

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES COURSE HANDOUT

Part A: Content Design

Course Title	DATA STRUCTURES AND ALGORITHMS DESIGN
Course No(s)	DSECLZG519
Credit Units	5
Course Author	Febin. A.Vahab (01/10/2020)
Version No	2.0
Minor Edits	Parthasarathy PD (01/10/2022)

Course Description

The course covers design, implementation and applications of basic and advanced data structures including trees, graphs, bloom filters. The course also covers algorithm design techniques like greedy, dynamic, map reduce etc. using examples from sorting, searching, graph theory, networking and number theory. The complexity issues are also discussed further.

Course Objectives

No	Objective
CO1	Introduce mathematical and experimental techniques to analyze algorithms
CO2	Introduce linear and non-linear data structures and best practices to choose appropriate data structure for a given application
CO3	Teach various dictionary data structures (Lists, Trees, Heaps, Bloom filters) with illustrations on possible representation, various operations and their efficiency
CO4	Exposes students to various sorting and searching techniques
CO5	Discuss in detail various algorithm design approaches (Greedy method, divide and conquer and dynamic programming) with appropriate examples, methods to make correct design choice and the efficiency concerns
CO6	Introduce complexity classes, notion of NP-Completeness, ways of classifying problem into appropriate complexity class
CO7	Introduce reduction method to prove a problem's complexity class.

Learning Outcomes:

No	Learning Outcomes
LO1	Describe various fundamental and advanced data structures, their properties, algorithm design techniques and various means of evaluating algorithms
LO2	Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide justification for that selection, and to implement the algorithm in a particular context.
LO3	Solve problems using Algorithms for Linear and Non-Linear Data Structures
LO4	Explain with a practical example, each of the algorithm design strategies (greedy, divide-and-

	conquer, dynamic programming and map-reduce)
LO5	Use brute-force, greedy, divide-and-conquer, recursive backtracking, dynamic programming and map reduce techniques to solve a given algorithm design problem.
LO6	Relate the real-world problems to known data structures and algorithms leading to the recommend appropriate solutions in representation and implementation.
LO7	Explain the significance of NP-completeness
LO8	Classify problems into complexity classes P and NP and to prove hardness of problems

Textbook(s):

No	Author(s), Title, Edition, Publishing House
T1	Algorithms Design: Foundations, Analysis and Internet Examples Michael T. Goodrich, Roberto
	Tamassia, 2006, Wiley (Students Edition)

Reference Book(s) & other resources:

No	Author(s), Title, Edition, Publishing House
R1	Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, Third Ed, 2009, PHI
R2	Data Structures, Algorithms and Applications in Java, Sartaj Sahni, Second Ed, 2005, Universities Press
R3	Data Structures & Algorithms in Python , Michael T. Goodrich, Roberto Tamassia, Michael H Goldwasser, Wiley, 2013
R4	Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser - Data Structures and Algorithms in Python-Wiley (2013)

CONTENT STRUCTURE

No	Title of the Module	References	
M1	Analyzing Algorithms		
	1.1. Theoretical Foundation		
	1.1.1. Algorithms and it's Specification		
	1.1.2. Random Access Machine Model		
	1.1.3. Notion of best case, average case and worst case		
	1.1.4. Notion of Algorithm Correctness		
	1.2. Characterizing Run Time	T1: 1.1, 1.2	
	1.2.1. Use of asymptotic notation	T1:1.1.4	
	1.2.2. Big-Oh, Omega and Theta Notations	R1: 4.3,4.4,4.5	
	1.3. Analyzing Recursive Algorithms		
	1.3.1. Recurrence relations		
	1.3.2. Specifying runtime of recursive algorithms		
	1.3.3. Master Theorem		
	1.3.4 Solving Recurrences: Substitution Method,		
	Recursion Tree Method		
M2	Elementary Data Structures		
	2.1. Stacks ADT, Implementation and Applications	R1:10.1	
	2.2. Queues ADT, Implementation and Applications	R1:17.1	
	2.3. Amortized Analysis – Stack, Queue operations- Aggregate Method	R1:10.2	
	2.4. List ADT, Implementation and Applications		

