THE HODGE-TATE PERIOD MAP

TIANJIAO NIE

Contents

1. Introduction	1
1.1. Notations	1
2. Technical tools	1
2.1. Canonical subgroups	1
2.2. Hartog's extension principle	3
2.3. Tate's normalized traces	5
2.4. Riemann's Hebbarkeitssatz	5
2.5. The Hodge–Tate filtration	6
3. Siegel Modular Varieties	6
4. The anti-canonical towers	7
4.1. The Frobenius tower of formal models	7
4.2. The anti-canonical tower of level $\Gamma_{\rm s}$	12
4.3. Lifting to level Γ_1	14
4.4. Lifting to level Γ	18
5. The Hodge–Tate period map	18
5.1. The map of topological spaces	18
5.2. The map of perfectoid spaces	18
Appendix A. Review of Abelian schemes	19
A.1. Basics	19
A.2. Ordinary Abelian schemes	19
Appendix B. Review of deformation theory	19
Appendix C. Review of Shimura varieties	20
C.1. Shimura datum and canonical models	20
C.2. Siegel modular varieties	21
C.3. PEL Shimura varieties	21
Appendix D. Review of Artin's criterion	21
Appendix E. Review of perfectoid spaces	21
References	22

1. Introduction

1.1. **Notations.** Throughout this paper, $0 \le \epsilon < 1/2$ is a number such there exists an element in $\mathbb{Z}_p^{\text{cycl}}$ of valuation ϵ , and any such element will be denoted by $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$. We also assume that $g \ge 2$.

2. Technical tools

2.1. Canonical subgroups.

Definition 2.1.1. Let $A \to S$ be an Abelian scheme with S of characteristic p > 0. Let $e : S \to A$ be the unit section. Let $\omega_{A/S}$ be the line bundle on S defined as $\wedge^g e^* \Omega^1_{A/S}$. The Verschiebung map $V : A^{(p)} \to A$ induces a map $\omega_{A/S} \to \omega_{A^{(p)}/S} \simeq \omega_{A/S}^{\otimes p}$, which in turn induces a canonical section $\operatorname{Ha}(A/S) \in H^0(S, \omega_{A/S}^{\otimes (p-1)})$, called the Hasse invariant of A/S.

Definition 2.1.2. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $A \to \text{Spec}(R)$ be an Abelian scheme. Let $A_1 \to \text{Spec}(R_1)$ be its reduction modulo p, where $R_1 = R/p$. For an integer $m \ge 1$, the Abelian scheme $A \to \text{Spec}(R)$ is said to satisfy the weak $O(m, \epsilon)$ condition if

$$\operatorname{Ha}(A_1/\operatorname{Spec}(R_1))^{(p^m-1)/(p-1)} \in H^0(R_1, \omega^{\otimes (p^m-1)})$$

divides p^{ϵ} , in the sense that there exists $u \in H^0(R_1, \omega^{\otimes (1-p^m)})$ such that $u \cdot \text{Ha}(A_1/\text{Spec}(R_1))^{(p^m-1)/(p-1)} = p^{\epsilon}$ as elements in $R_1 = R/p$.

The Abelian scheme $A \to \operatorname{Spec}(R)$ is said to satisfy the strong $O(m, \epsilon)$ condition if $\operatorname{Ha}(A_1/R_1)^{p^m}$ divides p^{ϵ} .

Lemma 2.1.3. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let G be a finite locally free commutative group scheme over S. Let $C_1 \subset G \otimes_S S/p$ be a finite locally free subgroup. Assume that for $H = (G \otimes_S S/p)/C_1$, multiplication by p^{ϵ} on the Lie complex ℓ_H^{\vee} is homotopical to zero. Then there exists a finite locally free subgroup $C \subset G$ over S such that $C \otimes_S S/p^{1-\epsilon} = C_1 \otimes_{S/p} S/p^{1-\epsilon}$.

Proof. We will apply Lemma B.0.9. Take A = S/p, $B = S/p^{2-\epsilon}$, and

$$B' = \{(x, y) \in S/p^{2-2\epsilon} \times S/p \mid x = y \in R/p^{1-\epsilon}\}.$$

The map $B \to B'$ is given by $x \mapsto (x,x)$. Let J (resp. J') be the kernel of $B \to A$ (resp. $B' \to A$). Then both J and J' are isomorphic to $S/p^{1-\epsilon}$ as Abelian groups. The transition map $S/p^{1-\epsilon} \simeq J \to J' \simeq S/p^{1-\epsilon}$ is given by multiplication by p^{ϵ} . Let K be the cone of the map $\ell_{C_1}^{\vee} \to \ell_{G \otimes_S S/p}^{\vee}$ of Lie complexes. Then $K \simeq \ell_H^{\vee}$ by Remark B.0.6. In particular, multiplication by p^{ϵ} is homotopic to zero on K. Then the image of the obstruction $o \in \operatorname{Ext}^1(H, K \otimes^L J)$ in $\operatorname{Ext}^1(H, K \otimes^L J')$ is zero. The vanishing of the obstruction immediately shows the existence of a lift $C \subset G$ such that $C \otimes_S S/p^{1-\epsilon} = C_1 \otimes_{S/p} S/p^{1-\epsilon}$.

Lemma 2.1.4. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let X be a scheme over R such that $\Omega^1_{X/R}$ is killed by p^{ϵ} for some $\epsilon > 0$. Then the map $X(R) \to X(R/p^{\delta})$ is injective for all $\delta > \epsilon$.

Proof. Omitted.
$$\Box$$

Lemma 2.1.5. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $A \to \text{Spec}(R)$ be an Abelian scheme satisfying weak $O(m, \epsilon)$. Then there is a unique closed subgroup $C_m \subset A[p^m]$ such that $C_m = \ker(F^m)$ mod $p^{1-\epsilon}$.

Proof. Let $H_1 = \ker(V^m : A_1^{(p^m)} \to A_1)$ be the kernel of the m-th composition of the Verschiebung map. We have a short exact sequence $0 \to H_1 \to A_1^{(p^m)} \to A_1 \to 0$. Taking the Lie complex of each term, we see that $\ell_{H_1}^{\vee}$ is represented by the complex $\operatorname{Lie}(A_1^{(p^m)}) \to \operatorname{Lie}(A_1)$. Note that the determinant of $\operatorname{Lie}(A_1^{(p^m)}) \to \operatorname{Lie}(A_1)$ is simply

$$\operatorname{Ha}(A_1/R_1)^{(p^m-1)/(p-1)} \in H^0(R_1, \omega^{\otimes (p^m-1)}),$$

which is a direct corollary of the definition of the Hasse variant. It follows that multiplication by $\operatorname{Ha}(A_1/R_1)^{(p^m-1)/(p-1)}$ on $\ell_{H_1}^{\vee}$ is null-homotopic. As the Abelian scheme A satisfies the weak $O(m,\epsilon)$ condition, we conclude that multiplication by p^{ϵ} on $\ell_{H_1}^{\epsilon}$ is null-homotopic. Thus Lemma 2.1.3 shows the exsitence of $C_m \subset A[p^m]$ such that

$$C_m \otimes_R R/p^{1-\epsilon} = \ker(F^m) \otimes_{R_1} R/p^{1-\epsilon}.$$

To show that the subgroup C_m is unique, we will directly describe the points of C_m : for every p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra R' with $R \to R'$, we have

$$C_m(R') = \{ s \in A[p^m](R') \mid s \equiv 0 \bmod p^{(1-\epsilon)/p^m} \}.$$

It sufficies to prove the equality for R' = R.

Let $s \in C_m(R)$. Since $C_m \otimes_R R/p^{1-\epsilon} = \ker(F^m) \otimes_{R_1} R/p^{1-\epsilon}$, the image of s in $A(R/p^{1-\epsilon}) = A_1(R/p^{1-\epsilon})$, denoted by $s_{1-\epsilon}$, lies in the kernel of F^m . Thus $s_{1-\epsilon}$ lies in the kernel of $A_1(R_{1-\epsilon}) \to A_1(\operatorname{Fr}_*^m R_{1-\epsilon})$, where Fr is the absolute Frobenious. Note that $s_{1-\epsilon}$ also lies in $A_1[p^m](R_{1-\epsilon})$. Hence $s \equiv 0 \mod p^{(1-\epsilon)/p^m}$.

Before we prove the converse, we need the following result. Since multiplication by p^{ϵ} is null-homotopic on $\ell_{H_1}^{\vee}$, we see that p^{ϵ} kills $\operatorname{Lie}(H_1)^{\vee} = e^*\Omega_{H_1/R_1}$. Thus p^{ϵ} kills $\Omega^1_{H_1/R_1}$. Let $H = A[p^m]/C_m$. Note that $H \otimes_R R_{1-\epsilon} = H_1 \otimes_{R_1} R_{1-\epsilon}$. Hence $\Omega^1_{H \otimes_R R_{1-\epsilon}/R_{1-\epsilon}} \simeq \Omega^1_{H/R}/p^{1-\epsilon}$ is killed by p^{ϵ} . Since $\Omega^1_{H/R}$ is p-adically complete, it follows that $\Omega^1_{H/R}$ is killed by the multiplication by p^{ϵ} map.

Now let $s \in A[p^m](R)$ be an element such that $s \equiv 0 \mod p^{(1-\epsilon)/p^m}$. By a similar argument as above, we conclude that $s_{1-\epsilon} \in C_m(R/p^{1-\epsilon}) \subset A[p^m](R/p^{1-\epsilon})$. Then the image $t \in H(R)$ of s is 0 modulo $p^{1-\epsilon}$. Finally, apple Lemma 2.1.4 with $\delta = 1 - \epsilon$, we conclude that $t = 0 \in H(R)$, showing that $s \in C_m(R)$ as desired.

Definition 2.1.6. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. We say that an Abelian scheme $A \to \text{Spec}(R)$ has a weak canonical subgroup of level m if $A \to \text{Spec}(R)$ satisfies weak $O(m, \epsilon)$ for some $\epsilon < 1/2$. In that case, we call $C_m \subset A[p^m]$ in Lemma 2.1.5 the weak canonical subgroup of level m.

If moreover A satisfies the strong $O(m, \epsilon)$ condition, then we say that C_m is a strong canonical subgroup.

Lemma 2.1.7. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let A and B be Abelian schemes over R.

- (1) If A has a canonical subgroup $C_m \subset A[p^m]$ of level m, then it has a canonical subgroup $C_{m'} \subset A[p^{m'}]$ of every level $m' \leq m$, and $C_{m'} \subset C_m$.
- (2) Let $f: A \to B$ be a map of Abelian schemes. Assume that both A and B have canonical subgroups $C_m \subset A[p^m]$ and $D_m \subset B[p^m]$ of level m. Then C_m maps into D_m under f.
- (3) Assume that A has a canonical subgroup $C_m \subset A[p^m]$ of level m, and let \overline{x} be a geometric point of $\operatorname{Spec}(R[p^{-1}])$. Then $C_m(\overline{x}) \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$, where g is dimension of the Abelian variety over \overline{x} .

Proof. Omitted. \Box

2.2. Hartog's extension principle. Let's recall Hartog's theorem of analytic functions.

Theorem 2.2.1 (Hartog's Theorem). Let $G \subset \mathbb{C}^n$ be an open subset with $n \geq 2$, and let K be a compact subset of G. If $G \setminus K$ is connected, then any holomorphic function on $G \setminus K$ can be extended to a holomorphic function on G in a unique way.

We shall establish several analogies of Hartogs' theorem.

Lemma 2.2.2 ([GR68, Lemma III.3.1, Proposition III.3.3]). Let X be a locally Noetherian scheme. Let $Z \subset X$ be a closed subscheme. Let \mathcal{F} be a coherent \mathcal{O}_X -module. Let $n \geq 1$ be an integer. Then the following are equivalent:

(1) For any open subscheme V of X, the map

$$H^i(V,\mathcal{F}) \to H^i(V \backslash Z,\mathcal{F})$$

is bijective for $i \leq n-2$ and injective for i=n-1.

(2) For any open subscheme V of X, the local cohomology

$$H^i_{V\cap Z}(V,\mathcal{F})=0$$

for all $i \leq n-1$.

(3) For any $x \in Z$ the depth of \mathcal{F}_x as an $\mathcal{O}_{X,x}$ -module is at least n.

Lemma 2.2.3 (Serre's criterion). A Noetherian ring R is normal if and only if $R_{\mathfrak{p}}$ is regular for every \mathfrak{p} of height ≤ 1 and $R_{\mathfrak{p}}$ has depth ≥ 2 for every \mathfrak{p} of height ≥ 2 .

Lemma 2.2.4. Let R be a normal ring, i.e. the localization $R_{\mathfrak{p}}$ is an integrally closed domain for every prime ideal \mathfrak{p} of R. Assume R is Noetherian. Let $Z \subset \operatorname{Spec}(R)$ be a closed subscheme of codimension at least 2, i.e. every $\mathfrak{p} \in Z$ has height at least 2. Then for $U = \operatorname{Spec}(R) \setminus Z$,

$$H^0(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)}) \simeq H^0(U, \mathcal{O}_{\operatorname{Spec}(R)}).$$

Proof. Consider n = 2 and $\mathcal{F} = \mathcal{O}_X$ in Lemma 2.2.2. Serre's criterion, cf. Lemma 2.2.3, guarantees the third condition in Lemma 2.2.2. The first assertion gives the desired result.

It can also be proved directly as follows.

Lemma 2.2.5. Let X be a locally Noetherian normal scheme. Let U be an open subscheme of X with codimension ≥ 2 . Then the map $H^0(X, \mathcal{O}_X) \to H^0(U, \mathcal{O}_X)$ is an isomorphism.

Proof. We may assume that $X = \operatorname{Spec}(A)$ where A is normal integral domain. For every non-empty open V of X, the ring $\Gamma(V, \mathcal{O}_X)$ may be considered as a subring of the function field $K(X) = \operatorname{Frac}(A)$ such that the restriction maps are given by inclusions of rings. Let Z be an irreducible closed subset of X of codimension 1. Then U intersects Z non-trivially, so it contains the generic point η of Z. In other words, the subring $\Gamma(U, \mathcal{O}_X)$ of the function field K(X) is contained in the stalk $\mathcal{O}_{X,\eta}$. But $A = \Gamma(X, \mathcal{O}_X)$ is the intersection of all the stalks $\mathcal{O}_{X,\eta}$, where η is a prime ideal of height 1; in other words, where η is the generic point of an irreducible closed subset of codimension 1.

Lemma 2.2.6. Let R be a topologically finitely generated, flat, and p-adically complete \mathbb{Z}_p -algebra, such that $\overline{R} = R/p$ is normal. Fix $f \in R$ such that its reduction $\overline{f} \in \overline{R}$ is not a zero-divisor. Let $0 < \epsilon \le 1$. Set $S = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) \langle u \rangle / (u \cdot f - p^{\epsilon})$. Then S is p-adically complete and flat over $\mathbb{Z}_p^{\operatorname{cycl}}$. Fix a closed subscheme $Y \subset \operatorname{Spec}(\overline{R})$ of codimension ≥ 2 . Let Z be the inverse image of Y in $\operatorname{Spf}(S)$. Then for $U = |\operatorname{Spf}(S)| \setminus Z$,

$$S = H^0(\operatorname{Spf}(S), \mathcal{O}_{\operatorname{Spf}(S)}) \simeq H^0(U, \mathcal{O}_{\operatorname{Spf}(S)}).$$

Proof. We first show that the map

$$S \simeq H^0(\operatorname{Spf}(S), \mathcal{O}_{\operatorname{Spf}(S)}) \to H^0(U, \mathcal{O}_{\operatorname{Spf}(S)})$$

is injective. Since S is p-adically separated and $H^0(U, \mathcal{O}_{\mathrm{Spf}(S)})$ is flat over $\mathbb{Z}_p^{\mathrm{cycl}}$, it suffices to show that

$$S_{\epsilon} \simeq H^0(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})}) \to H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$$

is injective, where $S_{\epsilon} = S/p^{\epsilon}$, Z_{ϵ} is the inverse image of Y in $\operatorname{Spec}(S_{\epsilon})$, and $U_{\epsilon} = \operatorname{Spec}(S_{\epsilon}) \setminus Z_{\epsilon}$. Note that

$$S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (uf, p^{\epsilon}) = R_{\epsilon}[u] / (uf_{\epsilon})$$

where $R_{\epsilon} = R \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{\epsilon})$ and $f_{\epsilon} \in R_{\epsilon}$ is the image of $f \in R$.

Let $W \subset \operatorname{Spec}(S_{\epsilon})$ be the preimage of $V = V(\overline{f}) \subset \operatorname{Spec}(\overline{R})$. Then $W = V \times_{\operatorname{Spec}(\mathbb{F}_p)} \mathbb{A}^1_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$ is affine. The map $S_{\epsilon} \to R_{\epsilon}$ sending u to zero induces a section $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$. We have a decomposition $\operatorname{Spec}(S_{\epsilon}) = N \cup W$, where $N = \operatorname{Spec}(R_{\epsilon}[u]/(u)) \simeq \operatorname{Spec}(R_{\epsilon})$ is the image of the section $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$. Take $V_{\epsilon} = V \times_{\operatorname{Spec}(\mathbb{F}_p)} \operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})$. Then $W = V_{\epsilon} \times_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})} \mathbb{A}^1_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$, and $N \cap W = V_{\epsilon}$.

We then have the following interpretations:

- (1) Each section in $\Gamma(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ is a pair (f_1, f_2) such that $f_1 \in \Gamma(N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ and $f_2 \in \Gamma(W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ such that $f_1 = f_2$ on $N \cap W = V_{\epsilon}$.
- (2) Each section in $H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ is a pair (f_1, f_2) such that $f_1 \in H^0(U_{\epsilon} \cap N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$, and $f_2 \in H^0(U_{\epsilon} \cap W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$, such that $f_1 = f_2$ on $U_{\epsilon} \cap N \cap W$.

The (classical) Hartog's extension principle, i.e. Lemma 2.2.4 applied to $Y \subset \operatorname{Spec}(\overline{R})$, shows that

$$\Gamma(\operatorname{Spec}(\overline{R})\backslash Y) \simeq \Gamma(\operatorname{Spec}(\overline{R})).$$

Under base-change this gives

$$\Gamma(U_{\epsilon} \cap N) \simeq \Gamma(\operatorname{Spec}(\overline{Y}) \backslash Y) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}} / p^{\epsilon} \simeq \Gamma(\operatorname{Spec}(\overline{R})) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}} / p^{\epsilon} \simeq \Gamma(N).$$

Thus injectivity reduces to show that

$$\Gamma(V) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})[u] = \Gamma(W) \to \Gamma(U_{\epsilon} \cap W) = \Gamma(V \backslash Y) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})[u]$$

is injective. It suffices to show that $\Gamma(V) \to \Gamma(V \setminus Y)$ is injective, where both V and $V \setminus Y$ are \mathbb{F}_p -schemes. We have $\operatorname{depth}(\mathcal{O}_{V,y}) = \operatorname{depth}(\overline{R}_y) - 1$ for all $y \in V$, cf. [Sta, Tag 090R]. Thus $\operatorname{depth}(\mathcal{O}_{V,y}) \geq 1$ for every $x \in V \cap Y$ by Serre's criterion, i.e. Lemma 2.2.3. Then the desired injectivity follows from Lemma 2.2.2.

It remains to prove the surjectivity. Let S' be the u-adic completion of S equipped with the (p, u)-adic topology. We have a natural injection $S \to S'$. Since $u \cdot f = p^{\epsilon}$, the topology of S' is also u-adic. Hence $|\operatorname{Spf}(S')| = |\operatorname{Spec}(S_{\epsilon})|$ is a closed subspace of $|\operatorname{Spf}(S)|$. The first step is to prove the surjectivity of $S' \to H^0(U \cap |\operatorname{Spf}(S')|, \mathcal{O}_{\operatorname{Spf}(S')})$. By modulo u, it sufficies to show the surjectivity of

$$\overline{R} \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon} = R_{\epsilon} \to H^0(U \cap \operatorname{Spec}(R_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(R_{\epsilon})}) = H^0(U \cap \operatorname{Spec}(\overline{R}), \mathcal{O}_{\operatorname{Spec}(\overline{R})}) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}.$$

Lemma 2.2.4 shows that the map

$$\overline{R} \to H^0(\operatorname{Spec}(\overline{R}) \backslash Y, \mathcal{O}_{\operatorname{Spec}(\overline{R})}) = H^0(\operatorname{Spec}(\overline{R}) \cap U, \mathcal{O}_{\operatorname{Spec}(R_{\epsilon})})$$

is an isomorphism. From here the desired surjectivity is clear.

2.3. Tate's normalized traces.

Lemma 2.3.1. Let R be a p-adically complete flat \mathbb{Z}_p -algebra. Let $Y_1, \ldots, Y_n \in R$. Let $P_1, \ldots, P_n \in R\langle X_1, \ldots, X_n \rangle$ be topologically nilpotent elements, or equivalently, each P_i has topologically nilpotent coefficients in R. Let

$$S = R\langle X_1, \dots, X_n \rangle / (X_1^p - Y_1 - P_1, \dots, X_n - Y_n - P_n).$$

Then

- (1) The ring S is a finite free R-module of rank p^n , with a basis given by $X_1^{i_1} \cdots X_n^{i_n}$ with $0 \le i_1, \dots, i_n \le p-1$.
- (2) Let I be the ideal of R generated by p together with all the coefficients of all P_i . Then the trace map $\operatorname{tr}_{S/R}: S \to R$ sends S to I^n , i.e. $\operatorname{tr}_{S/R}(S) \subset I^n$.

Proof. Omitted. \Box

Lemma 2.3.2. Let R be a p-adically complete flat \mathbb{Z}_p -algebra topologically of finite type, formally smooth of dimension n over \mathbb{Z}_p . Let $f \in R$ such that its reduction $\overline{f} \in \overline{R} = R/p$ is not a zero-divisor. Let $0 \le \epsilon < 1/2$. Let

$$S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u_{\epsilon} \rangle / (u_{\epsilon} \cdot f - p^{\epsilon}).$$

Suppose $\varphi: S_{\epsilon} \to S_{\epsilon/p}$ is a map of $\mathbb{Z}_p^{\text{cycl}}$ -algebra such that modulo $p^{1-\epsilon}$ it is given by the relative Frobenius. In other words, $\varphi \mod p^{1-\epsilon}$ is the map

$$R_{1-\epsilon}[u_{\epsilon}]/(f \cdot u_{\epsilon} - p^{\epsilon}) \to R_{1-\epsilon}[u_{\epsilon/p}]/(f \cdot u_{\epsilon/p} - p^{\epsilon/p}),$$

where $R_{1-\epsilon} = \overline{R} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{1-\epsilon})$, which sends u_{ϵ} to $u_{\epsilon/p}^p$, and restricts to $\text{Fr}_{\overline{R}} \otimes \text{id}$ on $R_{1-\epsilon}$. Then

(1) The map

$$\varphi[1/p]: S_{\epsilon}[1/p] \to S_{\epsilon/p}[1/p]$$

is finite and flat of degree p^n .

(2) The trace map

$$\operatorname{tr} = \operatorname{tr}_{S_{\epsilon/p}[1/p]/S_{\epsilon}[1/p]} : S_{\epsilon/p}[1/p] \to S_{\epsilon}[1/p]$$

sends $S_{\epsilon/p}$ into $p^{n-(2n+1)\epsilon}S_{\epsilon}$. Here $S_{\epsilon/p}[1/p]$ is viewed as an $S_{\epsilon}[1/p]$ -algebra via $\varphi[1/p]$.

Proof. Omitted. \Box

2.4. Riemann's Hebbarkeitssatz.

Definition 2.4.1. Let p be a prime. Let K be a perfectoid field (of any characteristic). Let t be a non-zero element of K with $|p| \leq |t| < 1$. A triple $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$, where \mathcal{X} is an affinoid perfectoid space over K, \mathcal{Z} is a closed subset of \mathcal{X} , and \mathcal{U} is a quasi-compact open subset of $\mathcal{X} \setminus \mathcal{Z}$, is said to be good, if

$$H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}^+/t)^a \simeq H^0(\mathcal{X} \setminus \mathcal{Z}, \mathcal{O}_{\mathcal{X}}^+/t)^a \hookrightarrow H^0(\mathcal{U}, \mathcal{O}_{\mathcal{U}}^+/t)^a.$$

Remark 2.4.2. This notion is independent of the choice of t, and is compatible with tilting.

Situation 2.4.3. Let $K = \mathbb{F}_p((t^{1/p^{\infty}}))$. Let R_0 be a reduced Tate K-algebra topologically of finite type. Let $\mathcal{X}_0 = \operatorname{Spa}(R_0, R_0^{\circ})$ be the associated affinoid adic space of finite type over K. Let R be the completed perfection of R_0 , which is a p-finite perfectoid K-algebra. Let $\mathcal{X} = \operatorname{Spa}(R, R^+)$ with $R^+ = R^{\circ}$, the associated p-finite affinoid perfectoid space over K. Let I_0 be an ideal of R_0 . Let $I = I_0 R \subset R$. Let $\mathcal{Z}_0 = V(I_0) \subset \mathcal{X}_0$. Let $\mathcal{Z} = V(I) \subset \mathcal{X}$. Let \mathcal{U}_0 be a quasi-compact open subset of $\mathcal{X}_0 \setminus \mathcal{Z}_0$ with preimage $\mathcal{U} \subset \mathcal{X} \setminus \mathcal{Z}$.

Lemma 2.4.4. Assume Situation 2.4.3. Suppose $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$ is good. Suppose that R_0 is normal, and that $V(I_0) \subset \operatorname{Spec}(R_0)$ is of codimension ≥ 2 . Let R'_0 be a finite normal R_0 -algebra which is étale outside $V(I_0)$, and such that no irreducible component of $\operatorname{Spec}(R'_0)$ maps into $V(I_0)$. Let $I'_0 = I_0 R'_0$, and $\mathcal{U}'_0 \subset \mathcal{X}'_0$ the preimage of \mathcal{U}_0 . Let R', I', \mathcal{X}' , \mathcal{Z}' , \mathcal{U}' be the associated perfectoid objects.

(1) There is a perfect trace pairing

$$\operatorname{tr}_{R'_0/R_0}: R'_0 \otimes_{R_0} R'_0 \to R_0.$$

(2) The trace pairing induces a trace pairing

$$\operatorname{tr}_{R'^{\circ}/R^{\circ}}: R'^{\circ} \otimes_{R^{\circ}} R'^{\circ} \to R^{\circ}.$$

which is almost perfect.

(3) For all open subsets $\mathcal{V} \subset \mathcal{X}$ with preimage $\mathcal{V}' \subset \mathcal{X}'$, the trace pairing induces an isomorphism $H^0(\mathcal{V}', \mathcal{O}^+_{\mathcal{X}'}/t)^a \simeq \operatorname{Hom}_{R^{\circ}/t}(R'^{\circ}/t, H^0(\mathcal{V}, \mathcal{O}^+_{\mathcal{X}}/t))^a$.

- (4) The triple $(\mathcal{X}', \mathcal{Z}', \mathcal{U}')$ is good.
- (5) If $\mathcal{X}' \to \mathcal{X}$ is surjective, then the map

$$H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}^+/t) \to H^0(\mathcal{X}', \mathcal{O}_{\mathcal{X}'}^+/t) \cap H^0(\mathcal{U}, \mathcal{O}_{\mathcal{X}}^+/t)$$

is an almost isomorphism.

Proof. Omitted. \Box

Lemma 2.4.5. Suppose we have a filtered inductive system $(R_0^{(i)})_{i\in I}$ as in the previous lemma, giving rise to $\mathcal{X}^{(i)}$, $\mathcal{Z}^{(i)}$, $\mathcal{U}^{(i)}$. Assume that all transition maps $\mathcal{X}^{(i)}\to\mathcal{X}^{(j)}$ are surjective. Let $\widetilde{\mathcal{X}}$ be the inverse limit of the $\mathcal{X}^{(i)}$ in the category of perfectoid spaces over K, with preimage $\widetilde{\mathcal{Z}}\subset\widetilde{\mathcal{X}}$ of \mathcal{Z} , and $\widetilde{\mathcal{U}}\subset\widetilde{\mathcal{X}}\setminus\widehat{\mathcal{U}}$ of \mathcal{U} . Then the triple $(\widetilde{\mathcal{X}},\widetilde{\mathcal{Z}},\widetilde{\mathcal{U}})$ is good.

Proof. Omitted.
$$\Box$$

2.5. The Hodge-Tate filtration.

Lemma 2.5.1. Let C be an algebraically closed and complete extension of \mathbb{Q}_p . Let $A \to \operatorname{Spec}(C)$ be an Abelian variety. Then A has its Hodge–Tate filtration

$$0 \to \operatorname{Lie}(A)(1) \to T_p(A) \otimes_{\mathbb{Z}_p} C \to (\operatorname{Lie}(A^{\vee}))^* \to 0.$$

3. Siegel Modular Varieties

Let p be a fixed prime.

((todo: ...))

Definition 3.0.1. The symplectic similitude group GSp_{2g} is the reductive group scheme over \mathbb{Z} whose points in a commutative ring R are given by

$$\mathrm{GSp}_{2g}(R) = \{ x \in \mathrm{GL}_{2g}(V); \exists \nu(x) \in R^{\times}, x^{t}\Omega x = \nu(x)\Omega \}$$

where $\Omega = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$ is the standard symplectic matrix of order 2g.

In the following discussion, we write $G = \mathrm{GSp}_{2g}$. Let $K_p = G(\mathbb{Z}_p)$. Let K^p be a compact open subgroup of $G(\mathbb{A}^{\infty,p})$ that is contained in

$$\Gamma(N)^{(p)} = \{ g \in G(\mathbb{A}^{\infty,p}); g \equiv 1 \bmod N \}$$

for some integer $N \geq 3$ not divisible by p.

Definition 3.0.2. Let $m \ge 1$ be an integer.

$$\Gamma_0(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \bmod p^m \right\}$$

$$\Gamma_s(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \bmod p^m, \nu(g) \equiv 1 \bmod p^m \right\}$$

$$\Gamma_1(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \bmod p^m \right\}$$

$$\Gamma(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bmod p^m \right\}$$

Let X be the scheme over $\operatorname{Spec}(\mathbb{Z}_{(p)})$ classifying principally polarized projective Abelian schemes of relative dimension g with level K^p structures. Let X^* be the minimal compactification of X.

For each $U \in \{\Gamma(p^m), \Gamma_{\rm s}(p^m), \Gamma_{\rm 0}(p^m)\}$, we have a scheme $X_{U,\mathbb{Q}}$ over \mathbb{Q} with certain moduli interpretations. Let \mathfrak{X} be the formal scheme over ${\rm Spf}(\mathbb{Z}_p^{\rm cycl})$ defined as the p-completion of $X_{\mathbb{Z}_p^{\rm cycl}} = X \times_{{\rm Spec}(\mathbb{Z}_{(p)})}$ ${\rm Spec}(\mathbb{Z}_p^{\rm cycl})$. Remark 3.0.3. The moduli interpretations can be described as follows.

- (1) $\operatorname{Sh}_{K^pG(\mathbb{Z}_p),\mathbb{Z}_{(p)}}$ represents the following problem $S\mapsto \{(A,\lambda,\eta)\}/\sim$ where
 - A is a projective Abelian scheme over S of relative dimension g.
 - λ is a principal polarization of A.
 - η is a level K^p structure on A.
- (2) $\mathrm{Sh}_{K^p\Gamma(p^m),\mathbb{Q}}$ represents the following problem $S\mapsto \{(A,\lambda,\eta,\eta_p)\}/\sim$ where
 - $(A, \lambda, \eta) \in \operatorname{Sh}_{K^p G(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S)$.
 - η_p is a level $\Gamma(p^m)$ structure on A.
- (3) $\operatorname{Sh}_{K^p\Gamma_0(p^m),\mathbb{Q}}$ represents the following problem $S\mapsto \{(A,\lambda,\eta,D)\}/\sim$ where
 - $(A, \lambda, \eta) \in \operatorname{Sh}_{K^p G(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S)$.
 - D is a totally isotropic subgroup of $A[p^m]$.
- (4) $\operatorname{Sh}_{K^p\Gamma_s(p^m),\mathbb{Q}}$ represents the following problem $S \mapsto \{(A,\lambda,\eta,D,t)\}/\sim$ where
 - $(A, \lambda, \eta, D) \in \operatorname{Sh}_{K^p\Gamma_0(p^m), \mathbb{Q}}(S)$.
 - $t: \mu_{p^m} \to \mathbb{Z}/p^m\mathbb{Z}$ is an isomorphism.

The universal Abelian scheme $A \to X$ gives a line bundle $\omega = \omega_{A/S} = \wedge^g \Omega^1_{A/X}$. The sheaf ω extends to the minimal compactification X^* . The Hasse invariant defines a section $\mathrm{Ha} \in H^0(X_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$. The section Ha extends to $\mathrm{Ha} \in H^0(X_{\mathbb{F}_p}^*, \omega^{\otimes (p-1)})$. For g = 1, this follows from direct inspection. For $g \geq 2$, this follows from the (classical) Hartog's extension principle. ((todo: clearify this paragraph))

Let $\mathfrak{A} \to \mathfrak{X}$ be the universal formal Abelian scheme.

4. The anti-canonical towers

4.1. The Frobenius tower of formal models.

Lemma 4.1.1. Let S be a p-adically complete $\mathbb{Z}_p^{\text{cycl}}$ -algebra. There is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S),\mathfrak{X}^*) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S),X_{\mathbb{Z}_p^{\operatorname{cycl}}}^*).$$

Speculation 4.1.2. ((todo: check: Let Y be a scheme over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$). Let \mathfrak{Y} be the formal scheme over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ obtained as the p-completion of Y. Let S be a p-adically complete $\mathbb{Z}_p^{\operatorname{cycl}}$ -algebra. Then there is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S), \mathfrak{Y}) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S), Y).$$

))

Definition 4.1.3. Let \mathcal{N}_{ϵ} be the functor sending a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra S to the set of pairs (f, [u]), where

- f is a map $\operatorname{Spf}(S) \to \mathfrak{X}^*$; it's equivalent to a map $\operatorname{Spec}(S) \to X^*_{\mathbb{Z}^{\operatorname{cycl}}}$ by Lemma 4.1.1.
- Let $\overline{f}: \operatorname{Spec}(S/p) \to X_{\mathbb{F}_p}^*$ be the reduction of $\operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}^*$. Recall that we have the Hasse section $\operatorname{Ha} \in H^0(X_{\mathbb{F}_p}^*, \omega^{\otimes (p-1)})$. It pullbacks to $\overline{f}^*\operatorname{Ha} \in H^0(\operatorname{Spec}(S/p), \overline{f}^*\omega^{\otimes (p-1)})$. Then [u] is an equivalence class of sections $u \in H^0(\operatorname{Spec}(S), f^*\omega^{\otimes (1-p)})$ satisfying $u \cdot \overline{f}^*\operatorname{Ha} = p^{\epsilon} \in S/p$ under the equivalence relation that $u \sim u'$ if and only if there exists some $h \in S$ such that $u' = u(1 + p^{1-\epsilon}h)$.

Speculation 4.1.4. ((todo: check: Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $A \to \operatorname{Spec}(S)$ be an Abelian scheme. Then ω_{A_1/S_1} (or even $\omega_{A/S}$) is the trivial line bundle, where $S_1 = S/p$.)) ((todo: I don't think this could be true; the correct version is the following. The line bundle $\omega_{A/S}$ is locally free of rank 1. Then there exists an affine covering $\operatorname{Spec}(S) = \bigcup_i \operatorname{Spec}(S_i)$ where every S_i is p-adically complete an flat over $\mathbb{Z}_p^{\operatorname{cycl}}$, such that $\omega_{A/S}$ restricts to the trivial line bundle on every $\operatorname{Spec}(S_i)$.))

Lemma 4.1.5. Then the functor \mathcal{N}_{ϵ} is representable by a formal scheme flat over $\mathrm{Spf}(\mathbb{Z}_p^{\mathrm{cycl}})$. ((todo: moreover, locally it is ...))

((todo: examine this: here it seems that R needs to be chosen such that ω is trivial on R, cf. Speculation 4.1.4; such R covers X^*)) For $\mathrm{Spf}(R) \subset \mathfrak{X}_{\mathbb{Z}_n}^*$, we have

$$\mathcal{N}_{\epsilon} \times_{\mathfrak{X}^*} \operatorname{Spf}(R \mathbin{\widehat{\otimes}}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) = \operatorname{Spf}((R \mathbin{\widehat{\otimes}}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) \langle u \rangle / (u \widetilde{\operatorname{Ha}} - p^{\epsilon}))$$

where $\widetilde{\text{Ha}} \in H^0(\operatorname{Spec}(R), \omega^{\otimes (p-1)})$ is a lift of $\text{Ha} \in H^0(\operatorname{Spec}(R/p), \omega^{\otimes (p-1)})$.

((remark: it seems that the explicit local construction of $\mathfrak{X}^*(\epsilon)$ is used only when we need to apply Lemma 2.2.6; it should be sufficient to check on a specific cover for the unique extension problem, so picking a cover doesn't seem to cause trouble; need to inspect the situation more closely))

Definition 4.1.6. Let $\mathfrak{X}(\epsilon) \to \mathfrak{X}$ be the pullback of $\mathfrak{X}^*(\epsilon) \to \mathfrak{X}^*$ along $\mathfrak{X} \to \mathfrak{X}^*$. Let $\mathfrak{A}(\epsilon) \to \mathfrak{X}(\epsilon)$ be the pullback of $\mathfrak{A} \to \mathfrak{X}$ along $\mathfrak{X}(\epsilon) \to \mathfrak{X}$.

Let \mathcal{X} be the generic fiber of the adic space associated to the formal scheme \mathfrak{X} . Let $\mathcal{X}(\epsilon)$ be the generic fiber of the adic space associated to $\mathfrak{X}(\epsilon)$. Then \mathcal{X} admits an open embedding to the X^{ad} , the adic space associated to the scheme $X_{\mathbb{Q}_p^{\mathrm{cycl}}}$. Let $\mathcal{X}_{\Gamma_s(p^m)}$ be the inverse image of \mathcal{X} under the map $X^{\mathrm{ad}}_{\Gamma_s(p^m)} \to X^{\mathrm{ad}}$.

Remark 4.1.7. ((todo: moduli interpretation of $\mathfrak{X}(\epsilon)$). Should be almost identical to \mathcal{M}_{ϵ} .))

Definition 4.1.8. For a formal scheme \mathfrak{Y} over $\mathbb{Z}_p^{\text{cycl}}$ and $a \in \mathbb{Z}_p^{\text{cycl}}$, we write \mathfrak{Y}/a for $\mathfrak{Y} \times_{\text{Spf}(\mathbb{Z}_p^{\text{cycl}})} \text{Spf}(\mathbb{Z}_p^{\text{cycl}}/a)$.

Definition 4.1.9. For a formal scheme \mathfrak{Y} over $\mathbb{Z}_p^{\text{cycl}}/p$, we write $\mathfrak{Y}^{(p)}$ for the pullback of \mathfrak{Y} along the (absolute) Frobenius $\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p) \to \operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p)$.

Lemma 4.1.10. We have a natural isomorphism

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p$$

of formal schemes over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$. Furthermore, by pullback we get the following commutative diagram

$$(\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathfrak{A}(\epsilon)/p \longrightarrow \mathfrak{X}(\epsilon)/p \longrightarrow \mathfrak{X}^*(\epsilon)/p$$

where each vertical map is an isomorphism.

Proof. Let S be a ((discrete? flat)) $(\mathbb{Z}_n^{\text{cycl}}/p)$ -algebra. Then

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}(S) = (\mathfrak{X}^*(p^{-1}\epsilon)/p)(Fr_*S),$$

where Fr_*S is the the $(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ -algebra obtained from S by precomposing with $\operatorname{Fr}: \mathbb{Z}_p^{\operatorname{cycl}}/p \to \mathbb{Z}_p^{\operatorname{cycl}}/p$. Each map $\operatorname{Spf}(\operatorname{Fr}_*S) \to \mathfrak{X}^*(p^{-1}\epsilon)/p$ is equivalent to a pair (f,[u]), where

- $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X^*_{\mathbb{Z}_p^{\operatorname{cycl}}}$ is a map over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$.
- $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes (1-p)})$ is a section such that $u \cdot f^*\operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$. Note that $(\operatorname{Fr}_*S)/p = \operatorname{Fr}_*S$ since S is defined over $\mathbb{Z}_p^{\operatorname{cycl}}/p$.

