Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

<u>09.03.01 Информатика и вычислительная техника</u> код и наименование направления подготовки

ОТЧЕТ

по преддипломной практике

по направлению 09.03.01 «Информатика и вычислительная техника», направленность (профиль) — «Электронно-вычислительные машины, комплексы, системы и сети», квалификация — бакалавр, программа академического бакалавриата,

форма обучения – очная, год начала подготовки (по учебному плану) – 2015

Выполнил: студент гр. ИВ-521 «25» мая 2019 г.	 /Романюта А.А./
Оценка «»	
Руководитель практики	
от университета	
Старший преподаватель	
Кафедры ВС	
«25» мая 2019 г.	/Гонцова А.В./

ПЛАН-ГРАФИК ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Тип практики: преддипломная практика Способ проведения практики: стационарная

Форма проведения практики: дискретно по периодам проведения практики

Tема BKP: Разработка и реализация модели контроллера на базе микросхем стандартной логики

Содержание практики

Согласовано:

Наименование видов деятельности	Дата
	(начало – окончание)
Постановка задачи на практику, определение конкретной	11.02.19-17.02.19
индивидуальной темы, формирование плана работ. Водный	
инструктаж по технике безопасности (охране труда, пожарной безопасности)	
Работа с библиотечными фондами, сбор и анализ материалов	19.02.19-03.03.19
по теме практики	
Выполнение работ в соответствии с составленным планом	05.03.19-14.04.19
Анализ полученных результатов и произведенной работы,	07.05.19-25.05.19
составление отчета по практике	

Руководитель практики	
от университета	
Старший преподаватель кафедры ВС	/Гонцова А.В./

Оглавление

ЗАДАНИЕ НА ПРЕДДИПЛОМНУЮ ПРАКТИКУ	4
ВВЕДЕНИЕ	5
ОСНОВНАЯ ЧАСТЬ	6
Основные параметры разрабатываемой модели	6
Разработанная схема	6
Программирование микросхем энергонезависимой памяти	9
ЗАКЛЮЧЕНИЕ	12
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	13
ПРИЛОЖЕНИЕ А	14
Список используемых компонентов	14
А.1 Микросхемы	
А.2 Конденсаторы	16
А.3 Резисторы	16
А.4 Транзисторы	17
А.5 Индикаторы	17
А.6 Прочее	17

ЗАДАНИЕ НА ПРЕДДИПЛОМНУЮ ПРАКТИКУ

Цель бакалаврской работы - разработка наглядной модели микроконтроллера с минимальным необходимым для работы функционалом и характеристиками.

В рамках дипломного проекта должна быть разработана и собрана модель контроллера, архитектура которой приближена к базовой архитектуре микроконтроллера, процесс работы которой можно наблюдать в реальном времени.

ВВЕДЕНИЕ

Микроконтроллер — широко применяемая, программируемая микросхема, предназначенная для управления устройствами, в работе которых не требуется серьезная вычислительная мощность или же многозадачность. Вследствие их малой мощности, но, как правило, большого функционала, требуется точное понимание базовых принципов их работы.

ОСНОВНАЯ ЧАСТЬ

Основные параметры разрабатываемой модели

- Разрядность: 8 бит
- Разрядность линии адреса: 16 бит
 Размер оперативной памяти: 2¹⁶
- Архитектура: RISC
- Разрядность шины управления определяется по количеству необходимых управляющих сигналов
- Топология: Общая шина. Шина адреса и данных совмещена
- Разрядность команды: 10 бит
- Кодирование команды: 2 бита тип команды, 8 бит операнд
- Разрядность команды УУ: 14 бит (команда + 4 бит на этап выполнения)
- Базовые компоненты перечислены в Приложении А

Модель должна иметь:

- Поддержку простых команд
- Регулировку частоты работы
- Возможность ручного тактирования
- Возможность загрузки в оперативную память кода программы с помощью платформы Arduino Nano

Разработанная схема

Минимальные необходимые модули разрабатываемой модели:

• Регистры

Регистр содержит в себе:

- 8-мибитный параллельный каскад D-триггеров
- 8-мибитный шинный формирователь
- Тактовый генератор

Тактовый генератор содержит в себе:

- о Таймер в нестабильном режиме
- о Таймер в моностабильном режиме
- о Схему остановки генератора
- о Схему сброса всего устройства
- Оперативное Запоминающее Устройство

ОЗУ содержит в себе:

- о 16-тибитную микросхему памяти с параллельным интерфейсом
- о 8-мибитный шинный формирователь на ввод данных и вывод
- о Два 8-мибитных регистра с возможностью инкрементирования
- Устройство Управления

УУ содержит в себе:

- о Параллельный массив микросхем энергонезависимой памяти с записанными алгоритмами команд
- о Два регистра
- о Схему счета этапа выполнения
- Арифметико-Логическое Устройство

АЛУ содержит в себе:

- о Два регистра
- Две микросхемы 4-ехбитного АЛУ, последовательно соединенных

• Счетчик команд

Счетчик команд содержит в себе:

о Два 8-мибитных регистра с возможностью инкрементирования

Рисунок 1 - Функциональная схема модели

Рисунок 2 - Кодирование команды Устройства Управления. Количество бит продиктовано в первую очередь разрядностью шины адреса микросхемы 28c256.

Программирование микросхем энергонезависимой памяти

Требуется разработать программу для программатора микросхем EEPROM 28 серии Программа должна реализовать логику записи и чтения байта данных на основе документации.

AC Write Characteristics

Symbol	Parameter	Min	Max	Units
tas, toes	Address, OE Set-up Time	0		ns
tan	Address Hold Time	50		ns
tcs	Chip Select Set-up Time	0		ns
tch	Chip Select Hold Time	0		ns
twp	Write Pulse Width (WE or CE)	100		ns
tos	Data Set-up Time	50		ns
ton, toen	Data, OE Hold Time	0		ns
tov	Time to Data Valid	NR (1)		

Note: 1. NR = No Restriction

AC Write Waveforms

WE Controlled

CE Controlled

Рисунок 3 - Временная диаграмма логических уровней для записи данных в микросхему 28с256

```
void setAddress(int address, bool outputEnable) {
  shiftOut(SHIFT DATA, SHIFT CLK, MSBFIRST, ((address >> 8) & 0xFF));
  shiftOut(SHIFT DATA, SHIFT CLK, MSBFIRST, address & 0xFF);
  if (outputEnable == true)
   digitalWrite (OUT EN, LOW);
    digitalWrite(OUT EN, HIGH);
 pulse(SHIFT LATCH, 0);
void setData(byte data) {
  for (int pin = REGISTER D0; pin <= REGISTER D7; pin += 1) {</pre>
   pinMode(pin, OUTPUT);
  for (int pin = REGISTER DO; pin <= REGISTER D7; pin += 1) {</pre>
   digitalWrite(pin, data & 1);
   data = data >> 1;
 delay(10);
  Read a byte from the CHIP at the specified address.
byte read28c(int address) {
  for (int pin = REGISTER D0; pin <= REGISTER D7; pin += 1) {
   pinMode(pin, INPUT);
  setAddress(address, /*outputEnable*/ true);
  delay(20);
 byte data = 0;
  for (int pin = REGISTER D7; pin >= REGISTER D0; pin -= 1) {
   data = (data << 1) + digitalRead(pin);</pre>
 delay(20);
 return data;
  Write a byte to the CHIP at the specified address.
void write28c(int address, byte data) {
  setAddress(address, /*outputEnable*/ false);
  setData(data);
 delay(20);
 digitalWrite(WRITE EN, LOW);
 delay(1);
 digitalWrite(WRITE EN, HIGH);
  delay(20);
```


Рисунок 4- Принципиальная схема программатора на базе Arduino Nano

ЗАКЛЮЧЕНИЕ

В рамках преддипломной практики была разработана функциональная схема устройства и теоретическая модель его функционирования. Были определены основные требуемые базовые компоненты устройства и направление разработки.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Боровский А. С. Программирование микроконтроллера Arduino в информационно-управляющих системах, 2017.- 113с.2 Хорошевский, В.Г. Архитектура вычислительных систем: Учеб. пособие 2-е изд., перераб. и доп. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 520 с. (Дата обращения: 20.04.2019 19.05.2019)
- 2. Albert Paul Malvino Digital Computer Electronics / A.P. Malvino. USA, N.Y.: McGraw-Hill, 1999 г. (Дата обращения: 10.02.2019 19.05.2019)
- 3. Нефедов А.В. Справочник «Интегральные микросхемы и их зарубежные аналоги. Том 5. Серии К544-К564.»/ А.В.Нефедов Россия, «КУБК-а», 1996 г. (Дата обращения: 17.03.2019 19.05.2019)
- 4. Нефедов А.В. Справочник «Интегральные микросхемы и их зарубежные аналоги. Том 2. Серии К136-К174.»/ А.В.Нефедов Россия, «КУБК-а», 1996 г. (Дата обращения: 17.03.2019 19.05.2019)

ПРИЛОЖЕНИЕ А

Список используемых компонентов

А.1 Микросхемы

NE555N:

• Функциональное назначение: Прецизионный таймер

• Отечественный аналог: КР1006ВИ1

• Технология: ТТЛ

• Напряжение питания: 5-15 В

SN(MM)74HC244N

• Функциональное назначение: Шинный формирователь

• Дополнительно: 2 4-ех битных неинвертирующих Шинных формирователя с тремя состояниями на выходе

• Отечественный аналог: КР1564АП5

• Технология: КМОП

• Напряжение питания: 2-6 В

SN74AC245N

• Функциональное назначение: Шинный формирователь

• Дополнительно: 8-битный двунаправленный неинвертирующий Шинный формирователь с тремя состояниями на выходе

• Отечественный аналог: КР1554АП6

• Технология: КМОП

• Напряжение питания: 2-6 В

SN74LS273

• Функциональное назначение: D-триггер

• Дополнительно: 8 D-триггеров с чисткой, Flip-Flop

• Отечественный аналог: К555ИР35

• Технология: ТТЛ

• Напряжение питания: 5-5.5 В

M74HC595B1R

• Функциональное назначение: Сдвиговый регистр

• Дополнительно: Сдвиговый регистр с последовательно-параллельным выходом и защелкой и тремя состояниями на выходе

• Отечественный аналог: КР1564ИР52

• Технология: КМОП

• Напряжение питания: 2-6 В

SN74HC08N

• Функциональное назначение: Логическое И

• Дополнительно: 4 элемента Логическое 2-И

• Отечественный аналог: К155ЛИ1 (КР1564ЛИ1)

• Технология: КМОП

• Напряжение питания: 2-6 В

SN74HC00N

- Функциональное назначение: Логическое И-НЕ
- Дополнительно: 4 элемента Логическое 2-И-НЕ
- Отечественный аналог: К155ЛА3 (КР1564ЛА3)
- Технология: КМОП
- Напряжение питания: 2-6 В

SN74HC86N

- Функциональное назначение: Исключающее ИЛИ
- Дополнительно: 4 элемента 2-Исключающее ИЛИ
- Отечественный аналог: К555ЛП5
- Технология: КМОП
- Напряжение питания: 2-6 В

AT28C64B-15PU

- Функциональное назначение: Энергонезависимая память
- Объем памяти: 64 кбит (8192 * 8)
- Тип памяти: EEPROM
- Технология: КМОП
- Напряжение питания: 4.5-5.5 В

AT28C256B-15PU

- Функциональное назначение: Энергонезависимая память
- Объем памяти: 256 кбит (32768 * 8)
- Тип памяти: EEPROM
- Технология: КМОП
- Напряжение питания: 4.5-5.5 В

UT621024SCL-70LL

- Функциональное назначение: Оперативная память
- Объем памяти: 1 Мбит (128кб* 8)
- Тип памяти: SRAM
- Технология: КМОП
- Напряжение питания: 4.5-5.5 В

К155ИП3

- Функциональное назначение: 4-ехбитное АЛУ
- Зарубежный аналог: СD4013
- Технология: ТТЛ
- Напряжение питания: 5 В

K561TM2

- Функциональное назначение: D-триггер
- Дополнительно: 2 D-триггера с динамическим управлением
- Зарубежный аналог: CD4013
- Технология: КМОП
- Напряжение питания: 3-15 В

К561ИЕ11

- Функциональное назначение: Двоичный счетчик
- Дополнительно: 4-ех разрядный счетчик
- Тип: Синхронный, реверсивный
- Зарубежный аналог: CD4516AN
- Технология: КМОП
- Напряжение питания: 3-18 В

К555ЛЛ1

- Функциональное назначение: Логическое ИЛИ
- Дополнительно: 4 элемента Логическое 2-ИЛИ
- Зарубежный аналог: SN74LS32N
- Технология: ТТЛ
- Напряжение питания: 4.5-5.5 В

К555ЛН1

- Функциональное назначение: Логическое НЕ
- Дополнительно: 6 элемента Логическое НЕ
- Зарубежный аналог: SN74LS04N
- Технология: ТТЛ
- Напряжение питания: 4.5-5.5 В

А.2 Конденсаторы

Конденсатор керамический 101:

- Ёмкость: 100 пФ
- Максимальное напряжение: 25 В

Конденсатор керамический 103:

- Ёмкость: 0.01 мкФ
- Максимальное напряжение: 25 В

Конденсатор керамический 104:

- Ёмкость: 0.1 мкФ
- Максимальное напряжение: 25 В

Конденсатор электролитический:

- Ёмкость: 1 мкФ
- Максимальное напряжение: 50 В

А.3 Резисторы

Потенциометр 1 МОм

Резистор 1 МОм

Резистор 1 кОм

Резистор 10 кОм

Резистор 220 Ом

Резистор 100 Ом

А.4 Транзисторы

2N 4401 - H11:

- Структура: NPN
- Максимальный ток Коллектора: 1 А
- Максимальное напряжение коллектор-эмиттер: 40 В

MPS A92 F05

- Структура: PNP
- Максимальный ток Коллектора: 1 А
- Максимальное напряжение коллектор-эмиттер: 300 В

А.5 Индикаторы

7-ми сегментный индикатор:

- Цвет: Желтый
- Количество разрядов: 4
- Схема включения: Общий Катод

Светодиод:

- Цвет: Красный, Синий, Зеленый, Белый, Желтый
- Напряжение питания: 3 В

А.6 Прочее

Платформа Arduino Nano, v. 3.0 с FT232RL:

- Микроконтроллер: Atmega328p
- Тактовая частота: 16 МГц
- Рабочее напряжение: 5 В

Макетная плата:

- Тип: односторонняя, для пайки
- Шаг сетки: 2.54мм

Монтажный провод:

• Сечение: 0.2мм