Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 по дисциплине:

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

«Построение математической модели задачи линейного программирования»

Выполнил	АСУб-20-2		Арбакова А.В.
-	шифр группы	подпись	Фамилия И.О.
Проверил			
			Китаева О.И.
·	должность	подпись	Фамилия И.О.

1. Постановка задачи.

Цель работы: Приобретение навыков построения математических моделей задач линейного программирования, получение навыков решения задач в MS Excel.

Задание: Построить математическую модель для задачи индивидуального варианта, решить задачу графическим методом, симплексметодом и с использованием надстройки Поиск решения MS Excel, сравнить полученные результаты и дать их экономическую интерпретацию.

Задача 2

С железнодорожной станции ежедневно отправляются скорые и пассажирские поезда. Известны наличный парк вагонов, из которых можно формировать поезда и количество пассажиров, вмещающихся в каждый из вагонов. Определить оптимальное число скорых и пассажирских поездов из условия максимального числа перевозимых пассажиров, исходя из того. Что пропускная способность дороги — не более шести пассажирских поездов в день. В табл.2 приведены исходные данные задачи.

Вагоны купейные плацкартные мягкие Скорый поезд 5 Пассажирский поезд 6 1 Число пассажиров 58 40 32 30 Парк вагонов 88

Таблица 2

2. Математическая модель задачи.

Обозначим переменные:

 x_1 – количество скорых поездов

 χ_2 — количество пассажирских поездов

Число перевозимых пассажиров:

$$z = a_1 \times x_1 + a_2 \times x_2$$

где a_1 и a_2 – вместимость скорого и пассажирского поездов

По условию задачи получим:

$$a_1 = 5 \times 58 + 4 \times 40 + 3 \times 32 = 546$$

 $a_2 = 8 \times 58 + 6 \times 40 + 32 = 736$

Целью задачи является определение среди всех допустимых значений x_1 и x_2 таких, которые максимизируют число перевозимых пассажиров, т. е. целевую функцию:

$$z = 546 \times x_1 + 736 \times x_2 \rightarrow max$$

Перейдем к ограничениям, которые налагаются на x_1 и x_2 :

1. Количество поездов не может быть отрицательным, следовательно:

$$x_1 \ge 0$$
 и $x_2 \ge 0$

2. Ограничение по парку плацкартных вагонов:

$$5 \times x_1 + 8 \times x_2 \le 88$$

3. Ограничение по парку купейных вагонов:

$$4 \times x_1 + 6 \times x_2 \le 72$$

4. Ограничение по парку мягких вагонов:

$$3 \times x_1 + x_2 \le 30$$

5. Ограничение на пропускную способность дороги – не более шести пассажирских поездов в день:

$$x_2 \ge 6$$

Таким образом, математическая модель данной задачи имеет следующий вид:

$$z = 546 \times x_1 + 736 \times x_2 \to max$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \ge 6$$

3. Результаты решения задачи графическим методом.

Для того чтобы решить задачу графически методом, построим область допустимых решений, т.е. решим графически систему неравенств.

Построим каждую прямую и определим полуплоскости, заданные неравенствами:

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$
$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \ge 6$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \leq 88 \\ 3 \times x_1 + x_2 \leq 30 \end{cases}$$
 Помножим $3 \times x_1 + x_2 \leq 30$ на 8 :
$$\begin{cases} 5 \times x_1 + 8 \times x_2 \leq 88 \\ 24 \times x_1 + 8 \times x_2 \leq 240 \\ -19x_1 = -152 \end{cases}$$
 $x_1 = 8$ $x_2 = 6$

Следовательно, целевая функция будет равна:

$$z = 546 \times 8 + 736 \times 6 = 8784$$

Результат решения задачи, полученный с помощью графического метода:

$$z = 8784$$
$$x_1 = 8$$
$$x_2 = 6$$

4. Результаты решения задачи с использованием симплексметода.

$$z = 546 \times x_1 + 736 \times x_2 \to max$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \ge 6$$

Для построения первого опорного плана систему неравенств приведем к каноническому виду или же к системе уравнений путем введения дополнительных переменных:

$$z - 546 \times x_1 - 736 \times x_2 = 0$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 + x_3 = 88 \\ 4 \times x_1 + 6 \times x_2 + x_4 = 72 \\ 3 \times x_1 + x_2 + x_5 = 30 \end{cases}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 + x_6 \ge 6 \quad x_3 \ge 0 \quad x_4 \ge 0 \quad x_5 \ge 0$$

Получаем симплекс-таблицу:

Базис	X1	X2	X3	X4	X5	X6	b_i
X3	5	8	1	0	0	0	88
X4	4	6	0	1	0	0	72
X5	3	1	0	0	1	0	30
X6	0	1	0	0	0	1	6
	-546	-736	0	0	0	0	0

Проверка оптимальности — если в последней строке есть отрицательные элементы, то план не оптимальный, поэтому т.к. -546 и -736 отрицательные элементы, то план не оптимальный.

-736 является минимальным элементом из последней строки. Делим b_i на разрешающий столбец x_2

Базис	X1	X2	X3	X4	X5	X6	b_i	
X3	5	8	1	0	0	0	88	88:8=11
X4	4	6	0	1	0	0	72	72:6=12
X5	3	1	0	0	1	0	30	30:1=30
X6	0	1	0	0	0	1	6	6:1=6
	-546	-736	0	0	0	0	0	

 x_6 будет разрешающей строкой.

Базис	X1	X2	X3	X4	X5	X6	b_i	
X3	5	8	1	0	0	0	88	11
X4	4	6	0	1	0	0	72	12
X5	3	1	0	0	1	0	30	30
X6	0	1	0	0	0	1	6	6
	-546	-736	0	0	0	0	0	

Получаем таблицу, где первая строка помножается на 8, вторая строка на 6, третья на 1, а пятая на 736:

Базис	X1	X2	X3	X4	X5	X6	b_i	
X3	5	0	1	0	0	-8	40	
X4	4	0	0	1	0	-6	36	
X5	3	0	0	0	1	-1	24	
X2	0	1	0	0	0	1	6	

		_	_	_	_		
516	\cap	\wedge	\sim	\cap	726	1116	
1-340		()	()	()	/ 10	4410	
570	U	U	U	U	150	1110	

-546 является минимальным элементом из последней строки.

Делим b_i на разрешающий столбец x_1

Базис	X1	X2	X3	X4	X5	X6	b_i	
X3	5	0	1	0	0	-8	40	40:5=8
X4	4	0	0	1	0	-6	36	36:4=9
X5	3	0	0	0	1	-1	24	24:3=8
X2	0	1	0	0	0	1	6	
	-546	0	0	0	0	736	4416	

8 является минимальным получившимся элементом, поэтому строка

x_3 будет разрешающей строкой.

Базис	X1	X2	X3	X4	X5	X6	b_i	
X3	5	0	1	0	0	-8	40	8
X4	4	0	0	1	0	-6	36	9
X5	3	0	0	0	1	-1	24	8
X2	0	1	0	0	0	1	6	
	-546	0	0	0	0	736	4416	

Получаем таблицу:

•		•						
Базис	X1	X2	X3	X4	X5	X6	b_i	
X1	1	0	1/5	0	0	-8/5	8	
X4	0	0	-4/5	1	0	2/5	4	
X5	0	0	-3/5	0	1	19/5	0	
X2	0	1	0	0	0	1	6	
	0	0	546/5	0	0	-688/5	8784	

-688/5 является минимальным элементом из последней строки.

Делим b_i на разрешающий столбец x_6

Базис	X1	X2	X3	X4	X5	X6	b_i	
X1	1	0	1/5	0	0	-8/5	8	
X4	0	0	-4/5	1	0	2/5	4	4:(2/5)=10
X5	0	0	-3/5	0	1	19/5	0	0:(19/5)=0
X2	0	1	0	0	0	1	6	6:1=6
	0	0	546/5	0	0	-688/5	8784	

0 является минимальным получившимся элементом, поэтому строка

x_4 будет разрешающей строкой.

Базис	X1	X2	X3	X4	X5	X6	b_i	
X1	1	0	1/5	0	0	-8/5	8	
X4	0	0	-4/5	1	0	2/5	4	10
X5	0	0	-3/5	0	1	19/5	0	0
X2	0	1	0	0	0	1	6	6
	0	0	546/5	0	0	-688/5	8784	

Получаем таблицу:

Базис 🛭 🕽	X1	X2	X3	X4	X5	X6	b_i	
-----------	----	----	----	----	----	----	-------	--

X1	1	0	-1/19	0	0	8/19	8	
X4	0	0	-14/19	1	0	-2/19	4	
X6	0	0	-3/19	0	1	5/19	0	
X2	0	1	3/19	0	0	-5/19	6	
	0	0	1662/19	0	0	688/19	8784	

Проверим на критерий оптимальности — среди значений последней строки нет отрицательных, поэтому таблица определяет оптимальный план задачи.

Оптимальный план можно записать так:

$$x_1 = 8$$
 $x_2 = 6$
 $z = 546 \times 8 + 736 \times 8 = 8784$

5. Результаты решения задачи с помощью Excel-таблиц.

На рабочем листе введем числовые данные задачи.

Обозначим переменные:

 x_1 – количество скорых поездов

 x_2 – количество пассажирских поездов

Число перевозимых пассажиров:

$$z = a_1 \times x_1 + a_2 \times x_2$$

где a_1 и a_2 – вместимость скорого и пассажирского поездов.

По условию задачи получим:

$$a_1 = 5 \times 58 + 4 \times 40 + 3 \times 32 = 546$$
 $a_2 = 8 \times 58 + 6 \times 40 + 32 = 736$

a1

a2

546

736

Перейдем к ограничениям, которые налагаются на x_1 и x_2 .

	Условия					
5*x1+8*x2		<=	88			
4*x1+6*x2		<=	72			
3*x1+x2		<=	30			
x2		<=	6			
x1		>=	0			
x2		>=	0			

Поскольку целевая функция:

$$z = 546 \times x_1 + 736 \times x_2 \rightarrow max$$

То в ячейке целевой функции применим формулу:

=СУММПРОИЗВ(В18:С18;В21:С21)

Поскольку ячейки оптимального решения не содержат данных, значение целевой функции пока 0.

Выбираем команду «Поиск решения» и в появившееся диалоговое окно вводим данные.

Получаем результат вычислений задачи:

			Условия			
x1	x2		5*x1+8*x2	88	<=	88
8	6		4*x1+6*x2	68	<=	72
			3*x1+x2	30	<=	30
a1	a2		x2	6	<=	6
546	736		x1	8	>=	0
			x2	6	>=	0
елевая (функция					
8784						

Результат решения задачи, полученный с помощью Excel-таблиц:

$$z = 8784$$

$$x_1 = 8$$

$$x_2 = 6$$

6. Экономическая интерпретация полученных результатов.

По результатам, полученными различными методами решения задачи, т.е. с помощью графического метода, симплекс-метода и Excel-таблиц, можно определить, что оптимальное число скорых и пассажирских поездов, из условий максимального числа перевозимых пассажиров, будет равно 8 скорым поездам и 6 пассажирским поездам, что и требовалось найти по условию задачи. С определенными условиями выявлено, что оптимальным решением будет 88 плацкартных, 68 купейных и 30 мягких вагонов. Все условия соблюдены со значением целевой функции — 8784.