Amendments to the Claims

1-71. (Canceled).

72. (Currently amended) A compound having the structural formula (A),

$$R^{4}$$
 R^{3}
 R^{3}
 R^{25}
 R^{25}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}

wherein:

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁.C₁₀ alkoxy, C₁.C₁₀ thioalkyl, C₁.C₁₀ alkyl-amino, C₁.C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each is are optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R² and R⁴ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, OF

- and heterocycle, provided that or when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from the group consisting of (=O), (=S), and =N R^{27} ;
- X is selected from the group consisting of C₁.C₁₀ alkylene, C₂₋₁₀ alkenylene or and C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is a heterocycle substituted with one or more R¹⁷, provided that R³ optionally substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl;
- R⁵ is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkylthio, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, O and heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkoxy, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, - CO_2R^{18} , NO_2 , - NR^7R^8 , C_{1-18} haloalkyl, - $C(=O)R^{18}$, - $C(=S)R^{18}$, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen,
 C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle,
 -C(=O)R¹²; -C(=S) R¹², and an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;

- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, -CH₂OCH(=O)R^{9a}, or and -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R¹⁰-and R¹¹ are-independently is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocycle, or and an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or and an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or and an amino acid residue;
- each R¹⁷ is independently selected from the group consisting of <u>hydrogen</u>, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈ halogenated alkynyl, C₂₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, <u>C₃₋₁₀ cycloalkyl</u>, C₃₋₁₀ cycloalkynyl, halogen, OH, CN, NO₂, NR⁷R⁸, haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, CO₂H, CO₂R¹⁸, arylsulfoxide, arylsulfone, arylsulfonamide, <u>arylalkyl</u>, arylalkyloxy, arylalkylthio, heterocyclic, and C₁₋₁₈ hydroxyalkyl, where each of said <u>aryl</u>, aryloxy, arylthio, arylalkyl, arylalkyloxy, arylalkylthio, heterocycle, C₁₋₁₈ hydroxyalkyl, arylsulfoxide, arylsulfone, <u>or</u> arylsulfonamide is optionally substituted with one or more R¹⁹;
- each R¹⁹ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyloxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸,

- -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18})alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio of and aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;
- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, <u>carboxylester-substituted heterocycle</u>, or and $-C(=S)R^{12}$;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- R^{27} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, (C_{3-10} cycloalkyl)- C_{1-6} alkyl, aryl, and aryl(C_{1-18})alkyl; and salts, tautomers, <u>and</u> stereoisomers and solvates thereof.

73. – 78. (Cancelled)

79. (Currently amended) A compound having the structural formula (C) (A)

$$R^4$$
 R^5
 R^{25}
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

wherein:

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁₋C₁₀ alkoxy, C₁₋C₁₀ thioalkyl, C₁₋C₁₀ alkyl-amino, C₁₋C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are is optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹-is not hydrogen or C₁₋₆-alkyl;
- R² and R⁴ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or and heterocycle, provided that when one of R²⁵ or R²⁶ is present, then either R² or R⁴ is selected from the group consisting of (=O), (=S), and =NR²⁷;
- X is selected from the group consisting of $C_1.C_{10}$ alkylene, C_{2-10} alkenylene or and C_{2-10} alkynylene, where each optionally includes one or more heteroatoms

- selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is a 4-, 7-, 8- or 9-membered aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocycle, each of which is optionally substituted with one or more R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, provided M-Q-R³ is not biphenyl, and provided that R³ substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl;
- R⁵ is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkylthio, C_{3-10} cycloalkylthio, C_{3-10} cycloalkynyl, or and heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkoxy, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -CO₂R¹⁸, -NO₂, -NR⁷R⁸, C_{1-18} haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen,
 C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle,
 -C(=O)R¹²; -C(=S) R¹², and an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;

- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, -CH₂OCH(=O)R^{9a}, or and -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocycle, or and an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or and an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen,
 C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl,
 OF and an amino acid residue;
- each R¹⁷ is independently MQ- wherein M is a ring optionally substituted with one or more R¹⁹, and Q is a bond or a linking group connecting M to R³ that has 1 to 10 atoms and is optionally substituted with one or more R¹⁹;
- each R¹⁹ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyloxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C₁₋₁₈ alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈)alkylthio or aryl(C₁₋₁₈)alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C₁₋₁₈ alkoxy, heterocycle, C₁₋₁₈ haloalkyl, heterocycle alkyl, heterocycle connected to R¹⁷ by alkyl, alkoxyalkoxy or and halogen;

- R²⁰ and R²¹ are independently selected from the group consisting of hydrogen,
 C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl,
 -C(=O)R¹², or -C(=S)R¹²;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ eycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- $-R^{27}$ is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{3-10} eyeloalkyl, $(C_{3-10}$ eyeloalkyl)- C_{1-6} alkyl, aryl, and aryl(C_{1-18})alkyl; and salts, tautomers, and stereoisomers and solvates thereof.
 - 80. (Cancelled)
- 81. (Currently amended) A compound according to claim 72, wherein R^3 is isoxazolyl substituted with one to three R^{17} .
 - 82.-85. (Cancelled)
- 86. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 72.
 - 87. -89. (Cancelled)
- 90. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 79.
- 91. (New) The compound of claim 72, wherein YR¹ is halophenyl or halomethyl-substituted phenyl.

- 92. (New) The compound of claim 91, wherein halophenyl is orthofluorophenyl.
- 93. (New) The compound of claim 72, wherein R^{17} is aryl or a heterocycle further substituted with 1, 2 or 3 R^{19} .
- 94. (New) The compound of claim 72, wherein YR^1 is not an unsubstituted C_{3-10} cycloalkyl.
- 95. (New) The compound of claim 72 wherein R¹⁹ is trihalomethyl, trihalomethoxy, alkoxy or halogen.
- 96. (New) The compound of claim 72, wherein R^1 is aryl or aromatic heterocyle substituted with 1, 2 or 3 R^6 and wherein R^6 is halogen, C_{1-18} alkoxy or C_{1-18} haloalkyl.
 - 97. (New) The compound of claim 72, wherein Y is a bond.
- 98. (New) The compound of claim 72, wherein X is selected from the group consisting of -CH₂-, -CH(CH₃)-, -CH₂-CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, -(CH₂)₂₋₄-, -(CH
 - 99. (New) The compound of claim 72, wherein X is methylene.
- 100. (New) The compound of claim 72, wherein R^3 is a heterocycle substituted with 0 to 3 R^{17} .

- 101. (New) The compound of claim 100, wherein the R³ is an aromatic heterocycle.
- 102. (New) The compound of claim 101, wherein the heterocycle contains 1, 2 or 3 N, S or O atoms in the ring, is linked to X through a ring carbon atom and contains 4 to 6 total ring atoms.
- 103. (New) The compound of claim 72, wherein R^{17} is selected from the group consisting of C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl; arylalkyloxy; arylalkylthio and heterocycle, each being unsubstituted or substituted with 1 or more R^{19} .
- 104. (New) The compound of claim 72, wherein R^9 and R^{18} are H, OH or alkyl.
 - 105. (New) The compound of claim 72, wherein R⁵ is H.
 - 106. (New) The compound of claim 72, wherein R⁶ is halogen.
- 107. (New) The compound of claim 72, wherein R^7 , R^8 , R^{11} , R^{15} , R^{16} , R^{20} , and R^{21} are independently H or C_{1-18} alkyl.
 - 108. (New) The compound of claim 72, wherein R¹² is OH or alkyl.
- 109. (New) The compound of claim 72, wherein R^{19} is selected from the group consisting of H; C_{1-18} alkyl; C_{2-18} alkenyl; C_{2-18} alkynyl; C_{1-18} alkoxy; alkynyloxy; C_{1-18} alkylthio; C_{3-10} cycloalkyl; C_{4-10} cycloalkenyl; C_{4-10}

cycloalkynyl; halogen; OH; CN; cyanoalkyl; NO_2 ; $NR^{20}R^{21}$; haloalkyl; haloalkyloxy; $C(=O)R^{18}$; $C(=O)OR^{18}$; Oalkenyl $C(=O)OR^{18}$; - Oalkyl $C(=O)NR^{20}R^{21}$; aryl; heterocycle; -Oalkyl $OC(=O)R^{18}$; $C(=O)N(C_{1-6}$ alkyl), $N(H)S(O)(O)(C_{1-6}$ alkyl); arylalkyloxy; aryloxy; arylalkyloxy; and arylalkyl; each of which is unsubstituted or substituted with 1 or more =O; $NR^{20}R^{21}$; CN; alkoxy; heterocycle; haloalkyl- or alkyl-substituted heterocycle; and heterocycle linked to R^{17} by alkyl; alkoxyalkoxy and halogen.

- 110. (New) The compound of claim 109, wherein R¹⁹ is independently selected from the group consisting of halogen, NR²⁰R²¹, alkoxy, halo-substituted alkyl and halo-substituted alkoxy.
- 111. (New) The compound of claim 72, wherein R^{25} and R^{26} are not present.
- 112. (New) The compound of claim 72, wherein haloalkyl or haloalkyloxy is -CF₃ or -OCF₃.
- 113. (New) The compound of claim 72, wherein Y is a single bond, and R¹ is phenyl.
- 114. (New) The compound of claim 79, wherein Y is a single bond, and R¹ is aryl.
- 115. (New) The compound of claim 79, wherein X is C_{1} - C_{10} alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene.
 - 116. (New) The compound of claim 79, wherein R³ is a heterocyle.

- 117. (New) The compound of claim 79, wherein R³ is a heterocycle substituted with R¹⁷ where Q is a bond and M is aryl.
- 118. (New) The compound of claim 79, wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is aryl.
- 119. (New) A method comprising administering to a subject in need of treatment or prophylaxis of a viral infection an anti-virally effective amount of a compound of claim 72 or claim 79.
- 120. (New) The method of claim 119, wherein the viral infection is an infection of a hepatitis-C virus.
- 121. (New) The method of claim 119, further comprising administering at least one additional antiviral therapy to the subject.
- 122. (New) The method of claim 121 wherein the additional therapy is selected from the group consisting of an interferon alpha and ribavirin.
- 123. (New) The method of claim 119, wherein the viral infection is an infection from a virus belonging to the family of the Flaviridae and the Picornaviridae.
- 124. (New) The method of claim 119, wherein the viral infection is an infection from a Coxsackie virus.
- 125. (New) The method of claim 119, wherein the viral infection is an infection from a Bovine Viral Diarrhea Virus.