

(19) United States

(12) Patent Application Publication Reppas et al.

(10) Pub. No.: US 2011/0020867 A1

Jan. 27, 2011 (43) Pub. Date:

(54) CONSTRUCTS AND METHODS FOR EFFICIENT TRANSFORMATION OF MICRO-ORGANISMS FOR PRODUCTION OF CARBON-BASED PRODUCTS OF INTEREST

(75) Inventors: Nikos B. Reppas, Brookline, MA (US); Brian D. Green, Watertown,

MA (US)

Correspondence Address:

Joule/Fenwick

Silicon Valley Center, 801 California Street Mountain View, CA 94041 (US)

JOULE UNLIMITED, INC., (73) Assignee:

Cambridge, MA (US)

(21) Appl. No.: 12/840,279

(22) Filed: Jul. 20, 2010

Related U.S. Application Data

(60) Provisional application No. 61/227,056, filed on Jul. 20, 2009.

Publication Classification

(51)	Int. Cl.	
` ′	C12P 7/06	(2006.01)
	C12P 7/62	(2006.01)
	C12P 19/12	(2006.01)
	C12P 7/02	(2006.01)
	C12P 7/04	(2006.01)
	C12P 7/16	(2006.01)
	C12P 7/64	(2006.01)
	C12P 5/00	(2006.01)
	C12P 7/44	(2006.01)
	C12P 17/08	(2006.01)
	C12P 17/10	(2006.01)
	C12P 7/48	(2006.01)
	C12P 17/02	(2006.01)
	C12P 21/00	(2006.01)
	C12N 1/21	(2006.01)
	C07H 21/04	(2006.01)
	C12N 15/74	(2006.01)
(52)	U.S. Cl	435/69.1 ; 435/135; 435/100; 435/1:
()		; 435/157; 435/160; 435/134; 435/1
	433/101	; 455/157; 455/160; 455/154; 455/16

55; 66; 435/142; 435/124; 435/121; 435/144; 435/123; 435/252.3; 536/23.1; 435/471

(57)**ABSTRACT**

Improved constructs for increasing efficiency of transformation of thermophilic host cells for production of carbon-based products of interest and methods for producing carbon-based products of interest are provided.

Figure 1

1a.

1b.

Figure 2

2a.

2b.

Figure 3

3a.

3b.

CONSTRUCTS AND METHODS FOR EFFICIENT TRANSFORMATION OF MICRO-ORGANISMS FOR PRODUCTION OF CARBON-BASED PRODUCTS OF INTEREST

FIELD OF THE INVENTION

[0001] The present disclosure relates to mechanisms to confer production of carbon-based products to a photoautotrophic organism such that it efficiently converts carbon dioxide and light into various carbon-based products, and in particular the use of such organisms for the commercial production of various carbon-based products of interest.

BACKGROUND

[0002] Photosynthesis is a process by which biological entities utilize sunlight and CO₂ to produce sugars for energy. Photosynthesis, as naturally evolved, is an extremely complex system with numerous and poorly understood feedback loops, control mechanisms, and process inefficiencies. This complicated system presents likely insurmountable obstacles to either one-factor-at-a-time or global optimization approaches [Nedbal L, Cerven A J, Rascher U, Schmidt H. E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light. Photosynth Res. 2007 July; 93(1-3):223-34; Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004 February; 120(2):179-186; Greene D N, Whitney S M, Matsumura I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J. 2007 Jun. 15; 404(3):517-24].

[0003] Many existing photoautotrophic organisms (i.e., plants, algae, and photosynthetic bacteria) are poorly suited for industrial bioprocessing and have therefore not been used for this purpose. Said organisms have slow doubling time (3-72 hrs) compared to industrialized heterotrophic organisms such as *Escherichia coli* (20 minutes), reflective of low total productivities. In addition, techniques for genetic manipulation (knockout, over-expression of transgenes via integration or episomic plasmid propagation) of many of these organisms are inefficient, time-consuming, laborious, or non-existent. Thus a need exists for vectors and methods that can be used to genetically engineer organisms efficiently such that the organisms use photosynthesis to produce desired products, including biofuels and other carbon-based products.

SUMMARY

[0004] The invention described herein provides constructs and methods to engineer thermophilic cyanobacteria to produce carbon-based products of interest.

[0005] In one embodiment, the method comprises preparing a heterologous DNA sequence operably linked to an expression vector; transforming a thermophilic cyanobacterium host with said vector; and culturing the host. Optionally, the method further comprises isolating the carbon-based product of interest from the host cell or a medium.

[0006] Also provided is a method for producing a biodiesel fuel composition, comprising preparing a heterologous DNA sequence operably linked to an expression vector; transforming a thermophilic cyanobacterium host with said vector; and

culturing said host. Optionally, the method further comprises isolating the biodiesel fuel composition from the host cell or a medium.

[0007] In one embodiment, the carbon-based product of interest is selected from the group consisting of: ethyl ester, methyl ester, sucrose, alcohol, ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid ester, wax ester, hydrocarbons, n-alkanes, propane, octane, diesel, JP8, polymers, terephthalate, polyol, 1,3-propanediol, 1,4-butanediol, PHA, PHB, acrylate, adipic acid, €-caprolactone, isoprene, caprolactam, rubber, lactate, DHA, 3-hydroxypropionate, γ-valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, lycopene, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, HPA, lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid, carotenoid, isoprenoid, itaconic acid, limonene, pharmaceutical or pharmaceutical intermediates, erythromycin 7-ADCA/cephalosporin, polyketides, statin, paclitaxel, docetaxel, terpene, peptide, steroid, and an omega fatty acid.

[0008] In certain embodiments, the host cell provided by the invention is capable of producing ethanol. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces at least 1000, at least 5000, at least 10,000, at least 12,000, or at least 15,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces between 1000 and 20,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces between 10,000 and 20,000, between 12,000 and 18,000, or between 13,000 and 16,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium further produces acetaldehyde, and wherein the ratio of ethanol to acetaldehyde is at least 500, at least 2000, at least 4000, at least 4500, at least 5000, at least 10,000, or between 4000 and 15,000, or between 500 and 3,000.

[0009] In yet other embodiments, thermophilic cyanobacteria engineered is *Thermosynechococcus elongatus* BP-1.

[0010] In another embodiment, transforming said thermophilic cyanobacterium host comprises with said vector comprises integrating at least a portion of said vector in a chromosome of said thermophilic cyanobacterium.

[0011] In other embodiments, a modified *Thermosynechococcus* cell comprising a recombinant marker gene and a λ phage cI promoter where in said marker gene is operably linked to said promoter is provided. In one embodiment the marker gene confers antibiotic resistance to said cell. In another embodiment the marker gene confers resistance to kanamycin to said cell. In yet another embodiment the marker gene is htk.

[0012] In yet another aspect, the invention provides an isolated or recombinant polynucleotide comprising or consisting of a nucleic acid sequence selected from the group consisting of: any one of the sequences from Table 3; a nucleic acid sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to any one of the sequences from Table 3; and a nucleic acid sequence that hybridizes under stringent conditions to any one of the sequences in Table 3.

[0013] In another embodiment, a modified *Thermosynechococcus* cell comprising an alcohol dehydrogenase gene and a pyruvate decarboxylase gene is provided. In one embodiment at least one of the genes is recombinant. In one embodiment the genes are divergently oriented. In one embodiment, the cell comprises at least one promoter. In one embodiment the at least on promoter is selected from the group consisting of tef, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, trc, ara, SP6, amyE, phage SP02, Pcpcb, PaphII, PtRNA $_{Gluo}$ λ phage cI λ -p $_R$ and λ -p $_L$. In one embodiment, the at least one promoter is PaphII.

[0014] In one embodiment the cell further comprises a first promoter operably linked to said alcohol dehydrogenase gene and a second promoter operably linked to said pyruvate decarboxylase gene. In one embodiment, the first promoter and said second promoter are each independently selected from the group consisting of tef, tac, trp, tet, trp-tet, lpp, lac, lpplac, lacIq, T7, T5, T3, gal, trc, ara, SP6, amyE, phage SP02, Pcpcb, PaphII, PtRNAGlu, λ phage cI λ -pR and λ -pL. In one embodiment at least one of said first promoter and said second promoter is λ phage cI. In one embodiment, the first promoter is λ phage cI and said second promoter is PEM7. In one embodiment, the first promoter is PEM7 and said second promoter is λ phage cI. In one embodiment, the first promoter is λ phage cI and said second promoter is PtRNAGlu. In one embodiment, the first promoter is PtRNAGlu and said second promoter is λ phage cI. In one embodiment, the first promoter is PaphII and said second promoter is λ phage cI. In one embodiment, the first promoter is Pcpcb and said second promoter is λ phage cI.

[0015] In one embodiment, the cell comprises any one of SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10 or SEQ ID NO: 11.

[0016] Also provided is a method producing a carbonbased product of interest by culturing the cell. In one embodiment, the carbon-based product of interest is selected from the group consisting of: ethyl ester, methyl ester, sucrose, alcohol, ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid ester, wax ester, hydrocarbons, n-alkanes, propane, octane, diesel, JP8, polymers, terephthalate, polyol, 1,3-propanediol, 1,4-butanediol, PHA, PHB, acrylate, adipic acid, ϵ -caprolactone, isoprene, caprolactam, rubber, lactate, DHA, 3-hydroxypropionate, γ-valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, lycopene, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, HPA, lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid, carotenoid, isoprenoid, itaconic acid, limonene, pharmaceutical or pharmaceutical intermediates, erythromycin 7-ADCA/cephalosporin, polyketides, statin, paclitaxel, docetaxel, terpene, peptide, steroid, and an omega fatty acid. In one embodiment, the carbon-based product of interest is an alcohol. In one embodiment, the carbon-based product of interest is ethanol. [0017] In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces at least 1000, at least 5000, at least 10,000, at least 12,000, or at least 15,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces between 1000 and 20,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium produces between 10,000 and 20,000, between 12,000 and 18,000, or between 13,000 and 16,000 mgs ethanol per liter of culture medium. In one embodiment, the carbon-based product of interest is ethanol, and the cyanobacterium further produces acetaldehyde, and wherein the ratio of ethanol to acetaldehyde is at least 500, at least 2000, at least 4000, at least 4500, at least 5000, at least 10,000, or between 4000 and 15,000, or between 500 and 3,000.

[0018] Also provided is a method of for engineering a thermophilic cyanobacterium comprising transforming said thermophilic cyanobacterium with a heterologous DNA sequence operably linked to an expression vector. expression vector comprises an isolated or recombinant polynucleotide comprising or consisting of a nucleic acid sequence selected from the group consisting of: any one of the sequences from Table 3; a nucleic acid sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to any one of the sequences from Table 3; and a nucleic acid sequence that hybridizes under stringent conditions to any one of the sequences in Table 3. In one embodiment the thermophilic evanobacterium is Thermosynechococcus elongatus BP-1. In one embodiment, transforming the thermophilic cyanobacterium host comprises integrating at least a portion of said vector in a chromosome of said thermophilic cyanobacterium.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 provides gels illustrating successful transformation of host cells.

[0020] FIG. 2 is a diagram of pJB825 ethanologen constructs.

[0021] FIG. 3 is a diagram of pJB826 ethanologen constructs.

[0022] Table 1 provides primers useful for screening putative transformants to identify those actually transformed.

[0023] Table 2 provides data for acetaldehyde and ethanol production by transformed cells.

[0024] Table 3 provides an informal sequence listing.

[0025] Table 4 provides additional informal sequence listings.

DETAILED DESCRIPTION

Abbreviations and Terms

[0026] The following explanations of terms and methods are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. As used herein, "comprising" means "including" and the singular forms "a" or "an" or "the" include plural references unless the context clearly dictates otherwise. For example, reference to "comprising a cell" includes one or a plurality of such cells, and so forth. The term "or" refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise.

[0027] Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.

[0028] Accession Numbers: The accession numbers throughout this description are derived from the NCBI database (National Center for Biotechnology Information) maintained by the National Institute of Health, U.S.A. The accession numbers are as provided in the database on Jul. 15, 2009. [0029] Enzyme Classification Numbers (EC): The EC numbers provided throughout this description are derived from the KEGG Ligand database, maintained by the Kyoto Encyclopedia of Genes and Genomics, sponsored in part by the University of Tokyo. The EC numbers are as provided in the database on Jul. 15, 2009.

[0030] Alcohol dehydrogenase is an enzyme that catalyzes the formation of an ethanol molecule by the reduction of acetaldehyde with nicotinamide adenine dinucleotide (NADH). The enzyme described herein is the class I alcohol dehydrogenase with zinc co-factor and is designated "ADH1." The genes encoding the nucleotide sequences for the invention described herein is designated "adh1."

[0031] Codons are triplets of nucleotides in DNA molecules and code for an amino acid. The term codon is also used for the corresponding (and complementary) sequences of three nucleotides in the mRNA into which the DNA sequence is transcribed.

[0032] Attenuate: The term as used herein generally refers to a functional deletion, including a mutation, partial or complete deletion, insertion, or other variation made to a gene sequence or a sequence controlling the transcription of a gene sequence, which reduces or inhibits production of the gene product, or renders the gene product non functional. In some instances a functional deletion is described as a knockout mutation. Attenuation also includes amino acid sequence changes by altering the nucleic acid sequence, placing the gene under the control of a less active promoter, downregulation, expressing interfering RNA, ribozymes or antisense sequences that target the gene of interest, or through any other technique known in the art. In one example, the sensitivity of a particular enzyme to feedback inhibition or inhibition caused by a composition that is not a product or a reactant (non pathway specific feedback) is lessened such that the enzyme activity is not impacted by the presence of a compound. In other instances, an enzyme that has been altered to be less active can be referred to as attenuated.

[0033] Autotroph: Autotrophs (or autotrophic organisms) are organisms that produce complex organic compounds from simple inorganic molecules and an external source of energy, such as light (photoautotroph) or chemical reactions of inorganic compounds.

[0034] Biofuel: A biofuel is any fuel that derives from a biological source. Biofuel refers to one or more hydrocarbons, one or more alcohols, one or more fatty esters or a mixture thereof.

[0035] Biosynthetic pathway: Also referred to as "metabolic pathway," refers to a set of anabolic or catabolic biochemical reactions for converting (transmuting) one chemical species into another. For example, a hydrocarbon biosynthetic pathway refers to the set of biochemical reactions that convert inputs and/or metabolites to hydrocarbon product like intermediates and then to hydrocarbons or hydrocarbon products. Anabolic pathways involve constructing a larger molecule from smaller molecules, a process requiring energy. Catabolic pathways involve breaking down of larger: molecules, often releasing energy.

[0036] "Carbon-based Products of Interest" include alcohols such as ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid esters, wax esters; hydrocarbons and alkanes such as propane, octane, diesel, Jet Propellant 8 (JP8); polymers such as terephthalate, 1,3 propanediol, 1,4 butanediol, polyols, Polyhydroxyalkanoates (PHA), polybeta-hydroxybutyrate (PHB), acrylate, adipic acid, € caprolactone, isoprene, caprolactam, rubber; commodity chemicals such as lactate, Docosahexaenoic acid (DHA), 3 hydroxypropionate, γ valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega 3 DHA, lycopene, itaconate, 1,3 butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, 3-hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid; specialty chemicals such as carotenoids, isoprenoids, itaconic acid; pharmaceuticals and pharmaceutical intermediates such as 7-aminodeacetoxycephalosporanic acid (7 ADCA)/cephalosporin, erythromycin, polyketides, statins, paclitaxel, docetaxel, terpenes, peptides, steroids, omega fatty acids and other such suitable products of interest. Such products are useful in the context of biofuels, industrial and specialty chemicals, as intermediates used to make additional products, such as nutritional supplements, neutraceuticals, polymers, paraffin replacements, personal care products and pharmaceuticals.

[0037] Deletion: The removal of one or more nucleotides from a nucleic acid molecule or one or more amino acids from a protein, the regions on either side being joined together.

[0038] DNA: Deoxyribonucleic acid. DNA is a long chain polymer which includes the genetic material of most living organisms (some viruses have genes including ribonucleic acid, RNA). The repeating units in DNA polymers are four different nucleotides, each of which includes one of the four bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached.

[0039] Downregulation: When a gene is caused to be transcribed at a reduced rate compared to the endogenous gene transcription rate for that gene. In some examples, downregulation additionally includes a reduced level of translation of the gene compared to the endogenous translation rate for that gene. Methods of testing for downregulation are well known to those in the art, for example the transcribed RNA levels can be assessed using RT PCR and proteins levels can be assessed using SDS PAGE analysis.

[0040] Endogenous: As used herein with reference to a nucleic acid molecule and a particular cell or microorganism endogenous refers to a nucleic acid sequence or peptide that is in the cell and was not introduced into the cell (or its progentors) using recombinant engineering techniques. An example, a gene that was present in the cell when the cell was originally isolated from nature is endogenous. A gene is still considered endogenous if the control sequences, such as a promoter or enhancer sequences that activate transcription or translation have been altered through recombinant techniques.

[0041] The term "ethanologenesis" and "ethanologenic" as used herein with reference to a gene, gene product or protein capable of conferring on a host cell the capacity to produce, metabolically use or tolerate ethanol or is capable of improving any aspect of cellular production of ethanol, such as, e.g., substrate uptake, substrate processing, ethanol tolerance, etc. For instance, such genes include a gene encoding pyruvate decarboxylase and alcohol dehydrogenases I, II, III, IV, V and/or A, B, C.

[0042] Exogenous: As used herein with reference to a nucleic acid molecule and a particular cell or microorganism

exogenous refers to a nucleic acid sequence or peptide that was not present in the cell when the cell was originally isolated from nature. For example, a nucleic acid that originated in a different microorganism and was engineered into an alternate cell using recombinant DNA techniques or other methods for delivering said nucleic acid is exogenous.

[0043] Expression: The process by which a gene's coded information is converted into the structures and functions of a cell, such as a protein, transfer RNA, or ribosomal RNA. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that are transcribed into RNA but not translated into protein (for example, transfer and ribosomal RNAs).

[0044] Expression Control Sequence: as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

[0045] Hydrocarbon: The term generally refers to a chemical compound that consists of the elements carbon (C), hydrogen (H) and optionally oxygen (O). There are essentially three types of hydrocarbons, e.g., aromatic hydrocarbons, saturated hydrocarbons and unsaturated hydrocarbons such as alkenes, alkynes, and dienes. The term also includes fuels, biofuels, plastics, waxes, solvents and oils. Hydrocarbons encompass biofuels, as well as plastics, waxes, solvents and oils.

[0046] Knock out: A gene whose level of expression or activity has been reduced to zero. In some examples, a gene is knocked out via deletion of some or all of its coding sequence. In other examples, a gene is knocked out via introduction of one or more nucleotides into its open reading frame, which results in translation of a non sense or otherwise non functional protein product.

[0047] Overexpression: When a gene is caused to be transcribed at an elevated rate compared to the endogenous transcription rate for that gene. In some examples, overexpression additionally includes an elevated rate of translation of the gene compared to the endogenous translation rate for that gene. Methods of testing for overexpression are well known in the art, for example transcribed RNA levels can be assessed using reverse transcriptase polymerase chain reaction (RT PCR) and protein levels can be assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) analysis. Furthermore, a gene is considered to be overexpressed when it exhibits elevated activity compared to its endogenous activity, which may occur, for example, through reduction in concentration or activity of its inhibitor, or via

expression of mutant version with elevated activity. In preferred embodiments, when the host cell encodes an endogenous gene with a desired biochemical activity, it is useful to overexpress an exogenous gene, which allows for more explicit regulatory control in the fermentation and a means to potentially mitigate the effects of central metabolism regulation, which is focused around the native genes explicitly.

[0048] "Fuel component" is any compound or a mixture of compounds that are used to formulate a fuel composition. There are "major fuel components" and "minor fuel components." A major fuel component is present in a fuel composition by at least 50% by volume; and a minor fuel component is present in a fuel composition by less than 50%. Fuel additives are minor fuel components. The isoprenoid compounds disclosed herein can be a major component or a minor component, by themselves or in a mixture with other fuel components.

[0049] As used herein, a composition that is a "substantially pure" compound is substantially free of one or more other compounds, i.e., the composition contains greater than 80 vol. %, greater than 90 vol. %, greater than 95 vol. %, greater than 96 vol. %, greater than 97 vol. %, greater than 98 vol. %, greater than 99.0 vol. %, greater than 99.5 vol. %, greater than 99.5 vol. %, greater than 99.7 vol. %, greater than 99.8 vol. %, or greater than 99.9 vol. % of the compound; or less than 20 vol. %, less than 10 vol. %, less than 5 vol. %, less than 0.1 vol. %, or less than 0.01 vol. % of the one or more other compounds, based on the total volume of the composition.

[0050] Nucleic Acid Molecule: The term "nucleic acid molecule" of "polynucleotide" refers to a polymeric form of nucleotides of at least 10 bases in length. The term includes DNA molecules (e.g., cDNA or genomic or synthetic DNA) and RNA molecules (e.g., mRNA or synthetic RNA), as well as analogs of DNA or RNA containing non-natural nucleotide analogs, non-native inter-nucleoside bonds, or both. The nucleic acid can be in any topological conformation. For instance, the nucleic acid can be single-stranded, double-stranded, triple-stranded, quadruplexed, partially double-stranded, branched, hair-pinned, circular, or in a padlocked conformation. If single stranded, the nucleic acid molecule can be the sense strand or the antisense strand.

[0051] Engineered nucleic acid: An "engineered nucleic acid" is a nucleic acid molecule that includes at least one difference from a naturally occurring nucleic acid molecule. An engineered nucleic acid includes all exogenous modified and unmodified heterologous sequences (i.e., sequences derived from an organism or cell other than that harboring the engineered nucleic acid) as well as endogenous genes, operons, coding sequences, or non coding sequences, that have been modified, mutated, or that include deletions or insertions as compared to a naturally occurring sequence. Engineered nucleic acids also include all sequences, regardless of origin, that are linked to an inducible promoter or to another control sequence with which they are not naturally associated.

[0052] The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides. There are a

number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. Pearson, Methods Enzymol. 183:63-98 (1990) (hereby incorporated by reference in its entirety). For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference. Alternatively, sequences can be compared using the computer program, BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990); Gish and States, Nature Genet. 3:266-272 (1993); Madden et al., Meth. Enzymol. 266:131-141 (1996); Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997); Zhang and Madden, Genome Res. 7:649-656 (1997)), especially blastp or tblastn (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).

[0053] A particular, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is that of Karlin and Altschul (Proc. Natl. Acad. Sci. (1990) USA 87:2264-68; Proc. Natl. Acad. Sci. USA (1993) 90: 5873-77) as used in the NBLAST and XBLAST programs (version 2.0) of Altschul et al. (J. Mol. Biol. (1990) 215:403-10). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleic acid molecules of the invention. BLAST polypeptide searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to polypeptide molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Research (1997) 25(17):3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (http:// www.ncbi.nlm.nih.gov). One skilled in the art may also use the ALIGN program incorporating the non-linear algorithm of Myers and Miller (Comput. Appl. Biosci. (1988) 4:11-17). For amino acid sequence comparison using the ALIGN program one skilled in the art may use a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4.

[0054] The term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.

[0055] Alternatively, substantial homology or similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under stringent hybridization conditions. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different

physical parameters. Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization.

[0056] In general, "stringent hybridization" is performed at about 25° C. below the thermal melting point (T_m) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5° C. lower than the T_m for the specific DNA hybrid under a particular set of conditions. The T_m is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. See Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), page 9.51, hereby incorporated by reference. For purposes herein, "stringent conditions" are defined for solution phase hybridization as aqueous hybridization (i.e., free of formamide) in 6×SSC (where 20×SSC contains 3.0 M NaCl and 0.3 M sodium citrate), 1% SDS at 65° C. for 8-12 hours, followed by two washes in 0.2×SSC, 0.1% SDS at 65° C. for 20 minutes. It will be appreciated by the skilled worker that hybridization at 65° C. will occur at different rates depending on a number of factors including the length and percent identity of the sequences which are hybridizing.

[0057] A preferred, non-limiting example of stringent hybridization conditions includes hybridization in 4× sodium chloride/sodium citrate (SSC), at about 65-70° C. (or hybridization in 4×SSC plus 50% formamide at about 42-50° C.) followed by one or more washes in 1×SSC, at about 65-70° C. A preferred, non-limiting example of highly stringent hybridization conditions includes hybridization in 1×SSC, at about 65-70° C. (or hybridization in 1×SSC plus 50% formamide at about 42-50° C.) followed by one or more washes in 0.3× SSC, at about 65-70° C. A preferred, non-limiting example of reduced stringency hybridization conditions includes hybridization in 4×SSC, at about 50-60° C. (or alternatively hybridization in 6×SSC plus 50% formamide at about 40-45° C.) followed by one or more washes in 2×SSC, at about 50-60° C. Intermediate ranges e.g., at 65-70° C. or at 42-50° C. are also within the scope of the invention. SSPE (1× SSPE is 0.15 M NaCl, 10 mM NaH₂PO₄, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1×SSC is 0.15 M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes each after hybridization is complete. The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10° C. less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(^{\circ}C.)=2(\# \text{ of A+T bases})+$ 4(# of G+C bases). For hybrids between 18 and 49 base pairs in length, T_m (° C.)=81.5+16.6($\log_{10}[Na^+]$)+0.41 (% G+C)-(600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na $^+$] for 1×SSC=0.165 M).

[0058] The skilled practitioner recognizes that reagents can be added to hybridization and/or wash buffers. For example, to decrease non-specific hybridization of nucleic acid molecules to, for example, nitrocellulose or nylon membranes, blocking agents, including but not limited to, BSA or salmon

or herring sperm carrier DNA and/or detergents, including but not limited to, SDS, chelating agents EDTA, Ficoll, PVP and the like can be used. When using nylon membranes, in particular, an additional, non-limiting example of stringent hybridization conditions is hybridization in 0.25-0.5M NaH₂PO₄, 7% SDS at about 65° C., followed by one or more washes at 0.02M NaH₂PO₄, 1% SDS at 65° C. (Church and Gilbert (1984) *Proc. Natl. Acad. Sci. USA* 81:1991-1995,) or, alternatively, 0.2×SSC, 1% SDS.

[0059] "Specific binding" refers to the ability of two molecules to bind to each other in preference to binding to other molecules in the environment. Typically, "specific binding" discriminates over adventitious binding in a reaction by at least two-fold, more typically by at least 10-fold, often at least 100-fold. Typically, the affinity or avidity of a specific binding reaction, as quantified by a dissociation constant, is about 10^{-7} M or stronger (e.g., about 10^{-8} M, 10^{-9} M or even stronger).

[0060] Isolated: An "isolated" nucleic acid or polynucleotide (e.g., an RNA, DNA or a mixed polymer) is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases, and genomic sequences with which it is naturally associated. The term embraces a nucleic acid or polynucleotide that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature. The term "isolated" or "substantially pure" also can be used in reference to recombinant or cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems. However, "isolated" does not necessarily require that the nucleic acid or polynucleotide so described has itself been physically removed from its native environment. For instance, an endogenous nucleic acid sequence in the genome of an organism is deemed "isolated" herein if a heterologous sequence (i.e., a sequence that is not naturally adjacent to this endogenous nucleic acid sequence) is placed adjacent to the endogenous nucleic acid sequence, such that the expression of this endogenous nucleic acid sequence is altered. By way of example, a non native promoter sequence can be substituted (e.g. by homologous recombination) for the native promoter of a gene in the genome of a human cell, such that this gene has an altered expression pattern. This gene would now become "isolated" because it is separated from at least some of the sequences that naturally flank it. A nucleic acid is also considered "isolated" if it contains any modifications that do not naturally occur to the corresponding nucleic acid in a genome. For instance, an endogenous coding sequence is considered "isolated" if it contains an insertion, deletion or a point mutation introduced artificially, e.g. by human intervention. An "isolated nucleic acid" also includes a nucleic acid integrated into a host cell chromosome at a heterologous site, as well as a nucleic acid construct present as an episome. Moreover, an "isolated nucleic acid" can be substantially free of other cellular material, or substantially free of culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. The term also embraces nucleic acid molecules and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acid molecules and proteins.

[0061] Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame. Configurations of separate genes that are transcribed in tandem as a single messenger RNA are denoted as operons. Thus placing genes in close proximity, for example in a plasmid vector, under the transcriptional regulation of a single promoter, constitutes a synthetic operon.

[0062] Purified: The term purified does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified product preparation, is one in which the product is more concentrated than the product is in its environment within a cell. For example, a purified wax is one that is substantially separated from cellular components (nucleic acids, lipids, carbohydrates, and other peptides) that can accompany it. In another example, a purified wax preparation is one in which the wax is substantially free from contaminants, such as those that might be present following fermentation.

[0063] Detectable: Capable of having an existence or presence ascertained using various analytical methods as described throughout the description or otherwise known to a person skilled in the art.

[0064] Microorganism: Includes prokaryotic and eukaryotic microbial species from the Domains Archaea, Bacteria and Eucarya, the latter including yeast and filamentous fungi, protozoa, algae, or higher Protista. The terms "microbial cells" and "microbes" are used interchangeably with the term microorganism.

[0065] Recombinant: A recombinant nucleic acid molecule or protein is one that has a sequence that is not naturally occurring, has a sequence that is made by an artificial combination of two otherwise separated segments of sequence, or both. This artificial combination can be achieved, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid molecules or proteins, such as genetic engineering techniques. Recombinant is also used to describe nucleic acid molecules that have been artificially manipulated, but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated.

[0066] The term "recombinant host cell" ("expression host cell," "expression host system," "expression system," or simply "host cell"), as used herein, refers to a cell into which a recombinant vector has been introduced, e.g., a vector comprising acyl CoA synthase. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. A recombinant host cell may be an isolated cell or cell line grown in culture or may be a cell which resides in a living tissue or organism.

[0067] Release: The movement of a compound from inside a cell (intracellular) to outside a cell (extracellular). The movement can be active or passive. When release is active it can be facilitated by one or more transporter peptides and in some examples it can consume energy. When release is passive, it can be through diffusion through the membrane and can be facilitated by continually collecting the desired compound from the extracellular environment, thus promoting further diffusion. Release of a compound can also be accomplished by lysing a cell.

[0068] The terms "thermal stability" and "thermostability" are used interchangeably and refer to the ability of an enzyme (e.g., whether expressed in a cell, present in an cellular extract, cell lysate, or in purified or partially purified form) to exhibit the ability to catalyze a reaction at least at about 20° C., preferably at about 25° C. to 35° C., more preferably at about 37° C. or higher, in more preferably at about 50° C. or higher, and even more preferably at least about 60° C. or higher.

[0069] Vector: The term "vector" as used herein refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BACs) and yeast artificial chromosomes (YACs). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome (discussed in more detail below). Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., vectors having an origin of replication which functions in the host cell). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and are thereby replicated along with the host genome. Moreover, certain preferred vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). A vector can also include one or more selectable marker genes and other genetic elements known in the art. Suitable vectors for use in cyanobacteria include self-replicating plasmids (e.g., multiple copy and high-level expression) and chromosomal integration plasmids. Integration of vectors into the host genome or autonomously replicating vectors allow for gene expression in the host cell. When stable expression results from integration, the site of the construct's integration can occur randomly within the host genome or can be targeted through the use of constructs containing regions of homology with the host genome sufficient to target recombination with the host locus. Where constructs are targeted to an endogenous locus, all or some of the transcriptional and translational regulatory regions can be provided by the endogenous locus.

General Methods for Engineering Microorganisms to Produce Carbon-Based Products

[0070] Generally, carbon-based products of interest are produced by expressing a gene or a set of genes in a photo-autotrophic microorganism, e.g., cyanobacteria or thermophilic cyanobacteria as described herein. Plasmids are constructed to express various proteins that are useful in production of carbon-based products as described in Example 1. The constructs can be synthetically made or made using standard molecular biology methods and all the cloned genes are put under the control of constitutive promoters or induc-

ible promoters. Plasmids containing the genes of interest are transformed into the host and corresponding transformants are selected in LB plate supplemented with antibiotics such as spectinomycin, carbenicillin, kanamycin, etc. Using standard molecular biology techniques, cells in which a nucleic acid molecule has been introduced are transformed to express or over-express desired genes while other nucleic acid molecules are attenuated or functionally deleted. Transformation techniques by which a nucleic acid molecule can be introduced into such a cell, including, but not limited to, transfection with viral vectors, conjugation, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration. Transformants are inoculated into a suitable medium. The samples containing the transformants are grown at suitable temperatures in a shaker until they reach at certain OD. The cells are then spun down at and the cell pellets are suspended. Separation techniques allows for the sample to be subjected to GC/MS analysis. Total yield is determined

Selected or Engineered Microorganisms for the Production of Carbon-Based Products of Interest

[0071] A variety of host organisms can be transformed to produce a product of interest. Photoautotrophic organisms include eukaryotic plants and algae, as well as prokaryotic cyanobacteria, green-sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria.

[0072] Cyanobacteria are photosynthetic bacteria which require light, inorganic elements, nitrogen sources, water and a carbon source, generally CO₂, to metabolize and grow. Cyanobacteria are photosynthetic prokaryotes which carry out oxygenic photosynthesis. The main product of the metabolic pathway of Cyanobacteria during aerobic conditions is oxygen and carbohydrates. Exemplary suitable cyanobacteria include those described in Donald Bryant, The Molecular Biology of Cyanobacteria, published by Kluwer Academic Publishers (1994).

[0073] Plants include but are not limited to the following genera: Arabidopsis, Beta, Glycine, Jatropha, Miscanthus, Panicum, Phalaris, Populus, Saccharum, Salix, Simmondsia and Zea.

