CURSUL 8: GRUPURI

G. MINCU

1. Subgrupul generat de o submulțime

Definiția 1. Fie G un grup şi $M \subset G$. Prin **subgrupul lui** G **generat de** M înțelegem cel mai mic (în sensul incluziunii) subgrup al lui G care conține submulțimea M.

Vom nota subgrupul lui G generat de M cu $\langle M \rangle$. Dacă $M = \{x_1, x_2, \ldots, x_n\}$, vom folosi, în loc de $\langle \{x_1, x_2, \ldots, x_n\} \rangle$, notația $\langle x_1, x_2, \ldots, x_n \rangle$.

Propoziția 2. Fie G un grup și $M \subset G$. Are loc relația

$$\langle M \rangle = \bigcap_{\substack{H \le G \\ H \supset M}} H.$$

Propoziția 3. Fie G un grup și $M \subset G$. Are loc relația

$$\langle M \rangle = \{ x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} : n \in \mathbb{N}^*, \ x_1, \dots, x_n \in M, \ \alpha_1, \dots, \alpha_n \in \mathbb{Z} \}.$$

Observația 4. Dacă $g \in G$, atunci $\langle g \rangle = \{g^n : n \in \mathbb{Z}\}.$

Observația 5. $\langle \emptyset \rangle = \{e\}.$

Definiția 6. Fie G un grup. Submulțimea M a lui G se numește sistem de generatori al lui G dacă $\langle M \rangle = G$.

Definiția 7. Grupul G se numește finit generat dacă el admite un sistem finit de generatori.

Exemplul 8. Orice grup admite ca sistem de generatori mulțimea sa subiacentă.

Exemplul 9. Orice grup finit este finit generat.

Exemplul 10. Pentru orice $n \in \mathbb{N}$ grupul \mathbb{Z}_n este finit generat.

Exemplul 11. Pentru orice $n \in \mathbb{N}^*$ grupul S_n este finit generat.

Exemplul 12. Pentru orice $n \in \mathbb{N}^*$ grupul diedral D_n este finit generat.

Exemplul 13. Grupul \mathbb{Z} este finit generat.

G. MINCU

Exemplul 14. Pentru orice $n \in \mathbb{N}^*$ grupul \mathbb{Z}^n este finit generat.

Exemplul 15. Grupurile \mathbb{Q} , \mathbb{R} , \mathbb{C} nu sunt finit generate.

Temă: Demonstrați afirmațiile de la exemplele 8-15!

2. Grupuri ciclice

Definiția 16. Grupul G se numește **ciclic** dacă el admite un sistem de generatori format dintr-un singur element.

Observația 17. Orice grup ciclic este finit generat.

Exemplul 18. Grupul \mathbb{Z} este ciclic, deoarece $\mathbb{Z} = \langle 1 \rangle$.

Exemplul 19. Pentru orice $n \in \mathbb{N}^*$ grupul \mathbb{Z}_n este ciclic, deoarece $\mathbb{Z}_n = \langle \widehat{1} \rangle$.

Observația 20. Generatorul unui grup ciclic nu este unic determinat. De exemplu, avem și $\mathbb{Z} = \langle -1 \rangle$, iar $\mathbb{Z}_n = \langle \widehat{a} \rangle$ dacă și numai dacă (a, n) = 1.

Exemplul 21. Grupul $\mathbb{Z} \times \mathbb{Z}$ nu este ciclic.

Exemplul 22. Grupurile \mathbb{Q} , \mathbb{R} , \mathbb{C} nu sunt ciclice.

Teorema de structură a grupurilor ciclice. Orice grup ciclic cu $n \in \mathbb{N}^*$ elemente este izomorf cu \mathbb{Z}_n . Orice grup ciclic infinit este izomorf cu \mathbb{Z} .

Demonstrație: Fie G un grup ciclic și g un generator al acestuia. Considerăm $u: \mathbb{Z} \to G$, $u(n) = g^n$. Dacă $m, n \in \mathbb{Z}$, avem

$$u(m+n) = g^{m+n} = g^m g^n = u(m)u(n),$$

deciu este morfism de grupuri. În plus, u este în mod evident surjectiv. Aplicând teorema fundamentală de izomorfism pentru grupuri, obținem

 $G = \operatorname{Im} u \simeq \frac{\mathbb{Z}}{\ker u}$. Prin urmare, dacă $\ker u = n\mathbb{Z}$ cu $n \in \mathbb{N}^*$ avem $G \simeq \mathbb{Z}_n$, iar dacă $\ker u = \{0\}$ avem $G \simeq \mathbb{Z}$. \square

Corolarul 23. Orice grup ciclic este comutativ.

Corolarul 24. Orice subgrup al unui grup ciclic este ciclic.

Corolarul 25. Orice grup factor al unui grup ciclic este ciclic.

