Теория вероятностей, 3 семестр

ИВАЩЕНКО ДМИТРИЙ

DISCLAIMER: THESE PAGES COME WITH ABSOLUTELY NO WARRANTY, USE AT YOUR OWN RISK;) THIS WORK IS LICENSED BY WTFPL, YOU CAN REDISRIBUTE IT AND/OR MODIFY IT UNDER THE TERM OF DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE, VERSION 2 Багрепорты, комментарии, предложения и прочее приветствуются посредством vk.com/skird, а также e-mail

Благодарность. Спасибо Павлу Ахтямову и Алексею Журавлеву за конспекты потраченных лекций.

Влагодарность. Спасибо Константину Гудкову, Александру Голованову, Мирону Левкову, а также всем остальным, кто приложил руку, за помощь в исправлении ошибок и опечаток.

Последние изменения: 10 января 2015 г. 20:52

Содержание

Лекі	кция 1. Аксиоматика теории вероятностей	
1.	События и вероятности. Алгебры и сигма-алгебры.	4
2.	Некоторые свойства вероятности	5
Лекі	ция 2. Условная вероятность	6
3.	Определение и свойства	6
4.	Формула полной вероятности	6
5.	Формула Байеса	7
6.	Независимость событий	8
Лекі	ция 3. Распределения вероятностей	8
7.	σ -алгебры, содержащая семейство множеств	8
8.	Примеры: борелевская σ -алгебра	9
9.	Распределения вероятностей	9
10.	. Дискретные распределения	10
Лекі	ция 4. Непрерывные распределения	11
11.	. Непрерывные распределения и плотность	11
12.	. Примеры часто встречающихся распределений	12
13.	. Многомерные распределения	13

Теори	я вероятностей, 3 семестр ИВ.	АЩЕНКО ДМИТРИЙ
Лекц	ия 5. Случайные величины	18
14.	Функции многомерных распределений	15
15.	Случайные величины	10
16.	Порожденная σ -алгебра	1'
Лекц	ия 6. Независимость случайных величин	18
17.	Операции со случайными величинами	18
18.	Распределение, функция распределения и плотность случайной	й величины 19
19.	Независимость случайных величин и векторов	20
Лекц	ия 7. Математическое ожидание дискретных величин	22
20.	Определение и свойства	22
Лекц	ия 8. Математическое ожидание в общем случае	25
21.	Математическое ожидание абсолютно непрерывных величин	25
22.	Простые случайные величины	25
23.	Определение математического ожидания	26
Лекц	ия 9. Свойства математического ожидания	2
24.	Свойства математического ожидания	2
25.	Теоремы об интеграле Лебега	29
Лекц	ия 10. Дисперсия и ковариация случайных величин	30
26.	Дисперсия и ковариация	30
Лекц	ия 11. Неравенства, связанные с математическими ожид	аниями 32
27.	Неравенства Коши, Маркова, Чебышева и Йенсена	32
Лекц	ия 12. Основные виды сходимости по вероятности	36
28.	Разные виды сходимости	3:
29.	Связь разных видов сходимостей	3:
30.	Неэквивалентность разных видов сходимости	3.
31.	Сходимость по вероятности	30
Лекц	ия 13. Лемма Бореля-Кантелли и случайные блуждания	30
32.	Лемма Бореля-Кантелли	36
33.	Простейшие случайные блуждания	38
34.	Усиленные законы больших чисел	38
35.	Φ ундаментальность по вероятности и с вероятностью 1	39
36.	Неравенство Колмогорова	40

Лекц	ия 14. Усиленные законы больших чисел	41
37.	УЗБЧ для независимых случайных величин с конечными дисперсиями	41
38.	УЗБЧ для независимых одинаково распределенных случайных величин с конечными ожиданиями	43
39.	Неравенство больших уклонений в УЗБЧ	45
Лекц	ия 15. Характеристические функции	46
40.	Характеристическая функция случайной величины	46
41.	Свойства характеристических функций	47
Лекц	ия 16. Гауссовские векторы	49
42.	Гауссовские векторы	49
Лекц	ия 17. Центральная предельная теорема	50
43.	Центральная предельная теорема для одинаково распределенных случайных величин	50
44.	Локальная предельная теорема	51
45.	Интегральная предельная теорема	52
46.	Теорема Пуассона	53

Лекция 1. Аксиоматика теории вероятностей

1. События и вероятности. Алгебры и сигма-алгебры.

Определение. $\Omega = \{\omega_1, \dots, \omega_n\}$ — множество элементарных исходов.

Определение. Событием будем называть произвольное подмножество $A \subset \Omega$.

Определение. *Алгебра* — система \mathcal{A} подмножеств Ω , такая что

- (1) $\Omega \in \mathcal{A}$
- (2) $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$
- (3) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$

Определение. $\mathit{Curma-anze6pa}$ — система \mathcal{F} подмножеств Ω , такая что

- (1) $\Omega \in \mathcal{F}$
- (2) $A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$

(3)
$$A_1, \ldots, A_n, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

Замечание. Неважно, возьмем мы в определение объединение или пересечение, так как они выражаются друг через друга с помощью закона де Моргана.

Определение. Конечно аддитивной мерой над алгеброй \mathcal{A} мы будем называть функцию $P: \mathcal{A} \mapsto \mathbb{R}$, обладающую некоторыми свойствами:

- (1) $\forall A \in \mathcal{A} \to P(A) \ge 0$
- (2) A, B события, $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Определение. Если конечно аддитивная мера с $P(\Omega) < \infty$, то она называется конечно аддитивной конечной мерой.

Определение. Если $P(\Omega) = 1$, то P — конечно аддитивная вероятностная мера.

Определение. Счетно аддитивной вероятностной мерой над сигма-алгеброй \mathcal{F} будем называть функцию $P: \mathcal{F} \mapsto [0;1]$, такую, что:

- (1) $\forall A \in \mathcal{F} \to P(A) > 0$
- (2) $P(\Omega) = 1$

(3)
$$A_1, \ldots, A_n, \ldots \in \mathcal{F}, \ \forall i \neq j \in \mathbb{N} \to A_i \cap A_j = \varnothing \Longrightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

 $\it Замечание.\ \, {
m B}\,$ случае, если Ω конечно, то сигма-алгебра и алгебра — это одно и то же.

Определение. Тройку $\langle \Omega, \mathcal{F}, P \rangle$ будем называть вероятностным пространством.

Пример. Можно рассмотреть схему неупорядоченного выбора без повторений из k элементов по n. $|\Omega|=C_n^k$, а если положить, что элементарные исходы равновероятны, то для каждого из них $P(\omega_i)=\frac{1}{C^k}$.

Замечание. Некоторые очевидные свойства алгебры:

- (1) $\varnothing \in \mathcal{F}$
- (2) $\forall A_1, \dots, A_n, \dots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$
- (3) $\forall A, B \to A \setminus B \in \mathcal{F}$

2. Некоторые свойства вероятности

Замечание. Некоторые очевидные свойства вероятности:

- (1) $P(\varnothing) = 0$
- (2) Если $A \subset B$, то $P(B) \geq P(A)$

(3)
$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i< j}^{i,j \leq n} P(A_i \cap A_j) + \ldots + (-1)^n \cdot P(A_1 \cap \ldots \cap A_n) -$$
формула включения

Теорема. (о непрерывности вероятностной меры) Пусть Ω — произвольное множество, \mathcal{A} — алгебра на нем. Тогда следующие свойства эквивалентны:

- (1) P вероятность на (Ω, \mathcal{A})
- (2) $P \kappa$ онечно аддитивная вероятность на (Ω, A) , непрерывная сверху

$$\forall A_1 \subset A_2 \subset \dots, \bigcup_{i=1}^{\infty} A_i \in \mathcal{A} \to \lim_{n \to \infty} P(A_n) = P\left(\bigcup_{i=1}^{\infty} A_i\right)$$

(3) $P-\kappa$ онечно аддитивная вероятность на (Ω,\mathcal{A}) , непрерывная снизу

$$\forall A_1 \supset A_2 \supset \dots, \bigcap_{i=1}^{\infty} A_i \in \mathcal{A} \to \lim_{n \to \infty} P(A_n) = P\left(\bigcap_{i=1}^{\infty} A_i\right)$$

(4) P- конечно аддитивная вероятность на $(\Omega,\mathcal{A}),$ непрерывная в нуле

$$\forall A_1 \supset A_2 \supset \dots, \bigcap_{i=1}^{\infty} A_i = \emptyset \to \lim_{n \to \infty} P(A_n) = 0$$

Доказательство.

 $(1)\Rightarrow (2)$. Положим $A_0=\varnothing$, и пусть $A_i\in\mathcal{A},\ A_i\subset A_{i+1}$ и $\bigcup_{i=1}^\infty A_i\in\mathcal{A}$. Тогда рассмотрим $B_i=A_i\setminus A_{i-1}$. Ясно, что $\bigcup_{i=1}^\infty A_i=\bigcup_{i=1}^\infty B_i,\ \forall i\neq j\in\mathbb{N}\to B_i\cap B_j=\varnothing$. Тогда

$$P(\bigcup A_i) = P(\bigcup B_i) = \sum P(B_i) = \sum (P(A_i) - P(A_{i-1})) = \lim_{n \to \infty} \sum (P(A_i) - P(A_{i-1})) = \lim_{n \to \infty} P(A_i)$$

 $(2)\Rightarrow (3)$. Пусть $A_1\supset A_2\ldots\in\mathcal{A}$ и $\bigcap_{i=1}^\infty A_i\in\mathcal{A}$. Тогда

$$P(A) = 1 - P(\overline{A}) = \left(-P\left(\bigcup_{i=1}^{\infty} \overline{A_i}\right)\right) = 1 - \lim_{n \to \infty} P(\overline{A_n}) = 1 - \lim_{n \to \infty} (1 - P(A_n)) = \lim_{n \to \infty} P(A_n)$$

 $(3) \Rightarrow (4)$. Очевидно, так как (4) — частный случай (3).

 $(4)\Rightarrow (1)$. Пусть $A_i\in\mathcal{A}$ и $\forall i\neq j\in\mathbb{N}\to A_i\cap A_j=\varnothing$, а также $A=\bigcup_{i=1}^\infty A_i\in\mathcal{A}$. Тогда рассмотрим $B_n=A\setminus\left(\bigcup_{i=1}^n A_i\right)$. Очевидно, что $B_i\supset B_{i+1},\ B_i\in\mathcal{A}$, а также $\bigcap_{i=1}^\infty B_i=\varnothing$. Тогда

$$0 = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} P\left(A \setminus \left(\bigcup_{i=1}^n A_i\right)\right) = \lim_{n \to \infty} \left(P(A) - P\left(\bigcup_{i=1}^n A_i\right)\right) =$$

$$= P(A) - \lim_{n \to \infty} P\left(\bigcup_{i=1}^n A_i\right) = P(A) - \lim_{n \to \infty} \sum_{i=1}^n P(A_i) = P(A) - \sum_{i=1}^\infty P(A_i)$$

Пример. Модель классической вероятности — конечный набор Ω с алгеброй $\mathcal{A}=2^{\Omega}$ и равновероятными элементарными исходами.

Пример. Модель геометрическая вероятности — $\Omega \subset \mathbb{R}^n$ с алгеброй \mathcal{F} измеримых множеств и вероятностной мерой $P(A) = \frac{\mu(A)}{\mu(\Omega)}$.

Лекция 2. Условная вероятность

3. Определение и свойства

Определение. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, $A, B \in \mathcal{F}$, тогда *условной вероятностью* A при условии B называется $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$, если $P(B) \neq 0$ и 0 иначе.

Утверждение. Если $B\in\mathcal{F},\ P(B)>0,$ то $P(\cdot\mid B)$ — вероятностной мера на (Ω,\mathcal{F})

Доказательство. Проверим свойства вероятностной меры:

$$P(\Omega\mid B)=rac{P(\Omega\cap B)}{P(B)}=1$$
. Теперь пусть $A_1,\ldots\in\mathcal{F},\ orall i
eq j o A_i
eq A_j$. Тогда

$$P\left(\bigcup_{i=1}^{\infty} A_i \mid B\right) = \frac{P\left(\left[\bigcup_{i=1}^{\infty} A_i\right] \cap B\right)}{P(B)} = \frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)} = \bigcup_{i=1}^{\infty} P(A_i \mid B)$$

4. Формула полной вероятности

Утверждение. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, $D_1, \ldots \in \mathcal{F}$: $\Omega = \bigsqcup_{i=1}^{\infty} D_i$. Пусть $A \in \mathcal{F}$, тогда

$$P(A) = \sum_{i=1}^{\infty} P(A \mid D_i) \cdot P(D_i)$$

Доказательство. $A=\bigcup\limits_{i=1}^{\infty}{(D_i\cap A)},$ при этом при $i\neq j\Rightarrow (D_i\cap A)\cap (D_j\cap A)=\varnothing.$

Тогда $P(A) = \sum_{i=1}^{\infty} P(A \cap D_i), \ P(A \mid D_i) = \frac{P(A \cap D_i)}{P(D_i)}$ при $P(D_i) \neq 0$. Поэтому в общем случае $P(A \cap D_i) = P(A \mid D_i) \cdot P(D_i)$.

Суммируя, получаем
$$P(A) = \sum_{i=1}^{\infty} P(A \mid D_i) \cdot P(D_i)$$
.

3амечание. В конечном случае формула также верна, достаточно взять $D_i=\varnothing$ при i>n.

Пример. Если n шаров, из них k черных и n-k белых. Достаем по очереди шары без возвращений. Какова вероятность черного шара на j-ом выборе?

Занумеруем шары $\{1,\ldots,n\}$, возьмем $\Omega=\{(i_1,\ldots,i_j)$ — различные числа от 1 до $n\}$. Пусть $A=\{(1,i_2,\ldots,i_j)\}, B=\{(i_1,\ldots,i_{j-1},1)\}$. Покажем, что они равномощны. В самом деле, есть простая биекция (поменять первый элемент с последним), значит |A|=|B|. Пусть первые k шаров черные. Тогда искомая вероятность — это

$$P = \sum_{i=1}^k \! P($$
при выборе j выпал шар $i) = \sum_{i=1}^k \! P($ при выборе 1 выпал шар $i) = \frac{k}{n}$

Теперь решим формулой полной вероятности.

Пусть $D_i = (\text{после выбора } j - 1 \text{ осталось } i \text{ черных шаров}).$

$$P(A_{j}) = \sum_{i=\max(k-j+1,0)}^{\min(k,n-j+1)} P(A_{j} \mid D_{i}) \cdot P(D_{i}) =$$

$$= \sum_{i=\max(k-j+1,0)}^{\min(k,n-j+1)} \frac{i}{n-j+1} \cdot \frac{C_{j-1}^{k-i} \cdot k \cdot (k-1) \cdot \dots \cdot (k-(k-i)+1)}{n \cdot (n-1) \cdot \dots \cdot (n-(j-1)+1)} = \dots =$$

$$= \frac{C_{n-1}^{k-1}}{C_{n}^{k}} = \frac{k}{n}$$

Это был плохой метод. Попробуем иначе:

 $D_0=$ (при первом выборе выпал черный шар), $D_1=$ (при первом выборе выпал белый шар) Будем доказывать, что $P(A_i)=rac{k}{n}$ по индукции. Предположим, что $P(A_{j-1})=rac{k}{n}$. Тогда

$$P(A_j) = P(A_j \mid D_0) \cdot P(D_0) + P(A_j \mid D_1) \cdot P(D_1) =$$

$$= \frac{k-1}{n-1} \cdot \frac{k}{n} + \frac{k}{n-1} \cdot \frac{n-k}{n} = \frac{k^2 - k + n \cdot k - k^2}{n(n-1)} = \frac{k}{n}$$

5. Формула Байеса

Утверждение. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, $\forall i \in \mathbb{N} \to D_i \in \mathcal{F}$: $\Omega = \bigsqcup_{i=1}^{\infty} D_i$. Пусть $A \in \mathcal{F}$, тогда

$$P(D_n \mid A) = \frac{P(A \mid D_n) \cdot P(D_n)}{\sum_{k=1}^{\infty} P(A \mid D_k) \cdot P(D_k)}$$

Доказательство.

$$P(D_n \mid A) = \frac{P(D_n \cap A)}{P(A)} = \frac{P(A \mid D_n) \cdot P(D_n)}{\sum_{k=1}^{\infty} P(A \mid D_k) \cdot P(D_k)}$$

Пример. Пусть есть два студента, которые не ждут более 15 минут. D_0 — оба пришли в первые 15 минут. $D_1 = \Omega \setminus D_0$.

Мы знаем, что они встретились. Какова вероятность, что кто-то из них пришел позже, чем в 15 минут.

$$P(D_1 \mid A) = \frac{P(A \mid D_1) \cdot P(D_1)}{P(A \mid D_0) \cdot P(D_0) + P(A \mid D_1) \cdot P(D_1)} = \frac{\frac{2}{5} \cdot \left(1 - \frac{1}{16}\right)}{1 \cdot \frac{1}{16} + \frac{2}{5} \cdot \left(1 - \frac{1}{16}\right)} = \frac{6}{7}$$

6. Независимость событий

Определение. События $A, B \in \mathcal{F}$ называются *независимыми*, если $P(A \cap B) = P(A) \cdot P(B)$.

Замечание. Что то же самое $P(A \mid B) = P(A), \ P(B \mid A) = P(B).$

Определение. Набор событий A_1, \ldots, A_n называется независимой совокупностью, если для любых различных $1 \le k_1, \ldots k_i \le n$ верно $P(A_{k_1} \cap \ldots \cap A_{k_i}) = P(A_{k_1}) \cdot \ldots \cdot P(A_{k_i})$.

Замечание. Из независимости совокупности следует попарная, обратное неверно.

Пример. Возьмем тетраэдр, у которого каждая грань покрашена в какие-то цвета. Три грани монохромны, четвертая покрашена в 3 цвета сразу. События выпадения каждого цвета попарно независимы, но в совокупности это неверно.

$$\Omega = \{\omega_1, \dots, \omega_4\}, A = \{\omega_1, \omega_4\}, B = \{\omega_2, \omega_4\}, C = \{\omega_3, \omega_4\}.$$

 $P(A \cap B) = P(A \cap C) = P(B \cap C) = P(\{\omega_4\}) = \frac{1}{4}$, значит они попарно независимы.

 $P(A \cap B \cap C) = \{\omega_4\} = \frac{1}{4}, \ P(A) \cdot P(B) \cdot P(C) = \frac{1}{8},$ значит нет независимости в совокупности.

Определение. $\{A_{\gamma}, \ \gamma \in \Gamma\}$ — независимы в совокупности, если для любых k различных $\gamma_1, \ldots, \gamma_k \in \Gamma$ верно, что

$$P(A_{\gamma_1} \cap \ldots \cap A_{\gamma_k}) = P(A_{\gamma_1}) \cdot \ldots \cdot P(A_{\gamma_k})$$

Определение. Пусть M_1, \ldots, M_n — системы событий. Они называются *независимыми в совокупности*, если $\forall A_i \in M_i \to A_1, \ldots, A_n$ — независимы в совокупности.

Пример. Пусть A_1, \ldots, A_n — независимые в совокупности события. Тогда введем $\mathcal{F}_{A_i} = \{\emptyset, A_i, \overline{A}_i, \Omega\}$. Они будут независимой в совокупности системой событий.

Пусть $B_i \in \mathcal{F}_i$.

Если $B_{i_j}=\varnothing$, то тривиально $P\left(B_{i_1}\cap\ldots\cap P_{i_j}\right)=0=P(B_{i_1})\cdot\ldots\cdot P(B_{i_j})$. Случай $B_{i_j}=\Omega$ разбирается так же.

Теперь $B_i=A_i$ или $B_i=\overline{A_i}$. Положим без потери общности, что $B_{i_1}=\overline{A_{i_1}}...$

Лекция 3. Распределения вероятностей

7. σ-АЛГЕБРЫ, СОДЕРЖАЩАЯ СЕМЕЙСТВО МНОЖЕСТВ

Утверждение. Существует σ -алгебра \mathcal{F} , содержащая $M \subset \Omega$

Доказательство. Очевидно, так как 2^{Ω} образует σ -алгебру.

Определение. σ -алгебра $\mathcal F$ называется минимальной σ -алгеброй, содержащей систему M подмножеств Ω , если $\forall \Sigma \subset 2^{\Omega}, \ M \subset \Sigma \subset \mathcal F, \ \Sigma \neq \mathcal F \to \Sigma$ — не σ -алгебра.

Утверждение. Минимальная σ -алгебра для M единственна.

П

Доказательство. Пересечение всех σ -алгебр, содержащих M, тоже его содержит.

Утверждение. Пусть \mathcal{F}_{γ} , $\gamma \in \Gamma$ — это семейство сигма-алгебр, содержащих M. Тогда $\bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$ — σ -алгебра, содержащая M.

Доказательство. Проверяем свойства:

1)
$$\forall \gamma \in \Gamma \to \Omega \in \mathcal{F}_{\gamma} \Rightarrow \Omega \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$$

2)
$$A \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma} \Rightarrow (\forall \gamma \in \Gamma \to A \in \mathcal{F}_{\gamma} \Rightarrow \overline{A} \in \mathcal{F}) \Rightarrow \overline{A} \in \bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$$

3)
$$A_1,A_2,\ldots\in\bigcap_{\gamma\in\Gamma}\mathcal{F}_{\gamma}\Rightarrow \forall\gamma\in\Gamma\to A_1,\ldots\in\mathcal{F}_{\gamma}\Rightarrow \forall\gamma\in\Gamma\to\bigcup_{i=1}^{\infty}A_i\in\mathcal{F}_{\gamma}\Rightarrow\bigcap_{\gamma\in\Gamma}\mathcal{F}_{\gamma}$$
— сигма-алгебра.

Замечание. Тогда минимальная σ -алгебра, содержащая M существует и равна пересечению всех σ -алгебр, содержащих M. Обозначать такую алгебры мы будем $\sigma(M)$.

Замечание. То же самое верно для алгебр. Минимальную алгебру, содержащую M, будем обозначать $\alpha(M)$

8. ПРИМЕРЫ: БОРЕЛЕВСКАЯ σ -АЛГЕБРА

Пример.

- 1) $\mathcal{F}_0 = \{\varnothing, \Omega\} = \sigma(\{\varnothing\}) = \alpha(\{\varnothing\}).$
- 2) $\mathcal{F}_A = \{\varnothing, A, \overline{A}, \Omega\} = \sigma(\{A\}) = \alpha(\{A\})$
- 3) Пусть $D = \{D_1, D_2, \ldots\}$ счетное разбиение Ω . Тогда $\sigma(D)$ все не более чем счетные объединения множеств D_1 и \varnothing , $\alpha(D)$ все конечные объединения.

4)
$$\Omega = \{\omega_1, \dots, \omega_n\} \Rightarrow \sigma(\{\{\omega_1\}, \dots, \{\omega_n\}\}) = 2^{\Omega} = \alpha(\{\{\omega_1\}, \dots, \{\omega_n\}\})$$

5)
$$\Omega = \mathbb{R}$$
. $M = \{(a,b], -\infty \le a < b < +\infty\}, \ \sigma(M) := \mathcal{B}(\mathbb{R})$ — борелевская σ -алгебра в \mathbb{R} .

