Mechanics of Materials

Lecture 12 - Bending

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

17 March, 2021

1

schedule

- 17 Mar Bending
- 22 Mar Transverse Shear
- 22 Mar Homework 5 Due, Homework 4 Self-grade due
- 24 Mar Transverse Shear
- 29 Mar Exam 2 Review
- 29 Mar Homework 6 Due, Homework 5 Self-grade due
- 31 Mar Exam 2

outline

- flexure formula
- moment of inertia
- group problems
- compound centroids

flexure formula

2

- If the beam is a linear material that follows Hooke's Law, the stress must be linearly proportional to the strain
- Thus the stress will vary linearly through the beam, just like the strain does

4

neutral axis

- We have already hypothesized that a neutral axis must exist, we will now find its location
- To be in equilibrium, the resultant force(s) produced by the stress must sum to zero, which means

$$\sum F_{x} = 0 = \int_{A} dF = \int_{A} \sigma dA$$
$$= \int_{A} -\left(\frac{y}{c}\right) \sigma_{max} dA$$
$$= -\frac{\sigma_{max}}{c} \int_{A} y dA$$

neutral axis

 \blacksquare Since $\sigma_{\it max}$ and $\it c$ are both non-zero constants, we know that

$$\int_{A} y dA = 0$$

 Which can only be satisfied at the horizontal centroidal axis, so the neutral axis is the centroidal axis

6

bending moment

 The internal bending moment must be equal to the total moment produced by the stress distribution

$$M = \int_{A} y dF = \int_{A} y (\sigma dA)$$
$$= \int_{A} y \left(\frac{y}{c} \sigma_{max}\right) dA$$
$$= \frac{\sigma_{max}}{c} \int_{A} y^{2} dA$$

bending moment

• We recognize that $\int_A y^2 dA = I$, and we re-arrange to write

$$\sigma_{max} = \frac{Mc}{I}$$

8

procedure

- Find the internal moment at the point of interest, or draw a moment diagram to find the maximum point (if needed)
- Determine the moment of inertia for the beam section
- Find the neutral axis and/or the distance from the neutral axis to the point of interest
- Use the flexure formula to find the stress

example 6.12

Figure 1: A 6 meter long beam is pinned at both ends and subjected to a uniformly distributed load of 5 kN/m.

Find the maximum bending stress and draw the stress distribution through the thickness at that point.

moment of inertia

10

moment of inertia

- We know that $I = \int_A y^2 dA$
- For common shapes, this integral has been pre-calculated (about the centroid of the shape)
- For compound shapes, we use the parallel axis theorem to combine inertias from multiple areas

11

parallel axis theorem

- The parallel axis theorem is used to find the moment about any axis parallel to an axis passing through the centroid
- If we consider an axis parallel to the x-axis, separated by some dy we have

$$I_X = \int_A (y + dy)^2 dA$$

Which gives

$$I_{x} = \int_{A} y^{2} dA + 2 dy \int_{A} y dA + dy^{2} \int_{A} dA$$

parallel axis theorem

- The first integral is the moment of inertia about the original x-axis, which we will call \(\bar{I}_v\)
- The second integral is zero since the x-axis passes through the centroid
- This gives the parallel axis theorem

$$I_x = \overline{I}_x + Ady^2$$

13

parallel axis theorem

• Similarly for the y-axis and polar moment of inertia we find

$$I_y = \bar{I}_y + Adx^2$$
$$J_O = \bar{J}_C + Ad^2$$

group problems

group one

Figure 2: A hollow rectangular tube 0.4m tall and 0.2m wide on the outside and 0.2 m tall and 0.1 wide on the inside.

Determine the moment of inertia about the neutral axis

Find the neutral axis and determine the moment of inertia about the neutral axis

Figure 3: An upside-down t-section is 0.2m wide at the base, which is 0.1 m tall, the web is 0.1

16

group three

Figure 4: A beam is supported by pins at the right end and a point some distance away from the left end. A vertical load is applied at the left end, point B as it at the bottom side of the beam between the load and the first pin support, point A is between the two pin supports.

Show how the bending stress acts on a differential volume at

compound centroids

composite bodies

- Often we have to deal with bodies that are not described by a continuous function, but are made of different materials or different shapes
- We can use the same logic previously, but with a finite sum instead of an integral

$$\bar{x} \sum W = \sum \tilde{x} W$$
$$\bar{y} \sum W = \sum \tilde{y} W$$
$$\bar{z} \sum W = \sum \tilde{z} W$$

analysis procedure

- Use a sketch to divide the body into sub-bodies
- If a body has a hole, it may be easier to treat that volume as whole and then subtract the hole
- Take note of any symmetry (an object symmetric about any axis will have a centroid along that axis)