3. Ordinul unui element într-un grup

Observația 26. Dat fiind un element x al unui grup G, subgrupul $\langle x \rangle = \{x^n : n \in \mathbb{Z}\}$ al lui G este ciclic.

Definiția 27. Prin **ordinul** elementului x al grupului G înțelegem ordinul subgrupului generat de x în G.

Vom nota ordinul elementului x al grupului G cu ord $_{G}x$. Dacă grupul G este subînțeles în context, atunci vom folosi și notația ord x.

Caracterizări ale ordinului.

Propoziția 28. Fie G un grup și $x \in G$. Atunci

$$\operatorname{ord}_{\scriptscriptstyle{G}} x = \begin{cases} \min\{n \in \mathbb{N}^* : x^n = e\}, & \operatorname{dacă} \ \{n \in \mathbb{N}^* : x^n = e\} \text{ este nevidă} \\ +\infty, & \operatorname{altfel} \end{cases}$$

Corolarul 29. Dacă x este un element al grupului finit G, atunci $x^{\text{ord }x} = e.$

Propoziția 30. Fie G un grup, $x \in G$ și $n \in \mathbb{N}^*$. Atunci $\operatorname{ord}_G x = n$ dacă și numai dacă $x^n = e$ și $\forall m \in \mathbb{Z} \ x^m = e \Rightarrow n|m$.

Proprietăți ale ordinului.

Propoziția 31. Ordinul oricărui element al unui grup finit divide ordinul respectivului grup.

Demonstratie: Ordinul unui element, fiind ordinul unui subgrup, divide, conform teoremei lui Lagrange, ordinul grupului.

Propoziția 32. Dacă G, G_1 și G_2 sunt grupuri finite, atunci:

- $$\begin{split} &(\mathrm{i}) \quad \mathrm{ord}_{\scriptscriptstyle{G}}(x^k) = \frac{\mathrm{ord}_{\scriptscriptstyle{G}}x}{(k,\mathrm{ord}_{\scriptscriptstyle{G}}x)}. \\ &(\mathrm{ii}) \quad \mathrm{ord}_{\scriptscriptstyle{G_1\times G_2}}(x_1,x_2) = [\mathrm{ord}_{\scriptscriptstyle{G_1}}x_1,\,\mathrm{ord}_{\scriptscriptstyle{G_2}}x_2]. \end{split}$$
- (iii) $\operatorname{ord}_{G}(xy) = \operatorname{ord}_{G}(yx)$.
- (iv) Dacă xy = yx şi $(\operatorname{ord}_G x, \operatorname{ord}_G y) = 1$, atunci

$$\operatorname{ord}_{G}(xy) = \operatorname{ord}_{G} x \cdot \operatorname{ord}_{G} y.$$

Temă: Rămâne adevărată afirmația de la punctul (iv) al propoziției 32 în lipsa condiției xy = yx?

Temă: O generalizare naturală a afirmației de la punctul (iv) al propoziției 32 este: Dacă xy = yx, rezultă că

$$\operatorname{ord}_{\scriptscriptstyle{G}}(xy) = [\operatorname{ord}_{\scriptscriptstyle{G}} x, \operatorname{ord}_{\scriptscriptstyle{G}} y].$$

Este ea adevărată?

4. Aplicații

Definiția 33. Funcția $\varphi : \mathbb{N}^* \to \mathbb{N}^*$, $\varphi(n) =$ numărul numerelor naturale ce nu-l întrec pe n și sunt prime cu n, se numește **indicatorul lui Euler**.

Observația 34. $|U(\mathbb{Z}_n)| = \varphi(n)$.

Propoziția 35. Dacă $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_r^{\alpha_r}$, unde p_1,p_2,\dots,p_r sunt numere prime distincte două câte două, atunci

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right)$$

Teoremă (Euler). Pentru orice $n \in \mathbb{N}^*$ și orice $a \in \mathbb{Z}$ prim cu n avem $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Demonstrație: a fiind prim cu n, \widehat{a} este element al grupului $U(\mathbb{Z}_n)$. Aplicând corolarul 29, $\widehat{a}^{\varphi(n)} = \widehat{1}$ în acest grup, de unde concluzia. \square

Teoremă (Fermat). Pentru orice număr prim $p \in \mathbb{N}$ și orice $a \in \mathbb{Z}$ prim cu p avem $a^{p-1} \equiv 1 \pmod{p}$.

Demonstrație: Întrucât pentru orice număr prim p avem $\varphi(p) = p - 1$, obținem concluzia aplicând teorema lui Euler. \square

Propoziția 36. Fie $m, n \in \mathbb{N}$. Grupurile $\mathbb{Z}_m \times \mathbb{Z}_n$ și \mathbb{Z}_{mn} sunt izomorfe dacă și numai dacă m și n sunt prime între ele.

