Link-State ruting protokoli

- Link-State ruting protokoli
 - Sa susednim ruterima se razmenjuje mnogo veći skup informacija
 LSA (Link-State Advertisements)
 - Kreira se baza informacija LSDB (Link-State Database)
 - Rekonstruiše se topologija mreže graf rutera i mreža sa metrikom
 - Računa se najkraća putanja do svake mreža SPF (Shortest Path First)
 - Kreira se ruting tabela

"Link-State"

- "Link" interfejs rutera
 - Opisuje mrežu
- "Link state" informacije o interfejsima
 - IP adresa i maska mreže
 - IP adresa interfejsa
 - Identifikacija rutera
 - Tip interfejsa
 - Cena linka
 - Susedni ruteri na linku

• ...

Link 1:

Link 4:

Mreža: 10.10.1.0/30 Adresa: 10.10.1.1

Tip : GigabitEthernet

Cena: 1 Sused: R2

Link 5:

Mreža: 10.10.1.4/30 Adresa: 10.10.1.6

Tip: GigabitEthernet

Cena: 2 Sused: R5

Razmena LSA paketa

- Svaki ruter kreira sopstveni LSA paket, koji sadrži:
 - Stanje svakog direktno povezanog linka (interfejsa)
 - Informacije o susedima ruter, tip linka, cena (bandwidth)
- Flooding intenzivna razmena LSA
 - LSA se šalje do svakog direktnog susednog rutera
 - Ruteri prosleđuju LSA do svojih direktnih suseda
- Rezultat:

10.10.3.0/24

LSDB - Link-State Database

- Svaki ruter formira svoju bazu LSDB (Link-State Database)
 - Sadrži LSA dobijene od svih rutera
 - Sadrži sve potrebne informacije o celoj mreži
 - Isto na svim ruterima, jer sadrže iste informacije

Ruter	LSA	
R1	R1 : 10.10.1.0/24	[0]
R1	R1 : 10.1.1.0/30	[0]
R1	R1 : 10.1.1.4/30	[0]
R2	R2 : 10.10.2.0/24	[1]
R2	R2 => R1: 10.1.1.0/30	[10]
R2	R2 => R4: 10.1.1.8/30	[10]
R2	R2 => R5: 10.1.1.12/30	[20]
R3	R3 : 10.10.3.0/24	[1]
R3	R3 => R1: 10.1.1.4/30	[20]
R3	R3 => R6: 10.1.1.16/30	[25]
R4	R4 : 10.10.4.0/24	[1]
R4	R4 => R2: 10.1.1.8/30	[10]
R4	R4 => R5: 10.1.1.20/30	[5]
R5	R5 : 10.10.5.0/24	[1]
R5	R5 => R2: 10.1.1.12/30	[20]
R5	R5 => R4: 10.1.1.20/30	[5]
R5	R5 => R6: 10.1.1.24/30	[10]
R6	R6 : 10.10.6.0/24	[1]
R6	R6 => R3: 10.1.1.16/30	[25]
R6	R6 => R5: 10.1.1.24/10	[10]

- LSDB na ruteru R1
 - LSA sa rutera R2

Ruter	LSA	
R2	R2 : 10.10.2.0/24	[1]
R2	R2 => R1: 10.1.1.0/30	[10]
R2	R2 => R4: 10.1.1.8/30	[10]
R2	R2 => R5: 10.1.1.12/30	[20]

- LSDB na ruteru R1
 - LSA sa rutera R3

Ruter	LSA	
R3	R3 : 10.10.3.0/24	[1]
R3	R3 => R1: 10.1.1.4/30	[20]
R3	R3 => R6: 10.1.1.16/30	[25]

- LSDB na ruteru R1
 - LSA sa rutera R4

Ruter	LSA	
R4	R4 : 10.10.4.0/24	[1]
R4	R4 => R2: 10.1.1.8/30	[10]
R4	R4 => R5: 10.1.1.20/30	[5]

- LSDB na ruteru R1
 - LSA sa rutera R5

Ruter	LSA	
R5	R5 : 10.10.5.0/24	[1]
R5	R5 => R2: 10.1.1.12/30	[20]
R5	R5 => R4: 10.1.1.20/30	[5]
R5	R5 => R6: 10.1.1.24/30	[10]

- LSDB na ruteru R1
 - LSA sa rutera R6

R6	R6 : 10.10.6.0/24	[1]
R6	R6 => R3: 10.1.1.16/30	[25]
R6	R6 => R5: 10.1.1.24/10	[10]

