR retorna uma lista de *nodos* que representam os estados sucessores (adjacentes) do estado atual *nodo*.

Busca em largura - Aplicação ao tabuleiro de 8 peças.

Redução de estados repetidos

Busca em Largura - Aplicação na obtenção no menor caminho

Árvore de Busca em Largura

(solução X Solução Ótima)

Busca em profundidade (depth-first)

fim

Busca em Profundidade

- Aplicação na obtenção do menor caminho

Árvore de Busca em Profundidade

Menor caminho entre Guarapuava e Maringá

Busca em largura a custo uniforme (Dijkstra)

```
nodos <-- CRIAR-FILA(estado-inicial)
loop

se nodos é vazio retorna falha
nodo <-- TIRAR-PRIMEIRO(nodos)
se TESTE-SUCESSO(nodo) tem sucesso
    retorna nodo

novos-nodos <-- EXPANDIR(nodo)
nodos <-- ORDENAR(ACRESCENTAR-NA-FILA(nodos, novos-nodos))</pre>
```

Nota: a cada iteração o algoritmo escolhe o nodo de menor custo

fim

Exemplo1:

Comparação

• Os dois métodos, a busca em profundidade e a busca em largura, encontram a solução se ela existir, mas não garante o menor caminho.

Busca Heurística

Definições:

g(n) = custo no menor caminho entre o estado inicial e o estado n qualquer.

h(n) = custo do menor caminho entre o estado n e o estado final.

f(n) = o custo do caminho do estado inicial até o estado final passando pelo estado n.

$$f(n) = g(n) + h(n)$$

h'(n) - estimativa do custo do menor caminho entre o estado n e o estado final - *função heurística*.

Algoritmo A*

Algoritmo heurístico que a cada iteração escolhe um nó n com menor valor de f(n) = g(n) + h'(n).

Se
$$h'(n) \le h(n) = >$$
 denominamos de **Algoritmo A***

Se
$$h'(n) > h(n) ==>$$
 denominados de Algoritmo A^

Se $h'(n) \le h(n)$, então temos uma função heurística admissível.

Se $h'(n) \le h(n)$, existe prova que o algoritmo **A*** sempre encontra o caminho ótimo.

Algoritmo A*:

- Entrada:
 - -s: estado inicial;
 - t: estado final (mas pode ser substituído por um conjunto);
- Saída:
 - Se sucesso, retorna-se o caminho da solução.

Algoritmo A*:

• Notações:

- -A: conjunto dos estados abertos;
- -F: conjunto dos estados fechados;
- S: conjunto dos estados iniciais;
- -T: conjunto dos estados finais;
- -P(s): ponteiro para o pai do nó s;
- $-\Gamma(v)$: conjunto dos estados sucessores de v.

Algoritmo A*:

- a) $A \leftarrow S$, $F \leftarrow \emptyset$. Para $\forall s \in S$ faça:
 - Calcule h'(s) e $g(s) \leftarrow 0$; $P(s) \leftarrow 0$;
- b) Se $A=\emptyset$, pare com fracasso. Senão, tome $v \in A$ tal que $f(v)=\min\{f(n), \forall n \in A,\}$ desempatando de qualquer forma, mas sempre favorecendo a $v \in T$ e faça $A \leftarrow A \{v\}$ e $F \leftarrow F \cup \{v\}$.
- c)Se $v \in T$, para com sucesso. Senão, gere $\Gamma(v)$. Se $\Gamma(v) = \emptyset$, volte a b).
- d)Para cada $m \in \Gamma(v)$ faça:

```
calcule g(m);
```

Se
$$m \notin A \cup F$$
 ou $(m \in A \cup F \in g(m) < g(m') | m' = m))$
então $A \leftarrow A \cup \{m\} \in F \leftarrow F - \{m\} \text{ (se } m \in F)$
 $P(m) \leftarrow v$; e calcule $h'(m)$;

volte a b).

Algoritmo A* (versão II)

```
A \leftarrow S, F \leftarrow \emptyset.
Para \forall s \in S faça:
        Calcule h'(s) e g(s) \leftarrow 0; P(s) \leftarrow 0;
Enquanto \exists v \in \{v \in A \mid f(v) = \min\{f(n), \forall n \in A\} \text{ e } v \notin T\} faça:
   Seja v \in \{v \in A \mid f(v) = \min\{f(n)\}\}
   A \leftarrow A - \{v\} \in F \leftarrow F \cup \{v\}.
   Para cada m \in \Gamma(v) faça:
       Calcule g(m);
               Se \exists m' \in A \mid m' = m \text{ e } g(m) < g(m') \text{ então}
            A \leftarrow A - \{m'\};// remova de A porque encontramos um caminho melhor
               Se \exists m' \in F \mid m' = m \text{ e } g(m) \leq g(m') \text{ então }^*
            F \leftarrow F - \{m'\}; // remova de F porque encontramos um caminho melhor
       Se m∉AUF então
            A \leftarrow A \cup \{m\};
           P(m)\leftarrow v;
           Calcule h'(m);
Se \exists v \in \{v \in A \mid f(v) = \min\{f(n), \forall n \in A\} \in v \in T\} então Sucesso, senão Fracasso.
```

^{*:} isto nunca irá acontecer se tivermos uma heurística admissível, mas em games é comum termos heurística não admissivel.

Heurísticas

Se $h1(n) < h2(n) \le h(n)$, então dizemos que a função heurística h2 é **mais** informada.

- Como encontrar uma função heurística?
- Dicas:
 - Imaginar o mesmo problema com menos restrições;
 - Se não tiver jeito de escolher entre duas heurística h1(n) e h2(n), usar $h(n)=\max(h1(n), h2(n))$;
 - usar informações estatísticas;
 - identificar as características de um estado que são úteis para definir a heurística.

Exemplo1 - mapa do Paraná.

Exemplo 2: Cubo Mágico

Ideias para o Cubo Mágico

- Heurísticas para h (sugestões):
 - h'1: a soma das cores fora de sua posição final*;
 - h'2: a soma das distâncias retangular de cada cor para levá-la para sua posição final*;
 - h'3: outra ideia?

Heurística final:

- h'= p1*h'1 +p2* h'2 +p3* h'3; sendo p1, p2 e p3 pesos entre 0 e 1 de cada heurística.
- exceto para o caso em que as cores apareçam em sequência que com uma ou duas rotações todas elas sejam posicionadas.

Ideias para o Cubo Mágico

Ideias para o Cubo Mágico

• Operador de rotação

Exemplo 3 – Tabuleiro de 15 peças

- Versão de 8 peças tem 181,440 estados possíveis.
- Versão de 15 peças tem 10,461,394,944,000 estados possíveis.

Exemplo 3 - tabuleiro de 15 peças

- Funções heurísticas possíveis:
 - h'1(n) = número de peças foras de seu lugar na configuração final;
 - h'2(n) = número de peças fora de ordem seguindo a sequência de posições definida pela sequência numérica do estado final;
 - h'3(n) = para cada peça fora de seu lugar somar a distância retangular (quantidade de deslocamentos) para colocar em seu devido lugar. Neste caso considera-se que o caminho esteja livre para fazer o menor número de movimentos.
- Para este problema podemos:
 - usar apenas uma das funções;
 - fazer uma combinação do tipo: $h'(n) = p_1 h'1(n) + p_2 h'2(n) + p_3 h'3(n)$, tal que $p_1 + p_2 + p_3 = 1$;
 - ou h'(n) = $\max(h'1(n), h'2(n), h'3(n))$

