Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

28 de diciembre de 2020

Transformaciones Lineales

Corolario

Sea $A, B \in \mathbb{R}(n, n)$ matrices, tales que $A = B^2$, entonces $det(A) \ge 0$.

Prueba:

Basta usar la proposición (Propiedad Multiplicativa), es decir,

$$det(A) = det(B^2) = det(BB) = det(B)det(B) = \left(det(B)\right)^2 \geq 0$$

Teorema

Sea $A \in \mathbb{R}(n, n)$ una matriz. Entonces A es no-singular si, y solo si $det(A) \neq 0$.

- \Rightarrow) Supongamos que A es inversible, entonces existe A^{-1} , es decir, $AA^{-1}=\mathrm{I}$, por tanto $\det(AA^{-1})=\det(A)\det(A^{-1})=\det(\mathrm{I})=1$, entonces $\det(A)\neq 0$.
- \Leftarrow) Supongamos que $det(A) \neq 0$. Luego, consideremos una base $\{v^1, v^2, \cdots, v^n\} \subset \mathbb{R}(n, 1)$, y definamos una transformación lineal $T: \mathbb{R}(n, 1) \longrightarrow \mathbb{R}(n, 1)$, mediante T(x) = Ax, entonces $det([Av^1 \ Av^2 \cdots Av^n]) = det(A)det([v^1 \ v^2 \cdots v^n])$, luego $det([v^1 \ v^2 \cdots v^n]) \neq 0$ por ser $\{v^1, \cdots, v^n\}$ es una base, entonces $det([Av^1 \ Av^2 \cdots Av^n]) \neq 0$, luego $\{Av^1, Av^2, \cdots, Av^n\}$

Determinantes Propiedades (continuación)

Aplicaciones del determinante Fórmula de la inversa de una matriz Rango de una matriz Regla de Cramer El Gramiano Volumen del Hiperparalelepípedo

Corolario

El sistema de ecuaciones lineales Ax = b, con $A \in \mathbb{R}(n, n)$ y $b \in \mathbb{R}(n, 1)$, posee solución única si, y solo si $det(A) \neq 0$.

1. Sean $v^1, v^2 \in \mathbb{R}(2,1)$ dos vectores no colineales, definamos

$$A(v^1, v^2) = |det([v^1 \ v^2])|,$$

el cual representa el área de un paralelogramo.

2. Sean $v^1, v^2, v^3 \in \mathbb{R}(3,1)$ tres vectores no coplanares, definamos

$$Vol\left(v^{1},v^{2},v^{3}\right)=\left|det\left(\left[v^{1}\ v^{2}\ v^{3}\right]\right)
ight|,$$

el cual representa el volumen de un paralelepípedo.

3. Generalizando, consideremos $v^1, \dots, v^n \in \mathbb{R}(n, 1)$, con $n \geq 4$, vectores linealmente independientes, definamos

$$Vol\left(v^{1},\cdots,v^{n}\right)=\left|det\left(\left[v^{1}\ \cdots\ v^{n}\right]
ight)\right|,$$

el cual representa el volumen de un hiperparalelepípedo.

Hasta ahora, para determinar la inversa de una matriz, tenemos dos métodos:

- usando sistemas de ecuaciones lineales, y
- por operaciones elementales.

En este caso proporcionaremos una fórmula explícita para obtener la inversa de una matriz no singular.

Dada la matriz $A=[a_{ij}]\in \mathbb{K}(n,n)$, y sea $A_{ij}\in \mathbb{K}(n-1,n-1)$ la matriz obtenida eliminando la i-ésima fila y la j-ésima columna de A, para cada $i,j\in\{1,2,\cdots,n\}$, entonces

- 1. $(\forall i, j \in \{1, 2, \dots, n\}) (c_{ij} = (-1)^{i+j} det(A_{ij}))$. El número c_{ij} es llamado **cofactor** de a_{ij} .
- 2. la matriz $[c_{ii}]$ es llamada matriz de cofactores de A.
- 3. $Adj(A) = [c_{ii}]^t$ es llamada la **adjunta** de A.

Proposición (Fórmula de la Inversa)

Con las notaciones dadas anteriormente, se tiene

$$A \cdot Adj(A) = det(A) \cdot I.$$

Prueba:

$$A \cdot Adj(A) = [a_{ij}][c_{ij}]^t = [d_{ij}] = \left[\sum_{k=1}^n a_{ik}c_{jk}\right],$$

de donde

$$d_{ii} = \sum_{k=1}^{n} a_{ik} c_{ik}$$

$$= \sum_{k=1}^{n} (-1)^{i+k} a_{ik} det(A_{ik})$$

Ahora determinemos d_{ij} , $i \neq j$.

