CHINESE REMAINDER THEOREM

CHINESE REMAINDER THEOREM

Let m_i ($i \in I$) be moduli which are coprime to each other and let M be the product of them. The *Chinese Remainder Theorem* (*CRT*) essentially says that the natural reduction map

$$\mathbb{Z}/M \longrightarrow \prod_{i \in I} \mathbb{Z}/m_i \colon [A]_M \mapsto ([A]_{m_i})_{i \in I}$$

is an isomorphism.

This allows us to translate between problems modulo M and systems of similar problems modulo each m_i .

Corollary 6.3.1

Let f(T) be an integer polynomial (i.e. $f(T) \in \mathbb{Z}[T]$). The natural reduction map induces a bijection

$$\{[A]_{M} \in \mathbb{Z}/M \mid f(A) \equiv 0 \pmod{M}\}$$

$$\xrightarrow{\sim} \left\{ ([a_{i}]_{m_{i}})_{i \in I} \in \prod_{i \in I} \mathbb{Z}/m_{i} \mid f(a_{i}) \equiv 0 \pmod{m_{i}}, \forall i \in I \right\}.$$

Proof. Let's say $f(T) = c_n T^n + \cdots + c_1 T + c_0$. Then for any congruence class $[A]_M \in \mathbb{Z}/M$, we have

$$f([A]_{M}) = [c_{n}]_{M} [A]_{M}^{n} + \dots + [c_{1}]_{M} [A]_{M} + [c_{0}]_{M}$$
$$= [c_{n}A^{n} + \dots + c_{1}A + c_{0}]_{M} = [f(A)]_{M}.$$

Proof. Let's say $f(T) = c_n T^n + \cdots + c_1 T + c_0$. Then for any congruence class $[A]_M \in \mathbb{Z}/M$, we have

$$f([A]_{M}) = [c_{n}]_{M} [A]_{M}^{n} + \dots + [c_{1}]_{M} [A]_{M} + [c_{0}]_{M}$$
$$= [c_{n}A^{n} + \dots + c_{1}A + c_{0}]_{M} = [f(A)]_{M}.$$

The natural reduction map then maps it to

$$([f(A)]_{m_i})_{i \in I} = ([c_n A^n + \dots + c_1 A + c_0]_{m_i})_{i \in I}$$

$$= ([c_n]_{m_i} [A]_{m_i}^n + \dots + [c_1]_{m_i} [A]_{m_i} + [c_0]_{m_i})_{i \in I} = (f([A]_{m_i}))_{i \in I}.$$

Therefore, we have that $f([A]_M) = [0]_M$ if and only if $f([A]_{m_i}) = [0]_{m_i}$ for all $i \in I$.

Example 6.3.2

Solve the congruence equation $x^2 \equiv 29 \pmod{35}$.

Example 6.3.2

Solve the congruence equation $x^2 \equiv 29 \pmod{35}$.

We first note that $35 = 5 \times 7$.

Then the congruence equation $x^2 \equiv 29 \pmod{35}$ is equivalent to the following two:

$$x^2 \equiv 29 \pmod{5}$$
 and $x^2 \equiv 29 \pmod{7}$.

Example 6.3.2

Solve the congruence equation $x^2 \equiv 29 \pmod{35}$.

We first note that $35 = 5 \times 7$.

Then the congruence equation $x^2 \equiv 29 \pmod{35}$ is equivalent to the following two:

$$x^2 \equiv 29 \pmod{5}$$
 and $x^2 \equiv 29 \pmod{7}$.

The first one is further equivalent to $x^2 \equiv 4 \pmod{5}$ and thus whose solution is $x \equiv \pm 2 \pmod{5}$. The second one is further equivalent to $x^2 \equiv 1 \pmod{7}$ and thus whose solution is $x \equiv \pm 1 \pmod{7}$. (Note that 5 and 7 are primes. That's why there are at most two roots.)

