ECE 449/590 – OOP and Machine Learning Lecture 16 Deep Feedforward Networks

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 19, 2022

Outline

Deep Feedforward Networks

Cost Functions

Architecture Design

Reading Assignment

► This lecture: Deep Learning 6

► Next lecture: Deep Learning 9

Outline

Deep Feedforward Networks

Deep Feedforward Networks

- A.k.a. feedforward neural networks, or multilayer perceptrons (MLPs).
- ► To approximate a classifier $y = f^*(x)$ as a parametric vector-valued function $y = f(x; \theta)$.
- Feedforward: no feedback in f (DAG, combinational) when calculating \boldsymbol{y} from \boldsymbol{x} .
- Networks: composition of multiple layers (depth) of functions
 - ▶ E.g. $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$ where $f^{(1)}$ is the first layer, $f^{(2)}$ is the second layer, etc.
 - Output layer: the final layer generating the desired output.
 - ► Hidden layers: the rest of layers whose outputs are decided by the learning algorithm from the training set.
- ▶ Neural: functions are loosely inspired by neuroscience.

Learning XOR

- $ightharpoonup x = (x_1, x_2)^{\top}$ where both x_1 and x_2 are boolean.
- ▶ Approximate $f^*(\mathbf{x}) = x_1 \text{ XOR } x_2 \text{ with } f(\mathbf{x}; \boldsymbol{\theta}).$
- Consider the MSE loss function:

$$J(\boldsymbol{\theta}) = \frac{1}{4} \sum_{\boldsymbol{x} \in \mathbb{X}} (f^*(\boldsymbol{x}) - f(\boldsymbol{x}; \boldsymbol{\theta}))^2.$$

- ▶ With a single layer: $f(x; w, b) = w^{T}x + b$ for $\theta = (w, b)$.
 - lacktriangle Minimizing $J(m{ heta})$ gives $m{w}=0$ and $b=rac{1}{2}$
 - Not a good solution as f is $\frac{1}{2}$ everywhere.

Learning XOR with a Hidden Layer

Network Diagrams

Figure 6.2

(Goodfellow 2017)

Learning XOR with a Hidden Layer

- How about using a hidden layer?
 - lackbrack (Vector-valued) $m{h} = f^{(1)}(m{x}; m{W}, m{c})$, and $y = f^{(2)}(m{h}; m{w}, b)$
 - Now $\boldsymbol{\theta} = (\boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b)$ and $f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = f^{(2)}(f^{(1)}(\boldsymbol{x}))$
- ▶ If $f^{(1)}$ is a linear function of x, then f remains a linear function of x.
 - ► E.g. if $h = \mathbf{W}^{\top} \mathbf{x} + \mathbf{c}$ and $y = \mathbf{w}^{\top} \mathbf{h} + b$, then $y = \mathbf{w}^{\top} (\mathbf{W}^{\top} \mathbf{x} + \mathbf{c}) + b = (\mathbf{w}^{\top} \mathbf{W}^{\top}) \mathbf{x} + (\mathbf{w}^{\top} \mathbf{c} + b)$.
 - $ightharpoonup f^{(1)}$ need to be nonlinear.
- Activation function g: a fixed nonlinear function
 - ▶ $h = g(W^{\top}x + c)$: apply g element-wise to outputs from a linear function to convert it into a nonlinear function.

ReLU (Rectified Linear Unit)

$$g(z) = \max\{0, z\}$$

Solving XOR

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \tag{6.4}$$

(6.3)

$$c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \tag{6.5}$$

$$w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \tag{6.6}$$

10/23 ECE 449/590 – Object-Oriented Programming and Machine Learning, Dept. of ECE, IIT

Solving XOR

Figure 6.1

Outline

Deep Feedforward Networks

Cost Functions

Architecture Design

Gradient-Based Learning

- Like other machine learning algorithms, training neural network models requires to solve optimization problems.
 - Maximize the performance measure P.
 - Or minimize the loss function.
- ► For linear models, the optimization problems are usually to convex.
 - ► A loss function will have the global minimum.
 - Many times a closed-form solution can be derived.
- With neural network models, the loss functions usually have many local minimals.
 - ► Hard to find the global minimum.
 - Surprisingly, empirical evidences show it is not necessary to locate the global minimums for neural network models to perform well.
 - With proper choice of loss functions and models, use gradient descent for optimization.

Output Units and Classification Problems

Conditional cross-entropy is widely used as the loss function for supervised learning.

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\boldsymbol{x},y} \sim p_{data} \log p_{model}(y|\boldsymbol{x};\boldsymbol{\theta})$$

- For a classification problem with m classes, p_{model} should be a vector-valued function whose output dimension is m.
 - \triangleright Each dimension corresponds to a class y with value from [0,1].
 - All values add up to 1.
- ▶ With neural network models, such requirements only apply to the output layer.
 - ► Hidden layers can output arbitrarily large or small values.
- Output units: maps output from the last hidden layer $h = f(x; \theta)$ into the distribution p_{model} .
 - ▶ Usually a fixed vector-valued function applied to a linear transformation $z = W^T h + b$ of h.

Sigmoid Units for Bernoulli Output Distributions

- ▶ There are m = 2 classes and it is OK to just output $p_{model}(y = 1|\mathbf{x})$ within [0, 1].
 - $z = w^{\top}h + b$
- Choice 1: $p_{model}(y = 1 | x) = \max\{0, \min\{1, z\}\}$
 - ▶ Does not work well for gradient descent for training.
- ▶ Choice 2: $p_{model}(y = 1 | \boldsymbol{x}) = \text{sigmoid}(z) = \frac{e^z}{e^z + 1}$
 - Intuitively, a weight of 0 is assigned to the case y=0 and a weight of z is assigned to the case y=1.
 - If z < 0 then y = 0 is more probable, and y = 1 is more probable if z > 0.
 - Quantitatively, the ratio of P(y=0) to P(y=1) is e^0 to e^z .
 - Works well with gradient descent for training.

Softmax Units for Multinoulli Output Distributions

- For m > 2 classes, let them be $1, 2, \ldots, m$.
 - It is convenient for $z = W^{T}h + b$ to have a dimension of m.
- ▶ Softmax: $p_{model}(y = i | \boldsymbol{x}) = \text{softmax}(\boldsymbol{z})_i$ where

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{e^{z_i}}{\sum_{j=1}^m e^{z_j}}$$

- The ratio of P(y=1) to P(y=2) to ... P(y=m) is e^{z_1} to e^{z_2} to ... e^{z_m} .
- For prediction, there is no need to compute softmax as

$$\underset{y}{\arg\max} \operatorname{softmax}(\boldsymbol{z})_y = \underset{y}{\arg\max} z_y$$

► For the cross-entropy loss function,

$$-\log p_{model}(y|\boldsymbol{x};\boldsymbol{\theta}) = -\log \operatorname{softmax}(\boldsymbol{z}(\boldsymbol{x};\boldsymbol{\theta}))_y = -z_y + \log \sum^m e^{z_j}$$

Intuitively, one need to increase z_y relatively to the rest elements of z in order to minimize the loss function.

Outline

Deep Feedforward Networks

Cost Functions

Architecture Design

Neural Networks as Chained Layers

- Multiple layers of neural networks are usually arranged into a chain structure.
 - First layer: $h^{(1)} = g^{(1)}(W^{(1)\top}x + b^{(1)}).$
 - ► Second layer: $h^{(2)} = g^{(2)}(W^{(2)\top}h^{(1)} + b^{(2)}).$
 - etc.
- Can such neural network approximate any function?
- Universal approximation theorem: Yes for most functions we are interested into.
 - Even with a single hidden layer and proper activation function.
 - But whether such approximation can be found by training is a different question.

Hyperparameters

Architecture Basics

(Goodfellow 2017

- Number of layers.
- ▶ Width of each layer, i.e. dimension of $h^{(1)}$, $h^{(2)}$, etc.

Why deeper?

- Shallower neural networks may need (exponentially) more width.
 - A nice analogue is the SOP/POS forms vs multi-level logics for digital designs.
- More width leads to more weights to be learned larger model capacity.
- ► Shallower neural networks tend to overfit more!

Better Generalization with Greater Depth

Figure 6.6

(Goodfellow 2017)

Large, Shallow Models Overfit More

Figure 6.7

22/23 ECE 449/590 – Object-Oriented Programming and Machine Learning, Dept. of ECE, IIT

Summary

- Feedforward neural networks consists of multiple layers of computations without feedbacks.
- Activation functions, e.g. ReLU, are used to introduce nonlinear behaviors after each linear transformation.
- Output units, e.g. softmax, are used to map arbitrary values into probability distributions so that cross-entropy can be used as a loss function.
- Deeper networks tend to overfit less.
 - But could be harder to train for other reasons.