Отчет по лабораторной работе №320

Дифракций Фраунгофера

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	Теоретическая часть												
	1.1	.1 Вывод уравнения интенсивностей при дифракции Фраунгофера на решетке											
	1.2 Вывод условия первого минимума видимости												
2	Результаты эксперимента												
	2.1	Качес	твенные наблюдения										
		2.1.1	Условия эксперимента										
		2.1.2	Изменение b										
		2.1.3	Изменение d										
		2.1.4	Поворот дифракционной решётки										
		2.1.5	Изменение λ										
		2.1.6	Изменение длины щели источника										
		2.1.7	Изменение ширины щели источника										
		2.1.8	Порядок следования цветов										
	2.2	Дифр	акционные картины для разных решёток										
		2.2.1	Дифракция на одной щели										
		2.2.2	Дифракция на двух щелях										
		2.2.3	Дифракция на пятнадцати щелях										

1. Теоретическая часть

В данной работе изучается дифракция на одной щели, двух щелях и на решетке из нескольких щелей. Наблюдения и измерения производятся при помощи гониометра — оптического прибора для измерения углов с большой точностью.

При помощи гониометра изучают угловое распределение интенсивности дифрагированного света. Углы дифракции изменяются оптическим компенсатором (микроскопом с отчетным микрометром).

При дифракции Фраунгофера на щели интенсивность излучения в плоскости xy, перпендикулярной щели, зависит от угла дифракции по закону

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{\left(\frac{kb \sin \theta}{2}\right)^2},\tag{1}$$

где I_0 - интенсивность в направлении $\theta=0, I_{\theta}$ - интенсивность в направлении θ, b - ширина щели, k- волновое число.

При дифракции Фраунгофера от решетки с периодом d из N одинаковых щелец ширины b зависимость интенсивность I_{θ} описывается формулой

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{\left(\frac{kb \sin \theta}{2}\right)^2} \cdot \frac{\sin^2 \frac{Nkd \sin \theta}{2}}{\sin^2 \frac{kd \sin \theta}{2}} \tag{2}$$

Рассмотрим влияние размеров источника света на вид дифракционной картины при дифракции на двух щелях. В данной работе источником света служит щель коллиматора. Обозначим ширину этой щели l, а её угловой размер α . От каждой точки источника на объект дифракции падает плоская волна и создает в фокальной плоскости дифракционную картину. Крайние точки источника K и f создают картины, центры которых K' и f' смещены относительно друг друга на угловое расстояние α .

Контрастность дифракционных картин характеризуется видимостью

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} - интенсивность в максимуме, I_{min} - интенсивность в ближайшем к нему минимуме.

Видимость дифракционной картины от двух щелей зависит от углового размера источника α . Если яркость источника одинакова по всей ширине, то при увеличении α первый минимум видимости наступит, когда α станет равно θ_1 - угловому расстоянию между ну-

левым и первым максимами. При малых углах

$$\sin \theta_1 \simeq \theta_1 = \frac{\lambda}{d}, \ \alpha = \frac{l}{F}$$
 (4)

здесь λ - длина световой волны источника, d- фокусное расстояние между щелями на экране, F- фокусное расстояние линзы коллиматора.

Условие первого минимума имеет вид

$$l = \theta_1 F = \frac{\lambda F}{d} \tag{5}$$

Формула (5) даёт возможность определить ширину источника света по найденному опытным путём расстоянию d между щелями, при котором наступает размытие дифракционной картины.

Таким был метод, использованный в 1920 г. Майкельсоном для измерения углового расстояния между компонентами двойной звезды Капеллы и диаметра звезды Бетельгейзе.

1.1. Вывод уравнения интенсивностей при дифракции Фраунгофера на решетке

Рис. 1: Caption here

Сначала выведем дифракцию на первой щели, пользуясь принципом Гюйгенса-Френеля. Пусть на щель падает свет амплитудой E_0 , длиной волны λ . Щель разобьем на бесконечно малые излучатели шириной dx и с амплитудой излучаемой волны $\frac{E_0}{b}dx$.

