

# **CFD Lab**

### The Lattice-Boltzmann Method

Nikola Tchipev, Friedrich Menhorn 19.05.2017







# **Outline**

Intro

**Molecular Dynamics** 

From MD to LBM

**Lattice-Boltzmann Method** 





# LBM - a different story

- Macroscale:
  - Finite Difference Methods (FDM)
- Mesoscale:
  - Lattice-Boltzmann Method (LBM)
- Microscale:
  - Molecular Dynamics (MD)







#### **LBM**

- fluid solver, but we don't solve NSE
- based on statistical mechanics
- new (and still evolving) method
- easy to program
- already a factor in the automotive industry







What assumptions did we have in Worksheet 1?





What assumptions did we have in Worksheet 1?

• inscompressible, isothermal, Newtonian, ...





What assumptions did we have in Worksheet 1?

- inscompressible, isothermal, Newtonian, ...
- continuum assumption





What assumptions did we have in Worksheet 1?

- · inscompressible, isothermal, Newtonian, ...
- · continuum assumption

Can we solve *any* flow problem with NSE? Flow in a carbon nanotube?





# The continuum assumption

#### Fluids in reality

composed of atoms and molecules, empty space in between

Fluids under the continuum assumption

composed of continuous matter, filling the entire space

When is the continuum assumption valid?





# The continuum assumption

Continuum assumption is valid for

$$Kn \ll 1.$$
 (1)

Kn: Knudsen number

$$Kn = \frac{\lambda}{L_c},$$
 (2)

 $L_c$ : characteristic length

 $\lambda$ : mean free path

• air at STP:  $\lambda \approx \mathcal{O}(nm)$ 





# Thought experiment

#### Small particle in fluid at rest

- $\Rightarrow \vec{u} = 0$  identically
- L<sub>c</sub> diameter of particle.
- as *L<sub>c</sub>* decreases, *Kn* increases
- as Kn approaches 1, the particle begins to feel collisions with individual molecules
- Brownian motion kicks in!

But NSE (or the Stokes Eq.) predict no motion of the particle!





## **Outline**

Intro

**Molecular Dynamics** 

From MD to LBM

Lattice-Boltzmann Method





# **Molecular Dynamics**

Nano-, Micro- things:

Nano-, Microfluidics

### **Applications**

- nanotubes, -pores, -filters...
- Lab-on-a-chip



(Videos - flow in a channel)





mean speed: 0.17, max speed: 12.4















### Can we solve any flow problem with MD?

threoretically yes. Practically:

- Largest MD simulation:  $4 \times 10^{12}$  particles.
- 1 mililiter of water: 3 × 10<sup>22</sup> particles...
- timesteps in MD:  $\mathcal{O}(10^{-15}s)$ ...

### very compute intensive

#### Statistical noise

Need to sample:

- in space
- in time
- •



# **Outline**

Intro

**Molecular Dynamics** 

From MD to LBM

Lattice-Boltzmann Method

### From MD to LBM



- 1. introduce cells
- what is the probability that between two timesteps
  - a particle travels (streams) from cell i to cell j?
  - particles collide?

#### **Discretize**

- · particle position
- particle velocity
- time





## From MD to LBM

#### **Lattice Gas Cellular Automata**

- historically Lattice Gas Cellular Automata as intermediate step
- theoretically from Boltzmann Equation (Thermodynamics)





## **Outline**

Intro

**Molecular Dynamics** 

From MD to LBM

**Lattice-Boltzmann Method** 



Replace boolean  $n_i$  with real  $f_i$ .

#### **Algorithm**

```
while (t != t_{end}) {
```

- **1.** collide handle  $f_i$ 's at the same site
- 2. stream travel the respective edge
- $3. \ t = t + \Delta t$





# The $f_i$



 $f(\vec{x}, \vec{v}, t)$ : probability density function for finding particles with velocity  $\vec{v}$  at  $(\vec{x}, t)$ 

$$f \in \mathbb{R}, f \in (0,1)$$





### The LBM lattices

#### DnQm notation:

- n: number of dimensions
- m: number of directions



other possibilities: D2Q5, D2Q7, D3Q15, D3Q19





# Mesoscopic to macroscopic quantities

### $\textbf{Mesoscopic} \rightarrow \textbf{macroscopic}$

(where do we need this conversion?)

### $\textbf{Mesoscopic} \leftarrow \textbf{macroscopic}$

(where do we need this conversion?)



# Mesoscopic → macroscopic

### Given $\{f_i\}$ , compute $\{\rho, u, p\}$ :

density:

$$\rho(\vec{x},t) = \sum_{i=0}^{Q-1} f_i \approx 1$$

momentum:

$$\vec{u}(\vec{x},t)\rho(\vec{x},t) = \sum_{i=0}^{Q-1} f_i \cdot c_i$$

pressure:

$$p = \rho \cdot c_s^2$$

 $c_i$ : velocity associated to  $f_i$ (e.g. for D2Q9,  $c_i = (\alpha_i, \beta_i), \alpha_i, \beta_i \in \{-1, 0, 1\}$ )  $c_s = \frac{1}{\sqrt{2}}$ : speed of sound local operations





