

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720082372
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	Logistic Regression from sklearm.linear_model import LogisticRegression from sklearm.model_selection import GridSearchtV lr_classifier = LogisticRegression(random_state=123) # Define the hyperparameters and their possible values for tuning param_grid = {	# Set up GridSearchCV grid_search = GridSearchCV(estimator=ln_classifier, param_grid=param_grid, cv=5, scoring='f1', n_jabs=-1) grid_search.fit(x_train, y_train) # Evaluate the performance of the tuned model fl_score = grid_search.score(x_test, y_test) # Print results print("Optimal Hyperparameters: [grid_search.best_params_]") print("Optimal Hyperparameters: [grid_search.best_params_]") print("Fil Score on Test Set: [f1_score]") Optimal Hyperparameters: ['c1': 0.000, 'max_iten': 100, 'penalty': 'none', 'solven': 'newton-cg') Fil Score on Test Set: 0.937647858235294


```
Decision Tree Regression
                                                                                                                                                                                                                                        grid_search = GridSearchCV(estimator=dt_classifier, param_grid=param_grid, cv=5, scoring='f1', n_jebs=-1)
                                                                 from sklearn.tree import DecisionTreeClassifier
                                                                 from sklearn.model_selection import GridSearchCV
                                                                                                                                                                                                                                        grid_search.fit(X_train, y_train)
Decision Tree
                                                                dt_classifier = DecisionTreeClassifier(random_state=123)
                                                                                                                                                                                                                                        f1_score = grid_search.score(X_test, y_test)
                                                                param_grid = {
Regression
                                                                        'max_depth': [None, 5, 10, 15, 20],
'min_samples_split': [2, 5, 10],
                                                                                                                                                                                                                                        print(f*Optimal Hyperparameters: (grid_search.best_params_)*)
                                                                                                                                                                                                                                        print(f*F1 Score on Test Set: (f1_score)*)
                                                                       'min_samples_leaf': [1, 2, 4],
'max_features': ['auto', 'sqrt', 'log2'],
'criterion': ['gini', 'entropy']
                                                                                                                                                                                                                                        Optimal Hyperparameters: ('criterion': 'entropy', 'max_depth': Nome, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5)
F1 Score on Test Set: 0.9997500061405702
                                                                 Random Forest Regression
                                                                  from sklearn.ensemble import RandomForestClassifier
                                                                                                                                                                                                                                         # Set up GridScorchCV
grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, cv=5, scorimg='fi', n_jobs=-1)
                                                                  from sklearn.model_selection import GridSearchCV
                                                                                                                                                                                                                                         # Fit the grid search to the data
grid_search.fit(X_train, y_train)
                                                                  # Define the Random Forest Classifier
                                                                 rf_classifier = RandomForestClassifier(random_state=123)
Random Forest
                                                                                                                                                                                                                                        # Exaluate the performance of the tuned model fi_score = grid_search.score(X_test, y_test)
                                                                  # Define the hyperparameters and their possible values for tuning
                                                                                                                                                                                                                                        print(f'Optimal Hyperparameters: (grid_search.best_params_|")
print(f"F1 Score on Test Set: (f1_score)")
                                                                  param grid = {
Regression
                                                                       Optimal Hyperparameters; ['criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 5, 'n estimators':
                                                                                                                                                                                                                                        F1 Score on Test Set: 0.951219512195122
                                                                KNN
                                                                                                                                                                                                                                         # Set up GridSearchCV
grid_search = GridSearchCV(estimator=knn_classifier, param_grid=param_grid, cv=5, scoring='f1', n_jebs=-1)
                                                                from sklearn.neighbors import KNeighborsClassifier
                                                                from sklearn.model_selection import GridSearchCV
                                                                                                                                                                                                                                         grid_search.fit(X_train, y_train)
                                                                knn_classifier = KNeighborsClassifier()
                                                                                                                                                                                                                                         # Evaluate the performance of the tuned model f1_score = grid_search.score(x_test, y_test)
KNN
                                                                # Define the hyperparameters and their possible values for tuning
                                                                param_grid = {
                                                                                                                                                                                                                                        print(f'Optimal Hyperparameters: (grid_search.best_params_}")
print(f'F1 Score on Test Set: (f1_score)")
                                                                     am_grue = (
'n_neighbors': [3, 5, 7, 9, 11],
'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'manhattan', 'minkowski'],
'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']
                                                                                                                                                                                                                                        Optimal Hyperparameters: ('algorithm': 'auto', 'metric': 'manhattan', 'm_meighbors': 9, 'weights': 'distance')
F1 Score on Test Set: 0.5687276635534619
```


Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric Classification Report for Random Forest:					
		precision			support	
	Ø	0.96	0.99	0.97	78	
	1	0.97	0.93	0.95	42	
Random Forest	accuracy			0.97	120	
	macro avg	0.97	0.96	0.96	120	
Regression	weighted avg	0.97	0.97	0.97	120	
	Confusion m	atriv of	Random I	Eorast		
Confusion matrix of Rand				OI ESC		
	[3 39]]					
	[2 22]]	28				
	Classificatio	n Report fo	Decision	Tree:		
		precision			support	
	0	0.96	0.95	0.95	78	
	1	0.91	0.93	0.92	42	
Decision Tree	accuracy			0.94	120	
Decision Hee	macro avg	0.93	0.94	0.94	120	
Regression	weighted avg	0.94	0.94	0.94	120	
	Confusion Matrix for Decision Tree:					
	[[74 4]					
	[3 39]]					
	200 State (200					

	Classification	Danant for	Logistis	Dognossion		
	Classificaciói	precision			support	
	0	0.96	0.88		78	
	1	0.81	0.93	0.87	42	
Logistic Regression	accuracy			0.90	120	
Logistic Regression	macro avg	0.89	0.91	0.89	120	
	weighted avg	0.91	0.90	0.90	120	
	Confusion matrix of Logistic Regression [[69 9] [3 39]]					
	Classification Report for KNN:					
		precision	recall	f1-score	support	
	0	0.70	0.50	0.58	78	
	1	0.39	0.60	0.47	42	
	accuracy			0.53	120	
KNN	macro avg	0.54	0.55	0.53	120	
	weighted avg	0.59	0.53	0.54	120	
	Confusion Ma [[39 39] [17 25]]	ntrix for	KNN:			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Random Forest model was selected for its outstanding 97%
	accuracy during hyperparameter tuning. Its ensemble approach excels
	at handling complex data relationships while reducing overfitting. The
	model's ability to provide feature importance rankings, coupled with its
Random Forest	robust performance, aligns perfectly with the project's objectives for
Regression	high predictive accuracy and interpretability.