Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals

Presented by Fred Boehm

Motivation

- Individuals of admixed ancestries inherit a mosaic of local ancestry segments
- ▶ Offers the opportunity to investigate the similarity of genetic effects on traits across ancestries in a single population

Main conclusions

- After analyzing 38 complex traits in 53,001 African-European individuals:
 - very high correlations of causal effects across local ancestries
 - ightharpoonup meta-analysis $r_{admix}=0.95$

Figure 1

Figure 1: Concepts of estimating similarity in the causal effects across local ancestries

Statistical models

For individual $i=1,\ldots,N$, SNPs $s=1,\ldots,S$, and ancestries k=1,2, we have

$$g_{i,s,k} = x_{i,s,M} 1_{(\gamma_{i,s,M} = k)} + x_{i,s,P} 1_{(\gamma_{i,s,P} = k)}$$

- $igwedge x_{i,s,M}$ and $x_{i,s,P}$ are the number of minor alleles in maternal and paternal haplotypes, respectively
- $igspace g_{i,s,k}$ encodes allele counts that are specific to the local ancestry

- lackbox Denote the causal allelic effects by $eta_k \in \mathbb{R}^S$ for k=1,2
- Each individual's phenotype is then modeled as:

$$y_{i} = c_{i}^{T}\alpha + \sum_{s=1}^{S} \left(g_{i,s,1}\beta_{s,1} + g_{i,s,2}\beta_{s,2}\right) + \epsilon_{i}$$

- $lackbox{c}_i \in \mathbb{R}^C$ is a vector of covariates, including an intercept
- $m{\lambda} \in \mathbb{R}^C$ is a vector of covariate effects
- lacksquare ϵ_i is a random error term

Aggregating $g_{i,s,k}$ over all SNPs s and all subjects i gives matrices $G_k \in \{0,1,2\}^{N \times S}$

$$y = C\alpha + G_1\beta_1 + G_2\beta_2 + \epsilon$$

 $C \in \mathbb{R}^{N \times C}$ is a matrix of covariates

Model β_1, β_2 as:

$$\begin{bmatrix} \beta_{s,1} \\ \beta_{s,2} \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tau_s^2 \begin{bmatrix} \frac{\sigma_g^2}{S} & \frac{\rho_g}{S} \\ \frac{\rho_g}{S} & \frac{\sigma_g^2}{S} \end{bmatrix} \right)$$

- $\blacktriangleright \ \epsilon_i \sim N(0,\sigma_e^2)$
- igrtarrow au_s denotes SNP-specific parameters for effects distribution

Define correlation of genetic effects as

$$r_{admix} = \frac{\rho_g}{\sigma_g^2}$$

- $ightharpoonup r_{admix}=1$ implies that $eta_{s,1}=eta_{s,2}$ for all SNPs s
- $ightharpoonup r_{admix} < 1$ indicates differences in causal effects between ancestries

Specifying au_s under different heritability models

- au_s parameters model the coupling of SNP effects variance with MAF, local LD or other functional annotations
- Previous research has shown that genetic correlation estimation is robust to heritability model choice
- Present work's authors mainly use frequency-dependent model for both simulations and real data analyses
 - $\blacktriangleright \ \, {\rm set} \,\, \tau_s^2 \propto \left(f_s(1-f_s)\right)^\alpha$
 - $ightharpoonup f_s$ is MAF of SNP s
 - ightharpoonup lpha set to fixed value of -0.38

lacktriangle Marginalize over random effects eta_1 and eta_2 to obtain

$$y \sim N \left(C\alpha, \sigma_g^2 \frac{G_1 T G_1^T + G_2 T G_2^T}{S} + \rho_g \frac{G_1 T G_2^T + G_2 T G_1^T}{S} + \sigma_e^2 I \right)$$

ightharpoonup T is a diagonal matrix with $T_{ss}= au_s^2$ for all s

- Let $K_1=\frac{G_1TG_1^T+G_2TG_2^T}{S}$ and $K_2=\frac{G_1TG_2^T+G_2TG_1^T}{S}$
- ightharpoonup Write $ho_q = \sigma_q^2 r_{admix}$ to get