# Mesoscopic ← macroscopic

### Given $\{\rho, u\}$ , compute $\{f_i\}$ :

The equilibrium distribution function  $f_i^{eq}(\rho, u)$ : a specific mapping from  $\{\rho, u\}$  to  $\{f_i\}$ :

$$f_i^{eq} = w_i \rho \left( 1 + \frac{\vec{c}_i \cdot \vec{u}}{c_s^2} + \frac{1}{2c_s^4} (\vec{c}_i \cdot \vec{u})^2 - \frac{1}{2c_s^2} \vec{u} \cdot \vec{u} \right),$$

 $w_i$  - weights, depending on the chosen lattice. E.g. D2Q9:

$$w_i = \begin{cases} \frac{4}{9} & \text{if } ||c_i|| = 0\\ \frac{1}{9} & \text{if } ||c_i|| = 1\\ \frac{1}{36} & \text{if } ||c_i|| = \sqrt{2} \end{cases}$$

needed for IC. BC and collisions





# The equilibrium distribution

 $f^{eq} \approx \text{Normal distribution}$ 





# The equilibrium distribution

feq - Maxwell Boltzmann equilibrium distribution

$$f^{eq}(\vec{x}, \vec{c_i}, t) = \left(\frac{m}{2\pi k_B T}\right)^{D/2} \cdot \exp\left(-\frac{m(\vec{c_i} - \vec{u}(\vec{x}, t))^2}{2k_B T}\right),$$

it assumes an ideal gas:

$$\rho V = Nk_b T$$

$$\rho = \frac{N}{V} \times const = \rho \times const$$





Moreover, the form

$$f_i^{eq} = w_i \rho \left( 1 + \frac{\vec{c}_i \cdot \vec{u}}{c_s^2} + \frac{1}{2c_s^4} (\vec{c}_i \cdot \vec{u})^2 - \frac{1}{2c_s^2} \vec{u} \cdot \vec{u} \right),$$

assumes  $u \ll c_i$ .

So, we assume a low Mach number:

$$Ma = \frac{u}{c_s} << 1$$

 $c_s$  - speed of sound, information transfer

$$c_s = const \times \sqrt{k_b T}$$

weakly compressible flow





# **Collision**

### **BGK** approximation

Bhatnagar-Gross-Krook approximation

$$\Omega_i = -rac{1}{ au}(f_i - f_i^{eq}(
ho, u))$$

 $\tau \in (0.5, 2.0)$  - relaxation "time"

$$\tau = \frac{\nu}{c_s^2} + 0.5$$

u - kinematic viscosity

we model "weak departure from equilibrium state of an ideal gas"





### Why collision is local





### Why collision is local





### Why collision is local







### Why collision is local





### Why collision is local







#### **Collision with intuition**

collision: 
$$f_i := f_i + \Omega_i$$
 
$$f_i := f_i - \frac{1}{\tau} \left( f_i - f_i^{eq} \right)$$

Let 
$$\omega = \frac{1}{\tau} \in (0.5, 2.0)$$
:

$$f_i := (1 - \omega)f_i + \omega f_i^{eq},$$





#### Collision with intuition

collision: 
$$f_i := f_i + \Omega_i$$
 
$$f_i := f_i - \frac{1}{\tau} \left( f_i - f_i^{eq} \right)$$

Let 
$$\omega = \frac{1}{\tau} \in (0.5, 2.0)$$
:

$$f_i := (1 - \omega)f_i + \omega f_i^{eq},$$

### SOR update rule?





Channel with a narrowing, flow from left to right:





Channel with a narrowing, flow from left to right:



Velocity magnitude at high Re:



Channel with a narrowing, flow from left to right:



Velocity magnitude at high *Re*:

.. at low Re:







# **Collision and streaming**

### Combined update rule

$$f_{i}\left(\vec{x}+c_{i}\Delta t,t+\Delta t\right)=f_{i}\left(\vec{x},t\right)-\frac{1}{\tau}\left(f_{i}\left(\vec{x},t\right)-f_{i}^{eq}\left(\rho\left(\vec{x},t\right),u\left(\vec{x},t\right)\right)\right)$$

#### Implementation

collide:

$$f_i^*(\vec{x},t) := f_i(\vec{x},t) - \frac{1}{\tau} \left( f_i(\vec{x},t) - f_i^{eq} \left( \rho(\vec{x},t), u(\vec{x},t) \right) \right)$$

stream:

$$f_i(\vec{x} + c_i \Delta t, t + \Delta t) = f_i^*(\vec{x}, t)$$





#### **NSE** can be recovered!

multiscale Chapman Enskog analysis

#### The continuous case

We are solving the continuous Boltzmann equation

$$\frac{\partial f}{\partial t} + \vec{\mathbf{v}} \cdot \nabla = \Omega$$

with our particular Lattice space- and velocity discretization.

density:

$$\rho(\vec{x},t) = \int_{\mathbb{R}^D} f(\vec{v}) d\vec{v}$$

momentum:

$$\vec{u}(\vec{x},t)\rho(\vec{x},t) = \int_{\mathbb{R}^D} f(\vec{v}) \cdot \vec{v} d\vec{v}$$





### **Stability**

We made many assumptions ...

- $\rho \approx 1$
- u << 1</li>
- ν can't get arbitrarily small
   ⇒ how to control Re?

#### **Pros**

- can handle continuum problems (e.g. cars), but also higher Kn numbers
- coupling to MD
- closer to true physical description than NSE: turbulence, diffusion, multi-component flows

#### Cons

Homework: compare with NSE



# **Boundary Conditions**

### No-slip "bounce back"





#### **Moving Wall**

how to impose a specific velocity?





# **Questions?**