CS 6150: HW3

Due Date:

This assignment has 5 questions, for a total of 100 points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

Question	Points	Score
Minimum-cost Tree	20	
Max-SAT Problem	20	
Containers and Truck	20	
Grid Graph	20	
Graph Coloring	20	
Total:	100	

Question 1: Minimum-cost Tree
vertices, and a set $V' \subseteq V$. Suppose the distances in the input is a metric, and the weight of an edg connecting two vertices in G is defined as the distance between these two vertices.
(a) [20] Design a ratio-2 approximation algorithm to find a minimum-cost tree that includes V' . The cost of a tree is the sum of all weights of its edges. This tree may or may not include vertices i $V - V'$. Show the approximation ratio of your algorithm is 2. (Hint: Recall the approximation algorithm for the TSP.)
Question 2: Max-SAT Problem
(a) [8] Here is a simple algorithm:
for each variable do set its value to either 0 or 1 by flipping a coin
end for
Suppose the input has m clauses, of which the j th has k_j literals, show that the expected number clauses satisfied by the above algorithm is no less than $\frac{m}{2}$. In other words, this is a 2-approximatio in expectation.
(b) [12] Improve the above algorithm to make it deterministic.
Question 3: Containers and Truck
Suppose a ship arrives, with n containers of weight w_1, w_2, \dots, w_n . Standing on the dock is a set of trucks, each of which can hold K unites of weight. (You can assume that K and each w_i is an integer You can stack multiple containers in each truck, subject to the weight restriction of K ; the goal is the minimize the number of trucks that are needed in order to carry all the containers.
A greedy algorithm you might use for this is the following. Start with an empty truck, and begin pilin containers 1, 2, 3, into it until you get to a container that would overflow the weight limit. Now declar this truck "loaded" and send it off; then continue the progress with a fresh truck. This algorithm, b considering trucks one at a time, may not achieve the most efficient way to pack the full set of container into an available collection of trucks.
(a) [5] Give an example of a set of weights, and a value of K, where this algorithm does not use the minimum possible number of trucks.
(b) [15] Show, however, that the number of trucks used by this algorithm is within a factor of 2 of the minimum possible number, for any set of weights and any value K .
Question 4: Grid Graph

Figure 1: A grid graph.

Associated with each node v is a weight w(v), which is a nonnegative integer. You may assume that the weights of all nodes are distinct. Your goal is to choose an independent set S of nodes of the grids, so that the sum of the weights of the nodes on S is as large as possible. (The sum of the weights of the nodes in S will be called its total weight.)

Consider the following greedy algorithm for this problem.

Algorithm 1 The "heaviest-first" greedy algorithm:

Start with S equal to the empty set while some node remains in G do

Pick a node v_i of maximum weight

Add v_i to SDelete v_i and its neighbors from Gend while

return S

- (a) [7] Let S be the independent set returned by the "heaviest-first" greedy algorithm, and let T be any other independent set in G. Show that, for each node $v \in T$, either $v \in S$, or there is a node $v' \in S$ so that $w(v) \leq w(v')$ and (v, v') is an edge of G.
- (b) [13] Show that the "heaviest-first" greedy algorithm returns an independent set of total weight at least $\frac{1}{4}$ times the maximum total weight weight of any independent set in the grid graph G.

BONUS: for 10 extra points, solve Question 8(c). Note that you will solve this by constructing an example graph of size n and showing that you need $\omega(1)$ colors.