Chapitre 4 : Notion et loi des équilibres chimiques

4.1. Introduction : notion de réaction totale et de réaction limitée

Pour un processus spontané ou irréversible $\Delta G < 0$ et pour un processus réversible $\Delta G = 0$. Dans le cas d'une évolution spontanée, il s'agit d'une évolution vers un état d'équilibre accompagnée d'une décroissance d'enthalpie libre. L'état d'équilibre sera atteint lorsque l'enthalpie libre G présentera un minimum soit dG = 0.

Pour une réaction chimique, l'équilibre chimique sera atteint lorsque $\Delta G = 0$.

L'équilibre chimique est un état final particulier d'une évolution où il y a coexistence de tous les constituants participant à la réaction chimique considérée. A l'équilibre toutes les caractéristiques restent constantes au cours du temps.

Pour la réaction $(A + B \rightarrow C + D)$, plusieurs cas peuvent se présenter.

♣ à l'état final, on trouve seulement C et D, la réaction est dite **totale** et s'écrit :

$$A + B \rightarrow C + D$$

♣ à l'état final on trouve A, B, C et D, on a un équilibre chimique qu'on écrit :

$$A + B \rightleftharpoons C + D$$

Il existe plusieurs types d'équilibres chimiques :

L'équilibre homogène où A, B, C et D sont dans une seule phase solide, liquide et gazeuse même au microscope optique.

$$H_2(g) + Cl_2(g) \le 2HCl(g)$$

L'équilibre **hétérogène** quand il existe plusieurs phases distinctes (A, B, C et D ne sont pas dans la même phase ou les phases sont discernables).

$$CaCO_3(s)$$
 \longleftarrow $CaO(s) + CO_2(g)$

4.2. Lois de Guldberg et de Waage (loi d'action de masse) et constante d'équilibre thermodynamique

4.2.1. Variation d'enthalpie libre accompagnant une réaction chimique

Soit la réaction : $aA + bB \longrightarrow cC + dD$ se déroulant à T, l'enthalpie libre de réaction est donnée par :

$$\Delta G_{\mathrm{T}} = G_{\mathrm{f}} - G_{\mathrm{i}} \qquad \Delta r G_{T} = (cG_{T_{C}} + dG_{T_{D}}) - (aG_{T_{A}} + bG_{T_{B}})$$

$$= [(G_{T_{C}}^{\circ} + cRT \ln a_{C}) + (G_{T_{D}}^{\circ} + dRT \ln a_{D})] - [(G_{TA}^{\circ} + aRT \ln a_{A}) + (G_{T_{B}}^{\circ} + bRT \ln a_{B})]$$

$$\Delta r G_T = \Delta r G_T^0 + RT \ln \left(\frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b} \right) \text{ avec } \Delta r G_T^0 = \sum v_i \mu_i^\circ (T)$$

En Posant
$$M = \left(\frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}\right)$$
 on aura $\Delta r G_T = \Delta r G_T^0 + RT \ln M$

L'équilibre thermodynamique est atteint lorsque $\Delta rG_T = \Delta rG_T^0 + RT \ln M = 0$ ce qui donne :

- $M_{eq} = K_T = \exp(\frac{-\Delta G_T}{RT})$ est la loi des équilibres ou loi de **Guldberg et Waage**. Elle ne s'applique qu'à un système fermé en équilibre.

4.2.2. Quelques expressions de la Constante d'équilibre

4.2.2.1. Constante d'équilibre en fonction des pressions partielles

Nous sommes dans le cas d'un mélange de gaz parfait : $a_i = \frac{P_i}{P_0}$

$$K_{P,T} = \frac{(\frac{P_C}{P_0})^C (\frac{P_D}{P_0})^d}{(\frac{P_A}{P_0})^a (\frac{P_B}{P_0})^b} = \frac{P_c^c . P_D^d}{P_A^a . P_B^b} P_0^{\Delta n}$$

Si on exprime les pressions en atmosphères et si on admet que la pression P_0 est la pression de référence égale 1 atm la relation précédente devient :

$$\frac{(P_C)^C(P_D)^d}{(P_A)^a(P_B)^b} = K_P(T) = exp^{-\frac{\Delta G_T^{\circ}}{RT}}$$

4.2.2.2. Constante d'équilibre en fonction des concentrations

Dans le cas d'une réaction en solution : $a_i = \frac{C_i}{C_0}$

$$K_{C,T} = \frac{\left(\frac{C_C}{C_0}\right)^c \left(\frac{C_D}{C_0}\right)^d}{\left(\frac{C_A}{C_0}\right)^a \left(\frac{C_B}{C_0}\right)^b} = \frac{C_c^c \cdot C_D^d}{C_A^a \cdot C_B^b} C_0^{\Delta n}$$

Si on prend une solution idéale avec $C_0 = 1$ on aura $\frac{(C_C)^C(C_D)d}{(C_A)^a(C_B)b} = K_C(T) = exp^{-\frac{\Delta G_T^o}{RT}}$

4.2.2.3. Relation entre des constantes

Kp et Kc

Pour tout constituant i d'un mélange gazeux, n_i étant la quantité de matière de i, V le volume du mélange et P_t la pression totale dans le mélange, nous pouvons écrire :

$$\begin{aligned} P_{i}V &= n_{i}RT \implies (\sum P_{i}).V = (\sum n_{i}).RT \\ &\frac{P_{i}}{\sum P_{i}} = \frac{n_{i}}{\sum n_{i}} \\ &\text{avec} \quad (\sum P_{i}). = P_{t} \quad \text{et} \quad \frac{n_{i}}{\sum n_{i}} = \chi_{i} \\ P_{i} &= \frac{n_{i}}{V}.RT = [i].RT \; ; \qquad P_{i} = \chi_{i}.P_{t} \; ; \qquad P_{i} = n_{i}.\frac{RT}{V} \end{aligned}$$

En remplaçant Pi par ses différentes valeurs on retrouve d'autres expressions de la loi d'action des masses.

$$K_P(T) = \frac{(P_c)^c (P_D)^d}{(P_A)^a (P_B)^b} = \frac{[C]^c [D]^d}{[A]^a [B]^b} (RT)^{(c+d)-(a+b)}$$

 $K_C(T) = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ loi d'action des masses relative à la concentration

et en posant $\Delta n = (c+d) - (a+b)$ variation du nombre de moles gazeuses.

$$K_P(T) = K_C(T).(RT)^{\Delta n}$$

♣ Kp et K_X

$$K_P(T) = \frac{(P_C)^C (P_D)^d}{(P_A)^a (P_B)^b} = \frac{(\chi_C)^c (\chi_D)^d}{(\chi_A)^a (\chi_B)^b} (P_t)^{(c+d)-(a+b)}$$

 $K_{\chi}(T) = \frac{(\chi_c)^c (\chi_D)^d}{(\chi_A)^a (\chi_B)^b}$ exprime la loi d'action des masses relative aux fractions molaires.

$$K_P(T) = K_X(T).(P_t)^{\Delta n}$$

♣ Kp et K_N

$$K_P(T) = \frac{(P_C)^C (P_D)^d}{(P_A)^a (P_B)^b} = \frac{(n_C)^c (n_D)^d}{(n_A)^a (n_B)^b} \left(\frac{RT}{V}\right)^{(c+d)-(a+b)}$$

 $K_N(T) = \frac{(n_C)^c (n_D)^d}{(n_A)^a (n_B)^b}$ exprime la loi d'action des masses relatives aux nombre de moles.

$$K_P(T) = K_N(T) \cdot (\frac{RT}{V})^{\Delta n}$$

Remarque : A T, pour toute réaction pour laquelle $\Delta n = 0$ on note que

$$K_P(T) = K_C(T) = K_X(T) = K_N(T)$$

D'une façon générale pour tout constituant i, on utilisera la notion d'activité notée a_i ou (i) avec :

- (i) = $a_i = \frac{P_i}{P_0}$ en phase gazeuse où P_0 est la pression de référence égale 10^5 Pa ≈ 1 atm
- (i) = $a_i = \frac{\chi i}{\chi_0}$ en phase liquide et solide où χ_0 est la fraction molaire de référence égale 1.
- (i) = $a_i = \frac{C_i}{C_0}$ en solution où i est le soluté et $C_0 = 1M$ la concentration de référence
- (i) = $a_i = \gamma_i$ [i] où est le coefficient d'activité qui tend vers 1 pour les solutions infiniment diluées pour lesquelles (i) = [i] ; c'est dans cette situation nous placerons généralement cette année

Exercice d'application 4.1.

Soit l'équilibre d'estérification en phase liquide homogène :

$$CH_3COOH + C_2H_5OH$$
 $CH_3COOC_2H_5 + H_2O : K_{298} = 4$

En déterminant le signe de l'enthalpie libre de réaction ΔG_T , prévoir le sens d'évolution de cet équilibre lorsque la composition initiale du système est la suivante :

$$a-[acide] = 1,6M$$
; $[alcool] = 0,4M$; $[ester] = [eau] = 0,8M$

$$b-[acide] = 0.2M$$
; $[alcool] = 0.3M$; $[ester] = 0.6M$; $[eau] = 0.8M$

4.2.3. Variation de la constante d'équilibre avec la température : Loi de Van't Hoff

Pour toute réaction chimique, la condition d'équilibre s'écrit :

$$\Delta G_T^P = 0$$
. soit $\Delta G_T^0 + RT.lnK_P = 0$.

$$\Delta G_T^0 = - \text{RT.lnK}_P \implies \text{lnK}_P = -\frac{\Delta G_T^0}{RT}$$

$$\Delta G_T^0 = \Delta H_T^0 - T \Delta S_T^0$$

$$\ln K_{P} = -(\frac{\Delta H_{T}^{0} - T.\Delta S_{T}^{0}}{RT})$$

$$\ln K_{P} = -\frac{\Delta H_{T}^{0}}{RT} + \frac{\Delta S_{T}^{0}}{R}$$

$$\frac{d \ln K_P}{dT} = \frac{\Delta H_T^0}{RT^2}$$
 qui exprime la loi **isobare de Van't Hoff**.

$$lnK_P = -\frac{\Delta H_T^0}{RT} + \frac{\Delta S_T^0}{R}$$
 est la relation intégrée de Van't Hoff

Qui se met sous la forme

$$lnK_P = \frac{A}{T} + C^{te}$$
 où $A = -\frac{\Delta H_T^0}{R}$ et $Cte = \frac{\Delta S_T^0}{R}$

En traçant la courbe donnant la variation de $\ln K_P$ en fonction de $\frac{1}{T}$ on obtient une droite dont la pente

est A =
$$-\frac{\Delta H_T^0}{R}$$
 et l'ordonnée à l'origine est $\frac{\Delta S_T^0}{R}$.

Remarque: A partir de la relation $K_C = K_P \cdot (RT)^{-\Delta n}$, nous pouvons exprimer la variation de K_C avec la température.

$$\ln K_{\rm C} = \ln K_{\rm P} + \ln ({\rm RT})^{-\Delta n}$$

$$\frac{d \ln K_{\rm C}}{dT} = \frac{d \ln K_{\rm P}}{dT} + \frac{d \ln (RT)^{-\Delta n}}{dT}$$

$$\frac{d \ln K_{\rm C}}{dT} = \frac{\Delta H_T^0}{RT^2} - \frac{\Delta n}{T} \cdot (\frac{RT}{RT}) \quad \text{soit} \quad \frac{d \ln K_{\rm C}}{dT} = \frac{\Delta U_T^0}{RT^2}$$

$$\frac{d \ln K_{\rm C}}{dT} = \frac{\Delta U_T^0}{RT^2} \quad \text{Loi isochore de Van't Hoff}$$

