3	(a)	Define <i>power</i> .	

.....[1]

(b) A cyclist travels along a horizontal road. The variation with time t of speed v is shown in Fig. 3.1.

Fig. 3.1

(i)

The cyclist maintains a constant power and after some time reaches a constant speed of $12\,\mathrm{m\,s^{-1}}$.

Describe and explain the motion of the cyclist.				
[3				

(ii)	When the cyclist is moving at a constant speed of $12ms^{-1}$ the resistive force is 48 N. Show that the power of the cyclist is about 600 W. Explain your working.
(iii)	Fig. 3.1 to show that the acceleration of the cyclist when his speed is $8.0\mathrm{ms^{-1}}$ is about $0.5\mathrm{ms^{-2}}$.
(iv)	[2] The total mass of the cyclist and bicycle is 80 kg. Calculate the resistive force <i>R</i> acting on the cyclist when his speed is 8.0 m s ⁻¹ . the value for the acceleration
	given in (iii).
	R = N [3]
(v)	the information given in (ii) and your answer to (iv) to show that, in this situation, the resistive force R is proportional to the speed v of the cyclist.
	T41
	[1]