# **VİTMO**

## НИУ ИТМО

## ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

По дисциплине "Теория автоматического управления"

"Слежение и компенсация: виртуальный выход"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

## Содержание

| 1. | Kon  | ипенсирующий регулятор           | 4  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----|------|----------------------------------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|
|    | 1.1. | Анализ внешнего возмущения       | 5  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.2. | Синтез регулятора                | 7  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 1.2.1. Управляемость системы     | 7  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 1.2.2. Feedback компонента       | 8  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 1.2.3. Feedforward компонента    | 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.3. | Выводы                           | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2. | Сле  | Следящий регулятор               |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.1. | Анализ внешнего возмущения       | 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.2. | Синтез регулятора                | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 2.2.1. Feedback компонента       | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 2.2.2. Feedforward компонента    | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.3. | Выводы                           | 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. | Сле  | Слежение и компенсация по выходу |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.1. | Анализ внешнего возмущения       | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.2. | Анализ системы                   | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.3. | Расширенный наблюдатель          | 26 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.4. | Синтез регулятора                | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 3.4.1. Feedback компонента       | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 3.4.2. Синтез наблюдателя        | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |      | 3.4.3. Feedforward компонента    | 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.5. | Моделирование                    | 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |

| 3.6. | Выводы |  |  |  |  |  | <br> | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | 36 | ĉ |
|------|--------|--|--|--|--|--|------|------|--|--|--|--|--|--|--|--|--|--|--|--|--|----|---|
|      |        |  |  |  |  |  |      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |    |   |

## 1. Компенсирующий регулятор

Рассмотрим систему

$$\hat{x} = Ax + Bu + B_f w_f, \quad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \tag{1}$$

с генератором внешнего возмущения

$$\dot{w}_f = \Gamma w_f, \quad w_f(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{2}$$

и виртуальным выходом

$$z = C_z x \tag{3}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \quad B_f = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix},$$

$$C_z = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}^T, \quad \Gamma = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}$$

$$(4)$$

Схема моделирования этой системы приведена на рисунке 1.



Рис. 1: Схема моделирования системы

## 1.1. Анализ внешнего возмущения

Так как внешние возмущение задается линейной системой, можно найти его собственные числа, из которых будет понятен общий вид его выражения.

$$\sigma(\Gamma) = \begin{bmatrix} 0 \pm 3j & 0 \pm 2j \end{bmatrix} \tag{5}$$

Таким образом, так как вещественная часть всех собственных чисел матрицы равны нули, в комплексные части являются попарно сопряженными, то можно сказать, что внешнее возмущение будет иметь гармонический характер, состоящий из двух частотных составляющих.

Можно найти уравнение внешнего возмущения:

$$w_f = e^{\Gamma t} \cdot w_f(0) \tag{6}$$

График внешнего возмущения приведен на рисунке 2. Реакция разомкнутой системы (u=0)



Рис. 2: График внешнего возмущения

при начальных условиях  $x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$  на внешнее возмущение приведена на рисунках 3, 4 (состояние системы и виртуальный выход соответственно). Как видно на графиках, система



Рис. 3: Реакция разомкнутой системы на внешнее возмущение (состояние системы)

не является устойчивой. Это связано и с тем, что собственные числа матрицы A имеют положительную вещественную часть, и с тем, что внешнее возмущение имеет гармонический характер.



Рис. 4: Реакция разомкнутой системы на внешнее возмущение (виртуальный выход)

## 1.2. Синтез регулятора

Синтез регулятора, способного компенсировать внешнее возмущение, будет состоять из двух частей. Первая – синтез feedback компоненты, которая обеспечит стабилизацию системы. Для его синтеза можно воспользоваться модальными или немодальными методами. Вторая – синтез feedforward компоненты, которая обеспечит компенсацию внешнего возмущения.

#### 1.2.1. Управляемость системы

Перед тем, как приступить к синтезу регулятора, проверим управляемость собственных чисел системы. Для этого найдем диагональную форму системы без внешнего возмущения.

$$A_{j} = \begin{bmatrix} -3.00 & 0.00 & 0.00 \\ 0.00 & 2.00 & -2.00 \\ 0.00 & 2.00 & 2.00 \end{bmatrix} \quad B_{j} = \begin{bmatrix} -0.00 \\ 2.12 \\ 4.95 \end{bmatrix}$$
 (7)

собственное число  $\lambda_1=-3$  не является управляемым, но является стабилизируемым. Собственные числа  $\lambda_2=2\pm 2j$  являются управляемыми.

#### 1.2.2. Feedback компонента

Для синтезе регулятора вида  $u = K_1 x$  воспользуемся методом немодального синтеза решением матричного неравенства Ляпунова с минимизацией нормы управления. Подробно синтез такого регулятора был рассмотрен в прошлой работе.

$$PA^{T} + AP + 2\alpha P + Y^{T}B^{T} + BY \leq 0, \quad H = YP^{-1}, \quad P \succ 0$$

$$\begin{bmatrix} P & x(0) \\ x(0)^{T} & 1 \end{bmatrix} \succ 0, \quad \begin{bmatrix} P & Y^{T} \\ Y & \mu^{2}I \end{bmatrix} \succ 0$$
(8)

где  $\mu$  — ограничение на управление  $\mu \geq \|u(t)\|_2$ . Минимизируя  $\mu$  при заданной степени устойчивости  $\alpha=3$  и начальном состоянии  $x(0)=\begin{bmatrix}0&0&0\end{bmatrix}^T$ , получаем следующий регулятор:

$$K_1 = \begin{bmatrix} -4.57 & 0.29 & -4.57 \end{bmatrix} \tag{9}$$

Собственные числа системы, замкнутой регулятором  $K_1$ :

$$\sigma(A + BK_1) = \begin{bmatrix} -3.00 + 4.55j \\ -3.00 - 4.55j \\ -3.00 \end{bmatrix}$$
(10)

Можно сделать вывод, что регулятор  $K_1$  синтезирован корректно. Проведем промежуточные исследования системы. Промоделируем систему с регулятором  $K_1$  без внешнего возмущения и с ним. В качестве начальных условий возьмем  $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ . График состояния системы без внешнего возмущения приведен на рисунке 5 (состояние системы) и 6 (виртуальный выход), а с внешним возмущением на рисунке 7 (состояние системы) и 8 (виртуальный выход).



Рис. 5: Состояние системы с регулятором  $K_1$  без внешнего возмущения



Рис. 6: Выход системы с регулятором  $K_1$  без внешнего возмущения



Рис. 7: Состояние системы с регулятором  $K_1$  с внешним возмущением



Рис. 8: Выход системы с регулятором  $K_1$  с внешним возмущением

Видно, что система, замкнутая регулятором  $K_1$  без внешнего воздействия сходится к нулю, что подтверждает корректность синтеза регулятора. Но при этом система с внешним возмущением не имеет устойчивого состояния.

#### 1.2.3. Feedforward компонента

Для синтеза компенсирующего регулятора воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY + B_f \\
C_z P = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(11)

Условием существования такого регулятора является принадлежность собственных чисел внешнего возмущения правой комплексной полуплоскости и принадлежность корней системы, замкнутой регулятором, левой комплексной полуплоскости. Оба эти условия выполняются. Решим систему с помощью пакета cvx в MATLAB, в результате получаем:

$$K_2 = \begin{bmatrix} -5.96 & 2.25 & 2.72 & 1.48 \end{bmatrix} \tag{12}$$

Проверим синтезированный регулятор на устойчивость при внешнем возмущении. График моделирования системы с внешним воздействием и начальными условиями  $x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$  с использованием *полного* регулятора  $u = K_1x + K_2w_f$  приведен на рисунках 9 (состояние системы) и 10 (виртуальный выход). График управления, полученного с помощью полных регуляторов  $K_1 + K_2$  приведен на рисунке 11. Видно, что выход системы сходится к нулю, что подтверждает корректность синтеза регулятора.



