ANALISIS PENGARUH PENGOPERASIAN BEBAN-BEBAN NON-LINIER TERHADAP DISTORSI HARMONISA PADA BLUE POINT BAY VILLA & SPA

I Putu Alit Angga Widiantara¹, I Wayan Rinas², Antonius Ibi Weking³ Jurusan Teknik Elektro, Fakultas Teknik Universitas Udayana Email: <u>alitangga999@gmail.com¹, rinas@unud.ac.id², tony@unud.ac.id³</u>

Abstrak

Timbulnya distrosi harmonisa dari pengoperasian beban non-linier dapat mengakibatkan sistem kelistrikan menjadi tidak normal. Hal ini terbukti melalui simulasi pada Blue Point Bay Villa & Spa yang memiliki mayoritas berupa beban nonlinier. Simulasi dilakukan menggunakan software ETAP, pengelompokkan jenis beban nonlinier, perhitungan daya aktif (P) dan arus beban (IL), analisis THD(Total Harmonic Distraction) hasil simulasi dibandingkan dengan standar IEEE 519-1992, batas maksimum THD₁ untuk SC_{ratio}<20 adalah 5,0% sedangkan THD_V adalah 5,0%. Hasil simulasi menunjukkan nilai THD₁ di Blue Point Bay Villa & Spa tidak memenuhi standar, yaitu seluruh SDP(Sub Distribution Panel) memiliki persentase diatas 5,0% dengan presentase paling besar terdapat di SDP 1.5 sebesar 19,48% sedangkan persentase THD₁ di SDP lainnya memiliki rata-rata sebesar 8,8%. Nilai THD_V hasil simulasi memenuhi standar, yaitu seluruh SDP memiliki nilai THD_V dibawah 5%, persentase THD_V paling besar terdapat di SDP 1.3 sebesar 2,83% sedangkan persentase THD_V di SDP lainnya memiliki rata-rata sebesar 2,72%.

Kata kunci: Beban non-linier, Harmonisa.

Abstract

The emergence of harmonic distortion of the operation of non-linear loads can lead to an abnormal electrical system. This was proven through simulations on Blue Point Bay Villa & Spa which has a majority in the form of a non-linear load. Simulations performed using ETAP software, grouping types of non-linier loads, calculation of active power (P) and the load current (IL), analysis of THD (Total Harmonic Distraction) simulation results compared to standard IEEE 519-1992, the maximum limit for SCratio THD $_{I}$ <20 is 5 , 0%, while THD $_{V}$ was 5.0%. The simulation results show the value THD $_{I}$ in Blue Point Bay Villa & Spa does not meet the standards, ie the entire SDP (Sub Distribution Panel) have a percentage above 5.0% with the greatest percentage contained in SDP 1.5 amounted to 19.48%, while the percentage of THD $_{I}$ in other SDP have an average of 8.8%. THD $_{V}$ value simulation results meet the standards, ie the entire SDP has THD $_{V}$ values below 5%, the biggest percentage THDV contained in SDP 1.3 by 2.83%, while the percentage THD $_{V}$ in other SDP has an average of 2.72%

Keywords: non-linear Loads, Harmonics

1. PENDAHULUAN

Peralatan listrik saat ini umumnya menggunakan mikro elektronik yang merupakan jenis beban non-linier yang menghasilkan harmonisa pada sistem tenaga listrik.

Tingginya kandungan harmonisa pada sistem tenaga listrik berdampak buruk pada kualitas daya listrik. Banyaknya komponen arus harmonisa dapat mempengaruhi sistem distribusi tenaga listrik seperti meningkatkan panas pada penghantar dan susut daya.

Blue Point Bay Villa & Spa memilik kapasitas daya terpasang 555 kVA yang dibebani dengan beban non-linier. Dari hasil pengukuran THD_1 yaitu sebesar 25,17% yang berarti melebihi nilai standar (IEEE Std 519-1992) yang telah ditentukan yaitu sebesar \leq 15,0%. Pengukuran THD_V sebesar 4,83%, dimana kondisi tersebut masih memenuhi standar maksimum THD_V sebesar \leq 5% untuk tegangan \leq 69 kV [1].

Maka akan dilakukan analisis mengenai pengaruh pengoperasian bebanbeban non-linier terhadap distorsi harmonis di Villa Blue Point dengan menggunakan simulasi, sehingga hasil dari analisis ini dapat digunakan sebagai acuan untuk melihat distrosi harmonisa yang disebabkan oleh beban-beban non-linier.

2. KAJIAN PUSTAKA

Beberapa teori yang digunakan untuk mendukung penelitian ini adalah sebagai berikut.

2.1 Harmonisa

Berdasarkan Standart IEC (International Electrotechnical Commission) 1000.4-11, harmonisa digolongkan kedalam Distorsi Bentuk Gelombang [2], karena terjadi perubahan bentuk gelombang dari gelombang dasarnya. Harmonisa adalah tegangan ataupun arus sinusoidal yang mempunyai kelipatan frekuensi sistem pasokan tenaga listriknya sebagaimana yang dirancang untuk beroperasi (biasanya 50 Hz ataupun 60 Hz)

Ada empat sebab dasar yang menyebabkan terjadinya harmonisa, yaitu [3]:

- Sumber arus dan tegangan non sinusoidal dan elemen-elemen rangkaian (resistor, induktor, dan kapasitor) adalah linier (independent),
- 2. Sumber arus dan tegangan sinusoidal, sedangkan elemen-elemen rangkaian mengandung elemen nonlinier,
- 3. Sumber arus dan tegangan non sinusoidal, sedangkan elemen-elemen rangkaian non-linier,
- Sumber arus dan tegangan yang berupa sumber DC, sedangkan rangkaiannya mengandung elemen yang berubah secara periodik.

Ada dua kriteria harmonisa yaitu distorsi harmonisa arus (THD_I) dan harmonisa tegangan (THD_V). Harmonisa juga memiliki batas yang dapat ditentukan dari perbandingan arus hubung singkat yang ada pada PCC (*Point of Common Coupling*), dan I_L merupakan arus beban fundamentalnya. Batas harmonisa tegangan sendiri ditentukan dari besarnya tegangan sistem yang terpasang. Standar harmonisa yang diizinkan untuk arus dan tegangan berdasarkan IEEE 519-1992 sesuai dengan Tabel 1 dan Tabel 2.

Menurut IEEE Standard 519-1992, untuk mengetahui standar batas maksimum THD₁ pada *utility*, maka harus diketahui terlebih dahulu rasio hubung singkat (*short-circuit ratio*).

SC_{ratio} yang dapat dicari dengan menggunakan rumus berikut :

$$SC_{ratio} = \frac{I_{SC}}{I_{E}}$$
 (1)

Tabel 1. Current distortion limits untuk general distribution system [1]

, .,								
	Maximum Harmonics Current Distortion I₁ % IL							
	Individual Harmonic Order (Odd Harmonics)							
I _{sc} / I _L <11 11= <h<17 %<="" 17="<h<23" 23="<h<35" 35="<h" th="" thd=""></h<17>								
<20	4	2	1.5	0.6	0.3	5		
20-50	7	3.5	2.5	1	0.5	8		
50- 100	10	4.5	4	1.5	0.7	12		
100- 1000	12	5.5	5	2	1	15		
>1000	15	7	6	2.5	1.4	20		

I_{sc} (Arus hubung singkat) dapat dicari dengan menggunakan rumus berikut :

$$Isc = \frac{kVA \times 100}{\sqrt{3} \times kV \times Z(\%)}$$
 (2)

I_L (Arus beban maksimum) dapat dicari dengan menggunakan rumus berikut :

$$I_L = \frac{KW}{PF\sqrt{3}KV} \tag{3}$$

Keterangan:

I_{SC} adalah Arus hubung singkat maksimum pada PCC

I_L adalah Arus beban maksimumkW adalah Total daya aktif

Tabel 2. Voltage distortion limits [1]

Voltage at PCC	Individual Voltage Distortion (%)	Total Harmonic Distortion THD (%)
69 kV and below	3,0	5,0
69 kV – 161 kV	1,5	2,5
161 kV	1,0	1,5

2.2 Beban Non-linier

Harmonisa juga disebabkan oleh adanya beban non-linier yang memiliki impedansi yang tidak konstan dalam setiap periode tegangan masukannya, maka arus yang dihasilkan tidak berbanding lurus dengan tegangan yang diberikan. Sehingga beban non-linier tidak mematuhi Hukum Ohm yang menyatakan arus berbanding lurus dengan tegangan [4]. Gelombang arus dan tegangan yang dihasilkan oleh beban non-linier tidak sama sehingga terjadi cacat (distorsi) sesuai dengan Gambar 1

Gambar 1. Gelombang arus dan tegangan beban non-linier [5]

Berikut ini adalah beberapa contoh beban non-linier untuk keperluan rumah tangga maupun industri [6] sesuai dengan Gambar 2.

Gambar 2. Jenis beban non-linier [6]

3. METODELOGI PENELITIAN

Penelitian dilakukan di Blue Point Bay Villa & Spa. Alur analisis langkah penelitian sesuai dengan Gambar 3.

Gambar 3. Langkah penelitian

4. HASIL DAN PEMBAHASAN

Hasil dan pembahasan yang dari penelitian ini adalah sebagai berikut.

4.1 Sistem Kelistrikan Blue Point Bay Villa & SPA

Berikut merupakan data karakteristik trafo di Blue Point Bay Villa & Spa sesuai dengan Tabel 3.

Tabel 3. Data karakteristik transformator distribusi Blue Point Bay Villa & Spa

Daya	630 kVA
Phase	3
Tegangan Primer (kV)	20 kV
TeganganSekunder (kV)	400/231 V
Vektor Group	DyN5
Impedansi (%)	4%
R	1,03 %
X	3,86 %

Beban di Blue Point Bay Villa & Spa dibagi menjadi 2 MDP (*Main Distibution Panel*) dengan besaran masing - masing MDP yaitu MDP 1 sebesar 103.060,5 watt. Sedangkan pada MDP 2 total beban yang di suplai sebesar 87,612 watt. Jadi total beban yang disuplai MDP 1 dan MDP 2 adalah 190.672,5 watt. Besarnya nilai daya aktif tiap-tiap phasa masing-masing SDP dapat dilihat pada Tabel 4.

Tabel 4. Total Beban pada tiap-tiap phasa masingmasing SDP di Blue Point Bay Villa & Spa

MDP	Tempat	Phasa	Daya Aktif (P)
			kW
		R	9.156
	SDP 1.1	S	9.998
		T	9.170
		R	4.875
	SDP 1.2	S	4.572
		T	4.972
	SDP 1.3	R	10.403
1		S	10.328
		T	10.366
	SDP 1.4	R	5.083
		S	4.851
		T	4.871
		R	5.249,5
	SDP 1.5	S	4.306
		T	5.060
		R	9.328
	SDP 2.1	S	9.910
			9.966
_		R	9.910
2	SDP 2.1	S	9.966
			9.328
		R	9.966
	SDP 2.3	S	9.910
		T	9.328

4.2 Batas maksimum THD₁ di Blue Point Bay Villa & Spa

Standar maksimum distorsi harmonisa pada sistem kelistrikan di Blue Point Bay Villa & Spa menurut IEEE Standard 519 - 1992, dapat ditentukan standar batas maksimum THD_I pada utiliti, maka harus diketahui terlebih dahulu rasio hubung singkat (*short-circuit ratio*). SC_{ratio} dapat dicari dengan menggunakan persamaan 1 dan nilai I_{sc} dapat ditentukan dengan menggunakan persamaan 2:

o Kapasitas Transformator = 630 kVA
o Tegangan Sekunder = 0,4 kV
o Impedansi = 4%

$$I_{sc} = \frac{S (kVA) \times 100}{\sqrt{3} \times V (kV) \times Z(\%)} = \frac{630 \times 100}{\sqrt{3} \times 0.4 \times 4} = \frac{63.000}{2,771} = 22.735,47 A$$

Nilai I_L pada tiap-tiap PCC dapat ditentukan dengan menggunakan persamaan 3 :

$$\begin{split} I_L = & \frac{kW}{pf \sqrt{3} \ kV} = \frac{9.156}{0.85 \cdot \sqrt{3} \cdot 0.4} = \text{15.571,43 A} \\ SC_{ratio} = & \frac{I_{SC}}{I_L} = \frac{22.735,47}{15.571,43} = \text{1,460} \end{split}$$

Dengan cara yang sama seperti diatas maka nilai I_{SC} , I_L dan SC_{rasio} , untuk masing-masing SDP yang lainnya dapat dilihat pada Tabel 5.

Tabel 5. Hasil I_{SC}, I_L dan SC_{ratio} pada setiap SDP di Blue Point Bay Villa & Spa

M	Tempat	Phasa	I _{SG} (A)	I _L (A)	SCrmo
P					
1	SDP 1.1	R	22.735,47	15.571,43	1,460
		S	22.735,47	17.003,40	1,337
		Т	22.735,47	15.595,24	1,457
	5DP 1.2	R	22.735,47	7.950,68	2,859
	1.2	S	22.735,47	7.775,51	2,924
		T	22.735,47	8.455,78	2,689
	SDP	R	22.735,47	17.692,18	1,285
	1.3	S	22.735,47	17.564,62	1,294
		Т	22.735,47	17.629,25	1,289
	SDP	R	22.735,47	8.644,56	2,630
1.	1.4	S	22.735,47	8.250	2,755
		Т	22.735,47	8.284,01	2,744
	5DP	R	22.735,47	8.927,72	2,547
1	1.5	5	22.735,47	7.323,13	3,105
		T	22.735,47	8.605,44	2,642
2	5DP	R	22.735,47	15.863,94	1,433
	2.1	S	22.735,47	16.853,74	1,349
		T	22.735,47	16.948,98	1,341
	SDP	R	22.735,47	16.853,74	1,349
	2.1	S	22.735,47	16.948,98	1,341
		Т	22.735,47	15.863,94	1,433
	SDP	R	22.735,47	16.948,98	1,341
	2.3	S	22.735,47	16.853,74	1,349
		T	22.735,47	15.863,94	1,433

Hasil short-circuit ratio disesuaikan dengan IEEE Standard 519 – 1992, (batas maksimum THD $_{\rm I}$ untuk SC $_{\rm ratio}$ <20 adalah 5,0 %, SC $_{\rm ratio}$ antara 20 sampai 50 adalah 8,0 %, SC $_{\rm ratio}$ antara 50 sampai 100 adalah 12,0 %, SC $_{\rm ratio}$ 100 sampai 1000 adalah 15,0 %, dan SC $_{\rm ratio}$ >1000 adalah 20 %). Pada sistem kelistrikan di Blue Point Villa & Spa batas maksimum THD $_{\rm I}$ yang diperbolehkan sesuai dengan Tabel 6.

Tabel 6. Batas maksimum THD₁ menurut IEEE standard 519 – 1992 di Blue Point Bay Villa & Spa

M U Tempat Phasa Blue Point IEEE Day Villa & Standar 519	THDimes
	THDimes
P Bay Villa & Standar 519	
	(%)
Spa - 1992	
R 1,460 <20	5.0
SDP 1.1 S 1,337 <20	5.0
T 1,457 <20	5.0
R 2,859 <20	5.0
SDP 1.2 S 2,924 <20	5.0
T 2,689 <20	5.0
R 1,285 <20	5.0
1 SDP 1.3 S 1,294 <20	5.0
T 1,289 <20	5.0
R 2,630 420	5.0
SDP 1.4 S 2,755 <20	5.0
T 2,744 <20	5.0
R 2,547 <20	5.0
SDP 1.5 S 3,105 <20	5.0
T 2,642 <20	5.0
R 1,433 <20	5.0
SDP 2.1 S 1,349 <20	5.0
T 1,341 <20	5.0
R 1,349 <20	5.0
2 SDP 2.1 S 1,341 <20	5.0
T 1,433 <20	5.0
R 1,341 <20	5.0
SDP 2.3 S 1,349 <20	5.0
T 1,433 <20	5.0

Berikut perbandingan antara nilai kandungan harmonisa hasil pengukuran dengan standard IEEE pada tiap - tiap phasa masing- masing SDP sesuai dengan Tabel 7.

Tabel 7. Perbandingan THD₁ pengukuran dengan IEEE 519-1992

MDP	Tempat	Phasa	Pengukuran THD ₁ (%)Blue Point Bay Villa & Spa	IEEE Standar 519 – 1992 THD _{Imer} (%)	KET
		R	7,7	5.0	Tidak Memenuhi Standar
	SDP 1.1	S	10,3	5.0	Tidak Memenuhi Standar
		T	9,6	5.0	Tidak Memenuhi Standar
		R	10	5.0	Tidak Memenuhi Standar
	SDP 1.2	S	10,4	5.0	Tidak Mememihi Standar
		T	6,2	5.0	Tidak Memenuhi Standar
		R	5,6	5.0	Tidak Memenuhi Standar
1	SDP 1.3	S	14,1	5.0	Tidak Memenuhi Standar
		T	11,2	5.0	Tidak Memenuhi Standar
		R	12,4	5.0	Tidak Memenuhi Standar
	SDP 1.4	S	6,5	5.0	Tidak Memenuhi Standar
		T	7,4	5.0	Tidak Memenuhi Standar
	SDP 1.5	R	7,2	5.0	Tidak Memenuhi Standar
		S	8,8	5.0	Tidak Memenuhi Standar
		T	9,4	5.0	Tidak Memenuhi Standar
		R	16,9	5.0	Tidak Mememihi Standar
	SDP 2.1	S	33,5	5.0	Tidak Mememili Standar
		T	18,3	5.0	Tidak Memenuhi Standar
		R	71,1	5.0	Tidak Memenuhi Standar
2	SDP 2.1	S	87,5	5.0	Tidak Memenuhi Standar
		T	74,7	5.0	Tidak Memenuhi Standar
		R	13,0	5.0	Tidak Mememihi Standar
	SDP 2.3	S	32,0	5.0	Tidak Mememihi Standar
		T	11,5	5.0	Tidak Memenuhi Standar

4.3 Batas maksimumTHD_v di Blue Point Bay Villa & Spa

Data pengukuran THD_V sesuai dengan Tabel 8.

Tabel 8. Perbandingan THD_V pengukuran dengan IEEE 519-1992

	IEEE 319-1992						
MDP	Tempat	Phasa	Pengukuran THD ₇ (%)Blue Point Bay Villa & Spa	IEEE Standar 519 – 1992 THDv (%)	KET		
		R	1,7	5.0	Memenuhi Standar		
	SDP 1.1	S	2,3	5.0	Memenuhi Standar		
		T	2,1	5.0	Memeruhi Standar		
		R	1,9	5.0	Memenuhi Standar		
	SDP 1.2	S	2,5	5.0	Memenuhi Standar		
		T	2,3	5.0	Memenuhi Standar		
		R	1,6	5.0	Memenuhi Standar		
1	SDP 1.3	S	2,1	5.0	Memenuhi Standar		
		T	2,2	5.0	Memenuhi Standar		
	SDP 1.4	R	1,8	5.0	Memenuhi Standar		
		5	2,7	5.0	Memenuhi Standar		
		T	2,2	5.0	Memenuhi Standar		
	SDP 1.5	R	1,9	5.0	Memenuhi Standar		
		S	2,7	5.0	Memenuhi Standar		
		T	2,3	5.0	Memenuhi Standar		
		R	1,7	5.0	Memenuhi Standar		
	SDP 2.1	- 5	2	5.0	Memenuhi Standar		
		T	1,8	5.0	Memenuhi Standar		
		R	1,8	5.0	Memenuhi Standar		
2	SDP 2.1	- 5	2,1	5.0	Memenuhi Standar		
		T	1,9	5.0	Memenuhi Standar		
		R	1,8	5.0	Memenuhi Standar		
	SDP 2.3	S	2,1	5.0	Memenuhi Standar		
		T	1,8	5.0	Memenuhi Standar		

