HOPACH - Added Distances

1 Binary distance - general form

Let
$$X=(x_1,x_2,\ldots,x_n), Y=(y_1,y_2,\ldots,y_n)$$
, with $x_i,y_i\in\{0,1\}$. Define $N_{11}=\sum_{i=1}^nI(x_i=1,y_i=1),$
$$N_{10}=\sum_{i=1}^nI(x_i=1,y_i=0),$$

$$N_{01}=\sum_{i=1}^nI(x_i=0,y_i=1),$$

$$N_{00}=\sum_{i=1}^nI(x_i=0,y_i=0),$$

$$N_{11}+N_{10}+N_{01}+N_{00}=n \text{ (see Table 1)}.$$

Table 1

Then the distance between X and Y is

$$d(X,Y) = \frac{N_{10} + N_{01}}{\alpha_1 N_{11} + \alpha_2 N_{00} + N_{10} + N_{01}},$$
(1)

where $\alpha_1 \geqslant 0$, $\alpha_2 \geqslant 0$ are tuning parameters.

Special cases:

- Manhattan (binary): $\alpha_1 = 1$, $\alpha_2 = 1$
- **Jaccard**: $\alpha_1 = 1, \ \alpha_2 = 0$

2 Special binary: metametric

d(X,Y) = 0 implies X = Y but X = Y does not imply zero distance.

$$d(X,Y) = \frac{N_{10} + N_{01} + 0.5 N_{00}}{n}$$
 (2)

3 Continuous version (S-function distance)

This metric is designed for use with p-values, where x_i 's and y_i 's are p-values used to determine which elements of X and Y contain some kind of significant response (e.g. differential expression). For this situation, binary distances can be used as well, encoding significance as 1 and non-significance as 0. Continuous version offers a smooth curve in place of a step function of a hard cut-off, which might be undesirable since cut-offs are in general arbitrary, and adjusted p-values are affected by various decisions such as a choice of a multiple testing correction.

This distance can be viewed as a continuous generalization of a Jaccard distance approach - removal of (x_i, y_i) for $\{i : x_i > 0.2, y_i > 0.2\}$ ("non-significant" positions, analog of 00 in binary distance) followed by normalized Manhattan distance of transformed data on remaining positions:

$$d(X,Y) = \frac{\sum_{i=1}^{n} \left[1 - I(x_i > 0.2)I(y_i > 0.2) \right] |f(x_i) - f(y_i)|}{\sum_{i=1}^{n} \left[1 - I(x_i > 0.2)I(y_i > 0.2) \right]},$$
 (3)

where

$$f(x) = 1 - e^{-ax^b}. (4)$$

The transformation function f(x) has an asymmetric inverted sigmoid shape (S-function). It descends quickly to 0 on the left side for small p-values and allows for a more gradual ascent to 1 on the right (Figure 1). The shape of the curve can be adjusted with tuning parameters a and b.

4 Note

For all the metrics above, $0 \le d(X, Y) \le 1$.

Figure 1: Transformation function for the p-value-based distance