Antoine,

gere@dima.unige.it,

Dipartimento di Matematica, Università di Genova,

from January 11, 2013 to January 21, 2014.

Weyl algebra and field quantization

Contents

1	Weyl Algebras]
	1.1 Weyl *-algebra	
	1.2 Weyl C^* -Algebra	2
2	Strict Quantization	4
3	Field-theoretic Weyl quantization	4
4	References	4

1 Weyl Algebras

1.1 Weyl *-algebra

Let E be a real vector space [Weib], and σ a symplectic form $(\sigma : E \times E \to \mathbb{R})$. Then we call (E, σ) a real symplectic space [Weid].

Definition 1.1. A symplectic form [Weic] is a 2-form which is, for $\forall x, y, a, b \in E$, and $\alpha, \beta \in \mathbb{R}$, bilinear $(\sigma(x, \alpha a + \beta b) = \alpha \sigma(x, a) + \beta \sigma(x, b))$, antisymetric $(\sigma(x, y) = -\sigma(y, x))$, and non degenerate $(\sigma(x, y) \neq 0)$ if $x \neq y$, and $\sigma(x, 0) = 0 = \sigma(0, x)$.

If instead to require that σ has to be non-degenrate, we require that σ has to be degenerate $(\forall x \in E, \exists y \in E \text{ such that } \sigma(x, y) = 0)$, then we will call (E, σ) a real pre-symplectic space.

We now are going to define what is a * - algebra, cf. [Lan98, definition 2.1.9].

Definition 1.2. An involution map on an algebra \mathbb{A} [Weia] is a real linear map $A \to A^*$, such that for all $A, B \in \mathbb{A}$ and $\alpha, \beta \in \mathbb{C}$ one has,

$$(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*$$
 (antilinearity), (1.1)

$$(AB)^* = B^*A^*, (1.2)$$

and
$$A^{**} = A$$
 (involutivity). (1.3)

A * - algebra is an algebra with an involution.

A homomorphism of * - algebras $h: \mathbb{A}_1 \to \mathbb{A}_2$ is a * - homomorphism if it preserves the involution, $h(x^{*_1}) = h(x)^{*_2}$ for any $x \in \mathbb{A}_1$ ($*_1$ is the involution of \mathbb{A}_1 and $*_2$ the involution in \mathbb{A}_2), and a * - homomorphism is a * - isomorphism if it is additionally bijective.

The next step is to define what is a Weyl * - algebra.

Definition 1.3. A * - algebra is called a Weyl * - algebra of (E, σ) , denoted by $\mathcal{W}(E, \sigma)$, if there exists a family $\{W(u)\}_{u\in E}$ of non-zero elements, called the generators, such that,

(i) Weyl's (commutation) relations hold,

$$W(u)W(v) = \exp\left(\frac{i\hbar}{2}\sigma(u,v)\right)W(u+v), \quad W(u)^* = W(-u), \quad \forall u, v \in E,$$
(1.4)

(ii) $\mathcal{W}(E,\sigma)$ is generated by $\{W(u)\}_{u\in E}$, i.e. $\mathcal{W}(E,\sigma)$ coincides with the linear span of finite combinations of finite products of $\{W(u)\}_{u\in E}$.

Lemma 1.1. Any Weyl * - algebra $\mathcal{W}(E,\sigma)$ has a unit \mathbb{I} , and

$$W(0) = \mathbb{I} \quad W(u)^* = W(-u) = W(u)^{-1}, \quad u \in E.$$
(1.5)

The generators $\{W(u)\}_{u\in E}$ are linearly independent, so in particular $W(u)\neq W(v)$ if $u\neq v$.

Proof 1.2. In fact, for $u \in E$, W(u)W(0) = W(u) = W(0)W(u), and $W(u)W(-u) = W(0) = \mathbb{I} = W(-u)W(u)$, then $W(0) = \mathbb{I}$ and $W(-u) = W(u)^* = W(u)^{-1}$.

We will show now that a real symplectic space (E, σ) determines a unique Weyl * - algebra up to * - isomorphisms.

Theorem 1.3. If $\mathcal{W}(E,\sigma)$, generated by $\{W(u)\}_{u\in E}$, and $\mathcal{W}'(E,\sigma)$, generated by $\{W'(u)\}_{u\in E}$, are Weyl *- Weyl algebras of (E,σ) , there is a unique *- isomorphism $\alpha: \mathcal{W}(E,\sigma) \to \mathcal{W}'(E,\sigma)$, which is determined by imposing,

$$\alpha(W(u)) = W'(u), \quad \forall u \in E. \tag{1.6}$$

Proof 1.4. The Weyl generators are linearly independent, and the product of two is a complex multiple of a generator, whence generators form a basis for the Weyl * - algbra.