9. Распределения вероятностей

Определение. Вероятностная мера P на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ называется pacnpederenuem вероятностей

Определение. Функция $F: \mathbb{R} \mapsto [0;1]$ такая, что $F(x) = P((-\infty;x])$, называется функцией распределения, соответствующей распределению P.

Утверждение. Некоторые свойства F:

- 1) F не убывает
- 2) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
- 3) F непрерывна справа, то есть $\forall x_0 \in \mathbb{R} \to \lim_{x \to x_0 + 0} F(x) = F(x_0)$

Доказательство.

- 1) Пусть x < y, тогда $(-\infty; x] \subset (-\infty; y] \Rightarrow F(x) = P((-\infty; x]) \le P((-\infty; y]) = F(y)$.
- 2) Пусть $x_n \searrow -\infty$. Тогда $A_n = (-\infty; x_n] \searrow \varnothing$, то есть $\forall i \to A_i \supset A_{i+1}$ и $\bigcap_{i=1}^{\infty} A_i = \varnothing$. По теореме о непрерывности вероятностной меры:

$$0 = P\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} F(x_i)$$

Аналогично доказывается, что $\lim_{x \to +\infty} F(x) = 1$.

3) Пусть $x_n \searrow x_0$. Тогда $A_n = (-\infty; x_n] \searrow (-\infty; x_0]$.

$$F(x_0) = P\left((-\infty; x_0]\right) = P\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} F(x_i)$$

Замечание. Функция распределения не обязана быть непрерывной слева, так как в случае $P(\{x_0\}) > 0$

$$\lim_{x \to x_0 - 0} F(x) = P((-\infty; x_0)) < F(x_0)$$

Теорема. Пусть $F: \mathbb{R} \mapsto [0;1]$ удовлетворяет свойствам (1) — (3), тогда существует единственное соответствующее ей распределение вероятностей P, причем $\forall -\infty \leq a < b < \infty \to P(a,b] = F(b) - F(a)$.

Определение. Любую функцию F, обладающую свойствами (1) — (3), называют функцией распределения.

Пример.

$$(1) \ F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x \le 1, \ P\left((a;b]\right) = b - a, \ 0 \le a < b \le 1. \ \mu \stackrel{def}{=} P - \text{мера Лебега на } [0;1] \\ 1, & x > 1 \end{cases}$$

$$(2) \ F(x) = \begin{cases} 0, & x < a \\ 1, & x \ge a \end{cases}, \ A \in \mathcal{B}(\mathbb{R}) \Rightarrow P(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases} = I(a \in A)$$

Доказательство. Покажем, что в последнем примере это действительно так. Очевидно, что P(A) = F(y) - F(x), если A = (x; y]. Теперь докажем, что $\widetilde{P} = I(a \in A)$ — вероятностная мера. Если A_1, \ldots — непересекающиеся множества из $\mathcal{B}(\mathbb{R})$, то

$$\widetilde{P}\left(\bigsqcup_{i=1}^{\infty}A_{i}\right)=egin{cases}1,& ext{если }\exists i:\ a\in A_{i}\0,& ext{иначе}\end{cases}$$

С другой стороны, $\sum\limits_{i=1}^{\infty}\widetilde{P}(A_i)$ — это то же самое, значит \widetilde{P} — вероятность. Тогда по теореме о единственности вероятностной меры распределения имеем $P=\widetilde{P}$.

10. Дискретные распределения

Определение. Пусть $X \subset \mathbb{R}$ — не более чем счетное. Тогда последовательность $\{p_n\}_{n=1}^{\infty}$ называется дискретным распределением вероятностей на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

$$P(x_n) = p_n$$
, где $X = \{x_1, \ldots\}$

Если
$$p_n > 0$$
 и $\sum_{i=1}^{\infty} p_i = 1$.

Пример.

1) Распределение Бернулли — Bern(p): $X = \{0, 1\}$, $P(\{0\}) = 1 - p, \ P(\{1\}) = p, \ p \in (0; 1)$

2) Дискретно-равномерное распределение — $U(\{1,...,N\})$:

$$X = \{1, \dots, N\}, \ \forall i \in X \to P(\{i\}) = \frac{1}{N}$$

3) Биномиальное распределение с параметрами (n, p) - Bin(n, p):

$$X = \{0, \dots, n\}, P(\{k\}) = C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

4) Распределение Пуассона с параметром $\lambda - Pois(\lambda)$:

$$X = \mathbb{Z}_+, \ P(\{k\}) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Замечание. $e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot e^{\lambda} = 1$. Также $Bin(n, \frac{\lambda}{n}) \approx Pois(\lambda)$, потому что при больших n: $\left(1 - \frac{1}{n}\right)^n \approx \frac{1}{a}$.

Лекция 4. Непрерывные распределения

11. Непрерывные распределения и плотность

Определение. Если существует такая функция p(x), что $\forall x \in \mathbb{R} \to p(x) \geq 0$ и функция распределения $F(x) = \int\limits_{-\infty}^{x} p(t) \cdot dt$, то F и соответствующее распределение P называется абсолютно непрерывными, а p называется плотностью распределения.

Утверждение. Пусть p(x) — функция, удовлетворяющая условиям

(1) $\forall x \to p(x) \ge 0$

$$(2) \int_{-\infty}^{\infty} p(x) \cdot dx = 1$$

Тогда $F(x) = \int\limits_{-\infty}^{x} p(t) \cdot dt$ является функцией распределения.

Доказательство.

(1) Докажем неубывание: $F(x_1) - F(x_2) = \int_{x_1}^{x_2} p(x) \cdot dx \ge 0$ при $x_1 > x_2$.

(2)

$$\begin{split} \lim_{x \to \infty} F(x) &= \lim_{x \to \infty} \int\limits_{-\infty}^{x} p(t) \cdot dt = \lim_{x \to \infty} \int\limits_{-\infty}^{\infty} I(t \le x) \cdot p(t) \cdot dt = \\ &= \int\limits_{-\infty}^{\infty} \lim_{x \to \infty} I(t \le x) \cdot p(t) \cdot dt = \int\limits_{-\infty}^{\infty} p(t) \cdot dt = 1 \end{split}$$

(3)
$$\lim_{x \to -\infty} F(x) = \int_{-\infty}^{\infty} \lim_{x \to -\infty} I(t \le x) \cdot p(t) \cdot dt = 0$$

(4)
$$\lim_{x \to x_0} F(x) = \lim_{x \to x_0} \int_{-\infty}^{x} p(t) \cdot dt = \int_{-\infty}^{x_0} p(t) \cdot dt = F(x_0)$$

Замечание. Функция $I(x \le a) = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$

Определение. Если p удовлетворяет свойствам (1) и (2), то ее называют *плотностью*.

Утверждение. Пусть p — плотность распределения $P, B \in \mathcal{B}(\mathbb{R})$ — борелевское множество. Тогда $P(B) = \int\limits_B p(t) \cdot dt$

Доказательство. Приведем пока только схему доказательства.

По теореме о единственности вероятностной меры с заданной функцией распределения достаточно доказать, что функция, задаваемая равенством $P(B) = \int\limits_B p(t) \cdot dt$ является мерой на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Проверить счетную аддитивность интеграла Лебега мы пока не сможем, но мы можем проверить, например, $P(\mathbb{R}) = \int\limits_{\mathbb{R}} p(t) \cdot dt = 1$.

Утверждение. Если F — всюду на $\mathbb R$ дифференцируемая функция распределения, то его плотность есть p(t) = F'(t)

Доказательство. Следует из формулы Ньютона-Лейбница.

12. ПРИМЕРЫ ЧАСТО ВСТРЕЧАЮЩИХСЯ РАСПРЕДЕЛЕНИЙ

Пример.

(1) R([a;b]) — равномерное распределение с параметрами a и b:

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a; b] \\ 0, & x \notin [a; b] \end{cases}$$
$$F(x) = \int_{-\infty}^{x} p(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

(2) $N(a, \sigma^2)$ — нормальное распределение с параметрами a и σ^2 :

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}}$$
$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}} \cdot dx$$

(3) $Exp(\lambda)$ — экспоненциальное или показательное распределение с параметром $\lambda > 0$:

$$p(x) = \lambda \cdot e^{-\lambda \cdot x} \cdot I(x \ge 0)$$
$$F(x) = (1 - e^{-\lambda x}) \cdot I(x \ge 0)$$

(4) $\Gamma(\alpha, \beta)$ — гамма-распределение с параметрами $\alpha, \beta > 0$:

$$p(x) = \frac{\alpha^{\beta} \cdot x^{\beta - 1} \cdot e^{-\alpha \cdot x}}{\Gamma(\beta)}$$

$$\int_{-\infty}^{+\infty} p(t) \cdot dt = \int_{-\infty}^{+\infty} \frac{(x\alpha)^{\beta - 1} e^{-\alpha x}}{\Gamma(\beta)} \cdot d(\alpha x) = \int_{-\infty}^{+\infty} \frac{t^{\beta - 1} \cdot e^{-t}}{\Gamma(\beta)} \cdot dt = 1$$

Последнее верно, так как $\Gamma(\beta) \stackrel{def}{=} \int\limits_{-\infty}^{\infty} t^{\beta-1} \cdot e^{-t} \cdot dt$. Про Γ -функцию полезно знать, что $\Gamma(n) = (n-1)!$ и $\Gamma(\beta) = (\beta-1) \cdot \Gamma(\beta-1)$ при $\beta > 1$.

(5) Распределение Коши с параметром $\theta > 0$:

$$p(x) = \frac{\theta}{\pi (x^2 + \theta^2)}$$

$$\int_{-\infty}^{+\infty} \frac{\theta}{\pi (x^2 + \theta^2)} = \int_{-\infty}^{+\infty} \frac{1}{\pi (1 + x^2)} \cdot dt = 1$$

$$F(x) = \frac{\arctan(\frac{x}{\theta}) + \frac{\pi}{2}}{\pi}$$

13. Многомерные распределения

Определение. *Борелевской \sigma-алгеброй* на \mathbb{R}^n называется $\mathcal{B}(\mathbb{R}^n)$ — наименьшая, содержащая множества вида $B_1 \times \ldots \times B_n$, где $\forall i \in \{1,\ldots,n\} \to B_i \in \mathcal{B}(\mathbb{R})$.

Вероятностная мера на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ называется распределением вероятностей. Функция $F: \mathbb{R}^n \mapsto [0;1]$ такая, что $F(x_1,\ldots,x_n) = P((-\infty;x_1],\ldots,(-\infty;x_n])$ называется функцией распределения.

Замечание. Некоторые свойства многомерных распределений

(1) Пусть $\Delta_{a,b}^i F(x_1,\ldots,x_n) = F(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n) - F(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)$. Тогда $\forall a_1 < b_1,\ldots,a_n < b_n$ верно

$$\Delta_{a_1,b_1}^1 \dots \Delta_{a_n,b_n}^n F(x_1,\dots,x_n) \ge 0$$

Доказательство. Докажем, что

$$\forall k \in \{1, \dots, n\}, a_1 < b_1, \dots, a_k < b_k \to \Delta^1_{a_1, b_1} \dots \Delta^k_{a_k, b_k} F(x_1, \dots, x_n) = P((a_1; b_1], \dots, (a_k; b_k], (-\infty; x_{k+1}], \dots, (-\infty; x_n])$$

Индукция по k. База k = 1:

$$\Delta_{a_1,b_1}^1 F(x_1,\ldots,x_n) = F(b_1,x_2,\ldots,x_n) - F(a_1,x_2,\ldots,x_n) =$$

$$= P((-\infty;b_1],(-\infty;x_2],\ldots,(-\infty;x_n]) - P((-\infty;a_1],(-\infty;x_2],\ldots,(-\infty;x_n]) =$$

$$= P((a_1;b_1],(-\infty;x_2],\ldots,(-\infty;x_n])$$

Так как события вложены. Докажем шаг индукции:

$$\Delta_{a_1,b_1}^1 \dots \Delta_{a_{k+1},b_{k+1}}^{k+1} F(x_1,\dots,x_n) =$$

$$= \Delta_{a_1,b_1}^1 \dots \Delta_{a_k,b_k}^k \left(F(x_1,\dots,x_k,b,x_{k+2},\dots,x_n) - F(x_1,\dots,x_k,a,x_{k+2},\dots,x_n) \right)$$

По линейности оператора $\Delta^i_{a,b}$ имеем

$$\Delta_{a_{1},b_{1}}^{1} \dots \Delta_{a_{k},b_{k}}^{k} F(x_{1},\dots,x_{k},b,x_{k+2},\dots,x_{n}) - \Delta_{a_{1},b_{1}}^{1} \dots \Delta_{a_{k},b_{k}}^{k} F(x_{1},\dots,x_{k},a,x_{k+2},\dots,x_{n}) =$$

$$= P((a_{1};b_{1}],\dots,(a_{k};b_{k}],(-\infty;b_{k+1}],(-\infty;x_{k+2}],\dots,(-\infty;x_{n}]) -$$

$$- P((a_{1};b_{1}],\dots,(a_{k};b_{k}],(-\infty;b_{k+1}],(-\infty;x_{k+2}],\dots,(-\infty;x_{n}]) =$$

$$P((a_{1};b_{1}],\dots,(a_{k+1};b_{k+1}],(-\infty;x_{k+1}],\dots,(-\infty;x_{n}])$$

Значит $\Delta^1_{a_1,b_1}\dots\Delta^n_{a_n,b_n}F(x_1,\dots,x_n)=P((a_1;b_1],\dots,(a_n;b_n])\geq 0$ по свойству вероятностной меры.

- (2) Будем обозначать для $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$

 - $x \geq y$, если $\forall i \in \{1,\dots,n\} \to x_i \geq y_i$ $x^k \uparrow x$, если $\forall i \in \{1,\dots n\} \to x_i^k \to x_i$ при $k \to \infty$ и $\forall k \to x^{k+1} \geq x^k$ $x^k \downarrow x$ аналогично

Тогда
$$\lim_{x_1 \to \infty, \dots, x_n \to \infty} F\left(x_1, \dots, x_n\right) = 1$$
 и $\forall i \in \mathbb{N} \to \lim_{x_i \to -\infty} F\left(x_1, \dots, x_n\right) = 0$

$$(3) \lim_{x^k \downarrow x} F(x^k) = F(x)$$

Доказательство. Нужно показать, что

$$\lim_{x_1 \to \infty, \dots, x_n \to \infty} F\left(x_1, \dots, x_n\right) = \lim_{x_1 \to \infty, \dots, x_n \to \infty} P\left(\left(-\infty; x_1\right], \dots, \left(-\infty; x_n\right]\right)$$

Докажем, что $\forall \varepsilon > 0 \; \exists N: \; \forall x_1 > N, \dots, x_n > N \to F(x_1, \dots, x_n) > 1 - \varepsilon$. Обозначим

$$F_N = F(N, \dots, N) = P(\underbrace{(-\infty; N], \dots, (-\infty; N]}_{A_n})$$

Очевидно, $A_N\subset A_{N+1}$. По теореме о непрерывности вероятностной меры $P(A_n)\to 1$ при $n o \infty$, так как $igcup_{i}^{\infty} A_i = \mathbb{R}^n$. Тогда в качестве искомого N можно взять N, которое даст равенство $\lim_{n\to\infty}P(A_n)=1$ для ε . По свойству неубывания вероятностной меры $F(x_1,\dots,x_n)\geq P(A_N)>1-\varepsilon.$

Упражнение. Провести аналогичное доказательство для остальных свойств.

Лекция 5. Случайные величины

14. ФУНКЦИИ МНОГОМЕРНЫХ РАСПРЕДЕЛЕНИЙ

Теорема. Если $F: \mathbb{R}^n \mapsto [0;1]$ удовлетворяет свойствам (1)-(3), то существует единственное распределение на $(\mathbb{R},\mathcal{B}(\mathbb{R}^n))$, для которого F является функцией распределения.

Пример. Пусть $F_1(x), \ldots, F_n(x)$ — одномерные функции распределения. Тогда $F(x_1, \ldots, x_n)$ = $F_1(x_1) \cdot \ldots \cdot F_n(x_n)$ — функция распределения. Пусть P — распределение, соответствующее F, а P_i соответствует F_i .

Тогда

$$\forall B \in \mathcal{B}(\mathbb{R}) \to P(\mathbb{R} \times \ldots \times \mathbb{R} \times \underbrace{B}_{i} \times \mathbb{R} \times \ldots \times \mathbb{R}) = P_{i}(B)$$

Докажем это. Определим

$$\widetilde{P}\left(\mathbb{R}\times\ldots\times\mathbb{R}\times\underbrace{(-\infty;a]}_{i}\times\mathbb{R}\times\ldots\times\mathbb{R}\right)=F_{i}(a)$$

Тогда

$$\widetilde{P}\left(\underbrace{(-\infty;a_1]}_{i}\times\ldots\times\underbrace{(-\infty;a_n]}_{i}\right)=F_1(a_1)\cdot\ldots\cdot F_n(a_n)$$

Это значит, что $\widetilde{P}=P$, так как мы задали распределение однозначно.

 P_1, \dots, P_n называются *маргинальными* распределениями для P.

Пример. $F(x_1,\ldots,x_n)=\prod_{x_i\in[0;1]}\left(x_i\cdot I\ (\forall i\leq n\to x_i>0)+I\ (\forall i\leq n\to x_i>1)\right)$ соответствует мере Лебега на $[0;1]^n$

Маргинальные распределения имеют вид $F(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & x \le 0 \\ 1, & x > 1 \end{cases}$

Определение. Функция распределения F называется абсолютно непрерывной (вместе с соответствующим распределением), если существует такая $p(x_1, \ldots, x_n) \ge 0$, то

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} p(t_1,\ldots,t_n) \cdot dt_1 \cdot \ldots \cdot dt_n$$

 Φ vнкция p называется nлотностью распределения.

Утверждение.

- (1) Если $p(x_1,\ldots,x_n)\geq 0$, такая что $\int\limits_{-\infty}^{+\infty}\cdots\int\limits_{-\infty}^{+\infty}p(t_1,\ldots,t_n)\cdot dt_1\cdot\ldots\cdot dt_n=1$, то существует функция распределения F, для которой p— плотность.
- (2) Если $B \in \mathcal{B}(\mathbb{R}^n)$, то

$$P(B) = \int_{B} p(t_1, \dots, t_n) \cdot dt_1 \cdot \dots \cdot dt_n$$

(3) Если F — дифференцируема, то

$$p(x_1, \dots, x_n) = \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_n} \cdot F(x_1, \dots, x_n)$$

Пример. Равномерное распределение на $[a;b]^n$:

$$p(x) = \begin{cases} \frac{1}{b-a}, & x_i \in [a; b] \\ 0, & \text{иначе} \end{cases}$$

$$F(x_1,\ldots,x_n) = \int\limits_{-\infty}^{x_1} \cdots \int\limits_{-\infty}^{x_n} p(t_1,\ldots,t_n) \cdot dt_1 \cdot \ldots \cdot dt_n = \begin{cases} 0, & \exists i: \ x_i \leq a \\ \frac{\prod\limits_{x_i < b} (x_i - a)}{(b - a)^n}, & \forall i \leq n \rightarrow x_i \geq 0, \ \exists i: \ x_i < b \end{cases}$$
 иначе

$$P(\lbrace x_1, x_2 : x_1 + x_2 \le b + a \rbrace) = \int_{-a}^{b} \int_{-a}^{b+a-x_1} \int_{-a}^{b} \dots \int_{-a}^{b} \left(\frac{1}{b-a}\right)^n \cdot dx_1 \cdot \dots \cdot dx_n =$$

$$\int_{-a}^{b} \int_{-a}^{b+a-x_1} \left(\frac{1}{b-a}\right)^2 \cdot dx_1 \cdot dx_2 = \int_{a}^{b} \frac{b-x_1}{(b-a)^2} \cdot dx_1 = \frac{b(b-a) - \frac{b^2-a^2}{2}}{(b-a)^2} = \frac{1}{2}$$

Определение. Пусть $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^n$, тогда последовательность $\{p_k\}_{k \in \mathbb{N}}$, где $p_k \geq 0$ и $\sum_k p_k = 1$, называется дискретным распределением вероятностей $P\left(\{x_k\}\right) = p_k$

Пример.
$$x = \{0,1\}^n$$
, $p_1 = \left(\frac{1}{2}\right)^n$, $\forall i \in \{1,\dots,2^n\} \to P\left(\left\{x \cdot \sum_{i=1}^n x_i = k\right\}\right) = \frac{C_n^k}{2^n}$

15. Случайные величины

Определение. Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) — измеримые пространства (с заданной σ -алгеброй). Пусть $f: \Omega \mapsto E$. Оно называется $\mathcal{F} \mid \mathcal{E}$ — измеримым, если

$$\forall B \in \mathcal{E} \to f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \} \in \mathcal{F}$$

Если задана P — вероятностная мера на (Ω, \mathcal{F}) , то f — случайный элемент.

Если $E = \mathbb{R}^n$, $\mathcal{E} = \mathcal{B}(\mathbb{R}^n)$, то f - cлучайный вектор.

Если n = 1, то f - cлучайная величина.

Замечание. Поймем, какую роль играет условие измеримости. Пусть ξ — случайная величина на (Ω, \mathcal{F}, P) , такая что

$$\forall B \in \mathcal{B}(\mathbb{R}) \to P_{\mathcal{E}}(B) = P\left(\{\omega : \xi(\omega) \in B\}\right)$$

Утверждение. Тогда P_{ξ} — распределение вероятностей.

Доказательство. Проверяем его свойства:

- 1) $P_{\varepsilon}(\mathbb{R}) = P(\{\omega : \xi(\omega) \in \mathbb{R}\}) = P(\Omega) = 1.$
- 2) Если $B_1, \ldots \in \mathcal{B}(\mathbb{R}), \ B_i \cap B_j = \emptyset$ при $i \neq j$, то

$$P_{\xi}\left(\bigcup_{i=1}^{\infty} B_i\right) = P\left(\left\{\omega: \ \xi(\omega) \in \bigcup_{i=1}^{\infty} B_i\right\}\right) = P\left(\bigcup_{i=1}^{\infty} \left\{\omega: \ \xi(\omega) \in B_i\right\}\right)$$

Так как одно w может перейти только в одно B_i , то

$$P_{\xi}\left(\bigcup_{i=1}^{\infty} B_{i}\right) = \sum_{i=1}^{\infty} P\left(\left\{\omega : \xi(\omega) \in B_{i}\right\}\right) = \sum_{i=1}^{\infty} P_{\xi}\left(B_{i}\right)$$

П

Замечание. Для удобства примем обозначение $P\left(\{\omega: \xi(\omega) \leq x\}\right) = P\left(\xi \leq x\right)$ (для всех подобных выражений).

Замечание. Все наши утверждения будут верны для случайных величин и случайных векторов. Доказательства будем приводить как правило для случайных величин.

