Taking the projection equation

$$x = \frac{1}{2}$$
, $y = \frac{1}{2}$

Officenting next time

 $\hat{p} = \frac{\hat{p}}{2} - \frac{\hat{z}}{2}p$

For Kauchational flow: \hat{p} trans $\frac{1}{2}$
 $\frac{V_2}{2} = \frac{11}{2} \frac{\hat{p}}{\hat{p}} \frac{\hat{p}}{\hat{p}} \frac{1}{2}$

So for dopth $\frac{1}{2} = \frac{11}{2} \frac{\hat{p}}{\hat{p}} \frac{\hat{p}}{\hat{p}} \frac{1}{2}$
 $\frac{1}{2} = \frac{11}{2} \frac{\hat{p}}{\hat{p}} \frac{\hat{p}}{\hat{p}} \frac{1}{2}$
 $\frac{1}{2} = \frac{11}{2} \frac{\hat{p}}{\hat{p}} \frac{\hat{p}}{\hat{p}} \frac{1}{2}$

To calculate V I used \hat{p} than $(\hat{p} \times \hat{V}) = 0$

And with coplanarity condition $\hat{V}^T(\hat{p} \times \hat{p}) = 0$

For a point \hat{v} we obtain a homogeneous system $(\hat{p}_1 \times \hat{p}_1)^T$
 $(\hat{p}_1 \times \hat{p}_2)^T$
 $(\hat{p}_1 \times \hat{p}_2)^T$

A

Jo, I do SVD on A to obtain \hat{V} in the nullspace of A: