		HI = 83
Ф 519 MidTerm Exam	(in class, 2 hr. limit)	To = 30
Committee of the commit		AVG= 5

Ths. 10 Nov. 1988

This exam is open-book, open-notes, and is worth 85 points total. For each problem, put your ansever in a box on your solution sheets. Number, your solution pages, put your name on page 1, and staple the pages together before handing them in.

(1) [Consider a region of space where the magnetic field is Changing at a rate $B(x'_{\mu})$ [the dot $\Rightarrow \frac{\partial}{\partial t}$; $x'_{\mu} \Rightarrow$ space of time cds]. Show that the induced electric field is $E(x_{\mu}) = \frac{1}{4\pi c} \int \frac{dt'}{R^3} [R \times B(x'_{\mu})]$. Here, R = R - R', per the figure.

(2) [1]. Along straight wive of radius a and uniform conductivity of Carries a steady current I. Find the magnitude and direction of S, the Poynting vector, at the surface of the wire. Integrate the normal component of S over the Surface of the wire for a segment of length I, and compare your result with the Joule heat produced in that segment. What is the origin of the energy flow represented by S?

3 Pts.]. For any vacuum electromagnetic field (E, B), verify the conservation law: $\nabla \cdot P + \frac{\partial S}{\partial t} = 0$ $S = E \cdot (\nabla \times E) + B \cdot (\nabla \times B).$

The dots => $\frac{\partial}{\partial t}$. Discuss this "continuity equation" for a linearly polarized light wave, where -- during propagation -- the E & B maintain fixed directions in space.

4 Lepts.]. A particle of (constant) mass m, initially at rest my ν F in reference frame K, is accelerated to relativistic speeds along a straight line by a force $F(\tau)$. $F(\tau)$ acts in m' rest frame, and $F(\tau)$ is given as a function of m' proper time τ .

(A) Show that m' speed relative to K is : $\beta(\tau) = \tanh [(1/mc) \int_{0}^{\infty} F(\tau') d\tau']$.

(B) Find the relation between the elapsed time T in m's frame, and the corresponding elapsed time t in the reference frame K (while IF is acting).

1) Show how 2B/2t induces an E-field.

- The RHS of this egth is an effective current density $J=(-)\frac{1}{c}B$
 - 2) From the Vector Calculus Theorem proved in class, we know that the solution to $\nabla x \mathbf{E} = \mathbf{J}$ can be written as: $\mathbf{E} = \nabla x \left[\frac{1}{4\pi} \int \frac{d\tau'}{R} \mathbf{J} \right]$, where $\mathbf{R} = |\mathbf{I} \mathbf{I}'|$ is the distance between field pt \mathbf{F} and sowrce pt. \mathbf{F}' . Here the $-\nabla \phi$ (scalar potential) part of \mathbf{E} vanishes, because there is no charge density present. Putting $\mathbf{J} = (-)\frac{1}{c} \dot{\mathbf{B}}$ in the solution for \mathbf{E} , we have...

$$\longrightarrow \mathbb{E}(x_{\mu}) = -\frac{1}{4\pi c} \nabla x \int \frac{d\tau'}{R} \hat{\mathbb{B}}(x_{\mu}').$$

(1)

3) The ∇ in Eq. (1) operates on the space components of the field pt. (Xi), not the source pt. cds (Xi'). When ∇ is moved inside the integral, we must find

$$\nabla \times \left[\frac{1}{R} \dot{\mathbb{B}}(x'_{\mu}) \right] = \nabla \left(\frac{1}{R} \right) \times \dot{\mathbb{B}}(x'_{\mu}) + \frac{1}{R} \nabla \times \dot{\mathbb{B}}(x'_{\mu}).$$
(2)
$$(-)R/R^{3}, \text{ well-known identify} \quad 0, \text{ because } \nabla = \nabla_{x_{i}}$$

Putting this result into Eq. (1), we find -- as required ...

$$\mathbb{E}(x_{\mu}) = + \frac{1}{4\pi c} \int \frac{d\tau'}{R^3} \left[\mathbb{R} \times \dot{\mathbb{B}}(x_{\mu}') \right].$$

The state of the s

(3)

.....

- 2 [Find Poynting vector & energy flux at Surface of current-carrying wire.
- 1) The magnetic field at the surface of the wire is [see Jk Eq. (5.6), or just use Ampere's Law J...

(1)

in magnitude; the direction of H is along concentric circles (obeying a RH rule w.r.t. II) around the wive. Further, since the current is DC, the current devisity J= I/Ta2 is uniform over the wire cross-section, I is along I, and so is E= J/o (Ohn's Law). The fields are as shown above.

2) Over a length l of the wire: E=V/l, where V is the voltage drop in that Segment. Then the Poynting vector is [Jkh Eq. (6.109)]

 $S = \frac{C}{4\pi} (E \times H) = -\frac{C}{4\pi} (EH) \hat{\gamma}$, $\hat{\gamma} = \underline{\text{outward}}$ unit normal on surface;

Solf S points radially inward on $S = \frac{c}{4\pi} \cdot \frac{V}{l} \cdot \frac{2I}{ca} = \frac{IV}{2\pi al}$.

$$S = \frac{c}{4\pi} \cdot \frac{V}{l} \cdot \frac{2I}{ca} = \frac{IV}{2\pi al}.$$

3) Integrating (the normal component of) \$ over the wire surface of radius a & length l, we find the energy/time carried into the wire segment

-> P = S 5. dA = S. 2 Tal = IV, mind energy flux.

(3)

This is exactly the rate of Joule heating occurring in the segment, and -- per Ik Eq. (6.108) -- this relation expresses conservation of energy (fields + mechanical) for this system. Conventionally, a source of "emf" is thought to produce the Joule heating... here the "emf" is replaced in that role by the fields it creates.

(2)

CONTROL OF THE PROPERTY OF THE

3 P= Exé+ BxB,
For EM fields in a vacuum, show:
$$\nabla \cdot P + \frac{\partial S}{\partial t} = 0$$
 $S = E \cdot (\nabla \times E) + B \cdot (\nabla \times B)$

1) Maxwell's Egtres for the electric & magnetic fields E & B in free space (Change density p & current J both = 0) are...

$$\nabla \cdot \mathbf{E} = 0$$
, $\nabla \times \mathbf{E} = -\frac{1}{c} \dot{\mathbf{B}}$, $\partial \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{B} = +\frac{1}{c} \dot{\mathbf{E}}$; the dot $\Rightarrow \partial \cdot \partial t$.

2) We can then form the quantity (using the curl relations) ...

$$[E \cdot (\nabla \times E) + B \cdot (\nabla \times B)] = \frac{1}{c} [-E \cdot \dot{B} + \dot{E} \cdot B],$$

$$\xrightarrow{sy} \frac{\partial}{\partial t} \left[\right] = \left(-\right) \frac{1}{C} \left(\mathbb{E} \cdot \ddot{\mathbb{B}} - \ddot{\mathbb{E}} \cdot \mathbb{B} \right).$$

The other quantity in the required identity is = - 1 B

$$\nabla \cdot (\mathbb{E} \times \mathbb{E} + \mathbb{B} \times \mathbb{B}) = \mathbb{E} \cdot (\nabla \times \mathbb{E}) - \mathbb{E} \cdot (\nabla \times \mathbb{E}) + \frac{1}{c} \mathbb{E}$$

$$\rightarrow \nabla \cdot (\mathbf{E} \times \dot{\mathbf{E}} + \mathbf{B} \times \dot{\mathbf{B}}) = + \frac{1}{c} (\mathbf{E} \cdot \ddot{\mathbf{B}} - \ddot{\mathbf{E}} \cdot \mathbf{B}).$$

3) Comparison of Egs. (2) \$ (4) Shows indeed we have the required "Continuity

egtn"
$$/\!\!/ \mathbb{P} + \frac{\partial \delta}{\partial t} = 0$$
 $\int_{\mathbb{R}}^{W} \mathbb{P} = \mathbb{E} \times \dot{\mathbb{E}} + \mathbb{B} \times \dot{\mathbb{B}},$ $\underline{\delta} = \mathbb{E} \cdot (\nabla \times \mathbb{E}) + \mathbb{B} \cdot (\nabla \times \mathbb{B}).$ \underline{B} (5)

For a linearly polarized wave, where E& E are collinear, as are B&B, evidently $P \equiv 0$. Then, for such a wave: $\delta = \frac{1}{c} (\mathring{E} \cdot B - E \cdot \mathring{B}) = \text{onst}$. In fact, the const is =0 in this case, since ELB(&B) and BLE(&E) The situation is not trivial, however, for a circularly polarized wave.

Use the vector formula: $\nabla \cdot (\mathbf{P} \times \mathbf{Q}) = \mathbf{Q} \cdot (\nabla \times \mathbf{P}) - \mathbf{P} \cdot (\nabla \times \mathbf{Q})$. from cover.

(4) Relativistic acceleration of m by a proper force F.

F F

(A) 1) As in the relativistic vocket vocket problem, a velocity increment dv' in m's "rest frame" lie. a frame instantaneously at rest w. n.t. m) transforms to an increment dv in K as: dv = (1-8°) dv', w B=v/c. Dividing by an increment dv of m's proper time, we have...

$$\frac{dv}{d\tau} = c \frac{d\beta}{d\tau} = (1 - \beta^2) \frac{dv'}{d\tau}.$$

1) But $dv'/d\tau$ is m's proper acceleration, so: $dv'/d\tau = \frac{1}{m} F(\tau)$, where $F(\tau)$ is the given proper force. Then Eq.(1) prescribes...

$$\frac{d\beta}{d\tau} = (1-\beta^2) \frac{F(\tau)}{mc} \Rightarrow \int \frac{d\beta}{1-\beta^2} = \frac{1}{mc} \int F(\tau) d\tau.$$
Since $\beta(0) = 0$, then... $\tanh^{-1}\beta$, from tables $\int call this f(\tau)$

$$\beta(\tau) = \tanh[f(\tau)], \quad f(\tau) = \frac{1}{mc} \int_{0}^{\tau} F(\tau') d\tau'. \quad (3)$$

(B)3) The proper time τ (m's frame) and reference time t (in K) are related incrementally by: $dt = d\tau/\sqrt{1-\beta^2(\tau)}$. With $\beta(\tau)$ given in Eq. (3), and with the hyperbolic identity: $1-\tanh^2 = \operatorname{Sech}^2 = 1/\cosh^2$, we have

$$dt = \frac{1}{\sqrt{1-\beta^2}} d\tau = \cosh[f(\tau)] d\tau \Rightarrow t = \int_0^{\tau} \cosh[f(\tau')] d\tau'$$

Since $\cosh[f]dz = [f]^{-1}d\sinh[f]$ ($^{N}f = df/dz$), Eq. (4) can be partial-integrated to give an expression whose first term is a previous vocket result ...

This results from the velocity addition formula: $(v+dv)_{min} = (v+dv')_{min}/(1+\frac{vdv'}{c^2})$. To terms 1st order in the cosmals: $dv = (1-\beta^2)dv'$, as quoted above.