16. Порожденная σ -алгебра

Определение. Пусть ξ — случайная величина (вектор) на (Ω, \mathcal{F}, P) . Тогда σ -алгеброй, порожденной ξ называется

$$\mathcal{F}_{\varepsilon} = \{ A \in \mathcal{F} : \exists B \in \mathcal{B}(\mathbb{R}^n), A = \{ \omega : \xi(\omega) \in B \} \}$$

Утверждение. $\mathcal{F}_{\xi}-\sigma$ -алгебра

Доказательство. Проверяем определение:

- 1) $\Omega = \{\omega : \xi(\omega) \in \mathbb{R}\} \in \mathcal{F}_{\xi}$
- 2) $A \in \mathcal{F}_{\xi}$. Пусть $B = \xi(A)$, тогда $B \in \mathcal{B}(\mathbb{R}) \Rightarrow \overline{B} \in \mathcal{B}(\mathbb{R}) \Rightarrow \overline{A} = \{\omega : \xi(\omega) \in \overline{B}\} \in \mathcal{F}_{\xi}$
- 3) Пусть $A_1, \ldots \in \mathcal{F}_{\xi}$. Пусть $B_i = \xi(A_i)$, тогда

$$\bigcap_{i=1}^{\infty} A_i = \left\{ \omega : \ \xi(\omega) \in \bigcap_{i=1}^{\infty} B_i \right\} \in \mathcal{F}_{\xi}$$

Утверждение. Случайная величина ξ является $\mathcal{F}_{\eta} \mid \mathcal{E}$ -измеримой, тогда и только тогда, когда $\mathcal{F}_{\xi} \subset \mathcal{F}_{\eta}$.

3амечание. Будем называть \mathcal{F}_{η} -измеримость просто η -измеримостью.

Доказательство.

$$\Rightarrow$$
 Имеем $\forall B \in \mathcal{B}(\mathbb{R}) \to \{\omega: \xi(\omega) \in B\} \in \mathcal{F}_{\eta}$. Пусть $A \in \mathcal{F}_{\xi}$, тогда $\exists B \in \mathcal{B}(\mathbb{R}): A = \{\omega: \xi(\omega) \in B\} \Rightarrow A \in \mathcal{F}_{\eta}$

Значит, $\mathcal{F}_{\xi} \subset \mathcal{F}_{\eta}$.

 $\Leftarrow \mathcal{F}_{\xi} \subset \mathcal{F}_{\eta}$. Тогда

$$\forall B \in \mathcal{B}(\mathbb{R}) \to A = \{\omega : \xi(\omega) \in B\} \in \mathcal{F}_{\varepsilon} \subset \mathcal{F}_{\eta} \Rightarrow A \in \mathcal{F}_{\eta}$$

Значит $\xi - \mathcal{F}_{\eta}$ -измерима.

Определение. Функция $f: \mathbb{R}^n \mapsto \mathbb{R}^k$ называется борелевской, если она является $\mathcal{B}(\mathbb{R}^n) \mid \mathcal{B}(\mathbb{R}^k)$ -измеримой.

Теорема. Случайная величина (вектор) ξ является η -измеримой тогда и только тогда, когда \exists борелевская функция $f: \xi = f(\eta)$

Доказательство. Мы покажем только достаточность:

Пусть $\xi = f(\eta)$, тогда

$$\forall A \in \mathcal{F}_{\xi} \to \exists B \in \mathcal{B}(\mathbb{R}) : A = \{\omega : \xi(\omega) \in B\} = \{\omega : f(\eta(\omega)) \in B\}$$

Значит найдется борелевское множество $C = f^{-1}(B)$: $A = \{\omega: \eta(\omega) \in C\} \Rightarrow A \in \mathcal{F}_{\eta}$, а значит $\mathcal{F}_{\xi} \subset \mathcal{F}_{\eta}$. Используя предыдущее утверждение, получаем, что ξ является η -измеримой.

Лекция 6. Независимость случайных величин

17. Операции со случайными величинами

Замечание. Если ξ — случайная величина (вектор), f — борелевская функция, то $f(\xi)$ — случайная величина (вектор)

Доказательство. Мы знаем, что $\eta = f(\xi)$ будет ξ -измеримой. Но $\mathcal{F}_{\xi} \subset \mathcal{F} \Rightarrow f(\xi)$ будет $\mathcal{F} \mid \mathbb{R}$ измеримой, то есть $f(\xi)$ — случайная величина.

Теорема. Любая непрерывная и кусочно-непрерывная функция является борелевской.

Доказательство. Доказывать не будем, но перечислим некоторые основные функции. Если (ξ,η) — случайный вектор, то $\xi+\eta,\ \xi-\eta,\ \xi\eta,\ \frac{\xi}{\eta}\cdot I(\eta\neq 0)$ — случайные величины.

Теорема. (критерий измеримости) Пусть (Ω, \mathcal{F}) , (E, \mathcal{E}) — измеримые пространства, $M \subset \mathcal{E}$: $\sigma(M) = \mathcal{E}$. Тогда $f: \Omega \mapsto E$ является $\mathcal{F} \mid \mathcal{E}$ — измеримыми тогда только тогда, когда $\forall A \in M \to f^{-1}(A) = \{\omega: f(\omega) \in A\} \in \mathcal{F}$.

Доказательство. Необходимость очевидна. Покажем достаточность. Пусть

$$\Sigma = \left\{ A \subset E : \ f^{-1}(A) \in \mathcal{F} \right\}$$

Покажем, что это σ -алгебра.

- (1) $f^{-1}(E) = \Omega \in \mathcal{F} \Rightarrow E \in \Sigma$.
- (2) Пусть $A \in \Sigma$, тогда $f^{-1}(A) \in \mathcal{F}$, тогда $\{\omega : f(\omega) \in \overline{A}\} = \overline{\{\omega : f(\omega) \in A\}} \in \mathcal{F} \Rightarrow \overline{A} \in \Sigma$.

$$(3) \ \text{Пусть } A_1,\ldots \in \Sigma. \ \text{Тогда} \ \left\{\omega: \ f(\omega) \in \bigcup_{i=1}^\infty A_i\right\} = \bigcup_{i=1}^\infty \left\{\omega: \ f(\omega) \in A_i\right\} \in \mathcal{F} \Rightarrow \bigcup_{i=1}^\infty A_i \in \Sigma.$$

По условию $M \subset \Sigma \Rightarrow \sigma(M) \subset \Sigma \Rightarrow \mathcal{E} \subset \Sigma$. Значит $\forall A \in \mathcal{E} \to A \in \Sigma \Rightarrow f^{-1}(A) \in \mathcal{F}$, а это и есть $\mathcal{F} \mid \mathcal{E}$ -измеримость.

 $Утверждение. \ \xi=(\xi_1,\ldots,\xi_n)$ — случайный вектор $\Leftrightarrow \forall i o \xi_i$ — случайная величина.

Доказательство. Пусть ξ — случайный вектор. Пусть $B \in \mathcal{B}(\mathbb{R})$, тогда

$$\left\{\omega:\ \xi(\omega)\in\mathbb{R}\times\ldots\times\mathbb{R}\times\overbrace{B}^{i}\times\mathbb{R}\times\ldots\times\mathbb{R}\right\}\in\mathcal{F}$$

Тогда $\forall B \in \mathcal{B}(\mathbb{R}) \to \xi_i^{-1}(B) \in \mathcal{B}(\mathbb{R}) \Rightarrow \xi_i$ — случайная величина.

Пусть теперь ξ_1, \ldots, ξ_n — случайные величины. Возьмем $M = \{B_1 \times \ldots \times B_n \mid B_i \in \mathcal{B}(\mathbb{R})\}$. Тогда $\mathcal{B}(\mathbb{R}^n) = \sigma(M)$. Пусть $A = B_1 \times \ldots \times B_n \in M$ тогда:

$$\{\omega: \ \xi(\omega) \in A\} = \{\omega: \ \xi_1(\omega) \in B_1, \dots, \xi_n(\omega) \in B_n\} = \bigcap_{i=1}^n \{\omega: \ \xi_i(\omega) \in B_i\} \in \mathcal{F}$$

П

Тогда по критерию измеримости ξ — случайный вектор.

Замечание. Тогда сумма, разность и прочие функции от случайных величин есть случайные величины.

3амечание. Следствие верно и в случае, если ξ_1, \dots, ξ_n — случайные векторы.

18. Распределение, функция распределения и плотность случайной величины

Определение. ξ — случайная величина (вектор) на (Ω, \mathcal{F}, P) , тогда P_{ξ} — распределение вероятности с функцией распределения F_{ξ} , которую мы будем называть функцией распределения случайной величины ξ .

При этом P_{ξ} называется распределением ξ , а если оно абсолютно непрерывно с плотностью p_{ξ} , то p_{ξ} будем называть *плотностью* ξ .

Пример.

(1)
$$\Omega=\{\omega_1,\omega_2\}$$
, $\mathcal{F}=2^{\Omega}$, $P(\{\omega_1\})=p\in(0;1)$, $\xi(\omega_1)=1$, $\xi(w_2)=0$, тогда

$$P_{\xi}(B) = P(\xi \in B) = p \cdot I(1 \in B) + (1 - p) \cdot I(0 \in B)$$

Получаем распределение Бернулли с параметром p.

(2) (Ω, \mathcal{F}, P) , $A \in \mathcal{F}$, тогда $I_A = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$ — случайная величина. Проверим критерий измеримости для $M = \{(-\infty; x] \mid x \in \mathbb{R}\}$, $\sigma(M) = \mathcal{B}(\mathbb{R})$:

$$\{\omega: I_A(\omega) \le x\} = \begin{cases} \varnothing, & x < 0 \\ \overline{A}, & 0 \le x < 1 \in \mathcal{F} \\ \Omega, & x \ge 1 \end{cases}$$

(3) Пусть ξ принимает значения $\{1,2,3,4\}$. $P(\xi=1)=\ldots=P(\xi=4)=\frac{1}{4}$. Этим мы задали случайную величину и ее распределение, так как:

$$P_{\xi}(B) = \frac{1}{4} \left(I(1 \in B) + I(2 \in B) + I(3 \in B) + I(4 \in B) \right)$$

$$F_{\xi}(x) = \begin{cases} 0, & x < 1 \\ 1/4, & 1 \le x < 2 \\ 1/2, & 2 \le x < 3 \\ 3/4, & 3 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

(4) Рассмотрим (Ω, \mathcal{F}, P) , где $\Omega = [1; 4]$, $\mathcal{F} = \mathcal{B}([1; 4])$, P — равномерное на [1; 4]. Зададим $\xi(x) = x$, тогда $P_{\xi}(B) = P(B) \Rightarrow P_{\xi}$ — равномерное на [1; 4], а также

$$F_{\xi} = \begin{cases} 0, & x < 1\\ \frac{x-1}{3}, & 1 \le x < 4\\ 1, & x \ge 4 \end{cases}$$

19. Независимость случайных величин и векторов

Определение. Случайные векторы ξ_1 (размерности k_1) и ξ_2 (размерности k_2) называются независимыми, если

$$\forall B_1 \in \mathcal{B}(\mathbb{R}^{k_1}), \ B_2 \in \mathcal{B}(\mathbb{R}^{k_2}) \to P(\xi_1 \in B_1, \xi_2 \in B_2) = P(\xi_1 \in B_1) \cdot P(\xi_2 \in B_2)$$

Мы будем обозначать $\xi_1 \perp \!\!\! \perp \xi_2$

Определение. Случайные векторы ξ_1, \ldots, ξ_n называются *попарно независимыми*, если $\forall i \neq j \rightarrow \xi_i \perp \!\!\! \perp \xi_i$.

Определение. Случайные векторы ξ_1, \dots, ξ_n размерностей k_1, \dots, k_n называются *независи-мыми* в совокупности, если

$$\forall B_1 \in \mathcal{B}(\mathbb{R}^{k_1}), \dots, B_n \in \mathcal{B}(\mathbb{R}^{k_n}) \to P\left(\xi_1 \in B_1, \dots, \xi_n \in B_n\right) = P\left(\xi_1 \in B_1\right) \cdot \dots \cdot P\left(\xi_n \in B_n\right)$$

Определение. Если $\{\xi_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ — система случайных векторов, то векторы из этой системы называются *независимыми в совокупности*, если для любых $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ — различных, векторы $\xi_{\alpha_1}, \ldots, \xi_{\alpha_n}$ независимы в совокупности.

Теорема. (критерий независимости) Случайные величины ξ_1, \ldots, ξ_n являются независимыми в совокупности тогда и только тогда, когда $F_{\xi}(x_1, \ldots, x_n) = F_{\xi_1}(x_1) \cdot \ldots \cdot F_{\xi_n}(x_n)$ для любых $x_1, \ldots, x_n \in \mathbb{R}$, где $\xi = (\xi_1, \ldots, \xi_n)$

Доказательство. Необходимость очевидна. Для доказательства достаточности нам потребуются следующие определения:

Определение. Система подмножества Ω называется λ -системой, если

- (1) $\Omega \in M$
- (2) Если $A, B \in M, A \supset B$, то $A \setminus B \in M$
- (3) Если $A_1,\ldots\in M$ такие, что $A_i\subset A_{i+1},$ то $\bigcup\limits_{i=1}^\infty A_i\in M$

Определение. Система подмножества Ω называется π -системой, если $\forall A, B \in \Omega \to A \cap B \in \Omega$

Теорема. Если $M-\pi$ -система, то $\lambda(M)=\sigma(M)$, где $\lambda(M)-$ наименьшая λ -система, содержащая M.

Упражнение. Доказать это.

Теперь будем доказывать критерий независимости. Заметим, что $M = \{(-\infty; x] \mid x \in \mathbb{R}\} - \pi$ -система. Докажем, что $\forall k \in \{1, \dots, n\}, \ \forall B_1, \dots, B_k \in \mathcal{B}(\mathbb{R}) \ \text{и} \ \forall x_{k+1}, \dots, x_n \in \mathbb{R} \ \text{верно}$

$$P(\xi_1 \in B_1, \dots, \xi_k \in B_k, \xi_{k+1} \le x_{k+1}, \dots, \xi_n \le x_n) =$$

$$= P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_k \in B_k) \cdot P(\xi_{k+1} \le x_{k+1}) \cdot \dots \cdot P(\xi_n \le x_n)$$

Индукция по k.

$$k=1$$
. Пусть $B_1 \in \mathcal{B}(\mathbb{R}), \ x_2, \ldots, x_n \in \mathbb{R}$ и

$$\Sigma = \{ B \in \mathcal{B}(\mathbb{R}) : P(\xi_1 \in B, \xi_2 \le x_2, \dots, \xi_n \le x_n) = P(\xi_1 \in B) \cdot P(\xi_2 \le x_2) \cdot \dots \cdot P(\xi_n \le x_n) \}$$

 $M\subset \Sigma$ — по условию. Докажем, что Σ — λ -система.

(1)

$$P(\xi_{1} \in \mathbb{R}, \xi_{2} \leq x_{2} \dots, \xi_{n} \leq x_{n}) = \lim_{x_{1} \to \infty} P(\xi_{1} \leq x_{1}, \xi_{2} \leq x_{2} \dots, \xi_{n} \leq x_{n}) = \lim_{x_{1} \to \infty} P(\xi_{1} \leq x_{1}) \cdot \dots \cdot P(\xi_{n} \leq x_{n}) = P(\xi_{1} \in \mathbb{R}) \cdot P(\xi_{2} \leq x_{2}) \cdot \dots \cdot P(\xi_{n} \leq x_{n})$$

Значит $\mathbb{R} \in \Sigma$.

(2) $A, B \in \Sigma$, $A \subset B$, тогда

$$P(\xi_{1} \in B \setminus A, \xi_{2} \leq x_{2}, \dots, \xi_{n} \leq x_{n}) =$$

$$= P(\xi_{1} \in B, \xi_{2} \leq x_{2}, \dots, \xi_{n} \leq x_{n}) - P(\xi_{1} \in A, \xi_{2} \leq x_{2}, \dots, \xi_{n} \leq x_{n}) =$$

$$= P(\xi_{1} \in B) \cdot P(\xi_{2} \leq x_{2}) \cdot \dots \cdot P(\xi_{2} \leq x_{n}) - P(\xi_{1} \in A) \cdot P(\xi_{2} \leq x_{2}) \cdot \dots \cdot P(\xi_{n} \leq x_{n}) =$$

$$= (P(\xi_{1} \in B) - P(\xi_{1} \in A)) \cdot P(\xi_{2} \leq x_{2}) \cdot \dots \cdot P(\xi_{2} \leq x_{n}) =$$

$$= P(\xi_{1} \in B \setminus A) \cdot P(\xi_{2} \leq x_{2}) \cdot \dots \cdot P(\xi_{2} \leq x_{n})$$

To есть $B \setminus A \in \Sigma$.

(3) $A_1 \subset \ldots \in \Sigma, A_n \uparrow A$.

$$P(\xi_1 \in A, \xi_2 \le x_2 \dots, \xi_n \le x_n) = \lim_{k \to \infty} P(\xi_1 \in A_k, \xi_2 \le x_2 \dots, \xi_n \le x_n) =$$

$$= \lim_{k \to \infty} P(\xi_1 \in A_k) \cdot P(\xi_2 \le x_2) \cdot \dots \cdot P(\xi_n \le x_n) =$$

$$= P(\xi_1 \in A) \cdot P(\xi_2 \le x_2) \cdot \dots \cdot P(\xi_n \le x_n) \Rightarrow A \in \Sigma$$

To есть $A \in \Sigma$.

Тогда
$$\Sigma \supset \lambda(M) = \sigma(M) = \mathcal{B}(\mathbb{R}) \Rightarrow \Sigma = \mathcal{B}(\mathbb{R}).$$

Покажем шаг индукции. Пусть верно

$$P(\xi_1 \in B_1, \dots, \xi_k \in B_k, \xi_{k+1} \le x_{k+1}, \dots, \xi_n \le x_n) =$$

$$= P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_k \in B_k) \cdot P(\xi_{k+1} \le x_{k+1}) \cdot \dots \cdot P(\xi_n \le x_n)$$

Пусть

$$\Sigma = \{ B \in \mathcal{B}(\mathbb{R}) : P(\xi_1 \in B_1, \dots, \xi_k \in B_k, \xi_{k+1} \le x_2, \dots, \xi_n \le x_n) = P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_k \in B_k) \cdot P(\xi_{k+1} \le x_{k+1}) \cdot \dots \cdot P(\xi_n \le x_n) \}$$

Покажем аналогично, что Σ есть λ -система. Тогда $\Sigma = \mathcal{B}(\mathbb{R}) \Rightarrow$ для k+1 тоже доказано. \square

Утверждение. Пусть $(\xi_{\alpha})_{\alpha\in A}$ — система случайных независимых величин. Тогда

$$\forall \alpha_1^1,\ldots,\alpha_{m_1}^1,\ldots,a_1^n,\ldots,a_{m_n}^n \in A \rightarrow \left(\xi_{\alpha_1^1},\ldots,\xi_{a_{m_1}^1}\right),\ldots,\left(\xi_{\alpha_1^n},\ldots,\xi_{a_{m_n}^n}\right) \ - \ \text{независимы}$$

Доказательство. $\xi_{\alpha_1^1}, \dots, \xi_{a_{m_n}^n}$ — независимы. По критерию независимости

$$F_{\xi_{\alpha_{1}^{1}},...\xi_{\alpha_{m_{n}}^{n}}} = \prod_{i=1}^{n} \prod_{j=1}^{m_{i}} F_{\xi_{\alpha_{i}^{j}}}(x_{j}^{i})$$
21

Пусть $\eta^i = \left(\xi_{\alpha_1^i}, \dots, \xi_{\alpha_{m_i}^i}\right)$. По критерию независимости $F_{\eta^i}\left(x_1^i, \dots, x_{m_i}^i\right) = \prod_{j=1}^{m_i} F_{\xi_{\alpha_j^i}}\left(x_j\right)$. Тогда предыдущее равенство переписывается как

$$F_{\xi_{\alpha_1}, \dots \xi_{\alpha_{m_n}}} = \prod_{i=1}^n F_{\eta_i} \left(x_1^i, \dots, x_{m_i}^i \right)$$

Итак, по критерию независимости η^1, \dots, η^n — независимы.

Теорема. Пусть $\xi = (\xi_1, \dots, \xi_n)$, $\eta = (\eta_1, \dots, \eta_m)$ — независимые случайные векторы u $f: \mathbb{R}^n \mapsto \mathbb{R}^k$, $g: \mathbb{R}^m \mapsto \mathbb{R}^s$ — борелевские функции. Тогда вектора $f(\xi)$ и $g(\eta)$ независимы.

 \mathcal{A} оказательство. Пусть B_1, B_2 таковы, что $B_1 \in \mathcal{B}(\mathbb{R}^k), \, B_2 \in \mathcal{B}(\mathbb{R}^s)$. Тогда

$$P(f(\xi) \in B_1, g(\eta) \in B_2) = P(\xi \in f^{-1}(B_1), \eta \in g^{-1}(B_2))$$

Так как f и g борелевские, то $f^{-1}(B_1)$ и $g^{-1}(B_2)$ — борелевские множества. Тогда равенство можно переписать как

$$P(f(\xi) \in B_1, g(\eta) \in B_2) = P(\xi \in f^{-1}(B_1)) \cdot P(\eta \in f^{-1}(B_2)) = P(f(\xi) \in B_1) \cdot P(g(\eta) \in B_2)$$

Итак,
$$f(\xi)$$
 и $g(\eta)$ — независимы.

Замечание. Утверждение верно для любого конечного набора векторов

Лекция 7. Математическое ожидание дискретных величин

20. Определение и свойства

Определение. Пусть ξ — дискретная случайная величина на (Ω, \mathcal{F}, P) , X — множество ее значений. Тогда mamemamuческое ожидание ξ определено как

$$E\xi = \sum_{x \in X} x \cdot P(\xi = x)$$

Утверждение. Пусть $D=\{D_1,D_2\ldots\}$ — разбиение Ω , такое, что $\forall i\in\mathbb{N}\to\xi=const$ на D_i . Тогда $E\xi=\sum\limits_{i=1}^{\infty}\xi(\omega_i)\cdot P(D_i)$

Доказательство.

$$E\xi = \sum_{x \in X} x \cdot P\left(\xi = x\right) = \sum_{x \in X} x \cdot \sum_{i: \ \xi(\omega_i) = x} P(D_i) = \sum_{x \in X_i: \ \xi(\omega_i) = x} \xi(\omega_i) \cdot P(D_i) = \sum_{i=1}^{\infty} \xi(\omega_i) \cdot P(D_i)$$

Замечание. Простые свойства математического ожидания

- (1) EC=C, где C=const
- (2) $EI_A = P(A)$
- (3) Если $\xi > 0$, то $E\xi > 0$

(4)
$$E(c\xi) = \sum_{i=1}^{\infty} c \cdot \xi(\omega_i) \cdot P(D_i) = cE\xi$$

 $\mathit{Замечаниe}.$ Если ряд $\sum\limits_{i=1}^{\infty}\xi(\omega_i)\cdot P(D_i)$ не сходится, то математическое ожидание не определено.

Лемма. Eсли $|E\xi|<\infty, |E\eta|<\infty, mo\ E\ (\xi+\eta)=E\xi+E\eta$

Eсли $|E\xi|=\infty,\ |E\eta|<\infty,\ mo\ E\ (\xi+\eta)=E\xi$

Eсли $E\xi = E\eta = +\infty$ или $E\xi = E\eta = -\infty$, то $E(\xi + \eta) = E\xi = E\eta$.