[0074] Algae and cyanobacteria include but are not limited to the following genera: Acanthoceras, Acanthococcus, Acaryochloris, Achnanthes, Achnanthidium, Actinastrum, Actinochloris, Actinocyclus, Actinotaenium, Amphichrysis, Amphidinium, Amphikrikos, Amphipleura, Amphiprora, Amphithrix, Amphora, Anabaena, Anabaenopsis, Aneumastus, Ankistrodesmus, Ankyra, Anomoeoneis, Apatococcus, Aphanizomenon, Aphanocapsa, Aphanochaete, Aphanothece, Apiocystis, Apistonema, Arthrodesmus, Artherospira, Ascochloris, Asterionella, Asterococcus, Audouinella, Aulacoseira, Bacillaria, Balbiania, Bambusina, Bangia, Basichlamys, Batrachospermum, Binuclearia, Bitrichia, Blidingia, Botrdiopsis, Botrydium, Botryococcus, Botryosphaerella, Brachiomonas, Brachysira, Brachytrichia, Brebissonia, Bulbochaete, Bumilleria, Bumilleriopsis, Caloneis, Calothrix, Campylodiscus, Capsosiphon, Carteria, Catena, Cavinula, Centritractus, Centronella, Ceratium, Chaetoceros, Chaetochloris, Chaetomorpha, Chaetonella, Chaetonema, Chaetopeltis, Chaetophora, Chaetosphaeridium, Chamaesiphon, Chara, Characiochloris, Characiopsis, Characium, Charales, Chilomonas, Chlainomonas, Chlamydoblepharis, Chlamydocapsa, Chlamydomonas, Chlamydomonopsis, Chlamydomyxa, Chlamydonephris. Chlorangiella, Chlorangiopsis, Chlorella, Chlorobotrys, Chlorobrachis, Chlorochytrium, Chlorococcum, Chlorogloea, Chlorogloeopsis, Chlorogonium, Chlorolobion, Chloromonas, Chlorophysema, Chlorophyta, Chlorosaccus, Chlorosarcina, Choricystis, Chromophyton, Chromulina, Chroococcidiopsis, Chroococcus, Chroodactylon, Chroomonas, Chroothece, Chrysamoeba, Chrysapsis, Chrysidiastrum, Chrysocapsa, Chrysocapsella, Chrysochaete, Chrysochromulina, Chrysococcus, Chrysocrinus, Chrysolepidomonas, Chrysolykos, Chrysonebula, Chrysophyta, Chrysopyxis, Chrysosaccus, Chrysophaerella, Chrysostephanosphaera, Clodophora, Clastidium, Closteriopsis, Closterium, Coccomyxa, Cocconeis, Coelastrella, Coelastrum, Coelosphaerium, Coenochloris, Coenococcus, Coenocystis, Colacium, Coleochaete, Collodictyon, Compsogonop-Compsopogon, Conjugatophyta, Conochaete Coronastrum, Cosmarium, Cosmioneis, Cosmocladium, Crateriportula, Craticula, Crinalium, Crucigenia, Crucigeniella, Cryptoaulax, Cryptomonas, Cryptophyta, Ctenophora, Cyanodictyon, Cyanonephron, Cyanophora, Cyano-Cvanothece. Cvanothomonas. Cvclonexis. Cyclostephanos, Cyclotella, Cylindrocapsa, Cylindrocystis, Cylindrospermum, Cylindrotheca, Cymatopleura, Cymbella, Cymbellonitzschia, Cystodinium Dactylococcopsis, Debarya, Denticula, Dermatochrysis, Dermocarpa, Dermocarpella, Desmatractum, Desmidium, Desmococcus, Desmonema, Desmosiphon, Diacanthos, Diacronema, Diades-Diatoma, Diatomella, Dicellula, Dichothrix. Dichotomococcus, Dicranochaete, Dictyochloris, Dictyococcus, Dictyosphaerium, Didymocystis, Didymogenes, Didymosphenia, Dilabifilum, Dimorphococcus, Dinobryon, Dinococcus, Diplochloris, Diploneis, Diplostauron, Distrionella, Docidium, Draparnaldia, Dunaliella, Dysmorphococcus, Ecballocystis, Elakatothrix, Ellerbeckia, Encyonema, Enteromorpha, Entocladia, Entomoneis, Entophysalis, Epichrysis, Epipyxis, Epithemia, Eremosphaera, Euastropsis, Euastrum, Eucapsis, Eucocconeis, Eudorina, Euglena, Euglenophyta, Eunotia, Eustigmatophyta, Eutreptia, Fallacia, Fischerella, Fragilaria, Fragilariforma, Franceia, Frustulia, Curcilla, Geminella, Genicularia, Glaucocystis, Glau-Glenodiniopsis, Glenodinium, Gloeocapsa. Gloeochaete, Gloeochrysis, Gloeococcus, Gloeocystis, Gloeodendron, Gloeomonas, Gloeoplax, Gloeothece, Gloeotila, Gloeotrichia, Gloiodictvon, Golenkinia, Golenkiniopsis, Gomontia, Gomphocymbella, Gomphonema, Gomphosphaeria, Gonatozygon, Gongrosia, Gongrosira, Goniochloris, Gonium, Gonyostomum, Granulochloris, Granulocys-Groenbladia, Gymnodinium, Gymnozyga. Gyrosigma, Haematococcus, Hafniomonas, Hallassia, Hammatoidea, Hannaea, Hantzschia, Hapalosiphon, Haplotaenium, Haptophyta, Haslea, Hemidinium, Hemitoma, Herib-Heteromastix, Heterothrix, Hibberdia. Hildenbrandia, Hillea, Holopedium, Homoeothrix, Hormanthonema, Hormotila, Hyalobrachion, Hyalocardium, Hyalodiscus, Hyalogonium, Hyalotheca, Hydrianum, Hydrococcus, Hydrocoleum, Hydrocoryne, Hydrodictyon, Hydrosera, Hydrurus, Hyella, Hymenomonas, Isthmochloron, Johannesbaptistia, Juranyiella, Karayevia, Kathablepharis, Katodinium, Kephyrion, Keratococcus, Kirchneriella, Klebsormidium, Kolbesia, Koliella, Komarekia, Korshikoviella, Kraskella, Lagerheimia, Lagynion, Lamprothamnium, Lemanea, Lepocinclis, Leptosira, Lobococcus, Lobocystis, Lobomonas, Luticola, Lyngbya, Malleochloris, Mallomonas, Mantoniella, Marssoniella, Martyana, Mastigocoleus, Gastogloia, Melosira, Merismopedia, Mesostigma, Mesotaenium, Micractinium, Micrasterias, Microchaete, Microcoleus, Microcystis, Microglena, Micromonas, Microspora, Microthamnion, Mischococcus, Monochrysis, Monodus, Monomastix, Monoraphidium, Monostroma, Mougeotia, Mougeotiopsis, Myochloris, Myromecia, Myxosarcina, Naegeliella, Nannochloris, Nautococcus, Navicula, Neglectella. Neidium, Nephroclamys, Nephrocytium, Nephrodiella, Nephroselmis, Netrium, Nitella, Nitellopsis, Nitzschia, Nodularia, Nostoc, Ochromonas, Oedogonium, Oligochaetophora, Onychonema, Oocardium, Oocystis, Opephora, Ophiocytium, Orthoseira, Oscillatoria, Oxyneis, Pachycladella, Palmella, Palmodictyon, Pnadorina, Pannus, Paralia, Pascherina, Paulschulzia, Pediastrum, Pedinella, Pedinomonas, Pedinopera, Pelagodictyon, Penium, Peranema, Peridiniopsis, Peridinium, Peronia, Petroneis, Phacotus, Phacus, Phaeaster, Phaeodermatium, Phaeophyta, Phaeosphaera, Phaeothamnion, Phormidium, Phycopeltis, Phyllariochloris, Phyllocardium, Phyllomitas, Pinnularia, Pitophora, Placoneis, Planctonema, Planktosphaeria, Planothidium, Plectonema, Pleodorina, Pleurastrum, Pleurocapsa, Pleurocladia. Pleurodiscus, Pleurosigma, Pleurotaenium, Pocillomonas, Podohedra, Polyblepharides, Polychaetophora, Polyedriella, Polyedriopsis, Polygoniochloris, Polyepidomonas, Polytaenia, Polytoma, Polytomella, Porphyridium, Posteriochromonas, Prasinochloris, Prasinocladus, Prasinophyta, Prasiola, Prochlorphyta, Prochlorothrix, Protoderma, Protosiphon, Provasoliella, Prymnesium, Psammodictyon, Psammothidium, Pseudanabaena, Pseudenoclonium, Psuedocarteria, Pseudochate, Pseudoch-Pseudococcomyxa, aracium Pseudodictyosphaerium, Pseudokephyrion, Pseudoncobyrsa, Pseudoquadrigula, Pseudosphaerocystis, Pseudostaurastrum, Pseudostaurosira, Pseudotetrastrum, Pteromonas, Punctastruata, Pyramichlamys, Pyramimonas, Pyrrophyta, Quadrichloris, Quad-Quadrigula, Radiococcus, Radiofilum, ricoccus, Raphidiopsis, Raphidocelis, Raphidonema, Raphidophyta, Peimeria, Rhabdoderma, Rhabdomonas, Rhizoclonium, Rhodomonas, Rhodophyta, Rhoicosphenia, Rhopalodia, Rivularia, Rosenvingiella, Rossithidium, Roya, Scenedesmus, Scherffelia, Schizochlamydella, Schizochlamys, Schizomeris, Schizothrix, Schroederia, Scolioneis, Scotiella, Scotiellopsis, Scourfieldia, Scytonema, Selenastrum, Selenochloris, Sellaphora, Semiorbis, Siderocelis, Diderocvstopsis, Dimonsenia, Siphononema, Sirocladium, Sirogonium, Skeletonema, Sorastrum, Spermatozopsis, Sphaerellocystis, Sphaerellopsis, Sphaerodinium, Sphaeroplea, Sphaerozosma, Spiniferomonas, Spirogyra, Spirotaenia, Spirulina, Spondylomorum, Spondylosium, Sporotetras, Spumella, Staurastrum, Stauerodesmus, Stauroneis, Staurosira, Staurosirella, Stenopterobia, Stephanocostis, Stephanodiscus, Stephanoporos, Stephanosphaera, Stichococcus, Stichogloea, Stigeoclonium, Stigonema, Stipitococcus, Stokesiella, Strombomonas, Stylochrysalis, Stylodinium, Styloyxis, Stylosphaeridium, Surirella, Sykidion, Symploca, Synechococcus, Synechocystis, Synedra, Synochromonas, Synura, Tabellaria, Tabularia, Teilingia, Temnogametum, Tetmemorus, Tetrachlorella, Tetracyclus, Tetradesmus, Tetraedriella, Tetraedron, Tetraselmis, Tetraspora, Tetrastrum, Thalassiosira, Thamniochaete, Thorakochloris, Thorea, Tolypella, Tolypothrix, Trachelomonas, Trachydiscus, Trebouxia, Trentepholia, Treubaria, Tribonema, Trichodesmium, Trichodiscus, Trochiscia, Tryblionella, Ulothrix, Uroglena, Uronema, Urosolenia, Urospora, Uva, Vacuolaria, Vaucheria, Volvox, Volvulina, Westella, Woloszynskia, Xanthidium, Xanthophyta, Xenococcus, Zygnema, Zygnemopsis, and Zygonium.

[0075] Green non-sulfur bacteria include but are not limited to the following genera: *Chloroflexus, Chloronema, Oscillochloris, Heliothrix, Herpetosiphon, Roseiflexus,* and *Thermomicrobium*

[0076] Green sulfur bacteria include but are not limited to the following genera: *Chlorobium, Clathrochloris*, and *Prosthecochloris*.

[0077] Purple sulfur bacteria include but are not limited to the following genera: Allochromatium, Chromatium, Halochromatium, Isochromatium, Marichromatium, Rhodovulum, Thermochromatium, Thiocapsa, Thiorhodococcus, and Thiocystis.

[0078] Purple non-sulfur bacteria include but are not limited to the following genera: *Phaeospirillum, Rhodobaca, Rhodobacter, Rhodomicrobium, Rhodopila, Rhodopseudomonas, Rhodothalassium, Rhodospirillum, Rodovibrio, and Roseospira.*

[0079] Aerobic chemolithotrophic bacteria include but are not limited to nitrifying bacteria such as *Nitrobacteraceae* sp., *Nitrobacter* sp., *Nitrospira* sp., *Nitrosococcus* sp., *Nitrosospira* sp., *Nitrosolobus* sp., *Nitrosovibrio* sp.; colorless sulfur bacteria such as, *Thiovulum* sp., *Thiobacillus* sp., *Thiomicrospira* sp., *Thiosphaera* sp., *Thermothrix* sp.; obligately chemolithotrophic hydrogen bacteria such as *Hydrogenobacter* sp., iron and manganese-oxidizing and/or depositing bacteria such as *Siderococcus* sp., and magnetotactic bacteria such as *Aquaspirillum* sp.

[0080] Archaeobacteria include but are not limited to methanogenic archaeobacteria such as Methanobacterium sp., Methanobrevibacter sp., Methanothermus sp., Methanococcus sp., Methanomicrobium sp., Methanospirillum sp., Methanogenium sp., Methanosarcina sp., Methanolobus sp., Methanothrix sp., Methanococcoides sp., Methanoplanus sp.; extremely thermophilic Sulfur-Metabolizers such as Thermoproteus sp., Pyrodictium sp., Sulfolobus sp., Acidianus sp. and other microorganisms such as, Bacillus subtilis, Saccharomyces cerevisiae, Streptomyces sp., Ralstonia sp., Rhodococcus sp., Corynebacteria sp., Brevibacteria sp., Mycobacteria sp., and oleaginous yeast.

[0081] HyperPhotosynthetic conversion can require extensive genetic modification; in preferred embodiments the parental photoautotrophic organism can be transformed with exogenous DNA.

[0082] Preferred organisms for HyperPhotosynthetic conversion include: Arabidopsis thaliana, Panicum virgatum, Miscanthus giganteus, and Zea mays (plants), Botryococcus braunii, Chlamydomonas reinhardtii and Dunaliela salina (algae), Synechococcus sp PCC 7002, Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, and Thermosynechococcus elongatus BP-1 (cyanobacteria), Chlorobium tepidum (green sulfur bacteria), Chloroflexus auranticus (green non-sulfur bacteria), Chromatium tepidum and Chromatium vinosum (purple sulfur bacteria), Rhodospirillum rubrum, Rhodobacter capsulatus, and Rhodopseudomonas palusris (purple non-sulfur bacteria).

[0083] Yet other suitable organisms include synthetic cells or cells produced by synthetic genomes as described in Venter et al. US Pat. Pub. No. 2007/0264688, and cell-like systems or synthetic cells as described in Glass et al. US Pat. Pub. No. 2007/0269862.

[0084] Still, other suitable organisms include microorganisms that can be engineered to fix carbon dioxide bacteria such as Escherichia coli, Acetobacter aceti, Bacillus subtilis, yeast and fungi such as Clostridium ljungdahlii, Clostridium thermocellum, Penicillium chrysogenum, Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pseudomonas fluorescens, or Zymomonas mobilis.

[0085] A common theme in selecting or engineering a suitable organism is autotrophic fixation of CO₂ to products. This would cover photosynthesis and methanogenesis. Acetogenesis, encompassing the three types of CO₂ fixation; Calvin cycle, acetyl CoA pathway and reductive TCA pathway is also covered. The capability to use carbon dioxide as the sole source of cell carbon (autotrophy) is found in almost all major groups of prokaryotes. The CO2 fixation pathways differ between groups, and there is no clear distribution pattern of the four presently-known autotrophic pathways. Fuchs, G. 1989. Alternative pathways of autotrophic CO₂ fixation, p. 365-382. In H. G. Schlegel, and B. Bowien (ed.), Autotrophic bacteria. Springer-Verlag, Berlin, Germany. The reductive pentose phosphate cycle (Calvin-Bassham-Benson cycle) represents the CO2 fixation pathway in almost all aerobic autotrophic bacteria, for example, the cyanobacteria.

[0086] Additional inorganic carbon sources such as bicarbonate are also contemplated.

Propagation of Selected Microoganisms

[0087] Methods for cultivation of photosynthetic organisms in liquid media and on agarose-containing plates are well known to those skilled in the art (see, e.g., websites associated with ATCC, and with the Institute Pasteur). For example, Thermosynechococcus elongatus BP-1 (available from the Kazusa DNAResearch Institute, Japan) is propagated in BG11 medium supplemented with 20 mM TES-KOH (pH 8.2) as described [Iwai M, Katoh H, Katayama M, Ikeuchi M. "Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1." Plant Cell Physiol (2004). 45(2):171-175)]. Typically, cultures are maintained at 50° C. and bubbled continuously with 5% CO2 under a light intensity of 38 μmol photons/m2/ s. T. elongatus BP-1 can also be grown in A⁺ medium. To date, however, thermophiles have not been suitable host cells for recombinant expression because of the difficulties associated in their transformation.

Production of Carbon-Based Products of Interest

[0088] Herein is disclosed a method for transforming a thermophilic cyanobacterium. It is desirable for the host cell to achieve increased transformation efficiency and, thus, is optimized for use in a genetic system for production of various carbon-based products of interest.

[0089] In one embodiment, such a carbon-based product of interest is ethanol. In a preferred embodiment, the host cell produces commercial yields of ethanol. Ethanol has various commercial applications including use as a solvent, antiseptic, rocket propellant, renewable fuel source and as a base compound for the manufacture of other industrially important organic compounds. Therefore, it is desirable to increase the efficiency of the process whereby an organism is optimized for use in a genetic system for clean and efficient ethanol production.

[0090] Natural metabolic pathways for producing ethanol through fermentative processes are commonly found in

plants, yeast and various fungi, while being less common in bacteria and entirely absent in animals. The enzyme activities required for the pyruvate decarboxylase pathway for producing ethanol are: pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1 or EC 1.1.1.2). Pyruvate decarboxylase (PDC), only rarely found in bacteria, converts pyruvate to acetaldehyde by chemical reduction with NADH, with acetaldehyde also having important industrial applications. Alcohol dehydrogenase (ADH), more commonly found in a diverse array of bacterial organisms, converts acetaldehyde to ethanol. It has been demonstrated that an ethanol production metabolic pathway utilizing PDC and ADH can be engineered into microorganisms for the production of ethanol from nutrient rich growth media (Bräu and Sahm (1986) Arch. Microbiol. Vol. 144:296-301; U.S. Pat. No. 5,000,000; U.S. Pat. No. 5,028,539). Ethanol can then be isolated and used for other industrial applications as well as an alternative fuel source.

[0091] Accordingly, the invention includes improved constructs which may be utilized to more efficiently insert into a host cell genes such as those for expression of ADH and PDC.

[0092] In one embodiment, the invention includes producing ethanol using genetically engineered host cells into which genes for expression of ADH and PDC have been inserted by the improved constructs of the invention.

[0093] In alternative embodiments, methods for producing biodiesel are disclosed comprising: preparing a heterologous DNA sequence operably linked to an expression vector; transforming a thermophilic cyanobacterium host with said vector; and culturing said host. The thermophilic host may comprise various known pathways or be engineered to express synthetic pathways.

Isolated or Recombinant Nucleic Acid Molecules

[0094] In various embodiments, the thermophilic host is suitable for recombinant expression of polynucleotides. Improved constructs and methods for increasing transformation efficiency of thermophilic host cells for the production of carbon-based products of interest are disclosed.

[0095] Accordingly, the present invention provides isolated or recombinant nucleic acid molecules for the transformation of host cells more efficiently.

[0096] In one embodiment the nucleic acid molecule includes a gene or recombinant nucleic acid molecule operably linked to regulatory sequences including, but not limited to, promoter sequences, terminator sequences and/or artificial ribosome binding sites (RBSs).

[0097] The regulatory sequence may be comprised of nucleic acid sequences which modulate, regulate or otherwise affect expression of other nucleic acid sequences. In one embodiment, a regulatory sequence can be in a similar or identical position and/or orientation relative to a nucleic acid sequence as observed in its natural state, e.g., in a native position and/or orientation. For example, a gene of interest can be included in a recombinant nucleic acid molecule or recombinant vector operably linked to a regulatory sequence which accompanies or is adjacent to the gene of interest in the natural host cell, or can be adjacent to a different gene in the natural host cell, or can be operably linked to a regulatory sequence from another organism. Regulatory sequences operably linked to a gene can be from other bacterial regulatory sequences, bacteriophage regulatory sequences and the like.

[0098] In one embodiment, a regulatory sequence is a sequence which has been modified, mutated, substituted, derivated, deleted, including sequences which are chemically synthesized. Preferably, regulatory sequences include promoters, enhancers, termination signals, anti-termination signals and other expression control elements that, for example, serve as sequences to which repressors or inducers bind or serve as or encode binding sites for transcriptional and/or translational regulatory polypeptides, for example, in the transcribed mRNA (see Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). Regulatory sequences include promoters directing constitutive expression of a nucleotide sequence in a host cell, promoters directing inducible expression of a nucleotide sequence in a host cell and promoters which attenuate or repress expression of a nucleotide sequence in a host cell. Regulating expression of a gene of interest also can be done by removing or deleting regulatory sequences. For example, sequences involved in the negative regulation of transcription can be removed such that expression of a gene of interest is enhanced. Preferably, promoters include native promoters, surrogate promoters and/or bacteriophage promoters.

[0099] In one embodiment, a promoter is associated with a biochemical housekeeping gene or a promoter associated with an ethanologenic pathway. In another embodiment, a promoter is a bacteriophage promoter. Other promoters include tef (the translational elongation factor (TEF) promoter) which promotes high level expression in *Bacillus* (e.g. *Bacillus subtilis*). Additional advantageous promoters, for example, for use in Gram positive microorganisms include, but are not limited to, the amyE promoter or phage SP02 promoters. Additional advantageous promoters, for example, for use in Gram negative microorganisms include, but are not limited to tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5, T3, gal, trc, ara, SP6, λ -p_R or λ -p_L. A preferred promoter for use in Gram negative microorganisms is λ phage cI constitutive promoter.

[0100] In another embodiment, a recombinant nucleic acid molecule includes a transcription terminator sequence or sequences. Typically, terminator sequences refer to the regulatory sequences which serve to terminate transcription of a gene. Terminator sequences (or tandem transcription terminators) can further serve to stabilize mRNA (e.g., by adding structure to mRNA), for example, against nucleases.

[0101] In another embodiment, a recombinant nucleic acid molecule or recombinant vector has sequences allowing for detection of the vector containing sequences (i.e., detectable and/or selectable markers), for example, sequences that overcome auxotrophic mutations, for example, ura3 or ilvE, fluorescent markers, and/or calorimetric markers (e.g., lacZ/ β -galactosidase), and/or antibiotic resistance genes (e.g., htk, bla or tet).

[0102] Exemplary sequences are found in Table 3. In a further embodiment, the present invention provides a nucleic acid molecule and homologs, variants and derivatives of the sequences in Table 3 comprising or consisting of a sequence which is a variant of one of the sequences in Table having at least 80% identity to one of the sequences in Table 3. The nucleic acid sequence can be preferably 80%, 81%-85%, 90%-95%, 96%-98%, 99%, 99.9% or even higher identity to one of the sequences in Table 3.

[0103] The present invention also provides nucleic acid molecules that hybridize under stringent conditions to the above-described nucleic acid molecules. As defined above, and as is well known in the art, stringent hybridizations are performed at about 25° C. below the thermal melting point (T_m) for the specific DNA hybrid under a particular set of conditions, where the T_m is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. Stringent washing is performed at temperatures about 5° C. lower than the T_m for the specific DNA hybrid under a particular set of conditions.

[0104] Nucleic acid molecules comprising a fragment of any one of the above-described nucleic acid sequences are also provided. These fragments preferably contain at least 20 contiguous nucleotides. More preferably the fragments of the nucleic acid sequences contain at least 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or even more contiguous nucleotides.

[0105] The nucleic acid sequence fragments display utility in a variety of systems and methods. For example, the fragments may be used as probes in various hybridization techniques. Depending on the method, the target nucleic acid sequences may be either DNA or RNA. The target nucleic acid sequences may be fractionated (e.g., by gel electrophoresis) prior to the hybridization, or the hybridization may be performed on samples in situ. One of skill in the art will appreciate that nucleic acid probes of known sequence find utility in determining chromosomal structure (e.g., by Southern blotting) and in measuring gene expression (e.g., by Northern blotting). In such experiments, the sequence fragments are preferably detectably labeled, so that their specific hybridization to target sequences can be detected and optionally quantified. One of skill in the art will appreciate that the nucleic acid fragments may be used in a wide variety of blotting techniques not specifically described herein.

[0106] It should also be appreciated that the nucleic acid sequence fragments disclosed herein also find utility as probes when immobilized on microarrays. Methods for creating microarrays by deposition and fixation of nucleic acids onto support substrates are well known in the art. Reviewed in DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet. 21(1)(suppl):1-60 (1999); Microarray Biochip: Tools and Technology, Schena (ed.), Eaton Publishing Company/BioTechniques Books Division (2000) (ISBN: 1881299376), the disclosures of which are incorporated herein by reference in their entireties. Analysis of, for example, gene expression using microarrays comprising nucleic acid sequence fragments, such as the nucleic acid sequence fragments disclosed herein, is a wellestablished utility for sequence fragments in the field of cell and molecular biology. Other uses for sequence fragments immobilized on microarrays are described in Gerhold et al., Trends Biochem. Sci. 24:168-173 (1999) and Zweiger, Trends Biotechnol. 17:429-436 (1999); DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet. 21(1)(suppl):1-60 (1999); Microarray Biochip: Tools and Technology, Schena (ed.), Eaton Publishing Company/ BioTechniques Books Division (2000) (ISBN: 1881299376), the disclosures of each of which is incorporated herein by reference in its entirety.

Vectors

[0107] Also provided are vectors, including expression vectors, which comprise the above nucleic acid molecules, as

described further herein. In a first embodiment, the vectors include the isolated nucleic acid molecules described above. In an alternative embodiment, the vectors include the above-described nucleic acid molecules operably linked to one or more expression control sequences.

Examples

Example 1

Construction of Plasmids

[0108] The plasmids were constructed by standard molecular cloning techniques. Each comprises a ~4 kb upstream homology region (UHR), a ~4 kb downstream homology region (DHR), and a thermostabilized kanamycin resistance cassette in between. The UHR-DHR pair for a given plasmid correspond to the desired integration locus on the *Thermosynechococcus elongatus* BP-1 chromosome.

[0109] Plasmid pJB825 comprises: a 4.1 kb UHR for integration at site TS1 (Onai K et al. (2004). Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Molec Genet and Genom 271:50-59), corresponding to the junction between base pairs 834231 and 834232 of the Thermosynechococcus elongatus BP-1 (JCC3) genome (GenBank NC 004113); synthetic rho-independent transcriptional terminator (Nassal M et al. (1987). Structurefunction studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem 262:9264-9270) designed to minimize transcription into the TS1 UHR region upon integration; λ phage a constitutive promoter (SEQ ID:3), active in both E. coli and Thermosynechococcus elongatus BP-1; coding sequence of the htk gene (kanhtk) encoding a highly thermostable kanamycin nucleotidyltransferase derived from plasmid pUB100 (Hoseki J et al. (1999)) (SEQ ID: 4). Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951-956; GenBank AB121443); Tn10 rho-independent transcriptional terminator (Hillen W & Schollmeier K (1983). Nucleotide sequence of the Tn10 encoded tetracycline resistance gene. Nucleic Acids Res 11:525-539) designed to minimize transcription into the TS1 downstream homology region (DHR) region upon integration; and 4.1 kb DHR for integration at site TS1. The sequence of plasmid pJB825 is disclosed as SEQ ID: 1 in Table 3.

[0110] Plasmid pJB826 comprises 4.6 kb UHR for integration at site TS4 (Onai K et al. (2004). Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Molec Genet and Genom 271:50-59), corresponding to the junction between base pairs 483708 and 483709 of the Thermosynechococcus elongatus BP-1 genome (GenBank NC 004113); synthetic rho-independent transcriptional terminator (Nassal M et al. (1987). Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterioopsin and its expression in Escherichia coli. J Biol Chem 262:9264-9270) designed to minimize transcription into the TS1 UHR region upon integration; λ phage a constitutive promoter, active in both E. coli and Thermosynechococcus elongatus BP-1; coding sequence of the htk gene (kanhtk) encoding a highly thermostable kanamycin nucleotidyltransferase derived from plasmid pUB100 (Hoseki J et al. (1999). Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951-956; GenBank AB121443); Tn10 rho-independent transcriptional terminator (Hillen W & Schollmeier K (1983). Nucleotide sequence of the Tn10 encoded tetracycline resistance gene. Nucleic Acids Res 11:525-539) designed to minimize transcription into the TS4 DHR region upon integration; and a 4.1 kb DHR for integration at site TS4. The sequence of plasmid pJB826 is disclosed as SEQ ID: 2 in Table 3.

Example 2

Transformation of Host Cell with Plasmids

[0111] Thermosynechococcus elongatus BP-1 was transformed with pJB825 and pJB826 using the following protocol. 400 ml Thermosynechococcus elongatus BP-1 in B-HEPES medium was grown in a 2.81 Fernbach flask to an OD₇₃₀ of 1.0 in an Infors Multritron II shaking photoincubator (55° C.; 3.5% CO₂; 150 rpm). For each transformation, 50 ml cell culture was pelleted by centrifugation for 20 min (22° C.; 6000 rpm). After removing the supernatant, the cell pellet was resuspended in 500 µl B-HEPES and transferred to a 15 ml Falcon tube. To each 500 µl Thermosynechococcus elongatus BP-1 cell suspension (OD730 of ~100), 25 µg undigested pJB825/pJB826 (or no DNA) was added, having been isolated from E. coli NEB 5-alpha (New England Biolabs) using a QIAprep Spin Miniprep Kit (QIAGEN). The cell-DNA suspension was incubated in a New Brunswick shaking incubator (45° C.; 250 rpm) in low light (~3 µmol photons m⁻² s¹). Following this incubation, the cell-DNA suspension was made up to 1 ml by addition of B-HEPES, mixed by gentle vortexing with 2.5 ml of molten B-HEPES 0.82% top agar solution equilibrated at 55° C., and spread out on the surface of a B-HEPES 1.5% agar plate (50 ml volume). Plates were left to sit at room temperature for 10 min to allow solidification of the top agar, after which time plates were placed in an inverted position in a Percival photoincubator and left to incubate for 24 hr (45° C.; 1% CO₂; 95% relative humidity) in low light (7-12 μmol photons m⁻² s¹). After 24 hr, the plates were underlaid with 300 μl of 10 mg/ml kanamycin so as to obtain a final kanamycin concentration of 60 μg/ml following complete diffusion in the agar. Underlaid plates were placed back in the Percival incubator and left to incubate (45° C.; 1% CO₂; 95% relative humidity; 7-12 μmol photons m⁻² s¹) for twelve days. At this time, fifteen kanamycin-resistant colonies were observed on the plate corresponding to *Thermosynechococcus elongatus* BP-1 transformed with pJB825, and one kanamycin-resistant colony was observed on the plate corresponding to *Thermosynechococcus elongatus* BP-1 transformed with pJB826. No colonies were observed on the minus DNA transformation plate.

Example 3

Verifying Transformation of Host Cells by Plasmids

[0112] Four putative *Thermosynechococcus elongatus* BP-1/pJB825 transformant colonies and the single putative *Thermosynechococcus elongatus* BP-1/pJB826 were grown in 6 ml B-HEPES+60 µg/ml kanamycin, along with a control colony of *Thermosynechococcus elongatus* BP-1 in B-HEPES, in an Infors Multritron II shaking photoincubator (45° C.; 2% CO₂; 150 rpm). Genomic DNA was isolated from 1.5 ml of each of the six cultures using the MasterPure DNA Purification Kit (Epicentre).

[0113] Each of the six different genomic DNA was queried by PCR using six different primer pairs (Table 1) using Phusion Hot Start High-Fidelity DNA Polymerase (New England Biolabs). For junctions involving a homology region and the kan huk coding sequence, the homology region primer was selected such that it was outside the ~4 kb homology sequence used in pJB825/pJB826. For wild-type junctions, primers were inside the UHR and DHR sequences of pJB825/pJB826. Primers are denoted in the 5' to 3' orientation. PCR products were electrophoresed on a 0.7% agarose/1×TBE gel versus 1 kb ladder (New England Biolabs) (FIG. 1).

TABLE 1

				ted amplicon gth(bp) if
Junction queried	n Forward primer ^b	Reverse $primer^b$	Wild- type	Segregated recombinant
wild- type TS:		GATTCATCGCTTTGCAGATGTC	958	1943
TS1- UHR: kan ^{hik}	TCTCCAGCAATTTCTCAAGCAG	TCAGTCTGACGACCAAGAGAGC	na	4543
kan ^{hik:} TS1- DHR	AAGCAACCAGATCTTCCTCCAG	GGGACTGCCCACCTACAGTTAC	na	4521
wild- type TS4		GTGTTGAGATTCTGCACCAAGG	1080	2069
TS4- UHR: kan ^{hik}	GAGATTCACGTCGAACTCATGG	ATCCACCTGGATCATAAATCGG	na	5179
kan ^{hik:} TS4- DHR	AAGCAACCAGATCTTCCTCCAG	GCAATACATCCTGCATCTGCTC	na	4853

[0114] FIG. 1 shows a 0.7% agarose gel of the 36 PCR reactions involving the six PCR primer pairs described in Table 1 and the six genomic DNA templates derived from strains JCC3, the one candidate JCC3 TS4::kan (pJB826) transformant, and the four candidate JCC3 TS1::kan transformants #1-#4 (pJB825)

[0115] The data presented in FIG. 1a indicate that the candidate segregated *Thermosynechococcus elongatus* BP-1 TS4::kan (pJB826) transformant is authentic as it gives a 2.1 kb band with the wild-type TS4 junction primer pair, a 5.2 kb band with the TS4-UHR: kan htt. junction primer pair, and 4.9 kb band with the kan htt. TS4-DHR primer pair.

[0116] The data presented in FIG. 1b indicate that the candidate segregated *Thermosynechococcus elongatus* BP-1 TS1::kan #1 (pJB825) transformant is authentic as it gives a 2.0 kb band with the wild-type TS1 junction primer pair, a 4.5 kb band with the TS1-UHR: kan^{htk} junction primer pair, and 4.5 kb band with the kan^{htk}:TS1-DHR primer pair.

Example 4

Preparation of Ethanologen Constructs

[0117] Starting with plasmids pJB825 and pJB826 as described in Example 1, ethanologen constructs were prepared.

[0118]The genes for ethanol production, including pyruvate decarboxylase from Zymomonas mobilis (pdc_{Zm}) and alcohol dehydrogenase from Moorella sp. HUC22-1 $(adhA_{M})$, were cloned such that each gene was oriented in a divergent orientation and expressed under the control of a unique promoter. The divergent orientation means that the two genes are transcribed in opposite directions. In one configuration, expression of pdcZm and adhAM were driven by λ phage cI ("PcI") and pEM7 and in another expression was driven by PcI and PtRNA Glu. Central to the pdcZm and adhA gene was KmR, a gene conferring resistance to kanamycin. FIG. 2 shows a diagram of the pJB825 ethanologen constructs and the divergent orientation of the pyruvate decarboxylase and alcohol dehydrogenase genes. A and B are the promoters for the genes. FIG. 2a illustrates a construct where KmR is oriented in the same direction as pdc_{Zm} and FIG. 2b illustrates a construct where KmR is oriented in the same direction as $\mathrm{adh} \mathbf{A}_{M^{\boldsymbol{\cdot}}}$

[0119] In the pJB826 ethanologen constructs, the pyruvate decarboxylase from $Zymobacter\ palmae\ (pdc_{Zp})$ and alcohol dehydrogenase from Moorella sp. HUC22-1 (adh A_M), were cloned such that the genes were in the same orientation. They were expressed either by a single promoter driving expression of both genes, or a unique promoter driving expression of each gene separately. FIG. 3 shows a diagram of pJB826 ethanologen constructs. FIG. 3a illustrates an embodiment in which both pdc_{Zp} and $adhA_M$ are driven by the same promoter, A. In one embodiment, the single promoter is PaphII. FIG. 3b illustrates an embodiment in which pdc_{Zp} and $adhA_M$ are driven by separate promoters, A and B. In one embodiment A is PaphII or Pcpcb and B is PcI.

Example 5

Production of Ethanol

[0120] JCC3 cells were grown in 800 ml B-HEPES medium in a 2-L baffled Ehrlenmeyer flask at 45 C, 100 uE, $150 \, \text{rpm}$ to an OD $_{730}$ of 1.6. The cells were then concentrated by centrifugation and resuspended in a total of 6 ml

B-HEPES. Five hundred ml of concentrated JCC3 recipient cells were transferred into a 15-ml culture tube for each transformation. Transforming DNA as prepared in Example 4 (approx 60 μg in 800 μl) was added to the recipient cells and the transformation mix was incubated at 45 C in the dark for 4 hours. After 4 hours, 5 ml of B-HEPES medium was added to the transformation mix and the cultures incubated at 45 C, 100 μE at 150 rpm in an atmosphere of 2% CO₂. After 24 hrs incubation, 500 μl of overnight culture was transferred to 1.5-ml microcentrifuge tube and centrifuged for 3 minutes at 13,000 RPM. The supernatant was transferred to a clean microcentrifuge tube. Ethanol and acetaldehyde concentrations were determined by GC-FID. The resulting concentrations of ethanol and acetaldehyde are show in Table 2.

TABLE 2

Transforming DNA	Acetal- dehyde (mg/L)	Ethanol (mg/L)
No DNA	0.35	7.3
pJB826 (vector-only control)	0.2	77.7
pJB825_PEM7_pdcZm_Km_PcI_adhAM (SEQ ID NO: 6)	1.28	13214.8
pJB825_PcI_pdcZm_Km_PEM7_adhAM (SEQ ID NO: 5)	3.14	15628.1
pJB825_PtRNAglu_pdcZm_Km_PcI_adhAM (SEQ ID NO: 8)	3.31	15090.9
pJB825_PcI_pdcZm_Km_PtRNAglu_adhAM (SEQ ID NO: 7)	3.46	15752.1
pJB826_PaphII_pdcZp_PcI_adhAM (SEO ID NO: 9)	2.39	1729.5
pJB826_Pcpcb_pdcZp_PcI_adhAM (SEQ ID NO: 10)	0.77	1317.1
pJB826_PaphII_pdcZp_adhAM (SEQ ID NO: 11)	0.84	2091.1

TABLE 3

Informal Sequence Listing

SEO ID: 1 TGGGAGTCAATAAACCCGATGTGCGTTGGATTTGCCACTACCAGCCGC CCCTGCAACTCAGTGAATATCTCCAAGAGGTGGGACGCGCTGGGCGAG ATGGCGAAGCGCACAGGCCCTGGTTTTGGTGAGCGATCGCTGGGGCT ${\tt TGGATCGCGAAGATCAACAGCGTTGGTCTTTTTTTCAGCACCAAAGTC}$ AAGACACCTACAATCGCGCCATGGCACTTCAGACGCAGCTGCCCCTCC AGGGTAATCTGCAGCAACTGCGGCAACACTTTCCTGAAGTGGAATTGA CCCTGGCATTACTGCATCAACAGGGGGCCCTCCGCTGGCAAGATCCCT ${\tt ACCCTCAAGAACAGTTGATGCAAAAGTTCCTCTATCACCGGGGCTGCC}$ $\tt GCTGGCAGTTTCTCCTCCAAGCCTTTGGTTTTGCCACTGAGGCAAGGG$ ${\tt GATTCCACTGTGGCCATTGCGATCGCTGTCGGCCGCCGCACCGCTCCC}$ $\tt GCAAAATACCGTAAATTGCCAGCGCTGTATCACTGGAATATTGGGTAC$ ACTGGCACATAGAACGGTCGCTTTACCATTGGTAGGCAAAAGTTTCTC AGCAGTCATTCTGTTGCCGCAAGGTAGGGGTTGCAGGCATGGGGCTAC ${\tt TACAAGTTGAGGAAATTCGCGAAGCACTTCAAGATGTGCTTTCAGAAC}$ ACGCCCTTGTTGTGCAAGTTAATCAGTTTCGCAACCAATTAAACATTA ${\tt TTTTGAACAAGCCCCCGGCACCGTTGCCCATTATTCTGCCCTAGCGG}$ ${\tt ATTTTCTCAAGTCGCGCTTGGGACAGTTTCATCTCAATGATATTGACC}$ GCATTAAAATAATTGGCCGCATACAGGGTTCGCCTAAACCCGATTGGG AAGAGGTCATTGATCTACGTCCCCCAACCCAGCCCTAGCTGCCCCTG ${\tt TGTATGCTTCTTGCCCCGTGGGTGGTGGCGATCGCTGCTTGGCTTTG}$ TCAGTTTACTGGTGATCTTTAGCTATCACCTTGGTCAGTAGCAGCAAC ${\tt AGCAACGGCTGTAGCCGTTGATCGAAGGTTCCTTTGGTCAAAAGGGCG}$ ${\tt TCGTGATGACGGACTTTAAGTGGCACATTGAGGGTGGTACAGGGTTTA}$ $\tt TTGTCGGGGTTCTTAAAAACTACAGTAAAGGGTATTTTCGCTTAGTTC$ $\tt AGGCGGACTTTGAACTCTTTGACCAAGGCGGTCAGCAAGTTGGGACAG$ $\tt TGGCGGTACAGGTTTATGGTCTTGGCCCTGAGGAAACATGGCAATTCC$ $\tt GTGAACTGATAGCCAATCATCAGGCAGTGCGAGCACGGCTGGTAAAAT$ TACAGTCATTCAATTAAGGTTTTTCTAATGTTTAGGTTTCCCCAGCAG GGAGCGACACCGCTTGCTATGGCACACCTTAAAGCCCTGATCTTTGAT

TABLE 3-continued

Informal Sequence Listing

GTCGATGGCACCTTAGCAGATACGGAGCGGGATGGCCATCGTATCGCC TTCAACAAGGCCTTTGCCGCCGCTGGTCTAGATTGGGAATGGGACATT CCCCTCTATGGTCAACTCCTGGCGGTGGCTGGGGGGCAAGGAGCGGATC CGGTATTACCTTGAGTGCTTTCGTCCCGATTGGCCACGTCCCCAAAAT TTGGATGCTCTGATTGCCGATTTACACAAGGCCAAGACCCGCTATTAT ACCGAGCTATTGGCGGCAGGGGCTATTCCCCTGCGGCCGGGGGTGAAA CGGCTCCTCACTGAAGCCCGGGAAGCAGGATTACGTTTGGCGATCGCC ACCACGACCACCCCTGCCAATGTCACCGCACTCCTTGAAAATGCCCTC GCTCCTGATGGCGTCAGTTGGTTTGAGATAATTGCTGCCGGGGATGTA $\tt GTTCCAGCCAAGAAACCCGCGCCCGACATTTACTTCTACACGCTTGAA$ AAGATGCGCCTCTCACCCCAAGAGTGCCTTGCCTTTGAGGATTCCGCC AATGGGATTCAGGCGGCCACTGCCAGTCACCTAGCGACCATTATCACG ATTACCGACTACACCAAGGATCATGATTTTCGTGATGCAGCGCTGGTC $\tt TTGGATTGCTTAGGGGAACCGGACTACCCCTTTCAGGTTCTGCGCGGT$ GAGGTGGGTTGGACAACCTATGTGGATGTCCCCCTATTGCGATCGCTG ${\tt CACCAGCAGTGGACAAGCACGTTGAGTCAGGGATAATTTTCTGGCCGC}$ AGCGTTTTACATTGAATATGACCCCCTTAGTCTGAGGATCAAGGAACA TAATGTACACGATTGATTTAATTCTGCGTCATGTCCCCATGCCCGTCA GCATTGAACGCAAGGAAAGTGCAGCAGCGATGGCAGTCTATCAGCAAA TCAGCAGGCCATGGCCAGTGGTACTCCAACTTTCCTCGAACTGACGTG $\tt CGATCGCCAAGTGGGCAAGAAGTTAACGGTGCTCACCTCAGAAATTGT$ CGCCGTGCAAATGGCGGATAAGGATGCCCCCTCCAGTACTATCAGTCG $\tt TGGGGGATTCTTTGCTCAATTAGTGCAGCAAACCAGCAACTGAGGGAA$ AATGCCTCAATAAAGTTGAGTTTTTCTTGGCAATGCTGATTCTTTGCC $\tt GTTAGGATACTAAGCAGACCGATCCGTAGGGGAACGTGAAGCAAATCC$ TCCCCGTCTGAAAGTCAGGTATCTCTGGTGTGTCGTAATAGGGTTGTC TATGGTGCAGCGTTTCCTGCCGGTTCTGATTTTGTTGGGGTGTAGTTT ${\tt TGGTCTTGCGACCCCTGCCCTTGTGCGTGCCCAAGCCAATCAGGGCTT}$ ${\tt TACGTTTACTTGGGGTGAGGGGCCGAGTGGCCGACAGCAGTTGCAATA}$ GCGGCTGGGTCAGCAGAAAGTGGCCATCAATCGCATTAACATTACCTA ${\tt TCCCGACTACTACAACGGTATTATTGATCCCAAAGGCATTGAGGTGCG}$ CATCGGTGGCGATCGCGGCAATCGCTTCTTCCAATTTCGCCGTGACCC CGGCACCAAAATTCAATTGGCGGAAGTCTCCGTTGATCGCGATAACCG CGTGATTGATATTGTGCCGGCTGAGGTGATTCCCGCCGGAACACCGGT GCAAGTTATTCTCAATAATGTGCGCAACCCTAACAATGGCGGCATGTA CTATTTCAATGCCCGCATTGGCTCCCCTGGAGATATTCCCCTCATGCG CTACGTTGGCACCTGGATTCTCAGCATTGCCAATAACTAAAACCCGTC AAACTCGAGCATTGGTGAGCGGGTTAGCCATTTCTAACTATTGCGGGG CGATCGCCCTAGACTAGTTTTTTGTCTATTATTGCCGGTTCACTCTTT ACACCAGATGCCAGATTCCGTTAGGTCTTCATTCCCCTCCATTTCTCC TCTGCTCACGCCTCTGATGTACCGCCTCGTGGGGGACGTTGTCCTGCG GCGCTATTTTCGTACCCTTGAGGTGCAAGGGCAGGAGCGGGTGCCCCA AAGGGGTCCAGTGATCTTGGCCCCCACCCACCGTTCCCGCTGGGATGC GCTGATTATTCCCTATGTCACTGGGCGGCGGGTGAGTGGGCGCGACCT CTACTACATGGTGTCCCACGATGAGATGTTGGGACTACAGGGCTGGGT GATTGCTCAGTGTGGCGGTTTTCCCGTCAATACCCAAGCGCCTTCGGT GAGTGCGTTGCGTACGGGTGTGGAACTGCTCCGGCAGGGGCAAGCCTT GGTGGTGTTCCCTGAGGGGAATATCTTTCGCGATCGCCAGATTCATCC CCTCAAGCCGGGGTTGGCTCGCTTAGCCCTTCAGGCGGCCCAGCGCTG TGAACAAGCAATCCAGATTCTGCCAATTTTACTCGATTATGCCCAGCC CTACCCACAGTGGGGAAGTGCGGTCAAGGTAATCATTGGGGCTCCCTT GAGTACCGACAATTACGATGCCAGCCGGCCAAAAAGTGCTGCCCAACA ACTGACCAGTGATCTCTTTAGAAGACTTCAGCAGCTCCAAGGGGGGCG $\verb|ATCGCCCCTGTGTTTTGCTTAGACCTCAAACTTCCATCCCCGCGGCCG|$ ${\tt CAAAAAAACGGGCCGGCGTATTATCGCCGGCCCGAGTAACACCGTGC}$ GTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTGCAGGATCCTTT TGCTGGAGGAAAACCATATGAAAGGACCAATAATAATGACTAGAGAAG AAAGAATGAAGATTGTTCATGAAATTAAGGAACGAATATTGGATAAAT $\tt ATGGGGATGATGTTAAGGCAATTGGTGTTTATGGCTCTCTTGGTCGTC$ AGACTGATGGGCCCTATTCGGATATTGAGATGATGTGTTCTGTCAA CAGAGGGAGTAGAGTTCAGCTATGAATGGACAACCGGTGAGTGGAAGG $\tt CGGAAGTGAATTTTTATAGCGAAGAGATTCTACTAGATTATGCATCTC$ GGGTGGAACCGGATTGGCCGCTTACACATGGTCGATTTTTCTCTATTT $\tt TGCCGATTTATGATCCAGGTGGATACTTTGAGAAAGTGTACCAAACTG$ $\tt CTAAATCGGTAGAAGCCCAAAAGTTCCACGATGCGATCTGTGCCCTTA$ ${\tt TCGTAGAAGAGCTGTTTGAATATGCAGGCAAATGGCGTAATATTCGTG}$ $\tt TGCAAGGACCGACAACATTTCTACCATCCTTGACTGTACAGGTGGCAA$ TGGCAGGTGCCATGTTGATTGGTCTGCATCATCGCATCTGTTATACGA ${\tt CAGGTTATGTCCAACTGTGCCAGCTCGTAATGTCTGGTCAACTTTCCG}$ ACCCTGAGAAACTTCTGGAATCGCTAGAGAATTTCTGGAATGGGGTTC

AGGAGTGGGCGGAACGACACGGATATATAGTGGATGTGTCAAAACGCA

TACCATTTTGATGTCTAACCCCCTTCCTTGCCCACAGCTTCGTCGATG

Informal Sequence Listing

GCGCGAAATTTCGGGTAAATATAATGACCCTCTTGATAACCCAAGAGG GCATTTTTTAGGCGCGCCCTAAGCGTCCGTAGGCACAATTAAGGCTTC AAATTGTTGGCGAAGCTGCTCAGTCACTTCCTTGACGGCTTGCCGTGC CCCTTGGCGATCGCGCCGGTACAGAGGCCAATAGCTCTCTAAATTGAG AGGGTCGCCGACACTGAGGCGCACCTGCCGCAAACCCACCAAACGATT GAGATTCGAGCTTTTTCCCTCTAGCCAATCAAATGTGCGCCAGAGAAT CAGCGCGACATCTGCAAAGCGATGAATCGTGAATTTCTCACGGATATA GCTACCCGTAATTGAGGTAAATCGCTCCGCAAGACGCATATGACGCAA TCGCACATTGGCTTCCTCGGCCAACCAATCGGCTAGGCAGCGCTCTAC $\tt GGCCGAAAGTTGTGCCAAATCACTGCGAAACATCCGTTCCCAAGCAGC$ CTGTTCAATGCGTCGGCAGCGACTCACAAAATCGGCACTGGGCTTCAG ${\tt ACCAAAGTAGGACTCTGCCACCACAAGGGCGCTGTTGAGGAGGCGCTG}$ AATTCGCGCTGCCAATTTAGCATTGGCAGAGTCAAAGGGGGGCAGTTC $\tt GGGAAAATCTTGACCATAGGAGGTGGCATAAAAAGCCTCCAGGCGATC$ ${\tt CAAGAGGTGGATCGCTAAATTCAGCAGGCGGCGGTAGAGGTCGTCTGG}$ $\tt CTGGGTACTGTGAGAATCTGTAGGGCACCCAAGGCGGTTCTCCAGTTG$ $\tt CTGAATGCCAATGGGAAGAATGACCACGGGGAGCGATCGCCCCGCCTT$ $\tt GGCTAAATCTTCTAGACACCAAAATCCCAGTTGGGCCACCCCCGGCTC$ $\tt TGCCGCTAGGGGAAATCGTCCTCCGAGAAGTAGCTCCCGCGCTGAGCG$ CAGGGCTTGGCTATCGAGCTTACCGCGCATGATGGAAATCCCCCCCAA $\tt CCGTGAAAAGAGCCAACCAATCTGCGCCCCTGCCCAGAGGGGAATCCC$ GCGATCGTAGAGAAAATAGCCATTTGTCGGCGGACGCAAGGGAATGCC ${\tt CAGCCGCCGTGCTGTTTGCGGCAGTAAATGCCACATCAAATAGCCCAT}$ CACCAACGGATCATCCGTACAGGGATGGCGAAAGGCAATGAGGAGCCG GACCTGTCCCTGCTGAAACTGCTGGTAATAACGGGCAAGGGTCTCCAC $\tt ATTCACCCCTTCAACCCGCTGTAGCCCAAGACCATAGCGAATGTAGAG$ GGGCAGGAGTCTTGCTACTGTCCACCAGACGGGGTAGCTAAACCGCTG $\tt GGGGAGAAAATGCAACGGCGGTTGGGCAGTTGTCACTACACTGGACAT$ TAGGCAAGCTCCTCAGGGCAATGGCTAAACTGAGGCAGTGGCCAACTC CGCAATTAACTGCTCTAACATCGGTTGATCGGCCCAATAGACAGCATT ${\tt ACAAAACTGACAGGTGGCTTCTGCCTTTGCCTCTGTGGCTAGGATATC}$ ${\tt TCTTAATTCTGCCTCCCCTAGGAGCTTGAGTGCCGCTAACATCCGTTC}$ $\tt ATGGGAACAGCCACAGTGGAAGCGCACCATTTGCCGTTGGGGCAAGAT$ TTGTAAATCCATATCCCCTAAGAGTTCCTGAAAGATATCTGGCAGTGT CCGCCCTGCCTGTAGCAGTGGTGTAAAGCCCTTAAGATTGGCCACCCG TTGTTCAAGGGTCGCGATCAGGTGTTCATCATTGGCCGCTTTGGGTAG CACCTGTAACATCAACCCACCGGCGGCAGTCACCCCGGACTCTTCGAC AAAAACACCCAACATCAGGGCGGAGGGGGTTTGCTCTGAGGTGGCGAG GTAGTAGGTGATGTCTTCTGCAATTTCGCCGGAGACTAGCTCCACCGT GCTGGAATAGGGGTAGCCGTAGCCAAGATCGTGGATGACGTAGAGATA TCCCTGATGGCCCACCGCTGCCCCCACATCGAGTTTGCCCTTGGCATT GGGGGGCAGTTCAACACTGGGGTACTGCACATAGCCGCGAACTGTGCC ATCGGCACCAGCATCGGCAAAAATGGTTCCTAGGGGACCGTTGCCCTG AATGCGCACATTCACCCGTGCTTGGGGGCTGTTTGAAACTGGAGGCAAG GATTAAGCCTGCGGCCATGGTTCGTCCCAAGGCCGCTGTGGCCACGTA GGACAGTTGGTGACGTTTGCGGGCTTCATCAGTGAGTTGAGTGGTAAT CACACCTACGGCCCGGATGCCTTCGGCAGCGGCAGTTGCTCGCAACAG AAAATCGGCCATGTTCAACCTACGAAATGTTTTGTTACATTTAGTGTG ACATACTCCCACCGCTGACCAGGGCACAATGGGGCAAAAAACCATCAA TCCTGCCTTTGGTGACCGATCCAGTACAGCCAGCCAGGGCTTAAGACT GGGAAGACCCCTAGCACTGGGGCTAGAAAATTGGCGATGATAGGCAAG ${\tt CAATAGTCATTCAGCGTCCAGTCATTCCGCCTATGGCCCATGCCCCTCA}$ $\tt CTGTCTTGCCTGCCACAACTGTTTTGACAGAAGCGACTCAATTGCCCC$ $\tt AGGGCGGCTTGATTACGGAGATTCCGACGCTGGCGATCGCCCACCGTT$ $\tt TGGCCCAGCAGTTGCGCCGCCATTGGCCCCTTAACGC$ TGATTGATGCGCAATACCAGAGTATCCCCCTGACCCTTGGGGAATTGG ${\tt GAGAGCTGCGCCATCCGGAGCGTGGCTGTCCTTGGGATTTGCAGCAAA}$ $\tt CCCCAACCAGTCTCATTCCCTATGTCCTTGAGGAAGCCTATGAAGTGG$ GAGACCTGTTGCTTCAAGTTGTTCTCCAGAGCCAACTTGCCCAAGAAG $\tt CCGGCCAATTTACCCTTGCTCAAGTCATTCAAAGGATTACCGATAAAC$ TCATCCGCCGCCATCCCCACGTCTTTGGTGAAGTGGCACTCACCACTG $\tt CTCAAGAGGTGCGCGACCAATGGGAGCAAATCAAAGCGGCTGAAAAAG$ ${\tt TCCCACCCTGATGGCCGGCATGAAAATTGGTGAGCGAGCCAGTCGCG}$ $\tt CTGGCCTCGATTGGCCGACGATTAGTGGTGCATGGGAGAAATTTTACG$ $\tt AGGAACTGGCGGAGTTTCAGGAGGCCCTTCTGCAAGGGAATGCTGAGC$ ${\tt AACAGGCAGCGGAATTAGGAGACCTGCTCTTCAGTGTGATTAACCTTG}$ $\tt CCCGCTGGTGCCAACTGGATCCTGTTAATGCCCTGCAACAAACCTACC$

TABLE 3-continued

Informal Sequence Listing

Informal Sequence Listing

CCCTTGAGACGTACACCCTAGAAGAACTAGAAGCCCTCTGGCAACAGG CCAAAGTACAGTTAGCCACCGACAGCGAGGCAACCCCTATGGAGACTG AGGAAGAGGCCTAGTCCGCTGCGGCCCTTGCCACCTTCAGTTCATCGA GATTCCACAGGGGCCCCCCAGCGCCGTGGGCTTGGCGCCAATGACAT GGAGATATTCCTGAGCTAGTCGTTGGGCTTCCGCATAAATTTGCTGCC GTCGTTCCAGATTGAGCTCCTGGGCACCTTGGACATACAGGTCACTGA TGCGCTGCTCCCAGTCAGCGACGACTCGACCCGTAATGGGTGGTTGAT TCGGTGACGGTTGCTGATTGAATGTATGCAAAAGGCCATCCACACGCC ${\tt AGATATTGGCACCGCTATTGGGTTCATTGCCCCCCCAGTAAAGCCGA}$ GGATATGGGCTTCCCACTCTAGGGAATTGGAGAGACGATCCACGAGGG TACCAAAGGCCAAAAATTGCAGATCCACCTGCATGCCGATCGCCCCTA

GGTCCTGCTGAACTTGCGTCG SEQ ID: 2

 ${\tt TCCGCGGGAGGTGTAATGCCGATGGCCCCCTTGCGGAAAACCTATGTT}$ AAAACTCTCAATAACATTCTTGAAAAAGAATTTAAGGGAGTCTATGCA $\tt CTCAAAGTAATCGATGTCCTCAAAAATCCGCAACTGGCTGAGGAAGAT$ AAAATTTTGGCCACGCCTACCCTTGCCAAAGTCCTACCGCCCCCTGTG $\tt CGCCGGATTATTGGGGACTTGTCGAATCGTGAGAAGGTGCTCATTGGC$ TTAGATCTCTTGTATGAAGAGATTGGTGACCAAGCCGAGGATGACTTA $\tt GGCTTGGAATAGGCACAGTCCTTAGAGACTCTCAGTTTAGAATAGCTT$ CTTGGAATTTTTGCGCAATACCGAATCTAAAAATCTTCTATGACAAAC $\tt CTACCGGAACATCAGTCTAGTCCAACGGAGCAGTCCTCTGCGGAAGTC$ AAGAAAATCCCGACGATGATTGAGGGCTTTGACGATATCAGTCATGGG GGACTTCCCCAAGGACGCACCACCTTAGTCAGCGGCACTTCAGGCACA GGGAAGACCCTTTTTGCAGTTCAGTTTCTCTACAATGGCATTACCATT TTTAATGAGCCAGGTATATTTGTTACATTTGAAGAATCCCCCCAAGAT ATTATCAAAAACGCCCTCAGTTTTGGCTGGAACCTGCAAAGTCTGATT GATCAAGGCAAGCTATTTATCCTGGATGCTTCTCCGGATCCCGATGGC ${\tt CAAGAGGTGGCTGACTTTGACTTATCTGCTCTGATTGAGCGCATT}$ CAGTATGCCATTCGCAAATACAAAGCAACCCGGGTCTCCATTGATTCG GTCACAGCAGTGTTCCAGCAATACGATGCGGCCTCCGTGGTGCGGCGG ${\tt GAAATTTTCGCTTGGCTTTTCGCCTCAAGCAACTGGGCGTGACCACG}$ ATTATGACCACTGAGCGGGTAGATGAATACGGCCCTGTGGCGCGTTTT GGTGTTGAGGAGTTTGTCTCCGACAATGTGGTCATTTTGCGGAATGTT CTCGAGGGAGAAAGGCGGCGCGCGCACGGTCGAAATTCTCAAGCTGCGG GGCACCACCACATGAAGGGGGAATATCCCTTTACGATCAACAATGGT ATTAACATCTTCCCGTTGGGGGCCATGCGCTTGACTCAGCGCTCATCG AATGTGCGGGTGTCTTCAGGGGTCAAGACCCTCGACGAGATGTGTGGC GGTGGCTTCTTCAAGGATTCAATTATTTTTGGCCACGGGCGCTACGGGT ACTGGCAAGACGCTCTTGGTCAGTAAATTCTTGGAGACGGGCTGCCAA CAGGGAGAACGAGCCCTGCTGTTTGCCTATGAAGAATCGCGGGCGCAG TTGTCGCGCAATGCCTCCTCTTGGGGTATTGATTTTGAGGAGTTAGAA CGGCGCGGTTTGTTGCGGATTATTTGTGCCTATCCAGAGTCAGCGGGG CTTGAGGATCACCTGCAAATTATCAAGTCGGAGATTGCGGACTTTAAG CCCTCACGGGTGGCGATTGACTCTTTGTCTGCGTTGGCGCGGGGGGTG AGTAACAATGCCTTCCGGCAGTTTGTAATCGGGGTTACTGGATTTGCC AAACAGGAGGAAATCACTGGCTTTTTCACCAACACGACGGATCAGTTT ATGGGGTCCAACTCGATTACCGAGTCCCATATCTCCACAATTACAGAC ACCATTTTGCTGTTGCAGTACGTGGAAATCCGCGGTGAGATGTCGCGG $\tt GCAATTAATGTCTTTAAGATGCGTGGCTCTTGGCACGACAAGGGGGATT$ $\tt CGGGAGTATGTGATCACTGAGAAGGGGGGCAGAAATCCGCGATTCCTTC$ $\tt CGCAACTTTGAGGGGATTATTAGCGGTACCCCCACCCGCATTTCCGTG$ GACGAAAAAACAGAGCTGGCGCGAATTGCCAAGGGGATGCAGGATCTA GAGAGCGAGTAGCCCCATGCAGTTAAACCAAGTTATTGTGGTGCACAA GGCGGGCGATCGCCAGAGCAAGGAATGGGCAGATCGTGCCTCCCGTCA ${\tt ACTACAACAGCGTGGCGCCAATGTGCTGGTAGGGCCTAGTGGGCCTAA}$ GGACAACCCTTACCCCGTCTTTATGGCCTCTGTGACAGAGCCGATTGA ${\tt TCTCGCCGTTGTTCTGGGGGGCGATGGCACCTCCTTAGCAGCGGCACG}$ GGCGGTTTGGGATCGCCTGGAGCGGGATGAGTACGCGATGCAACAGCG ${\tt GATGATGCTGCAAGCCCAGGTTTTTGAAGGGTCAAAGGCTCATCCGGA}$ AGCGGTGGGCGATCGCTACTATGCCCTGAATGAAATGTGCATTAAGCC GGCCTCTGCTGATCGCATGATCACCGCCATCCTCGAGATGGAAATTGA TGGCGATGTTGTGGATCAGTACCAAGGGGATGGGTTGCTGGTGGCCAC GCCCACTGGCTCTACTTGCTATACGGTCGCCGCCAATGGCCCCATTTT $\tt GCATCCAGGGATGGAAGCCCTGGTGGTGACACCCATTTGTCCTTTGAG$ TGTCCTGGCCACCTCCATTTGGCCAGGACAGCGGGTACAGGTGACAAT GGCCGATTGTCAAGCTCGCTTTATCATCCTGCGGGATCACTACTCCTT

TTATCAAACCCTACGGGAGAAGTTAGCCTGGGCAGGGGCACGGATTCC CTATCACAACAATCACCGCAATTAGATCACAACCGCCCCTCCAGAAGG TCTTTATAATTGGGGCATTCCTCACTAAACCCTTGCTATGATTCTCAG TCCCTTTGAACGCGCCGTTCTTGGCCAAGAGGCGGAAGCCCTGGTTGA TCAGTTGTTAGAAATTGGGATTTCCCTCTCTGCCAGTCAATCCCTAGA GGAATTGCTGCATCTGATTCTCACGAAAAGTCGCCAAATCACTGCTAG CGATGCTGGCACGATTTTTCTAGTTCAGCGGGAACGGGCAGTGCTGGA ATTCAAGGCAGCTCAAAACGATAGCGTCACCCTTCCTGAGCAAGTGCA GGACTATACCATACCCCTCACCGCCGATAGCTTGGTGGGCTATGCCGC ${\tt TCTCACGGGGGAATCCCTAAATATTGCCGATGTGTATGCCCTCAAGGG}$ GAGCGAGATGTACCAGTTCAATCGCTCTTTTGATGAAGCCCTCCACTA ${\tt TCGAACCTGTTCGGTGCTGGTGGTGCCGATGCAAAATATTAGCGGTGA}$ GGTGATTGGCGTTCTGCAACTGATTAACCGCAAGCGATCGCCCGATAC $\tt CCGGCTGAGACCAGAAACCAGTGTGGCCCTCACCCAGCCCTATAGTCC$ ${\tt TTGGGAAGAACATATTGTGCGATCGCTGGCCAGCCAAGCGGCGGTGAT}$ ${\tt TATTGAGCGCAATCATCTGCTCGAGAGTATTGAACAGCTCTTTGAGGG}$ ${\tt ATTTATTACCGCTTCAGTTCAAGCCATTGAGACGCGAGATCCAGTCAC}$ $\tt CGCAGGGCATTCGGAACGGGTGGCAGCGCTGACGGTGCGCCTTGCTGA$ ${\tt GATCACCAATGCCACCTCTAGGGGAGTCTTTCGCGATGTTTTCTTTAG}$ $\tt TGGCAAGGTGGGCGTGCCGGAGGCAATTCTCAACAAGCAAAGAAATT$ CTACCCCGAACAGCTAGAGGTGATTCGCCAGCGCTTTGCCCTCGTCCG $\tt CCGCACCCTTGAAATGGAAACGGCTCAAGCCAAAGTCAATTATTTACT$ CTCCCATCCCCATCAGCCCCATACCCCACAACAGCGGTGTCAGTCCTG ${\tt TACTTTTTACGAGACCTCGATCAGCAACTCCAGCAACAACTGCACAC}$ $\tt CCTAGAGGCCTACTGGCAGCTAATTGAGCAGGCCAATGAGCCGCAAAT$ ${\tt TCTTGAGGAGGAACCCCTGGCTCAGCTTCAGGAATTGACCCAGTTTTA}$ ${\tt TTACCGCGGCACTGATGGGGGAACTCCATCCCCTGATCACGGCCAGCGA}$ ${\tt ACTGGAGCAACTCTTGGTGCGGCGGGGCAATCTCACCCAAGGGGAGCG}$ GCGCATGATTGAAGCCCACGTCACCTATACCTACGAGTTTCTCTCGCG CATTCCTTGGACACCCCACCTGAAGAATGTGCCGATCATTGCCTATGG ${\tt TCACCATGAGCGCTTAAATGGCAGTGGCTACCCCCGCGGTATTGGTGC}$ CGCCGAAATTCCCCTACAAACCCAAATGCTGGCGATCGCGGATATTTA CGATGCCCTGACCGCCAAGGATCGCCCCTACAAAAAGAGCCTACCTGT GGATAGGGCCCTAGGGATTTTGTGGCAGGAGGCTAGGGAATTTAAGAT TAATCCTGATCTGGTGGAACTCTTTGAGCAGCAGGAGGTCTTTCGGGT GCTGGGGCACCAGCGCTAGGCGGCCGCAAAAAAAAACGGGCCGGCGTAT TATCGCCGGCCCGAGTAACACCGTGCGTGTTGACTATTTTACCTCTGG CGGTGATAATGGTTGCAGGATCCTTTTGCTGGAGGAAAACCATATGAA AGGACCAATAATAATGACTAGAGAAGAAGAATGAAGATTGTTCATGA AATTAAGGAACGAATATTGGATAAATATGGGGATGATGTTAAGGCAAT TGGTGTTTATGGCTCTCTTGGTCGTCAGACTGATGGGCCCTATTCGGA TATTGAGATGATGTGTTCTGTCAACAGAGGGAGTAGAGTTCAGCTA TGAATGGACAACCGGTGAGTGGAAGGCGGAAGTGAATTTTTATAGCGA AGAGATTCTACTAGATTATGCATCTCGGGTGGAACCGGATTGGCCGCT ${\tt TACACATGGTCGATTTTTCTCTATTTTGCCGATTTATGATCCAGGTGG}$ ATACTTTGAGAAAGTGTACCAAACTGCTAAATCGGTAGAAGCCCAAAA GTTCCACGATGCGATCTGTGCCCTTATCGTAGAAGAGCTGTTTGAATA TGCAGGCAAATGGCGTAATATTCGTGTGCAAGGACCGACAACATTTCT ACCATCCTTGACTGTACAGGTGGCAATGGCAGGTGCCATGTTGATTGG ${\tt TCTGCATCATCGCATCTGTTATACGACGAGCGCTTCGGTCTTAACTGA}$ AGCAGTTAAGCAACCAGATCTTCCTCCAGGTTATGTCCAACTGTGCCA ${\tt GCTCGTAATGTCTGGTCAACTTTCCGACCCTGAGAAACTTCTGGAATC}$ $\tt GCTAGAGAATTTCTGGAATGGGGTTCAGGAGTGGGCGGAACGACACGG$ ${\tt ATATATAGTGGATGTCTAAAACGCATACCATTTTGATGTCTAACCCC}$ $\tt CTTCCTTGCCCACAGCTTCGTCGATGGCGCGAAATTTCGGGTAAATAT$ AATGACCCTCTTGATAACCCAAGAGGGCATTTTTTAGGCGCGCCCTAG ${\tt GGTGGATCGGCGGACGATTGCAAAAACGAGAGTTTCCACAGCGTAGCT}$ $\tt GCCAGCCAATTGGTACAGGTATGGGCAACGATCGCTAAGAGTAAATTA$ TTCGTTGCCACAGCACTATAGGCAAAGAATCCGCCCACAAAGGTAGCC CACAGGGCATAGGGCCACTGCTGCCGCGATCCAGCGTGCAAAATGCCA AAGCACGCAGAACTGCCAATAATCCCTGCCCAGTTGAGCCCCAAACTC GGTAGGAGCACCCCGCGAAAGAGCAGCTCTTCACTAAGGCCGGGCAGA ATGCCAATCCAAAATAGATCAGGCCACAGCAGTGGTGAAAGCACAAGT ${\tt TTCAGGTAGGTATCTGAGGCGTGGCGGTAGGCCGGCCAGAGGCGATAC}$ AAAATGGCGCCAATGCCGGTAATTCCTAGGCAGAGGGCAATGCCTAAA ACCACTGCCCAGACATCCCAGCGCAGCGGCAGCAGTCCCCCAGAAAAG $\tt GGGGTAAATAACCACACCCGCGCCCAAAATCAGCCACAGGATGGCCGTT$ AACGCCATGGCCACTAAGACCTGTGTACGACTCAGAGGCTCATCGGGT $\tt AGGGGGGACTCCTCCATAGGTCTACGCTTTCTGGAACTGACCAAATTG$ GAAGTTATAGACCTCCTCTTTTTTCAGAGATCAATTTCAAATCTGA $\tt GCAAGGGCGGGCCACACAGAGGAGGACATAGCCTTTTTCCCGCAGTTC$ GGGACTCAGCCCCATTGCATCTCCGTGATCCACGGTACCCTCCTGAAT ${\tt TTGGGCCGCACAGGTGGTACATACCCCGGCATTGCAGGAACTCGGAAG}$

TABLE 3-continued

Informal Sequence Listing

ATCAATTCCGGCAGCGGTGGCCGATCGCAGGAGGGGTTTATCGGCACT GGCTTCAAAAGTGTAGGTTTGTCCTTGGTGCAGAATCTCAACACGAAA GGTTTGGGTCATTCTGGCAGTGAGCTATGACGCAACATCTTCCCTATT ATCCCCCTAATCCTCGCGATCGCTGGCTTCCTCGGGGGCAGACTTCAA CCATGCCGGCAAAGGATCAGGAATCGGCACACGCTGGCGGTGGGGCAG TTGCAGGCACATGTGTTGCGTCTGGGCAATGGCTACCCGATCCCCCCC TTCGTTGTAGAGAGTATAGGTCAGTTGAAAACGGCTAGTATCCAGTCT TTGGGGGTCAATGGTCACCCGCAGGCGATCGCCACAGTAGAGGGGTTT CAAAAACCGTATCTGCGCCTCCGTAATCGGCACAATGAGGCCACTGTT $\tt GCTGAAAAATTGCCGCAGATCTACCCCCAATTGGGCAAGGGCATCCTC$ ATAGGCCTCATGGCAAAACCGCAGCAGATTGGCAAAGTAGACTACCCC AGCCGCATCGGTATCGGCAAAATGAACTGTGCGCTGATAGTCGCGCAG GGGTGTTGGATTCATCTATCGTCCTTCCATTGCCATCCCATAGGGTTG ${\tt TCCAACACAAGCCATGGGCAAAAACGCGCCACAGCATTTGTTGTTAAT}$ ATAGGATACAGCTCTTTTGCAACCAATTCCCATCCCTAAACCGATGAG ${\tt TAACAAAGGCAGTTCTGATCTGCGACTTCTTTTAAGCACGCTGGTGAT}$ ${\tt CAGTGGCTTAGTCGCAGGACTGGCCTATTGGCAACTCAGTCAACACTG}$ GACCCGCTCCCCGATCAAAACGCTGGCTCCCCCCTCCACACCCCAAC $\tt CTCAAAGTGGCAAAAAATTGCCCTCGCGATGACCCTGCGGGGCCATGA$ AGATGAGGTGAACGCGATCGCCCTGAGTCCCGATGGCAATTTCCTCGT ${\tt CAGTGCTGGCGACGATCGCAGGCTGTACTTCTGGAACTTGGCTACGGG}$ AACTGCCCTAGGACAAGCCAAAGGTCACACCGACTGGATCTATGCCCT GGTGATGACTCCCGATGGTCAGACGGTGATTAGCGGCAGTAAAGACAA AACCATCAAACTATGGGGGGTGGGCGATCGCCAACTCCAAGCCACCCT CAGTGGCCACCAAGATTTTGTGAATGGCTTAGCCCTCAGTCCCGACGG TCGCACCCTTGCCAGTGCCAGCTATGATCACACCGTCAAACTGTGGAA TGTTCCCAGCCGTCAGGAAATTACTACGCTCAAAGCAAATGAGGGCAT ${\tt CATGCTCAGCGTCGCCATTAGTCGAGATGGGCGTTTTTTAGCCACGGG}$ TGGCGTGGATAAACTCATCCGCATTTGGGATTTGCCCTCCCGCCGACT $\tt CCTGCGCACCCTGGAAGGACACCACTGATGTCAATAGCCTCGCCTT$ CACCCCGACAGCAGCCAACTGGTCAGTGGCAGTGACAAAGATGGTAT AAAACTTTGGAACCTGACCACAGGAGAACTGCAGCAACAGTTTGGCAC TGAGGGCGGCAGGTCTTTAGTGTGGCAGTGAGTCCCGACGGCAGCAC CCTTGCCAGTGGTCACGGCGATCAAACTGTCAAACTTTGGTCCCTCTC $\tt TGGTCAGTTATTGCGGAACCTCAAGGGACACTCTGGCGCTGTCTACAG$ TGTCGTCTTTGGTCAGGATCAACTGATCTCCGCCAGTGAAGACAAAAC ATCAAAGTGTGGCGTCTTTTTCCCGAAACCCCATAGAGAACTCGCGGG CCTCACCTACGGCACAAAAAACGGCTAAGATCCCCAAGAATCTTAGCC ACTGAGAACAACGGCTGGAATTTTTTTTAGCCCACACTTCCCTCTAGCT TCAGGCTCAGCAGCGATCGGCCTCGACTGCAAATTCCATCGGCAATT GATTAAAGACATCGCGACAGAAGCCACTAATCATCATTGAGACGGCAT CTTCAGCGGAAATTCCCCGCTGGGCAAAGTAGAAGAGTTGATCTTCAC CAATTTTCGATGTCGAAGCCTCATGCTCCACCTGGGCAGTGGGGTTTT GCACCTGAATATAGGGGAAGGTATTGGCAGCGGCCGTATCCCCAATGA GCATCGAATCGCATTGGGAGTAGTTGCGTGCCCCTGTGGCCTTGGGGC TGCCCTTAGAGACAATCCTGCTGCGGGTATTTTTCCCAATGTGGATCA TCTTCGTGCCCGTGTCCGCCTGTTGGTAGTGATTGGTGAGGGCAACGG AGTAAAATTCTCCCACGGAGTTATCCCCCACCAAGACACAACTGGGGT ATTTCCAAGTAATGGCAGAACCCGTCTCCACCTGTGTCCAGGAAATCT TGGAATTGCGGCCGAGGCAGAGTCCCCGCTTCGTCACAAAGTTGTAAA TGCCCCCTTTGCCATTTTCATCGCCGGCATACCAGTTTTGCACAGTGG ${\tt AGTATTTGATTTCGGCATTGTCCAGAGCCACCAGCTCCACCACTGCCG}$ AGCTCACGTAGCTCCCGGCATCGGCAATGATCAGGGTGCGCTCAAACT ${\tt GACCCGACTCACCGTTATTGATGCGGAAATAGGTGGATAGCTCCATTG}$ GACAGCGGGTATTCTTGGGAACATAGACGAAGGAGCCATCGGAAAAAA $\tt CTGCGGAGTTCAAGGCAGCATAGAAATTATCGCCAATGGGAACAACAC$ $\tt TGCCTAAGTATTTCTGCACTAACTCGGGATAGTCCTGGAGCGCTTCAG$ AAATGGAGCAAAAAATGATCCCCTGCTTGGCCAACTCCTCGCGGAAGG ${\tt TGGTGGCCACTGACACACTATCGAAAATGGCATCTACGGCTACATTGG}$ ${\tt TGAGCCGCTTTTGCTCTGAAAGGGGAATCCCTAGTTTTTCAAAGGTTT}$ $\tt CCAGCAGAACGGGATCTACTTCATCCAAGCTTTTTAGCTTTTCCTTCT$ GTTTCGGAGCTGAGTAATAGACGATGTCTTGATAATTGATGGGGGGGAT ${\tt AGCTCACCCGTGGCCATTGGGGGCTCGCTCATCTTCAGCCATTGACGAT}$ ${\tt AGGCACGCAGGCGAAACTCCAGCATGAACTCTGGCTCGTTCTTCTTGG}$ $\tt CGGAGATGAGGCGAATAATGTCCTCGTTGAGACCTTTGGGAATGGTTT$

SEQ ID NO: 5
pJB825_PcI_pdc_Km_PEM7_adh
CTAGAGGAGCTTGTTAACAGGCTTTACGGCTGTTGGCGGCAGCAACGCG
CTTACCCCATTTGACCAATTCTTCAGTGCAGTCTTCACGACCGATGAA
GCATTCGATCAGGGTTGGGCCGTCGGTGTTTGCCAGAGCAACCTTGAT

