LC15 – Cinétique homogène

Suivi cinétique de l'iodation de la propanone

$$C_3H_6O + I_2 \xrightarrow{H^+} C_3H_5OII^- + H^+$$

Solution	$[C_3H_6O]$	[H₃O⁺]	$[l_2]$	en mol/L
S1	0,8	0,02	4.0× 10 ⁻⁵	
S2	0,8	0,01	4.0× 10 ⁻⁵	
S3	0,4	0,02	4.0× 10 ⁻⁵	
S4	0,4	0,01	4.0× 10 ⁻⁵	

Le diiode est le réactif limitant.

Méthode intégrale

Si on suppose un ordre partiel $\beta = 1$:

on modélise selon :

temps de demi-réaction associé :

$$\ln[I_2](t) = \ln[I_2]_0 - k_{app}t$$

$$t_{1/2} = \frac{\ln 2}{k_{app}}$$

Si on suppose un ordre partiel $\beta = 2$:

on modélise selon :

temps de demi-réaction associé :

$$\frac{1}{[I_2]} = \frac{1}{[I_2]_0} + k_{app} t$$

$$t_{1/2} = \frac{1}{[I_2]_0 k_{app}}$$

Interprétation microscopique

On propose le mécanisme suivant :

$$CH_3-CO-CH_3$$
 + H^+ k_1 $CH_3-COH-CH_3$ $CH_3-COH-CH_3$ k_2 $CH_3-COH-CH_2$ + H^+ $CH_3-COH-CH_2$ + I_2 $CH_3-CO-CH_2$ + I_3

