STAT 231 Tutorial Questions - Friday, June 28

1. A hospital lab has just purchased a new instrument for measuring levels of dioxin (in parts per billion). In order to calibrate the instrument, 25 samples of a "standard" water solution, known to contain 50 parts per billion are measured by this new instrument. The observed data, $y_1, y_2, ..., y_{25}$ are given below:

Summary information: $\sum_{i=1}^{25} y_i = 1232.5$

It is assumed that the measurements are Normally distributed. Here is a QQ Plot of the sample data:

a. Comment on the assumption of Normality.

Let Y_i represent the ith measurement by this device.

It seems reasonable to assume $Y_i \sim G(\mu, \sigma)$, i = 1,2,..., 25; independent. In this question, we will assume that σ is known to be equal to 2.

- b. Using the given information, construct a 90% confidence interval for μ .
- c. Now, suppose we want to test H_0 : $\mu = 50$ (versus a two-sided alternative),

 H_A : $\mu \neq 50$). We start by determining the appropriate discrepancy measure / test statistic, D, and state the distribution of D, assuming that H_0 is true.

- d. Now calculate the observed value of the test statistic, d, and use it to calculate the appropriate p-value.
- e. Use the Table 5.1 guidelines to assess the amount of evidence against H_o.
- f. Using a threshold value, α = 10%, and the p-value from part e., decide whether to reject or not reject H₀. Justify your answer.
- g. Now, let's revisit the 90% CI for μ : [48.642, 49.958]. Based on this CI, do your answers make sense in parts e. and f.?
- h. Suppose that we had conducted our hypothesis test at a 5% level of significance. Would our decision in part f. change?
- i. **Apply the Concepts:** Would you expect the corresponding 95% CI for μ to include the null value of 50? Explain.