Sprawozdanie z Laboratorium 3 - Pomiar czasu znajdywania losowego słowa z listy. Implementacja listy, stosu oraz kolejki przy wykorzystaniu odpowiednich interfejsów.

Kamil Kuczaj

4 kwietnia 2016

1 Wstęp

Podanym zadaniem był pomiar czasu znajdywania losowego elementu listy typu*string*. Należało wykonać pomiary zapisu: 10^1 , 10^3 , 10^5 , 10^6 oraz 10^9 . Wykorzystano słownik 109582 najpopularniejszych słów w języku angielskim. Zdecydowano się na wybór języka angielskiego nad polskim z uwagi na zlikwidowanie problemów z wczytywaniem znaków łacińskich.

W programie nie użyto szablonów. Było to wynikiem konsultacji z prowadzącym na zajęciach.

Z uwagi na to, że w liście użyto węzłów i nie zaimplementowano jej używając tablicy, alokacja nowego elementu ma złożoność obliczeniową rzędu $O(n^2)$. Jest to mój błąd wynikający z niezrozumienia prowadzącego. Skutkowało to tym, że wykonano jedynie trzy pomiary: 10^1 , 10^3 , 10^5 . Dalsze pomiary zajmowały zbyt dużo czasu.

Słowa w słowniku posortowane są alfabetycznie, więc za każdym razem do struktury danych były wczytywane będąc już uprzednio posortowane rosnąco.

2 Specyfikacja komputera

Wersja kompilatora $g++$	4.8.4	
System	Ubuntu 14.04.4	
Procesor	Intel Core i5 2510M 2.3 GHz	
Pamięć RAM	8 GB DDR3 1600 MHz	
Rozmiar zmiennej int	4 bajty	

3 Pomiary oraz ich interpretacja

Bardzo dużą część czasu zajmowało zapisanie stu tysięcy słów - wynikało to z tego, że należało zaalokować pamięć, w tym wypadku zwiększając ją o jeden element za każdym razem. Wiąże się to ze złożonością obliczeniową rzędu $\mathrm{O}(n^2)$. Jest to następstwo mojego błędu, które zdążyłem już opisać we wstępie.

W programie użyłem funkcji rand() z biblioteki < cstdlib > do wylosowania losowego słowa ze słownika 109582 najpopularniejszych słów w języku angielskim. Następnie przeszukiwałem listę w poszukiwaniu tego słowa i zapisywałem go do pliku niezależnie od tego, czy słowo zostało znalezione. Chciałem w ten sposób pokazać, że przeszukanie listy jest bardzo efektywne. Poniżej w tabeli przedstawione zostały średnie wyniki pomiarów.

Ilość elementów	10^{1}	10^{3}	10^{5}
Średni czas [μ s]	9871,2	9323,78	13611,46
Średni czas [s]	0,0098712	0,00932378	0,01361146

Tablica 1: Wyniki pomiarów. Łatwo zauważyć, że przeszukanie listy trwa bardzo krótko i prawie nie zależy od ilości elementów. Złożoność obliczeniowa O(n).

Wydawać by się mogło, że liczenie średniej z pomiarów, gdzie nie uwzględnia się czy słowo zostało znaleziono, lub gdzie się znajdowało może być niedokładne. Jednak wyraźnie widać, że to skomplikowanie pomiarów miało by nieznaczny wpływ na uzyskane wyniki.

Rysunek 1: Zobrazowanie wyników pomiaru oraz regresja logartymiczna wykonana w programie $LibreOffice\ Calc.$

4 Wnioski

Zastosowanie struktury danych typu listazdecydowanie pozwoliło zmniejszyć czas na znalezienie słowa. Dysponując podanymi danymi zakwalifikowałbym przeszukanie tablicy jako algorytm rzędu $\mathrm{O}(n).$