MI-ARI

(Computer arithmetics) winter semester 2017/18

F1. Elementary functions I.

© Alois Pluháček Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

F1. Elementary functions I.

- square root
 - Pseudo-division
 - Extract the root by iterations
- The CORDIC method
 - Trigonometric functions
 - Inverse trigonometric functions
 - Other functions

Square root — pseudo-division

$$N^2 = \sum\limits_{j=1}^{N} (2j-1) = \sum\limits_{i=0}^{N-1} (2i+1)$$
 $1 = 1^2$ $1+3=2^2$ $1+3+5=3^2$ $1+3+5+7=4^2$ etc.

$$B = \lfloor \sqrt{A} \rfloor$$
 B = 0;
while (A >= 2*B+1))
 $\{A -= 2*B+1;$
B++; $\}$

or

Square root — pseudo-division ii

$$\sqrt{5}$$

$$\sqrt{531}$$

$$(\mathsf{A}) \begin{array}{ccc} 5 & \mathbf{0} \\ \underline{-1} & \hookleftarrow \\ 4 & \mathbf{1} \\ \underline{-3} & \hookleftarrow \\ 1 & \mathbf{2} \\ 1 < \mathbf{5} \Rightarrow \mathsf{end} \end{array}$$

check: $5 = 2^2 + 1 = 4 + 1$

check:
$$531 = 23^2 + 2 = 529 + 2$$

$$egin{aligned} \lfloor \sqrt{A}
floor &= B = K \cdot z + L & B^2 &= \sum\limits_{i=0}^{B-1} (2i+1) \ A &= U \cdot z^2 + V & K^2 &= \sum\limits_{i=0}^{K-1} (2i+1) \end{aligned}$$

$$egin{aligned} A - B^2 &= A - \sum\limits_{i=0}^{B-1} (2i+1) = \ &= A - \sum\limits_{i=0}^{K \cdot z + L - 1} (2i+1) = \ &= A - \sum\limits_{i=0}^{K \cdot z - 1} (2i+1) - \sum\limits_{i=K \cdot z}^{K \cdot z + L - 1} (2i+1) = \ &= A - (K \cdot z)^2 - \sum\limits_{i=K \cdot z}^{K \cdot z + L - 1} (2i+1) \end{aligned}$$

$$A - B^2 = A - \left(\sum_{i=0}^{K-1} (2i+1)\right) \cdot z^2 - \sum_{i=K \cdot z}^{K \cdot z + L - 1} (2i+1)$$

Square root — pseudo-division

$$z = 10$$

$$A = 0531$$

$$\Longrightarrow$$

$$\implies U = 05 \quad V = 31$$

$$V = 31$$

	$oldsymbol{A}$	05	31
$oxed{i}$	2i+1	$oldsymbol{U}$	V
0		05	
	1	-1	
1		$\phantom{00000000000000000000000000000000000$	
		04	
	3	-3	
2		$\overline{01}$	

		01	31
20		01	31
	41	_	41
21		00	90
	43	_	43
22		00	47
	45	_	45
23		00	02

check:

$$B=23=\lfloor \sqrt{531}
floor$$

$$K=2=\lfloor \sqrt{5}
floor$$

$$\implies K = 2 \quad L = 3 \ 23^2 = 529 = 1 + 3 + \ldots + 45$$

$$2^2 = 5 = 1 + 3$$

S	Square root — pseudo-division v					
$\sqrt{194_{10}} = \sqrt{11000010_2}$						
11 00 00 10						
0	-1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
1	- 101	$\begin{array}{c} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 & 1 & 1 \end{array}$				
11	-1101	$\begin{array}{c} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & & & 1 & 1 & 1 & 1 \end{array}$				
110	+1101	restoring $\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 \\ \end{array}$				
	-11001	$\begin{array}{c} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array}$				
1101						

