# 1. Automata and Languages

#### 1.1. Regular Languages

**Def.** A (deterministic) **finite automaton** is a 5-tuple  $(Q, \Sigma, \delta, q_o, F)$ , where

- 1. Q is a finite set called the **states**,
- 2.  $\Sigma$  is a finite set called the **alphabet**,
- 3.  $\delta: Q \times \Sigma \to Q$  is the **transition function**,
- 4.  $q_o \in Q$  is the **start state**, and
- 5.  $F \subseteq Q$  is the set of accepted/final states

**Def.** A language is called a **regular language** if some finite automaton recognizes it.

Ex. A language that has strings ending with 0; A language that has strings with substring 010.

The class of regular languages is closed under the following operations:

- 1. Union:  $A \cup B = \{x \mid x \in Aorx \in B\}$ .
- 2. Concatenation:  $A \circ B = \{xy \mid x, y \in A, B\}$ .
- 3. Star:  $A^* = \{x_1, x_2, \dots, x_k \mid k \geq 0 \text{ and each } \mathbf{Def.} \text{ A CFG is a 4-tuple } (V, \Sigma, R, S), \text{ where } (V, \Sigma, R, S) \}$  $x_i \in A$ .

**Determinism-** When the machine is in a given state and reads the next input symbol, the next state is unique and already determined.

**Nondeterminism**- Several choices may exist for the next state at any point.

Def. A nondeterministic finite automaton is the same 5-tuple, except

$$\delta: Q \times \Sigma_{\epsilon} \to P(Q)$$

**Theorem.** Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.

### **Def.** R is a **regular expression** if R is

- 1. a for some a is the alphabet  $\Sigma$ ,
- $2. \ \varepsilon,$
- $3. \phi$
- 4.  $(R_1 \cup R_2)$ , where  $R_1$  and  $R_2$  are regular expressions,
- 5.  $(R_1 \circ R_2)$ , where  $R_1$  and  $R_2$  are regular expressions,
- 6.  $(R_1^*)$ , where  $R_1$  is a regular expression.

**Theorem.** A language is regular iff some regular expression describes it.

**Note.** Every regular language can be converted into an

NFA.

**Note.** DFAs can be reduced to minimized DFAs.

Nonregular languages are those that cannot be recognized by DFAs.

Ex.  $\{0^n 1^n | n \ge 0\}$ .

**Theorem.** Pumping Lemma If A is a regular language, then  $\exists$  a number p (the pumping length) where if any  $s \in A$  s.t.  $|a| \ge p$ , then s can be divided into 3 pieces, s = xyz, s.t.

- 1. for each  $i \geq 0, xy^i z \in A$ ,
- 2. |y| > 0, and
- 3.  $|xy| \leq p$ .

Pumping Lemma can help differentiate between regular and nonregular languages.

#### 1.2. Context-free grammars

- 1. V is a finite set called the variables,
- 2.  $\Sigma$  is a finite set, disjoint from V, called the **termi**nals,
- 3. R is a finite set of **rules**, with each rule being a variable and a string of variables and terminals, and
- 4.  $S \in V$  is the start variable.

A left hand derivation exists for every string  $s \in L(CFG)$ . The language of the grammar is  $\{w \in \Sigma^* | S \Rightarrow^* w\}$ .

Grammars can be unambiguous (i.e. each string has a unique LH derivation) or ambiguous (i.e. string has two or more LH derivations), or even inherently ambiguous.

**Note.** A context-free grammar is in Chomsky normal form if every rule is of the form

$$A \to BC$$

$$A \to a$$

$$S \to \varepsilon$$

**Def.** A (nondeterministic) **pushdown automaton** is a 6-tuple  $(Q, \Sigma, \varsigma, \delta, q_0, F)$ , where

- 1. Q is the set of **states**,
- 2.  $\Sigma$  is the **input alphabet**,
- 3.  $\varsigma$  is the stack alphabet,
- 4.  $\delta: Q \times \Sigma_{\varepsilon} \times \varsigma_{\varepsilon} \Rightarrow P(Q \times \varsigma_{\varepsilon})$  is the **transition** function.
- 5.  $q_0 \in Q$  is the **start state**, and

6.  $F \subseteq Q$  is the set of **accept states**.

