IDA Projekt 1:Income

by Anthony Fernando

Content

- Daten Analyse
- Methoden/Workflow
 - Data Pre-processing/Vorverarbeitung
 - Feature Selection
 - Evaluation Metriken
 - Model Train/ Tune/ Validierung/Vorhersage
- Ergebnisse/Diskussion

Daten Analyse

Allgemein

- 30.000 Instanzen und 15 Features
- Numerische und Kategorische Daten
- Missing values/NA:
 - Employment-type: 1677
 - Employment-area: 1682
 - o Country: 539
 - o Income: 25000
 - o 25420 Instanzen mit mind, einen NA

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 15 columns):

Duca	cotamins (total 15 cotamins):		
#	Column	Non-Null Count	Dtype
0	Age	30000 non-null	int64
1	Employment_type	28323 non-null	object
2	Interview_dependent_weight	30000 non-null	int64
3	Education_level	30000 non-null	object
4	Schooling/training_period	30000 non-null	int64
5	Marital_Status	30000 non-null	object
6	Employment_area	28318 non-null	object
7	Partnership	30000 non-null	object
8	Ethnicity	30000 non-null	object
9	Gender	30000 non-null	object
10	Gains	30000 non-null	int64
11	Losses	30000 non-null	int64
12	Weekly_working_time	<u>30000</u> non-null	int64
13	Country	29461 non-null	object
14	Income	5000 hon-null	object
	1 101(0)		

dtypes: int64(6), object(9) memory usage: 3.4+ MB

Korrelations-plot für alle Numerischen Features

- Keine große (positive) Korrelation
- Maximale Korrelation zwischen
 - Weekly working time und Schooling/Trainings (0.15)
 - Gains und Schooling/Trainings (0.12)

Employment Type

Private	20901
Self-emp-not-inc	2363
Local-gov	1928
State-gov	1189
Self-emp-inc	1037
Federal-gov	887
Without-pay	13
Never-worked	5

Employment Area (Beschäftigungsbereich)

Prof-specialty	3802
Craft-repair	3784
Exec-managerial	3736
Adm-clerical	3507
Sales	3370
Other-service	3044
Machine-op-inspct	1846
Transport-moving	1473
Handlers-cleaners	1252
Farming-fishing	913
Tech-support	856
Protective-serv	583
Priv-house-serv	144
Armed-Forces	8

Country

- mehr als 90%stammen aus denUSA
- -> der Rest ist mit2% oder wenigervertreten
- -> Anzeichen für ein Imbalance Feature

Ethnicity

- "White" ist am häufigsten vorhanden
- 2. häufigster Wert mit nur 9 % ist "Black"
- ähnliche Verteilung wie beim Income die mehr oder weniger als 50 K verdienen

Income

- Etwas 2/3 der Samples verdienen weniger als 50 k.
- ein 1/3 davon verdienen mehr als 50 k.
- ->also moderates Class
 Imbalance vorhanden

Pre-processing/Datenvorverarbeitung: Löschen nicht relevanter Features/Attribute

- Ethnicity
 - Diskriminierung
- Country
 - mehr als 90 % aus USA
 - Unausgeglichenes Feature

Pre-processing: Füllen NA

- Employment_type
 - Max Wert
 - >Die meisten Instanzen haben "private" als employment type
- Employment_area
 - Median Wert
 - Werte sind "fast" gleichmäßig verteilt
 - Mean ungeeignet für Kategorischen werten

3802
3784
3736
3507
3370
3044
1846
1473
1252
913
856
583
144
8

Private	20901
Self-emp-not-inc	2363
Local-gov	1928
State-gov	1189
Self-emp-inc	1037
Federal-gov	887
Without-pay	13
Never-worked	5

Feature selection: Tree.Feature Importances

Besten 5 Features

Ausgesuchte ML Modelle

Random Forest

- Hohe Performance beim klassifizieren und vorhersagen, selbst mit wenig Daten(unser Datensatz)
- HP tune nicht so relevant
- Kann mit diskreten und kontinuierlichen werten arbeiten (unser Datensatz)
- Ersatz für Neuronale Netze

Decision Tree

- Kann mit diskreten und kontinuierlichen werten arbeiten (unser Datensatz)
- Einfach zu interpretieren
- Vergleich zwischen 1 Baum vs. Mehrer Bäume

SVM Classifier

- Vermutung das" Daten linear separiert" sind nicht mehr notwendig
- Findet beste lineare hypertrennebene
- Nutz Kerneltrick
- Geringe Chance f
 ür Overfitting

Logistische Regression

- Keine Annahme über die Verteilung der Klassen (Class Imbalance egal)
- Bases Model
- Bei niedrig Dimensionalen Datensatz und genug Training-instanzen: Weniger anfällig für Overfitting

Hyperparameter für die jeweiligen Modelle

• Random Forest: # d. Bäume [1-100]

• Tiefe: 4

Decision Tree : Tiefe des Baumes[1-54]

Gewählt anhand der Feature Zahl

Criterion: Entropy

SVM Classifier: C(Regularization parameter)[100, 10, 1.0, 0.1, 0.001]

