

## Convertidor Analógico Digital



#### M. En C. Victor Hugo García Ortega

Escuela Superior de Cómputo - IPN
Av. Juan de Dios Batiz s/n
Unidad Profesional Zacatenco
07738, México, D.F.
vgarciaortega@yahoo.com.mx, vgarciao@ipn.mx

#### ADC - Características

El ADC del DSPIC30F4013 tiene las siguientes características:

- > 12 bits de resolución.
- Aproximaciones sucesivas.
- Hasta 200 ksps.
- Rango dinámico configurable.
- Hasta 13 canales analógicos.
- Modo de escaneo automático de canal
- Inicio de conversión seleccionable
- 4 opciones para alineación de resultado

## ADC – Diagrama a bloques



## ADC – Registros

Este módulo tiene 6 registros de 16 bits:

ADCON1. Registro de control 1

ADCON2. Registro de control 2

ADCON3. Registro de control 3

ADCHS. Registro de selección de entrada

ADPCFG. Registro de configuración de puerto.

ADCSSL. Registro de selección de entrada de escaneo.

#### ADC - ADCON1

- Establece el formato de salida de datos
- Selecciona la fuente de inicio de conversión
- Establece el modo automático de muestreo

| Register 18- | 1: | ADCON | 1: A/D Co | ntrol l | Register 1 | 1 |              |   |    |     |        |        |        |
|--------------|----|-------|-----------|---------|------------|---|--------------|---|----|-----|--------|--------|--------|
| Upper Byte   | :  |       |           |         |            |   |              |   |    |     |        |        |        |
| R/W-0        | ι  | J-0   | R/W-0     |         | U-0        | ا | U <b>-</b> 0 | U | -0 | R/V | V-0 F  | R/W-0  |        |
| ADON         |    | _     | ADSIDL    |         | _          |   | -            | - | _  |     | FORM<1 | :0>    |        |
| bit 15       |    | •     |           |         |            |   |              |   |    |     |        | bit 8  |        |
|              |    |       |           |         |            |   |              |   |    |     |        |        |        |
|              |    | Lower | r Byte:   |         |            |   |              |   |    |     |        |        |        |
|              |    | R/W   | /-0 R     | /W-0    | R/W-       | 0 | U-(          | ) | U  | -0  | R/W-0  | R/W-0  | R/C-0  |
|              |    |       |           |         |            |   |              |   |    |     |        | HC, HS | HC, HS |
|              |    |       | SSR       | C<2:0   | >          |   | _            |   | -  | _   | ASAM   | SAMP   | DONE   |
|              |    | bit 7 |           |         |            |   | •            |   |    |     |        | •      | bit 0  |

#### ADC - ADCON2

- Configura la referencia de voltaje.
- Activa el modo de escaneo.
- Selecciona cuantas muestras se van a capturar por cada interrupción

| Register 18-2 | : ADCON2  | 2: A/D Contr | ol Register 2 | 2              |       |        |       |       |       |  |
|---------------|-----------|--------------|---------------|----------------|-------|--------|-------|-------|-------|--|
| Upper Byte:   |           |              |               |                |       |        |       |       |       |  |
| R/W-0         | R/W-0     | R/W-0        | U-0           | U-0            | R/W-0 | U-0    | . U-  | 0     |       |  |
| ١             | VCFG<2:0> |              | _             | 1              | CSCNA | _      | _     | -     |       |  |
| bit 15        |           | ·            | ,             |                | •     | •      | •     | bit 8 |       |  |
|               |           |              |               |                |       |        |       |       |       |  |
|               | Lower B   | Byte:        |               |                |       |        |       |       |       |  |
|               | R-0       | U-0          | R/W-          | 0 R/           | W-0 R | /W-0 F | R/W-0 | R/W-0 | R/W-0 |  |
|               | BUFS      | _            |               | SMPI<3:0> BUFM |       |        |       |       |       |  |
|               | bit 7     |              |               |                |       |        |       |       | bit 0 |  |

#### ADC - ADCON3

- Establece el tiempo de muestreo para el Circuito Sample&Hold.
- Establece el tiempo de conversión.



