Laborator Proiectare Logică 4

Sîrghe Matei

Octobre 23, 2024

Website: lg.ccpr.ro

1 Forme Canonice

#	A	В	С	D	FCD, \sum, n	FCC, Π, m
0	0	0	0	0	$ar{A}ar{B}ar{C}ar{D}$	A + B + C + D
1	0	0	0	1	$ar{A}ar{B}ar{C}D$	$A + B + C + \bar{D}$
2	0	0	1	0	$ar{A}ar{B}Car{D}$	$A + B + \bar{C} + D$
3	0	0	1	1	$ar{A}ar{B}CD$	$A + B + \bar{C} + \bar{D}$
4	0	1	0	0	$ar{A}Bar{C}ar{D}$	$A + \bar{B} + C + D$
5	0	1	0	1	$ar{A}Bar{C}D$	$A + \bar{B} + C + \bar{D}$
6	0	1	1	0	$ar{A}BCar{D}$	$A + \bar{B} + \bar{C} + D$
7	0	1	1	1	$ar{A}BCD$	$A + \bar{B} + \bar{C} + \bar{D}$
8	1	0	0	0	$Aar{B}ar{C}ar{D}$	$\bar{A} + B + C + D$
9	1	0	0	1	$Aar{B}ar{C}D$	$\bar{A} + B + C\bar{D}$
10	1	0	1	0	$Aar{B}Car{D}$	$\bar{A} + B + \bar{C} + D$
11	1	0	1	1	$Aar{B}CD$	$\bar{A} + B + \bar{C} + \bar{D}$
12	1	1	0	0	$ABar{C}ar{D}$	$\bar{A} + \bar{B} + C + D$
13	1	1	0	1	$AB\bar{C}D$	$\bar{A} + \bar{B} + C + \bar{D}$
14	1	1	1	0	$ABCar{D}$	$\bar{A} + \bar{B} + \bar{C} + D$
15	1	1	1	1	ABCD	$\bar{A} + \bar{B} + \bar{C} + \bar{D}$

Exerciții

Exercițiul 1:

$$y: 2^2 \to 2^1; \ y = A(A + \bar{B})$$

Rezolvare: $FCD_y = \sum (2,3) = n(2,3) = A\bar{B} + AB$
 $FCC_y = \Pi(0,1) = m(0,1) = (A+B)(A+\bar{B})$
 $y = A\bar{B} + AB = A(\bar{B}+B) = A \times 1 = A$
 $y = (A+B)(A+\bar{B}) = A^2 + A\bar{B} + BA + B\bar{B} = A + A\bar{B} + AB + B = A(1+B+\bar{B}) = A$

A	В	\bar{B}	$A + \bar{B}$	У
0	0	1	1	0
0	1	0	0	0
1	0	1	1	1
1	1	0	1	1

Exercițiul 2:

$$f, g: 2^2 \to 2^1$$

 $f = A\bar{B}; g = \bar{A} + \bar{B}$
 $f = g?$
Rezolvare: $FCD_y = \sum (0, 1, 2) = n(0, 1, 2) = \bar{A}\bar{B} + \bar{A}B + A\bar{B}$
 $FCC_y = \Pi(3) = m(3) = \bar{A} + \bar{B}$

Din tabel se observă că f=g

	#	A	В	\bar{A}	\bar{B}	AB	\bar{AB}	f	g
	0	0	0	1	1	0	1	1	1
=	1	0	1	1	0	0	1	1	1
	2	1	0	0	1	0	1	1	1
	3	1	1	0	0	1	0	0	0

Exercițiul 3:

$$f, g: 2^2 \to 2^1$$

 $f = A + B; g = \bar{A}\bar{B}$
 $f = g?$
Rezolvare: $FCD_y = \sum(0) = n(0) = \bar{A}\bar{B}$
 $FCC_y = \Pi(1, 2, 3) = m(1, 2, 3)$
 $= (A + \bar{B})(\bar{A} + B)(\bar{A} + \bar{B})$
Din tabel se observă că f=g

#	A	В	\bar{A}	\bar{B}	AB	\bar{AB}	f	g
0	0	0	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1
2	1	0	0	1	0	1	1	1
3	1	1	0	0	1	0	0	0

Exercițiul 4:

 $y: 2^3 \rightarrow 2^1$ Se dă tabelul

Rezolvare: $FCD_y = \sum (1, 2, 5, 6)$ = $(\bar{A}\bar{B}C) + (\bar{A}B\bar{C}) + (\bar{A}\bar{B}C) + (\bar{A}B\bar{C})$ $FCC_y = \Pi(0, 3, 4, 7)$ = $(A + B + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)(\bar{A} + \bar{B} + \bar{C})$

(a)
$$y = \bar{A}(\bar{B}C + B\bar{C}) + A(\bar{B}C + B\bar{C})$$

= $(\bar{A} + A)(\bar{B}C + B\bar{C}) = (\bar{B}C + B\bar{C})$
= $B \bigoplus C$

(b)
$$y = (A + B + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)(\bar{A} + \bar{B} + \bar{C})$$

 $= (AA + A\bar{B} + A\bar{C} + AB + B\bar{B} + B\bar{C} + AC + \bar{B}C + C\bar{C})(\bar{A} + B + C)(\bar{A} + \bar{B} + \bar{C})$
 $= (A + A(\bar{B} + B) + A(\bar{C} + C) + B\bar{C} + \bar{B}C)(\bar{A} + B + C)(\bar{A} + B + \bar{C})$
 $= (A(1 + \bar{B} + B) + A(\bar{C} + C) + B \oplus C)(\bar{A} + B + \bar{C}) = (A + A + B \oplus C)(\bar{A} + B + C)(\bar{A} + B + \bar{C}) = (A + B \oplus C)(\bar{A}\bar{A} + \bar{A}\bar{B} + \bar{A}\bar{C} + B\bar{A} + B\bar{B} + B\bar{C} + C\bar{A} + C\bar{B} + C\bar{C}) = (A + B \oplus C)(\bar{A}(\bar{B} + \bar{C} + B + C) + B\bar{C} + C\bar{B}) = (A + B \oplus C)(\bar{A} + B \oplus C)$
 $= A\bar{A} + A(B \oplus C) + \bar{A}(B \oplus C) + (B\bar{C} + \bar{B}C)(B\bar{C} + \bar{B}C)$
 $= 0 + (B \oplus C)(A + \bar{A}) + B^2C^2 + B\bar{B}C\bar{C} + \bar{B}B\bar{C}C + B^2C^2$
 $= B \oplus C + B\bar{C} + \bar{B}C = B \oplus C + B \oplus C = B \oplus C$

#	A	В	С	у
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Exercițiul 5:

$$y: 2^{4} \rightarrow 2^{1}$$

$$y = \sum (0, 2, 5, 7, 8, 10, 13, 15)$$

$$y = \Pi(1, 3, 4, 6, 9, 11, 12, 14)$$

Rezolvare:

$$FCD_{y} = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}C\bar{D} + \bar{A}B\bar{C}D + \bar{A}BCD + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + AB\bar{C}D + AB\bar{C}D + AB\bar{C}\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar$$

#	A	В	С	D	у
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

Exercițiul 5 B: