Projeto e Análise de Algoritmos

A. G. Silva, R. de Santiago

Baseado nos materiais de Souza, Silva, Lee, Rezende, Miyazawa – Unicamp Ribeiro – FCUP • Mariani – UFSC Manber, Introduction to Algorithms (1989) – Livro

29 de março de 2019

Conteúdo programático

- Introdução (4 horas/aula)
- Notação Assintótica e Crescimento de Funções (4 horas/aula)
- Recorrências (4 horas/aula)
- Divisão e Conquista (12 horas/aula)
- Buscas (4 horas/aula)
- Grafos (4 horas/aula)
- Algoritmos Gulosos (8 horas aula)
- Programação Dinâmica (8 horas/aula)
- NP-Completude e Reduções (6 horas/aula)
- Algoritmos Aproximados e Busca Heurística (6 horas/aula)

Cronograma atualizado em 22mar

- 15mar Apresentação da disciplina. Introdução.
- 22mar Prova de proficiência/validação.
- 29mar Notação assintótica. Recorrências.
- 05abr Divisão e conquista. Multiplicação de inteiros.
- 12abr Ordenação sem restrição. Ordenação em tempo linear.
- 19abr Dia n\u00e3o letivo. Exerc\u00edcios.
- 26abr Estatística de ordem.
- 03mai Primeira avaliação.
- 10mai Grafos. Buscas.
- 17mai Algoritmos gulosos.
- 24mai Algoritmos gulosos. Programação dinâmica.
- 31mai Programação dinâmica.
- 07jun NP-Completude e reduções.
- 14jun Segunda avaliação.
- 21jun Dia não letivo. Exercícios.
- 28jun Avaliação substitutiva (opcional)

Algoritmo

- Um algoritmo é um método para resolver um problema (computacional)
- Um algoritmo é uma ideia por trás de um programa e é independente de linguagem de programação, máquina, etc
- Propriedades de um algoritmo:

Correção

Deve resolver corretamente todas as instâncias do problema

Eficiência

O desempenho (tempo e memória) deve ser adequado

 Este curso é sobre a concepção e análise de algoritmos corretos e eficientes

Preocupações

Importância da análise do tempo de execução

Predição

Quanto tempo um algoritmo precisa para resolver um problema? Qual a escala? Podemos ter garantias sobre o tempo de funcionamento?

Comparação

Um algoritmo A é melhor que um algoritmo B? Qual é a melhor forma de resolvermos um determinado problema?

 Estudaremos uma metodologia para responder a essas questões

Velocidade de computadores

Desempenho algorítmico × Velocidade de computação

Um algoritmo melhor em um computador mais lento **sempre vencerá** um algoritmo pior em um computador mais rápido, para instâncias suficientemente grandes

 O que realmente importa é a taxa de crescimento do tempo de execução!

Random Access Machine (RAM)

- Precisamos de um modelo genérico e independente de linguagem e de máquina.
- Random Access Machine (RAM)
 - Cada operação simples (ex.: +, −, ←, If) leva 1 passo
 - Ciclos e procedimentos, por exemplo, não são instruções simples
 - Cada acesso à memória leva também 1 passo
- Podemos medir o tempo de execução contando o número de passos como uma função do tamanho de entrada: T(n)
- Operações são simplificadas, mas isto é útil
 Ex.: a soma de dois inteiros não custa o mesmo que dividir dois reais mas, para uma visão global, esses valores específicos não são importantes

Tipos de análise de algoritmos

Pior caso (análise mais comum de ser feita):

 T(n) = quantidade máxima de tempo para qualquer entrada de tamanho n

Caso médio (análise feita de vez em quando):

- T(n) = tempo médio para qualquer entrada de tamanho n
- Implica em conhecimento sobre a distribuição estatística das entradas

Melhor caso (apenas uma curiosidade):

 Quando o algoritmo é rápido apenas para algumas das entradas

Vamos contar?

Ordena-Por-Inserção (A,n)		Custo	Vezes
1 para $j \leftarrow 2$ até n faça		<i>C</i> ₁	n
2	$chave \leftarrow A[j]$	<i>C</i> ₂	<i>n</i> − 1
3	⊳ Insere A[j] em A[1j – 1]	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	<i>C</i> ₄	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C 7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow chave$	<i>C</i> ₈	<u>n – 1</u>

A constante c_k representa o custo (tempo) de cada execução da linha k.

Denote por t_j o número de vezes que o teste no laço **enquanto** na linha 5 é feito para aquele valor de j.

Tempo de execução total

Logo, o tempo total de execução T(n) de Ordena-Por-Inserção é a soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_j .

Melhor caso

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$. Logo,

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

Portanto, **no melhor caso**, o tempo de execução é uma **função linear** no **tamanho da entrada**.

Pior Caso

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em $A[1 \dots j-1]$, temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para $j = 2, \dots, n$.

Lembre-se que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

Pior caso – continuação

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Portanto, no pior caso, o tempo de execução é uma função quadrática no tamanho da entrada.

Complexidade assintótica de algoritmos

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso ?

Análise assintótica de funções quadráticas

Considere a função quadrática $3n^2 + 10n + 50$:

	Diterença		
n	$3n^2 + 10n + 50$	3 <i>n</i> ²	percentual
64	12978	12288	5,32%
128	50482	49152	2,63%
512	791602	786432	0,65%
1024	3156018	3145728	0,33%
2048	12603442	12582912	0,16%
4096	50372658	50331648	0,08%
8192	201408562	201326592	0,04%
16384	805470258	805306368	0,02%
32768	3221553202	3221225472	0,01%

Como se vê, $3n^2$ é o termo dominante quando n é grande.

De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais.

Notação assintótica

- Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso ⊖(n²).
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma contante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

Ordenação por intercalação

Q que significa intercalar dois (sub)vetores ordenados?

Problema: Dados $A[p \dots q]$ e $A[q+1 \dots r]$ crescentes, rearranjar $A[p \dots r]$ de modo que ele fique em ordem crescente.

Entrada:

Saída:

Intercalação com sentinela

Intercalação com sentinela

Intercalação com sentinela

```
INTERCALA(A, p, q, r)
 1: n_1 \leftarrow q - p + 1
 2: n_2 \leftarrow r - q
 3: sejam L[1..n_1 + 1] e R[1..n_2 + 1] novos vetores
 4: para i \leftarrow 1 até n_1 faça
 5: L[i] \leftarrow A[p+i-1]
 6: para j \leftarrow 1 até n_2 faça
 7: R[j] \leftarrow A[q+j]
 8: L[n_1+1] \leftarrow \infty
 9: R[n_2+1] \leftarrow \infty
10: i \leftarrow 1
11: i \leftarrow 1
12: para k \leftarrow p até r faça
13:
     se L[i] \leq R[j] então
     A[k] \leftarrow L[i]
14:
15: i \leftarrow i + 1
16: senão
17:
            A[k] = R[i]
             i \leftarrow i + 1
18:
```


Pseudo-código

```
INTERCALA(A, p, q, r)
       para i \leftarrow p até q faça
            B[i] \leftarrow A[i]
 3
     para j \leftarrow q + 1 até r faça
            B[r+q+1-j] \leftarrow A[j]
 5 i \leftarrow p
     j \leftarrow r
      para k \leftarrow p até r faça
 8
            se B[i] \leq B[j]
                então A[k] \leftarrow B[i]
10
                          i \leftarrow i + 1
11
                senão A[k] \leftarrow B[i]
12
                           i \leftarrow i - 1
```

Complexidade de Intercala

Entrada:

Saída:

Tamanho da entrada: n = r - p + 1

Consumo de tempo: $\Theta(n)$

Corretude de Intercala

Invariante principal de Intercala:

No começo de cada iteração do laço das linhas 7-12, vale que:

- $A[p \dots k-1]$ está ordenado,
- 2 A[p...k-1] contém todos os elementos de B[p...i-1] e de B[j+1...r],
- **3** $B[i] \ge A[k-1] \in B[j] \ge A[k-1].$

Exercício. Prove que a afirmação acima é de fato um invariante de INTERCALA.

Exercício. (fácil) Mostre usando o invariante acima que INTERCALA é correto.

Projeto por indução e algoritmos recursivos

"To understand recursion, we must first understand recursion." (anônimo)

- Um algoritmo recursivo obtém a saída para uma instância de de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema (trata-se de um projeto por indução).
- A resolução por projeto de indução, deve reduzir um problema a subproblemas menores do mesmo tipo. E problemas suficientemente pequenos devem ser resolvidos de maneira direta.

Algoritmos recursivos

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a corretude de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

Recursão e o paradigma de divisão-e-conquista

- Algoritmos de divisão-e-conquista possuem as seguintes etapas em cada nível de recursão:
 - Problemas pequenos: Quando os problemas são suficientemente pequenos, então o algoritmo recursivo deve resolver o problema de maneira direta.
 - Problemas que não são pequenos:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplo de divisão-e-conquista: Mergesort

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - Combinação: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort – exemplo do livro

- Exemplo do livro (CLRS)
- Visualização de cada "merge" do algoritmo

Corretude do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A corretude do algoritmo Mergesort apoia-se na corretude do algoritmo Intercala e pode ser demonstrada **por indução** em n := r - p + 1.

Aprenderemos como fazer provas por indução mais adiante.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de MERGESORT?

Seja T(n) :=o consumo de tempo máximo (pior caso) em função de n = r - p + 1

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

linha	consumo de tempo				
1	?				
2	?				
3	?				
4	?				
5	?				
T(n) = ?					

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	⊖(1)
	2	$\Theta(1)$
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	$\Theta(n)$
T(n) =	<i>T</i> ([<i>n</i> /2	$\overline{T(\lfloor n/2 \rfloor) + \Theta(n)} + \Theta(2)$

 Obtemos o que chamamos de fórmula de recorrência (i.e., uma fórmula definida em termos de si mesma).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é uma fórmula de recorrência.
- É necessário então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).
- No caso, $T(n) = \Theta(n \lg n)$. Assim, o consumo de tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

Mergesort – árvore de recursão

Árvore de recursão do Mergesort

Mergesort – árvore de recursão

Árvore de recursão do Mergesort

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
 - Problemas em grafos: número de vértices e/ou arestas
 - Problemas de ordenação de vetores: tamanho do vetor.
 - Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos medindo número de operações.

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	<i>n</i> = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	4 · 10 ⁴	6 · 10 ⁶	9 · 10 ⁹
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	1,0015 · 10 ⁶	1,00015 · 10 ⁸	$\approx 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26\cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Análise assintótica

- Precisamos de uma ferramenta matemática para comparar funções
- Para a análise de algoritmo será feita uma análise assintótica:
 - Matematicamente: estudando o comportamento de **limites** $(n \to \infty)$
 - Computacionalmente: estudando o comportamento para entrada arbitrariamente grande ou descrevendo taxa de crescimento
- Para isso, uma **notação** específica é usada: O, Ω , Θ , o, ω
- O foco está nas ordens de crescimento

Classe O

Definição

 $O(g(n)) = \{f(n) :$ existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Classe O

Exemplo

$$f(n) = \frac{1}{4}n^2 - n$$
$$g(n) = n^2 - 6n$$

Valores de c e n_0 que satisfazem $f(n) \in O(g(n))$:

$$c = \frac{1}{2}$$
 e $n_0 = 8$

Classe Ω

Definição:

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \text{ que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Classe Ω

Exemplo

$$f(n) = \frac{1}{2}n^2 - 3n$$

 $g(n) = \frac{1}{2}n^2 - 2n$

Valores de c e n_0 que satisfazem $f(n) \in \Omega(g(n))$:

$$c = \frac{1}{2}$$
 e $n_0 = 8$

Classe ⊖

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Classe ⊖

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \\ \text{tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \\ \text{para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 7$.

