

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 April 2001 (12.04.2001)

PCT

(10) International Publication Number
WO 01/25224 A1

(51) International Patent Classification⁷: C07D 311/22,
A61K 31/353, A61P 9/06

SHIGETA, Yukihiko [JP/JP]; c/o Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274-8507 (JP). TSUKAGOSHI, Toru [JP/JP]; c/o Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274-8507 (JP). YAMASHITA, Toru [JP/JP]; c/o Nissan Chemical Industries, Ltd., Research Station of Biological Science, 1470, Ohaza Shiraoka, Shiraoka-machi, Minamisaitama-gun, Saitama 349-0294 (JP).

(21) International Application Number: PCT/JP00/06877

(74) Agents: HANABUSA, Tsuneo et al.; c/o Hanabusa Patent Office, Ochanomizu Square B, 6, Kandasurugadai 1-chome, Chiyoda-ku, Tokyo 101-0062 (JP).

(22) International Filing Date: 3 October 2000 (03.10.2000)

(81) Designated States (national): AU, CA, CN, CZ, HU, IL, KR, LT, NO, NZ, RO, RU, SI, SK, UA, US.

(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(26) Publication Language: English

Published:

(30) Priority Data:
11/283861 5 October 1999 (05.10.1999) JP

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

(71) Applicant (for all designated States except US): NISSAN CHEMICAL INDUSTRIES, LTD. [JP/JP]; 7-1, Kandanishiki-cho 3-chome, Chiyoda-ku, Tokyo 101-0054 (JP).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANIKAWA, Keizo [JP/JP]; c/o Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274-8507 (JP). OHRAI, Kazuhiko [JP/JP]; c/o Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274-8507 (JP). YANAGIHARA, Kazufumi [JP/JP]; c/o Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274-8507 (JP).

(54) Title: 4-OXYBENZOPYRAN DERIVATIVE

WO 01/25224 A1

represents a hydrogen atom, a C₁₋₆ alkyl group or a C₃₋₆ cycloalkyl group, a nitro group or a cyano group; or a pharmaceutically acceptable salt thereof. And this invention also relates to a drug for treating arrhythmia having the prolongation effect on the functional refractory period comprising said compound or a pharmaceutically acceptable salt thereof as an active ingredient.

(57) Abstract: This invention relates to a 4-oxybenzopyran derivative of formula (I) wherein, R¹ and R² represent each independently a hydrogen atom, a C₁₋₆ alkyl group or a phenyl group; R³ represents a hydroxyl group or a C₁₋₆ alkylcarbonyloxy group; R⁴ represents a hydrogen atom, a C₃₋₆ cycloalkyl group, a C₁₋₆ alkyl group, a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkylaminocarbonyl group, a di-C₁₋₆ alkylaminocarbonyl group, an aryl group or a heteroaryl group; R⁵ represents a hydrogen atom or a C₁₋₆ alkyl group; X is absent or represents C=O or SO₂; R⁶

DESCRIPTION

4-OXYBENZOPYRAN DERIVATIVE

Technical Field

The present invention relates to 4-oxybenzopyran derivatives having a prolongation effect on the functional refractory period, which are used for treatments of arrhythmia in mammal including human beings.

Background Art

As benzopyran derivatives, there have been known 4-acylaminobenzopyran derivatives exemplified by Cromakalim (Japanese Patent Application Laid-Open No. Sho 58-67683). These 4-acylaminobenzopyran derivatives exemplified by Cromakalim are known to open an ATP sensitive K⁺ channel and to be effective for the treatment of hypertension or asthma, but there has not been any mention as to the treatment for arrhythmia based on the prolongation effect on the functional refractory period.

Now, conventional antiarrhythmic agents having the prolongation effect on the functional refractory period as a main function (such as Class I drugs of antiarrhythmic agent classification according to Vaughan Williams, or d-sotalol belonging to Class III) have highly dangerous arrhythmic inducing actions that can result in sudden death such as torsades de pointes based on extension of ventricular muscle action potential relating to the prolongation effect on the functional refractory period, which become the therapeutic problems. Thus, agents having less side effects are desired.

The inventors of the present invention have made an intensive study of compounds having the prolongation effect on the functional refractory period more selective for atrium muscle than for ventricular muscle, and found that the compound of the general formula (I) has a prolongation effect on the functional refractory period selective for atrium muscle without any influence on the refractory period of ventricular muscle and action potential

parameters.

Disclosure of Invention

The inventors of the present invention have studied eagerly 4-oxybenzopyran derivatives, and found that the compound of the formula (I) has the strong prolongation effect on the functional refractory period, and it is useful as an antiarrhythmic agent. The present invention has been made based on this finding.

The present invention relates to a 4-oxybenzopyran derivative of the formula (I)

wherein, R¹ and R² represent each independently a hydrogen atom; a C₁₋₆ alkyl group in which said alkyl group may be optionally substituted with a halogen atom, a C₁₋₆ alkoxy group or a hydroxyl group; or a phenyl group in which said phenyl group may be optionally substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C₁₋₆ alkyl group or a C₁₋₆ alkoxy group;

R³ represents a hydroxyl group or a C₁₋₆ alkylcarbonyloxy group;

R⁴ represents a hydrogen atom, a C₃₋₆ cycloalkyl group, a C₁₋₆ alkyl group, a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkylaminocarbonyl group or a di-C₁₋₆ alkylaminocarbonyl group in which said C₁₋₆ alkyl group, said C₁₋₆ alkylcarbonyl group, said C₁₋₆ alkylaminocarbonyl group and said di-C₁₋₆ alkylaminocarbonyl group may be each optionally substituted with a halogen atom, a C₁₋₆ alkoxy group, a C₁₋₆ alkoxy group substituted by a halogen atom; a carboxyl group, a C₁₋₆ alkoxycarbonyl group, a hydroxyl group, an aryl group or a heteroaryl group; in which said aryl group and said heteroaryl group may be optionally substituted with (R⁸)_n, in which R⁸ represents a halogen atom, a hydroxyl group, a C₁₋₆ alkyl group, a C₁₋₆ alkyl group substituted by a halogen atom or a C₁₋₆ alkoxy group; a C₁₋₆

alkoxy group, a C₁₋₆ alkoxy group substituted by a halogen atom; or R⁸ represents a nitro group, a cyano group, a formyl group, a formamide group, an amino group, a C₁₋₆ alkylamino group, a di-C₁₋₆ alkylamino group, a C₁₋₆ alkylcarbonylamino group, a C₁₋₆ alkylsulfonylamino group, an aminocarbonyl group, a C₁₋₆ alkylaminocarbonyl group, a di-C₁₋₆ alkylaminocarbonyl group, a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkoxycarbonyl group, an aminosulfonyl group, a C₁₋₆ alkylsulfonyl group, a carboxyl group or an arylcarbonyl group, m represents an integer of 1-3 and each R⁸ may same or different if m represents 2 or 3; or R⁴ represents an aryl group or a heteroaryl group in which said aryl group and said heteroaryl group may be optionally substituted with (R⁹)_n in which R⁹ has the same meaning as R⁸, n represents an integer of 1-3, and each R⁹ may be same or different if n represents 2 or 3;

R⁵ represents a hydrogen atom or a C₁₋₆ alkyl group;

X is absent or represents C=O or SO₂;

R⁶ represents a hydrogen atom, a C₁₋₆ alkyl group in which said alkyl group may be optionally substituted with a halogen atom, a hydroxyl group or a C₁₋₆ alkoxy group; or a C₃₋₆ cycloalkyl group;

R⁷ represents a hydrogen atom, a halogen atom, a nitro group or a cyano group;

or a pharmaceutically acceptable salt thereof.

The compound according to the present invention has the strong prolongation effect on the functional refractory period and it can be used as a drug for treating arrhythmia.

Respective substituents for the compound (I) according to the present invention are illustrated specifically as follows.

Herein, "n" means normal, "i" means iso, "s" means secondary, "t" means tertiary, "c" means cyclo, "o" means ortho, "m" means meta, and "p" means para.

