Домашняя работа

Щучкин Никита А-13а-19

Задание 1

1.
$$L = \{w \in \{a,b,c\}^* : |w|_c = 1\}$$

Построим регулярку: $(a+b)^* \mathrm{c} (a+b)^*$

(a+b):

 $(a + b)^*$:

 $(a + b)^*c$:

Итоговый конечный автомат для $(a+b)^*c(a+b)^*$:

2.
$$L = \{w \in \{a,b\}^* : |w|_a \leq 2, |w|_b \geq 2\}$$

Постоим через прямое произведение двух ДКА.

Первый автомат:

$$L_1 = \{w \in \{a,b\}^* : |w|_a \leq 2\}$$

Регулярка:

$$b^*ab^*ab^* + b^*ab^* + b^*$$

Автомат:

$$<\Sigma_1=\{a,b\},\ Q_1=\{q_1,q_2,q_3\},\ S_1=q_1,\ T_1=\{q_1,q_2,q_3\},\delta_1>$$

Таблица переходов:

	а	b
q_1	q_2	q_1
q_2	q_3	q_2
q_3	-	q_3

Второй автомат:

$$L_2 = \{w \in \{a,b\}^* : |w|_b \geq 2\}$$

Регулярка:

$$(a+b)^*b(a+b)^*b(a+b)^*$$

Автомат:

$$<\Sigma_2=\{a,b\},\;Q_2=\{q_4,q_5,q_6\},\;S_2=q_4,\;T_2=\{q_6\},\delta_2>$$

Таблица переходов:

	а	b
q_4	q_4	q_5
q_5	q_5	q_6
q_6	q_6	q_6

Прямое произведение:

$$<\Sigma=\{a,b\},\;Q=\{q_1q_4,q_1q_5,q_1q_6,q_2q_4,q_2q_5,q_2q_6,q_3q_4,q_3q_5,q_3q_6\},\;S=q_1q_4,\;T=\{q_1q_6,q_2q_6,q_3q_6\},\delta>0\}$$

Таблица переходов для результирующего автомата:

	а	b
q_1q_4	q_2q_4	q_1q_5
q_1q_5	q_2q_5	q_1q_6
q_1q_6	q_2q_6	q_1q_6
q_2q_4	q_3q_4	q_2q_5
q_2q_5	q_3q_5	q_2q_6
q_2q_6	q_3q_6	q_2q_6
q_3q_4	-	q_3q_5
q_3q_5	-	q_3q_6
q_3q_6	-	q_3q_6

Итоговый автомат:

3.
$$L = \{w \in \{a,b\}^* : |w|_a
eq |w|_b\}$$

Попытаемя доказать, что он нерегулярный. Рассмотрим \overline{L} :

$$\overline{L} = \{w \in \{a,b\}^* : |w|_a = |w|_b\}$$

Применим лемму о накачке:

Фиксируем п.

Пусть
$$w=a^nb^n\in \overline{L}; |w|\geq n$$

Все возможные разбиения этого слова при $|xy| \leq n$ и $|y| \geq 1$:

$$x=a^k$$

$$y=a^l$$

$$z=a^{n-k-l}b^n$$

Если здесь накачивать y, то букв a в слове станет больше, чем букв b.

Значит \overline{L} - нерегулярный язык, а значит L тоже нерегулярный.

4.
$$L=\{w\in\{a,b\}^*:ww=www\}$$

Задание 2

1.
$$L_1 = \{w \in \{a,b\}^* : |w|_a \geq 2 \wedge |w|_b \geq 2\}$$
 Первый автомат:

$$\stackrel{\cdot}{L_{11}}=\{w\in\{a,b\}^*:|w|_a\geq 2\}$$
 Регулярка: $(a+b)^*a(a+b)^*a(a+b)^*$

Автомат:

$$<\Sigma_1=\{a,b\},\;Q_1=\{q_1,q_2,q_3\},\;S_1=q_1,\;T_1=q_3,\;\delta_1>$$
 Таблица переходов:

