HIDDEN MARKOV MODEL

TASK :-

- · Hidden States = Attentive (A), Distracted (D), Sleeping (S)
- · Observed States = Raising Hand (H), Yawning (Y)
- · Given Sequence = [A, Y, H] = ?

Transition Matrix

Emission Matrix

By adding the prob of H & Y for each state, we will get total prob 1.

$$\rightarrow$$
 for (A) = 0.8 + 0.2 = 1

Total Sequences = (Num of possible states) (length of sequence) = 33

Now, we have to make combinations of these sequences and the total of them will be 27. Also find probability for each sequence

1. AAA

The formula for finding probability is derived as
Prob of A given A (P(AIA)) (P(AIA)) -> Prob of A given A

[P(A)] -> A

[P(HIA) (2) (P(YIA) (3) (P(HIA) (6))

Prob of H given A H Y given A H given A H

This should be written as,

> P(A) x P(HIA) x P(AIA) x P(YIA) x P(AIA) x P(HIA)

So, the logic will be same for all other sequences.

2. AAD

P(AAD) = 0.4x0.8x0.7x0.2x0.2x0.5 = 0.0067 3. AAS

P(AAS) = 0.4 x0.8 x0.7 x0.2 x0.1 x0.1 = 0.0022

4. ADA

P(ADA) = 0.4x0.8x0.2x0.5x0.4x0.8=0.025

5. ADD

P(ADD) = 0.4x0.8x0.2x0.5x0.4x0.5 = 0.008

6: ADS

P(ADS) = 0.4x 0.8x0.2x0.5x0.3x0.1 = 0.0024

7. ASA

P(ASA)=0.4x0.8x0.1x0.9x0.1x0.8=0.0023

```
8. ASD
P(ASD)=0.4x 0.8x 0.1 x0.9 x 0.3x0.5=0.0043
9- ASS
 P(ASS) = 0-4 x 0.8 x 0.1 x 0.9 x 0.6 x 0.1 x = 0.0043
10. DAA
P(DAA) = 0.3x 0.5x 0.4x 0.8x 0.7x 0.8 = 0.033
11. DAD
P(DAD) = 0.3 x 0.5 x 0.4 x 0.8 x 0.2 x 0.5 = 0.012
12. DAS
P(DAS) = 0.3 × 0.5 × 0.4 × 0.8 × 0.1 × 0.1 ± 0.0012
13. DDA
P(DDA) =0.3x0.5x0.4x0.5x0.4x0.8 = 0.012
14. DDD
P(DDD)=0.3x0.5x0.4x0.5x0-4x0.5=0.006
15. DDS
P(DDS) = 0.3x0.5x0.4x0.5x0.3x0.1 = 0.0022
16. DSA
P(DSA)=0.3x0.5x0.3x0.9x0.1x0.8=0.0048
17. DSD
P(DSD) = 0.3x0.5x0.3x0.9x0.6x0.5=0.020
18. DSS
P(DSS) = 0.3x0.5x0.3x0.9x0.6x0.1=0.0027
19. SAA
P(SAA) = 0.3x 0.1x 0.1 x 0.8 x 0.7 x 0.8 = 0.0013
20. SAD
P(SAD) = 0.3x 0.1 x 0.1 x 0.8 x 0.2 x 0.5 = 0.00012
21. SAS
P(SAS) = 0.3x0.1x0.1x0.8x0.1x0.1 = 0.00024
```

22. SDA

P(SDA) = 0.3x0.1x0.6 = 0.5x0.4x0.8 = 0.0036

23. SDD

P(SDD) = 0.3x0.1x0.6x0.5x0.4x0.5 = 0.0018

24. SDS

P(SDS) = 0.3x0.1x0.6x0.5x0.3x0.1 = 0.00027

25. SSA

P(SSA) = 0.3x0.1x0.6x0.9x0.1x0.8 = 0.0019

26. SSD

P(SSD) = 0.3x0.1x0.6x0.9x0.1x0.8 = 0.0032

27. SSS

P(SSS) = 0.3x0.1x0.6x0.9x0.1 = 0.0001

Now, from all the probabilities, find the manimum probability which is P(AAA) = 0.0039Therefore, the most likely sequence for the given sequence of observations [H, Y, H] is 1
Attentive > Attentive -> Attentive (AAA)