Química orgánica

CUESTIONES

Formulación/Nomenclatura

a) Nombra los siguientes compuestos e identifica y nombra los grupos funcionales presentes en cada

a.1) CH₃-COO-CH₂-CH₃ a.2) CH₃-NH₂ a.3) CH₃-CH₂-CHOH-CH₃

a.4) CH₃-CH₂-COOH.

(A.B.A.U. ord. 19)

Solución:

	Fórmula	Nombre	Tipo	Grupo	funcional
a.1)	CH ₃ -COO-CH ₂ -CH ₃	etanoato de etilo	éster	-COO-	acilo
a.2)	CH ₃ -NH ₂	metilamina	amina	-NH₂	amino
a.3)	CH ₃ -CH ₂ -CHOH-CH ₃	butan-2-ol	alcohol	-OH	hidroxilo
a.4)	CH ₃ -CH ₂ -COOH	ácido propanoico	ácido carboxílico	-COOH	carboxilo

a) Escribe la fórmula semidesarrollada de:

a.4) CH₃-CH₂-O-CH₂-CH₃

a.1) dimetilamina

a.2) etanal

a.3) ácido 2-metilbutanoico

Nombra:

a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃

a.6) CH₃Cl.

(A.B.A.U. extr. 18)

Solución:

a.1) Dimetilamina: CH₃-NH-CH₃ a.2) Etanal:

 $CH_3-C_H^O$

 $CH_3-CH_2-CH-C {\overset{O}{\overset{}{\sim}}} OI$ a.3) Ácido 2-metilbutanoico:

etoxietano o dietiléter a.4) CH₃-CH₂-O-CH₂-CH₃: a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃: 2,5-dimetilhexan-3-ona

a.6) CH₃Cl: clorometano

Isomería

Nombre los siguientes compuestos y razone si alguno de ellos presenta isomería geométrica.

 $\begin{array}{ccc} O & b) & O & O \\ CH_3-C-NH_2 & OH-C-CH=CH-C-OH \end{array}$ c) $_{\text{H}_3\text{C}-\text{NH}-\text{CH}_2-\text{CH}_3}$ d) $_{\text{HO}-\text{CH}_2-\text{CH}-\text{CH}_3}^{\text{Cl}}$

(A.B.A.U. extr. 24)

Solución:

) O CH3-C-NH2 : etanamida

: ácido 2-butenodioico

 $OH-\ddot{\mathbb{C}}-CH=CH-\ddot{\mathbb{C}}-OH$

 $c)H_3C-NH-CH_2-CH_3$: etilmetilamina

d)_{HO-CH₂-CH-CH₃} : 2-cloropropan-1-ol Un compuesto tendrá isomería geométrica (cis-trans), si tiene por lo menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

El único compuesto que tiene isomería geométrica es el ácido 2-butenodioico:

- Dadas las siguientes parejas de moléculas, nombra o formula cada especie según corresponda, y razona si en cada pareja las moléculas son isómeros entre sí, y de ser así, indica el tipo de isomería:
 - a) Acetato de metilo y CH₃-CH₂-COOH
 - b) CH₃-CH₂-CH₂OH y propan-2-ol

(A.B.A.U. ord. 24)

Solución:

 $CH_3-C_O^O$ a) Acetato de metilo: éster

CH₃-CH₂-COOH ácido propanoico ácido carboxílico

Son isómeros de función: tienen la misma fórmula molecular, pero difieren en su función química o grupo funcional.

b) CH₃-CH₂-CH₂OH propan-1-ol CH₃-CH-CH₃ propan-2-ol

Son isómeros de posición: tienen la misma fórmula molecular y la misma cadena de carbonos, pero difieren en la posición de un grupo funcional en la cadena.

- Escribe las fórmulas semidesarrolladas de los siguientes compuestos, nombre su grupo funcional, y 3. justifique si alguno de ellos presenta isomería óptica:
 - a) ácido 3-pentenoico,
- b) 2-hidroxipropanal, c) etanoato de metilo,

d)propino. (A.B.A.U. extr. 23)

Solución:

 $CH_3-CH=CH-CH_2-C$ OH a) Acido 3-pentenoico: grupo carboxilo (-COOH)

b) 2-Hidroxipropanal: grupo hidroxilo (-OH) e

grupo carbonilo (-CHO)

 CH_3-C' $O-CH_3$ c) Etanoato de metilo: grupo acilo (-COO-)

d) Propino: grupo etinilo (-C = CH)

El 2-hidroxipropanal presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y carbonilo (-CHO). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

- 4. a) Justifica si la siguiente afirmación es verdadera o falsa: El CH₃-CH=CH-CH₃ reacciona con HCl para dar un compuesto que no presenta isomería óptica.
 - b) Escribe las fórmulas semidesarrolladas y nombra los isómeros geométricos del 2,3-dibromobut-2-eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

El compuesto CH₃-CH=CH-CH₃ es el 2-buteno, que puede reaccionar con HCl para dar 2-clorobutano (CH₃-CHCl-CH₂-CH₃) siguiendo la regla de Markovnikov. Se trata de una reacción de adición.

$$CH_3$$
-CH=CH-CH₃ + HCl \rightarrow CH₃-C-CH₂-CH₃
H

El 2-clorobutano presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (CH_3-) , hidrógeno (H-), cloro (CI-) y etilo (CH_3-CH_2-) . Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

b) El 2,3-dibromobut-2-eno tiene isomería geométrica porque cada uno de los carbonos del doble enlace está unidos a grupos diferentes (bromo y metilo). Sus isómeros pueden llamarse *cis* y *trans* o *Z* y *E*.

Br Br
$$CH_3$$
 $C = C$ CH_3 CH_3 CH_3 CH_3 Br $Cis-2,3$ -dibromobut-2-eno (Z) -2,3-dibromobut-2-eno (E) -2,3-dibromobut-2-eno

5. Nombra los siguientes compuestos, razona cuáles presentan algún tipo de isomería y nómbrala: CH₂=CH-CH₃ CH₃-CH₂-CHOH-CH₃ CH₃-CH=CH-COOH CH₃-CHCl-CH₃ (A.B.A.U. extr. 20)

Solución:

 CH_2 =CH- CH_3 : prop-1-eno CH_3 - CH_2 -CHOH- CH_3 : butan-2-ol

 CH_3 -CH=CH-COOH: ácido but-2-enoico CH_3 -CHCl- CH_3 : 2-cloropropano

OH El butan-2-ol, CH_3 – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a H

cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

Del ácido but-2-enoico existen dos isómeros geométricos, que se pueden llamar cis y trans o Z y E.

$$CH_3$$
 H $C=C$ $C=C$ CH_3 $COOH$ $Acido (E)-but-2-enoico $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico$

6. Nombra los siguientes compuestos y justifica si presentan algún tipo de isomería y de qué tipo: CH₃-CHOH-COH CH₂-CH₂-CH₂-CH₃

(A.B.A.U. ord. 20)

Solución:

CH₃-CHOH-COH: 2-hidroxipropanal. El carbono 2 es asimétrico (está unido a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), metilo (-CH₃) y carbonilo (-CHO), por lo que presenta isomería óptica.

Además puede tener isómeros de función como

 CH_3 - CH_2 -COOH: ácido propanoico CH_3 -COO- CH_3 : etanoato de metilo CH_2OH -CH=CHOH: propeno-1,3-diol.

CH₃-CH₂-CH=CH-CH₂-CH₃: hex-3-eno, tiene un doble enlace entre los carbonos 3 y 4, y cada uno de ellos está unido a dos grupos distintos: hidrógeno (-H) y etilo (-CH₂-CH₃). Existen dos isómeros geométricos, que se pueden llamar *cis* y trans o Z y E.

$$CH_3-CH_2$$
 H $C=C$ $C=C$ H CH_2-CH_3 CH_3-CH_2 CH_2-CH_3 (E) -Hex-3-eno (Z) -Hex-3-eno (Z) -Hex-3-eno

Además puede tener isómeros de cadena como:

$$CH_3$$
 $CH_3 - C - CH = CH_2$
 CH_3
 $H_2C - CH_2$
 $H_2C - CH_2$:
 CH_2 :
 CH

CH₂=CH-CH₂-CH₂-CH₃: hex-1-eno.