	а	b
q_1	q_2	q_1
q_2	q_3	q_2
q_3	q_3	q_3

Второй автомат:

$$L_{12}=\{w\in\{a,b\}^*:|w|_b\geq 2\}$$

Регулярка: $(a+b)^*b(a+b)^*b(a+b)^*$

Автомат:

$$<\Sigma_{2}=\{a,b\},\ Q_{2}=\{q_{4},q_{5},q_{6}\},\ S_{2}=q_{4},\ T_{2}=q_{6},\ \delta_{2}>T_{3}$$

Таблица переходов:

	а	b
q_4	q_4	q_5
q_5	q_5	q_6
q_6	q_6	q_6

Прямое произведение этих двух ДКА:

 $<\Sigma=\{a,b\},\;Q=\{q_1q_4,q_1q_5,q_1q_6,q_2q_4,q_2q_5,q_2q_6,q_3q_4,q_3q_5,q_3q_6\},\;S=q_1q_4,\;T=q_3q_6,\;\delta>$ Таблица переходов результирующего автомата:

	а	b
q_1q_4	q_2q_4	q_1q_5
q_1q_5	q_2q_5	q_1q_6
q_1q_6	q_2q_6	q_1q_6
q_2q_4	q_3q_4	q_2q_5
q_2q_5	q_3q_5	q_2q_6
q_2q_6	q_3q_6	q_2q_6
q_3q_4	q_3q_4	q_3q_5
q_3q_5	q_3q_5	q_3q_6
q_3q_6	q_3q_6	q_3q_6

2.
$$L_2 = \{w \in \{a,b\}^* : |w| \geq 3 \land |w|$$
 нечетное $\}$

Первый автомат:

$$L_{21} = \{w \in \{a,b\}^* : |w| \geq 3\}$$

Регулярка:
$$(a+b)(a+b)(a+b)(a+b)^st$$

Автомат:

$$<\Sigma_1=\{a,b\},\;Q_1=\{q_1,q_2,q_3,q_4\},\;S_1=q_1,\;T_1=q_4,\;\delta_1>$$

Таблица переходов:

	а	b
q_1	q_2	q_2
q_2	q_3	q_3
q_3	q_4	q_4
q_4	q_4	q_4

Второй автомат:

$$L_{22} = \{w \in \{a,b\}^* : |w| \text{ нечетное}\}$$

Регулярка:
$$(a+b)((a+b)(a+b))^*$$

Автомат:

$$<\Sigma_2=\{a,b\},\ Q_2=\{q_5,q_6\},\ S_2=q_5,\ T_2=q_6,\ \delta_2>$$

Таблица переходов:

	а	b	
q_5	q_6	q_6	
q_6	q_5	q_5	

Прямое произведение двух этих ДКА:

 $<\Sigma=\{a,b\},\ Q=\{q_1q_5,q_1q_6,q_2q_5,q_2q_6,q_3q_5,q_3q_6,q_4q_5,q_4q_6\},\ S=q_1q_5,\ T=q_4q_6,\ \delta>$ Таблица переходов результирующего автомата:

	а	b
q_1q_5	q_2q_6	q_2q_6
q_1q_6	q_2q_5	q_2q_5
q_2q_5	q_3q_6	q_3q_6
q_2q_6	q_3q_5	q_3q_5
q_3q_5	q_4q_6	q_4q_6
q_3q_6	q_4q_5	q_4q_5
q_4q_5	q_4q_6	q_4q_6
q_4q_6	q_4q_5	q_4q_5

3. $L_3=\{w\in\{a,b\}^*:|w|_a$ четно $\wedge\,|w|_b$ кратно трем $\}$

Первый автомат:

 $L_{31} = \{w \in \{a,b\}^* : |w|_a$ четно $\}$

Регулярка: $(b^*ab^*ab^*+b)^*$

Автомат:

$$<\Sigma_1=\{a,b\},\;Q_1=\{q_1,q_2\},\;S_1=q_1,\;T_1=q_1,\;\delta_1>$$

Таблица переходов:

q_1 q_2 q_1 q_1 q_2 q_2

Второй автомат:

 $L_{32}=\{w\in\{a,b\}^*:|w|_b$ кратно трем $\}$

Регулярка: $(a*ba*ba*ba*)^*$

Автомат:

$$<\Sigma_2=\{a,b\},\;Q_2=\{q_3,q_4,q_5\},\;S_2=q_3,\;T_2=q_3,\;\delta_2>0$$

Таблица переходов:

	а	b
q_3	q_3	q_4
q_4	q_4	q_5
q_5	q_5	q_3

Прямое произведение двух этих ДКА:

$$<\Sigma=\{a,b\},\;Q=\{q_1q_3,q_1q_4,q_1q_5,q_2q_3,q_2q_4,q_2q_5\},\;S=q_1q_3,\;T=q_1q_3,\;\delta>0$$

Таблица переходов результирующего автомата:

	a	b
q_1q_3	q_2q_3	q_1q_4
q_1q_4	q_2q_4	q_1q_5
q_1q_5	q_2q_5	q_1q_3
q_2q_3	q_1q_3	q_2q_4
q_2q_4	q_1q_4	q_2q_5
q_2q_5	q_1q_5	q_2q_3

$$4. L_4 = \overline{L_3}$$

$$\overline{L_2} = \langle \Sigma, O, S, O \rangle T, \delta \rangle$$

4. $L_4=\overline{L_3}$ $\overline{L_3}=<\Sigma,Q,S,Q\backslash T,\delta>$ То есть, автомат для L_4 - это автомат, похожий на L_3 , в котором терминальные и нетерминальные состояния инвертированы:

5.
$$L_4=L_2ackslash L_3$$
 $L_4=L_2ackslash L_3=L_2\cap\overline{L}_3$ Первый автомат:

$$L_2 = <\Sigma = \{a,b\}, \; Q = \{q_1,q_2,q_3,q_4\}, \; S = q_1, \; T = q_4, \; \delta > 0$$

Таблица переходов первого автомата:

	а	D
q_1	q_2	q_2
q_2	q_3	q_3
q_3	q_4	q_4
q_4	q_3	q_3

Второй автомат:

 $\overline{L_3}$ = $<\Sigma=\{a,b\},~Q=\{q_5,q_6,q_7,q_8,q_9,q_10\},~S=q_5,~T=\{q_6,q_7,q_8,q_9,q_{10}\},~\delta>$ Таблица переходов второго автомата:

	а	b
q_5	q_6	q_7
q_6	q_5	q_8
q_7	q_8	q_9
q_8	q_7	q_{10}
q_9	q_{10}	q_5
q_{10}	q_9	q_6

Прямое произведение двух этих ДКА:

$$<\Sigma = \{a,b\},\; Q =$$

 $\left\{q_1q_5,q_1q_6,q_1q_7,q_1q_8,q_1q_9,q_1q_{10},q_2q_5,q_2q_6,q_2q_7,q_2q_8,q_2q_9,q_2q_{10},q_3q_5,q_3q_6,q_3q_7,q_3q_8,q_3q_9,q_3q_{10},q_4q_5,q_4q_6,q_4q_7,q_4q_8,q_4q_9,q_4q_{10}\right\}S=q_1q_5,\ T=q_4q_6,q_4q_7,q_4q_8,q_4q_9,q_4q_{10},\ \delta>$ Таблица переходов результирующего автомата:

	а	b
q_1q_5	q_2q_6	q_2q_7
q_1q_6	q_2q_5	q_2q_8
q_1q_7	q_2q_8	q_2q_9
q_1q_8	q_2q_7	q_2q_{10}
q_1q_9	q_2q_{10}	q_2q_5
q_1q_{10}	q_2q_9	q_2q_6
q_2q_5	q_3q_6	q_3q_7
q_2q_6	q_3q_5	q_3q_8
q_2q_7	q_3q_8	q_3q_9
q_2q_8	q_3q_7	q_3q_{10}
q_2q_9	q_3q_{10}	q_3q_5
q_2q_{10}	q_3q_9	q_3q_6
q_3q_5	q_4q_6	q_4q_7
q_3q_6	q_4q_5	q_4q_8
q_3q_7	q_4q_8	q_4q_9
q_3q_8	q_4q_7	q_4q_{10}
q_3q_9	q_4q_{10}	q_4q_5
q_3q_{10}	q_4q_9	q_4q_6
q_4q_5	q_3q_6	q_3q_7

	a	b
q_4q_6	q_3q_5	q_3q_8
q_4q_7	q_3q_8	q_3q_9
q_4q_8	q_3q_7	q_3q_{10}
q_4q_9	q_3q_{10}	q_3q_5
q_4q_{10}	q_3q_9	q_3q_6

