Poli 5D Social Science Data Analytics Regression in Stata

Shane Xinyang Xuan ShaneXuan.com

February 10, 2017

Contact Information

Shane Xinyang Xuan xxuan@ucsd.edu

The teaching staff is a team!

```
Professor Roberts
M
1600-1800 (SSB 299)

Jason Bigenho
Th
1000-1200 (Econ 116)

Shane Xuan
M
1100-1150 (SSB 332)

Th
1200-1250 (SSB 332)
```

Supplemental Materials

UCLA STATA starter kit

http://www.ats.ucla.edu/stat/stata/sk/

Princeton data analysis

http://dss.princeton.edu/training/

Road map

Some quick notes before we start today's section:

- Make sure that you pass around the attendance sheet
- Open a .do file
- Import your data ("h1_fams_data.xlsx")
- I will be using my slides, and you will need to type the code in your .do file

Regression: Examples!

Figure: Data points

Regression: Examples!

Figure: Bad fit

Regression: Examples!

Model

- Population

$$y_i = \beta_0 + \beta_1 x_i$$

Model

- Population

$$y_i = \beta_0 + \beta_1 x_i$$

- Estimation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{e}_i$$

Model

- Population

$$y_i = \beta_0 + \beta_1 x_i$$

Estimation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{e}_i$$

 (You don't need to memorize this) Regression Coefficient is calculated by

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2}$$

Interpretation of regression coefficient

Suppose we have the model

$$y = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_0 + \hat{e}$$

Interpretation of regression coefficient

Suppose we have the model

$$y = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_0 + \hat{e}$$

▶ A 1-unit change in x_1 is associated with a β_1 -unit change in y, all else equal.

Interpretation of regression coefficient

Suppose we have the model

$$y = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_0 + \hat{e}$$

- ▶ A 1-unit change in x_1 is associated with a β_1 -unit change in y, all else equal.
- ▶ A 1-unit change in x_2 is associated with a β_2 -unit change in y, all else equal.

► Suppose consumption (cons) is a function of family income (inc):

$$cons = \beta_0 + \beta_1 inc + u$$

where u contains other factors affecting consumption. What change do you expect to see in cons with a two-unit increase in inc?

► Suppose consumption (cons) is a function of family income (inc):

$$cons = \beta_0 + \beta_1 inc + u$$

where u contains other factors affecting consumption. What change do you expect to see in cons with a two-unit increase in inc?

► With a two-unit increase in *inc*,

► Suppose consumption (cons) is a function of family income (inc):

$$cons = \beta_0 + \beta_1 inc + u$$

where u contains other factors affecting consumption. What change do you expect to see in cons with a two-unit increase in inc?

► With a two-unit increase in *inc*,

$$cons = \beta_0 + \beta_1(inc + 2) + u$$

= $\beta_0 + (\beta_1 inc + 2\beta_1) + u$
= $(\beta_0 + \beta_1 inc + u) + 2\beta_1$

► Suppose consumption (cons) is a function of family income (inc):

$$cons = \beta_0 + \beta_1 inc + u$$

where u contains other factors affecting consumption. What change do you expect to see in cons with a two-unit increase in inc?

► With a two-unit increase in *inc*,

$$cons = \beta_0 + \beta_1(inc + 2) + u$$
$$= \beta_0 + (\beta_1inc + 2\beta_1) + u$$
$$= (\beta_0 + \beta_1inc + u) + 2\beta_1$$

Thus, we see a $2\beta_1$ increase in cons with a 2-unit increase in inc!

► Scatter plot: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny))

- Scatter plot: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny))
- ► Regression: regress povertyratio_mom age_mom

- Scatter plot: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny))
- ► Regression: regress povertyratio_mom age_mom
- ► Visualization: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny)) (lfit povertyratio_mom age_mom)

- Scatter plot: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny))
- ► Regression: regress povertyratio_mom age_mom
- Visualization: twoway (scatter povertyratio_mom age_mom, mlabsize(tiny) msize(tiny)) (Ifit povertyratio_mom age_mom)

► Fitted values

- ► Fitted values
 - Manually: gen fitted $= -1.091357 + .1305531 * age_mom$

► Fitted values

- Manually: gen fitted = $-1.091357 + .1305531 * age_mom$
- Stata command: predict fv

- ► Fitted values
 - Manually: gen fitted = $-1.091357 + .1305531 * age_mom$
 - Stata command: predict fv
- ▶ Residuals

- ► Fitted values
 - Manually: gen fitted = -1.091357 + .1305531 * age_mom
 - Stata command: predict fv
- ▶ Residuals
 - Manually: gen resid = povertyratio_mom fv

► Fitted values

- Manually: gen fitted = $-1.091357 + .1305531 * age_mom$
- Stata command: predict fv

► Residuals

- Manually: gen resid = povertyratio_mom fv
- Stata command: predict e, residual

► Fitted values

- Manually: gen fitted = $-1.091357 + .1305531 * age_mom$

Stata command: predict fv

► Residuals

Manually: gen resid = povertyratio_mom - fv

Stata command: predict e, residual

fitted	fv	resid	e
.9974926	.9974928	6974928	6974928
1.519705	1.519705	4197054	4197053
1.258599	1.258599	.5414009	.5414008
1.911364	1.911365	-1.711365	-1.711365
2.955789	2.95579	-2.75579	-2.75579

Figure: Similar results for fitted values, and residuals

 \blacktriangleright Suppose you run a regression of y on x_1 , and get an error term \hat{e} . You can then do a scatterplot of error term (\hat{e}) and a different variable (x_2) to see how much of the difference can be explained by this variable:

- \blacktriangleright Suppose you run a regression of y on x_1 , and get an error term \hat{e} . You can then do a scatterplot of error term (\hat{e}) and a different variable (x_2) to see how much of the difference can be explained by this variable:
 - twoway scatter e x_2

- \blacktriangleright Suppose you run a regression of y on x_1 , and get an error term \hat{e} . You can then do a scatterplot of error term (\hat{e}) and a different variable (x_2) to see how much of the difference can be explained by this variable:
 - twoway scatter e x_2
- ► You can do a multiple regression

- \blacktriangleright Suppose you run a regression of y on x_1 , and get an error term \hat{e} . You can then do a scatterplot of error term (\hat{e}) and a different variable (x_2) to see how much of the difference can be explained by this variable:
 - twoway scatter e x_2
- ► You can do a multiple regression
 - regress y_1 x_1 x_2 ...