Universiadade Federal da Bahia Instituto de Matemática e Estatística Prof. Dr. Gilberto Pereira Sassi

Primeira Lista de Exercícios

1- Em 1997, um aluno da UFBa, João, decidiu fazer um levantamento da proporção de estudantes segundo a cor: para isso ele entrevistou 1000 alunos nos campi da UFBa e pediu para o estudante declara a sua cor. João obteve a tabela de distribuição de frequência da tabela 1. Naquele ano, o IBGE divulgou o resultado do PNAD (pesquisa nacional por amostragem de domicílio) com a tabela de distribuição de frequência da tabela 2. Construa o gráfico de barras para a variável Cor e comente os resultados obtidos por João.

Cor	frequência	frequência relativa	porcentagem
Branca Preta Parda Amarela	508 80 346 30	0,508 0,080 0,346 0,030	50,800% 8,000% 34,600% 3,000%
Indígena Total	36 1000	0,036 1,000	3,600%

Tabela 1: Tabela de distribuição de frequência obtida por João.

Cor	porcentagem
Branca	21,0%
Preta Parda	19,9% 58,5%
Amarela	0,4%
Indígena	0,2%
Total	100,0%

Tabela 2: Tabela de distribuição de frequência obtida pelo IBGE no PNAD de 1997.

- 2- Um pesquisador com interesse em estudar o perfil socioeconômico da seção de orçamentos da companhia MB, coletou uma amostra com 36 funcionários e obteve a amostra armazenada no arquivo companhia_-MB.xlsx. Construa a tabela de distribuição de frequência a variável "Procedência" e construa o gráfico de barras. Interprete os resultados.
- 3- Vinte e uma pacientes de uma clínica médica tiveram o seu nível de potássio no plasma medido. Os resultados estão na tabela 3.
 - (a) Construa o histograma e interprete.
 - (b) Qual a porcentagem dos valores que estão acima do nível 3?
- 4- Foram feitas medidas em operários da construção civil a respeito da taxa de hemoglobina no sangue (em gramas/cm³). Os resultados estão na tabela 4.
 - (a) Organize os dados em faixas de tamanho 1 a partir de 11.
 - (b) Construa o histograma.

1

Nível	Frequência
2,25 2,55 $2,55 2,75$ $2,75 2,95$ $2,95 3,15$	1.00 3.00 2.00 4.00
$3,15 \mid3,35$ $3,35 \mid3,65$	5.00 6.00

Tabela 3: Nível de potássio no plasma.

11.1 12.5 14.4 12.6 12.6 13.2 15.8 12.	7 15.4 12.3
12.2 13.9 13.6 11.3 13.4 13.0 14.7 12.	3 16.3 13.7
11.7 12.3 12.7 11.7 15.2 16.9 13.5 13.	5 15.2 14.1

Tabela 4: Taxa de hemoglobina no sangue.

- (c) Taxas abaixo de 12 ou acima de 16 são consideradas alteradas e requerem acompanhamento médico. Obtenha a tabela de distribuição de frequências da variável acompanhamento médico com duas opções: sim ou não.
- 5- Considere as notas finais (X) da turma 1 de Estatística Aplicada à Saúde: 4,4; 5,2; 5,3; 5,6; 6,1; 6,4; 7,6; 7,6; 8,0; 8,1; 8,2; 8,9; 9,0; 9,1; 9,8. Calcule o primeiro quartil, o segundo quartil, o terceiro quartil e o quantil de ordem 23%. Construa o diagrama de caixa e calcule o coeficiente de Bowley. Você julga que esta turma tem assimetria? Justifique a sua resposta.
- 6- Construa o diagrama de caixa e calcule o coeficiente de Bowley para as 15 maiores cidades do Brasil segundo o IBGE (em 10.000 habitantes). Existe algum ponto exterior nesse conjunto de dados? Você julga que a variável população é assimétrica? Justifique a sua resposta.

Município	População
São Paulo	1125,4
Rio de Janeiro	632
Salvador	267,6
Brasília	257
Fortaleza	245,2
Belo Horizonte	235,5
Manaus	180,2
Curitiba	175,2
Recife	153,8
Porto Alegre	140,9
Belém	139,3
Goiânia	130,2
Guarulhos	122,2
Campinas	108
São Gonçalo	100

- 7- Considere uma amostra com 1000 indvíduos de uma determinada população. Nessa amostra, coletamos a variável quantitativa contínua X e construímos o histograma apresentado na Figura 1.
 - (a) Construa a tabela de distribuição de frequências.
 - (b) Construa o diagrama de caixa e o coeficiente de Bowley. Você julga que existe assimetria na variável quantitativa contínua X.

Figura 1: Histograma para a variável X.

- (c) Calcule o quantil de ordem 15%.
- 8- Considere os alunos de duas turmas de Estatística Básica em um dado semestre da UFBA. O gráfico da Figura 2 mostra o gráfico de barras da variável "Idade".
 - (a) Construa a tabela de distribuição de frequências para a variáel quantitativa discreta "Idade".
 - (b) Construa o diagrama de caixa e o coeficiente de Bowley. Você julga que existe assimetria na variável quantitativa discreta "Idade".
 - (c) Qual a idade classifica um aluno entre os 20% mais jovens.
 - (d) Qual a idade classifica um aluno entre os 15% mais velhos.
- 9- Alunos da Escola de Educação Física foram submetidos a um teste de resistência quanto ao número de quilômetros que conseguiram correr sem parar. Os dados estão apresentados na tabela 5.

