CREDIT CARD FRAUD DETECTION

- PINAKI BHAGAT
- SYDNEY CORREA

Learning Unbalanced Data

Agenda

- Credit Card use case overview
- Dataset description
- Techniques: Traditional/Deep Learning/ML Platforms
- Findings
- Future enhancements

Overview

Credit card fraud detection (Learning unbalanced data)

- Annual global fraud losses reached \$21.8 billion in 2015.
- Approx 12 cents per \$100 were stolen in the US during the same year
- Future trends show moving toward fraud prediction (and prevention) rather than fraud detection
- The cost of false positive fraud labelling was \$118 billion dollars of which \$9 billion were actual fraud cases
- Trends are moving from more traditional approaches to deep learning approaches (including hybrids w/ graph dbs)

Project objective

Objective: Try different approaches to compare model performance

- A. Traditional methods
 - a. K-means, Random Forest
 - b. Ensemble Learning: Random forest, ExtraTrees, AdaBoost, GradientBoost, XGBoost
- B. Deep Learning
 - a. Autoencoders
- C. ML Platforms
 - a. h2o.ai

Research some of the leading approaches and cutting edge technologies

Credit card Dataset

The creditcard.csv datasets is one of 4 datasets on Kaggle and contains transactions made by credit cards in September 2013 by European cardholders.

Features:

- -transactions that occurred in two days
- -contains 492 frauds out of 284,807 transactions
- -highly unbalanced (frauds account for 0.172% of all transactions)
- -dataset contains only numerical input variables which are the result of a PCA transformation.
- -features "Time" and "Amount" are not transformed

Techniques: KNN, RF

Classification problem using shallow algorithms to train individual models using KNN and RF

Checked for correlation between features

Hyper tuned the RF model for n_estimators (n=16)

Ran KNN for different intervals (k=5)

Checked model performance using:

- -AUPRC (area under precision recall curve)
- -ROC
- -Confusion matrix

Techniques: Ensemble

Following algorithms were used to train the model stack:

- a. Random Forest
- b. Extra Trees
- c. AdaBoost
- d. GradientBoost

Co-relation between models were checked and extra trees was eliminated

Ensemble had XGBoost as the final model

Accuracy sco	re: 99.95%			
Classificati	on report:			
	precision	recall	f1-score	support
Output 0	1.00	1.00	1.00	113726
Output 1	0.93	0.76	0.83	197
avg / total	1.00	1.00	1.00	113923

	AdaBoost	ExtraTrees	GradientBoost	RandomForest
0	0.278610	0.000171	0.000346	0.000128
1	0.042268	0.008257	0.000353	0.000136
2	0.280778	0.000221	0.000360	0.000144
3	0.291032	0.000237	0.000376	0.000304
4	0.276816	0.000298	0.000363	0.000098

Techniques: Autoencoders

Anomaly detection by training the network on non-fraudulent transactions, fraudulent transactions to be detected by flagging them based on higher than normal MSE values (reconstruction error)

model loss

0.86

0.85

0.84 0.83

0.82

Features:

- 4 fully connected layers (two encoders and 2 decoders)
- Activation filters: tanh, relu

Reconstruction error for Autoencoder: $L(x,x') = ||x-x'||^2$

Techniques: h2o.ai

We explored using the popular H2O.ai platform, specifically the AutoML package.

AutoML packages – Random Forest (DRF, XRT), XGBoost GBM, Deep Neural Net, ...

Hyperparameter tuning $-\max_{models} (5,10,15)$, balancing

 $aml = H2OAutoML(max_models=10, seed=1234, balance_classes = True, max_after_balance_size=0.8)$ $aml.train(x = predictors, y = response, training_frame = train, validation_frame = valid)$

model_id	auc	logioss	mean_per_class_error	rmse	mse
XGBoost_1_AutoML_20181219_234301	0.984103	0.00250716	0.101853	0.0200578	0.000402316
GLM_grid_1_AutoML_20181219_234301_model_1	0.973893	0.00411683	0.100894	0.0265999	0.000707553
XGBoost_2_AutoML_20181219_234301	0.971338	0.00324639	0.10298	0.0203073	0.000412386
DRF_1_AutoML_20181219_234301	0.956017	0.00393489	0.0894407	0.0207101	0.000428908
XRT_1_AutoML_20181219_234301	0.952861	0.00359792	9.10298	0.0206141	0.000424941
StackedEnsemble_BestOfFamily_AutoML_20181219_234301	0.94077	0.00311164	9.0950754	0.0207072	0.000428788
StackedEnsemble_AllModels_AutoML_20181219_234301	0.93763	0.00312438	0.09733	0.020708	0.000428822

Techniques: Balancing

Considering the nature of dataset transactions to be unbalanced (0.172%) we tried multiple under sampling and oversampling techniques

Packages tried:

Oversampling - imblearn (SMOTE, SMOTEEEN);

Undersampling – RandomUnderSampler, H2o.ai

Models tried: KNN and RF and h2o AutoML

Does not apply to Autoencoders and

Outcomes: Model performance was significantly worse with balanced data.

Pic Source: freepik.com

Findings

Fraud transactions: ridge line graph using seaborn

Future enhancements

Citation & Useful links

- https://www.slideshare.net/databricks/deep-learning-for-recommender-systems-with-nickpentreath
- https://github.com/maciejkula/spotlight/tree/master/examples/movielens explicit
- □ https://recsys.acm.org/recsys18/tutorials/#content-tab-1-0-tab
- □ https://code.fb.com/core-data/recommending-items-to-more-than-a-billion-people/
- □ https://www.fast.ai/2017/07/28/deep-learning-part-two-launch/
- □ https://www.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/
- https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385c6dfe0
- https://www.youtube.com/watch?v=h9gpufJFF-0
- https://en.wikipedia.org/wiki/Collaborative filtering