CCGTCTCAATGGGGGTG

Informal Sequence Listing GCTTCTGCCAGTTCGCCACCGGTTTTAGCCTTCAGGCCTTTACCAGCA CCGCTGTCATAACCACCGTTACCGTTGAACACTTCCATCAGACCGGCA TAATCCCAGTTCTTGATGTTGTTGTACGGACCATCATGGATCATAACT TCGATGGTGTAACCATAGTTATTGATCAAGAAGATGATAACCGGCAGT CCATCACCAACCATGAGGATGTTGCGACGTTCCGGAGCACCGACGGCA TAACCGAAGGCGGCAGGAACGGACCAACCGATGTGACCCCACTGCATT TCATATTCAACGCGAGCACCGTTCGGGAGCTTCATGCGCTGAGCATTG AACCAAGAGTCACCGGTTTCAGCAATAACCGTCGTGTTCGGGGTCAGA ${\tt AGAGCTTCGACCTGACGGGCGATTTCTGCGTTGACCAACGGAGCACTC}$ $\tt GGATCAGCCGGAGCGGCTTTCTTCAGTTCACCTGCATTGAGGGATTTG$ AAGAAGTCCAAAGCACCGGTTTTCTTGGAAACTTTCTGAGCCAAACGG GTCAGATAGTCTTTCAGATGAACGCTGGGGAAGCGAACGCCGTTAACG ${\tt ACGACAGAACGCGGTTCAGCGAGAACCAGTTTCTTAGGATCAGGAATA}$ TCCGTCCAACCAGTGGTGGAGTAGTCGTTGAAGACAGGAGCCAGAGCG ${\tt ATAACCGCATCGGCTTCTTTCATCGTCTTTTCAACGCCCGGATAGCTG}$ ${\tt ACTTCACCCCATGAGGTACCGATGTAATGCGGGTTTTCTTCTGGGAAG}$ AAGCTTTTTGCAGCAGCCATGGTAGCAACTGCGCCACCGAGAGCATCA GCAAATTTGACAGCAGCTTCTTCAGCACCAGCTGCGCGCAGCTTGCTG $\tt CCGACGAGGACGGCAACTTTGTCGCGGTTGGCGATGAATTTCAGGGTT$ ${\tt TCTTCAACCGCTGCATTCAAAGAAGCTTCGTCGCTGGCTTCGTCATTG}$ AACAATGCGCTTGCCGGTCCAGGAGCGCGCAGGGCATGGAAGCAATG ${\tt TTGCAAGCGATTTCGAGATAAACCGGCTTCTTCTCACGAAGAGCAGTT}$ ${\tt TTAATCACGTGATCGATTTTAGCCGGAGCTTCTTCTGGGGTGTAAATC}$ GCTTCAGCTGCGGCCGTGATGTTCTTGGCCATTTCCAACTGATAGTGA TAGTCGGTTTTGCCAAGAGCGTGATGCAACACGTGACCAGCAGCGTGA ${\tt TCATTGTTGTTCGGAGCACCGGAGGATCAGGATAACCGGAAGGTTTTCT}$ $\tt GCATAGGCGCCACCGATAGCATCAAATGCGGAAAGCGCACCGACGCTG$ ${\tt TAGGTAACGACGGCTGCTGCTGCGCCTTTGGCACGAGCATAACCTTCT}$ GCACTGAAACCGCAGTTCAGTTCGTTACAGCAATAAACCTGCTCCATG $\tt TTTTTGTTCAAAAGCAGGTTGTCAAGAAGGACGAGGTTGTAGTCGCCC$ GCGACTGCGAAGTGATGCTTGAGACCAATCTGGACAAGCCGCTCCGCT AAATAGGTACCGACAGTATAACTCATATGTTTTCCTCCAGCAAAAGGA ${\tt TGTTAGGCCGCATAGGCCAGAGGCGCGCCTGGCCTTCATGGCCTATAA}$ ACGCAGAAAGGCCCACCCGAAGGTGAGCCAGTGTGACTCTAGTAGAGA GCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGAC TGAGCCTTTCGTTTTATTTGATGCCTGGAATACTTCGAAGAGATGCTC GACGTCCGTATCTCAGGCTAGCTTAGAAGAACTCATCCAGCAGACGGT AGAAGGCAATGCGCTGAGAATCCGGCGCTGCGATACCGTACAGCACCA GGAAACGGTCAGCCCATTCACCACCCAGTTCTTCTGCAATATCGCGGG TAGCGAGGGCGATATCCTGATAGCGATCAGCTACACCCAGACGGCCAC AGTCAATAAAACCAGAGAAGCGGCCGTTTTCCACCATAATGTTTGGCA GACAAGCGTCGCCATGCGTTACCACCAGGTCTTCGCCGTCCGGCATGC GGGCTTTCAGACGTGCAAACAGTTCCGCCGGTGCGAGGCCCTGGTGCT CTTCATCCAGGTCGTCCTGATCAACCAGACCCGCTTCCATACGAGTGC GTGCACGTTCAATACGGTGTTTAGCCTGATGGTCAAACGGGCAAGTTG CCGGGTCCAGGGTGTGCAGACGGCGCATCGCGTCCGCCATGATGGAAA CTTTTTCTGCCGGAGCGAGGTGGCTGCTCAGCAGATCCTGACCCGGAA CTTCACCCAGCAGCAGCCAATCGCGACCGGCTTCAGTAACTACGTCCA GAACTGCCGCGCACGGAACACCAGTCGTCGCGAGCCAGGACAGACGGG CCGCTTCGTCCTGCAGTTCGTTCAGTGCGCCGGACAGGTCGGTTTTCA ${\tt CAAACAGAACCGGACGACCCTGTGCAGACAGACGGAAAACCGCTGCAT}$ $\tt CGCTACAGCCAATAGTCAGCTGAGCCCAGTCGTAACCAAACAGGCGTT$ $\tt CCACCCAAGCAGCCGGAGAACCAGCATGCAGGCCATCTTGTTCAATCA$ ${\tt TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTC}$ TCATGAGCAGATACATATTTGAATGTATTTAGAAAAAATAAACAAATAG $\tt GGGTCGGGCCGGTAATACGCCGGCCCGTTTTTTTTGGCCATGAAG$ $\tt GCCAGGCGCCTCTGGCCTATGCGGCCTGTTGACAATTAATCATCGG$ CATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAACATA TGTGGGAAACTAAGATTAATATCAACGAAGTCCGTGAGATCCGCGCGA AAACCACCGTTTACTTTGGTGTTGGTGCTATCAAGAAAATTGATGATA TCGCTCGCGAGTTCAAAGAAAAAGGTTACGATCGCATCATCGTGATCA CCGGTAAAGGCGCTTACAAAGCGACCGGTGCATGGGAATACATCGTGC $\tt CTGCTCTGAACAAAAACCAGATTACGTATATCCATTATGATCAGGTGA$ CCCCGAACCCGACCGTAGATCAGGTTGACGAAGCGACCAAACAGGCCC $\tt GTGAATTTGGCGCTCGCGCAGTACTGGCTATTGGTGGCGGTTCCCCGA$ ${\tt TCGACGCAGCCAAATCTGTGGCGGTGCTGCTGTCTTATCCGGACAAAA}$ $\tt CGATCATCGCCATCAACCTGACCCACGGTACGGGCACCGAAGCGGACC$ GCTTCGCGGTTGTATCTATCCCGGAGAAGGCCTACAAACCGGCTATCG $\tt CTTACGATTGCATCTACCCGCTGTACTCTATTGACGACCCGGCTCTGA$ $\tt TGGTTAAACTGCCGAGCGACCAGACGGCGTACGTTAGCGTGGATGCCC$

TGAACCATGTTGTTGAAGCTGCGACCTCCAAAGTTGCATCTCCGTACA

TABLE 3-continued

Informal Sequence Listing

CTATTATCCTGGCAAAAGAAACGGTCCGTCTCATCGCACGCTACCTGC
CTCAGGCCCTGTCTCACCCTGCAGACCTGACCGCGCGTTATTACCTCC
TGTATGCCTCTCTGATCGCCGGTATTGCGTTTGATAACGGCCTGCTGC
ATTTCACCCAGCACTGGAACACCCGCTGTCTGCCGTGAAACCTGAAC
TGGCTCATGGCCTGGGTATGCTCTCTGCCTGCAAATCTGACCTGATTAAAC
AAATTTATCCGGCTACCCCGGAGGTACTGGCGGAAATCCTGGAAACCAA
TCGTACCGGATCTGAAAGGCGTTCCGGGCGAGGCTGAGAAAGCGCGT

SEQ ID NO: 6

pJB825_PEM7_pdcZm_Km_PcI_adhAM

 $\tt CTAGAGGAGCTTGTTAACAGGCTTACGGCTGTTGGCGGCAGCAACGCG$ $\tt CTTACCCCATTTGACCAATTCTTCAGTGCAGTCTTCACGACCGATGAA$ $\tt GCATTCGATCAGGGTTGGGCCGTCGGTGTTTGCCAGAGCAACCTTGAT$ AGCTTCTGCCAGTTCGCCACCGGTTTTAGCCTTCAGGCCTTTACCAGC ACCGCTGTCATAACCACCGTTACCGTTGAACACTTCCATCAGACCGGC ATAATCCCAGTTCTTGATGTTGTTGTACGGACCATCATGGATCATAAC ${\tt TTCGATGGTGTAACCATAGTTATTGATCAAGAAGATGATAACCGGCAG}$ TTTCAGGCGAACCATCTGAGCGACTTCCTGAGCCGTCAGCTGGAAGGA ${\tt ACCATCACCAACCATGAGGATGTTGCGACGTTCCGGAGCACCGACGGC}$ ATAACCGAAGGCGGCAGGAACGGACCAACCGATGTGACCCCACTGCAT TTCATATTCAACGCGAGCACCGTTCGGGAGCTTCATGCGCTGAGCATT GAACCAAGAGTCACCGGTTTCAGCAATAACCGTCGTGTTCGGGGTCAG AAGAGCTTCGACCTGACGGGCGATTTCTGCGTTGACCAACGGAGCACT $\tt CGGATCAGCCGGAGCGGCTTTCTTCAGTTCACCTGCATTGAGGGATTT$ GAAGAAGTCCAAAGCACCGGTTTTCTTGGAAACTTTCTGAGCCAAACG GGTCAGATAGTCTTTCAGATGAACGCTGGGGAAGCGAACGCCGTTAAC GACGACAGAACGCGGTTCAGCGAGAACCAGTTTCTTAGGATCAGGAAT ATCCGTCCAACCAGTGGTGGAGTAGTCGTTGAAGACAGGAGCCAGAGC GATAACCGCATCGGCTTCTTTCATCGTCTTTTCAACGCCCGGATAGCT GACTTCACCCCATGAGGTACCGATGTAATGCGGGTTTTCTTCTGGGAA GAAGCTTTTTGCAGCAGCCATGGTAGCAACTGCGCCACCGAGAGCATC AGCAAATTTGACAGCAGCTTCTTCAGCACCAGCTGCGCGCAGCTTGCT GCCGACGAGGACGCCAACTTTGTCGCGGTTGGCGATGAATTTCAGGGT TTCTTCAACCGCTGCATTCAAAGAAGCTTCGTCGCTGGCTTCGTCATT GAACAATGCGCTTGCCGGTCCAGGAGCGCCGCGCGCAGGGCATGGAAGCAAT GTTGCAAGCGATTTCGAGATAAACCGGCTTCTTCTCACGAAGAGCAGT TTTAATCACGTGATCGATTTTAGCCGGAGCTTCTTCTGGGGTGTAAAT CGCTTCAGCTGCGGCCGTGATGTTCTTGGCCATTTCCAACTGATAGTG ATAGTCGGTTTTGCCAAGAGCGTGATGCAACACGTGACCAGCAGCGTG ATCATTGTTGTTCGGAGCACCGGAGATCAGGATAACCGGAAGGTTTTC TGCATAGGCGCCACCGATAGCATCAAATGCGGAAAGCGCACCGACGCT GTAGGTAACGACGGCTGCTGCTGCGCCTTTGGCACGAGCATAACCTTC TGCACTGAAACCGCAGTTCAGTTCGTTACAGCAATAAACCTGCTCCAT GTTTTTGTTCAAAAGCAGGTTGTCAAGAAGGACGAGGTTGTAGTCGCC $\tt CGCGACTGCGAAGTGATGCTTGAGACCAATCTGGACAAGCCGCTCCGC$ TAAATAGGTACCGACAGTATAACTCATATGTTAGTTCCTCACCTTGTC GTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAACAGG $\tt CCGGCGTATTATCGCCGGCCCGACCCCTATTTGTTTATTTTTCTAAAT$ ACATTCAAATATGTATCTGCTCATGAGACAATAACCCTGATAAATGCT ${\tt TCAATAATATTGAAAAAGGAAGAGTATGATTGAACAAGATGGCCTGCA}$ $\tt TGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTGTTTGGTTACGACTG$ GGCTCAGCTGACTATTGGCTGTAGCGATGCAGCGGTTTTCCGTCTGTC $\tt TGCACAGGGTCGTCCGGTTCTGTTTGTGAAAACCGACCTGTCCGGCGC$ $\verb"ACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGCGAC"$ ${\tt GACTGGTGTTCCGTGCGCGGCAGTTCTGGACGTAGTTACTGAAGCCGG}$ ${\tt TCGCGATTGGCTGCTGCTGGGTGAAGTTCCGGGTCAGGATCTGCTGAG}$ CAGCCACCTCGCTCCGGCAGAAAAAGTTTCCATCATGGCGGACGCGAT GCGCCGTCTGCACACCCTGGACCCGGCAACTTGCCCGTTTGACCATCA GGCTAAACACCGTATTGAACGTGCACGCACTCGTATGGAAGCGGGTCT GGTTGATCAGGACGACCTGGATGAAGAGCACCAGGGCCTCGCACCGGC GGAACTGTTTGCACGTCTGAAAGCCCGCATGCCGGACGGCGAAGACCT $\tt GGTGGTAACGCATGGCGACGCTTGTCTGCCAAACATTATGGTGGAAAA$ $\tt CGGCCGCTTCTCTGGTTTTATTGACTGTGGCCGTCTGGGTGTAGCTGA$ TCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGAAGAACT GCCGGATTCTCAGCGCATTGCCTTCTACCGTCTGCTGGATGAGTTCTT $\tt CTAAGCTAGCCTGAGATACGGACGTCGAGCATCTCTTCGAAGTATTCC$ AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGT TTTATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGC

Informal Sequence Listing

TCACCTTCGGGTGGGCCTTTCTGCGTTTATAGGCCATGAAGGCCAGGC GCGCCTCTGGCCTATGCGGCCTAACACCGTGCGTGTTGACTATTTTAC CTCTGGCGGTGATAATGGTTGCAGGATCCTTTTGCTGGAGGAAAACAT ATGTGGGAAACTAAGATTAATATCAACGAAGTCCGTGAGATCCGCGCG AAAACCACCGTTTACTTTGGTGTTGGTGCTATCAAGAAATTGATGAT ${\tt ATCGCTCGCGAGTTCAAAGAAAAAGGTTACGATCGCATCATCGTGATC}$ ACCGGTAAAGGCGCTTACAAAGCGACCGGTGCATGGGAATACATCGTG CCTGCTCTGAACAAAACCAGATTACGTATATCCATTATGATCAGGTG ACCCCGAACCCGACCGTAGATCAGGTTGACGAAGCGACCAAACAGGCC $\tt CGTGAATTTGGCGCTCGCGCAGTACTGGCTATTGGTGGCGGTTCCCCG$ ATCGACGCAGCCAAATCTGTGGCGGTGCTGCTGTCTTATCCGGACAAA ${\tt AACGCTCGTCAGCTGTACCAGCTGGAGTTTACCCCGGTAAAAGCAGCG}$ CCGATCATCGCCATCAACCTGACCCACGGTACGGGCACCGAAGCGGAC $\tt CGCTTCGCGGTTGTATCTATCCCGGAGAAGGCCTACAAACCGGCTATC$ GCTTACGATTGCATCTACCCGCTGTACTCTATTGACGACCCGGCTCTG $\tt ATGGTTAAACTGCCGAGCGACCAGACGGCGTACGTTAGCGTGGATGCC$ $\tt CTGAACCATGTTGTTGAAGCTGCGACCTCCAAAGTTGCATCTCCGTAC$ ACTATTATCCTGGCAAAAGAAACGGTCCGTCTCATCGCACGCTACCTG $\tt CCTCAGGCCCTGTCTCACCCTGCAGACCTGACCGCGCGTTATTACCTC$ CTGTATGCCTCTCTGATCGCCGGTATTGCGTTTGATAACGGCCTGCTG CATTTCACCCACGCACTGGAACACCCGCTGTCTGCCGTGAAACCTGAA $\tt CTGGCTCATGGCCTGGGTCTGGGTATGCTCCTGCCTGCGGTAGTTAAA$ ${\tt CAAATTTATCCGGCTACCCCGGAGGTACTGGCGGAAATCCTGGAACCA}$ ATCGTACCGGATCTGAAAGGCGTTCCGGGCGAGGCTGAGAAAGCGGCG TCTGGCGTGGCGAAATGGCTGGCTGGTGCAGGCATCACTATGAAACTG GCCTTCACCACTCCATCCCTGGAACTCCTGCTGTCTATGGCACCAGTA ${\tt ACTGCTGATCGTGAGCGTGTGAAAGCAATTTACCAGGACGCATTTTGA}$

SEQ ID NO: 7

pJB825_PcI_pdcZm_Km_PtRNAglu_adhAM CTAGAGGAGCTTGTTAACAGGCTTACGGCTGTTGGCGGCAGCAACGCG CTTACCCCATTTGACCAATTCTTCAGTGCAGTCTTCACGACCGATGAA

GCATTCGATCAGGGTTGGGCCGTCGGTGTTTGCCAGAGCAACCTTGAT ${\tt AGCTTCTGCCAGTTCGCCACCGGTTTTAGCCTTCAGGCCTTTACCAGC}$ ACCGCTGTCATAACCACCGTTACCGTTGAACACTTCCATCAGACCGGC ATAATCCCAGTTCTTGATGTTGTTGTACGGACCATCATGGATCATAAC TTCGATGGTGTAACCATAGTTATTGATCAAGAAGATGATAACCGGCAG TTTCAGGCGAACCATCTGAGCGACTTCCTGAGCCGTCAGCTGGAAGGA ACCATCACCAACCATGAGGATGTTGCGACGTTCCGGAGCACCGACGGC ATAACCGAAGGCGGCAGGAACGGACCAACCGATGTGACCCCACTGCAT TTCATATTCAACGCGAGCACCGTTCGGGAGCTTCATGCGCTGAGCATT GAACCAAGAGTCACCGGTTTCAGCAATAACCGTCGTGTTCGGGGTCAG AAGAGCTTCGACCTGACGGGCGATTTCTGCGTTGACCAACGGAGCACT $\tt CGGATCAGCCGGAGCGGCTTTCTTCAGTTCACCTGCATTGAGGGATTT$ GAAGAAGTCCAAAGCACCGGTTTTCTTGGAAACTTTCTGAGCCAAACG GGTCAGATAGTCTTTCAGATGAACGCTGGGGAAGCGAACGCCGTTAAC GACGACAGAACGCGGTTCAGCGAGAACCAGTTTCTTAGGATCAGGAAT $\tt ATCCGTCCAACCAGTGGTGGAGTAGTCGTTGAAGACAGGAGCCAGAGC$ GATAACCGCATCGGCTTCTTTCATCGTCTTTTCAACGCCCGGATAGCT ${\tt GACTTCACCCCATGAGGTACCGATGTAATGCGGGTTTTCTTCTGGGAA}$ GAAGCTTTTTGCAGCAGCCATGGTAGCAACTGCGCCACCGAGAGCATC ${\tt AGCAAATTTGACAGCAGCTTCTTCAGCACCAGCTGCGCGCAGCTTGCT}$ $\tt GCCGACGAGGACGCAACTTTGTCGCGGTTGGCGATGAATTTCAGGGT$ $\tt TTCTTCAACCGCTGCATTCAAAGAAGCTTCGTCGCTGGCTTCGTCATT$ ${\tt GAACAATGCGCTTGCCGGTCCAGGAGCGCGCGCGGGGCATGGAAGCAAT}$ GTTGCAAGCGATTTCGAGATAAACCGGCTTCTTCTCACGAAGAGCAGT ${\tt TTTAATCACGTGATCGATTTTAGCCGGAGCTTCTTCTGGGGTGTAAAT}$ $\tt CGCTTCAGCTGCGGCCGTGATGTTCTTGGCCATTTCCAACTGATAGTG$ ATAGTCGGTTTTGCCAAGAGCGTGATGCAACACGTGACCAGCAGCGTG ATCATTGTTCGGAGCACCGGAGATCAGGATAACCGGAAGGTTTTC TGCATAGGCGCCACCGATAGCATCAAATGCGGAAAGCGCACCGACGCT $\tt GTAGGTAACGACGGCTGCTGCTGCGCCTTTGGCACGAGCATAACCTTC$ TGCACTGAAACCGCAGTTCAGTTCGTTACAGCAATAAACCTGCTCCAT $\tt GTTTTTGTTCAAAAGCAGGTTGTCAAGAAGGACGAGGTTGTAGTCGCC$ CGCGACTGCGAAGTGATGCTTGAGACCAATCTGGACAAGCCGCTCCGC ${\tt TAAATAGGTACCGACAGTATAACTCATATGTTTTCCTCCAGCAAAAGG}$ GTGTTAGGCCGCATAGGCCAGAGGCGCCTGGCCTTCATGGCCTATA $\verb|AACGCAGAAAGGCCCACCCGAAGGTGAGCCAGTGTGACTCTAGTAGAG|$ AGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGA $\tt CTGAGCCTTTCGTTTTATTTGATGCCTGGAATACTTCGAAGAGATGCT$ CGACGTCCGTATCTCAGGCTAGCTTAGAAGAACTCATCCAGCAGACGG

 ${\tt TAGAAGGCAATGCGCTGAGAATCCGGCGCTGCGATACCGTACAGCACC}$

TABLE 3-continued Informal Sequence Listing

Informal Sequence Listing

AGGAAACGGTCAGCCCATTCACCACCCAGTTCTTCTGCAATATCGCGG GTAGCGAGGGCGATATCCTGATAGCGATCAGCTACACCCAGACGGCCA CAGTCAATAAAACCAGAGAAGCGGCCGTTTTCCACCATAATGTTTGGC AGACAAGCGTCGCCATGCGTTACCACCAGGTCTTCGCCGTCCGGCATG CGGGCTTTCAGACGTGCAAACAGTTCCGCCGGTGCGAGGCCCTGGTGC TCTTCATCCAGGTCGTCCTGATCAACCAGACCCGCTTCCATACGAGTG CGTGCACGTTCAATACGGTGTTTAGCCTGATGGTCAAACGGGCAAGTT GCCGGGTCCAGGGTGTGCAGACGGCGCATCGCGTCCGCCATGATGGAA ACTTTTCTGCCGGAGCGAGGTGGCTGCTCAGCAGATCCTGACCCGGA $\verb"ACTTCACCCAGCAGCCAATCGCGACCGGCTTCAGTAACTACGTCC"$ AGAACTGCCGCGCACGGAACACCAGTCGTCGCGAGCCAGGACAGACGG $\tt GCCGCTTCGTCCTGCAGTTCGTTCAGTGCGCCGGACAGGTCGGTTTTC$ ACAAACAGAACCGGACGACCCTGTGCAGACAGACGGAAAACCGCTGCA ${\tt TCGCTACAGCCAATAGTCAGCTGAGCCCAGTCGTAACCAAACAGGCGT}$ ${\tt TCCACCCAAGCAGCCGGAGAACCAGCATGCAGGCCATCTTGTTCAATC}$ ATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT CTCATGAGCAGATACATATTTGAATGTATTTAGAAAAATAAACAAATA $\tt GGGGTCGGCCGGCCGATAATACGCCGGCCCGTTTTTTTTGGCCATGAA$ $\tt GGCCAGGCGCCTCTGGCCTATGCGGCCTCGCCCTCATTTTCTCCCT$ AGGAGGGGCTTCGATGCAAAAATTGCCCGAGGTGTTGACAAACGCTCA ${\tt GGGTATTCGCTACATTAACTAATGCTGAGTCTTGATCTAAAGATCTTT}$ CTAGATTCTCGAGGCATATGTGGGAAACTAAGATTAATATCAACGAAG ${\tt TCCGTGAGATCCGCGCGAAAACCACCGTTTACTTTGGTGTTGGTGCTA}$ TCAAGAAAATTGATGATATCGCTCGCGAGTTCAAAGAAAAAGGTTACG ATCGCATCATCGTGATCACCGGTAAAGGCGCTTACAAAGCGACCGGTG CATGGGAATACATCGTGCCTGCTCTGAACAAAACCAGATTACGTATA ${\tt TCCATTATGATCAGGTGACCCGAACCCGACCGTAGATCAGGTTGACG}$ $\verb|AAGCGACCAAACAGGCCCGTGAATTTGGCGCTCGCGCAGTACTGGCTA|$ $\tt TTGGTGGCGGTTCCCCGATCGACGCAGCCAAATCTGTGGCGGTGCTGC$ TGTCTTATCCGGACAAAAACGCTCGTCAGCTGTACCAGCTGGAGTTTA CCCCGGTAAAAGCAGCGCCGATCATCGCCATCAACCTGACCCACGGTA $\tt CGGGCACCGAAGCGGACCGCTTCGCGGTTGTATCTATCCCGGAGAAGG$ $\tt CCTACAAACCGGCTATCGCTTACGATTGCATCTACCCGCTGTACTCTA$ TTGACGACCCGGCTCTGATGGTTAAACTGCCGAGCGACCAGACGGCGT ACGTTAGCGTGGATGCCCTGAACCATGTTGTTGAAGCTGCGACCTCCA AAGTTGCATCTCCGTACACTATTATCCTGGCAAAAGAAACGGTCCGTC TCATCGCACGCTACCTGCCTCAGGCCCTGTCTCACCCTGCAGACCTGA CCGCGCGTTATTACCTCCTGTATGCCTCTCTGATCGCCGGTATTGCGT TTGATAACGGCCTGCTGCATTTCACCCACGCACTGGAACACCCGCTGT CTGCCGTGAAACCTGAACTGGCTCATGGCCTGGGTCTGGGTATGCTCC TGCCTGCGGTAGTTAAACAAATTTATCCGGCTACCCCGGAGGTACTGG CGGAAATCCTGGAACCAATCGTACCGGATCTGAAAGGCGTTCCGGGCG GCATCACTATGAAACTGAAAGACGCGGGTTTCCAGGCTGAAGATATCG CGCGTCTGACCGACCTGGCCTTCACCACTCCATCCCTGGAACTCCTGC TGTCTATGGCACCAGTAACTGCTGATCGTGAGCGTGTGAAAGCAATTT ACCAGGACGCATTTTGA

SEO ID NO: 8 ${\tt pJB825_PtRNAglu_pdcZm_Km_PcI_adhAM}$ CTAGAGGAGCTTGTTAACAGGCTTACGGCTGTTGGCGGCAGCAACGCG CTTACCCCATTTGACCAATTCTTCAGTGCAGTCTTCACGACCGATGAA $\tt GCATTCGATCAGGGTTGGGCCGTCGGTGTTTGCCAGAGCAACCTTGAT$ AGCTTCTGCCAGTTCGCCACCGGTTTTAGCCTTCAGGCCTTTACCAGC ACCGCTGTCATAACCACCGTTACCGTTGAACACTTCCATCAGACCGGC ${\tt ATAATCCCAGTTCTTGATGTTGTTGTACGGACCATCATGGATCATAAC}$ ${\tt TTCGATGGTGTAACCATAGTTATTGATCAAGAAGATGATAACCGGCAG}$ TTTCAGGCGAACCATCTGAGCGACTTCCTGAGCCGTCAGCTGGAAGGA ${\tt ACCATCACCAACCATGAGGATGTTGCGACGTTCCGGAGCACCGACGGC}$ ATAACCGAAGGCGGCAGGAACGGACCAACCGATGTGACCCCACTGCAT ${\tt TTCATATTCAACGCGAGCACCGTTCGGGAGCTTCATGCGCTGAGCATT}$ ${\tt GAACCAAGAGTCACCGGTTTCAGCAATAACCGTCGTGTTCGGGGTCAG}$ AAGAGCTTCGACCTGACGGGCGATTTCTGCGTTGACCAACGGAGCACT CGGATCAGCCGGAGCGGCTTTCTTCAGTTCACCTGCATTGAGGGATTT ${\tt GAAGAAGTCCAAAGCACCGGTTTTCTTGGAAACTTTCTGAGCCAAACG}$ GGTCAGATAGTCTTTCAGATGAACGCTGGGGAAGCGAACGCCGTTAAC ${\tt GACGACAGAACGCGGTTCAGCGAGAACCAGTTTCTTAGGATCAGGAATCAGAATCATTAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAG$ GATAACCGCATCGGCTTCTTTCATCGTCTTTTCAACGCCCGGATAGCT ${\tt GACTTCACCCCATGAGGTACCGATGTAATGCGGGTTTTCTTCTGGGAA}$ GAAGCTTTTTGCAGCAGCCATGGTAGCAACTGCGCCACCGAGAGCATC AGCAAATTTGACAGCAGCTTCTTCAGCACCAGCTGCGCGCAGCTTGCT GCCGACGAGGACGCCAACTTTGTCGCGGTTGGCGATGAATTTCAGGGT $\tt TTCTTCAACCGCTGCATTCAAAGAAGCTTCGTCGCTGGCTTCGTCATT$

GAACAATGCGCTTGCCGGTCCAGGAGCGCCAGGGCATGGAAGCAAT GTTGCAAGCGATTTCGAGATAAACCGGCTTCTTCTCACGAAGAGCAGT TTTAATCACGTGATCGATTTTAGCCGGAGCTTCTTCTGGGGTGTAAAT CGCTTCAGCTGCGGCCGTGATGTTCTTGGCCATTTCCAACTGATAGTG ATAGTCGGTTTTTGCCAAGAGCGTGATGCAACACGTGACCAGCAGCGTG ATCATTGTTCGGAGCACCGGAGATCAGGATAACCGGAAGGTTTTC TGCATAGGCGCCACCGATAGCATCAAATGCGGAAAGCGCACCGACGCT GTAGGTAACGACGGCTGCTGCTGCGCCTTTGGCACGAGCATAACCTTC TGCACTGAAACCGCAGTTCAGTTCGTTACAGCAATAAACCTGCTCCAT $\tt GTTTTTGTTCAAAAGCAGGTTGTCAAGAAGGACGAGGTTGTAGTCGCC$ CGCGACTGCGAAGTGATGCTTGAGACCAATCTGGACAAGCCGCTCCGC TAAATAGGTACCGACAGTATAACTCATATGCCTCGAGAATCTAGAAAG ATCTTTAGATCAAGACTCAGCATTAGTTAATGTAGCGAATACCCTGAG $\tt CGTTTGTCAACACCTCGGGCAATTTTTGCATCGAAGCCCCTCCTAGGG$ AGAAAATGAGGCGAGGCCGCATAGGCCAGAGGCGCCCTGGCCTTCA $\tt TGGCCAAAAAAAACGGGCCGGCCGTATTATCGCCGGCCCGACCCCTATT$ TGTTTATTTTCTAAATACATTCAAATATGTATCTGCTCATGAGACAA TAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGATT ${\tt GAACAAGATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGC}$ $\tt CTGTTTGGTTACGACTGGGCTCAGCTGACTATTGGCTGTAGCGATGCA$ $\tt GCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGGTTCTGTTTGTGAAA$ ACCGACCTGTCCGGCGCACTGAACGAACTGCAGGACGAAGCGGCCCGT $\tt CTGTCCTGGCTCGCGACGACTGGTGTTCCGTGCGCGGCAGTTCTGGAC$ $\tt GTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTGGGTGAAGTTCCG$ GGTCAGGATCTGCTGAGCAGCCACCTCGCTCCGGCAGAAAAAGTTTCC ATCATGGCGGACGCGATGCGCCGTCTGCACACCCTGGACCCGGCAACT $\tt CGTATGGAAGCGGTCTGGTTGATCAGGACGACCTGGATGAAGAGCAC$ ${\tt CAGGGCCTCGCACCGGCGGAACTGTTTGCACGTCTGAAAGCCCGCATG}$ $\tt CCGGACGCGAAGACCTGGTGGTAACGCATGGCGACGCTTGTCTGCCA$ ${\tt AACATTATGGTGGAAAACGGCCGCTTCTCTGGTTTTATTGACTGTGGC}$ $\tt CGTCTGGGTGTAGCTGATCGCTATCAGGATATCGCCCTCGCTACCCGC$ GATATTGCAGAAGAACTGGGTGGTGAATGGGCTGACCGTTTCCTGGTG $\tt CTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTCTACCGT$ $\tt CTGCTGGATGAGTTCTTCTAAGCTAGCCTGAGATACGGACGTCGAGCA$ TCTCTTCGAAGTATTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGA AAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCT ACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA GGCCATGAAGGCCAGGCGCCTCTGGCCTATGCGGCCTAACACCGTG CGTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTGCAGGATCCTT TTGCTGGAGGAAAACATATGTGGGAAACTAAGATTAATATCAACGAAG TCCGTGAGATCCGCGCGAAAACCACCGTTTACTTTGGTGTTGGTGCTA TCAAGAAAATTGATGATATCGCTCGCGAGTTCAAAGAAAAAGGTTACG ATCGCATCATCGTGATCACCGGTAAAGGCGCTTACAAAGCGACCGGTG CATGGGAATACATCGTGCCTGCTCTGAACAAAAACCAGATTACGTATA TCCATTATGATCAGGTGACCCGAACCCGACCGTAGATCAGGTTGACG AAGCGACCAAACAGGCCCGTGAATTTGGCGCTCGCGCAGTACTGGCTA TTGGTGGCGGTTCCCCGATCGACGCAGCCAAATCTGTGGCGGTGCTGC TGTCTTATCCGGACAAAAACGCTCGTCAGCTGTACCAGCTGGAGTTTA CCCCGGTAAAAGCAGCGCCGATCATCGCCATCAACCTGACCCACGGTA CGGGCACCGAAGCGGACCGCTTCGCGGTTGTATCTATCCCGGAGAAGG CCTACAAACCGGCTATCGCTTACGATTGCATCTACCCGCTGTACTCTA $\tt TTGACGACCCGGCTCTGATGGTTAAACTGCCGAGCGACCAGACGGCGT$ ${\tt ACGTTAGCGTGGATGCCCTGAACCATGTTGTTGAAGCTGCGACCTCCA}$ ${\tt AAGTTGCATCTCCGTACACTATTATCCTGGCAAAAGAAACGGTCCGTC}$ ${\tt TCATCGCACGCTACCTGCCTCAGGCCCTGTCTCACCCTGCAGACCTGA}$ $\tt CCGCGCGTTATTACCTCCTGTATGCCTCTCTGATCGCCGGTATTGCGT$ ${\tt TTGATAACGGCCTGCTTCTCACCCACGCACTGGAACACCCGCTGT}$ $\tt CTGCCGTGAAACCTGAACTGGCTCATGGCCTGGGTCTGGGTATGCTCC$ $\tt TGCCTGCGGTAGTTAAACAAATTTATCCGGCTACCCCGGAGGTACTGG$ $\tt CGGAAATCCTGGAACCAATCGTACCGGATCTGAAAGGCGTTCCGGGCG$ GCATCACTATGAAACTGAAAGACGCGGGTTTCCAGGCTGAAGATATCG CGCGTCTGACCGACCTGGCCTTCACCACTCCATCCCTGGAACTCCTGC ${\tt TGTCTATGGCACCAGTAACTGCTGATCGTGAGCGTGTGAAAGCAATTT}$ ACCAGGACGCATTTTGA

SEO ID NO: 9

pJB826_PaphII_pdcZp_PcI_adhAm

GCGGCCGCGGGGGGGGGGGAAAGCCACGTTGTGTCTCAAAATCTCT GATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAAC ${\tt TGTCTGCTTACATAAACAGTAATACAAGGGGTCATATGTATACCGTTG}$ GTATGTACTTGGCAGAACGCCTAGCCCAGATCGGCCTGAAACACCACT $\tt TTGCCGTGGCCGGTGACTACAACCTGGTGTTGCTTGATCAGCTCCTGC$

TABLE 3-continued

Informal Sequence Listing

Informal Sequence Listing ACTCCCTCAGTTTATCCGGGGGAATTGTGTTTTAAGAAAATCCCAACTC ATAAAGTCAAGTAGGAGATTAATCATATGTATACCGTTGGTATGTACT TGGCAGAACGCCTAGCCCAGATCGGCCTGAAACACCACTTTGCCGTGG CCGGTGACTACAACCTGGTGTTGCTTGATCAGCTCCTGCTGAACAAAG ACATGGAGCAGGTCTACTGCTGTAACGAACTTAACTGCGGCTTTAGCG CCGAAGGTTACGCTCGTGCACGTGGTGCCGCCGCTGCCATCGTCACGT TCAGCGTAGGTGCTATCTCTGCAATGAACGCCATCGGTGGCGCCTATG CAGAAAACCTGCCGGTCATCCTGATCTCTGGCTCACCGAACACCAATG ACTACGGCACAGGCCACATCCTGCACCACCACTTGGTACTACTGACT ${\tt ATAACTATCAGCTGGAAATGGTAAAACACGTTACCTGCGCACGTGAAA}$ GCATCGTTTCTGCCGAAGAAGCACCGGCAAAAATCGACCACGTCATCC $\tt GTACGGCTCTACGTGAACGCAAACCGGCTTATCTGGAAATCGCATGCA$ ACGTCGCTGGCGCTGAATGTGTTCGTCCGGGCCCGATCAATAGCCTGC $\tt TGCGTGAACTCGAAGTTGACCAGACCAGTGTCACTGCCGCTGTAGATG$ $\tt CCGCCGTAGAATGGCTGCAGGACCGCCAGAACGTCGTCATGCTGGTCG$ $\tt GTAGCAAACTGCGTGCCGCTGCCGCTGAAAAACAGGCTGTTGCCCTAG$ $\tt CGGACCGCCTGGGCTGCCGCTGTCACGATCATGGCTGCCGAAAAAGGCT$ ${\tt TCTTCCCGGAAGATCATCCGAACTTCCGCGGCCTGTACTGGGGTGAAG}$ ${\tt TCAGCTCCGAAGGTGCACAGGAACTGGTTGAAAACGCCGATGCCATCC}$ ${\tt TGTGTCTGGCACCGGTATTCAACGACTATGCTACCGTTGGCTGGAACT}$ CTTTCGCAGGACAGTCCTTCGAAGGTCTGTCATTGAGCACCTTCGCCG ${\tt CAGCACTGGCTGAGAAAGCACCTTCTCGCCCGGCAACGACTCAAGGCA}$ CTCAAGCACCGGTACTGGGTATTGAGGCCGCAGAGCCCAATGCACCGC $\tt TGACCAATGACGAAATGACGCGTCAGATCCAGTCGCTGATCACTTCCG$ ${\tt ACACTACTCTGACAGCAGAAACAGGTGACTCTTGGTTCAACGCTTCTC}$ GCATGCCGATTCCTGGCGGTGCTCGTGTCGAACTGGAAATGCAATGGG $\tt GTCATATCGGTTGGTCCGTACCTTCTGCATTCGGTAACGCCGTTGGTT$ $\tt CTCCGGAGCGTCGCCACATCATGATGGTCGGTGATGGCTCTTTCCAGC$ TGACTGCTCAAGAAGTTGCTCAGATGATCCGCTATGAAATCCCGGTCA TCATCTTCCTGATCAACAACCGCGGTTACGTCATCGAAATCGCTATCC ATGACGGCCCTTACAACTACATCAAAAACTGGAACTACGCTGGCCTGA TCGACGTCTTCAATGACGAAGATGGTCATGGCCTGGGTCTGAAAGCTT $\tt CTACTGGTGCAGAACTAGAAGGCGCTATCAAGAAAGCACTCGACAATC$ GTCGCGGTCCGACGCTGATCGAATGTAACATCGCTCAGGACGACTGCA $\tt CTGAAACCCTGATTGCTTGGGGTAAACGTGTAGCAGCTACCAACTCTC$ TTTTACCTCTGGCGGTGATAATGGTTGCAGGATCCTTTTGCTGGAGGA AAACCATATGTGGGAAACTAAGATTAATATCAACGAAGTCCGTGAGAT CCGCGCGAAAACCACCGTTTACTTTGGTGTTTGGTGCTATCAAGAAAAT TGATGATATCGCTCGCGAGTTCAAAGAAAAAGGTTACGATCGCATCAT CGTGATCACCGGTAAAGGCGCTTACAAAGCGACCGGTGCATGGGAATA CATCGTGCCTGCTCTGAACAAAAACCAGATTACGTATATCCATTATGA TCAGGTGACCCGAACCCGACCGTAGATCAGGTTGACGAAGCGACCAA ACAGGCCCGTGAATTTGGCGCTCGCGCAGTACTGGCTATTGGTGGCGG TTCCCCGATCGACGCAGCCAAATCTGTGGCGGTGCTGCTGTCTTATCC GGACAAAAACGCTCGTCAGCTGTACCAGCTGGAGTTTACCCCGGTAAA AGCAGCGCCGATCATCGCCATCAACCTGACCCACGGTACGGGCACCGA AGCGGACCGCTTCGCGGTTGTATCTATCCCGGAGAAGGCCTACAAACC GGCTATCGCTTACGATTGCATCTACCCGCTGTACTCTATTGACGACCC GGCTCTGATGGTTAAACTGCCGAGCGACCAGACGGCGTACGTTAGCGT GGATGCCCTGAACCATGTTGTTGAAGCTGCGACCTCCAAAGTTGCATC TCCGTACACTATTATCCTGGCAAAAGAAACGGTCCGTCTCATCGCACG $\tt CTACCTGCCTCAGGCCCTGTCTCACCCTGCAGACCTGACCGCGCGTTA$

