TITLE OF THE INVENTION

A PROTEIN THAT HAS A FUNCTION OF MAINTAINING A MUTATION WHEREBY LATERAL ROOT FORMATION IS BLOCKED AND A GENE ENCODING THE PROTEIN

CROSS-REFERENCE TO RELATED APPLICATIONS

5

10

15

20

25

This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2003-147765, filed May 26, 2003, the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a factor which has an influence on the phenotype of plants that have no lateral roots (hereinafter also referred to as "lateral rootless phenotype"). The factor is expected to be applicable to artificial control of lateral root formation in plants. More specifically, the present invention relates to a protein having a function of maintaining the mutation whereby lateral root formation is blocked and a gene encoding the protein.

2. Description of the Related Art

The root of dicotyledon plants consists of a primary root which has grown from a radicle of an embryo after germination and lateral roots which have been branched from the primary root. It is known that auxin as a plant hormone is involved in lateral

root formation. The SLR (solitary root) gene of Arabidopsis thaliana is also known as a gene encoding a protein which regulates the effect of auxin on lateral root formation. Further, the solitary-root dominant mutant (hereinafter also referred to as "slr dominant mutant") is known as Arabidopsis thaliana which has a mutation in the SLR gene and forms no lateral roots (Fukaki et al., Plant J. 2002, 29, 153-168). However, there has been no report of a factor which has an influence on the lateral rootless phenotype of the slr dominant mutant and which is expected to be applicable to artificial control of lateral root formation.

5

10

15

20

25

BRIEF SUMMARY OF THE INVENTION

An object of the present invention is to provide a factor which has an influence on the lateral rootless phenotype of a mutant and which is expected to be applicable to artificial control of lateral root formation in plants. More specifically, an object of the present invention is to provide a protein having a function of maintaining the mutation whereby lateral root formation is blocked and a gene encoding the protein.

The present invention may provide the following means for solving the above-mentioned objects.

(1) An Arabidopsis thaliana double mutant ssl2 slr having a mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3, obtained by:

treating (mutagenizing) an Arabidopsis thaliana slr dominant mutant (FERM BP-8385), which has no lateral roots, with a mutagen; preparing plants of the next generation of the mutagen-treated slr dominant mutant; and selecting a plant that basically preserves phenotypes of the slr dominant mutant but has lateral roots from the plants of the next generation.

5

10

- (2) An Arabidopsis thaliana double mutant ssl2 slr, which has recovered the capability of lateral root formation in an Arabidopsis thaliana slr dominant mutant (FERM BP-8385) that has no lateral roots, due to an additional mutation of at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant.
- slr, which has recovered the capability of lateral root formation in an Arabidopsis thaliana slr dominant mutant (FERM BP-8385) that has no lateral roots, due to an additional mutation of the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant, wherein the additional mutation is selected from the group consisting of the following (A) to (D):
 - (A) a mutation in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";
 - (B) a mutation in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been

substituted with "A";

10

15

20

- (C) a mutation in which the 1757th base $^{\infty}G''$ of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with $^{\infty}A''$; and
- 5 (D) a mutation in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A".
 - (4) A mutant gene having a mutation in at least one base of the SSL2 gene (cDNA) shown in SEQ ID NO: 1, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.
 - (5) A mutant gene having a mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO:

 3, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.
 - (6) A mutant gene of the SSL2 gene (cDNA) selected from the group consisting of the following (a) to (c):
 - (a) a mutant gene in which the 566th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A";
 - (b) a mutant gene in which the 1005th base G'' of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with A''; and
 - (c) a mutant gene in which the 901th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A".
 - (7) A mutant gene selected from the group

consisting of the following (d) to (g):

10

15

20

- (d) a mutant gene in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";
- (e) a mutant gene in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A":
 - (f) a mutant gene in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A"; and
 - (g) a mutant gene in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A".
 - (8) A protein selected from the group consisting of the following (a) and (b):
 - (a) a protein comprising the amino acid sequence of SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked; and
 - (b) a protein comprising an amino acid sequence of SEQ ID NO: 2, in which one or a few amino acids of the amino acid sequence have been deleted, substituted and/or added and which has a function of maintaining a mutation whereby lateral root formation is blocked.
 - (9) A gene encoding a protein selected from the group consisting of the following (a) and (b):
 - (a) a protein comprising the amino acid sequence of SEQ ID NO: 2 and having a function of maintaining

a mutation whereby lateral root formation is blocked; and

- (b) a protein comprising an amino acid sequence of SEQ ID NO: 2, in which one or a few amino acids of the amino acid sequence have been deleted, substituted and/or added and which has a function of maintaining a mutation whereby lateral root formation is blocked.
- (10) A gene selected from the group consisting of the following (c) or (d):
- 10 (c) a gene comprising the DNA sequence of SEQ ID NO: 1 and encoding a protein having a function of maintaining a mutation whereby lateral root formation is blocked; and

15

20

25

(d) a gene comprising a DNA sequence of SEQ ID NO: 1, in which one or a few bases of the DNA sequence have been deleted, substituted and/or added and which encodes a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

As described above, the present invention provides a protein having a function of maintaining a mutation whereby lateral root formation is blocked and the SSL2 gene encoding the protein. Further, the inventors of the present invention have found that, when the function of the SSL2 gene of the invention is lost in the slr dominant mutant, the slr dominant mutant loses the lateral rootless phenotype and does form lateral roots. Accordingly, it is assumed that the protein

encoded by the SSL2 gene is a novel regulating factor of plant root formation, especially lateral root formation. Thus, it is expected that growth of plant roots can be artificially regulated by modifying the function of the aforementioned protein. Specifically, it is expected to facilitate root formation in an herbaceous or woody plant of various types in which lateral roots or adventitious roots are not formed, by modifying the function of an SSL2-homologous gene in the plant.

5

10

15

20

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

- FIG. 1 is a view showing a part of a nucleotide sequence of the SSL2 genomic gene (wild type);
- FIG. 2 is a view showing a part of a nucleotide sequence (continued from FIG. 1) of the SSL2 genomic gene (wild type);
- FIG. 3 is a view showing a part of a nucleotide sequence (continued from FIG. 2) of the SSL2 genomic gene (wild type);
 - FIG. 4 is a view showing a part of a nucleotide

sequence (continued from FIG. 3) of the SSL2 genomic gene (wild type);

FIG. 5 is a view showing a part of a nucleotide sequence (continued from FIG. 4) of the SSL2 genomic gene (wild type);

5

10

20

25

FIG. 6 is a view showing a part of a nucleotide sequence (continued from FIG. 5) of the SSL2 genomic gene (wild type);

FIG. 7 is a view showing a part of a nucleotide sequence (continued from FIG. 6) of the SSL2 genomic gene (wild type); and

FIG. 8 is a view showing a nucleotide sequence of a mutant IAA14 gene.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described in detail hereinafter. It should be noted that descriptions below are provided only for illustrating the present invention and do not restrict the present invention.

[Arabidopsis thaliana double mutant ss12 slr]

An Arabidopsis thaliana double mutant ssl2 slr of the present invention (which will be also referred to as "double mutant ssl2 slr" hereinafter) is a double mutant obtained by: treating (mutagenizing) an Arabidopsis thaliana slr dominant mutant, which has no lateral roots, with a mutagen; preparing plants of the next generation of the mutagen-treated slr dominant mutant; and selecting a plant that basically preserves

phenotypes of the slr dominant mutant but has lateral roots from the plants of the next generation; wherein the double mutant ssl2 slr has a mutation in at least one base (e.g., one or a few bases) of the SSL2 genomic gene shown in SEQ ID NO: 3.

5

10

15

20

25

In another aspect of the present invention, the double mutant ssl2 slr of the present invention is a double mutant which has recovered the capability of lateral root formation in an Arabidopsis thaliana slr dominant mutant that has no lateral roots, due to an additional mutation in at least one base (e.g., one or a few bases) of the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant.

Specifically, the double mutant ssl2 slr of the present invention includes a double mutant which has recovered the capability of lateral root formation in an Arabidopsis thaliana slr dominant mutant that has no lateral roots, by having "a mutant gene of the SSL2 genomic gene" described below in the slr dominant mutant.

In one example, the double mutant ssl2 slr of the present invention is a double mutant which has recovered the capability of lateral root formation in an Arabidopsis thaliana slr dominant mutant that has no lateral roots, by having an additional mutation in the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant, wherein the additional mutation is

selected from the group consisting of the following (A) to (D):

(A) a mutation in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";

5

10

- (B) a mutation in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";
- (C) a mutation in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A"; and
 - (D) a mutation in which the 1546th base ${}^{\circ}G''$ of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with ${}^{\circ}A''$.

The Arabidopsis thaliana slr dominant mutant

(which will be also referred to as a "slr dominant

mutant" hereinafter), which is used for producing the

double mutant ssl2 slr of the present invention, shows

a lateral rootless phenotype. The slr dominant mutant

20 also exhibits additional phenotypes in which root hairs

are hardly formed and the gravitropism of root and

hypocotyl is aberrant. The gene which causes the

aforementioned phenotypes including the lateral

rootless phenotype in the slr dominant mutant, i.e.,

25 SLR mutant gene, will be referred to as "mutant IAA14

gene" hereinafter.

Seeds of the slr dominant mutant have been

deposited in the identification name of "solitary-root1 (Arabidopsis thaliana)" on May 22, 2003, under the
International Patent Organism Depositary, National
Institute of Advanced Industrial Science and Technology
(Tsukuba Central 6, 1-1, Higashi 1-chome, Tsukuba-shi,
Ibaraki-ken 305-8566, Japan), pursuant to BUDAPEST
TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT
OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE.
The accession number "FERM BP-8385" was assigned
thereto. The slr dominant mutant can be reproduced by
performing self-pollination of the slr dominant mutant,
thereby preparing the next generation, and selecting
plants that has no lateral roots from the next
generation.

In the production of the double mutant ss12 slr of the present invention, a slr dominant mutant is at first subjected to a mutagen treatment. As the slr dominant mutant to be subjected to the mutagen treatment, seed, plant body, callus and the like may be used. With regard to the mutagen treatment, known techniques may be employed in the present invention. Specific examples of the mutagen include: a chemical mutagen such as an alkylating agent which alkylates bases of DNA; an electromagnetic wave which causes damage to DNA such as X-rays and ultraviolet rays; and a radioactive substance. Alternatively, the mutagen treatment may be effected according to the known

Agrobacterium infection method, in which a DNA region sandwiched between a pair of border sequences (25 base pairs) present at both ends of T-DNA region of Ti plasmid contained in Agrobacterium is inserted into a random site of genome DNA of the slr dominant mutant. Preferably, the mutagen treatment is carried out by immersing seeds of the slr dominant mutant for 12 to 16 hours in a solution containing a chemical mutagen (e.g., ethylmethanesulfonic acid) at a concentration of 0.2 to 0.3% by weight. In the case in which seeds are used as the slr dominant mutant, the slr dominant mutants (seeds) are each grown to plants.

Next, the slr dominant mutant (plant body) which has been subjected to the mutagen treatment is made to perform self-pollination and the next generation thereof is produced. Among the thus produced next generation, plants which basically preserve the phenotypes of the slr dominant mutant but form lateral roots (i.e., plants having a mutation caused by the mutagen treatment in a homozygous form) are selected. Here, to "basically preserve the phenotypes of the slr dominant mutant" means maintaining all the characteristics of the slr dominant mutant other than the characteristic of not forming lateral roots. Specifically, "the phenotypes of the slr dominant mutant to be preserved" include a characteristic in which root hairs are hardly formed and a characteristic

in which the gravitropism of root and hypocotyl is aberrant.

5

10

15

20

25

The plants selected at this stage are new mutants which suppress the lateral rootless phenotype of the slr dominant mutant. There is a possibility that these new mutants include two types of mutants: an "intragenic suppressor mutant" in which an additional mutation has occurred inside a region of the gene (mutant IAA14 gene) which causes the mutation of the slr dominant mutant and an "extragenic suppressor mutant" in which an additional mutation has occurred outside the region of the gene (mutant IAA14 gene) which causes the mutation of the slr dominant mutant. Therefore, it is preferable to confirm that the selected plant does not have an additional mutation inside a region of the mutant IAA14 gene. In other words, it is preferable to confirm that the mutation of the mutant IAA14 gene dose not go back to the normal IAA14 gene in the selected plant. With regard to the details of this confirmation, the descriptions of examples described below may be referred to. information on the nucleotide sequence of the mutant IAA14 gene is available from SEQ ID NO: 4 and FIG. 8. In FIG. 8, the exon portions are indicated by capital letters and the intron portions are indicated by small letters.

The plant selected as described above is the

"double mutant ssl2 slr" of the present invention.

The double mutant ssl2 slr of the present invention is a double mutant having two mutations: "a slr dominant mutation (originally contained in the slr dominant mutant)" and "a ssl2 recessive mutation (newly caused by the mutagen treatment in the present invention)".

In the present invention, four types of lines (ssl2-1, ssl2-2, ssl2-3 and ssl2-4) were selected as the double mutant ssl2 slr. It has been found that all of the four types of lines have an additional mutation inside the region of the same gene (which will be referred to as "SSL2 genomic gene" hereinafter).

5

10

15

20..

25

Accordingly, the production of the double mutant ssl2 slr of the present invention is reproducible as described below. That is, plants which form lateral roots are selected from the next generation of the slr dominant mutants which have been subjected to a mutagen treatment; and it is confirmed that the selected plants do not have an additional mutation inside the region of the mutant IAA14 gene and that the selected plants have an additional mutation in the nucleotide sequence of the SSL2 genomic gene. With regard to the technique by which the mutation in the SSL2 genomic gene is confirmed, the descriptions of examples described below may be referred to.

Any of the double mutants ssl2 slr of the present invention exhibit at least some recovery of the

phenotypes of the slr dominant mutant. That is, in any of the double mutants ssl2 slr, the lateral rootless phenotype are recovered to form lateral roots, but no recovery is observed in the other phenotypes of the slr dominant mutant (i.e., aberration of root hair formation and aberration of gravitropism). From this fact, it is assumed that the gene (SSL2 genomic gene) which has been mutated in the double mutant ssl2 slr of the present invention genetically interacts with the mutant gene (mutant IAA14 gene) of the slr dominant mutant.

5

10

15

20

25

The double mutant ssl2 slr can be reproduced by performing self-pollination of the double mutant ssl2 slr, thereby preparing seeds of the next generation. However, a large number of the seeds of the next generation are not stably obtained, because of the undesirable characteristics of the reproductive organs of the double mutant.

[SSL2 gene and protein encoded by SSL2 gene]

The gene (SSL2 genomic gene) which has been mutated in the double mutant ssl2 slr of the present invention has been identified as At2g25170 gene, according to the mutation map-based cloning for Arabidopsis thaliana. The genetic information on At2g25170 gene is available from the following web page: http://mips.gsf.de/cgi-bin/proj/thal/search_gene? code=At2g25170. It has been confirmed by the present

invention that the information on the nucleotide sequence, which was available from the aforementioned web page at the time of filing the present application, is correct but the information from the same source on exon and intron includes errors. Specifically, the inventors of the present invention isolated cDNA of the SSL2 gene which has been mutated in the double mutant ssl2 slr, confirmed the nucleotide sequence thereof, and revealed the correct exon and intron structures of the SSL2 genomic gene (refer to FIGS. 1 to 7).

5

10

15

20

25

The nucleotide sequence of the SSL2 gene (cDNA) is shown in SEQ ID NO: 1 and the amino acid sequence of a protein encoded by the SSL2 gene (cDNA) is shown in SEQ ID NO: 2. The nucleotide sequence of the SSL2 genomic gene is shown SEQ ID NO: 3. Any nucleotide sequence indicates those not having mutation. The nucleotide sequence of the SSL2 genomic gene (SEQ ID NO: 3) is also shown in FIGS. 1 to 7. In FIGS. 1 to 7, the exon portions are indicated by capital letters and the intron portions are indicated by small letters.

As a result of a mutation of the SSL2 genomic gene, the slr dominant mutant becomes to form lateral roots. In other words, the normal SSL2 gene is essential for maintaining mutation whereby lateral root formation is blocked in the slr dominant mutant. Thus, it has been revealed for the first time, by the present invention, that the SSL2 gene encodes a protein having

a function of maintaining a mutation whereby lateral root formation is blocked.

5

10

15

20

25

Accordingly, the present invention provides a gene comprising the DNA sequence shown in SEQ ID NO: 1 and encoding a protein having a function of maintaining a mutation whereby lateral root formation is blocked. In this gene, one base or a few bases in the DNA sequence shown in SEQ ID NO: 1 may be deleted, substituted and/or added, as long as the gene encodes a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

Further, the present invention provides a gene encoding the following protein: a protein comprising the amino acid sequence shown in SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked. Regarding this gene, one amino acid or a few amino acids in the amino acid sequence of the aforementioned protein may be deleted, substituted and/or added, as long as the gene encodes a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

Yet further, the present invention provides a protein comprising the amino acid sequence shown in SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked. Regarding this protein, one amino acid or a few amino acids in the amino acid sequence shown in SEQ ID NO: 2

may be deleted, substituted and/or added, as long as the protein has a function of maintaining a mutation whereby lateral root formation is blocked.

In addition, in the present invention, it has been revealed that the SSL2 gene encodes a protein homologous with an animal protein "Chromodomain-helicase-DNA-binding 3 (CHD3)" which is involved in the conversion of chromatin structure of a chromosome. No study has been reported of the relationship between lateral root formation and conversion of chromatin structure. It has been, for the first time in the present invention, suggested that the conversion of chromatin structure is involved in lateral root formation.

15 [Mutant gene of SSL2 gene]

5

10

20

25

The "mutant gene of the SSL2 gene (cDNA)" of the present invention is a mutant gene having a mutation in at least one base of the SSL2 gene (cDNA) shown in SEQ ID NO: 1, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.

In the "mutant gene of the SSL2 gene (cDNA)",
"mutation" represents, for example, substitution,
deletion, or addition of at least one base, which
mutation has an influence on the phenotype of a mutant
that has no lateral roots. In other words, the
expression of the mutant gene having the abovedescribed mutation enables the phenotype of a mutant

that has no lateral roots to be recovered.

5

10

15

20

25

Specifically, the "mutant gene of the SSL2 gene (cDNA)" of the present invention includes the following mutant genes. However, it should be noted that the "mutant gene of the SSL2 gene (cDNA)" of the present invention is not limited to these specific examples:

- 1) a mutant gene in which at least one base (e.g., one base or a few bases) of the SSL2 gene (cDNA) has been substituted with base(s) of other type(s), whereby a codon designating an amino acid has been replaced with a termination codon; and
- 2) a mutant gene in which at least one base (e.g., one base or a few bases) of the SSL2 gene (cDNA) has been substituted with base(s) of other type(s), whereby a codon designating an amino acid of one type has been replaced with a codon designating an amino acid of another type.

More specifically, the "mutant gene of the SSL2 gene (cDNA)" possessed by the double mutant ssl2 slr selected in the present invention includes the following mutant genes. The mutant genes (a) to (c) are derived from the lines ssl2-1, ssl2-3, ssl2-4 of the double mutant ssl2 slr, respectively:

a) a mutant gene in which the 566th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation, tryptophan (TGG) as the 189th amino acid in SEQ ID NO:

- 2 has been replaced with the termination codon (TAG);
- b) a mutant gene in which the 1005th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation, tryptophan (TGG) as the 335th amino acid in SEQ ID NO: 2 has been replaced with the termination codon (TAG);

5

10

15

20

25

c) a mutant gene in which the 901th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation, glycine (GGA) as the 301th amino acid in SEQ ID NO: 2 has been replaced with asparagine (AGA).

Further, the "mutant gene of the SSL2 genomic gene" of the present invention is a mutant gene having mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.

Specifically, the "mutant gene of the SSL2 genomic gene" of the present invention includes the following mutant genes. It should be noted that the "mutant gene of the SSL2 genomic gene" of the present invention is not limited to these specific examples:

3) a mutant gene in which at least one base (e.g., one base or a few bases) of the exon portion of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby a codon designating an amino acid has been replaced with a termination codon;

4) a mutant gene in which at least one base (e.g., one base or a few bases) of the exon portion of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby a codon designating an amino acid of one type has been replaced with a codon designating an amino acid of another type; and

5

10

15

20

25

5) a mutant gene in which at least one base (e.g., one base or a few bases) of a splice site of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby an intron of the SSL2 genomic gene has not been excised in the normal manner.

In the mutant gene, a "splice site" represents a boundary site between exon and intron, i.e., a site at which excision of an intron and recombination of the two exons adjacent to both ends of the intron are carried out during a splicing reaction, any substitution of a base at which splice site disturbs the splicing reaction. Specifically, a splice site includes the donor splice site located at the 5' end of an intron and the acceptor splice site located at the 3' end of an intron. Specific examples of the splice site include the conserved sequence "gt" located at the 5' end of an intron and the conserved sequence "ag" located at the 3' end of an intron and the conserved sequence "ag" located at the 3' end of an intron.