Рис. 9: Состояние системы с полным регулятором  $K_1 + K_2$ 



Рис. 10: Выход системы с полным регулятором  $K_1 + K_2$ 



Рис. 11: Управление системы с полным регулятором  $K_1+K_2$ 

Сравнительные графики управления, формируемого разными регуляторами приведены на рисунке 12. где  $u_1$  – управление, формируемое регулятором  $K_1$  без внешнего воздействия,  $u_2$  –



Рис. 12: Сравнение управления, формируемого разными регуляторами

управление, формируемое полным регулятором  $K_1$  с внешним воздействием,  $u_3$  – управление, формируемое полным регулятором  $K_1+K_2$  с внешним воздействием.

Сравнительные графики виртуального выхода, формируемого разными регуляторами приведены на рисунке 13. где  $z_1$  – выход системы с регулятором  $K_1$  с внешним воздействием,  $z_2$  – выход системы с полным регулятором  $K_1+K_2$  с внешним воздействием.



Рис. 13: Сравнение виртуального выхода, формируемого разными регуляторами

### 1.3. Выводы

В результате исследования системы с внешним возмущением и различными регуляторами можно сделать следующие выводы: система с классическим немодальным регулятором  $K_1$  не является устойчивой при наличии внешнего возмущения, содержащего гармонические составляющие. Система с полным регулятором  $K_1 + K_2$  является устойчивой при наличии внешнего возмущения. При этом состояние системы с полным регулятором не сходится к нулю, компенсируя внешнее возмущение.

## 2. Следящий регулятор

Рассмотрим систему

$$\hat{x} = Ax + Bu, \quad x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \tag{13}$$

с генератором внешнего возмущения

$$\dot{w}_g = \Gamma w_g, \quad w_g(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{14}$$

и виртуальным выходом

$$z = C_z x + D_z w_q \tag{15}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix},$$

$$C_{z} = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}^{T}, \Gamma = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix} D_{z} = \begin{bmatrix} 8 \\ -8 \\ 12 \\ -3 \end{bmatrix}^{T}$$

$$(16)$$

Схема моделирования этой системы представлена на рисунке 14.



Рис. 14: Схема моделирования системы с следящим регулятором

#### 2.1. Анализ внешнего возмущения

Согласно результатам, полученным ранее, входное воздействие представляет собой гармонический сигнал, состоящий из двух частот. График входного воздействия представлен на рисунке 2. Проведем моделирование разомкнутой системы (u=0). Результаты моделирования представлены на рисунке 15 (график состояния системы) и 16 (график виртуального выхода системы). Видно, что система является неустойчивой. Состояние системы не сходится к нулю из-за неустойчивых собственных значений матрицы A.



Рис. 15: График состояния системы

Виртуальный выход системы также не сходится к нулю, при этом это еще обусловлено и тем, что входной воздействие, которое является его частью не сходится к нулю.



Рис. 16: График виртуального выхода системы

### 2.2. Синтез регулятора

Как и в случае компенсирующего регулятора, синтез следящего регулятора будет состоять из двух этапов: синтез feedback компоненты и синтез feedforward компоненты.

#### 2.2.1. Feedback компонента

Синтез feedback компоненты будет идентичен такому же синтезу для компенсирующего регулятора. Возьмем результаты из предыдущего пункта (9).

$$K_1 = \begin{bmatrix} -4.57 & 0.29 & -4.57 \end{bmatrix}$$
 (17)

Промоделируем систему с полученным регулятором. Результаты моделирования представлены на рисунке 17 (график состояния системы) и 18 (график виртуального выхода системы). Видно, что регулятор справляется с задачей стабилизации состояния системы, но целевой



Рис. 17: График состояния системы с регулятором  $K_1$ 

параметр (виртуальный выход) не стабилизируется. Это связано с тем, что в его составе есть входное воздействие, которое не стабилизируется.



Рис. 18: График виртуального выхода системы с регулятором  $K_1$ 

#### 2.2.2. Feedforward компонента

Для синтеза следящего регулятора воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY \\
C_z P + D_z = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(18)

Условием существования такого регулятора является принадлежность собственных чисел внешнего воздействия правой комплексной полуплоскости и принадлежность корней системы, замкнутой регулятором, левой комплексной полуплоскости. Оба эти условия выполняются. Решим систему с помощью пакета cvx в MATLAB, в результате получаем:

$$K_2 = \begin{bmatrix} 3.23 & -0.90 & 2.40 & -2.74 \end{bmatrix} \tag{19}$$

Промоделируем систему с управлением  $u=K_1x+K_2w_g$ . Результаты моделирования представлены на рисунке 19 (график состояния системы) и 20 (график виртуального выхода

системы). Видно, что теперь виртуальный выход системы стабилизировался, что говорит о



Рис. 19: График состояния системы с регулятором  $K_1 + K_2$ 

том, что регулятор справляется с задачей слежения за входным воздействием.



