

(11) EP 1 220 923 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:27.06.2007 Bulletin 2007/26

(21) Application number: 00967666.9

(22) Date of filing: 13.09.2000

(51) Int Cl.: C12N 15/13 (2006.01) C12N 5/20 (2006.01) A61P 7/04 (2006.01)

C07K 16/40 (2006.01) A61K 39/395 (2006.01)

(86) International application number: PCT/EP2000/008936

(87) International publication number: WO 2001/019992 (22.03.2001 Gazette 2001/12)

(54) FACTOR IX/FACTOR IXA ACTIVATING ANTIBODIES

FAKTOR IX/FAKTOR IXA AKTIVIERENDE ANTIKÖRPER ANTICORPS D'ACTIVATION DU FACTEUR IX/FACTEUR IXa

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

SI

- (30) Priority: 14.09.1999 AT 157699
- (43) Date of publication of application: 10.07.2002 Bulletin 2002/28
- (73) Proprietor: Baxter Aktiengesellschaft 1221 Wien (AT)
- (72) Inventors:
 - SCHEIFLINGER, Friedrich A-1090 Vienna (AT)
 - KERSCHBAUMER, Randolf 3400 Klosterneuburg (AT)
 - FALKNER, Falko-Guenter
 A-2304 Orth/Donau (AT)
 - DORNER, Friedrich A-1230 Vienna (AT)
 - SCHWARZ, Hans, Peter A-1180 Vienna (AT)

(74) Representative: Perrey, Ralf Müller-Boré & Partner, Grafinger Strasse 2 81671 München (DE)

(56) References cited: **WO-A-95/13300**

- NILSSON I M ET AL: "Induction of split tolerance and clinical cure in high-responding hemophiliacs with factor IX antibodies" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 83, no. 23, 1986, pages 9169-9173, XP002164050 1986 ISSN: 0027-8424
- BAJAJ S P ET AL: "A monoclonal antibody to factor IX that inhibits the factor VIII:Ca potentiation of factor X activation" JOURNAL OF BIOLOGICAL CHEMISTRY, THE AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, INC.,,US, vol. 260, no. 21, 25 September 1985 (1985-09-25), pages 11574-11576,11578-11580, XP002922137 ISSN: 0021-9258

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

EP 1 220 923 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

40

50

55

[0001] Blood clots (thrombi) are formed by a series of zymogen activations referred to as the coagulation cascade. In the course of this enzymatic cascade, the activated form of each of such zymogens (referred to as factors) catalyzes the activation of the next one. Thrombi are deposits of blood components on the surface of a blood vessel wall and mainly consist of aggregated blood platelets and insoluble, cross-linked fibrin. Fibrin formation is effected by means of thrombin by limited proteolysis of fibrinogen. Thrombin is the final product of the coagulation cascade, (K.G. Mann, Blood, 1990, Vol. 76, pp.1-16).

[0002] Activation of factor X by the complex of activated factor IX (FIXa) and activated factor VIII (FVIIIa) is a key step in coagulation. The absence of the components of this complex or a disturbance of their function is associated with the blood coagulation disorder called hemophilia (J.E. Sadler & E.W. Davie: Hemophilia A, Hemophilia B and von Willebrand's disease, in G. Stamatoyannopoulos et al. (Eds.): The molecular basis of blood diseases. W.B. Saunders Co., Philadelphia, 1987, pp. 576-602). Hemophilia A denotes a (functional) absence of factor VIII activity, while Hemophilia B is characterized by the absence of factor IX activity. At present, treatment of Hemophilia A is effected via a substitution therapy by administering factor VIII concentrates. However, approximately 20-30% of Hemophilia A patients develop factor VIII inhibitors (i.e. antibodies against factor VIII), whereby the effect of administered factor VIII preparations is inhibited. Treatment of factor VIII inhibitor patients is very difficult and involves risks, and so far there exist only a limited number of treatments for these patients.

[0003] In the case of patients having a low FVIII inhibitor level, it is possible, though expensive, to administer high doses of factor VIII to such patients and thus to neutralize the antibodies against factor VIII. The amount of factor VIII beyond that needed to neutralize the inhibitor antibodies then has hemostatic action. In many cases, desensitization can be effected, whereupon it is then possible again to apply standard factor VIII treatments. Such high dose factor VIII treatments require, however, large amounts of factor VIII, are time-consuming and may involve severe anaphylactic side reactions. Alternatively, the treatment may be carried out with porcine factor VIII molecules.

[0004] A further high-cost method involves removing factor VIII inhibitors through extra corporeal immunoadsorption on lectins which bind to immunoglobulins (protein A, protein G) or to immobilized factor VIII. Since the patient must be connected to an apheresis machine during this treatment, the treatment also constitutes a great burden on the patient. It is also not possible to treat an acute hemorrhage in this way.

[0005] At present, the therapy of choice is to administer activated prothrombin complex concentrates (APCC), such as FEIBA® and AUTOPLEX®, which are suitable for the treatment of acute hemorrhages even in patients having a high inhibitor titer (DE 31 27 318).

[0006] In the intravascular system of blood coagulation, the last step is the activation of factor X. This reaction is stimulated by the binding of factor VIIIa to factor IXa and the formation of a "tenase"-complex consisting of the factors IXa, VIIIa, X and phospholipid. Without the binding of FVIIIa, FIXa exhibits no or only a very slight enzymatic activity relative to FX.

Over the last several years, a number of possible binding sites for factor VIIIa to factor IXa have been characterized, and it has been shown that antibodies or peptides which bind to these regions inhibit the activity of FIXa (Fay et al., J. Biol. Chem., 1994, Vol.269, pp.20522-20527, Lenting et al., J. Biol. Chem., 1996, Vol. 271, pp. 1935-1940, Jorquera et al., Circulation, 1992, Vol. 86, Abstract 2725). The inhibition of coagulation factors, such as factor IX, has also been achieved through the use of monoclonal antibodies with the aim of preventing thrombosis formation (WO 97/26010).

The opposite effect, i.e. an increase in the factor IXa mediated activation of factor X, has been described by Liles D.K. et al., (Blood, 1997, Vol. 90, suppl. 1, 2054) through the binding of a factor VIII peptide (amino acids 698-712) to factor IX. Yet, this effect only occurs in the absence of factor VIIIa, while in the presence of factor VIIIa the factor IXa/factor VIIIa-mediated cleavage of factor X is inhibited by this peptide.

[0007] Further, WO 86/06101 describes a series of proteins which exhibit procoagulant properties.

[0008] With a view to the possible risks and side effects which may occur in the treatment of hemophilia patients, there is a need for a therapy which allows for the effective treatment of FVIII inhibitor patients. Therefore, it is an object of the present invention to provide a preparation for the treatment of blood coagulation disorders which has particular advantages for factor VIII inhibitor patients.

According to the present invention, this object is achieved through the use of antibodies against factor IX/factor IXa which have factor VIIIa-cofactor activity and lead to an increase in the procoagulant activity of factor IXa. Surprisingly, the action of these inventive factor IX/factor IXa-activating antibodies is not negatively affected by the presence of inhibitors, such as inhibitors against factor VIII/factor VIIIa, but instead the procoagulant activity of factor IXa in this case also is increased.

[0009] A further advantage of this invention is that the administration of the preparation according to the invention allows for rapid blood coagulation even in the absence of factor VIII or factor VIIIa, even in the case of FVIII inhibitor patients. Surprisingly, these agents are also effective in the presence of factor VIIIa.

[0010] The antibodies according to the present invention thus have a FVIII-cofactor-like activity which, in a FVIII assay

(e.g. a COATEST® assay or Immunochrom test) after 2 hours of incubation exhibits a ratio of background (basic noise) to measured value of at least 3. Calculation of this ratio may, e.g., be effected according to the following scheme:

Antibody measurement (OD 405) - blank value from reagent > 3 Mouse-lgG-measurement (OD 405) - blank value from reagent

after two hours of incubation.

5

15

20

25

30

35

40

45

50

55

[0011] The antibodies according to the invention preferably have an in vivo half life of at least 5 days, more preferably at least 10 days, though it is more preferred to have a half life of at least 20 days.

[0012] A further aspect of this invention is a preparation comprising antibodies against factor IX/factor IXa and a pharmaceutically acceptable carrier substance. Furthermore, the preparation according to the invention may additionally comprise factor IX and/or factor IXa.

[0013] A further aspect of the invention is the use of the antibodies to increase the amidolytic activity of factor lxa.

Fig. 1 shows the results of a screening of supernatants from hybridoma cell cultures for FVIII-like activity. Preselected clones from fusion experiments, #193, #195 and #196, were tested in a chromogenic assay.

Fig. 2 shows the results of screening for IgG-mediated factor VIII-like activity in supernatants of a hybridoma cell culture of a master plate.

Fig. 3 shows the subcloning of clone 193/C0, namely the results of the first cloning round.

Fig. 4 shows a comparison of the chromogenic FVIII-like activity and factor IX-ELISA-reactivity of hybridoma cultures derived from the starting clone 193/C0.

Fig. 5 shows the results of the measurement of the chromogenic activity of some master clones and subclones.

Fig. 6A shows the FVIII-like activity of the anti-FIX/FIXa-antibodies 193/AD3 and 196/AF2 compared to human FVIII, TBS buffer and cell culture medium. After a lag phase, both antibodies gave rise to chromogenic substrate cleavage, as judged by the increasing optical density.

Fig. 6B shows a comparison of the chromogenic activity of factor VIII, 196/AF1, 198/AC1/1 and mouse-IgG.

Fig. 7A shows a comparison of the kinetics of Factor Xa generation by Factor VIII and 196/AF2 with and without the addition of a Factor Xa specific inhibitor.

Fig. 7B shows a comparison of the kinetics of the Factor Xa generation by Factor VIII, mouse-IgG and anti-factor IX/IXa-antibody 198/AMI with and without the addition of a factor Xa-specific inhibitor, Pefabloc Xa®.

Fig. 8A shows a measurement of the dependence of the factor VIII-like activity of purified anti-factor IX/IXa-antibody 198/AC1/1 in the presence and absence of phospholipids, FIXa/FX and calcium ions.

Fig. 8B shows a measurement of the dependence of FXa generation by anti-FIXa-antibody 196/AF1 in the presence of phospholipids, Ca²⁺ in FIXa/FX.

Fig. 8C shows the generation of FXa by unspecific mouse IgG antibody.

Fig. 9 is a graphical representation of the coagulation times of Factor VIII-deficient plasma in an APTT assay by using various concentrations of anti-factor IX/IXa-antibody 193/AD3.

Fig. 10A shows that in the presence of Factor IXa, antibody 193/AD3 leads to a reduction in the coagulation time of factor VIII-deficient plasma.

Fig. 10B shows a dose-dependent reduction of the clotting time by antibody 193/AD3 in the presence of factor IXaand factor VIII-inhibitors.

Fig. 11 shows the chromogenic activity of antibodies 198/A1, 198/B1 and 198/AP1 in the presence and absence of human FIXaβ.

Fig. 12 shows the primer sequences for the amplification of the genes of the variable heavy chain of mouse antibody. Fig. 13 shows the primer sequences for the amplification of the genes of the variable light (kappa) chain of the mouse antibody.

Fig. 14 shows the DNA and derived protein sequence of the scFv from hybridoma cell line 193/AD3 (SEQ.ID.NOs. 81 and 82).

Fig. 15 shows the DNA and derived protein sequence of the scFv from hybridoma cell line 193/K2 (SEQ.ID.NOs. 83 and 84).

Fig. 16 shows the DNA and derived protein sequence of the scFv from hybridoma cell line 198/AB2 (subclone of 198/B1) (SEQ.ID.NOs. 85 and 86).

Fig. 17 shows the DNA and deduced protein sequence of scFv derived from the cell line 198/A1 (SEQ.ID.NOs. 87 and 88).

Fig. 18 demonstrates the chromogenic FVIII-like activity of peptide A1/3 in the presence of 2.9nM human FIXa. The

scrambled version of peptide A1/3, peptide A1/5 does not give rise to any FXa generation.

Fig. 19 demonstrates the dependence of the chromogenic FVIII-like activity of peptide A1/3 on the presence of human FIXa. In the absence of human FIXa, peptide A1/3 does not give rise to any FXa generation. The buffer control, plain imidazole buffer is designated IZ.

Fig. 20 shows that the chirality of Arg-residues does not play a significant role for the chromogenic activity of peptides A1/3-rd and A1/3-Rd-srmb.

Fig. 21 shows that the addition of 2.4μM peptide B1/7 to the reaction mixture led to a measureable generation of Fxa. Fig. 22 shows that the addition of a FX-specific inhibitor results in a significant reduction in the reaction. If there was no FIXa and FX is added to the reaction mixture, no FXa was synthesized.

Fig. 23 shows vector pBax-lgG1.

5

10

15

20

25

30

35

40

45

50

55

Fig. 24 shows the increase of the amidolytic activity of FIXa in the presence of antibody 198/B1 (Fig. 24A) and IgM antibody 198/AF1 (Fig. 24B).

Fig. 25 demonstrates the chromogenic FVIII-like activity of the antibody 198/A1 Fab fragment in the presence of 2.3nM human FIXa. As a positive control the intact antibody 198/A1 was used as well as 7.5pM FVIII. The buffer control (IZ) was used as a negative control.

Fig. 26 shows the nucleotide and amino acid sequence of the 198AB2 scFv-alkaline phosphatase fusion protein (ORF of the expression vector pDAP2-198AB2#100, (SEQ.ID.NOs. 89 and 90).

The genes for the VL and the VH domains of antibody 198/AB2 (198/AB2 is an identical subclone of 198/B1) were derived from the corresponding hybridoma cells as described in example 10. The PCR product of the VH-gene was digested Sfil - Ascl and the PCR-product of the VL-gene was digested Ascl and Notl. VH and VL genes were linked via the Ascl site and inserted into Sfil - Notl digested vector pDAP2 (Kerschbaumer R.J. et al, Immunotechnology 2, 145-150, 1996; GeneBank accession No.:U35316). PelB leader: leader sequence of *Erwinia carotovora* Pectate Lyase B, His tag, Histidinee tag for metal ion chromatography.

Fig. 27 demonstrates the chromogenic FVIII-like activity of two antibody 198/B1 (subclone AB2) scFv fragment-alkaline phosphatase fusion proteins (198AB2#1 and 198AB2#100) in the presence of 2.3nM human FIXa. As a positive control 7.5pM FVIII was used.

Fig. 28 shows the amino acid and nucleotide sequence of pZip198AB2#102 (SEQ.ID.NOs. 91 and 92).

Fig. 29 shows the nucleotide and amino acid sequence of the mAB#8860 scFv-alkaline phosphatase fusion protein (vector pDAP2-8860scFv#11, (SEQ.ID.NOs. 93 and 94). The genes for the VL and the VH domains of antibody #8860 were derived from the corresponding hybridoma cells as described in example 10. The PCR product of the VH-gene was digested Sfil - Ascl and the PCR-product of the VL-gene was digested Ascl and Notl. VH and VL genes were linked via the Ascl site and inserted into Sfil - Notl digested vector pDAP2 (Kerschbaumer R.J. et al, Immunotechnology 2, 145-150, 1996; GeneBank accession No.:U35316).

Fig. 30 shows the nucleotide and amino acid sequence of the mAB #8860 scFv-leucine zipper fusion protein (miniantibody; vector p8860-Zip#1.2, (SEQ.ID.NOs. 95 and 96). The gene of the scFv fragment was derived from mAB #8860 and was swapped from vector pDAP2-8860scFv#11 into Sfil-Notl digested plasmid pZip1 (Kerschbaumer R.J. et al., Analytical Biochemistry 249, 219-227, 1997; GeneBank accession No.: U94951)

Fig. 31 demonstrates the chromogenic FVIII-like activity of the 198/B1 (subclone AB2) miniantibody 198AB-Zip#102 in the presence of 2.3nM human FIXa. As a positive control 4.8pM FVIII was used whereas a unrelated miniantibody (8860-Zip#1.2) and plain reaction buffer (IZ) served as negative controls.

Fig. 32 shows a schematic representation of the plasmid pMycHis6.

Fig. 33 shows the nucleotide and amino acid sequence of the part of the plasmid pMycHis6 differing from vector pCOCK (SEQ.ID.NOs. 97 and 98). Vector pMycHis6 was constructed by cleaving vector pCOCK (Engelhardt et al., 1994, Biotechniques, 17:44-46) with NotI and EcoRI and insertion of the oligonucleotides: mychis6-co: 5'ggccgca-gaacaaaaactcatctcagaagaggatct gaatgggggggcacatcaccatcaccatcactaataag 3' (SEQ ID.No. 79) and mycchis-ic:, 5'aattcttattagtgatggtgatggtgatgtgccgccccattcagatcctcttct gagatgagtttttgttctgc (SEQ.ID.No. 80).

Fig. 34 shows the nucleotide and amino acid sequence of 198AB2 scFv (linked to the c-myc-tag and the His6- tag): ORF of the expression vector pMycHis6-198AB2#102. Vector pMycHis6 was constructed by cleaving vector pCOCK (Engelhardt O. et al, BioTechniques 17, 44-46, 1994) Notl - EcoRI and inserting the following annealed oligonucleotides:

(5'-GGCCGCAGAACAAAACTCATCTCAGAAGAGGATCTGAATGGG GCGGCACATCACCATCACCATCACTAATAAG - 3' (SEQ.ID.No. 103)

and

5'- TTATTAGTGATGGTGATGGT GATGTGCCGCCCCATTCAGATCCTCTTCTGAGATGAGTTTTTTGTTCTGC-3'

(SEQ.ID.NO. 104)). The resultant vector, named pMycHis6, was cleaved Sfil - Notl and the gene of scFv 198AB2 was swapped into this vector from vector pDAP2-198AB2#100.

Fig. 35 shows the nucleotide and amino acid sequence of the mAB #8860 scFv linked to the c-myc-tag and the His6- tag (vector p8860-M/H#4c, SEQ.ID.NOs. 101 and 102). Plasmid pMycHis6 was cleaved with Sfil and Notl and the DNA sequence coding for the scFv 8860#11 protein was inserted from pDAP2-8860scFv#11 (see Fig.29) yielding plasmid p8860-M/H#4c.

Fig. 36 demonstrates the chromogenic FVIII-like activity of the 198/B1 (subclone AB2) scFv fragment (MycHis-198AB2#102) in the presence of 2.3nM human FIXa. As a positive control 4.8pM FVIII was used whereas a unrelated scFv (8860-M/H#4c) and plain reaction buffer (IZ) served as negative controls.

Antibodies

5

10

15

20

25

30

35

40

45

50

55

[0014] The present invention also comprises the nucleic acids encoding the inventive antibodies expression vectors, hybridoma cell lines, and methods for producing the same.

[0015] Antibodies are immunoglobulin molecules having a specific amino acid sequence which only bind to antigens that induce their synthesis (or its immunogen, respectively) or to antigens (or immunogens) which are very similar to the former. Each immunoglobulin molecule consists of two types of polypeptide chains. Each molecule consists of large, identical heavy chains (H chains) and two light, also identical chains (L chains). The polypeptides are connected by disulfide bridges and non-covalent bonds. In vivo, the heavy and light chains are formed on different ribosomes, assembled in the cell, and secreted as intact immunoglobulins (Roitt I. et al., in: Immunology, second ed., 1989).

[0016] The inventive antibodies and organic compounds derived there from comprise human and animal monoclonal antibodies or fragments thereof, single chain antibodies and fragments thereof and miniantibodies, bispecific antibodies, diabodies, triabodies, or di-, oligo- or multimers thereof. Also included are peptidomimetics or peptides derived from the antibodies according to the invention, e.g. they comprise one or several CDR regions, preferably the CDR3 region.

[0017] Further included are human monoclonal antibodies and peptide sequences which, based on a structure activity connection, are produced through an artificial modeling process (Greer J. et al., J. Med. Chem., 1994, Vol. 37, pp. 1035-1054).

[0018] The term factor IX/IXa activating antibodies may also include proteins produced by expression of an altered, immunoglobulin-encoding region in a host cell, e.g. "technically modified antibodies" such as synthetic antibodies, chimeric or humanized antibodies, or mixtures thereof, or antibody fragments which partially or completely lack the constant region, e.g. Fv, Fab, Fab' or F(ab)'₂ etc. In these technically modified antibodies, e.g., a part or parts of the light and/or heavy chain may be substituted. Such molecules may, e.g., comprise antibodies consisting of a humanized heavy chain and an unmodified light chain (or chimeric light chain), or vice versa. The terms Fv, Fc, Fd, Fab, Fab' or F(ab)₂ are used as described in the prior art (Harlow E. and Lane D., in "Antibodies, A Laboratory Manual", Cold Spring Harbor Laboratory, 1988).

[0019] The present invention also comprises the use of Fab fragments or $F(ab)_2$ fragments which are derived from monoclonal antibodies (mAb), which are directed against factor IX/factor IXa and cause an increase of the procoagulant activity of factor IXa. Preferably, the heterologous framework regions and constant regions are selected from the human immunoglobulin classes and isotypes, such as IgG (subtypes 1 to 4), IgM, IgA and IgE. In the course of the immune response, a class switch of the immunoglobulins may occur, e.g. a switch from IgM to IgG; therein, the constant regions are exchanged, e.g. from μ to y. A class switch may also be caused in a directed manner by means of genetic engineering methods ("directed class switch recombination"), as is known from the prior art (Esser C. and Radbruch A., Annu. Rev. Immunol., 1990, Vol. 8, pp. 717-735). However, the antibodies according to the present invention need not comprise exclusively human sequences of the immunoglobulin proteins.

[0020] In one particular embodiment, a humanized antibody comprises complement determining regions (CDRs) from murine monoclonal antibodies which are inserted in the framework regions of selected human antibody sequences. However, human CDR regions can also be used. Preferably, the variable regions in the human light and heavy chains are technically altered by one or more CDR exchanges. It is also possible to use all six CDRs or varying combinations of less than six CDRs.

[0021] The humanized antibody according to the present invention preferably has the structure of a human antibody or of a fragment thereof and comprises the combination of characteristics necessary for a therapeutic application, e.g., the treatment of coagulation disorders in patients, preferably factor VIII inhibitor patients.

[0022] A chimeric antibody differs from a humanized antibody in that it comprises the entire variable regions including the framework regions of the heavy and light chains of non-human origin in combination with the constant regions of both chains from human immunoglobulin. A chimeric antibody consisting of murine and human sequences may, for example, be produced. According to the present invention, the antibodies may also be single chain antibodies or miniantibodies (scFv fragments, which, e.g., are linked to proline-rich sequences and oligomerisation domains, e.g. Pluckthun A. and Pack P., Immunotechnology, 1997, Vol. 3, pp. 83-105) or single chain Fv (sFv) which incorporate the entire

antibody binding region in one single polypeptide chain. For instance, single chain antibodies may be formed by linking the V-genes to an oligonucleotide which has been constructed as a linker sequence and connects the C terminus of the first V region with the N terminus of the second V region, e.g. in the arrangement VH-Linker-VL or VL-Linker-V $_{\rm H}$; both, V $_{\rm H}$ and V $_{\rm L}$ thus may represent the N-terminal domain (Huston JS et al., Int. Rev. Immunol., 1993, Vol. 10, pp. 195-217; Raag R. and Whitlow M., FASEB J., 1995, Vol. 9, pp. 73-80). The protein which can be used as linker sequence may, e.g., have a length of up to 150 Å, preferably up to 80 Å, and more preferably up to 40 Å. Linker sequences containing glycine and serine are particularly preferred for their flexibility, or glutamine and lysine, respectively, for their solubility. The choice of the amino acid is effected according to the criteria of immunogenicity and stability, also depending on whether or not these single chain antibodies are to be suitable for physiological or industrial applications (e.g. immunoaffinity chromatography). The single chain antibodies may also be present as aggregates, e.g. as trimers, oligomers or multimers. The linker sequence may, however, also be missing, and the connection of the V $_{\rm H}$ and V $_{\rm L}$ chains may occur directly.

[0023] Bispecific antibodies are macromolecular, heterobifunctional cross-linkers having two different binding specificities within one single molecule. In this group belong, e.g., bispecific (bs) IgGs, bs IgM-IgAs, bs IgA-dimers, bs (Fab')₂, bs(scFv)₂, diabodies, and bs bis Fab Fc (Cao Y. and Suresh M.R., Bioconjugate Chem., 1998, Vol. 9, pp. 635-644).

[0024] By peptidomimetics, protein components of low molecular weight are understood which imitate the structure of a natural peptide component, or of templates which induce a specific structure formation in an adjacent peptide sequence (Kemp DS, Trends Biotechnol., 1990, pp. 249-255). The peptidomimetics may, e.g., be derived from the CDR3 domains. Methodical mutational analysis of a given peptide sequence, i.e. by alanine or glutamic acid scanning mutational analysis, allows for the identification of peptide residues critical for procoagulant activity. Another possibility to improve the activity of a certain peptide sequence is the use of peptide libraries combined with high throughput screening.

[0025] The term antibodies may also comprise agents which have been obtained by analysis of data relating to structure-activity relationships. These compounds may also be used as peptidomimetics (Grassy G. et al., Nature Biotechnol., 1998, Vol. 16, pp. 748-752; Greer J. et al., J. Med. Chem., 1994, Vol. 37, pp. 1035-1054).

[0026] Examples of hybridoma cells expressing the antibodies according to the invention were deposited on 9 September 1999 under the numbers 99090924 (#198/A1), 99090925 (#198/B1) and 99090926 (#198/BB1) and on December 16, 1999 under the numbers 99121614 (#193/A0), 99121615 (#196/C4), 99121616 (#198/D1), 99121617 (198/T2), 99121618 (#198/G2), 99121619 (#198/AC1) and 99121620 (#198/U2) according to the Budapest Treaty.

Methods of Production:

5

10

15

20

25

30

40

45

50

55

[0027] The antibodies of the present invention can be prepared by methods known from the prior art, e.g. by conventional hybridoma techniques, or by means of phage display gene libraries, immunoglobulin chain shuffling or humanizing techniques (Harlow E. and Lane D., in: Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, 1988). The production of the inventive antibodies and antibody derivatives may, for instance, be made by conventional hybridoma techniques (Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, Eds. Harlow and Lane, pp. 148-242). According to the present invention, non-human species may be employed therefor, such as cattle, pigs, monkeys, chickens and rodents (mice, rats). Normal, immunocompetent Balb/c mice or FIX-deficient mice may, e.g., be used (factor IX-deficient mice may be obtained from Dr. Darrel Stafford from the University of North Carolina, Chapel Hill). Immunization may, e.g., be effected with factor IX, factor IXaα or completely activated factor IXaβ, or with fragments thereof.

[0028] The hybridomas are selected with a view to the fact that the antibodies in the supernatants of the hybridoma cells bind to factor IX/factor IXa and cause an increase of the procoagulant activity of factor IXa. The increase in the procoagulant activity may, e.g., be proven by assaying methods as known from the prior art for the measurement of factor VIII-like activity, e.g. chromogenic assays.

[0029] Alternatively, the antibodies of the invention may also be produced by recombinant production methods. In doing so, the DNA sequence of the antibodies according to the invention can be determined by known techniques, and the entire antibody DNA or parts thereof can be expressed in suitable systems. Recombinant production methods can be used, such as those involving phage display, synthetic and natural libraries, expression of the antibody proteins in known expression systems, or expression in transgenic animals (Jones et al., Nature, 1986, Vol. 321, pp.522-525; Phage Display of Peptides and Proteins, A Laboratory Manual, 1996, Eds. Kay et al., pp. 127-139; US 4,873,316; Vaughan T.J. et al., Nature Biotechnology, 1998, pp. 535-539; Persic L. et al., Gene, 1997, pp. 9-18; Ames R.S. et al., J.Immunol.Methods, 1995, pp. 177-186).

[0030] The expression of recombinantly produced antibodies may be effected by means of conventional expression vectors, such as bacterial vectors, such as pBr322 and its derivatives, pSKF or eukaryotic vectors, such as pMSG and SV40 vectors. Those sequences which encode the antibody may be provided with regulatory sequences which regulate the replication, expression and secretion from the host cell. These regulatory sequences comprise promoters, e.g. CMV or SV40, and signal sequences.

[0031] The expression vectors may also comprise selection and amplification markers, such as the dihydrofolate reductase gene (DHFR), hygromycin-B- phosphotransferase, thymidine-kinase etc.

[0032] The components of the vectors used, such as selection markers, replicons, enhancers etc., may either be commercially obtained or prepared by means of conventional methods. The vectors may be constructed for the expression in various cell cultures, e.g. for mammalian cells such as CHO, COS, fibroblasts, insect cells, yeast or bacteria, such as E. coli. Preferably, those cells are used which allow for an optimal glycosylation of the expressed protein. Particularly preferred is the vector pBax (cf. Fig. 17) which is expressed in CHO cells or in SK-Hep.

The production of Fab fragments or $F(ab)_2$ fragments may be effected according to methods known from the prior art, e.g. by cleaving a mAb with proteolytic enzymes, such as papain and/or pepsin, or by recombinant methods. These Fab and $F(ab)_2$ fragments may also be prepared by means of a phage display gene library (Winter et al., 1994, Ann. Rev. Immunol., 12:433-455).

The purification of the inventive antibodies may also be carried out by methods described in the prior art, e.g., by ammonium sulfate precipitation, affinity purification (protein G-Sepharose), ion exchange chromatography, or gel chromatography. The following methods may be used as the test methods to show that the antibodies of the present invention bind to factor IX/factor IXa, increase the procoagulant activity of factor IXa or have factor VIII-like activity.: the one step coagulation test (Mikaelsson and Oswaldson, Scand. J. Haematol., Suppl., 33, pp. 79-86, 1984) or the chromogenic tests, such as COATEST VIII:C® (Chromogenix) or Immunochrom (IMMUNO). In principle, all the methods used for determining factor VIII activity may be used. As the control blank value for the measurements, e.g., unspecific mouselgG antibody may be used.

[0033] The present antibodies are suitable for therapeutic use in the treatment of coagulation disorders, e.g. in the case of hemophilia A, for factor VIII inhibitor patients etc. Administration may be effected by any method suitable to effectively administer the therapeutic agent to the patient, e.g. by oral, subcutaneous, intramuscular, intravenous or intranasal administration.

[0034] Therapeutic agents according to the invention may be produced as preparations which comprise a sufficient amount of antibodies as the active agent in a pharmaceutically acceptable carrier substance. These agents may be present either in liquid or in powderized form. Moreover, the preparations according to the invention may also comprise mixtures of different antibodies, the derivatives thereof and/or organic compounds derived therefrom, as well as mixtures consisting of antibodies and factor IX and/or factor IXa. Factor IXa may be present as factor IXaα and/or factor IXaβ. An example of an aqueous carrier substance is, e.g., saline. The solutions are sterile, sterilisation being effected by conventional methods.

[0035] The antibodies according to the invention may be present in lyophilized form for storage and be suspended in a suitable solvent before administration. This method has proven generally advantageous for conventional immunoglobulins, and known lyophilisation and reconstitution methods may be applied in this case.

[0036] Moreover, the antibodies according to the invention may also be used for industrial applications, e.g. for the purification of factor IX/factor IXa by means of affinity chromatography, or as a component of detection methods (e.g. ELISA assays), or as an agent for identification of and interaction with functional domains of a target protein.

[0037] The present invention will be described in more detail by way of the following examples and drawing figures.

Examples

5

10

15

20

25

30

40

45

50

55

Example 1: Immunization of immunocompetent mice and generation of anti-FIX/IXa antibody secreting hybridoma cells

[0038] Groups of 1-3 normal immunocompetent 5-8 week old Balb/c mice were immunized with 100μg antigen (100μl doses) via the intraperitoneal (i.p.) route. In a typical experiment, mice were inoculated with either recombinant human coagulation factor (F) IX (Benefix[™]), human activated FIXaα (Enzyme Research Laboratories, Lot: FIXaα 1190L) or human FIXaβ (Enzyme Research Laboratories, Lot: HFIXAaβ 1332 AL,) adjuvanted with AI(OH)₃ or KFA.

[0039] Individual mice were boosted at various times with 100µg antigen (100µl doses, i.p) and sacrificed two days later. Spleen cells were removed and fused to P3 X63-Ag8 6.5.3 myeloma cells essentially as described by Lane et al., 1985 (J. Immunol. Methods, Vol. 81, pp. 223-228). Each fusion experiment was individually numbered, i.e. #193, 195, 196 or 198.

[0040] Hybridoma cells were grown in 96 well plates on a macrophage feeder layer (app. 10^5 cells/ml) and selected in HAT-medium (RPMI-1640 medium supplemented with antibiotics, 10% FCS, Na-pyruvate, L-glutamine, 2-mercaptoethanol and HAT (HAT 100x: $1.0x10^{-2}$ M hypoxanthine in H₂O (136.1 mg/100ml H₂O), $4.0x10^{-5}$ M aminopterin in H₂O (1.76 mg/100ml H₂O) and $1.6x10^{-3}$ M thymidine in H₂O (38.7 mg/100ml H₂O). Medium was first changed after 6 days and thereafter twice a week. After 2-3 weeks HAT-medium was changed to HT-medium (RpMI-1640 supplemented with antibiotics, 10%FCS, Na-pyruvate, L-glutamine, 2-mercaptoethanol and HT) and later on (after additional 1-2 weeks) to normal growth medium (RPMI-1640 medium supplemented with 10%FCS, Na-pyruvate, L-glutamine and 2-mercaptoethanol

toethanol) (see: HYBRIDOMA TECHNIQUES, EMBO, SKMB Course 1980, Basel).

5

10

15

20

25

30

40

45

50

55

[0041] In another set of experiments FIX deficient C57B16 mice (Lin et al., 1997, Blood, 90:3962) were used for immunization and subsequent hybridoma production. Since FIX knockout (k.o.) mice do not express endogenous FIX, the anti (a)-FIX antibody spectrum achievable is supposed to be different compared to normal Balb/c mice (due to lack of tolerance)

Example 2: Assaying for FVIII-like activity in supernatants of anti-FIX/FIXa antibody secreting hybridoma cells

[0042] In order to assay the FVIII-like activity of anti-FIXa antibodies secreted by hybridoma cells, the commercially available test-kit COATEST VIII:C/4® (Chromogenix) was employed. The assay was done essentially as described by the manufacturer with the following modifications:

[0043] To allow high throughput screening, the assay was downscaled to microtiter plate format. Briefly, 25μl aliquots of hybridoma supernatants were transferred to microtiter plate (Costar, #3598) wells and warmed to 37°C. Chromogenic substrate (S-2222), synthetic thrombin inhibitor (I-2581), factor (F) IXa and FX were reconstituted in sterile water and FIXa/FX was mixed with phospholipids according to the supplier's protocol. Per reaction, 50μl of the phospholipid/FIXa/FX solution were combined with 25μl CaCl₂ (25mM) and 50μl of the substrate/inhibitor cocktail. To start the reaction, 125μl of the premix were added to the hybridoma supernatant in the microtiter plates and incubated at 37°C. Absorbency at 405nm and 490nm of the samples was read at various times (30min to 12h) against a reagent blank (MLW, cell culture medium instead of hybridoma supernatant) in a Labsystems iEMS Reader MFTM microtiter plate reader. FVIII-like activity of the samples was calculated by comparing the absorbency of the samples against the absorbency of a diluted FVIII reference standard (IMMUNO AG # 5T4AR00) using GENESISTM software.

