

Application Performance Management

Datenauswertung & Präsentation

Michael Faes

Auswertung & Präsentation

Ziel jeder Performance-Analyse: Hilfestellung für Entscheidungen

→ Wichtiger Schritt: **Präsentation/Kommunikation der Ergebnisse**

Mit System A erreicht die App einen Durchsatz von durchschnittlich 120% mehr als mit System B, bei gleichbleibender Auslastung der Ressourcen. Die durchschnittliche Antwortzeit wird um etwa 20% verbessert.

Worte

der Diagramme

Herausforderung: Resultate müssen evtl. jemanden **überzeugen**, der keine Ahnung von Performance hat (oder schon nur Informatik...).

Egal, wie korrekt/interessant/signifikant die Resultate sind, wenn Entscheidungsträger sie nicht verstehen, sind sie **nichts wert!**

Ein Bild sagt mehr als 1000 Worte

Text

Bilder, Diagramme, ...

ist offensichtlicher und verständlicher für andere

Ein Diagramm sagt mehr als 1000 Worte

Mit System A erreicht die Applikation für den Workload 1 einen Durchsatz von 430 Anfragen/s (A/s), während System B nur 240 A/s erreicht. Für die beiden weiteren Workloads erreicht System A 330 bzw. 390 A/s und System B 120 bzw. 160 A/s. Im Durchschnitt entspricht dies einer Verbesserung von 120%. Die Standardabweichungen sind klein.

Text

Diagramm

Diagramme sind nicht *immer* besser. Für komplexe Sachverhalte braucht es (zusätzlich) Text. Aber wenn möglich, dann Diagramme.

Diagramme trivial?

«Excel & Co. erzeugen gute Diagramme doch automatisch.»

Wirklich?

Software nicht einfach machen lassen! Man muss wissen, wie man mit der SW umgeht und die Daten optimal anzeigt!!

schlechtes Diagramm

Übersicht Woche 4

- 1. Übungsbesprechung
- 2. Messen & Auswerten: Grundlagen
- 3. Statistische Auswertung von Performance-Messungen
- 4. Präsentation von Resultaten (Visuell)
- 5. Übung: ...

Messen & Auswerten: Grundlagen

Zufallsvariablen

Rückblick: Jede Messung produziert leicht unterschiedlichen Wert, obwohl wir immer «das gleiche» messen...

Grund: Unkontrollierbare, *zufällige* Unterschiede in Umgebung.

Modellierung als Zufallsvariable:

=> Wert ist nicht immer gleich, sondern abhängig vom Zufall!

Gemessener Wert ist keine fixe Zahl und auch nicht beschreibbar durch Funktion von anderen Variablen. Sondern: abhängig vom Zufall.

Vereinfachung! Theoretisch (vielleicht) schon eindeutig bestimmbar, aber nicht praktikabel. Deshalb Modellierung als Zufallsvariable.

Verteilung einer Zufallsvariable

Wahrscheinlichkeit immer zwischen 0 und 1

Jede Zufallsvariable hat eine (bekannte oder unbekannte) Verteilung:

Verteilung ordnet jedem möglichen Wert der Variable eine Mess-Wahrscheinlichkeit p zu, wobei $0 \le p \le 1$.

Normalverteilung

Wenn wir Zufallsvariable (z.B. Antwortzeit) messen, müssen wir im Prinzip nicht 1 Wert, sondern komplette Verteilung bestimmen!

Typische Annahme:

Normalverteilung

(Glocken-, Gauskurve)

Parameter: Abweichung, Varianz

Warum eigentlich???

-> symmetrische Abweichungen

https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg

Zentraler Grenzwertsatz

Bernoulli-Verteilung: zwei Werte mit jeweils 0 und 1.

Zentraler Grenzwertsatz: Summe von vielen (unabhängigen) Zufällen, egal mit welcher Verteilung, ergibt Normalverteilung!

Normalverteilung und Performance

Normalverteilung ist oft sinnvolle Annahme für Performance-Messung, da viele unabhängigen Effekte zu Messfehler beitragen.

Einige statistische Verfahren gehen von Normalverteilung aus:

```
Result "ch.fhnw.apm.docfinder.DocFinderBenchmarks.findDocs": 3.780 \pm (99.9\%) \ 0.494 \ \text{ops/s} \ [Average] \ (min, avg, max) = (3.626, 3.780, 3.911), stdev = 0.128 \ CI (99.9\%): [3.286, 4.274] (assumes normal distribution)
```

JMH -Tool nimmt an, dass es eine Normalverteilung ist

Achtung: Annahme gilt nicht immer! Bevor man statistische Auswertung macht, sollte man Annahme überprüfen, z. B. visuell.

Typen von Variablen

Nicht alle «Messungen» liefern gleiche Art von Variable:

Durchschnitt, Median & Modus

Modus: wo man am meisten gemessen hat

Einfachste Art, Zufallsvariable zusammenzufassen: 1 Wert

Median: Wert, der in der Mitte aller (sortierten) Messwerten liegt.

