Neel Mitra

Coursera Car Accident Severity by Factors in Seattle

September 2020

Description of Problem and Data

Description of Problem

The goal is to try to reduce both the number and severity of car collisions in Seattle. We are given a dataset and try
to both qualitatively and quantitatively highlight the drivers of number and severity of car collisions as to help drivers
avoid catastrophic situatins.

Description of Data

- The issue we are trying to solve is taking the dependent variables
 - A) car accidents in Seattle and
 - B) the severity (severity code: 0-5 although 1&2 are only in this dataset) of such accidents with a higher number indicating a more serious accident
- Numerous categorical vehicles are provided that seem to be relevant independent variables.
 - A) road conditions
 - B) light conditions
 - C) weather
 - D) collision type
- Location is provided to target popular intersections.

Introduction

Introduction

- The goal is to try to reduce both the number and severity of car collisions in Seattle. We are given a dataset and try to both qualitatively and quantitatively highlight the drivers of number and severity of car collisions as to help drivers avoid catastrophic situations.
- This dataset can be used by a wide array of constituents. Individual citizens who are trying to be careful, public planning officials, and first responders.

Description of Data (repeated)

- The issue we are trying to solve is taking the dependent variables
 - A) car accidents in Seattle and
 - B) the severity (severity code: 0-5 although 1&2 are only in this dataset) of such accidents with a higher number indicating a more serious accident
- Numerous categorical vehicles are provided that seem to be relevant independent variables.
 - A) road conditions
 - B) light conditions
 - C) weather
 - D) collision type
- Location is provided to target popular intersections.

Data and Methodology

Data

- We are provided a CSV file which needs to be cleansed. There are too many columns. I used **pandas** to load the csv file as a dataframe.
- After looking at the data, there are simply too many columns. I reduced the table to the dependent variable (accident severity) and a couple of independent variables.

	SEVERITYCODE	WEATHER	LIGHTCOND	ROADCOND	COLLISIONTYPE
0	2	Overcast	Daylight	Wet	Angles
1	1	Raining	Dark - Street Lights On	Wet	Sideswipe
2	1	Overcast	Daylight	Dry	Parked Car
3	1	Clear	Daylight	Dry	Other
4	2	Raining	Daylight	Wet	Angles

Severity Code: Dependent Variable

- Severity code is skewed to LESS negative outcomes.
- I balanced data for machine learning purposes; not needed for this exercise, using SKLEARN.

Independent Variables: Value Counts

```
M df['ROADCOND'].value_counts()
 n [11]:
    Out[11]: Dry
                                  124510
                                   47474
              Wet
              Unknown
                                   15078
              Ice
                                    1209
              Snow/Slush
                                    1004
              0ther
                                     132
              Standing Water
                                     115
              Sand/Mud/Dirt
                                      75
              Oil
                                      64
              Name: ROADCOND, dtype: int64
            df['WEATHER'].value_counts()
In [13]:
   Out[13]: Clear
                                         111135
             Raining
                                          33145
             Overcast
                                          27714
             Unknown
                                          15091
                                            907
             Snowing
             Other
                                            832
             Fog/Smog/Smoke
                                            569
             Sleet/Hail/Freezing Rain
                                            113
             Blowing Sand/Dirt
                                             56
             Severe Crosswind
                                             25
                                              5
             Partly Cloudy
             Name: WEATHER, dtype: int64
           M df['LIGHTCOND'].value counts()
    Out[12]: Daylight
                                          116137
              Dark - Street Lights On
                                           48507
              Unknown
                                           13473
              Dusk
                                            5902
              Dawn
                                            2502
              Dark - No Street Lights
                                            1537
              Dark - Street Lights Off
                                            1199
```

Other

Dark - Unknown Lighting

Name: LIGHTCOND, dtype: int64

 The first 3 independent variables did not equate to telling a story of being in an accident.

Accidents happened most when it was:

- Dry
- Clear

235

11

Daylight

The Telling Independent Variable and Conclusions

```
df['COLLISIONTYPE'].value_counts()
In [17]:
   Out[17]: Parked Car
                            47987
             Angles
                            34674
             Rear Ended
                            34090
             Other
                            23703
             Sideswipe
                            18609
             Left Turn
                            13703
             Pedestrian
                             6608
             Cycles
                             5415
             Right Turn
                             2956
             Head On
                             2024
             Name: COLLISIONTYPE, dtype: int64
```

- The collision type explains the dependent variable.
 - The most accidents occurred with parked cars.
 - This explains why the majority of the data involved less severe accidents.
 - It also explains why other variables that normally contribute to accidents didn't contribute.

Accidents with parked cars are minor and are usually out of carelessness rather than a major contributing factor.