

Triaxis® Position Sensor

Tria

Features and Benefits

- Absolute 3D Position Sensor
- ☐ Simple & Robust Magnetic Design
- □ Tria⊗is® Hall Technology
- ☐ Programmable Linear Transfer Characteristics (Alpha, Beta)
- ☐ Selectable Analog (Ratiometric), PWM, Serial Protocol
- ☐ 12 bit Angular Resolution 10 bit Angular Thermal Accuracy
- ☐ 40 bit ID Number
- ☐ Single Die SO8 Package RoHS Compliant
- ☐ Dual Die (Full Redundant) TSSOP16 Package RoHS Compliant

Applications

- ☐ 3D Position Sensor
- Joystick
- □ 4-Way Scroll Key
- Joypad
- Man Machine Interface Device
- □ Linear Position Sensor

Ordering Code

	Temperature Code	Package Code	Option Code	Packing Form Code
MLX90333	S	DC	BCH-000	RE
MLX90333	S	DC	BCH-000	TU
MLX90333	E	DC	BCH-000	RE
MLX90333	E	DC	BCH-000	TU
MLX90333	Е	DC	BCH-100	RE
MLX90333	E	DC	BCH-100	TU
MLX90333	E	DC	BCT-000	RE
MLX90333	E	DC	BCT-000	TU
MLX90333	K	DC	BCH-000	RE
MLX90333	K	DC	BCH-100	TU
MLX90333	K	DC	BCH-100	RE
MLX90333	K	DC	BCT-000	RE
MLX90333	K	DC	BCT-000	TU
MLX90333	L	DC	BCH-000	RE
MLX90333	L	DC	BCH-000	TU
MLX90333	L	DC	BCT-000	RE
MLX90333	L	DC	BCT-000	TU
MLX90333	L	DC	BCH-100	RE
MLX90333	L	DC	BCH-100	TU
MLX90333	L	GO	BCH-000	TU
MLX90333	L	GO	BCH-000	RE
MLX90333	E	GO	BCH-000	RE
MLX90333	E	GO	BCH-000	TU
MLX90333	E	GO	BCH-100	RE
MLX90333	E	GO	BCH-100	TU
MLX90333	Е	GO	BCT-000	RE
MLX90333	E	GO	BCT-000	TU
MLX90333	K	GO	BCH-000	RE
MLX90333	K	GO	BCH-000	TU

Tria⊗is® Position Sensor

MLX90333	K	GO	BCH-100	RE
MLX90333	K	GO	BCH-100	TU
MLX90333	K	GO	BCT-000	RE
MLX90333	K	GO	BCT-000	TU
MLX90333	L	GO	BCH-100	TU
MLX90333	L	GO	BCH-100	RE
MLX90333	L	GO	BCT-000	RE
MLX90333	L	GO	BCT-000	TU

Legend:

Temperature Code: L for Temperature Range -40 °C to 150 °C

K for Temperature Range -40 °C to 125 °C S for Temperature Range -20 °C to 85 °C E for Temperature Range -40 °C to 85 °C

Package Code: GO for TSSOP16

DC for SOIC8

Option Code: AAA-xxx: Die version

xxx-000: Standard version

xxx-100: SPI version

Packing Form: RE for Reel, TU for Tube

Ordering example: MLX90333LGO-BCH-000-TU

1. Functional Diagram

Figure 1 - Block Diagram (Analog & PWM)

Figure 2 - Block Diagram (Serial Protocol)

1. Description

The MLX90333 is a monolithic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step).

The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (Bx, By and Bz). This allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel generation of non-contacting joystick position sensors which are often required for both automotive and industrial applications (e.g. man-machine interface).

Furthermore, the capability of measuring Bx, By and Bz allows the MLX90333 to be considered as universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear travel can be sensed with the MLX90333 once included in a specific magnetic design.

In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2) angular information are computed from the three (3) vector components of the flux density (i.e. Bx, BY and Bz). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog, PWM and Serial Protocol.

