### Game theory

- The study of multiperson decisions
- Four types of games
  - Static games of complete information
  - Dynamic games of complete information
  - Static games of incomplete information
  - Dynamic games of incomplete information
- Static v. dynamic
  - Simultaneously v. sequentially
- Complete v incomplete information
  - Players' payoffs are public known or private information

## Concept of Game Equilibrium

- Nash equilibrium (NE)
  - Static games of complete information
- Subgame perfect Nash equilibrium (SPNE)
  - Dynamic games of complete information
- Bayesian Nash equilibrium (BNE)
  - Static games of incomplete information
- Perfect Bayesian equilibrium (PBE)
  - Dynamic games of incomplete information

# Lecture Notes II-1 Static Games of Complete Information

- Normal form game
- The prisoner's dilemma
- Definition and derivation of Nash equilibrium
- Cournot and Bertrand models of duopoly
- Pure and mixed strategies

### Static Games of Complete Information

- First the players simultaneously choose actions; then the players receive payoffs that depend on the combination of actions just chosen
- The player's payoff function is common knowledge among all the players

## Normal- Form Representation

- The normal-form representation of a games specifies
  - (1) the players in the game
  - (2) the strategies available to each player
  - (3) the payoff received by each player for each combination of strategies that could be chosen by the players

#### Game definition

#### Denotation

- n player game
- Strategy space S<sub>i</sub>: the set of strategies available to player i
- $-s_i \in S_i$ :  $s_i$  is a member of the set of strategies  $S_i$
- Player i's payoff function u<sub>i</sub>(s<sub>1</sub>,...,s<sub>n</sub>): the payoff to player
   i if players choose strategies (s<sub>1</sub>,...,s<sub>n</sub>)

#### Definition

- The normal-form representation of an n-player game specifies the players' strategy spaces  $S_1, ..., S_n$  and their playoff functions  $u_1, ..., u_n$ . We denote game by  $G=\{S_1, ..., S_n; u_1, ..., u_n\}$ 

#### Example: The Prisoner's Dilemma

#### Prisoner 2

|            |      | Mum (silent) | Fink (confess)      |
|------------|------|--------------|---------------------|
|            | Mum  | -1,-1        | -9, <mark>0</mark>  |
| Prisoner 1 | Fink | 0,-9         | -6, <mark>-6</mark> |

#### Strategy sets

 $S_1 = S_2 = \{Mum, Fink\}$ 

#### **Payoff functions**

 $u_1(\text{Mum, Mum}) = -1$ ,  $u_1(\text{Mum, Fink}) = -9$ ,  $u_1(\text{Fink, Mum}) = 0$ ,  $u_1(\text{Fink, Fink}) = -6$  $u_2(\text{Mum, Mum}) = -1$ ,  $u_2(\text{Mum, Fink}) = 0$ ,  $u_2(\text{Fink, Mum}) = -9$ ,  $u_2(\text{Fink, Fink}) = -6$ 



### Example: The Prisoner's Dilemma





T (temptation)>R (reward)>P (punishment)>S (suckers) (Fink, Fink) would be the outcome



## Strictly Dominated Strategies

#### Definition

In the normal-form game G={S<sub>1</sub>,...,S<sub>n</sub>; u<sub>1</sub>,...,u<sub>n</sub>}, let s<sub>i</sub>' and s<sub>i</sub>" be feasible strategies for player i. Strategies s<sub>i</sub>' is strictly dominated by strategy s<sub>i</sub>" if for each feasible combination of the other plays' strategies, i's payoff from playing s<sub>i</sub>' is strictly less than i's payoff from paying s<sub>i</sub>":

$$u_i(s_i,...,s_{i-1},s_i',s_{i+1},...,s_n) < u_i(s_i,...,s_{i-1},s_i'',s_{i+1},...,s_n)$$
 for each  $(s_i,...,s_{i-1},s_{i+1},...,s_n)$  that can be constructed from the other players' strategy spaces  $S_1,...,S_{i-1},...,S_n$ 

#### Iterated Elimination of Dominated Strategies



Outcome =(U,M)



