```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing,svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read_csv(r"C:\Users\Niranjan\Downloads\fiat500_VehicleSelection_Dataset
 df

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lo
0	1	lounge	51	882	25000	1	44.907242	8.61156
1	2	pop	51	1186	32500	1	45.666359	12.24189
2	3	sport	74	4658	142228	1	45.503300	11.41784
3	4	lounge	51	2739	160000	1	40.633171	17.63460
4	5	pop	73	3074	106880	1	41.903221	12.49565
1533	1534	sport	51	3712	115280	1	45.069679	7.70492
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687
1535	1536	pop	51	2223	60457	1	45.481541	9.41348
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227
1537	1538	pop	51	1766	54276	1	40.323410	17.56827

1538 rows × 9 columns

In [4]: df=df[['engine_power','age_in_days']]
 df.columns=['Eng','Age']

In [6]: df.head(10)

Out[6]: Eng Age

0 51 882

1 51 1186

2 74 4658

3

4 73 3074

51 2739

5 74 3623

6 51 731

7 51 1521

8 73 4049

9 51 3653

In [7]: sns.lmplot(x='Eng',y='Age',data=df,order=2,ci=None)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x183a171d2d0>


```
In [8]: df.describe()
 Out[8]:
                       Eng
                                  Age
          count 1538.000000 1538.000000
           mean
                  51.904421
                           1650.980494
                   3.988023 1289.522278
            std
                  51.000000
            min
                            366.000000
            25%
                  51.000000
                            670.000000
            50%
                  51.000000 1035.000000
           75%
                  51.000000 2616.000000
                  77.000000 4658.000000
            max
 In [9]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
                      -----
           0
               Eng
                       1538 non-null
                                        int64
                       1538 non-null
                                        int64
           1
               Age
         dtypes: int64(2)
         memory usage: 24.2 KB
In [10]: | df.fillna(method='ffill',inplace=True)
In [11]: x=np.array(df['Eng']).reshape(-1,1)
         y=np.array(df['Age']).reshape(-1,1)
In [12]: | df.dropna(inplace=True)
In [13]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(X_train,y_train)
         print(regr.score(X_test,y_test))
         0.05540148636022291
```

```
In [14]: y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.scatter(X_test,y_pred,color='k')
    plt.show()
```



```
In [16]: df500=df[:][:500]
sns.lmplot(x="Eng",y="Age",data=df500,order=2,ci=None)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x183a05c90d0>


```
In [17]: df500.fillna(method='ffill',inplace=True)
    X=np.array(df500['Eng']).reshape(-1,1)
    y=np.array(df500['Age']).reshape(-1,1)
    df500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.05315433062171038


```
In [18]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.05315433062171038

5/21	123	3:57	DIM

In []: