Multilevel Index

Indexing the index!

Indexing

 Consider a file of 16384 records. Each record is 32 bytes long and its key field is of size 6 bytes. The file is ordered on a non-key field, and the file organization is unspanned. The file is stored in a file system with block size 1024 bytes, and the size of a block pointer is 10 bytes. If the secondary index is built on the key field of the file, and a multi-level index scheme is used to store the secondary index, the number of first-level and second-level blocks in the multi-level index are respectively

Given Data

- The file organization is unspanned.
- Number of Records = 16384
- Record Size = 32 bytes
- Block Size = 1024 bytes

Search Key Pointer
6 bytes 10 bytes

How many records per block?

1024/32 = 32 records per block Block 1 (size = 1024 bytes)

Record 1 (32 bytes)
Record 2 (32 bytes)
Record 3 (32 bytes)
...
Record 32 (32 bytes)

How many data blocks ...

... do we need if we have 16384 records?

16384/32 = **512 blocks**

How does the index block look like?

GATE CS 2008

How many index blocks exist?

Index Block 1

Key (6 bytes)	Pointer1 (10 bytes)
Key	Pointer2
Key	Pointer3
Key	Pointer64

Index Block 2

Key (6 bytes)	Pointer65 (10 bytes)
Key	Pointer66
Key	Pointer67
Key	Pointer128

Totally, 16384/64 = 256 index blocks exist.

Block 1

Record 1 (32 bytes)
Record 2 (32 bytes)
Record 3 (32 bytes)
Record 32 (32 bytes)

Block 2

Record 1 (32 bytes)
Record 2 (32 bytes)
Record 3 (32 bytes)
Record 32 (32 bytes)

...

Block 512

Record 1 (32 bytes)
Record 2 (32 bytes)
Record 3 (32 bytes)
Record 32 (32 bytes)

Index Block 256

Key (6 bytes)	Pointer (10 bytes)
Key	Pointer
Key	Pointer
Key	Pointer16384

Block 512

DIOCK SIL
Record 1 (32 bytes)
Record 2 (32 bytes)
Record 3 (32 bytes)
Record 32 (32 bytes)

Indexing

- Consider a file of 16384 records. Each record is 32 bytes long and its key field is of size 6 bytes. The file is ordered on a non-key field, and the file organization is unspanned. The file is stored in a file system with block size 1024 bytes, and the size of a block pointer is 10 bytes. If the secondary index is built on the key field of the file, and a multi-level index scheme is used to store the secondary index, the number of first-level and second-level blocks in the multi-level index are respectively ______
- Answer: (256, 4)