CSCU9V4 Systems

Systems lecture 13
Computer Organisation

Peripherals 2 - SSDs and Optical Disks

Storage: Where it's come from and is going to

History

- First SSD not in 2007, more like 1976...
 - Only had capacity of 2 MB
- Fast-forward to 2007:
 - NAND Flash (Invented in 1980)
 - Non-Volatile Storage System
 - Used in USB Flash Drives, MP3 Players & SSDs
 - Multiple types: Single Level Cell(SLC) & Multi Level Cell(MLC)
 - Guess and Check reading and writing

Reading & Writing

- Apply Voltage
- Wait for Reaction
 - Return Result or
 - Apply More Voltage, Repeat

Performance of SLC vs. MLC

• Difference?

- Since there are only 2 possible values of SLC it only takes 1 voltage to return a 0 or 1
- MLC requires a maximum of 3 different voltages to assure that the value will be found.
- Random Read Speeds:
 - SLC: 25 μs MLC: 50 μs
- Random Write Speeds:
 - SLC: 250 μs MLC: 900 μs

What makes an SSD special?

- We've all used SSDs before, the same technology is used in USB Flash Drives and they only function around 5-40MB/s.
- What if we use 10 USB Flash Drives in raid as a HDD?
 - Anywhere between 40GB 320GB
 - Possible access speed of 50-400MB/s

Structure on the Board

- Each SSD board contains any number of NAND ICs, chip used to store data, all depending on how expensive the board is.
- Each SDD board also contains any number of support channels, normally one per NAND IC, which allows the controller to communicate to each NAND IC.

OCZ Revodrive

Parallelism!

 The sheer speed of a SSD comes from the fact that it can access each of its NAND IC at exactly the same time.

 While Platter HDDs like to have reads/writes to be in the same location for future access, SSDs would rather have the data spread evenly across all of its NAND ICs for maximum accessibility.

A Holy Grail?

- SSDs seem to have it all:
 - Almost instantaneous read and write times
 - The ability to read or write in multiple locations at once
 - The speed of the drive scales extremely well with the number of NAND ICs on board

But what is the cost?

What about Erasing?

- To erase the value in flash memory the original voltage must be reset to neutral before a new voltage can be applied, known as write amplification.
- Random Erase Speed:
 - SLC 2ms per block MLC 2ms per block
- Blocks?

Memory Structure

- 1 or 2 bits does us no good
- Pages!!!
 - 1 Page = 4KB (we'll revisit `downstream')
- Block = 128 Pages = 512 KB
- Plane = 1024 Blocks = 512 MB
 - Depending on the board the combining keeps going up until you get a single chip, NAND IC, on the board

The Achilles' Heel of SSDs

- Caveat: write and read to a single page of data from a SSD but entire blocks must be deleted to release the page?
- Maybe acceptable since enables single-page read/writes.
 - Except: the page has to be empty before we can write to it!
- To make matters worse, a standard MLC can only be erased 10,000 times before it goes bad.
- Solution: Lets not actually delete files when they are deleted on the OS, much like a platter drive.

The Original Solution

- Rather then deleting the block and writing the modified block with the new page back in the original location just write the modified block to another location in memory.
- Believe it or not drives were actually shipped with this solution, never thinking about what happened when the drive filled up.
- After the drive filled up the amount of time to write a block of data went from 250 μ s to 250 μ s + 2ms since it also had to delete a block. This actually made the SSDs slower then a regular platter drive when writing.

Example:

– Hypothetical SSD:

Page Size: 4KB

Block Size: 5 Pages

Drive Size: 1 Block

Read Speed: 2 KB/s

Write Speed: 1 KB/s

• Lets write a 4kb text file to the brand new SSD.

• Now lets write an 8kb pic file to the almost brand new SSD, thankfully there's space.

Now lets delete the txt file in the first page.

• Finally lets write a 12kb pic to the SSD. How long should it take? 1 kb/s write speed

- What's wrong here?
 - The OS is told there are 3 open pages on the SSD when there are only 2 available.
 - Time for the SSD to do something fancy to open up the space.
 - Banking on the quality of the SSD hopefully it has an onboard cache otherwise it has to use ram, taking much longer and consuming CPU cycles.

1

 Step 1: Read block into cache

2

• Step 2: Delete page from cache

3

 Step 3: Write new pic into cache

4

5

 Step 4: Delete the old block on SSD

Step 5: Write cache to SSD

What's happening?

- The OS only thought it was writing 12 KBs of data when in fact the SSD had to read 12 KBs and then write 20KBs, the entire block.
- Since the SSD is quite slow the operation should have taken 12 secs but actually took 26 seconds, resulting in a write speed of .46KB/s not 1KB/s
- Can the problem fixed, thereby saving SSDs from an early grave?

