Sheet 4

	-Monday-20-February.
3.4}= (1, 2, 3,	<u> </u>
_*	Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{3, 4\}$. Define a relation \mathcal{R} on the power set $P(X)$
2.	Let X be $\mathbb{Z} \times \mathbb{Z}$, i.e. X is the set of all ordered pairs of the form (x, y) with $x, y \in \mathbb{Z}$. Define the relation R on X as follows:
_	Is it an equivalence relation? $ (x_1, x_2)R(y_1, y_2) \text{ iff } x_1^2 + x_2^2 = y_1^2 + y_2^2. $ $ (x_1, x_2)R(x_1, x_2) \geq x_1^2 + x_2^2 = x_1^2 + x_2^2. $ $ (x_1, x_2)R(y_1, y_2) \geq x_1^2 + x_2^2 = x_1^2 + x_2^2. $ $ (x_1, x_2)R(y_1, y_2) \geq x_1^2 + x_2^2 = x_1^2 + x_2^2. $ $ (x_1, x_2)R(y_1, y_2) \geq x_1^2 + x_2^2 = x_1^2 + x_2^2. $ $ (x_1, x_2)R(y_1, y_2) \geq x_1^2 + x_2^2 = x_1^2 + x_2^2. $ $ (x_1, x_2)R(x_2, y_2) \qquad \text{iff } y_1 - y_2 = 2(x_1 - x_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } y_1 - y_2 = 2(x_1 - x_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } y_1 - y_2 = 2(x_1 - x_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } (x_1, y_1)R(x_2, y_2) \qquad (x_1, y_1)R(x_2, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } (x_1, y_1)R(x_2, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } (x_1, y_1)R(x_2, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } (x_1, y_1)R(x_2, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad \text{iff } (x_1, y_1)R(x_2, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, x_2)R(y_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_1)R(x_2, y_2) \qquad (x_1, y_2)R(x_1, y_2). $ $ (x_1, y_2)R(x_1, y_2) \qquad $
5.	Let G be a group and let H_1 and H_2 be subgroups of G . Show that $H_1 \cap H_2$ is a subgroup of G . H, G

- 6. Let $G = \{1_G, g, h, k\}$ be a group with 4 elements and suppose G is not cyclic. Using Lagrange's Theorem show that g, h and k all have order 2 and write down a table for the group operation.
- 7. Let G be a finite group with no subgroups apart from $\{1_G\}$ and G.
 - (a) Show that G is cyclic.
- 19 is 8 = neutral element
 - (b) Show that the number of elements in G is either 1 or a prime number.

Using Lagrange's Theorem, we know that, IHI divides [G.]

However, only subgroup H = 916] 1H = 1. $1G1 \ge a$ prime number. 1 = 1.