Trabalho 2

Willian Zonato Luiz Fernando Palin Droubi 14 de agosto de 2018

Importação dos dados

a. Coordenadas

As coordenadas foram extraídas de arquivo .kml diretamente para o R version 3.5.1 (2018-07-02).

```
source("E:\\Documents\\appraiseR\\R\\kml.R")
df <- read.kml("Sto_Amaro_4.kml", "Meus lugares")</pre>
```

b. Dados do Excel

Os dados da pesquisa de mercado foram lidos diretamente no R version 3.5.1 (2018-07-02).

```
Dados <- read_excel("Dados.xlsx")</pre>
```

c. Aglutinação dos dados

Posteriormente, os dados da pesquisa foram mesclados com as coordenadas dos dados. O conjunto de dados assim obtido pode ser visto na tabela

```
data <- inner_join(df, Dados, by = "ID")</pre>
```

Espacialização

- a. Criação do conjunto de dados espaciais
- b. Plotagem

c. Variograma

- d. Conversão de unidades
- e. Variograma com tendência espacial

f. Ajuste de variograma

- g. Krigagem
- Manual

• Automática

Experimental variogram and fitted variogram model

Experimental variogram and fitted variogram model

h. Escrita do Shapefile no disco

Confecção de mapas temáticos

a. Topografia

b. Pavimentação

c. Situação

Ajuste do modelo OLS

Diagrama de Box-Cox

Modelo final

Table 1:

	Dependent variable:
	$\log(\mathrm{VU})$
log(Area)	-0.508 (-0.637, -0.380)
	t = -7.733
	$p = 0.00000^{***}$
Geralsim	$1.101 \ (0.753, \ 1.448)$
	t = 6.201
	$p = 0.00001^{***}$
topografiaplano	$0.303 \; (-0.146, 0.753)$
	t = 1.324
	p = 0.202
Constant	8.825 (7.932, 9.717)
	t = 19.380
	$p = 0.000^{***}$
Observations	23
\mathbb{R}^2	0.843
Adjusted R^2	0.818
Residual Std. Error	0.382 (df = 19)
F Statistic	33.962***(df = 3; 19)
Note:	*p<0.1; **p<0.05; ***p<0.01

Diagnóstico básico

Figure 1: Gráficos básicos do modelo

Testes do modelo

${\bf Homoscedasticidade}$

Normalidade

- a. Teste de Pearson (χ^2)
- b. Teste de Lilliefors (Kolgomorov-Smirnov):
- c. Teste de Shapiro-Wilk:
- d. Teste de Anderson-Darling:
- e. Teste de Jarque-Bera:

f. Histograma

Figure 2: Histograma dos resíduos padronizados

g. Teste K-S (Kolgomorov-Smirnov) $[@{\rm KS}]$

Figure 3: Curva da função de distribuição acumulada (FDA) empírica

Gráficos do modelo

a. Na mediana das variáveis

Figure 4: Gráficos dos regressores em função da variável dependente (em cada gráfico, os outros regressores estão em seus valores médios.

b. No ponto de avaliação

Figure 5: Gráficos dos regressores em função da variável dependente (em cada gráfico, os outros regressores estão em seus valores médios.

IV. Poder de Predição

Figure 6: Poder de Predição.