TGAACAAGACATGGAGCAGGTCTACTGCTGTAACGAACTTAACTGCG GCTTTAGCGCCGAAGGTTACGCTCGTGCACGTGGTGCCGCCGCTGCCA TCGTCACGTTCAGCGTAGGTGCTATCTCTGCAATGAACGCCATCGGTG GCGCCTATGCAGAAAACCTGCCGGTCATCCTGATCTCTGGCTCACCGA ACACCAATGACTACGGCACAGGCCACATCCTGCACCACCACCATTGGTA CTACTGACTATAACTATCAGCTGGAAATGGTAAAACACGTTACCTGCG CACGTGAAAGCATCGTTTCTGCCGAAGAAGCACCGGCAAAAATCGACC ACGTCATCCGTACGGCTCTACGTGAACGCAAACCGGCTTATCTGGAAA TCGCATGCAACGTCGCTGGCGCTGAATGTGTTCGTCCGGGCCCGATCA $\tt ATAGCCTGCTGCAGACTCGAAGTTGACCAGACCAGTGTCACTGCCG$ CTGTAGATGCCGCCGTAGAATGGCTGCAGGACCGCCAGAACGTCGTCA ${\tt TGCTGGTCGGTAGCAAACTGCGTGCCGCTGCCGCTGAAAAAACAGGCTG}$ TTGCCCTAGCGGACCGCCTGGGCTGCGCTGTCACGATCATGGCTGCCG ${\tt AAAAAGGCTTCTTCCCGGAAGATCATCCGAACTTCCGCGGCCTGTACT}$ GGGGTGAAGTCAGCTCCGAAGGTGCACAGGAACTGGTTGAAAACGCCG ${\tt ATGCCATCCTGTGTCTGGCACCGGTATTCAACGACTATGCTACCGTTG}$ $\tt GCTGGAACTCCTGGCCGAAAGGCGACAATGTCATGGTCATGGACACCG$ ACCGCGTCACTTTCGCAGGACAGTCCTTCGAAGGTCTGTCATTGAGCA $\tt CCTTCGCCGCAGCACTGGCTGAGAAAGCACCTTCTCGCCCGGCAACGA$ CTCAAGGCACTCAAGCACCGGTACTGGGTATTGAGGCCGCAGAGCCCA ATGCACCGCTGACCAATGACGAAATGACGCGTCAGATCCAGTCGCTGA TCACTTCCGACACTACTCTGACAGCAGAAACAGGTGACTCTTGGTTCA ${\tt ACGCTTCTCGCATGCCGATTCCTGGCGGTGCTCGTGTCGAACTGGAAA}$ TGCAATGGGGTCATATCGGTTGGTCCGTACCTTCTGCATTCGGTAACG $\tt CCGTTGGTTCTCCGGAGCGTCGCCACATCATGATGGTCGGTGATGGCT$ CTTTCCAGCTGACTGCTCAAGAAGTTGCTCAGATGATCCGCTATGAAA TCCCGGTCATCATCTTCCTGATCAACAACCGCGGTTACGTCATCGAAA ${\tt TCGCTATCCATGACGGCCCTTACAACTACATCAAAAACTGGAACTACG}$ TGAAAGCTTCTACTGGTGCAGAACTAGAAGGCGCTATCAAGAAAGCAC ${\tt TCGACAATCGTCGCGGTCCGACGCTGATCGAATGTAACATCGCTCAGG}$ ACGACTGCACTGAAACCCTGATTGCTTGGGGTAAACGTGTAGCAGCTA CCAACTCTCGCAAACCACAAGCGTAATTAACTCGAGTAACACCGTGCG TGTTGACTATTTTACCTCTGGCGGTGATAATGGTTGCAGGATCCTTTT GCTGGAGGAAAACCATATGTGGGAAACTAAGATTAATATCAACGAAGT CCGTGAGATCCGCGCGAAAACCACCGTTTACTTTGGTGTTGGTGCTAT CAAGAAAATTGATGATATCGCTCGCGAGTTCAAAGAAAAAGGTTACGA TCGCATCATCGTGATCACCGGTAAAGGCGCTTACAAAGCGACCGGTGC ATGGGAATACATCGTGCCTGCTCTGAACAAAACCAGATTACGTATAT CCATTATGATCAGGTGACCCCGAACCCGACCGTAGATCAGGTTGACGA AGCGACCAAACAGGCCCGTGAATTTGGCGCTCGCGCAGTACTGGCTAT TGGTGGCGGTTCCCCGATCGACGCAGCCAAATCTGTGGCGGTGCTGCT GTCTTATCCGGACAAAACGCTCGTCAGCTGTACCAGCTGGAGTTTAC CCCGGTAAAAGCAGCGCCGATCATCGCCATCAACCTGACCCACGGTAC GGGCACCGAAGCGGACCGCTTCGCGGTTGTATCTATCCCGGAGAAGGC CTACAAACCGGCTATCGCTTACGATTGCATCTACCCGCTGTACTCTAT TGACGACCCGGCTCTGATGGTTAAACTGCCGAGCGACCAGACGGCGTA CGTTAGCGTGGATGCCCTGAACCATGTTGTTGAAGCTGCGACCTCCAA AGTTGCATCTCCGTACACTATTATCCTGGCAAAAGAAACGGTCCGTCT CATCGCACGCTACCTGCCTCAGGCCCTGTCTCACCCTGCAGACCTGAC $\tt CGCGCGTTATTACCTCCTGTATGCCTCTCTGATCGCCGGTATTGCGTT$ TGATAACGGCCTGCTGCATTTCACCCACGCACTGGAACACCCGCTGTC $\tt TGCCGTGAAACCTGAACTGGCTCATGGCCTGGGTCTGGGTATGCTCCT$ $\tt GCCTGCGGTAGTTAAACAAATTTATCCGGCTACCCCGGAGGTACTGGC$ $\tt GGAAATCCTGGAACCAATCGTACCGGATCTGAAAGGCGTTCCGGGCGA$ CATCACTATGAAACTGAAAGACGCGGGTTTCCAGGCTGAAGATATCGC GCGTCTGACCGACCTGGCCTTCACCACTCCATCCCTGGAACTCCTGCT GTCTATGGCACCAGTAACTGCTGATCGTGAGCGTGTGAAAGCAATTTA ${\tt CCAGGACGCATTTTGAGCGGCCGC}$

SEQ ID NO: 10

pJB826_PcpcB_pdcZp_PcI_adhAm

GCGGCCGCTTCGTTATAAAATAAACTTAACAAATCTATACCCACCTGT
AGAGAAGAGCTCCTGAATATCAAAATGGTGGGATAAAAACGTCAAAAA
GGAAAGTAGGCTGTGGTTCCCTAGGCAACAGTCTTCCCTACCCCACTG
GAACTAAAAAAACGAGAAAAGTTCGCACCGAACATCAATTGCATAAT
TTTAGCCCTAAAACATAAGCTGAACGAAAACTGGTTGTCTTCCCTTCCC
AATCCAGGACAATCTGAGAATCCCCTGCAACATTACTTAACAAAAAAG
CAGGAATAAAATTAACAAGATGTAACAGACATAAGTCCCATCACCGTT
GTATAAAAGTTAACTGTGGGATTCCAAAAGCATTCAGCCTTAGGCGTG
AGCTGTTTTGAGCATCCCGGTGGCCCTTGTCCCTCCTGTGTTTTCC
CCTGGATTTATTTAGGTAATATCTCTCATAAATCCCCGGGTAGTTAAC
GAAAGTTAATGGAGATCAGTAACAATAACTCTAGGGTCATTACTTTGG

SEQ ID NO: 11

ATTTTGAGCGGCCGC

pJB826_PaphII_pdcZp_adhAm

 $\tt TTACCTCCTGTATGCCTCTCTGATCGCCGGTATTGCGTTTGATAACGG$

 $\tt CCTGCTGCATTTCACCCACGCACTGGAACACCCGCTGTCTGCCGTGAA$

 ${\tt AGTTAAACAAATTTATCCGGCTACCCCGGAGGTACTGGCGGAAATCCT}$

 $\tt GGAACCAATCGTACCGGATCTGAAAGGCGTTCCGGGCGAGGCTGAGAA$

 ${\tt AGCGGCGTCTGGCGTGCGAAATGGCTGGCTGGTGCAGGCATCACTAT}\\ {\tt GAAACTGAAAGACGCGGGTTTCCAGGCTGAAGATATCGCGCGTCTGAC}\\$

 $\tt CGACCTGGCCTTCACCACTCCATCCCTGGAACTCCTGCTGTCTATGGC$

 ${\tt ACCAGTAACTGCTGATCGTGAGCGTGTGAAAGCAATTTACCAGGACGC}$

Informal Sequence Listing

TCGTCACGTTCAGCGTAGGTGCTATCTCTGCAATGAACGCCATCGGTG GCGCCTATGCAGAAAACCTGCCGGTCATCCTGATCTCTGGCTCACCGA ACACCAATGACTACGGCACAGGCCACATCCTGCACCACCACCATTGGTA CTACTGACTATAACTATCAGCTGGAAATGGTAAAACACGTTACCTGCG CACGTGAAAGCATCGTTTCTGCCGAAGAAGCACCGGCAAAAATCGACC ACGTCATCCGTACGGCTCTACGTGAACGCAAACCGGCTTATCTGGAAA TCGCATGCAACGTCGCTGGCGCTGAATGTGTTCGTCCGGGCCCGATCA ATAGCCTGCTGCAGACTCGAAGTTGACCAGACCAGTGTCACTGCCG CTGTAGATGCCGCCGTAGAATGGCTGCAGGACCGCCAGAACGTCGTCA $\tt TGCTGGTCGGTAGCAAACTGCGTGCCGCTGCCGCTGAAAAAACAGGCTG$ TTGCCCTAGCGGACCGCCTGGGCTGCGCTGTCACGATCATGGCTGCCG $\verb|AAAAAGGCTTCTTCCCGGAAGATCATCCGAACTTCCGCGGCCTGTACT|$ GGGGTGAAGTCAGCTCCGAAGGTGCACAGGAACTGGTTGAAAACGCCG $\tt ATGCCATCCTGTGTCTGGCACCGGTATTCAACGACTATGCTACCGTTG$ ${\tt GCTGGAACTCCTGGCCGAAAGGCGACAATGTCATGGTCATGGACACCG}$ ${\tt ACCGCGTCACTTTCGCAGGACAGTCCTTCGAAGGTCTGTCATTGAGCA}$ $\tt CCTTCGCCGCAGCACTGGCTGAGAAAGCACCTTCTCGCCCGGCAACGA$ $\tt CTCAAGGCACTCAAGCACCGGTACTGGGTATTGAGGCCGCAGAGCCCA$ ATGCACCGCTGACCAATGACGAAATGACGCGTCAGATCCAGTCGCTGA ${\tt TCACTTCCGACACTACTCTGACAGCAGAAACAGGTGACTCTTGGTTCA}$ ${\tt ACGCTTCTCGCATGCCGATTCCTGGCGGTGCTCGTGTCGAACTGGAAA}$ $\tt TGCAATGGGGTCATATCGGTTGGTCCGTACCTTCTGCATTCGGTAACG$ $\tt CCGTTGGTTCTCCGGAGCGTCGCCACATCATGATGGTCGGTGATGGCT$ CTTTCCAGCTGACTGCTCAAGAAGTTGCTCAGATGATCCGCTATGAAA ${\tt TCCCGGTCATCATCTTCCTGATCAACAACCGCGGTTACGTCATCGAAA}$ TCGCTATCCATGACGGCCCTTACAACTACATCAAAAACTGGAACTACG CTGGCCTGATCGACGTCTTCAATGACGAAGATGGTCATGGCCTGGGTC ${\tt TGAAAGCTTCTACTGGTGCAGAACTAGAAGGCGCTATCAAGAAAGCAC}$ ${\tt TCGACAATCGTCGCGGTCCGACGCTGATCGAATGTAACATCGCTCAGG}$ ACGACTGCACTGAAACCCTGATTGCTTGGGGTAAACGTGTAGCAGCTA $\tt CCAACTCTCGCAAACCACAAGCGTAATTAACTCGAGTTGGATCCTATA$ AGTAGGAGATAAACATATGTGGGAAACTAAGATTAATATCAACGAAGT $\tt CCGTGAGATCCGCGCGAAAACCACCGTTTACTTTGGTGTTGGTGCTAT$ CAAGAAAATTGATGATATCGCTCGCGAGTTCAAAGAAAAAGGTTACGA TCGCATCATCGTGATCACCGGTAAAGGCGCTTACAAAGCGACCGGTGC ATGGGAATACATCGTGCCTGCTCTGAACAAAACCAGATTACGTATAT CCATTATGATCAGGTGACCCCGAACCCGACCGTAGATCAGGTTGACGA AGCGACCAAACAGGCCCGTGAATTTGGCGCTCGCGCAGTACTGGCTAT $\tt TGGTGGCGGTTCCCCGATCGACGCAGCCAAATCTGTGGCGGTGCTGCT$ GTCTTATCCGGACAAAACGCTCGTCAGCTGTACCAGCTGGAGTTTAC CCCGGTAAAAGCAGCGCCGATCATCGCCATCAACCTGACCCACGGTAC GGGCACCGAAGCGGACCGCTTCGCGGTTGTATCTATCCCGGAGAAGGC CTACAAACCGGCTATCGCTTACGATTGCATCTACCCGCTGTACTCTAT TGACGACCCGGCTCTGATGGTTAAACTGCCGAGCGACCAGACGGCGTA

TABLE 3-continued

Informal Sequence Listing

CGTTAGCGTGGATGCCTGAACCATGTTGTTGAAGCTGCGACCTCCAA
AGTTGCATCTCCGTACACTATTATCCTGGCAAAAGAACGGTCCGTCT
CATCGCACGCTACCTCCTCAGGCCCTGTCTCACCCTGCAGACCTGAC
CGCGCGTTATTACCTCCTGTATGCCTCTCTGATCGCCGGTATTGCGTT
TGATAACGGCCTGCTGCATTTCACCCACGCACTGGAACACCCGGTGTC
TGCCGTGAAACCTGAACTGGCTCATGGCCTGGGTCTGGGTATGCTCT
GCCTGCGGTAGTTAAACAAATTTATCCGGCTACCCCGGAGGTACTGGC
GGAAATCCTGGAACCAATCGTACCGGATCTGAAAGGCGTTCCGGGCGA
GGCTGAGAAACCGACCTGGCGCGGTTCCAGGCTGGTGCAGG
CATCACTATGAAACTGAACAGACTCCACCCCTGGAACTCCTGCT
GCGTCTGACCGACCTGGCCTTCACCACTCCATCCCTGGAACTCCTGCT
GTCTATGGCACCAGTAACTGCTGATCGTGAGCGTTGGAAAGCAATTTA
CCAGGACGCATTTTGAACGGCCGC

TABLE 4

Additional Informal Sequence Listing

FO ID.

TAACACCGTGCGTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTG

SEO ID: 4

ATGAAAGGACCAATAATAATGACTAGAGAAGAAGAATGAAGATTGTT CATGAAATTAAGGAACGAATATTGGATAAATATGGGGATGATGTTAAG GCAATTGGTGTTTATGGCTCTCTTGGTCGTCAGACTGATGGGCCCTAT TCGGATATTGAGATGATGTGTTCTGTCAACAGAGGGAGTAGAGTTC AGCTATGAATGGACAACCGGTGAGTGGAAGGCGGAAGTGAATTTTTAT AGCGAAGAGATTCTACTAGATTATGCATCTCGGGTGGAACCGGATTGG CCGCTTACACATGGTCGATTTTTCTCTATTTTGCCGATTTATGATCCA GGTGGATACTTTGAGAAAGTGTACCAAACTGCTAAATCGGTAGAAGCC CAAAAGTTCCACGATGCGATCTGTGCCCTTATCGTAGAAGAGCTGTTT GAATATGCAGGCAAATGGCGTAATATTCGTGTGCAAGGACCGACAACA TTTCTACCATCCTTGACTGTACAGGTGGCAATGGCAGGTGCCATGTTG ATTGGTCTGCATCATCGCATCTGTTATACGACGAGCGCTTCGGTCTTA ACTGAAGCAGTTAAGCAACCAGATCTTCCTCCAGGTTATGTCCAACTG TGCCAGCTCGTAATGTCTGGTCAACTTTCCGACCCTGAGAAACTTCTG GAATCGCTAGAGAATTTCTGGAATGGGGTTCAGGAGTGGGCGGAACGA CACGGATATATAGTGGATGTGTCAAAACGCATACCATTTTGA

