Polynésie 2015. Enseignement spécifique. Corrigé

EXERCICE 1

1) $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} = 6\overrightarrow{AI} + 4\overrightarrow{AJ} + 2\overrightarrow{AK}$. Donc, les coordonnées du point G sont (6,4,2).

D'autre part, les coordonnées respectives des points I et J sont (1,0,0) et (0,1,0). Les coordonnées du vecteur \overrightarrow{IG} sont (5,4,2) et les coordonnées du vecteur \overrightarrow{IG} sont (6,3,2).

S'il existe un réel k tel que $\overrightarrow{JG}=k\overrightarrow{IG}$, alors k=1 (à partir de la troisième coordonnée) et aussi $k=\frac{3}{4}$ (à partir de la deuxième coordonnée. Ceci est impossible et donc les vecteurs \overrightarrow{IG} et \overrightarrow{JG} ne sont pas colinéaires ou encore les points I, J et G ne sont pas alignés. On en déduit que les points I, J et G définissent un unique plan.

$$\overrightarrow{n}.\overrightarrow{IG} = 2 \times 5 + 2 \times 4 + (-9) \times 2 = 10 + 8 - 18 = 0$$

et

$$\overrightarrow{\pi}.\overrightarrow{JG} = 2 \times 6 + 2 \times 3 + (-9) \times 2 = 12 + 6 - 18 = 0.$$

Le vecteur \overrightarrow{n} est orthogonal aux vecteurs \overrightarrow{IG} et \overrightarrow{JG} qui sont deux vecteurs non colinéaires du plan (IJG). Donc, le vecteur \overrightarrow{n} est un vecteur normal au plan (IJG).

2) Le plan (IJG) est le plan passant par I(1,0,0) de vecteur normal $\overrightarrow{\pi}(2,2,-9)$. Une équation du plan (IJG) est donc

$$2(x-1) + 2(y-0) - 9(z-0) = 0$$

ou encore 2x + 2y - 9z - 2 = 0.

3) $\overrightarrow{AB} = 6\overrightarrow{AI}$ et donc les coordonnées du point B sont (6,0,0).

 $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AD} = 6\overrightarrow{AI} + 2\overrightarrow{AK}$ et donc les coordonnées du point F sont (6,0,2).

Les coordonnées du vecteur \overrightarrow{BF} sont donc (0,0,2).

La droite (BF) est la droite passant par B(6,0,0) et de vecteur directeur $\frac{1}{2}\overrightarrow{BF}(0,0,1)$. Une représentation paramétrique de la droite (BF) est

$$\begin{cases} x = 6 \\ y = 0 \\ z = t \end{cases}, t \in \mathbb{R}.$$

Soit M(6,0,t), $t \in \mathbb{R}$, un point de la droite (BF).

$$M \in (IJG) \Leftrightarrow 2 \times 6 + 2 \times 0 - 9 \times t - 2 = 0 \Leftrightarrow 10 - 9t = 0 \Leftrightarrow t = \frac{10}{9}.$$

Pour $t = \frac{10}{9}$, on obtient les coordonnées du point L :

$$L\left(6,0,\frac{10}{9}\right).$$

4) Graphique. (La droite d'inetrsection des plans (IJG) et (DCH) est parallèle à la droite (IL)).

EXERCICE 2

1) Soit M un point du plan d'affixe z.

M invariant
$$\Leftrightarrow z' = z \Leftrightarrow z^2 + 4z + 3 = z$$

 $\Leftrightarrow z^2 + 3z + 3 = 0.$

Le discriminant de l'équation $z^2+3z+3=0$ est $\Delta=3^2-4\times1\times3=-3<0$. Donc l'équation $z^2+3z+3=0$ admet deux solutions complexes non réelles conjuguées $z_1=\frac{-3+\mathrm{i}\sqrt{3}}{2}$ et $z_2=\frac{-3-\mathrm{i}\sqrt{3}}{2}$.

Donc, il existe exactement deux points invariants, le point M_1 d'affixe $z_1 = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$ et $z_2 = -\frac{3}{2} - i\frac{\sqrt{3}}{2}$.

