() n l

# Revisiting the game

#### **Probability of head**

### Suppose for every heads you get ₹10 We want to maximize the reward over 100 tosses



























## Revisiting the game

Suppose for every heads you get ₹10
We want to maximize the reward over 100 tosses

#### **Probability of head**

$$p_1 = 0.9$$

$$p_2 = 0.1$$

$$p_3 = 0.3$$



























## Problem Statement

•  $X_t$  = Reward at round t

• Objective: Maximize Expected total no. of heads:

$$\mathbb{E}[X_1 + X_2 + \cdots + X_{100}]$$

- $\bullet$  Maximum attainable reward in expectation = Rs  $100 \times 9$
- Maximizing expected total reward is equivalent to Minimizing the regret

$$100 \times 9 - \mathbb{E}[X_1 + X_2 + \cdots + X_{100}]$$