Terceiro Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

29 de julho de 2022

Sumário

Conclusão

L	Intr	rodução		
	1.1	A pon	te de Wheatstone	
	1.2	Obten	$\operatorname{do} R_x \dots \dots \dots$	
2	Tar	refas		
	2.1	1 Aumenta a tensão da fonte até a c		
		rente	$em A atingir 9mA \dots \dots$	
	2.2	2.2 Varie a resistencia R_k ate balan		
	a ponte de Wheatstone		te de Wheatstone	
	2.3	Com a ponte balanceada, aumente		
		a tens	\tilde{a} o da fonte	
2.4 V		Verific	Verifique o funcionamento com um	
		resisto	or de $12k\Omega$	
	2.5	Medindo resistencia da lampad		
		2.5.1	Tabela de dados	
		2.5.2	Grafico	
		2.5.3	Interpretação de resultados .	
2.6 Comportamento do LDR		ortamento do LDR		
		2.6.1	Balanceamento com luz apli-	
			cada	
		2.6.2	Balanceamento sem luz apli-	
			cada	
		2.6.3	Interpretacao de resultados .	

1 Introdução

Neste relatório, vamos discutir a ponte de Wheatstone e um método experimental para obter uma resistência desconhecida a partir de um circuito já conhecido

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

1.1 A ponte de Wheatstone

Esta tem como função principal determinar uma resistência desconhecida R_x a partir de três resistências e uma corrente previamente conhecidas, que vamos chamar aqui de A e R_1 , R_2 , e R_k .

1.2 Obtendo R_x

Para obter essa resistência desconhecida, o que faremos é inicialmente determinar a corrente A. E tentar modificar a resistência R_k até esta corrente A se aproximar de 0

A ideia central disso é que a corrente que está saindo da fonte vai se dividir em C, e se $R_1 * R_x = R_k * R_2$ então o sistema estará balanceado e a corrente A será 0.

Já que escolhemos o valor de R_1 , R_2 , e R_k , vamos poder determinar R_x como a seguinte equação:

$$R_1 * R_x = R_k * R_2$$

$$R_x = \frac{R_2 * R_k}{R_1} \tag{1}$$

Apesar de termos escolhido R_1 e R_2 iguais, não simplifiquei a equação para $R_x = R_k$. Porque perderia as incertezas de R_1 e R_2 .

2 Tarefas

2.1 Aumenta a tensão da fonte até a corrente em A atingir 9mA

Fizemos isto com um R_k fixo em 0. E conseguimos uma tensão de $0.9V\pm0.1V$ nos terminais da fonte

2.2 Varie a resistencia R_k ate balancear a ponte de Wheatstone

Neste caso a resistência R_x se iguala a resistência R_k , obedecendo as devidas regras de derivação de erro a partir dos erros conhecidos conseguimos:

$$R_k = (5.6 \pm 0.1) * 10^3 \Omega \tag{2}$$

2.3 Com a ponte balanceada, aumente a tensão da fonte

Ela se manteve em zero.

O amperímetro vai estar medindo uma porcentagem de desbalanceamento na ponte.

Se a corrente que entra em C aumenta, e a ponte está desbalanceada. A corrente passando pelo amperímetro também aumenta.

No nosso caso em particular, não foi possível detectar este aumento, porém se continuássemos aumentando a tensão da fonte, eventualmente veríamos o resíduo do desbalanceamento passando pelo amperímetro.

2.4 Verifique o funcionamento com um resistor de $12k\Omega$

Fizemos a verificação, e conseguimos igualar o R_k a $12k\Omega$ resultando em uma corrente mínima passando por A.

Esta corrente mínima estava na ordem de 10^-6A , ela existe por causa dos erros associados às medidas do circuito. Em um circuito ideal ela seria 0.

2.5 Medindo resistencia da lampada

2.5.1 Tabela de dados

Tensão (V)	Resistência L (Ω)
2.00 ± 0.05	9 ± 1
4.00 ± 0.05	13 ± 1
6.00 ± 0.05	15 ± 1

2.5.2 Grafico

Gráfico de Resistência por Tensao Autor: Henrique Pedro da Silva

2.5.3 Interpretação de resultados

O resultado é coerente com o esperado. Que seria o caso da lâmpada ser um caso de comportamento não ôhmico, e que sua resistência sobe de acordo com a tensão aplicada.

2.6 Comportamento do LDR

Aplicamos uma tensão de $1.00V \pm 0.05$ no circuito, que resultou em uma corrente de $10.06mA \pm 0.1mA$ entrando no LDR antes do balanceamento.

2.6.1 Balanceamento com luz aplicada

Neste caso conseguimos uma resistência de $1.7*10^3 \Omega \pm 10^2 \Omega$

2.6.2 Balanceamento sem luz aplicada

Neste caso conseguimos uma resistência de $7*10^4\Omega\pm10^4\Omega$

2.6.3 Interpretacao de resultados

Podemos observar que a resistência aumenta uma ordem de magnitude quando a luz é removida.

Também foi observado que o sistema é extremamente sensível a mudanças pequenas de luz. Uma "sombra" leve já faz a resistência variar significantemente.

3 Conclusão

Utilizando um circuito de *Wheatstone* posso medir pequenas alterações de *corrente* para descobrir uma resistência desconhecida com bastante precisão.

Esse sistema é bastante robusto para diferentes valores de tensões de fonte. E também é significantemente resistente a erros aleatórios de medição.