• Gamma: Auto

- Logistische Regression : C(Regularization parameter)[100, 10, 1.0, 0.1, 0.001]
 - L2 Regularisierer
 - -> es wurde nur ein Parameter getuned um fairen vergleich zu machen
 - -> nicht bei allen Modellen gab es immer 2 eindeutige Parameter
 - -> Parameter für Random Forest, SVM und Logistische Regression basieren auf Literatur suche

Evalutions Metriken

- Accuracy
 - Mittelwert und Standardabweichung
 - -> SD um zu sehen wie stark sie vom Mittelwert streuen
- F1 Score
 - Gute für unausgeglichen daten
- Konfusion Matrix
 - Um zu sehen wie viele Klassen falsch klassifiziert wurden
- k-fold cross-validation
 - k=5
 - Um Overfitting zu vermeiden
- ROC /AUC

Model Training/Tuning/Testing

Result: Attribut[1, .., #Werte] mit Feature Selection

Attribut [1, .., #Werte] 70 % Train

ML Model	Best Parameter	Accuracy(Mittel wert)	Accuracy(SD)
Random Forest	# d. Bäume : 50	0.830	0.005
Decision Tree	Tiefe des Baumes: 5	0.829	0.007
SVM	C: 10	0.827	0.006
Logistische Regression	C: 0.001	0.788	0.010

Bestes

Result: Attribut [1, .., #Werte] mit Feature Selection

ML Model	Accuracy	Precision	Recall	F1-Score	30 % Validate
Random Forest	0.841	0.733	0.465	0.569	Attribut [1,, #Werte]
Decision Tree	0.846	0.729	0.506	0.597	Bestes
SVM	0.847	0.746	0.487	0.589	Schlechtestes
Logistische Regression	0.801	0.742	0.181	0.291	

Result: Attribut [1, .., #Werte] ohne Feature Selection

Attribut [1, .., #Werte] 70 % Train

ML Model	Best Parameter	Accuracy(Mittel wert)	Accuracy(SD)
Random Forest	# d. Bäume: 40	0.832	0.007
Decision Tree	Tiefe des Baumes: 4	0.830	0.008
SVM	C:10	0.821	0.012
Logistische Regression	C: 0.001	0.786	0.013

Bestes

Result: Attribut [1, .., #Werte] ohne Feature Selection

ML Model	Accuracy	Precision	Recall	F1-Score	30 % Validate
Random Forest	0.845	0.764	0.454	0.569	Attribut [1,, #Werte]
Decision Tree	0.845	0.716	0.520	0.603	Bestes
SVM	0.839	0.681	0.542	0.604	Schlechtestes
Logistische Regression	0.806	0.716	0.232	0.351	

Result: One-Hot-Encoding mit Feature Selection

One Hot Encoding	70 % Train
One flot Endoding	70 /0 TTAIIT

ML Model	Best Parameter	Accuracy(Mean)	Accuracy(SD)
Random Forest	# d. Bäume :98	0.834	0.007
Decision Tree	Tiefe des Baumes: 4	0.834	0.009
SVM	C: 1.0	0.829	0.008
Logistische Regression	C: 0.001	0.789	0.010

Bestes

Result One-Hot-Encoding mit Feature Selection

ML Model	Accuracy	Precision	Recall	F1-Score	30 % Validate
Random Forest	0.845	0.732	0.494	0.590	One Hot Encoding
Decision Tree	0.848	0.735	0.513	0.604	Bestes Schlechtestes
SVM	0.844	0.723	0.502	0.593	<u>John Contestes</u>
Logistische Regression	0.797	0.700	0.181	0.287	

Result: One-Hot-Encoding ohne Feature Selection

One Hot Encoding 70 % Train

ML Model	Best Parameter	Accuracy(Mean)	Accuracy(SD)
Random Forest	# d. Bäume:35	0.829	0.009
Decision Tree	Tiefe des Baumes: 4	0.832	0.009
SVM	C: 1.0	0.828	0.011
Logistische Regression	C: 0.001	0.791	0.011

Bestes

Result: One-Hot-Encoding ohne Feature Selection

ML Model	Accuracy	Precision	Recall	F1-Score
Random Forest	0.836	0.819	0.351	0.491
Decision Tree	0.847	0.721	0.524	0.607
SVM	0.858	0.734	0.579	0.647
Logistische Regression	0.803	0.684	0.240	0.355

30 % Validate

One Hot Encoding

Bestes

Result: Finales Model Test vergleich

20 % Test

ML Model	Numeric /One hot	Feature Selectio n	Accurac y	Precisio n	Recall	F1- Score
Decision Tree	Numeric	Yes	0.853	0.788	0.547	0.646
Decision Tree	Numeric	No	0.850	0.771	0.551	0.643
Decision Tree	One Hot	Yes	0.854	0.793	0.547	0.647
SVM	One Hot	No	0.848	0.702	0.565	0.626

Bestes

ROC Kurve für das beste Model(Model 3)

Vorhersage Ergebnisse für alle 4 Modelle

Decision Tree/Numeric/Ja

0 0.835361

1 0.164639

Decision Tree/One Hot/Ja 0 0.835041 1 0.164959

0 0.755751 1 0.244249