M3	Non-Linear Data Structures	
	3.1. Trees	
	3.1.1. Terms and Definition	
	3.1.2. Tree ADT	
	3.1.3. Applications	
	3.2. Binary Trees	
	3.2.1. Properties	
	3.2.2. Representations (Array Based and Linked Structure)	
	3.2.3. Binary Tree traversal (In Order, Pre Order, Post Order)	
	3.2.4. Applications	
	3.3. Heaps	T1: 2.3
	3.3.1. Definition and Properties	R2:6
	3.3.2. Representations (Array Based and Linked)	R1: 22.1,
	3.3.3. Insertion and deletion of elements	22.2,22.3
	3.3.4. Heap sort	R1:25.2
	3.3.5. Priority Queue	
	3.4. Graphs	
	3.4.1. Terms and Definitions	
	3.4.2. Properties	
	3.4.3. Representations (Edge List, Adjacency list, Adjacency	
	Matrix)	
	3.4.4. Graph Traversals (Depth First and Breadth First Search)	
	3.5.5. Applications	
	3.5. Directed Graph and Reachability-	
	Floyd-Warshall's Transitive Closure	
M4	Dictionaries	
	4.1. Dictionary ADT, Applications	
	4.2. Hash Tables	
	4.2.1. Notion of Hashing and Collision	
	4.2.2. Methods for Collision Handling	
	4.2.2.1. Separate Chaining	
	4.2.2.2. Notion of Load Factor	R2:11
	4.2.2.3. Rehashing	Bloom Filter
	4.2.2.4. Open Addressing [Linear & Quadratic Probing,	R1: 12
	Double Hash]	T1:3.1
	4.2.2.5. Applications	T1:3.2
	4.3. Universal Hashing	T1:12.1
	4.4. Introduction to Bloom Filters, Applications	T1:12.3.2
	4.5. Binary Search Tree	
	4.5.1. BST Operations	
	4.5.2. Applications	
	4.6. AVL trees	
	4.7. Rank and Range Queries, Performance	
	4.8 k-d Trees	
	4.6.1 Representation	
	4.6.2 Insertion, Deletion and Complexity	

M5	Algorithm Design Techniques	
	5.1. Greedy Method	
	5.1.1. Design Principles and Strategy	
	5.1.2. Fractional Knapsack Problem	
	5.1.3. Minimum Spanning Tree	T1: 5.1,
	5.1.4. Shortest Path Problem - Djikstra's Algorithm	7.3,7.1.1
	5.1.5. Task Scheduling Problem	T1: 5.2.2,
	5.2. Divide and Conquer	4.1,4.3 T1: 5.3,7.2
	5.2.1. Design Principles and Strategy	11. 3.3,7.2
	5.2.2. Integer Multiplication Problem	
	5.2.3. Merge Sort	
	5.2.4. QuickSort	
	5.3. Dynamic Programming	
	5.3.1. Design Principles and Strategy	
	5.3.2. Matrix Chain Product Problem	
	5.3.3. All-pairs Shortest Path Problem	
	5.3.4. 0/1 Knapsack Problem	
M6	Complexity Classes	
	6.1. Definition of P and NP classes and examples	
	6.2. Understanding NP-Completeness: CNF SAT	
	6.3. Cook-Levin theorem	T1: 13
	6.4. Polynomial time Reducibility:	
	6.4.1 CNF SAT	
	6.4.2 Clique	

Part B: Session Plan

Academic Term	2022-2023 First Semester
Course Title	DATA STRUCTURES AND ALGORITHMS DESIGN
Course No	DSECCZG519
Lead Instructor	Prof Parthasarathy

SESSION CONTENTS

Session	List of Topic Title	Text/Ref
(#)	(from content structure in Course Handout)	Book
	Analyzing Algorithms	T1: 1.1, 1.2
	Theoretical Foundation	
1	 Algorithms and it's Specification 	
1	 Random Access Machine Model 	
	 Notion of best case, average case and worst case 	
	 Notion of Algorithm Correctness 	
	Analyzing Algorithms (Continued)	T1:1.1.4
	Characterizing Run Time	R1: 4.3,4.4,4.5
	 Use of asymptotic notation 	
2	 Big-Oh, Omega and Theta Notations 	
2	Analyzing Recursive Algorithms	
	 Recurrence relations 	
	 Specifying runtime of recursive algorithms 	
	Master Theorem	
	Elementary Data Structures	R1:10.1
	 Stacks ADT, Implementation and Applications 	R1:17.1
3	 Queues ADT, Implementation and Applications 	R1:10.2
	 Amortized Analysis -Stack, Queue operations-Aggregate Method 	
	List ADT , Implementation and Applications	

