Chapitre 3: Espaces vectoriels

I Corps

Définition : Un **corps** est un ensemble K muni de deux lois de composition interne notées + et \times telles que :

- (K, +) est un groupe abélien
- $(K \setminus \{0\}, \times)$ est un groupe abélien
- La loi \times est distributive par rapport à la loi +

Si de plus la loi \times est commutative, on dit que K est un **corps commutatif**.

- **1** Rappel: Distributivité: $\forall a, b, c \in K, a \times (b+c) = a \times b + a \times c$
- **© Exemple:** $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, p$ premier sont des corps.

II Espaces vectoriels

Définition : Soient K un corps et E un groupe abélien.

Soit une loi $: {}^{K \times E \to E}_{(\lambda, v) \mapsto \lambda \cdot v}$ (multiplication externe).

On dit que $(E, +, \cdot)$ est un K-espace vectoriel si on a $\forall \lambda, \mu \in K, \forall v \in E$:

- $\lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v$
- $1 \cdot v = v$
- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ (on a deux + différents)
- $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
- \bigcirc Vocabulaire : Les éléments de E sont appelés **vecteurs**. Les éléments de K sont appelés **scalaires**.
- **© Exemple :** \mathbb{R}^n est un \mathbb{R} -espace vectoriel. De même pour $\{0\}$, $\mathbb{R}[X]$, $M_n(\mathbb{R})$. On peut voir \mathbb{C} comme un \mathbb{R} -espace vectoriel.

Définition : Soit E un K-ev, et soit $(v_i)_{i \in I}$ une famille de vecteurs de E.

Soit $(\lambda_i)_{i\in I}$ une famille de scalaires de K.

On dit que $(\lambda_i)_{i \in I}$ est presque nulle si : $\{i \in I, \lambda_i \neq 0\}$ est fini.

Alors on considère $\sum_{i \in I, \lambda \neq 0} \lambda_i v_i$ noté $\sum_{i \in I} \lambda_i v_i$. C'est une **combinaison linéaire** des v_i .

Définition : Soit $X \subset E$. Une combinaison linéaire de vecteurs de X est de la forme $\sum_{v \in X} \lambda_v v$ avec $(\lambda_v)_{v \in X}$ presque nulle.

 \bigcirc Vocabulaire : Les $(\lambda_v)_{v \in X}$ sont appelés les **coefficients** de la combinaison linéaire.

III Sous-espaces vectoriels

Définition : Soit E un K-ev. Soit $F \subset E$.

On dit que F est un **sous-espace vectoriel** (sous-ev) de E si :

- F ≠ ∅
- $\forall u, v \in F, \lambda, \mu \in K, \lambda u + \mu v \in F$

Proposition: Caractérisation des sous-ev

Tout sous-espace vectoriel est un espace vectoriel pour les lois induites par E.

Preuve:

Montrons (F, +) est un sous-groupe de (E, +):

- $F \neq \emptyset$ donc $\exists u \in F$.
- $\lambda = \mu = 1 \implies u + v \in F, \forall u, v \in F \text{ donc } F \text{ est stable par} +$
- $u + (-1)u = u(1 + (-1)) = 0_E \in F$. On a donc $-u \in F, \forall u \in F$.

Donc on a bien un sous-groupe.

Les autres propriétés sont vérifiables et immédiates, on a bien un espace vectoriel.