Stochastic Gradient with Decreasing Step Sizes

- To get convergence, we need a decreasing step size.
 - Shrinks size of ball to zero so we converge to w*.
- But it can't shrink too quickly:
 - Otherwise, we don't move fast enough to reach the ball.
- Stochastic gradient converges to a stationary point if:
 - Ratio of sum of squared step-sizes over sum of step-sizes converges to 0.

"how far you can
$$gt''$$
"

Thow far you can gt''
 $t=1$
 $t=1$

- This choice also works for non-smooth funtions like SVMs.
 - Function must be continuous and not "too crazy" (we're still figuring it out for non-convex).

Stochastic Gradient with Decreasing Step Sizes

- For convergence step-sizes need to satisfy: $\sum_{t=1}^{\infty} (x^t)^2 / \sum_{t=1}^{\infty} x^t = 0$
- Classic solution is to use a step-size sequence like $\alpha^t = O(1/t)$.

$$\mathcal{Z}_{x}^{t} = \mathcal{Z}_{x}^{t} - \mathcal{Z}_{x}^{t} = \mathcal{Z}_{x}^{t} - \mathcal{Z}_{x}^{t} + \mathcal{Z}$$

- E.g., $\alpha^{t} = .001/t$.
- Unfortunately, this often works badly in practice:
 - Steps get really small really fast.
 - Some authors add extra parameters like $\alpha^t = \gamma/(\beta t + \Delta)$, which helps a bit.
 - One of the only cases where this works well: binary SVMs with $\alpha^t = 1/\lambda t$.

Stochastic Gradient with Decreasing Step Sizes

• How do we pick step-sizes satisfying

$$\frac{2}{2} \left(x^{t} \right)^{2} / \frac{2}{2} x^{t} = 0$$

• Better solution is to use a step-size sequence like $\alpha^t = O(1/\sqrt{t})$.

$$\leq_{\alpha} x^{t} = \leq_{\tau=1}^{\kappa} \frac{1}{\sqrt{t}} = O(\sqrt{\kappa})$$

$$\sum_{k=1}^{k} (x^{k})^{2} = \sum_{t=1}^{k} \frac{1}{t} = O(\log k)$$

- − E.g., use $\alpha^{t} = .001/\sqrt{t}$
- Both sequences diverge, but denominator diverges faster.
- This approach (roughly) optimizes rate that it goes to zero.
 - Better worst-case theoretical properties (and more robust to step-size).
 - Often better in practice too.

Stochastic Gradient with Constant Step Sizes?

- Alternately, could we just use a constant step-size.
 - E.g., use α^t = .001 for all 't'.
- This will not converge to a stationary point in general.
 - However, do we need it to converge?
- What if you only care about the first 2-3 digits of the test error?
 - Who cares if you aren't able to get 10 digits of optimization accuracy?
- There is a step-size small enough to achieve any fixed accuracy.
 - Just need radius of "ball" to be small enough.

A Practical Strategy for Deciding When to Stop

In gradient descent, we can stop when gradient is close to zero.

- In stochastic gradient:
 - Individual gradients don't necessarily go to zero.
 - We can't see full gradient, so we don't know when to stop.

- Practical trick:
 - Every 'k' iterations (for some large 'k'), measure validation set error.
 - Stop if the validation set error "isn't improving".
 - We don't check the gradient, since it takes a lot longer for the gradient to get small.
 - This "early stopping" can also reduce overfitting.