More specifically, the "mutant gene of the SSL2 genomic gene" possessed by the double mutant ssl2 slr selected in the present invention includes the

following mutant genes. The mutant genes (d) to (g) are derived from the lines ssl2-1, ssl2-2, ssl2-3, ssl2-4 of the double mutant ssl2 slr, respectively:

5

10

15

20

- d) a mutant gene in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, tryptophan (TGG) as the 189th amino acid in SEQ ID NO: 2 has been replaced with the termination codon (TAG);
- e) a mutant gene in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the splice site of the SSL2 genomic gene, the intron of the SSL2 genomic gene has not been excised in the normal manner and thus a normal mRNA is not produced;
 - f) a mutant gene in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, tryptophan (TGG) as the 335th amino acid in SEQ ID NO: 2 has been replaced with the termination codon (TAG);
 - g) a mutant gene in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, glycine (GGA) as the 301th amino acid in SEQ ID NO: 2 has been replaced with asparagine (AGA).

[Examples]

5

Hereinafter, the present invention will be described in detail by examples. It should be noted that the present invention is not limited to the descriptions of these examples.

Example 1: Production of a double mutant ssl2 slr having ssl2 recessive mutation and slr dominant mutation

About 5000 seeds of the slr dominant mutant (FERM 10 BP-8385), which forms no lateral roots, were subjected to a mutagen treatment in which the seeds were immersed in 0.2 % ethylmethanesulfonic acid (EMS) solution for 16 hours. The mutagen-treated seeds (M1 seeds) were each grown to plants, and self-pollination of the grown 15 plants was performed, thereby preparing the next generation. Among the next generation (30,000 plants), plants which formed lateral roots although they basically maintained the phenotypes of the slr dominant mutant were selected. After confirming that the 20 aforementioned phenotypes of the selected plants was reliably inherited to the next generation of the selected plants, the selected plants were identified as double mutant and named "double mutant ssl2 slr". In the present example, double mutants ssl2 slr of four 25 lines (i.e., ssl2-1, ssl2-2, ssl2-3 and ssl2-4) were obtained.

Further, it was confirmed on the basis of the

nucleotide sequence that the genome DNA of the double mutant ssl2 slr did not have any additional mutation in a region of the gene (mutant IAA14 gene) causing the slr dominant mutation. That is, it was confirmed that the double mutant ssl2 slr did not correspond to an "intragenic suppressor mutant" in which an additional mutation has occurred inside a region of the mutant IAA14 gene. This confirmation was carried out by amplifying the genomic region including the mutant IAA14 gene, by using the PCR primers shown below. The PCR primer sequences for amplifying the genomic region (1476 base pairs) including the mutant IAA14 gene will be described hereinbelow.

5

10

15

20

25

IAA14-F1: 5-CATATTCTGATTTAAGACATA-3 (SEQ ID NO: 5)

IAA14-R1: 5-AATCAATGCATATTGTCCTCT-3 (SEQ ID NO: 6)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

IAA14-F2: 5-TTATGGCTAATCAGAAGAGCG-3 (SEQ ID NO: 7)

IAA14-F3: 5-TATTCTCTAAACAAAAAAAAC-3 (SEQ ID NO: 8)

Further, it was confirmed from the nucleotide sequence that the genome DNA of the double mutant ssl2 slr had a mutation in a region of the SSL2 gene. This confirmation was carried out by amplifying the region of the SSL2 gene, by using primers shown below. Specifically, the nucleotide sequence of the SSL2 gene region was determined by: allotting the SSL2 gene

region (9353 base pairs) into 7 sub-regions (A to G); effecting amplification by PCR in each of the sub-regions; determining the entire nucleotide sequence of each PCR product; and comparing the entire nucleotide sequence of each PCR product with the genome DNA sequence of the SSL2 gene of the wild type. If any mutation is found, the plant having the mutation is an ssl2 mutant.

5

10

The PCR primer sequences for amplifying each sub-region (A to G) of the SSL2 gene region were as follows.

- PCR primer sequences for amplifying the sub-region (A)
- SSL2-F1: 5-aattcqacttctqqqtactca-3 (SEQ ID NO: 9)
- 15 SSL2-R1: 5-AAATTAAGTCCCTCAAGCTGG-3 (SEQ ID NO: 10)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

- SSL2-F2: 5-actctgaatttgtagAAAGAA-3 (SEQ ID NO: 11)
- 20 SSL2-F3: 5-GAAGATGATTTTGTTGCCATA-3 (SEQ ID NO: 12)
 - 2) PCR primer sequences for amplifying the sub-region (B)
 - SSL2-F4: 5-AAGATGGGGAGCTGGAATATC-3 (SEQ ID NO: 13)
 - SSL2-R2: 5-GGCTCAACACCCTCTAGCATA-3 (SEQ ID NO: 14)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

```
SSL2-F5: 5-CATCCATACCAGCTTGAGGGA-3 (SEQ ID NO: 15)
```

- SSL2-F6: 5-CAAGTTTGATGTCCTCCTCAC-3 (SEQ ID NO: 16)
- 3) PCR primer sequences for amplifying the sub-region (C)
- 5 SSL2-F7: 5-ACATGCCCCCCAAAAAGGAGC-3 (SEQ ID NO: 17)
 - SSL2-R3: 5-CCATCAATTCGCTCGTACTGC-3 (SEQ ID NO: 18)

The following primer was used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

- SSL2-F8: 5-atgtgctgaaactgtgtgtac-3 (SEQ ID NO: 19)
 - 4) PCR primer sequences for amplifying the sub-region (D)
 - SSL2-F9: 5-ccattgcttttgctgacgcat-3 (SEQ ID NO: 20)
 - SSL2-R4: 5-ttcgatagccaaccacagtct-3 (SEQ ID NO: 21)
- The following primer was used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.
 - SSL2-F10: 5-ggcatgcaatatgggtggcgt-3 (SEQ ID NO: 22)
 - 5) PCR primer sequences for amplifying the sub-region (E)

20

25

- SSL2-F11: 5-TCAGGTATGGATCAAAGGAGC-3 (SEQ ID NO: 23)
- SSL2-R5: 5-CTCCCCTCACCTTCCATCAAC-3 (SEQ ID NO: 24)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

SSL2-F12: 5-gtgcacaatcttgtcaaatca-3 (SEQ ID NO: 25)

SSL2-F13: 5-GAGGCACAGAGAGTCGCTGCT-3 (SEQ ID NO: 26)

6) PCR primer sequences for amplifying the sub-region (F)

SSL2-F14: 5-tatacattggtttggtctgcc-3 (SEQ ID NO: 27)

SSL2-R6: 5-GTAGGGATAGATGATGAGCCA-3 (SEQ ID NO: 28)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

SSL2-F15: 5-ccccgatgcatctaaattatc-3 (SEQ ID NO: 29)

SSL2-F16: 5-ACTAGTTCAGGAGAAGgtgag-3 (SEQ ID NO: 30)

7) PCR primer sequences for amplifying the sub-region (G)

5

15

20

25

SSL2-F17: 5-ACATGCAGAGACGACTTGTTG-3 (SEQ ID NO: 31)

SSL2-R7: 5-cggacttcatcgaacctattc-3 (SEQ ID NO: 32)

The above-described two primers were used in order to determine the entire nucleotide sequence of the PCR product.

Example 2: Isolation of SSL2 gene

The double mutant ssl2 slr (ecotype: Columbia) having both ssl2 recessive mutation and slr dominant mutation, prepared in Example 1, was crossed with the wild type (ecotype: Landsberg erecta), whereby F1 generation was obtained. Then, F2 generation as the next generation of F1 generation was prepared by performing self-pollination of the F1 generation. By using the genomic DNA of the F2 generation, detailed mapping of the SSL2 gene locus was carried out on

the basis of the genomic information of Arabidopsis

thaliana. From the result of the mapping, it was found out that the ssl2 recessive mutation is located in a genomic region including 17 genes from gene At2g25140 to gene At2g25300 on the second chromosome.

Next, in the genomic DNA of the selected four lines (ssl2-1, ssl2-2, ssl2-3 and ssl2-4) of the double mutant ssl2 slr, the nucleotide sequences of the above-described 17 candidate genes were examined.

As a result, in all of the four lines of the double mutant ssl2 slr, mutation which presumably causes, the protein encoded by At2g25170 gene, to lose the function thereof was found. On the basis of this discovery, the At2g25170 gene was identified as the SSL2 gene.

Example 3: Experiment in which it was confirmed that the SSL2 gene is involved in the blocking of lateral root formation

The slr dominant mutant (FERM BP-8385) is a gain-of-function mutant of the IAA14 gene encoding an auxin-inducible protein, and lateral root formation thereof is completely blocked under normal growth conditions on an agar medium. However, the double mutant ss12 slr which has both ss12 recessive mutation and slr dominant mutation, newly prepared in the present invention, formed lateral roots under the same normal conditions, although the formation of lateral roots was not so vigorous as in the wild type. From this result, it was proved that the normal SSL2

20

gene is essential for maintaining the lateral rootless phenotype (i.e., the blocking of lateral root formation) observed in the slr dominant mutant.

Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

5

SEQUENCE LISTING

<110> Nara Institute of Science and Technology

<120> A protein that has a function of maintaining a mutation whereby lateral root formation is blocked and a gene encoding the protein

<130> 03S0267

<150> JP P2003-147765

<151> 2003-05-26

<160> 32

<170> Patentin Ver. 2.0

<210> 1

<211> 4155

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1).. (4152)

<400> 1

atg agt agt ttg gtg gag agg ctt cgc ata cga tct gat agg aaa cca 48

Met Ser Ser Leu Val Glu Arg Leu Arg lle Arg Ser Asp Arg Lys Pro

1 5 10 15

gtt tat aac cta gat gat tot gat gat gac gac tto gtt cct aaa aaa 96 Val Tyr Asn Leu Asp Asp Ser Asp Asp Asp Asp Phe Val Pro Lys Lys 20 25 30

gat cga acc ttt gag caa gtc gag gct att gtc aga act gat gcg aaa

Asp	Arg	Thr 35	Phe	Glu	Gln	Val	Glu 40	Ala	lle	Val	Arg	Thr 45	Asp	Ala	Lys	
gaa	aat	gca	tgt	cag	gct	tgt	ggg	gaa	agt	act	aat	ctt	gta	agc	tgc	192
Glu	Asn	Ala	Cys	Gln	Ala	Cys	Gly	Glu	Ser	Thr	Asn	Leu	Val	Ser	Cys	
	50					55					60					
aat	aca	tgc	act	tat	gcg	ttc	cat	gct	aaa	tgc	tta	gtt	cca	cct	ctt	240
Asn	Thr	Cys	Thr	Tyr	Ala	Phe	His	Ala	Lys	Cys	Leu	Val	Pro	Pro	Leu	
65					70					75					80	
aaa	gat	gct	tcc	gtg	gaa	aat	tgg	aga	tgc	cct	gaa	tgt	gtt	agt	cct	288
Lys	Asp	Ala	Ser	Val	Glu	Asn	Trp	Arg	Cys	Pro	Glu	Cys	Val	Ser	Pro	
				85					90					95		
ctt	aac	gag	ata	gat	aag	ata	ttg	gat	tgt	gaa	atg	cgt	cct	aca	aaa	336
Leu	Asn	Glu	He	Asp	Lys	He	Leu	Asp	Cys	Glu	Met	Arg	Pro	Thr	Lys	
			100					105					110			
tct	agt	gaa	caa	ggt	tcc	tcc	gat	gcg	gaa	ccg	aag	cca	att	ttt	gtg	384
Ser	Ser		Gln	Gly	Ser	Ser	Asp	Ala	Glu	Pro	Lys	Pro	lle	Phe	Val	
		115					120		,			125				
aaa	cag	tat	ctc	gtg	aag	tgg	aag	gga	tta	tca	tac	ctt	cac	tgc	tct	432
Lys		Tyr	Leu	Val	Lys	Trp	Lys	Gly	Leu	Ser	Tyr	Leu	His	Cys	Ser	
	130					135					140					
tgg	gtg	cct	gag	aag	gag	ttc	cag	aag	gct	tat	aag	tca	aat	cat	cgt	480
Trp	Val	Pro	Glu	Lys	Glu	Phe	Gln	Lys	Ala	Tyr	Lys	Ser	Asn	His	Arg	
145					150					155					160	
tta	aaa	acc	aga	gtg	aac	aat	ttt	cac	cgt	caa	atg	gag	tca	ttc	aat	528
Leu	Lys	Thr	Arg	Val	Asn	Asn	Phe	His	Arg	Gln	Met	Glu	Ser	Phe	Asn	
				165					170					175		
aac	agc	gaa	gat	gat	ttt	gtt	gcc	ata	cgt	cct	gag	tgg	acc	act	gtt	576

Asn	Ser	Glu	Asp 180	Asp	Phe	Val	Ala	11e 185	Arg	Pro	Glu	Trp	Thr 190	Thr	Val	
gat	cgg	att	ctt	gcc	tgc	aga	gag	gaa	gat	ggg	gag	ctg	gaa	tat	ctt	624
Asp	Arg	He	Leu	Ala	Cys	Arg	Glu	Glu	Asp	Gly	Glu	Leu	Glu	Tyr	Leu	
		195					200					205				
gtc	aaa	tat	aaa	gag	cta	tcc	tat	gat	gaa	tgt	tat	tgg	gag	tca	gaa	672
Val	Lys	Tyr	Lys	Glu	Leu	Ser	Tyr	Asp	Glü	Cys	Tyr	Trp	Glu	Ser	Glu	
	210					215					220					
tca	gac	atc	tca	acc	ttc	cag	aat	gaa	att	caa	agg	ttc	aag	gat	gta	720
Ser	Asp	He	Ser	Thr	Phe	Gln	Asn	Glu	He	Gln	Arg	Phe	Lys	Asp	Val	
225					230					235					240	
aat	tet	aga	act	cgc	aga	aøt	222	gat	σtt	gac	cat	222	202	aat	ccc	768
								Asp								700
,,,,,,,	•••	, _B	••••	245	, B	00.	_,0	,,,,,	250	πορ		_,0	/ " B	255		
aga	gac	ttt	caa	cag	ttt	gat	cat	act	cct	gaa	ttc	ctc	aaa	ggc	ttg	816
Arg	Asp	Phe	Gln	Gln	Phe	Asp	His	Thr	Pro	Glu	Phe	Leu	Lys	Gly	Leu	
			260					265					270			
tta	cat	cca	tac	cag	ctt	gag	gga	ctt	aat	ttt	ttg	cgg	ttc	tcg	tgg	864
Leu	His	Pro	Tyr	Gln	Leu	Glu	Gly	Leu	Asn	Phe	Leu	Arg	Phe	Ser	Trp	
		275					280					285				
tca	aaa	cag	acg	cat	gta	atc	ctt	gct	gat	gaa	atg	gga	cta	ggc	aag	912
Ser	Lys	Gln	Thr	His	Val	He	Leu	Ala	Asp	Glu	Met	Gly	Leu	Gly	Lys	
	290					295					300					
аса	att	саа	agc	att	gcc	ctt	tta	gct	tca	ctt	+++	gap	gag	aac	ctc	960
			_		_			Ala								-
305		·			310					315				•	320	
															-	
att	ccg	cat	ttg	gta	att	gct	cct	cta	tcg	act	ctg	cgt	aac	tgg	gag	1008

I	le	Pro	His	Leu	Va I 325	lle	Ala	Pro	Leu	Ser 330	Thr	Leu	Arg	Asn	Trp 335	Glu	
									_	_			_	atg Met 350			1056
														ttt Phe			1104
	Ser													caa GIn			1152
S														ctc Leu			1200
														att He			1248
														aag Lys 430			1296
														cgt Arg			1344
							_			_	_	-		ttc Phe	_		1392
а	itg	cat	ttt	ctt	gat	gcg	ggg	aag	ttt	gga	agt	ttg	gag	gag	ttc	cag	1440

Met 465	His	Phe	Leu	Asp	Ala 470	Gly	Lys	Phe	Gly	Ser 475	Leu	Glu	Glu	Phe	GIn 480		
					att He											1488	
					cat His											1536	
	_				aaa Lys										_	1584	
					tat Tyr											1632	
					gga Gly 550											1680	
					gta Val		Cys		Pro							1728	
					gac Asp	_		_	_					_		1776	
					caa GIn											1824	
gag	caa	gga	cac	aga	gtc	cta	ata	tac	aca	cag	ttt	cag	cat	atg	ctg	1872	,

Glu	GIn 610	Gly	His	Arg	Val	Leu 615	lle	Tyr	Thr	GIn	Phe 620	GIn	His	Met	Leu	
gac	tta	ctt	gaa	gac	tac	tgt	acc	cat	aag	aaa	tgg	cag	tac	gag	cga	1920
Asp	Leu	Leu	Glu	Asp	Tyr	Cys	Thr	His	Lys	Lys	Trp	Gin	Tyr	Glu	Arg	
625					630					635					640	1000
	gat															1968
He	Asp	uly	Lys	645	uly	uly	АГА	uiu	650	GIN	11e	Arg	11e	-	Arg	
														655		
	aat															2016
Phe	Asn	Ala		Asn	Ser	Asn	Lys		Cys	Phe	Leu	Leu		Thr	Arg	
			660				•	665					670			
gct	ggt	ggc	tta	gga	ata	aat	ctt	gca	acg	gct	gat	aca	gta	atc	att	2064
Ala	Gly		Leu	Gly	He	Asn		Ala	Thr	Ala	Asp	Thr	Val	He	He	
		675					680					685				
tat	gac	agt	gac	tgg	aat	cct	cat	gct	gat	ctt	caa	gca	atg	gct	aga	2112
Tyr	Asp	Ser	Asp	Trp	Asn	Pro	His	Ala	Asp	Leu	Gln	Ala	Met	Ala	Arg	
	690					695					700					
	cat															2160
	His	Arg	Leu	Gly		Thr	Asn	Lys	Val	Met	He	Tyr	Arg	Leu		
705					710					715					720	
	cga															2208
Asn	Arg	Gly	Thr		Glu	Glu	Arg	Met		Gln	Leu	Thr	Lys		Lys	
				725					730					735		
	gtt															2256
Met	Val	Leu		His	Leu	Val	Val	_	Lys	Leu	Lys	Thr		Asn	lle	
			740					745					750			
aat	cag	gaa	gag	tta	gat	gac	atc.	atc	agg	tat	gga	tca	aag	gag	ctt	2304

Asn	GIn	GIu 755	Glu	Leu	Asp	Asp	11e 760	lle	Arg	Tyr	Gly	Ser 765	Lys	Glu	Leu	
ttt	gct	agt	gaa	gat	gat	gaa	gca	gga	aag	tct	gga	aaa	att	cat	tat	2352
Phe	Ala	Ser	Glu	Asp	Asp	Glu	Ala	Gly	Lys	Ser	Gly	Lys	He	His	Tyr	
4	770					775					780		•			0.400
														gag		2400
	ASP	АТА	АІа	He		Lys	Leu	Leu	ASP		ASP	Leu	vai	Glu		
785					790					795					800	
														aag		2448
Glu	Glu	vai	Ser		Asp	Asp	Glu	Glu		Asn	Gly	Phe	Leu	Lys	Ala	
				805					810					815		
														gca		2496
Phe	Lys	Val		Asn	Phe	Glu	lyr		Asp	Glu	Asn	Glu		Ala	Ala	
			820					825					830			0544
														ggc		2544
Leu	GIU		Gin	Arg	vai	Ala		Glu	Ser	Lys	Ser		Ala	Gly	Asn	
		835					840					845				0500
						_		-	_			_		ttt		2592
Ser		Arg	АТА	Ser	ıyr		GIU	GIU	Leu			Asp	Lys	Phe	GIU	
	850					855					860					
													_	aga	_	2640
	HIS	GIN	Ala	Glu		Leu	Asn	Ala	Leu	-	Lys	Arg	Lys	Arg		
865					870					875				•	880	
														ttg	_	2688
Arg	Lys	Gin	Leu		Ser	He	Glu	Glu		Asp	Leu	Ala	Gly	Leu	Glu	
				885					890					895		
gat	gtg	agc	tct	gat	gga	gat	gaa	agt	tat	gaa	gct	gag	tca	aca	gat	2736