We will represent this Weyl * - algebra $\mathcal{W}(E,\sigma)$ on $\mathfrak{B}(H)$, the set of all bounded operator on the Hillbert space H, that we will choose. We will show that we can always find a norm on this representation, and to have a more general result we will proof that it doesn't on our choice on how represent the Weyl * - algebra.

Definition 1.4. Given a * - algebra \mathbb{A} and a Hilbert space H, a * - homomorphism $\pi : \mathbb{A} \to \mathfrak{B}(H)$ is called a representation of \mathbb{A} on H.

$$\pi: \mathbb{A} \to \mathfrak{B}(H) \tag{1.7}$$

Let's choose as a Hilbert space $L^2(E,\mu)$, where μ is the counting measure ¹. We represent $\mathcal{W}(E,\sigma)$ on $\mathfrak{B}(L^2(E,\mu))$.

$$\pi: \mathcal{W}(E, \sigma) \to \mathfrak{B}(L^2(E, \mu))$$
 (1.8)

We defined $W(u) \in \mathfrak{B}(L^2(E,\mu))$ by,

$$(W(u)f)(v) = \exp(i\sigma(u,v)) f(u+v), \quad \psi \in L^2(E,\mu), \quad u,v \in E.$$

$$\tag{1.9}$$

It's not so long to show that W(u) represented in this way fullfilled the Weyl's relations. Thus we have well defined a Weyl * algebra.

1.2 Weyl C^* -Algebra

Our goal is now to define a C^* Weyl algebra. To do that we will first define what we call C^* algebra.

Definition 1.5. A norm on a vector space V is a map

- $1. \|v\|_V \le 0 \ \forall v \in V,$
- 2. $||v||_V = 0$ if and only if $||v||_V = 0$,
- 3. $\|\lambda v\|_V = |\lambda| \|v\|_V$,
- 4. $||v + w||_V \le ||v||_V + ||w||_V$ (triangle inequality).

A norm on V defines a metric d on V by d(v,w):=v-w. A vector space with a norm which is complete in the associated metric (in the sense that every Cauchy sequence converges) is called a Banach space. We will denote a Banach space by the symbol B.

Definition 1.6. Let X and Y be two normed vector spaces. Then $\mathcal{B}(X,Y)$ is the space comprising all bounded linear operators. For $T \in \mathcal{B}(X,Y)$ we define the operator norm in the following way,

$$||T||_{op} = \sup_{\substack{x \in X \\ ||x||_X \le 1}} ||Tx||_X.$$
(1.10)

^{1.} $\mu(S) = \{\text{number of elements of } S\}, \text{ with } \mu(S) = \infty \text{ if } S \text{ is infinite.}$

Definition 1.7. A bounded operator on a Banach space B, is a linear map $A: B \to B$ for which

$$||A||_{op} < \infty. \tag{1.11}$$

The set of all the bounded operators on a Banach space B is denoted by \mathfrak{B} .

Definition 1.8. A Banach algebra is a Banach space B which is at the same time an algebra, in which for all $a, b \in B$ one has

$$||ab|| \le ||a|| ||b|| \tag{1.12}$$

Definition 1.9. A C * - algebra is a Banach * - algebra \mathbb{B} such that for all $a \in B$ one has

$$||a^*a|| = ||a||^2. (1.13)$$

A such norm is called a C^* norm.

We are going to see that we can always find a C^* - norm on $\mathcal{W}(E,\sigma)$, and that it is the unique one, and finally we will see why it is necessary to consider the conpletion of the $\mathcal{W}(E,\sigma)$ to obtain a C^* -algebra.

Theorem 1.5. We still consider E as a real vector space, but now $\sigma: E \times E \to \mathbb{R}$ is a weakly non-degenerate symplectic form. There exists a norm $\|.\|_{op}$ on $\mathcal{W}(E,\sigma)$, which is our Weyl * - algebra, and it satisfys the C^* property, $\|A^*A\|_{op} = \|A\|_{op}^2$, for any $A \in \mathcal{W}(E,\sigma)$.

Definition 1.10. A bilinear form $\sigma: E \times E \to \mathbb{R}$ is said to be weakly nondegenerate if

$$\{\sigma(x,y) = 0 | \forall y \in E\} \Rightarrow x = 0. \tag{1.14}$$

Proof 1.6.

Theorem 1.7. If we set, for any $a \in \mathcal{W}(X, \sigma)$:

$$||a||_c := \sup\{p(a) \mid p: \mathcal{W}(X,\sigma) \to [0,+\infty) \text{ is a } C^*norm\},$$

then $||.||_c$ is a C^* norm.

Proof 1.8.

Theorem 1.9. For $W(X, \sigma)$ a Weyl *-algebra associated to (X, σ) , we denote by $\overline{W(X, \sigma)}$ the C^* completion of $W(X, \sigma)$ in the norm $\|.\|_c$. Then $\overline{W(X, \sigma)}$ is simple: it does not admit two-sided closed ideals invariant under the involution other than $\{0\}$ and $\overline{W(X, \sigma)}$ itself.

Proof 1.10. ...

Theorem 1.11. A * - homomorphism $\pi: A \to B$ of C^* - algebras with unit is continuous, for $\|\pi(a)\|_A \le \|a\|_B$, for any $a \in A$. Furthermore π is one-to-one if and only if isometric, i.e. $\|\pi(a)\| = \|a\|$ for any $a \in A$.

Proof 1.12. ...

Theorem 1.13. There exist a unique norm on $\mathcal{W}(X,\sigma)$ satisfying the C^* property: $||a^*a|| = ||a||^2$ for any $a \in \mathcal{W}(X,\sigma)$.

Proof 1.14.

Theorem 1.15. Let $\overline{W(X,\sigma)}$ be the C^* - algebra completion of $W(X,\sigma)$ for the C^* norm. If $W(X,\sigma)$ is another Weyl σ -algebra associated to the same space (X,σ) and $\|.\|$ the unique C^* norm, call $\overline{W(X,\sigma)}$ the corresponding C^* - algebra with unit. Then there is a unique isometric * - isomorphism $\gamma:\overline{W(X,\sigma)}\to\overline{W(X,\sigma)}$ such that

$$\gamma(W(f)) = W(f), \quad f \in E \tag{1.15}$$

where W(f), W(f) are generators of the Weyl * - algebras $W(X, \sigma)$, $W(X, \sigma)$.

Proof 1.16.

2 Strict Quantization

Definition 2.1. A Poisson algebra $(\mathcal{P}, \{.,.\})$ is an associative algebra \mathbb{A} over a field \mathbb{K} with a linear braket $\{.,.\}: \mathbb{A} \times \mathbb{A} \to \mathbb{A}$ such that,

$$\{f,g\} = -\{g,h\}$$
 (Antisymetry) (2.1)

$$\{f, gh\} = g\{f, h, +\} h\{f, g\} \quad \text{(Leibniz rule)}$$

$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$$
 (Jacobi Identity) (2.3)

forall $f, g, h \in \mathbb{A}$.

Example 2.1. ...

Definition 2.2. A strict quantization $(\mathcal{A}^{\hbar}, \mathcal{Q}_{\hbar})$ of the Poisson algebra $(\mathcal{P}, \{.,.\})$ consists for each value $\hbar \in I$ of a linear, * - preserving quantization map $\mathcal{Q}_{\hbar} : \mathcal{P} \to \mathcal{A}^{\hbar}$, where \mathcal{A}^{\hbar} is a linear C^* - algebra with norm $\|.\|_{\hbar}^2$, such that Q_0 is the identical embedding of \mathcal{P} into \mathcal{A}^0 , and such that for all $A, B \in \mathcal{P}$ the following conditions are satisfied:

[Dirac's condition] The \hbar - scaled commutator $[X,Y]:=\frac{i}{\hbar}(XY-YX)$ approaches the Poisson bracket as $\hbar \to 0$,

$$\lim_{\hbar \to 0} \|[Q^{\hbar}(A), Q^{\hbar}(B)] - Q^{\hbar}(\{A, B\})\| = 0.$$
 (2.4)

[von Neumann's condition] In the limit $\hbar \to 0$ one has the asymptotic behaviour for the product,

$$\lim_{\hbar \to 0} \|Q^{\hbar}(A)Q^{\hbar}(B) - Q^{\hbar}(AB)\| = 0.$$
 (2.5)

[Rieffel's condition] $I \ni \hbar \to ||Q^{\hbar}(A)||$ is continuous.

Theorem 2.1. ...

Proof 2.2. ...

3 Field-theoretic Weyl quantization

[blablabla]

4 References

[Lan98] N.P. Landsman. Lecture notes on c^* -algebras, hilbert c^* -modules, and quantum mechanics. 1998.

[Weia] Eric W. Weisstein. Algebra. from mathworld - a wolfram web resource.

[Weib] Eric W. Weisstein. Real vector space. from mathworld - a wolfram web resource.

[Weic] Eric W. Weisstein. Symplectic form. from mathworld - a wolfram web resource.

[Weid] Eric W. Weisstein. Symplectic space. from mathworld - a wolfram web resource.

^{2.} this norm is an operator norm.