Classe o

Definição:

$$o(g(n)) = \{f(n): \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.$$

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

$$1000n^2 \in o(n^3)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

Classe ω

Definição:

$$\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2\in\omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \lceil 1000c \rceil + 1.$$

Notação assintótica – resumo

- $f(n) \in O(g(n))$ se houver constantes positivas n_0 e c tal que $f(n) \le c g(n)$ para todo $n \ge n_0$
- $f(n) \in \Omega(g(n))$ se houver constantes positivas n_0 e c tal que $f(n) \ge c g(n)$ para todo $n \ge n_0$
- $f(n) \in \Theta(g(n))$ se houver constantes positivas n_0 , c_1 e c_2 tal que c_1 $g(n) \le f(n) \le c_2$ g(n) para todo $n \ge n_0$
- $f(n) \in o(g(n))$ se, para qualquer constante positiva c, existe n_0 tal que $f(n) < c \ g(n)$ para todo $n \ge n_0$
- $f(n) \in \omega(g(n))$ se, para qualquer constante positiva c, existe n_0 tal que f(n) > c g(n) para todo $n \ge n_0$

Notação assintótica – analogia

Analogia entre duas funções f e g e dois números a e b:

•
$$f(n) \in O(g(n))$$
 \approx $a \leq b$

•
$$f(n) \in \Omega(g(n)) \approx a \geq b$$

•
$$f(n) \in \Theta(g(n)) \approx a = b$$

•
$$f(n) \in \omega(g(n)) \approx a > b$$

Definições equivalentes

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.
 $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Propriedades das Classes

Transitividade:

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.

Se
$$f(n) \in \Omega(g(n))$$
 e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.

Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Se
$$f(n) \in o(g(n))$$
 e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.

Se
$$f(n) \in \omega(g(n))$$
 e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

$$f(n) \in \Omega(f(n)).$$

$$f(n) \in \Theta(f(n)).$$

Simetria:

$$f(n) \in \Theta(g(n))$$
 se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$.

$$f(n) \in o(g(n))$$
 se, e somente se, $g(n) \in \omega(f(n))$.

Notação assintótica – algumas regras práticas

Multiplicação por uma constante:

$$\Theta(c f(n)) = \Theta(f(n))$$
99 $n^2 = \Theta(n^2)$

Mais alto expoente de um polinômio

$$a_{x}n^{x} + a_{x-1}n^{x-1} + \dots + a_{2}n^{2} + a_{1}n + a_{0}$$
:
 $3\mathbf{n}^{3} - 5n^{2} + 100 = \Theta(n^{3})$
 $6\mathbf{n}^{4} - 20n^{2} = \Theta(n^{4})$
 $0.8\mathbf{n} + 224 = \Theta(n)$

Termo dominante:

$$\mathbf{2^n} + 6n^3 = \Theta(2^n)$$

 $\mathbf{n!} - 3n^2 = \Theta(n!)$
 $n \log n + 3\mathbf{n^2} = \Theta(n^2)$

Notação assintótica – dominância

Quando uma função é melhor que outra?

- Se queremos reduzir o tempo, funções "menores" são melhores
- Uma função domina sobre outra se, a medida que n cresce, a função continua "maior"
- Matematicamente: $f(n) \gg g(n)$ se $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$

Relações de dominância

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Notação assintótica – visão prática

Se uma operação leva 10^{-9} segundos

	log n	n	n log n	n ²	n ³	2 ⁿ	n!
10	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s
20	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	77 anos
30	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1.07 <i>s</i>	
40	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	18.3 min	
50	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	13 dias	
100	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	10^{13} anos	
10^{3}	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1 <i>s</i>		
10^{4}	< 0.01s	< 0.01s	< 0.01s	0.1 <i>s</i>	16.7 min		
10^{5}	< 0.01s	< 0.01s	< 0.01s	10 <i>s</i>	11 dias		
10^{6}	< 0.01s	< 0.01s	0.02 <i>s</i>	16.7 min	31 anos		
10 ⁷	< 0.01s	0.01 <i>s</i>	0.23 <i>s</i>	1.16 dias			
10 ⁸	< 0.01s	0.1 <i>s</i>	2.66 <i>s</i>	115 dias			
10 ⁹	< 0.01s	1 <i>s</i>	29.9 <i>s</i>	31 anos			

Desenhando funções

• Comparando $2n^3$ com $100n^2$ usando o gnuplot:

```
gnuplot> plot [1:70] 2*x**3, 100*x**2
gnuplot> set logscale xy 10
gnuplot> plot [1:10000] 2*x**3, 100*x**2
```


Desenhando funções

• Comparando \sqrt{n} e $\log_2 n$:

```
gnuplot> set logscale y 10
gnuplot> plot [1:1000000] sqrt(x), log(x)/log(2)
```


Na *Demonstração por Indução*, queremos demonstrar a validade de P(n), uma propriedade P com um parâmetro natural n associado, para todo valor de n.

Há um número infinito de casos a serem considerados, um para cada valor de *n*. Demonstramos os infinitos casos de uma só vez:

- Base da Indução: Demonstramos P(1).
- Hipótese de Indução: Supomos que P(n) é verdadeiro.
- Passo de Indução: Provamos que P(n+1) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que a soma dos n primeiros naturais ímpares é n^2 .

Outra forma equivalente:

- Base da Indução: Demonstramos *P*(1).
- Hipótese de Indução: Supomos que P(n 1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que a soma dos n primeiros naturais ímpares é n^2 .

Às vezes queremos provar que uma proposição P(n) vale para $n \ge n_0$ para algum n_0 .

- Base da Indução: Demonstramos $P(n_0)$.
- Hipótese de Indução: Supomos que P(n 1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que todo inteiro $n \ge 2$ pode ser fatorado como um produto de primos.

Indução Fraca × Indução Forte

A *indução forte* difere da *indução fraca* (ou *simples*) apenas na suposição da hipótese.

No caso da indução forte, devemos supor que a propriedade vale para todos os casos anteriores, não somente para o anterior, ou seja:

- Base da Indução: Demonstramos *P*(1).
- Hipótese de Indução Forte: Supomos que P(k) é verdadeiro, para todo $1 \le k < n$.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que todo inteiro $n \ge 2$ pode ser fatorado como um produto de primos.

Demonstre que a inequação

$$(1+x)^n \ge 1 + nx$$

vale para todo natural n e real x tal que (1 + x) > 0.

Demonstração:

 A base da indução é n = 1. Nesse caso ambos os lados da inequação são iguais a 1 + x, mostrando a sua validade. Isto encerra a prova do caso base.

- A hipótese de indução é: Suponha que a inequação vale para n, isto é, $(1 + x)^n \ge 1 + nx$ para todo real x tal que (1 + x) > 0.
- O passo de indução é: Supondo a h.i., vamos mostrar que a inequação vale para o valor n + 1, isto é, (1 + x)ⁿ⁺¹ ≥ 1 + (n + 1)x para todo x tal que (1 + x) > 0. A dedução é simples:

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x) \text{ (pela h.i. e } (1+x) > 0)$$

$$= 1+(n+1)x+nx^2$$

$$\geq 1+(n+1)x \text{ (já que } nx^2 \geq 0)$$

A última linha mostra que a inequação vale para n + 1, completando a demonstração.

Demonstre que o número T_n de regiões no plano criadas por n retas em posição geral é igual a

$$T_n=\frac{n(n+1)}{2}+1.$$

Um conjunto de retas está em posição geral no plano se

- todas as retas são concorrentes, isto é, não há retas paralelas e
- não há três retas interceptando-se no mesmo ponto.

Antes de prosseguirmos com a demonstração vejamos exemplos de um conjunto de retas que está em posição geral e outro que não está.

Em posição geral

Não estão em posição geral

Demonstração: A idéia que queremos explorar para o passo de indução é a seguinte: supondo que a fórmula vale para n, adicionar uma nova reta em posição geral e tentar assim obter a validade de n+1.

 A base da indução é, naturalmente, n = 1. Uma reta sozinha divide o plano em duas regiões. De fato,

$$T_1 = (1 \times 2)/2 + 1 = 2.$$

Isto conclui a prova para n = 1.

- A hipótese de indução é: Suponha que $T_n = (n(n+1)/2) + 1$ para n.
- O passo de indução é: Supondo a h.i., vamos mostrar que para n + 1 retas em posição geral vale que

$$T_{n+1} = \frac{(n+1)(n+2)}{2} + 1.$$

Considere um conjunto L de n+1 retas em posição geral no plano e seja r uma dessas retas. Então, as retas do conjunto $L' = L \setminus \{r\}$ obedecem à hipótese de indução e, portanto, o número de regiões distintas do plano definidas por elas é (n(n+1))/2 + 1.

- Além disso, r intersecta as outras n retas em n pontos distintos. O que significa que, saindo de uma ponta de r no infinito e após cruzar as n retas de L', a reta r terá cruzado n + 1 regiões, dividindo cada uma destas em duas outras.
- Assim, podemos escrever que

$$T_{n+1} = T_n + n + 1$$

= $\frac{n(n+1)}{2} + 1 + n + 1$ (pela h.i.)
= $\frac{(n+1)(n+2)}{2} + 1$.

Isso conclui a demonstração.

Definição:

Um conjunto de *n* retas no plano define regiões convexas cujas bordas são segmentos das *n* retas. Duas dessas regiões são *adjacentes* se as suas bordas se intersectam em algum segmento de reta não trivial, isto é contendo mais que um ponto.

Uma *k-coloração* dessas regiões é uma atribuição de uma de *k* cores a cada uma das regiões, de forma que regiões adjacentes recebam cores distintas.

Veja exemplos dessas definições:

As regiões convexas

Uma 2-coloração do plano

Demonstre que para todo $n \ge 1$, existe uma 2-coloração das regiões formadas por n retas no plano.

Demonstração:

 A base da indução é, naturalmente, n = 1. Uma reta sozinha divide o plano em duas regiões. Atribuindo-se cores diferentes a essas regiões obtemos o resultado desejado.

Isto conclui a prova para n = 1.

- A hipótese de indução é: Suponha que sempre existe uma 2-coloração das regiões formadas por n retas no plano.
- O passo de indução é: Supondo a h.i., vamos exibir uma 2-coloração para as regiões formadas por n + 1 retas no plano.

A demonstração do passo consiste em observar que a adição de uma nova reta r divide cada região atravessada por r em duas, e definir a nova 2-coloração da seguinte forma: as regiões em um lado de r mantém a cor herdada da hipótese de indução; as regiões no outro lado de r têm suas cores trocadas.

Você é capaz de demonstrar que a 2-coloração obtida nesse processo obedece à definição?

Exemplos: Apesar da reconhecida validade dos seguintes somatórios, efetue provas por indução matemática da

Soma dos n termos de uma progressão aritmética (PA):

$$a_1 + (a_1 + r) + (a_1 + 2r) + \dots + [a_1 + (n-1)r] =$$

$$= \sum_{i=0}^{n-1} (a_1 + i \cdot r) = \frac{n(a_1 + [a_1 + (n-1)r])}{2}$$

Soma dos n termos de uma progressão geométrica (PG):

$$a_1 + (a_1 \cdot q) + (a_1 \cdot q^2) + \dots + (a_1 \cdot q^{n-1}) =$$

$$= \sum_{i=0}^{n-1} (a_1 \cdot q^i) = \frac{a_1(q^n - 1)}{q - 1}$$

Recorrências

Resolução de Recorrências

- Relações de recorrência expressam a complexidade de algoritmos recursivos como, por exemplo, os algoritmos de divisão e conquista.
- É preciso saber resolver as recorrências para que possamos efetivamente determinar a complexidade dos algoritmos recursivos.

Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de MERGESORT?

Seja T(n) :=o consumo de tempo máximo (pior caso) em função de n = r - p + 1

Complexidade do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

linha	consumo de tempo			
1	?			
2	?			
3	?			
4	?			
5	?			
T(n) = ?				

Complexidade do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	b_0
	2	<i>b</i> ₁
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	an
- 7	T([n/2]	$\overline{)+T(\lfloor n/2 \rfloor)+an+(b_0+1)}$

 b_1

Resolução de recorrências

Queremos resolver a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b$ para $n \ge 2$.

- Resolver uma recorrência significa encontrar uma fórmula fechada para T(n).
- Não é necessário achar uma solução exata. Basta encontrar uma função f(n) tal que $T(n) \in \Theta(f(n))$.

Resolução de recorrências

Alguns métodos para resolução de recorrências:

- substituição
- iteração
- árvore de recorrência

Veremos também um resultado bem geral que permite resolver várias recorrências: Master theorem.

Método da substituição

- Idéia básica: "adivinhe" qual é a solução e prove por indução que ela funciona!
- Método poderoso mas nem sempre aplicável (obviamente).
- Com prática e experiência fica mais fácil de usar!

Considere a recorrência:

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Chuto que $T(n) \in O(n \lg n)$.

Mais precisamente, chuto que $T(n) \leq 3n \lg n$.

(Lembre que $\lg n = \log_2 n$.)

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$

$$\leq 3 \left\lceil \frac{n}{2} \right\rceil \lg \left\lceil \frac{n}{2} \right\rceil + 3 \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq 3 \left\lceil \frac{n}{2} \right\rceil \lg n + 3 \left\lfloor \frac{n}{2} \right\rfloor (\lg n - 1) + n$$

$$= 3 \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \right) \lg n - 3 \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$= 3n \lg n - 3 \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq 3n \lg n.$$

(Yeeeeeesssss!)

- Mas espere um pouco!
- T(1) = 1 e 3.1. lg 1 = 0 e a base da indução não funciona!
- Certo, mas lembre-se da definição da classe O().

Só preciso provar que $T(n) \le 3n \lg n$ para $n \ge n_0$ onde n_0 é alguma constante.

Vamos tentar com $n_0 = 2$. Nesse caso

$$T(2) = T(1) + T(1) + 2 = 4 \le 3.2$$
. lg 2 = 6,

e estamos feitos.

- Certo, funcionou para T(1) = 1.
- Mas e se por exemplo T(1) = 8?
 Então T(2) = 8 + 8 + 2 = 18 e 3.2. lg 2 = 6.
 Não deu certo...
- Certo, mas aí basta escolher uma constante maior.
 Mostra-se do mesmo jeito que T(n) ≤ 10n lg n e para esta escolha T(2) = 18 ≤ 10.2. lg 2 = 20.
- De modo geral, se o passo de indução funciona (T(n) ≤ cn |g n), é possível escolher c e a base da indução (n₀) de modo conveniente!

Como achar as constantes?

- Tudo bem. Dá até para chutar que T(n) pertence a classe $O(n \lg n)$.
- Mas como descobrir que T(n) ≤ 3n lg n? Como achar a constante 3?
- Eis um método simples: suponha como hipótese de indução que T(n) ≤ cn lg n para n ≥ n₀ onde c e n₀ são constantes que vou tentar determinar.

Primeira tentativa

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg \left\lceil \frac{n}{2} \right\rceil + c \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg n + c \left\lfloor \frac{n}{2} \right\rfloor \lg n + n$$

$$= c \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \right) \lg n + n$$

$$= cn \lg n + n$$

(Hummm, não deu certo...)

Segunda tentativa

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg \left\lceil \frac{n}{2} \right\rceil + c \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg n + c \left\lfloor \frac{n}{2} \right\rfloor (\lg n - 1) + n$$

$$= c \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \right) \lg n - c \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$= cn \lg n - c \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq cn \lg n.$$

Para garantir a última desigualdade basta que $-c\lceil n/2\rceil + n \le 0$ e c=3 funciona. (Yeeeeeeessssss!)

Completando o exemplo

Mostramos que a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

satisfaz $T(n) \in O(n \lg n)$.

Mas quem garante que T(n) não é "menor"?

O melhor é mostrar que $T(n) \in \Theta(n \lg n)$.

Resta então mostrar que $T(n) \in \Omega(n \lg n)$. A prova é similar. (Exercício!)

Como chutar?

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Felizmente, há várias idéias que podem ajudar.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Ela é quase idêntica à anterior e podemos chutar que $T(n) \in \Theta(n \lg n)$. Isto de fato é verdade. (Exercício ou consulte o CLRS)

Como chutar?

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ para $n \ge 2$.

Ela parece bem mais difícil por causa do "17" no lado direito.

Intuitivamente, porém, isto não deveria afetar a solução. Para n **grande** a diferença entre $T(\lfloor n/2 \rfloor)$ e $T(\lfloor n/2 \rfloor + 17)$ não é tanta.

Chuto então que $T(n) \in \Theta(n \lg n)$. (Exercício!)

Truques e sutilezas

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(n)$ e tentamos mostrar que $T(n) \le cn$ para alguma constante c.

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

$$\leq c \lceil n/2 \rceil + c \lfloor n/2 \rfloor + 1$$

$$= cn + 1.$$

(Humm, falhou...)

E agora? Será que erramos o chute? Será que $T(n) \in \Theta(n^2)$?

Truques e sutilezas

Na verdade, adivinhamos corretamente. Para provar isso, é preciso usar uma hipótese de indução mais forte.

Vamos mostrar que $T(n) \le cn - b$ onde b > 0 é uma constante.

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

$$\leq c \lceil n/2 \rceil - b + c \lfloor n/2 \rfloor - b + 1$$

$$= cn - 2b + 1$$

$$\leq cn - b$$

onde a última desigualdade vale se $b \ge 1$. (Yeeeessss!)

Método da iteração

- Não é necessário adivinhar a resposta!
- Precisa fazer mais contas!
- Idéia: expandir (iterar) a recorrência e escrevê-la como uma somatória de termos que dependem apenas de n e das condições iniciais.
- Precisa conhecer limitantes para várias somatórias.

Método da iteração

Considere a recorrência

$$T(n) = b$$
 para $n \le 3$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + n$ para $n \ge 4$.

Iterando a recorrência obtemos

$$T(n) = n + 3T(\lfloor n/4 \rfloor)$$

$$= n + 3(\lfloor n/4 \rfloor + 3T(\lfloor n/16 \rfloor))$$

$$= n + 3(\lfloor n/4 \rfloor + 3(\lfloor n/16 \rfloor + 3T(\lfloor n/64 \rfloor)))$$

$$= n + 3\lfloor n/4 \rfloor + 9\lfloor n/16 \rfloor + 27T(\lfloor n/64 \rfloor).$$

Certo, mas quando devo parar? O *i*-ésimo termo da série é $3^i \lfloor n/4^i \rfloor$. Ela termina quando $\lfloor n/4^i \rfloor \leq 3$, ou seja, $i \geq \log_4 n$.

Método da iteração

Como $\lfloor n/4^i \rfloor \leq n/4^i$ temos que

$$T(n) \le n + 3n/4 + 9n/16 + 27n/64 + \dots + 3^{j}b$$

$$T(n) \le n + 3n/4 + 9n/16 + 27n/64 + \dots + d \cdot 3^{\log_4 n}$$

$$\le n \cdot (1 + 3/4 + 9/16 + 27/64 + \dots) + dn^{\log_4 3}$$

$$= n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i + dn^{\log_4 3}$$

$$= 4n + dn^{\log_4 3}$$

pois
$$3^{\log_4 n} = n^{\log_4 3}$$
 e $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$ para $0 < q < 1$.

Como $\log_4 3 < 1$ segue que $n^{\log_4 3} \in o(n)$ e $\log_5 T(n) \in O(n)$.

Método de iteração

- As contas ficam mais simples se supormos que a recorrência está definida apenas para potências de um número, por exemplo, n = 4ⁱ.
- Note, entretanto, que a recorrência deve ser provada para todo natural suficientemente grande.
- Muitas vezes, é possível depois de iterar a recorrência, adivinhar a solução e usar o método da substituição!

Método de iteração

$$T(n) = b$$
 para $n \le 3$, $T(n) = 3T(\lfloor n/4 \rfloor) + n$ para $n \ge 4$.

Chuto que $T(n) \leq cn$.

$$T(n) = 3T(\lfloor n/4 \rfloor) + n$$

$$\leq 3c\lfloor n/4 \rfloor + n$$

$$\leq 3c(n/4) + n$$

$$\leq cn$$

onde a última desigualdade vale se $c \ge 4$. (Yeeessss!)

Resolução pelo método da iteração

- A ideia da resolução pelo método da iteração (ou expansão telescópica) é expandir a relação de recorrência até que possa ser detectado seu comportamento no caso geral.
- Passos para resolver um equação de recorrência:
 - Opie a fórmula original
 - ② Descubra o passo (se T(n) estiver escrito em função de T(n/2), a cada passo o parâmetro é dividido por 2)
 - Isole as equações para "os próximos passos"
 - Substitua os valores isolados na fórmula original
 - Identifique a fórmula do i-ésimo passo
 - O Descubra o valor de i de forma a igualar o parâmetro de T(x) ao parâmetro (valor de n) no caso base
 - Substitua o valor de i na fórmula do i-ésimo caso
 - Identifique a complexidade dessa fórmula
 - Prove por indução que a equação foi corretamente encontrada

Exemplo 1:
$$T(n) = 2T(n/2) + 2$$
 $T(1) = 1$

- 2 T(n) está escrito em função de T(n/2)
- 3 Isole as equações para T(n/2) e T(n/4):

$$T(n/2) = 2(T(n/4)) + 2$$

 $T(n/4) = 2(T(n/8)) + 2$

- Substitua T(n/2) pelo valor que foi isolado acima e, em seguida, o mesmo para T(n/4)
 - substituindo o valor isolado de T(n/2): T(n) = 2(2(T(n/4)) + 2) + 2 $T(n) = 2^2T(n/2^2) + 6$
 - agora substituindo o valor de T(n/4): $T(n) = 2^2(2(T(n/8) + 2) + 6$ $T(n) = 2^3T(n/2^3) + 2^3 + 6$ $T(n) = 2^3T(n/2^3) + 2^4 - 2$

Exemplo 1:
$$T(n) = 2T(n/2) + 2$$
 $T(1) = 1$

6 Identifique a fóruma do *i*-ésimo passo $T(n) = 2^{i}T(n/2^{i}) + 2^{i+1} - 2$

O Descubra o valor de i de forma a igualar o parâmetro de T(x) ao parâmetro (valor de n) no caso base

```
T(n/2^{i}) \Leftrightarrow T(1)

n/2^{i} = 1

n = 2^{i}

i = \lg(n)
```

Substitua o valor de i na fórmula do i-ésimo caso

$$T(n) = 2^{\lg(n)}T(1) + 2^{\lg(n)+1} - 2$$

 $T(n) = n + 2n - 2$
 $T(n) = 3n - 2$

Identifique a complexidade dessa fórmula

$$T(n) \in \Theta(n)$$

Exemplo 1:
$$|T(n) = 2T(n/2) + 2|$$
 $|T(1) = 1|$

$$T(1) = 1$$

- Prova por indução
 - Passo base: para n = 1, o resultado esperado é 1 T(n) = 3n - 2 = 3 - 2 = 1 (correto)
 - Passo indutivo: por hipótese de indução, assumimos que a fórmula está correta para n/2, isto é, T(n/2) = 3 n/2 - 2. Então, temos que verificar se T(n) = 3n - 2, sabendo-se que T(n) = 2T(n/2) + 2 e partindo da H.I. que T(n/2) = 3n/2 - 2T(n) = 2 T(n/2) + 2T(n) = 2(3n/2 - 2) + 2 $T(n) = 2 \cdot 3 \cdot n/2 - 2 \cdot 2 + 2$ T(n) = 3n - 4 + 2T(n) = 3n - 2 (passo indutivo provado)
 - Demonstrado que 2T(n/2) + 2 = 3n 2 para $n \ge 1$

Exemplo 2:
$$T(n) = 2T(n-1) + 1$$
 $T(1) = 1$ (Torre de Hanoi)

- 2 T(n) está escrito em função de T(n-1)
- Isole as equações para T(n-1) e T(n-2):

$$T(n-1) = 2T(n-2) + 1$$

 $T(n-2) = 2T(n-3) + 1$

- Substitua T(n-1) pelo valor que foi isolado acima e, em seguida, o mesmo para T(n-2)
 - substituindo o valor isolado de T(n-1): T(n) = 2(2T(n-2)+1)+1
 - agora substituindo o valor de T(n-2):

$$T(n) = 2^2 T(n-2) + 2 + 1$$

 $T(n) = 2^2 (2T(n-3) + 1) + 2 + 1$
 $T(n) = 2^3 T(n-3) + 2^2 + 2 + 1$
 $T(n) = 2^3 T(n-3) + 2^3 - 1$

