Random Matrix Theory

Evgenii Chzhen 16 Jan 2016

Contents

2. Wigner theorem	1
3. Marchenko-Pastur theorem	2
4. Corollary	4

This paper is based on lectures given by Mr. Jamal Najim at Universit?? Paris-Est Marne-la-Vall??e. ## 1. Introduction In this paper we want to proceed experimental tests of two theorems in random matrix theory (RMT). We start with an introduction of basic objects in RMT.

Definition 1. Consider a symmetric (Hermitian) matrix Z_N of $N \times N$ dimension, each element of the matrix $(Z_N)_{ij}$ is a random real (complex) valued variable. An empirical spectral measure of Z_N is defined as

$$\mathcal{L}_N(A) = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}(A) = \frac{\#\{eigenvalues\ of\ Z_N\ in\ A\}}{N},\ for\ A \subseteq \mathbb{R}.$$

Remark 1. Since Z_N is a symmetric (Hermitian) matrix, therefore by Spectral theorem there exist $\lambda_1, ..., \lambda_N \in \mathbb{R}$, where $\lambda_1, ..., \lambda_N$ are eigenvalues of matrix Z_N counted with multiplicity.

Remark 2.
$$\forall f \in \mathbb{C}_b(\mathbb{R}) \ holds \int f(x) \mathcal{L}_N(dx) = \frac{1}{N} \sum_{i=1}^N f(\lambda_i).$$

2. Wigner theorem

In this section we define a Wigner matrix and state a Wigner theorem.

Definition 2. Z_N is called a Wigner Matrix if Z_N is a Hermitian matrix such that for all $i \leq j$ $(Z_N)_{ij} = \frac{Y_{ij}}{\sqrt{N}}$ where Y_{ij} are i.i.d random variables with $\mathbb{E}Y_{ij} = 0$ and $VarY_{ij} = \sigma^2$.

Definition 3. Random variable X has a semicircle distribution if its' probability density function is defined as it follows

$$\mathbb{P}_{sc}(dx) = \frac{\sqrt{4\sigma^2 - x^2}}{2\pi\sigma^2} \mathbb{1}_{[-2\sigma, 2\sigma]}(x) dx.$$

Theorem 1. Let Z_N be a Wigner Matrix and \mathcal{L}_N is an empirical spectral measure of Z_N , therefore almost surely

$$\mathcal{L}_N \xrightarrow{\mathcal{D}} \mathbb{P}_{sc}$$

.

Now we want to make a numerical experiments, let Z_N be a Wigner Matrix, for N = 50, 300, 1000 we make a simulation of the matrix from a given distribution and compute eigenvalues after we plot a histogram of obtained values and compare them with theoretical results. Red line corresponds to semicircle distribution.

Standart Gaussian distribution

3. Marchenko-Pastur theorem

Eigen Values

In this section we state a Marchenko-Pastur theorem.

Eigen Values

Eigen Values

Definition 4. For c > 0 a distribution of Marchenko-Pastur is defined as

$$\mathbb{P}_{MP}(dx) = \begin{cases} \frac{\sqrt{(\lambda^{+} - x)(x - \lambda^{-})}}{2\pi x \sigma^{2} c} \mathbb{1}_{[\lambda^{-}, \lambda^{+}]}(x) dx, & \text{if } 0 < c \le 1\\ (1 - \frac{1}{c}) \delta_{0}(dx) + \frac{\sqrt{(\lambda^{+} - x)(x - \lambda^{-})}}{2\pi x \sigma^{2} c} \mathbb{1}_{[\lambda^{-}, \lambda^{+}]}(x) dx, & \text{if } c > 1 \end{cases},$$

where $\lambda^+ = \sigma^2 (1 + \sqrt{c})^2$ and $\lambda^- = \sigma^2 (1 - \sqrt{c})^2$.

Theorem 2. Let $Z_N = \frac{1}{n} X_N X_N^*$, where X_N is a matrix of dimension $N \times n$ and $(X_{ij})_{ij}$ are i.i.d. random variables such that $\mathbb{E} X_{ij} = 0$ and $Var X_{ij} = \sigma^2$. Let \mathcal{L}_N be an empirical spectral measure of Z_N . If $\frac{N}{n} \to c > 0$ therefore almost surely

$$\mathcal{L}_N \xrightarrow{\mathcal{D}} \mathbb{P}_{MC},$$

where \mathbb{P}_{MC} is a Marchenko-Pastur distribution with parameters c, σ^2 .

Remark 3. Assume that c > 1 then for large enough N, n we have N > n since $rank(Z_N) = min\{N, n\}$ we will have N - n = n(c - 1) zero eigenvalues. Since $\mathcal{L}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ we can observe that in the limiting measure there will be a mass of $\frac{n(c-1)}{N} = (1 - \frac{1}{c})$ at 0 point.

Now we want to make a numerical experiments, let Z_N be a matrix which satisfies assumptions of Marchenko-Pastur theorem, we make a simulation of the matrix from a given distribution and compute eigenvalues after we plot a histogram of obtained values and compare them with theoretical results. Red line corresponds to Marchenko-Pastur distribution.

Standart Gaussian distribution (c = 0.1)

4. Corollary

0

2

Eigen Values

3

4

In this paper we introduced some basic definitions and theorems of random matrix theory, we proceeded a numerical procedure to show the ideas of theorems on simulated data. Our experimental results are in high agreement with the theoretical. For numerical experiments we used R language, particulary **RMTstat** package were used for a Marchenko-Pastur distribution and **cmvnorm** package for simulating complex valued Gaussian variables.

2

Eigen Values

3

4

0.6 0.8

1.0 1.2

Eigen Values

1.4

0