

Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Discip	lina:	Cál	cul	N c	umérico
Prof.:	Luiz	C.	Μ.	de	Aquino

Aluno(a):	Data:	/ ,	/

Avaliação I

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 25,0 pontos.
- 1. [6,0 pontos] Dado $a \in \mathbb{R}_+^*$ proponha uma maneira de usar o Método da Bisseção para calcular um valor aproximado de \sqrt{a} com tolerância de 10^{-5} .
- 2. [4,5 pontos] Considere o problema de encontrar uma raiz aproximada da equação $e^{-x^2} = \frac{1}{2}$ no intervalo $\left[\frac{1}{2}; 1\right]$. Determine uma função de iteração e resolva este problema pelo Método do Ponto Fixo (considere uma tolerância de 10^{-5}).
- 3. [4,5 pontos] Utilize o Método de Newnton para determinar uma aproximação para a raiz da função polinomial definida por $p(x) = 2x^4 2x^3 22x^2 10x + 8$ no intervalo [0; 1] (considere uma tolerância de 10^{-5}).
- 4. [5,0 pontos] A cada passo no Método da Falsa Posição, escolhemos $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(a_k)| + |f(b_k)|}$, sendo que no intervalo $[a_k; b_k]$ temos $f(a_k)f(b_k) < 0$. Prove que esta escolha de x_k coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$.
- 5. [5,0 pontos] Seja $f:[a;b] \to [a;b]$ uma função contínua em todo o seu domínio. Prove que o gráfico de f e de g(x) = x tem pelo menos um ponto em comum.