Problem Set 1

Due on Canvas Thursday August 20, 11am Central Time

(1) Consider n straight lines. They divide the plane onto segments. Prove that it is always possible to paint those segments in two colors such that adjacent segments have different colors.

Hint: Use induction.

- (2) Suppose that $a_1 = 1$ and $a_{n+1} = 2a_n + 1$ for any $n \ge 1$. Find the value of a_n . Hint: Calculate the first values $a_1, a_2, a_3, ...$ and try to guess the general formula. Then use induction.
- (3) Prove the second De Morgan's Law: $(A \cup B)^c = A^c \cap B^c$.
- (4) Suppose $A=\{2k+1|k\in\mathbf{Z}\},\,B=\{3k|k\in\mathbf{Z}\}$ (i.e., A is the set of odd numbers and B is the set of numbers divisible by 3). Find $A \cap B$ and $B \setminus A$.
- (5) Prove that the following are metric functions on \mathbb{R}^n .

(a)
$$d_1(x,y) = \sum_{k=1}^n |x_k - y_k|$$
, where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$.
(b) $d_{\infty}(x,y) = \max_{1 \le k \le n} |x_k - y_k|$, where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$.

(b)
$$d_{\infty}(x,y) = \max_{1 \le k \le n} |x_k - y_k|$$
, where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$

- (6) Suppose that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ in a metric space (X,d). Is it true that $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)?$
- (7) Let $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ be sequences of real numbers. Suppose that $x_n \to A$, $z_n \to A$ A and, for any $n, x_n \leq y_n \leq z_n$. Prove that y_n converges and $\lim_{n \to \infty} y_n = A$.

 $^{^{1}}$ Adjacent = have common interval.