МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)"

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ КАФЕДРА ДИСКРЕТНОЙ МАТЕМАТИКИ

Выпускная квалификационная работа по направлению 01.03.02 "Прикладные математика и информатика" НА ТЕМУ:

ВЕРИФИКАЦИЯ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ О НИЖНЕЙ ОЦЕНКЕ ХРОМАТИЧЕСКОГО ЧИСЛА ПЛОСКОСТИ В СИСТЕМЕ COQ

Студент	Анюшева Е.Б.
Научный руководитель к.ф-м.н	Дашков Е.В.

Оглавление

		Стр.
Аннот	гация	3
Введе	ние	4
0.1	Хроматическое число плоскости. Задача Нелсона — Эрдёша —	
	Хадвигера	4
0.2	Система Соq. Описание, история, возможности, применения	5
0.3	Мотивировка задачи	6
0.4	Обзор литературы	6
Глава	1. Построение графов через реализацию графа на	
	плоскости	7
Глава	2. Реализация графа в Coq	8
2.1	Представление графов в Coq	8
2.2	Доказательства корректности операций над графами	11
Глава	3. Доказательство свойств раскраски малых графов в Соф	12
3.1	Πpo Ltac, pattern matching и goal matching	13
3.2	Типы возможных правильных раскрасок графа Т в не более чем	
	4 цвета	13
3.3	Типы возможных правильных раскрасок графа Н в не более чем	
	4 цвета	16
Глава	4. Алгоритм раскраски графа из статьи де Грея	17
4.1	Работа алгоритма на Python	17
4.2	Реализация алгоритма в Coq	17
Глава	5. Заключение	18
5.1	Выводы	18
5.2	Планы будущей работы	18
Глава	6. Приложение	19

Аннотация

В ходе работы разработаны методы работы с графами в системе Coq, а также методы работы с правильными раскрами графов. Реализованы некоторые графы, представленные в статье A. de Grey, «The chromatic number of the plane is at least 5» [1], а также формализованы и доказаны в системе Coq свойства, приведенные в указанной статье, раскраскок этих графов. Также формализован и верифицирован алгоритм перебора раскравок графа, использованный в статье для проверки того, что каждая раскраска графа М имеет монохроматическую тройку.

Введение

0.1 Хроматическое число плоскости. Задача Нелсона — Эрдёша — Хадвигера

Граф G – это упорядоченная пара G:=(V,E), где V — непустое множество, а E — подмножество $V\times V$. Если $(u,v)\in E$, то вершины u и v называются cмежеными. Обозначение $u\sim v$.

Раскраска f графа G – это отображение из V в множество цветов. Раскраска f называется npaвильной, если $u\sim v\to f(u)\neq f(v)$

Xроматическое число графа — это минимальное количество цветов, в которые можно правильно раскрасить граф.

 $\Gamma pa\phi$ единичных расстояний – это граф, вершинами которого являются некоторые точки евклидовой плоскости, а ребрами соединены все пары вершин, находящиеся на расстоянии 1.

Xроматическое число плоскости χ — это минимальное число цветов χ , в которое можно правильно раскрасить любой граф единичных расстояний.

Задача Нелсона — Эрдёша — Хадвигера заключается в нахождении хроматического числа плоскости. С 1950 года известно [4], что хроматическое число плоскости хотя бы 4 и не больше 7.

TODO: объяснить, почему, прикрепить картинки про 4 и 7, [3].

[Райгородский. Хроматические числа]

В апреле 2018 года Обри де Грей опубликовал статью, в которой доказал, что хроматическое число плоскости хотя бы 5. На момент написания работы задача является открытой. Данная работа фокусируется на уточнении неясных мест в данной статье, явных детерминированных конструкциях графов из статьи и верификации отдельных утверждений статьи в системе Coq.

Рисунок 1 — Веретено Мозера

0.2 Система Соq. Описание, история, возможности, применения

История создания, история использования (сортировки, раскраска карты, П что-нибудь.)

Контекст, Ltac, pattern matching, goal matching.

Какая логика? Че за изоморфизм там? Что такое Галина? Мы пользуемся Галиной? Что такое тактики?

Мы будем пользоваться представлением графа чувака автора учебника, [] учебник.

Рисунок 2 — Раскраска плоскости в 7 цветов

0.3 Мотивировка задачи

Краткое изложение структуры статьи де Грея, статья просится на верификацию.

0.4 Обзор литературы

1. Huele 2. Exoo, Geoffrey; Ismailescu, Dan

Пацаны проверили на SAT solver-е, кто-то придумал пример поменьше, кто-то графы по-другому делает.

Глава 1. Построение графов через реализацию графа на плоскости

Глава 2. Реализация графа в Соф

2.1 Представление графов в Соф

Реализации графов из статьи де Грея приведены в файле myGraphs.v 6.2 Представление графа было взято из книги Softwarefoundations [2]. Для представления графа используются модули FSets и FMaps, которые предоставляют интерфейсы множества и отображения. Эти модули принимают различные типы ключей, в данном случае мы будем использовать тип позитивных чисел positive из модуля PositiveOrderedTypeBits.

```
Module E := PositiveOrderedTypeBits.
Module S <: FSetInterface.S := PositiveSet.
Module M <: FMapInterface.S := PositiveMap.</pre>
```

Вершина node — это элемент типа positive, nodemap — это отображение из вершин, а граф graph — это отображение из типа вершина в тип множество вершин. Тип positive был выбран из-за того, что в нем оператор сравнения определен так, чтобы поиск по ключу типа positive в множестве и отображении был более эффективным.

```
Definition node := E.t.
Definition nodeset := S.t.
Definition nodemap: Type -> Type := M.t.
Definition graph := nodemap nodeset.
```

Для работы с графами были определены функции добавления ребра в существующий граф и построения графа из списка ребер.

```
Definition add_edge (e: (E.t*E.t)) (g: graph) : graph :=
M.add (fst e) (S.add (snd e) (adj g (fst e)))
(M.add (snd e) (S.add (fst e) (adj g (snd e))) g).
```

В данной функции ребро представляется парой вершин. В данной работе реализуются неориентированные графы без петель.

```
Definition mk_graph (el: list (E.t*E.t)) :=
  fold_right add_edge (M.empty _) el.
```

В терминах определенных выше функций построение графа КЗ выглядит следующим образом:

```
Definition K3 :=
    mk_graph [ (1, 2) ; (2, 3); (1, 3)].
```

Далее для работы с графом можно использовать функцию вывода множества вершин и функцию вывода множества ребер.

Граф H построен на основе графа K3 с помощью нескольких вспомогательных функций.

Рекурсивная функция **l_rng** находит минимум и максимум в списке, функция **gr_rng** находит в графе минимальный и максимальный номера вершин.

```
Fixpoint l_rng' (1 : list node) (cur_min: node) (cur_max: node) :
   node * node :=
```

```
match 1 with
  | nil => (cur_min, cur_max)
  | x :: xs =>
        let cur_min := if x <? cur_min then x else cur_min in</pre>
        let cur_max := if cur_max <? x then x else cur_max in</pre>
        l_rng' (xs) (cur_min) (cur_max)
  end.
Function l_rng (l : list node) :=
  match 1 with
    | nil => (1%positive, 2%positive)
    | x::xs => l_rng' l x x
  end.
Function gr_rng (g : graph) : node * node :=
  1_rng (S.elements (Mdomain g)).
Definition mk_cmn_edge (g1 g2 : graph) (a b n m : node) : graph :=
(* Make graphs disjoint. *)
  let g2' := rename_all (fun x => x + snd (gr_rng g1)) g2 in
(* New names for the edge's vertices. *)
  let n' := n + snd (gr_rng g1) in
  let m' := m + snd (gr_rng g1) in
 (* Delete adge from second graph *)
  let g2' := delete_edge g2' n' m' in
  let g_result := S.fold
                     (fun m g' \Rightarrow M.add m (adj g2' m) g')
                     (Mdomain g2') g1 in
  let g_result := rename_node n' a g_result in
  rename_node m' b g_result.
Definition L: graph :=
  let KK := mk_art K K A A in
  let KK := add_edge (B, B+snd(gr_rng K)) KK in
  rename_in_order KK.
```

2.2 Доказательства корректности операций над графами

Глава 3. Доказательство свойств раскраски малых графов в Соф

Назовем две раскраски f, f' графа G , если существуют изоморфизм графа g и перестановка цветов ω такие, что $f(v) = \omega(f'(g(v)))$. Также назовем две раскраски , если они не являются существенно одинаковыми.

 $\Gamma pa\phi H$ — это граф

$$H := (\{1, 2, 3, 4, 5, 6, 7\},\$$
$$\{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),\$$
$$(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 2)\})$$

Рисунок 3.1 — Существенно различные способы раскрасить граф H в не более чем 4 цвета

В статье [1] утверждается что существует только 4 существенно различные раскраски графа Н в не более чем в 4 цвета. Это утверждение обосновывается перебором вариантов наличия или отсутствия монохроматических троек.

3.1 Про Ltac, pattern matching и goal matching

В данной главе активно используется язык Ltac, и инструмент goal matching, представляемый этим языком.

3.2 Типы возможных правильных раскрасок графа T в не более чем 4 цвета

Назовем mpoŭкoŭ любой граф, изоморфный графу T на четырех вершинах

$$T:=(\{1,2,3,4\},\{(1,2),(1,3),(1,4)\})$$

Утверждение: Существует только три существенно различные раскраски графа G, если граф G изомрфен T.

В системе Сод это раскраски можно описать следующим образом:

```
(* Monochromatic *)
Definition type1_triple (el: list node) (c: Coloring) :=
  let center := nth 0 el 1 in
  let v1 := nth 1 el 1 in
  let v2 := nth 2 el 1 in
  let v3 := nth 3 el 1 in
  let c1 := c center in
  let c2 := c v1 in
  ~ (c1 = c2) /\ same_color c v1 v2 /\ same_color c v2 v3.

(* 2 and 1 *)
Definition type2_triple (el: list node) (c: Coloring) :=
  let center := nth 0 el 1 in
  let v1 := nth 1 el 1 in
  let v2 := nth 2 el 1 in
```

```
let v3 := nth 3 el 1 in
  let c1 := c center in
  let c2 := c v1 in
  let c3 := c v2 in
  let c4 := c v3 in
  ^{\sim} (c1 = c2) /\ ^{\sim} (c1 = c3) /\ ^{\sim} (c1 = c4) /\
    (c2 = c3 /  c2 = c4) / (c2 = c4 /  c2 = c3) /
        (c3 = c4 / \sim c3 = c2)).
(* All 3 different *)
Definition type3_triple (el: list node) (c: Coloring) :=
  let center := nth 0 el 1 in
  let v1 := nth 1 el 1 in
  let v2 := nth 2 el 1 in
  let v3 := nth 3 el 1 in
  let c1 := c center in
  let c2 := c v1 in
  let c3 := c v2 in
  let c4 := c v3 in
  ^{\sim} (c1 = c2) /\ ^{\sim} (c1 = c3) /\ ^{\sim} (c1 = c4) /\
    (~c2 = c3) / (~c2 = c4) / (~c3 = c4).
```

Каждая функция имеет тип Prop, принимает на вход список вершин и раскраску, при этом первый элемент в списке — номер вершины, соединенной со всеми остальными. Формула type1_triple кодирует то, что все вершины, кроме первой одинакового цвета, при этом этот цвет отличен от цвета первой вершины. Формула type2_triple кодирует то, что цвет первой вершины отличен от цвета остальных вершин, а среди остальных есть две одинакового цвета, который отличен от цвета оставшейся вершины. Формула type3_triple кодирует случай, когда все 4 вершины имеют различный цвет.

Teopema my_Triple_Coloring утверждает, что любая правильная раскраска графа Т является раскраской одного из этих типов. Ее доказательство включает в себя перебор всех возможных раскрасок, однако благодаря использова-

нию языка Ltac и goal matching можно переиспользовать куски доказательства в ситуациях, отличающихся только перестановкой цветов или изоморфизма графа.

Полный код доказательства приведен в файле my_Triple_Coloring.v 6.4. Тактика contr доказывает my_Triple_Coloring от противного и применяется в случаях, когда раскраска не является правильной, т. е. существует пара смежных ребер одного цвета. Тактика type1_tac применяется, когда полученная раскраска является раскраской первого типа, тактики type1_tac_left, type1_tac_middle type1_tac_right — раскраской второго типа (различны раскраски на различные случаи, какая пара вершин является парой одного цвета) и тактика type3_tac применяется для доказательства того, что раскраска является раскраской третьего типа.

Таким образом, для любой раскраски графа Т существует тактика, с помощью которой можно доказать утверждение о том, что если раскраска правильная, то она является раскраской одной из трех типов. Теперь все эти тактики можно объединить в одну тактику 'level4, которая с помощью goal matching может определить, какую именно тактику из указанных использовать. Теперь можно создать тактики level3 и level2, которые также с помощью goal matching определяют, необходимо ли доказывать утверждение от противного или вызывать тактику следующего уровня.

Итак, благодаря goal matching доказательство утверждения при различных контестах может быть доказано одной и той же тактикой, что позволяет использовать конвейер и записать доказательство теоремы очень кратко

```
Lemma coloring_triple_T:
   forall c: Coloring, is_good_coloring c T ->
    type1_triple [1; 2; 3; 4] c \/ type2_triple [1; 2; 3; 4] c \/
    type3_triple [1; 2; 3; 4] c.
Proof.
   intros. unfold is_good_coloring in H. unfold is_coloring in H.
   destruct H. remember H as H'. clear HeqH'.
   specialize (H' 1). inversion H';
    remember H as H''; clear HeqH''; specialize (H'' 2);
   inversion H''; remember HO as HO'; clear HeqHO';
   level2 H HO' HO H2 H3 c.
```

Qed.

