```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Ridge,Lasso
    from sklearn.linear_model import ElasticNet
    from sklearn import metrics
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.tree import plot_tree
```

Out[2]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	Т
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	_ N
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	١
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	١
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	١
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	١
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	١
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	١
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	١
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	N

69096 rows × 16 columns

localhost:8888/notebooks/F18.ipynb

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69096 entries, 0 to 69095
Data columns (total 16 columns):
    Column
              Non-Null Count Dtype
 0
     date
              69096 non-null
                              object
 1
     BEN
              16950 non-null float64
 2
    CH4
              8440 non-null
                              float64
 3
    CO
              28598 non-null float64
 4
    EBE
              16949 non-null float64
 5
              8440 non-null
                              float64
    NMHC
 6
    NO
              68826 non-null float64
 7
              68826 non-null float64
    NO 2
 8
    NOx
              68826 non-null float64
 9
    0_3
              40049 non-null float64
 10
    PM10
              36911 non-null float64
              18912 non-null float64
 11
    PM25
 12
    SO 2
              28586 non-null float64
                              float64
 13
    TCH
              8440 non-null
 14
    TOL
              16950 non-null float64
    station 69096 non-null int64
 15
dtypes: float64(14), int64(1), object(1)
memory usage: 8.4+ MB
```

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	CH4	СО	EBE	имнс	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TC
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0	1.
25	2018- 03-01 02:00:00	0.4	1.42	0.2	0.1	0.01	4.0	26.0	32.0	64.0	4.0	4.0	3.0	1.
30	2018- 03-01 02:00:00	0.3	1.10	0.2	0.1	0.05	1.0	12.0	13.0	69.0	5.0	4.0	4.0	1.
49	2018- 03-01 03:00:00	0.3	1.41	0.2	0.1	0.01	3.0	16.0	20.0	68.0	3.0	2.0	3.0	1.
69030	2018- 01-31 22:00:00	1.8	1.21	0.7	1.7	0.19	151.0	129.0	361.0	1.0	45.0	26.0	11.0	1.
69049	2018- 01-31 23:00:00	3.1	1.87	1.2	2.0	0.35	296.0	162.0	615.0	3.0	39.0	23.0	8.0	2.
69054	2018- 01-31 23:00:00	1.6	1.17	0.6	1.4	0.15	127.0	106.0	301.0	1.0	43.0	25.0	8.0	1.
69073	2018- 02-01 00:00:00	3.2	1.53	1.0	2.1	0.19	125.0	117.0	309.0	3.0	37.0	24.0	6.0	1.
69078	2018- 02-01 00:00:00	1.3	1.14	0.4	0.8	0.10	54.0	73.0	155.0	1.0	27.0	16.0	5.0	1.:

4562 rows × 16 columns

4

```
In [5]: df.isnull().sum()
Out[5]: date
                    0
        BEN
                    0
        CH4
                    0
        CO
                    0
        EBE
                    0
        NMHC
                    0
                    0
        NO
                    0
        NO_2
        NOx
                    0
        0_3
                    0
        PM10
                    0
        PM25
                    0
        SO 2
                    0
        TCH
                    0
        TOL
                    0
        station
                    0
        dtype: int64
In [6]: |df.describe()
Out[6]:
```

	BEN	CH4	со	EBE	NMHC	NO	NO_;
count	4562.00000	4562.000000	4562.000000	4562.000000	4562.000000	4562.000000	4562.000000
mean	0.69349	1.329163	0.330579	0.286782	0.056773	21.742218	44.152126
std	0.46832	0.214399	0.161489	0.354442	0.037711	35.539531	30.23401
min	0.10000	0.020000	0.100000	0.100000	0.000000	1.000000	1.000000
25%	0.40000	1.120000	0.200000	0.100000	0.030000	1.000000	20.000000
50%	0.60000	1.390000	0.300000	0.200000	0.050000	9.000000	41.000000
75%	0.90000	1.420000	0.400000	0.300000	0.070000	27.000000	64.000000
max	6.60000	3.920000	2.000000	7.400000	0.490000	431.000000	184.000000

```
In [7]: df.columns
```

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x21ddf7180a0>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>


```
In [11]: df.loc[df['TCH']<2,'TCH']=0
    df.loc[df['TCH']>2,'TCH']=1
    df['TCH']=df['TCH'].astype(int)
    df
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self. setitem single column(loc, value, pi)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_column(loc, value, pi)
<ipython-input-11-e3d36a273982>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['TCH']=df['TCH'].astype(int)