Набег фазы для каждого такого излучателя относительно излучателя с координатой x=0 будет $k\Delta=k\cdot x\sin\Theta$:

$$d\widehat{E}(x) = \frac{\widehat{E}_0}{b} \cdot \exp(i \cdot kx \sin \Theta) dx \tag{6}$$

Проинтегрируем по всей щели:

$$\widehat{E}_1 = \widehat{E}_0 \int_0^b \frac{1}{i \cdot kb \sin \Theta} \exp\left(i \cdot kx \sin \Theta\right) d[i \cdot kx \sin \Theta] = \tag{7}$$

$$=\widehat{E}_{0}\frac{\exp\left(i\cdot kb\sin\Theta\right)-1}{i\cdot kb\sin\Theta}=\widehat{E}_{0}\exp\left(i\cdot \frac{kb\sin\Theta}{2}\right)\frac{\exp\left(i\cdot \frac{kb\sin\Theta}{2}\right)-\exp\left(-i\cdot \frac{kb\sin\Theta}{2}\right)}{i\cdot kb\sin\Theta}=(8)$$

$$=\widehat{E}_{0}\exp\left(i\cdot \frac{kb\sin\Theta}{2}\right)\operatorname{sinc}\left(\frac{kb\sin\Theta}{2}\right)$$
(9)

«Спрячем» экспоненту в комплексную амплитуду. Это не повлияет на решение, так

как для всех щелей набег фазы в этой экспоненте будет одинаков.

$$\widehat{E}_1 = \widehat{E}_a \operatorname{sinc}\left(\frac{kb \sin \Theta}{2}\right) \tag{10}$$

Теперь рассмотрим сложение волн, пришедших от всех щелей в дифракционной решетке. Нетрудно показать, что набег фазы будет зависеть от номера щели и угла Θ :

$$\widehat{E}_m = \widehat{E}_1 \exp\left(i \cdot k(m-1)d\sin\Theta\right),\tag{11}$$

где m – номер щели.

Тогда можем записать сумму волн:

$$\widehat{E}(\Theta) = \widehat{E}_1 \left(1 + \exp\left(i \cdot kd \sin \Theta\right) + \ldots + \exp\left(i \cdot k(N-1)d \sin \Theta\right) \right) \tag{12}$$

Второй множитель здесь — решеточный множитель, который дает постоянный сдвиг фазы и множитель вида $\sin Nx/\sin x$. Нетрудно показать, что тогда

$$\widehat{E}(\Theta) \sim \widehat{E}_1 \operatorname{sinc}\left(\frac{kb \sin \Theta}{2}\right) \left[\frac{\sin\left(\frac{Nkd \sin \Theta}{2}\right)}{\sin\left(\frac{kd \sin \Theta}{2}\right)}\right]$$
 (13)

И тогда окончательный результат:

$$I(\Theta) = I_0 \operatorname{sinc}^2 \left(\frac{kb \sin \Theta}{2} \right) \left[\frac{\sin \left(\frac{Nkd \sin \Theta}{2} \right)}{\sin \left(\frac{kd \sin \Theta}{2} \right)} \right]^2$$
(14)

1.2. Вывод условия первого минимума видимости

Полосы на экране будут видны достаточно отчётливо, пока расстояние между полосами Δx будет меньше δx . δx связана с линейным размером источника l соотношением

$$\delta x = \frac{dl}{F} \tag{15}$$

Угловой размер источника:

$$\alpha = \frac{l}{F} \tag{16}$$

Угловая ширина полос:

$$\theta = \frac{\lambda}{d} \tag{17}$$

Тогда при $\alpha < \theta$ картина будет видна достаточно отчетливо. Отсюда получаем условие первого минимума видимости

$$l = \frac{\lambda F}{d} \tag{18}$$

2. Результаты эксперимента

2.1. Качественные наблюдения

2.1.1 Условия эксперимента

Изначально свет идет от лампочки накаливания, размер спиральки которой 3 мм.

2.1.2 Изменение b

 ${\bf C}$ изменением ширины щели решетки – уменьшением b картинка расширяется, увеличивается расстояние между максимумами

2.1.3 Изменение *d*

Экспериментально было установлено, что с изменением периода решетки (уменьшением d) картинка расширяется, увеличивается расстояние между максимумами

Теоретически это нетрудно обосновать. Рассмотрим решёточный множитель в формуле (14). Функция имеет минимумы в точках

$$\sin \theta_m = \frac{\lambda m}{Nd}, \ m = 1, 2 \dots \frac{Nd}{\lambda}. \tag{19}$$

Таким образом, при уменьшении д увеличивается расстояние между максимумами.

2.1.4 Поворот дифракционной решётки

С увеличением угла, под которым расположена дифракционная решетка картина расширяется

2.1.5 Изменение λ

Для красного ширина центрального максимума шире, чем для зеленого. Полушириной центрального максимума будем называть угловое расстояние от $\theta=0$ до ближайшего минимума. Тогда

$$\theta_0 = \arcsin \frac{\lambda}{Nd} \tag{20}$$

То есть при увеличении длины волны картинка расширяется. Что мы и наблюдали в эксперименте.

2.1.6 Изменение длины щели источника

Дифракционная картина при изменении длины щели источника не изменяется.

2.1.7 Изменение ширины щели источника

Таблица 1: Показания микрометра щели источника и ширина щели для разных дифракционных картин: З–щель закрыта, Ч–чёткая дифракционная картина, Р–размытая дифракционная картина

$3, z, \text{ MM} \cdot 10^{-2}$	Ч, z , мм· 10^{-2}	P, z , mm· 10^{-2}	Ч, Δx , мм· 10^{-2}	P, Δx , MM· 10^{-2}
7	10	17	3	10

2.1.8 Порядок следования цветов

Распределение цветов при дифракции в белом свете: ЗЖК

2.2. Дифракционные картины для разных решёток

2.2.1 Дифракция на одной щели

Таблица 2: b = 0.52 мм, N = 1, по минимумам

N	Θ°	Θ'	Θ''	$\Delta\Theta^{\circ}$	$\Delta\Theta'$	$\Delta\Theta''$	$\Delta\Theta$, "	погрешность, "
-3	275	43	31	0	0	0	0	0
-2	275	39	11	0	4	20	260	33
-1	275	35	8	0	4	3	243	30
1	275	26	52	0	9	-44	496	62
2	275	22	22	0	4	30	270	34
3	275	18	23	0	4	-1	239	30

Рис. 2: Теоретический вид распределения интенсивности, дифракция на одной щели

2.2.2 Дифракция на двух щелях

Таблица 3: b = 0.52 мм, d = 1.5 мм, N = 2, по минимумам

N	Θ°	Θ'	Θ''	$\Delta\Theta^{\circ}$	$\Delta\Theta'$	$\Delta\Theta''$	$\Delta\Theta$, "	погрешность, "
-6	275	38	26	0	0	0	0	0
-5	275	37	8	0	1	18	78	10
-4	275	36	17	0	1	-9	51	6
-3	275	35	38	0	1	-21	39	5
-2	275	33	56	0	2	-18	102	13
-1	275	32	45	0	1	11	71	9
1	275	31	1	0	1	44	104	13
2	275	29	41	0	2	-40	80	10
3	275	28	14	0	1	27	87	11
4	275	27	30	0	1	-16	44	5
5	275	26	38	0	1	-8	52	7
6	275	25	15	0	1	23	83	10

Рис. 3: Теоретический вид распределения интенсивности, дифракция на двух щелях

2.2.3 Дифракция на пятнадцати щелях

Таблица 4: b=1 мм, d=2 мм, N=15, по максимумам

N	Θ°	Θ'	Θ"	$\Delta\Theta^{\circ}$	$\Delta\Theta'$	$\Delta\Theta''$	$\Delta\Theta$, "	погрешность, "
-1	275	33	0	0	0	0	0	0
0	275	32	0	0	1	0	60	8
1	275	30	54	0	2	-54	0 60 66	8

Рис. 4: Теоретический вид распределения интенсивности, дифракция на пятнадцати щелях