3.3 Типы возможных правильных раскрасок графа ${\tt H}$ в не более чем ${\tt 4}$ цвета

Теперь, когда доказано утверждение про правильные раскраски $mpoe\kappa,$ можно перейти к раскраскам графа H.

 $\Gamma pa\phi H$ — это граф

$$H := (\{1, 2, 3, 4, 5, 6, 7\},\$$
$$\{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),\$$
$$(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 2)\})$$

Глава 4. Алгоритм раскраски графа из статьи де Грея

- 4.1 Работа алгоритма на Python
- 4.2 Реализация алгоритма в Соф

Глава 5. Заключение

5.1 Выводы

В данной работы были разработаны методы построения и графов, а также верифицирована корректность операций над ними. Формализованы и верифицированы утверждения о том, что есть не более 4 существенно различных способа раскрасить граф Н в не более, чем 4 цвета, а также алгоритм перебора возможных раскрасок графа, использующий алгоритм возврата.

5.2 Планы будущей работы

Разработанные методы можно использовать для верификации других статей про раскраски графов, например, статьи Marijn J.H. Heule, «Computing Small Unit-Distance Graphs with Chromatic Number 5» [5].

Также разработанную технику можно использовать в автоматизации поиска графов меньших размеров, которые не красятся в 4 цвета, а также поиска графов, которые не красятся в 5 цветов.

Глава 6. Приложение

Листинг 6.2 подгружается из внешнего файла.

Листинг 6.1

Листинг myGraphs.v

```
From VFA Require Import Perm.
  From VFA Require Import Color.
5 Open Scope positive.
  (*
  Definition add_edge (e: (E.t*E.t)) (g: graph) : graph :=
  M.add (fst e) (S.add (snd e) (adj g (fst e)))
   (M.add (snd e) (S.add (fst e) (adj g (snd e))) g).
  *)
  Definition add_edges (el: list (E.t*E.t)) (g: graph) : graph :=
    fold_right add_edge g el.
15 Definition mk_graph (el: list (E.t*E.t)) :=
    fold_right add_edge (M.empty _) el.
  Definition G :=
      mk_graph [ (5,6); (6,2); (5,2); (1,5); (1,2); (2,4); (1,4)].
  Compute (S.elements (Mdomain G)). (* = [4; 2; 6; 1; 5] *)
  Definition K3 :=
      mk_graph [ (1, 2); (2, 3); (1, 3)].
  Compute (S.elements (Mdomain K3)).
  Fixpoint l_rng' (l : list node) (cur_min: node) (cur_max: node)
    : node * node :=
   match 1 with
    | nil => (cur_min, cur_max)
    | x :: xs => let cur_min := if x <? cur_min then x else
       cur_min in
```

```
let cur_max := if cur_max <? x then x else</pre>
                     cur_max in
                   l_rng' (xs) (cur_min) (cur_max)
35
    end.
  Function l_rng (l : list node) :=
    match 1 with
      | nil => (1%positive, 2%positive)
      | x::xs => l_rng' l x x
    end.
  Function gr_rng (g : graph) : node * node :=
    l_rng (S.elements (Mdomain g)).
45
  Compute gr_rng G.
  Check M.add.
50 Definition rename_node (old : node) (new : node) (g : graph) :
     graph :=
    let nigh := adj g old in
    S.fold (fun n g' => add_edge (new, n) g') nigh (remove_node
       old g).
  Function gr_show (g : graph) : list (node * node) :=
    S.fold (fun n l => (map (fun y => (n, y)) (S.elements (adj g n))
       ))) ++ 1) (Mdomain g) nil.
  Compute gr_show K3.
60 Compute gr_show (rename_node 3 1 (rename_node 2 7 (rename_node 1
      5 K3))).
  Compute S.elements (Mdomain (rename_node 3 1 (rename_node 2 7 (
     rename_node 1 5 K3))).
  (* The user should avoid any collision of the new and old names.
      *)
  Function rename_all (f : node -> node) (g : graph) : graph :=
   S.fold (fun n g' => rename_node n (f n) g') (Mdomain g) g.
```

```
Compute K3.
   Compute gr_show (rename_all (fun x => x * 4) K3).
70 (* Connect two graphs by an articulation point (aka "sharnir").
     That point MUST be present in both graphs. *)
   Compute gr_rng K3.
75 (* Deletes one instance, if it's present, otherwise doesn't
     change the list *)
   Fixpoint delete_from_list (1: list node) (n: node) : list node
     match 1 with
       | nil => nil
       | h::xs => if h =? n
80
                   then xs
                   else h::(delete_from_list xs n)
     end.
   Compute delete_from_list [4; 3; 1; 2; 5] 6.
   (* n == len(before) *)
   Fixpoint sort (n: nat) (before: list node) (after: list node) :
     list node :=
     match n with
       | 0 => after
       | S n' =>
90
           let min_value := fst (l_rng before) in
           let before' := delete_from_list before min_value in
           sort n' before' ( after ++ [min_value] )
     end.
95
   Definition rename_in_order (g: graph) : graph :=
     let sorted_vertices := sort (length (S.elements (Mdomain g)))
        (S.elements (Mdomain g)) nil in
     fst (fold_left
100
           (fun pair_g_next n =>
             let next_node := snd pair_g_next in
             let g' := fst pair_g_next in
             (
```

```
rename_node n next_node g',
105
               next_node+1
             )
           )
           sorted_vertices (g, 1)
         ) .
110
   Definition mk_art (g1 g2 : graph) (n m : node) : graph :=
     let g2' := rename_all (fun x => x + snd(gr_rng g1)) g2 in
     let m' := m + snd(gr_rng g1) in
     let g := S.fold (fun m g' => M.add m (adj g2' m) g') (Mdomain
115
       g2') g1 in
     rename_node m' n g.
   Compute gr_show (mk_art K3 K3 1 2).
   Compute S.elements (Mdomain (mk_art K3 K3 1 1)).
120
   Definition delete_edge (g: graph) (a b : node) : graph :=
     let a_neigh := S.remove b (adj g a) in
     let b_neigh := S.remove a (adj g b) in
125
     M.add b b_neigh (M.add a a_neigh g).
   Definition mk_cmn_edge (g1 g2 : graph) (a b n m : node) : graph
      :=
   (* Make graphs disjoint. *)
     let g2' := rename_all (fun x => x + snd (gr_rng g1)) g2 in
   (* New names for the edge's vertices. *)
     let n' := n + snd (gr_rng g1) in
     let m' := m + snd (gr_rng g1) in
    (* Delete adge from second graph *)
     let g2' := delete_edge g2' n' m' in
135
     let g_result := S.fold (fun m g' => M.add m (adj g2' m) g') (
        Mdomain g2') g1 in
     let g_result := rename_node n' a g_result in
     rename_node m' b g_result.
140 (* articulation by 2 non adjacent points in one graph to build J
       *)
```

```
Compute gr_show (mk_cmn_edge K3 K3 1 3 1 3).
   Compute gr_show (rename_in_order (mk_cmn_edge K3 K3 1 3 1 3)).
145
   (* Make graph H. *)
   Definition H : graph :=
     let g1 := rename_in_order (mk_cmn_edge K3 K3 1 3 1 3) in
     let g2 := rename_in_order (mk_cmn_edge g1 K3 1 (snd (gr_rng g1
       )) 1 3) in
     let g3 := rename_in_order (mk_cmn_edge g2 K3 1 (snd (gr_rng g2
150
        )) 1 3) in
     let g4 := rename_in_order (mk_cmn_edge g3 K3 1 (snd (gr_rng g3
       )) 1 3) in
     rename_in_order (add_edge (2, snd (gr_rng g4)) g4).
   Compute gr_show H.
155
   Definition J: graph :=
     let HH := mk_cmn_edge H H 2 3 6 7 in
     let HH_H := mk_cmn_edge HH H 7 2 6 7 in
     let HHH := rename_node 14 12 HH_H in
160
     let HHH_H := mk_cmn_edge HHH H 6 7 6 7 in
     let HHHH := rename_node 19 17 HHH_H in
     let HHHH_H := mk_cmn_edge HHHH H 5 6 6 7 in
     let HHHHH := rename_node 24 22 HHHH_H in
165
     let HHHHHH_H := mk_cmn_edge HHHHH H 4 5 6 7 in
     let HHHHHH := rename_node 29 27 HHHHHH_H in
     let HHHHHHH_H := mk_cmn_edge HHHHHHH H 3 4 6 7 in
     let HHHHHHH := rename_node 34 32 HHHHHHH_H in
     rename_in_order (rename_node 37 9 HHHHHHH).
170
   (* Centers: 1, 8, 13, 17, 21, 25, 29 *)
   (* Linking vertices: 9, 12, 16, 20, 24, 28 *)
175 Compute gr_show J.
   Definition K: graph :=
```

```
let JJ := mk_art J J 1 1 in
     let JJ := add_edges [(9, 9+31); (12, 12+31); (16, 16+31); (20,
         20+31);
                 (24, 24+31); (28, 28+31)] JJ in
     rename_in_order JJ.
   Compute gr_show K.
185
   Definition A := 9.
   Definition B := 20.
190 Definition L: graph :=
     let KK := mk_art K K A A in
     let KK := add_edge (B, B+snd(gr_rng K)) KK in
     rename_in_order KK.
195 Compute gr_show L.
   Close Scope positive.
                                                           Листинг 6.2
                    Листинг myGraphs Properties.v
   From VFA Require Import myGraphs.
   From VFA Require Import Color.
   From VFA Require Import Perm.
