© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Les réflexions engendrent O(E)

- **I.1** On a $y x \neq 0$ donc dim vect(y x) = 1. Comme $H = \text{vect}(y x)^{\perp}$, dim H = n dim vect(y x) = n 1. Donc H est un hyperplan de E.
- **I.2** La projection de x sur $\operatorname{vect}(y-x)$ est $z=\frac{(y-x|x)}{\|y-x\|^2}(y-x)$. Or $\|y-x\|^2=\|y\|^2-2(x|y)+\|x\|^2=2(\|x\|^2-(x|y))$ car $\|y\|=\|x\|$ et donc $\|y-x\|^2=2(x|x-y)$. Finalement $z=-\frac{1}{2}(y-x)$. On en déduit que s(x)=x-2z=y. On pouvait également remarquer que y-x et y+x sont orthogonaux. En effet, $(y-x|y+x)=\|y\|^2-\|x\|^2=0$. D'une part, $y-x\in H^\perp$ donc s(y-x)=x-y. D'autre part, $y+x\in \operatorname{vect}(y-x)^\perp=H$ donc s(y+x)=y+x. Ainsi s(y)-s(x)=x-y et s(y)+s(x)=y+x. En soustrayant ces deux égalités membre à membre, on obtient bien s(x)=y.
- **I.3 I.3.a** Si $n_u = n$, alors $Ker(u Id_E) = E$ et donc $u = Id_E$.
 - **I.3.b** Si $n_u < n$, alors $\operatorname{Ker}(u \operatorname{Id}_{\operatorname{E}}) \subseteq \operatorname{E}$. Il existe donc $x_0 \in \operatorname{E} \setminus \operatorname{Ker}(u \operatorname{Id}_{\operatorname{E}})$. On a bien $u(x_0) \neq x_0$.
 - **I.3.c** Comme u est une isométrie vectorielle, $||u(x_0)|| = ||x_0||$. D'après la question **I.2**, $u(x_0)$ est l'image de x_0 par la réflexion par rapport à l'hyperplan $\text{vect}(u(x_0) x_0)^{\perp}$.
 - **I.3.d** D'après la question précédente, $I_s = \text{Ker}(s \text{Id}_E) = \text{vect}(u(x_0) x_0)^{\perp}$. Soit $x \in I_u$. On a donc x = u(x). Alors

$$(x|u(x_0) - x_0) = (x|u(x_0)) - (x|x_0) = (u(x)|u(x_0)) - (x|x_0) = 0$$

car u conserve le produit scalaire. Ainsi $x \in \text{vect}(u(x_0) - x_0)^{\perp} = \text{Ker}(s - \text{Id}_E)$. D'où $I_u \subset \text{Ker}(s - \text{Id}_E)$.

- **I.3.e** Soit $x \in I_u$. Alors u(x) = x et donc s(u(x)) = s(x). Or $I_u \subset I_s$ donc s(x) = x. Ainsi $I_u \subset I_{s \circ u}$. De plus, $s(u(x_0)) = s(s(x_0)) = x_0$ car s est une symétrie donc $u_0 \in I_{s \circ u}$. Or $x_0 \notin I_u$ donc $I_u \subsetneq I_{s \circ u}$ puis dim $I_u < dim I_{s \circ u}$ i.e. $n_u + 1 \le n_{s \circ u}$.
- **I.4** Soit HR(k) l'hypothèse de récurrence suivante :

Tout $u \in O(E)$ tel que $n_u = k$ peut s'écrire comme la composée d'au plus n - k réflexions.

HR(n) est vraie puisque si $n_u = n$, alors $u = Id_E$ s'écrit comme le produit de 0 réflexion.