Square root — pseudo-division vi

1	1	Λ	Λ	Λ	Λ	1	Λ
Ι	1	U	U	U	U	1	U

0	-1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	-101	1	$\begin{array}{c} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 1 \end{array}$
11	-1101	0	$\begin{array}{c} 0 \ 1 \ 1 \ 0 \ 0 \\ \underline{1 \ 0 \ 0 \ 1 \ 1} \\ 1 \ 1 \ 1 \ 1 \ 1 \end{array}$
110	+11011	1	$\begin{array}{c} 1 & 1 & 1 & 1 & 0 \\ \underline{1} & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{array}$
1101			

check: $194 = 169 + 25 = 13^2 + 25$

Square root — pseudo-division

consideration:

q ... carry from higher order

$$q=0 \implies \text{addition in next step } 4B+3=B \triangleleft 2+11_2$$

 $q=1 \implies$ subtraction in next step $4B+1=B \triangleleft 2+01_2$

subtraction: negation + hot one

Square root — pseudo-division viii

scheme:

at the begin the register A must be filled from left with zeroes at the begin the register B must be erased at the begin m must be set to 1

xx ... is ignored

00 ... bits inserted during the left shift of the register A

Extract the root by iterations

Observation: $\xi = \sqrt{A}$ is a root of equation $\mid x^2 - A = 0 \mid$,

$$x^2-A=0$$
 ,

i.e. ξ is a root of equation g(x)=0, where $g(x)=x^2-A$

i.e.
$$g'(x) = 2x$$
 a $g''(x) = 2$.

Thus:

$$x_{i+1} = x_i - \frac{g(x_i)}{g'(x_i)} =$$
$$= \frac{1}{2} \cdot \left(\frac{A}{x_i} + x_i\right)$$

Satisfy:

any
$$a\in (0\;,\; \sqrt{A})$$
 , any $b\in (\sqrt{A}\;,\; \infty)$ a

 $x_0>0$ |. any

Extract the root by iterations ii

$$x_{i+1} = \frac{1}{2} \cdot \left(\frac{A}{x_i} + x_i \right)$$

normalization $\frac{1}{2} \le A < 2 \implies \frac{1}{\sqrt{2}} \le \sqrt{A} < \sqrt{2}$ speed of convergence:

speed of convergence:
$$x_i = \sqrt{A} \cdot (1+\delta) \implies x_{i+1} = \sqrt{A} \cdot \left(1 + \frac{\delta^2}{2(1+\delta^2)}\right)$$
 $|\delta| \ll 1 \implies x_{i+1} \doteq \sqrt{A} \cdot \left(1 + \frac{\delta^2}{2}\right)$

→ Almost double valid digits is obtained by each iteration.

Division operation is required by given solution !!!

Extract the root by iterations

$$\sqrt{A} = A \cdot \sqrt{\frac{1}{A}}$$

Observation: $\xi = \sqrt{\frac{1}{A}}$ is a root of equation

$$\left|rac{1}{x^2}-A=0
ight|$$
 ,

i.e. ξ is a root of equation g(x)=0, where $g(x)=rac{1}{x^2}-A$

i.e.
$$g'(x)=-rac{2}{x^3}$$
 a $g''(x)=rac{6}{x^4}$.

$$x_{i+1} = x_i - \frac{g(x_i)}{g'(x_i)}$$
$$= \frac{x_i}{2} \cdot (3 - A \cdot x_i^2)$$

and satisfy: any $a \in (0 \; , \; \sqrt{rac{1}{A}})$,

any $b \in (\sqrt{rac{1}{A}} \;,\; \sqrt{rac{3}{A}})$ and $|\; x_0 \in (0 \;,\; \sqrt{rac{3}{A}})|$

$$x_0 \in (0\;,\;\sqrt{rac{3}{A}})\; igg|\;.$$

Extract the root by iterations iv

$$x_{i+1} = \frac{x_i}{2} \cdot (3 - A \cdot x_i^2)$$

normalization
$$\frac{1}{2} \leq A < 2 \implies \frac{1}{\sqrt{2}} \leq \sqrt{A} < \sqrt{2}$$

speed of convergence:

$$x_i = \sqrt{\frac{1}{A}} \cdot (1 - \delta) \implies x_{i+1} = \sqrt{\frac{1}{A}} \cdot \left(1 - \frac{3}{2}\delta^2 + \frac{1}{2}\delta^3\right)$$
 $|\delta| \ll 1 \implies x_{i+1} \doteq \sqrt{\frac{1}{A}} \cdot \left(1 - \frac{3}{2}\delta^2\right)$
 \implies Almost double valid digits is obtained by each iteration.

