Titanic Survival Prediction Using Logistic Regression

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Load the Data

```
In [2]: titanic_data = pd.read_csv("Titanic Dataset.csv")
```

In [3]: titanic_data

Out[3]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
_	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.
4	113	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.
4	114	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.
4	115	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.
4	16	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.
4	117	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.

418 rows × 12 columns

In [4]: # Length of Data
len(titanic_data)

Out[4]: 418

View the data using head function which return top 5 rows

In [5]: titanic_data.head() Out[5]: Fare C Passengerld Survived Pclass Name Sex Age SibSp Parch **Ticket** Kelly, Mr. 0 892 0 3 male 34.5 0 0 330911 7.8292 James Wilkes, Mrs. 1 893 1 James female 47.0 1 363272 7.0000 (Ellen Needs) Myles, Mr. 2 894 male 62.0 240276 9.6875 Thomas Francis Wirz, Mr. 3 895 0 male 27.0 0 0 315154 8.6625 Albert Hirvonen, Mrs. 896 1 3101298 12.2875 4 1 3 Alexander female 22.0 1 (Helga E Lindqvist) In [6]: titanic_data.index Out[6]: RangeIndex(start=0, stop=418, step=1) In [7]: titanic_data.columns Out[7]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')

summary of the DataFrame

In [8]: titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object
dtvn	as: float6//2) $in+64(5)$ ohi	act(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 39.3+ KB

In [9]: titanic_data.dtypes

Out[9]: PassengerId int64 Survived int64 Pclass int64 Name object Sex object Age float64 SibSp int64 Parch int64 Ticket object Fare float64 Cabin object Embarked object

dtype: object

In [10]: titanic_data.describe()

Out[10]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

Explaining Datasets

survival: Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex : Sex

Age: Age in years

sibsp: Number of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket: Ticket number fare Passenger fare cabin Cabin number

embarked : Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Data Analysis

import Seaborn for visually analysing the data

Find out how many survived vs Died using countplot method of seaborn

Male vs Female Survival

```
In [16]: sns.countplot(x='Survived', data=titanic_data, hue='Sex')
plt.show()
```


Only Females are Survived and Male are not Survived as per the countplot

Note: We will use displot method to see the histogram. However some records does not have age hence the method will throw an error. In order to avoid that we will use dropna method to eliminate null values from graph

^{**}See age group of passengeres travelled **

Check for null

<pre>In [17]: titanic_data.is</pre>	sna()
-------------------------------------	-------

Out	[17]	١.
out	1 1 /	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	False	False	False	False	False	False	False	False	False	False	True
1	False	False	False	False	False	False	False	False	False	False	True
2	False	False	False	False	False	False	False	False	False	False	True
3	False	False	False	False	False	False	False	False	False	False	True
4	False	False	False	False	False	False	False	False	False	False	True
413	False	False	False	False	False	True	False	False	False	False	True
414	False	False	False	False	False	False	False	False	False	False	False
415	False	False	False	False	False	False	False	False	False	False	True
416	False	False	False	False	False	True	False	False	False	False	True
417	False	False	False	False	False	True	False	False	False	False	True

418 rows × 12 columns

Check how many values are null

```
In [21]: titanic_data.isna().sum()
```

Out[21]: PassengerId Survived 0 Pclass 0 Name 0 Sex 0 Age 86 SibSp 0 Parch 0 0 Ticket Fare 1 Cabin 327 Embarked

dtype: int64

Visualize null values help of Heatmap

find the % of null values in age column

```
In [22]: (titanic_data['Age'].isna().sum()/len(titanic_data['Age']))*100
Out[22]: 20.574162679425836
```

find the % of null values in cabin column

```
In [23]: (titanic_data['Cabin'].isna().sum()/len(titanic_data['Cabin']))*100
Out[23]: 78.22966507177034
```

find the distribution for the age column

Data Cleaning

Fill the missing values

we will find the missing values for age. In order to fill missing values we use fillna method. For now we will fill the missing age by taking average of all age.

fill age column

```
In [26]: titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
```

verify null values

```
In [27]: titanic_data['Age'].isna().sum()
```

Out[27]: 0

Alternatively we will visualise the null value using heatmap.

we will use heatmap method by passing only records which are null.

```
In [28]: #visualize null values again
In [30]: sns.heatmap(titanic_data.isna())
           plt.show()
                0
                                                                                            - 1.0
               17
               34
               51
               68
               85
                                                                                             0.8
             102
             119
             136
             153
             170
                                                                                             0.6
             187
             204
             221
             238
             255
                                                                                             0.4
             272
             289
             306
             323
                                                                                             0.2
             340
             357
             374
             391
             408
                                                                          Cabin -
                                     Name
                                                    SibSp
                                                          Parch
                                                               Ticket
                                                                      Fare
                                          Sex
                                               Age
                               Pclass
                     Passengerld
                                                                                 Embarked
                          Survived
```

we can see the cabin column has a number of null values, as such we can not use it for prediction. Hence we will drop it.

```
In [31]: #drop cabin column
In [32]: titanic_data.drop('Cabin', axis=1, inplace=True)
In [33]: #see the content of data
```

In [34]: titanic_data.head()

Out[34]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare E
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875

