1. Prove that for finite dimensional vector spaces U and V over F, and $\varphi \in \operatorname{End}(U)$, $\psi \in \operatorname{End}(V)$, we have

$$\det(\varphi \oplus \psi) = \det(\varphi) \det(\psi).$$

[Hint: Explain why $(\varphi \oplus id)(id \oplus \psi) = \varphi \oplus \psi$ and $det(\varphi \oplus id) = det(\varphi)$. Recall that while determinant is independent of choice of basis, choosing a basis helps us actually compute it.]

Proof. We have that,

$$\varphi \oplus \mathrm{id} = (\varphi(u), v)$$

for any $u \in U$ and $v \in V$. Moreover, we have,

$$(\mathrm{id} \oplus \psi) = (u, \psi(v))$$

for any $u \in U$ and $v \in V$. Hence, multiplying these two elements of $U \oplus V$ yields,

$$(\varphi \oplus id)(id \oplus \psi) = (\varphi \cdot id, id \cdot \psi)$$
$$= \varphi(id(u)), id(\psi(v))$$
$$= (\varphi(u), \psi(v))$$

for all $u \in U$ and $v \in V$.

- 2. Let $X \in M_n(\mathbb{C})$, let Λ be the set of eigenvalues for X, and let m_{λ} be the multiplicity of $\lambda \in \Lambda$. For any of the following, do not assume that X is in Jordan form, but you may use the *existence* of Jordan form over \mathbb{C} .
 - (i) Show that $\{\lambda^k \mid \lambda \in \Lambda\}$ are the eigenvalues of X^k .

Proof. Fix $\lambda \in \Lambda$. Then there exists a nonzero $v \in \mathbb{C}$ such that

$$Xv = \lambda v$$

Now consider $X^k v$. We have that,

$$X^{k}v = (X^{k-1}X)v$$

$$= X^{k-1}(Xv)$$

$$= X^{k-1}(\lambda v)$$

$$= \lambda(X^{k-1}v)$$

Proceeding inductively, we get,

$$X^k v = \lambda^k v$$

Hence, λ^k is an eigenvalue of X^k . Now suppose there exists an eigenvalue α of X^k which is not in the set $\{\lambda^k \mid \lambda \in \Lambda\}$.

(ii) If $X^k = I$, what are the possible eigenvalues of X?

Proof. If $X^k = I$, we must have that for any eigenvalue λ of X, there exists a nonzero $v \in \mathbb{C}$ such that,

$$X^k v = Iv$$
$$= v$$
$$= \lambda v$$

That is,

$$v = \lambda v$$

Multiplying by v^{-1} on the right on both sides of the equality yields

$$1 = \lambda$$

Since by part (i) we have that all of the eigenvalues of X^k are characterized by the eigenvalues of X raised to the kth power, this must be the only possible eigenvalue of X. \square

(iii) Show

$$\operatorname{tr}(X) = \sum_{\lambda \in \Lambda} \lambda m_{\lambda} \quad \text{ and } \quad \operatorname{det}(X) = \prod_{\lambda \in \Lambda} \lambda^{m_{\lambda}}.$$

Proof. Let us denote X in Jordan form by the matrix Y. We know that the eigenvalues will be placed along the diagonal of Y.

3. Let F be a field. The *(first) Weyl algebra W* is the F-algebra $generated\ by\ a\ and\ b$, with the relation

$$ba = ab - 1. (1)$$

Specifically, this means start with the (free) monoid generated by a and b,

$$\langle\!\langle a,b\rangle\!\rangle = \{1,a,b,a^2,ab,b^2,a^3,a^2b,aba,ab^2,ba^2,bab,\cdots\},^1$$

use it to build the monoid algebra (just like the group algebra, only spanned by a monoid)

$$F\langle\!\langle a,b\rangle\!\rangle = \left\{ \sum_{\substack{w \in \langle\!\langle a,b \rangle\!\rangle \\ (\text{fin.})}} \alpha_w w \mid \alpha_w \in F \right\},$$

and finally, impose the additional relation ba = ab - 1 (which is equivalent to taking a quotient by the principal ideal (ab - ba - 1)). Some examples of elements of this algebra include

1,
$$32 + a - 17ab$$
, and $a + a^2 + a^{52} - b - 8abab^{10}$.

However, in the presence of the relation (1), there may be more than one way to write any given element (i.e. $\langle \langle a,b \rangle \rangle$ is a basis of $F\langle \langle a,b \rangle \rangle$ and spans W, but is not a basis of W because it's not linearly independent). For example,

$$ba = ab - 1$$
 and $bab = (ba)b = (ab - 1)b = ab^2 - b$. (2)

¹Being the monoid generated by a and b, rather than the group generated by a and b, means that we don't include **inverses** by default.

