Bayes Nets

With slides from Dan Klein and Stuart Russell

Today

- ➤ Bayes Nets
 - ➤ BN Inference: Enumeration vs. VE

- ➤ BN Inference with time
 - ➤ Markov Chains
 - ➤ Hidden Markov Models
- ➤ Project 3: Ghostbusters

BN for Finding Air France Flight 447

http://fivethirtyeight.com/features/how-statisticians-could-help-find-flight-370/

https://www.informs.org/ORMS-Today/Public-Articles/August-Volume-38-Number-4/In-Search-of-Air-

France-Flight-447

Recap: BN Alarm Network

- Each node has a conditional probability table (CPT) that gives the probability of each of its values given every possible combination of values for its parents (conditioning case).
 - Roots (sources) of the DAG that have no parents are given prior probabilities.

Inference Example

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Inference Example (2)

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

E	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes Net Inference: Example

 Example: Given that John and Mary call (+j, +m), what is the probability that there is a Burglary (+b)?

$$P(+b | +j,+m) = ?$$

Queries: Inference by Enumeration

General case:

 $\begin{array}{lll} - & \text{Evidence variables: } E_1 \dots E_k = e_1 \dots e_k \\ - & \text{Query* variable: } & Q \\ - & \text{Hidden variables: } & H_1 \dots H_r \end{array} \right\} \begin{array}{l} X_1, X_2, \dots X_n \\ \text{ AII} \end{array}$

variables

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

 Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint Prob. of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Why? -- Bayes rule:

P(cause|effect) = P(effect|cause)p(cause)/p(effect) = p(cause,effect)/p(effect):

Inference by Enumeration: Example

- Given unlimited time, inference in BNs is easy
- Use inference by enumeration:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$=P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Then normalize (divide) by prob(evidence), p(+j,+m)

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Marginalizing Early (= Variable Elimination)

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)		
+r	0.1	
-r	0.9	

$$\frac{P(T|R)}{\frac{+r}{2}}$$

	• '	
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(T|R)$$
 $P(L|T)$

+	0.3
-	0.7
+	0.1
-	0.9
	-1

Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$

`		
+r	+t	0.8
+r	-t	0.2

+t	-	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Eliminate all variables other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

Normalize

P(L|+r)

+1	0.26
-	0.74

- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Ordering

• For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency
- Remind you of anything from Search?

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - Try to marginalize (eliminate) small factors first
- Does there always exist an ordering that only results in small factors?
 - No!

BN Quiz

• 5 minutes, can work in pairs

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Roadmap

Markov Models

```
( = a particular Bayes net)
```

- Hidden Markov Models (HMMs)
 - Representation
 (= another particular Bayes net)
 - Inference
 - Forward algorithm (= variable elimination)
 - Particle filtering (= likelihood weighting with some tweaks)
 - Viterbi (= variable elimination, but replace sum by max = graph search)
- Dynamic Bayes' Nets
 - Representation
 - (= yet another particular Bayes' net)
 - Inference: forward algorithm and particle filtering

Markov Models

- A Markov model is a chain-structured BN
 - Each node is identically distributed (stationarity)
 - Value of X at a given time is called the state
 - As a BN:

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \cdots \rightarrow$$

$$P(X_1) \qquad P(X_t|X_{t-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Same as MDP transition model, but no choice of action

What's "Markov" about it?

 Famous Markov model: Drunkard's walk

Andrey Markov

Conditional Independence in MMs

- Basic conditional independence:
 - Past and future independent of the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property
- Note that the chain is just a (growing) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example: P(X4)?

- Slow answer: inference by enumeration
 - Enumerate all sequences of length t which end in s
 - Add up their probabilities

$$P(X_4) = \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, X_4)$$

$$= P(X_1 = +x_1)P(X_2 = +x_2|X_1 = +x_1)P(X_3 = +x_3|X_2 = +x_2)P(X_4|X_3 = +x_3) + P(X_1 = +x_1)P(X_2 = +x_2|X_1 = +x_1)P(X_3 = -x_3|X_2 = +x_2)P(X_4|X_3 = -x_3) + P(X_1 = +x_1)P(X_2 = -x_2|X_1 = +x_1)P(X_3 = +x_3|X_2 = -x_2)P(X_4|X_3 = +x_3) + P(X_1 = +x_1)P(X_2 = -x_2|X_1 = +x_1)P(X_3 = -x_3|X_2 = -x_2)P(X_4|X_3 = -x_3) + P(X_1 = -x_1)P(X_2 = +x_2|X_1 = -x_1)P(X_3 = +x_3|X_2 = +x_2)P(X_4|X_3 = +x_3) + P(X_1 = -x_1)P(X_2 = +x_2|X_1 = -x_1)P(X_3 = -x_3|X_2 = +x_2)P(X_4|X_3 = -x_3) + P(X_1 = -x_1)P(X_2 = -x_2|X_1 = -x_1)P(X_3 = -x_3|X_2 = -x_2)P(X_4|X_3 = -x_3) + P(X_1 = -x_1)P(X_2 = -x_2|X_1 = -x_1)P(X_3 = -x_3|X_2 = -x_2)P(X_4|X_3 = -x_3) + P(X_1 = -x_1)P(X_2 = -x_2|X_1 = -x_1)P(X_3 = -x_3|X_2 = -x_2)P(X_4|X_3 = -x_3)$$

Example Markov Chain: Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same BN

Mini-Forward Algorithm

Question: What's P(X) on some day t?

$$P(x_1) = \text{known}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

• From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

$$P(X_1) \qquad \qquad P(X_{\infty})$$

Stationary Distributions

For most chains:

- influence of initial distribution gets less and less over time.
- the distribution we end up in is independent of the initial distribution
- Stationary distribution:
 - Distribution we end up with is called the stationary distribution P_m of the chain
 - It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P_{t+1|t}(X|x) P_{\infty}(x)$$

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X_t \mid X_{t-1})$
 - Emissions/observations: $P(E_t \mid X_t)$

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	ŗ	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Joint Distribution of an HMM

Joint distribution:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$

– More generally:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t)$$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time
- We start with $B_1(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

Filtering: Weather HMM

Normalize

B(+r)=0.818

B(-r)=0.182

0.7

-r

-u

-r

-r

0.8

Ghostbusters Filtering (project 3)

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- Can calculate posterior distribution P(G|r) over ghost locations given a sensor reading, with Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

Project 3: Ghostbusters!

Due Wed March 21st

http://www.mathcs.emory.edu/~eugene/cs425/p3/

Next week:

- HMMs: filtering, decoding (last topic on mid-term)
- Approximate inference
- [optional] Midterm review: Tuesday 5:30-6:30, room tbd
- Midterm Exam (March 8th)