Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 06 - Jueves 28 de abril del 2022

Problema 1. Sea $f:[a,b] \to \mathbb{R}$ una función estrictamente creciente, es decir, si $x_1, x_2 \in [a,b]$ y $x_1 < x_2$, entonces $f(x_1) < f(x_2)$.

- a) Demuestre que f es inyectiva y por tanto invertible (en algún conjunto).
- b) Demuestre que f^{-1} es estrictamente creciente.

Problema 2. Sea $g: \mathbb{R} \to \mathbb{R}$ una función definida por:

$$g(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$

- a) Encuentre la inversa de g
- b) Sea $f = g^{-1}$, demuestre que $g \circ f = id$ y $f \circ g = id$.

Problema 3. Sea $f: A \to B$, $g: B \to C$ y $h: C \to D$, demuestre que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Problema 4. Consideremos ahora dos funciones, $f:A\to B$ y $g:B\to C$, ambas invertibles (biyecciones):

$$\begin{split} f:A\to B, & g:B\to C\\ f^{-1}:B\to A, & g^{-1}:C\to B \end{split}$$

Demuestre que:

$$g\circ f$$
es invertible. Además $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$

Problema 5. Sean $f: A \to B$, $g: B \to A$ dos funciones tales que $f \circ g = id_B$. Demuestre que f es sobreyectiva y que g es inyectiva.

Problema 6. Sea $f: A \to B$ una función.

- a) Demuestre que si f es inyectiva, entonces existe una función sobreyectiva $g: B \to A$.
- b) Demuestre que si f es sobreyectiva, entonces existe una función inyectiva $h: B \to A$.