19/05/2024, 10:47 LogLogPlot

To demonstrate that a log-log plot of the function ${\bf c}n^b$ has a slope ${\bf b}$ and x-intercept logc, we follow these steps:

Log-Log Plot of $\mathrm{c}n^b$

Given the function $f(n) = cn^b$:

- 1. Take the logarithm of both sides: $\log(f(n)) = \log(cn^b)$
- 2. Use the properties of logarithms to separate the terms: $\log(f(n)) = \log(c) + \log(n^b)$
- 3. Apply the power rule for logarithms ($log(a^b) = blog(a)$): log(f(n)) = log(c) + blog(n)

This equation is in the form y=mx+b, which is the equation of a straight line where:

- y = log(f(n))
- x = log(n)
- m = b (the slope)
- $\log(c)$ is the y-intercept.

Since this is a log-log plot, the slope of the line is b and the x-intercept occurs when y=0:

• To find the x-intercept, set log(f(n)) = 0: 0 = log(c) + blog(n)

$$-log(c) = blog(n)$$

$$\log(n) = -rac{\log(c)}{b}$$

Therefore, the x-intercept is: $\log(n) = \log(c^{-1/b})$

Application to $4n^3(\log n)^2$

Now let's apply this to the function $\mathrm{f}(n)=4n^3(\log n)^2$:

- 1. Take the logarithm of both sides: $\log(f(n)) = \log(4n^3(\log n)^2)$
- 2. Use the properties of logarithms to separate the terms: $\log(f(n)) = \log(4) + \log(n^3) + \log((\log n)^2)$
- 3. Apply the power rule for logarithms: log(f(n)) = log(4) + 3log(n) + 2log(log(n))

This equation can be interpreted as a sum of linear terms on a log-log plot:

• The term 3log(n) indicates a slope of 3 for the ${\bf n}^3$ part.

19/05/2024, 10:47 LogLogPlot

- The term 2log(log(n)) does not affect the slope of the line on a standard log-log plot because it introduces a secondary logarithmic term.
- The term log(4) is a constant and contributes to the y-intercept.

Slope and X-Intercept

- **Slope**: The slope b is dominated by the term 3log(n), so the slope is 3.
- **X-Intercept**: The x-intercept is found by setting y=0 (where $\log(f(n))=0$) and solving for n: $0=\log(4)+3\log(n)+2\log(\log(n))$ \textrm

This equation is complex due to the 2log(log(n)) term. However, for large n, the 3log(n) term dominates, and the x-intercept is primarily influenced by the term involving n^3 :

Setting
$$\log(4)+3log(n)=0$$
 for simplicity: $3log(n)=-log(4)\log(n)=-\frac{log(4)}{3}$ Therefore, the x-intercept is: $\log(n)=\log(4^{-1/3})\log(n)=\log(2^{-2/3})$ (since $4=2^2$) So, the x-intercept in terms of n is $n=2^{-2/3}$.

In conclusion:

- The **slope** of the log-log plot for $4n^3(\log n)^2$ is 3.
- The **x-intercept** is influenced by the constant 4 but primarily dominated by the term involving n, simplifying to $log(n)=-\frac{\log(4)}{3}$, or equivalently $n=2^{-2/3}$ in base 2 terms.