Sampling and design-based inference in finite networks

 $oxed{Li-Chun} oxed{Zhang}{}^{\scriptscriptstyle{1,2,3}} ext{ and } oxed{Melike} oxed{Oguz-Alper}{}^{\scriptscriptstyle{2}}$

 $^1University\ of\ Southampton\ (L.Zhang@soton.ac.uk)$ $^2Statistisk\ sentralbyraa,\ Norway$ $^3Universitetet\ i\ Oslo$

Finite population sampling

List-based multistage sampling:

NB. a special case of connections among units

"Network" & unconventional sampling

A unified definition of Graph Sampling

Key features (Zhang and Patone, 2017)

• initial sample of nodes & observation procedure by edges

• sample graph defined in terms of edges included

NB. duality of incident relationship between edge and node

A unified definition of Graph Sampling

Graph: $G = (\mathcal{N}, A) = (\text{Nodes, edges})$ [digraph by default]

Initial sample of nodes: $s_1 \subset \mathcal{N}$ [$p(s_1), \pi_i, \pi_{ij}$, etc.]

Observation procedure: e.g.

- induced, incident (forward, backward, reciprocal), ancestral
- snowball propagation by same procedure or adaptive

Included edges $A_s = A(s_2)$: reference set $s_2 \subseteq \mathcal{N} \times \mathcal{N}$

e.g. induced $s_2 = s_1 \times s_1$, inc. reciprocal $s_2 = s_1 \times \mathcal{N} \cup \mathcal{N} \times s_1$

Included nodes: $\mathcal{N}_s = s_1 \cup \operatorname{Inc}(A_s)$

Sample Graph: $G_s = (\mathcal{N}_s, A_s)$

Illustration: G and $s_1 = \{3, 6, 10\}, s_a = s_1 \cup \alpha(s_1)$

T-stage snowball sampling

Initial seeds: $s_{1,0} \subset \mathcal{N}$ with successors $\alpha(s_{1,0})$

- 1st-wave sample: $s_{1,1} = \alpha(s_{1,0}) \setminus s_{1,0}$ [seeds for 2nd-wave]
- 2nd-wave sample: $s_{1,2} = \alpha(s_{1,1}) \setminus (s_{1,0} \cup s_{1,1})$
- ... [if $s_{1,t} = \emptyset$, set $s_{1,t+1} = \cdots = s_{1,T} = \emptyset$]
- T-th stage sample: $s_{1,T} = \alpha(s_{1,T-1}) \setminus \left(\bigcup_{h=0}^{T-1} s_{1,h}\right)$

Sample of seeds:
$$s_1 = \bigcup_{t=0}^{T-1} s_{1,t}$$

I.
$$s_2 = s_1 \times \mathcal{N} \mapsto A_s = \bigcup_{i \in s_1} \bigcup_{j \in \alpha_i} A_{ij}$$

II.
$$s_2 = s_1 \times \mathcal{N} \cup \mathcal{N} \times s_1 \mapsto A_s = \bigcup_{i \in s_1} \bigcup_{j \in \alpha_i} (A_{ij} \cup A_{ji})$$

Node sample: $\mathcal{N}_s = s_1 \cup \alpha(s_1)$

Birnbaum & Sirken (1965): Multiplicity sampling

Example: s_1 of medical centres (U), access to patients (Ω)

BIG: bipartite incidence graph $G = (U, \Omega; A)$

- bipartition (U,Ω) of \mathcal{N} , edges only between U and Ω
- e.g. $(U, \Omega) = (\text{parents, children})$ in Lavalleè (2007)

Sirken (2005): Network sampling

Example: s_1 of household (U), access to siblings (Ω) E.g. sampling in *projection-relation graph*:

- projection edges from U to P (persons): $\mathcal{N} = U \cup P$
- relation edges $a_{ij} = a_{ji}$ for $i, j \in P$ if i and j are siblings

Can use BIG with $\mathcal{N} = U \cup \Omega$ [hypernode $k \in \Omega$]

