EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Clippers

Simple parallel clippers:

Biased series clippers:

Clampers → shift applied signal to different dc level.
don't change appearance of applied signal.
constructed of diode, resistor, capacitor, dc supply.

For interval 0 to T/2

For period T/2 to T

Promble-19:

Determine v_o for the network of Fig. 19 for the input indicated.

$$f_{in} = 1000 \; \text{Hz}$$

T = 1/f = 1 ms, and interval between levels = 0.5 ms.

For period $t_1 \sim t_2 \Rightarrow$ diode is in short-circuit state. $v_o = 5 \text{ V}$ Applying Kirchhoff's voltage law $-20 \text{ V} + V_C - 5 \text{ V} = 0$ $V_C = 25 \text{ V}$

Promble-19:

For period $t_2 \sim t_3 \rightarrow$ KVL

diode is in open-circuit state.

Applying Kirchhoff's voltage law

$$+10 \text{ V} + 25 \text{ V} - v_o = 0$$

 $v = 25 \text{ V}$

$$v_o = 35 \,\mathrm{V}$$

 $\tau = RC = (100 \text{ k}\Omega)(0.001 \text{ mF}) = 0.1 \text{ s} = 100 \text{ ms}$ total discharge time = 5τ = 5(100 ms) = 500 ms. interval $t_2 \sim t_3 = 0.5 \text{ ms}$ capacitor will hold its voltage during discharge period.

Promble-20:

Determine v_o for the network of Fig. 20 using a silicon diode with V_K = 0.7 V for the input indicated.

$$f_{in} = 1000 \text{ Hz}$$

T = 1/f = 1 ms, and interval between levels = 0.5 ms.

For period $t_1 \sim t_2 \rightarrow$

diode is in short-circuit state. Applying Kirchhoff's voltage law $+5 \text{ V} - 0.7 \text{ V} - v_o = 0$ $v_o = 5 \text{ V} - 0.7 \text{ V} = 4.3 \text{ V}$

Applying Kirchhoff's voltage law $-20 \text{ V} + V_C + 0.7 \text{ V} - 5 \text{ V} = 0$ $V_C = 25 \text{ V} - 0.7 \text{ V} = 24.3 \text{ V}$

Promble-20:

Determine v_o for the network of Fig. 20 using a silicon diode with V_K = 0.7 V for the input indicated.

For period $t_2 \sim t_3 \Rightarrow$ diode is in open-circuit state. Applying Kirchhoff's voltage law +10 V + 24.3 V - v_o = 0 v_o = 34.3 V

Clamping networks:

