ENGS 147 - Mechatronics

Chingpheng Phoun, Justin Sapun, Vuthy Vey

Introduction

Introducing Remy!

Hardware & Sensors

Turning Control

Plant:

G =

Compensator for 90:

Gc =

with an overall gain of K = 0.25 and Sampling Time Ts = 0.05s.

Compensator for 180:

with an overall gain of K = 0.10 and Sampling Time Ts = 0.05s.

Stiction is Our FRIEND!

Linearizing Voltage To PWM

- No Rotation between PWM signal is between -80 to 80.
- There is a deadzone in the control system between -0.9 to 0.9 in error values.

Turning Control


```
if (abs(angle_err_0) < 3 and abs(angle_err_1) < 3 and abs(angle_err_2) < 3) {
   done = true;
   stop_motors();
}</pre>
```

Constant-Velocity Control

Constant-Velocity Control

Reference Velocity:

4.50 cm/s

Distance to Wall Control

Distance to Wall Control

Target Distance to Wall 140

35 mm

Start at from Wall

120 mm

Need to Travel

95 mm

High Level Task Planning

Flood-Fill Algorithm

+ + + + + + + + + + + 255|255|255|255|255| 3 2 1|255|255|255|255|255|255|255| 255|255|255|255|255| 4|255| 0 0|255|255|255|255|255|255|255| 0|255|255|255|255|255|255|255| 12 11 10|255|255| 5|255| 0

How it works

- Starts from goal cell and expands outward assigning increasing values until it reaches end cell
- Favors lower valued neighboring cells when exploring
- "Floods" path during exploration
- Next move is chosen by comparing adjacent flood values

Path Planning Integration

Function that generates move codes (0=Left,
 1=Right, 3=Forward) with index to give our robot a known path it can optimize for speed

Thank you!

Design Specification

| Requirement | MoSCoW | Method | Metric | Criteria | Justification | Complete or NOT? |
|---|--------|--------------------------|----------------------------------|----------|--------------------|---|
| Complete the Maze | M | Full Maze
Test | Success rate | 100% | Core functionality | Yes |
| Move straight, and don't hit the side walls | M | Path
tracking
test | Distance from wall | >2.54cm | Obstacle avoidance | Yes |
| IR sensors wall detection | M | 4–30 cm
Sensor test | Distance
measurement
error | ±1 cm | Obstacle avoidance | Sometimes, we do still hit the front wall |

Design Specification

| Requirement | MoSCoW | Method | Metric | Criteria | Justification | Complete or NOT? |
|---|--------|---------------|-------------------------|----------|-------------------------------------|---|
| Constant linear
Velocity on the straight | S | Video Capture | Steady state velocity | ±5% | Minimize the time to solve the maze | Yes, except that we actually double our initial specification |
| Distance Control | M | Motion test | Start to Final distance | ±5% | Minimize position error | Yes |
| Turn 90 degrees accurately | M | Motion test | Turn angle error | ±5° | Kinematic turning | Mostly, about 80% of the time |
| Flood-fill algorithm for maze-solving | M | Simulation | Accuracy | 100% | Optimized pathfinding efficiency | Yes |

Motor Characterization

 $\tau = 0.002444655458025N \cdot m$ $\omega = 86.2098 rads^{-1} \Rightarrow v = 1.2069 ms^{-1} \simeq 4.34484 \frac{Km}{h} \simeq 2.698 mph$

engineering.dartmouth.edu