Recall that $X_{\mathbb{Z}_p^{\text{cycl}}}^* = X_{\mathbb{Z}_p}^* \times_{\text{Spec}(\mathbb{Z}_p)} \text{Spec}(\mathbb{Z}_p^{\text{cycl}})$, and thus (f, [u]) is equivalent ((todo: should be more precise)) to the following datum

- $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X_{\mathbb{Z}_p}^*$ is a map over $\operatorname{Spec}(\mathbb{Z}_p)$.
- ((todo: Check the reduction of u)) $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes (1-p)})$ is a section such that $u \cdot f^*\operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$.

Note that the Frobenius on $\mathbb{Z}_p/p = \mathbb{F}_p$ is simply the identity, and thus the map $\operatorname{Spec}(\operatorname{Fr}_*S) \to \operatorname{Spec}(\mathbb{Z}_p)$ is identical to $\operatorname{Spec}(S) \to \operatorname{Spec}(\mathbb{Z}_p)$. But under this identification the element $p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$ corresponds to $p^{\epsilon} \in S$. Then $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X_{\mathbb{Z}_p}^*$ can be reinterpreted as a map $g: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p}^*$ over $\operatorname{Spec}(\mathbb{Z}_p)$. We write v = u for clarity. The section v then satisfies $v \cdot g^* \operatorname{Ha} = p^{\epsilon} \in S$. The pair (g, [v]) then corresponds to a map $\operatorname{Spf}(S) \to \mathfrak{X}^*(\epsilon)/p$ over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$.

Lemma 4.1.11. The Frobenius map $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p) \to \operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ induces the following commutative diagram

$$\mathfrak{A}(p^{-1}\epsilon)/p \longrightarrow \mathfrak{X}(p^{-1}\epsilon)/p \longrightarrow \mathfrak{X}^*(p^{-1}\epsilon)/p$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}$$

Proof. This follows from the universal property of pullback.

Remark 4.1.12. ((todo: Explain the moduli interpretation of

$$\mathfrak{X}^*(p^{-1}\epsilon)/p \to (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p.$$

))

Speculation 4.1.13. ((todo: check: Let S be a p-adically complete flat $\mathbb{Z}_p^{\operatorname{cycl}}$ -algebra. Let $f:\operatorname{Spf}(S)\to\mathfrak{X}$ be a map over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$. Let $A\to\operatorname{Spec}(S)$ be the corresponding Abelian scheme. Suppose $A\to\operatorname{Spec}(S)$ satisfies strong $O(1,\epsilon)$. Let C be the strong canonical subgroup of $A\to\operatorname{Spec}(S)$ of level 1. Then B=A/C satisfies weak $O(1,\epsilon)$.))

Speculation 4.1.14. ((todo: cf. [Wed99]))

Lemma 4.1.15. There is a unique commutative diagram

that is identified with the following commutative diagram from Lemma 4.1.10 and Lemma 4.1.11, after modulo $p^{1-\epsilon}$.

Proof. ((todo: finish the proof: The map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ comes from the moduli interpretation, the weak canonical subgroup, and the Hasse invariant. Then $\mathfrak{A}(p^{-1}\epsilon) \to \mathfrak{A}(\epsilon)$ is obtained by base-change. The extension to $\mathfrak{X}^*(p^{-1}\epsilon) \to \mathfrak{X}^*(\epsilon)$ is done using Hartog's extension principle.))

We first construct the map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let (f, [u]) be a pair where

- $f: \operatorname{Spf}(S) \to \mathfrak{X}$ is a map of formal schemes over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$; its equivalent to a map $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$.
- $u \in H^0(\operatorname{Spec}(S), f^*\omega^{\otimes (1-p)})$ is a section such that $u \cdot \overline{f}^* \operatorname{Ha} = p^{p^{-1}\epsilon} \in S/p$.

The map $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ gives an Abelian scheme $A \to \operatorname{Spec}(S)$ ((todo: with principal polarization and level K^p structure)). We claim that $A \to \operatorname{Spec}(S)$ satisfies strong $O(1, \epsilon)$, i.e. $\operatorname{Ha}(A_1/\operatorname{Spec}(S_1))^p$ divides p^{ϵ} . This follows from

$$p^{p^{-1}\epsilon} = u \cdot \overline{f}^* \operatorname{Ha} = u \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(S_1)).$$

Let $C \subset A[p]$ be the strong canonical subgroup of level 1. We get an Abelian scheme $A/C \to \operatorname{Spec}(S)$ ((todo: explain: equipped with induced polarization and level structure: use totally isotropic)), which corresponds to a map $g: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$. This gives a map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}$. We will show next that it can be factored as $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

((seems wrong: Then we declare that the pair (f, [u]) gets mapped to the pair $(g, [u^p])$.))

((seems wrong: By Speculation 4.1.13, the quotient $A/C \to \operatorname{Spec}(S)$ satisfies weak $O(1,\epsilon)$, i.e. there exists a section $v \in H^0(\operatorname{Spec}(S), \overline{g}^*\omega^{\otimes (1-p)})$ such that $v \cdot \overline{g}^*\operatorname{Ha} = p^{\epsilon}$. Then we declare that the pair (f, [u]) gets mapped to the pair (g, [v]). We need to check that [v] is well-defined. ((wrong!)) It suffices to show that $\overline{g}^*\operatorname{Ha} = \operatorname{Ha}((A/C)_1/S_1)$ is not a zero-divisor. Otherwise, for every geometric point x of $\operatorname{Spec}(S)$, the Abelian scheme $(A/C)_x$ is not ordinary. This contradicts Speculation 4.1.14. Therefore we obtain a well-defined map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$.))

Let B = A/C. We have

$$p^{\epsilon} = u^p \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(S_1))^p = u^p \cdot \operatorname{Ha}(A_1^{(p)}/\operatorname{Spec}(S_1)).$$

Modulo $p^{1-\epsilon}$,

$$p^{\epsilon} = u^p \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/\operatorname{Spec}(S_{1-\epsilon})) = u^p \cdot \operatorname{Ha}(B_{1-\epsilon}/\operatorname{Spec}(S_{1-\epsilon})).$$

Thus there is $v \in H^0(\operatorname{Spec}(S), g^*\omega^{\otimes (1-p)})$ such that $v = u^p \mod p^{1-\epsilon}$ and $v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} \mod p^{1-\epsilon}$. Hence

$$v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} + p^{1-\epsilon}t = p^{\epsilon}(1+p^{1-2\epsilon}t) \in S/p$$

for some $t \in S$.

((check: $1 + p^{1-2\epsilon}t$ is invertible in S)) Then

$$(1+p^{1-2\epsilon}t)^{-1}v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} \in S/p.$$

(This shows that B is weak $O(1,\epsilon)$.) We claim that the pair (f,[u]) gets mapped to the pair $(g,[(1+p^{1-2\epsilon}t)^{-1}v])$.

- First check this map is well-defined.
 - Any choice $u' \in [u]$ leads to $u^p = (u')^p \mod p^{1-\epsilon}$.
 - Now choose another lift $v + p^{1-\epsilon}v'$ of v.

Another attempt at constructing the factorization $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

• We already know that B is weak $O(1,\epsilon)$, i.e. there exists a section $v \in H^0(\operatorname{Spec}(S/p), \overline{g}^*\omega^{\otimes (1-p)})$ such that

$$v \cdot \operatorname{Ha}(B_1/S_1) = p^{\epsilon} \bmod p$$
.

• Modulo $p^{1-\epsilon}$,

$$p^{\epsilon} = v \cdot \operatorname{Ha}(B_{1-\epsilon}/S_{1-\epsilon}) = v \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) = u^{p} \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) \bmod p^{1-\epsilon}.$$

• Then

$$(v - u^p) \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) = 0 \bmod p^{1-\epsilon}.$$

- Maybe $\operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon})$ is not a zero-divisor in $S/p^{1-\epsilon}$.
- Then $v = u^p \mod p^{1-\epsilon}$.

Another attempt at constructing the factorization $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

- Let $\operatorname{Spf}(R) \subset \mathfrak{X}$ on which ω is trivial.
- Choose a lift $\widetilde{\text{Ha}} \in H^0(\operatorname{Spec}(R), \omega^{\otimes (p-1)})$ of $\text{Ha} \in H^0(\operatorname{Spec}(R/p), \omega^{\otimes (p-1)})$.
- We want

$$\frac{\operatorname{Spf}(R\langle u\rangle/(u\cdot\widetilde{\operatorname{Ha}}-p^{\epsilon}))}{\downarrow}$$

$$\operatorname{Spf}(R\langle u\rangle/(u\cdot\widetilde{\operatorname{Ha}}-p^{p^{-1}\epsilon})) \longrightarrow \operatorname{Spf}(R).$$

In other words,

$$R\langle u\rangle/(u\cdot\widetilde{\mathrm{Ha}}-p^{\epsilon})$$

$$R\langle u\rangle/(u\cdot\widetilde{\mathrm{Ha}}-p^{p^{-1}\epsilon})\longleftarrow R.$$

We need to show that $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ extends to $\mathfrak{X}^*(p^{-1}\epsilon) \to \mathfrak{X}^*(\epsilon)$ ((cf. the remark in Lemma 4.1.5)).

- We'd like to apply Lemma 2.2.6 for the case $g \ge 2$.
- Let $\operatorname{Spf}(R) \subset \mathfrak{X}_{\mathbb{Z}_p}^*$ ((such that $\omega^{\otimes (p-1)}$ is trivial on $\operatorname{Spf}(R)$)). This gives an affine open $\operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}})$ of \mathfrak{X}^* , and such affines cover \mathfrak{X}^* .
- Check that R is a topologically finitely generated flat p-adically complete \mathbb{Z}_p -algebra, and that R/p is normal
- Check that $\operatorname{Ha} \in H^0(\operatorname{Spec}(R/p), \omega^{\otimes (p-1)}) \simeq R/p$ not a zero-divisor, where ω is the natural (ample) line bundle on $X_{\mathbb{F}_p}^*$.

- Spec(R/p) is an affine open in $X_{\mathbb{F}_p}^*$ as Spec(R) is an affine open of $X_{\mathbb{Z}_p}^*$.
- We have inclusion of opens

$$X_{\mathbb{F}_p}^{\mathrm{ord}} \subset X_{\mathbb{F}_p} \subset X_{\mathbb{F}_p}^*$$
.

The first inclusion is dense by Lemma A.2.2, and the second is dense by the property of minimal compactification ((todo: add reference)).

- Thus the intersection

$$\operatorname{Spec}(R/p) \cap X_{\mathbb{F}_p}^{\operatorname{ord}}$$

is non-empty.

- Therefore Ha is not a zero-divisor since it is non-zero at a point.
- We need a map

$$\mathfrak{X}^*(p^{-1}\epsilon) \times_{\mathfrak{X}^*} \operatorname{Spf}(R \, \widehat{\otimes}_{\mathbb{Z}_p} \, \mathbb{Z}_p^{\operatorname{cycl}}) \to \mathfrak{X}^*(\epsilon) \times_{\mathfrak{X}^*} \operatorname{Spf}(R \, \widehat{\otimes}_{\mathbb{Z}_p} \, \mathbb{Z}_p^{\operatorname{cycl}})$$

- Choose a lift $\widetilde{\text{Ha}} \in H^0(\operatorname{Spec}(R), \omega^{\otimes (p-1)}) \simeq R$ of $\text{Ha} \in R/p$.
- Let $S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot \widetilde{\text{Ha}} p^{\epsilon})$. Let $S_{p^{-1}\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot \widetilde{\text{Ha}} p^{p^{-1}\epsilon})$. Then we need a map

$$\operatorname{Spf}(S_{p^{-1}\epsilon}) \xrightarrow{} \operatorname{Spf}(S_{\epsilon})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathfrak{X}^*(p^{-1}\epsilon) \xrightarrow{} \mathfrak{X}^*(\epsilon)$$

• Consider the pullback diagram

$$\begin{array}{ccc}
U & \longrightarrow \operatorname{Spec}(R/p) \\
\downarrow & & \downarrow \\
X_{\mathbb{F}_p} & \longrightarrow X_{\mathbb{F}_p}^*.
\end{array}$$

Then U is an open in $\operatorname{Spec}(R/p)$. Let Y be the complement of U in $\operatorname{Spec}(R/p)$.

- Check that Y has codimension ≥ 2 in $\operatorname{Spec}(R/p)$. This follows from that $Y \cap X_{\mathbb{F}_p} = \emptyset$ and that boundary of $X_{\mathbb{F}_p}^*$ has codimension $g \geq 2$.
- Let Z be the preimage of Y in $\operatorname{Spf}(S_{\epsilon})$. Then Lemma 2.2.6 shows that the natural map

$$H^0(\operatorname{Spf}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spf}(S_{\epsilon})}) \to H^0(\operatorname{Spf}(S_{\epsilon}) \setminus Z, \mathcal{O}_{\operatorname{Spf}(S_{\epsilon})})$$

is an isomorphism.

 \bullet Define $\mathfrak U$ by the pullback diagram

$$\mathfrak{U} \longrightarrow \operatorname{Spf}(R \,\widehat{\otimes}_{\mathbb{Z}_p} \, \mathbb{Z}_p^{\operatorname{cycl}}) \\
\downarrow \qquad \qquad \downarrow \\
\mathfrak{X} \longrightarrow \mathfrak{X}^*.$$

Now we need to construct

$$\mathfrak{X}(p^{-1}\epsilon) \times_{\mathfrak{X}} \mathfrak{U} \longrightarrow \operatorname{Spf}(S_{p^{-1}\epsilon})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathfrak{X}(\epsilon) \times_{\mathfrak{X}} \mathfrak{U} \longrightarrow \operatorname{Spf}(S_{\epsilon}).$$

• We claim that $\mathfrak{X}(\epsilon) \times_{\mathfrak{X}} \mathfrak{U} = \operatorname{Spf}(S_{\epsilon}) \backslash Z$.

4.2. The anti-canonical tower of level Γ_s .

Construction 4.2.1. Let $m \geq 1$.

We first construct a map $\mathfrak{X}(p^{-m}\epsilon) \to \mathfrak{X}$. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $\operatorname{Spf}(S) \to \mathfrak{X}(p^{-m}\epsilon)$ be a map over $\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}})$. It corresponds to a pair (f,[u]) where

- $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ is a map over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$.
- $u \in H^0(\operatorname{Spec}(S), f^*\omega^{\otimes (1-p)})$ is a section such that $u \cdot \overline{f}^* \operatorname{Ha} = p^{p^{-m}\epsilon}$ in S/p.

The map $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ gives an Abelian scheme $A \to \operatorname{Spec}(S)$. The section u shows that $A \to \operatorname{Spec}(S)$ satisfies strong $O(m, \epsilon)$, and thus has a strong canonical subgroup $C_m \subset A[p^m]$ of level m. The Abelian scheme $A/C_m \to \operatorname{Spec}(S)$ has induced principal polarization and level structure, and thus corresponds to a map $\operatorname{Spec}(S) \to X_{\mathbb{Z}_p^n}$, which gives a map $\operatorname{Spf}(S) \to \mathfrak{X}$ over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$.

Passing to the adic fiber (i.e. the generic fiber of the associated adic space), we get a map $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}$ of adic spaces. Now we construct a factorization $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$, where the map $\mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$ is given by the moduli interpretation " $(A, D) \mapsto A/D$ ".

((todo: construct the factorization))

Lemma 4.2.2. For each $m \geq 1$, the $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}$ extends uniquely to $\mathcal{X}^*(p^{-m}\epsilon) \to \mathcal{X}^*_{\Gamma_s(p^m)}$, and both maps are open immersions of adic spaces. Moreover, the following diagram

$$\mathcal{X}^*(p^{-m-1}\epsilon) \longrightarrow \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{m+1})}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{X}^*(p^{-m}\epsilon) \longrightarrow \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^m)}$$

is a pullback diagram for all $m \ge 1$, where the vertical map on the left is induced from the map $\mathfrak{X}(p^{-m-1}\epsilon) \to \mathfrak{X}(p^{-m}\epsilon)$, cf. Lemma 4.1.15.

Proof. ((todo: write down the proof))

- Extension to minimal compactification:
- Open immersion:
 - The map $\theta: X_{\mathbb{Q}_p^{\mathrm{cycl}}} \to X_{\mathbb{Q}_p^{\mathrm{cycl}}}$ defined by $A \mapsto A/A[p^m]$ is an isomorphism.
 - The following diagram

$$\begin{array}{ccc}
\mathcal{X}(p^{-m}\epsilon) & \longrightarrow \mathcal{X} \\
\downarrow & & \downarrow \\
X^{\mathrm{ad}} & \xrightarrow{\theta} X^{\mathrm{ad}}
\end{array}$$

commutes.

- So the composition $\mathcal{X}^*(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$ is an open immersion.
- The map $\mathcal{X}_{\Gamma_{\mathbf{s}}(p^m)} \to \mathcal{X}$ is finite étale.
- Thus the map $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}$ is an open immersion.
- Then pass to minimal compactification as follows.
- We'd like to apply Lemma 2.2.6.
- Pullback diagram:
 - First show that

$$\mathcal{X}(p^{-m-1}\epsilon) \longrightarrow \mathcal{X}_{\Gamma_{\mathbf{s}}(p^{m+1})}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{X}(p^{-m}\epsilon) \longrightarrow \mathcal{X}_{\Gamma_{\mathbf{s}}(p^m)}$$

is pullback diagram.

- Commutativity of the diagram:
- It is a pullback since both vertical maps are finite étale of degree $p^{g(g+1)/2}$.
- Then pass to minimal compactification.

Definition 4.2.3. Let $\mathcal{X}_{\Gamma_{s}(p)}(\epsilon)$ be the pullback of $\mathcal{X}(\epsilon)$ along $\mathcal{X}_{\Gamma_{s}(p)} \to \mathcal{X}$.

Lemma 4.2.4. The following diagram

$$\mathcal{X}(p^{-1}\epsilon) \longrightarrow \mathcal{X}_{\Gamma_s(p)}(\epsilon)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{X}(\epsilon) \stackrel{\mathrm{id}}{\longrightarrow} \mathcal{X}(\epsilon)$$

commutes. Moreover, the map $\mathcal{X}(p^{-1}\epsilon) \to \mathcal{X}_{\Gamma_{\mathrm{s}}(p)}(\epsilon)$ is an open immersion, and the image of $\mathcal{X}(p^{-1}\epsilon)$ in $\mathcal{X}_{\Gamma_{\mathrm{s}}(p)}(\epsilon)$ is both open and closed.

Definition 4.2.5. ((todo: how to make this statement precise? do we actually need this?: Let $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$ be the open and closed subset of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$ "parametrizing those $D \subset \mathcal{A}(\epsilon)[p]$ with $D \cap C = \{0\}$ ".))

Let $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$ be the image of $\mathcal{X}(p^{-1}\epsilon)$ in $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$. Let $\mathcal{X}_{\Gamma_s(p)}^*(\epsilon)_a$ be the image of $\mathcal{X}^*(p^{-1}\epsilon)$ in $\mathcal{X}_{\Gamma_s(p)}^*(\epsilon)$. Let $\mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$ be the pullback of $\mathcal{X}_{\Gamma_s(p)}^*(\epsilon)_a$ along $\mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon) \to \mathcal{X}_{\Gamma_s(p)}^*(\epsilon)$.

Remark 4.2.6. $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)_a$ is both open and closed in $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)$.

Lemma 4.2.7. For m sufficiently large, $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ is affinoid.

Proof. ((todo: write down the proof))

- There exists an integer $m \geq 0$ such that $H^i(X_{\mathbb{Z}_p}^*, \omega^{\otimes p^m(p-1)}) = 0$ for all $i \geq 1$, since ω is an ample line bundle on $X_{\mathbb{Z}_p}^*$.
- We can find a lift $s \in H^0(X_{\mathbb{Z}_p}^*, \omega^{\otimes p^m(p-1)})$ lifting $\operatorname{Ha}^{p^m} \in H^0(X_{\mathbb{F}_p}^*, \omega^{\otimes p^m(p-1)})$. ((todo: add a proof; should follows from vanishing of first cohomology; maybe use a short exact sequence of quasi-coherent \mathcal{O}_X -modules, and then pass to a long exact sequence))
- The condition $|{\rm Ha}| \geq |p|^{p^{-m}\epsilon}$ is equivalent to $|s| \geq |p|^{\epsilon}$.
- The condition defines an affinoid space $\mathcal{X}^*(p^{-m}\epsilon) \simeq \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$.

Definition 4.2.8. Fix an element $t \in (\mathbb{Z}_p^{\text{cycl}})^{\flat}$ such that $|t| = |t^{\sharp}| = |p|$, such that t admits a (p-1)-th root. Then we get an identification

$$(\mathbb{Z}_p^{\operatorname{cycl}})^{\flat} = \mathbb{F}_p[[t^{1/(p-1)f^{\infty}}]].$$

Definition 4.2.9. Let \mathfrak{X}' be the formal scheme over $\operatorname{Spf}(\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]])$ given by the t-adic completion of $X \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})} \operatorname{Spec}(\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]])$. Let \mathcal{X}' be the generic fiber of the adic space associated to \mathfrak{X}' . Define \mathfrak{X}'^* and \mathfrak{A}^* similarly, with generic fibers \mathcal{X}'^* and \mathcal{A}' .

Lemma 4.2.10. There exists a unique perfectoid space $\mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a$ such that

$$\mathcal{X}_{\Gamma_{\mathrm{s}}(p^{\infty})}^{*}(\epsilon)_{a} \sim \lim_{m} \mathcal{X}_{\Gamma_{\mathrm{s}}(p^{m})}^{*}(\epsilon)_{a}.$$

Similar results hold for $\mathcal{X}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$ and $\mathcal{A}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$.

Proof. ((todo: use tilting))

• Define

$$\mathfrak{X}_{\Gamma_{\mathrm{s}}(p^{\infty})}^{*}(\epsilon)_{a} = \lim_{m} \mathfrak{X}(p^{-m}\epsilon),$$

where the inverse limit is taken in the category of formal schemes over $\mathrm{Spf}(\mathbb{Z}_p^{\mathrm{cycl}})$. Note that the transition maps are finite.

- Let $\operatorname{Spf}(R_{m_0}) \subset \mathfrak{X}(p^{-m_0}\epsilon)$ be affine. Let $\operatorname{Spf}(R_m) \subset \mathfrak{X}(p^{-m}\epsilon)$ be the preimage of $\operatorname{Spf}(R_{m_0})$ for $m > m_0$.
- We get an affine open $\operatorname{Spf}(R_{\infty})$ of $\mathfrak{X}_{\Gamma_{s}(p^{\infty})}^{*}(\epsilon)_{a}$, where R_{∞} is the p-adic completion of $\operatorname{colim}_{m} R_{m}$. Then R_{∞} is flat over $\mathbb{Z}_{p}^{\operatorname{cycl}}$.
- The transition map $R_m/p^{1-\epsilon} \to R_{m+1}/p^{1-\epsilon}$ agrees with the relative Frobenius. The absolute Frobenius then induces an isomorphism

$$R_{\infty}/p^{(1-\epsilon)/p} = \operatorname{colim}_m R_{m+1}/p^{(1-p)/p} \simeq \operatorname{colim}_m R_m/p^{1-\epsilon} = R_{\infty}/p^{1-\epsilon}.$$

- Thus R_{∞}^a is a perfectoid $\mathbb{Z}_p^{\text{cycl},a}$ -algebra, cf. [Sch12, Definition 5.1.(ii)].
- Then $R_{\infty}[1/p]$ is a perfectoid $\mathbb{Q}_p^{\text{cycl}}$ -algebra, cf. [Sch12, Lemma 5.6].
- Then the generic fiber of $\mathfrak{X}^*_{\Gamma_s(p^{\infty})}(\epsilon)_a$ is a perfectoid space $\mathcal{X}^*_{\Gamma_s(p^{\infty})}(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$, and

$$\mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a,$$

cf. [SW13, Definition 2.4.1, Proposition 2.4.2].

• Uniqueness follows from [SW13, Proposition 2.4.5].

Lemma 4.2.11. The tilt $\mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^{\infty})}(\epsilon)^{\flat}_a$ identifies naturally with the open subset $\mathcal{X}'^{*\mathrm{perf}}(\epsilon) \subset \mathcal{X}'^{*\mathrm{perf}}$ where $|\mathrm{Ha}| \geq |t|^{\epsilon}$. The similar result holds for \mathcal{A} .

Proof. ((todo: split the proof))

- We define $\mathfrak{X}'^*(\epsilon) \to \mathfrak{X}'^*$ in a way similar to $\mathfrak{X}^*(\epsilon) \to \mathfrak{X}^*$, parametrizing sections $u \in \omega^{\otimes (1-p)}$ such that $u \cdot \text{Ha} = t^{\epsilon}$.
- We have the map

$$\mathfrak{X}'^*(p^{-1}\epsilon) \to \mathfrak{X}'^*(\epsilon)$$

given by the raltive Frobenius.

- The inverse limit $\lim_m \mathfrak{X}'^*(p^{-m}\epsilon)$ is representable by a perfect flat formal scheme over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$ which is naturally the same as $\mathfrak{X}'^*(\epsilon)^{\text{perf}}$.
- Its generic fiber is thus a perfectoid space over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$, that is identified with the open subset of \mathcal{X}'^{*perf} where $|Ha| > |t|^{\epsilon}$.
- We have a canonical identification

$$\mathfrak{X}'^*(p^{-m}\epsilon)/t^{1-\epsilon} \simeq \mathfrak{X}^*(p^{-m}\epsilon)/p^{1-\epsilon}$$

compatible with transition maps.

• For an open affine $\operatorname{Spf}(R_{m_0}) \subset \mathfrak{X}^*(p^{-m}\epsilon)$ with preimages $\operatorname{Spf}(R_m)$, we get affine opens $\operatorname{Spf}(S_m) \subset$ $\mathfrak{X}^{\prime*}(p^{-m}\epsilon)$, with

$$S_m/t^{1-\epsilon} = R_m/p^{1-\epsilon}$$
.

- Let R_{∞} be the p-adic completion of $\operatorname{colim}_m R_m$. Let S_{∞} be the t-adic completion of $\operatorname{colim}_m S_m$. Then $\operatorname{Spf}(R_{\infty}) \subset \mathfrak{X}_{\Gamma_s(p^{\infty})}(\epsilon)_a$ and $\operatorname{Spf}(S_{\infty}) \subset \mathfrak{X}'^*(\epsilon)^{\operatorname{perf}}$ give corresponding open subsets, and

$$R_{\infty}/p^{1-\epsilon} = \operatorname{colim}_m R_m/p^{1-\epsilon} = \operatorname{colim}_m S_m/t^{1-\epsilon} = S_{\infty}/t^{1-\epsilon}$$
.