Variablentypen & Auswertung

Nicht alle Variablentypen erlauben alle Arten von Auswertungen!

Тур	Operationen	Eigenschaften	Zusammenfassung
Qualitativ ungeordnet (Nominalskala) Bsp: Prozessor	= / ≠ rtyp, Workloads	Häufigkeit	Modus
Qualitativ geordnet	=/≠	Häufigkeit	Modus
(Ordinalskala)	>	Rangfolge	Median
Quantitativ	=/≠	Häufigkeit	Modus
Quantitativ (Intervalskala)	>	Rangfolge	Median
(Intervatskata)	+/-	Abstand	Durchschnitt
	= / ≠	Häufigkeit	Modus
Quantitativ	>	Rangfolge	Median
(Verhältnisskala)	+/-	Abstand	Durchschnitt
(wenn natürlicher Nullpunkt)	×/:	natürl. Nullpunkt	Geom. Mittel

Statistische Auswertung von Performance-Messungen

Durchschnitt, Median oder Modus?

häufiger Fehler: falsche Zusammenfassungsart

Häufig wird Durchschnitt als Zusammenfassung verwendet, obwohl Median oder Modus sinnvoller wären!

17

Durchschnitt & Median: Häufige Fehler

1. Durchschnitt/Median von deutlich unterschiedlichen Werten Auch wenn Verwendung von Durchschnitt/Median für Variable korrekt wäre, macht Verwendung trotzdem nicht immer Sinn.

Beispiel 1:	Anfrage	Antwortzeit (ms)
	Α	520
	В	540
	C	20

Durchschnitt: 360 ms. Repräsentiert Daten nicht gut und bringt keinerlei Einsicht.

Beispiel 2: Durchschnitt/Median für Verteilung mit mehreren Peaks:

- -> Aufteilung in 2 Datensätze (wenn möglich)
- -> macht nicht sinn, nur einen Wert zu nehmen / zu reduzieren
- -> es ist Bi-Modal

2. Durchschnitt ohne Rücksicht auf Ausreisser

Vergleich nur von Durchschnitten kann falsches Bild liefern, vor allem, wenn *Ausreisser* vorhanden sind. (= outliers)

Beispiel: Antwortzeit von zwei Systemen:

	System A	System B
	10	5
	9	5
	11	5
	10	4
	10	31
Summe	50	50
Durchschnitt	10	10
Median	10	5
ist nicht abhänd	gia von Ausreisser	

st nicht abhängig von Ausreisser

3. Durchschnitt von Verhältnissen

Rückblick Woche 1: Ratio Game

Fehler: Nicht die gleiche Basis.

	Workload 1	Workload 2	Ø
Α	200%	50%	125%
В	100%	100%	100%

System	Workload 1	Workload 2		
А	20	10		
В	10	20		

	Workload 1	Workload 2	Ø
Α	100%	100%	100%
В	50%	200%	125%

Weiteres Beispiel:

Durchschnittl. CPU-Auslastung

Korrekt:

Durchschnitt =
$$\frac{\text{Summe von Auslastungen}}{\text{Summe von Messdauer}}$$
$$= \frac{45 + 45 + 45 + 45 + 20}{1 + 1 + 1 + 100} = 21\%$$

Messdauer (s)	CPU-Ausl.		
1	45%		
1	45%		
1	45%		
1	45%		
100	20%		
Summe	200%		
Durchschnitt	40 %		

Streuung

Eine einzige Zahl reicht meist nicht, um Zufallsvariable zu beschreiben.

«Und dann war da noch der Mann, der ertrank, als er einen Fluss durchqueren wollte, der **durchschnittlich** 20 cm tief war.»

-> Durchschnitt ist nicht immer aussagekräftig

Varianz & Standardabweichung

Einfachste Möglichkeit, Streuung anzugeben: Minimum & Maximum.

Oft nicht besonders nützlich, wegen Ausreissern.

Besser: Stichproben-Varianz s^2 , bzw. -Standardabweichung s

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \qquad \text{wobei } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
wenn nur ein Wert ist Varianz = 0

Standardabweichung ist so etwas wie durchschnittliche Abweichung vom Mittelwert (aber grössere Abweichungen stärker gewichtet).

Wichtig: Mittelwert und Standardabweichung der Stichprobe! Sind nur Schätzungen für «wahren» Mittelwert und «wahre» Std.abweichung.

• Qualität der Schätzung hängt von Grösse der Stichprobe ab

Perzentile

Varianz und Standardabweichung machen nur Sinn, wenn:

- Variable quantitativ ist (nicht qualitativ)
- Verteilung symmetrisch ist (nicht schief)

Ansonsten besser *Perzentile*, z. B. 5- und 95-Perzentil:

Bsp: Wie lange dauerten die 5 schnellsten Antwortzeiten?

Konfidenzintervall

Grundsätzliches Problem: Haben immer nur endliche Anzahl von Messwerten. Unmöglich wahren Mittelwert/Varianz zu bestimmen!