Tabela 5: Resistência dos alunos da Escola de Educação Física.

Faixas	Frequências
0 4	438
4 8	206
8 12	125
12 16	22
16 20	9

- (a) Qual é a variável em estudo?
- (b) Construa o histograma.
- (c) Determine o primeiro, o segundo e o terceiro quartil.
- (d) Construa o diagrama de caixa e calcule o coeficiente de Bowley. Você diria que a variável do item (a) é simétrica?
- 10- Vinte e uma pacientes de uma clínica médica tiveram o seu nível de potássio no plasma medido. Os resultados estão descritos na tabela 6.

0

14-13-12-9-8-7-6-16 17 18 19 20 21 22 23 24 25 26 Idade

Figura 2: Idade para os alunos das duas turmas de Estatística Básica Básica.

Tabela 6: Nível de potássio no plasma.

Nível	Frequência
2,25 2,55	1
2,55 2,75	3
2,75 2,95	2
2,95 3,15	4
3,15 3,35	5
3,35 3,65	6

- (a) Construa o histograma.
- (b) Determine o primeiro, o segundo e o terceiro quartil.
- (c) Construa o diagrama de caixa e calcule o coeficiente de Bowley. Você diria que existe assimetria nesta variável? Justifique a sua reposta.
- (d) Qual a porcentagem de valores que estão acima do nível 3.

4

11- Foram feitas medições em operários da construção civil a respeito da taxa de hemoglobina no sangue (em gramas/cm³) com resultados na tabela 7.

Tabela	7:	Taxa	de	hemoglobina	nos	operários.

	100	010 1.	10210	10 110111	.051001.	1100	орста	100.	
11,1	12,2	11,7	12,5	13,9	12,3	14,4	13,6	12,7	12,6
11,3	11,7	12,6	13,4	15,2	13,2	13,0	16,9	15,8	14,7
13,5	12,7	12,3	13,5	15,4	16,3	15,2	12,3	13,7	14,1

- (a) Organize os dados em faixas de tamanho 1 a partir de 11.
- (b) Construa o histograma.
- (c) Determine o primeiro, o segundo e o terceiro quartil. (Use os dados brutos)
- (d) Construa o diagrama de caixa e calcule o coeficiente de Bowley. Você diria que a taxa de hemoglobina nos operários tem assimetria? Justifique a sua resposta.
- 12- A tabela 8 apresenta as frequências relativas de ocorrências de faixas de altura (em cm) para uma amostra de 100 crianças de 12 anos de idade.

Tabela 8: Altura de 100 crianças com 12 anos.

Faixas	Frequência relativa
100 110	0,10
110 120	0,25
120 130	0,30
130 140	0,25
140 160	0,10

- (a) Construa o histograma.
- (b) Construa o diagrama de caixa e calcule o coeficiente de Bowley. Você julga que a altura das crinças tem assimetria? Justifique a sua resposta.
- (c) Desejando-se separar os 15% mais altos, qual seria o ponto de corte?

Se tenho spens a toloho de distori beruja de fuguro rieta?

X freq Friq. Relotivo Rorentinghi Porto Medio

([a/b] N, f. 100. f. 9. 04b

Suporteiro 5,9 6,1

Assimin do 78 6,05

0,011

1,10%

11

0.022

Altura da barra no histograma Base da barra no histograma

[4,5;5]

Mediana de V: $\chi_{(2)} = \chi_{(2)} = \chi_{(3)} = \dots = \chi_{(23)} = 0.25$ $\chi_{(23)} = \chi_{(33)} = \dots = \chi_{(23)} = 0.75 = \chi_{(50)}$ $\chi_{(576)} = \chi_{(577)} = \dots = \chi_{(505, 171)} = 1.25 = \chi_{(579)}$ $\chi_{(750)} = \chi_{(751)} = \dots = \chi_{(501, 121)} = 1.75 = \chi_{(501)}$ $\chi_{(870)} = \chi_{(873)} = \dots = \chi_{(501, 169)} = 2.25 = \chi_{(570)}$

```
---= Z(870+45) = 2,75 = Z(915)
X(8)11=
7(95) = 3,25 =
                      = X(915 +36) = X(951)
2(951)=3,75= ·=··= × 1951+28)= 2(974)
X (975) = 9,25 = -- = = 2 (970+15) = 2 (989)
 Z(1)=---= X(232)=0,25
     2(234) = 0,75 = -- = 7(506)
                                    n=Loo & pos
     Riso 61 = 1,25 = -- = 2 (679)
     R(60) = 175 = -- = 7(1801)
                                      (Lapo + L) = 500,5
     2 (80a) = 2,25 = - - = X(870)
      R(87) = 2175 = --- = R(215)
                                      (500,5)=500; [500,5]-50 L
       X1967 = 3,25= --= R(951)
       R(952)=3,75= == R(974)
                                      Md(X)= X (500) + X (500)_0,75+0,75
         1(975)=4(25=---= X(989)
                                      2
Md(X) = 0,75
        21982 475= -- = > (1000)
```