Out[11]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TC
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0	
25	2018- 03-01 02:00:00	0.4	1.42	0.2	0.1	0.01	4.0	26.0	32.0	64.0	4.0	4.0	3.0	
30	2018- 03-01 02:00:00	0.3	1.10	0.2	0.1	0.05	1.0	12.0	13.0	69.0	5.0	4.0	4.0	
49	2018- 03-01 03:00:00	0.3	1.41	0.2	0.1	0.01	3.0	16.0	20.0	68.0	3.0	2.0	3.0	
69030	2018- 01-31 22:00:00	1.8	1.21	0.7	1.7	0.19	151.0	129.0	361.0	1.0	45.0	26.0	11.0	
69049	2018- 01-31 23:00:00	3.1	1.87	1.2	2.0	0.35	296.0	162.0	615.0	3.0	39.0	23.0	8.0	
69054	2018- 01-31 23:00:00	1.6	1.17	0.6	1.4	0.15	127.0	106.0	301.0	1.0	43.0	25.0	8.0	
69073	2018- 02-01 00:00:00	3.2	1.53	1.0	2.1	0.19	125.0	117.0	309.0	3.0	37.0	24.0	6.0	
69078	2018- 02-01 00:00:00	1.3	1.14	0.4	0.8	0.10	54.0	73.0	155.0	1.0	27.0	16.0	5.0	

4562 rows × 16 columns

LogisticRegression

Out[12]: LogisticRegression()

```
In [13]: |lgr.predict(x test)
Out[13]: array([0, 0, 0, ..., 0, 0, 0])
In [14]: |lgr.score(x_test,y_test)
Out[14]: 0.9824689554419284
In [15]: | fs=StandardScaler().fit_transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[15]: LogisticRegression()
In [16]: o=[[1,2,3,4,5,6,7,8,9,10,11,12]]
         prediction=logr.predict(o)
         print(prediction)
         [0]
In [17]: logr.classes
Out[17]: array([0, 1, 2])
In [18]: |logr.predict_proba(o)[0][0]
Out[18]: 0.999999975037841
In [19]: logr.predict_proba(o)[0][1]
Out[19]: 5.085510314304287e-16
```

LinearRegression

```
In [20]: lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[20]: LinearRegression()

Out[22]:

coeff

	Co-efficient
BEN	-0.016616
СО	-0.396203
EBE	0.061732
NMHC	1.052382
NO	0.002328
NO_2	-0.000613
O_3	-0.000199
PM10	-0.001645
PM25	0.003811
SO_2	-0.002612
TOL	-0.005893
station	-0.003724

```
In [23]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[23]: <matplotlib.collections.PathCollection at 0x21df29904f0>


```
In [24]: print(lr.score(x_test,y_test))
```

0.16185028565714

Ridge, Lasso

```
In [25]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[25]: Ridge(alpha=10)

In [26]: rr.score(x_test,y_test)

Out[26]: 0.15748597817418575

In [27]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[27]: Lasso(alpha=10)

In [28]: la.score(x_test,y_test)

Out[28]: -0.00020661188397363972

ElasticNet

In [29]: en=ElasticNet()
en.fit(x_train,y_train)
```

```
en.fit(x_train,y_train)
Out[29]: ElasticNet()
In [30]:
         print(en.coef_)
          [ 0.
                        0.
                                    0.
                                                0.
                                                             0.00122064
                                                                         0.
                                    0.
                                               -0.
                                                                         0.
                                                                                   ]
           -0.
                        0.
                                                             0.
In [31]:
         print(en.intercept_)
          -0.007178926900212195
In [32]:
         print(en.predict(x_train))
         [-0.00595829 -0.00595829 0.0807071
                                              ... 0.02211641 0.00258619
           0.05873559]
In [33]:
         print(en.score(x_train,y_train))
         0.14800264044790312
In [34]: |print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 0.04467923237090176
```

RandomForest

```
In [37]: rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[37]: RandomForestClassifier()
In [38]:
         parameters={ 'max_depth': [1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n_estimators':[10,20,30,40,50]}
In [39]: grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="acc
         grid search.fit(x train,y train)
Out[39]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [40]: grid_search.best_score_
Out[40]: 0.9821483498979132
In [41]: rfc_best=grid_search.best_estimator_
```

```
In [42]: plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=T
```

```
Out[42]: [Text(2466.9473684210525, 1993.2, 'X[5] <= 78.5\ngini = 0.037\nsamples = 1990
                  \nvalue = [3133, 56, 4]\nclass = Yes'),
                    Text(1409.6842105263158, 1630.8000000000000, 'X[4] <= 99.0\ngini = 0.005\nsa
                  mples = 1723\nvalue = [2764, 6, 1]\nclass = Yes'),
                    Text(1174.7368421052631, 1268.4, X[8] <= 20.5 ngini = 0.004 nsamples = 1718
                  \nvalue = [2760, 4, 1] \setminus class = Yes'),
                    Text(704.8421052631579, 906.0, X[4] <= 85.5  ngini = 0.001  nsamples = 1676  n
                  value = [2686, 1, 1]\nclass = Yes'),
                    ples = 1671\nvalue = [2680, 1, 0]\nclass = Yes'),
                    Text(234.94736842105263, 181.199999999999, 'gini = 0.0\nsamples = 1547\nva
                  lue = [2479, 0, 0]\nclass = Yes'),
                    Text(704.8421052631579, 181.19999999999982, 'gini = 0.01\nsamples = 124\nval
                  ue = [201, 1, 0]\nclass = Yes'),
                    Text(939.7894736842105, 543.599999999999, 'gini = 0.245\nsamples = 5\nvalue
                  = [6, 0, 1]\nclass = Yes'),
                    Text(1644.6315789473683, 906.0, X[1] <= 0.45  ngini = 0.075  nsamples = 42  nv
                  alue = [74, 3, 0]\nclass = Yes'),
                    Text(1409.6842105263158, 543.599999999999, 'gini = 0.0\nsamples = 30\nvalue
                  = [57, 0, 0]\nclass = Yes'),
                    Text(1879.578947368421, 543.599999999999, X[6] <= 6.5 \neq 0.255 = 0.255
                  es = 12\nvalue = [17, 3, 0]\nclass = Yes'),
                    Text(1644.6315789473683, 181.199999999999, 'gini = 0.408\nsamples = 5\nval
                  ue = [5, 2, 0] \setminus class = Yes'),
                    Text(2114.5263157894738, 181.1999999999982, 'gini = 0.142 \times 1000 = 7 \times 1000
                  ue = [12, 1, 0]\nclass = Yes'),
                    Text(1644.6315789473683, 1268.4, 'gini = 0.444\nsamples = 5\nvalue = [4, 2, 4]
                  0]\nclass = Yes'),
                    Text(3524.2105263157896, 1630.8000000000000, X[2] <= 2.05 \cdot ini = 0.221 \cdot ini
                  mples = 267\nvalue = [369, 50, 3]\nclass = Yes'),
                    Text(3054.315789473684, 1268.4, 'X[1] <= 0.45 \setminus i = 0.189 \setminus samples = 257 \setminus samp
                  value = [363, 43, 0]\nclass = Yes'),
                    Text(2819.3684210526317, 906.0, 'gini = 0.0\nsamples = 51\nvalue = [86, 0,
                  0]\nclass = Yes'),
                    Text(3289.2631578947367, 906.0, 'X[4] <= 159.5\ngini = 0.233\nsamples = 206
                  \nvalue = [277, 43, 0] \setminus (1388 = 1488)
                    ples = 185\nvalue = [255, 27, 0]\nclass = Yes'),
                    Text(2584.4210526315787, 181.1999999999982, 'gini = 0.047\nsamples = 51\nva
                  lue = [81, 2, 0]\nclass = Yes'),
                    Text(3054.315789473684, 181.19999999999982, 'gini = 0.22\nsamples = 134\nval
                  ue = [174, 25, 0] \setminus class = Yes'),
                    ples = 21\nvalue = [22, 16, 0]\nclass = Yes'),
                    Text(3524.2105263157896, 181.1999999999982, 'gini = 0.444\nsamples = 12\nva
                  lue = [7, 14, 0] \setminus nclass = No'),
                    Text(3994.1052631578946, 181.19999999999982, 'gini = 0.208\nsamples = 9\nval
                  ue = [15, 2, 0] \setminus class = Yes'),
                    Text(3994.1052631578946, 1268.4, 'X[0] <= 2.95\ngini = 0.633\nsamples = 10\n
                  value = [6, 7, 3] \setminus nclass = No'),
                    Text(3759.157894736842, 906.0, 'gini = 0.54\nsamples = 5\nvalue = [1, 6, 3]
                   \nclass = No'),
                    Text(4229.0526315789475, 906.0, 'gini = 0.278\nsamples = 5\nvalue = [5, 1,
                  0]\nclass = Yes')]
```


Best model:LogisticRegression

In []:		
T	'	