17 '	The diagram	shows the	energy	levels	for an	atom	of hydrogen.
------	-------------	-----------	--------	--------	--------	------	--------------

0.00 eV

-0.54 eV

-0.85 eV

-1.51 eV

-3.40 eV

-13.6 eV

An electron is in the $-13.6\,\mathrm{eV}$ (ground state) level of this atom.

(a) A photon interacts with this electron.

Explain why this interaction causes the emission of another photon.

(2)

(b) A photon has a wavelength of 218 nm.(i) Determine the energy, in eV, of this photon.	(4)
DI .	
Photon energy =(ii) Explain whether the atom of hydrogen could emit a photon with this energy	

- (c) Photons with energy $1.63 \times 10^{-18} \, \mathrm{J}$ are incident upon the surface of a metal plate. The metal surface releases electrons due to the photoelectric effect.
 - (i) Calculate the maximum possible speed of the electrons.

work function = $5.89 \times 10^{-19} \text{J}$

.....

Maximum possible speed of the electrons =

(ii) Explain why the photoelectric effect demonstrates light behaving as a particle, rather than a wave.

(3)

(3)