الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

دورة: 2020

الديوان الوطنى للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و 30 د

 $p(X=x_i)$

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كلّ حالة من الحالات التالية، مع التبرير:

: المقابل المتغيّر العشوائي X معرّف بالجدول المقابل (1)

الأمل الرياضياتي E(X) للمتغيّر العشوائي X هو:

$$-\frac{3}{20}$$
 (\Rightarrow $-\frac{1}{10}$ (\Rightarrow

$$-\frac{1}{20}$$

$$\frac{20}{20} \left(\div \right) - \frac{10}{10}$$

 $w_n = 4 \times 5^n - 2n + 1$: بالمتتالية العددية (w_n) معرّفة على مجموعة الأعداد الطبيعية ((w_n) معرّفة على مجموعة الأعداد الطبيعية ((w_n)

 $S_n = w_0 + w_1 + w_2 + \dots + w_n$: n نضع من أجل كل عدد طبيعي

$$5^n - n^2$$
 (\Rightarrow

$$5^{n+1} - n^2$$
 (ب

$$5^{n+1} - n^2$$
 (\hookrightarrow $5^{n+1} - (n+1)^2$ ()

$$S_n$$
يساوي:

$$-2e^{2x} + 5e^x - 2 \ge 0$$

 $-2e^{2x} + 5e^{x} - 2 \ge 0$: x نعتبر المتراجحة ذات المجهول الحقيقى (3

مجموعة حلول هذه المتراجحة في مجموعة الأعداد الحقيقية هي:

$$[\ln 2; +\infty]$$
 (=

$$[-1; -\ln 2]$$
 (ب

$$[-\ln 2; \ln 2]$$
 (

التمرين الثاني: (04 نقاط)

يحتوي وعاء U على 4 كريات حمراء و 6 سوداء، ويحتوي وعاء V على 5 كريات حمراء و 8 سوداء وكل الكريات متماثلة ولا نفرّق بينها عند اللّمس. نسحب عشوائيا كريتين في آنِ واحد من أحد الوعاءين بالكيفية التالية:

نقوم بسحب بطاقة واحدة عشوائيا من كيس يحتوي على 6 بطاقات متماثلة ومرقمة من 1 إلى 6 ، إذا تحصلنا على . V أو V نسحب الكريتين من V و في باقي الحالات نسحب الكريتين من

نسمّي A الحدث: " الحصول على أحد الرقمين 3 أو 5 " .

نسمّى М الحدث: " الحصول على كريتين من نفس اللّون".

 $rac{2}{3}$ تحقق أنّ $P(\overline{A})$ احتمال السّحب من الوعاء V هو $\overline{2}$

علماً أنّ الكريتين المسحوبتين من U، بيّن أنّ احتمال أن تكونا $oldsymbol{(2)}$

من نفس اللّون هو $\frac{7}{15}$.

احسب $P_{\overline{M}}(A)$ احتمال السّحب من الوعاء U علما أنّ الكريتين المسحوبتين مختلفتا اللّون؟ (4

اختبار في مادة: الرياضيات \ الشعبة: علوم تجريبية \بكالوريا 2020

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{3}{4}u_n - 1: n$ معرّفة ب $u_n = \alpha$ عدد حقيقي)، ومن أجل كل عدد طبيعي $u_n = \alpha: u_{n+1} = \frac{3}{4}u_n$ معرّفة ب $u_n = \alpha: u_n$

 $\cdot \alpha = -4$ نفرض أنّ (1

 $u_n = -4: n$ برهن بالتّراجع أنّه من أجل كل عدد طبيعي

 $\cdot \alpha \neq -4$ نفرض أنّ (2

 $v_n = u_n + 4$: بالمعرّفة على مجموعة الأعداد الطبيعية \mathbb{N} بعتبر المتتالية العددية (v_n) المعرّفة على مجموعة الأعداد الطبيعية

. أثبت أنّ المتتالية $\left(v_{n}\right)$ هندسية أساسها

 (u_n) متقاربة. α و α ثمّ بيّن أنّ المتتالية (u_n) متقاربة.

