FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design					•	

CRACK WIDTH CALCULATION (EC2)

STEP 1

Calculate the neutral axis depth of the cracked section

$$x = \frac{-\alpha_e A_s \pm \sqrt{(\alpha_e A_s)^2 + 2b\alpha_e A_s d}}{b}$$

$$x =$$

STEP 2

Calculate the steel stress at the crack $(\sigma_{s2}\,)$

$$Lever\ arm(Z)=d-\frac{x}{3}=$$

$$\sigma_s = M/Z A_s =$$

STEP 3

Calculate the effective reinforcement ratio

$$\rho_{p.eff} = \frac{A_s}{A_{c,eff}} =$$

$$S_{r,max} = K_3C + K_1K_2K_4 \frac{\emptyset}{\rho_{p,eff}}$$

$$S_{r,max} =$$

$$\frac{\text{STEP 5}}{\varepsilon_{sm}} = \frac{\sigma_s}{E_s}$$

Calculate the maximum crack width; $w_K = S_{r,max} \times \varepsilon_{sm}$

$$w_K =$$