Završni pismeni ispit

14. lipnja 2017.

Ime i Prezime:

Matični broj:

Napomena: Sve primljene materijale obvezno predati s rješenjima nakon završetka testa.

1. zadatak (12 bodova)

Kinematički model mobilnoga robota s nesigurnostima zadan je sljedećim jednadžbama

$$f(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}) = \begin{bmatrix} x_k + (D_k + w_{D,k})\cos(\Theta_k + \Delta\Theta_k + w_{\theta,k}) \\ y_k + (D_k + w_{D,k})\sin(\Theta_k + \Delta\Theta_k + w_{\theta,k}) \\ \Theta_k + \Delta\Theta_k + w_{\theta,k} \end{bmatrix}, \qquad Q = \begin{bmatrix} \sigma_{\theta}^2 & 0 \\ 0 & \sigma_D^2 \end{bmatrix},$$

gdje $x_{k+1} = [x_{k+1} \ y_{k+1} \ \Theta_{k+1}]$ određuje lokaciju i orijentaciju robota u trenutku k+1, $\Delta\Theta_k$ i D_k su upravljačke varijable pri čemu se smatra da se robot prvo zakrene za kut $\Delta\Theta_k$, a nakon toga pomakne za udaljenost D_k . Šumovi $w_{\theta,k}$ i $w_{D,k}$ predstavljaju šum mjerenja zakreta, odnosno pomaka robota, s odgovarajućom matricom kovarijanci Q. Ako je $\hat{x}_k^+ = [2.5 \ 1.0 \ \pi/2]$, $D_k = 0.4$ te $\Delta\Theta_k = \pi/4$, koristeći prošireni Kalmanov filtar potrebno je:

- a) (4 boda) Odrediti matrice Φ i L u radnoj točki $\hat{x}_k^+ = [\hat{x}_k^+ \hat{y}_k^+ \hat{\Theta}_k^+]$.
- b) (4 boda) Izračunati unaprijednu estimaciju stanja \hat{x}_{k+1}^- .
- c) (4 boda) Postaviti jednadžbu unaprijedne estimacije matrice kovarijanci P_{k+1}^- .

 Napomena: Matrice nije potrebno izmnožiti, ali je pojedine matrice potrebno izračunati i eksplicitno napisati!

2. zadatak (8 bodova)

Zadan je skup slučajnih varijabli $\{x_1, x_2, \dots, x_n\}$, gdje x_i , $i = 1 \dots n$, ima srednju vrijednost \bar{x} i varijancu σ^2 . Pretpostavite da je $E[(x_i - \bar{x})(x_j - \bar{x})] = 0$ za $i \neq j$. Srednju vrijednost i varijancu skupa estimiramo na sljedeći način:

$$\hat{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\bar{x}})^2.$$

- a) (2 boda) Je li \hat{x} nepristran estimator srednje vrijednosti \bar{x} ? Dokažite!
- b) (4 boda) Izračunajte $E[x_ix_j]$ u ovisnosti o \bar{x} i σ^2 za slučajeve i=j i $i\neq j$.
- c) (2 boda) Ako je očekivana vrijednost estimatora varijance σ^2

$$E[\hat{\sigma}^2] = \frac{(n-1)\sigma^2}{n},$$

je li $\hat{\sigma}$ nepristran estimator? Objasnite! Ako nije, predložite izmjenu računanja $\hat{\sigma}$ kako bi uvjet nepristranosti bio zadovoljen.

3. zadatak (8 bodova)

Zadan je skalarni sustav:

$$x_k = \frac{1}{4}x_{k-1} + w_{k-1},$$
$$y_k = 2x_k + v_k,$$

gdje su procesni i mjerni šum, w_{k-1} i v_k , bijeli i nekorelirani šumovi varijanci Q i R.

- a) (5 boda) Izračunajte ustaljenu vrijednost varijance estimacije P_{∞}^+ i Kalmanova pojačanja K_{∞} ako su Q=1 i R=2.
- b) (3 boda) Je li ustaljeni diskretni Kalmanov filtar optimalan estimator za navedeni sustav? Koje su prednosti ustaljenog Kalmanovog filtra? Objasnite!

4. zadatak (12 bodova)

Za sustav opisan sljedećim jednadžbama:

$$x_k = \Phi_{k-1} x_{k-1} + \Gamma_{k-1} u_{k-1} + L_{k-1} w_{k-1},$$

$$y_k = H_k x_k + v_k,$$

gdje su procesni i mjerni šum, w_{k-1} i v_k , bijeli i nekorelirani šumovi varijanci Q i R, potrebno je:

- a) (5 bodova) Izvesti jednadžbe diskretnog Kalmanovog filtra za unaprijednu estimaciju stanja sustava \hat{x}_k^- i matrice kovarijanci pogreške estimacije P_k^- .
- b) (2 boda) Pri izvodu Kalmanova pojačanja, što čini kriterijsku funkciju, tj. što točno minimizira Kalmanov filtar i na što se konačno svodi kriterij? Objasnite, nije potreban izvod!
- c) (5 bodova) Ako je naknadna estimacija matrice kovarijanci pogreške estimacije $P_k^+ = (I K_k H_k) P_k^- (I K_k H_k)^{\mathrm{T}} + K_k R_k K_k^{\mathrm{T}}$, koristeći zaključak iz podzadatka b) izvedite jednadžbu za računanje optimalnog Kalmanovog pojačanja.