9/9/20157 Mach 8668 Fall 2015 Vic Reiner Combinatorial Theory - Into Grad Combinatorics 1st semester 1 Office hours SYLLABUS issues: 2 Makeyps for Ner. 18,18,00 (3) Grading - show-up, ask grestions, do some HW! Text: Stanley Emm. Comb. Vol 1. (where HW comes from)
(beautiful!)

I'll bornow hearily from Ardilais Handbook chapter (on syllabous), just Part I. We'll count combratorial objects (e.g. subsets, muttisets, partitions of numbers exets, compositions, graphs, trees, ...) but also pay attention to natural structures they carry, most often partially ordered set structures \$1.1 What is a good answer for a country question? Some are better than others, but different answers can have different advantages ... EXAMPLE (Availig 1.1) Let an = # of tilings of a 2x n rectangle by domanices. What is an? vimiler a expected bles rectangle tilings 2+0 1 2 2 3+1+1-5 3 \$ +2+2+2+0 5 = 2

5

TRecurrence:
$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 2$, and $a_0 = a_1 = 1$

counts counts

(compare with Fibonacei recurrence $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ and $q_0 = 0$ $q_1 = 1$

1	1	an	Fa
*400	0	1	0
Total	1	1	1
,	2	2	1
	3	3	2
	4	5	3
	5	8	5
	6	13	8

and realize qu= fu+1

It will take a while to compute a 1000 this way, and we don't have too much sense of its order of magnitude either.

2 First explicit formula:

Note
$$a_n = \#_{\text{Sequences}} \text{ of } 1/s \text{ & } 2/s \text{ totalling to } n$$
 $n=4:$
 $1+1+1+1$
 $1+1+2$
 $1+2+1$
 $2+1+1$
 $2+2$

So $a_n = \sum_{k=0}^{1/2} \#_{\text{Sequences}} \text{ of } \#_{\text{Max}} \text{ & } 2/s \text{ ? }$
 $k=0$
 $k=0$

 $= \binom{4}{6} + \binom{3}{1} + \binom{3}{2}$

Explicit, but maybe not so helpful.

(3)	
3 Second explicit formula:	. '
We'll derive seen that	
$a_n = \sqrt{\frac{1+13}{2}} - \left(\frac{1-\sqrt{3}}{2}\right)$	
which is very explicit, but still not so good for computing a	ne hose.
(Why is it even an integer?!)	
4) Asymptotic formula: Since $\varphi:=\frac{1+\sqrt{5}}{2}\approx 1.618$ (golden to one has whom above that and $\frac{1-\sqrt{5}}{2}\approx -0.618 \in (-1,0)$	(po)
an = 1 (1+15) (and in fact, an is the neare integer to 15 (1+15)	
This tells us a lot about its growth, e.g. 75 mumber of base 10 digits is	
$log_{10}(a_{11}) = (741) log_{10}(\sqrt{1+153}) + log_{10}(\sqrt{15})$	
3 (Ordinary) generating function for (a, a, a, a,)	
$A(x) \stackrel{\text{park}}{:=} a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots \text{ as an element of } C[[x]]$ $= \underbrace{\sum_{n \ge 0}^{n} a_n x^n}_{n \ge 0} + \underbrace{\sum_{n \ge 0}^{n} a_n x^n}_{n \ge $	rmal
mzo with C with C with C with	ieus
Perhaps not clear yet why we would even consider A(x), but let's find a simple formula for it now (the show fasting and derive everything else from it!	way
and derive everything else from it!	er)

