Системы различных представителей

- 1. Докажите лемму о паросочетаниях: есть несколько (конечное число) юношей и девушек. Каждый юноша любит некоторое (возможно, нулевое) число девушек. Тогда всех юношей можно женить на любимых ими девушках так, чтобы брачные пары не пересекались, тогда и только тогда, когда для любого множества юношей число девушек, которых любит хотя бы один из них, не меньше числа этих юношей.
- **Теорема Холла.** Пусть S_1, \ldots, S_m конечные множества. В каждом из них можно выбрать по элементу $x_i \in S_i$ так, чтобы все x_i были различны, тогда и только тогда, когда для любого $k \leq m$ объединение любых k из этих множеств имеет не менее k элементов.
- **2.** Какое минимальное количество ребер можно удалить из графа $K_{n,n}$, чтобы не осталось паросочетаний (т. е. подграфа из n непересекающихся отрезков)?
- Пусть дан набор множеств \mathcal{M} , в каждом из которых выбрали по элементу. Если все элементы различны, то такой набор назовём системой различных представителей (с.р.п.). Формально, с.р.п. для набора \mathcal{M} называется такое инъективное отображение $x \colon \mathcal{M} \to \bigcup_{\mathcal{M}} S$, что $x(S) \in S$ для любого $S \in \mathcal{M}$. Это даёт упорядоченный набор, что полезно для подсчёта количества с.р.п.

Например, теорема Холла утверждает, что у системы S_1, \ldots, S_m конечных множеств есть с.р.п. тогда и только тогда, когда $|\bigcup_{i \in I} S_i| \geqslant |I|$ для любого $I \subset \{1, \ldots, m\}$.

- **3.** Пусть для системы m-элементных множеств каждый элемент любого из множеств входит ровно в l из них. Докажите, что при $m \geqslant l$ у этой системы множеств есть с.р.п.
- **4.** Из набора множеств \mathcal{M} выбран поднабор $\mathcal{M}' = \{S_1, \dots, S_k\}$. Пусть x_1, \dots, x_k с.р.п. \mathcal{M}' . Докажите, что если у всего \mathcal{M} есть с.р.п., то найдётся его с.р.п., содержащая x_1, \dots, x_k .
- **5.** Обозначим через $F(S_1, \ldots, S_m)$ количество с.р.п. у набора $\{S_1, \ldots, S_m\}$. Для любого ли k существует система S_1, \ldots, S_m такая, что $F(S_1, \ldots, S_m) = k$?

Домашнее задание

- 1. Докажите теорему Холла.
- **2.** Найдите все возможные значения $F(S_1, S_2)$ при условии $|S_1| = |S_2| = 5$.
- **3.** Пусть даны два разбиения множества S на m подмножеств:

$$S = \bigsqcup_{i=1}^{m} A_i = \bigsqcup_{i=1}^{m} B_i, \ m \leqslant |S|.$$

Пусть выполнено следующее условие: для любого подмножества $\{i_1,\ldots,i_k\}\subset\{1,\ldots,m\}$ множество $A_{i_1}\cup\ldots\cup A_{i_k}$ содержит не более k из множеств B_1,\ldots,B_m . Докажите, что тогда можно так перенумеровать множества A_1,\ldots,A_m , чтобы после перенумерации $A_i\cap B_i\neq\varnothing$ для любого $i=1,\ldots,m$.