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 23
<210> SEQ ID NO 1
<211> LENGTH: 9142
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      polynucleotide
<400> SEOUENCE: 1
tgggagtcaa taaacccgat gtgcgttgga tttgccacta ccagccgccc ctgcaactca
                                                                       60
gtgaatatct ccaagaggtg ggacgcgctg ggcgagatgg cgaagcggca caggccctgg
                                                                      120
ttttggtgag cgatcgctgg ggcttggatc gcgaagatca acagcgttgg tctttttttc
                                                                      180
agcaccaaag tcaagacacc tacaatcgcg ccatggcact tcagacgcag ctgccctcc
                                                                      240
agggtaatct gcagcaactg cggcaacact ttcctgaagt ggaattgacc ctggcattac
                                                                      300
```

tgcatcaaca	gggggccctc	cgctggcaag	atccctttca	ctattgccgt	caacccttgg	360
cacaggtgcc	acccccaccc	aaagaccctc	aagaacagtt	gatgcaaaag	ttcctctatc	420
accggggctg	ccgctggcag	tttctcctcc	aagcctttgg	ttttgccact	gaggcaaggg	480
gattccactg	tggccattgc	gatcgctgtc	ggccgccgca	ccgctcccgc	aaaataccgt	540
aaattgccag	cgctgtatca	ctggaatatt	gggtacactg	gcacatagaa	cggtcgcttt	600
accattggta	ggcaaaagtt	tctcagcagt	cattctgttg	ccgcaaggta	ggggttgcag	660
gcatggggct	actacaagtt	gaggaaattc	gcgaagcact	tcaagatgtg	ctttcagaac	720
acgcccttgt	tgtgcaagtt	aatcagtttc	gcaaccaatt	aaacattatt	ttgaacaagc	780
cccccggcac	cgttgcccat	tattctgccc	tagcggattt	tctcaagtcg	cgcttgggac	840
agtttcatct	caatgatatt	gaccgcatta	aaataattgg	ccgcatacag	ggttcgccta	900
aacccgattg	ggaagaggtc	attgatctac	gtccccccaa	cccagcccta	gctgcccctg	960
tgtatgcttc	ttetgeeeeg	tgggtggtgg	cgatcgctgc	tggctttgtc	agtttactgg	1020
tgatctttag	ctatcacctt	ggtcagtagc	agcaacagca	acggctgtag	ccgttgatcg	1080
aaggttcctt	tggtcaaaag	ggcgtcgtga	tgacggactt	taagtggcac	attgagggtg	1140
gtacagggtt	tattgtcggg	gttcttaaaa	actacagtaa	agggtatttt	cgcttagttc	1200
aggcggactt	tgaactcttt	gaccaaggcg	gtcagcaagt	tgggacagtg	gcggtacagg	1260
tttatggtct	tggccctgag	gaaacatggc	aattccgtga	actgatagcc	aatcatcagg	1320
cagtgcgagc	acggctggta	aaattacagt	cattcaatta	aggtttttct	aatgtttagg	1380
tttccccagc	agggagcgac	accgcttgct	atggcacacc	ttaaagccct	gatctttgat	1440
gtcgatggca	ccttagcaga	tacggagcgg	gatggccatc	gtatcgcctt	caacaaggcc	1500
tttgccgccg	ctggtctaga	ttgggaatgg	gacattcccc	tctatggtca	actcctggcg	1560
gtggctgggg	gcaaggagcg	gatccggtat	taccttgagt	gctttcgtcc	cgattggcca	1620
cgtccccaaa	atttggatgc	tctgattgcc	gatttacaca	aggccaagac	ccgctattat	1680
accgagctat	tggcggcagg	ggctattccc	ctgcggccgg	gggtgaaacg	gctcctcact	1740
gaagcccggg	aagcaggatt	acgtttggcg	atcgccacca	cgaccacccc	tgccaatgtc	1800
accgcactcc	ttgaaaatgc	cctcgctcct	gatggcgtca	gttggtttga	gataattgct	1860
gccggggatg	tagttccagc	caagaaaccc	gcgcccgaca	tttacttcta	cacgcttgaa	1920
aagatgcgcc	tctcacccca	agagtgcctt	gcctttgagg	attccgccaa	tgggattcag	1980
gcggccactg	ccagtcacct	agcgaccatt	atcacgatta	ccgactacac	caaggatcat	2040
gattttcgtg	atgcagcgct	ggtcttggat	tgcttagggg	aaccggacta	cccctttcag	2100
gttctgcgcg	gtgaggtggg	ttggacaacc	tatgtggatg	tccccctatt	gcgatcgctg	2160
caccagcagt	ggacaagcac	gttgagtcag	ggataatttt	ctggccgcag	cgttttacat	2220
tgaatatgac	ccccttagtc	tgaggatcaa	ggaacataat	gtacacgatt	gatttaattc	2280
tgcgtcatgt	ccccatgccc	gtcagcattg	aacgcaagga	aagtgcagca	gcgatggcag	2340
tctatcagca	aattcagcag	gccatggcca	gtggtactcc	aactttcctc	gaactgacgt	2400
gcgatcgcca	agtgggcaag	aagttaacgg	tgctcacctc	agaaattgtc	gccgtgcaaa	2460
tggcggataa	ggatgcccc	tccagtacta	tcagtcgtgg	gggattcttt	gctcaattag	2520
tgcagcaaac	cagcaactga	gggaaaatgc	ctcaataaag	ttgagttttt	cttggcaatg	2580

ctgattcttt	gccgttagga	tactaagcag	accgatccgt	aggggaacgt	gaagcaaatc	2640
ctccccgtct	gaaagtcagg	tatctctggt	gtgtcgtaat	agggttgtct	atggtgcagc	2700
gtttcctgcc	ggttctgatt	ttgttggggt	gtagttttgg	tcttgcgacc	cctgcccttg	2760
tgcgtgccca	agccaatcag	ggctttacgt	ttacttgggg	tgaggggccg	agtggccgac	2820
agcagttgca	ataccactta	gataacggca	ccccggttt	tatgggcgat	cgctattggc	2880
tgcggctggg	tcagcagaaa	gtggccatca	atcgcattaa	cattacctat	cccgactact	2940
acaacggtat	tattgatccc	aaaggcattg	aggtgcgcat	cggtggcgat	cgcggcaatc	3000
gcttcttcca	atttcgccgt	gaccccggca	ccaaaattca	attggcggaa	gtctccgttg	3060
atcgcgataa	ccgcgtgatt	gatattgtgc	cggctgaggt	gattcccgcc	ggaacaccgg	3120
tgcaagttat	tctcaataat	gtgcgcaacc	ctaacaatgg	cggcatgtac	tatttcaatg	3180
cccgcattgg	ctcccctgga	gatattcccc	tcatgcgcta	cgttggcacc	tggattctca	3240
gcattgccaa	taactaaaac	ccgtcaaact	cgagcattgg	tgagcgggtt	agccatttct	3300
aactattgcg	gggcgatcgc	cctagactag	ttttttgtct	attattgccg	gttcactctt	3360
tacaccagat	gccagattcc	gttaggtctt	cattcccctc	catttctcct	ctgctcacgc	3420
ctctgatgta	ccgcctcgtg	ggggacgttg	teetgeggeg	ctattttcgt	acccttgagg	3480
tgcaagggca	ggagcgggtg	ccccaaaggg	gtccagtgat	cttggccccc	acccaccgtt	3540
cccgctggga	tgcgctgatt	attccctatg	tcactgggcg	gcgggtgagt	gggcgcgacc	3600
tctactacat	ggtgtcccac	gatgagatgt	tgggactaca	gggctgggtg	attgctcagt	3660
gtggcggttt	tcccgtcaat	acccaagcgc	cttcggtgag	tgcgttgcgt	acgggtgtgg	3720
aactgctccg	gcaggggcaa	gccttggtgg	tgttccctga	ggggaatatc	tttcgcgatc	3780
gccagattca	tcccctcaag	ccggggttgg	ctcgcttagc	ccttcaggcg	gcccagcgct	3840
gtgaacaagc	aatccagatt	ctgccaattt	tactcgatta	tgcccagccc	tacccacagt	3900
ggggaagtgc	ggtcaaggta	atcattgggg	ctcccttgag	taccgacaat	tacgatgcca	3960
gccggccaaa	aagtgctgcc	caacaactga	ccagtgatct	ctttagaaga	cttcagcagc	4020
tccaaggggg	gcgatcgccc	ctgtgttttg	cttagacctc	aaacttccat	ccccgcggcc	4080
gcaaaaaaaa	cgggccggcg	tattatcgcc	ggcccgagta	acaccgtgcg	tgttgactat	4140
tttacctctg	gcggtgataa	tggttgcagg	atccttttgc	tggaggaaaa	ccatatgaaa	4200
ggaccaataa	taatgactag	agaagaaaga	atgaagattg	ttcatgaaat	taaggaacga	4260
atattggata	aatatgggga	tgatgttaag	gcaattggtg	tttatggctc	tcttggtcgt	4320
cagactgatg	ggccctattc	ggatattgag	atgatgtgtg	ttctgtcaac	agagggagta	4380
gagttcagct	atgaatggac	aaccggtgag	tggaaggegg	aagtgaattt	ttatagcgaa	4440
gagattctac	tagattatgc	atctcgggtg	gaaccggatt	ggccgcttac	acatggtcga	4500
tttttctcta	ttttgccgat	ttatgatcca	ggtggatact	ttgagaaagt	gtaccaaact	4560
gctaaatcgg	tagaagccca	aaagttccac	gatgcgatct	gtgcccttat	cgtagaagag	4620
ctgtttgaat	atgcaggcaa	atggcgtaat	attcgtgtgc	aaggaccgac	aacatttcta	4680
ccatccttga	ctgtacaggt	ggcaatggca	ggtgccatgt	tgattggtct	gcatcatcgc	4740
atctgttata	cgacgagcgc	ttcggtctta	actgaagcag	ttaagcaacc	agatcttcct	4800
ccaggttatg	tccaactgtg	ccagctcgta	atgtctggtc	aactttccga	ccctgagaaa	4860

cttctggaat	cgctagagaa	tttctggaat	ggggttcagg	agtgggcgga	acgacacgga	4920
tatatagtgg	atgtgtcaaa	acgcatacca	ttttgatgtc	taaccccctt	ccttgcccac	4980
agcttcgtcg	atggcgcgaa	atttcgggta	aatataatga	ccctcttgat	aacccaagag	5040
ggcattttt	aggcgcgccc	taagcgtccg	taggcacaat	taaggcttca	aattgttggc	5100
gaagctgctc	agtcacttcc	ttgacggctt	gccgtgcccc	ttggcgatcg	cgccggtaca	5160
gaggccaata	gctctctaaa	ttgagagggt	cgccgacact	gaggcgcacc	tgccgcaaac	5220
ccaccaaacg	attgagattc	gagettttte	cctctagcca	atcaaatgtg	cgccagagaa	5280
tcagcgcgac	atctgcaaag	cgatgaatcg	tgaatttete	acggatatag	ctacccgtaa	5340
ttgaggtaaa	tegeteegea	agacgcatat	gacgcaatcg	cacattggct	tcctcggcca	5400
accaatcggc	taggcagcgc	tctacggccg	aaagttgtgc	caaatcactg	cgaaacatcc	5460
gttcccaagc	agcctgttca	atgegtegge	agcgactcac	aaaatcggca	ctgggcttca	5520
gaccaaagta	ggactctgcc	accacaaggg	cgctgttgag	gaggcgctga	attcgcgctg	5580
ccaatttagc	attggcagag	tcaaaggggg	gcagttcggg	aaaatcttga	ccataggagg	5640
tggcataaaa	agcctccagg	cgatccaaga	ggtggatcgc	taaattcagc	aggeggeggt	5700
agaggtcgtc	tggctgggta	ctgtgagaat	ctgtagggca	cccaaggcgg	ttctccagtt	5760
gtgccatcag	ccttgccatg	cgctcccaag	agggctgact	gaggctgtac	tgaatgccaa	5820
tgggaagaat	gaccacgggg	agcgatcgcc	ccgccttggc	taaatcttct	agacaccaaa	5880
atcccagttg	ggccaccccc	ggctccaaag	gtgcgaccag	ttcgttgtgc	tcattcgttg	5940
ctccctccgg	cgctgccgct	aggggaaatc	gtcctccgag	aagtagctcc	cgcgctgagc	6000
gcagggcttg	gctatcgagc	ttaccgcgca	tgatggaaat	ccccccaac	cgtgaaaaga	6060
gccaaccaat	ctgcgcccct	gcccagaggg	gaatcccgcg	atcgtagaga	aaatagccat	6120
ttgtcggcgg	acgcaaggga	atgcccagcc	gccgtgctgt	ttgcggcagt	aaatgccaca	6180
tcaaatagcc	catcaccaac	ggatcatccg	tacagggatg	gcgaaaggca	atgaggagcc	6240
ggacctgtcc	ctgctgaaac	tgctggtaat	aacgggcaag	ggtctccaca	ttcacccctt	6300
caacccgctg	tagcccaaga	ccatagcgaa	tgtagagggg	caggagtctt	gctactgtcc	6360
accagacggg	gtagctaaac	cgctggggga	gaaaatgcaa	cggcggttgg	gcagttgtca	6420
ctacactgga	cattaggcaa	gctcctcagg	gcaatggcta	aactgaggca	gtggccaact	6480
ccgcaattaa	ctgctctaac	atcggttgat	cggcccaata	gacagcatta	caaaactgac	6540
aggtggcttc	tgcctttgcc	tctgtggcta	ggatatctct	taattctgcc	teceetagga	6600
gcttgagtgc	cgctaacatc	cgttcatggg	aacagccaca	gtggaagcgc	accatttgcc	6660
gttggggcaa	gatttgtaaa	tccatatccc	ctaagagttc	ctgaaagata	tctggcagtg	6720
tccgccctgc	ctgtagcagt	ggtgtaaagc	ccttaagatt	ggccacccgt	tgttcaaggg	6780
tcgcgatcag	gtgttcatca	ttggccgctt	tgggtagcac	ctgtaacatc	aacccaccgg	6840
cggcagtcac	cccggactct	tcgacaaaaa	cacccaacat	cagggcggag	ggggtttgct	6900
ctgaggtggc	gaggtagtag	gtgatgtctt	ctgcaatttc	gccggagact	agctccaccg	6960
tgctggaata	ggggtagccg	tagccaagat	cgtggatgac	gtagagatat	ccctgatggc	7020
ccaccgctgc	ccccacatcg	agtttgccct	tggcattggg	gggcagttca	acactggggt	7080
actgcacata	gccgcgaact	gtgccatcgg	caccagcatc	ggcaaaaatg	gttcctaggg	7140

gaccgttgcc	ctgaatgcgc	acattcaccc	gtgcttgggg	ctgtttgaaa	ctggaggcaa	7200
ggattaagcc	tgcggccatg	gttcgtccca	aggccgctgt	ggccacgtag	gacagttggt	7260
gacgtttgcg	ggcttcatca	gtgagttgag	tggtaatcac	acctacggcc	cggatgcctt	7320
cggcagcggc	agttgctcgc	aacagaaaat	cggccatgtt	caacctacga	aatgttttgt	7380
tacatttagt	gtgacatact	cccaccgctg	accagggcac	aatggggcaa	aaaaccatca	7440
atcctgcctt	tggtgaccga	tccagtacag	ccagccaggg	cttaagactg	ggaagacccc	7500
tagcactggg	gctagaaaat	tggcgatgat	aggcaagcaa	tagtcattca	gcgtccagtc	7560
attccgccta	tggccatgcc	cctcactgtc	ttgcctgcca	caactgtttt	gacagaagcg	7620
actcaattgc	cccagggcgg	cttgattacg	gagattccga	cgctggcgat	cgcccaccgt	7680
ttggcccagc	agttgcgccg	ccattggccc	ctagagaccc	ccttaacgct	gattgatgcg	7740
caataccaga	gtatccccct	gacccttggg	gaattggccg	agctcaccga	tgccaactgt	7800
cctttacagc	tctatgtgcc	gccccccttg	ccagaggcct	tgacgcaatt	tcaacgcctg	7860
atggatgtgg	ttcgagagct	gcgccatccg	gagcgtggct	gtccttggga	tttgcagcaa	7920
accccaacca	gtctcattcc	ctatgtcctt	gaggaagcct	atgaagtggt	acatgccctg	7980
caggagggag	atgcgggggc	gatcgccgaa	gaattgggag	acctgttgct	tcaagttgtt	8040
ctccagagcc	aacttgccca	agaagccggc	caatttaccc	ttgctcaagt	cattcaaagg	8100
attaccgata	aactcatccg	ccgccatccc	cacgtctttg	gtgaagtggc	actcaccact	8160
gctcaagagg	tgcgcgacca	atgggagcaa	atcaaagcgg	ctgaaaaagg	caccgaactc	8220
cccctgagtc	aaacgctgca	acgttacgca	cgcaccctcc	cacccctgat	ggccggcatg	8280
aaaattggtg	agcgagccag	tegegetgge	ctcgattggc	cgacgattag	tggtgcatgg	8340
gagaaatttt	acgaggaact	ggcggagttt	caggaggccc	ttctgcaagg	gaatgctgag	8400
caacaggcag	cggaattagg	agacctgctc	ttcagtgtga	ttaaccttgc	ccgctggtgc	8460
caactggatc	ctgttaatgc	cctgcaacaa	acctaccaac	gctttattca	acgcttggcc	8520
tgtattgagg	cagtcatcga	tegececett	gagacgtaca	ccctagaaga	actagaagcc	8580
ctctggcaac	aggccaaagt	acagttagcc	accgacagcg	aggcaacccc	tatggagact	8640
gaggaagagg	cctagtccgc	tgcggccctt	gccaccttca	gttcatcgag	attccacagg	8700
gggcccccca	gcgccgtggg	cttggcgcca	atgacatgat	tgcgaaaagc	tgtaagggag	8760
aggggattca	cgaggtaaat	aaaggggaga	tattcctgag	ctagtcgttg	ggcttccgca	8820
taaatttgct	gccgtcgttc	cagattgagc	tcctgggcac	cttggacata	caggtcactg	8880
atgcgctgct	cccagtcagc	gacgactcga	cccgtaatgg	gtggttgatt	cggtgacggt	8940
tgctgattga	atgtatgcaa	aaggccatcc	acacgccaga	tattggcacc	gctattgggt	9000
tcattgcccc	ccccagtaaa	gccgaggata	tgggcttccc	actctaggga	attggagaga	9060
cgatccacga	gggtaccaaa	ggccaaaaat	tgcagatcca	cctgcatgcc	gategeeect	9120
aggtcctgct	gaacttgcgt	cg				9142

<210> SEQ ID NO 2
<211> LENGTH: 9618
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

polynucleotide		
<400> SEQUENCE: 2		
teegegggag gtgtaatgee gatggeeece ttgeggaaaa eetatgttet eaagetatae	60	
gttgccggta acacacccaa ctcggtgcgt gccctaaaaa ctctcaataa cattcttgaa	120	
aaagaattta agggagtcta tgcactcaaa gtaatcgatg tcctcaaaaa tccgcaactg	180	
gctgaggaag ataaaatttt ggccacgcct acccttgcca aagtcctacc gccccctgtg	240	
cgccggatta ttggggactt gtcgaatcgt gagaaggtgc tcattggctt agatctcttg	300	
tatgaagaga ttggtgacca agccgaggat gacttaggct tggaataggc acagtcctta	360	
gagactetea gtttagaata gettettgga atttttgege aatacegaat etaaaaatet	420	
tctatgacaa acctaccgga acatcagtct agtccaacgg agcagtcctc tgcggaagtc	480	
aagaaaatcc cgacgatgat tgagggcttt gacgatatca gtcatggggg acttccccaa	540	
ggacgcacca ccttagtcag cggcacttca ggcacaggga agaccctttt tgcagttcag	600	
tttctctaca atggcattac catttttaat gagccaggta tatttgttac atttgaagaa	660	
tccccccaag atattatcaa aaacgccctc agttttggct ggaacctgca aagtctgatt	720	
gatcaaggca agctatttat cetggatget teteeggate eegatggeea agaggtgget	780	
ggtgactttg acttatctgc tctgattgag cgcattcagt atgccattcg caaatacaaa	840	
gcaacceggg tetecattga tteggteaca geagtgttee ageaataega tgeggeetee	900	
gtggtgcggc gggaaatttt tcgcttggct tttcgcctca agcaactggg cgtgaccacg	960	
attatgacca ctgagcgggt agatgaatac ggccctgtgg cgcgttttgg tgttgaggag	1020	
tttgtctccg acaatgtggt cattttgcgg aatgttctcg agggagaaag gcggcggcgc	1080	
acggtcgaaa ttctcaagct gcggggcacc acccacatga agggggaata tccctttacg	1140	
atcaacaatg gtattaacat cttcccgttg ggggccatgc gcttgactca gcgctcatcg	1200	
aatgtgeggg tgtetteagg ggteaagaee etegaegaga tgtgtggegg tggettette	1260	
aaggattcaa ttattttggc cacgggcgct acgggtactg gcaagacgct cttggtcagt	1320	
aaattettgg agaegggetg eeaacaggga gaaegageee tgetgtttge etatgaagaa	1380	
tcgcgggcgc agttgtcgcg caatgcctcc tcttggggta ttgattttga ggagttagaa	1440	
cggcgcggtt tgttgcggat tatttgtgcc tatccagagt cagcggggct tgaggatcac	1500	
ctgcaaatta tcaagtcgga gattgcggac tttaagccct cacgggtggc gattgactct	1560	
ttgtctgcgt tggcgcgggg ggtgagtaac aatgccttcc ggcagtttgt aatcggggtt	1620	
actggatttg ccaaacagga ggaaatcact ggctttttca ccaacacgac ggatcagttt	1680	
atggggtcca actcgattac cgagtcccat atctccacaa ttacagacac cattttgctg	1740	
ttgcagtacg tggaaatccg cggtgagatg tcgcgggcaa ttaatgtctt taagatgcgt	1800	
ggetettgge acgacaaggg gattegggag tatgtgatea etgagaaggg ggeagaaate	1860	
cgcgattcct tccgcaactt tgaggggatt attagcggta cccccacccg catttccgtg	1920	
gacgaaaaaa cagagctggc gcgaattgcc aaggggatgc aggatctaga gagcgagtag	1980	
ccccatgcag ttaaaccaag ttattgtggt gcacaaggcg ggcgatcgcc agagcaagga	2040	
atgggcagat cgtgcctccc gtcaactaca acagcgtggc gccaatgtgc tggtagggcc	2100	
tagtgggcct aaggacaacc cttaccccgt ctttatggcc tetgtgacag agccgattga	2160	

tctcgccgtt	gttctggggg	gcgatggcac	ctccttagca	geggeaegee	atctcgcagc	2220
ggctggggtt	ccaattttag	cggtgaatgt	gggggggcat	ttggggtttt	tgacggagcc	2280
cttggagttg	tttcgcgata	tggaggcggt	ttgggatcgc	ctggagcggg	atgagtacgc	2340
gatgcaacag	cggatgatgc	tgcaagccca	ggtttttgaa	gggtcaaagg	ctcatccgga	2400
agcggtgggc	gatcgctact	atgccctgaa	tgaaatgtgc	attaagccgg	cctctgctga	2460
tcgcatgatc	accgccatcc	tcgagatgga	aattgatggc	gatgttgtgg	atcagtacca	2520
aggggatggg	ttgctggtgg	ccacgcccac	tggctctact	tgctatacgg	tcgccgccaa	2580
tggccccatt	ttgcatccag	ggatggaagc	cctggtggtg	acacccattt	gtcctttgag	2640
tctctctagc	cgccccattg	tcttgcctgc	gcgctcctca	gtcagcattt	ggcccttgga	2700
ggatcacagt	ctcaatacca	agctgtggat	ggatggtgtc	ctggccacct	ccatttggcc	2760
aggacagcgg	gtacaggtga	caatggccga	ttgtcaagct	cgctttatca	tcctgcggga	2820
tcactactcc	ttttatcaaa	ccctacggga	gaagttagcc	tgggcagggg	cacggattcc	2880
ctatcacaac	aatcaccgca	attagatcac	aaccgcccct	ccagaaggtc	tttataattg	2940
gggcattcct	cactaaaccc	ttgctatgat	tctcagtccc	tttgaacgcg	ccgttcttgg	3000
ccaagaggcg	gaagccctgg	ttgatcagtt	gttagaaatt	gggatttccc	tctctgccag	3060
tcaatcccta	gaggaattgc	tgcatctgat	tctcacgaaa	agtcgccaaa	tcactgctag	3120
cgatgctggc	acgatttttc	tagttcagcg	ggaacgggca	gtgctggaat	tcaaggcagc	3180
tcaaaacgat	agcgtcaccc	ttcctgagca	agtgcaggac	tataccatac	ccctcaccgc	3240
cgatagcttg	gtgggctatg	ccgctctcac	gggggaatcc	ctaaatattg	ccgatgtgta	3300
tgccctcaag	gggagcgaga	tgtaccagtt	caatcgctct	tttgatgaag	ccctccacta	3360
tcgaacctgt	teggtgetgg	tggtgccgat	gcaaaatatt	agcggtgagg	tgattggcgt	3420
tctgcaactg	attaaccgca	agcgatcgcc	cgatacccgg	ctgagaccag	aaaccagtgt	3480
ggccctcacc	cagccctata	gtccttggga	agaacatatt	gtgcgatcgc	tggccagcca	3540
agcggcggtg	attattgagc	gcaatcatct	gctcgagagt	attgaacagc	tctttgaggg	3600
atttattacc	gcttcagttc	aagccattga	gacgcgagat	ccagtcaccg	cagggcattc	3660
ggaacgggtg	gcagcgctga	cggtgcgcct	tgctgagatc	accaatgcca	cctctagggg	3720
agtctttcgc	gatgttttct	ttagcgatcg	ccagctccag	gaaatccgct	atgctgctct	3780
gctccacgat	tttggcaagg	tgggcgtgcc	ggaggcaatt	ctcaacaagc	aaaagaaatt	3840
ctaccccgaa	cagctagagg	tgattcgcca	gcgctttgcc	ctcgtccgcc	gcacccttga	3900
aatggaaacg	gctcaagcca	aagtcaatta	tttactctcc	catccccatc	agccccatac	3960
cccacaacag	cggtgtcagt	cctgtacttt	tttacgagac	ctcgatcagc	aactccagca	4020
acaactgcac	accctagagg	cctactggca	gctaattgag	caggccaatg	agccgcaaat	4080
tcttgaggag	gaacccctgg	ctcagcttca	ggaattgacc	cagttttatt	accgcggcac	4140
tgatggggaa	ctccatcccc	tgatcacggc	cagcgaactg	gagcaactct	tggtgcggcg	4200
gggcaatctc	acccaagggg	agcggcgcat	gattgaagcc	cacgtcacct	atacctacga	4260
gtttctctcg	cgcattcctt	ggacacccca	cctgaagaat	gtgccgatca	ttgcctatgg	4320
tcaccatgag	cgcttaaatg	gcagtggcta	ccccgcggt	attggtgccg	ccgaaattcc	4380
cctacaaacc	caaatgctgg	cgatcgcgga	tatttacgat	gccctgaccg	ccaaggatcg	4440

cccctacaaa	aagagcctac	ctgtggatag	ggccctaggg	attttgtggc	aggaggctag	4500
ggaatttaag	attaatcctg	atctggtgga	actctttgag	cagcaggagg	tctttcgggt	4560
gctggggcac	cagcgctagg	cggccgcaaa	aaaaacgggc	cggcgtatta	tegeeggeee	4620
gagtaacacc	gtgcgtgttg	actattttac	ctctggcggt	gataatggtt	gcaggatcct	4680
tttgctggag	gaaaaccata	tgaaaggacc	aataataatg	actagagaag	aaagaatgaa	4740
gattgttcat	gaaattaagg	aacgaatatt	ggataaatat	ggggatgatg	ttaaggcaat	4800
tggtgtttat	ggctctcttg	gtcgtcagac	tgatgggccc	tattcggata	ttgagatgat	4860
gtgtgttctg	tcaacagagg	gagtagagtt	cagctatgaa	tggacaaccg	gtgagtggaa	4920
ggcggaagtg	aatttttata	gcgaagagat	tctactagat	tatgcatctc	gggtggaacc	4980
ggattggccg	cttacacatg	gtcgattttt	ctctattttg	ccgatttatg	atccaggtgg	5040
atactttgag	aaagtgtacc	aaactgctaa	atcggtagaa	gcccaaaagt	tccacgatgc	5100
gatctgtgcc	cttatcgtag	aagagctgtt	tgaatatgca	ggcaaatggc	gtaatattcg	5160
tgtgcaagga	ccgacaacat	ttctaccatc	cttgactgta	caggtggcaa	tggcaggtgc	5220
catgttgatt	ggtctgcatc	atcgcatctg	ttatacgacg	agegettegg	tcttaactga	5280
agcagttaag	caaccagatc	ttcctccagg	ttatgtccaa	ctgtgccagc	tegtaatgte	5340
tggtcaactt	teegaeeetg	agaaacttct	ggaatcgcta	gagaatttct	ggaatggggt	5400
tcaggagtgg	gcggaacgac	acggatatat	agtggatgtg	tcaaaacgca	taccattttg	5460
atgtctaacc	cccttccttg	cccacagett	cgtcgatggc	gcgaaatttc	gggtaaatat	5520
aatgaccctc	ttgataaccc	aagagggcat	tttttaggcg	cgccctaggg	tggatcggcg	5580
gacgattgca	aaaacgagag	tttccacagc	gtagetgeea	gccaattggt	acaggtatgg	5640
gcaacgatcg	ctaagagtaa	attattcgtt	gccacagcac	tataggcaaa	gaatccgccc	5700
acaaaggtag	cccacagggc	atagggccac	tgctgccgcg	atccagcgtg	caaaatgcca	5760
aagcacgcag	aactgccaat	aatccctgcc	cagttgagcc	ccaaactcgg	taggagcacc	5820
ccgcgaaaga	gcagctcttc	actaaggccg	ggcagaatgc	caatccaaaa	tagatcaggc	5880
cacagcagtg	gtgaaagcac	aagtttcagg	taggtatctg	aggcgtggcg	gtaggccggc	5940
cagaggcgat	acaaaatggc	gccaatgccg	gtaattccta	ggcagagggc	aatgcctaaa	6000
accactgccc	agacatccca	gcgcagcggc	agcagtcccc	cagaaaaggg	ggtaaataac	6060
cacacccgcg	ccaaaatcag	ccacaggatg	gccgttaacg	ccatggccac	taagacctgt	6120
gtacgactca	gaggctcatc	gggtaggggg	gactcctcca	taggtctacg	ctttctggaa	6180
ctgaccaaat	tggaagttat	agacctcctc	ctctttttca	gagatcaatt	tcaaatctga	6240
gcaagggcgg	gccacacaga	ggaggacata	gcctttttcc	cgcagttcgg	gactcagccc	6300
cattgcatct	ccgtgatcca	cggtaccctc	ctgaatttgg	gccgcacagg	tggtacatac	6360
cccggcattg	caggaactcg	gaagatcaat	tccggcagcg	gtggccgatc	gcaggagggg	6420
tttatcggca	ctggcttcaa	aagtgtaggt	ttgtccttgg	tgcagaatct	caacacgaaa	6480
ggtttgggtc	attctggcag	tgagctatga	cgcaacatct	tccctattat	cccctaatc	6540
ctcgcgatcg	ctggcttcct	cgggggcaga	cttcaaccat	gccggcaaag	gatcaggaat	6600
cggcacacgc	tggcggtggg	gcagttgcag	gcacatgtgt	tgcgtctggg	caatggctac	6660
ccgatccccc	ccttcgttgt	agagagtata	ggtcagttga	aaacggctag	tatccagtct	6720

ttgggggtca	atggtcaccc	gcaggcgatc	gccacagtag	aggggtttca	aaaaccgtat	6780
ctgcgcctcc	gtaatcggca	caatgaggcc	actgttgctg	aaaaattgcc	gcagatctac	6840
ccccaattgg	gcaagggcat	cctcataggc	ctcatggcaa	aaccgcagca	gattggcaaa	6900
gtagactacc	ccagccgcat	cggtatcggc	aaaatgaact	gtgcgctgat	agtcgcgcag	6960
gggtgttgga	ttcatctatc	gtccttccat	tgccatccca	tagggttgtc	caacacaagc	7020
catgggcaaa	aacgcgccac	agcatttgtt	gttaatatag	gatacagctc	ttttgcaacc	7080
aattcccatc	cctaaaccga	tgagtaacaa	aggcagttct	gatctgcgac	ttcttttaag	7140
cacgctggtg	atcagtggct	tagtcgcagg	actggcctat	tggcaactca	gtcaacactg	7200
gacccgctcc	cccgatcaaa	acgctggctc	cccctccac	accccaacct	caaagtggca	7260
aaaaattgcc	ctcgcgatga	ccctgcgggg	ccatgaagat	gaggtgaacg	cgatcgccct	7320
gagtcccgat	ggcaatttcc	tcgtcagtgc	tggcgacgat	cgcaggctgt	acttctggaa	7380
cttggctacg	ggaactgccc	taggacaagc	caaaggtcac	accgactgga	tctatgccct	7440
ggtgatgact	cccgatggtc	agacggtgat	tageggeagt	aaagacaaaa	ccatcaaact	7500
atggggggtg	ggcgatcgcc	aactccaagc	caccctcagt	ggccaccaag	attttgtgaa	7560
tggcttagcc	ctcagtcccg	acggtcgcac	ccttgccagt	gccagctatg	atcacaccgt	7620
caaactgtgg	aatgttccca	gccgtcagga	aattactacg	ctcaaagcaa	atgagggcat	7680
catgeteage	gtcgccatta	gtcgagatgg	gcgtttttta	gccacgggtg	gcgtggataa	7740
actcatccgc	atttgggatt	tgccctcccg	ccgactcctg	cgcaccctgg	aaggacacac	7800
cagtgatgtc	aatagcctcg	ccttcacccc	cgacagcagc	caactggtca	gtggcagtga	7860
caaagatggt	ataaaacttt	ggaacctgac	cacaggagaa	ctgcagcaac	agtttggcac	7920
tgagggcggg	caggtcttta	gtgtggcagt	gagtcccgac	ggcagcaccc	ttgccagtgg	7980
tcacggcgat	caaactgtca	aactttggtc	cctctctggt	cagttattgc	ggaacctcaa	8040
gggacactct	ggcgctgtct	acagtgtcgt	ctttggtcag	gatcaactga	tctccgccag	8100
tgaagacaaa	accatcaaag	tgtggcgtct	ttttcccgaa	accccataga	gaactcgcgg	8160
gcctcaccta	cggcacaaaa	aacggctaag	atccccaaga	atcttagcca	ctgagaacaa	8220
cggctggaat	ttttttagcc	cacacttccc	tctagcttca	ggctcagcag	gcgatcggcc	8280
tcgactgcaa	attccatcgg	caattgatta	aagacatcgc	gacagaagcc	actaatcatc	8340
attgagacgg	catcttcagc	ggaaattccc	cgctgggcaa	agtagaagag	ttgatcttca	8400
ccaattttcg	atgtcgaagc	ctcatgctcc	acctgggcag	tggggttttg	cacctgaata	8460
taggggaagg	tattggcagc	ggccgtatcc	ccaatgagca	tcgaatcgca	ttgggagtag	8520
ttgcgtgccc	ctgtggcctt	ggggccaatt	ttcaccagac	cgcgatagct	attttgggag	8580
tggccggccg	aaatgccctt	agagacaatc	ctgctgcggg	tatttttccc	aatgtggatc	8640
atcttcgtgc	ccgtgtccgc	ctgttggtag	tgattggtga	gggcaacgga	gtaaaattct	8700
cccacggagt	tatcccccac	caagacacaa	ctggggtatt	tccaagtaat	ggcagaaccc	8760
gtctccacct	gtgtccagga	aatcttggaa	ttgeggeega	ggcagagtcc	ccgcttcgtc	8820
acaaagttgt	aaatgcccc	tttgccattt	tcatcgccgg	cataccagtt	ttgcacagtg	8880
gagtatttga	tttcggcatt	gtccagagcc	accagctcca	ccactgccgc	atggagttga	8940
ttggtgtcaa	acatgggagc	agtacaaccc	tcaagatagc	tcacgtagct	cccggcatcg	9000

gcaatgatca gggtgcgctc aaactgaccc gactcaccgt tattgatgcg gaaataggtg	9060					
gatageteca ttggacageg ggtattettg ggaacataga egaaggagee ateggaaaaa	9120					
actgcggagt tcaaggcagc atagaaatta tcgccaatgg gaacaacact gcctaagtat	9180					
ttctgcacta actcgggata gtcctggagc gcttcagaaa tggagcaaaa aatgatcccc	9240					
tgettggeea acteetegeg gaaggtggtg geeactgaca cactategaa aatggeatet	9300					
acggctacat tggtgagccg cttttgctct gaaaggggaa tccctagttt ttcaaaggtt	9360					
tccagcagaa cgggatctac ttcatccaag ctttttagct tttccttctg tttcggagct	9420					
gagtaataga cgatgtettg ataattgatg gggggatage teaccegtgg ceattgggge	9480					
tegeteatet teageeattg acgataggea egeaggegaa acteeageat gaactetgge	9540					
tegttettet tggeggagat gaggegaata atgteetegt tgagacettt gggaatggtt	9600					
tccgtctcaa tgggggtg	9618					
<pre><210> SEQ ID NO 3 <211> LENGTH: 50 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthe oligonucleotide</pre>	etic					
<400> SEQUENCE: 3						
taacaccgtg cgtgttgact attttacctc tggcggtgat aatggttgca	50					
<210> SEQ ID NO 4 <211> LENGTH: 762 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide						
<400> SEQUENCE: 4						
atgaaaggac caataataat gactagagaa gaaagaatga agattgttca tgaaattaag	60					
gaacgaatat tggataaata tggggatgat gttaaggcaa ttggtgttta tggctctctt	120					
ggtcgtcaga ctgatgggcc ctattcggat attgagatga tgtgtgttct gtcaacagag	180					
ggagtagagt tcagctatga atggacaacc ggtgagtgga aggcggaagt gaatttttat	240					
agcgaagaga ttctactaga ttatgcatct cgggtggaac cggattggcc gcttacacat	300					
ggtcgatttt tctctatttt gccgatttat gatccaggtg gatactttga gaaagtgtac	360					
caaactgcta aatcggtaga agcccaaaag ttccacgatg cgatctgtgc ccttatcgta	420					
gaagagctgt ttgaatatgc aggcaaatgg cgtaatattc gtgtgcaagg accgacaaca	480					
tttctaccat ccttgactgt acaggtggca atggcaggtg ccatgttgat tggtctgcat	540					
categoatet gttataegae gagegetteg gtettaaetg aageagttaa geaaceagat						
	600					
cttcctccag gttatgtcca actgtgccag ctcgtaatgt ctggtcaact ttccgaccct	600 660					
cttcctccag gttatgtcca actgtgccag ctcgtaatgt ctggtcaact ttccgaccct gagaaacttc tggaatcgct agagaatttc tggaatgggg ttcaggagtg ggcggaacga						
	660					

<210> SEQ ID NO 5 <211> LENGTH: 4224 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide

<400> SEQUENCE: 5

gaccaattet teagtgaagt etteagage gatgaageat tegateagg teggeegte 120 ggtgtttgce agageaacet tgatagette tgeeagtteg coaceggtt tageetteag 180 gectttacca geacegetgt cataaceace gttacegttg acacetteca teagacegge 240 ataatcecag teettgatgt tgttgtaegg accateatgg ateataact egatgggta 300 accatagtta ttgatcaaga agatgataac eggeagttte aggegacea tetgagegae 420 tteetgagee geataacega aggegeagg accateatga gagattge gacgtteegg 420 agcacegaeg geataacega aggegeagg acaggacaa eeggagettga cocactgat 480 tteetgattta agegageac egttegggag etteatgege tgageattga accaaggee 540 accggtttea geaataaceg tegtgtteegg ggeagagag gettetetea gteeacet gaegggegat 660 atteggegat ttgaagaag cacaggace ggtttetttg gaactteet gacgeagacg 720 ggtcagatag tetteagat gaacetegg ggttettettg gaactteet gacgagaca 780 ettetggtgaa acaaggace gagegataac egeateage gettetteta gtteacete 780 ettetgtgaag acaggacat tettaagat gaacetegg gaacega egettaceg tetteteag tetteteace 780 eggtteagag acaggaca gagegataac egeategget tetteteag tetteteace 190 gaccagtatag etgaacea tggagaace teggagaace teggagageg cacaceag agageateag caacttege 100 gaccagtatga etgaageac tggatagaac teggagageg teggagagg caacttega tetteteggagagagagagagagagagagagagagagaga	ctagaggagc ttgttaacag	gcttacggct	gttggcggca	gcaacgcgct	taccccattt	60
gectttacca geacegetgt cataacacc gttacegttg aacaetteca teagacegge 3000 acataacteca tetgatgt tgttgtaegg acateatgg ateataactt egatggtgta 3000 acatagtta ttgatcaaga agatgataac eggeagtte aggegaaca tetgagegac 3600 tteetgageg geacegtga aggaaccate accaacatg aggatgttge gaegtteegg 420 aggacegaegg geataacega aggegagga aacgagacaa eegatgtgae eecactgeat 4800 tteatatea acgeagegae egtteggggg etteatgege tyageattga accaacaggg 6000 tteetgegtte geacegtgtggg geteagaaga gettegaect gaegggegat 6000 tteetgegtte accaacggae cateaggae eacgaggaegg getteetea geteageggegat 6000 tteetgegtg accaacggae cateaggae aggeggagg getteetea geteageggg 720 ggteagaaga tettaacacgg eacteggaegg gaaceggaegg getteetea geteacacag 720 ggteagatga tettacagat gaacgetggg gaagegaacg eegttaacga egacagaacg 780 eggtteagag agaaceagt tettaagate aggaatatee gteeaacag teggtggagta 840 gtegttgaag acaggageca gageggaaca eggatgaac egataaceg 1020 geeeggaag etgactteae eecatgaggt accgatgata tetteeaga 1020 geeeggatag etgactteae eecatgaggt accgatgata teggeggtttt ettetgggaa 960 gaagettett teageaceag etggtageaac tggegeaceg aggagateae eacatttge 1020 ageagttegg atgaattee gggtteegg etggaggae ttgaacttee 1020 ageaggttegga atgaattee gggtteegg etcaggageg gegeagggae tggaagaat 1200 gettgeagg attegaacat gegettgeegg teeggaggge etggaagga ttgaacattee 1200 gettgeagg attegaacat gegettgeegg teeggagge etggaaggae teggaagaat 1200 gettgeagg attegagae tetetegggg teeggaggegg eeggaggge eeggaggttt 1320 ettggecatt tecaactgat aggatagte ggttttgeea aggacggg eeggaggttt 1320 ettggecatt tecaactgat aggatagte ggttttgeea aggacggg eeggaggttt 1320 ettggecatt tecaactgat aggatagte ggtaaacegg gaaggttte 1440 tgeatagge eegcaggg eacacggag eacacgggg eeggaggge eeggaggge eeggaggge eeggaggge eeggaggge eeggaggge eeggaggge eeggagggg eeggaggge eeggagggg eeggaggggg eeggagggg eeggaggggg eeggaggggg eeggaggggg eeggaggggg eeggaggggg eeggagggggggg	gaccaattct tcagtgcagt	cttcacgacc	gatgaagcat	tcgatcaggg	ttgggccgtc	120
ataatccag ttcttgatgt tgttgtacgg acatcatgg atcataactt cgatggtgta 300 accatagtta ttgatcaga agatgataac cggcagttc agggaacca tctgagcgac 360 ttcctgagcc gtcagctgga aggaaccatc accaaccatg aggatgttgc gacgttccgg 420 agcacgacg gcataaccga agggcgagg aacgaccaac ccgatgtgac cccactgcat 480 ttcatattca acgcagcac cgttcgggag cttcatgcgc tgagcattga accaacgagt 540 accggtttca gcaataaccg tcgtgttcgg ggtcagaaga gcttcgacct gacgggggg 600 ttcttca gaccaacacgg agatgatgg cacacgggag cactcggatc agccggagcg gcttcttca gttcacctgc 660 attgagggat ttgaagaag cacacggac ggtttcttg gaacatttct gagccaacacg 720 ggtcagatag tcttcagac gaccggggg gagggaacg cgttaacga cgacagaacg 780 cggttcagcg agaaccagt tcttaaggat agacgatacc ggtttcttg gaacacttct gagccaacacg 780 cggttcagcg agaaccagt tcttaggat agacgatacc ggcataacc gtgttgaga acaggagca gagcgataac cgcatcggct tctttcacg tctttcaac 900 gcccggatag ctgacttcac cccatgaggt accgatgata tgcgggttt ctttcagga 960 gaagcttttt gcagcagcac tggtagcaac tgcgccaccg agagcatcac caaatttgac 1020 agacgttttt tcagcaccag ctggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agacgttttt tcagcaccag ctgcgcgcag cttgctgccg acgaggacg caactttgtc 1140 ggcttcgca ttgaacaatg cgcttcgcgg tccaggagg ggcagggac tggaagcaat 1200 gttgcaagca attcgaacat ggcttcgcgg tcaggaggacg gaggaagaac 1200 gttgcaagca attcgagat aaaccggctt cttctcacga agacgattt taatcacgtg 1260 atcgattta gccggagct tcttcgggt gcaaggagg ggcagggac tggaagcaat 1200 gttgcaagc attcgagat aaaccggct cttctcacga agacgtttt taatcacgtg 1380 accagcagg ggcaggc tgtacattg tgttcggag cttggaggac cggaggttt gaaaccag gaggtttt tatcacgg 1380 accagcagg ggcaggc ggaacacg cggaggac ggaacacgg ggcaggca	ggtgtttgcc agagcaacct	tgatagcttc	tgccagttcg	ccaccggttt	tagccttcag	180
tectgagec gearactega agatgataac eggaagtete aggaagtetg gaegteegg 420 agcaccgacg geataaccga aggaccacte accaaccatg aggatgttge gaegteegg 480 tectgagec geataaccga aggegeagg accaaccatg aggatgttge gaegteegg 540 accaggettea accaaccga eggegeagg etteatagege tgagaattga accaacggaege 540 accaggttea geataaccg teggtteegg geteagaagg getteetea geteacctg 540 accaggttea accaacggag cacteeggac agceggageg getteetea geteacctg 540 attgagggat tegaagaag cacteeggac agceggageg getteetea geteacctg 540 attgagggat tegaagaag cacacggage getteetea geteaccag 540 geteagaga gaaccagt tettaagat gaacgetggg gaagegaacg cegteacaga egacagaacg 540 geteagag agaaccagt tettaggate aggaatatee gecaaccag tggggagata 540 getegegaag acagageca gagegaac cgcatagget tettecag tettecaga 540 geceggatag etgaattea cecatagagg accgataget tettecagat gegeagage 540 geagettett gaageageca gagegaac cgcatagget tettecag tettetagaa 540 geceggatag etgaattea cecatagagg accgatgget tettecag tettetagaa 540 geagettett teageaccag etgegegag etgegeageg aggaataacg caaattega 540 geagettegga atgaattea gggtteete aaccgetga teaaagaag ettegteget 540 accggttageg atgaattea gggtteete aaccgetga teaaagaag ettegteget 540 gegetteggaa atgaaattea gggtteete aaccgetga teaaagaag ettegteget 540 gegettegea tegaacaatg cgetteggg teaagagag gegaaggaga tggaagaaa 540 gegettegea teaacaatga aaccgget ettetcacga agagaagtet taatcacgg 540 gettegaagea attecagaat aaccgget ettetcacga agagaagtet taatcacgg 540 accagcaagea gatcattg tetteeggag geaaaggag 540 accagcaage gatcattg tetteeggag 540 accagcagea gatcattg 540 gettegea gegeetteg 640 geagagagaa 640 geagagagaa 640 accagcaga 640 accagagaa 640 accagcaga 640 accagagaa 64	geetttaeca geacegetgt	cataaccacc	gttaccgttg	aacacttcca	tcagaccggc	240
ttectgagec gteagetgga aggaaceate aceaaceatg aggatgtege gaegtteegg 420 ageaceacegg geataacega aggeggeagg acegagacea cegatgtgae eceaetgcat 480 tteatattea acegagacea egttegggag etteatgege tgageattga aceaaggage 540 aceagggttea geaataaceg tegtgtteegg ggteagaaga getteggeet gaegattga aceaagggeg 600 ttetteggttg aceaaceggag cacteggate ageeggageg gettettea gtteacetge 660 attgagggt ttgagagag cacteggate ageeggageg gettettea gtteacetge 720 ggteagatag tettacagt gaacgetggg gaagegaace cegttaacega egacagaaceg 780 cggtteagatag tettteagat gaacgetggg gaagegaace cegttaacega egacagaaceg 780 cggtteagag agaaceagtt tettaggate aggaatatee gteeaaceag tggtggagata 840 gtegttgaag acaggageca gagegataac egacatgget tettteateg tettteaace 900 geeggttgaag acaggageca gagegataac egacatgget tettteateg tettteaace 900 gaagetttt geagecagea tggtaggaa tgggaggttt ettetgggaa 960 gaagetttt geagecagea etggtageaac tgegecaceg agageateag caaatttgae 1020 ageagtttet teagecage etggtageace ttgegegeace aggaggaceg acaatttge 1080 geggttggeg atgaatttea gggtttette aacegetgaa tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg teetgaggge gegeagggea tggaagcaat 1200 gttgeaageg atttegagat aaceggett ettetcacega agageagtt taatcacegtg 1260 ateggttegte tteagagagag teggaggge etggagggea tggaaggat 1220 gttgeaageg ttgaacatgt tettetgggg gtaaateget teagetgegg eegtgatgtt 1320 ettggecatt teeaactgat agtgatagte ggttttgeea agageagttt taatcacegtg 1380 aceageageg tgateattgt tgtteggage aceggagate aggataaceg gaaggtttt 1400 ggetgetget gegeetttgg cacegagaca aceggagate aggataaceg gaaggtttt 1400 ggetgetget gegeetttgg eaceagaga aceggagaacegagagagagagagetggetggeggggagggaggaggaggaggaggaggaggaggaggag	ataatcccag ttcttgatgt	tgttgtacgg	accatcatgg	atcataactt	cgatggtgta	300
agcaccgacg gcataaccga aggcggcagg aacggaccaa ccgatgtgac cccactgcat ttcatatica acgcgagcac cgittcgggag citcatgcgc tgagcattga accaagagtc 540 accggittca gcaataaccg tcgittcgg ggicagaaga gcitcgacct gacgggcgat 600 tictgggittg accaacggag cactcggatc agccggageg gcittctica gitcacctgc 660 attgagggat tigaagaagt ccaaagcacc ggittictig gaaactitct gagccaaacag 720 ggicagatag tcittcagit gaacgctggg gaagcgaacg ccgitaacga cgacagaacg 780 cggitcagag agaaccagti tcitaggatc aggaatatcc giccaaaccag tggitggagta 840 gicgitgaag acaggagca gagcgataac cgcatcggci tcittcatg tcitticaac 900 gcccggatag cigacticac cccatgaggi accgatgtaa tgggggitti cittcgggaa 960 gaagctitit gcagcagca tggitagaga acggataac cgcatcggci tcittcatg tcitticaac 900 gcccggatag cigacticac cccatgaggi accgatgtaa tgggggitti cittcgggaa 960 gaagctitit gcagcagca tggigagcaac tggcgcaccg agagcacca acaattigac 1020 agcagtitit tcagcaccag ciggcgcag citgcigcca acgaggacgi caactitigic 1080 gcgittggcg atgaatitca gggittictic aaccgctga ticaaagaag citcgitcgti 1140 ggcitcgica tigaacaatg cgcttgcgg tccaggagg gcgcagggca tggaagcaat 1200 gtigaaagca titcgagat aaccggcit citctcacga agagcagtit taatcacgtg 1260 atcgatitia gccggagct citctggggi giaaatcgi tcaagcagg ccgtgatgti 1320 citggccatt tccaactgat agtgatagtc gittigcca agagcgitat gcaacacgtg 1380 accagcagcg tgatcattgi tgitcggag accggagata accgacgtgi aggaagcgi tgaacacgi 1500 ggctgctgci gcgccttigg cacgagacta acctictgca cigaaaccg agittcagtic gittigacag accgagacag caccgaagcag caccgaagcag caccgaagcag caccgaagcag caccgaagcag caccgaagcag caccgaagcag caccgaagcag caccagaagcag caccagaagcaga caccagaagagaa accagaagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaagcagaag	accatagtta ttgatcaaga	agatgataac	cggcagtttc	aggcgaacca	tctgagcgac	360
ttcatattca acgegagcae egtteggaga etteatgege tgageattga accaagagte 600 tetegegttg accaaeggag cacteggate ageeggageg gettetetea geteacetge 660 attgagggat ttgaagaagt ecaaageace ggtttettg gaaactteet gageaaacg 720 ggteagatag tetteagat gaacgetggg gaagegaaeg egttaaega egacagaaeg 780 eggteagatag tetteagat gaacgetggg gaagegaaeg egttaaega egacagaaeg 780 eggteagatag tetteagat gaacgetggg gaagegaaeg egttaaega egacagaaeg 780 eggteagatag etgaaettea eccatgaggt acgategat tetteaaega egacagaaeg 780 eggteggatag etgaetteae eccatgaggt acegatgtaa tgegggttt ettetggaaa 960 gaagettett geageageaa tggtageaae tgegeeaeeg acgaggageg eaaetttge 1020 ageagetteet teageaceag etgegegeag ettgetgeeg acgaggageg eaaetttge 1080 geggttegga atgaattea gggtteette aacegetgea tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg tecaggageg gegagggea tggaageaat 1200 gttggaageg atttegggat aaaeeggett ettetcaega agageagtt taateaegtg 1260 ategatteta geeggagett ettetggggt gaaaeegg eeggaggga etggaageaat 1200 gttggeaageg atttegggat aaaeeggett ettetcaega agageagtt taateaegtg 1260 ategatttta geeggagett ettetggggt gaaateget teagetgegg eegtgatgtt 1320 ettggecatt teeaaetgat agtgatagte ggttttgeea agageggtat geaaeaegtg 1380 accageageg tgateattgt tgtteggage aceggagate aggataaeeg gaaggttte 1440 tgeataaggeg ceacegatag cateaaatge ggaaagegae eegacgetgt aggtaaegae 1500 ggetgetget gegeetttgg eacgageata acettetgea etgaaaeege agtteagtte 1560 gttaaageaa taaaeetget eeatgtttt gtteaaaage aggttgeaa gaaggaegag 1620 gttgtagteg eegeetttgg eacgagtatg ettgagaeea atetggaeaa geegeteege 1680 ttaaataggta eegaeggta aacteatatg tttteeteea geaaaaggat eetgeaaeea 1740 ttateaeege eagaggtaaa atagteaaea egaaggeea eegaagggg ageeggtgg 1800 eegeetgge etteatggee tataaaegea gaaaggeeea eegaagggg ageeggtgg 1800 eegeetgge etteatggee tataaaegea gaaaggeea eegaagggg ageeggtgg 1800 eegeetgge etteatggee tataaaegea gaaaggeea eegaagggea eggeteegg 1920 etgageettt egttttattt gatgeetgga ataettegaa gagagatgee eggeteegtat 1980 eetgageettt egttttattt gatgeetgga ataettegaa gagagatgee eggetggaatee	ttcctgagcc gtcagctgga	aggaaccatc	accaaccatg	aggatgttgc	gacgttccgg	420
ttctgcgttg accaacaggag cactcggatc agccggagg gctttcttca gttcacctgc 660 attgagggat ttgaagaag cactcggatc agccggaggg gctttcttca gttcacctgc 660 attgagggat ttgaagaag cacaaggac ggttttcttg gaaactttct gagccaaacg 720 ggtcagatag tcttcagat gaacgctggg gaagcgaacg ccgttaacga cgacagaacg 780 cggttcagcag agaaccagtt tcttaggatc aggaatacc gtccaaccag tggtggagta 840 gtcgttgaag acaggagca gagcgataac cgcatcggct tcttcatcg tctttcaac 900 gcccggatag ctgactcac cccatgaggt accgatggat tcttcatcg tctttcaac 900 gaagcttttt gaagcacca tggtagcaac tgcgccacca agagcatcag caaatttgac 1020 agcagttggcg atgaattca gcgtcgcag cttgctgccg acgaggacg caactttgtc 1080 gcggttggcg atgaattca gggttcttc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagg ggcagggca tggaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcattt taatcacgtg 1260 atcgattta gccggagct cttcttggggt tcaaggagg cggaggga tgaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcgtta taatcacgtg 1260 atcgatttta gccggagctt cttctggggt gaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcaggg tgatcattgt tgttcggagc accggagatc aggaagcgg cgtgatgtt 1440 tgcataggcg caccgatag catcaaatgc ggaaagcga ccgacgctgt aggtaaccg 1500 ggctgctgct gcgcctttgg cacgagcata acctctgca ctgaaaccg aggttgtca 1660 gttacagcaa taaacctgc ccatgtttt gttcaaaagc aggttgcaa gaaggacga 1620 gttgtagtcg ccgcgactg cgaagtgat cttgagacca atctggacaa gccgctccgc 1680 taaataggta ccgacagta aactcatatg ttttcctcca gcaaaaggat cctgcaacca 1740 ttaacaccgc cagaggtaaa ataaccaca cgcacggtgt taagccgca aggccagagg 1800 ccgcgcctgc ctcaatggcc taaaaccac acagaggacca cccgaaggtg agccagggg 1800 ccgcgcctgc ctcatggcc taaaaccac acagaaggcca cccgaaggtg agccagtgg 1800 ccgcgcctgc ctcaatggcc taaaaccac acagaaggcca cccgaaggtg agccagtgg 1800 ccgcgcctgc ctcaatggcc taaaaccac acagaaggcca cccgaaggtg agccagtgg 1800 acctcaggcctt cgttttattt gatgcctga acaggcgaagaggaagagcca cccgaaggtg agcaagtgc 1920 ctcaaggcctt ccgaaaacca acagaaaacca acagaaggccc agccgtttc ctcaaggcctt ccgacaaacc acagaaggcca agaaggcca	agcaccgacg gcataaccga	aggcggcagg	aacggaccaa	ccgatgtgac	cccactgcat	480
ttctgggttg accaacggag cactcggatc agccggagcg gctttcttca gttcacctgc 660 attgagggat ttgaagaagt ccaaaggacc ggttttcttg gaaactttct gagccaaacg 720 ggtcagatag tctttcagat gaacgctggg gaagcgaacg ccgttaacga cgacagaacg 780 cggttcagcg agaaccagtt tcttaggatc aggaatacc gtccaaccag tggtggagta 840 gtcgttgaag acaggagca gagcgataac cgcatcggct tctttcatcg tctttcaacc 900 gcccggatag ctgactcac cccatgaggt accgatgtaa tgcgggttt cttctgggaa 960 gaagcttttt gagcacca tggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agcagtttgggg atgaattca gcgttcctc accgcagcgcg cttgctgccg acgaggacg caactttgtc 1080 gcggttggcg atgaattca gggtttcttc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcgaa aaccggctt cttctcacga agagcagttt taatcacgtg 1260 atcgatttta gcgggagct cttctggggt gtaaattcg ggtttgccg acgaggcg cggtaggtt 1320 cttggccatt tccaactgat agtgatagtc ggtttgcca agagcgggcg cggtaggtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgca agagcggtga gcaacacgtg 1380 accagcagcg tgatcattg tgttcggagc accggagatc aggataaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcga ccgacgtgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	ttcatattca acgcgagcac	cgttcgggag	cttcatgcgc	tgagcattga	accaagagtc	540
attgagggat ttgaagaagt ccaaagcacc ggttttcttg gaaactttct gagccaaacg 720 ggtcagatag tctttcagat gaacgctggg gaagcgaacg ccgttaacga cgacagaacg 780 cggttcagcg agaaccagtt tcttaggatc aggaatatcc gtccaaccag tggtggagta 840 gtcgttgaag acaggagca gagcgataac cgcatcggct tctttcatcg tctttcaac 900 gcccggatag ctgacttcac cccatgaggt accgatgtaa tgcgggtttt cttctgggaa 960 gaagctttt gcagcacca tggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agcagttgcg atgaattca gggtttcttc aaccgctgca ttcaaagaag cttcgtcgc 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg caagggacag ctcgtcgcc 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcaagat aaccggctt cttctcacga agagcagttt taatcacgtg 1260 atcgatttta gccggagctt cttctggggt gtaaatcgct tcagcagcgg ccgtgatgtt 1320 cttggccatt tccaactgat aggtagtcg ggtttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggag accggagatc aggataaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaagcgca ccgacggtgat ggaagcagg 1500 ggctgctgc gcgcctttgg cacgagcata accttctgca ctgaaaccg agttcagttc	accggtttca gcaataaccg	tegtgttegg	ggtcagaaga	gcttcgacct	gacgggcgat	600
ggtcagatag tcttcagat gaacgctggg gaagcgaacg ccgttaacga cgacagaacg 780 cggttcagcg agaaccagtt tcttaggatc aggaatatcc gtccaaccag tggtgagta 840 gtcgttgaag acaggacca gagcgataac cgcateggct tctttcatcg tctttcaacc 900 gcccggatag ctgacttcac cccatgaggt accgatgtaa tgcgggtttt cttctgggaa 960 gaagcttttt gcagcagcca tggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agcagttgtt tcagcaccag ctgcgcgcag cttgctgccg acgaggacgg caactttgtc 1080 gcggttggcg atgaattca gggtttctc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg attcgagat aaaccggctt cttctcacga agagcagtt taatcacgtg 1260 atcgattta gccggagct cttctggggt gtaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgaa aggtagtgg ggaagggga tggaagcagt 1380 accagcagcg tgatcattgt tgttcggag accggagate aggataaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgac ccgacggtga ggaagcagg ggctgaggg caaccggagg ggctgcggg ccgcagggc caaccgaag ggctgctgc gcgcctttg caccgagcaa accttctgca ctgaaaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacggtg aggtaaccac 1500 ggctgctgct gcgcctttg cacgagcata accttctgca ctgaaaccg aggtcagttc 1560 gttacagcaa taaacctgct ccatgttttt gttcaaaagc aggttgtcaa gaaggacgag 1620 gttgtagtcg cccgcgactg cgaagtgatg cttgaagacc atctggacaa gccgcccgc 1680 taaataggta ccgacgata aacctatatg ttttcctcca gcaaaaggat cctgcaacca 1740 ttatcaccgc cagaggtaaa atagcaaca cgcacggtgt taggccgcat aggccagagg 1800 cgcgcctggc cttcatggcc tataaacca acagataaaa cgaaaaggcc agccatgtgg 1860 acctcagtag agagcgtca ccgacaaaca acagataaaa cgaaaggcc agccatttcga 1920 ctgagccttt cgttttattt gatgcctgga atactcgaa gagaaggcc agccatgtt 1980 ctcaggccttt cgttttattt gatgcctgga agacggtaa aggcaatgcc agctcctgt 1980 ctcaggccttt cgttttattt gatgcctgga agacggtaa aggcaatgcc ctgagaatcc ccgacgctgt cgtagaacc ccgaaaggca cctagaacc ccgacgctgt cgtagaacc ccgacgctgt cgtagaacc ccgacagctag ctcagaacc ccgacagca agacggcca agcccgtatt 1980 ctcaggcctt cgttttattt gatgcctgga agacggtaa aggcaatgcc ctgagaatcc cctagaaccc ccagagcta cctagaaccc ccagagcta cctagaaccc ccagagcaacc cca	ttctgcgttg accaacggag	cactcggatc	agccggagcg	gctttcttca	gttcacctgc	660