(4) The recurrence an = and + an-2 for nz2/ $\frac{\sum a_n x^n}{n \ge 2} = \frac{\sum a_n x^n}{n \ge 2} + \frac{\sum a_{n-2} x^n}{n \ge 2}$ mullbyx gives $= x^{1} \sum_{n \geq 2}^{1} a_{n-1} x^{n-1} + x^{2} \sum_{n \geq 2}^{1} a_{n-2} x^{n-2}$ $A(x) - a_{1} x^{2} - a_{2} x^{0} = x^{1} \sum_{n \geq 1}^{1} a_{n} x^{n} + x^{2} \sum_{n \geq 0}^{1} a_{n} x^{n}$ $A(x) - a_{1} x^{2} - a_{2} x^{0} = x^{1} \sum_{n \geq 1}^{1} a_{n} x^{n} + x^{2} \sum_{n \geq 0}^{1} a_{n} x^{n}$ $= \times^{1} \left(A(x) - q_{0} x^{0} \right) + x^{2} A(x)$ $A(x) - x - 1 = x \left(A(x) - 1\right) + x^2 A(x)$ $A(x)(1-x-x^2) = x+1-x=1$ GENERATING $A(x) = \frac{1}{1-x-x^2}$ = 2 well learn to write this down immediately (!) later What good is this? Plenty of It depends on how we try to extract or estimate coefficients. (a) $A(x) = \frac{1}{1-(x+x^2)} = 1+(x+x^2)+(x+x^2)^2+(x+x^2)^3+...$ i.e. $\sum_{n\geq 0} a_n x^n = \sum_{k=0}^{\infty} (x+x^2)^k = \sum_{k$ => an = [1/2] (n-k) from before (b) $A(x) = \frac{1}{1-x-x^2} \frac{1}{\sqrt{5}} \frac{1}{\sqrt$ i.e. $A(x) = \frac{1}{ax^2+bx+c}$ = 1/5 \(\frac{1}{\sigma}\)\(\frac{1}{\chi}\)\(\chi\)\(computation $= \frac{1}{a(x-r_1)(x-r_2)}$ $= \frac{A}{x-r_1} + \frac{13}{x-r_2} = \frac{-A/r_1}{1-x_1} + \frac{-B/r_2}{1-x_2}$ = 1/5 ((1+1/5) m+1 (1-1/5) m+1) from before. (4/2) The fast way (see Ardilap. 20 #18) is via Polya's "picture-writing": $1 + \left(\square + \square \right)^{1} + \left(\square + \square \right)^{2} + \left(\square + \square \right)^{3} + \dots$ $n=0 \quad n=1 \quad n=2 \quad \square$ (图+日)(日+日) $\frac{\partial}{\partial x} A(x) = \sum_{n=0}^{\infty} a_n x^n = 1 + (x + x^2)^1 + (x + x^2)^2 + (x + x^3)^3 + \dots \\
= \frac{1}{1 - (x + x^2)} = \frac{1}{1 - x - x^2}$ Better yet

Better yet

$$A(x,v) := \sum_{n,m \ge 0} a_{m,n} x^{n} v^{m} = \begin{bmatrix} 1 \\ 1-(1+\frac{1}{1+1}) \end{bmatrix}_{A=vx} \quad \text{(and actually, even in } \\ B=x^{2} \quad \text{(Iv)I(x)]}$$

$$= 1+(vx+x^{2})^{1}+(vx+x^{2})^{2}+(vx+x^{2})^{3}+...$$

$$= \frac{1}{1-(vx+x^{2})} = \frac{1}{1-vx-x^{2}}$$

(c) The asymptotic an $x = \frac{1}{\sqrt{5}} \left(\frac{1+15}{2}\right)^{n+1}$ was controlled by $\left(\frac{ie.}{\kappa}\right)^{n}$ the reciprocal of the vision of $A(x) = \frac{1}{1-\chi \cdot \chi^2}$ nearest the origin in Cwe'll say a little more about this later, or see Wilf \$2.4. 9/14/15 The generating function can often be refined to keep track of more statistics, e.g. what if we wanted to compute am, n = #filings of 2x n rectangle by dominoes (Later well see how to immediately write down it fraction of the vertical $\sum_{n,m \ge 0}^{\infty} a_{m,n} \times n^{m} = \frac{1}{1 - v \times^{1} \times^{2}}$ This lets us find out therexpected number of vertical dominoes in a large random tiling, which should be Jaman m $\sum_{n\geq 0} \left(\sum_{m\geq 0} a_{mn} m \right) x^n = \left[\frac{\partial}{\partial v} \sum_{n,n\geq 0} a_{mn} x^n \right]_{v=1}^{\frac{1}{2}}$ n-tiles that one vertical $= \left| \frac{\partial}{\partial v} \frac{1}{1 - vx - x^2} \right|_{v=1}$ $= \left| \frac{\chi}{(1-v\chi-\chi^2)^2} \right|_{v=1} = \frac{\chi}{(1-\chi-\chi^2)^2}$ a(x-r,)(x-r2) .Using partial fractions andhis, $=\frac{A_1 x_1 B_1}{(x-x_1)^2} + \frac{A_2 x_2 t_3 B_2}{(x-x_2)^2}$ one can show $\sum_{m\geq 0} a_{mn} m \approx \frac{n}{5} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \approx \frac{1}{\sqrt{5}} n \cdot a_n \quad \text{since } a_n \approx \frac{1}{\sqrt{5}} \frac{1+\sqrt{5}}{2}$ + C1 + D1 Thus the expectation n n so out of the n tiles, expect nonghly n are vertical, asymptotically.

