

GRADE CARD

Name : WAQAR WASEEQ Enrolment No. : BT10CHE001

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr				
AUTUM	N 2010										
CHL101	CHEMIST	RY (BS)				6	CD				
CHP101	CHEMIST	RY LAB (E	3S)			2	BC				
CSL101	COMPUT	COMPUTER PROGRAMMING (ES)									
EEL101	ELECTRI	CAL ENGI	NEERING ((ES)		6	CC				
EEP101	ELECTRI	CAL ENGI	NEERING I	LAB (ES)		2	CC				
HUL102	SOCIAL S	SCIENCE (HM)			4	AA				
MAL101	MATHEM	ATICS I (E	BS)			8	AB				
MEP101	WORKSH	IOP (ES)				4	AA				
PEB151	SPORTS	/ YOGA / I		0	SS						
SCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA				
SGPA	40	324	8.10	CGPA	40	324	8.10				

60	·D A	С	redi	it	EG	Р	S	GPA		CGI	٥,	С	redi	t	EG	Р	CC	GPA
36	GPA 40		40 324		8	.10		CGI	A		40		324	4	8.10			
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	C	С	0
ΑU	0	ES	20	BS	16	То	tal	40	П	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

		\neg T	
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
CML474	PLANT UTILITY (DE)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	DD
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	ь	CD

SGPA	Credit	EG	P	SGPA	CG	DΛ	С	redi	t	EG	Р	CGPA
SGFA	40	20	0	5.00	CG	FA	•	118		810)	6.86
DE 12	DC 28	HM 0	0	C 0	DE	12	DC	28	НМ	10	0	O O
AU 0	ES 0	BS 0	То	tal 40	AU	0	ES	36	BS	32	To	tal 118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC

SG	·D 4	С	redi	t	EG	Р	S	GPA	00	PΑ	С	redi	t	EG	Р	C	GPA
30	PA		42		31	4	7	'.48	C	iPA	2	200		135	2	6	.76
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	42	AL	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

		\neg	
HUL409	PSYCHOLOGY & ED (HM)	6	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CC
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BB
CMD401	PROJECT PHASE I (DC)	4	BB

SG	- В А	C	redi	t	EG	Р	S	GPA	CG	ПΛ	C	redi	t	EG	Р	CC	GPA
36	PA		40		31	4	7	7.85	CG	PA		282		200	8	7	.12
DE	6	DC	28	НМ	6	0	С	0	DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	BC
MEC101	ENGINEERING DRAWING (ES)	8	AB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	DD
PHP101	PHYSICS (BS)	2	ВС

SG	D A	C	redi	t	EG	P	S	GPA	CG	п.	C	redi	it	EG	P	C	GPA	l
36	IFA		38		28	6	7	.53	C	ГА		78		610	0	7	.82	I
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SGPA		Cred	it	EC	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA		40		228		5.70		CG	PA		158		103	88	6	.57
DE 12	DO	28	HN	1 0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU 0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	ВВ
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВС
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	ı	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		42		;	342	2	8	.14	CG	FA		242		169	4	7	'.00
DE	6	DC	36	ΗN	1 (0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	; (0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВС
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

	GF	٠.	С	redi	t	E	ЭP	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
3	GF	A		40		29	90		7.25	CG	PA		322		229	8	7	7.14
DE	≣ 3	30	DC	10	HN	1 0		ОС	0	DE	86	DC	152	НМ	16	0	С	0
Αl	J (0	ES	0	BS	0	1	otal	40	ΑU	0	ES	36	BS	32	Total		322

GRADE CARD

Name: WAQAR WASEEQ Enrolment No.: BT10CHE001

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: ABHIRUP LAHIRI Enrolment No. : BT10CHE002 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	CC							
CHP101	CHEMIST	RY LAB (E	3S)			2	BC							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB							
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BC							
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BC												
HUL102	SOCIAL S	SCIENCE (HM)			4	AA							
MAL101	MATHEM	ATICS I (B	SS)			8	BC							
MEP101	WORKSHOP (ES) 4 AA													
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS							
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA							
SGPA	40	314	7.85	CGPA	40	314	7.85							

SG	·DΛ	С	redi	t	EG	Р	SC	GPA	CGI	D A	С	redi	t	EG	Р	C	SPA
36	IFΑ		40		314	4	7	.85	CGI	A		40		314	4	7	.85
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Cradit	EGD	SCDA		Cradit	ECD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	AB
CML474	PLANT U	TILITY (DE	()				6	BC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	AB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	ВС
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR	Y (DC)		2	BB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	ВС
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	AB

80	• D A	С	redi	t	EG	Р	SC	3PA	CC	PA	С	redi	t	EG	Р	C	GPA
SGPA			40		32	4	8	.10	CG	FA	1	118		902	2	7	.64
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

60	·D 4	С	redi	t	EG	Р	S	GPA	_	<u> </u>	PA	С	redi	t	EG	Р	C	GPA
SGPA		42		36	4	8	.67	C	G	PA	2	200		157	8	7	.89	
DE	20	DC	22	НМ	0	0	С	0	D	E	38	DC	78	НМ	10	С	C	6
AU	0	ES	0	BS	0	То	tal	42	Α	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	Crodit	ECD	SCDA		Cradit	ECD	Т	CCDA
CMP46	4 CHEMIC	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	DC)	2	AA
CMP46	3 PROCES	S CONTRO	DL & INSTF	RUMENTAT	TON (DC)		2	AB
CMP46	2 CHEMIC	AL REACTI	ON ENGIN	EERING -II	(DC)		2	AB
CML62) MEMBRA	ANE TECHI	NOLOGY (E	DE)			6	AB
CML46	3 PROCES	S CONTRO	OL & INSTR	RUMENTAT	TON (DC)		6	BB
CML46	2 CHEMIC	AL REACTI	ON ENGIN	EERING II	(DC)		6	AA
CML46	I TRANSP	ORT PHEN	IOMENA (C	OC)			6	BB
CML33	3 POLYME	R PROCES	SING (DE)				6	AB
CMD40	1 PROJEC	T PHASE I	(DC)				4	BB

SG	·DΛ	С	redi	it		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	JFA		40			352	2	8	.80	CG	FA		282		228	6	8	.11
DE	12	DC	28	HN	1	0	0	С	0	DE	56	DC	142	НМ	10	О	С	6
AU	0	ES	0	BS	;	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BC
AMP151	ENGINEERING MECHANICS (ES)	2	CC
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	CC
MEC101	ENGINEERING DRAWING (ES)	8	ВС
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	ВС
PHP101	PHYSICS (BS)	2	BB

SG	DA	C	redi	t	EG	Р	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA	
36	FA		38		26	4	6.95	CG	FA		78		578	В	7.41 CC 0	.41	l
DE	0	DC	0	НМ	6	00	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

SG	·DΛ	С	redi	t	EG	Р	SGPA		CG	ВΛ	С	redi	t	EG	Р	С	GPA
36	PA		40		31:	2	7.80		CG	PA		158		121	4	7.68	
DE	6	DC	28	НМ	0	0	C 6	Ī	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal 40		AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DΛ	С	redi	t	Е	3P	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		42		3	56	1	8.48	CG	FA		242		193	4	7	7.99
DE	6	DC	36	ΗN	1 0		ЭС	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	T	otal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	CC

60	PΑ	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	С	GPA
36)PA		40		31	2	7	.80	CG	PA		322		259	8	8	3.07
DE	24	DC	10	ΗN	16	0	С	0	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : ABHIRUP LAHIRI Enrolment No. : BT10CHE002

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

Course

CHL101

CHP101

CSL101

EEL101

EEP101

HUL102

MAL101

MEP101

PEB151

SGPA

AU 0

AUTUMN 2010

VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY NAGPUR

GRADE CARD

Name : CHAVARE ABHISHEK SUKHADEOJI

Title

Enrolment No. : BT10CHE003

Cr

6

2

8

6

2

4

8

4

Λ

OC

Total

EGP

164

4

Credit

28

ES 14 BS

DE 0 DC 0 HM

Gr

FF

DD

DD

FF

CC

ВΒ

CD

AΑ

SS

Λ

28

CGPA

5.86

Branch: CHEMICAL ENGINEERING

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

SPORTS / YOGA / LIBRARY / NCC (AU)

OC

Total

SGPA

4.10

Λ

40

Course Cr Title Gr **SPRING 2011** AML151 ENGINEERING MECHANICS (ES) 6 CC AMP151 ENGINEERING MECHANICS (ES) 2 BB HUL101 COMMUNICATION SKILL (HM) 6 вс MAL102 MATHEMATICS - II (BS) 8 FF MEC101 ENGINEERING DRAWING (ES) 8 CC PEB151 SPORTS / YOGA/ LIBRARY/ NCC (AU) SS 0 PHYSICS (BS) PHL101 FF 6 PHP101 PHYSICS (BS) вс

: BACHELOR OF TECHNOLOGY

SG	ВΛ	С	redi	t	EG	P	SGPA	CG	DΛ	С	redi	t	EG	P	C	GPA	
36	FA		38		150	6	4.11	CG	FA		64		368	8	5.75 C 0	.75	
DE	0	DC	0	НМ	6	oc	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	18	To	tal	64	

RE-EXAM AUTUMN 2010

ES 20 BS 16

CHEMISTRY (BS)

CHEMISTRY LAB (BS)

SOCIAL SCIENCE (HM)

EGP

164

MATHEMATICS I (BS)

WORKSHOP (ES)

Credit

40

DE 0 DC 0 HM 4

CHI 101 CHEMISTRY (BS) חח 6 FFI 101 ELECTRICAL ENGINEERING (ES) 6 חח

CGPA

AU 0

	101		LLU	IIIIO		IVOIIV	VLL:	0	LO)						U		טט	_
60	SGPA	C	redi	it	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	CG	PA	
36	PA		12		48	3	4	.00	CG	A		40		212	2	5.30	30	
DE	0	DC	0	НМ	0	00	0	0	DE	0	DC	0	НМ	4	0	С	0	Ī
AU	0	ES	6	BS	6	Total		12	AU	0	ES	20	BS	16	To	tal	40	1

AUTUMN 2011

PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6 CHL261 CD CHL263 ORGANIC CHEMISTRY AND SYNTHESIS (DC) CC 6 **CHP261** PHYSICAL AND INORGANIC CHEMISTRY (DC) 2 вс **CHP263** ORGANIC CHEMISTRY AND SYNTHESIS (DC) 2 CC CML261 INORGANIC CHEMICAL TECHNOLOGY (DC) CD 6 CML262 CHEMICAL PROCESS CALCULATIONS (DC) 6 FF PLANT UTILITY (DE) CD CML474 6 MEL408 SUPPLY CHAIN MANAGEMENT (OC) СС

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	۵,۸	С	redi	t	EG	Р	C	GPA
36	FA		40		18	В	4	.70	CG	A	1	104		580 5.58		.58	
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	22	НМ	10	O	C	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	24	To	otal	104

RE-EXAM AUTUMN 2011

CML262 CHEMICAL PROCESS CALCULATIONS (DC) 6 CC Credit **EGP CGPA** SGPA **EGP** Credit **SGPA CGPA** 36 6.00 110 616 5.60 DE 0 DC 6 HM 0 OC 0 DE 6 DC 28 HM 10 OC 6 AU 0 ES AU 0 ES 36 BS 0 BS 0 Total 6 Total 24 110

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	DD
CML362	HEAT TRANSFER I (DC)	6	DD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BC
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
		- 1	

	3PA	C	redi	t	EG	Р	S	GPA	CG	ПΛ	C	redi	t	EG	Р	C	GPA
30)FA		42		24	4	5	.81	CG	FA	•	194		106	0	5	.46
DE	20	DC	22	НМ	0	0	С	0	DE	32	DC	78	НМ	10	C	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	194

RE-EXAM SPRING 2011

Dearee

MATHEMATICS - II (BS) FF MAL102 8 PHYSICS (BS) PHL101 חח 6

SG	-DA	С	redi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		14		24	.	1.71	CG	PA		70		39	2	5	.60
DE	0	DC	0	НМ	0	0	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	0	BS	14	Tot	tal 14	AU	0	ES	36	BS	24	То	tal	70

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
MAL102	MATHEMATICS - II (BS)	8	FF

so	2 6	٥,٨	С	redi	t	EG	βP	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
3	JF	A		42		16	8	4	.00	CG	FA		144		78	4	5	.44
DE		6	DC	28	HM	1 0	0	С	0	DE	12	DC	56	НМ	10	0	С	6
AU		0	ES	0	BS	8	То	tal	42	AU	0	ES	36	BS	24	То	tal	144

RE-EXAM SPRING 2012

MAL102 MATHEMATICS - II (BS)

SG	·D A	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		8		32	2	4.	.00	CG	FA		152		81	6	5	.37
DE	0	DC	0	HM	I 0	0	С	0	DE	12	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	8	То	tal	8	AU	0	ES	36	BS	32	То	tal	152

DD

8

SPRING 2013

0	20.0			
CML366	MASS TRANSFER - II (DC)		6	FF
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CML468	ORE AND MINERAL PROCESSING (DE)		6	ВС
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

80	PΑ	С	redi	it	EG	Ρ	SC	SPA	CG	D۸	C	redi	t	EG	Р	C	GPA
36	JFA		42		26	2	6	.24	CG	FA		230		132	2	5	.75
DE	6	DC	36	HM	I 0	0	С	0	DE	38	DC	108	НМ	10	00	2	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	Tot	al	230

GRADE CARD

Course

CML366

SGPA

RE-EXAM SPRING 2013

Credit

: CHAVARE ABHISHEK SUKHADEOJI Name

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Title

CGPA

SGPA

Cr

EGP

Credit

Gr

CD

CC

CGPA

Enrolment No. : BT10CHE003

MASS TRANSFER - II (DC)

EGP

HUL401 PSYCHOLOGY & MANAGEMENT (HM)

Course						Т	it	le					С	r	Gr
AUTUM	N 2013	3													
CMD401	PROJ	ECT	PHA	SE I	(DC))							4		BB
CML374	PETR	OLIL	JM RE	FIN	ERY	ENGI	N	EER	ING	(DE)			6	i	BC
CML461	TRAN	SPC	RT P	HEN	OME	ENA (D	C	C)					6	i	CD
CML462	CHEM	IICA	L REA	CTI	ON I	ENGIN	ΙE	ERII	NG II	(DC)			6	;	BC
CML463	PROC	ESS	CON	ITRO)L &	INSTF	રા	JME	NTA	TION (DC)		6	i	CC
CML480	CFD F	OR	CHE	ИΙСΑ	LE	NGINE	Ε	RS (DE)				6	i	BB
CML620	MEME	RAI	NE TE	CHN	OLO	OGY ([DE	E)					6	;	BB
CMP462	CHEM	IICA	L REA	CTI	ON I	ENGIN	ΙE	ERII	NG -I	I (DC)			2		AB
CMP463	PROC	ESS	CON	ITRO)L &	INSTF	રા	JME	NTA	TION (DC)		2		AB
CMP464	CHEM	IICA	L EN	SINE	ERII	NG DE	S	SIGN	& DI	RAWING	II (C	C)	2		BB
SGPA	Credi	t	EG	Р	S	GPA		CG	DΛ	Credi	t	EG	Р	C	GPA
SGPA	46		33	0	7	.17		CG	PA	282		168	2	5	5.96
DE 18	DC 28	HM	l 0	0	С	0		DE	56	DC 142	HN	1 10	C	C	6
AU 0	ES 0	BS	0	То	tal	46		AU	0	ES 36	BS	32	To	otal	282

	36	PA		6		30)	5	5.00		CG	PA		236		13	352		5.73
	DE	0	DC	6	HN	<i>I</i> 0	0	С	0	ĺ	DE	38	DC	114	НΝ	1 10) (С	6
	AU	0	ES	0	BS	0 8	То	tal	6		AU	0	ES	36	BS	32	2 To	otal	236
;	SPR	RINC	3 20	14															
	CMD	452	PF	ROJE	ECT	PHA	SE-II	(D	C)								8	3	BB
	CMD	453	SE	EMIN	IAR	AND	GRC	UP	DISCL	JS	SSIO	N PF	ROGI	RAM	(D	C)	2	2	AB
	CML	471		OTE	СН	NOLC	GY A	AND	BIOCI	Η	EMIC	CAL I	ENG	INEE	RIN	IG	6	6	CD
	CML	472	١,	,	NCE	D SE	PAR	ATIO	ON PR	0	CES	S (DE)				6	6	CD
	CML	475	NE	EW A	١NC	REN	EWA	BLE	ENEF	?(GY E	NGI	NEE	RING	(E	DE)	6	6	ВС
	CMI 4	491	PF	3O.JF	=СТ	PI AI	NIN	GΑ	ND MA	۱	NAGE	-MFI	NΤ	(DF)			6	3	CC

80	SPA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
30)FA		40		250	6	6	.40	CG	FA		322		193	8	6	.02
DE	24	DC	10	НМ	6	0	С	0	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	322

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : ABHISHEK MEENA Enrolment No. : BT10CHE004

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	FF.
CHP101	CHEMIST	RY LAB (E	3S)			2	CD
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	FF.
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	FF.
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	CC
HUL102	SOCIAL S	SCIENCE (HM)			4	CD
MAL101	MATHEM	ATICS I (B	SS)			8	DD DD
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	110	2.75	CGPA	20	110	5.50

SG	·DΛ	С	redi	t	EG	Р	S	GPA	١,	CGI	D A	Cı	redi	t	EG	Р	C	GPA
36	IFA		40		110	0	2	.75	١,	CGI	A		20		110)	5	.50
DE	0	DC	0	НМ	4	0	С	0	Ti	DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	To	tal	40		AU	0	ES	6	BS	10	To	otal	20

RE-EXAM AUTUMN 2010

CHL101	CHEMISTRY (BS)	6	DD
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF

SGPA	С	redi	it	EG	Р	SGPA	CG	DΛ	C	redi	t	EG	P	CG	PA	
SGPA			20		24	ļ.	1.20	CG	FA		26		134	4	5.15	
DE	0	DC	0	НМ	0	00	0	DE	0	DC	0	НМ	4	0	С	0
ALI	0	FS	14	BS	6	Tot	al 20	ALI	0	FS	6	BS	16	Tot	tal	26

AUTUMN 2011

	Crodit	ECD	SCDV		Cradit	EGD		CCDA
CSL101	COMPUT	ER PROGE			8	DD		
CML474	PLANT U	TILITY (DE)				6	DD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF
CML261	INORGAN	NIC CHEMI	CAL TECH	INOLOGY ((DC)		6	FF
CHP263	ORGANIC	CHEMIST	RY AND S	SYNTHESIS	S (DC)		2	CD
CHP261	PHYSICA	L AND INC	RGANIC C	CHEMISTR	Y (DC)		2	CC
CHL263	ORGANIC	CHEMIST	RY AND S	SYNTHESIS	S (DC)		6	DD
CHL261	PHYSICA	'L CHEMIS	TRY AND (GENERAL	METALLUR	GY (DC)	6	FF

6	SGPA	С	redi	t	EC	P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	Ö	GPA	
			42		102		2	2.43	CG	ГА		74		344	4	4	.65	
DE		6	DC	28	НМ	I 0	0	С	0	DE	6	DC	10	НМ	10	C	С	0
AU	ı	0	ES	8	BS	0	То	tal	42	AU	0	ES	30	BS	18	Тс	otal	74

RE-EXAM AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD

60	- В А	С	redi	t	EG	Р	S	GPA	CG	D A	C	redi	t	EG	P	CGPA	
SGPA			18		48		2.67		CG	PA		86		392	2	4.56	
DE	0	DC	18	НМ	0	0	С	0	DE	6	DC	22	НМ	10	oc	0	
AU	0	ES	0	BS	0	To	tal	18	AU	0	ES	30	BS	18	Tota	al 86	

AUTUMN 2012

ENVIRONMENTAL ENGINEERING (DE)	2	ВС
FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BC
CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	DD
ENVIRONMENTAL ENGINEERING (DE)	6	FF
CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CD
HEAT TRANSFER I (DC)	6	DD
MASS TRANSFER - I (DC)	6	DD
GREEN CHEMISTRY & ENGINEERING (DE)	6	DD
	MASS TRANSFER - I (DC) HEAT TRANSFER I (DC) CHEMICAL PROCESS EQUIPMENT DESIGN (DC) ENVIRONMENTAL ENGINEERING (DE) ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	MASS TRANSFER - I (DC) 6 HEAT TRANSFER I (DC) 6 CHEMICAL PROCESS EQUIPMENT DESIGN (DC) 6 ENVIRONMENTAL ENGINEERING (DE) 6 ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE) 6

SG	DA	C	redi	t	EG	P	S	GPA		CG	ПΛ	C	redi	t	EG	P	C	3PA
36	PA		· ·- , · ·		172		4.10			CG	PA	•	150		692	2	4	.61
DE	20	DC	22	НМ	0	0	С	0		DE	20	DC	72	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	Total 42 AU 0 ES 30 BS 18		To	otal	150							
									•									

<u> </u>		
Title	Cr	Gr
2011		
ENGINEERING MECHANICS (ES)	6	FF
ENGINEERING MECHANICS (ES)	2	CC
COMMUNICATION SKILL (HM)	6	DD
MATHEMATICS - II (BS)	8	FF
ENGINEERING DRAWING (ES)	8	FF
SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHYSICS (BS)	6	FF
PHYSICS (BS)	2	CD
	ENGINEERING MECHANICS (ES) ENGINEERING MECHANICS (ES) COMMUNICATION SKILL (HM) MATHEMATICS - II (BS) ENGINEERING DRAWING (ES) SPORTS / YOGA/ LIBRARY/ NCC (AU) PHYSICS (BS)	Title Cr 2011 ENGINEERING MECHANICS (ES) 6 ENGINEERING MECHANICS (ES) 2 COMMUNICATION SKILL (HM) 6 MATHEMATICS - II (BS) 8 ENGINEERING DRAWING (ES) 8 SPORTS / YOGA/ LIBRARY/ NCC (AU) 0 PHYSICS (BS) 6

60	SGPA DE 0 DE						SGPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IFA		38		46	;	1.21	CG	FA		36		180	0	5	.00
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	8	BS	18	То	tal	36

RE-EXAM SPRING 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF
MEC101	ENGINEERING DRAWING (ES)	8	DD
PHL101	PHYSICS (BS)	6	FF

SGPA	Credit	EG	P	SGPA	CG	DΛ	С	redi	t	EG	Р	C	CGPA	
SGFA	28 28		2	1.14	5	FA		44		21	2	4.82		
DE 0	DC 0	HM 0	00	0	DE	0	DC	0	НМ	10	0	С	0	
AU 0	ES 14	BS 14	Tot	al 28	AU	0	ES	16	BS	18	То	tal	44	

SUMMER TERM SPRING 2011

EEL101	ELECTRICAL ENGINEERING	(ES)	6	CD
PHL101	PHYSICS (BS)		6	FF

60	·D 4	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	it	EG	Р	C	GPA
SGPA			12		30		2	.50	CG	PA		50		24	2	4.84	
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	6	То	tal	12	AU	0	ES	22	BS	18	То	tal	50

SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BC
MAL102	MATHEMATICS - II (BS)	8	FF

	· D A	С	redi	t	EG	P	S	GPA		_	D A	C	redi	t	EG	Р	CC	3PA
30	SGPA		42		50	0 1.		1.19	٦	CGPA			96			2	4	.60
DE	0	DC	28	НΝ	<i>I</i> 0	0	С	0	D	E	6	DC	32	НМ	10	0	С	0
AU	0	ES	6	BS	8 8	То	tal	42	Α	U	0	ES	30	BS	18	То	tal	96

RE-EXAM SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML263	FLUID MECHANICS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
MAL102	MATHEMATICS - II (BS)	8	FF

60	`D A	С	redi	t	EGP		SGPA			CG	D A	Credit			EG	Р	CGPA	
30	SGPA		32		78		2.44			CGFA		114			52	0	4	.56
DE	0	DC	18	HN	1 0	00	2	0	Ï	DE	6	DC	50	НМ	10	00	С	0
AU	0	ES	6	BS	8	Tot	al	32	П	AU	0	ES	30	BS	18	Tot	tal	114

GRADE CARD

Name : ABHISHEK MEENA Enrolment No. : BT10CHE004

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Dian	CII . O	I ILIVIIO?	TE EITO						D (gicc		. DAGI	ILLOIN	01 120	J V		•
Course			٦	Γitle			Cr	Gr	Course			Т	itle			Cr	Gr
RE-EXA	M AUTU	JMN 2012	2						SPRING	2013							
CML370	ENVIRO	NMENTAL	ENGINEER	RING (DE)			6	DD	CML366	MASS TE	RANSF	ER - II (DC)				6	FF
	Credit	EGP	SGPA		Credit	EGP		CGPA	CML367	HEAT TR	ANSFE	ER-II (DC)				6	CD
SGPA	6	24	4.00	CGPA	156	716	-	4.59	CML368	CHEMIC	AL REA	ACTION ENGIN	EERING-I	(DC)		6	DD
ם כ			C 0	DE 26		M 10	OC	0	CML371	CHEMIC	AL PRO	OCESS MODEL	ING AND	SIMULATIO	ON (DC)	6	CD
DE 6 AU 0			otal 6	AU 0	ES 30 B		Total		CML466	CHEMIC	AL PLA	NT DESIGN (DC)			6	DD
		55 0 10	olai b	I AU U	65 30 6	5 16	Tota	1 156	CMP366	MASS TE	RANSF	ER (DC)				2	CC
AUTUN	N 2013								CMP367	HEAT TR		, ,				2	BB
CMD401		CT PHASE I	` '				4	BC	CMP371			OCESS MODEL	ING AND	SIMULATIO	ON (DC)	2	AA
CML261		NIC CHEM			,		6	CD	MAL102	MATHEM	IATICS	- II (BS)				8	FF
CML374		LIUM REFIN			(DE)		6	DD		Credit	EG	P SGPA		Credit	EGI	P	CGPA
CML461		PORT PHEN		,			6	FF	SGPA	44	15	6 3.55	CGPA	186	872	2	4.69
CML462		AL REACT			` '		6	DD	DE 0	DC 36 H		OC 0	DE 26	DC 102 H		OC	0
CML463		SS CONTRO			TION (DC)		6	FF		ES 0 B		Total 44	AU 0		BS 18	Tota	
CML620		ANE TECH	`	,			6	CC								1010	100
CMP462		AL REACT			` '		2	AB	RE-EXAM SPRING 2013 CML366 MASS TRANSFER - II (DC)								
CMP463		SS CONTRO			, ,		2	BB	CML366			, ,				6	FF
CMP464	CHEMIC	AL ENGINE	ERING DE	ESIGN & D	RAWING II (DC)	2	BB	MAL102	MATHEM	IATICS	- II (BS)				8	DD
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP		CGPA	SGPA	Credit	EG	P SGPA	CGPA	Credit	EGI	P	CGPA
301 A	46	192	4.17	COLA	228	1096		4.81	301 A	14	32	2.29	CGIA	194	904	1	4.66
DE 12	DC 34 F	IM 0 C	OC 0	DE 38	DC 124 H	M 10	OC	0	DE 0	DC 6 H	M 0	OC 0	DE 26	DC 102 I	HM 10	OC	0
AU 0	ES 0 E	BS 0 To	otal 46	AU 0	ES 30 B	S 26	Total	1 228	AU 0	ES 0 B	S 8	Total 14	AU 0	ES 30 I	BS 26	Tota	194
RF-FX	M AUTI	JMN 2013	3						SPRING	2014							
CML461		PORT PHEN	-	DE)			6	DD	CMD452		T PHAS	SE-II (DC)				8	ВС
CML463		SS CONTRO	,	,	TION (DC)		6	CD	CMD453			GROUP DISCL	JSSION PE	ROGRAM	(DC)	2	ВВ
	Credit	EGP	SGPA		Credit	EGP		CGPA	CML366	MASS TE	RANSF	ER-II (DC)			,	6	DD
SGPA				CGPA			-		CML468	ORE ANI) MINE	RAL PROCES	SING (DE	E)		6	CD
	12	54	4.50		240	1150		4.79	CML471	BIOTECH	INOLO	GY AND BIOC	HEMICAL	ENGINEER	RING	6	DD
DE 6			OC 0	DE 44	DC 130 H		OC	0		(DE)							
AU 0	ES 0 E	BS 0 To	otal 12	AU 0	ES 30 B	S 26	Tota	240								6	CD
									CML491			NNING AND MA	NAGEME	NT (DE)		6	DD
									PHL101	PHYSICS	(BS)					6	DD
									SGPA	Credit	EG	P SGPA	CGPA	Credit	EGI	Р	CGPA
									JGPA	46	22	8 4.96	CGFA	286	137	8	4.82
										DC 16 H	M 0	OC 0	DE 68	DC 146 I	HM 10	oc	0
									AU 0	ES 0 B	S 6	Total 46	AU 0	ES 30 I	BS 32	Tota	286

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ADEPU SAI KIRAN Enrolment No. : BT10CHE005

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course							Т	ïtle							С	r	Gr
AUTUN	/N 2	010)														
AML151	Е	NGI	NEE	RING	MEC	CHAN	IICS (ES)							6		DD
AMP151	Е	NGI	NEE	RING	MEC	CHAN	IICS L	.AB	(E	S)					2		CD
HUL101	С	OMN	ΛUN	IICATI	ON S	SKILL	S (HI	Л)							6		BC
MAL101	M	MATHEMATICS I (BS)													8		CC
MEC101	Е	ENGINEERING DRAWING ()							8		DD
PEB151	S	POR	TS	/ YOG	A/L	IBRA	RY/I	NCC) (<i>F</i>	AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		DD
PHP101	Р	HYS	ICS	LAB (BS)										2		AB
SGPA	С	Credit EGP SGP						CGPA		. .	C	redi	t	EG	P	C	GPA
SGPA		38 198 5.21						L.	Gr	A	38 19		198	3	5	.21	
DE 0	DC	0	Н	1 6	0	С	0	D	Е	0	DC	0	НМ	6	O	С	0
AU 0	ES	16	BS	16	6 Total 38				U	0	ES 16 BS		16	To	tal	38	

Λ	11	TΙ	II	ИΝ	20	111
_	u		<i>_</i> 11	7117		,,,

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AA
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BC
CML474	PLANT UTILITY (DE)	6	CC
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
		\neg	

SGPA	Credit		EGI	P (SGPA	CG	D A	C	redi	t	EGI	P	CGPA	
SGPA	40		264	.	6.60	CG	CGFA		18		716	5	6.	.07
DE 12	DC 28 I	НМ	0	OC	0	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Total	40	AU	0	ES	36	BS	32	Tot	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AA
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		344		8.19		CG	FA	2	200		137	6	6	.88
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AA
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

	80	PΑ	С	redi	it	EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	P	CG	SPA
	36	IFA		40		35	В	8	.95		CG	FA		282		206	8	7.	.33
j	DE	12	DC	28	HM	I 0	0	С	0	П	DE	62	DC	142	НМ	10	00)	0
	ΑU	0	ES	0	BS	0	To	tal	40		ΑU	0	ES	36	BS	32	Tot	al	282

Course	Title	Cı	r Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	ВС
CHP101	APPLIED CHEMISTRY (BS)	2	AA
CSL101	COMPUTER PROGRAMMING (ES)	8	CD
EEL101	ELECTRICAL ENGINEERING (ES)	6	DD
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BB
HUL102	SOCIAL SCIENCE (HM)	4	BB
MAL102	MATHEMATICS - II (BS)	8	CD
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
	Credit ECD CCDA Credit	ECD	CCDA

80	SGPA		redi	it	EG	Р	S	GPA	CC	D۸	С	redi	it	EG	Р	C	GPA
36			40		25	4	6.35		5	CGPA 78 452			5.79				
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	al	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	AΑ
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	AE
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SG	·DΛ	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		310	6	7	.90	CG	FA		158		103	2	6	5.53
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	FS	0	BS	0	Tot	tal	40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DA	Credit		t	EGP S		SGI	PA	CG	DΛ	С	redi	t	EG	Р	CGPA	
36	PA		42		33	4	7.9	5	CG	PA		242		171	0	7	.07
DE	6	DC	36	НМ	I 0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	AB

80	PΑ	С	redi	it	EGP		S	GPA	CG	ВΛ		Credi	it	EG	Р	CG	SPA
36	IFA		40		37	6	,	9.40	CG	FA		322		244	14 7		.59
DE	24	DC	10	HN	1 6	0	С	0	DE	86	DC	152	НМ	16	00	3	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	Tot	al	322

GRADE CARD

Name : ADEPU SAI KIRAN Enrolment No. : BT10CHE005

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ADITYA S Enrolment No. : BT10CHE006

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	CD
CHP101	CHEMIST	RY LAB (E	3S)			2	BC
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AA
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	FF.
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BB
HUL102	SOCIAL S	SCIENCE (HM)			4	BB
MAL101	MATHEM	ATICS I (B	S)			8	CD
MEP101	WORKSH	IOP (ES)				4	- AA
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	252	6.30	CGPA	34	252	7.41

80	·D A	С	redi	t	EG	Р	SG	PA		CGI	- Λ	C	redi	t	EG	Р	C	GPA
36	SGPA		40		25	2	6.	30	ĺ '	CGI	A		34		252	2	7	.41
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	С	C	0
AU	0	ES	20	BS	16	To	tal	40	Ι	AU	0	ES	14	BS	16	To	otal	34

RE-EXAM AUTUMN 2010

EEL	101	El	EC.	TRI	CAL	ENG	INEE	RING (ES)							6		DD
60	·D 4	С	redi	it	E	GP	S	GPA		<u> </u>	PA	С	redi	t	EG	Р	CG	APE
36	SGPA		6		2	4	4	4.00	C	GI	A		40		276	6	6.	.90
DE	0	DC	0	HN	1 0	0 00		0	DI	E	0	DC	0	НМ	4	00)	0
AU	0	ES	6	BS	0	T	otal	6	Αl	U	0	ES	20	BS	16	Tot	al	40

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML474	PLANT UTILITY (DE)	6	CC
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD

	SGPA	С	redi	t	EG	Р	S	GPA		٠.	PA	С	redi	t	EG	Р	C	GPA	
ြ				40		250	6	6	.40	C	ا ر	FA	•	118		760)	6	.44
DE		12	DC	28	НМ	0	0	С	0	DE	=	12	DC	28	НМ	10	C	C	0
ΑL	J	0	ES	0	BS	0	То	tal	40	Αl	J	0	ES	36	BS	32	Т	otal	118

AUTUMN 2012

CEL417	DISASTER MANAGEMENT (OC)	6	AA
CML361	MASS TRANSFER - I (DC)	6	CD
CML362	HEAT TRANSFER I (DC)	6	CD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA

80	. D.Λ	С	redi	it	E	EG	Р	SG	PA		CG	ВΛ	С	redi	t	EG	Р	C	SPA
36	SGPA		42		;	306	ô	7.	.29		CG	ГА	2	200		132	8	6	.64
DE	14	DC	22	HN	// (0	0	С	6		DE	38	DC	78	НМ	10	0	С	6
AU	0	ES	0	BS	3 (0	Tot	tal	42	l '	AU	0	ES	36	BS	32	To	tal	200

Course	Title		Cr	Gr
SPRING	2011			
AML151	ENGINEERING MECHANICS (ES)		6	CD
AMP151	ENGINEERING MECHANICS (ES)		2	CD
HUL101	COMMUNICATION SKILL (HM)		6	AA
MAL102	MATHEMATICS - II (BS)		8	DD
MEC101	ENGINEERING DRAWING (ES)		8	FF
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	CD
PHP101	PHYSICS (BS)		2	AB
	Own I'l FOR CORA	O	E0D	0004

80	SGPA -	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36			38		180	0	4	.74	C	FA		70		45	6	6	.51
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0
ΑU	0	ES	16	BS	16	To	tal	38	AU	0	ES	28	BS	32	То	tal	70

RE-EXAM SPRING 2011

MEC101 ENGINEERING DRAWING (ES)

8 CC

60	D۸	С	redi	t	EG	Р	SG	PA	CG	D A	С	redi	t	EG	Р	C	GPA
36	SGPA		8		48	:	6.	00	CG	FA		78		50	4	6	.46
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	8	BS	0	То	tal	8	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	SGPA	С	redi	t	E	3P	S	GPA	CG	ВΛ	C	redi	t	EG	Р	С	GPA
36			40		2	62	(6.55	CG	FA		158		102	22	6	6.47
DE	12	DC	28	HM	1 0		C	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	otal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CIVIL366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	ВС
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВС
CML468	ORE AND MINERAL PROCESSING (DE)		6	ВС
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

42 292 6.95 DE 6 DC 36 HM 0 OC 0	CG	DA	С	redi	t	EG	Р	C	GPA								
36	PA		42		29	2	6.	95	CG	PA		242		162	20	6.69	
DE	6	DC	36	HM	1 0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

SG	. П.	С	redi	t	EG	P	S	GPA	CG	ПΛ.	C	redi	t	EG	Р	C	GPA
36	IPA		34		32	2	9	.47	CG	PA		322		229	4	7.12	
DE	18	DC	10	НМ	0	0	С	6	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	To	tal	34	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : ADITYA S Enrolment No. : BT10CHE006

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course				Title			Cr	Gr	Course	Title	Cr	
AUTUM	IN 2013											
CMD401	PROJE	CT PHAS	SE I (DC)				4	BB				
CML333	POLYM	IER PRO	CESSING (E	E)			6	AB				
CML461	TRANS	PORT PH	HENOMENA	(DC)			6	CD				
CML462	CHEMI	CAL REA	CTION ENG	INEERING I	(DC)		6	CC				
CML463	PROCE	SS CON	TROL & INS	TRUMENTA	TION (DC)		6	BC				
CML620	MEMBI	RANE TE	CHNOLOGY	(DE)			6	AB				
CMP462	CHEMI	CAL REA	CTION ENG	INEERING -	II (DC)		2	AA				
CMP463	PROCE	SS CON	TROL & INS	TRUMENTA	TION (DC)		2	AA				
CMP464	CHEMI	CAL ENG	SINEERING	DESIGN & D	RAWING I	(DC)	2	BB				
HUL409	PSYCH	IOLOGY (& ED (HM)				6	BB				
SGPA	Credit	EGI	P SGP	CGPA	Credit	EG	P	CGPA				
SGPA	46	352	7.65	CGPA	288	197	72	6.85				
DE 12	DC 28	HM 6	OC 0	DE 56	DC 142	HM 16	O	C 6				
AU 0	ES 0	BS 0	Total 46	AU 0	ES 36	BS 32	Tot	tal 288				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : AKHIL RATHI Enrolment No. : BT10CHE007

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	BC						
CHP101	CHEMIST	RY LAB (E	3S)			2	BB						
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB						
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BC											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 AB											
HUL102	SOCIAL S	SCIENCE (HM)			4	AB						
MAL101	MATHEM	ATICS I (B	SS)			8	BC						
MEP101	WORKSH	IOP (ES)				4	AA						
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS												
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA						
SGPA	40	314	7.85	CGPA	40	314	7.85						

										•	,							
SG	·D A	С	redi	it	EG	Р	S	GPA		CGI	٠,	С	redi	t	EG	P	7.85 OC 0	GPA
36	PA		40		31	4	7	.85		CGI	A		40	T	314	1		.85
DE	0	DC	0	НМ	4	0	С	0	П	DE	0	DC	0	НМ	4	0	С	0
AU	0	FS	20	BS	16	Τo	tal	40	l	AU	0	FS	20	BS	16	To	ıtal	40

AUTUMN 2011

	Cradit	EGD	SCDA		Cradit	ECD	П	CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	CD
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AB
CML261	INORGAN	VIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP263	ORGANIC	C CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR	Y (DC)		2	AB
CHL263	ORGANIC	C CHEMIST	RY AND S	YNTHESIS	(DC)		6	CC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

SGPA	Credi	t	EG	Р	SC	3PA	_		PA	С	redi	t	EG	Р	C	GPA
SGFA	40		26	9	6	.65	C	اق	FA	1	118		822	2	CGPA 6.97 OC 0	
DE 12	DC 28	НМ	0	0	С	0	DI	Ε	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal	40	Αl	J	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	BB
		-	

SG	·D A	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	14 7.	GPA	
36	iPA		42		31	4	7	7.48	CG	PA	2	200		141	4		.07
DE	14	DC	22	HM	l 6	0	С	0	DE	38	DC	78	НМ	16	С	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML480	CFD FOR CHEMICAL ENGINEERS (DE)	6	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

80	·D A	С	redi	t	EG	SGPA Credit EGP SGPA CGPA		C	redi	t	EG	P	CGPA			
36	JFA		46		38	0	8	.26	CG	FA		288		213	2	7.40
DE	18	DC	28	НМ	0	0	С	0	DE	62	DC	142	НМ	16	OC	0
AU	0	ES	0	BS	0	To	tal	46	AU	0	ES	36	BS	32	Tota	al 288

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CD
AMP151	ENGINEERING MECHANICS (ES)	2	BC
HUL101	COMMUNICATION SKILL (HM)	6	BC
MAL102	MATHEMATICS - II (BS)	8	CC
MEC101	ENGINEERING DRAWING (ES)	8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CD
PHP101	PHYSICS (BS)	2	BC

SG	D A	38 242 6.37 DC 0 HM 6 OC 0	CG	п.	C	redi	it	EG	P	C	GPA						
36	IFA		38		24	2	6.	37	C	ГА		78		550	6	7	.13
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214 C	DRGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
	POLYMER ENGINEERING (DE)	6	CC
CHP214 C	DRGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263 F	FLUID MECHANICS (DC)	6	BB
CML264 M	MECHANICAL OPERATIONS (DC)	6	BB
CML265 C	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621 N	NANO TECHNOLOGY (DE)	6	BC
CMP264 F	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SG	· D A	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36)PA		40		278		6.95		CG	PA		158		110	0	6	.96
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	D۸	С	redi	t	Е	GI	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		42		3	38	3	8	3.05	CG	FA		242		175	2	7	7.24
DE	6	DC	36	ΗN	1 0		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0		To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE) 6	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)) 2	AB
CMD452	PROJECT PHASE-II (DC)	8	AB

SGPA	Credi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	CGPA	
SGFA	34		30	6	9.	.00	CG	FA		322		243	8	7	.57
DE 18	DC 10	НМ	0	Ó	С	6	DE	80	DC	152	НМ	16	00		6
AU 0	ES 0	BS	0	To	tal	34	AU	0	ES	36	BS	32	Tot	al	322

GRADE CARD

Name: AKHIL RATHI Enrolment No.: BT10CHE007

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ALOK BOTHRA Enrolment No. : BT10CHE008

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	BB
CHP101	CHEMIST	RY LAB (E	3S)			2	AB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BC
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BC
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	AB
HUL102	SOCIAL S	SCIENCE (HM)			4	AB
MAL101	MATHEM	ATICS I (B	SS)			8	BB
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	40	318	7.95	CGPA	40	318	7 95

SG	. В А	С	redi	it	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	CC	SPA
36	IFA		40		31	8	7	.95	CG	FA		40		318	3	7	.95
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	С	C	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	0 " 500 0004 0 " 500		0004
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD
CML474	PLANT UTILITY (DE)	6	BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	AA

SG	·DΛ	Credit EGP SGPA		SPA	CG	DΛ	С	redi	t	EG	P	CC	3PA				
36	IFA		40 292 28 HM 0		2	7.30		CG	FA		118		882	2	7	.47	
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	О	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA

86	·D 4	С	redi	t	EG	Р	S	GPA	-	D A	С	redi	t	EG	Р	C	GPA
SGPA			42		352		8.38		CGPA		2	200		154	4	7	.72
DE	20	DC	22	НМ	I 0	0	С	0	DE	44	DC	78	НМ	10	О	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	tal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

80	·DΛ	С	redi	it	EG	P	S	GPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA	40			33	4 8.35		CGFA				282		222	20	7	.87		
DE	12	DC	28	НМ	0	0	С	0		DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	40		AU	0	ES	36	BS	32	То	tal	282

Course	Title		Cı	r Gr
SPRING	2011			
AML151	ENGINEERING MECHANICS (ES)		6	BB
AMP151	ENGINEERING MECHANICS (ES)		2	AB
HUL101	COMMUNICATION SKILL (HM)		6	BB
MAL102	MATHEMATICS - II (BS)		8	CC
MEC101	ENGINEERING DRAWING (ES)		8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	BC
PHP101	PHYSICS (BS)		2	AA
		l		

60	SGPA	C	redi	t	EG	P	S	GPA	CG	п.	C	redi	t	EG	P	C	GPA	
36	IFA		38		27	2	7	.16	C	ГА		78		590	0	7	.56	l
DE	0	DC	0	НМ	6	00	С	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

		ВΛ	С	redi	t	EG	Р	SG	PA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA		40			31	0	7.75		CG	PA		158		119	2	7	.54	
DI	E	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
Αl	U	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

HUL407	INDIA STUDIES (HM)		6	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP366	MASS TRANSFER (DC)		2	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML366	MASS TRANSFER - II (DC)		6	CC

SG	DΛ	С	redi	t	EG	Р	S	GPA	CG	D۸	С	redi	t	EG	Р	C	GPA	
36	IFA		42		342	2	8	.14	CG	FA		242		188	6	7	.79	I
DE	0	DC	36	НМ	6	0	С	0	DE	44	DC	114	НМ	16	0	С	0	ſ
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	tal	242	l

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	CD
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BC

60	·D A	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		298		7.45		CG	PA		322		251	8	7	.82
DE	24	DC	10	ΗN	1 0	0	С	6	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : ALOK BOTHRA Enrolment No. : BT10CHE008

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ALOK PATEL Enrolment No. : BT10CHE009

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course			Т	itle		C	r Gr
AUTUM	N 2010						
AML151	ENGINE	ERING ME	CHANICS (ES)		6	BC
AMP151	ENGINE	ERING ME	CHANICS L	AB (ES)		2	2 BB
HUL101	COMMUN	NICATION	SKILLS (HI	۷)		6	BC
MAL101	MATHEM	IATICS I (E	BS)			8	CC
MEC101	ENGINE	ERING DRA	AWING (ES	5)		8	B DD
PEB151	SPORTS	/ YOGA / I	_IBRARY / I	NCC (AU)		() SS
PHL101	PHYSICS	S (BS)				6	S DD
PHP101	PHYSICS	S LAB (BS)				2	2 CC
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	38	216	5.68	CGPA	38	216	5.68
DF 0	DC 0 HI	v 6 C	oc o	DF 0	DC 0 H	M 6 C	OC 0

SG	·DΛ	C	Credit				EG	٢	5	GPA		CGI	DΛ	C	reai	τ	EG	۲	CC	žΡΑ
36	JFA		38		21	6	5	.68		CGI	FA		38		216	ć	5	.68		
DE	0	0 DC 0 HM 6		6	0	С	0	Γ	DE	0	DC	0	НМ	6	С	С	0			
AU	0	ES	16	BS	16	To	tal	38		AU	0	ES	16	BS	16	To	otal	38		

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD

861	D A	С	Credit		Credit EGP		S	GPA	CG	DΛ	С	redi	t	EG	P	CGPA	
SGPA			40		220	6	5	.65	CG	CGPA		118		736		6	.24
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CEL417	DISASTER MANAGEMENT (OC)	6	BB
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CD
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

80	DΛ	С	redi	t	EG	Р	SGPA			CGPA			redi	t	EG	Р	Ö	GPA
SGPA			42		29	В	7	.10	CGPA			2	200		1272		6	.36
DE	14	DC	22	НМ	0	0	С	6	D	Ξ	38	DC	78	НМ	10	C	С	6
AU	0	ES	0	BS	0	To	tal	42	Al	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML333	POLYMER PROCESSING (DE)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	CD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

80	PΑ	С	redi	it	E	3P	S	GPA		CG	DΛ	C	redi	t	EG	Р	CC	SPA
	IFA		40		29	94	7.35		CGFA				282		1810		6.42	
DE	12	DC	28	HN	1 0	0	С	0		DE	56	DC	142	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40		ΑU	0	ES	36	BS	32	To	tal	282

Course			Ti	tle		Cı	r Gr			
SPRING	2011									
CHL101	APPLIED	CHEMIST	RY (BS)			6	BC			
CHP101	APPLIED	CHEMIST	RY (BS)			2	BC			
CSL101	COMPUT	ER PROGE	RAMMING	(ES)		8	AB			
EEL101	ELECTRIC	ELECTRICAL ENGINEERING (ES)								
EEP101	ELECTRIC	CAL ENGIN	NEERING L	AB (ES)		2	BB			
HUL102	SOCIAL S	CIENCE	(HM)			4	DD			
MAL102	MATHEM	ATICS - II	(BS)			8	CD			
MEP101	WORKSH	OP (ES)				4	AA			
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS			
	Cradit	FOR	CODA		Cuadit	ECD	CCDA			

I	60	DA	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	it	EG	Р	C	GPA
	SGPA			40		294		7.35		CG	PA		78			0	6	.54
	DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
Γ.	AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credit	Credit EGP		SGPA	CGPA	Credit	EG	Р	CGPA		
SGFA	40	23	8	5.95	CGFA	158	97	4	6.16		
DE 12	DC 28 H	IM 0	0	C 0	DE 24	DC 56	HM 10	00	0		
AU 0	FS 0 F	3S 0	To	tal 40	AU 0	FS 36	BS 32	Tot	al 158		

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	DD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	CD
CML466	CHEMICAL PLANT DESIGN (DC)		6	CD
CML468	ORE AND MINERAL PROCESSING (DE)		6	BC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	SGPA		redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
			42		24	4	5.8	31	CG	PA		242		151	6	6	.26
DE	6	DC	36	НМ	I 0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	FF
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	CC
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	CC

80	PΑ	С	redi	it	EG	P	SC	SPA	CG	DΛ	C	redi	t	EG	P	CGPA
			40		24	2	6	.05	CG	FA		316		205	52	6.49
DE	24	DC	10	HM	1 0	0	С	6	DE	74	DC	152	НМ	10	00	12
AU	0	ES	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	Tota	al 316

GRADE CARD

Name : ALOK PATEL Enrolment No. : BT10CHE009

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : AMEYA PRADEEP KUKDE Enrolment No. : BT10CHE010

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr								
AUTUM	N 2010														
CHL101	CHEMIST	RY (BS)				6	CC								
CHP101	CHEMIST	RY LAB (E	3S)			2	BC								
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 BB													
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 CC													
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BC													
HUL102	SOCIAL S	SCIENCE (HM)			4	AB								
MAL101	MATHEM	ATICS I (B	SS)			8	BB								
MEP101	WORKSHOP (ES) 4 AA														
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS														
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA								
SGPA	40	304	7.60	CGPA	40	304	7.60								

80	SGPA		redi	t	EG	Р	S	GPA		CGI	D A	С	redi	t	EG	Р	C	GPA
SGPA			40		304	4	7	.60		CGI	A		40		304	4	7	.60
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	С	C	0
AU	0	ES	20	BS	16	To	tal	40	П	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Crodit	EGD	SCDV		Crodit	EGD		CCDA			
MAL205	NUMERIO	CAL METH	Y (DE)	6	ВС						
CML474	PLANT U	PLANT UTILITY (DE)									
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (I	DC)		6	CC			
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BB			
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	ВС			
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTRY	Y (DC)		2	AB			
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	AB			
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC			

SGPA	Credit	: E	EGP	S	GPA	CGPA		Credi	t	EG	Р	CGPA	
SGPA	40		290	7	.25	CGFA		118		836	6	7.08	
DE 12	DC 28	HM (0	OC	0	DE 12	D	28	НМ	10	0	C 0	
AU 0	ES 0	BS (0 -	Total	40	AU 0	E	36	BS	32	То	tal 118	8

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

60	SGPA		redi	it	EG	P	S	GPA		~	PA	С	redi	t	EG	Р	C	GPA
			42		31	8	7	7.57	C	J I	FA	2	200		145	0	7	.25
DE	20	DC	22	НМ	1 0	0	С	0	DE	=	44	DC	78	НМ	10	С	C	0
ΑU	0	ES	0	BS	0	То	tal	42	Αl	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	Credit	FGP	SGPA		Credit	FGP	T	CGPA						
HUL409	PSYCHO		6	AB										
CMP464	CHEMICA	DC)	2	AA										
CMP463	PROCES	S CONTRO	L & INSTR	RUMENTAT	TON (DC)		2	BB						
CMP462	CHEMICA	CHEMICAL REACTION ENGINEERING -II (DC)												
CML620	MEMBRA	MEMBRANE TECHNOLOGY (DE)												
CML463	PROCES	S CONTRO	L & INSTR	RUMENTAT	TON (DC)		6	BB						
CML462	CHEMICA	AL REACTION	ON ENGIN	EERING II	(DC)		6	BC						
CML461	TRANSPO	ORT PHEN	OMENA (D	C)			6	CD						
CMD401	PROJEC1	T PHASE I	(DC)				4	AB						

80	SGPA	С	redi	it		EG	Р	S	GPA	_	C	PA	С	redi	t	EG	Р	C	GPA
36			40			312	2	7	7.80	C	G	FA		282		210	6	7	.47
DE	6	DC	28	ΗN	1	6	0	С	0	D	E	56	DC	142	НМ	16	0	C	0
AU	0	ES	0	BS	3	0	Total		40	Α	U	0	ES	36	BS	32	To	otal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BC
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	CD
MEC101	ENGINEERING DRAWING (ES)	8	BC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	DD
PHP101	PHYSICS (BS)	2	BB

SGPA -	C	redi	t	EG	P	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA	l	
	38			242		6.37	CG	FA		78		54	6	7	.00		
DE	0	DC	0	НМ	6	ОС	0	DE	0	DC	0	НМ	10	0	С	0	Ī
ALI	0	FS	16	BS	16	Tota	1 38	ALI	0	FS	36	BS	32	To	tal	78	1

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

		DΛ	С	Credit		EG	Р	SC	SGPA CGPA Credit		it	EG	Р	C	GPA			
٥	SGPA DE 12 [40			29	6	7	.40	CG	PA		158		113	32	7	'.16	
DI	E	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
Αl	J	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA	С			Р	S	SGPA		PA	С	redi	t	EG	Р	С	GPA			
	42			;	344	4	8	.19	CG	FA		242		179	4	7	'. 4 1	
DE	6	DC	36	ΗN	1 ()	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	()	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	CD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

		D 4	С	redi	t	EGP			SG	SPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
3	GPA		40		3	00)	7.	.50	CG	PA		322		240	6	7	7.47	
DI	E	30	DC	10	HN	1 0		ОС		0	DE	86	DC	152	НМ	16	0	С	0
Αl	J	0	ES	0	BS	0		Tota	al	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : AMEYA PRADEEP KUKDE Enrolment No. : BT10CHE010

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name: ANIKET VIRENDRA JAMBHULE

Enrolment No. : BT10CHE011

Branch: CHEMICAL ENGINEERING

Degree : BACHELOR OF TECHNOLOGY

Course					Т	itle						С	r	Gr	
AUTUN	IN 2010)													
AML151	ENGI	NEERIN	IG ME	CHAI	NICS (ES)						6		DD	
AMP151	ENGI	NEERIN	IG ME	CHAI	NICS L	AB (I	ES)					2		BB	
HUL101	COMN	MUNIC	ATION :	SKIL	LS (HI	VI)						6		BC	
MAL101	MATH	EMATI	CS I (B	S)								8		FF	
MEC101	ENGI	NEERIN	IG DRA	NIW	NG (ES	5)						8		DD	
PEB151															
PHL101	PHYS	ICS (BS	S)									6		FF	
PHP101	PHYS	ICS LA	B (BS)									2		FF	
SGPA	Credi	t E	EGP	S	GPA	~	PΑ	С	redi	t	EGI	Р	CC	3PA	
SGFA	38		114	3	3.00	C	IFA		22		114	1	5	.18	
DE 0 DC 0 HM 6 OC 0 DE 0 DC 0 HM 6 OC 0															
AU 0	ES 16	BS 1	6 To	tal	38	AU	0	ES	16	BS	0	To	tal	22	
DE EV	DE-EYAM ALITLIMN 2010														

RE-EXAM AUTUMN 201	0
---------------------------	---

	• "				_								
PHL101	PHYSICS	PHYSICS (BS)											
MAL101	MATHEM	ATICS I (B	S)				8		FF				

86	·DΛ	С	redi	t	EGP SGP			PA	,	CGI	D A	C	redi	t	EG	Р	CC	3PA
SGPA	14			0		0.00		(CGI	A		22		114	4	5	.18	
DE	0	DC	0	НМ	0	00	0	0]	DE	0	DC	0	НМ	6	С	C	0
AU	0	ES	0	BS	14	Tot	tal	14		AU	0	ES	16	BS	0	To	otal	22

AUTUMN 2011

							ΤТ	
PHP101	PHYSICS	LAB (BS)					2	W
PHL101	PHYSICS	(BS)					6	W
MAL101	MATHEM	ATICS I (B	S)				8	W
CML474	PLANT U	TILITY (DE)				6	DD
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	DD
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	CD
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	BC
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	DD
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CD

so	. D.		С	redi	t		EG	Р	S	GPA		CGI	D A	С	redi	t	EG	Р	CC	SPA
30)FA			44			120	6	2	2.86	'	CGI	A		74		406	6	5	.49
DE	6	DO	>	22	ŀ	HM	0	0	С	0		DE	6	DC	22	НМ	10		С	0
AU	0	ES	3	0	E	BS	16	To	tal	44	Ι	ΑŪ	0	ES	28	BS	8	To	otal	74

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CD
CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DC)	6	FF
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CD
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

	80	PΑ	С	redi	t	EG	Р	S	SPA	CG	ВΛ	С	redi	t	EG	PC	GPA
	36	IFA		42		18	8	4	.48	CG	FA		138		766	6	5.55
j	DE	20	DC	22	НМ	0	0	С	0	DE	32	DC	54	НМ	10	ОС	6
	AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	28	BS	8	Total	138

RE-EXAM AUTUMN 2012

 CML361
 MASS TRANSFER - I (DC)
 6
 CC

 CML362
 HEAT TRANSFER I (DC)
 6
 DD

80	PΑ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
36	IFA		12		60	•	5	.00	CG	FA	•	150		826	6	5	.51
DE	0	DC	12	НМ	0	0	С	0	DE	32	DC	66	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	12	AU	0	ES	28	BS	8	To	tal	150

Course	Title		Cı	Gr									
SPRING	2011												
CHL101	APPLIED CHEMISTRY (BS)		6	CD									
CHP101	APPLIED CHEMISTRY (BS)		2	ВС									
CSL101	COMPUTER PROGRAMMING (ES)		8	FF									
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF										
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	CC									
HUL102	SOCIAL SCIENCE (HM)		4	BC									
MAL102	MATHEMATICS - II (BS)		8	FF									
MEP101	WORKSHOP (ES)	4	AA										
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)												
	Credit FGP SGPA	Credit	FGP	CGPA									

SG	DΛ	С	redi	t	EG	P	SGPA	00	PΑ	С	redi	it	EG	Р	C	GPA
36	IFA		40		12	4	3.10	CO	JFA		40		23	8	5	.95
DE	0	DC	0	НМ	4	Ŏ	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	al 40	ΑU	0	ES	22	BS	8	То	tal	40

RE-EXAM SPRING 2011

CSL101	COMPUTER PROGRAMMING	(ES)	8	FF
EEL101	ELECTRICAL ENGINEERING	(ES)	6	FF
MAL102	MATHEMATICS - II (BS)		8	FF

SG	·DΛ	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		22		0		0	.00	CG	FA		40		23	8	5	.95
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	14	BS	8	To	tal	22	AU	0	ES	22	BS	8	То	tal	40

SUMMER TERM SPRING 2011

EEL101 ELECTRICAL ENGINEERING (ES) 6 BC

	86	PA	С	red	it		EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CC	3PA
'	3G	PA		6			42	:	7	7.00	CG	PA		46		280	0	6	.09
	ÞΕ	0	DC	0	HN	Л	0	0	С	0	DE	0	DC	0	НМ	10	00)	0
Α	ı.	0	FS	6	BS	5	0	Tot	al	6	AU	0	FS	28	BS	8	Tot	al	46

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
EEL381	INDUSTRIAL ELECTRICAL ENGG. (OC)	6	CC

SG	·DA	С	redi	t	EG	P	SC	SPA	CG	DΛ	С	redi	it	EG	Р	С	GPA
36	JFA		40		14	8	3	.70	CG	FA		102		55	4	5	5.43
DE	6	DC	28	НМ	I 0	0	С	6	DE	12	DC	38	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	28	BS	8	To	tal	102

RE-EXAM SPRING 2012

CML263 FLUID MECHANICS (DC) 6 DD CML265 CHEMICAL ENGINEERING THERMODYNAMICS (DC) 6 FF

SG	D A	С	redi	t	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		12		24		2.00		CG	PA		108		578	8	5	.35
DE	0	DC	12	НМ	0	0	0 0	Ī	DE	12	DC	44	НМ	10	0	С	6
AU	0	ES	0	BS	0	Tot	tal 12	1	AU	0	ES	28	BS	8	То	tal	108

GRADE CARD

Name: ANIKET VIRENDRA JAMBHULE

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE011

Degree : BACHELOR OF TECHNOLOGY

Course							Т	it	le					С	r	Gr
AUTUM	N 2	013	}													
CMD401	Р	ROJI	ECT	Γ PHA	SE I	(DC)							4		AB
CML374	Р	ETR	OLI	UM RE	FIN	ERY	'ENGI	N	EER	ING	(DE)			6		BC
CML461	TI	RAN	SPO	ORT P	HEN	OM	ENA (D	OC	C)					6		CC
CML462	С	HEM	ICA	L REA	ACTI	ON I	ENGIN	ΙE	ERII	NG II	(DC)			6		BC
CML463	Р	ROC	ES:	S CON	ITRO)L &	INSTF	RL	JME	NTA	TION (DC)		6		CD
CML620	M	EME	RA	NE TE	CHN	1OL	OGY ([DE	≣)					6		CC
CMP462	С	HEM	ICA	L REA	ACTI	ON I	ENGIN	ΙE	ERII	NG -I	I (DC)			2		AB
CMP463	Р	ROC	ES:	S CON	ITRO)L &	INSTF	RL	JME	NTA	TION (DC)		2		AB
CMP464	С	HEM	ICA	L EN	SINE	ERI	NG DE	S	IGN	& DF	RAWING	II (C	C)	2		AB
HUL409	P	SYC	HOI	LOGY	& E[) (H	M)							6		ВС
SGPA	С	redi	t	EG	Ρ	S	GPA		CG	D 4	Credi	t	EG	Р	C	GPA
SGPA		46		31	8	6	.91		CG	PA	238		143	2	6	5.02
DE 12	DC	28	НΝ	<i>l</i> 6	0	С	0		DE	50	DC 130	HN	1 16	C	C	6
AU 0	ES	0	BS	0 8	То	tal	46		AU	0	ES 28	BS	8	Тс	otal	238

Course			Ti	tle			Cr	Gr
SPRING	2013							
CML366	MASS TR	ANSFER -	II (DC)				6	DD
CML367	HEAT TRA	ANSFER-II	(DC)				6	AB
CML368	CHEMICA	L REACTION	ON ENGIN	EERING-I	(DC)		6	CD
CML371	CHEMICA	L PROCES	SS MODEL	ING AND S	SIMULATION	(DC)	6	CC
CML466	CHEMICA	L PLANT [DESIGN (I	DC)			6	ВС
CML468	ORE AND	MINERAL	PROCESS	SING (DE)			6	BB
CMP366	MASS TR	ANSFER	(DC)				2	BB
CMP367	HEAT TRA	ANSFER	(DC)				2	AB
CMP371	CHEMICA	L PROCES	SS MODEL	ING AND S	SIMULATION	(DC)	2	AA
	0	FOR	0004		0	E00	. Т	0004

SG	DΛ	С	redi	t	EG	P	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IFA		42		28	8	6	.86	CG	FA		192		111	4	5	.80
DE	6	DC	36	HM	1 0	0	С	0	DE	38	DC	102	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	28	BS	8	То	tal	192

SPRING 2014

CHL336	POLYMER ENGINEERING (DE)	6	DD
CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВС
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
MAL102	MATHEMATICS-II (BS)	8	DD
PHL101	PHYSICS (BS)	6	CC
PHP101	PHYSICS (BS)	2	BC

SGF	٥.	С	redi	t	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	C	GPA
366	-A		50		33	2	6.64		CG	FA		288		176	64	6	.13
DE 1	18	DC	16	НМ	0	Ó	C 0	I	DE	68	DC	146	НМ	16	00	С	6
AU (0	ES	0	BS	16	To	tal 50		AU	0	ES	28	BS	24	Tot	tal	288

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CSL101

EEL101

EEP101

HUL102

MAL102

SPRING 2011

CHL101 APPLIED CHEMISTRY (BS)

CHP101 APPLIED CHEMISTRY (BS)

SOCIAL SCIENCE (HM)

MATHEMATICS - II (BS)

Name: ANIKET SHAILESH RATNAPARKHI

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE012

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

6

2

8

6

2

8

Gr

вС

AA

AB

BB

AA

CC

вс

Course							Т	it	le						С	r	Gr
AUTUN	IN 2	2010)														
AML151	Е	NGIN	NEE	RING	MEC	CHA	NICS (ES	S)						6		BB
AMP151	Ε	NGIN	NEE	RING	MEC	CHA	NICS L	A	В (Е	S)					2		BB
HUL101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M))						6		CC
MAL101	M	IATH	EM.	ATICS	I (B	S)									8		AB
MEC101	Ε	NGIN	NGINEERING DRAWING (ES) 8 CD														
PEB151	S	POR	TS.	/ YOG	A/L	IBR.	ARY / I	N	CC (AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		CC
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
SGPA	С	redi	t	EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	C	GPA
SGPA		38		26	4	6	6.95		CG	PA		38		264	4	6	.95
DE 0	DC	0	н	1 6	0	С	0		DE	0	DC	0	НМ	6	C	C	0
AU 0	ES	16	BS	16	To	tal	38		AU	0	ES	16	BS	16	To	otal	38

HP101	PHYS	ICS	LAB (I	BS)								2	BB	MEP	101	W	ORK	SHC	P (E	ES)								4	Α	Α
	Credi	it	EG	Р	SGPA			Cı	redit	:	EGP	· (CGPA	PEB.	151	SF	POR	TS/	YOG	4/ LIE	BRARY/ NO	CC (AU)					0	S	S
GPA	38		264	4	6.95	CG	PA		38		264		6.95	80	PA	С	redi	t	EG	Р	SGPA	CC	PA	С	redi	t	EG	Р	CGP	Α
E 0	DC 0	ΗŃ	1 6	0	C 0	DE	0	DC	0	НМ	6	OC	0	36	IFA		40		322	2	8.05	CG	ГА		78		586	6	7.51	i
U 0	ES 16	BS	16	To	tal 38	AU	0	ES	16	BS	16	Total	38	DE	0	DC	0	НМ	4	00	0	DE	0	DC	0	НМ	10	00	; 0)
ITLIM	N 2011	ı				•								AU	0	ES	20	BS	16	Tot	al 40	ΑU	0	ES	36	BS	32	Tota	al 78	8

AUTUMN 2011

MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	AA
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHLZOI	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	О	DD

SG	·D 4	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
36	PA		40		26	4	6	.60	CG	PA	1	118		850)	7	.20
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CD
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CD
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC

SG	·D 4	С	redi	t	EG	Р	S	GPA	L	CG	D A	С	redi	t	EG	Р	C	GPA
36	JFA		42		26	8	6	.38	l '	CG	FA	2	200		138	0	6	.90
DE	20	DC	22	НМ	0	0	С	0	Π	DE	44	DC	78	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	42	П	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	ВС
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BB
CML333	POLYMER PROCESSING (DE)	6	BC
CIVID401	FROJECT FITASET (DC)	4	AD

SG	DΛ	С	redi	it	EG	Р	S	GPA	C	٠.	۰.	С	redi	t	EG	P	C	GPA
36	IFA		46		35	8	7	. 78	C	71	A		288		204	8	7	'.11
DE	18	DC	28	НМ	0	0	С	0	DE		68	DC	142	НМ	10		С	0
AU	0	ES	0	BS	0	To	tal	46	ΑL	J	0	ES	36	BS	32	To	otal	288

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	DE
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credit	EC	βP	SGPA	CGPA	Credit	t EG	Р	CGPA	
SGFA	40	26	2	6.55	CGFA	158	111	2	7.04	
DE 12	DC 28 F	HM 0	0	C 0	DE 24	DC 56	HM 10	0	C 0	
AU 0	FS 0 F	3S 0	To	tal 40	AU 0	FS 36	BS 32	To	tal 158	

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	CC
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

SG	D.A.	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		31	0	7	.38	CG	PA		242		169	0	6	.98
DE	6	DC	36	НМ	I 0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	CD
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	CD

SG	. П.	Credit		t	EG	P SGPA		CG	ПΛ	(C	redi	t	EG	Р	CGPA	
36	PA	34			224		6.59	CGIA			322		227	72	7.06	
DE	18	DC	10	НМ	6	OC	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tota	al 34	AU	0	ES	36	BS	32	Tot	tal	322

GRADE CARD

Name : ANIKET SHAILESH RATNAPARKHI Enrolment No. : BT10CHE012

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ANIL VERMA Enrolment No. : BT10CHE013

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course	Title Cr Gr																
AUTUN	1N 2	2010)														
AML151	Е	NGI	NEE	RING	MEC	CHA	NICS (ES	S)						6		BC
AMP151	Е	NGI	NEE	RING	MEC	CHA	NICS L	Α	В (Е	S)					2		AB
HUL101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M)							6		BB
MAL101	M	ATH	EM.	ATICS	I (B	S)									8		BB
MEC101	Е	NGI	NEE	RING	DRA	WIN	NG (ES	5)							8		BC
PEB151	S	POR	TS.	/ YOG	A/L	IBR.	ARY/I	NC	CC (AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		CC
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
SGPA	С	redi	t	EG	Р	S	GPA		CC	D A	С	redi	t	EG	Р	C	GPA
SGPA	38 280 7.37 CGPA 38 2											280		7	.37		
DE 0	DC	0	HN	1 6	0	С	0		DE	0	DC	0	НМ	6	С	C	0
AU 0	ES	16	BS	16	То	tal	38		AU	0	ES	16	BS	16	To	otal	38

ΔΙ	ITI	IMN	2011	ı

CHP263 CML261	ORGANIC CHEMISTRY AND SYNTHESIS (DC) INORGANIC CHEMICAL TECHNOLOGY (DC)	2 6	BC BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	CC
HUL405	INDUSTRIAL ECONOMICS (HM)	6	AB

80	·DΛ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA		40			276		6.90		CG	PA	•	118			4	7.49	
DE	6	DC	28	НМ	6	0	С	0	DE	6	DC	28	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CD
CML362	HEAT TRANSFER I (DC)	6	CD
CML361	MASS TRANSFER - I (DC)	6	DD
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC

SGPA DE 20 I	Credit E		EG	Р	S	GPA	Ι.	CG	D A	С	Credit			Р	C	GPA		
36	JFA		42		26	0	6	.19	l '	CG	FA	2	200		135	4	6	.77
DE	20	DC	22	НМ	0	0	С	0	DE 38		DC	78	НМ	16	C	С	0	
AU	0	ES	0	BS	0	То	tal	42		AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	CD
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

	60	PΑ	С	redi	t	EC	βP	S	GPA		CG	D 4	С	redi	t	EG	Р	C	GPA
	36	IPA		40		31	2	7	7.80		CG	PA		282		196	8	6	.98
ĺ	DE	12	DC	28	HN	1 0	0	С	0		DE	56	DC	142	НМ	16	0	С	0
	AU	0	ES	0	BS	3 0	To	tal	40	l '	AU	0	ES	36	BS	32	To	tal	282

Course	Title	Cr	r Gr
SPRING	3 2011		
CHL101	APPLIED CHEMISTRY (BS)	6	BB
CHP101	APPLIED CHEMISTRY (BS)	2	BB
CSL101	COMPUTER PROGRAMMING (ES)	8	BB
EEL101	ELECTRICAL ENGINEERING (ES)	6	BB
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BB
HUL102	SOCIAL SCIENCE (HM)	4	AA
MAL102	MATHEMATICS - II (BS)	8	BC
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

80	- D A	С	redi	it	EG	Р	S	GPA	CG	D۸	С	Credit			Р	CC	SPA
36	SGPA		40		32	8	8	3.20	CG	FA		78		60	В	7	.79
DE	0	DC	0	НМ	4	0	C 0		DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal 40		AU 0		ES 36 BS		BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BC

SCDA	Credit 40		EG	Р	SGPA	CG	DΛ	С	Credit		EGP		C	GPA
SGPA			180	6	4.65	CG	FA		152		107	0	7	7.04
DE 12	DC 28	НМ	0	00	0	DE	18	DC	50	НМ	1 16		С	0
AU 0	ES 0	BS	0	Tot	al 40	AU	0	ES	36	BS	32	To	tal	152

DD

RE-EXAM SPRING 2012

CML263 FLUID MECHANICS (DC) 6

Credit EGP SGPA CGPA Credit EGP C

	SGPA DE 0 AU 0	С	red	it	EC	P	S	GPA	C	SPA	C	red	it	EG	Р	C	GPA	
			6		2	4	4.00		CGIA			158		109	94	6	5.92	
	DE	0	DC	6	HN	1 0	0	С	0	DE	18	DC	56	НМ	16	0	С	0
	ΑŪ	0	ES	0	BS	0	To	tal	6	AL	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	вс
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	ВС
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

SGPA DE 6	С	redi	t	EG	Р	SGPA		CG	ВΛ	С	redi	t	EG	Р	C	GPA	
36	IFA		42		30	2	7.	19	CG	FA		242		165	656 6.8	.84	
DE	6	DC	36	НМ	0	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

GRADE CARD

Name : ANIL VERMA Enrolment No. : BT10CHE013

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course	Title	Cr	Gr	Course			Ti	itle			Cr	Gr
				SPRING	G 2014							
				CMD452	PROJE	CT PHAS	SE-II (DC)				8	AB
				CMD453	SEMIN	AR AND	GROUP DISCU	ISSION PE	ROGRAM	(DC)	2	AA
				CML471	BIOTE (DE)	CHNOLO	GY AND BIOCH	HEMICAL	ENGINEEI	RING	6	CC
				CML472		ICED SE	PARATION PR	OCESS (DE)		6	DD
				CML475	NEW A	ND REN	EWABLE ENER	RGY ENGI	NEERING	(DE)	6	ВС
				CML479	ENTRE	PRENEL	JRSHIP DEVEL	OPMENT.	(DE)		6	ВС
				CML491	PROJE	CT PLAN	NNING AND MA	NAGEME	NT (DE)		6	CD
				CODA	Credi	t EG	P SGPA	CODA	Credit	E	3P	CGPA
				SGPA	40	26	6 6.65	CGPA	322	22	34	6.94
				DE 30	DC 10	HM 0	OC 0	DE 86	DC 152	HM 16	OC	0
				AU 0	FS 0	BS 0	Total 40	AU 0	FS 36	BS 32	Tota	al 322

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CSL101

EEL101

EEP101

HUL102

SPRING 2011

CHL101 APPLIED CHEMISTRY (BS)

CHP101 APPLIED CHEMISTRY (BS)

MAL102 MATHEMATICS - II (BS)

SOCIAL SCIENCE (HM)

Name: ANKIT ANILKUMAR RAMTEKE

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE014

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

6

2

8

6

2

Gr

вС

ВВ

СС

BC

ВВ

AA

DD

Course							Т	it	le						С	r	Gr
AUTUN	IN 2	2010)														
AML151	Е	NGIN	NEE	RING	MEC	CHAI	NICS (ES	S)						6		AB
AMP151	Е	NGIN	NEE	RING	MEC	CHAI	NICS L	A	В (Е	S)					2		AA
HUL101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		BB
MAL101	M	MATHEMATICS I (BS) 8 AB															AB
MEC101	Е	ENGINEERING DRAWING (ES) 8 BC															BC
PEB151	S	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS															SS
PHL101	Р	HYS	ICS	(BS)											6		BB
PHP101	Ρ	HYS	ICS	LAB (BS)										2		BB
SGPA	С	redi	it	EG	Р	S	GPA		CG	D A	C	redi	t	EG	Р	C	GPA
SGFA		38		31	4	8	.26		CG	FA		38		314	1	8	.26
DE 0	DC	0	НΝ	<i>l</i> 6	0	С	0		DE	0	DC	0	НМ	6	С	C	0
AU 0	ES	16	BS	3 16	То	tal	38		AU	0	ES	16	BS	16	To	otal	38

PHP101	PHYS	CS	LAB (BS)								2	BB	MEP101	WOR	KSH	OP (I	ES)								4	AA
	Credi	t	EG	Р	SGPA			Cr	edit	:	EGP	C	GPA	PEB151	SPO	RTS/	/ YOG	A/ LIBI	RARY/ NO	CC (AU)					0	SS
SGPA	38		314	4	8.26	CG	PA	3	38		314	8	3.26	SGPA	Cred	dit	EG	P	SGPA	CG	DΛ	С	redi	t	EGI	- (CGPA
DE 0	DC 0	ΗŃ	1 6	0	C 0	DE	0	DC	0	НМ	6	OC	0	SGFA	40)	27	6	6.90	CG	IFA		78		590)	7.56
AU 0	ES 16	BS	16	To	tal 38	AU	0	ES	16	BS	16	Total	38	DE 0	DC 0	HN	<i>1</i> 4	ОС	0	DE	0	DC	0	НМ	10	ОС	0
MITIIM	IN 2011													AU 0	ES 20	BS	3 16	Tota	ıl 40	AU	0	ES	36	BS	32	Total	78

AUTUMN 2011

	Cuadit FOD CODA Cuadit	FOR	4000
MEL408	SUPPLY CHAIN MANAGEMENT (OC)	6	BB
CML474	PLANT UTILITY (DE)	6	BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AA
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURG	Y (DC) 6	CC
	· · · · · · · · · · · · · · · · · · ·		

80	. В А	С	redi	t	EG	Р	S	GPA	CG	D A		redi	t	EG	P	CGPA
SGPA DE 6 D		40		27	2	6	.80	CG	PA	•	118		862	2	7.31	
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	OC	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tota	al 118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

80	·D A	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA DE 20 I		42		32	2	7	.67	CG	FA	2	200		146	8	7	.34
DE	20	DC	22	НМ	0	0	С	0	DE	32	DC	78	НМ	10	С	С	12
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	tal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML333	POLYMER PROCESSING (DE)	6	CC
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BC
CML461	TRANSPORT PHENOMENA (DC)	6	CD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB

SG	ъ Д	С	redi	it	Е	G	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	Ö	GPA
36	JFA		46		3	28	3	7	7.13	CG	FA		288		212	6	7	.38
DE	18	DC	28	HM	1 0		0	С	0	DE	56	DC	142	НМ	10	C	С	12
AU	0	ES	0	BS	С		To	tal	46	AU	0	ES	36	BS	32	To	otal	288

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
EEL381	INDUSTRIAL ELECTRICAL ENGG. (OC)	6	BB

80		С	redi	t	EG	Р	SC	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36			40		28	4	7	.10	CG	FA		158		114	6	7	.25
DE	6	DC	28	НМ	0	0	С	6	DE	12	DC	56	НМ	10	0	С	12
ΑU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	. П.	С	redi	t	EG	Р	SGPA	١.	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	iPA		42		330	0	7.86		CG	PA		242		179	8	7	7.43
DE	6	DC	36	НМ	0	0	C 0		DE	38	DC	114	НМ	10	0	С	12
AU	0	ES	0	BS	0	To	tal 42		AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	ВС
CML475	(DE) NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	вс
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	AA

60	. П.	С	redi	t	EG	Р	SG	РΑ		CG	DΛ	С	redi	t	EG	Р	С	GPA
SGPA DE 18 AU 0	IPA		34		29	2	8.	59		CG	PA		322		241	8	7	7.51
DE	18	DC	10	ΗN	1 6	00	0	0		DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	Tot	al	34	П	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: ANKIT ANILKUMAR RAMTEKE Enrolment No.: BT10CHE014

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ANKIT RATAN KUMAR Enrolment No. : BT10CHE015

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Cou	rse							Т	it	le						С	r	Gr
ΑU	TUN	IN 2	2010)														
AML	151	Е	NGI	NEE	RING	MEC	CHA	NICS (E	S)						6		BB
AMF	P151	E	NGI	NEE	RING	MEC	CHA	NICS L	Α	B (E	S)					2		AA
HUL	.101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		BB
MAL	101	M	MATHEMATICS I (BS) 8 CC ENGINEERING DRAWING (ES) 8 BC															
MEC	C101	E	ENGINEERING DRAWING (ES) 8 BC															
PEB	151	S	ENGINEERING DRAWING (ES) 8 BC SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS															
PHL	.101	Ρ	HYS	ICS	(BS)											6		AA
PHP	101	Ρ	HYS	ICS	LAB (BS)										2		AB
66	SPA	С	redi	it	EG	Р	S	GPA		00	D.A.	С	redi	t	EG	Р	C	GPA
36	рΓΑ		38		29	8	7	7.84		CG	FA		38		298	В	7	.84
DE	0	DC	0	HN	1 6	0	С	0	ĺ	DE	0	DC	0	НМ	6	C	С	0
ALL		E0	38 298 7.84 CGPA 38 298 7. C 0 HM 6 OC 0 DE 0 DC 0 HM 6 OC													20		

SG	DΛ		real	IL	EG	Г	3	GFA	CGI	۸ د	L	rear	L	EG	Г	C	JFA
36	IFA		38		29	8	7	.84	CGI	- A		38		29	8	7.	.84
DE	0	DC	0	HN	l 6	0	С	0	DE	0	DC	0	НМ	6	С	С	0
AU	0	ES	16	BS	16	То	tal	38	AU	0	ES	16	BS	16	To	otal	38
									-								

AUTUMN 2011 DUVEICAL CHEMISTRY AND CENERAL METALLURCY (DC) 6

IVII (LECO	THOMETHOLE METHODO / HTD THOD/ IDEET THE OTH (BE)	-	
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AA
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHLZ61	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	О	DD

SCDA	Credit	EC	P	SGPA		CG	D A	С	redi	t	EG	Р	C	GPA
SGPA DE 12	40	28	2	7.05		CG	PA	1	118		912	2	7	.73
DE 12	DC 28 F	· M	0	C 0		DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0 E	3S 0	То	tal 40	1	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

	0	FOR	0004		O1114	FOR		0004
HUL401	ECONOM	IICS AND I	MANAGEM	ENT (HM)			6	AA
CMP370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			2	BB
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	BB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	OC)	2	AB
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	AA
CML363	CHEMICA	AL PROCE	SS EQUIPI	MENT DES	IGN (DC)		6	BB
CML362	HEAT TR	ANSFER I	(DC)				6	BC
CML361	MASS TR	RANSFER -	I (DC)				6	AA

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		36		320	0	8	.89	CG	ГА	1	194		156	0	8	.04
DE	8	DC	22	НМ	l 6	0	С	0	DE	32	DC	78	НМ	16	С	C	0
ΑU	0	ES	0	BS	0	To	tal	36	AU	0	ES	36	BS	32	To	otal	194

AUTUMN 2013

	Credit	ECD	SCDV		Cradit	FCP	Т	CCDA
CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DR	RAWING II (I	DC)	2	AB
CMP463	PROCES	S CONTRO	DL & INSTF	RUMENTAT	TON (DC)		2	AA
CMP462	CHEMICA	AL REACTI	ON ENGIN	EERING -II	(DC)		2	AB
CML620	MEMBRA	NE TECHN	NOLOGY (E	DE)			6	BB
CML480	CFD FOR	CHEMICA	L ENGINE	ERS (DE)			6	BB
CML463	PROCES	S CONTRO	DL & INSTF	RUMENTAT	ION (DC)		6	BC
CML462	CHEMICA	AL REACTI	ON ENGIN	EERING II	(DC)		6	BC
CML461	TRANSPO	ORT PHEN	OMENA (D	C)			6	BC
CML333	POLYMEI	R PROCES	SING (DE))			6	AA
CMD401	PROJECT	Γ PHASE Ι	(DC)				4	AA

80	PΑ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	SPA
36	JFA		46		37	8	8	.22	CG	FA		282		230	0	8	.16
DE	18	DC	28	НМ	0	0	С	0	DE	56	DC	142	НМ	16	00	2	0
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	Tot	al	282

Course	Title		Cr	Gr
SPRING	2011			
CHL101	APPLIED CHEMISTRY (BS)		6	BB
CHP101	APPLIED CHEMISTRY (BS)		2	AB
CSL101	COMPUTER PROGRAMMING (ES)		8	AB
EEL101	ELECTRICAL ENGINEERING (ES)		6	BB
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	AB
HUL102	SOCIAL SCIENCE (HM)		4	BB
MAL102	MATHEMATICS - II (BS)		8	BC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
		A 111		

SGPA DE 0	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	Č	GPA	
36			40		33	2	8	3.30	CG	FA		78		63	0	8	.08
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	ВС
CML621	NANO TECHNOLOGY (DE)	6	ВС
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	PΑ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	CGPA	
36	JFA		40		32	8	8	.20	CG	FA		158		124	0	7	.85
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	FS	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DA	С	redi	t	EGP		SGPA		CGPA		Credit			EG	Р	CGPA	
36	PA		42		36	2	8	.62	CG	PA		236		192	22	8	3.14
DE	6	DC	36	НМ	I 0	0	С	0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	Total		42	AU 0		ES	36	BS	BS 32		tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB

SG	DΛ	С	redi	t	EGP		SGPA		CG	DΛ	C	redi	t	EG	P	CGPA	
36	IFA		40		35	8	8	.95	CG	FA		322		265	8	8.	.25
DE	30	DC	10	НМ	0	0	С	0	DE	86	DC	152	НМ	16	00)	0
AU	0	ES	0	BS	0	To	Total 40		AU 0		ES	36	BS	32	Tota	al	322

GRADE CARD

Name: ANKIT RATAN KUMAR Enrolment No.: BT10CHE015

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ANKITA VAIDYA Enrolment No. : BT10CHE016

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course							Т	itle	е						С	r	Gr
AUTUN	/N 2	2010)														
AML151	Е	NGI	NEE	RING	MEC	HAN	NICS (ES	S)						6		FF
AMP151	Е	NGI	NEE	RING	MEC	HAN	NICS L	AE	3 (E	S)					2		CD
HUL101	С	OMN	ΛUN	IICATI	ON S	KILI	LS (HI	M)							6		DD
MAL101	M	ATH	EM.	ATICS	I (BS	3)									8		FF
MEC101	Е	NGI	NEE	RING	DRA	WIN	G (ES	5)							8		DD
PEB151	S	POR	TS	/ YOG	A / LI	BR/	ARY/I	NC	CC (A	AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		FF
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
SGPA	С	Credit EGP					PA	CGPA		Credit		t	EGP		C	GPA	
SGPA		38 82					.16	١,	CGI	A		18		82		4	.56
DE 0	DC	0	HM 6 00		2	0	Ĺ	DE	0	DC 0 HN		HM	<i>I</i> 6 (С	0	
AU 0	ES	16	BS	3 16	Tot	38		AU	0	ES	10	BS	2	To	otal	18	

RE-EXAM AUTUMN 201	10
--------------------	----

AML151	ENGINEE	RING ME	CHANICS (ES)		6	ö	FF
MAL101	MATHEM	ATICS I (B	S)			8	,	FF
	1	l .	l	1				

86	SGPA DE 0	С	redi	it	EG	Р	SC	3PA	CC	PΑ	С	redi	t	EG	Р	CGPA	
SGFA			14		0		0.00		CG	IFA		18		82		4.56	
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	6	0	С	0
ΔΠ	0	ES	6	RS	R	To	tal	14	ΔΠ	Ω	ES	10	BS	2	Tot	tal	18

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF

SG	·DΛ	С	redi	it	EGP		SGPA		CG	DΛ	С	redi	t	EG	Р	CGPA	
36	IFA		40		11	8	2	.95	CG	FA		72		372	2	5	.17
DE	12	DC	28	НМ	I 0	0	С	0	DE 6		DC	16	НМ	10	C	C	0
AU	0	ES	0	BS	0	То	tal	40	AU 0		ES	22	BS	BS 18		otal	72

RE-EXAM AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF

SGPA	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CC	SPA	
36	IFA		18		48	3	2	.67	CG	FA		84		420)	5	.00
DE	6	DC	12	НМ	0	00	0	0	DE	6	DC	28	НМ	10	С	С	0
AU	0	ES	0	BS	0	Tot	tal	18	AU	0	ES	22	BS	18	To	otal	84

AUTUMN 2012

Г		Credit	EGP		CGPA				
C	MP370	ENVIRON		2	AB				
C	MP365	FLUID ME	(DC)	2	BB				
C	MP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DR	RAWING I (D	OC)	2	AA
C	ML370	ENVIRON		6	BC				
C	ML363	CHEMICA	AL PROCES	SS EQUIPI	MENT DES	IGN (DC)		6	CC
C	ML362	HEAT TR	ANSFER I	(DC)				6	CD
C	ML361	MASS TR	ANSFER -	I (DC)				6	FF
C	HL369	GREEN C	CHEMISTR	Y & ENGIN	EERING (D	DE)		6	CC
C	EL417	DISASTE	R MANAGE	EMENT (O	رز)			6	BC

80	SGPA	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		24	0	5	.71	CG	FA		154		836	6	5	.43
DE	14	DC	22	НМ	0	0	С	6	DE	26	DC	72	НМ	10	С	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	22	BS	18	Тс	otal	154

Course	Title	Cr	Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	DD
CHP101	APPLIED CHEMISTRY (BS)	2	CC
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	CC
HUL102	SOCIAL SCIENCE (HM)	4	BC
MAL102	MATHEMATICS - II (BS)	8	FF
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

60	SGPA		redi	it	EG	Р	SC	SPA		D 4	С	Credit			Р	C	GPA
SGPA			40		11	6	2	.90	CGPA			36			В	5	.50
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	16	BS	10	To	tal	36

RE-EXAM SPRING 2011

CSL101	COMPUTER PROGRAMMING	(ES)	8	FF
EEL101	ELECTRICAL ENGINEERING	(ES)	6	FF
MAL102	MATHEMATICS - II (BS)		8	FF

SG	D.A.	С	redi	t	EG	Р	SC	3PA	CG	D.A.	С	redi	t	EG	Р	C	GPA
36	ГА		22		0		0	.00	CG	FA		36		19	8	5	.50
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	14	BS	8	To	tal	22	AU	0	ES	16	BS	10	То	tal	36

SUMMER TERM SPRING 2011

AML151	ENGINEERING MECHANICS	(ES)	6	DD
MAL101	MATHEMATICS I (BS)		8	DD

80	·DΛ	С	redi	t	EG	Р	SGP	Α	CG	DΛ	С	redi	it	EG	Р	CG	PA
36	SGPA	14			56		4.00		CG	FA		50		25	4	5.	.08
DE	0	DC	0	НМ	0	00	С ()	DE	0	DC	0	НМ	10	00)	0
AU	0	ES	6	BS	8	Tot	tal 1	4	AU	0	ES	22	BS	18	Tot	al	50

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC CC
CHL336	POLYMER ENGINEERING (DE)	6	CD.
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	S DD
CML264	MECHANICAL OPERATIONS (DC)	6	CD.
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF.
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
MAL102	MATHEMATICS - II (BS)	8	B FF

Γ	60	- П А	С	redi	t	E	EG	Р	S	GPA	Ī	CG	D 4	С	redi	t	EG	Р	C	GPA
	SGPA		42			152		3.62			CG	PA		112		57	2	5	5.11	
	DE	6	DC	28	НΝ	/ (0	0	С	0		DE	12	DC	50	НМ	10	0	С	0
Γ.	AU	0	ES	0	BS	3 6	8	To	tal	42		AU	0	ES	22	BS	18	То	tal	112

RE-EXAM SPRING 2012

CML265 CHEMICAL ENGINEERING THERMODYNAMICS (DC) 6 DD MAL102 MATHEMATICS - II (BS) 8 FF

	SG	·DΛ	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
	36	PA		14		24	1	1	1.71	CG	PA		118		59	6	5	5.05
j	DE 0	DC	6	HN	<i>1</i> 0	0	С	0	DE	12	DC	56	НМ	10	0	С	0	
	AU	0	ES	0	BS	8 6	То	tal	14	ΑŪ	0	ES	22	BS	18	То	tal	118

GRADE CARD

Name : ANKITA VAIDYA Enrolment No. : BT10CHE016

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title C RE-EXAM AUTUMN 2012 SPRING 2013												Cr	Gr					
RE-EXA	AM AUTUR	MN 201	2						SPRING	3 2013								
CML361	MASS TR	ANSFER	- I (DC)				6	CD	CML366	MASS	TRA	NSFER	- II (DC)				6	DD
	Credit	EGP	SGPA		Credit	EG	P	CGPA	CML367	HEAT	TRA	NSFER-	II (DC)				6	BC
SGPA	6	30	5.00	CGPA	160	866	6	5.41	CML368				ION ENGIN		(-)		6	DD
DE 0	DC 6 HM	1 0 0	OC 0	DE 26	DC 78	HM 10	0		CML371				SS MODEL		SIMULATIO	ON (,	BC
AU 0	ES 0 BS		otal 6	AU 0	ES 22		Tot		CML466				DESIGN (,	•		6	BC
ALITIIN	IN 2042								CML468				L PROCES:	SING (DE	:)		6	BC
AUTUN CMD401	IN 2013 PROJECT	DILLAGE	L (DC)				4	AA	CMP366 CMP367			NSFER NSFER	,				2	AB AA
CML333			SSING (DE	`			6	CC	CMP367				(DC) ESS MODEL	INC AND	CIMILII ATIO	N (DC) 2	AA
CML374			NERY ENGI	,	(DE)		6	DD	CIVIF371	1				ING AND	1	- (-,	
CML461			NOMENA ([(DL)		6	DD	SGPA	Cred	It	EGP	SGPA	CGPA	Credit	_	EGP	CGPA
CML462			•	,	(DC)		6	CC		42		272	6.48		202		138	5.63
CML463	L463 PROCESS CONTROL & INSTRUMENTATION (DC) 6 DD DE 6 DC 36 HM 0 OC 0 DE 32 DC 114 HM 1																	
CML620	MEMBRAI	NE TECH	INOLOGY (I	DE)	, ,		6	вс	AU 0	ES 0	BS	0 T	otal 42	AU 0	ES 22	BS 1	8 To	tal 202
CMP462	CHEMICA	L REACT	TON ENGIN	NEERING -I	I (DC)		2	AA	SPRING	3 2014								
CMP463	PROCESS	CONTR	OL & INSTE	RUMENTA	TION (DC)		2	AB	CMD452	PROJI	ECT	PHASE-	II (DC)				8	AA
CMP464	CHEMICA	L ENGIN	EERING DE	ESIGN & DF	RAWING I	I (DC)	2	AB	CMD453	SEMIN	NAR.	AND GR	OUP DISCU	JSSION PF	ROGRAM	(DC)	2	AA
2004	Credit	EGP	SGPA	0004	Credit	EG	Р	CGPA	CML471		CHN	NOLOGY	AND BIOC	HEMICAL	ENGINEER	RING	6	CC
SGPA	46	282	6.13	CGPA	248	142	0	5.73	CML472	(DE) ADVA	NCF	D SEPAI	RATION PR	OCESS (DF)		6	CD
DE 18	DC 28 HM	10 0	OC 0	DE 50	DC 142	HM 10	O	2 6	CML475			-	ABLE ENER	'	,	(DE)		CC
AU 0	ES 0 BS		otal 46	AU 0	ES 22		Tot		CML491				NG AND MA			` '	6	CD
				1 1					MAL102	MATH	ЕМА	TICS-II	(BS)		,		8	DD
									PHL101	PHYS	ICS	(BS)					6	FF
										Cred	it	EGP	SGPA		Credit	E	EGP	CGPA
									SGPA	48		264	5.50	CGPA	290	1	684	5.81
									DE 24	DC 10	НМ	0 (OC 0	DE 74	DC 152 I	HM 1	0 0	
											+		otal 48	AU 0			_	tal 290

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CHP101

CSL101

EEL101

EEP101

HUL102

SPRING 2011

CHL101 APPLIED CHEMISTRY (BS)

APPLIED CHEMISTRY (BS)

SOCIAL SCIENCE (HM)

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

Name: ANKUSH LAHANE

Enrolment No. : BT10CHE017

Branch: CHEMICAL ENGINEERING

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

6

2

8

6

Gr

CD

CD

вс

CC

ВС

CD

Course								Т	it	le						С	r	Gr	
AUTU	М	N 2	010)															
AML15	1	El	NGIN	NEE	RING	MEC	CHA	NICS (E	S)						6		CD	
AMP15	1	El	NGIN	NEE	RING	MEC	CHA	NICS L	Α.	B (E	S)					2		AB	
HUL10	1	C	OMN	1UN	ICATI	ON S	SKIL	LS (HI	M))						6		DD	
MAL10	1	M	MATHEMATICS I (BS)											8		CC			
MEC10	1	ENGINEERING DRAWING (ES)														8		CC	
PEB15	1	SI	POR	TS/	YOG	A/L	IBR.	ARY/	N	CC (AU)					0		SS	
PHL101	l	Pl	HYS	ICS	(BS)											6		CD	
PHP10	1	PI	HYS	ICS	LAB (BS)										2		AA	
SGPA		С	redi	t	EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	C	GPA	
SGF	١		38		21	8	5	.74		CG	FA		38		218	8	5	.74	
DE 0		DC	0	НМ	6	0	С	0		DE	0	DC	0	HM	1 6	C	С	0	
AU 0	T	ES 16 BS 16 Total								AU	0	ES	16	BS	16	To	ntal	38	

MAL.	102	M	ATH	EM/	ATICS	- II	(BS	5)							8		CD
MEP	101	W	ORK	SH	OP (I	ES)									4		AA
PEB	151	SI	POR'	TS/	YOG	A/ LII	BRA	RY/ N	CC (AU)					0		SS
SGPA		C	redi	it	EG	Р	S	GPA	CG	ДΛ.	C	redi	it	EG	Р	C	GPA
36	PA		40		24	6	6	6.15	CG	PA		78		46	4	5	.95
DE	0	DC	0	HM	1 4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

AUTUMN 2011

	Crodit	EGD	SCDA		Cradit	ECD	TΠ	CCDA
MAL205	NUMERIO	CAL METH	ODS AND	PROBABILI	TY THEOR	Y (DE)	6	FF
CML474	PLANT U	TILITY (DE)				6	DD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	CD
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC (HEMISTR'	Y (DC)		2	CC
CHL263	ORGANIC	C CHEMIST	TRY AND S	YNTHESIS	(DC)		6	CD
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CD

MAL205	NUME	RIC	AL M	ETH	ODS	AND F	PROB	ABIL	ITY T	ГНЕС	DRY	(DE)	6		FF	
SGPA	Credi	t	EG	Р	SG	SPA	CGI	. .	С	redi	t	EGI	•	CC	3PA	
SGPA	40		17	2	4.	.30	CGI	A	1	112		636	;	5	.68	
DE 12	DC 28	ΗN	1 0	0	С	0	DE	6	DC	28	НМ	10	0	С	0	
AU 0	ES 0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	112	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	DD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML621	NANO TECHNOLOGY (DE)	6	W
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BC

80	PA	С	redi	it	EG	Р	SGPA	CG	ВΛ	C	redi	it	EG	Р	C	GPA
36	IFA		40		128	В	3.20	CG	FA		146		78	8	5	.40
DE	12	DC	28	НМ	0	00	0	DE	18	DC	50	НМ	10	00	С	0
AU	0	ES	0	BS	0	Tot	al 40	AU	0	ES	36	BS	32	Tot	tal	146

RE-EXAM AUTUMN 2011

MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) 6

														(,			
SG	·D 4	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	iPA		6		24	ŀ	4.	00	CG	PA	•	118		660)	5	.59
DE	6	DC	0	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	6	AU	0	ES	36	BS	32	То	tal	118

RE-EXAM SPRING 2012

CML	265	Cl	HEM	ICAI	LENG	SINE	ERI	NG TH	E	RMC	YDC	NAM	CS	(DC	;)	6		FF
60	PΑ	С	redi	it	EG	Р	S	GPA	Γ	CG	DΛ	С	redi	it	EG	Р	C	GPA
36)PA		6		0		0	.00		CG	PA		146		78	8	5	.40
DE	0	DC	6	HM	I 0	0	С	0		DE	18	DC	50	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	6		ΑU	0	ES	36	BS	32	То	tal	146

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	FF
CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DC)	6	DD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	DD
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	DD
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	FF
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	CD
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	DD
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	CD

60	PΑ	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
30	PA		42		10	0	2	.38	CG	PA	1	170		888	3	5	.22
DE	20	DC	22	НМ	I 0	0	С	0	DE	26	DC	66	НМ	10	О	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	tal	170

SPRING 2013

DD

CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	S DD
CML366	MASS TRANSFER - II (DC)	6	6 FF
CML367	HEAT TRANSFER-II (DC)	6	S CD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	S DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION (I	OC) 6	S CC
CML468	ORE AND MINERAL PROCESSING (DE)	6	S DD
CMP366	MASS TRANSFER (DC)	2	2 CC
CMP367	HEAT TRANSFER (DC)	2	2 BB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION (I	OC) 2	2 AA

SG	DΛ	C	redi	it		EG	Р	S	GPA	١.	CG	ВΛ	C	redi	t	EG	Р	C	GPA
36	IFA		42			186	ô	4	4.43	l '	CG	FA		224		115	52	5	.14
DE	6	DC	36	HN	Л	0	0	С	0	1	DE	44	DC	102	НМ	10	0	С	0
AU	0	ES	0	BS	3	0	To	tal	42		AU	0	ES	36	BS	32	То	tal	224
										_									

RE-EXAM AUTUMN 2012

CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CD
CML361	MASS TRANSFER - I (DC)	6	DD
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	טט

SGPA	С	redi	it	E	₽P	S	GPA	CG	п.	C	redi	t	EG	P	C	SPA	
30	SGPA DE 12		18		7	8	4	1.33	CG	PA		188		966	6	5	.14
DE	12	DC	6	HM	1 0	0	С	0	DE	38	DC	72	НМ	10	00)	0
AU	0	ES	0	BS	0	То	tal	18	AU	0	ES	36	BS	32	Tot	al	188

RE-EXAM SPRING 2013

CML366 MASS TRANSFER - II (DC)

	O.V.L	SGPA						. (20	,								•		
	60	D۸	С	redi	it	EG	Р	SGP	Α	_	_	PA	C	redi	t	EG	Р	C	GPA
	36	PA		6		0		0.00)	C	G	PA		224		115	52	5	5.14
İ	DE	0	DC	6	HN	<i>I</i> 0	00	C ()	DI	Ξ	44	DC	102	НМ	10	0	С	0
	AU	0	ES	0	BS	3 0	Tot	al (3	Αl	J	0	ES	36	BS	32	То	tal	224

GRADE CARD

Name : ANKUSH LAHANE Enrolment No. : BT10CHE017

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course

50

AU 0 ES 0 BS 0 Total

DE 22 DC 22 HM 6

200

OC

Course							Т	ïtle					С	r	Gr
AUTUM	IN 2	013	}												
CMD401	PF	ROJI	EC1	PHA	SE I	(DC)						4		AB
CML374	PE	ETR	OLI	UM RI	FIN	ERY	' ENGI	NEER	ING	(DE)			6		CC
CML461	TF	RAN	SPC	ORT P	HEN	ОМ	ENA (D	C)					6		FF
CML462	CH	HEM	ICA	L RE	ACTI	ON	ENGIN	EERI	NG II	(DC)			6		CD
CML463	PF	PROCESS CONTROL & INSTRUMENTATION (DC) 6 FF CFD FOR CHEMICAL ENGINEERS (DE) 6 CC													
CML480	CF	CFD FOR CHEMICAL ENGINEERS (DE) 6 C													
CML620	M	EMB	RA	NE TE	CHN	1OL	OGY (E	DE)					6		BC
CMP462	CH	HEM	ICA	L RE	ACTI	ON	ENGIN	EERI	NG -I	I (DC)			2		BB
CMP463	PF	ROC	ES	S CON	ITRO)L &	INSTR	RUME	NTA	TION (DC)		2		BB
CMP464	CH	HEM	ICA	L EN	SINE	ERI	NG DE	SIGN	& DI	RAWING	I (D	C)	2		ВС
SGPA	Cı	redi	t	EG	Ρ	S	GPA	CG	DΛ	Credi	t	EG	Р	C	GPA
SGPA		46		22	6	4	I.91	CG	PA	258		137	8	5	5.34
DE 18	DC	28	НΝ	1 0	0	С	0	DE	62	DC 118	HN	1 10	С	C	0
AU 0	ES	0	BS	0	То	tal	46	AU	0	ES 36	BS	32	To	otal	258

SPRING	2014						
CMD452	PROJECT	PHASE-II	(DC)			8	BB
CMD453	SEMINAR	AND GRO	UP DISCU	SSION PR	OGRAM (E	OC) 2	BC
CML366	MASS TR	ANSFER-II	(DC)			6	FF
CML466	CHEMICA	L PLANT [DESIGN (DC)		6	FF
CML471	BIOTECH (DE)	NOLOGY A	AND BIOCH	HEMICAL E	NGINEERIN	NG 6	FF
CML475	NEW AND	RENEWA	BLE ENER	GY ENGIN	IEERING (I	DE) 6	CC
CML479	ENTREP	RENEURSH	HIP DEVEL	OPMENT	(DE)	6	CD
CMP267	COMPUT	ER PROGF	RAMMING 8	& APPLICA	TIONS (DE	Ξ) 2	BB
CMP472	SEPARAT	TON PROC	CESS (DE)		2	BB
HUL401	PSYCHOL	_OGY & MA	ANAGEMEI	NT (HM)		6	DD
SCDA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA				CGPA			

302

AU 0 ES 36 BS 32 Total

DE 84 DC 134 HM 16

1632

OC

4.00

0

50

Title

Cr

Gr

5.40

0

302

RE-EXAM AUTUMN 2013

 CML461
 TRANSPORT PHENOMENA (DE)
 6
 DD

 CML463
 PROCESS CONTROL & INSTRUMENTATION (DC)
 6
 CD

CIVIL	.400		100		001		<i>,</i> L G	114011	COIV		* 1 / 1	1101	(00	,		U		OD
60	. П л	С	redi	it	EG	Р	S	GPA	_	_	PA	С	redi	t	EG	P	C	3PA
36	SGPA		12		54	ŀ	4	.50	٥	G	PA	:	270		143	2	5	.30
DE	6	DC	6	НМ	0	0	С	0	D	Е	68	DC	124	НМ	10	0	С	0
AU	0	ES	0	BS	Ο	To	tal	12	A	IJ	0	FS	36	BS	32	To	tal	270

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ARIHANT JAIN Enrolment No. : BT10CHE018

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	FF							
CHP101	CHEMIST	RY LAB (E	3S)			2	CC							
CSL101	COMPUT	OMPUTER PROGRAMMING (ES) 8 FF												
EEL101	ELECTRI	LECTRICAL ENGINEERING (ES) 6 FF												
EEP101	ELECTRI	ELECTRICAL ENGINEERING (ES) 0 11 ELECTRICAL ENGINEERING LAB (ES) 2 BB												
HUL102	SOCIAL S	SCIENCE (HM)			4	AB							
MAL101	MATHEM	ATICS I (B	S)			8	FF							
MEP101	WORKSH	IOP (ES)				4	AB							
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS							
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA							
SGPA	40	100	2.50	CGPA	12	100	8.33							

SGPA DE 0	C	rea	t	EG	ץ	5	GPA		CGI	DΛ	C	reai	t	EG	۲	S	iPΑ		
	36	FA		40		10	0	2	2.50		CGI	FA		12		100)	8.	.33
	DE	0	DC	0	НМ	4	0	С	0	Г	DE	0	DC	0	НМ	4	С	С	0
	AU	0	ES	20	BS	16	To	tal	40		AU	0	ES	6	BS	2	To	otal	12

RE-EXAM AUTUMN 2010

MAL101	MATHEMATICS I (BS)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
CHL101	CHEMISTRY (BS)	6	CD

						•	,										
SGPA	С	redi	it	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	P	CG	PA	
30			28		30		1	.07	CG	PA		18		130)	7.	22
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	4	00)	0
AU	0	ES	14	BS	14	To	tal	28	AU	0	ES	6	BS	8	Tot	al	18

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF

80	ъΛ	С	redi	t	EGP		S	GPA	CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA			42		20)	0.48		CG	FA		54		304		5.63	
DE	6	DC	28	НМ	0	0	С	0	DE	0	DC	4	НМ	10	C	C	0
AU	0	ES	8	BS	0	То	tal 42		AU	0	ES	22	BS	18	To	otal	54

RE-EXAM AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML474	PLANT UTILITY (DE)	6	DD
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
		1	

SGPA	Credi	t	EG	Р	S	GPA	CG	ДΛ.	С	redi	t	EG	P	CG	PA
SGFA	38		72		1	.89	CG	CGIA		72		370	6	5.22	
DE 6	DC 24	НМ	0	0	С	0	DE	6	DC	16	НМ	10	00	0	0
AU 0	ES 8	BS	0	To	tal	38	AU 0		ES	22	BS	18	Tot	al	72

Course	Title	Cr	Gr
SPRING	3 2011		
AML151	ENGINEERING MECHANICS (ES)	6	FF
AMP151	ENGINEERING MECHANICS (ES)	2	ВС
HUL101	COMMUNICATION SKILL (HM)	6	CC
MAL102	MATHEMATICS - II (BS)	8	W
MEC101	ENGINEERING DRAWING (ES)	8	FF
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	FF
PHP101	PHYSICS (BS)	2	DD
	Credit EGP SGPA Credit	EGP	CGPA

80	·DΛ	С	red	it	EG	Р	SG	PA	CG	DΛ	С	redi	it	EG	Р	C	GPA
SGPA			38 58		3	1.53		001 A			28			8	6.71		
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	FS	16	BS	16	To	tal	38	AU	0	FS	8	BS	10	Tο	tal	28

RE-EXAM SPRING 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
MEC101	ENGINEERING DRAWING (ES)	8	DD
PHL101	PHYSICS (BS)	6	FF

SCI	٥,٨	С	redi	t	EGP		SC	3PA	CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA			20		32	:	1	.60	C	FA		36		22	0	6	.11
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	14	BS	6	Tot	tal	20	AU	0	ES	16	BS	10	To	tal	36

SUMMER TERM SPRING 2011

EEL101	ELECTRICAL ENGINEERING (ES)	6	DD
MAL101	MATHEMATICS I (BS)	8	CD

SG	DΛ	С	redi	it	Е	GP	5	SGPA	CG	D۸	С	redi	it	EG	Р	CG	SPA
36	PA	14			64			4.57	CG	PA		50		28	4	5.68	
DE	0	DC	0	ΗN	1 0		ОС	0	DE	0	DC	0	НМ	10	00	С	0
AU	0	ES	6	BS	8	1	Γotal	14	AU	0	ES	ES 22 B		3 18 7		tal	50

SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	(6 F	F
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	(6 F	F
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	2 C	D
CML263	FLUID MECHANICS (DC)	(6 F	F
CML264	MECHANICAL OPERATIONS (DC)	(5 D	D
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	(6 F	F
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	2 B	C
MAL102	MATHEMATICS - II (BS)	8	3 F	F

80	·DΛ	С	redi	t	EG	Р	SG	PA	CG	DΛ	C	redi	it	EG	Р	CC	SPA
36	SGPA 42		42		48		1.	14	0	FA		82			4	5.17	
DE	0	DC	28	НМ	0	Ó	С	0	DE	6	DC	26	НМ	10	0	С	0
AU	0	ES	6	BS	8	To	tal	42	AU	0	ES	22	BS	18	То	tal	82

RE-EXAM SPRING 2012

MAL102	MATHEMATICS - II (BS)	8	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML263	FLUID MECHANICS (DC)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
AML151	ENGINEERING MECHANICS (ES)	6	FF

Ì	SG	DA	С	redi	t	EG	Р	SGPA	CG	D 4	С	redi	t	EG	Р	CC	GPA
	36	PA		32		0		0.00	CG	PA		82		42	4	5	.17
Ì	DE	0	DC	18	HN	1 0	00	0	DE	6	DC	26	НМ	10	0	С	0
Ì	AU	0	ES	6	BS	8	Tot	al 32	AU	0	ES	22	BS	18	То	tal	82

GRADE CARD

Name: ARIHANT JAIN Enrolment No.: BT10CHE018

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course					Т	itle						С	r	Gr
AUTUM	N 2012	2												
CML361	MASS	TRA	NSFI	ER - I	(DC)							6		FF
CML362	HEAT	TRAI	NSFE	R I ([OC)							6		FF
CML363 CHEMICAL PROCESS EQUIPMENT DESIGN (DC) 6														
CML370 ENVIRONMENTAL ENGINEERING (DE) 6 FF														
CML375 ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE) 6 FF														
CMP364 CHEMICAL ENGINEERING DESIGN & DRAWING I (DC) 2 BC														
CMP365	FLUID	MEC	HAN	IICS 8	MECHA	NICA	L OP	ERA	TION	III (I	DC)	2		FF
CMP370	ENVIR	RONN	IENT	AL EN	NGINEER	ING (DE)					2		CC
SGPA	Credi	t	EG	P	SGPA	CG	ВΛ	С	redi	t	EG	Р	CC	3PA
SGFA	36		50		1.39	CG	FA		92		474	1	5	.15
DE 14 DC 22 HM 0 OC 0 DE 8 DC 34 HM 10 0													C	0
AU 0	ES 0	BS	0	Tota	al 36	AU	0	ES	22	BS	18	To	otal	92

_	_					
R	F.	FΥ	ΔN	AII	TUMN	2012

	A 111		0004		A 1114			0004
CML375	ANALYTI	CAL METH	ODS FOR	CHEMICAL	_ ANALYSIS	(DE)	6	FF
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	FF
CML362	HEAT TR	ANSFER I	(DC)				6	FF
CML361	MASS TR	RANSFER -	I (DC)				6	FF

												,	,			
60	·D A	С	redi	it	EG	Р	SGPA	CG	D 4	С	redi	t	EG	Р	CC	PA
SGPA			24		0		0.00	CG	PA		92			4	5.15	
DE	12	DC	12	НМ	0	oc	0	DE	8	DC	34	НМ	И 10 (С	0
AU	0	ES	0	BS	0	Tota	al 24	AU	0	ES	22	BS	18	То	tal	92

AUTUMN 2013

CCDA
FF
BB
вс
FF
FF
FF
DD
вс
FF

80	ъΛ	С	redi	it	EG	Р	S	GPA		CGI	D A	С	redi	t	EG	P	CGPA	
SGPA			44		82	82		1.86		CGI	A	116			604	1	5.21	
DE	0	DC	32	НМ	0	0	С	0		DE	8	DC	58	НМ	10	C	C	0
AU	0	ES	6	BS	6	То	tal	44		AU	0	ES	22	BS	18	Тс	otal	116

RE-EXAM AUTUMN 2013

AML151	ENGINEERING MECHANICS (ES)	6	FF
CML361	MASS TRANSFER - I (DC)	6	DD
CML362	HEAT TRANSFER I (DE)	6	DD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	DD
PHL101	PHYSICS ()	6	FF
PHL101	PHYSICS ()	6	F

60	·D A	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
36	SGPA		30		72	72		2.40		PA	134			676	6	5.04	
DE	6	DC	12	НМ	0	0	С	0	DE	14	DC	70	НМ	1 10		С	0
AU	0	ES	6	BS	0	То	tal	24	AU	0	ES	22	BS	18	To	tal	134

(Course	Title	Cr	Gr
	SPRING	2013		
	CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
	CML366	MASS TRANSFER - II (DC)	6	FF
	CML367	HEAT TRANSFER-II (DC)	6	FF
	CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	FF
	CML371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	6	DD
	CMP366	MASS TRANSFER (DC)	2	DD
	CMP367	HEAT TRANSFER (DC)	2	BB
	CMP371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	2	FF
	MAL102	MATHEMATICS - II (BS)	8	FF
		Credit EGP SGPA Credit EGP	• 🗍	CGPA

60	- В А	C	redi	it	EG	P	s	GPA	_ ا	_	ПΛ	C	redi	it	EG	Р	CGPA	
SGPA			44		48	48		1.09		CGPA			102			2	5.12	
DE	0	DC	36	HN	<i>I</i> 0	0	С	0	D	E	8	DC	44	НМ	10	0	С	0
AU	0	ES	0	BS	8	То	tal	44	Α	U	0	ES	22	BS	18	То	tal	102

RE-EXAM SPRING 2013

CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML366	MASS TRANSFER - II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	FF
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF

SGPA			Credit 32				9	GPA	l			Credit			рΪ	CGPA	
									CGPA		Credit			EG	•	COLA	
							0.00					102			2	5.12	
DE	0	DC	24	НМ	0	0	С	0	DE	8	DC	44	НМ	10	OC	;	0
AU	0	FS	0	BS	8	To	tal	32	AU	0	FS	22	BS	18	Tota	al	102

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	DD
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	CD
CML366	MASS TRANSFER-II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	FF
CML468	ORE AND MINERAL PROCESSING (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I (DC)	2	AB

		PΑ	С	Credit 48		EGP 172		SGPA 3.58		CGPA		Credit		t	EGP 848		CGPA 4.99		
	36	JPA											170						
	DE	18	DC	30	ΗN	1 0	0	С	0		DE	32	DC	88	НМ	10	0	С	0
	ΔΠ	Λ	FS	Λ	RS	3 0	To	tal	48	1	ΔΠ	Λ	FS	22	BS	18	Τn	tal	170

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : ARJUNRAJ Enrolment No. : BT10CHE019

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr		
AUTUM	N 2010								
CHL101	CHEMIST	RY (BS)				6	BC		
CHP101	CHEMIST	RY LAB (E	3S)			2	BC		
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	CC		
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	CD		
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BB		
HUL102	SOCIAL S	SCIENCE (HM)			4	AB		
MAL101	MATHEM	ATICS I (B	SS)			8	BC		
MEP101	WORKSH	IOP (ES)				4	AA		
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS								
SCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA		
SGPA	40	282	7.05	CGPA	40	282	7.05		

80	ВΛ	С	redi	t	EGP		SGPA		CG	D A	С	redi	t	EG	Р	CC	SPA						
SGPA		40		282		7.05		CG	ГА		40			2	7	.05							
DE	0	DC 0 HN		НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0						
AU	0	ES	20	BS	16	To	otal 40		tal 40		tal 40		Total 40		AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Credit ECD CCDA Credit ECD		CCDA
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CC

80	. В А	С	redi	t	EG	Р	S			D A	С	redi	t	EG	Р	C	GPA	
SGPA		40		220		5.50		CGPA			•	118		740		6	.27	
DE	12	DC	28	НМ	0	0	С	0		E	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	40	Α	Ū	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CC
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC

60	·D 4	С	redi	t	EGP SGPA		CG	D.A	С	redi	t	EG	Р	C	GPA		
SGPA		42		292		6.95		CG	PA	2	200			0	6	.70	
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	16	0	С	0
AU	0	ES	0	BS	0	Total		42			ES	36	BS	32	То	tal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	CC
CML461	TRANSPORT PHENOMENA (DC)	6	CD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CD
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	CD
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BC
		1	

SG	. П А	С	redi	t		EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	SPA
36	iPA		40			246	ç	6	.15	CG	PA		282		187	2	6	.64
DE	12	DC	28	ΗN	1	0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	;	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	282

Course	Title	Cr	Gr
SPRING	3 2011		
AML151	ENGINEERING MECHANICS (ES)	6	CC
AMP151	ENGINEERING MECHANICS (ES)	2	CD
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	DD
MEC101	ENGINEERING DRAWING (ES)	8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CC
PHP101	PHYSICS (BS)	2	CC
	l I I I	 	

SGPA -	C	Credit EGP			P	SG	PΑ	CG	D 4	C	redi	t	EG	P	CGPA		
36	IFA		38		23	8	6.2	26	C	FA		78		520	0	6	.67
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CE
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	AE
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

SGPA	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA		
	40			308		7.70		CG	PA		158			8	6	.63		
DI	E	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	00	0	0
Αl	J	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВС
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	ВС
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	Е	ЭP		SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		42		2	36		6.81	CG	FA		242		162	26	6	5.72
DE	6	DC	36	ΗN	1 0		OC	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	Τ.	Tota	al 42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	CC
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	BB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	DD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	DD

60	PΑ	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	С	GPA
	IPA		40		21	4	5.	35	CG	PA		322		208	6	6	6.48
DE	30	DC	10	ΗN	1 0	00	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: ARJUNRAJ Enrolment No.: BT10CHE019

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: ASHUTOSH KUMAR SINGH Enrolment No. : BT10CHE020

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course							Т	it	tle						С	r	Gr
AUTUN	1N 2	010)														
AML151	E	NGIN	NEE	RING	MEC	CHAI	NICS (Е	S)						6		AB
AMP151	E	NGIN	NEE	RING	MEC	CHAI	NICS L	Α	AB (E	S)					2		AB
HUL101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M))						6		BB
MAL101	М	ATH	EΜ	ATICS	I (B	S)									8		AB
MEC101	E	ENGINEERING DRAWING (ES) 8 CC															
PEB151	S	POR	TS	/ YOG	A/L	IBR/	ARY/I	N	CC (AU)					0		SS
PHL101	Р	HYS	CS	(BS)											6		AA
PHP101	Р	HYS	CS	LAB (BS)										2		ВС
SGPA	С	redi	t	EG	Р	S	GPA		CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA		38		31	4	8	.26		CG	ГА		38		314	4	8	.26
DE 0	DC	0 HM 6 O			С	0	ĺ	DE	0	DC	0	НМ	6	C	C	0	
ALL O	FS	16 BS 16 Total 38 AU 0 ES 16 BS 16 Total 38															

SG	D۸		eu		LG	•	30	חוכ	ı	CG	ο Λ		eui		LG	•	5	חוכ
36	IFA		38		31	4	8	.26		CG	A		38		31	4	8	.26
DE	0	DC	0	HN	1 6	0	С	0		DE	0	DC	0	HM	l 6	C	С	0
AU	0	ES	16	BS	16	To	tal	38		AU	0	ES	16	BS	16	To	otal	38

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	BC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AA
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML474	PLANT UTILITY (DE)	6	BB
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	AB
		\neg	

80	• D A	С	redi	t	EG	Р	S	GPA		CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		32	8	8	.20	'	CG	PA	1	118		990		8	.39
DE	12	DC	28	НМ	0	0	С	0		DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	40	Ι.	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AA
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		37	4	8	.90	3	FA	2	200		171	2	8	.56
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	O	C	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	CC
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML480	CFD FOR CHEMICAL ENGINEERS (DE)	6	ВС
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	CC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CD
CML461	TRANSPORT PHENOMENA (DC)	6	CC
CML333	POLYMER PROCESSING (DE)	6	ВС
CMD401	PROJECT PHASE I (DC)	4	AB

	SG	·DΛ	С	redi	it	E	3P	S	GPA	CG	DΛ	С	redi	t	EG	Р	CG	PΑ
	36	IFA		40		20	8	(5.70	CG	FA		282		237	4	8.	42
j	DE	12	DC	28	HN	1 0	0	С	0	DE	62	DC	142	НМ	10	00)	0
	AU	0	ES	0	BS	0	To	tal	40	ΑU	0	ES	36	BS	32	Tot	al	282

Course			Ti	tle		Cı	Gr					
SPRING	2011											
CHL101	APPLIED	CHEMISTI	RY (BS)		6	BB						
CHP101	APPLIED	CHEMISTI		2	AA							
CSL101	COMPUT	COMPUTER PROGRAMMING (ES)										
EEL101	ELECTRIC	ELECTRICAL ENGINEERING (ES)										
EEP101	ELECTRIC	CAL ENGIN	NEERING L	AB (ES)		2	BC					
HUL102	SOCIAL S	CIENCE	(HM)			4	AB					
MAL102	MATHEM	ATICS - II		8	AA							
MEP101	WORKSH	OP (ES)				4	AA					
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS					
	Crodit	ECD	SCDA		Crodit	EGD	CGBA					

١,	66	D۸	С	redi	t	EGP		SGF	Ά	CG	ВΛ	С	redi	t	EG	Р	C	GPA
'	SGPA 40		40		348		8.70		CG	FA		78			2	8	.49	
Г	DΕ	0	DC	0	НМ	4	00	С	0	DE	0	DC	0	НМ	10	0	С	0
Α	١U	0	ES	20	BS	16	Tot	tal 4	10	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AΑ
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AΑ

90	SGPA		Credit 40		EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA					348		8.70		CG	FA		158		133	8	8	3.47
DE	12	DC	28	НМ	0	00	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	FS	0	BS	0	Tot	al	40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	AA
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	DA	С	redi	t	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			42		39	4	9.	38	CG	PA		242		210	6	8	3.70
DE	6	DC	36	HM	I 0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC

80	PA	С	redi	it	EGP		SGPA		CC	PA		redi	t	EG	P	CGP	Α
ļ			40		27	270		6.75		IFA		322		264	4	8.21	
DE	30	DC	10	HN	1 0	0	С	0	DE	92	DC	152	НМ	10	00	0)
AU	0	ES	0	BS	0	То	tal	40	ΑU	0	ES	36	BS	32	Tot	al 32	22

GRADE CARD

Name : ASHUTOSH KUMAR SINGH Enrolment No. : BT10CHE020

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

SPRING 2011

: ASHWINI AHAKE Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE021

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

HUL101 COMMUNICATION SKILL (HM)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

6

Gr

FF

AΒ

ВВ

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	CHEMISTRY (BS)											
CHP101	CHEMIST	RY LAB (E	2	CC									
CSL101	COMPUT	COMPUTER PROGRAMMING (ES)											
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES)											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES)											
HUL102	SOCIAL S	SCIENCE (HM)			4	BC						
MAL101	MATHEM	ATICS I (B	S)			8	CD						
MEP101	WORKSH	IOP (ES)				4	- AA						
PEB151	SPORTS	/ YOGA / L	0	SS									
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA						
SGPA	40	194	4.85	CGPA	34	194	5.71						

80	. D V	С	redi	t	EGP		S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		19	4 4.8		.85	CG	FA		34		194	4	5	.71
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	14	BS	16	To	otal	34

RE-EXAM AUTUMN 2010

EEL101 ELECTRICAL ENGINEERING (ES)

60	SGPA		Credit					CG	D A	С	redi	t	EG	Р	CG	PA
SGPA			6		24		4.00	CG	PA		40		218	3	5.4	45
DE	0	DC	0	НМ	0	0	C 0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	6	BS	0	Tot	tal 6	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	CD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		210	6	5	.40	CG	FA		118		664	1	5	.63
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	O	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CEL417	DISASTER MANAGEMENT (OC)	6	CD
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	DD
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

SGP	^	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
JUF	Α		42		27	6	6	.57	CG	FA	2	200		120	6	6	.03
DE 1	4	DC	22	НМ	0	0	С	6	DE	38	DC	78	НМ	10	С	C	6
AU C)	ES	0	BS	0	To	tal	42	ΑU	0	ES	36	BS	32	To	otal	200

HOLIGI	COMMO	/ VIO/ () !	014 01	(1111	'/						0		טט
MAL102	MATHEN	MATICS	- II (I	BS)							8		FF
MEC101	ENGINE	ERING	DRAV	VING (ES	S)						8		BC
PEB151	SPORTS	S / YOG	A/ LIB	RARY/ NO	CC (AU)					0		SS
PHL101	PHYSIC	S (BS)									6		CD
PHP101	PHYSIC	S (BS)									2		ВВ
SGPA	Credit	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	CG	PA
SGFA	38	168	В	4.42	C	FA		64		38	6	6.	.03
DE 0	DC 0 F	HM 6	OC	0	DE	0	DC	0	НМ	10	0	С	0
AU 0	ES 16 E	3S 16	Tota	al 38	AU	0	ES	30	BS	24	То	tal	64

RE-EXAM SPRING 2011

AML151 ENGINEERING MECHANICS (ES) 6 CD MAL102 MATHEMATICS - II (BS) DD 8

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		14		62	:	4	.43	CG	FA		78		44	В	5	.74
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	00	С	0
ALI	0	FS	6	BS	8	To	tal	14	ALI	0	FS	36	BS	32	Tot	tal	78

SPRING 2012

DD

6

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

6/	3PA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
30	JFA		40		26	6	6	.65	C	FA		158		93	0	5	5.89
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
ΑU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

SG	DΛ	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	P	C	GPA
36	IFA		42		290	0	6	.90	CG	FA		242		149	6	6	5.18
DE	6	DC	36	НМ	0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

0			
CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	BC
	(DE)		
CML472	ADVANCED SEPARATION PROCESS (DE)	6	CD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IFA		34		25	6	7	'.53	CG	FA		322		207	' 8	6	.45
DE	24	DC	10	НМ	0	0	С	0	DE	86	DC	152	НМ	10	0	С	6
ΑU	0	ES	0	BS	0	To	tal	34	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : ASHWINI AHAKE Enrolment No. : BT10CHE021

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course					Т	itle				C	r G	Course	Title	Cr	
AUTUM	IN 201	3													
CMD401	PRO.	JECT	PHAS	SE I	(DC)					4	1 A.	4			
CML333	POL	MEF	PRO	CES	SING (DE)				(6 C				
CML374	PETF	ROLIU	JM RE	FIN	ERY ENGI	NEERII	NG (D	E)		(6 В	3			
CML461	TRAN	ISPC	RT P	HEN	OMENA (E	OC)				(6 D)			
CML462	CHE	ΛΙСΑ	L REA	CTI	ON ENGIN	IEERIN	G II (D	OC)		(6 В				
CML463	PRO	CESS	CON	ITRC	L & INSTE	RUMEN	ITATIC	ON (DC)	(6 C				
CML620	MEM	BRA	NE TE	CHN	IOLOGY (I	DE)				(6 В				
CMP462	CHE	ΛΙСΑ	L REA	CTI	ON ENGIN	IEERIN	G -II (I	DC)		:	2 A	3			
CMP463	PRO	CESS	CON	ITRC	L & INSTE	RUMEN	ITATIC	ON (DC)	:	2 A	A			
CMP464	CHE	ИΙСΑ	L ENG	SINE	ERING DE	SIGN 8	& DRA	WING	II (DC)	:	2 A.	4			
0004	Cred	lit	EG	Р	SGPA	005		Credi	t E	EGP	CGP				
SGPA	46		326	6	7.09	CGF	'A	288	1	822	6.33				
DE 18	DC 28	HM	0	0	C 0	DE	62 D	C 142	HM ·	10 (DC 6				
AU 0	ES 0	BS	0	To	tal 46	AU	0 E	S 36	BS 3	32 T	otal 28	3			

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : AYYALURU TULASI SHASHIDHAR REDDY Enrolment No. : BT10CHE022

Branch : CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course	Э							Т	it	le						С	r	Gr
AUTU	JΜ	IN 2	010)														
AML15	51	E	NGI	NEE	RING	MEC	CHAI	NICS (E	S)						6		BC
AMP15	51	E	NGI	NEE	RING	MEC	CHAI	NICS L	A	B (E	S)					2		AB
HUL10)1	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M))						6		BB
MAL101 MATHEMATICS I (BS) 8 BC												BC						
MEC101 ENGINEERING DRAWING (ES) 8 CC																		
PEB151 SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS												SS						
PHL10	1	Р	HYS	ICS	(BS)											6		BC
PHP10)1	Р	HYS	ICS	LAB (BS)										2		AA
SGP		С	redi	t	EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	CGP	
SGP	A		38		27	4	7	.21		CG	FA		38		27	4	7	'.21
DE 0 DC 0 HM 6			0	С	0		DE	0	DC	0	ΗN	1 6		OC 0				
AU 0 ES 16 BS 16 To								38		AU	0	ES	16	BS	16	To	otal	38

AUTUMN 2011

	Credit	FGP	Credit	FGP		CGPA		
MEL408	SUPPLY	CHAIN MA			6	AB		
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	DC)		6	AB		
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	CC
CHL261	PHYSICA	L CHEMIS	IRY AND (JENERAL I	METALLURO	Y (DC)	6	BC

SGPA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA	
	40			286		7.15		CGFA		•	118		862	2	7	.31	
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CD
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC

SGPA	С	redi	t	EG	Р	S	GPA		۰۰۱	PA	С	redi	t	EG	Р	C	GPA	
		42		28	6	6	.81		,Gi	A	2	200		145	0	7	7.25	
DE	20	DC	22	НМ	0	0	С	0		DΕ	38	DC	78	НМ	10	C	С	6
AU	0	ES	0	BS	0	То	tal	42	Α	١U	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

	Cradit	ECD	SCDA		Cundit	ECD		CCDA
HUL409	PSYCHO	LOGY & EI	O (MM)				6	AB
CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	DC)	2	BB
CMP463	PROCES	S CONTRO	DL & INSTF	RUMENTAT	TON (DC)		2	AA
CMP462	CHEMICA	AL REACTI	ON ENGIN	EERING -II	(DC)		2	AA
CML463	PROCES	S CONTRO	DL & INSTF	RUMENTAT	TON (DC)		6	ВС
CML462	CHEMICA	AL REACTI	ON ENGIN	EERING II	(DC)		6	ВС
CML461	TRANSPO	ORT PHEN	OMENA (D	OC)			6	CD
CML374	PETROLI	UM REFIN	ERY ENGI	NEERING ((DE)		6	BB
CML333	POLYME	R PROCES	SING (DE))			6	AB
CMD401	PROJEC	I PHASE I	(DC)				4	BB

60	. П А	C	redi	t	E	3P	S	GPA	CG	ПΛ	C	redi	t	EG	P	C	SPA
36	SGPA		46		358		7	7.78	CG	PA		288		210	4	7	.31
DE	12	DC	28	ΗN	1 6	0	С	0	DE	56	DC	142	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	46	AU 0		ES 36 B		BS	32	То	tal	288

Course	Title		Cı	r Gr
SPRING	3 2011			
CHL101	APPLIED CHEMISTRY (BS)		6	BB
CHP101	APPLIED CHEMISTRY (BS)		2	BC
CSL101	COMPUTER PROGRAMMING (ES)		8	CC
EEL101	ELECTRICAL ENGINEERING (ES)		6	BB
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	AA
HUL102	SOCIAL SCIENCE (HM)		4	AB
MAL102	MATHEMATICS - II (BS)		8	CC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
1		l .		

80	D A	С	redi	it	EG	Р	SGF	PA	CG	D۸	С	redi	t	EG	Р	C	GPA	
30	SGPA DE 0		40		30	2	7.5	5	CG	FA		78		57	6	7	7.38	
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0	
AU	0	ES	20	BS	16	To	tal 4	40	AU	0	ES	36	BS	32	То	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

	С	redi	it	EG	Р	SC	SPA	CG	DΛ	С	redi	it	EG	Р	C	CGPA	
		40		30	2	7	.55	CG	FA		158		116	4	7	7.37	
DE	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	6
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	Tο	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	ВС
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВС
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

60	DA	С	redi	t	EG	Р	SGP	Α	CG	DΛ	C	redi	t	EG	Р	C	GPA
SGPA			42		29	6	7.05		CG	PA		242		174	6	7	'.21
DE	6	DC	36	НМ	I 0	0	C C)	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal 4	2	AU	0	ES 36		BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	DD
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

60	PΑ	С	redi	t	EG	Р	SGPA	I	CG	DA	C	redi	t	EG	Р	C	GPA
36	IPA	34			25	6 7.53			CG	PA		322		236	0	7	.33
DE	18	DC	10	ΗN	1 0	00	6		DE 74		DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	Tot	al 34	ľ	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

: AYYALURU TULASI SHASHIDHAR REDDY Name

Enrolment No. : BT10CHE022

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Title

Title Gr Course Course Cr Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : BALASUBRAHMANYA HARISH MANUKONDA Enrolment No. : BT10CHE023

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr					
AUTUM	N 2010											
CHL101	CHEMIST	RY (BS)				6	CC					
CHP101	CHEMIST	RY LAB (E	3S)			2	BC					
CSL101	COMPUT	ER PROGI	RAMMING	(ES)		8	BB					
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	CD					
EEP101	ELECTRICAL ENGINEERING LAB (ES) 2 BB											
HUL102	SOCIAL S	SCIENCE (HM)			4	- AA					
MAL101	MATHEM	ATICS I (B	S)			8	BC BC					
MEP101	WORKSH	IOP (ES)				4	- AA					
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS					
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA					
SGPA	40	000	7.40	CGPA	40	000	- 40					

										•	,							
	SGPA	С	redi	it	EG	Р	S	GPA		~ I	PA	С	redi	t	EG	Р	CC	3PA
3	SGPA		40		296		7	.40	ر ا	J1	A		40	T	296	õ	7	.40
DE	0	DC	0	НМ	4	0	С	0	DI	Ε	0 DC 0 HM		4	С	С	0		
ΑI	J O	FS	20	BS	16	Total		40	ΑI	J	0	FS	20	BS	16	To	ntal	40

AUTUMN 2011

	O== 4!4	FOR	0004		O111	E00		0004
MAL205	NUMERIC	CAL METH	DDS AND	PROBABILI	TY THEOR	Y (DE)	6	CD
CML474	PLANT U	TILITY (DE)				6	CC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (I	DC)		6	BB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC (CHEMISTRY	(DC)		2	AB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	BC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

86	ВΛ	С	Credit		EG	Р	SG	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		262	2	6.55		CG	FA	1	118		820		6	.95
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CD
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL406	LABOUR ECONOMICS & INDUSTRIAL RELATIONS (HM)	6	AB

60	·D 4	С	Credit		EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
SGPA		42		32	0	7.62		CG	PA	2	200		143	8	7	.19	
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	Л 16		C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

60	. П А	C	redi	t	EG	Р	S	GPA	CG	DΛ	C	redi	t	EG	P	CC	SPA
36	SGPA		40		35	4	8	.85	CG	PA		282		213	6	7	.57
DE	12	DC	28	НМ	0	0	С	0	DE	56	DC	142	HM 16		0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU 0		ES 36 B		BS	32	To	tal	282

Course	Title		Cr	Gr
SPRING	3 2011			
AML151	ENGINEERING MECHANICS (ES)		6	BB
AMP151	ENGINEERING MECHANICS (ES)		2	BC
HUL101	COMMUNICATION SKILL (HM)		6	AB
MAL102	MATHEMATICS - II (BS)		8	CD
MEC101	ENGINEERING DRAWING (ES)		8	BC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	CC
PHP101	PHYSICS (BS)		2	BC
	Crodit EGD SGDA Cr	odit	EGD	CGBA

60	E 0 D	C	redi	t	EG	P	SG	SPA	CG	п.	C	redi	t	EG	P	C	GPA
36	IFA		38		26	2	6.	.89	C	ГА		78		558	В	7	.15
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SGPA	Credit	t	EGP SC		SGPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA	40		298	3	7.45	CG	PA		158		111	8	7	.08
DE 12	DC 28	НМ	0	0	0	DE	24	DC	56	НМ	10	00	0	0
AU 0	ES 0	BS	0	Tot	tal 40	AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

80	DΛ	С	redi	t	Е	G	Р	S	GPA	——I CGPA			redi	t	EG	Р	C	GPA
SGPA			42		3	44	4	8	.19	CG	FA		242		178	2	7	7.36
DE	6	DC	36	ΗN	1 C		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	; C		To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

SGPA	С	redi	t	EGP		SGPA			~~	DΛ	С	redi	t	EG	Р	C	GPA		
36)PA		40 OC 10 HN			318		7.95		CGPA				322		245	4	7	.62
DE	30	DC	10	HM	1 0	0	С	0		DE	86	DC	152	НМ	16	0	С	0	
AU	0	ES	0	BS	0	Tot	tal	40		AU	0	ES	36	BS	32	То	tal	322	

Course

VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY NAGPUR

GRADE CARD

: BALASUBRAHMANYA HARISH MANUKONDA Name

Enrolment No. : BT10CHE023

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

Gr

Title Gr Course

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

Cr

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Course

AMP151

HUL101

SPRING 2011

Name : PAREMAL VIJAYSINGH BANAFARR

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE024

ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

AML151 ENGINEERING MECHANICS (ES)

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

6

2

6

Gr

вС

AΒ

ВВ

78

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	CC
CHP101	CHEMIST	RY LAB (E	3S)			2	AB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AA
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BC
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BC
HUL102	SOCIAL S	SCIENCE (HM)			4	BB
MAL101	MATHEM	ATICS I (B	SS)			8	CC
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	306	7.65	CGPA	40	306	7.65

SG	·D A	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
36	IFA		40		30	6	7	.65	CG	FA		40		306	6	7.	.65
DE	0	DC	0	НМ	4	ОС		C 0		0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal 40		AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	0 111 500 0004 0 111 500	\neg	0004
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD
CML474	PLANT UTILITY (DE)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	ВС
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	ВС
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD

80	• D A	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA	40			186		4.65		CG	FA	112			756	6	6.75		
DE	12	DC	28	НМ	0 C		OC 0		DE	12	DC	22	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	112

RE-EXAM AUTUMN 2011

CML	.262	CI	HEM	IICA	L PRO	CES	S CALCU	LAT	IC	NS ((DC)				6		CC
		С	redi	it	EG	Р	SGPA		_	. .	С	redi	t	EG	P	C	GPA
SG	PΑ		6		36	;	6.00	C	GI	PA	•	118		792	2	6	.71
DE	0	DC	6	НМ	0	00	0	D	E	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	Tot	al 6	Α	Ű	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	CD
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CD
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL625	PSYCHOLOGY AND ED (HM)	6	BB

SGP		С	redi	t	EG	Р	S	GPA	١,	CG	ВΛ	С	redi	t	EG	Р	C	3PA
SGF	٠.		42		284	4	6	.76	'	CG	ГА	1	194		128	8	6	.64
DE 14	1	DC	22	НМ	6	0	С	0	Ī	DE	32	DC	78	НМ	16	С	С	0
AU 0	T	ES	0	BS	0	To	tal	42		ΑŪ	0	ES	36	BS	32	To	otal	194

	DE	0	DC	0	HN	1 6	0	С	0	DE	0	DC	0	НМ	10	0	C C)
	36	PA		38		26	4	6.9	5	CG	PA		78		57	0	7.31	I
Ī	SG	D۸	С	redi	t	EG	Р	SGF	РΑ	CG	DΛ	С	redi	t	EG	Р	CGP	Α
-	PHP'	101	Pŀ	HYSI	cs	(BS)										2	В	В
ı	PHL1	101	PH	HYSI	cs	(BS)										6	С	C
ı	PEB1	151	SF	POR'	TS/	YOG	4/ LI	BRAR'	Y/ N	CC (AU)					0	S	S
ı	MEC	101	E١	NGIN	IEE	RING	DRA	WING	(E	S)						8	В	С
ı	MAL	102	M	ATHI	EM/	ATICS	- II	(BS)								8	С	C

AU 0 ES 16 BS 16 Total 38 AU 0 ES 36 BS 32 Total

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SG	DΛ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		34		21:	2	6	.24	CG	FA		152		100	4	6	.61
DE	6	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	00	2	0
ΔΠ	0	FS	Λ	BS	0	To	tal	34	ΔΠ	Λ	FS	36	RS	32	Tot	al	152

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	ВС
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	D۸	С	redi	t	EG	Р	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	FA		42		30	8	7	7.33	CG	FA		236		159	96	6	6.76
DE	6	DC	36	НМ	0	0	С	0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

Γ	80	PΑ	С	redi	t		EG	Р	S	GPA	Γ	CG	DΛ	C	redi	t	EG	Р	С	GPA
	36	JFA		40			308	3	7	7.70		CG	FA		322		222	24	6	6.91
Γ	DE	24	DC	10	HN	Л	0	0	С	6	Ī	DE	80	DC	152	НМ	16	0	С	6
Γ	AU	0	ES	0	BS	3	0	To	tal	40		ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

: PAREMAL VIJAYSINGH BANAFARR Enrolment No. : BT10CHE024 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course				Т	ïtle			(Cr	Gr	Course	Title	Cr	G
AUTUN	IN 2013													
CMD401	PROJEC [®]	T PHA	SEI(DC)					4	BB				
CML333	POLYME	R PRC	CES	SING (DE))			(6	CC				
CML374	PETROL	UM RE	FINE	RY ENGI	NEERING	(DE)		(6	BC				
CML461	TRANSP	ORT P	HENC	OMENA (D	C)				6	DD				
CML462	CHEMICA	AL REA	ACTIC	ON ENGIN	EERING II	(DC)		(6	CC				
CML463	PROCES	S CON	NTRO	L & INSTF	RUMENTA	TION (DC)		(6	BC				
CML620	MEMBRA	NE TE	CHN	OLOGY ([DE)			(6	AB				
CMP462	CHEMICA	AL REA	ACTIC	ON ENGIN	EERING -I	I (DC)		:	2	AB				
CMP463	PROCES	S CON	NTRO	L & INSTF	RUMENTA	TION (DC)		:	2	AB				
CMP464	CHEMICA	AL ENG	GINE	ERING DE	SIGN & DI	RAWING I	I (DC) :	2	AB				
SGPA	Credit	EG	P	SGPA	CGPA	Credit		EGP	CG	PA				
SGPA	46	32	0	6.96	CGPA	282		1916	6.	79				
DE 18	DC 28 HI	v 0	00	0	DE 56	DC 142	НМ	16	C	0				
AU 0	ES 0 B	S 0	Tot	al 46	AU 0	ES 36	BS	32 T	otal	282				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

: BANOTH MOHAN Enrolment No. : BT10CHE025 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course						Т	ïtle							С	r	Gr
AUTUM	N 2010)														
AML151	ENGIN	IEER	ING	MEC	HAN	IICS (ES)							6		FF
AMP151	ENGIN	IEER	ING	MEC	HAN	IICS L	AB ((ES	S)					2		BB
HUL101	COMM	IUNI	CATI	ON S	KILL	S (HI	Л)							6		FF
MAL101																
MEC101	(,															
PEB151	PEB151 SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS															
PHL101																
PHP101	PHYSI	CS L	.AB (BS)										2		FF
SGPA	Credi	t	EG	Р	SG	PA		<u> </u>	ΡΑ	Cı	redi	t	EGI	P	C	GPA
SGFA	38		16	;	0.	42	C	Gr	A		2		16		8	.00
DE 0	DC 0	НМ	6	00		0	DI	E	0	DC	0	НМ	0	С	С	0
AU 0	ES 16	BS	16	Tot	al	38	Αl	U	0	ES	2	BS	0	To	tal	2

RF-F	XAM	ΑIJΤ	TUMN	2010

	0	E0D	0004		0	E0D	0004
PHL101	PHYSICS	(BS)				6	FF
MEC101	ENGINEE	RING DRA	WING (ES)		8	FF
MAL101	MATHEM	ATICS I (B	S)			8	FF
HUL101	COMMUN	IICATION S	SKILLS (HN	1)		6	FF
AML151	ENGINEE	RING MEC	CHANICS (I	=S)		6	FF

					٠,												
SG	·D 4	С	redi	it	EG	Р	S	GPA	CGI	D 4	C	redi	t	EG	Р	C	GPA
36	IPA		34		0		0	.00	CGI	A		2		16		8	.00
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	0	C	С	0
AU	0	ES	14	BS	14	To	tal	34	AU	0	ES	2	BS	0	To	otal	2

AUTUMN 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
HUL101	COMMUNICATION SKILLS (HM)	6	CC
MAL101	MATHEMATICS I (BS)	8	FF
MEC101	ENGINEERING DRAWING (ES)	8	CC
PHL101	PHYSICS (BS)	6	FF
PHP101	PHYSICS LAB (BS)	2	CD

80	DΛ	С	redi	t	EG	Р	SC	SPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	SGPA 36			94		2.61		5		38			222	2	5	.84	
DE	0	DC	0	НМ	6	00	С	0	DE	0	DC	0	НМ	10	С	C	0
AU	0	ES	14	BS	16	Tot	tal	36	AU	0	ES	16	BS	12	To	otal	38

RE-EXAM AUTUMN 2011

PH	HL101	PHYSICS (BS)		6	FF
MA	AL101	MATHEMATICS I (BS)		8	FF
A۱	/L151	ENGINEERING MECHANICS	ES)	6	FF

SG	ВΛ	С	redi	t	EG	Р	SGPA	CG	۸.	С	redi	t	EG	P	CC	SPA
36	PA		20		0		0.00	CG	A		38		222	2	5.	.84
DE	0	DC	0	НМ	0	OC	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	14	Tota	al 20	AU	0	ES	16	BS	12	To	tal	38

AUTUMN 2012

DE 6 DC 28 HM 6

AU 0 ES 0 BS 0 Total

SGPA				CGPA			T	
CCDA	Credit	EGP		CGPA				
HUL406	LABOUR	ECONOMI	CS & INDL	ISTRIAL RI	ELATIONS (HM)	6	CC
CML474	PLANT U	TILITY (DE	E)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	CD
CHP261	PHYSICA	L AND INC	ORGANIC C	CHEMISTR	Y (DC)		2	CD
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	S (DC)		6	FF
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL	METALLUR	GY (DC)	6	DD

3.65

0

40

146

OC

102

DE 6 DC 32 HM 16 OC

AU 0 ES 28 BS 20 Total

522

5.12

0

Course			Т	itle		С	r Gr
SPRING	2011						
CHL101		CHEMIST	RY (BS)			6	FF
CHP101	APPLIED	CHEMIST	RY (BS)			2	DD
CSL101	COMPUT	ER PROGI	RAMMING	(ES)		8	FF
EEL101	ELECTRIC	CAL ENGI	NEERING	(ES)		6	FF
EEP101	ELECTRIC	CAL ENGI	NEERING L	AB (ES)		2	DD
HUL102	SOCIAL S	CIENCE	(HM)			4	CC
MAL102	MATHEM	ATICS - II	(BS)			8	DD
MEP101	WORKSH	OP (ES)				4	AA
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	112	2.80	CGPA	22	128	5.82

			ŦŪ			-									•	•	J.UZ
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	HM	l 4	0	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	8	BS	10	То	tal	22

RE-EXAM SPRING 2011

CHL101	APPLIED CHEMISTRY (BS)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF

80	SGPA C	Credit 20 DC 0 HI		EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	CGPA		
36	20			0		0.0	00	5			22		12	8	5.8		
DE	0	DC	0	НМ	0	Ó	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	14	BS	6	To	tal	20	AU	0	ES	8	BS	10	То	tal	22

SPRING 2012

CHL101	APPLIED CHEMISTRY (BS)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	DD

SG	D A	С	redi	t	EG	Р	SC	SPA	CG	ПΛ	С	redi	it	EG	Р	CC	SPA
36	PA		42		98	}	2	.33	CG	PA		60		32	0	5	.33
DE	0	DC	22	НМ	0	0	С	0	DE	0	DC	16	НМ	10	0	С	0
AU	0	ES	14	BS	6	To	tal	42	AU	0	ES	22	BS	12	To	tal	60

RE-EXAM SPRING 2012

CHL101	APPLIED CHEMISTRY (BS)	6	FF
CML263	FLUID MECHANICS (DC)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF

SG	. П.	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IPA		20		0		0	.00	CG	PA		60		32	0	5	.33
DE	0	DC	6	НМ	I 0	0	С	0	DE	0	DC	16	НМ	10	0	С	0
AU	0	ES	8	BS	6	To	tal	20	AU	0	ES	22	BS	12	То	tal	60

SUMMER TERM SPRING 2012

MAL101	MATHEMATICS I (BS)		8	DD
AML151	ENGINEERING MECHANICS	(ES)	6	DD

	_							,	-,									_		
	GP.	_	С	redi	t		EG	Р	S	GPA	Γ	CG	D A	С	redi	t	EG	Р	C	GPA
30	3 P.	Α		14			56	;		4.00		CG	PA		74		37	6	5	.08
DE	0)	DC	0	НΝ	Л	0	0	С	0		DE	0	DC	16	НМ	10	0	С	0
AU	0)	ES	6	BS	3	8	To	tal	14		AU	0	ES	28	BS	20	То	tal	74

GRADE CARD

Name : BANOTH MOHAN Enrolment No. : BT10CHE025

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Ti	itle			Cr	Gr	Course				Т	itle			Cr	Gr
RE-EXA	M AUTUN	/N 2012)						SPRING	3 2013								
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		6	CD	CML263	FLUID ME	CHAN	CS	(DC)				6	DD
CML262	CHEMICA	L PROCES	SS CALCUI	_ATIONS (DC)		6	FF	CML265	CHEMICA	L ENG	INEEI	RING TH	ERMODY	NAMICS (D	C)	6	DD
	Credit	EGP	SGPA		Credit	EGP	Τ.	CGPA	CML368	CHEMICA	L REA	CTIO	N ENGIN	EERING-I	(DC)		6	FF
SGPA		30	2.50	CGPA	108	552			CML371	CHEMICA	L PRO	CESS	MODEL	ING AND	SIMULATION	N (DC)	6 (CD
	12			I				5.11	CML468	ORE AND	MINER	RAL P	ROCES	SING (DE	.)		6	DD
	DC 12 HM					1 16	ОС	0	CMP371	CHEMICA	L PRO	CESS	MODEL	ING AND	SIMULATION	N (DC)	2	AB
AU 0	ES 0 BS	0 To	tal 12	AU 0	ES 28 BS	20	Total	108	CSL101	COMPUTI	ER PRO	OGRA	MMING	(ES)			8	BB
AUTUM	N 2013									Credit	EGI	>	SGPA		Credit	EGI	Р	CGPA
CHL369	GREEN C	HEMISTR'	Y & ENGIN	EERING ([DE)		6	CD	SGPA	40	184		4.60	CGPA	142	736	,	5.18
CMD401	PROJECT		` '				4	AA	DE 6	DC 26 HN		OC		DE 12	DC 58 HI	1	OC	
CML262			SS CALCUI	_ATIONS (DC)		6	FF	-	ES 8 BS		Tota		AU 0	ES 36 B		Tota	
CML361	MASS TRA		` '				6	FF					11 40	I IAO O	10 30 10	0 20	1018	1172
CML362	HEAT TRA		` '				6	DD		M SPRIN								
CML363			SS EQUIPN		` '		6	DD	CML368	CHEMICA	L REA	CTIOI	N ENGIN	EERING-I	(DC)		6	DD
CML481			IALYTICAL		()		6	FF	SGPA	Credit	EGI	> │	SGPA	CGPA	Credit	EGI	P	CGPA
CMP364					RAWING I (D	,	2	BC	SGPA	6	24		4.00	CGPA	148	760)	5.14
CMP365					ERATION II (DC)	2	AB	DE 0	DC 6 HN	1 0	OC	0	DE 12	DC 64 HI	M 16	OC	0
CMP462			ON ENGINI	EERING -I	I (DC)		2	AB		ES 0 BS		Tota		AU 0		S 20	Tota	
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	(CGPA	CDDING	20044								
00.7	46	168	3.65	001 A	176	928		5.27	SPRING CHL336	POLYMER	ENCI	NEED	DINIC (D	IE)			6	FF
DE 12	DC 34 HM	0 0	C 0	DE 18	DC 86 HM	1 16	ОС	0	CMD452	PROJECT			- (' -)			8	AA
AU 0	ES 0 BS	0 To	tal 46	AU 0	ES 36 BS	20	Total	176	CMD452				` '	ISSION DE	ROGRAM (I)C)	2	BB
RF-FYA	M AUTUN	IN 2013							CML366	MASS TR				00010111	WILLIAM (I	50)	6	FF
CML262			, SS CALCUI	ATIONS (DC)		6	CD	CML367	HEAT TRA	-		/				6	DD
CML361	MASS TRA				,20)		6	CD	CML466	CHEMICA			` '	DC)			6	FF
CML481			IALYTICAL	TECHNIQ	UES (DE)		6	DD	CML475				,	,	NEERING (DF)	6	CD
	Credit	EGP	SGPA		Credit	EGP	Τ,	CGPA	CML621	NANO TE					(,	6	AA
SGPA				CGPA			+		CMP366	MASS TR			` '				2	CC
	18	84	4.67		194	1012		5.22	CMP367	HEAT TRA	ANSFE	R-II	(DC)				2	ВВ
	DC 12 HM				DC 98 HM		ОС	0		Credit	EGI		SGPA		Credit	EGI	Р	CGPA
AU 0	ES 0 BS	0 To	tal 18	AU 0	ES 36 BS	20	Total	194	SGPA	50	238	_	4.76	CGPA	226	125	_	5.53
									DE 18	DC 32 HN		OC	0	DE 36	DC 118 HI		OC	
										ES 0 BS		Tota		AU 0	ES 36 B		Tota	
									AU 0	E9 0 B5	0	rota	11 50	I LAU U	⊏3 30 B	3 ZU	rota	11 220

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: BHATTAD PRASAD GOVIND Name

Enrolment No. : BT10CHE026

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree** Titlo

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	CD
CHP101	CHEMIST	RY LAB (E	3S)			2	CD
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	DD
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	FF
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BB
HUL102	SOCIAL S	SCIENCE (HM)			4	CC
MAL101	MATHEM	ATICS I (B	S)			8	CD
MEP101	WORKSH	IOP (ES)				4	AA
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	40	192	4.80	CGPA	34	192	5.65

		_	. •	. • ,		, _	,			,,					•		
60	SGPA DE 0 AU 0	С	redi	t	EG	Р	S	GPA	~	PA	С	redi	t	EG	Р	CG	PA
30			40		19	2	4	.80	C	PA		34	T	192	2	5.0	65
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	00)	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	14	BS	16	Tota	al	34

RE-EXAM AUTUMN 2010

EEL	101	El	EC.	TRI	CAL E	NGIN	NEE	RING (Ε	S)						6		FF
60	PΑ	С	redi	it	EG	Ρ	S	GPA		CGI	. .	С	redi	t	EG	Р	C	GPA
36	JPA		6		0		0	.00		CGI	A		34		192	2	5	.65
DE	0	DC	0	ΗN	1 0	0	С	0		DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	6	BS	0	To	tal	6		AU	0	ES	14	BS	16	To	tal	34

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	DD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF
		\neg	

80	PΑ	С	redi	t	EG	Р	S	GPA	CGI	۵,۸	С	redi	t	EG	Р	C	GPA
36	IFA		40		128	3	3	3.20	CGI	A		106		540	•	5	.09
DE	12	DC	28	НМ	0	0	С	0	DE	6	DC	22	НМ	10	O	C	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	106

RE-EXAM AUTUMN 2011

PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6 DD CHI 261 MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) 6 FF

SG	. П. А	С	redi	it	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
36	iPA		12		24	ļ	2	.00	CG	PA	•	112		564	4	5	.04
DE	6	DC	6	НМ	1 0	0	С	0	DE	6	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	12	AU	0	ES	36	BS	32	To	otal	112

AUTUMN 2012

		. T	
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	FF
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	DD
CML362	HEAT TRANSFER I (DC)	6	FF
CML361	MASS TRANSFER - I (DC)	6	FF
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CD

SG	· D A	С	redi	it	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		13	0	3	3.10	CG	PA		176		876	6	4	.98
DE	20	DC	22	HM	I 0	0	С	0	DE	26	DC	66	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	Tot	tal	176

Course			Ti	tle		Cı	Gr							
SPRING	2011													
AML151	ENGINEE	RING MEC	CHANICS	(ES)		6	CD							
AMP151	ENGINEE	NGINEERING MECHANICS (ES) 2 BC												
HUL101	COMMUN	ICATION S	SKILL (HM	1)		6	BC							
MAL102	MATHEMA	ATICS - II	(BS)			8	FF							
MEC101	ENGINEE	RING DRA	WING (E	S)		8	DD							
PEB151	SPORTS	YOGA/ LI	BRARY/ N	CC (AU)		0	SS							
PHL101	PHYSICS	(BS)				6	DD							
PHP101	PHYSICS	(BS)				2	CD							
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA							

SG	DΛ	С	redi	t	EG	Р	SC	SPA	CG	DΛ	C	redi	t	EG	P	C	GPA	
36	IFA		38		15	2	4	.00	C	FA		64		34	4	5	.38	
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	30	BS	24	To	tal	64	l

RE-EXAM SPRING 2011

MAL102 MATHEMATICS - II (BS) 8 DD

se	· D A	С	red	it	EG	Р	SGPA	CG	DΛ	С	redi	it	EG	Р	CC	SPA
30	РΑ		8		32	2	4.00	CG	FA		72		37	6	5	.22
DE	0	DC	0	НМ	0	0	C 0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal 8	AU	0	ES	30	BS	32	Tot	tal	72

SUMMER TERM SPRING 2011

EEL101 ELECTRICAL ENGINEERING (ES) 6 CC

60	6 DC 0	t	EG	Р	S	SPA	CG	DΛ	С	redi	it	EG	Р	C	GPA		
36	IFA		6		36	;	6	.00	CG	FA		78		41	2	5	.28
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	0	To	tal	6	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

60	SGPA	С	redi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		12	8	3.20	CG	IFA		140		69	2	4	.94
DE	6	DC	28	НМ	0	0	C 6	DE	12	DC	44	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal 40	AU	0	ES	36	BS	32	To	tal	140

RE-EXAM SPRING 2012

CHL214 ORGANIC CHEMICAL TECHNOLOGY (DC) 6 CD CML263 FLUID MECHANICS (DC) DD

80	PΑ	С	redi	t	Е	G	Р	S	GPA	CG	D.A.	С	redi	it	EG	Р	С	GPA
36	PA		12			54	.	4	4.50	CG	PA		152		74	6	4	.91
DE	0	DC	12	HN	/ ()	0	С	0	DE	12	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	3 ()	To	tal	12	ΑU	0	ES	36	BS	32	То	tal	152

GRADE CARD

Name : BHATTAD PRASAD GOVIND Enrolment No. : BT10CHE026

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		(Cr Gr	Course			٦	itle		(Cr Gr
RE-EXA	M AUTUN	MN 2012	2					SPRING	G 2013						
CML361	MASS TR	ANSFER -	I (DC)			(6 DD	CML366	MASS TRA	ANSFE	R - II (DC)				6 FF
CML362	HEAT TRA	ANSFER I	(DC)			(6 DD	CML367	HEAT TRA	NSFE	R-II (DC)				6 DD
CML375	ANALYTIC	CAL METH	IODS FOR	CHEMICA	L ANALYSIS	(DE) (6 DD	CML368	CHEMICA	L REAC	CTION ENGI	NEERING-I	(DC)		6 CD
	Credit	EGP	SGPA		Credit	EGP	CGPA	CML371			CESS MODE		SIMULATION	1 (DC)	6 DD
SGPA	18	72	4.00	CGPA	194	948	4.89	CML466			NT DESIGN	` '			6 CD
DE 6	DC 12 HN	100	C 0	DE 32	DC 78 HI	M 10 0	OC 6	CML468			RAL PROCES	SING (DE	<u>:</u>)		6 CD
AU 0	ES 0 BS				ES 36 B		otal 194	CMP366	MASS TRA		, ,				2 BB
	IN 0040							- CMP367	HEAT TRA		` '		0114111 47101	I (DO)	2 AB
AUTUM CMD401	PROJECT	DUVCEI	(DC)				4 BB	CMP371	1 1		CESS MODE	LING AND	1		2 AB
CML333			(DC) SSING (DE)				6 CD	SGPA	Credit	EGF		CGPA	Credit	EGP	CGPA
CML461			IOMENA (DE)				6 FF		42	190	4.52	00.7	230	1138	4.95
CML461			ON ENGIN	,	(DC)		5 FF	DE 6	DC 36 HM	1 0	OC 0	DE 38			OC 6
CML463			DL & INSTF		,		5 FF	AU 0	ES 0 BS	0	Total 42	AU 0	ES 36 B	3 32 7	Total 230
CML480			L ENGINE		(20)		6 CC	RF-FX	AM SPRIN	G 201	13				
CML620			NOLOGY ([, ,			6 CC	CML366			R-II (DC)				6 CD
CMP462	CHEMICA	L REACTI	ON ENGIN	ÉRING -I	I (DC)	:	2 BC		Credit	EGF	SGPA		Credit	EGP	CGPA
CMP463	DDOOFCC	CONTRO	N O INICTE	RUMENTAT	TION (DC)		2 BC	SGPA	Orean			CGPA	Orcuit	LOI	001 7
CIVIF 403	PROCESS	CONTRU	JL & INO IT	CONLINIA	IION (DC)	4	2 50	001 A		20	F 00	00.71	226	4460	4.05
CMP464				_	RAWING II ([2 BB		6	30	5.00		236	1168	4.95
CMP464				SIGN & DI	- (- /			DE 0	DC 6 HM	1 0	OC 0	DE 38	DC 114 H	VI 10	OC 6
	CHEMICA Credit	L ENGINE	SGPA	_	RAWING II (I	EGP	2 BB	DE 0 AU 0	DC 6 HM ES 0 BS	1 0				VI 10	
CMP464	CHEMICA Credit 46	EGP 178	SGPA 3.87	SIGN & DI	Credit 264	EGP 1346	2 BB CGPA 5.10	DE 0 AU 0	DC 6 HM ES 0 BS	1 0	OC 0 Total 6	DE 38	DC 114 H	M 10	OC 6 Fotal 236
SGPA DE 18	CHEMICA Credit 46 DC 28 HM	EGP 178	SGPA 3.87 C 0	CGPA DE 56	Credit 264 DC 124 Hi	EGP 1346	2 BB CGPA 5.10 CC 6	DE 0 AU 0 SPRING CMD452	DC 6 HM ES 0 BS 3 2014 PROJECT	1 0 5 0	OC 0 Total 6 E-II (DC)	DE 38 AU 0	DC 114 HM ES 36 BS	M 10 S 32 T	OC 6 Total 236 8 BB
SGPA DE 18 AU 0	CHEMICA Credit 46 DC 28 HM ES 0 BS	EGP 178 1 0 0 0 0 0 0 0 0	SGPA 3.87 C 0 otal 46	SIGN & DI	Credit 264	EGP 1346	2 BB CGPA 5.10	DE 0 AU 0 SPRING CMD452 CMD453	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR	PHAS	OC 0 Total 6 E-II (DC) GROUP DISC	DE 38 AU 0	DC 114 HM ES 36 BS	M 10 S 32 T	OC 6 Total 236 8 BB 2 BB
SGPA DE 18 AU 0 RE-EXA	CHEMICA Credit 46 DC 28 HM ES 0 BS	EGP 178 1 0 0 5 0 To	SGPA 3.87 C 0 otal 46	CGPA DE 56 AU 0	Credit 264 DC 124 Hi	EGP 1346 M 10 C S 32 T	2 BB CGPA 5.10 CC 6 total 264	DE 0 AU 0 SPRING CMD452	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI	PHAS	OC 0 Total 6 E-II (DC)	DE 38 AU 0	DC 114 HM ES 36 BS	M 10 S 32 T	OC 6 Total 236 8 BB
SGPA DE 18 AU 0 RE-EXA CML461	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUM TRANSPO	EGP 178 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SGPA 3.87 C 0 ttal 46 OMENA (D	CGPA DE 56 AU 0	Credit 264 DC 124 HI ES 36 BS	EGP 1346 M 10 (S 32 T	2 BB CGPA 5.10 CC 6 otal 264 6 FF	DE 0 AU 0 SPRING CMD452 CMD453	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE)	PHAS	OC 0 Total 6 E-II (DC) GROUP DISC	DE 38 AU 0 USSION PRIHEMICAL	DC 114 HM ES 36 BS ROGRAM (E	M 10 S 32 T	OC 6 Total 236 8 BB 2 BB
CMP464 SGPA DE 18 AU 0 RE-EXA CML461 CML462	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUM TRANSPO CHEMICA	L ENGINE EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI	SGPA 3.87 C 0 tal 46 OMENA (E	CGPA DE 56 AU 0 DE) EERING II	Credit 264 DC 124 HI ES 36 BS	EGP 1346 M 10 C S 32 T	2 BB CGPA 5.10 CC 6 total 264 6 FF 6 FF	DE 0 AU 0 SPRINC CMD452 CMD453 CML471	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND	PHAS AND G NOLOG	OC 0 Total 6 E-II (DC) GROUP DISC GY AND BIOC	DE 38 AU 0 USSION PERHEMICAL RGY ENGI	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN	M 10 S 32 T	OC 6 Fotal 236 8 BB 2 BB 6 FF
SGPA DE 18 AU 0 RE-EXA CML461	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUM TRANSPO CHEMICA PROCESS	EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI	SGPA 3.87 C 0 tal 46 OMENA (CON ENGIN) CL & INSTE	CGPA DE 56 AU 0 DE) EERING II	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC)	EGP 1346 M 10 C S 32 T	2 BB CGPA 5.10 CC 6 otal 264 6 FF 6 FF 6 DD	DE 0 AU 0 SPRING CMD452 CMD453 CML471 CML475	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR	PHAS AND G NOLOG	OC 0 Total 6 E-II (DC) GROUP DISC GY AND BIOC	DE 38 AU 0 USSION PREHEMICAL RGY ENGILL LOPMENT	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN NEERING (I (DE)	M 10 S 32 T	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD
CMP464 SGPA DE 18 AU 0 RE-EXA CML461 CML462	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUN TRANSPO CHEMICA PROCESS Credit	EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI S CONTRO	SGPA 3.87 C 0 otal 46 3.00	CGPA DE 56 AU 0 DE) EERING II	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC) Credit	EGP EGP	2 BB CGPA 5.10 CC 6 otal 264 6 FF 6 FF 6 DD CGPA	DE 0 AU 0 SPRINC CMD452 CMD453 CML471 CML475 CML479	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR PROJECT	PHAS AND G NOLOG RENE ENEUI	OC 0 Total 6 E-II (DC) GROUP DISC GY AND BIOC WABLE ENE RSHIP DEVE	USSION PEHEMICAL RGY ENGILLOPMENT ANAGEME	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN NEERING (I (DE)	M 10 S 32 T	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD 6 BC
CMP464 SGPA DE 18 AU 0 RE-EXA CML461 CML462 CML463 SGPA	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUN TRANSPO CHEMICA PROCESS Credit 18	EGP 178 1 0 0 0 0 0 0 0 To MN 2013 DRT PHEN L REACTI S CONTRO EGP 24	SGPA 3.87 C 0 tal 46 GOMENA (E ON ENGIN DL & INSTE SGPA 1.33	CGPA DE 56 AU 0 DE) EERING II RUMENTAT	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC) Credit 270	EGP 1346 M 10 (S 32 T	2 BB CGPA 5.10 DC 6 otal 264 6 FF 6 FF 6 DD CGPA 5.07	DE 0 AU 0 SPRINC CMD452 CMD453 CML471 CML475 CML479 CML491 HUL401	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR PROJECT	PHAS AND G NOLOG RENE ENEUI	OC 0 Total 6 E-II (DC) GROUP DISC GY AND BIOC WABLE ENE RSHIP DEVE NING AND M & MANAGEMI	USSION PEHEMICAL RGY ENGILLOPMENT ANAGEMEENT (HM)	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN NEERING (I (DE)	M 10 S 32 T	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD 6 BC 6 DD
DE 18 AU 0 RE-EXA CML461 CML462 CML463 SGPA DE 6	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUN TRANSPO CHEMICA PROCESS Credit 18 DC 12 HM	EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI S CONTRO EGP 24	SGPA 3.87 C 0 ttal 46 B OMENA (E ON ENGIN DL & INSTR SGPA 1.33 C 0	CGPA DE 56 AU 0 DE S6 EERING II CGPA DE 56	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC) Credit 270 DC 130 HI	EGP 1346 M 10 (6 S 32 T T	2 BB CGPA 5.10 CC 6 Otal 264 6 FF 6 FF 6 DD CGPA 5.07 CC 6	DE 0 AU 0 SPRINC CMD452 CMD453 CML471 CML475 CML479 CML491 HUL401 SGPA	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR PROJECT PSYCHOL Credit	PHAS AND G NOLOG RENE ENEU!	OC 0 Total 6 E-II (DC) BROUP DISC BY AND BIOC WABLE ENE RSHIP DEVE RING AND M & MANAGEMI P SGPA	USSION PEHEMICAL RGY ENGILLOPMENT ANAGEME	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN NEERING (I (DE) NT (DE)	M 10 S 32 T	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD 6 BC 6 DD 6 DD
CMP464 SGPA DE 18 AU 0 RE-EXA CML461 CML462 CML463 SGPA	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUN TRANSPO CHEMICA PROCESS Credit 18	EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI S CONTRO EGP 24	SGPA 3.87 C 0 ttal 46 B OMENA (E ON ENGIN DL & INSTR SGPA 1.33 C 0	CGPA DE 56 AU 0 DE) EERING II RUMENTAT	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC) Credit 270 DC 130 HI	EGP 1346 M 10 (6 S 32 T T	2 BB CGPA 5.10 DC 6 otal 264 6 FF 6 FF 6 DD CGPA 5.07	DE 0 AU 0 SPRING CMD452 CMD453 CML471 CML475 CML479 CML491 HUL401 SGPA	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR PROJECT PSYCHOL Credit 40	PHAS AND GNOLOGE RENEUL PLANICOGY 8	OC 0 Total 6 E-II (DC) GROUP DISC GY AND BIOC WABLE ENE RSHIP DEVE NING AND M MANAGEMI P SGPA 0 5.00	USSION PERHEMICAL RGY ENGILLOPMENT ANAGEMEENT (HM) CGPA	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN (DE) NT (DE) Credit 304	M 10 S 32 T 10C) NG DE) EGP 1570	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD 6 BC 6 DD 6 DD CGPA 5.16
CMP464 SGPA DE 18 AU 0 RE-EXA CML461 CML462 CML463 SGPA DE 6	CHEMICA Credit 46 DC 28 HM ES 0 BS AM AUTUN TRANSPO CHEMICA PROCESS Credit 18 DC 12 HM	EGP 178 1 0 0 5 0 To MN 2013 DRT PHEN L REACTI S CONTRO EGP 24	SGPA 3.87 C 0 ttal 46 B OMENA (E ON ENGIN DL & INSTR SGPA 1.33 C 0	CGPA DE 56 AU 0 DE S6 EERING II CGPA DE 56	Credit 264 DC 124 HI ES 36 BS (DC) FION (DC) Credit 270 DC 130 HI	EGP 1346 M 10 (6 S 32 T T	2 BB CGPA 5.10 CC 6 Otal 264 6 FF 6 FF 6 DD CGPA 5.07 CC 6	DE 0 AU 0 SPRINC CMD452 CMD453 CML471 CML475 CML479 CML491 HUL401 SGPA	DC 6 HM ES 0 BS 3 2014 PROJECT SEMINAR BIOTECHI (DE) NEW AND ENTREPR PROJECT PSYCHOL Credit	PHAS AND GNOLOGO RENEUR PLANICOGY 8 EGF 200	OC 0 Total 6 E-II (DC) BROUP DISC BY AND BIOC WABLE ENE RSHIP DEVE RING AND M & MANAGEMI P SGPA	USSION PEHEMICAL RGY ENGILLOPMENT ANAGEMEENT (HM)	DC 114 HI ES 36 BS ROGRAM (E ENGINEERIN (DE) NT (DE)	M 10 S 32 T T T T T T T T T T T T T T T T T T	OC 6 Fotal 236 8 BB 2 BB 6 FF 6 CD 6 BC 6 DD 6 DD

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: BHAVYA SATRA Enrolment No. : BT10CHE027 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course						Т	it	le						С	r	Gr
AUTUN	IN 2010)														
AML151	ENGI	NEERI	ING	MEC	AH:	NICS (E	S)						6		AB
AMP151	ENGI	NEERI	ING	MEC	AH:	NICS L	Α.	B (E	S)					2		AA
HUL101	COMN	JUNIC	CATIO	ON S	SKILI	LS (HI	M))						6		BB
MAL101	MATH	MATHEMATICS I (BS) 8 AB														
MEC101	ENGI	ENGINEERING DRAWING (ES) 8 AA														
PEB151	SPOR	TS/Y	OG/	A/L	IBR/	ARY/	N	CC (AU)					0		SS
PHL101	PHYS	ICS (E	3S)											6		AA
PHP101	PHYS	ICS L	AB (I	BS)										2		AA
SGPA	Credi	t	EG	Р	SC	3PA		CG	D A	С	redi	t	EG	Р	C	GPA
SGPA	38		354	1	9	.32		CG	FA		38		354	1	9	.32
DE 0	DC 0	НМ	6	0	С	0		DE	0	DC	0	ΗN	1 6	C	С	0
AU 0	ES 16	BS	16	To	tal	38		AU	0	ES	16	BS	16	To	tal	38

60	GPA			-	_		CGI	3 A C	_		-						
36	IFA		38		35	4	9	.32	CGI	- A		38		354	4	9.	.32
DE	0	DC	0	HM	1 6	0	С	0	DE	0	DC	0	НМ	6	О	C	0
AU	0	ES	16	BS	16	Total		38	AU	0	ES	16	BS	16	To	otal	38

AUTUMN 2011

	O== 4!4	E0D	0004		0	E00		0004
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (I	DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTRY	Y (DC)		2	AB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	BC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CC

86	ВΛ	С	redi	t	EG	Р	S	GPA	CC	٠.	Σ Λ	С	redi	t	EG	Р	C	GPA
SGPA		40			300		7.50		C	71	- A	1	118		101	6	8.61	
DE	12	DC	28	НМ	0	0	С	0	DE		12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	40	AL	J	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BB
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB

80	• D A	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	Ö	GPA
SGPA			42		346		8	8.24		FA	2	200		1678		8.39	
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	On the FOR CORA	_	0004
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML333	POLYMER PROCESSING (DE)	6	AA
CIVID401	PROJECT PHASE I (DC)	4	AA

SG	. П А	C	redi	t	EG	P	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	SPA
36	JPA		46		42	6	9	.26	CG	PA		288		248	0	8	.61
DE	18	DC	28	HM	I 0	0	С	0	DE	68	DC	142	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	То	tal	288

Course	Title		Cı	Gr
SPRING	2011			
CHL101	APPLIED CHEMISTRY (BS)		6	AB
CHP101	APPLIED CHEMISTRY (BS)		2	AB
CSL101	COMPUTER PROGRAMMING (ES)		8	AA
EEL101	ELECTRICAL ENGINEERING (ES)		6	BB
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	AB
HUL102	SOCIAL SCIENCE (HM)		4	AA
MAL102	MATHEMATICS - II (BS)		8	BB
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
		A 111		

SG	. Д.	С	redi	it	EG	Р	S	GPA	CG	D۸	С	redi	t	EG	Р	C	GPA
36	40			362		9.05		5	FA		78			6	9.18		
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	То	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BE
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AE
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AE

SGPA	Credit	Е	ЗP	SGPA	CGPA	Credit	EG	Р	CGPA
SGFA	40	3	16	7.90	CGFA	158	133	32	8.43
DE 12	DC 28 F	M O	0	C 0	DE 24	DC 56	HM 10	0	C 0
AU 0	FS 0 F	3S 0	To	otal 40	AU 0	FS 36	BS 32	To	tal 158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	DA	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		42		37	9	8	.95	CG	PA		242		205	4	8	3.49
DE	6	DC	36	НМ	I 0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	AB

60	·D 4	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA DE 18		34		32	2	9.	47	CG	PA		322		280)2	8	3.70
DE	18	DC	10	НМ	6	00	0	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	al	34	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : BHAVYA SATRA Enrolment No. : BT10CHE027

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: NANDAGAWALI CHAYLENJ SHALIKARAM Enrolment No. : BT10CHE028

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Course			Т	itle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	CD							
CHP101	CHEMIST	RY LAB (E	3S)			2	BC							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	DD							
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 FF												
EEP101	ELECTRICAL ENGINEERING LAB (ES) 2 CD													
HUL102	SOCIAL S	SOCIAL SCIENCE (HM) 4 BC												
MAL101	MATHEM	ATICS I (B	S)			8	DD							
MEP101	WORKSH	IOP (ES)				4	AA							
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS													
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA							
SGPA	40	186	4.65	CGPA	34	186	5.47							

80	PΑ	С	redi	t	EG	Р	S	GPA		CGI	٥,٨	С	redi	t	EG	Р	C	GPA
36	IFA		40		18	6	4	.65	'	CGI	A		34		186	6	5	.47
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	To	tal	40		AU	0	ES	14	BS	16	To	otal	34

RE-EXAM AUTUMN 2010

FEL	101	El	_EC	IKK	JAL E	NGIN	NEE	RING (ES	5)						6		FF
60	. П л	С	redi	it	EG	P	S	GPA		CGI	. .	C	redi	t	EG	Р	CC	APE
36	SGPA		6		0		0	0.00		CGI	A		34		186	6	5.	.47
DE	0	DC	0	ΗN	1 0	0	С	0]	DE	0	DC	0	НМ	4	00)	0
AU	0	ES	6	BS	0	To	tal	6	/	AU	0	ES	14	BS	16	Tot	al	34

AUTUMN 2011

CEL424	ENVIRONMENTAL STUDIES (OC)	6	FF
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	DD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	DD
		$\overline{}$	

SG	DΛ	С	redi	t	EG	P	S	GPA	١.	CGI	۵,۸	С	redi	t	EG	Р	C	GPA
36	IFA		40		6	6	1	.65		CGI	A		80		392	2	4	.90
DE	6	DC	28	НМ	1 0	0	С	6	I	DE	6	DC	10	НМ	10	C	С	0
AU	0	ES	0	BS	0	To	tal	40		AU	0	ES	30	BS	24	Т	otal	80

RE-EXAM AUTUMN 2011

CEL424	ENVIRONMENTAL STUDIES (OC)	6	DD
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
36	IFA		24		72	2	3	.00	CG	FA		98		464	4	4	.73
DE	0	DC	18	НМ	0	0	С	6	DE	6	DC	22	НМ	10	С	C	6
AU	0	ES	0	BS	0	To	tal	24	AU	0	ES	30	BS	24	To	otal	98

AUTUMN 2012

	Credit	EGP	SGPA		Credit	EGP		CGPA
HUL401	ECONOM	IICS AND N		6	DD			
CMP370	ENVIRON	MENTAL E	ENGINEER	ING (DE)			2	BC
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	BB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	(C)	2	BB
CML370	ENVIRON	MENTAL E	ENGINEER	ING (DE)			6	FF
CML363	CHEMICA	AL PROCES	SS EQUIP	MENT DES	IGN (DC)		6	CD
CML362	HEAT TR	ANSFER I	(DC)				6	FF
CML361	MASS TR	RANSFER -	I (DC)				6	FF
CIVIL262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	FF

SG	D۸	С	redi	it	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	P	C	GPA
36	IFΑ		42		10	0	2	.38	CG	FA		144		692	2	4	.81
DE	8	DC	28	НМ	6	0	С	0	DE	8	DC	60	НМ	16	С	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	30	BS	24	To	tal	144

Course	Title		Cr	Gr
SPRING	3 2011			
AML151	ENGINEERING MECHANICS (ES)		6	FF
AMP151	ENGINEERING MECHANICS (ES)		2	DD
HUL101	COMMUNICATION SKILL (HM)		6	CC
MAL102	MATHEMATICS - II (BS)		8	FF
MEC101	ENGINEERING DRAWING (ES)		8	FF
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	FF
PHP101	PHYSICS (BS)		2	DD
	Credit ECD CCDA C	i .	ECD	CCDA

SG	. П.	С	redi	t	EG	P	SGPA	CG	D 4	C	Credit			Р	CGPA		
36	IFA		38		52	:	1.37	CG	FA		44		238	8	5	.41	
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	10	0	С	0	
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	16	BS	18	То	tal	44	

RE-EXAM SPRING 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF
MEC101	ENGINEERING DRAWING (ES)	8	CD
PHL101	PHYSICS (BS)	6	FF

SG	. В А	С	redi	t	EG	Р	S	SGPA		PA	С	redi	it	EG	Р	CGPA	
36	IFA		28		40)	1	.43	CG	FA		52		27	8	5	.35
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	14	BS	14	То	tal	28	AU	0	ES	24	BS	18	То	tal	52

SUMMER TERM SPRING 2011

EEL101	ELECTRICAL ENGINEERING (ES)	6	DD
PHL101	PHYSICS (BS)	6	DD

80	·DΛ	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA		12		48		4	4.00		5		64		32	6	5.09		
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	6	To	tal	12	AU	0	ES	30	BS	24	То	tal	64

SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	ВВ
MAL102	MATHEMATICS - II (BS)	8	FF

SG	. П.А	С	redi	t	EGP		SG	PA	CG	D 4	С	redi	t	EG	Р	CGPA	
36	IFA		42		10	4	2.	48	CG	FA		120		56	8	4	.73
DE	0	DC	28	НМ	0	0	С	0	DE	6	DC	44	НМ	10	0	С	6
AU	0	ES	6	BS	8	То	tal	42	AU	0	ES	30	BS	24	То	tal	120

RE-EXAM SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
MAL102	MATHEMATICS - II (BS)	8	FF

SG	D A	С	redi	it	EG	Р	S	GPA	CG	D۸	C	redi	t	EG	Р	C	GPA
36	JFA		20		24	ļ	1	.20	CG	FA		126		59	2	4	.70
DE	0	DC	6	НМ	0	0	С	0	DE	6	DC	50	НМ	10	0	С	6
AU	0	ES	6	BS	8	To	tal	20	ΑU	0	ES	30	BS	24	To	tal	126

SUMMER TERM SPRING 2012

AIVILIDI	ENGINEE	KING MEC	HAINICS	(ES)		О	ГГ
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	6	0	0.00	CGPA	126	592	4 70

ı	SG	ПΛ	C	Credit		Credit		redit EG		jΡ	SGPA		~~	CGPA		rea	τ	EG	Ρ	C	GPA
	36	PA		6		()	(0.00	CG	PA		126			2 4		.70			
	DE	0	DC	0	ΗN	1 0	0	С	0	DE	6	DC	50	НМ	10	0	С	6			
I	AU	0	ES	6	BS	0	To	tal	tal 6		0	ES	30	BS	24	То	tal	126			
_																					

GRADE CARD

Name: NANDAGAWALI CHAYLENJ SHALIKARAM Enrolment No.: BT10CHE028

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course					Т	itle							С	r	Gr
RE-EX	AM AU	ГИМИ	2012	2											
CML262	CHEM	IICAL PI	ROCE	SS C	CALCU	LAT	IO	NS ((DC)				6		FF
CML361	MASS	TRANS	FER -	- I (D	C)								6		CC
CML362	HEAT	HEAT TRANSFER I (DC) 6 DD													
CML370	ENVIR	ENVIRONMENTAL ENGINEERING (DE) 6													CD
SGPA	Credi	it E	GP	S	GPA		<u> </u>	PA	С	redi	t	EG	Р	C	GPA
SGPA	24	9	90	3	.75	C	GI	A	1	162		782	2	4	.83
DE 6	DC 18	НМ 0	C	С	0	D	E	14	DC	72	НМ	16	С	С	6
AU 0	FS 0	BS 0	To	otal	24	ΙAΙ	U	0	ES	30	BS	24	To	tal	162

Δ	П	TI	п	М	N	2	N 1	3
_	u		_	IVI	14	~	•	

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	CC
CML461	TRANSPORT PHENOMENA (DC)	6	FF
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	DD
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	DD
CML620	MEMBRANE TECHNOLOGY (DE)	6	CC
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
1 1			

86	·D.A	С	redi	it	EG	Р	SG	PA	CG	D.A.	С	redi	t	EG	P	CG	PA
SGPA			46		20	4	4.	.43	CG	PA	:	240		122	4	5.	10
DE	12	DC	28	НМ	0	0	С	0	DE	26	DC	130	НМ	16	00	0	6
AU	0	ES	6	BS	0	To	tal	46	AU	0	ES	30	BS	32	Tot	al	240

RE-EXAM AUTUMN 2013

CI	ИL	461	TI	RAN	SPC	ORT F	HEN	ЮM	ENA (D	DE	≣)						6	i	DD
		D 4	С	redi	t	EC	P	S	GPA	Γ	CG	D 4	С	redi	t	EG	Р	C	GPA
J	SGPA		6		2	4	4	1.00		CG	FA		246		124	8	5	.07	
DI	E	6	DC	0	HN	1 0	0	С	0	Γ	DE	32	DC	130	ΗM	l 16	C	С	6
Αl	U	0	ES	0	BS	0	То	tal	6		AU	0	ES	30	BS	32	To	otal	246

Course	Title		Cr	Gr
SPRING	2013			
CML366	MASS TRANSFER - II (DC)		6	FF
CML367	HEAT TRANSFER-II (DC)		6	CD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	FF
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	CD
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
MAL102	MATHEMATICS - II (BS)		8	DD
			$ \Gamma$	

	SG	DΛ	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
	36	IFA		44		18	4	4.1	18	CG	FA		194		96	6	4	.98
Ì	DE	0	DC	36	НМ	0	0	С	0	DE	14	DC	96	НМ	16	0	С	6
	AU	0	ES	0	BS	8	To	tal	44	AU	0	ES	30	BS	32	То	tal	194

RE-EXAM SPRING 2013

 CML366
 MASS TRANSFER - II (DC)
 6
 DD

 CML368
 CHEMICAL REACTION ENGINEERING-I (DC)
 6
 CD

86	·DΛ	С	redi	it	EG	Р	S	GPA	CG	ВΛ	C	redi	t	EG	Р	CG	PA
SGPA			12		54	Ļ	4	.50	CG	FA		206		102	20	4.	95
DE	0	DC	12	НМ	0	0	С	0	DE	14	DC	108	НМ	16	00)	6
ΔΙΙ	0	ES	0	BS	0	To	tal	12	ΔΙΙ	0	FS	30	BS	32	Tot	al	206

SPRING 2014

CHL336	POLYMER ENGINEERING (DE)	6	FF
CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	BB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
CMP472	SEPARATION PROCESS (DE)	2	DD

SGPA	Credi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	CC	GPA
SGPA	48		25	В	5.38	CG	PA		288		150	6	5	.23
DE 38	DC 10	НМ	0	0	C 0	DE	64	DC	140	НМ	16	00	0	6
AU 0	ES 0	BS	0	To	tal 48	AU	0	ES	30	BS	32	Tot	al	288

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

HUL101

SPRING 2011

: DAWARE AJINKYA RAVINDRA Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE029

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

6

Gr

вС

вс

ВВ

78

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	BC						
CHP101	CHEMIST	RY LAB (E	3S)			2	BC						
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB						
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BB											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 AA											
HUL102	SOCIAL S	SOCIAL SCIENCE (HM) 4 AB											
MAL101	MATHEM	ATICS I (E	SS)			8	CC						
MEP101	WORKSHOP (ES) 4 AA												
PEB151	SPORTS	/ YOGA / I	JBRARY / I	NCC (AU)		0	SS						
CODA	Credit	EGP	SGPA	CODA	Credit	EGP	CGPA						
SGPA	40	320	8.00	CGPA	40	320	8 00						

60	PA		leu			•	, O	UI 7	ı	CGI	7 A	"	cui	٠			00	,, ,
36	IFA		40		320	0	8	3.00		CGI	- A		40		320)	8.	.00
DE	0	DC	0	HN	1 4	0	С	0	Г	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	То	tal	40		AU	0	ES	20	BS	16	То	tal	40
AU1	ΓUΝ																	
CHL	261	Ρ	HYS	ICA	L CHE	MIS	TRY	AND (G	ENE I	RAL	MET	ALL	JRG	Y (DO	2) 6		BB

	Cradit	ECD	SCDA		Cradit	ECD		CCDA
MEL408	SUPPLY	CHAIN MA	NAGEMEN	IT (OC)			6	BB
CML474	PLANT U	TILITY (DE	()				6	CC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	BB
CML261	INORGAI	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP263	ORGANI	C CHEMIST	TRY AND S	YNTHESIS	S (DC)		2	BC
CHP261	PHYSICA	AL AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AB
CHL263	ORGANIC	C CHEMIST	TRY AND S	YNTHESIS	(DC)		6	ВС
CHLZOI	FILISIO	AL CHEIVIIS	IKIAND	JENERALI	IVIE I ALLUK	31 (DC)	O	DD

80	SGPA		redi	it	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36			40		296		7	.40	CG	ГА		118		910)	7	.71
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	M 10		C	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
		-	

60	·D 4	С	redi	it	EG	Р	S	GPA	_	٠.	PA	С	redi	t	EG	Р	C	GPA
30	SGPA		42		328		7	7.81	C	J	PA	2	200		155	4	7	.77
DE	20	DC	22	НМ	0	0	С	0	DI	Ε	38	DC	78	НМ	10		C	6
AU	0	ES	0	BS	0	То	tal	42	AU 0		ES	36	BS	32	To	otal	200	

AUTUMN 2013

	Credit	FGP	SGPA		Credit	FGP	T	CGPA			
HUL409	PSYCHO	LOGY & E	O (HM)				6	ВС			
CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	DC)	2	AB			
CMP463	PROCES	S CONTRO	L & INSTF	RUMENTAT	TON (DC)		2	AA			
CMP462	CHEMICA	AL REACTI	ON ENGIN	EERING -II	(DC)		2	AB			
CML620	MEMBRA	MEMBRANE TECHNOLOGY (DE)									
CML463	PROCES	S CONTRO	L & INSTF	RUMENTAT	TON (DC)		6	BB			
CML462	CHEMICA	AL REACTI	ON ENGIN	EERING II	(DC)		6	BB			
CML461	TRANSPO	ORT PHEN	OMENA (D	C)			6	BC			
CMD401	PROJEC1	T PHASE I	(DC)				4	AA			

60	. П.	C	redi	it	EG	Р	S	GPA	١,	~~	PA	С	redi	t	EG	Р	C	GPA
36	SGPA		40		32	324		3.10		CG	PA		282		224	0	7	.94
DE	6	DC	28	НМ	6	0	С	0]	DE	50	DC	142	НМ	16	C	С	6
AU	0	ES	0	BS	0	То	tal	40	1	AU 0		ES	36	BS 32		To	otal	282

MAL102	MATH	EMA	ATICS	- II	(BS)							8	CC
MEC101	ENGI	NEE	RING	DRA	WING (E	S)						8	AA
PEB151	SPOR	TS/	YOG	4/ LI	BRARY/ N	CC (AU)					0	SS
PHL101	PHYS	PHYSICS (BS)										6	BC
PHP101	PHYS	PHYSICS (BS)											AA
SGPA	Cred	it	EG	Р	SGPA	CGPA Cr			redi	it	EG	Р	CGPA
SGFA	38		29	4	7.74	CG	FA		78		61	4	7.87
DE 0	DC 0	HN	1 6	0	C 0	DE	0	DC	0	HN	M 10		C 0

AU 0 ES 16 BS 16 Total 38 AU 0 ES 36 BS 32 Total

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	вс
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	вс
CML621	NANO TECHNOLOGY (DE)	6	AB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

		ВΛ	С	redi	t	EG	Р	SC	3PA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
٥	SGPA	40			316		7	.90	CG	PA		158		122	26	7	.76	
DI	E	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	00	0	6
Αl	U	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	Е	GI	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
	42			362		2	8	.62	CG	FA		242		191	6	7	7.92	
DE	6	DC	36	ΗN	1 0		OC		0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0		Total		42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB

	60	D A	С	redi	t	EC	P P	S	GPA	CG	D.A.	С	redi	t	EG	Р	С	GPA
	SGPA			40		34	6	8	3.65	CG	PA		322		258	6	8	3.03
	DE	30	DC	10	HN	1 0	0	С	0	DE	80	DC	152	НМ	16	0	С	6
1	٩U	0	ES	0	BS	0	То	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

12458 Page 1 of 2

GRADE CARD

Name : DAWARE AJINKYA RAVINDRA Enrolment No. : BT10CHE029

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: DIRGHA PRASAD Enrolment No. : BT10CHE030 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course					Т	it	tle						С	r	Gr	
AUTUN	IN 2010)														
AML151	ENGIN	NEERING	MEC	AHC	NICS (E	S)						6		BC	
AMP151	ENGIN	NEERING	MEC	AHC	NICS L	Α	AB (E	S)					2		AB	
HUL101	COMN	MUNICAT	ION S	SKILI	LS (HI	M))						6		BC	
MAL101	MATH	EMATIC:	S I (B	S)									8		BB	
MEC101	ENGIN	NEERING	DRA	WIN	G (ES	;)							8		BC	
PEB151	SPOR	TS / YO	A/L	IBR <i>A</i>	ARY/I	N	CC (A	AU)					0		SS	
PHL101	PHYS	ICS (BS)											6		BB	
PHP101	PHYS	,							AB							
SGPA	Credi	t EC	PA	Ī	CGI	D A	C	redi	t	EG	Р	CC	GPA			
SGFA	38	28	8	7.	.58		CGI	A		38		288	8	7	.58	
DE 0	DC 0	0 HM 6 OC					DE	0	DC	0	НМ	6	C	C	0	
A11 0	FO 40	DO 40				Ι.		_					_			l

SG	DA	1 -				-			ı	CGI	7 A	1 -		- 1		- 1			
36	IFA		38		28	8	7	7.58		CGI	- A		38		288	8	7	.58	
DE	0	DC	0	HM	1 6	0	С	0		DE	0	DC	0	НМ	6	0	С	0	
AU	0	ES	16	BS	16	To	tal	38		AU	0	ES	16	BS	16	To	tal	38	

AUTUMN 2011 PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6

	Cuadit	ECD	CCDA		O== 414	FOR	T	CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR'	Y (DE)	6	BB
CML474	PLANT U	TILITY (DE)				6	CC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (I	DC)		6	AB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTRY	(DC)		2	AB
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	BB
CITEZUT	11110107	L CITLIVIIO	III AND	JENEINALI	VIL I ALLOIN		U	$\Lambda\Lambda$

80	ВΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		320	0	8	.00	CG	ΓA	1	118		932	2	7	.90
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36			42		35	2	8	.38	CG	FA	2	200		161	6	8	.08
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

80	PΑ	С	redi	it		EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	P	CC	SPA
36	IFA		40			342	2	8	3.55		CG	FA		282		230	4	8.	.17
DE	12	DC	28	HN	1	0	0	С	0	Г	DE	56	DC	142	НМ	16	00	0	0
AU	0	ES	0	BS	;	0	To	tal	40		ΑU	0	ES	36	BS	32	Tot	tal	282

Course	Title		Cr	Gr
SPRING	2011			
CHL101	APPLIED CHEMISTRY (BS)		6	BC
CHP101	APPLIED CHEMISTRY (BS)		2	BC
CSL101	COMPUTER PROGRAMMING (ES)		8	BB
EEL101	ELECTRICAL ENGINEERING (ES)		6	AA
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	BB
HUL102	SOCIAL SCIENCE (HM)		4	BB
MAL102	MATHEMATICS - II (BS)		8	BC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
	O III FOR CORA	O a alit	FOR	CODA

_		PA	С	redi	t	EG	Р	SG	PA	CG	D۸	С	redi	t	EG	Р	C	GPA
3	G	FA		40		32	4	8.	.10	CG	FA		78		61	2	7	. 85
DE	Ξ	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
Αl	J	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	SGPA		redi	it	EG	Р	SG	BPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
SGPA			40		332		8.30		CG	FA		158		126	4	8	3.00
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	BB

60	Β.	С	redi	t	EG	Р	SG	SGPA		PA	С	redi	t	EG	Р	C	GPA
SGPA			42		34	6	8.	24	CG	PA		242		196	2	8	3.11
DE	0	DC	36	НМ	l 6	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

60	PΑ	С	redi	t	Е	GP	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IFA	40			314			7.85	CG	FA		322		261	8	8	3.13
DE	30	DC	10	HN	<i>I</i> 0		ОС	0	DE	86	DC	152	НМ	16	0	C	0
AU	0	ES	0	BS	3 0	-	Total	40	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : DIRGHA PRASAD Enrolment No. : BT10CHE030

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : DIVAKARLA PAVANA SINDHU Enrolment No. : BT10CHE031

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	BC
CHP101	CHEMIST	RY LAB (E	3S)			2	BC
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BC
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BC
HUL102	SOCIAL S	SCIENCE (HM)			4	AA
MAL101	MATHEM	ATICS I (B	SS)			8	AB
MEP101	WORKSH	IOP (ES)				4	AA
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
SCDA	Credit	EGP	CGPA				
SGPA	40	328	40	328	8 20		