Exemplo 2: T(n) = 2T(n-1) + 1 T(1) = 1

Identifique a fóruma do *i*-ésimo passo $T(n) = 2^{i}T(n-1) + 2^{i} - 1$

O Descubra o valor de i de forma a igualar o parâmetro de T(x) ao parâmetro (valor de n) no caso base

$$T(n-i) \Leftrightarrow T(1)$$

 $n-i=1$
 $i=n-1$

Substitua o valor de i na fórmula do i-ésimo caso

$$T(n) = 2^{n-1}T(1) + 2^{n-1} - 1$$

 $T(n) = 2^{n-1} + 2^{n-1} - 1$
 $T(n) = 2 \cdot 2^{n-1} - 1$
 $T(n) = 2^{n} - 1$

Identifique a complexidade dessa fórmula

$$T(n) \in \Theta(2^n)$$

Exemplo 2:
$$T(n) = 2T(n-1) + 1$$
 $T(1) = 1$

- Prova por indução
 - Passo base: para n = 1, o resultado esperado é 1 $T(n) = 2^n 1 = 2 1 = 1$ (correto)
 - **Passo indutivo:** por hipótese de indução, assumimos que a fórmula está correta para n-1, isto é, $T(n-1)=2^{n-1}-1$. Então, temos que verificar se $T(n)=2^n-1$, sabendo-se que $T(n)=2^n-1$ e partindo da H.I. que $T(n-1)=2^{n-1}-1$ T(n)=2T(n-1)+1 $T(n)=2(2^{n-1}-1)+1$ $T(n)=2^n-2+1$ $T(n)=3^n-1$ (passo indutivo provado)
 - Demonstrado que $2T(n-1)+1=2^n-1$ para $n \ge 1$

 Exercícios – Repita o procedimento para as seguintes equações de recorrência:

$$T(n) = 3T(n-1) + 1$$

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$

$$T(1) = 1$$

- Permite visualizar melhor o que acontece quando a recorrência é iterada.
- É mais fácil organizar as contas.
- Útil para recorrências de algoritmos de divisão-e-conquista.

Considere a recorrência

$$T(n) = \Theta(1)$$
 para $n = 1, 2, 3,$
 $T(n) = 3T(\lfloor n/4 \rfloor) + cn^2$ para $n \ge 4,$

onde c > 0 é uma constante.

Costuma-se (CLRS) usar a notação $T(n) = \Theta(1)$ para indicar que T(n) é uma constante.

Simplificação

Vamos supor que a recorrência está definida apenas para potências de 4

$$T(n) = \Theta(1)$$
 para $n = 1$,
 $T(n) = 3T(n/4) + cn^2$ para $n = 4, 16, ..., 4^i, ...$

Isto permite descobrir mais facilmente a solução. Depois usamos o método da substituição para formalizar.

Total: $O(n^2)$

- O número de níveis é log₄ n + 1.
- No nível i o tempo gasto (sem contar as chamadas recursivas) é (3/16)icn².
- No último nível há $3^{\log_4 n} = n^{\log_4 3}$ folhas. Como $T(1) = \Theta(1)$ o tempo gasto é $\Theta(n^{\log_4 3})$.

Logo,

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \left(\frac{3}{16}\right)^{3}cn^{2} + \dots +$$

$$+ \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1}\left(\frac{3}{16}\right)^{i} + \Theta(n^{\log_{4}3})$$

$$\leq \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} + \Theta(n^{\log_{4}3}) = \frac{3}{16}cn^{2} + \Theta(n^{\log_{4}3}),$$

e $T(n) \in O(n^2)$.

Mas $T(n) \in O(n^2)$ é realmente a solução da recorrência original?

Com base na árvore de recorrência, chutamos que $T(n) \le dn^2$ para alguma constante d > 0.

$$T(n) = 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d\lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\leq dn^{2}$$

onde a última desigualdade vale se $d \ge (16/13)c$. (Yeeesssss!)

Resumo

- O número de nós em cada nível da árvore é o número de chamadas recursivas.
- Em cada nó indicamos o "tempo" ou "trabalho" gasto naquele nó que não corresponde a chamadas recursivas.
- Na coluna mais à direita indicamos o tempo total naquele nível que não corresponde a chamadas recursivas.
- Somando ao longo da coluna determina-se a solução da recorrência.

Vamos tentar juntos?

Eis um exemplo um pouco mais complicado.

Vamos resolver a recorrência

$$T(n) = 1$$
 para $n = 1, 2,$
 $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$ para $n \ge 3.$

Qual é a solução da recorrência?

Resposta: $T(n) \in O(n \lg n)$. (Resolvido em aula)

Recorrências com O à direita (CLRS)

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2,$
 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ para $n \ge 3$

representa todas as recorrências da forma

$$T(n) = a$$
 para $n = 1, 2,$ $T(n) = 3T(\lfloor n/4 \rfloor) + bn^2$ para $n \ge 3$

onde $a \in b > 0$ são constantes.

As soluções exatas dependem dos valores de a e b, mas estão todas na mesma classe Θ .

A "solução" é
$$T(n) = \Theta(n^2)$$
, ou seja, $T(n) \in \Theta(n^2)$.

As mesmas observações valem para as classes O, Ω, o, ω .

Recorrência do Mergesort

Podemos escrever a recorrência de tempo do Mergesort da seguinte forma

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n \ge 2$.

A solução da recorrência é $T(n) = \Theta(n \lg n)$.

A prova é essencialmente a mesma do primeiro exemplo. (Exercício!)

Cuidados com a notação assintótica

A notação assintótica é muito versátil e expressiva. Entretanto, deve-se tomar alguns cuidados.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

É similar a recorrência do Mergesort!

Mas eu vou "provar" que T(n) = O(n)!

Cuidados com a notação assintótica

Vou mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

 $\leq 2c\lfloor n/2 \rfloor + n$
 $\leq cn + n$
 $= O(n) \iff$ ERRADO!!!

Por quê?

Não foi feito o passo indutivo, ou seja, não foi mostrado que $T(n) \le cn$.

Teorema Master

 Veremos agora um resultado que descreve soluções para recorrências da forma

$$T(n) = aT(n/b) + f(n),$$

onde $a \ge 1$ e b > 1 são constantes.

- O caso base é omitido na definição e convenciona-se que é uma constante para valores pequenos.
- A expressão n/b pode indicar tanto $\lfloor n/b \rfloor$ quanto $\lceil n/b \rceil$.
- O Teorema Master não fornece a resposta para todas as recorrências da forma acima.