   Open Scope positive.
   Definition graph_ok (g : graph) :=
     undirected g /\ no_selfloop g.
10
   Definition gr_deg (g : graph) (n : node) : nat :=
     S.cardinal (adj g n).
   Definition edgeb (g : graph) (n m : node) :=
     S.mem n (adj g m).
   Definition edge (g : graph) (n m : node) :=
     S.In n (adj g m).
```

```
20 Lemma adj_M_In : forall g n m,
    S.In m (adj g n) \rightarrow M.In n g.
  Proof. intros. unfold adj in H.
  destruct (M.find n g) eqn: H1.
  - apply M.find_2 in H1. Print M.In.
   exists n0. assumption.
  - discriminate.
  Qed.
  Check M.fold.
30
  (* Dual to Mdomain and nodes. *)
  Definition conodes (g: graph) : nodeset :=
     M.fold (fun _ a s => S.union a s) g S.empty.
  (* Let's try to avoid using this. *)
35
  (* Of course, for an undirected graph g, nodes g = conodes g. *)
  Compute S.elements (nodes H).
  Compute S.elements (conodes H).
40 Lemma edge_sym : forall g n m, graph_ok g ->
    edge g n m -> edge g m n.
  Proof.
  intros. unfold graph_ok, undirected in H. destruct H as [H _].
  unfold edge. apply H. assumption.
45 Qed.
  Lemma edge_irrefl : forall g n, graph_ok g -> ~ edge g n n.
  intros. unfold graph_ok, no_selfloop in H. destruct H as [_ H].
50 unfold edge. apply H.
  Qed.
  (* The weak vesrions independent of symmetry *)
  Lemma edge_corr_1 : forall g n m, edge g n m -> S.In m (nodes g)
55 Proof.
  intros. unfold nodes. rewrite Sin_domain.
  apply adj_M_In with n. unfold edge in H. assumption.
  Qed.
```

```
60 (*
  Lemma edge_corr_2 : forall g n m, edge g n m -> S.In n (conodes
     g).
  Proof.
  intros. unfold conodes. Search M.fold.
  Admitted.
65 (* Let's try to avoid using this. *)
  *)
  Lemma edge_corr : forall g n m, graph_ok g ->
     edge g n m \rightarrow S.In n (nodes g) /\ S.In m (nodes g).
70 Proof.
  intros; split; [ apply edge_sym in H0 | idtac ];
  [ apply edge_corr_1 with m | idtac | apply edge_corr_1 with n];
     assumption.
  Qed.
75 (* Our graphs K3, H, J, K, L are graphs indeed. *)
  (* All these facts can be established by a direct computation.
    But we HAVE TO bound the qunatifiers on graph nodes.
  *)
80
  Require Export List.
  Require Export Sorted.
  Require Export Setoid Basics Morphisms.
85 Lemma K3_ok : graph_ok K3.
  Proof. split.
  - unfold undirected. intros. remember H as H'.
    clear HeqH'. apply edge_corr_1 in H.
  (* Here lies the truth! *)
   Ltac gr_destr h :=
                          apply S.elements_1 in h; compute in h;
    repeat rewrite InA_cons in h; rewrite InA_nil in h;
    repeat destruct h as [? | h]; try inversion h; subst.
    gr_destr H; gr_destr H'; reflexivity.
95 - unfold no_selfloop. repeat intro. remember H as H'.
    clear HeqH'. apply edge_corr_1 in H. gr_destr H; gr_destr H';
    discriminate.
```

```
Qed.
100 Lemma H_ok : graph_ok H.
   Proof.
   split.
   - unfold undirected. intros. remember H as H'.
     clear HeqH'. apply edge_corr_1 in H.
105
     gr_destr H; gr_destr H'; reflexivity.
   - unfold no_selfloop. repeat intro. remember H as H'.
     clear HeqH'. apply edge_corr_1 in H. gr_destr H; gr_destr H';
     discriminate.
   Qed.
110
   Lemma J_ok : graph_ok J.
   Proof.
   split.
   - unfold undirected. intros. remember H as H'.
    clear HeqH'. apply edge_corr_1 in H.
     gr_destr H; gr_destr H'; reflexivity.
   - unfold no_selfloop. repeat intro. remember H as H'.
     clear HeqH'. apply edge_corr_1 in H. gr_destr H; gr_destr H';
     discriminate.
120 Qed.
   Check J_ok.
   Lemma K_ok : graph_ok K.
125 Proof.
   split.
   - unfold undirected. intros. remember H as H'.
     clear HeqH'. apply edge_corr_1 in H.
     gr_destr H; gr_destr H'; reflexivity.
|130| - unfold no_selfloop. repeat intro. remember H as H'.
     clear HeqH'. apply edge_corr_1 in H. gr_destr H; gr_destr H';
     discriminate.
   Qed.
135
   Lemma L_ok : graph_ok L.
   Proof.
   split.
```

```
- unfold undirected. intros. remember H as H'.
   clear HeqH'. apply edge_corr_1 in H.
    gr_destr H; gr_destr H'; reflexivity.
  - unfold no_selfloop. repeat intro. remember H as H'.
    clear HeqH'. apply edge_corr_1 in H. gr_destr H; gr_destr H';
    discriminate.
145 Qed.
  Lemma add_edge_corr' : forall g x y a b,
    edge (add_edge (a, b) g) x y <-> edge g x y \setminus/ (x = a \setminus\ y = b
       150 Proof.
    intros. pattern g. remember (fun g0 : graph =>
   apply WP.map_induction; intros.
  - rewrite HeqP. unfold add_edge, edge. simpl.
   rewrite M.Empty_alt in H. unfold adj. repeat rewrite H.
    repeat rewrite WF.add_o. assert (H1 : S.In x S.empty <-> False
      { split. apply Snot_in_empty. tauto. } destruct (WP.F.eq_dec
          a y).
    + rewrite S.add_spec, e. rewrite H1. split; intro.
      * destruct HO; subst; tauto.
      * repeat destruct HO as [ ? | HO]; try contradiction;
160
        left; destruct HO; rewrite HO; try rewrite H2; reflexivity
    + destruct (WP.F.eq_dec b y).
      * rewrite S.add_spec, e. rewrite H1. split; intro.
        { destruct HO; subst; tauto. }
        { repeat destruct HO as [ ? | HO]; try contradiction;
165
        left; destruct HO; rewrite HO; try rewrite H2; reflexivity
      * rewrite H, H1. split; intro; try contradiction. repeat
         destruct HO as [? | HO];
        [ assumption | destruct n0 | destruct n ]; symmetry; tauto
  - rewrite HeqP in *. clear HeqP. unfold WP.Add in H1. unfold
     add_edge, edge in *.
    simpl in *. unfold adj in *. repeat rewrite H1, WF.add_o in *.
```

```
destruct (WP.F.eq_dec a y); repeat rewrite WF.add_o in *.
     + destruct (WP.F.eq_dec x0 a), (WP.F.eq_dec x0 y).
       * rewrite S.add_spec. split; intro H2; repeat destruct H2 as
           [? | H2].
         { repeat right. rewrite H2, <- e1, <- e2. tauto. } { tauto
         { tauto. } { left. destruct H2. rewrite <-H3, H2, <-e2, <-
175
            e1. reflexivity. }
         { left. destruct H2. rewrite H2. reflexivity. }
       * rewrite e0 in *. contradiction.
       * rewrite e0 in *. contradiction.
       * rewrite e0 in *. rewrite <- H. reflexivity.
     + destruct (WP.F.eq_dec b y), (WP.F.eq_dec x0 y).
180
       * destruct (WP.F.eq_dec x0 b).
         { rewrite S.add_spec. split; intro H2; repeat destruct H2
            as [? | H2];
           try tauto. { rewrite <-e1, <-e2, H2. tauto. } { destruct
               H2. rewrite H2. tauto. }
           { left. destruct H2. rewrite <-H3, <-e1, H2, <-e2. tauto
              . }
185
         }
         { subst. contradiction. }
       * destruct (WP.F.eq_dec x0 b).
         { subst. contradiction. }
         { rewrite H. reflexivity. }
190
       * split; try tauto. intro H2; repeat destruct H2 as [? | H2
          ]; try tauto;
         destruct H2; subst; contradiction.
       * exact H.
   Qed.
195 Lemma add_edge_corr : forall g a b, graph_ok g -> a <> b ->
     graph_ok (add_edge (a, b) g).
   Proof.
   unfold graph_ok. intros. split.
   - unfold undirected. intros. apply add_edge_corr'. apply
      add_edge_corr' in H1.
    repeat destruct H1 as [? | H1].
200
     + left. apply edge_sym; assumption.
     + tauto.
     + tauto.
```

```
- unfold no_selfloop. repeat intro. apply add_edge_corr' in H1.
    repeat destruct H1 as [? | H1].
     + apply edge_irrefl with (g := g) (n := i); assumption.
     + destruct H1. subst. contradiction.
     + destruct H1. subst. contradiction.
   Qed.
210
   Lemma pos_eq_dec : forall x y : S.elt, x = y \setminus x \Leftrightarrow y.
   Proof.
   intros; destruct (Pos.lt_total x y) as [? | [? | ?]];
   try (right; intro; rewrite HO in H; destruct (Pos.lt_irrefl y);
215
            assumption); tauto.
   Qed.
   (* Monochromatic triplet in H with center. *)
220
   Definition center (g : graph) (o : node) : Prop :=
     forall i, S.In i (nodes g) -> i <> o -> edge g i o.
   Definition H_center (o : node) : Prop :=
     (gr_deg\ H\ o) = 6\%nat.
225
   Compute (gr_deg H 1).
230 Check subset_nodes.
   Definition gr_deg_search (g : graph) (d : nat) : nodeset :=
     subset_nodes (fun _ a => Nat.eqb (S.cardinal a) d) g.
235 Compute S. elements (gr_deg_search H 0).
   Fixpoint gr_deg_sort (g : graph) (maxd : nat) : list (list node)
     match maxd with
     | 0%nat => [S.elements (gr_deg_search g 0)]
240
     | S n => S.elements (gr_deg_search g maxd) :: gr_deg_sort g n
     end.
   Compute gr_deg_sort H 6.
```

```
245
   Definition node_color (clr : coloring) (n : node) (c : S.elt) :=
     M.find n clr = Some c.
250 Definition monochrom (g : graph) (clr : coloring) (o 1 m n :
      node) :=
     edge g o l / edge g o m / edge g o n /
      exists c, (node_color clr l c /\ node_color clr m c /\
         node_color clr n c).
255
   Lemma H_monochrom_center : forall (plt : S.t) (clr : coloring) (
      olmn: node),
     coloring_ok plt H clr -> monochrom H clr o l m n -> H_center o
260
   Definition palette4: S.t := fold_right S.add S.empty [1; 2; 3;
      4].
   Compute (M.elements (color palette H)).
265
   Close Scope positive.
                                                            Листинг 6.3
                      Листинг my New Coloring.v
   Require Export Coq.Bool.Bool.
   Require Export Coq.Lists.List.
   Require Export Coq.Lists.ListSet.
 5 Require Export Coq. Numbers. BinNums.
   Export ListNotations.
   From VFA Require Import Color.
   Definition Coloring := positive -> positive.
 10 <code>Definition same_color (c : Coloring) (u v : positive) : Prop :=</code>
      c u = c v.
```

```
Inductive is_color : positive -> Prop :=
  | c1: is_color 1%positive
  | c2: is_color 2%positive
15 | c3: is_color 3%positive
  | c4: is_color 4%positive
  Definition is_coloring (c : Coloring) := forall x : positive,
     is_color (c x).
  Definition is_good_coloring (c : Coloring) (g : graph) :=
    is_coloring c / forall x y : positive, S.In y (adj g x) -> c
       x \leftrightarrow c y.
  Definition is_colorable (g : graph) :=
25
   exists c : Coloring, is_good_coloring c g.
                                                           Листинг 6.4
                    Листинг my Triple Coloring.v
  From VFA Require Import Color.
  From VFA Require Import Perm.
  From VFA Require Import myGraphs.
5 From VFA Require Import Graphs_Properties.
  From VFA Require Import myColoringSmallGraphs.
  From VFA Require Import my_New_Coloring.
  Open Scope positive.
10
  Compute nth 0 [1;2;3] 1.
  (* Monochromatic *)
15 Definition type1_triple (el: list node) (c: Coloring) :=
    let center := nth 0 el 1 in
    let v1 := nth 1 el 1 in
    let v2 := nth 2 el 1 in
    let v3 := nth 3 el 1 in
    let c1 := c center in
    let c2 := c v1 in
    ~ (c1 = c2) /\ same_color c v1 v2 /\ same_color c v2 v3.
```

```
(* 2 and 1 *)
25 Definition type2_triple (el: list node) (c: Coloring) :=
    let center := nth 0 el 1 in
    let v1 := nth 1 el 1 in
    let v2 := nth 2 el 1 in
    let v3 := nth 3 el 1 in
30
    let c1 := c center in
    let c2 := c v1 in
    let c3 := c v2 in
    let c4 := c v3 in
    ^{\sim} (c1 = c2) /\ ^{\sim} (c1 = c3) /\ ^{\sim} (c1 = c4) /\
35
      (c2 = c3 /  c2 = c4) / (c2 = c4 /  c2 = c3) / (c3 =
         c4 / \sim c3 = c2)).
  Definition type3_triple (el: list node) (c: Coloring) :=
    let center := nth 0 el 1 in
    let v1 := nth 1 el 1 in
40
    let v2 := nth 2 el 1 in
    let v3 := nth 3 el 1 in
    let c1 := c center in
45
    let c2 := c v1 in
    let c3 := c v2 in
    let c4 := c v3 in
    (c1 = c2) / (c1 = c3) / (c1 = c4) /
      (~c2 = c3) / (~c2 = c4) / (~c3 = c4).
50
  Ltac type2_tac_left h2 h3 h4 h5 := right; left; unfold
     type2_triple;
      simpl; rewrite <- h2; rewrite <- h3; rewrite <- h4; rewrite
         <- h5;
      repeat split; cbv; try intro; try inversion H1;
      left; repeat split; cbv; try intro; simpl; try inversion H1.
55
  Ltac type2_tac_middle h2 h3 h4 h5 := right; left; unfold
     type2_triple;
      simpl; rewrite <- h2; rewrite <- h3; rewrite <- h4; rewrite
         <- h5;
```

```
repeat split; cbv; try intro; try inversion H1;
60
      right; left; repeat split; cbv; try intro; simpl; try
         inversion H1.
  Ltac type2_tac_right h2 h3 h4 h5 := right; left; unfold
     type2_triple;
      simpl; rewrite <- h2; rewrite <- h3; rewrite <- h4; rewrite
         <- h5;
      repeat split; cbv; try intro; try inversion H1;
65
      right; right; repeat split; cbv; try intro; simpl; try
         inversion H1.
  Ltac type3_tac h2 h3 h4 h5 := right; right; unfold type3_triple;
      simpl; rewrite <- h2; rewrite <- h3; rewrite <- h4; rewrite
         <- h5:
      repeat split; cbv; try intro; try inversion H1.
70
  Ltac type1_tac h2 h3 h4 h5 := left; unfold type1_triple; split;
      simpl; try rewrite <- h2; try rewrite <- h3; cbv;
      try intro; try inversion H1;
      unfold same_color; try rewrite <- h3; try rewrite <- h4; try
          rewrite <- h5;
75
      split; reflexivity.
  Ltac contr h0' h2 h3 h4 h5 c n x :=
    let H1 := fresh in
    let H6 := fresh in
80
    specialize (h0' 1 n);
    rewrite <- h5 in h0'; rewrite <- h2 in h0'; exfalso;
    assert (x <> x -> False);
    [> cbv; try intro; assert (x =x);
    try reflexivity; apply H1; apply H6 |
85
      apply H1; apply h0'; reflexivity ].
  Ltac level4 h0' h2 h3 h4 h5 c :=
    match goal with
    | [H2 : ?x = c 1, Hn : ?x = c ?n | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
        contr h0' h2 h3 h4 h5 c n x
90
    (*let H1 := fresh in
        let H6 := fresh in
```

```
