Robotics

Estimation and Learning with Dan Lee

Week 1. Gaussian Model Learning

1.4.1 Gaussian Mixture Model

Limitations of Single Gaussian

- Single Mode
- Symmetric

Gaussian Mixture Model

Mixture (=Sum) of Gaussians

傅立叶!

Multi-dimension Distribution: Example

• Ball color in multi-channels

Multi-dimension Distribution: Example

• Ball color in multi-channels

Gaussian Mixture Model

Mixture of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} w_k g_k(\mathbf{x}|\mathbf{\mu}_k, \Sigma_k)$$

 g_k : Gaussian with μ_k and Σ_k

 w_k : mixing coefficient (weight, a prior) $w_k > 0$, $\sum_{k=1}^{K} w_k = 1$

Using GMM

Flexibility

Parameters 1 - No analytic solution

- Overfitting

$$\mu = {\mu_1, \mu_2, ..., \mu_K}$$

$$\Sigma = \{\Sigma_1, \Sigma_2, \dots, \Sigma_K\}$$

$$\mathbf{w} = \{w_1, w_2, ..., w_K\}$$

K: Number of Components

Using GMM

Flexibility

Parameters - No analytic solution

- Overfitting

$$\mu = {\{\mu_1, \mu_2, ..., \mu_K\}}$$

$$\Sigma = \{\Sigma_1, \Sigma_2, \dots, \Sigma_K\}$$

$$\mathbf{w} = w = 1/K$$

K: given number of Components