Nalaženje najkraćeg puta - SPF

SPF - Shortest Path First

- Graf
 - Ruteri u čvorovima, cena pridružene granama
 - IP mreže grane (linkovi) i čvorovi (LAN mreže)
- Dijsktra algoritam
 - 1959, Edsger W. Dijkstra holandski softver inženjer
 - Iz svakog rutera nalaženje najkraće putanje do svake IP mreže (najjeftinije putanje)
 - Složenost O(n Log(n))

	R1: SPF		
10.1.1.4/30	con.	[0]	
10.1.1.0/30	con.	[0]	
10.1.1.4/30	con.	[0]	
10.10.2.0/24	=> R2	[11]	
10.1.1.8/30	=> R2	[20]	
10.1.1.12/30	=> R2	[10]	
10.10.3.0/24	=> R3	[21]	
10.1.1.16/30	=> R3	[45]	
10.10.4.0/24	=> R2	[21]	
10.1.1.20/30	=> R2	[25]	
10.10.5.0/24	=> R2	[26]	
10.1.1.24/30	=> R2	[35]	
10.10.6.0/24	=> R2	[36]	

Generisanje ruting tabele

- Ruting tabela na osnovu rezultata SFP algoritma
 - Za svaku IP mrežu dobija se next-hop i cena
 - Za više putanja sa istom cenom
 - Više next-hop adresa se upisuje u ruting tabelu balansiranje saobraćaja
- Svaki ruter ima različitu ruting tabelu

R1: Ruting tabela		
Mreža	Next-hop	Met
10.1.1.4/30	Connected	[0]
10.1.1.0/30	Connected	[0]
10.1.1.4/30	Connected	[0]
10.10.2.0/24	10.1.1.2	[11]
10.1.1.8/30	10.1.1.2	[20]
10.1.1.12/30	10.1.1.2	[10]
10.10.3.0/24	10.1.1.6	[21]
10.1.1.16/30	10.1.1.6	[45]
10.10.4.0/24	10.1.1.2	[21]
10.1.1.20/30	10.1.1.2	[25]
10.10.5.0/24	10.1.1.2	[26]
10.1.1.24/30	10.1.1.2	[35]
10.10.6.0/24	10.1.1.2	[36]

Skalabilnost

- Grupisanje rutera i IP mreža u pojedinačne oblasti Area
- Pad linka u jednoj oblasti
 - Flooding se sprovodi samo u toj oblasti
 - Ne izaziva se konvergencija u ostalim oblastima
- Veća skalabilnost

Osobine

- Brza konvergencija:
 - Flooding intenzivno slanje LSA kroz mrežu
 - Inicijalno po uključivanju rutera
 - Prilikom promene topologije pad postojećih ili uključenje novih veza
 - Svi ruteri saznaju istu topologiju mreže, iz čega kreiraju različita stabla najkraćih puteva, a zatim i različite ruting tabele
- Opterećenje pri konvergenciji:
 - Zahtevaju više memorije
 - Koriste više informacija
 - Zahtevaju više CPU vremena
 - Računanje najkraćih puteva (Dijsktra algoritam)
 - Zahtevaju više propusnog opsega zbog flooding-a
- Opterećenje u stabilnom stanju
 - Nisu zahtevni, prenose se poruke za održavanje susedstva (keepalive)

Vrste Link-State ruting protokola

- Dve osnovne vrste Link-State ruting protokola:
 - Open Shortest Path First (OSPF)
 - IETF standard
 - Administrativna distanca 110
 - Intermediate System-Intermediate System (IS-IS)
 - ISO standard
 - Administrativna distanca 115

OSPF - Open Shortest Path First

- OSPF istorijat
 - 1991, RFC 1247
 - 1998, RFC 2328, OSPFv2, aktuelna verzija
- OSPF poruke
 - 5 različitih vrsta
 - Hello uspostavljanje susedstva
 - DBD Database Description
 - LSR, LSU, LSAck Link-State Request / Update / Acknowledgement
 - Enkapsuliraju se u IP pakete
- Na IP nivou:
 - Identifikacija protokola (protocol type): 89
 - Multikast odredišna adresa
 - 224.0.0.5 "AllSPFRouters"
 - 224.0.0.6 "AIIDRouters"