Preaparing Data for Model

No we will require to convert all non-numerical columns to numeric. Please note this is required for feeding data into model. Lets see which columns are non numeric info describe method

```
In [35]: #Check for the non-numeric column
```

In [36]: titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	418 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Embarked	418 non-null	object

dtypes: float64(2), int64(5), object(4)

memory usage: 36.0+ KB

```
In [37]: |titanic_data.dtypes
Out[37]: PassengerId
                           int64
         Survived
                           int64
         Pclass
                           int64
         Name
                          object
         Sex
                          object
         Age
                         float64
                           int64
         SibSp
         Parch
                           int64
         Ticket
                          object
         Fare
                         float64
         Embarked
                          object
         dtype: object
```

We can see, Name, Sex, Ticket and Embarked are non-numerical.lt seems Name, Embarked and Ticket number are not useful for Machine Learning Prediction hence we will eventually drop it. For Now we would convert Sex Column to dummies numerical values**

```
In [38]: #convert sex column to numerical values
In [39]: gender=pd.get_dummies(titanic_data['Sex'],drop_first=True)
In [40]: titanic_data['Gender']=gender
In [41]: titanic_data.head()
#Here, in Gender male=1 & female=0
```

Out[41]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	E
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	
	4 (]	>

```
In [42]: #drop the column which are not require
In [43]: titanic_data.drop(['Name','Sex','Ticket','Embarked'], axis=1, inplace=True)
```

```
In [44]: titanic_data.head()
Out[44]:
              Passengerld Survived Pclass Age SibSp Parch
                                                                Fare Gender
           0
                                0
                                        3 34.5
                                                                          1
                     892
                                                    0
                                                          0
                                                              7.8292
           1
                     893
                                1
                                        3 47.0
                                                              7.0000
                                                                          0
                                                    1
                                                          0
           2
                     894
                                        2 62.0
                                                    0
                                                              9.6875
                                                                          1
           3
                     895
                                0
                                        3 27.0
                                                    0
                                                              8.6625
                                                                          1
           4
                     896
                                 1
                                        3 22.0
                                                    1
                                                          1 12.2875
                                                                          0
In [45]: titanic_data.isna().sum()
Out[45]: PassengerId
                           0
          Survived
                           0
          Pclass
                           0
          Age
                           0
          SibSp
                           0
          Parch
                           0
          Fare
                           1
          Gender
          dtype: int64
In [46]:
          # Fill null value with average in Fare Column
          titanic_data['Fare'].fillna(titanic_data['Fare'].mean(), inplace=True)
In [47]:
          #Seperate Dependent and Independent variables
In [48]: x=titanic_data[['PassengerId','Pclass','Age','SibSp','Parch','Fare','Gender'
          y=titanic_data['Survived']
In [49]: x
Out[49]:
                Passengerld Pclass
                                       Age SibSp
                                                   Parch
                                                             Fare Gender
             0
                       892
                                 3 34.50000
                                                       0
                                                            7.8292
                                                                        1
             1
                       893
                                                            7.0000
                                 3 47.00000
                                                1
                                                       0
                                                                        0
             2
                                2 62.00000
                       894
                                                0
                                                       0
                                                           9.6875
                                                                        1
             3
                       895
                                 3 27.00000
                                                0
                                                       0
                                                            8.6625
                                                                        1
             4
                       896
                                 3
                                   22.00000
                                                1
                                                       1
                                                           12.2875
                                                                        0
                                                      ...
             ...
                      1305
                                 3 30.27259
                                                            8.0500
           413
                                                0
                                                       0
                                                                        1
                      1306
                                 1 39.00000
                                                         108.9000
                                                                        0
           414
                                                0
                                                       0
                      1307
           415
                                3 38.50000
                                                0
                                                       0
                                                           7.2500
                                                                        1
                                3 30.27259
                                                           8.0500
           416
                      1308
                                                0
                                                       0
                                                                        1
           417
                      1309
                                3 30.27259
                                                1
                                                           22.3583
                                                                        1
```

418 rows × 7 columns

Data Modeling

Building Model using Logistic Regression

Build the model

Testing

See how our model is performing

In [63]:	#print confusion matrix									
In [64]:	from sklearn.metrics import confusion_matrix									
In [65]:	<pre>pd.DataFrame(confusion_matrix(y_test,predict),columns=['Predicted No','Predi index=['Actual No','Actual Yes'])</pre>									
Out[65]:	Pre	dicted No Pr	redicted Yes							
	Actual No	92	0							
	Actual Yes	0	46							
In [66]:	#import class	ification	report							
In [67]:	from sklearn.	metrics im	port classi	ification_re	eport					
In [68]:	print(classif	ication_re	port(y_test	, predict))					
		precision	recall	f1-score	support					
	0	1.00	1.00	1.00	92					
	1	1.00	1.00	1.00	46					
	accuracy			1.00	138					
	macro avg	1.00	1.00	1.00	138					
	weighted avg	1.00	1.00	1.00	138					

Precision is fine considering Model Selected and Available Data. Accuracy can be increased by further using more features (which we dropped earlier) and/or by using other model

Note:

Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positive observations Recall: Recall is the ratio of correctly predicted positive observations to the all observations in actual class F1 score - F1 Score is the weighted average of Precision and Recall.

THANK YOU!!!

GitHub: https://github.com/anujtiwari21?tab=repositories)