"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

Classification of graph algorithms

- (1) Basic concept (1)
 - The problem of finding shortest paths for every two vertices u and v.
 - Solving single-source shortest path for all vertices in G
 - Floyd's algorithm
 - A kind of dynamic programming

- (1) Basic concept (1)
 - Dynamic programming
 - Finding an optimal solution for a sequence of decision
 - Decomposing a problem into a set of subproblems
 - Exploring all possible subproblems to find an optimal solution

- (2) Floyd's algorithm (1)
- Finding the all-pair's shortest path.
 - Input: adjacency matrix of a graph.
 - The weight of a path between two vertices is the sum of the weights of the edges along that path.
 - Negative weight is allowed.
 - Negative cycle is not allowed.

(2) Floyd's algorithm (2)

- $-A^{k}[i][j]$:
 - The cost of the shortest path from vertex i to j, using only those intermediate vertices with an index ≤ k.
- $-A^{-1}[i][j]$
 - the weight of an edge connecting vertex i and vertex j

(2) Floyd's algorithm (3)

- Basic idea:
 - Starting from A⁻¹, successively generate the matrices to A¹, A², ..., Aⁿ.

$$A^{k}[i][j] = min \{ A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j] \}$$

$$A^{-1}[i][j] = cost[i][j]$$

(2) Floyd's algorithm (4)

```
void Floyd ( int cost[][], int dist[][], int n )
  int i, j, k;
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        dist[i][j] = cost[i][j];
  for (k = 0; k < n; k++)
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
           if ( dist[i][k] + dist[k][j] < dist[i][j] )</pre>
               dist[i][j] = dist[i][k] + dist[k][j];
```

(2) Floyd's algorithm (5)

– Example:

A-1	0	1	2	Ao	0	1	2
0				0			
1				1			
2				2			
	l						
A^1	0	1	2	A^2	0	1	2
A ¹	0	1	2	$\begin{array}{c c} A^2 \\ \hline 0 \end{array}$	O	1	2
	0	1	2		O	1	2

if (dist[i][k] + dist[k][j] < dist[i][j])
 dist[i][j] = dist[i][k] + dist[k][j];</pre>

(2) Floyd's algorithm (5)

– Example:

A-1	0	1	2		A^0	O	1	2
0	0	4	11	•	0			
1	6	0	2		1			
2	3	∞	0		2			
A ¹	0	1	2		A^2	0	1	2
0					0			
1					1			
) 2					2			

if (dist[i][k] + dist[k][j] < dist[i][j])
 dist[i][j] = dist[i][k] + dist[k][j];</pre>

(2) Floyd's algorithm (5)

– Example:

•						•		
A-1	0	1	2		A ^o	0	1	2
O	0	4	11		0	0	4	11
1	6		2		1	6	0	2
2	3	∞	0		2	3	7	0
A^1	0	1	2		A^2	0	1	2
0				-	0			
1					1			
2					2			

if (dist[i][k] + dist[k][j] < dist[i][j])
 dist[i][j] = dist[i][k] + dist[k][j];</pre>

(2) Floyd's algorithm (5)

– Example:

if (dist[i][k] + dist[k][j] < dist[i][j]
dist[i][j] = dist[i][k] + dist[k][j];</pre>

<u> </u>					ı	•		
			2		Ao			
0	0	4	11	,	Ο	0	4	11
1	6	0	2		1	6	0	2
2	0 6 3	∞	0		2	3	4 0 7	0
A^1	0	1	2		A^2	0	1	2
0	0	4	6	,	О			
1	6	0	2		1			
2	0	7	0		2			

(2) Floyd's algorithm (5)

– Example:

if (dist[i][k] + dist[k][j] < dist[i][j] ;
 dist[i][j] = dist[i][k] + dist[k][j];</pre>

•					-		
	0			A^{0}	0	1	2
0	0	4	11	O	0	4	11
1	6	0	2	1	6	0	2
2	0 6 3	∞	0	2	0 6 3	7	O
	0				0		
0	0	4	6	О	0	4	6
1	0	0	2	1	5	4 0	2
2	3	7	0	2	3	7	0

All about graph

Туре	Purpose	Operations	Performance
DFS	Traverse all vertices	Visiting all vertices & visiting all edges	O(n) + O(m)
SCC	Finding SCC	DFS on G ^R and G	O(DFS)
BFS	Traverse all vertices	Visiting all vertices & visiting all edges	O(n) + O(m)
Dijkstra	Single source shortest path	Visiting all edges & managing queue	O(n²) (original) → O(m) + O(n log n)
Floyd	All pairs shortest path	Incrementing k	O(n³)
Kruskal (Greedy)			
Prim (Greedy)			
MultiStage (Dynamic)			

4. Graph

- 4.0 Introduction
- 4.1 Why graph?
- 4.2 Depth-first search in undirected graph
- 4.3 Depth-first search in directed graphs
- 4.4 Strongly connected components
- 4.5 Biconnected component
- 4.6 Distances
- 4.7 Breadth-first search
- 4.8 Single source shortest path
- 4.9 All pairs shortest path

Contents

O. Prologue

1. Divide & conquer

2. Graph

3. Greedy algorithm

4. Dynamic programming

- 다음은 Floyd algorithm에 대한 설명이다. 잘못된 것을 모두 고르시오.
- (a) Floyd algorithm은 Dijkstra algorithm을 n번 수행한 것과 같은 시간 복잡도를 갖는다 (n: vertex의 수).
- (b) Floyd algorithm은 dynamic programming의 일종이다.
- (c) Floyd algorithm은 Dijkstra algorithm과 같이 negative edge가 있는 graph는 작동하지 않는다.
- (d) Floyd algorithm은 Bellman-Ford algorithm과 같이 negative edge가 있는 graph에서도 작동한다.