The stack gives the PDA a power of small storage.

**Theorem.** A language A is a CFL iff  $\exists$  a PDA P s.t. L(P) = A.

Ex.  $\{0^i 1^j 2^k | i \neq jor j \neq k, i, j, k \geq 0\} \in CFL$ .

**Def.** A **deterministic PDA** is the same 5-tuple, except

$$\delta: Q \times \Sigma_{\varepsilon} \times \varsigma_{\varepsilon} \Rightarrow Q \times \varsigma_{\varepsilon} \cup \{\phi\}.$$

s.t.  $\forall q \in Q, a \in \Sigma, b \in \varsigma$  we have exactly one of the following to be non-empty:

$$\delta(q, a, b), \delta(q, a, \varepsilon), \delta(a, \varepsilon, b), \delta(\varepsilon, \varepsilon, \varepsilon)$$

**Theorem.**A language A is a DCFL iff  $\exists$  a DPDA D s.t. L(D) = A.

## 2. Computability Theory

**Def.** A **Turing Machine** is a 7-tuple  $(Q, \Sigma, \tau, \delta, q_o, q_a, q_r)$  where

- 1. Q is a finite set called the **states**,
- 2.  $\Sigma$  is a finite set called the **alphabet** and  $B \notin \Sigma$ ,
- 3.  $\tau$  is the **tape alphabet** where  $B \in \tau$  and  $\Sigma \subseteq \tau$
- 4.  $\delta: Q \times \tau \to Q \times \tau \times \{L, R\}$  is the **transition function**,
- 5.  $q_o \in Q$  is the start state,
- 6.  $q_a \in Q$  is the **accept state**, and
- 7.  $q_r \in Q$  is the **reject state**.

**Def.** The **configuration** of a machine is of the form  $u_1u_2...u_{i-1}qu_i...u_n$  where  $u_j \in \tau$ . We say the machine is at state q and pointing to  $u_i$ .

- 1. **Start:**  $q_0u_1u_2...u_n$
- 2. Accept:  $u_1u_2...u_{i-1}q_au_i...u_n$ .
- 3. **Reject:**  $u_1u_2...u_{i-1}q_ru_i...u_n$ .

**Note.** During it's running, at any point if TM enters  $q_{accept}$  or  $q_{reject}$ , it breaks and accepts or rejects respectively. This is known as accepting/rejecting by halting. If TM does not halt, a string is rejected by looping.

**Church-Turing Thesis.** Turing machines capture all algorithms, i.e. existence of an algorithm  $\Rightarrow \exists$  a turing machine that can run it.

**Def.** A Language A is a turing recognizable language if  $\exists$  a TM M such that L(M) = A.

**Def.** A Turing Machine M is a **Decider** if M halts for all input strings.

**Def.** A Language A is a turing decidable language if

Ex.  $\{0^n 1^n | n \ge 0\} \in DCFL \setminus RL$ .

**Note.** PDAs can either accept by final state or by emptying the stack.

**Note.** Every DPDA has an equivalent DPDA that always reads the entire input string.

**Note.** If A = N(P), i.e. accepted by emptying the stack, then A is prefix-free.

**Note.** CFLs are closed under union, intersections and complement.

**Note.** DCFLs are closed under complement.

**Def.** A **DCFG** is a CFG such that every valid string has a forced handle.  $\exists$  a similar pumping lemma for noncontext-free languages where the string can be divided into five pieces instead,  $s = uv^i xy^i z$ .

 $\exists$  a decider M such that L(M) = A.

