ESPECTROSCOPÍA GAMMA CON DETECTORES DE CENTELLEO

Juan Alejandre Farauste TE II, Nuclear (Universidad de Sevilla) Viernes 18 de junio de 2021

ÍNDICE

- I. OBJETIVOS
- 2. INTRODUCCIÓN TEÓRICA
- 3. MONTAJE E INSTRUMENTAL
- 4. RESULTADOS
- 5. CONCLUSIONES

OBJETIVOS

- Entender el uso de los detectores de centelleo (NaI(TI)) ante la presencia de radiación γ .
- Realizar la calibración en energía, resolución y eficiencia del detector.
- Interpretar la representación gráfica de los espectros de muestras conocidas.
- Identificar una muestra desconocida usando su espectro.
- Calcular el coeficiente de atenuación μ en el plomo.

INTRODUCCIÓN TEÓRICA

RAYOS GAMMA

- Núcleo caracterizado por niveles discretos de energía.
- Las transiciones entre niveles dan lugar a la emisión u absorción de fotones altamente energéticos (desde decenas de KeV a MeV).
- Emisión prácticamente instantánea.
- Pueden ser generados como consecuencia de la desexcitación de un núcleo hijo tras un proceso de desintegración α o β .

RAYOS GAMMA

- Núcleo caracterizado por niveles discretos de energía.
- Las transiciones entre niveles dan lugar a la emisión u absorción de fotones altamente energéticos (desde decenas de KeV a MeV).
- Emisión prácticamente instantánea.
- Pueden ser generados como consecuencia de la desexcitación de un núcleo hijo tras un proceso de desintegración α o β .

DETECTOR DE CENTELLEO

- Al paso de la radiación se producen pares
 e⁻ hueco ∝ energía depositada
- Se recombinan → fotones de baja energía

- Radiación de I MeV se generan aprox.:
- > 50.000 pares
- ➤ 40.000 fotones de centelleo

DETECTOR DE CENTELLEO

- En el fotocátodo son transformados en electrones.
- Eficiencia no ideal → menos e-
- Se focalizan y multiplican usando dinodos
- Pulso de corriente proporcional a energía depositada
- Radiación de I MeV se generan aprox.:
- > 50.000 pares
- > 40.000 fotones de centelleo
- > 30.000 fotones en el fotocátodo
- > 6000 fotoelectrones convertidos por el foto cátodo

Factor multiplicativo $x10^7 - x10^{10}$

INTERACCIÓN DE γ CON LA MATERIA

Efecto Compton
$$E_{e^{-}} = \frac{E_{\gamma} \left(\frac{E_{\gamma}}{m_{0}c^{2}}\right) (1 - \cos \theta)}{1 + \left(\frac{E_{\gamma}}{m_{0}c^{2}}\right) (1 - \cos \theta)}$$

$$0 \le E_{e^{-}} \le E_{BC}$$

$$E_{e^{-}} E_{\gamma} E$$

INTERACCIÓN DE γ CON LA MATERIA (DEFECTOS EN EL DETECTOR)

- I. Rayos X del blindaje
- 2. Retrodispersión
- 3. Aniquilación y picos de escape

MONTAJE E INSTRUMENTAL

MONTAJE EXPERIMENTAL

MUESTRAS RADIACTIVAS

Fuente	$T_{1/2}$	Emisiones Principales (keV)	Intensidad (%)
¹³⁷ Cs	30.2a	661.660	84.7
⁶⁰ Co	5.3a	1173.238	99.89
		1332.502	99.983
⁵⁷ Co	271.8d	122.0614	85.68
		136.4743	10.67
²² Na	2.6a	511.003	180.5
		1274.542	99.93

3 min de medida de cuentas por muestra (cuestión de la circunstancia COVID)

RESULTADOS

ESPECTROS

Fuente	Eγ (keV)
¹³⁷ Cs	661.660
⁶⁰ Co	1173.238 1332.502
⁵⁷ Co	122.0614
²² Na	511.003 1274.542

CALIBRACIÓN EN ENERGÍA

CALIBRACIÓN EN ENERGÍA

Pico	Canal	E_{tab} (keV)
γ_2	47	129,268
γ_1	230	666,077
γ_3	398	1173
γ_4	449	1333
pares	180	511
γ_1	432	1275
	γ ₂ γ ₁ γ ₃ γ ₄ pares	$ \begin{array}{ccccccccccccccccccccccccccccccccc$

Datos y parámetros de ajuste

$y(keV) = m \cdot x + b$		
m(keV/canal) (2.999 ± 0.021)		
b(keV)	(-20.8 ± 6.7)	
r^2	0.9998	

