Using arXiv as a Source of Edit Data (Undergrad Research in CSE)

Samuel Stevens

Prof. Wei Xu

February 2020

Abstract

Natural language processing (NLP) has real world applications in automatic editing software, such as Grammarly. Current models depend heavily on large quantities of data. Additional sources of domain specific data is important for improving current results. Past work has focused primarily on Wikipedia as a source of sentence-level edits. In this proposal, we describe how we plan to provide a new large scale (2M+) dataset of *academic* sentence-level edits from arXiv via text extraction and automatic sentence alignment, taking advantage of recently developed methods. In addition to creating a public dataset, we aim to perform introductory analysis to aid future research.

1 Background and Motivation

Natural language processing (NLP) has popular real world applications in areas such as virtual assistants (Alexa, Siri²) and machine translation (Google Translate³), but also is applicable in automatic editing (Grammarly⁴). NLP model results can be improved with additional examples from which they can learn. However, compared to web chats or translated documents (for Alexa/Siri or Google Translate, respectively), finding large datasets of edited text (with "before" and "after" text) is more difficult.

arXiv is the "the standard repository for new papers in mathematics, physics, statistics, computer science, biology, and other disciplines" (Krantz 2007). As noted by Tan and Lee (2014), arXiv authors often submit multiple versions of their papers. At the time of writing, arXiv hosts 1.6M papers, with 611K with two or more versions. We propose that these papers can be used to create a large (2M+ sentences) dataset of examples of improving the quality of a sentence through editing. More concretely, we propose that data from arXiv can be used to improve NLP edit metrics such as identifying sentences that need editing (Daudaravicius et al. 2016).

1.1 Related Work

Previous work on using publicly available data for as a source of edit data has primarily focused on using Wikipedia (Faruqui et al. 2018; Botha et al. 2018). Tan and Lee (2014) looked at arXiv and examined all papers from 2011. Work on arXiv and Wikipedia (Faruqui et al. 2018) produced a dataset of 108,678 and 43 million sentence edits, respectively. In addition, Tan and Lee (2014) use sentence-level edits to study statement strength.

¹https://www.amazon.com/b?node=17934671011

²https://www.apple.com/siri/

³https://translate.google.com/

⁴https://www.grammarly.com/

Work looking at edits in academic domains (Daudaravicius et al. 2016) used data from a professional editing company (VTeX⁵) to create a dataset of sentence-level edits in academic writing.

We propose looking at all papers on arXiv with two or more revisions to create a large, general purpose dataset.

2 Significance

Given that Wikipedia edit data has been useful in many applications including sentence compression (Yamangil and Nelken, n.d.), spelling correction (Zesch 2012), Split and Rephrase (Botha et al. 2018) and generating insertion phrases (Faruqui et al. 2018), arXiv could also be a valuable source of edit data with many similar applications. By introducing a dataset of academic writing, we will be able to perform similar tasks in more formal genres, such as writing and editing scientific papers.

Due to this data's relative novelty, part of this project's significance is discoving novel qualities and features that can be utilized by future work.

3 Research Goals

We aim to produce a dataset of more than 2 million sentence-level edits in an academic writing domain, as well an initial analysis on distinctive features of this new dataset.

I will be working on this project with Chao Jiang, a Ph.D. student at Ohio State and Prof. Wei Xu as my research advisor. Given Jiang and Prof. Xu's experience in sentence alignment (Xu, Callison-Burch, and Napoles 2015), my role will be to design a pipeline for extracting plain

⁵http://www.vtex.lt

text from documents stored on arXiv and to further the analysis of aligned sentences.

4 Methodology

To extract data from arXiv, we will analyze all papers with two or more versions available. From these *version pairs*, we can find changes made to papers and then break them down into sentence-level edits.

4.1 Finding Papers

To find papers with two or more versions, arXiv's Open Archives Initiative (OAI) protocol for metadata harvesting will be used.

4.2 Downloading Latex Source Code

To download the Latex source code, an automated web scraper will be developed using Python. About 1.5M papers need to be downloaded. To not overly stress the arXiv server, a small delay will be introduced between requests. With this delay, it will require about 10 days to download every paper.

4.3 Converting Latex to Text

Because Latex is a markup language, rather than plain English text, some processing is needed to extract the text from Latex. Several open source, free-to-use tools (Pandoc⁶, opendetex⁷) are available for extracting text from Latex. A tool will be chosen or developed to accurately extract plain English text from Latex source documents.

⁶https://pandoc.org/

⁷https://github.com/pkubowicz/opendetex

4.4 Sentence Splitting

To convert the plain English text from the papers to sentences, Stanford's CoreNLP software will be used (Manning et al. 2014). A wrapper for said software written by Jiang will be used to interface with Stanford's code.

4.5 Alignment

To align non-identical sentences, we will take advantage of Jiang's recent experience in sentence alignment and evaluate several approaches to alignment. Due to the limited number of edits between documents, alignment is not expected to be a extremely difficult task.

4.6 Analysis

Because arXiv is a relatively unexplored dataset, we will perform some linguistic analysis on the data, similar to Yang et al. (2017). This could include a general overview, edit type classification, edit intention and a comparison with similar, existing datasets.

5 Timeline

Task	Start Date	End Date
Proposal	Jan 16, 2020	Feb 14, 2020
Gathering data	Jan 18, 2020	Jan 27, 2020
Analyzing data	Jan 28, 2020	Mar 15, 2020
Taking 4999H (2nd session)	Feb 26, 2020	Apr 20, 2020
Writing conference paper	Mar 16, 2020	May 10, 2020
Paper submission to EMNLP	May 11, 2020	
Summer break		
Taking 4999H	Aug 25, 2020	Dec 9, 2020
Writing Ohio State thesis	Aug 25, 2020	Sep 25, 2020
Oral defense	Oct, 2020	
Submission to Knowledge Bank	Oct, 2020 (after defense)	
Presenting at research forum	Nov, 2020	

6 Personal Statement

I am a third year Honors CSE student interested in artificial intelligence. Communicating with machines through natural language has been a challenge for researchers since the very start of AI research with the Turing test. The opportunity to work in NLP with Prof. Xu is unlike any previous experience I've had; I'll be able to work with both current and future Ph.D.'s in a one-on-one setting on real project. I can't get that kind of experience anywhere else. Because this work is so different to what I experience in the classroom or the workforce, I will learn more, and faster.

In addition, this project gives me an opportunity to apply the material taught in my AI and NLP classes in a real world project. So much of computer science is well-documented and

freely available online. Since NLP and AI are the on cutting edge of computer science, they aren't as accessible. The opportunity to work on a real NLP project with the best of the best isn't widely available, and I want to take advantage of it while I attend Ohio State.

Finally, working on a research project from start to finish will give me an first-person look into the lives of Ph.D. students. This opportunity will help inform my decision about graduate school and research in my future.

References

- Botha, Jan A, Manaal Faruqui, John Alex, Jason Baldridge, and Dipanjan Das. 2018. "Learning To Split and Rephrase From Wikipedia Edit History." In *Proceedings of the* 2018 Conference on Empirical Methods in Natural Language Processing, to appear.
- Daudaravicius, Vidas, Rafael E. Banchs, Elena Volodina, and Courtney Napoles. 2016. "A Report on the Automatic Evaluation of Scientific Writing Shared Task." In *Proceedings* of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, 53–62. San Diego, CA: Association for Computational Linguistics. https://doi.org/10.18653/v1/W16-0506.
- Faruqui, Manaal, Ellie Pavlick, Ian Tenney, and Dipanjan Das. 2018. "WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits for Modeling Language and Discourse." In *Proc. Of Emnlp*.
- Krantz, Steven G. 2007. "Notices of the Ams." In. American Mathematical Society.
- Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. 2014. "The Stanford CoreNLP Natural Language Processing Toolkit." In Association for Computational Linguistics (Acl) System Demonstrations, 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010.
- Tan, Chenhao, and Lillian Lee. 2014. "A Corpus of Sentence-Level Revisions in Academic Writing: A Step Towards Understanding Statement Strength in Communication." In *Proceedings of Acl (Short Papers)*.
- Xu, Wei, Chris Callison-Burch, and Courtney Napoles. 2015. "Problems in Current Text Simplification Research: New Data Can Help." Transactions of the Association for Computational Linguistics 3 (December): 283–97. https://doi.org/10.1162/tacl_a_00139.

- Yamangil, Elif, and Rani Nelken. n.d. "Mining Wikipedia Revision Histories for Improving Sentence Compression." In In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.
- Yang, Diyi, Aaron Halfaker, Robert Kraut, and Eduard Hovy. 2017. "Identifying Semantic Edit Intentions from Revisions in Wikipedia." In, 2000–2010. https://doi.org/10.18653/v 1/D17-1213.
- Zesch, Torsten. 2012. "Measuring Contextual Fitness Using Error Contexts Extracted from the Wikipedia Revision History." In, 529–38.