Consideremos la matriz B, la cual es la matriz A salvo que la fila j es idéntica a la fila i. Por tanto

$$0 = det(B) = \sum_{k=1}^{n} (-1)^{j+k} a_{ik} det(A_{jk})$$

$$= \sum_{k=1}^{n} a_{ik} c_{jk}$$

$$= d_{ij}, \quad \text{para todo} \quad i \neq j.$$

En cualquier caso tenemos,

$$A \cdot Adj(A) = det(A) \cdot I.$$

En el caso de que A sea no singular, entonces tenemos

$$A^{-1} = \frac{adj(A)}{det(A)},$$

dado que $det(A) \neq 0$.

También podemos determinar el rango de una matriz usando determinantes, antes necesitamos las siguientes.

Definición

Sea $A \in \mathbb{K}(m, n)$ una matriz, llamaremos **menor de orden** p $(1 \le p \le \min(\{m, n\}))$ al determinante de cualquier submatriz de A de orden $p \times p$.

Definición

Se llama **rango por menores** de una matriz A, denotado por $r_m(A)$, al orden de la mayor submatriz cuadrada cuyo determinantes sea no nulo.

Nota

De acuerdo a las definiciones anteriores, tenemos que $r_m(A) = p$.

Proposición

Para toda matriz $A \in \mathbb{K}(m, n)$, tenemos que $r_m(A) = r(A)$.

Prueba:

Supongamos que $r_m(A) = p$ y r(A) = q.

Sin pérdida de generalidad podemos suponer que submatriz de orden $p \times p$, está conformada por las primera p filas y las primeras p columnas de A, denotada por S_p , esto es debido a que el intercambio de filas y el intercambio de columnas no modifica $r_m(A)$ ni r(A).

Observar que $det(S_p) \neq 0$, entonces la filas, así como las columnas de S_p son linealmente independientes, estas p filas son las primeras p filas de A, entonces

$$r_m(A) = p \le r(A) = q.$$

El recíproco, queda como ejercicio.

La regla de Cramer, es debido al matemático suizo Gabriel Cramer (31/07/1704-04/01/1752).

Consideremos un sistema de la forma Ax = b, donde $b \in \mathbb{K}(n,1)$ y $A = [a^1 \cdots a^n] \in \mathbb{K}(n,n)$, por tanto este sistema se puede expresar de la forma

$$\sum_{j=1}^n x_j a^j = b,$$

$$\operatorname{con} x = (x_1, \cdots, x_n)^t \in \mathbb{K}(n, 1).$$

Proposición (Regla de Cramer)

Con las notaciones dadas anteriormente, tenemos

$$(\forall j=1,\cdots,n)(x_j det(A)=det([a^1\cdots a^{j-1}\ b\ a^{j+1}\cdots a^n]))$$

Prueba: De

$$det([a^{1} \cdots a^{j-1} \ b \ a^{j+1} \cdots a^{n}]) = det([a^{1} \cdots a^{j-1} \ \sum_{i=1}^{n} x_{i} a^{i} \ a^{j+1} \cdots a^{n}])$$

$$= \sum_{i=1}^{n} x_{i} det([a^{1} \cdots a^{j-1} \ a^{i} \ a^{j+1} \cdots a^{n}])$$

$$= x_{j} det([a^{1} \cdots a^{j-1} \ a^{j} \ a^{j+1} \cdots a^{n}])$$

$$= x_{i} det(A),$$

para todo $j=1,\cdots,n$. Los otros sumandos se anulan por tener dos columnas iguales. ◆□▶◆圖▶◆臺▶◆臺▶ 臺

Nota

Si A es una matriz no singular, entonces $det(A) \neq 0$, por tanto

$$x_j = \frac{\det([a^1 \cdots a^{j-1} \ b \ a^{j+1} \cdots a^n])}{\det(A)},$$

para todo $j = 1, \dots, n$.

Sea V es espacio vectorial, con dim(V) = n, ahora debemos calcular la base dual de la base $\mathcal{W} = \{w^1, \dots, w^n\} \subset V$, entonces debemos resolver n sistemas de ecuaciones lineales $n \times n$. Sea $\mathcal{V} = \{v^1, \dots, v^n\}$ su base dual de \mathcal{W} tales que

$$v^{J} = x_{1j}w^{1} + \cdots + x_{nj}w^{n}, \quad j = 1, \cdots, n,$$

$$\langle w^i, v^j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

de donde obtenemos

Por facilidad tomemos el caso i = 1, entonces tenemos el sistema

$$||w^{1}||^{2}x_{1} + \langle w^{1}, w^{2} \rangle x_{2} + \cdots + \langle w^{1}, w^{n} \rangle x_{n} = 1$$

$$\langle w^{2}, w^{1} \rangle x_{1} + ||w^{2}||^{2}x_{2} + \cdots + \langle w^{2}, w^{n} \rangle x_{n} = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\langle w^{n}, w^{1} \rangle x_{1} + \langle w^{n}, w^{2} \rangle x_{2} + \cdots + ||w^{n}||^{2}x_{n} = 0$$

de donde la solución del sistema depende del valor del determinante de la matriz de sus coeficientes

$$det([\langle w^i, w^j \rangle]).$$

Entonces por la Regla de Cramer el sistema anterior tiene solución única si, y solo si $det([\langle w^i, w^j \rangle]) \neq 0$. El determinante $det([\langle w^i, w^j \rangle])$ se le llama **gramiano** de los vectores w^1, \dots, w^n .

Definición

Se llama gramiano de los $v^1, \dots, v^r \in V$, al determinante

$$det([\langle v^i, v^j \rangle])$$

y lo denotamos por $G(v^1, \dots, v^r)$.

Si r=1, entonces $G(v) = det([\langle v, v \rangle]) = ||v||^2 > 0$ si, y solo si $v \neq \mathbf{0}$. Si r=2, entonces

$$G(v,w) = \left| \begin{array}{cc} \|v\|^2 & \langle v,w \rangle \\ \langle w,v \rangle & \|w\|^2 \end{array} \right| = \|v\|^2 \|w\|^2 - |\langle w,v \rangle|^2 \ge 0$$

(designaldad de Schwartz) y G(v, w) > 0 si, y solo si v, w son I.i.

En general tenemos la siguiente

Proposición

Sean $v^1, \dots, v^r \in V$. Entonces

$$G(v^1, \dots, v^r) \neq 0$$
 si, y solo si v^1, \dots, v^r son l.i.

Prueba:

Ejercicio. (sug. pruebe que $G(v^1, \dots, v^r) = 0$ si, y solo si v^1, \dots, v^r son l.d.).

- 1. $G(v) = ||v||^2$, para todo $v \in V$, representa el cuadrado de la longitud del vector v.
- 2. Sea $v, w \in V$ y θ el ángulo entre dichos vectores, entonces

$$G(v, w) = ||v||^{2} ||w||^{2} - |\langle v, w \rangle|^{2}$$

$$= ||v||^{2} ||w||^{2} - ||v||^{2} ||w||^{2} (\cos(\theta))^{2}$$

$$= ||v||^{2} ||w||^{2} (1 - (\cos(\theta))^{2})$$

$$= (||v|| ||w|| \sin(\theta))^{2},$$

es el cuadrado del área del paralelogramo de lados v, w.

3. Sean los vectores $u, v, w \in V$ no coplanares (es decir, l.i.), sea $S = \mathcal{L}(\{u, v\})$ el plano generado por los vectores u y v, entonces

$$V = S \oplus S^{\perp}$$
,

como $w \in V$, entonces

$$w = z + w'$$
, donde $z = xu + yv \in S$, $w' \in S^{\perp}$.

Además, tenemos

$$\langle w, w' \rangle = \|w'\|^2 \quad \text{y} \quad \|w'\| = \|w - z\| = dist(w, S),$$

donde dist(w, S) es la distancia de w a S. Luego tenemos

Aplicaciones del determinante Fórmula de la inversa de una matriz Rango de una matriz Regla de Cramer El Gramiano

Volumen del Hiperparalelepípedo

$$G(w, u, v) = \begin{bmatrix} \langle w, w \rangle & \langle w, u \rangle & \langle w, v \rangle \\ \langle u, w \rangle & \langle u, u \rangle & \langle u, v \rangle \\ \langle v, w \rangle & \langle v, u \rangle & \langle v, v \rangle \end{bmatrix}$$
$$= |dist(w, S)|^2 G(u, v),$$

Observamos que G(w, u, v) es el cuadrado del volumen del paralelepípedo de aristas concurrentes u, v y w, donde hemos tomado por base al paralelogramo de lados u y v, y por altura

$$||w'|| = ||w - z|| = dist(w, S)$$

En general tenemos la siguiente

Proposición

Sean los vectores $v^1, \dots, v^r \in V$ linealmente independientes, $S = \mathcal{L}(\{v^1, \dots, v^r\})$ y $w \in V \setminus S$, entonces

$$G(w, v^1, \cdots, v^r) = |dist(w, S)|^2 G(v^1, \cdots, v^r).$$

Prueba: Ejercicio.