 $\begin{array}{l} \textit{Demonstrație: },,\Rightarrow\text{": Corespondentul }(\widehat{a},\overline{b}) \text{ al lui } \widetilde{1} \text{ prin izomorfism are ordinul }[\operatorname{ord}_{\mathbb{Z}_m}\widehat{a},\operatorname{ord}_{\mathbb{Z}_n}\overline{b}],\operatorname{dar și} mn. \text{ Deci, } mn=[\operatorname{ord}_{\mathbb{Z}_m}\widehat{a},\operatorname{ord}_{\mathbb{Z}_n}\overline{b}]|[m,n]; \\ \operatorname{cum} mn=[m,n]\cdot(m,n),\operatorname{obținem }(m,n)=1. \end{array}$

,, \Leftarrow ": Este imediat că funcția $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$, $f(\widetilde{a}) = (\widehat{a}, \overline{a})$ este (corect definită și) morfism injectiv de grupuri. Cum atât domeniul cât și codomeniul său au mn elemente, ea este și surjectivă. Prin urmare, f este izomorfism de grupuri. \square

Grupuri cu număr "mic" de elemente.

Definiția 37. Prin **tipul de izomorfism** al grupului G înțelegem clasa de echivalență a lui G în raport cu relația de izomorfism. Uneori, ne vom referi la tipul de izomorfism al lui G spunând, pe scurt, **tipul lui G**.

Observația 38. Orice grup cu număr prim de elemente este ciclic.

Demonstrație: Considerăm un grup G cu un număr prim p de elemente și $x \in G \setminus \{e\}$. Atunci, $|\langle x \rangle| > 1$ și $|\langle x \rangle|$ divide |G| = p, deci $|\langle x \rangle| = p = |G|$, de unde $G = \langle x \rangle$. \square

Corolarul 39. Dacă $p \in \mathbb{N}$ este număr prim, atunci singurul tip de grupuri cu p elemente este \mathbb{Z}_p .

Corolarul 40. Există un singur tip de grupuri cu două elemente, și anume \mathbb{Z}_2 .

Corolarul 41. Există un singur tip de grupuri cu trei elemente, şi anume \mathbb{Z}_3 .

Pentru viitoarele considerații avem nevoie de următorul instrument:

Propoziția 42. Fie G un grup cu proprietatea că orice element al său are ordin 1 sau 2. Atunci:

- (i) G este comutativ.
- (ii) Există $n \in \mathbb{N}^*$ astfel încât $|G| = 2^n$.
- (iii) Există $n \in \mathbb{N}^*$ astfel încât $G \simeq \underbrace{\mathbb{Z}_2 \times \mathbb{Z}_2 \times \ldots \times \mathbb{Z}_2}_{n \text{ factori}}$.

Problemă suplimentară: Demonstrați propoziția 42!

Grupuri cu patru elemente. Fie G un grup cu patru elemente. Elementele lui G nu pot avea decât ordin 1, 2 sau 4.

Dacă G are elemente de ordin 4, atunci G este ciclic, deci, conform teoremei de structură a grupurilor ciclice, $G \simeq \mathbb{Z}_4$.

Dacă G nu are elemente de ordin 4, atunci suntem în situația

$$\forall x \in G \setminus \{e\} \quad \text{ord } x = 2.$$

În aceste condiții obținem, aplicând propoziția 42, că $|G| \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$. Am obținut deci:

Propoziția 43. Există exact două tipuri de grupuri cu patru elemente: \mathbb{Z}_4 și grupul lui Klein.

 $Grupuri\ cu\ şase\ elemente.$ Fie G un grup cu şase elemente. Elementele lui G nu pot avea decât ordin 1, 2, 3 sau 6.

Dacă G are elemente de ordin 6, atunci G este ciclic, deci, conform teoremei de structură a grupurilor ciclice, $G \simeq \mathbb{Z}_6$.

Dacă G nu are elemente de ordin 6, să presupunem că pentru orice $x \in G \setminus \{e\}$ avem ord x = 2. În aceste condiții obținem, aplicând propoziția 42, că |G| este putere de doi, ceea ce reprezintă o contradicție.

Prin urmare, G admite elemente de ordin 3; fie x un astfel de element şi $y \in G \setminus \{e, x, x^2\}$. Se arată uşor că $G = \{e, x, x^2, y, xy, x^2y\}$ şi, eliminând celelalte posibilități, că $y^2 = e$. Dacă yx = xy obținem

6 G. MINCU

imediat faptul că $\operatorname{ord}_G(xy)=6$, contradicție. Eliminând celelalte posibilități (de pildă, yx=e ar duce la contradicția $y=x^2$, ş. a. m. d.), constatăm că $yx=x^2y$. Prin urmare, $G\simeq D_3\simeq S_3$. Am obținut așadar:

Propoziția 44. Există exact două tipuri de grupuri cu șase elemente: \mathbb{Z}_6 și S_3 .

Temă: Determinați tipurile de grupuri cu șapte, respectiv cu opt elemente!

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.