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$: n عدد طبيعي من أجل كل عدد طبيعي

 $\lim_{n\to +\infty} S_n$ احسب S_n و α و α بدلالة ا

التمرين الرابع: (07 نقاط)

. $f(x)=x-1-\frac{\ln x}{x^2}$ بين $f(x)=x-1-\frac{\ln x}{x^2}$ بين f(x)=x-1

(2cm في مستوٍ منسوب إلى المعلم المتعامد المتعامد وحدة الطول). ($O; \vec{i}, \vec{j}$) التمثيل البياني لf في مستوٍ منسوب إلى المعلم المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد وحدة الطول

 $\lim_{x \to +\infty} f(x) = +\infty$ و فسّر النتيجة هندسيا ثمّ بيّن أنّ $\lim_{x \to +\infty} f(x) = +\infty$ أ . احسب

 $+\infty$ عند (\mathcal{C}_f) عند مائل المنحنى y=x-1 عند عند Δ

 (Δ) بالنسبة إلى المستقيم (\mathcal{C}_f) بالنسبة إلى المستقيم

g الدالة العددية g معرّفة على المجال g: بيّن أنّ g متزايدة تماماً على g: المجال g: بيّن أنّ g متزايدة تماماً على g: المجال g: المج

 $[0;+\infty]$ به من المجال g(x) عسب قيم x من المجال g(1)

. $f'(x) = \frac{g(x)}{x^3}$: $]0; +\infty[$ من المجال x عدد حقیقي عدد حقیقي . $f'(x) = \frac{g(x)}{x^3}$. $[0; +\infty[$ المجال x عدد حقیقی x من المجال x من المجال x عدد حقیقی x من المجال x عدد حقیقی x من المجال x من المج

. استنتج اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیّراتها

بيّن أنّ التمثيل البياني (\mathcal{C}_f) يقبل مماسا (T) موازيا للمستقيم (Δ)، ويُطلب تعيين معادلة له.

 \cdot (\mathcal{C}_f) و (Δ) ، (T) انشئ (5

 $h(x) = -|x| + 1 + \frac{\ln|x|}{x^2}$: ب $-\infty; 0[\cup]0; +\infty[$ معرّفة على h معرّفة على (6)

أ. بيّن أنّ h دالة زوجية.

 (C_h) الممثّل الدالة h انطلاقا من (C_h) الممثّل الدالة المنحنى المنحن

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

عيّن الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية، مع التبرير:

. $f(x) = -x + \ln x$: بالشكل $f(x) = -x + \ln x$ نعتبر الدّالة $f(x) = -x + \ln x$ نعتبر الدّالة والمعرّفة على المجال

:f على المجال]0;+ ∞ [الدّالة

أ) متزایدة تماما ب) متناقصة تماما ج) غیر رتیبة

2) يتكون فريق عمل من 4 إناث و 3 ذكور ، يراد تشكيل لجنة تضم 3 أعضاء.

احتمال أن تكون اللجنة من الجنسين هو:

 $\frac{1}{7}$ (\Rightarrow $\frac{4}{7}$ (\Rightarrow $\frac{6}{7}$ (\uparrow

(ع أساس اللوغاريتم النيبيري) لتكن $u_0 = e^{-\frac{1}{2}}$: ديث: $u_0 = e$ الأول e وحدها الأول e النيبيري (u_n) من أجل كل عدد طبيعي u_n نضع: u_n نضع: u_n نضع: u_n

يساوي: S_n

 $\frac{n^2}{2} \quad (\Rightarrow \qquad \qquad \frac{n^2+1}{2} \quad (\Rightarrow$

 $\frac{n^2-1}{2}$ (1)

التمرين الثاني: (04 نقاط)

كيس به ثلاث كريات بيضاء وكريتين حمراوين لا نميّز بينها عند اللمس، نسحب عشوائيا كريتين على التوالي من الكيس بالكيفية التالية: إذا كانت الكرية المسحوبة بيضاء نعيدها إلى الكيس و إذا كانت حمراء لا نعيدها إلى الكيس .

