PROBLEM SOLVING 9

Shortest Paths: Bellman-Ford, Floyd-Warshall

CS340

Initialization

 All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

```
INITIALIZE-SINGLE-SOURCE (G, s)

1 for each vertex v \in G.V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

Relaxing an edge

 Can we improve the shortest-path estimate for v by going through u and taking (u,v)?

Relaxing an edge

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Properties of shortest paths and relaxation

- Path-relaxation property
 - If $p = \langle v_0, v_1, ..., v_k \rangle$ i is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), ... (v_{k-1}, v_k)$. then v_k .d = $\delta(s, v_k)$. This property holds **regardless** of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes v.d and π .d for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

Bellman-Ford Algorithm

- Relies on the Path Relaxation Property
- Relaxes each edge |V|-1 times (why?)
- Relaxes each edge 1 more time to detect negative-weight cycles. Returns true if none.
- Time Complexity: nested for loop outer loop = |v|-1 inner loop = E Total = Θ(VE)
- It's a loop!

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

Bellman-Ford (source = 5)

$$(1,3) = 6$$

$$(1.4) = 3$$

$$(2,1) = 3$$

$$(3,4) = 2$$

$$(4,2) = 1$$

$$(4,3) = 1$$

$$(5,2) = 4$$

$$(5,4) = 2$$

- What is the approach taken by the Bellman-Ford algorithm?
 - Divide and Conquer
 - Greedy
 - Dynamic Programming
 - Search Tree
 - Other

- Give 2 similarities between Bellman-Ford and Dijkstra's algorithm.
- Give 2 differences

 What is the time complexity of Bellman-Ford on a complete graph of n vertices?

- Given a graph G = (V, E) with positive edge weights, can the Bellman-Ford algorithm and Dijkstra's algorithm produce different shortest-path trees? Will they always produce the same shortest-path weights?
- (Why do we have a shortest paths tree?)
- What does it mean if a sequence of relaxation steps sets the source vertex s parent to a non-NIL value?

- After the ith relaxation of every edge, which paths have converged to the correct value where v.d = $\delta(s,v)$?
 - All paths of length i or less?
 - All paths i hops from source node?
 - Have any paths converged to δ or do they not converge until the algorithm is complete?

Single-source shortest paths in a dag

- Dag = Directed Acyclic Graph
- We're guaranteed no negative-weight cycles
- Negative-weight edges are ok
- Relax edges according to a topological sort of vertices
- By the Path Relaxation Property, relaxing in topological order guarantees edges are relaxed in path order.

Single-source shortest paths in a dag

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 for each vertex v \in G.Adj[u]

5 RELAX (u, v, w)
```

Time complexity $\Theta(V+E)$ This is one of our time-saving ideas: make the problem less general.

Single-source shortest paths in a dag

- Suppose we change DAG-SHORTEST-PATHS to process only the first |V|-1 vertices, taken in topologically sorted order. Would the algorithm remain correct?
- Can a directed acyclic graph have more than one topological ordering?
- Give a Θ(V+E) algorithm for finding the longest paths from s in a weighted directed acyclic graph G. Does your solution work when G is not acyclic?

All-Pairs shortest paths

- As opposed to single source, we want to find distances between all pairs of vertices.
- Output: A matrix of shortest path distances
- Could run BELLMAN-FORD once from each vertex
 - O(V²E) which is O(V⁴) if the graph is dense (E = $\Theta(V^2)$).
- If no negative-weight edges, could run Dijkstra's algorithm once from each vertex
 - O(VE Ig V) with binary heap → O(V³ Ig V) if dense,
 - O(V² Ig V + VE) with Fibonacci heap \rightarrow O(V³) if dense.

Floyd-Warshall algorithm

- A completely different approach
- Negative-weight edges may be present
- No negative-weight cycles

Floyd-Warshall algorithm

Looking for a path from i to j, does it pass through vertex k?

- Use a matrix to iterate through every possibility.
- How many possibilities are there?
- Check out this week's video on Rod Cutting

Floyd-Warshall algorithm

```
FLOYD-WARSHALL(W)
1 n = W.rows
2 D^{(0)} = W
3 for k = 1 to n
         let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
         for i = 1 to n
               for j = 1 to n
                    d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)} \right)
    return D^{(n)}
```

What is the time complexity?

Floyd- Warshall

K=0	j					
		1	2	3	4	
i	1					
	2					
	3					
	4					

K=1	j					
		1	2	3	4	
i	1					
	2					
	3					
	4					

K=2	j					
		1	2	3	4	
i	1					
	2					
	3					
	4					

K=3	j				
		1	2	3	4
i	1				
	2				
	3				
	4				

	K=4	j					
			1	2	3	4	
	i	1					
		2					
		3					
		4					

- What is the approach taken by the Floyd-Warshall algorithm?
 - Divide and Conquer
 - Greedy
 - Dynamic Programming
 - Search Tree
 - Other