4.2.4. Température d'inversion

Soit la réaction :
$$aA + bB \rightleftharpoons cC + dD$$

La température d'inversion de cette réaction est par définition, la température Ti pour laquelle la réaction est à l'équilibre thermodynamique dans les conditions standard.

$$\Delta G^{\circ} = \Delta H_{T}^{\circ} - T_{i} \Delta S_{T}^{\circ} = 0$$
 ce qui donne : $T_{i} = \frac{\Delta H_{T}^{\circ}}{\Delta S_{-}^{\circ}}$

4.3. Loi de déplacement des équilibres chimiques

Dire qu'un système est en équilibre, c'est dire qu'il est capable de s'opposer à toute perturbation causée par la modification d'un des facteurs d'équilibre T, P_t, composition chimique.

4.3.1. Loi de LE CHATELIER

↓ Toute perturbation qui a pour effet de modifier une des variables intensives d'un système en équilibre entraîne un déplacement de l'équilibre dans le sens qui tend à s'opposer aux effets de cette perturbation.

Cette loi permet de prévoir qualitativement le sens de déplacement $(G \rightarrow D \text{ ou } D \rightarrow G)$ d'un équilibre chimique des suites d'une modification d'une des variables intensives P_t , t et χ_i .

4.3.2. Déplacement de l'équilibre avec la variation de T

4.3.2.1. Approche qualitative

Si la température augmente, il y a apport de chaleur et l'équilibre se déplace dans le sens de la consommation de la chaleur apportée, c'est-à-dire dans le sens endothermique.

Si la température diminue, il y a disparition de chaleur et l'équilibre se déplace dans le sens de la libération de chaleur pour compenser la disparition de chaleur, c'est-à-dire dans le sens exothermique.

Si la température ne varie pas, alors T est sans influence sur l'équilibre.

4.3.2.2. Approche quantitative

Dans ce cas nous utiliserons la loi de VANT'HOFF

$$\frac{dLnKP}{dT} = \frac{\Delta H_T^{\circ}}{RT^2} \text{ (respectivement } \frac{dLnKC}{dT} = \frac{\Delta U_T^{\circ}}{RT^2} \text{) en remarquant que, } \frac{\Delta H_T^{\circ}}{RT^2} \text{ est la dérivée}$$

par rapport à T de lnK_P . Cette dérivée est du signe de ΔH° .

- $\Delta H^{\circ} = 0$, $\frac{\Delta H^{\circ}_{T}}{RT^{2}} = 0$ LnK_P et K_P constantes quel que soit T qui est donc sans influence sur l'équilibre.
- $\Delta H^{\circ} < 0, \frac{\Delta H^{\circ}}{RT^{2}} < 0$ LnK_P est une fonction décroissante de T, LnK_P et T varient en sens inverse
 - **♣** Si T augmente, LnK_P et K_P diminuent ce signifie que l'équilibre se déplace de la D \rightarrow G.

- $\Delta H^{\circ} > 0$, $\frac{\Delta H}{RT^{2}}$ > 0 LnK_P est une fonction croissante de T, LnK_P et T varient dans le même sens.

 - \blacksquare Si T diminue, LnK_P et K_P diminuent ce signifie que l'équilibre se déplace de la D \rightarrow G.

4.3.3. Déplacement de l'équilibre avec la variation de Pt.

Considérons : $K_{\chi} = K_P \cdot (P_t)^{-\Delta n}$ soit $lnK_{\chi} = lnK_P + ln(P_t)^{-\Delta n}$

$$\frac{d \ln K_{\chi}}{dP_{t}} = \frac{d \ln K_{P}}{dP_{t}} + \frac{d \ln(P_{t})^{-\Delta n}}{dP_{t}} \quad \text{soit} \quad \frac{d \ln K_{\chi}}{dP_{t}} = -\Delta n$$

 $\frac{d \ln K_{\chi}}{dP_t} = -\Delta n \text{ la dérivée par rapport à P}_t \text{ de } \ln K_{\chi} \text{ est du signe de } (-\Delta n).$

