Vigas cargas transversalmente

Configuraciones de apoyo en vigas

Problema 01

Para la viga y las cargas que se muestran en la figura, a) dibuje los diagramas de cortante y de momento flector, b) determine las ecuaciones de las curvas de cortante y de momento flector.

Para la viga y las cargas que se muestran en la figura, a) dibuje los diagramas de cortante y de momento flector, b) determine las ecuaciones de las curvas de cortante y de momento flector.

$$A_{+} = \frac{\omega \cdot (L-2a)}{2} \cdot a + \frac{\omega \cdot (L-2a)}{2} \cdot \frac{(L-2a)}{2} \cdot \frac{1}{2}$$

$$A_{+} = \frac{\omega \cdot (L^{2}-4a^{2})}{8}$$

Para la sección A - B

$$\Sigma F_{N} = 0$$
 $\frac{\omega \cdot (L-2a)}{2} \cdot V = 0 \approx V = \frac{\omega \cdot (L-2a)}{2} \cdot X$

Para la sección B - C

 $\overline{ZF_{3}} = 0 \qquad \underline{W(L-2a)} - W(x-a) - V = 0 \quad 2a \quad V = W(\frac{L}{2}-x)$ $\underline{ZM} = 0 \qquad \underline{W(L-2a)} \cdot x + W(x-a) \cdot (\underline{x-a}) + M = 0 \quad 2a \quad M = \frac{1}{2} W \left[(L-2a)x - (x-a)^{2} \right]$

Para la sección C - D

$$\sum F_{5}=0$$
 $V_{+}\frac{\omega(L-2a)}{2}=0 \approx V_{-}-\frac{1}{2}\omega(L-2a)$

Si se supone que la reacción del suelo está uniformemente distribuida, dibuje los diagramas de cortante y de momento flector para la viga AB y determine el máximo valor absoluto a) del esfuerzo cortante, b) del momento flector.

Para el sector A - C

Sector C - D

$$\Sigma F_{y=0}$$
 -1,5 +2x-V=0 26 V=2x-1,5
 $\Sigma M=0$ 1,5.(x-0,3) -2x.(x/2)+M=0 26 M=(x²-1,5x+0,45)

$$M = (x^{2} - 1.5x + 0.45) \quad X = 0.75 \quad M = -0.1125 \text{ kb.m.}$$

$$M = (x^{2} - 1.5x + 0.45) \quad \text{para} \quad x = 1.7m \quad M = 0.00$$

$$\text{al} \quad |V_{\text{max}}| = 0.4 \text{ kb.} = 900 \text{ b}$$

$$|M_{\text{max}}| = 0.1125 \text{ kb.m.} = 112.5 \text{ b.m.}$$

Para la viga y las cargas mostradas en la figura, determine el esfuerzo normal máximo debido a la flexión sobre un corte transversal en C.

Cálculo del momento de inercia

Calculate the support reactions at A and B for the loaded beam.

Problema 18

Calculate the support reactions at A and B for the beam subjected to the two linearly varying load

Problema 21

Determine the force and moment reactions at the support A of the cantilever beam subjected to the load distribution shown.

$$R = \int \omega dx = \int \frac{\omega_0}{\sqrt{19}} \cdot \sqrt{x} dx = \frac{\omega_0}{\omega_0} \cdot \left(\frac{2}{3}x^3\right) = \frac{2}{3}\omega_0 \int \frac{1}{3}\omega_0 dx$$

$$\bar{x} = \frac{\int_{x.w.dx}}{\int_{x} dx}$$

$$\overline{X} = \frac{\int X \cdot w \cdot dx}{\int w \cdot dx} \qquad \int X \cdot w \cdot dx = \int_{0}^{\infty} X \cdot \frac{w_{0}}{\sqrt{2}} \cdot \sqrt{1} x \cdot dx$$

$$\int_{0}^{1} x \cdot \frac{\omega_{0}}{\sqrt{9}} \cdot \sqrt{1}x \cdot dx = \frac{\omega_{0}}{\sqrt{9}} \cdot \int_{0}^{1} x \cdot dx = \frac{2}{5} \frac{\omega_{0}}{\sqrt{9}} \cdot x^{5/2} \Big|_{0}^{1} = \frac{2}{5} \omega_{0} \cdot 9 = \frac{2}{5} \omega_{0} \cdot 9$$

$$\overline{X} = \frac{\int x \cdot w \cdot dx}{\int w \cdot dx} = \frac{\overline{2} \cdot w \cdot x}{\overline{2} \cdot w \cdot x} = \frac{3}{5}.$$

Por condicion de equilibrio:

Draw the shear and moment diagrams for the loaded beam and determine the distance d to the right of A where the moment is zero.

$$V = \frac{dM}{dx}$$

-4KN. 2m + By. 4m - 2KN. 6m= 0 D M = 0 Ay + By - 6KN=0 ZFy=0

AS= 1KU)

Para $0 \le x \le 2$ m

Para 4 < x < 6 m

ZFy=0

1-4+5-4=0

MA=O

-4,2+5.4-V.x+M=0

M = 2x-12

diagrama de fuerza cortante

$$w = -\frac{dV}{dx}$$

$$V = \frac{dM}{dx}$$

d'agrama momento floctor

Draw the shear and moment diagrams for the loaded beam. What are the values of the shear and moment at midbeam?

Problema 27

Draw the shear and moment diagrams for the loaded beam and determine the maximum value $M_{\rm max}$ of the moment.

0 < x < 4 ft

$$4) ZM_{8} = 0$$

$$-(x-4).300 (x+4) + (1800-300x).x + M = 0$$

$$-150 (x^{2}-16) + 1800 x - 300x^{2} + M = 0$$

$$M = 150(x^{2}-16) - 1800 x + 300x^{2}$$