Доказательство. Пусть $|E\xi|<\infty,\ |E\eta|<\infty,$ тогда

$$E\left(\xi+\eta\right) = \sum_{z \in X+Y} z \cdot P\left(\xi+\eta=z\right) = \sum_{x \in X+Y} z \cdot \sum_{\substack{x \in X, y \in Y \\ x+y=z}} P\left(\xi=x, \eta=y\right) = \\ = \sum_{x \in X+Y} \sum_{\substack{x \in X, y \in Y \\ x+y=z}} (x+y) \cdot P\left(\xi=x, \eta=y\right)$$

$$E\xi = \sum_{x \in X} x \cdot P\left(\xi = x\right) = \sum_{z \in X + Y} \sum_{\substack{x \in X, y \in Y \\ x + y = z}} x \cdot P\left(\xi = x, \eta = y\right), \ E\eta = \sum_{z \in X + Y} \sum_{\substack{x \in X, y \in Y \\ x + y = z}} y \cdot P\left(\xi = x, \eta = y\right)$$

В итоге, так как $E\xi, E\eta$ конечны, то

$$E\xi + E\eta = \sum_{\substack{z \in X + Y} x \in X, y \in Y \\ x + y = z}} (x + y) \cdot P(\xi = x, \eta = y)$$

То есть $E\left(\xi+\eta\right)=E\xi+E\eta$

Если $|E\xi|=\infty, |E\eta|<\infty,$ то

$$\begin{split} E\left(\xi+\eta\right) &= \lim_{n\to\infty} \sum_{z\in X_n+Y_n} z\cdot P\left(\xi+\eta=z\right) \\ E\xi &= \lim_{n\to\infty} \sum_{z\in X_n+Y_n} x\cdot P\left(\xi+\eta=z\right) \\ E\eta &= \lim_{n\to\infty} \sum_{z\in X_n+Y_n} y\cdot P\left(\xi+\eta=z\right) \end{split}$$

Тогда $E\left(\xi+\eta\right)=E\xi$, так как $|E\xi|=\infty$. Остальные случаи аналогичны.

Лемма. $Ecnu \xi \geq \eta \ u \exists E\xi, E\eta, mo \ E\xi \geq E\eta$

Доказательство. Пусть $|E\xi|<\infty$ и $|E\eta|<\infty$, тогда $E\left(\xi-\eta\right)=E\xi+E\left(-\eta\right)=E\xi-E\eta\geq 0\Rightarrow E\xi\geq E\eta$

Пусть $E\xi = c$, $E\eta = +\infty$, тогда $E(\xi - \eta) = E\xi + E(-\eta) = -\infty \ge 0$ — противоречие.

Аналогично действуем и в остальных случаях.

Лемма. $E|\xi| \ge |E\xi|$, если $E\xi$ конечно.

Доказательство.

$$E\xi = \sum_{x \in X} x \cdot P(\xi = x) = \sum_{x \in X^{+}} x \cdot P(\xi = x) + \sum_{x \in X^{-}} x \cdot P(\xi = x)$$

$$E|\xi| = \sum_{x \in |X|} x \cdot P(|\xi| = x) = \sum_{x \in X^{+}} x \cdot P(\xi = x) - \sum_{x \in X^{-}} x \cdot P(\xi = x) = \sum_{x \in X} |x| \cdot P(\xi = x)$$

$$|E\xi| = \left| \sum_{x \in X} x \cdot P(\xi = x) \right| \le \sum_{x \in X} |x| \cdot P(\xi = x) = E|\xi|$$

Лемма. Пусть φ — произвольная функция $\mathbb{R}\mapsto\mathbb{R}$, тогда $E\varphi(\xi)=\sum_{x\in X}\varphi(x)\cdot P\left(\xi=x\right)$

Доказательство.

$$\begin{split} E\varphi\left(\xi\right) &= \sum_{y \in Y} y \cdot P\left(\varphi(\xi) = y\right) = \sum_{y \in Y} y \cdot \sum_{x \in \varphi^{-1}(y)} P\left(\xi = x\right) = \\ &= \sum_{y \in Y} \sum_{x \in \varphi^{-1}(y)} \varphi(x) \cdot P\left(\xi = x\right) = \sum_{x \in X} \varphi(x) \cdot P\left(\xi = x\right) \end{split}$$

Где
$$Y = Im \ \varphi(\xi), \ \{\varphi(\xi) = y\} = \bigsqcup_{x \in \varphi^{-1}(y)} \{\xi = x\}.$$

Лемма. (Неравенство Коши-Буняковского) Пусть $|E\xi|<\infty,\ |E\eta|<\infty,\ mor \partial a\ (E\xi\eta)^2\leq E\xi^2 E\eta^2$

Доказательство. Если $E\xi^2=0\Leftrightarrow P\left(\xi=0\right)=1, \text{ то } P\left(\xi\eta=0\right)=1\Rightarrow E\xi\eta=0.$

Пусть $(E\xi)^2 + (E\eta)^2 \neq 0$. Рассмотрим $\widetilde{\xi} = \frac{|\xi|}{\sqrt{E\xi^2}}, \ \widetilde{\eta} = \frac{|\eta|}{\sqrt{E\eta^2}}$

$$\begin{split} E\widetilde{\xi}^2 &= E\frac{\xi^2}{E\xi^2} = \frac{1}{E\xi^2} \cdot E\xi^2 = 1 = E\widetilde{\eta}^2 \\ \widetilde{\xi}^2 + \widetilde{\eta}^2 &\geq 2\widetilde{\xi}\widetilde{\eta} \\ E\left(\widetilde{\xi}^2 + \widetilde{\eta}^2\right) &\geq E\left(2\widetilde{\xi}\widetilde{\eta}\right) = 2E\left(\widetilde{\xi}\widetilde{\eta}\right) \end{split}$$

Отсюда $1 \ge E\left(\widetilde{\xi}\widetilde{\eta}\right) = E\left(\frac{|\xi\eta|}{\sqrt{E\eta^2 E\xi^2}}\right) \Rightarrow \sqrt{E\eta^2 E\xi^2} \ge E\left|\xi\eta\right| \Rightarrow E\eta^2 E\xi^2 \ge (E\xi\eta)^2$, что нам и нужно.

Пример.

(1) $\xi \sim Bern(p)$, $E\xi = 1 \cdot p + 0 \cdot (1 - p) = p$

$$(2) \ \xi \sim Bin(n,p), \ E\xi = \sum_{k=0}^{n} k \cdot C_n^k p^k (1-p)^k = np$$
 или $\xi = \xi_1 + \ldots + \xi_n, \ \xi_i \sim Bern(p) \Rightarrow E\xi = n \cdot E\xi_1 = np$

(3)
$$\xi \sim Pois(\lambda)$$
, $E\xi = \sum_{k=1}^{\infty} k \cdot \frac{e^{-\lambda} \cdot \lambda^k}{k!} = \lambda \cdot \sum_{k=1}^{\infty} \frac{e^{-\lambda} \cdot \lambda^{k-1}}{(k-1)!} = \lambda \cdot \sum_{k=0}^{\infty} \frac{e^{-\lambda} \cdot \lambda^k}{k!} = \lambda$

Лекция 8. Математическое ожидание в общем случае

21. МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ АБСОЛЮТНО НЕПРЕРЫВНЫХ ВЕЛИЧИН

Определение. Пусть ξ — абсолютно непрерывная случайная величина, тогда математическое ожидание ξ есть

$$E\xi = \int_{-\infty}^{\infty} x \cdot p_{\xi}(x) \cdot dx$$

Где p_{ξ} — плотность ξ .

Пример.

1)
$$\xi \sim U([a;b]) \Rightarrow p_{\xi}(x) = \frac{I(x \in [a;b])}{b-a}, E\xi = \int_{a}^{b} \frac{1}{b-a} \cdot x \cdot dx = \frac{a+b}{2}$$

2)
$$\xi \sim exp(\lambda) \Rightarrow p_{\xi}(x) = e^{-\lambda x} \cdot I(x \ge 0), E\xi = \int_{0}^{+\infty} e^{-\lambda x} \cdot x \cdot dx = -\frac{1}{\lambda} \int_{0}^{+\infty} \lambda \cdot x \cdot d(e^{-\lambda x}) = -\frac{1}{\lambda} e^{-\lambda x} |_{0}^{+\infty} = \frac{1}{\lambda}$$

3)
$$\xi \sim norm(a, \sigma^2) \Rightarrow p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}},$$

$$E\xi = \int_{-\infty}^{+\infty} \frac{(x-a)+a}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right) \cdot dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right) \cdot d\left((x-a)^2\right) + \frac{1}{2\sigma^2} \cdot \exp\left(-\frac{1}{2\sigma^2}\right) \cdot d\left(\frac{x-a}{\sigma}\right) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) \cdot dt = a$$

22. ПРОСТЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Утверждение. Пусть ξ_1, \ldots — случайные величины на (Ω, \mathcal{F}, P) . Тогда $\overline{\lim}_{n \to \infty} \xi_n, \underline{\lim}_{n \to \infty} \xi_n, \sup \xi_n$, $\inf \xi_n$ — случайные величины на (Ω, \mathcal{F}, P) .

Доказательство. $\sigma(\{(-\infty;x]\}) = \mathcal{B}(\mathbb{R})$. Пусть $x \in \mathbb{R}$, тогда

$$\left\{ \overline{\lim}_{n \to \infty} \xi_n < x \right\} = \left\{ \exists \varepsilon > 0 : \overline{\lim}_{n \to \infty} \xi_n = x - \varepsilon \right\} = \left\{ \exists k \in \mathbb{N} : \overline{\lim}_{n \to \infty} \xi_n \le x - \frac{1}{k} \right\} = \left\{ \exists k \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ \forall m \ge n \to \xi_m \le x - \frac{1}{k} \right\} = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \left\{ \xi_m \le x - \frac{1}{k} \right\} \in \mathcal{F}$$

По критерию измеримости $\overline{\lim} \xi_n$ — случайная величина.

Аналогичное доказательство можно провести для нижнего предела.

Для инфимума выражение еще проще: $\{\inf f \geq x\} = \{\forall n \to \xi_n \geq x\} = \bigcap_{n=1}^{\infty} \{\xi_n \geq x\} \in \mathcal{F}$ (так как $\sigma(\{[x; +\infty)\}) = \mathcal{B}(\mathbb{R})$).

Определение. Случайная величина называется *простой*, если она принимает конечное число значений.

Теорема. (о приближении случайной величины простыми случайными величинами)

Пусть ξ принимает только неотрицательные значения. Тогда существует последовательность ξ_n простых случайных величин, такая, что

$$\forall n \to \xi_n \ge 0, \ \xi_n \uparrow \xi \ \left(\forall \omega \to \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega), \ \forall n \to \xi_{n+1}(\omega) \ge \xi_n(\omega) \right)$$

Если ξ — произвольная случайная величина, то существует последовательность простых случайных величин такая, что $\forall n \to |\xi_{n+1}| \ge |\xi_n|$ и $\xi_n \to \xi$ при $n \to \infty$.

Доказательство.

1)
$$\xi_n(\omega) = \sum_{k=1}^{n \cdot 2^n} \frac{k-1}{2^n} \cdot I\left(\frac{k-1}{2^n} \le \xi(\omega) < \frac{k}{2^n}\right) + n \cdot I\left(\xi(\omega) \ge n\right)$$
. Эта последовательность возрастает и сходится к ξ

2) $\xi = \xi^+ - \xi^-$, где $\xi^+ = \max(\xi, 0), \xi^- = \max(-\xi, 0)$. Их можно приблизить по пункту 1. Тогда:

$$\xi_n^+ \uparrow \xi^+, \ \xi_n^- \uparrow \xi^-$$

 ξ_n^+,ξ_n^- — простые и $\xi_n=\xi_n^+-\xi_n^-$ — искомая последовательность.

23. Определение математического ожидания

Определение. Пусть ξ — неотрицательная случайная величина, ξ_n — простые случайные величины, $\xi_n \uparrow \xi$.

Тогда определим $E\xi = \lim_{n \to \infty} E\xi_n$.

Если ξ — произвольная, то $\xi = \xi^+ - \xi^-$. Если хотя бы одно из чисел $E\xi^+, E\xi^-$ конечно, то $E\xi = E\xi^+ - E\xi^-$, иначе мат. ожидание не определено.

Лемма. Пусть ξ — неотрицательная случайная величина, $\xi_n \uparrow \xi$ — простые случайные величины. η — простая случайная величина $\xi \geq \eta$. Тогда $\lim_{n \to \infty} E\xi_n \geq E\eta$.

Доказательство. Пусть $\varepsilon > 0$. $A_n = \{\xi_n \ge \eta - \varepsilon\}$. $A_n \uparrow \Omega, n \to \infty$. По теореме о непрерывности вероятностной меры $P(A_n) \to 1$.

Пусть $|\eta| \leq C$ (она принимает конечное число значений).

$$E\eta = E\eta \cdot \left(I_{A_n} + I_{\overline{A_n}}\right) = E\left(\eta I_{A_n} + \eta I_{\overline{A_n}}\right) = E\eta I_{A_n} + E\eta I_{\overline{A_n}}$$

$$\eta \leq C \Rightarrow \eta I_{\overline{A_n}} \leq C \cdot I_{\overline{A_n}} \Rightarrow E\eta \cdot I_{\overline{A_n}} \leq EC \cdot I_{\overline{A_n}} = C \cdot EI_{\overline{A_n}} = C \cdot P\left(\overline{A_n}\right)$$

$$\eta I_{A_n} \leq (\xi_n + \varepsilon) I_{A_n} \Rightarrow E\eta I_{A_n} \leq E\left(\xi_n + \varepsilon\right) I_{A_n} = E\xi_n \cdot A_n + E\varepsilon I_{A_n} \leq E\xi_n + \varepsilon$$

$$\exists n_0 : \forall n \geq n_0 \rightarrow P(\overline{A_n}) \leq \varepsilon$$

Тогда $\forall n \geq n_0$:

$$E\eta \le E\xi_n + \varepsilon + C\varepsilon$$

Отсюда $\forall n \geq n_0 \to E\eta < E\xi_n + \varepsilon + C\varepsilon$. Так как ε любое, то $\lim_{n \to \infty} E\xi_n \geq E\eta$.

Замечание. Отсюда следует, что если ξ_n, η_n — простые неотрицательные случайные величины, такие что: $\xi_n \uparrow \xi, \ \eta_n \uparrow \xi, \ \text{то} \ \lim_{n \to \infty} E \xi_n = \lim_{n \to \infty} E \eta_n$.

 \mathcal{A} оказательство. $\forall n \to \xi_n \leq \xi \Rightarrow E\xi_n \leq \lim_{n \to \infty} E\eta_k$. С другой стороны $\eta_n \leq \xi \Rightarrow E\eta_n \leq \lim_{n \to \infty} E\xi_k$. То есть пределы равны.

Замечание. В итоге мы определили интеграл Лебега

$$E\xi = \int_{\Omega} \xi(w) \cdot P(dw)$$

Лекция 9. Свойства математического ожидания

24. Свойства математического ожидания

Лемма. Если $\xi \geq \eta$ и существует $E\xi$ и $E\eta$, то $E\xi \geq E\eta$.

Доказательство. Пусть $\xi \geq \eta \geq 0, \, \xi_n \uparrow \xi, \, \eta_n \uparrow \eta$ — простые неотрицательные.

$$\eta_n \le \eta \le \xi \Rightarrow \forall n \in \mathbb{N} \to E\xi \ge E\eta_n \Rightarrow E\xi \ge \lim_{n \to \infty} E\eta_n = E\eta$$

Теперь пусть ξ, η — произвольные. $\xi = \xi^+ - \xi^-, \ \eta = \eta^+ - \eta^-.$

$$\xi \ge \eta \Rightarrow \xi^+ \ge \eta^+, \ \eta^- \ge \xi^-$$

Если $E\xi^+ = \infty$, $E\eta^- = \infty$, $E\xi^- < \infty$, $E\eta^+ < \infty$, то $E\xi = +\infty$, $E\eta = -\infty$.

Аналогично разбираем остальные случаи с бесконечностями.

Если же все ожидания конечны, то
$$E\xi = E\xi^+ - E\xi^- \ge E\eta^+ - E\eta^- = E\eta$$
.

Лемма. Если $\xi \geq 0$, то $E\xi \geq 0$. Более того, если к тому же $E\xi = 0$, то $P(\xi = 0) = 1$.

Доказательство. Первая часть — частный случай прошлой леммы. Если $\xi_n \uparrow \xi$ — простые неотрицательные, то $E\xi = E\xi_n = 0$.

Тогда
$$\forall n \in \mathbb{N} \to P\left(\xi_n = 0\right) = 1, \ \{\xi > 0\} = \lim_{n \to \infty} \{\xi_n > 0\}.$$
 Так как $P\left(\xi_n > 0\right) = 0$, то $P\left(\xi > 0\right) = 0$.

Лемма. Пусть существует $E\xi$. Тогда $\forall A \in \mathcal{F}$ существует $E\xi I_A$. Если $E\xi$ — конечно, то $\forall A \in \mathcal{F} \to E\xi I_A$ — конечно.

 \mathcal{A} оказательство. $\xi = \xi^+ - \xi^-$. Либо ξ^+ конечно, либо ξ^- конечно. Пусть $E\xi^+$ конечно, тогда $\xi I_A = \xi^+ \cdot I_A - \xi^- \cdot I_A = (\xi I_A)^+ - (\xi I_A)^-$, тогда $E(\xi I_A)^+ \leq E\xi^+ < \infty \Rightarrow \exists E\xi I_A$.

Если оба $E\xi^+$ и $E\xi^-$ конечны, то из тех же соображений $E(\xi I_A)^+$, $E(\xi I_A)^-$ — конечны, значит $E(\xi I_A)$ — тоже.

Лемма. $E c n u P(\xi = 0) = 1, mo E \xi = 0.$

Иначе пусть ξ — неотрицательная. Тогда существует последовательность простых неотрицательных неубывающих $\xi_n \uparrow \xi$.

$$E\xi = \lim_{n \to \infty} E\xi_n$$

Так как $P(\xi=0)=1$, то $P(\xi_n=0)=1$, так как $0\leq \xi_n\leq \xi$. Поэтому $\forall n\in\mathbb{N}\to E\xi_n=0\Rightarrow E\xi=0$.

Если ξ — произвольная, то $\xi = \xi^+ - \xi^-$, притом так как $P(\xi = 0) = 1$, то $P(\xi^+ = 0) = P(\xi^- = 0) = 1$. Значит

$$E\xi = E\xi^{+} - E\xi^{-} = 0 - 0 = 0$$

Лемма. $|E\xi| \leq E|\xi|$, если существует $E\xi$.

Доказательство. $E\xi = E\xi^{+} - E\xi^{-}, |\xi| = \xi^{+} + \xi^{-}$. Тогда

$$E |\xi| = E (\xi^+ + \xi^-) = E\xi^+ + E\xi^-$$
$$|E\xi| = |E (\xi^+ - \xi^-)| = |E\xi^+ - E\xi^-|$$

Лемма. Если $E\xi$, $E\eta$ конечны, то $E(\xi + \eta) = E\xi + E\eta$.

Доказательство. Пусть ξ, η — неотрицательные случайные величины. Тогда существуют $\xi_n \uparrow \xi$, $\eta_n \uparrow \eta$. Тогда $\xi_n + \eta_n \uparrow \xi + \eta$ и последовательность $\xi_n + \eta_n$ неубывает. Тогда по определению

$$E\left(\xi+\eta\right) = \lim_{n\to\infty} E\left(\xi_n + \eta_n\right) = \lim_{n\to\infty} \left(E\xi_n + E\eta_n\right) = \lim_{n\to\infty} E\xi_n + \lim_{n\to\infty} E\eta_n = E\xi + E\eta$$

Лемма. Если существует $E\xi$, то $E(c\xi)=cE\xi$.

Доказательство. Пусть $\xi \geq 0$, c > 0. Тогда $c\xi$ тоже неотрицательна. Если ξ_n — последовательность неубывающих неотрицательных простых случайных величин $\xi_n \uparrow \xi$, то $c\xi_n \uparrow c\xi$.

$$Ec\xi = \lim E(c\xi_n) = c\lim E\xi_n = cE\xi$$

Пусть c < 0. Тогда $c\xi = -(c\xi)^-$, $(c\xi)^- = (-c)\xi^+$, $\xi = \xi^+$.

$$E(c\xi) = -E(c\xi)^{-} = -E((-c)\xi^{+}) = -(-c)E\xi^{+} = cE\xi$$

Пусть ξ — произвольная, $c \ge 0$. Тогда

$$E(c\xi) = E(c\xi^{+} - c\xi^{-}) = E((c\xi)^{+} - (c\xi)^{-}) = cE(\xi^{+} - \xi^{-}) = cE\xi$$

Если теперь c < 0, то $c\xi = (c\xi)^+ - (c\xi)^-$, $(c\xi)^+ = (-c)\xi^-$. $(c\xi)^- = (-c)\xi^+$. Тогда

$$Ec\xi = E(c\xi^{+}) - E(c\xi^{-}) = E((-c)\xi^{-}) - E((-c)\xi^{+}) = -cE\xi^{-} + cE\xi^{+} = cE\xi$$

Лемма. Пусть $\forall A \in \mathcal{F} \to E\xi I_A \leq E\eta I_A$. Тогда $P(\xi \leq \eta) = 1$.

Доказательство. Возьмем $B = \{\xi > \eta\} \in \mathcal{F}$. Если ξ, η — случайные величины, то (ξ, η) — случайный вектор. Возьмем

 $\{(x,y): x>y\} \in \mathcal{B}(\mathbb{R}^2)$, так как его образ есть B. Имеем $\xi I_B \geq \eta I_B$, тогда $E\xi I_B \geq E\eta I_B$, а следовательно

$$E\xi I_B = E\eta I_B \Rightarrow E\xi I_B + E(-\eta I_B) = 0 \Rightarrow E(\xi I_B - \eta I_B) = 0$$

$$(\xi - \eta) I_B \ge 0, \ E\left((\xi - \eta) I_B\right) = 0 \Rightarrow P\left((\xi - \eta) I_B = 0\right) = 1 \Leftrightarrow P\left(I_B = 0\right) = 1 \Rightarrow P\left(\xi \le \eta\right) = 1$$

25. ТЕОРЕМЫ ОБ ИНТЕГРАЛЕ ЛЕБЕГА

Теорема. (Лебега о мажорируемой сходимости) Пусть ξ, ξ_1, \ldots — последовательность величин, такая что

- (1) $\forall w \in \Omega \ \xi_n(w) \to \xi(w)$
- (2) $\forall n \in \mathbb{N}, \ |\xi_n| \leq \eta, \ \textit{где } \eta \textit{случайная величина } c \ \textit{конечным } E\eta.$ Тогда
- (1) $E\xi_n \to E\xi$
- (2) $E|\xi_n \xi| \to 0$

Теорема. (о замене переменных в интеграле Лебега) Пусть ξ — случайная величина, φ — борелевская функция. Тогда

$$E\varphi(\xi) = \int_{\Omega} \varphi(\xi(w)) P(dw) = \int_{\mathbb{R}} \varphi(x) \cdot P_{\xi}(dx)$$

Доказательство. Пусть $B \in \mathcal{B}(\mathbb{R}), \ \varphi = I_B$. Тогда $E\varphi(\xi) = EI(\xi \in B) = P(\xi \in B)$. С другой стороны

$$\int_{\mathbb{R}} \varphi(x) \cdot P_{\xi}(dx) = E_{P_{\xi}} \varphi = E_{P_{\xi}} I_B = P_{\xi}(B)$$

Пусть теперь $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$ — не пересекающиеся, $c_1, \ldots, c_n \in \mathbb{R}$. $\varphi = \sum_{i=1}^n c_i I_{B_i}$ — простая. Тогда

$$E\varphi(\xi) = E\left(\sum_{i=1}^{n} c_{i} I\left(\xi \in B_{i}\right)\right) = \sum_{i=1}^{n} c_{i} EI\left(\xi \in B_{i}\right) = \sum_{i=1}^{n} c_{i} \int_{\mathbb{R}} I_{B_{i}} \cdot P_{\xi}(dx)$$

С другой стороны

$$\int_{\mathbb{R}} \varphi(x) P_{\xi}(dx) = \int_{\mathbb{R}} \sum_{i=1}^{n} c_{i} I\left(x \in B_{i}\right) P_{\xi}(dx) = \sum_{i=1}^{n} c_{i} \int_{\mathbb{R}} I\left(x \in B_{i}\right) P_{\xi}(dx)$$

Пусть теперь $\varphi \geq 0$. Тогда пусть $\varphi_n \uparrow \varphi$ — простые неотрицательные. Тогда $|\varphi_n| \leq \varphi$. Тогда по теореме Лебега о мажорируемой сходимости

$$E\varphi\left(\xi\right) = \lim_{n \to \infty} E\varphi_n(\xi) = \lim_{n \to \infty} \int_{\mathbb{R}} \varphi_n(x) \cdot P_{\xi}(dx) = \int_{\mathbb{R}} \lim_{n \to \infty} \varphi_n(x) \cdot P_{\xi}(dx) = \int_{\mathbb{R}} \varphi(x) P_{\xi}(dx)$$

Пусть теперь φ — произвольная. $\varphi = \varphi^+ - \varphi^-$. Тогда

$$E\varphi(\xi) = E\left(\varphi^{+}(\xi) - \varphi^{-}(\xi)\right) = E\varphi^{+}(\xi) - E\varphi^{-}(\xi) = \int_{\mathbb{R}} \varphi^{+}(x)P_{\xi}(dx) - \int_{\mathbb{R}} \varphi^{-}(x)P_{\xi}(dx) = \int_{\mathbb{R}} \left(\varphi^{+}(x) - \varphi^{-}(x)\right)P_{\xi}(dx) = \int_{\mathbb{R}} \varphi(x)P_{\xi}(dx)$$

Пример.

(1) $\xi \sim N(0,1)$. $\varphi(x) = x^2$. Тогда

$$E\varphi(\xi) = E\xi^2 = \int_{\mathbb{R}} x^2 P_{\xi}(dx) = \int_{\mathbb{R}} x^2 \cdot P_{\xi}(x) \cdot dx = \int_{\mathbb{R}} \frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \cdot dx =$$

$$= -\int_{\mathbb{R}} \frac{x}{\sqrt{2\pi}} d\left(\exp\left(-\frac{x^2}{2}\right)\right) = -\frac{x}{\sqrt{2\pi}} \cdot \exp\left(-\frac{x^2}{2}\right) \Big|_{-\infty}^{+\infty} + \int_{\mathbb{R}} \frac{\exp\left(-\frac{x^2}{2}\right)}{\sqrt{2\pi}} \cdot dx = -(0-0) + 1 = 1$$

(2) $\xi \sim \exp(3)$, $\varphi(x) = e^x$

$$Ee^{\xi} = \int_{0}^{+\infty} 3e^{x} \cdot e^{-3x} \cdot dx = \int_{0}^{+\infty} 3e^{-2x} \cdot dx = -\frac{3}{2}e^{-2x} \Big|_{0}^{+\infty} = \frac{3}{2}$$

(3) $\xi \sim Pois(\lambda), \varphi(x) = e^x$

$$Ee^{\xi} = \int_{\mathbb{R}} e^x \cdot P_{\xi}(dx) = \sum_{x=0}^{\infty} e^x \cdot \frac{\lambda^x e^{-\lambda}}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e\lambda)^x}{x!} = e^{-\lambda} \cdot e^{e\lambda} = e^{\lambda(e-1)}$$

Лекция 10. Дисперсия и ковариация случайных величин

26. Дисперсия и ковариация

Определение. Дисперсия случайной величины ξ определяется как $D\xi = E\left(\xi - E\xi\right)^2$.

Утверждение. $D\xi = E(\xi^2) - (E\xi)^2$

Доказательство.
$$D\xi = E(\xi - E\xi)^2 = E(\xi^2 - 2\xi E\xi + (E\xi)^2) = E\xi^2 - E(2\xi \cdot E\xi) + (E\xi)^2 = E\xi^2 - 2(E\xi)^2 + (E\xi)^2 = E\xi^2 - (E\xi)^2$$

Пример. Если $\xi \sim N(0,1) \Rightarrow D\xi = 1$.

 Π емма. $D\xi > 0$

Доказательство.
$$D\xi = E(\xi - E\xi)^2$$
. $(\xi - E\xi)^2 \ge 0 \Rightarrow D\xi \ge 0$

Лемма. $D\xi = 0 \Leftrightarrow \exists c: P(\xi = c) = 1$

Доказательство.

$$\Rightarrow . D\xi = 0 \Rightarrow E(\xi - E\xi)^2 = 0 \Rightarrow P(\xi - E\xi = 0) = 1 \Rightarrow P(\xi = E\xi) = 1$$

$$\Leftarrow . P(\xi = c) = 1 \Rightarrow D\xi = E(\xi - E\xi)^2 = E(\xi - c)^2 = 0 \Rightarrow D\xi = 0$$

Определение. *Ковариацией* случайных величин ξ и η называется

$$cov(\xi, \eta) = E((\xi - E\xi)(\eta - E\eta))$$

Замечание. $D\xi = cov(\xi, \xi)$

Определение. Коэффициентом корреляции величин ξ и η называется $\rho(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{D \xi D n}}$

Лемма. $cov(\xi, \eta) = E\xi\eta - E\xi E\eta$

Доказательство.
$$cov(\xi, \eta) = E(\xi \eta - \xi E \eta - \eta E \xi + E \xi E \eta) = E \xi \eta - E \xi E \eta - E \xi E \eta + E \xi E \eta = E \xi \eta - E \xi E \eta$$

Теорема. Если $\xi \perp \!\!\! \perp \eta$, то $E\xi \eta = E\xi E\eta$

Лемма. Если ξ, η — независимы, то $cov(\xi, \eta) = 0$

Доказательство. Очевидно следует из предыдущей теоремы

Пемма. (Билинейность ковариации) $cov(a_1\xi_1 + a_2\xi_2, \eta) = a_1cov(\xi_1, \eta) + a_2cov(\xi_2, \eta)$

Доказательство.

$$cov (a_1\xi_1 + a_2\xi_2, \eta) = E ((a_1\xi_1 + a_2\xi_2) \eta) - E (a_1\xi_1 + a_2\xi_2) E \eta =$$

$$= a_1E\xi_1\eta + a_2E\xi_2\eta - a_1E\xi_1E\eta - a_2E\xi_2\eta = a_1cov (\xi_1, \eta) + a_2cov (\xi_2, \eta)$$

Лемма. $D(\xi_1 + \ldots + \xi_n) = \sum_{i=1}^n \sum_{i=1}^n cov(\xi_i, \xi_j) = \sum_{i=1}^n D\xi_i + \sum_{i=1}^n cov(\xi_i, \xi_j)$

Доказательство.
$$D(\xi_1 + \ldots + \xi_n) = cov(\xi_1 + \ldots + \xi_n, \xi_1 + \ldots + \xi_n) = \sum_{i=1}^n \sum_{j=1}^n cov(\xi_i, \xi_j)$$

Пемма. Если ξ_1, \ldots, ξ_n — попарно независимы, то $D(\xi_1 + \ldots + \xi_n) = \sum_{i=1}^n D\xi_i$

Доказательство. Так как $\xi_i \perp \!\!\! \perp \xi_j$ при $i \neq j$, то $cov\left(\xi_i, \xi_j\right) = 0$. Тогда из предыдущей леммы

Пример. Найдем дисперсии некоторых случайных величин

(1)
$$\xi \sim Bin(n,p)$$
. $D\xi = E\xi^2 - (E\xi)^2 = E\xi^2 - n^2p^2$.

$$E\xi^{2} = \sum_{k=0}^{n} k^{2} C_{n}^{k} \cdot p^{k} (1-p)^{n-k} = \sum_{k=2}^{n} k (k-1) C_{n}^{k} \cdot p^{k} (1-p)^{n-k} + \sum_{k=1}^{n} k \cdot C_{n}^{k} \cdot p^{k} (1-p)^{n-k} =$$

$$= p^{2} n (n-1) \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)! (n-k)!} p^{k-2} (1-p)^{n-k} + np \cdot \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k} =$$

$$= p^{2} \cdot n (n-1) + np = np (pn-p+1)$$

Итак,
$$D\xi = n^2p^2 - np^2 + np - n^2p^2 = np(1-p)$$

Иначе,
$$\xi = \xi_1 + \ldots + \xi_n$$
, $\xi_i \sim Bern(p) \Rightarrow D\xi = \sum_{i=1}^n D\xi_i = np(1-p)$

(2)
$$\xi \sim U[a;b]$$
. $D\xi = E\xi^2 - (E\xi)^2 = E\xi^2 - (\frac{a+b}{2})^2$.

$$E\xi^{2} = \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{b-a} \cdot I(a \le x \le b) \cdot dx = \frac{b^{3} - a^{3}}{3(b-a)} = \frac{a^{2} + ab + b^{2}}{3}$$

Итак,
$$D\xi = \frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4} = \frac{(a-b)^2}{12}$$

(3) $G(n,p), \Omega$ — множество всех графов без петель и кратных ребер на $V=[n], \mathcal{F}=2^{\Omega}, \ P(G)=p^{|E(G)|}\cdot (1-p)^{C_n^2-|E(G)|}.\xi$ — число треугольников.

$$E\xi = C_n^3 \cdot p^3, \ D\xi = \sum_{i=1}^{C_n^3} D\xi_i + \sum_{i \neq j} cov(I_i, I_j) = C_n^3 p^3 (1-p)^3 + \sum_{i \neq j} cov(I_i, I_j)$$

Все ковариации равны 0, кроме тех, что соответствую пересекающимся по ребру треугольникам.

$$\sum_{i \neq j} cov(I_i, I_j) = 2C_n^2 C_{n-2}^2 \left(EI_i I_j - EI_i EI_j \right) = 2C_n^2 C_{n-2}^2 \left(p^5 - p^6 \right)$$

Итого, $D\xi = C_n^3 p^3 (1-p)^3 + 2C_n^2 C_{n-2}^2 p^5 (1-p).$

Лекция 11. Неравенства, связанные с математическими ожиданиями

27. НЕРАВЕНСТВА КОШИ, МАРКОВА, ЧЕБЫШЕВА И ЙЕНСЕНА

Утверждение. (Неравенство Коши-Буняковского-Шварца) Если $E\xi^2<\infty,\ E\eta^2<\infty,$ то $E\left|\xi\eta\right|<\infty$ и $(E\left|\xi\eta\right|)^2\leq E\xi^2E\eta^2.$

Доказательство. Если $E\xi^2=0$, то $P\left(\xi=0\right)=1\Rightarrow P\left(|\xi\eta|=0\right)=1\Rightarrow E\left|\xi\eta\right|=0$ Если $E\xi^2\neq 0$, $E\eta^2\neq 0$, то положим $\widetilde{\xi}=\frac{\xi}{\sqrt{E\xi^2}},\ \widetilde{\eta}=\frac{\eta}{\sqrt{E\eta^2}}.$ Тогда

$$2\left|\widetilde{\xi}\widetilde{\eta}\right| \leq \widetilde{\xi}^2 + \widetilde{\eta}^2 \Rightarrow 2E\left|\widetilde{\xi}\widetilde{\eta}\right| \leq E\widetilde{\xi}^2 + E\widetilde{\eta}^2 = 2 \Rightarrow E\left|\widetilde{\xi}\widetilde{\eta}\right| \leq 1 \Rightarrow E\left|\xi\eta\right| \leq \sqrt{E\xi^2 E\eta^2}$$

Теорема. (Неравенство Маркова) Если $E\left|\xi\right|<\infty,\ mo\ \forall a>0 \to P\left(\left|\xi\right|>a\right)\leq \frac{E\left|\xi\right|}{a}$

Доказательство

$$E\left|\xi\right| = E\left(\left|\xi\right| \cdot I\left(\left|\xi\right| > a\right) + \left|\xi\right| \cdot I\left(\left|\xi\right| \le a\right)\right) = E\left|\xi\right| I\left(\left|\xi\right| > a\right) + E\left|\xi\right| \cdot I\left(\left|\xi\right| \le a\right) \ge E\left|\xi\right| I\left(\left|\xi\right| > a\right)$$

Заметим, что $|\xi| I(|\xi| > a) \ge a \cdot I(|\xi| > a)$, поэтому

$$E |\xi| I(|\xi| > a) \ge a \cdot EI(|\xi| > a) = a \cdot P(|\xi| > a)$$

Итого, $P(|\xi| > a) \le \frac{E|\xi|}{a}$.

Теорема. (Неравенство Чебышева) Если $E\xi^2 < \infty$, то $\forall a > 0 \to P(|\xi - E\xi| > a) \le \frac{D\xi}{a^2}$

Доказательство. По неравенству Маркова $P\left(|\xi - E\xi| > a\right) = P\left((\xi - E\xi)^2 > a^2\right) \le \frac{E(\xi - E\xi)^2}{a^2} = \frac{D\xi}{a^2}$

Замечание. Неравенство Чебышева влечет важную теорему

Теорема. (Закон больших чисел в форме Чебышева) Если ξ_1, ξ_2, \ldots — независимые одинаково распределенные случайные величины с конечным вторым моментом $(E\xi^2 < \infty)$, то $\forall \varepsilon > 0, \delta > 0 \to P\left(\left|\frac{\xi_1 + \ldots + \xi_n - n \cdot E\xi_1}{n^{1/2 + \delta}}\right| > \varepsilon\right) \to 0$ при $n \to \infty$.

Доказательство. По неравенству Чебышева
$$P\left(|S_n-ES_n|>\varepsilon n^{1/2+\delta}\right)\leq \frac{DS_n}{\varepsilon^2\cdot n^{1+2\delta}}=\frac{nD\xi_1}{\varepsilon^2n^{1+2\delta}}=\frac{D\xi_1}{\varepsilon^2n^{1+2\delta}}\to 0$$
 при $n\to\infty$.

3амечание. $P\left(|S_n-ES_n|>n^{1/2+\delta}\cdot\varepsilon\right)\to 0$ при $n\to\infty$ значит, что $\frac{|S_n-ES_n|}{n^{1/2+\delta}}\overset{P}{\to} 0$ (сходимость по вероятности, о ней речь пойдет позже).

Теорема. (Неравенство Йенсена) Если $E |\xi| < \infty, \ g(x) - выпукла вниз, то <math>E g(\xi) \ge g(E\xi)$

Доказательство. Из выпуклости вниз g имеем $\forall x_0 \in \mathbb{R} \to \exists \lambda(x_0) \in \mathbb{R} : \ \forall x \to g(x) \geq g(x_0) + \lambda(x_0) (x - x_0)$.

Положим
$$x_0 = E\xi$$
, $x = \xi$. Тогда $g(\xi) \ge g(E\xi) + \lambda(E\xi)(\xi - E\xi) \Rightarrow Eg(\xi) \ge g(E\xi) + \lambda(E\xi) \cdot E(\xi - E\xi) = g(E\xi)$.

Замечание. Например, с помощью неравенства Йенсена легко проверить $E|\xi| \ge |E\xi|$, $E\xi^2 \ge (E\xi)^2$.

Лекция 12. Основные виды сходимости по вероятности

28. Разные виды сходимости

Определение. Последовательность $\{\xi_n\}_{n=1}^{\infty}$ сходится *почти наверное* (*сходится с вероятностью* 1), если $P(\xi_n \to \xi) = 1$.

Мы будем писать $\xi_n \stackrel{\text{п.н.}}{\to} \xi$

Определение. $Cxo\partial umocmb$ e L_p . Пусть p>0, тогда $\xi_n \stackrel{L_p}{\to} \xi$, если $E\left|\xi_n-\xi\right|^p \to 0$.

Замечание. Предполагается, что $E\left|\xi\right|<\infty,\ E\left|\xi_{n}\right|^{p}<\infty$

Определение. Сходимость по вероятности. $\xi_n \stackrel{P}{\to} \xi$, если $\forall \varepsilon > 0 \to P\left(|\xi_n - \xi| > \varepsilon\right) \to 0$.

Определение. Слабая cxodumocmb. $\xi_n \stackrel{d}{\to} \xi$, если для любой непрерывной ограниченной $f: \mathbb{R} \mapsto \mathbb{R}$ верно $Ef(\xi_n) \to Ef(\xi)$.

29. Связь разных видов сходимостей

Теорема.

- (1) Echu $\xi_n \stackrel{n.n.}{\to} \xi$, mo $\xi_n \stackrel{P}{\to} \xi$
- (2) Если $\xi_n \stackrel{L_p}{\to} \xi$ для некоторого p > 0, то $\xi_n \stackrel{P}{\to} \xi$
- (3) $Ecnu \ \xi_n \stackrel{P}{\to} \xi, \ mo \ \xi_n \stackrel{d}{\to} \xi$

Доказательство.

(1) Пусть $\varepsilon > 0$. Рассмотрим события

$$A_n = \{ \omega \mid |\xi_n(\omega) - \xi(\omega)| \le \varepsilon \}$$

$$B_n = \{ \omega \mid \forall k \ge n \to |\xi_k(\omega) - \xi(\omega)| \le \varepsilon \}$$

Ясно, что $B_n \subset A_n$.

$$B_n \uparrow B = \{ \omega \mid \exists n \forall k \ge n \to |\xi_k(\omega) - \xi(w)| \le \varepsilon \}$$

Однако
$$P\left(\left\{w\mid \xi_n(w)\to \xi(w)\right\}\right)=1\Rightarrow P(B)=1.$$
 Итак, $\lim_{n\to\infty}P(B_n)=1\Rightarrow \lim_{n\to\infty}P(A_n)=1.$

(2) $E |\xi_n - \xi|^p \to 0$. Пусть $\varepsilon > 0$, тогда по неравенству Маркова получаем

$$P(|\xi_n - \xi| > \varepsilon) = P(|\xi_n - \xi|^p > \varepsilon^p) \le \frac{E|\xi_n - \xi|^p}{\varepsilon^p} \to 0$$

To ects $\xi_n \stackrel{P}{\to} \xi$.

- (3) Рассмотрим непрерывную ограниченную $f: \mathbb{R} \to \mathbb{R}, f(x) \leq C$ и пусть $\varepsilon > 0$. Тогда:
 - (1) Из сходимости по вероятности $\exists k \in \mathbb{N}, \delta > 0: \forall n \geq k \to P(|\xi_n \xi| \geq \delta) < \frac{\varepsilon}{6C}$
 - (2) $\exists N: P(|\xi| > N) < \frac{\varepsilon}{6C}$.

Доказатель ство. Пусть $\widetilde{\xi_i} = \xi \cdot I \ (|\xi| \leq i)$. Тогда $\widetilde{\xi_i} \overset{\text{п.н.}}{\to} \xi, \ i \to \infty \Rightarrow \widetilde{\xi_i} \overset{P}{\to} \xi$. Тогда

$$P\left(\left|\widetilde{\xi}_i - \xi\right| > \frac{1}{2}\right) \to 0 \Rightarrow \exists N \in \mathbb{N}: \ P\left(\left|\xi_N - \xi\right| > \frac{1}{2}\right) < \frac{\varepsilon}{6C}$$
 Однако, $P\left(\left|\widetilde{\xi}_N - \xi\right| > \frac{1}{2}\right) = P\left(\left|\xi\right| > N\right)$, так как события совпадают.

(3) На любом отрезке f равномерно непрерывна, поэтому $\forall x,y\in [-N-\delta;N+\delta]\,,\;|x-y|<\delta\to |f(x)-f(y)|<\frac{\varepsilon}{2}$

Теперь распишем нужную разность на три случая:

$$|Ef(\xi_{n}) - Ef(\xi)| = |E(f(\xi_{n}) - f(\xi))| = \left| E\left[(f(\xi_{n}) - f(\xi)) \underbrace{I(|\xi| > N)}_{I_{1}} + (f(\xi_{n}) - f(\xi)) \underbrace{I(|\xi| \le N, |\xi - \xi_{n}| \ge \delta)}_{I_{2}} + (f(\xi_{n}) - f(\xi)) \underbrace{I(|\xi| \le N, |\xi - \xi_{n}| < \delta)}_{I_{3}} \right] \right| \le E|f(\xi_{n}) - f(\xi)|I_{1} + E|f(\xi_{n}) - f(\xi)|I_{2} + E|f(\xi_{n}) - f(\xi)|I_{3}$$

Так как $|f(\xi_n) - f(\xi)| \le 2C$, то $E|f(\xi_n) - f(\xi)|I_1 \le 2C \cdot P(|\xi| > N) = \frac{\varepsilon}{3}$.

Также
$$E\left|f\left(\xi_{n}\right)-f\left(\xi\right)\right|I_{2}\leq E\left|f\left(\xi_{n}\right)-f\left(\xi\right)\right|\cdot I\left(\left|\xi-\xi_{n}\right|\geq\delta\right)\leq2C\cdot P\left(\left|\xi-\xi_{n}\right|\geq\delta\right)=\frac{\varepsilon}{3}$$
.

Наконец, по равномерной непрерывности $E\left|f\left(\xi_{n}\right)-f\left(\xi\right)\right|I_{3}\leq\frac{\varepsilon}{3}\cdot P\left(\left|\xi-\xi_{n}\right|<\delta,\left|\xi\right|\leq N\right)\leq\frac{\varepsilon}{3}.$

Итак,
$$|Ef(\xi_n) - Ef(\xi)| \le 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$
, что и требовалось.

30. НЕЭКВИВАЛЕНТНОСТЬ РАЗНЫХ ВИДОВ СХОДИМОСТИ

Утверждение. $\xi_n \xrightarrow{d} \xi \not\Rightarrow \xi_n \xrightarrow{P} \xi$.

Доказательство. Положим $\Omega = \{\omega_1, \omega_2\}$, $P(\{\omega_1\}) = P(\{\omega_2\}) = \frac{1}{2}$.

Введем
$$\xi(\omega_1) = -1, \xi(\omega_2) = 1$$
, а $\xi_n(\omega_1) = 1$, $\xi_n(\omega_2) = -1$.

Тогда
$$Ef(\xi_n)=\frac{1}{2}f(1)+\frac{1}{2}f(-1)=Ef(\xi)\Rightarrow \xi_n\stackrel{d}{\to}\xi,$$
 однако $P\left(|\xi_n-\xi|>\frac{1}{2}\right)=1,$ то есть $\xi_n\stackrel{P}{\to}\xi$

Утверждение. $\xi_n \stackrel{P}{\to} \xi \not\Rightarrow \xi_n \stackrel{L_p}{\to} \xi$, а также $\xi_n \stackrel{P}{\to} \xi \not\Rightarrow \xi_n \stackrel{\text{п.н.}}{\to} \xi$.

Доказательство. $\Omega = [0;1]\,,\, P$ — мера Лебега на [0;1]. Рассмотрим $\xi = 0$ и последовательность

$$\xi_{1} = 2^{2/p} \cdot I\left(\omega \in \left[0; \frac{1}{2}\right]\right)$$

$$\xi_{2} = 2^{2/p} \cdot I\left(\omega \in \left[\frac{1}{2}; 1\right]\right)$$

$$\vdots$$

$$\xi_{2^{n}-1} = 2^{2n/p} \cdot I\left(\omega \in \left[0; \frac{1}{2^{n}}\right]\right)$$

$$\xi_{2^{n}} = 2^{2n/p} \cdot I\left(\omega \in \left[\frac{1}{2^{n}}; \frac{2}{2^{n}}\right]\right)$$

$$\vdots$$

Пусть теперь $\varepsilon > 0$. $P(|\xi_n - \xi| > \varepsilon) = P(\xi_n \neq 0) \to 0$, то есть $\xi_n \stackrel{P}{\to} 0$.

При этом $\forall \omega \in [0;1] \,, \,\, k \in \mathbb{N} \to \exists n \geq k: \,\, |\xi_n(\omega) - \xi(\omega)| > 1 \Rightarrow \xi_n \stackrel{\Pi,H.}{\to} \xi.$

Далее,
$$E |\xi_{2^{n}-1} - \xi|^{p} = 2^{2n} \cdot P(\xi_{2^{n}-1} \neq 0) = 2^{n} \to \infty$$
, то есть $\xi_{n} \not\stackrel{L_{p}}{\to} \xi$.

Утверждение. $\xi_n \stackrel{\text{п.н.}}{\to} \xi \not\Rightarrow \xi_n \stackrel{L_p}{\to} \xi$

Доказательство. $\Omega = [0;1]$, P — мера Лебега на [0;1], $\xi_n = 2^{n/p} \cdot I$ ($\omega \leq \frac{1}{n}$). Легко видеть, что $\xi_n \overset{\text{п.н.}}{\to} 0$, так как отрезок, где ξ_n не нулевая сжимается к 0. Однако, $E |\xi_n|^p = 2^n \cdot P \left(\omega \leq \frac{1}{n}\right) = \frac{2^n}{n} \to \infty$, то есть $\xi_n \overset{L_p}{\to} \xi$.

Утверждение. $\xi_n \stackrel{L_p}{\to} \xi \not\Rightarrow \xi_n \stackrel{\text{п.н.}}{\to} \xi$

Доказательство. $\Omega=[0;1]\,,\ P$ — мера Лебега на $[0;1]\,,\ \xi=0,\ \xi_n$ возьмем как

$$\xi_{1} = I\left(\omega \in \left[0; \frac{1}{2}\right]\right)$$

$$\xi_{2} = I\left(\omega \in \left[\frac{1}{2}; 1\right]\right)$$

$$\vdots$$

$$\xi_{2^{n}-1} = I\left(\omega \in \left[0; \frac{1}{2^{n}}\right]\right)$$

$$\xi_{2^{n}} = I\left(\omega \in \left[\frac{1}{2^{n}}; \frac{2}{2^{n}}\right]\right)$$

$$\vdots$$

$$E |\xi_n|^p = P (\xi_n \neq 0) \to 0 \Rightarrow \xi_n \stackrel{L_p}{\to} \xi.$$

Однако $\xi_n \overset{\text{п,H.}}{\not\to} \xi$, так как $\forall \omega \in [0;1]$, $n \in \mathbb{N} \to \exists k > n: \ \xi_k(\omega) = 1$.

31. Сходимость по вероятности

Определение. Последовательность $\xi_n \to \xi$ по распределению, если $F_{\xi_n}(x) \to F_{\xi}(x)$ для любого x из множества точек непрерывности F_{ξ} .

Теорема. (Александров) Следующие три утверждения равносильны

- (1) $\xi_n \stackrel{d}{\to} \xi$
- (2) $\xi_n \to \xi$ по распределению
- (3) $\forall B \in \mathcal{B}(\mathbb{R}), \ P_{\xi}(\partial B) = 0 \to P_{\xi_n}(B) \to P(B)$

Замечание. Из (3) легко следует (2), остальное приведем без доказательства.

Лекция 13. Лемма Бореля-Кантелли и случайные блуждания

32. ЛЕММА БОРЕЛЯ-КАНТЕЛЛИ

Определение. Рассмотрим последовательность $A_1, A_2, \ldots \in \mathcal{F}$.

Все события $\{\omega \mid \forall k \in \mathbb{N} \to \exists n \geq k : \omega \in A_n\}$ будем называть происходящими бесконечно частю.

Иначе это множество можно записать как $A_{\text{п.б.ч}} = \bigcap_{k \geq 1} \bigcup_{n \geq k} A_n$

Лемма. (Бореля-Кантелли) Для событий $A_1, A_2, \ldots \in \mathcal{F}$ выполнено следующее

(1) Ecnu
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, mo $P(A_{n.6.4}) = 0$

(2) Если события A_1,A_2,\ldots независимы в совокупности и $\sum\limits_{n=1}^{\infty}P\left(A_n\right)=\infty,$ то $P\left(A_{n.\delta.\cdot n}\right)=1$

oОказательcтво.

(1)
$$P(A_{\pi.6.4.}) = P\left(\bigcap_{k \ge 1} \bigcup_{n \ge k} A_n\right) = \lim_{k \to \infty} P\left(\bigcup_{n \ge k} A_n\right) \le \lim_{k \to \infty} \sum_{n \ge k} P(A_n) = 0$$
, так как $\sum_{n \ge k} P(A_n)$ — остаточный член сходящегося ряда.

$$P\left(\overline{A_{\pi.6.4}}\right) = P\left(\bigcup_{k \ge 1} \bigcap_{n \ge k} \overline{A_n}\right) = \lim_{k \to \infty} P\left(\bigcap_{n \ge k} \overline{A_n}\right) = \lim_{k \to \infty} \prod_{n \ge k} P\left(\overline{A_n}\right) = \lim_{k \to \infty} \prod_{n \ge k} (1 - P(A_n)) = \lim_{k \to \infty} \exp\left(\sum_{n \ge k} \ln\left(1 - P(A_n)\right)\right) \le \lim_{k \to \infty} \exp\left(\sum_{n \ge k} - P(A_n)\right) = 0$$

Замечание. При помощи леммы Бореля-Кантелли мы позже докажем, что если ξ_i — независимые случайные величины, $P\left(\xi_i=1\right)=P\left(\xi_i=-1\right)=\frac{1}{2},$ а $S_n=\xi_1+\ldots+\xi_n,$ то $\frac{S_n}{n^{1/2+\delta}}\stackrel{\mathrm{п.н.}}{\to} 0.$ При фиксированном положительном δ бесконечно часто происходит попадание в зону

$$\sqrt{2n\ln\ln n} (1-\varepsilon) < S_n < \sqrt{2n\ln\ln n} (1+\varepsilon)$$

что утверждает следующая теорема

Теорема. (Закон повторного логарифма) Если ξ_1, \ldots — независимые одинаково распределенные величины, $E\xi = 0, \ D\xi = 1, \ mo \ P\left(\frac{|S_n|}{n \to \infty} \frac{|S_n|}{\sqrt{2n \ln \ln n}} = 1\right) = 1.$

Замечание. Теорему приведем без доказательства.

Пример. Пусть $\xi_1,\ldots\sim \exp{(1)}$ — независимые. Тогда $P\left(\varlimsup_{n\to\infty}\frac{\xi_n}{\ln n}=1\right)=1$.

$$P\left(\overline{\lim_{n\to\infty}}\frac{\xi_n}{\ln n}\leq 1\right)=1 \Leftrightarrow P\left(\forall \varepsilon>0 \; \exists n\in\mathbb{N}: \; \forall k\geq n\to \frac{\xi_k}{\ln k}\leq 1+\varepsilon\right)=1 \Leftrightarrow \\ \Leftrightarrow \forall \varepsilon=\frac{1}{m}\to P\left(\exists n\in\mathbb{N}: \; \forall k\geq n\to \frac{\xi_k}{\ln k}\leq 1+\varepsilon\right)=1 \Leftrightarrow \forall \varepsilon=\frac{1}{m}\to P\left(\overline{6}. \; \text{u.}\; \frac{\xi_k}{\ln k}>1+\varepsilon\right)=1$$

Пользуясь леммой Бореля-Кантелли, получаем, что утверждение равносильно $\forall \varepsilon = \frac{1}{m} \to \sum_{k=1}^{\infty} P\left(\frac{\xi_k}{\ln k} \le 1 + \varepsilon\right) < \infty$. Проверим это, для нашего распределения:

$$P\left(\xi_k > (1+\varepsilon) \cdot \ln k\right) = 1 - F_{\xi_k}\left((1+\varepsilon) \cdot \ln k\right) = \exp\left(-\left(1+\varepsilon\right) \cdot \ln k\right) = k^{-1-\varepsilon}$$

Так как ряд $\sum\limits_{k=1}^{\infty}k^{-1-\varepsilon}$ сходится для $\varepsilon>0$, то $P\left(\varlimsup_{n\to\infty}\frac{\xi_n}{\ln n}\leq 1\right)=1$

В другую сторону, проделаем аналогичные вычисления:

$$P\left(\overline{\lim_{n\to\infty}}\frac{\xi_n}{\ln n}\geq 1\right)=1 \Leftrightarrow \forall \varepsilon=\frac{1}{m}\to P\left(\frac{\xi_n}{\ln n}\geq 1-\varepsilon \text{ б.ч.}\right)=1 \Leftrightarrow \\ \Leftrightarrow \forall \varepsilon=\frac{1}{m}\to \sum_{k=1}^\infty P\left(\frac{\xi_k}{\ln k}\geq 1-\varepsilon\right)=\infty \Leftrightarrow \forall \varepsilon=\frac{1}{m}\to \sum_{k=1}^\infty k^{-1+\varepsilon}=\infty$$

Последнее выполнено, а значит, в итоге получаем $P\left(\overline{\lim_{n\to\infty}}\frac{\xi_n}{\ln n}=1\right)=1.$

33. ПРОСТЕЙШИЕ СЛУЧАЙНЫЕ БЛУЖДАНИЯ

Определение. Пусть ξ_1, ξ_2, \ldots — независимые одинаково распределенные случайные величины. Случайным блужданием называется последовательность величин $S_i = \sum\limits_{j=1}^{j< i} \xi_j$.

Если $P(\xi_1 = 1) = p$, $P(\xi_1 = -1) = 1 - p$, то случайное блуждание называется *простейшим*. Если $p = \frac{1}{2}$, то оно называется *симметричным*.

При фиксированном w последовательность $S_0(w), S_1(w), \ldots$ называется $mpae\kappa mopue\check{u}$ случайного блуждания.

Утверждение. (Принцип отражения) Пусть есть простейшее случайное блуждание. Количество путей из (0;0) в (n;x) есть $N(n,x) = C_n^{\frac{n+x}{2}}$. Тогда количество $N_0(n,x)$ путей из (0;0) в (n;x), не пересекающих y=0 есть

$$N_0(n,x) = N(n-1,x-1) - N(n-1,x+1)$$

Доказательство. Первый шаг всех этих путей идет вверх (если x > 0). Пусть есть какой-то путь из (1;1), пересекающий y = 0. Тогда рассмотрим первое пересечение в точке n_0 и отразим участок пути $[0;n_0]$ относительно оси Ox. Это биекция с множеством путей из точки (1;-1) в (n;x). Итого, количество искомых путей есть

$$N_0(n,x) = N(n-1,x-1) - N(n-1,x+1)$$

Расписав вероятность каждой траектории, получаем:

$$P(S_1 > 0, \dots, S_{n-1} > 0, S_n = x) = p^{\frac{n+x}{2}} (1-p)^{\frac{n-x}{2}} \left(C_{n-1}^{\frac{n+x}{2}-1} - C_{n-1}^{\frac{n+x}{2}}\right)$$

34. Усиленные законы больших чисел

Теорема. (Усиленный закон больших чисел (УЗБЧ) для независимых случайных величин с конечными дисперсиями)

 Π усть ξ_1, \ldots — независимые случайные величины, имеющие ожидание $E\xi_i$ и второй момент $E\xi_i^2 < \infty$.

Пусть $0 < b_1 < b_2 < \dots, \ b_n \uparrow \infty$ при $n \to \infty$ и при этом $\sum_{k=1}^{\infty} \frac{D\xi_n}{b_n^2} < \infty$.

Тогда почти наверное $\frac{S_n - ES_n}{b_n} \to 0$.

3амечание. Если $b_n=n, \sum\limits_{n=1}^{\infty} rac{D\xi_n}{n^2}<\infty,$ то $\forall \delta>0
ightarrow \sum\limits_{n=1}^{\infty} rac{S_n-ES_n}{n^{1+\delta}}<\infty \Rightarrow$ почти наверное $rac{S_n+ES_n}{n^{1/2+\delta}}
ightarrow 0.$

Теорема. (УЗБЧ для независимых одинаково распределенных случайных величин с конечными математическими ожиданиями)

Пусть ξ_1, \ldots — независимые одинаково распределенные случайные величины, $E\left|\xi_i\right|<\infty$, тогда почти наверное $\frac{S_n-ES_n}{n}\to 0$ при $n\to\infty$.

35. Фундаментальность по вероятности и с вероятностью 1

Определение. Последовательность $\{\xi_n\}_{n\in\mathbb{N}}$ фундаментальна с вероятностью 1, если $P(\{\xi_n\}$ — фундаментальна) = 1.

Последовательность $\{\xi_n\}_{n\in\mathbb{N}}$ фундаментальна по вероятности, если $\lim_{n,m\to\infty}P\left(|\xi_n-\xi_m|\geq\varepsilon\right)\to 0.$

Теорема. (критерий сходимости с вероятностью 1). Пусть $\{\xi_n\}$ — последовательность случайных величин. Тогда $\exists \xi$, равная пределу почти наверное последовательности $\{\xi_n\}$ тогда и только тогда, когда $\{\xi_n\}$ — фундаментальна с вероятностью 1.

Доказательство. Пусть $\xi_n \overset{\text{п.н.}}{\to} \xi$, $n \to \infty$. Пусть $A = \{\omega \mid \xi_n(\omega) \to \xi(\omega)\}$, P(A) = 1.

 $\forall \omega \in A \to \{\xi_n(\omega)\}$ — фундаментальна, значит $P\left(\{\xi_n\}\right.$ — фундаментальна) = 1.

Пусть $\{\xi_n\}$ — фундаментальна с вероятностью 1. Пусть $A = \{\omega: \{\xi_n(\omega)\}$ — фундаментальна $\}$.

$$\forall \omega \in A \to \exists \xi(\omega): \ \xi_n(\omega) \to \xi(\omega), \ n \to \infty. \forall \omega \in \overline{A}$$
 положим $\xi(\omega) = 0$. Тогда $\xi_n \overset{\text{п.н.}}{\to} \xi, \ n \to \infty$. \square

Теорема. (критерий сходимости по вероятности). Пусть $\{\xi_n\}$ — последовательность случайных величин. Тогда $\exists \xi: \ \xi_n \stackrel{P}{\to} \xi, \ n \to \infty, \ moгда \ u \ moлько \ moгда, когда <math>\{\xi_n\}$ — фундаментальна по вероятности.

Доказательство. Если $\{\xi_n\}$ сходится по вероятности, то

$$P(|\xi_n - \xi_m| \ge \varepsilon) \le P\left(\left(|\xi_n - \xi| \ge \frac{\varepsilon}{2}\right) \lor \left(|\xi_m - \xi| \ge \frac{\varepsilon}{2}\right)\right) \le$$

$$\le P\left(|\xi_n - \xi| \ge \frac{\varepsilon}{2}\right) + P\left(|\xi_m - \xi| \ge \frac{\varepsilon}{2}\right) \xrightarrow[n, m \to \infty]{} 0$$

Пусть $\{\xi_n\}$ — фундаментальна.

Лемма. Если $\{\xi_n\}$ — фундаментальна по вероятности, то из нее можно извлечь подпоследовательность, сходящуюся с вероятностью 1.

Доказательство. Положим $n_1 = 1$. Далее

$$n_j = \min \{k > n_{j-1} : \forall r, s \ge k \to P(|\xi_r - \xi_s| \ge 2^{-j+1}) < 2^{-j+1}\}$$

. Это можно сделать, так как последовательность фундаментальна с вероятностью 1.

$$\sum_{j=1}^{\infty} P\left(\left|\xi_{n_{j+1}} - \xi_{n_{j}}\right| > 2^{-j+1}\right) < \sum_{j=1}^{\infty} 2^{-j+1} < \infty$$
. Поэтому по лемме Бореля-Кантелли имеем

$$P\left(\left|\xi_{n_j+1}-\xi_{n_j}\right|\geq 2^{-j+1}$$
 бесконечное число раз $\right)=0$

Тогда
$$P\left(\sum_{j=1}^{\infty}\left|\xi_{n_{j+1}}-\xi_{n_{j}}\right|<\infty\right)=1.$$

Рассмотрим
$$A = \left\{ \omega : \sum_{j=1}^{\infty} \left| \xi_{n_{j+1}}(\omega) - \xi_{n_{j}(\omega)} \right| < \infty \right\}, \ P(A) = 1.$$

$$\forall \omega \in A \to \exists \xi(\omega) : \lim_{j \to \infty} \xi_{n_j}(\omega) = \lim_{j \to \infty} \left(\xi_{n_1}(\omega) + (\xi_{n_2}(\omega) - \xi_{n_1}(\omega)) + \dots + \left(\xi_{n_j}(\omega) - \xi_{n_{j-1}}(\omega) \right) \right) =$$

$$= \xi_{n_1}(\omega) + \sum_{j=1}^{\infty} \left(\xi_{n_{j+1}}(\omega) - \xi_{n_j}(\omega) \right)$$

Для всех $\omega \notin A$, $\xi(\omega) := 0 \Rightarrow \xi_{n_i} \stackrel{\text{п.н.}}{\to} \xi, j \to \infty$.

 ξ_{n_j} — подпоследовательность, сходящаяся к ξ с вероятностью 1, значит $\xi_{n_j} \stackrel{P}{\to} \xi, \ j \to \infty$.

$$P(|\xi_n - \xi| \ge \varepsilon) \le P(|\xi_n - \xi_{n_j}| \ge \frac{\varepsilon}{2}) + P(|\xi_{n_j} - \xi| \ge \frac{\varepsilon}{2}) \to 0$$

Теорема. (Критерий фундаментальности с вероятностью 1). Последовательность $\{\xi_n\}$ фундаментальна с вероятностью 1 тогда и только тогда, когда

$$\forall \varepsilon > 0 \to P\left(\sup_{k > 1} |\xi_{n+k} - \xi_n| \ge \varepsilon\right) \to 0, \ n \to \infty$$

Доказательство. $\{\xi_n\}$ — фундаментальна с вероятностью 1 равносильно

$$\begin{split} P\left(\exists \varepsilon > 0, \ \forall n \in \mathbb{N} \to \exists m \in \mathbb{N} : \ |\xi_n - \xi_m| > \varepsilon\right) &= 0 \\ P\left(\exists s \in \mathbb{N} : \ \forall n \in \mathbb{N} \to \exists m \in \mathbb{N} : \ |\xi_n - \xi_m| > \frac{1}{s}\right) &= 0 \\ \forall s \in \mathbb{N} \to P\left(\forall n \in \mathbb{N} \to \exists m \in \mathbb{N} : \ |\xi_n - \xi_m| > \frac{1}{s}\right) &= 0 \\ \forall s \in \mathbb{N} \to \lim_{n \to \infty} P\left(\exists m \in \mathbb{N} : \ |\xi_n - \xi_m| > \frac{1}{s}\right) &= 0 \\ \forall \varepsilon > 0 \to \lim_{n \to \infty} P\left(\exists m \in \mathbb{N} : \ |\xi_n - \xi_m| > \varepsilon\right) &= 0 \\ \forall \varepsilon > 0 \to \lim_{n \to \infty} P\left(\sup_{k \ge 1} |\xi_{n+k} - \xi_n| > \varepsilon\right) &= 0 \end{split}$$

36. Неравенство Колмогорова

Теорема. (неравенство Колмогорова) Пусть ξ_1, \dots, ξ_n — независимые случайные величины, $E\xi_i = 0$ и $E\xi_i^2 < \infty$. Тогда

(1)
$$P\left(\max_{1 \le k \le n} |S_k| \ge \varepsilon\right) \le \frac{ES_n^2}{\varepsilon^2}$$

(2) Если дополнительно
$$\exists c>0: \ \forall i \to P\left(|\xi_i|< c\right)=1, \ mo\ P\left(\max_{1\leq k\leq n}|S_k|\geq \varepsilon\right)\geq 1-\frac{(c+\varepsilon)^2}{ES_n^2}$$

Доказательство. Рассмотрим $A_k = \{\omega: |S_1(\omega)| < \varepsilon, \dots, |S_{k-1}(\omega)| < \varepsilon, |S_k(\omega)| \ge \varepsilon\}$, а также $A = \left\{\omega: \max_{1 \le k \le n} |S_k(\omega)| \ge \varepsilon\right\}$. Очевидно, $A = \bigcup_{i=1}^n A_k$.

$$(1) \ ES_{n}^{2} = ES_{n}^{2}I_{A} + ES_{n}^{2}I_{\overline{A}} \ge ES_{n}^{2}I_{A} = E\left(S_{n}^{2}\sum_{k=1}^{n}I_{A_{k}}\right) = \sum_{k=1}^{n}ES_{n}^{2}I_{A_{k}} =$$

$$= \sum_{k=1}^{n}E\left((S_{n} - S_{k}) + S_{k}\right)^{2}I_{A_{k}} = \sum_{k=1}^{n}\left(E\left(S_{n} - S_{k}\right)^{2}I_{A_{k}} + 2E\underbrace{\left(S_{n} - S_{k}\right)S_{k}I_{A_{k}}}_{\xi_{k+1}+\dots+\xi_{n}\xi_{1}+\dots\xi_{k}} + ES_{k}^{2}I_{A_{k}}\right) =$$

$$= \sum_{k=1}^{n}\left(E\left(S_{n} - S_{k}\right)^{2}I_{A_{k}} + 2E\left(S_{n} - S_{k}\right) \cdot ES_{k}I_{A_{k}} + ES_{k}^{2}I_{A_{k}}\right) =$$

$$= \sum_{k=1}^{n}\left(E\left(S_{n} - S_{k}\right)^{2}I_{A_{k}} + ES_{k}^{2}I_{A_{k}}\right) \ge \sum_{k=1}^{n}ES_{k}^{2}I_{A_{k}} \ge$$

$$\ge \varepsilon^{2}\sum_{k=1}^{n}EI_{A_{k}} = \varepsilon^{2}EI_{A} = \varepsilon^{2}P(A) \Rightarrow P(A) \le \frac{ES_{n}^{2}}{\varepsilon^{2}}$$

$$(2) ES_n^2 = ES_n^2 I_A + ES_n^2 I_{\overline{A}} \le ES_n^2 I_A + \varepsilon^2 EI_{\overline{A}} = \sum_{k=1}^n E\left((S_n - S_k) + S_k\right)^2 I_{A_k} + \varepsilon^2 (1 - P(A)) \le \sum_{k=1}^n E\left(S_n - S_k\right)^2 EI_{A_k} + \sum_{k=1}^n ES_k^2 I_{A_k} + \varepsilon^2 (1 - P(A))$$

Так как $|S_k| = |S_{k-1} + \xi_k| \le |S_{k-1}| + |\xi_k| \le c + \varepsilon$, то продолжаем

$$\leq (\varepsilon + c)^2 \sum_{k=1}^n I_{A_k} + \varepsilon^2 (1 - P(A)) + \sum_{k=1}^n E (\xi_{k+1} + \dots + \xi_n)^2 E I_{A_k}$$

 $E\left(\xi_{k+1}+\ldots+\xi_{n}\right)^{2}=\sum_{j=k+1}^{n}E\xi_{j}^{2}+2\sum_{i,j}E\xi_{i}\xi_{j}\leq\sum_{j=1}^{n}E\xi_{j}^{2}=ES_{n}^{2}.$ Тогда можем продолжить:

$$P(A)\left(ES_n^2+c^2+2\varepsilon c\right)\geq ES_n^2-\varepsilon^2 \Rightarrow P(A)\geq 1-\frac{(\varepsilon+c)^2}{ES_n^2+c^2+2\varepsilon c}\geq 1-\frac{(c+\varepsilon)^2}{ES_n^2}, \text{ что и требовалось.}\quad \ \Box$$

Лекция 14. Усиленные законы больших чисел

37. УЗБЧ для независимых случайных величин с конечными дисперсиями

Теорема. (Усиленный закон больших чисел (УЗБЧ) для независимых случайных величин с конечными дисперсиями)

Пусть ξ_1, \ldots — независимые случайные величины, имеющие ожидание $E\xi_i$ и второй момент $E\xi_i^2 < \infty$.

