Anova

```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]:
         import warnings
         warnings.filterwarnings('ignore')
        df = pd.read_csv("C:\\Users\\arnak\\Downloads\\Iris.csv")
In [3]:
In [4]:
         df
Out[4]:
                                                                                       Species
                ld SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                                          Iris-
           0
                                                                                 0.2
                 1
                                5.1
                                                3.5
                                                                 1.4
                                                                                        setosa
                                                                                          Iris-
            1
                 2
                                4.9
                                                 3.0
                                                                 1.4
                                                                                 0.2
                                                                                        setosa
                                                                                          Iris-
           2
                 3
                                                                                 0.2
                                4.7
                                                3.2
                                                                 1.3
                                                                                        setosa
                                                                                          Iris-
                                4.6
                                                 3.1
                                                                 1.5
                                                                                 0.2
                                                                                        setosa
                                                                                          Iris-
                 5
                                5.0
                                                                 1.4
                                                                                 0.2
            4
                                                3.6
                                                                                        setosa
                                                                                          Iris-
                                6.7
                                                 3.0
                                                                 5.2
                                                                                 2.3
         145 146
                                                                                      virginica
                                                                                          Iris-
                                6.3
                                                                                 1.9
         146 147
                                                 2.5
                                                                 5.0
                                                                                      virginica
                                                                                          Iris-
                                6.5
                                                                                 2.0
         147 148
                                                 3.0
                                                                 5.2
                                                                                      virginica
                                                                                          Iris-
         148 149
                                6.2
                                                 3.4
                                                                 5.4
                                                                                 2.3
                                                                                      virginica
                                                                                          Iris-
         149 150
                                5.9
                                                3.0
                                                                 5.1
                                                                                 1.8
                                                                                      virginica
        150 rows × 6 columns
In [5]: df['Species'].unique()
Out[5]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [6]: group1 = df[df['Species'] == 'Iris-setosa']['SepalWidthCm']
```

Out[10]: Text(0, 0.5, 'Density')


```
In [11]: from scipy import stats
In [12]: stats.f_oneway(group1,group2,group3)
Out[12]: F_onewayResult(statistic=47.36446140299382, pvalue=1.3279165184572242e-16)
In [13]: df.describe()
```

•		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
	max	150.000000	7.900000	4.400000	6.900000	2.500000

In [14]: df.head()

2

Out[13]:

Out[14]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa

3.2

3.1

1.3

1.5

0.2 Iris-setosa

0.2 Iris-setosa

5 5.0 3.6 1.4 0.2 Iris-setosa

In [15]: stats.f_oneway(df.iloc[:,1],df.iloc[:,2],df.iloc[:,3],df.iloc[:,4])

Out[15]: F_onewayResult(statistic=483.57128302425997, pvalue=3.4996987081933735e-159)

Chi-Square Test

4.7

4.6

In [17]: from scipy.stats import chi2_contingency

In [22]: data=[[14,4],[0,10]]

In [23]: data

Out[23]: [[14, 4], [0, 10]]

In [24]: df=pd.DataFrame(data,index=['Athlete','non-Alt'],columns=['non-Smoker','Smoker']

In [25]: df

Out[25]:		non-Smoker	Smoker	
	Athlete	14	4	
	non-Alt	0	10	

```
In [29]: df.plot(kind='bar', stacked=False)
Out[29]: <Axes: >
         14
                                                                     non-Smoker
                                                                     Smoker
         12
         10
          8
          6
          4
          2
          0
                             Athlete
In [31]: sta,pval,dof,freq=chi2_contingency(df)
In [32]: sta,pval,dof,freq
Out[32]: (12.6000000000000001,
           0.0003857467556820071,
           1,
           array([[9., 9.],
                  [5., 5.]]))
In [33]: chi2_contingency(df)
Out[33]: Chi2ContingencyResult(statistic=12.60000000000001, pvalue=0.000385746755682007
          1, dof=1, expected_freq=array([[9., 9.],
                 [5., 5.]]))
```

In []: