Bresenham's Line Algorithm For All Cases:

Input

• Start point (x_0,y_0) and end point (x_1,y_1)

Steps

- 1. Calculate Differences:
- $\bullet \quad \Delta \mathbf{X} = |\mathbf{X}_1 \mathbf{X}_0|$
- $\bullet \quad \Delta y = |y_1 y_0|$
- 2. Determine the Dominant Axis:
 - If $\Delta x \ge \Delta y$, the line has a shallow slope ($|m| \le 1$).
 - If $\Delta x < \Delta y$, the line has a sleep slope (|m| > 1).
- 3. Set step Directions:
 - $S_x = 1$ if $x_1 > x_0$, otherwise $S_x = -1$
 - $S_y = 1$ if $y_1 > y_0$, otherwise $S_y = -1$
- 4. Intialize Decision parameter:
 - For shallow slopes (|m| <= 1): $P_0 = 2\Delta y \Delta x$
 - For steep slopes (|m|>1): Swap role of x and y ,and set: $P_0 = 2\Delta x - \Delta y$
- 5. Plot the Initial point:
 - Plot (x₀, y₀)
- 6. Separate until the end point is Reached:
 - For k=0 to the dominant axis length (Δx or Δy):
 - \rightarrow For shallow slopes (|m| <=1):
 - ✓ Increment x_0 by S_x
 - **!** If $P_k >= 0$:
 - ✓ Increment y₀ by S_y

✓ Update :
$$P_k + 1 = P_k + 2\Delta y - 2\Delta x$$

- **&** Else:
- ✓ Update : $P_k + 1 = P_k + 2\Delta y$
- > For steep slopes (|m|>1):
 - ✓ Increment y₀ by S_y
 - **❖** If $P_k >= 0$:
 - ✓ Increment x_0 by S_x
 - ✓ Update : $P_k + 1 = P_k + 2\Delta x 2\Delta y$
 - **&** Else:
 - ✓ Update : $P_k + 1 = P_k + 2\Delta x$
- \triangleright Plot the new point (x_0, y_0) .

7. Terminate:

• Stop when the end-point (x_1, y_1) is plotted.