

UMD DATA605 - Big Data Systems

Relational DB Internals

Instructor: Dr. GP Saggese, gsaggese@umd.edu

- Sources
 - Silberschatz et al. 2020, Chap 12, Physical Storage Systems
 - Silberschatz et al. 2020, Chap 13: Data Storage Structures

• Storage

- Magnetic Disks / SSD
- RAID
- DB Internals

Storage Characteristics

- Storage media trade-offs:
 - Speed of access (e.g., 500-3,500MB/sec)
 - Cost per data unit (e.g., 50 USD/TB)
 - Medium reliability
- Volatile vs non-volatile storage
 - Volatile: loses contents when power switched off
 - Non-volatile: can survive failures and system crashes
- Sequential vs random access
 - Sequential: read the data contiguously

SELECT * FROM employee

 Random: read the data from anywhere at any time

```
SELECT * FROM employee
WHERE name LIKE '\\ a\\ b'
```

Need to know how data is stored in order to optimize access

Storage Hierarchy

Organize storage by speed and cost

- Cache
 - Fastest, most costly
 - ~MBs on chip
 - DB developers consider cache effects
- Main memory
 - Up to 100s of GBs
 - Typically can't store entire DB
 - Volatile
- Flash memory / SSDs
 - More expensive than RAM, less than magnetic disk
 - Non-volatile, random access
- Magnetic disk
 - Long-term online storage
 - Non-volatile
- Optical disk (CD, Blue Ray)
 - Mainly read-only
- - Stored long-term, e.g., legal reasons

 Magnetic tapes Backup, archival data equential-access

- Primary storage: cache, main memory
- Secondary (or online): flash memory, magnetic disk
- Offline: optical, magnetic tape

Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html

How Important Is Memory Hierarchy?

- Trade-offs shifted over last 10-15 years
- Innovations:
 - Fast network, SSDs, large memories
 - Data volume growing rapidly
- Observations:
 - Faster to access another computer's memory through network than your own disk
 - Cache plays a crucial role
 - In-memory DBs
 - · Data often fits in memory of a machine cluster
 - Disk considerations less important
 - Disks still store most data today
- Algorithms depend on available technology ####
- Storage
 - Magnetic Disks / SSD
 - RAID

Connecting disks to a server

Connecting Disks to a Server

- Disks (magnetic and SSDs) connect to computer:
 - High-speed bus interconnections
 - High-speed network
- High-speed interconnection
 - Serial ATA (SATA)
 - Serial Attached SCSI (SAS)
 - NVMe (Non-volatile Memory Express)
- High-speed networks
 - Storage Area Network (SAN): ISCSI, Fiber Channel, InfiniBand
 - Network Attached Storage (NAS)
 - Provides file-system interface (e.g., NFS)
 - Cloud storage: Data stored in cloud, accessed via API, Object store, High latency

Magnetic Disks

- 1956
 - IBM RAMAC
 - 24" platters
 - 5 million characters

From Computer Desktop Encyclopedia Reproduced with permission. 3 1996 International Business Machines Corporation Unauthorized use not permitted.

Magnetic Disks

• 1979

SEAGAT

5MB

From Computer Desktop Encyclopedia Reproduced with permission. @ 1998 Seagate Technologies

• 1998

SEAGAT

47GB

From Computer Desktop Encyclopedia Reproduced with permission.

@ 1998 Seagate Technologies

- 2006
 - Western Digital
 - 500GB

Magnetic Disks: Components

Platters

- Rigid metal with magnetic material on both surfaces
- Spins at 5400 or 9600 RPM
- Tracks subdivided into sectors (smallest unit read/written, with a checksum)

Read-write heads

- Store information magnetically
- Spinning creates a cushion maintaining heads a few microns from the surface
- Cylinder is the i-th tracks of all platters (read/written together)

Arm

- Moves all heads along the disks
- Disk controller
 - Accepts commands to read/write a sector
 - Operates arm/heads

rotation

Magnetic Disks: Current Specs

- Capacity
 - 10 terabyte and more
- Access time
 - Time to start reading data
 - Seek time
 - Move arm across cylinders (2-20ms)
 - Rotational latency time
 - Wait for sector access (4-12ms)

- Transfer begins once data is reached
- Transfer rate: 50-200MB/sec
- Sector (disk block): logical unit of storage (4-16KB)
- Sequential access: blocks on same or adjacent tracks
- Random access: each request requires a seek
 - IOPS: number of random single block accesses per second (50-200 IOPS)
- Reliability
 - Mean time to failure (MTTF): average time system runs without failure
 - HDD lifespan: ~5 years

Accessing Data Speed

- Random data transfer rates
 - Time to read a random sector
 - It has 3 components
 - Seek time: Time to seek to the track (Average 4 to 10ms)
 - Rotational latency: Waiting for the sector to get under the head (Average 4 to 11ms)
 - Transfer time: Time to transfer the data (Very low)
 - About 10ms per access
 - Randomly accessed blocks: 100 block transfers (100/sec x 4 KB/block = 50 KB/s)
- Serial data transfer rates
 - Data transfer rate without seek
 - 30-50MB/s to 200MB/s
- Seeks are bad!

Solid State Disk (SSD)

- Mainstream around 2000s
- Like non-volatile RAM (NAND and NOR)
- Capacity
 - 250, 500 GBs (vs 1-10 TB for HDD)
- Access time
 - \bullet Latency for random access 1,000x smaller than HDD
 - E.g., 20-100 us (vs 10 ms HDDs)
 - Multiple random requests (e.g., 32) in parallel
 - 10,000 IOPS (vs 50/200 for HDDs)
 - Require reading an entire "page" of data (typically 4KB)
 - Equivalent to a block in magnetic disks

Data-transfer rate

- 1 GB/s (vs 200 MB/s HDD)
- Typically limited by interface speed
- Reads and writes ~500MB/s for SATA and 2-3 GB/s for NVMe
- Lower power consumption than HDDs
- Writing to SSD slower than reading (~2-3x)
 - · Requires erasing all pages in the block

Reliability

- Storage
 - Magnetic Disks / SSD
 - RAID
 - DB Internals

RAID

- RAID = Redundant Array of Independent Disks
- Problem
 - Storage capacity growing exponentially
 - Data-storage needs (web, DBs, multimedia) growing faster
 - Need many disks
 - MTTF between disk failures shrinking (e.g., days)
 - Single data copy leads to unacceptable data loss frequency

Observations

- Disks cheap
- Failures costly
- Use extra disks for reliability
 - Store data redundantly
 - Data survives disk failure
- Bonus: faster data access
- Goal
 - Present a logical view of a large, reliable disk from many unreliable disks
 - Different RAID levels (reliability vs performance)

Improve Reliability / Performance with RAID

Reliability

- Use redundancy
 - Store data multiple times: E.g., mirroring
 - Reconstruct data if a disk fails
 - Increase MTTF
- Assume independence of disk failure
 - Consider power failures and natural disasters
 - · Aging disks increase failure probability

Performance

- Parallel access to multiple disks: E.g., mirroring, increase read requests
- Stripe data across multiple disks: Increase transfer rate

RAID Levels

- RAID 0: No redundancy
 - Array of independent disks
 - Same access-time
 - Increased transfer rate
- RAID 1: Mirroring
 - Copy of disks
 - If one disk fails, you have a copy
 - Reads: higher data rate possible
 - Writes: write to both disks
- RAID 2: Memory-style error correction
 - Use extra bits to reconstruct
 - Superseded by RAID 5
- RAID 3: Interleaved parity
 - One disk contains parity for main data disks
 - Handle single disk failure
 - Little overhead (only 25%)
- RAID 5: Block-interleaved

(a) RAID 0: nonredundant striping

(b) RAID 1: mirrored disks

(c) RAID 2: memory-style error-correcting codes

(d) RAID 3: bit-interleaved parity

(f) RAID 5: block-interleaved distributed parity

Choosing a RAID Level

- Main choice: RAID 1 vs. RAID 5
- RAID 1 better write performance
 - E.g., writing a single block
 - RAID 1: 2 block writes
 - RAID 5: 2 block reads, 2 block writes
 - Best for high update rate, small data (e.g., log disks)
- RAID 5 lower storage cost
 - RAID 1: 2x more disks
 - Best for low update rate, large data

(a) RAID 0: nonredundant striping

(b) RAID 1: mirrored disks

(c) RAID 2: memory-style error-correcting codes

(d) RAID 3: bit-interleaved parity

(f) RAID 5: block-interleaved distributed parity

- Storage
 - Magnetic Disks / SSD
 - RAID
 - DB Internals

(Centralized) DB Internals

- User processes
 - Issue commands to DB
- Server processes
 - Receive commands, call DB code
- Process monitor process
 - Monitor DB processes
 - Recover from failures
- Lock manager process
 - Lock grant/release
 - Detect deadlocks
- Database writer process
 - Write modified buffer blocks to disk continuously
- Log writer process
 - Write log records to stable storage
- Checkpoint process
 - Perform periodic checkpoints
- Shared memory
 - Contain shared data

Buffer pool, Lock table, Log buffer, Caches (e.g., query plans)

DB Internals

Query Processing Engine

- Execute user query
- Specify page sequence for memory
- Operate on tuples for results

Buffer Manager

- Transfer pages from disk to memory
- Manage limited memory

Storage hierarchy

- Map tables to files
- Map tuples to disk blocks