Рис. 20: График виртуального выхода системы с регулятором  $K_1+K_2$ 

Сравнение графики приведены на рисунках 21 (сравнение управления) и 22 (сравнение виртуального выхода). Где  $u_1$  – управление, формируемое регулятором  $K_1$ ,  $u_2$  – управление, формируемое полным регулятором  $K_1 + K_2$ ,  $z_1$  – выход системы с регулятором  $K_1$ ,  $z_2$  – выход системы с полным регулятором  $K_1 + K_2$ .

Видно, что управление, формируемое полным регулятором  $K_1 + K_2$  не сходится к нулю, в отличие от управления, формируемого регулятором  $K_1$ . Это связано с тем, что полный регулятор  $K_1 + K_2$  учитывает входное воздействие, которое не стабилизируется. Таким образом получается добиться целевой задачи – виртуальный выход системы сходится к нулю.



Рис. 21: Сравнение управления



Рис. 22: Сравнение виртуального выхода

### 2.3. Выводы

В данном пункте был рассмотрен регулятор, способный следить за входным воздействием. Как и в прошлом случае, синтез регулятора состоял из двух этапов: синтез feedback компоненты, которая обеспечивает устойчивость системы, которая осталась неизменной в силу неизменности системы и синтез feedforward компоненты, которая обеспечивает стабилизацию виртуального выхода системы.

## 3. Слежение и компенсация по выходу

Рассмотрим систему

$$\begin{cases} \hat{x} = Ax + Bu + B_f w \\ y = Cx + Du \end{cases}, \quad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$
 (20)

с генератором внешнего возмущения

$$\dot{w} = \Gamma w, \quad w(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{21}$$

и два различных виртуальных выхода

$$z = C_z x + D_z w$$

$$z = y (22)$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \quad C = \begin{bmatrix} -2 \\ 0 \\ -3 \end{bmatrix}^{T}, \quad B_{f} = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix},$$

$$C_{z} = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}^{T}, \quad \Gamma = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix} \quad D = \begin{bmatrix} -12 \\ 2 \\ 2 \\ 6 \end{bmatrix}^{T}, \quad D_{z} = \begin{bmatrix} 8 \\ -8 \\ 12 \\ -3 \end{bmatrix}$$

$$(23)$$

Схема для моделирования данный системы представлена на рисунке 23.



Рис. 23: Схема моделирования системы

## 3.1. Анализ внешнего возмущения

Согласно результатам, полученным ранее, входное воздействие представляет собой гармонический сигнал, состоящий из двух частот. График входного воздействия представлен на рисунке 2.

#### 3.2. Анализ системы

Рассмотрим *объединенную* систему, которая включает в себя как вектор состояния, так и вектор внешнего возмущения. Определим обнаруживаемость пары (блочной матрицы)

$$\left( \begin{bmatrix} C & D \end{bmatrix}, \begin{bmatrix} A & B_f \\ 0 & \Gamma \end{bmatrix} \right)$$
(24)

Для этого найдем ее матрицу обнуруживаемости и определим ее ранг.

$$W = \begin{bmatrix} 8.00 & 1.00 & 11.00 & 0.00 & 1.00 & -1.00 & -1.00 \\ 4.00 & 0.00 & 4.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ -4.00 & -3.00 & -7.00 & 0.00 & -1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & -40.00 & 16.00 & 9.00 & 7.00 \\ 0.00 & 0.00 & 0.00 & -64.00 & 25.00 & 14.00 & 12.00 \\ 0.00 & 0.00 & 0.00 & -26.00 & 11.00 & 7.00 & 3.00 \\ 0.00 & 0.00 & 0.00 & -48.00 & 18.00 & 14.00 & 8.00 \end{bmatrix}$$

$$\operatorname{rank}(W) = 7 = \dim(W) \tag{26}$$

$$rank(W) = 7 = dim(W) \tag{26}$$

Таким образом, система является наблюдаемой, так как ранг матрицы обнаруживаемости равен размерности матрицы. Значит можно реализовать слежение и компенсацию по выходу.

