Chapter 6

The Reactions of Alkenes

The Stereochemistry of Addition Reactions

Electrophilic Addition of Alkenes

Reaction of alkene: addition reaction.

Synthesis of alkene: elimination reaction

6.1 THE ADDITION OF A HYDROGEN HALIDE TO AN ALKENE

$$H_3C$$
 CH_3 CH_3

2,3-dimethyl-2-butene

2-bromo-2,3-dimethylbutane

$$+$$
 HI \rightarrow iodocyclohexane

What is the product?

2-methylpropene

tert-butyl chloride isobutyl chloride

Formation of the carbocation is the rate-limiting step.

6.2 CARBOCATION STABILITY DEPENDS ON THE NUMBER OF ALKYL GROUPS ATTACHED TO THE POSITIVELY CHARGED CARBON

relative stabilities of carbocations

Alkyl groups decrease the concentration of positive charge in the carbocation

Stabilization of a Carbocation by Hyperconjugation

Remember other hyperconjugations? in staggered conformation. in alkene stability.

Note that both C-H and C-C σ bond orbitals can overlap the empty p orbital

Species Stability Predicted by Hyperconjugation

Radical Stability

Carbocation Stability

Carbanion Stability

6.3 WHAT DOES THE STRUCTURE OF THE TRANSITION STATE LOOK LIKE?

Hammond Postulate

The transition state will be more similar in structure to the species to which it is more similar in energy.

exergonic reaction: The transition state resembles the reactants.

endergonic reaction: The transition state resembles the products.

Reaction Coordinate Diagram for the Addition of H⁺ to 2-

Progress of the reaction

- ✓ In an electrophilic addition reaction, the more stable carbocation forms faster.
- ✓ The relative rates of formation of two carbocations determine the relative amounts of products formed. If difference is large, only product is formed.

6.4 ELECTROPHILIC ADDITION REACTIONS ARE REGIOSELECTIVE

Regioselective Reactions:

Electrophile adds to the sp² carbon bonded to the most hydrogens

Degrees of Regioselectivity:

A regioselective reaction is a reaction that forms more of one constitutional isomer than of another.

The reaction can be: moderately regioselective highly regioselective completely regioselective

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{2-methylpropene} \end{array} + \text{HCl} \xrightarrow{\text{CH}_3} \begin{array}{c} \text{CH}_3 \\ \text{C$$

Markovnikov's Rule

- The H⁺ of HX adds to the sp² carbon that is bonded to the greater number of hydrogens
- valid only for addition rxn of HX
- A better rule is to use "electrophile (E+)" instead of H+

In a regioselective reaction, one constitutional isomer is the major or the only product.

Writing organic reactions

reactants left, products right

- conditions above or below arrow
 - \Box catalyst, solvent, temperature, heat [Δ]
- sometimes substrate only on the left
 - substrate = (C-containing) organic comp'd

$$CH_3CH = CHCH_3 \xrightarrow{Cl_2} CH_3CHCHCH_3$$

$$CH_3CHCHCH_3 \xrightarrow{Cl_2} CH_3CHCHCH_3$$

$$Cl_1 Cl_2$$

in multi-step rxn

$$\begin{array}{ccc} CH_3 & CH_3 \\ | & \\ CH_3CHCH = CH_2 & \begin{array}{c} \textbf{1. BH_3/THF} \\ \hline \textbf{2. HO}^-, \textbf{H_2O_2, H_2O} \end{array} & CH_3 \\ | & \\ CH_3CHCH_2CH_2OH \end{array}$$

6.5 THE ADDITION OF WATER TO AN ALKENE

$$CH_3CH = CH_2 + H_2O \longrightarrow \text{no reaction}$$

A reaction takes place if an acid is added.

$$R-CH=CH_2 + H_2O \xrightarrow{H_2SO_4} R-CH-CH_2$$

$$new \sigma bond OH H new \sigma bond$$
an alcohol

Mechanism for the Acid-Catalyzed Addition of Water to an Alkene

- H⁺ (an electrophile) adds to the sp^2 carbon of the alkene (a nucleophile) that is bonded to the most hydrogens.
- H₂O (a nucleophile) adds to the carbocation (an electrophile), forming a protonated alcohol.
- The protonated alcohol loses a proton because the pH of the solution is greater than the pK_a of the protonated alcohol (Section 2.10). (We have seen that protonated alcohols are very strong acids; Section 2.6.)

6.6 THE ADDITION OF AN ALCOHOL TO AN ALKENE

Mechanism:

$$R-CH=CH_{2} + H-OSO_{3}H \xrightarrow{\text{slow}} R-CHCH_{3} \xrightarrow{\text{CH}_{3}\ddot{O}H} R-CHCH_{3} \xrightarrow{\text{CH}_{3}\ddot{O}H} R-CHCH_{3} \xrightarrow{\text{CH}_{3}\ddot{O}H} R-CHCH_{3} + CH_{3}\ddot{O}H_{2}$$

- The electrophile (H⁺) adds to the sp² carbon that is bonded to the greater number of hydrogens.
- The nucleophile (CH₃OH) adds to the carbocation, forming a protonated ether.
- The protonated ether loses a proton, because the pH of the solution is greater than the p K_a of the protonated ether (p $K_a \sim -3.6$).

Problem 13

How could the following compound be prepared, using an alkene as one of the starting materials?

Answer

$$CH_{3}CH = CH_{2} + CH_{3}CHCH_{2}CH_{3} \xrightarrow{H_{2}SO_{4}} CH_{3}CHOCHCH_{2}CH_{3}$$

or

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}CHOCHCH_{2}CH_{3}$$
or
$$CH_{3}$$

$$CH_$$

18