Vector Algebra

EE24Btech11022 - Eshan sharma

I. MCQs with one correct answer

- 1) The unit vector which is orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is (2004S)
 - (a) $\frac{2\hat{i}-6\hat{j}+\hat{k}}{2\hat{i}-6\hat{j}+\hat{k}}$
 - (b)
- 2) A variable plane at a distance of the one unit from the origin cuts the coordinate axes at A,B and C. If the centroid D (x, y, z) of triangle ABC satisfies the relation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value k is
 - (a) 3
 - (b) 1
 - (c) $\frac{1}{3}$
 - (d) §
- 3) If **a**, **b**, **c** are three non-zero, non-coplanar vectors and $\mathbf{b_1} = \mathbf{b} - \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a}$, $\mathbf{b_2} = \mathbf{b} + \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a}$, $\mathbf{c_1} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a} + \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{c}^2|} \mathbf{b_1}$, $\mathbf{c_2} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a} + \frac{\mathbf{b_1} \cdot \mathbf{c}}{|\mathbf{b_1}^2|} \mathbf{b_1}$, $\mathbf{c_3} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{c}^2|} \mathbf{a} + \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{c}^2|} \mathbf{b_1}$, $\mathbf{c_4} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{c}^2|} \mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{b}^2|} \mathbf{b_1}$, then the set of orthogonal vectors is (2005S)
 - (a) (a, b_1, c_3)
 - (b) (a, b_1, c_2)
 - (c) (a, b_1, c_1)
 - (d) (a, b_2, c_2)
- 4) A plane which is perpendicular to two planes 2x-2y+z=0 and x-y+2z=4 passes through (1, -2, 1). The distance of the plane from the point (1,2,2) is (2006 - 3M, -1)
 - (a) 0
 - (b) 1
 - (c) $\sqrt{2}$
 - (d) $2\sqrt{2}$
- 5) Let $\mathbf{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\mathbf{b} = \hat{i} \hat{j} + \hat{k}$ and $\mathbf{c} = \hat{i} + \hat{j} \hat{k}$. A vector in the plane of a and b whose projection on **c** is $\frac{1}{\sqrt{3}}$, is (2006-3M,-1)
 - (a) $4\hat{i} \hat{j} + 4\hat{k}$
 - (b) $3\hat{i} + \hat{j} 3\hat{k}$

- (c) $2\hat{i} + \hat{j} 2\hat{k}$ (d) $4\hat{i} + \hat{j} 4\hat{k}$
- 6) The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is (2007 - 3marks)
 - (a) zero
 - (b) one
 - (c) two
 - (d) three
- 7) let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be unit vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$. Which of the following are correct? (2007 -3marks)
 - (a) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = \mathbf{0}$
 - (b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} \neq \mathbf{0}$
 - (c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{c} \neq \mathbf{0}$
 - (d) $\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}$ are mutually perpendicular
- 8) The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallelopiped is
- 9) Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a}\cos t + \hat{b}\sin t$. When P is farthest from origin O, let M be the length of \overrightarrow{OP} and \hat{u} be the unit vector along \overrightarrow{OP} . Then,
- (a) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ (b) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ (c) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$ (d) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
- 10) Let P(3,2,6) be a point in space and Q be a point on the line

$$\mathbf{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k}.$$

Then the value of μ for which the vector PQ

is parallel to the plane x-4y+3z=1 is (2009)

- (a) $\frac{1}{4}$ (b) $-\frac{1}{4}$ (c) $\frac{1}{8}$
- (d) $-\frac{1}{8}$
- 11) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} are unit vectors such that ($\mathbf{a} \times$ $(\mathbf{c} \times \mathbf{d}) = 1$ and $\mathbf{a} \cdot \mathbf{c} = \frac{1}{2}$, then (2009)
 - (a) **a**, **b**, **c** are non-coplanar
 - (b) **b**, **c**, **d** are non-coplanar
 - (c) **b**, **d** are non-parallel
 - (d) **a**, **d** are parallel and **b**, **c** are parallel
- 12) A line with positive direction cosines passes through the point P(2,-1,2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals (2009)
 - (a) 1
 - (b) $\sqrt{2}$
 - (c) $\sqrt{3}$
 - (d) 2
- 13) Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i}-\hat{j}$, $4\hat{i}$, $3\hat{i}+3\hat{j}$ and $-3\hat{i}+$ $2\hat{j}$ respectively. The quadrilateral PQRS must (2010)
 - (a) parallelogram, which is neither a rhombus nor a rectangle
 - (b) square
 - (c) rectangle, but not a square
 - (d) rhombus, but not a square
- 14) Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (2010)
 - (a) x + 2y 2z = 0
 - (b) 3x + 2y 2z = 0
 - (c) x 2y + z = 0
 - (d) 5x + 2y 4z = 0
- 15) If the distance of the point P(1,-2,1) from the plane $x+2y-2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is (2010)