

19th European Conference on Computational Biology

Planetary Health and Biodiversity

T05 Part 2: Introduction to COBRA

Miguel Ponce de León - BSC (<u>miguel.ponce@bsc.es</u>)

Marta Cascante - UB (<u>martacascante@ub.edu</u>)

What is a cell made of?

Level (scale) of description

Cell's molecular factory: metabolism → What is metabolism?

What is a Genome-scale metabolic model?

Is a computational representation the metabolism of a cell

- Includes: genes and complexes, biochemical reactions, metabolites, transporters, cell compartments.
- Uses: Omic data integration, simulations, in-silico predictions.

Genome-Scale Modeling in Systems Biology

Genome-scale metabolic model

Genome-scale metabolic model

Gene Protein Reaction rules: examples

Reaction abbreviation	Reaction name	E. C.number	GPR	
HEX1	Hexokinase (D-glucose:ATP)	2.7.1.1	(b2388)	
GNK	Gluconokinase	2.7.1.12	(b3437) or (b4268)	
ANS	Anthranilate synthase	4.1.3.27	(b1264) and (b1263)	
PFK	Phosphofructokinase	2.7.1.11	(b1723) or (b3916)	
PFK_2	Phosphofructokinase (2)	2.7.1.11	(b3916)	

Genome-scale metabolic model

Genome-scale metabolic model

Gene-Protein-Reaction Rules

Gene B

Metabolic Network: Human Metabolic model Recon 2.2.1

Reactions, Transports, Metabolites & Cell compartments (-> stoichiometric matrix)

	Total
Genes	1675
Metabolites	5324
Reactions	7785

Reaction Network (stoichiometric matrix)

Metabolism: the molecular factory of the cell

Is the **network** of biochemical reactions and transport processes that occur within a cell and allow **cell maintenance and growth**

- Generation of energy (catabolism) and building block (anabolism)
- Include the enzymatic reaction that act over small molecules

Stochimetric Matrix → Mass Balance Equations & Echange fluxes (E.coli core)

Inf

flux value)

units: mmol/gDw/hr

d[13dpg(c)] / dt = GAPD - PGKd[2pg(c)] / dt = PGM - ENOd[6pgc(c)] / dt = PGL - GNDd[6pgl(c)] / dt = G6PDH2r - PGLd[cit(c)] / dt = CS - ACONTad[dhap(c)] / dt = FBA - TPI

Exchange fluxes: variables that represent the exchanges of nutrients/byproducts between the organism and its environment (uptake/secretion)

(c): cytosol

Genome-scale metabolic model

Genome-scale metabolic model

Biomass Equation

Quantitative molecular composition of a cell

Biomass	Total
RNA components:	4
DNA components:	4
Protein components	: 20
Carbohydrates:	
Lipid components:	16

Cofactors and vitamins: 10

Tatal

Biomass equation

Reaction Network (stoichiometric matrix)

Biomass Equation of a cell

Description in stoichiometric terms of all components present in a gram (dry weight) of a cell.

Metabolite	Demand (mmol)				
	(IIIIIOI)				
ATP	41.2570				
NADH	-3.5470				
NADPH	18.2250				
G6P	0.2050				
F6P	0.0709				
R5P	0.8977				
E4P	0.3610				
T3P	0.1290				
3PG	1.4960				
PEP	0.5191				
PYR	2.8328				
AcCoA	3.7478				
OAA	1.7867				
AKG	1.0789				
Neidhardt,et al.	Neidhardt,et al. Physiology of the				
Bacterial Cell (1990)					

Modeling metabolic systems

Kinetic Modelling (Differential equations)

- O Time evolution of system variables (+)
- O Sensitivity Analysis (+)
- O Unknown Kinetic Parameter (-)
- O Unknown Enzymatic Mechanisms (-)

Constraint-Based Modeling (CBM)

- Only need stoichiometry (+)
- Structure is an invariant property (+)
- Computationally tractable using genome-scale models (+)
- No information of metabolite concentrations (-)
- Only valid under steady-state (-)

Modeling metabolic systems

Kinetic Mechanisms:

O Mass action

- Michaelis-Menten
- Others

Constraint-based approach

Genome-scale

- Incomplete information
- Solution (flux) space

Flux B

Flux A

Flux C

For genome-scale reconstructed metabolic network there are still not enough

lacktriangle information to create the full kinetic description o too many unknown parameters!

Kinetic constants: the state of the art

N° of reactions from GEMs:

- E. coli (iJO1266): 2251
- Budding yeast (iND750): 1149
- Arabidopsis (--): 1363
- Human (Recon1): 7785

Theory

- Full information
- Solution is a unique point (or limit cycle) in the system's phase space

Flux B

Flux C

Flux A

- Genome-scale
- Incomplete information
- Solution (flux) space

For **genome-scale** reconstructed metabolic network there are still not enough information to create the full **kinetic description** → **too many unknown parameters!**

Constraint-based modeling

Glucokinase (single reaction)

Stoichiometric matrix N (metabolic network)

The Constraints

Constraint-based modeling

Glucokinase (single reaction)

Stoichiometric matrix N (metabolic network)

The Constraints

Mass Balance

$$N \cdot v = 0$$

Thermodynamics

$$v_i > 0$$

Capacities (bounds)

$$v_i < v_{max}$$

Flux Space

Cell Objective Flux Balance Analysis

How does it look (under the hood)?


```
Genome-scale metabolic model naked
<model id="Recon2.2.1">
 <listOfUnitDefinitions>
   <unitDefinition id="mmol per qDW per hr"> ... </listOfUnitDefinitions>
 <listOfCompartments>
   <compartment id="g" name="Golgi apparatus" size="1"/>
   <compartment id="c" name="cytoplasm" size="1"/>
 </list0fCompartments>
 <species id="M 10fthf5glu c" name="10-formyltetrahydrofolate-[Glu](5)" compartment="c" charge="-6">
     <notes>FORMULA: C40H45N11019
   </species>
 <reaction id="R ENO" name="enolase" reversible="true">
     <notes>
         GENE ASSOCIATION: HGNC:3350 or HGNC:3354 or HGNC:3353
         CONFIDENCE LEVEL: 5
         SUBSYSTEM: Glycolysis/gluconeogenesis
     </notes>
     <speciesReference species="M 2pg c" stoichiometry="1"/>
     </list0fReactants>
     <listOfProducts>
       <speciesReference species="M h2o c" stoichiometry="1"/>
       <speciesReference species="M pep c" stoichiometry="1"/>
     </listOfProducts>
     <kineticLaw>
       <listOfParameters>
         <parameter id="UPPER BOUND" value="1000" units="mmol per gDW per hr"/>
         <parameter id="FLUX VALUE" value="0" units="mmol per gDW per hr"/>
         <parameter id="0BJECTIVE COEFFICIENT" value="0" units="dimensionless"/>
         <parameter id="LOWER BOUND" value="-1000" units="mmol per qDW per hr"/>
       </list0fParameters>
     </kineticLaw>
   </reaction>
```


https://www.vmh.life/

http://sbml.org/

BiGG Models

http://bigg.ucsd.edu/

A phylogeny of **CO**nstraint-**B**ased **R**econstruction and **A**nalysis (**COBRA**) methods for **GSMMs**

Because of the versatility and scalability, more than 100 COBRA methods have been developed for constraint-based modeling and analysis. Many of them implemented in software packages: http://opencobra.github.io/

All are based on the analysis of the underlying metabolic network structure (i.e., the stoichiometric matrix).

The phylogenetic tree depict similarities between applications of the COBRA methods, and the underlying algorithms (Lewis et al. 2012)

Genome-Scale Modeling in Systems Biology

Predicting plausible physiological states (phenotypes)

¿How to identify a particular flux distribution?

Using optimization principles

- Adjusting with experimental data
- Maximize de Biomass production (growth rate)
- Maximize ATP production
- Minimize metabolic cost
- Multiple criteria

Flux space (~genotype)

Do we have Strategies to found a unique flux distribution? Flux Balance Analysis (FBA)

Definition: computational strategy that uses a set of constraints (e.g. mass balance, thermodynamics, etc) and linear optimization to determine the steady-state reaction flux distribution in a metabolic network by maximizing an objective function (e.g. growth rate)

Constraints:

$$N \cdot \vec{v} = 0$$

Mass balanace

$$v_j \ge 0 \quad \forall j \in R_{irrev}$$

Thermodynamics

 $\alpha_i \le v_i \le \beta_i, \ \forall j \in R$

Feasible space (Genotype)

Enzyme and transport capacities

Optimizations

Feasible space (Genotype)

Feasible space

(flux space)

Flux distribution (phenotype)

Applications Gene *knockouts* predictions

<u>https://opencobra.github.io/</u> Open-source, community-developed code base for COnstraint-Based Reconstruction and Analysis.

Simulations → in-silico predictions of gene KO effect

Simulations → in-silico predictions of gene KO effect

https://opencobra.github.io/ Open-source, community-developed code base for COnstraint-Based Reconstruction and Analysis.

Simulations → in-silico predictions of gene KO effect

Applications Gene *knockouts* predictions Does it really work?

Knockout predictions: original study

Edwards JS, Palsson BO. PNAS (2000)

Metabolic modeling in humans

Metabolic modeling in humans

GEM type

Context-Specific Metabolic Modeling (CSM)

Cell Context (omics)

Universal Human metabolism

Cell-type specific metabolic models

Genome-Scale Model of Human Metabolism

Table 1

Statistics of currently published generic human GEMs.

	28 DE	333		
Generic GEMs	Genes	Metabolites ^a	Reactionsa	Features
RECON1	1496	1509	3744	Manually reconstructed from bibliomics data
EHMN	2322	2671	2823	Manually reconstructed from bibliomics data
RECON2	1789	2626	7440	Merging EHMN and HepatoNet1 with RECON1
RECON 2.2	1675	5324	7785	Reconstructed by integrating previous versions, with emphasis on mass and charge balance
HMR1.0	1512	3397	4144	Reconstructed based on RECON1, EHMN, HumanCyc and KEGG
HMR2.0	3765	3160	8181	Reconstructed based on HMR1, with additional emphasis on lipid metabolism by integrating iAdipocytes1809, KEGG, Lipidomics Gateway
Recon3D	2248	5835	10600	Reconstructed based on RECON2 and includes mapping to 3D structure of proteins through PDB ids
				Swainston, N., et al (2016). Metabolomics, 12(7), 109.

- O Several options available (all derived from RECON1)
- O Recon3D is most recent version

Classes of Model Extraction Methods (MEMs)

Minimizes flux through reactions associated with low gene expression

Finds an optimal trade-off between removing reactions associated with low gene expression and keeping reations with high gene expression

The algorithms use sets of core reactions (that should be retained and active while removing other reactions if possible

Context-Specific Metabolic Modeling (CSM) depend on key decisions on methodology and data processing

- No strong evidence that a Model extraction Method gives the most accurate models
- Each method has different underlying assumptions that affect the resulting model
- Gene expression discretization seams to be the most determinant decision

Practical part

https://github.com/migp11/ECCB2020-T05

