ODE Lesson 9: Direction Fields and Isoclines - Visualizing ODE Solutions

ODE 1 - Prof. Adi Ditkowski

1 Introduction to Direction Fields

Definition 1 (Direction Field). For a first-order ODE $\frac{dy}{dx} = f(x, y)$, the **direction field** (or slope field) is a graphical representation where at each point (x, y) in the plane, we draw a short line segment with slope f(x, y).

Direction fields provide a complete qualitative picture of all solutions without solving the ODE!

2 Construction Algorithm

Method 1 (Creating Direction Fields). 1. Choose a grid of points (x_i, y_j) in the region of interest

- 2. At each point, calculate the slope $m_{ij} = f(x_i, y_j)$
- 3. Draw a short line segment centered at (x_i, y_j) with slope m_{ij}
- 4. Keep all segments approximately the same length

3 Isoclines

Definition 2 (Isocline). An **isocline** for slope c is the set of all points where f(x,y) = c.

Isoclines dramatically simplify direction field construction! Along each isocline, all direction segments have the same slope.

Example 1 (Finding Isoclines). For $\frac{dy}{dx} = 2x - y$:

- Isocline for slope 0: $2x y = 0 \Rightarrow y = 2x$
- Isocline for slope 1: $2x y = 1 \Rightarrow y = 2x 1$
- Isocline for slope -1: $2x y = -1 \Rightarrow y = 2x + 1$

4 Special Features

4.1 Equilibrium Points

Definition 3 (Equilibrium Point). A point (x_0, y_0) where $f(x_0, y_0) = 0$ is an **equilibrium point**. Solutions starting at equilibria remain constant.

4.2 Nullclines

Definition 4 (Nullcline). The **nullcline** is the isocline where f(x, y) = 0, consisting of all equilibrium points and curves of horizontal tangents.

Do not confuse isoclines with solution curves! Isoclines show where slopes are constant; solution curves follow the changing slopes.

5 Sketching Solution Curves

Method 2 (Drawing Solutions from Direction Fields). 1. Choose an initial point (x_0, y_0)

- 2. Draw a smooth curve that is tangent to the direction segment at every point
- 3. The curve should "flow" with the field, never crossing arrows at wrong angles
- 4. Pay special attention near equilibria and nullclines

6 Qualitative Analysis Features

Theorem 1 (Direction Field Properties). From a direction field, we can determine:

- Location and type of equilibria
- Stability of equilibria (attracting/repelling)
- Existence of separatrices
- Long-term behavior of solutions
- Regions of monotonic behavior

7 Examples with Direction Fields

Example 2 (Linear ODE: $\frac{dy}{dx} = x - y$).

8 Exam Strategy

Prof. Ditkowski's Common Questions:

- 1. Sketch the direction field for a given ODE
- 2. Identify all equilibria from a direction field
- 3. Draw solution curves through specific points
- 4. Determine long-term behavior without solving
- 5. Find and classify isoclines

9 Memory Aids

Direction Field Analysis Steps:

Draw grid points
Identify isoclines
Recognize equilibria
Evaluate slopes
Construct solution curves
Track long-term behavior