1) أ. انقل شجرة الاحتمالات المقابلة ثم أكملها.

R يرمز إلى الحصول على كرية بيضاء و R إلى الحصول على كرية حمراء.

ب. احسب احتمال أن تكون الكرية المسحوبة الثانية حمراء.

ك) ليكن X المتغير العشوائي الذي يرفق بكل سحب لكريتين عدد الكريات الحمراء المسحوبة.

أ. عيّن مجموعة قيم المتغير العشوائي X.

X. بيّن أنّ: $\frac{27}{50} = P(X = 1)$ ، ثمّ عرّف قانون احتمال المتغير العشوائي

X الأمل الرياضياتي للمتغير العشوائي E(X)

اختبار في مادة: الرياضيات \ الشعبة: علوم تجريبية \بكالوريا 2020

التمرين الثالث: (05 نقاط)

 $u_{n+1}=3u_n-2n+3$: n عدد طبيعي عدد $u_0=0$ و من أجل كل عدد $u_n=0$ معرفة كما يلي:

- (u_n) احسب کلا من u_1 و u_2 ثم خمّن اتجاه تغیّر المتتالیة (1
- . $v_n=u_n-n+1$: ب المتتالية العددية المعرّفة على المتتالية (v_n)

أ . بيّن أنّ (v_n) متتالية هندسية أساسها 3 ، يُطلب حساب حدّها الأول.

- . n بدلالة n ثم استنتج عبارة الحدّ العام v_n بدلالة بدلالة برادة العام بدلالة برادة بدلالة برادة بدلالة برادة بدلالة برادة بدلالة برادة برادة
 - (u_n) ادرس اتجاه تغیّر المتتالیة
- . $S_n=u_0+u_1+\cdots+u_n$ نضع: n نضع عدد طبیعي من أجل كل عدد طبیعي (3

$$S_n = \frac{1}{2}(3^{n+1} + n^2 - n - 3)$$
 : n عدد طبیعي أ. أ. بيّن أنّه من أجل كل عدد طبيعي

 $\lim_{n\to +\infty} S_n : -\infty$

التمرين الرابع: (07 نقاط)

 $\cdot \left(O; \overrightarrow{i}, \overrightarrow{j} \right)$ المستوي منسوب إلى المعلم المتعامد المتجانس (I

 $g(x)=2x^2+2x-2xe^x$: في الشّكل المرفق، (Γ) المنحنى الممثِّل للدّالة g المعرّفة على \mathbb{R}

 $x\mapsto e^x$: المستقيم ذو المعادلة: y=x و (γ) المنحنى الممثل للدالة: (Δ)

بقراءة بيانية:

.
$$g(0) = 0$$
 مدّد تبعا لقيم العدد الحقيقي x اشارة $g(x)$ علما أنّ

.
$$f(x) = -1 + \frac{2e^x}{e^x - x}$$
 : ب \mathbb{R} بالدّالة العددية f معرّفة على (II

. المعلم البياني في المستوي المنسوب إلى المعلم السابق (C_f) ليكن

.
$$f'(x) = \frac{2e^x(1-x)}{(e^x-x)^2}$$
 يكون: عدد حقيقي x يكون: (2

. استنتج اتجاه تغیّر الدّالة f ثمّ شکِّل جدول تغیّراتها ب

 (C_f) في النّقطة (T) المماس للمنحنى المنطنة (C_f) في النّقطة (T) في النّعطة ((T)

$$f(x) - (2x+1) = \frac{g(x)}{e^x - x}$$
 يكون: x عدد حقيقي x يكون: وأنّه من أجل كلّ عدد حقيقي x

