Aula 3: Teoremas sobre funções contínuas - Teorema de Bolzano

Teorema 4.1. (Teorema de Bolzano ou dos valores intermédios) Se f é uma função contínua num intervalo [a,b], a < b, e f(a) < Y < f(b) ou f(b) < Y < f(a) então existe $X \in]a,b[$ tal que f(X) = Y.

Corolário 1. Se f é contínua em [a,b] e $f(a) \cdot f(b) < 0$ então existe $x_0 \in]a,b[$ tal que $f(x_0) = 0$.

Exemplo 4.1. A equação sen x + 2x - 1 = 0 tem pelo menos uma solução em \mathbb{R} .

Corolário 2. Seja I um intervalo qualquer de \mathbb{R} e $f:I\to\mathbb{R}$ uma função contínua. Então f(I) é um intervalo.

Um ponto é um intervalo fechado degenerado, o vazio é um intervalo aberto degenerado.

Aula 4: Extremos locais e globais

Seja $f: D_f \to \mathbb{R}$ com contradomínio CD_f . Um ponto $c \in D_f$ é

- ponto de máximo (mínimo) global se f(c) é o máximo (mínimo) de CD_f ;
- ponto de máximo (mínimo) local se existe uma vizinhança $\mathcal{V}(c)$ tal que c é ponto de máximo (mínimo) global da restrição da função f ao conjunto $D \cap \mathcal{V}(c)$.

Um ponto c de máximo ou de mínimo local (global) diz-se <u>ponto de extremo local (global)</u> de f. Ao valor f(c) chama-se extremo local (global) de f.

ou extremante

Um ponto de extremo c da função f diz-se extremo estrito quando $f(x) \neq f(c)$ para todo o x diferente de c numa vizinhança de c.

Exercício 4.1 Encontre extremos e pontos de extremo locais e globais da função definida em [-4,6[pelo gráfico representado na figura 4.2, indicando os extremos estritos:

Aula 4: Teoremas sobre funções contínuas - Teorema de Weierstrass

Teorema 4.2. (Teorema de Weierstrass) Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$. Se D_f é um intervalo e fechado e f é contínua em D_f , então f atinge em D_f o seu máximo e o seu mínimo, isto é, existem $x_m, x_M \in D_f$ tais que, $f(x_m) \leq f(x) \leq f(x_M)$, para todo o $x \in D_f$. Consequentemente, o contradomínio da função é $f(D_f) = [f(x_m), f(x_M)]$.

- A função $f:]-1,1[\to\mathbb{R}$ dada por $f(x)=\frac{1}{1-x^2}$ não é limitada. Isto contradiz o teorema anterior?
- A função $g:[0,+\infty[\to\mathbb{R} \text{ dada por } g(x)=\frac{1}{1+x^2}$ é contínua e limitada. Assume o valor máximo em x=0, mas não existe $x\in[0,+\infty[$ tal que g(x) seja mínimo. Porquê?

Aula 4: Exercícios 1

Exercício 4.3 Considere a função g dada por

$$g(x) = \frac{3\pi}{5} - \arccos\left(\frac{x-1}{2}\right).$$

Utilize o teorema de Bolzano para justificar que g admite uma raiz no intervalo]0,2[.

Exercício 4.4 Considere a função f, real de variável real, tal que $f(x) = \frac{1}{x-1}$

- 1. f é contínua em]1,2]? f é limitada em]1,2]?
- 2. Existe contradição com o teorema de Weierstrass?

Aula 4: Teoremas sobre funções contínuas - Teorema de Rolle

Teorema 4.3. (Teorema de Rolle) Seja f uma função contínua em [a,b] e derivável em]a,b[. Se f(a) = f(b) então existe $c \in]a,b[$ tal que f'(c) = 0.

Corolário: Seja f uma função contínua em [a,b] e derivável em]a,b[. Se $f'(x) \neq 0, \forall x \in]a,b[$, então f é injetiva e estritamente monótona.

- Se $f'(x) \ge 0$ (resp. $f'(x) \le 0$) em]a, b[, e f'(x) = 0 apenas em pontos isolados, então f é estritamente crescente (decrescente).
- ullet Se f é estritamente monótona, então f é injetiva.

Exercício

- 2. Se f é estritamente monótona e derivável em]a,b[, então $f'(x) \neq 0, \forall x \in]a,b[$?
- 3. Prove que entre duas raízes (dois zeros) consecutivas duma função, derivável em \mathbb{R} , existe uma raiz da sua derivada. Prove ainda que entre raízes consecutivas da derivada existe quando muito uma raiz da função.

Aula 4: Teoremas sobre funções deriváveis - Teorema de Lagrange

Teorema 4.4. (Teorema de Lagrange) Seja f uma função contínua em [a,b] e derivável em]a,b[. Então existe um ponto $c \in]a,b[$ tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Exercício 4.5 Seja $f:[3,2+e] \to \mathbb{R}$ dada por $f(x)=x+\ln(x-2)$. Verifique que f satisfaz a hipótese do Teorema de Lagrange e encontre a equação da reta tangente ao gráfico e paralela à secante nos extremos do domínio.