

VLSI Testing 積體電路測試

Testability Measure

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

^{*} Some pictures are courtesy of Prof. Jiun-Lang Huang, NTU

Course Roadmap (EDA Topics)

Motivating Problem

 You report fault coverage of test set to your manager. Your manager is not very happy about FC number. He asked you: which faults are so difficult to detect?

Why Am I Learning This?

- Testability measure helps to
 - Make smart decision in ATPG
 - More testable designs

"Measurement is the first step that leads to control and eventually to improvement."

(H. James Harrington)

Testability Measure

- Introduction
- SCOAP (1979)
- COP (1984)
- High-level Testability Measures
- Conclusion

Testability Measures

- What is testability measure?
 - Metric to measure degree of difficulty to test a circuit
- Two important components:
 - Controllability
 - degree of difficulty to control a logic signal to 0 or 1
 - Observability
 - * degree of difficulty to observe the logic value of a signal

Testability Measures Controllability and Observability

Testability Analysis

- What is Testability Analysis?
 - Calculate testability measures for a given circuit
- Why testability analysis?
 - 1. Help ATPG make smart decision
 - 2. Insert DFT circuits to improve controllability and observability
- When testability analysis?
 - In preprocess stage of ATPG or DFT insertion
- Requirements of testability analysis
 - Should run very fast
 - Sometimes, accuracy is not very important

Categories of Testability Analysis

- 1. Topology-based analysis
 - Only analyzes structure of circuit. No test vectors are given.
 - Example: SCOAP
- 2. Probability-based analysis
 - Uses signal probability to estimate the testability
 - Example: COP
- 3. *High-level* analysis
 - Performs testability analysis before synthesis
 - Example: RTL testability analysis
- 4. Simulation-base analysis (not in lecture)
 - Apply input patterns,
 - Perform simulation and estimate testability

Testability Measure

- Introduction
- SCOAP (1979)
 - Combinational
 - Sequential
- COP (1984)
- High-level testability measures

SCOAP [Goldstein 1979]

- Sandia Controllability Observability Analysis Program*
- SCOAP computes 6 numbers for each node N

*Sandia is name of research lab.

	0-controllability	1-controllability	Observability
Combinational	CC ₀ (N)	CC1(N)	CO(N)
Sequential	SC ⁰ (N)	SC¹(N)	SO(M)

Combinational Controllability

- CC⁰(N), CC¹(N)
 - minimum number of combinational PI assignments and logic levels required to control a 0 or a 1 on node N
 - Smaller number, easier to control
- How to calculate CC?
 - ◆ CC(PI) = 1.
 - From PI to PO. Add 1 to account for logic level
- Gate propagation rules:
 - If only one input controls gate output:
 - * CC(gate_output) = min { CC(gate_input) } + 1
 - If all inputs needed to set gate output:
 - * CC(gate_output) = ∑ CC(gate_input) + 1
 - CC(branches)=CC(stem)

Smaller CC is Better

$CC^0(N) & CC^1(N)$

	CC ₀ (y)	CC ¹ (y)		
Primary inputs	1	1		
X_1 X_2 Y	min[CC ⁰ (x ₁),CC ⁰ (x ₂)] + 1	$CC^{1}(x_{1}) + CC^{1}(x_{2}) + 1$		
X_1 X_2 Y	$CC^{0}(x_{1}) + CC^{0}(x_{2}) + 1$	min[CC ¹ (x_1),CC ¹ (x_2)] + 1		
X_1 X_2 X_2	min[CC $^{0}(x_{1})$ + CC $^{0}(x_{2})$, CC $^{1}(x_{1})$ + CC $^{1}(x_{2})$] + 1	min[CC ⁰ (x_1) + CC ¹ (x_2), CC ¹ (x_1) + CC ⁰ (x_2)] + 1		
x — y	CC ¹ (x) + 1	$CC^0(x) + 1$		
x — y ₁	$CC^0(y_1) = CC^0(y_2) = CC^0(x)$	$CC^{1}(y_{1}) = CC^{1}(y_{2}) = CC^{1}(x)$		

An Example – Controllability

Forward: From PI to PO

Quiz

Q: how to control y to 0? How to control y to 1?

Combinational Observability

- CO(N)
 - minimum number of combinational PI assignments and logic levels required to propagate logical value on node N to PO
 - Smaller number, easier to observe
- How to calculate CO(N)?
 - ◆ CO(PO)=0
 - From POs to PIs, add 1 to account for logic level
- CO(gate_input)= Σ
 - (1) CO(gate_output)
 - (2) CC(setting all other inputs to non-controlling value)
 - (3) + 1 for logic level
- How about fanout stem? Assume they are independent
 - CO(stem) = min { CO(branches) }

CO(N)

	CO(x ₁)	
Primary outputs	0	
X_1 X_2 Y	$CO(y) + CC^{1}(x_{2}) + 1$	
X_1 X_2 Y	$CO(y) + CC^0(x_2) + 1$	
X_1 X_2 Y	$CO(y) + min[CC^{0}(x_{2}), CC^{1}(x_{2})] + 1$	
x ₁ — y	CO(y) + 1	
$x_1 - y_1$ y_2	min[CO(y_1),CO(y_2)]	

An Example – Observability

Backward: From PO to PI

Quiz

Q: Please analyze combinational SCOAP.

A:

	Α	В	С	Е	F	L	Н	J	K
CC ⁰									
CC ¹									
СО									

Summary

- Introduction
 - Metric to measure degree of difficulty to test a circuit
 - Helps 1. ATPG 2. DfT
- SCOAP: Combinational
 - ◆ CC⁰, CC¹, CO

FFT

 Q: Testability should be done very quickly. What is time complexity to calculate CC and CO?