 (C_f) و (T_f) و النسبي لـ (C_f) و النسبي لـ (C_f) على (C_f) على النسبة الوضع النسبي لـ (C_f)

$$-0.6\langlelpha\langle-0.5:$$
 ثم تحقق أنّ $]-\infty;1]$ بيّن أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال $[-\infty;1]$

. (C_f) والمستقيمين المقاربين ثم المنحنى (T) والمستقيمين المقاربين ثم المنحنى

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ t " \$1	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)	
		التمرين الأوّل: (04 نقاط)	
1	2x0.5	. الاقتراح الصحيح: ج $E(X) = -rac{3}{20}$ ، التبرير (1	
1.5	0.5+1	$5^{n+1} - n^2$ (بالاقتراح الصحيح: ب) (2 $S_n = 4(1+5^1+5^2++5^n) - 2(1+2++n) + (n+1) = 5^{n+1} - n^2$ التّبرير:	
1.5	0.5+1	[- $\ln 2$; $\ln 2$] (3) الاقتراح الصحيح: أ $\ln 2$; $\ln 2$] (1) التّبرير: $-2e^{2x} + 5e^{x} - 2 \ge 0$ تكافئ $-2e^{2x} + 5e^{x} - 2 \ge 0$	
		التّمرين الثّاني: (04 نقاط)	
0.5	0.5	$P(\overline{A}) = \frac{4}{6} = \frac{2}{3} $ (1)	
0.75	0.75	$P_A(M) = \frac{C_4^2 + C_6^2}{C_{10}^2} = \frac{6+15}{45} = \frac{7}{15}$ (2	
1.75	1	$\frac{7}{15}$ M (3) شجرة الاحتمالات: M $\frac{1}{3}$ M $\frac{1}{3}$ M $\frac{2}{3}$ M $\frac{13}{28}$ M	
	0.75	$P(M) = P(A) \times P_A(M) + P(\overline{A}) \times P_{\overline{A}}(M) = \frac{1}{3} \times \frac{7}{15} + \frac{2}{3} \times \frac{13}{28} = \frac{293}{630}$	
1	0.25x4	$P_{\overline{M}}(A) = \frac{P(A \cap \overline{M})}{P(\overline{M})} = \frac{\frac{1}{3} \times \frac{8}{15}}{1 - \frac{293}{630}} = \frac{8}{45} \times \frac{630}{337} = \frac{112}{337} $ (4	
	التّمرين الثّالث: (05 نقاط)		
1	0.25 + 0.75	الدینا: $u_n=-4$ ، من أجل n كیفي من $\mathbb N$ نفرض أنّ: $u_0=-4$ ، نجد: $u_n=-4$ ، بالتّالي من أجل كل $u_n=-4$ ، بالتّالي من أجل كل $u_n=-4$	

العلامة		/ h w 8 h
مجموعة	مجموعة	عناصر الإجابة (الموضوع الأوّل)
	0.75	$v_{n+1} = u_{n+1} + 4 = \frac{3}{4}(u_n + 4) = \frac{3}{4}v_n$ لدينا: (أ (2)
	0.5+0.25	$v_n = (\alpha + 4) \left(\frac{3}{4}\right)^n$ و $v_0 = \alpha + 4$: نجد (ب
	0.5	$u_n = (\alpha + 4) \left(\frac{3}{4}\right)^n - 4$ ومنه:
4	0.5	\ \'\'
		(u_n) الدينا: $u_n = -4$ الدينا: $u_n = -4$ الدينا:
	1	$S_n = 4 \left[(\alpha + 4) \left(1 - \left(\frac{3}{4} \right)^{n+1} \right) - (n+1) \right]$ نجد: (ج
	0.5	$\lim_{n\to+\infty} S_n = -\infty \text{9}$
		التّمرين الرابع: (07 نقاط)
	0.5	$\lim_{x \to 0} f(x) = +\infty : \Rightarrow 0$ (1)
	0.25	(C_f) التّفسير: المستقيم ذو المعادلة $x=0$ مقارب لـ
	0.5	. $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$: لأنّ $\lim_{x \to +\infty} f(x) = +\infty$ ولدينا:
2	0.25	ب) لدينا: $\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} -\frac{\ln x}{x^2} = 0$ با لدينا: $\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} -\frac{\ln x}{x^2} = 0$
		$+\infty$ عند (C_f) عند مائل للمنحنى
	0.5	(Δ) تحت (C_f) المنحنى (C_f) على المجال $[0;1[$ ، المنحنى (C_f) تحت
		$(C_f) \bigcap (\Delta) = \left\{A(1;0)\right\}$ على المجال $\left[1;+\infty\right]$ و
	0.25x2	$g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$ و $g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$
1.5	0.25	بالتّالي g متزايدة تماما على المجال $]\infty+0$
	0.25	ب) لدينا: $g(1)=0$ و بما أنّ g متزايدة تماما على المجال $g(1)=0$ نجد:
	0.5	$]1;+\infty[$ على المجال $]0;1[$ و $g(x)>0$ على المجال $g(x)<0$
1.05	0.5	$f'(x) = 1 - \frac{1 - 2\ln x}{x^3} = \frac{g(x)}{x^3} :]0; +\infty[$ من أجل كلّ x من أجل كلّ (3)
1.25	0.5	$[1;+\infty[$ الدّالة f متناقصة تماما على $[0;1]$ ومتزايدة تماما على f
	0.25	جدول التّغيرات
	0.25	$x = \sqrt{e}$ ادينا $f'(x) = 1$ تعني $f'(x) = 1$ اي
0.5	0.25	$y=x-1-rac{1}{2e}$ بالتّالي (C_f) يقبل مماسا

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
1	0.25x2 0.5	(C _f) θ (Δ) (T) elimin (5) (C0) (C1) (C2) (C3) (C4) (C4) (C5) (C6) (C6) (C7) (C6) (C7) (C7)
	0.25	اً) بیان أنّ h دالمة زوجیة h دالمة زوجیة
0.75	0.25	ومنه: $\begin{cases} h(x) = -f(x) ; x > 0 \\ h(x) = x + 1 + \frac{\ln(-x)}{x^2} ; x < 0 \end{cases}$
	0.25	على المجال $0;+\infty$ يكون (C_h) نظير (C_f) بالنسبة إلى حامل محور الفواصل ونحصل على (C_h) على المجال $-\infty;0$ بالتّناظر بالنسبة إلى حامل محور التّراتيب.

العلامة		/ •1 ² / ₂ †(- • †() ² / ₃ 1 b)(1•-	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)	
		التمرين الأوّل: (04 نقاط)	
1.5		1) الاقتراح الصحيح: ج) غير رتيبة.	
	1+0.5	$]0;+\infty[$ التّبرير: $f'(x)=\frac{1-x}{x}$ و $f'(x)=\frac{1-x}{x}$	
1	0.5+0.5	$P = \frac{C_3^1 \times C_4^2 + C_3^2 \times C_4^1}{C_7^3} = \frac{6}{7}$: الاقتراح الصحيح (أ $\frac{6}{7}$ الاقتراح الصحيح) (2	
1.5	1+0.5	$\ln(u_n) = n - \frac{1}{2}$: الاقتراح الصحيح (أ ي التّبرير) ، التّبرير (3 التّبرير) (3	
1.3	1+0.5	$S_n = (0 - \frac{1}{2}) + (1 - \frac{1}{2}) + (2 - \frac{1}{2}) + \dots + (n - \frac{1}{2}) = \frac{n(n+1)}{2} - \frac{n+1}{2} = \frac{n^2 - 1}{2}$	
	التّمرين الثّاني: (04 نقاط)		
1.5	0.25x4	$\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ 1	
	0.5	$P = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{1}{4} = \frac{17}{50}$ احتمال أنّ تكون الكريّة المسحوبة الثّانية حمراء:	
	0.5	ك) أ) مجموعة قيم المتغيّر العشوائي X هي: $\{0;1;2\}$.	
2.5	3x0.5	$P(X=1) = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{4} = \frac{27}{50}$ بن) لدینا: $P(X=2) = \frac{1}{10}$ و نجد: $P(X=0) = \frac{9}{25}$	
	0.25x2	$E(X) = \frac{37}{50}$ نجد: (ج	
		التّمرين الثّالث: (05 نقاط)	
0.75	0.25x3	نجد: 3 = u_1 و u_2 = 9 ، التّخمين: u_n متزايدة تماما.	
	0.25+1	$v_0=1$ و $v_{n+1}=u_{n+1}-(n+1)-1=3$ نجد: رأ (2) فندسية أساسها $v_0=1$ و $v_{n+1}=u_{n+1}$	
2.75	0.5+0.5	$u_n = 3^n + n - 1$ و $v_n = 3^n$ نجد: (ب	
	0.25x2	ج) لدینا: $u_{n+1} - u_n = 2 \times 3^n + 1$ نجد: $u_{n+1} - u_n = 2 \times 3^n + 1$	