- $\Delta n = 0$, $\ln K_{\chi}$ et K_{χ} constantes quelque soit P_t qui est donc sans influence sur l'équilibre.
- $\Delta n < 0$, lnK_{χ} est une fonction croissante de P_t , lnK_{χ} et P_t varient dans le même sens
 - ♣ Si P_t augmente, lnK_{χ} et K_{χ} augmentent ce signifie que l'équilibre se déplace de la $G \rightarrow D$.
 - ♣ Si P_t diminue, lnK_χ et lnK_χ diminuent ce signifie que l'équilibre se déplace de la D → G.
- $\Delta n > 0$, $\ln K_{\chi}$ est une fonction décroissante de P_t , $\ln K_{\chi}$ et P_t varient en sens inverse.
 - ♣ Si P_t augmente, lnK_{χ} et K_{χ} diminuent ce signifie que l'équilibre se déplace de la D → G.
 - ♣ Si P_t diminue, lnK_{χ} et K_{χ} augmentent ce signifie que l'équilibre se déplace de la $G \rightarrow D$.
 - ♣ Pour une augmentation de la pression, le système évoluera dans le sens d'une diminution du nombre total de moles à l'état gazeux.
 - ♣ Pour une diminution de la pression le système évoluera dans le sens d'une augmentation du nombre total de moles à l'état gazeux.

4.3.4. Déplacement de l'équilibre avec la variation de la composition chimique.

La modification de composition peut se faire de plusieurs manières et peut impliquer des constituants participant à la réaction ou non (constituant inerte).

4.3.4.1. Modification de composition à P et T constantes

L'approche quantitative utilise la relation :

$$K_{\chi} = K_{N}.(N)^{-\Delta n} \quad \text{ so it } \quad lnK_{\chi} = lnK_{N} + ln(N)^{-\Delta n}$$

 $\Delta n = 0 \; , l'ajout \; d'un \; constituant \; participant \; \grave{a} \; la \; r\'{e}action \; provoque \; un \; d\'{e}placement \; de \; l'\'{e}quilibre \\ dans \; le \; sens \; de \; la \; disparition \; du \; constituant \; ajout\'{e} \; pour \; que \; K_N \; reste \; une \; constante.$

- $\Delta n > 0$ (aA + bB \rightarrow cC + dD), l'ajout d'un constituant participant à la réaction provoque un déplacement de l'équilibre dans le sens de la compensation des effets de ce ajout donc dans le sens de la disparition du constituant ajouté pour que K_N reste une constante. Si on ajoute par exemple A, n_A augmente et K_N et $N^{-\Delta n}$ diminuent. Le système évolue jusqu'à ramener l'égalité $K_\chi = K_N \cdot N^{-\Delta n}$
- Δn < 0 quand on ajoute un constituant participant à la réaction,, l'équilibre se déplace de façon à modérer l'augmentation du nombre de moles du constituant ajouté.
 - 4 A T et P constantes si on ajoute (ou enlève) un constituant qui participe à la réaction, l'équilibre est déplacé dans le sens de sa consommation (ou restitution).
 - ♣ Si à T et P constante on ajoute un constituant inerte, N augmente :
 - si $\Delta n = 0$, l'ajout est sans effet sur l'équilibre.
 - si Δn différent de 0 (Δn <0 et Δn >0), l'équilibre se déplace dans le sens d'une augmentation du nombre de moles gazeuses.

4.3.4.2. Modification de composition à V et T constantes

$$K_c = K_N \cdot V^{-\Delta n}$$

- ♣ Si on ajoute un constituant, l'équilibre se déplace dans le sens de la disparition du constituant ajouté.
- ♣ L'ajout d'un constituant inerte à V et T constants est sans effet sur l'équilibre.

Exercice d'application 4.2.