#### 3.3. Расширенный наблюдатель

Рассмотрим уравнение расширенного наблюдателя

$$\begin{bmatrix} \dot{\hat{x}} \\ \dot{\hat{w}} \end{bmatrix} = \overline{A} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} - Ly \tag{27}$$

Подставив в него матрицы системы, получим

$$\overline{A} = \begin{bmatrix} A + BK_1 + L_1C & BK_2 + B_f + L_1D \\ L_2C & \Gamma + L_2D \end{bmatrix}$$
(28)

Далее найдем недостающие компоненты. Оценку данным наблюдателем будем использовать для создания регулятора вида

$$u = K_1 \hat{x} + K_2 \hat{w} \tag{29}$$

### 3.4. Синтез регулятора

#### 3.4.1. Feedback компонента

В силу неизменности матриц, задающих систему, регулятор  $K_1$ , полученный ранее остается прежним.

$$K_1 = \begin{bmatrix} -4.57 & 0.29 & -4.57 \end{bmatrix} \tag{30}$$

#### 3.4.2. Синтез наблюдателя

Синтезируем наблюдатель с заданной степенью устойчивости  $\alpha=3$  и минимизаций нормы управления используя матричные неравенства Ляпунова, аналогично синтезу регулятора, рассмотренного ранее. Получим матрицу L:

$$L = \begin{bmatrix} -14.41 \\ -2.37 \\ 12.45 \\ -50.07 \\ -77.47 \\ -49.82 \\ -65.29 \end{bmatrix}$$
(31)

Согласно уравнению 27, первые три элемента матрицы L соответствуют матрице  $L_1$ , а последние четыре элемента матрицы  $L_2$  – матрице оценки системы и внешнего возмущения соответственно. Таким образом,

$$L_1 = \begin{bmatrix} -14.41 & -2.37 & 12.45 \end{bmatrix}^T, \quad L_2 = \begin{bmatrix} -50.07 & -77.47 & -49.82 & -65.29 \end{bmatrix}^T$$
 (32)

#### 3.4.3. Feedforward компонента

Для синтеза следящего регулятора с виртуальным выходом  $z_1 = C_z x + D_z w$  воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY + B_f \\
C_z P + D_z = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(33)

Решая систему уравнений, получаем регулятор  $K_{21}$ :

$$K_{21} = \begin{bmatrix} -2.57 & 1.28 & 5.08 & -1.30 \end{bmatrix} \tag{34}$$

Для синтеза следящего регулятора с виртуальным выходом  $z_2 = y$  воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY + B_f \\
CP + D = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(35)

Решая систему уравнений, получаем регулятор  $K_{22}$ :

$$K_{22} = \begin{bmatrix} -6.54 & 1.53 & 4.35 & 1.82 \end{bmatrix} \tag{36}$$

## 3.5. Моделирование

Теперь, когда все компоненты расширенного наблюдателя (27) известны, можно смоделировать системы с полученными регуляторами и наблюдателем. При этом полученная матрица наблюдателя  $\overline{A}$  будет иметь вид для виртуального выхода  $z_1$ :

$$\overline{A} = \begin{bmatrix} 41.39 & 43.94 & 29.98 & 175.40 & -28.99 & -35.23 & -86.06 \\ 22.44 & 6.24 & 20.08 & 35.91 & -8.25 & -20.96 & -10.02 \\ -42.60 & -39.48 & -33.16 & -156.87 & 27.41 & 41.12 & 70.50 \\ 100.15 & 150.22 & 50.07 & 560.87 & -84.15 & -91.15 & -293.44 \\ 154.95 & 232.42 & 77.47 & 865.68 & -129.95 & -140.95 & -452.84 \\ 99.63 & 149.45 & 49.82 & 571.78 & -88.63 & -92.63 & -295.89 \\ 130.59 & 195.88 & 65.29 & 735.53 & -112.59 & -116.59 & -383.77 \end{bmatrix}$$