The ring of formal power series R[[x]]

(where R= Cor Ror Q or Qv] or any commutable ring with 1)

or Fg $DEFIN: R[[\times]] := \left\{ a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n \text{ with } (a_0, a_1, a_2, \dots) \in \mathbb{R} \right\}$ is a ring having coefficientwise $+: A B(x) = \sum_{n=0}^{\infty} b_n x^n$ (commutative) then A(x) + Bthen $A(x)+B(x)=\sum_{n=0}^{\infty}(a_n+b_n)x^n$ and multiplication x via comolution: $C(x) := A(x)B(x) = \sum_{N=0}^{\infty} C_N x^N$ with cu= = aibn-i = abot (ab1+a,bo) x1+ (ab2+a,b+a2b) x2+... so its $0 = 0 + 0.x + \sigma x^2 + \dots$ $1 = 1 + 0.x + 0.x^2 + ...$ and one can check... $A(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{R}[x]$ is a unit, i.e. $\exists B(x)$ with 1 = A(x)B(x)ao is a unit of R, i.e. I heR with 1=as ho proof: $1 = A(x)B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x^1 + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + ...$ about (so need a to be a unit if i.e. bo=ao in R there's a hope of A(x) being a unit) and then $a_0b_1+a_1b_0=0$ means $b_1=-\frac{a_1b_0}{a_0}$ dready $a_0b_2+a_1b_1+a_2b_0=0$ means $b_2=-\frac{(a_1b_1+a_2b_0)}{a_0}$ e.g. $A(x)(1-x-x^2)=1$ $A(x) = \frac{1}{1 - x - x^2} = \frac{exists}{M} C([x]]$ $= 1 + x + 2x^2 + 3x^3 + 5x^4 + \cdots$

COR: Infinite products of the form TT (1+B,(x)) with mindeg B; ≥1 \f converge in R[(x)] (=> lim mindeg Bj(x) proof: A,T(x) = (1+B,A)(1+B)--(1+B;) has Aj-Aj-1= (+B1)---(1+Bj-1)(1+Bj) = Bj(1+B1)----(1+Bj-1) -(HB)--(HB-) $=B_{j}(1+\dots)$ has mindeg = mindeg B;

EXAMPLES): Partition generating functions (see Stanley §1.8)

A partition $\Lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ of n

is a weakly decreasing $1,21,2-... \ge 0$ with 1,+1,+1,...=neventually 0 Segnence

of nonnegative integers

(i.e. 7. EN= (0,1,3-...)) and we write (7 - n

e.g. \(\gamma = (5,5,3,1,0,0,--)= (5,5,3,1,0)\) = (5,5,3,1) is a partition of n=14

Its length l(A):= #{i: \lambda; >0} = # of nonzero parts ?i

Its Ferres diagram is a left & top justified away of units quares with him wow i from the top

$$P.9. \quad \gamma = (5, 5, 3, 1) \iff \frac{5}{5}$$

(2) Let q(n) := # of partitions of n into distinct parts

M	/ g(m)	
0	7	6
1	1	Ī
2	1	四》
3	2	四日来
4	2	四两天
5	3	(四四 田 本 田 本 本 出 本 本 出 本 出 本 出 本 出 土 出 土 出 土 出 土 出

$$Q(x):=\sum_{n\geq 0}q(n)\cdot q^n=(1+q^1)(1+q^2)(1+q^3)(1+q^4)\cdot \dots =\prod_{l\neq n}(1+q^l)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^2)(1+q^3)(1+q^4)\cdot \dots =\prod_{l\neq n}(1+q^l)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^2)(1+q^3)(1+q^4)\cdot \dots =\prod_{l\neq n}(1+q^l)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^2)(1+q^3)(1+q^3)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^3)(1+q^3)(1+q^3)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^3)(1+q^3)(1+q^3)$$

$$\lim_{n\geq 0}(n)\cdot q^n=(1+q^1)(1+q^3)(1+q^3)(1+q^3)$$

	η	Podd(n)		likena <u>rraj</u> i j	
	0	1	Ø		
`	2	1	Ð	·-	
-	3	2	Ш	B	
	4	2	即	Ħ	
	5	3	THE	野。	#

Looks the same, i.e. CONJECTURE: p(n)-q(n) & N>O. The gen. firs. will explain it:

$$Poda(x) = (1+q^{1}+q^{2}+...)(1+q^{3}+(q^{3})^{2}+...)(1+q^{5}+(q^{5})^{2}+...) \cdots$$

$$= \frac{1}{(1-q^{3})(1-q^{3})(1-q^{5})\cdots} = \frac{1}{j \ge 0} \frac{1}{(1-q^{3})(1-q^{5})\cdots} = \frac{1}{j \ge 0} \frac{1}{j \ge 1} \frac{1}{(1+q^{3})(1-q^{5})\cdots}$$

$$= \frac{1}{(1-q^{3})(1-q^{3})(1-q^{5})\cdots} = \frac{1}{j \ge 0} \frac{1}{(1-q^{3})(1-q^{5})\cdots} = \frac{1}{j \ge 0} \frac{1}{(1-q^{3})(1-q^{5})\cdots} = \frac{$$

Well, (d(q) = (1+91)(1+92)(1+93)--- $= \frac{1-q^2}{1-q^2} \cdot \frac{1-(q^2)^2}{1-q^2} \cdot \frac{1-(q^3)^2}{1-q^3} \cdot \dots$ $= \frac{(1-q^2)(1-q^4)(1-q^6)(1-q^6)(1-q^{19})(1-q^{19})}{(1-q^2)(1-q^3)(1-q^4)(1-q^5)(1-q^6)}...$ $= \frac{1}{(1-q^3)(1-q^3)(1-q^5)---} = P_{odd}(q)$? Was that legal? Yes; let's justify it differently... Let $R(q) := (1-q^1)(1-q^2)(1-q^5) - \dots = \overline{R(q)}$ in C[[q]]H suffices to show 1 = Q(q)R(q) in Ollq) (since multi inverses gave unique) 1+0-9+0-9+ ---(1+q1)(1+q2)(1+q3)...)(1-q1)(1-q3)(1-q5)...) = (1+q1)(1-q1) ((1+q2)(1+q3)-..)((1-q3)(1-q5)...) = $(1-94)^{0}$. ((1+93)(1+94)(1+95)...)((1-93)(1-95)...) $= (1-q^{4})(1-q^{6}) \cdot (1+q^{4})(1+q^{5}) \cdots)((1-q^{5})(1-q^{7}) \cdots)$ $= (1-98) \cdot (1-96) \cdot ((1+95)(1+96) \cdot - \cdot)((1-95)(1-97) - - -)$ sterts 1+0.91+0.92+0.93+0.94+(??) Bjectve proof: Given 2 a partion with odd parts 2j-1 of multiplicity i, 21 + 212 + Million in its binary expansion and create in having parts (2j-1)2i1, (2j-1)2i2, ---Stanley 100! e-g. $N = (9^5, 5^{12}, 3^2, 1^3) = (9^{2^6 + 2^3}, 5^{2^2 + 2^3}, 3^{2^4}, 1^{2^6 + 2^4}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 5 \cdot 2^7, 3^{2^4}, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 9 \cdot 2^7, 1^{2^6}) \leftrightarrow M = (9 \cdot 2^7, 1^7) \leftrightarrow$

Reversible: $(20,10,7,6,4) = (5.2^3,5.2^1,7.2^3,3.2^1,1.2^2) \Leftrightarrow A = (5^{3+2},7^3,3^2,1^2) = (7,5,3,1^4) = (40,36,20,9,6,2,1)$

(2) For S a set,
$$(2) = Bodean algebra = faulssets of S 3$$
 with $S \le T$ if $S \subseteq T$ When $S = In J := 2 J_2 - J_3 J_4$ we will call $2^S =: B_1$ $B_2 = \{1,2\}$ $B_3 = \{1,2$

	acc = ascending chain condition (no 00 ascending chains $\kappa_1 \leq \kappa_2 \leq \kappa_3 \leq$)	properties alcc = descending alcain consider (no xi \(\frac{1}{2} \times \)	chain =Anite = acc + dcc (no oo chains)	cocally further, i.e. all intervals (x,y):={zep: are further	Ja bottom dement	Ja top element
7/_	No	МО	ио	yes	no	чо
Q, R	ИО	No	ИО	Ио	110	40
\$(n)	yes	yes	yes	yes	,es	
28 for 151=00	200	но	no	ND	yes:	yes;
B=21,2,5m	yes	yes	yes	yes	6=\$	
Y	no	yes	no		δ=φ 	1-S=1
NF.	ηυ	yes	yes		$\hat{\delta} = \emptyset$	NO

When P is locally-finite (or even locally chain-finite, i.e. all intervals (x,y) are chain-finite)

then $\leq p$ is the transfore closure of the covering relation $X \leq_p y$ termed by $X \leq_p y$ and $\exists z \in p y$

Then one can represent P by its Hasse diagram:

drew Pas nodes in theplane with edges / whenever x > y

(and y higher in the plane)

DET'N. If P is finite, (or it it is locally finite and has a bottom element ô, say P is graded if every maximal chain (=totally ordered subset) has same size (resp. fevery maximal chainin[6,x] has some size).