It is suitable to choose x_0 to reach $|\delta|$ as small as possible.

ightarrow small table in memory ROM, addressed with few first bits A

The CORDIC method

CORDIC CO ordinate R otation DI gital C omputer

$$\begin{array}{rcl} x_A & = & r \cdot \cos \varphi \\ y_A & = & r \cdot \sin \varphi \end{array}$$

$$egin{array}{lll} x_B &=& r \cdot \cos(arphi + lpha) \ y_B &=& r \cdot \sin(arphi + lpha) \end{array}$$

The CORDIC method ii

$$x_{B} = r \cdot \cos(\varphi + \alpha)$$

$$y_{B} = r \cdot \sin(\varphi + \alpha)$$

$$x_{B} = r \cdot \cos \varphi \cdot \cos \alpha - r \cdot \sin \varphi \cdot \sin \alpha$$

$$y_{B} = r \cdot \sin \varphi \cdot \cos \alpha + r \cdot \cos \varphi \cdot \sin \alpha$$

$$x_{B} = \cos \alpha \cdot (x_{A} - y_{A} \cdot \operatorname{tg} \alpha)$$

$$y_{B} = \cos \alpha \cdot (y_{A} + x_{A} \cdot \operatorname{tg} \alpha)$$

$$\alpha = \alpha'_{1} + \alpha'_{2} + \cdots + \alpha'_{n}$$

$$x'_{i} = \cos \alpha'_{i} \cdot (x'_{i-1} - y'_{i-1} \cdot \operatorname{tg} \alpha'_{i})$$

$$y'_{i} = \cos \alpha'_{i} \cdot (y'_{i-1} + x'_{i-1} \cdot \operatorname{tg} \alpha'_{i})$$

$$\operatorname{tg} \alpha'_{i} = \pm 2^{1-i} \quad \Rightarrow \quad \alpha_{i} = |\alpha'_{i}| = \operatorname{arctg} 2^{1-i}$$

Trigonometric functions

$$x'_{i} = \cos \alpha'_{i} \cdot (x'_{i-1} - y'_{i-1} \cdot 2^{1-i})$$
 $y'_{i} = \cos \alpha'_{i} \cdot (y'_{i-1} + x'_{i-1} \cdot 2^{1-i})$
 $x_{i} = x_{i-1} \mp y_{i-1} \cdot 2^{1-i}$
 $y_{i} = y_{i-1} \pm x_{i-1} \cdot 2^{1-i}$
 $K = \cos \alpha_{1} \cdot \cos \alpha_{2} \cdot \dots \cdot \cos \alpha_{n}$
 $\begin{cases} \cos \alpha = K \cdot x_{n} \\ \sin \alpha = K \cdot y_{n} \end{cases}$
 $\begin{cases} \cos \alpha = K \cdot y_{n} \end{cases}$
 $\begin{cases} \cos \alpha = x_{n} \\ \sin \alpha = y_{n} \end{cases}$

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\operatorname{cotg} \alpha = \frac{\cos \alpha}{\sin \alpha}$, ...

Inverse trigonometric functions

$$arctg \frac{y}{x} = ?$$

- 1. $x_0 := x$; $y_0 := y$; i := 0
- 2. If $y_i>0$ rotate (x_i,y_i) by $-\alpha_{i+1}$, else by α_{i+1} ; it gets so (x_{i+1},y_{i+1}) ; i:=i+1.
- 3. If the required precision is not reached, repeat step 2.

4.
$$-(\alpha_1 + \cdots + \alpha_{i+1}) \doteq \operatorname{arctg} \frac{y}{x}$$

$$\operatorname{arccotg} x = \frac{1}{2}\pi - \operatorname{arctg} x$$

 $\arcsin x$ a $\arccos x$ — somewhat more complicated

Other functions

$$x_B = r \cdot \cosh(\varphi + \alpha)$$

 $y_B = r \cdot \sinh(\varphi + \alpha)$

- ⇒ hyperbolic function, inverse hyperbolic functions
- ⇒ logarithm, exponential functions, ...