Basic Item Response Theory (IRT) with R source codes:

Rasch Models and Maximum Likelihood (ML) Parameter Estimation

> Formosa Robotics Group Oct. 10, 2021

Table of Binary Observations $X_{m,n}$

 $(1 \le m \le M, \ 1 \le n \le N)$ for M individuals and N items

 $X_{m,n}$ is the **Bernoulli (binary, dichotomous)** random variable denoting the response of individual m with respect to item n:

> $X_{m,n}$ =1 if the response is *correct*, =0 if the response is **incorrect**.

\rightarrow item n	1	2	3	4	5	
↓individual <i>m</i>				44		
1	0	0	1	1	0 ←	$X_{1,5}=0$
2	1	0	1 ^{\sup}	0	0	
3	1	1	1	0	1	

M = 3 students (individuals), each answering N = 5 problems(items)

Problem (P1): How to build a simple model for the Probability of Correct Response $p_{m,n}(\theta_m, \lambda_n)$?

 $p_{m,n}(\theta_m,\lambda_n)=P\big(X_{m,n}=1\big|\Theta_m=\theta_m,\,\Lambda_n=\lambda_n\big)$ is the probability for individual m to make a **correct** response to item n, given $\Theta_m=\theta_m$ and $\Lambda_n=\lambda_n,\,1\leq m\leq M,\,1\leq n\leq N$

- Θ_m is the random variable denoting the *ability* level of individual m
- Λ_n is the random variable for the **parameter** of **item** n

item difficulty

$$\Lambda_n = \lambda_n \\
n = 3$$

individual ability $\Theta_m = \theta_m$ m = 2

\rightarrow item n	1	2	3	4	5
↓individual <i>m</i>	16				
1	$p_{1,1}(\theta_1,\lambda_1)$	$p_{1,2} (\theta_1, \lambda_2)$	$p_{1,3}(\theta_1,\lambda_3)$	$p_{1,4}(\theta_1,\lambda_4)$	$p_{1,5}(\theta_1,\lambda_5)$
2	$p_{2,1}(\theta_2,\lambda_1)$	$p_{2,2}(\theta_2,\lambda_2)$	$p_{2,3}(\theta_2,\lambda_3)$	$p_{2,4}(\theta_2,\lambda_4)$	$p_{2,5}(\theta_2,\lambda_5)$
3	$p_{3,1}(\theta_3,\lambda_1)$	$p_{3,2}(\theta_3,\lambda_2)$	$p_{3,3}(\theta_3,\lambda_3)$	$p_{3,4}(\theta_3,\lambda_4)$	$p_{3,5}(\theta_3,\lambda_5)$

 Θ_m = θ_m : ability level of the mth student, $\Lambda_n = \lambda_n$: difficulty level of the nth problem

Answer to (P1): choose <u>prototype</u> of $p_{m,n}(\theta_m, \lambda_n)$ to be $p(\theta,b) = \frac{1}{1+e^{-D(\theta-b)}}$, $D \simeq 1.7$ (Rasch Model)

- Rasch model is a **one-p**arameter logistic (1PL) model with individual ability level θ and parameter b
- $p(\theta, b)$ is the probability for an individual to make a **correct** response to an item, given ability $\Theta = \theta$ and difficulty $\Lambda = b$
- $q(\theta,b)=1-p(\theta,b)=\frac{1}{1+e^{D(\theta-b)}}$ is the probability for an individual to make an **incorrect** response to an item, given $\Theta=\theta$ and $\Lambda=b$
- $0 \le p(\theta, b) \le 1$, $0 \le q(\theta, b) \le 1$: valid probability distributions
- e is Euler's number, a mathematical constant, $e \simeq 2.71828$, such that

$$e^t = \frac{d}{dt}e^t = \sum_{k=0}^{\infty} \frac{t^k}{k!}$$
 $ln(t) = \log_e t$, $ln(e^t) = t$

Rasch Model (1PL) $p(\theta, b) = \frac{1}{1 + e^{-D(\theta - b)}}$

$$p(\theta, b) = \frac{1}{1 + e^{-D(\theta - b)}}$$
$$0 \le p(\theta, b) \le 1$$

monotonically increasing function of θ , for fixed b

R source code for generating ICC

1 - icc1 <- function(b,D,color) { theta <- seq(-3,3,.1)3 P1 < 1/(1+exp(-D*(theta-b)))plot(theta, P1, type="l", x = c(-3,3), y = c(0,1), xlab="Ability", ylab="Prob(correct response)", 5 6 7 - } 8 - icc2 <- function(b,D,color) {</pre> 9 theta <- seq(-3,3,.1)10 P1 <- 1/(1+exp(-D*(theta-b)))11 12 lines(theta, P1, col = color) 13 - } D <- 1.7 icc1(b=-1, D, "red") 17 icc2(b=0, D, "green") 18 icc2(b=1, D, "blue")

Item Characteristic Curve (ICC)

Rasch model greatly simplifies computations (1)

$$\frac{\partial p}{\partial \theta} = \frac{\partial}{\partial \theta} \frac{1}{1 + e^{-D(\theta - b)}} = \frac{D e^{-D(\theta - b)}}{\left[1 + e^{-D(\theta - b)}\right]^2} = Dpq$$

$$\frac{\partial q}{\partial b} = \frac{\partial}{\partial b} \frac{1}{1 + e^{D(\theta - b)}} = \frac{D e^{D(\theta - b)}}{\left[1 + e^{D(\theta - b)}\right]^2} = Dpq$$

$$\frac{\partial p}{\partial b} = \frac{\partial}{\partial b} \frac{1}{1 + e^{-D(\theta - b)}} = \frac{-D e^{-D(\theta - b)}}{\left[1 + e^{-D(\theta - b)}\right]^2} = -Dpq$$

$$\frac{\partial q}{\partial \theta} = \frac{\partial}{\partial \theta} \; \frac{1}{1 + e^{D(\theta - b)}} \; = \frac{-D \; e^{D(\theta - b)}}{\left[1 + e^{D(\theta - b)}\right]^2} \; = -Dpq$$

$$p = p(\theta, b)$$
$$q = q(\theta, b) = 1 - p$$

$$\frac{\frac{\partial p}{\partial \theta}}{\frac{\partial p}{\partial b}} = \frac{\partial q}{\partial b} = \frac{\partial q}{\partial \theta} = -Dpq$$

$$\left(\frac{d}{dt}\left(\frac{f}{g}\right) = \frac{f'g - g'f}{g^2}\right)$$

Rasch model greatly simplifies computations (2)

$$\frac{\partial}{\partial \theta} \ln(p) = \frac{\partial}{\partial \theta} \ln\left(\frac{1}{1 + e^{-D(\theta - b)}}\right) = -\frac{\partial}{\partial \theta} \ln\left(1 + e^{-D(\theta - b)}\right)$$

$$= \frac{-1}{1 + e^{-D(\theta - b)}} \frac{\partial}{\partial \theta} \left(1 + e^{-D(\theta - b)}\right) = \frac{D e^{-D(\theta - b)}}{1 + e^{-D(\theta - b)}} = Dq = \frac{\partial}{\partial b} \ln(q)$$

$$\frac{\partial}{\partial \theta} \ln(q) = \frac{\partial}{\partial \theta} \ln\left(\frac{1}{1 + e^{D(\theta - b)}}\right) = -\frac{\partial}{\partial \theta} \ln\left(1 + e^{D(\theta - b)}\right)$$

$$= \frac{-1}{1 + e^{D(\theta - b)}} \frac{\partial}{\partial \theta} \left(1 + e^{D(\theta - b)}\right) = \frac{-D e^{D(\theta - b)}}{1 + e^{D(\theta - b)}} = -Dp = \frac{\partial}{\partial b} \ln(p)$$

$$\left(\frac{d}{dt}ln(g) = \frac{g'}{g}\right)$$

Problem (P2) How to estimate 1: Θ_m and 2: Λ_n ?

Hint: Use **likelihood** function to find a **good** estimate $\hat{\theta}_m$ and $\hat{\lambda}_n$ for the true values of the (hidden) variables Θ_m and Λ_n .

\rightarrow item n \downarrow individual m	1	2	3	4	5	
1	$p_{1,1}(\theta_1,\lambda_1)$	$p_{1,2} (\theta_1, \lambda_2)$	$p_{1,3}(\theta_1,\lambda_3)$	$p_{1,4}(\theta_1,\lambda_4)$	$p_{1,5}(\theta_1,\lambda_5)$	_
2	$p_{2,1}(\theta_2,\lambda_1)$	$p_{2,2}(\theta_2,\lambda_2)$	$p_{2,3}(\theta_2,\lambda_3)$	$p_{2,4}(\theta_2,\lambda_4)$	$p_{2,5}(\theta_2,\lambda_5)$	$\hat{\theta}_2 \simeq \theta_2$
3	$p_{3,1}(\theta_3,\lambda_1)$	$p_{3,2}(\theta_3,\lambda_2)$	$p_{33}(\theta_3,\lambda_3)$	$p_{34}(\theta_3,\lambda_4)$	$p_{3.5}(\theta_3,\lambda_5)$,

$$\hat{\lambda}_3 \simeq \lambda_3$$

The first step to solve (P2) is to define and find

$$r_{m,n}(x) = P(X_{m,n} = x | \Theta_m = \theta_m, \Lambda_n = \lambda_n), \quad x = 0, 1$$

- For simplicity, abbreviate $P\big(X_{m,n}=1\big|\Theta_m=\theta_m$, $\Lambda_n=\lambda_n\big)$ as $p_{m,n}$ and $q_{m,n}=P\big(X_{m,n}=0\big|\Theta_m=\theta_m$, $\Lambda_n=\lambda_n\big)=1$ $p_{m,n}$
- We have $r_{m,n}(x) = [p_{m,n}]^x [q_{m,n}]^{1-x}$ = $p_{m,n}$ if x = 1 (correct response) $q_{m,n}$ if x = 0 (incorrect response)

Note: $X_{m,n}$ is a binary **random variable**, and $x_{m,n}$ (or x) denotes its **value**: 0 or 1.

Answer to (P2.1)

Likelihood function of θ_m :

$$L_1\big(\pmb{x}_{m,}|\theta_m,\pmb{\lambda}\big)=\prod_{n=1}^N r_{m,n}\big(x_{m,n}\big)$$
 where $\pmb{x}_{m,}=(x_{m,1},x_{m,2},\ldots,x_{m,N}); \quad \pmb{\lambda}=(\lambda_1,\ldots,\lambda_N)$

Maximum likelihood (ML) estimate of θ_m , given λ : $\hat{\theta}_{m|\lambda} = \underset{\theta_m}{\operatorname{arg max}} \ln L_1(x_{m,|}\theta_m,\lambda)$

ln: monotonically increasing function

	Item 1	Item 2	***	Item N	
individual m	$r_{m,1}(x_{m,1})$	$r_{m,2}(x_{m,2})$	•.•(•)	$r_{m,N}(x_{m,N})$	$\hat{\theta}_{m \lambda}$

Answer to (P2.2)

Likelihood function of λ_n :

$$L_{2}(\boldsymbol{x}_{,n}|\lambda_{n},\boldsymbol{\theta}) = \prod_{m=1}^{M} r_{m,n}(x_{m,n})$$
 where $\boldsymbol{x}_{,n} = (x_{1,n}, x_{2,n}, ..., x_{M,n}); \quad \boldsymbol{\theta} = (\theta_{1}, ..., \theta_{M})$ $r_{1,n}(x_{1,n})$.

Maximum likelihood (ML) estimate of λ_{n} , given $\boldsymbol{\theta}$: $r_{M,n}(x_{M,n})$ $\hat{\lambda}_{n|\boldsymbol{\theta}} = \arg\max_{n} \ln L_{2}(\boldsymbol{x}_{,n}|\lambda_{n},\boldsymbol{\theta})$

Since $ln(t) = \log_e t$ is a monotonically increasing function of t, $\underset{\lambda_n}{\operatorname{arg max}} L_2(\boldsymbol{x}_{,n}|\lambda_n, \boldsymbol{\theta}) = \underset{\lambda_n}{\operatorname{arg max}} ln L_2(\boldsymbol{x}_{,n}|\lambda_n, \boldsymbol{\theta})$

ML Estimates of Individual Ability $\widehat{\theta}_{m|\lambda}$ (1)

$$\ln L_1(\mathbf{x}_{m,l}|\theta_m,\lambda) = \sum_{n=1}^N \ln r_{m,n}(\mathbf{x}_{m,n})$$

$$\frac{\partial}{\partial \theta_m} \ln r_{m,n} (x_{m,n}) = \frac{\partial}{\partial \theta_m} \left[x_{m,n} \ln(p_{m,n}) + (1 - x_{m,n}) \ln(q_{m,n}) \right]$$

$$\frac{\partial}{\partial \theta_m} ln(p_{m,n}) = \frac{\partial}{\partial \theta_m} ln\left(\frac{1}{1+e^{-D(\theta_m-b_n)}}\right) = \frac{D e^{-D(\theta_m-b_n)}}{1+e^{-D(\theta_m-b_n)}} = Dq_{m,n} = D(1-p_{m,n})$$
From Rasch Model
$$\frac{\partial}{\partial \theta_m} ln(q_{m,n}) = \frac{\partial}{\partial \theta_m} ln\left(\frac{1}{1+e^{D(\theta_m-b_n)}}\right) = \frac{-D e^{D(\theta_m-b_n)}}{1+e^{D(\theta_m-b_n)}} = -Dp_{m,n}$$

$$\frac{\partial}{\partial \theta_m} \ln r_{m,n}(x_{m,n}) = D x_{m,n} (1 - p_{m,n}) - D(1 - x_{m,n}) p_{m,n} = D(x_{m,n} - p_{m,n})$$

$$\frac{\partial}{\partial \theta_m} \ln L_1(\mathbf{x}_{m,n}|\theta_m, \lambda) = D \sum_{m=1}^{N} (x_{m,n} - p_{m,n})$$

$$p_{m,n} = \frac{1}{1 + e^{-D(\theta_m - b_n)}}$$
From Rasch Model

ML Estimates of Individual Ability $\hat{\theta}_{m|\lambda}$

Newton-Raphson Method for root-finding:

The root x^* satisfying $f(t^*) = 0$ can be found by iterating $t_{k+1} = t_k - \frac{f(t_k)}{f'(t_k)}$, $k = 0,1,2,3 \dots$ until convergence.

Maximum likelihood solution $\hat{\theta}_{m|\lambda} = \underset{\theta_m}{\operatorname{arg max}} \ln L_1(x_{m,l}|\theta_m, \lambda)$ occurs when $\frac{\partial}{\partial \theta_m} \ln L_1(\mathbf{x}_{m,}|\theta_m, \lambda) = \mathbf{0}$

m = 1,...,M

Newton-Raphson iteration
$$t = \theta_m$$

$$f(\theta_m) = \frac{\partial}{\partial \theta_m} \ln L_1(\mathbf{x}_{m,}|\theta_m, \lambda) = D \sum_{n=1}^N (\mathbf{x}_{m,n} - p_{m,n})$$
 for the ML ability estimate of θ_m
$$f'(\theta_m) = \frac{\partial^2}{\partial \theta_m^2} \ln L_1(\mathbf{x}_{m,}|\theta_m, \lambda) = -D^2 \sum_{n=1}^N p_{m,n} \ q_{m,n}$$

ML Estimates of Item Parameters $\lambda_{n|\theta}$

Maximum likelihood (ML) estimate of λ_n , given θ :

$$\hat{\lambda}_{n|\theta} = \underset{\lambda_n}{\operatorname{arg max}} \ln L_2(\boldsymbol{x}_{,n}|\lambda_n, \boldsymbol{\theta})$$

$$\frac{\partial}{\partial \lambda_n} \ln L_2(\mathbf{x}_{,n} | \lambda_n, \boldsymbol{\theta}) = \frac{\partial}{\partial \lambda_n} \sum_{m=1}^M [x_{m,n} \ln(p_{m,n}) + (1 - x_{m,n}) \ln(q_{m,n})]$$

$$\text{Rasch model: } \lambda_n = b_n, \quad p_{m,n} = \frac{1}{1 + e^{-D(\theta_m - b_n)}}$$

$$\frac{\partial}{\partial b_n} \ln(p_{m,n}) = \frac{\partial}{\partial b_n} \ln\left(\frac{1}{1 + e^{-D(\theta_m - b_n)}}\right) = \frac{-D e^{-D(\theta_m - b_n)}}{1 + e^{-D(\theta_m - b_n)}} = -D q_{m,n} = D(p_{m,n} - 1)$$

$$\frac{\partial}{\partial b_n} \ln(q_{m,n}) = \frac{\partial}{\partial b_n} \ln\left(\frac{1}{1 + e^{D(\theta_m - b_n)}}\right) = \frac{D e^{D(\theta_m - b_n)}}{1 + e^{D(\theta_m - b_n)}} = D p_{m,n}$$

$$\frac{\partial}{\partial \lambda_n} \ln L_2(\mathbf{x}_{,n} | \lambda_n, \boldsymbol{\theta}) = \sum_{m=1}^M D[x_{m,n}(p_{m,n} - 1) + (1 - x_{m,n})p_{m,n}] = D \sum_{m=1}^M (p_{m,n} - x_{m,n})$$

ML Estimates of Item Parameters $\hat{\lambda}_{n|m{ heta}}$ (2)

Apply Newton-Raphson iteration with

$$g(\lambda_n) = \frac{\partial}{\partial \lambda_n} \ln L_2(\boldsymbol{x}_{,n} | \lambda_n, \boldsymbol{\theta}) = D \sum_{m=1}^M (p_{m,n} - x_{m,n})$$

$$g'(\lambda_n) = \frac{\partial^2}{\partial \lambda_n^2} \ln L_2(\boldsymbol{x}_{,n} | \lambda_n, \boldsymbol{\theta}) = D^2 \sum_{m=1}^M p_{m,n} q_{m,n}$$

$$\lambda_{n,k+1} = \lambda_{n,k} - \frac{g(\lambda_{n,k})}{g'(\lambda_{n,k})}, \quad k = 0,1,2,3 \dots$$
to find $\hat{\lambda}_{n|\boldsymbol{\theta}} = \lambda_{n,\infty} = \underset{\lambda_n}{\arg \max} \ln L_2(\boldsymbol{x}_{,n} | \lambda_n, \boldsymbol{\theta})$

$$n = 1,\dots,N$$

for the maximum likelihood (ML) parameter estimate of b_n (Rasch model, 1PL)

R source code for ML estimation of individual ability

```
1 - ability <- function(X, b) {
       D < -1.7
       D2 <- D * D
 3
        \begin{array}{ll} \text{N <- length(b)} \\ \text{MaxCnt <- 50} \\ \text{theta <- 1.} \end{array} p_{m,n} = \frac{1}{1 + e^{-D(\theta_m - b_n)}} \qquad f(\theta_m) = D \sum_{m=0}^{\infty} (x_{m,n} - p_{m,n}) 
 4
 5
 7
       Tiny <-0.001
       for (i in 1:MaxCnt) {
                                                                    f'(\theta_m) = -D^2 \sum_{i=1}^{N} p_{m,n} \ q_{m,n}
          numerator <- 0
 9
          denominator <- 0
10
          for (n in 1:N) {
11
            p \leftarrow 1/(1+exp(-D*(theta-b[n])))
            numerator \leftarrow numerator + D * (X[n] - p)
13
                                                                         t_{k+1} = t_k - \frac{f(t_k)}{f'(t_k)}
            denominator <- denominator - D2 * p * (1-p)
15 -
          diff <- numerator / denominator
16
          theta <- theta - diff <
17
          cat(paste("[", i, "] ability = ", theta, " diff= ", diff, "\n")); flush.console()
18
19
          if (abs(diff) < Tiny) break
20 -
                                                       ability = 0.255586, convergence in 3 steps
21 - }
22
23
     b <- c(0.5, -0.5, 0.7, 0.6, -1, 0.9, 0, -0.5, 0) # difficulty level
    X < -c(1, 0, 1, 1, 0, 1, 0, 1, 0) # individual responses, #individuals M = 1
25
    ability(X,b)
```

Brief Review for Clarity (1)

A total of (M+N) hidden parameters $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_M)$ and $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_N)$ are to be estimated and extracted form the M x N input data matrix $[x_{m,n}]$.