Teorema (Teorema Master (Manber))

Dada uma relação de recorrência da forma

$$T(n) = aT(n/b) + cn^k,$$

onde $a,b\in\mathbb{N},\,a\geq1,\,b\geq2,\,c>0$ e $k\geq0$ são constantes,

$$T(n) \in \left\{ egin{array}{ll} \Theta(n^{\log_b a}), & ext{se } a > b^k \ \Theta(n^k \log n), & ext{se } a = b^k \ \Theta(n^k), & ext{se } a < b^k \end{array}
ight.$$

Prova: Por simplicidade, assumimos que $n = b^m$ de modo que n/b é sempre inteiro. Com isso temos

$$T(n) = aT(n/b) + cn^k$$

é equivalente a

$$T(n) = aT(b^{m-1}) + cb^{mk}$$

Vamos começar expandindo a relação de recorrência:

$$T(n) = aT(b^{m-1}) + cb^{mk}$$

$$= a(aT(b^{m-2}) + cb^{(m-1)k}) + cb^{mk}$$

$$= a^2T(b^{m-2}) + cab^{(m-1)k} + cb^{mk}$$

$$= a^3T(b^{m-3}) + ca^2b^{(m-2)k} + cab^{(m-1)k} + cb^{mk}$$

$$= ...$$

$$= a^mT(b^0) + ca^{m-1}b^k + ca^{m-2}b^2k + ... + cab^{(m-1)k} + cb^{mk}$$

Assumindo que T(1) = c, ficamos com:

$$T(n) = ca^{m} + ca^{m-1}b^{k} + ca^{m-2}b^{2k} + \dots + cb^{mk}$$

$$= c\sum_{i=0}^{m} a^{m-i}b^{ik}$$

$$= ca^{m}\sum_{i=0}^{m} (b^{k}/a)^{i}.$$

Na última linha podemos ver os casos do enunciado, com base em como séries geométricas se comprotam quando b^k/a é maior, menor ou igual a zero.

$$T(n) = ca^m \sum_{i=0}^m (b^k/a)^i.$$

Caso 1: $a > b^{k}$

Neste caso, o somatório $\sum_{i=0}^{m} (b^k/a)^i$ converge para uma constante. Daí, temos que $T(n) \in \Theta(ca^m)$. Como $n = b^m$, então $m = \log_b n$, consequentemente, $T(n) \in \Theta(n^{\log_b a})$.

$$T(n) = ca^m \sum_{i=0}^m (b^k/a)^i.$$

Caso 2: $a=b^k$ Como $b^k/a=1$, temos $\sum_{i=0}^m (b^k/a)^i=m+1$. Daí, temos que $T(n)\in\Theta(ca^mm)$. Como $m=\log_b n$ e $a=b^k$, então $ca^mm=cn^{\log_b a}\log_b n=cn^k\log_b n$, o que nos leva à conclusão que $T(n)\in\Theta(n^k\log_b n)$.

$$T(n) = ca^m \sum_{i=0}^m (b^k/a)^i.$$

Caso 3: $a < b^k$

Neste caso, a série não converge quando m vai para infinito, mas é possível calcular sua soma para um número finito de termos.

$$T(n) = ca^{m} \sum_{i=0}^{m} (b^{k}/a)^{i}$$
$$= ca^{m} \left(\frac{(b^{k}/a)^{m+1} - 1}{(b^{k}/a) - 1} \right).$$

Desprezando as constantes na última linha da expressão acima e sabendo que $a^m \left(\frac{(b^k/a)^{m+1}-1}{(b^k/a)-1} \right) = b^{km}$ e $b^m = n$, concluímos que $T(n) \in \Theta(n^k)$. CQD

Teorema Master

Teorema (Teorema Master (CLRS))

Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) pode ser limitada assintoticamente da seguinte maneira:

- Se $f(n) \in O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- **2** Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
- **③** Se $f(n) ∈ Ω(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$ e se af(n/b) ≤ cf(n), para alguma constante c < 1 e para n sufficientemente grande, então T(n) ∈ Θ(f(n))

Resolução por Teorema Master

Exemplo 1:
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

• $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

$$a=4$$
 ; $b=2$ $\log_b a=\log_2 4=2$
$$f(n)=n$$
 $f(n)\in O(n^{\log_b a-\epsilon})=O(n^{2-\epsilon}), \text{ sendo }\epsilon=1\ (\epsilon>0)$

Portanto, se encaixa no caso 1 do Teorema Master:

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^2)$$

Resolução por Teorema Master

Exemplo 2:
$$T(n) = T\left(\frac{9n}{10}\right) + n$$

•
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$a = 1$$
 ; $b = \frac{10}{9}$; $\log_b a = \log_{\frac{10}{9}} 1 = 0$
 $f(n) = n$

• Será caso 3 se satisfizer a condição de regularidade: Para todo n, $af\left(\frac{n}{b}\right) = \frac{9n}{10} \le \frac{9}{10}n = cf(n)$ para $c = \frac{9}{10} < 1$.

 $f(n) \in \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{0 + \epsilon}), \text{ sendo } \epsilon = 1 \ (\epsilon > 0)$

• Portanto, se encaixa no caso 3 do Teorema Master:
$$T(n) \in \Theta(f(n)) = \Theta(n)$$

Resolução por Teorema Master

Exemplo 3:
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

• $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

$$a=4$$
 ; $b=2$; $\log_b a = \log_2 4 = 2$
$$f(n) = n^2$$

$$f(n) \in \Theta(n^{\log_b a}) = \Theta(n^2)$$

Portanto, se encaixa no caso 2 do Teorema Master:

$$T(n) \in \Theta(n^{\log_b a} \log n) = \Theta(n^2 \log n)$$

Exemplos de Recorrências

Exemplos onde o Teorema Master se aplica:

- Caso 1: T(n) = 9T(n/3) + n
 - $T(n) = 4T(n/2) + n \log n$
- Caso 2:

$$T(n) = T(2n/3) + 1$$

 $T(n) = 2T(n/2) + (n + \log n)$

• Caso 3: $T(n) = T(3n/4) + n \log n$

Exemplos de Recorrências

Exemplos onde o Teorema Master não se aplica:

- T(n) = T(n-1) + n
- T(n) = T(n-a) + T(a) + n, $(a \ge 1)$ inteiro
- $T(n) = T(\alpha n) + T((1 \alpha)n) + n, (0 < \alpha < 1)$
- $T(n) = T(n-1) + \log n$
- $T(n) = 2T(\frac{n}{2}) + n\log n$