Задание 3

aba:

ab + aba:

 $(ab + aba)^*$:

 $(ab+aba)^*a$:

2. $a(a(ab)^*b)^*(ab)^*$ ab:

 $(ab)^*$:

 $a(ab)^*$:

 $a(ab)^*b$:

 $(a(ab)^*b)^*$:

 $a(a(ab)^*b)^*$:

 $a(a(ab)^*b)^*(ab)^*$:

3. $(a + (a + b)(a + b)b)^*$ (a + b)(a + b)b:

(a+(a+b)(a+b))b:

$$(a + (a + b)(a + b))*b$$
:

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

 $(ab)^*$:

 $(ab)^*c$:

$$(ba)^*$$
:

$$(ab)^*c + (ba)^*$$
:

 $((ab)^*c + (ba)^*)^*$:

 $(b+c)((ab)^*c+(ba)^*)^*$:

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ $(a+b)^+$:

aa+bb

aa + bb + abab:

aa + bb + abab + baba:

 $(a+b)^+(aa+bb+abab+baba)(a+b)^+$:

Задание 4

1. $L=\{(aab)^nb(aba)^m:n\geq 0,\;m\geq 0\}$ Регулярка: $(aab)^*b(aba)^*$ aab:

 $(aab)^*$:

 $(aab)^*b$:

Итоговый автомат для $(aab)^*b(aba)^*$:

2.
$$L = \{uaav : u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ |u|_b \geq |v|_a\}$$

Рассмотри \overline{L} :

$$\overline{L} = \{uaav : u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ |v|_a > |u|_b\}$$

Применим к нему лемму о накачке:

Фиксируем п.

Пусть
$$w=b^naaa^{n+1}\in \overline{L};\; |w|\geq n.$$

Все возможные разбиения при $|xy| \leq n$ и $|y| \geq 1$:

 $x = b^l$

 $y = b^k$

 $z=b^{n-l-k}aaa^{n+1}$

Если здесь накачивать y, то число букв b станет больше, чем букв a и слово уже не будет принадлежать \overline{L} . Значит язык \overline{L} - нерегулярный. Следовательно язык L тоже нерегулярный.

3.
$$L = \{a^m w : w \in \{a,b\}^*, \ 1 \leq |w|_b \leq m\}$$

Рассмотрим \overline{L} :

$$\overline{L} = \{a^m w : w \in \{a,b\}^*, \; |w|_b > m \; \lor \; |w|_b = 0\}$$

Применим к нему лемму о накачке:

Фиксируем п.

Пусть
$$w=a^nb^{n+1}\in\overline{L};\ |w|\geq n$$

Все возможные разбиения при $|xy| \leq n$ и $|y| \geq 1$:

 $r = a^{i}$

 $y = a^k$

$$z = a^{n-l-k}b^{n+1}$$

Если здесь накачивать y, то букв a станет больше, чем букв b, и перестанет выполняться условие $|w|_b>m$. Значит язык \overline{L} - нерегулярный. Следовательно L тоже нерегулярный.

4.
$$L = \{a^k b^m a^n : k = n \ \lor \ m > 0\}$$

Применим к нему лемму о накачке:

Фиксируем п.

Пусть
$$w=a^nba^n\in L;\; |w|\geq n$$

Все возможные разбиения:

 $x = a^l$

 $y=a^k$

$$z = a^{n-l-k}ba^n$$

Если здесь накачивать y, то равенство k=n перестанет выполняться. Значит L - нерегулярный язык.

5.
$$L = \{ucv : u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ u
eq v^R\}$$

Рассмотри \overline{L} :

$$\overline{L} = \{ucv : u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ u = v^R\}$$

Применим к нему лемму о накачке:

Фиксируем п.

Пусть
$$w=a^nca^n\in\overline{L};\ |w|\geq n$$

Все возможные разбиения при $|xy| \leq n$ и $|y| \geq 1$:

 $x=a^l$

 $y = a^k$

$$z = a^{n-l-k}ca^r$$

Если здесь накачивать y, то число букв a вначале будет увеличиваться, и условие $u=v^R$ перестанет выполняться. Значит \overline{L} - нерегулярный язык. Следовательно L тоже нерегулярный.

Задание 5