과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
▶Intro•학습열기•학습목표		① 학습내용과 학습목표 는 강의계획서와 일 치해야 하며, 필요시 강의계획서를 수정할 수 있습니다.
●학습하기 1. 인공신경망과 DNN 개념 2. 기울기 소실문제와 해결방법 3. Heart Disease Dataset 분석	 1. 인공신경망과 DNN의 차이를 설명할 수 있다. 2. 기울기 소실 문제를 설명할 수 있다. 3. 해당 데이터셋의 특징을 설명할 수 있다. 학습내용 	 ② 학습목표 ✓ 각 레슨에 맞는 학습목표를 2~3개 작성해주세요. ③ 학습내용 ✓ 1회차 당 25분 분량이되도록 2~3개 레슨으로 구성해주세요. ✓ 학습내용과 레슨명은일치해야합니다.
➤ 적용하기 ➤Outro •문제풀기	1. 인공신경망과 DNN 개념 2. 기울기 소실 문제와 해결 방법 3. Heart Disease Dataset 분석	용어설명
내 레 이 션	4	4

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	3		화면설명
≻Intro						
•학습열기						
•학습목표						
▶학습하기		간지				
1. 인공신경망 과 DNN 개념						
2. 기울기 소실 문제와 해결 방법				DAINI 7014		
3. Heart		인공신	그성망괴	· DNN 개념		
Disease Dataset 분석						
▶적용하기						용어설명
≻Outro						
•문제풀기						
_ "_ "						
내						1
내 레 이					5	
션						
						5

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro	• 인공신경망(Artificial Neural Network)의 기본 개념	
•학습열기	인공신경망은 인간의 뇌 신경세포(뉴런) 구조를 모방한 기계학습 모델	
•학습목표	기본 구조는 입력층, 은닉층, 출력층으로 구성	
▶ 학습하기	각 층의 노드들이 가중치로 연결	
1. 인공신경망 과 DNN 개념	전통적인 인공신경망은 보통 1-2개의 은닉층으로 구성	
2. 기울기 소실	• 심층신경망 DNN(Deep Neural Network)의 특징	
문제와 해결 방법	DNN은 3개 이상의 은닉층을 가진 인공신경망을 의미	
3. Heart Disease	"Deep"이라는 용어는 바로 이 깊은 층 구조에서 유래	
Dataset 분석		
▶ 적용하기		용어설명
> Outro		
•문제풀기		
내		
레	6	
이 선		

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명	3	화면설명
≻Intro	• ANN과 DNN 주요 차이점		
•학습열기	구조적 차이		
•학습목표	얕은 신경망: 입력층 - 은닉층(1-2개) – 출	력층	
▶ 학습하기	DNN: 입력층 - 은닉층(3개 이상) - 출력령	<u>.</u>	
1. 인공신경망 과 DNN 개념	학습 능력의 차이		
2. 기울기 소실	얕은 신경망은 단순한 패턴 인식에 적합성	사지만,	
문제와 해결 방법	DNN은 층이 깊어질수록 더 복	<u> </u>	
3. Heart Disease	예를 들어 이미지 인식에서 첫 번째 층은	선과 모서리를,	
Dataset 분석	중간 층은 형태와 질감을, 깊은	층은 객체 전체를 인식하게 됨	
	표현력의 차이		
▶적용하기	DNN은 더 많은 매개변수를 가지므로 복 ⁻	답한 함수를 근사할 수 있는 능력이 뛰어남	용어설명
≻Outro	• 응용 분야		
•문제풀기	전통적인 얕은 신경망은 간단한 분류나 회귀 분	근제에 사용되었지만	
	DNN은 이미지 인식, 자연어 처리, 음성 인식 분	등 복잡한 AI 문제 해결의 핵심 기술이 됨	
내			'
레 이		7	
션			7

과정명	РуТо	rch로 배우는 [©]	버신러닝 알고리즘 회차명	3	화면설명
▶Intro •학습열기	• A	NN과 DNN I	비교 표		
•학습목표 ▷학습하기		특징	ANN (인공신경망)	DNN (심층신경망)	
1. 인공신경망 과 DNN 개념		은닉층 수	2개 이하	3개 이상	
2. 기울기 소실 문제와 해결 방법		복잡도	단순한 구조로 간단한 문제 해결 가능	복잡한 구조로 고차원적 문제 해결 가능	
3. Heart Disease		활용 분야	간단한 분류 및 회귀 문제	이미지, 음성, 텍스트 등 복잡한 데이터 처리	
Dataset 분석		학습 능력	제한적	대량의 데이터에서 복잡한 패턴 학습 가능	
≻적용하기					용어설명
▶Outro •문제풀기					
내 레 이 션				8	8

