Synchronizing Expanders Notes

Jan Ahmed

January 11, 2024

1 Notes

- Each node in the model corresponds to an oscillator.
- $\theta_i(t): \mathbb{R} \to \mathbb{S}^1$ phase of oscillator i at time t.
- The Kuramoto model is modelled by the following system

$$\frac{d\theta_x}{dt} = \omega_x - \sum_{y \in V} A_{x,y} \sin(\theta_x - \theta_y), \quad \text{for all } x \in V.$$
 (1)

- We assume that all oscillators have same intrinsic frequency.
- We rotate the frame $\theta(t) \leftarrow \theta(t) \omega t$.

$$\frac{d\theta_x}{dt} + \omega = \omega - \sum_{y \in V} A_{x,y} \sin(\theta_x + \omega - (\theta_y + \omega))$$

$$\frac{d\theta_x}{dt} = -\sum_{y \in V} A_{x,y} \sin(\theta_x - \theta_y) \tag{2}$$

- The Kuramoto model correspond to the gradient flow, i.e. $\frac{d\theta}{dt} = -\nabla \mathcal{E}_G(\theta)$.
- The energy function $\mathcal{E}_G: (\mathbb{S}^1)^{|V|} \to \mathbb{R}$ and the derivatives are given bellow:

$$\mathcal{E}_G(\theta) = \frac{1}{2} \sum_{x, y \in V} A_{x,y} (1 - \cos(\theta_x - \theta_y))$$
(3)

$$(\nabla \mathcal{E}_G(\theta))_x = \sum_{z \in V} A_{x,z} \sin(\theta_x - \theta_z)$$
(4)

$$(\nabla^2 \mathcal{E}_G(\theta))_{x,y} = \begin{cases} -A_{x,y} \cos(\theta_x - \theta_y) & \text{if } x \neq y, \\ \sum_{z \in V \setminus \{x\}} A_{x,z} \cos(\theta_x - \theta_z) & \text{if } x = y. \end{cases}$$
 (5)

• The equilibrium condition is when for all $y \in V$

$$\sum_{x \in V} A_{x,y} \sin(\theta_x - \theta_y) = 0 \tag{6}$$

Which is equivalent to the following: For all y and some $r_y \in \mathbb{R}$

$$\sum_{x \in V} A_{x,y} e^{i\theta_x} = r_y e^{i\theta_y} \tag{7}$$

Proof. We can rewrite equation (7) as

$$\sum_{x \in V} A_{x,y}(\cos(\theta_x) + i\sin(\theta_x)) = r_y(\cos(\theta_y) + i\sin(\theta_y))$$
(8)

By comparing the real and imaginary parts we get the following set of equations

$$\sum_{x \in V} A_{x,y} \cos(\theta_x) = r_y \cos(\theta_y)$$

$$\sum_{x \in V} A_{x,y} \sin(\theta_x) = r_y \sin(\theta_y)$$

Multiplying the first equation with $(-\sin(\theta_y))$ and multiplying the second equation by $\cos(\theta_y)$ and adding both equations together we get

$$\left(\sum_{x \in V} A_{x,y} \cos(\theta_x)(-\sin(\theta_y))\right) + \left(\sum_{x \in V} A_{x,y} \sin(\theta_x) \cos(\theta_y)\right) = r_y(\cos(\theta_y)(-\sin(\theta_y)) + \sin(\theta_y) \cos(\theta_y))$$

$$\implies \sum_{x \in V} A_{x,y} \sin(\theta_x) \cos(\theta_y) - \cos(\theta_x) \sin(\theta_y) = 0$$

$$\implies \sum_{x \in V} A_{x,y} \sin(\theta_x - \theta_y) = 0$$

Proving the other way around we can rewrite equation (6) as

$$\sum_{x \in V} A_{x,y} \sin(\theta_x) \cos(\theta_y) - \cos(\theta_x) \sin(\theta_y) = 0$$

$$\implies \sum_{x \in V} A_{x,y} \sin(\theta_x) \cos(\theta_y) = \sum_{x \in V} A_{x,y} \cos(\theta_x) \sin(\theta_y)$$

$$\implies \cos(\theta_y) \sum_{x \in V} A_{x,y} \sin(\theta_x) = \sin(\theta_y) \sum_{x \in V} A_{x,y} \cos(\theta_x)$$

From the last equation dividing by $\cos(\theta_y)$ we get

$$\sum_{x \in V} A_{x,y} \sin(\theta_x) = \sin(\theta_y) \left(\sum_{x \in V} A_{x,y} \cos(\theta_x) \right) / \cos(\theta_y)$$

We let $r_y = \left(\sum_{x \in V} A_{x,y} \cos(\theta_x)\right) / \cos(\theta_y)$ to obtain $\sum_{x \in V} A_{x,y} \sin(\theta_x) = r_y \sin(\theta_y)$. Similarly by dividing the last equation by $\sin(\theta_y)$ we obtain $\sum_{x \in V} A_{x,y} \cos(\theta_x) = r_y \cos(\theta_y)$. Adding both equations and having sin being the imaginary part we obtain equation (8) which is equivalent to equation (7).

