

Figure 1: Plot of the Points $A(3,-4,-2),\,B(6.5.3),\,{\rm and}\,\,C(4,-3,6)$

Sean Bradly, 2024 1 of 9

Figure 2: Plot vectors: $\overrightarrow{u}=\langle 2,-4,1\rangle$ to $\overrightarrow{v}=\langle 3,0,-1\rangle$

Sean Bradly, 2024 2 of 9

Figure 3: Plot $\vec{u} + \vec{v}$ from Figure 2

Sean Bradly, 2024 3 of 9

Figure 4: Plot $\overrightarrow{u}=\langle 3,2\rangle$ and $\overrightarrow{v}=\langle 2,5\rangle$ and $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$

Sean Bradly, 2024 4 of 9

Figure 5: Plot $\overrightarrow{u} \times \overrightarrow{v}$ where $\overrightarrow{u} = \langle 2,4,3 \rangle$ and $\overrightarrow{u} = \langle -1,3,-2 \rangle$

Sean Bradly, 2024 5 of 9

Figure 6: Graph the plane: 3x - 2y + z = -13

Sean Bradly, 2024 6 of 9

Figure 7: Graph $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$

Sean Bradly, 2024 7 of 9

Figure 8: Graph $\langle 250\cos t, 250\sin t, 100t\rangle$

Figure 9: Graph $z = \frac{4xy}{3x^2 + y^2}$