EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

11220796 **PUBLICATION NUMBER** 10-08-99 **PUBLICATION DATE**

29-01-98 APPLICATION DATE APPLICATION NUMBER 10052609

APPLICANT: FUJITA RYUICHI;

INVENTOR: FUJITA RYUICHI;

H04R 25/00 A61F 11/00 G01S 3/808 INT.CL.

G01S 3/86 H04R 3/12

DIRECTIONAL RECEPTION SYSTEM TITLE

ABSTRACT: PROBLEM TO BE SOLVED: To provide a sharp directional characteristic at removing of external noise which deteriorates the sound clarity of a hearing aid by means of the directional characteristic of a microphone.

> SOLUTION: Two secondary sound pressure inclination microphones 7 and 8 are arranged asymmetrically on the right/left supporting beams of a spectacles-type installation tool. The sum and the difference of the outputs are obtained respectively by an adder 9 and a substructure 10. The one of thrum is phase-shifted by a 90 degree phase shifter 12, and the addition/ subtraction outputs with the other one is obtained by an adder 14 and a subtracted 13. A switch selects one output among the outputs whose amplitude is smaller than that of the other and it is set to be reception output, and to be the input of an amplifier. The selection switch 20 is operated by the output of an amplitude comparator 19 setting the detection output of addition/ subtraction outputs to be input.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-220796

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl. ⁸		識別記号	FI NOAD 25/00
H 0 4 R			H O 4 R 25/00 K
A61F	11/00	3 1 0	A 6 1 F 11/00 3 1 0
G 0 1 S	3/808		G 0 1 S 3/808
	3/86		3/86
H04R	3/12		H 0 4 R 3/12 Z
			審査請求 未請求 請求項の数1 書向 (全 4 頁)
(21)出願番号		特顯平10-52609	(71) 出願人 598029276
			藤田 龍一
(22)山願日		平成10年(1998) 1 月29日	川崎市多摩区宿河原7-5-12
			(72) 発明者 藤田 能一
			川崎市多摩区宿河原7-5-12
		•	

(54)【発明の名称】 指向性受信方式

(57)【要約】

(修正有)

【課題】補聴器の明瞭度を劣化させる外来雑音を、マイクロホンの指向特性によって除去しようとする場合に、 尖鏡な指向特性を得る。

【解決手段】2組の2次音圧傾度マイクロボン7、8を、それぞれ、目鏡型装着具の左右支持梁上に対称に配置し、これら出力の和および差を加算器9、減算器10により求める。さらに、その片方が90度移相器12により移相し、他方との加算および減算出力を加算器14、減算器13により求める。これら出力の内、振幅の小さい方をスイッチによって選択して受信出力とし、増幅器の入力とする。この選択スイッチ20は、加算および減算出力の検波出力を入力とする振幅比較器19の出力によって動作する。

【特許請求の範囲】

【請求項1】2組のマイクロホン出力の和および差を求め、その片方を90度移相して他方と加算および減算する機能、ならびに、加算および減算出力の内、振幅の小さい方を選択する機能を有する指向性受信方式。

【発明の詳細な説明】

[00001]

【産業上の利用分野】本発明は主として補聴器に関するものである。

[00002]

【従来の技術】補聴器の明瞭度を低下させる要因の一つ として外末舞音があるが、従来の補聴器では、難聴耳の 入出力特性および周波数特性を補聴器の特性によって補 償し、信号同雑音比の更なる劣化を防ごうとするものが 主流となっている。例えば特開平8~79897号公報 に記載のように、補聴器利用者の居る場所における環境 音を入りする一対の無指向性マイクと、前記一対のマイ クに入力した環境音を処理する環境音処理手段と、会話 相手の音者を入りする所定の指向性マイクと、前記マイ クに入力する音声を処理する音声処理手段と、前記環境 音処理手段または音声処理手段の少なくとも一方の出力 を増幅する手段と、前記増幅手段の出力を再生する再生 手段とを備え、重要な環境音および会話相手の音声を快 適かつ明瞭に間けるようにした聴音補助装置が提案され ている。しかし、指向性を得るためにはマイクの形態が 大きく携帯性に乏しい。加えて、増幅器を周波数帯域に よって分割し、雑音帯域の増幅度を制御することによっ て雑音を抑圧しているものもあるが、信号帯域と重なる 場合は問題となる。この場合、マイクロホンの指向性に よって、雑音を低減することができるが、波長に比して 装置の規模に制限があるため、指向特性の実鋭度に関し ては充分ではない。

[0003]

【発明が解決しようとする課題】補聴器の明瞭度を劣化させる外来雑音を、マイクロホンの指向特性によって除去しようとする場合、マイクロホンアレイの大きさに対する制限から、従来の方法では失鋭な指向特性が得られない。本発明は、この指向特性を大幅に改善するものである。

[0004]

【課題を解決するための手段】2組の2次音圧傾度でイクロボンを、それぞれ、目鏡型装着具の左右支持梁上に対称に配置し、これら出力のベクトル和およびベクトル。

差を求める。さらに、その片方を90度移相し、他方との加算および減算出力を求める。次に、これら出力の内、振幅の小さい方をスイッチによって選択して受信出力とし、従来の増幅器の入力とする。この選択スイッチは、加算出力の検波出力と減算出力の検波出力を入力すると振幅比較器の出力によって動作する。

[0005]

【発明の実施の形態】図1は木発明の実施例を示す系統図である。1の形態 $M_{R,1}$ および2の $M_{R,2}$ は、それぞれ単一指向性マイクロホンで、3なる距離で配置され、5の減算器とともに7の2次音圧傾度マイクロホン M_R を構成し、目鏡型装着具の右側支持梁に取付けられる。同様にして、3の $M_{L,1}$ および4の $M_{L,2}$ は6の減算器とともに8の2次音圧傾度マイクロホン M_L を構成し、左側支持梁に取付けられる。

【0006】9は加算器、10は減算器、11は増幅度 K なる増幅器、12は90移相器である。たとえば11と12を積分器で構成すればK は周波数特性をもつ。13は減算器、14は加算器、15および16は検波器である。17は差動増幅器、18はヒステリシスを有する整形増幅器でたとえばシュミット回路である。17および18で比較器19を構成する。20は比較器19の出力で駆動される選択スイッチで、たとえばアナログスイッチである。21は20のスイッチングによる過波形を除去するローパスフィルタである。 $V_{R,1}$ は1の出力、 $V_{R,2}$ は2の出力で、 $V_{R,1}$ および $V_{R,2}$ の差出力である。 $V_{L,1}$ 、 $V_{L,2}$ および V_{L} についても同様である。

【0007】 V_a と V_b はそれぞれ V_R と V_L の加算および滅算出力である。 V_c は V_b を K 倍して 90 度移相した出力で、 V_a と V_c はそれぞれ V_a と V_c の減算および加算出力である。 V_a と V_c はそれぞれ V_a と V_c の検波出力である。 V_a と V_c は、 V_a と V_c の内、振幅が小さい方を選択した出力である。 V_a は V_c の内、振幅が小さい方を選択した出力である。 V_c は V_c の中のスイッチングによる過波形を除去した出力で、補聴器の増幅器入力となる。 V_c 2 次音圧傾度マイクロホンおよび8の間隔を V_c 1 、音波到来方向を正面 V_c 2 である。音波を正弦波とし、各周波数を V_c 2 であることも併せて、 V_c 1 、 V_c 2 であることも併せて、 V_c 1 、 V_c 2 であることも併せて、 V_c 3 とよび V_c 2 であることも併せて、 V_c 3 とよび V_c 3 に書くことができる。

