非加寬與其連接的匯流排。因此,傳送每個字組的延遲仍是必須的,但可以避免多次的存取延遲。

➤ 主記憶體晶片可以用儲存槽(bank)的方式來組織而成,使得每次在一存取時間能夠讀取或寫入多個字組。每一記憶體bank有一字組寬,所以匯流排與快取的寬度不需改變,但是送出位址到各個bank能夠同時讀取所需的資料。此設計稱為交錯(interleaving)。

練習

1- word-wide

假設一個快取區塊大小為 4 個字組及寬度為一個字組的 DRAM,以下假設一組記憶體存取時間:

- 送出位址需要 1 個時脈週期 | bus cycle for address transfer
- 起始每個 DRAM 存取的時間為 15 個時脈週期 15 bus cycle pev PRAM
- 一 送出一字組資料時間為 1 個時脈週期 (bus cycle per data transfer 分別以上述三種記憶體系統設計·計算由記憶傳送一個區塊至快取記憶體所需要時間。

Answer

DRAM access & bus

address (1) transfer 4

(1) One-word-wide memory organization:

 $1 + 4 \times 15 + 4 \times 1 = 65 \text{ clock cycles}$

- (2) Wide memory organization (two-word): $1 + 2 \times 15 + 2 \times 1 = 33$ clock cycle •
- (3) Interleaved memory organization (four banks): $1 + 1 \times 15 + 4 \times 1 = 20$ clock cycles \circ

每當有 conflict 時就把原本 bank 計算機組織與結構重點直擊

裡的東西送出去再效現在要效的東西到bank裡

Assume a memory system that supports interleaving either four reads or four writes. Given the following memory addresses in order as they appear on the memory bus: 3, 9, 17, 2, 51, 37, 13, 4, 8, 41, 67, 10, which ones will result in a bank conflict?

Answer

A bank conflict causes the memory system to stall until the busy bank has completed the prior operation.

Reference	Bank	Bank Conflict	Bo Bi	β2 β3
3 3 3	3	No	MARGE	3
9 105 9	lueb Lada	No	9	3
17	1	Yes (with 9)	17	(先把9.1送
2	2	No	17	2 出去.再效
51	3	No	117	2 41
37	1 1/4/	Yes (with 17)	37	
13	- 1	Yes (with 37)	13	
4	0	No	4 13	
Bu 8 Men	0	Yes (with 4)	8	
41	1	No	8 41	
67	3	No	8 41	3
10	2	No	8 41	2 3

提昇記憶體結構支援快取

-種提升從記憶體傳資料到快取速度的方法·是利用DRAM在結構上的優 勢。DRAM在邏輯上是組織成矩形陣列·存取時間分成列存取(row access) 與行存取(column access)。DRAM將一列中的所有位元暫存在DRAM內