• It follows that $R_{\infty}[1/p]$ and $S_{\infty}[1/t]$ are tilts by [Sch12, Theorem 5.2].

Lemma 4.2.12. The space $\mathcal{X}^*_{\Gamma_{\mathbb{R}}(p^{\infty})}(\epsilon)_a$ is affinoid.

Proof. ((todo: use tilting))

- It suffices to check for the tilts.
- The open subset $\mathcal{X}'^*(\epsilon) \subset \mathcal{X}'^*$ given by $|\mathrm{Ha}| \geq |\epsilon|^{\epsilon}$ is affinoid.

4.3. Lifting to level Γ_1 .

4.3.1. Specialized version of Tate's normalized trace.

Lemma 4.3.1. Let $\mathfrak{X}_{\Gamma_s(p^{\infty})}(\epsilon)_a$ be the formal scheme over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ defined as

$$\mathfrak{X}_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a = \lim_m \mathfrak{X}(p^{-m}\epsilon).$$

Let $0 \le m \le m'$. Then

(1) The maps

$$1/p^{(m'-m)g(g+1)/2}\mathrm{tr}:\mathcal{O}_{\mathfrak{X}(p^{-m'}\epsilon)}[1/p]\to\mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p]$$

are compatible for varying m', and thus induces a map

$$\overline{\operatorname{tr}}_m: \lim_{m'} \mathcal{O}_{\mathfrak{X}(p^{-m'}\epsilon)}[1/p] \to \mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p].$$

(2) The image of $\overline{\operatorname{tr}}_m$ is contained in $p^{-C_m}\mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}$ for some constant C_m , with $C_m \to 0$ as $m \to +\infty$. Thus $\overline{\operatorname{tr}}_m$ extends by continuity to a map

$$\overline{\operatorname{tr}}_m: \mathcal{O}_{\mathfrak{X}_{\Gamma_{\mathbf{S}}(p^{\infty})}(\epsilon)_a}[1/p] \to \mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p],$$

called Tate's normalized trace.

(3) For every $x \in \mathcal{O}_{\mathfrak{X}_{\Gamma_s(p^{\infty})}(\epsilon)_a}[1/p]$, we have

$$x = \lim_{m \to +\infty} \overline{\operatorname{tr}}_m(x).$$

4.3.2. A general result.

Situation 4.3.2. Let an integer $m \geq 1$ which is sufficiently large such that $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ is affinoid, cf. Lemma 4.2.7. Let $\mathcal{Y}^*_m \to \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ be a finite morphism. Let $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ be the pullback of $\mathcal{Y}^*_m \to \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ along $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$. Assume that

- (1) The map $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is finite étale.
- (2) \mathcal{Y}_m^* is normal.
- (3) None of the irreducible components of \mathcal{Y}_m^* is mapped into the boundary of $\mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$.

For $m' \geq m$, define $\mathcal{Y}_{m'}^* \to \mathcal{X}_{\Gamma_s(p^{m'})}^*(\epsilon)_a$ to be the ((todo: normalization??)) pullback of $\mathcal{Y}_m^* \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$ along $\mathcal{X}_{\Gamma_s(p^{m'})}^*(\epsilon)_a \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$. Define $\mathcal{Y}_{m'} \to \mathcal{X}_{\Gamma_s(p^{m'})}(\epsilon)_a$ by pullback. Let \mathcal{Y}_{∞} be the pullback of \mathcal{Y}_m to $\mathcal{X}_{\Gamma_s(p^\infty)}(\epsilon)_a$, which exists as $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is finite étale.

Since every $\mathcal{X}^*_{\Gamma_s(p^{m'})}(\epsilon)_a$ is affinoid, each $\mathcal{Y}^*_{m'}$ is affinoid. We write $\mathcal{Y}^*_{m'} = \operatorname{Spa}(S_{m'}, S^+_{m'})$. ((todo: scholze says $S^+_{m'} = S^{\circ}_{m'}$??))

Lemma 4.3.3. In the Situation 4.3.2, we have

(1) For all $m' \geq m$,

$$S_{m'}^+ = H^0(\mathcal{Y}_{m'}, \mathcal{O}_{\mathcal{Y}_{m'}}^+).$$

(2) The map

$$\operatorname{colim}_{m'} S_{m'}^+ \to H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}}^+)$$

is injective with dense image. Moreover, there is a canonical continuous retraction

$$H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}}) \to S_{m'}.$$

(3) Assume that $S_{\infty} = H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}})$ is a perfectoid $\mathbb{Q}_n^{\text{cycl}}$ -algebra. Then

$$\mathcal{Y}_{\infty}^* = \operatorname{Spa}(S_{\infty}, S_{\infty}^+)$$

where $S_{\infty}^{+} = S_{\infty}^{\circ}$, is an affinoid perfect oid space over $\mathbb{Q}_{p}^{\mathrm{cycl}}$, and

$$\mathcal{Y}_{\infty}^* \sim \lim_{m'} \mathcal{Y}_{m'}^*$$

and S_{∞}^+ is the *p*-adic completion of $\operatorname{colim}_{m'} S_{m'}^+$.

Proof. Proof of (1). By replacing m with m', it sufficies to prove the claim for m' = m. The desired isomorphism is automatic if we have the following isomorphism

$$S_m \simeq H^0(\mathcal{Y}_m, \mathcal{O}_{\mathcal{Y}_m}).$$

Write $R = H^0(\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a, \mathcal{O}_{\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a})$. By the assumption, the map $R \to S_m$ is finite and étale away from boundary (recall that m is sufficiently large such that $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ is affinoid). Let $Z \subset \operatorname{Spec}(R)$ be the boundary, which is of codimension ≥ 2 . Then the preimage $Z' \subset \operatorname{Spec}(S_m)$ is also of codimension ≥ 2 by Condition (3) in Situation 4.3.2. Both S_m and R are normal and Noetherian. Hence Lemma 2.2.4 shows that

$$S_m = H^0(\operatorname{Spec}(S_m)\backslash Z', \mathcal{O}_{\operatorname{Spec}(S_m)}), \quad R = H^0(\operatorname{Spec}(R)\backslash Z, \mathcal{O}_{\operatorname{Spec}(R)}).$$

Since the map $R \to S_m$ is finite étale away from boundary, we have a trace map $\mathcal{O}_{\operatorname{Spec}(S_m)|_{\operatorname{Spec}(S_m)\setminus Z'}} \to \mathcal{O}_{\operatorname{Spec}(R)|_{\operatorname{Spec}(R)\setminus Z}}$. Taking global sections, we obtain the map

$$\operatorname{tr}_{S/R}: S \to R.$$

$$S \otimes_R S \to R$$
, $s_1 \otimes s_2 \mapsto \operatorname{tr}_{S/R}(s_1 s_2)$

induces an isomorphism $S \simeq \operatorname{Hom}_R(S, R)$.

((todo: write a proof))

- For (1), we only need to prove for m'=m. Let $S=S_m$ and $R=H^0(\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a,\mathcal{O}_{\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a})$.
- Both R and S are normal and Noetherian. S is an R-module of finite type.
- Let $Z \subset \operatorname{Spec}(R)$ denote the boundary, which is of codimension ≥ 2 . Let $Z' \subset \operatorname{Spec}(S)$ be the preimage, again of codimension ≥ 2 , by the assumption on irreducible components.
- Then $S = H^0(\operatorname{Spec}(S) \setminus Z', \mathcal{O}_{\operatorname{Spec}(S)})$ and $R = H^0(\operatorname{Spec}(R) \setminus Z, \mathcal{O}_{\operatorname{Spec}(R)}).$
- We have a trace map $\operatorname{tr}_{S/R}: S \to R$ as the map ((which??)) is finite étale away from Z. The trace pairing induces an isomorphism

$$S \to \operatorname{Hom}_R(S, R)$$
.

- Explanation of the isomorphism: If $s_1 \in S$ is in the kernel, it lies in the kernel of the pairing away from the boundary, on which the pairing is perfect as the map is finite étale. Thus s_1 vanishes away from the boundary, and then s_1 is zero.
- For all open subsets $\mathcal{U} \subset \mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^m)}(\epsilon)_a$ with preimage $\mathcal{V} \subset \mathcal{Y}^*_m$, the trace pairing gives an isomorphism

$$H^0(\mathcal{V}, \mathcal{O}_{\mathcal{Y}_m^*}) \simeq \operatorname{Hom}_R(S, H^0(\mathcal{U}, \mathcal{O}_{\mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a})),$$

cf. the argument in Riemann's Hebbarkeitssatz, Lemma 2.4.4.

• Then (1) follows from

$$H^0(\mathcal{X}_{\Gamma_{\mathbf{s}}(p^m)}(\epsilon)_a, \mathcal{O}_{\mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^m)}(\epsilon)_a}) \simeq H^0(\mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^m)}(\epsilon)_a, \mathcal{O}_{\mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^m)}(\epsilon)_a})$$

which is a direct corollary of Lemma 4.2.7.

- For (2), use Tate's normalized traces and Lemma 4.3.1.
- (3) follows directly from (2).

First assume $g \geq 2$.

Definition 4.3.4. Note that on the tower $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$, we have the tautological Abelian variety $\mathcal{A}_{\Gamma_s(p^m)}^t(\epsilon)_a$ (which are related to each other by pullback), as well as the Abelian varieties $\mathcal{A}_{\Gamma_s(p^m)}(\epsilon)_a = \mathcal{A}(p^{-m}\epsilon)$ over $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a \simeq \mathcal{X}(p^{-m}\epsilon)$. They are related by an isogeny

$$\mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a \to \mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}^t(\epsilon)_a$$

whose kernel is the canonical subgroup $C_m \subset \mathcal{A}_{\Gamma_a(p^m)}(\epsilon)_a[p^m]$ of level m. We get an induced subgroup

$$D_m = \mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a[p^m]/C_m \subset \mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}^t(\epsilon)_a.$$

Let $D_{m\Gamma_{\mathbf{s}}(p^{m'})}$ be the pullback of D_m to $\mathcal{X}_{\Gamma_{\mathbf{s}}(p^{m'})}(\epsilon)_a$ for $m' \geq m$. We have

$$D_{m\Gamma_{\rm s}(p^{m'})} = D_{m'}[p^{m'}].$$

Also, the D_m give the $\Gamma_s(p^m)$ level structure. Let $D_{m\Gamma_s(p^{\infty})}$ be the pullback of D_m to $\mathcal{X}_{\Gamma_s(p^{\infty})}(\epsilon)_a$. Since $D_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is finite étale, $D_{m\Gamma_s(p^{\infty})}$ is a perfectoid space.

Lemma 4.3.5. The map

$$\mathcal{A}_{\Gamma_{\rm s}(p^{\infty})}(\epsilon)_a \to D_{m\Gamma_{\rm s}(p^{\infty})}$$

is an isomorphism of perfectoid spaces.

Proof. Let (R, R^+) be a perfectoid affinoid $\mathbb{Q}_p^{\text{cycl}}$ -algebra. Then

$$\mathcal{A}_{\Gamma_0(p^{\infty})}(\epsilon)_a[p^m](R,R^+) = \lim_{m'} \mathcal{A}_{\Gamma_0(p^{m'})}(\epsilon)_a[p^m](R,R^+)$$

The transition map

$$\mathcal{A}_{\Gamma_0(p^{m'+m})}(\epsilon)_a[p^m] \to \mathcal{A}_{\Gamma_0(p^{m'})}(\epsilon)_a[p^m]$$

kills the canonical subgroup C_m , so it factors as

$$\mathcal{A}_{\Gamma_0(p^{m'+m})}(\epsilon)_a[p^m] \to \mathcal{A}_{\Gamma_0(p^{m'+m})}(\epsilon)_a[p^m]/C_m = D_{m\Gamma_0(p^{m'+m})} \to \mathcal{A}_{\Gamma_0(p^{m'})}(\epsilon)_a[p^m].$$

This shows that the limit is the same as

$$D_{m\Gamma_0(p^{\infty})}(R, R^+) = \lim_{m'} D_{m\Gamma_0(p^{m'})}(R, R^+).$$

Definition 4.3.6. Let $D'_m \to \mathcal{X}'(\epsilon) \subset \mathcal{X}'$ be the quotient $\mathcal{A}'(\epsilon)[p^m]/C'_m$, where C'_m denotes the canonical subgroup on the ordinary locus in characteristic p. Note that all Abelian varieties over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$ parametrized by $\mathcal{X}'(\epsilon)$ are ordinary, as the Hasse invariant divides t^{ϵ} , and thus is invertible.

Lemma 4.3.7. The tilt of $D_{m\Gamma_{\rm s}(p^{\infty})}$ identifies canonically with the perfection of D'_m .

Definition 4.3.8. Let $X^{\operatorname{ord}*} \subset X^* \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})} \operatorname{Spec}(\mathbb{F}_p)$ be the locus where the Hasse invariant is invertible. Then $X^{\operatorname{ord}*}$ is affine over \mathbb{F}_p . Let $X^{\operatorname{ord}} \subset X \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})} \operatorname{Spec}(\mathbb{F}_p)$ be the preimage, which is the ordinary locus. Let $D_m^{\operatorname{ord}} \to X^{\operatorname{ord}}$ be the quotient of the p^m -torsion of the universal Abelian variety by the canonical subgroup. Let $X_{\Gamma_1(p^m)}^{\operatorname{ord}} \to X^{\operatorname{ord}}$ parametrize isomorphisms $D_m^{\operatorname{ord}} \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$. Then $X_{\Gamma_1(p^m)}^{\operatorname{ord}} \to X^{\operatorname{ord}}$ is a finite map of schemes over \mathbb{F}_p . Define

$$X_{\Gamma_1(p^m)}^{\mathrm{ord}*} = \mathrm{Spec}(H^0(X_{\Gamma_1(p^m)}^{\mathrm{ord}}, \mathcal{O}_{X_{\Gamma_1(p^m)}^{\mathrm{ord}}})).$$

Then map $X_{\Gamma_1(p^m)}^{\text{ord}*} \to X^{\text{ord}*}$ is a finite map of affine schemes over \mathbb{F}_p , such that $X_{\Gamma_1(p^m)}^{\text{ord}}$ is the preimage of X^{ord} . Also $X_{\Gamma_1(p^m)}^{\text{ord}*}$ is normal.

