PROBLEM for CS 179:

by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point numbers x, y and z, and computes $p := x \cdot y \cdot z$ in some order that avoids undeserved over/underflow. Do likewise for $q := x \cdot y/z$.

SOLUTIONS: The proofs that these programs work correctly depend upon the properties of three <code>Environmental Constants</code> associated with the floating-point formats in which x, y, z, p and q are represented, regardless of whether those constants appear in the programs. The <code>Overflow threshold</code> Ω is the biggest finite number in that format; the <code>Underflow threshold</code> η is the smallest <code>normalized</code> positive number. The magnitudes of x, y and z are presumed to lie between Ω and $\varepsilon\eta$ inclusive where $\varepsilon\eta$ is the smallest <code>nonzero</code> magnitude and may be far tinier than η if underflow is <code>gradual</code>; on machines that underflow abruptly to zero $\varepsilon\eta=\eta$ except for CDC Cyber 17x's. $\varepsilon\eta=2\eta$ for these Cybers to cope with "partially underflowed" numbers between η and $\varepsilon\eta$ that behave normally in <code>add</code>, <code>subtract</code> and <code>compare</code> but behave like zero in <code>multiply</code> and <code>divide</code>. Little is presumed about the product $\eta\Omega$, which lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their magnitudes using logarithms; $|p| = \exp(\ln|x| + \ln|y| + \ln|y| + \ln|z|)$ and $|q| = \exp(\ln|x| + \ln|y| - \ln|z|)$. But these formulas lose accuracy badly when the data are very big or very small; the loss is caused by rounding each logarithm to working precision, and can be observed by comparing the computed values of $\exp(\ln|x|)$ and |x| when it lies near Ω or γ . And computing logarithms and exponentials wastes time. Our programs waste neither accuracy nor time.

Both programs start by Sorting |x|, |y| and |z| and continue thus:

Program for p :

Assume now that sorted $|x| \le |y| \le |z|$. Compute $x \cdot z$ first and then $p := (x \cdot z) \cdot y$ except on a machine with gradual underflow; on such a machine if $(x \cdot z)$ underflows recompute $p := (z \cdot y) \cdot x$.

Proof that p is correct.

If x•z overflowed, then 1 < $|x| \le |y| \le \Omega$ < $|x \cdot z| < |(x \cdot z) \cdot y|$ so p deserves to overflow too (except perhaps on a CRAY, which can overflow in certain cases when a product lies between $\Omega/2$ and Ω ; but that is too perverse to consider here). Similarly if x•z underflowed on a machine that underflows abruptly to zero, then $1 > |z| \ge |y| \ge |x| \ge \eta > |x \cdot z| > |(x \cdot z) \cdot y|$

so p must underflow too. On a machine that underflows gradually conformity with IEEE standards 754/854 requires also the ability to detect underflow, and this should be exploited if any of the data can be subnormal (i.e., between $\epsilon\eta$ and η in magnitude). Then x•z underflows only when $1/\epsilon \geq |z| \geq |y| \geq |x| \geq \epsilon\eta$ and $\eta \geq |x•z|$; since $\Omega \geq 1/\epsilon^2$ on those machines, $\Omega \geq z•y$ so z•y

cannot overflow and if it underflows too then either |z|>1 and then $|x \cdot y \cdot z|=|(x \cdot z)(z \cdot y)/z|<\eta^2/|z|<\eta$, or else $|z|\leq 1$ and then $|x \cdot y \cdot z|<|x|\eta\leq\eta$, and p deserves to underflow either way.

Programs for q:

If we could treat q as a product $x \cdot y \cdot (1/z)$, we could compute it safely using the program for p; but the risk that 1/z may over/underflow precludes that option. A safe and simple program works on machines that allow programs to branch on over/underflow: First swap x and y if necessary to establish $|x| \le |y|$; next compute $p := x \cdot y$; subsequently

if (p overflowed and |z| > 1) then q := $(y/z) \cdot x$ else if (p underflowed and |z| < 1) then

 $q := (((x/\epsilon)/z) \cdot y) \cdot \epsilon$ else q := p/z. (For Cybers use $\epsilon = 1$ here, not 2.) The validity of this program is easy to establish provided we may presume that $\sqrt{(\eta)/\epsilon^2} < \eta\Omega < \sqrt{\Omega}$, as appears to be true for all machines I know. But the ability to test for over/underflow and continue is not so common; what if over/underflow is silent? In the absence of a (portable) way to branch on over/underflow, we must produce a spaghetti-like code with branches that preclude spurious over/underflows. Such a program follows.

Two constants are needed. One is λ , the smallest power of the machine's radix no smaller than $\max\{1,\ 1/(\epsilon\eta\Omega)\ \}$. The other is μ , the biggest power of the radix not exceeding $\min\{1,\ 1/(\eta\Omega)\}$. Multiplication by λ or μ is exact, so it cannot cause underflow on a machine that conforms to IEEE 754/854.

First sort |x|, |y| and |z|, keeping track of z. This reduces the situation to one of three cases, depending upon whether |z| is minimal, maximal, or neither:

In case |z| is minimal, say $|z| \le |x| \le |y|$, test |y|; if |y| > 1 then $q := (x/z) \cdot y$ else $q := (x/(\lambda z)) \cdot (\lambda y)$. In case |z| is maximal, say $|z| \ge |y| \ge |x|$, test |x|; if |x| < 1 then $q := (y/z) \cdot x$ else $q := (y/(\mu z)) \cdot (\mu x)$. In case |z| is neither, say $|x| \le |z| \le |y|$, test both; if |x| > 1 then $q := (y/z) \cdot x$ else if |y| < 1 then $q := (x/z) \cdot y$ else $q := (x \cdot y)/z$.

The proof that this program is correct is a tedious exercise in elementary inequalities, and is left to the reader.