ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

KHOA CÔNG NGHÊ THÔNG TIN

BÀI TẬP TUẦN 9

Môn học: Thực hành Đại số tuyến tính

Ca 1 - Nhóm 2:

23120006 - Trần Minh Hiếu Học

23120007 - Đỗ Trọng Huy

23120008 - Thái Gia Huy

23120009 - Nguyễn Thanh Khôi

23120010 - Hoàng Ngọc Phú

Mục lục

1	Bài 4.21	2
2	Bài 4.22	3
3	Bài 4.23	4
4	Bài 4.24	4
5	Bài 4.25	5
6	Bài 4.26	6
7	Bài 4.27	6
8	Bài 4.28	7
9	Bài 4.29	8
10	Bài 4.30	8
11	Bài 4.31	8
12	Bài 4.32	9
13	Bài 4.33	10

○ Bài 4.21 Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ sao cho $f(u_1) = u_2 + u_3$, $f(u_2) = u_3 + u_1$ và $f(u_3) = u_1 + u_2$, với $u_1 = (1, 1, 1)$, $u_2 = (1, 0, 1)$, $u_3 = (0, 1, 1)$.

- a) Hãy xác định ánh xạ tuyến tính f.
- b) Xác định ma trận biểu diễn f theo cơ sở $\mathcal{B} = \{u_1, u_2, u_3\}$.

\land Lời giải

- a) Do f là ánh xạ tuyến tính nên ta áp dụng các tính chất của ánh xạ tuyến tính để giải quyết:
 - Ta có:

+
$$f(u_1 - u_2) = f(u_1) - f(u_2) = u_2 - u_1$$

 $\Leftrightarrow f(0,1,0) = (0,-1,0)$
+ $f(u_1 - u_3) = f(u_1) - f(u_3) = u_3 - u_1$
 $\Leftrightarrow f(1,0,0) = (-1,0,0)$
+ $f(u_2 - u_3) = f(u_2) - f(u_3) = u_3 - u_2$
 $\Leftrightarrow f(1,-1,0) = (-1,1,0)$

Ta nhận thấy phần tử thứ nhất của f(x, y, z) không tồn tại giá trị y và phần tử thứ 2 của f(x, y, z) không tồn tại giá trị $x \Leftrightarrow f(x, y, z) = (-x + c_1 z, -y + c_2 z, ax + by + cz)$ - Lại có: $f(u_2 + u_3) = f(1, 1, 2) = (3, 3, 4)$ Giải ra ta được: f(x, y, z) = (-x + 2z, -y + 2z, ax + by + cz)

• Tiếp tục từ các phương trình của đề bài, ta có được hệ phương trình sau:

$$\begin{cases} a+c & = 2 \\ b+c & = 2 \Rightarrow \begin{cases} a = 0 \\ b = 0 \\ c = 2 \end{cases}$$

Từ nghiệm của hệ phương trình trên ta có được kết quả cần tìm:

$$f(x,y,z) = (-x + 2z, -y + 2z, 2z)$$

Vậy ánh xạ tuyến tính f cần tìm:

$$f(x,y,z) = (-x + 2z, -y + 2z, 2z);$$

b) Theo đề bài, ta có:

$$f(1,1,1) = (1,1,2)$$

$$f(1,0,1) = (1,2,2)$$

$$f(0,1,1) = (2,1,2)$$

- Ma trân biểu diễn f theo cơ sở B:

$$[u_1^T \quad u_2^T \quad u_3^T | f(u_1)^T \quad f(u_2)^T \quad f(u_3)^T] = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 2 \\ 0 & -1 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\frac{-d_2+d_3}{d_1-d_2} \left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array} \right] = [I_3|P]$$

Vậy ma trận biểu diễn f theo cơ sở \mathcal{B} cần tìm là:

$$[f]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

2 Bài 4.22

 $lue{lue}$ Bài 4.22 Cho $\mathcal{B}=\{(1,-1),(-2,3)\}$ là cơ sở của \mathbb{R}^2 . Hãy xác định $f\in L(\mathbb{R}^2)$ sao cho

$$[f]_{\mathcal{B}} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$

🕰 Lời giải

Ta có

$$[f]_{\mathcal{B}_0} = (\mathcal{B} \to \mathcal{B}_0)^{-1} \cdot [f]_{\mathcal{B}} \cdot (\mathcal{B} \to \mathcal{B}_0)$$

$$= (\mathcal{B}_0 \to \mathcal{B}) \cdot [f]_{\mathcal{B}} \cdot (\mathcal{B} \to \mathcal{B}_0)^{-1}$$

$$= \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 4 \\ 8 & -5 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -11 & -6 \\ 19 & 11 \end{bmatrix}$$

Do đó f(x,y) = (-11x - 6y, 19x + 11y).

Bài 4.23 Cho $\mathcal{B}=\{(1,1,1),(1,1,0),(1,0,-1)\}$ là cơ sở của \mathbb{R}^3 . Xác định $f\in\mathcal{L}(\mathbb{R}^3)$ sao cho

$$[f]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

\land Lời giải

Đặt $u_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (1, 0, -1)$

Có
$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^T, u_2^T, u_3^T) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

Suy ra
$$(\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

Ta có:

$$[f]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B}).[f]_{\mathcal{B}}.(\mathcal{B}_0 \to \mathcal{B})^{-1}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 2 & -1 & 1 \\ 2 & -3 & 2 \end{bmatrix}$$

Vậy f(x, y, z) = (2x, 2x - y + z, 2x - 3y + 2z).

4 Bài 4.24

○ Bài 4.24 Cho cặp cơ sở $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,-1)\}$ (của \mathbb{R}^3) và $\mathcal{C} = \{(2,-1), (-3,2)\}$ (của \mathbb{R}^2). Hãy xác định ánh xạ tuyến tính $f \in L(\mathbb{R}^3, \mathbb{R}^2)$ sao cho

$$[f]_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 2 & 1 & -2 \\ 3 & -1 & 1 \end{bmatrix}$$

\land Lời giải

Ta có

$$(\mathcal{B}_0 o \mathcal{B}) = egin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & -1 \end{bmatrix}$$

và

$$(\mathcal{C}_0 o \mathcal{C}) = egin{bmatrix} 2 & -3 \ -1 & 2 \end{bmatrix}$$

Khi đó

$$[f]_{\mathcal{B}_0,\mathcal{C}_0} = (\mathcal{C}_0 \to \mathcal{C})[f]_{\mathcal{B},\mathcal{C}}(\mathcal{B}_0 \to \mathcal{B})^{-1}$$
$$= \begin{bmatrix} -17 & 22 & -10\\ 11 & -14 & 7 \end{bmatrix}$$

Suy ra $f(x,y,z) = (-17x + 22y - 10z, 11x - 14y + 7z), \ \forall (x,y,z) \in \mathbb{R}^3.$

5 Bài 4.25

○ Bài 4.25 Cho V là một không gian trên trường \mathbb{R} . Giả sử f là một toán tử tuyến tính trong V thỏa Imf = Kerf. Chứng minh rằng n là một số chẵn. Hãy cho một ví dụ minh họa.

\land Lời giải

Ta có định lý sau:

$$\dim(Imf) + \dim(Kerf) = \dim V$$

Khi đó vì Imf = Kerf nên ta đặt: dim(Imf) = dim(Kerf) = a. Khi đó:

$$2a = dimV = n$$

Vậy n là số chẵn.

Xét với n = 2, ta có dim(Imf) = dim(Kerf) = 1. Khi đó chọn:

$$\mathcal{B} = \{(2,1)\}$$
 là cơ sở của Imf
 $\mathcal{B}' = \{(3,1)\}$ là cơ sở của $Kerf$

Khi đó dễ chọn được:

$$f(x,y) = (2x - 6y, x - 3y)$$

◯ Bài 4.26 Cho V là không gian vector trên $\mathbb R$ và f là một toán tử tuyến tính trong V. Chứng minh rằng các điều kiện dưới đây tương đương:

- a) Kerf \cap Imf = 0.
- b) Nếu $f^2(u) = 0$ thì f(u) = 0, với $u \in V$.

\land Lời giải

• Ta chứng minh theo chiều thuận ($(a) \Rightarrow (b)$):

- Giả sử ta có v là vector thuộc không gian Imf và v=f(u) (với $u\in V$) Lại có: $f^2(u)=f(f(u))=0$

 $\Rightarrow f(u)$ thuộc không gian Kerf hay v thuộc không gian Kerf

- Theo giả thiết ở ý a) có: Kerf ∩ Imf = 0 nên ta suy ra được:

$$v = f(u) = 0$$
 (đpcm)

• Ta chứng minh theo chiều nghịch $(b) \Rightarrow a)$:

- Đặt: v = Kerf ∩ Imf

Do v là phần giao của Kerf và Imf nên tồn tại $u \in V$ thỏa:

$$v = f(u)$$
$$f(v) = 0$$

Ta biến đổi từ trên được:

$$f(v) = f(f(u)) = f^{2}(u) = 0$$

- Tức là ta được: f(u)=0 hay v=0 Suy ra:

$$Kerf \cap Imf = 0 \quad (dpcm)$$

Vậy 2 điều kiện đề cho là tương đương nhau

7 Bài 4.27

 $lue{f C}$ Bài 4.27 Cho f là toán tử tuyến tính trong ${\Bbb R}^3$ với

$$f(x_1, x_2, x_3) = (2x_1, x_1 + x_2, 3x_1 + x_2 - x_3)$$

- a) Xét xem f có khả nghịch không? Nếu f khả nghịch hãy tìm f^{-1} .
- b) Chứng minh rằng $(f^2 Id)(f 2Id) = 0$.

a) Ta có
$$A = [f]_{\mathcal{B}_0} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & -1 \end{bmatrix}$$
. Vì $det(A) = -2$ nên f khả nghịch.
Mặt khác, $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$. Nên $f^{-1}(x_1, x_2, x_3) = \left(\frac{1}{2}x, -\frac{1}{2}x + y, x + y - z\right)$.

b) Ma trận biểu diễn $(f^2 - Id)(f - 2Id)$ là

$$(A^{2} - I_{3})(A - 2I_{3}) = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 \\ 4 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{0}$$

Suy ra $(f^2 - Id)(f - 2Id) = 0$.

8 Bài 4.28

○ Bài 4.28 Cho những ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ và $g: \mathbb{R}^2 \to \mathbb{R}^3$. Chứng minh $g \circ f$ không khả nghịch.

\land Lời giải

Gọi \mathcal{B}_0 là cơ sở chính tắc trong \mathbb{R}^3 ta có $\mathcal{B}_0 = \{e_1, e_2, e_3\}$

Ta có
$$[f]_{\mathcal{B}_0}=([f(e_1)]_{\mathcal{B}_0}\quad [f(e_2)]_{\mathcal{B}_0}\quad [f(e_3)]_{\mathcal{B}_0})$$

Và tương tự ta có:

$$[g]_{\mathcal{B}_0} = ([g(e_1)]_{\mathcal{B}_0} \quad [g(e_2)]_{\mathcal{B}_0})$$
. Ta cần chứng minh $[g]_{\mathcal{B}_0}$. $[f]_{\mathcal{B}_0} = [g \circ f]_{\mathcal{B}_0}$

Thật vậy ta có:

$$\begin{split} [g]_{\mathcal{B}_0}.[f]_{\mathcal{B}_0} &= [g]_{\mathcal{B}_0}.([f(e_1)]_{\mathcal{B}_0} \quad [f(e_2)]_{\mathcal{B}_0} \quad [f(e_3)]_{\mathcal{B}_0}) \\ &= ([g.f(e_1)]_{\mathcal{B}_0} \quad [g.f(e_2)]_{\mathcal{B}_0} \quad [g.f(e_3)]_{\mathcal{B}_0}) \\ &= [g \circ f]_{\mathcal{B}_0} \end{split}$$

Ta có $r([f]_{\mathcal{B}_0}) \leq dim(\mathbb{R}^2)$ và $r([g]_{\mathcal{B}_0}) \leq dim(\mathbb{R}^3)$

$$\Rightarrow \mathbf{r}([g \circ f]_{\mathcal{B}_0}) = \mathbf{r}([g]_{\mathcal{B}_0}, [f]_{\mathcal{B}_0}) \le \min(\mathbf{r}([g]_{\mathcal{B}_0}), \mathbf{r}([f]_{\mathcal{B}_0}))$$

Do đó $r([g \circ f]_{\mathcal{B}0}) \leq 2$. Vậy $g \circ f$ không khả nghịch

Trang 7

 $lue{ }$ Bài 4.29 Tìm hai toán tử tuyến tính g,f trong $\Bbb R^2$ sao cho $g\circ f=\mathbf 0$ nhưng $f\circ g\neq \mathbf 0$.

🕰 Lời giải

Chon

$$f(x,y) = (0,x)$$
$$g(x,y) = (x,0)$$

Thì $g(f(x,y)) = (0,0) = \mathbf{0}$ nên $g \circ f = \mathbf{0}$ nhưng f(g(x,y)) = (0,x) nên $f \circ g \neq \mathbf{0}$.

10 Bài 4.30

○ Bài 4.30 Cho f là toán tử tuyến tính tính trong không gian vector bất kỳ và giả sử $f^2 = 0$. Hãy tìm liên hệ giữa Kerf và Imf.

\land Lời giải

Theo giải thuyết ta có: $f(f(u)) = 0 \quad \forall u \in V$.

Khi đó theo định nghĩa Kerf, dễ thấy $f(u) \in Kerf$.

Vẫn theo định nghĩa Imf, ta lại có $f(u) \in Imf$

Khi đó, hai không gian vector Kerf và Imf trùng nhau. Hơn thế nữa theo câu 4.25 ta có để điều kiện này xảy ra thì dim(V) chẵn.

