Université de Picardie Jules Verne. Année 2024-2025

M1: Optimisation

TD7

Exercice 1

On considère deux nombres positifs p_1 et p_2 dont la somme est inférieure ou égale à 8. Soit $J(p_1, p_2)$, le produit de leur produit par leur différence. On cherche p_1 et p_2 de telle sorte que $J(p_1, p_2)$ soit le plus petit possible.

- 1. Justifier que la fonction J admet un maximum et un minimum global.
- 2. Établir que les extremums sont atteints sur le bord de l'espace des contraintes.
- 3. Résoudre le problème de deux façons différentes.

Exercice 2

1. Rappeler le principe de la méthode du gradient projeté à pas variable. On considère la fonctionnelle J définie sur \mathbb{R}^n par

$$J(v) = \frac{1}{2}(Av, v)_2 - (b, v)_2$$

où $(.,.)_2$ représente le produit scalaire de \mathbb{R}^n , $A \in M_n(\mathbb{R})$ symétrique et définie positive et b un vecteur de \mathbb{R}^n .

On pose

$$U = \{ v \in \mathbb{R}^n; \ v > 0 \}.$$

- 2. Construire l'opérateur de projection sur U, puis généraliser le résultat obtenu aux sous-ensembles de la forme $U := \prod_{i=1}^n [a_i, b_i]$, sans exclure $a_i = -\infty$ et/ou $b_i = +\infty$.
- 3. Décrire la méthode du gradient projeté appliqué à J et à U.

Exercice 3 (méthode de pénalisation)

Soit $N \in \mathbb{N}^*$ et soit $J : \mathbb{R}^N \to \mathbb{R}$ une fonction continue, coercive, strictement convexe, U une partie non vide, convexe fermée de \mathbb{R}^N et $\psi : \mathbb{R}^N \to \mathbb{R}$ une fonction continue, convexe vérifiant

$$\psi(v) \ge 0 \quad \forall v \in \mathbb{R}^n,$$

et $\psi(v) = 0$ si et seulement si $v \in U$.

Soit $n \in \mathbb{N}^*$. On considère les problèmes (P) et (P_n) suivants :

trouver
$$u \in U$$
, tel que $J(u) = \inf_{v \in U} J(v)$,

et

trouver
$$u_n \in \mathbb{R}^N$$
, tel que $J_n(u_n) = \inf_{v \in \mathbb{R}^N} J_n(v)$ où $J_n(v) = J(v) + \frac{1}{n} \psi(v)$.

- 1. Montrer que les problèmes (P) et (P_n) admettent une unique solution.
- 2. Montrer que l'on peut extraire de la suite (u_n) une sous-suite convergente (on notera sa limite u').
- 3. Montrer que $\psi(u') = 0$.
- 4. Établir que u = u'.
- 5. Montrer que la suite (u_n) converge vers u.