

Introduction to Cryptography and Security Public key encryption from Diffie-Hellman

Outline

1 Diffie-Hellman Protocol

2 The ElGamal Public-key System

Exercise

You are given a prime p=4969 and the corresponding multiplicative group \mathbb{Z}_{4969}^* .

- **1** Determinine how many generators exist in \mathbb{Z}_{4969}^* .
- **2** What is the probability of a randomly chosen element $g \in \mathbb{Z}_{4969}^*$ being a generator?
- **3** Determine the smallest generator $g \in \mathbb{Z}_{4969}^*$ with a > 1000.

The Diffie-Hellman protocol

Public parameter: g, p

Exercise

Compute the two public keys and the shared key $\it K$ for Diffie-Hellman protocol with the parameters $\it p=467$ and $\it g=2$, and

- $\mathbf{0}$ a = 3, b = 5
- 2 a = 400, b = 134
- 3 a = 228, b = 57

DH protocol over Galois field $GF(2^m)$

- All arithmetic is done in $GF(2^5)$ with $P(x) = x^5 + x^2 + 1$ as an irreducible field polynomial.
- The generator for Diffie-Hellman protocol is $g = x^2$. The private key are a = 3 and b = 12.
- What is the shared key K?

DH protocol over Galois field $GF(2^m)$

- All arithmetic is done in $GF(2^5)$ with $P(x) = x^5 + x^2 + 1$ as an irreducible field polynomial.
- The generator for Diffie-Hellman protocol is $g = x^2$. The private key are a = 3 and b = 12.
- What is the shared key K?

```
1 sage: K.<x>=GF(2^5,name='x',modulus=x^5+x^2+1)
2 sage: K=((x^2)^3)^12
3 sage: K
4 x^4 + 1
```


Security

Eavesdropper sees:

$$p, g, A = g^a \mod p$$
, and $B = g^b \mod p$

- Can she compute $g^{ab} \mod p$?
- More generally, we define

$$\mathsf{DH}_g(g^a,\ g^b) = g^{ab} \bmod p$$

• How hard is the DH function mod p?

How hard is the DH function \pmod{p} ?

- Suppose prime *p* is *n* bits long.
- Best known algorithm (GNFS): run time $\exp(O(\sqrt[3]{n}))$

Cipher key size	Modulus size	Elliptic Curve size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits

• As a result: slow transition away from \pmod{p} to elliptic curves

Exercise

Compute the following values in \mathbb{Z}_{13}^* :

- $DH_7(10, 5)$
- $DH_2(12, 9)$

Insecure against man-in-the-middle

Another look at DH

Outline

1 Diffie-Hellman Protocol

2 The ElGamal Public-key System

Recap: public key encryption

Constructions

Previous lecture: based on trapdoor functions (such as RSA)

• Schemes: ISO standard, OAEP+, ...

This lecture: based on the Diffie-Hellman protocol

Schemes: ElGamal encryption and variants (e.g. used in GPG)

The Diffie-Hellman protocol

Public parameter: g, p

ElGamal: converting to pub-key encyption

Public parameter: g, p

The ElGamal Scheme: Idea

Let Alice have public key g^a and secret key a.

If Bob wants to encrypt m for Alice, he

- Picks b and computes $k = g^{ab} = (g^a)^b$
- Sends ciphertext $c = (g^b, m \cdot k)$ to Alice.

Alice can recompute $k = g^{ab} = (g^b)^a$ because

- g^b is in the received ciphertext
- a is her secret key

and she can decrypt $m = c \cdot k^{-1}$.

Exercise

Encrypt the following messages with the Elgamal scheme (p = 467 and g = 2):

- 1 secrete key a = 105 and b = 213 and message m = 33
- 2 secrete key a = 105 and b = 123 and message m = 33
- 3 secrete key a = 300 and b = 45 and message m = 248
- **4** secrete key a = 300 and b = 47 and message m = 248

ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s) : symmetric encryption defined over (K, M, C);
- $H: G^2 \to K$: a hash function.

We construct a pub-key encryption system $(\mathsf{G},\mathsf{E},\mathsf{D}).$

ElGamal system (a modern view)

Key generation G():

- choose random generator g in G and random a in \mathbb{Z}_n
- output sk = a, $pk = (g, h = g^a)$

```
Encryption \mathsf{E}(\mathsf{pk} = (g,h),\ m): b \leftarrow \$ \mathbb{Z}_n,\ u = g^b,\ v = h^b,\ k = \mathsf{H}(u,v),\ c \leftarrow \mathsf{E}_{\mathfrak{s}}(k,m) return (u,c)
```

```
Decryption D(sk = a, (u, c)):

v = u^a, k = H(u, v), m = D_s(k, c)

return m
```


ElGamal performance

Encryption & Decryption

$$E(pk = (g, h), m):
b \leftarrow \mathbb{Z}_n, u = g^b, v = h^b$$

$$D(sk = a, (u, c)):$$

 $v = u^a$

Encryption: 2 exp.

(fixed basis)

- ullet Can pre-compute $\left\{ {{oldsymbol g}^{(2^i)}},\ {{oldsymbol h}^{(2^i)}} \mid {
 m for}\ i=1,\ldots,\log_2 n
 ight\}$
- 3x speed-up (or more)

Decryption: 1 exp.

(variable basis)

Computational Diffie-Hellman Assumption

- *G* : finite cyclic group of order *n*
- Computational Diffie-Hellman assumption holds in G if:

$$g, g^a, g^b \Rightarrow g^{ab}.$$

For all efficient algorithms *A*:

$$\Pr\left[A(g, g^a, g^b) = g^{ab}\right] < \text{negligible}$$

where $g \leftarrow \$$ { generators of G }, $a, b \leftarrow \$ \mathbb{Z}_n$.

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you!