- 7. b) Para los compuestos:
 - b.1.1) 2-pentanol b.1.2) dietiléter b.1.3) ácido 3-metilbutanoico b.1.4) propanamida:
 - b.1) Escribe sus fórmulas semidesarrolladas.
 - b.2) Razona si alguno puede presentar isomería óptica.

(A.B.A.U. ord. 18)

Solución:

 $CH_3 - \overset{1}{C} - CH_2 - CH_2 - CH_3$ OHb.1.1) 2-Pentanol (pentan-2-ol): CH_3 - CH_2 -O- CH_2 - CH_3 CH_3 -CH- CH_2 -C OH CH_3 CH_3 - CH_2 -C NH_2 b.1.2) Dietiléter: b.1.3) Ácido 3-metilbutanoico:

b.1.4) Propanamida:

b.2) Presenta isomería óptica el pentan-2-ol porque tiene un carbono asimétrico. El carbono 2 está unido a cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y propilo (-CH₂-CH₂-CH₃).

- a) Escribe la fórmula semidesarrollada de los siguientes compuestos: 8.
 - a.1) 3-metil-2,3-butanodiol
- a.2) 5-hepten-2-ona
- a.3) etilmetiléter
- a.4) etanamida
- b) Indica si el ácido 2-hidroxipropanoico presenta carbono asimétrico y represente los posibles isómeros ópticos.

(A.B.A.U. extr. 17)

Solución:

CH₃-CH-C-CH₃ OH OH a.1) 3-Metil-2,3-butanodiol (2-metilbutano-2,3-diol):

a.2) 5-Hepten-2-ona (hept-5-en-2-ona): CH₃-CH=CH-CH₂-CH₂-CO-CH₃

CH₃-O-CH₂-CH₃ a.3) Etilmetiléter: a.4) Etanamida: CH₃-CO-NH₂

b) El ácido 2-hidroxipropanoico, CH_3 – \dot{C} –COOH, tiene un carbono asimétrico. El carbono 2 está unido a

cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y carboxilo (-COOH). Los isómeros ópticos son:

b) Justifica cuál de los siguientes compuestos presenta isomería óptica:

CH₃CH₂CH₂CH₃ CH₃CH(OH)CH₂CH₃ BrCH=CHBr

BrCH=CHCl CH₃CH(NH₂)COOH H₃CH(OH)CH₂CH₂CH₃

(A.B.A.U. ord. 17)

Solución:

b) La isomería óptica la presentan los compuestos que tienen algún carbono asimétrico.

El butan-2-ol, CH_3 – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a

cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

NH

El ácido 2-aminopropanoico, CH₃ – COOH, tiene isomería óptica porque el carbono 2 es asimétrico. Está

unido a cuatro grupos distintos: hidrógeno (-H), amino $(-NH_2)$, metilo $(-CH_3)$ y carboxilo (-COOH). Tiene dos isómeros ópticos.

El pentan-2-ol, CH_3 –C– CH_2 – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2 es asimétrico. Está uni-

do a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), propilo (- CH_2 - CH_2 - CH_3) y metilo (- CH_3). Tiene dos isómeros ópticos.

10. b) Escribe la fórmula semidesarrollada y justifica si alguno de los siguientes compuestos presenta isomería cis-trans:

b.1) 1,1-dicloroetano b.2) 1,1-dicloroeteno b.3) 1,2-dicloroetano b.4) 1,2-dicloroeteno (A.B.A.U. extr. 19)

Solución:

b.1) 1,1-Dicloroetano: $CHCI_2-CH_3$

b.2) 1,1-Dicloroeteno: CCl₂=CH₂

b.3) 1,2-Dicloroetano; CH₂Cl-CH₂Cl b.4) 1,2-Dicloroeteno: CHCl=CHCl

Un compuesto tendrá isomería geométrica (cis-trans), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

El único compuesto que tiene isomería geométrica es el 1,2-dicloroeteno:

H H Cl

$$C = C$$
 $C = C$
 C

Reacciones

Completa las siguientes reacciones nombrando todos los productos orgánicos presentes en ellas, tanto reactivos como productos, e indica a qué tipo de reacción se corresponden:
 CH₃-CH₂-CH₂-COOH + CH₃OH → CH₃-CH₂-CH₂-CH₂OH → CH₃-CH₂-CH₂OH

