Lista de exercícios No. 1 - Processamento de Imagens

Gustavo Lopes Rodrigues

10 de maio de 2022

Questão 1.

- a) Teste
- **b**) Teste 2
- \mathbf{c}) Teste 3

Questão 2.

k	k	k	k
k	k	k	k

Questão 3.

-1	0	1
-2	0	2
-1	0	1

Tabela 1: Imagem A

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 2: Imagem B

Questão 4.

k	k	k	k
k	k	k	k

Questão 5.

	_		
k	k	k	k
k	k	k	k

Questão 6.

Questão 7.

- $\mathbf{b})$
- $\mathbf{c})$
- **d**) MAX = 255

$$N = 25$$

$$\frac{MAX}{n} = 10$$

s	h(s)	Somatório	r
1	13	13	130
2	6	19	190
3	1	20	200
4	1	21	210
5	2	23	230
6	2	25	250

Tabela 3: Calculando novos valores de A

S	h(s)	Somatório	r
1	7	7	70
2	4	11	110
5	2	13	130
6	4	17	170
7	3	20	200
8	5	25	250

Tabela 5: Calculando novos valores de B

200	230	190	130	130
130	210	250	190	130
130	130	230	250	190
130	130	130	130	130
130	190	190	190	130

Tabela 4: Imagem A com equalização

130	70	110	70	250
170	170	130	170	70
110	70	250	200	200
170	70	110	250	250
200	250	110	70	70

Tabela 6: Imagem B com equalização

s	h(s)	Somatório	r
1	10	10	100
2	4	14	140
7	1	15	150
8	5	20	200
9	6	26	255

Tabela 7: Calculando novos valores de C

100	100	255	100	100
100	100	255	200	150
255	255	255	140	100
100	100	140	200	200
100	140	140	200	255

Tabela 8: Imagem C com equalização

e) Sobel

-1	0	1
-2	0	2
-1	0	1

Tabela 9: Kernel sobel na direção ${\bf X}$

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 10: Imagem A

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 11: Imagem A com sobel na direção ${\bf X}$

-1	-2	-1
0	0	0
1	2	1

Tabela 12: Kernel sobel na direção Y

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 13: Imagem A

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 14: Imagem A com sobel na direção Y

Questão 8.

- a) Quanto a imagem saída, os tons de cinza escuros da imagem foram comprimidos, ficando mais escuros. Mesmo aconteceu com os tons claros, ficando ainda mais claros. Devido a compressão dos tons, houve elementos que foram perdidos para expandir a parte média, tendo no final o mesmo tamanho.
- b) As funções de transformação de histograma, tem como objetivo "pintar" a imagem com outras cores, permitindo com detalhes da imagem possam ser realçado.
- c) Teste 3

Questão 9.

- a) Os elementos de baixa frequência são aqueles que possuem baixa variabilidade na mudança do tons de cinza na imagem, então isso seria a região onde tem o fundo preto e as regiões do cérebro com cor homogênea por exemplo.
- b) Os elementos de alta frequência seriam aqueles onde há uma brusca modificação do nível do tom de cinza na imagem. Isto seria por exemplo a transição do fundo preto para o cérebro e da região central do cérebro onde vai do branco para o cinza.
- c) Para obter a imagem B a partir de A, foi aplicado uma convulação de uma máscara de blur gaussiano, isso é perceptível pela perca de detalhes, além do fato que as bordas estão consideravelmente mais borradas.
- d) Para obter a Imagem C, foi aplicado o desfoque que gerou a imagem B, e então foi aplicado um operador de Laplace (também conhecido como Sharpen). Isto pode ser notado pelo

- fato que a imagem C é notavelmente mais nítida que a imagem B, porém não possui o nível de detalhes que o crânio tem na Imagem A. Em compensação, o ruído foi removido
- e) Por fim, a imagem D é o resultado do filtro de Sobel para detecção de bordas, o que pode explicar porque a imagem tem apenas dois tons, preto para indicar o fundo, e branco para detectar as bordas, incluindo as bordas dos ruídos da imagem original.