- 1. Pour la réaction à 25 °C $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ avec $\Delta G^{\circ}f = -33\ 280J$
 - a- Cette réaction évolue vers un équilibre. Calculer la constante d'équilibre K à 25 °C.
 - b- A 25 °C, on place dans une enceinte fermée 1 mole de N2, 1mole de H2 et 1mole de NH3. A l'instant initial le mélange gazeux à une pression totale P° = 1bar dans quel sens va évoluer la réaction ?
- 2. A 25 °C, on met 0,05 mole de N2O4 gazeux dans un ballon de volume constant V = 1L. N2O4 se décompose en NO2 jusqu'à atteindre l'équilibre gazeux :
 N₂O₄(g) <==> 2NO₂(g) .

A partir des enthalpies libres standard de formation de ces deux espèces on a déterminé la constante d'équilibre K de l'équilibre ci-dessus K=0,14.

- a-Quelle est la pression initiale P° dans le ballon?
- b-Quelle est la fraction de N₂O₄ qui s'est décomposée en NO₂ à 25 °C à l'équilibre ?
- c-Quelle est la pression totale à l'équilibre ?

3. Indiquer dans quel sens se déplace l'équilibre quand :

$$CH_{4(g)} + Cl_{2(g)} \le CH_3Cl(g) + HCl(g) \Delta H^{\circ} = -99,40 \text{ kJ}$$

a- la température augmente,

b-P_t diminue,

c-on ajoute Cl₂ à P et T constante,

d-on ajoute de l'argon à P et T constante ?

4.4. Equilibre de changement d'état d'un corps pur

Tout corps peut subir un changement d'état, qui peut être :

Une fusion (solide ⇔ liquide), une vaporisation (liquide ⇔ vapeur), une sublimation (solide ⇔ gaz), un changement de variété allotropique (structure cristalline1 ⇔ structure cristalline 2)

Dans ce cas il est possible de définir une constante d'équilibre.

D'une façon générale, quand deux phases a et b d'une mole d'un corps pur X coexistent en équilibre on peut écrire Ga = Gb (ou $\mu_a = \mu_b$) et l'équilibre s'écrit :

Si on impose au système une perturbation élémentaire provoquant dT et dP, sans pour autant entraîner la disparition d'une des phase a ou b au détriment de l'autre, la condition qui exprime que le nouvel état d'équilibre est atteint s'écrit :

$$G_a + dG_a = G_b + dG_b$$

Comme on avait $G_a = G_b$ alors $dG_a = dG_b$

Puisque dG = V.dP - S.dT

Soit :
$$V_a.dP - S_a.dT = V_b.dP - S_b.dT$$

$$(V_b - V_a)dP = (S_b - S_a)dT$$

$$\Delta V.dP = \Delta S.dT$$
 soit $\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$

Ala transformation de changement d'état, Xa Xb correspond

$$\Delta H^{\circ}_{a \to b}$$
 et $\Delta S^{\circ}_{a \to b}$ avec $\Delta S^{\circ}_{a \to b} = \frac{\Delta H_a \to b}{T_a \to b}$

$$\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$$
 $\frac{dP}{dT} = \frac{\Delta H_a \rightarrow b}{T_a \rightarrow b \cdot \Delta V}$

d'où

 $\frac{dP}{dT} = \frac{\Delta H_a \to b}{T_a \to b \Delta V}$ qui exprime la loi de CLAPEYRON pour le changement d'état.

 $\Delta H^{\circ}_{a \to b}$ est la chaleur latente du changement d'état a \to b.

Cas particulier : le changement d'état fait intervenir une phase gazeuse (supposé parfait).

Il s'agit de la vaporisation et de la sublimation.

$$\frac{dP}{dT} = \frac{\Delta H_{liq} \rightarrow gaz}{T_{liq} \rightarrow gaz (V_{gaz} - V_{liq})} \text{ avec } V_{liq} << V_{gaz}$$

$$V_{gaz} - V_{liq} = V_{gaz}$$
 et $\frac{dP}{dT} = \frac{\Delta H_{liq} \rightarrow {}_{gaz}}{T_{liq} \rightarrow {}_{gaz}V_{gaz}}$

$$V_{gaz} = \frac{PV}{RT}$$
 et $\frac{dP}{dT} = \frac{\Delta H_{liq} \rightarrow gaz}{T_{liq} \rightarrow gaz} \frac{P}{RT_a \rightarrow b}$.

