Azzolini Riccardo 2019-05-21

Programmazione dinamica

1 Programmazione dinamica

Un uso poco accorto della ricorsione può portare alla ripetizione di calcoli già effettuati: adottando un approccio *top-down*, cioè partendo dal problema principale e passando di volta in volta al calcolo di problemi più piccoli, può capitare che uno stesso problema venga risolto un numero esponenziale di volte.

La soluzione è la **programmazione dinamica**, che si basa su un approccio *bottom-up*: si risolvono tutte le istanze richieste dal problema, partendo dalle più piccole e memorizzando i risultati, in modo da poterli riutilizzare per la risoluzione delle istanze di dimensioni superiori.

Con questa tecnica si ha spesso una drastica riduzione dei tempi di calcolo, a costo di un aumento (generalmente accettabile) della memoria utilizzata.

2 Esempio: numeri di Fibonacci

La successione di Fibonacci è definita dall'equazione di ricorrenza

$$\operatorname{Fib}(n) = \begin{cases} n & \text{se } n \leq 1\\ \operatorname{Fib}(n-1) + \operatorname{Fib}(n-2) & \text{altrimenti} \end{cases}$$

2.1 Implementazione ricorsiva

L'implementazione ricorsiva di questa equazione è:

```
Fib(n) {
    if (n <= 1) return n;
    return Fib(n - 1) + Fib(n - 2);
}</pre>
```

Le chiamate ricorsive necessarie per il calcolo di un numero di Fibonacci si possono rappresentare in un albero. Ad esempio, per Fib(4):

Siccome ogni chiamata esegue, oltre alle chiamate ricorsive, solo alcune operazioni a costo costante, il tempo di calcolo è proporzionale al numero di nodi dell'albero, e quest'ultimo è dato dall'equazione di ricorrenza

$$C(n) = \begin{cases} 1 & \text{se } n \le 1\\ 1 + C(n-1) + C(n-2) & \text{altrimenti} \end{cases}$$

Poiché $C(n) \geq \text{Fib}(n) \quad \forall n \in \mathbb{N} \text{ (si può dimostrare per induzione), e}$

$$Fib(n) = \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

si ha allora che

$$C(n) = \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

quindi questa soluzione richiede tempo di calcolo esponenziale.

2.2 Implementazione con la programmazione dinamica

Si calcolano i valori di $\mathrm{Fib}(k)$ per $k=0,1,\ldots,n,$ salvando ciascun risultato in un vettore:

```
DFib(n) {  V[0] = 0; V[1] = 1;  for (k = 2; k \le n; k++)  V[k] = V[k - 1] + V[k - 2];
```

```
return V[n];
}
```

Questa soluzione richiede tempo $\Theta(n)$ e spazio $\Theta(n)$.

Lo spazio utilizzato si può ridurre osservando che Fib(n) dipende solo dai due valori precedenti, quindi è sufficiente memorizzare questi:

```
DFib(n) {
    a = 0; b = 1;
    for (k = 2; k <= n; k++) {
        c = a + b;
        a = b;
        b = c;
    }
    return c;
}</pre>
```

In questo modo, il tempo di calcolo rimane $\Theta(n)$, ma la memoria occupata si riduce a $\Theta(1)$.

3 Metodo generale

Si ha un algoritmo ricorsivo descritto dalle procedure P_1, \ldots, P_m , dove P_1 è la procedura principale.

- $[P_k, x]$ indica la chiamata di P_k con input x.
- $[P_k, x]$ dipende da $[P_s, y]$ se l'esecuzione della procedura P_k con input x richiede almeno una volta la chiamata di P_s con input y, anche non direttamente (ad esempio, [Fib, 4] dipende da [Fib, 3], [Fib, 2], [Fib, 1] e [Fib, 0]). Le dipendenze formano quindi un grafo orientato e aciclico (se ci fossero cicli, l'algoritmo non terminerebbe).
- Il risultato dell'algoritmo sull'input z è calcolato dalla chiamata $[P_1, z]$.
- Si considera l'insieme di dipendenza

$$\mathbb{D}[P_1, z] = \{ [P_s, y] \mid [P_1, z] \text{ dipende da } [P_s, y] \}$$

Ad esempio:

$$\mathbb{D}[\text{Fib}, 4] = \{ [\text{Fib}, 3], [\text{Fib}, 2], [\text{Fib}, 1], [\text{Fib}, 0] \}$$

• Si indica con < l'ordine parziale su $\mathbb{D}[P_1, z]$ definito da

$$\forall [P_k, x], [P_s, y] \in \mathbb{D}[P_1, z], \quad [P_k, x] < [P_s, y] \iff [P_s, y] \text{ dipende da } [P_k, x]$$

• Si definisce un ordine totale \prec compatibile con \prec .

Osservazioni:

- La programmazione dinamica *non* è una tecnica di progettazione di algoritmi: per sfruttarla, bisogna prima trovare un algoritmo ricorsivo, poi la si può applicare per realizzare un'implementazione efficiente.
- Le dipendenze, e quindi l'ordine parziale <, si ricavano dall'algoritmo ricorsivo, mentre l'ordine totale ≺ deve essere stabilito separatamente, determinando un (qualsiasi) modo per ordinare le chiamate indipendenti.

