Redes Neurais e Deep Learning

REDES NEURAIS CONVOLUCIONAIS CAMADA CONVOLUCIONAL

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

Antes:

Todos os filtros na mesma camada são os mesmos

Antes:

Todos os filtros na mesma camada são os mesmos

A dimensão da profundidade representa filtros diferentes

Realizar a **convolução** do filtro com a imagem isto é, "deslizar o filtro espacialmente sobre a imagem, calculando-se os produtos internos"

Considere um segundo filtro (em verde)

Mapas de ativação

Por exemplo, se tivermos 6 filtros 5×5, obtém-se 6 mapas de ativação distintos

Esses mapas podem ser agrupados (ou empilhados) de forma a produzir uma "nova imagem" de tamanho 28×28×6!

Uma rede convolucional (ConvNet) representa uma sequência de camadas convolucionais intercaladas com funções de ativação

Uma rede convolucional (ConvNet) representa uma sequência de camadas convolucionais intercaladas com funções de ativação

Uma rede convolucional (ConvNet) representa uma sequência de camadas convolucionais intercaladas com funções de ativação

Entrada:

Entrada:

Entrada:

Entrada:

Ativações:

Entrada:

Ativações:

