# **U.S. HOURLY ELECTRICITY FORECASTS**

DIPESH MANANDHAR, SHANDIZ MONTAZERI ANDREW DEVRIES JOSH BODE



#### STUDY OBJECTIVES

#### WHAT?

- Pull multiple years of historical hourly demand data for each electric systems in the US
- Analyze the historical patterns
- Develop predictive models to forecast the hourly demand for the next and week

#### WHY?

- The electric market is a \$350 billion business per year in the U.S. alone.
- Peak demand drives infrastructure investments
- Peak demand lead to market price spikes
- Currently, each electric system develop its own forecasts.



# **DATA SOURCES**

| Data Description                                    |                                                                                                                                      | Link                                                           |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Map of electric systems                             | Lat/long for all the major US electric grids                                                                                         | https://www.eia.gov/realtime_gr<br>id/#/status?end=20181013T13 |
| Historical hourly actual data by operating system   | <ul><li>System</li><li>Date</li><li>Hour</li><li>MW (demand)</li></ul>                                                               | https://www.eia.gov/opendata/q<br>b.php?category=2122628       |
| Historical hourly forecast data by operating system | <ul><li>System</li><li>Date</li><li>Hour</li><li>MW (demand)</li></ul>                                                               | https://www.eia.gov/opendata/q<br>b.php?category=2122627       |
| Weather station locations and characteristics       | <ul> <li>Name and IDs</li> <li>Location, including lat/lon</li> <li>Dates for which weather<br/>station data is available</li> </ul> | https://www1.ncdc.noaa.gov/pu<br>b/data/noaa/isd-history.csv   |
| Historical weather data                             | <ul><li>Station</li><li>Date and hour</li><li>Temperature</li></ul>                                                                  | https://www1.ncdc.noaa.gov/pu<br>b/data                        |

#### Electric data

- 51 systems
- 3 year of data each
- 1.7 M observations

### **Weather Data**

- 261 weather stations
- 3 years of data
- XX observations

| Datasets                                                                                 | Analysis dataset                                                                                                                                     | Analysis                                                                                                                                                                                                                                        | Outputs                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of operating systems  Historical demand data  Historical weather data  Geo location | Historical data - System - Date - Hour - Time zone - MW (demand) - Temp (various) - Day of week - Month - Lagged demand  Training data  Testing data | ANALYZE AND PLOT HISTORICAL DATA  Feature Development - Correlations - Assess patterns  TEST MODELS - Linear regression - Net Elastic - Random Forrest Regressor - Support Vector Regression  SCALE TO ALL LOCATIONS  ASSESS ACCURACY OF MODELS | <ul> <li>Historical analysis</li> <li>Model validation plots</li> <li>Prediction by location and date</li> <li>Comparison of predictive accuracy</li> <li>Heat map showing where demand is highest and how close it is to capacity</li> <li>Plot showing accuracy of models</li> </ul> |

### **DATA EXPLORATION - DAILY PEAK DEMAND VARIES WITH WEATHER**



- Non-linear, asymmetric pattern
- When it gets very hot, we use more electricity (AC)
- When it get very cold, we use more electricity (electric heating)
- The varies slightly by location because of
  - Differences in weather
  - Difference in air conditioning and electric penetration
  - Differences in the mix of residential, commercial and industrial customers

# DATA EXPLORATION – DEMAND ALSO VARIED BY HOUR DUE TO OCCUPANCY PATTERNS



## FEATURE DEVELOPMENT - CORRELATIONS



- Assess correlation with different of variables
- Plot out the relationship due to non-linearity
- Include some lags
- Split temperature at point where no one is using heating /cooling
- Decision separately model hours and weekday/weekend days

#### **MODELS**

- Modeling techniques tested
  - Linear regression with polynomials
  - Net Elastic Regression identifies the best features and drops out irrelevant ones
  - ➤ Random Forest Regression similar to random forest trees
  - Support Vector Regression Takes way too long and did not yield improvements
- Initial testing was done for one location
- Wrote function that automated the process

# 7,344 Models

- > 51 systems
- > 3 modeling techniques
- 48 model per systems (by hour and weekday/weekend)

# LETS LOOK AT SOME RESULTS!