Column-n: item difficulty $\lambda_n = b_n$

\rightarrow item n \downarrow individual m	λ_1	***	λ_n	1000	λ_N
$ heta_1$	<i>x</i> _{1,1}	rra	$x_{1,n}$	Wass	$x_{1,N}$
		***	*	****	-
			*	•••	
θ_m	$x_{m,1}$		$x_{m,n}$		$x_{m,N}$
		###»	*		
			*	•••	
θ_M	$x_{M,1}$	***	$x_{M,n}$		$x_{M,N}$

Row-m: ability θ_m

Input data $x_{m,n} = 0.1$

Brief Review for Clarity (2)

Maximum Likelihood (ML) estimates of individual ability levels and item difficulty levels, respectively, are calculated efficiently by aggregating horizontally and vertically along the matrix.

\rightarrow item n	λ_1	7444	λ_n		λ_N	
↓individual <i>m</i>		8		63		
$ heta_1$	$r_{1,1}(x_{1,1})$		$r_{1,n}(x_{1,n})$	1410	$r_{1,N}(x_{1,N})$	
			**	•••	•	
	•	•••	ě.		·	
θ_m	$r_{m,1}(x_{m,1})$	***	$r_{m,n}(x_{m,n})$	***	$r_{m,N}(x_{m,N})$	$\hat{ heta}_m$ λ
:•	3.5			***		
	8 4 0		8.	•••		
θ_{M}	$r_{M,1}(x_{M,1})$	300	$r_{M,n}(x_{M,n})$	•••	$r_{M,N}(x_{M,N})$	

 $\hat{\lambda}_{n|m{ heta}}$

Rasch model: $p_{m,n}=\frac{1}{1+e^{-D(\theta_m-b_n)}}=1-q_{m,n}$ depends only on θ_m and b_n , so does $r_{m,n}(x)$, given x.

$$r_{m,n}(x) = [p_{m,n}]^x [q_{m,n}]^{1-x},$$

 $x_{m,n} = x \in \{0,1\}$

Conclusions

- We formulate the maximum likelihood (ML) estimates of individual ability and item parameters for IRT using Rasch model (1PL).
- R programs are developed to verify the validity of the Rasch model and ML estimate of individual ability θ_m .
- Newton-Raphson iteration method results in very fast convergence in computing the ML estimate of θ_m , usually < 10 steps.
- We reformulate the mathematical derivation of formulas in [1] to provide a succinct representation of basic IRT theory.
- We modify the simple R programs in [2] to yield our R source codes.
- Our analysis paves the way to Bayesian and Neural Networks.

References

- [1] F.B. Baker & S.-H. Kim, Item Response Theory: Parameter Estimation Techniques, CRC Press, 2004.
- [2] F.B. Baker & S.-H. Kim, The Basics of Item Response Theory using R, Springer, 2017.
- [3] P. Mair, Modern Psychometrics with R, Springer, 2018.
- [4] N. Matloff, The Art of R Programming, No Starch Press, 2011.
- [5]H. Wickham, ggplot2, Elegant Graphics for Data Analysis, Springer, 2016.
- [6] J. Rust, M. Kosinski & D. Stillwell, Modern Psychometrics, Routledge, 2021.
- [7] L. P. Price, *Psychometric Method, Theory into Practice*, Guilford Press, 2017.
- [8] F.M. Lord, Applications of Item Response Theory to Practical Testing Problems, Routledge, 1980.
- [9] J.-P. Fox, Bayesian Item Response Theory, Springer, 2010.
- [10] C. D. Desjardins & O. Bulut, *Handbook of Educational Measurement and Psychometrics using R*, CRC Press, 2018.
- [11] S. P. Reise & D. A. Revicki, Handbook of Item Response Theory Modeling, Routledge, 2015.