(A.B.A.U. extr. 22)

Solución:

 $\begin{array}{lll} \text{CH}_3\text{-CH}_2\text{-COOH} + \text{CH}_3\text{OH} &\rightarrow & \text{CH}_3\text{-CH}_2\text{-COO-CH}_3 + \text{H}_2\text{O} \\ \text{ácido butanoico} & \text{metanol} & \text{butanoato de metilo} \\ \text{Es una reacción de esterificación, que es uno de los casos de las reacciones de condensación.} \\ \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{OH} &\xrightarrow{K_2\text{Cr}_2\text{O}_7.\text{ H}^+} & \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2 & \text{CH}_3\text{-CH}_2\text{-COOH} \\ \end{array}$

butan-1-ol

butanal

ácido butanoico

Es una reacción de oxidación. Los alcoholes primarios se oxidan primero a aldehídos y después a ácidos carboxílicos.

Escribe la reacción que sucede cuando el 2-metil-1-buteno reacciona con HCl, dando lugar a dos halogenuros de alquilo. Nombra los compuestos obtenidos e indica razonadamente si alguno de ellos presenta isomería óptica.

(A.B.A.U. ord. 22)

Solución:

Son reacciones de adición

Son reacciones de adición
$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow CH_3 - C - CH_2 - CH_3 \\ CH_3 \end{array}$$
 (2-cloro-2-metilbutano).

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow \begin{array}{c} CH_2CI - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-cloro-2-metilbutano)}.$$

El 1-cloro-2-metilbutano tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), clorometilo (-CH₂Cl) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

Completa las siguientes reacciones químicas orgánicas empleando las fórmulas semidesarrolladas e indica el tipo de reacción al que pertenecen:

$$CH_3$$
- $CH_2OH + HBr \rightarrow \underline{\hspace{1cm}} + H_2O$
 CH_2 = $CH_2 + H_2O \rightarrow \underline{\hspace{1cm}}$
 CH_3 - $COOH + CH_3NH_2 \rightarrow \hspace{1cm}} + H_2O$

(A.B.A.U. extr. 21)

Solución:

eteno

$$CH_3$$
- CH_2OH + HBr \longrightarrow CH_3 - CH_2Br + H_2O etanol bromuro de hidrógeno 2-bromoetano agua Reacción de sustitución

etanol

$$CH_2=CH_2 + H_2O \rightarrow CH_3-CH_2OH$$

agua

Reacción de adición.

$$CH_3$$
- $COOH + CH_3NH_2 \rightarrow CH_3$ - $CONH$ - $CH_3 + H_2O$ ácido etanoico metilamina N-metiletanamida agua

Reacción de condensación.

Completa las siguientes reacciones indicando el tipo de reacción y nombrando los productos que se forman:

a) CH_3 -CHOH- $CH_3 \xrightarrow{KMnO_4, H^+} CH_3$ -CO- CH_3

Es una reacción de oxidación. Los alcoholes secundarios se oxidan a cetonas. Se produce propanona.

b) CH_3 -CH= CH_2 + Br_2 \rightarrow CH_3 -CHBr- CH_2Br

Es una reacción de adición. El producto es el 1,2-dibromopropano.

5. Completa las siguientes reacciones, identificando el tipo de reacción y nombrando los compuestos orgánicos que se forman:

CH₃-CH₂-COOH + CH₃-CH₂OH \rightarrow _____ + ___ CH₄ + Cl₂ \rightarrow _____ + ___ (A.B.A.U. ord. 20)

Solución:

 CH_3 - CH_2 - $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - CH_2 -COO- CH_2 - $CH_3 + H_2O$ ácido propanoico etanol propanoato de etilo Reacción de esterificación.

 $\begin{array}{cccc} CH_4 + Cl_2 & \longrightarrow & CH_3Cl + HCl \\ Metano & Clorometano \\ CH_3Cl + Cl_2 & \longrightarrow & CH_2Cl_2 + HCl \\ Clorometano & Diclorometano \\ CH_2Cl_2 + Cl_2 & \longrightarrow & CHCl_3 + HCl \\ Diclorometano & Triclorometano \\ CHCl_3 + Cl_2 & \longrightarrow & CCl_4 + HCl \\ \end{array}$

Triclorometano Tetracloruro de carbono

Reacciones de sustitución.

b) Completa la siguiente reacción: CH₃-CH₂-CH₂-CH=CH₂ + Cl₂ →
 Identifica el tipo de reacción y nombra los compuestos orgánicos que participan en ella.
 (A.B.A.U. ord. 19)

Solución:

b) CH_3 - CH_2

Reacción de adición

7. b) El 2-metil-1-buteno reacciona con el ácido bromhídrico (HBr) para dar dos halogenuros de alquilo. Escribe la reacción que tiene lugar indicando qué tipo de reacción orgánica es y nombrando los compuestos que se producen.

(A.B.A.U. extr. 17)

Solución:

b) Son reacciones de adición

$$CH_2 = C - CH_2 - CH_3 + HBr \rightarrow CH_3 - C - CH_2 - CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3 - C - CH_2 - CH_3$$

$$CH_3 - C - CH_3 - CH_3$$

$$CH_3 - C - CH_3 - CH_3$$

$$CH_3 - C - CH_3$$

$$CH_3 - C$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 + HBr \longrightarrow CH_2Br - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-bromo-2-metilbutano)}.$$

8. b) Dada la reacción: 2-propanol → propeno + agua, escribe las fórmulas semidesarrolladas de los compuestos orgánicos e identifica el tipo de reacción.

(A.B.A.U. ord. 18)

9

Solución:

b) Reacción de eliminación: propan-2-ol
$$\to$$
 propeno + agua $\overset{\text{CH}_2-\text{CH}-\text{CH}_3}{\text{H}} \to \text{CH}_2=\text{CH-CH}_3 + \text{H-O-H}$

9. a) Completa e indica el tipo de reacción que tiene lugar, nombrando los compuestos orgánicos que participan en ellas:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \longrightarrow a.2) CH_3 - $COOCH_2$ - CH_3 + H_2O

(A.B.A.U. extr. 18)

Solución:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI $\rightarrow CH_3$ - CH - CH - CH_3

but-2-eno 2- clorobutano

Reacción de adición.

a.2) CH_3 - $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - $COOCH_2$ - $CH_3 + H_2O$ ácido etanoico etanol etanoato de etilo

Reacción de condensación.

Polímeros

1. b) Nombra cada monómero, emparéjalo con el polímero al que da lugar y cita un ejemplo de un uso doméstico y/o industrial de cada uno de ellos.

CH₂=CH₂ CH₂=CHCl policloruro de vinilo poliestireno polietileno

(A.B.A.U. extr. 19)

Solución:

b) Monómeros

CH₂=CH₂: eteno (monómero del polietileno)

CH₂=CHCl: cloroeteno (monómero del policloruro de vinilo)

Ejemplos de uso de polímeros:

Policloruro de vinilo: aislante cables eléctricos.

Poliestireno: aislante térmico. Polietileno: fabricación de envases.

2. b) Identifica el polímero que tiene la siguiente estructura: ...CH₂-(CH₂)_n-CH₂..., indicando además el nombre y la fórmula del monómero de partida.

(A.B.A.U. ord. 17)

Solución:

b) El polímero es el polietileno.

El monómero de partida es el eteno CH₂=CH₂ también llamado etileno.

Actualizado: 17/07/24

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una <u>hoja de cálculo</u> de <u>LibreOffice</u> del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Sumario

	a ri	AAI	CA	\mathbf{O}	\mathbf{c}	NI	ICA
ų	U	/VII	CA	U	\U /	AIN.	ICA

<u>CUESTIONES</u>	
Formulación/Nomenclatura	
<u>Isomería</u>	
<u>Reacciones</u>	
Polímeros.	
1 Othrici 03	

Índice de pruebas A.B.A.U.

2017	
1. (ord.)	5, 9
2. (extr.)	5, 8
2018	
1. (ord.)	4, 9
2. (extr.)	1, 9
2019	
1. (ord.)	
2. (extr.)	6, 9
2020	
1. (ord.)	4, 8
2. (extr.)	9
2021	
1. (ord.)	7
2. (extr.)	
2022	
1. (ord.)	7
2. (extr.)	6
2023	
1. (ord.)	
2. (extr.)	2
2024	
1. (ord.)	2
2 (extr)	1