

# 现代管理科学方法(第3讲)

郭仁拥 博士/教授/博导

## 讲授内容

- 1. 交通分配问题的求解
- 2. 迭代步长的计算
- 3. 求解子问题的最短路算法
- 4. 课堂练习

## 1. 交通分配问题的求解

为了计算用户均衡流量分布方式,可求解如下最优化模型

$$\min_{\mathbf{x} \in \Omega_{\mathbf{L}}} V(\mathbf{x}) = \sum_{a \in L} \int_0^{x_a} c_a(x) \mathrm{d}x \tag{1}$$

这里 $\Omega_L \equiv \{ \mathbf{x} \mid \mathbf{x} \in \Omega \}$ , 即 $\mathbf{x}$ 满足如下约束

$$x_a = \sum_{w \in W} \sum_{r \in P} \delta_{a,r} f_{r,w}, \quad \forall \ a \in L$$
 (2)

$$d_{w} = \sum_{r \in R_{w}} f_{r,w}, \quad \forall \ w \in W \tag{3}$$

$$f_{r,w} \ge 0, \quad \forall \ r \in R_w, \ w \in W$$
 (4)

接下来介绍一类求解交通分配问题的Frank-Wolfe (FW)算法

### 该FW算法的计算过程如下:

第1步: 给定一个初始路段流量  $\mathbf{x}^{(0)} \in \Omega_{L}$ , 设置 k = 0.

第2步:求解如下优化问题(5)来计算目标路段流量  $\mathbf{y}^{(k)}$ 

$$\min_{\mathbf{y} \in \Omega_{L}} \mathbf{c} \left( \mathbf{x}^{(k)} \right)^{\mathrm{T}} \mathbf{y} \tag{5}$$

 $\mathbb{P} \mathbf{y}^{(k)} \in \arg\min_{\mathbf{y} \in \Omega_{\mathsf{L}}} \mathbf{c} (\mathbf{x}^{(k)})^{\mathsf{T}} \mathbf{y} .$ 

第3步:确定迭代步长 $\alpha^{(k)}$  (>0),使目标函数值 $V(\mathbf{x})$ 有

某种意义的下降,令 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} (\mathbf{y}^{(k)} - \mathbf{x}^{(k)}).$ 

第4步:如果 $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| / \|\mathbf{x}^{(k)}\| < \varepsilon$ ,则停止迭代;否则,

设置k=k+1,返回第2步。

第4步中 $\|\cdot\|$ 是一个欧式范数。例如,对于一个列向量 $\mathbf{u}$ ,  $\|\mathbf{u}\| = \sqrt{\mathbf{u}^{\mathsf{T}}\mathbf{u}}$  。  $\varepsilon$  是一个较小的正数。

由于  $\mathbf{x}^{(0)} \in \Omega_{\mathrm{L}}$ ,  $\mathbf{y}^{(k)} \in \Omega_{\mathrm{L}}$ ,  $\alpha^{(k)} \in (0,1]$ , 以及集合  $\Omega_{\mathrm{L}}$  是一个凸集,因此  $\mathbf{x}^{(k+1)} = \left(1 - \alpha^{(k)}\right)\mathbf{x}^{(k)} + \alpha^{(k)}\mathbf{y}^{(k)} \in \Omega_{\mathrm{L}}$ , 即流量迭代轨迹一直在集合  $\Omega_{\mathrm{L}}$  内。

## 第2步用来确定目标函数V的一个下降方向 $\mathbf{y}^{(k)} - \mathbf{x}^{(k)}$ 。目

标函数 V 的梯度方向可以刻画作

$$\nabla V(\mathbf{x}) = (c_a(x_a), a \in L)^{\mathrm{T}}.$$

当流量迭代轨迹没有达到用户均衡时,由第2步中  $\mathbf{y}^{(k)}$  的定义可知

$$\nabla V\left(\mathbf{x}^{(k)}\right)^{\mathrm{T}}\left(\mathbf{y}^{(k)}-\mathbf{x}^{(k)}\right) = \mathbf{c}\left(\mathbf{x}^{(k)}\right)^{\mathrm{T}}\mathbf{y}^{(k)} - \mathbf{c}\left(\mathbf{x}^{(k)}\right)^{\mathrm{T}}\mathbf{x}^{(k)} < 0.$$

因此 $\mathbf{y}^{(k)} - \mathbf{x}^{(k)}$ 是目标函数V的一个下降方向

接下来说明 $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| / \|\mathbf{x}^{(k)}\| < \varepsilon$ 可以作为一个算法迭代

停止条件, 使流量迭代轨迹达到用户均衡。当  $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$ 

时, $\mathbf{y}^{(k)} = \mathbf{x}^{(k)}$ ,即 $\mathbf{x}^{(k)}$ 是优化问题(5)的最优解。因此,对应于 $\mathbf{x}^{(k)}$ 的路径流量 $\mathbf{f}^{(k)}$ 满足如下KKT条件

$$C_{r,w}\left(\mathbf{f}^{(k)}\right) = \mu_w + \lambda_{r,w}, \quad \forall \ r \in R_w, \ w \in W$$
 (6)

$$\lambda_{r,w} f_{r,w}^{(k)} = 0, \quad \lambda_{r,w} \ge 0, \quad f_{r,w}^{(k)} \ge 0, \quad \forall \ r \in R_w, \ w \in W$$
 (7)

这里 $\mu_w$  ( $w \in W$ )是对应守恒约束(3)的拉格朗日乘子, $\lambda_{r,w}$  ( $r \in R_w$ ,  $w \in W$ )是对应非负约束(4)的拉格朗日乘子。

结合公式(6)和(7)可得到

$$(C_{r,w}(\mathbf{f}^{(k)}) - \mu_w) f_{r,w}^{(k)} = 0, \quad \forall \ r \in R_w, \ w \in W$$
 (8)

$$C_{r,w}(\mathbf{f}^{(k)}) - \mu_w \ge 0, \quad f_{r,w}^{(k)} \ge 0, \quad \forall \ r \in R_w, \ w \in W$$
 (9)

公式(8)和(9)意味着

$$C_{r,w}(\mathbf{f}^{(k)}) \begin{cases} = \mu_w, & \text{if } f_{r,w}^{(k)} > 0, \forall r \in R_w, w \in W \\ \geq \mu_w, & \text{if } f_{r,w}^{(k)} = 0, \forall r \in R_w, w \in W \end{cases}$$

也就是说  $\mathbf{f}^{(k)}$  是一个UE流量方式。此外,优化问题(5)是一个凸优化问题(线性规划问题),因此  $\mathbf{x}^{(k)}$  是优化问题(5)的最优解当且仅当  $\mathbf{f}^{(k)}$  是一个UE流量方式。

## 2. 迭代步长的计算

设
$$V(\alpha^{(k)}) = V(\mathbf{x}^{(k)} + \alpha^{(k)}(\mathbf{y}^{(k)} - \mathbf{x}^{(k)}))$$
,则有
$$\frac{dV(\alpha^{(k)})}{d\alpha^{(k)}} = \nabla V(\mathbf{x}^{(k)} + \alpha^{(k)}(\mathbf{y}^{(k)} - \mathbf{x}^{(k)}))^{\mathrm{T}}(\mathbf{y}^{(k)} - \mathbf{x}^{(k)}).$$

第3步中的迭代步长 $\alpha^{(k)}$ 可由如下二分法计算:

第1步:设置 $\alpha^{(k)} = 1/2$ 和 $\beta = 1/2$ .

**第2步:** 设 $\beta = \beta/2$ .

第3步: 如果  $dV(\alpha^{(k)})/d\alpha^{(k)} > 0$ ,则  $\alpha^{(k)} = \alpha^{(k)} - \beta$ ;否则,

 $\alpha^{(k)} = \alpha^{(k)} + \beta.$ 

**第4步**:如果  $\beta < \varepsilon$ ,则算法迭代停止;否则,返回第2步。

## 3. 求解子问题的最短路算法

将约束 $y = \Delta g$  代入优化问题(5)的目标函数,该优化问题可表示为仅包含决策变量g (路径流量)的形式:

$$\min_{\mathbf{g}} \mathbf{C} \left( \mathbf{f}^{(k)} \right)^{\mathrm{T}} \mathbf{g} \tag{10}$$

s.t.  $\mathbf{d} = \mathbf{\Lambda}\mathbf{g}$ ,  $\mathbf{g} \geq \mathbf{0}$ .

优化问题(10)进一步可以分解为一系列子问题

$$\min_{\mathbf{g}_{w}} \sum_{r \in R_{w}} C_{r,w} \left( \mathbf{f}^{(k)} \right) g_{r,w} \tag{11}$$

s.t. 
$$d_w = \sum_{r \in R_w} g_{r,w}, g_{r,w} \ge 0, \forall r \in R_w,$$

对于任意 $w \in W$ .

很显然,将OD对w间所有出行需求 $d_w$ 分配到该OD对间具 有最小出行费用的路径上(全有或全无分配, All-or-nothing assignment),就可以得到子问题(11)的最优解。因此,求 解优化问题(5)可以转换为求解一些列最短路径问题。接下 来介绍一类最短路算法一标号法(Label-correcting method),用来计算网络中一个起点到所有其他节点的最 短路径。该算法以迭代方式扫描网络节点, 每次迭代扫描 发现更短的路径,当没有更短的路径被发现,算法结束。

- 每个路段由它的两个端点来表示, $c_{ij}$ 是路段ij的长度(出行费用)
- 对于每个节点i,两个信息被记录: 节点(当前)标号  $l_i$ 和(当前)前端节点 $p_i$
- 节点*i* 的标号记录根节点到节点*i* 的(当前)最短路径 距离
- 节点*i* 的前端节点记录(当前)最短路径上节点*i* 的前端相邻节点
- 序列表包含没有被检查和需要进一步检查的节点

- 初始时刻设置所有节点标号为正无穷,设置所有节点的前端节点为0,将起点r放入序列表并设置 $l_r=0$
- 每次迭代开始从序列表选取一个节点i进行检查,测试所有与节点i通过一个路段相连的节点j,如果  $l_i+c_{ij}< l_j$ ,则 $l_j=l_i+c_{ij}$ , $p_j=i$ ,并且将节点j添加到序列表;经过所有相连的节点j被测试完,节点i的检查被完成,它被移出序列表

- 当序列表为空时,算法终止
- 依次追溯每个节点的前端节点,直到返回根节点,就可以找到根节点到其他任意节点的最短路径
- 从序列表移出的节点可能被再次添加到序列表

考虑右侧网络,该网络包含1 个OD对和4个路段。使用标号 法找出节点1到4的最短路径



|    |                   |     | 标号  | 景表  |     |     |     |     |     |     |
|----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 迭代 | 测试路段              | 节点1 | 节点2 | 节点3 | 节点4 | 节点1 | 节点2 | 节点3 | 节点4 | 序列表 |
| 0  |                   | 0   | 8   | 8   | 8   | 0   | 0   | 0   | 0   | 1   |
| 1  | $1 \rightarrow 4$ | 0   | 8   | 8   | 4   | 0   | 0   | 0   | 1   | 1,4 |
| 2  | $1 \rightarrow 2$ | 0   | 1   | 8   | 4   | 0   | 1   | 0   | 1   | 2,4 |
| 3  | $2 \rightarrow 3$ | 0   | 1   | 2   | 4   | 0   | 1   | 2   | 1   | 3,4 |
| 4  | $3 \rightarrow 4$ | 0   | 1   | 2   | 3   | 0   | 1   | 2   | 3   | 4   |
| 5  |                   | 0   | 1   | 2   | 3   | 0   | 1   | 2   | 3   |     |

### 编程实现最短路算法的注意事项

1. 网络的存储:路段列表中路段由两端节点表示;为避免路段的重复搜索,具有相同前端节点的路段相邻存储;前端节点按升序安排



| 2. 序列表的管理: 为避免重复计算, | 仅仅当 |
|---------------------|-----|
| 一个节点不在序列表,才添加它进序    | 列表; |
| 序列表被从上向下处理,一个从来不    | 在序列 |
| 表中的节点应该被添加到序列底部;    | 一个之 |
| 前在过序列表中的节点应该被放在序    | 列顶端 |
| (即它是下一个待检查的节点)      |     |

| 前端节点 | 后端节点 |
|------|------|
| 1    | 2    |
| 1    | 4    |
| 1    | 5    |
| 2    | 3    |
| 2    | 6    |
| 2    | 5    |
| 3    | 6    |
| 4    | 5    |
| 5    | 2    |
| 5    | 6    |

在编程计算过程中,为了放一个节点在序列顶端,不需要物理移动所有节点位置;序列表由一个数组 s 来刻画,数 组中每个元素描述了一个节点在序列表中的状态,即

- 序列表顶端和低端由特定指针识别
- 当放节点 j 在序列顶端,设置 s(j) = m (这里 m 是之前 序列中第一个节点),顶端指针指向 j
- 当放节点 j 在序列底部,设置  $s(j) = +\infty$  和 s(n) = j (这里 n 是之前序列中最后一个节点),底部指针指向 j

#### 最短路算法的计算过程如下:

第1步:设置 $l_i = \infty$ 和 $p_i = 0$ , $\forall i$ ;  $l_o = 0$ ,下标o代表根节

点;根节点o放入序列表

第2步:如果序列表为空,则算法停止;否则,转到第3步

第3步:将序列表中顶端节点记为i,设 $L_i$ 表示所有与节点

i通过一个路段连接的后端节点集合

第4步:如果集合 $L_i$ 为空,则从序列表中移去节点i,并转

到第2步;否则,将集合 $L_i$ 中下一个待测试节点记为j

第5步: 如果 $l_i + c_{ij} < l_j$ ,则设置 $l_j = l_i + c_{ij}$ 和 $p_j = i$ ;否则,转到第4步

**第6步**:如果节点 j 在序列集中,则转到第4步;否则,转到第7步

第7步:如果节点j之前在过序列集,则将节点j放到序列集顶端,转到第4步;否则,将节点j放到序列集底部,转到第4步

在求解交通分配问题的FW算法中,初始路段流量  $\mathbf{x}^{(0)}$ 需要落在可行集  $\Omega_L$  内,可以通过求解一个基于零流量路段费用  $\mathbf{c}(\mathbf{0})$  的优化问题(5)来得到初始路段流量  $\mathbf{x}^{(0)}$ ,即求解如下优化问题

$$\min_{\mathbf{y} \in \Omega_{L}} \mathbf{c}(\mathbf{0})^{\mathrm{T}} \mathbf{y}$$

换句话说,可以利用基于 $\mathbf{c}(\mathbf{0})$ 的全无全有分配得到初始路段流量  $\mathbf{x}^{(0)}$ 

### 为了计算用户均衡流量分布方式,需要求解如下优化问题

$$\min_{(\mathbf{x},\mathbf{f})} V(\mathbf{x}) = \sum_{a \in L} \int_{0}^{x_{a}} c_{a}(x) dx$$

$$s.t., \quad x_{a} = \sum_{w \in W} \sum_{r \in R_{w}} \delta_{a,r} f_{r,w}, \quad \forall \ a \in L$$

$$d_{w} = \sum_{r \in R_{w}} f_{r,w}, \quad \forall \ w \in W$$

$$f_{r,w} \ge 0$$
,  $\forall r \in R_w$ ,  $w \in W$ 

以上优化问题的决策变量是路段流量x和路径流量f

- 在一个现实的交通网络中,路径数量一般是远远大于路段数量
- FW算法仅仅需要存储和处理路段流量变量
- FW算法可应用于求解较大规模的现实交通分配问题

利用FW算法求解 右侧网络的UE解, 其中 $d_{OD}$ = 6



| k | $x_{\mathrm{OA}}$ | $\mathcal{X}_{\mathrm{OB}}$ | $\mathcal{X}_{	ext{AB}}$ | $x_{ m AD}$ | $x_{ m BD}$ | $y_{OA}$ | $y_{\mathrm{OB}}$ | $y_{ m AB}$ | $y_{AD}$ | $y_{ m BD}$ | α     | $V(\mathbf{x})$ |
|---|-------------------|-----------------------------|--------------------------|-------------|-------------|----------|-------------------|-------------|----------|-------------|-------|-----------------|
| 0 | 6                 | 0                           | 6                        | 0           | 6           | 6        | 0                 | 0           | 6        | 0           | 0.361 | 438             |
| 1 | 6                 | 0                           | 3.83                     | 2.17        | 3.83        | 0        | 6                 | 0           | 0        | 6           | 0.309 | 409.83          |
| 2 | 4.14              | 1.86                        | 2.65                     | 1.50        | 4.50        | 6        | 0                 | 0           | 6        | 0           | 0.088 | 387.72          |
| 3 | 4.31              | 1.69                        | 2.41                     | 1.90        | 4.10        | 0        | 6                 | 0           | 0        | 6           | 0.054 | 386.67          |
| 4 | 4.08              | 1.92                        | 2.28                     | 1.79        | 4.21        | 6        | 0                 | 0           | 6        | 0           | 0.036 | 386.31          |
| 5 | 4.15              | 1.85                        | 2.20                     | 1.94        | 4.06        | 0        | 6                 | 0           | 0        | 6           | 0.025 | 386.15          |
| 6 | 4.04              | 1.96                        | 2.15                     | 1.90        | 4.10        | 6        | 0                 | 0           | 6        | 0           | 0.018 | 386.08          |

