Conceptual Models

 User see and understand the system through mental models

 Users rely on mental models during usage

Conceptual Models

 User see and understand the system through mental models

 Users rely on mental models during usage

Your interpretation of what the system is doing is different if you:

(a) Think that turning it far enough turns it off, vs.

Conceptual Models

 User see and understand the system through mental models

 Users rely on mental models during usage

Your interpretation of what the system is doing is different if you:

- (a) Think that turning it far enough turns it off, vs.
- (b) Think that you can press (click) the knob to turn it off.

Human-Computer Interaction

CPSC 481 - Spring 2019

Lessons from The Design of Everyday Things
IV

Adapted from Tony Tang

Lessons from the Design of Everyday Things

- We've seen that a lot of things are designed poorly, be it computer interface, or physical objects
- Formally, there is a vocabulary around these concepts that we have discussed
 - Perceived affordances
 - Visible contraints
 - Causality
 - Transfer effects
 - Idioms & population stereotypes
 - Conceptual models
 - Individual differences

Learning Objectives

- By the end of this lecture, you should be able to:
 - Discuss the role of individual differences in design; describe a good "rule of thumb", and the consequences of that rule of thumb
 - Identify and discuss factors that make design difficult that are unrelated to design itself

- People are different
- It is rarely possible to accommodate everyone perfectly

- People are different
- It is rarely possible to accommodate everyone perfectly
 - Design is often a compromise
 - Standard ceiling height: 8'
 - But the tallest man: 8' 11"!

- People are different
- It is rarely possible to accommodate everyone perfectly
 - Design is often a compromise
 - Standard ceiling height: 8'
 - But the tallest man: 8' 11"!
 - People vary as much in how they think and perceive things as much as they vary physically!

Question: Design for the average?

- Question: Design for the average?
 - Often considered a mistake: you may exclude half the audience

- Question: Design for the average?
 - Often considered a mistake: you may exclude half the audience
- Rule of thumb:
 - Design for 95% of audience
 - Note: 5% of population may be seriously compromised
- Examples:
 - Cars and height: headrest, seat size
 - Computers and visibility: font size, line thickness, colour for colour-blind people?

Gaussian ("Normal") Distribution

IKEA Instructions

- What 95% means is up to you:
 - 95% of local population?
 - 95% of world population?
- IKEA instructions
 - "universally" understandable

You vs. 95%

 You do not necessarily represent a good average user of equipment or systems you design

 Do not expect others to think and behave as you do, or as you might like them to

- People vary in thought and behaviour just as they do physically
 - Life experiences are different
 - Cultural expectations are different

- WW1 US Troops: notion of IQ and mass testing
 - Idea was to separate groups for training
 - Designed as bell curve, with average being 100

- Assumptions:
 - Innate
 - Constant
 - Correlated with performance on everything

How was it designed?

- Assumptions:
 - Innate
 - Constant
 - Correlated with performance on everything

- How as it designed?
 - Primarily with white, english-speaking US citizens
 - How generalisable was this test?

1. Bull Durham is the name

- A. chewing gum
- B. aluminum ware
- C. tobacco
- **D.** clothing

3. The Merino is a kind of

- A. horse
- B. sheep
- C. goat
- D. cow

5. Garnets are usually

- A. yellow
- B. blue
- C. green
- D. red

- A. rackets
- B. cards
- C. pins
- **D.** dice

4. The most prominent industry of Minneapolis is

- A. flour
- B. packing
- C. automobiles
- **D.** brewing

- A. fowl
- **B.** horse
- C. granite
- **D.** cattle

1. Bull Durham is the name

of a

- A. chewing gum
- B. aluminum ware
- C. tobacco
- **D.** clothing

3. The Merino is a kind of

- A. horse
- B. sheep
- C. goat
- D. cow

5. Garnets are usually

- A. yellow
- B. blue
- C. green
- D. red

- A. rackets
- B. cards
- C. pins
- **D.** dice

4. The most prominent industry of Minneapolis is

- A. flour
- B. packing
- C. automobiles
- **D.** brewing

- A. fowl
- **B.** horse
- C. granite
- **D.** cattle

1 (C), 2 (B), 3 (B), 4 (A), 5 (D), 6 (A)

- Early tests were clearly bound to the (then) current culture white, urban, middle-class culture
 - African-Americans tested poorly
 - non-English speakers tested poorly
 - Illiterate tested poorly
- Since then, early assumptions about IQ have been questioned:
 - General 'g' factor intelligence?
 - Mental age?
 - Heritability?
 - IQ fixed?
- Point: be aware that you are often making cultural assumptions in your designs.

Designing for experience & style of use?

Novice

- Walk up and use systems
- · Interface affords restricted set of tasks
- Introductory tutorials to more complex uses

Casual

- Standard idioms
- Recognition (visual affordances) over recall
- Reference guides
- Interface affords basic track structure

Intermediate

- · Advanced idioms
- Complex controls
- Reminders and tips
- Interface affords advanced tasks

Expert

Most kiosk + internet systems

Most shrinkwrapped systems

Custom software

CPSC 481 - Spring 2019 - Tiago Silva da Silva

CPSC 481 - Spring 2019 - Tiago Silva da Silva

Why design is hard

- Over the last century
 - The number of things to control has increased dramatically
 - Car radio/CD player/DVD player/ MP3 player/ iPod connector or dock/AUX input...:
 AM, FM1, FM2, 5 pre-sets, station selection, balance, fewer, bass, treble, distance,
 mono/stereo, dolby, tape eject, fast forward and reverse etc (while driving at night!)
 - Display is increasingly artificial
 - Red lights in car indicate problems vs. flames for fire
 - Feedback more complex, subtle, and less natural
 - On your phone(?) is your alarm on and set correctly?
 - Errors increasing serious and/or costly
 - Airplane crashes, losing days of work...

Why design is hard

Marketplace pressures

- Adding functionality (complexity) now easy and cheap computers
- Adding controls/feedback expensive
 - Physical buttons on calculator, microwave oven
 - Widgets consume screen real estate
- Design usually requires several iterations before success
 - Product pulled if not immediately successful

Why design is hard

- People consider cost and appearance over design
 - Bad design is not always visible

- People tend to blame themselves when errors occur
 - "I was never very good with machines."
 - "I knew I should have read the manual!"
 - "Look at what I did! I feel stupid!"

Human factors in computing systems

What do these do?

- Computers far more complex to control than everyday devices
- General purpose computer contains no natural conceptual model
- Completely up to the designer to craft a conceptual model

Lessons from the Design of Everyday Things

- Many human errors are actually errors in design
 - don't blame the user
- Designers help by providing a good conceptual model
 - Affordances
 - Causality
 - Constraints
 - Mapping
 - Positive transfer
 - Population stereotypes and idioms
- Design to accommodate individual differences
 - · Decide on the range of users
- Design is difficult for reasons that go beyond design

Acknowledgements

- Tony Tang
- Lora Oehlberg
- Ehud Sharlin
- Frank Maurer
- Saul Greenberg

Course information

- Website
 - GitHub Pages https://silvadasilva.github.io/
 CPSC481-2019S/
- Communications
 - Slack https://cpsc481-2019s.slack.com/
- Readings and Slides
 - Posted online at the main website