$$y \sim N(C\alpha, \sigma_g^2(K_1 + r_{admix}K_2) + \sigma_e^2 I)$$

- While MLE of $(\alpha, \sigma_g^2, r_{admix}, \sigma_e^2)$ can be found by maximizing $L(\alpha, \sigma_g^2, r_{admix}, \sigma_e^2)$, the constraint that $|r_{admix}| \leq 1$ is not easy to enforce
- Authors use profile likelihood instead:

$$L_p(r_{admix}) = \max_{(\alpha, \sigma_g^2, \sigma_e^2)} L(\alpha, \sigma_g^2, r_{admix}, \sigma_e^2)$$

- Perform grid search over r_{admix} values to maxiximize $L_p(r_{admix})$
- For each candidate r_{admix} ,
 - ightharpoonup compute $K_1 + r_{admix}K_2$
 - > solve for $(\alpha, \sigma_g^2, \sigma_e^2)$ for a single variance component model with GCTA
 - in practice, compute $L_p(r_{admix})$ for $r_{admix} \in \{0, 0.05, 0.1, \dots, 1\}$
 - use natural cubic splines to interpolate pairs of $(r_{admix}, L_p(r_{admix}))$ to get a smooth curve
 - \blacktriangleright set $\widehat{r_{admix}}$ to value that maximizes the likelihood curve
 - set credible interval as highest posterior density interval (assuming prior U(0,1) for r_{admix})

Evaluation of genetic effects consistency at individual variant with marginal effects

lacktriangle For an individual SNP s and phenotype:

$$y = C\alpha + g_{s,1}\beta_{s,1}^{(m)} + g_{s,2}\beta_{s,2}^{(m)} + \epsilon$$

- ▶ Here, $\beta_{s,1}^{(m)}$ and $\beta_{s,2}^{(m)}$ are the marginal effects of the SNP
- Marginal effects tag effects from nearby causal SNPs with taggability as a function of ancestry-specific LD with causal SNPs
- ► Heterogeneity in marginal effects by local ancestry can be induced even if causal effects are the same

Figure 4: Induced heterogeneities in marginal effects across local ancestries

Figure 2: Induced heterogeneities in marginal effects across local ancestries

Evaluation of genetic effects consistency at individual variant with marginal effects

- ▶ Jointly estimate $\beta_{s,1}^{(m)}$ and $\beta_{s,2}^{(m)}$ with least squares
- ▶ Hypothesis testing by comparing above model to:

$$y = C\alpha + (g_{s,1} + g_{s,2})\beta_s^{(m)} + \epsilon$$

Marginal effects-based methods for estimating heterogeneity

- Inputs: estimated marginal effects $\widehat{\beta_{s,1}^{(m)}}$ and $\widehat{\beta_{s,2}^{(m)}}$ and their standard errors
- ▶ 3 approaches:
 - ► Pearson Correlation
 - ► OLS Regression Slope:

$$\widehat{\beta_{s,1}^{(m)}} \sim \widehat{\beta_{s,2}^{(m)}}$$

- Fails to model errors in independent variable
- Assumes homogenous errors in dependent variable across SNPs
- ▶ Deming Regression Slope:

$$\widehat{\beta_{s,1}^{(m)}} \sim \widehat{\beta_{s,2}^{(m)}}$$

with SEs

- ▶ Deming regression models heterogeneous errors in both independent and dependent variables
- More robust than above methods

Deming Regression

- Inputs: y_i and x_i , $\sigma_{x,i}$ and $\sigma_{y,i}$ for $i=1,\ldots,n$
- ▶ Optimizes the following objective function:

$$\min_{\beta,\alpha,\delta_1,\dots,\delta_n,\epsilon_1,\dots,\epsilon_n} \sum_{i=1}^n \left[\frac{\epsilon_i^2}{\sigma_{y,i}^2} + \frac{\delta_i^2}{\sigma_{x,j}^2} \right]$$

subject to:

$$y_i + \epsilon_i = \alpha + \beta(x_i + \delta_i)$$

for $i = 1, \dots, n$

Deming Regression

- Notably, Deming regression slope produces symmetric results for the two regression orders
- Can still produce biased errors if the standard errors are misspecified
- \blacktriangleright SEs of α and β can be bootstrapped

Simulation studies

Simulation studies

▶ To include local ancestry in estimating effect heterogeneity:

$$y = l_s \beta_{s,lanc}^{(m)} + g_{s,1} \beta_{s,1}^{(m)} + g_{s,2} \beta_{s,2}^{(m)} + c^T \alpha + \epsilon$$

 $\triangleright \beta_{s,lanc}^{(m)}$: local ancestry effect

Simulation studies

► For "local ancestry regressed":

$$y = l_s \beta_{s,lanc}^{(m)} + g_{s,1} \beta_{s,1}^{(m)} + g_{s,2} \beta_{s,2}^{(m)} + \epsilon$$

- \blacktriangleright First estimate $\beta_{s,lanc}^{(m)}$ by regressing y on l_s
- \blacktriangleright Second, estimate $\beta_{s,1}^{(m)},\beta_{s,2}^{(m)}$ by regressing $y-\widehat{\beta_{s,lanc}^{(m)}}$ on $g_{s,1}$ and $g_{s,2}$

Simulations studies

- To assess impact of including local ancestry term when applying HET test:
 - Randomly select 1000 SNPs on Chr 1 from PAGE genotype data
 - Simulate traits with a single causal SNP, using each of the 1000 SNPs as the causal SNP
 - Simulate quantitative traits with different values of $\beta_{Eur}:\beta_{Afr}:~(1.0,1.05,1.10,1.15,1.20)$
 - Scale effects such that the causal SNP explains the correct amount of heritability
 - ► For each causal SNP, repeat simulations of effects and random error 30 times
 - Apply the different strategies for including local ancestry to the simulated traits
 - $lackbox{ Get p-values for HET testing } H_0: eta_{eur} = eta_{afr}$
 - Included top PCs as covariates

Simulations studies

- Evaluate FPR or HET test power by subsampling without replacement:
 - ▶ Draw 100 random samples, each with 500 SNPs chosen from the pool of 1000 SNPs and 30 simulations
 - ▶ This approach accounts for randomness from both random errors and SNP MAFs
 - Calculated FPR for each sample of 500 SNPs
 - Obtained empirical distributions of FPR
 - Calculated mean & SE from empirical distribution

Figure 5

Figure 3: Pitfalls of including local ancestry in estimating heterogeneity

Data Analysis

▶ Meta-analyzed 3 large studies: PAGE, UKB, and AoU

Figure 3

Figure 4: Similarity of causal effects and marginal effects across local ancestries from PAGE, UKB, and AoU

Discussion

Discussion

- Methods for heterogeneity by ancestry estimation from marginal GWAS SNP effects are susceptible to inflated heterogeneity estimates
- ► HET test may yield false positives when causal variants unknown
- Deming regression robust in low polygenicity settings; susceptible to inflated heterogeneity estimates in high polygenicity settings
- OLS SI pe method biased due to failure to account for uncertainty in estimated effects

Limitations

- SNP MAF threshold of 0.005 for both ancestries
 - \blacktriangleright Simulations revealed that omission of rare variants could lead to downward bias in r_{admix}
 - Rare & population-specific causal variants can lead to upward bias in r_{admix}
- Limited consideration to two-way admixed individuals (African and European)
 - Extension to 3-way admixed individuals requires additional modeling due to error in local ancestry inference
- Extend methods to estimate correlations in causal effects stratified by functional annotations
- Deming regression not fully robust to high polygenicity settings
- Meta-analyzed 3 studies: PAGE, UKB, and AoU
 - Large SEs for individual traits