и ее собственные числа:

$$\sigma(\overline{A}) = \begin{bmatrix} -14.68 + 37.26j \\ -14.68 - 37.26j \\ 0.09 + 3.69j \\ 0.09 - 3.69j \\ 0.59 + 2.00j \\ 0.59 - 2.00j \\ -3.00 \end{bmatrix}$$
(38)

и для виртуального выхода  $z_2$ :

$$\overline{A} = \begin{bmatrix} 41.39 & 43.94 & 29.98 & 179.86 & -29.44 & -34.29 & -89.43 \\ 22.44 & 6.24 & 20.08 & 49.29 & -9.61 & -18.16 & -20.13 \\ -42.60 & -39.48 & -33.16 & -170.25 & 28.77 & 38.32 & 80.62 \\ \hline A = \begin{bmatrix} 100.15 & 150.22 & 50.07 & 560.87 & -84.15 & -91.15 & -293.44 \\ 154.95 & 232.42 & 77.47 & 865.68 & -129.95 & -140.95 & -452.84 \\ 99.63 & 149.45 & 49.82 & 571.78 & -88.63 & -92.63 & -295.89 \\ 130.59 & 195.88 & 65.29 & 735.53 & -112.59 & -116.59 & -383.77 \end{bmatrix}$$

$$\sigma(\overline{A}) = \begin{bmatrix} -14.00 + 35.43j \\ -14.00 - 35.43j \\ 0.00 + 3.00j \\ 0.00 - 3.00j \\ -0.00 + 2.00j \\ -0.00 - 2.00j \\ -3.00 \end{bmatrix}$$
(40)

В спектре присутствуют неустойчивые собственные числа, так как модель наблюдателя содержит в себе и собственные числа внешнего возмущения, которое не является устойчивым.

Сравнительный график реального состояния системы и его оценки для виртуального выхода  $z_1$  представлен на рисунке 29, сравнение внешнего возмущения и его оценки представлено на рисунке 30. Видно, что обе оценки сходятся к реальным значениям. Убедимся в этом, посмотрев на график ошибки наблюдения на рисунке 31 и 32 (для оценки состояния и внешнего возмущения соответственно). Обе ошибки наблюдения стремятся к нулю, что подтверждает корректность синтеза.



Рис. 24: Сравнение состояния системы и его оценки

Сравнительный график фактического и виртуального выхода системы представлен на рисунке 28 ( $z_1$  – виртуальный выход,  $z_2$  – фактический выход).



Рис. 25: Сравнение внешнего возмущения и его оценки



Рис. 26: Ошибка наблюдения состояния системы



Рис. 27: Ошибка наблюдения внешнего возмущения



Рис. 28: Сравнение фактического и виртуального выхода системы

Сравнительный график состояния системы и его оценки для виртуального выхода  $z_2$  представлен на рисунке 29, сравнение внешнего возмущения и его оценки представлено на рисунке 30. Так же, как и в случае с виртуальным выходом  $z_1$ , видно, что обе оценки сходятся



Рис. 29: Сравнение состояния системы и его оценки

к реальным значениям. Убедимся в этом, посмотрев на график ошибки наблюдения на рисунке 31 и 32 (для оценки состояния и внешнего возмущения соответственно). Обе ошибки наблюдения стремятся к нулю, что подтверждает корректность синтеза. Сравнительный график фактического и виртуального выхода системы представлен на рисунке 33 ( $z_1$  – виртуальный выход,  $z_2$  – фактический выход).



Рис. 30: Сравнение внешнего возмущения и его оценки



Рис. 31: Ошибка наблюдения состояния системы



Рис. 32: Ошибка наблюдения внешнего возмущения



Рис. 33: Сравнение фактического и виртуального выхода системы

## 3.6. Выводы

В данном пункте была рассмотрена система с внешним возмущением, которая замкнута регулятором на основе оценки состояния системы и внешнего возмущения расширенного наблюдателя. Данный регулятор более реалистичен, так как в реальности иметь данные о внешнем возмущении практически всегда невозможно, что делает его более универсальным. По графикам видно, что система все так же стабилизируется, а регулятор справляется с задачей слежения за входным воздействием.