#### ADC - ADCHS

ADCHS: A/D Input Select Register

Pagistor 18-4:

# El registro ADCHS selecciona la entrada analógica a ser convertida.

| Register 10- | 4. / | ADCIIO       | . AID | input s | erec | t Kegisi      | eı |     |      |         |     |       |        |    |       |        |
|--------------|------|--------------|-------|---------|------|---------------|----|-----|------|---------|-----|-------|--------|----|-------|--------|
| Upper Byte   | ):   |              |       |         |      |               |    |     |      |         |     |       |        |    |       |        |
| U-0          | U    | J <b>-</b> 0 | ·     | J-0     | R    | /W <b>-</b> 0 | R/ | W-0 | R/W- | 0 R/    | W-0 | R/W   | /-0    |    |       |        |
| _            |      | _            |       | -       | CH   | HONB          |    |     | CH   | 10SB<3: | 0>  |       |        |    |       |        |
| bit 15       |      |              |       |         |      |               |    |     |      |         |     |       | bit 8  |    |       |        |
|              |      |              |       |         |      |               |    |     |      |         |     |       |        |    |       |        |
|              |      | Lower        | Byte  | :       |      |               |    |     |      |         |     |       |        |    |       | $\Box$ |
|              |      | U-0          |       | U-0     |      | U-0           |    | R/W | /-0  | R/W-0   | R   | /W-0  | R/W    | -0 | R/W-0 |        |
|              |      | _            |       | _       |      | 1             |    | CH0 | NA   |         |     | CH0S/ | A<3:0> |    |       |        |
|              |      | bit 7        |       | _       |      |               |    |     |      | _       |     | _     |        |    | bi    | it 0   |

#### ADC - ADPCFG

El registro ADPCFG configura los pines de los puertos como entradas analógicas o como I/O digital.

| Register 18-5: ADPCFG: A/D Port Configuration Register |        |        |        |        |        |       |       |  |  |  |
|--------------------------------------------------------|--------|--------|--------|--------|--------|-------|-------|--|--|--|
| Upper Byte                                             | e:     |        |        |        |        |       |       |  |  |  |
| R/W-0                                                  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0 | R/W-0 |  |  |  |
| PCFG15                                                 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 |  |  |  |
| bit 15                                                 | •      | •      | •      | •      |        |       | bit 8 |  |  |  |

| Lower Byte | ):    |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|
| R/W-0      | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| PCFG7      | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7      |       |       |       |       |       |       | bit 0 |

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits

- 1 = Analog input pin in Digital mode, port read input enabled, A/D input multiplexer input connected to AVss
- 0 = Analog input pin in Analog mode, port read input disabled, A/D samples pin voltage

#### ADC - ADCSSL

# El registro ADCSSL selecciona las entradas analógicas para escaneo.

| Register 18 | -6: ADCSS | L: A/D Input | Scan Select | Register |        |       |       |
|-------------|-----------|--------------|-------------|----------|--------|-------|-------|
| Upper Byte  | 9:        |              |             |          |        |       |       |
| R/W-0       | R/W-0     | R/W-0        | R/W-0       | R/W-0    | R/W-0  | R/W-0 | R/W-0 |
| CSSL15      | CSSL14    | CSSL13       | CSSL12      | CSSL11   | CSSL10 | CSSL9 | CSSL8 |
| bit 15      | •         |              | •           | •        |        |       | bit 8 |

| Lower Byte | e:    |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|
| R/W-0      | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| CSSL7      | CSSL6 | CSSL5 | CSSL4 | CSSL3 | CSSL2 | CSSL1 | CSSL0 |
| bit 7      | •     |       |       |       |       |       | bit 0 |

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits

1 = Select ANx for input scan 0 = Skip ANx for input scan

#### ADC - ADCBUF

El ADC coloca los resultados de la conversión en una memoria RAM de doble puerto (FIFO) de 16 words llamada ADCBUF. Cada una de las 16 localidades de la memoria son llamadas ADCBUFO, ADCBUF1, ..., ADCBUFE, ADCBUFF.

Esta memoria es de solo lectura.

## ADC – Tiempo total de conversión

El tiempo de conversión es el tiempo total que tarda el ADC en realizar todo el proceso de conversión analógico-digital. Esta dado por:



## ADC - Tiempo de conversión

El ADC requiere 14 TAD para realizar la conversión. Hay 64 valores posibles para TAD que dependen del valor de los bits ADCS del registro ADCON3. El TAD debe ser como mínimo 666.66ns

$$TAD = \frac{TCY(ADCS+1)}{2}$$

$$ADCS = \frac{2TAD}{TCY} - 1$$

## ADC - Tiempo de conversión

```
bit 5-0 ADCS<5:0>: A/D Conversion Clock Select bits

111111 = TcY/2 • (ADCS<5:0> + 1) = 32 • TcY

.....

000001 = TcY/2 • (ADCS<5:0> + 1) = TcY

000000 = TcY/2 • (ADCS<5:0> + 1) = TcY/2
```

## ADC – Tiempo de muestreo

El tiempo de muestreo se determina por los bits SAMC<4:0> del registro ADCON3

```
bit 12-8 SAMC<4:0>: Auto Sample Time bits 11111 = 31 TAD ..... 00001 = 1 TAD 00000 = 0 TAD
```

### ADC - Tiempo de conversión

El inicio del muestreo puede ser configurado por SW usando el bit SAMP del registro ADCON1 o por HW. El ADC puede operar en modo de auto muestreo usando el bit ASAM del registro ADCON1, en este modo el amplificador S/H el pin de entrada analógica es reconectado al final de cada conversión.

Las fuentes de inicio de conversión terminan el muestreo y comienzan la conversión AD o una secuencia de muestreo y retención. Estas fuentes son seleccionadas usando los bits SSRC del registro ADCON1.

## Seleccionando el reloj de conversión

El ADC permite una frecuencia máxima de muestreo de 200 KSPS. La siguiente tabla muestra las condiciones para lograr esta velocidad.

|                                  | dsPIC30F 10-bit A/D Converter Conversion Rates |                      |                    |              |                 |                            |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------|----------------------|--------------------|--------------|-----------------|----------------------------|--|--|--|--|--|--|
| A/D Speed                        | TAD<br>Minimum                                 | Sampling<br>Time Min | R <sub>s</sub> Max | VDD          | Temperature     | A/D Channels Configuration |  |  |  |  |  |  |
| Up to 200<br>ksps <sup>(1)</sup> | 333.33 ns                                      | 1 TAD                | 2.5 kΩ             | 4.5V to 5.5V | -40°C to +85°C  | ANX SH ADC                 |  |  |  |  |  |  |
| Up to 100<br>ksps                | 666.67 ns                                      | 1 TAD                | 2.5 kΩ             | 3.0V to 5.5V | -40°C to +125°C | ANX Or Viter-              |  |  |  |  |  |  |
|                                  |                                                |                      |                    |              |                 |                            |  |  |  |  |  |  |

Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 18-14 for recommended circuit.

## Referencias de voltaje



## Seleccionando el reloj de conversión

EXAMPLE 16-1: ADC CONVERSION CLOCK AND SAMPLING RATE CALCULATION

Minimum TAD = 
$$334$$
 nsec  
TCY =  $33.33$  nsec ( $30$  MIPS)

ADCS<5:0> = 
$$2 \frac{\text{TAD}}{\text{TCY}} - 1$$
  
=  $2 \cdot \frac{334 \text{ nsec}}{33.33 \text{ nsec}} - 1$   
=  $19.04$ 

Therefore, Set ADCS<5:0> = 19

Actual TAD = 
$$\frac{\text{TCY}}{2}$$
 (ADCS<5:0> + 1)  
=  $\frac{33.33 \text{ nsec}}{2}$  (19 + 1)  
= 334 nsec