11 Bài 4.31

O Bài 4.31 Cho V là một không gian vector hai chiều trên trường $\mathbb R$ và $\mathcal B$ là một cơ sở được sắp của V. Chứng minh rằng nếu f là một toán tử tuyến tính trong V và $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ là ma trận biểu diễn f trong $\mathcal B$ thì

$$f^2 - (a+d)f + (ad - bc)Id = 0$$

\land Lời giải

Ta có:

$$A^{2} = \begin{bmatrix} a^{2} + bc & ab + bd \\ ca + dc & cb + d^{2} \end{bmatrix}$$

Suy ra ma trận biểu diễn của $f^2 - (a + d)f$ là

$$A^{2}-(a+d)A = \begin{bmatrix} bc-da & 0\\ 0 & cb-da \end{bmatrix} = -(ad-bc)I_{2}$$

Từ đây ta được điều cần phải chứng minh:

$$f^2 - (a+d)f + (ad - bc)Id = 0$$

12 Bài 4.32

 $lue{\mathbb{C}}$ Bài 4.32 Cho f là toán tử tuyến tính trong không gian vector \mathbb{R}^2 được xác định bởi

$$f(x_1, x_2) = (-x_2, 2x_1)$$

và \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^2 .

- a) Tìm ma trận biểu diễn f trong \mathcal{B}_0 .
- b) Tìm ma trận biểu diễn f trong cơ sở được sắp

$$\mathcal{B} = \{u_1 = (1,1), u_2 = (-1,2)\}.$$

c) Tìm tất cả $\alpha \in \mathbb{R}$ sao cho toán tử tuyến tính $(f - \alpha Id)$ khả nghịch.

\land Lời giải

a)
$$[f]_{\mathcal{B}_0} = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$$

b)

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1} [f]_{\mathcal{B}0} (\mathcal{B}_0 \to \mathcal{B})$$

$$= \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -6 \\ 3 & 0 \end{bmatrix}$$

c) Ma trận biểu diễn $(f - \alpha Id)$ là

$$[f]_{\mathcal{B}0} - \alpha I_2 = \begin{bmatrix} -\alpha & -1 \\ 2 & -\alpha \end{bmatrix}$$

Ta có: $det([f]_{\mathcal{B}0} - \alpha I_2) = \alpha^2 + 2 > 0$, $\forall \alpha$ nên $[f]_{\mathcal{B}0} - \alpha I_2$ khả nghịch. Do đó $(f - \alpha I)$ luôn khả nghịch với mọi α .

Cho f là toán tử tuyến tính trong không gian \mathbb{R}^3 được xác định bởi **○** Bài 4.31

$$f(x_1, x_2, x_3) = (3x_2 + x_1, -2x_2 + x_3, -x_2 + 2x_3 + 4x_1)$$

- a) Tìm ma trận biểu diễn f trong cơ sở chính tắc của \mathbb{R}^3 .
- b) Tìm ma trận biểu diễn f trong cơ sở

$$\mathcal{B} = \{u_1 = (-1, 2, 1), u_2 = (0, 1, 1), u_3 = (0, -3, -2)\}$$

c) Chứng minh f khả nghịch và tìm f^{-1} .

🖊 Lời giải

a)
$$[f]_{\mathcal{B}_0} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 1 \\ 4 & -1 & 2 \end{bmatrix}$$

b) Ta có
$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^T \quad u_2^T \quad u_3^T) = \begin{vmatrix} -1 & 0 & 0 \\ 2 & 1 & -3 \\ 1 & 1 & -2 \end{vmatrix}$$

b) Ta có
$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^T \quad u_2^T \quad u_3^T) = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 1 & -3 \\ 1 & 1 & -2 \end{bmatrix}$$

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1}.[f]_{\mathcal{B}_0}.(\mathcal{B}_0 \to \mathcal{B}) = \begin{bmatrix} -5 & -3 & 9 \\ -11 & 2 & -2 \\ -6 & -1 & 4 \end{bmatrix}$$

c)

$$X\acute{e}t [f]_{\mathcal{B}_0} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 1 \\ 4 & -1 & 2 \end{bmatrix}$$

Có $r([f]_{\mathcal{B}_0}) = 3 = dim(\mathbb{R}^3) \Rightarrow f$ khả nghịch

Và nghịch đảo của
$$[f]_{\mathcal{B}_0} ([f]_{\mathcal{B}_0})^{-1} = \begin{bmatrix} -1/3 & -2/3 & 1/3 \\ 4/9 & 2/9 & -1/9 \\ 8/9 & 13/9 & -2/9 \end{bmatrix}$$

$$V_{\text{ay}} f^{-1} = \left(-\frac{1}{3}x_1 - \frac{2}{3}x_2 + \frac{1}{3}x_3, \frac{4}{9}x_1 + \frac{2}{9}x_2 - \frac{1}{9}x_3, \frac{8}{9}x_1 + \frac{13}{9}x_2 - \frac{2}{9}x_3 \right)$$