FAbstracts: How can we get the best of all systems?

,

AITP 2018

Cezary Kaliszyk Karol Pak

FAbstracts project

How do we understand it?

- Provide statements and definitions
- For all known results in Math++ (and major assumptions)
- Computer understandable

We also want: language close to standard mathematics

- Extensible notation language
- High level of disambiguation

We also want: expressible foundations

- No need to "deep embed"
- Definitions should not need too much reformulation

We also want: consistent library

FAbstracts inspired by many proof assistants

HOL and Isabelle/HOL

- Simplicity of the foundations
- Ease of use
- Notations (ML Parse translations)

Type Theory-based systems

- Powerful foundations allowing reasoning in many domains
- Reflection

Set theory based systems?

Not so much?

FAbstracts inspired by many proof assistants

HOL and Isabelle/HOL

- Simplicity of the foundations
- Ease of use
- Notations (ML Parse translations)

Type Theory-based systems

- Powerful foundations allowing reasoning in many domains
- Reflection

Set theory based systems?

- Foundations maybe more familiar for mathematicians
- Soft types
- Structures with (multi-)inheritance

Could FAbstracts take inspiration from Mizar?

Proof Assistant

- Many features quite different from the usual
- Developed by mathematicians for mathematicians
- Initially as a type-setting system

Could FAbstracts take inspiration from Mizar?

Proof Assistant

- Many features quite different from the usual
- Developed by mathematicians for mathematicians
- Initially as a type-setting system

Math type-setting system (1971)

- Extended to check proofs (in 1973)
- Consistent library of formalized Math (1980s)

Natural deduction

Stays as long as possible in first-order logic

Foundations

- Set Theory (with universes, rarely used)
- Dependent soft type system and type inference mechanism

Other Mizar features

Rich input language and LaTEX generation

- Contextual parsing: more than 100 meanings of "+"
- Journal of Formalized Mathematics

Focus on mathematics

- A lot not covered elsewhere (lattices)
- Much less computer related proofs (random access Turing machines)

The system has evolved

unfortunately many features have not changed since the 1980s...

Can we express it all in a modern logical framework?

1. SQUARE ROOTS OF PRIMES ARE IRRATIONAL

For simplicity, we adopt the following convention: k, n, p, K, N are natural numbers, x, y, e_1 are real numbers, s_1 , s_2 , s_3 are sequences of real numbers, and s_4 is a finite sequence of elements of \mathbb{R} .

Let us consider x. We introduce x is irrational as an antonym of x is rational.

Let us consider x, y. We introduce x^y as a synonym of x^y .

One can prove the following propositions:

- (1) If *p* is prime, then \sqrt{p} is irrational.
- (2) There exist x, y such that x is irrational and y is irrational and x^y is rational.

1. SQUARE ROOTS OF PRIMES ARE IRRATIONAL

For simplicity, we adopt the following convention: k, n, p, K, N are natural numbers, x, y, e_1 are real numbers, s_1 , s_2 , s_3 are sequences of real numbers, and s_4 is a finite sequence of elements of \mathbb{R} .

Let us consider x. We introduce x is irrational as an antonym of x is rational.

Let us consider x, y. We introduce x^y as a synonym of x^y .

- One can prove the following propositions: (1) If p is prime, then \sqrt{p} is irrational.
- (2) There exist x, y such that x is irrational and y is irrational and x^y is rational.

```
:: W The Irrationality of the Square Root of 2
theorem Th1:
  for p being Element of NAT st p is prime holds
    sqrt p is irrational
proof
  let p be Element of NAT;
    assume A1: p is prime;
    then A2: p > 1 by INT_2:def 4;
    assume sqrt p is rational;
    then consider i being Integer, n being Element of NAT such that
    A3: n <> 0 and
    A4: sqrt p = i / n and
    A5: for il being Integer
```

Encoding the Mizar foundations in Isabelle

We can use Isabelle/FOL

Features beyond first-order can be encoded in the logical framework

Define the meta-types

```
typedecl Set
typedecl Ty
inhabited(D) \longleftrightarrow (\exists_M x. x \text{ is } D)
```

Example Mizar types

- even natural number
- bijective Function of A,B

Meta-Level Constants

Construct Types

Construct Meta-level functions

User-level typing rules

consts

```
ty-membership :: Set \Rightarrow Ty \Rightarrow o (infix be 90) define-ty :: Ty \Rightarrow (Set \Rightarrow o) \Rightarrow (Set \Rightarrow o) \Rightarrow Ty choice :: Ty \Rightarrow Set (the -)
```

Axiomatization

Axiom of choice

What does it mean to define a type?

it be parent ∧ (cond(it) → property(it))

"non-" (e.g. non-negative)

non
$$A \equiv define-ty(object, \lambda-. True, \lambda x. \neg x is A)$$

$$x \text{ is non } A \longleftrightarrow \neg x \text{ is } A$$

Intersection types

$$x \text{ is } t1 \mid t2 \longleftrightarrow x \text{ is } t1 \land x \text{ is } t2$$

Mizar Notations

Types and adjectives

```
term x is set
term x is empty | set
term x is non empty | Subset—of NAT
term onto(NAT)
term x is empty | non onto(NAT) | Function
term the empty | set
```

Formulas

```
term P \land Q \longleftrightarrow W \longrightarrow (not P \longrightarrow R \lor W)

term for x,y being set,z being object holds P(x,y,z)

term ex y being even | Element—of NAT st Q(y)

reserve a for Function

reserve b for non empty | set

term for a,b holds Q(a,b)
```

Between Logic and Set Theory

Part of Mizar, that is expressible but not standard set theory

- type of sets
- (set) equality
- set membership

```
axiomatization object and prefix-in :: Set \Rightarrow Set \Rightarrow o (infix1 in 50) where object-root: x be object and object-exists: inhabited(object)
```

Tarski-Grothendieck Set Theory

```
reserve x, y, z, u, a for object;
                                                     reserve x, y, z, u, a for object
reserve M. N. X. Y. Z for set:
                                                     reserve M, N, X, Y, Z for set
:: Set axiom

    Set axiom

theorem :: TARSKI 0:1
                                                     theorem tarski-0-1:
  for \times holds \times is set:
                                                       \forall x. x be set using SET-def by simp
:: Extensionality axiom

    Extensionality axiom

theorem :: TARSKI_0:2
                                                     axiomatization where tarski-0-2:
   (for \times holds \times in \times iff \times in Y)
                                                       \forall X. \ \forall Y. \ (\forall x. \times in \ X \longleftrightarrow \times in \ Y)
      implies X = Y:
                                                         \longrightarrow X = Y
:: Axiom of pair
                                                     - Axiom of pair
theorem :: TARSKI 0:3
                                                     axiomatization where tarski-0-3:
  for x, y ex Z st for a holds
                                                       \forall x. \ \forall v. \ \exists Z. \ \forall a.
     a in \mathbb{Z} iff a = x or a = y;
                                                            a \text{ in } Z \longleftrightarrow a = x \lor a = y
:: Axiom of union
                                                     - Axiom of union
theorem :: TARSKI 0:4
                                                     axiomatization where tarski-0-4:
  for \times ex \% st for \times holds
                                                       \forall X. \exists Z. \forall x.
     x in Z iff ex Y st x in Y & Y in X;
                                                          x \text{ in } Z \longleftrightarrow (\exists Y. x \text{ in } Y \land Y \text{ in } X)
:: Axiom of regularity
                                                     — Axiom of regularity
theorem :: TARSKI_0:5
                                                     axiomatization where tarski-0-5:
  x in X implies ex Y st Y in X &
                                                       \forall x. \ \forall X. \ x \ in \ X \longrightarrow (\exists \ Y. \ Y \ in \ X \land
     not ex \times st \times in \times \& \times in Y:
                                                           \neg(\exists z. z \text{ in } X \land z \text{ in } Y))
```