If SSRC<2:0> = '111' and SAMC<4:0> = '00001'

Since,

Sampling Time = Acquisition Time + Conversion Time = 1 TAD + 14 TAD = 15 x 334 nsec

Therefore,  
Sampling Rate = 
$$\frac{1}{(15 \times 334 \text{ nsec})}$$
  
=  $\sim 200 \text{ kHz}$ 

# Especificaciones importantes en el ADC.

| TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS |               |                               |                                                                                                                                                                   |             |                                  |                          |                          |  |  |  |  |  |
|-----------------------------------------------|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|--------------------------|--------------------------|--|--|--|--|--|
| AC CHA                                        | ARACTERIS     | STICS                         | Standard Operating Conditions: 2.5V to 5.5V  (unless otherwise stated)  Operating temperature -40°C ≤ TA ≤ +85°C for Industrial  -40°C ≤ TA ≤ +125°C for Extended |             |                                  |                          |                          |  |  |  |  |  |
| Param<br>No.                                  | Symbol        | Characteristic                | Min. Typ Max. Units Conditions                                                                                                                                    |             |                                  |                          |                          |  |  |  |  |  |
|                                               | Device Supply |                               |                                                                                                                                                                   |             |                                  |                          |                          |  |  |  |  |  |
| AD01                                          | AVDD          | Module VDD Supply             | Greater of<br>VDD - 0.3<br>or 2.7                                                                                                                                 | _           | Lesser of<br>VDD + 0.3<br>or 5.5 | ٧                        | _                        |  |  |  |  |  |
| AD02                                          | AVss          | Module Vss Supply             | Vss - 0.3                                                                                                                                                         | _           | Vss + 0.3                        | ٧                        | _                        |  |  |  |  |  |
|                                               |               |                               | Reference                                                                                                                                                         | Inputs      |                                  |                          |                          |  |  |  |  |  |
| AD05                                          | VREFH         | Reference Voltage High        | AVss + 2.7                                                                                                                                                        | -           | AVDD                             | >                        | _                        |  |  |  |  |  |
| AD06                                          | VREFL         | Reference Voltage Low         | AVss                                                                                                                                                              | I           | AVDD • 2.7                       | >                        | _                        |  |  |  |  |  |
| AD07                                          | VREF          | Absolute Reference<br>Voltage | AVss - 0.3                                                                                                                                                        | -           | AVDD + 0.3                       | ٧                        | _                        |  |  |  |  |  |
| AD08                                          | IREF          | Current Drain                 | _                                                                                                                                                                 | 200<br>.001 | 300<br>2                         | μ <b>Α</b><br>μ <b>Α</b> | A/D operating<br>A/D off |  |  |  |  |  |

#### Formato de salida del ADC.

La memoria FIFO (ADCBUF) guarda los 12 de la conversión AD, estos datos son interpretados de acuerdo a los siguientes formatos:

|                            |        |      |     |     |     |     | _   |     | _   |     |     | _   |     |     |     |     |
|----------------------------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Figure 18-12: A/D Output D | ata Fo | rmat | S   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| RAM Contents:              |        |      |     |     | d11 | d10 | d09 | d08 | d07 | d06 | d05 | d04 | d03 | d02 | d01 | d00 |
| Read to Bus:               |        |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Integer                    | 0      | 0    | 0   | 0   | d11 | d10 | d09 | d08 | d07 | d06 | d05 | d04 | d03 | d02 | d01 | d00 |
|                            |        |      |     |     |     |     |     |     |     |     |     |     |     |     |     | _   |
| Signed Integer             | d11    | d11  | d11 | d11 | d11 | d10 | d09 | d08 | d07 | d06 | d05 | d04 | d03 | d02 | d01 | d00 |
|                            |        |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Fractional                 | d11    | d10  | d09 | d08 | d07 | d06 | d05 | d04 | d03 | d02 | d01 | d00 | 0   | 0   | 0   | 0   |
|                            |        |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Signed Fractional (1.15)   | d11    | d10  | d09 | d08 | d07 | d04 | d03 | d02 | d01 | d00 | d01 | d00 | 0   | 0   | 0   | 0   |
|                            |        |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