									•	,							
60	· D A	С	redi	it	EG	Р	S	GPA	CGI	٠,	С	redi	t	EG	Р	CC	PΑ
36	SGPA		40		328		8.20		CGI	A		40	T	328	3	8	.20
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	С	C	0
AU	0	FS	20	BS	16	To	tal	40	AU	0	FS	20	BS	16	To	ntal	40

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	AB
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	AB
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	AA
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	AA

SGPA	Credit	t	EG	Р	SGP	Α	CG	DΛ	С	redi	t	EG	Р	CC	3PA
SGFA	40		370		9.25		CG	FA	1	118		972	2	8	.24
DE 12	DC 28	НМ	0	0	C ()	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal 4	0	AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CHI	L369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AA
CM	L361	MASS TRANSFER - I (DC)	6	AA
CM	L362	HEAT TRANSFER I (DC)	6	AA
CM	L363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CM	L370	ENVIRONMENTAL ENGINEERING (DE)	6	AA
CM	P364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CM	P365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CM	P370	ENVIRONMENTAL ENGINEERING (DE)	2	AA
HUI	L406	LABOUR ECONOMICS & INDUSTRIAL RELATIONS (HM)	6	AB

60	SGPA		redi	t	EG	Р	S	GPA	CGPA		С	redi	t	EG	Р	C	GPA
SGPA			42		414		9.86		CG	PA	2	200		176	8	8	.84
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	/ 16		C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AA
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML333	POLYMER PROCESSING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

_		D۸	С	redi	t	E	ЭP	S	GPA	CG	ДΛ	С	redi	t	EG	Р	C	GPA
٦	SGPA			46		458		9	9.96	CG	FA		288		264	6	9	.19
DI	E	18	DC	28	НМ	l 0		С	0	DE	62	DC	142	НМ	16	С	С	0
Αl	U	0	ES	0	BS	0	T	otal	46	AU	0	ES	36	BS	32	To	otal	288

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	AB
MAL102	MATHEMATICS - II (BS)	8	BB
MEC101	ENGINEERING DRAWING (ES)	8	DD
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BC
PHP101	PHYSICS (BS)	2	BB

SGPA		C	redi	t	EG	P	SC	SPA	CG	ДΛ.	C	redi	it	EG	P	C	GPA
			38		274		7.21		C	FA		78		60	2	7	.72
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CHL336	POLYMER ENGINEERING (DE)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AA
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AA
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credi	t	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA	40		382		9.55		CG	PA		158		135	4	8	.57
DE 12	DC 28	НМ	0	0	C 0	Ī	DE	24	DC	56	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal 40		AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	AA
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML374	OPTIMIZATION TECHNIQUES (DE)		6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA		С	redi	t	E	βP	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
		42			420		10.00		CG	FA		242		218	8	9	.04
DE	6	DC	36	ΗN	1 0	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
MML420	RURAL TECHNOLOGY (OC)	6	AB

60	SGPA		Credit		Е	GΡ	S	GPA	Ī	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IPA	34			334			9.82		CG	PA		322		298	0	9	.25
DE	18	DC	10	HN	1 0		С	6		DE	80	DC	152	НМ	16	0	С	6
ΑU	0	ES	0	BS	3 0	To	otal	34		ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : DIVAKARLA PAVANA SINDHU Enrolment No. : BT10CHE031

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : M S KARTHIKA Enrolment No. : BT10CHE032

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course		С	r Gr											
AUTUM	AUTUMN 2010													
CHL101	CHEMIST	RY (BS)				6	CD							
CHP101	CHEMIST	RY LAB (E	3S)			2	BC							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB							
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BB												
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BB												
HUL102	SOCIAL S	SCIENCE (HM)			4	BB							
MAL101	MATHEM	ATICS I (B	S)			8	BB							
MEP101	WORKSHOP (ES) 4 AB													
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS							
CCDA	Credit	EGP	CGPA											
SGPA		224		CGPA	40	204								

									,	,							
60	SGPA		redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CC	PA
36			40		304		7.60		CG	PA		40		304	4	7.	.60
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Cradit	EGD	SCDA		Cradit	ECD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	ITY THEOR'	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE	i)				6	CC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	DD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	ORGANIC C	CHEMISTRY	Y (DC)		2	BB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	S (DC)		6	CC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

86	ВΛ	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	EGP CGPA		GPA
SGPA			40		27	2	6.80		CGFA		118			870	0	7.37	
DE	12	DC 28 H		НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

60	·D 4	С	redi	t	EG	Р	SGPA		CG	D 4	С	redi	t	EG	Р	CGPA	
SGPA			42		336		8.00		CG	PA	200			148	0	7.40	
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	О	C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML480	CFD FOR CHEMICAL ENGINEERS (DE)	6	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

60	SGPA	C	redi	t	EGP		S	GPA	CG	ПΛ	C	redi	t	EG	Р	CC	SPA
SGPA			40		32	20	8.00		CG	PA		282		214	0	7.59	
DE	12	DC	28	ΗN	1 0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	BC
MAL102	MATHEMATICS - II (BS)	8	BC
MEC101	ENGINEERING DRAWING (ES)	8	AB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CC
PHP101	PHYSICS (BS)	2	BB

60	SGPA		Credit				EG	GP SGPA		CG	D 4	C	redi	t	EG	P	C	GPA	
SGPA			38		294		7.74		CG	FA	78			598	8	7.67		l	
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0	Ī	
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	l	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

	20	DΛ	С	redi	t	EGP		SGPA		CC	DΛ	С	redi	it	EG	Р	CGPA	
`	SGPA			40		274		6.85		CGPA		158			114	4	7.24	
D	Ε	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
Α	U	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	ВВ
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION ((DC)	6	ВВ
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВВ
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION ((DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	ВВ

80	SGPA	С	redi	t	EGP		Р	SGPA		cc	DΛ	С	redi	t	EG	Р	CGPA	
			42		340		8.10		CGFA			242			0	7.52		
DE	0	DC	36	ΗN	1 6		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	ES 0 BS 0		To	tal	42	AU	0	ES	36	BS	32	То	tal	242		

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
MML420	RURAL TECHNOLOGY (OC)	6	BC

60	PΑ	С	redi	it	ı	EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	P	C	GPA
36	IPA		40			306	6	7	.65		CG	PA		322		244	6	7.6	.60
DE	24	DC	10	ΗN	1	0	00	С	6	I	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	3	0	Tot	al	40	Γ	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name: M S KARTHIKA Enrolment No.: BT10CHE032

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

SPRING 2011

CHL101 APPLIED CHEMISTRY (BS)

CHP101 APPLIED CHEMISTRY (BS)

: GORE SWAPNIL SUKHADEV Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE033

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

Gr

вС

CC

										_							
Course							Т	ïtle							С	r	Gr
AUTUN	/N 2	2010)														
AML151	Е	NGIN	NEE	RING	MEC	1AH	VICS (ES)							6		FF
AMP151	Е	NGIN	NEE	RING	MEC	1AH	NICS L	.AB (ES)						2		BC
HUL101	С	COMMUNICATION SKILLS (HM)															CD
MAL101	MATHEMATICS I (BS) 8															CC	
MEC101	01 ENGINEERING DRAWING (ES) 8 DE															DD	
PEB151																SS	
PHL101	Р	HYS	ICS	(BS)											6		FF
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
SGPA	С	redi	t	EG	Р	SC	GPA		SP/		Cı	redi	t	EG	Р	C	GPA
38 140 3.68							.68		7F	١		26		140	0	5	.38
DE 0	DC	DC 0 HM 6 O				2	0	DE	0		DC	0	HN	1 6	C	С	0
AU 0	ES	ES 16 BS 16 To			Tot	al	38	ΑL	0		ES	10	BS	10	To	otal	26

RE-EXAM AUTUMN	2010
----------------	------

			1		l	ı		
PHL101	PHYSICS	(BS)				(6	DD
AML151	ENGINEE	RING MEC	CHANICS (ES)		(6	DD

60	·D A	С	redi	t	EG	Р	SC	3PA	-	PΑ	С	redi	t	EG	Р	CG	PA
SGPA			12		48	}	4	.00	CG	IFA		38		188	3	4.	95
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	6	0	С	0
AU	0	ES	6	BS	6	To	tal	12	AU	0	ES	16	BS	16	To	tal	38

AUTUMN 2011

	Credit FOR SORA Credit FOR		CODA
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD
CML474	PLANT UTILITY (DE)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD

SG	·DΛ	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		21	6	5	.40	CG	FA	•	118		694	4	5	.88
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	C	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	Т	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

60	·D A	С	redi	t	EG	Р	SC	3PA	_	_	PA	С	redi	t	EG	Р	C	GPA
SGPA		36		26	0	7	.22	C	G	PA	•	194		123	0	6	.34	
DE	14	DC	22	НМ	0	0	С	0	D	E	32	DC	78	НМ	10	С	C	6
AU	0	ES	0	BS	0	To	tal	36	Al	J	0	ES	36	BS	32	To	otal	194

CSL101	C	OMP	UTE	R PR	OGF	RAN	IMING	(ES)					8		вс
EEL101	El	_EC1	RIC	CAL EI	NGIN	1EE	RING	(ES)						6		BC
EEP101	Εl	_EC1	RIC	CAL EI	NGIN	IEE	RING L	.AB	(ES)					2		BC
HUL102	S	OCIA	L S	CIEN	CE ((HM	l)							4		AB
MAL102	M	ATH	EM/	ATICS	- II	(BS	S)							8		CC
MEP101	P101 WORKSHOP (ES) 4														AA	
PEB151	SI	POR'	TS /	YOG	A/ LII	BR/	ARY/ NO	CC	(AU)					0		SS
SGPA	С	redi	t	EG	Р	S	GPA	C	3PA	С	redi	it	EG	Р	C	GPA
SGFA	40 290			0	7	7.25	C)FA		78		47	8	6	5.13	
DE 0	DC	0	HN	1 4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU 0	ES	20	BS	16	To	tal	40	ΑU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	ВВ
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA		40		27	6	6	.90	CG	FA		158		97	0	6	5.14	
DE	6	DC	28	НМ	0	0	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	DD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML466	CHEMICAL PLANT DESIGN (DC)		6	DD
CML468	ORE AND MINERAL PROCESSING (DE)		6	CC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	D.A.	С	redi	t	EG	Р	SG	SPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
SGPA			42		25	4	6.	.05	CG	PA		236		148	34	6	.29
DE	6	DC	36	НМ	I 0	0	С	0	DE	38	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

80	SGPA	С	redi	it	EC	3P	S	GPA	CG	DΛ		redi	t	EG	Р	C	GPA
		40		31	4	7	7.85	CG	FA		322		213	32	6	.62	
DE	24	DC	10	HN	<i>I</i> 0	0	С	6	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0 8	То	tal	40	AU	0	ES	36	BS	32	Tot	tal	322

GRADE CARD

Name : GORE SWAPNIL SUKHADEV Enrolment No. : BT10CHE033

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course				Т	itle			C	r Gr	Course	Title	Cr	
AUTUN	IN 2013												
CMD401	PROJE	CT PHA	SE I (DC)				4	4 AB				
CML333	POLYN	MER PRO	CES	SING (DE))			(S CC				
CML461	TRANS	SPORT P	HEN	OMENA (D	OC)			(S CC				
CML462	CHEMI	CAL REA	CTIC	ON ENGIN	IEERING II	(DC)		(BC BC				
CML463	PROCE	ESS CON	ITRO	L & INSTF	RUMENTA	TION (DC	()	(BC BC				
CML480	CFD F	OR CHE	ЛΙСΑ	L ENGINE	ERS (DE)			(S CC				
CMP462	CHEMI	CAL REA	CTIC	ON ENGIN	IEERING -I	I (DC)		2	2 AB				
CMP463	PROCE	ESS CON	ITRO	L & INSTF	RUMENTA	TION (DC	()	2	2 AB				
CMP464	CHEMI	CAL ENG	SINE	ERING DE	SIGN & DI	RAWING	II (DC)) 2	2 BB				
HUL407	INDIA S	STUDIES	(HM)				6	S AB				
CODA	Credit	EG	Р	SGPA	CODA	Credi	t I	EGP	CGPA				
SGPA	46	33	4	7.26	CGPA	282	1	1818	6.45				
DE 12	DC 28	HM 6	00	0	DE 50	DC 142	НМ	16 (OC 6				
AU 0	ES 0	BS 0	Tot	al 46	AU 0	ES 36	BS :	32 T	otal 282				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

SPRING 2011

Name: JICHKAR OMPRAKASH DAMODAR

Branch : CHEMICAL ENGINEERING

Enrolment No. : BT10CHE034

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

Gr

Course			Т	itle		C	r Gr								
AUTUM	N 2010														
CHL101	CHEMIST	RY (BS)				6	S DD								
CHP101	CHEMIST	RY LAB (E	3S)			2	2 BC								
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 BB													
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 FF													
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 CC													
HUL102	SOCIAL S	CIENCE (HM)			4	4 CD								
MAL101	MATHEM	ATICS I (B	S)			8	3 CC								
MEP101	WORKSH	IOP (ES)				4	4 AA								
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		() SS								
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA								
SGPA	40	222	5.55	CGPA	34	222	6.53								

0.0	SGPA	-	cui		LG		3	JI 7	CG	ΠΛ.	0	leui	٠	LG	, '	CGI	~
30			40		22	2	5	.55	CG	PA		34	T	222	2	6.53	3
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	ОС		0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	14	BS	16	Tota	ıl 3	34
									-								

RE-EXAM AUTUMN 2010 EEL101 ELECTRICAL ENGINEERING (ES)

LLL	101		LC	IKIC	AL L	INGII	VLL.	KIING (3)						U		CD
60	SGPA	С	redi	it	EG	Р	S	GPA		CGI	. .	С	redi	t	EG	Р	CC	SPA
36	SGPA		6		30)	5	.00	'	CGI	A		40		252	2	6.	.30
DE	0	DC	0	НМ	0	0	С	0		DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	6	BS	0	Total		6		AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BC
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		21	4	5	.35	CG	ГА	1	118		680	0	5	.76
DE	12	DC	28	НМ	1 0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BC
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

80	SGPA	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	P	C	GPA
SGPA			42		29	6	7	.05	G	FA	2	200		120	6	6	.03
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	0	C	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

SUFA	00	24.4	E 63	CGFA	70	466	- 07				
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA				
PHP101	PHYSICS	(BS)				2	BB				
PHL101	PHYSICS	(BS)				6	DD				
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU) 0										
MEC101	ENGINEE	8	CC								
MAL102	MATHEM	8	CD								
HUL101	COMMUN	IICATION S	SKILL (HM	1)		6	BC				
AMP151	ENGINEE	RING MEC	CHANICS	(ES)		2	ВС				
AML151	ENGINEE	RING MEC	CHANICS	(ES)		6	CD				

SGPA	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	P	C	GPA		
36	IFA		38		21	4	5	.63	C	ГА		78		460	6	5.97		I
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0	ĺ
AU	0	ES	16	BS	16	Tot	tal	38	AU	0	ES	36	BS	32	То	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-L	(DC) 2	AR

	SGPA	С	redi	t	EG	Р	SC	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA	
3	Gr	A		40		23	0	5	.75	CG	PA		158		91	0	5	.76
DE	≣ 1	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
ΑL	J	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA		С	redi	it	EC	P	S	GPA	CG	DΛ	C	redi	t	EG	Р	С	GPA
36	IFA		42		32	6	7	7.76	CG	FA		242		153	2	2 6.33	
DE	6	DC	36	HM	1 0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
HUL403	PSYCHOLOGY & HRM (HM)	6	BB

	SGPA		С	redi	t		EG	Р	S	GPA	CG	ВΛ	C	redi	t	EG	Р	С	GPA
3	GF/	٠,		34			268	3	7	7.88	CG	FA		322		218	88	6	6.80
DE	18	3	DC	10	HN	/	6	0	С	0	DE	86	DC	152	НМ	16	0	С	0
ΑL	J 0		ES	0	BS	3	0	To	tal	34	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

: JICHKAR OMPRAKASH DAMODAR Enrolment No. : BT10CHE034 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course				Т	itle			Cr	Gr	Course	Title	Cr	
AUTUM	IN 2013	3											
CMD401	PROJ	ECT PHA	SE I (D	C)				4	AA				
CML374	PETR	OLIUM R	EFINER	Y ENGI	NEERING	(DE)		6	BC				
CML461	TRAN	SPORT F	PHENON	ΛΕΝΑ (Ε	OC)			6	BC				
CML462	CHEM	IICAL RE	ACTION	I ENGIN	IEERING II	(DC)		6	AB				
CML463	PROC	ESS CO	NTROL	& INSTE	RUMENTA	TION (DC)	6	BB				
CML480	CFD F	OR CHE	MICAL E	ENGINE	ERS (DE)			6	AA				
CML620	MEME	BRANE TI	ECHNO	LOGY (I	DE)			6	BB				
CMP462	CHEM	IICAL RE	ACTION	I ENGIN	IEERING -I	II (DC)		2	AA				
CMP463	PROC	ESS CO	NTROL	& INSTE	RUMENTA	TION (DC)	2	AB				
CMP464	CHEM	IICAL EN	GINEER	RING DE	SIGN & DI	RAWING	II (DC)	2	BB				
0004	Cred	it EG	SP S	SGPA	0004	Credi	t E	GP	CGPA				
SGPA	46	38	8	8.43	CGPA	288	19	920	6.67				
DE 18	DC 28	HM 0	oc	0	DE 68	DC 142	HM 1	0 0	C 0				
AU 0	ES 0	BS 0	Total	46	AU 0	ES 36	BS 3	2 To	tal 288				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

: JIGAYASA SOHNI Enrolment No. : BT10CHE035 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course		Title Cr Gr											
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	CC						
CHP101	CHEMIST	RY LAB (E	3S)			2	AB						
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 AB											
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 CC											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BB											
HUL102	SOCIAL S	SCIENCE (HM)			4	AB						
MAL101	MATHEM	ATICS I (B	SS)			8	BC						
MEP101	WORKSH	IOP (ES)				4	AA						
PEB151	SPORTS	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS											
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA						
SGPA	40	310	7.75	CGPA	40	310	7.75						

									,	,							
60	SGPA		redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	P	CG	PA
36	IPA		40		31	0	7	.75	CG	PA		40		310)	7.75	
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Crodit	EGD	SCDA		Crodit	EGD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	ITY THEOR'	Y (DE)	6	CD
CML474	PLANT U	TILITY (DE	:)				6	CC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	BC
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	S (DC)		2	CD
CHP261	PHYSICA	L AND INC	ORGANIC C	HEMISTR'	Y (DC)		2	BB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	ВС
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CC

80	SGPA		redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	CC	3PA
30	JFA		40		242	2	6.	.05	CG	FA	1	118		812	2	6	.88
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DC)	6	CD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL625	PSYCHOLOGY AND ED (HM)	6	BB
1 1		_	

SGPA	Credit	:	EG	Р	SGPA		CG	D 4	С	redi	t	EG	Ъ	C	GPA
SGPA	42		238	3	5.67		CG	PA	1	194		128	2	6.61 OC 6	.61
DE 14	DC 22	НМ	6	0	C 0	İ	DE	32	DC	72	НМ	16	С	С	6
AU 0	ES 0	BS	0	To	tal 42		AU	0	ES	36	BS	32	To	otal	194

RE-EXAM AUTUMN 2012

CML	.361	М	ASS	TR	ANSF	ER - I	I (DC)								6		FF
60	. В А	С	redi	it	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		6		0		0.00		CG	PA		194		128	2	6	.61
DE	0	DC	6	HM	1 0	00	0	ľ	DE	32	DC	72	НМ	16	C	C	6
AU	0	ES	0	BS	0	Tot	al 6		AU	0	ES	36	BS	32	To	otal	194

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	BC
MEC101	ENGINEERING DRAWING (ES)	8	CD
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CC
PHP101	PHYSICS (BS)	2	CD
	0 "	 	0004

60	SGPA	C	redi	t	EG	P	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA	
36	FA		38		26	0	6.84	CG	FA		78		570	0	7	.31	I
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	10	0	С	0	ĺ
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	ВС
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		40		23	2	5	.80	CG	PA		158		104	4	6	.61
DE	6	DC	28	НМ	0	0	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	DD
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML374	OPTIMIZATION TECHNIQUES (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CD
CMP366	MASS TRANSFER (DC)		2	BC
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DΛ	С	redi	t		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		42			27	4	6	.52	CG	FA		236		155	6	6	5.59
DE	6	DC	36	HN	1	0	0	С	0	DE	38	DC	108	НМ	16	0	С	6
AU	0	ES	0	BS	;	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	CD
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

ĺ	SG	• D A	С	redi	t	Е	G	Р	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
	36	JFA		46		(3)	0	3	6	.70	CG	FA		322		214	0	6.65	.65
j	DE	30	DC	10	HN	Л O		0	С	6	DE	74	DC	152	НМ	16	0	С	12
Ì	AU	0	ES	0	BS	3 0		To	tal	46	ΑU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : JIGAYASA SOHNI Enrolment No. : BT10CHE035

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course						Т	itle				Cr	Gr	Course	Title	Cr	G
AUTUM	IN 2	013														
CMD401	Р	ROJE	CT	PHAS	SEI(DC)					4	AB				
CML361	М	ASS	TRA	NSFE	ĒR -	I (DC)					6	BC				
CML461	TI	RANS	SPO	RT PH	HEN	OMENA (E	OC)				6	CD				
CML462	С	HEM	ICAL	REA	CTIC	ON ENGIN	IEERING II	(DC)			6	CC				
CML463	Р	ROC	ESS	CON	TRO	L & INSTE	RUMENTA	TION (DC	:)		6	CC				
CML620	М	ЕМВ	RAN	IE TE	CHN	OLOGY (I	DE)				6	BC				
CMP462	С	НЕМ	ICAL	REA	CTIC	ON ENGIN	IEERING -I	I (DC)			2	AB				
CMP463	Р	ROC	ESS	CON	TRO	L & INSTE	RUMENTA	TION (DC	:)		2	AB				
CMP464	С	НЕМ	ICAL	. ENG	SINE	ERING DE	SIGN & DI	RAWING	II (DC	;)	2	AB				
CODA	С	redi	t	EGI	P	SGPA	CODA	Credi	t	EGP		CGPA				
SGPA		40		276	6	6.90	CGPA	276		1832	:	6.64				
DE 6	DC	34	НМ	0	00	0	DE 44	DC 142	НМ	16	OC	6				
AU 0	ES	0	BS	0	Tot	al 40	AU 0	ES 36	BS	32	Tota	al 276				

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: MANOJ KUMAR YADAV Enrolment No. : BT10CHE037 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Dearee**

Course						Т	Γit	tle						С	r	Gr
AUTUM	N 20)10														
AML151	ΕN	IGIN	IEEF	RING	MEC	CHANICS (Ε	S)						6		FF
AMP151	ΕN	IGIN	IEEF	RING	MEC	CHANICS L	_A	AB (E	S)					2		AB
HUL101	CO	MM	IUNI	CATI	ON S	SKILLS (HI	M)						6		FF
MAL101	MA	ATHEMATICS I (BS) 8 CD														
MEC101	ΕN	ENGINEERING DRAWING (ES) 8 CD														
PEB151	SP	OR ⁻	TS/	YOG	A/L	IBRARY/	N	CC (AU)					0		SS
PHL101	PH	IYSI	CS	(BS)										6		DD
PHP101	PH	IYSI	CS I	LAB (BS)									2		AB
CODA	Cr	edi	t	EG	Р	SGPA	Ι	-		Cı	edi	t	EG	P	C	GPA
SGPA	3	38		14	0	3.68		CG	r A	:	26		140)	5	.38
DE 0	DC	0	НМ	6	0	C 0		DE	0	DC	0	НМ	0	С	С	0

Ľ	36	ГА		38		14	0	3	3.68	CGI			26		14	0	5	.38	
	E	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	I 0	C	C	0	
Α	U	0	ES	16	BS	16	To	tal	38	AU	0	ES	10	BS	16	To	otal	26	
_										-									_

RE-EXAM AUTUMN 2010

AML151	ENGINEERING MECHANICS (ES)	6	DD
HUL101	COMMUNICATION SKILLS (HM)	6	DD

86	SGPA	С	red	it	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	CG	PA
36	IFA		12		48	3	4.00	CG	FA		38		188	3	4.	.95
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	6	0	С	0
ΔΠ	Λ	ES	6	BS	Λ	Tota	al 12	ΔΠ	0	FS	16	BS	16	Τo	tal	38

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	DD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF

6	SGPA	С	redi	t	EG	Р	S	GPA	١.	CGI	٥,٨	С	redi	t	EG	Р	C	GPA	
٥١	GF	A		40		152	2	3	.80	'	CGI	A	1	104		522	2	5	.02
DE	1	12	DC	28	НМ	0	0	С	0		DE	6	DC	28	НМ	10	O	С	0
ΑU		0	ES	0	BS	0	То	tal	40		AU	0	ES	36	BS	24	To	otal	104

RE-EXAM AUTUMN 2011

MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) 6 FF

SGPA	С	redi	t	EG	Р	SG	PΑ	CG	DΛ	С	redi	t	EG	Р	Ö	GPA	
36			6		0		0.	00	CG	FA		104		522	2	5	.02
DE	6	DC	0	НМ	0	0	С	0	DE	6	DC	28	НМ	10	С	С	0
AU	0	ES	0	BS	0	To	tal	6	AU	0	ES	36	BS	24	To	otal	104

AUTUMN 2012

	Credit	FGP	SGPA		Credit	FGP	T	CGPA
HUL406	LABOUR	ECONOMI	CS & INDU	ISTRIAL RE	ELATIONS (HM)	6	DD
CMP370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			2	CD
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	ВС
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DR	RAWING I (D	OC)	2	ВС
CML375	ANALYTIC	CAL METH	ODS FOR	CHEMICAL	ANALYSIS	(DE)	6	FF
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	FF
CML363	CHEMICA	AL PROCES	SS EQUIPN	MENT DES	IGN (DC)		6	FF
CML362	HEAT TR	ANSFER I	(DC)				6	DD
CML361	MASS TR	ANSFER -	I (DC)				6	FF

SG	. В А	С	redi	it	Е	3P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		8	6	2	2.05	CG	ГА		158		772	2	4	.89
DE	14	DC	22	HM	1 6		С	0	DE	14	DC	60	НМ	16	C	С	0
AU	0	ES	0	BS	0	T	otal	42	AU	0	ES	36	BS	32	To	otal	158

Course	Title	Cr	Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	DD
CHP101	APPLIED CHEMISTRY (BS)	2	CD
CSL101	COMPUTER PROGRAMMING (ES)	8	CC
EEL101	ELECTRICAL ENGINEERING (ES)	6	CD
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BC
HUL102	SOCIAL SCIENCE (HM)	4	DD
MAL102	MATHEMATICS - II (BS)	8	FF
MEP101	WORKSHOP (ES)	4	AA

60	SGPA	C	redi	it	EG	Р	SG	PΑ	CG	D 4	С	redi	it	EG	Р	C	GPA
36)PA		40		18	2	4.5	55	CG	PA		70		37	0	5	.29
DE	0	DC	0	НМ	4	00	2	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	al	40	AU	0	ES	36	BS	24	To	tal	70

0

SS

SPORTS / YOGA/ LIBRARY/ NCC (AU)

RE-EXAM SPRING 2011

MAL	102	M	ΑТН	EM/	ATICS	- II	(BS)							8		FF	
SG	. П.	С	Credit EGP			S	GPA		D.A.	С	redi	t	EG	Р	CGPA			
36	PA	8			0		0.00		CGPA			70			0	5.29		
DE	0	DC	0	HM	1 0	0	С	0	DE	0	DC	0	НМ	10	0	С	0	
AU	0	ES	0	BS	8	To	tal	8	AU	0	ES	36	BS	24	To	tal	70	

SPRING 2012

PEB151

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	DD
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML621	NANO TECHNOLOGY (DE)	6	FF
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
MAL102	MATHEMATICS - II (BS)	8	FF

SG	DΛ	С	Credit EGP				S	GPA	CG	D۸	С	redi	it	EG	Р	CGPA		
36	IFA		42		48	3 1.14		.14	CG	FA		114		57	0	5.00		
DE	6	DC	28	HM	I 0	0	С	0	DE	6	DC	DC 38 HM		10	0	С	0	
AU	0	ES	0	BS	8	To	tal	42	AU	0	ES	36	BS	24	То	tal	114	

RE-EXAM SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML621	NANO TECHNOLOGY (DE)	6	DD
MAL102	MATHEMATICS - II (BS)	8	DD

SGPA		С	Credit EGP			S	GPA	CG	DΛ	С	redi	t	EG	Р	CGPA			
			32		116		3.63		CG	PA		140		680	6	4.90		
DE	6	DC	18	НМ	0	0	С	0	DE	12	DC	50	НМ	10	0	С	0	
AU	0	ES	0	BS	8	Tot	tal	32	AU	0	ES	36	BS	32	To	tal	140	

SPRING 2013

CIVILZOS	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	ю	טט
CML366	MASS TRANSFER - II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	CD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	6	CD
CML468	ORE AND MINERAL PROCESSING (DE)	6	CC
CMP366	MASS TRANSFER (DC)	2	BC
CMP367	HEAT TRANSFER (DC)	2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	2	CC

SGI	D A	С	redi	t	EG	Ρ	S	GPA	CG	ПΛ.	C	redi	t	EG	Р	C	GPA
	PA		42		18	8	4.48		CG	PA		212		103	88	4.90	
DE	6	DC	36	HM	l 0	0	С	0	DE 26		DC	102	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	212

GRADE CARD

Name : MANOJ KUMAR YADAV Enrolment No. : BT10CHE037

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course				Т	Cr	Gr	С	ourse	Title Cr G												Gr			
RE-EX	AM AU1	ΓUΝ	IN 2012	2						RE-EXAM SPRING 2013														
CML361	L361 MASS TRANSFER - I (DC) 6 DD											CML366 MASS TRANSFER - II (DC)										6	CD	
CML363	Credit EGP											SGPA			Cred	it	EGI	РΪ	CGPA					
CML370	ENVIRONMENTAL ENGINEERING (DE) 6 DD SGPA 6 30 5.00 CGPA 218										-+	106		4.90										
CML375	ANAL'	YTIC	AL METH	IODS FOR	CHEMICA	L ANALYS	IS (DE)	6	FF	H	DE 0	DC		Тнм		00		 DE	26	DC 108			00	
	Credi	t	EGP	SGPA		Credit	EGP	-	CGPA	+	AU 0	ES		BS	_	Tot		AL			BS	_	Tota	
SGPA	24		78	3.25	CGPA	176	850		4.83	-				53		100	iai 0	ILAC	, 0	L3 30	00	32	1016	11 210
DE 12	DC 12	Ιнм	0 0	C 0	DE 20	DC 72 I	HM 16	OC	2 0	_	SPRIN	_	-		D		(5.0)						_	
AU 0	ES 0	BS	0 Tc	tal 24	AU 0		BS 32	Tota	al 176		CMD45 CMD45						(DC)	1001	0 N D	2000444	(D	O \	8	BB
-	CI																UP DISCL		ON PE	ROGRAM	(D	C)	2	AB
											CML466						ESIGN (_	6	DD
CMD401			PHASE I	, ,				4	BB	(CML471	_		CHN	OLO	GY A	ND BIOCI	HEM	ICAL	ENGINEE	RIN	G	6	DD
CML374				ERY ENGI		(DE)		6	DD	(CML472		DE)	NCE	D SE	DAR/	ATION PR	OCE	99 (DE)			6	DD
CML461	TRAN	SPO	RT PHEN	IOMENA (D	DC)			6	DD		CML475						BLE ENER		,		· (D	ıΕ\	6	CC
CML462	CHEM	IICAI	REACTI	ON ENGIN	IEERING II	(DC)		6	CC		CML479						IIP DEVEL	-	_		ט) נ	,L)	6	CD
CML463	PROC	ESS	CONTRO	OL & INSTF	RUMENTAT	TION (DC)		6	BC		JIVIL478							JOPK	/IEIN I	1 /	-			
CML480	CFD F	OR	CHEMICA	AL ENGINE	ERS (DE)			6	BC		SGP	. 🗀	Credi	it	EG	P	SGPA		GPA	Cred	it	EGI	P	CGPA
CML620	MEME	RAN	IE TECHI	NOLOGY (E	DE)			6	BC		SUFF	`	40		22	0	5.50	"	GFA	304		157	8	5.19
CMP462	CHEM	IICAI	REACTI	ON ENGIN	IEERING -I	I (DC)		2	AB	Ī	DE 24	DC	16	НМ	0	0	C 0	DE	68	DC 152	НМ	16	OC	0
CMP463	MP463 PROCESS CONTROL & INSTRUMENTATION (DC) 2									Ī	AU 0	ES	3 0	BS	0	Tot	tal 40	ΑL	J 0	ES 36	BS	32	Tota	al 304
CMP464	CHEM	IICAI	ENGINE	ERING DE	SIGN & DF	RAWING II	(DC)	2	BC			,		,							,	1		
CODA	Credi	t	EGP	SGPA	CODA	Credit	EGF	·	CGPA															
SGPA	46		290	6.30	CGPA	264	1358	3	5 14															

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

46

DE 44 DC 136 HM 16 OC

AU 0 ES 36 BS 32 Total

(This Statement is subject to correction, if any)

DE 18 DC 28 HM 0 OC

AU 0 ES 0 BS 0 Total

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : MD NAVED ANWAR ANSARI Enrolment No. : BT10CHE038

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	TRY (BS)				6	BC
CHP101	CHEMIST	TRY LAB (E	3S)			2	BB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	CC
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BC
EEP101	ELECTRI	CAL ENGI	NEERING I	AB (ES)		2	AB
HUL102	SOCIAL S	SCIENCE (HM)			4	BC
MAL101	MATHEM	IATICS I (B	SS)			8	AB
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	302	7 55	CGPA	40	302	7 55

80	• D A	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	CC	GPA
36	SGPA	40			302		7.55		CG	ГА		40		302	2	7	.55
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal 40		AU	0	ES	20	BS	16	То	tal	40

AUTUMN 2011

	Cradit	ECD	SCDA		Cradit	ECD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	BC
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP263	ORGANIC	C CHEMIST	RY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR	Y (DC)		2	BB
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	CC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CD

SGPA	Credit	t	EG	Р	SC	PA	CG	DΛ	С	redi	t	EG	Р	CC	3PA
	40		252		6.30		CG	FA	1	118		800)	6	.78
DE 12	DC 28	НМ	0	00	С	0	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CD
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AB
		_	

60	·D 4	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA	42			316		7.52		CG	PA	2	200		138	6	6	.93	
DE	14	DC	22	НМ	1 6	0	С	0	DE	38	DC	78	НМ	16	С	C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

SG	·DΛ	С	redi	it		EG	Р	S	GPA	,	CGI	D A	С	redi	t	EG	Р	C	GPA
36	JFA		40			328	3	8	3.20	•	JG	FA	:	282		205	2	7	.28
DE	12	DC	28	ΗN	1	0	0	С	0	1	DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	3	0	To	tal	40	1	AU	0	ES	36	BS	32	То	tal	282

Course	Title	Cı	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CC
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	BC
MAL102	MATHEMATICS - II (BS)	8	BB
MEC101	ENGINEERING DRAWING (ES)	8	CD
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CD
PHP101	PHYSICS (BS)	2	AB

	86	D۸	С	redi	it	EG	Р	SC	€PA	CG	DΛ	C	redi	it	EG	P	C	GPA
L	SGPA		38		246		6.47		CG	FA		78		54	8	7	.03	
	DE	0	DC	0	НМ	6	00	OC 0		DE	0	DC	0	НМ	10	0	С	0
L	AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

		_	
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

60	·D 4	С	redi	t	EGP SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA		
SGPA		40		270		6.75		CG	PA		158		107	0	6	5.77	
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	0 To		40	AU	0	ES 36		BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	E	G	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
		42			338	3	8	.05	CG	FA		242		172	4	7	'.12	
DE	6	DC	36	HN	1 ()	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	3 ()	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML472	ADVANCED SEPARATION PROCESS (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

60	. П.	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		27	8	6	.95	CG	PA		322		233	0	7	7.24
DE	30	DC	10	ΗN	1 0	0	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : MD NAVED ANWAR ANSARI Enrolment No. : BT10CHE038

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : MEKALWAR SOUMYA Enrolment No. : BT10CHE039

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr								
AUTUM	N 2010														
CHL101	CHEMIST	RY (BS)				6	BC								
CHP101	CHEMIST	RY LAB (E	3S)			2	AB								
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 AB													
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BC													
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 AB													
HUL102	SOCIAL S	SCIENCE (HM)			4	AA								
MAL101	MATHEM	ATICS I (B	SS)			8	AA								
MEP101	WORKSHOP (ES) 4 AA														
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS														
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA								
SGPA	40	352	8.80	CGPA	40	352	8.80								

60	SGPA		redi	it	EG	Р	S	GPA	Ι,	CGI	٥,	С	redi	t	EG	Р	CC	GPA
36			40		35	2	8	.80	١,	CGI	A		40	T	352	2	8	.80
DE	0	DC	0	НМ	4	0	С	0	Πi	DE	0	DC	0	НМ	4	С	С	0
ΑU	0	ES	20	BS	16	То	tal	40	П	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Credit	FGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	DDS AND I	PROBABILI	TY THEOR	Y (DE)	6	BB
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	AB
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	CHEMISTRY	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	BB
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	AA

SGPA	Credit	t	EG	Р	SGP	4	CG	D A	С	redi	t	EG	Р	CC	3PA
SGFA	40		352	2	8.80		CG	ГА	1	118		100	0	8	.47
DE 12	DC 28	НМ	0	0	0		DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	tal 4)	AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AA
CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AA
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA

60	·D 4	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
36	SGPA		42		40	8	9	.71	CG	PA	2	200		177	4	8	.87
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	C	C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AA
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA
		1	

0.0	· D A	C	redi	it	EC	3P	S	GPA	l	CG	ПΛ	C	redi	t	EG	Р	C	GPA
30	SGPA		40		39	2	9	.80		CG	PA		282		256	62	9	.09
DE	12	DC	28	HM	1 0	0	С	0		DE	62	DC	142	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU 0		ES	36	BS	32	To	otal	282	

Course	Title	Cı	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	вс
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	ВС
MEC101	ENGINEERING DRAWING (ES)	8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BB
PHP101	PHYSICS (BS)	2	AA
		1 1	

SG	D A	C	redi	t	EG	P	SC	SPA	CG	ДΛ.	C	redi	it	EG	P	C	GPA	
36	IFA		38		29	6	7	.79	CG	FA		78		64	8	8	.31	
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	1

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CHL336	POLYMER ENGINEERING (DE)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

	3PA	С	redi	t	EG	Р	SG	PA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
3	JРА		40		36	6	9.	.15	CG	PA		158		136	6	8	.65
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	00	2	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML374	OPTIMIZATION TECHNIQUES (DE)		6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DΛ	С	redi	t		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		42			396	6	9	.43	CG	FA		242		217	0	8	3.97
DE	6	DC	36	HN	1	0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	3	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	BB

60	PΑ	С	redi	t	EG	Р	SG	PA	CG	D 4	С	redi	t	EG	Р	С	GPA
36	IPA		40		35	В	8.	95	CG	PA		322		292	20	9	.07
DE	24	DC	10	HM	16	0	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: MEKALWAR SOUMYA Enrolment No.: BT10CHE039

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: MESHRAM PRATIK NITIN

Enrolment No. : BT10CHE040

Branch: CHEMICAL ENGINEERING

Degree : BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr	
AUTUM	N 2010							
CHL101	CHEMIST	RY (BS)				6	FF	
CHP101	CHEMIST	RY LAB (E	3S)			2	BC	
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	FF	
EEL101	ELECTRI	CAL ENGII	NEERING (ES)		6	FF	
EEP101	ELECTRI	CAL ENGII	NEERING I	_AB (ES)		2	CC	
HUL102	SOCIAL S	SCIENCE (HM)			4	CC	
MAL101	MATHEM	ATICS I (B	S)			8	FF	
MEP101	WORKSH	IOP (ES)				4	AA	
PEB151	SPORTS	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS						
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA	
SGPA	40	90	2.25	CGPA	12	90	7.50	

SG	D۸	L	rea	τ	EG	٢	õ	GPA		CGI	۰.	L	reai	τ	-	EGI		C	PA
36	PA		40		90	•	2	2.25		CGI	A		12			90		7.	50
DE	0	DC	0	НМ	4	0	С	0	П	DE	0	DC	0	ΗN	1	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40		AU	0	ES	6	BS		2	Tot	tal	12

RE-EX	A B A A	LITI	IRABI	2040
RC-CA	AIVI A		JIVIIV	ZU 1 U

MAL101	MATHEMATICS I (BS)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
CHL101	CHEMISTRY (BS)	6	טט

60	·D 4	С	redi	it	EG	Р	S	GPA		CGI	٠.	C	redi	t	EG	Р	CC	SPA		
36	SGPA		28		28		28 24		0.86			CGI	A		18		114	1	6.33	
DE	0	DC	0	НМ	0	0	С	0		DE	0	DC	0	НМ	4	С	С	0		
AU	0	ES	14	BS	14	To	tal	28	П	AU	0	ES	6	BS	8	To	otal	18		

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY	(DC) 6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	DD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF

80	SGPA	С	Credit		Credit				EGP		SGPA		CG	D A	С	redi	t	EG	Р	C	GPA
SGFA			42		16		0.38		CG	FA		46		232	2	5.04					
DE	6	DC	28	НМ	0	0	С	0	DE	0	DC	4	НМ	10	C	С	0				
AU	0	ES	8	BS	0	То	tal	42	AU	AU 0		ES 22 B		S 10 T		otal	46				

RE-EXAM AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	W
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	W
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
		\neg	

SGPA	C	redi	it		EG	Р	S	GPA	CGI	٥,	С	redi	t	EG	P	CG	SPA	
			38		0			0.00		CGIA		46			23	2	5.	.04
DE	6	DC	24	HN	Λ	0	0	С	0	DE	0	DC	4	НМ	10	0	С	0
AU	0	ES	8	BS	3	0	To	tal	38	AU	0	ES 22 BS		BS	10	То	tal	46
710	U				_	0	10	lai	- 00	1,10		1 - 0		DO	10	1 10	itai	

Course	Title	Cı	Gr
SPRING	G 2011		
AML151	ENGINEERING MECHANICS (ES)	6	FF
AMP151	ENGINEERING MECHANICS (ES)	2	DD
HUL101	COMMUNICATION SKILL (HM)	6	CD
MAL102	MATHEMATICS - II (BS)	8	W
MEC101	ENGINEERING DRAWING (ES)	8	FF
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	W
PHP101	PHYSICS (BS)	2	DD
	Credit FGP SGPA Credit	FGP	CGPA

60	SGPA		redi	t	EG	P	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA
SGPA			38		46		1.21	CG	FA		28			0	5.71	
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	8	BS	10	To	tal	28

RE-EXAM SPRING 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
MEC101	ENGINEERING DRAWING (ES)	8	DD

80	·DA	С	redi	t	EG	Р	SC	3PA	CC	DΛ	С	redi	t	EG	Р	C	3PA
SGPA		14			32		2.29		CGPA			36		192		5.33	
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	00	С	0
AU	0	ES	14	BS	0	To	tal	14	AU	0	ES	16	BS	10	Tot	tal	36

SUMMER TERM SPRING 2011

EEL101	ELECTRICAL ENGINEERING	(ES)	6	DD
MAL101	MATHEMATICS I (BS)		8	FF

80	• D A	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	it	EG	Р	CC	3PA
SGPA		14			24		1.71		CGFA			42			6	5	.14
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	8	Tot	tal	14	AU	0	ES	22	BS	10	To	tal	42

SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	FF
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	W
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	CD
MAL102	MATHEMATICS - II (BS)	8	W

SG	DA	С	redi	t	EG	Р	SG	PA	CG	D.A.	С	redi	t	EG	Р	C	GPA
36	PA		42		10		0.	24	CG	PA		48		24	2	5	.04
DE	0	DC	28	НМ	0	0	С	0	DE	0	DC	6	НМ	10	0	С	0
AU	0	ES	6	BS	8	To	tal	42	AU	0	ES	22	BS	10	То	tal	48

RE-EXAM SPRING 2012

CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML263	FLUID MECHANICS (DC)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
AML151	ENGINEERING MECHANICS (ES)	6	FF

86	DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
		24		0		0	0.00	CG	ГА		48		24	2	5.	.04	
DE	0	DC	18	HN	<i>I</i> 0	0	С	0	DE	0	DC	6	НМ	10	0	С	0
AU	0	ES	6	BS	3 0	To	tal	24	AU	0	ES	22	BS	10	To	tal	48

GRADE CARD

Name : MESHRAM PRATIK NITIN Enrolment No. : BT10CHE040

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course					Т	itle			Cı	- Gr		Course					Ti	tle				Cr	Gr
AUTUM	N 2012	2										SPRING	3 20 ⁻	13									
CHL261	PHYS	ICAL	. CHE	MIST	TRY AND	GENERAL	METALLU	IRGY (D	C) 6	FF		CML265	CH	IEMIC	AL EN	SINEE	RING TH	ERMODYN	NAMICS	(DC))	6	FF
CML262	CHEM	1ICAI	L PRO	CES	S CALCU	LATIONS (DC)		6	FF		CML366	MA	ASS T	RANSF	ER - II	(DC)					6	FF
CML361	MASS	TRA	ANSFE	ER - I	I (DC)				6	FF		CML367	HE	AT TE	RANSF	ER-II	(DC)					6	DD
CML362	HEAT	TRA	NSFE	RI(DC)				6	FF		CML368	СН	IEMIC	AL REA	ACTIO	N ENGIN	EERING-I	(DC)			6	FF
CML363	CHEM	1ICAI	L PRO	CES	S EQUIP	MENT DES	IGN (DC)		6	FF		CML371	СН	IEMIC	AL PRO	OCES	MODEL	ING AND	SIMULAT	ION	(DC)	6	CD
CML370	ENVIF	NOS	MENT	AL E	NGINEER	ING (DE)			6	FF		CMP366	MA	ASS T	RANSF	ER (I	DC)					2	CD
CMP364	CHEM	1ICAI	L ENG	INE	ERING DE	SIGN & DF	RAWING I	(DC)	2	ВС		CMP367	HE	AT TE	RANSF	ER (D	OC)					2	AB
CMP365	FLUID	ME	CHAN	ICS a	& MECHA	NICAL OPI	ERATION	II (DC)	2	CC		CMP371	СН	IEMIC	AL PRO	CES	MODEL	ING AND	SIMULAT	ION	(DC)	2	AB
CMP370	ENVIF	RONI	MENT	AL E	NGINEER	ING (DE)			2	BB		MAL102	MA	THEN	/ATICS	S - II (BS)					8	FF
SGPA	Credi	it	EGF	Р	SGPA	CGPA	Credit	EG	Р	CGPA	1	SGPA	Cr	edit	EG	iP	SGPA	CGPA	Credi	it	EGP		CGPA
SGPA	42		42		1.00	CGPA	54	28	4	5.26		SGPA		44	10	0	2.27	CGPA	78		408		5.23
DE 8	DC 34	НМ	0	OC	0	DE 2	DC 10	HM 10	0	C 0		DE 0	DC	36 F	IM 0	OC	0	DE 2	DC 34	НМ	10	ОС	0
AU 0	ES 0	BS	0	Tota	al 42	AU 0	ES 22	BS 10	То	tal 54		AU 0	ES	0 E	3S 8	Tota	al 44	AU 0	ES 22	BS	10	Total	l 78

RE-EXAM AUTUMN 2012

CML370	ENVIRONMENTAL ENGINEERING (DE)	6	FF
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	DD
CML362	HEAT TRANSFER I (DC)	6	FF
CML361	MASS TRANSFER - I (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF

···-		_								,					•		
60	. П. А	С	redi	it	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	CG	SPA
SGPA			30		24	ļ.	0	.80	CG	ГА		60		308	3	5.	.13
DE	6	DC	24	НМ	0	0	С	0	DE	2	DC	16	НМ	10	0	С	0
ALL	Λ	EQ	Λ	BC	Λ	To	tal	30	ALI	0	EC	22	BC	10	To	tal	60

AUTUMN 2013

00		Credit	EGP	SGPA	0004	Credit	EGP		CGPA
MAL	101	MATHEM	ATICS I (B	S)				8	FF
CMP	464	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	DC)	2	BC
CMP	462	CHEMICA	AL REACTI	ON ENGIN	EERING -II	(DC)		2	BC
CML	362	HEAT TR	ANSFER I	(DC)				6	FF
CML	.361	MASS TR	ANSFER -	I (DC)				6	FF
CML	262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF
CML	.261	INORGAN	IIC CHEMI	CAL TECH	NOLOGY (DC)		6	DD
CMD	0401	PROJECT	T PHASE I	(DC)				4	BC
AML	151	ENGINEE	RING MEC	CHANICS (I	ES)			6	FF

SG	ПΛ	C	redi	it	EG	Р	S	GPA	CG	D Λ	C	redi	t	EG	Р	C	3PA
36	PA		46		80		1	.74	CG	PA	•	100		520)	5	.20
DE	0	DC	32	НМ	0	0	С	0	DE	2	DC	48	НМ	10	C	С	0
AU	0	ES	6	BS	8	To	tal	46	AU	0	ES	22	BS	10	To	otal	92

RE-EXAM AUTUMN 2013

Date: 22-Jul-2014

						. 1		
MAL101	MATHEM	ATICS I ())				8	FF.
CML362	HEAT TR	ANSFER I	(DE)				6	DD.
CML361	MASS TR	ANSFER -	I (DC)				6	DD.
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	DD.
AML151	ENGINEE	KING MEC	HANICS ()			6	· ++

SG	DΛ	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	P	CC	SPA
36	IFA		32		72	2	2	.25	CG	ГА	•	118		592	2	5	.02
DE	6	DC	12	НМ	0	0	С	0	DE	8	DC	60	НМ	10	О	С	0
AU	0	ES	0	BS	0	То	tal	18	AU	0	ES	22	BS	10	To	tal	110

RE-EXAM SPRING 2013

CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML366	MASS TRANSFER - II (DC)	6	FF
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF

SG	·DA	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	PA		26		0		0	.00	CG	PA		78		40	8	5	.23
DE	0	DC	18	НМ	0	0	С	0	DE	2	DC	34	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	26	AU	0	ES	22	BS	10	То	tal	78

SUMMER TERM SPRING 2013

MAL102 MATHEMATICS - II (--) 8 DD Creatity FOD CODA

80	PA	C	rea	t	EG	۲	SGF	Ά	CG	ВΛ	C	rea	τ	EG	P	CG	PA
36	IFA		8		32	2	4.0	0	CG	FA		86		44	0	5.	.12
DE	0	DC	0	НМ	0	0	С	0	DE	2	DC	34	НМ	10	00		0
AU	0	ES	0	BS	0	To	tal	0	AU	0	ES	22	BS	10	Tot	al	78
SPE	SPRING 2014																

CHL214 ORGANIC CHEMICAL TECHNOLOGY (DC) CHP214 ORGANIC CHEMICAL TECHNOLOGY (DC) 2 DD CMD452 PROJECT PHASE-II (DC) 8 ВВ CMD453 SEMINAR AND GROUP DISCUSSION PROGRAM (DC) 2 AB CMI 263 FLUID MECHANICS (DC) 6 DD CML264 MECHANICAL OPERATIONS (DC) 6 FF ORE AND MINERAL PROCESSING (DE) חח CML468 6 CML475 NEW AND RENEWABLE ENERGY ENGINEERING (DE) CC 6 CMI 491 PROJECT PLANNING AND MANAGEMENT (DE) 6 DD

Ι.	60	D A	С	redi	it	EC	P	S	GPA	~	BPA	С	redi	it	EG	Р	C	GPA
'	SGPA			48		19	8	4	4.13	C	PA		154		79	0	5	.13
	DΕ	18	DC	30	ΗN	1 0	0	С	0	DE	26	DC	78	НМ	10	0	С	0
A	١U	0	ES	0	BS	0	То	tal	48	AU	0	ES	22	BS	10	То	tal	146

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Asst. Registrar (Examination)

GRADE CARD

Name : MOLLI BHASKAR YADAV Enrolment No. : BT10CHE041

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course							Т	itl	le						С	r	Gr
AUTUN	IN 2	2010)														
AML151	Е	NGI	NEE	RING	MEC	CHAI	NICS (ES	S)						6		DD
AMP151	Е	NGI	NEE	RING	MEC	CHAI	NICS L	Α	В (Е	S)					2		BB
HUL101	С	COMMUNICATION SKILLS (HM)													6		BC
MAL101	M	MATHEMATICS I (BS)													8		BB
MEC101	E	ENGINEERING DRAWING (ES) 8 FF											FF				
PEB151	S	POR	TS	YOG	A/L	IBR/	ARY/I	NC	CC (AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		CD
PHP101	Ρ	HYS	ICS	LAB (BS)										2		DD
SGPA	С	Credit EGP					GPA		CG	D A	Cı	redi	t	EG	Р	CC	3PA
SGPA		38 184					.84		CG	r A	,	30		184	ı	6	.13
DE 0	DC	C 0 HM 6 O			С	0		DE	0	DC	0	НМ	6	С	C	0	
AU 0	ES	S 16 BS 16 To			tal	38		AU	0	ES	8	BS	16	To	otal	30	

			010

ME	C101	El	NGI	NEE	RING	DRA	1IW	NG (ES)						8		FF
60	. ח	С	redi	it	EG	Ρ	S	GPA	CG	D.A.	С	redi	t	EG	Р	C	SPA
30	SGPA		8		0		C	0.00	CG	PA		30		184	4	6	.13
DE	0	DC	DC 0 HM		<i>I</i> 0	0	С	0	DE	0	DC	0	ΗN	1 6	0	С	0
AU	0	ES	8	BS	3 0	То	tal	8	AU	0	ES	8	BS	16	To	tal	30

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	BC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BC
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD

80	SGPA	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Ρ	C	GPA
36			40		22	6	5	.65	CG	FA	1	110		710		6	.45
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	28	BS	32	To	otal	110

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL625	PSYCHOLOGY AND ED (HM)	6	BC

60	SGPA		redi	it	EG	P	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
30			42		28	2	6	.71	CG	PA	•	192		121	0	6	.30
DE	14	DC	22	ΗN	16	0	С	0	DE	38	DC	78	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	28	BS	32	To	tal	192

Course	Title		Cr	. Gr
SPRING	3 2011			
CHL101	APPLIED CHEMISTRY (BS)		6	BC
CHP101	APPLIED CHEMISTRY (BS)		2	AA
CSL101	COMPUTER PROGRAMMING (ES)		8	AB
EEL101	ELECTRICAL ENGINEERING (ES)		6	CC
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	BC
HUL102	SOCIAL SCIENCE (HM)		4	BC
MAL102	MATHEMATICS - II (BS)		8	CC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	W
	0 114 500 0004	O	FOR	0004

80	SGPA	С	redi	t	EG	Р	SGP	Ά	CG	DΛ	С	redi	t	EG	Р	C	GPA
30			40		30	0	7.5	0	CG	FA		70		48	4	6	.91
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal 4	10	AU	0	ES	28	BS	32	То	tal	70

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
PEB151	SPORTS/YOGA/LIBRARY/NCC (AU)	0	SS

SGPA	Credit	:	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGFA	40		218	3	5.45	CG	FA		150		92	В	6	.19
DE 12	DC 28	НМ	0	0	C 0	DE	24	DC	56	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	tal 40	AU	0	ES	28	BS	32	To	tal	150

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	CC
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB
MEC101	ENGINEERING DRAWING (ES)		8	FF

SG	DΛ	С	redi	t		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		44			242	2	5	.50	CG	FA		228		145	2	6	3.37
DE	0	DC	36	HN	1	0	0	С	0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	8	BS	;	0	To	tal	44	AU	0	ES	28	BS	32	То	tal	228

RE-EXAM SPRING 2013

MEC101 ENGINEERING DRAWING (ES)

60	PA	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		8		32	:	4.	.00	CG	FA		236		148	4	6	.29
DE	0	DC	0	НМ	0	0	С	0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	8	BS	0	To	tal	8	AU	0	ES	36	BS	32	То	tal	236

DD

GRADE CARD

Name : MOLLI BHASKAR YADAV Enrolment No. : BT10CHE041

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course

SPRING 2014

CMD452 PROJECT PHASE-II (DC)

Course						Т	itle	е						С	r	Gr
AUTUM	IN 201	3														
CMD401	PRO	JEC.	T PHA	SEI	(DC)									4		AA
CML374	PET	ROLI	UM RI	EFINI	ERY	ENGI	NE	ER	ING	(DE)				6		BB
CML461	TRA	NSP	ORT P	HEN	OME	ENA (D	OC))						6		BC
CML462	CHE	MICA	AL RE	ACTIO	ON E	ENGIN	IEE	RIN	NG II	(DC)			6		CD
CML463	PRO	CES	S CON	NTRC)L &	INSTF	RUI	MEI	NTA	ΓΙΟΝ	(DC)		6		BC
CML480	CFD	CFD FOR CHEMICAL ENGINEERS (DE) 6 BB														
CML620	MEN	MEMBRANE TECHNOLOGY (DE) 6 AB														
CMP462	CHE	MICA	AL RE	ACTIO	ON E	ENGIN	IEE	RIN	NG -I	I (DC	C)			2		AB
CMP463	PRO	CES	S CON	NTRC)L &	INSTF	RUI	MEI	NTA	ΓΙΟΝ	(DC)		2		AA
CMP464	CHE	MICA	AL EN	GINE	ERI	NG DE	SI	GN	& DF	RAW	ING	II (C	C)	2		BB
SGPA	Cre	lit	EG	P	SC	SPA		CGI	D 4	С	redi	t	EG	Р	C	GPA
SGPA	46		35	8	7	.78		JG	PA	:	282		184	2	6	.53
DE 18	DC 28	Н	v 0	0	С	0] [DE	56	DC	142	ΗN	<i>l</i> 16	О	С	0
AU 0	ES 0	В	S 0	To	tal	46	1	AU	0	ES	36	BS	32	To	tal	282

HNOLOGY	AND BIOCH	HEMICAL E	ENGINEE	RINC	3	6	CC							
CED SEPAR	RATION PRO	OCESS (I	DE)			6	CC							
ND RENEW	ABLE ENER	GY ENGIN	NEERING	(DI	Ξ)	6	BB							
ENTREPRENEURSHIP DEVELOPMENT (DE) 6 CC PROJECT PLANNING AND MANAGEMENT (DE) 6 RC														
491 PROJECT PLANNING AND MANAGEMENT (DE) 6 BC														
EGP	SGPA	CCDA	Credi	t	EG	Р	CGPA							
280	7.00	CGPA	322		212	2	6.59							
-M 0 (OC 0	DE 86	DC 152	НМ	16	0	C 0							
BS 0 T	otal 40	AU 0	ES 36	BS	32	To	tal 322							
	CED SEPAF ND RENEW. PRENEURS CT PLANNIN EGP 280 HM 0 C	CED SEPARATION PROND RENEWABLE ENER PRENEURSHIP DEVEL CT PLANNING AND MA EGP SGPA 280 7.00	CED SEPARATION PROCESS (IND RENEWABLE ENERGY ENGINE PRENEURSHIP DEVELOPMENT CT PLANNING AND MANAGEMENT EGP SGPA 280 7.00 CGPA	CED SEPARATION PROCESS (DE) ND RENEWABLE ENERGY ENGINEERING PRENEURSHIP DEVELOPMENT (DE) CT PLANNING AND MANAGEMENT (DE) EGP SGPA 280 7.00 CGPA 322 HM 0 OC 0 DE 86 DC 152	CED SEPARATION PROCESS (DE) ND RENEWABLE ENERGY ENGINEERING (DI PRENEURSHIP DEVELOPMENT (DE) CT PLANNING AND MANAGEMENT (DE) EGP SGPA 280 7.00 CGPA 322 HM 0 OC 0 DE 86 DC 152 HM	NO RENEWABLE ENERGY ENGINEERING (DE)	CED SEPARATION PROCESS (DE) 6 ND RENEWABLE ENERGY ENGINEERING (DE) 6 PRENEURSHIP DEVELOPMENT (DE) 6 CT PLANNING AND MANAGEMENT (DE) 6 EGP SGPA CGPA Credit EGP 280 7.00 T.00 DE 86 DC 152 HM 16 O							

Title

CMD453 SEMINAR AND GROUP DISCUSSION PROGRAM (DC)

Cr

8

2

Gr

ВВ

ΑB

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: VISHAKHA AJABRAO SHENDE

Enrolment No. : BT10CHE042

Branch: CHEMICAL ENGINEERING

Course			٦	Title		С	r Gr	Course			Т	itle		С	r Gr
AUTUM	N 2010							SPRING	2011						
CHL101	CHEMIST	TRY (BS)				6	DD	AML151	ENGINEE	RING ME	CHANICS	(ES)		6	FF
CHP101	CHEMIST	TRY LAB (E	3S)			2	BC	AMP151	ENGINEE	RING ME	CHANICS	(ES)		2	CC
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	FF	HUL101	COMMUN	IICATION :	SKILL (HN	1)		6	CC
EEL101	ELECTRI	CAL ENGI	NEERING	(ES)		6	FF	MAL102	MATHEM.	ATICS - II	(BS)			8	FF
EEP101	ELECTRI	CAL ENGI	NEERING	LAB (ES)		2	BB	MEC101	ENGINEE	RING DRA	WING (E	S)		8	FF
HUL102	SOCIAL S	SCIENCE (HM)			4	BB	PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS
MAL101	MATHEM	IATICS I (B	SS)			8	DD	PHL101	PHYSICS	(BS)				6	FF
MEP101	WORKSH	IOP (ES)				4	AB	PHP101	PHYSICS	(BS)				2	FF
PEB151	SPORTS	/ YOGA / L	JBRARY /	NCC (AU)		0	SS		Credit	EGP	SGPA		Credit	EGP	CGPA
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA	SGPA	38	48	1.26	CGPA	48	258	5.38

P	FB,	151	SF	OR	15/	YUG	A / LII	BRARY / I	NCC (AU)					0	55			C	redi	it	EG	P 9	SGPA			C	redi	t	EGF	Ρ	CC
	SG	ΡΔ	Cı	redi	t	EG	P	SGPA	CG	РΔ	С	redi	t	EG	P	CGPA	SG	PA		38		48	3	1.26	CG	PΑ		48		258	3	5
	-			40		15	4	3.85	00			26		154	4	5.92	DE	0	DC	0	НМ	6	ОС	0	DE	0	DC	0	НМ	10	OC	;
	DΕ	0	DC	0	НМ	4	OC	0	DE	0	DC	0	НМ	4	ОС	0	AU	0	ES	16	BS	16	Total	38	AU	0	ES	22	BS	16	Tota	al l
A	۸U	0	ES	20	BS	16	Tota	al 40	AU	0	ES	6	BS	16	Tota	ıl 26	RF.	FY	ΔМ	SDE	PINI	G 20	11									

RE-EXAM AUTUMN 2010

EEL101	ELECTRI	CAL ENGI	NEERING ((ES)		6	DD	MEC101
CSL101	COMPUT	ER PROGI	RAMMING	(ES)		8	DD	MAL102

SG	·D A	С	redi	it	EG	Р	SGPA	CG	D A	С	redi	t	EG	P	CGPA	1
36	JPA		14		56	;	4.00	CG	PA		40		210)	5.25	
DE	0	DC	0	НМ	0	00	0	DE	0	DC	0	НМ	4	00	0	
ΑU	0	ES	14	BS	0	Tot	al 14	AU	0	ES	20	BS	16	Tota	al 40)

AUTUMN 2011

	O== 414	FOD	CODA		C	FOD	T	CCDA
CML474	PLANT U	TILITY (DE)				6	FF
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY ((DC)		6	DD
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		2	CD
CHP261	PHYSICA	L AND INO	RGANIC C	HEMISTR'	Y (DC)		2	BC
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		6	CD
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	DD
CEL424	ENVIRON	IMENTALS	STUDIES (JC)			6	FF

60	PΑ	C	redi	it	EG	P	S	GPA	CG	п,	C	redi	t	EG	P	C	GPA
36	IPA		40		10	2	2	.55	CG	PA		98		490)	5	.00
DE	6	DC	28	HM	1 0	0	С	6	DE	0	DC	22	НМ	10	C	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	30	To	otal	98

RE-EXAM AUTUMN 2011

CML474	PLANT UTILITY (DE)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CEL424	ENVIRONMENTAL STUDIES (OC)	6	FF

80	. D Λ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		18		48	3	2	.67	CG	ГА	•	110		538	3	4	.89
DE	6	DC	6	НМ	0	0	С	6	DE	6	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	18	AU	0	ES	36	BS	30	To	otal	110

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CD
CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DC)	6	DD
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CD
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CD
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	DD
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
		\neg	

SG	·DΛ	С	redi	t	EG	Р	S	GPA	~	٠.	PA	С	redi	t	EG	Р	C	GPA
36	IFA		42		18	6	4	.43	C	,	FA		188		920)	4	.89
DE	20	DC	22	НМ	0	0	С	0	DE	Ε	38	DC	72	НМ	10		С	0
AU	0	ES	0	BS	0	To	tal	42	Αl	J	0	ES	36	BS	32	To	otal	188

RE-EXAM SPRING 2011

Degree

AML151	ENGINEERING MECHANICS (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	DD
MEC101	ENGINEERING DRAWING (ES)	8	DD
PHL101	PHYSICS (BS)	6	DD

: BACHELOR OF TECHNOLOGY

48

60	·D A	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	it	EG	Р	C	GPA
SGPA		28		88	:	3	.14	CG	FA		70		34	6	4	.94	
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	14	BS	14	To	tal	28	AU	0	ES	30	BS	30	То	tal	70

SUMMER TERM SPRING 2011

AML151 ENGINEERING MECHANICS (ES) BC 6

60	·D 4	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	PA
36	SGPA		6		42	:	7	.00	CG	PA		76		38	В	5.	.11
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	00)	0
AU	0	ES	6	BS	0	To	tal	6	AU	0	ES	36	BS	30	Tot	al	76

SPRING 2012

0			
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	DD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	DD
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
PHP101	PHYSICS (BS)	2	DD

SGPA	Credi	t	EG	Р	SGPA	CGPA		Credi	t	EG	Р	С	GPA
SGPA	42		19	6	4.67	CGPA		152		73	4	4	1.83
DE 12	DC 28	НМ	0	0	C 0	DE 18	DC	56	НМ	10	0	С	0
AU 0	ES 0	BS	2	To	tal 42	AU 0	ES	36	BS	32	To	tal	152

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	CC
CML466	CHEMICAL PLANT DESIGN (DC)		6	CD
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL403	PSYCHOLOGY & HRM (HM)		6	CC

SG	DΛ	С	redi	it	EG	Р	S	GPA	CC	PA	C	redi	t	EG	Р	C	GPA
36	IFA		42		24	6		5.86	CG	IFA		236		119	6	5	.07
DE	0	DC	36	HN	1 6	0	С	0	DE	38	DC	114	НМ	16	0	С	0
ΑU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	tal	236

GRADE CARD

: VISHAKHA AJABRAO SHENDE Name

Enrolment No. : BT10CHE042

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Cr

8

2

6

6

Gr

AA

AA

CD

ВС

Course					Т	itle				Cı	r	Gr		Cour	se					Ti	itle			
		T1 1	NANI O	042	-											2014								
RE-EXACML361			IVIN Z RANSF		(DC)					6		CD		CMD		2014	ECT	РΗΔ9	SE-II (I	DC)				
CIVILOUT					,	1	I a "				1		ī	CMD					,	,	ISSION PF	CCRAM	I (D	C)
SGPA	Cred	tit	EG	iP	SGPA	CGPA	Credi	t	EG	Р	C	3PA		CML ⁴							HEMICAL I		١,	- /
00.7	6		30)	5.00	00.71	194		950	0	4.	.90		CIVIL	+/ 1	(DE)	.CI IIV	OLO	G I AINI	р віосі	ILIVIICALI	LINGIINLL	-17111	G
DE 0	DC 6	HI	M 0	ОС	0	DE 38	DC 78	НМ	10	0	C	0		CML ₄	472		NCE) SE	PARAT	ION PR	OCESS (DE)		
AU 0	ES 0	BS	S 0	Tota	l 6	AU 0	ES 36	BS	32	То	otal	194		CML ₄	475	NEW A	AND	RENI	EWABL	E ENER	RGY ENGI	NEERING) (D	E)
AUTUN	IN 201	3												CML ₄	491	PROJI	ECT	PLAN	INING A	AND MA	NAGEMEI	NT (DE)		
CMD401	-	-	T PHA	SE L/C	IC)					4		AA		EEL4	16	RENE	WAB	LE E	NERGY	SYSTE	MS (OC)	1		
CML333					ING (DE)				6		CD				Cred	it	EG	P S	SGPA		Cred	it	E
CML374					,	, NEERING	(DE)			6		BC		SG	PA	40	+	27		6.85	CGPA	322	-+	17
CML461					MENA (E		(02)			6		DD		DE	24	DC 10	HM		OC	6	DE 80	DC 152		
CML462					,	IEERING II	(DC)			6		CD		AU	-	ES 0	BS	0	Total	_	AU 0	ES 36	+	32
CML463						RUMENTA	` ')		6		CC		AU	0	<u> </u>	БО	U	Total	40	AU U	ES 30	53	_ 32
CML620					LOGY (I			,		6		ВС												
CMP462					,	, IEERING -I	II (DC)			2		AB												
CMP463						RUMENTA)		2		AA												
CMP464						SIGN & DI	,	•	C)	2		AA												
	Cred	lit	EG	P	SGPA		Credi	t T	EG	Р	CC	SPA	Ī											
SGPA	46		30		6.57	CGPA	282		149		_	.31												
DE 18	DC 28				0.37	DE 56	DC 142	ППМ		,)C	0												
AU 0	ES 0	BS		Tota		AU 0	ES 36	_			otal	282												
IAU U	E3 U	100	<u> </u>	₁ rota	40	I AU U	E3 30	100	32	10	лаI	202	l											

CN	1L475	N	NEW AND RENEWABLE ENERGY ENGINEERING (DE)														CC
CN	1L491	PI	ROJE	ECT	PLAN	ININ	G Al	ND MA	NAGI	ME	NT	(DE)			6		CD
EE	L416	R	RENEWABLE ENERGY SYSTEMS (OC) 6													CC	
CORA Credit EGP SGPA CORA Credit EGP C											GPA						
- C	CDA		ı cui		LG	•	J 31	31 7	~~	DΛ		Cui		LG	.	C,	JI 7
S	GPA		40		27	•	-	.85	CG	PA	-	322		177	-	_	5.50
Ľ	GPA E 24	DC	40	HM	27	•	6		DE					177	-	5	

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014

Asst. Registrar (Examination)

GRADE CARD

Name : NITEESH KUMAR SINGH Enrolment No. : BT10CHE043

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course				С	r Gr								
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	BB						
CHP101	CHEMIST	RY LAB (E	2	: AA									
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 BB											
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 AB											
EEP101	ELECTRI	CAL ENGI	NEERING L	_AB (ES)		2	: AA						
HUL102	SOCIAL S	SCIENCE (HM)			4	AB						
MAL101	MATHEM	ATICS I (B	S)			8	AB						
MEP101	WORKSH	IOP (ES)				4	- AA						
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS												
SGPA	Credit	EGP	Credit	EGP	CGPA								
SGPA	40 354 8.85 CGPA 40 354 8.												