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명	3	화면설명
≻Intro	• DNN의 장점		
•학습열기	데이터 표현력: 여러 은닉층을 통해 데이터의	추상적이고 고차원적인 표현을 학습	
•학습목표	확장성: CNN(Convolutional Neural Netw 한 딥러닝 모델의 기반	ork), RNN(Recurrent Neural Network) 등 다양	
▶학습하기1. 인공신경망과 DNN 개념	정확성: ANN보다 더 높은 정확도로 복잡	한 문제를 해결	
2. 기울기 소실 문제와 해결 방법	DNN은 ANN의 확장된 형태 더 깊은 구조를 통해 복잡한 문제를 해결	하고 데이터의 고차원적 특징을 학습	
3. Heart Disease Dataset 분석	ANN은 간단한 문제에 적합하지만, DNN 강력한 도구로 자리 잡고 있음	은 대량의 데이터와 복잡한 패턴을 처리하는 데	
	따라서 문제의 복잡성과 데이터의 특성어	따라 ANN과 DNN 중 적합한 모델을 선택	
≻ 적용하기			용어설명
≻Outro			
•문제풀기			
내 레 이		9	
션			9

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro		
•학습열기		
•학습목표	71 -1	
▶ 학습하기 1. 인공신경망 과 DNN 개념	간지	
2. 기울기 소실 문제와 해결 방법	기울기 소실 문제와 해결 방법	
3. Heart Disease Dataset 분석		
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	10	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro	• 기울기 소실(Vanishing Gradient) 문제의 정의	
•학습열기	심층 신경망(DNN)에서 역전파(Backpropagation) 과정 중 입력층으로 갈수록 기울기	
•학습목표	(Gradient)가 점차적으로 작아져서 0에 가까워지는 현상을 의미	
▶학습하기	이로 인해 가중치 업데이트가 제대로 이루어지지 않아 학습이 멈추는 문제가 발생	
1. 인공신경망 과 DNN 개념	Sigmoid: Vanishing Gradient Problem	
2. 기울기 소실 문제와 해결 방법	x \longrightarrow Linear Sigmoid \longrightarrow \hat{y}	
3. Heart Disease Dataset 분석	Separa Bayers: Malaban Sayari Malaba	
▶적용하기	tagent began blakfren basen blakfren	용어설명
≻Outro		
•문제풀기	Vanishing Gradient Badgropagaton	
	Amanatullah, Vanishing Gradient Problem in Deep Learning: Understanding, Intuition, and Solutions, 2023, https://medium.com/@amanatulla1606/vanishing-gradient-problem-in-deep-learning-understanding-intuition-and-solutions-da90ef4ecb54	
내 레 이 션	11	1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	3	화면설명
≻Intro	• 기울기 소실 문제의 해결 방법			
•학습열기	활성화 함수 변경			
•학습목표	가중치 초기화			
▶학습하기	배치 정규화 (Batch Normalization)			
1. 인공신경망 과 DNN 개념	네트워크 구조 변경			
2. 기울기 소실 문제와 해결 방법	심층 신경망의 깊이 조정			
3. Heart Disease Dataset 분석				
▶적용하기				용어설명
≻Outro				
•문제풀기				
내 레 이 션			13	1

과정명 PyTorch로 배우는 머신러닝 알고리즘 화면설명 회차명 기울기 소실 문제의 해결 방법: 활성화 함수 변경 >Intro •학습열기 ReLU(Rectified Linear Unit) ReLU는 입력값이 0보다 크면 그대로 출력하고, 0보다 작으면 0을 출력 •학습목표 이 함수는 기울기가 0 또는 1로 간단하며, 기울기 소실 문제를 완화 ▶학습하기 1. 인공신경망 Leaky ReLU 과 DNN 개념 ReLU의 단점인 "죽은 뉴런(Dying Neuron)" 문제를 해결하기 위해, 2. 기울기 소실 문제와 해결 음수 입력값에 작은 기울기를 부여 방법 3. Heart 시그모이드 Leaky 렐루 하이퍼볼릭탄젠트 렐루 Disease Dataset 분석 $g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$ $g(z) = \max(\epsilon z, z)$ $g(z)=rac{1}{1+e^{-z}}$ $g(z) = \max(0, z)$ with $\epsilon \ll 1$ 용어설명 ▶적용하기 **≻Outro** •문제풀기

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro	• 기울기 소실 문제의 해결 방법: 가중치 초기화	
•학습열기	Xavier 초기화	
•학습목표	층 간 기울기 분산을 균형 있게 유지하여	
▶학습하기 1. 인공신경망 과 DNN 개념	특정 층이 지나치게 주목받거나 뒤처지는 것을 방지 시그모이드와 하이퍼볼릭 탄젠트 함수에 적합	
2. 기울기 소실 문제와 해결 방법	He 초기화 ReLU 계열 함수에 적합하며, 이전 층의 뉴런 수를 반영하여 초기 가중치를 설정	
3. Heart Disease Dataset 분석		
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	15	1

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	3		화면설명
≻Intro						
•학습열기						
•학습목표		-1-1				
▶학습하기		간지				
1. 인공신경망 과 DNN 개념						
2. 기울기 소실 문제와 해결						
방법		Heart [Disease	Dataset 분석		
3. Heart Disease		ricare	Jiscuse			
Dataset 분석						
▶적용하기						용어설명
≻Outro						
•문제풀기						
내						
내 레 이					17	
션						

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro	• Heart Disease Dataset 소개	
•학습열기	데이터셋 배경	
•학습목표	UCI(University of California, Irvine) 머신러닝 저장소의 심장 질환 데이터셋으로, 클리블	
 ▶학습하기 1. 인공신경망과 DNN 개념 2. 기울기 소실문제와 해결방법 	랜드 병원 등에서 수집된 환자 정보 심장 질환 여부를 예측하는 의료 데이터셋 다양한 생체 신호와 검사 지표 포함 이진 분류 문제로 사용	
3. Heart Disease	열 target: 0(심장병 없음) 또는 1(심장병 있음)	
Dataset 분석	환자 303명의 의료 특성이 담긴 CSV 파일	
	14개의 각 열이 한 가지 환자 특성(feature)을 나타냄	
▶ 적용하기	이 특성들을 사용해 환자가 심장병이 있는지 없는지(이진 분류)를 예측	용어설명
≻Outro		
•문제풀기		
내 레 이 션	18	1

과정명	РуТо	rch로 배우는 머신리	러닝 알고리즘 회차명	3	화면설명
≻Intro	• =	투성 구성: 총 14가	의 열로 구성되며, 이 중	마지막 열이 레이블, 정답임	
•학습열기		열 이름	설명	값의 유형 / 범위	
•학습목표		age	나이 (세)	정수형	
		sex	성별	1 = 남성, 0 = 여성	
▶학습하기1. 인공신경망과 DNN 개념2. 기울기 소실		cp (ChestPain)	흉통 종류 (4가지 범주)	0 = 전형적 협심증 1 = 비전형적 협심증 2 = 비협심증성 흉통, 3 = 무증상	
문제와 해결		trestBP	안정시 혈압 (mm Hg)	정수형	
방법		chol	혈중 콜레스테롤 (mg/dl)	정수형	
3. Heart		fbs	공복 혈당 > 120mg/dl 여부	1 = 참, 0 = 거짓	
Disease Dataset 분석		restECG	안정시 심전도 결과	0, 1, 2 (범주형)	
Dalaset ± ¬		thalach (MaxHR)	최대 심박수 (분당 박동수)	정수형	
		exang	운동 유발 협심증 여부	1 = 예, 0 = 아니오	
		oldpeak	운동 대비 ST 하강치 (높을수록 이상	실수형	
▶적용하기		slope	운동 중 ST 절편 기울기	1 = 상승, 2 = 평평, 3 = 하강	용어설명
, 10 1 1		ca	형광 투시된 주요 혈관 수	0-3 (정수형, 일부 NA)	
≻Outro		thal	지중해 빈혈(Thalassemia) 검사 결과	정상, 고정결함, 가역적결함	
ㅁᅰᄑᆌ		target	심장병 진단 여부	1 = 예, 0 = 아니오	
•문제풀기					
내 레 이 션				19	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명
≻Intro	• 데이터 가져 오기	
•학습열기	GitHub 또는 UCI ML Repository에서 공개	
•학습목표	CSV 형식으로 바로 로드 가능	
▶학습하기1. 인공신경망 과 DNN 개념2. 기울기 소실 문제와 해결 방법3. Heart Disease Dataset 분석	<pre>import pandas as pd url = "https://raw.githubusercontent.com/sharmaroshan/Heart-UCI-Dataset/master/hea df = pd.read_csv(url) df.info()</pre>	rt.csv"
		용어설명
▶적용하기		O IEO
≻Outro		
•문제풀기		
내 레 이 션	20	2

과정명	PyTorch로 배우는 머신러	닝 알고리즘	회차명	3	화면설명
≻Intro	• 데이터셋 열 정보 획	부인: df.info()			
•학습열기	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>				
•학습목표	RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):				
7674	# Colum				
▶학습하기					
1. 인공신경망	0 age	303 non-null	int64		
과 DNN 개념	1 sex	303 non-null	int64		
2. 기울기 소실	2 cp	303 non-null	int64		
문제와 해결 방법	3 trest	ops 303 non-null	int64		
	4 chol	303 non-null	int64		
3. Heart Disease	5 fbs	303 non-null	int64		
Dataset 분석	6 reste	og 303 non-null	int64		
7 3 3 3 3 3 4	7 thala		int64		
	8 exang	303 non-null	int64		
	9 oldpe		float64		0.411171
▶적용하기	10 slope	303 non-null	int64		용어설명
	11 ca	303 non-null	int64		
≻Outro	12 thal	303 non-null	int64		
ㅁᆌᄑᆌ	13 targe		int64		
•문제풀기	3333	oat64(1), int64(13	3)		
	memory usa	ge: 33.3 KB			
내					
레				21	
0				21	
션					
					2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3	화면설명			
≻Intro	• 데이터 시각화 초기 설정				
•학습열기					
•학습목표	# 데이터 시각화 그림 선명하도록 설정				
▶학습하기	%config InlineBackend.figure_format = 'retina'				
1. 인공신경망 과 DNN 개념	# 데이터 시각화 패키지 메모리 로드				
2. 기울기 소실 문제와 해결 방법	<pre>import seaborn as sns import matplotlib.pyplot as plt</pre>				
3. Heart Disease Dataset 분석	# 그림 크기 지정 plt.figure(figsize=(8,6));				
	# Colab 에서 한글 설정				
▶적용하기	!pip install koreanize-matplotlib	용어설명			
≻Outro	import koreanize_matplotlib				
•문제풀기					
내					
0	22				
션		2			

이 션

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 3		화면설명
▶Intro•학습열기•학습목표	• 다층 신경망(Deep Neural Network)이 단층 신경수 있는 이유는 무엇인가요? 또한 이러한 구조가법에 대해서도 서술해 보세요.		한습 내용과 관련하여 실제 적용력을 높일 수 있는 문제, 혹은 주제를 작성해 주세요.
▶학습하기 1. 인공신경망 과 DNN 개념 2. 기울기 소실 문제와 해결 방법 3. Heart Disease Dataset 분석	 다층 신경망의 장점 다층 구조는 비선형적인 복잡한 문제를 해결 데이터에서 고차원의 특징(feature)을 자동으로 높은 수준의 추상화를 할 수 있어, 이미지적으로 처리할 수 있습니다. 구조적인 한계: 기울기 소실 문제 역전파(Backpropagation) 과정에서 기울기(습이 제대로 이루어지지 않는 문제가 발생합 	으로 추출할 수 있습니다.층이 깊어질수록 기, 텍스트, 음성 등 다양한 데이터를 효과 Gradient)가 층을 거치며 점점 작아져, 학	 ② ex. 사례 제시 후 전문가 의견, 실습과제, 응용 예시 시뮬레이션 등 ③ 저작권 침해가 되지않도록 내용을 구성해 주세요. ④ 출처가 있을 경우 반드시 작성해 주세요.
▶ 적용하기 ▶Outro •문제풀기	2. 특히 Sigmoid나 Tanh와 같은 포화 함수(sati 두드러지게 나타납니다.	urated function)에서는 이러한 현상이 더	용어설명
내 레 이 션		27	2