العلامة		/
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
1.5		3) أ) من أجل كل عدد طبيعي n لدينا:
	0.25x2	$S_n = (v_0 + v_1 + v_2 + \dots + v_n) + (-1 + 0 + 1 + \dots + (n-1))$
	0.5	$S_n = \frac{1}{2} (3^{n+1} + n^2 - n - 3)$ إذن:
	0.5	$\lim_{n\to +\infty} S_n = +\infty (\mathbf{\psi}$
		التّمرين الرابع: (07 نقاط)
0.25	0.25	$\mathbb R$ الأنّ (γ) يقع فوق (Δ) على الدينا: من أجل كل x من x من $e^x-x>0$ لأنّ الدينا
0.25	0.25	$g(x) < 0$: على $]0;+\infty[$ لدينا: $g(x) > 0$ و على $]0;+\infty[$ لدينا: $g(x) > 0$
1	2x0.25	$\lim_{x \to -\infty} f(x) = -1 int_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 + \frac{2}{1 - xe^{-x}} \right) = 1$ لدينا: 1(III)
	2x0.25	(C_f) :التّفسير $y=-1$ و $y=-1$ معادلتا مستقيمين مقاربين ل
	0.5	: لدينا x عدد حقيقي x لدينا $f'(x) = \frac{2e^x(e^x - x) - 2e^x(e^x - 1)}{(e^x - x)^2} = \frac{2e^x(1 - x)}{(e^x - x)^2}$
1.75	0.5	(1-x) من إشارة $f'(x)$ من إشارة
	2x0.25	. $[1;+\infty[$ متزايدة تماما على $[0,+\infty[$ ومتناقصة تماما على f
	0.25	. جدول التّغيرات، $f(1) = rac{e+1}{e-1}$
	0.5	y = 2x + 1 : (T) أ) معادلة للمماس (3)
	0.5	$f(x) - (2x+1) = \frac{g(x)}{e^x - x} : x$ بیان أنّه من أجل كل عدد حقیقي
1.75	0.5	(T) تحت (C_f) المنحنى (C_f) فوق (T) على المجال $[-\infty;0[$
		$(C_f) \cap (T) = ig\{A(0;1)ig\}$ و $ig]0;+\infty$ على المجال
	0.25	(C_f) نقطة انعطاف للمنحنى A
0.75	0.5]- ∞ ;1] بيان أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال $f(x)=0$
0.75	0.25	$0.6\langlelpha\langle-0.5$ التّحقق أنّ $-0.6\langlelpha\langle-0.5$

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ •1#ti	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)	
1.25	0.25 2x0.25 0.5	(C_f) imilary (T) ellaurianani (Table 1) in the second of the secon	