Hello protokol

- Protokol za uspostavljanje susedstva (deo OSPF protokola)
 - Razmena Hello poruka
- Uslov za uspostavljanje susedstva (neighbors) isti parametri na oba rutera:
 - Ista IP mrežna adresa (povezani na istu IP mrežu)
 - Hello interval period oglašavanja Hello poruka
 - 10 sek na serijskim i *broadcast multi-access* vezama (Ethernet)
 - Dead interval vreme prekida susedstva izostaju Hello poruke
 - 4 x Hello interval.
 - Area ID broj oblasti (pripadaju istoj oblasti)
 - Autentifikacija (ako se koristi)
 - Ostali parametri
 - "Stab area flag"

Identifikacija rutera

- Loopback interfejs
 - Logički interfejs
 - Sadrži proizvoljnu IP adresu i masku (maska može da bude "/32"!)
 - Uvek je aktivan (dostupan, "podignut" "up" stanje)
 - Zgodan za pristup ruteru (ping, logovanje itd.)
 - Učestvuje u oglašavanju kroz ruting protokole

- RID (Router ID)
 jedinstveni identifikator rutera na nivou OSPF protokola
 - Najveća IP adresa fizičkog interfejsa, ako nije definisan loopback interfejs
 - Najveća IP adresa loopback interfejsa, ako postoji

Hello - Uspostavljanje susedstva

- Obostrano uspostavljanja susedstva putem Hello protokola
- Prolazi se kroz sledeća stanja:
 - Down početno stanje
 - Init nakon podizanja interfejsa, spremni za slanje Hello poruka
 - 2-way uspostavljeno susedstvo, uz sledeće uslove:
 - Prepoznaje se RID u "Seen" polju koje sadrži sve do tada otkrivane susedne rutera na tom segmentu
 - Usaglašeni su svi obavezni parametri
- Dalji proces:
 - Ruteri mogu da ostanu u "2-way"stanju, tzv. Neighbour fizički susedi, ne i OSPF susedi
 - Ruteri mogu da nastave razmenu informacija, tzv. Adjecency OSPF susedi

ExStart - Priprema za razmenu

- **ExStart** proces
- Dogovor ko je Master, a ko Slave
 - Master veći RID
- Inicijalizuje se redni broj paketa tzv. Sequence Number (Seq)
- Primer
 - Ruter A predlaže da bude Master i postavlja Seq
 - Ruter B ima veći RID, postaje Master i zadaje Seq
 - Ruter A je Slave i prihvata Seq

Exchange – razmena deskriptora

- Exchange proces
 Razmenjuju se LSA podaci
 iz LSDB tabela
 - Cilj je utvrditi šta nedostaje
- Master počinje komunikaciju
- Šalju se Database Description (DD) paketi
 - Samo opis podataka, bez potpunih informacija
- Seq se povećava identifikuje poslate pakete
 - Prati se da li se izgubio neki paket
 - Ako se neki paket izgubi retransmisija

Loading – Razmena podataka

- Loading proces razmena svih nedostajućih podataka
- LSR Link State Request
 - Master navodi listu deskriptora nedostajućih podataka
- LSU Link State Update
 - Slave odgovara sa jednim ili više paketa koji sadrže sve nedostajuće podatke
- LSAck –
 Link State Acknowledgement
 - Potvrda prijema podataka
- Full završno stanje
 - LSDB tabele su sinhronizovane

Susedstvo u Ethernet mreži

- Ethernet mreža multiaccess tipa
 - Može da bude povezano više rutera
- Razmena Hello poruka
 - Svako-sa-svakim?
- Problemi:
 - Skalabilnost broj veza raste sa kvadratom broja rutera n(n-1)/2
 - Intenzivna komunikacija flooding

Broj rutera	Broj veza
2	1
5	10
10	45
20	190
100	4950

Susedstvo u Ethernet mreži

- Treba izbeći direktno susedstvo (adjacency) svako-sa-svakim!
- Rešenje:
 - DR Designated Router cetralni ruter pri uspostavljanju susedstva
 - BDR Backup Designated Router rezervni centralni ruter
 - Ostali ruteri se označavaju sa DROthers
 - Jedino DR i BDR uspostavljaju direktno susedstvo sa ostalim ruterima manji broj suseda (adjacency)
 - Razmena SLA se sprovodi preko DR

- "Prioritet" prioritet pri izboru DR i BDR
 - Dodeljuje se interfejsu rutera
 - Broj od 0 do 255
 - Veća vrednost označava veći prioritet
 - Vrednost 0 označava da ruter ne učestvuje u izboru za DR i BDR
 - Sadržan u Hello porukama
- Pravila izbora DR i BDR
 - Ruter sa najvećim prioritetom postaje DR
 - Ruter sa sledećim najvećim prioritetom postaje BDR
 - Ako su prioriteti isti, gleda se najveći RID za izbor DR i BDR

FULL/BDR

FULL/DROTHER

192.168.1.2

192.168.1.1

FastEthernet0

FastEthernet0

00:00:35

00:00:32

192.168.31.22

192.168.31.11

- Novododati ruteri neće izazvati promenu DR i BDR, bez obzira na njihove prioritete ili IP adrese
 - Da bi se smanjio flooding prema ostalim ruterima
- DR i BDR će izgubiti ove funkcije jedino u sledećim slučajevima:
 - Kada ruter prestane da radi
 - Interfejs rutera prestane da radi
 - OSPF na ruteru prestane da radi
- DR i BDR treba da budu ruteri većih performansi kako uticati?
 - Bitan je redosled uključivanja rutera

Primer:

- Inicijalno stanje,
 svi ruteri imaju iste prioritete:
 DR C, BDR B
- Ruter C se isključuje:
 DR B, BDR A
- Dodaje se ruter D
 sa najvećom IP adresom:
 DR B, BDR A
- Ruter C se ponovo uključuje (nije prikazano):
 DR – B, BDR – A
- Ako padne ruter A, BDR postaje ruter D

Prenos SLA u Ethernet mreži

- DROthers ruteri šalju LSA na multikast adresu 224.0.0.6 (AllDRouters)
- DR i BDR ruteri "slušaju" saobraćaj na *AllDRouters* multikast adresi i primaju LSA

- Samo DR (ne i BDR) prosleđuje LSA paket na multikast adresu 224.0.0.5 (AllSPFRouters)
- Svi OSPF ruteri "slušaju" saobraćaj na AllSPFRouters multikast adresi i primaju LSA

- Cena (Cost)
 - Izvedena iz propusnog opsega veze bandwidth
 cena = 10⁸ / bandwidth
 - Manja cena, veći prioritet
 - Propusni opseg se definiše na interfejsu rutera
 - Ne utiče na stvarnu brzinu veze
 - Služi samo za određivanje cene veze

Interface Type	10 ⁸ /bps = Cost
Fast Ethernet and faster	10 ⁸ /100,000,000 bps = 1
Ethernet	10 ⁸ /10,000,000 bps = 10
EI	10 ⁸ /2,048,000 bps = 48
T1	10 ⁸ /1,544,000 bps = 64
128 kbps	10 ⁸ /128,000 bps = 781
64 kbps	10 ⁸ /64,000 bps = 1562
56 kbps	10 ⁸ /56,000 bps = 1785

 Predefinisana vrednost za serijske interfejse je 1544 kbps (T1 linija) nezavisno od toga na kojoj brzini je veza uspostavljena

Differences Between Default and Actual Bandwidth

- Cena putanje do mreže kumulativna cena svih linkova na putanji
- Imamo neoptimalno rutiranje ako ne postavimo stvarnu metriku

- Uspostavljanje željene metrike u OSPF mreži:
 - Definisanje stvarne brzine na interfejsima

```
R1 (config) #inter serial 0/0/0
R1 (config-if) #bandwidth 64
R1 (config-if) #inter serial 0/0/1
R1 (config-if) #bandwidth 256
R1 (config-if) #end
R1 #show ip ospf interface serial 0/0/0
Serial 0/0 is up, line protocol is up
Internet Address 192.168.10.1/30, Area 0
Process ID 1, Router ID 10.1.1.1, Network Type POINT_TO_POINT, Cost: 1562
Transmit Delay is 1 sec, State POINT_TO_POINT,
<output omitted>
```

Definisanje konkretne cene na interfejsima

```
R1(config) #inter serial 0/0/0
R1(config-if) #ip ospf cost 1562
R1(config-if) #end
R1#show ip ospf interface serial 0/0/0
Serial0/0 is up, line protocol is up
Internet Address 192.168.10.1/30, Area 0
Process ID 1, Router ID 10.1.1.1, Network Type POINT_TO_POINT, Cost: 1562
Transmit Delay is 1 sec, State POINT_TO_POINT,
<output omitted>
```

OSPF oblasti - Areas

- Podela mreže na oblasti, u dva nivoa hijerarhije:
 - Centralna oblast Area 0 (Backbone Area, Transit Area)
 - Periferne oblasti Area n (n celobrojna vrednost)
- Sve periferne oblasti se povezuju isključivo na centralnu oblast

34

OSPF vrste rutera

- Vrste rutera prema mestu i ulozi u oblasti:
 - ABR (Area Border Router)
 granični ruter između oblasti (centralne i periferne)
 - ASBR (Autonomous System Boundary Router)
 granični ruter između OSPF domena i nekog drugog ruting domena
 - Internal Router interni ruter koji pripada samo jednoj oblasti

Vrste LSA

- Vrste LSA prema načinu oglašavanja u i prenošenju između oblasti:
 - Router LSA tip 1
 - Network LSA tip 2
 - Summary LSA tip 3 i 4
 - External LSA tip 5

Vrste LSA

- Router LSA tip 1 (u ruting tabeli označene sa "O" intra-area)
 - Generišu svi ruteri, daju informacije o svim interfejsima
 - Propagiraju unutar jedne oblasti, ne prenose se između oblasti
- Network LSA tip 2 (u ruting tabeli označene sa "O" intra-area)
 - Generiše DR ruter oglašava se Ethernet mreža prema ostalim ruterima u oblasti
 - Propagiraju se unutar jedne oblasti, ne prenose se između oblasti
- Primer:

Vrste LSA

- Summary LSA tip 3 i 4 (u ruting tabeli označene sa "O IA" inter-area)
 - Tip 3 LSA u koje se pretvaraju Router LSA (tip 1) i Network LSA (tip 2) na ABR
 - Informacije o lokalnim linkovima i mrežama, koje ABR iz jedne oblasti prenosi kroz Area 0 i preko drugih ABR unose se u druge oblasti
 - Tip 4 LSA koje oglašava ASBR rutera za svoje interfejse (informacije kako mu pristupiti)
- Smanjenje flooding-a
 - Router LSA i Network LSA se na ABR pretvaraju u Summary LSA i prenosi se u sve oblasti
 - Promene u jednoj oblasti ne preračunava se SPF algoritam u drugim oblastima
 - Cilj je agregirati sve IP mreže iz jedne oblasti dodatno se rasterećuju druge oblasti

Vrste LSA

- External LSA tip 5 (u ruting tabeli označene sa "O E1" i "O E2")
 - Informacije o mrežama van OSPF domena, koje generiše ASBR i ubacuje OSPF
 - Dve vrste:
 - O E1 na metriku iz drugog ruting domena dodaje se OSPF metrika (kumulativna cena)
 - O E2 na metriku iz drugog ruting domena NE dodaje se OSPF metrika, nepromenjena u svim oblastima

Vrste oblasti

- Podela oblasti prema vrsti LSA paketa koje u njih ulaze
- Standard Area (Ordinary) obična oblast
 - Unutra sadrži Router LSA i Network LSA
 - Prihvata sve vrste LSA ulaze i Summary i External LSA
- Backbone Area je uvek Standard Area

Vrste oblasti

Stub Area

- Periferna oblast, ne prima External LSA (E1 i E2)
- Sadrži samo lokalne LSA unutar ove oblasti intra-area LSA
- ABR ruteri automatski generišu difoltnu rutu i ubacuju je u oblast
 - Za saobraćaj prema odredištima van OSPF domena
- Stub fleg mora biti postavljen na svim ruterima u Stub Area

Vrste oblasti

Totally Stubby Area

- Periferna oblast, ne prima ni External LSA ni Summary LSA
- Sadrži samo lokalne LSA unutar ove oblasti intra-area LSA
- ABR ruteri automatski generišu difoltnu rutu i ubacuju je u oblast
 - Za saobraćaj prema odredištima van OSPF domena
- Stub flag mora biti postavljen na svim ruterima u Totally Stubby Area

Virtuelni linkovi

- Virtuelni linkovi
 - Mogućnost stvaranja logičkih veza (tunela) do ABR-a kroz neku drugu oblast
- Kada ne postoji fizička veza između periferne i centralne oblasti
 - Fizičko povezivanje jedne periferne oblasti na drugu perifernu oblast
 - Virtuelno (logičko) povezivanje periferne oblasti na centralnu oblast

