Alan Turing, 1936.	A a to Atala
On Computable Numbers with an	Αβριώνου
to the Entscheidungsfroblem.	
∀n>2. \$x,y,z €Z.	$\chi^n + y^n = z^n$
T= 3,14159265	-> 1) Intuición.
	2) Dando ejemplos.
Máquinas de turing	3) Comparar con otros maelos de
	Comput.

Registros: Po, ra, r2, r3 Cada registro toma un valor entre 0, 15. 164 x3 estados posibles 62. 13 6 x 3 0: inc r_1 1: dec r_2 2i jnz r2 $[r_0 = 10, r_1 = 9, r_2 = 1, r_3 = 6, 19 = 1]$ ro = 10, r2 = 9, r2 = 0, r3 = 6, 19 = 1 Vlando un AFD se puede modelar el comportamiento de walquier programa que use: · Asignaciones · Operaciones aritméticas/lógicas o It - While d'enre y wands el número de registros sea finito, y cada registro toma un número finito de volores.

Decimos que:	Deums que:	
7	M de cide L	M Semi-decide L
WEL	acepta	acepta
\ ,		
we L	re (naza	no acepta
		re grata o no termina

Sobre el tamaño del alfabeto

$$\Sigma = \{a, b, c, d\}$$

 $L = \mathcal{L}((a \mid c)^*)$

Afirmación: El lenguaje L es decidible.

Dem.

Podríamor codificari

Q HOO 6HOO1 CH10 dH11

Ej .: aabbb ccccc.

Teorema. Suma es decidible.

Es de cir, existe una M.T. M tal que

Dem.

$$A \rightarrow X_1 R$$
 $A \rightarrow X_1 R$
 $A \rightarrow R$

Teorema: Mult es decidible.

xxx bbb b exxxxxxxxxxxx

Teorema. Primos es decidible.

Ej. TT = 3.14159265...

566

Teorema. Digits Deli es decidible.

Def.
$$A_{AFD} = \{ \langle D, w \rangle |$$
 $W \in \mathcal{L}(D) \}$

Rewidenis que
$$D=(\Sigma,Q,\delta,q_0,F)$$
.

 Q
 Q
 Q
 Q

Por ejemplo:

Teorema. AAFD es decidible.

Teorema. AAFN es decidible.

Dem. Paso 1; Convertir el AFN N a un AFD D equivalente.

Pab2:

Ver & < D, w > E A

AFD

(Esto ya vimos que era de vidible).

Def. $A_{ER} = \{\langle R, w \rangle \mid R \text{ es un a E.R.}, w \in \mathcal{L}(R) \}$.

(alb)*, acab & AER

Teo. AER es decidible.

Dem.

Dada Una E.R. R:

 $\frac{Paso 1}{A}$. Convertir R a un AFN N tal que L(R)=L(N).

Palo 2: Ver s. < N, W> E AAFN.

(Esto ya vinos que erc decidible).

Def.
$$E_{AFD} = \{ \langle D \rangle \mid D \text{ AFD to. } \mathcal{L}(D) = \emptyset \}$$

Teorema. E_{AFD} es decidible.

Dem. S: $D = \{ \mathcal{L}, Q, \delta, q_o, F \}$,

 $X := \{ q_o \}$

While (hay algún estado $q \in X \text{ & } A$)

Algún símbolo $a \in \mathcal{L} \text{ & } A$
 $\mathcal{L}(q, a) \notin X$)

 $\mathcal{L}(D) = \emptyset \}$
 $X := \{ q_o \}$

While (hay algún estado $q \in X \text{ & } A$
 $\mathcal{L}(D) = \emptyset \}$
 $X := \{ q_o \}$

While (hay algún estado $q \in X \text{ & } A$
 $\mathcal{L}(D) = \emptyset \}$
 $X := \{ q_o \}$

$$\frac{\text{Def. } EQ}{\text{AFD}} = \left\{ \langle D_1, D_2 \rangle \middle| D_1, D_2 \text{ son AFD}, \\ \mathcal{L}(D_1) = \mathcal{L}(D_2) \right\}.$$

Teorema. El AFD es decidible.

Dem. Definimos este lenguaje:

$$L = \mathcal{L}(D_1) \setminus \mathcal{L}(D_2) \cup \left(\mathcal{L}(D_2) \setminus \mathcal{L}(D_1)\right)$$

$$\mathcal{L}(D_A)$$

observación:
$$R(D_1) = L(D_2) \iff L = \emptyset$$

Mai aun, el AFD E se puede constrir mecanicomente a partir de los automatas D1 y D2.