As C₁₋₆ alkyl groups, there may be mentioned methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 1-pentyl, 2-pentyl, 3-pentyl, i-pentyl, neopentyl, 2,2-dimethylpropyl, 1-hexyl, 2-hexyl, 3-hexyl, 1-methyl-n-pentyl, 1,1,2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 3,3-dimethyl-n-butyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, cyanomethyl

and hydroxymethyl, etc.

Preferably, there may be mentioned methyl, ethyl, n-propyl, i-propyl and n-butyl.

As halogen atoms, there may be mentioned a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Preferably, there may be mentioned a fluorine atom, a chlorine atom and a bromine atom.

As C₁₋₆ alkoxy groups, there may be mentioned methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, 1-pentyloxy, 2-pentyloxy, 3-pentyloxy, i-pentyloxy, neopentyloxy, 2,2-dimethylpropoxy, 1-hexyloxy, 2-hexyloxy, 3-hexyloxy, 1-methyl-n-pentyloxy, 1,1,2-trimethyl-n-propoxy, 1,2,2-trimethyl-n-propoxy and 3,3-dimethyl-n-butoxy, etc.

Preferably, there may be mentioned methoxy, ethoxy, n-propoxy and i-propoxy.

As C₁₋₆ alkylcarbonyloxy groups, there may be mentioned methylcarbonyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, i-propylcarbonyloxy, n-butylicarbonyloxy, i-butylicarbonyloxy, s-butylicarbonyloxy, t-butylicarbonyloxy, 1-pentylcarbonyloxy, 2-pentylcarbonyloxy, 3-pentylcarbonyloxy, i-pentylcarbonyloxy, neopentylcarbonyloxy, t-pentylcarbonyloxy, 1-hexylcarbonyloxy, 2-hexylcarbonyloxy, 3-hexylcarbonyloxy, 1-methyl-n-pentylcarbonyloxy, 1,1,2-trimethyl-n-propylcarbonyloxy, 1,2,2-trimethyl-n-propylcarbonyloxy and 3,3-dimethyl-n-butylicarbonyloxy, etc.

Preferably, there may be mentioned methylcarbonyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, i-propylcarbonyloxy, n-butylicarbonyloxy and t-butylicarbonyloxy.

As C₃₋₆ cycloalkyl groups, there may be mentioned cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, etc.

Preferably, there may be mentioned cyclopropyl, cyclobutyl and cyclohexyl.

As C₁₋₆ alkylcarbonyl groups, there may be mentioned methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, i-propyl-

carbonyl, n-butyloxycarbonyl, i-butyloxycarbonyl, s-butyloxycarbonyl, t-butyloxycarbonyl, 1-pentyloxycarbonyl, 2-pentyloxycarbonyl, 3-pentyloxycarbonyl, i-pentyloxycarbonyl, neopentyloxycarbonyl, t-pentyloxycarbonyl, 1-hexyloxycarbonyl, 2-hexyloxycarbonyl and 3-hexyloxycarbonyl.

Preferably, there may be mentioned methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, i-propylcarbonyl and n-butyloxycarbonyl.

As C₁₋₆ alkylaminocarbonyl groups, there may be mentioned methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, i-propylaminocarbonyl, n-butyloxycarbonyl, i-butyloxycarbonyl, s-butyloxycarbonyl, t-butyloxycarbonyl, 1-pentyloxycarbonyl, 2-pentyloxycarbonyl, 3-pentyloxycarbonyl, i-pentyloxycarbonyl, neopentyloxycarbonyl, t-pentyloxycarbonyl, 1-hexyloxycarbonyl, 2-hexyloxycarbonyl and 3-hexyloxycarbonyl, etc.

Preferably, there may be mentioned methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, i-propylaminocarbonyl and n-butyloxycarbonyl.

As di-C₁₋₆ alkylaminocarbonyl groups, there may be mentioned dimethylaminocarbonyl, diethylaminocarbonyl, di-n-propylaminocarbonyl, di-i-propylaminocarbonyl, di-c-propylaminocarbonyl, di-n-butyloxycarbonyl, di-i-butyloxycarbonyl, di-s-butyloxycarbonyl, di-t-butyloxycarbonyl, di-c-butyloxycarbonyl, di-1-pentyloxycarbonyl, di-2-pentyloxycarbonyl, di-3-pentyloxycarbonyl, di-i-pentyloxycarbonyl, di-neopentyloxycarbonyl, di-t-pentyloxycarbonyl, di-c-pentyloxycarbonyl, di-1-hexyloxycarbonyl, di-2-hexyloxycarbonyl and di-3-hexyloxycarbonyl, etc.

Preferably, there may be mentioned dimethylaminocarbonyl, diethylaminocarbonyl, di-n-propylaminocarbonyl, di-i-propylaminocarbonyl, di-c-propylaminocarbonyl and di-n-butyloxycarbonyl.

As C₁₋₆ alkoxy carbonyl groups, there may be mentioned methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, n-butoxycarbonyl, i-butoxycarbonyl, s-butoxycarbonyl, t-butoxycarbonyl, 1-pentyloxycarbonyl, 2-

pentyloxycarbonyl, 3-pentyloxycarbonyl, i-pentyloxycarbonyl, neopentyloxycarbonyl, t-pentyloxycarbonyl, 1-hexyloxycarbonyl, 2-hexyloxycarbonyl and 3-hexyloxycarbonyl, etc.

Preferably, there may be mentioned methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, n-butoxycarbonyl, i-butoxycarbonyl, s-butoxycarbonyl and t-butoxycarbonyl.

As aryl groups, there may be mentioned phenyl, biphenyl, naphthyl, anthryl and phenanthryl etc.

Preferably, there may be mentioned phenyl, biphenyl and naphthyl.

As heteroaryl groups, there may be mentioned 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyranyl, 3-pyranyl, 4-pyranyl, 2-benzofuranyl, 3-benzofuranyl, 4-benzofuranyl, 5-benzofuranyl, 6-benzofuranyl, 7-benzofuranyl, 1-isobenzofuranyl, 4-isobenzofuranyl, 5-isobenzofuranyl, 2-benzothienyl, 3-benzothienyl, 4-benzothienyl, 5-benzothienyl, 6-benzothienyl, 7-benzothienyl, 1-isobenzothienyl, 4-isobenzothienyl, 5-isobenzothienyl, 2-chromenyl, 3-chromenyl, 4-chromenyl, 5-chromenyl, 6-chromenyl, 7-chromenyl, 8-chromenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1-indolizinyl, 2-indolizinyl, 3-indolizinyl, 5-indolizinyl, 6-indolizinyl, 7-indolizinyl, 8-indolizinyl, 1-isoindolyl, 4-isoindolyl, 5-isoindolyl, 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl, 1-indazolyl, 2-indazolyl, 3-indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl, 1-purinyl, 2-purinyl, 3-purinyl, 6-purinyl, 7-purinyl, 8-purinyl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl, 1-isouquinolyl, 3-isouquinolyl, 4-isouquinolyl, 5-isouquinolyl, 6-isouquinolyl, 7-isouquinolyl, 8-isouquinolyl, 1-phthalazinyl, 5-phthalazinyl, 6-

phthalazinyl, 2-naphthyridinyl, 3-naphthyridinyl, 4-naphthyridinyl, 2-quinoxalinyl, 5-quinoxalinyl, 6-quinoxalinyl, 2-quinazolinyl, 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7-quinazolinyl, 8-quinazolinyl, 3-cinnolinyl, 4-cinnolinyl, 5-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 8-cinnolinyl, 2-pteridinyl, 4-pteridinyl, 6-pteridinyl, 7-pteridinyl and 3-furazanyl, etc.

Preferably, there may be mentioned 2-pyridyl, 3-pyridyl and 4-pyridyl, etc.

As C₁₋₆ alkylamino groups, there may be mentioned methylamino, ethylamino, n-propylamino, i-propylamino, c-propylamino, n-butylamino, i-butylamino, s-butylamino, t-butylamino, c-butylamino, 1-pentylamino, 2-pentylamino, 3-pentylamino, i-pentylamino, neopentylamino, t-pentylamino, c-pentylamino, 1-hexylamino, 2-hexylamino, 3-hexylamino, c-hexylamino, 1-methyl-n-pentylamino, 1,1,2-trimethyl-n-propylamino, 1,2,2-trimethyl-n-propylamino and 3,3-dimethyl-n-butylamino, etc.

Preferably, there may be mentioned methylamino, ethylamino, n-propylamino, i-propylamino and n-butylamino.

As di-C₁₋₆ alkylamino groups, there may be mentioned dimethylamino, diethylamino, di-n-propylamino, di-i-propylamino, di-c-propylamino, di-n-butylamino, di-i-butylamino, di-s-butylamino, di-t-butylamino, di-c-butylamino, di-1-pentylamino, di-2-pentylamino, di-3-pentylamino, di-i-pentylamino, di-neopentylamino, di-t-pentylamino, di-c-pentylamino, di-1-hexylamino, di-2-hexylamino, di-3-hexylamino, di-c-hexylamino, di-(1-methyl-n-pentyl)amino, di-(1,1,2-trimethyl-n-propyl)amino, di-(1,2,2-trimethyl-n-propyl)amino, di-(3,3-dimethyl-n-butyl)amino, methyl(ethyl)amino, methyl(n-propyl)amino, methyl(i-propyl)amino, methyl(c-propyl)amino, methyl(n-butyl)amino, methyl(i-butyl)amino, methyl(s-butyl)amino, methyl(t-butyl)amino, methyl(c-butyl)amino, ethyl(n-propyl)amino, ethyl(i-propyl)amino, ethyl(c-propyl)amino, ethyl(n-butyl)amino, ethyl(i-butyl)amino, ethyl(s-butyl)amino, ethyl(t-butyl)amino, ethyl(c-butyl)amino, n-propyl(i-propyl)amino, n-propyl(c-propyl)amino, n-propyl(n-butyl)amino, n-propyl(i-butyl)amino,

n-propyl(s-butyl)amino, n-propyl(t-butyl)amino, n-propyl(c-butyl)amino, i-propyl(c-propyl)amino, i-propyl(n-butyl)amino, i-propyl(i-butyl)amino, i-propyl(s-butyl)amino, i-propyl(t-butyl)amino, i-propyl(c-butyl)amino, c-propyl(n-butyl)amino, c-propyl(i-butyl)amino, c-propyl(s-butyl)amino, c-propyl(t-butyl)amino, c-propyl(c-butyl)amino, n-butyl(i-butyl)amino, n-butyl(s-butyl)amino, n-butyl(t-butyl)amino, n-butyl(c-butyl)amino, i-butyl(s-butyl)amino, i-butyl(t-butyl)amino, i-butyl(c-butyl)amino, s-butyl(t-butyl)amino, s-butyl(c-butyl)amino and t-butyl(c-butyl)amino, etc.

Preferably, there may be mentioned dimethylamino, diethylamino, di-n-propylamino, di-i-propylamino and di-n-butylamino.

As C₁₋₆ alkylcarbonylamino groups, there may be mentioned methylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, i-propylcarbonylamino, n-butylicarbonylamino, i-butylicarbonylamino, s-butylicarbonylamino, t-butylicarbonylamino, 1-pentylcarbonylamino, 2-pentylcarbonylamino, 3-pentylcarbonylamino, i-pentylcarbonylamino, neopentylcarbonylamino, t-pentylcarbonylamino, 1-hexylcarbonylamino, 2-hexylcarbonylamino and 3-hexylcarbonylamino, etc.

Preferably, there may be mentioned methylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, i-propylcarbonylamino and n-butylicarbonylamino.

As C₁₋₆ alkylsulfonylamino groups, there may be mentioned methylsulfonylamino, ethylsulfonylamino, n-propylsulfonylamino, i-propylsulfonylamino, n-butylylsulfonylamino, i-butylylsulfonylamino, s-butylylsulfonylamino, t-butylylsulfonylamino, 1-pentylsulfonylamino, 2-pentylsulfonylamino, 3-pentylsulfonylamino, i-pentylsulfonylamino, neopentylsulfonylamino, t-pentylsulfonylamino, 1-hexylsulfonylamino, 2-hexylsulfonylamino and 3-hexylsulfonylamino, etc.

Preferably, there may be mentioned methylsulfonylamino, ethylsulfonylamino, n-propylsulfonylamino, i-propylsulfonylamino and n-butylylsulfonylamino.

As C₁₋₆ alkylsulfonyl groups, there may be mentioned

methanesulfonyl and ethanesulfonyl.

As arylcarbonyl groups, there may be mentioned benzoyl, p-methylbenzoyl, p-t-butylbenzoyl, p-methoxybenzoyl, p-chlorobenzoyl, p-nitrobenzoyl and p-cyanobenzoyl.

Preferably, there may be mentioned benzoyl, p-nitrobenzoyl and p-cyanobenzoyl.

As preferable compounds used in the present invention, the following compounds may be mentioned.

(1) A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to formula(I), wherein R¹ and R² represent both methyl groups and R³ represents a hydroxyl group.

(2) A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to the aforementioned (1), wherein X represents C=O and R⁵ represents a hydrogen atom.

(3) A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to the aforementioned (2), wherein R⁴ represents an alkyl group and R⁷ represents a nitro group.

Specific examples of the compounds that can be used in the present invention are shown as follows, but the present invention is not limited thereto. Herein, "Me" means a methyl group, "Et" means an ethyl group, "Pr" means a propyl group, "Bu" means a butyl group, "Pen" means a pentyl group, "Hex" means a hexyl group, "Ph" means a phenyl group, "Ac" means an acetyl group (COCH₃), and "--" means a bond, respectively.

Table 1

R ¹	R ²	R ³	R ⁴	R ⁵	R ₇
H	H	OH	i-Pr	H	H
Me	Me	OH	c-Pr	H	H
Me	Me	OH	c-Hex	H	H
Me	Me	OH	Me	H	H
Me	Me	OH	Et	H	H
Me	Me	OH	n-Pr	H	H
Me	Me	OH	i-Pr	H	H
Me	Me	OH	n-Bu	H	H
Me	Me	OH	n-Pen	H	NO ₂
Me	Me	OH	n-Hex	H	NO ₂
Me	Me	OH	COMe	H	NO ₂
Me	Me	OH	CONHMe	H	NO ₂
Me	Me	OH	CONMe ₂	H	NO ₂
Me	Me	OCOMe	CF ₃	H	NO ₂
Me	Me	OCOEt	CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Et	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	n-Pr	NO ₂
Ph	Ph	OH	CH ₂ CH ₂ Ph	i-Pr	NO ₂
Et	Et	OH	CH ₂ CH ₂ Ph	n-Bu	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	H
i-Pr	i-Pr	OH	CH ₂ CH ₂ Ph	t-Bu	NO ₂
n-Bu	n-Bu	OH	CH ₂ CH ₂ Ph	n-Pen	NO ₂
i-Bu	i-Bu	OH	CH ₂ CH ₂ Ph	n-Hex	NO ₂
t-Bu	t-Bu	OH	CH ₂ CH ₂ Ph	Me	NO ₂
n-Pen	n-Pen	OH	CH ₂ CH ₂ Ph	H	Cl
n-Hex	n-Hex	OH	CH ₂ CH ₂ Ph	H	F
CF ₃	CF ₃	OH	CH ₂ CH ₂ Ph	H	Br
CH ₂ OCH ₃	CH ₂ OCH ₃	OH	CH ₂ CH ₂ Ph	H	CN

