- Pour sortir des minimums locaux, il faut de temps en temps explorer des solutions moins satisfaisantes que la solution courante.
- Inspirons-nous des métallurgistes !
 - (Kirkpatrick, Gelatt, Vecchi, 1983)

• Principe :

- Favoriser l'exploration au départ de l'algorithme
- Favoriser l'optimisation sur la fin de l'algorithme
- Explorer = accepter des permutations qui n'améliorent pas la solution courante.

• Principe :

 Comment réduire progressivement la possibilité d'explorer ?

• Principe :

- Notion de température
 - Plus la température est élevée, plus la probabilité de conserver une permutation ne réduisant pas l'erreur est élevée
 - Plus la température est basse, moins la probabilité de conserver une permutation ne réduisant pas l'erreur est basse.
- Soit T : température, P' probabilité d'effectuer un changement dégénérant
 - Départ de l'algorithme : P = 1
 - Fin de l'algorithme : P = 0,00000001

- Principe :
 - Proposition :
 - \cdot P = exp(-1/T)

- Variante : introduire la différence entre l'erreur de l'état précédent et l'erreur de l'état courant:
 - $P = \exp((erreur(t 1) erreur(t))/T)$

Détail

- Garder en mémoire la meilleure configuration obtenue depuis le départ
- Si un des critères d'arrêt est atteint, retourner la meilleure solution.

- Comment faire varier la température ?
 - Plusieurs solutions possibles :
 - Dépendante du temps
 - Dépendante du nombre maximum d'itération
 - Dépendante d'une loi géométrique décroissante
 - •

- Implémentation et Démonstration
 - solution initiale s
 - Poser $T \leftarrow T_0$
 - Répéter :
 - $\cdot s' = Permutation(s)$
 - \cdot r = Random(0,1)
 - Si r < exp((erreur(s) erreur(s'))/T) alors $s \leftarrow s'$
 - Update(T)
 - Jusqu'à ce que le critère de terminaison soit satisfait

- Inconvénients
 - Minimum local à basse température
- Avantages
 - Très simple à implémenter
 - Efficace sur le TSP à partir de 800 Villes !

 Connaissez-vous d'autres techniques issues de systèmes réels pouvant aider à la résolution de problèmes génériques ?

- Principe d'évolution de Darwin
 - De l'origine des espèces (1859)
 - Le moteur de l'évolution adaptative est la sélection naturelle.
 - La survie du mieux adapté!

- Principe d'évolution de Darwin
 - De l'origine des espèces (1859)
 - Le moteur de l'évolution adaptative est la sélection naturelle.
 - La survie du mieux adapté!

 Un algorithme génétique est une méthode dite évolutionnaire.

 Au lieu de d'étendre la recherche à partir d'une solution possible on va manipuler des populations de solutions.

- Vocabulaire
 - Individu
 - Gènes
 - Population
 - Génération
 - Fonction Fitness
 - Opérateur de sélection
 - Opérateur de croisement
 - Opérateur de mutation

- Grandes étapes :
 - Initialisation
 - Répéter
 - Evaluation de la population courante
 - Sélection des reproducteurs
 - Croisement des reproducteurs
 - Mutations

- Problématiques
 - Dérive Génétique
 - Perte d'un bon individu
 - Les algorithmes génétiques servent-ils vraiment à optimiser ?
 - Paramétrage