NBA FAS Capstone

ABEL LULA
PAUL ZHAO
CHRISTINA LI

Novel Tracking Metric: Defensive Attention Index (DAI)

- DAI: # of players drawn by ball handler / possessions
 - "At each time-stamp"
- Inspiration: Emerging Era of Offense
 - Average points scored per game = 115.6 (highest since the 1970)
 - Offensive Progression > Defensive Progression
- Prioritize Defense through DAI
 - Offensive metric to prepare defensive strategies
 - General Manager & Coach insight
 - Trade/Draft notes

Strategic Process

RESEARCH

Research existing player metrics to identify gaps and opportunities in need and available data sets

DATA PROCESSING

Integrate and process multiple data sources to ensure inclusion of all necessary fields for analysis.

Function Definition & Data Handling

- Calculating Distance & Active Defenders
 - Joined tracking & events data
 - Leveraged coordinate data to calculate distance between handler & defender @ each timestamp
 - Removed certain events, due to duplicate timestamp
 - Rebounds get counted as two events under the same timestamp ("REBOUND" and "TOUCH")
 - Only "TOUCH" is counted
 - Active defender **must be within 6ft** of ball handler
 - Calculated the sum of active defenders drawn per game
- Calculating Number of Possessions
 - Joined tracking with possessions
 - Calculated number of total possessions for each player.
 - Condition was minimum 20 possessions.
- Calculating DAI
 - Joined total defenders drawn & total # of possessions with player name & game ID
 - New DAI column (# defenders drawn / # of total possessions)

NBA Players with Highest Average DAI

Avg Defenders Drawn Per Poss =

*	playerName.x	avg_defenders_drawn_per_poss +	total_defenders_drawn *	total_num_of_poss +
1	Jalen Brunson	10.1454545	558	55
2	Julius Randle	6.2954545	277	44
3	Anthony Edwards	6.2500000	325	52
4	T.J. McConnell	6.0400000	151	25
5	Shai Gilgeous-Alexander	6.0377358	320	53
6	Caris LeVert	5.6578947	215	38
7	Trae Young	5.4653061	574	104
8	Jamal Murray	5.1551724	299	58
9	Donovan Mitchell	5.0468750	323	64
10	Devin Booker	5.0363636	277	55

- Teams that engage more players defensively
 - New York Knicks **lead** teams in DAI
 - Cleveland, Orlando, Minnesota
- Teams that engage **less** players defensively
 - Los Angeles Lakers came last in DAI
 - Denver, Utah, Detroit
- Players with higher/lower DAI -> darker/lighter gradients
 - Jalen Brunson (NYK): 10.145 (highest)
 - Haywood Highsmith (MIA): **0.25** (**lowest**)
- Applications
 - Reinforce defensive emphasis
 - Classification (pass-first, iso, slow/fast, etc.)

Average DAI Per Position

Recap/Future Applications

- Build offensive/defensive strategies
 - Cater against specific teams
- Player Evaluation & Scouting Metric
 - Review players' defensive effectiveness
- Post-game Performance Analysis
 - Adjust substitution patterns
 - Take advantage of mis-matches