Пусть $0 < b_1 < b_2 < \dots, b_n \uparrow \infty$ при $n \to \infty$ и при этом $\sum_{k=1}^{\infty} \frac{D\xi_n}{b_n^2} < \infty$.

Тогда почти наверное $\frac{S_n - ES_n}{b_n} \to 0$.

Доказательство. Предположим, что $E\xi_i=0$ (вычитание константы сохраняет верность посылок теоремы).

Рассмотрим $S_n' = \sum_{i=1}^n \frac{\xi_i}{b_i}$ и покажем, что она сходится почти наверное. По критерию, нам нужно показать фундаментальность с вероятностью 1, то есть то, что $P\left(\sup_{k>1}\left|\sum_{i=n}^{n+k} \frac{\xi_i}{b_i}\right| > \varepsilon\right) \to 0$ при

 $n \to \infty$.

$$P\left(\sup_{k\geq 1}\left|\sum_{i=n}^{n+k}\frac{\xi_i}{b_i}\right|>\varepsilon\right)=\lim_{k\to\infty}P\left(\max_{1\leq i\leq k}\left|\sum_{j=n}^{n+i}\frac{\xi_j}{b_j}\right|>\varepsilon\right)$$

Распишем по неравенству Колмогорова, учитывая, что $E\xi_i=0\Rightarrow E\xi_i^2=D\xi_i$

$$\lim_{k \to \infty} P\left(\max_{1 \le i \le k} \left| \sum_{j=n}^{n+i} \frac{\xi_j}{b_j} \right| > \varepsilon\right) \le \lim_{k \to \infty} \frac{E\left(\sum_{i=n}^{n+k} \frac{\xi_i}{b_i}\right)^2}{\varepsilon^2} = \lim_{k \to \infty} \frac{\sum_{i=n}^{n+k} E\frac{\xi_i^2}{b_i^2} + \sum_{n \le i \ne j \le n+k} E\left(\frac{\xi_i \xi_j}{b_i b_j}\right)}{\varepsilon^2} = \lim_{k \to \infty} \frac{\sum_{i=n}^{n+k} \frac{E\xi_i^2}{b_i^2} + \sum_{n \le i \ne j \le n+k} E\left(\frac{\xi_i \xi_j}{b_i^2}\right)}{\varepsilon^2} = \lim_{k \to \infty} \frac{\sum_{i=n}^{n+k} \frac{D\xi_i}{b_i^2}}{\varepsilon^2} = \frac{\sum_{i=n}^{\infty} \frac{D\xi_i}{b_i^2}}{\varepsilon^2}$$

Последнее стремится к 0 при $n \to \infty$ как остаточный член сходящегося ряда.

Итак, $\exists \xi: \sum_{n=1}^{\infty} \frac{\xi_n}{b_n} \stackrel{\text{п.н.}}{\to} \xi$. Докажем, что $\frac{S_n}{b_n} \stackrel{\text{п.н.}}{\to} 0$. Для этого нам потребуется две леммы.

Лемма. (Теплиц) Пусть
$$x_n \to x$$
, $a_n > 0$, $\sum_{n=1}^{\infty} a_n = \infty$, тогда $\frac{\sum\limits_{k=1}^{n} a_k x_k}{\sum\limits_{k=1}^{n} a_k} \to x$ при $n \to \infty$.

 ${\it Доказательство}.\ \forall \varepsilon>0 o \exists n\geq n_0:\ |x_n-x|<rac{\varepsilon}{2}$ из условия. Рассмотрим

$$\left| \frac{\sum_{k=1}^{n} a_k x_k}{\sum_{k=1}^{n} a_k} - x \right| = \left| \frac{\sum_{k=1}^{n} a_k (x_k - x)}{\sum_{k=1}^{n} a_k} \right| \le \left| \frac{\sum_{k=1}^{n_0} a_k (x_k - x)}{\sum_{k=1}^{n} a_k} \right| + \sum_{k=n_0+1}^{n} \left| \frac{a_k (x_k - x)}{\sum_{k=1}^{n} a_k} \right| < \left| \frac{\sum_{k=1}^{n_0} a_k (x_k - x)}{\sum_{k=1}^{n} a_k} \right| + \frac{\varepsilon}{2} \cdot \frac{\sum_{k=n_0+1}^{n} a_k}{\sum_{k=1}^{n} a_k} \le \left| \frac{\sum_{k=1}^{n_0} a_k (x_k - x)}{\sum_{k=1}^{n} a_k} \right| + \frac{\varepsilon}{2}$$

так как ряд $\sum_{k=1}^{\infty} a_k$ — расходится, то $\exists n_1 > n_0 : \left| \frac{\sum_{k=1}^{n_0} a_k(x_k - x)}{\sum_{k=1}^{n_1} a_k} \right| < \frac{\varepsilon}{2}$, тогда искомая разность меньше ε , что нам и надо.

Лемма. (Кронекер) Пусть $\sum\limits_{n=1}^{\infty}x_n=x,\ b_n\uparrow+\infty.$ Тогда $\frac{1}{b_n}\sum\limits_{k=1}^nx_kb_k\to 0$ при $n\to\infty.$

Доказательство. Обозначим через $a_i = b_i - b_{i-1}$, где $b_0 = 0$, тогда $b_n = \sum_{k=1}^n a_k$.

$$\sum_{k=1}^{n} x_k b_k = \sum_{k=1}^{n} x_k \sum_{i=1}^{k} a_i = \sum_{i=1}^{n} a_i \sum_{k=i}^{n} x_k$$

Введем $y_i = \sum\limits_{k=i}^{\infty} x_k$, тогда

$$\left| \frac{1}{b_n} \sum_{k=1}^n x_k b_k \right| = \left| \frac{\sum_{i=1}^n a_i \sum_{k=i}^n x_k}{\sum_{i=1}^n a_i} \right| \le \left| \frac{\sum_{i=1}^n a_i \sum_{k=i}^\infty x_k}{\sum_{i=1}^n a_i} \right| + \left| \frac{\sum_{i=1}^n a_i \sum_{k=n+1}^\infty x_k}{\sum_{i=1}^n a_i} \right|$$

Так как $\sum\limits_{k=1}^{\infty}x_k=x$, то $y_i\to 0$ при $i\to\infty$, и $a_i>0,\ \sum\limits_{i=1}^{\infty}a_i=\infty$, тогда по лемме Теплица

$$\frac{\sum_{i=1}^{n} a_i y_i}{\sum_{i=1}^{n} a_i} \to 0$$

То есть $\exists n_0: \ \forall n \geq n_0 \to \left| \frac{\sum\limits_{i=1}^n a_i y_i}{\sum\limits_{i=1}^n a_i} \right| < \frac{\varepsilon}{2}, \ |y_n| < \frac{\varepsilon}{2}.$ Итак, при $n \geq n_0$

$$\left| \frac{1}{b_n} \sum_{k=1}^n x_k b_k \right| \le \left| \frac{\sum_{i=1}^n a_i y_i}{\sum_{i=1}^n a_i} \right| + \left| \frac{\sum_{i=1}^n a_i y_{n+1}}{\sum_{i=1}^n a_i} \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \left| \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n a_i} \right| = \varepsilon$$

Вернемся к доказательству УЗБЧ. Рассмотрим $A = \left\{\omega \mid \sum_{n=1}^{\infty} \frac{\xi_n(\omega)}{b_n} \to \xi(\omega)\right\}, \ P(A) = 1. \ \forall \omega \in A$ положим $x_n = \frac{\xi_n(\omega)}{b_n}$, тогда $\sum_{n=1}^{\infty} x_n = \xi(\omega)$. По лемме Кронекера

$$\frac{1}{b_n} \sum_{k=1}^{n} x_k b_k = \frac{1}{b_n} \sum_{k=1}^{n} \xi_k(\omega) \to 0$$

Следовательно, так как P(A)=1, то $\stackrel{\sum\limits_{k=1}^{n}\xi_{k}}{b_{n}}\stackrel{\text{п.н.}}{\to} 0.$

38. УЗБЧ для независимых одинаково распределенных случайных величин с конечными ожиданиями

Теорема. (УЗБЧ для независимых одинаково распределенных случайных величин с конечными математическими ожиданиями)

Пусть ξ_1,\ldots — независимые одинаково распределенные случайные величины, $E\left|\xi_i\right|<\infty,$ тогда почти наверное $\frac{S_n-ES_n}{n}\to 0$ при $n\to\infty.$

Доказательство. Положим снова $E\xi_n=0$, а также $\widetilde{\xi_n}=\xi_n I\left(|\xi_n|< n\right)$. Тогда

$$\sum_{n=1}^{\infty} P(|\xi_1| \ge n) = \sum_{n=1}^{\infty} n \cdot P(n \le |\xi_1| < n+1) = \sum_{n=1}^{\infty} n \cdot EI(n \le |\xi_1| < n+1) =$$

$$= E\sum_{n=1}^{\infty} n \cdot I(n \le |\xi_1| < n+1)$$

Заметим, что $\sum\limits_{n=1}^{\infty}n\cdot I$ $(n\leq |\xi_1|< n+1)\leq |\xi_1|\leq 1+\sum\limits_{n=1}^{\infty}n\cdot I$ $(n\leq |\xi_1|< n+1)$ тогда

$$E\left|\xi_{1}\right| < \infty \Leftrightarrow \sum_{n=1}^{\infty} n \cdot I\left(n \leq \left|\xi_{1}\right| < n+1\right) < \infty \Leftrightarrow \sum_{n=1}^{\infty} P\left(\left|\xi_{1}\right| \geq n\right) < \infty \Leftrightarrow \sum_{n=1}^{\infty} P\left(\left|\xi_{n}\right| \geq n\right) < \infty$$

Величины независимы, поэтому по лемме Бореля-Кантелли имеем

$$\sum_{n=1}^{\infty} P\left(|\xi_n| \ge n\right) < \infty \Leftrightarrow P\left(|\xi_n| \ge n \text{ бесконечно часто}\right) = 0$$

Обозначим $A=\{\omega\mid |\xi_n\left(\omega\right)|\geq n$ б.ч. $\}$, P(A)=0. $\forall\omega\in\overline{A}\to\widetilde{\xi_n}$ и ξ_n отличаются в конечном числе точек, значит

$$\frac{\sum_{k=1}^{n} \widetilde{\xi}_{k} (\omega)}{n} \to 0 \Leftrightarrow \frac{\sum_{k=1}^{n} \xi_{k} (\omega)}{n} \to 0$$

 $E\widetilde{\xi_n} = E\xi_n I\left(|\xi_n| < n\right) = E\xi_1 I\left(|\xi_1| < n\right) \to 0$ при $n \to \infty$. Действительно, $\xi_1 I\left(|\xi_1| < n\right) \stackrel{\text{п.н.}}{\to} \xi_1$, а также $|\xi_1 I\left(|\xi_1| < n\right)| \le |\xi_1|$, причем $E\left|\xi_1\right| < \infty$, то есть по теореме Лебега о мажорируемой сходимости $E\xi_1 I\left(|\xi_1| < n\right) \stackrel{\rightarrow}{\to} E\xi_1 = 0$.

Тогда по лемме Теплица $\sum\limits_{k=1}^n \frac{E\widetilde{\xi}_k}{n} \to 0$ ($x_k=E\widetilde{\xi}_k \to 0,\ a_k=1$). Следовательно, $\sum\limits_{k=1}^n \frac{\widetilde{\xi}_k(\omega)-E\widetilde{\xi}_k}{n} \to 0$ $\Leftrightarrow \sum\limits_{k=1}^n \frac{\xi_k(\omega)}{n} \to 0$.

Итак, нужно доказать, что $\sum\limits_{k=1}^n \frac{\widetilde{\xi}_k(\omega) - E\widetilde{\xi}_k}{n} \stackrel{\text{п.н.}}{\to} 0$ при $n \to \infty$. Рассмотрим

$$\begin{split} \sum_{n=1}^{\infty} \frac{E\widetilde{\xi}_{n}^{2}}{n^{2}} &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} E\widetilde{\xi}_{n}^{2} \cdot \sum_{k=1}^{\infty} I\left(k-1 \leq \left|\widetilde{\xi}_{n}\right| < k\right) \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} E\sum_{k=1}^{\infty} k^{2} \cdot I\left(k-1 \leq \left|\widetilde{\xi}_{n}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} E\sum_{k=1}^{n} k^{2} \cdot I\left(k-1 \leq \left|\widetilde{\xi}_{n}\right| < k\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} E\sum_{k=1}^{n} k^{2} \cdot I\left(k-1 \leq \left|\xi_{n}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) \sum_{n=k}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left|\xi_{1}\right| < k\right) = \sum_{n=1}^{\infty} k^{2} \cdot P\left(k-1 \leq \left$$

Оценим $\sum_{n=k}^{\infty} \frac{1}{n^2} \le \int_{k-1}^{+\infty} \frac{dx}{x^2} = -\frac{1}{x} \Big|_{k-1}^{+\infty} = \frac{1}{k-1}$. Тогда можно продолжить

$$\sum_{n=1}^{\infty} \frac{E\tilde{\xi}_{n}^{2}}{n^{2}} \leq \sum_{k=1}^{\infty} k^{2} \cdot P\left(k-1 \leq |\xi_{1}| < k\right) \sum_{n=k}^{\infty} \frac{1}{n^{2}} \leq \sum_{k=1}^{\infty} k^{2} \cdot \frac{2}{k} \cdot P\left(k-1 \leq |\xi_{1}| < k\right) \leq 2\sum_{k=1}^{\infty} k \cdot P\left(k-1 \leq |\xi_{1}| < k\right) \leq 2\left(E\left|\xi_{1}\right| + 1\right) < \infty$$

Итак, $\sum_{n=1}^{\infty} \frac{D\tilde{\xi}}{n^2} < \infty$, тогда аналогично предыдущему УЗБЧ из неравенства Колмогорова получаем, что $\exists \xi: \sum_{n=1}^{\infty} \frac{\left(\tilde{\xi}_n - E\xi\right)}{n} \stackrel{\text{п.н.}}{\to} \xi$, тогда по лемме Кронекера $\frac{1}{n} \sum_{k=1}^{n} \left(\tilde{\xi}_k - E\xi_k\right) \stackrel{\text{п.н.}}{\to} 0$, то есть $\frac{1}{n} \cdot \sum_{k=1}^{n} \xi_k \stackrel{\text{п.н.}}{\to} 0$, $n \to \infty$, что нам и нужно.

39. Неравенство больших уклонений в УЗБЧ

Замечание. Итак, мы получили закон больших чисел: если ξ_1,\ldots — независимые одинаково распределенные величины с конечным ожиданием, то $P\left(\left|\frac{S_n-ES_n}{n}\right|\geq \varepsilon\right)\to 0$ при $n\to\infty$. Докажем, что характер стремления к 0 экспоненциальный.

Теорема. (Неравенство больших уклонений в УЗБЧ) В условия УЗБЧ, если существуют также все моменты, то $\exists c_1, c_2 > 0$, такие, что

$$P\left(\left|\frac{S_n - ES_n}{n}\right| \ge \varepsilon\right) \le \exp\left(-c_1 \cdot n\right) + \exp\left(-c_2 \cdot n\right)$$

Доказательство. Рассмотрим $\varphi_{\xi}(\lambda) = \ln E \exp(\lambda \xi)$ и U — некоторую окрестность нуля, в которой φ_{ξ} бесконечно дифференцируема (такая есть, так как есть все моменты). Тогда

$$\varphi_{\xi}'(\lambda) \left| \sum_{\lambda=0} = \frac{E\xi \cdot \exp(\lambda \xi)}{E \exp(\lambda \xi)} \right|_{\lambda=0} = E\xi$$

$$\varphi_{\xi}''(\lambda) \left| \sum_{\lambda=0} = \frac{E\xi^2 \exp(\lambda \xi) E \exp(\lambda \xi) - (E\xi \exp(\lambda \xi))^2}{(E \exp(\lambda \xi))^2} \right|_{\lambda=0} = D\xi > 0$$

Пусть теперь $\tau_{\xi}(a) = \sup_{\lambda \in U} (a\lambda - \varphi_{\xi}(\lambda)).$

Заметим, что

$$\tau_{\xi}(E\xi) = 0$$

$$a > E\xi \to \tau_{\xi}(a) = \sup_{\lambda > 0, \lambda \in U} (a\lambda - \varphi_{\xi}(\lambda)) > 0$$

$$a < E\xi \to \tau_{\xi}(a) = \sup_{\lambda < 0, \lambda \in U} (a\lambda - \varphi_{\xi}(\lambda)) < 0$$

Теперь распишем по неравенству Маркова

$$P\left(\frac{S_n - ES_n}{n} \ge \varepsilon\right) = P\left(\exp\left(\lambda \cdot \frac{S_n - ES_n}{n}\right) \ge \exp\left(\lambda\varepsilon\right)\right) \le \frac{E\exp\left(\lambda \cdot \frac{S_n - ES_n}{n}\right)}{\exp\left(\lambda\varepsilon\right)} =$$

$$= \exp\left(-\varepsilon\lambda - \ln E\exp\left(\lambda \cdot \frac{S_n - ES_n}{n}\right)\right) = \exp\left(-\varepsilon\lambda - \ln\prod_{i=1}^n \exp\left(\lambda \cdot \frac{\xi_i - E\xi_i}{n}\right)\right) =$$

$$= \exp\left(-n\left(-\varepsilon\frac{\lambda}{n} - \ln E\exp\left(\lambda \cdot \frac{\xi - E\xi}{n}\right)\right) \le \exp\left(-n\cdot\frac{\tau_{\xi - E\xi}(\varepsilon)}{n}\right) = \exp\left(-n\cdot c_1\right)$$

Аналогично, $P\left(\frac{S_n-ES_n}{n}\leq -\varepsilon\right)\leq \exp\left(-n\cdot c_2\right)$. Итак, получаем требуемое

$$P\left(\left|\frac{S_n - ES_n}{n}\right| \ge \varepsilon\right) \le \exp\left(-c_1 \cdot n\right) + \exp\left(-c_2 \cdot n\right)$$

Лекция 15. Характеристические функции

40. ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Определение. Характеристической функцией случайной величины называется функция

$$\varphi_{\mathcal{E}}(t) = E \exp\left(it\xi\right)$$

Определение. Характеристической функцией случайного вектора называется функция

$$\varphi_{\mathcal{E}}(t) = E \exp(i \langle t, \xi \rangle)$$

Пример.

(1)
$$\xi \sim Bern(p)$$
, $\varphi_{\xi}(t) = \exp(it \cdot 1) \cdot p + \exp(it \cdot 0) \cdot (1-p) = p \cdot \exp(it) + q$

(2)
$$\xi \sim U(a,b)$$
. $\varphi_{\xi}(t) = \int_{a}^{b} \exp(itx) \frac{1}{b-a} \cdot dx = \frac{e^{itb} - e^{ita}}{it(b-a)}$

(3)
$$\xi \sim N(0,1)$$
. $\varphi_{\xi}(t) = \int_{\mathbb{D}} e^{itx} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \cdot dx = \exp\left(-\frac{t^2}{2}\right)$

(4)
$$\xi \sim N(a, \sigma^2)$$
. $\varphi_{\xi}(t) = E \exp\left(it\xi\right) = E \exp\left(it\sigma\left(\frac{\xi - a}{\sigma}\right) + ita\right) = e^{ita} \cdot E \exp\left(it\sigma\frac{\xi - a}{\sigma}\right) = e^{ita} \cdot \varphi_{\xi - a}(t\sigma) = e^{ita} \cdot e^{-\frac{(t\sigma)^2}{2}} = \exp\left(-\frac{(t\sigma)^2}{2} + ita\right)$

Теорема. (О единственности) Если $\varphi_{\xi}(t) \equiv \varphi_{\eta}(t)$, то $\xi \stackrel{d}{=} \eta$.

Замечание. Приводим без доказательства.

Теорема. (О независимости) (ξ_1, \dots, ξ_n) — случайный вектор. Тогда ξ_1, \dots, ξ_n независимы в совокупности тогда и только тогда, когда $\varphi_{(\xi_1, \dots, \xi_n)}(t_1, \dots, t_n) = \prod_{i=1}^n \varphi_{\xi_i(t_i)}$

Доказательство.

 \Rightarrow . Пусть ξ_1, \dots, ξ_n — независимы в совокупности, тогда $\left\{e^{it_i\xi_i}\right\}_{i=1}^n$ независимы в совокупности.

$$E \exp\left(i\left\langle t,\xi\right\rangle\right) = E \exp\left(i\cdot\left(t_1\xi_1+\ldots+t_n\xi_n\right)\right) = E\prod_{i=1}^n\left(\cos t_i\xi_i+i\cdot\sin t_i\xi_i\right) = \prod_{i=1}^n E \exp\left(it_i\xi_i\right)$$

Так как образы борелевских функций от независимых величин независимы.

 \Leftarrow . По данным ξ_1, \dots, ξ_n построим независимые η_1, \dots, η_n , такие, что $\xi_i \stackrel{d}{=} \eta_i$. Это делается следующим образом. Рассмотрим вероятностное пространство $([0;1]^n, \mathcal{B}([0;1]^n), \mu_L)$, где μ_L — мера Лебега на [0;1] и определим $\eta_i = F_{\xi_i}^{-1}(x_i)$.