**Note.** Turing Decidable  $\Rightarrow$  Turing Recognizable.

**Theorem.** All CFLs are decidable Turing Languages.

**Note.**  $A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts w } \}$  is Turing recognizable but not Turing decidable, i.e., it is undecidable.

**Def.** A language A is called **Co-Turing recognizable** if  $A^c$  is Turing recognizable.

**Theorem.** A language A is decidable  $\Leftrightarrow$  A is Turing Recognizable and Co-Turing Recognizable.

Corollary.  $\overline{A}_{TM}$  is Turing Unrecognizable.

**Def.** For two languages A and B, **A reduces to B** means that  $\exists$  a decider for B  $\Rightarrow$   $\exists$  a decider for A.

**Note.** If A reduces to B and B is decidable  $\Rightarrow$  A is decidable.

**Note.** If A reduces to B and A is undecidable  $\Rightarrow$  B is undecidable.

**Ex.**  $A_{HALT} = \{ < M, w > | \text{ M halts on w } \}$ .  $A_{TM}$  reduces to  $A_{HALT}$  and  $A_{TM}$  is undecidable  $\Rightarrow A_{HALT}$  is undecidable.

**Def.** A function  $f: \Sigma^* \to \Sigma^*$  is a **computable function** if  $\exists$  a TM M such that  $\forall w \in \Sigma^*$ , M halts with tape content as f(w).

**Def.** A language A is **Mapping Reducible** to language B (A  $\leq_M$  B) if  $\exists$  a computable function  $f: \Sigma^* \to \Sigma^*$  such that  $\forall w \in \Sigma^*$  and  $w \in A \Leftrightarrow f(w) \in B$ .

**Theorem.**  $A \leq_M B$  and B is decidable  $\Rightarrow A$  is decidable. **Theorem.**  $A \leq_M B$  and A is undecidable  $\Rightarrow B$  is undecidable.

# 3. Complexity Theory

**Def.** The **running time** of Turing Machine M is the function  $f: N \Rightarrow N$ , where f(n) is the max number of steps that M uses on any input of length n.

**Note.** We say f(n) = O(g(n)) if positive integers c and  $n_0$  exist such that for every integer  $n \ge n_0$ ,  $f(n) \le c \cdot g(n)$ . **Def.** The time complexity class, TIME(t(n)), is the collection of all languages that are decidable by an O(t(n)) time Turing Machine.

**Note.** All reasonable deterministic computational models are polynomially equivalent, i.e., any one of them can simulate another with only a polynomial increase in running time.

**Def.** P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine,

$$P = \bigcup_{k} TIME(n^k).$$

Ex.  $PATH = \{ \langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from s to t} \}; RELPRIME = \{ \langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}.$ 

**Theorem.** Every CFL is a member of P.

**Def.** A **verifier** for a language A is an algorithm V, where

$$A = \{w | V \text{ accepts } < w, c > \text{ for some string } c\}.$$

Here, c is additional information, also called a **certificate**.

A **polynomial time verifier** runs in polynomial time in the length of w.

**Theorem.** NP is the class of languages that have polynomial time verifiers.

Ex.  $HAMPATH = \{ \langle G, s, t \rangle | G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.$ 

**Theorem.** A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine. **Def.** 

 $NTIME(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$ 

#### The P vs. NP Problem.

P = the class of languages for which membership can be decided quickly.

NP = the class of languages for which membership can be verified quickly.

$$A \in P \Rightarrow A \in NP$$

**Def.** Language A is **polynomial time reducible** to language B  $(A \leq_P B)$ , if  $\exists$  a polynomial time computable function  $f: \Sigma^* \to \Sigma^*$  s.t.

$$w \in Aifff(w) \in B \forall w \in A$$

**Note.** B is called NP - hard if  $A \leq_P B \forall A \in NP$ .

**Note.** B is called NP-complete if B is NP-hard and  $B \in NP$ .

Ex.  $SAT, KSAT \in NP - complete$ .