#### Weakness of Iterated Elimination

- Assume it is common knowledge that the players are rational
  - All players are rational and all players know that all players know that all players are rational.
- The process often produces a very imprecise prediction about the play of the game
- Example

| 8 | L   | С   | R   |
|---|-----|-----|-----|
| Т | 0,4 | 4,0 | 5,3 |
| М | 4,0 | 0,4 | 5,3 |
| В | 3,5 | 3,5 | 6,6 |



No strictly dominated strategy was eliminated

### Concept of Nash Equilibrium

- Each player's predicted strategy must be that player's best response to the predicated strategies of the other players
- Strategically stable or self–enforcing
  - No single wants to deviate from his or her predicated strategy
- A unique solution to a game theoretic problem, then the solution must be a Nash equilibrium

## Definition of Nash Equilibrium

#### Definition

– In the *n*-player normal-form game  $G=\{S_1,....,S_n; u_1,....,u_n\}$ , the strategies  $(s_1^*,....,s_n^*)$  are a Nash equilibrium if, for each play  $i, s_i^*$  is player i's best response to the strategies specified for the n-1 other players,  $(s_1^*,...,s_{i-1}^*,s_{i+1}^*,....,s_n^*)$ 

$$u_i(s_1^*,...,s_{i-1}^*,s_i^*,s_{i+1}^*,...,s_n^*) \ge u_i(s_1^*,...,s_{i-1}^*,s_i,s_{i+1}^*,...,s_n^*)$$

for every feasible strategy  $s_i$  in  $S_i$ ; that is  $s_i^*$  solves

$$\max_{s_i \in S_i} u_i(s_1^*, ..., s_{i-1}^*, s_i, s_{i+1}^*, ..., s_n^*)$$



# Examples of Nash Equilibrium

|      | Mum                 | Fink                  |
|------|---------------------|-----------------------|
| Mum  | -1,- <mark>1</mark> | -9, <u>0</u>          |
| Fink | <u>0</u> ,-9        | <u>-6</u> , <u>-6</u> |

|       | Opera               | Fight      |
|-------|---------------------|------------|
| Opera | <u>2</u> , <u>1</u> | 0,0        |
| Fight | 0,0                 | <u>1,2</u> |

| 63 | L                         | С                         | R                       |
|----|---------------------------|---------------------------|-------------------------|
| Т  | 0, <u>4</u>               | <u>4</u> , <mark>0</mark> | 5, <mark>3</mark>       |
| М  | <u>4</u> , <mark>0</mark> | 0, <u>4</u>               | 5, <mark>3</mark>       |
| В  | 3,5                       | 3,5                       | <u>6,<mark>6</mark></u> |

## Examples of Nash Equilibrium

Player 2 's strategy (best response function)

$$BR_2(T)=L$$
  
 $BR_2(M)=C$   
 $BR_2(B)=R$ 

Player 1's strategy (best response function)

$$BR_1(L)=M$$
  
 $BR_1(C)=T$   
 $BR_1(R)=B$ 

|   | L                         | С                         | R                 |
|---|---------------------------|---------------------------|-------------------|
| Т | 0, <u>4</u>               | <u>4</u> , <mark>0</mark> | 5, <mark>3</mark> |
| М | <u>4</u> , <mark>0</mark> | 0, <u>4</u>               | 5, <mark>3</mark> |
| В | 3,5                       | 3,5                       | <u>6,</u> 6       |

# Application 1 Cournot Model of Duopoly

- q<sub>1</sub>,q<sub>2</sub> denote the quantities (of a homogeneous product) produced by firm 1 and 2
- Demand function P(Q)=a-Q

$$- Q = q_1 + q_2$$

- Cost function C<sub>i</sub>(q<sub>i</sub>)=cq<sub>i</sub>
- Strategy space  $S_i = [0, \infty)$
- Payoff function  $\pi_i(q_i, q_j) = q_i[P(q_i + q_j) c] = q_i[a (q_i + q_j) c]$

Firm i's decision

$$\max_{0 \le q_i \le \infty} \pi_i(q_i, q_j^*) = \max_{0 \le q_i \le \infty} q_i[a - (q_i + q_j^*) - c]$$

First order condition  $q_i = \frac{1}{2} \left( a - q_j^* - c \right)$ 

$$q_1^* = \frac{1}{2} (a - q_2^* - c) \qquad q_2^* = \frac{1}{2} (a - q_1^* - c) \qquad \Rightarrow q_1^* = q_2^* = \frac{a - c}{3}$$

# Cournot Model of Duopoly (cont')

Best response functions

$$R_{2}(q_{1}) = \frac{1}{2}(a - q_{1} - c)$$
  $R_{1}(q_{2}) = \frac{1}{2}(a - q_{2} - c)$ 

$$q_{2}$$

$$(0,a-c)$$

$$R_{1}(q_{2})$$
 Nash equilibrium
$$(q_{1}^{*},q_{2}^{*})$$

$$R_{2}(q_{1})$$

$$R_{3}(q_{2})$$
 Representation of the properties of the pro

# Application 2 Bertrand Model of Duopoly

- Firm 1 and 2 choose prices p<sub>1</sub> and p<sub>2</sub> for differentiated products
- Quantity that customers demand from firm i is  $q_i(p_i, p_j) = a p_i + bp_j$
- Pay off (profit) functions

$$\pi_i(p_i, p_j) = q_i(p_i, p_j)[p_i - c] = [a - p_i + bp_j][p_i - c]$$

Firm i's decision

$$\max_{0 \le p_i \le \infty} \pi_i(p_{i,} p_j^*) = \max_{0 \le p_i \le \infty} [a - p_i + b p_j^*] [p_i - c]$$

First order condition

$$p_{i}^{*} = \frac{1}{2} \left( a + b p_{j}^{*} + c \right)$$

$$p_{1}^{*} = \frac{1}{2} \left( a + b p_{2}^{*} + c \right)$$

$$p_{2}^{*} = \frac{1}{2} \left( a + b p_{1}^{*} + c \right)$$

$$p_{1}^{*} = p_{2}^{*} = \frac{a + c}{2 - b}$$

# Application 3 The problem of Commons

- n farmers in a village
- g<sub>i</sub>: The number of goats owns by farmer i
- The total numbers of goats  $G = g_1 + ... + g_n$
- The value of a goat = v(G)
- v'(G)<0, v''(G)<0



### The Problem of Commons (cont')

#### Firm i's decision

$$\pi_i(g_i, g_{-i}^*) = g_i v(g_i + g_{-i}^*) - cg_i$$

Fist order condition

$$\partial \pi_i(g_i, g_{-i}^*)/\partial g_i = v(g_i + g_{-i}^*) + g_i v'(g_i + g_{-i}^*) - c = 0, \forall i \in \{1, ..., n\}$$

Summarize all equations

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0$$

Social optimum

$$\max_{0 \le G \le \infty} Gv(G) - Gc$$

$$v(G^{**}) + G^{**}v'(G^{**}) - c = 0$$



## Mixed Strategies

Matching pennies

|       | Head         | Tails        |
|-------|--------------|--------------|
| Head  | -1, <u>1</u> | <u>1,-1</u>  |
| Tails | <u>1</u> ,-1 | -1, <u>1</u> |

- In any game in which each player would like to outguess the other(s), there is no pure strategy Nash equilibrium
  - E.g. poker, baseball, battle
  - The solution of such a game necessarily involves uncertainty about what the players will do
  - Solution : mixed strategy

## Definition of Mixed Strategies

#### Definition

– In the normal-form game  $G=\{S_1,...,S_n; u_1,...,u_n\}$ , suppose  $S_i=\{s_{i1},...,s_{iK}\}$ . Then the mixed strategy for player i is a probability distribution  $p_i=(p_{i1},...,p_{ik})$ , where  $0 \le p_{ik} \le 1$  for k=1,...,K and  $p_{i1}+,...,+p_{iK}=1$ 

#### Example

– In penny matching game, a mixed strategy for player i is the probability distribution (q,1-q), where q is the probability of playing Heads, 1-q is the probability of playing Trail, and  $0 \le q \le 1$ 