4.4 Simulasi Analisis THD_I dan THD_V Menggunakan Simulasi

Berikut merupakan hasil running simulasi THD_1 dan THD_V pada sistem jaringan Blue Point Bay Villa & Spa menggunakan simulasi sesuai dengan Gambar 4.

Gambar 4. Hasil running simulasi THD, dan THD,

Berikut ini hasil running spektrum harmonik dan bentuk gelombang dari simulasi THD arus dan THD tegangan, sesuai dengan Gambar 5 dan Gambar 6 dibawah ini.

Gambar 6. Bentuk gelombang

Gambar 5 dan Gambar 6 menunjukkan bahwa saat sistem distribusi terdapat beban non-linier maka bentuk gelombang sinusoidal mengalami cacat gelombang atau terdistorsi.

4.4.1 Analisis THD_I di Blue Point Bay Villa & Spa

Berdasarkan hasil perhitungan shortcircuit ratio, sesuai dengan IEEE standar 519-1992. Berikut ini hasil running simulasi kandungan THD_I pada setiap SDP di Blue Point Bay Villa & Spa sesuai dengan Tabel 9.

Table 9. Perbandingan THD₁ antara hasil *running* menggunakan simulasi dengan standar IEEE 519-1992

MDP	Tempat	Hasil running THD1(%) BluePoint Bay Villa & Spa	IEEE Standar 519 – 1992 THD _{Inst} (%)	KET
	SDP 1.1	8,94	5.0	Tidak Memenuhi Standar
	SDP 1.2	8,94	5.0	Tidak Memenuhi Standar
1	SDP 1.3	8,94	5.0	Tidak Memenuhi Standar
	SDP 1.4	8,93	5.0	Tidak Memenuhi Standar
	SDP 1.5	19,48	5.0	Tidak Memenuhi Standar
2	SDP 2.1	8,81	5.0	Tidak Memenuhi Standar
	SDP 2.2	8,81	5.0	Tidak Memenuhi Standar
	SDP 2.3	8,81	5.0	Tidak Memenuhi Standar

Tabel 9 dapat dilihat bahwa nilai THD_l pada SDP 1.1 sebesar 8,94 %, SDP 1.2 sebesar 8,94 %, SDP 1.3 sebesar 8,94 %, SDP 1.4 sebesar 8,93 % dan persentase THD_l paling besar terdapat di SDP 1.5 sebesar 19,48 %. Hal ini dikarenakan beban non-linier yang terdapat di SDP 1.5 dan beban masing - masing phasa di SDP 1.5 yang tidak seimbang. Nilai THD_l pada SDP 2.1, SDP 2,2 dan SDP 2,3 adalah sebesar 8,81%. Maka rata - rata nilai THD_l pada Blue Point Bay Villa & Spa sebesar 8,8 %.

4.5.2 Analisis THD_V di Blue Point Bay Villa & Spa

Batas maksimum THD $_{\rm V}$ di Blue Point Bay Villa & Spa menurut IEEE standar 519-1992 adalah 5.0 % karena tegangannya dibawah 69 kV

Berikut ini merupakan hasil *running* simulasi THD_V sesuai dengan Tabel 10.

Table 10. Perbandingan THD _√ antara hasil <i>running</i>
menggunakan simulasi dengan standar
IFFF 519-1992

MDP	Tempat	Hasil running THD _V (%) BluePoint Bay Villa & Spa	IEEE Standar 519 – 1992 THD _{Vmax} (%)	KET
	SDP 1.1	2,82	5.0	Memenuhi Standar
	SDP 1.2	2,77	5.0	Memenuhi Standar
1	SDP 1.3	2,83	5.0	Memenuhi Standar
	SDP 1.4	2,72	5.0	Memenuhi Standar
	SDP 1.5	2,71	5.0	Memenuhi Standar
2	SDP 2.1	1,40	5.0	Memenuhi Standar
	SDP 2.2	1,42	5.0	Memenuhi Standar
	SDP 2.3	1,40	5.0	Memenuhi Standar

Hasil simulasi menunjukkan nilai SDP 1.1 sebesar 2,82 %, SDP 1.2 sebesar 2,77 %, SDP 1.3 sebesar 2,83 %, SDP 1.4 sebesar 2,72% dan SDP 1.5 sebesar 2,71 %, sedangkan nilai THD $_{\rm V}$ pada SDP 2.1 sebesar 1,40%, SDP 2.2 sebesar 1,42 %, dan SDP 2.3 sebesar 1,40 %. Seluruh SDP memiliki per-sentase THD $_{\rm V}$ dibawah 5 %. Persentase THD $_{\rm V}$ paling besar terdapat di SDP 1.3 sebesar 2.83 % sedangkan persentase THD $_{\rm V}$ di SDP lainnya memiliki persentase rata-rata sebesar 2,72 %.

5. SIMPULAN

Berdasarkan hasil analisis, maka simpulan yang didapatkan adalah sebagai berikut.

- Total beban non-linier yang terdapat pada Blue Point Bay Villa & Spa hasil pengukuran MDP 1 dan MDP 2 adalah sebesar 190.672,5 watt,
- 2. Nilai THD₁ hasil *running* tidak memenuhi standar IEEE 519-1992, yaitu seluruh SDP memiliki persentase THD₁ diatas 5%. Persentase THD₁ paling besar terdapat di SDP 1.5 sebesar 19,48% sedangkan persentase THD₁ di SDP lainnya memiliki persentase rata rata sebesar 8,8%. Hal ini dikarenakan beban non-linier yang terdapat di SDP 1.5 dan beban masing masing phasa di SDP 1.5 yang tidak seimbang,

- Nilai THD_V hasil running masih memenuhi standar IEEE 519-1992, yaitu seluruh SDP memiliki persentase THD_V dibawah 5%. Persentase THD_V paling besar terdapat di SDP 1.3 sebesar 2,83% sedangkan persentase THD_V di SDP lainnya memiliki persentase ratarata sebesar 2,72%,
- Perbedaan nilai THD_I dan THD_V hasil pengukuran dengan hasil running ETAP ini disebabkan, pada saat pengukuran beban non-linier yang beroperasi kurang optimal.

6. DAFTAR PUSTAKA

- [1] "IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems," *IEEE Std* 519-1992, pp. 1–112, Apr. 1993.
- [2] R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W. Beaty, *Electrical Power Systems Quality, Third Edition*. McGraw Hill Professional, 2012.
- [3] Susiono, "Penentuan Lokasi Lokasi Filter Harmonik Optimum Pada Sistem Distribusi Daya Listrik," Program Studi Teknik Elektro Institut Teknologi Sepuluh November, 1999.
- [4] F. C. D. L. Rosa, *Harmonics and Power Systems*. CRC Press, 2006.
- [5] A. Suryajaya, "Pengaruh Total Harmonic Distortion (THD) Pada Suatu Sistem," Program Studi Teknik Elektro Jurusan Teknologi Industri Universitas Katolik Soegijapranata, Semarang, 2011.
- [6] M. Rusli, "Analisis Dan Evaluasi Dampak Harmonisa Pada Transformator. PT PLN (Persero) Penyaluran dan Pusat Penyalur Beban Sumatera Utara," 2009.