Отчет по лабораторной работе №3

Модель боевых действий. Вариант 34

Бармина Ольга Константиновна 2022 Feb 22th

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	12
6	Список литературы	13

List of Figures

4.1	рис 1. Код задачи №1										9
4.2	рис 2. Результат симуляции №1 .										10
4.3	рис 3. Код задачи №2										10
4.4	рис 4. Результат симуляции №2 .										11

List of Tables

1 Цель работы

Целью данной работы является построение математической модели боевых действий с помощью OpenModelica.

2 Задание

В ходе работы необходимо:

- 1. Рассмотреть 3 модели боя:
 - 1. Модель боевых действий между регулярными войсками
 - 2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов
 - 3. Модель боевых действий между партизанскими отрядами
- 2. Построить графики y(t) и x(t)
- 3. Найти условие, при котором та или другая сторона выигрывают бой (для каждого случая).

3 Теоретическое введение

Моделирование боевых и военных действий является важнейшей научной и практической задачей, направленной на предоставление командованию количественных оснований для принятия решений.

Первые модели боя были разработаны в годы первой мировой войны, а в настоящее время они получили широкое распространение в связи с массовым внедрением средств автоматизации. Вместе с тем в моделях боя и войны не в полной мере учитывается моральный потенциал участников конфликта, что побуждает и мотивирует дальнейшее развитие моделей боя и войны. [1]

В первом случае численность регулярных войск определяется тремя факторами:

- скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство);
- скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.);
- скорость поступления подкрепления (задаётся некоторой функцией от времени). [2]

В этом случае модель боевых действий между регулярными войсками описывается следующим образом:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t)$$

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t) и -h(t)y(t), члены -b(t)y(t) и -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t) и c(t) указывают на эффективность боевых действий со стороны у и х соответственно, a(t) и h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления к войскам X и У в течение одного дня.

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

Модель ведение боевых действий между партизанскими отрядами с учетом предположений, сделанном в предыдущем случаем, имеет вид:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)x(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

4 Выполнение лабораторной работы

1. Напишем программу для построения модели боевых действий между регулярными войсками, используя вышеприведеннные уравнения. Используем OpenModelica.

```
model war2
 2
      parameter Real a = 0.31;
 3
      parameter Real b = 0.79;
 4
      parameter Real c = 0.41;
 5
      parameter Real h = 0.32;
 6
 7
      parameter Real x0 = 150000;
      parameter Real y0 = 100000;
 9
10
      Real t = time;
11
      Real x(start = x0);
12
      Real y(start = y0);
13
14
    equation
15
      der(x) = -a*x-b*y+2*sin(t);
      der(y) = -c*x-h*y+2*cos(t);
16
    end war2;
17
18
```

Figure 4.1: рис 1. Код задачи №1

2. Совершим симуляцию результатов в период от 0 до 1 с шагом 0.5. Выведем графики для х и у на экран.

Figure 4.2: рис 2. Результат симуляции №1

3. Изменим программу для построения модели ведение боевых действий с участием регулярных войск и партизанских отрядов, корректируя коэффициенты уравнений.

```
1
    model war1
 2
      parameter Real a = 0.45;
 3
      parameter Real b = 0.85;
 4
      parameter Real c = 0.45;
 5
      parameter Real h = 0.45;
 6
 7
      parameter Real x0 = 150000;
      parameter Real y0 = 100000;
 9
10
      Real t = time;
11
      Real x(start = x0);
12
      Real y(start = y0);
13
14
    equation
15
      der(x) = -a*x-b*y+sin(t+8)+1;
      der(y) = -c*x-h*y+cos(t+8)+1;
16
17
    end war1;
18
```

Figure 4.3: рис 3. Код задачи №2

4. Совершим симуляцию результатов в период от 0 до 1 с шагом 0.5. Выведем графики для ${\bf x}$ и ${\bf y}$ на экран.

Figure 4.4: рис 4. Результат симуляции №2

5 Выводы

В ходе работы мы рассмотрели 3 модели боя: модель боевых действий между регулярными войсками, модель ведение боевых действий с участием регулярных войск и партизанских отрядов и модель боевых действий между партизанскими отрядами. Мы построили графики у(t) и х(t) и нашли условие, при котором та или другая сторона выигрывают бой.

6 Список литературы

- 1. В.В. Шумов, В.О. Корепанов "КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕ-ЛИРОВАНИЕ", 2020 Т.12 №1 С.217–242 (http://www.crm.ics.org.ru/uploads/crmissues/crm_
- 2. Методические материалы курса