

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文制

细化

研究现得

确定参数范围

带磁荷黑洞的净磁荷

结末 捕获磁单极

长寿命非极端 MBH

致谢

早期宇宙中带磁荷黑洞形成机制研究

Study on the formation mechanism of magnetic black holes in the early universe

蔡文韬

指导教师: 张宸 副教授 东北大学 理学院

2024年6月12日

研究动机

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文報

绪论

开究现料

研究过程 确定参数范围

结果 捕获磁单极子 形成时获得

长寿命非极端 MBH

致谢

- 极端带磁荷黑洞附近的电弱对称性恢复1
- 带磁荷黑洞具有许多和磁单极子类似的性质

带磁荷黑洞的演化: 通过霍金辐射耗散质量

70 1

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文韬

萡化

研究现状

研究过程 确定参数范围

^{带磁荷黑洞的净磁荷} 结果

致谢

### \$\$\$\$ # # #	e	$\chi_{\rm bh} M_{\rm Pl}$.
带磁荷黑洞的荷质比≡	$\frac{1}{\sqrt{\pi}}$.	$\frac{m_{11}}{m_{22}}$.
	V	$m_{ m bh}$

表: 带磁荷黑洞的演化的 3 个阶段

荷质比	黑洞的状态	霍金辐射
≪ 1	带磁荷黑洞 (MBHs)	施瓦西黑洞的霍金辐射
$\rightarrow 1^{-}$	近极端带磁荷黑洞(near-extremal MBHs)	2 维霍金辐射 ²
=1	极端带磁荷黑洞(extremal MBHs)	不辐射

极端带磁荷黑洞的衰变

$$au_{\mathrm{eMBH}} \sim \exp \left[\left(\frac{m}{M_{\mathrm{Pl}}} \right)^2 \pi g \chi_{\mathrm{eMBH}} \right] M_{\mathrm{Pl}}^{-1}$$

²J. Maldacena, JHEP 04 (2021), 079

原初黑洞捕获磁单极子

磁荷黑洞形成 机制研究

研究现状

扩散捕获

$$\ell \lesssim R_{\rm gc}$$

热运动显著:磁单极子靠近原初黑洞后(进入 $R_{\rm sc}$ 范围内),会发生多次由热运 动造成的速度改变 (每走过 ℓ 路程后)。

扩散捕获在低温下更有效:热动能小、更容易进入引力束缚态

磁单极子丰度变化来自于 2 个过程: $\mathbf{\overline{zr}}$ (Δ) 和引力扩散捕获 (Φ): 3

$$\frac{\mathrm{d}r}{\mathrm{d}T} = \frac{\Delta}{T^2}r^2 + \frac{\Phi}{T^2}r$$

³C. Zhnag & X. Zhang, JHEP 10 (2023), 037

研究过程

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文制

绪论

研究现制

研究过程

确定参数范围

带磁荷黑洞的净磁

/-b ===

捕获磁单极子形成时获得

长寿命非极端

致谢

参数范围

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文ŧ

绪论

研究现制

40万元121在 确定参数范围

带磁荷黑洞的净磁布

捕获磁单极

形成时获得 长寿命非极

МВН

引力捕获获得的净磁荷

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文韬

绪论

研究现状

研究24年 确定参数范围 带研查里温的净

洁果 捕获磁单极子 形成时获得

长寿命非极的 MBH

致谢

每个原初黑洞捕获到的磁单极子数量:

$$\frac{s}{n_{\rm bh}} \int_{T_c}^{T_t} \frac{\Phi}{T^2} r \, \mathrm{d}T \propto \int_{T_c}^{T_t} \frac{r}{T^2} \, \mathrm{d}T$$

$$\simeq \frac{r}{T_s}$$
 (仅与捕获结束温度 T_s 相关)

净磁荷的库仑力

吸收足够多的净磁荷 $(\chi_{
m gc}^{
m max})$ 后,m MBH 的库伦力会影响引力捕获

$$\chi_{\rm gc}^{\rm max}: \frac{g^2 \chi_{\rm gc}^{\rm max} \chi}{R^2} \equiv \frac{G m_{\rm bh} m}{R^2}$$

- 引力捕获必须发生在原初黑洞蒸发(Tev) 前
- ullet 原初黑洞蒸发时 $(T_{
 m ev})$ 的磁单极子不主导宇宙能量密度: $mrs\lesssim
 ho$

$$\Rightarrow \frac{r}{T_s} \lesssim \frac{r}{T_{\rm ev}} \lesssim m^{-1}$$

确定原初黑洞形成时的磁单极子丰度 r_b

早期宇宙中帶 磁荷黑洞形成 机制研究

蔡文韬

绪论

研究现制

研究过程 确定参数范围

吉果 捕获磁单极子 形成时获得

长寿命非极회 MBH

 致谢 在磁单极子形成 (T_c, r_i) 后,到原初黑洞形成 (T_b, r_b) 时只发生湮灭 (Δ) 而不发生引力捕获:

$$r_b = \frac{1}{\frac{1}{r_i} + \Delta \left(\frac{1}{T_b} - \frac{1}{T_c}\right)} \simeq \min \left\{ r_i, \frac{1}{\Delta \left(\frac{1}{T_b} - \frac{1}{T_c}\right)} \right\} \simeq \min \left\{ r_i, \frac{T_b}{\Delta} \right\}$$

两个近似关系

$$\frac{1}{\frac{1}{a}+\frac{1}{b}}\simeq\min\{a,b\}\ ,\ \text{e.g.}\ 两个差值很大的电阻并联}$$

$$\frac{1}{z^{-1}-1}=\begin{cases} z&z\ll1\\ +\infty&z\to1^- \end{cases},\ \text{e.g.}\ 玻色气体中基态粒子的数量}$$

捕获磁单极子获得的净磁荷

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文報

绪论

研究过程

确定参数范围 带磁荷黑洞的净磁荷

结果 捕获磁单极子 ^{形成时获得}

长寿命非极端 MBH

致谢

通过引力捕获磁单极子 形成长寿命极端带磁荷黑洞 所需的最小原初黑洞质量

大部分原初黑洞可以仅通过引力捕 获达到 $\chi_{\rm gc}^{
m max}$ (阴影区域)

原初黑洞形成时获得的净磁荷($\propto \sqrt{r_b}$)

早期宇宙中带 磁荷黑洞形成 机制研究

蔡立制

绪论

研究现制

40万 允 22 柱 确定参数范围

^{帝磁传黑洞的净板} 结果

捕获磁单极子 形成时获得

长寿命非极端 MBH

致谢

形成长寿命极端带磁荷黑洞 所需的净磁荷

VS.

不同质量的原初黑洞 在形成时可以获得的净磁荷

长寿命非极端 MBH

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文制

绪论

研究现制

确定参数范围

结果 捕获磁单极子

人 长寿命非极端 MBH

致谢

长寿命
$$+$$
非极端 \rightarrow 质量大 \rightarrow $\left\{egin{align*} \mathbb{R}$ 形成晚 $\rightarrow\chi_{
m bh}\propto\sqrt{r_b}\simeq\sqrt{r_p} \ \mathbb{R} \end{array}
ight.$ 引力大 \rightarrow $\left\{egin{align*} \mathbb{R}$ 抗菌糖 $\\ \mathbb{R} \end{array}
ight.$ 为大 $\rightarrow\chi_{
m bh}\propto\sqrt{r_p} \end{array}
ight.$

当前宇宙磁单极子丰度 r_p 的 Parker Bound

$$r_p = rac{4\pi F_M}{sv_M} \lesssim 8.4 imes 10^{-28} \left(rac{m}{M_{
m Pl}}
ight)^{rac{1}{2}}$$
 a

^aC. Zhang et al., arXiv: 2404.04926

长寿命非极端 MBH 的净磁荷

早期宇宙中带 磁荷黑洞形成 机制研究

蔡文報

珀化

研究现制

研究过程 确定参数范围

朝走梦致氾固 带磁荷黑洞的净磁荷

结 果 捕获磁单极子

长寿命非极端 MBH

n#264

分别通过引力捕获(χ_{gc})和 形成时的粒子视界(χ_H) 获得的净磁荷 (以质量约为 10^{15} g 的黑洞为例)

蔡文韬

绪论

研究现状

研究过程

确定参数范围 带磁荷黑洞的净磁荷

结果 捕获磁单极子 形成时获得

长寿命非极端 MBH

致谢

谢谢!

Thank You!

ありがとうございます!