Table 2

R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷
H	H	OH	i-Pr	H	H
Me	Me	OH	c-Pr	H	H
Me	Me	OH	c-Hex	H	H
Me	Me	OH	Me	H	H
Me	Me	OH	Et	H	H
Me	Me	OH	n-Pr	H	H
Me	Me	OH	i-Pr	H	H
Me	Me	OH	n-Bu	H	H
Me	Me	OH	n-Pen	H	NO ₂
Me	Me	OH	n-Hex	H	NO ₂
Me	Me	OH	COMe	H	NO ₂
Me	Me	OH	CONHMe	H	NO ₂
Me	Me	OH	CONMe ₂	H	NO ₂
Me	Me	OCOMe	CF ₃	H	NO ₂
Me	Me	OCOEt	CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	H
Me	Me	OH	CH ₂ CH ₂ Ph	Et	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	n-Pr	NO ₂
Ph	Ph	OH	CH ₂ CH ₂ Ph	i-Pr	NO ₂
Et	Et	OH	CH ₂ CH ₂ Ph	n-Bu	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	H
i-Pr	i-Pr	OH	CH ₂ CH ₂ Ph	t-Bu	NO ₂
n-Bu	n-Bu	OH	CH ₂ CH ₂ Ph	n-Pen	NO ₂
i-Bu	i-Bu	OH	CH ₂ CH ₂ Ph	n-Hex	NO ₂
t-Bu	t-Bu	OH	CH ₂ CH ₂ Ph	Me	NO ₂
n-Pen	n-Pen	OH	CH ₂ CH ₂ Ph	H	Cl
n-Hex	n-Hex	OH	CH ₂ CH ₂ Ph	H	F
CF ₃	CF ₃	OH	CH ₂ CH ₂ Ph	H	Br
CH ₂ OCH ₃	CH ₂ OCH ₃	OH	CH ₂ CH ₂ Ph	H	CN

Table 3

R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷
H	H	OH	i-Pr	H	H
Me	Me	OH	c-Pr	H	H
Me	Me	OH	c-Hex	H	H
Me	Me	OH	Me	H	H
Me	Me	OH	Et	H	H
Me	Me	OH	n-Pr	H	H
Me	Me	OH	i-Pr	H	H
Me	Me	OH	n-Bu	H	H
Me	Me	OH	n-Pen	H	NO ₂
Me	Me	OH	n-Hex	H	NO ₂
Me	Me	OH	COMe	H	NO ₂
Me	Me	OH	CONHMe	H	NO ₂
Me	Me	OH	CONMe ₂	H	NO ₂
Me	Me	OCOMe	CF ₃	H	NO ₂
Me	Me	OCOEt	CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Me	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Et	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	n-Pr	NO ₂
Ph	Ph	OH	CH ₂ CH ₂ Ph	i-Pr	NO ₂
Et	Et	OH	CH ₂ CH ₂ Ph	n-Bu	NO ₂
n-Pr	n-Pr	OH	CH ₂ CH ₂ Ph	i-Bu	NO ₂
i-Pr	i-Pr	OH	CH ₂ CH ₂ Ph	t-Bu	NO ₂
n-Bu	n-Bu	OH	CH ₂ CH ₂ Ph	n-Pen	NO ₂
i-Bu	i-Bu	OH	CH ₂ CH ₂ Ph	n-Hex	NO ₂
t-Bu	t-Bu	OH	CH ₂ CH ₂ Ph	Me	NO ₂
n-Pen	n-Pen	OH	CH ₂ CH ₂ Ph	H	Cl
n-Hex	n-Hex	OH	CH ₂ CH ₂ Ph	H	F
CF ₃	CF ₃	OH	CH ₂ CH ₂ Ph	H	Br
CH ₂ OCH ₃	CH ₂ OCH ₃	OH	CH ₂ CH ₂ Ph	H	CN

Table 4

R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷
H	H	OH	i-Pr	H	H
Me	Me	OH	c-Pr	H	H
Me	Me	OH	c-Hex	H	H
Me	Me	OH	Me	H	H
Me	Me	OH	Et	H	H
Me	Me	OH	n-Pr	H	H
Me	Me	OH	i-Pr	H	H
Me	Me	OH	n-Bu	H	H
Me	Me	OH	n-Pen	H	NO ₂
Me	Me	OH	n-Hex	H	NO ₂
Me	Me	OH	COMe	H	NO ₂
Me	Me	OH	CONHMe	H	NO ₂
Me	Me	OH	CONMe ₂	H	NO ₂
Me	Me	OCOMe	CF ₃	H	NO ₂
Me	Me	OCOEt	CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Me	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Et	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	n-Pr	NO ₂
Ph	Ph	OH	CH ₂ CH ₂ Ph	i-Pr	NO ₂
Et	Et	OH	CH ₂ CH ₂ Ph	n-Bu	NO ₂
n-Pr	n-Pr	OH	CH ₂ CH ₂ Ph	i-Bu	NO ₂
i-Pr	i-Pr	OH	CH ₂ CH ₂ Ph	t-Bu	NO ₂
n-Bu	n-Bu	OH	CH ₂ CH ₂ Ph	n-Pen	NO ₂
i-Bu	i-Bu	OH	CH ₂ CH ₂ Ph	n-Hex	NO ₂
t-Bu	t-Bu	OH	CH ₂ CH ₂ Ph	Me	NO ₂
n-Pen	n-Pen	OH	CH ₂ CH ₂ Ph	H	Cl
n-Hex	n-Hex	OH	CH ₂ CH ₂ Ph	H	F
CF ₃	CF ₃	OH	CH ₂ CH ₂ Ph	H	Br
CH ₂ OCH ₃	CH ₂ OCH ₃	OH	CH ₂ CH ₂ Ph	H	CN

Table 5

R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷
H	H	OH	i-Pr	H	H
Me	Me	OH	c-Pr	H	H
Me	Me	OH	c-Hex	H	H
Me	Me	OH	Me	H	H
Me	Me	OH	Et	H	H
Me	Me	OH	n-Pr	H	H
Me	Me	OH	i-Pr	H	H
Me	Me	OH	n-Bu	H	H
Me	Me	OH	n-Pen	H	NO ₂
Me	Me	OH	n-Hex	H	NO ₂
Me	Me	OH	COMe	H	NO ₂
Me	Me	OH	CONHMe	H	NO ₂
Me	Me	OH	CONMe ₂	H	NO ₂
Me	Me	OCOMe	CF ₃	H	NO ₂
Me	Me	OCOEt	CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	Et	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	n-Pr	NO ₂
Ph	Ph	OH	CH ₂ CH ₂ Ph	i-Pr	NO ₂
Et	Et	OH	CH ₂ CH ₂ Ph	n-Bu	NO ₂
Me	Me	OH	CH ₂ CH ₂ Ph	H	H
i-Pr	i-Pr	OH	CH ₂ CH ₂ Ph	t-Bu	NO ₂
n-Bu	n-Bu	OH	CH ₂ CH ₂ Ph	n-Pen	NO ₂
i-Bu	i-Bu	OH	CH ₂ CH ₂ Ph	n-Hex	NO ₂
t-Bu	t-Bu	OH	CH ₂ CH ₂ Ph	Me	NO ₂
n-Pen	n-Pen	OH	CH ₂ CH ₂ Ph	H	Cl
n-Hex	n-Hex	OH	CH ₂ CH ₂ Ph	H	F
CF ₃	CF ₃	OH	CH ₂ CH ₂ Ph	H	Br
CH ₂ OCH ₃	CH ₂ OCH ₃	OH	CH ₂ CH ₂ Ph	H	CN

Table 6

R ⁶	R ⁷	R ⁸	n
H	H	p-MeO	0
H	H	p-MeO	1
H	H	p-MeO	2
Me	H	p-MeO	3
Me	H	p-MeO	4
Me	H	m-MeO	0
Me	H	o-MeO	1
CF ₃	H	p-Me	2
t-Bu	NO ₂	p-Et	3
t-Bu	NO ₂	m-Et	4
t-Bu	NO ₂	o-Et	2
t-Bu	NO ₂	p-Cl	2
H	NO ₂	p-F	3
H	NO ₂	p-Ph	2
H	NO ₂	p-OH	2
Me	NO ₂	p-NO ₂	1
Et	NO ₂	p-CN	2
n-Pr	NO ₂	p-NMe ₂	3
i-Pr	NO ₂	p-NHMe	4
n-Bu	NO ₂	p-CO ₂ H	2
i-Bu	NO ₂	m-CO ₂ Et	2
t-Bu	NO ₂	m-OMe	2
n-Pen	NO ₂	p-NO ₂	2
n-Hex	NO ₂	p-NMe ₂	2
Me	NO ₂	p-NHMe	2
H	Cl	p-NH ₂	2
H	F	p-Et	2
H	Br	p-Pr	2
H	CN	p-CH ₂ OMe	2

The compound according to the present invention has asymmetric carbon atoms at 3-position and 4-position, thus optical isomers thereof based on the asymmetric carbon atoms are present, which can be used in the application of the present invention similar to racemate thereof. Further, a cis or trans isomer based on configuration at 3-position and 4-position may be included, but the trans isomer is preferable.

Further, when the compounds can form their salts, the pharmaceutically acceptable salts can be also used as active ingredients.

As pharmaceutically acceptable salts, there may be mentioned hydrochlorides, hydrobromides, sulfates, methanesulfonates, acetates, benzoates, tartrates, phosphates, lactates, maleates, fumarates, malates, gluconates and salicylates, etc.

Preferably, there may be mentioned hydrochlorides and methanesulfonates.

Then, the preparation method of the compound according to the present invention is illustrated.

Of the compounds of the formula (I), those wherein R³ represents a hydroxyl group, which are the compounds of formula (I-a), can be obtained by reacting a compound of the general formula (2) with a compound (3) in an inert solvent, as shown in the following reaction scheme.

The compound of the general formula (2) can be synthesized according to known methods (methods described in J.M. Evans et al., J. Med. Chem. 1984, 27, 1127, J. Med. Chem. 1986, 29, 2194, J.T. North et al., J. Org. Chem. 1995, 60, 3397, as well as Japanese Patent Application Laid-Open No. Sho 56-57785, Japanese Patent Application Laid-Open No. Sho 56-57786, Japanese Patent Application Laid-Open No. Sho 58-188880, Japanese Patent Application Laid-Open No. Hei 2-141, Japanese Patent Application Laid-Open No. Hei 10-87650 and Japanese Patent Application Laid-Open No. Hei 11-209366, etc.).

In this scheme, R^1 , R^2 , R^4 , R^5 , R^6 , R^7 and X are as defined above.

As the solvents used in the reaction of the compound of the general formula (2) with the compound (3), the following may be mentioned.

There may be mentioned sulfoxide type solvents exemplified by dimethylsulfoxide; amide type solvents exemplified by dimethylformamide or dimethylacetamide; ether type solvents exemplified by ethyl ether, dimethoxyethane or tetrahydrofuran; halogen type solvents exemplified by dichloromethane, chloroform and dichloroethane; nitrile type solvents exemplified by acetonitrile and propionitrile; aromatic hydrocarbon type solvents exemplified by benzene and toluene; hydrocarbon type solvents exemplified by hexane and heptane; and ester type solvents exemplified by ethyl acetate. Further, the reaction can be carried out in the absence of a solvent. Preferably, ether type solvents and nitrile type solvents may be mentioned.

The reaction temperature is generally from -80°C to the reflux temperature of the reaction solvent, preferably from -10°C to 100°C.

The molar ratio of the reaction materials is within the range of 0.5-4.0, preferably 1.0-2.0, for the compound (3)/the compound (2).

An acid catalyst may be used in the reaction.

As the acid catalysts used, there may be mentioned inorganic acids exemplified by hydrochloric acid and sulfuric acid, as well as Lewis acids exemplified by aluminum chloride, titanium tetrachloride, boron trifluoride diethyl ether complex, perchloric

acid, lithium perchlorate and ytterbium trifluoromethanesulfonate, etc.

Preferably, there may be mentioned sulfuric acid and perchloric acid.

Of the compounds of the general formula (I), those other than the compounds of formula (I-a) described above (those of the formula (I) wherein R³ represents a C₁₋₆ alkylcarbonyloxy group) can be prepared by the methods similar to those described in Japanese Patent Application Laid-Open No. Sho 52-91866 and Japanese Patent Application Laid-Open No. Hei 10-87650, etc.

Syntheses of optically active compounds included in the compounds of the general formula (I) can be attained by utilizing optical resolution methods (Japanese Patent Application Laid-Open No. Hei 3-141286, U.S. Patent No. 5097037 and European Patent No. 409165). Further, syntheses of optically active compounds of the general formula (2) can be attained by utilizing asymmetrical synthetic methods (Japanese National Publication No. Hei 5-507645, Japanese Patent Application Laid-Open No. Hei 5-301878, Japanese Patent Application Laid-Open No. Hei 7-285983, European Patent Application Laid-open No.535377, and U.S. Patent No. 5420314).

As described above, we, inventors, found that the compound of the general formula (I) has the strong prolongation effect on the functional refractory period. The prolongation effect on the functional refractory period is one of the functions of antiarrhythmic action and an important indicator that can be extrapolated to efficiency for clinical arrhythmia. Conventional antiarrhythmic agents having the prolongation effect on the functional refractory period as the main function (such as d-sotalol belonging to Class III of the antiarrhythmic agent classification according to Vaughan Williams) have quite dangerous arrhythmic inducing actions that can result in sudden death such as torsades de pointes based on extension of ventricular muscle action potential relating to the prolongation effect on the functional refractory period, which become the therapeutic problems for arrhythmia based on atrium (such as supraventricular tachycardia, atrial flutter and atrial fibrillation). In order to solve the problems, we,

inventors, carried out searching and studying of compounds having the prolongation effect on the functional refractory period more selective for atrium muscle than for ventricular muscle, and found that the compound of the general formula (I) has the prolongation effect on the functional refractory period selective for atrium muscle without any influence on the functional refractory period of ventricular muscle and action potential parameters. The difference between the present invention by the inventors and the known techniques is to provide the prolongation effect on the functional refractory period selective for atrium muscle by the compound, which is shown by the following facts; without any influence on the action potential sustaining period of removed ventricular muscle and without any influence on the electrocardiogram QT of anesthetized animal. From the above, the compounds of the present invention have no arrhythmic inducing action in ventricular muscle, thus they can provide possibilities of more safe uses for arrhythmia based on atrium muscle than known techniques. The technique according to the present invention is useful for therapeutic or preventive uses as anti-atrial fibrillation agents, anti-atrial flutter agents and anti-atrial tachycardia agents relating to paroxysmal, chronic, preoperative, intraoperative or postoperative atrial arrhythmia, prevention of proceeding to embolus based on atrial arrhythmia, prevention of proceeding to ventricular arrhythmia or tachycardia originated from atrial arrhythmia or tachycardia, and prevention of the life prognosis worsening based on the preventive action for atrial arrhythmia or tachycardia which can be proceeded to ventricular arrhythmia or tachycardia.

The present invention provides a pharmaceutical composition or veterinary pharmaceutical composition containing the compound of the generally formula (I) in an effective amount for these treatments.

As administering forms of the compound according to the present invention, there may be mentioned parenteral administrations by means of injections (subcutaneous, intravenous, intramuscular and intraperitoneal injections), ointments,

suppositories and aerosol, or oral administrations by means of tablets, capsules, granules, pills, syrups, solutions, emulsions and suspensions, etc.

The above-mentioned pharmaceutical or veterinary pharmaceutical composition contains the compound according to the present invention in an amount of about 0.01-99.5%, preferably about 0.1-30% of the total composition weight.

In addition to the compound according to the present invention or the composition containing the compound, other pharmaceutically or veterinary pharmaceutically active compounds may be contained.

Further, these compositions may contain the plurality of compounds according to the present invention.

A clinical administration amount varies depending on age, weight and sensitivity of the patient, extent of condition of the patient, etc. and an effective administration amount is generally about 0.003-1.5 g, preferably 0.01-0.6 g, per day for adult. If necessary, however, the amount outside of the above-mentioned range may be used.

The compound according to the present invention is formulated for administration by conventional pharmaceutical means.

That is, tablets, capsules, granules and pills for oral administration are prepared by using excipients such as sucrose, lactose, glucose, starch and mannitol; binders such as hydroxypropyl cellulose, syrup, gum arabic, gelatin, sorbitol, tragacanth, methyl cellulose and polyvinyl pyrrolidone; disintegrators such as starch, carboxymethyl cellulose or its calcium salt, crystal cellulose powder and polyethylene glycol; lubricants such as talc, magnesium or calcium stearate, and silica; lubricating agents such as sodium laurate and glycerol, etc.

Injections, solutions, emulsions, suspensions, syrups and aerosols are prepared by using solvents for the active ingredients such as water, ethyl alcohol, isopropyl alcohol, propylene glycol, 1,3-butylene glycol and polyethylene glycol; surfactants such as sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene ether of hydrogenated castor oil and lecithin; suspending agents such as

carboxymethyl sodium salt, cellulose derivatives such as methyl cellulose, tragacanth, and natural rubbers such as gum arabic; and preservatives such as p-hydroxybenzoic acid esters, benzalkonium chloride and sorbic acid salts, etc.

For ointments that are transdermally adsorptive pharmaceutics, white vaseline, liquid paraffin, higher alcohols, Macrogol ointments, hydrophilic ointments and aqueous gel-type bases are, for example, used.

Suppositories are prepared by using, for example, cocoa fats, polyethylene glycol, lanolin, fatty acid triglyceride, coconut oil and Polysorbate etc.

Best Mode for Carrying Out the Invention

The present invention is illustrated in detail by the Examples as follows, but the present invention is not limited to these Examples.

[Synthesis Examples]

Synthesis example 1

Trans-6-acetylamino-3,4-dihydro-2,2-dimethyl-4-(2-phenylethoxy)-2H-1-benzopyran-3-ol

To a solution of 6-acetylamino-3,4-epoxy-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran (0.50 g, 2.1 mmol) and 2-phenethyl alcohol (0.50 mL, 4.2 mmol) in acetonitrile (2.5 mL), a catalytic amount of concentrated sulfuric acid was added at the room temperature and stirred at the room temperature for 5 hours. Thereto, ethyl acetate was added, and the formed organic phase was washed with water, an aqueous saturated sodium hydrogen carbonate solution and an aqueous saturated sodium chloride solution, and dried over anhydrous sodium sulfate. After the solvent was distilled off and

the residue was purified by silica gel column chromatography (chloroform : ethyl acetate = 1:1), the obtained pink amorphous substance was recrystallized from hexane-ethyl acetate, to obtain the intended substance as pink crystals (yield; 40%).

mp. : 141.2-143.2 °C

¹H-NMR (CDCl₃) δ : 1.18 (s, 3H), 1.39 (s, 3H), 2.15 (s, 3H), 2.92-2.96 (m, 2H), 3.68 (d, J = 8.2 Hz, 1H), 3.85-3.98 (m, 2H), 4.32 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 6.84 (d, J = 1.8 Hz, 1H), 7.27-7.38 (m, 6H)

MS (EI) m/z; 355 [M]⁺, 105 (bp).

By the similar method, the following compounds were obtained. (Synthesis Examples 2-16, wherein Synthesis Example 14 is for (-) form of the compound obtained in Synthesis Example 1, Synthesis Example 15 is for (+) form of the compound obtained in Synthesis Example 1, and Synthesis Example 16 is for (+) form of the compound obtained in Synthesis Example 13.)

Synthesis example 2

Trans-6-acetylaminino-3,4-dihydro-2,2-dimethyl-7-nitro-4-(2-phenylethoxy)-2H-1-benzopyran-3-ol

Yield: 30%

mp. : 123.5-127.0 °C

¹H-NMR (CDCl₃) δ : 1.20 (s, 3H), 1.39 (s, 3H), 1.92 (d, J = 3.5 Hz, 1H), 2.27 (s, 3H), 2.98-3.02 (m, 2H), 3.63 (dd, J = 3.5, 8.2 Hz, 1H), 3.91-3.97 (m, 1H), 4.15-4.20 (m, 1H), 4.33 (d, J = 8.2 Hz, 1H), 7.23-7.35 (m, 5H), 7.60 (s, 1H), 8.69 (s, 1H), 9.90 (bs, 1H).

MS (EI) m/z; 400 [M]⁺, 105 (bp).

Synthesis examples 3-16

Synthesis example No.	R
3	
4	
5	
6	
7	
8	
9	

Synthesis example No.	R
1 0	
1 1	
1 2	
1 3	
1 4 [(-) form of the compound obtained in Synthesis example 1]	
1 5 [(+) form of the compound obtained in Synthesis example 1]	
1 6 [(+) form of the compound obtained in Synthesis example 13]	

Synthesis example 3

Yield: 21%

Yellow solid

¹H-NMR (CDCl₃) δ : 1.24 (s, 3H), 1.39 (s, 3H), 2.10 (d, J = 4.4 Hz, 1H), 2.26 (s, 3H), 3.06 (t, J = 6.6 Hz, 2H), 3.70 (dd, A part of AB, J = 7.4 and 4.4 Hz, 1H), 3.95-4.02 (m, 1H), 4.05-4.15 (m, 1H), 4.37 (d, B part of AB, J = 7.4 Hz, 1H), 7.38-7.55 (m, 4H), 7.61 (s, 1H), 8.66 (s, 1H), 9.90 (s, 1H).

MS (EI) m/z; 468[M]⁺, 354 (bp).Synthesis example 4

Yield: 13%

Yellow oil

¹H-NMR (CDCl₃) δ : 1.23 (s, 3H), 1.41 (s, 3H), 2.01 (d, J = 4.2 Hz, 1H), 2.27 (s, 3H), 2.97 (t, J = 6.5 Hz, 2H), 3.70 (dd, A part of AB, J = 8.1 and 4.2 Hz, 1H), 3.90-3.98 (m, 1H), 4.00-4.15 (m, 1H), 4.36 (d, B part of AB, J = 8.1 Hz, 1H), 7.21 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 7.60 (s, 1H), 8.63 (s, 1H), 9.89 (s, 1H). MS (FAB) m/z; 435[M+H]⁺.

Synthesis example 5

Yield: 60%

Yellow amorphous substance

¹H-NMR (CDCl₃) δ : 1.22 (s, 3H), 1.41 (s, 3H), 1.98 (d, J = 4.0 Hz, 1H), 2.27 (s, 3H), 2.97 (t, J = 6.5 Hz, 2H), 3.69 (d, A part of AB, J = 8.2 and 4.0 Hz, 1H), 3.90-4.00 (m, 1H), 4.05-4.15 (m, 1H), 4.35 (d, B part of AB, J = 8.2 Hz, 1H), 6.98-7.05 (m, 2H), 7.20-7.25 (m, 2H), 7.60 (s, 1H), 8.62 (s, 1H), 9.88 (s, 1H). MS (FAB) m/z; 419[M+H]⁺.

Synthesis example 6

Yield: 17%

Yellow oil

¹H-NMR (CDCl₃) δ : 1.23 (s, 3H), 1.40 (s, 3H), 2.09 (d, J = 4.2 Hz, 1H), 2.27 (s, 3H), 3.00 (t, J = 6.6 Hz, 2H), 3.69 (d, A part of AB, J = 7.6 and 4.2 Hz, 1H), 3.93-3.99 (m, 1H), 4.09-4.15 (m, 1H), 4.36

(d, B part of AB, $J = 7.6$ Hz, 1H), 6.93-7.05 (m, 3H), 7.25-7.40 (m, 1H), 7.60 (s, 1H), 8.66 (s, 1H), 9.89 (s, 1H).
 MS (FAB) m/z; 419 [M+H]⁺.

Synthesis example 7

Yield: 10%

Yellow oil

¹H-NMR (CDCl₃) δ : 1.21 (s, 3H), 1.41 (s, 3H), 2.00 (s, 1H), 2.25 (s, 3H), 2.90-3.20 (m, 2H), 3.50-4.40 (m, 4H), 7.20-7.30 (m, 4H), 7.64 (s, 1H), 8.68 (s, 1H), 9.90 (s, 1H).
 MS (FAB) m/z; 435 [M+H]⁺.

Synthesis example 8

Yield: 20%

Yellow oil

¹H-NMR (CDCl₃) δ : 1.21 (s, 3H), 1.40 (s, 3H), 1.96 (d, $J = 4.0$ Hz, 1H), 2.27 (s, 3H), 2.94 (t, $J = 6.6$ Hz, 2H), 3.80 (s, 3H), 3.65 (dd, A part of AB, $J = 8.2$ and 4.0 Hz, 1H), 3.85-3.95 (m, 1H), 4.05-4.15 (m, 1H), 4.34 (d, B part of AB, $J = 8.2$ Hz, 1H), 6.86 (d, $J = 8.6$ Hz and 2H), 7.19 (d, $J = 8.6$ Hz, 2H), 7.60 (s, 1H), 8.68 (s, 1H), 9.90 (s, 1H).
 MS (FAB) m/z; 431 [M+H]⁺.

Synthesis example 9

Yield: 25%

Yellow solid

¹H-NMR (CDCl₃) δ : 1.25 (s, 3H), 1.42 (s, 3H), 2.13 (d, $J = 4.3$ Hz, 1H), 2.26 (s, 3H), 3.20-3.25 (m, 2H), 3.74 (dd, A part of AB, $J = 7.8$ and 4.3 Hz, 1H), 3.85-3.95 (m, 1H), 4.00-4.10 (m, 1H), 4.41 (d, B part of AB, $J = 7.8$ Hz, 1H), 6.95-7.00 (m, 1H), 7.10-7.20 (m, 2H), 7.61 (s, 1H), 8.69 (s, 1H), 9.89 (s, 1H).
 MS (FAB) m/z; 453 [M+H]⁺.

Synthesis example 10

Yield: 29%

Yellow amorphous substance

¹H-NMR (CDCl₃) δ : 1.19 (s, 3H), 1.37 (s, 3H), 1.94 (d, J = 3.8 Hz, 1H), 2.24 (s, 3H), 3.05-3.15 (m, 2H), 3.66 (dd, A part of AB, J = 8.1 and 3.8 Hz, 1H), 3.90-4.00 (m, 1H), 4.05-4.12 (m, 1H), 4.35 (d, B part of AB, J = 8.1 Hz, 1H), 7.05-7.15 (m, 2H), 7.28-7.35 (m, 2H), 7.58 (s, 1H), 8.67 (s, 1H), 9.88 (s, 1H).
MS (FAB) m/z; 434 [M]⁺.

Synthesis example 11

Yield: 26%

Yellow amorphous substance

¹H-NMR (CDCl₃) δ : 1.22 (s, 3H), 1.41 (s, 3H), 2.00 (br s, 1H), 2.27 (s, 3H), 3.00-3.10 (m, 2H), 3.68 (br d, A part of AB, J = 8.1 Hz, 1H), 3.92-4.00 (m, 1H), 4.10-4.18 (m, 1H), 4.37 (d, B part of AB, J = 8.1 Hz, 1H), 7.00-7.10 (m, 2H), 7.20-7.32 (m, 2H), 7.61 (s, 1H), 8.69 (s, 1H), 9.91 (s, 1H).

MS (FAB) m/z; 419 [M+H]⁺.

Synthesis example 12

Yield: 17%

Yellow amorphous substance

¹H-NMR (CDCl₃) δ : 1.24 (s, 3H), 1.42 (s, 3H), 2.05 (s, 1H), 2.27 (s, 3H), 3.21 (t, J = 6.5 Hz, 2H), 3.73 (dd, A part of AB, J = 8.0 and 4.0 Hz, 1H), 3.90-4.00 (m, 1H), 4.05-4.15 (m, 1H), 4.39 (dd, B part of AB, J = 8.0 and 1.0 Hz, 1H), 7.30-7.37 (m, 1H), 7.45-7.53 (m, 2H), 7.62 (s, 1H), 7.65-7.66 (m, 1H), 8.71 (s, 1H), 9.92 (s, 1H).
MS (FAB) m/z; 469 [M+H]⁺.

Synthesis example 13

Yield: 30%

Yellow amorphous substance

¹H-NMR (CDCl₃) δ : 1.21 (s, 3H), 1.41 (s, 3H), 2.04 (d, J = 4.0 Hz, 1H), 2.28 (s, 3H), 2.91 (t, J = 6.5 Hz, 2H), 3.66 (dd, A part of AB, J = 8.2 and 4.0 Hz, 1H), 3.80-3.94 (m, 1H), 4.05-4.15 (m, 1H), 4.33 (dd, B part of AB, J = 8.2 and 0.7 Hz, 1H), 5.19 (br s, 1H), 6.78 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 7.60 (s, 1H), 8.64 (s, 1H), 9.90 (s, 1H).

MS (FAB) m/z; 417 [M+H]⁺.

Synthesis example 14 ((-) form of the compound obtained in Synthesis example 1)

Said (-) form was derived from (+)-(3R*,4R*)-6-acetamide-3,4-epoxy-3,4-dihydro-2,2-dimethyl-7-nitro-2H-1-benzopyran (99% ee or more).

$[\alpha]^{26}_D = -14.9$ (c 0.4, EtOH)

Synthesis example 15 ((+) form of the compound obtained in Synthesis example 1)

Said (+) form was derived from (-)-(3R*,4R*)-6-acetamide-3,4-epoxy-3,4-dihydro-2,2-dimethyl-7-nitro-2H-1-benzopyran (99% ee or more)

$[\alpha]^{26}_D = +13.9$ (c 0.76, EtOH)

Synthesis example 16 ((+) form of the compound obtained in Synthesis example 13)

Said (+) form was derived from (+)-(3R*,4R*)-6-acetamide-3,4-epoxy-3,4-dihydro-2,2-dimethyl-7-nitro-2H-1-benzopyran (99% ee or more)

$[\alpha]^{26}_D = +5.30$ (c 0.44, EtOH)

[Preparation Examples]

Preparation example 1

Tablet:

a compound according to the invention	10 g
lactose	260 g
crystal cellulose powder	600 g
corn starch	350 g
hydroxypropyl cellulose	100 g
CMC-Ca	150 g
<u>magnesium stearate</u>	<u>30 g</u>
total	1,500 g

The above-mentioned compounds were mixed by a usual method and thereafter 10,000 sugar-coated tablets each containing 1 mg

of the active ingredient per a tablet were prepared.

Preparation example 2

Capsule:

a compound according to the invention	10 g
lactose	440 g
crystal cellulose powder	1,000 g
<u>magnesium stearate</u>	<u>50 g</u>
total	1,500 g

The above-mentioned compounds were mixed by a usual method and thereafter filled in gelatin capsules, to prepare 10,000 capsules each containing 1 mg of the active ingredient per a capsule.

Preparation example 3

Soft capsule:

a compound according to the invention	10 g
PEG 400	479 g
saturated fatty acid triglyceride	1,500 g
peppermint oil	1 g
<u>Polysorbate 80</u>	<u>10 g</u>
Total	2,000 g

The above-mentioned compounds were mixed by a usual method and thereafter filled in No.3 soft gelatin capsules, to prepare 10,000 soft capsules each containing 1 mg of the active ingredient per a capsule.

Preparation example 4

Ointment:

a compound according to the invention	1.0 g
liquid paraffin	10.0 g
cetanol	20.0 g
white vaseline	68.4 g
ethylparaben	0.1 g
<u>1-menthol</u>	<u>0.5 g</u>
total	100.0 g

The above-mentioned compounds were mixed by a usual method

to obtain 1% ointment.

Preparation example 5

Suppository:

a compound according to the invention	1 g
Witepsol H15*	478 g
Witepsol W35*	520 g
<u>Polysorbate 80</u>	<u>1 g</u>
Total	1,000 g

(* trade name Witepsol for triglyceride type compounds)

The above-mentioned compounds were melt-mixed by a usual method, poured into suppository containers and cooled to solidify, thereby 1,000 suppositories (1 g) each containing 1 mg of the active ingredient per a suppository were prepared.

Preparation example 6

Injection:

a compound according to the invention	1 mg
distilled water for injection	5 mL

It is used by dissolving when applied.

[Pharmacological Test Example]

Effects of compound on the functional refractory period in guinea-pig left atrium muscle and right ventricular papillary muscle

Test method

Hearts were removed from guinea-pigs, and left atrium muscle or right ventricular papillary muscle were isolated therefrom in a Krebs-Henseleit solution aerated with 95% O₂ + 5% CO₂. The samples were stimulated electrically at a rate of 1 Hz and a voltage of 1.5 times of the threshold value reacted to stimulation (basic stimulation; S1) by using an electric stimulating apparatus. The contraction occurred at that time was recorded by a thermal stylus recorder via a FD pickup and a strain pressure amplifier. The functional refractory period is defined as the shortest time interval between S1 resulting from determinable contraction and

an extra stimulation (S2). The time interval between S1 and S2 in the left atrium muscle sample was started from 150 msec, decreased in 10 msec steps until 100 msec, and thereafter 5 msec steps to the functional refractory period. For the right ventricular papillary muscle sample, it was started from 300 msec and decreased in 10 msec steps until the functional refractory period. Herein, S2 was set at twice of the threshold value which reacted to stimulation. The experimental temperature was $36 \pm 1^\circ\text{C}$. Herein, the solvent did not influence on any of the functional refractory periods for left atrium muscle and right ventricular papillary muscle. After determining the basic value before addition of the compound, the compound was added cumulatively, incubated for 15 minutes for respective concentration, and thereafter the functional refractory period was determined.

Results

Compounds according to the present invention exhibited strong prolongation effect on the functional refractory period(FRP) on atrium muscle.

Table 7

Synthesis example No.	Prolongation effect on FRP EC ₂₀ (μM)
2	2.1

Compounds according to the present invention exhibit strong prolongation effect on the functional refractory period, thus they are useful for improvement of arrhythmia. Therefore, the present invention can provide useful drugs for treating arrhythmia.

CLAIMS

1. A 4-oxybenzopyran derivative of the formula (I)

wherein, R¹ and R² represent each independently a hydrogen atom; a C₁₋₆ alkyl group in which said alkyl group may be optionally substituted with a halogen atom, a C₁₋₆ alkoxy group or a hydroxyl group; or a phenyl group in which said phenyl group may be optionally substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C₁₋₆ alkyl group or a C₁₋₆ alkoxy group;

R³ represents a hydroxyl group or a C₁₋₆ alkylcarbonyloxy group;

R⁴ represents a hydrogen atom, a C₃₋₆ cycloalkyl group, a C₁₋₆ alkyl group, a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkylaminocarbonyl group or a di-C₁₋₆ alkylaminocarbonyl group in which said C₁₋₆ alkyl group, said C₁₋₆ alkylcarbonyl group, said C₁₋₆ alkylaminocarbonyl group and said di-C₁₋₆ alkylaminocarbonyl group may be each optionally substituted with a halogen atom, a C₁₋₆ alkoxy group, a C₁₋₆ alkoxy group substituted by a halogen atom; a carboxyl group, a C₁₋₆ alkoxycarbonyl group, a hydroxyl group, an aryl group or a heteroaryl group, in which said aryl group and said heteroaryl group may be optionally substituted with (R⁸)_n, in which R⁸ represents a halogen atom, a hydroxyl group, a C₁₋₆ alkyl group, a C₁₋₆ alkyl group substituted by a halogen atom or a C₁₋₆ alkoxy group; a C₁₋₆ alkoxy group, a C₁₋₆ alkoxy group substituted by a halogen atom; or R⁸ represents a nitro group, a cyano group, a formyl group, a formamide group, an amino group, a C₁₋₆ alkylamino group, a di-C₁₋₆ alkylamino group, a C₁₋₆ alkylcarbonylamino group, a C₁₋₆ alkylsulfonylamino group, an aminocarbonyl group, a C₁₋₆ alkylaminocarbonyl group, a di-C₁₋₆ alkylaminocarbonyl group, a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkoxy carbonyl group, an aminosulfonyl group, a C₁₋₆ alkylsulfonyl

group, a carboxyl group or an arylcarbonyl group, m represents an integer of 1-3 and each R⁸ may same or different if m represents 2 or 3; or R⁴ represents an aryl group or a heteroaryl group in which said aryl group and said heteroaryl group may be optionally substituted with (R⁹)_n in which R⁹ has the same meaning as R⁸, n represents an integer of 1-3, and each R⁹ may be same or different if n represents 2 or 3;

R⁵ represents a hydrogen atom or a C₁₋₆ alkyl group;

X is absent or represents C=O or SO₂;

R⁶ represent a hydrogen atom, a C₁₋₆ alkyl group in which said alkyl group may be optionally substituted with a halogen atom, a hydroxyl group or a C₁₋₆ alkoxy group; or a C₃₋₆ cycloalkyl group;

R⁷ represents a hydrogen atom, a halogen atom, a nitro group or a cyano group;

or a pharmaceutically acceptable salt thereof.

2. A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to claim 1, wherein R¹ and R² represent both methyl groups and R³ represents a hydroxyl group.

3. A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to claim 2, wherein X represents C=O and R⁵ represents a hydrogen atom.

4. A 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to claim 3, wherein R⁴ represents an alkyl group and R⁷ represents a nitro group.

5. A drug characterized by comprising a 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to claim 1 as an active ingredient.

6. A drug for treating arrhythmia characterized by comprising a 4-oxybenzopyran derivative or pharmaceutically acceptable salt thereof according to claim 1 as an active ingredient.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/JP 00/06877

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D311/22 A61K31/353 A61P9/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS , vol. 126, no. 17, 1997 Columbus, Ohio, US; abstract no. 225191h, SUN,HONG BIN: "FACILE SYNTHESIS" page 566; column 1; XP002160972 abstract & CHIN.CHEM.LETT., vol. 8, no. 1, 1997, pages 1-4, CHINA	1-3
A	GB 2 204 868 A (SANDOZ) 23 November 1988 (1988-11-23) page 39; claims; example 29	1-6 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

27 February 2001

Date of mailing of the international search report

09/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Francois, J

INTERNATIONAL SEARCH REPORT

In national Application No
PCT/JP 00/06877

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 112 972 A (GERICKE, R.) 12 May 1992 (1992-05-12) the whole document -----	1-6

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JP 00/06877

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB 2204868	A 23-11-1988	AT AU AU BE CA CH DE DK ES FI FR HU IT JP NL NZ PT SE SE US ZA	125188 A 614285 B 1615888 A 1002436 A 1312866 A 674984 A 3815325 A 265188 A 2012527 A 882248 A 2615191 A 50151 A, B 1219940 B 63303977 A 8801258 A 224604 A 87492 A, B 467924 B 8801807 A 5071871 A 8803450 A	15-06-1993 29-08-1991 17-11-1988 12-02-1991 19-01-1993 15-08-1990 24-11-1988 17-11-1988 01-04-1990 17-11-1988 18-11-1988 28-12-1989 24-05-1990 12-12-1988 16-12-1988 26-04-1991 31-05-1989 05-10-1992 17-11-1988 10-12-1991 31-01-1990
US 5112972	A 12-05-1992	DE AT AU AU CA DE DK EP ES FI HU IE IL JP NO NZ PT ZA	3918041 A 110072 T 623780 B 5600790 A 2017961 A 59006817 D 400430 T 0400430 A 2057262 T 95701 B 58323 A 901988 A 94256 A 3020275 A 175976 B 233912 A 94225 A, B 9004227 A	06-12-1990 15-09-1994 21-05-1992 06-12-1990 02-12-1990 22-09-1994 12-09-1994 05-12-1990 16-10-1994 30-11-1995 28-02-1992 02-01-1991 12-04-1994 29-01-1991 03-10-1994 28-10-1992 08-02-1991 27-03-1991