Calor

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Sumário

- Calor
- A teoria do calórico
- Transferência de Calor
- Quantidade de calor
- **Aplicações**
- **Apêndice**

Calor

Energia transferida de um objeto para outro em virtude, unicamente, de uma diferença de temperatura entre eles (essa energia é chamada de energia interna ou térmica).

Caloria como unidade de medida de energia interna

Equivalência entre caloria e Joules

Calor é energia em trânsito, portanto possui unidade de energia. A unidade mais utilizada em nutrição é a caloria, e seu valor surge da experiência do equivalente mecânico proposto por Thompson em

1 cal = 4.2 J.

Experiência do equivalente mecânico

A transferência de calor entre dois ou mais objetos pode ocorrer de três maneiras distintas:

Condução: Ocorre praticamente em sólidos.

Convecção: Ocorre em líquidos e gases.

Radiação: Ocorre em qualquer material, inclusive no vácuo.

Corollary

Radiação é o único processo de transferência de calor que ocorre no vácuo.

Processo de transferência por condução

Os átomos de uma extremidade da barra após aquecidos vibram com maior intensidade. Essa agitação é transmitida para os átomos que estão próximos e assim sucessivamente até o final da barra. Isso faz com que o calor seja transmitido ao longo da barra através da agitação dos átomos da rede cristalina.

Processo de transferência por convecção

Quando a parte de baixo é aquecida, as moléculas se agitam mais o que faz a densidade do líquido diminuir. Como a densidade diminui, o líquido fica mais leve e sobe para o ocupar o espaço preenchido pela parte de cima. Enquanto isso, a parte de cima que está mais pesada desce ocupando o espaço vazio abaixo. Esse processo continua, surgindo o que chamamos de correntes de convecção.

Processo de transferência por radiação

Todos os corpos quando aquecidos emitem radiações térmicas que, ao serem absorvidas por outro corpo, podem provocar nele uma elevação da temperatura.

Corollary

O calor que recebemos do sol chega até nós por radiação, uma vez que entre o Sol e a Terra existe vácuo.

Capacidade térmica

Capacidade térmica

Se um objeto recebe uma quantidade de calor ΔQ e sua temperatura varia de ΔT , a capacidade térmica desse objeto é dada por

$$C = \frac{\Delta Q}{\Delta T}$$
.

$$C_A = \frac{100 \text{ cal}}{20 \text{ o C}} \therefore C_A = 5.0 \text{ cal/}^{\circ} C$$

$$C_B = \frac{100 \text{ cal}}{10 \text{ }^{\circ}C} \therefore C_B = 10,0 \text{ cal}/^{\circ}C$$

Calor específico

Corollary

A razão entre a capacidade térmica e a massa não varia para o mesmo material,

$$\frac{C_1}{m_1}=\frac{C_2}{m_2}=\frac{C_3}{m_3}=\cdots=c$$
 (mesmo material).

Calor específico

Se um objeto de massa m tem uma capacidade térmica C, o calor específico, c, do material que o constitui é dado por

$$c=rac{C}{m}$$

Quantidade de calor

A quantidade de calor, Q ou ΔQ , absorvida ou liberada por um objeto de massa m e calor específico c, quando sua temperatura varia de ΔT , é dada por

$$Q = mc\Delta T$$
.

Calores específicos		
Substância	cal/g ⋅° C	
Água	1,0	
Gelo	0,55	
Vapor	0,5	
Chumbo	0.031	

Corollary

Por conservação de energia, o calor total liberado pelos objetos que se esfriaram é igual ao calor total absorvido pelos objetos que se aqueceram,

$$Q_1 + Q_2 + Q_3 + \cdots + Q_n = 0.$$

Transferência de calor numa parede.

Exemplo de material isolante (aerogel).

Corollary

O objetivo de um isolante térmico é impedir a transferência de calor.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	P	ρ
Sigma	Σ	σ
Tau	T	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.