INTERPRETACIÓN ESPECTRO DE Co57

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
γ_2	120,201	122,1	1,56

INTERPRETACIÓN ESPECTRO DE Co60

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
γ ₃	1166,96	1173	0,51
γ_4	1325,93	1333	0,53

INTERPRETACIÓN ESPECTRO DE Cs134

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
γ_1	666,077	661,7	0,66

INTERPRETACIÓN ESPECTRO DE Na²²

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
Creación Y destrucción de pares	513,112	511	0,41
γ_1	1271,94	1275	0,24

CALIBRACIÓN EN RESOLUCIÓN

Proceso de formación de carga estocástico (proceso de Poisson)

Desviación estándar \sqrt{N}

$$G(H) = \frac{A}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(H - H_0)^2}{2\sigma^2}\right)$$

FWHM

 $FWHM = 2\sqrt{2\ln 2}\,\sigma$

CALIBRACIÓN EN RESOLUCIÓN

$$(FWHM)^2 = a \cdot E + b$$

$$R = \frac{FWHM}{H_0} = \frac{\sqrt{a + b \cdot E}}{E}$$

$$(FWHM)^2 = 6.356(0.893)[keV] \cdot E - 474(854)[keV^2]$$

CALIBRACIÓN EN RESOLUCIÓN

$$(FWHM)^2 = a \cdot E + b$$

$$R = \frac{FWHM}{H_0} = \frac{\sqrt{a + b \cdot E}}{E}$$

$$(FWHM)^2 = 6,356(0,893)[keV] \cdot E - 474(854)[keV^2]$$

CALIBRACIÓN EN EFICIENCIA

Muestra	$T_{1/2}$	$E_{\gamma}(keV)$	I (%)
⁵⁷ Co	271,8 días	121,97	85,68
⁶⁰ Co	5,3 años	1173,23 1332,48	99,89 99,98
¹³⁷ Cs	30,2 años	661,66	84,7
²² Na	2,6 años	511,01 1274,53	180,5 99,93

$$\varepsilon_{abs} \equiv \frac{Pulsos\ registrados}{Desintegraciones} = \frac{n-f}{I\cdot A}$$

$$\ln(\varepsilon) = -0.391(0.183) \cdot \left(\ln(E_{\gamma})\right)^2 + 3.616(2) \cdot \ln(E_{\gamma}) - 11.355(6.6)$$

CALIBRACIÓN EN EFICIENCIA

Muestra	$T_{1/2}$	$E_{\gamma}(keV)$	I (%)
⁵⁷ Co	271,8 días	121,97	85,68
⁶⁰ Co	5,3 años	1173,23 1332,48	99,89 99,98
¹³⁷ Cs	30,2 años	661,66	84,7
²² Na	2,6 años	511,01 1274,53	180,5 99,93

$$\varepsilon_{abs} \equiv \frac{Pulsos\ registrados}{Desintegraciones} = \frac{n-f}{I\cdot A}$$

$$\ln(\varepsilon) = -0.391(0.183) \cdot \left(\ln(E_{\gamma})\right)^2 + 3.616(2) \cdot \ln(E_{\gamma}) - 11.355(6.6)$$

INTERPRETACIÓN ESPECTRO DE LA MUESTRA PROBLEMA

$$A_{exp} = 5.34 \cdot 10^5 \, Bq$$
 $A_{teo} = 2.731 \cdot 10^4 \, Bq$

Pico	$E_{exp}(keV)$	E_{tab} (keV)	ε(%)
γ_3	78,211	81	3,44
γ_7	303,159	302,9	0,085
γ ₈	360,146	356	1,16

COEFICIENTE DE ATENUACIÓN EN Pb

$$I = I_0 e^{-\mu_M \cdot \rho \cdot x}$$

Valores de ρx de las placas (g/cm ²)		
Α	1,13	
В	3,4	
С	6,8	
D	10,77	

COEFICIENTE DE ATENUACIÓN EN Pb

$$\ln\left(\frac{N}{N_0}\right) = -\mu_M(\rho \cdot x)$$

$$\mu_{M} = 0.0974 \pm 0.0042 \ cm^{2}/g$$

$$\mu = 1.276 \pm 0.055 \ cm^{-1}$$

$$\mu_M(tab) = 0.105 \ cm^2/g$$
 $\epsilon(\%) = 7.2\%$

CONCLUSIONES

CONCLUSIONES

- Se han explicado los mecanismos de detección de rayos γ en el detector de centelleo además de comentado su funcionamiento.
- Hemos podido llevar a cabo con satisfacción los 3 tipos de calibración requeridos.
- Se han interpretado todos los espectros y con la conversión en energía hemos podido determinar la muestra problema con su espectro.
- Por último hemos determinado el coeficiente de atenuación del Pb dentro de las cotas de error calculadas con buena exactitud.

FIN

Muchas gracias por su atención