

Lecture 09:

Iterative Solvers of Ax = b The Jacobi and CG Methods 2

CS 111: Intro to Computational Science Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Current homework due today
- New homework out later today

- Quiz 3 on Wednesday
 - Lectures 5, 6, 7, and 8
 - SPD, Cholesky, QR, the Temp. Problem, Jacobi

Conjugate Gradient Method

- Another (more efficient) iterative algorithm to solve Ax = b.
 - Start with a guess $x^{(0)}$, then compute $x^{(1)}$, $x^{(2)}$,
 - Stop when you think (or when your error measure says) you're close enough.

- In theory, CG can be used to solve <u>any</u> system Ax = b, provided "only" that A is SPD.
 - There is a related method called BiCG that can solve for a general (i.e. non-symmetric) A

© 2023, Matni CS111 S23

Conjugate Gradient Method

• In practice, how well **CG** works depends on specifics of **A** in subtle ways, involving eigenvalues and the *condition number*.

• QUESTION:

Has the same requirements as Cholesky's Method (A is SPD), so why use CG??

• ANS:

It's more efficient computationally for very large, very sparse matrices

Main Idea of CG

In Ax = b, where A is an SPD, solving for x is like finding the minimizing point of a quadratic equation in n-dim space (so, more general than just a 2 dimensional approach)

 Related to the method of Steepest Descent – finding the minimum of a function by taking a series of optimal "steep gradients" to get to it

 Each time a step is taken, we re-adjust for the next descent by examining error factors

Here, the method of Steepest Descent starts at $[-2, -2]^T$ and converges at $[2, -2]^T$.

CG Iterative Algorithm

```
1<sup>st</sup> approximate solution
\mathbf{x}^{(0)} = 0
\mathbf{r}^{(0)} = \mathbf{b}
                                                 1<sup>st</sup> residual (residual is always = b − Ax) 

vectors
d^{(0)} = r^{(0)}
                                                 1<sup>st</sup> search direction
for k = 1, 2, 3, ...
        \alpha^{(k)} = (r^{(k-1)T} r^{(k-1)}) / (d^{(k-1)T} A d^{(k-1)})
                                                             next step length <a href="mailto:scalar">scalar</a>
        \mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + \alpha^{(k)} d^{(k-1)}
                                                             next approximate solution • vector
        \mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} - \alpha^{(k)} \mathbf{A} \mathbf{d}^{(k-1)}
                                                             next residual • vector
        \beta^{(k)} = (r^{(k)T} r^{(k)}) / (r^{(k-1)T} r^{(k-1)})
                                                             improvement factor for search direction <--- scalar
        d^{(k)} = r^{(k)} + \beta^{(k)} d^{(k-1)}
                                                             next search direction • vector
```

If $r^{(k)}$ is "small enough" (e.g. \leq 1e-8 or 1e-16), stop iteration – solution found If $r^{(k)}$ is getting bigger with each iteration (i.e. divergence), stop iteration – no solution found

CG Efficiency

Note that in each iteration, we have:

- Vector dot products
 - Example: 2 inside $\alpha^{(k)}$, 1 inside $\beta^{(k)}$
 - Each vector dot product has n multiplications and n-1 additions \rightarrow Time = O(n)
- Matrix-vector multiplication
 - Example: $Ad^{(k-1)}$ inside $\alpha^{(k)}$
 - Each matrix-vector multiplication has n^2 multiplications and n(n-1) additions \rightarrow Time = $O(n^2)$
 - BUT if **A** is a sparse matrix, then Time $\cong O(m)$ where: m = # of non-zeros in **A**
 - This is generally better than O(n²)
 - More accurately, it's $O(m \vee \kappa)$ where κ = condition number
 - We generally want κ to be close to 1 because it means **A** is a "stable matrix"
 - What's this "condition number"??? More on that next time! ©

```
\mathbf{x}^{(0)} = 0
                                                   1<sup>st</sup> approximate solution
                                                   1st residual (residual is always = b - Ax)
\mathbf{r}^{(0)} = \mathbf{h}
d^{(0)} = r^{(0)}
                                                   1st search direction
for k = 1, 2, 3, ...
        \alpha^{(k)} = (r^{(k-1)T} r^{(k-1)}) / (d^{(k-1)T} A d^{(k-1)})
                                                               next step length
                                                                                                                 scalar
        \mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + \alpha^{(k)} \mathbf{d}^{(k-1)}
                                                               next approximate solution -
         \mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} - \alpha^{(k)} \mathbf{A} \mathbf{d}^{(k-1)}
                                                               next residual <
        \beta^{(k)} = (r^{(k)T} r^{(k)}) / (r^{(k-1)T} r^{(k-1)})
                                                               improvement factor for search direction
        d^{(k)} = r^{(k)} + \beta^{(k)} d^{(k-1)}
                                                               next search direction
If r^{(k)} is "small enough" (e.g. \leq 1e-8 or 1e-16), stop iteration – solution found
If r^{(k)} is getting bigger with each iteration (i.e. divergence), stop iteration – no solution found
```


A Landscape of **Ax=b** Solvers

	Direct Methods A = LU More robust, more storage, typically higher complexity (O(n³))	Iterative Methods $y^{(k+1)} = Ay^{(k)}$ Less storage (good with large, sparse A), can be lower complexity
General type	Pivoting LU QR*	Jacobi** BiConjugate Gradient
SPD type	Cholesky	Conjugate Gradient

^{*} QR Method works best with real matrices (LU and Cholesky can work with complex matrices)

^{**} Jacobi's Method works a lot better if the matrix **A** is diagonally dominant

A generally desirable property of numerical algorithms

- Consider f(x) = y (a mathematical definition)
- We calculate it, using some computation, to be y*
 - y* is a *deviation* from the "true" solution y (it's close in value to y, but not exactly the same)
 - This can happen because of round-off errors and/or truncation errors

DEFINITIONS:

• Forward Error: $\Delta y = y^* - y$

• Backward Error: Smallest Δx such that $f(x + \Delta x) = y^*$

• Relative Error: |\Delta x | / |x|

We ideally want a small Δx to give us a small Δy

11

• In a computational matrix **A** we often want to examine:

how small changes in it can lead to either small or large changes in calculations

• You want small changes to yield small changes – that's "stability"...

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 1000 \\ 0 & 1 \end{bmatrix} \quad \text{and } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ where } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & 1000 \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \quad \text{and } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ where } \mathbf{b} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

- We're going to use A and b, to solve for x
- What happens if x deviates a little bit (call the new value, x*)?
 - Then, $Ax^* = b^*$ should not be too far from b...
- We will look for something called the Condition Number
 - Measures how much the output value of a function can change for a small change in the input argument
 - This is inherent to the function (i.e. to the matrix)

- Forward and backward error are related by the condition number
- Large condition number → the matrix is **not** numerically stable
 - This is called "ill-conditioned"
- Small condition number (the closer to 1, the better)
 → the matrix is numerically stable
 - This is called "well-conditioned"
- Usually, symmetrical and/or normal matrices are "well-conditioned"

Condition Number

The condition number of matrix **M** is defined as:

i.e. norm of M multiplied by the norm of the inverse of M

In Python, you can use the .cond() function in linalg: numpy.lingalg.cond(M, 'fro')

Where 'fro' indicates the Frobenius Norm, that is the norm defined as the square root of the sum of the absolute squares of its elements (most common way)

Your TO DOs!

Assignment 04 due tonight

- Quiz 3 on Wednesday
 - Lectures 5, 6, 7, and 8
 - SPD, Cholesky, QR, the Temp. Problem, Jacobi