Trim to the Rescue in 2009

- One Idea: delete the file when it is deleted from the OS, or a relatively short time afterwards, and clear out the page in the block.
- Actually this fixes the problem of running out of space, but what happens when we try to overwrite a file, ie saving an updated word document?
- Unfortunately there is no way around having to read the block containing the original file into cache and deleting it, however there is a choice to do it before or after the write. Which is better?

Strange Side Effects

 So what happens when I want to do a fresh install of my OS on the HDD?

 Should I just follow the standard reformat option and install like normal?

There's a Command for That

- Believe it or not there is actually a command for "trimming" the entire drive so it appears brand new, except for the fact that the life span of each NAND cell has been decreased by one.
 - Intel and many of the SSD manufactures supports a command called HDD ERASE that permanently deletes the data on the drive.

Additional Food for Thought

- Data Recovery?
 - On a standard HDD data recovery of deleted files is quite easy because the actual bits are still on the HDD since the HDD doesn't actually delete them.
 - What happens with TRIM?
 - Severely reduces the possibility of locating deleted files on the drive, making computer forensics impossible.

Conclusion on SSDs

• Pros:

- SSDs are extremely fast
- SSDs are easy to use
- SSDs are the `future' of media storage

• Cons:

- SSDs are expensive
- SSDs are constantly upgrading
- SSDs are complicated to understand
- (arguably) lower life span.

Optical secondary storage

- CD-ROM
 - Read Only Memory
- CD-Rs
 - recordable CDs,
 - used extensively for data distribution and archival data.
- CD-RWs
 - rewritable CDs
 - relatively expensive.
- DVD
 - digital video/versatile disks
 - used for archiving/data distribution
 - even more data!
 - 4 Gbytes or more.
- DVD-Rs
 - Writable DVDs: not as well standardised.
- Bluray

CD-ROMs: intro

- CDs have been around since about 1980.
 - see Tanenbaum Section 2.3.7.
- originally used for recording music.
- used now also for recording data, using the same technology
 - mature technology
 - standard
 - 12cm across
 - 1.2mm thick
 - 15mm hole
 - standard encoding
- mass produced players
- data is recorded in a single continuous spiral
 - like an old-fashioned gramophone record (LP)
 - on the spiral there are pits and lands
 - pits are depressions
 - lands are the areas between the pits

CD-ROMs: reading

- spiral, unlike magnetic HD
- constant linear speed, so a variable rotational speed
- 120cm per second
- 530rpm on the inside
- 200rpm at the outer edge
- 600 spirals per mm
- full track is 5.6 km long
- 650 Mbytes approx.

a bit is the land-pit transition

CD-ROMs: reading

- surface is with read by a 0.78 micron wavelength laser and a photodiode
- read from polycarbonate side ... pits therefore stick "out" (bumps)
- if detector has "bright" reflection it's land; the bumps seem dark

CD-ROMs: data encoding (1) • a single byte • 14 bits represents 8 bits of "data" Symbols of ____ 14 bits each • first level of error correction 42 Symbols make 1 frame Frames of 588 bits, each containing _____ 24 data bytes 98 Frames make 1 sector Preamble Mode 1 a sector of 98 frames: ____ 98x42 symbols 00000000 or (588 x 98)/8 = 7203 bytes Mode 1 sector **ECC** Data (2352 bytes) Bytes 16 288 2048 • 42 symbols x 14 bits = 588 bits • 24 symbols have "data" • the remainder are for errors **CCITT yellow book (1984)** CSC9V4 - Systems second level of error correction

Tanenbaum SCO

CD-ROMs: data encoding (2)

CD-ROMs: data encoding (3) Tanenbaum SCO

CCITT yellow book (1984)

CD-ROMs: data encoding (4)

- designed to be highly resilient to errors
- 14-bit coding for each byte
 - 14 -> 8 coding via look-up table
 - allows error-correction (can fix any 2-bit errors).
- 1 frame = 42 symbols (588 bits) used to form 192 data bits.
 - corrects short burst errors
- (this much is still common between music and data CDs.)
- 98 frames is a CD-ROM sector:
- A sector consists of
 - 16-byte preamble (hex 00FF...FF00, then sector number)
 - 2048 bytes of data
 - 288-byte error-correcting code
 - ...and this can detect and correct any remaining errors

DVDs

Tanenbaum SCO

- Digital Video Disk
- Digital Versatile Disk
- smaller features than CDs:
 - 0.4 Vs 0.8 micron
 - more features per unit length
 - more spirals per unit length
 - needs a 0.65 micron laser

- 4 variations:
 - single-sided: 4.76b
 - 55 & dual layer: 8.5 Gb
 - double-sided: 9.46b
 - DS & dual layer: 176b
- 2nd layer's features are larger

Systems lecture 13 (Per 2) Slide 36

Issues

- Lifetime
 - How long will the data on a disc last? Depends on temperature it's kept at.
 - Generally less for -RW types than for -R types.
- Format creep
 - Will one be able to find a reader for this data in 10 or 20 years?

End of lecture