specialize (h0' 1 n);
         rewrite <- h5 in h0'; rewrite <- h2 in h0'; exfalso;
95
         assert (x <> x -> False);
         [> cbv; try intro; assert (x =x);
         try reflexivity; apply H1; apply H6 |
           apply H1; apply h0'; reflexivity ] *)
     | [ H3 : ?x = c 2, H4 : ?x = c 3, H5 : ?x = c 4 | -
        type1_triple _ _ \/ type2_triple _ _ \/ type3_triple _ _]
       =>
100
         type1_tac h2 h3 h4 h5
     | [ H3 : ?x = c 2, H5 : ?x = c 4 | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
         type2_tac_middle h2 h3 h4 h5
     | [ H4 : ?x = c 3, H5 : ?x = c 4 | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
         type2_tac_right h2 h3 h4 h5
105
     | [ H3 : ?x = c 2, H4 : ?x = c 3 | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
         type2_tac_left h2 h3 h4 h5
     | [H2 : ?x = c 1, H3 : ?y = c 2, H4 : ?z = c 3, H5 : ?w = c 4]
         |- type1_triple _ _ \/ type2_triple _ _ \/ type3_triple _
       _] =>
         type3_tac h2 h3 h4 h5
     end.
110
   Ltac level3 h h0' h0 h2 h3 h4 c :=
     match goal with
     | [ H2 : ?x = c 1, H4 : ?x = c 3 | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
       let Ha := fresh in
115
         specialize (h0' 1 3);
           rewrite <- h4 in h0'; rewrite <- h2 in h0'; exfalso;
           assert (x <> x -> False);
             [> cbv; intro Ha; assert (x = x) as H5;
120
               [> try reflexivity |
                  apply Ha in H5; apply H5]
               | apply Ha; apply h0'; reflexivity ]
     | [ |- type1_triple _ _ \/ type2_triple _ _ \/ type3_triple _
       _] =>
```

```
remember h as H'''' eqn:HeqH'''';
         specialize (H'''' (3+1)); inversion H'''' as [H5|H5|H5|H5
125
           remember h0 as h0'' eqn:HeqH0'; clear HeqH0';
              level4 h0'' h2 h3 h4 H5 c
     end.
   Ltac level2 h h0' h0 h2 h3 c :=
130
    match goal with
     | [ H2 : ?x = c 1, H4 : ?x = c 2 | - type1_triple _ _ \/
       type2_triple _ _ \/ type3_triple _ _] =>
       let Ha := fresh in
         specialize (h0' 1 2);
           rewrite <- h3 in h0'; rewrite <- h2 in h0'; exfalso;
           assert (x <> x -> False);
135
             [> cbv; intro Ha; assert (x = x) as H5;
               [> try reflexivity |
                  apply Ha in H5; apply H5]
               | apply Ha; apply h0'; reflexivity ]
     | [ |- type1_triple _ _ \/ type2_triple _ _ \/ type3_triple _
       _] =>
       remember h as H''' eqn:HeqH'''; clear HeqH'''; specialize (
         H''' (2+1)); inversion H''' as [H4|H4|H4];
           remember h0 as Ha eqn:HeqH0; clear HeqH0;
              level3 h Ha hO h2 h3 H4 c
     end.
145
   Definition T := mk\_graph [ (1, 2); (1, 3); (1, 4) ].
   Lemma coloring_triple_T:
    forall c: Coloring, is_good_coloring c T ->
150
     type1_triple [1; 2; 3; 4] c \/ type2_triple [1; 2; 3; 4] c \/
       type3_triple [1; 2; 3; 4] c.
   Proof.
     intros. unfold is_good_coloring in H. unfold my_New_Coloring.
       is_coloring in H. destruct H.
     remember H as H'. clear HeqH'. specialize (H' 1). inversion H
155
       remember H as H''; clear HeqH''; specialize (H'' 2);
         inversion H''; remember HO as HO'; clear HeqHO';
```

```
level2 H HO' HO H2 H3 c.
   Qed.
160 Close Scope positive.
                                                          Листинг 6.5
                       Листинг my H coloring.v
   From VFA Require Import Color.
   From VFA Require Import Perm.
   From VFA Require Import myGraphs.
 5 From VFA Require Import Graphs_Properties.
   From VFA Require Import myColoringSmallGraphs.
   From VFA Require Import my_New_Coloring.
   From VFA Require Import my_Triple_Coloring.
10 Open Scope positive.
   (* Type1 - Type1 *)
   Definition type1_H (c: Coloring) : Prop :=
    type1_triple [1; 2; 4; 6] c /\ type1_triple [1; 3; 5; 7] c /\
       ~ same_color c 2 3.
   (* Type1 - Type2 *)
   Definition type2_H (c: Coloring) : Prop :=
     (type1_triple [1; 2; 4; 6] c /\ type2_triple [1; 3; 5; 7] c /\
       ~ same_color c 2 3 / ~ same_color c 2 5 / ~ same_color c 2
          7) \/
     (type2_triple [1; 2; 4; 6] c /\ type1_triple [1; 3; 5; 7] c /\
       ~ same_color c 2 3 /\ ~ same_color c 4 3 /\ ~ same_color c 6
           3).
25 (* Diagonals are monochromatic *)
   Definition type3_H (c: Coloring) : Prop :=
     type3_triple [1; 2; 4; 6] c /\ type3_triple [1; 3; 5; 7] c /\
       same_color c 2 5 / same_color c 3 6 / same_color c 4 7.
30
   (* One diagonal and same colors close to the vert in diagonal *)
   Definition type4_H (c: Coloring) : Prop :=
```

```
type2_triple [1; 2; 4; 6] c /\ type2_triple [1; 3; 5; 7] c /\
35
      (* Diagonal is 2 5 *)
      (same_color c 2 5 \ same_color c 3 7 \ same_color c 4 6 )
         \/
      (* Diagonal is 3 6 *)
      (same_color c 3 6 \ same_color c 2 4 \ same_color c 5 7 )
         \/
40
      (* Diagonal is 4 7 *)
      (same_color c 4 7 /\ same_color c 3 5 /\ same_color c 2 6 )
    ) .
45 Ltac contr HO Hn Hm n m x :=
    let H1 := fresh in
    let H6 := fresh in
    remember HO as HO' eqn:HeqHO'; clear HeqHO';
    specialize (H0' n m);
    rewrite <- Hn in H0'; rewrite <- Hm in H0'; exfalso;
    assert (x <> x -> False);
    [> cbv; try intro; assert (x =x);
    try reflexivity; apply H1; apply H6 |
      apply H1; apply H0'; reflexivity ].
55
  Ltac find_contr HO c :=
    lazymatch goal with
    | [H2 : ?x = c 1, Hn : ?x = c ?n |- type1_H _ \/ type2_H _ \/
       contr HO H2 Hn 1 n x
60
    | [Hn : ?x = c ?n, Hm : ?x = c ?m, Hk : ?x = c ?k |- type1_H _
        \/ type2_H _ \/ type3_H _ \/ type4_H _] =>
        try contr HO Hn Hm n m x; try contr HO Hn Hk n k x;
        try contr HO Hm Hk m k x
    | [Hn : ?x = c ?n, Hm : ?x = c ?m | - type1_H _ \/ type2_H _ \/
        type3_H _ \/ type4_H _] =>
65
        contr HO Hn Hm n m x
    end.
  Ltac color_next H n :=
```

```
let H' := fresh in
     let HeqH' := fresh in
     remember H as H' eqn: HeqH'; clear HeqH'; specialize (H' n);
        inversion H'.
   Ltac use_color H3 H5 H7 H9 H11 H13 H15 :=
     try rewrite <- H3;</pre>
     try rewrite <- H5;
75
     try rewrite <- H7;</pre>
     try rewrite <- H9;
     try rewrite <- H11;
     try rewrite <- H13;
    try rewrite <- H15.
80
   Ltac trivia_cases H3 H5 H7 H9 H11 H13 H15 :=
     repeat split; simpl; unfold same_color;
     use_color H3 H5 H7 H9 H11 H13 H15;
     try discriminate; try reflexivity.
   Ltac type1_H_tac H3 H5 H7 H9 H11 H13 H15 :=
     left; unfold type1_H;
     trivia_cases H3 H5 H7 H9 H11 H13 H15.
90
   Ltac type2_H_tac_left_left H3 H5 H7 H9 H11 H13 H15 :=
     right; left; unfold type2_H;
     (* Choose types of triples *)
       left; trivia_cases H3 H5 H7 H9 H11 H13 H15;
