	Tree leaf recognition Explication du code GROUPE 3TL1: LOUIS BAUCHAU LOGAN MONTALTO DEVASHISH BASNET BRICE KOUETCHEU 1. Librairies, Variables Globals, Créations de dossiers
In []:	<pre>import os import numpy as np import caer import tensorflow as tf import shutil</pre>
	<pre>import makegraph import makepreproccesing from prettytable import PrettyTable import pandas as pd from keras.preprocessing import image import cv2 as cv import numpy as np import matplotlib.pyplot as plt import random from math import sqrt, floor</pre>
In []:	from matplotlib import colors 1.2 Variable Globals
	<pre>modelse = 'model_' + str(model_version) # nom complet du model IMG_SIZE = (64, 64) # resize des images channels = 1 BATCH_SIZE = 32 EPOCHS = 50 dict = {} leaf = [] # tableau comportant les feuilles de train et validation sample_count = [] # tableau comportant le nombre de feuilles par famille de train et validation</pre>
In []:	<pre>sample_name = [] # tableau comportant les noms des feuilles de train et validation class_weight = {} # dictionnaire comportant les poids des feuilles de train et validation label_map = {} # dictionnaire comportant les index et nom des feuilles de train et validation 1.3 Créations de dossiers Création de 4 dossiers importants</pre>
In []:	<pre>background = False if not os.path.exists('./model'): os.mkdir('./model') if not os.path.exists('./model/background'): os.mkdir('./model/background') if not os.path.exists('./model/normal'): os.mkdir('./model/normal') if not os.path.exists('./graph/' + str(modelse)): os.mkdir('./graph/' + str(modelse))</pre>
	 2. Préparation des données 2.1 Slip des images (train, validation) A partir du fichier train on crée un fichier de validation : 80% dans le fichier train
In []:	<pre>if os.path.isdir(char_path_validation): print('Validation directory already created!') print('Process Terminated')</pre>
	<pre>return os.mkdir(char_path_validation) for f in os.listdir(char_path_train): train_class_path = os.path.join(char_path_train, f) if os.path.isdir(train_class_path): validation_class_path = os.path.join(char_path_validation, f) os.mkdir(validation_class_path) files_to_move = int(validation_split * len(os.listdir(train_class_path)))</pre>
	<pre>for i in range(files_to_move):</pre>
	 on prend seulement 10 species avec le plus grand nombre de photo on tri les 3 tableaux leaf leaf: [[train][validation]] [['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba'], ['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba']]
	sample name: [['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba'], ['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba']] sample count
In []:	<pre>[[286, 203, 193, 190, 187, 183, 172, 169, 160, 159], [71, 50, 48, 47, 47, 46, 43, 42, 40, 39]] def make_list(path, x): dicts = {} for char in os.listdir(path): dicts[char] = len(os.listdir(os.path.join(path, char))) dicts = caer.sort_dict(dicts, descending=True) dict[x] = dicts</pre>
	<pre>count = 0 tableau = [] tableau1 = [] tableau2 = [] for i in dict[x]: tableau.append(i[0]) tableau1.append(i[1]) tableau2.append(i[0]) count += 1 if count >= 10:</pre>
	leaf.append(tableau) sample_count.append(tableau1) sample_name.append(tableau2) 3. Préparation des modèles
	 On demande a utilisateur si il veut utilisé la méthode avec le background On créer le squelette du modèle On vérifie si le modèle est deja train par rapport au modele et à la réponse de l'utilisateur SI OUI : on le charge (model.load_weights('model/background/' + str(modelse) + '.h5')) SI NON : on le train (train(model, False, background)) et on sauvegarde se nouveau modèle Rem : on créer un nouveau modele dépendant la réponse du client (background ou non)
In []:	<pre>if input("Voulez vous utilisé la méthode avec background (pas optimisé) y ou n : ") == 'y': background = True # Création du model model = create_model() if background: if os.path.exists('model/background/' + str(modelse) + '.h5'): model.load_weights('model/background/' + str(modelse) + '.h5') train(model, True, background) else:</pre>
	<pre>train(model, False, background) else: if os.path.exists('model/normal/' + str(modelse) + '.h5'): model.load_weights('model/normal/' + str(modelse) + '.h5') train(model, True, background) else: train(model, False, background) if background: test datagen = image.ImageDataGenerator(</pre>
	rescale=1. / 255, preprocessing_function=makepreprocesing.color_segment_function, fill_mode='nearest') 4. Création du squellete du modèle modèle à 2 couches
In []:	<pre>def create_model(): cnn = tf.keras.models.Sequential() cnn.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu', input_shape=[64, 64, 3])) cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) cnn.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu')) cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))</pre>
	<pre>cnn.add(tf.keras.layers.Dropout(0.5)) cnn.add(tf.keras.layers.Flatten()) cnn.add(tf.keras.layers.Dense(units=128, activation='relu')) cnn.add(tf.keras.layers.Dense(units=len(leaf[0]), activation='softmax')) cnn.summary()</pre>
	5. Training du modèle (partie la plus IMPORTANTE) 1. on utilise la fonction ImageDataGenerator et on va lui injecter des méthodes 2. on utilise la fonction flow_from_directory pour lier les méthodes au photo 3. on charge ou on train notre modèle grace à 'rmsprop'
In []:	<pre>4. on affiche les résultat de notre modèles (accuracy, loss,) def train(model, x, background): if background: train_datagen = image.ImageDataGenerator(rescale=1. / 255, rotation_range=40, width_shift_range=0.0, height shift range=0.0,</pre>
	<pre>shear_range=0.0, shear_range=0.0, horizontal_flip=True, vertical_flip=True, preprocessing_function=makepreproccesing.color_segment_function, fill_mode='nearest') test_datagen = image.ImageDataGenerator(rescale=1. / 255, preprocessing_function=makepreproccesing.color_segment_function,</pre>
	<pre>fill_mode='nearest') else: train_datagen = image.ImageDataGenerator(rescale=1. / 255, rotation_range=40, width_shift_range=0.0, height_shift_range=0.0, shear_range=0.0, zoom_range=0.0, herizontal_flip=True</pre>
	<pre>horizontal_flip=True, vertical_flip=True, fill_mode='nearest') test_datagen = image.ImageDataGenerator(rescale=1. / 255, fill_mode='nearest') training_set = train_datagen.flow_from_directory(char_path_train, target_size=IMG_SIZE,</pre>
	<pre>batch_size=BATCH_SIZE, class_mode='categorical', classes=leaf[0]) test_set = test_datagen.flow_from_directory(char_path_validation, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical', classes=leaf[0])</pre>
	<pre>weigth(training_set) if not x: model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) History = model.fit(training_set, validation_data=test_set, epochs=EPOCHS, class_weight=class_weight) makegraph.make_graph_accuracy(History, modelse) makegraph.make_graph_loss(History, modelse) if background: model.save_weights('model/background/' + str(modelse) + '.h5') else:</pre>
	model.save_weights('model/normal/' + str(modelse) + '.h5') print('le model a été sauvegarder comme étant ' + str(modelse) + '.h5') model accuracy
	0.9 - train val 0.8 - 0.7 - 5
	0.6 - 0.5 - 0.4 -
	0.3 - 0 10 20 30 40 50 epoch model loss
	2.25 - train 2.00 - val
	1.00 - 0.75 -
	0.50 - 0.25 - 0 10 20 30 40 50 epoch
In []:	<pre>5.1 Poids des espèces Va permettre un meilleur traitement lors du training des datas def weigth(training_set): for k, v in training_set.class_indices.items(): label_map[v] = k class_counts = pd.Series(training_set.classes).value_counts()</pre>
	<pre>for i, c in class_counts.items(): class_weight[i] = 1.0 / c norm_factor = np.mean(list(class_weight.values())) for k in class_counts.keys(): class_weight[k] = class_weight[k] / norm_factor t = PrettyTable(['class_index', 'class_label', 'class_weight'])</pre>
	<pre>for i in sorted(class_weight.keys()):</pre>
In []:	<pre>def color_segment_function(img_array): img_array = np.rint(img_array) img_array = img_array.astype('uint8') hsv_img = cv.cvtColor(img_array, cv.COLOR_RGB2HSV) mask = cv.inRange(hsv_img, (27, 50, 0), (50, 255, 255)) result = cv.bitwise_and(img_array, img_array, mask=mask) result = result.astype('float64') return result</pre>
	Random Samples From Each Class
	20 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -
	50 - 60 - 70
	0 10 20 30 40 50 60 70 Random Samples From Each Class In A Space RGB
	250 200 150 Blue 100
	50 0
	250 200 150 Red 100 50 0 250
	Random Samples From Each Class In A Plan HSV
	250 -
	150 - 100 -
	0 -
	Random Samples From Each Class In A Space HSV
	250 200 150 100
	250
	150 175 150 100 100 100 100 100 100 100 100 10
	0 25
	Random Pre-Processed Image From Each Class
	7. Prédiction7.1 Préparation des images de la prédiction
In []:	on rédefinie les photos se trouvant dans le dossier test et on les prépares pour etre traité par notre modèle • rem: auncune photo se trouve dans le dossier train ou validatio test_generator = test_datagen.flow_from_directory(
In []:	<pre>3. affiche le résultat de la prédiction sous forme de tableau print(' Résultat de la prédiction') result = model.predict(test_generator, steps=test_generator.n, verbose=1) predicted_class_indices = np.argmax(result, axis=1) prediction_labels = [label_map[k] for k in predicted_class_indices] filenames = test_generator.filenames headers = ['file', 'species'] t = PrettyTable(headers) for i, f, p in zip(range(len(filenames)), filenames, prediction_labels):</pre>
In []:	<pre>if i < 10:</pre>
	Acer_rubrum.jpg acer_rubrum Asimina.jpg asimina_triloba abies_concolor.jpg abies_concolor broussonettia.jpg broussonettia_papyrifera maclura_pomifera.jpg maclura_pomifera prunus_sargentie.jpg prunus_sargentii prunus_virginia.jpg ulmus_rubra ptelea_trifoliata.jpg ptelea_trifoliata ulmus_pumila.jpg prunus_sargentii
	ulmus_rubra.jpg ulmus_rubra ++