ПМИ. Группа 1. Домашнее задание №3. Часть 1. (Дедлайн: 17 октября)

- **1.** (1) Вычислить предел $\lim_{n\to+\infty} \left(\frac{n}{n^3+1} + \frac{2n}{n^3+2} + \ldots + \frac{n^2}{n^3+n}\right)$.
- **2.** (1)Докажите, что $\lim_{n \to \infty} n^{1/n} = 1$.
- 3. (1) Доказать, что последовательность $a_n = \sin n^2$ не имеет предела. Указание: $2n+1=(n+1)^2-n^2$. Можено пользоваться результатами с пары.
- **4.** (1) Доказать, что при 0 < k < 1, $\lim_{n \to \infty} ((n+1)^k n^k) = 0$.
- **5.** (1) На графике $y = x^2$ задаются точки A_n и B_n с абсциссами соответственно $\frac{1}{n}$ и $-\frac{1}{n}$. Через A_n , B_n и начало координат проводится окружность с центром в точке C_n . Найдите предел последовательности точек C_n .

ПМИ. Группа 1. Домашнее задание №3. Часть 2. (Дедлайн: 17 октября)

6. (2) Докажите, что последовательность сходится и найдите ее предел:

$$a_1 > 0, a_{n+1} = 6 \cdot \frac{1 + a_n}{7 + a_n}.$$

7. (2.5) Цель: доказать, что последовательность $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln(n)$ сходится. Вспомните с лекций, как определяется число e (основание натурального логарифма).

Каждый пункт оценивается в 0.5 балла.

- 7.1. Докажите неравенства: $\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}, n \in \mathbb{N}$. *Hint: Вам пригодятся знания из параграфа про экспоненту.*
- 7.2. Докажите, что последовательность $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \ln(n)$ убывает.
- 7.3. Докажите, что последовательность $y_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \ln(n+1)$ возрастает.
- 7.4. Докажите, что последовательности x_n и y_n ограничены.
- 7.5. Докажите, что последовательности x_n и y_n сходятся и $\lim x_n = \lim y_n = \gamma$.

3амечание: что такое γ («гамма»)? Её называют константой Эйлера–Маскерони и она часто встречается в математике.

- 8. (1) Найдите предел: $\lim_{n\to\infty} \frac{n}{a^{n+1}} \left(a + \frac{a^2}{2} + \frac{a^3}{3} + \ldots + \frac{a^n}{n} \right)$, при a > 1.
- **9.** (1) Пусть $\lim a_n = a$. Вычислите

$$\lim \frac{na_1 + (n-1)a_2 + \dots + 1 \cdot a_n}{n^2}.$$

- **10.** (1) Докажите по определению, что $x_n = \frac{(n+1)(n+2)...(2n-1)2n}{n^n} \to +\infty$.
- **11.** (1) Про последовательность $\{x_n\}$ известно, что $(x_n x_{n-2}) \to 0$. Докажите, что $\frac{1}{n}x_n \to 0$.

1