Assignment 4

Course Lecturer: Yizheng Zhao

May 29, 2022

* This assignment, due on 10th June, contributes to 10% of the total mark of the course.

Question 1. OWA and CWA

Consider the database instance $\mathcal{D}_{\text{music}}$ given by:

```
StudioAlbum(Fantasy) StudioAlbum(The_Eight_Dimensions) StudioAlbum(Common_Jasmin_Orange)

DebutAlbum(Jay) LiveAlbum(2004_Incomparable_Concert)

EP(Hidden_Track) EP(Initial_D) SoundtrackAlbum(Secret) CompilationAlbum(Together)

Song(Herbalist_Manual) Song(Elimination)

Singer(Jay_Chou) Singer(Eason_Chan)

Composer(Jay_Chou) Lyricist(Vincent_Fang) Police(Black_Cat)

hasFriend(Jay_Chou, Vincent_Fang) hasFriend(Jay_Chou, Will_Liu)

releases(Jay_Chou, Jay) releases(Jay_Chou, Fantasy) releases(Jolin_Tsai, Together)

sings(Eason_Chan, Elimination) sings(Jolin_Tsai, Rewind) sings(Jay_Chou, Herbalist_Manual)

writesMusicFor(Jay_Chou, Elimination) writesMusicFor(Jay_Chou, Rewind) writesMusicFor(Jay_Chou, Herbalist_Manual)

writesLyricsFor(Jay_Chou, Elimination) writesLyricsFor(Vincent_Fang, Rewind)

writesLyricsFor(Vincent_Fang, Herbalist_Manual) DancesWith(Will_Liu, Herbalist_Manual)
```

Consider each of the following Boolean queries F (in DL notation).

- (a) Album(Fantasy)
- (b) StudioAlbum(The_Eight_Dimensions)
- (c) LiveAlbum(Common_Jasmin_Orange)
- (d) ¬LiveAlbum(Common_Jasmin_Orange)
- (e) ¬EP(secret)
- (f) ¬StudioAlbum □ ¬LiveAlbum(2004_Incomparable_Concert)

- (g) \neg StudioAlbum $\sqcup \neg$ LiveAlbum(Eason_Chan)
- (h) \exists hasFriend. \top (Jay_Chou)
- (i) \(\frac{1}{2}\) has Friend. \(\frac{1}{2}\) dances \(\text{With. Song}(Jay \) Chou)
- (j) ∃hasFriend.Composer(Jay_Chou)
- (k) ∃hasFriend.{Jay_Chou}(Vincent_Fang)
- (l) DebutAlbum(2004_Incomparable_Concert)
- (m) Song(Rewind)
- (n) Singer(Jay_Chou)
- (o) Singer(Jolin_Tsai)
- (p) Lyricist(Jay_Chou)
- (q) Composer(Jay_Chou)
- (r) Composer(Ta-yu_Lo)
- (s) Police(Jay_Chou)
- (t) Police(Jolin_Tsai)
- (u) \neg Singer-SongWriter $\sqcup \neg$ Police(Vincent_Fang)
- (v) \neg Singer-SongWriter $\sqcup \neg$ Police(Ta-yu_Lo)
- (w) Singer-SongWriter(Jay_Chou)
- (x) Singer-SongWriter(Jolin_Tsai)
- (y) ¬SongWriter(Vincent_Fang)
- (z) ¬Dancer(Will_Liu)
 - Write those Boolean queries (marked in red) in first-order logic (FOL) notation. (Note that for many queries there is no difference between DL notation and FOL notation).
 - Query answering under closed world assumption: check for each Boolean F whether the answer to the query F given by $\mathcal{D}_{\text{music}}$ is "Yes" or "No".
 - Query answering under open world assumption: check for each Boolean query F whether the certain answer to F given by $\mathcal{D}_{\text{music}}$ is "Yes", "No", or "Don't know".

Consider the following non-Boolean queries F_i ($1 \le i \le 4$):

- (a) $F_1(x) = \operatorname{Singer}(x)$
- (b) $F_2(x) = \neg Singer(x)$
- (c) $F_3(x,y) = \mathsf{hasFriend}(x,y)$
- (d) $F_4(x) = (\mathsf{Lyricist}(x) \vee \mathsf{Composer}(x)) \wedge \neg \mathsf{releases}(x, \mathsf{Jay})$

For each query F_i , give

- for closed world assumption: answer(F_i , $\mathcal{D}_{\text{music}}$);
- for open world assumption: certanswer(F_i , $\mathcal{D}_{\text{music}}$).

Question 2. Querying with TBox

Following Question 1, consider now the TBox \mathcal{T} given as:

```
StudioAlbum ☐ Album

LiveAlbum ☐ Album

StudioAlbum ☐ LiveAlbum ☐ ⊥

EP ☐ LiveAlbum ☐ SoundTrackAlbum ☐ ↓

DebutAlbum ☐ StudioAlbum

Album ☐ ∃hasTrack.Song

Singer ☐ ∃releases.Album ☐ ∃sings.Song

∃releases ☐.Police ☐ Album ☐ ↓

Lyricist ☐ ∃writesLyricsFor.Song

Composer ☐ ∃writesMusicFor.Song

SongWriter ☐ Lyricist ☐ Composer

Singer-SongWriter ☐ Singer ☐ SongWriter

∃sings ☐. ☐ ☐ Song

∃writesLyricsFor ☐. ☐ Song
```

- Re-consider the Boolean queries F given in Question 1. Compute the certain answers in the context of $\mathcal{D}_{\text{music}}$, and in the context of $(\mathcal{T}, \mathcal{D}_{\text{music}})$.
- The addition of the TBox \mathcal{T} to the database instance $\mathcal{D}_{\text{music}}$ allows one to draw new conclusions from $\mathcal{D}_{\text{music}}$, and may render some of the data (ABox assertion) α in $\mathcal{D}_{\text{music}}$ redundant, i.e., $(\mathcal{T}, \mathcal{D} \setminus \{\alpha\}) \models \mathcal{D}$. Can you identify all such assertions α ?

Question 3. Computing $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ in \mathcal{EL}

Consider the \mathcal{EL} TBox \mathcal{T} :

```
Guitarist 
☐ ∃plays_for.RockBand

Bassist ☐ ∃plays_for.RockBand

Drummer ☐ ∃plays_for.RockBand

RockBand ☐ ∃managed_by.Manager

Manager ☐ Employee

Manager ☐ ∃managed_by.Manager
```

and the ABox A:

Guitarist(John_Lennon) Bassist(Paul_McCartney)
Drummer(Ringo_Starr) RockBand(Beatles)
managed_by(Beatles, Brian_Epstein)

- Compute the interpretation $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ as described in the slides.
- For \mathcal{EL} concept queries, we know that $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ gives the answer "Yes" iff $(\mathcal{T},\mathcal{A})$ gives the certain answer "Yes". Check this for the following queries:
 - ∃plays_for.RockBand(John_Lennon);
 - ∃managed_by.Manager(Paul_McCartney);
 - ∃plays_for.∃managed_by.Manager(Ringo_Starr).
- For more complex queries, $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ can give the answer "Yes" even if $(\mathcal{T},\mathcal{A})$ does not give the certain answer "Yes". Check this for:
 - $F(x,y) = \exists z.(\mathsf{plays_for}(x,z) \land \mathsf{plays_for}(y,z)).$
 - $F = \exists x.$ managed by(x, x).

Question 4. Conjunctive queries over database and interpretation

Consider the following database $\mathcal D$ consisting of the following tables:

Person:		Enrollment:		Attendance:		Course:	
ID	Name	StudentID	Since	StudentID	CourseID	ID	Title
2001	Jay_Chou	2002	2020	2001	30000160	30000160	KR&P
2002	Jolin_Tsai	2003	2021	2002	30000160	30000180	PR&CV
2003	Stefanie_Sun	2004	2020	2002	30000170	30000170	NLP
2004	Ta-yu_Lo			2003	30000180		

- Define the finite first-order interpretation $\mathcal{I}_{\mathcal{D}}$ corresponding to \mathcal{D} .
- Reformulate each of the following SQL queries Q into first-order queries f_Q , and identify which of them are conjunctive queries.
- Answer Q in the context of \mathcal{D} and $f_{\mathcal{Q}}$ in the context of $\mathcal{I}_{\mathcal{D}}$.
- (a) SELECT * FROM Person
- (b) SELECT Person.Name FROM Person, Attendance, Course

WHERE Person.ID = Attendance.PersonID

AND Course.ID = Attendance.CourseID

AND Course.Title = "KR&P"

(c) SELECT Person. Name FROM Person, Enrollment

WHERE Person.ID = Enrollment.PersonID

AND NOT EXISTS (

SELECT * FROM Attendance

WHERE Person.ID = Attendance.PersonID)

Question 5. Certain answers in different contexts

Consider the following \mathcal{ALC} knowledge base $\mathcal{K} := (\mathcal{T}, \mathcal{A})$ with:

$$\mathcal{T} := \{ X \sqsubseteq Y, Y \sqsubseteq \exists r.X, X \sqsubseteq \forall r.Y, \forall r.X \sqsubseteq Y, W \equiv \neg V, \exists r.Y \sqsubseteq \neg V \}$$

$$\mathcal{A} := \{ (\text{Jay_Chou}, \text{Jolin_Tsai}) : r, (\text{Jolin_Tsai}, \text{Stefanie_Sun}) : r, (\text{Stefanie_Sun}, \text{Jay_Chou}) : r, (\text{Jolin_Tsai}, \text{Jolin_Tsai}) : r, (\text{Stefanie_Sun}, \text{Stefanie_Sun}) : r, \text{Stefanie_Sun} : X \}$$

- Compute the certain answers to the following conjunctive queries in the context of A.
- Compute the certain answers to the following conjunctive queries in the context of \mathcal{K} .
- (a) $r(x,y) \wedge Y(y)$
- (b) $\exists y (r(x,y) \land Y(y))$
- (c) $\exists x, y (r(x, y) \land r(y, x))$
- (d) $\exists z, w(r(x,y) \land r(y,z) \land r(z,x) \land r(z,w) \land W(w))$

Question 6 (with 1 bonus mark). Simpleness of ABox

Consider feeding arbitrary ABoxes rather than simple ABoxes as input to the problem of ontology-mediated querying. Does this affect the data complexity results?

Question 7 (with 1 bonus mark). k-colorability

Is it possible to show that the problem of conjunctive query entailment (CQ-entailment) in \mathcal{ALC} is coNP-hard w.r.t. data complexity using a reduction from non-k-colorability in graphs? What if k is fixed?