### Formato de salida del ADC.

### Ejemplos:

Table 18-3: Numerical Equivalents of Various Result Codes

|           | Table 10 01 Hamelloui Equitatello 01 Valloue 1100all 00000 |                                   |                                 |                                      |                                    |  |  |  |  |  |  |  |
|-----------|------------------------------------------------------------|-----------------------------------|---------------------------------|--------------------------------------|------------------------------------|--|--|--|--|--|--|--|
| Vin/Vref  | 12-bit<br>Output Code                                      | 16-bit Unsigned<br>Integer Format | 16-bit Signed<br>Integer Format | 16-bit Unsigned<br>Fractional Format | 16-bit Signed<br>Fractional Format |  |  |  |  |  |  |  |
| 4095/4096 | 1111 1111 1111                                             | 0000 1111 1111 1111<br>= 4095     | 0000 0111 1111 1111<br>= 2047   | 1111 1111 1111 0000<br>= 0.9998      | 0111 1111 1111 0000<br>= 0.9995    |  |  |  |  |  |  |  |
| 4094/4096 | 1111 1111 1110                                             | 0000 1111 1111 1110<br>= 4094     | 0000 0111 1111 1110<br>= 2046   | 1111 1111 1110 0000<br>= 0.9995      | 0111 1111 1110 0000<br>= 0.9990    |  |  |  |  |  |  |  |
|           |                                                            |                                   | •••                             |                                      |                                    |  |  |  |  |  |  |  |
| 2049/4096 | 1000 0000 0001                                             | 0000 1000 0000 0001<br>= 2049     | 0000 0000 0000 0001<br>= 1      | 1000 0000 0001 0000<br>= 0.5002      | 0000 0000 0001 0000 = 0.0005       |  |  |  |  |  |  |  |
| 2048/4096 | 1000 0000 0000                                             | 0000 1000 0000 0000<br>= 2048     | 0000 0000 0000 0000 = 0         | 1000 0000 0000 0000 = 0.500          | 0000 0000 0000 0000 = 0.000        |  |  |  |  |  |  |  |
| 2047/4096 | 0111 1111 1111                                             | 0000 0111 1111 1111<br>= 2047     | 1111 1111 1111 1111 = -1        | 0111 1111 1111 0000<br>= 0.4998      | 1111 1111 1111 0000 = -0.0005      |  |  |  |  |  |  |  |
|           |                                                            |                                   | •••                             |                                      |                                    |  |  |  |  |  |  |  |
| 1/4096    | 0000 0000 0001                                             | 0000 0000 0000 0001 = 1           | 1111 1000 0000 0001<br>= -2047  | 0000 0000 0001 0000 = 0.0002         | 1000 0000 0001 0000 = -0.9995      |  |  |  |  |  |  |  |
| 0/4096    | 0000 0000 0000                                             | 0000 0000 0000 0000 = 0           | 1111 1000 0000 0000<br>= -2048  | 0000 0000 0000 0000 = 0.000          | 1000 0000 0000 0000 = -1.000       |  |  |  |  |  |  |  |

#### Inicio del muestreo

El muestreo se inicia de dos maneras:

Manual. Colocando el bit SAMP=1 en el registro ADCON1, se inicia el muestreo en el ADC. Una de varias opciones puede ser usada par terminar el muestreo y completar la conversión.

Automático. Colocando el bit ASAM=1 en el registro ADCON1, se inicia el muestreo de forma automática en un canal del ADC. Una de varias opciones puede ser usada par terminar el muestreo y completar la conversión. Una vez terminada la conversión, el muestreo continua en ese canal.

## Inicio del muestreo



#### Contacto

vgarciaortega@yahoo.com.mx

Gracias.....