Asp	Val	Ser	Ser 900	Asp	Gly	Asp	Glu	Ser 905	Tyr	Glu	Ala	Glu	Ser 910	Thr	Asp	
ggt	gaa	gca	gca	gga	caa	gga	gtt	cag	acg	ggt	cga	cgg	ccg	tac	aga	2784
Gly	Glu	Ala	Ala	Gly	Gln	Gly	Val	Gln	Thr	Gly	Arg	Arg	Pro	Tyr	Arg	
		915					920					925				
aga	aag	ggt	cgc	gat	aat	ttg	gaa	cca	act	ccg	ttg	atg	gaa	ggt	gag	2832
Arg	Lys	Gly	Arg	Asp	Asn	Leu	Glu	Pro	Thr	Pro	Leu	Met	Glu	Gly	Glu	
	930					935					940					
ggg	aga	tct	ttc	aga	gta	ctg	ggt	ttc	aac	cag	agt	caa	agg	gcc	att	2880
Gly	Arg	Ser	Phe	Arg	Val	Leu	Gly	Phe	Asn	Gln	Ser	Gln	Arg	Ala	lle	
945					950					955					960	
												•				
ttt	gta	cag	act	ttg	atg	agg	tat	gga	gct	ggc	aat	ttt	gat	tgg	aag	2928
Phe	Val	Gln	Thr	Leu	Met	Arg	Tyr	Gly	Ala	Gly	Asn	Phe	Asp	Trp	Lys	
				965					970					975		
gag	ttt	gtt	cct	cgc	tta	aag	cag	aag	acc	ttt	gaa	gaa	ata	aat	gaa	2976
Glu	Phe	Val	Pro	Arg	Leu	Lys	Gin	Lys	Thr	Phe	Glu	Glu	He	Asn	Glu	
			980					985					990			
tat	gga	ata	ctc	ttc	ttg	aag	cac	att	gct	gaa	gaa	ata	gac	gag	aat	3024
Tyr	Gly	He	Leu	Phe	Leu	Lys	His	He	Ala	Glu	Glu	He	Asp	Glu	Asn	
		995				1	000				1	005				
tct	сса	acc	ttt	tca	gat	ggt	gtg	ccc	aag	gaa	gga	ctt	aga	ata	gaa	3072
Ser	Pro	Thr	Phe	Ser	Asp	Gly	Val	Pro	Lys	Glu	Gly	Leu	Arg	lle	Glu	
1	010				1	015				1	020					
gat	gtt	cta	gtc	aga	att	gct	ctt	ctg	ata	cta	gtt	cag	gag	aag	gtg	3120
Asp	Val	Leu	Val	Arg	He	Ala	Leu	Leu	He	Leu	Val	Gln	Glu	Lys	Val	
1025	5			1	030				1	035				1	1040	
aaa	ttt	gta	gaa	gat [.]	cat	сса	ggg	aaa	cct	gtt	ttc	ccc	tct	cgc	att	3168

r Arg lle 1055		Pro	Pne	vai	Pro 1050		ыу	Pro	ніѕ	ASP 1045		vai	Pne	Lys
1000					, , , ,									
g gag gaa 32	aag	tgg	att	aaa	gga	agt	aga	ctg	gga	ccc	ttc	aga	gaa	ctt
s Glu Glu	Lys	Trp	lle	Lys	Gly	Ser	Arg	Leu	Gly	Pro	Phe	Arg	Glu	Leu
o	070	•				1065					1060	•		
c gga cgg 32	tac	ggg	cat	aag	tta	gtt	gct	cgt	ata	atg	ata	aag	gac	cat
r Gly Arg	Tyr	-		Lys	Leu	Val			He	Met	He			His
		1085	1				1080	•				1075	•	
g ctt atc 33														
u Leu IIe	GIU	GIN			Leu	GIU	Lys			vai	He			
			1100					1095					1090	
t gaa caa 33	act	act	tot	+ +σ	aut	ata	cac	cct	ttc	aat	tto	σaa	222	tac
a Glu Gln														
1120	AIG	πια	001	1115		110	1110	110	1110		Lou	uiu		110!
1120														
g gga gca 34	ccg	aat	tct	ggc	ggg	agt	ggt	aat	cag	ggg	cag	ttg	ggt	gct
o Gly Ala														
1135					1130					1125				
t aat gct 34	aat	aac	ggg	act	att	gtt	agc	gga	cct	aat	cag	aac	act	cag
n Asn Ala	Asn	Asn	Gly	Thr	He	Val	Ser	Gly	Pro	Asn	Gln	Asn	Thr	Gln
0	150					1145					1140			
g gac atg 35	cgg	tat	tat	ttc	atg	tcg	aac	gta	caa	gct	ggg	gat	gct	tct
g Asp Met	Arg	Tyr	Tyr	Phe	Met	Ser	Asn	Val	Gln	Ala	Gly	Asp	Ala	Ser
		1165	1				1160	•				1155	•	
t ttg gag 35														
u Leu Glu	Leu	Leu			Lys	Lys	Val			Val	Leu	Arg		
			1180	-				1175	•				1170	•

aag gcg atg aat tat gaa tac gca gag gaa tat tat gga ctt ggt ggc

_ys	на	Mer	W2II	ıyı	ulu	ıyr	на	ulu	ulu	ıyı	ıyr	uly	Leu	uly	uly	
1189	5			-	1190				1	1195					1200	
tca	tca	tet	ato	cct	act	αaa	maa	002	maa	act	maa.	000	224	ato	act	3648
															_	3040
ser	ser	ser			Thr	GIU	GIU			АТА	GIU	Pro			АТА	
			•	1205					1210				•	1215		
gac	aca	gtg	gga	gtg	agc	ttt	att	gag	gtt	gat	gat	gaa	atg	ctt	gat	3696
Asp	Thr	Val	Gly	Val	Ser	Phe	He	Glu	Val	Asp	Asp	Glu	Met	Leu	Asp	
			1220				1	1225					1230			
ຫ ຼວ	ctt	cct	aaσ	act	gat	cct	atc	act	tra	ฮลล	ซลล	att	atσ	σσσ	act	3744
					Asp											0/44
агу			Lys	(111	weh			ttir	Ser	uiu			Mer	ч	на	
		1235					1240					1245				
gct	gtt	gac	aac	aac	caa	gcg	cgg	gtc	gaa	ata	gct	caa	cat	tat	aac	3792
٩la	Val	Asp	Asn	Asn	Gln	Ala	Arg	Val	Glu	He	Ala	Gln	His	Tyr	Asn	
-	1250				•	1255				•	1260					
cag	atg	tgc	aaa	ctt	ctt	gat	gag	aac	gct	cgg	gaa	tca	gtc	caa	gca	3840
					Leu											
1269		0,0	_,0		1270	ЛОР	uiu	,,,,,,,		1275	uiu	001	, u		1280	
1200	,				1270				·	1275					1200	
					cca											3888
Гуr	Val	Asn	Asn	Gln	Pro	Pro	Ser	Thr	Lys	Val	Asn	Glu	Ser	Phe	Arg	
				1285					1290				•	1295		
gca	ctc	aaa	tct	atc	aat	ggt	aac	att	aac	aca	atc	ctt	tcg	att	aca	3936
۹la	Leu	Lys	Ser	He	Asn	Gly	Asn	lle	Asn	Thr	He	Leu	Ser	He	Thr	
			1300				1	1305					1310			
tet	ast	caa	too	220	tca	cat	maa.	mac.	mac.	200	224	002	mac.	cta	220	3984
																J J 04
ser			ser	Lys	Ser			ASP	ASP	ınr			ASP	Leu	ASN	
	1	1315				•	1320					325				

aat gtt gag atg aag gac acg gcc gaa gaa aca aaa ccg tta aga ggt

Asn Val Glu Met Lys Asp Thr Ala Glu Glu Thr Lys Pro Leu Arg Gly

1330 1340

ggc gtc gtc gat ctg aat gtg gtg gag gag gag gag aac att gct gaa 4080 Gly Val Val Asp Leu Asn Val Val Glu Gly Glu Glu Asn Ile Ala Glu 1345 1350 1355 1360

gct agt gga agt gtt gat gta aaa atg gaa gac gaa gaa gaa gaa gag 4128 Ala Ser Gly Ser Val Asp Val Lys Met Glu Glu Ala Lys Glu Glu Glu 1365 1370 1375

4155

aag cca aag aac atg gtc gtt gat tga Lys Pro Lys Asn Met Val Val Asp 1380

<210> 2

<211> 1384

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Ser Leu Val Glu Arg Leu Arg Ile Arg Ser Asp Arg Lys Pro 1 5 10 15

Val Tyr Asn Leu Asp Asp Ser Asp Asp Asp Phe Val Pro Lys Lys
20 25 30

Asp Arg Thr Phe Glu Gln Val Glu Ala IIe Val Arg Thr Asp Ala Lys 35 40 45

Glu Asn Ala Cys Gln Ala Cys Gly Glu Ser Thr Asn Leu Val Ser Cys
50 55 60

Asn Thr Cys Thr Tyr Ala Phe His Ala Lys Cys Leu Val Pro Pro Leu 65 70 75 80

Lys	Asp	Ala	Ser	Va I 85	Glu	Asn	Trp	Arg	Cys 90	Pro	Glu	Cys	Val	Ser 95	Pro
Leu	Asn	Glu	lle 100	Asp	Lys	He	Leu	Asp 105	Cys	Glu	Met	Arg	Pro 110	Thr	Lys
Ser	Ser	Glu 115	Gln	Gly	Ser	Ser	Asp 120	Ala	Glu	Pro	Lys	Pro 125	He	Phe	Val
Lys	GIn 130	Tyr	Leu	Val	Lys	Trp 135	Lys	Gly	Leu	Ser	Tyr 140	Leu	His	Cys	Ser
Trp 145	Val	Pro	Glu	Lys	Glu 150	Phe	GIn	Lys	Ala	Tyr 155	Lys	Ser	Asn	His	Arg 160
Leu	Lys	Thr	Arg	Val 165	Asn	Asn	Phe	His	A rg 170	GIn	Met	Glu	Ser	Phe 175	Asn
Asn	Ser	Glu	Asp 180	Asp	Phe	Val	Ala	11e 185	Arg	Pro	Glu	Trp	Thr 190	Thr	Val
Asp	Arg	11e 195	Leu	Ala	Cys	Arg	Glu 200	Glu	Asp	Gly	Glu	Leu 205	Glu	Tyr	Leu
Val	Lys 210	Tyr	Lys		Leu		Tyr	Asp	Glu	Cys	Tyr 220	Trp	Glu	Ser	Glu
Ser 225	Asp	He	Ser	Thr	Phe 230	GIn	Asn	Glu	He	GIn 235	Arg	Phe	Lys	Asp	Val 240

Asn Ser Arg Thr Arg Arg Ser Lys Asp Val Asp His Lys Arg Asn Pro

Arg Asp Phe Gln Gln Phe Asp His Thr Pro Glu Phe Leu Lys Gly Leu

- Leu His Pro Tyr Gln Leu Glu Gly Leu Asn Phe Leu Arg Phe Ser Trp 275 280 285
- Ser Lys Gln Thr His Val IIe Leu Ala Asp Glu Met Gly Leu Gly Lys 290 295 300
- Thr IIe Gin Ser IIe Ala Leu Leu Ala Ser Leu Phe Giu Giu Asn Leu 305 310 315 320
- Ile Pro His Leu Val IIe Ala Pro Leu Ser Thr Leu Arg Asn Trp Glu 325 330 335
- Arg Glu Phe Ala Thr Trp Ala Pro Gln Met Asn Val Val Met Tyr Phe 340 345 350
- Gly Thr Ala Gln Ala Arg Ala Val IIe Arg Glu His Glu Phe Tyr Leu 355 360 365
- Ser Lys Asp Gin Lys Lys IIe Lys Lys Lys Ser Gly Gin IIe Ser 370 375 380
- Ser Glu Ser Lys Gln Lys Arg IIe Lys Phe Asp Val Leu Leu Thr Ser 385 390 395 400
- Tyr Glu Met IIe Asn Leu Asp Ser Ala Val Leu Lys Pro IIe Lys Trp
 405 410 415
- Glu Cys Met IIe Val Asp Glu Gly His Arg Leu Lys Asn Lys Asp Ser 420 425 430
- Lys Leu Phe Ser Ser Leu Thr Gln Tyr Ser Ser Asn His Arg IIe Leu 435 440 445
- Leu Thr Gly Thr Pro Leu Gln Asn Asn Leu Asp Glu Leu Phe Met Leu 450 455 460