Tarski-Grothendieck Set Theory

```
reserve x, y, z, u, a for object;
                                                     reserve x, y, z, u, a for object
reserve M. N. X. Y. Z for set:
                                                     reserve M, N, X, Y, Z for set
:: Set axiom

    Set axiom

theorem :: TARSKI 0:1
                                                     theorem tarski-0-1:
  for \times holds \times is set:
                                                       \forall x. x be set using SET-def by simp
:: Extensionality axiom

    Extensionality axiom

theorem :: TARSKI_0:2
                                                     axiomatization where tarski-0-2:
   (for \times holds \times in \times iff \times in Y)
                                                       \forall X. \ \forall Y. \ (\forall x. \times in \ X \longleftrightarrow \times in \ Y)
      implies X = Y:
                                                         \longrightarrow X = Y
:: Axiom of pair
                                                     - Axiom of pair
theorem :: TARSKI 0:3
                                                     axiomatization where tarski-0-3:
  for x, y ex Z st for a holds
                                                       \forall x. \ \forall v. \ \exists Z. \ \forall a.
     a in \mathbb{Z} iff a = x or a = y;
                                                           a \text{ in } Z \longleftrightarrow a = x \lor a = y
:: Axiom of union
                                                     - Axiom of union
theorem :: TARSKI 0:4
                                                     axiomatization where tarski-0-4:
  for \times ex \% st for \times holds
                                                       \forall X. \exists Z. \forall x.
     x in Z iff ex Y st x in Y & Y in X:
                                                         x \text{ in } Z \longleftrightarrow (\exists Y. x \text{ in } Y \land Y \text{ in } X)
:: Axiom of regularity

    Axiom of regularity

theorem :: TARSKI_0:5
                                                     axiomatization where tarski-0-5:
  x in X implies ex Y st Y in X &
                                                       \forall x. \forall X. \times in X \longrightarrow (\exists Y. Y in X \land
     not ex \times st \times in \times \& \times in Y:
                                                          \neg(\exists z. z \text{ in } X \land z \text{ in } Y))
```

differences: quantification, types, parentheses, schemes

Support for Mizar Definitions

Conditional Definitions

Definitions by "means"

Type definitions

Structures

Simple definition package

- Core definitions
- User obligations
- Derived properties

Definitions

```
mdef tarski-def-1
                                                                                          ({-}) where
 let v be object;
                                                  mlet v be object
  func \{y\} \rightarrow \text{set means}
                                                  func2 \{y\} \rightarrow set means \lambda it.
:: TARSKI:def 1
                                                      \forall x. \ x \ in \ it \longleftrightarrow x = y
    for x holds x in it iff x = y;
                                                mdef tarski-def-2
                                                                                     ({- . -}) where
  let v, z be object;
                                                  mlet y be object, z be object
 func { v, z } \rightarrow set means
                                                  func2 \{y, z\} \rightarrow set means \lambda it.
:: TARSKI:def 2
                                                      \forall x. x \text{ in it} \longleftrightarrow (x = v \lor x = z)
    x in it iff x = y or x = z;
                                                 mdef tarski-def-4
                                                                                    (union -) where
  let X be set;
                                                    mlet X be set
  funcunion X \rightarrow set means
                                                    function X \rightarrow \text{set means } \lambda \text{it.}
:: TARSKI:def 4
                                                       \forall x. \times in \ it \longleftrightarrow (\exists Y. \times in \ Y \land Y \ in \ X)
     \times in it iff ex Y st \times in Y & Y in X:
                                                 mdef xboole-0-def-2
                                                                                           ({}) where
    func {} → set equals
                                                   func \{\} \rightarrow set equals
:: XBOOLE 0:def 2
                                                      the empty set
      the empty set:
```

Tuples: Consider the ring structure: $\langle R, +, 0, \cdot, 1 \rangle$

```
struct doubleLoopStr (#
   carrier → set,
   addF → BinOp of the carrier,
   ZeroF → Element of the carrier,
   multF → BinOp of the carrier,
   OneF → Element of the carrier#)
```

Tuples: Consider the ring structure: $\langle R, +, 0, \cdot, 1 \rangle$

```
struct doubleLoopStr (#
  carrier → set,
  addF → BinOp of the carrier,
  ZeroF → Element of the carrier,
  multF → BinOp of the carrier,
  OneF → Element of the carrier
#)
```

Modeled as partial functions:

```
mdefinition doubleLoopStr-d(doubleLoopStr) where struct doubleLoopStr (# carrier \rightarrow (\lambda S. set); addF \rightarrow (\lambda S. BinOp-of the carrier of S); ZeroF <math>\rightarrow (\lambda S. BinOp-of the carrier of S); multF \rightarrow (\lambda S. BinOp-of the carrier of S); OneF \rightarrow (\lambda S. BinOp-of the carrier of S) #): struct-well-defined...
```

Tuples: Consider the ring structure: $(R, +, 0, \cdot, 1)$

```
struct doubleLoopStr (#
   carrier → set,
   addF → BinOp of the carrier,
   ZeroF → Element of the carrier,
   multF → BinOp of the carrier,
   OneF → Element of the carrier#)
```

Modeled as partial functions:

```
mdefinition doubleLoopStr-d(doubleLoopStr) where struct doubleLoopStr (# carrier → (\lambda S. set); addF → (\lambda S. BinOp—of the carrier of S); ZeroF → (\lambda S. Element—of the carrier of S); multF → (\lambda S. BinOp—of the carrier of S); OneF → (\lambda S. Element—of the carrier of S) #): struct-well-defined...

abbreviation

Ring \equiv Abelian | add—associative | right—zeroed | right—complementable | associative | well—unital | distributive |
```

non empty-struct | doubleLoopStr

Example: Algebra

```
reserve G for Group;
reserve h, g for Element of G;
theorem Th16:
 (h * q) " = q" * h"
proof
 (q"*h")*(h*q)
 = q'' * h'' * h * q
  by Def3
 .=g"*(h"*h)*g
  by Def3
 .=g"*1_G*g
  by Def5
 .= q" * q
  by Def4
 .=1 G
   by Def5;
 hence thesis
   by Th11;
end;
```

Example: Algebra

```
reserve G for Group
reserve G for Group;
                                        reserve h.g for Element-of-struct G
reserve h, q for Element of G;
                                        mtheorem group-1-th-16:
theorem Th16:
                                         (h \otimes_G g)^{-1}_G = g^{-1}_G \otimes_G h^{-1}_G
 (h * a) " = a" * h"
                                        proof-
proof
                                         have (g^{-1}_G \otimes_G h^{-1}_G) \otimes_G (h \otimes_G g)
 (q"*h")*(h*q)
                                                       = (g^{-1}_{G} \otimes_{G} h^{-1}_{G}) \otimes_{G} h \otimes_{G} g
  = a'' * h'' * h * a
                                           using group-1-def-3E[of - - h] by mauto
   bv Def3
                                         also have ... = g^{-1}_{G} \otimes_{G} (h^{-1}_{G} \otimes_{G} h) \otimes_{G} g
 .=q"*(h"*h)*q
                                           using group-1-def-3E by mty auto
   bv Def3
                                         also have ... = g^{-1}_{G} \otimes_{G} 1_{G} \otimes_{G} g
 . = q" * 1_G * q
                                           using group-1-def-5 by mauto
   by Def5
                                         also have ... = (g^{-1}_{G}) \otimes_{G} g
 .= a" * a
                                           using group-1-def-4 by mauto
   by Def4
                                          also have \dots = 1_{.c}
  . = 1 G
                                           using group-1-def-5 by mauto
   by Def5:
                                         finally show ?thesis
 hence thesis
                                           using group-1-th-11\lceil of - h \otimes_C g \rceil
    by Th11;
                                            THEN conjunct1] by mauto
                                        ged
end;
```

Type Inference

User can state and prove inference rules

cluster

$$Y \text{ be set} \Longrightarrow F \text{ be } Y\text{-valued} \mid Function \Longrightarrow F \text{ be } Y\text{-onto} \mid one-to-one \Longrightarrow F \text{ be } Y\text{-bijective}$$

cluster

```
f be Function \land g be Function \Longrightarrow (g \circ f) is Function-like
```

Type Inference

User can state and prove inference rules

cluster

$$Y \text{ be set} \Longrightarrow F \text{ be } Y\text{-valued} \mid Function \Longrightarrow F \text{ be } Y\text{-onto} \mid one-to-one \Longrightarrow F \text{ be } Y\text{-bijective}$$

cluster

f be Function
$$\land$$
 g be Function \Longrightarrow (g \circ f) is Function-like

Type inference derives all the derivable properties of an object

• In the previous proof, 35 judgements automatically derived, e.g.

G is unital

$$(h \otimes_G g)^{-1}_G$$
 is Element-of G
the carrier of G is non empty

Examples (2/2)

Ordinals

```
theorem ordinal-2-sch-19:

assumes [ty]: a is Nat

and A1: P(\{\})

and A2: \forall n : Nat. P(n) \longrightarrow P(succ n)

shows P(a)
```

Examples (2/2)

Ordinals

```
theorem ordinal-2-sch-19:

assumes [ty]: a is Nat

and A1: P(\{\})

and A2: \forall n : Nat. P(n) \longrightarrow P(succ n)

shows P(a)
```

Turing Machines

```
theorem extpro-1:
  assumes [ty]: N be with-zero | set
  shows halt_Trivial—AMI N, N
```

Semi-Automated Translation

Export combined syntactic-semantic Mizar

Isabelle can import first 100 MML articles

All definitions, theorems, user typing rules

So far the proofs assumed in the import

Usable environment for proof development

Type inference

Summary: Mizar features could be useful for FAbstracts?

Familiar mathematical foundations

Convenient proof style

Actual support for Mathematicians

Committee taking care of the library

In a modern logical framework