Week 1

1.1 Gaussian Curvature (Neves)

6/28: • Plan:

- 1. What is a surface?
- 2. What is the tangent space?
- 3. What are the principal curvatures?
- 4. What is the Gaussian curvature?
- In analysis:
 - 1. What is a function?
 - 2. What is the derivative?
 - 3. What is the Hemian of function?
 - 4. 2nd derivative test (determinant of Hemina).
- Surface: A subset $\sigma \subseteq \mathbb{R}^3$ such that for all $p \in \Sigma$, there's a neighborhood B of p in \mathbb{R}^3 so that $\Sigma \cap B$ "looks like a disk." More precisely, there exists an open neighborhood $U \subseteq \mathbb{R}^2$ and a map $\varphi: U \to \Sigma \cap B \subseteq \mathbb{R}^3$ such that
 - i) φ is continuous and smooth.
 - ii) φ is a bijection (with φ^{-1} continuous).
 - iii) $d\varphi_{|x}: \mathbb{R}^2 \to \mathbb{R}^3$ is injective for all $x \in U$.
- Chart: The quantity (φ, U) near $p \in U$.
- Examples:
 - A) Plane. $\Sigma = \mathbb{R}^2 \times |0| \subseteq \mathbb{R}^3$ is a surface with chart $\varphi : \mathbb{R}^2 \to \Sigma$ where $(x, y) \mapsto (x, y, 0)$.
 - B) Sphere. $\Sigma = \{ \vec{u} \in \mathbb{R}^3 \mid |\vec{u}| = 1 \}.$
 - Charts: Consider the sets $U = \{(x_1, x_2) \mid x_1^2 + x_2^2 < 1\} \subseteq \mathbb{R}^2$. Let $\varphi_1^+ : U \to \Sigma \cap \{(x, y, z) \mid x > 0\}$ be defined by $\varphi_1^+(u_1, u_2) = (\sqrt{1 x_1^2 x_2^2}, u_1, u_2), \ \varphi_1^- : U \to \Sigma \cap \{(x, y, z) \mid x < 0\}$ be defined by $\varphi_1^-(u_1, u_2) = (-\sqrt{1 x_1^2 x_2^2}, u_1, u_2)$.
 - Same thing for $\varphi_2^{\pm}, \varphi_3^{\pm}$.
 - C) A cone $\Sigma = \{(x, y, z) \mid z = \sqrt{x^2 + y^2}\}$ is not a surface because it fails property (iii).
 - D) The closed unit disk $\Sigma = \{(x, y, 0) \mid x^2 + y^2 \le 1\}$ is also not a surface.
- Tangent space: Let $\Sigma \subseteq \mathbb{R}^3$ be a surface and let $p \in \Sigma$. Then $T_p\Sigma \subseteq \mathbb{R}^3$ is the z-plane so that $p+T_p\Sigma$ is the affine plane that best approximates Σ near p.
 - Best linear approximation near the surface.

Week 1 MATH 16210

- Very similar/analogous to the derivative.
- If (φ, U) is a chart near p, then $T_p\Sigma = \text{span}\left\{\frac{\partial \varphi}{\partial x_1}(\bar{x}_1, \bar{x}_2), \frac{\partial \varphi}{\partial x_2}(\bar{x}_1, \bar{x}_2)\right\}$.
- Proves linear independence of above vectors.
- Principal curvatures.
- Let $\Sigma \subseteq \mathbb{R}^3$ be a surface, $p \in \Sigma$, and \vec{N} be a unit normal vector defined around p (i.e., $\vec{N}(q) \cdot \vec{v} = 0$ for all q near p and $\vec{v} \in T_q \Sigma$).
- Choose $\vec{v} \in T_p\Sigma$ such that $|\vec{v}| = 1$. Set $P_v = \text{span}\{\vec{v}, \vec{N}(p)\}$. Claim: $(\Sigma p) \cap P_v$ is a curve near the origin.
- Principal curvature: The reciprocal of the radius of the circle in P_v that best approximates $(\Sigma p) \cap P_v$ near the origin. Also known as $K(\vec{v})$.
 - The sign is positive if the center of the circle is in the direction of $\vec{N}(p)$ and negative otherwise.
 - If the sign of $\vec{N}(p)$ changes, then $K(\vec{v})$ will change in sign.
- If we change \vec{N} by $-\vec{N}$, then the new $K(\vec{v})$ is the opposite of the old one.
- Given $p \in \Sigma$ and $\vec{N}(p)$ a normal vector at p, we define $K_1(p)$ to have the maximum $K(\vec{v})$ over all unit vectors $\vec{v} \in T_p\Sigma$ and $K_2(p) = \min\{K(\vec{v}) \mid \vec{v} \in T_p\Sigma, |\vec{v}| = 1\}.$
- K_1, K_2 are computable quantities.

1.2 Lecture 1.6: An Explicit Formula for the Catalan Numbers

6/29: • Theorem (discovered by Euler):

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n!(n+1)!}$$

- Examples:
 - $-C_1 = \frac{1}{2}\binom{2}{1} = 1.$
 - $C_2 = \frac{1}{3} {4 \choose 2} = 2.$
 - $-C_3 = \frac{1}{4} \binom{6}{3} = 5.$
- Dyck path:
 - We'll study paths starting with (0,0), going on each stop either from (x,y) to (x+1,y+1) or from (x,y) to (x+1,y-1).
 - Consider the number of ways to get to each point on the integer grid $\mathbb{Z} \times \mathbb{Z}$ from (0,0).
 - Generates a rotated Pascal's triangle.
 - The number of paths from (0,0) to (a+b,a-b), i.e., a moves up and b moves down is $\binom{a+b}{b}$.
- Proposition: C_n is equal to the number of paths from (0,0) to (2n,0) which are contained in the upper half-plane $(y \ge 0)$.
 - Proof: C_n is the number of sequences of brackets.
 - Transform a sequence of brackets into a path by $(\mapsto \nearrow$ and $)\mapsto \searrow$.
 - The condition #(=#) implies that the paths start at (0,0) and end at (2n,0).
 - The condition that in every initial segment, #(=#) implies that the path lies in the upper half plane.

Week 1 MATH 16210

- Reflection principle:
 - The number of paths from A to B in the upper half plane is equal to the number of paths from A to B minus the number of paths from A to B that intersect the line y = -1.
 - Symbolically, $C_n = \binom{2n}{n} ?$
 - There exists a one-to-one correspondence between two sets: The set of all paths from A to B intersecting ℓ and the set of all paths from A to B', where B' is the reflection of B across ℓ .
- Thus, the number of paths from A to B that intersect the line y = -1 is equal to the number of paths from A to (2n, -2).
- Therefore,

$$\binom{2n}{n} - \binom{2n}{n-1} = \frac{(2n)!}{n!n!} \left(1 - \frac{n}{n+1}\right) \binom{2n}{n-1}$$

$$= \frac{1}{n+1} \binom{2n}{n}$$

- Note that it's not obvious that $\frac{1}{n+1}\binom{2n}{n}$ is an integer unless you present it as the difference of two binomials (i.e., as $\binom{2n}{n} \binom{2n}{n-1}$).
- Exercise:
 - Take a path from A to B intersecting ℓ and find the closest point of $P \cap \ell$ to B. Reflect the segment of the path after this point.