     (* Chose the different color in Type2 *)
       left; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
   Ltac type2_H_tac_left_right H3 H5 H7 H9 H11 H13 H15 :=
     right; left; unfold type2_H;
100
     (* Choose types of triples *)
       left; trivia_cases H3 H5 H7 H9 H11 H13 H15;
     (* Chose the different color in Type2 *)
       right; right; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
105 | 	exttt{Ltac} 	exttt{ type2_H_tac_left_middle} 	exttt{ H3} 	exttt{ H5} 	exttt{ H7} 	exttt{ H9} 	exttt{ H11} 	exttt{ H13} 	exttt{ H15} 	exttt{ :=}
     right; left; unfold type2_H;
     (* Choose types of triples *)
       left; trivia_cases H3 H5 H7 H9 H11 H13 H15;
```

```
(* Chose the different color in Type2 *)
       right; left; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
   Ltac type2_H_tac_right_left H3 H5 H7 H9 H11 H13 H15 :=
     right; left; unfold type2_H;
       right; trivia_cases H3 H5 H7 H9 H11 H13 H15;
       left; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
115
   Ltac type2_H_tac_right_middle H3 H5 H7 H9 H11 H13 H15 :=
     right; left; unfold type2_H;
       right; trivia_cases H3 H5 H7 H9 H11 H13 H15;
       right; left; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
120
   Ltac type2_H_tac_right_right H3 H5 H7 H9 H11 H13 H15 :=
     right; left; unfold type2_H;
       right; trivia_cases H3 H5 H7 H9 H11 H13 H15;
125
       repeat right; split; trivia_cases H3 H5 H7 H9 H11 H13 H15.
   Ltac type3_H_tac H3 H5 H7 H9 H11 H13 H15 :=
     right; right; left; trivia_cases H3 H5 H7 H9 H11 H13 H15.
130 | \text{Ltac type4\_H\_tac\_1} | \text{ H3 H5 H7 H9 H11 H13 H15} :=
     repeat right; unfold type4_H;
     trivia_cases H3 H5 H7 H9 H11 H13 H15;
     [> repeat right; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
        right; left; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
        left; trivia_cases H3 H5 H7 H9 H11 H13 H15
135
     ].
   Ltac type4_H_tac_2 H3 H5 H7 H9 H11 H13 H15 :=
     repeat right; unfold type4_H;
140
    trivia_cases H3 H5 H7 H9 H11 H13 H15;
     [> left; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
        repeat right; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
        right; left; trivia_cases H3 H5 H7 H9 H11 H13 H15
     ].
145
   Ltac type4_H_tac_3 H3 H5 H7 H9 H11 H13 H15 :=
     repeat right; unfold type4_H;
     trivia_cases H3 H5 H7 H9 H11 H13 H15;
     [> right; left; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
```

```
150
        left; trivia_cases H3 H5 H7 H9 H11 H13 H15 |
        repeat right; trivia_cases H3 H5 H7 H9 H11 H13 H15
     ].
   Ltac find_type H3 H5 H7 H9 H11 H13 H15 c :=
     match goal with
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3, ]
           H9 : ?x2 = c 4, H11 : ?x3 = c 5, H13 : ?x2 = c 6,
           H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type1_H_tac H3 H5 H7 H9 H11 H13 H15
160
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3, ]
           H9 : ?x2 = c 4, H11 : ?x3 = c 5, H13 : ?x2 = c 6,
           H15 : ?x4 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type2_H_tac_left_left H3 H5 H7 H9 H11 H13 H15
165
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3, ]
           H9 : ?x2 = c 4, H11 : ?x4 = c 5, H13 : ?x2 = c 6,
           H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             \verb|type2_H_tac_left_middle| H3 H5 H7 H9 H11 H13 H15|
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
170
           H9 : ?x2 = c 4, H11 : ?x4 = c 5, H13 : ?x2 = c 6,
           H15 : ?x4 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type2_H_tac_left_right H3 H5 H7 H9 H11 H13 H15
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
           H9 : ?x2 = c 4, H11 : ?x3 = c 5, H13 : ?x4 = c 6,
175
           H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type2_H_tac_right_left H3 H5 H7 H9 H11 H13 H15
       | [ H3: ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
           H9 : ?x4 = c 4, H11 : ?x3 = c 5, H13 : ?x2 = c 6,
180
           H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type2_H_tac_right_middle H3 H5 H7 H9 H11 H13 H15
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3, ]
           H9 : ?x4 = c 4, H11 : ?x3 = c 5, H13 : ?x4 = c 6,
```

```
H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
185
             type2_H_tac_right_right H3 H5 H7 H9 H11 H13 H15
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
           H9 : ?x4 = c 4, H11 : ?x2 = c 5, H13 : ?x3 = c 6,
           H15 : ?x4 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
190
             type3_H_tac H3 H5 H7 H9 H11 H13 H15
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3, ]
           H9 : ?x4 = c 4, H11 : ?x2 = c 5, H13 : ?x4 = c 6,
           H15 : ?x3 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type4_H_tac_1 H3 H5 H7 H9 H11 H13 H15
195
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
           H9 : ?x2 = c 4, H11 : ?x4 = c 5, H13 : ?x3 = c 6,
           H15 : ?x4 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type4_H_tac_2 H3 H5 H7 H9 H11 H13 H15
200
       | [ H3 : ?x1 = c 1, H5 : ?x2 = c 2, H7 : ?x3 = c 3,
           H9 : ?x4 = c 4, H11 : ?x3 = c 5, H13 : ?x2 = c 6,
           H15 : ?x4 = c 7 | - type1_H _ \/ type2_H _ \/ type3_H _
              \/ type4_H _ ] =>
             type4_H_tac_3 H3 H5 H7 H9 H11 H13 H15
     end.
205
   Lemma coloring_triple:
     forall c: Coloring, is_good_coloring c H ->
     type1_H c \/ type2_H c \/ type3_H c \/ type4_H c.
   Proof.
     intros. unfold is_good_coloring in H. unfold is_coloring in H.
210
         destruct H.
     color_next H 1;
       color_next H 2; try find_contr HO c;
         color_next H 3; try find_contr H0 c;
           color_next H 4; try find_contr HO c;
215
             color_next H 5; try find_contr H0 c;
               color_next H 6; try find_contr H0 c;
                 color_next H 7; try find_contr HO c;
                   find_type H3 H5 H7 H9 H11 H13 H15 c.
```

Qed.

Close Scope positive.

Список литературы

- 1. A. de Grey, The chromatic number of the plane is at least 5, arXiv:1804.02385, 2018.
- 2. Andrew W. Appel, Software Foundations, Volume 3: Verified Functional Algorithms, https://software foundations.cis.upenn.edu/vfa-current/, 2017.
- 3. H. Hadwiger, Ueberdeckung des Euklidischen Raumes durch kongruente Mengen, Portugaliae mathematica, 4(4), 238-242 (1945).
- 4. A. Soifer, *The Mathematical Coloring Book*, Springfer, 2008, ISBN-13: 9780387746401.
- 5. Marijn J.H. Heule, Computing Small Unit-Distance Graphs with Chromatic Number 5, arXiv:1805.12181, -2018.
- 6. G. Exoo, D. Ismailescu, The chromatic number of the plane is at least 5-a new proof, arXiv:1805.00157, -2018.