

CMOS Inverter DC Characteristics

Outline

- □ CMOS Inverter DC Response
- □ Logic Levels and Noise Margins
- □ Transient Response
- Pass Transistors

DC Response

- ☐ DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter

$$-$$
 When $V_{in} = 0$

$$\rightarrow$$
 $V_{out} = V_{DD}$

$$- \text{ When } V_{in} = V_{DD} \qquad -> \qquad V_{out} = 0$$

$$V_{out} = 0$$

 In between, V_{out} depends on transistor size and current

- Assuming no load current:
 - By KCL, must settle such that

$$I_{dsn} = |I_{dsp}|$$

Transistor Operation

- ☐ Current depends on region of transistor behavior
- □ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

nMOS Operation

Cutoff	Linear	Saturated
V _{gsn} <	V _{gsn} >	V _{gsn} >
	V. <	V. >
	dsn	v dsn

pMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

Voltage Transfer Characteristics

☐ Five operating regions for two transistors

Region	nMOS	pMOS
Α		
В		
С		
D		
Е		

Beta Ratio

- **□** If $β_p$ / $β_n ≠ 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- □ Other gates: collapse into equivalent inverter

Noise Margins

☐ How much noise can a gate input see before it does not recognize the input?

Logic Levels

- ☐ Define critical voltages at:
 - unity gain point of DC transfer characteristic

Transient Response

- ☐ DC analysis tells us V_{out} if V_{in} is constant
- \Box Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing $V_{\rm DD}$
- \Box $V_g = V_{DD}$

$$-$$
 If $V_s > V_{DD}-V_t$, $V_{qs} < V_t$

- Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
- ☐ Transmission gates are needed to pass both 0 and 1

Pass Transistor Ckts

$$V_{DD} \perp V_{DD} \perp V$$

Homeworks

- ☐ Chapter 2 exercises: 2.16, 2.17, 2.20
- ☐ Due date: 1402/8/30