ASSIGNMENT 1

JONAS TREPIAKAS - KU-ID: HVN548

Exercise 0.1 (H1.1). Proof.

$$f * e(n) = \sum_{d|n} f(d)e(\frac{n}{d}) = \sum_{d|n} f(d)\delta_{\frac{n}{d},1} = f(n)$$

and since the sets $\{d: d \mid n\}$ and $\{\frac{n}{d}: d \mid n\}$ are equal, we have

$$g*f = \sum_{d|n} g(d) f\left(\frac{n}{d}\right) = \sum_{d|n} g\left(\frac{n}{d}\right) f\left(\frac{n}{\frac{n}{d}}\right) = f*g(n)$$

Exercise 0.2 (H1.2). Proof.

$$\mu*1(n) = \sum_{d|n} \mu(d) 1\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d)$$

If n = p is a prime, we trivially have $\{d : d \mid n\} = \{1, p\}$, so $\sum_{d \mid n} \mu(d) = 1 - 1 = 0 = e(p)$, so it is true for n a prime.

Now, if $n = p^{\alpha}$, then

$$\mu*1(n) = \sum_{d\mid n} \mu(d) 1\left(\frac{n}{d}\right) = \mu(p) + \mu(1) = 0$$

since in all other terms, μ is evaluated at a non-squarefree integer.

Lastly, for $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, it reduces to the previous case because μ is only non-zero on squarefree integers, so

$$\mu * 1(n) = \sum_{\substack{d \mid \frac{n}{p^{\alpha_1 - 1} \dots p^{\alpha_k - 1}}}} \mu(d) = 0$$

since the sets $\left\{d:d\mid \frac{n}{p_1^{\alpha_1-1}\cdots p_k^{\alpha_k-1}}\right\}$ and $\left\{d:d\mid p_1\cdots p_k\right\}$ are equal. Thus, indeed, $\mu*1=e$.

Exercise 0.3 (H1.3). We claim that the set of arithmetic functions with Dirichlet convolution as a binary operation is an abelian semigroup. For this, if $f,g\colon \mathbb{N}\to\mathbb{C}$, then clearly $f*g\colon \mathbb{N}\to\mathbb{C}$ too. Also, $f*g(n)=\sum_{ab=n}f(a)g(b)=\sum_{ba=n}g(b)f(a)=g*f(n)$ by commutativity of multiplication in \mathbb{C} . Lastly,

$$(f*g)*h(n) = \sum_{ab=n} f*g(a)h(b) = \sum_{ab=n} \sum_{cd=a} f(c)g(d)h(b) = \sum_{cdb=n} f(c)g(d)h(b)$$

and

$$f * (g * h) (n) = \sum_{ab=n} f(a)g * h(b) = \sum_{ab=n} \sum_{cd=b} f(a)g(c)h(d) = \sum_{acd=n} f(a)g(c)h(d)$$

(all of this is just Theorem 5.1.4 in the book for Introduction to Number Theory by Risager).

Now, if f = 1*g then $\mu * f = \mu * (1*g) = (\mu * 1)*g = e*g = g*e = g$ by the above together with H1.1. Likewise, if $g = \mu * f$, then $1*g = 1*(\mu * f) = (1*\mu)*f = (\mu * 1)*f = e*f = f*e = f$ again.

Exercise 0.4 (H1.4). We have

$$\left| \sum_{n=1}^{\infty} \left| \frac{f(n)}{n^s} \right| \le \sum_{n=1}^{\infty} \frac{Cn^k}{n^{\sigma}} \right| \le \sum_{n=1}^{\infty} \frac{C}{n^{\sigma - k}} \le \infty$$

as $\sigma - k > 1$. Thus the series converges absolutely.

Exercise 0.5 (H1.5). *Proof.* We know that L_f converges absolutely for $\sigma > 1 + k_f$ and L_g converges absolutely for $\sigma > 1 + k_g$. Now,

$$\left| \sum_{n=1}^{\infty} \left| \frac{\sum_{d|n} f(d)g(\frac{n}{d})}{n^s} \right| \le \sum_{n=1}^{\infty} \sum_{d|n} \frac{C_f C_g d^{k_f} \left(\frac{n}{d}\right)^{k_g}}{n^{\sigma}} \right|$$

$$= \sum_{n=1}^{\infty} C_f \frac{1}{n^{\sigma - k_g}}$$

and by symmetric, likewise for a different constant C with k_f replacing k_g . Hence the sum defining $L_{f*g}(s)$ is absolutely convergent for $\sigma > \min\{1 + k_f, 1 + k_g\}$, and in this half-plane,

$$L_f(s)L_g(s) = \lim_{n \to \infty} \sum_{k=1}^n \sum_{t=1}^n \frac{f(k)}{k^s} \frac{g(t)}{t^s} = \lim_{n \to \infty} \sum_{k=1}^n \sum_{d|k} \frac{f(d)g(\frac{n}{d})}{k^s} = L_{f*g}(s)$$

Exercise 0.6 (H1.6). We have $L_1(s)L_{\mu}(s)=L_{1*\mu}(s)=L_e(s)=1$, but $L_1(s)=\zeta(s)$ and $L_{\mu}(s)=\sum_{n=1}^{\infty}\frac{\mu(n)}{n^s}$, so the result follows from H1.5 since 1(n)=O(1) and $\mu(n)=O(1)$, so $L_{1*\mu}$ is absolutely convergent for $\sigma>1$ with $L_1(s)L_{\mu}(s)=L_{1*\mu}(s)$.

Exercise 0.7 (H 1.7). *Proof.* For $f(n) = n^w$, we have $\sigma_w(n) = f * 1(n)$. The abscissa of convergence for 1 is 1 and for f it is $1 + \Re(w)$. For $\sigma > \min\{1, 1 + \Re(w)\}$, we have $\sum_{n=1}^{\infty} \frac{\sigma_w(n)}{n^s} = L_{\sigma_w}(s) = L_f(s)L_1(s)$. Now $L_1(s) = \zeta(s)$, and

$$L_f(s) = \sum_{n=1}^{\infty} \frac{n^w}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^{s-w}} = \zeta(s-w).$$

Thus
$$\sum_{n=1}^{\infty} \frac{\sigma_w(n)}{n^s} = \zeta(s-w)\zeta(s)$$