PROGRESSIVE MORPHOLOGICAL FILTER

EXPLANATION

INPUT

		VALUE TYPE	DEFAULT VALUES
1	max_window_size_	Int	max_window_size_ (33)
2	slope_	Float	slope_(0.7f)
3	max_distance_	Float	max_distance_ (10.0f)
4	initial_distance_	Float	initial_distance_ (0.15f)
5	cell_size_	Float	cell_size_ (1.0f)
6	base_	Float	base_ (2.0f)
7	exponential_	Bool	exponential_(true)
8	input_cloud	PCL::PointCloud	-

OUTPUT

Indices of ground points

PREPARATION

- PREPARATION = Compute the series of window sizes and height thresholds
 - w_k : window sizes
 - ht_k: height threshold values
 - *k*: iteration
- Initial values:
 - $w_k = 0$
 - $ht_k = 0$
 - k = 0
- while $(w_k < max_window_size_)$
 - $w_k = cell_size_*(2*base^k + 1)$

 - **k** + +

MORPHOLOGICAL FILTERING

MORPHOLOGICAL FILTER = Apply an opening operation to the grid surface

 $pcl::applyMorphologicalOperator < PointT> \ (cloud, window_sizes[i], \ \underline{MORPH_OPEN}, \ *cloud_f);$

PARAMETERS

[in]	cloud_in	the input point cloud dataset
[in]	resolution	the window size to be used for the morphological operation
[in]	morphological_operator	the morphological operator to apply (open, close, dilate, erode)
[out]	cloud_out	the resultant output point cloud dataset

DETECT GROUND POINTS

■ Find indices of the points whose difference between the source and filtered points clouds is less than the current height threshold. (and push them in a vector)

PROGRESSIVE MORPHOLOGICAL FILTER

- PROGRESSIVE MORPHOLOGICAL FILTER = Increase the size of the filter window and apply the morphological filter to the points classified as ground from the previous iteration
- For every window_size in w_k
 - Create a point cloud containing the ground points using the indices found in the previous step
 - Apply the morphological filtering from step 2
 - Detect the ground points using step 3

SIMPLE EXAMPLE

INPUT

1st MORPHOLOGICAL FILTER
- OPENING

1st GROUND POINTS SELECTION

INPUT

1st MORPHOLOGICAL FILTER - OPENING

1st GROUND POINTS SELECTION

EXAMPLE - FILTER WINDOW SIZE

INPUT

1st MORPHOLOGICAL FILTER
- OPENING

1st GROUND POINTS SELECTION

INPUT

1st MORPHOLOGICAL FILTER
- OPENING

1st GROUND POINTS SELECTION

EXAMPLE - HEIGHT THRESHOLD

INPUT

1st MORPHOLOGICAL FILTER
- OPENING

1st GROUND POINTS SELECTION

INPUT

1st MORPHOLOGICAL FILTER
- OPENING

1st GROUND POINTS SELECTION

EXAMPLE - INDICES

OUTPUT