SG	. П л	C	redi	t	EG	Р	S	GPA		00	D A	С	redi	t	EG	Р	C	GPA
36	IFA		40		35	4	8	.85		CG	FA		40		354	4	8	.85
DE	0	DC	0	НМ	4	0	С	0	П	DE	0	DC	0	НМ	4		С	0
AU	0	ES	20	BS	16	То	tal	40		AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	CC
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	BB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BB
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	ВС
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

SCE	SGPA		Credit		EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
366	A		40		29	4	7.	.35	CG	FA		118		912	2	7	.73
DE 1	2	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	О	C	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AA
		\neg	

SGPA		С	Credit		EG	Р	S	GPA	CG	D.A	С	redi	t	EG	Р	C	GPA
36	PA		42		36	2	8	3.62	CG	PA	2	200		159	2	7	.96
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB

SG	·DΛ	С	redi	t		EG	Р	S	GPA	CG	D۸	С	redi	t	EG	Р	C	GPA
36	JPA		40			342	2	8	3.55	CG	PA		282		227	8	8	.08
DE	12	DC	28	ΗN	1	0	0	С	0	DE	50	DC	142	НМ	16	0	С	6
AU	0	ES	0	BS	3	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	282

Course	Title		Cr	Gr
SPRING	2011			
AML151	ENGINEERING MECHANICS (ES)		6	CC
AMP151	ENGINEERING MECHANICS (ES)		2	AB
HUL101	COMMUNICATION SKILL (HM)		6	AB
MAL102	MATHEMATICS - II (BS)		8	CC
MEC101	ENGINEERING DRAWING (ES)		8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	BC
PHP101	PHYSICS (BS)		2	AB
	Creatit FOD CODA	Cuadit	ECD	CCDA

SGPA	C	Credit		EG	P	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA		
36	FA		38		26	4	6.95	CG	FA		78		618	8	7	.92	l
DE	0	DC	0	НМ	6	oc	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	BE
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AE

80	ВΛ	С	redi	t	EG	Р	SC	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		318		7.95		CG	PA		158		123	0	7	.78
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	00	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	tal	158

SPRING 2013

CHL224	ENERGY FUELS AND LUBRICANTS (OC)		6	BB
CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA		redi	t	E	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
SGFA			42		344		4	8	.19	CG	FA		242		193	6	8	3.00
DE	0	DC	36	ΗN	1 ()	0	С	6	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	()	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВС
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

60	. П.	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		326		8.15		CG	PA		322		260	4	8	3.09
DE	30	DC	10	ΗN	1 0	0	С	0	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : NITEESH KUMAR SINGH Enrolment No. : BT10CHE043

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name: PANDHARIPANDE SIDDHARTH SHEKHAR Enrolment No.: BT10CHE044

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	AA
CHP101	CHEMIST	RY LAB (E	3S)			2	BB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BB
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	CC
HUL102	SOCIAL S	SCIENCE (HM)			4	AB
MAL101	MATHEM	ATICS I (B	SS)			8	AB
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	244	0.60	CGPA	40	244	0.00

86	. В А	С	redi	t	EG	Р	SGPA	CG	D A	С	redi	t	EG	Р	CC	GPA
SGPA			40		344		8.60	CG	ГА		40		344	4	8	.60
DE	0	DC	0	НМ	4	00	0	DE	0	DC	0	НМ	VI 4		С	0
AU	0	ES	20	BS	16	Tota	al 40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Cradit	EGD	SCDA		Cradit	ECD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	BB
CML474	PLANT U	TILITY (DE)				6	CC
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (I	DC)		6	AB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTRY	Y (DC)		2	AB
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	ВС
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

80	• D A	С	redi	t	EGP		S	GPA	CG	DΛ	С	redi	t	EG	Р	C	3PA
SGPA		40			294		7.35		CG	FA	1	118		932	2	7	.90
DE	12	DC	28	НМ	0	0	С	0	DE	DE 12 DC 28 HM		10	0	С	0		
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
		-	

SGPA	С	redi	t	EG	Ρ	S	GPA	CG	D 4	С	redi	t	EG	Ъ	C	GPA
SGPA		42		300		7.14		CG	PA	2	200		154	2	7	.71
DE 20	DC	22	НМ	1 0	0	С	0	DE	38	DC	78	НМ	10	С	С	6
AU 0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

	Credit ECD CCDA Credit EC	пΠ	CCDA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML333	POLYMER PROCESSING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA
	1 20.0		

80	. Д Л	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	P	CGPA
36	SGPA		46		43	438		9.52		FA		288		236	4	8.21
DE	18	DC	28	НМ	I 0	0	С	0	DE	62	DC	142	НМ	10	OC	6
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	Tota	al 288

Course	Title		Cr	Gr
SPRING	3 2011			
AML151	ENGINEERING MECHANICS (ES)		6	BC
AMP151	ENGINEERING MECHANICS (ES)		2	AB
HUL101	COMMUNICATION SKILL (HM)		6	AB
MAL102	MATHEMATICS - II (BS)		8	CC
MEC101	ENGINEERING DRAWING (ES)		8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	W
PHL101	PHYSICS (BS)		6	BB
PHP101	PHYSICS (BS)		2	AA
	Credit ECD CCDA	Cuadit	ECD	CCDA

SGPA		С	Credit 38		EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
					294		7.74		CG	ГА		78			8	8	.18
DE	0	DC	0	НМ	6	00	0		DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al 38	71	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

80	. В А	С	Credit		EG	Р	SG	SGPA		ВΛ	С	redi	it	EG	Р	CG	PA
36	SGPA		40		310		7.75		CGPA			158			2	7.	86
DE	6	DC	28	HM	1 0	0	С	6	DE	18	DC	56	НМ	10	00)	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tota	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AΑ
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	ΑB
CML466	CHEMICAL PLANT DESIGN (DC)		6	ΑB
CML468	ORE AND MINERAL PROCESSING (DE)		6	ΑB
CMP366	MASS TRANSFER (DC)		2	ΑA
CMP367	HEAT TRANSFER (DC)		2	ΑA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
PEB151	SPORTS/YOGA/LIBRARY/NCC (AU)		0	W

60	SGPA		redi	t	EGP		SGPA		CGPA		С	redi	t	EG	Р	C	GPA
36			42		384		9.14		CG	PA		242			6	7	.96
DE	6	DC	36	НМ	1 0	0	C ()	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal 4	2	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

SAC101	STUDENTS ACTIVITY AND SPORTS (AU)	0	NP
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CIVIL47 I	(DE)	О	DD
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CMD452	PROJECT PHASE-II (DC)	8	AA

86	DΛ	С	Credit		EGP		SGPA		I	CC	DΛ	C	redi	t	EG	Р	C	GPA
SGPA		34			304		8.94		CGPA				322			8	8	.29
DE	18	DC	10	HN	1 6	0	С	0	Ī	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	6 0	To	tal	34	ľ	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

: PANDHARIPANDE SIDDHARTH SHEKHAR Name

Enrolment No. : BT10CHE044

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

Gr

Title Cr Gr Course Course

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Course

HUL101

SPRING 2011

: PANKAJ BHARAT KISSAN Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE045

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Course			Т	itle		С	r Gr					
AUTUM	N 2010											
CHL101	CHEMIST	RY (BS)				6	CC					
CHP101	CHEMIST	RY LAB (E	3S)			2	. AA					
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	CC					
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 CD ELECTRICAL ENGINEERING LAB (ES) 2 BC										
EEP101	ELECTRICAL ENGINEERING LAB (ES) 2											
HUL102	SOCIAL S	SCIENCE (HM)			4	BB					
MAL101	MATHEM	ATICS I (E	BS)			8	BC					
MEP101	WORKSH	IOP (ES)				4	- AA					
PEB151	SPORTS	/ YOGA / I	_IBRARY / I	NCC (AU)		0	SS					
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA					
SGPA	40	276	6.90	CGPA	40	276	6 90					

80	SGPA		Credit 40		Credit		EGP		SC	3PA	CG	D Λ	С	redi	t	EG	Р	CC	SPA
36					276		6.90		CGPA			40			6	6	.90		
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	С	С	0		
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40		

AUTUMN 2011

	Cradit ECD CCDA Cradit E	CD	CCDA
MEL408	SUPPLY CHAIN MANAGEMENT (OC)	6	BB
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6	CC

80	SGPA		redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
36	IFA		40		27	2	6	.80	CG	ГА	1	118		816	6	6	.92
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AA

SGPA		С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
36	iPA		42		32	0	7	7.62	CG	PA	2	200		141	8	7.09 OC 6 otal 20	.09
DE	14	DC	22	НМ	l 6	0	С	0	DE	32	DC	78	НМ	16	С	C	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

SG	. Д.	С	redi	t	EC	P P	S	GPA	CG	ВΛ	С	redi	t	EG	P	C	GPA
36	iPA		40		33	2	8	3.30	CG	PA		282		207	6	7	.36
DE	12	DC	28	HM	I 0	0	С	0	DE	50	DC	142	НМ	16	0	0	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	Tot	tal	282

DE	0	DC	0	HN	1 6	0	C 0	DE	0	DC	0	lни	I 10	1	C	0
36	IFA		38		22	В	6.00	CG	FA		70		50	4	7	7.20
90	PΑ	С	redi	it	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
PHP	101	Pŀ	HYSI	CS	(BS)									2	2	ВВ
PHL1	101	PH	HYSI	CS	(BS)									6	6	CC
PEB1	151	SF	POR	TS/	YOG	4/ LII	BRARY/ N	CC (AU)					C)	SS
MEC	101	ΕN	NGIN	IEE	RING	DRA	WING (E	S)						8	3	ВС
MAL	102	,									8	3	FF			

RE-EXAM SPRING 2011

MAL102 MATHEMATICS - II (BS)

8 CD

Cr

6

2

6

Gr

вС

AB

AA

70

SG	. П.	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	it	EG	Р	С	GPA
36	IPA		8		40)	5	.00	CG	PA		78		54	4	6.97 OC 0 otal 78	6.97
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	8	AU	0	ES	36	BS	32	To	tal	78

AU 0 ES 16 BS 16 Total 38 AU 0 ES 36 BS 24 Total

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	ВС
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	ВС
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SG	D A	С	redi	t	EG	Р	S	GPA	CG	ВΛ	C	redi	t	EG			GPA
36	JFA		40		28	2	7	'.05	CG	FA		158		109	8	6	.95
DE	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	6
ΑU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	D A	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		32	9	7.	76	CG	PA		242		174	4	7	7.21
DE	6	DC	36	НМ	0	0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

80	PΑ	С	redi	it	EG	Р	S	GPA	CC	D۸	C	redi	t	EG	Р	CC	GPA
36	JFA		40		34	0	8	.50	CGPA 32		322		241	6	7	.50	
DE	24	DC	10	HN	1 0	0	С	6	DE	74	DC	152	НМ	16	00	С	12
AU	0	ES	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	Tot	tal	322

GRADE CARD

Name : PANKAJ BHARAT KISSAN Enrolment No. : BT10CHE045

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: PAYAL VASANTA MATTE Enrolment No. : BT10CHE046 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course	;	Title											С	r	Gr			
AUTU	M	IN 2	2010)														
AML15	1	E	NGI	NEE	RING	MEC	CHA	NICS (Е	S)						6		BC
AMP15	1	E	NGI	NEE	RING	MEC	CHA	NICS L	_A	B (E	S)					2		BC
HUL10	1	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		AB
MAL10	1	M	MATHEMATICS I (BS) 8 AA															
MEC10	MEC101 ENGINEERING DRAWING (ES) 8 BG												BC					
PEB15	1	S	POR	TS	/ YOG	A/L	IBR.	ARY/	N	CC (AU)					0		SS
PHL10	1	Р	HYS	ICS	(BS)											6		BC
PHP10	1	Р	HYS	ICS	LAB (BS)										2		AA
SGP		С	redi	it	EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	C	GPA
JGF	٦.		38		30	8	8	3.11		CG	ΓA		38		30	8	8	3.11
DE 0		DC	0	HN	<i>l</i> 6	0	С	0		DE	0	DC	0	ΗN	1 6		С	0
AU 0		ES	16	BS	3 16	То	tal	38		AU	0	ES	16	BS	16	To	otal	38

			38		30	8	8	3.11		٠٠.			38		3	80	8.	11
DE	0	DC	0	НМ	6	0	С	0		DE	0	DC	0	ΗM	l 6		OC	0
AU	0	ES	16	BS	16	То	tal	38	Ī	AU	0	ES	16	BS	16	3 T	otal	38
							•											

AUTUMN 2011 DUVEICAL CHEMISTRY AND CENERAL METALLURCY (DC) 6

CHLZ01	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	О	ьс
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML474	PLANT UTILITY (DE)	6	BC
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD

SGPA	Credit		EG	Р	SGPA	CG	DΛ	С	redi	t	EG	P	CG	PA
SGFA	40		282	2	7.05	CG	FA	1	118		922	2	7.81	81
DE 12	DC 28	НМ	0	OC	0	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tota	ıl 40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

SGPA	Credit	EG	P	SGPA	CGPA	Credit	EGI	Р	CGPA
SGFA	42	36	2	8.62	CGFA	200	161	6	8.08
DE 20	DC 22 H	IM 0	oc	0	DE 44	DC 78	HM 10	0	C 0
AU 0	ES 0 B	BS 0	Tota	al 42	AU 0	ES 36	BS 32	То	tal 200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

	80	PΑ	С	redi	it	EG	Ρ	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
	36	IFA		40		33	6	8	3.40	CG	FA		282		231	8	8	.22
j	DE	12	DC	28	HM	1 0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
	ΑU	0	ES	0	BS	0	То	tal	40	ΑU	0	ES	36	BS	32	То	tal	282

Course			Ti	tle		Cı	r Gr					
SPRING	2011											
CHL101	APPLIED	CHEMIST	RY (BS)			6	AB					
CHP101	APPLIED	CHEMIST	RY (BS)			2	BB					
CSL101	COMPUTI	COMPUTER PROGRAMMING (ES)										
EEL101	ELECTRIC	6	AB									
EEP101	ELECTRIC	CAL ENGIN	NEERING L	AB (ES)		2	BB					
HUL102	SOCIAL S	CIENCE	(HM)			4	AA					
MAL102	MATHEMA	ATICS - II	(BS)			8	CC					
MEP101	WORKSH	4	AA									
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS					
	0	FOR	0004		0	E0D	0004					

	80	D۸	С	redi	t	EG	Р	SG	PA	CG	D۸	С	redi	t	EG	P	C	GPA
	SGPA			40		33	2	8.	30	CG	FA		78		640	0	8	.21
j	DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
	AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	AB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	SGPA		redi	it	EG	Р	SG	PA	CG	DΛ	С	redi	it	EG	Р	C	GPA
SGPA			40		33	2	8.	30	CG	FA		158			4	7.94	
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
ΑU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AB

60	SGPA		redi	t	EG	Р	SGP	١.	CG	DΛ	C	redi	t	EG	Р	C	GPA
SGPA			42		36	9	8.71		CG	PA		242			2	8.19	
DE	0	DC	36	НМ	l 6	0	C 0		DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal 42		AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВВ
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB

80	·DA	С	redi	it	EG	P	S	GPA	CG	ВΛ		credi	it	EG	P	C	GPA
SGPA		40		36	4	9	9.10	CG	FA		322		268	32	8	.33	
DE	24	DC	10	HN	1 0	0	С	6	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : PAYAL VASANTA MATTE Enrolment No. : BT10CHE046

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

AU 0 ES 20 BS 16 Total

Course

SPRING 2011

: PILLAI SHANKAR MUTHU VEERAPPAN Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE047

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

: BACHELOR OF TECHNOLOGY **Degree**

Title

	Course Title Cr Gr																
Course							Т	it	le						С	r	Gr
AUTUN	IN 2	2010)														
CHL101	С	HEM	IIST	RY (B	S)										6	i	BC
CHP101	С	HEM	IIST	RY LA	AB (B	3S)									2		BC
CSL101	С	OMF	PUT	ER PF	ROGE	RAM	MING	(E	ES)						8		BC
EEL101	E	ELECTRICAL ENGINEERING (ES) 6 FF															
EEP101	E	ELECTRICAL ENGINEERING LAB (ES) 2 AB															
HUL102	S	SOCIAL SCIENCE (HM) 4 BB															
MAL101	M	ATH	ΕM	ATICS	I (B	S)									8		BC
MEP101	W	OR!	(SH	IOP (E	S)										4		AB
PEB151	S	POR	TS	/ YOG	A/L	.IBR <i>A</i>	ARY/I	N	CC (AU)					0		SS
SGPA	С	redi	it	EG	Р	SC	3PA	Γ	CG	D A	Credit		t	EGP		C	GPA
SGPA		40		25	4	6	.35		CG	ГА		34		254	1	7	.47
DE 0	DC	0	н	Л 4	0	С	0		DE	0	DC	0	НМ	4	С	C	0
AU 0	ES	20	BS	3 16	То	tal	40		AU	0	ES	14	BS	16	Тс	otal	34

RE-EXA	M AUTUMN	2010	_
EEL 101	ELECTRICAL	ENCINEEDING (EQ	١

AU 0 ES 6 BS 0 Total

EEL101	ELECT	RICAL ENGI	NEERING ((ES)		(S CD
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	6	30	5.00	CGPA	40	284	7.10
DE 0	DC 0 H	HM O C	OC 0	DE 0	DC 0 H	M 4 0	OC 0

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD
		-	

80	·DΛ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		212	2	5.30		CG	FA		118		722	2	6.12	
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

86	SGPA		redi	t	EG	Р	SC	3PA		CGI	D A	С	redi	t	EG	Р	C	GPA
SGPA		42			32	0	7.62			CG	FA	200			132	2	6.61	
DE	20	DC	22	НМ	0	0	С	0	ו	DE	44	DC	78	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	42		ΑŪ	0	ES	36	BS	32	To	otal	200

-	DE	n	DC 0 HM 6 O			C 0	l DE	0		l HM	1 10	lο	C	o l			
	36	FA	3	8		19	4	5.11	-	JFA	70		47	В	6.	83	
Ī	SG	DΛ	Cre	dit	t	EG	Р	SGPA		3PA	Cred	it	EG	Р	CG	PA	
F	PHP1	101	PH	/SI	cs	(BS)								2		ВС	
F	PHL1	101	PH	PHYSICS (BS) 6													
F	PEB1	151	SPC	SPORTS / YOGA/ LIBRARY/ NCC (AU) 0													
ı	MEC.	101	ENC	SIN	EE	RING	DRA	WING (E	S)					8		CC	
1	MAL1	102	MA	ГНЕ	EM/	ATICS	- II	(BS)						8		FF	
ŀ	HUL1	101	CO	ИМ	UN	ICATIO	ON S	SKILL (HI	ا ل					6		ВВ	

38 AU 0 ES 36 BS 24 Total

RE-EXAM SPRING 2011

MAL102 MATHEMATICS - II (BS)

AU 0 ES 16 BS 16 Total

8 DD

Cr

6

2

Gr

вС

AB

70

60	D۸	С	redi	t	EG	Р	SG	PA	CG	D 4	С	redi	t	EG	Р	С	GPA
36	SGPA		8		32		4.	00	CG	FA		78		51	0	6	6.54
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	8	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	PA	С	redi	t		EG	Р	S	GPA	CG	ВΛ	С	redi	it	EG	Р	С	GPA
36	JFA		40			280	0	7	7.00	CG	FA		158		100	2	6	6.34
DE	12	DC	28	ΗN	1	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	;	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	ВС
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AB

66	ПΛ	С	redi	it	E	3P	S	GPA		~~	ПΛ	C	redi	t	EG	Р	C	GPA
			42		33	38	8	8.05		CG	PA		242		166	0	6	6.86
DE	0	DC	36	HN	1 6	0	С	0		DE	44	DC	114	НМ	16	0	С	0
٩U	0	ES	0	BS	0	To	tal	42		ΑU	0	ES	36	BS	32	То	tal	242
	DΕ		SGPA DE 0 DC	SGPA 42 DE 0 DC 36	DE 0 DC 36 HM	SGPA 42 33 DE 0 DC 36 HM 6	A2 338 DE 0 DC 36 HM 6 C	42 338 8 DE 0 DC 36 HM 6 OC	SGPA 42 338 8.05 DE 0 DC 36 HM 6 OC 0	SGPA 42 338 8.05 DE 0 DC 36 HM 6 OC 0 0	SGPA 42 338 8.05 DE 0 DC 36 HM 6 OC 0 DE	SGPA 42 338 8.05 DE 0 DC 36 HM 6 OC 0 DE 44	SGPA 42 338 8.05 CGPA DE 0 DC 36 HM 6 OC 0 DE 44 DC	SGPA 42 338 8.05 CGPA 242 DE 0 DC 36 HM 6 OC 0 DE 44 DC 114	SGPA 42 338 8.05 CGPA 242 DE 0 DC 36 HM 6 OC 0 DE 44 DC 114 HM	SGPA 42 338 8.05 CGPA 242 166 DE 0 DC 36 HM 6 OC 0 DE 44 DC 114 HM 16	SGPA 42 338 8.05 CGPA 242 1660 DE 0 DC 36 HM 6 OC 0 DE 44 DC 114 HM 16 O	SGPA 42 338 8.05 CGPA 242 1660 6 DE 0 DC 36 HM 6 OC 0 DE 44 DC 114 HM 16 OC

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	CD
CMI 475	(DE)	6	D.C
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CMI 401	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC.

SG	. П.	С	redi	t	EG	Р	SC	SPA	CG	DA	C	redi	t	EG	Р	C	GPA
36	IFA		34		25	6	7	.53	CG	FA		322		229	2	7	.12
DE	24	DC	10	НМ	0	0	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	34	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : PILLAI SHANKAR MUTHU VEERAPPAN Enrolment No. : BT10CHE047

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			-	Γitle			Cr	Gr	Course	Title	Cr	
AUTUN	IN 2013	3										
CMD401	PROJ	ECT PHAS	SE I (DC)				4	AB				
CML333	POLY	MER PRO	CESSING (DE	:)			6	BB				
CML374	PETR	OLIUM RE	FINERY ENG	INEERING	(DE)		6	AA				
CML461	TRAN	SPORT P	HENOMENA (DC)			6	CC				
CML462	CHEM	IICAL REA	CTION ENGIN	NEERING II	(DC)		6	BC				
CML463	PROC	ESS CON	TROL & INST	RUMENTA	TION (DC)	6	BC				
CML620	MEME	RANE TE	CHNOLOGY (DE)			6	AB				
CMP462	CHEM	IICAL REA	CTION ENGIN	NEERING -	I (DC)		2	AB				
CMP463	PROC	ESS CON	TROL & INST	RUMENTA	TION (DC)	2	AA				
CMP464	CHEM	IICAL ENG	SINEERING DI	ESIGN & D	RAWING	II (DC)	2	AA				
CODA	Credi	t EG	P SGPA	CODA	Credi	t EC	P	CGPA				
SGPA	46	370	8.17	CGPA	288	20	36	7.07				
DE 18	DC 28	HM 0	OC 0	DE 62	DC 142	HM 16	OC	0				
AU 0	ES 0	BS 0	Total 46	AU 0	ES 36	BS 32	Tot	al 288				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : VISHAL YADAV Enrolment No. : BT10CHE048

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	AA						
CHP101	CHEMIST	RY LAB (E	3S)			2	AA						
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 AA											
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 CC											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2											
HUL102	SOCIAL S	SCIENCE (HM)			4	AA						
MAL101	MATHEM	ATICS I (B	SS)			8	BC						
MEP101	WORKSH	IOP (ES)				4	AA						
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS												
SCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA						
SGPA	40	352	8.80	CGPA	40	352	8 80						

									,	,							
60	SGPA		redi	it	EG	Р	SGP	١	CG	D A	С	redi	t	EG	Р	CG	PA
SGPA			40		35	2	8.80		CG	PA		40	T	352	2	8.8	30
DE	0	DC	0	НМ	4	00	0		DE	0	DC	0	НМ	4	OC	;	0
AU	0	FS	20	BS	16	Tot	al 40		AU	0	FS	20	BS	16	Tota	al	40

AUTUMN 2011

	C== -1!4	FOR	0004		0	E0D		0004
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	CC
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	CHEMISTRY	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		6	CC
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLURG	Y (DC)	6	BC
CEL424	ENVIRON	IMENTAL S	STUDIES (OC)			6	BC

80	·DΛ	С	redi	t	EG	Р	SC	GPA	CG	D A	С	Credit		EG	Р	C	GPA
SGPA			40		250		6.25		CGFA		•	118		870)	7.37	
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	О	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AA
		_	

60	·D 4	С	redi	t	EGP		SGPA		CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA			42		364		8	8.67		CGFA		200			0	7.75	
DE	14	DC	22	НМ	1 6	0	С	0	DE	32	DC	78	НМ	16	О	C	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CIVID40 I	PROJECT PHASE I (DC)	4	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	CD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

se	· D A	C	redi	it	EC	P	S	GPA	CG	п.	C	Credit		EG	Р	C	GPA
30	PA		40		32	6	8	3.15	CG	PA		282		224	2	7	.95
DE	12	DC	28	HM	1 0	0	С	0	DE	50	DC	142	НМ	16	C	C	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CD
AMP151	ENGINEERING MECHANICS (ES)	2	BC
HUL101	COMMUNICATION SKILL (HM)	6	AB
MAL102	MATHEMATICS - II (BS)	8	CC
MEC101	ENGINEERING DRAWING (ES)	8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	AB
PHP101	PHYSICS (BS)	2	AA

60	SGPA		redi	t	EGP			SPA	CG	п.	C	redi	t	EG	P	C	GPA	
SGPA			38		26	8	7.05		661 7			78			0	7.95		l
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

60	D 4	С	redi	t	EGP		SG	SPA	CG	DΛ	С	redi	t	EG	Р	C	CGPA	
SGPA			40		316		7.	.90	CG	PA		158		118	86	7	.51	
DE	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	00	0	6	
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	al	158	

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
	CML367 CML368 CML371 CML466 CML468 CMP366 CMP367	CML367 HEAT TRANSFER-II (DC) CML368 CHEMICAL REACTION ENGINEERING-I (DC) CML371 CHEMICAL PROCESS MODELING AND SIMULATION CML466 CHEMICAL PLANT DESIGN (DC) CML468 ORE AND MINERAL PROCESSING (DE) CMP366 MASS TRANSFER (DC) CMP367 HEAT TRANSFER (DC)	CML367 HEAT TRANSFER-II (DC) CML368 CHEMICAL REACTION ENGINEERING-I (DC) CML371 CHEMICAL PROCESS MODELING AND SIMULATION (DC) CML466 CHEMICAL PLANT DESIGN (DC) CML468 ORE AND MINERAL PROCESSING (DE) CMP366 MASS TRANSFER (DC) CMP367 HEAT TRANSFER (DC)	CML367 HEAT TRANSFER-II (DC) 6 CML368 CHEMICAL REACTION ENGINEERING-I (DC) 6 CML371 CHEMICAL PROCESS MODELING AND SIMULATION (DC) 6 CML466 CHEMICAL PLANT DESIGN (DC) 6 CML468 ORE AND MINERAL PROCESSING (DE) 6 CMP366 MASS TRANSFER (DC) 2 CMP367 HEAT TRANSFER (DC) 2

80	SGPA	С	redi	t	EGP		Р	SGPA		CC	CGPA		redi	t	EG	Р	С	GPA
			42		366		6	8.71		CGFA			242		1916		7	7.92
DE	6	DC	36	ΗN	1 (0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	; (_	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AA

60	PΑ	С	redi	it	EG	P	S	GPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IPA		40		36	8	9	.20	'	CG	PA		322		261	0	8	.11
DE	24	DC	10	ΗN	1 0	0	С	6]	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	To	tal	40	1	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: VISHAL YADAV Enrolment No.: BT10CHE048

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : PRACHI KAVALE Enrolment No. : BT10CHE049

AU 0 ES 16 BS 10 Total

Branch : CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Cour	se							Т	it	le						С	r	Gr
AUT	UN	1N 2	2010)														
AML	151	Е	NGI	NEE	RING	MEC	HAI	NICS (Е	S)						6		CD
AMP	151	Е	NGI	NEE	RING	MEC	HAI	NICS L	_A	B (E	S)					2		AB
HUL	101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		CD
MAL	101	M	ATH	ΕM	ATICS	I (B	S)									8		DD
MEC101 ENGINEERING DRAWING (ES) 8 DD																		
PEB ²	151	S	POR	TS	/ YOG	A/L	IBR/	ARY/	N	CC (AU)					0		SS
PHL′	101	Р	HYS	ICS	(BS)											6		FF
PHP	101	Ρ	HYS	ICS	LAB (BS)										2		CC
SGPA Credit				EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	C	GPA	
36	ГА		38		15	4	4	.05		CG	ГА		32		15	4	4	.81
DE	0	DC	0	НΝ	<i>l</i> 6	0	С	0		DE	0	DC	0	ΗN	1 6	C	С	0
AU 0 ES 16 BS 16 T						Tot	tal	38		AU	0	ES	16	BS	10	To	otal	32

AU 0 ES 0 BS 6 Total

	PHL101	PHYSICS	S (BS)				6	FF.
	SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
	SGPA	6	0	0.00	CGPA	32	154	4.81
İ	DE 0	DC 0 HI	<u> </u>	C 0	DE 0	חר ח או	M 6 C)C 0

6

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BC
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF

80	DΛ	С	redi	t	EG	P	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
SGPA		40		18	8	4	.70	CG	FA	•	104		578	8	5	.56	
DE	12	DC	28	НМ	0	0	С	0	DE	6	DC	28	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	24	To	otal	104

RE-EXAM AUTUMN 2011

- S(4)	РΔ				· (:(iPA			
00		Credit	EGP	SGPA	0004	Credit	EGP	CGPA
MAL2	205	NUMERIO	CAL METH	ODS AND	PROBABIL	ITY THEOR	Y (DE) 6	S CC

۰	_	РΑ	C	redi	it	EG	Р	S	GPA	CG	ВΛ	C	redi	t	EG	Р	CC	3PA
ြ	G	FA		6		36	•	6	.00	CG	FA		110		614	4	5	.58
DE		6	DC	0	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
ΑL	J	0	ES	0	BS	0	To	tal	6	AU	0	ES	36	BS	24	То	tal	110

AUTUMN 2012

	Cradit	ECD	CCDA		Cuadit	ECD	Т	CCDA
CMP370	ENVIRON	IMENTAL E	ENGINEER	RING (DE)			2	BB
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	AA
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	C)	2	AA
CML375	ANALYTI	CAL METH	IODS FOR	CHEMICAL	ANALYSIS	(DE)	6	CC
CML370	ENVIRON	IMENTAL E	ENGINEER	RING (DE)			6	CC
CML363	CHEMICA	AL PROCE	SS EQUIPI	MENT DES	IGN (DC)		6	CC
CML362	HEAT TR	ANSFER I	(DC)				6	CC
CML361	MASS TR	ANSFER -	I (DC)				6	CC
CHL369	GREEN C	CHEMISTR	Y & ENGIN	IEERING (E	DE)		6	BB

SG	. Д.	С	redi	it		EG	Р	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IFA		42			284	4	6	5.76	CG	FA		194		113	38	5	.87
DE	20	DC	22	HN	1	0	0	С	0	DE	38	DC	78	HM	l 10	C	С	0
AU	0	ES	0	BS	3	0	To	tal	42	ΑU	0	ES	36	BS	32	To	otal	194

Course	Title	Cr	Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	CC
CHP101	APPLIED CHEMISTRY (BS)	2	BB
CSL101	COMPUTER PROGRAMMING (ES)	8	CD
EEL101	ELECTRICAL ENGINEERING (ES)	6	DD
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	AB
HUL102	SOCIAL SCIENCE (HM)	4	BB
MAL102	MATHEMATICS - II (BS)	8	FF
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

SG	·DΛ	С	redi	t	EG	Р	SG	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		20	6	5.	.15	CG	FA		64		36	0	5	5.63
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	18	То	tal	64

RE-EXAM SPRING 2011

M	IAL.	102	M	ATH	EM/	ATIC	S - II	(BS	S)							8		FF
	60	PA	С	redi	it	E	3P	S	GPA	CG	D 4	С	redi	it	EG	Р	С	GPA
	36	PA		8		()	(0.00	CG	PA		64		36	0	5	5.63
	DE	0	DC	0	HN	1 0	0	С	0	DE	0	DC	0	ΗN	1 10	С	С	0
A	٩U	0	ES	0	BS	8	To	tal	8	ΑU	0	ES	36	BS	18	To	otal	64

SUMMER TERM SPRING 2011

PHL	101	PH	HYSI	CS	(BS)										6		CD
80	. В А	С	redi	it	EG	P	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	SGPA		6		30)	Ę	5.00	CG	FA		70		39	0	5	.57
DE	0	DC	0	ΗN	1 0	0	С	0	DE	0	DC	0	НМ	10	00)	0
AU	0	ES	0	BS	6	То	tal	6	AU	0	ES	36	BS	24	Tot	al	70

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA
MAL102	MATHEMATICS - II (BS)	8	DD

SG	ВΛ	С	redi	t	EC	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		42		24	0	5	.71	CG	FA		152		85	4	5	.62
DE	6	DC	28	HM	1 0	0	С	0	DE	18	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	8	То	tal	42	AU	0	ES	36	BS	32	То	tal	152

SPRING 2013

		(-)		
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP366	MASS TRANSFER (DC)		2	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	CC
CIVIL366	MASS TRANSFER - II (DC)		ь	CC

SG	ВΛ	С	redi	it	EG	Р	SGPA	CC	PA	C	redi	t	EG	Р	CGPA
36	FA		42		30	2	7.19	CG	IFA		236		144	10	6.10
DE	6	DC	36	HM	1 0	0	C 0	DE	44	DC	114	НМ	10	00	0
AU	0	ES	0	BS	0	Tot	tal 42	AU	0	ES	36	BS	32	Tot	al 236

GRADE CARD

: PRACHI KAVALE Enrolment No. : BT10CHE049 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course

SPRING 2014

CMD452 PROJECT PHASE-II (DC)

Course							Т	it	tle						С	r	Gr
AUTUI	MN :	2013	3														
CMD401	l F	PROJ	ECT	PHA	SE I	(DC)								4		AB
CML374	F	PETR	OLIL	JM RI	FIN	ERY	'ENGI	Ν	IEER	ING	(DE)				6		BB
CML461	Т	RAN	SPC	RT P	HEN	OM	ENA (D)(C)						6		CC
CML462	. (CHEM	1ICA	L RE	ACTI	ON	ENGIN	ΙE	ERII	NG II	(DC)			6		CC
CML463	F	PROC	ESS	CON	ITRO)L &	INSTE	રા	JME	NTA	ΓΙΟΝ	(DC)		6		CD
CML620) N	ЛЕМЕ	BRAN	NE TE	CHN	IOL	OGY (I	DI	E)						6		BB
CMP462	2 (CHEM	1ICA	L RE	ACTI	ON	ENGIN	ΙE	ERI	NG -I	I (DC	C)			2		AB
CMP463	3 F	PROC	ESS	CON	ITRO)L &	INSTE	રા	JME	NTA	ΓΙΟΝ	(DC)		2		AB
CMP464	1 (CHEM	1ICA	L EN	SINE	ERI	NG DE	S	SIGN	& DI	RAW	ING	II (D	C)	2		AA
HUL409	F	PSYC	HOL	.OGY	& E[) (H	M)								6		CC
SGPA		Credi	it	EG	Р	S	GPA		CG	D.A	С	redi	t	EG	Р	C	GPA
SGPA	' [46		32	6	7	'.09		CG	ГА		282		176	6	6	.26
DE 12	DC	28	НМ	6	0	С	0		DE	56	DC	142	НМ	16	С	С	0
AU 0	ES	0	BS	0	To	tal	46		AU	0	ES	36	BS	32	To	otal	282

					٠,	- /									
CMD453	SEMIN	AR A	AND (GRO	UP	DISCU	SSIO	N PR	OGI	RAM	(DC)	2		AA
CML471	BIOTE	CHN	OLO	GY A	ND	BIOCH	HEMIC	CAL E	ENG	INEE	RINC	}	6		CC
CML472	(DE) ADVAN	NCED	SEF	PAR	ATIC	ON PRO	OCES	S (I	DE)				6		СС
CML475	NEW A	ND F	RENE	EWA	BLE	ENER	GY E	NGIN	NEE	RING	(DI	≣)	6		BC
CML491	PROJE	PROJECT PLANNING AND MANAGEMENT (DE) 6 BC RENEWABLE ENERGY SYSTEMS (OC) 6 BB													
EEL416	RENEV	NABL	LE EI	NER	GY :	SYSTE	MS	(OC)					6		BB
SCDA	Credi	t	EG	Р	S	GPA	CG	D.A	С	redi	t	EG	Р	CC	3PA
SGPA	40		304	4	7	.60	CG	PA		322		207	0	6	.43
DE 24	DC 10	НМ	0	0	С	6	DE	80	DC	152	НМ	16	0	С	6
AU 0	ES 0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	322

Title

Cr

8

Gr

AA

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : PRAJAKTA ASHOK NAKATE Enrolment No. : BT10CHE050

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	BC
CHP101	CHEMIST	RY LAB (E	3S)			2	BC
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AA
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	CC
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	AB
HUL102	SOCIAL S	SCIENCE (HM)			4	AB
MAL101	MATHEM	ATICS I (E	BS)			8	BC
MEP101	WORKSH	IOP (ES)				4	AA
PEB151	SPORTS	/ YOGA / I	_IBRARY / I	NCC (AU)		0	SS
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	40	322	8.05	CGPA	40	322	8.05

										,	,							
SG	·D A	С	redi	it	EG	Р	S	GPA	Ι.	CGI	٥,	С	redi	t	EG	P	CC	PA
36	PA		40		32	2	8	.05	ĺ '	CGI	A		40		322	2	8.	.05
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40	Ι	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

		Credit	FGP	SGPA		Credit	FGP		CGPA
CML	_474	PLANT U	TILITY (DE)				6	ВС
CML	262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	BC
CML	_261	INORGAN	VIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP	263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		2	AB
CHP	261	PHYSICA	L AND INC	RGANIC C	CHEMISTRY	Y (DC)		2	AB
CHL	.263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		6	CC
CHL	.261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLURG	Y (DC)	6	CC
CEL	.424	ENVIRON	NMENTAL	STUDIES (JC)			6	CD

SG	. В А	С	redi	it	EG	Р	SC	3PA	CG	D A	С	redi	t	EG	Р	CC	GPA
36	IFA		40		25	8	6	.45	CG	ГА		118		840)	7	.12
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AB

60	SGPA		redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Ъ	C	GPA
SGPA			42		344		8.19		CG	PA	200			147	4	7.37	
DE	14	DC	22	НМ	l 6	0	С	0	DE	32	DC	78	НМ	16	С	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

se	· D A	С	Credit			EG	Р	S	GPA	CG	ДΛ.	C	redi	t	EG	Ρ	C	GPA
30	PA		40			358		8.95		CG	PA		282		219	2	7	.77
DE	12	DC	28	ΗN	1	0	0	С	0	DE	50	DC	142	НМ	16	С	C	6
AU	0	ES	0	BS	;	0	To	tal	40	AU 0		ES 36 B		BS	32	To	otal	282

Course	Title		Cr	Gr
SPRING	2011			
AML151	ENGINEERING MECHANICS (ES)		6	BC
AMP151	ENGINEERING MECHANICS (ES)		2	AB
HUL101	COMMUNICATION SKILL (HM)		6	CC
MAL102	MATHEMATICS - II (BS)		8	BC
MEC101	ENGINEERING DRAWING (ES)		8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	BC
PHP101	PHYSICS (BS)		2	AB
	0	.124	E0D	0004

60	SGPA	C	Credit		EG	P	SGPA	CG	ПΛ	C	redi	it	EG	P	C	GPA	
36	FA		38		26	0	6.84	CG	FA		78		582	2	7	.46	I
DE	0	DC	0	НМ	6	00	0	DE	0	DC	0	НМ	10	0	С	0	ĺ
AU	0	ES	16	BS	16	Tot	al 38	AU	0	ES	36	BS	32	To	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

80	. В А	С	redi	t	EGP		SGPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40			0	7.25		CG	FA		158			80	7.15	
DE 12 [DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	Е	GF	>	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
			42		360)	8.57		CG	FA		242			4	7.58	
DE 6 [DC	36	ΗN	1 0		0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0		Tot	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB

60	·D 4	С	redi	t	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	C	GPA
SGPA		40		358		8.95		CG	PA	322			255	0	7.92		
DE	24	DC	10	ΗN	1 0	00	6	ľ	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	Tot	al 40	1	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: PRAJAKTA ASHOK NAKATE Enrolment No.: BT10CHE050

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : PRASHANT KUMAR MEENA Enrolment No. : BT10CHE051

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course						Т	itle	е						С	r	Gr
AUTUM	N 2010)														
AML151	ENGI	NEE	RING	MEC	1AHC	VICS (ES	S)						6	i	FF
AMP151	ENGI	NEE	RING	MEC	1AHC	NICS L	AE	3 (E	S)					2		AB
HUL101	COMN	1UN	IICATI	ON S	SKIL	LS (HI	M)							6	;	CD
MAL101	MATH	MATHEMATICS I (BS) 8 DD														
MEC101	ENGI	ENGINEERING DRAWING (ES) 8 DD													DD	
PEB151	SPOR	TS /	/ YOG	A/L	IBR/	ARY/I	NC	CC (A	AU)					0)	SS
PHL101	PHYS	ICS	(BS)											6	i	FF
PHP101	PHYS	ICS	LAB (BS)										2		BC
SGPA	Credi	t	EG	Р	SC	GPA	Ι,		. .	C	redi	t	EG	Р	C	GPA
SGPA	38 126 3.32 CGPA 26 126 4.8													.85		
DE 0	DC 0	ΗŃ	1 6	0	С	0	Π	DE	0	DC	0	ΗN	1 6	C	C	0
AU 0	ES 16 BS 16 Total 38 AU 0 E									ES	10	BS	10	To	otal	26

RE-EXAM AUTUMN 2

AML151	ENGINEERING MECHANICS (ES)	6	FF
PHL101	PHYSICS (BS)	6	DD

80	12		Credit		Credit		Credit		Credit		Credit EGP		Р	P SGPA		CG	CGPA		redi	t	EG	Р	CC	SPA
36	3PA 12			24		2	.00	CG	FA		32		150)	4	.69								
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	6	0	С	0							
AU	0	FS	6	BS	6	To	tal	12	AU	0	FS	10	BS	16	To	tal	32							

AUTUMN 2011

CEL424	ENVIRONMENTAL STUDIES (OC)	6	FF
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	DD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	DD
		\neg	

80	PA		S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA				
36	40			106		2	2.65	CG	FA		86		416		4.84		
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	16	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	30	BS	24	To	otal	86

RE-EXAM AUTUMN 2011

CEL424	ENVIRONMENTAL STUDIES (OC)	6	FF
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF

SG	·DΛ	С	redi	t	EG	Р	S	GPA	CGI	D A	С	redi	t	EG	Р	CC	SPA
36	IFΑ		18		30)	1	.67	CG	FA		92		446	ć	4	.85
DE	0	DC	12	НМ	0	0	С	6	DE	6	DC	22	НМ	10	С	С	0
AU	0	ES	0	BS	0	Tot	tal	18	AU	0	ES	30	BS	24	To	otal	92

AUTUMN 2012

SCDA	Credit	EGP	SGPA	CGBA	Credit	EGP		CGPA
CMP370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			2	BB
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	AB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	C)	2	CC
CML375	ANALYTI	CAL METH	ODS FOR	CHEMICAL	ANALYSIS	(DE)	6	DD
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	FF
CML363	CHEMICA	AL PROCE	SS EQUIP	MENT DES	IGN (DC)		6	CD
CML362	HEAT TR	ANSFER I	(DC)				6	DD
CML361	MASS TR	ANSFER -	I (DC)				6	FF
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	FF

SG	. В А	С	redi	t	EG	Р	SC	SPA	CC	ВΛ	С	redi	t	EG	Р	C	GPA
36	42			12	4	2	.95	CGPA			150		742		4.95		
DE	14	DC	28	НМ	0	0	С	0	DE	20	DC	66	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	30	BS	24	To	otal	150

	. 9		
Course	Title	Cr	Gr
SPRING	3 2011		
CHL101	APPLIED CHEMISTRY (BS)	6	DD
CHP101	APPLIED CHEMISTRY (BS)	2	CC
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	DD
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	CC
HUL102	SOCIAL SCIENCE (HM)	4	DD
MAL102	MATHEMATICS - II (BS)	8	FF
MEP101	WORKSHOP (ES)	4	AA
DER151	SPORTS / VOGA/ LIBRARY/ NCC (ALI)	0	22

80	GPA Credit EGP 40 128		Р	S	GPA	CG	D۸	С	redi	it	EG	Р	Ö	GPA			
36	IFA		40		12	В	3	3.20	CG	FA		56		27	8	4	.96
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	22	BS	24	То	tal	56

RE-EXAM SPRING 2011

CSL101	COMPUTER PROGRAMMING	(ES)	8	DD
MAL102	MATHEMATICS - II (BS)		8	FF

SG	. В А	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	CC	3PA
36	IFA		16		32		2	.00	C	FA		64		31	0	4	.84
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	8	BS	8	To	tal	16	AU	0	ES	30	BS	24	To	tal	64

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
MAL102	MATHEMATICS - II (BS)	8	FF

SG	. В А	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		10	0	2	.38	CG	FA		114		54	6	4	.79
DE	6	DC	28	НМ	0	0	С	0	DE	12	DC	38	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	42	AU	0	ES	30	BS	24	То	tal	114

RE-EXAM SPRING 2012

MAL102	MATHEMATICS - II (BS)		8	FF
CML263	FLUID MECHANICS (DC)		6	CC
CHL214	ORGANIC CHEMICAL TECHNOLOGY	(DC)	6	CC

66	SPA	С	redi	t	E	βP	S	GPA	Ī	CG	D 4	С	redi	t	EG	Р	C	GPA
30)PA		20		7	2	;	3.60		CG	PA		126		618	8	4	.90
DE	0	DC	12	НΝ	<i>I</i> 0	0	С	0		DE	12	DC	50	НМ	10	0	С	0
AU	0	ES	0	BS	8 8	To	tal	20		AU	0	ES	30	BS	24	То	tal	126

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	FF
CML367	HEAT TRANSFER-II (DC)		6	DD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	FF
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	DD
CML466	CHEMICAL PLANT DESIGN (DC)		6	FF
CML468	ORE AND MINERAL PROCESSING (DE)		6	CD
CMP366	MASS TRANSFER (DC)		2	BC
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DΛ	С	redi	t	EG	Р	SC	SPA	CG	D۸	С	redi	it	EG	Р	C	GPA
36	IFA		42		13	0	3	.10	CG	FA		192		95	6	4	.98
DE	6	DC	36	HM	I 0	0	С	0	DE	32	DC	96	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	30	BS	24	То	tal	192

Course

CMP464

SGPA

18 DC

0 ES

DE

VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY NAGPUR

GRADE CARD

Name : PRASHANT KUMAR MEENA Enrolment No. : BT10CHE051

Cr

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course

Gr

Course			'	IIIE			,	- 1	Gi	Course	7				11	tie					Ci	Gi
RE-EX	AM AUTUI	VIN 2012	2							RE-E	XAI	M SPRIN	G 20	13								
CML262	CHEMICA	L PROCE	SS CALCU	LATIONS ((DC)			6	DD	CML36	6	MASS TRA	NSFE	ER - II	(DC)						6	FF
CML361	MASS TR	ANSFER -	- I (DC)					6	CC	CML36	8	CHEMICA	L REA	CTION	ENGIN	EERI	ING-I	(DC)			6	FF
CML370	ENVIRON	IMENTAL	ENGINEER	RING (DE)				6	DD	CML46	6	CHEMICA	L PLA	NT DES	IGN (I	DC)					6	FF
SGPA	Credit	EGP	SGPA	CGPA	Credit		EGP	С	GPA	SGP		Credit	EG	P S	GPA	~	D A	Cred	it	EGI	P	CGPA
SGPA	18	84	4.67	CGPA	168		826	4	4.92	SGP	^	18	0		0.00	C	SPA	192		956	ò	4.98
DE 6	DC 12 HN	1 0 C	OC 0	DE 26	DC 78	НМ	10	OC	0	DE () [OC 18 HW	I 0	ОС	0	DE	32	DC 96	НМ	10	OC	0
AU 0	ES 0 BS	3 0 To	otal 18	AU 0	ES 30	BS	24 1	otal	168	AU () E	ES 0 BS	0	Total	18	AU	0	ES 30	BS	24	Tota	al 192
AUTUN	IN 2013									SPRI	NG	2014										
CMD401	PROJECT	PHASE I	(DC)					4	BB	CMD4	52	PROJECT	PHAS	SE-II (D	C)						8	BB
CML374	PETROLI	UM REFIN	IERY ENGI	NEERING	(DE)			6	CD	CMD4	53	SEMINAR	AND (GROUP	DISCU	ISSIC	ON PE	ROGRAM	(DC	D)	2	BB
CML461	TRANSPO	ORT PHEN	NOMENA (E	DC)				6	FF	CML36	6	MASS TRA	NSFE	ER-II (E	DC)						6	FF
CML462	CHEMICA	L REACT	ION ENGIN	IEERING II	(DC)			6	DD	CML36	8	CHEMICA	L REA	CTION	ENGIN	EERI	ING-I	(DC)			6	FF
CML463	PROCES	S CONTR	OL & INSTE	RUMENTA	TION (DC)			6	DD	CML46	6	CHEMICA	L PLA	NT DES	IGN (I	OC)					6	FF
CML480	CFD FOR	CHEMICA	AL ENGINE	ERS (DE)				6	DD	CML47	' 1	BIOTECH	NOLO	GY AND	BIOCH	НЕМІ	CAL	ENGINEE	RING	Э	6	FF
CML620	MEMBRA	NE TECH	NOLOGY (I	DE)				6	DD	OMI 4	,_	(DE)	DENI	-\^/^ D. F		OV 1	-NOI	NEEDING		_\	_	
CMP462	CHEMICA	L REACT	ION ENGIN	IEERING -I	I (DC)			2	BB	CML47		NEW AND				GYE	ENGI	NEERING	י (טו	L)	6	DD
CMP463	PROCESS	S CONTR	OL & INSTE	RUMENTAT	TION (DC)			2	BB	MAL10	12	MATHEMA	TICS.	-II (BS)	1						8	FF

ВВ

0

232

CGPA

5.01

OC

Total

80	• D A	С	redi	t	EG	Р	S	GPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
30	SGPA DE 12		48		104	4	2	.17	CG	FA		248		126	6	5	.10
DE	12	DC	28	НМ	0 1	0	С	0	DE	56	DC	128	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	48	ΑU	0	ES	30	BS	24	То	tal	248

Titla

RE-EXAM AUTUMN 2013

Credit

46

28 HM 0

0 BS

CIVIL	461	11	KAIN	SPC	KIF	HEIN	OMEN	IA (D	L)						ь	FF
80	SGPA		redi	t	EG	iΡ	SGF	PA	CG	DΛ	С	redi	t	EG	Р	CGPA
36	IFA		6		0	1	0.0	0	CG	FA	:	232		116	2	5.01
DE	6	DC	0	НМ	1 0	0	С	0	DE	50	DC	118	НМ	10	OC	0
AU	0	ES	0	BS	0	То	tal	6	AU	0	ES	30	BS	24	Tota	al 232

CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)

CGPA

Credit

232

DE 50 DC 118 HM 10

AU 0 ES 30 BS 24

EGP

1162

SGPA

4.48

0

46

OC

Note: This grade card is exclusively for internal use

EGP

206

0 Total

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

AMP151

HUL101

MAL102

SPRING 2011

: PRAVEEN KUMAR Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE052

ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

AML151 ENGINEERING MECHANICS (ES)

MATHEMATICS - II (BS)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

6

8

Gr

FF

CC

вс

DD

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	TRY (BS)				6	CD						
CHP101	CHEMIST	TRY LAB (E	3S)			2	CD						
CSL101	COMPUT	OMPUTER PROGRAMMING (ES) 8 CD											
EEL101	ELECTRI	CAL ENGI	6	DD DD									
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BB						
HUL102	SOCIAL S	SCIENCE (HM)			4	BB						
MAL101	MATHEM	IATICS I (B	SS)			8	CD						
MEP101	WORKSH	IOP (ES)				4	AB						
PEB151	SPORTS	/ YOGA / L	0	SS									
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA						
SGPA	40	228	5.70	CGPA	40	228	5.70						

SG	• D A	С	redi	t	EG	Р	S	GPA		CGI	D A	С	redi	t	EG	Р	C	GPA
36	PA		40		22	В	5	.70	l '	CGI	A		40		228	3	5	.70
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	To	tal	40	П	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MEL447	ENGINEE	RING ECC	NOMICS (HM)			6	CD
CML474	PLANT U	TILITY (DE)				6	DD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	DD
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	FF
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	CHEMISTR	Y (DC)		2	BC
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	DD
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL	METALLURG	GY (DC)	6	DD

SG	ВΛ	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
36	FA		40		154	4	3	.85	CG	ГА	•	112		594	1	5	.30
DE	6	DC	28	НМ	6	0	С	0	DE	6	DC	22	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	112

RE-EXAM AUTUMN 2011

CML261	II.	NOR(GAN	IIC CF	IEMI	CAL	TECH	NOLC)GY	(DC)				6		DD
SGPA	C	red	it	EG	Р	S	GPA	CG	D A	С	redi	t	EG	P	C	GPA
SGPA		6		24		4	.00	CG	PA		118		618	3	5	.24
DE 0	DC	6	ΗN	1 0	0	С	0	DE	6	DC	28	НМ	16	0	С	0
AU 0	FS	0	RS	. 0	To	tal	6	ALI	0	FS	36	BS	32	To	tal	118

AUTUMN 2012

	0	FOR	0004		0	E00		0004
CMP370	ENVIRON	IMENTAL I	ENGINEER	ING (DE)			2	BB
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	AB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DR	RAWING I (D	(C)	2	BB
CML375	ANALYTI	CAL METH	IODS FOR	CHEMICAL	_ ANALYSIS	(DE)	6	CD
CML370	ENVIRON	MENTAL I	ENGINEER	ING (DE)			6	DD
CML363	CHEMICA	AL PROCE	SS EQUIPI	MENT DES	IGN (DC)		6	BB
CML362	HEAT TR	ANSFER I	(DC)				6	DD
CML361	MASS TR	RANSFER -	I (DC)				6	DD
CHL369	GREEN	HEMISTR	Y & ENGIN	IEERING (L	JE)		6	CD

۱,	20	PA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	P	CGPA
`	90	IFA		42		23	0	5	.48	CG	FA	:	200		105	8	5.29
D	Ε	20	DC	22	НМ	0	0	С	0	DE	32	DC	78	НМ	16	ОС	6
Α	U	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	Tota	l 200

MEC	101	Εľ	NGIN	IEEF	RING	DRA	WIN	G (ES	3)						8		CC
PEB1	151	SF	POR	TS/	YOG	A/ LII	BRA	RY/ NO	CC (٩U)					0		SS
PHL1	101	Pł	HYSI	CS	(BS)										6		CD
PHP	101	Pł	HYSI	CS	(BS)										2		CC
		٦ ا	redi	٠ ا	EG	ь І	6	GPA			_	redi	<u>.</u>	EG	n	~	3PA
100	D۸		leui	·	LG	Г	30	JFA	CC	D۸		rear	τ	EG	Г	S	JPA
SG	PA		38		17	-	-	.63	CG	PA	<u> </u>	72	-	404	_		.61
SG DE		DC		НМ	17	-	4		CG	PA	<u> </u>		HM		_	5	

RE-EXAM SPRING 2011

ENGINEERING MECHANICS (ES) 6 CC

SG	- В А	C	redi	it	E	3P	S	GPA		CGI	D A	C	redi	t	EG	P	C	GPA
36	IFA		6		3	6	(6.00		CGI	A		78		44	0	5	.64
DE	0	DC	0	HN	<i>I</i> 0	0	С	0	П	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	3 0	To	tal	6	I	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB

SG	. В А	С	redi	it	EG	P	S	GPA	CG	ВΛ	C	redi	it	EG	Р	С	GPA
36	IFA		40		21	0	5	.25	CG	FA		158		82	8	5	5.24
DE	6	DC	28	НМ	0	0	С	6	DE	12	DC	56	НМ	16	0	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CIVIL366	MASS TRANSFER - II (DC)		6	FF
CML367	HEAT TRANSFER-II (DC)		6	CD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	DD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML466	CHEMICAL PLANT DESIGN (DC)		6	DD
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	ВС
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

6,	GPA	С	redi	t	EG	Р	S	GPA	_	_	PA	C	redi	t	EG	Р	C	GPA
30	JPA		42		22	0	5	.24	C	G	PA		236		127	8	5	.42
DE	6	DC	36	HN	1 0	0	С	0	D	E	38	DC	108	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	42	Α	J	0	ES	36	BS	32	То	tal	236

RE-EXAM SPRING 2013

ML366 MASS TRANSFER - II	(DC)
--------------------------	------

CIVIL	_300	IVI	400	115	ANSI	LIX -	11 1	(DC)							0		CD
6/	3PA	С	red	it	EG	P	S	GPA	CC	PA	C	redi	t	EG	Р	C	GPA
30	JFA		6		30)	į	5.00	C	IFA		242		130	8	5	.40
DE	0	DC	6	HN	<i>I</i> 0	0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0 8	То	tal	6	AU	0	ES	36	BS	32	Tot	tal	242

GRADE CARD

Name : PRAVEEN KUMAR Enrolment No. : BT10CHE052

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course

CMD453

SPRING 2014

CMD452 PROJECT PHASE-II (DC)

Course						T	itl	е						С	r	Gr
AUTUM	N 2013	3														
CMD401	PROJ	ECT	PHA	SE I	(DC)									4		BB
CML374	PETR	OLI	UM RE	FIN	ERY	ENGI	NE	ER	ING	(DE)				6		DD
CML461	TRAN	SPC	ORT P	HEN	OME	NA (E	OC)						6		FF
CML462	CHEM	IICA	L REA	CTI	ON E	NGIN	IEE	ERI	NG II	(DC)				6		CD
CML463	PROC	PROCESS CONTROL & INSTRUMENTATION (DC) 6 CD														
CML480	CFD F	CFD FOR CHEMICAL ENGINEERS (DE) 6 CC														
CML620	MEME	RA	NE TE	CHN	NOLO	GY ([DΕ)						6	i	BC
CMP462	CHEM	IICA	L REA	CTI	ON E	NGIN	IEE	ERI	NG -I	I (DC)				2		BC
CMP463	PROC	ESS	S CON	ITRO	DL & I	NSTF	RU	ME	NTA	TION (DC)			2		BC
CMP464	CHEM	IICA	L ENG	SINE	ERIN	IG DE	SI	ΙGΝ	& DF	RAWIN	IG II	(DC	C)	2		BB
SGPA	Credi	t	EG	Р	SG	PA		CG	D.A.	Cre	edit		EG	P	C	GPA
SGPA	46		23	В	5.	17	ľ	CG	r A	28	32		154	6	5	5.48
DE 18	DC 28	ΗN	1 0	0	С	0		DE	56	DC 1	36	НМ	16	C	C	6

CML	471		OTE E)	CHI	NOLO	GY A	AND	BIOCH	HEMIC	CAL E	ENG	INEE	RIN	G	6		DD			
CML	472			NCE	D SE	PAR.	ATIO	N PR	OCES	SS (I	DE)				6		DD			
CML	475	NI	EW A	AND	RENI	EWA	BLE	ENER	RGY E	NGI	NEE	RING	(D	E)	6		CD			
CML	491	91 PROJECT PLANNING AND MANAGEMENT (DE) 6 BB																		
60	iPΑ	С	redi	t	EG	Р	SG	PA	CG	DΛ	C	redi	t	EG	Р	C	GPA			
36	IFA		34		20	8	6.	12	CG	FA		322		177	8	5	.52			
БЕ																				
DE	24	DC	10	ΗN	1 0	0	С	0	4 DC 10 HM 0 OC 0 DE 86 DC 146 HM 1 BS 0 BS 0 Total 34 AU 0 ES 36 BS 3											

Title

SEMINAR AND GROUP DISCUSSION PROGRAM (DC)

Cr

8

2

Gr

ВВ

ΑB

AU 0 ES 0 BS 0 Total RE-EXAM AUTUMN 2013

CML	461	TI	RAN	SPC	RT P	HEN	OME	ENA (D	E))						6		DD
SG	D A	С	redi	it	EG	Р	SC	GPA		CGI	D A	С	redi	t	EG	Р	C	3PA
36	PA		6		24	ļ	4	.00	•	JGI	PA	:	288		157	0	5	.45
DE	6	DC	0	HM	1 0	0	С	0	[DE	62	DC	136	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	6		AU	0	ES	36	BS	32	To	tal	288

46

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

AU 0 ES 36 BS 32 Total

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : RAHUL DUBEY Enrolment No. : BT10CHE053

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	CD							
CHP101	CHEMIST	RY LAB (E	3S)			2	BC							
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 BC FLECTRICAL ENGINEERING (ES) 6 CC												
EEL101	ELECTRICAL ENGINEERING (ES) 6 CC													
EEP101	ELECTRI	CAL ENGI	NEERING L	AB (ES)		2	BB							
HUL102	SOCIAL S	SCIENCE (HM)			4	BB							
MAL101	MATHEM	ATICS I (B	S)			8	DD							
MEP101	WORKSH	IOP (ES)				4	AA							
PEB151	SPORTS	/ YOGA / L	IBRARY / I	NCC (AU)		0	SS							
SCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA]						
SGPA	40	256	6.40	CGPA	40	256	6.40	1						

SG	. В А	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
36	IFA		40		25	6	6.	.40	CG	FA		40		256	6	6	.40
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURO	G (DC) 0	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML474	PLANT UTILITY (DE)	6	DD

SGPA	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA	
36	гА		34		150	6	4	.59	CG	FA	1	106		578	3	5	.45
DE	6	DC	28	НМ	0	0	С	0	DE	6	DC	22	НМ	10	О	С	0
AU	0	ES	0	BS	0	To	tal	34	AU	0	ES	36	BS	32	To	tal	106