Inthis case, there is a unique rank function p: P -> (0,1,2 -..) satisfying p(x) = 0 if only if x is minimal int and p(y) = p(x) + 1 if $y \geqslant_p x$.

We sneaked into an extralecture day this material

(because we had brought bagels ...) # [news to choose a baker's dozen bagels from 18 varieties of bagel] = ((18)) 18 varieties sesame onion pain blueberry wheat | ---17=18-1 divider bors of [m] = |Gn/ ***|||||||||||**** 18-1+13 positions, in which to choose 13 *'s

acts transitively (with 1) on browleds of Int and Orbit-Stabilizer LEMMA

if G acts on X any orbit US X has 101= where Gx = {geG:g(x)=x}

(15) Back to formal power sovies for a bit ... We'll have use for these dements of CIXII: DEF'N: $e^{x} := \sum_{N \geq 0} \frac{x^{N}}{N!} = (+ x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ...$ $log(1+x) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ $\forall x \in \mathbb{C}$, $(1+x)^{\lambda} := \sum_{k \geq 0} (\lambda)_{x^{k}} x^{k}$ $\stackrel{\text{Def}}{=} \chi(\lambda-1)(\lambda-2)-(\lambda-(k-1))_{\in \mathbb{C}}$ (just like (M) = $\frac{n!}{k!(nk)!} = \frac{n(n-1)--(n-(k-1))}{k!}$ if $n \in \mathbb{N} = \{0,1,2,-1\}$ They do have all the usual properties you might expect, EXAMPLES (1) (1+x) (1+x) = (1+x))+ in C[[x]] $(2) e^{\log(1+x)} = 1+x \qquad (3) e^{x} e^{y} = e^{x+y}, e^{t}e^{x}...$ be = 1+ log(1+x)+(log(1+x))_+... $= 1 + \left(\chi - \frac{\chi^2}{2} + \frac{\chi^3}{3} - \dots\right) + \left(\chi - \frac{\chi^2}{2} + \frac{\chi^3}{3} - \dots\right)^2 + \dots$ Why does this even converge in O([x]]? Because log(1+x)=0+x=12. In fact, PROP: If A(x), B(x) and b = 0, then A(B(x)) := $\sum_{n \ge 0}^{\infty} a_n x^n = \sum_{n \ge 0}^{\infty} b_n x^n = \sum_{n \ge 0}^{\infty} a_n B(x)^n$ Converges in C([x)].How to justify (1) etc. Laborious without a cheat from calc (Taylorsovia)e THM: If $f(z) = \sum a_n z^n$ is analytic for |z| < R (applied to e log(1+x) = f(x) = f(x)) THM: If $f(z) = \sum_{n \geq 0} a_n z^n$ is analytic for |z| < R (applied to e $\log(1+x) = 1$). B. Company materials of vanishes on |z| < R (or even on so many points $z_1, z_2, \ldots > z_n$) approaching a limit point in |z| < R)

then f(z)=0 i.e. ao=a====0.

(17) Another calculus tool in R[[x]]...

DEF'N: For
$$A(x) = \sum_{n \ge 0} a_n x^n \in R[[x]],$$

The formal) derivative $A'(x) := \sum_{n \ge 1} n a_n x^{n-1} \in R[[x]]$

The formal derivative $A'(x) := \sum_{n \ge 1} n a_n x^{n-1} \in R[[x]]$

It satisfies the usual rules from calculus;

$$(A(x)+B(x))' = A'(x)+B'(x)$$

$$(AB)' = (A')B+A\cdot(B')$$

$$(\frac{1}{A})' = \frac{-A'}{A^2}$$

$$A(B(x))' = A'(B(x))\cdot B'(x)$$

= size of leth rank in B_n = 2¹,2,-n³/(4)=1

Multinomials

(43) (22) (3,1)

EXAMPLE: How many rearrangements of BANANAS, i.e. of 9A's

(Ky) = [(1/2) xkyn-k binomial theorem

1 B's 2 N's

or of AZZBRNS

There is again a transitive & action:

