Введение в математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай)

8 лекция

Содержание

1 Дисклеймер

Эта лекция еще оффициально в стадии разработки, так что она не содержит всей информации из лекции

2 Еще что-то

Nt. $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность. $PL(\{x_n\}_{n=1}^{\infty}$ - замкнутое множество.

Nt.

$$\{x_n\}_{n=1}^{\infty} \cup PL(\{x_n\}_{n=1}^{\infty}) = cl(\{x_n\}_{n=1}^{\infty})$$

Nt. $\mathbb{Q} = \{P_n\}_{n=1}^{\infty}$ множество m.

3 Предел функции.

Def 1. Под функцией, если не оговорено обратное, понимаем(однозначное) отображение $f: E \to \mathbb{R}$, где $E \subset \mathbb{R}$, $E \neq \varnothing$.

Def 2. Пусть $\varepsilon > 0, x_0 \in \hat{\mathbb{R}}$. Тогда проколотой ε окресностью точки x_0 $U_{\varepsilon}(x_0) := U_{\varepsilon}(x_0) \setminus x_0$.

 $\mathbf{Nt.}$ Если $x_0=\pm\infty$ или $x_0=\infty$ проколотая ε окресность совпадает с обычной.

Def 3 (Предела функции по Коши). Пусть $x_0 \in \hat{\mathbb{R}}$ и пусть $A \in \hat{\mathbb{R}}$. $f: U_{\varepsilon}(x_0) \to \mathbb{R}$. Вудем говорить, что A - предел функции f в точке x_0 и записывать $\lim_{x\to x_0} f(x) = A$ или $f(x) \to A, x \to x_0$, если

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) \in (0, \delta_n] : \forall x \in U_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$

Def 4. Псоледовательностью Гейне в точке $x_0 \in \hat{\mathbb{R}}$ называется такая числовая последовательность $\{x_n\}_{n=1}^{\infty} \in \mathbb{R}$, что

1.
$$\lim_{n\to\infty} x_n = x_0$$

2.
$$x_n \neq x_0 \forall n \in N$$

Def 5 (Предела функции по Гейне). Пусть $x_n \in \hat{\mathbb{R}}$, $A \in \hat{\mathbb{R}}$. Пусть $f : U \cdot \delta(x_n) \to \mathbb{R}$. Вудем говорить, что $\exists \lim_{x \to x_0} f = A$ по Гейне, если $\forall \{x_n\}_{n=1}^{\infty} \in U_{\dot{\delta}}(x_0)$ в точке x_0 если $\exists \lim_{n \to \infty} f(x_n) = A$.

Th 1 (Эквивалентность определений по Коши и по Гейне). Пусть $x_0 \in \hat{\mathbb{R}}, A \in \hat{\mathbb{R}}$. Пусть $f: u_{\delta}(x_n) \to \mathbb{R}$. $\lim_{x \to x_0} f(x)$ (по Коши) $\Leftrightarrow \lim_{x \to x_0} f(x)$ (по Гейне)

 $Kouuu \Rightarrow \Gamma$ ейне. Возьмем произвоьную последовательность Γ ейне $\{x_n\} \in U_{\dot{\delta}}(x_n)$ в точке x_0 .

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N(\delta) \in \mathbb{N} : \forall n \ge N(\delta) \hookrightarrow x_n \in U_{\dot{\delta}}(x_n)..$$

В частности, если произвольней $\varepsilon>0$, то $\forall n\geq N(\delta(\varepsilon))\hookrightarrow x_n\in U_\delta(x_n)\Rightarrow \forall n\geq N(\varepsilon)\hookrightarrow f(x_n)\in U_\varepsilon(A)$

 Γ ейне $\Rightarrow Komu$. Пердоположим, что $\exists \lim_{x \to x_0} f(x) = A$ по Γ ейне, но не по Коши.

$$\exists \varepsilon > 0 : \forall \delta \in (0, \delta_n] \quad \exists x \in U_{\dot{\delta}}(x_0) : f(x) \neq U_{\varepsilon}(A)$$
$$\exists \varepsilon > 0 : \forall n \in \mathbb{N} \quad \exists x_n \in U_{\underline{\dot{\delta}}}(x_n) : f(x_n) \notin U_{\varepsilon}(A)$$

4 Предел по множеству

Def 6. $E \subset \mathbb{R}$ - Непустое множество, $x_n \in \hat{\mathbb{R}}$. Будем говорить, что x_n - предельная точка множества E, если

$$\forall \delta > 0 \quad U^{\cdot}(x_0) \cap E \neq \varnothing.$$

.

Def 7 (Предела по множесту). . Пусть $A \in \hat{\mathbb{R}}, x_0 \in \hat{\mathbb{R}}$. Пусть $f : E \to \mathbb{R}, E \neq \emptyset$ $u \ x_n$ - предельная точка множества E. Будем говорить, что A предел f по множеству E при $x \to x_0$, если:

По Коши:

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 : \forall x \in E \cap U_{\delta}(x_n) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$

По Гейне \forall последовательности Гейне $\{x_n\}\subset E$ в точке $x_0\hookrightarrow \lim_{n\to\infty}f(x_n)=A$

Lem 1. Пусть $E_1, E_2 \subset \mathbb{R}$. Пусть $A \in \hat{\mathbb{R}}, x_0 \in \hat{\mathbb{R}}$. Пусть x_0 - предельная точка для E_1 и для E_2 . Тогда в силу утверждения эквивалентности

там крч предел по объеденению E1 и E2 тоже самое что два предела по E1 и по E2

Слева на право.

$$\forall \varepsilon > 0 \exists \delta(x) > 0 : \forall x.$$

Def 8 (Функция Дирихле). . $f(x) = \begin{cases} 0, x \in \mathbb{R} \setminus \mathbb{Q} \\ 1, x \in \mathbb{Q} \end{cases}$

Lem 2. Пусть $f: E \to \mathbb{R}, x_0$ - предельная точка множества E. Пусть \forall последовательности Гейне в точке x_0 $\exists \lim_{n\to\infty} f(x_n) = A \in \hat{\mathbb{R}}$

Def 9 (Критерий Коши для функции). .