## Множественная регрессия

```
Y = 7.2+3costs+4.5promotion+0.4books R_adj = 0.78
```

3 — насколько изменится ожидаемое значение кассовых сборов фильма при единичном изменении costs при условии, что все остальные независимые переменные не изменяются

- 4.5 -
- 0.4 -
- 7.2 -

Значение исправленного коэффициента детерминации – 78% дисперсии зависимой переменной (у) объяснена полученной моделью

## Логистическая регрессия

Изученные ранее регрессионный анализ и множественная регрессия были методами анализа для прогноза числовых значений: количество заказов чая со льдом, выручки магазина

#### Логистическая регрессия – прогноз вероятностей

Например, вероятность того, что абитуриент поступит в университет

Ни регрессионный анализ, ни множественная регрессия не дают возможности ограничить ожидаемые значения интервалом от 0 до 1

...BЫBOA9T BOT TAKOE YPABHEHUE! y= -- (a,z,+a,z,+...+a,z,+b)

Отклик

О*ъъясняющие* переменные

Коэффициенты ретрессии



значения у находится между 0 и 1 при любых значениях z

$$z=a_1x_1+a_2x_2+...+a_px_p+b!$$

## Метод максимального правдоподобия

Пример. Спросили 10 студентов нравится или не нравится им форма





Вероятность получить приведенную в таблице картину окажется равной:  $p*(1-p)*p*(1-p)*p*p*p*p*(1-p)*p=p^7(1-p)^3$ 

Значение р равное уровню поддержки формы в генеральной совокупности "всех студентов нашего института"

 $p^7(1-p)^3$  — функция правдоподобия  $log\{p^7(1-p)^3\}$  — логарифмическая функция правдоподобия

Значения р, при котором и функция правдоподобия, и логарифмическая функция правдоподобия принимают максимальное значения - называется оценка максимального правдоподобия

## Оценка максимального правдоподобия для

-15

-20

примера





Это означает найти точку на оси х, которой соответствует вершина горки этих графиков

## Пример в эксель

## Трактовка отклика

Покупка мороженого по спец меню (1-продано, 0 – не продано)



## Логистическая регрессия

- Только измеряемые данные
- Только неизмеряемые данные
- Комбинация измеряемых и неизмеряемых данных

# Процесс построения логистической регрессии

- 1.Проверка целесообразности проведения логистической регрессии с помощью точечных графиков всех объясняющих переменных и отклика
- 2.Вывод уравнения логистической регрессии
- 3. Проверка точности уравнения логистической регрессии
- 4. Проведение 'проверки значимости коэффициентов регрессии'
- 5. Построение прогноза

# 1. Процесс построения логистической регрессии

Рассчитываем коэффициент корреляции между х1 и у и х2 и у

| Коэффициент корреляции между х1 и у | 0,509524665 |
|-------------------------------------|-------------|
|                                     |             |
| Коэффициент корреляции между х2 и у | 0,48280455  |

#### где

| x1 | среда, суббота или воскресение              |
|----|---------------------------------------------|
| x2 | максимальная температура                    |
| у  | продалось ли мороженое по спец меню или нет |

### 2.Вывод уравнения множественной регрессии

#### IIIar 1

Выполняем вычисления согласно приведённой ниже таблице.

|                | Среды, субботы или воскресенья $x_1$ | Максимальная температура $x_2$ | Картина продаж<br>спецменю NORNS |
|----------------|--------------------------------------|--------------------------------|----------------------------------|
| 05-08<br>(пон) | 0                                    | 28                             | 1                                |
| 06-08 (втр)    | 0                                    | 24                             | 0                                |
| :              | :                                    | •                              |                                  |
| 25-08<br>(вск) | 1                                    | 24                             | 1                                |

| Kap | тина продаж спецмені<br>NORNS                         |
|-----|-------------------------------------------------------|
| ŷ:  | $= \frac{1}{1 + e^{-(a_1x_1 + a_2x_2 + b)}}$          |
|     | 1 (2.0                                                |
|     | $1 + e^{-(a_1 \cdot 0 + a_2 \cdot 28 + b)}$           |
|     | $\frac{1}{1 + e^{-(a_1 \cdot 0 + a_2 \cdot 24 + b)}}$ |
|     | 116                                                   |
|     |                                                       |
|     | 1                                                     |
|     | $1 + e^{-(a_1 \cdot 1 + a_2 \cdot 24 + b)}$           |

#### Шаг 2

Записываем функцию правдоподобия:

$$\frac{1}{1+e^{-(a_1\cdot 0+a_2\cdot 28+b)}}$$
 ·  $\left(1-\frac{1}{1+e^{-(a_1\cdot 0+a_2\cdot 24+b)}}\right)$  · · · ·  $\frac{1}{1+e^{-(a_1\cdot 1+a_2\cdot 24+b)}}$  продано не продано продано

#### IIIar 3

Записываем логарифмическую функцию правдоподобия L:

$$L = \log \left\{ \frac{1}{1 + e^{-(a_1 \cdot 0 + a_2 \cdot 28 + b)}} \cdot \left( 1 - \frac{1}{1 + e^{-(a_1 \cdot 0 + a_2 \cdot 24 + b)}} \right) \cdot \dots \cdot \frac{1}{1 + e^{-(a_1 \cdot 1 + a_2 \cdot 24 + b)}} \right\}$$

$$= \log \left( \frac{1}{1 + e^{-(a_1 \cdot 0 + a_2 \cdot 28 + b)}} \right) + \log \left( 1 - \frac{1}{1 + e^{-(a_1 \cdot 0 + a_2 \cdot 24 + b)}} \right) + \dots + \log \left( \frac{1}{1 + e^{-(a_1 \cdot 1 + a_2 \cdot 24 + b)}} \right)$$

#### IIIar 4

Находим оценку максимального правдоподобия.

Оценка максимального правдоподобия, т.е. значения  $a_1$ ,  $a_2$ , b, при которых логарифмическая функция правдоподобия L имеет максимальное значение:

$$\begin{cases} a_1 = 2,44 \\ a_2 = 0,54 \\ b = -15,20 \end{cases}$$

#### IIIar 5

Записываем уравнение логистической регрессии, которое, согласно шагу 4, будет иметь вид:

$$y = \frac{1}{1 + e^{-(2,44x_1 + 0,54x_2 - 15,20)}}$$

## 3. Проверка точности уравнения логистической регрессии

$$R^{z} = 1 - \frac{Makc. значение логарифмич. функции правдоподобия  $I$ 
 $n_{1}\log n_{1} + n_{0}\log n_{0} - (n_{1}+n_{0})\log (n_{1}+n_{0})$$$

$$n_1$$
 Число экземпляров, для которых значение отклика = 1  $n_0$  Число экземпляров, для которых значение отклика = 0

$$R = 1 - \frac{Makc. 3 начение логарифмич. функции правдоподобия  $L$ 

$$= 1 - \frac{-8,9}{8 \log 5 + 13 \log 13 - (8+13)(09(8+13))}$$$$

 $R^2 = 0.3622$ 

Чем больше точность уравнения логистической регрессии, тем ближе он к 1, в противном случае – к 0.

**Notes:** считается, что коэффициент детерминации уравнения логистической регрессии не склонен принимать большие значения, поэтому его просто принять к сведению

## Относительная ошибка дискриминации

Число экземпляров с несовпадением фактического и ожидаемого значений/Общее число экземпляров

Чем меньше указанное значение, тем **точнее** уравнение логистической регрессии

#### Проверка значимости

Начинаем с «совместной проверки значимости коэффициентов регрессии»! Кстати, оценку путём нижеприведённых вычислений обычно называют тестом отношения правдоподобия.



| Mar 1   | Определение генеральной<br>совокупности.                                                                                                                                                                                                             | Определяем генеральную совокупность как «дни<br>с признаком среды, субботы или воскресенья $x_1$<br>и с максимальной температурой $x_2$ °C».                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| War 2   | Построение нулевой гипотезы<br>и альтернативной гипотезы.                                                                                                                                                                                            | Нулевая гипотеза: $A_1 = A_2 = 0$<br>Альтернативная гипотеза: $A_1 = A_2 = 0$ не выполняется                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ∭ar 3   | Выбор вида статистической проверки.                                                                                                                                                                                                                  | Будем проводить «совместную проверку значимости коэффициентов регрессии».                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Illar 4 | Назначение уровня значимости.                                                                                                                                                                                                                        | Выбираем уровень значимости равным 0,05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mar 5   | Нахождение значения<br>статистического критерия по<br>данным выборки.                                                                                                                                                                                | Мы собираемся провести «совместную проверку значимости коэффициентов регрессии», в котором значение статистического критерия вычисляется по формуле: $2 \cdot \{L_{max} - n_1 \ln n_1 - n_0 \ln n_0 + (n_1 + n_0) \ln (n_1 + n_0)\}$ где $L_{max}$ максимальное значение логарифмической функции правдоподобия В нашем примере это значение равно: $2 \cdot \{-8,9010 - 8 \ln 8 - 13 \ln 13 + (8 + 13) \ln (8 + 13)\} = 10,1.$ Кроме того, в нашем примере в случае верности нулевой гипотезы статистический критерий будет подчиняться распределению хи-квадрат с числом степеней свободы, равным 2 (т.е. числу объясняющих переменных). |
| War 6   | Сравнение значения <i>P</i> , которое соответствует значению статистического критерия, найденному в шаге 5, с уровнем значимости.                                                                                                                    | Уровень значимости равен 0,05. Значение <i>P</i> , которое соответствует значению статистического критерия 10,1, равно 0,006. 0,006 < 0,05, т.е. значение <i>P</i> ниже уровня значимости.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Шаг 7   | Если сравнение на шаге 6 показа-<br>ло, что значение Р пиже уровня<br>значимости, то делается вывод<br>«альтернативная гипотеза пра-<br>вильна». В противном случае дела-<br>стся вывод «пулевая гипотеза не<br>может быть признана ошибоч-<br>ной». | Значение $P$ оказалось ниже уровил значимости. Следовательно верна альтернативная гипотеза, согласно которой $A_1 = A_2 = 0$ не выполняется.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

А теперь — раздельную проверку значимости коэффициентов! Мы попробуем силы на  $a_1$ ! Кстати, проверка по приведённой ниже методике называется тестом Вальда.



| IIIar 1 | Определение генеральной<br>совокупности.                                                                                                     | Определяем генеральную совокупность как «дни с признаком среды, субботы или воскресенья $x_1$ , и с максимальной температурой $x_2$ °C».                                                                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IIIar 2 | Построение нулевой гипотезы и альтернативной гипотезы.                                                                                       | Нулевая гипотеза: $A_1$ =0<br>Альтернативная гипотеза: $A_1$ ≠0                                                                                                                                                                                                                                                                                                                                                      |
| IIIar 3 | Выбор вида статистической проверки.                                                                                                          | Будем проводить раздельную проверку значимости<br>коэффициентов регрессии.                                                                                                                                                                                                                                                                                                                                           |
| IIIar 4 | Назначение уровня значимости.                                                                                                                | Назначаем уровень значимости равным 0,05.                                                                                                                                                                                                                                                                                                                                                                            |
| IIIar 5 | Нахождение значения статистического критерия по данным выборки.                                                                              | Мы собираемся провести «раздельную проверку значи мости коэффициентов регрессии», в котором значение статистического критерия вычисляется по формуле: $\frac{a_1^2}{S^{11}}.$ В нашем примере это значение равно: $\frac{2,44^2}{1,5388} = 3,9$ Кроме того, в нашем примере в случае верности нулевой гипотезы статистический критерий будет подчиняться распределению хи-квадрат числом степеней свободы, равным 1. |
| Шаг 6   | Сравнение значения <i>P</i> , которое соот-<br>ветствует значению статистического<br>критерия, пайденному в шаге 5,<br>с уровнем значимости. | Уровень значимости равен 0,05. Значение <i>P</i> , которое соответствует значению статистического критерия 3,9, равно 0,0489. 0,0489 < 0,05, т.е. значение <i>P</i> ниже уровня значимости.                                                                                                                                                                                                                          |
| IIIar 7 | D D D D D D D D D D D D D D D D D D D                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                      |



### Построение прогноза

подставить новые значения х1 и х2 и рассчитать значение у

если полученное значение *у* получилось меньше, чем 0.5 — значит y=0, то есть мороженое из спец меню не продастся, если больше 0.5 — то y=1, мороженое по спец меню продастся