	Clustering with sakit learn
_	
+	Methods of extracting insights born unlabelled datasets.
	da+asetl.
-	Unsupervised learning methods are centreled around finding similarities / differences between data
	hoding similarities I differences between data
	Observations and making interences based on
	those bindings
	The cosine similarity for two numbers is a number between -1 and 1. It specifically manuals
	The coine similarity for two numbers is a
	the proportional omilarity of the leather valuel
	the proportional omilarity of the featile valuel between the two data observations lie the vario
	between featule columne)
	values doser to I mean more similarity
	Wheleas values closer to -1 mean more
	divergence. O means no correlation.
	(assim *(U,V)= U . V
1	where 1/41/2 represents the La norm of 4 and
	11 VII 2 represents the 12 norm of V.
_	from exteam metrics pairroise import
	cosine_similarity
	ms-sime = cosine - Similarity (data)

		1
		1 2
		1
		3
		2
	front noighbours	4
	Nearest neighbours.	-6-7
I,	This increased to be also of their the	42
	This implements the k-Neurest Neighbours	
	neavest points in the dataset	\mathbb{T}_{2}
-	nearest points in the dataset	\mathbb{T}_{2}
7, 3, 2		13
->	horn skiegen neighbors import Neavest Neighbour nors = Nearest Neighbors()	2
	nbrs = Nearest Neighbors()	63
	nors fit (data)	63
	diste, knbrs = pbrs. kneighbors(new-obs)	6 3
	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63
ş**	NIO an nave a middhare amunacht la	6-5
_	Neavest Neighbors to set the value of K	25
*	Nearest Neigh 15005 70 Set 410 value of K	4
	K-means clustering	7
	K-means clustering will separate the data	1
	moans also known as antionals.	6 3
	means also known as antioids.	50
		50
	A clustess controid is equal to the average of all the data observations within the cluster.	5
	of all the data observatione within the duster.	5
1	and the contract of the contra	6 0
-	from skleam cluster import RMeans	6 9
1	Kmeans = Kmeans (n_clusters = 3)	0
	Kmeans. ht Cdata)	6
	print (kmanl. labell -)	
	point (kmeanl. clusters cunters)	
	print (kmeans, prodict (new_obe))	
	POINT (KIRAIR, BORILLA (ILVID-UNT))	2
		0

	When working with large datasett, regular 1-means can be quite slow. We use mini-botch
	K-meane can be quite slow. We use mini-botch
	k moone which is just regular kmoone clustering applied to randomly sampled subsets of data.
	applied to randomly sampled subject of data.
	In practice, the difference in quality is neglitigible.
ب	Kom skiegm cluster import MiniBatch Kmeans Kmeans = MiniBatch KMeans (n-cluster = 3',
4	Kmeans = MiniBatch KMeans (n-cluster = 3',
	batch_(12e. =10)
	batch-cize =10) Kmeans. Bt (data)
	Hierarchial clusteraing
	Which may not always be the case
	which may not always be the case
	Hierarchial duetering allows us to duester data of any type since it does not make assumptions about the data or duster.
14.	data of any type since it does not make
	assumptions about the data or duster.
	These are two approaches to hierarchial dustering.
1.	Bottom up - chivisi ve approach initially relate
	all the data as a single diester then repeatedly
	Splat 1+ 10+0 STIPLUT CHISCU UNIU WE
	reach the delived numbel.
2	Top-down- the agglome vative approach initially breath each data observation as it own duter,
	read each data objetevanon as at own alleter,
	then repeatedly mergel the two most smilar until we seach the desired number.
	untille seach we also also ilmber,

in practice, agglomerative is more commonly Born sklearn custor import Agglomerative (lustering agg = Agglomerative clustering (n-clusters = 3)

agg : At (data) Print (agg. labell.) Note - There is NO predict Binction Mean shift clusking. Used to choose the number of clusters if they are not known. The algorithm looks for "blobs" in the data that Can be potential candidates for dustale. born skleam . cluster import mean Shift. mean_shift = manshift() mean-shift. B+(data) print (man_shift. lobels_) point (man_shift. cluster_centers_) print (mean shift, predict (new- obs))

The mean shift custering algorithm is not scalable due to computation time and still makes the assumption that clusters have a "blob" like shape.

DBSCAN automatically chooses the number of clusters. It does that by knoting dense regions in the dataset Regions in the dataset with many closely packed data Observations are considered high-density regions, while regions with sparse data are muidered low-density regions.

in the dataset and low-density regions as the asea between clusters. (treated as noise)

E-maximum distance between two doutce object vations their ale considered neighbours Smaller distances selut in smaller and more tightly packed clusters.

We also specify the minimum number of points in the neighbourhood of a data observation for the observation to be considered a care sample. - Koon skiegen. cluster import DBSCAN doscan = DBSCAN (eps=1.2, min_samples = 30) descan. Bt (data) point (abscan labell -) print (obscan. core_sample_indices_) num_core_samples = len (dbean. ore_sample Evaluating clusters Since we don't have labell, the best we can do is to take a look at them and see if they make sense. However, if we do have access to the toue cluster bable, we an apply a number of metrics to evaluate our distering One popular evaluation metric is the adjusted Rand Index. Regular Rand Index gives a measurement of similaring between the true dustoring assignments (me labels) and the producted dustering assignments (predicted (abels). The adjusted Rand Indox is a corrected. - Br-chance, version of regular one, meaning that the score is adjusted so that sand on due toping assignments will not have a good score The ARI values sange from -1 to 1. Wegative since teplepent bad labelings, randoms get close to 0 and select labellings get

	from skiegon metrice import adjusted rand-score ari = adjusted = arand score (true labels, psed labels) print (april)
	Another common austering evaluation metric is adjusted mutual information.
•	from skiedon metrice import adjusted mutual_info-score ami = adjusted_mutual_info_score(buelabell, prediabell) print (ami)
	Note: - PRI is used when the true dusters are by and approximately equal sized AMI is used when the true dusters are unbalanced in size and these exists small dusters.
	Feature Custering.
•	By merging common features into custose, we reduce the number of total features while still maintaining most of the original information.
	-> Boon sklearn duster import feature Agg lomeration agg = featule Agg lomeration (n-cluster = 2) new-data = agg. Lit_rons form (data)