cggttcageg agaaccagtt tettaggate aggaatatee gtecaaccag tggtggagta 840 gtegttgaag acaggageea gagegataac egeategget tettteateg tettteace 900 geoeggatag etgactteae eccatgaggt acegatgtaa tgegggtttt ettetgggaa 960 gaagetttt geageaccag etggtageaac tgegecaccg agageateag caaatttgae 1020 ageagettee teageaccag etgegegaag ettgetgeeg acgaggaegg caaetttgte 1080 geggttggeg atgaatttea gggtttette aaccgetgea tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg teeaggageg gegeagggea tggaageaat 1200 gttgeaageg atttegagat aaaccggett ettetcacga agageaggtt taatcacgtg 1260 ategattta geeggagett ettetggggt gtaaateget teagetgegg eeggaggtt 1320 ettggecatt teeaactgat agtgatagte ggttttgeea aggagatggt geaacacgtg 1380 accageageg tgateattgt tgtteggage aceggagate aggataaccg gaaggttte 1440 tgeataggeg eacegatag eateaaatge ggaaagega eegagggtga geaacacgtg 1380 accageageg tgateattgt tgtteggage aceggagate aggataaccg gaaggttte 1440 tgeataggeg eacegatag eateaaatge ggaaagegea eegaggtga ggaaaccag 1500 ggetgetget gegeetttgg eacgageata acettetgea etgaaaccge agtteagtte 1560 gttacageaa taaacctget ecatgttttt gtteaaaage aggttgteaa gaaggaegag 1620 gttgtagtee eegaggata aacteatatg ttteeteea geaaaaggae ageegeteege 1680 taaataggta eegaagtgaa ataetggacaa aceggeagag 1800 egeectgge etteatggee tataaacgea gaaaggeea eegaaggtg taageegaagg 1800 egeectgge etteatggee tataaacgea gaaaggeea eegaaggtg ageeagtgg 1800 eegeectgge etteatggee tataaacgea acaggagagaaacgaaggee eegaaggeea ee	attgagggat ttgaagaagt	ccaaagcacc	ggttttcttg	gaaactttct	gagccaaacg	720
gtcgttgaag acaggagcca gagcgataac cgcatcggct tctttcatcg tcttttcaac 900 gcccggatag ctgacttcac cccatgaggt accgatgtaa tgcgggtttt cttctgggaa 960 gaagcttttt gcagcagcca tggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agcagcttct tcagcaccag ctgcgcgcag cttgctgccg acgaggacgg caactttgtc 1080 gcggttggcg atgaatttca gggtttettc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcagtt taatcacgtg 1260 atcgatttta gccggagctt cttctggggt gtaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggagc accggagatc aggataaccg gaaggtttc ttgcataggcg ccaccgatag catcaaatgc ggaaggcac ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccg agttcagttc	ggtcagatag tctttcagat	gaacgctggg	gaagcgaacg	ccgttaacga	cgacagaacg	780
gcccggatag ctgacttcac cccatgaggt accgatgtaa tgcgggtttt cttctgggaa 960 gaagcttttt gcagcagcca tggtagcaac tgcgccaccg agagcatcag caaatttgac 1020 agcagcttct tcagcaccag ctgcgcgcag cttgctgccg acgaggacgg caactttgtc 1080 gcggttggcg atgaatttca gggtttcttc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcagttt taatcacgtg 1260 atcgatttta gccggagctt cttctggggt gtaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggag accggagatc aggataaccg gaaggttttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	cggttcagcg agaaccagtt	tettaggate	aggaatatcc	gtccaaccag	tggtggagta	840
gaagettett geageageea tggtageaac tgegeeaceg agageateag caaatttgac 1020 ageagettet teageaceag etgegeegag ettgetgeeg aegaggaegg caactttgte 1080 geggttggeg atgaatttea gggtttette aacegetgea tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg teeaggageg gegeagggea tggaageaat 1200 gttgeaageg atttegagat aaaceggett etteteacga agageagttt taateacgtg 1260 ategattta geeggagett ettetggggt gtaaateget teagetgegg eegtgatgtt 1320 ettggeeatt teeaactgat agtgatagte ggttttgeea agagegtgat geaacaegtg 1380 aceageageg tgateattgt tgtteggage aceggagate aggataaceg gaaggttte 1440 tgeataggeg ecacegatag eateaaatge ggaaagegea eegaacegeg aggetgetgeg eegtgette 1560 ggttgetget gegeetttgg eacgageata acettetgea etgaacege agtteagtte 1560 gttacageaa taaacetget eeatgtttt gtteaaaage aggttgteaa gaaggaegag 1620 gttgtagteg eegggatta aaceteatatg tttteeteea geaaaaggat eetgeaacea 1740 ttateacege eagaggtaaa atagteaaca egeacggtgt taggeegeata ageegeeteege 1680 etaaataggta eegacagtaa aaceteatatg tttteeteea geaaaaggat eetgeaacea 1740 ttateacege eagaggtaaa atagteaaca egeacggtgt taggeegeat aggeegaggg 1800 egegeettgge etteatggee tataaacgea gaaaggeeea eegaaggtg ageeagtgtg 1860 aceteagtag agagegttea eegacaaaca acagataaaa egaaaggeee agtettega 1920 etgageettt egtttattt gatgeetgga ataettegaa gagatgeteg aegteetttega 1920 etgageettt egttttattt gatgeetgga ataettegaa gagatgeteg aegteetttega 1920 etgageettt egttttattt gatgeetgga ataettegaa gagaaggeee etgagaatee 2040 etgageettt egttttattt gatgeetgga ataettegaa gagaaggeee etgagaatee 2040 etgageettt egttttattt gatgeetgga ataettegaa aggeeaatgee etgagaatee 2040 etgageettt egttttattt gatgeetgga ataettegaa aggeaatgee etgagaatee 2040 etgageettt egttttattt gatgeetgga ataettegaa aggeaatgee etgagaatee 2040 etgageettt egtttattt gatgeetgga ataettegaa aggeaatgee etgagaatee 2040 etgageettt egtttattt gatgeetgga ataettegaa aggeaatgee etgagaatee 2040 etgageettt eggttgagaa etcateegaa agageggaa aggeaatgee etgagaatee 2040 etgageetga etgagaatgee 2040 etgagaetee 2040 etgageetgagaetga etgagaetgageetgageetgagaetgageetgageetgageetgagaetgageet	gtcgttgaag acaggagcca	gagcgataac	cgcatcggct	tctttcatcg	tcttttcaac	900
agcagettet teageaceag etgegegeag ettgetgeeg acgagageg caactttgte 1080 geggttggeg atgaattea gggttette aacegetgea tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg teeaggageg gegeagggea tggaageaat 1200 gttgeaageg atttegagat aaaceggett etteteacga agageagtt taateacgtg 1260 ategattta geeggagett ettetggggt gtaaateget teagetgegg eegtgatgtt 1320 ettggeeatt teeaactgat agtgatagte ggttttgeea agagegtgat geaacaegtg 1380 accageageg tgateattgt tgtteggage accggagate aggataaceg gaaggttte 1440 tgeataggeg ecacegatag cateaaatge ggaaagegea eegaegetgt aggtaacgae 1500 ggetgetget gegeetttgg eacgageata acettetgea etgaaacege agtteagtte 1560 gttacageaa taaacetget ecatgtttt gtteaaaage aggttgteaa gaaggaegag 1620 gttgtagteg ecegegaetg egaagtgatg ettgagacea atetggacaa geegeteege 1680 taaataggta eegaeagtat aacteatatg tttteeteea geaaaaggat eetgeaacea 1740 ttateacege eagaggtaaa atagteaaca egeaeggtgt taggeegaat aggeeagagg 1800 egegeettgge etteatggee tataaaaegea gaaaggeeea eegaaggtg ageeagtgt 1860 acteaggae etteatgge tagaacaaa acagataaaa egaaaggeee agtettega 1920 etgageettt egtttattt gatgeetgga ataettegaa gagatgeee ageeteegat 1980 etgageettt egtttattt gatgeetgga ataettegaa gagatgeee ageeteegat 1980 etgageettt egtttattt gatgeetgga ataettegaa gagatgeee ageeteegat 1980 etgageettt egtttattt gatgeetgga ataettegaa gagatgeee ageteetgat 1980 etgageettt egtttattt gatgeetgga ataettegaa gagatgeee etgagaatee 2040	geceggatag etgaetteac	cccatgaggt	accgatgtaa	tgcgggtttt	cttctgggaa	960
geggttggeg atgaatttea gggtttette aacegetgea tteaaagaag ettegteget 1140 ggettegtea ttgaacaatg egettgeegg teeaggageg gegeagggea tggaageaat 1200 gttgeaageg atttegagat aaaceggett etteteacga agageagttt taateacgtg 1260 ategattta geeggagett ettetggggt gtaaateget teagetgegg eegtgatgtt 1320 ettggeeatt teeaactgat agtgatagte ggttttgeea agagegtgat geaacaegtg 1380 aceageageg tgateattgt tgtteggage aceggagate aggataaceg gaaggttte 1440 tgeataggeg eeacegatag cateaaatge ggaaagegea eegacgetgt aggtaacgae 1500 ggetgetget gegeetttgg eacgageata acettetgea etgaaacege agtteagtte 1560 gttacageaa taaacetget eeatgtttt gtteaaaage aggttgteaa gaaggaegag 1620 gttgtagteg eeeggactg egaagtgatg ettgagacea atetggacaa geegeteege 1680 taaataggta eegacagtat aacteatatg tttteeteea geaaaaggat eetgeaacea 1740 ttateacege eagaggtaaa atagteaaca egeacggtgt taggeegeat aggeeagagg 1800 egegeettgge etteatggee tataaacgea gaaaggeeca eeegaaggtg ageeagtgtg 1860 acteaggetg etteattt gatgeetgga ataettegaa gaaggteeg aegteettega 1920 etgageettt egtttattt gatgeetgga ataettegaa gagatgeteg aegteegtat 1980 eteaggeetag ettagaagaa etcatecage agaeeggtaga aggeaatgee etteaggeetat egtttattt gatgeetgga ataettegaa gagatgeteg etgagaatee 2040 etcaggetag ettagaagaa etcatecage agaeeggtaga aggeaatgee etgagaatee 2040 etcaggeetag ettagaagaa etcatecage agaeeggtaga aggeaatgee etgagaatee 2040 etcaggeetag ettagaagaa etcatecage agaeeggtaga aggeaatgee etgagaatee 2040	gaagettttt geageageea	tggtagcaac	tgcgccaccg	agagcatcag	caaatttgac	1020
ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcagttt taatcacgtg 1260 atcgattta gccggagctt cttctggggt gtaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggagc accggagatc aggataaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	agcagettet teagcaceag	ctgcgcgcag	cttgctgccg	acgaggacgg	caactttgtc	1080
gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcagttt taatcacgtg 1260 atcgatttta gccggagctt cttctggggt gtaaatcgct tcagctgcgg ccgtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggagc accggagatc aggataaccg gaaggtttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	geggttggeg atgaatttea	gggtttcttc	aaccgctgca	ttcaaagaag	cttcgtcgct	1140
ategatttta geeggagett ettetggggt gtaaateget teagetgegg eegtgatgtt 1320 ettggeeatt teeaactgat agtgatagte ggttttgeea agagegtgat geaacaegtg 1380 aceageageg tgateattgt tgtteggage aceggagate aggataaceg gaaggtttte 1440 tgeataggeg ecacegatag eateaaatge ggaaagegea eegaegetgt aggtaacgae 1500 ggetgetget gegeetttgg eacgageata acettetgea etgaaacege agtteagtte 1560 gttacagea taaacetget eeatgttttt gtteaaaage aggttgteaa gaaggaegag 1620 gttgtagteg ecegegaetg egaagtgatg ettgagacea atetggacaa geegeteege 1680 taaaataggta eegaegata aacteatatg tttteeteea geaaaaggat eetgeaacea 1740 ttateacege eagaggtaaa atagteaaca egeaeggtgt taggeegeat aggeeagagg 1800 egegeetgge etteatggee tataaacgea gaaaggeeea eeegaaggtg ageeagtgtg 1860 actetagtag agagegttea eegaeaaaca acagataaaa egaaaggeee agtettega 1920 etgageettt egttttattt gatgeetgga ataettegaa gagatgeteg aegteegtat 1980 etcaggetag ettagaagaa etcateeage agaeggtaga aggeaatgee etgagaatee 2040	ggcttcgtca ttgaacaatg	cgcttgccgg	tccaggagcg	gcgcagggca	tggaagcaat	1200
cttggccatt tccaactgat agtgatagte ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggagc accggagate aggataaccg gaaggtttte 1440 tgcataggcg ccaccgatag catcaaatge ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagtte 1560 gttacagcaa taaacctgct ccatgttttt gttcaaaaagc aggttgtcaa gaaggacgag 1620 gttgtagtcg cccgcgactg cgaagtgatg cttgagacca atctggacaa gccgctccgc 1680 taaataggta ccgacagtat aactcatatg ttttcctcca gcaaaaggat cctgcaacca 1740 ttatcaccgc cagaggtaaa atagtcaaca cgcacggtgt taggccgcat aggccagagg 1800 cgcgcctggc cttcatggcc tataaacgca gaaaggccca cccgaaggtg agccagtgtg 1860 actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	gttgcaagcg atttcgagat	aaaccggctt	cttctcacga	agagcagttt	taatcacgtg	1260
accagcagcg tgatcattgt tgttcggagc accggagatc aggataaccg gaaggttttc tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	atcgatttta gccggagctt	cttctggggt	gtaaatcgct	tcagctgcgg	ccgtgatgtt	1320
tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	cttggccatt tccaactgat	agtgatagtc	ggttttgcca	agagcgtgat	gcaacacgtg	1380
ggctgctgct gcgcctttgg cacgagcata accttctgca ctgaaaccgc agttcagttc	accagcagcg tgatcattgt	tgttcggagc	accggagatc	aggataaccg	gaaggttttc	1440
gttacagcaa taaacctgct ccatgtttt gttcaaaagc aggttgtcaa gaaggacgag 1620 gttgtagtcg cccgcgactg cgaagtgatg cttgagacca atctggacaa gccgctccgc 1680 taaataggta ccgacagtat aactcatatg ttttcctcca gcaaaaggat cctgcaacca 1740 ttatcaccgc cagaggtaaa atagtcaaca cgcacggtgt taggccgcat aggccagagg 1800 cgcgcctggc cttcatggcc tataaacgca gaaaggccca cccgaaggtg agccagtgtg 1860 actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	tgcataggcg ccaccgatag	catcaaatgc	ggaaagcgca	ccgacgctgt	aggtaacgac	1500
gttgtagteg ecegegactg egaagtgatg ettgagacca atetggacaa geegeteege 1680 taaataggta eegacagtat aacteatatg tttteeteea geaaaaggat eetgeaacca 1740 ttateacege eagaggtaaa atagteaaca egeacggtgt taggeegeat aggeeagagg 1800 egegeetgge etteatggee tataaaegea gaaaggeeca eeegaaggtg ageeagtgtg 1860 actetagtag agagegttea eegacaaaca acagataaaa egaaaggeee agtetttega 1920 etgageettt egttttattt gatgeetgga ataettegaa gagatgeteg aegteegtat 1980 etcaggetag ettagaagaa etcateeage agaeggtaga aggeaatgeg etgagaatee 2040	ggctgctgct gcgcctttgc	cacgagcata	accttctgca	ctgaaaccgc	agttcagttc	1560
taaataggta ccgacagtat aactcatatg ttttcctcca gcaaaaaggat cctgcaacca 1740 ttatcaccgc cagaggtaaa atagtcaaca cgcacggtgt taggccgcat aggccagagg 1800 cgcgcctggc cttcatggcc tataaacgca gaaaggccca cccgaaggtg agccagtgtg 1860 actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	gttacagcaa taaacctgct	ccatgtttt	gttcaaaagc	aggttgtcaa	gaaggacgag	1620
ttatcaccge cagaggtaaa atagtcaaca cgcacggtgt taggccgcat aggccagagg 1800 cgcgcctggc cttcatggcc tataaacgca gaaaggccca cccgaaggtg agccagtgtg 1860 actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	gttgtagtcg cccgcgactg	cgaagtgatg	cttgagacca	atctggacaa	gccgctccgc	1680
cgcgcctggc cttcatggcc tataaacgca gaaaggccca cccgaaggtg agccagtgtg 1860 actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	taaataggta ccgacagtat	aactcatatg	ttttcctcca	gcaaaaggat	cctgcaacca	1740
actctagtag agagcgttca ccgacaaaca acagataaaa cgaaaaggccc agtctttcga 1920 ctgagccttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	ttatcaccgc cagaggtaaa	atagtcaaca	cgcacggtgt	taggccgcat	aggccagagg	1800
ctgaggcttt cgttttattt gatgcctgga atacttcgaa gagatgctcg acgtccgtat 1980 ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	cgcgcctggc cttcatggcc	tataaacgca	gaaaggccca	cccgaaggtg	agccagtgtg	1860
ctcaggctag cttagaagaa ctcatccagc agacggtaga aggcaatgcg ctgagaatcc 2040	actctagtag agagcgttca	ccgacaaaca	acagataaaa	cgaaaggccc	agtctttcga	1920
	ctgagccttt cgttttattt	gatgcctgga	atacttcgaa	gagatgctcg	acgtccgtat	1980
ggcgctgcga taccgtacag caccaggaaa cggtcagccc attcaccacc cagttcttct 2100	ctcaggctag cttagaagaa	ctcatccagc	agacggtaga	aggcaatgcg	ctgagaatcc	2040
	ggcgctgcga taccgtacac	caccaggaaa	cggtcagccc	attcaccacc	cagttcttct	2100

gcaatatcgc	gggtagcgag	ggcgatatcc	tgatagcgat	cagctacacc	cagacggcca	2160
cagtcaataa	aaccagagaa	geggeegttt	tccaccataa	tgtttggcag	acaagcgtcg	2220
ccatgcgtta	ccaccaggtc	ttegeegtee	ggcatgcggg	ctttcagacg	tgcaaacagt	2280
teegeeggtg	cgaggccctg	gtgctcttca	tccaggtcgt	cctgatcaac	cagacccgct	2340
tccatacgag	tgcgtgcacg	ttcaatacgg	tgtttagcct	gatggtcaaa	cgggcaagtt	2400
gccgggtcca	gggtgtgcag	acggcgcatc	gcgtccgcca	tgatggaaac	tttttctgcc	2460
ggagcgaggt	ggctgctcag	cagatcctga	cccggaactt	cacccagcag	cagccaatcg	2520
cgaccggctt	cagtaactac	gtccagaact	gccgcgcacg	gaacaccagt	cgtcgcgagc	2580
caggacagac	gggccgcttc	gtcctgcagt	tcgttcagtg	cgccggacag	gtcggttttc	2640
acaaacagaa	ccggacgacc	ctgtgcagac	agacggaaaa	ccgctgcatc	gctacagcca	2700
atagtcagct	gagcccagtc	gtaaccaaac	aggcgttcca	cccaagcagc	cggagaacca	2760
gcatgcaggc	catcttgttc	aatcatactc	ttcctttttc	aatattattg	aagcatttat	2820
cagggttatt	gtctcatgag	cagatacata	tttgaatgta	tttagaaaaa	taaacaaata	2880
ggggtcgggc	cggcgataat	acgccggccc	gtttttttg	gccatgaagg	ccaggcgcgc	2940
ctctggccta	tgcggcctgt	tgacaattaa	tcatcggcat	agtatatcgg	catagtataa	3000
tacgacaagg	tgaggaacta	acatatgtgg	gaaactaaga	ttaatatcaa	cgaagtccgt	3060
gagatccgcg	cgaaaaccac	cgtttacttt	ggtgttggtg	ctatcaagaa	aattgatgat	3120
atcgctcgcg	agttcaaaga	aaaaggttac	gatcgcatca	tcgtgatcac	cggtaaaggc	3180
gcttacaaag	cgaccggtgc	atgggaatac	atcgtgcctg	ctctgaacaa	aaaccagatt	3240
acgtatatcc	attatgatca	ggtgaccccg	aacccgaccg	tagatcaggt	tgacgaagcg	3300
accaaacagg	cccgtgaatt	tggcgctcgc	gcagtactgg	ctattggtgg	cggttccccg	3360
atcgacgcag	ccaaatctgt	ggcggtgctg	ctgtcttatc	cggacaaaaa	cgctcgtcag	3420
ctgtaccagc	tggagtttac	cccggtaaaa	gcagcgccga	tcatcgccat	caacctgacc	3480
cacggtacgg	gcaccgaagc	ggaccgcttc	gcggttgtat	ctatcccgga	gaaggcctac	3540
aaaccggcta	tegettaega	ttgcatctac	ccgctgtact	ctattgacga	cccggctctg	3600
atggttaaac	tgccgagcga	ccagacggcg	tacgttagcg	tggatgccct	gaaccatgtt	3660
gttgaagctg	cgacctccaa	agttgcatct	ccgtacacta	ttatcctggc	aaaagaaacg	3720
gtccgtctca	tegeaegeta	cctgcctcag	gccctgtctc	accctgcaga	cctgaccgcg	3780
cgttattacc	tcctgtatgc	ctctctgatc	gccggtattg	cgtttgataa	cggcctgctg	3840
catttcaccc	acgcactgga	acacccgctg	tctgccgtga	aacctgaact	ggctcatggc	3900
ctgggtctgg	gtatgeteet	gcctgcggta	gttaaacaaa	tttatccggc	taccccggag	3960
gtactggcgg	aaatcctgga	accaatcgta	ccggatctga	aaggegttee	gggcgaggct	4020
gagaaagcgg	cgtctggcgt	ggcgaaatgg	ctggctggtg	caggcatcac	tatgaaactg	4080
aaagacgcgg	gtttccaggc	tgaagatatc	gcgcgtctga	ccgacctggc	cttcaccact	4140
ccatccctgg	aactcctgct	gtctatggca	ccagtaactg	ctgatcgtga	gcgtgtgaaa	4200
gcaatttacc	aggacgcatt	ttga				4224

<210> SEQ ID NO 6 <211> LENGTH: 4224

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide

<400> SEQUENCE: 6

ctagaggagc ttgttaaca	g gcttacggct	gttggcggca	gcaacgcgct	taccccattt	60
gaccaattct tcagtgcag	t cttcacgacc	gatgaagcat	tcgatcaggg	ttgggccgtc	120
ggtgtttgcc agagcaacc	t tgatagette	tgccagttcg	ccaccggttt	tagccttcag	180
geetttaeca geacegete	t cataaccacc	gttaccgttg	aacacttcca	tcagaccggc	240
ataatcccag ttcttgatç	t tgttgtacgg	accatcatgg	atcataactt	cgatggtgta	300
accatagtta ttgatcaaq	a agatgataac	cggcagtttc	aggcgaacca	tctgagcgac	360
ttcctgagcc gtcagctg	a aggaaccatc	accaaccatg	aggatgttgc	gacgttccgg	420
agcaccgacg gcataaccg	a aggcggcagg	aacggaccaa	ccgatgtgac	cccactgcat	480
ttcatattca acgcgagca	.c cgttcgggag	cttcatgcgc	tgagcattga	accaagagtc	540
accggtttca gcaataacc	g tegtgttegg	ggtcagaaga	gcttcgacct	gacgggcgat	600
ttctgcgttg accaacgga	g cactcggatc	agccggagcg	gctttcttca	gttcacctgc	660
attgagggat ttgaagaag	t ccaaagcacc	ggttttcttg	gaaactttct	gagccaaacg	720
ggtcagatag tctttcaga	t gaacgctggg	gaagcgaacg	ccgttaacga	cgacagaacg	780
cggttcagcg agaaccagt	t tcttaggatc	aggaatatcc	gtccaaccag	tggtggagta	840
gtcgttgaag acaggagco	a gagcgataac	cgcatcggct	tctttcatcg	tcttttcaac	900
gcccggatag ctgacttca	c cccatgaggt	accgatgtaa	tgcgggtttt	cttctgggaa	960
gaagettttt geageagee	a tggtagcaac	tgcgccaccg	agagcatcag	caaatttgac	1020
agcagettet teageacea	g ctgcgcgcag	cttgctgccg	acgaggacgg	caactttgtc	1080
geggttggeg atgaattte	a gggtttcttc	aaccgctgca	ttcaaagaag	cttcgtcgct	1140
ggcttcgtca ttgaacaat	g cgcttgccgg	tccaggagcg	gcgcagggca	tggaagcaat	1200
gttgcaagcg atttcgaga	t aaaccggctt	cttctcacga	agagcagttt	taatcacgtg	1260
atcgatttta gccggagct	t cttctggggt	gtaaatcgct	tcagctgcgg	ccgtgatgtt	1320
cttggccatt tccaactga	t agtgatagtc	ggttttgcca	agagcgtgat	gcaacacgtg	1380
accagcagcg tgatcatto	t tgttcggagc	accggagatc	aggataaccg	gaaggttttc	1440
tgcataggcg ccaccgata	g catcaaatgc	ggaaagcgca	ccgacgctgt	aggtaacgac	1500
ggctgctgct gcgcctttg	g cacgagcata	accttctgca	ctgaaaccgc	agttcagttc	1560
gttacagcaa taaacctgo	t ccatgtttt	gttcaaaagc	aggttgtcaa	gaaggacgag	1620
gttgtagtcg cccgcgact	g cgaagtgatg	cttgagacca	atctggacaa	gccgctccgc	1680
taaataggta ccgacagta	t aactcatatg	ttagttcctc	accttgtcgt	attatactat	1740
gccgatatac tatgccgat	g attaattgtc	aacaggccgc	ataggccaga	ggcgcgcctg	1800
gccttcatgg ccaaaaaaa	a cgggccggcg	tattatcgcc	ggcccgaccc	ctatttgttt	1860
atttttctaa atacattca	a atatgtatct	gctcatgaga	caataaccct	gataaatgct	1920
tcaataatat tgaaaaagg	a agagtatgat	tgaacaagat	ggcctgcatg	ctggttctcc	1980
ggctgcttgg gtggaacgc	c tgtttggtta	cgactgggct	cagctgacta	ttggctgtag	2040

cgatgcagcg	gttttccgtc	tgtctgcaca	gggtcgtccg	gttctgtttg	tgaaaaccga	2100
cctgtccggc	gcactgaacg	aactgcagga	cgaagcggcc	cgtctgtcct	ggctcgcgac	2160
gactggtgtt	ccgtgcgcgg	cagttctgga	cgtagttact	gaagccggtc	gcgattggct	2220
gctgctgggt	gaagttccgg	gtcaggatct	gctgagcagc	cacctcgctc	cggcagaaaa	2280
agtttccatc	atggcggacg	cgatgcgccg	tctgcacacc	ctggacccgg	caacttgccc	2340
gtttgaccat	caggctaaac	accgtattga	acgtgcacgc	actcgtatgg	aagegggtet	2400
ggttgatcag	gacgacctgg	atgaagagca	ccagggcctc	gcaccggcgg	aactgtttgc	2460
acgtctgaaa	gcccgcatgc	cggacggcga	agacctggtg	gtaacgcatg	gcgacgcttg	2520
tctgccaaac	attatggtgg	aaaacggccg	cttctctggt	tttattgact	gtggccgtct	2580
gggtgtagct	gatcgctatc	aggatatege	cctcgctacc	cgcgatattg	cagaagaact	2640
gggtggtgaa	tgggctgacc	gtttcctggt	gctgtacggt	ategeagege	cggattctca	2700
gegeattgee	ttctaccgtc	tgctggatga	gttcttctaa	gctagcctga	gatacggacg	2760
tcgagcatct	cttcgaagta	ttccaggcat	caaataaaac	gaaaggetea	gtcgaaagac	2820
tgggcctttc	gttttatctg	ttgtttgtcg	gtgaacgctc	tctactagag	tcacactggc	2880
tcaccttcgg	gtgggccttt	ctgcgtttat	aggccatgaa	ggccaggcgc	gcctctggcc	2940
tatgcggcct	aacaccgtgc	gtgttgacta	ttttacctct	ggcggtgata	atggttgcag	3000
gatccttttg	ctggaggaaa	acatatgtgg	gaaactaaga	ttaatatcaa	cgaagtccgt	3060
gagateegeg	cgaaaaccac	cgtttacttt	ggtgttggtg	ctatcaagaa	aattgatgat	3120
atcgctcgcg	agttcaaaga	aaaaggttac	gatcgcatca	tegtgateae	cggtaaaggc	3180
gcttacaaag	cgaccggtgc	atgggaatac	ategtgeetg	ctctgaacaa	aaaccagatt	3240
acgtatatcc	attatgatca	ggtgaccccg	aacccgaccg	tagatcaggt	tgacgaagcg	3300
accaaacagg	cccgtgaatt	tggegetege	gcagtactgg	ctattggtgg	cggttccccg	3360
atcgacgcag	ccaaatctgt	ggcggtgctg	ctgtcttatc	cggacaaaaa	cgctcgtcag	3420
ctgtaccagc	tggagtttac	cccggtaaaa	gcagcgccga	tcatcgccat	caacctgacc	3480
cacggtacgg	gcaccgaagc	ggaccgcttc	gcggttgtat	ctatcccgga	gaaggcctac	3540
aaaccggcta	tegettaega	ttgcatctac	ccgctgtact	ctattgacga	cccggctctg	3600
atggttaaac	tgccgagcga	ccagacggcg	tacgttagcg	tggatgccct	gaaccatgtt	3660
gttgaagctg	cgacctccaa	agttgcatct	ccgtacacta	ttatcctggc	aaaagaaacg	3720
gtccgtctca	tegeaegeta	cctgcctcag	gecetgtete	accetgeaga	cctgaccgcg	3780
cgttattacc	teetgtatge	ctctctgatc	gccggtattg	cgtttgataa	cggcctgctg	3840
catttcaccc	acgcactgga	acacccgctg	tetgeegtga	aacctgaact	ggctcatggc	3900
ctgggtctgg	gtatgeteet	gcctgcggta	gttaaacaaa	tttatccggc	taccccggag	3960
gtactggcgg	aaatcctgga	accaatcgta	ccggatctga	aaggegttee	gggcgaggct	4020
gagaaagcgg	cgtctggcgt	ggcgaaatgg	ctggctggtg	caggcatcac	tatgaaactg	4080
aaagacgcgg	gtttccaggc	tgaagatatc	gcgcgtctga	ccgacctggc	cttcaccact	4140
ccatccctgg	aactcctgct	gtctatggca	ccagtaactg	ctgatcgtga	gcgtgtgaaa	4200
gcaatttacc	aggacgcatt	ttga				4224

<211> LENGTH: 4289
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide

<400> SEQUENCE: 7

ctagaggagc	ttgttaacag	gcttacggct	gttggcggca	gcaacgcgct	taccccattt	60
gaccaattct	tcagtgcagt	cttcacgacc	gatgaagcat	tcgatcaggg	ttgggccgtc	120
ggtgtttgcc	agagcaacct	tgatagcttc	tgccagttcg	ccaccggttt	tagccttcag	180
gcctttacca	gcaccgctgt	cataaccacc	gttaccgttg	aacacttcca	tcagaccggc	240
ataatcccag	ttcttgatgt	tgttgtacgg	accatcatgg	atcataactt	cgatggtgta	300
accatagtta	ttgatcaaga	agatgataac	cggcagtttc	aggcgaacca	tctgagcgac	360
ttcctgagcc	gtcagctgga	aggaaccatc	accaaccatg	aggatgttgc	gacgttccgg	420
agcaccgacg	gcataaccga	aggcggcagg	aacggaccaa	ccgatgtgac	cccactgcat	480
ttcatattca	acgcgagcac	cgttcgggag	cttcatgcgc	tgagcattga	accaagagtc	540
accggtttca	gcaataaccg	tcgtgttcgg	ggtcagaaga	gcttcgacct	gacgggcgat	600
ttctgcgttg	accaacggag	cactcggatc	agccggagcg	gctttcttca	gttcacctgc	660
attgagggat	ttgaagaagt	ccaaagcacc	ggttttcttg	gaaactttct	gagccaaacg	720
ggtcagatag	tctttcagat	gaacgctggg	gaagcgaacg	ccgttaacga	cgacagaacg	780
cggttcagcg	agaaccagtt	tcttaggatc	aggaatatcc	gtccaaccag	tggtggagta	840
gtcgttgaag	acaggagcca	gagcgataac	cgcatcggct	tctttcatcg	tcttttcaac	900
gcccggatag	ctgacttcac	cccatgaggt	accgatgtaa	tgcgggtttt	cttctgggaa	960
gaagcttttt	gcagcagcca	tggtagcaac	tgcgccaccg	agagcatcag	caaatttgac	1020
agcagcttct	tcagcaccag	ctgcgcgcag	cttgctgccg	acgaggacgg	caactttgtc	1080
geggttggeg	atgaatttca	gggtttcttc	aaccgctgca	ttcaaagaag	cttcgtcgct	1140
ggcttcgtca	ttgaacaatg	cgcttgccgg	tccaggagcg	gcgcagggca	tggaagcaat	1200
gttgcaagcg	atttcgagat	aaaccggctt	cttctcacga	agagcagttt	taatcacgtg	1260
atcgatttta	gccggagctt	cttctggggt	gtaaatcgct	tcagctgcgg	ccgtgatgtt	1320
cttggccatt	tccaactgat	agtgatagtc	ggttttgcca	agagcgtgat	gcaacacgtg	1380
accagcagcg	tgatcattgt	tgttcggagc	accggagatc	aggataaccg	gaaggttttc	1440
tgcataggcg	ccaccgatag	catcaaatgc	ggaaagcgca	ccgacgctgt	aggtaacgac	1500
ggctgctgct	gcgcctttgg	cacgagcata	accttctgca	ctgaaaccgc	agttcagttc	1560
gttacagcaa	taaacctgct	ccatgtttt	gttcaaaagc	aggttgtcaa	gaaggacgag	1620
gttgtagtcg	cccgcgactg	cgaagtgatg	cttgagacca	atctggacaa	gccgctccgc	1680
taaataggta	ccgacagtat	aactcatatg	ttttcctcca	gcaaaaggat	cctgcaacca	1740
ttatcaccgc	cagaggtaaa	atagtcaaca	cgcacggtgt	taggccgcat	aggccagagg	1800
egegeetgge	cttcatggcc	tataaacgca	gaaaggccca	cccgaaggtg	agccagtgtg	1860
actctagtag	agagcgttca	ccgacaaaca	acagataaaa	cgaaaggccc	agtctttcga	1920
ctgagccttt	cgttttattt	gatgcctgga	atacttcgaa	gagatgctcg	acgtccgtat	1980
ctcaggctag	cttagaagaa	ctcatccagc	agacggtaga	aggcaatgcg	ctgagaatcc	2040

ggcgctgcga	taccgtacag	caccaggaaa	cggtcagccc	attcaccacc	cagttcttct	2100
gcaatatcgc	gggtagcgag	ggcgatatcc	tgatagcgat	cagctacacc	cagacggcca	2160
cagtcaataa	aaccagagaa	gcggccgttt	tccaccataa	tgtttggcag	acaagcgtcg	2220
ccatgcgtta	ccaccaggtc	ttcgccgtcc	ggcatgcggg	ctttcagacg	tgcaaacagt	2280
teegeeggtg	cgaggccctg	gtgctcttca	tccaggtcgt	cctgatcaac	cagacccgct	2340
tccatacgag	tgcgtgcacg	ttcaatacgg	tgtttagcct	gatggtcaaa	cgggcaagtt	2400
gccgggtcca	gggtgtgcag	acggcgcatc	gegteegeea	tgatggaaac	tttttctgcc	2460
ggagcgaggt	ggctgctcag	cagatcctga	cccggaactt	cacccagcag	cagccaatcg	2520
cgaccggctt	cagtaactac	gtccagaact	geegegeaeg	gaacaccagt	cgtcgcgagc	2580
caggacagac	gggccgcttc	gtcctgcagt	tcgttcagtg	cgccggacag	gtcggttttc	2640
acaaacagaa	ccggacgacc	ctgtgcagac	agacggaaaa	ccgctgcatc	gctacagcca	2700
atagtcagct	gagcccagtc	gtaaccaaac	aggcgttcca	cccaagcagc	cggagaacca	2760
gcatgcaggc	catcttgttc	aatcatactc	ttcctttttc	aatattattg	aagcatttat	2820
cagggttatt	gtctcatgag	cagatacata	tttgaatgta	tttagaaaaa	taaacaaata	2880
ggggtcgggc	cggcgataat	acgccggccc	gtttttttg	gccatgaagg	ccaggcgcgc	2940
ctctggccta	tgcggcctcg	ccctcatttt	ctccctagga	ggggcttcga	tgcaaaaatt	3000
gcccgaggtg	ttgacaaacg	ctcagggtat	tcgctacatt	aactaatgct	gagtcttgat	3060
ctaaagatct	ttctagattc	tcgaggcata	tgtgggaaac	taagattaat	atcaacgaag	3120
tccgtgagat	ccgcgcgaaa	accaccgttt	actttggtgt	tggtgctatc	aagaaaattg	3180
atgatatcgc	tegegagtte	aaagaaaaag	gttacgatcg	catcatcgtg	atcaccggta	3240
aaggcgctta	caaagcgacc	ggtgcatggg	aatacatcgt	gcctgctctg	aacaaaaacc	3300
agattacgta	tatccattat	gatcaggtga	ccccgaaccc	gaccgtagat	caggttgacg	3360
aagcgaccaa	acaggcccgt	gaatttggcg	ctcgcgcagt	actggctatt	ggtggcggtt	3420
ccccgatcga	cgcagccaaa	tctgtggcgg	tgctgctgtc	ttatccggac	aaaaacgctc	3480
gtcagctgta	ccagctggag	tttaccccgg	taaaagcagc	gccgatcatc	gccatcaacc	3540
tgacccacgg	tacgggcacc	gaagcggacc	gcttcgcggt	tgtatctatc	ccggagaagg	3600
cctacaaacc	ggctatcgct	tacgattgca	tctacccgct	gtactctatt	gacgacccgg	3660
ctctgatggt	taaactgccg	agcgaccaga	cggcgtacgt	tagcgtggat	gccctgaacc	3720
atgttgttga	agctgcgacc	tccaaagttg	catctccgta	cactattatc	ctggcaaaag	3780
aaacggtccg	tctcatcgca	cgctacctgc	ctcaggccct	gtctcaccct	gcagacctga	3840
ccgcgcgtta	ttacctcctg	tatgcctctc	tgatcgccgg	tattgcgttt	gataacggcc	3900
tgctgcattt	cacccacgca	ctggaacacc	cgctgtctgc	cgtgaaacct	gaactggctc	3960
atggcctggg	tctgggtatg	ctcctgcctg	cggtagttaa	acaaatttat	ccggctaccc	4020
cggaggtact	ggcggaaatc	ctggaaccaa	tcgtaccgga	tctgaaaggc	gttccgggcg	4080
aggctgagaa	agcggcgtct	ggcgtggcga	aatggctggc	tggtgcaggc	atcactatga	4140
aactgaaaga	cgcgggtttc	caggctgaag	atatcgcgcg	tctgaccgac	ctggccttca	4200
ccactccatc	cctggaactc	ctgctgtcta	tggcaccagt	aactgctgat	cgtgagcgtg	4260
tgaaagcaat	ttaccaggac	gcattttga				4289

<210> SEQ ID NO 8 <211> LENGTH: 4289 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide <400> SEQUENCE: 8 ctagaggagc ttgttaacag gcttacggct gttggcggca gcaacgcgct taccccattt 60 gaccaattct tcagtgcagt cttcacgacc gatgaagcat tcgatcaggg ttgggccgtc 120 ggtgtttgcc agagcaacct tgatagcttc tgccagttcg ccaccggttt tagccttcag 180 gcctttacca gcaccgctgt cataaccacc gttaccgttg aacacttcca tcagaccggc 240 ataatcccag ttcttgatgt tgttgtacgg accatcatgg atcataactt cgatggtgta 300 accatagtta ttgatcaaga agatgataac cggcagtttc aggcgaacca tctgagcgac 360 ttcctgagcc gtcagctgga aggaaccatc accaaccatg aggatgttgc gacgttccgg agcaccgacg gcataaccga aggcggcagg aacggaccaa ccgatgtgac cccactgcat 480 ttcatattca acgcgagcac cgttcgggag cttcatgcgc tgagcattga accaagagtc accggtttca gcaataaccg tcgtgttcgg ggtcagaaga gcttcgacct gacgggcgat ttetgegttg accaaeggag cacteggate ageeggageg getttettea gtteaeetge 660 attgagggat ttgaagaagt ccaaagcacc ggttttcttg gaaactttct gagccaaacg 720 780 ggtcagatag tctttcagat gaacgctggg gaagcgaacg ccgttaacga cgacagaacg cggttcagcg agaaccagtt tcttaggatc aggaatatcc gtccaaccag tggtggagta 840 900 gtcgttgaag acaggagcca gagcgataac cgcatcggct tctttcatcg tcttttcaac 960 geceggatag etgaetteac eccatgaggt accgatgtaa tgegggtttt ettetgggaa gaagettttt geageageea tggtageaac tgegeeaceg agageateag caaatttgae 1020 1080 ageagettet teageaceag etgegegeag ettgetgeeg aegaggaegg eaactttgte gcggttggcg atgaatttca gggtttcttc aaccgctgca ttcaaagaag cttcgtcgct 1140 ggcttcgtca ttgaacaatg cgcttgccgg tccaggagcg gcgcagggca tggaagcaat 1200 gttgcaagcg atttcgagat aaaccggctt cttctcacga agagcagttt taatcacgtg 1260 ategatttta geeggagett ettetggggt gtaaateget teagetgegg eegtgatgtt 1320 cttggccatt tccaactgat agtgatagtc ggttttgcca agagcgtgat gcaacacgtg 1380 accagcagcg tgatcattgt tgttcggagc accggagatc aggataaccg gaaggttttc 1440 tgcataggcg ccaccgatag catcaaatgc ggaaagcgca ccgacgctgt aggtaacgac 1500 1560 1620 gttacagcaa taaacctgct ccatgttttt gttcaaaagc aggttgtcaa gaaggacgag 1680 gttgtagtcg cccgcgactg cgaagtgatg cttgagacca atctggacaa gccgctccgc taaataggta ccgacagtat aactcatatg cctcgagaat ctagaaagat ctttagatca 1740 agactcagca ttagttaatg tagcgaatac cctgagcgtt tgtcaacacc tcgggcaatt 1800 tttgcatcga agccctcct agggagaaaa tgagggcgag gccgcatagg ccagaggcgc gcctggcctt catggccaaa aaaaacgggc cggcgtatta tcgccggccc gacccctatt

tgtttatttt	tctaaataca	ttcaaatatg	tatctgctca	tgagacaata	accctgataa	1980
atgcttcaat	aatattgaaa	aaggaagagt	atgattgaac	aagatggcct	gcatgctggt	2040
tctccggctg	cttgggtgga	acgcctgttt	ggttacgact	gggctcagct	gactattggc	2100
tgtagcgatg	cagcggtttt	ccgtctgtct	gcacagggtc	gtccggttct	gtttgtgaaa	2160
accgacctgt	ccggcgcact	gaacgaactg	caggacgaag	eggeeegtet	gtcctggctc	2220
gcgacgactg	gtgttccgtg	cgcggcagtt	ctggacgtag	ttactgaagc	cggtcgcgat	2280
tggctgctgc	tgggtgaagt	teegggteag	gatctgctga	gcagccacct	cgctccggca	2340
gaaaaagttt	ccatcatggc	ggacgcgatg	cgccgtctgc	acaccctgga	cccggcaact	2400
tgcccgtttg	accatcaggc	taaacaccgt	attgaacgtg	cacgcactcg	tatggaagcg	2460
ggtctggttg	atcaggacga	cctggatgaa	gagcaccagg	gcctcgcacc	ggcggaactg	2520
tttgcacgtc	tgaaagcccg	catgccggac	ggcgaagacc	tggtggtaac	gcatggcgac	2580
gcttgtctgc	caaacattat	ggtggaaaac	ggccgcttct	ctggttttat	tgactgtggc	2640
cgtctgggtg	tagctgatcg	ctatcaggat	atcgccctcg	ctacccgcga	tattgcagaa	2700
gaactgggtg	gtgaatgggc	tgaccgtttc	ctggtgctgt	acggtatcgc	agcgccggat	2760
tctcagcgca	ttgccttcta	ccgtctgctg	gatgagttct	tctaagctag	cctgagatac	2820
ggacgtcgag	catctcttcg	aagtattcca	ggcatcaaat	aaaacgaaag	gctcagtcga	2880
aagactgggc	ctttcgtttt	atctgttgtt	tgtcggtgaa	cgctctctac	tagagtcaca	2940
ctggctcacc	ttcgggtggg	cctttctgcg	tttataggcc	atgaaggcca	ggegegeete	3000
tggcctatgc	ggcctaacac	cgtgcgtgtt	gactatttta	cctctggcgg	tgataatggt	3060
tgcaggatcc	ttttgctgga	ggaaaacata	tgtgggaaac	taagattaat	atcaacgaag	3120
tccgtgagat	ccgcgcgaaa	accaccgttt	actttggtgt	tggtgctatc	aagaaaattg	3180
atgatatcgc	tcgcgagttc	aaagaaaaag	gttacgatcg	catcatcgtg	atcaccggta	3240
aaggcgctta	caaagcgacc	ggtgcatggg	aatacatcgt	gcctgctctg	aacaaaaacc	3300
agattacgta	tatccattat	gatcaggtga	ccccgaaccc	gaccgtagat	caggttgacg	3360
aagcgaccaa	acaggcccgt	gaatttggcg	ctcgcgcagt	actggctatt	ggtggcggtt	3420
ccccgatcga	cgcagccaaa	tctgtggcgg	tgctgctgtc	ttatccggac	aaaaacgctc	3480
gtcagctgta	ccagctggag	tttaccccgg	taaaagcagc	gccgatcatc	gccatcaacc	3540
tgacccacgg	tacgggcacc	gaagcggacc	gcttcgcggt	tgtatctatc	ccggagaagg	3600
cctacaaacc	ggctatcgct	tacgattgca	tctacccgct	gtactctatt	gacgacccgg	3660
ctctgatggt	taaactgccg	agcgaccaga	cggcgtacgt	tagcgtggat	gccctgaacc	3720
atgttgttga	agctgcgacc	tccaaagttg	catctccgta	cactattatc	ctggcaaaag	3780
aaacggtccg	tctcatcgca	cgctacctgc	ctcaggccct	gtctcaccct	gcagacctga	3840
ccgcgcgtta	ttacctcctg	tatgcctctc	tgatcgccgg	tattgcgttt	gataacggcc	3900
tgctgcattt	cacccacgca	ctggaacacc	cgctgtctgc	cgtgaaacct	gaactggctc	3960
atggcctggg	tctgggtatg	ctcctgcctg	cggtagttaa	acaaatttat	ccggctaccc	4020
cggaggtact	ggcggaaatc	ctggaaccaa	tegtacegga	tctgaaaggc	gtteegggeg	4080
aggctgagaa	agcggcgtct	ggcgtggcga	aatggctggc	tggtgcaggc	atcactatga	4140
aactgaaaga	cgcgggtttc	caggctgaag	atatcgcgcg	tctgaccgac	ctggccttca	4200

ccactccatc cct	ggaactc	ctgctgtcta	tggcaccagt	aactgctgat	cgtgagcgtg	4260
tgaaagcaat tta	accaggac	gcattttga				4289
<pre><210> SEQ ID N <211> LENGTH: <212> TYPE: DN <213> ORGANISM <220> FEATURE: <223> OTHER IN polynucl</pre>	3096 NA 1: Artifi : NFORMATIC	_		ificial Sequ	uence: Synth	etic
<400> SEQUENCE	E: 9					
geggeegegg ggg	19999999	gaaagccacg	ttgtgtctca	aaatctctga	tgttacattg	60
cacaagataa aaa	atatatca	tcatgaacaa	taaaactgtc	tgcttacata	aacagtaata	120
caaggggtca tat	gtatacc	gttggtatgt	acttggcaga	acgcctagcc	cagatcggcc	180
tgaaacacca ctt	tgccgtg	gccggtgact	acaacctggt	gttgcttgat	cagctcctgc	240
tgaacaaaga cat	ggagcag	gtctactgct	gtaacgaact	taactgcggc	tttagcgccg	300
aaggttacgc tcg	gtgcacgt	ggtgccgccg	ctgccatcgt	cacgttcagc	gtaggtgcta	360
tctctgcaat gaa	ecgccatc	ggtggcgcct	atgcagaaaa	cctgccggtc	atcctgatct	420
ctggctcacc gaa	caccaat	gactacggca	caggccacat	cctgcaccac	accattggta	480
ctactgacta taa	actatcag	ctggaaatgg	taaaacacgt	tacctgcgca	cgtgaaagca	540
tegtttetge ega	agaagca	ccggcaaaaa	tegaceaegt	catccgtacg	gctctacgtg	600
aacgcaaacc ggc	ettatetg	gaaatcgcat	gcaacgtcgc	tggcgctgaa	tgtgttcgtc	660
cgggcccgat caa	atagcctg	ctgcgtgaac	tcgaagttga	ccagaccagt	gtcactgccg	720
ctgtagatgc cgc	cgtagaa	tggctgcagg	accgccagaa	cgtcgtcatg	ctggtcggta	780
gcaaactgcg tgc	ecgetgee	gctgaaaaac	aggetgttge	cctagcggac	cgcctgggct	840
gcgctgtcac gat						900
geggeetgta etg						960
atgecateet gtg						1020
ggccgaaagg cga						1080
ccttcgaagg tct						1140
geceggeaae gae						1200
atgcaccgct gac						1260
ctactctgac ago						1320
geggtgeteg tgt						1380
catteggtaa ege						1440
ctttccagct gac						1500
tcttcctgat caa	=		_	_		1560
actacatcaa aaa						1620
atggcctggg tct						1680 1740
agaggetgat too						1800
aaaccctgat tgc						1860
aattaactcg agt	aacaccg	rgegrgttga	CLALLTTACC	rerggeggtg	acaacggttg	T800

caggateett ttgetggagg aaaaceatat gtgggaaaet aagattaata teaaegaag	gt 1920							
ccgtgagatc cgcgcgaaaa ccaccgttta ctttggtgtt ggtgctatca agaaaattg	ga 1980							
tgatatcgct cgcgagttca aagaaaaagg ttacgatcgc atcatcgtga tcaccggta	aa 2040							
aggogottac aaagogacog gtgcatggga atacatogtg cotgototga acaaaaac	ca 2100							
gattacgtat atccattatg atcaggtgac cccgaacccg accgtagatc aggttgac	ga 2160							
agcgaccaaa caggcccgtg aatttggcgc tcgcgcagta ctggctattg gtggcggtt	cc 2220							
cccgatcgac gcagccaaat ctgtggcggt gctgctgtct tatccggaca aaaacgct	eg 2280							
teagetgtae eagetggagt ttaceceggt aaaageageg eegateateg ceateaace	et 2340							
gacccacggt acgggcaccg aagcggaccg cttcgcggtt gtatctatcc cggagaag	gc 2400							
ctacaaaccg gctatcgctt acgattgcat ctacccgctg tactctattg acgacccg	gc 2460							
tetgatggtt aaactgeega gegaeeagae ggegtaegtt agegtggatg eeetgaaee	ca 2520							
tgttgttgaa gctgcgacct ccaaagttgc atctccgtac actattatcc tggcaaaag	ga 2580							
aacggtccgt ctcatcgcac gctacctgcc tcaggccctg tctcaccctg cagacctga	ac 2640							
egegegettat tacctectgt atgeetetet gategeeggt attgegtttg ataaeggee	et 2700							
gctgcatttc acccacgcac tggaacaccc gctgtctgcc gtgaaacctg aactggctc	ca 2760							
tggcctgggt ctgggtatgc tcctgcctgc ggtagttaaa caaatttatc cggctaccc	ec 2820							
ggaggtactg gcggaaatcc tggaaccaat cgtaccggat ctgaaaggcg ttccgggcg	ga 2880							
ggctgagaaa gcggcgtctg gcgtggcgaa atggctggct ggtgcaggca tcactatga	aa 2940							
actgaaagac gcgggtttcc aggctgaaga tatcgcgcgt ctgaccgacc tggccttca	ac 3000							
cactccatcc ctggaactcc tgctgtctat ggcaccagta actgctgatc gtgagcgtg	gt 3060							
gaaagcaatt taccaggacg cattttgagc ggccgc	3096							
<210> SEQ ID NO 10 <211> LENGTH: 3567 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide								
<400> SEQUENCE: 10								
geggeegett egttataaaa taaaettaae aaatetatae eeacetgtag agaagagte								
ctgaatatca aaatggtggg ataaaaaggt caaaaaggaa agtaggctgt ggttcccta								
gcaacagtet teectaceee aetggaaaet aaaaaaaega gaaaagtteg caeegaaea								
caattgcata attttagccc taaaacataa gctgaacgaa actggttgtc ttcccttcc								
aatccaggac aatctgagaa tcccctgcaa cattacttaa caaaaaagca ggaataaa	at 300							
taacaagatg taacagacat aagtoocato accgttgtat aaagttaact gtgggatte	gc 360							
aaaagcattc aagcctaggc gctgagctgt ttgagcatcc cggtggccct tgtcgctgc								
teegtgttte teectggatt tatttaggta atatetetea taaateeeeg ggtagttaa	ac 480							
gaaagttaat ggagatcagt aacaataact ctagggtcat tactttggac teeetcagt	t 540							
The boundary of the companies of the com								

tatccggggg aattgtgttt aagaaaatcc caactcataa agtcaagtag gagattaatc atatgtatac cgttggtatg tacttggcag aacgcctagc ccagatcggc ctgaaacacc

				COIICII	raca		
actttgccgt	ggccggtgac	tacaacctgg	tgttgcttga	tcagctcctg	ctgaacaaag	720	
acatggagca	ggtctactgc	tgtaacgaac	ttaactgcgg	ctttagcgcc	gaaggttacg	780	
ctcgtgcacg	tggtgccgcc	gctgccatcg	tcacgttcag	cgtaggtgct	atctctgcaa	840	
tgaacgccat	cggtggcgcc	tatgcagaaa	acctgccggt	catcctgatc	tctggctcac	900	
cgaacaccaa	tgactacggc	acaggccaca	tcctgcacca	caccattggt	actactgact	960	
ataactatca	gctggaaatg	gtaaaacacg	ttacctgcgc	acgtgaaagc	atcgtttctg	1020	
ccgaagaagc	accggcaaaa	atcgaccacg	tcatccgtac	ggctctacgt	gaacgcaaac	1080	
cggcttatct	ggaaatcgca	tgcaacgtcg	ctggcgctga	atgtgttcgt	ccgggcccga	1140	
tcaatagcct	gctgcgtgaa	ctcgaagttg	accagaccag	tgtcactgcc	gctgtagatg	1200	
ccgccgtaga	atggctgcag	gaccgccaga	acgtcgtcat	gctggtcggt	agcaaactgc	1260	
gtgccgctgc	cgctgaaaaa	caggctgttg	ccctagcgga	ccgcctgggc	tgcgctgtca	1320	
cgatcatggc	tgccgaaaaa	ggcttcttcc	cggaagatca	tccgaacttc	cgcggcctgt	1380	
actggggtga	agtcagctcc	gaaggtgcac	aggaactggt	tgaaaacgcc	gatgccatcc	1440	
tgtgtctggc	accggtattc	aacgactatg	ctaccgttgg	ctggaactcc	tggccgaaag	1500	
gcgacaatgt	catggtcatg	gacaccgacc	gcgtcacttt	cgcaggacag	tccttcgaag	1560	
gtctgtcatt	gagcaccttc	gccgcagcac	tggctgagaa	agcaccttct	cgcccggcaa	1620	
cgactcaagg	cactcaagca	ccggtactgg	gtattgaggc	cgcagagccc	aatgcaccgc	1680	
tgaccaatga	cgaaatgacg	cgtcagatcc	agtcgctgat	cacttccgac	actactctga	1740	
cagcagaaac	aggtgactct	tggttcaacg	cttctcgcat	geegatteet	ggcggtgctc	1800	
gtgtcgaact	ggaaatgcaa	tggggtcata	teggttggte	cgtaccttct	gcattcggta	1860	
acgccgttgg	ttctccggag	cgtcgccaca	tcatgatggt	cggtgatggc	tctttccagc	1920	
tgactgctca	agaagttgct	cagatgatcc	gctatgaaat	cccggtcatc	atcttcctga	1980	
tcaacaaccg	cggttacgtc	atcgaaatcg	ctatccatga	cggcccttac	aactacatca	2040	
aaaactggaa	ctacgctggc	ctgatcgacg	tcttcaatga	cgaagatggt	catggcctgg	2100	
gtctgaaagc	ttctactggt	gcagaactag	aaggcgctat	caagaaagca	ctcgacaatc	2160	
gtcgcggtcc	gacgctgatc	gaatgtaaca	tcgctcagga	cgactgcact	gaaaccctga	2220	
ttgcttgggg	taaacgtgta	gcagctacca	actctcgcaa	accacaagcg	taattaactc	2280	
gagtaacacc	gtgcgtgttg	actattttac	ctctggcggt	gataatggtt	gcaggatcct	2340	
tttgctggag	gaaaaccata	tgtgggaaac	taagattaat	atcaacgaag	tccgtgagat	2400	
ccgcgcgaaa	accaccgttt	actttggtgt	tggtgctatc	aagaaaattg	atgatatcgc	2460	
	aaagaaaaag					2520	
caaagcgacc	ggtgcatggg	aatacatcgt	geetgetetg	aacaaaaacc	agattacgta	2580	
	gatcaggtga					2640	
	gaatttggcg					2700	
	tetgtggegg					2760	
	tttaccccgg					2820	
	gaageggaee					2880	
ggctatcgct	tacgattgca	tctacccgct	gtactctatt	gacgacccgg	ctctgatggt	2940	

taaactgccg	agcgaccaga	cggcgtacgt	tagcgtggat	gccctgaacc	atgttgttga	3000
agctgcgacc	tccaaagttg	catctccgta	cactattatc	ctggcaaaag	aaacggtccg	3060
tctcatcgca	cgctacctgc	ctcaggccct	gtctcaccct	gcagacctga	ccgcgcgtta	3120
ttacctcctg	tatgcctctc	tgatcgccgg	tattgcgttt	gataacggcc	tgctgcattt	3180
cacccacgca	ctggaacacc	cgctgtctgc	cgtgaaacct	gaactggctc	atggcctggg	3240
tctgggtatg	ctcctgcctg	cggtagttaa	acaaatttat	ccggctaccc	cggaggtact	3300
ggcggaaatc	ctggaaccaa	tcgtaccgga	tctgaaaggc	gttccgggcg	aggctgagaa	3360
ageggegtet	ggcgtggcga	aatggctggc	tggtgcaggc	atcactatga	aactgaaaga	3420
cgcgggtttc	caggctgaag	atatcgcgcg	tctgaccgac	ctggccttca	ccactccatc	3480
cctggaactc	ctgctgtcta	tggcaccagt	aactgctgat	cgtgagcgtg	tgaaagcaat	3540
ttaccaggac	gcattttgag	cggccgc				3567
010 000	rp 310 11					

<210> SEQ ID NO 11

<400> SEQUENCE: 11

gcggccgcgg ggggggggg	gaaagccacg	ttgtgtctca	aaatctctga	tgttacattg	60
cacaagataa aaatatatca	tcatgaacaa	taaaactgtc	tgcttacata	aacagtaata	120
caaggggtca tatgtatacc	gttggtatgt	acttggcaga	acgcctagcc	cagatcggcc	180
tgaaacacca ctttgccgtg	gccggtgact	acaacctggt	gttgcttgat	cagctcctgc	240
tgaacaaaga catggagcag	gtctactgct	gtaacgaact	taactgcggc	tttagcgccg	300
aaggttacgc tcgtgcacgt	ggtgccgccg	ctgccatcgt	cacgttcagc	gtaggtgcta	360
tototgcaat gaacgccato	ggtggcgcct	atgcagaaaa	cctgccggtc	atcctgatct	420
ctggctcacc gaacaccaat	gactacggca	caggccacat	cctgcaccac	accattggta	480
ctactgacta taactatcag	ctggaaatgg	taaaacacgt	tacctgcgca	cgtgaaagca	540
tcgtttctgc cgaagaagca	ccggcaaaaa	tcgaccacgt	catccgtacg	gctctacgtg	600
aacgcaaacc ggcttatctg	gaaatcgcat	gcaacgtcgc	tggcgctgaa	tgtgttcgtc	660
cgggcccgat caatagcctg	ctgcgtgaac	tcgaagttga	ccagaccagt	gtcactgccg	720
ctgtagatgc cgccgtagaa	tggctgcagg	accgccagaa	cgtcgtcatg	ctggtcggta	780
gcaaactgcg tgccgctgcc	gctgaaaaac	aggctgttgc	cctagcggac	cgcctgggct	840
gegetgteae gateatgget	gccgaaaaag	gcttcttccc	ggaagatcat	ccgaacttcc	900
gcggcctgta ctggggtgaa	gtcagctccg	aaggtgcaca	ggaactggtt	gaaaacgccg	960
atgccatcct gtgtctggca	ccggtattca	acgactatgc	taccgttggc	tggaactcct	1020
ggccgaaagg cgacaatgtc	atggtcatgg	acaccgaccg	cgtcactttc	gcaggacagt	1080
ccttcgaagg tctgtcattg	agcaccttcg	ccgcagcact	ggctgagaaa	gcaccttctc	1140
gcccggcaac gactcaaggc	actcaagcac	cggtactggg	tattgaggcc	gcagagccca	1200
atgcaccgct gaccaatgac	gaaatgacgc	gtcagatcca	gtcgctgatc	acttccgaca	1260
ctactctgac agcagaaaca	ggtgactctt	ggttcaacgc	ttctcgcatg	ccgattcctg	1320

<211> LENGTH: 3048
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide

geggtgeteg	tgtcgaactg	gaaatgcaat	ggggtcatat	cggttggtcc	gtaccttctg	1380
cattcggtaa	cgccgttggt	tctccggagc	gtcgccacat	catgatggtc	ggtgatggct	1440
ctttccagct	gactgctcaa	gaagttgctc	agatgatccg	ctatgaaatc	ccggtcatca	1500
tcttcctgat	caacaaccgc	ggttacgtca	tcgaaatcgc	tatccatgac	ggcccttaca	1560
actacatcaa	aaactggaac	tacgctggcc	tgatcgacgt	cttcaatgac	gaagatggtc	1620
atggcctggg	tctgaaagct	tctactggtg	cagaactaga	aggcgctatc	aagaaagcac	1680
tcgacaatcg	tegeggteeg	acgctgatcg	aatgtaacat	cgctcaggac	gactgcactg	1740
aaaccctgat	tgcttggggt	aaacgtgtag	cagctaccaa	ctctcgcaaa	ccacaagcgt	1800
aattaactcg	agttggatcc	tataagtagg	agataaacat	atgtgggaaa	ctaagattaa	1860
tatcaacgaa	gtccgtgaga	tccgcgcgaa	aaccaccgtt	tactttggtg	ttggtgctat	1920
caagaaaatt	gatgatatcg	ctcgcgagtt	caaagaaaaa	ggttacgatc	gcatcatcgt	1980
gatcaccggt	aaaggcgctt	acaaagcgac	cggtgcatgg	gaatacatcg	tgcctgctct	2040
gaacaaaaac	cagattacgt	atatccatta	tgatcaggtg	accccgaacc	cgaccgtaga	2100
tcaggttgac	gaagcgacca	aacaggcccg	tgaatttggc	gctcgcgcag	tactggctat	2160
tggtggcggt	teceegateg	acgcagccaa	atctgtggcg	gtgctgctgt	cttatccgga	2220
caaaaacgct	cgtcagctgt	accagctgga	gtttaccccg	gtaaaagcag	cgccgatcat	2280
cgccatcaac	ctgacccacg	gtacgggcac	cgaagcggac	cgcttcgcgg	ttgtatctat	2340
cccggagaag	gcctacaaac	cggctatcgc	ttacgattgc	atctacccgc	tgtactctat	2400
tgacgacccg	gctctgatgg	ttaaactgcc	gagcgaccag	acggcgtacg	ttagcgtgga	2460
tgccctgaac	catgttgttg	aagctgcgac	ctccaaagtt	gcatctccgt	acactattat	2520
cctggcaaaa	gaaacggtcc	gtctcatcgc	acgctacctg	cctcaggccc	tgtctcaccc	2580
tgcagacctg	accgcgcgtt	attacctcct	gtatgcctct	ctgatcgccg	gtattgcgtt	2640
tgataacggc	ctgctgcatt	tcacccacgc	actggaacac	ccgctgtctg	ccgtgaaacc	2700
tgaactggct	catggcctgg	gtctgggtat	gctcctgcct	gcggtagtta	aacaaattta	2760
teeggetaee	ccggaggtac	tggcggaaat	cctggaacca	atcgtaccgg	atctgaaagg	2820
cgttccgggc	gaggctgaga	aageggegte	tggcgtggcg	aaatggctgg	ctggtgcagg	2880
catcactatg	aaactgaaag	acgcgggttt	ccaggctgaa	gatatcgcgc	gtctgaccga	2940
cctggccttc	accactccat	ccctggaact	cctgctgtct	atggcaccag	taactgctga	3000
tcgtgagcgt	gtgaaagcaa	tttaccagga	cgcattttga	geggeege		3048

<210> SEQ ID NO 12 <211> LENGTH: 22 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 12

```
<210> SEQ ID NO 13
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 13
                                                                       22
gattcatcgc tttgcagatg tc
<210> SEQ ID NO 14
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 14
tctccagcaa tttctcaagc ag
                                                                       22
<210> SEQ ID NO 15
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 15
tcagtctgac gaccaagaga gc
                                                                       22
<210> SEQ ID NO 16
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 16
                                                                       22
aagcaaccag atcttcctcc ag
<210> SEQ ID NO 17
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 17
gggactgccc acctacagtt ac
                                                                       22
<210> SEQ ID NO 18
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 18
                                                                       22
ggatatttac gatgccctga cc
<210> SEQ ID NO 19
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 19
gtgttgagat tctgcaccaa gg
                                                                       22
<210> SEQ ID NO 20
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 20
gagattcacg tcgaactcat gg
                                                                       22
<210> SEQ ID NO 21
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 21
                                                                       22
atccacctgg atcataaatc gg
<210> SEQ ID NO 22
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 22
aagcaaccag atcttcctcc ag
                                                                       22
<210> SEQ ID NO 23
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 23
gcaatacatc ctgcatctgc tc
                                                                       22
```

We claim:

- 1. A method for producing a carbon-based product of interest, comprising:
 - a. preparing a heterologous DNA sequence operably linked to an expression vector;
 - b. transforming a thermophilic cyanobacterium host with said vector; and
 - c. culturing said host.
 - 2. A method for producing a fuel composition, comprising:
 - a. preparing a heterologous DNA sequence operably linked to an expression vector;
 - b. transforming a thermophilic cyanobacterium host with said vector; and
 - c. culturing said host.
- 3. The method of claim 1 wherein said carbon-based product of interest is selected from the group consisting of: ethyl ester, methyl ester, sucrose, alcohol, ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid ester, wax ester, hydrocarbons, n-alkanes, propane, octane, diesel, JP8, polymers, terephthalate, polyol, 1,3-propanediol, 1,4-butanediol, PHA, PHB, acrylate, adipic acid, €-caprolactone, isoprene, caprolactam, rubber, lactate, DHA, 3-hydroxypropionate, γ-valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, lycopene, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, HPA, lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid, carotenoid, isoprenoid, itaconic acid, limonene, pharmaceutical or pharmaceutical intermediates, erythromycin 7-ADCA/cephalosporin, polyketides, statin, paclitaxel, docetaxel, terpene, peptide, steroid, and an omega fatty acid.
- **4**. The method of claim **1** wherein said expression vector comprises an isolated or recombinant polynucleotide comprising or consisting of a nucleic acid sequence selected from the group consisting of:
 - a. any one of the sequences from Table 3;
 - b. a nucleic acid sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to any one of the sequences from Table 3: and
 - c. a nucleic acid sequence that hybridizes under stringent conditions to any one of the sequences in Table 3.
- **5**. The method of claim **1** wherein said thermophilic cyanobacterium is *Thermosynechococcus elongatus* BP-1.
- 6. The method of claim 1 wherein transforming said thermophilic cyanobacterium host comprises integrating at least a portion of said vector in a chromosome of said thermophilic cyanobacterium.
- 7. The method of claim 1 further comprising isolating said carbon-based product of interest from said host cell or a culture medium.
- 8. The method of claim 2 further comprising isolating said fuel composition from said host cell or a culture medium.
- **9**. The method of claim **1** wherein said carbon-based product of interest is an alcohol.
- 10. The method of claim 1 wherein said carbon-based product of interest is ethanol.
- 11. The method of claim 1 wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium produces at least 1000, at least 5000, at least 10,000, at least 12,000, or at least 15,000 mgs ethanol per liter of culture medium.

- 12. The method of claim 1 wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium produces between 1000 and 20,000 mgs ethanol per liter of culture medium.
- 13. The method of claim 1 wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium produces between 10,000 and 20,000, between 12,000 and 18,000, or between 13,000 and 16,000 mgs ethanol per liter of culture medium.
- 14. The method of claim 1 wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium further produces acetaldehyde, and wherein the ratio of ethanol to acetaldehyde is at least 500, at least 2000, at least 4000, at least 4500, at least 5000, at least 10,000, or between 4000 and 15,000, or between 500 and 3,000.
- 15. A modified *Thermosynechococcus* cell comprising a recombinant marker gene and a λ phage cI promoter wherein said marker gene is operably linked to said promoter.
- 16. The cell of claim 15 wherein said marker gene confers antibiotic resistance to said cell.
- 17. The cell of claim 15 wherein said marker gene confers resistance to kanamycin to said cell.
 - 18. The cell of claim 15 wherein said marker gene is htk.
- 19. An isolated or recombinant polynucleotide comprising or consisting of a nucleic acid sequence selected from the group consisting of:
 - a. any one of the sequences from Table 3;
 - b. a nucleic acid sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to any one of the sequences from Table 3; and
 - c. a nucleic acid sequence that hybridizes under stringent conditions to any one of the sequences in Table 3.
- **20**. A modified *Thermosynechococcus* cell comprising an alcohol dehydrogenase gene and a pyruvate decarboxylase gene.
- 21. The cell of claim 20 wherein at least one of said alcohol dehydrogenase gene and said pyruvate decarboxylase gene is recombinant.
- 22. The cell of claim 20 further comprising at least one promoter.
- 23. The cell of claim 22 wherein said at least one promoter is selected from the group consisting of tef, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, trc, ara, SP6, amyE, phage SP02, Pcpcb, PaphII, PtRNA $_{Glu}$, λ phage cI λ -p $_R$ and λ -p $_L$.
- **24**. The cell of claim **22** wherein said at least one promoter is PaphII.
- 25. The cell of claim 20 comprising SEQ ID NO:11.
- 26. The cell of claim 20 wherein said genes are divergently oriented.
- 27. The cell of claim 20 further comprising a first promoter operably linked to said alcohol dehydrogenase gene and a second promoter operably linked to said pyruvate decarboxy-lase gene.
- 28. The cell of claim 27 where said first promoter and said second promoter are each independently selected from the group consisting of tef, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, trc, ara, SP6, amyE, phage SP02, Pcpcb, PaphII, PtRNA $_{Glu}$, λ phage cl λ -p $_{R}$ and λ -p $_{L}$
- **29**. The cell of claim **27** wherein at least one of said first promoter and said second promoter is λ phage cI.
- 30. The cell of claim $2\overline{7}$ wherein said first promoter is λ phage cI and said second promoter is PEM7.

- 31. The cell of claim 27 wherein said first promoter is PEM7 and said second promoter is λ phage cI.
- 32. The cell of claim 27 wherein said first promoter is λ phage cI and said second promoter is PtRNA_{Glu}.
- 33. The cell of claim 27 wherein said first promoter is $PtRNA_{Ghu}$ and said second promoter is λ phage cI.
- 34. The cell of claim $2\overline{7}$ wherein said first promoter is PaphII and said second promoter is λ phage cI.
- 35. The cell of claim 27 wherein said first promoter is Pepcb and said second promoter is λ phage cI.
- **36**. The cell of claim **20** comprising any one of SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.
- 37. A method of producing a carbon-based product of interest comprising culturing the cell of claim 15 wherein said cell produces said carbon-based product of interest.
- 38. The method of claim 37 wherein said carbon-based product of interest is selected from the group consisting of: ethyl ester, methyl ester, sucrose, alcohol, ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid ester, wax ester, hydrocarbons, n-alkanes, propane, octane, diesel, JP8, polymers, terephthalate, polyol, 1,3-propanediol, 1,4-butanediol, PHA, PHB, acrylate, adipic acid, €-caprolactone, isoprene, caprolactam, rubber, lactate, DHA, 3-hydroxypropionate, y-valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, lycopene, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, HPA, lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid, carotenoid, isoprenoid, itaconic acid, limonene, pharmaceutical or pharmaceutical intermediates, erythromycin 7-ADCA/cephalosporin, polyketides, statin, paclitaxel, docetaxel, terpene, peptide, steroid, and an omega fatty acid.
- **39**. The method of claim **37** wherein the carbon-based product of interest is an alcohol.
- **40**. The method of claim **37** wherein the carbon-based product of interest is ethanol.
- **41**. The method of claim **37** wherein said carbon-based product of interest is ethanol, and wherein said cyanobacte-

- rium produces at least 1000, at least 5000, at least 10,000, at least 12,000, or at least 15,000 mgs ethanol per liter of culture medium.
- **42**. The method of claim **37** wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium produces between 1000 and 20,000 mgs ethanol per liter of culture medium.
- **43**. The method of claim **37** wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium produces between 10,000 and 20,000, between 12,000 and 18,000, or between 13,000 and 16,000 mgs ethanol per liter of culture medium.
- **44**. The method of claim **37** wherein said carbon-based product of interest is ethanol, and wherein said cyanobacterium further produces acetaldehyde, and wherein the ratio of ethanol to acetaldehyde is at least 500, at least 2000, at least 4000, at least 4500, at least 5000, at least 10,000, or between 4000 and 15,000, or between 500 and 3,000.
- **45**. A method for engineering a thermophilic cyanobacterium comprising transforming said thermophilic cyanobacterium with a heterologous DNA sequence operably linked to an expression vector.
- **46**. The method of claim **45** wherein said expression vector comprises an isolated or recombinant polynucleotide comprising or consisting of a nucleic acid sequence selected from the group consisting of:
 - a. any one of the sequences from Table 3;
 - b. a nucleic acid sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to any one of the sequences from Table 3; and
 - a nucleic acid sequence that hybridizes under stringent conditions to any one of the sequences in Table 3.
- **47**. The method of claim **45** wherein said thermophilic cyanobacterium is *Thermosynechococcus elongatus* BP-1.
- **48**. The method of claim **45** wherein transforming said thermophilic cyanobacterium host comprises integrating at least a portion of said vector in a chromosome of said thermophilic cyanobacterium.

* * * * *