• The stability condition could be written as

$$\langle f, \nabla^2 \mathcal{E}_G(\theta) f \rangle = \frac{1}{2} \sum_{x,y \in V} A_{x,y} \cos(\theta_x - \theta_y) |f(x) - f(y)|^2 \ge 0$$
(9)

Taking $f(x) = exp(i\theta_x)$ we obtain

$$\sum_{x,y \in V} A_{x,y} \cos(\theta_x - \theta_y) (1 - \cos(\theta_x - \theta_y)) \ge 0 \tag{10}$$

• The energy function is always non-negative and the state where all $\theta_x = \theta_y$ for all $x, y \in V$ achieves global minimum. These states are called *synchronized states*. The other local minima are called *spurious local minima*.

Definition 1.1. A graph is said to be globally synchronising if the energy function \mathcal{E}_G has no spurious local minima.

Claim 1.0.1. A graph consisting of two cliques connected by an edge is globally synchronising.

Proof. First I show that if two graphs H and H' are globally synchronising and share a vertex v, then the graph G obtained by joining H and H' is also globally synchronising. The energy function \mathcal{E}_G would factor as a sum of the energy functions $\mathcal{E}_G = \mathcal{E}_H + \mathcal{E}'_H$. This is because

$$\mathcal{E}_G(\theta) = \frac{1}{2} \sum_{x,y \in (V_H \cup V_{H'})} A_{x,y} (1 - \cos(\theta_x - \theta_y))$$

$$\mathcal{E}_G(\theta) = \left(\frac{1}{2} \sum_{x,y \in V_H} A_{x,y} (1 - \cos(\theta_x - \theta_y))\right) + \left(\frac{1}{2} \sum_{x,y \in V_{H'}} A_{x,y} (1 - \cos(\theta_x - \theta_y))\right)$$

$$\mathcal{E}_G(\theta) = \mathcal{E}_H + \mathcal{E}'_H$$

$$\mathcal{E}_G(\theta) = \mathcal{E}_H + \mathcal{E}'_H$$

Assume $\theta_{x'} - \theta_{y'}$ is constant for all $x', y' \in V_{H'}$, as H is globally synchronising, any initial state can be deformed to a state where $\theta_x = \theta_y$ for all $x, y \in V_H$ without increasing \mathcal{E}_G and without changing $\theta_{x'} - \theta_{y'}$ for all $x', y' \in V_{H'}$. Repeating the process and exchanging the roles of H and H' will synchronize G. Since complete graphs are synchronizing, adding an edge to another vertex will still be synchronizing from argument above. Adding a second clique containing the new vertex will be synchronizing again by the argument above.

• Trees are globally synchronizing because we can repeatedly use Claim 1.0.1.

Claim 1.0.2. Cycles of length greater than or equal to five are not globally synchronizing.

Proof. We can show that cycles of length larger than or equal to five will have at least one a spurious local minimum. Consider a cycle with n nodes. We perform a global rotation on all nodes so that WLOG the first oscillator has phase $\theta_0^* = 0$. One equilibrium of the energy function \mathcal{E}_G would be the roots of unity $\theta_i^* = \frac{2i\pi}{n}$ for i=0,1,...,n. This certainly satisfies $(\nabla \mathcal{E}_G(\theta^*))_x=0$. We also see that θ^* satisfies the stability condition given by equation (10). Thus θ^* is a spurious local minimum.

- For the following Theorem 1.1 and proof, I use the following notation:
 - Zero equilibrium refers to an equilibrium where all phases are equal to each other.
 - I represent each θ_i as $z_i = e^{i\theta_j}$.
 - Let $\Delta_{ij} = \theta_i \theta_j$.
 - The stability condition for the equilibrium point θ^* is: For any non-empty subset S,

$$\sum_{(i,j)\in(S,S^c)} A_{ij}cos(\Delta_{ji}^*) \ge 0. \tag{11}$$

Theorem 1.1. Any complete graph has no non-zero stable equilibrium.

Proof. Let θ^* be any non-zero stable equilibrium point solution. Let

$$p = \sum_{j=1}^{n} z_j = \sum_{j=1}^{n} \cos(\theta_j^*) + i \sum_{j=1}^{n} \sin(\theta_j^*).$$

Then for any m we have

$$\overline{z_m}p = \overline{z_m}\sum_{j=1}^n z_j = \sum_{j=1}^n \overline{z_m}z_j = 1 + \sum_{j \neq m} \overline{z_m}z_j = 1 + \sum_{j \neq m} \cos(\Delta_{jm}^*) + i\sum_{j \neq m} \sin(\Delta_{jm}^*) = 1 + \sum_{j \neq m} \cos(\Delta_{jm}^*) \quad (12)$$

Where in the last equality the imaginary part disappears because of the equilibrium condition of the complete graph. Now we have the following cases for p.

Case 1: p = 0

From equation (12) we get $\sum_{j\neq m}\cos(\Delta_{jm}^*)=-1$ which is unstable by the stability condition (11). Case 2: $p \neq 0$

For some angle θ^p

$$p = ||p||(\cos(\theta^p) + i\sin(\theta^p))$$

$$\implies \overline{z_m}p = ||p||(\cos(\theta^p - \theta_m^*) + i\sin(\theta^p - \theta_m^*))$$
(13)

When we compare equation (1.1) with equation (13), then we know that the imaginary part in equation (13) must be zero. Therefore we know that for any m in the vertex set we have that $\theta_m^* = \theta^p$ or $\theta_m^* = \theta^p + \pi$. Split the vertices into two sets.

$$S = \{x \in V \mid \theta_x^* = \theta^p\}$$

$$S^C = \{y \in V \mid \theta_y^* = \theta^p\}$$

We know that both sets are non-empty otherwise we θ^* would be a zero stable equilibrium. Then we get that

$$\sum_{(i,j)\in(S,S^C)} A_{ij}\cos(\Delta_{ji}^*) = -|S||S^C| \le -1$$

By the stability condition this is unstable.

We proved for all possible cases that there is no non-zero stable equilibrium.

• Notation:

d is the expected average degree

$$\Delta_A := A - (\mathbf{d}/n)J$$

$$\Delta_D := D - \mathbf{d}I$$

$$\Delta_L := \Delta_D - \Delta_A = L - \mathbf{d}I + (\mathbf{d}/n)J$$

$$\|H\| = \sup_{f \neq 0} \|Hf\| / \|f\|$$

The notation $A \leq B$ means that B - A is a positive semi definite matrix.

Definition 1.2. We say that a graph G is an (n, d, α) -expander if it has n vertices and

$$\|\Delta_A\| := \|A - (\mathbf{d}/n)J\| \le \alpha \mathbf{d}.$$

If in addition the graph G is **d**-regular then the condition above is equivalent to $\max_{i\neq 1} |\lambda_i(A)| \leq \alpha d$.

Proof. Let v_1 be the normalized all ones vector, then

$$||(A - (\mathbf{d}/n)J)v_1|| = ||dv_1 - dv_1|| = 0.$$

Let v_j for $2 \le j \le n$ be normalized eigenvectors corresponding to $\lambda_j \ne d$ which means they are orthogonal to all ones vector. Therefore, we have

$$||(A - (\mathbf{d}/n)J)v_j|| = ||\lambda_j v_j|| = |\lambda_j|.$$

Now let $u = \sum_{i=1}^n a_i v_i$ and let $||u||^2 = \sum_{i=1}^n a_i^2 = 1$, and let $\lambda = \max_{i=2}^n (|\lambda_i|)$, then we have

$$\|(A - (\mathbf{d}/n)J)u\|^2 = \left\|\sum_{i=2}^n \lambda_i a_i v_i\right\|^2 = \sum_{i=2}^n \lambda_i^2 a_i^2 \le \lambda^2 \sum_{i=2}^n a_i^2 \le \lambda^2.$$

Taking the square root we get that $||(A - (\mathbf{d}/n)J)u|| \leq \lambda$. Therefore, if G is **d**-regular then Definition 1.2 is equivalent to $\max_{i \neq 1} |\lambda_i(A)| \leq \alpha \mathbf{d}$.

Theorem 1.2. All d-regular (n, d, α) -expander graphs with $\alpha \leq 0.0816$ are globally synchronising.

• Ramanujan graphs have $\alpha = 2(\sqrt{d-1})/d$.

Theorem 1.3. Any Ramanujan graph is globally synchronising as long as $d \ge 600$. Moreover, a random d-regular graph is globally synchronising with high probability in the same range of d.

Proof. Plug
$$\alpha = 2(\sqrt{d-1})/d$$
 into 1.2.

Definition 1.3. (Spectral expander graph). A graph G is an $(n, \mathbf{d}, \alpha, \mathbf{c}^-, \mathbf{c}^+)$ -expander if it is an (n, \mathbf{d}, α) -expander and it holds that

$$c^- dI \prec \Delta_L \prec c^+ dI$$
.

Theorem 1.4. If G is an $(n, \mathbf{d}, \alpha, \mathbf{c}^-, \mathbf{c}^+)$ -expander graph with $\mathbf{c}^- > -1$, $\alpha \le 1/5$ and

$$\max \left\{ \frac{64\alpha(1+2c^+-c^-)}{(1+c^-)^2}, \frac{64\alpha(1+c^+)\log(\frac{1+c^++\alpha}{2\alpha})}{(1+c^-)(1+5c^+-4c^-)} \right\} < 1$$

• Note: Theorem 1.2 has a higher upper bound on α for d-regular graphs than Theorem 1.4.