03 December 2021 12:12

Concept of Relative Permeability

$$\frac{\mu_r}{\mu_0} = \frac{\mu}{\mu_0}$$

μ_r is the relative permeability

 μ is the permeability of a substance (absolute) μ_0 is the permeability of a vacuum (absolute) • μ_0 is the permeability of a vacuum

Ho = 4 TT × 10 7 H/m > Air/Free space | Vacuum Mr ≈ 8000 → (soft iron → pure iron)

(Gre material → 22°/0 iron

78°/0 Nickle)

(An alloy known as permalloy)

Due to high relative permeability of magnetic materials (e.g. iron, steel, and other magnetic alloys) they are widely used for the cores of all electromagnetic equipment.

Illustration 1 - Magnetic Circuits

A ring made of ferromagnetic material has 500 mm² as cross-sectional area and 400 mm as mean circumference. A coil of 600 turns is wound uniformly around it. Calculate:

a) The reluctance of the ring

b) The current required to produce a flux density of 1.6 T in the ring

Take μ_r of the ferromagnetic material as 800 for flux density of 1.6 T

(b)

$$S = \frac{l}{A \mu_0 \mu_r} = \frac{400 \times 10^{-3}}{500 \times 10^{-3} \times 10^{-3} \times 4\pi \times 10^{-7} \times 800}$$
$$= 795774.72 \, AT/Wb$$

$$\emptyset = \frac{mmf}{Reluctance} = \frac{NI}{S} \text{ or } B.A = \frac{NI}{S} \text{ or } I = \frac{BAS}{N}$$

$$I = \frac{1.6 \times 500 \times 10^{-3} \times 10^{-3} \times 795774.72}{600} = 1.061 A$$