COGNOME:

NOME:

MATRICOLA:

DATA: 1 febbraio 2024

Calculus 1 - Test

Scrivere nella tabella sottostante la lettera corrispondente alla risposta a ciascuna domanda. Tenere presente che le risposte esatte valgono 3 punti, quelle sbagliate -1 punto, mentre le domande senza risposta valgono 0 punti. Ciascun quesito ha una e una sola risposta corretta.

ſ	1	2	3	4	5	6	7	8	9	10
ſ										

- 1. Sia $E \subseteq \mathbb{R}$ un insieme il cui estremo superiore è finito. Allora
 - (A) il massimo di E esiste ed è finito.
 - (B) esiste uno e un solo maggiorante di E.
 - (C) esistono infiniti maggioranti di E.
 - (D) nessuna delle precedenti.
- **2.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione. Il grafico di $x \mapsto f(x+1)$ si ottiene:
 - (A) traslando di 1 il grafico di f verso destra.
 - (B) traslando di 1 il grafico di f verso sinistra.
 - (C) traslando di 1 il grafico di f verso l'alto.
 - (D) traslando di 1 il grafico di f verso il basso.
- **3.** Siano f, g due funzioni. Allora
 - (A) f + g è definita su $Dom(f) \cup Dom(g)$.
 - (B) f + g è definita su $Dom(f) \cap Dom(g)$.
 - (C) $f \circ g$ è definita su $Dom(f) \cap Dom(g)$.
 - (D) $f \circ g$ è definita su $Dom(f) \cup Dom(g)$.
- **4.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione il cui grafico interseca ogni retta orizzontale in almeno un punto. Allora
 - (A) f è iniettiva.
 - (B) f è suriettiva.
 - (C) f è strettamente monotona.
 - (D) nessuna delle precedenti.
- **5.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione. Per definizione, $\lim_{x \to -\infty} f(x) = -\infty$ se
 - (A) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x<-N si ha f(x)<-M.
 - (B) per ogniM>0esiste N>0tale che per ogni $x\in\mathbb{R}$ con x<-Msi ha f(x)<-N.
 - (C) per ogni M > 0 esiste N > 0 tale che per ogni $x \in \mathbb{R}$ con x > N si ha |f(x)| < -M.
 - (D) nessuna delle precedenti.

- **6.** Una funzione $f: \mathbb{R} \to \mathbb{R}$ è continua in $x_0 \in \mathbb{R}$ se
 - (A) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \delta$ si ha $|f(x) f(x_0)| < \varepsilon$.
 - (B) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \varepsilon$ si ha $|f(x) f(x_0)| < \delta$.
 - (C) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \delta$ si ha $|f(x) f(x_0)| < \varepsilon$.
 - (D) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \varepsilon$ si ha $|f(x) f(x_0)| < \delta$.
- 7. Se $f:[a,b]\to\mathbb{R}$ è una funzione continua, la sua immagine f([a,b]) è
 - (A) un intervallo illimitato chiuso.
 - (B) un intervallo illimitato aperto.
 - (C) un intervallo limitato chiuso.
 - (D) un intervallo limitato aperto.
- 8. Sia $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ una funzione tale che $\lim_{x \to 0^-} f(x) = -1$ e $\lim_{x \to 0^+} f(x) = 1$. Allora
 - (A) f è continua in 0;
 - (B) f non è continua in 0 ma può essere estesa per continuità in 0;
 - (C) f non può essere estesa per continuità in 0;
 - (D) nessuna delle precedenti.
- **9.** Siano $f,g:\mathbb{R}\to\mathbb{R}$ funzioni derivabili e $x_0\in\mathbb{R}$. Allora $\lim_{x\to x_0}\frac{f(g(x))-f(g(x_0))}{x-x_0}$ è uguale a:
 - (A) $f'(g'(x_0))g'(x_0)$.
 - (B) $f'(g(x_0))g'(x_0)$.
 - (C) $f'(g'(x_0))$.
 - (D) nessuna delle precedenti.
- **10.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e sia $F(x) = \int_0^x f(t) dt$. Quale delle seguenti affermazioni è falsa?
 - (A) F è continua.
 - (B) F è derivabile.
 - (C) la retta tangente al grafico di F in 0 ha equazione y = F(0)x.
 - (D) F(1) è l'area della regione compresa tra il grafico di f e l'asse x nell'intervallo [0,1].