Por Ultimo:
$$\langle D_1, D_2 \rangle \in \mathbb{E}Q_{AFD}$$

Def. AMT = { < M, w > M es una méguine de Turiny,				
$M(\omega) = acepta$				
	,			
El probleme de determinar si				
Una cadena & E AMT				
Se llama el problema de la detención.				
-				
Halting problem	L es decidible			
	U AP			
Teorema. Amt es semi-decidible.	Les semi-decidible			
Es decir, existe una M.T. U				
tal que para toda cadena d				
$. \kappa \propto \in A_{MT}$ entonces $U(x) = acepta$				
. fi $\alpha \notin A_{MT}$ entonces $U(\alpha) = \operatorname{rechapa} \ \delta$				
no termina				
<u>Dem</u> . Construcción de la M.T. "U".				
Page 1 Meriticas and la sudance of since de				
Pato 1. Verificar que la cadena d sea de				
la forma <m, w="">. (Si no, rechazar).</m,>				
Paso 2.	Máquina U.			
- (M 40				
. Simular el comportamiento de la méguine de turing M				
Jobre la cadena W.				
. Si M(w) = acepta, entonces U acepta < MIW).				
· Si M(w)=rechaza, antonops U rechaza < M, w>.				
· ¿ Qué papa s' M(w) no termina?				
La máquina U tampoco va a terminar.				
Comentario: La náquina U se llama				
"máquina de Turing universal".				

∑ fijo

Hay lenguajes no semi-decidibles. Teorema Es decir, existe un lenguaje L tal que ho existe una M.T. M talque Yw. w∈L \(M(W) = acepta. (Hay lenguajes no de cidibles). Dem . Observación 1. M= {M | M es una máquina de Turing ?. er numerable, o sea M2 IN. Cualquier naquina de Turing M = (Z, T, Q, S, go, gaccor, gastoct). Le puede escribir codificándola como una Cadena finita de símbolos. Observación 2. Z* es numerable, Z* ≈ IV. · Observa Gión 3. L= { L | L = Z* y= 9(Z*). ho ès numerable, L & R. $\sum_{k=0}^{N} = \{ w_1, w_2, w_3, ... \}$ _ por el absurdo Supongamos que todos les lenguajes del conjunto L de pudi eran enumerar. es de cir que $\mathcal{L} = \{ L^{(1)}, L^{(2)}, L^{(3)}, ... \}$ m^{7} m^{5} (1) b(1) b(1) ··· 1(1) bi = true > w; E Li L(2) Considerar el lenguaje D b 2 b 3 b 4 ··· tal que para cada LEON wi ∈ D ⇔ bi = false.

wid L(i)

Progunta: El lenguaje D japarèce en la lista? ¿ Existe un jell tal que D= L(3)? Si existiera, tendriamos que:

Wj E L(d) (d) = false (Wj & L(d)) Contradicción. Por la tanta no es possible enumerar todal los lenguajes. $M \approx N$ $L \approx N$

AMT = } < M, w> | M es una M.T. y M (w) = acepta ? Amy es semi-decidible. Teorema. Amy no es decidible. (El Kalting problem es indecidible). Es decir no existe une MT "H" tal que Dem. Por el absurdo, sujongamos que existe una MT H tal que para toda Cadena d H(x) = Sacepta si x E AMT. (Querenos llegar a una contradicción). Vamos a construir otra máquina de Turing D, s: H (< M>, M >) = acepta $D(\langle M \rangle) = \begin{cases} c c nata \\ acep ta \end{cases}$ si H (<<M>,M>) = rechaza KM7,M7 E AMT = rechaza = acepta <<m>>, M) & AMT = { rechata = acepta $M(\langle M \rangle) = a cepta$ M(<M7) = rechata o D(<D)?

D(<D)) = } rechaza

auptor D(< D>) = Le (NO34)

Contradiction.

AMT = S(M, w) M es una M.T. y
M(w) = acepta g.
Sabemos que:
· Amt es semi-decidible.
· Amy no es decidible.
Observación. Si un lenguaje L es decidible,
Su complemento Z* 1 L también es decidible.
Teorema. So un lenguaje L es seni-decidible
y su complement & I' Les sem:-decidible, entonces Les decidible, (y Z* 2 también).
Dom.
· Como L es decidible, hay una MT Mz
tg: \text{\psi} \text{\psi} we L \ifftratername M_1 (w) = acepta.
· Como E* L es decidible, hay una MT Mz
tq ∀w. WEZ \L ← Mz(w) = acepta.
· Podemo (construir una hueva MT M3:
M1 w1 M2 w1
que simula en paralelo las máquinos M2 y M2.
· Si M ₁ (w)=acepta, M ₃ (w)=acepta.
· S. Mz (w) = acepta, M3 (w) = re Chata.
M docdo al lasa de l
Mz decide el lenguaje L.

Ejemplo de lenguaje que no es seni-devidible:

Considerar el Complemento de AMT.

L = Z* \ AMT.

Sabiamos que Amy era semi-decidible

pero no era decidible.

Si Eu complemento L fuera semi-decidible,

por el teorema anterior, Amy sería decidible.

(Absurdo).