

Image and Color

Introduction to Computer Graphics Yu-Ting Wu

Recap.

- In computer graphics, we generate an image from a virtual 3D world
 - We are going to introduce the representation of an image

Image

Image Display

- Monitor display pictures as a rectangular array of pixels (small, usually square, dots of color)
 - Merge optically when viewed at a suitable distance to produce the impression of continuous tones

Two Approaches for Graphical Modeling

bitmapped images

vector graphics

Image resolution

(logical pixels)

Bitmapped Images

- An image is modeled by an array of pixel values
- Distinction between
 - Logical pixels
 - Stored value in an image file

physical pixels 1200 x 800

Physical pixels

Physical dots on a display screen

Bitmapped Images Examples

Vector Graphics

 An image is modelled by the mathematical description of a collection of individual objects making up the image

- Lines
 - End points
- Curves
 - Control points
- Shapes
 - Shape-dependent parameters

Vector Graphics Examples

Bitmapped v.s. Vector Graphics

- Bitmapped images provide better control of pixel values, thus being more suitable for natural images
- Vector graphics are resolution independent, thus being more suitable for texts and icons

3D Graphics

- A combination of vector and bitmapped graphics
- Shapes are defined in the virtual 3D space and projected (rasterized) to the 2D image plane

Rendering of Math

 When it becomes necessary to render a vector drawing, the stored values (e.g., endpoints of a line) are used in conjunction with the general form of the description of each class of object

- Can be considered as sampling
- Example: y = 5x/2 + 1pass through (0, 1), (1, 4), (2, 6), (3, 9) ...

- Jaggedness is inevitable!
 - Due to the use of a grid of discrete pixels

Anti-aliasing

- Anti-aliasing is a practical technique to reduce the jaggies
- Use intermediate grey values
 - In the frequency domain, it relates to reducing the frequency of the signal
- Coloring each pixel in a shade of grey whose brightness is proportional to the area of the intersection between the pixels and a "one-pixel-wide" line

Image Coordinate

The coordinate of a 2D image depends on libraries

Color

Color Science

- Color is a common experience for humans, but being a rather complex phenomenon
- Color science is a topic that attempts to relate the subjective sensation of color to measurable and reproducible physical phenomena

Spectral Power Distribution

- Light is an electromagnetic wave, and we can measure its wavelength and intensity
- Spectral power distribution (SPD) is a description of how the intensity of light varies with its wavelength

Spectral Power Distribution (cont.)

Color

 Reflected color is the result of interaction of light source spectrum with surface reflectance

Tristimulus Theory

- SPDs are too cumbersome for representing the color in computer graphics
- Need a more compact, efficient, and accurate way to represent color signals
 - Find proper basis functions to map the infinite-dimensional space of all possible SPDs to the low-dimensional space of coefficients
- We use the tristimulus theory
 - All visible SPDs can be accurately represented with three values
 - = Any color can be specified by just three values, giving the weights of each of the three components

Human Eye

Rods and Cones

Two types of cells on the retina: rods and cones

Rods: responsible for intensity (125M)

Cones: responsible for color (6M~7M)

Three Types of Cone Cells

- L-cones: 564 nm (Long)
- M-cones: 534 nm (Medium)
- S-cones: 420 nm (Short)

Color Perception

- Rods and cones act as filters on the spectrum
 - To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number and we just got three numbers in total!

RGB Color Model

- The tristimulus theory and the response curves of LMS cones lead to the RGB model
 - Any color can be represented by three values, giving the proportions of red (R), green (G), and blue (B) light
 - However, no standard SPDs are defined for R, G, and B

RGB Color Gamut

- Although the RGB model provides a good representation of color, it cannot represent all visible colors of the human eye
- RGB primaries do produce the largest gamut from the simple addition of three primaries

 Red, green, and blue are called the primary color of the light (additive mixing)

RGB

CMYK

RGB Color Model Representation

 We can write a color with the RGB model in the form of (r, g, b),

Where r, g, b are the **amounts (proportion of the pure light)** of red, green, and blue light making up the color

Color Depth

- In digital representation, we must choose the number of bits used for a color
- The most common choice is 8 bits (1 byte) for each primary color, making 24 bits (3 bytes) in total
 - The range of value falls within [0, 255], making a total 256 x
 256 x 256 = 16777216 different colors (24 bit color depth)

The Rendered Images (Gray Scale)

The Rendered Images (Color)

Any Questions?