PROJECT DESIGN

PHASE-I

PROPOSED SOLUTION

Date	24 September 2022
Team ID	PNT2022TMID00047
Draiget Nama	Developing a Flight Delay Prediction Model using
Project Name	Machine Learning

S.NO.	PARAMETER	DESCRIPTION
1.	Problem statement	 Over the last twenty years, air travel has been increasingly preferred among travelers, mainly because of its speed and in some cases comfort. This has led to phenomenal growth in air traffic and on the ground. An increase in air traffic growth has also resulted in massive levels of aircraft delays on the ground and in the air. These delays are responsible for large economic and environmental losses. The main objective of the model is to predict flight delays accurately in order to optimize flight operations and minimize delays.
2.	Idea / solution description	 Using a machine learning model, we can predict flight arrival delays. The input to our algorithm is rows of feature vector like departure date, departure delay, distance between the two airports, scheduled arrival time etc. We then use decision tree classifier to predict if the flight arrival will be delayed or not. A flight is considered to be delayed when difference between scheduled and actual arrival times is greater than 15 minutes. Furthermore, we compare decision tree classifier with logistic regression and a simple neural network for various figures of merit. Provides a help and support corner.
3.	Novelty/Uniqueness	 Sending notifications about flight delays to the user. Simultaneous access by a number of users at a time.

		This model is beneficial for both aviation industry and
		passenger travel.
		Delays are calculated against scheduled block times as well as
		against more idealized feasible flight times.
	Social impact	Based on econometric estimations, welfare impacts of flight
4.		delays are calculated.
		We find that flight delays on a route reduce passenger demand
		and raise airfares, producing significant decreases in both
		consumer and producer welfare.
		Since producer welfare effects are estimated to be three times
		as large as consumer welfare effects
		Flight delay has become widespread in the United States with
		nearly one-quarter of all flights delayed by more than 15
		minutes in 2007.
5.	Business model	US net welfare would increase by \$17.6 billion for a 10 per cent
		reduction in flight delay and by \$38.5 billion for a 30 per cent
		reduction.
		Compatibility with all devices.
		The assessment of all the contributing factors is proposed.
	Feasibility of idea	This model can be used to obtain future flight fluctuations
6.		before scheduling future flights, then guide the allocation of
		airport resources such as parking spaces and optimize resource
		utilization.
		Two open datasets of airline flights and weather observations
	Scalability of solution	have been collected and exploratory data analysis has been
		performed to discover initial insights, evaluate the quality of
		data, and identify potentially interesting subsets.
		Then, data pre-processing and transformation (joining and
		balancing operations) have been performed to make data ready
		for modelling. Finally, a parallel version of the Random Forest
		data classification algorithm has been implemented, iteratively
		calibrating its settings to optimize results in terms of accuracy
7.		and recall.
		The data preparation and mining tasks have been
		implemented on a Cloud infrastructure.
		Other than providing the necessary computing resources for
		our experiments, the Cloud makes the proposed process more
		general: in fact, if the amount of data increases (e.g., by
		extending the analysis to many years of flight and weather data),
		the Cloud can provide the required resources with a high level of
		elasticity, reliability, and scalability
L	<u>I</u>	