Déterminons la forme trigonométrique de z_1 et z_2 .

$$|z_1| = \sqrt{\left(-\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \text{ puis}$$

$$z_1 = -\frac{3}{2} + i\frac{\sqrt{3}}{2} = \sqrt{3}\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3}\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = \sqrt{3}e^{\frac{5i\pi}{6}}.$$

D'autre part, $z_2 = \overline{z_1} = \sqrt{3}e^{-\frac{5i\pi}{6}}$.

$$z_1 = \sqrt{3}e^{\frac{5i\pi}{6}} \text{ et } z_2 = \sqrt{3}e^{-\frac{5i\pi}{6}}.$$

2) On sait déjà que $OA = |z_A| = |z_2| = \sqrt{3}$ et $OB = |z_B| = |z_1| = \sqrt{3}$. Enfin,

$$AB = |z_B - z_A| = \left| -\frac{3}{2} + i\frac{\sqrt{3}}{2} + \frac{3}{2} + i\frac{\sqrt{3}}{2} \right| = \left| i\sqrt{3} \right| = \sqrt{3}|i| = \sqrt{3}.$$

En résumé, $OA = OB = AB = \sqrt{3}$ et donc le triangle OAB est équilatéral.

3) Soient x et y deux réels puis z = x + iy.

$$z' = z^2 + 4z + 3 = (x + iy)^2 + 4(x + iy) + 3 = x^2 + 2ixy - y^2 + 4x + 4iy + 3$$

= $x^2 - y^2 + 4x + 3 + 2iy(x + 2)$.

Par suite,

$$M' \in (Ox) \Leftrightarrow z' \in \mathbb{R} \Leftrightarrow \mathrm{Im}\,(z') = 0 \Leftrightarrow y(x+2) = 0 \Leftrightarrow x = -2 \ \mathrm{ou} \ y = 0.$$

$$\mathcal{E}$$
 est la réunion des droites d'équation respectives $x=-2$ et $y=0$.

4) Graphique.

EXERCICE 3

1) La probabilité demandée est $P(153\leqslant X_1\leqslant 177)=P\left(\mu_1-2\sigma_1\leqslant X_1\leqslant \mu_1+2\sigma_1\right)$. La calculatrice (ou le cours) fournit

$$P(153 \leqslant X_1 \leqslant 177) = 0,95 \text{ arrondi à } 10^{-2}.$$

2) a) La probabilité demandée est $P(X_2 \ge 170) = 1 - P(X_2 \le 170)$. La calculatrice fournit

$$P(X_2 \ge 170) = 0,68 \text{ arrondi à } 10^{-2}.$$

b) De même, la probabilité qu'une femme choisie au hasard mesure plus de 1,70 m est $P(X_1 \ge 170) = 1 - P(X_1 \le 170) = 0,20$ arrondi à 10^{-2} .

Notons F l'événement « la personne choisie est une femme » et S l'événement « la personne choisie mesure plus de 1,70 m ». Ainsi, on a

$$P_{F}(S) = 0,20 \text{ et } P_{\overline{F}}(S) = 0,68.$$

Représentons la situation par un arbre de probabilité.

La probabilité demandée est $P_S(F)$. D'après la formule des probabilités totales,

$$P(S) = P(F) \times P_F(S) + P(\overline{F}) \times P_{\overline{F}}(S) = 0,52 \times 0,20 + (1-0,52) \times 0,68 = 0,4304.$$

Mais alors,

$$P_S(F) = \frac{P(F \cap S)}{P(S)} = \frac{P(F) \times P_F(S)}{P(S)} = \frac{0,52 \times 0,2}{0,4304} = 0,24 \text{ arrondi à } 10^{-2}.$$

$$P_S(F) = 0,24 \ \mathrm{arrondi} \ \mathrm{\grave{a}} \ 10^{-2}.$$

EXERCICE 4.

Partie A

1) Le coefficient directeur de la tangente à la courbe $\mathscr C$ en son point d'abscisse 1 est f'(1). La tangente à la courbe $\mathscr C$ en son point d'abscisse 1 est horizontale si et seulement si f'(1) = 0.

