Advanced Artificial Intelligence

Lab 06

Outline

• More details on the content in lecture 06

Exercise

Details

Linear Regression Example

Cross Validation Example

Gradient Descent

Sklearn library

The sklearn library contains a lot of efficient tools for machine learning modeling including classification, regression, clustering and dimensionality reduction

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock

prices.

Algorithms: SVR, nearest neighbors,

random forest, and more...

Diabetes dataset

Number of Instances:	442
Number of Attributes:	First 10 columns are numeric predictive values
Target:	Column 11 is a quantitative measure of disease progression one year after baseline
Attribute Information:	 age age in years sex bmi body mass index bp average blood pressure s1 tc, total serum cholesterol s2 ldl, low-density lipoproteins s3 hdl, high-density lipoproteins s4 tch, total cholesterol / HDL s5 ltg, possibly log of serum triglycerides level s6 glu, blood sugar level

Linear Model

$$\hat{y}(w,x) = w_0 + w_1x_1 + \ldots + w_px_p$$

we designate the vector $w=(w_1,\ldots,w_p)$ as <code>coef_</code> and w_0 as <code>intercept_</code>.

Linear Regression

<u>LinearRegression</u> fits a linear model with coefficients $w=(w_1,\ldots,w_p)$ to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. Mathematically it solves a problem of the form:

$$\min_{w}||Xw-y||_2^2$$

```
from sklearn import linear_model
l_reg = linear_model.LinearRegression()

X1 = [[0,0],[1,1],[2,2]]
y1 = [0,1,2]

l_reg.fit(X1,y1)
print(l_reg.coef_,l_reg.intercept_)

[0.5 0.5] 2.220446049250313e-16
```

Load the diabetes dataset

```
from sklearn import datasets
 diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
 print(diabetes_X.shape,diabetes_y.shape)
 print(diabetes_X[:3])
 print(diabetes_y[:3])
(442, 10) (442,)
[ 0.03807591  0.05068012  0.06169621  0.02187235  -0.0442235  -0.03482076
 -0.04340085 -0.00259226 0.01990842 -0.01764613]
[-0.00188202 -0.04464164 -0.05147406 -0.02632783 -0.00844872 -0.01916334
  0.07441156 -0.03949338 -0.06832974 -0.09220405]
-0.03235593 -0.00259226 0.00286377 -0.02593034]]
[151. 75. 141.]
```

Split the diabetes dataset

```
import numpy as np
# Use only one feature
diabetes_X = diabetes_X[:, np.newaxis, 2]

# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]
```

```
import numpy as np
 print(diabetes X[:3])
 print('*****')
 print(diabetes X[:3,2])
 print('*****')
 print(diabetes_X[:3, np.newaxis, 2])
-0.04340085 -0.00259226 0.01990842 -0.01764613]
[-0.00188202 -0.04464164 -0.05147406 -0.02632783 -0.00844872 -0.01916334
  0.07441156 -0.03949338 -0.06832974 -0.09220405]
-0.03235593 -0.00259226  0.00286377 -0.02593034]]
*****
[ 0.06169621 -0.05147406  0.04445121]
*****
[[ 0.06169621]
[-0.05147406]
[ 0.04445121]]
```

Train the model and predict

```
from sklearn import linear model
 from sklearn.metrics import mean_squared_error
 # Create linear regression object
 regr = linear model.LinearRegression()
 # Train the model using the training sets
 regr.fit(diabetes X train, diabetes y train)
 # Make predictions using the testing set
 diabetes y pred = regr.predict(diabetes X test)
 print('Mean squared error: %.2f'
       % mean squared error(diabetes y test, diabetes y pred))
Mean squared error: 2548.07
```

1-Dimension feature

We only use the one feature of the diabetes dataset, in order to illustrate the data points within the two-dimensional plot.

<u>Linear Regression Example —</u> scikit-learn 1.0.1 documentation

Visualize the model

```
print('Coefficients:', regr.coef_,'intercept:',regr.intercept_)
import matplotlib.pyplot as plt
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
```

Coefficients: [938.23786125] intercept: 152.91886182616167

Details

• Linear Regression Example

Cross Validation Example

Gradient Descent

Cross Validation

We use CV to select best hyperparameters

Load the dataset

Let's load the iris data set to fit a linear support vector machine on it

```
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm

>>> X, y = datasets.load_iris(return_X_y=True)
>>> X.shape, y.shape
((150, 4), (150,))
```

Split Dataset, Train and Test

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier

Validation Set

By partitioning the available data into three sets, we drastically reduce the number of samples which can be used for learning the model

K-Fold cross validation

- A model is trained using k-1 of the folds as training data;
- the resulting model is validated on the remaining part of the data

5-fold CV

```
>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1, random_state=42)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores
array([0.96..., 1. , 0.96..., 0.96..., 1. ])
```