[0044] The results of a screening for FVIII-like activity in hybridoma cell culture supernatants are shown in Fig. 1. Preselected clones derived from fusion experiments #193, #195 and #196 (see above) were examined in a chromogenic FVIII assay as described. Clones 193/M1, 193/N1 and 193/P1 are subclones derived from the master clone 193/C0 (see below). Master clone 195/10 was derived from fusion experiment #195 and clones 196/A0, 196/B0 and 196/C0 were derived from fusion experiment #196. In a typical screening experiment, approximately 1000 clones (in 96 wells) from a single fusion experiment were pre-screened for FVIII-like activity. Subsequently, selected clones were grown on a larger scale (3-5 ml supernatant) and re-analyzed in a chromogenic assay. As a negative control cell culture medium was assayed on each plate (MLW).

[0045] Wells either exhibiting high FVIII-like activity or substantial FVIII-like activity were subjected to subcloning procedures. The selection and subcloning process is exemplified for the screening and subcloning of an IgG producing cell line (i.e. 193/C0) but has been done exactly the same way for an IgM (i.e. 196/C0, see below, Fig. 5) producing clone. [0046] The selection process was done by initially plating all hybridoma cell clones derived from a single fusion experiment on ten 96 well plates thereby creating the so called "master plates". Singular positions (wells) on a master plate usually contained more than one hybridoma cell clone (usually 3 to 15 different clones). Subsequently, the antibody secreted by only several thousand cells was tested. These cells grew under conditions suboptimal for antibody production, which is known to be best in dying cells. So the expected specific anti-FIX antibody concentration in the supernatant may be in the range of 10⁻¹² to 10⁻¹⁴ M. This explains why incubation periods had to be extended compared to standard FVIII assays.

[0047] Results of a screening for an IgG mediated FVIII-like activity in hybridoma cell culture supernatants of a master plate are shown in Fig. 2. Supernatants were examined in a chromogenic FVIII assay. Shown are the results derived from the fifth master plate of fusion experiment number #193 (Balb/c mice immunized with FIXaα). Absorbance was read after 4 hours of incubation at 37 °C. Position ES was identified as exhibiting FVIII like activity significantly higher than the blank (MLW). This cell pool was designated 193/C0 and was further subcloned (Figure 3). As each well of the master plate contains more than one hybridoma cell clone, cells of a single positive well were expanded and plated at a calculated cell density of 2 - 0.2 cells/well on a 96 well plate. Again, the supernatants were tested for FVIII-like activity and positive positions were subjected to another round of subcloning. Typically three to four rounds of subcloning were performed with each clone displaying FVIII-like activity to obtain homogenous cell populations. Here the results of the chromogenic assay of the 193/C0 subclones are shown. Absorbance was read after a 4 hour incubation period at 37 °C. Positions A6 and D5 exhibited substantial FVIII-like activity and were named 193/M1 and 193/P1, respectively. These two clones were subjected to another round of subcloning. As a negative control plain cell culture medium was assayed on each plate (MLW(H1)).

[0048] A comparison of chromogenic FVIII-like activity and FIX-ELISA reactivity of small scale (3 ml) hybridoma cultures is shown in Fig. 4. Before a decision was made whether a master clone (or subclone) was to be further subcloned, clones were grown at a 3-5 ml scale and the supernatants were checked again. This graph shows the FIX specific ELISA results and the FVIII-like chromogenic activity of the master clone 193/C0 and all its subclones which were identified as positives and rechecked. Blanks (absorbency of the chromogenic reagent itself) were subtracted in the case of the ELISA as well as the chromogenic assay readings depicted here. Clone 193/M1 was subcloned and yielded clones 193/V2,

193/M2 and 193/U2. The other clones of the 2^{nd} round came from 193/P1, 193/AB2 and 193/P2 were subcloned. 193/AF3, 193/AB3 and 193/AE3 are subclones of 193/AB2. The other clones of the 3^{rd} round came from 193/P2. Finally 193/AF3 (\rightarrow 193/AF4), AE3 (\rightarrow 193/AE4, 193/AL4, 193/AN4 and 193/AO4) and 193/AD3 (\rightarrow 193/AG4, 193/AH4, 193/AD4, 193/AI4, 193/AK4) were subcloned.

[0049] From each fusion experiment, several (5-15) master clones (selected from the master plate) were identified and subjected to subcloning. After 3 rounds of subcloning, most of the cell lines were homogenous as demonstrated by ELISA and chromogenic activity analysis (see Fig. 4) as well as by cDNA sequence analysis. A specific master clone and all its subclones produce the same FIX/FIXa binding antibody. However, there are huge differences in the antibody protein sequences of clones derived from different master clones (see Example 11). Most hybridoma cell lines express antibodies from the IgG subclass (i.e. clones #193, #198, like 198/A1, 198/B1, 198/BB1). However, we were also able to select some clones expressing IgM antibodies.

[0050] The chromogenic activity of hybridoma supernatant of some important master clones and subclones was determined. Absorbance was measured after a 1h 30 min and 3h 30 min incubation period at 37 °C (Fig. 5). In contrast to all the clones from the 193rd fusion, clone 196/C0 and its subclone 196/AP2 produced a FIX/FIXa-specific IgM antibody that gave a strong chromogenic activity even after a short period of incubation.

[0051] The following cell lines have been deposited with the European Collection of Cell Cultures (ECACC)in accordance with the Budapest Treaty: 98/B1 (ECACC No. 99090925); 198/A1 (ECACC No. 99090924); 198/BB1 (ECACC No. 99090926); 193/AO (ECACC No. 99121614); 196/C4 (ECACC No. 99121615); 198/D1 (ECACC No. 99121616); 198/T2 (ECACC No. 99121617); 198/G2 (ECACC No. 99121618); 198/AC1 (ECACC No. 99121619); and 198/U2 (ECACC No. 99121620).

[0052] To do a more in depth analysis of the biochemical properties of certain antibodies, homogenous hybridoma cell lines expressing different antibodies with FVIII-like activity were expanded and used to express the antibody in question on a larger scale (100-1000 ml). These antibodies were affinity purified (see Example 3) prior to being used in further experiments.

Example 3: Factor IX/FIXa $_{(\alpha,\beta)}$ binding properties of antibodies exhibiting FIX/FIXa activating activity

[0053] Factor IX and the two activated forms of FIX, FIXaα and FIXaβ (FIX/FIXa_(α,β)) were diluted in TBS (25mM Tris HCl, 150mM NaCl, pH 7.5) to a final concentration of $2\mu g/ml$. Nunc Maxisorp ELISA plates were coated with $100\mu I$ FIX/FIxa_(α,β) solution according to standard procedures (4 °C, overnight) and washed several times with TBST (TBS, 0.1% (v/v) Tween 20). $50\mu I$ hybridoma supernatant was diluted 1:1 with $50\mu I$ TBST/2%BSA and added to the coated ELISA plate. After an incubation period of 2h at room temperature (RT), plates were washed 4 times with TBST and incubated (2h, RT) with $100\mu I$ /well of a 1:25000 dilution (in TBST/1%BSA) of an anti-mouse IgG (Fc-specific) peroxidase conjugated antibody (Sigma, #A-0168). Wells were washed 5 times with TBST and finally stained with $100\mu I$ freshly prepared staining solution (10mI 50mM sodium citrate, pH 5 supplemented with $100\mu I$ OPD (60mg OPD/mI) and $10\mu I$ 30% H₂O₂). The reaction was stopped by the addition of 50mI H₂SO₄ and the optical density recorded at 492nm and 620nm in a Labsystems iEMS Reader MFTM microtiter plate reader employing GENESISTM software.

[0054] In certain cases, instead of an anti-mouse IgG ELISA, an anti-mouse IgM ELISA was carried out.

Purification of mouse-lgG from hybridoma cell culture supernatants

5

10

15

20

25

30

40

45

50

55

[0055] Hybridoma supernatant (100-500 ml) was supplemented with 200 mM Tris/HCl buffer (pH 7.0) and solid NaCl to give final concentrations of 20 mM Tris and 3M NaCl, respectively. The supernatant was then clarified by centrifugation at 5500 x g for 10 minutes. A 1 ml protein G affinity chromatography column (Protein G Sepharose Fast Flow, Amersham-Pharmacia) was washed with 15 ml 20 mM Tris/Cl pH 7.0 and afterwards equilibrated with 10 ml of 20 mM Tris/Cl buffer pH 7.0 containing 3M NaCl. The hybridoma supernatant containing 3M NaCl was then loaded onto the column by gravity. The column was washed with 15 ml of 20 mM Tris/Cl buffer, pH 7.0, containing 3M NaCl. Bound IgG was further eluted with 12 ml glycine/HCl buffer pH 2.8 and 1 ml fractions were collected. 100μl of 1M Tris pH 9.0 were added to each fraction for neutralization. Fractions containing the IgG were identified by mixing 50μl with 150μl of a staining solution (BioRad concentrate, 1:5 diluted with water) in wells of a microplate. Positive fractions were pooled, concentrated to 1 ml in an ultrafiltration concentrator device (Centricon Plus 20, Amicon) according to the manufacturer. The concentrate was diluted with 19 ml TBS (20 mM Tris/Cl buffer pH 7.0 containing 150mM NaCl) and again concentrated to 1 ml. The diluting-concentrating step was repeated for two more times in order to bring IgG into TBS.

Purification of mouse-IgM from hybridoma cell supernatants

[0056] 100-500 ml of hybridoma cell culture supernatant were concentrated to 5-10 ml either, with an ultrafiltration concentrator device (Centricon Plus 20, Amicon) according to the manufacturer or by ammonium sulfate precipitation

(40% saturation, 0°C) and redissolving the precipitate with 5-10 ml of TBS. In either case the concentrate was dialyzed against 20mM Tris CI buffer pH 7.4 containing 1.25M NaCI and further concentrated to 1 ml in a Centricon Plus 20, (Amicon) ultrafiltration device. IgM was purified from this concentrate with the ImmunoPure IgM Purification Kit (Pierce) according to the manufacturer. Fractions collected during elution from the maltose binding protein-column were tested for IgM, pooled, concentrated and brought into TBS as described for IgG.

Determination of IgG concentrations in purified preparations

[0057] Total IgG content 280nm - extinction of appropriate dilutions were measured. E280 = 1.4 corresponds to 1 mg/ml protein.

Factor IXa specific IgG (quantitative ELISA)

5

10

15

20

25

30

40

45

50

55

[0058] Wells of a microplate (Nunc Maxisorp) were incubated with $2\mu g/ml$ factor IXa diluted in TBS (25mM Tris/HCl pH 7.5 containing 150mM NaCl) overnight at 4°C. Wells were washed four times with TBST (25mM Tris/HCl pH 7.5 containing 150mM NaCl and 0.1% (v/v) Tween 20). As a standard monoclonal AB the HIX1 anti-FIX (accurate) was used. Standard and samples were diluted in TBST containing 2% (w/v) BSA. The standard dilution series and appropriate dilutions of the samples were incubated on the ELISA-plate for 2 hours at room temperature. Plates were washed 4 times with TBST and incubated (2h, RT) with 100μl/well of a 1:25000 dilution (in TBST/1%BSA) of an anti-mouse IgG (Fc-specific) peroxidase conjugated antibody (Sigma, #A-0168) FIXa. Wells were washed 5 times with TBST and finally stained with 100μl freshly prepared staining solution (10ml 50mM sodium citrate, pH 5 supplemented with 100μl OPD (60mg OPD/ml) and 10μl 30% H_2O_2). The reaction was stopped by the addition of 50ml H_2SO_4 and after 30 minutes the optical density was recorded at 492nm and 620nm in a Labsystems iEMS Reader MFTM microtiter plate reader employing GENESISTM software.

Example 4: Anti-FIX/FIXa antibodies exhibiting FVIII-like activity in a chromogenic FVIII assay

[0059] Several anti-FIX/FIXa antibody producing hybridoma clones were subcloned up to four times and the resulting monoclonal hybridoma cell line used to produce monoclonal antibody containing supernatant. IgG isotype antibodies derived from these supernatants were purified over affinity columns and dialyzed against TBS (see above). IgM antibodies were used as unpurified supernatant fractions. The following experiments were done with two sets of representative antibodies: 193/AD3 and 198/AC1/1 (IgG isotype, the antibody 198/AC1/1 is a preparation from the parent 198/AC1 hybridoma clone, i.e. that a (frozen) vial containing 198/AC1 cells is cultivated and antibodies are produced. The supernatant is then used for these experiments.) and 196/AF2 and 196/AF1 (IgM isotype) (Fig. 6A and Fig. 6B). Briefly, 25µl aliquots of monoclonal antibody containing sample (unpurified hybridoma supernatant or, where indicated, a certain amount of FIX specific antibody) were transferred to microtiter plate wells and warmed to 37°C. Chromogenic substrate (S-2222), synthetic thrombin inhibitor (I-2581), factor (F) IXa and FX were reconstituted in sterile water and FIXa/FX was mixed with phospholipids according to the supplier's protocol. Per reaction, 50 µl of the phospholipid/FIXa/FX solution were combined with 25μl CaCl₂ (25mM) and 50μl of the substrate/inhibitor cocktail. To start the reaction, 125μl of the premix were added to the monoclonal antibody solution in the microtiter plates and incubated at 37°C. Absorbance at 405nm and 490nm of the samples was read at various times (5min to 6h) against a reagent blank (cell culture medium instead of hybridoma supernatant) in a Labsystems iEMS Reader MF[™] microtiter plate reader using GENESIS[™] software. [0060] The time course of FVIII-like activity exhibited by monoclonal antibodies 193/AD3 (IgG isotype) and 196/AF2 (IgM isotype) compared to human FVIII (12 and 16mU/mI), TBS and to cell culture medium is shown in Fig. 6A. After a lag phase, both antibodies give rise to chromogenic substrate cleavage, as judged by the increasing optical density measurable at 405nm wavelength.

[0061] The time course of FVIII-like activity exhibited by monoclonal antibodies 198/AC1/1 (IgG isotype, 10µg/ml) and 196/AF1 (IgM isotype, unpurified supernatant) compared to human FVIII (16mU/ml) and 10µg/ml of mouse IgG is shown in Fig. 6B. After a lag phase, both antibodies give rise to chromogenic substrate cleavage, as judged by the increasing optical density measurable at 405nm wavelength.

Example 5: FVIII-like activity exhibited by anti-FIX/FIXa-antibodies generates factor Xa and is phospholipid, FIXa/FX and Ca²⁺ dependent.

[0062] Factor VIII activity is usually determined with a chromogenic assay and/or an APTT-based clotting assay. Both types of assays rely on FVIIIa/FIXa-mediated factor Xa generation. In the case of a chromogenic FVIII assay, the factor Xa produced will subsequently react with a chromogenic substrate, which can be monitored spectroscopically, e.g., in an ELISA reader. In an APTT based clotting assay free factor Xa will assemble with FVa on a phospholipid surface in

the so-called prothrombinase complex and activate prothrombin to thrombin. Thrombin in turn gives rise to fibrin generation and finally to clot formation. Central to the two assay systems is generation of factor Xa by the FVIIIa/FIXa complex. To demonstrate that the FVIII-like activity exhibited by anti-FIX/FIXa-antibodies indeed generates factor Xa, the following experiment was carried out. Several 25µI aliquots of unpurified hybridoma supernatant 196/AF2 (IgM isotype) were transferred to microtiter plate wells and warmed to 37°C. As a positive control, 16mU of Recombinate™ were diluted into hybridoma medium (196 HM 007/99) and treated exactly the same way as the hybridoma supernatant. As a negative control, plain hybridoma medium was used. Chromogenic substrate (S-2222), synthetic thrombin inhibitor (I-2581), factor IXa and FX were reconstituted in sterile water and FIXa/FX was mixed with phospholipids according to the supplier's protocol. Pefabloc Xa®, a factor Xa specific proteinase inhibitor (Pentapharm, LTD), was reconstituted with water to a final concentration of 1mM/I. Per reaction, 50µI of the phospholipid/FIXa/FX solution were combined with 25µI CaCl₂ (25mM) and 50µI of the substrate/thrombin-inhibitor cocktail. To start the reaction, 125µI of the premix were added to the samples in the microtiter plates and incubated at 37°C. Where indicated, 35µM Pefabloc Xa® were added. Absorbance at 405nm and 490nm was read at various times (every 5 minutes to 6h) against a reagent blank (cell culture medium) in a Labsystems iEMS Reader MF™ microtiter plate reader employing the GENESIS™ software.

5

10

15

20

25

30

40

45

50

55

scanned every 5 minutes for 6h.

[0063] The results of the factor IXa stimulation by the FVIII-like activity exhibited by the IgM anti- FIX/FIXa-antibody 196/AF2 in generating actor Xa as judged by the readily measurable cleavage of the chromogenic substrate S-2222 (compare "16mU FVIII" and "196/AF2") is shown in Fig. 7A. Factor Xa activity is effectively blocked by the FXa specific inhibitor "Pefabloc Xa®" (compare "196/AF2" versus "196/AF2 35µM Pefabloc Xa®") indicating that indeed FXa was generated.

[0064] The same experiment was performed using purified IgG preparations of clone 198/AM1 (Fig. 7B). Purified IgG was diluted in TBS to a final concentration of 0,4mg/ml and 25µl (i.e. a total of 10µg), transferred to microtiter plate wells and warmed to 37°C. As a positive control, 6mU plasma- derived FVIII was used. 10µg unspecific mouse IgG (Sigma, I-5381) served as a negative control. The assay was performed as described above.

[0065] Further experiments show the factor IXa stimulation by the FVIII-like activity exhibited by the IgG anti-FIX/FIXa-antibody 198/AM1 generates factor Xa as judged by the readily measurable cleavage of the chromogenic substrate S-2222 (Fig. 7B). Again factor VIII and antibody 198/AM1 generate FXa which is effectively blocked by the FXa specific inhibitor "Pefabloc Xa®". As a negative control, unspecific mouse IgG (Sigma, I5381) was assayed.

[0066] In another set of experiments, the dependence of the FVIII-like activity of either purified anti-FIX/FIXa-antibodies (IgM, Fig.8A) or of unpurified antibodies derived from cell culture supernatants (IgG, Fig. 8B) on the presence of phospholipids (PL), FIXa/FX and Ca²⁺ was demonstrated. Mouse IgG was used as a control (Fig. 8C). Factor VIII-like activity was assayed essentially as described above. When indicated, either the FIXa/FX mixture, the PL or Ca²⁺ was omitted from the reaction. Absorbency at 405nm and 490nm of the samples was read at various times against a reagent blank (buffer instead of purified antibody) in a Labsystems iEMS Reader MF[™] microtiter plate reader. The results are shown in Fig. 8A, Fig. 8B and Fig. 8C.

[0067] The dependence of the FVIII-like activity of purified anti-FIXa-antibody 198/AC1/1 (IgG isotype, concentration used throughout the assay was 10µg/ml) on the presence of phospholipids (PL), FIXa/FX and Ca²+ is further shown in Fig. 8A. As is easily recognizable, only the complete assay, including antibody, PL, Ca²+, and FIXa/FX gives rise to a reasonable FXa generation. The dependence of the FVIII-like activity of cell culture supernatant containing unpurified IgM isotype anti-FIX/FIXa-antibody (196/AF1) on the presence of phospholipids, FIXa/FX and Ca²+ is shown in Fig. 8B. [0068] Again, as already shown for the purified IgG preparation (Fig. 8A), antibody 198/AC1/1, only the complete assay, including PL, Ca²+, FIXa/FX, will give a reasonable amount of FXa generation. To demonstrate the specificity of the reaction, total IgG prepared from normal mouse plasma was assayed under the same conditions as above. The results are shown in Fig. 8C. No FVIII-like activity could be detected. There is, as expected, no activity detectable in the absence of phospholipids, FIXa/FX and Ca²+. All experiments were done in a microtiter plate and the OD405 was

Example 6: Certain anti-FIX/FIXa-antibodies are procoagulant in the presence of FIXa

[0069] During normal hemostasis, FIX becomes initially activated either by the tissue factor (TF)/factor VIIa pathway or later on by activated factor XI (FXIa). Subsequent to its activation, FIXa associates on the platelet surface in a membrane bound complex with activated FVIII. Factor IXa by itself has little or no enzymatic activity towards FX, but becomes highly active in the presence of FVIIIa. To demonstrate that certain anti-FIX/FIXa antibodies have FVIII-like activity and hence are procoagulant in a FVIII deficient human plasma, the following experiment was carried out. Different amounts of antibody 193/AD3 or mouse IgG (as a control) were used in a standard aPTT based one stage clotting assay. Briefly, 100μI of antibody-containing samples were incubated with 100μI of FVIII deficient plasma (DP) and with 100μI of DAPTTIN (PTT Reagent for determining activated Thromboplastin Time; IMMUNO AG) reagent, in a KC10A clotting analyzer. Where indicated, a total amount of 50ng activated FIX was included in the reaction mixture. After a 4 minute incubation, the reaction was started by the addition of 100μI CaCl₂ (25mM). The results are shown in Table 1 and Fig. 9.

Table 1: Clotting times of FVIII deficient plasma in an APTT based clotting assay employing various amounts of procoagulant (193/AD3) and control antibody (mouse IgG) in the presence of 50ng activated FIX (0.01UFIX). The molar ratio of antibody in the reaction and activated FIX is 10:1. The molar ratio between antibody and total FIX (FIX and FIXa, assuming that human FVIII deficient plasma contains 1U (5µg) FIX) varies between 6:1 (9µg antibody in reaction) and 1:6 (0.23µg antibody in reaction). At the optimal shortening of the clotting time, the molar ratio between antibody and total FIX is 1:1. The clotting time without the addition of FIXa is in the range of 120 seconds.

		clotting time (sec)	
	μ g AB	193/AD3	mouse lgG
0 —		50ng FIXa	50ngFIXa
	9	101.6	102.5
	4.5	95.6	103.2
	2.25	93.1	103.2
	1.8	93.7	101.9
	1.35	91.4	103.4
	0.9	94.4	102.2
	0.45	98.1	101.9
	0.34	97.1	103.9
	0.23	99.3	103.7

[0070] Fig. 9 is a graphical representation of the clotting times of FVIII deficient plasma in an aPTT based clotting assay employing various amounts of procoagulant (193/AD3) and control (mouse IgG) antibody in the presence of 50ng activated FIX. There is a clear dose-dependent reduction of the clotting time in samples supplemented with antibody 193/AD3. These results imply that antibody 193/AD3 is procoagulant in the presence of FIXa.

Example 7: Anti-FIX/FIXa-antibodies are procoagulant in the presence of FVIII inhibitors and FIXa

[0071] A severe complication of the standard FVIII substitution therapy is the development of alloantibodies directed against FVIII, leading to FVIII neutralization and a condition where the patient's blood will not clot.

[0072] To demonstrate that certain anti-FIXa-antibodies have FVIII-like activity even in the presence of FVIII inhibitors, the following experiment was carried out. Different amounts of antibody 193/AD3 or, as a control, mouse IgG were used in a standard APTT based one-stage clotting assay. Briefly, 100µl antibody samples were incubated with either 100µl of FVIII deficient plasma (Fig. 10A) or FVIII inhibitor plasma (inhibitor potency 400BU/ml), Fig.10B) as well as with 100µl of DAPTTIN reagent, in a KC10A clotting analyzer. In addition, a total amount of 50ng activated FIXa was included in the reaction mixture. After a 4 minute incubation, the reaction was started by the addition of 100µl CaCl₂ (25mM). To ensure equal conditions, the experiments employing FVIII deficient plasma and FVIII inhibitor plasma were done side by side. The results are shown in Fig. 10A and 10B. As already shown in Example 6, there is a clear dose-dependent reduction of the clotting time in samples supplemented with antibody 193/AD3 in the presence of FVIII inhibitors.

Example 8: Anti-FIX/FIXa-antibodies are procoagulant in the presence of defective FVIII and FIXa

[0073] To demonstrate that certain anti-FIXa-antibodies have FVIII-like activity in the presence of defective FVIII, the following experiment may be carried out. Increasing amounts of antibody 193/AD3 or, as a control, mouse IgG are used in a standard aPTT-based one stage clotting assay. In this clotting assay, a hemophilia A patient's plasma having very low clotting activity due to the presence of defective FVIII (DF8) is used. Briefly, 100 µl antibody samples are incubated with either 100 µl of DF8 plasma or FVIII deficient plasma as well as with 100 µl of DAPTTIN reagent, in a KC10A clotting analyzer. In addition, a total amount of 50ng activated FIXa is included in the reaction mixture. After a short incubation, the reaction will be started by the addition of 100 µl CaCl₂ (25mM). To ensure equal conditions, the experiment employing FVIII deficient plasma and DF8 plasma is done side by side.

55

5

25

30

35

40

45

Example 9: Anti-FIX/FIXa-antibodies with procoagulant activity in the presence of FIXa distinguish between human and bovine FIXa

[0074] FIX/FIXa specific monoclonal antibodies selected from the 198th fusion experiment were purified from the respective hybridoma supernatant and quantified as described in Example 3. These antibodies were analyzed in a modified one-stage clotting assay (as described in Example 6) and some showed procoagulant activity.

5

10

15

20

30

40

45

50

55

[0075] The chromogenic activity of these antibody preparations was measured in the following FXa generation kinetic assay: 10µg of monoclonal antibody (in 25µl) were transferred to microtiter plate wells and warmed to 37°C. Chromogenic substrate (S-2222), synthetic thrombin inhibitor (I-2581), factor IXa and FX were reconstituted in sterile water and FIXa/FX (both bovine) were mixed with phospholipids according to the supplier's protocol. Per reaction, 50µl of the phospholipid/FIXa/FX solution were combined with 25µl CaCl₂ (25mM) and 50µl of the substrate/inhibitor cocktail. To start the reaction, 125µl of the premix were added to the monoclonal antibody solution in the microtiter plates and incubated at 37°C. Absorbance at 405nm and 490nm of the samples was read at various times (5min to 2h) against a reagent blank (25ml TBS instead of monoclonal antibodies) in a Labsystems iEMS Reader MF™ microtiter plate reader using GENESIS™ software. In parallel, the same reactions were performed except that 50ng human FIXa were added per reaction. Those antibodies that showed procoagulant activity had no chromogenic activity in the case of bovine FIX, but displayed high activity when human FIXa was present.

[0076] Fig. 11 shows the time course of the FVIII-like activity exhibited by the monoclonal antibodies 198/A1, 198/B1 and 198/AP1 with (+) and without (-) addition of 50ng human FIXaβ. Non-specific polyclonal mouse IgG was used as a control. 198/A1 and 198/B1 show procoagulant activity (similar as 193/AD3 in example 6) whereas 198/AP1 does not. Antibody 198/BB1 had the same activity pattern (data not shown).

[0077] Further monoclonal antibodies selected from the 198th fusion experiment include 198/D1 (ECACC NO. 99121616), 198/T2 (ECACC No. 99121617), 198/G2 (ECACC No. 9912118), 198/U2 (ECACC No. 99121620).

Example 10: Structure and procoagulant activity of antibody derivatives derived from anti-FIX/FIXa-antibodies; Subcloning antibody variable domains from hybridoma cell lines 193/AD3, 193/K2, 198/A1 and 198/B1 (clone AB2)

[0078] Cloning procedure: Messenger RNA was prepared from 1x10⁶ hybridoma cells of the respective cell line (either 193/AD3, 193/K2, 198/A1 or 198/B1 (clone AB2)) employing the "QickPrep® Micro mRNA Purification Kit" (Pharmacia) according to the manufacturer's instructions. The corresponding cDNA was produced by retro transcription of mRNA using the "Ready-To-Go-You-Prime-First-Strand Beads kit" (Pharmacia) according to the manufacturer's instructions. Heavy and light chain encoding sequences were converted to the corresponding cDNA employing a set of primers. To reverse transcribe heavy chain-specific mRNA (VH), an equimolar mixture of the oligonucleotides MOCG1-2FOR (5' CTC AAT TTT CTT GTC CAC CTT GGT GC 3') (SEQ.ID.NO. 1), MOCG3FOR (5' CTC GAT TCT CTT GAT CAA CTC AGT CT 3') (SEQ.ID.NO. 2) and MOCMFOR (5' TGG AAT GGG CAC ATG CAG ATC TCT 3') (SEQ.ID.NO. 3) was used (RTmix1). In the same reaction tube, light chain-specific cDNA (VL) was synthesized using primer MOCKFOR -(5' CTC ATT CCT GTT GAA GCT CTT GAC 3') (SEQ.ID.NO. 4).

[0079] The coding sequences for VH were amplified by PCR using the primer-sets depicted in Fig. 12 and the specific cDNA, derived from the reverse transcription mixture (RTmix1) described above, as the template. VK-chain genes were amplified using the primer sets depicted in Fig. 13 and also employing Rtmix1 as a template. The VH-PCR product was cleaved Sfil-Ascl and inserted into Sfil-Ascl digested vector pDAP2 (GeneBank accession no.: U35316). The pDAP2-VH constructs obtained thereby were named pDAP2-193AD3/VH, pDAP2-198A1/VH, pDAP2-198AB2/VH (derived from antibody 198/B1) and pDAP2-193/K2/VH, respectively. The plasmids were subsequently cleaved with Ascl-NotI and the corresponding Ascl-NotI digested VK-gene PCR product was inserted. The resultant vectors were designated pDAP2-193/AD3scFv, pDAP2-198/AlscFv, pDAP2-198/AB2scFv (derived from antibody 198/B1) and pDAP2-193/K2scFv and code for the VH-gene and the VL-gene of the monoclonal antibodies 193/AD3, 198/A1, 198/AB2 (derived from antibody 198/B1) and 193/K2. Heavy and light chains are linked by the coding sequence for an artificial, flexible linker (G₄SGGRASG₄S; Engelhardt et al., 1994) and enables expression of the scFv variant of the respective antibody.

[0080] In Fig. 14, the DNA and the deduced protein sequence of the scFv derived from the hybridoma cell line 193/AD3 are depicted. Nucleotides 1 to 357 code for the heavy chain variable domain, nucleotides 358 to 402 code for the artificial flexible linker and nucleotides 403 to 726 code for the light chain variable region. The protein sequence of the CDR3 region of the heavy chain has the sequence YGNSPKGFAY (SEQ.ID.NO. 5) and is given in bold letters. The artificial linker sequence (G₄SGGRASG₄S) is shown.

[0081] In Fig. 15, the DNA and the deduced protein sequence of the scFv derived from the hybridoma cell line 193/K2 is shown. Nucleotides 1 to 363 code for the heavy chain variable domain, nucleotides 364 to 408 code for the artificial flexible linker, and nucleotides 409 to 747 code for the light chain variable region. The protein sequence of the CDR3

of the heavy chain has the sequence DGGHGYGSSFDY (SEQ.ID.NO. 6), and is given in bold letters. The artificial linker sequence (G₄SGGRASG₄S) is show.

[0082] In Fig. 16, the DNA and the deduced protein sequence of the scFv derived from the hybridoma cell line 198/AB2 (derived from antibody 198/B1) are depicted. Nucleotides 1 to 366 code for the heavy chain variable domain, nucleotides 367 to 411 code for the artificial flexible linker, and nucleotides 412-747 code for the light chain variable region. The protein sequence of the CDR3 region of the heavy chain has the sequence EGGGFTVNWYFDV (SEQ.ID.NO. 7) and is given in bold letters. The artificial linker sequence (G₄SGGRASG₄S) is also shown.

In Fig. 17, the DNA and the deduced protein sequence of the scFv derived from the hybridoma cell line 198/A1 are depicted. Nucleotides 1 to 366 code for the heavy chain variable domain, nucleotides 367 to 411 code for an artificial flexible linker, and nucleotides 412-747 code for the light chain variable region. The protein sequence of the CDR3 region of the heavy chain has the sequence EGGGYYVNWYFDV (SEQ.ID.NO.8) and is given in bold letters. The artificial linker sequence (G₄SGGRASG₄S) is also shown.

Example 11: Procoagulant activity of peptides derived from CDR3 regions of anti-FIX/FIXa-antibodies

[0083] In principle, the antibody molecule can be envisioned as a biological device for the presentation of a combinatorial array of peptide elements in three dimensional space (see Gao et al., 1999, PNAS, 96:6025). Therefore, an antibody (or an antibody derivative, e.g. scFv, Fab, etc.) can be used either as a tool for the detection of functionally important domains of a specific target protein, or on the other hand, for the delineation of amino acid sequences specifically mediating certain interactions, i.e. activating or enhancing the activity of FIXa towards the physiological substrate FX. The latter process has led to the evaluation of a number of heavy chain CDR3 region (CDR3_H) derived peptide sequences as FIXa enhancing agents.

[0084] Enhancing the procoagulant activity of peptides which exhibit such activity may be accomplished through sequence variation within the peptide regions critical for mediating the FIXa activity enhancement. As a possible step towards peptide sequences with enhanced procoagulant activity, the binding site of an antibody, i.e. 198/A1 or 198/B1, on the FIXa molecule is mapped by employing sequence comparison analyses, competitive binding assays, Western blot analyses and competitive ELISA analyses. Since the crystal structure of FIX is known, molecular modeling is subsequently used to improve the fitting of i.e. 198/B1 derived peptides in the 198/B1 binding site on human FIXa.

[0085] On the other hand, methodical mutational analysis of a given peptide sequence such as 198/A1 or 198/B1 CDR3_H derived peptide sequences by, e.g., "alanine scanning mutational analysis" allows for the identification of peptide residues critical for procoagulant activity. Another way to improve the activity of a certain peptide sequence is the use of peptide libraries combined with high throughput screening.

The antigen binding site of an antibody is derived from the juxtaposition of the six "complement determining regions (CDR's)" at the N-terminal end of the VL-HL dimer (or Fv region). The contribution of a single CDR to the antibody specificity for a given antigen may vary considerably, but in general it is thought that the CDR3 region of the heavy chain (CDR3_H) is of special influence, i.e. the particular protein sequence of CDR3_H region may be highly important for antigen recognition. The length of CDR3_H regions has been reported to vary considerably and is in the range of 4-25 amino acids (Borrebaeck, p.16).

An example of a methodical mutational analysis of peptide sequences is given below. To improve the solubility/procoagulant efficacy of peptides derived from the CD3-region of anti FIX/FIXa antibodies, the N-terminal as well as the C-terminal amino acid sequences were changed. In addition, a series of mutated peptides was constructed and analyzed. The principle of such a study is exemplified by a series of peptides derived from CDR3_H region of antibodies 198/A1 and 198/B1. The original peptide A1(see table 2)is derived from the CDR3_H region of antibody 198/B1, respectively (see example 10, Fig. 16 and 17). The term "scrambled version" means that a peptide has the same amino acids but in random order.

Table 2 List of a series of antibody 198/A1 derived peptides. Listed are the length of the peptide (aa, amino acids #), the calculated molecular weight (MW, in Dalton (D) and the statistical isoelectric point (pl). D-Arg is abbreviated as Rd.

Peptide	Sequence	Amino- acids	MW (D)	pl	Remark
A1	EGGGYYVNWYFDV (SEQ.ID.No. 9)	(13aa)	1569	7,2	Decreased solubility
A1/1	VYGFGWGYEVNDY (SEQ.ID.No. 10)	(13aa)	1569	7,1	Scrambled version of A1,

5

10

15

20

25

30

40

45

(continued)

	Peptide	Sequence	Amino- acids	MW (D)	pl	Remark
5	A1/2	EEEEGGGYYVNWYFDEEE (SEQ.ID.No. 11)	(18aa)	2244	5,8	Acidic pl, soluble,
	A1/3	RRREGGGYYVNWYFDRRR (SEQ.ID.No. 12)	(18aa)	2407	9,9	Basic pl, soluble,
10	A1/4	EYGEGYGEVNEYDEFEWE (SEQ.ID.No. 13)	(18aa)	2244	5,8	Scrambled version of A1/2
15	A1/5	VRYRNRYRWGYRGRFGDE (SEQ.ID.No. 14)	(18aa)	2407	9,9	Scrambled version of A1/3
	A1/3-scr3	RRRGEYGVYWNGDFYRRR (SEQ.ID.No. 15)	(18aa)	2407	9,9	Scrambled version of A1/3
20	A1/3-Rd	RdRdRdEGGGYYVNWYFDRdRdRd (SEQ.ID.No. 16)	(18aa)	2407	9,9	Peptide A1/3 but substitute D-Arg for L- Arg
25	Al/3-Rd- srmb	RdRdRdGEYGVYWNGDFYRdRdRd (SEQ.ID.No. 17)	(18aa)	2407	9,9	Scrambled version of A1/3-Rd

[0086] In a first series of experiments we improved the solubility of the original CDR3_H peptide sequence (A1; EGG-GYYVNWYFDV) by removing the C-terminal Val residue and adding several charged residues at the N- as well as the C-terminal end of the peptide. The resulting peptides, A1/2 (acidic pl), A1/3 (basic pl) and their respective scrambled versions A1/4, A1/5 and A1/3scr3 were readily soluble in a variety of buffer systems at physiological pH.

30

40

45

50

55

[0087] To analyze the FVIII-like (FIXa activating) activity of the peptides, an assay system based on a commercial available FVIII assay was developed (see examples 2 and 4). The basic principle is, that without a cofactor, FIXa will have very limited activity towards its natural substrate FX. Only in the presence of a substance having FIXa activation properties, i.e. FVIII or a substance exhibiting FVIII-like activity, a substantial amount of FXa is produced by cleavage of FX through the FIXa/activator complex. The amount of FXa generated is monitored by cleavage of a chromogenic substrate. The principle of the revised chromogenic assay is described for two representative peptides: Al/3 and Al/5 (Table 2). Briefly, 25µl aliquots of peptide stock solution (in imidazole buffer (IZ) 50mM imidazole, 100mM NaCl, pH7.2) were transferred to microtiter plate wells and warmed to 37°C. Chromogenic FXa substrate (S2222), synthetic thrombin inhibitor (1-2581), bovine FIXa and bovine FX were reconstituted in sterile water and FIXa/FX mixed with phospholipids according to the supplier's protocol. Since the peptides do not react with bovine FIXa, (which comes as a mixture with bovine FX in the Test Kit) 2,9nM (in most cases 2.3nM) human FIXa (ERL) were added (see Example 11, Fig 19). Per reaction, 50μl of the phospholipid /FIXa/FX solution were combined with 25μl CaCl₂ (25mM) and 50μl of the substrate/ inhibitor cocktail. To start the reaction, 125µl of the premix were added to the peptide solution in the microtiter plate and incubated at 37°C. Absorbance at 405nm and 490nm of the samples was read at various times (5 min to 2h) against a reagent blank in a Labsystems iEMS Reader MF[™] microtiter plate reader using GENESIS[™] software. The result of this experiment are shown in Example 11, Fig 18. Peptide A1/3 induced a readily measurable FXa generation in the presence of 2.9nM human FIXa, whereas the scrambled version A1/5 was inactive. In addition, the acidic peptide A1/2 as well as the scrambled versions A1/4 and A1/3-scr3 did not give any significant chromogenic activity when tested under comparable conditions (data not shown). To prove that the peptide A1/3 like the parental antibody 198/A1 does not react with bovine FIXa and FX the experiment shown in Fig. 19 was done. The peptide A1/3 was incubated as described above with (A1/3 (24μM), +hFlXa) and without (A1/3 (24μM), w/o hFlXa) 2.3nM human FlXa (hFlXa). In a control experiment we added plain dilution buffer (IZ) supplemented with 2.3nM hFlXa to the reaction mixture. As shown in Fig. 19, the reaction takes place only in the presence of human FIXa.

Fig. 18 demonstrates the chromogenic FVIII-like activity of peptide A1/3 in the presence of 2.9nM human FIXa (hFIXa). The scrambled version of peptide A1/3, peptide A1/5 does not give rise to any FXa generation. Fig. 19 demonstrates

the dependence of the chromogenic FVIII-like activity of peptide A1/3 on the presence of human FIXa (hFIXa). In the absence of human FIXa, peptide A1/3 does not give rise to any FXa generation. The buffer control, plain imidazole buffer is designated IZ.

[0088] The peptides were also analyzed for their potential to reduce the clotting time in a FVIII deficient plasma. The aPTT based one stage clotting assay was essentially done as described (see example 6). Clotting times (time from starting the reaction to the "clot"-formation were compared either against FVIII, a buffer control (IZ) or a control peptide (scrambled version). The results of two typical clotting experiments done with two different aPTT reagents (DAPTTIN and Pathromtin SL) are shown in table 3A and table 3B.

Table 3A. Clotting activity of peptides A1/3 and A1/3-scr (scrambled version of A1/3) in FVIII deficient plasma either in the presence or in the absence (w/o) of 2.2nM human FIXa. Shown are two independent representative experiments (Exp. 1 and Exp. 2). All clotting experiments have been done in duplicate. Given are the clotting times for the individual experiments and the average clotting time in seconds (sec). Experiments shown in table 3A have been done employing the aPTT reagent DAPTTIN (Baxter Hyland Immuno). Compared to the buffer control (IZ, imidazole buffer) the peptide A1/3 gave rise to a dose dependent reduction in the clotting time. The reduction in the clotting time became much more pronounced by the addition of 2.2nM activated human FIX to the reaction mix. The scrambled version of peptide A1/3, A1/3-scr3 did not show any reduction of the clotting time. In fact, at concentrations above 2.5µM, the scrambled peptide became inhibitory and therefore prolonged the clotting time. Peptides A1/1, A1/2, A1/4 and A1/5 did not give any reduction in the clotting time indicating that they lack procoagulant activity (data not shown).

Exp.1	peptide conc.	w/o FIXa sec	w/o FIXa sec	average sec	2.2nM FIXa sec	2.2nM FIXa sec	average sec
IZ	0	107,7	106,8	107	93,1	94,5	94
A1/3	15μΜ	78,2	77,1	78	59,3	59,9	60
	12,5μΜ	80,2	80,6	80	60,2	58,9	60
	7,5μM	97,8	97,9	98	73,1	72,7	73
	2,5μΜ	105,2	104,8	105	91,1	91	91
A1/3-scr3	15μΜ	122,5	122	122	106,1	105,5	106
	12,5μΜ	116	117,6	117	103,1	104,5	104
	7,5μM	114,2	113,9	114	100,8	100,6	101
	2,5μΜ	107,8	107,4	108	96,3	95,2	96
Exp.2	peptide conc.	w/o FIXa sec	w/o FIXa sec	average (sec)	2.2nM FIXa sec	2.2nM FIXa sec	average (sec)
IZ	0	111	109,7	110	94,7	95,5	95
A1/3	12.5μΜ	83,6	85,5	85	56,7	56,7	57
	10μΜ	79,1	78,5	79	63,1	62,5	63
	7.5μM	100,1	100,5	100	71,6	73,9	73
	5μΜ	103,4	104,8	104	77	76	77
	2.5μM	110,1	108,9	110	88	88,8	88
	1,25μΜ	108,7	109,3	109	90,7	90,8	91

Table 3B. Clotting activity of peptide A1/3 in FVIII deficient plasma when Pathromtin SL (DADE Behring)is used as an aPTT reagent. The experiments were done in duplicate, either in the presence or in the absence (w/o) of 2.2nM human FIXa. Given are the clotting times for the individual experiments and the average clotting time in seconds (sec). Factor VIII and imidazole buffer (IZ) were included as positive and negative control respectively.

	Final conc.	w/o FIXa sec	w/o FIXa sec	average sec	2.2nM FIXa sec	2.2n M FIXa sec	average sec
IZ	0	131,8	132,1	132	107,9	108, 7	108
	10 Eml I/ml	68, 9	69	69	F2.0	F2.6	53
FVIII	12,5mU/ml 6,25mU/ml	77,8	77,9	78	52,9 58,6	53,6 58,9	59
	,	,	,			,	
A1/3							
	15μΜ	152,8	149,3	151	75,4	75,2	75
	10μΜ	135,7	134,6	135	76,2	79,8	78
	5μΜ	152,6	155,6	154	86,6	90,2	88
	1μΜ	138,3	138,8	139	103,7	105, 9	105

[0089] In contrast to the experiments shown in table 3A the experiments shown in table 3B have been done employing the aPTT reagent Pathromtin SL. In the presence of FIXa, the peptide A1/3 gave rise to a dose dependent reduction in the clotting time whereas in the absence of FIXa no reduction of the clotting time was detectable.

[0090] In another series of experiments we set out to improve the plasma stability (protection from, e.g., proteolytic degradation) of peptide A1/3. One approach was to substitute the N- and C-terminal L-Arg residues with D-Arg residues (exemplified by peptides A1/3-rd and A1/3-Rd-srmb). Peptides A1/3-rd and A1/3-Rd-srmb (scrambled version of the peptide)were then analyzed in a chromogenic as well as in the aPTT based clotting assay. These experiments revealed that exchanging the terminal L-Arg residues for D-Arg residues did not change the FVIII-like activity as measured in the chromogenic assay, indicating that chirality of the Arg-residues does not play a major role in chromogenic activity (Fig. 20). In addition, the aPTT based one-stage clotting activity, although somewhat reduced, was still easily detectable (Table 4).

Table 4 One stage clotting activity of peptides A1/3, A1/3-Rd and A1/3-Rd-srmb (sequences see table 2). IZ, buffer control.

	Peptide conc.	w/o FIXa sec	w/o FIXa, sec	average sec	2.2nMFIXa sec	2.2nMFIXa sec	average sec
IZ	0	110	109,1	110	96	96	96
A1/3	15μΜ	77,8	78	78	56,1	55,5	56
	12,5μΜ	99,4	100,5	100	65	68	67
	10μΜ	104,4	109,5	104	72	73,2	73
	7,5μΜ	105,2	105,2	105	80,7	80,5	81
	5μΜ	108,4	107,7	108	89,7	88,3	89
	2,5μΜ	107,9	107,6	108	93,6	93,3	93
	1,25μΜ	106,7	107	107	94,4	95	95
A1/3-Rd	15μΜ	96,4	95,4	96	76,1	74,4	75
	12,5μΜ	98	98,6	98	72,3	73,7	73
	10μΜ	93,5	95,8	95	74,2	77,2	76
	7,5μM	97,6	98,1	98	80,9	82,2	82

(continued)

	Peptide conc.	w/o FIXa sec	w/o FIXa, sec	average sec	2.2nMFIXa sec	2.2nMFIXa sec	average sec
	5μM	99,2	99,1	99	86	85,1	86
	2,5μM	102,7	103,4	103	94,4	94,7	95
	1,25μM	107,5	107,7	108	96,6	96	96
A1/3-Rd srmb	15μΜ	121,9	121,3	122	112,7	112,4	113
	12,5μΜ	117,2	118	118	108,1	107,8	108
	10μΜ	115,8	115,3	116	107,2	107,8	108
	7,5μM	114,6	113,6	114	107,6	106,6	107
	5μΜ	113,1	112,4	113	108,5	108,2	108
	2,5μΜ	111,9	111,9	112	105	104,2	105
	1,25μM	107,2	107,1	107	101,1	105,3	103

[0091] Fig. 20 demonstrates the unchanged chromogenic activity of peptide Al/3-Rd. Peptides at a final concentration of $12\mu\text{M}$ or the buffer control (IZ) were incubated in the presence of 2.3nM human FlXa (+). The chromogenic activity of peptide Al/3 and Al/3-Rd was found to be virtually unchanged and gave almost identical results in the chromogenic assay. The scrambled version of peptide A1/3, A1/5 as well as the buffer gave no significant FXa generation. [0092] In the next series of experiments we set out to determine the individual role of any amino acid of the peptide core sequence by substituting each residue for the amino acid Alanine (Table 5).

Table 5. Listed are the peptides designed to elucidate the role of any single amino acid within the peptide core sequence (E₁G₂G₃G₄Y₅Y₆V₇N₈W₉Y₁₀F₁₁D₁₂). The lower case numbers describe the position of the amino acid within the peptide. Alanine, an uncharged small amino acid, was substituted for each amino acid ("Alanine scan"). Also listed are the lengths of the peptides (amino acids #), the calculated molecular weights (MW, in Dalton (D) and the statistical isoelectric points (pl).

Peptide	Sequence	Amino acid #	MW (D)	pl	Remark
A1/3	RRREGGGYYVNWYFDRRR (SEQ.ID.No. 18)	(18aa)	240 7	9, 9	Basic pl, soluble,
A1/3-13	RRRAGGGYYVNWYFDRRR (SEQ.ID.No. 19)	(18aa)	234 9	10 .4	E ₁ -A ₁
A1/3-1	RRREAGGYYVNWYFDRRR (SEQ.ID.No. 20)	(18aa)	242 1	9. 9	G ₂ -A ₂
A1/3-2	RRREG A GYYVNWYFDRRR (SEQ.ID.No. 21)	(18aa)	242 1	9. 9	G ₃ -A ₃
A1/3-3	RRREGGAYYVNWYFDRRR (SEQ.ID.No. 22)	(18aa)	242 1	9. 9	G ₄ -A ₄
A1/3-4	RRREGGGAYVNWYFDRRR (SEQ.ID.No. 23)	(18aa)	231 5	9. 9	Y ₅ -A ₅
A1/3-5	RRREGGGY A VNWYFDRRR (SEQ.ID.No. 24)	(18aa)	231 5	9. 9	Y ₆ -A ₆
A1/3-6	RRREGGGYY A NWYFDRRR (SEQ.ID.No. 25)	(18aa)	237 9	9. 9	V ₇ -A ₇
A1/3-7	RRREGGGYYVAWYFDRRR (SEQ.ID.No. 26)	(18aa)	236 4	9. 9	N ₈ -A ₈

(continued)

Peptide	Sequence	Amino acid #	MW (D)	pl	Remark
A1/3-8	RRREGGGYYVNAYFDRRR (SEQ.ID.No. 27)	(18aa)	229 2	9. 9	W ₉ -A ₉
A1/3-9	RRREGGGYYVNW A FDRRR (SEQ.ID.No. 28)	(18aa)	231 5	9. 9	Y ₁₀ -A ₁₀
A1/3-10	RRREGGGYYVNWY A DRRR (SEQ.ID.No. 29)	(18aa)	233 1	9. 9	F ₁₁ -A ₁₁
A1/3-11	RRREGGGYYVNWYF A RRR (SEQ.ID.No. 30)	(18aa)	236 3.5	10.5	D ₁₂ -A ₁₂
A1/3-12srm b	RRRYVYNGWGYFEG A RRR (SEQ.ID.No. 31)	(18aa)	236 3	10.4	Scrambled version

[0093] Each of the peptides was dissolved individually in imidazole buffer (50mM imidazole, 100mM NaCl, pH7.2) and subsequently diluted in clotting buffer (50mM imidazole, 100mM NaCl, 1% human albumin, pH7.4) to the desired final concentration. The peptides were analyzed for their chromogenic activity as well as for their potential to reduce the clotting time in a FVIII deficient plasma. The one-stage clotting assay was essentially done as described (see example 6). Clotting times (time from starting the reaction to the "clot"-formation were compared either against a buffer control or a control peptide (scrambled version). Some of the results of the "Alanine scan" are given for the peptides A1/3-2 and A1/3-3. The change of G_3 - A_3 as exemplified in the peptide A1/3-2 yields high chromogenic activity and a strong reduction of the one-stage clotting time (34 seconds at a concentration of 12.5 μ M) in the presence of 2.2nM human FIXa. Peptide Al/3-3 (G_4 - A_4) exhibits an optimum of chromogenic activity around a final concentration of 12 μ M with decreased activity at either higher or lower concentrations. The peptide is somewhat inhibitory in a one-stage clotting assay at higher concentrations (12.5 μ M) in the absence of FIXa but becomes strongly active in the presence of 2.2nM FIXa (31 seconds, 12.5 μ M).

[0094] In the next series of experiments we set out to determine the individual role of any amino acid of the peptide core sequence by substituting each core residue for the amino acid glutamic acid (E) (see Table 6).

Table 6. Listed are the peptides designed to elucidate the role of any single amino acid within the peptide core sequence (E₁G₂G₃G₄Y₅Y₆V₇N₈W₉Y₁₀F₁₁D₁₂). The lower case numbers describe the position of the amino acid within the peptide. Glutamic acid, a negatively charged large amino acid, was substituted for each amino acid of the core sequence ("Glutamic acid scan"). Also listed are the lengths of the peptide (amino acids #), the calculated molecular weights (MW, in Dalton (D) and the statistical isoelectric points (pl).

Peptide	Sequence	Amino-Acids	MW (D)	pl	Remark
A1/3	RRREGGGYYVNWYFDRRR	(18aa)	2407	9,9	Basic pl, soluble,
A1/3-22	RRRE E GGYYVNWYFDRRR (SEQ.ID.No. 32)	(18aa)	2479	9.5	G ₂ -E ₂
A1/3-23	RRREG E GYYVNWYFDRRR (SEQ.ID.No. 33)	(18aa)	2479	9.5	G ₃ -E ₃
A1/3-24	RRREGGEYYVNWYFDRRR (SEQ.ID.No. 34)	(18aa)	2479	9.5	G ₄ -E ₄
A1/3-26	RRREGGGEYVNWYFDRRR (SEQ.ID.No. 35)	(18aa)	2373	9.4	Y ₅ -E ₅
A1/3-27	RRREGGGYEVNWYFDRRR (SEQ.ID.No. 36)	(18aa)	2373	9.4	Y ₆ -E ₆
A1/3-28	RRREGGGYYENWYFDRRR (SEQ.ID.No. 37)	(18aa)	2437	9.5	V ₇ -E ₇

(continued)

Peptide	Sequence	Amino-Acids	MW (D)	рІ	Remark
A1/3-29	RRREGGGYYVEWYFDRRR (SEQ.ID.No. 38)	(18aa)	2422	9.5	N ₈ -E ₈
A1/3-30	RRREGGGYYVNEYFDRRR (SEQ.ID.No. 39)	(18aa)	2350	9.5	W ₉ -E ₉
A1/3-31	RRREGGGYYVNWEFDRRR (SEQ.ID.No. 40)	(18aa)	2373	9.4	Y ₁₀ -E ₁₀
A1/3-32	RRREGGGYYVNWYEDRRR (SEQ.ID.No. 41)	(18aa)	2389	9.5	F ₁₁ -E ₁₁
A1/3-33	RRREGGGYYVNWYF E RRR (SEQ.ID.No. 42)	(18aa)	2421	9.9	D ₁₂ -E ₁₂
A1/3-34srmb	RRRGEYGEYWNGDFYRRR (SEQ.ID.No. 43)	(18aa)	2437	9.5	Scrambled version

[0095] Each of the peptides was solved individually in imodazole buffer (50mM imidazole, 100mM NaCl, pH7.2) and subsequently diluted in clotting buffer (50mM imidazole, 100mM NaCl, 1% human albumin, pH7.4) to the desired final concentration. The peptides derived from the "Glutamic acid scan" series were analyzed for their chromogenic FVIII-like activity as well as for their potential to reduce the clotting time in a FVIII deficient plasma. The one-stage clotting assay was essentially done as described (see example 6).

[0096] The peptide A1/3-24 showed some interesting properties. The molecule exhibited high chromogenic FVIII-like activity at concentrations between 6.5μ M- 12μ M but lost activity at higher concentrations (up to 24μ M). The peptide had no procoagulant activity in the absence of human FIXa but was strongly active in the presence of 2.2nM hFIXa. In a second series of experiments we set out to improve the procoagulant activity of the antibody 198/B1 CDR3H derived peptide sequence B1. In a first step we improved the solubility of the original peptide sequence (B1; EGGGFTVNWYFDV) by removing the C-terminal Val residue and adding several charged residues at the N- as well as the C-terminal end of the peptide. The resulting peptides B1/4, B1/6 (acidic pI), B1/7 (basic pI) and their scrambled versions B1/5, B1/7scr3 are readily soluble in a variety of buffer systems at physiological pH.

Table 7 is a list of a series of antibody-198/B1 derived peptides. Listed are the length of the peptide (aa, amino acids #), the calculated molecular weight (MW, in Dalton (D) and the statistical isoelectric point (pl).

Peptide	Sequence	Amino-acids	MW (D)	pl	Remark
B1	EGGGFTVNWYFDV (SEQ.ID.No. 44)	(13aa)	1491	6,0	Decreased solubility
B1/4	REGGGFTVNWYFDR (SEQ.ID.No. 45)	(14aa)	1704	7,9	Soluble,
B1/5	FGVGYRGETRNFDW (SEQ:ID:No. 46)	(14aa)	1704	8,0	Scrambled version, soluble
B1/6	EEEEGGGFTVNWYFDEEE (SEQ.ID.No. 47)	(18aa)	2166	5,0	Acidic pl soluble
B1/7	RRREGGGFTVNWYFDRRR (SEQ.ID.No. 48)	(18aa)	2329	9,9	Basic pl soluble
B1/7scr3	RRRFGVGYGETNFDWRRR (SEQ.ID.No. 49)	(18aa)	2329	9,9	Basic pl, soluble, scrambled version

[0097] Peptides B1/4 and B1/5 were soluble in 50mM Tris, 100mM NaCl, pH=6.5. Both peptides were analyzed in a chromogenic FVIII assay. Peptide B1/4 but not the scrambled version B1/5 was found to have some chromogenic activity

(data not shown).

5

10

15

20

25

30

35

40

45

50

[0098] Subsequently peptides B1/6, B1/7 and B1/7scr3 were analyzed. Each of the peptides was solved individually in 50mM imidazole, 100mM NaCl, pH7.2 and subsequently diluted either in clotting buffer (50mM imidazole, 100mM NaCl, 1% human albumin, pH7.4) or in imidazole buffer to the desired final concentration. The peptides were analyzed for their chromogenic activity as well as for their potential to reduce the clotting time in a FVIII deficient plasma (table 8 & 9). The one stage clotting assay was essentially done as described (see example 6). Clotting times (time from starting the reaction to the "clot"-formation were compared either against a buffer control or a control peptide (scrambled version).

[0099] The FIXa activating activity (FVIII cofactor-like activity) from peptide B1/7 was first measured in the chromogenic assay described above.

As shown in Fig. 21, the addition of 2.4 µM peptide B1/7 to the reaction mixture led to a well measurable generation of FXa. In contrast, the addition of 35 µM Pefabloc Xa, a specific inhibitor of FXa protease activity, resulted in a significant reduction of the chromogenic substrate cleavage reaction (Fig. 22) thereby proving that there was indeed a peptide-FIXa mediated FXa generation. If there was no addition of FIXa and FX to the reaction mixture, no FXa was synthesized (Fig. 22). Peptide B1/6 and the control peptides B1/5 and B1/7scr3 exhibited no activity (data not shown).

Fig. 21 demonstrates the chromogenic activity of peptide B1/7. The peptide at a final concentration of 2.4μM or the buffer control (IZ) were incubated in the presence of 2.3nM human FIXa.

In Fig. 22 peptide B1/7 at a final concentration of $2.4\mu M$ or the buffer control (IZ) were incubated in the presence of 2.3nM human FIXa (as indicated either as"+2.3nM hFIXa" or "+"). The chromogenic activity of peptide B1/7 was found to be dependent on the presence of FIXa and FX since no reaction is detectable when FIXa and FX are left out of the reaction (w/o FIXa/FX). To prove that the peptide B1/7 mediates indeed FXa generation, the FXa specific protease inhibitor Pefabloc Xa was added to the reaction mix ($35\mu M$ Pefabloc Xa). In a second set of experiments, the procoagulant effect of peptides B1/6, B1/7 and B1/7scr3 were tested in a aPTT based one-step coagulation assay. The experiments were done essentially as described in Example 6. The results are shown in tables 8 and 9.

Table 8: FVIII deficient plasma was incubated either with peptides B1/6, B1/7scr3 or B1/7 in the absence of activated human FIX. As a negative control, plain buffer was added to the deficient plasma. The clotting times for the various combinations are given. Under these conditions, peptide B1/7 at its highest concentration (12.5μM) becomes inhibitory to the coagulation process as indicated by the extended clotting time of 157 seconds.

Peptide	12,5μΜ (-)	1.25μM (-)	0.125μM (-)	12,5nM (-)	Buffer (-)	remarks
B1/6	115	110	111	111	110	
B1/7	157	112	109	110	110	
B1/7scr3	115	105	106	105	107	

Table 9: FVIII deficient plasma was incubated either with peptides B1/6, B1/7scr3 or B1/7 in the presence of activated human FIX. As a negative control, plain buffer was added to the deficient plasma. The clotting times for the various combinations are given. In the presence o'f FIXa, peptide B1/7 becomes procoagulant as indicated by the reduced clotting time (83 seconds compared to 102 seconds for the scrambled peptide and 100 seconds for the buffer control)

Peptide	12,5μM (+)	1.25μM (+)	0.125μM (+)	12,5nM (+)	Buffer (+)	remarks
B1/6	103	100	101	100	100	
B1/7	83	92	99	99	100	
B1/7scr3	102	94	94	94	94	

Example 12: Procoagulant activity of peptide derivatives obtained from CDR3 regions of anti- FIX/FIXa-anti-bodies in FVIII inhibitor plasma

[0100] To assay for the procoagulant activity of peptide A1/3 in FVIII inhibitor plasma the following experiment was carried out. We performed a standard aPTT based one stage clotting assay, but instead of FVIII deficient plasma we employed FVIII inhibitor plasma. The inhibitory potency of the plasma was 8.1 Bethesda Units per ml.

Table 10: Various amounts of peptide A1/3 (12.5μM-1.25μM) were added to FVIII inhibitor plasma (either in the presence (FIXa) of 2.2nM FIXa or in the absence (w/o FIXa). As a negative control, plain buffer was added to the plasma (IZ). Experiments were done in duplicate and the average (aver.) was calculated. The clotting times (in seconds) for the various combinations are given. It is easily appreciable that the peptide A1/3 reduces (in a dose dependent manner) the clotting time of FVIII inhibitor plasma in the presence of FIXa but, although albeit to a much lesser extent, also in the absence of FIXa.

		w/o FIXa	w/o FIXa		FIXa	FIXa	
	Peptide conc.	sec	sec	Average sec	sec	sec	average sec
IZ	0	104,8	103,6	104	 94,2	94,1	94
A1/3	12,5μM	85,8	85,3	86	61	60,2	61
	10μΜ	88,4	87,9	88	61,3	61,8	62
	7,5μM	93,7	92,7	93	68,8	70,9	70
	5μΜ	101, 5	101,1	101	81	82	82
	2,5μΜ	106,1	105,3	106	90,2	90,5	90
	1,25µM	104,5	104,3	104	91,3	91,4	91

Example 13: Conversion of the 196/C4 IgM into IgG1

5

10

15

20

25

30

40

45

50

55

[0101] Since some IgM antibodies demonstrate high FVIII-like activity in chromogenic assays, attempts were made to convert such IgM antibodies into IgG antibodies (though antibody derivatives such as Fab, F(ab)2, scFv, etc. could also be produced). Described in detail below is the rescue of the IgM variable region genes. Expression vector pBax-IgG1 (Fig. 23) was first constructed from vectors pSI (Promega) and pEF/Bsd (Invitrogen) through multiple cloning steps. B-lymphocytes of a donor are purified from blood and mature mRNA purified from these cells using the "micro-mRNA purification-kit" (Pharmacia). The cDNA of a human kappa chain and a human gamma 1 chain are prepared employing the "you-primefirst-strand-cDNA-"kit" (Pharmacia) using specific primers.

[0102] The coding sequence of a human kappa light chain constant domain is amplified from the cDNA by PCR using specific primers.

[0103] The gene of a human gamma 1 chain constant region (CH1-hinge-CH2-CH3) is amplified from the cDNA by PCR using specific primers.

[0104] The PCR product of the light chain constant domain is digested with Xbal and Nhel and inserted into digested pSI. The resultant vector is cleaved with EcoRI and Xbal and annealed oligonucleotides are inserted, resulting in vector pSI-Ckappa. The annealed oligonucleotides provide for the leader and the SacI-Xbal sites for insertion of the kappa chain variable region. The PCR product of the human gamma 1 chain constant region is digested with Spel and BamHI and inserted into digested pSI. The resultant vector is cleaved with Spel and NotI and annealed oligonucleotides are inserted resulting in vector pSI-Cgamma. The annealed oligonucleotides provide for the leader and the XhoI-BstEI sites for insertion of the heavy chain variable region. Vector pEF/Bsd is digested Nhel and Sfil, blunt ended by Klenow treatment and the whole expression cassette of pSI-Ckappa, excised with BgIII and BamH1, is inserted (after Klenow treatment). The resultant vector is digested with EcoRI and HindIII and treated with Klenow. The whole expression cassette of pSI-Cgamma is excised with BgIII and BamHI and is inserted (after Klenow treatment). The resultant vector is named pBax-IgG1.

[0105] The light chain variable region can be inserted in between the Sacl-Xbal sites, yielding the complete coding-sequence of a kappa light chain. The heavy chain variable region can be cloned in between the Xhol-BstEl sites, resulting in a complete IgG1 heavy chain gene. Both open reading frames are expressed under the control of the SV40-promoter and harbour the coding sequence of a signal peptide at the 5' end of the genes for secretion of the heavy and light chains into the endoplasmatic reticulum. Transfection into COS cells allows the expression of an IgG1 with the same binding properties as the parental IgM.

Construction of the plasmid pBax-196/C4 is further accomplished by amplifying the VH of the 196/C4 scFv (subcloned as described in Experiment 10) by PCR using specific primers. The PCR product is digested with Xhol and BstEll and

inserted into Xhol and BstEll digested pBax lgG1. The VL of the 196/C4 scFv is amplified by PCR using specific primers. The PCR product is digested with Sacl and Xbal and inserted into Sacl and Xbal-digested pBax lgG1-VH. The resultant vector (pBax-196/C4) is transfected into COS cells by electroporation, and hybrid lgG1 molecules (murine variable region and human constant region) with the same specificity as the parental lgM is expressed.

Example 14: Activation of FIXa amydolytic activity by anti-FIXa antibodies:

5

10

15

20

25

30

35

40

45

50

55

[0106] Briefly, 20μl factor IXa (containing 200mU FIXa (Stago)) were incubated at 37°C, with 20μl of reaction buffer (50mM TrisHCl pH7.4, 100mM NaCl, 5mM CaCl₂ and 40% Ethyleneglycol), 25μl of FIXa substrate (CH₃SO₂-D-CHG-Gly-Arg-pNA,AcOH, 10μM/ml, Pentapharm LTD) in the absence or presence of various amounts of anti-FIX antibodies 198/B1 (IgG isotype) or 196/AF1 (IgM isotype). Specific cleavage of FIXa substrate was monitored at 405nm in an ELISA reader.

The presence of the anti-FIX antibodies enhanced the amydolytic activity of FIXa at least 2 fold.

Fig. 24 shows the increase of the amidolytic activity of FIXa in the presence of antibody 198/B1 (Fig. 24A) and antibody 198/AF1 (Fig. 24B).

Example 15: FVIII-like activity exhibited by Fab fragments derived from anti- FIX/FIXa-antibodies.

[0107] Fab fragments of anti-FIX/FIXa antibodies were prepared and purified according to standard protocols. Briefly, 1ml antibody 198/A1(4mg/ml in 50mM imidazole, 100mM NaCl, pH7.4) was incubated overnight with 87µl fragmentation buffer (1M Na Acetate, 10mM EDTA 67.5mg/ml L-cysteine) and 0.25mg papain (immobilized on agarose beads), at 37°C. The preparation was filtered to remove the papain. L-histidine was added (final concentration 50mM) and afterwards the pH was adjusted to 7.0. Finally, solid NaCl is added to give a final concentration of 1M.

Subsequently, the 198/A1 Fab fragment was purified by binding to protein L: We used ImmunoPure Immobilized PROTEIN L Plus (Pierce) in a PHARMACIA XK 16/20 Column (gel-volume: 2ml) Buffers for chromatography were: 1) equilibration-buffer: 50mM L-histidine pH 7.0; 1M NaCl; 0,1% (w/v) NaN₃; 2) wash-buffer: 50mM L-Histidine pH 7.0; 0.1% (w/v) NaN₃; 3) elution-buffer: 100 mM glycine pH 2.5; 0.1% (w/v) NaN₃; and 4) neutralization buffer: 2M Tris/Cl pH 8,0;

[0108] Chromatography was essentially done by following steps 1 to 7 described in table 11. In order to neutralize the low pH of the elution buffer "Fraction-tubes" were preloaded with 0.2 ml 2M Tris pH 8.0.

Table 11

	STEP	BUFFER	Flow rate	Vol.	CV	Fractions
1.	column-wash	elution-buffer	2,0 ml/min	10 ml	5	waste
2.	equilibratio n	equi-buffer	2,0 ml/min	10 ml	5	waste
3.	sample-load	sample	1,0 ml/min	x ml	Х	flow-through
4.	wash 1	equi-buffer	1,0 ml/min	20 ml	10	flow-through
5.	wash 2	wash-buffer	1,0 ml/min	10 ml	5	flow-through
6.	elution	elution-buffer	1,0 ml/min	15 ml	7,5	1,0 ml fractions-
7.	neutralizati on	wash-buffer	2,0 ml/min	10 ml	5	waste

[0109] The final 198/A1 Fab preparation was dialyzed against 50mM imidazole, 100mM NaCl, pH7.4 and analyzed in a chromogenic FVIII assay as described above (Fig. 25). Compared to an intact antibody, the 198/A1 Fab fragment has somewhat less activity; however, the Fab fragment still gives rise to FIX dependent FXa generation. Fig. 25 demonstrates the chromogenic FVIII-like activity of the antibody 198/A1 Fab fragment in the presence of 2.3nM human FIXa. As a positive control we used the intact antibody 198/A1 as well as 7.5pM FVIII. Buffer control (IZ) instead of 198/A1 Fab fragment or FVIII was used as a negative control.

Example 16: FVIII-like activity exhibited by fusion proteins between scFv fragments of anti-FIX/FIXa antibodies and E. coli alkaline phosphatase.

[0110] The single chain Fv fragment (see example 10) of antibody 198/B1 (subclone AB2) was fused to the N-terminus of E. coli alkaline phosphatase employing the pDAP2 vector system (Kerschbaumer et al., 1996). Two identical clones were isolated and designated pDAP2-198AB2#1 and pDAP2-198AB2#100 (Fig. 26). The resulting fusion proteins were expressed in E. coli, purified by metal affinity chromatography (Kerschbaumer et al., 1997) and analysed in a standard

chromogenic assay (Fig. 27).

5

10

15

20

25

30

35

40

45

50

55

Fig. 27 demonstrates the chromogenic FVIII-like activity of two antibody 198/B1 (subclone AB2) scFv fragment-alkaline phosphatase fusion proteins (198AB2#1 and 198AB2#100) in the presence of 2.3nM human FIXa. As a positive control we used 7.5pM FVIII.

Example 17: FVIII-like activity exhibited by a bivalent miniantibody.