Met 465	His	Phe	Leu	Asp	Ala 470	Gly	Lys	Phe	Gly	Ser 475	Leu	Glu	Glu	Phe	GIn 480
Glu	Glu	Phe	Lys	Asp 485	lle	Asn	Gin	Glu	Glu 490	GIn	lle	Ser	Arg	Leu 495	His
Lys	Met	Leu	Ala 500	Pro	His	Leu	Leu	Arg 505	Arg	Val	Lys	Lys	Asp 510	Val	Met
Lys	Asp	Met 515	Pro	Pro	Lys	Lys	Glu 520	Leu	lle	Leu	Arg	Va I 525	Asp	Leu	Ser
Ser	Leu 530	GIn	Lys	Glu	Tyr	Tyr 535	Lys	Ala	lle	Phe	Thr 540	Arg	Asn	Tyr	GIn
Va I 545	Leu	Thr	Lys	Lys	Gly 550	Gly	Ala	Gln	lle	Ser 555	Leu	Asn	Asn	lle	Met 560
Met	Glu	Leu	Arg	Lys 565	Val	Cys	Cys	His	Pro 570	Tyr	Met	Leu	Glu	GIy 575	Val
Glu	Pro	Val	11e 580	His	Asp	Ala	Asn	GI u 585	Ala	Phe	Lys	GIn	Leu 590	Leu	Glu
Ser	Cys	Gly 595					Leu 600				Met	Va I 605	Lys	Leu	Lys
Glu	GIn 610	Gly	His	Arg	Val	Leu 615	lle	Tyr	Thr	GIn	Phe 620	GIn	His	Met	Leu
Asp 625	Leu	Leu	Glu	Asp	Tyr 630	Cys	Thr	His	Lys	Lys 635	Trp	GIn	Tyr	Glu	Arg 640
He	Asp	Gly	Lys	Val	Gly	Gly	Ala	Glu	Arg	Gln	He	Arg	He	Asp	Arg

- Phe Asn Ala Lys Asn Ser Asn Lys Phe Cys Phe Leu Leu Ser Thr Arg 660 665 670
- Ala Gly Gly Leu Gly IIe Asn Leu Ala Thr Ala Asp Thr Val IIe IIe 675 680 685
- Tyr Asp Ser Asp Trp Asn Pro His Ala Asp Leu Gln Ala Met Ala Arg 690 695 700
- Ala His Arg Leu Gly Gln Thr Asn Lys Val Met Ile Tyr Arg Leu Ile 705 710 715 720
- Asn Arg Gly Thr lle Glu Glu Arg Met Met Gln Leu Thr Lys Lys Lys 725 730 735
- Met Val Leu Glu His Leu Val Val Gly Lys Leu Lys Thr Gln Asn lle 740 745 750
- Asn Gln Glu Glu Leu Asp Asp IIe IIe Arg Tyr Gly Ser Lys Glu Leu 755 760 765
- Phe Ala Ser Glu Asp Asp Glu Ala Gly Lys Ser Gly Lys Ile His Tyr
 770 780
- Asp Asp Ala Ala IIe Asp Lys Leu Leu Asp Arg Asp Leu Val Glu Ala 785 790 795 800
- Glu Glu Val Ser Val Asp Asp Glu Glu Glu Asn Gly Phe Leu Lys Ala 805 810 815
- Phe Lys Val Ala Asn Phe Glu Tyr lle Asp Glu Asn Glu Ala Ala Ala 820 825 830
- Leu Glu Ala Gln Arg Val Ala Ala Glu Ser Lys Ser Ser Ala Gly Asn 835 840 845

- Ser Asp Arg Ala Ser Tyr Trp Glu Glu Leu Leu Lys Asp Lys Phe Glu 850 855 860
- Leu His Gln Ala Glu Glu Leu Asn Ala Leu Gly Lys Arg Lys Arg Ser 865 870 875 880
- Arg Lys Gln Leu Val Ser IIe Glu Glu Asp Asp Leu Ala Gly Leu Glu 885 890 895
- Asp Val Ser Ser Asp Gly Asp Glu Ser Tyr Glu Ala Glu Ser Thr Asp 900 905 910
- Gly Glu Ala Ala Gly Gln Gly Val Gln Thr Gly Arg Arg Pro Tyr Arg 915 920 925
- Arg Lys Gly Arg Asp Asn Leu Glu Pro Thr Pro Leu Met Glu Gly Glu 930 935 940
- Gly Arg Ser Phe Arg Val Leu Gly Phe Asn Gln Ser Gln Arg Ala IIe 945 950 955 960
- Phe Val Gin Thr Leu Met Arg Tyr Gly Ala Gly Asn Phe Asp Trp Lys 965 970 975
- Glu Phe Val Pro Arg Leu Lys Gln Lys Thr Phe Glu Glu lle Asn Glu 980 985 990
- Tyr Gly IIe Leu Phe Leu Lys His IIe Ala Glu Glu IIe Asp Glu Asn 995 1000 1005
- Ser Pro Thr Phe Ser Asp Gly Val Pro Lys Glu Gly Leu Arg IIe Glu 1010 1015 1020
- Asp Val Leu Val Arg IIe Ala Leu Leu IIe Leu Val Gin Giu Lys Val 1025 1030 1035 1040

- Lys Phe Val Glu Asp His Pro Gly Lys Pro Val Phe Pro Ser Arg IIe 1045 1050 1055
- Leu Glu Arg Phe Pro Gly Leu Arg Ser Gly Lys IIe Trp Lys Glu Glu 1060 1065 1070
- His Asp Lys IIe Met IIe Arg Ala Val Leu Lys His Gly Tyr Gly Arg 1075 1080 1085
- Trp Gln Ala IIe Val Asp Asp Lys Glu Leu Gly IIe Gln Glu Leu IIe 1090 1095 1100
- Cys Lys Glu Leu Asn Phe Pro His IIe Ser Leu Ser Ala Ala Glu Gln 1105 1110 1115 1120
- Ala Gly Leu Gln Gly Gln Asn Gly Ser Gly Gly Ser Asn Pro Gly Ala 1125 1130 1135
- Gin Thr Asn Gin Asn Pro Gly Ser Val IIe Thr Gly Asn Asn Ala 1140 1145 1150
- Ser Ala Asp Gly Ala Gln Val Asn Ser Met Phe Tyr Tyr Arg Asp Met 1155 1160 1165
- Gln Arg Arg Leu Val Glu Phe Val Lys Lys Arg Val Leu Leu Glu 1170 1175 1180
- Lys Ala Met Asn Tyr Glu Tyr Ala Glu Glu Tyr Tyr Gly Leu Gly Gly 1185 1190 1195 1200
- Ser Ser Ser Ile Pro Thr Glu Glu Pro Glu Ala Glu Pro Lys Ile Ala 1205 1210 1215
- Asp Thr Val Gly Val Ser Phe IIe Glu Val Asp Asp Glu Met Leu Asp 1220 1225 1230

Gly Leu Pro Lys Thr Asp Pro IIe Thr Ser Glu Glu IIe Met Gly Ala 1235 1240 1245

Ala Val Asp Asn Asn Gln Ala Arg Val Glu lle Ala Gln His Tyr Asn 1250 1255 1260

Gln Met Cys Lys Leu Leu Asp Glu Asn Ala Arg Glu Ser Val Gln Ala 1265 1270 1275 1280

Tyr Val Asn Asn Gin Pro Pro Ser Thr Lys Val Asn Glu Ser Phe Arg 1285 1290 1295

Ala Leu Lys Ser Ile Asn Gly Asn Ile Asn Thr Ile Leu Ser Ile Thr 1300 1305 1310

Ser Asp Gln Ser Lys Ser His Glu Asp Asp Thr Lys Pro Asp Leu Asn 1315 1320 1325

Asn Val Glu Met Lys Asp Thr Ala Glu Glu Thr Lys Pro Leu Arg Gly 1330 1335 1340

Gly Val Val Asp Leu Asn Val Val Glu Gly Glu Glu Asn Ile Ala Glu 1345 1350 1355 1360

Ala Ser Gly Ser Val Asp Val Lys Met Glu Glu Ala Lys Glu Glu Glu 1365 1370 1375

Lys Pro Lys Asn Met Val Val Asp 1380

<210> 3

<211> 9353

<212> DNA

<213> Arabidopsis thaliana

<400> 3

atgagtagtt tggtggagag gcttcgcata cgatctgata ggaaaccagt ttataaccta 60 gatgattotg atgatgacga cttcgttcct aaaaaagatc gaacctttga gcaagtcgag 120 gctattgtca gaactgatgc ggtttgtttc tcctctcgag cttattgttc agcttttact 180 gttttatgtg ttctatttta atcctttttt ttgtgttgtt actctgaatt tgtagaaaga 240 aaatgcatgt caggcttgtg gggaaagtac taatcttgta agctgcaata catgcactta 300 tgcgttccat gctaaatgct tagttccacc tcttaaagat gcttccgtgg aaaattggag 360 atgccctgaa tgtgtaagat tttagttacg gtccacaatt atgttttggg atgctacagg 420 ttccattttt cttacatgga agaattgttg tttacatttg caggttagtc ctcttaacga 480 gatagataag atattggatt gtgaaatgcg tootacaaaa totagtgaac aaggttooto 540 cgatgcggaa ccgaagccaa tttttgtgaa acagtatctc gtgaagtgga agggattatc 600 ataccttcac tgctcttggt agttactgcg tgtctttttt gctgtctgga cacgctaatt 660 atcaatgttt ctttctgtga acactataat atgtgattta tttcctttta ctaatcatag 720 ggtgcctgag aaggagttcc agaaggctta taagtcaaat catcgtttaa aaaccagagt 780 gaacaatttt caccgtcaaa tggagtcatt caataacagc gaagatgatt ttgttgccat 840 acgtcctgag tggaccactg ttgatcggat tcttgcctgc aggtctagag aatggaatta 900 attoctttat ttatctatct gccaactttt tttttaatat ccttgttttc agcataatcc 960 attototaat aaacacgtat otttgataga gtgotgotta acctaaattt actgttatca 1020 cgattttggg tctctgaaac atgataaatg acctgcttac ctttttttc ttcttttaa 1080 gttaccattt tcttagttgt ttcgtaaatc aggaattgtg acagttgcat tggtttcttt 1140 tatgatatag agaggaagat ggggagctgg aatatcttgt caaatataaa gagctatcct 1200 atgatgaatg ttattgggag tcagaatcag acatctcaac cttccagaat gaaattcaaa 1260 ggttcaagga tgtaaattct agaactcgca gaagtaaaga tgttgaccat aaaagaaatc 1320 ccagagactt tcaacagttt gatcatactc ctgaattcct caaaggtatt tggatcacct 1380 taaatcatat actataaatg tttcttatat ttggtactta tagatgttat gatttatttg 1440 tttcctgcga ttgaaggett gttacatcca taccagettg agggacttaa ttttttgcgg 1500 ttctcgtggt caaaacagac gcatgtaatc cttgctgatg aaatgggact aggtaatttt 1560 tcaattgtcc cacttgggtg gtcacataga tcttttcatc cattgtaagg ggcctttgtt 1620 ttctattcct gtaatgttgt gagatttttc ctgttacagg caagacaatt caaagcattg 1680 cccttttagc ttcacttttt gaggagaacc tcattccgca tttggtaatt gctcctctat 1740 cgactctgcg taactgggag agagagtttg ccacatgggc cccacagatg aacgtggtat 1800 gtatgcagtt atacacgcaa tgatctgtgc catttgtatg tttttgttgt ttgttaatgg 1860 aatggtotto gtggtoattt gacgggtagg ttatgtattt tggcactgcg caagctcgag 1920 cagttatcag agaacatgag ttttacttat cgaaagatca aaaaaagatc aagaaaaaga 1980 aatotggaca aataagtago gaaagcaago aaaaaagaat caagtttgat gtoctootca 2040 catcgtatga gatgatcaac ctagattcag cagttctaaa accaattaag tgggagtgca 2100 tggtaactct tattctctaa tgagacttta ctttctctta gtcgtctctc tttctctctt 2160 acatgttgcc tagtaacaat tgttttgggc agattgttga tgaaggtcat cgactgaaaa 2220 ataaggatto aaagotgtto tottoattga cacagtatto aagtaaccac cgtattotto 2280 tgacaggaac accacttcag gttcgtcatt tgagtttgat ttctgaagtt tatactttca 2340 atagttgtat ctgagcatag tagctacgat ttgcaatgag aattgttata tattatcttg 2400 cactaatgtc ttacctgatt agttgcaata tgttactgat gattatgtgg tgcctttaca 2460 gaacaacttg gatgaacttt tcatgctcat gcattttctt gatgcgggga aggtatcaca 2520 agaatagcaa agataaataa gttcgcatac ttaacagaat tttatgtagc taacatgtta 2580 tttgattgca caatacttgc agtttggaag tttggaggag ttccaggagg agttcaaaga 2640 tattaatcaa gaggagcaga totcaaggtt goacaaaatg ttggotccac atttgctcag 2700 aagtattaac caaaactatt tgttcatctt ttttaattta tatgtgtttc aaaagtttgg 2760 ttggagggaa totttoatag taataatttt atgatottaa coatgotgto togtattttg 2820 attgctcttc caggggtaaa aaaagacgta atgaaagaca tgccccccaa aaaggagctc 2880 attttgcgtg ttgatctgag cagtctgcag aaagaatatt acaaagctat ttttacccgt 2940 aattatcaag tattgacaaa aaagggaggt gctcaagtaa gttcttttta atttttgttt 3000 acactttttg gatcattaaa cctcataggt ggggtagaaa ccaggtcaac tgtaatcgtc 3060 tagtgaatgt attggtctat ttctgtttca gatttccctt aataacatta tgatggaatt 3120 acgaaaagta tgctgccatc cttatatgct agagggtgtt gagccagtta ttcacgacgc 3180 aaatgaagot ttoaagtaat atotoattto ooaaaaatgg ttatotgttt attactactt 3240 attaaagtcg totgotaact titgcgttga acgtittott atatgtatca aagacaactt 3300 ttggagtctt gtggaaagct gcaacttcta gataaaatga tggtcaaact gaaagagcaa 3360 ggacacagag tectaatata cacacagttt cagcatatge tggaettaet tgaagactae 3420 tgtacccata aggtatttga acttcttata tgtacagtct gtttcagtag attttcattc 3480 ttgttgtttt tgtagaatat cattttgaca ctgtagaatc aactctacca ttttctagtg 3540 ttagagtact taggcacaat tatggaaata caagcatgtg ctgaaattga gagtatatga 3600 gcattctgtg cccaactgaa agagcaaaga cacaaagttt ccttataaac acagtacaaa 3660 tcacaagttt agccatcttc tatgtacagt agttttccaa taggtcgagc atgtgctgaa 3720 actgtgtgta cagagttctc ataaacacac agtttcagca tatgctggat ctacttgaag 3780 actactgttc ttataaggta ctgaacttgt tatctgtact gcgtatatac gagatctctg 3840 tattettget ettttatttt gacaetttgt teteatatae aeteggttea geacatgete 3900 gacttactgc ctaaggatct tgaaaaaggt agagttgatt ctatgtctag gtgcaattac 3960 tttcttagaa tttttgtcat tacttactct gttggcaata taacttcttt attccctcaa 4020 agattacttt ttttggtttc ttgaaatgcc attatcaata ccattgcttt tgctgacgca 4080 tgcacttgag acaacttgtt tttatctctt tctagcacat ttttttttaa catgcagtta 4140 aggaaaattc tcatatgatt tacgctgttc attttcttgt ctttgtcaga aatggcagta 4200 cgagcgaatt gatggaaagg ttggcggagc tgagcggcaa atacgcatag atcggttcaa 4260

tgccaaaaat tctaacaagt tttgtttttt gctctccaca agagctggtg gcttaggaat 4320 aaatottgca acggctgata cagtaatcat ttatgacagg tttgaatttc agcttctctt 4380 agtgtcatct gtactctttt catagttatt gtgtcaagct gtaagaggaa ctatttggct 4440 tgatagcata atattttgga agtttaatgt tgatttttaa gtgaattggg ttgtgatgag 4500 tgataaaaag gcacttggct tttttccaat aacagctatt tcttgaacat ggatgttcta 4560 agacagcagg aagatcagga aaattattaa ccgctatctt gctaataatt agattttgta 4620 ggcatgcaat atgggtggcg tccatgggat cctgcttgga tggcagtttg ttttggttta 4680 cgcctgttca cattttcata cgtacgattg aaactgtttt atctgtttct gtagtgactg 4740 gaatcctcat gctgatcttc aagcaatggc tagagctcat cgacttggcc aaacaaataa 4800 ggttttaaat tttatctctt agtgctgtca acttgcaatt ttgtgttctt ttttgtagtt 4860 tocctaattt tocttatatt ttoctttagg tgatgattta taggotoata aaccgaggoa 4920 ccattgaaga aaggatgatg caattgacta aaaagaaaat ggttctagag catcttgttg 4980 ttgggaaact caaaacacaa aacattaatc aggtaaactt ttattgcttg aagccttttt 5040 acttgattac aaatttctca acggattgga gctggaaggt agaaattcca agaagaacac 5100 cttcggttat aacttataag tgtgaaatta aaagataaaa actttagaga gaaggggtcc 5160 atatttgtta attgtttgtc actaagtatg tgtttgtttt gttttcctga ctgcaattta 5220 ggaagagtta gatgacatca tcaggtatgg atcaaaggag ctttttgcta gtgaagatga 5280 tgaagcagga aagtotggaa aaattoatta tgatgatgog gotatagaca agtaatagac 5340

tccttactct tttcctcttg ttttgttttt gattaacaag gatatctgat ctttccgatt 5400 gctcctttct tatgaaagct tttgcagtca attgcatggg cgtatttcat tatttgtctc 5460 tatettetgt tetgeagatt gettgategt gatetegtgg aggeagagga agteteagtg 5520 gatgatgaag aggagaatgg attottaaag gotttcaagg ttttcttgcc tottactatt 5580 cttcctcttc tattagtttt ctctgaatca gtgtttactg atttcaatgc tccattggag 5640 tctatgctta attgtattct tatattccat gatattcaga ctgtggttgg ctatcgaaat 5700 cccttctgct gtgcacaatc ttgtcaaatc attacgtgct aagtttgtag gatcaataca 5760 ctttatgcca gttcgctttg atgcttatag acagtcttta gaaagtgtct attgattgtt 5820 cgttccggct caatgtgaaa gccaacttaa tgaaaattag tgatgatgac ttaagttaga 5880 aatttatgct tgtggtgatg ttgattgagc caatttattg atttggttat atttcttttg 5940 aaccctgatc atattgaatg cgttatatga gtggtcttta gacttagctg gaacataagg 6000 ctgtgtcctg cattgctgct tgtcacctct taatattcga actccctaaa acattgtttg 6060 totttgtgtg catatagaac tgttctgaag caaatagggt gtctggtact gtttagtgtc 6120 attaactctg aaaatgattt cccttgtaag attctgtgat cttcctgtat tgtaggtggc 6180 taattttgaa tatatagatg aaaatgaggc agcagcatta gaggcacaga gagtcgctgc 6240 tgaaagcaaa tottoagcag gcaattotga tagagcaagt tattgggaag agttgttaaa 6300 agataaattt gagctgcacc aggctgagga gcttaatgct cttggaaaaa ggaagagaag 6360 togcaagcag gtttggtctc ttcttgatcc cccttatcca attgtggcat catattgata 6420

actggatttt tcaccattta tgttctttct gattctgtcc tgtttcatat atttattcat 6480 gttgtctaac ttttcctttt gaattcctta ggtagctaaa ttcagaaagt aataatttag 6540 ttgactgtat ccttctaaat tgagaaagta taatttagtt gactgtatcc agtataaaac 6600 taaacgccct tgtcctccta tcaactggtt tgacagatct tatgggttta catgttggat 6660 caagtaattg gggttggtag aggctcaatt aactatagtc ttctgttttc ctctgcaaga 6720 aatacgtttt gtttcactct ctaacttgat atagctcaat tactgacaat atacattggt 6780 ttggtctgcc atcatcgttt catgtctttc aataaaggct gttctaattc ttctatggga 6840 tttttttcat agttggtatc cattgaagaa gatgatcttg ctggtttgga agatgtgagc 6900 tctgatggag atgaaagtta tgaagctgag tcaacagatg gtgaagcagc aggacaagga 6960 gttcagacgg gtcgacggcc gtacagaaga aagggtcgcg gtattaccac gtttcggatt 7020 taatttaatt tgtaatggag ctgaaaatga ctgatattag aagtgtgcgc agtttattag 7080 atgagttttt tttctataga taatttggaa ccaactccgt tgatggaagg tgaggggaga 7140 tettteagag tactgggttt caaccagagt caaagggeca tttttgtaca gaetttgatg 7200 aggtatctac tttccattaa ggcctttaga cgccagaagc tattctgtct aaattttaca 7260 gtttcatccc ccgatgcatc taaattatca tcagtcttgt ggtgctcaat atttacaagt 7320 ttttccggtt ggacaaaata attgcaggta tggagctggc aattttgatt ggaaggagtt 7380 tgttcctcgc ttaaagcaga agacctttga agaaataaat gagtacgggc tcaacccttt 7440 aatgetette tettetgett etttacaaaa aacgeateat tataaaaagg etttetggtt 7500

tattetttaa etaattttt aatgaetgtt teteagatat ggaataetet tettgaagea 7560 cattgctgaa gaaatagacg agaattctcc aaccttttca ggtgatcgat aattgatatt 7620 ttcactgttt gctgcttttc cctaaatgag atcattgctt ctcctgttaa ccggttaaat 7680 gatgttctag tcagaattgc tcttctgata ctagttcagg agaaggtgag tctattgact 7800 ttaattcttc attaagttct ctcttttata tctgagtttt tttttggtat atgttacttc 7860 tagtotatag tttagototg tacataagtt tttaatacag taatgtatgt tcaaacctca 7920 ctaagatttg gatcccgggt tacttatgtt tttttggtgc tctggcccga caggtgaaat 7980 ttgtagaaga tcatccaggg aaacctgttt tcccctctcg cattcttgaa agattccccg 8040 gactgagaag tggaaaaatt tggaaggagg aacatgacaa gataatgata cgtgctgttt 8100 taaagtatga accetgeace actgttetta eegaatggtt ttattttete ateattetee 8160 attacttgct cacattttct tttccttctc tggaaatttg aatctttagg catgggtacg 8220 gacggtggca agctattgtt gatgacaaag agttggggat ccaagagctt atctgcaaag 8280 aattgaattt ccctcacata agtttgtctg ctgctgaaca agctggtttg caggggcaga 8340 atggtagtgg gggctctaat ccgggagcac agactaacca gaatcctgga agcgttatta 8400 ctgggaacaa taatgcttct gctgatgggg ctcaagtaaa ctcgatgttc tattatcggg 8460 acatgcagag acgacttgtt gagtttgtga aaaagcgagt tctgcttttg gagaaggcga 8520 tgaattatga atacgcagag gaatattatg tatgttgtac catctgcagt gttggtactt 8580

actoacatgt tttgcgctga attgtttaac tttgattgaa tctctggttg cagggacttg 8640 gtggctcatc atctatccct actgaagaac cagaagctga accaaagatc gctgacacag 8700 tgggagtgag ctttattgag gttgatgatg aaatgcttga tggacttcct aagactgatc 8760 ctatcagtaa gttccatcac aagtttcttt atttaacgag ttgttgattc taatgtgagc 8820 tctctgaatc tcgctgcagc ttcagaagaa attatggggg ctgctgttga caacaaccaa 8880 gcgcgggtcg aaatagctca acattataac caggtaagct atgcttttt cctttggtgg 8940 taggetaatg tetagaacta gtatateaca etaatatete teeggttatt eagatgtgea 9000 aacttottga tgagaacgot cgggaatcag tocaagcata tgtaaacaac caaccaccga 9060 gtaccaaggt gaatgagagc ttccgtgcac tcaaatctat caatggtaac attaacacaa 9120 tootttogat tacatotgat caatocaagt cacatgaaga cgacaccaag ccagacctaa 9180 acaatgttga gatgaaggac acggccgaag aaacaaaacc gttaagaggt ggcgtcgtcg 9240 atctgaatgt ggtggaggga gaggagaaca ttgctgaagc tagtggaagt gttgatgtaa 9300 9353 aaatggaaga agccaaagaa gaagagaagc caaagaacat ggtcgttgat tga

<210> 4

<211> 1403

<212> DNA

<213> Arabidopsis thaliana

<400> 4

atgaacctta aggagacgga gctttgtctt ggcctccccg gaggcactga aaccgttgaa 60 agtccggcca agtcgggtgt tgggaacaag agaggcttct ccgagaccgt tgatctcaaa 120

cttaatcttc aatctaacaa acaaggacat gtggatctca acactaatgg agctcccaag 180 gagaagacct teettaaaga eeettetaag eeteetgeta agtaagttet atttacacaa 240 ttccttaaga agaagacctt ccttaaaagg gaagactttt ttttttttt tttgagataa 300 aaagactaat agttgatata aaagttctta aaatacatat atatgaaaga tgtaaggatg 360 cataagtaat aacgttattg aatgtgtgtg tgtgttgtta tattctatgc agagcacaag 420 tggtgggttg gccatcggtg aggaactacc ggaaaaatgt tatggctaat cagaagagcg 480 gcgaagcaga ggaggcaatg agtagtggtg gaggaaccgt cgcctttgtg aaggtttcca 540 tggatggagc tccttatctt cggaaggttg acctcaagat gtacaccagc tacaaggatc 600 tototgatgo ottggocaaa atgttoagot cotttaccat gggtatgoat tttoagacat 660 ataagtegaa ttateattat tatttttgtg tttaettaea attttttett tttaaegata 720 gagttatgga gcacaaggga tgatagattt catgaacgag agtaaagtga tggatctgtt 840 gaacagttct gagtatgttc caagctacga ggacaaagat ggtgactgga tgctcgttgg 900 tgatgtcccc tggccgtgag tttcctcatt cttcttgctt tcattattat gaccaaaatt 960 attototaaa caaaaaaaac aatattotot aaagoattat tattgatatt acttatcaaa 1020 aaaatacaca aaatgataat caatatccat gtgttataaa cacgcacagc catcttttgg 1080 ttggcatggg acagaactca gagacagaga agatgtttat atataaatac taactcatca 1140 atatgttacc tcatttgtag ctggcacata ttctttcact ttcaatagat ttctaaattt 1200 agtcaccaac ccaaatcccg atttcaggat gtttgtcgag tcatgcaaac gtttgcgcat 1260
aatgaaagga tccgaagcaa ttggacttgg taagttttct tttctgttcg tttctataag 1320
tggctctttt ctgttttcc aataatgctc gtgtttttt ttcagctcca agagcaatgg 1380
agaagttcaa gaacagatca tga 1403

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
IAA14-F1 for IAA14 gene

<400> 5

catattctga tttaagacat a

21

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer IAA14-R1 for IAA14 gene

<400> 6

aatcaatgca tattgtcctc t

<210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer IAA14-F2 for IAA14 gene <400> 7 ttatggctaa tcagaagagc g 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer IAA14-F3 for IAA14 gene <400> 8 tattctctaa acaaaaaaaa c 21 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer SSL2-F1 for SSL2 gene

<400> 9

aattogactt ctgggtactc a	21
<210> 10	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse primer	
SSL2-R1 for SSL2 gene	
<400> 10	
aaattaagtc cctcaagctg g	21
<210> 11	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Forward primer</pre>	
SSL2-F2 for SSL2 gene	
< 400> 11	
actctgaatt tgtagaaaga a	21
<210> 12	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
(0.00)	
<220>	
<223> Description of Artificial Sequence: Forward primer	

SSL2-F3 for SSL2 gene

<213> Artificial Sequence

<400> 12	
gaagatgatt ttgttgccat a	21
<210> 13	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward primer	
SSL2-F4 for SSL2 gene	
<400> 13	
aagatgggga gotggaatat o	21
(010) 14	
<210> 14	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse primer	
SSL2-R2 for SSL2 gene	
SSLZ-RZ TOF SSLZ gene	
<400> 14	
ggctcaacac cctctagcat a	21
000	21
<210> 15	
<211> 21	
<212> DNA	

<220>		
<223>	Description of Artificial Sequence: Forward primer SSL2-F5 for SSL2 gene	
<400>	15	
catcc	atacc agcttgaggg a	21
<210>	16	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F6 for SSL2 gene	
<400>	16	
caagt	ttgat gtcctcctca c	21
<210>	17	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F7 for SSL2 gene	
<400>	17	
acatgo	cccc caaaaaggag c	21

<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Reverse primer	
	SSL2-R3 for SSL2 gene	
<400>		
ccatca	aatto gotogtaotg o	21
<210>	19	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F8 for SSL2 gene	
<400>		
atgtgo	ctgaa actgtgtgta c	21
<210>	20	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F9 for SSL2 gene	
(400)		
<400>	20	

ccattgcttt tgctgacgca t

<210>	21	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Reverse primer	
	SSL2-R4 for SSL2 gene	
<400>	21	
ttcga	tagod aaccadagto t	21
<210>	22	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
(000)		
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F10 for SSL2 gene	
<400>	22	
ggcat	gcaat atgggtggcg t	21
<210>	23	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F11 for SSL2 gene	

<400> 23	
tcaggtatgg atcaaaggag c	21
<210> 24	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse primer	
SSL2-R5 for SSL2 gene	
Z400\ 24	
<400> 24	0.1
ctccctcac cttccatcaa c	21
<210> 25	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward primer	
SSL2-F12 for SSL2 gene	
<400> 25	
gtgcacaatc ttgtcaaatc a	21
<210> 26	
<211> 21	
<212> DNA	
<pre><213> Artificial Sequence</pre>	

<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F13 for SSL2 gene	
<400>	26	
gaggca	acaga gagtcgctgc t	21
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Forward primer	
	SSL2-F14 for SSL2 gene	
<400>	27	
tataca	attgg tttggtctgc c	21
<210>	28	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Reverse primer	
	SSL2-R6 for SSL2 gene	
<400>	28	
gtaggg	gatag atgatgagoc a	21
<210>	29	

<211> 21

<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial Se	equence:	Forward	primer	
	SSL2-F15 for SSL2 gene				
<400>	29				
cccga	atgca tctaaattat c				21
<210>	30				
<211>	21				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial Se	equence:	Forward	primer	
	SSL2-F16 for SSL2 gene				
<400>	30				
actagt	ttcag gagaaggtga g				.21
<210>					
<211>					
<212>					
<213>	Artificial Sequence	•			
(000)					
<220>			_	_	
<223>	Description of Artificial Se	equence:	Forward	primer	
	SSL2-F17 for SSL2 gene				
<400>	21				
					0.4
acatgcagag acgacttgtt g 21					

<210> 32

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<400> 32

cggacttcat cgaacctatt c