[0008]

```
\begin{split} V_{R,1} = & \exp\left(j\omega t\right) + \exp\left(j\pi d\cos\theta/\lambda\right) \\ & + \exp\left(j\pi l\sin\theta/\lambda\right) + \left(1 + \cos\theta\right)/2 \cdots \cdots (1) \\ V_{R,2} = & \exp\left(j\omega t\right) + \exp\left(-j\pi d\cos\theta/\lambda\right) \\ & + \exp\left(j\pi l\sin\theta/\lambda\right) + \left(1 + \cos\theta\right)/2 \cdots \cdots (2) \\ V_{L,1} = & \exp\left(j\omega t\right) + \exp\left(j\pi d\cos\theta/\lambda\right) \\ & + \exp\left(-j\pi l\sin\theta/\lambda\right) + \left(1 + \cos\theta\right)/2 \cdots (3) \\ V_{L,2} = & \exp\left(j\omega t\right) + \exp\left(-j\pi d\cos\theta/\lambda\right) \end{split}
```

```
+\exp(-j\pi 1\sin\theta/\lambda) + (1+\cos\theta)/2\cdots(4)
     -(2)および(3)+(4)より、{
m V_R} 、{
m V_L} は(5)、(6)式となる。
(1)
               V_{\rm R} = 2 j \exp (j \omega t) + \sin (\pi d \cos \theta / \lambda)
                     +\exp\left(\mathrm{j}\pi\,\mathrm{l}\,\mathrm{s}\,\mathrm{i}\,\mathrm{n}\,\theta/\lambda\right)+\left(\mathrm{1}\pm\mathrm{c}\,\mathrm{o}\,\mathrm{s}\,\theta\right)/2\cdots\cdots(5)
               V_t = 2 j \exp(j \omega t) + \sin(\pi d \cos \theta / \lambda)
                    +\exp(-j\pi l\sin\theta/\lambda) + (1+\cos\theta)/2\cdots\cdots(6)
(5)、(6)式より、2次音圧傾度マイクロホンの指 向性関数D_M(O)は(O)式となる。
               D_{M}(\theta) = \{(1 \pm \cos)/2\} \sin(\pi d\cos\theta/\lambda)
                          /sin(πd/λ)······(7)
(5) + (6) および (5) - (6) より、V_a 、V_b は (8) 、 (9) 式となる。
               V_a = 4 j \exp(j \omega t) \cdot \cos(\pi l \sin \theta / \lambda)
                     \cdot D_M(\theta) \cdot \sin(\pi d/\lambda) \cdot \cdots (8)
                V_s = -4 \exp(j\omega t) \cdot \sin(\pi l \sin \theta / \lambda)
                     +D_{M}(\theta)+\sin(\pi d/\lambda)\cdots\cdots(9)
したがって、Viは(10)式となる。
                V_s = 4 \text{ jkexp} (\text{j}\omega t) + \sin (\pi l \sin \theta / \lambda)
                     +D_{M}\left(\theta\right)+\sin\left(\pi\,\mathrm{d}/\lambda\right)+\cdots (10)
     - (10)および (8)・(10)より、 V<sub>e</sub> 、
                                               [0009]
V。は(11)、(12)式となる。
                V_1 = 4 j k e x p (j \omega l)
                     \{\cos(\pi 1 \sin \theta / \lambda | k \sin(\pi 1 \sin \theta / \lambda)\}
                     V_{+} = 4 j k e x p (j \omega t)
                     +\{\cos{(\pi 1 \sin{\theta}/\lambda + k \sin{(\pi 1 \sin{\theta}/\lambda)}\}}
                     \cdot D_{V}(\theta) \sin(\pi d/\lambda) \cdots (12)
                                              -\lambda < 1または1、5 < 1 \sin \theta / \lambda < 2のとき(1
19の比較器および20の選択スイッチによって、V。
は0 \le 1 \sin \theta 入< 0. 5または1 \le 1 \sin \theta \le
                                               - 4) 式となる。等号のときはいずれかとなる。
1. うのとき (13) 式となり、0.5<1sin0/
                V_{\rm f} = V_{\rm d} \cdot \cdots \cdot \cdot \cdot \cdot (13),
                                              V_f = V_{\perp} \cdots \cdots (14)
                                              る。Kの値は切替可能。
したがってV」の指向性関数D(	heta)は(1 5)式とな-
                D(\theta) = D_M(\theta) + ||\cos(\pi || \sin \theta / \lambda)|| + k ||\sin(\pi ||
                         \sin \theta / \lambda) | | / k······(15)
                                                【図2】2次音圧傾度マイクロホンのみの指向特性図。
必要に応じて、出力の場所を切替えることにより、指向
性関数を(8)式の\cos(\pi 1 \sin \theta / \lambda) \cdot D_{M}
                                                【図3】本案実施例の指向特性図。
(\theta)、D_V(\theta)、(1+\cos\theta)/2および無指
                                                 【符号の説明】
                                                1, 2, 3, 4…単一指向性マイクロホン
向性に切替可能である。
                                                5,6…減算器
【0010】
                                                7.8…2次音圧傾度マイクロホン
【発明の効果】周波数1KHz、A-34cm、d-5
cm、1-15cm、K-1として、(7)式で与えら
                                                9…加算器
れる2次音圧傾度マイクロホンの指向性関数D_{M} (O)
                                                10…減算器
                                                11…增福器
および(15)式で与えられる本発明の実施例の指向性
                                                12…90度移相器
関数D(θ)を、それぞれ図2および図3に示す。2次
音圧傾度マイクロホンのみの-3dB指向幅は約77度
                                                13…減算器
であるが、本発明の実施例では約21度であり、外来雑
```

【図面の簡単な説明】

せることができる。

【図1】本発明の実施例の系統図。

音の除去性能が大幅に改善されている。補聴器以外の用

途であれば、さらに2組のマイクロホンを垂直方向に配 列して、垂直方向についても(15)式の指向性をもた

1-1…加算器

15.16…検波器

17…差動增幅器

18…整形増幅器

19…比較器

20…選択スイッチ

21…ローハスフィルタ

【図1】

[図2]

[図3]