Now, we need to combine the solutions on each piece $\mathbb{Z}/5$ and $\mathbb{Z}/7$. Namely, we need to apply CRT to reduce the system of congruences

$$\begin{cases} x \equiv a \pmod{5} \\ x \equiv b \pmod{7} \end{cases} \Rightarrow x \equiv ? \pmod{35},$$

where the pair (a, b) are (2, 1), (2, -1), (-2, 1), or (-2, -1).

Now, we need to combine the solutions on each piece $\mathbb{Z}/5$ and $\mathbb{Z}/7$. Namely, we need to apply CRT to reduce the system of congruences

$$\begin{cases} x \equiv a \pmod{5} \\ x \equiv b \pmod{7} \end{cases} \Rightarrow x \equiv ? \pmod{35},$$

where the pair (a, b) are (2, 1), (2, -1), (-2, 1), or (-2, -1).

For this, we start with a Bézout's identity

$$7 \cdot (-2) + 5 \cdot 3 = 1$$
.

Then we have

$$x \equiv a \cdot 7 \cdot (-2) + b \cdot 5 \cdot 3 \pmod{35}.$$

a b	1	-1
2	$2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 22 \pmod{35}$	$2\cdot 7\cdot (-2) + (-1)\cdot 5\cdot 3$
-2		

a b	1	-1
2	$\frac{2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3}{\equiv 22 \pmod{35}}$	$\frac{2 \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3}{\equiv 27 \pmod{35}}$
-2		

a	1	-1
2	$\frac{2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3}{\equiv 22 \pmod{35}}$	$\frac{2 \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3}{\equiv 27 \pmod{35}}$
-2	$(-2)\cdot 7\cdot (-2)+1\cdot 5\cdot 3$	

a b	1	-1
2	$2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 22 \pmod{35}$	$2 \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3$ $\equiv 27 \pmod{35}$
-2	$(-2) \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 8 \pmod{35}$	

a b	1	- 1
2	$2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 22 \pmod{35}$	$\frac{2 \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3}{\equiv 27 \pmod{35}}$
-2	$(-2) \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 8 \pmod{35}$	$(-2) \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3$

a b	1	- 1
2	$2 \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 22 \pmod{35}$	$\frac{2 \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3}{\equiv 27 \pmod{35}}$
-2	$(-2) \cdot 7 \cdot (-2) + 1 \cdot 5 \cdot 3$ $\equiv 8 \pmod{35}$	$(-2) \cdot 7 \cdot (-2) + (-1) \cdot 5 \cdot 3$ $\equiv 13 \pmod{35}$

Summarize: to find roots of a polynomial f(T) in \mathbb{Z}/M , we can first decompose M into prime powers $p^{v_p(M)}$ and solve this problem in each $\mathbb{Z}/p^{v_p(M)}$, then combine the pieces from each modular world to get answers.

$$\left\{ \text{roots of } f(T) \text{ in } \mathbb{Z}/M \right\} \xrightarrow{\sim} \prod_{\substack{p \text{ is a prime} \\ p \mid m}} \left\{ \text{roots of } f(T) \text{ in } \mathbb{Z}/p^{\nu_p(M)} \right\}.$$

Summarize: to find roots of a polynomial f(T) in \mathbb{Z}/M , we can first decompose M into prime powers $p^{v_p(M)}$ and solve this problem in each $\mathbb{Z}/p^{v_p(M)}$, then combine the pieces from each modular world to get answers.

$$\left\{ \text{roots of } f(T) \text{ in } \mathbb{Z}/M \right\} \xrightarrow{\sim} \prod_{\substack{p \text{ is a prime} \\ p \mid m}} \left\{ \text{roots of } f(T) \text{ in } \mathbb{Z}/p^{v_p(M)} \right\}.$$

Question

We have knowledge on polynomials over \mathbb{F}_p , what about polynomials over $\mathbb{Z}/p^{v_p(M)}$?