	N 7: D : G: :	TI 0.2
	Non-Linear Data Structures	T1: 2.3
	Trees	
	Terms and Definition	
	Tree ADT	
4	• Applications	
	Binary Trees	
	• Properties	
	 Representations (Array Based and Linked Structure) 	
	• Binary Tree traversal (In Order, Pre Order, Post Order)	
	Applications	
	Heaps	R2:6
	Definition and Properties	
_	Representations (Array Based and Linked)	
5	 Insertion and deletion of elements 	
	Heap sort	
	Priority Queue	
	Graphs	R1: 22.1,
	Terms and Definitions	22.2,22.3
	• Properties	
6	Representations (Edge List, Adjacency list, Adjacency Matrix)	
	Graph Traversals (Depth First and Breadth First Search)	
	Applications [Self-Study]	
	Dictionaries	R1:25.2
	Dictionary ADT , Applications	141,20,2
	Hash Tables	R2:11
	 Notion of Hashing and Collision 	
	Methods for Collision Handling	
7	Separate Chaining	
	Notion of Load Factor	
	Rehashing Ones Addressing [Linear & Onedastic Pushing Double Healt]	
	Open Addressing [Linear & Quadratic Probing, Double Hash] Applications [Self Starks]	
	Applications [Self-Study] Live de die de Place Filtere Applications	R2:11
	Introduction to Bloom Filters, Applications	K2.11
8	Binary Search Tree	
	BST Operations Applications	
	Applications	
	AVL Trees	T1:3.1,3.2
	• Rotations, Insertion, Deletion	
9	k-d Trees	
	Representation	
	Insertion, Deletion and Complexity	
	Algorithm Design Techniques	T1:12.1
	Greedy Method	T1:12.3.2
10	Design Principles and Strategy	
	Fractional Knapsack Problem	
	Minimum Spanning Tree - Kruskal	
	Greedy Method (Continued)	T1: 5.1
	Minimum Spanning Tree - Prims	
11.	 Shortest Path Problem - Djikstra's Algorithm 	
11.	Divide and Conquer	
	Design Principles and Strategy	
	Merge Sort	

	Integer Multiplication Problem	T1: 7.3,7.1.1
12	Quick Sort	
	Dynamic Programming	
	 Design Principles and Strategy 	
	Fibonacci Series	
13	Matrix Chain Product Problem	T1: 5.2.2, 4.1
	 Directed Graph & Reachability – Warshall's Algorithm 	
	 All-pairs Shortest Path Problem – Floyd's Algorithm 	
1.4	0/1 Knapsack	T1: 5.3
	Complexity Classes	
14	 Definition of P and NP classes and examples 	
	 Understanding NP-Completeness: CNF SAT 	
	Complexity Classes (Continued)	T1: 7.2
	Cook-Levin theorem	T1: 13
15	Polynomial time Reducibility:	
	• CNF SAT	
	• Clique	
16	Buffer Class for missed topics + Revision	T1: 13

Webinar: Topics and date/time will be informed by the instructor via Canvas.

Evaluation Scheme

Legend: EC = Evaluation Component

No	Name	Type	Duration	Weight	Day, Date, Session, Time	
	Assignment-1 (12%)	Will be informed		30%		
EC-1	Assignment-2 (13%)					
	Quiz (Best of 2 – 5%)				Will be informed	
EC-2	Mid Term	Open Book		30%	win be informed	
EC-3	Comprehensive Exam	Open Book		40%		

Note - Evaluation components can be tailored depending on the proposed model.

Important Information

Syllabus for Mid-Semester Test (Closed Book): Topics in Weeks 1-8 Syllabus for Comprehensive Exam (Open Book): All topics given in plan of study Evaluation Guidelines:

- 1. EC-1 consists of two Assignments (25% weightage) and 2 Quizzes (best score of quiz will be considered -5%). Announcements regarding the same will be made in a timely manner.
- 2. For Open Book exams: Use of prescribed and reference textbooks, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centers on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.