Ex-07-Feature-Selection

AIM

To Perform the various feature selection techniques on a dataset and save the data to a file.

Explanation

Feature selection is to find the best set of features that allows one to build useful models. Selecting the best features helps the model to perform well.

ALGORITHM

STEP 1

Read the given Data

STEP 2

Clean the Data Set using Data Cleaning Process

STEP 3

Apply Feature selection techniques to all the features of the data set

STEP 4

Save the data to the file

CODE:

```
from sklearn.datasets import load_boston

boston_data=load_boston()

import pandas as pd

boston = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston['MEDV'] = boston_data.target
dummies = pd.get_dummies(boston.RAD)
boston =
boston.drop(columns='RAD').merge(dummies,left_index=True,right_index=True)
X = boston.drop(columns='MEDV')
y = boston.MEDV
```

```
boston.head(10)
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make pipeline
from sklearn.model selection import KFold
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean squared error, r2 score
from sklearn.model selection import cross val predict
from sklearn.linear model import LinearRegression
from math import sqrt
cv = KFold(n splits=10, random state=0, shuffle=True)
classifier pipeline = make pipeline(StandardScaler(),
KNeighborsRegressor(n neighbors=10))
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
print("R squared: " + str(round(r2 score(y,y pred),2)))
boston.var()
X = X.drop(columns = ['NOX', 'CHAS'])
y pred = cross val predict(classifier pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean squared error(y,y pred)),2)))
print("R_squared: " + str(round(r2_score(y,y_pred),2)))
import seaborn as sn
import matplotlib.pyplot as plt
fig dims = (10, 6)
fig, ax = plt.subplots(figsize=fig dims)
sn.heatmap(boston.corr(), ax=ax,cmap="Blues")
plt.show()
abs(boston.corr()["MEDV"])
abs(boston.corr()["MEDV"][abs(boston.corr()["MEDV"])>0.5].drop('MEDV')).index.toli
st()
vals = [0.1, 0.2, 0.3, 0.4, 0.5]
for val in vals:
    features =
abs(boston.corr()["MEDV"][abs(boston.corr()["MEDV"])>val].drop('MEDV')).index.toli
st()
    X = boston.drop(columns='MEDV')
    X=X[features]
    print(features)
    y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
    print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
    print("R_squared: " + str(round(r2_score(y,y_pred),2)))
boston = pd.DataFrame(boston data.data, columns=boston data.feature names)
boston['MEDV'] = boston data.target
boston['RAD'] = boston['RAD'].astype('category')
dummies = pd.get_dummies(boston.RAD)
```

```
boston =
boston.drop(columns='RAD').merge(dummies,left_index=True,right_index=True)
X = boston.drop(columns='MEDV')
y = boston.MEDV
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
sfs1 = SFS(classifier_pipeline,
           k_features=1,
           forward=False,
           scoring='neg_mean_squared_error',
           cv=cv)
X = boston.drop(columns='MEDV')
sfs1.fit(X,y)
sfs1.subsets_
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT']]
y = boston['MEDV']
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
boston[['CRIM','RM','PTRATIO','LSTAT','MEDV']].corr()
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT']]
y = boston['MEDV']
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
sn.pairplot(boston[['CRIM','RM','PTRATIO','LSTAT']])
```

OUPUT:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	TAX	PTRATIO	 MEDV	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	24.0
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	296.0	15.3	 24.0	1	0	0	0	0	0	0	0	0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	242.0	17.8	 21.6	0	1	0	0	0	0	0	0	0
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	242.0	17.8	 34.7	0	1	0	0	0	0	0	0	0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	222.0	18.7	 33.4	0	0	1	0	0	0	0	0	0
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	222.0	18.7	 36.2	0	0	1	0	0	0	0	0	0
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	222.0	18.7	 28.7	0	0	1	0	0	0	0	0	0
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	311.0	15.2	 22.9	0	0	0	0	1	0	0	0	0
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	311.0	15.2	 27.1	0	0	0	0	1	0	0	0	0
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	311.0	15.2	 16.5	0	0	0	0	1	0	0	0	0
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	311.0	15.2	 18.9	0	0	0	0	1	0	0	0	0

10 rows × 22 columns

CRIM	73.986578
ZN	543.936814
INDUS	47.064442
CHAS	0.064513
NOX	0.013428
RM	0.493671
AGE	792.358399
DIS	4.434015
TAX	28404.759488
PTRATIO	4.686989
В	8334.752263
LSTAT	50.994760
MEDV	84.586724
1.0	0.038039
2.0	0.045271
3.0	0.069597
4.0	0.170469
5.0	0.175968
6.0	0.048840
7.0	0.032532
8.0	0.045271
24.0	0.193198

RMSE: 5.39 R_squared: 0.66

dtype: float64


```
CRIM
           0.388305
ZN
           0.360445
INDUS
           0.483725
CHAS
           0.175260
           0.427321
NOX
RM
           0.695360
AGE
           0.376955
DIS
           0.249929
TAX
           0.468536
PTRATIO
           0.507787
           0.333461
LSTAT
           0.737663
MEDV
           1.000000
1.0
           0.040453
2.0
           0.104444
3.0
           0.167352
4.0
           0.065711
5.0
           0.187356
6.0
           0.039411
7.0
           0.092802
8.0
           0.190053
24.0
           0.396297
```

Name: MEDV, dtype: float64

```
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT', 2.0, 3.0, 5.0, 8.0, 24.0]
RMSE: 5.14
R_squared: 0.69
['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT', 24.0]
RMSE: 4.42
R_squared: 0.77
['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'TAX', 'PTRATIO', 'B', 'LSTAT', 24.0]
RMSE: 4.33
R_squared: 0.78
['INDUS', 'NOX', 'RM', 'TAX', 'PTRATIO', 'LSTAT']
RMSE: 4.28
R_squared: 0.78
['RM', 'PTRATIO', 'LSTAT']
RMSE: 4.3
R_squared: 0.78
```

RMSE: 4.102

R_squared: 0.801

	CRIM	RM	PTRATIO	LSTAT	MEDV
CRIM	1.000000	-0.219247	0.289946	0.455621	-0.388305
RM	-0.219247	1.000000	-0.355501	-0.613808	0.695360
PTRATIO	0.289946	-0.355501	1.000000	0.374044	-0.507787
LSTAT	0.455621	-0.613808	0.374044	1.000000	-0.737663
MEDV	-0.388305	0.695360	-0.507787	-0.737663	1.000000

RMSE: 4.102

R_squared: 0.801

RMSE: 4.102 R_squared: 0.801

<seaborn.axisgrid.PairGrid at 0x23d5939aa60>