Estimate the accuracy by splitting the data, fitting a model, and computing the score for 5 consecutive times (with different splits each time)

Leave One Out (LOO)

```
>>> from sklearn.model selection import LeaveOneOut
\rightarrow \rightarrow X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
         print("%s %s" % (train, test))
[1 2 3] [0]
                                                                 Each learning set is created by
[0 2 3] [1]
                                                                 taking all the samples except one,
                                                                 the test set being the sample left
[0 1 3] [2]
                                                                 out.
[0 1 2] [3]
```

Details

• Linear Regression Example

Cross Validation Example

Gradient Descent

$f(x) = x^*x$


```
f(x) = x^2 f'(x) = 2x step = -0.1
```

```
def \mathbf{f}(x):
    return x*2
def df(x):
    return 2*x
step = -0.1
x = 3
for i in range(20):
    print(x)
    x = df(x)*step+x
```

```
3
2.4
1.92
1.536
1.22880000000000001
0.98304000000000001
0.78643200000000001
0.62914560000000001
0.50331648000000001
0.402653184000000005
0.32212254720000005
0.25769803776000005
0.20615843020800004
0.16492674416640002
0.13194139533312002
0.10555311626649602
0.08444249301319681
0.06755399441055746
0.05404319552844596
0.04323455642275677
```

$f(x, y) = 2x^2 + y^2$

$$\frac{\partial f}{\partial x} = 4x$$
$$\frac{\partial f}{\partial y} = 2y$$

$$egin{aligned} egin{aligned} egin{aligned} orall f(x,y) &= \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight]^T \ egin{aligned} egin{aligned} egin{aligned} egin{aligned} f(x,y) &= \left[4x, 2y
ight]^T \end{aligned} \end{aligned}$$

```
def f(x,y):
    return 2*x*x+y*y
def dx(x):
    return 4*x
def dy(y):
    return 2*y
step = -0.1
x = 3
V = 5
for i in range(20):
    print(f(x,y))
    x = dx(x)*step+x
    y = dy(y)*step+y
```

```
43
22.47999999999997
12.5728
7.393408
4.496634879999999
2.7931936768
1.7571690004480003
1.1136171773132804
0.7087654396100611
0.45218804195708123
0.2888884846709232
0.1847043598040117
0.11814445293583098
0.07558856843698666
0.04836808648057122
0.03095248031268949
0.019808473187565876
0.012677021723522221
0.008113149501107041
0.005192363696007523
```

n-variable function

In the same way, if we get a function with 4 variables, we would get a gradient vector with 4 partial derivatives.

Generally, an n-variable function results in an ndimensional gradient vector.

$$f(x_1,x_2,\ldots,x_n)=orall f=\left[rac{\partial}{\partial x_1},rac{\partial}{\partial x_2},\ldots,rac{\partial}{\partial x_n}
ight]$$

Performance measure

$$Err = rac{1}{N} \sum_{\mu}^{ ext{Ground}} (y^{\mu} - (W_1 X^{\mu} + W_0))^2 rac{1}{N} \sum_{\mu}^{ ext{Ground}} (y^{\mu} - (W_1 X^{\mu} + W_0))^2$$

MSE

Partial derivatives

$$Err = rac{1}{N} \sum_{\mu}^{ ext{Ground}} (y^{\mu} - (W_1 X^{\mu} + W_0))^2$$
 Predicted values

MSE

$$egin{align} rac{\partial}{\partial W_0} &= -rac{2}{N} \sum_{\mu} (y^{\mu} - (W_1 X^{\mu} + W_0)) \ rac{\partial}{\partial W_1} &= -rac{2}{N} \sum_{\mu} X imes (y^{\mu} - (W_1 imes X^{\mu} + W_0)) \end{aligned}$$

The gradient

$$orall Err = \left[rac{\partial}{\partial W_0}, rac{\partial}{\partial W_1}
ight]^T$$

$$W0 = W0 - \eta(\frac{\partial}{\partial W0})$$

$$W1 = W1 - \eta(\frac{\partial}{\partial W1})$$

The gradient

```
for epoch in range(total_epochs):
   for X batch, y batch in next batch(Xs train, Ys train, batch size=batch size):
       # linearly combine input and weights
       train_pred = W0 + np.dot(X_batch, W1)
        # calculate the SSE between predicted and true values
       train_err = mean_squared_error(y_batch, train_pred)
       # calculate the gradients with respect to W0 and W1
       DW0 = -(2/batch_size) * sum(y_batch.squeeze() - train_pred.squeeze())
       DW1 = -(2/batch_size) * sum(X_batch.squeeze() * (y_batch.squeeze() - train_pred.squeeze()))
        # update W0 and W1 in the opposite direction to the gradient
       W0 = W0 - 1r * DW0
       W1 = W1 - 1r * DW1
```

The gradient

Exercise

1.Compare linear regression and SVM using the sklearn library

2.Try to implement linear regression from scratch with Python