IN THE SPECIFICATION:

Please amend paragraph number [0033] as follows:

[0033] Conditioner 10 may be formed by dispersing a quantity of abrasive particles 14 in an at least partially unconsolidated (e.g., molten, liquid, or particulate or powdered) quantity of material providing a matrix for supporting substrate 12. The mixture of supporting substrate 12 material and abrasive particles 14 is then formed into a solid mass. The desired shape for conditioner 10 may be obtained by use of known molding (e.g., injection molding) or casting processes, as well as by cutting a larger, solid volume of abrasive particle 14-impregnated supporting substrate 12 material into the desired shape. A conditioning surface 1416 surface 16 of supporting substrate 12 may be treated prior to use in conditioning so that abrasive particles 14 at least partially protrude therefrom. Of course, such treatment of conditioning surface 16 may be effected by removing material of supporting substrate 12 from conditioning surface 16. Such removal may be carried out by use of known chemicals or chemical mixtures (e.g., hydrofluoric acid, potassium hydroxide, sodium hydroxide, hydrochloric acid, etc.) that will degrade or dissolve the material of supporting substrate 12 without substantially degrading or dissolving abrasive particles, or that at least degrade or dissolve the material of supporting substrate 12 at a faster rate than the rate at which the material or materials of abrasive particles 14 are degraded or dissolved by the chemicals. Alternatively, such removal may be effected mechanically, such as by frictional contact.

Please amend paragraph number [0045] as follows:

[0045] As abrasive particles 14 (FIGs. 1-3) or debris 46 (FIG. 7) from filaments 44 (FIG. 5) or from abrasive elements 54 (FIG. 6) may be loosened from conditioner 10, 10′, 10″, 40 during use thereof to condition polishing surface 22 of CMP pad 20 (FIG. 4), abrasive particles 14 or debris 46 may stick to polishing surface 22 of CMP pad 20 or become embedded or entrapped within CMP pad 20, as shown in FIG. 7. These abrasive particles 14 or debris 46 may be substantially removed from CMP pad 20 at the conclusion of the conditioning operation by exposing CMP pad 20, along with abrasive particles 14 or debris 46, thereon to a chemical 80

or mixture of chemicals that will degrade or dissolve abrasive particles 14 or debris 46 at a faster rate than chemical 80 or a mixture of chemicals will degrade or dissolve the material or materials of CMP pad 20 and without significantly changing the surface features, texture, or roughness of polishing surface 22 of CMP pad 20. Preferably, chemical 80 or a mixture of chemicals that is used to remove abrasive particles 14 or debris 46 from CMP pad CMP pad 20 will do so without substantially degrading or dissolving the material or materials of CMP pad 20. As indicated previously herein, when abrasive particles 14 include quartz, or crystalline silicon dioxide, chemical 80 may include, without limitation, hydrofluoric acid, sodium hydroxide, or potassium hydroxide. If a hydrofluoric acid solution is used, the hydrofluoric acid preferably makes up at least about 5% of the solution. If abrasive particles 14 or debris 46 comprise iron or an iron-containing material, chemical 80 may include, without limitation, hydrochloric acid.

Please amend paragraph number [0046] as follows:

[0046] Although FIG. 7 illustrates exposing CMP pad 20, along with abrasive particles 14 and debris 46 on and embedded or entrapped within polishing surface 22 thereof, to chemical 80 by way of spraying chemical 80 onto at least a portion of CMP pad 20, such exposure to chemical 80 may alternatively be effected by immersing CMP pad, CMP pad 20, or at least a portion of polishing surface 22 thereof, in chemical 80 or otherwise, as known in the art.