| k  | $x_{\mathrm{OA}}$ | $x_{ m OB}$ | $\mathcal{X}_{	ext{AB}}$ | $x_{ m AD}$ | $\mathcal{X}_{\mathrm{BD}}$ | $y_{OA}$ | $y_{ m OB}$ | $y_{ m AB}$ | $y_{ m AD}$ | $y_{ m BD}$ | α     | $V(\mathbf{x})$ |
|----|-------------------|-------------|--------------------------|-------------|-----------------------------|----------|-------------|-------------|-------------|-------------|-------|-----------------|
| 7  | 4.08              | 1.92        | 2.11                     | 1.97        | 4.03                        | 0        | 6           | 0           | 0           | 6           | 0.013 | 386.04          |
| 8  | 4.02              | 1.98        | 2.08                     | 1.94        | 4.06                        | 6        | 0           | 0           | 6           | 0           | 0.010 | 386.02          |
| 9  | 4.04              | 1.96        | 2.06                     | 1.98        | 4.02                        | 0        | 6           | 0           | 0           | 6           | 0.007 | 386.01          |
| 10 | 4.01              | 1.99        | 2.05                     | 1.97        | 4.03                        | 6        | 0           | 0           | 6           | 0           | 0.005 | 386.01          |
| 11 | 4.02              | 1.98        | 2.04                     | 1.99        | 4.01                        | 0        | 6           | 0           | 0           | 6           | 0.004 | 386.00          |
| 12 | 4.01              | 1.99        | 2.03                     | 1.98        | 4.02                        | 6        | 0           | 0           | 6           | 0           | 0.003 | 386.00          |
| 13 | 4.01              | 1.99        | 2.02                     | 1.99        | 4.01                        | 0        | 6           | 0           | 0           | 6           | 0.002 | 386.00          |
| 14 | 4.00              | 2.00        | 2.02                     | 1.99        | 4.01                        | 6        | 0           | 0           | 6           | 0           | 0.002 | 386.00          |
| 15 | 4.01              | 1.99        | 2.01                     | 2.00        | 4.00                        | 0        | 6           | 0           | 0           | 6           | 0.001 | 386.00          |
| 16 | 4.00              | 2.00        | 2.01                     | 1.99        | 4.01                        | 6        | 0           | 0           | 6           | 0           | 0.001 | 386.00          |
| 17 | 4.00              | 2.00        | 2.01                     | 2.00        | 4.00                        | 0        | 6           | 0           | 0           | 6           | 0.001 | 386.00          |
| 18 | 4.00              | 2.00        | 2.01                     | 2.00        | 4.00                        | 6        | 0           | 0           | 6           | 0           | 0.001 | 386.00          |
| 19 | 4.00              | 2.00        | 2.00                     | 2.00        | 4.00                        | 0        | 6           | 0           | 0           | 6           | 0.000 | 386.00          |
| 20 | 4.00              | 2.00        | 2.00                     | 2.00        | 4.00                        | 6        | 0           | 0           | 6           | 0           | 0.000 | 386.00          |

## 4. 课堂练习

请写出求解如下网络中用户均衡流量分布方式的优化模型,仿照上面算例写出FW算法的每次迭代计算结果(其中 $d_{OD}$ = 6)



#### 求解该网络中用户均衡流量分布方式的优化模型

$$\min_{(\mathbf{x},\mathbf{f})} V(\mathbf{x}) = \int_0^{x_{\text{OA}}} c_{\text{OA}}(x) dx + \int_0^{x_{\text{AD}}} c_{\text{AD}}(x) dx + \int_0^{x_{\text{OB}}} c_{\text{OB}}(x) dx + \int_0^{x_{\text{BD}}} c_{\text{BD}}(x) dx$$

s.t. 
$$\begin{pmatrix} x_{\text{OA}} \\ x_{\text{AD}} \\ x_{\text{OB}} \\ x_{\text{BD}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f_{\text{OAD}} \\ f_{\text{OBD}} \end{pmatrix}, \quad d_{\text{OD}} = f_{\text{OAD}} + f_{\text{OBD}}, \quad f_{\text{OAD}} \ge 0, \quad f_{\text{OBD}} \ge 0$$

| k | $x_{ m OA}$ | $\mathcal{X}_{\mathrm{AD}}$ | $\mathcal{X}_{\mathrm{OB}}$ | $\mathcal{X}_{\mathrm{BD}}$ | $y_{OA}$ | $y_{AD}$ | $y_{\mathrm{OB}}$ | $y_{ m BD}$ | α   | $V(\mathbf{x})$ |
|---|-------------|-----------------------------|-----------------------------|-----------------------------|----------|----------|-------------------|-------------|-----|-----------------|
| 0 | 6           | 6                           | 0                           | 0                           | 0        | 0        | 6                 | 6           | 0.5 | 498             |
| 1 | 3           | 3                           | 3                           | 3                           |          |          |                   |             |     | 399             |