FFT_SoC 芯片级算法 IP 核——项目计划书

1 项目简介

设计一款 **256** 点定点 FFT IP 核(Q24.8 格式),支持 AXI4-Stream 数据流接口。项目聚焦核心功能实现与基础验证流程,包含 Verilog RTL 设计、SystemVerilog 验证环境搭建及基础覆盖率收集,适合初学者快速掌握 IP 开发全流程。

2 项目目标

• 核心功能

- 。 实现 256 点 FFT 计算(基-2 算法)
- o 支持 AXI4-Stream 输入/输出(含反压处理)
- 。 定点 Q24.8 数据格式

• 验证目标

- o 搭建 SystemVerilog 验证环境
- 。 实现基础功能覆盖率(>85%)
- 。 完成关键场景测试

资源目标

- 。 开发周期: 2个月
- 。 代码规模: ≤ 3000 行 Verilog

3 项目内容

3.1 算法建模

基于 matlab 软件进行算法建模

基-2 DIT FFT 算法的核心是蝶形计算单元:

$$X(k) = A + W * B$$

 $X(k+N/2) = A - W * B$

其中:

- A和B是第一和第二输入数据点
- W 是旋转因子(复数)
- X(k)和 X(k+N/2)是输出数据点

3.2 系统架构设计

模块划分

- 。 蝶形运算单元 (BFLY): 支持定点复用设计
- o 旋转因子 ROM: 预计算 Twiddle Factor
- o 数据缓冲双口 RAM:输入和输出数据流控制单元
- o 控制状态机: 支持连续/单次触发模式

接口定义

o 数据流接口: AXI4-Stream

3.3 RTL 设计与优化

公众号: 数字芯片阿龙

模块	实现内容	关键技术
蝶形运算核心	流水线复数乘法器+加法树	Booth 编码乘法器/CSA 加法链
地址生成器	基-2 算法索引控制	位反转寻址+状态机调度
数据流控制器	双口 RAM	数据缓存及读取
AXI4-Stream 适配	数据打包/解包+流控握手	反压处理

3.4 验证平台搭建

//验证环境架构

TB top

3.5 验证关键指标

关键测试场景

1. 基础功能测试

- 正弦波输入→验证频谱峰值
- 。 冲激函数输入→验证平坦频谱
- 全零输入→输出全零验证

2. 接口测试

- o AXI 反压测试(随机 TREADY 拉低)
- 。 连续帧处理测试

3. 覆盖率收集

- 。 代码覆盖率
- 。 简单功能覆盖点:
 - 状态机覆盖率
 - 数据路径激活

4 项目实施计划

阶段	时间	核心任务
架构设计	1周	确定模块划分+算法模型验证
RTL 编码	3 周	实现蝶形单元/控制 FSM/AXI 接口
验证环境搭建	2周	搭建 SV TB+编写基础测试用例
测试与调试	1.5 周	执行测试+收集覆盖率+修复 BUG

公众号:数字芯片阿龙

阶段	时间	核心任务
交付准备	0.5 周	整理代码+编写简易文档

5 交付成果

- o 可综合 RTL 代码
- 。 验证环境与测试用例
- 。 简易设计文档(含模块说明)