Virtuelni linkovi

- Virtuelni linkovi između dva dela centralne oblasti
 - Kada ne postoji fizička veza unutar centralne oblasti
- Primer
 - spajanje dva OSPF domena

OSPF – primer konfiguracije

1. korak - konfigurisanje OSPF procesa na Cisco ruteru:

R(config) #router ospf process-id

 process-id – broj od 1 do 65535, lokalno značenje samo na tom ruteru, nezavisno od drugih rutera (može biti različito na drugim ruterima)

OSPF – primer konfiguracije

2. korak - Konfigurisanje mreža koje se oglašavaju u OSPF domenu

R(config-router) #network network-address wildcard area area-id

- network-address IP adresa mreže
- wildcard maska u inverznom obliku vodeće nule, prateće jedinice!
- area-id broj oblasti, globalno značenje, usaglašen na svim ruterima

OSPF – primer konfiguracije

Listanje ruting tabele:

R1#show ip route

```
R1#show ip route
Codes: <some code output omitted>
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
Gateway of last resort is not set
     192.168.10.0/30 is subnetted, 3 subnets
        192.168.10.0 is directly connected, Serial0/0/0
        192.168.10.4 is directly connected, Serial0/0/1
0
        192.168.10.8 [110/128] via 192.168.10.2, 14:27:57, Serial0/0/0
                                                                            10.10.10.0/24
     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
        172.16.1.32/29 [110/65] via 192.168.10.6, 14:27:57, Serial0/0/1
0
                                                                               .1
                                                                                  Fa0/0
        172.16.1.16/28 is directly connected, FastEthernet0/0
C
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
                                                                                     S0/0/1
        10.10.10.0/24 [110/65] via 192.168.10.2, 14:27:57, Serial0/0/0
0
                                                                                     DCE
C
        10.1.1.1/32 is directly connected, Loopback0
                                                                                          192,168,10,8/30
                                                           192.168.10.0/30
                                                              S0/0/0
                                                                                                 S0/0/1
                                                              DCE
                                                       Fa0/0
                                                                                                        Fa0/0
                                                                                            .6
                                                                     S0/0/1
                                                         .17
                                                                                                        33
                                                                                            S0/0/0
                                                                          192.168.10.4/30
                                                                                            DCE
                                            172.16.1.16/28
                                                                                                           172.16.1.32/29
```

- Redistribucija ruta
 - Razmena ruta između različitih protokola rutiranja
- Potreba
 - Obezbediti IP konektivnost mreža iz različitih ruting domena
- Sprovođenje

Jedan ruting domen učitava rute iz drugog ruting domena i nastavlja da

- Connected rute
 - Automatski se uključuju u ruting domen ako su obuhvaćene konfiguracijom ruting protokola (komanda network kod cisco rutera)
- Sve ostale rute zahtevaju manuelno konfigurisanje redistribucije iz jednog u drugi ruting domen
 - Statičke rute, RIP, OSPF, IS-IS, BPG, EIGRP itd.

- Primer bez redistribucije ruta
 - Nema razmena ruta između različitih ruting domena
 - Nije definisana difoltna ruta
 - Nema konektivnosti i razmene saobraćaja

R3: Ruting tabela		
Mreža	Next-hop	RP
10.20.11.0/24	10.1.1.22	R
10.20.22.0/24	10.1.1.26	R
10.20.33.0/24	10.1.1.26	R

R1: Ruting tabela		
Mreža	Next-hop	RP
10.10.1.0/24	10.1.1.2	0
10.10.2.0/24	10.1.1.2	0
10.10.3.0/24	10.1.1.2	0
10.20.11.0/24	10.1.1.22	R
10.20.22.0/24	10.1.1.26	R
10.20.33.0/24	10.1.1.26	R

- Potrebno je konfigurisati redistribuciju ruta na ruteru R1, da bi ostali ruteri saznali sve rute iz oba ruting domena
- Nakon obostrane redistribucije (RIP u OSPF, OSPF u RIP)
 - Sve rute u na ruteru R2 su OSPF rute (eksterne)
 - Sve rute u na ruteru R3 su RIP rute

Literatura

 Wendell Odom "CCNA - Cisco official exam certification guide" Cisco Press

James Kurose, Keith Ross
 "Computer Network - A Top-Down Approach"

 James Kurose, Keith Ross "Umrežavanje računara: Od vrha ka dnu" prevod 7. izdanja CET