RE-EXAM AUTUMN 2011

CML261 INORGANIC CHEMICAL TECHNOLOGY (DC)

											٠,						
SG	. П.	С	redi	it	EG	Р	SG	PA	CG	D 4	С	redi	t	EG	Р	CC	SPA
36	PA		6		24	1	4.	.00	CG	A	•	112		602	2	5	.38
DE	0	DC	6	НМ	0	0	С	0	DE	6	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	6	AU	0	ES	36	BS	32	To	tal	112

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BE
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BE
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BC
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	BE
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC
		-	

SG	·D A	С	redi	t	EG	Р	S	GPA		CG	D A	С	redi	t	EG	Р	C	GPA
36	PA		42		29	0	6	.90	'	CG	PA	1	194		113	4	5	.85
DE	20	DC	22	НМ	0	0	С	0		DE	32	DC	78	НМ	10	С	С	6
AU	0	ES	0	BS	0	To	tal	42		AU	0	ES	36	BS	32	To	otal	194

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CD
AMP151	ENGINEERING MECHANICS (ES)	2	CD
HUL101	COMMUNICATION SKILL (HM)	6	CD
MAL102	MATHEMATICS - II (BS)	8	FF
MEC101	ENGINEERING DRAWING (ES)	8	FF
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	W
PHL101	PHYSICS (BS)	6	DD
PHP101	PHYSICS (BS)	2	DD

60	D A	C	redi	t	EG	P	S	GPA	CG	ДΛ.	C	redi	it	EG	P	C	GPA
SGPA		38		10	2	2	.68	C	FA		62		35	8	5	.77	
DE	0	DC	0	НМ	6	00	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	28	BS	24	To	tal	62

RE-EXAM SPRING 2011

 MAL102
 MATHEMATICS - II (BS)
 8
 DD

 MEC101
 ENGINEERING DRAWING (ES)
 8
 DD

60	D A	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	it	EG	Р	CC	PA
36	SGPA		16		64	_	4	.00	CG	PA		78		42	2	5.	41
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	00)	0
AU	0	ES	8	BS	8	To	tal	16	AU	0	ES	36	BS	32	Tot	al	78

SPRING 2012

DD

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	вс
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BC

80	·DΛ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		24	2	6	.05	CG	FA		152		84	4	5	.55
DE	6	DC	28	НМ	0	0	С	6	DE	12	DC	56	НМ	10	0	С	6
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	tal	152

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
PEB151	SPORTS/YOGA/LIBRARY/NCC (AU)		0	SS

60	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA		42		34	0	8	3.10	CG	FA		236		147	4	6	.25	
DE	6	DC	36	HN	1 0	0	С	0	DE	38	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	tal	236

GRADE CARD

: RAHUL DUBEY Enrolment No. : BT10CHE053 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

SPRING 2014

CMD452 PROJECT PHASE-II (DC)

Course						Т	itle						С	r	Gr	Course
AUTUM	IN 201	3														SPRING
CMD401	PROJ	ECT	PHA	SE I ((DC)								4		BB	CMD452
CML374	PETR	OLIU	JM RE	FINE	ERY EN	GΙ	NEER	ING	(DE)				6		BC	CMD453
CML461	TRAN	ISPO	RT P	HEN	OMENA	(C	C)						6		BC	CML471
CML462	CHEN	1ICAL	L REA	ACTIO	ON ENG	IN	EERI	NG II	(DC)				6		BB	0141 470
CML463	PROC	ESS	CON	ITRO	L & INS	TF	RUMEI	NTA	TION	(DC)		6		BB	CML472
CML480	CFD I														BB	CML475
CML620	MEM	,													BB	CML491
CMP462	CHEN	1ICAL	L REA	ACTIO	ON ENG	IN	EERI	NG -I	I (DC	()			2		AB	HUL401
CMP463	PROC	ESS	CON	ITRO	L & INS	TF	RUMEI	NTA	TION	(DC)		2		BB	SGPA
CMP464	CHEN	/ICAL	LENG	SINE	ERING [DE	SIGN	& DI	RAWI	NG	I (D	(C)	2		BB	JGFA
CODA	Cred	it	EG	Р	SGPA	١	00	D.A.	Cı	redi	t	EG	Р	C	GPA	DE 24
SGPA	46	46 358 7.78 CGPA 282 1832 6.50												.50	AU 0	
DE 18	DC 28	28 HM 0 OC 0 DE 56 DC 142 HM 10 OC 6														
AU 0	ES 0	BS	0	Tot	tal 46		AU	0	ES	36	BS	32	To	otal	282	

CML47	71	BIOTE (DE)	CHI	NOLO	GY A	AND BIG	OCH	IEMIC	CAL E	ENG	INEE	RING	3	6		CD						
CML47	72		NCE	D SEI	PAR	ATION	PRO	OCES	S (I	DE)				6		CD						
CML47	75	NEW A	AND	REN	EWA	BLE EN	NER	GY E	NGIN	NEEF	RING	(DI	Ξ)	6		CC						
CML49	91	PROJI	PROJECT PLANNING AND MANAGEMENT (DE) 6 CC																			
HUL40	01	PSYCHOLOGY & MANAGEMENT (HM) 6 CC																				
		Credit EGP SGPA Credit EGI												D		3PA						
600	٠.	Cred	It	EG	F	3GP	Α	00	DΛ		40 252 6.30 CGPA 322 2084											
SGF	PA		It					CG	PA	Ť						.47						
SGF DE 2			HN	25		6.30)	CG							6							
DE 2	24	40		25 :	2	6.30)				322 152		208	4	6	.47						

Title

CMD453 SEMINAR AND GROUP DISCUSSION PROGRAM (DC)

Cr

8

2

Gr

ВВ

AΑ

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : RAJ Y PARIKH Enrolment No. : BT10CHE054

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	ïtle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	BB						
CHP101	CHEMIST	RY LAB (E	3S)			2	BB						
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB						
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 A ELECTRICAL ENGINEERING LAB (ES) 2 A											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2											
HUL102	SOCIAL S	SCIENCE (HM)			4	AA						
MAL101	MATHEM	ATICS I (B	SS)			8	AA						
MEP101	WORKSH	IOP (ES)				4	AA						
PEB151	SPORTS	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS											
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA						
SGPA	40	376	9.40	CGPA	40	376	9.40						

60	·D A	С	redi	it	EG	Р	S	GPA	Ι.	CGI	٥,	С	redi	t	EG	Р	CC	GPA
SGPA		40		37	6	9	.40	١,	CGI	A		40	T	376	õ	9	.40	
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	4	С	С	0
ΑU	0	ES	20	BS	16	То	tal	40	П	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	O== 41:4	FOR	0004		0	E00		0004
MAL205	NUMERIC	AL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	BB
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	L PROCES	SS CALCU	LATIONS (I	DC)		6	AB
CML261	INORGAN	IIC CHEMI	CAL TECH	NOLOGY (DC)		6	AB
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AA
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTRY	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	AA
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	AA

80	• D A	С	redi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EGI	Р	CGPA	
SGPA			40		358	8	8.95	CG	FA	•	118		109	6	9	.29
DE	12	DC	28	НМ	0	00	0 0	DE	12	DC	28	НМ	1 10	О	С	0
AU	0	ES	0	BS	0	Tot	al 40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AA
		-	

60	·D 4	С	redi	t	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA			42		40	2	9.57		CG	PA	2	200		186	6	9	.33
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	16	С	C	0
AU	0	ES	0	BS	0	Total		42	AU 0		ES	36	BS	3S 32		otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	Cradit ECD SCDA Cradit EC	D	CCDA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AA
CML333	POLYMER PROCESSING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

SG	. П А	С	Credit EGP		ЭP	SGPA		00	D 4	С	redi	t	EG	Р	CGPA	
36	IPA	40			394		,	9.85	CGPA			282		267	8	9.50
DE	12	DC	28	ΗN	1 0		С	0	DE	56	DC	142	НМ	16	00	0
AU	0	ES	0	BS	0	To	otal	40	AU	0	ES	36	BS	32	Tot	al 282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AA
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	AA
MAL102	MATHEMATICS - II (BS)	8	BB
MEC101	ENGINEERING DRAWING (ES)	8	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	AA
PHP101	PHYSICS (BS)	2	AA

60	- В А	C	redi	t	EG	Р	SGPA	CG	DΛ	C	Credit			P	CGPA		
SGPA			38 362		2	9.53	CG	5		78			В	9.46		I	
DE	0	DC	0	НМ	6	00	0	DE	0	DC	0	НМ	10	0	С	0	ĺ
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	ВВ
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

60	D.A.	С	redi	t	EG	Р	SC	SPA		DΛ	С	redi	t	EG	Р	C	GPA
SGPA			40		36	В	9	.20	CGPA			158		146	4	9	.27
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	AA
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	AA
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	ъΛ	С	redi	t		EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA			42			418	8 9		.95	CGFA			242		2284		9.44	
DE	6	DC	36	ΗN	1	0	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	;	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CIVID452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AA

	~ D A	С	Credit		Credit		EG	GP SGPA CGPA Credit EGP		Credit		Р	C	GPA				
3	SGPA		40		40	0	10.0	0	C	G	FA		322		3078		9.56	
DE	24	DC	DC 10 HM		/ 0 O		0 6	3	DI	Ξ	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal 4	0	Αl	J	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : RAJ Y PARIKH Enrolment No. : BT10CHE054

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : RAJESH CHHAWARI Enrolment No. : BT10CHE055

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr				
AUTUM	N 2010										
CHL101	CHEMIST	RY (BS)				6	CC				
CHP101	CHEMIST	RY LAB (E	3S)			2	BC				
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB				
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	CC				
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	AB				
HUL102	SOCIAL S	SCIENCE (HM)			4	AB				
MAL101	MATHEM	ATICS I (B	SS)			8	BC				
MEP101	WORKSH	IOP (ES)				4	AA				
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS										
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA				
SGPA	40	300	7.50	CGPA	40	300	7 50				

80	·DΛ	С	redi	t	EG	Р	S	GPA	CG	D A	С	Credit		EG	EGP CGP		3PA
SGPA		40			30	0	7.50		CG	ГА	40			300)	7.50	
DE	0	DC	0	НМ	4	00	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Credit ECD CCDA Credit ECD		CCDA
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
CML474	PLANT UTILITY (DE)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD

80	SGPA		Credit 40		Credit EGP		SC	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA					22	0	5.50		CG	FA	118			744	4	6.31	
DE	12	DC	28	НМ	0	0	C 0		DE	12	DC	28	НМ	10	О	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	ВС
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AB
		$\overline{}$	

60	·D A	С	redi	it EGP SGPA			GPA	CG	D A	С	redi	t	EG	Р	C	GPA	
SGPA			42		31	0	7.38		CG	PA	200			129	4	6.47	
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	16	О	C	0
AU	0	ES	0	BS	0	Total		42	AU 0		ES	36	BS	BS 32		otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	CC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CD
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	CC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
		1	

60	SGPA		Credit						EG	Р	S	GPA	CG	ДΛ.	С	Credit			GP CGPA		GPA
36	JPA		40			272	6.80		CG	PA		282		187	6	6.65					
DE	12	DC	28	ΗN	1	0	0	С	0	DE 56		DC	142	НМ	16	0	С	0			
AU	0	ES	0	BS	;	0	Total		40	AU	0	ES 36		BS	32	To	tal	282			

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BC
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	DD
MEC101	ENGINEERING DRAWING (ES)	8	CD
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CD
PHP101	PHYSICS (BS)	2	BB

SGPA		C	Credit 38		Credit		EG	P	S	GPA	CG	ДΛ.	C	Credit		EG	P	CGPA	
					224		5.89		C	FA		78			4	6	.72		
DE	0	DC	0	НМ	6	0	OC 0		DE	0	DC	0	НМ	10	0	С	0		
AU	0	ES	16	BS	16	Tot	tal	38	AU	0	ES	36	BS	32	To	tal	78		

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

60	D.A.	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EGP		C	GPA
SGPA			40		240		6.00		CG	PA		158			4	6.23	
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	1 10 0		С	0
AU	0	ES	0	BS	0	Total		40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	ВС
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	ВС
CML466	CHEMICAL PLANT DESIGN (DC)		6	ВС
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA		С	Credit			Credit			Credit EGP			Р	S	GPA	CG	DΛ	С	Credit			Р	CGPA		
			42			310		7.38		CG	FA	242			160	4	6.63							
DE	6	DC	36	ΗN	1 0		0	С	0	DE	44	DC	114	НМ	16	0	С	0						
AU	0	ES	0	BS	0		To	tal	42	AU	0	ES	36	BS	32	То	tal	242						

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC

66	3PA	Credit			EG	Р	SGPA 6.40		CG	DΛ	Credit 322			EG	Р	CGPA	
30)PA		40		256				CG	PA				2132		6.62	
DE	30	DC	10	ΗN	1 0	0	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: RAJESH CHHAWARI Enrolment No.: BT10CHE055

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CHP101

CSL101

EEL101

EEP101

HUL102

MAL102

MEP101

SPRING 2011 CHL101 APPL

Name: WAGHMARE VIKAS BHARAT

Enrolment No. : BT10CHE056

APPLIED CHEMISTRY (BS)

APPLIED CHEMISTRY (BS)

SOCIAL SCIENCE (HM)

MATHEMATICS - II (BS)

WORKSHOP (ES)

COMPUTER PROGRAMMING

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

Branch: CHEMICAL ENGINEERING

Degree : BACHELOR OF TECHNOLOGY

Title

(ES)

Cr

6

2

8

6

2

8

Total

70

Gr

FF

CC

CC

חח

DD

CC

FF

AA

Course							Т	it	le						С	r	Gr
AUTUN	1N 2	2010)														
AML151	Е	NGI	NEE	RING	MEC	1AH	VICS (E	S)						6		DD
AMP151	Е	NGI	NEE	RING	MEC	1AH	NICS L	_A	В (Е	S)					2		DD
HUL101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		DD
MAL101	M	ATH	EM.	ATICS	I (B	S)									8		CD
MEC101	Е	NGI	NEE	RING	DRA	IG (ES	3)							8		DD	
PEB151	S	POR	TS	/ YOG	A/L	IBR/	ARY/	N	CC (AU)					0	1	SS
PHL101	Ρ	HYS	ICS	(BS)											6		FF
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
CODA	С	redi	it	EG	Р	SC	GPA		00	- A	C	redi	t	EG	Р	C	GPA
SGPA		38 144 3.79							CG	A		32		144	1	4	.50
DE 0	DC	0	HN	<i>l</i> 6	0	С	0	Π	DE	0	DC	0	ΗŃ	1 6	С	C	0
AU 0	ES	16	BS	3 16	To	tal	38		AU	0	ES	16	BS	10	To	otal	32

PEB'	151	SI	POR	TS/	YOG	A/ LII	BRA	RY/ N	С	C (AU)					0		SS
60	PA	С	redi	it	EG	Р	S	GPA	Γ	CG	D A	С	redi	it	EG	Р	C	GPA
36	PA		40		15	6	3	3.90		CG	PA		58		30	0	5.17	.17
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	I	AU	0	ES	36	BS	12	То	tal	58

RE-EXAM AUTUMN 2010

PHYSICS (BS) PHL101 FF Credit **EGP SGPA** Credit EGP **CGPA** SGPA **CGPA** 0 0.00 32 144 4.50 6 DC 0 HM DC 0 HM 0 OC 0 DE 0 6 OC 0 AU 0 AU 0 ES 0 BS 6 Total ES 16 BS 10 Total 32 6

RE-EXAM SPRING 2011

 CHL101
 APPLIED CHEMISTRY (BS)
 6
 CD

 MAL102
 MATHEMATICS - II (BS)
 8
 FF

	SG	D۸	С	red	it	EG	Р	SGP	4	CG	D۸	C	redi	it	EG	Р	CG	PΑ
	36	IFA		14		30)	2.14		CG	ГА		64		33	0	5.	16
Ī	DE	0	DC	0	HM	1 0	00	0 0		DE	0	DC	0	НМ	10	00	2	0
	AU	0	ES	0	BS	14	Tot	al 14	1	AU	0	ES	36	BS	18	Tot	al	64

AUTUMN 2011

CHL261 PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6 DD CHI 263 ORGANIC CHEMISTRY AND SYNTHESIS (DC) CD PHYSICAL AND INORGANIC CHEMISTRY (DC) **CHP261** 2 CC ORGANIC CHEMISTRY AND SYNTHESIS (DC) CC **CHP263** 2 CML261 INORGANIC CHEMICAL TECHNOLOGY (DC) 6 CD CML262 CHEMICAL PROCESS CALCULATIONS (DC) 6 FF PLANT UTILITY (DE) DD CMI 474 6 MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) FF

										٠,		
SGPA	Credit	EG	P :	SGPA	CGI	. .	С	redi	t	EG	P	CGPA
SGPA	40	13	2	3.30	CGI	A		98		498	3	5.08
DE 12	DC 28 F	HM 0	ОС	0	DE	6	DC	22	НМ	10	ОС	0
AU 0	ES 0 E	BS 0	Total	l 40	AU	0	ES	36	BS	24	Tota	al 98

SUMMER TERM SPRING 2011

0 BS 6 Total

PHL101 PHYSICS (BS) CC Credit **FGP SGPA** Credit **FGP CGPA** SGPA **CGPA** 6.00 70 366 5.23 6 HM 10 DC 0 НМ 0 DE DC 0 OC DE 0 OC 0 0 0

6

AU 0 ES 36 BS 24

RE-EXAM AUTUMN 2011

CML262 CHEMICAL PROCESS CALCULATIONS (DC) 6 CD MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) 6 DD

SG	D۸	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	P	CC	SPA	
36	FA		12		54	ļ	4	.50	CG	FA		110		552	2	5	.02	
DE	6	DC	6	ΗN	1 0	0	С	0	DE	12	DC	28	НМ	10	О	С	0	ĺ
AU	0	ES	0	BS	0	То	tal	12	AU	0	ES	36	BS	24	To	tal	110	

SPRING 2012

AU 0 ES

ORGANIC CHEMICAL TECHNOLOGY (DC) CD CHL214 6 ORGANIC CHEMICAL TECHNOLOGY (DC) CD CHP214 2 CML263 FLUID MECHANICS (DC) 6 FF CML264 MECHANICAL OPERATIONS (DC) 6 DD CML265 CHEMICAL ENGINEERING THERMODYNAMICS (DC) 6 DD CML621 NANO TECHNOLOGY (DE) 6 CD FLUID MECHANICS AND MECHANICAL OPERATION-I (DC) 2 CMP264 BB MAL102 MATHEMATICS - II (BS) DD

SG	D۸	С	redi	t	EG	Р	S	GPA	CG	D.A.	С	redi	it	EG	Р	C	GPA
36	PA		42		16	6	3	3.95	CG	PA		146		71	8	4	.92
DE	6	DC	28	HM	1 0	0	С	0	DE	18	DC	50	НМ	10	00	С	0
AU	0	ES	0	BS	8	To	tal	42	AU	0	ES	36	BS	32	Tot	tal	146

AUTUMN 2012

CHL369 GREEN CHEMISTRY & ENGINEERING (DE) 6 DD CML361 MASS TRANSFER - I (DC) FF 6 HEAT TRANSFER I (DC) CMI 362 CD 6 CML363 CHEMICAL PROCESS EQUIPMENT DESIGN (DC) BC CML370 ENVIRONMENTAL ENGINEERING (DE) 6 CD ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE) CML375 6 CD CMP364 CHEMICAL ENGINEERING DESIGN & DRAWING I (DC) 2 RR CMP365 FLUID MECHANICS & MECHANICAL OPERATION II (DC) 2 ВВ CMP370 **ENVIRONMENTAL ENGINEERING (DE)** 2 BB

RE-EXAM SPRING 2012

CML263 FLUID MECHANICS (DC) 6 DD

SG	ВΛ	С	redi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	ГА		6		24	-	4.00	CG	FA		152		74	2	4	1.88
DE	0	DC	6	НМ	0	0	C 0	DE	18	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal 6	AU	0	ES	36	BS	32	То	tal	152

SG	·D A	С	redi	it	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	Ö	GPA
36	IFA		42		204	4	4	.86	CG	ГА	•	188		946	5	5	.03
DE	20	DC	22	НМ	0	0	С	0	DE	38	DC	72	НМ	10	C	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	188

GRADE CARD

: WAGHMARE VIKAS BHARAT Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE056

: BACHELOR OF TECHNOLOGY **Degree**

Gr

FF вс

CD

CD CC

CC AB

ΑB

CC

CGPA

5.26

0

Course				٦	Γitle			Cr	. Gı	r	Cours	se					Ti	tle				Cr
RE-EXA	_	_	-						В		SPR CML3	_	2013	TDA	NOTE	р .	II (DC)					6
CML361	1			R - I (DC)	1	1		6		_					_		II (DC)					-
SGPA	Credi	t	EGP	SGPA	CGPA	Credi	t EG	P	CGP	Α	CML3		HEAT				(DC) ON ENGINI	EEDING I	(DC)			6 6
001 A	6		42	7.00	001 A	194	98	8	5.09		CML3						S MODEL		, ,	ION	(DC)	•
DE 0	DC 6	НМ	0	OC 0	DE 38	DC 78	HM 10	00	C 0)	CML4						ESIGN ([SINULAI	ION	(DC)	6
AU 0	ES 0	BS	0 7	Γotal 6	AU 0	ES 36	BS 32	Tot	tal 19	14	CML4						PROCESS	,	:)			6
ΔΙΙΤΙΙΝ	IN 2013	1									CMP3		MASS)II (O L	-)			2
CMD401			HASE	I (DC)				4	Al	В	CMP3		HEAT		_	,	/					2
CML374				NERY ENGI	INEERING	(DE)		6	С		CMP3					,	S MODEL	ING AND	SIMULAT	ION	(DC)	2
CML461	TRAN	SPOR	T PHE	NOMENA (I	DC)	` ,		6	D	D			Credi	it	EGF	5	SGPA		Credi	it	EGF	- C
CML462	CHEM	ICAL I	REAC	TION ENGIN	IEERING II	(DC)		6	С	D	SG	PΑ	42	+	222	\rightarrow	5.29	CGPA	230	-+	1210	_
CML463	PROC	ESS C	ONTF	ROL & INSTI	RUMENTA	TION (DC)	6	C	С	-			1				To = 44				_
CML620	MEME	RANE	TECH	HNOLOGY (DE)			6	В	С	DE	_	DC 36	HM		00		DE 44	DC 108	_		OC
CMP462	CHEM	ICAL I	REAC	TION ENGIN	IEERING -I	II (DC)		2	BI	В	AU	0	ES 0	BS	0	Tot	al 42	AU 0	ES 36	BS	32	Total
CMP463	PROC	ESS C	ONTF	ROL & INSTI	RUMENTA	TION (DC)	2	BI	В	RE-E	ΞXΑ	M SPF	RIN	G 201	13						
CMP464	CHEM	ICAL I	ENGIN	NEERING DE	ESIGN & DI	RAWING	II (DC)	2	В	С	CML3	366	MASS	TRA	NSFE	R - I	II (DC)					6
HUL409	PSYC	HOLO	GY & I	ED (HM)				6	Bl	В	00		Credi	it	EGF	· [SGPA	0004	Credi	it	EGF	- C
SGPA	Credi	t	EGP	SGPA	CGPA	Credi	t EG	P	CGP	A	SG	PA	6		24		4.00	CGPA	236		1234	4
001 A	46		298	6.48	331 A	282	15	32	5.43		DE	0	DC 6	НМ	0	00	0	DE 44	DC 114	НМ	10	ОС
DE 12	DC 28	НM	6	OC 0	DE 56	DC 142	HM 16	00	C 0)	AU	0	ES 0	BS	0	Tot	al 6	AU 0	ES 36	BS	32	Total
AU 0	ES 0	BS	0 1	Γotal 46	AU 0	ES 36	BS 32	Tot	tal 28	2	SPR	INC	3 2014									
											CMD4		PROJE	ECT	PHAS	E-II	(DC)					8
											CMD ₄						UP DISCU	SSION PE	ROGRAM	(DC	2)	2

RE-EX <i>P</i>	AM SPRIN	IG 2013					
CML366	MASS TR	ANSFER -	II (DC)			6	DD
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	6	24	4.00	CGPA	236	1234	5.23

SGPA					-		 CG	DΛ			-		- 1			
36	ıгА		6		24		4.00	CG	гА		236		123	34	5	.23
DE	0	DC	6	НМ	0	0	C 0	DE	44	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal 6	AU	0	ES	36	BS	32	To	tal	236
CDE) INI	2 20	11													

SEKING	2014		
CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	DD
	(DE)		
CML472	ADVANCED SEPARATION PROCESS (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	DD

60	PΑ	С	redi	t	EG	Р	S	GPA	~	PΑ	C	redi	t	EG	Р	C	GPA
36	PA		40		23	В	5	.95	C	IPA		322		177	0	5	.50
DE	30	DC	10	НМ	I 0	00	С	0	DE	86	DC	152	НМ	16	0	С	0
AU	0	ES	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	Total		322

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

: RONIKA GOSWAMI Enrolment No. : BT10CHE057 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Cour	se	Title Cr Gr																
AUT	UN	IN 2	010)														
AML	151	E	NGIN	IEE	RING	MEC	IAH	NICS (E	S)						6	i	CC
AMP	151	E	NGIN	IEE	RING	MEC	IAH	NICS L	A	B (E	S)					2		AB
HUL	101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M))						6		CC
MAL	101	M	MATHEMATICS I (BS) 8 AB															
MEC	101	E	ENGINEERING DRAWING (ES) 8 CC															
PEB	151	S	POR	TS	/ YOG	A/L	IBR/	ARY/	N	CC (AU)					0	1	SS
PHL ²	101	Р	HYS	CS	(BS)											6	i	BC
PHP	101	Р	HYS	CS	LAB (BS)										2		AB
60	PA	Credit EGP SGPA CGPA Credit									t	EGP		C	GPA			
36	PA		38 270		7.11			CG	PA		38		270)	7	.11		
DE	0	DC	0	ΗN	1 6	0	С	0		DE	0	DC	0	НМ	6	С	С	0
		1	40	Б.	10	Τ-			П		_	[40		40	-		

SGPA								CC	ᇝ								
			38		27	-		'.11	CG	FA		38		270)	7.	.11
DE	0	DC	0	HM	1 6	0	С	0	DE	0	DC	0	НМ	6	0	С	0
					16				AU	0	ES	16	BS	16	To	tal	38
									-								

AUTUMN 2011

	Credit FOD CODA Credit FOD	$^{-}$ T	CODA
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	BC
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	AA
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AA
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	AB

86	SGPA		Credit		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	P	C	GPA
36	гА		40		30	6	7	'.65	CG	ГА	-	118		874	1	7	.41
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	AA
CML361	MASS TRANSFER - I (DC)	6	BB
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CEL417	DISASTER MANAGEMENT (OC)	6	BB

SGPA	Credit	EG	P	SGPA	CGPA	Credit	EG	Р	CGPA
SGFA	42	35	8	8.52	CGFA	200	153	1536 7.6	
DE 14	DC 22 H	M 0	ОС	6	DE 38	DC 78	HM 10	0	C 6
AU 0	ES 0 B	S 0	Tota	al 42	AU 0	ES 36	BS 32	То	tal 200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML333	POLYMER PROCESSING (DE)	6	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AA
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB

80	·DΛ	С	redi	it		EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			46			43	2	9	.39		CG	FA		288		234	4	8	.14
DE	18	DC	28	ΗN	1	0	0	С	0	DE 62		DC	142	НМ	10	0	С	6	
AU	0	ES	0	BS	;	0	Total		46	AU (0	ES	36	BS	32	To	tal	288

Course	Title	Cr	Gr	
SPRING	2011			
CHL101	APPLIED CHEMISTRY (BS)		6	BC
CHP101	APPLIED CHEMISTRY (BS)		2	AA
CSL101	COMPUTER PROGRAMMING (ES)		8	CD
EEL101	ELECTRICAL ENGINEERING (ES)		6	AA
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	CC
HUL102	SOCIAL SCIENCE (HM)		4	ВС
MAL102	MATHEMATICS - II (BS)		8	BC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS	
I	1 1 1 1	l		

SGPA		С	redi	it	EG	Р	S	GPA	CG	D۸	С	redi	t	EG	P	CC	GPA
36	IFA		40		29	8	7	7.45	CG	FA		78		56	8 7.28		.28
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC 0 HN		НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU 0		ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	PΑ	С	redi	it	EG	Р	SG	SPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
30	JFA		40		30	4	7.	.60	CG	FA		158		117	8	7.46 OC 0	.46
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	FS	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DA	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		37	6	8.9	95	CG	PA		242		191	12 7.9		.90
DE	6	DC	36	НМ	I 0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
MML420	RURAL TECHNOLOGY (OC)	6	BB

60	PΑ	С	redi	t	EG	Р	SGPA	CG	DA	C	redi	t	EG	Р	C	GPA
36	IPA		34		30	4	8.94	CG	PA		322		264	8	_	3.22
DE	18	DC	10	HM	1 0	00	6	DE	80	DC	152	НМ	10	0	С	12
AU	0	ES	0	BS	0	Tot	al 34	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : RONIKA GOSWAMI Enrolment No. : BT10CHE057

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SAGAR HARINARAYAN Enrolment No. : BT10CHE058

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr				
AUTUM	N 2010										
CHL101	CHEMIST	RY (BS)				6	AB				
CHP101	CHEMIST	RY LAB (E	3S)			2	BB				
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AA				
EEL101	ELECTRI	CAL ENGI	NEERING ((ES)		6	BC				
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES)									
HUL102	SOCIAL S	SCIENCE (HM)			4	AA				
MAL101	MATHEM	ATICS I (E	BS)			8	AB				
MEP101	WORKSH	IOP (ES)	4	AA							
PEB151	SPORTS	/ YOGA / I	_IBRARY / I	NCC (AU)		0	SS				
CODA	Credit	EGP	CGPA								
SGPA	40	364	9.10	CGPA	40	364	9.10				

SGPA -		С	Credit		EG	Р	SGPA	CG	D A	С	redi	t	EG	Р	CC	SPA
36	PA		40		36	4	9.10	CG	PA		40		364		9.10 0C 0	.10
DE	0	DC	0	НМ	4	OC	0	DE	0	DC	0	НМ	4	С	С	0
ΑU	0	ES	20	BS	16	Tota	al 40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Cradit	EGD	SCDA		Cradit	ECD		CCDA
MAL205	NUMERIO	CAL METH	ODS AND	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	BB
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (I	DC)		6	ВС
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	AB
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC (HEMISTRY	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	AB
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

SGPA	Credit	t	EG	Р	SGPA		CG	D A	С	redi	t	EG	Р	CC	3PA
SGFA	40		318	3	7.95		CG	FA	1	118		982	2	8.32 OC 0 otal 11	.32
DE 12	DC 28	НМ	0	0	C 0	ľ	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal 40		AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

SG	·D 4	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
36	PA		42		36	2	8	3.62	CG	PA	2	200		168	2	8	.41
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	С	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	Credit	FGP	SGPA		Credit	FGP		CGPA
CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	OC)	2	AA
CMP463	PROCES	S CONTRO	L & INSTR	RUMENTAT	ION (DC)		2	AA
CMP462	CHEMICA	AL REACTION	ON ENGIN	EERING -II	(DC)		2	AA
CML480	CFD FOR	CHEMICA	L ENGINE	ERS (DE)			6	AB
CML463	PROCES	S CONTRO	L & INSTR	RUMENTAT	ION (DC)		6	BC
CML462	CHEMICA	AL REACTION	ON ENGIN	EERING II	(DC)		6	BB
CML461	TRANSPO	ORT PHEN	OMENA (D	OC)			6	BB
CML374	PETROLI	UM REFIN	ERY ENGII	NEERING (DE)		6	AA
CMD401	PROJEC1	Γ PHASE I	(DC)				4	AA

ı	60	PA	C	rea	t	EG	P	50	GPA	~~	D۸	C	real	τ	EG	۲	CC	jΡΑ
		IPA		40		35	2	8	.80	CG	PA		282		241	6	8.	.57
I	DE	12	DC	28	НМ	l 0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
Ī	ΑU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	282
•																		

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BC
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	AA
MAL102	MATHEMATICS - II (BS)	8	CC
MEC101	ENGINEERING DRAWING (ES)	8	AB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BC
PHP101	PHYSICS (BS)	2	AA

SG	DA	C	redi	t	EG	Р	SGPA	CG	ПΛ	C	redi	it	EG	P	C	3PA	
36	FA		38		30	0	7.89	CG	FA		78		66	4	8.51 OC 0	.51	
DE	0	DC	0	НМ	6	00	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AΑ

SG	. В А	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		33	8	8	.45	CG	FA		158		132	20		3.35
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AA

SGPA		С	redi	t	Е	G	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		42		3	82	2	9	.10	CG	FA		242		206	4	8	3.53
DE	0	DC	36	ΗN	1 6		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	S C		To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
MML420	RURAL TECHNOLOGY (OC)	6	AA

SG	. П.	С	redi	t	EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	Р	С	GPA
36	IPA		40		35	8	8	.95		CG	PA		322		277	4	8	3.61
DE	24	DC	10	ΗN	1 0	0	С	6		DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	40	П	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SAGAR HARINARAYAN Enrolment No. : BT10CHE058

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SALVE SHILPA SURESH Enrolment No. : BT10CHE060

Branch : CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course	Title Cr Gr													
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	CC							
CHP101	CHEMIST	RY LAB (E	3S)			2	BB							
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8 CC												
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BC												
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 AB												
HUL102	SOCIAL S	SCIENCE (HM)			4	AA							
MAL101	MATHEM	ATICS I (B	S)			8	AB							
MEP101	WORKSH	IOP (ES)				4	AA							
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 S													
CODA	Credit	EGP	SGPA	CODA	Credit	EGP	CGPA							
SGPA	40	312	7.80	CGPA	40	312	7.80							

SG	D۸	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	FA		40		312	2	7	.80	CG	ГА		40		312	2	7	.80
DE	0	DC	0	НМ	4	00	С	0	DE	0	DC	0	НМ	4	С	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	Credit	FGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	DDS AND I	PROBABILI	ITY THEOR'	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	BB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	S (DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AB
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	BB
CHL261	PHYSICA	L CHEMIS	IRY AND	JENEKAL I	METALLUR	GY (DC)	6	BC

SGPA	Credit	: I	EGF	· (SGPA	CGP	^	Cr	edit	t	EGI	Р	CG	SPA
SGFA	40		280		7.00	CGF	A	1	18		874	ŀ	7.	41
DE 12	DC 28	HM	0	OC	0	DE 1	2	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Total	40	AU (0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	BC
		- 1	

60	·D 4	С	redi	t	EG	Р	S	GPA	CG	D.A	С	redi	t	EG	Р	C	GPA
SGPA			42		336		8.00		CG	PA	2	200		153	0	7	.65
DE	14	DC	22	НМ	6	0	С	0	DE	38	DC	78	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

CMD401	PROJECT PHASE I (DC)	4	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

80	SPA	С	redi	t		EG	Р	S	GPA	CG	ВΛ	С	Credit		EG	Р	C	GPA
30	40			348		3	8.70		CG	FA		282		223	0	7	.91	
DE	12	DC	28	ΗN	1	0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	3	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	282

Course	Title		Cr	Gr
SPRING	2011			
AML151	ENGINEERING MECHANICS (ES)		6	BB
AMP151	ENGINEERING MECHANICS (ES)		2	BC
HUL101	COMMUNICATION SKILL (HM)		6	AB
MAL102	MATHEMATICS - II (BS)		8	CC
MEC101	ENGINEERING DRAWING (ES)		8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
PHL101	PHYSICS (BS)		6	BC
PHP101	PHYSICS (BS)		2	CC
	Credit ECD CCDA	Cuadit	ECD	CCDA

80	·DΛ	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
SGPA			38		28	2	7	.42	C	FA		78		594	4	7	.62
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0
ΔΙΙ	Λ	FS	16	BS	16	To	tal	38	ΔΠ	Λ	FS	36	BS	32	Τn	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SG	·DA	С	redi	t	EG	Р	SC	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36)PA	A 40			32	0	8	.00	CG	PA		158			4	7	.56
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	ВΛ	С	redi	t	Е	G	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
SGPA			42		352		8	.38	CG	FA		242		1882		7	7.78	
DE	6	DC	36	ΗN	1 0		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0		To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВС
CML472	ADVANCED SEPARATION PROCESS (DE)	6	AB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

60	PΑ	С	Credit 40		EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
)PA				334		8.	.35	CG	PA		322		256	4	7	7.96
DE	24	DC	10	ΗN	1 0	00	С	6	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SALVE SHILPA SURESH Enrolment No. : BT10CHE060

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SAPNA SANJAY SARSAR Enrolment No. : BT10CHE061

Branch : CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr			
AUTUM	N 2010									
CHL101	CHEMIST	TRY (BS)				6	CC			
CHP101	CHEMIST	TRY LAB (E	3S)			2	BC			
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB			
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	DD			
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BB								
HUL102	SOCIAL S	SCIENCE (HM)			4	AB			
MAL101	MATHEM	IATICS I (B	SS)			8	CC			
MEP101	WORKSH	IOP (ES)				4	AB			
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS			
CCDA	Credit	EGP	CGPA							
SGPA	40	274	C OF	CGPA	40	274	C 0.F			

86	SGPA		redi	t	EG	Р	SGPA	CG	D A	С	redi	t	EG	Р	CC	GPA
SGPA			40		274		6.85	CG	ГА		40		274	4	6	.85
DE	0	DC	0	НМ	4	00	0	DE	0	DC	0	НМ	4	С	С	0
AU	0	ES	20	BS	16	Tota	al 40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

	C===1:4	E00	0004		0	E00		0004
MAL205	NUMERIO	CAL METH	DDS AND	PROBABILI	TY THEOR'	Y (DE)	6	CD
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (I	DC)		6	BB
CML261	INORGAN	NIC CHEMI	CAL TECH	INOLOGY (DC)		6	CD
CHP263	ORGANIC	CHEMIST	TRY AND S	SYNTHESIS	(DC)		2	AB
CHP261	PHYSICA	L AND INC	RGANIC (CHEMISTRY	(DC)		2	AB
CHL263	ORGANIC	CHEMIST	TRY AND S	SYNTHESIS	(DC)		6	ВС
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	CD

SGPA	Credit	t	EGP		SG	PA	CG	D A	С	redi	t	EG	Р	CC	3PA
SGPA	40		246		6.15		CG	ГА	1	118		770)	6	.53
DE 12	DC 28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

60	·D 4	С	redi	it	EGP		S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			42		310		7.38		CG	PA	2	200		137	0	6	.85
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	l 10 (C	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	3 32 1		otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	CC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

60	. П А	C	redi	it		EG	Р	S	GPA	,	CGI	D A	С	redi	t	EG	P	CC	SPA
36	SGPA		40			310	0	7.75		•	JG	PA		282		199	2	7	.06
DE	12	DC	28	ΗN	1	0	0	С	0	1	DE	62	DC	142	НМ	10	0	C	0
AU	0	ES	0	BS	;	0	Total		40	AU 0		ES 36 B		BS	32	Total		282	

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CD
AMP151	ENGINEERING MECHANICS (ES)	2	BC
HUL101	COMMUNICATION SKILL (HM)	6	BC
MAL102	MATHEMATICS - II (BS)	8	BC
MEC101	ENGINEERING DRAWING (ES)	8	AB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	DD
PHP101	PHYSICS (BS)	2	CC

SGPA		C	redi	t	EG	Р	SGPA	CG	ПΛ	C	redi	t	EG	P	CC	SPA	
			38		250		6.58	CG	FA		78		524	4	6	.72	I
DE	0	DC	0	НМ	6	00	0	DE	0	DC	0	НМ	10	0	С	0	ĺ
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AΑ

		DΛ	С	Credit E0		EG	Р	SC	3PA	CG	DΛ	С	Credit		EG	Р	C	GPA
SGPA			40		290		7.25		CG	PA		158		1060		6.71		
D	Е	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	00	С	0
Α	U	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	Tot	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	вс
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	вс
CMP366	MASS TRANSFER (DC)		2	BB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

86	SGPA		redi	t	E	G	Р	S	GPA	CG	DΛ	С	Credit		EG	Р	CGPA	
SGFA			42		312		2	7.43		CG	FA		242		1682		6.95	
DE	6	DC	36	ΗN	1 ()	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	; ()	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	CC

Ì	60	SGPA		Credit 40		Credit		Credit		Credit		Credit		Credit		redit		EG	P	S	GPA	~~	D 4	С	redi	t	EG	Р	С	GPA
	SGPA					326		8.15		CGPA			322		2318		7.20													
	DE	24	DC	10	HN	16	0	С	0	DE	86	DC	152	НМ	16	0	С	0												
Ì	ΑU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	322												

GRADE CARD

Name : SAPNA SANJAY SARSAR Enrolment No. : BT10CHE061

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SAPNA SHARMA Enrolment No. : BT10CHE062

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr				
AUTUM	N 2010										
CHL101	CHEMIST	TRY (BS)				6	BB				
CHP101	CHEMIST	TRY LAB (E	3S)			2	BB				
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BC				
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BC									
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2									
HUL102	SOCIAL S	SCIENCE (HM)			4	AB				
MAL101	MATHEM	IATICS I (B	SS)			8	AB				
MEP101	WORKSH	IOP (ES)				4	AA				
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS				
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA				
SGPA	40	224	0.40	CGPA	40	224	0.40				

	- DA	С	redi	it	EG	Р	S	GPA		D.A.	С	redi	t	EG	Р	CG	PA
36	SGPA		40		324		8.10		CGPA			40		324		8.10	
DE	0	DC	DC 0 HM		4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
ALL	0	FS	20	BS	16	Τo	tal	40	ALI	0	FS	20	BS	16	To	tal	40

AUTUMN 2011

	Credit ECD CCDA Credit ECD		CCDA
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CC
CML474	PLANT UTILITY (DE)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	AB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BB
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	BC

SGPA	Credit	:	EG	Р	SGPA CGPA Credit		t	EG	Р	CG	PA			
SGFA	40		272		6.80	CG	FA	1	118		922	2	7.81	
DE 12	DC 28	НМ	0	00	0	DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	al 40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

60	·D 4	С	redi	it	EG	Р	S	GPA	00	PA	С	redi	t	EG	Р	C	GPA
SGPA			42		372		8.86		CG	PA	2	200			0	8.20	
DE	20	DC	22	НМ	0	0	С	0	DE	38	DC	78	НМ	10	С	C	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	AB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AB

SG	·DΛ	С	redi	t		EG	Р	S	GPA	CG	D۸	С	redi	t	EG	Р	C	GPA
36	JPA		40			372	2	9	.30	CG	PA		282		238	8	8	.47
DE	12	DC	28	ΗŃ	1	0	0	С	0	DE	56	DC	142	НМ	10	0	С	6
AU	0	ES	0	BS	3	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	282

Course	Title	Cı	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	BB
MEC101	ENGINEERING DRAWING (ES)	8	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BB
PHP101	PHYSICS (BS)	2	BC

SG	D A	C	redi	t	EG	P	SC	SPA	CG	ДΛ.	C	redi	it	EG	P	C	GPA	
36	IFA		38		32	6	8	.58	C	FA		78		65	0	8	.33	
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	1

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AΑ
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AE

60	- D A	С	redi	t	EG	Р	SG	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA		40		34	6	8.	.65	CG	PA		158		126	8	8	3.03	
DE	6	DC	28	НМ	0	0	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	AA
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML374	OPTIMIZATION TECHNIQUES (DE)		6	ВС
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	ВΛ	С	redi	t	E	ΒP	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	FA		42		3	76	8	3.95	CG	FA		242		201	6	8	3.33
DE	6	DC	36	ΗN	1 0		С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	otal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	BB

80	PΑ	С	redi	t	EC	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36)PA		40		32	8	8	3.20	CG	PA		322		271	6	8	.43
DE	24	DC	10	HN	<i>l</i> 6	0	С	0	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	6 0	То	tal	40	ΑU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name: SAPNA SHARMA Enrolment No.: BT10CHE062

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SARIKA PANWAR Enrolment No. : BT10CHE063

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	RY (BS)				6	CD CD
CHP101	CHEMIST	RY LAB (E	3S)			2	2 DD
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	FF.
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	CD
HUL102	SOCIAL S	SCIENCE (HM)			4	AB
MAL101	MATHEM	ATICS I (B	SS)			8	BC BC
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	JBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	240	6.00	CGPA	34	240	7.06

s	20	۸ د	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	P	CG	SPA
30	JF	A		40		240	0	6	.00	S	PA		34		240)	7.	.06
DE	. (0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	(0	ES	20	BS	16	Total		40	AU	0	ES	14	BS	16	To	tal	34

RE-EXAM AUTUMN 2010

EEL	101	EI	LEC	IKI	JAL E	NGIN	NEE	KING (ES)						6	טט
60	·D 4	С	redi	it	EG	Р	SC	SPA	CG	D 4	С	redi	t	EG	Р	CGPA
36	SGPA		6		24		4	.00	CG	PA		40		264	4	6.60
DE	0	DC	0	HM	1 0	00	0	0	DE	0	DC	0	НМ	4	ОС	0
AU	0	ES	6	BS	0	Tot	tal	6	AU	0	ES	20	BS	16	Tota	ıl 40

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML474	PLANT UTILITY (DE)	6	CC
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF

80	SGPA	С	redi	t	EG	Р	S	GPA	CGI	٥,٨	С	redi	t	EG	Р	C	GPA
		40		172		4	.30	CGI	A	1	104		612	2	5	.88	
DE	12	DC	28	НМ	l 0	0	С	0	DE	6	DC	28	НМ	10	O	C	0
AU	0	ES	0	BS	0	То	tal	40	AU 0		ES	ES 36 B		24	To	otal	104

RE-EXAM AUTUMN 2011

MAL205 NUMERICAL METHODS AND PROBABILITY THEORY (DE) 6 DD

	80	DΛ	С	redi	t	EG	Р	SGP	4	CG	DΛ	С	redi	t	EG	Р	C	GPA
	SGPA			6		24		4.00		CG	FA	•	110		636	6	5	.78
	DE	6	DC	0	НМ	0	0	C C		DE	12	DC	28	НМ	10	С	С	0
1	AU	0	ES	0	BS	0	To	tal 6		AU	0	ES	36	BS	24	To	tal	110

AUTUMN 2012

	Cradit	ECD	CCDA		Cundit	ECD	T	CCDA
HUL401	ECONON	IICS AND I	MANAGEM	ENT (HM)			6	CC
CMP370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			2	BC
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OP	ERATION II	(DC)	2	BB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	OC)	2	AA
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	CC
CML363	CHEMICA	AL PROCE	SS EQUIPI	MENT DES	IGN (DC)		6	CC
CML362	HEAT TR	ANSFER I	(DC)				6	CD
CML361	MASS TR	ANSFER -	I (DC)				6	DD
CHL369	GREEN C	CHEMISTR	Y & ENGIN	IEERING ([DE)		6	CC

80	PA	С	redi	it		EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	P	CC	SPA
36	JUPA		42			248	3	5	5.90		CG	FA	•	194		108	4	5.	.59
DE	14	DC	22	HN	1	6	0	С	0	Г	DE 32		DC	78	НМ	16	00	0	0
AU	0	ES	0	BS	;	0	To	tal	42	AU 0		ES	36	BS 32		Tot	al	194	

Course	Title	Cr	Gr
SPRING	i 2011		
AML151	ENGINEERING MECHANICS (ES)	6	DD
AMP151	ENGINEERING MECHANICS (ES)	2	BB
HUL101	COMMUNICATION SKILL (HM)	6	BC
MAL102	MATHEMATICS - II (BS)	8	W
MEC101	ENGINEERING DRAWING (ES)	8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CD
PHP101	PHYSICS (BS)	2	BB

SGPA	С	redi	t	EG	Р	S	GPA	CG	D۸	С	redi	it	EG	Р	C	GPA	
SGPA			38		176		4	.63	C	FA		70		440	0	6	.29
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0
ΔΙΙ	Λ	FS	16	BS	16	To	tal	38	ΔΠ	Λ	FS	36	BS	24	Τn	tal	70

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	CC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
MAI 102	MATHEMATICS - II (BS)	8	חח

		_		. 1		_	Ò	<u> </u>					.			_	004
80	D۸		redi	t	EG	۲	5	GPA	CG	В۸		redi	t	EG	۲	C	GPA
36	SGPA		42		200		4	.76	3	ГА		152		83	6	5	.50
DE	6	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	00)	0
AU	0	FS	0	BS	8	To	tal	42	AU	0	FS	36	BS	32	Tot	al	152

SPRING 2013

CHL336	POLYMER ENGINEERING (DE)		6	CC
CML366	MASS TRANSFER - II (DC)		6	DD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AB

SGPA	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA	
SGPA			42		270		6	.43	CG	FA		236		135	4	5	.74
DE	6	DC	36	HM	1 0	0	С	0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	AU 0 ES 36 BS 32		То	tal	236			

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	DD
CML472	ADVANCED SEPARATION PROCESS (DE)	6	CD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	ВС
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	CD
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BC

80	PΑ	С	redi	it	EG	P	S	GPA	CG	DΛ	C	redi	t	EG	Р	CC	SPA
36	IFA		46		30	2	6	5.57	CG	FA		322		191	2	5	.94
DE	30	DC	10	HN	1 0	0	С	6	DE	80	DC	152	НМ	16	00	С	6
AU	0	ES	0	BS	0	To	tal	46	AU	0	ES	36	BS	32	Tot	tal	322

GRADE CARD

Name : SARIKA PANWAR Enrolment No. : BT10CHE063

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course		Title								Cr	Gr	Course	Title	Cr	
AUTUN	IN 20	13													
CMD401	PR	OJEC1	PHA	SE I ((DC)					4	AB				
CML374	PE	roli	JM RE	FINE	ERY ENGI	NEERING	(DE)			6	BC				
CML461	TRA	ANSPO	RT P	HEN	OMENA (E	OC)				6	DD				
CML462	CHI	EMICA	L REA	CTIC	ON ENGIN	IEERING II	(DC)			6	CD				
CML463	PR	OCES	S CON	ITRO	L & INSTE	RUMENTA	TION (DC)		6	CD				
CML620	ME	MBRA	NE TE	CHN	IOLOGY (I	DE)				6	BC				
CMP462	CHI	EMICA	L REA	CTIC	ON ENGIN	IEERING -I	I (DC)			2	BB				
CMP463	PR	OCES	S CON	ITRO	L & INSTE	RUMENTA	TION (DC)		2	AB				
CMP464	CHI	EMICA	L ENG	SINE	ERING DE	SIGN & DI	RAWING	II (DC	C)	2	AB				
0004	Cre	dit	EG	Р	SGPA	0004	Credi	t	EGP		CGPA				
SGPA	4	0	25	6	6.40	CGPA	276		1610)	5.83				
DE 12	DC 2	8 HN	1 0	O	0	DE 50	DC 142	НМ	16	OC	0				
AU 0	ES () BS	0	Tot	tal 40	AU 0	ES 36	BS	32	Tota	al 276				

Note: This grade card is exclusively for internal use

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

SPRING 2011

: SATONE CHETAN DILIPRAO Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE064

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

Gr

Course			Т	itle		С	r Gr						
AUTUM	N 2010												
CHL101	CHEMIST	RY (BS)				6	FF						
CHP101	CHEMIST	RY LAB (E	3S)			2	AB						
CSL101	COMPUT	COMPUTER PROGRAMMING (ES) 8											
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 F											
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2											
HUL102	SOCIAL S	SOCIAL SCIENCE (HM)											
MAL101	MATHEM	ATICS I (B	S)			8	FF						
MEP101	WORKSH	IOP (ES)				4	AA						
PEB151	SPORTS	SS											
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA						
SGPA	40	102	2.55	CGPA	12	102	8.50						

SG	ВΛ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	P	CG	PA
36	FA		40		10	2	2	2.55	CG	FA		12		102	2	8.	50
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	То	tal	40	AU	0	ES	6	BS	2	To	tal	12

RE-EXAM AUTUMN 2010

MAL101	MATHEMATICS I (BS)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
CHL101	CHEMISTRY (BS)	6	FF

SG	·D A	С	redi	t	EG	Р	SC	3PA	CGI	. .	Cı	redi	t	EG	P	CC	3PA
36	IPA		28		0		0	.00	CGI	A		12		102	2		.50
DE	0	DC	0	НМ	0	00	С	0	DE	0	DC	0	НМ	4	C	С	0
AU	0	ES	14	BS	14	Tot	tal	28	AU	0	ES	6	BS	2	To	otal	12

AUTUMN 2011

	O===1:4	FOR	CODA		O1:4	FOR		CODA
CSL101	COMPUT	ER PROGI	RAMMING	(ES)			8	FF
CML474	PLANT U	TILITY (DE	()				6	FF
CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)		6	FF
CML261	INORGAN	VIC CHEMI	CAL TECH	NOLOGY (DC)		6	FF
CHP263	ORGANIC	C CHEMIST	TRY AND S	YNTHESIS	(DC)		2	CD
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	DD
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	DD
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	FF

80	·DΛ	С	redi	it	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	GPA
SGPA			42		42	2	1	.00	G	FA		40		218	3	5	.45
DE	6	DC	28	НМ	0	0	С	0	DE	0	DC	10	НМ	10	C	С	0
AU	0	ES	8	BS	0	То	tal	42	AU	0	ES	16	BS	4	Т	otal	40

RE-EXAM AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML474	PLANT UTILITY (DE)	6	DD
CSL101	COMPUTER PROGRAMMING (ES)	8	FF

60	. П. А	С	redi	it		EG	Р	SC	3PA	CGI	٠.	С	redi	t	EG	Р	C	GPA
SGPA		32			24		0	.75	CGI	A		46		24	2	5	.26	
DE	6	DC	18	HN	Λ	0	0	С	0	DE	6	DC	10	НМ	10	0	С	0
AU	0	ES	8	BS	3	0	To	tal	32	AU	0	ES	16	BS	4	To	otal	46

	JGFA	38	74	1.95	CGFA	30	176	5.87					
	SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA					
	PHP101	PHYSICS	(BS)				2	DD					
	PHL101	PHYSICS	(BS)				6	FF					
	PEB151	SPORTS	YOGA/ LI	BRARY/ NO	CC (AU)		0	W					
	MEC101	ENGINEERING DRAWING (ES) 8											
	MAL102	MATHEMA	ATICS - II		8	W							
	HUL101	COMMUN	ICATION S	SKILL (HN	1)		6	DD					
	AMP151	ENGINEE	RING MEC	HANICS	(ES)		2	CD					
	AML151	ENGINEE	RING MEC	HANICS	(ES)		6	FF					
٠,	01 111110	2011											

AU 0 ES 16 BS 16 Total 38 AU 0 ES 16 BS 4 Total **RE-EXAM SPRING 2011**

AML151	ENGINEERING MECHANICS	(ES)	6	FF
PHL101	PHYSICS (BS)		6	FF

DE 0 DC 0 HM 10 OC

60	D A	С	redi	t	EG	Р	SG	SPA	CG	DΛ	С	redi	t	EG	Р	C	SPA
36	SGPA		12		0		0.	.00	CG	PA		30		17	6	5	.87
DE	0	DC	0	НМ	0	00	С	0	DE	0	DC	0	НМ	10	00	С	0
AU	0	ES	6	BS	6	Tot	tal	12	AU	0	ES	16	BS	4	Tot	tal	30

SUMMER TERM SPRING 2011

DE 0 DC 0 HM 6 OC

EEL101	ELECTRICAL ENGINEERING	(ES)	6	FF
MAL101	MATHEMATICS I (BS)		8	FF

80	·D A	С	redi	t	EG	Р	SG	PA	CG	ВΛ	С	redi	it	EG	Р	C	GPA
SGPA		14		0		0.	.00	CG	FA		30		17	6	5	.87	
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	8	To	tal	14	AU	0	ES	16	BS	4	To	tal	30

SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	DD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
MAL102	MATHEMATICS - II (BS)	8	FF

60	DA	С	redi	t	EG	Р	SGPA	CG	D 4	С	redi	it	EG	Р	С	GPA
36	SGPA		42		24	_	0.57	CG	PA		50		26	6	5	5.32
DE	0	DC	28	НМ	0	0	C 0	DE	6	DC	14	НМ	10	0	C	0
AU	0	ES	6	BS	8	To	tal 42	AU	0	ES	16	BS	4	Тс	tal	50

RE-EXAM SPRING 2012

AML151	ENGINEERING MECHANICS (ES)	6	FF
CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML263	FLUID MECHANICS (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF

66	DA	С	redi	t	EG	Р	SC	GPA		CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA			38		30)	0	.79		CG	PA		56		29	6	5	.29
DE	0	DC	24	ΗN	1 0	00	2	0		DE	6	DC	20	НМ	10	0	С	0
AU	0	ES	6	BS	8	Tot	al	38	I	AU	0	ES	16	BS	4	То	tal	56

GRADE CARD

: SATONE CHETAN DILIPRAO Enrolment No. : BT10CHE064 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course						Ti	tle						С	r	Gr	Cours
AUTUM	N 2012	2														SPR
CHL261	-		CHE	MIS	TRY AND	G	ENE	RAL	MET	ALL	JRC	SY (DO	C) 6		FF	CML2
CML262	CHEM	ICAL	_ PRO	OCES	SS CALC	JL	ATIC	NS (DC)			•	6		FF	CML3
CML361	MASS	TRA	NSF	ER -	I (DC)								6		FF	CML3
CML362	HEAT	TRA	NSFI	ER I	(DC)								6		FF	CML3
CML363	CHEM	ICAL	_ PRO	OCES	SS EQUIP	N	IENT	DES	IGN	(DC)	1		6		DD	CML3
CML370	ENVIR	ONN	MENT	AL E	NGINEE	RI	NG (I	DE)					6		FF	CMP3
CMP364	CHEM	ICAL	_ ENG	SINE	ERING D	ES	SIGN	& DI	RAW	ING	l (D	C)	2		BC	CMP3
CMP365	FLUID	ME	CHAN	lics	& MECHA	٩٨	NICAL	OP	ERA	TION	III (DC)	2		AB	CMP3
CMP370	ENVIR	ONN	MENT	AL E	NGINEE	RI	NG (I	DE)					2		BB	MAL1
SGPA	Credi	t	EG	Р	SGPA		CG	D A	С	redi	t	EG	P	C	GPA	SGI
SGFA	42		72	:	1.71		CG	FA		68		368	В	5	.41	361
DE 8	DC 34	НМ	0	0	C 0	Ī	DE	8	DC	30	ΗN	1 10	С	С	0	DE
AU 0	ES 0	BS	0	To	tal 42		AU	0	ES	16	BS	3 4	To	tal	68	AU
RE-EXA	M AUT	TUN	IN 2	012												RE-E
CML262	CHEM	ICAL	- PRO	OCES	SS CALC	JL	ATIC	NS (DC)				6		FF	CML2
CML361	MASS	TRA	NSF	ER -	I (DC)								6		FF	CML3
CML362	HEAT	TRA	NSFI	ERI	(DC)								6		FF	CML3
CML370	ENVIR	ONN	MENT	AL E	NGINEE	RI	NG (I	DE)					6		FF	MAL1
CODA	Credi	t	EG	Р	SGPA		00	D.A.	С	redi	t	EG	Р	C	GPA	201
SGPA	24		0		0.00		CG	PA		68		368	В	5	.41	SGF
DE 6	DC 18	НМ	0	0	C 0	ľ	DE	8	DC	30	ΗN	1 10	О	С	0	DE
AU 0	ES 0 BS 0 Total 24						AU	0	ES	16	BS	3 4	To	tal	68	AU

0.0	SPA								CG	D^A	_		-			••••	SG	D 4	_				- 1	_
30)PA		24		0		0.0	00	CG	PA		68		368	В	5.41	36	IPA		26		0		
DE	6	DC	18	НМ	0	0	С	0	DE	8	DC	30	НМ	10	00	0	DE	0	DC	18	НМ	0	00	С
AU	0	ES	0	BS	0	Tot	tal	24	AU	0	ES	16	BS	4	Tot	al 68	AU	0	ES	0	BS	8	Tot	tal
									-															_

AUTUMN	l 2013		
AML151	ENGINEERING MECHANICS (ES)	6	FF
CMD401	PROJECT PHASE I (DC)	4	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DC)	6	FF
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	BC
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BC
MAL101	MATHEMATICS I (BS)	8	W

60	DA	С	redi	t	EG	Р	S	GPA	CGI	٠.	С	redi	t	EG	Р	C	GPA
SGPA			46		80)	1	.74	CGI	A	1	00		550)	5	.50
DE	0	DC	32	НМ	1 0	0	С	0	DE	8	DC	62	НМ	10	0	С	0
AU	0	ES	6	BS	8	То	tal	46	AU	0	ES	16	BS	4	To	tal	100

RE-EXAM AUTUMN 2013

AML151	ENGINEERING MECHANICS ()	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML361	MASS TRANSFER - I (DC)	6	FF
CML362	HEAT TRANSFER I (DE)	6	DD

SG	·D A	С	redi	it	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	Р	5.3 C	GPA
36	JPA		24		48	3	2	2.00	CG	PA		112		598	3	5	.34
DE	6	DC	12	НМ	0	0	С	0	DE	14	DC	68	НМ	10	C	C	0
AU	0	ES	0	BS	0	То	tal	18	AU	0	ES	16	BS	4	To	otal	112

Course	Title	Cr	Gr
SPRING	2013		
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML366	MASS TRANSFER - II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	DD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	FF
CML371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	6	DD
CMP366	MASS TRANSFER (DC)	2	BB
CMP367	HEAT TRANSFER (DC)	2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION (DC)	2	AA
MAL102	MATHEMATICS - II (BS)	8	FF
	Credit EGP SGPA Credit EGF	,	CGPA

80	SGPA		redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		44		10	2	2	.32	CG	FA		86		47	0	5.47 OC 0 otal 86	.47
DE	0	DC	36	НМ	0	0	С	0	DE	8	DC	48	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	44	AU	0	ES	16	BS	4	То	tal	86

EXAM SPRING 2013

DC) 6	FF
6	FF
6	FF
8	FF
	6

6,	~D A	С	redi	t	EG	Р	SC	SPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
30	SGPA DE 0		26		0		0	.00	CG	PA		86		47	0	5	.47
DE	0	DC	18	НМ	0	0	С	0	DE	8	DC	48	НМ	10	0	С	0
AU	0	ES	0	BS	8	To	tal	26	AU	0	ES	16	BS	4	То	tal	86

SUMMER TERM SPRING 2013

MAL102 MATHEMATICS - II (--) FF

SGPA	С	redi	t	EG	P	SG	PA	CG	D۸	С	redi	t	EG	Р	CG	SPA	
36			8		0		0.	00	CG	FA		86		47	0	5.	.47
DE	0	DC	0	НМ	0	0	С	0	DE	8	DC	48	НМ	10	00	0	0
AU	0	ES	0	BS	0	То	tal	0	AU	0	ES	16	BS	4	Tot	al	86

SPRING 2014

CHL336	POLYMER ENGINEERING (DE)	6	FF
CMD452	PROJECT PHASE-II (DC)	8	DD
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	DD
CML468	ORE AND MINERAL PROCESSING (DE)	6	DD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	DD
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	DD

		PA	С	redi	t	EG	Р	S	GPA	CG	DA	С	redi	t	EG	Р		GPA
`	96	ГА		46		168	В	3	.65	CG	FA		152		76	6		.04
D	Ε	24	DC	22	HM	l 0	0	С	0	DE	32	DC	90	НМ	10	ос		0
Α	U	0	ES	0	BS	0	To	tal	46	AU	0	ES	16	BS	4	Total		152

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : SAURAV DASH Enrolment No. : BT10CHE065

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr				
AUTUM	N 2010										
CHL101	CHEMIST	RY (BS)				6	CD				
CHP101	CHEMIST	RY LAB (E	3S)			2	BB				
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	CC				
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BB				
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	BC				
HUL102	SOCIAL S	SCIENCE (HM)			4	AA				
MAL101	MATHEM	ATICS I (B	BS)			8	BC				
MEP101	WORKSH	IOP (ES)				4	AA				
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS										
CCDA	SGPA Credit EGP SGPA CGPA CGPA										
SGPA	40	292	7.30	CGPA	40	292	7 30				

									,	,							
60	SGPA		redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CG	PA
SGPA			40		29	2	7	.30	CG	PA		40		292	2	7.	30
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	00	2	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	Tot	al	40

AUTUMN 2011

	Credit ECD CCDA Credit	ECD	CCDA
MEL408	SUPPLY CHAIN MANAGEMENT (OC)	6	BB
CML474	PLANT UTILITY (DE)	6	BC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	AB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	ВС
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	AB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	AB
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURG	Y (DC) 6	AA

SGPA	С	redi	t	EG	Р	SC	GPA	CG	D A	С	redi	t	EG	Р	C	GPA	
36	IFA		40		332	2	8	.30	C	ГА	1	118		890)	7.54 OC 6	
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	О	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
		$\overline{}$	

80	SGPA		redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
		42		302		7	'.19	CG	FA	2	200		151	8	7	.59	
DE 20 [DC	22	НМ	I 0	0	С	0	DE	32	DC	78	НМ	16	О	C	6
ΑU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

Γ		Credit		CGPA												
(CMP464	CHEMICA	2	BB												
(CMP463	PROCES	PROCESS CONTROL & INSTRUMENTATION (DC)													
(CMP462	CHEMICA	AL REACTION	ON ENGIN	EERING -II	(DC)		2	AB							
(CML620	MEMBRA	MEMBRANE TECHNOLOGY (DE)													
(CML463	PROCES	6	BB												
(CML462	CHEMICA	CHEMICAL REACTION ENGINEERING II (DC) PROCESS CONTROL & INSTRUMENTATION (DC)													
(CML461	TRANSPO	ORT PHEN	OMENA (D	OC)			6	BC							
(CML374	PETROLI	UM REFIN	ERY ENGII	NEERING (DE)		6	BB							
(CMD401	PROJECT	T PHASE I	(DC)				4	BB							

60	. П А	C	redi	it		EG	Р	S	GPA	~~	РΑ	C	redi	t	EG	P	CC	SPA
SGPA	40				310)	7.75		CG	PA		282		218	4	7	.74	
DE	12	DC	28	HM	1	0	0	С	0	DE	50	DC	142	НМ	16	0	C	6
AU	0	ES	0	BS	;	0	To	tal	40	ΑU	0	ES	36	BS	32	To	otal	282

Course	Title	Cı	r Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	AB
MAL102	MATHEMATICS - II (BS)	8	CD
MEC101	ENGINEERING DRAWING (ES)	8	BC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CD
PHP101	PHYSICS (BS)	2	BC

	86	D۸	С	redi	it	EG	Р	SGP	A	CG	DΛ	С	redi	it	EG	Р	CC	SPA
l	SGPA		38			26	6	7.00		CG	FA		78		55	В	7	.15
I	DE	0	DC	0	НМ	6	00	0		DE	0	DC	0	НМ	M 10 C		С	0
Γ	AU	0	ES	16	BS	16	Tot	al 38	3	AU	0	ES	36	BS	32	To	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
	. ,	U	
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	BB

80	·DΛ	С	redi	t	EGP SGPA CGPA		ВΛ	С	redi	t	EG	Р	C	GPA			
SGPA		40			32	6	8.1	5	CG	PA		158		121	6	7	.70
DE	6	DC	28	НМ	6	0	С	0	DE	12	DC	56	НМ	16	00	0	6
AU	0	ES	0	BS	0	То	tal -	40	AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AB
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA	С	redi	t	Е	ЭP		SGPA	CG	DΛ	С	redi	t	EG	Р	С	GPA	
	42			356			8.48	CG	FA		242		187	' 4	7	7.74	
DE	6	DC	36	ΗN	1 0		ОС	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0	Γ.	Γotal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	CC
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CMD452	PROJECT PHASE-II (DC)	8	AB

60	·D.A	С	Credit 40		EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA				330		8.25	CG	PA		322		251	4	7	7.81
DE	24	DC	10	НМ	0	OC	6	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	Tota	al 40	ΑU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : SAURAV DASH Enrolment No. : BT10CHE065

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name: SEWAIWAR TUSHAR PUSPARAJ

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE066

Degree : BACHELOR OF TECHNOLOGY

Course							Т	ïtle						С	r	Gr
AUTUN	IN 2	010)													
AML151	E	NGIN	NEEF	RING	MECI	HANI	ICS (ES)						6		FF
AMP151	E	NGIN	NEEF	RING	MECI	HANI	ICS L	AB (E	ES)					2		CC
HUL101	С	OMN	1UNI	CATI	ON S	KILL:	S (HI	Л)						6		BB
MAL101 MATHEMATICS I (BS) 8 DD																
MEC101 ENGINEERING DRAWING (ES) 8 FF																
PEB151 SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS																
PHL101	Р	HYS	CS	(BS)										6		FF
PHP101	Р	HYS	ICS I	LAB (BS)									2		BB
SGPA	С	redi	t	EG	Р	SG	PA	CC	PA	С	redi	t	EG	Р	C	GPA
SGFA		38	10	34	CG	FA		18		108	8	6	.00			
DE 0	DC	0	НМ	6	OC)	0	DE	0	DC	0	НМ	6	С	C	0
AU 0	38	AU	0	ES	2	BS	10	To	otal	18						

RE-EXAM AUTUN	IN 2010
---------------	---------

		1		l			
PHL101	PHYSICS	(BS)				6	CD
MEC101	ENGINEE	RING DRA	WING (ES)		8	DD
AML151	ENGINEE	RING MEC	CHANICS (ES)		6	FF

80	SGPA DE 0	С	redi	t	EG	Р	S	GPA	_	GF	٠,	C	redi	t	EG	Р	CG	PA
		20		62	:	3	.10	٦	Gr	A		32		170)	5.	31	
DE	0	DC	0	НМ	0	0	С	0	D	Ε	0	DC	0	НМ	6	0	С	0
ΑU	0	ES	14	BS	6	To	tal	20	A	U	0	ES	10	BS	16	To	tal	32

AUTUMN 2011

	O1:4	FOD	CODA		One alia	FOD	Т	CODA
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	DD
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	CC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR	Y (DC)		2	BC
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	FF
CHL261	PHYSICA	L CHEMIS	TRY AND (SENERAL I	METALLUR	GY (DC)	6	DD
CEL424	ENVIRON	IMENTAL S	STUDIES (0	JC)			6	CC

SG	DΛ	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		14	0	3	.50	CG	ГА		84		452	2	5	.38
DE	6	DC	28	НМ	I 0	0	С	6	DE	6	DC	16	НМ	10	C	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	22	BS	24	To	otal	84

RE-EXAM AUTUMN 2011

CML262	CHEMICA	AL PROCE	SS CALCU	LATIONS (DC)	6	i	DD
CHL263	ORGANIC	CHEIMIS	KY AND S	YNTHESIS	(DC)	б	1	טט

80	SGPA -	С	redi	t	EG	Р	SGPA	١.	CGI	D A	С	redi	t	EG	Р	CC	SPA
36	IFA		12		48	3	4.00	1	CGI	FA		96		500	0	5	.21
DE	0	DC	12	НМ	0	00	0		DE	6	DC	28	НМ	10	С	С	6
AU	0	ES	0	BS	0	Tot	al 12		AU	0	ES	22	BS	24	To	otal	96

AUTUMN 2012

	Credit	EGP	SGPA		Credit	EGP		CGPA
CSL101	COMPUT	ER PROGI	RAMMING	(ES)			8	BC
CMP370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			2	BB
CMP365	FLUID ME	CHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	BB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	C)	2	AB
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	BC
CML363	CHEMICA	AL PROCES	SS EQUIPN	MENT DES	IGN (DC)		6	FF
CML362	HEAT TR	ANSFER I	(DC)				6	FF
CML361	MASS TR	ANSFER -	I (DC)				6	FF
CHL369	GREEN C	CHEMISTR	Y & ENGIN	EERING (L	DE)		6	CC

	SG	. Д.	C	redi	it	Е	G	Р	S	GPA	CG	D A	C	redi	t	EG	Р		GPA
	36	IFA		44		1	84	4	4	.18	CG	ГА		150		828	8	5	.52
j	DE	14	DC	22	HN	1 0		0	С	0	DE	20	DC	54	НМ	10	С	C	6
j	AU	0	ES	8	BS	0		To	tal	44	AU	0	ES	36	BS	24	To	otal	150

Course	Title		Cr	Gr
SPRING	2011			
CHL101	APPLIED CHEMISTRY (BS)		6	CD
CHP101	APPLIED CHEMISTRY (BS)		2	CD
CSL101	COMPUTER PROGRAMMING (ES)		8	FF
EEL101	ELECTRICAL ENGINEERING (ES)		6	DD
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	BC
HUL102	SOCIAL SCIENCE (HM)		4	BB
MAL102	MATHEMATICS - II (BS)		8	FF
MEP101	WORKSHOP (ES)		4	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS
	Credit FGP SGPA	Credit	FGP	CGPA

	80	ВΛ	С	redi	t	EG	P	SGP	Α	CG	DΛ	С	redi	t	EG	P	CG	BPA
			40		142	2	3.5	5	3	FA		56		31	2	5.	.57	
I	DE	0	DC	0	НМ	4	Õ	С ()	DE	0	DC	0	НМ	10	0	3	0
Ī	AU	0	ES	20	BS	16	Tot	tal 4	0	AU	0	ES	22	BS	24	Tot	al	56

RE-EXAM SPRING 2011

CSL101	COMPUTER PROGRAMMING (E	ES)	8	FF
MAL102	MATHEMATICS - II (BS)		8	FF

80		С	redi	t	EG	Р	SGP	4	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		16		0		0.00		CG	FA		56		31	2	5	5.57
DE	0	DC	0	НМ	0	0	C 0		DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	8	BS	8	To	tal 16	3	AU	0	ES	22	BS	24	То	tal	56

SUMMER TERM SPRING 2011

AML'	151	FI	NGIN	1FF	RING	MEC	JHA	NICS	(1	=S)						6		FF
9	PA	С	redi	it	E	ЗP	s	GPA		CG	D A	С	redi	it	EG	Р	C	SPA
30	IFA		6		()	(0.00		CG	FA		56		31	2	5	.57
DE	0	DC	0	HN	<i>I</i> 0	С	С	0		DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	6	BS	3 0	To	otal	6		ΑU	0	ES	22	BS	24	To	tal	56

SPRING 2012

CD
~~
ВС
FF
CD
FF
ВВ
FF

60		С	redi	t	EG	Р	SG	PA	CG	D 4	С	redi	t	EG	Р	C	GPA
36	PA		42		90	•	2.	.14	CG	PA		112		59	0	5	.27
DE	0	DC	28	НМ	I 0	0	С	0	DE	6	DC	44	НМ	10	0	С	6
AU	0	ES	6	BS	8	To	tal	42	AU	0	ES	22	BS	24	To	tal	112

RE-EXAM SPRING 2012

MAL102	MATHEMATICS - II (BS)	8	FF
	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML263	FLUID MECHANICS (DC)	6	DD
AML151	ENGINEERING MECHANICS (ES)	6	FF

80	GPA 26 24 0.9	GPA	CG	D۸	C	redi	t	EG	Р	C	GPA						
36	IFA		26		24	ļ	0	.92	C	FA		118		61	4	5	.20
DE	0	DC	12	НМ	0	0	С	0	DE	6	DC	50	НМ	10	0	С	6
AU	0	ES	6	BS	8	To	tal	26	AU	0	ES	22	BS	24	Tot	tal	118

SUMMER TERM SPRING 2012

AIVIL	151	Er	NGIIN	NEEL	KIING	MEC	HAI	VICS	(ES)						ь		CD
SG	ъΛ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		6		30)	5	.00	CG	FA		124		64	4	5	.19
DE	0	DC	0	НМ	0	0	С	0	DE	6	DC	50	НМ	10	0	С	6
AU	0	ES	6	BS	0	То	tal	6	AU	0	ES	28	BS	24	То	tal	124

Course

CML620

CMP462

VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY NAGPUR

GRADE CARD

Cr

Gr

CD

ΑB

6

: SEWAIWAR TUSHAR PUSPARAJ

Enrolment No. : BT10CHE066

Branch: CHEMICAL ENGINEERING

MEMBRANE TECHNOLOGY (DE)

CHEMICAL REACTION ENGINEERING -II (DC)

: BACHELOR OF TECHNOLOGY **Degree**

RE-	EX/	۸M	ΑU	ΓUI	MN 2	2012	2											
CML	361	M	IASS	TR	ANSF	ER -	I (D	C)								6		CC
CML	362	Н	EAT	TR.	ANSF	ER I	(DC	;)								6		CD
CML	363	С	HEM	1ICA	L PR	OCE	SS I	EQUIPI	M	ENT	DES	SIGN	(DC)			6		CD
80	• D A	С	redi	it	EC	₽	S	GPA		CC	DΛ	С	redi	t	EG	Р	C	GPA
36	CHEMICAL PROCESS EQUIPMENT DESIGN (DC) 6 CD																	
DE	0	DC	18	HN	<i>I</i> 0	0	С	0		DE	20	DC	72	НМ	10	О	C	6
AU	0	ES	0	BS	0 8	To	tal	18		AU	0	ES	36	BS	24	To	otal	168
AU1	ΓUΝ	IN 2	2013	3														
CME	0401	Ρ	ROJ	EC1	Γ PHA	SE I	(DC	;)								4		AB
CML	333	Ρ	OLY	MEI	R PR	OCES	SSIN	IG (DE))							6		CD
CML	461	Т	RAN	SPO	ORT F	PHEN	ЮM	ENA (D)(C)						6		FF
CML	462	С	HEM	1ICA	L RE	ACTI	ON	ENGIN	ΙE	ERII	NG II	(DC)			6		FF
CML	463	Р	ROC	ES	s co	NTRO	DL 8	INSTF	રા	UME	NTA	TION	(DC)		6		FF
CML	480	С	FD F	OR	CHE	MICA	LΕ	NGINE	Е	RS (DE)					6		CC

Title

CMF	463	Ρ	ROC	ESS	S COI	NTRO)L &	INSTR	UME	NTA	TION	I (DC)		2		BB
CMF	464	С	HEM	IICA	L EN	GINE	ERI	NG DE	SIGN	& DI	RAW	ING	II (D	C)	2		AB
60	PA	0.00.00						GPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
36	PA		46		18	4	4	.00	CG	PA		234		130	4	5	.57
DE	18	DC	28	ΗN	1 0	0	С	0	DE	38	DC	112	НМ	10	0	С	6
AU		ES	0	BS	6 0		tal	46	AU		ES	36	BS	24		tal	226

RE-EXAM AUTUMN 2013

CML461	TRANSPORT PHENOMENA (DE)	6	FF
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	FF
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	DD

80	SGPA Credit EGP SGPA 18 24 1.33	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA						
30	JFA		18		24	ŀ	1	.33	CG	FA	:	240		132	8	5	.53
DE	6	DC	12	HM	l 0	0	С	0	DE	38	DC	118	НМ	10	О	С	6
AU	0	ES	0	BS	0	То	tal	18	AU	0	ES	36	BS	24	To	otal	232

Course	Title	Cr	Gr
SPRING	2013		
CML366	MASS TRANSFER - II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	FF
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	FF
CML371	CHEMICAL PROCESS MODELING AND SIMULATION (DC) 6	DD
CML466	CHEMICAL PLANT DESIGN (DC)	6	DD
CMP366	MASS TRANSFER (DC)	2	BB
CMP367	HEAT TRANSFER (DC)	2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION (DC) 2	AA
MAL102	MATHEMATICS - II (BS)	8	FF

80	DΛ	С	redi	t	EG	Р	SG	PA	CC	D۸	С	redi	t	EG	Р	Ċ	GPA
36	SGPA		44		10	2	2.32		CGPA			186		102	26	5	5.52
DE	0	DC	36	НМ	0	0	С	0	DE	20	DC	90	НМ	10	0	С	6
AU	0	ES	0	BS	8	To	tal	44	AU	0	ES	36	BS	24	To	tal	186

RE-EXAM SPRING 2013

CIVIL366	MASS TRANSFER - II (DC)	6	FF
CML367	HEAT TRANSFER-II (DC)	6	CD
CML368	CHEMICAL REACTION ENGINEERING-I (DC)	6	DD
MAL102	MATHEMATICS - II (BS)	8	FF

60	·D 4	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		26		54		2.08		CG	PA		198		108	30	5	.45
DE	0	DC	18	НМ	0	0	С	0	DE	20	DC	102	НМ	1 10 0		С	6
AU	0	ES	0	BS	8	To	tal	26	AU	0	ES	36	BS	24	To	tal	198

SUMMER TERM SPRING 2013

MAL	102	M	ΑТН	EMA	TICS	- II	()								8		CD
60	PA	С	redi	t	EGP		SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		8		40		5	.00	CG	PA		206		112	20	5	.44
DE	0	DC	0	НМ	0	0	С	0	DE	20	DC	102	НМ	10	0	0	6
AU	0	ES	0	BS	0	Tot	tal	0	AU	0	ES	36	BS	24	Tot	al	198

SPRING 2014

CHL336	POLYMER ENGINEERING (DE)	6	DD
CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	FF
CML366	MASS TRANSFER-II (DC)	6	FF
CML468	ORE AND MINERAL PROCESSING (DE)	6	CD
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	FF
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	CC

60	· D A	С	redi	t	EGP		S	GPA	١,	CG	D 4	C	redi	t	EG	Р	С	GPA
SGPA			46		180	180		3.91		CG	PA		268		150	8	5	5.63
DE	24	DC	22	HN	1 0	0	С	0	1	DE	56	DC	128	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	46	A	AU	0	ES	36	BS	24	То	tal	260

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Course

HUL101

SPRING 2011

: SHARMA RAHUL NARENDRA Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE067

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

6

Gr

ВВ

AA

ВВ

Course			Т	itle		С	r Gr					
AUTUM	N 2010											
CHL101	CHEMIST	RY (BS)				6	CC					
CHP101	CHEMIST	RY LAB (E	3S)			2	BB					
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB					
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	BB					
EEP101	ELECTRI	CAL ENGI	NEERING I	_AB (ES)		2	AB					
HUL102	SOCIAL S	SOCIAL SCIENCE (HM)										
MAL101	MATHEM	ATICS I (E	BS)			8	BB					
MEP101	WORKSH	IOP (ES)	4	AA								
PEB151	SPORTS	/ YOGA / I	_IBRARY / I	NCC (AU)		0	SS					
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA					
SGPA	40	326	8.15	CGPA	40	326	8.15					

SG	DΛ	С	redi	t	EG	Р	S	GPA	CG	D۸		C	redi	t	EG	Р	Č	GPA
36	ГА		40		320	6	8	.15	CG	FA			40		326	6	8	.15
DE	0	DC	0	НМ	4	0	С	0	DE	0		DC	0	НМ	4	C	С	0
AU	0	ES	20	BS	16	Total		40	AU 0		ES 20 B		BS	16	To	otal	40	

AUTUMN 2011

	O1114	FOD	0004		0	E00		0004
MAL205	NUMERIO	CAL METH	DDS AND	PROBABILI	TY THEOR	Y (DE)	6	DD
CML474	PLANT U	TILITY (DE)				6	BC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (I	DC)		6	CC
CML261	INORGAN	NIC CHEMI	CAL TECH	INOLOGY (DC)		6	BB
CHP263	ORGANIC	CHEMIST	RY AND S	SYNTHESIS	(DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC (CHEMISTRY	Y (DC)		2	вс
CHL263	ORGANIC	CHEMIST	RY AND S	SYNTHESIS	(DC)		6	CC
CHL261	PHYSICA	L CHEMIS	TRY AND	GENERAL I	METALLUR	GY (DC)	6	CC

SGPA	Credi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	P	CC	SPA
SGFA	40		252		6.30		C	FA	1	118		876	6	7	.42
DE 12	DC 28	НМ	0	0	С	0	DE	12	DC	28	НМ	<i>I</i> 10		С	0
AU 0	ES 0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
HUL401	ECONOMICS AND MANAGEMENT (HM)	6	AB

SGPA	С	redi	it	EG	Р	S	GPA	_	<u> </u>	PA	С	redi	t	EG	Р	C	GPA	
36	JFA		42 33		4	7	7.95	C	اق	FA	2	200		151	4	7	.57	
DE	14	DC	22	НМ	1 6	0	С	0	DI	Ξ	38	DC	78	НМ	16	C	C	0
AU	0	ES	0	BS	0	То	tal	42	Αl	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AA
CML333	POLYMER PROCESSING (DE)	6	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	CD
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AA

80	SGPA	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		46		35	4	7	7.70	CG	FA		288		221	4	7	.69
DE	18	DC	28	НМ	0	0	С	0	DE	62	DC	142	НМ	16	0	С	0
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	То	tal	288

MAL102	2	MATH	EMA	ATICS	- II	(BS)	•						8		CD
MEC10	1	ENGIN	IEEF	RING	DRA	WIN	IG (E	S)						8		AA
PEB151		SPOR	TS/	YOG	4/ LII	BRA	RY/ N	CC (AU)					0		SS
PHL101		PHYS	CS	(BS)										6		BC
PHP101		PHYS	CS	(BS)										2		AA
				Credit EGP SGPA CGPA Credit EGP												
SCDA		Cred	it	EG	Р	S	GPA	00	D.A.	С	redi	t	EG	Р	C	GPA
SGPA	\ -	Cred	it	EG 29	_	-	3PA 7.84	CG	PA	С	redi 78	t	EG 62	_	_	3PA .00
SGPA DE 0	1		i t	29	_	7		CG	PA	DC		t HM		4	_	
	1	38		29 8	8 0	7	.84			DC	78		62	4	8	.00

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	ВС
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	ВС
CML621	NANO TECHNOLOGY (DE)	6	AB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credit	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA	40		304	4	7.60	CG	PA		158		118	0	7	.47
DE 12	DC 28	НМ	0	00	0	DE	24	DC	56	НМ	10	00	С	0
AU 0	ES 0	BS	0	Tot	tal 40	AU	0	ES	36	BS	32	Tot	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA	С	redi	t	ı	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA	
36			42			346	6	8	.24	CG	FA		242		186	0	7	7.69
DE	6	DC	36	ΗN	1	0	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	;	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	ВС
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CMD452	PROJECT PHASE-II (DC)	8	AA

80	SGPA	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		34		28	6	8	.41	CG	FA		322		250	0	7	.76
DE	18	DC	10	НМ	0	0	С	6	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	34	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SHARMA RAHUL NARENDRA Enrolment No. : BT10CHE067

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: SHUBHAM JAIN Enrolment No. : BT10CHE068 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Cours	se							Т	it	le						С	r	Gr
AUT	UN	IN 2	2010)														
AML1	151	Е	NGI	NEE	RING	MEC	HAI	NICS (E	S)						6		CC
AMP ²	151	E	NGI	NEE	RING	MEC	CHAI	NICS L	A	B (E	S)					2		CC
HUL1	101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M))						6		AB
MAL1	101	M	ATH	ΕM	ATICS	I (B	S)									8		BB
MEC.	101	E	NGI	NEE	RING	DRA	WIN	IG (ES	(6							8		FF
PEB1	151	S	POR	TS	/ YOG	A/L	IBR/	ARY/	N	CC (AU)					0		SS
PHL1	01	Р	HYS	ICS	(BS)											6		BC
PHP1	101	Ρ	HYS	ICS	LAB (BS)										2		AB
SGI	D A	С	redi	it	EG	Ρ	S	GPA		CG	D A	C	redi	t	EG	Р	C	GPA
361	ГА		38		22	6	5	.95		CG	ГА		30		22	6	7	.53
DE	0	DC	0	НΝ	<i>l</i> 6	0	С	0		DE	0	DC	0	HN	1 6	C	С	0
AU	0	ES	16	BS	3 16	To	tal	38		AU	0	ES	8	BS	16	To	otal	30

			2010

MEC	MEC101 ENGINEERING DRAWING (ES)														8		CD
60	SGPA	С	redi	t	EG	P	SC	3PA	CGI	D A	C	redi	t	EG	Р	CC	PA
36	SGPA		8		4()	5	.00	CGI	PA		38		266	6	7	.00
DE	0	DC	0	HM	I 0	0	С	0	DE	0	DC	0	НМ	6	0	С	0
AU	0	ES	8	BS	0	Total		8	AU	0	ES	16	BS	16	То	tal	38

AUTUMN 2011

	20		
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	AB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	AA
CML474	PLANT UTILITY (DE)	6	DD
HUL406	LABOUR ECONOMICS & INDUSTRIAL RELATIONS (HM)	6	CC

_	SGPA		С	redi	it	EC	P	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
٥				40		23	4	5	.85	CG	ГА		112		842	2	7	.52
DI	E	6	DC	28	HM	l 6	0	С	0	DE	6	DC	22	НМ	16	0	С	0
Αl	U	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	112

RE-EXAM AUTUMN 2011

CML	.261	IN	IOR	SANI	C CH	IEMI	CAL	TECH	NC	OLO	GΥ	(DC)				6		CD
60	. В А	С	redi	t	EG	Р	S	GPA		CGF	. .	С	redi	t	EG	Р	C	GPA
SGPA			6		30)	5	.00	١,	JGF	A	•	118		872	2	7	.39
DE	0	DC	6	НМ	0	0	С	0	[DE	6	DC	28	НМ	16	С	С	0
AU	0	ES	0	BS	0	Total		6	1	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

2004	Credit	EGP	SGPA	2224	Credit	EGP		CGPA
CMP370	ENVIRON	IMENTAL E		2	AB			
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	AB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	(C)	2	BB
CML375	ANALYTI	CAL METH	ODS FOR	CHEMICAL	ANALYSIS	(DE)	6	CC
CML370	ENVIRON	IMENTAL E	ENGINEER	ING (DE)			6	CD
CML363	CHEMICA	AL PROCES	SS EQUIPN	MENT DES	IGN (DC)		6	BC
CML362	HEAT TR	ANSFER I	(DC)				6	BC
CML361	MASS TR	ANSFER -	I (DC)				6	CC
CHL369	GREEN C	CHEMISTR	Y & ENGIN	EERING (L	DE)		6	BC

SGPA	Credit		GP	SGPA	CGPA	Crean		7 P	CGPA
SGFA	42	2	280	6.67	CGFA	200	14	24	7.12
DE 20	DC 22	HM C	0	C 0	DE 32	DC 78	HM 16		OC 6
AU 0	ES 0	BS 0	То	tal 42	AU 0	ES 36	BS 32	To	otal 200

Course	Title Cr 6 2011 APPLIED CHEMISTRY (BS) 6 APPLIED CHEMISTRY (BS) 2 COMPUTER PROGRAMMING (ES) 8 ELECTRICAL ENGINEERING (ES) 6 ELECTRICAL ENGINEERING LAB (ES) 2 SOCIAL SCIENCE (HM) 4 MATHEMATICS - II (BS) 8 WORKSHOP (ES) 4 SPORTS / YOGA/ LIBRARY/ NCC (AU) 0		Gr	
SPRING	3 2011			
CHL101	APPLIED CHEMISTRY (BS)		6	AA
CHP101	APPLIED CHEMISTRY (BS)		2	BB
CSL101	COMPUTER PROGRAMMING (ES)		8	BB
EEL101	ELECTRICAL ENGINEERING (ES)		6	AA
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	BC
HUL102	SOCIAL SCIENCE (HM)		4	AA
MAL102	MATHEMATICS - II (BS)		8	CC
MEP101	WORKSHOP (ES)		4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS

80	SGPA		redi	it	EG	Р	S	GPA	CG	D۸	С	redi	it	EG	Р	C	GPA
36	JFA		40		342	2	8	3.55	5	FA		78		60	8		.79
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	вс
CHL336	POLYMER ENGINEERING (DE)	6	вс
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	PΑ	С	redi	t	EG	Р	SC	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		40		27	2	6	.80	CG	FA		158		114	4	7.24 OC 6	.24
DE	6	DC	28	НМ	0	0	С	6	DE	12	DC	56	НМ	16	0	С	6
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	ıtal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DA	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	PA		42		35	2	8.	38	CG	PA		242		177	6	7	7.34
DE	6	DC	36	НМ	0	0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CMD452	PROJECT PHASE-II (DC)	8	AB

60	·D 4	С	redi	t	EG	Р	SGPA			DΛ	C	redi	t	EG	Р	CGPA		
SGPA			34		302		8.88		CGPA		322			245	54	7.62		
DE	18	DC	10	НМ	0	00	6		DE	74	DC	152	НМ	16	0	С	12	
AU	0	ES	0	BS	0	Tota	al 34	П	ΑU	0	ES	36	BS	32	То	tal	322	

GRADE CARD

: SHUBHAM JAIN Enrolment No. : BT10CHE068 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course			Т	itle			Cr	Gr	Course	Title	Cr	
AUTUN	IN 2013											
CMD401	PROJEC	T PHASE	E I (DC)				4	AA				
CML333	POLYME	R PROC	ESSING (DE)			6	AB				
CML374	PETROL	IUM REF	INERY ENGI	NEERING	(DE)		6	AA				
CML461	TRANSP	ORT PH	ENOMENA ([DC)			6	CD				
CML462	CHEMIC	AL REAC	CTION ENGIN	IEERING II	(DC)		6	BB				
CML463	PROCES	S CONT	ROL & INSTE	RUMENTA	TION (DC)	6	CC				
CML620	MEMBRA	ANE TEC	HNOLOGY (I	DE)			6	AB				
CMP462	CHEMIC	AL REAC	CTION ENGIN	IEERING -I	I (DC)		2	AA				
CMP463	PROCES	S CONT	ROL & INSTE	RUMENTA	TION (DC)	2	AB				
CMP464	CHEMIC	AL ENGI	NEERING DE	SIGN & DI	RAWING	II (DC)	2	BB				
SGPA	Credit	EGP	SGPA	CGPA	Credi	t EG	P	CGPA				
SGPA	46	376	8.17	CGPA	288	21:	52	7.47				
DE 18	DC 28 H	M 0	OC 0	DE 56	DC 142	HM 16	O	C 6				
AU 0	ES 0 B	S 0	Total 46	AU 0	ES 36	BS 32	Tot	tal 288				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : SIDDHESH KAMAT Enrolment No. : BT10CHE069

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	TRY (BS)				6	CC
CHP101	CHEMIST	TRY LAB (E	3S)			2	BC
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB
EEL101	ELECTRI	CAL ENGII	NEERING (ES)		6	BB
EEP101	ELECTRI	CAL ENGII	NEERING I	_AB (ES)		2	: AB
HUL102	SOCIAL S	SCIENCE (HM)			4	BB
MAL101	MATHEM	IATICS I (B	S)			8	BB
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	040	7.00	CGPA	40	040	

80	. В А	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CGPA	
SGPA			40		312	2	7	.80	CG	ГА		40		312	2	7.80	
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Credit	FGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	DDS AND I	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	CC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	VIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	C CHEMIST	RY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL263	ORGANIC	C CHEMIST	RY AND S	YNTHESIS	(DC)		6	BC
CHL261	PHYSICA	T CHEMIS	IRY AND	JENERAL I	METALLUR	GY (DC)	6	AB

SGPA	Credit	t	EG	Р	SGPA		CG	D A	С	redi	t	EG	Р	CGPA	
SGFA	40		304		7.60		CG	ГА	1	118			6	7.59	
DE 12	DC 28	НМ	0	0	0		DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	tal 40		AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CEL417	DISASTER MANAGEMENT (OC)	6	BC
CML361	MASS TRANSFER - I (DC)	6	BB
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	ВС
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
		-	

60	·D 4	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	CGPA	
SGPA			42		33	6	8	3.00	CG	PA	2	200		155	4	7	.77
DE	14	DC	22	НМ	1 0	0	С	6	DE	38	DC	78	НМ	10	С	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	-		ES 36 B		32	To	otal	200

AUTUMN 2013

CIVID401	PROJECT PHASE I (DC)	4	AA
CML333	POLYMER PROCESSING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
		- 1	

SG	. П А	C	redi	it		EG	Р	S	GPA	١.	CG	D 4	C	redi	t	EG	Р	CGPA	
36	JPA		40			356		8	.90	ļ '	CGFA			282		227	6	8.07	
DE	12	DC	28	HM	1	0	0	С	0		DE	56	DC	142	НМ	10	C	С	6
AU	0	ES	0	BS	;	0	To	tal	40	I	AU	0	ES	36	BS	32	To	otal	282

Course	Title	Cı	r Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	AA
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	ВС
MEC101	ENGINEERING DRAWING (ES)	8	CC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	CC
PHP101	PHYSICS (BS)	2	AB

SG	D A	C	redi	t	EG	P	SG	PΑ	CG	п.	C	redi	it	EG	P	CC	GPA
36	IFA		38		28	0	7.3	37	C	ГА		78		592	2	7.59 OC 0	.59
DE	0	DC	0	НМ	6	00	0	0	DE	0	DC	0	НМ	10	00	0	0
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	Tot	al	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	BC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BC
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SG	. П.	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	IFA		40		32	2	8	3.05	CG	FA		158		121	8	7	.71
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	ВС
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA	С	redi	t	Е	GF	•	S	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA	
36	FA		42		3	66		8	.71	CG	FA		242		192	0	7	7.93
DE	6	DC	36	ΗN	1 0		OC		0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	Τ	Tot	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CC
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB

60	PΑ	С	redi	it	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	С	GPA
36)PA		40		33	4	8.35		CG	PA		322		261	0	8	3.11
DE	24	DC	10	HM	1 0	00	6		DE	80	DC	152	НМ	10	0	С	12
AU	0	ES	0	BS	0	Tot	al 40	1	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SIDDHESH KAMAT Enrolment No. : BT10CHE069

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SNEHAL DATTATRAYA GHULE Enrolment No. : BT10CHE070

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	BB							
CHP101	CHEMIST	RY LAB (E	3S)			2	. AB							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BC							
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BB												
EEP101	ELECTRICAL ENGINEERING LAB (ES) 2 BB													
HUL102	SOCIAL S	SCIENCE (HM)			4	- AA							
MAL101	MATHEM	ATICS I (B	S)			8	AB							
MEP101	WORKSH	4	- AA											
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS													
CODA	Credit	EGP	SGPA	CODA	Credit	EGP	CGPA							
SGPA	40	338	8.45	CGPA	40	338	8.45							

	60	SGPA -		rea	τ	EG	P	Ő	GPA	CGI	۸ د	L	reai		EG	_	C	PA.
	36	IFA		40		33	8	8	3.45	CGI	A		40		338	3	8.	45
j	DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	С	С	0
	AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	To	tal	40
•																		

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	DDS AND I	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML474	PLANT U	TILITY (DE)				6	BB
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	AB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	BB
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	BC

80	SGPA		redi	t	EG	Р	SC	3PA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	IFA		40		32	0	8	.00	CG	FA		118		944	4	8	.00
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AA
CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AA
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
		-	

60	·D 4	С	redi	it	EG	Р	S	GPA	CG	D A	С	redi	t	EG	P	C	GPA
SGPA			42		41	2	9	9.81	CG	PA	2	200		173	6	8	.68
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	Credit	FGP	SGPA		Credit	FGP		CGPA
CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DR	RAWING II (I	DC)	2	AB
CMP463	PROCES	S CONTRO	L & INSTF	RUMENTAT	ION (DC)		2	AA
CMP462	CHEMICA	AL REACTION	ON ENGIN	EERING -II	(DC)		2	AA
CML620	MEMBRA	NE TECHN	OLOGY (E	DE)			6	AA
CML463	PROCES	S CONTRO	L & INSTF	RUMENTAT	ION (DC)		6	AB
CML462	CHEMICA	AL REACTION	ON ENGIN	EERING II	(DC)		6	AA
CML461	TRANSPO	ORT PHEN	OMENA (D	C)			6	AB
CML374	PETROLI	UM REFIN	ERY ENGI	NEERING (DE)		6	AA
CMD401	PROJEC1	T PHASE I	(DC)				4	AA

	60	PA	C	rea	t	EG	P	50	GPA	~~	ПΛ		rear	τ	EG	۲	CC	jΡΑ
	36	IPA		40		38	6	9	.65	CG	PA		282		253	6	8.	.99
	DE	12	DC	28	НМ	0	0	С	0	DE	56	DC	142	НМ	16	0	С	0
	AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	То	tal	282
•																		

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CC
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	AB
MAL102	MATHEMATICS - II (BS)	8	BB
MEC101	ENGINEERING DRAWING (ES)	8	BC
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BC
PHP101	PHYSICS (BS)	2	BB

SG	D A	C	redi	t	EG	P	S	GPA	CG	п.	C	redi	t	EG	P	C	GPA	l
36	IFA		38		28	6	7	.53	C	ГА		78		624	4	8	.00	I
DE	0	DC	0	НМ	6	00	С	0	DE	0	DC	0	НМ	10	0	С	0	ľ
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	AA
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AA
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

60	D.A.	С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		38	0	9	.50	CG	PA		158		132	24	8	.38
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366 MASS TRANSFER - II (DC) CML367 HEAT TRANSFER-II (DC)	-I (DC)	6	AA AA
CML367 HEAT TRANSFER-II (DC)	-I (DC)	-	
	-I (DC)	_	
CML368 CHEMICAL REACTION ENGINEERING		6	AA
CML371 CHEMICAL PROCESS MODELING ANI	SIMULATION (DC)	6	AA
CML466 CHEMICAL PLANT DESIGN (DC)		6	AA
CMP366 MASS TRANSFER (DC)		2	AA
CMP367 HEAT TRANSFER (DC)		2	AA
CMP371 CHEMICAL PROCESS MODELING ANI	SIMULATION (DC)	2	AA
HUL407 INDIA STUDIES (HM)		6	AB

SG	ВΛ	С	redi	t	Е	GI	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36	FA		42		4	14	.	9	.86	CG	FA		242		215	2150 8.88		3.88
DE	0	DC	36	ΗN	1 6		0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0		To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	AA
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB

	SGPA	·D 4	С	redi	t	EG	Р	SC	SPA		CG	D.A.	С	redi	t	EG	Р	C	GPA
			40		37	6	9	.40		CG	PA		322		291	2	9	.04	
	DE	24	DC	10	ΗN	1 0	0	С	6		DE	80	DC	152	НМ	16	0	С	6
	AU	0	ES	0	BS	0	Tot	tal	40	I	ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SNEHAL DATTATRAYA GHULE Enrolment No. : BT10CHE070

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: SUDESHNA DASGUPTA Enrolment No. : BT10CHE071 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	BC							
CHP101	CHEMIST	RY LAB (E	3S)			2	AA							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	BB							
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 BB												
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES) 2 BC												
HUL102	SOCIAL S	SCIENCE (HM)			4	AA							
MAL101	MATHEM	ATICS I (B	BS)			8	BC							
MEP101	WORKSH	4	AA											
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS													
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA							
SGPA	40	324	8.10	CGPA	40	324	8.10							

									,	,							
60	PΑ	С	redi	it	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CG	PA
36	PA		40		32	4	8	3.10	CG	PA		40		324	1	8.	10
DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	4	OC	;	0
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	20	BS	16	Tota	al	40

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MEL408	SUPPLY	CHAIN MA	NAGEMEN	T (OC)			6	AB
CML474	PLANT U	TILITY (DE)				6	CC
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BB
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	S (DC)		2	BB
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AB
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	BB
CHL261	PHYSICA	L CHEMIS	TRY AND (JENERAL I	METALLURG	3Y (DC)	6	BC

SG	. В А	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	8.22 C 6	GPA
36	IFA		40		310	6	7	.90	CG	ГА		118		970	0	8	.22
DE	6	DC	28	НМ	0	0	С	6	DE	6	DC	28	НМ	10	С	C	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AB
CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

SG	·D 4	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		38	8	9	.24	CG	PA	2	200		171	2	8	.56
DE	20	DC	22	НМ	0	0	С	0	DE	38	DC	78	НМ	10	C	C	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

Γ		Credit	FGP	SGPA		Credit	FGP		CGPA
(CMP464	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING II (I	DC)	2	BB
(CMP463	PROCES	S CONTRO	L & INSTF	RUMENTAT	TON (DC)		2	AB
(CMP462	CHEMICA	AL REACTION	ON ENGIN	EERING -II	(DC)		2	AB
(CML480	CFD FOR	CHEMICA	L ENGINE	ERS (DE)			6	AB
(CML463	PROCES	S CONTRO	L & INSTF	RUMENTAT	TON (DC)		6	BC
(CML462	CHEMICA	AL REACTION	ON ENGIN	EERING II	(DC)		6	BC
(CML461	TRANSPO	ORT PHEN	OMENA (D	OC)			6	ВС
(CML374	PETROLI	UM REFIN	ERY ENGI	NEERING ((DE)		6	AB
(CMD401	PROJECT	T PHASE I	(DC)				4	AA

SG	- D A	C	rea	t	EG	۲	50	ĕΡΑ	~	DA	C	real	τ	EG	P	C	jΡΑ
36	iPA		40		32	6	8	.15	CG	PA		282		242	8	8	.61
DE	12	DC	28	НМ	0	0	С	0	DE	50	DC	142	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	AB
AMP151	ENGINEERING MECHANICS (ES)	2	CC
HUL101	COMMUNICATION SKILL (HM)	6	AA
MAL102	MATHEMATICS - II (BS)	8	BC
MEC101	ENGINEERING DRAWING (ES)	8	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	BB
PHP101	PHYSICS (BS)	2	AA

60	SGPA	C	redi	t	EG	P	SC	GPA	CG	п.	C	redi	t	EG	P	C	GPA	l
36	IFA		38		33	0	8	.68	C	ГА		78		654	4	8	.38	I
DE	0	DC	0	НМ	6	00	2	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	al	38	AU	0	ES	36	BS	32	To	tal	78	l

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SG	·DA	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36)PA		40		35	4	8	.85	CG	PA		158		132	24	8	3.38
DE	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AA

60	SGPA	С	redi	t	E	G	Р	S	GPA	CG	ДΛ.	С	redi	t	EG	Р	C	GPA
			42		;	90	0	9	.29	CG	FA		242		210	2	8	3.69
DE	0	DC	36	ΗN	1 6		0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	; (_	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML472	ADVANCED SEPARATION PROCESS (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
MML420	RURAL TECHNOLOGY (OC)	6	AB

60	·D 4	С	redi	t	EG	Р	SGPA		CG	DA	C	redi	t	EG	Р	C	GPA
SGPA			40		35	8	8.95		CG	PA		322		278	36	8	.65
DE	24	DC	10	ΗN	1 0	00	6	Ī	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	Tot	al 40	1	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : SUDESHNA DASGUPTA Enrolment No. : BT10CHE071

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : YOGI DAMLE Enrolment No. : BT10CHE072

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Cou	rse							Т	it	le						С	r	Gr
AUT	ΓUΝ	IN 2	2010)														
AML	151	Е	NGIN	NEE	RING	MEC	CHAI	NICS (E	S)						6		BC
AMP	151	E	NGIN	NEE	RING	MEC	CHAI	NICS L	Α	B (E	S)					2		CC
HUL	101	С	OMN	1UN	ICATI	ON S	SKIL	LS (HI	M))						6		BC
MAL	.101	M	MATHEMATICS I (BS) 8 BC															
MEC	101	Е	ENGINEERING DRAWING (ES) 8 DD															
PEB	151	S	SPORTS / YOGA / LIBRARY / NC													0		SS
PHL	101	Р	HYS	ICS	(BS)											6		BC
PHP	101	Р	HYS	ICS	LAB (BS)										2		BC
60	PΑ	С	Credit EGP SGPA							CGI	D A	С	redi	t	EG	Р	C	GPA
36	IPA		38 240					.32		CGI	A		38		24	0	6	.32
DE	0	DC	0	HM 6 0		С	0	ĺ	DE	0	DC	0	НМ	6	С	С	0	
ΔΠ	Λ	ΕS	\$ 16 BS 16 Total 3						1	ALL	Λ	ΕS	16	BC	16	T	stal	20

36	PA		38		24	0	(5.32		CGI	- A		38		24	O	6.	32
DE	0	DC	0	ΗN	1 6	0	С	0		DE	0	DC	0	ΗN	16	С	C	0
AU	0	ES	16	BS	16	То	tal	38		AU	0	ES	16	BS	16	To	otal	38
									_									

DUVEICAL CHEMISTRY AND CENERAL METALLURCY (DC) 6

AUTUMN 2011

CHLZOI	PHISICAL CHEMISTRY AND GENERAL METALLORGY (DC)	O	ьс
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BB
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	BB
CML474	PLANT UTILITY (DE)	6	CC
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD

SGPA	Credit	t	EG	Р	SGPA	CGPA	Credi	t I	EGP	C	GPA
SGFA	40		260)	6.50	CGFA	118		742	6	5.29
DE 12	DC 28	НМ	0	0	0	DE 12	DC 28	НМ	10	ОС	0
AU 0	ES 0	BS	0	Tot	tal 40	AU 0	ES 36	BS :	32	Total	118

AUTUMN 2012

	Crodit E	CD G	SCDA		Crodit	ECD		CCDA
CMP370	ENVIRONME	NTAL EN	GINEER	ING (DE)			2	BB
CMP365	FLUID MECH	IANICS &	MECHA	NICAL OPE	ERATION II	(DC)	2	AB
CMP364	CHEMICAL E	NGINEER	RING DE	SIGN & DR	RAWING I (D	C)	2	AA
CML370	ENVIRONME	NTAL EN	GINEER	ING (DE)			6	BB
CML363	CHEMICAL P	ROCESS	EQUIP	MENT DES	IGN (DC)		6	AB
CML362	HEAT TRANS	SFER I (DO	C)				6	AA
CML361	MASS TRANS	SFER - I (I	DC)				6	BB
CHL369	GREEN CHE	MISTRY 8	& ENGIN	EERING (D	DE)		6	BB

SGPA	Credi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGFA	36		312	2	8	3.67	CG	FA	1	194		137	2	7	.07
DE 14	DC 22	НМ	1 0	0	С	0	DE	32	DC	78	НМ	10	C	C	6
AU 0	ES 0	BS	0	To	tal	36	AU	0	ES	36	BS	32	To	otal	194

AUTUMN 2013

	Credit ECD SCDA Credit ECD	\neg	CCDA
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML333	POLYMER PROCESSING (DE)	6	AB
CIVID401	PROJECT PHASE I (DC)	4	AA

80	DΛ	С	redi	t	EG	Ρ	S	GPA	CG	DΛ	С	redi	t	EG	Р	CG	PA
SGPA			46		42	0	9	.13	CG	FA		282		218	8	7.	76
DE	18	DC	28	НМ	l 0	0	С	0	DE	56	DC	142	НМ	10	00)	6
AU	0	ES	0	BS	0	To	tal	46	AU	0	ES	36	BS	32	Tot	al	282

Course	Title	Cı	r Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	CC
CHP101	APPLIED CHEMISTRY (BS)	2	CC
CSL101	COMPUTER PROGRAMMING (ES)	8	CC
EEL101	ELECTRICAL ENGINEERING (ES)	6	CD
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BB
HUL102	SOCIAL SCIENCE (HM)	4	CD
MAL102	MATHEMATICS - II (BS)	8	CC
MEP101	WORKSHOP (ES)	4	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

Ι,	60	РА	С	redi	t	EG	P	SGI	PA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
Ľ	36	FA		40		24	2	6.0)5	CG	FA		78		48	2	6	.18
	ÞΕ	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
Α	νU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	ВС
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA
EEL381	INDUSTRIAL ELECTRICAL ENGG. (OC)	6	BB

80	·DA	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
36	iPA 40		40		318		7.95		5			158		106	0	6.71	
DE	6	DC	28	НМ	0	0	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SG	DA	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		39	6	9	.43	CG	PA		236		176	8	7	.49
DE	6	DC	36	НМ	I 0	0	С	0	DE	38	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	CC

80	PΑ	С	redi	it	EG	P	SGI	PA		CG	ВΛ	C	redi	t	EG	P	C	GPA
36	JFA		40		32	4	8.1	0		CG	FA		322		251	2	7	.80
DE	24	DC	10	HN	1 6	0	С	0		DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	П	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: YOGI DAMLE Enrolment No.: BT10CHE072

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : SUMIT GUPTA Enrolment No. : BT10CHE073

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course							Т	it	le						С	r	Gr
AUTUN	IN 2	010)														
AML151	E	NGIN	NEE	RING	MEC	CHAI	NICS (E	S)						6		FF
AMP151	E	NGIN	NEE	RING	MEC	CHAI	NICS L	Α	B (E	S)					2		AB
HUL101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M))						6		BC
MAL101	M	ATH	ΕM	ATICS	I (B	S)									8		CC
MEC101	E	NGIN	NEE	RING	DRA	WIN	NG (ES	;)							8		FF
PEB151	S	POR	TS	/ YOG	A/L	IBR/	ARY / I	N	CC (AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		CD
PHP101	Р	HYS	ICS	LAB (BS)										2		BB
SGPA	С	redi	t	EG	Р	S	GPA	Ī	CG	D.A.	C	redi	t	EG	Р	C	GPA
SGPA		38 154 4.05				.05		CG	PA		24		154	1	6	.42	
DE 0	DC	0	н	<i>l</i> 6	0	С	0	ĺ	DE	0	DC	0	НМ	6	С	C	0
AU 0	ES	16	В	3 16	To	tal	38		AU	0	ES	2	BS	16	To	otal	24

RE-EXAM AUTUMN 201	10
--------------------	----

AML151	ENGINEERING MECHANICS (ES)	6	DD
MEC101	ENGINEERING DRAWING (ES)	8	DD

60	PΑ	С	redi	t	EG	Р	S	GPA	CG	D A	C	redi	t	EG	P	CG	PA
36	IPA		14		56	;	4	.00	CG	PA		38		210)	5.	53
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	6	00	С	0
AU	0	ES	14	BS	0	To	tal	14	AU	0	ES	16	BS	16	Tot	tal	38

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	CC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BB
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML474	PLANT UTILITY (DE)	6	CD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD

SG	·DΛ	С	redi	it	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	JFA		40		22	4	5	.60	CG	FA	1	118		730)	6	.19
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	C	C	0
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	Т	otal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	BC
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

80	PΑ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36)FA		42		304	4	7	.24	CG	ГА	2	200		128	4	6	.42
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	10	C	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	otal	200

Course	Title	Cı	r Gr
SPRING	3 2011		
CHL101	APPLIED CHEMISTRY (BS)	6	BC
CHP101	APPLIED CHEMISTRY (BS)	2	BC
CSL101	COMPUTER PROGRAMMING (ES)	8	BB
EEL101	ELECTRICAL ENGINEERING (ES)	6	BB
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BB
HUL102	SOCIAL SCIENCE (HM)	4	CC
MAL102	MATHEMATICS - II (BS)	8	CC
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

SG	DΛ	С	redi	t	EG	Р	SGPA	CG	DΛ	С	redi	t	EG	P	C	GPA
36	IFA		40		29	6	7.40	CG	FA		78		50	6	6	.49
DE	0	DC	0	НМ	4	0	C 0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	tal 40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	ВС
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credit		EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGFA	40		250)	6.25	CG	FA		158		98	0	6	.20
DE 12	DC 28 F	HM	0	00	C 0	DE	24	DC	56	НМ	10	0	С	0
AU 0	ES 0 E	BS	0	Tot	tal 40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60		С	redi	t	EG	Р	SC	SPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	PA		42		34	0	8	.10	CG	PA		242		162	4	6	.71
DE	6	DC	36	НМ	0	0	С	0	DE	50	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

• • • • • • •			
CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	BB
CML472	(DE) ADVANCED SEPARATION PROCESS (DE)	6	вс
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BC
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

80	·DA	С	redi	it	EG	P	S	GPA	CG	ВΛ		credi	it	EG	P	CC	SPA
SGPA			40		32	8	8	3.20	CG	FA		322		229	92	7	.12
DE	30	DC	10	HN	1 0	0	С	0	DE	86	DC	152	НМ	16	00	С	0
ΑU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	Tot	tal	322

GRADE CARD

Name : SUMIT GUPTA Enrolment No. : BT10CHE073

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course					Т	itle				Cr	Gr	(Course	Course Title	Course Title Cr
AUTUN	IN 201	3													
CMD401	PRO	JECT	PHAS	SE I (I	DC)					4	BB				
CML374	PETI	OLI	JM RE	FINE	RY ENGI	NEERING	(DE)			6	AB				
CML461	TRAI	ISPC	RT P	HENC	OMENA (E	OC)				6	BB				
CML462	CHE	ИΙСΑ	L REA	CTIC	N ENGIN	EERING II	(DC)			6	AB				
CML463	PRO	CESS	CON	TRO	L & INSTE	RUMENTA	TION (DC)		6	BB				
CMP462	CHE	ИΙСА	L REA	CTIC	N ENGIN	EERING -	II (DC)			2	AB				
CMP463	PRO	CESS	CON	TRO	L & INSTF	RUMENTA	TION (DC)		2	AB				
CMP464	CHE	ИΙСΑ	L ENG	SINE	RING DE	SIGN & DI	RAWING	II (DO	C)	2	AA				
HUL409	PSY	CHOL	OGY	& ED	(HM)					6	BB				
CODA	Cred	lit	EG	P	SGPA	CODA	Credi	t	EGP	•	CGPA	1	1		
SGPA	40		340)	8.50	CGPA	282		1964	1	6.96	1			
DE 6	DC 28	HN	1 6	OC	0	DE 56	DC 142	НМ	16	00	0				
AU 0	ES 0	BS	0	Tota	al 40	AU 0	ES 36	BS	32	Tot	al 282				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: SUPRIYA AGRAWAL Enrolment No. : BT10CHE074 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course					Т	it	le						С	r	Gr
AUTUN	IN 2010)													
AML151	ENGI	NEERII	NG M	ECHA	NICS (E	S)						6		BB
AMP151	ENGI	NEERII	NG M	ECHA	NICS L	Α.	B (E	S)					2		AB
HUL101	COM	JUNIC	IOITA	N SKIL	LS (HI	M))						6		BC
MAL101	MATH														BB
MEC101	ENGI	ENGINEERING DRAWING (ES) 8 BB													
PEB151	SPOR	TS/Y	OGA .	/ LIBR	ARY / I	N	CC (AU)					0		SS
PHL101	PHYS	ICS (B	S)										6		CC
PHP101	PHYS	ICS LA	AB (BS	3)									2		BC
SGPA	Cred	it	EGP	S	GPA		CG	D A	C	redi	t	EG	Р	C	GPA
JGPA	38		286	7	7.53		CG	FA		38		286	6	7	.53
DE 0	DC 0	НМ	6	ОС	0		DE	0	DC	0	HM	l 6	С	C	0
AU 0	FS 16	BS 1	16	Total	38	П	AU	0	FS	16	BS	16	To	ntal	38

cc	D A								CC	$\mathbf{D} \mathbf{\Lambda}$								
36	PA		38		28	6	7	7.53	CG	FA		38		280	6	7.	53	
DE	0	DC	0	ΗN	16	0	С	0	DE	0	DC	0	НМ	6	00	2	0	
AU	0	ES	16	BS	16	То	tal	38	AU	0	ES	16	BS	16	Tot	al	38	

AUTUMN 2011 DUVEICAL CHEMISTRY AND CENERAL METALLURCY (DC) 6

	Crodit	EGD	SCDV		Crodit	ECD	T	CGBA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	CC
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AB
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	DD
CHP263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	BC
CHL263	ORGANIC	CHEMIST	TRY AND S	YNTHESIS	(DC)		6	BC
CHLZOI	FILISION	L CHEIVIIS	INTAIND	JENERALI	VIE I ALLUK	G 1 (DC)	O	ь

86	ВΛ	С	redi	t	EG	Р	S	GPA	_	<u> </u>	PA	С	redi	t	EG	Р	C	GPA
SGPA		40		25	6	6	.40	C	اق	FA	1	118		854	4	7	.24	
DE	12	DC	28	НМ	0	0	С	0	D	E	12	DC	28	НМ	10	О	C	0
AU	0	ES	0	BS	0	То	tal	40	Α	J	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	AB
CML361	MASS TRANSFER - I (DC)	6	BB
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BC

SG	DΛ	С	redi	t	EG	Р	S	GPA	_	۰.	PA	С	redi	t	EG	Р	Ö	GPA
36	IFA		42		35	0	8	.33	C	J	FA	:	200		152	0	7	.60
DE	20	DC	22	НМ	0	0	С	0	DI	Ε	38	DC	78	НМ	10	C	С	6
AU	0	ES	0	BS	0	To	tal	42	Αl	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	BB
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	BB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB

80	PA	С	redi	it		EG	Р	S	GPA		CG	DΛ	С	redi	t	EG	Р	CC	GPA
36	IFA		40			340	0	8	3.50		CG	FA		282		222	4	7	.89
DE	12	DC	28	HN	1	0	0	С	0	Г	DE	50	DC	142	НМ	16	0	С	6
AU	0	ES	0	BS	3	0	To	tal	40		ΑU	0	ES	36	BS	32	То	tal	282

Course			Ti	tle		Cı	r Gr
SPRING	2011						
CHL101	APPLIED	CHEMIST	RY (BS)			6	ВС
CHP101	APPLIED	CHEMIST	RY (BS)			2	BC
CSL101	COMPUT	ER PROGE	RAMMING	(ES)		8	ВС
EEL101	ELECTRIC	CAL ENGIN	NEERING	(ES)		6	AB
EEP101	ELECTRIC	CAL ENGIN	NEERING L	AB (ES)		2	AB
HUL102	SOCIAL S	CIENCE	(HM)			4	BB
MAL102	MATHEM	ATICS - II	(BS)			8	ВС
MEP101	WORKSH	OP (ES)				4	AA
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS
	Cuadit	FOR	CODA		Cuadit	ECD	CCDA

_		PA	С	redi	t	EG	Р	SGPA		CG	D۸	С	redi	t	EG	Р	Ö	GPA
3	G	ГА		40		312	2	7.80		CG	FA		78		59	8	7	7.67
DE	E	0	DC	0	НМ	4	00	0	Τ	DE	0	DC	0	НМ	10	0	С	0
Αl	J	0	ES	20	BS	16	Tot	al 40	1	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AΑ
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BC
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	DΛ	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA		40		31	6	7	.90	CG	FA		158		117	Õ	7	.41	
DE	6	DC	28	НМ	0	0	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BB
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AB

60	DA	С	Credit		EGP		SGPA		-	DΛ	Credit			EG	Р	CGPA	
SGPA			42		364		8.67		CGPA			242		1884		7.79	
DE	0	DC	36	НМ	l 6	0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452 PROJECT PHASE-II (DC)	8	BB
CMD453 SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471 BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	ВВ
CML472 ADVANCED SEPARATION PROCESS (DE)	6	ВВ
CML475 NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	ВВ
CML491 PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
MML420 RURAL TECHNOLOGY (OC)	6	AB

Ī	80	3PA	Credit			EGP			SGPA			CC	DΛ	Credit			EG	Р	CGPA		
	36	IFA		40		334		8.35		CGPA			322			2558		7.94			
Ī	DE	24	DC	10	НΝ	Λ	0	0	С	6		DE	74	DC	152	НМ	16	0	С	12	
Ī	AU	0	ES	0	BS	3	0	Tot	tal	40		AU	0	ES	36	BS	32	То	tal	322	

GRADE CARD

Name : SUPRIYA AGRAWAL Enrolment No. : BT10CHE074

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

SPRING 2011

: SWAPNIL ITANKAR Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE075

AML151 ENGINEERING MECHANICS (ES)

AMP151 ENGINEERING MECHANICS (ES)

HUL101 COMMUNICATION SKILL (HM)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

Gr

FF

CC

вс

Course						Т	itle							С	r	Gr
AUTUN	IN 2010)														
CHL101	CHEM	IIST	RY (B	S)										6	i	CC
CHP101	CHEM	IIST	RY LA	В (В	S)									2		BC
CSL101	COMP	UT	ER PR	OGF	RAM	MING	(ES	5)						8	3	CC
EEL101	ELEC ⁻	TRI	CAL E	NGIN	NEE	RING (ES))						6	i	FF
EEP101	ELEC	(,										CD				
HUL102	SOCIA	AL S	CIEN	CE (H	HM)									4		BB
MAL101	MATH	EM.	ATICS	I (B	S)									8	;	CD
MEP101	WORK	(SH	IOP (E	S)										4		AB
PEB151	SPOR	TS.	/ YOG	A/L	IBR/	ARY/I	NCC) (<i>A</i>	AU)					0)	SS
SGPA	Credi	t	EG	Р	S	GPA		~ [. .	C	redi	t	EG	Р	C	GPA
SGPA	40 216 5.40 CGPA 34 21										210	6	6	.35		
DE 0	DC 0	HN	Л 4	0	С	0	D	Ε	0	DC	0	НМ	l 4		С	0
AU 0	ES 20	BS	3 16	To	tal	40	Α	U	0	ES	14	BS	16	Т	otal	34

RF	-FY	ΔМ	ΔIITI	IMN	2010	

EEL101	ELECTRICAL ENGINEERING (ES)

EEL	101	El	LEC.	TRIC	AL E	NGIN	NEE	RING (ES)						6		FF
SG	·D A	С	redi	it	EG	Р	S	GPA	CGI	D A	С	redi	t	EG	Р	CC	SPA
36	IPA		6		0		0	.00	CGI	A		34		216	6	6.	.35
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	4	О	С	0
AU	0	ES	6	BS	0	To	tal	6	AU	0	ES	14	BS	16	To	tal	34

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CD
CML474	PLANT UTILITY (DE)	6	DD
MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	DD

	SG	DΛ	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
	36	IFA		40		18	8	4	.70	CG	FA		110		616	6	5	.60
Ì	DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	C	С	0
	AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	24	Т	otal	110

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CD
CML361	MASS TRANSFER - I (DC)	6	DD
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB

80	PΑ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36)FA		42		288	В	6	.86	CG	ГА	•	194		116	4	6	.00
DE	20	DC	22	НМ	0	0	С	0	DE	38	DC	78	НМ	10	C	С	0
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	194

MAL102	MA	ATH	EMA	TICS	- II	(BS)							8		FF
MEC101	EN	IGIN	EER	ING	DRA	WIN	IG (ES	S)						8		DD
PEB151	SP	OR	TS/	YOG	4/ LII	BRA	RY/ NO	CC (AU)					0		SS
PHL101	PH	IYSI	CS	(BS)										6		FF
PHP101	PH	IYSI	CS	(BS)										2		CC
SCBA	Cr	redi	t	EG	Р	S	GPA	CC	ВΛ	С	redi	t	EG	Р	C	GPA
SGPA		redi 38	t	EG 98	_	-	GPA 2.58	CG	PA	<u> </u>	redi 52	t	EG		_	GPA .04
SGPA	<u> </u>		t HM		_	2		CG	PA	<u> </u>		t HM	_	4	_	
	DC :	38		98		2	2.58				52		31	4	6	.04

RE-EXAM SPRING 2011

AML151	ENGINEERING MECHANICS (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF
PHL101	PHYSICS (BS)	6	DD

60	· D A	С	redi	it	EG	Р	SGPA	-	DΛ	С	redi	it	EG	Р	CGF	Α
SGPA			20		24		1.20	CGPA			58		338		5.8	3
DE	0	DC	0	НМ	0	OC	0	DE	0	DC	0	НМ	10	00)	0
ΑU	0	ES	6	BS	14	Tota	al 20	AU	0	ES	24	BS	24	Tot	al 5	58

SUMMER TERM SPRING 2011

EEL101	ELECTRICAL ENGINEERING	(ES)	6	ВС
		··	_	
AML151	ENGINEERING MECHANICS	(ES)	6	BB

SG	. Д.	С	redi	t	EG	Р	S	GPA	CG	D۸	С	redi	it	EG	Р	CC	SPA
36	IPA		12		90	•	7	'.50	CG	PA		70		42	8	6	.11
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	12	BS	0	To	tal	12	AU	0	ES	36	BS	24	To	tal	70

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	вс
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB
MAL102	MATHEMATICS - II (BS)	8	CC

SG	·DA	С	redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	IFA		42		26	0	6.	19	C	FA		152		87	6	5	.76
DE	6	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	0
AU	0	ES	0	BS	8	То	tal	42	AU	0	ES	36	BS	32	То	tal	152

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AA
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	PA	C	redi	it	E	€P	S	GPA	_ ا	٠.	РА	C	redi	t	EG	Р	C	GPA
36	IFA		42		38	32	,	9.10	_	,G	FA		236		154	6	6	5.55
DE	6	DC	36	HN	1 0	0	С	0	D	E	44	DC	114	НМ	10	0	С	0
AU	0	ES	0	BS	0	To	tal	42	Α	U	0	ES	36	BS	32	То	tal	236

GRADE CARD

: SWAPNIL ITANKAR Enrolment No. : BT10CHE075 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course					Т	itle				Cr	Gr	(Course					Т	itle				
AUTUM	IN 2013	3											SPRING	2014									
CEL417	DISAS	TEF	R MAN	IAGEM	ENT (O	C)				6	BB		CMD452	PROJ	ECT	PHAS	SE-II	(DC)					
CMD401	PROJ	ECT	PHAS	SE I (D	C)					4	AA		CMD453	SEMIN	NAR.	AND	GROL	IP DISCL	JSSIC	ON PF	ROGRAM	1 (D	C)
CML333	POLY	MEF	RPRO	CESSI	NG (DE)				6	BB		CML471	BIOTE	CHN	IOLO	GY AN	ND BIOCI	НЕМІ	CAL	ENGINE	ERIN	IG
CML374	PETR	OLIL	JM RE	FINER	Y ENGI	NEERING	(DE)			6	AB		0141.475	(DE)		DEN.	-14/45				UEEDINI	· /-	_\
CML461	TRAN	SPC	RT P	HENO	ΛΕΝΑ (Ε	OC)				6	AB		CML475					LE ENEF				L) ز)E)
CML462	CHEM	ICA	L REA	ACTION	I ENGIN	IEERING II	(DC)			6	BC		CML479					P DEVEL			` '		
CML463	PROC	ESS	CON	ITROL	& INSTE	RUMENTA	TION (DC)		6	BB		CML491					AND MA			NI (DE)	
CMP462	CHEM	ICA	L REA	ACTION	I ENGIN	IEERING -I	I (DC)			2	AA		HUL401	PSYC	HOL	JGY	& MAI	NAGEME	ΝI	(HM)			
CMP463	PROC	ESS	CON	ITROL	& INSTE	RUMENTAT	TION (DC)		2	BB		SGPA	Cred	it	EG	P	SGPA	~	SPA	Cred	lit	E
CMP464	CHEM	ICA	L ENC	SINEEF	RING DE	SIGN & DF	RAWING	II (DC	()	2	AB		SGFA	40		36	4	9.10	CC)FA	322		22
SGPA	Credi	t	EG	P S	SGPA	CGPA	Credi	t	EGP		CGPA		DE 24	DC 10	НМ	6	OC	0	DE	80	DC 152	HN	1 16
SGPA	46		388	В	8.43	CGPA	282		1934		6.86		AU 0	ES 0	BS	0	Tota	ıl 40	AU	0	ES 36	BS	32
DE 12	DC 28	HM	I 0	OC	6	DE 56	DC 142	НМ	10	00	6												
AU 0	ES 0	BS	0	Total	46	AU 0	ES 36	BS	32	Tot	al 282												

		(D	E)														
CML47	5	NE	EW A	ND	RENI	EWA	BLE	ENER	GY E	NGI	NEE	RING	(D	E)	6		AA
CML47	9	E١	NTRE	PR	ENEL	JRSH	IIP [DEVEL	OPM	ENT	(DE)			6		AB
CML49	1	PF	ROJE	СТ	PLAN	MIN	G AI	ND MA	NAGI	EME	NΤ	(DE)			6		AA
HUL40	1	PS	SYCH	HOL	OGY	& MA	NΑ	GEME	NT (HM)					6		AB
SGP	^	С	redi	t	EG	Р	S	GPA	-	РА	С	redi	it	EG	Р	С	GPA
SGP	Α.		40		36	4	9	.10	CG	PA		322		229	8	7	7.14
DE 24	4	DC	10	HM	1 6	0	С	0	DE	80	DC	152	НМ	16	0	С	6
AU 0		ES 0 BS 0 Total 4							AU	0	ES	36	BS	32	То	tal	322

Cr

8

2

6

Gr

ВВ

ΑB

AB

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : T VENKATA NAGARJUNA Enrolment No. : BT10CHE076

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	TRY (BS)				6	AB
CHP101	CHEMIST	TRY LAB (E	3S)			2	AB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB
EEL101	ELECTRI	CAL ENGII	NEERING (ES)		6	BB
EEP101	ELECTRI	CAL ENGII	NEERING I	_AB (ES)		2	AA
HUL102	SOCIAL S	SCIENCE (HM)			4	AB
MAL101	MATHEM	IATICS I (B	S)			8	AA
MEP101	WORKSH	IOP (ES)				4	AA
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA
SGPA	40	000	0.00	CGPA	40	000	

80	PΑ	С	redi	it	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	CC	SPA
36	JFA		40		368	8	9.	20	CG	FA		40		368	3	9	.20
DE	0	1 1		0	С	0	DE	0	DC	0	НМ	4	С	C	0		
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

		Credit	EGP	SGPA		Credit	FGP		CGPA
MAL2	205	NUMERIO	CAL METH	DDS AND I	PROBABILI	TY THEOR	Y (DE)	6	ВС
CML4	474	PLANT U	TILITY (DE)				6	BC
CML2	262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML2	261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	BC
CHP2	263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	AB
CHP2	261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	AA
CHL2	263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	AB
CHL2	261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	ВВ

80	·DΛ	С	redi	t	EG	Р	S	GPA	~	-1	PA	С	redi	t	EG	Р	C	GPA
36	SGPA		40		320	6	8	.15	C	71	- A	•	118		102	0	8	.64
DE	12	DC	DC 28 HM 0 0		0	С	0	DE	=	12	DC	28	НМ	10	С	C	0	
AU	0	ES	0	BS	0	То	tal	40	Αl	J	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

CML361	MASS TRANSFER - I (DC)	6	AA
CML362	HEAT TRANSFER I (DC)	6	AA
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AB
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AA
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA
HUL406	LABOUR ECONOMICS & INDUSTRIAL RELATIONS (HM)	6	BB
		- 1	

SG	·D 4	С	redi	it	EG	Р	S	GPA	~	,	PA	С	redi	t	EG	Р	C	GPA
36	iPA		42		39	6	9	9.43	C	71	PA	2	200		178	6	8	.93
DE	14	DC	22	НМ	6	0	С	0	DE		38	DC	78	НМ	16		C	0
AU	0	ES	0	BS	0	То	tal	42	Αl	J	0	ES	36	BS	32	To	otal	200

AUTUMN 2013 CMD401 PROJECT PHASE I (DC)

	0 111 500 0004 0 111 50		
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AA
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AA
CML480	CFD FOR CHEMICAL ENGINEERS (DE)	6	AA
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	AA
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

80	PΑ	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	t	EG	P	CGPA
36	JFA		46		44	4	9	.65	CG	FA		288		262	0	9.10
DE	18	DC	28	НМ	I 0	0	С	0	DE	62	DC	142	НМ	16	ОС	0
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	Tota	al 288

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	BB
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	AB
MAL102	MATHEMATICS - II (BS)	8	AB
MEC101	ENGINEERING DRAWING (ES)	8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	AB
PHP101	PHYSICS (BS)	2	BB

SG	DA	C	redi	t	EG	Р	SGPA	CG	D 4	C	redi	t	EG	P	C	GPA	
36	FA		38		32	6	8.58	C	FA		78		694	4	8	.90	l
DE	0	DC	0	НМ	6	OC	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tota	al 38	AU	0	ES	36	BS	32	To	tal	78	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AB
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AA
CML263	FLUID MECHANICS (DC)	6	AB
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AB
CML621	NANO TECHNOLOGY (DE)	6	AB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

SGPA	Credit		EG	Р	SGPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA	40		370	0	9.25	CG	PA		158		139	0	8	.80
DE 12	DC 28	НМ	0	0	C 0	DE	24	DC	56	НМ	10	0	С	0
AU 0	ES 0	BS	0	To	tal 40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	AB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

SGPA DE 6 AU 0	С	redi	t	E	G	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	С	GPA	
36	FA		42		3	390	0	9	.29	CG	FA		242		217	6	8	3.99
DE	6	DC	36	ΗN	1 ()	0	С	0	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	; ((To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	BB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
MML420	RURAL TECHNOLOGY (OC)	6	BB

	PΑ	С	redi	t	EG	P	S	GPA	Ī	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	IPA		34		29	8	8	3.76		CG	PA		322		291	8	9	.06
DE	18	DC	10	HN	1 0	0	С	6		DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	3 0	То	tal	34		ΑU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : T VENKATA NAGARJUNA Enrolment No. : BT10CHE076

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

Name : THOOL NEHA BHASKAR

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE077

Degree : BACHELOR OF TECHNOLOGY

Title

Cr

Gr

Course							Т	it	le						С	r	Gr
AUTUN	/N 20	10															
CHL101	CHI	ЕМІ	STF	RY (B	S)										6	i	CD
CHP101	CHI	ЕМІ	STF	RY LA	В (В	S)									2		CD
CSL101	CO	MΡ	UTE	R PR	OGF	RAM	IMING	(E	ES)						8		DD
EEL101	ELE	ECT	RIC	AL E	NGIN	NEE	RING (Ε	S)						6	i	DD
EEP101 ELECTRICAL ENGINEERING LAB (ES) 2 BB																	
HUL102	SO	CIA	L S	CIEN	CE (H	HM)									4		AB
MAL101	MA	THE	EΜΑ	TICS	I (B	S)									8		DD
MEP101	WO	RK	SHO	OP (E	S)										4		AA
PEB151	SPO	ORT	rs/	YOG	A/L	IBR/	ARY/1	N(CC (AU)					0		SS
SGPA	Cre	edit	t	EG	Р	S	GPA		CG	DΛ	С	redi	t	EGI	Р	Ö	GPA
SGFA		0		220	0	5	.50		CG	FA		40		220)	5	5.50
DE 0	DC (0	НМ	4	0	С	0		DE	0	DC	0	HM	l 4	0	С	0
AU 0	ES 2	20	BS	16	To	tal	40		ΑU	0	ES	20	BS	16	Тс	otal	40
AUTUN			O 4 I	OUE	MIC	TDV	, AND (^ i		D 4.1			IDO	V (DC	3\ C		DD.

MAL205	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	FF
CML474	PLANT UTILITY (DE)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD

80	DΛ	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	P	CC	SPA
36	SGPA	40			18	0	4.50		CG	ГА	•	112		600)	5	.36
DE	12	DC	28	НМ	0	0	С	0	DE	6	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	То	tal	40	AU	AU 0		ES 36 B		32	Tot	tal	112

RE-EXAM AUTUMN 2011

MAL205	NUMERIO	CAL METH	ODS AND	PROBABIL	ITY THEOR	Y (DE)	6	CD

60	- D A	С	redi	it	EG	Р	SGPA	CG	D 4	С	redi	t	EG	Р	C	3PA
SGPA			6		30		5.00	CG	PA	1	118		630)	5	.34
DE	6	DC	0	НМ	0	00	0	DE	12	DC	28	НМ	10	0	С	0
AU	0	ES	0	BS	0	Tota	al 6	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	BB
CML361	MASS TRANSFER - I (DC)	6	ВС
CML362	HEAT TRANSFER I (DC)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

se	• D A	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	P	C	GPA
30	JFA		42		29	6	7	7.05	C	FA	2	200		119	4	5	.97
DE	20	DC	22	НМ	0	0	С	0	DE	44	DC	78	НМ	/ 10		С	0
AU	0	ES	0	BS	0	Total		42	AU	0	ES 36 B		BS	32	To	tal	200

 Jourse			I.	itie		Ci	Gi
SPRING	2011						
AML151	ENGINEE	RING MEC	CHANICS	(ES)		6	DD
AMP151	ENGINEE	RING MEC	CHANICS	(ES)		2	AB
HUL101	COMMUN	IICATION S	SKILL (HM	1)		6	BC
MAL102	MATHEM	ATICS - II	(BS)			8	FF
MEC101	ENGINEE	RING DRA	WING (E	S)		8	CC
PEB151	SPORTS	/ YOGA/ LI	BRARY/ N	CC (AU)		0	SS
PHL101	PHYSICS	(BS)				6	FF
PHP101	PHYSICS	(BS)				2	CC
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA				CGPA			

SG	ВΛ	С	redi	t	EG	P	S	GPA	CG	ВΛ	С	redi	it	EG	P	C	GPA	
36	IFA		38		14	4	3	.79	C	FA		64		364	4	5	.69	I
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0	Ī
AU	0	ES	16	BS	16	Tot	tal	38	AU	0	ES	36	BS	18	То	tal	64	

RE-EXAM SPRING 2011

MAL102	MATHEMATICS - II (BS)	8	DD
PHL101	PHYSICS (BS)	6	DD

SG	D A	С	redi	t	EG	Р	SG	PΑ	CG	DΛ	С	redi	t	EG	Р	C	SPA
36	PA	14			56	;	4.	.00	CG	PA		78		42	0	5	.38
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	10	00	С	0
AU	0	ES	0	BS	14	To	tal	14	AU	0	ES	36	BS	32	Tot	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	BB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CML621	NANO TECHNOLOGY (DE)	6	ВС
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	ВВ

6/	• D A	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
30	SGPA		40		26	В	6.70		CG	FA		158		89	В	5	5.68
DE	12	DC	28	НМ	0	0	С	0	DE	24	DC	56	НМ	10	0	С	0
ΑU	0	ES	0	BS	0	Total		40	AU	0	ES 36 BS		BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA
HUL407	INDIA STUDIES (HM)		6	AB

SG	- D Λ	C	red	it		EG	Р	S	GPA		CG	PA	C	redi	t	EG	Р	Ċ	GPA
36			42			310	6		7.52		CG	FA		242		151	0	6	.24
DE	0	DC	36	HN	Л	6	0	С	0	I	DE	44	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	3	0	То	tal	42		ΑŪ	0	ES	36	BS	32	То	tal	242
		•		•						-			_						

DE 12 DC

VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY NAGPUR

GRADE CARD

Name : THOOL NEHA BHASKAR Enrolment No. : BT10CHE077

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course

AA AA
AA
0.0
CD
CC
CC
BC
AB
AB
AB

)	HEM	HEMICAL ENGINEERING DESIGN & DRAWING II (DC) 2 AB														
;	redit		E	EG	Р	S	GPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
	40		298			7	.45	CG	PA	:	282		180	8	6	.41
	28	НМ	l C)	0	C 0		DE	56	DC	142	НМ	16	O	С	0
	0	BS	3 0 Tota		tal	40	AU	0	ES	36	BS	32	To	otal	282	

SPRING	2014												
CMD452	PROJECT	PHASE-II	(DC)				8	BB					
CMD453	SEMINAR	AND GRO	UP DISCU	SSION PR	OGRAM (E	OC)	2	AB					
CML471	BIOTECH (DE)	NOLOGY A	AND BIOCH	HEMICAL E	NGINEERIN	IG .	6	CC					
CML472	ÀDVANCE	ED SEPAR	ATION PRO	OCESS (E	DE)		6	CC					
CML475	NEW AND	NEW AND RENEWABLE ENERGY ENGINEERING (DE)											
CML491	PROJECT	PLANNIN	G AND MA	NAGEMEN	IT (DE)	(6	BB					
EEL416	RENEWA		6	BB									
SCDA	Credit	EGP		CGPA									
SGPA	40	298	2106	Т	6 54								

Title

Cr

Gr

60	. П А	С	redi	t	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	C	GPA
SGPA		40		29	В	7.45		CG	ГА		322		210	6	6	.54	
DE	24	DC	10	НМ	0	0	C 6	ľ	DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal 40	1	AU	0	ES	36	BS	32	То	tal	322

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course (This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

AMP151

HUL101

SPRING 2011

: UPADHYE NIRANJAN SUNILRAO Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE078

ENGINEERING MECHANICS (ES)

COMMUNICATION SKILL (HM)

AML151 ENGINEERING MECHANICS (ES)

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

6

Gr

ВВ

AB

вс

Course			Т	itle		С	r Gr							
AUTUM	N 2010													
CHL101	CHEMIST	RY (BS)				6	CD							
CHP101	CHEMIST	RY LAB (E	3S)			2	CC							
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AB							
EEL101	ELECTRI	ELECTRICAL ENGINEERING (ES) 6 ELECTRICAL ENGINEERING LAB (ES) 2												
EEP101	ELECTRI	ELECTRICAL ENGINEERING LAB (ES)												
HUL102	SOCIAL S	SCIENCE (HM)			4	AB							
MAL101	MATHEM	ATICS I (E	BS)			8	AB							
MEP101	WORKSH	IOP (ES)	4	AA										
PEB151	SPORTS / YOGA / LIBRARY / NCC (AU) 0 S													
SCDA	Credit	EGP	SGPA	CCDA	Credit	EGP	CGPA							
SGPA	40	316	7.90	CGPA	40	316	7.90							

80	·DΛ	С	redi	t	EG	Р	S	GPA		CGF	- Λ	C	redi	t	EG	Р	CC	3PA
36	SGPA		40		310	6	7	.90	١	JGF	A		40		316	õ	7	.90
DE	0	DC	0	НМ	4	0	С	0		DE	0	DC 0 HN		НМ	4	С	С	0
AU	0	ES	20	BS	16	To	tal	40	Α	٩U	0	ES	20	BS	16	To	otal	40

AUTUMN 2011

		$\neg \vdash$	
MAL20	NUMERICAL METHODS AND PROBABILITY THEORY (DE)	6	CD
CML47	4 PLANT UTILITY (DE)	6	CC
CML26	2 CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML26	1 INORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHP26	3 ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	ВС
CHP26	1 PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BC
CHL26	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	BC
CHL26	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	ь	CD

80	·DΛ	С	redi	t	EG	Р	SC	3PA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		23	2	5	.80	CG	FA		118		812	2	6	.88
DE	12	DC	28	НМ	0	0	С	0	DE	12	DC	28	НМ	10	С	C	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	otal	118

AUTUMN 2012

С	EL417	DISASTER MANAGEMENT (OC)	6	BB
С	ML361	MASS TRANSFER - I (DC)	6	CC
С	ML362	HEAT TRANSFER I (DC)	6	BC
С	ML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BC
С	ML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
С	ML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
С	MP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
С	MP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
С	MP370	ENVIRONMENTAL ENGINEERING (DE)	2	AA

60	·D 4	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	CC	GPA
SGPA			42		30	4	7	.24	CG	PA	2	200		142	0	7	.10
DE	14	DC	22	НМ	1 0	0	С	6	DE	32	DC	78	НМ	10	С	С	12
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
	PROCESS CONTROL & INSTRUMENTATION (DC)	_	
CMP463	` '	2	BB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
CML620	MEMBRANE TECHNOLOGY (DE)	6	BC
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	CC
CML461	TRANSPORT PHENOMENA (DC)	6	CC
CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AB
CML333	POLYMER PROCESSING (DE)	6	BC
CMD401	PROJECT PHASE I (DC)	4	BB

80	SGPA	С	redi	t	EG	P	S	GPA	CG	DΛ	С	redi	t	EG	P	CC	GPA
36			46		34	2	7	'.43	CG	FA		288		207	8	7	.22
DE	18	DC	28	НМ	0	0	С	0	DE	56	DC	142	НМ	10	С	С	12
AU	0	ES	0	BS	0	То	otal 46		AU	0	ES	36	BS	32	To	tal	288

MAL102	-	MATH	EM/	ATICS	- II	(BS	5)							8		CC	
MEC10	1	ENGIN	IEE	RING	DRA	WIN.	IG (ES	S)						8		BB	
PEB151		SPOR	TS/	YOG	A/ LII	BRA	RY/ NO	CC (AU)					0		SS	
PHL101		PHYS	ICS	(BS)										6		CD	
PHP101		PHYS	HYSICS (BS) 2														
SCD	SGPA Credit EGP SGPA								CGPA Credi			t	EG	Р	C	GPA	
SGF	`	38		26	4	6	6.95	CG	FA		78		58	0	7	.44	
DE 0	Do	0 0	ΙHΝ	1 6	0	С	0	DE 0		DC	0	НМ	10	0	С	0	

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BB
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	BB
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	BC
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

80	·DA	С	redi	t	EG	Р	SG	PA	CG	ВΛ	С	redi	it	EG	Р	C	GPA
36	SGPA		40		304	4	7.	60	CG	PA		158		111	6	7	.06
DE	6	DC	28	НМ	0	00	С	6	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	Tot	tal	40	AU	0	ES	36	BS	32	То	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	Е	GF	P	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
		42		3	16	;	7	.52	CG	FA		242		173	6	7	'.17	
DE	6	DC	36	ΗN	1 0		0	С	0	DE	38	DC	114	НМ	10	0	С	12
AU	0	ES	0	BS	0		Total		tal 42		0	ES	36	BS	32	То	tal	242

SPRING 2014

HUL401	PSYCHOLOGY & MANAGEMENT (HM)	6	BB
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	ВС
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CMD452	PROJECT PHASE-II (DC)	8	AA

80	SGPA	С	Credit 34		EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
30					30	4	8	3.94	CG	PA		322		238	32	7	.40
DE	18	DC	10	НМ	6	0	С	0	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0	То	tal	34	AU	0	ES	36	BS	32	To	tal	322

12470 Page 1 of 2

GRADE CARD

Name : UPADHYE NIRANJAN SUNILRAO Enrolment No. : BT10CHE078

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name: V RAVI KUMAR

Enrolment No. : BT10CHE079

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course		Title Cr Gr															
AUTUM	IN 2	010)														
AML151	E	NGIN	NEE	RING	MEC	CHA	NICS (ES	5)						6		CD
AMP151	E	NGIN	NEE	RING	MEC	CHA	NICS L	.AB	3 (E	S)					2		AB
HUL101	С	OMN	1UN	IICATI	ON S	SKIL	LS (HI	M)							6		BC
MAL101	M	ATH	EM.	ATICS	I (B	S)									8		BB
MEC101	E	NGIN	NEE	RING	DRA	WIN	NG (ES	(8		CD
PEB151	S	POR	TS.	/ YOG	A/L	IBR.	ARY/I	NC	C (AU)					0		SS
PHL101	Р	HYS	ICS	(BS)											6		FF
PHP101	Р	HYS	ICS	LAB (BS)										2		CD
SGPA	С	redi	t	EG	Р	S	GPA	_	CGI	D A	C	redi	t	EG	Р	C	GPA
SGPA		38		20	4	5	.37		JGI	A		32		204	1	6	.38
DE 0	DC	0	HN	16	0	С	0		DE	0	DC	0	НМ	6	С	С	0
AU 0	ES	16	BS	16	То	tal	38	1	AU	0	ES	16	BS	10	To	otal	32

RE-EXAM AUTUMN 2	'U10
------------------	------

PHL	101	Pł	HYS	ICS	(BS)										6		DD
60	. П Л	С	redi	t	EG	Р	SG	PA	CG	D A	C	redi	t	EG	Р	CG	PA
36	SGPA		6		24		4.	.00	G	PA		38		228	3	6.	00
DE	0	DC	0	НМ	I 0	0	С	0	DE	0	DC	0	НМ	6	00	С	0
AU	0	ES	0	BS	6	To	tal	6	AU	0	ES	16	BS	16	Tot	tal	38

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLUR	GY (DC) 6	CD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CC
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	BB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	CC
CML474	PLANT UTILITY (DE)	6	CD
MEL403	OPERATION RESEARCH (OC)	6	BB
		1 1	

80	· D A	C	redi	t	EG	P	S	SGPA		РА	С	redi	t	EG	Р	CGPA	
SGPA			40		244		6.10		CG	ГА		118		752		6.37	
DE	6	DC	28	НМ	1 0	0	С	6	DE	6	DC	28	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BC
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CD
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB

60	D A	С	redi	t	EGP		SGPA			CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA			42		276		6	6.57		CG	PA	2	200		124	8	6	6.24
DE	20	DC	22	НМ	0	0	С	0		DE	38	DC	78	НМ	10	C	C	6
AU	0	ES	0	BS	0	То	tal	42		AU	0	ES	36	BS	32	To	otal	200

Course	Title		Cr	Gr									
SPRING	2011												
CHL101	APPLIED CHEMISTRY (BS)		6	DD									
CHP101	APPLIED CHEMISTRY (BS)		2	BB									
CSL101	COMPUTER PROGRAMMING (ES)	,											
EEL101	ELECTRICAL ENGINEERING (ES)	6	ВС										
EEP101	ELECTRICAL ENGINEERING LAB (ES)		2	ВС									
HUL102	SOCIAL SCIENCE (HM)		4	AA									
MAL102	MATHEMATICS - II (BS)		8	CC									
MEP101	WORKSHOP (ES)	4	AA										
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)		0	SS									
	O III FOR OORA	O== 414	FOR	CODA									

6	- D A	С	redi	t	EGP		SGPA		CG	D۸	С	redi	t	EG	Р	P CGF	
SGPA			40		28	0 7.00			COLA			78			В	6.51	
DE	0	DC	0	НМ	4	Ŏ	C 0	Ι	DE	0	DC	0	НМ	10	0	С	0
AU	0	ES	20	BS	16	Tot	tal 40	1	ΑU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CC
CHL336	POLYMER ENGINEERING (DE)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	ВС
CML263	FLUID MECHANICS (DC)	6	CC
CML264	MECHANICAL OPERATIONS (DC)	6	CD
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	CD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AA

60	DA.	С	redi	it	EG	Р	S	GPA	CG	DΛ	С	redi	it	EG	Р	CGPA	
SGPA		40			220		5.50		CG	FA		158			2	6.15	
DE	12	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	DD
CML367	HEAT TRANSFER-II (DC)		6	BC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BC
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CML468	ORE AND MINERAL PROCESSING (DE)		6	CD
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	· D A	С	redi	t	EGP		SGPA		CG	DΛ	C	redi	t	EG	Р	CGPA	
SGPA			42		268		6.38		CG	PA		242			6	6.26	
DE	6	DC	36	HM	1 0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	То	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	CD
CML475	(DE) NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	вс
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	ВС
CMI 491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AR

80	·DA	С	redi	t	EC	P	S	SGPA			С	redi	t	EG	Р	CGPA		
SGPA		34			268		7.88		CGFA			322			215	4	6.69	
DE	24	DC	DC 10 HN		<i>I</i> 0	o oc		0		DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	0	BS	6 0	То	tal	34		ΑU	0	ES	36	BS	32	To	tal	322

GRADE CARD

: V RAVI KUMAR Enrolment No. : BT10CHE079 Name

Branch: CHEMICAL ENGINEERING : BACHELOR OF TECHNOLOGY **Degree**

Course			٦	Γitle			С	r Gr	Course	Title	Cr	
AUTUN	IN 2013											
CMD401	PROJECT	PHAS	E I (DC)				4	AA				
CML374	PETROLII	JM RE	FINERY ENGI	INEERING	(DE)		6	BC				
CML461	TRANSPO	RT PH	IENOMENA ([DC)			6	BC				
CML462	CHEMICA	L REA	CTION ENGIN	NEERING II	(DC)		6	CC				
CML463	PROCESS	CON.	TROL & INSTE	RUMENTA	TION (DC)	6	AB				
CML620	MEMBRA	NE TE	CHNOLOGY (DE)			6	BC				
CMP462	CHEMICA	L REA	CTION ENGIN	NEERING -	I (DC)		2	AB				
CMP463	PROCESS	CON.	TROL & INSTI	RUMENTA	TION (DC)	2	AA				
CMP464	CHEMICA	L ENG	INEERING DE	ESIGN & D	RAWING	II (DC)	2	BB				
HUL409	PSYCHOL	OGY 8	& ED (HM)				6	AA				
SGPA	Credit	EGI	SGPA	CGPA	Credi	t E	EGP	CGPA				
SGPA	46	370	8.04	CGPA	288	1	886	6.55				
DE 12	DC 28 HM	1 6	OC 0	DE 56	DC 142	HM 1	16 C	C 6				
AU 0	ES 0 BS	0	Total 46	AU 0	ES 36	BS 3	32 To	otal 288				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 **Asst. Registrar (Examination)**

GRADE CARD

Name : V VARUN SAI Enrolment No. : BT10CHE080

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course							Т	itle	е						С	r	Gr
AUTUN	1N 2	010)														
AML151	E	NGIN	NEE	RING	MEC	HAI	NICS (ES	6)						6		BC
AMP151	E	NGIN	NEE	RING	MEC	CHAI	NICS L	.AB	3 (E	S)					2		BB
HUL101	С	OMN	ΛUN	IICATI	ON S	SKIL	LS (HI	M)							6		BB
MAL101 MATHEMATICS I (BS) 8 AB																	
MEC101	EC101 ENGINEERING DRAWING (ES) 8 CD																
PEB151																	
PHL101	Р	HYS	ICS	(BS)											6		BC
PHP101	Р	HYS	ICS	LAB (BS)										2		AB
SCDA	С	redi	it	EG	Р	S	GPA			D A	C	redi	t	EG	Р	C	GPA
SGPA 38 278 7.32 CGPA 38 278 7.32																	
DE 0	DC	0	HN	1 6	0	С	0		DE	0	DC	0	НМ	6	С	C	0
AU 0	U 0 ES 16 BS 16 Total 38 AU 0 ES 16 BS 16 Total 38																

ΑU	U	ES	16	BS	16
A I I I					

ΑU	I UIVIN	2011
CHI	261	PHYSI

	Crodit	EGD	T	CGBA				
HUL406	LABOUR	ECONOMI	HM)	6	AB			
CML474	PLANT U		6	BC				
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	AA
CML261	INORGAN	NIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	AB
CHP261	PHYSICA	L AND INC	RGANIC C	CHEMISTRY	Y (DC)		2	BB
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	AB
CHL261	PHYSICA	L CHEMIS	TRY AND (GENERAL I	METALLUR	GY (DC)	6	AB
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

SGPA DE 6	Credit	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	CGPA				
	40			334		8.35		CG	001 A		118		944	4	8.00		
DE	6	DC	28	НМ	6	0	С	0	DE	6	DC	28	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	AA
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	AA
CML361	MASS TRANSFER - I (DC)	6	AB
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	AA

80	. D Λ	С	redi	t	EG	Р	S	GPA	_		PA	С	redi	t	EG	Р	C	GPA
SGPA DE 20	42			404		9.62			,Gi	A	2	200		173	6	8.68		
DE	20	DC	22	НМ	0	0	С	0		ÞΕ	32	DC	78	НМ	16	С	C	6
AU	0	ES	0	BS	0	To	tal	42	Α	νU	0	ES	36	BS	32	To	otal	200

AUTUMN 2013

CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	AB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AA
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BB
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML461	TRANSPORT PHENOMENA (DC)	6	BB
CML333	POLYMER PROCESSING (DE)	6	AA
CMD401	PROJECT PHASE I (DC)	4	AA

	SG	·DΛ	С	redi	it	EGP		SGPA		CG	DΛ	С	redi	t	EG	Р			
	36	IFA		40		35	4	8	3.85	CG	FA		282		249	2	8	.84	
j	DE	12	DC	28	HM	I 0	0	С	0	DE	50	DC	142	НМ	16	0	С	6	
	AU	0	ES	0	BS	0	To	tal	40	ΑU	0	ES	36	BS	32	То	tal	282	

Course	Title	C	r Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	BB
CHP101	APPLIED CHEMISTRY (BS)	2	ВС
CSL101	COMPUTER PROGRAMMING (ES)	8	BB
EEL101	ELECTRICAL ENGINEERING (ES)	6	AA
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	AB
HUL102	SOCIAL SCIENCE (HM)	4	AA
MAL102	MATHEMATICS - II (BS)	8	CC
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
	Credit ECD CCDA Cred	1:4 ECD	CCDA

SGPA DE 0	С	redi	it			SGPA		CG	D۸	С	redi	t	EG	Р	CGPA			
		40			332		8.30		CG	FA		78			0	7.82		
	DE	0	DC	0	НМ	4	0	С	0	DE	0	DC	0	НМ	10	0	С	0
	AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	36	BS	32	То	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	AA
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	AA
CHL336	POLYMER ENGINEERING (DE)	6	AB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	BB
CML263	FLUID MECHANICS (DC)	6	AA
CML264	MECHANICAL OPERATIONS (DC)	6	AA
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	AA
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
36	SGPA		40		38	8	9	.70	CG	FA		158		133	2	8	.43
DE	6	DC	28	НМ	0	0	С	6	DE	12	DC	56	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	AB
CML367	HEAT TRANSFER-II (DC)		6	AA
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AA
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	AB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AA
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	SGPA		redi	t	EG	Р	SG	PA	CG	DΛ	С	redi	t	EG	Р	С	GPA
36			42		40	2	9.	.57	CG	FA		242		213	88	8	3.83
DE	6	DC	36	НМ	0	0	С	0	DE	38	DC	114	НМ	16	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU 0		ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AA
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	AB
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	AA
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	AA
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	AB

80	SGPA	С	redi	it	EC	3P	S	GPA	CG	ВΛ		credi	t	EG	Р	C	GPA
		40		38	8	9	9.70	CG	FA		322		288	30	8	.94	
DE	24	DC	10	HN	<i>I</i> 0	0	С	6	DE	74	DC	152	НМ	16	0	С	12
AU	0	ES	0	BS	0 8	То	tal	40	AU	0	ES	36	BS	32	To	tal	322

GRADE CARD

Name : V VARUN SAI Enrolment No. : BT10CHE080

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CHP101

CSL101

EEL101

EEP101

HUL102

MAL102

MEP101

DD

SPRING 2011

: VAIDYA PRATIK SURESH Name

Enrolment No. : BT10CHE081

CHL101 APPLIED CHEMISTRY (BS)

APPLIED CHEMISTRY (BS)

SOCIAL SCIENCE (HM)

MATHEMATICS - II (BS)

WORKSHOP (ES)

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

Branch: CHEMICAL ENGINEERING

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

8

6

2

8

Gr

ВВ

BB

вс

BC

ВВ

ВВ

CD

AA

Course		Title Cr Gr														
AUTUM	IN 201	0														
AML151	ENGI	NEE	RING	MEC	1AHC	NICS (ES	S)						6		CD
AMP151	ENGI	NEE	RING	MEC	1AHC	NICS L	AE	В (Е	S)					2		AB
HUL101	COM	MUN	IICATI	ON S	SKIL	LS (HI	M)							6		BC
MAL101	MATH	IEM	ATICS	I (B	S)									8		FF
MEC101	ENGINEERING DRAWING (ES) 8 BC															
PEB151	SPOF	SPORTS / YOGA / LIBRARY / NCC (AU) 0 SS														
PHL101	PHYS	ICS	(BS)											6		CD
PHP101	PHYS	ICS	LAB (BS)										2		CD
SGPA	Cred	it	EG	Р	SC	3PA	١,	CG	D A	C	redi	t	EGI	•	C	GPA
SGPA	38	186		4	.89	١,	CG	A		30		186	;	6	.20	
DE 0	DC 0	HN	Л 6	0	С	0	Ĺ	DE	0	DC	0	ΗN	1 6	C	C	0
AU 0	ES 16	BS	3 16	То	tal	38		AU	0	ES	16	BS	8	To	otal	30

PEB151	SI	POR	TS/	YOĞ.	A/ LIB	RARY/ N	CC (AU)					0		SS
SGPA	C	redi	it	EG	Р	SGPA	CG	DΛ	С	redi	it	EG	Р	C	GPA
SGPA		40		29	0	7.25	CG	PA		78		50	8	6	.51
DE 0	DC	0	НМ	4	OC	0	DE	0	DC	0	НМ	10	00	2	0
AU 0	ES	20	BS	16	Tota	al 40	AU	0	ES	36	BS	32	Tot	al	78

RE-EXAM AUTUMN 2010

MAL101 MATHEMATICS I (BS) Credit ECD CCDA Credit ECD CODA

60	SGPA	L	rea	ıτ	EG	Ρ	50	JPA	CG	DΛ	L	reai	τ	EG	۲	C	JРА
36			8		32	2	4	.00	CG	PA		38		218	3	5	.74
DE	0	DC	0	НМ	0	00	C 0		DE	0	DC	0	НМ	6	С	C	0
AU	0	FS	0	BS	8	Tot	otal 8		AU	0	FS	16	BS	16	To	ntal	38

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC) 6	DD
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	CD
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	AB
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	BC
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	DD
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	DD
CML474	PLANT UTILITY (DE)	6	CC
HUL403	PSYCHOLOGY AND HRM (HM)	6	CC

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	C	3PA
36	SGPA		40		200	6	5	.15	CG	ГА	1	118		714	1	6	.05
DE	6	DC	28	НМ	6	0	С	0	DE	6	DC	28	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	40	AU	0	ES	36	BS	32	To	tal	118

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	AB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	CC
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	CC
CML361	MASS TRANSFER - I (DC)	6	CC
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC

SGPA										,					_			
j	60	·D A	С	redi	it	EG	Р	SC	3PA	CG	D 4	С	redi	t	EG	Р	CC	SPA
			36		23	6	6	.56	S	PA	1	194		117	2	6	.04	
	DE	E 14 DC 22 HM 0		0	С	0	DE	32	DC	78	НМ	16	0	С	0			
1	ΔΙΙ	0	L 0	0	BC	0	To	tal	36	ΔΠ	0	ΕQ	36	BC	32	Τ.	tal	10/

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	CD
CHL336	POLYMER ENGINEERING (DE)	6	CD
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	CD
CML264	MECHANICAL OPERATIONS (DC)	6	ВС
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CML621	NANO TECHNOLOGY (DE)	6	CC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

	CDA	(red	it	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA DE 12 AU 0		40		22	2	5	5.55	CG	FA		158		93	6	5	5.92	
	DC	28	НМ	0	0	С	0	DE	18	DC	56	НМ	16	0	С	0	
AI	1 0	FS	0	BS	0	To	tal	40	AU	0	FS	36	BS	32	To	ıtal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	CD
CML367	HEAT TRANSFER-II (DC)		6	CC
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	CD
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	BB
CML466	CHEMICAL PLANT DESIGN (DC)		6	CC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BC
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	АΑ

SGPA -	С	redi	t	EG	Р	SG	PA	CG	DΛ	C	redi	t	EG	Р	C	GPA	
		42		28	0	6.	.67	CG	PA		236		145	2	6	.15	
DE	6	DC	36	НМ	0			0	DE	38	DC	114	НМ	16	0	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	236

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	AB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	CC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	BC
EEL416	RENEWABLE ENERGY SYSTEMS (OC)	6	BB

SGPA DE 24	Credi	t	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	C	GPA
	40		29	6	7.40		CG	FA		322		208	2	6	.47
DE 24	DC 10	НМ	0	0	C 6		DE	74	DC	152	НМ	16	0	С	12
AU 0	ES 0	BS	0	To	tal 40	11	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : VAIDYA PRATIK SURESH Enrolment No. : BT10CHE081

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course				Title			Cr	Gr	Course	Title	Cr	
AUTUN	IN 2013	3										
CEL417	DISAS	STER MAN	NAGEMENT (OC)			6	AB				
CMD401	PROJ	ECT PHA	SE I (DC)				4	BB				
CML374	PETR	OLIUM RI	FINERY ENG	INEERING	(DE)		6	BB				
CML461	TRAN	SPORT P	HENOMENA (DC)			6	DD				
CML462	CHEM	IICAL REA	ACTION ENGI	NEERING I	(DC)		6	CC				
CML463	PROC	ESS CON	ITROL & INST	RUMENTA	TION (DC)	6	BC				
CML620	MEME	BRANE TE	CHNOLOGY	(DE)			6	BC				
CMP462	CHEM	IICAL REA	ACTION ENGI	NEERING -	II (DC)		2	AB				
CMP463	PROC	ESS CON	ITROL & INST	RUMENTA	TION (DC)	2	AB				
CMP464	CHEM	IICAL EN	SINEERING D	ESIGN & D	RAWING	II (DC)	2	AA				
SGPA	Cred	it EG	P SGPA	CGPA	Credi	t E	GP	CGPA				
SGPA	46	33	4 7.26	CGPA	282	17	786	6.33				
DE 12	DC 28	HM 0	OC 6	DE 50	DC 142	HM 16	6 O	C 6				
AU 0	ES 0	BS 0	Total 46	AU 0	ES 36	BS 32	2 To	tal 282				

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Course

CHP101

CSL101

EEL101

EEP101

HUL102

MAL102

SPRING 2011

CHL101 APPLIED CHEMISTRY (BS)

APPLIED CHEMISTRY (BS)

SOCIAL SCIENCE (HM)

MATHEMATICS - II (BS)

COMPUTER PROGRAMMING (ES)

ELECTRICAL ENGINEERING (ES)

ELECTRICAL ENGINEERING LAB (ES)

: VALANDAS SANDEEP PATIL Name

Branch: CHEMICAL ENGINEERING

Enrolment No. : BT10CHE082

: BACHELOR OF TECHNOLOGY **Degree**

Title

Cr

6

2

8

6

2

8

0 **EGP**

Total

552

HM 10 OC

BS 32

Gr

CC

BB

вс

BB

CC

ΑB

CC AA SS

CGPA

7.08

0

78

Course						Т	itle	,						С	r	Gr
AUTUM	IN 2010)														
AML151	ENGI	NEE	RING	MEC	HAN	IICS (ES)							6		BC
AMP151	ENGI	NEE	RING	MEC	AH:	IICS L	AB	(ES	S)					2		AB
HUL101	COMN	1UN	IICATI	ON S	SKILL	S (HI	M)							6		CC
MAL101	MATH	EΜ	ATICS	I (B	S)									8		BB
MEC101	ENGI	NGINEERING DRAWING (ES)														CC
PEB151	SPOR	ENGINEERING DRAWING (ES) 8 C SPORTS / YOGA / LIBRARY / NCC (AU) 0 S														
PHL101	PHYS	ICS	(BS)											6		CC
PHP101	PHYS	ICS	LAB (BS)										2		BB
SGPA	Credi	t	EG	Р	SG	PA	_	GF	- ·	Cı	redi	t	EGI	Р	CC	3PA
SGPA	38		260)	6.	84	٦	.Gr	A	,	38		260)	6	.84
DE 0	DC 0	ΗÑ	1 6	0	С	0	D	Ε	0	DC	0	НМ	6	C	С	0
AU 0	ES 16	BS	16	To	tal	38	Α	·U	0	ES	16	BS	16	To	otal	38

PHP101	PHYSIC	S LAB (BS)								2	BB	MEP	101	W	ORK	SHO	P (E	-S)				
	Credit	EG	Р	SGPA			C	redit	t	EG	P (CGPA	PEB1	151	SF	POR	TS/Y	YOG/	4/ LIBI	RARY/ NO	CC (AU)		
SGPA	38	26	0	6.84	CG	PA		38		260)	6.84	SG	ДΛ	С	redi	t	EG	P	SGPA	CGPA	Cred	tik
DE 0	DC 0 H	IM 6	OC	0	DE	0	DC	0	НМ	6	ОС	0	36	ГА		40		292	2	7.30	CGFA	78	
AU 0	ES 16 E	3S 16	Tota	al 38	AU	0	ES	16	BS	16	Total	l 38	DE	0	DC	0	НМ	4	ОС	0	DE 0	DC 0	T
^ T N/	IN 2011												AU	0	ES	20	BS	16	Tota	I 40	AU 0	ES 36	П

AUTUMN 2011

	O I'I FOR CORA	0	F0D	0004
MEL408	SUPPLY CHAIN MANAGEMENT	(OC)	6	ВС
CML474	PLANT UTILITY (DE)		6	BC
CML262	CHEMICAL PROCESS CALCULA	ATIONS (DC)	6	BC
CML261	INORGANIC CHEMICAL TECHN	OLOGY (DC)	6	BC
CHP263	ORGANIC CHEMISTRY AND SY	NTHESIS (DC)	2	BC
CHP261	PHYSICAL AND INORGANIC CH	IEMISTRY (DC)	2	BC
CHL263	ORGANIC CHEMISTRY AND SY	NTHESIS (DC)	6	CC
CHL261	PHYSICAL CHEMISTRY AND GE	ENERAL METALLURO	SY (DC) 6	BC

SGPA	_						 (,					-	_	-		
	SGPA	С	redi	it	EG	Р	SGPA	CG	D A	С	redi	t	EG	P	CGP	Α	
				40		27	4	6.85	CG	PA	•	118		826	3	7.00)
	DE	6	DC	28	НМ	0 00		6	DE	6	DC	28	НМ	10	00	. (ç
I	AU	0	ES	0	BS	0	Tot	al 40	AU	0	ES	36	BS	32	Tota	al 1	18

AUTUMN 2012

CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BB
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CML375	ANALYTICAL METHODS FOR CHEMICAL ANALYSIS (DE)	6	CC
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	AB
CML362	HEAT TRANSFER I (DC)	6	BC
CML361	MASS TRANSFER - I (DC)	6	BC
CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	CC

SG	. Д А	С	redi	t	EG	Р	S	GPA	١,	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	JFA		42 312 DC 22 HM 0 O		7	.43	l '	CG	ГА	2	200		1432		7.16			
DE	20	DC	22	НМ	0	0	С	0		DE	38	DC	78	НМ	10	С	C	6
AU	0	ES	0	BS	0	То	tal	42		AU	0	ES	36	BS	32	To	otal	200
									-									

AUTUMN 2013

		On the FOR CODA	_ T	0004
	HUL409	PSYCHOLOGY & ED (HM)	6	AB
	CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
	CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
	CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	AB
	CML620	MEMBRANE TECHNOLOGY (DE)	6	BB
	CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	AB
	CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	AB
	CML461	TRANSPORT PHENOMENA (DC)	6	BC
	CML374	PETROLIUM REFINERY ENGINEERING (DE)	6	AA
	CMD401	PROJECT PHASE I (DC)	4	BB
4		1 20 .0		

SG	. Д А	С	redi	t	EG	Р	S	GPA	CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	JFA		46		39	6	8	.61	CG	FA	:	288		216	2	7	.51
DE	12	DC	28	НМ	6	0	С	0	DE	56	DC	142	НМ	16	С	C	6
AU	0	ES	0	BS	0	То	tal	46	AU	0	ES	36	BS	32	To	otal	288

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL336	POLYMER ENGINEERING (DE)	6	CC
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CC
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	BC
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	BB
CML621	NANO TECHNOLOGY (DE)	6	BB
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

SGPA	Credit		EG	Р	SGPA	CC	PΑ	С	redi	t	EG	Р	C	GPA
SGFA	40		294		7.35	Ce	JFA		158		112	02	7	.09
DE 12	DC 28 H	НМ	0	0	C 0	DE	18	DC	56	НМ	10	0	С	6
AU 0	FS 0 1	BS	0	To	tal 40	AU	0	FS	36	BS	32	To	tal	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	BC
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AB
CML466	CHEMICAL PLANT DESIGN (DC)		6	BC
CML468	ORE AND MINERAL PROCESSING (DE)		6	BB
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

60	D.A.	С	redi	t	EG	Р	SC	SPA	CG	DΛ	C	redi	t	EG	Р	C	GPA
36	SGPA DE 6		42		334		7.95		CG	PA		242		1766		7.30	
DE	6	DC	36	HM	I 0	0	С	0	DE	44	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	То	tal	242

SPRING 2014

CMD452	PROJECT PHASE-II (DC)	8	BB
CMD453	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AB
CML471	BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING (DE)	6	CD
CML475	NEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	ВС
CML479	ENTREPRENEURSHIP DEVELOPMENT (DE)	6	BC
CML491	PROJECT PLANNING AND MANAGEMENT (DE)	6	ВС

6	3PA	С	redi	t	EG	Р	SGPA		CG	DΛ	С	redi	t	EG	Р	С	GPA
30)PA		34		23	8	7.00		CG	PA		322		240	0	7	7.45
DE	24	DC	10	ΗN	1 0	00	0		DE	80	DC	152	НМ	16	0	С	6
AU	0	ES	DC 10 HM ES 0 BS		S 0 T		otal 34		ΑU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name : VALANDAS SANDEEP PATIL Enrolment No. : BT10CHE082

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

Name : VARUN VISHNANI Enrolment No. : BT10CHE083

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course			Т	itle		С	r Gr
AUTUM	N 2010						
CHL101	CHEMIST	TRY (BS)				6	CD
CHP101	CHEMIST	TRY LAB (E	3S)			2	: AB
CSL101	COMPUT	ER PROG	RAMMING	(ES)		8	AA
EEL101	ELECTRI	CAL ENGI	NEERING (ES)		6	CD
EEP101	ELECTRI	CAL ENGI	NEERING L	_AB (ES)		2	BC
HUL102	SOCIAL S	SCIENCE (HM)			4	BB
MAL101	MATHEM	IATICS I (B	S)			8	BB
MEP101	WORKSH	IOP (ES)				4	AB
PEB151	SPORTS	/ YOGA / L	.IBRARY / I	NCC (AU)		0	SS
CCDA	Credit	EGP	SGPA	CGPA	Credit	EGP	CGPA
SGPA	- 40	204	7.00	CGPA	40	204	7.00

SGPA	С			EG	Р	SG	PA	CG	D A	С	redi	t	EG	P	CGPA		
		40		304		7.60		CG	ГА		40		304	1	7.60		
DE	0	DC	0	НМ	4	0	0	0	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	20	BS	16	Tot	tal	40	AU	0	ES	20	BS	16	To	tal	40

AUTUMN 2011

	Credit	EGP	SGPA		Credit	FGP		CGPA
MAL205	NUMERIO	CAL METH	ODS AND I	PROBABILI	TY THEOR	Y (DE)	6	DD
CML474	PLANT U	TILITY (DE)				6	CD
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	ВС
CML261	INORGAN	VIC CHEMI	CAL TECH	NOLOGY (DC)		6	CC
CHP263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		2	BC
CHP261	PHYSICA	L AND INC	RGANIC C	HEMISTR'	Y (DC)		2	ВС
CHL263	ORGANIC	CHEMIST	RY AND S	YNTHESIS	(DC)		6	CD
CHL261	PHYSICA	L CHEMIS	TRY AND (JENERAL I	METALLUR	GY (DC)	6	CC

SGPA	Credit	t	EGP 226		SGPA 5.65		CG	DΛ	С	redi	t	EG	Р	CC	3PA
SGFA	40						CG	FA	1	118		772	2	6	.54
DE 12	DC 28	НМ	0	0	C 0		DE	12	DC	28	НМ	10	0	С	0
AU 0	ES 0	BS	0	Tot	tal 40		AU	0	ES	36	BS	32	То	tal	118

AUTUMN 2012

CHL369	GREEN CHEMISTRY & ENGINEERING (DE)	6	ВС
CML361	MASS TRANSFER - I (DC)	6	CC
CML362	HEAT TRANSFER I (DC)	6	BB
CML363	CHEMICAL PROCESS EQUIPMENT DESIGN (DC)	6	BB
CML370	ENVIRONMENTAL ENGINEERING (DE)	6	BB
CMP364	CHEMICAL ENGINEERING DESIGN & DRAWING I (DC)	2	AA
CMP365	FLUID MECHANICS & MECHANICAL OPERATION II (DC)	2	AB
CMP370	ENVIRONMENTAL ENGINEERING (DE)	2	BC

60	· D A	С	redi	t	EG	Р	S	GPA		~~	D A	С	redi	t	EG	Р	C	GPA
36	SGPA		36		274		7.61		CGPA			•	194		134	6	6	.94
DE	14	DC	22	НМ	0	0	С	0		DE	32	DC	78	НМ	10	C	С	6
AU	0	ES	0	BS	0	To	tal	36		AU	0	ES	36	BS	32	To	otal	194

AUTUMN 2013

CMD401	PROJECT PHASE I (DC)	4	AB
CML333	POLYMER PROCESSING (DE)	6	AB
CML461	TRANSPORT PHENOMENA (DC)	6	BC
CML462	CHEMICAL REACTION ENGINEERING II (DC)	6	BB
CML463	PROCESS CONTROL & INSTRUMENTATION (DC)	6	BC
CML620	MEMBRANE TECHNOLOGY (DE)	6	AB
CMP462	CHEMICAL REACTION ENGINEERING -II (DC)	2	BB
CMP463	PROCESS CONTROL & INSTRUMENTATION (DC)	2	AB
CMP464	CHEMICAL ENGINEERING DESIGN & DRAWING II (DC)	2	BB
HUL409	PSYCHOLOGY & ED (HM)	6	AB

60	. П А	C	redi	it		EG	Р	SGPA		_	_	п.	C	redi	t	EG	P	C	GPA
SGPA			46			380		8.26		CGPA				282		209	96	7	.43
DE	12	DC	28	ΗN	1	6	0	С	0	DI	Ε	50	DC	142	ΗN	l 16		С	6
AU	0	ES	0	BS	;	0	Total		46	Αl	J	0	ES	36	BS	32	To	otal	282

Course	Title	Cr	Gr
SPRING	2011		
AML151	ENGINEERING MECHANICS (ES)	6	CC
AMP151	ENGINEERING MECHANICS (ES)	2	AB
HUL101	COMMUNICATION SKILL (HM)	6	BB
MAL102	MATHEMATICS - II (BS)	8	CD
MEC101	ENGINEERING DRAWING (ES)	8	BB
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS
PHL101	PHYSICS (BS)	6	DD
PHP101	PHYSICS (BS)	2	CC

80	SGPA		redi	t	EG	Р	S	GPA	CG	DΛ	С	redi	t	EG	Р	C	GPA
SGPA			38		242		6.37		CG	FA		78		540	6	7	.00
DE	0	DC	0	НМ	6	0	С	0	DE	0	DC	0	НМ	10	0	С	0
ΔΙΙ	Λ	FS	16	BS	16	To	tal	38	ΔΠ	Λ	FS	36	BS	32	Τn	tal	78

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	BC
CHL224	ENERGY FUELS AND LUBRICANTS (OC)	6	BB
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	AB
CML263	FLUID MECHANICS (DC)	6	BB
CML264	MECHANICAL OPERATIONS (DC)	6	AB
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	CD
CML621	NANO TECHNOLOGY (DE)	6	BC
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	AB

80	·DA	С	redi	t	EGP		SGPA		CG	ВΛ	С	redi	t	EG	Р	C	GPA
36	SGPA	40			30	0	7.50		CGPA			158		107	2	6	.78
DE	6	DC	28	НМ	0	0	C 6		DE	18	DC	56	НМ	10	00)	6
AU	0	ES	0	BS	0	To	tal 40		AU	0	ES	36	BS	32	Tot	al	158

SPRING 2013

CML366	MASS TRANSFER - II (DC)		6	BC
CML367	HEAT TRANSFER-II (DC)		6	BB
CML368	CHEMICAL REACTION ENGINEERING-I (DC)		6	AB
CML371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	6	AA
CML466	CHEMICAL PLANT DESIGN (DC)		6	BB
CML468	ORE AND MINERAL PROCESSING (DE)		6	AA
CMP366	MASS TRANSFER (DC)		2	AA
CMP367	HEAT TRANSFER (DC)		2	AB
CMP371	CHEMICAL PROCESS MODELING AND SIMULATION	(DC)	2	AA

80	SGPA	С	redi	t	EG	Р	S	GPA	CG	D۸	С	redi	t	EG	Р	C	GPA
			42		370		8	.81	CG	FA		236		171	6	7	.27
DE	6	DC	36	НМ	0	0	С	0	DE	38	DC	114	НМ	10	0	С	6
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	36	BS	32	To	tal	236

SPRING 2014

CHL336 P	OLYMER ENGINEERING (DE)	6	BB
CMD452 P	PROJECT PHASE-II (DC)	8	AA
CMD453 S	SEMINAR AND GROUP DISCUSSION PROGRAM (DC)	2	AA
CML471 B	SIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING	6	ВС
1)	DE)		
CML475 N	IEW AND RENEWABLE ENERGY ENGINEERING (DE)	6	BB
CML479 E	NTREPRENEURSHIP DEVELOPMENT (DE)	6	AA
CML491 P	PROJECT PLANNING AND MANAGEMENT (DE)	6	BB

	GPA	С	redi	t	EG	Р	SGPA		CG	DΛ	C	redi	t	EG	Р	С	GPA
3	GPA		40		34	6	8.65		CG	PA		322		244	2	7.58	7.58
DE	30	DC	10	ΗN	1 0	00	0	Ī	DE	80	DC	152	НМ	16	ОС		6
AL	0	ES	0	BS	0	Tot	al 40	1	AU	0	ES	36	BS	32	То	tal	322

GRADE CARD

Name: VARUN VISHNANI Enrolment No.: BT10CHE083

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

Course Title Cr Gr Course Title Cr Gr

Note: This grade card is exclusively for internal use

Abbreviations: Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points

 ${\sf SGPA-Semester\ Grade\ Point\ Average,\ CGPA-Cumulative\ Grade\ Point\ Average,\ W-repeat\ the\ Course}$

(This Statement is subject to correction, if any)

Date: 22-Jul-2014 Asst. Registrar (Examination)

GRADE CARD

: VINAI AGARWAL Enrolment No. : BT10CHE084 Name

Branch: CHEMICAL ENGINEERING Degree : BACHELOR OF TECHNOLOGY

Course					Т	itle						С	r	Gr
AUTUN	IN 2010)												
AML151	ENGIN	NEERIN	3 ME	CHAN	IICS (ES)						6		FF
AMP151	ENGIN	NEERIN	3 ME	CHAN	IICS L	AB (E	S)					2		CD
HUL101	COMN	JUNICA	ΓΙΟΝ	SKILL	S (HI	۷)						6		FF
MAL101	MATH	MATHEMATICS I (BS)												DD
MEC101	ENGIN	ENGINEERING DRAWING (ES) 8 F												
PEB151	SPOR	TS/YO	GA / I	LIBRA	RY/I	NCC (AU)					0		SS
PHL101	PHYS	ICS (BS)									6		FF
PHP101	PHYS	PHYSICS LAB (BS)										2		DD
SGPA	Credi	t E	GP	SG	CG	D.A.	Cr	edi	t	EG	Р	C	GPA	
SGPA	38		0	1.	32	CG	PA	•	12		50)	4	.17
DE 0	DC 0	C 0 HM 6 OC				DE	0	DC	0	НМ	I 0	С	C	0

SG	D۸	_					_		_	GF:	2 4	_		-				
36	IFA		38		50)	1	1.32	·	,Gr	A		12		50)	4.	17
DE	0	DC	0	HN	<i>l</i> 6	0	С	0		DΕ	0	DC	0	НМ	0	0	С	0
AU	0	ES	16	BS	3 16	То	tal	38	Α	١U	0	ES	2	BS	10	To	tal	12
									_									

RE-EXAM AUTUMN 2010

AML151	ENGINEERING MECHANICS (ES)	6	FF
HUL101	COMMUNICATION SKILLS (HM)	6	FF
MEC101	ENGINEERING DRAWING (ES)	8	FF
PHL101	PHYSICS (BS)	6	FF

					. ,													
60	. П. А	С	redi	t	EG	Р	S	GPA	_ ا	CGF	٠,	C	redi	t	EG	P	CG	PΑ
36	SGPA		26		0		0	.00	١	JGI	A		12		50		4.	.17
DE	0	DC	0	НМ	6	0	С	0		DE	0	DC	0	НМ	0	С	С	0
AU	0	ES	14	BS	6	To	tal	26	Γ	٩U	0	ES	2	BS	10	To	tal	12

AUTUMN 2011

CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CHP261	PHYSICAL AND INORGANIC CHEMISTRY (DC)	2	CC
CHP263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	2	CD
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
HUL101	COMMUNICATION SKILLS (HM)	6	FF
MEC101	ENGINEERING DRAWING (ES)	8	BB

60	. П л	С	redi	t	EG	Р	S	GPA	CG	D 4	С	redi	t	EG	Р	C	GPA
36	SGPA		42		86	;	2	.05	CG	PA		54		318	3	5	.89
DE	0	DC	28	НМ	l 6	0	С	0	DE	0	DC	4	НМ	4	C	C	0
AU	0	ES	8	BS	0	То	tal	42	AU	0	ES	22	BS	24	Тс	otal	54

RE-EXAM AUTUMN 2011

HUL101	COMMUNICATION SKILLS (HM)	6	FF
CML262	CHEMICAL PROCESS CALCULATIONS (DC)	6	FF
CML261	INORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHL263	ORGANIC CHEMISTRY AND SYNTHESIS (DC)	6	FF
CHL261	PHYSICAL CHEMISTRY AND GENERAL METALLURGY (DC)	6	DD

SG	. П. А	C	redi	it	EG	Р	S	GPA		CGI	D A	С	redi	t	EG	Р	C	GPA
36	IPA		30		24	ļ.	0	.80	١,	CGI	PA		60		342	2	5	.70
DE	0	DC	24	НМ	6	0	С	0	Ti	DE	0	DC	10	НМ	4	C	С	0
AU	0	ES	0	BS	0	То	tal	30		AU	0	ES	22	BS	24	To	otal	60

AUTUMN 2012

	Cuadit	ECD	CCDA		Cundit	ECD		CCDA
CMP370	ENVIRON	MENTAL E	ENGINEER	ING (DE)			2	ВС
CMP365	FLUID ME	ECHANICS	& MECHA	NICAL OPE	ERATION II	(DC)	2	BB
CMP364	CHEMICA	AL ENGINE	ERING DE	SIGN & DF	RAWING I (D	(C)	2	BB
CML375	ANALYTI	CAL METH	ODS FOR	CHEMICAL	ANALYSIS	(DE)	6	FF
CML370	ENVIRON	MENTAL E	ENGINEER	ING (DE)			6	FF
CML363	CHEMICA	AL PROCES	SS EQUIP	MENT DES	IGN (DC)		6	FF
CML362	HEAT TR	ANSFER I	(DC)				6	FF
CML361	MASS TR	RANSFER -	I (DC)				6	FF
CML262	CHEMICA	AL PROCES	SS CALCU	LATIONS (DC)		6	FF

60	. П А	C	redi	t	EG	Р	S	GPA	CG	ПΛ	C	redi	t	EG	P	C	GPA
36	SGPA		42		46	;	1	.10	CG	PA		96		518	В	5	.40
DE	14	DC	28	НМ	0	0	С	0	DE	2	DC	36	НМ	4	С	С	0
AU	0	ES	0	BS	0	To	tal	42	AU	0	ES	22	BS	32	To	otal	96

Course	Title	Cr	Gr
SPRING	2011		
CHL101	APPLIED CHEMISTRY (BS)	6	FF
CHP101	APPLIED CHEMISTRY (BS)	2	CD
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
EEP101	ELECTRICAL ENGINEERING LAB (ES)	2	BC
HUL102	SOCIAL SCIENCE (HM)	4	DD
MAL102	MATHEMATICS - II (BS)	8	FF
MEP101	WORKSHOP (ES)	4	AA
PEB151	SPORTS / YOGA/ LIBRARY/ NCC (AU)	0	SS

	С	redi	t	EGP		SGPA		CG	D 4	С	redi	it	EG	Р	C	GPA	
		40		80		2.00		CG	PA		24			0	5.42		
DE			НМ	4	0	С	0	DE	0	DC	0	НМ	4	0	С	0	
AU	0	ES	20	BS	16	To	tal	40	AU	0	ES	8	BS	12	To	tal	24

RE-EXAM SPRING 2011

CHL101	APPLIED CHEMISTRY (BS)	6	DD
CSL101	COMPUTER PROGRAMMING (ES)	8	FF
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	FF

SGPA DE 0	С	Credit		EG	Р	SGPA		CG	DΛ	С	redi	it	EG	Р	С	GPA	
		28		24		0.86		CG	PA		30		15	4	5	5.13	
DE	0	DC	0	НМ	0	0	0 0	ľ	DE	0	DC	0	НМ	4	0	С	0
AU	0	ES	14	BS	14	Tot	tal 28		AU	0	ES	8	BS	18	To	tal	30

SUMMER TERM SPRING 2011

PHL101	PHYSICS (BS)		6	CD
AML151	ENGINEERING MECHANICS	(ES)	6	BB

	С	redi	t	EG	Р	S	GPA	CG	D A	С	redi	t	EG	Р	CC	3PA	
	12			78		6.50		CG	FA		42		23	2	5.52		
DE	0	DC	0	НМ	0	0	С	0	DE	0	DC	0	НМ	4	00	2	0
AU	0	ES	6	BS	6	To	tal	12	AU	0	ES	14	BS	24	Tot	al	42

SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOGY (DC)	6	FF
CHP214	ORGANIC CHEMICAL TECHNOLOGY (DC)	2	CD
CML263	FLUID MECHANICS (DC)	6	DD
CML264	MECHANICAL OPERATIONS (DC)	6	FF
CML265	CHEMICAL ENGINEERING THERMODYNAMICS (DC)	6	DD
CMP264	FLUID MECHANICS AND MECHANICAL OPERATION-I	(DC) 2	BB
EEL101	ELECTRICAL ENGINEERING (ES)	6	FF
MAL102	MATHEMATICS - II (BS)	8	DD

se	· D A	С	redi	t	EG	Р	SC	SPA	CG	ПΛ	C	redi	t	EG	Р	C	GPA
30	PA		42		10	9	2	.52	CG	PA		84		44	8	5	5.33
DE	0	DC	28	НМ	0	0	С	0	DE	0	DC	26	НМ	4	0	С	0
AU	0	ES	6	BS	8	To	tal	42	AU	0	ES	22	BS	32	То	tal	84

RE-EXAM SPRING 2012

CHL214	ORGANIC CHEMICAL TECHNOLOG	GY (DC)	6	FF
CML264	MECHANICAL OPERATIONS (DC)		6	DD
EEL101	ELECTRICAL ENGINEERING (ES)		6	FF

60	- D A	С	redi	t	EG	Р	SC	SPA	CG	D.A.	С	redi	t	EG	Р	C	GPA
SGPA DE 0	18			24	_	1.33		CG	PA		90		47	2	5	.24	
DE	0	0 DC 12 HM 0		/ 0 O		С	0	DE	0	DC	32	НМ	4	00	С	0	
AU	0	ES 6 BS 0		To	tal	18	AU	0	ES	22	BS	32	Tot	tal	90		

GRADE CARD

Name: VINAI AGARWAL Enrolment No.: BT10CHE084

Branch: CHEMICAL ENGINEERING Degree: BACHELOR OF TECHNOLOGY

D . a			0						_ `			. 5/10.		JJ			٠.
Course			7	Γitle		(Cr	Gr	Course			T	itle			Cr	Gr
RE-EXA	AM AUTU	JMN 201	2						SPRING	2 2013							
CML262	CHEMIC	AL PROCE	SS CALCU	JLATIONS (DC)		6	DD	CML366	MASS TRA	ANSFER	R - II (DC)				6	FF
CML361	MASS T	RANSFER	- I (DC)				6	CD	CML367	HEAT TRA	NSFER	R-II (DC)				6	DD
CML362	HEAT TE	RANSFER I	(DC)				6	FF	CML368	CHEMICA	L REAC	TION ENGIN	EERING-I	(DC)		6	FF
CML363	CHEMIC	AL PROCE	SS EQUIP	MENT DES	IGN (DC)		6	FF	CML371	CHEMICA	L PROC	ESS MODEL	ING AND	SIMULATIO	N (DC	6 (DD
CML370	ENVIRO	NMENTAL	ENGINEER	RING (DE)			6	FF	CML374	OPTIMIZA	TION T	ECHNIQUES	(DE)			6	CD
CML375	ANALYT	ICAL METH	HODS FOR	CHEMICAL	L ANALYSIS	(DE)	6	FF	CML466	CHEMICA	L PLAN	T DESIGN (I	DC)			6	FF
	Credit	EGP	SGPA		Credit	EGP	⊤ c	GPA	CMP366	MASS TRA	ANSFER	R (DC)				2	AB
SGPA	36	54	1.50	CGPA	108	572		5.30	CMP367	HEAT TRA	NSFER	(DC)				2	AB
DE 12	DC 24 H)C 0	DE 2	DC 48 HN		OC	0	CMP371	CHEMICA	L PROC	ESS MODEL	ING AND	SIMULATIO	N (DC) 2	AB
AU 0			otal 36	1 — —	ES 22 BS		otal	108		Credit	EGP	SGPA		Credit	EG	P	CGPA
		00 0 10	Jiai 30	[AO 0	LO 22 DC	0 02 1	Otal	100	SGPA	42	132	3.14	CGPA	132	70	4	5.33
	IN 2013								DE 6	DC 36 HM	1 0	OC 0	DE 8	DC 66 F	IM 4	00	
CMD401		T PHASE I	` '				4	BB		ES 0 BS		Total 42	AU 0		SS 32	Tot	
CML374				INEERING ((DE)		6	FF					7.00	120 22 12	-0 02	1	uu <u>.</u>
CML461		PORT PHEN	,	,	(DO)		6	FF		M SPRIN	-	-				•	
CML462				NEERING II	` '		6	FF FF	CML366	MASS TRA		, ,	EEDINO I	(DO)		6	FF
CML463				RUMENTAT	ION (DC)		6 6		CML368			TION ENGIN		(DC)		6	DD FF
CML480 CML620		R CHEMICA ANE TECH					6	DD CD	CML466	1		T DESIGN (I	DC)	T	T	- 6	
CMP462			,	NEERING -II	I (DC)		2	BC	SGPA	Credit	EGP	SGPA	CGPA	Credit	EG	-	CGPA
CMP463				RUMENTAT	, ,		2	FF	33. A	18	24	1.33	00.70	138	72	8	5.28
CMP464					RAWING II (E		2	BB	DE 0	DC 18 HM	1 0	OC 0	DE 8	DC 72 F	IM 4	00	0
OWN 404	1	1	ī	1		- /	_		AU 0	ES 0 BS	0	Total 18	AU 0	ES 22 E	3S 32	Tot	al 138
SGPA	Credit	EGP	SGPA	CGPA	Credit	EGP	+	GPA	SPRING	2014							
	46	116	2.52	<u>ļ. </u>	158	844		5.34	CHL214	-	СНЕМІ	CAL TECHNO	OLOGY (I	DC)		6	FF
	DC 28 H		OC 0	-	DC 80 HN		oc	0	CHL336	POLYMER	ENGIN	IEERING (D	E) .	- /		6	FF
AU 0	ES 0 E	S 0 To	otal 46	AU 0	ES 22 BS	32 T	otal	158	CMD452	PROJECT		,	,			8	ВВ
RE-EXA	AM AUTU	JMN 201	3						CMD453	SEMINAR	AND G	ROUP DISCU	ISSION PF	ROGRAM (DC)	2	ВВ
CML374	PETROL	IUM REFIN	- IERY ENGI	INEERING ((DE)		6	FF	CML366	MASS TRA	ANSFER	R-II (DC)		·	,	6	FF
CML461	TRANSF	ORT PHEN	NOMENA (I	DE)			6	FF	CML466	CHEMICA	L PLAN	T DESIGN (I	DC)			6	FF
CML462	CHEMIC	AL REACT	ION ENGÍN	NEÉRING II	(DC)		6	FF	CSL101	COMPUTE	R PRO	GRAMMING	(ES)			8	FF
CML463				RUMENTAT			6	FF	MML420	RURAL TE	CHNOL	OGY (OC)				6	CC
CODA	Credit	EGP	SGPA	CODA	Credit	EGP	C	GPA	2024	Credit	EGP	SGPA	CODA	Credit	EG	Р	CGPA
SGPA	24	0	0.00	CGPA	158	844		5.34	SGPA	48	116	2.42	CGPA	174	96	0	5.52
		 	1	 					H		Ť		-	· · · · · ·	1		

Note: This grade card is exclusively for internal use

ОС

0

24

Abbreviations : Cr - Credits, Gr - Grade, AU - Audit, SPI - Semester Performance Index, CPI - Cumulative Performance Index, EGP - Earned Gade Points SGPA - Semester Grade Point Average, CGPA - Cumulative Grade Point Average, W - repeat the Course

Total

DE 20 DC 80 HM 4 OC

AU 0 ES 22 BS 32

(This Statement is subject to correction, if any)

DE 12 DC 12 HM 0

AU 0 ES 0 BS 0 Total

Date: 22-Jul-2014 Asst. Registrar (Examination)

0

DE 6 DC 28 HM 0 OC AU 0 ES 8 BS 0 Total DE 20 DC 90 HM 4

AU 0 ES 22 BS 32 Total

ОС

6

6

48