Thompson (1990): Adaptive cluster sampling (ACS)

BIG sampling

Any representation of *sampling* in finite graph/network

- e.g. multiplicity/indirect sampling, "network" sampling, ACS
- e.g. induced, incident, snowball sampling (Frank 1971, ..., 2011)

BIG representation $G = (U, \Omega; A)$ for estimation

- sampling units U, measurement **motifs** Ω , incidence edges A
- ancestral observation for design-based inference: need to know all the nodes in U that could lead to the observed motifs in Ω_s NB. generalise the notion "multiplicity" (Birnbaum & Sirken, 1965)
- solution: use $s_2^* = s_1 \times s_1$ under T-stage snowball sampling

 C_q = the set of all M of order q, $M \subset \mathcal{N}$ and |M| = qZhang & Patone (2017) define q-th order graph total

$$\theta = \sum_{M \in \mathcal{C}_q} y(M)$$

Graph parameter = a function of graph totals [Similarly for network totals and network parameters]

Motif: a node set M of specific characteristics, $M \subseteq \mathcal{N}$ NB. a motif [M] may or may not have a fixed order, giving rise to graph totals with or without a given order e.g. graph order $|\mathcal{N}|$: 1st-order, graph size |A|: 2nd-order e.g. [M] = connected components, without fixed order

Example: Triads, i.e. |M| = 3

The no. triads of size 3, 2, 1, respectively, in undirected simple graph:

$$\theta_{3,3} = \sum_{M \in \mathcal{C}_3} a_{ij} a_{jh} a_{ih} \qquad [M = \{i, j, h\}]$$

$$\theta_{3,2} = \sum_{M \in \mathcal{C}_3} a_{ij} a_{ih} (1 - a_{jh}) + a_{ij} a_{jh} (1 - a_{ih}) + a_{ih} a_{jh} (1 - a_{ij})$$

$$\theta_{3,1} = \sum_{M \in \mathcal{C}_3} a_{ij} (1 - a_{jh}) (1 - a_{ih}) + a_{ih} (1 - a_{ij}) (1 - a_{jh}) + a_{jh} (1 - a_{ij}) (1 - a_{ih})$$

Relationship to the mean and variance of degrees (Frank, 1981):

$$\mu = \sum_{d=1}^{N} \frac{N_d}{N} d = \frac{2R}{N} \qquad Q = \sum_{d=1}^{N} d^2 N_d \qquad \sigma^2 = \frac{Q}{N} - \mu^2$$

$$R = \frac{1}{N-2} (\theta_{3,1} + 2\theta_{3,2} + 3\theta_{3,3})$$

$$Q = \frac{2}{N-1} (\theta_{3,1} + N\theta_{3,2} + 3(N-1)\theta_{3,3})$$

Two network HT-estimators

BIG sampling: Ω = population set of [M], Ω_s = sample set of [M]For convenience: enumerate the motifs as k = 1, 2, ... in Ω and Ω_s Yhat: HT-estimator of graph total $\theta = \sum_{k \in \Omega} y_k$

$$\hat{\theta}_y = \sum_{k \in \Omega} \delta_k y_k / \pi_{(k)}$$

 δ_k = inclusion indicator and $\pi_{(k)}$ = inclusion probability of motif NB. $\pi_{(k)}$ for distinction to inclusion probability π_j of unit $j \in U$ NB. Under T-stage snowball sampling, a motif [M] is observed

if
$$M \subseteq s_1$$
, where $M = \{i_1, ..., i_q\}$

or if
$$M_{(h)} \subseteq s_1$$
, where $M_{(h)} = M \setminus \{i_h\}$ and $1 \le h \le q$

(Zhang and Patone, 2017)

Two network HT-estimators

Zhang and Patone (2017) show that

$$\pi_{(k)} = \sum_{h=1}^{q} \Pr(M_{(h)} \subseteq s_1) - (k-1)\Pr(M \subseteq s_1)$$

where e.g. $\Pr(M \subseteq s_1) = \pi_{(i_1)(i_2)\cdots(i_q)}$ is joint inclusion probability In terms of inclusion prob. in initial seed sample $s_{1,0}$, we have

$$\pi_{(i_1)(i_2)\cdots(i_q)} = \sum_{L\subseteq M} (-1)^{|L|} \bar{\pi}(L),$$

where $\bar{\pi}(L)$ is the (exclusion) probability of $L \cap s_1 = \emptyset$:

$$\bar{\pi}(L) = \Pr(R_L \cap s_{1,0} = \emptyset) = \bar{\pi}_{R_L} = \sum_{D \subseteq R_L} (-1)^{|D|} \pi_D$$

where $R_L = \bigcup_{i \in L} R_i$ and R_i is the ancestors of i up to the T-1 steps, and π_D is joint inclusion probability of the nodes (in D) in $s_{1,0}$

Two network HT-estimators

Birnbaum and Sirken (1965): provided $\sum_{i \in U} P_{ik} = 1, \forall k \in \Omega$,

$$\theta = \sum_{k \in \Omega} y_k = \sum_{k \in \Omega} \left(\sum_{i \in U} P_{ik} \right) y_k = \sum_{i \in U} \left(\sum_{k \in \Omega} P_{ik} y_k \right) = \sum_{i \in U} z_i$$

Zhat based on $z_i = \sum_{k \in \Omega} P_{ik} y_k$ with P_{ik} 's constant of s_1 :

$$\hat{\theta}_z = \sum_{i \in s_1} z_i / \pi_i = \sum_{i \in U} z_i \delta_i / \pi_i$$

NB. Equal-share weight, given multiplicity $m_k = |A_{+k}|$ in BIG:

$$P_{ik} = m_k^{-1}$$
 if $|A_{ik}| > 0$, $P_{ik} = 0$ otherwise

NB. pps-share weight: $P_{ik} \propto \pi_i$ if $|A_{ik}| > 0$, $P_{ik} = 0$ otherwise

NB. $\hat{\theta}_z$ much easier to calculate than $\hat{\theta}_y$ provided m_k

Example (Thompson, 1991): Two-stage ACS

	RRMSE (%)						
$ s_1 $	$\hat{ heta}_{SCS}$	$\hat{ heta}_z^{eq}$	$\hat{ heta}_y$				
1	143.9	112.1	112.1				
2	96.8	75.4	72.5				
4	64.4	50.1	43.6				
6	49.1	38.3	29.1				
10	32.2	25.1	12.3				

An example of graph sampling: SRS of s_1 , $|s_1| = 3$

```
# Triad types in a directed graph (Davis & Leinhardt, 1972)
    003 A,B,C
                   empty graph
      012 A--+B,C graph with a single directed age
   102 A+--+B,C
                          graph with a mutual connection between two vertices
    021D A+--B--+C
                          out-star
g5
    021U A--+B+--C
                          in-star
g6
    021C A--+B--+C triple, directed line
    111D A+--+B+--C triple
    111U A+--+B--+C
                   triple
g8
    030T A--+B+--C, A--+C triple and transitive
g10 030C A+--B+--C, A--+C triple
g11 201 A+--+B+--+C triple
g12 120D A+--B--+C, A+--+C triple and transitive
g13 120U A--+B+--C, A+--+C triple and transitive
g14 120C A--+B--+C, A+--+C triple and transitive
g15 210 A--+B+--+C, A+--+C triple and transitive
    300 A+--+B+--+C, A+--+C triple, complete and transitive graph
# -----
```