La fonction f est dérivable sur [1,8] en tant que produit de fonctions dérivables sur [1,8] et pour tout réel x de [1,8],

$$f'(x) = a \times e^{-x} + (ax + b) \times (-e^{-x}) = (a - (ax + b))e^{-x} = (-ax + a - b)e^{-x}.$$

Par suite,

$$f'(1)=0 \Leftrightarrow (-\alpha+\alpha-b)e^{-1}=0 \Leftrightarrow -be^{-1}=0 \Leftrightarrow b=0.$$

$$b = 0$$
.

 $\textbf{2)} \text{ Pour tout réel } x \text{ de } [1,8], \ f(x) = \alpha x e^{-x}. \text{ La condition de l'énoncé s'écrit } 3,5 \leqslant f(1) \leqslant 4 \text{ avec } f(1) = \alpha e^{-1} = \frac{\alpha}{e}.$

$$3,5 \leqslant f(1) \leqslant 4\alpha \Leftrightarrow 3,5 \leqslant \frac{\alpha}{e} \leqslant 4 \Leftrightarrow 3,5e \leqslant \alpha \leqslant 4e \; (\mathrm{car}\; e > 0)$$

 $\Leftrightarrow 9,5 \ldots \leqslant \alpha \leqslant 10,8 \ldots$
 $\Leftrightarrow \alpha = 10 \; (\mathrm{car}\; \alpha \; \mathrm{est} \; \mathrm{un} \; \mathrm{entier}).$

$$a = 10$$
.

Partie B

1) La fonction g est dérivable sur [1,8] en tant que produit de fonctions dérivables sur [1,8] et pour tout réel x de [1,8],

$$g'(x) = 10 \left\lceil (-1) \times e^{-x} + (-x-1) \times \left(-e^{-x} \right) \right\rceil = 10 \left(-e^{-x} + (x+1)e^{-x} \right) = 10xe^{-x} = f(x).$$

La fonction q est donc une primitive de la fonction f sur [1,8].

2) L'unité d'aire est le mètre carré. Puisque la fonction f est continue et positive sur [1, 8], l'aire du mur de soutènement exprimée en mètre carré est

$$\mathscr{A} = \int_{1}^{8} f(x) dx = [g(x)]_{1}^{8} = 10 ((-8-1)e^{-8}) - 10(-1-1)e^{-1} = 20e^{-1} - 90e^{-8}.$$

Le prix total en euros à payer est

$$300 + 50 (20e^{-1} - 90e^{-8}) = 300 + 1000e^{-1} - 4500e^{-8} = 666, 3...$$

Le devis de l'artiste sera de 670 euros.

Partie C

1) La fonction f' est dérivable sur [1,8] en tant que produit de fonctions dérivables sur [1,8] et pour tout réel x de [1,8],

$$(f')'(x) = 10((-1)e^{-x} + (1-x) \times (-e^{-x})) = 10(-1-1+x)e^{-x} = 10(x-2)e^{-x}.$$

Pour tout réel x de [1,8], $10e^{-x} > 0$ et donc pour tout réel x de [1,8], (f')'(x) est du signe de x-2. On en déduit le tableau de variations de la fonction f'.

χ	1	2		8
(f')'(x)	_	0	+	
f′	0	$-10e^{-2}$	- 70)e ⁻⁸

2) f'(x) est le coefficient directeur de la tangente à la courbe $\mathscr C$ en M. Cette tangente est la droite ML. Donc, |f'(x)| est la valeur absolue du coefficient directeur de la droite (ML) à savoir $\frac{PM}{PL}$.

D'autre part, dans le triangle MPL, rectangle en P, on a $tan(\alpha) = \frac{PM}{PI}$. Finalement

$$\tan(\alpha) = |f'(x)|.$$

3) Pour tout réel x de [1,8], $1-x\leqslant 0$ puis $10(1-x)e^{-x}\leqslant 0$ ou encore $f'(x)\leqslant 0$. Donc, pour tout réel x de [1,8], |f'(x)|=-f'(x). D'après la question C-1), le tableau de variation de la fonction |f'| est

Le maximum de |f'(x)| est $10e^{-2}$ ou encore la valeur maximale de $\tan(\alpha)$ est $10e^{-2}$ ce qui correspond à un angle de $53,5\dots^{\circ}$

La valeur maximale de α reste inférieure à 55° et donc le toboggan est conforme aux contraintes imposées.

EXERCICE 5.