### Mixed strategy in Nash Equilibrium

- Strategy set  $S_1 = \{s_{11}, ..., s_{1j}\}, S_2 = \{s_{21}, ..., s_{2k}\}$
- Player 1 believes that player 2 will play the strategies  $(s_{21},...,s_{2k})$  with probabilities  $(p_{21},...,p_{2k})$ , then player 1's expected payoff from playing the pure strategy  $s_{1j}$  is

 $\sum_{k=1}^{k} p_{2k} u_1(s_{1j}, s_{2k})$ 

 Player 1's expected payoff from paying the mixed strategy p<sub>1</sub>=(p<sub>11</sub>,...,p<sub>1i</sub>) is

$$v_1(p_1, p_2) = \sum_{j=1}^{J} \sum_{k=1}^{k} p_{1j} \cdot p_{2k} u_1(s_{1j}, s_{2k}) \quad v_2(p_1, p_2) = \sum_{j=1}^{J} \sum_{k=1}^{k} p_{1j} \cdot p_{2k} u_2(s_{1j}, s_{2k})$$

- Definition
  - In the two player normal-form game G={S<sub>1</sub>,S<sub>2</sub>;u<sub>1</sub>,u<sub>2</sub>}, the mixed strategies (p<sub>1</sub>\*,p<sub>2</sub>\*) are a Nash equilibrium if each player's mixed strategy is a best response to the other player's mixed strategy. That is

$$v_1(p_1^*, p_2^*) \ge v_1(p_1, p_2^*)$$
  $v_2(p_1^*, p_2^*) \ge v_2(p_1^*, p_2)$ 



## Mixed Strategy



Player 1's expected playoff =q(-1)+(1-q)(1)=1-2q when he play Head=q(1)+(1-q)(-1)=2q-1 when he play Tail

Compare 1-2q and 2q-1 If q<1/2, then player 1 plays Head If q>1/2, then play 1 plays Tail If q=1/2, player 1 is indifferent in Head and Tail

# Mixed strategy in Nash Equilibrium: example



Player 1's expected playoff =
$$rq^*(-1)+r(1-q^*)(1)+(1-r)q^*(1)+(1-r)(1-q^*)(-1)$$
  
  $=(2q^*-1)+r(2-4q^*)$   
Player 2's expected playoff = $qr^*(1)+q(1-r^*)(-1)+(1-q)r^*(-1)+(1-q)(1-r^*)(1)$   
  $=(2r^*-1)+q(2-4r^*)$   
 $r^*=1$  if  $q^*<1/2$   $q^*=1$  if  $r^*<1/2$   
 $r^*=0$  if  $q^*>1/2$   $q^*=0$  if  $r^*>1/2$   
 $r^*=1$  any number in (0,1) if  $q^*=1/2$   $q^*=1/2$   $q^*=1/2$ 

# Mixed Strategy in Nash Equilibrium: example (cont')



## Example 2



Player 1's expected playoff = 
$$rq^*(2)+r(1-q^*)(0)+(1-r)q^*(0)+(1-r)(1-q^*)(1)$$
  
=  $r(3q^*-1)-(1+q^*)$ 

Player 2's expected playoff =
$$qr^*(1)+q(1-r^*)(0)+(1-q)r^*(0)+(1-q)(1-r^*)(2)$$
  
= $q(3r^*-2)+1-r^*$ 

## Example 2



Payer 1's mixed strategies

$$(r^*,1-r^*)=(2/3,1/3)$$

Payer 2's mixed strategies

$$(q^*,1-q^*)=(1/3,2/3)$$

pure strategies 
$$(r^*, 1-r^*)=(1,0),(0,1)$$

pure strategies
$$(q^*, 1-q^*)=(1,0),(0,1)$$



## Theorem: Existence of Nash Equilibrium

• (Nash 1950): In the n-player normal-form game  $G=\{S_1,\ldots,S_n;u_1,\ldots,u_n\}$ , if n is finite and  $S_i$  is finite for every I then there exists at least one Nash equilibrium, possibly involving mixed strategies

#### Homework #1

- Problem set
  - 1.3, 1.5, 1.6, 1.7, 1.8, 1.13(from Gibbons)
- Due date
  - two weeks from current class meeting
- Bonus credit
  - Propose new applications in the context of IT/IS or potential extensions from Application 1-4