[0111] In order to obtain a bivalent miniantibody, the scFv fragment of antibody 198/B1 (subclone AB2) was fused to a amphipatic helical structure employing the pZip1 vector system (Kerschbaumer et al. (Analytical Biochemistry 249, 219-227, 1997). Briefly, the gene of the 198/B1 scFv fragment was isolated from the plasmid pDAP-198AB2#100 (example 16) by digestion with Sfil and Notl. The DNA fragment was gel purified and inserted in the Sfil/Notl digested vector pzip1. The resulting plasmid was sequenced and designated pZip-198AB2#102 (Fig.28). In parallel, we constructed a miniantibody version from an irrelevant monoclonal antibody termed #8860. In a first step, the single chain Fv fragment of antibody #8860 was assembled in the vector pDAP2. The cloning was done essentially as described in example 10. The construct was named pDAP2-8860scFv#11 (Fig. 29). Subcloning of the scFv fragment contained within pDAP2-8860scFv#11 into plasmid pZip1 (see above) yielded the miniantibody construct p8860-Zip#1.2 (Fig. 30). Since antibody #8860 does not react with FIX/FIXa (as judged by Western Blot and ELISA analysis) it represents an appropriate negative control. Subsequently, the miniantibody proteins were expressed in E. coli and purified from bacterial supernatants by binding to Protein L according to the following protocol: For affinity chromatography we used ImmunoPure Immobilized PROTEIN L Plus (Pierce) in a PHARMACIA XK 16/20 Columns having a gel-volume of 4ml Buffers employed were: 1) equilibration-buffer: 50mM L-Histidine pH 7.0, 1M NaCl, 0.1% (w/v) NaN3; wash-buffer: 50mM L-histidine pH 7.0, 0.1% (w/v) NaN₃; elution-buffer: 100 mM glycine pH 2.5, 0.1% (w/v) NaN₃; and neutralization buffer: 2M Tris/Cl pH 8.0 [0112] Samples were prepared as follows: The bacterial culture supernatant was obtained by centrifugation of the bacterial expression culture (11,000 x g, 4°C, 10 minutes). 470 g of ammonium sulphate was added to 1 liter of supernatant and the solution stirred on ice for 1 hour to precipitate the protein. The precipitate was pelleted at 14,000 x g for 35 minutes at 2°C and re-dissolved in 100 ml 20mM Tris pH 7.0. Subsequently the concentrate was dialyzed against 20mM Tris pH 7.0, L-histidine was added to a final concentration of 50mM and the pH was adjusted to 7.0. Finally, solid NaCl was added to give a final concentrations of 1M. Before loading on the column, a sample was first centrifuged at 16,000 x g for 15 min at room temperature and then filtered through a 0.45 \(\mu m \) sterile filter.

[0113] Chromatography was essentially done by following steps 1 to 7 described in table 12. In order to neutralize the low pH of the elution buffer "Fraction-tubes" were preloaded with 0.2 ml 2M Tris pH 8.0.

Table 12. The final 198/B1 (subclone AB2) miniantibody preparation (designated 198AB-Zip#102) and the negative control 8860-Zip#1.2 were dialyzed against 50mM imidazole, 100mM NaCl, pH7.4 and analyzed in a chromogenic FVIII assay as described above (Fig. 31).

	STEP	BUFFER	Flow rate	Vol.	CV	Fractions
1.	column- wash	elution-buffer	2.0 ml/min	20 ml	5	waste
2.	equilibrati on	equi-buffer	2.0 ml/min	20 ml	5	waste
3.	sample-load	sample	1.0 ml/min	x ml	X	flow-through
4.	wash 1	equi-buffer	1.0 ml/min	40 ml	10	flow-through
5.	wash 2	wash-buffer	1.0 ml/min	20 ml	5	flow-through
6.	elution	elution-buffer	1.0 ml/min	30 ml	7.5	1,0 ml fractions-
7.	neutralizat ion	wash-buffer	2.0 ml/min	20 ml	5	waste

[0114] As can be seen in Fig. 31, the miniantibody construct 198AB-Zip#102 gives rise to substantial FXa generation (compare to FVIII) whereas the negative control miniantibody 8860-Zip#1.2 does not. Fig. 31 demonstrates the chromogenic FVIII-like activity of the 198/B1 (subclone AB2) miniantibody 198AB-Zip#102 in the presence of 2.3nM human FIXa. As a positive control we used 4.8pM FVIII whereas an unrelated miniantibody (8860-Zip#1.2) and plain reaction buffer (IZ) served as negative controls.

Example 18: FVIII-like activity exhibited by anti-FIXa/FIX antibody scFv fragments

[0115] The single chain Fv fragment of antibody 198/B1 (subclone AB2) as well as the scFv fragment of antibody #8860 were expressed employing the pMycHis6 vector system. Vector pMycHis6 (Fig. 32 & 33) was constructed by cleaving vector pCOCK (Engelhardt et al., 1994, Biotechniques, 17:44-46) with Notl and EcoRI and insertion of the following oligonucleotides: mychis6-co: 5'ggccgcagaacaaaaactcatctcagaagaggatct gaatggggcggcacatcaccatcaccatcactaataag 3' (SEQ.ID.NO. 79) and mycchis-ic:5'aattettattagtgatggtgatggtgatgtgccgccccattcagatcctct tctgagatgagtttttgttctgc 3' (SEQ.ID.NO. 80) Fig. 32 shows a schematic representation of the plasmid pMycHis6. The c-myc-tag sequence is used to detect the scFv fragment in an ELISA or a Western Blot analysis (Evan et al., Mol.Cell.Biol., 1985, 5(12), pp. 3610-6). The His6-tag sequence was included to facilitate the purification of scFv fragments by metal ion chromatography (Hochuli et al., 1988. Biotechnology, 6:1321-1325). The plasmid contains the lacZ gene promoter (PlacZ) the PelBleader sequence (see legend Fig. 26) an E. coli origin of replication (colE1ori) and a M13 phage origin of replication (M13ori). To allow for specific selection, the plasmid also carries the gene for the enzyme β -lactamase (AmpR) mediating resistance against the antibiotic ampicillin. The gene of the 198/B1 (clone AB2)-scFv was rescued from plasmid pDAP2-198AB2#100 (example 16) by digestion with Sfil and Notl and inserted into Sfil/Notl cleaved pMycHis6. The resultant plasmid was designated pMycHis-198AB2#102. Fig. 34 shows the nucleotide and amino acid sequence of 198AB2 scFv (linked to the c-myc-tag and the His6- tag):the resulting ORF of the expression vector is named pMycHis6-198AB2#102. Vector pMycHis6 was constructed by cleaving vector pCOCK (Engelhardt O. et al, BioTechniques 17, 44-46, 1994) Notl - EcoRI and inserting the following annealed oligonucleotides: (5'-GGCCGCAGAACAAAACTCATCTCAGAAGAGGATCTGAATGGG GCGGCACATCACCATCACCATCACTAATAAG - 3' (SEQ.ID.No. 103) and 5'- TTATTAGTGATGGTGATGGT GATGTGCCGCCCCATTCAGATCCTCTTCTGAGAT-GAGTTTTTGTTCTGC-3'(SEQ.ID.NO. 104)). The resultant vector, named pMycHis6, was cleaved Sfil - Notl and the gene of scFv 198AB2 was swapped into this vector from vector pDAP2-198AB2#100.

In analogy to the 198AB2 construct, the #8860 scFv fragment was cloned from a plasmid designated pDAP2-8860scFv clone 11. The pure scFv protein of #8860 was designated 8860-M/H#4c (plasmid p8860-M/H#4c, Fig. 35). The scFv proteins were expressed in E. coli and affinity purified from bacterial supernatants on Protein L columns (see example 17). The final MycHis-198AB2#102 and 8860-M/H#4c preparations were dialyzed against 50mM imidazole, 100mM NaCl, pH7.4 and analyzed in a chromogenic FVIII assay as described above (Fig. 36).

[0116] As can be seen in Fig. 36, the scFv construct MycHis-198AB2#102 gave rise to a substantial FXa generation whereas the negative controls 8860-M/H#4c and plain reaction buffer (IZ) did not.

Fig. 36 demonstrates the chromogenic FVIII-like activity of the 198/B1 (subclone AB2) scFv fragment (MycHis-198AB2#102) in the presence of 2.3nM human FIXa. As a positive control we used 4.8pM FVIII whereas a unrelated scFv (8860-M/H#4c) and plain reaction buffer (IZ) served as negative controls.

SEQUENZPROTOKOLL

[0117]

5

10

15

20

25

30

35

<110> Baxter AG Scheiflinger, Friedrich 40 Kerschbaumer, Randolf Falkner, Falko-Guenter Dorner, Friedrich 45 <120> <130> <160> 106 50 <170> Patentln Ver. 2.1 <210> 1 <211> 26 <212> DNA 55 <213> Künstliche Sequenz <220>

	<223> Beschreibung der künstlichen Sequenz:primer
5	<400> 1 ctcaattttc ttgtccacct tggtgc 26
5	<210> 2 <211> 26 <212> DNA
10	<213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:primer
15	<400> 2 ctcgattctc ttgatcaact cagtct 26
	<210> 3 <211> 24 <212> DNA
20	<213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:primer
25	<400> 3 tggaatgggc acatgcagat ctct 24
	<210> 4
30	<211> 24 <212> DNA <213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:primer
35	<400> 4 ctcattcctg ttgaagctct tgac 24
40	<210> 5 <211> 10 <212> PRT
	<213> Künstliche Sequenz
45	<220> <223> Beschreibung der kunstlichen Sequenz:CDR3 region
	<400> 5
50	Tyr Gly Asn Ser Pro Lys Gly Phe Ala Tyr 1 5 10
<i>55</i>	<210> 6 <211> 12 <212> PRT
	<213> Künstliche Seguenz

```
<220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 6
5
                        Asp Gly Gly His Gly Tyr Gly Ser Ser Phe Asp Tyr
                                                                      10
                           1
                                              5
10
        <210> 7
        <211> 13
        <212> PRT
        <213> Künstliche Sequenz
15
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 7
20
                      Glu Gly Gly Phe Thr Val Asn Trp Tyr Phe Asp Val
                                            5
                         1
                                                                   10
25
        <210>8
        <211> 13
        <212> PRT
        <213> Künstliche Sequenz
30
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 8
35
                    Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Val
                      1
                                                                  10
40
        <210> 9
        <211> 13
        <212> PRT
        <213> Künstliche Sequenz
45
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 9
50
                    Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Val
                                                                  10
                       1
                                           5
55
        <210> 10
        <211> 13
        <212> PRT
```

```
<213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
5
        <400> 10
                   Val Tyr Gly Phe Gly Trp Gly Tyr Glu Val Asn Asp Tyr
                                                                 10
                      1
                                          5
10
        <210> 11
        <211> 18
        <212> PRT
15
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
20
        <400> 11
              Glu Glu Glu Gly Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Glu
                1
                                                            10
                                                                                    15
25
              Glu Glu
        <210> 12
30
        <211> 18
        <212> PRT
        <213> Künstliche Sequenz
35
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 12
40
              Arg Arg Glu Gly Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg
                                                            10
                                                                                     15
                                     5
              Arg Arg
45
        <210> 13
        <211> 18
        <212> PRT
50
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
55
        <400> 13
```

	GIU 1	Tyr	GTÀ	GLu	GIY 5	Tyr	GIÀ	Glu	val	Asn 10	Glu	Tyr	Asp	Glu	Phe 15	GLu
5																
	Trp	Glu														
	<210> 14															
10	<211> 18 <212> PRT	-														
	<213> Kün		Seque	nz												
15	<220> <223> Bes	chreihu	ına der	künet	lichen	Seau	anz:C	DB3 ra	aion							
, 0		CHICIDO	ing der	Runst	ilicricri	ocqu	C112.0		gion							
	<400> 14															
20	Val	Arg	Tyr	Arg		Arg	Tyr	Arg	Trp		Tyr	Arg	Gly	Arg		Gly
	1				5					10					15	
	Asp	Glu														
25																
	<210> 15 <211> 18															
30	<212> PRT <213> Kün		Segue	nz												
	<220>		•													
	<223> Bes	chreibu	ıng der	künst	lichen	Seque	enz:C	DR3 re	egion							
35	<400> 15															
	Arg	Arg	Arg	Gly	Glu	Tyr	Gly	Val	Tyr	Trp	Asn	Gly	Asp	Phe	Tyr	Arg
40	1				5					10					15	
40	Arg	Arg														
	010 10															
45	<210> 16 <211> 18															
	<212> PRT <213> Kün		Seque	nz												
	<220>															
50	<223> Bes	chreibu	ıng der	künst	lichen	Seque	enz:C	DR3 re	egion							
	<400> 16															

	Arg Arg Arg Glu Gly Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
5	Arg Arg
10	<210> 17 <211> 18
	<212> PRT <213> Künstliche Sequenz
15	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 17
20	Arg Arg Arg Gly Glu Tyr Gly Val Tyr Trp Asn Gly Asp Phe Tyr Arg 1 5 10 15
	Arg Arg
25	.010. 10
	<210> 18 <211> 18
	<212> PRT
30	<213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
35	<400> 18
	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg
	1 5 10 15
40	Arg Arg
	<210> 19 <211> 18
45	<212> PRT <213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
50	<400> 19

	Arg Arg Arg Ala Gly Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
5	Arg Arg
10	<210> 20 <211> 18 <212> PRT <213> Künstliche Sequenz
15	<220> <223> Beschreibung der kunstlichen Sequenz:CDR3 region
	<400> 20
20	Arg Arg Glu Ala Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
25	Arg Arg
30	<210> 21 <211> 18 <212> PRT <213> Künstliche Sequenz <220>
35	<223> Beschreibung der künstlichen Sequenz:CDR3 region <400> 21
	Arg Arg Arg Glu Gly Ala Gly Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
40	Arg Arg
45	<210> 22 <211> 18 <212> PRT <213> Künstliche Sequenz
50	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 22

	Arg Arg Arg Glu Gly Gly Ala Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
5	Arg Arg
10	<210> 23 <211> 18 <212> PRT <213> Künstliche Sequenz
15	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 23
20	Arg Arg Arg Glu Gly Gly Ala Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
25	Arg Arg
30	<210> 24 <211> 18 <212> PRT <213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
35	<400> 24
40	Arg Arg Arg Glu Gly Gly Tyr Ala Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
	Arg Arg
45	<210> 25 <211> 18 <212> PRT
50	<213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
<i>55</i>	<400> 25

	Arg 1	Arg	Arg	Glu	Gly 5	Gly	Gly	Tyr	Tyr	Ala 10	Asn	Trp	Tyr	Phe	Asp 15	Arg
5	Arg	Arg														
10	<210> 26 <211> 18 <212> PR ² <213> Kür		Seque	enz												
15	<220> <223> Bes	schreib	ung de	r küns	tlicher	n Sequ	enz:C	DR3 r	egion							
	<400> 26															
20	Arg 1	Arg	Arg	Glu	Gly 5	Gly	Gly	Tyr	Tyr	Val 10	Ala	Trp	Tyr	Phe	Asp 15	Arg
25	Arg	Arg														
30	<210> 27 <211> 18 <212> PR ² <213> Kür		Seque	enz												
	<220> <223> Bes	schreib	ung de	r küns	tlicher	n Sequ	enz:C	DR3 r	egion							
35	<400> 27	_	_								_					
40	1	Arg Arg		Glu	G1y 5	Gly	Gly	Tyr	Tyr	Val 10	Asn	Ala	Tyr	Phe	Asp 15	Arg
45	<210> 28 <211> 18 <212> PR <213> Kür		Seque	enz												
50	<220> <223> Bes	schreib	ung de	r küns	tlicher	n Sequ	enz:C	DR3 r	egion							

	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Ala Phe Asp Arg
	1 5 10 15
5	Arg Arg
10	<210> 29 <211> 18 <212> PRT <213> Künstliche Sequenz
15	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 29
20	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Ala Asp Arg 1 5 10 15
	Arg Arg
25	
30	<210> 30 <211> 18 <212> PRT <213> Künstliche Sequenz
	<220> <223> Beschreibung der kunstlichen Sequenz:CDR3 region
35	<400> 30
40	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Ala Arg 1 5 10 15
, 0	Arg Arg
45	<210> 31 <211> 18 <212> PRT <213> Künstliche Sequenz
50	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 31
<i>55</i>	

		g Arg l	Arg	Tyr	Val 5	Tyr	Asn	Gly	Trp	Gly 10	Tyr	Phe	Glu	Gly	Ala 15	Arg
5	Ar	g Arg														
10	<210> 32 <211> 18 <212> PR ⁻ <213> Kür		Sequer	nz												
15	<220> <223> Bes	schreibu	ng der	künstl	ichen	Seque	nz:CD)R3 re	gion							
20		g Arg 1	Arg	Glu	Glu 5	Gly	Gly	Tyr	Tyr	Val 10	Asn	Trp	Tyr	Phe	Asp 15	Arg
25	Ar	g Arg														
	<210> 33 <211> 18 <212> PR <213> Kür		Sequer	nz												
30	<220> <223> Bes	chreibu	ng der	künstl	ichen	Seque	nz:CD)R3 reç	gion							
35	<400> 33															
		g Arg 1	Arg	Glu	Gly 5	Glu	Gly	Tyr	Tyr	Val 10	Asn	Trp	Tyr	Phe	Asp 15	Arg
40	Ar	g Arg														
45	<210> 34 <211> 18 <212> PR ⁻ <213> Kün		Sequer	nz												
50	<220> <223> Bes <400> 34	schreibu	ng der	künstl	ichen	Seque	nz:CD)R3 reç	gion							

	Arg Arg Arg Glu Gly Glu Tyr Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
5	Arg Arg
10	<210> 35 <211> 18 <212> PRT <213> Künstliche Sequenz
15	<220> <223> Beschreibung der kunstlichen Sequenz:CDR3 region <400> 35
20	Arg Arg Arg Glu Gly Gly Glu Tyr Val Asn Trp Tyr Phe Asp Arg 1 5 10 15
	Arg Arg
25	
30	<210> 36 <211> 18 <212> PRT <213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
35	<400> 36
40	Arg Arg Arg Glu Gly Gly Tyr Glu Val Asn Trp Tyr Phe Asp Arg
70	Arg Arg
45	<210> 37 <211> 18 <212> PRT <213> Künstliche Sequenz
50	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 37

	Arg Arg Arg Glu Gly Gly Tyr Tyr Glu Asn Trp Tyr Phe Asp Arg 1 5 10 15
	1 5 10 15
5	Arg Arg
40	<210> 38
10	<211> 18 <212> PRT
	<213> Künstliche Sequenz
15	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 38
	<400 <i>></i> 30
20	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Glu Trp Tyr Phe Asp Arg
	1 5 10 15
	Arg Arg
25	
	<210> 39
	<211> 18 <212> PRT
30	<213> Künstliche Sequenz
	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
35	<400> 39
00	<400 <i>></i> 39
	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Glu Tyr Phe Asp Arg
40	1 5 10 15
	Arg Arg
45	<210> 40
	<211> 18 <212> PRT
	<213> Künstliche Sequenz
50	<220> <223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 40

	Arg Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Glu Phe Asp Arg
	1 5 10 15
5	
J	Arg Arg
	<210> 41
10	<211> 18
	<212> PRT
	<213> Künstliche Sequenz
	<220>
15	<223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 41
20	Arg Arg Glu Gly Gly Tyr Tyr Val Asn Trp Tyr Glu Asp Arg
	1 5 10 . 15
	Arg Arg
25	
	<210> 42
	<211> 18
	<212> PRT
30	<213> Künstliche Sequenz
	<220>
	<223> Beschreibung der künstlichen Sequenz:CDR3 region
	400 40
<i>35</i>	<400> 42
	Arg Arg Arg Glu Gly Gly Gly Tyr Tyr Val Asn Trp Tyr Phe Glu Arg
	1 5 10 15
40	
40	Arg Arg
<i>4.</i> F	<210> 43
45	<211> 18 <212> PRT
	<213> Künstliche Sequenz
	•
	<220>
50	<223> Beschreibung der künstlichen Sequenz:CDR3 region
	<400> 43

```
Arg Arg Gly Glu Tyr Gly Glu Tyr Trp Asn Gly Asp Phe Tyr Arg
                                                          10
                                                                                  15
                                   5
               1
5
             Arg Arg
        <210> 44
        <211> 13
        <212> PRT
10
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
15
        <400> 44
                     Glu Gly Gly Phe Thr Val Asn Trp Tyr Phe Asp Val
                                                                  10
                       1
                                           5
20
        <210> 45
        <211> 14
        <212> PRT
25
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
30
        <400> 45
                   Arg Glu Gly Gly Phe Thr Val Asn Trp Tyr Phe Asp Arg
                                         5
                                                                10
                      1
35
        <210> 46
        <211> 14
        <212> PRT
40
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
45
        <400> 46
                  Phe Gly Val Gly Tyr Arg Gly Glu Thr Arg Asn Phe Asp Trp
                     1
                                                               10
50
                                        5
        <210> 47
        <211> 18
        <212> PRT
55
        <213> Künstliche Sequenz
        <220>
```

```
<223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 47
5
               Glu Glu Glu Gly Gly Gly Phe Thr Val Asn Trp Tyr Phe Asp Glu
                                                            10
                  1
                                     5
                                                                                     15
10
                                              Glu Glu
        <210> 48
        <211> 18
15
        <212> PRT
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
20
        <400> 48
             Arg Arg Glu Gly Gly Gly Phe Thr Val Asn Trp Tyr Phe Asp Arg
25
                                                           10
                                                                                    15
                1
             Arg Arg
30
        <210> 49
        <211> 18
        <212> PRT
        <213> Künstliche Sequenz
35
        <220>
        <223> Beschreibung der künstlichen Sequenz:CDR3 region
        <400> 49
40
            Arg Arg Phe Gly Val Gly Tyr Gly Glu Thr Asn Phe Asp Trp Arg
                                                                                   15
                                                          10
45
            Arg Arg
        <210> 50
        <211> 57
        <212> DNA
50
        <213> Künstliche Sequenz
        <220>
        <223> Beschreibung der kunstlichen Sequenz:primer
55
        <400> 50
        catgccatga ctcgcggccc agccggccat ggccsaggts marctgcags agtcwgg
                                                                    57
```

	<210> 51	
	<211> 56	
	<212> DNA	
	<213> Künstliche Sequenz	
5		
	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
	<400> 51	
10	gteetegeaa etgeggeeea geeggeeatg geegaggtge agetteagga gteagg	56
	<210> 52	
	<211> 56	
	<212> DNA	
15	<213> Künstliche Sequenz	
	.000	
	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
20	<400> 52	
	gteetegeaa etgeggeeea geeggeeatg geegatgtge agetteagga gtergg	56
	<210> 53	
	<211> 56	
25	<212> DNA	
	<213> Künstliche Sequenz	
	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
30		
	<400> 53	
	gteetegeaa etgeggeeea geeggeeatg geeeaggtge agetgaagsa gteagg	56
	040 54	
35	<210> 54 <211> 56	
	<212> DNA	
	<213> Künstliche Sequenz	
	<220>	
40	<223> Beschreibung der künstlichen Sequenz:primer	
	400 E4	
	<400> 54	56
	gteetegeaa etgeggeeea geeggeeatg geegaggtye agetgearea rtetgg	56
45	<210> 55	
	<211> 56	
	<212> DNA	
	<213> Künstliche Sequenz	
50	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
	<400> 55	
	gteetegeaa etgeggeeea geeggeeatg geeeaggtye aretgeagea gyetgg	56
55		
	<210> 56	
	<211> 56	
	<212> DNA	

<213> Künstliche Sequenz			
<220>			
<223> Beschreibung der künstlichen Sequenz:primer			
<400> 56			
gtcctcgcaa ctgcggccca gccggccatg gccgargtga agctggtgga rtctgg	56		
<210> 57			
CZ 132 Nuristiiche Gequenz			
<220>			
<223> Beschreibung der Kunstilchen Sequenz:primer			
<400> 57			
gtcctcgcaa ctgcggccca gccggccatg gccgaggttc agcttcagca gtctgg	56		
<210> 58			
<211> 56			
<213> Kunstiiche Sequenz			
<220>			
<223> Beschreibung der künstlichen Sequenz:primer			
<400> 58			
gteetegeaa etgeggeeea geeggeeatg geegaagtge agetgktgga gwetgg	56		
∠210× 50			
<212> DNA			
<213> Künstliche Sequenz			
CEEDS Booding dor Nariotheri Coquenz.primor			
<400> 59	56		
gicclegeaa eigeggeeea geeggeeaig geeeagaiee agiligeligea gieligg	36		
<210> 60			
<211> 68			
<213> Runstliche Sequenz			
<220>			
<223> Beschreibung der künstlichen Sequenz:primer			
<400> 60			
accgccagag gcgcgcccac ctgaaccgcc tccacctgag	gagacggtga	ccgtgqtccc	60
ttggcccc			68
<210> 61 <211> 60			
	<220> <223> Beschreibung der künstlichen Sequenz:primer <400> 56 gteotogeaa etgeggeeea geeggeeatg geegargtga agetggtga rtetgg <210> 57 <211> 56 <212> DNA <223> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:primer <400> 57 gteotogeaa etgeggeeea geeggeeatg geegaggtte agetteagea gtetgg <210> 58 <211> 56 <212> DNA <23> Beschreibung der künstlichen Sequenz:primer <400> 58 gteotogeaa etgeggeea geeggeeatg geegaagtge agetgktgga gwetgg <220> <223> Beschreibung der künstlichen Sequenz:primer <400> 58 gteotogeaa etgeggeea geeggeeatg geegaagtge agetgktgga gwetgg <210> 59 <211> 56 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz:primer <400> 59 gteotogeaa etgeggeea geeggeeatg geecagatee agttgetgea gtetgg <210> 60 <211> 68 <211> 68 <212 DNA <213 Künstliche Sequenz <220> <223 Beschreibung der künstlichen Sequenz:primer <400> 60 acegeeagag geeggeeeae etgaacegee teeacetgag ttggeece <210> 60 acegeeagag geeggeeeae etgaacegee teeacetgag ttggeece <210> 60 acegeeagag geeggeeeae etgaacegee teeacetgag ttggeece <210> 61	<220> <223> Beschreibung der künstlichen Sequenz; primer <400> 56 gtcctogcaa otgoggocca googgocatg googargtga agotggtgga rtotgg <210> 57 <211> 56 <220> <223> Beschreibung der künstlichen Sequenz; primer <400> 57 gtctotgocaa otgoggocca googgocatg googaggtte agottoagca gtctgg 56 <210> 57 <2210> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz; primer <400> 57 gtctotgocaa otgoggocca googgocatg googaagtte agottoagca gtctgg 56 <210> 58 <210> 58 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz; primer <400> 59 gtctotgocaa otgoggocca googgocatg googaagtge agotgktgga gwotgg 56 <210> 59 <211> 56 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz; primer <400> 59 gtcctogocaa otgoggocca googgocatg goocaagatce agttgotgoa gtetgg 56 <210> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <211> 60 <221> 60 <222> Beschreibung der künstlichen Sequenz; primer <400< 60 acogocagag googgoccae otgaacogoc tocacotgag gaagggtga <210< 60 <2210< 60 <2210 60 <2210 60 <2210 60 <211 60 <210 60 <211 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210 60 <210	<220> <223> Beschreibung der künstlichen Sequenz;primer <400> 56 grotogeaa eigeggeoos geoggeoatig geogargiga agetiggigga rictigg <210> 57 <221> 56 <212> DNA <223> Beschreibung der künstlichen Sequenz;primer <400> 57 grotogeaa digeggeoos geoggeoatig geogagigtte ageticagea gietigg 56 <210> 58 <211> 56 <211> 56 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz;primer <400> 57 grotogeaa digeggeoos geoggeoatig geogagigtte ageticagea gietigg 56 <210> 58 <212> DNA <223> Beschreibung der künstlichen Sequenz;primer <400> 58 grotogeaa digeggeoos geoggeoatig geogaagtige agetigktigga gweitigg 56 <210> 58 <210> 58 <211> 56 <212> DNA <213 Künstliche Sequenz <220> <2223 Beschreibung der kunstlichen Sequenz;primer <400> 58 grotogeaa digeggeoos geoggeoatig geocagatice agtitgetigea giotigg 56 <2210 60 <2210 60 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <2210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210 80 <210

	<212> DNA <213> Künstliche Sequenz	
5	<220> <223> Beschreibung der künstlichen Sequenz:primer	
J	(220) beschiebung der kunstlichen bequenz.phiner	
	<400> 61 accgccagag gcgcgcccac ctgaaccgcc tccacctgag gagacggtga ccgtggtccc	60
10	<210> 62	
	<211> 60	
	<212> DNA	
	<213> Künstliche Sequenz	
15	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
	<400> 62	
	accgccagag gcgcgccac ctgaaccgcc tccacctgag gagactgtga gagtggtgcc	60
20	-210× 62	
	<210> 63 <211> 60	
	<212> DNA	
05	<213> Künstliche Sequenz	
25	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
	<400> 63	
30	accgccagag gcgcgcccac ctgaaccgcc tccacctgca gagacagtga ccagagtccc	60
	<210> 64 <211> 60	
	<212> DNA	
35	<213> Künstliche Sequenz	
	<220>	
	<223> Beschreibung der künstlichen Sequenz:primer	
40	<400> 64	
	accgccagag gcgcgcccac ctgaaccgcc tccacctgag gagacggtga ctgaggttcc	60
	<210> 65	
	<211> 60	
45	<212> DNA	
	<213> Künstliche Sequenz	
	<220>	
50	<223> Beschreibung der künstlichen Sequenz:primer	
	<400> 65	
	ggttcagatg ggcgcgcctc tggcggtggc ggatcggaca ttgagctcac ccagtctcca	60
	<210> 66	
55	<211> 59	
	<212> DNA <213> Künstliche Sequenz	
	TETOS RAHOMONO COGNONIZ	

	<220> <223> Beschreibung der künstlichen Sequenz:primer	
5	<400> 66 ggttcagatg ggcgcctc tggcggtggc ggatcggaca ttgtgatgwc acagtctcc	59
10	<210> 67 <211> 59 <212> DNA <213> Künstliche Sequenz	
	<220> <223> Beschreibung der künstlichen Sequenz:primer	
15	<400> 67 ggttcagatg ggcgcgcctc tggcggtggc ggatcggatg ttktgatgac ccaaactcc	59
20	<210> 68 <211> 59 <212> DNA <213> Künstliche Sequenz	
<i>25</i>	<220> <223> Beschreibung der künstlichen Sequenz:primer	
	<400> 68 ggttcagatg ggcgcctc tggcggtggc ggatcggata ttgtgatrac bcaggcwgc	59
30	<210> 69 <211> 59 <212> DNA <213> Künstliche Sequenz	
<i>35</i>	<220> <223> Beschreibung der künstlichen Sequenz:primer	
	<400> 69 ggttcagatg ggcgcctc tggcggtggc ggatcggaca ttgtgctgac mcartctcc	59
40	<210> 70 <211> 59 <212> DNA <213> Künstliche Sequenz	
45	<220> <223> Beschreibung der künstlichen Sequenz:primer	
50	<400> 70 ggttcagatg ggcgcctc tggcggtggc ggatcgsaaa wtgtkctcac ccagtctcc	59
	<210> 71 <211> 59 <212> DNA	
55	<213> Künstliche Sequenz	
	<220> <223> Beschreibung der künstlichen Sequenz:primer	

	<400> 71 ggttcagatg ggcgcgctc tggcggtggc ggatcggaya tyvwgatgac mcagwctcc	59
5	<210> 72 <211> 59 <212> DNA <213> Künstliche Sequenz	
10	<220> <223> Beschreibung der kunstlichen Sequenz:primer	
	<400> 72 ggttcagatg ggcgcgcctc tggcggtggc ggatcgcaaa ttgttctcac ccagtctcc	59
15	<210> 73 <211> 59 <212> DNA <213> Künstliche Sequenz	
20	<220> <223> Beschreibung der kunstlichen Sequenz:primer	
25	<400> 73 ggttcagatg ggcgcgcctc tggcggtggc ggatcgtcat tattgcaggt gcttgtggg	59
	<210> 74 <211> 42 <212> DNA <213> Künstliche Sequenz	
30	<220> <223> Beschreibung der künstlichen Sequenz:primer	
35	<400> 74 gagtcattct gcggccgccc gtttgatttc cagcttggtg cc 42	
10	<210> 75 <211> 42 <212> DNA	
40	<213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:primer	
45	<400> 75 gagtcattct gcggccgccc gttttatttc cagcttggtc cc 42	
50	<210> 76 <211> 42 <212> DNA <213> Künstliche Sequenz	
<i>55</i>	<220> <223> Beschreibung der künstlichen Sequenz:primer	
	<400> 76 gagtcattct gcggccgccc gttttatttc cagtctggtc cc 42	

	<210> 77
	<211> 42
	<212> DNA
	<213> Künstliche Sequenz
5	
	<220>
	<223> Beschreibung der künstlichen Sequenz:primer
40	<400> 77
10	gagtcattct geggeegeee gttttattte eaactttgte ee 42
	<210> 78
	<210> 76 <211> 42
	<212> DNA
15	<213> Künstliche Sequenz
, -	12 TOP Nanothone dequenz
	<220>
	<223> Beschreibung der künstlichen Sequenz:primer
20	<400> 78
	gagtcattct geggeegee gttteagete eagettggte ee 42
	<210> 79
	<211> 74
25	<212> DNA
	<213> Künstliche Sequenz
	000
	<220>
30	<223> Beschreibung der künstlichen Sequenz:mychis 6
50	<400> 79
	C400273
	ggccgcagaa caaaaactca tctcagaaga ggatctgaat ggggcggcac atcaccatca 60
35	ccatcactaa taag 74
	<210> 80
	<211> 74
40	<212> DNA
	<213> Künstliche Sequenz
	000
	<220>
45	<223> Beschreibung der künstlichen Sequenz:mycchis
40	<400> 80
	<400>00
	aattettatt agtgatggtg atggtgatgt geegeeceat teagateete ttetgagatg 60
50	agtttttgtt ctgc 74
	<210> 81
	<211> 726
55	<212> DNA
	<213> Künstliche Sequenz
	<220>
	SCOU2

<223> Beschreibung der künstlichen Sequenz:scFv region

	<400> 81						
5							
		tggtggagtc					
	tcctgcaagg	cttctgggta	tatcttcaca	aactatggaa	tgaactgggt	gaagcaggct	120
	ccaggaaagg	gtttaaagtg	gatgggctgg	ataaacacct	acactggaga	gccaacatat	180
10	gctgatgact	tcaagggacg	gtttgccttc	tctttggaaa	cctctgccag	cactgcctat	240
	ttgcagatca	acaacctcaa	aaatgaggac	acggctacat	atttctgtgc	attatatggt	300
	aactccccta	aggggtttgc	ttactggggc	caagggactc	tggtcactgt	ctctgcaggt	360
	ggaggcggtt	caggtgggcg	cgcctctggc	ggtggcggat	cggatattca	gatgacacag	420
15	tctcccaaat	tcctgcttgt	atcagcagga	gacagggtta	ccataacctg	caaggccagt	480
75	cagagtgtga	gtaatgatgt	agcttggtac	caacagaagc	cggggcagtc	tcctaaacta	540
	ctgatgtact	atgcatccaa	tcgctacact	ggagtccctg	atcgcttcac	tggcagtgga	600
	tatgggacgg	atttcacttt	caccatcagc	actgtgcagg	ctgaagacct	ggcagtttat	660
20							
20							
	ttctgtcagc	aggattatgg	ctctcctccc	acgttcggag	ggggcaccaa	gctggaaatt	720
25	aaacgg						726
20							
	<210> 82						
30	<211> 242 <212> PRT						
	<213> Künstlic	he Sequenz					
		•					
	<220>			_			
35	<223> Beschre	eibung der künstlic	then Sequenz:scl	-v region			
00	<400> 82						
40							
,,							