Легко видеть, что маргинальные распределения нового вектора остались теми же. В самом деле, $P\left(\eta_i < c\right) \Leftrightarrow P\left(\{\overline{x} \mid x_i < F_{\xi_i}(c)\}\right)$. Мера такого множества в самом деле равна $F_{\xi_i}(c)$. Независимость тоже очевидна:

$$P(\eta_1 < c_1, \dots, \eta_n < c_n) = P\{\overline{x} \mid x_1 < F_{\xi_1}(c_1), \dots, x_n < F_{\xi_n}(c_n)\} = \prod_{i=1}^n F_{\xi_i}(c_i) = \prod_{i=1}^n F_{\eta_i}(c_i)$$

Тогда

$$\forall t_1, \dots, t_n \to \varphi_{(\eta_1, \dots, \eta_n)}(t_1, \dots, t_n) = \prod_{k=1}^n \varphi_{\eta_k}(t_k) = \prod_{k=1}^n \varphi_{\xi_k}(t_k) = \varphi_{(\xi_1, \dots, \xi_n)}(t_1, \dots, t_n)$$

По теореме о единственности получаем, что $(\eta_1, \dots, \eta_n) \stackrel{d}{=} (\xi_1, \dots, \xi_n)$, то есть ξ_1, \dots, ξ_n — независимы в совокупности.

Теорема. (Формула обращения) Если F(x) — функция распределения случайной величины ξ , а u b — какие-то из точек непрерывности, а φ — ее характеристическая функция, то

$$F(b) - F(a) = \lim_{c \to \infty} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \cdot \varphi(t) \cdot dt$$

$$E$$
сли $\int\limits_{-\infty}^{+\infty} |\varphi(t)| \cdot dt < \infty$, то $\exists \rho_{\xi}(x) = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} e^{-itx} \cdot \varphi(t) \cdot dt$ — плотность ξ .

Замечание. Приводим без доказательства.

Теорема. Если $\xi_1, \ldots - n$ оследовательность случайных величин, то

(1)
$$\xi_n \stackrel{d}{\to} \xi \Rightarrow \forall t \to \varphi_{\xi_n}(t) \to \varphi_{\xi}(t)$$

$$(2) \ \forall t \to \left(\lim_{n\to\infty} \varphi_{\xi_n}(t) = g(t), \ g(t) \ - \ \text{непрерывна } e \ 0\right) \Rightarrow \exists \xi: \ \varphi_{\xi}(t) = g(t), \ \xi_n \overset{d}{\to} \xi.$$

Замечание. Приводим без доказательства.

41. Свойства характеристических функций

Утверждение. $|\varphi_{\xi}(t)| \leq |\varphi_{\xi}(0)| = 1$.

Доказательство.

$$|\varphi_{\xi}(t)| = |Ee^{it\xi}| \le E|e^{it\xi}| = E(1) = 1$$

 $\varphi_{\xi}(0) = E \exp(i \cdot 0 \cdot \xi) = 1$

Утверждение. $\varphi_{\xi}(t)$ равномерно непрерывна на \mathbb{R} .

Доказательство.

$$|\varphi_{\xi}(t) - \varphi_{\xi}(s)| = |Ee^{it\xi} - Ee^{is\xi}| \le E|e^{is\xi}| \left| e^{i(t-s)\xi} - 1 \right| = E|e^{i(t-s)\xi} - 1| = E\sqrt{(\cos((t-s)\xi) - 1)^2 + \sin^2((t-s)\xi)} = E\sqrt{2 - 2\cos((t-s)\xi)} = E\left(2\left|\sin\left(\frac{t-s}{2}\xi\right)\right|\right)$$

Ho $|\sin{(h\xi)}| \stackrel{\text{п.н.}}{\underset{t\to 0}{\to}} 0$, $E |\sin{(h\xi)}| \to 0$, поэтому, $\forall \varepsilon > 0 \to \exists \delta > 0$: $\forall |t-s| < \delta \to E \left(2 \left|\sin{\left(\frac{t-s}{2}\xi\right)}\right|\right) < \varepsilon$, то есть $|\varphi_{\xi}(t) - \varphi_{\xi}(s)| < \varepsilon$, что нам и нужно.

Утверждение. $\varphi_{\xi}(t) \in \mathbb{R} \Leftrightarrow \xi \stackrel{d}{=} -\xi$.

Доказательство.
$$\varphi_{\xi}(t) = E\left(\cos t\xi + i\sin t\xi\right), \ \varphi_{\xi}(t) = \varphi_{-\xi}(t) = \overline{\varphi_{\xi}(t)}.$$

Утверждение. Если $E |\xi|^n < \infty$, то $\forall r < n \to \exists \varphi_{\xi}^{(r)}$ и $\varphi_{\xi}^{(r)}(t) = \int\limits_{-\infty}^{\infty} (ix)^r dF(x), E\xi^r = \frac{\varphi_{\xi}^{(r)}(0)}{i^r}.$

Пример.
$$(Ee^{it\xi})'\Big|_{t=0} = Ei\xi \cdot e^{it\xi}\Big|_{t=0} = iE\xi.$$

Утверждение. Если $\exists \varphi_{\xi}^{(2n)}(0) < \infty$, то $E\xi^{2n} < \infty$.

Утверждение.
$$\forall t \in (-R;R) \to \varphi_{\xi}(t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \cdot E\xi^n$$
, если $E \left| \xi \right|^n < \infty$, $\overline{\lim}_{n \to \infty} \frac{(E|\xi|^n)^{1/n}}{n} = \frac{1}{R}$.

Пример.

- (1) $\sin t$ не является характеристической, так как $\sin 0 = 0 \neq 1$
- (2) $\cos t^2$ не является характеристической, так как не является равномерно непрерывной на $\mathbb R$
- (3) $\cos t$ является характеристической для ξ , $P\left(\xi=1\right)=P\left(\xi=-1\right)=\frac{1}{2}.$ Тогда $\varphi_{\xi}(t)=\frac{1}{2}e^{it}+\frac{1}{2}e^{-it}=\cos t.$

Более того, если ξ_1, \dots, ξ_n — независимые с таким распределением, то

$$\varphi_{\xi_1 + \dots + \xi_n}(t) = E \exp(i \cdot (\xi_1 + \dots + \xi_n) \cdot t) = \prod_{j=1}^n e^{i\xi_j t} = \cos^n t$$

Теорема. (Бохнер-Хинчин) Пусть φ — непрерывна в θ , $\varphi(0) = 1$. Тогда φ — характеристическая тогда и только тогда, когда φ неотрицательно определена, то есть

$$orall n,\ t_1,\dots,t_n\in\mathbb{R} o \left(egin{array}{ccc} arphi\left(t_1-t_1
ight)&\dots&arphi\left(t_1-t_n
ight)\\ arphi&\dots&arphi\\ arphi\left(t_n-t_1
ight)&\dots&arphi\left(t_n-t_n
ight) \end{array}
ight)-$$
 неотрицательно определена, т.е
$$orall z_1,\dots,z_n\in\mathbb{C} o \left(\sum_{i=1}^n\sum_{j=1}^n\overline{z_i}arphi\left(t_i-t_j
ight)z_j
ight)\geq 0$$

Доказательство.

$$\sum_{k=1}^{n} \sum_{j=1}^{n} \overline{z}_{k} \varphi \left(t_{i} - t_{j} \right) z_{j} = E \sum_{k=1}^{n} \sum_{j=1}^{n} e^{i\xi (t_{k} - t_{j})} z_{j} \overline{z}_{k} =$$

$$= E \sum_{k=1}^{n} \sum_{j=1}^{n} \left(e^{i\xi t_{k}} z_{j} \right) \cdot \left(\overline{e^{i\xi t_{j}}} \overline{z}_{k} \right) = E \left| \sum_{j=1}^{n} e^{i\xi t_{j}} z_{j} \right|^{2} \geq 0$$

Лекция 16. Гауссовские векторы

42. ГАУССОВСКИЕ ВЕКТОРЫ

Определение. $\xi = (\xi_1, \dots, \xi_n)$ называется *гауссовским вектором*, если

$$\varphi_{\xi}(t) = \exp\left(i\langle a, t \rangle - \frac{1}{2}\langle \Sigma t, t \rangle\right)$$

Где $a \in \mathbb{R}^n$, Σ — симметрическая неотрицательно определенная матрица.

Определение. $\xi = (\xi_1, \dots, \xi_n)$ — гауссовский вектор, если $\exists A \in M_{n \times m}, b \in \mathbb{R}^n : \xi^T = A\eta + b$, где $\eta = (\eta_1, \dots, \eta_m)^T$, η_i — независимые, $\eta_i \sim N(0, 1)$.

Определение. $\xi = (\xi_1, ..., \xi_n)$ — гауссовский вектор, если $\forall (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n \to \langle \lambda, \xi \rangle$ — нормальная случайная величина.

Теорема. (Об эквивалентных определениях) Три определения эквивалентны.

Доказательство.

$$(1)\Rightarrow(2).$$
 $\Sigma=T^TD\cdot T,$ где T — ортогональная, D — диагональная. Тогда,

$$\varphi_{\xi-a}(t) = E \exp\left(i\left\langle\xi - a, t\right\rangle\right) = e^{-i\left\langle a, t\right\rangle} \cdot E \exp\left(i\left\langle\xi, t\right\rangle\right) = \exp\left(-\frac{1}{2}\left\langle\Sigma t, t\right\rangle\right) =$$

$$= \exp\left(-\frac{1}{2}\left\langle T^T \cdot D \cdot T \cdot t, t\right\rangle\right) = \exp\left(-\frac{1}{2} \cdot \left\langle\left(\sqrt{D} \cdot T\right)^T \left(\sqrt{D} \cdot T\right) \cdot t, t\right\rangle\right) =$$

$$= \exp\left(-\frac{1}{2} \cdot \left(\sqrt{D} \cdot T \cdot t\right)^T \cdot \left(\sqrt{D} \cdot T \cdot t\right)\right) = \exp\left(-\frac{1}{2} \cdot \left\langle\sqrt{D} \cdot T \cdot t, \sqrt{D} \cdot T \cdot t\right\rangle\right)$$

$$\varphi_{B(\xi-a)}(t) = E \exp\left(i \left\langle B\left(\xi - a\right), t\right\rangle\right) = E \exp\left(i \left(\xi - a\right)^T \cdot B^T \cdot t\right) =$$

$$= E \exp\left(i \left\langle \xi - a, B^T \cdot t\right\rangle\right) = \varphi_{\xi-a} \left(B^T \cdot t\right)$$

Тогда возьмем
$$B = \left(\left(\sqrt{D} \cdot T\right)^T\right)^{-1}$$
, тогда $\varphi_{B(\xi-a)}\left(t\right) = \varphi_{\xi-a}\left(B^T \cdot t\right) = \exp\left(-\frac{1}{2}\left\langle t, t \right\rangle\right)$.

А значит, если $\eta = B\left(\xi - a\right) \Rightarrow \varphi_{\eta}(t) = \exp\left(-\frac{1}{2}\left\langle t, t \right\rangle\right)$, то есть $\eta = (\eta_1, \dots, \eta_n), \ \eta_i \sim N(0, 1), \eta_i \perp \!\!\! \perp \eta_j$ при $i \neq j$.

$$(2)\Rightarrow (3)$$
. Рассмотрим $(\lambda_1,\ldots,\lambda_n)\in\mathbb{R}^n,\ \xi=A\eta+b$. Тогда

$$\langle \xi, \lambda \rangle = \langle A\eta + b, \lambda \rangle = \eta^T A^T \lambda + b^T \lambda = c + \sum_{i=1}^m c_i \eta_i \sim N \left(c, c_1^2 + \ldots + c_m^2 \right)$$
 (нетрудно убедиться, что сумма стандартных нормальных величин выглядит именно так).

 $(3) \Rightarrow (1)$. Так как $\langle \xi, \lambda \rangle$ имеет нормальное распределение, то

$$\begin{split} \varphi_{\xi}(\lambda) &= E \exp\left(i \left\langle \xi, \lambda \right\rangle\right) = \exp\left(i E \left\langle \xi, \lambda \right\rangle - \frac{1}{2} D \left\langle \xi, \lambda \right\rangle\right) = \\ &= \exp\left(i E \left\langle \xi, \lambda \right\rangle - \frac{1}{2} \sum_{i,j=1}^{n} \cos\left(\lambda_{i} \xi_{i}, \lambda_{j} \xi_{j}\right)\right) = \exp\left(i \left\langle a, \lambda \right\rangle - \frac{1}{2} \sum_{i,j=1}^{n} \lambda_{i} \lambda_{j} \cos\left(\xi_{i}, \xi_{j}\right)\right) = \\ &= \exp\left(i \left\langle \lambda, a \right\rangle - \frac{1}{2} \cdot \left\langle \Sigma \lambda, \lambda \right\rangle\right) \end{split}$$

$$\Sigma = \begin{pmatrix} cov(\xi_1, \xi_1) & \dots & cov(\xi_1, \xi_n) \\ \vdots & \ddots & \vdots \\ cov(\xi_n, \xi_1) & \dots & cov(\xi_n, \xi_n) \end{pmatrix}$$

Покажем положительную определенность матрицы ковариации:

$$\forall t_1, \dots, t_n \in \mathbb{R} \to \sum_{i,j=1}^n cov\left(\xi_i, \xi_j\right) t_i t_j = cov\left(\sum_{i=1}^n t_i \xi_i, \sum_{j=1}^n t_j \xi_j\right) = D\left(\sum_{i=1}^n t_i \xi_i\right) \ge 0$$

3амечание. Тогда, если $\varphi_{\xi}(t) = \exp\left(i\left\langle a,t\right\rangle - \frac{1}{2}\left\langle \Sigma\cdot t,t\right\rangle\right)$, то $a=E\xi$, а Σ — матрица ковариации ξ_1,\ldots,ξ_n .

3амечание. Пусть Σ — матрица ковариации гауссовского вектора ξ , тогда

$$\Sigma = \begin{pmatrix} \Sigma_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \Sigma_k \end{pmatrix} \Leftrightarrow \varphi_{\xi}(t) = \varphi_{(\xi_1,\dots,\xi_{j_1})}(t_1,\dots,t_{j_1}) \cdot \dots \cdot \varphi_{(\xi_{j_{k-1}+1},\dots,\xi_n)}(t_{j_{k-1}+1},\dots,t_n)$$

$$\Leftrightarrow (\xi_1,\dots,\xi_{j_1})\,, (\xi_{j_1+1},\dots,\xi_{j_2})\,,\dots\,, \left(\xi_{j_{k-1}+1},\dots,\xi_n\right) \,-\, \text{независимы в совокупности}$$

Лекция 17. Центральная предельная теорема

43. Центральная предельная теорема для одинаково распределенных случайных величин

Теорема. (ЦПТ для одинаково распределенных случайных величин) Пусть $\xi_1, \ldots -$ последовательность независимых одинаково распределенных случайных величин, $E\xi_i^2 < \infty$. Обозначим $S_n = \sum_{i=1}^n \xi_i$. Тогда

$$\frac{S_n - ES_n}{\sqrt{DS_n}} \stackrel{d}{\to} \xi \sim N(0, 1)$$

Доказательство.

$$\varphi_{\frac{S_n - ES_n}{\sqrt{DS_n}}}(t) = E \exp\left(i \cdot \frac{S_n - ES_n}{\sqrt{DS_n}} \cdot t\right)$$

Обозначим $E\xi_i=a,\ D\xi_i=\sigma^2,$ тогда

$$\varphi_{\frac{S_n - ES_n}{\sqrt{DS_n}}}(t) = E \exp\left(i \cdot \sum_{j=1}^n \frac{\xi_j - a}{\sqrt{n\sigma^2}} \cdot t\right) = \prod_{j=1}^n E \exp\left(i \cdot \frac{\xi_j - a}{\sqrt{n\sigma^2}} \cdot t\right) = \varphi(t)$$

Разложим каждый множитель $\varphi(t)$ в ряд по моментам:

$$\begin{split} E\frac{\xi_j-a}{\sigma\sqrt{n}} &= 0\\ E\left(\frac{\xi_j-a}{\sigma\sqrt{n}}\right)^2 &= \frac{D\xi_j}{\sigma^2n} = \frac{1}{n}\\ \exp\left(i\cdot\frac{\xi_j-a}{\sqrt{n}\sigma^2}\cdot t\right) &= 1-\frac{1}{2n}t^2 + O\left(\frac{t^3}{n\sqrt{n}}\right) = \exp\left(-\frac{t^2}{2n} + O(t^3)\right) \end{split}$$

Тогда

$$\varphi(t) = \prod_{j=1}^n \exp\left(-\frac{1}{2n} \cdot t^2 + O(t^3)\right) = \exp\left(-\frac{1}{2}t^2 + O\left(\frac{t^3}{\sqrt{n}}\right)\right) \sim e^{-\frac{1}{2}t^2}, \text{ при } n \to \infty$$

Итак,
$$\varphi(t) \to \varphi_{N(0,1)}(t)$$
 при $n \to \infty$, то есть $\frac{S_n - ES_n}{\sqrt{DS_n}} \stackrel{d}{\to} N(0,1)$.

44. Локальная предельная теорема

Теорема. (Локальная предельная теорема) Пусть $\varphi(n) = o(n^{2/3})$. Пусть $\xi_i \sim Bern(p) -$ независимые. Тогда

$$\sup_{k: |k-np| \le \varphi(n)} \left| \frac{P\left(S_n = k\right)}{\frac{1}{\sqrt{2\pi np(1-p)}} \cdot \exp\left(-\frac{(k-np)^2}{2np(1-p)}\right)} - 1 \right| \to 0$$

Доказательство.

$$P(S_n = k) = C_n^k p^k (1 - p)^{n-k} \sim \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi k} \left(\frac{k}{e}\right)^k \sqrt{2\pi (n - k)} \left(\frac{n - k}{e}\right)^{n - k}} \cdot p^k (1 - p)^{n - k}$$

При $n \to \infty, \ k \to \infty, \ n-k \to \infty$ (это верно, так как $|k-np| \le \varphi(n)$), получаем

$$P(S_n = k) \sim \frac{1}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{\frac{k}{n}} \sqrt{1 - \frac{k}{n}} \left(\frac{\left(\frac{k}{n}\right)^{k/n} \left(1 - \frac{k}{n}\right)^{1 - k/n}}{p^{k/n} \cdot (1 - p)^{1 - k/n}}\right)^n}$$

Рассмотрим $f(x) = \frac{x^x(1-x)^{1-x}}{p^x(1-p)^{1-x}}$:

$$\ln f = x \ln x + (1 - x) \ln(1 - x) - x \ln p - (1 - x) \ln(1 - p), \ \ln f(p) = 0$$

$$(\ln f)' = \ln x + 1 - \ln(1 - x) - 1 - \ln p + \ln(1 - p), \ (\ln f)'(p) = 0$$

$$(\ln f)'' = \frac{1}{x} + \frac{1}{1 - x}$$

$$\ln f = \left(\frac{1}{p} + \frac{1}{1 - p}\right) \frac{1}{2} (x - p)^2 + O\left((x - p)^3\right)$$

Тогда

$$P(S_n = k) \sim \frac{1}{\sqrt{2\pi np (1-p)}} \cdot \underbrace{\frac{1}{\sqrt{\frac{k/n}{p}}} \sqrt{\frac{1-k/n}{1-p}}}_{\sim 1} \cdot \exp\left(n \cdot \left(-\left(\frac{1}{p} + \frac{1}{1-p}\right) \cdot \frac{1}{2} \left(\frac{k}{n} - p\right)^2 + O\left(\left(\frac{k}{n} - p\right)^3\right)\right)\right)$$

Учтем, что $k-np \le \varphi(n), \ \varphi(n) = o(n^{2/3}) \Rightarrow \left(\frac{k-np}{n}\right)^3 = o(\frac{1}{n}) \Rightarrow n \cdot O\left(\left(\frac{k}{n}-p\right)^3\right) = o(1) \to 0.$ Тогда

$$P\left(S_n = k\right) \sim \frac{1}{\sqrt{2\pi n p\left(1-p\right)}} \cdot \exp\left(-\frac{(k-np)^2}{2np\left(1-p\right)}\right)$$

Что и требовалось доказать.

45. Интегральная предельная теорема

Теорема. (Интегральная предельная теорема) Пусть $\xi_i \sim Bern(p)$ — независимые. Тогда

$$\sup_{-\infty \le a < b \le +\infty} \left| P\left(a < \frac{S_n - ES_n}{\sqrt{DS_n}} \le b \right) - \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \cdot dx \right| \to 0$$

Пример. Экзамен сдают 100000 студентов. Вероятность сдачи $\frac{1}{3}$.

Найти P (сдадут от 32000 до 34000 студентов). Положим $\xi_1, \dots, \xi_{100000} \sim Bern(\frac{1}{3})$. Тогда

$$P\left(\frac{32000 - 33333}{\sqrt{99999 \cdot \frac{1}{3} \cdot \frac{2}{3}}} < \frac{S_n - 33333}{\sqrt{99999 \cdot \frac{1}{3} \cdot \frac{2}{3}}} \le \frac{34000 - 33333}{\sqrt{99999 \cdot \frac{1}{3} \cdot \frac{2}{3}}}\right) \approx \frac{\int_{-\frac{1333}{\sqrt{22222}}} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \cdot dx \approx \Phi(4) - \Phi(-9) = \widetilde{\Phi}(4) + \widetilde{\Phi}(9) \approx 0.999968$$

Где
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}} \cdot dt, \ \widetilde{\Phi}(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}} \cdot dt.$$

46. ТЕОРЕМА ПУАССОНА

Теорема. Пусть $\xi_i \sim Bern(p)$ — независимые одинаково распределенные и пусть $pn \to \lambda$. Тогда $S_n \stackrel{d}{\to} \xi \sim Pois(\lambda)$

Доказательство. Найдем

$$P(S_n = k) = C_n^k p^k (1 - p)^{n-k} =$$

$$= \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \left(\frac{\lambda}{n} + O(\frac{1}{n})\right)^k \cdot \left(1 - \frac{\lambda}{n} + O(\frac{1}{n})\right)^{n-k} \sim$$

$$\sim \frac{n^k}{k!} \cdot \frac{\lambda^k}{n^k} \cdot \exp\left(-\frac{\lambda}{n} (n-k)\right) \sim \frac{e^{-\lambda} \lambda^k}{k!} = P(\eta = k)$$

Где $\eta \sim Pois(\lambda)$. То есть $S_n \stackrel{d}{\to} Pois(\lambda)$.

Пример. Рассмотрим пример с 10000 студентами и вероятностью сдачи $\frac{1}{1000}$.

Найдем P (сдадут хотя бы двое). $n=10000,\ p=0.001 \Rightarrow np=\lambda=10.$ Рассмотрим $\eta\sim Pois(10).$ Тогда

$$P\left(S_{10000} \ge 2\right) \approx P\left(\eta \ge 2\right) = 1 - e^{-10} \cdot \left(1 + \frac{10}{1!}\right) = 1 - \frac{11}{e^{10}} \approx 0.9995$$