Let $\mathcal{X}'^*_{\Gamma_1(p^m)}$ be the open locus of the adic space associated with $X^{\text{ord}*}_{\Gamma_1(p^m)} \otimes \mathbb{F}_p((t^{1/(p-1)p^\infty}))$ where $|\text{Ha}| \geq |t|^{\epsilon}$. Then

$$\mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon) \to \mathcal{X}'^*(\epsilon)$$

is finite, and étale away from the boundary. In particular, the base-change $\mathcal{X}'_{\Gamma_1(p^m)}(\epsilon) \to \mathcal{X}'(\epsilon) \subset \mathcal{X}'^*(\epsilon)$ is finite étale, parametrizing isomorphisms $D'_m \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$. Let $\mathcal{Z}'^*(\epsilon) \subset \mathcal{X}'^*(\epsilon)$ denote the boundary, with pullback $\mathcal{Z}'^*_{\Gamma_1(p^m)}(\epsilon) \subset \mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)$.

Lemma 4.3.9. The triple $(\mathcal{X}'^*(\epsilon)^{\text{perf}}, \mathcal{Z}'^*(\epsilon)^{\text{perf}}, \mathcal{X}'(\epsilon)^{\text{perf}})$ is good.

Lemma 4.3.10. The triple $(\mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}}, \mathcal{Z}'^*_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}}, \mathcal{X}'_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}})$ is good.

4.3.3. Back to the tower. Now fix $m \geq 1$, and consider $\mathcal{Y}_m^* = \mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a \to \mathcal{X}_{\Gamma_0(p^m)}^*(\epsilon)_a$. In the following, we denote $\mathcal{Y}_m^* = \mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a$.

Lemma 4.3.11. The tilt of \mathcal{Y}_{∞} identifies with $\mathcal{X}'_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}}$.

Proof. Recall that the map $\mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_0(p^m)}(\epsilon)_a$ is finite étale, and thus the base-change $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_1(p^m)}(\epsilon)_a$ is also finite étale. Hence the map $\mathcal{Y}_\infty \to \mathcal{X}_{\Gamma_1(p^\infty)}(\epsilon)_a$ is finite étale as it is a pullback of \mathcal{Y}_m .

Remark 4.3.12. Note that $\mathcal{Y}_m^* \setminus \partial \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a \setminus \partial$ is finite étale. By pullbackwe get a perfectoid space $\mathcal{Y}_\infty^* \setminus \partial \to \mathcal{X}_{\Gamma_s(p^\infty)}^*(\epsilon)_a \setminus \partial$. Caution: \mathcal{Y}_∞^* is not defined yet.

Lemma 4.3.13. The tilt of $\mathcal{Y}_{\infty}^* \setminus \partial$ identifies with $\mathcal{X}_{\Gamma_1(p^m)}^{\prime *}(\epsilon)^{\mathrm{perf}} \setminus \partial$.

((important result:))

Lemma 4.3.14. The ring $S_{\infty} = H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}})$ is perfected, and the tilt of $\mathcal{Y}_{\infty}^* = \operatorname{Spa}(S_{\infty}, S_{\infty}^+)$ identifies with $\mathcal{X}_{\Gamma_1(p^m)}^{\prime *}(\epsilon)^{\operatorname{perf}}$.

Lemma 4.3.15. For any $m \geq 1$, there is a unique perfectoid spacea $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$ such that

$$\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a \sim \lim_{m'} \mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^{m'})}^*(\epsilon)_a.$$

Moreover, $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ and all $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^{m'})}(\epsilon)_a$ for m' sufficiently large are affinoid, and

$$\operatorname{colim}_{m'} H^0(\mathcal{X}_{\Gamma_1(p^m) \cap \Gamma_2(p^{m'})}^*(\epsilon)_a, \mathcal{O}) \to H^0(\mathcal{X}_{\Gamma_1(p^m) \cap \Gamma_2(p^\infty)}^*(\epsilon)_a, \mathcal{O})$$

has dense image. Let $\mathcal{Z}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a \subset \mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a$ denote the boundar, and $\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ the preimage of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a \subset \mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$. Then the triple

$$(\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_{\mathtt{s}}(p^\infty)}^*(\epsilon)_a,\mathcal{Z}_{\Gamma_1(p^m)\cap\Gamma_{\mathtt{s}}(p^\infty)}(\epsilon)_a,\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_{\mathtt{s}}(p^\infty)}(\epsilon)_a)$$

is good.

((todo: g = 1))

Lemma 4.3.16. There is a unique perfectoid space $\mathcal{X}_{\Gamma_1(p^{\infty})}^*(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$ such that

$$\mathcal{X}_{\Gamma_1(p^{\infty})}^*(\epsilon)_a \sim \lim_m \mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a.$$

Moreover, $\mathcal{X}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a$ and all $\mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a$ for m sufficiently large are affinoid, and

$$\operatorname{colim}_m H^0(\mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a, \mathcal{O}) \to H^0(\mathcal{X}_{\Gamma_1(p^\infty)}^*(\epsilon)_a, \mathcal{O})$$

has dense image. Let $\mathcal{Z}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a \subset \mathcal{X}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a$ denote the boundar, and $\mathcal{X}_{\Gamma_1(p^{\infty})}(\epsilon)_a$ the preimage of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a \subset \mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$. Then the triple

$$(\mathcal{X}_{\Gamma_{1}(p^{\infty})}^{*}(\epsilon)_{a},\mathcal{Z}_{\Gamma_{1}(p^{\infty})}(\epsilon)_{a},\mathcal{X}_{\Gamma_{1}(p^{\infty})}(\epsilon)_{a})$$

is good.

4.4. Lifting to level Γ .

Lemma 4.4.1. For every $m \ge 1$, the map

$$\mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a$$

is finite étale.

Proof. Let's consider the case $g \geq 2$. First take $\epsilon = 0$. We claim that we have a decomposition

$$\mathcal{X}^*_{\Gamma(p^m)}(0)_a \simeq \bigsqcup_{\Gamma_1(p^m)/\Gamma(p^m)} \mathcal{X}^*_{\Gamma_1(p^m)}(0)_a.$$

Lemma 4.4.2. There is a unique perfectoid space $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$ over $\mathbb{Q}_p^{\operatorname{cycl}}$ such that

$$\mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a.$$

Proof. This follows from Lemma 4.4.1, Lemma 4.3.16, and almost purity.

5. The Hodge-Tate period map

5.1. The map of topological spaces.

Definition 5.1.1. The topological space $|\mathcal{X}_{\Gamma(p^{\infty})}^*|$ (resp. $|\mathcal{X}_{\Gamma(p^{\infty})}|$, $|\mathcal{Z}_{\Gamma(p^{\infty})}|$) is defined as the limit $\lim_m |\mathcal{X}_{\Gamma(p^m)}^*|$ (resp. $\lim_m |\mathcal{X}_{\Gamma(p^m)}|$, $\lim_m |\mathcal{Z}_{\Gamma(p^m)}|$).

Let K be a complete non-Archimedean field extension of $\mathbb{Q}_p^{\text{cycl}}$. Let $K^+ \subset K$ be an open and bounded valuation subring. We define

$$\mathcal{X}_{\Gamma(p^{\infty})}^*(K, K^+) = \lim_m \mathcal{X}_{\Gamma(p^m)}^*(K, K^+).$$

Lemma 5.1.2. There is a $\mathrm{GSp}_{2g}(\mathbb{Q}_p)$ -equivariant continuous map

$$|\pi_{\mathrm{HT}}|: |\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}| \to |\mathscr{F}\ell|,$$

defined by sending a point $x \in (\mathcal{X}^*_{\Gamma(p^{\infty})} \setminus \mathcal{Z}_{\Gamma(p^{\infty})})(K, K^+)$ corresponding to a principally polarized Ablian variety A/K and a symplectic isomorphism $\alpha : T_pA \to \mathbb{Z}_p^{2g}$, to the Hodge–Tate filtration $\operatorname{Lie}(A) \subset K^{2g}$.

((todo))

5.2. The map of perfectoid spaces. ((todo))

APPENDIX A. REVIEW OF ABELIAN SCHEMES

A.1. Basics.

Definition A.1.1. Let S be a scheme. A geometric point of S is a map $\operatorname{Spec}(k) \to S$ where k is an algebraically closed field.

Definition A.1.2. Let S be a scheme. An Abelian scheme over S is a proper smooth group scheme over S that is geometrically connected.

Definition A.1.3. Let $A \to S$ be an Abelian scheme where S is over $\operatorname{Spec}(\mathbb{F}_p)$. We have Frobenius map $F: A \to A^{(p)}$ and Verschiebung map $V: A^{(p)} \to A$ with the composition $V \circ F = [p]$.

The map $V:A^{(p)}\to A$ induces a map $\omega_{A/S}\to\omega_{A^{(p)}/S}\simeq\omega_{A/S}^{\otimes p}$. This gives a canonical section of $\omega_{A/S}^{\otimes (p-1)}$, called the Hasse invariant of A/S, denoted $\operatorname{Ha}(A/S)\in\Gamma(S,\omega_{A/S}^{\otimes (p-1)})$.

A.2. Ordinary Abelian schemes.

Definition A.2.1. Let k be an algebraically closed field of characteristic p > 0. Let A be an Abelian scheme over Spec(k). We say that A is ordinary if one the following equivalent conditions are satisfied

- (1) A[p](k) has cardinality p^g .
- (2) $A[p](k) \simeq \mathbb{Z}/p^g\mathbb{Z}$.
- (3) The maximal étale quotient of A[p] has order p^g .
- (4) The p-divisible group $A[p^{\infty}]$ is isomorphic to $(\mu_{p^{\infty}}^g \times (\mathbb{Q}/\mathbb{Z}_p)^g)$.
- (5) $\operatorname{Ha}(A/k)$ is non-zero
- (6) $\ker(V:A^{(p)}\to A)$ is an étale group scheme.

((todo: ordinariness over non algebraically closed fields))

Lemma A.2.2 ([Wed99, Theorem 1.6.2]). Let X be the moduli scheme of principally polarized abelian schemes with level K^p structure. It is a scheme over $\operatorname{Spec}(\mathbb{Z}_{(p)})$. Let $X^{\operatorname{ord}}_{\mathbb{F}_p}$ be the set of points $s \in X \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})}$ $\operatorname{Spec}(\mathbb{F}_p)$ such that the Abelian scheme X_s over $\operatorname{Spec}(\kappa(s))$ is ordinary. Then $X^{\operatorname{ord}}_{\mathbb{F}_p}$ is a (Zariski) dense subset of $X_{\mathbb{F}_p}$.

APPENDIX B. REVIEW OF DEFORMATION THEORY

Definition B.0.1 ([Ill71, II.1.2.1, II.1.2.3]). Let $A \to B$ be a map of rings. The simplicial A-algebra $P_A(B)$ is defined by $P_A(B)_0 = A[B]$ and $P_A(B)_n = A[P_A(B)_{n-1}]$ for $n \ge 1$. The standard resolution of B over A is the argumentation $P_A(B) \to B$ where B is viewed as a constant simplicial A-algebra. The cotangent complex of B over A is the simplicial B-module $L_{B/A} = \Omega^1_{P_A(B)/A} \otimes_{P_A(B)} B$.

Remark B.0.2. This definition works in a general topos.

Definition B.0.3 ([Ill72, VII.1.1.1]). Let S be a scheme. Let S_{zar} be the small Zariski site over S. Let S_{fpqc} be the big fqpc site over S. The natural inclusion $S_{\text{zar}} \to S_{\text{fpqc}}$ induces a geometric map $(\epsilon^*, \epsilon_*) : \text{Sh}(S_{\text{zar}}) \rightleftharpoons \text{Sh}(S_{\text{fpqc}})$.

Definition B.0.4. Let $f: X \to Y$ be a map of schemes. The cotangent complex is $L_{X/Y}$.

Definition B.0.5. Let S be a scheme. Let G be a group scheme over S that is flat and locally of finite presentation. Let $e: S \to G$ be the unit. The co-Lie complex is $\ell_G = Le^*L_{G/S}$, and the Lie complex is $\ell_G^{\vee} = R\underline{\mathrm{Hom}}(\ell_G, \mathcal{O}_S)$. Define $\underline{\ell}_G = L\epsilon^*\ell_G$.

Remark B.0.6. A group scheme G flat over S is always a local complete intersection over S. Then the cotangent complex $L_{G/S}$ has perfect amplitude in [-1,0], and thus ℓ_G has perfect amplitude in [0,1].

If G is smooth over S, then $L_{G/S} = \Omega_{G/S}$ is locally free, and ℓ_G^{\vee} coincides with the Lie algebra $\mathrm{Lie}(G)$ of G.

In particular, if $0 \to H \to A \to B \to 0$ is a short exact sequence of commutative group schemes over S, with H finite locally free, and A, B smooth, then ℓ_H^{\vee} is represented be the two-term complex $\text{Lie}(A) \to \text{Lie}(B)$.

Lemma B.0.7 ([Ill72, Theorem VII.4.2.5]). Let $f: S \to T$ be a map of schemes. Let $i: S \to S'$ be a T-extension by a quasi-coherent module I. Let A be a "schéma en anneaux" over T that is, as a scheme over T, tor-independent (c.f. [FJJ⁺71, Definition III.1.5]) with both S and S'. Let F (resp. G') be "schéma en A-modules" that are flat and locally of finite presentation over S (resp. S'). Let G be a "schéma en A-module" over S induced by G'. Let $U: F \to G$ be a morphism of "schémas en A-modules". Let K be the complex fitting into the distinguished triangle $K \to \ell_F^{\vee} \to \ell_G^{\vee} \to K[1]$. It is an object in $D(A \otimes_{\mathbb{Z}}^L \mathcal{O})$. Then there is an obstruction $\omega(u, G') \in \operatorname{Ext}_A^2(F, K \otimes_{\mathcal{O}}^L e^*I)$ which is zero if and only if there exists a pair (F', u') where F' is a deformation of F as "un schéma en A-modules" flat over S' and a map $U': F' \to G'$ extending U

Lemma B.0.8. Let S be a scheme. Let $i: S \to S'$ be an extension by a quasi-coherent module I. Suppose S and S' are both tor-independent with $\operatorname{Spec}(\mathbb{Z})$. Let F (resp. G') be commutative group schemes over S (resp. S') that are flat and locally of finite presentation. Let G be a commutative group scheme over S induced by G'. Let $u: F \to G$ be a morphism of group schemes over S. Let K be the cone of the map $\ell_F^{\vee} \to \ell_G^{\vee}$. There is an obstruction $\omega(u, G') \in \operatorname{Ext}^1(F, K \otimes^L I)$ which vanishes if and only if there exists a pair (F', u') where F' is a deformation of F as a commutative group scheme that is flat over S', and $u': F' \to G'$ is a map extending u.

Lemma B.0.9 ([Sch15, Theorem III.2.1]). Let A be a ring. Let G and H be commutative group schemes over A that are flat and of finite presentation, with a group map $u: H \to G$. Let $B \to A$ be a squarezero thickening with the argumentation ideal J. Let \widetilde{G} be a lift of G to B. Let K be a cone of the map $\ell_H^\vee \to \ell_G^\vee$ of Lie complexes. Then there is an obstruction class $\omega \in \operatorname{Ext}^1(H, K \otimes^L J)$ which vanishes if and only if there exists a pair $(\widetilde{H}, \widetilde{u})$ where \widetilde{H} is a flat commutative group scheme over B, and $\widetilde{u}: \widetilde{H} \to \widetilde{G}$ is a map lifting $u: H \to G$. Moreover, the obstruction class is functorial in J, in the following sense. If $B' \to A$ is another square-zero thickening with the argumentation ideal J', with a map $B \to B'$ over A, then $\omega' \in \operatorname{Ext}^1(H, K \otimes^L J')$ is the image of $\omega \in \operatorname{Ext}^1(H, K \otimes^L J)$ under the map $J \to J'$.

APPENDIX C. REVIEW OF SHIMURA VARIETIES

C.1. Shimura datum and canonical models.

Definition C.1.1. A Shimura datum is a pair (G, X) where

- G is a reductive group over \mathbb{Q} ;
- X is a $G(\mathbb{R})$ -conjugacy class of maps $\mathbb{S} \to G_{\mathbb{R}}$;

satisfying the following properties

(1) For $h \in X$, only the characters z/\overline{z} , 1, \overline{z}/z occur in the representation of \mathbb{S} on Lie(G). In other words, the Hodge structure on $\text{Lie}(G_{\mathbb{R}})$ defined by $\text{Ad} \circ h$ is of type

$$\{(-1,1),(0,0),(1,-1)\}.$$

(2) ad(h(i)) is a Cartan involution of G^{ad} , i.e. the real Lie group

$$\{q \in G^{\mathrm{ad}}(\mathbb{C}) : \mathrm{ad}(h(i))\sigma(q) = q\}$$

is compact, where σ denotes the complex conjugation.

(3) G^{ad} has no factor defined over \mathbb{Q} whose real points form a compact group. Equivalently, G^{ad} has no \mathbb{Q} -factor on which the projection of h is trivial.

Theorem C.1.2. Let $K \subset G(\mathbb{A}_f)$ be a compact open subgroup. Let $Sh_K(G,X) = G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K$.

- (1) ((todo: add reference: Baily–Borel)) $\operatorname{Sh}_K(G,X)$ has a natural structure of an algebraic variety over $\mathbb C$
- (2) ((todo: add reference: Shimura, Deligne, Milne, ...)) $Sh_K(G, X)$ has a model over a the reflex field E(G, X).

Remark C.1.3. Let K denote a compact open subgroup of $G(\mathbb{A}_f)$. We get an inverse system of algebraic varieties (schemes) $(\operatorname{Sh}_K(G,X))_K$. There is an action ρ of $G(\mathbb{A}_f)$ on the system $(\operatorname{Sh}_K(G,X))_K$ defined by isomorphisms $\rho_K(g):\operatorname{Sh}_K(G,X)\to\operatorname{Sh}_{g^{-1}Kg}(G,X)$. For $k\in K$, $\rho_K(k)$ is the identity map. Therefore, for K' normal in K, there is an action of the finite group K/K' on $\operatorname{Sh}_{K'}(G,X)$, and the variety $\operatorname{Sh}_K(G,X)$ is the quotient of $\operatorname{Sh}_{K'}(G,X)$ by the action of K/K'.

C.2. Siegel modular varieties. Let (G, X) be a Siegel Shimura datum, i.e. the Shimura datum associated to a symplectic space. Then $G = \mathrm{GSp}_{2g}$, and the reflex field is $E(G, X) = \mathbb{Q}$ since G is split.

Lemma C.2.1. Let K^p be a compact open subgroup of $G(\mathbb{A}^{\infty})$ contained in $\Gamma(N)^{(p)}$ for some integer $N \geq 3$ not divisible by p. Let $K_p = G(\mathbb{Z}_p)$. For compact open subgroup $U \subset K_p$, we have a smooth quasi-projective \mathbb{Q} -scheme $X_{K^pU,\mathbb{Q}}$ and a natural finite étale map $X_{K^pU,\mathbb{Q}} \to X_{K^pK_p,\mathbb{Q}}$ over \mathbb{Q} .

C.3. **PEL Shimura varieties.** For PEL type Shimura variety, see Milne.

This is [Kot92]; also, "PEL-type O-lattice", cf. [Lan13, Definition 1.2.1.3]

Let p be a prime. Let B be a finite-dimensional simple \mathbb{Q} -algebra with center F. Let \mathcal{O}_B be a $\mathbb{Z}_{(p)}$ order in B. Let * be a positive involution on B that preserves \mathcal{O}_B . Let V be a non-degenerate skewHermitian B-module. Let G be the group of automorphisms of the skew-Hermitian B-module V. Let K^p be a compact open subgroup of $G(\mathbb{A}_f^p)$. Let $h: \mathbb{C} \to \operatorname{End}_B(V_{\mathbb{R}})$ be an \mathbb{R} -algebra homomorphism such
that $(h(\overline{z}) = h(z)^*$, and that the symmetric bilinear form (v, h(i)w) on $V_{\mathbb{R}}$ is positive definite. The map hdetermines a decomposition $V_{\mathbb{C}} = V_1 \oplus V_2$. Here V_1 is the subspace of $V_{\mathbb{C}}$ on which h(z) acts by z. The field
of definition of the isomorphism class of the complex representation V_1 of B is a number field E, with ring
of integers \mathcal{O}_E .

Consider the following moduli problem over $\mathcal{O}_E \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$.

Also, see [Lan13, Definition 1.4.1.4, Theorem 1.4.1.11, Remark 1.4.1.13].

Definition C.3.1 ([Lan13, Definition 1.2.1.3]). Let B be a finite-dimensional semi-simple algebra over \mathbb{Q} with positive involution * and center F, where positivity means $\operatorname{tr}_{B/\mathbb{Q}}(xx^*) > 0$ for all $x \neq 0$ in B. Let V be a finite B-module, equipped with a non-degenerate alternating bilinear form ψ , such that $\psi(bx,y) = \psi(x,b^*y)$ for all $x,y \in V$ and $b \in B$. Let $h: \mathbb{C} \to \operatorname{End}_B(V)_{\mathbb{R}}$ be a map over \mathbb{R} such that complex conjugation on \mathbb{C} corresponds by h to the adjunction in $\operatorname{End}_B(V)_{\mathbb{R}}$ with respect to the pairing ψ , and such that $(u,v) \mapsto \psi(u,h(i)v)$ is a positive definite symmetric pairing on $V_{\mathbb{R}}$. Let G be the reductive group over \mathbb{Q} defined by

$$G(R) = \{ g \in \operatorname{GL}_B(V \otimes_{\mathbb{Q}} R); \exists \mu(g) \in R^{\times}, \psi(gx, gy) = \mu(g)\psi(x, y) \},$$

where GL_B means B-equivariant linear maps. Let X be the $G(\mathbb{R})$ -conjugacy class of $h^{-1}: \mathbb{C}^{\times} \to G_{\mathbb{R}}$. The pair (G, X) is called a PEL Shimura datum.

Definition C.3.2 ([Roz20, Section 1.2]). In order the define the integral model, we need to add the following new data. Let \mathcal{O}_B be a $\mathbb{Z}_{(p)}$ -order in B that is stable under the involution * and becomes maximal after tensoring with $\mathbb{Z}_{(p)}$. We impose two more conditions which is omitted for now.

Let E be the reflex field.

Let \mathcal{F}_{K^p} be the following category fibered in groupoids over the category of schemes over $\mathcal{O}_E \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$:

• The objects over a scheme S are the tuples $(A, \lambda, \iota, \eta)$, where

APPENDIX D. REVIEW OF ARTIN'S CRITERION

Theorem D.0.1. Let S be a scheme of finite type over a field or an excellent Dedekind domain. Let X be a category fibered in groupoids over $Sch_{/S}$. Then X is an algebraic stack locally of finite type over S if and only if the following conditions hold:

- (1) X is a stack for the étale topology.
- (2) X is locally of finite presentation.
- (3) ...

Appendix E. Review of perfectoid spaces

Definition E.0.1. Let \mathfrak{Y} be a flat t-adic formal scheme over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$. Let $\Phi: \mathfrak{Y} \to \mathfrak{Y}$ be the ralative Frobenius. Then the inverse limit $\lim_{\Phi} \mathfrak{Y}$ is representable by a perfect flat t-adic formal scheme $\mathfrak{Y}^{\text{perf}}$ over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$, called the perfection of \mathfrak{Y} .

Locally.

$$(\operatorname{Spf}(S))^{\operatorname{perf}} = \operatorname{Spf}(S^{\operatorname{perf}})$$

where S^{perf} is the t-adic completion of $\lim_{\Phi} S$.

Definition E.0.2. Let \mathcal{Y} be an adic space over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$. Let $\Phi: \mathcal{Y} \to \mathcal{Y}$ be the ralative Frobenius. Then there exists a unique perfectoid space \mathcal{Y}^{perf} over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$, called the perfection of \mathcal{Y} , such that

$$\mathcal{Y}^{\mathrm{perf}} \sim \lim_{\Phi} \mathcal{Y}$$
.

Locally,

$$\operatorname{Spa}(S, S^+)^{\operatorname{perf}} = \operatorname{Spa}(S^{\operatorname{perf}}, S^{\operatorname{perf},+})$$

where $S^{\text{perf},+}$ is the t-adic completion of $\lim_{\Phi} S^+$, and $S^{\text{perf}} = S^{\text{perf},+}[1/t]$.

((todo: the two constructions are compatible))

References

[FJJ⁺71] D Ferrand, Jean-Pierre Jouanolou, O Jussila, S Kleiman, M Raynaud, and Jean-Pierre Serre. Théorie des Intersections et Théorème de Riemann-Roch: Séminaire de Géométrie Algébrique du Bois Marie 1966/67 (SGA 6), volume 225. Springer, 1971.

[GR68] Alexander Grothendieck and Michèle Raynaud. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). 1968.

[Ill71] Luc Illusie. Complexe cotangent et déformations I, volume 239. Springer, 1971.

[III72] Luc Illusie. Complexe cotangent et déformations II, volume 283. Springer, 1972.

[Kot92] Robert E Kottwitz. Points on some shimura varieties over finite fields. Journal of the American Mathematical Society, 5(2):373–444, 1992.

[Lan13] Kai-Wen Lan. Arithmetic Compactifications of PEL-Type Shimura Varieties. Princeton University Press, 2013.

[Roz20] Sandra Rozensztajn. Integral models of Shimura varieties of PEL type, page 96-114. 2020.

[Sch12] Peter Scholze. Perfectoid spaces. Publications mathématiques de l'IHÉS, 116(1):245-313, 2012.

[Sch15] Peter Scholze. On torsion in the cohomology of locally symmetric varieties. Annals of Mathematics, pages 945–1066, 2015.

[Sta] The Stacks Project Authors. Stacks project.

[SW13] Peter Scholze and Jared Weinstein. Moduli of p-divisible groups. Cambridge Journal of Mathematics, 1(2):145–237, 2013.

[Wed99] Torsten Wedhorn. Ordinariness in good reductions of shimura varieties of pel-type. In Annales Scientifiques de l'Ecole Normale Supérieure, volume 32, pages 575–618, 1999.

Email address: nietianjiao@outlook.com