

Ongoing Microbiome Rsearch lines

Ziv Shkedy CenStat/I-BioStat, Hasselt University, Belgium

January, 16, 2017

Rsearch lines

Nolen's presentation:

Data Analysis

Similar to Omics data and other high dimensional data:

- Different type of data.
- Different rsearch settings.

Main interest: intervention studies

- Transfer microbiome of the donors to the recipient.
- Two groups of donors: treated and control.

Measurements:

- 1. Microbiome data.
- 2. Clinical response(s).

1. Longitudinal analysis of microbiome data

Data Analysis

- X: microbiome data.
- Z: treatment.
- Repeated measurements over time.

Family-level Richness – Subject Profiles

- Richness: the number of non zero OTUs per subject (per family).
- Two treatment groups.

Not all families are active!!

Modeling richness over time: family level

Response: number of active OTUs in the family.

Treatment effect over time?

Effect of microbiota transfer on OTU Level: 264734

Log(Raw counts+1)

Raw counts

Relative abundance

Longitudinal analysis of microbiome data

Data Analysis

Issues:

- Zero infelted longitudinal data:
 - Continuous.
 - Counts.
 - Binary
- Over-dispersion data.

2. Development of Biomarkers

Data Analysis

Modeling the effect of microbiome on clinical variables taking into account intervention.

The biomarker setting

- PAT study: IgA and microbiome.
- Analysis at each time point:
 - Joint modeling
 - Log(count)
 - · Row counts.
 - Relative abundance.
 - Non-parametric methods.
 - Methods for zero-inflated count data.
 - T1D: survival/log(survival)

Feature specific models

Results for OTU 264734

Evolution of treatment effect over time.

2.1: A joint model: OUT 206324

Data Analysis

2.2: Structural equations modeling

Modeling direct and indirect effect of the treatment on the clinical outcome:

$$\begin{split} X_{ij} &= \lambda_{1j} Z_i + \varepsilon_{1i}, \\ Y_i &= \lambda_3 Z_i + \lambda_{2j} X_{ij} + \varepsilon_{2i}. \end{split}$$

Example: Rudradev

2.3: Predictive models

Data Analysis

Can we predict the clinical outcome using microbiome data (taking into account the treatment effect)?

Data Structure

Predictive models for clinical outcomes

Analysis at each time point:

Predictive models for clinical outcome:

$$Y_{i} = Z\gamma + \sum_{j=1}^{M} \beta_{j}OTU_{ij} + error_{i}$$

$$E(Y_{i}) = f(treatment, OTU_{1}, OTU_{2}, ... OTU_{K})$$

2.4: A joint modeling - longitudinal data

- Joint model for the longitudinal data.
 - Joint models for IgA and counts/relative abundance/abundance.
 - Evolution of treatment effects over time.

3. Population models for the evolution over time by family

Data Analysis

3.1: Family-based analysis: richness

$$\frac{\partial N(t)}{\partial t} = f(time, treatment)$$

- Non linear mixed effects modeling for the richness (family size in terms of OTUs activity).
- Modeling intervention.

The Lachnospiraceae Family

3.2: correlation among OTUs

Modeling interaction between OTUs

$$\Delta Y_i(t) = \log(Y_i(t)) - \log(Y_i(t-1))$$

$$\widetilde{Y}_i(t) = \frac{\Delta Y_i(t)}{\Delta t}$$

$$\widetilde{Y}_i(t) = \beta_0 + \sum_{k=1}^K \alpha_{ik} Y_k + \varepsilon_{it}$$

LASSO/EN models.

3.4: Predictive models for diabetes based on microbiome data

Data Analysis

Clinical response: time to event data

Can we predict the time to event using microbiome data?

3.5: Risk score for diabetes

 Modeling high/low risk for diabetes using microbiome risk score.

$$R_i = f(OTU_1, OTU_2, ..., OTU_K) \qquad \begin{array}{l} \text{Risk score to} \\ \text{develop} \\ \text{diabetes} \end{array}$$

$$\text{Risk group} = \begin{cases} low & R_i \leq \theta \\ high & R_i > \theta \end{cases}$$

$$S(t) = f(RG_i)$$
 Can we find a significant different between the risk group in terms the time to developing diabetes ?