Mit «genug» grosser Stichprobe können wir relativ sicher sein, «gute» Schätzung zu erhalten. Aber wie viel ist «genug» und wie gut ist «gut»?

Problem vor allem beim Vergleichen von Alternativen!

Ist System A wirklich besser als System B?

-> kann nur mit Mittelwert nicht entschieden werden

Konfidenzintervall des Mittelwerts: Zwei Zahlen, zwischen denen

wahrer Mittelwert mit bestimmter Wahrscheinlichkeit liegt, z.B. 95%.

Bedeutet konkret: Wenn man Konfidenzintervall 100× mit bestimmter Anzahl Messwerte berechnen würde, wäre wahrer Mittelwert durchschnittlich 5× nicht in Intervall enthalten...

je sicherer ich sein will, dass Mittelwert genau ist, desto grösser ist das Konfidenzintervall.

	А	В	С	D	Е	F	G	Н	1	J
1	Normalverte	eilung		Schätzung						
2	μ=	100		n		5	10	20	50	100
3	σ =	5		Mittel		99.57	100.26	101.02	101.30	100.39
4				Std-Abw.		3.07	2.24	4.18	4.19	4.69
5	97.32			CI	90%	[96.6, 102.5]	[99.0, 101.6]	[99.4, 102.6]	[100.3, 102.3]	[99.6, 101.2]
6	104.14				95%	[95.8, 103.4]	[98.7, 101.9]	[99.1, 103.0]	[100.1, 102.5]	[99.5, 101.3]
7	98.23				99%			[98.3, 103.7]	[99.8, 102.8]	[99.2, 101.6]
8	96.91				99.9%		ma	[97.4, 104.7]	[99.3, 103.2]	[98.9, 101.9]
9	101.23				99.99%			[96.4, 105.6]	[99.0, 103.6]	[98.6, 102.2]
10	101.03									
11	100.15									
12	101.30									

Genaue Formel für Konfidenzintervall recht kompliziert.

Entscheidend: Konfidenzintervall ist abhängig von 3 Grössen:

- 1. Je grösser die Streuung der Verteilung, desto **grösser** das Konfidenzintervall.
- 2. Je höher wir *Konfidenzniveau* wählen (95%, 99%, ...), desto **grösser** das Konfidenzintervall
- 3. Je grösser die Stichprobe, desto kleiner das Konfidenzintervall!

Guter Grund für mehr Replikation!

```
Result "findDocs":

2.305 \pm(99.9%) 0.254 ops/s [Average]

(min, avg, max) = (1.679, 2.305, 2.733), stdev = 0.292

CI (99.9%): [2.051, 2.559] (assumes normal distribution)

Result "DocFinderBenchmarks.findDocs":

2.321 \pm(99.9%) 0.113 ops/s [Average]

(min, avg, max) = (1.863, 2.321, 2.623), stdev = 0.228

CI (99.9%): [2.208, 2.434] (assumes normal distribution)
```

Präsentation von Resultaten

Diagramme

Statistik ist Grundlage für letzten Schritt in Performance-Analyse: Präsentation der Resultate: Visualisierung in Form von Diagrammen

Diskussion: Welche Probleme hat dieses Diagramm?

- Einheit fehlt
- Was ist der Wert?
- Linien sind falsch
- Achsenbeschriftung

Richtlinien für gute Diagramme

Aufwand für den Leser minimieren

Wichtigste «Metrik» für Diagramm: Wie viel Aufwand ist nötig, dass

die Message des Diagramms beim Leser ankommt?

Daten werden benötigt, um die Message aufzuzeigen

Beispiele: Legende vs. direkte Beschriftung, Textausrichtung

2. Aussagekraft maximieren

Diagramm sollte <mark>möglichst selbsterklärend</mark> sein und keine Möglichkeit für Missverständnisse bieten.

Beispiele

- Stichwörter statt Symbole
- · Präzise Beschriftung von Achsen, Einheiten
- Fehlerbalken, z.B. Standardabweichung oder Konfidenzintervall

3. «Tinte» minimieren

Ziel: *Information-zu-Tinten-Verhältnis* maximieren. Nicht, um Druckertinte zu sparen, sondern um Ablenkung zu minimieren.

Beispiele

- Gitterlinien dezent, nur falls nötig; keine Rahmen
- Auswahl der dargestellten Grösse

4. Konventionen befolgen

Personen haben Erwartungen an Diagramme. Wenn Diagramm Erwartungen nicht entspricht: Missverständnisse, mehr Aufwand.

Beispiele

- Ursprung bei (0, 0) und links unten
- Unabhängige Variable auf x-Achse, Antwortvariable auf y-Achse
- Lineare Achsen (Bsp: Achsenabstand sind immer gleich!

Generell: Abweichungen von Richtlinien sind erlaubt, aber müssen gut begründet sein (und evtl. erläutert werden).

«Zuerst muss man die Regeln kennen, um sie brechen zu können.»

Fragen?