Partie A

1) Algorithme complété.

Variables:	n, k entiers S, v réels	
Initialisation:	Saisir la valeur de n v prend la valeur ln(2) S prend la valeur 0	
Traitement : Sortie :	Pour k variant de 1 à n faire S prend la valeur $S + v$ v prend la valeur $\ln (2 - e^{-v})$ Fin Pour Afficher S	

2) Il semble que la suite (S_n) soit croissante et tende lentement vers $+\infty$.

Partie B

1) $u_1 = e^{v_1} = \ln 2 = 2$ puis, pour tout entier naturel non nul n,

$$u_{n+1} = e^{\nu_{n+1}} = e^{\ln\left(2 - e^{-\nu_n}\right)} = 2 - e^{-\nu_n} = 2 - \frac{1}{e^{\nu_n}} = 2 - \frac{1}{u_n}.$$

$$u_1 = 2 \text{ et pour tout } n \text{ de } \mathbb{N}^*, \, u_{n+1} = 2 - \frac{1}{u_n}.$$

2)
$$u_2 = 2 - \frac{1}{u_1} = 2 - \frac{1}{2} = \frac{3}{2}$$
 puis $u_3 = 2 - \frac{1}{u_2} = 2 - \frac{1}{3/2} = 2 - \frac{2}{3} = \frac{4}{3}$ puis $u_4 = 2 - \frac{1}{u_3} = 2 - \frac{1}{4/3} = 2 - \frac{3}{4} = \frac{5}{4}$.
$$u_2 = \frac{3}{2}, u_3 = \frac{4}{3} \text{ et } u_4 = \frac{5}{4}.$$

- 3) Montrons par récurrence que pour tout entier naturel non nul $n, u_n = \frac{n+1}{n}$.
 - $\frac{1+1}{1} = 2 = u_1$. Donc l'égalité est vraie quand n = 1.
 - Soit $n \ge 1$. Supposons que $u_n = \frac{n+1}{n}$. Alors,

$$\begin{split} u_{n+1} &= 2 - \frac{1}{u_n} \\ &= 2 - \frac{1}{(n+1)/n} \text{ (par hypothèse de récurrence)} \\ &= 2 - \frac{n}{n+1} = \frac{2(n+1) - n}{n+1} \\ &= \frac{n+2}{n+1} = \frac{(n+1)+1}{n+1}. \end{split}$$

On a montré par récurrence que pour tout entier naturel non nul $n,\,u_n=\frac{n+1}{n}.$

Partie C

1) Soit n un entier naturel non nul.

$$\begin{split} u_n &= e^{\nu_n} \Rightarrow \nu_n = \ln{(u_n)} \Rightarrow \nu_n = \ln{\left(\frac{n+1}{n}\right)}\,. \end{split}$$
 Pour tout n de $\mathbb{N}^*, \, \nu_n = \ln{\left(\frac{n+1}{n}\right)}. \end{split}$

2)
$$S_3 = v_1 + v_2 + v_3 = \ln(2) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) = \ln\left(2 \times \frac{3}{2} \times \frac{4}{3}\right) = \ln(4).$$

- 3) Montrons par récurrence que pour tout entier naturel non nul $n,\, S_n = \ln(n+1).$
 - \bullet $S_1=\nu_1=\ln(2)=\ln(1+1).$ L'égalité est donc vraie quand n=1.
 - \bullet Soit $n\geqslant 1.$ Supposons que $S_n=\ln(n+1).$ Alors,

$$\begin{split} S_{n+1} &= (\nu_1 + \ldots + \nu_n) + \nu_{n+1} = S_n + \nu_{n+1} \\ &= \ln(n+1) + \ln\left(\frac{n+2}{n+1}\right) \text{ (par hypothèse de récurrence)} \\ &= \ln\left(\frac{(n+1)(n+2)}{n+1}\right) = \ln(n+2). \end{split}$$

On a montré par récurrence que pour tout entier naturel non nul $\mathfrak{n},\, S_{\mathfrak{n}} = \ln(\mathfrak{n}+1).$

Pour tout
$$n \text{ de } \mathbb{N}^*$$
, $S_n = \ln (n+1)$.

En particulier,

$$\lim_{n\to+\infty}S_n=+\infty.$$