An example of graph sampling: SRS of s_1 , $|s_1| = 3$

$s_2^* = s_1 \times s_1, s_2 = s_1 \times U \cup U \times s_1$							
		RRMSE (%)					
	Parameter	$\widehat{ heta_y(s_2^*)}$	$\hat{ heta}_y(s_2)$	$\widehat{ heta_z^{eq}(s_2)}$			
1st-order	Indegree	331.261	26.022				
2nd-order	Density	0.041	0.003	0.004			
	Reciprocity	0.118	0.013	0.016			
3rd-order	g6	333.053	73.600	81.478			
	g7	375.735	96.397	104.520			
	g8	540.774	108.593	116.406			
	g9	771.335	149.723	160.095			
	g10	540.774	136.630	142.923			
	g11	771.335	172.970	190.091			
	g12	1095.445	211.943	230.090			
	g13	1095.445	211.943	230.090			
	g14	540.774	122.138	131.251			
	g15	771.335	172.970	190.091			
	g16	1095.445	211.943	230.090			
	Transitivity	0.084	0.028	0.028			

Example: Sector labour flows 2015Q1-2017Q1

 $|\mathcal{N}| = 263$

 $|A| = 31120, a_{ij} \in A$ if labour flow from i to j

Density = 0.45, Reciprocity = 0.73

$s_2^* = s_1 \times s_1, s_2 = s_1 \times U \cup U \times s_1$									
	RRMSE (%)								
	$ s_1 = 3$		$ s_1 = 6$						
Parameter	$\hat{ heta}_y(s_2^*)$	$\hat{ heta}_y(s_2)$	$\hat{ heta}_z^{eq}(s_2)$	$\hat{ heta}_y(s_2^*)$	$\hat{ heta}_y(s_2)$	$\hat{ heta}_z^{eq}(s_2)$			
Indegree	75.01	31.76		47.84	22.12				
Mutual Edges	91.20	37.27	37.42	57.42	26.01	26.27			
Density	75.01	31.76	31.89	47.84	22.12	22.34			
Reciprocity	62.20	14.00	14.03	31.35	8.49	8.57			

BIG sampling with replacement (WR)

- $p_i = \Pr(\delta_i = 1)$ for $i \in U$
- $y_{\alpha_i} = y_k$ for $k = \alpha_i$ and $p_{(k)} = \sum_{i \in \beta_k} p_i = p_{\beta_k}$
- Hansen-Hurwitz (HH) estimators

$$\tilde{\theta}_z = \frac{1}{n} \sum_{i=1}^n \frac{z_i}{p_i}$$
 and $\tilde{\theta}_y = \frac{1}{n} \sum_{i=1}^n \frac{y_{\alpha_i}}{p_{\beta_k}} = \frac{1}{n} \sum_{i=1}^n \frac{y_k}{p_{(k)}}$

Result: $V(\tilde{\theta}_z) \geq V(\tilde{\theta}_y)$, where the equality holds if $P_{ik} = p_{(k)}^{-1} p_i$ for $i \in \beta_k$ and 0 otherwise. \square

NB. equal-probability $s_1 \mapsto \tilde{\theta}_z$ with equal-share weights

BIG sampling without replacement (WOR)

•
$$\pi_i = \Pr(\delta_i = 1)$$
 and $\pi_{ij} = \Pr(\delta_i \delta_j = 1)$ for $i, j \in U$

•
$$\pi_{(k)} = \Pr(\delta_k = 1)$$
 and $\pi_{(k)(l)} = \Pr(\delta_k \delta_l = 1)$ for $k, l \in \Omega$

Result: For HT-estimators $\hat{\theta}_y$ and $\hat{\theta}_z$ with $P_{ik} \propto \pi_i$,

$$\begin{split} V(\hat{\theta}_z) - V(\hat{\theta}_y) &= \\ \sum_{k \neq l \in \Omega} \sum_{y_k y_l} \sum_{i \in \beta_k} \sum_{j \in \beta_l} \frac{\pi_{ij}}{\pi_i \pi_j} P_{ik} P_{jl} - \frac{\pi_{(k)(l)}}{\pi_{(k)} \pi_{(l)}} \end{split}$$

NB. cluster sampling as special case $V(\hat{\theta}_z) = V(\hat{\theta}_y)$

To explore: scope of finite network sampling theory

More observation procedures, greater scope of application

Function of network totals of definite orders: **yes**

e.g. density, reciprocity, transitivity, etc.

e.g. "structural equivalence" ["similarity", Pearson corr.]

