COURSE PLAN – COMPUTER GRPHICS LAB

A. OUTLINE OF PRACTICALS

Experiment 1: Introduction to OpenGL

Experiment 2: Drawing line using DDA, Bresenham's algorithm

Experiment 3: Drawing Circle and Ellipse using Mid-point algorithm

Experiment 4: Filling the objects using flood fill, boundary fill and scan line fill algorithm.

Experiment 5&6: Performing Clipping operation and polygon using Cohen Sutherland and Sutherland Hodgeman algorithms respectively.

Experiment 7&8: Performing 2D & 3D TRANSFORMATIONS on objects.

Experiment 9: Drawing Bezier curves.

Experiment 10: Animation & Event Handling using Mouse and Keyboard

Experiment 11&12: Creating 3D Shapes like Cube, Sphere and others.

B. PEDAGOGY

- 1. Students need to maintain a practical file which will contain all the executed experiments; the file should contain all the output of all experiments; students will be evaluated based on that file.
- 2. Students should carry a mini lab copy which contains discussion of teachers note or algorithms of the experiments which will be executed.

C. COURSE COMPLETION PLAN

Total Lab sessions	12

One Session =120 minutes

D. DETAILED LAB EXERCISE PLAN

Experiment 1: Introduction to OpenGL: [Virtual Lab Environment Setup]

- What is OpenGL?
- What is GLU/GLUT?
- What is OpenGL Architecture?
- Setting up the environment.
- First OpenGL Program: This initializes a window of Green color.
- # Discuss all the steps & functions in the program.

Experiment 2: Drawing a line [Usage of Open GL on Linux Environment for Virtual Environment]

- Draw a line using equation of line Y=m*X+C.
- Draw a line using DDA algorithm for slope m<1 and m>1.
- Draw a line using Bresenham algorithm for slope m<1 and m>1.

Take the input from user for all the three scenarios i.e. value of (x1, y1) and (x2, y2).

Experiment 3: Drawing a Circle and an Ellipse [Done on OpenGL Environment]

- Draw the circle with the help of polar equations
- Draw the circle with the help of mid-point method.
- Draw the Ellipse with the mid-point method.

Take the value of radius, major axis and minor axis as input from the user.

Experiment 4: Filling – Area [Small Project will be given for demonstration]

- WAP to fill the polygon using scan lines.
- WAP to fill a region using boundary fill algorithm using 4 or 8 connected approaches.
- WAP to fill a region using flood fill algorithm using 4 or 8 connected approaches.

Take the value of seed point, intensity of new color as input from user.

Experiment 5 & 6: Viewing and Clipping [Geographical Animation for demonstration]

- Write an interactive program for line clipping using Cohen Sutherland line clipping algorithm.
- Write an interactive program for line clipping using Liang-Barsky line clipping algorithm.
- Write an interactive program for polygon clipping using Sutherland Hodgeman polygon clipping algorithm.

Take the window coordinates as input from the user, also take polygon coordinates as input.

Experiment 7 & 8: Basic Two3 & Three Dimensional Transformations

- Write an interactive program for following basic transformation.
- Translation
- Rotation
- Scaling
- Reflection about axis.
- Reflection about a line Y=mX+c and aX+bY+c=0.
- Shear about an edge and about a vertex.

Perform all the experiment for 3-D transformation.

Take the following values as input from user: Theta (angle of rotation),translation factor, scaling factor and other values. Make necessary assumptions.

Experiment 9: Drawing Bezier curves. [Virtual GLUT based demonstration]

- Write a program to draw a cubic spline.
- WAP to draw a Bezier curve.

Take necessary values as input from the user like degree of the Bezier curve.

Experiment 10: Animation & Event Handling using Mouse and Keyboard

- WAP to implement following scenarios
 - Mouse Handling
 - Mouse Motion Handling
 - Keyboard Handling
 - Animation Using Mouse

WUPES

Take necessary values as input from the user like time, how long you want animation to run.

Experiment 11&12: Creating 3D Shapes like Cube, Sphere and others.

- WAP to create various 3D objects:
 - CUBE
 - SPHERE
 - CONE
 - TEAPOT.

#Make necessary assumption for creating the 3-D objects, you can use inbuilt functions to simplify the coding, lightning and shading effect should also be there.

Suggestive reads:

1. OpenGL: Programming Guide, the Official Guide to Learning OpenGL.

Authors: Dave Shreiner, John Kessenich, Bill Licea-Kane, The Khronos OpenGL ARB Working Group.

2. OpenGL Programming Guide Paperback – 2008

Author by Mason Woo (Author), Dave Shreiner (Author)