

Gravity as a Reference for Estimating a Person's Height from Video

Didier Bieler, Semih Günel, Pascal Fua, and Helge Rhodin CVLab, EPFL, Lausanne, Switzerland UBC, Vancouver, Canada

Principles

$$p(t) = p_0 + v_o t + \frac{1}{2}a_0 t^2$$

Newton's equation of motion

Camera geometry

Theory

Mathematical derivation. Absolute scales are derived by exploiting linearity in scaledorthographic projection. We assume that perspective effects and air friction are minimal.

Projected height.

$$\mathbf{h}^{px} = \Pi(\mathbf{p}_u) - \Pi(\mathbf{p}_b)$$

$$= \frac{f}{d} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} (\mathbf{p}_u - \mathbf{p}_b)$$

$$= \frac{f}{d} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{n}h = \frac{h}{\mathbf{q}},$$

Projected free-fall motion.

$$\mathbf{p}^{px}(t) = \frac{f}{d} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{p}(t)$$

$$= \frac{f}{d} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \left(\frac{t^2}{2} \mathbf{g} + \mathbf{v}_0 t + \mathbf{p}_0 \right)$$

$$\mathbf{p}^{px}(t) = \frac{1}{2} \mathbf{a}^{px} t^2 + \mathbf{v}_0^{px} t + \mathbf{p}_0^{px} .$$

$$\Rightarrow \qquad \mathbf{a}^{px} = \frac{f}{d} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{n} g$$

Approach

Idea. We exploit gravity as a reference object for mapping image height measurements in pixel [px] to metric height [m].

Projection of height. The projected height, h^{px} is the distance between two projected points $\Pi(p_u)$ and $\Pi(p_b)$ that are aligned with the direction of gravity *n* in 3D and span height h.

The center of mass (COM) is compued as a weighted average and acceleration through curve fitting.

Motion detection. Bodypart keypoints are detected by AlphaPose, displayed as colored skeleton overlay.

The approach assumes free-fall motion. We detect flight phases through simple heuristics on ground contact.

Applications

Input image

3D pose estimation methods do not recover the correct scales (marked in red). Our height from on-spot jumping recovers the scale and relative depth (in green).

Evaluation

On-spot jumps (low, medium, high)

	Error in h	
	Bias [cm]	Accuracy [cn
	(ME±STD)	(MAE±STD
J1 (low)	-0.3±18.5	13.1±12.4
J2 (high)	-0.6 ± 12.4	8.0 ± 9.1
J3 (jack)	1.1 ± 8	5.6 ± 5.6
J4 (funny)	0.4 ± 11.9	$9.4{\pm}6.8$

Lateral motion (running and jumping)

Future work

- Perspective camera model (non-fronto-parallel motion, close distance)
- Moving and zooming cameras
- Better 2D detectors