Parameters based on geodesic: feasible?

e.g. "closeness" centrality: inverse of mean of invserse geodesics

Measures based on fixed-point-equation: impossible?

e.g. Katz centrality: $\mathbf{x}_{N\times 1} = \alpha A\mathbf{x} + \boldsymbol{\beta}_{N\times 1}$

e.g. "regular equivalence" btw $i, j \in \mathcal{N}$: $\boldsymbol{\sigma}_{N \times N} = \alpha A \boldsymbol{\sigma} + \boldsymbol{I}_{N \times N}$

REFERENCES

[1] Birnbaum, Z.W. and Sirken, M.G. (1965). Design of Sample Surveys to Estimate the Prevalence of IRareDiseases: Three Unbiased Estimates. Vital and Health Statistics, Ser. 2, No.11. Washington:Government Printing Office.

- [2] Frank, O. (1971). Statistical inference in graphs. Stockholm: Försvarets forskningsanstalt.
- [3] Frank, O. (1977a). Estimation of graph totals. Scandinavian Journal of Statistics, 4:81–89.
- [4] Frank, O. (1977b). A note on Bernoulli sampling in graphs and Horvitz-Thompson estimation. Scandinavian Journal of Statistics, 4:178–180.
- [5] Frank, O. (1977c) Survey sampling in graphs. Journal of Statistical Planning and Inference, 1(3):235–264.
- [6] Frank, O. (1978). Estimation of the number of connected components in a graph by using a sampled subgraph. Scandinavian Journal of Statistics, 5:177–188.
- [7] Frank, O. (1979). Sampling and estimation in large social networks. *Social networks*, 1(1):91–101.
- [8] Frank, O. (1980a). Estimation of the number of vertices of different degrees in a graph. Journal of Statistical Planning and Inference, 4(1):45–50, 1980.
- [9] Frank, O. (1980b). Sampling and inference in a population graph. *International Statistical Review/Revue Internationale de Statistique*, 48:33–41.
- [10] Frank, O. (1981). A survey of statistical methods for graph analysis. Sociological methodology, 12:110–155.

REFERENCES

[11] Frank, O. (2011). Survey sampling in networks. The SAGE Handbook of Social Network Analysis, pages 389–403.

- [12] Frank O. and Snijders T. (1994). Estimating the size of hidden populations using snowball sampling. *Journal of Official Statistics*, 10:53–53.
- [13] Goldenberg, A., Zheng, A.X., Fienberg, S.E. and Airoldi, E.M. (2010). A Survey of Statistical Network Models. Foundations and Trends in Machine Learning, 2:129–233.
- [14] Goodman, L.A. (1961). Snowball sampling. Annals of Mathematical Statistics, 32:148–170.
- [15] Klovdahl, A. S. (1989). Urban social networks: Some methodological problems and possibilities. In M. Kochen (ed.) *The Small World*. Norwood, NJ: Ablex Publishing, pp. 176–210.
- [16] Lavalleè, P. (2007). Indirect Sampling. Springer.
- [17] Newman, M.E.J. (2010). Networks: An Introduction. Oxford University Press.
- [18] Sirken, M.G. (2005). Network Sampling. In Encyclopedia of Biostatistics, John Wiley & Sons, Ltd. DOI: 10.1002/0470011815.b2a16043
- [19] Snijders, T. A. B. (1992). Estimation on the basis of snowball samples: How to weight. Bulletin de Methodologie Sociologique, 36:59–70.
- [20] Thompson, S.K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85:1050–1059.
- [21] Thompson, S. K. (1991). Adaptive cluster sampling: Designs with primary and secondary units. *Biometrics*, 47:1103–1115.