	Glu 1	Val	Lys	Leu	Val 5	Glu	Ser	Gly	Pro	Glu 10	Leu	Lys	Lys	Pro	Gly 15	Glu
5	Thr	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ile	Phe	Thr 30	Asn	Tyr
10	Gly	Met	Asn 35	Trp	Val	Lys	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Lys	Trp	Met
15	Gly	Trp 50	Ile	Asn	Thr	Tyr	Thr 55	Gly	Glu	Pro	Thr	Tyr 60	Ala	Asp	Asp	Phe
	Lys 65	Gly	Arg	Phe	Ala	Phe 70	Ser	Leu	Glu	Thr	Ser 75	Ala	Ser	Thr	Ala	Tyr 80
20	Leu	Gln	Ile	Asn	Asn 85	Leu	Lys	Asn	Glu	Asp 90	Thr	Ala	Thr	Tyr	Phe 95	Cys
25	Ala	Leu	Tyr	Gly 100	Asn	Ser	Pro	Lys	Gly 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
30	Thr	Leu	Val 115	Thr	Val	Ser	Ala	Gly 120	Gly	Gly	Gly	Ser	Gly 125	Gly	Arg	Ala
	Ser	Gly 130	Gly	Gly	Gly	Ser	Asp 135	Ile	Gln	Met	Thr	Gln 140	Ser	Pro	Lys	Phe
35	Leu 145	Leu	Val	Ser	Ala	Gly 150	Asp	Arg	Val	Thr	Ile 155	Thr	Cys	Lys	Ala	Ser 160
40	Gln	Ser	Val	Ser	Asn 165	Asp	Val	Ala	Trp	Tyr 170	Gln	Gln	Lys	Pro	Gly 175	Gln
45	Ser	Pro	Lys	Leu 180	Leu	Met	Tyr	Tyr	Ala 185	Ser	Asn	Arg	Tyr	Thr 190	Gly	Val
50																

```
Pro Asp Arg Phe Thr Gly Ser Gly Tyr Gly Thr Asp Phe Thr Phe Thr
                    195
                                         200
                                                               205
5
           Ile Ser Thr Val Gln Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln
                210
                                     215
                                                          220
           Asp Tyr Gly Ser Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile
10
           225
                                 230
                                                      235
                                                                           240
           Lys Arg
15
       <210> 83
       <211> 747
       <212> DNA
       <213> Künstliche Sequenz
20
       <220>
       <223> Beschreibung der kunstlichen Sequenz:scFv region
       <400>83
25
        gaagtgcage tggtggagtc tggggggggc ctagtgaagc ctggagggtc cctgaaactc 60
        teetgtgeag cetetggatt caettteagt acetatacea tgtettgggt tegecagaet 120
        ccggagaaga ggctggagtg ggtcgcaacc attagtagtg gtggtagtta cacctactat 180
30
        ccagacagtg tgaggggccg attcaccatc tccagagaca atgccaagaa caccctgtac 240
        ctgcaaatga gcagtctgaa gtctgaggac acagccatgt attactgtac aagagatggg 300
        ggacacgggt acggtagtag ctttgactac tggggccaag gcaccactct cacagtctcc 360
        tcaggtggag gcggttcagg tgggcgcgcc tctggcggtg gcggatcgca aattgtgctc 420
35
        acccagtctc cactctccct gcctgtcagt cttggagatc aagcctccat ctcttgcaga 480
        tctagtcaga gcattgtaca tagtaatgga aacacctatt tagaatggta cctgcagaaa 540
        ccaggccagt ctccaaagct cctgatctac aaagtttcca accgattttc tggggtccca 600
        gacaaattca gtggcagtgg atcagggaca gatttcacac tcaagatcag cagagtggag 660
40
        gctgaggatc tgggagttta ttactgcttt caaggttcac atgttccgtg gacgttcggt 720
                                                                              747
        ggaggcacca agctggaaat caaacgg
45
       <210> 84
       <211> 249
       <212> PRT
       <213> Künstliche Sequenz
       <220>
50
       <223> Beschreibung der kunstlichen Sequenz:scFv region
       <400> 84
55
           Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
```

	1				5					10					15	
5	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Thr	Tyr
10	Thr	Met	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Glu	Lys	Arg	Leu 45	Glu	Trp	Val
	Ala	Thr 50	Ile	Ser	Ser	Gly	Gly 55	Ser	Tyr	Thr	Tyr	Tyr 60	Pro	Asp	Ser	Val
15	Arg 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
20	Leu	Gln	Met	Ser	Ser 85	Leu	Lys	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
25	Thr	Arg	Asp	Gly 100	Gly	His	Gly	Tyr	Gly 105	Ser	Ser	Phe	Asp	Tyr 110	Trp	Gly
	Gln	Gly	Thr 115	Thr	Leu	Thr	Val	Ser 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly
30	Arg	Ala 130	Ser	Gly	Gly	Gly	Gly 135	Ser	Gln	Ile	Val	Leu 140	Thr	Gln	Ser	Pro
35	Leu 145	Ser	Leu	Pro	Val	Ser 150	Leu	Gly	Asp	Gln	Ala 155	Ser	Ile	Ser	Cys	Arg 160
	Ser	Ser	Gln	Ser	Ile 165	Val	His	Ser	Asn	Gly 170	Asn	Thr	Tyr	Leu	Glu 175	Trp
40	Tyr	Leu	Gln	Lys 180	Pro	Gly	Gln	Ser	Pro 185	Lys	Leu	Leu	Ile	Tyr 190	Lys	Val
45	Ser	Asn	Arg 195	Phe	Ser	Gly	Val	Pro 200	Asp	Lys	Phe	Ser	Gly 205	Ser	Gly	Ser
	Gly	Thr 210	Asp	Phe	Thr	Leu	Lys 215	Ile	Ser	Arg	Val	Glu 220	Ala	Glu	Asp	Leu
50	Gly 225	Val	Tyr	Tyr	Cys	Phe 230	Gln	Gly	Ser	His	Val 235	Pro	Trp	Thr	Phe	Gly 240
55	Gly	Gly	Thr	Lys	Leu 245	Glu	Ile	Lys	Arg							

	<210> 85
	<211> 747
	<212> DNA
5	<213> Künstliche Sequenz
3	<220>
	<223> Beschreibung der künstlichen Sequenz:scFv region
	400 05
10	<400> 85
	gaggtgcagc ttcaggagtc agggggaggc ttagtgaagc ctggagggtc cctgaaactc 60
	teetgtgeag cetetggatt caettteagt agetatacea tgtettgggt tegecagaet 12
	ccggagaaga ggctggagtg ggtcgcaacc attagtagtg gtggtagttc cacctactat 18
15	ccagacagtg tgaagggccg attcaccatc tccagagaca atgccaagaa caccctgtac 24
	ctgcaaatga gcagtctgag gtctgaggac acagccatgt attactgtac aagagagggg 30
	ggtggtttca ccgtcaactg gtacttcgat gtctggggcg cagggactct ggtcactgtc 36
	totgoaggtg gaggoggtto aggtgggogc goototggog gtggoggato ggaaaatgtg 42
20	ctcacccagt ctccagcttc tttggctgtg tctctagggc agagggccac catatcctgc 48
	agagecagtg aaagtgttga tagttatgge tataatttta tgeactggta teageagata 54
	ccaggacage cacccaaact cctcatctat cgtgcatcca acctagagte tgggatccct 60
	gccaggttca gtggcagtgg gtctaggaca gacttcaccc tcaccattaa tcctgtggag 66
25	gctgatgatg ttgcaaccta ttactgtcag caaagtaatg aggatccgct cacgttcggt 72
	actgggacca gactggaaat aaaacgg 74
30	<210> 86
	<211> 249
	<212> PRT
	<213> Künstliche Sequenz
35	<220>
	<223> Beschreibung der künstlichen Sequenz:scFv region
	<400> 86
	<400 <i>></i> 60
40	
45	
50	

	Glu 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Lys	Pro	Gly 15	Gly
5	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Туі
10	Thr	Met	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Glu	Lys	Arg	Leu 45	Glu	Trp	Val
15	Ala	Thr 50	Ile	Ser	Ser	Gly	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Pro	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Ту1 80
20																
25																
30																
<i>35</i>																
33																
40																
45																
50																
55																

5	Leu	Gln	Met	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
	Thr	Arg	Glu	Gly 100	Gly	Gly	Phe	Thr	Val 105	Asn	Trp	Tyr	Phe	Asp 110	Val	Trp
10	Gly	Ala	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ala	Gly	Gly	Gly 125	Gly	Ser	Gly
15	Gly	Arg 130	Ala	Ser	Gly	Gly	Gly 135	Gly	Ser	Glu	Asn	Val 140	Leu	Thr	Gln	Ser
20	Pro 145	Ala	Ser	Leu	Ala	Val 150	Ser	Leu	Gly	Gln	Arg 155	Ala	Thr	Ile	Ser	Cys 160
	Arg	Ala	Ser	Glu	Ser 165	Val	Asp	Ser	Tyr	Gly 170	Tyr	Asn	Phe	Met	His 175	Trp
25	_	Gln		180		_			185	-				190	·	
30		Asn	195			_		200		-			205		_	
35		Thr 210	-				215					220		_	-	
	225	Thr				230				GIU	235	PIO	Leu	Inr	rne	240
40	7117	Gly	1111	Arg	245	Giu	116	пуэ	Arg							
45	<210> 87 <211> 747 <212> DN/ <213> Kün	4	Sequ	enz												
50	<220> <223> Bes <400> 87	chreib	ung de	er küns	stlicher	n Sequ	ienz:so	cFv re	gion							

	gaggtgcagc	ttcaggagtc	agggggaggc	ttagtgaagc	ctggagggtc	cctgaaactc	60
	tcctgtgcag	cctctggatt	catttttagt	agttatacca	tgtcttgggt	tcgccagact	120
-	ccggagaaga	ggctggagtg	ggtcgcaacc	attagtagtg	gtggtagttc	cacctactat	180
5	ccagacagtg	tgaagggccg	attcaccatc	tccagagaca	atgccaagaa	caccctgtac	240
	ctgcaaatga	gcagtctgaa	gtctgaggac	acagccatgt	atcactgtac	aagagaggg	300
10							
	ggtggttatt	acgtcaactg	gtacttcgat	gtctggggcg	caggcaccac	tctcacagtc	360
	tcctcaggtg	gaggcggttc	aggtgggcgc	gcctctggcg	gtggcggatc	ggacattgag	420
	ctcacncagt	ctccagcttc	tttggctgtg	tctctagggc	agagggccac	catatcctgc	480
15	agagccagtg	aaagtgttga	tagttatggc	aagagtttta	tgcactggta	ccagcagaaa	540
	ccagggcagc	cacccaaact	cctcatctat	cgtgcatcca	acctagaatc	tgggatccct	600
	gccaggttca	gtggcagtgg	gtctaggaca	gacttcaccc	tcaccattaa	tcctgtggag	660
	gctgatgatg	ttgcnaccta	ttactgtcag	caaagtaatg	aggatcccct	cacgttcggt	720
20	gctgggacca	gactggaaat	aaaacgg				747
	<210> 88						
	<211> 249						
25	<212> PRT	no Coguenz					
	<213> Künstlich	ie Sequenz					
	<220>						
20	<223> Beschrei	bung der kunstlic	hen Sequenz:scf	v region			
30	<400> 88						
	(100)						
<i>35</i>							
00							
40							
45							
50							
55							

	Glu 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Lys	Pro	Gly 15	Gly
5	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Ile	Phe	Ser 30	Ser	Tyr
10	Thr	Met	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Glu	Lys	Arg	Leu 45	Glu	Trp	Val
15	Ala	Thr 50	Ile	Ser	Ser	Gly	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Pro	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
20	Leu	Gln	Met	Ser	Ser 85	Leu	Lys	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	His 95	Cys
25	Thr	Arg	Glu	Gly 100	Gly	Gly	Tyr	Tyr	Val 105	Asn	Trp	Tyr	Phe	Asp 110	Val	Trp
30	Gly	Ala	Gly 115	Thr	Thr	Leu	Thr	Val 120	Ser	Ser	Gly	Gly	Gly 125	Gly	Ser	Gly
	Gly	Arg 130	Ala	Ser	Gly	Gly	Gly 135	Gly	Ser	Asp	Ile	Glu 140	Leu	Thr	Gln	Ser
35	Pro 145	Ala	Ser	Leu	Ala	Val 150	Ser	Leu	Gly	Gln	Arg 155	Ala	Thr	Ile	Ser	Cys 160
40																
45																
50																
<i>55</i>																

	Arg	Ala	Ser	Glu	Ser 165	Val	Asp	Ser	Tyr	Gly 170	Lys	Ser	Phe	Met	His 175	Trp
5	Tyr	Gln	Gln	Lys 180	Pro	Gly	Gln	Pro	Pro 185	Lys	Leu	Leu	Ile	Tyr 190	Arg	Ala
10	Ser	Asn	Leu 195	Glu	Ser	Gly	Ile	Pro 200	Ala	Arg	Phe	Ser	Gly 205	Ser	Gly	Ser
15	Arg	Thr 210	Asp	Phe	Thr	Leu	Thr 215	Ile	Asn	Pro	Val	Glu 220	Ala	Asp	Asp	Val
20	Ala 225	Thr	Tyr	Tyr	Cys	Gln 230	Gln	Ser	Asn	Glu	Asp 235	Pro	Leu	Thr	Phe	Gly 240
	Ala	Gly	Thr	Arg	Leu 245	Glu	Ile	Lys	Arg							
25	<210> 89 <211> 219 <212> DN															
30	<213> Kür <220> <223> Bes				stliche	n Seq	uenz:s	scFv re	egion							
35	<400> 89															
40																
45																
50																
<i>55</i>																

```
atgaaatacc tattgcctac ggcagccgct ggattgttat tactcgcggc ccagccggcc 60
     atggcggagg tgaagctggt ggagtctggg ggaggcttag tgaagcctgg agggtccctg 120
     aaactctcct gtgcagcctc tggattcact ttcagtagct ataccatgtc ttgggttcgc 180
5
     cagactccgg agaagaggct ggagtgggtc gcaaccatta gtagtggngg tagttccacc 240
     tactatccag acagtgtgaa gggccgattc accatctcca gagacaatgc caagaacacc 300
     ctgtacctgc aaatgagcag tctgaggtct gaggacacag ccatgtatta ctgtacaaga 360
     gaggggggtg gtttcaccgt caactggtac ttcgatgtct ggggcgcagg aacctcagtc 420
10
     accettctct cagetegage ceettcaget eggcectctctgeegeteg ceettcee 480
     attgtgctga cacagtctcc agcttctttg gctgtgtctc tagggcagag ggccaccata 540
     tcctgcagag ccagtgaaag tgttgatagt tatggctata attttatgca ctggtatcag 600
     cagataccag gacagecace caaacteete atetategtg catecaacet agagtetggg 660
15
     atccctgcca ggttcagtgg cagtgggtct aggacagact tcaccctcac cattaatcct 720
     gtggaggctg atgatgttgc aacctattac tgtcagcaaa gtaatgagga tccgctcacg 780
     ttcggtactg ggaccagact ggaaataaaa cgggcggccg cagcccgggc accagaaatg 840
     cctgttctgg aaaaccgggc tgctcagggc gatattactg cacccggcgg tgctcgccgt 900
20
     ttaacgggtg atcagactgc cgctctgcgt gattctctta gcgataaacc tgcaaaaaat 960
     attattttgc tgattggcga tgggatgggg gactcggaaa ttactgccgc acgtaattat 1020
     gccgaaggtg cgggcggctt ttttaaaggt atagatgcct taccgcttac cgggcaatac 1080
     actcactatg cgctgaataa aaaaaccggc aaaccggact acgtcaccga ctcggctgca 1140
25
      tcagcaaccg cctggtcaac cggtgtcaaa acctataacg gcgcgctggg cgtcgatatt 1200
      cacgaaaaag atcacccaac gattctggaa atggcaaaag ccgcaggtct ggcgaccggt 1260
30
      aacgtttcta ccgcagagtt gcaggatgcc acgcccgctg cgctggtggc acatgtgacc 1320
      tcgcgcaaat gctacggtcc gagcgcgacc agtgaaaaat gtccgggtaa cgctctggaa 1380
      aaaggcggaa aaggatcgat taccgaacag ctgcttaacg ctcgtgccga cgttacgctt 1440
      ggcggcggcg caaaaacctt tgctgaaacg gcaaccgctg gtgaatggca gggaaaaacg 1500
35
      ctgcgtgaac aggcacaggc gcgtggttat cagttggtga gcgatgctgc ctcactgaat 1560
      teggtgaegg aagegaatea geaaaaaeee etgettggee tgtttgetga eggeaatatg 1620
      ccagtgcgct ggctaggacc gaaagcaacg taccatggca atatcgataa gcccgcagtc 1680
      acctgtacgc caaatccgca acgtaatgac agtgtaccaa ccctggcgca gatgaccgac 1740
40
      aaagccattg aattgttgag taaaaatgag aaaggctttt tcctgcaagt tgaaggtgcg 1800
      tcaatcgata aacaggatca tgctgcgaat ccttgtgggc aaattggcga gacggtcgat 1860
      ctcgatgaag ccgtacaacg ggcgctggaa ttcgctaaaa aggagggtaa cacgctggtc 1920
      atagtcaccg ctgatcacgc ccacgccagc cagattgttg cgccggatac caaagctccg 1980
45
      ggcctcaccc aggcgctaaa taccaaagat ggcgcagtga tggtgatgag ttacgggaac 2040
      tccgaagagg attcacaaga acataccggc agtcagttgc gtattgcggc gtatggcccg 2100
      catgccgcca atgttgttgg actgaccgac cagaccgatc tcttctacac catgaaagcc 2160
      gctctggggg atatcgcaca ccatcaccat caccattaa
                                                                         2199
50
      <210> 90
       <211> 732
       <212> PRT
55
```

57

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:scFv region

<400> 90

5	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
10	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Lys 25	Leu	Val	Glu	Ser	Gly 30	Gly	Gly
15	Leu	Val	Lys 35	Pro	Gly	Gly	Ser	Leu 40	Lys	Leu	Ser	Cys	Ala 45	Ala	Ser	Gly
20	Phe	Thr 50	Phe	Ser	Ser	Tyr	Thr 55	Met	Ser	Trp	Val	Arg 60	Gln	Thr	Pro	Glu
20	Lys 65	Arg	Leu	Glu	Trp	Val 70	Ala	Thr	Ile	Ser	Ser 75	Gly	Gly	Ser	Ser	Thr 80
25	Tyr	Tyr	Pro	Asp	Ser 85	Val	Lys	Gly	Arg	Phe 90	Thr	Ile	Ser	Arg	Asp 95	Asn
30	Ala	Lys	Asn	Thr	Leu	Tyr	Leu	Gln	Met	Ser	Ser	Leu	Arg	Ser	Glu	Asp
35																
40																
45																
50																
55																

				100					105					110		
5	Thr	Ala	Met 115	Tyr	Tyr	Cys	Thr	Arg 120	Glu	Gly	Gly	Gly	Phe 125	Thr	Val	Asn
10	Trp	Tyr 130	Phe	Asp	Val	Trp	Gly 135	Ala	Gly	Thr	Ser	Val 140	Thr	Val	Ser	Ser
	Gly 145	Gly	Gly	Gly	Ser	Gly 150	Gly	Arg	Ala	Ser	Gly 155	Gly	Gly	Gly	Ser	Asp 160
15	Ile	Val	Leu	Thr	Gln 165	Ser	Pro	Ala	Ser	Leu 170	Ala	Val	Ser	Leu	Gly 175	Gln
20	Arg	Ala	Thr	Ile 180	Ser	Cys	Arg	Ala	Ser 185	Glu	Ser	Val	Asp	Ser 190	Tyr	Gly
	Tyr	Asn	Phe 195	Met	His	Trp	Tyr	Gln 200	Gln	Ile	Pro	Gly	Gln 205	Pro	Pro	Lys
25	Leu	Leu 210	Ile	Tyr	Arg	Ala	Ser 215	Asn	Leu	Glu	Ser	Gly 220	Ile	Pro	Ala	Arg
30	Phe 225	Ser	Gly	Ser	Gly	Ser 230	Arg	Thr	Asp	Phe	Thr 235	Leu	Thr	Ile	Asn	Pro 240
	Val	Glu	Ala	Asp	Asp 245	Val	Ala	Thr	Tyr	Tyr 250	Cys	Gln	Gln	Ser	Asn 255	Glu
35	Asp	Pro	Leu	Thr 260	Phe	Gly	Thr	Gly	Thr 265	Arg	Leu	Glu	Ile	Lys 270	Arg	Ala
40	Ala	Ala	Ala 275	Arg	Ala	Pro	Glu	Met 280	Pro	Val	Leu	Glu	Asn 285	Arg	Ala	Ala
	Gln	Gly 290	Asp	Ile	Thr	Ala	Pro 295	Gly	Gly	Ala	Arg	Arg 300	Leu	Thr	Gly	Asp
45	Gln 305	Thr	Ala	Ala	Leu	Arg 310	Asp	Ser	Leu	Ser	Asp 315	Lys	Pro	Ala	Lys	Asn 320
50	Ile	Ile	Leu	Leu	Ile 325	Gly	Asp	Gly	Met	Gly 330	Asp	Ser	Glu	Ile	Thr 335	Ala
	Ala	Arg	Asn	Tyr 340	Ala	Glu	Gly	Ala	Gly 345	Gly	Phe	Phe	Lys	Gly 350	Ile	Asp
55	Ala	Leu	Pro	Leu	Thr	Gly	Gln	Tyr	Thr	His	Tyr	Ala	Leu	Asn	Lys	Lys

			355					360					365			
5	Thr	Gly 370	Lys	Pro	Asp	Tyr	Val 375	Thr	Asp	Ser	Ala	Ala 380	Ser	Ala	Thr	Ala
10	Trp 385	Ser	Thr	Gly	Val	Lys 390	Thr	Tyr	Asn	Gly	Ala 395	Leu	Gly	Val	Asp	Ile 400
	His	Glu	Lys	Asp	His 405	Pro	Thr	Ile	Leu	Glu 410	Met	Ala	Lys	Ala	Ala 415	Gly
15	Leu	Ala	Thr	Gly 420	Asn	Val	Ser	Thr	Ala 425	Glu	Leu	Gln	Asp	Ala 430	Thr	Pro
20	Ala	Ala	Leu 435	Val	Ala	His	Val	Thr 440	Ser	Arg	Lys	Cys	Tyr 445	Gly	Pro	Ser
	Ala	Thr 450	Ser	Glu	Lys	Cys	Pro 455	Gly	Asn	Ala	Leu	Glu 460	Lys	Gly	Gly	Lys
25	Gly 465	Ser	Ile	Thr	Glu	Gln 470	Leu	Leu	Asn	Ala	Arg 475	Ala	Asp	Val	Thr	Leu 480
30	Gly	Gly	Gly	Ala	Lys 485	Thr	Phe	Ala	Glu	Thr 490	Ala	Thr	Ala	Gly	Glu 495	Trp
	Gln	Gly	Lys	Thr 500	Leu	Arg	Glu	Gln	Ala 505	Gln	Ala	Arg	Gly	Tyr 510	Gln	Leu
35	Val	Ser	Asp 515	Ala	Ala	Ser	Leu	Asn 520	Ser	Val	Thr	Glu	Ala 525	Asn	Gln	Gln
40	Lys	Pro 530	Leu	Leu	Gly	Leu	Phe 535	Ala	Asp	Gly	Asn	Met 540	Pro	Val	Arg	Trp
	Leu 545	Gly	Pro	Lys	Ala	Thr 550	Tyr	His	Gly	Asn	Ile 555	Asp	Lys	Pro	Ala	Val 560
45	Thr	Cys	Thr	Pro	Asn 565	Pro	Gln	Arg	Asn	Asp 570	Ser	Val	Pro	Thr	Leu 575	Ala
50	Gln	Met	Thr	Asp 580	Lys	Ala	Ile	Glu	Leu 585	Leu	Ser	Lys	Asn	Glu 590	Lys	Gly
	Phe	Phe	Leu 595	Gln	Val	Glu	Gly	Ala 600	Ser	Ile	Asp	Lys	Gln 605	Asp	His	Ala
55	Ala	Asn	Pro	Cys	Gly	Gln	Ile	Gly	Glu	Thr	Val	Asp	Leu	Asp	Glu	Ala

		610					615					620				
5	Va. 62.	l Gln 5	Arg	Ala	Leu	Glu 630	Phe	Ala	Lys	Lys	Glu 635	Gly	Asn	Thr	Leu	Val 640
10	Ile	e Val	Thr	Ala	Asp 645	His	Ala	His	Ala	Ser 650	Gln	Ile	Val	Ala	Pro 655	Asp
15	Th	r Lys	Ala	Pro 660	Gly	Leu	Thr	Gln	Ala 665	Leu	Asn	Thr	Lys	Asp 670	Gly	Ala
	Val	l Met	Val 675	Met	Ser	Tyr	Gly	Asn 680	Ser	Glu	Glu	Asp	Ser 685	Gln	Glu	His
20	Th	c Gly 690		Gln	Leu		Ile 695		Ala	Tyr	Gly	Pro 700	His	Ala	Ala	Asn
25	Va:	l Val	Gly	Leu	Thr	Asp 710	Gln	Thr	Asp	Leu	Phe 715	Tyr	Thr	Met	Lys	Ala 720
30	Ala	a Leu	Gly	Asp	Ile 725	Ala	His	His	His	His 730	His	His				
35	<210> 91 <211> 97 <212> DI <213> Ki	'8 VA	e Sequ	enz												
	<220> <223> Be	eschreib	oung de	er kün:	stliche	n Seqı	uenz:s	cFv re	gion							
40	<400> 91															
45																
50																

	atgaaatacc	tattgcctac	ggcagccgct	ggattgttat	tactcgcggc	ccagccggcc	60
	atggcggagg	tgaagctggt	ggagtctggg	ggaggcttag	tgaagcctgg	agggtccctg	120
_	aaactctcct	gtgcagcctc	tggattcact	ttcagtagct	ataccatgtc	ttgggttcgc	180
5	cagactccgg	agaagaggct	ggagtgggtc	gcaaccatta	gtagtggngg	tagttccacc	240
	tactatccag	acagtgtgaa	gggccgattc	accatctcca	gagacaatgc	caagaacacc	300
	ctgtacctgc	aaatgagcag	tctgaggtct	gaggacacag	ccatgtatta	ctgtacaaga	360
10	gaggggggtg	gtttcaccgt	caactggtac	ttcgatgtct	ggggcgcagg	aacctcagtc	420
10	accgtctcct	caggtggagg	cggttcaggt	gggcgcgcct	ctggcggtgg	cggatcggac	480
	attgtgctga	cacagtntcc	agcttctttg	gctgtgtctc	tagggcagag	ggccaccata	540
	tcntgcagag	ccagtgaaag	tgttgatagt	tatggctata	attttatgca	ctggtatcag	600
15	cagataccag	gacagccacc	caaactcctc	atctatcgtg	catccaacct	agagtctggg	660
15	atccctgcca	ggttcagtgg	cagtgggtct	aggacagact	tcaccctcac	cattaatcct	720
	gtggaggctg	atgatgttgc	aacctattac	tgtcagcaaa	gtaatgagga	tccgctcacg	780
	ttcggtactg	ggaccagact	ggaaataaaa	cgggcggccg	caccgaagcc	ttccactccg	840
20	cccgggtctt	cccgtatgaa	acagctggaa	gacaaagtag	aggagctcct	tagcaagaac	900
25		g aaaacgagg c accattaa	t agctcgtct	g aaaaagctt	g ttggtgaac	g tggtggtca	c 960 978
30	<210> 92 <211> 325 <212> PRT <213> Künstlicl	he Sequenz					
35	<220>						
	<223> Beschre	ibung der künstli	chen Sequenz:sc	Fv region			
	400, 00						
	<400> 92						
40							
45							
50							
<i>55</i>							

	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
5	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Lys 25	Leu	Val	Glu	Ser	Gly 30	Gly	Gly
10	Leu	Val	Lys 35	Pro	Gly	Gly	Ser	Leu 40	Lys	Leu	Ser	Cys	Ala 45	Ala	Ser	Gly
15	Phe	Thr 50	Phe	Ser	Ser	Tyr	Thr 55	Met	Ser	Trp	Val	Arg 60	Gln	Thr	Pro	Glu
	Lys 65	Arg	Leu	Glu	Trp	Val 70	Ala	Thr	Ile	Ser	Ser 75	Gly	Gly	Ser	Ser	Thr 80
20	Tyr	Tyr	Pro	Asp	Ser 85	Val	Lys	Gly	Arg	Phe 90	Thr	Ile	Ser	Arg	Asp 95	Asn
25	Ala	Lys	Asn	Thr 100	Leu	Tyr	Leu	Gln	Met 105	Ser	Ser	Leu	Arg	Ser 110	Glu	Asp
30	Thr	Ala	Met 115	Tyr	Tyr	Cys	Thr	Arg 120	Glu	Gly	Gly	Gly	Phe 125	Thr	Val	Asn
	Trp	Tyr 130	Phe	Asp	Val	Trp	Gly 135	Ala	Gly	Thr	Ser	Val 140	Thr	Val	Ser	Ser
35	Gly 145	Gly	Gly	Gly	Ser	Gly 150	Gly	Arg	Ala	Ser	Gly 155	Gly	Gly	Gly	Ser	Asp 160
40	Ile	Val	Leu	Thr	Gln 165	Xaa	Pro	Ala	Ser	Leu 170	Ala	Val	Ser	Leu	Gly 175	Gln
45	Arg	Ala	Thr	Ile 180	Ser	Cys	Arg	Ala	Ser 185	Glu	Ser	Val	Asp	Ser 190	Tyr	Gly
1 ∪																
50																

5	Tyr	Asn	Phe 195	Met	His	Trp	Tyr	Gln 200	Gln	Ile	Pro	Gly	Gln 205	Pro	Pro	Lys
	Leu	Leu 210	Ile	Tyr	Arg	Ala	Ser 215	Asn	Leu	Glu	Ser	Gly 220	Ile	Pro	Ala	Arg
10	Phe 225	Ser	Gly	Ser	Gly	Ser 230	Arg	Thr	Asp	Phe	Thr 235	Leu	Thr	Ile	Asn	Pro 240
15	Val	Glu	Ala	Asp	Asp 245	Val	Ala	Thr	Tyr	Tyr 250	Cys	Gln	Gln	Ser	Asn 255	Glu
20	Asp	Pro	Leu	Thr 260	Phe	Gly	Thr	Gly	Thr 265	Arg	Leu	Glu	Ile	Lys 270	Arg	Ala
	Ala	Ala	Pro 275	Lys	Pro	Ser	Thr	Pro 280	Pro	Gly	Ser	Ser	Arg 285	Met	Lys	Gln
25	Leu	Glu 290	Asp	Lys	Val	Glu	Glu 295	Leu	Leu	Ser	Lys	Asn 300	Tyr	His	Leu	Glu
30	Asn 305	Glu	Val	Ala	Arg	Leu 310	Lys	Lys	Leu	Val	Gly 315	Glu	Arg	Gly	Gly	His 320
35	His	His	His	His	His 325											
40	<210> 93 <211> 21 <212> DI <213> Kü	90 VA	ne Seq	uenz												
45	<220> <223> Be		bung (der kür	nstliche	en Sed	quenz:	scFv r	egion							
50																

```
atgaaatacc tattgcctac ggcagccgct ggattgttat tactcgcggc ccagccggcc 60
      atggccgagg ttcagcttca gcagtctgga cctgagctgg tgaagcccgg ggcctcagtg 120
      aagattteet geaaagette tggetaegea tteagtaget ettggatgaa etgggtgaag 180
5
      cagaggcctg gacagggtct tgagtggatt ggacggattt atcctggaaa tggagatact 240
      aactacaatg ggaagttcaa gggcaaggcc acactgactg cagacaaatc ctccagcaca 300
      gcctacatgc agctcagcag cctgacctct gtggactctg cggtctattt ctgtgcagat 360
      ggtaacgtat attactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420
10
      tcaggtggag gcggttcagg tgggcgcgcc tctggcggtg gcggatcgca aattgttctc 480
      acceagtete etgetteett agetgtatet etggggeaga gggeeaceat eteatgeagg 540
      gccagcaaaa gtgtcagtac atctggctat agttatatgc actggtacca acagaaacca 600
15
      ggacagccac ccaaactcct catctatctt gcatccaacc tagaatctgg ggtccctgcc 660
      aggttcagtg gcagtgggtc tgggacagac ttcaccctca acatccatcc tgtggaggag 720
20
      gaggatgetg caacctatta etgteageae agtagggage tteeteggae gtteggtgga 780
      ggcaccaage tggaaatcaa acgggcggcc gcagcccggg caccagaaat gcctgttctg 840
      gaaaaccggg ctgctcaggg cgatattact gcacccggcg gtgctcgccg tttaacgggt 900
      gatcagactg ccgctctgcg tgattctctt agcgataaac ctgcaaaaaa tattattttg 960
25
      ctgattggcg atgggatggg ggactcggaa attactgccg cacgtaatta tgccgaaggt 1020
      gcgggcggct tttttaaagg tatagatgcc ttaccgctta ccgggcaata cactcactat 1080
      gcgctgaata aaaaaaccgg caaaccggac tacgtcaccg actcggctgc atcagcaacc 1140
      gcctggtcaa ccggtgtcaa aacctataac ggcgcgctgg gcgtcgatat tcacgaaaaa 1200
30
      gatcacccaa cgattctgga aatggcaaaa gccgcaggtc tggcgaccgg taacgtttct 1260
      accgcagagt tgcaggatgc cacgcccgct gcgctggtgg cacatgtgac ctcgcgcaaa 1320
      tgctacggtc cgagcgcgac cagtgaaaaa tgtccgggta acgctctgga aaaaggcgga 1380
      aaaggatcga ttaccgaaca gctgcttaac gctcgtgccg acgttacgct tggcggcggc 1440
      gcaaaaacct ttgctgaaac ggcaaccgct ggtgaatggc agggaaaaac gctgcgtgaa 1500
      caggcacagg cgcgtggtta tcagttggtg agcgatgctg cctcactgaa ttcggtgacg 1560
      gaagcgaatc agcaaaaacc cctgcttggc ctgtttgctg acggcaatat gccagtgcgc 1620
      tggctaggac cgaaagcaac gtaccatggc aatatcgata agcccgcagt cacctgtacg 1680
40
      ccaaatccgc aacgtaatga cagtgtacca accctggcgc agatgaccga caaagccatt 1740
      gaattgttga gtaaaaatga gaaaggcttt ttcctgcaag ttgaaggtgc gtcaatcgat 1800
      aaacaggatc atgctgcgaa tccttgtggg caaattggcg agacggtcga tctcgatgaa 1860
      gccgtacaac gggcgctgga attcgctaaa aaggagggta acacgctggt catagtcacc 1920
45
      gctgatcacg cccacgccag ccagattgtt gcgccggata ccaaagctcc gggcctcacc 1980
      caggogotaa ataccaaaga tggogoagtg atggtgatga gttacgggaa ctccgaagag 2040
      gattcacaag aacataccgg cagtcagttg cgtattgcgg cgtatggccc gcatgccgcc 2100
      aatgttgttg gactgaccga ccagaccgat ctcttctaca ccatgaaagc cgctctgggg 2160
50
                                                                        2190
      gatatcgcac accatcacca tcaccattaa
```

<210> 94
<211> 729
<212> PRT
<213> Künstliche Sequenz

	<220> <223> Beschreibung der künstlichen Sequenz:scFv region															
5	<400> 94															
	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
10	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Gln 25	Leu	Gln	Gln	Ser	Gly 30	Pro	Glu
15	Leu	Val	Lys 35	Pro	Gly	Ala	Ser	Val 40	Lys	Ile	Ser	Cys	Lys 45	Ala	Ser	Gly
20	Tyr	Ala	Phe	Ser	Ser	Ser	Trp	Met	Asn	Trp	Val	Lys	Gln	Arg	Pro	Gly
25																
30																
35																
40																
45																
50																
55																

		50					55					60				
5	Gln 65	Gly	Leu	Glu	Trp	Ile 70	Gly	Arg	Ile	Tyr	Pro 75	Gly	Asn	Gly	Asp	Thr 80
10	Asn	Tyr	Asn	Gly	Lys 85	Phe	Lys	Gly	Lys	Ala 90	Thr	Leu	Thr	Ala	Asp 95	Lys
	Ser	Ser	Ser	Thr 100	Ala	Tyr	Met	Gln	Leu 105	Ser	Ser	Leu	Thr	Ser 110	Val	Asp
15	Ser	Ala	Val 115	Tyr	Phe	Cys	Ala	Asp 120	Gly	Asn	Val	Tyr	Tyr 125	Tyr	Ala	Met
20	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
	Gly 145	Ser	Gly	Gly	Arg	Ala 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Gln	Ile	Val	Leu 160
25	Thr	Gln	Ser	Pro	Ala 165	Ser	Leu	Ala	Val	Ser 170	Leu	Gly	Gln	Arg	Ala 175	Thr
30	Ile	Ser	Cys	Arg 180	Ala	Ser	Lys	Ser	Val 185	Ser	Thr	Ser	Gly	Tyr 190	Ser	Tyr
	Met	His	Trp 195	Tyr	Gln	Gln	Lys	Pro 200	Gly	Gln	Pro	Pro	Lys 205	Leu	Leu	Ile
35	Tyr	Leu 210	Ala	Ser	Asn	Leu	Glu 215	Ser	Gly	Val	Pro	Ala 220	Arg	Phe	Ser	Gly
40	Ser 225	Gly	Ser	Gly	Thr	Asp 230	Phe	Thr	Leu	Asn	Ile 235	His	Pro	Val	Glu	Glu 240
	Glu	Asp	Ala	Ala	Thr 245	Tyr	Tyr	Cys	Gln	His 250	Ser	Arg	Glu	Leu	Pro 255	Arg
45	Thr	Phe	Gly	Gly 260	Gly	Thr	Lys	Leu	Glu 265	Ile	Lys	Arg	Ala	Ala 270	Ala	Ala
50	Arg	Ala	Pro 275	Glu	Met	Pro	Val	Leu 280	Glu	Asn	Arg	Ala	Ala 285	Gln	Gly	Asp
	Ile	Thr 290	Ala	Pro	Gly	Gly	Ala 295	Arg	Arg	Leu	Thr	Gly 300	Asp	Gln	Thr	Ala
55	Ala	Leu	Arg	Asp	Ser	Leu	Ser	Asp	Lys	Pro	Ala	Lys	Asn	Ile	Ile	Leu

	305		31	10	31	5	320
5	Leu Ile	Gly Asp	Gly Me 325	et Gly Asp	Ser Glu Il 330	e Thr Ala Al	a Arg Asn 335
10	Tyr Ala	Glu Gly 340		ly Gly Phe	Phe Lys Gl 345	y Ile Asp Al 35	
	Leu Thr	Gly Glr 355	Tyr Th	nr His Tyr 360	Ala Leu As	n Lys Lys Th 365	r Gly Lys
15	Pro Asp 370	_	Thr As	sp Ser Ala 375	Ala Ser Al	a Thr Ala Tr 380	p Ser Thr
20	Gly Val	Lys Thr	Tyr As		Leu Gly Va	l Asp Ile Hi 5	s Glu Lys 400
	Asp His	Pro Thr	Ile Le 405	eu Glu Met	Ala Lys Al 410	a Ala Gly Le	u Ala Thr 415
25	Gly Asn	Val Ser 420		la Glu Leu	Gln Asp Al	a Thr Pro Al 43	
30	Val Ala	His Val 435	Thr Se	er Arg Lys 440	Cys Tyr Gl	y Pro Ser Al 445	a Thr Ser
	Glu Lys 450	-	Gly As	an Ala Leu 455	Glu Lys Gl	y Gly Lys Gl 460	y Ser Ile
35	Thr Glu 465	Gln Leu	Leu As:	•	Ala Asp Va.	l Thr Leu Gl 5	y Gly Gly 480
40	Ala Lys	Thr Phe	Ala Gla 485	u Thr Ala	Thr Ala Gl	y Glu Trp Gl	n Gly Lys 495
	Thr Leu	Arg Glu 500		a Gln Ala	Arg Gly Ty	r Gln Leu Va 51	-
45	Ala Ala	Ser Leu 515	Asn Se	er Val Thr 520	Glu Ala As	n Gln Gln Ly 525	s Pro Leu
50	Leu Gly 530		Ala As	sp Gly Asn 535	Met Pro Va	l Arg Trp Le 540	u Gly Pro
	Lys Ala 545	Thr Tyr	His Gl	_	Asp Lys Pro	o Ala Val Th	r Cys Thr 560
55	Pro Asn	Pro Gln	Arg Ası	sn Asp Ser	Val Pro Th	r Leu Ala Gl	n Met Thr

					565					570					575	
5	Asp	Lys	Ala	Ile 580	Glu	Leu	Leu	Ser	Lys 585	Asn	Glu	Lys	Gly	Phe 590	Phe	Leu
10	Gln	Val	Glu 595	Gly	Ala	Ser	Ile	Asp 600	Lys	Gln	Asp	His	Ala 605	Ala	Asn	Pro
15	Cys	Gly 610	Gln	Ile	Gly	Glu	Thr 615	Val	Asp	Leu	Asp	Glu 620	Ala	Val	Gln	Arg
	Ala 625	Leu	Glu	Phe	Ala	Lys 630	Lys	Glu	Gly	Asn	Thr 635	Leu	Val	Ile	Val	Thr 640
20	Ala	Asp	His	Ala	His 645	Ala	Ser	Gln	Ile	Val 650	Ala	Pro	Asp	Thr	Lys 655	Ala
25	Pro	Gly	Leu	Thr 660	Gln	Ala	Leu	Asn	Thr 665	Lys	Asp	Gly	Ala	Val 670	Met	Val
30	Met	Ser	Tyr 675	Gly	Asn	Ser	Glu	Glu 680	Asp	Ser	Gln	Glu	His 685	Thr	Gly	Ser
	Gln	Leu 690	Arg	Ile	Ala	Ala	Tyr 695	Gly	Pro	His	Ala	Ala 700	Asn	Val	Val	Gly
35	Leu 705	Thr	Asp	Gln	Thr	Asp 710	Leu	Phe	Tyr	Thr	Met 715	Lys	Ala	Ala	Leu	Gly 720
40	Asp	Ile	Ala	His	His 725	His	His	His	His							
45	<210> 95 <211> 969 <212> DNA <213> Küns		Seque	nz												
50	<220> <223> Besc <400> 95	hreibu	ng der	künst	lichen	Seque	enz:sc	Fv reg	ion							

	atgaaatacc tattgcctac ggcagccgct ggattgttat	tactcgcggc	ccagccggcc	60
	atggcggagg ttcagcttca gcagtctgga cctgagctgg	tgaagcccgg	ggcctcagtg	120
	aagattteet geaaagette tggetaegea tteagtaget	cttggatgaa	ctgggtgaag	180
5	cagaggcctg gacagggtct tgagtggatt ggacggattt	atcctggaaa	tggagatact	240
	aactacaatg ggaagttcaa gggcaaggcc acactgactg	cagacaaatc	ctccagcaca	300
	gcctacatgc agctcagcag cctgacctct gtggactctg	cggtctattt	ctgtgcagat	360
10				
	ggtaacgtat attactatgc tatggactac tggggtcaag			_
	tcaggtggag gcggttcagg tgggcgcgcc tctggcggtg	, gcggatcgca	aattgttctc	480
15	acccagtctc ctgcttcctt agctgtatct ctggggcaga	gggccaccat	ctcatgcagg	540
	gccagcaaaa gtgtcagtac atctggctat agttatatgc	: actggtacca	acagaaacca	600
	ggacagecae ccaaacteet catetatett geatecaace	tagaatctgg	ggtccctgcc	660
	aggttcagtg gcagtgggtc tgggacagac ttcaccctca	acatccatcc	tgtggaggag	720
20	gaggatgctg caacctatta ctgtcagcac agtagggagc	ttcctcggac	gttcggtgga	780
	ggcaccaagc tggaaatcaa acgggcggcc gcaccgaagc	cttccactcc	gcccgggtct	840
	tcccgtatga aacagctgga agacaaagta gaggagctcc	ttagcaagaa	ctaccatcta	900
	gaaaacgagg tagctcgtct gaaaaagctt gttggtgaac	gtggtggtca	ccatcaccat	960
25	caccattaa			969
	<210> 96			
30	<211> 322			
	<212> PRT <213> Künstliche Sequenz			
	V2 102 Manistric Ocqueriz			
	<220>			
35	<223> Beschreibung der künstlichen Sequenz:scFv region			
	<400> 96			
40				
45				
50				

	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
5	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Gln 25	Leu	Gln	Gln	Ser	Gly 30	Pro	Glu
10	Leu	Val	Lys 35	Pro	Gly	Ala	Ser	Val 40	Lys	Ile	Ser	Cys	Lys 45	Ala	Ser	Gly
15	Tyr	Ala 50	Phe	Ser	Ser	Ser	Trp 55	Met	Asn	Trp	Val	Lys 60	Gln	Arg	Pro	Gly
	Gln 65	Gly	Leu	Glu	Trp	Ile 70	Gly	Arg	Ile	Tyr	Pro 75	Gly	Asn	Gly	Asp	Thr
20	Asn	Tyr	Asn	Gly	Lys 85	Phe	Lys	Gly	Lys	Ala 90	Thr	Leu	Thr	Ala	Asp 95	Lys
25	Ser	Ser	Ser	Thr 100	Ala	Tyr	Met	Gln	Leu 105	Ser	Ser	Leu	Thr	Ser 110	Val	Asp
30	Ser	Ala	Val 115	Tyr	Phe	Cys	Ala	Asp 120	Gly	Asn	Val	Tyr	Tyr 125	Tyr	Ala	Met
	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
35																
40																
45																
50																
55																

5	Gly 145	Ser	Gly	Gly	Arg	Ala 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Gln	Ile	Val	Leu 160
	Thr	Gln	Ser	Pro	Ala 165	Ser	Leu	Ala	Val	Ser 170	Leu	Gly	Gln	Arg	Ala 175	Thr
10	Ile	Ser	Cys	Arg 180	Ala	Ser	Lys	Ser	Val 185	Ser	Thr	Ser	Gly	Tyr 190	Ser	Tyr
15	Met	His	Trp 195	Tyr	Gln	Gln	Lys	Pro 200	Gly	Gln	Pro	Pro	Lys 205	Leu	Leu	Ile
20	Tyr	Leu 210	Ala	Ser	Asn	Leu	Glu 215	Ser	Gly	Val	Pro	Ala 220	Arg	Phe	Ser	Gly
	Ser 225	Gly	Ser	Gly	Thr	Asp 230	Phe	Thr	Leu	Asn	Ile 235	His	Pro	Val	Glu	Glu 240
25	Glu	Asp	Ala	Ala	Thr 245	Tyr	Tyr	Cys	Gln	His 250	Ser	Arg	Glu	Leu	Pro 255	Arg
30	Thr	Phe	Gly	Gly 260	Gly	Thr	Lys	Leu	Glu 265	Ile	Lys	Arg	Ala	Ala 270	Ala	Pro
<i>35</i>	Lys	Pro	Ser 275	Thr	Pro	Pro	Gly	Ser 280	Ser	Arg	Met	Lys	Gln 285	Leu	Glu	Asp
	Lys	Val 290	Glu	Glu	Leu	Leu	Ser 295	Lys	Asn	Tyr	His	Leu 300	Glu	Asn	Glu	Val
40	Ala 305	Arg	Leu	Lys	Lys	Leu 310	Val	Gly	Glu	Arg	Gly 315	Gly	His	His	His	His 320
45	His	His														
50	<210> 97 <211> 270 <212> DNA <213> Küns		Seque	enz												
	<220> <223> Beso	chreibu	ıng de	r küns	tlichen	Sequ	enz:sc	:Fv reg	jion							
55	<400> 97															

caggaaacag ctatgaccat gattacgcca agcttccatg aaaattctat ttcaaggaga 60

5 cagtcataat gaaataccta ttgcctacgg cagccgctgg attgttatta ctcgcggccc 120 agecggeeat ggeecaggtg cagetgeagg egegeetgea ggtegaeete gagateaaac 180 gggcggccgc agaacaaaaa ctcatctcag aagaggatct gaatggggcg gcacatcacc 240 10 270 atcaccatca ctaataagaa ttcactggcc <210> 98 <211>61 15 <212> PRT <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:scFv region 20 <400> 98 Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala 25 5 10 15 1 Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Ala Arg Leu Gln Val 20 25 30 30 Asp Leu Glu Ile Lys Arg Ala Ala Ala Glu Gln Lys Leu Ile Ser Glu 35 40 45 35 Glu Asp Leu Asn Gly Ala Ala His His His His His 55 60 50 40 <210> 99 <211> 888 <212> DNA <213> Künstliche Sequenz 45 <220> <223> Beschreibung der künstlichen Sequenz:scFv region <400> 99 50

	atgaaatacc	tattgcctac	ggcagccgct	ggattgttat	tactcgcggc	ccagccggcc	60
	atggccgagg	tgaagctggt	ggagtctggg	ggaggcttag	tgaagcctgg	agggtccctg	120
5	aaactctcct	gtgcagcctc	tggattcact	ttcagtagct	ataccatgtc	ttgggttcgc	180
J	cagactccgg	agaagaggct	ggagtgggtc	gcaaccatta	gtagtggngg	tagttccacc	240
	tactatccag	acagtgtgaa	gggccgattc	accatctcca	gagacaatgc	caagaacacc	300
	ctgtacctgc	aaatgagcag	tctgaggtct	gaggacacag	ccatgtatta	ctgtacaaga	360
10	gaggggggtg	gtttcaccgt	caactggtac	ttcgatgtct	ggggcgcagg	aacctcagtc	420
	accgtctcct	caggtggagg	cggttcaggt	gggcgcgcct	ctggcggtgg	cggatcggac	480
	attgtgctga	cacagtctcc	agcttctttg	gctgtgtctc	tagggcagag	ggccaccata	540
	tcctgcagag	ccagtgaaag	tgttgatagt	tatggctata	attttatgca	ctggtatcag	600
15	cagataccag	gacagccacc	caaactcctc	atctatcgtg	catccaacct	agagtctggg	660
, 0							
20	atccctgcca	ggttcagtgg	cagtgggtct	aggacagact	tcaccctcac	cattaatcct	720
20	gtggaggctg	atgatgttgc	aacctattac	tgtcagcaaa	gtaatgagga	tccgctcacg	780
	ttcggtactg	ggaccagact	ggaaataaaa	cgggcggccg	cagaacaaaa	actcatctca	840
	gaagaggatc	tgaatggggc	ggcacatcac	catcaccatc	actaataa		888
25							
30	<210> 100 <211> 294 <212> PRT <213> Künstlich	e Sequenz					
	<220>						
	<223> Beschreit	oung der künstlic	hen Sequenz:scF	region			
35	<400> 100						
40							
45							
50							
<i>55</i>							
55							

	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
5	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Lys 25	Leu	Val	Glu	Ser	Gly 30	Gly	Gly
10	Leu	Val	Lys 35	Pro	Gly	Gly	Ser	Leu 40	Lys	Leu	Ser	Cys	Ala 45	Ala	Ser	Gly
15	Phe	Thr 50	Phe	Ser	Ser	Tyr	Thr 55	Met	Ser	Trp	Val	Arg 60	Gln	Thr	Pro	Glu
	Lys 65	Arg	Leu	Glu	Trp	Val 70	Ala	Thr	Ile	Ser	Ser 75	Gly	Gly	Ser	Ser	Thr 80
20	Tyr	Tyr	Pro	Asp	Ser 85	Val	Lys	Gly	Arg	Phe 90	Thr	Ile	Ser	Arg	Asp 95	Asn
25	Ala	Lys	Asn	Thr 100	Leu	Tyr	Leu	Gln	Met 105	Ser	Ser	Leu	Arg	Ser 110	Glu	Asp
30	Thr	Ala	Met 115	Tyr	Tyr	Cys	Thr	Arg 120	Glu	Gly	Gly	Gly	Phe 125	Thr	Val	Asn
35	Trp	Tyr 130	Phe	Asp	Val	Trp	Gly 135	Ala	Gly	Thr	Ser	Val 140	Thr	Val	Ser	Ser
	Gly 145	Gly	Gly	Gly	Ser	Gly 150	Gly	Arg	Ala	Ser	Gly 155	Gly	Gly	Gly	Ser	Asp 160
40	Ile	Val	Leu	Thr	Gln 165	Ser	Pro	Ala	Ser	Leu 170	Ala	Val	Ser	Leu	Gly 175	Gln
45																
50																

5	Arg	Ala	Thr	Ile 180	Ser	Суѕ	Arg	Ala	Ser 185	Glu	Ser	Val	Asp	Ser 190	Tyr	Gly
	Tyr	Asn	Phe 195	Met	His	Trp	Tyr	Gln 200	Gln	Ile	Pro	Gly	Gln 205	Pro	Pro	Lys
10	Leu	Leu 210	Ile	Tyr	Arg	Ala	Ser 215	Asn	Leu	Glu	Ser	Gly 220	Ile	Pro	Ala	Arg
15	Phe 225	Ser	Gly	Ser	Gly	Ser 230	Arg	Thr	Asp	Phe	Thr 235	Leu	Thr	Ile	Asn	Pro 240
20	Val	Glu	Ala	Asp	Asp 245	Val	Ala	Thr	Tyr	Tyr 250	Cys	Gln	Gln	Ser	Asn 255	Glu
	Asp	Pro	Leu	Thr 260	Phe	Gly	Thr	Gly	Thr 265	Arg	Leu	Glu	Ile	Lys 270	Arg	Ala
25	Ala	Ala	Glu 275	Gln	Lys	Leu	Ile	Ser 280	Glu	Glu	Asp	Leu	Asn 285	Gly	Ala	Ala
30	His	His 290	His	His	His	His										
<i>35</i>	<210> 101 <211> 876 <212> DN <213> Küi	6 A	e Seqı	uenz												
40	<220> <223> Bes <400> 101		oung d	er kun	stliche	n Seq	uenz:s	scFv re	egion							
45																
50																

	atgaaatacc	tattgcctac	ggcagccgct	ggattgttat	tactcgcggc	ccagccggcc	60
	atggccgagg	ttcagcttca	gcagtctgga	cctgagctgg	tgaagcccgg	ggcctcagtg	120
	aagatttcct	gcaaagcttc	tggctacgca	ttcagtagct	cttggatgaa	ctgggtgaag	180
5	cagaggcctg	gacagggtct	tgagtggatt	ggacggattt	atcctggaaa	tggagatact	240
	aactacaatg	ggaagttcaa	gggcaaggcc	acactgactg	cagacaaatc	ctccagcaca	300
	gcctacatgc	agctcagcag	cctgacctct	gtggactctg	cggtctattt	ctgtgcagat	360
	ggtaacgtat	attactatgc	tatggactac	tggggtcaag	gaacctcagt	caccgtctcc	420
10	tcaggtggag	gcggttcagg	tgggcgcgcc	tctggcggtg	gcggatcgca	aattgttctc	480
	acccagtctc	ctgcttcctt	agctgtatct	ctggggcaga	gggccaccat	ctcatgcagg	540
	gccagcaaaa	gtgtcagtac	atctggctat	agttatatgc	actggtacca	acagaaacca	600
	ggacagccac	ccaaactcct	catctatctt	gcatccaacc	tagaatctgg	ggtccctgcc	660
15	aggttcagtg	gcagtgggtc	tgggacagac	ttcaccctca	acatccatcc	tgtggaggag	720
	gaggatgctg	caacctatta	ctgtcagcac	agtagggagc	ttcctcggac	gttcggtgga	780
	ggcaccaagc	tggaaatcaa	acgggcggcc	gcagaacaaa	aactcatctc	agaagaggat	840
20							
	ctgaatggg	g cggcacatca	a ccatcacca	t cactaa			876
25	<210> 102						
20	<211> 291						
	<212> PRT						
	<213> Künstlic	he Sequenz					
30	<220>						
		eibung der künstli	chen Sequenz:sc	Fv region			
	<400> 102						
<i>35</i>							
40							
45							
50							
55							

	Met 1	Lys	Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala
5	Ala	Gln	Pro	Ala 20	Met	Ala	Glu	Val	Gln 25	Leu	Gln	Gln	Ser	Gly 30	Pro	Glu
10	Leu	Val	Lys 35	Pro	Gly	Ala	Ser	Val 40	Lys	Ile	Ser	Cys	Lys 45	Ala	Ser	Gly
15	Tyr	Ala 50	Phe	Ser	Ser	Ser	Trp 55	Met	Asn	Trp	Val	Lys 60	Gln	Arg	Pro	Gly
	Gln 65	Gly	Leu	Glu	Trp	Ile 70	Gly	Arg	Ile	Tyr	Pro 75	Gly	Asn	Gly	Asp	Thr 80
20	Asn	Tyr	Asn	Gly	Lys 85	Phe	Lys	Gly	Lys	Ala 90	Thr	Leu	Thr	Ala	Asp 95	Lys
25	Ser	Ser	Ser	Thr 100	Ala	Tyr	Met	Gln	Leu 105	Ser	Ser	Leu	Thr	Ser 110	Val	Asp
30	Ser	Ala	Val 115	Tyr	Phe	Cys	Ala	Asp 120	Gly	Asn	Val	Tyr	Tyr 125	Tyr	Ala	Met
	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
35	Gly 145	Ser	Gly	Gly	Arg	Ala 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Gln	Ile	Val	Leu 160
40	Thr	Gln	Ser	Pro	Ala 165	Ser	Leu	Ala	Val	Ser 170	Leu	Gly	Gln	Arg	Ala 175	Thr
45	Ile	Ser	Cys	Arg 180	Ala	Ser	Lys	Ser	Val 185	Ser	Thr	Ser	Gly	Tyr 190	Ser	Tyr

5	Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 195 200 205
	Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly 210 215 220
10	Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu 225 230 235 240
15	Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ser Arg Glu Leu Pro Arg 245 250 255
20	Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala Ala Glu 260 265 270
	Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala His His His 275 280 285
25	His His His 290
30	<210> 103 <211> 74 <212> DNA <213> Künstliche Sequenz
35	<220> <223> Beschreibung der künstlichen Sequenz:primer
40	<400> 103 ggccgcagaa caaaaactca tctcagaaga ggatctgaat ggggcggcac atcaccatca 60 ccatcactaa taag
45	<210> 104 <211> 69 <212> DNA <213> Künstliche Sequenz
50	<220> <223> Beschreibung der künstlichen Sequenz:primer
	<400> 104

ttgttctgc

and IgE antibodies.

scFv, Fab, F(ab)₂, and di-, oligo- or multimers thereof.

50

55

ttattagtga tggtgatggt gatgtgccgc cccattcaga tcctcttctg agatgagttt 60

69

5 <210> 105 <211> 16 <212> PRT <213> Künstliche Sequenz 10 <220> <223> Beschreibung der künstlichen Sequenz:CDR3 region <400> 105 15 Cys Xaa Xaa Tyr Gly Asn Ser Pro Lys Gly Phe Ala Tyr Xaa Xaa Cys 10 5 15 1 20 <210> 106 <211> 16 <212> PRT 25 <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:CDR3 region 30 <400> 106 Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asx 35 40 Claims 1. An antibody against factor IX/factor IXa which has a factor VIIIa-cofactor activity and increases the procoagulant acitivity of FIXa. 45 2. The antibody according to claim 1, wherein said antibody increases the procoagulant activity of FIXa in the presence of FVIII inhibitors. 3. The antibody according to claim 1 or 2, wherein said antibody is selected from the group consisting of IgG, IgM, IgA

80

The antibody according to claim 1, wherein said antibody is selected from the group consisting of monoclonal

antibodies, chimeric antibodies, humanized antibodies, single chain antibodies, bispecific antibodies, diabodies,

5. The antibody according to anyone of claims 1 to 4, wherein the complement determining region (CDR) peptide is

a CDR3 peptide comprising an amino acid sequence selected from the group consisting of:

Tyr-Gly-Asn-Ser-Pro-Lys-Gly-Phe-Ala-Tyr and Asp-Gly-Gly-His-Gly-Tyr-Gly-Ser-Ser-Phe-Asp-Tyr.

- 6. The antibody according to anyone of claims 1 to 5, wherein the nucleotide sequence encoding the variable region of said antibody comprises nucleotides 1 to 357 and nucleotides 403 to 726 according to Fig. 14.
 - 7. The antibody according to claim 6, wherein said antibody additionally comprises an artificial linker sequence.
- 8. The antibody according to anyone of claims 1 to 5, wherein the nucleotide sequence encoding the variable region of said antibody comprises nucleotides 1 to 363 and nucleotides 409 to 747 according to Fig. 15.
 - 9. The antibody according to claim 8, wherein said antibody additionally comprises an artificial linker sequence.
 - 10. The antibody according to anyone of claims 1 to 5, wherein the nucleotide sequence encoding the variable region of said antibody comprises nucleotides 1 to 366 and nucleotides 412 to 747 according to Fig. 16.
 - 11. The antibody according to claim 10, wherein said antibody additionally comprises an artificial linker sequence.
 - 12. A hybridoma cell line expressing an antibody against factor IX/factor IXa according to anyone of claims 1 to 11.
 - 13. The hybridoma cell line according to claim 12, wherein said cell line is selected from the group consisting of 198/B1 ECACC No. 99090925; 198/A1 ECACC. No. 99090924; 198/BB1 ECACC No. 99090926; 193/A0 ECACC No. 99121614; 196/C4 ECACC No. 99121615; 198/D1 ECACC No. 99121616; 198/T2 ECACC No. 99121617; 198/G2 ECACC No. 99121618; 198/AC1 ECACC No. 99121619; 198/U2 ECACC No. 99121620.
 - 14. The antibody according to anyone of claims 1 to 11, which is expressed by a hybridoma cell line according to claim 12 or 13.
 - 15. A DNA molecule, wherein said DNA molecule encodes an antibody according to anyone of claims 1 to 11.
 - 16. A pharmaceutical preparation comprising an antibody according to anyone of claims 1 to 11 and a pharmaceutically acceptable carrier.
 - 17. The preparation according to claim 16, additionally comprising factor IXa α and/or factor IXa β .
 - 18. A method for obtaining an antibody according to claim 1 comprising the steps of:
 - immunizing a non human mammal with an antigen selected from the group consisting of factor IX, factor IXa α , factor IXa β or fragments thereof;
 - isolating spleen cells of the immunized mammal;
 - producing hybridoma clones;
 - screening the hybridoma cell supernatants for an increase in the procoagulant activity of factor IXa;
 - isolating the hybridoma clones expressing the antibodies; and
 - isolating the antibodies.
 - 19. Use of an antibody according to anyone of claims 1 and 2 in the manufacture of a medicament for the treatment of a blood coagulation disorder in a patient.
 - **20.** Use according to claim 19, wherein the blood coagulation disorder is selected from the group consisting of hemophilia A and hemorrhagic diathesis.
 - 21. Use according to claims 19 or 20, wherein the patients are hemophilia inhibitor patients.

55 Patentansprüche

5

15

20

25

30

35

40

45

50

1. Antikörper gegen Faktor IX/Faktor IXa, der eine Faktor VIIIa-Kofaktor-Aktivität aufweist und die prokoagulierende Aktivität von FIXa erhöht.

- 2. Antikörper nach Anspruch 1, wobei der Antikörper die prokoagulierende Aktivität von FIXa in der Anwesenheit von FVIII-Inhibitoren erhöht.
- 3. Antikörper nach Anspruch 1 oder 2, wobei der Antikörper ausgewählt ist aus der Gruppe, bestehend aus IgG-, IgM-, IgA- und IgE-Antikörpern.
 - 4. Antikörper nach Anspruch 1, wobei der Antikörper ausgewählt ist aus der Gruppe, bestehend aus monoklonalen Antikörpern, chimären Antikörpern, humanisierten Antikörpern, Einzelkettenantikörpern, bispezifischen Antikörpern, Diabodies, scFv, Fab, F(ab)₂, und Di-, Oligo- oder Multimeren davon.
 - 5. Antikörper nach einem der Ansprüche 1 bis 4, wobei das komplementäritätsbestimmende Region (CDR)-Peptid ein CDR3-Peptid ist, umfassend eine Aminosäuresequenz, ausgewählt aus der Gruppe bestehend aus:

Tyr-Gly-Asn-Ser-Pro-Lys-Gly-Phe-Ala-Tyr und Asp-Gly-Gly-His-Gly-Tyr-Gly-Ser-Ser-Phe-Asp-Tyr.

- 6. Antikörper nach einem der Ansprüche 1 bis 5, wobei die Nukleotidsequenz, welche die variable Region des Antikörpers kodiert, die Nukleotide 1 bis 357 und die Nukleotide 403 bis 726 nach Fig. 14 umfaßt.
- 7. Antikörper nach Anspruch 6, wobei der Antikörper zusätzlich eine künstliche Verbindungs (Linker)-Sequenz umfaßt.
 - 8. Antikörper nach einem der Ansprüche 1 bis 5, wobei die Nukleotidsequenz, welche die variable Region des Antikörpers kodiert, die Nukleotide 1 bis 363 und die Nukleotide 409 bis 747 nach Fig. 15 umfaßt.
- 9. Antikörper nach Anspruch 8, wobei der Antikörper zusätzlich eine künstliche Verbindungs (Linker)-Sequenz umfaßt.
 - 10. Antikörper nach einem der Ansprüche 1 bis 5, wobei die Nukleotidsequenz, welche die variable Region des Antikörpers kodiert, die Nukleotide 1 bis 366 und die Nukleotide 412 bis 747 nach Fig. 16 umfaßt.
- 11. Antikörper nach Anspruch 10, wobei der Antikörper zusätzlich eine künstliche Verbindungs (Linker)-Sequenz umfaßt.
 - 12. Hybridomazelllinie, welche einen Antikörper gegen Faktor IX/Faktor IXa nach einem der Ansprüche 1 bis 11 exprimiert.
- 13. Hybridomazelllinie nach Anspruch 12, wobei die Zelllinie ausgewählt ist aus der Gruppe, bestehend aus 198/B1 ECACC Nr. 99090925; 198/A1 ECACC Nr. 99090924; 198/BB1 ECACC Nr. 99090926; 193/A0 ECACC Nr. 99121614; 196/C4 ECACC Nr. 99121615; 198/D1 ECACC Nr. 99121616; 198/T2 ECACC Nr. 99121617; 198/G2 ECACC Nr. 99121618; 198/AC1 ECACC Nr. 99121619; 198/U2 ECACC Nr. 99121620.
- 14. Antikörper nach einem der Ansprüche 1 bis 11, der von einer Hybridomazelllinie nach Anspruch 12 oder 13 exprimiert ist.
 - 15. DNA-Molekül, wobei das DNA-Molekül einen Antikörper nach einem der Ansprüche 1 bis 11 kodiert.
- 16. Pharmazeutische Zusammensetzung, umfassend einen Antikörper nach einem der Ansprüche 1 bis 11 und einen pharmazeutisch verträglichen Träger.
 - 17. Zusammensetzung nach Anspruch 16, zusätzlich umfassend Faktor IXaα und/oder Faktor IXaβ.
- 18. Verfahren zum Erhalten eines Antikörpers nach Anspruch 1, umfassend die Schritte:
 - Immunisieren eines nicht-menschlichen Säugetiers mit einem Antigen, ausgewählt aus der Gruppe, bestehend aus Faktor IX, Faktor IXaα, Faktor IXaβ oder Fragmenten davon;
 - Isolieren von Milzzellen des immunisierten Säugetiers;
 - Herstellen von Hybridomaklonen;
 - Screenen der Hybridomazellüberstände nach einem Anstieg der prokoagulierenden Aktivität von Faktor IXa;
 - Isolieren der Hybridomaklone, welche die Antikörper exprimieren; und
 - Isolieren der Antikörper.

55

5

10

- 19. Verwendung eines Antikörpers nach einem der Ansprüche 1 und 2 in der Herstellung eines Arzneimittels zur Behandlung einer Blutgerinnungsstörung in einem Patienten.
- **20.** Verwendung nach Anspruch 19, wobei die Blutgerinnungsstörung ausgewählt ist aus der Gruppe, bestehend aus Hämophilie A und hämorrhagischer Diathese.
 - 21. Verwendung nach einem der Ansprüche 19 oder 20, wobei die Patienten Hämophilie-Inhibitor-Patienten sind.

10 Revendications

20

30

- 1. Anticorps contre le facteur IX/facteur IXa qui possède une activité de cofacteur du facteur VIIIa et augmente l'activité pro-coagulante du FIXa.
- 2. Anticorps selon la revendication 1, dans lequel ledit anticorps augmente l'activité pro-coagulante du FIXa en présence d'inhibiteurs du FVIII.
 - 3. Anticorps selon la revendication 1 ou 2, dans lequel ledit anticorps est choisi dans le groupe constitué par des anticorps d'IgG, d'IgM, d'IgA et d'IgE.
 - **4.** Anticorps selon la revendication 1, dans lequel ledit anticorps est choisi dans le groupe constitué par des anticorps monoclonaux, des anticorps chimères, des anticorps humanisés, des anticorps monocaténaires, des anticorps bispécifiques, des diacorps, scFv, Fab, F(ab)₂, et des di-, oligo- ou multimères de ceux-ci.
- 5. Anticorps selon l'une quelconque des revendications 1 à 4, dans lequel le peptide de la région hypervariable ("complement determining region peptide" en langue anglaise) (CDR), est un peptide CDR3 comprenant une séquence d'acides aminés choisie dans le groupe constitué par :

```
Tyr-Gly-Asn-Ser-Pro-Lys-Gly-Phe-Ala-Tyr et Asp-Gly-Gly-His-Gly-Tyr-Gly-Ser-Ser-Phe-Asp-Tyr.
```

- 6. Anticorps selon l'une quelconque des revendications 1 à 5, dans lequel la séquence nucléotidique codant la région variable dudit anticorps comprend les nucléotides 1 à 357 et les nucléotides 403 à 726 selon la Fig. 14.
- 7. Anticorps selon la revendication 6, dans lequel ledit anticorps comprend de plus une séquence de liaison artificielle.
 - 8. Anticorps selon l'une quelconque des revendications 1 à 5, dans lequel la séquence nucléotidique codant la région variable dudit anticorps comprend les nucléotides 1 à 363 et les nucléotides 409 à 747 selon la Fig. 15.
- 9. Anticorps selon la revendication 8, dans lequel ledit anticorps comprend de plus une séquence de liaison artificielle.
 - 10. Anticorps selon l'une quelconque des revendications 1 à 5, dans lequel la séquence nucléotidique codant la région variable dudit anticorps comprend les nucléotides 1 à 366 et les nucléotides 412 à 747 selon la Fig. 16.
- 11. Anticorps selon la revendication 10, dans lequel ledit anticorps comprend de plus une séquence de liaison artificielle.
 - 12. Lignée cellulaire d'hybridome exprimant un anticorps contre le facteur IX/facteur IXa selon l'une quelconque des revendications 1 à 11.
- 13. Lignée cellulaire d'hybridome selon la revendication 12, dans laquelle ladite lignée cellulaire est choisie dans le groupe constitué par 198/B 1 ECACC No. 99090925; 198/A1 ECACC. No. 99090924; 198/BB1 ECACC No. 99090926; 193/A0 ECACC No. 99121614; 196/C4 ECACC No. 99121615; 198/D1 ECACC No. 99121616; 198/T2 ECACC No. 99121617; 198/G2 ECACC No. 99121618; 198/AC1 ECACC No. 99121619; 198/U2 ECACC No. 99121620.
 - 14. Anticorps selon l'une quelconque des revendications 1 à 11, qui est exprimé par une lignée cellulaire d'hybridome selon la revendication 12 ou 13.

- 15. Molécule d'ADN, dans laquelle ladite molécule d'ADN code un anticorps selon l'une quelconque des revendications 1 à 11.
- 16. Préparation pharmaceutique comprenant un anticorps selon l'une quelconque des revendications 1 à 11 et un véhicule acceptable du point de vue pharmaceutique.
- 17. Préparation selon la revendication 16, comprenant de plus le facteur $IXa\alpha$ et/ou le facteur $IXa\beta$.
- 18. Procédé d'obtention d'un anticorps selon la revendication 1 comprenant les étapes :
 - d'immunisation d'un mammifère non humain avec un antigène choisi dans le groupe constitué par le facteur IX, le facteur IXaα, le facteur IXaβ ou des fragments de ceux-ci ;
 - d'isolement des cellules de la rate du mammifère immunisé ;
 - de production de clones d'hybridome ;
 - de sélection des surnageants cellulaires de l'hybridome présentant une augmentation de l'activité pro-coagulante du facteur IXa;
 - d'isolement des clones de l'hybridome exprimant les anticorps ; et
 - d'isolement des anticorps.

5

10

15

25

30

35

40

45

50

55

- 19. Utilisation d'un anticorps selon l'une quelconque des revendications 1 et 2 pour la fabrication d'un médicament pour le traitement d'un trouble de la coagulation sanguine chez un patient.
 - 20. Utilisation selon la revendication 19, dans laquelle le trouble de la coagulation sanguine est choisi dans le groupe constitué par l'hémophilie A et la diathèse hémorragique.
 - 21. Utilisation selon les revendications 19 ou 20, dans laquelle les patients sont des patients inhibiteurs d'hémophilie.

Fig. 4

Fig. 5

Fig. 8B

Fig. 8C

Fig. 10A

Fig. 10E

Fig. 1.

Mouse V_H back primers (containing SfiI-site)

VH1BACK-SfiI	5' C ATG CCA TGA CTC GCG GCC CAG GCC ATG GCC SAG GTS MAR CTG CAG
	SAG TCW GG 3' (SEQ.ID.NO. 50)
VH1BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAG GTG CAG CTT CAG GAG TCA
	GG 3' (SEQ.ID.NO. 51)
VH2BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAT GTG CAG CTT CAG GAG TCR
	GG 3' (SEQ.ID.NO. 52)
VH3BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG GCC ATG GCC CAG GTG CAG CTG AAG SAG TCA
	GG 3' (SEQ.ID.NO. 53)
VH4/6BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAG GTY CAG CTG CAR CAR TCT
	GG 3' (SEQ.ID.NO. 54)
VH5/9BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG GCC ATG GCC CAG GTY CAR CTG CAG YCT
	GG 3' (SEQ.ID.NO. 55)
VH7BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAR GTG AAG CTG GAR TCT
	GG 3' (SEQ.ID.NO. 56)
VH8BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAG GTT CAG CTT CAG CAG TCT
	GG 3' (SEQ.ID.NO. 57)
VH10BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC GAA GTG CAG CTG KTG GAG WCT
	GG 3' (SEQ.ID.NO. 58)
VH11BACKSfi	5' GTC CTC GCA ACT GCG GCC CAG GCC ATG GCC CAG ATC CAG TTG CTG CAG TCT
	GG 3' (SEQ.ID.NO. 59)
1. 11 11	

FIG 12-

and AscI-site): 1 linker-sequence Mouse JH forward primers (containing

VH1FOR2LiAsc	5' ACC GCC AGA GGC GCG CCC ACC TGA ACC GCC TCC ACC TGA GGA GAC GGT
	GAC CGT GGT CCC TTG GCC CC 3' (SEQ.ID.NO. 60)
JH1FORL; Asc	5' ACC GCC AGA GGC GCG CCC ACC TGA ACC GCC TCC ACC TGA GGA GAC GGT
	GAC CGT GGT CCC 3' (SEQ.ID.NO. 61)
JH2FORL; Asc	5' ACC GCC AGA GGC GCG CCC ACC TGA ACC GCC TCC ACC TGA GGA GAC TGT
	GAG AGT GCT GCC 3' (SEQ.ID.NO. 62)
JH3FORL; Asc	5' ACC GCC AGA GGC GCG CCC AGA ACC GCC TCC ACC TGC AGA GAC AGT
	GAC CAG AGT CCC 3' (SEQ.ID.NO. 63)
JH4FORLiAsc	5' ACC GCC AGA GGC GCG CCC ACC TGA ACC GCC TCC ACC TGA GGA GAC GGT
	GAC TGA GGT TCC 3' (SEQ.ID.NO. 64)

S=C/G, K=G/T, H=A/C/T, D=A/G/T, V=A/C/G, B=T/C/G. IUPAC-Code: M=A/C, W=A/T, R=A/G, Y=C/T,

Fig. 12-2

Primers for cloning mouse V_{K} genes

linker-sequence): and ½ AscI-site Mouse V_{κ} back primers (containing

VK2BACK-LiAscI	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAC ATT GAG
	CTC ACC CAG TCT CCA 3' (SEQ.ID.NO. 65)
VK1BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAC ATT GTG
	ATG WCA CAG TCT CC 3' (SEQ.ID.NO. 66)
VK2BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAT GTT KTG
	ATG ACC CAA ACT CC 3' (SEQ.ID.NO. 67)
VK3BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAT ATT GTG
	ATR ACB CAG GCW GC 3' (SEQ.ID.NO. 68)
VK4BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAC ATT GTG
	CTG ACM CAR TCT CC 3' (SEQ.ID.NO. 69)
VK5BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG SAA AWT GTK
	CTC ACC CAG TCT CC 3' (SEQ.ID.NO. 70)
VK6BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG GAY ATY VWG
	ATG ACM CAG WCT CC 3' (SEQ.ID.NO. 71)
VK7BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG CAA ATT GTT
	CTC ACC CAG TCT CC 3' (SEQ.ID.NO. 72)
VK8BACKLi Asc	5' GGT TCA GAT GGG CGC GCC TCT GGC GGT GGC GGA TCG TCA TTA TTG

Fig. 13-1

3' (SEQ.ID.NO.

GG

CAG GTG

Mouse J_K forward primers (containing NotI-site):

3,		3		3		3,		3,	
,e 225		ccc 3,		ccc 3,		, c c c 3,		,E 222	
GGT		GGT		GGT		\mathtt{TGT}		GGT	
CIL		CTT		TCT		CTT		CTT	
CAG		CAG		CAG		CAA		CAG	
TTC		TTC		TTC		TTC		CIC	
GAT		\mathtt{TAT}		TAT		TAT		CAG	
TTT		TTT		TTT		TLL		TTT	
922		922		922		900		900	
၁၅၁		၁၅၁		292		၁၅၁		292	
299		TGC GGC CGC CCG		TGC GGC CGC CCG		TGC GGC CGC		TGC GGC CGC CCG	
DEC GGC CGC		TGC		TGC		TGC		TGC	
	74)	TTC	75)	TIC	(9	TTC	(77)	TTC	78)
TCA	NO.	TCA	NO.	TCA	NO.7	TCA	NO.	TCA	NO.
5' GAG TCA TTC	(SEQ.ID.NO. 74)	5' GAG TCA TTC	(SEQ.ID.NO. 75)	5' GAG TCA TIC	(SEQ. ID.NO.76)	5' GAG TCA TTC	(SEQ.ID.NO. 77)	5' GAG TCA TTC	(SEQ. ID.NO. 78)
5,	(SE	5,	(SE	5,	(SE	5,	ES)	5,	(SE
JKINOT10		JK2NOT10		JK3NOT10		JK4NOT10		JK5NOT10	

R=A/G, Y=C/T, S=C/G, H=A/C/T, D=A/G/T, V=A/C/G, B=T/C/G. IUPAC-Code: K=G/T, M=A/C, W=A/T,

Fig. 13-2

MΗ

- - T ACA AAG AAG Y TAT CTGGGG GAG S TCT CCT A GCT GGA K AAG C TGC TCT GAG S TCC V GTC AAG GTG T ACA E GAG
- N Y G M N W V K Q A P G K G L AAC TAT GGA AAC TGG GTG AAG CAG GCT CCA GGA AAG GGT TTA
- TACA PCCA E GAG G GGA TACT YTAC T ACC I N ATA AAC ₩ TGG K W M G AAG TGG ATG GGC +1 136
- S TCT T ACC E GAA m L m TTGS TCT F A GCC F TTT R CGG G GGA K AAG FTTC D GAC D GAT A GCT +1 181
- D GAC E GAG K N AAA AAT L CTC N AAC N AAC I ATC Q CAG $_{
 m L}$ Y TAT A GCC S T AGC ACT A GCC +1 226
- ၁ ၁၅၅ K AAG S P N AAC GGT L TTA A GCA C TGT Y TAT TACA A GCT TACG +1 271
- A GCA linker V S GTC TCT TACT V GTC $_{
 m L}$ TACT $\overline{\mathbf{W}}$ Y TAC A GCT F TTT
- G399 GGC STCTA GCC R CGC G GGG GGGC (G GGA
- L CTT MATG +1 I 406 ATT Fig. 14-1

R CGC S AGC D GAT L CTA K AAA I ATC D GAT T ACC Q CAG PCCT PCCT F TTC S TCT V GTC CTGT Q CAG F TTC TACC G GGA T ACT Q CAG 9 9 G GGG T ACT F TTC Y TAT Y TAC V GTT P CCG D GAT T ACG K AAG R CGC A GCA G GGA L CTG FTTC . GGG Q CAG N AAT S TCC Y TAT D GAC Q CAA A GCA G GGA E W TGG Y TAT S AGT A GCT A GCT Y TAC 6 66 0 0 CAG S TCT V GTA M ATG T ACT V GTG ၁၁၅ R AGG TACT D GAT L CTG F TTC Y TAT +1 +1 496 +1 586 +1 +1 541

Fig. 14 -4

L CTA GGA GGG E GAG

TACT FTTC GGA S TCT A GCC A GCA CTGT S TCC L CTG S TCC

LCTG R AGG K AAG E GAG PCCG TACT Q CAG R CGC V GTT W TGG S M ATG TACC Y TAT T ACC

Y TAT Y TAC T ACC Y TAC S AGT GGT GGT S AGT S AGT I ATT TACC A GCA V GTC W TGG E GAG

A GCC R AGG

N AAT D GAC R AGA S TCC I ATC TACC FTTC R CGA 9 9 V GTG L CTG S AGT D GAC N AAC P CCA +1 181

D GAC E GAG S TCT K AAG Γ S AGT S AGC MATG Q CAA L CTG Y TAC T ACC K AAG +1 226

GGT Y TAC 9 9 9 9 H GGA G GGG D GAT R AGA T ACA CTGT Y TAC Y TAT D GAC GGC M ATG F TTT T ACA +12271

S V GTC TACA L^{\sim} TACT T ACC 9 66C Q CAA G GGC WTGG Y TAC A GCC S AGC S AGT +1 316

GGA *G* GGT *G* S TCTA GCC R CGC *G* . G GGT STCA*G* linker G G GGT GGA

S AGT PCCT L CTG S TCC L CTC P CCA S TCT Q CAG TACC

GGA GGT

SAGC S TCT G GGA

K AAA Q CAG L Y TAC W TGG E GAA L ITA Y TAT TACC N AAC H CAT +1

S ICC I ATC L CTG L CTC K AAG

R CGA ACA N AAC GGG S ICA V GTT GGA K AAA S S AGT Y TAC G GGC S AGT F TTC K AAA D GAC GGGA GGA CCA CCA AAG TTT N AAT S TCT GTC CTC S AGT O CAG G GGG GGC S TCT STA CCA CCA TTT D GAT V +1 541 +1 586

L CTG FF D GAT E GAG V GTG R AGA S AGC I ATC F TTC

W TGG A GCT P CCG E GAG V GTT H S G G CAA T ACA Y TAC Y TAT +1 631 41 676 1721

15 Fig. PCCT K AAG V GTG $\frac{L}{TTA}$ 9 6 G GGA G GGG S TCA E GAG E V Q L GAG GTG CAG CTT HIGSLIK LSC A A SGFFTFS S46 GG TCC CTG AAA CTC TGT GCA GCC TCT GGA TTC ACT TTC AGT

1 S Y T M S W V R Q T P E K R L AGC TAT ACC ATG TCT TGG GTT CGC CAG ACT CCG GAG AAG AGG CTG Y TAT Y TAC TACC S TCC S AGT GGT G GGT S AGT S AGT IATT TACC E W V A GAG TGG GTC GCA +1

A GCC N AAT D GAC R AGA s TCC I ATC TACC FTTC R CGA G GGC K AAG S AGT D GAC P CCA +1 D GAC E GAG S TCT R AGG L CTG S AGT S AGC M ATG Q CAA L CTG Y TAC L CTG K N T AAG AAC ACC (+1

V GTC GGT GGT GGG E R AGA TACA $_{\rm TGT}$ Y TAC Y TAT T A M ACA GCC ATG +1 271

V GTC TACT V GTC L CTĆ TACT G GGG A GCA GGC WTGG V GTC D GAT N W Y F AAC TGG TAC TTC +1

G GGT .G GGC R CGC G GGG GSTCA GGT S A G G TCT GCA GGT GGA linker

S TCT STCT Q CAG TACC TCG GAA AAT [고] VL S GGA '

ഗ GAA 国 GCC AGT ഗ TGC AGA 召 Ö ICC လ GCC ACC ATA GG CAG CTA GGG CA TCT ഗ +1 8 451

Q CAG Y TAT $\overline{\mathbf{W}}$ H M ATG Y TAT Y G TAT GGC D S GAT AGT +1 496

S A GCA R CGT Y TAT $\frac{L}{CTC}$ K AAA PCCC P CCA G GGA PCCA

R AGG V GTT S TCT D GAT . GGG D GAT S AGT A GCT E GAG GGC VGTG S AGT FTTC PCCT R AGG A GCC I ATT PCCT CIC IATC D F T GAC F 999 888 STCT EGAG +1 +1 586

P CCG E GAG N AAT Q CAG CTGT TACC +1

+1 T G T R L E I K R 721 ACT GGG ACC AGA CTG GAA ATA AAA CGG

Fig.16-2

HM

- L CTC GAĠ K AAA TTT $_{\rm CTG}$ GAC s TCC AGG 6 66 000 000 GGA CCT PCCT GGA K AAG TTC V GTG CAC L TTA AAT CCG . . . G GGA CCT 999 200 S TCA AGT E GAG CTC Q CAG GTC L CTT GAA Q CAG GTC GTG GAG
- T ACT TGA Q CAG GTC R CGC GCG V GTT CAA W TGG ACC S TCT AGA M ATG TAC T ACC TGG Y TAT ATA S AGT TCA S AGT TCA F TTT AAA I ATT TAA F TTC AAG GGA CCT S TCT AGA A GCC CGG A GCA CGT C TGT ACA S TCC AGG
- Y TAT ATA TAC ≻ T ACC TGG TCC AGG S S AGT TCA G GGT CCA GGT CCA G S AGT TCA S AGT TCA I ATT TAA T ACC TGG A GCA CGT V GTC CAG W TGG ACC E GAG CTC L CTG GAC R AGG TCC K AAG TTC E GAG CTC P CCG GGC
- Y TAC ATG $_{
 m L}$ GAC T ACC TGG N AAC TTG K AAG TTC A GCC CGG N AAT TTA D GAC CTG R AGA TCT S TCC AGG I ATC TAG ACC TGG F TTC AAG R CGA GCT 9 9 9 9 K AAG TTC V GTG CAC S AGT TCA D GAC CTG P CCA GGT
- 999 CCC EAG CTC R AGA TCT T ACA TGT C TGT ACA H CAC GTG Y TAT ATA M ATG TAC A GCC CGG T ACA TGT D GAC CTG E GAG CTC S TCT AGA K AAG TTC L CTG GAC S AGT TCA S AGC TCG M ATG TAC O CAA GIT L CTG GAC
- V GTC CAG T ACA TGT L CTC GAG T ACT TGA T ACC TGG 9 299 200 200 A GCA CGT 9 9 9 9 W TGG ACC GTC
 CAG D GAT CTA F TTC AAG Y TAC ATG TGG ACC N AAC TTG cAG ¥ TAC ATG Y TAT ATA GGT CCA GGT CCA

GAG I ATT TAA GAC CTG TCG AGC GGA CCI CGC SSS S GGT CCA Sec 900 S TCT AGA A GCC CGG R CGC GCG 999 000 000 G GGT CCA S TCA AGT G GGT CCA 900 000 GGA GGT CCA S TCA AGT S TCC AGG

C TGC ACG S TCC AGG I ATA TAT T ACC TGG A GCC CGG R AGG TCC Q CAG GTC 6 666 000 L CTA GAT S TCT AGA V GTG CAC A GCT CGA L TTG AAC S TCT AGA A GCT CGA P CCA GGT S TCT AGA Q CAG GTC ACN FIGN L CTC i GAG TU GAG TU K AAA TTT. O CAG GTC Q CAG GTC YTAC W TGG ACC H CAC GTG M ATG TAC F TTT AAA S AGT TCA K AAG TTC 9 299 9 Y TAT ATA S AGT TCA V GTT CAA S AGT TCA E GAA CTT S AGT TCA A GCC CGG R AGA TCT

P CCT GGA I ATC TAG 222 299 5 S TCT AGA E GAA CTT L CTA GAT N AAC TTG s TCC AGG A GCA CGT R CGT GCA Y TAT ATA I ATC TAG L CTC GAG L CTC GAG K AAA TTT P CCC GGG P CCA GGT O CAG GTC 222 299 5 P CCA GGT

E GAG CTC GGT CCA V GTG CAC F TTC AAG P CCT GGA T ACG TGC N AAT TTA L CTC GAG I ATT TAA Р ССС GGG T ACC TGG D GAT CTA L CTC GAG E GAG CTC T ACC TGG N AAT TTA S AGT TCA F TTC AAG D GAC CTG O CAA GTT T ACA TGT O CAG GTC R AGG TCC C TGT ACA Y TAC ATG S TCT AGA Y TAT ATA 999 900 000 T ACC TGG S AGT TCA 900 000 000 A GCN CGN V GTT CAA S AGT TCA D GAT CTA F TTC AAG D GAT CTA R AGG TCC A GCT CGA A GCC CGG +1

Fig. 17-2

Figure 23

Fig. 24B

PelB-leader P T A A A G L ${f L}$ \mathbf{L} Y K +1 M ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT VH E V E Q P A K M A A L CTC GCG GCC CAG CCG GCC ATG GCG GAG GTG AAG CTG GTG GAG GAG CGC CGG GTC GGC CGG TAC CGC CTC CAC TTC GAC CAC CTC L G K P G L G G L V S K G +1 S TCT GGG GGA GGC TTA GTG AAG CCT GGA GGG TCC CTG AAA CTC AGA CCC CCT CCG AAT CAC TTC GGA CCT CCC AGG GAC TTT GAG F Y ${f T}$ S S G F S C A A +1 TCC TGT GCA GCC TCT GGA TTC ACT TTC AGT AGC TAT ACC ATG AGG ACA CGT CGG AGA CCT AAG TGA AAG TCA TCG ATA TGG TAC V E K R \mathbf{L} Q P E \mathbf{T} R V +1 TCT TGG GTT CGC CAG ACT CCG GAG AAG AGG CTG GAG TGG GTC AGA ACC CAA GCG GTC TGA GGC CTC TTC TCC GAC CTC ACC CAG S \mathbf{T} Y D S G S Y S G +1 Ι GCA ACC ATT AGT AGT GGN GGT AGT TCC ACC TAC TAT CCA GAC CGT TGG TAA TCA TCA CCN CCA TCA AGG TGG ATG ATA GGT CTG I S R D R F T N K G +1 V AGT GTG AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT GCC AAG 253 TCA CAC TTC CCG GCT AAG TGG TAG AGG TCT CTG TTA CGG TTC T L Y L Q M S S L +1 N 295 AAC ACC CTG TAC CTG CAA ATG AGC AGT CTG AGG TCT GAG GAC TTG TGG GAC ATG GAC GTT TAC TCG TCA GAC TCC AGA CTC CTG R E M Y Y C ${f T}$ G +1 T A 337 ACA GCC ATG TAT TAC TGT ACA AGA GAG GGG GGT GGT TTC ACC TGT CGG TAC ATA ATG ACA TGT TCT CTC CCC CCA CCA AAG TGG +1 V N W Y F D V W G A G 379 GTC AAC TGG TAC TTC GAT GTC TGG GGC GCA GGA ACC TCA GTC CAG TTG ACC ATG AAG CTA CAG ACC CCG CGT CCT TGG AGT CAG Linker G G G S G R A +1 T V S S 421 ACC GTC TCA GGT GGA GGC GGT TCA GGT GGG CGC GCC TCT TGG CAG AGG AGT CCA CCT CCG CCA AGT CCA CCC GCG CGG AGA Fig. 26-1

 $\Lambda\Gamma$ G G S +1 G G I D V L T Q 463 GGC GGT GGC GGA TCG GAC ATT GTG CTG ACA CAG TCT CCA GCT CCG CCA CCG CCT AGC CTG TAA CAC GAC TGT GTC AGA GGT CGA S L +1 S L A V Q R G Α ${f T}$ 505 TCT TTG GCT GTG TCT CTA GGG CAG AGG GCC ACC ATA TCC TGC AGA AAC CGA CAC AGA GAT CCC GTC TCC CGG TGG TAT AGG ACG +1 R A S E S V D S Y G Y 547 AGA GCC AGT GAA AGT GTT GAT AGT TAT GGC TAT AAT TTT ATG TCT CGG TCA CTT TCA CAA CTA TCA ATA CCG ATA TTA AAA TAC QIPGQPPK +1 H W Y O 589 CAC TGG TAT CAG CAG ATA CCA GGA CAG CCA CCC AAA CTC CTC GTG ACC ATA GTC GTC TAT GGT CCT GTC GGT GGG TTT GAG GAG A S N L E S +1 I Y R G I 631 ATC TAT CGT GCA TCC AAC CTA GAG TCT GGG ATC CCT GCC AGG TAG ATA GCA CGT AGG TTG GAT CTC AGA CCC TAG GGA CGG TCC G S G S R T D +1 F S F \mathbf{T} L 673 TTC AGT GGC AGT GGG TCT AGG ACA GAC TTC ACC CTC ACC ATT AAG TCA CCG TCA CCC AGA TCC TGT CTG AAG TGG GAG TGG TAA P V E A D D V A T Y Y C +1 N 715 AAT CCT GTG GAG GCT GAT GAT GTT GCA ACC TAT TAC TGT CAG TTA GGA CAC CTC CGA CTA CTA CAA CGT TGG ATA ATG ACA GTC D P L E ${f T}$ F +1 Q S N G T 757 CAA AGT AAT GAG GAT CCG CTC ACG TTC GGT ACT GGG ACC AGA GTT TCA TTA CTC CTA GGC GAG TGC AAG CCA TGA CCC TGG TCT Spacer |Alkaline phosphatase +1 L E I K R A A AAIRAPE CTG GAA ATA AAA CGG GCG GCC GCA GCC CGG GCA CCA GAA ATG GAC CTT TAT TTT GCC CGC CGG CGT CGG GCC CGT GGT CTT TAC +1 P V L \mathbf{E} N R A A Q G D CCT GTT CTG GAA AAC CGG GCT GCT CAG GGC GAT ATT ACT GCA GGA CAA GAC CTT TTG GCC CGA CGA GTC CCG CTA TAA TGA CGT RRLTG A +1 P G G D Q CCC GGC GGT GCT CGC CGT TTA ACG GGT GAT CAG ACT GCC GCT GGG CCG CCA CGA GCG GCA AAT TGC CCA CTA GTC TGA CGG CGA S D R D S L K P +1 L A K N CTG CGT GAT TCT CTT AGC GAT AAA CCT GCA AAA AAT ATT ATT GAC GCA CTA AGA GAA TCG CTA TTT GGA CGT TTT TTA TAA TAA

I G D G M G D S E I T A ${
m L}$ 967 TTG CTG ATT GGC GAT GGG ATG GGG GAC TCG GAA ATT ACT GCC AAC GAC TAA CCG CTA CCC TAC CCC CTG AGC CTT TAA TGA CGG Y A E G A G G F R N +1 A K 1009; GCA CGT AAT TAT GCC GAA GGT GCG GGC GGC TTT TTT AAA GGT CGT GCA TTA ATA CGG CTT CCA CGC CCG CCG AAA AAA TTT CCA L P L G Q +1 I A ${f T}$ D Y H 1051 ATA GAT GCC TTA CCG CTT ACC GGG CAA TAC ACT CAC TAT GCG TAT CTA CGG AAT GGC GAA TGG CCC GTT ATG TGA GTG ATA CGC K K T G K P D Y V T N 1093 CTG AAT AAA AAA ACC GGC AAA CCG GAC TAC GTC ACC GAC TCG GAC TTA TTT TGG CCG TTT GGC CTG ATG CAG TGG CTG AGC S ${f T}$ A S A \mathbf{T} A W G V K 1135 GCT GCA TCA GCA ACC GCC TGG TCA ACC GGT GTC AAA ACC TAT CGA CGT AGT CGT TGG CGG ACC AGT TGG CCA CAG TTT TGG ATA G V D I H E A L G K 1177 AAC GGC GCG CTG GGC GTC GAT ATT CAC GAA AAA GAT CAC CCA TTG CCG CGC GAC CCG CAG CTA TAA GTG CTT TTT CTA GTG GGT M K +1 T I L \mathbf{E} A A A G L A 1219 ACG ATT CTG GAA ATG GCA AAA GCC GCA GGT CTG GCG ACC GGT TGC TAA GAC CTT TAC CGT TTT CGG CGT CCA GAC CGC TGG CCA S A Q V \mathbf{T} E L D A 1261 AAC GTT TCT ACC GCA GAG TTG CAG GAT GCC ACG CCC GCT GCG TTG CAA AGA TGG CGT CTC AAC GTC CTA CGG TGC GGG CGA CGC +1 L V A H V T S R K C Y G P 1303 CTG GTG GCA CAT GTG ACC TCG CGC AAA TGC TAC GGT CCG AGC GAC CAC CGT GTA CAC TGG AGC GCG TTT ACG ATG CCA GGC TCG K C P G \mathbf{T} S E N A ${f L}$ Ē +1 A GCG ACC AGT GAA AAA TGT CCG GGT AAC GCT CTG GAA AAA GGC 1345 CGC TGG TCA CTT TTT ACA GGC CCA TTG CGA GAC CTT TTT CCG ${f L}$ +1 G K G S I ${f T}$ E Q N \mathbf{A} GGA AAA GGA TCG ATT ACC GAA CAG CTG CTT AAC GCT CGT GCC CCT TTT CCT AGC TAA TGG CTT GTC GAC GAA TTG CGA GCA CGG +1 D V T L G G G A K TF A 1429 GAC GTT ACG CTT GGC GGC GGC GCA AAA ACC TTT GCT GAA ACG CTG CAA TGC GAA CCG CCG CCG CGT TTT TGG AAA CGA CTT TGC Fi q. 26-3

 \mathbf{L} R 0 G K ${f T}$ \mathbf{E} W G 1471 GCA ACC GCT GGT GAA TGG CAG GGA AAA ACG CTG CGT GAA CAG CGT TGG CGA CCA CTT ACC GTC CCT TTT TGC GAC GCA CTT GTC Q ${
m L}$ S \mathbf{A} R G Y V D A 0 +1 A 1513 GCA CAG GCG CGT GGT TAT CAG TTG GTG AGC GAT GCT GCC TCA CGT GTC CGC GCA CCA ATA GTC AAC CAC TCG CTA CGA CGG AGT E N K +1 L N S V T A Q 1555 CTG AAT TCG GTG ACG GAA GCG AAT CAG CAA AAA CCC CTG CTT GAC TTA AGC CAC TGC CTT CGC TTA GTC GTT TTT GGG GAC GAA R P V \mathbf{L} G N M F A D 1597 GGC CTG TTT GCT GAC GGC AAT ATG CCA GTG CGC TGG CTA GGA CCG GAC AAA CGA CTG CCG TTA TAC GGT CAC GCG ACC GAT CCT Y H G N Ι D K K A T +1 P 1639 CCG AAA GCA ACG TAC CAT GGC AAT ATC GAT AAG CCC GCA GTC GGC TTT CGT TGC ATG GTA CCG TTA TAG CTA TTC GGG CGT CAG R D C P N P O N +1 1681 ACC TGT ACG CCA AAT CCG CAA CGT AAT GAC AGT GTA CCA ACC TGG ACA TGC GGT TTA GGC GTT GCA TTA CTG TCA CAT GGT TGG K E \mathbf{L} M T D A I \mathbf{A} O 1723 CTG GCG CAG ATG ACC GAC AAA GCC ATT GAA TTG TTG AGT AAA GAC CGC GTC TAC TGG CTG TTT CGG TAA CTT AAC AAC TCA TTT \mathbf{E} \mathbf{L} 0 E G F F V K +1 N 1765 AAT GAG AAA GGC TTT TTC CTG CAA GTT GAA GGT GCG TCA ATC TTA CTC TTT CCG AAA AAG GAC GTT CAA CTT CCA CGC AGT TAG D H A A N 1807 GAT AAA CAG GAT CAT GCT GCG AAT CCT TGT GGG CAA ATT GGC CTA TTT GTC CTA GTA CGA CGC TTA GGA ACA CCC GTT TAA CCG D L D E A V Q R +1 E T V GAG ACG GTC GAT CTC GAT GAA GCC GTA CAA CGG GCG CTG GAA CTC TGC CAG CTA GAG CTA CTT CGG CAT GTT GCC CGC GAC CTT ${f T}$ L E G N VI A K K 1891 TTC GCT AAA AAG GAG GGT AAC ACG CTG GTC ATA GTC ACC GCT AAG CGA TTT TTC CTC CCA TTG TGC GAC CAG TAT CAG TGG CGA A S Q I V A P H A H 1933 GAT CAC GCC CAC GCC AGC CAG ATT GTT GCG CCG GAT ACC AAA CTA GTG CGG GTG CGG TCG GTC TAA CAA CGC GGC CTA TGG TTT T Q A L N T K +1 A P G L 1975 GCT CCG GGC CTC ACC CAG GCG CTA AAT ACC AAA GAT GGC GCA CGA GGC CCG GAG TGG GTC CGC GAT TTA TGG TTT CTA CCG CGT

+1 V M V M S Y G N S E E D S Q 2017 GTG ATG GTG ATG AGT TAC GGG AAC TCC GAA GAG GAT TCA CAA CAC TAC CAC TAC TCA ATG CCC TTG AGG CTT CTC CTA AGT GTT T G S Q L R Н I A A 2059 GAA CAT ACC GGC AGT CAG TTG CGT ATT GCG GCG TAT GGC CCG CTT GTA TGG CCG TCA GTC AAC GCA TAA CGC CGC ATA CCG GGC G L T D Q V V +1 H A A N 2101 CAT GCC GCC AAT GTT GTT GGA CTG ACC GAC CAG ACC GAT CTC GTA CGG CGG TTA CAA CAA CCT GAC TGG CTG GTC TGG CTA GAG His tag M K A +1 F ${f T}$ A L G D IA H H 2143 TTC TAC ACC ATG AAA GCC GCT CTG GGG GAT ATC GCA CAC CAT AAG ATG TGG TAC TTT CGG CGA GAC CCC CTA TAG CGT GTG GTA +1 H H H H 2185 CAC CAT CAC CAT TAA GTG GTA GTG GTA ATT

Fig. 26-5

PelB-Leader A A L ${
m L}$ P A G \mathbf{L} L \mathbf{T} K Y 1 ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT GAG VH K L V E V M A P A Q GCG GCC CAG CCG GCC ATG GCG GAG GTG AAG CTG GTG GAG TCT GGG CGC CGG GTC GGC CGG TAC CGC CTC CAC TTC GAC CAC CTC AGA CCC G G S L K L P +1 G G L V K GGA GGC TTA GTG AAG CCT GGA GGG TCC CTG AAA CTC TCC TGT GCA CCT CCG AAT CAC TTC GGA CCT CCC AGG GAC TTT GAG AGG ACA CGT F S S M R Y \mathbf{T} +1 A S F G ${f T}$ GCC TCT GGA TTC ACT TTC AGT AGC TAT ACC ATG TCT TGG GTT CGC CGG AGA CCT AAG TGA AAG TCA TCG ATA TGG TAC AGA ACC CAA GCG Γ E W V A \mathbf{E} K R +1 CAG ACT CCG GAG AAG AGG CTG GAG TGG GTC GCA ACC ATT AGT AGT GTC TGA GGC CTC TTC TCC GAC CTC ACC CAG CGT TGG TAA TCA TCA P V D S K \mathbf{T} Y Y G S S +1 G 226 GGN GGT AGT TCC ACC TAC TAT CCA GAC AGT GTG AAG GGC CGA TTC CCN CCA TCA AGG TGG ATG ATA GGT CTG TCA CAC TTC CCG GCT AAG K T N L Y S R D N A +1 \mathbf{T} 271 ACC ATC TCC AGA GAC AAT GCC AAG AAC ACC CTG TAC CTG CAA ATG TGG TAG AGG TCT CTG TTA CGG TTC TTG TGG GAC ATG GAC GTT TAC \mathbf{E} D \mathbf{T} Y Y S A M L R +1 316 AGC AGT CTG AGG TCT GAG GAC ACA GCC ATG TAT TAC TGT ACA AGA TCG TCA GAC TCC AGA CTC CTG TGT CGG TAC ATA ATG ACA TGT TCT F T V N W Y F D V WG G G +1 E 361 GAG GGG GGT GGT TTC ACC GTC AAC TGG TAC TTC GAT GTC TGG GGC CTC CCC CCA CCA AAG TGG CAG TTG ACC ATG AAG CTA CAG ACC CCG Linker G S S V T VŞ G G +1 A G ${f T}$ 406 GCA GGA ACC TCA GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GGT CGT CCT TGG AGT CAG TGG CAG AGG AGT CCA CCT CCG CCA AGT CCA VLG G G S A S D I V L R 451 GGG CGC GCC TCT GGC GGT GGC GGA TCG GAC ATT GTG CTG ACA CAG CCC GCG CGG AGA CCG CCA CCG CCT AGC CTG TAA CAC GAC TGT GTC Fig. 28-1

A L A V S $\mathbf L$ G 0 R TNT CCA GCT TCT TTG GCT GTG TCT CTA GGG CAG AGG GCC ACC ATA ANA GGT CGA AGA AAC CGA CAC AGA GAT CCC GTC TCC CGG TGG TAT R A S \mathbf{E} S V D S Y G Y +1 S C 541. TCN TGC AGA GCC AGT GAA AGT GTT GAT AGT TAT GGC TAT AAT TTT AGN ACG TCT CGG TCA CTT TCA CAA CTA TCA ATA CCG ATA TTA AAA +1 M \mathbf{H} W Y Q I P G Q P P ATG CAC TGG TAT CAG CAG ATA CCA GGA CAG CCA CCC AAA CTC CTC TAC GTG ACC ATA GTC GTC TAT GGT CCT GTC GGT GGG TTT GAG GAG L Y R A S N E S G I P A +1 ATC TAT CGT GCA TCC AAC CTA GAG TCT GGG ATC CCT GCC AGG TTC TAG ATA GCA CGT AGG TTG GAT CTC AGA CCC TAG GGA CGG TCC AAG +1 G S G S R T D F \mathbf{T} L ${f T}$ I AGT GGC AGT GGG TCT AGG ACA GAC TTC ACC CTC ACC ATT AAT CCT TCA CCG TCA CCC AGA TCC TGT CTG AAG TGG GAG TGG TAA TTA GGA E A D D V A \mathbf{T} Y Y Q +1 N GTG GAG GCT GAT GAT GTT GCA ACC TAT TAC TGT CAG CAA AGT AAT CAC CTC CGA CTA CTA CAA CGT TGG ATA ATG ACA GTC GTT TCA TTA P \mathbf{L} \mathbf{T} F G \mathbf{T} G T R L K +1 D GAG GAT CCG CTC ACG TTC GGT ACT GGG ACC AGA CTG GAA ATA AAA CTC CTA GGC GAG TGC AAG CCA TGA CCC TGG TCT GAC CTT TAT TTT Spacer Helix Hinge K G A CGG GCG GCC GCA CCG AAG CCT TCC ACT CCG CCC GGG TCT TCC CGT GCC CGC CGG CGT GGC TTC GGA AGG TGA GGC GGG CCC AGA AGG GCA K V \mathbf{L} E \mathbf{E} Γ +1 M K \mathbf{D} L Q \mathbf{E} 856 ATG AAA CAG CTG GAA GAC AAA GTA GAG GAG CTC CTT AGC AAG AAC TAC TTT GTC GAC CTT CTG TTT CAT CTC CTC GAG GAA TCG TTC TTG L E E V A R L K N K +1 Y H TAC CAT CTA GAA AAC GAG GTA GCT CGT CTG AAA AAG CTT GTT GGT ATG GTA GAT CTT TTG CTC CAT CGA GCA GAC TTT TTC GAA CAA CCA His-tag Spacer R G G H H H H H +1 E H 946 GAA CGT GGT GGT CAC CAT CAC CAT CAC CAT TAA CTT GCA CCA CCA GTG GTA GTG GTA ATT Fig. 28-2

PelB-leader L L P ${f T}$ A A Α L G K 1 ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT VH P A E V A Q M A Q L A 43 CTC GCG GCC CAG CCG GCC ATG GCC GAG GTT CAG CTT CAG CAG > GAG CGC CGG GTC GGC CGG TAC CGG CTC CAA GTC GAA GTC GTC G P E L V K P G Α +1 85 TCT GGA CCT GAG CTG GTG AAG CCC GGG GCC TCA GTG AAG ATT AGA CCT GGA CTC GAC CAC TTC GGG CCC CGG AGT CAC TTC TAA G C K A S Y A F S 127 TCC TGC AAA GCT TCT GGC TAC GCA TTC AGT AGC TCT TGG ATG AGG ACG TTT CGA AGA CCG ATG CGT AAG TCA TCG AGA ACC TAC R P G Q G \mathbf{L} E W V K O +1 169 AAC TGG GTG AAG CAG AGG CCT GGA CAG GGT CTT GAG TGG ATT TTG ACC CAC TTC GTC TCC GGA CCT GTC CCA GAA CTC ACC TAA N G D T N P G +1 G R Ι Y 211 GGA CGG ATT TAT CCT GGA AAT GGA GAT ACT AAC TAC AAT GGG CCT GCC TAA ATA GGA CCT TTA CCT CTA TGA TTG ATG TTA CCC A \mathbf{T} L ${f T}$ Α K K K G K 253 AAG TTC AAG GGC AAG GCC ACA CTG ACT GCA GAC AAA TCC TCC TTC AAG TTC CCG TTC CGG TGT GAC TGA CGT CTG TTT AGG AGG S L L Ş +1 T Y Μ Q 295 AGC ACA GCC TAC ATG CAG CTC AGC AGC CTG ACC TCT GTG GAC TCG TGT CGG ATG TAC GTC GAG TCG TCG GAC TGG AGA CAC CTG D G V Y F C A N · V Y Y A 337 TCT GCG GTC TAT TTC TGT GCA GAT GGT AAC GTA TAT TAC TAT AGA CGC CAG ATA AAG ACA CGT CTA CCA TTG CAT ATA ATG ATA Y W G T S V Q G T V D +1 A M 379 GCT ATG GAC TAC TGG GGT CAA GGA ACC TCA GTC ACC GTC TCC CGA TAC CTG ATG ACC CCA GTT CCT TGG AGT CAG TGG CAG AGG Linker G G G G G R A S G G +1 S 421 TCA GGT GGA GGC GGT TCA GGT GGG CGC GCC TCT GGC GGT GGC AGT CCA CCT CCG CCA AGT CCA CCC GCG CGG AGA CCG CCA CCG VLV L T Q S P A S L A I Q +1 G 463 GGA TCG CAA ATT GTT CTC ACC CAG TCT CCT GCT TCC TTA GCT CCT AGC GTT TAA CAA GAG TGG GTC AGA GGA CGA AGG AAT CGA

Q R A T Ι S C L G 505 GTA TCT CTG GGG CAG AGG GCC ACC ATC TCA TGC AGG GCC AGC CAT AGA GAC CCC GTC TCC CGG TGG TAG AGT ACG TCC CGG TCG G Y S S ${f T}$ S Y M H V 547 AAA AGT GTC AGT ACA TCT GGC TAT AGT TAT ATG CAC TGG TAC TTT TCA CAG TCA TGT AGA CCG ATA TCA ATA TAC GTG ACC ATG P G QPPKLL I 0 K 589 CAA CAG AAA CCA GGA CAG CCA CCC AAA CTC CTC ATC TAT CTT GTT GTC TTT GGT CCT GTC GGT GGG TTT GAG GAG TAG ATA GAA E S V P A R \mathbf{L} G S Ν +1 A 631 GCA TCC AAC CTA GAA TCT GGG GTC CCT GCC AGG TTC AGT GGC CGT AGG TTG GAT CTT AGA CCC CAG GGA CGG TCC AAG TCA CCG \mathbf{T} D F L T N I G S G +1 S 673 AGT GGG TCT GGG ACA GAC TTC ACC CTC AAC ATC CAT CCT GTG TCA CCC AGA CCC TGT CTG AAG TGG GAG TTG TAG GTA GGA CAC A ${f T}$ Y Y C Q H A D +1 E 715 GAG GAG GAG GAT GCT GCA ACC TAT TAC TGT CAG CAC AGT AGG CTC CTC CTA CGA CGT TGG ATA ATG ACA GTC GTG TCA TCC G Ι R T F G G T K \mathbf{L} P +1 E 757 GAG CTT CCT CGG ACG TTC GGT GGA GGC ACC AAG CTG GAA ATC CTC GAA GGA GCC TGC AAG CCA CCT CCG TGG TTC GAC CTT TAG | Alkaline phosphatase Spacer P R A E P A A A A M K AAA CGG GCG GCC GCA GCC CGG GCA CCA GAA ATG CCT GTT CTG TTT GCC CGC CGG CGT CGG GCC CGT GGT CTT TAC GGA CAA GAC +1 E N R A A Q G D I T A P G G 841 GAA AAC CGG GCT GCT CAG GGC GAT ATT ACT GCA CCC GGC GGT CTT TTG GCC CGA CGA GTC CCG CTA TAA TGA CGT GGG CCG CCA R R L T G D Q T A A GCT CGC CGT TTA ACG GGT GAT CAG ACT GCC GCT CTG CGT GAT CGA GCG GCA AAT TGC CCA CTA GTC TGA CGG CGA GAC GCA CTA SDKPAKNII LL +1 S L TCT CTT AGC GAT AAA CCT GCA AAA AAT ATT ATT TTG CTG ATT AGA GAA TCG CTA TTT GGA CGT TTT TTA TAA TAA AAC GAC TAA D S E Ġ I T D G Μ A A +1 G 967 GGC GAT GGG ATG GGG GAC TCG GAA ATT ACT GCC GCA CGT AAT CCG CTA CCC TAC CCC CTG AGC CTT TAA TGA CGG CGT GCA TTA Fig. 29-2

EGAGGFFKGIDA Y A 1009 TAT GCC GAA GGT GCG GGC GGC TTT TTT AAA GGT ATA GAT GCC ATA CGG CTT CCA CGC CCG CCG AAA AAA TTT CCA TAT CTA CGG T H L G Q Y P Y Α L K +1 L T 1051 TTA CCG CTT ACC GGG CAA TAC ACT CAC TAT GCG CTG AAT AAA AAT GGC GAA TGG CCC GTT ATG TGA GTG ATA CGC GAC TTA TTT D V T K P Y D +1 K G 1093 AAA ACC GGC AAA CCG GAC TAC GTC ACC GAC TCG GCT GCA TCA TTT TGG CCG TTT GGC CTG ATG CAG TGG CTG AGC CGA CGT AGT K S T Y G V T +1 A Α W 1135 GCA ACC GCC TGG TCA ACC GGT GTC AAA ACC TAT AAC GGC GCG CGT TGG CGG ACC AGT TGG CCA CAG TTT TGG ATA TTG CCG CGC Н E K D Н G V D Ι +1 L 1177 CTG GGC GTC GAT ATT CAC GAA AAA GAT CAC CCA ACG ATT CTG GAC CCG CAG CTA TAA GTG CTT TTT CTA GTG GGT TGC TAA GAC L A T Α A G M A K 1219 GAA ATG GCA AAA GCC GCA GGT CTG GCG ACC GGT AAC GTT TCT CTT TAC CGT TTT CGG CGT CCA GAC CGC TGG CCA TTG CAA AGA T E L 0 D A Þ A \mathbf{L} A +1 T 1261 ACC GCA GAG TTG CAG GAT GCC ACG CCC GCT GCG CTG GTG GCA TGG CGT CTC AAC GTC CTA CGG TGC GGG CGA CGC GAC CAC CGT S K C Y G P +1 H R 1303 CAT GTG ACC TCG CGC AAA TGC TAC GGT CCG AGC GCG ACC AGT GTA CAC TGG AGC GCG TTT ACG ATG CCA GGC TCG CGC TGG TCA C P G N A L E K, G G K +1 E K 1345 GAA AAA TGT CCG GGT AAC GCT CTG GAA AAA GGC GGA AAA GGA CTT TTT ACA GGC CCA TTG CGA GAC CTT TTT CCG CCT TTT CCT T E Q L L N A R A D +1 S I 1387 TCG ATT ACC GAA CAG CTG CTT AAC GCT CGT GCC GAC GTT ACG AGC TAA TGG CTT GTC GAC GAA TTG CGA GCA CGG CTG CAA TGC G G G A K T F A E T A T A +1 L 1429 CTT GGC GGC GGC GCA AAA ACC TTT GCT GAA ACG GCA ACC GCT GAA CCG CCG CCT TTT TGG AAA CGA CTT TGC CGT TGG CGA W Q G K T L R E Q A Q A E +1 G 1471 GGT GAA TGG CAG GGA AAA ACG CTG CGT GAA CAG GCA CAG GCG CCA CTT ACC GTC CCT TTT TGC GAC GCA CTT GTC CGT GTC CGC Fig. 29-3

Q L V S D A A S Y 1513 CGT GGT TAT CAG TTG GTG AGC GAT GCT GCC TCA CTG AAT TCG GCA CCA ATA GTC AAC CAC TCG CTA CGA CGG AGT GAC TTA AGC A N Q Q K P L L G L F T E 1555; GTG ACG GAA GCG AAT CAG CAA AAA CCC CTG CTT GGC CTG TTT CAC TGC CTT CGC TTA GTC GTT TTT GGG GAC GAA CCG GAC AAA M P V R W L G P K G N D 1597 GCT GAC GGC AAT ATG CCA GTG CGC TGG CTA GGA CCG AAA GCA CGA CTG CCG TTA TAC GGT CAC GCG ACC GAT CCT GGC TTT CGT GNIDKPAV Н Y 1639 ACG TAC CAT GGC AAT ATC GAT AAG CCC GCA GTC ACC TGT ACG TGC ATG GTA CCG TTA TAG CTA TTC GGG CGT CAG TGG ACA TGC O R N D S V P T +1 P Р N 1681 CCA AAT CCG CAA CGT AAT GAC AGT GTA CCA ACC CTG GCG CAG GGT TTA GGC GTT GCA TTA CTG TCA CAT GGT TGG GAC CGC GTC E L L K Ι K Α +1 M T 1723 ATG ACC GAC AAA GCC ATT GAA TTG TTG AGT AAA AAT GAG AAA TAC TGG CTG TTT CGG TAA CTT AAC AAC TCA TTT TTA CTC TTT V E Α S Ι D O G F F L O +1 G 1765 GGC TTT TTC CTG CAA GTT GAA GGT GCG TCA ATC GAT AAA CAG CCG AAA AAG GAC GTT CAA CTT CCA CGC AGT TAG CTA TTT GTC Q E V C G I N P A Н Α 1807 GAT CAT GCT GCG AAT CCT TGT GGG CAA ATT GGC GAG ACG GTC CTA GTA CGA CGC TTA GGA ACA CCC GTT TAA CCG CTC TGC CAG +1 D L D E A V Q R A L E F A 1849 GAT CTC GAT GAA GCC GTA CAA CGG GCG CTG GAA TTC GCT AAA CTA GAG CTA CTT CGG CAT GTT GCC CGC GAC CTT AAG CGA TTT N T L V I V T A D +1 K E G AAG GAG GGT AAC ACG CTG GTC ATA GTC ACC GCT GAT CAC GCC 1891 TTC CTC CCA TTG TGC GAC CAG TAT CAG TGG CGA CTA GTG CGG Q I V A P D T K +1 H A S CAC GCC AGC CAG ATT GTT GCG CCG GAT ACC AAA GCT CCG GGC GTG CGG TCG GTC TAA CAA CGC GGC CTA TGG TTT CGA GGC CCG A L N T K D G A V +1 L T Q 1975 CTC ACC CAG GCG CTA AAT ACC AAA GAT GGC GCA GTG ATG GTG GAG TGG GTC CGC GAT TTA TGG TTT CTA CCG CGT CAC TAC CAC Fig. 29-4

N S E E D S Q Y G E 2017 ATG AGT TAC GGG AAC TCC GAA GAG GAT TCA CAA GAA CAT ACC TAC TCA ATG CCC TTG AGG CTT CTC CTA AGT GTT CTT GTA TGG +1 G S Q L R I A A Y G P H 2059 GGC AGT CAG TTG CGT ATT GCG GCG TAT GGC CCG CAT GCC GCC ; CCG TCA GTC AAC GCA TAA CGC CGC ATA CCG GGC GTA CGG CGG +1 N V V G L T D Q T D L F Y 2101 AAT GTT GTT GGA CTG ACC GAC CAG ACC GAT CTC TTC TAC ACC TTA CAA CAA CCT GAC TGG CTG GTC TGG CTA GAG AAG ATG TGG His tag H H G D I A K A L Н H H A 2143 ATG AAA GCC GCT CTG GGG GAT ATC GCA CAC CAT CAC CAT CAC TAC TTT CGG CGA GAC CCC CTA TAG CGT GTG GTA GTG +1 H 2185 CAT TAA

Fig. 29*-5*

GTA ATT

PelB-Leader A L \mathbf{L} P \mathbf{T} G +1 M K Y A \mathbf{A} \mathbf{L} ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT GAG VH A E V \mathbf{A} P Q 0 M L A Q 0 GCG GCC CAG CCG GCC ATG GCG GAG GTT CAG CTT CAG CAG TCT GGA CGC CGG GTC GGC CGG TAC CGC CTC CAA GTC GAA GTC GTC AGA CCT V K P A S +1 P Ē L G V K K CCT GAG CTG GTG AAG CCC GGG GCC TCA GTG AAG ATT TCC TGC AAA GGA CTC GAC CAC TTC GGG CCC CGG AGT CAC TTC TAA AGG ACG TTT S S +1 A S G Y A F S W M N K 136 GCT TCT GGC TAC GCA TTC AGT AGC TCT TGG ATG AAC TGG GTG AAG CGA AGA CCG ATG CGT AAG TCA TCG AGA ACC TAC TTG ACC CAC TTC R P 0 G L E W I +1 Q G G R CAG AGG CCT GGA CAG GGT CTT GAG TGG ATT GGA CGG ATT TAT CCT GTC TCC GGA CCT GTC CCA GAA CTC ACC TAA CCT GCC TAA ATA GGA N+1 G N G D T N Y G K F K G GGA AAT GGA GAT ACT AAC TAC AAT GGG AAG TTC AAG GGC AAG GCC CCT TTA CCT CTA TGA TTG ATG TTA CCC TTC AAG TTC CCG TTC CGG S S S ${f T}$ +1 T L T \mathbf{A} D K \mathbf{A} Y M ACA CTG ACT GCA GAC AAA TCC TCC AGC ACA GCC TAC ATG CAG CTC TGT GAC TGA CGT CTG TTT AGG AGG TCG TGT CGG ATG TAC GTC GAG S S L T S V D S A V Y F C A D 316 AGC AGC CTG ACC TCT GTG GAC TCT GCG GTC TAT TTC TGT GCA GAT TCG TCG GAC TGG AGA CAC CTG AGA CGC CAG ATA AAG ACA CGT CTA +1 G N V Y Y A M D Y W G Q 361 GGT AAC GTA TAT TAC TAT GCT ATG GAC TAC TGG GGT CAA GGA ACC CCA TTG CAT ATA ATG ATA CGA TAC CTG ATG ACC CCA GTT CCT TGG Linker G G G S G R A +1 S V T V S S 406 TCA GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GGT GGG CGC GCC AGT CAG TGG CAG AGG AGT CCA CCT CCG CCA AGT CCA CCC GCG CGG tip. 30-1

VLS Q I V L G G \mathbf{T} 451 TCT GGC GGT GGC GGA TCG CAA ATT GTT CTC ACC CAG TCT CCT GCT AGA CCG CCA CCG CCT AGC GTT TAA CAA GAG TGG GTC AGA GGA CGA A V S L G Q R A T I S C 496 TCC TTA GCT GTA TCT CTG GGG CAG AGG GCC ACC ATC TCA TGC AGG AGG AAT CGA CAT AGA GAC CCC GTC TCC CGG TGG TAG AGT ACG TCC K S V S T S G Y +1 A S Y GCC AGC AAA AGT GTC AGT ACA TCT GGC TAT AGT TAT ATG CAC TGG CGG TCG TTT TCA CAG TCA TGT AGA CCG ATA TCA ATA TAC GTG ACC K P G Q P P K L L Q Q TAC CAA CAG AAA CCA GGA CAG CCA CCC AAA CTC CTC ATC TAT CTT ATG GTT GTC TTT GGT CCT GTC GGT GGG TTT GAG GAG TAG ATA GAA E S N \mathbf{L} G V Р S A R F 631 GCA TCC AAC CTA GAA TCT GGG GTC CCT GCC AGG TTC AGT GGC AGT CGT AGG TTG GAT CTT AGA CCC CAG GGA CGG TCC AAG TCA CCG TCA S D F L G \mathbf{T} N T H I P V 676 GGG TCT GGG ACA GAC TTC ACC CTC AAC ATC CAT CCT GTG GAG GAG CCC AGA CCC TGT CTG AAG TGG GAG TTG TAG GTA GGA CAC CTC CTC +1 E \mathbf{T} Y Y C Q S D A A H R GAG GAT GCT GCA ACC TAT TAC TGT CAG CAC AGT AGG GAG CTT CCT CTC CTA CGA CGT TGG ATA ATG ACA GTC GTG TCA TCC CTC GAA GGA Spacer +1 R T F G G G T K L E I K R \mathbf{A} 766 CGG ACG TTC GGT GGA GGC ACC AAG CTG GAA ATC AAA CGG GCC GCC TGC AAG CCA CCT CCG TGG TTC GAC CTT TAG TTT GCC CGC CGG Helix Hinge +1 A P K P S T P P G S S R K Q M 811 GCA CCG AAG CCT TCC ACT CCG CCC GGG TCT TCC CGT ATG AAA CAG CGT GGC TTC GGA AGG TGA GGC GGG CCC AGA AGG GCA TAC TTT GTC D K V E E L L S K N Y H 856 CTG GAA GAC AAA GTA GAG GAG CTC CTT AGC AAG AAC TAC CAT CTA GAC CTT CTG TTT CAT CTC CTC GAG GAA TCG TTC TTG ATG GTA GAT NEVARLKKLVGE 901 GAA AAC GAG GTA GCT CGT CTG AAA AAG CTT GTT GGT GAA CGT GGT CTT TTG CTC CAT CGA GCA GAC TTT TTC GAA CAA CCA CTT GCA CCA Fip. 30-2

Spacer His-tag +1 G H H H H H H H * 946 GGT CAC CAT CAC CAT CAC CAT TAA CCA GTG GTA GTG GTA GTG GTA ATT

Fig. 30-3

Fig. 32

HindIII 2206 CAG GAA ACA GCT ATG ACC ATG ATT ACG CCA AGC TTC CAT GAA AAT GTC CTT TGT CGA TAC TGG TAC TAA TGC GGT TCG AAG GTA CTT TTA PelB-Leader K Y L M $\mathbf L$ 2251 TCT ATT TCA AGG AGA CAG TCA TAA TGA AAT ACC TAT TGC CTA CGG AGA TAA AGT TCC TCT GTC AGT ATT ACT TTA TGG ATA ACG GAT GCC A A A G L L L L A A Q P A M SfiI 2296 CAG CCG CTG GAT TGT TAT TAC TCG CGG CCC AGC CGG CCA TGG CCC GTC GGC GAC CTA ACA ATA ATG AGC GCC GGG TCG GCC GGT ACC GGG Polylinker A R L Q V D L E I K L Q V Q Q AscI AGG TGC AGC TGC AGG CGC GCC TGC AGG TCG ACC TCG AGA TCA AAC 2341 TCC ACG TCG ACG TCC GCG CGG ACG TCC AGC TGG AGC TCT AGT TTG Myc-tag Spacer L I S E K E D NotI 2386 GGG CGG CCG CAG AAC AAA AAC TCA TCT CAG AAG AGG ATC TGA ATG CCC GCC GGC GTC TTG TTT TTG AGT AGA GTC TTC TCC TAG ACT TAC Spacer, His tag EcoRI GGG CGG CAC'ATC ACC ATC ACC ATC ACT AAT AAG AAT TCA CTG GCC 2431 CCC GCC GTG TAG TGG TAG TGG TAG TGA TTA TTC TTA AGT GAC CGG Fig. 33

PelB-leader P Α G L \mathbf{T} A A K Y L L ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT GAG VH V K L G E A Ρ A M \mathbf{A} Q GCG GCC CAG CCG GCC ATG GCC GAG GTG AAG CTG GTG GAG TCT GGG CGC CGG GTC GGC CGG TAC CGG CTC CAC TTC GAC CAC CTC AGA CCC L K K P G G S G L V G +1 91 GGA GGC TTA GTG AAG CCT GGA GGG TCC CTG AAA CTC TCC TGT GCA CCT CCG AAT CAC TTC GGA CCT CCC AGG GAC TTT GAG AGG ACA CGT S S Y T M T F G F 136 GCC TCT GGA TTC ACT TTC AGT AGC TAT ACC ATG TCT TGG GTT CGC CGG AGA CCT AAG TGA AAG TCA TCG ATA TGG TAC AGA ACC CAA GCG A V R L E W E K +1 O CAG ACT CCG GAG AAG AGG CTG GAG TGG GTC GCA ACC ATT AGT AGT GTC TGA GGC CTC TTC TCC GAC CTC ACC CAG CGT TGG TAA TCA TCA V K S S T Y Y P D +1 G 226 GGN GGT AGT TCC ACC TAC TAT CCA GAC AGT GTG AAG GGC CGA TTC CCN CCA TCA AGG TGG ATG ATA GGT CTG TCA CAC TTC CCG GCT AAG T m LR D N A K N S Ι +1 271 ACC ATC TCC AGA GAC AAT GCC AAG AAC ACC CTG TAC CTG CAA ATG TGG TAG AGG TCT CTG TTA CGG TTC TTG TGG GAC ATG GAC GTT TAC Y A M 1 5 E D R +1 AGC AGT CTG AGG TCT GAG GAC ACA GCC ATG TAT TAC TGT ACA AGA TCG TCA GAC TCC AGA CTC CTG TGT CGG TAC ATA ATG ACA TGT TCT N W Y F F T V D V +1 E G G G 361 GAG GGG GGT GGT TTC ACC GTC AAC TGG TAC TTC GAT GTC TGG GGC CTC CCC CCA CCA AAG TGG CAG TTG ACC ATG AAG CTA CAG ACC CCG Leader G G V \mathbf{T} V S G G S S G \mathbf{T} 406 GCA GGA ACC TCA GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GGT CGT CCT TGG AGT CAG TGG CAG AGG AGT CCA CCT CCG CCA AGT CCA VK I G S S G G G D R A +1 G 451 GGG CGC GCC TCT GGC GGT GGC GGA TCG GAC ATT GTG CTG ACA CAG

141

Fig. 34-1

CCC GCG CGG AGA CCG CCA CCG CCT AGC CTG TAA CAC GAC TGT GTC P A S L A V S L G Q R TCT CCA GCT TCT TTG GCT GTG TCT CTA GGG CAG AGG GCC ACC ATA AGA GGT CGA AGA AAC CGA CAC AGA GAT CCC GTC TCC CGG TGG TAT +1 E D S Y C A S S V G R Y 541 TCC TGC AGA GCC AGT GAA AGT GTT GAT AGT TAT GGC TAT AAT TTT AGG ACG TCT CGG TCA CTT TCA CAA CTA TCA ATA CCG ATA TTA AAA G +1 M H W Y \mathbf{O} Q I P Q P P K \mathbf{L} 586 ATG CAC TGG TAT CAG CAG ATA CCA GGA CAG CCA CCC AAA CTC CTC TAC GTG ACC ATA GTC GTC TAT GGT CCT GTC GGT GGG TTT GAG GAG E Y R A S N \mathbf{L} S G Ι 631 ATC TAT CGT GCA TCC AAC CTA GAG TCT GGG ATC CCT GCC AGG TTC TAG ATA GCA CGT AGG TTG GAT CTC AGA CCC TAG GGA CGG TCC AAG D +1 G G S R \mathbf{T} \mathbf{F} ${f T}$ L \mathbf{T} S 676 AGT GGC AGT GGG TCT AGG ACA GAC TTC ACC CTC ACC ATT AAT CCT TCA CCG TCA CCC AGA TCC TGT CTG AAG TGG GAG TGG TAA TTA GGA Y \mathbf{E} Y +1 V A \mathbf{D} D V A T C Q 721 GTG GAG GCT GAT GAT GTT GCA ACC TAT TAC TGT CAG CAA AGT AAT CAC CTC CGA CTA CTA CAA CGT TGG ATA ATG ACA GTC GTT TCA TTA L F G T G T L +1 D P R 766 GAG GAT CCG CTC ACG TTC GGT ACT GGG ACC AGA CTG GAA ATA AAA CTC CTA GGC GAG TGC AAG CCA TGA CCC TGG TCT GAC CTT TAT TTT Spacer Myc-tag +1 R A A A E Q K L I S E E D L N 811 CGG GCG GCC GCA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT GCC CGC CGG CGT CTT GTT TTT GAG TAG AGT CTT CTC CTA GAC TTA Spacer, His tag +1 G A A H H H H H * * 856 GGG GCG GCA CAT CAC CAT CAC TAA TAA CCC CGC CGT GTA GTG GTA GTG ATT ATT

Fig. 34-2

PelB-leader P T \mathbf{A} A A +1 M K Y L ${
m L}$ G L L 1 ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC TAC TTT ATG GAT AAC GGA TGC CGT CGG CGA CCT AAC AAT AAT GAG VH \mathbf{E} \mathbf{P} A M A V Q L A 46 GCG GCC CAG CCG GCC ATG GCC GAG GTT CAG CTT CAG CAG TCT GGA CGC CGG GTC GGC CGG TAC CGG CTC CAA GTC GAA GTC GTC AGA CCT K E L V P G A S V K I 91 CCT GAG CTG GTG AAG CCC GGG GCC TCA GTG AAG ATT TCC TGC AAA GGA CTC GAC CAC TTC GGG CCC CGG AGT CAC TTC TAA AGG ACG TTT S S S A F W S G Y M N 136 GCT TCT GGC TAC GCA TTC AGT AGC TCT TGG ATG AAC TGG GTG AAG CGA AGA CCG ATG CGT AAG TCA TCG AGA ACC TAC TTG ACC CAC TTC Q G Γ E W I G R I R Ρ G +1 0 181 CAG AGG CCT GGA CAG GGT CTT GAG TGG ATT GGA CGG ATT TAT CCT GTC TCC GGA CCT GTC CCA GAA CTC ACC TÀA CCT GCC TAA ATA GGA +1 G N G D ${f T}$ N Y N G K \mathbf{F} K 226 GGA AAT GGA GAT ACT AAC TAC AAT GGG AAG TTC AAG GGC AAG GCC CCT TTA CCT CTA TGA TTG ATG TTA CCC TTC AAG TTC CCG TTC CGG S S L +1 A \mathbf{D} K S \mathbf{T} A Y M 271 ACA CTG ACT GCA GAC AAA TCC TCC AGC ACA GCC TAC ATG CAG CTC TGT GAC TGA CGT CTG TTT AGG AGG TCG TGT CGG ATG TAC GTC GAG +1 S S L T S V D S A V Y F C 316 AGC AGC CTG ACC TCT GTG GAC TCT GCG GTC TAT TTC TGT GCA GAT TCG TCG GAC TGG AGA CAC CTG AGA CGC CAG ATA AAG ACA CGT CTA N V Y Y A M D Y +1 G W 361 GGT AAC GTA TAT TAC TAT GCT ATG GAC TAC TGG GGT CAA GGA ACC CCA TTG CAT ATA ATG ATA CGA TAC CTG ATG ACC CCA GTT CCT TGG Leader S G G G G R +1 S V T V S 406 TCA GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GGT GGG CGC GCC AGT CAG TGG CAG AGG AGT CCA CCT CCG CCA AGT CCA CCC GCG CGG Q I V L T Q S P A G S +1 S G G G 451 TCT GGC GGT GGC GGA TCG CAA ATT GTT CTC ACC CAG TCT CCT GCT AGA CCG CCA CCG CCT AGC GTT TAA CAA GAG TGG GTC AGA GGA CGA Fig. 35-1

+1 S L A V S L G Q R A T I S C R
496 TCC TTA GCT GTA TCT CTG GGG CAG AGG GCC ACC ATC TCA TGC AGG
AGG AAT CGA CAT AGA GAC CCC GTC TCC CGG TGG TAG AGT ACG TCC

S S G Y S Y M K V \mathbf{T} S 541 GCC AGC AAA AGT GTC AGT ACA TCT GGC TAT AGT TAT ATG CAC TGG CGG TCG TTT TCA CAG TCA TGT AGA CCG ATA TCA ATA TAC GTG ACC P P K L P G Q L K Q TAC CAA CAG AAA CCA GGA CAG CCA CCC AAA CTC CTC ATC TAT CTT ATG GTT GTC TTT GGT CCT GTC GGT GGG TTT GAG GAG TAG ATA GAA

+1 A S N L E S G V P A R F S G S 631 GCA TCC AAC CTA GAA TCT GGG GTC CCT GCC AGG TTC AGT GGC AGT CGT AGG TTG GAT CTT AGA CCC CAG GGA CGG TCC AAG TCA CCG TCA

+1 G S G T D F T L N I H P V E E 676 GGG TCT GGG ACA GAC TTC ACC CTC AAC ATC CAT CCT GTG GAG GAG CCC AGA CCC TGT CTG AAG TGG GAG TTG TAG GTA GGA CAC CTC CTC

+1 E D A A T Y Y C Q H S R E L P
721 GAG GAT GCT GCA ACC TAT TAC TGT CAG CAC AGT AGG GAG CTT CCT
CTC CTA CGA CGT TGG ATA ATG ACA GTC GTG TCA TCC CTC GAA GGA

+1 R T F G G G T K L E I K R A A
766 CGG ACG TTC GGT GGA GGC ACC AAG CTG GAA ATC AAA CGG GCG GCC
GCC TGC AAG CCA CCT CCG TGG TTC GAC CTT TAG TTT GCC CGC CGG

Myc-tag

+1 A E Q K L I S E E D L N G A A

811 GCA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT GGG GCG GCA

CGT CTT GTT TTT GAG TAG AGT CTT CTC CTA GAC TTA CCC CGC CGT

His tag +1 H H H H H * 856 CAT CAC CAT CAC CAT CAC TAA GTA GTG GTA GTG GTA GTG ATT

Fig. 35-2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 3127318 [0005]
- WO 9726010 A [0006]

- WO 8606101 A [0007]
- US 4873316 A [0029]

Non-patent literature cited in the description

- K.G. MANN. *Blood*, 1990, vol. 76, 1-16 **[0001]**
- The molecular basis of blood diseases. W.B. Saunders Co, 1987, 576-602 [0002]
- **FAY et al.** *J. Biol. Chem.*, 1994, vol. 269, 20522-20527 **[0006]**
- LENTING et al. J. Biol. Chem., 1996, vol. 271, 1935-1940 [0006]
- JORQUERA et al. Circulation, 1992, vol. 86, 2725
 [0006]
- LILES D.K. et al. Blood, 1997, vol. 90 (1), 2054
 [0006]
- KERSCHBAUMER R.J. et al. Immunotechnology, 1996, vol. 2, 145-150 [0013] [0013]
- KERSCHBAUMER R.J. et al. Biochemistry, 1997, vol. 249, 219-227 [0013]
- ENGELHARDT et al. *Biotechniques*, vol. 17, 44-46 [0013]
- ENGELHARDT O. et al. *BioTechniques*, 1994, vol. 17, 44-46 [0013] [0115]
- ROITT I. et al. Immunology. 1989 [0015]
- **GREER J. et al.** *J. Med. Chem.*, 1994, vol. 37, 1035-1054 **[0017] [0025]**
- HARLOW E.; LANE D. Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory, 1988 [0018]
- ESSER C.; RADBRUCH A. Annu. Rev. Immunol., 1990, vol. 8, 717-735 [0019]
- PLUCKTHUN A.; PACK P. Immunotechnology, 1997, vol. 3, 83-105 [0022]
- HUSTON JS et al. Int. Rev. Immunol., 1993, vol. 10, 195-217 [0022]
- RAAG R.; WHITLOW M. FASEB J., 1995, vol. 9, 73-80 [0022]
- CAO Y.; SURESH M.R. Bioconjugate Chem., 1998,
 vol. 9, 635-644 [0023]

- KEMP DS. Trends Biotechnol., 1990, 249-255 [0024]
- **GRASSY G. et al.** *Nature Biotechnol.,* 1998, vol. 16, 748-752 **[0025]**
- HARLOW E.; LANE D. Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory [0027]
- Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory, 1988, 148-242 [0027]
- JONES et al. Nature, 1986, vol. 321, 522-525 [0029]
- Phage Display of Peptides and Proteins. A Laboratory Manual. 1996, 127-139 [0029]
- VAUGHAN T.J. et al. *Nature Biotechnology*, 1998, 535-539 [0029]
- PERSIC L. et al. Gene, 1997, 9-18 [0029]
- AMES R.S. et al. *J.Immunol.Methods*, 1995, 177-186 [0029]
- WINTER et al. Ann. Rev. Immunol., 1994, vol. 12, 433-455 [0032]
- MIKAELSSON; OSWALDSON. Scand. J. Haematol., 1984, vol. 33, 79-86 [0032]
- LANE et al. J. Immunol. Methods, 1985, vol. 81, 223-228 [0039]
- HYBRIDOMA TECHNIQUES, EMBO, SKMB Course, 1980 [0040]
- LIN et al. *Blood*, 1997, vol. 90, 3962 **[0041]**
- GAO et al. *PNAS*, 1999, vol. 96, 6025 **[0083]**
- KERSCHBAUMER et al. Analytical Biochemistry, 1997, vol. 249, 219-227 [0111]
- ENGELHARDT et al. *Biotechniques*, 1994, vol. 17, 44-46 [0115]
- EVAN et al. *Mol.Cell.Biol.*, 1985, vol. 5 (12), 3610-6 [0115]
- **HOCHULI et al.** *Biotechnology,* 1988, vol. 6, 1321-1325 **[0115]**