3.1 Struttura della procedura

- 1. Si definisce un ordine totale su $\mathbb{D}[P_1, z]$.
- 2. $i := \min(\mathbb{D}[P_1, z])$
- 3. ripeti
 - a) data $i = [P_j, x]$, esegui $P_j(x)$, interpretando
 - $b := P_s(l)$ come $b := V[P_s, l]$ (perché l'ordine totale garantisce che il risultato di $[P_s, l]$ sia già stato calcolato);
 - return E come $V[P_j, x] := E$ per memorizzare il risultato calcolato (mentre esso verrebbe semplicemente restituito nell'algoritmo ricorsivo).
 - b) u := i; i := Succ(i) (passa al prossimo problema nell'ordine totale, e memorizza in u qual è l'ultimo problema risolto);

fino a quando $u = [P_1, z]$ (ciò indica infatti che è stata calcolata la soluzione del problema principale);

4. return $V[P_1, z]$

4 Esempio: moltiplicazione in cascata di matrici

- Input: m matrici A_1, \ldots, A_m , con A_i di ordine $r_{i-1} \times r_i$ (gli ordini possono essere rappresentati da un vettore $r = [r_0, r_1, \ldots, r_m]$).
- Output: il numero minimo di moltiplicazioni tra elementi necessarie per calcolare $A_1 \times A_2 \times \cdots \times A_m$ (le somme non si contano).

In generale, per moltiplicare due matrici di ordini $r \times s$ e $s \times t$ (ricavando una nuova matrice di ordine $r \times t$) servono $r \cdot s \cdot t$ moltiplicazioni tra elementi.

Si può sfruttare la proprietà associativa per ridurre il numero totale di moltiplicazioni. Ad esempio, per il calcolo di $A_1 \times A_2 \times A_3 \times A_4$, con r = [2, 5, 3, 7, 4]:

- $A_1 \times (A_2 \times (A_3 \times A_4))$ richiede $3 \cdot 7 \cdot 4 + 5 \cdot 3 \cdot 4 + 2 \cdot 5 \cdot 4 = 184$ moltiplicazioni;
- $((A_1 \times A_2) \times A_3) \times A_4$ richiede $2 \cdot 5 \cdot 3 + 2 \cdot 3 \cdot 7 + 2 \cdot 7 \cdot 4 = 128$ moltiplicazioni, che in questo caso è il numero minimo possibile.

4.1 Soluzione ricorsiva

Sia M[k, s] il modo migliore di calcolare $A_k \times A_{k+1} \times \cdots \times A_{s-1} \times A_s$. Per ricavare la soluzione del problema, M[1, m]:

- 1. si seleziona la posizione dell'ultimo prodotto da eseguire (il più esterno, che rimane fuori da tutte le parentesi);
- 2. si trova (ricorsivamente) il modo migliore di moltiplicare le matrici a sinistra e a destra di tale prodotto;
- 3. si somma al risultato del punto 2 il numero di moltiplicazioni necessarie per l'ultimo prodotto.

L'equazione di ricorrenza corrispondente è:

$$M[k,s] = \begin{cases} 0 & \text{se } k = s \\ \min_{k \le j < s} \{M[k,j] + M[j+1,s] + r_{k-1}r_jr_s\} & \text{se } k \ne s \end{cases}$$

Un'implementazione diretta di questa soluzione non sarebbe di fatto utilizzabile, dato che richiederebbe tempo di calcolo esponenziale.

4.2 Implementazione con la programmazione dinamica

```
DCosto(m, r) {
   [k, s] = [1, 1];
   repeat {
       if (k == s) {
           V[k, s] = 0;
       } else {
           cmin = MAX_INT;
           for (j = k; j < s; j++) {
              C = V[k, j] + V[j + 1, s] + r[k - 1] * r[j] * r[s];
              if (C < cmin) cmin = C;
           }
           V[k, s] = cmin;
       }
       [k, s] = Succ(k, s);
   return V[1, m];
}
```

- Il codice if (k == s) { ... } else { ... } implementa i due casi dell'equazione di ricorrenza.
- La funzione Succ restituisce il prossimo problema nell'ordine totale.
- Il ciclo repeat $\{\ldots\}$ until ([k, s] == [1, m + 1]) termina quando il problema successivo è [1, m+1] (che non esiste), cioè quando è appena stato risolto [1, m].

4.2.1 Ordine totale

L'ordine parziale da rispettare è definito come

$$[k_1, s_1] < [k_2, s_2] \iff k_2 \le k_1 \le s_1 \le s_2$$

(cioè $[k_1, s_1] < [k_2, s_2]$ se e solo se $[k_1, s_1]$ è compreso in $[k_2, s_2]$). Si può quindi definire, ad esempio, l'ordine totale

$$[k_1, s_1] \prec [k_2, s_2] \iff s_1 - k_1 < s_2 - k_2$$

 $\lor (s_1 - k_1 = s_2 - k_2 \land s_1 < s_2)$

secondo il quale $[k_1, s_1] \prec [k_2, s_2]$ se $[k_1, s_1]$ è più piccolo (comprende meno matrici) di $[k_2, s_2]$ oppure, a parità di dimensione, se $s_1 < s_2$:

```
[1, 1], [2, 2], \dots, [m, m],

[1, 2], [2, 3], \dots, [m - 1, m],

[1, 3], [2, 4], \dots, [m - 2, m],

\dots, [1, m]
```

La funzione Succ corrispondente è:

```
Succ(k, s) {
    if (s < m)
        return [k + 1, s + 1]; // Prossimo della stessa dimensione
    return [1, s - k + 2]; // Primo della dimensione successiva
}</pre>
```

4.2.2 Complessità

La complessità di quest'implementazione è:

- spazio $\Theta(m^2),$ per la matrice ${\tt V}$ dei risultati;
- tempo $\Theta(m^3)$, perché ci sono $\Theta(m^2)$ problemi (dato che corrispondono a coppie di numeri interi), e ciascuna iterazione risolve uno di questi impiegando tempo O(n) (si può dimostrare che il costo complessivo risulta essere esattamente $\Theta(m^3)$, e non solo $O(m^3)$).