Fisher's Iris data set

Fisher's Iris data set - Model fitting

(mod <- iprobit(y, X))</pre>

R> system.time(

Fisher's Iris data set - Model summary

```
R> summary(mod)
##
## Call:
## iprobit(y = y, X, maxit = 10000)
##
## RKHS used: Canonical
##
## Mean S.E. 2.5% 97.5%
## alpha -4.1730 0.0816 -4.3330 -4.0129
## lambda 1.2896 0.0142 1.2618 1.3175
##
## Converged to within 1e-05 tolerance. No. of iterations: 6141
## Model classification error rate (%): 0
## Variational lower bound: -12.93486
```

Fisher's Iris data set - Lower bound

• Monitoring the lower bound (first 10 iterations)

R> iplot_lb(mod, niter.plot = 10)

Fisher's Iris data set - Decision boundary

R> iplot_decbound(mod)

Cardiac arrhythmia data set

• Distinguish between the presence and absence of cardiac arrhythmia based on ECG data (n = 451, p = 194).

https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Cardiac arrhythmia data set - Model fit

• Fit an I-prior probit model using Canonical and FBM kernel. The full data set takes about 35 seconds.

```
R> mod <- iprior(y, X, kernel = "FBM")</pre>
```

- Compare against popular classifiers: 1) k-nearest n3eighbours; 2) support vector machine; 3) Gaussian process classification; 4) random forests; 5) nearest shrunken centroids (Tibshirani et. al., 2003); and 6) L-1 penalised logistic regression.
- Experiment set-up:
 - ▶ Form training set by sub-sampling $n_{sub} \in \{50, 100, 200\}$ data points.
 - ▶ Use remaining data as test set.
 - ▶ Fit model on training set and obtain test error rates.
 - ▶ Repeat 100 times to obtain standard errors.

Cardiac arrhythmia data set - Results

Meta-analysis of smoking cessation

- Data from 27 separate smoking cessation studies, where participants subjected to nicotine gum treatment or placed in control group.
- Some summary statistics:

	Min	Average	Max	Prop. quit	Odds quit
Control	20	101	617	0.207	0.261
Treated	21	117	600	0.320	0.470

Meta-analysis of smoking cessation - model

- Let $i = 1, ..., n_i$ index the patients in study group $j \in 1, ..., 27$.
- Denote y_{ij} as the binary response variable indicating Quit (1) or Remain (0), and x_{ij} indicating which treatment group the patient is in.
- Model binary data using I-probit model

$$\Phi^{-1}(p_{ij}) = f(x_{ij}, j)$$

= $f_1(x_{ij}) + f_2(j) + f_{12}(x_{ij}, j)$

with $f_1, f_2 \in \text{Pearson RKHS}$, and $f_{12} \in \text{ANOVA RKHS}$.

April 14, 2017 10 / 11

Meta-analysis of smoking cessation - results