(a) Claim: W is spanned (over F) by the set $S = \{a^m b^n \mid m, n \in \mathbb{Z}_{\geq 0}\}$.

The main idea of the proof is that we can use the the relation (1) to rewrite any element of W as a linear combination of terms of the form a^mb^n (where $a^0=b^0=1$), just like we did in (2).

(i) Rewrite aba, a^2bab , and ab^2a as a linear combination of terms of the form a^mb^n .

Answer. We have,

$$aba = a(ab - 1) = a^2b - a$$

 $a^2bab = a^2(ab - 1)b = a^3b^2 - b$
 $ab^2a = ab(ba) = ab(ab - 1) = a(bab - b) = a((ab - 1)b - b) = a^2b^2 - 2ab$

.....

(ii) For any word $w \in \langle \langle a, b \rangle \rangle$, define the *length* $\ell(w)$ as the number of terms in w; e.g. $\ell(aba) = \ell(b^2a) = 3$, $\ell(1) = 0$. Define the *height* ht(w) as the sum over the b's in w of the number of a's their right: for example,

$$ht(a^7ba^2ba) = 3 + 1 = 4$$
, $ht(bab) = 1 + 0$, and $ht(1) = 0.3$

Verify that in each step of moving b's to the right in your calculations in part (i) (i.e. replacing 'ba' with 'ab-1' and expanding) that lengths of the corresponding terms weakly decreased and the heights strictly decreased.

Answer. We have,

$$\ell(aba) = 3$$
$$\ell(a^2b - a) = 4$$

......

(iii) Prove the claim.

[Hint: Since W is spanned by $\langle \langle a, b \rangle \rangle$, it suffices to show that any element $w \in \langle \langle a, b \rangle \rangle$ can be expressed as a linear combination of terms in S of length less than or equal to the length $\ell(w)$. Prove this by induction on $\ell(w)$ and $\operatorname{ht}(w)$. Be careful not to get too bogged down in the details though!]

(b) The definition of the Weyl algebra was motivated by studying endomorphisms polynomials, $\operatorname{End}(F[x]) = \operatorname{End}_F(F[x])$ (thinking of F[x] as a vector space over F, not as a ring). In particular, define

$$L: F[x] \to F[x]$$
 by $f(x) \mapsto xf(x)$

and

$$D: F[x] \to F[x]$$
 by $f(x) \mapsto f'(x) := \frac{d}{dx} f(x)$

(L for "left multiplication" and D for "derivative").

(i) Verify that L and D are both elements of $\operatorname{End}(F[x])$. [Again, we're thinking of F[x] as a vector space, not as a ring, so your job is to prove that these are both linear.]

 $^{^{2}}$ In fact, S is a basis, but I won't make you prove linear independence.

³In a^7ba^2ba , the first b has 3 a's to its right in total, even though they're separated by another b.

Answer. Fix $f, g \in F[x]$. Then,

$$L(f(x) + g(x)) = x(f(x) + g(x))$$
$$= xf(x) + xg(x)$$
$$= L(f(x)) + L(g(x))$$

Now fix $\alpha \in F$. Then we have,

$$L(\alpha f(x)) = x(\alpha f(x))$$

$$= (x\alpha)f(x)$$

$$= (\alpha x)f(x)$$

$$= \alpha(xf(x))$$

$$= \alpha L(f(x))$$

Hence, $L \in \text{End}(F[x])$.

Now let us consider D. We can verify that, for $f, g \in F[x]$ and $\alpha \in F$, we get

$$D(f(x) + g(x)) = \frac{d}{dx}(f(x) + g(x))$$
$$= \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$
$$= D(f(x)) + D(g(x))$$

and,

$$D(\alpha f(x)) = \frac{d}{dx}(\alpha f(x))$$
$$= \alpha \frac{d}{dx} f(x)$$
$$= \alpha D(f(x))$$

Thus, we have that $D \in \text{End}(F[X])$ as well.

.....

(ii) Show that $\varphi: W \to \operatorname{End}(F[x])$ defined by $a \mapsto D$ and $b \mapsto L$ is an F-algebra homomorphism.⁴ [Hint: As usual, if you want to show two maps in $\operatorname{End}(F[x])$ are equal, the best way to do this is point-wise, i.e. by applying them to the same polynomial.]

Proof. We need to show that f is a homomorphism, φ maps 1_W to $1_{\operatorname{End}(F[x])}$, and that $\varphi(W) \subset Z(\operatorname{End}(F[x]))$.

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

$$f \in F[x]$$

$$n \in \mathbb{Z}_{\geq 0}$$
(fin)

⁴What is more is that φ is an isomorphism in the case where F is of characteristic 0. This, together with part (a), proves that $\operatorname{End}_F(F[x])$ is equal to the set of operators of the form $\sum f(L)D^n$.