Soit $k \in [1, n]$ et supposons HR(l) vraie pour $k \le l \le n$. Soit $u \in O(E)$ tel que $n_u = k - 1$. La question précédente montre qu'il existe une réflexion s tel que $n_{sou} \ge n_u + 1 = k$. Ainsi $s \circ u$ peut s'écrire comme le produit d'au plus $n - n_{sou}$ réflexions. Or $u = s \circ s \circ u$ donc u s'écrit comme le produit d'au plus $n - n_{sou} + 1$ réflexions. On conclut en remarquant que $n - n_{sou} + 1 \le n - n_u$, ce qui prouve que HR(k - 1) est vraie.

Par récurrence descendante forte, HR(k) est vraie pour $0 \le k \le n$.

Partie II - Automorphimes orthogonaux en dimension 3

- **II.1** D'après les résultats de la première partie, u peut s'écrire comme la composée de k réflexions avec $k \le 2$. On ne peut avoir k = 0, sinon on aurait $u = \text{Id}_E$ et $n_u = 3$.
 - On ne peut pas non plus avoir k = 1, sinon u serait une réflexion et on aurait $n_u = 2$.

Ainsi u est la composée de deux réflexions. Ces deux réflexions sont distinctes sinon on aurait $u = Id_E$ et $n_u = 3$. *u* est donc une rotation.

- **II.2** u est la composée d'au plus 1 réflexion. u ne peut être la composée de 0 réflexion, sinon on aurait $u = \text{Id}_{E}$ et $n_u = 3$. u est donc une réflexion.
- **II.3 II.3.a** u est la composée d'au plus trois réflexions. u ne peut être la composée de 0 réflexion (sinon $n_u = 0$), ni la composée d'une réflexion (sinon $n_u = 2$), ni la composée de deux réflexions (sinon u est une rotation et $n_u = 1$ ou $n_u = 3$ suivant que l'angle est nul ou non). Ainsi u est la composée de trois réflexions.
 - II.3.b Comme u conserve le produit scalaire, on vérifie de manière immédiate que -u conserve également le produit scalaire. Ainsi -u est une isométrie vectorielle. Comme u est la composée de trois réflexions, det(u) = $(-1)^3 = -1$ puis $\det(-u) = (-1)^3 \det(u) = 1$. Donc -u est une isométrie vectorielle positif donc une rotation.

II.3.c Il existe donc une base orthonormée directe \mathcal{B} de E et un angle α tel que $\operatorname{mat}_{\mathcal{B}}(-u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$. Dans cette même base, la matrice de u est donc $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -\cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & -\cos \alpha \end{pmatrix}$. Posons $\theta = \alpha + \pi$. De la trigonométrie

élémentaire montre que $\operatorname{mat}_{\mathcal{B}}(u) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$.

II.3.d Soit *s* l'endomorphisme de matrice $S = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ dans la base \mathcal{B} et *r* l'endomorphisme de matrice

 $R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ dans cette même base. Comme \mathcal{B} est orthonormée directe, s est une réflexion et r une

= RS = SR, ce qui signifie que $u = r \circ s = s \circ r$.

II.4 Supposons $D = P^{\perp}$. Soit $x \in D$. Alors $s \circ r(x) = s \circ r(x) = -x$. Soit $x \in P$. Alors $s \circ r(x) = r \circ s(x) = r(x)$. Ainsi r o s et s o r coïncident sur D et P donc sur E puisque D et P sont supplémentaires dans E. Supposons que s et r commutent. Soient $x \in D$ et $y \in P$. Remarquons que $r \circ s(x) = s \circ r(x) = s(x)$. On en déduit que $s(x) \in D$. Il existe donc $\lambda \in \mathbb{R}$ tel que $s(x) = \lambda x$. De plus, s étant une isométrie vectorielle, $(x|y) = (s(x)|s(y)) = -\lambda(x|y)$ i.e. $(1 + \lambda)(x|y) = 0$. Si $\lambda = -1$, alors s(x) = -x et donc $x \in P^{\perp}$ d'où (x|y) = 0. Sinon, on obtient directement (x|y) = 0. Ainsi P et D sont orthogonaux. Comme dim P + dim D = 3, on en déduit que l'un est l'orthogonal de l'autre.