$$\frac{dP}{dT} = \Delta H^{\circ}.\frac{P}{RT^{2}}$$
 d'où $\frac{dP}{P} = d(\ln P) = \Delta H^{\circ}.\frac{dT}{RT^{2}}$

$$\frac{\text{dlnP}}{\text{dT}} = \frac{\Delta H^{\circ}}{RT^{2}}$$
 qui est la même que la relation de VANT'HOFF puisque $K_{P} = P$

Représentation des domaines d'existence des phases

Les états d'équilibre ($\Delta G=0$ c'est-à-dire Ga=Gb) de changement d'états d'un composé peuvent être représentés par des fonctions P=f(T) dont les pentes sont toujours de type $\frac{\Delta H^{\circ}}{T \, \Delta V}$.

Exemple de l'eau: De part et d'autre des courbes on obtient des domaines de T et de P dans lesquels $\Delta G < 0$ et $\Delta G > 0$, domaines où existe une seule phase.

- pour la fusion :
$$H_2O(s)$$
 \longleftarrow $H_2O(l)$ $\Delta H > 0$

la pente $\frac{dP}{dT} = \frac{\Delta H^{\circ}}{T \cdot \Delta V}$ est donnée par le signe de $\Delta V = V(l) - V(s) < 0$ (V(l) < V(s) dans le cas de l'eau).

- pour la vaporisation :
$$H_2O(s)$$
 \longleftrightarrow $H_2O(l)$ $\Delta H > 0$

la pente $\frac{dP}{dT} = \frac{\Delta H^{\circ}}{T \cdot \Delta V}$ est donnée par le signe de $\Delta V = V(g) - V(l) > 0$ (V(l) < V(g) dans le cas de l'eau).

- pour la sublimation :
$$H_2O(s)$$
 \longrightarrow $H_2O(g)$ $\Delta H > 0$

la pente $\frac{dP}{dT} = \frac{\Delta H^{\circ}}{T \cdot \Delta V}$ est donnée par le signe de $\Delta V = V(g) - V(s) > 0$ (V(s) < V(g) dans le cas de l'eau).

Ces différents raisonnements conduisent au diagramme ci-dessous qui indique les domaines des trois phases solide, liquide et gaz.

4.5. Règle des phases (Calcul de la variance d'un système)

4.5.1. Définition

L'état d'équilibre d'un système chimique dépend de différentes variables intensives appelées variables d'état ou facteur d'équilibre : température, pression totale, la composition chimique - concentration, pression partielle) des constituants.

Le nombre de ces variables que l'on peut fixer pour atteindre un état d'équilibre thermodynamique est appelé variance v du système. Autrement dit, c'est le nombre de facteur que l'on peut modifier indépendamment sans qu'il ait rupture de l'équilibre chimique. La variance correspond au degré de liberté du système étudié.

4.5.2. Calcul de la variance d'un système chimique

La formule ou théorème de Gibbs permet de calculer la variance d'un système chimique :

$$v = C + 2 - \varphi$$

Avec:

$$C = N - r$$
 ou

N : le nombre total d'espèces chimiques

r : le nombre d'équation chimique indépendant reliant les espèces.

 ϕ : le nombre de phases

2 : représente les deux variables physiques température et pression.

Si v = 0 le système est invariant

Si v= 1 le système est monovariant ou univariant

Si v = 2 le système est bivariant ;

Si v = 3 le système est trivariant

On peut aussi donner un nom au système en fonction de la valeur de C :

C = 1 système unaire ou du premier ordre

C= 2 système binaire ou du deuxième ordre

C= 3 système ternaire ou du troisième ordre

4.5.3. Exercice d'application

Calculer la variance des systèmes suivants :

$$CO_{2(g)} + C_{(s)} \Longrightarrow 2CO_{(g)}$$

$$CaCO_{3(s)} = = = = = CaO_{(s)} + CO_{2(g)}$$