Figure 3 - Typical application of MLX90333

TABLE of CONTENTS

FE/	ATURES AND BENEFITS	1
APF	PLICATIONS	1
ORI	DERING CODE	1
1.	DESCRIPTION	4
	GLOSSARY OF TERMS – ABBREVIATIONS – ACRONYMS	
2.		
3.	PINOUT	
4.	ABSOLUTE MAXIMUM RATINGS	8
5.	DETAILED DESCRIPTION	8
6.	MLX90333 ELECTRICAL SPECIFICATION	14
7.	MLX90333 ISOLATION SPECIFICATION	16
8.	MLX90333 TIMING SPECIFICATION	16
9.	MLX90333 ACCURACY SPECIFICATION	17
10.	MLX90333 MAGNETIC SPECIFICATION	18
	MLX90333 CPU & MEMORY SPECIFICATION	
	MLX90333 END-USER PROGRAMMABLE ITEMS	
	DESCRIPTION OF END-USER PROGRAMMABLE ITEMS	
	3.1. Output Configuration	
	3.2. OUTPUT MODE	
	13.2.1. Analog Output Mode	
	13.2.2. PWM Output Mode	
	13.2.3. Serial Protocol Output Mode	
	13.2.4. Switch Out	
13	3.3. OUTPUT TRANSFER CHARACTERISTIC	
	13.3.1. The Polarity and Modulo Parameters	
	13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)	
	13.3.3. LNR Parameters	
	13.3.4. CLAMPING Parameters	
	13.3.5. DEADZONE Parameter	25
13	3.4. IDENTIFICATION	26
13	3.5. SENSOR FRONT-END	
	13.5.1. HIGHSPEED Parameter	26
	13.5.2. GAINMIN and GAINMAX Parameters	
	13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters	
13	3.6. FILTER	28
	13.6.1. Hysteresis Filter	28
	13.6.2. FIR Filters	
	13.6.3. IIR Filters	
13	3.7. PROGRAMMABLE ENHANCED "JOYSTICK" ANGLE CORRECTION	
	13.7.1. Enhanced "Joystick "Angle Formula	31
13	3.8. PROGRAMMABLE DIAGNOSTIC SETTINGS	
	13.8.1. OUTxDIAG Parameter	
	13.8.2. RESONFAULT Parameter	
	13.8.3. EEHAMHOLE Parameter	
13	3.9. Lock	
	13.9.1. MLXLOCK Parameter	32

Tria⊗is® Position Sensor

13.9.	2. LOCK Parameter	32
14. MLX	(90333 SELF DIAGNOSTIC	33
15. SER	RIAL PROTOCOL	35
15.1.	INTRODUCTION	35
15.2.	SERIAL PROTOCOL Mode	35
15.3.	MOSI (MASTER OUT SLAVE IN)	
15.4.	MISO (MASTER IN SLAVE OUT)	35
15.5.	SS (SLAVE SELECT)	35
15.6.	MASTER START-UP	35
15.7.	SLAVE START-UP	35
15.8.	TIMING	36
15.9.	SLAVE RESET	
15.10.	Frame Layer	
15.10		
15.10		
15.10		
15.10		
15.10		
15.10		
16. REC	COMMENDED APPLICATION DIAGRAMS	39
16.1.	ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE	
16.2.	PWM LOW SIDE OUTPUT WIRING	
16.3.	ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE	
16.4.	SERIAL PROTOCOL	40
	NDARD INFORMATION REGARDING MANUFACTURABILITY OF MELE	
	PRECAUTIONS	
	CKAGE INFORMATION	
19.1.	SOIC8 - PACKAGE DIMENSIONS	
19.1.	SOIC8 - PACKAGE DIMENSIONS SOIC8 - PINOUT AND MARKING	
19.2.	SOIC8 - I INOUT AND MARKING	
19.4.	TSSOP16 - PACKAGE DIMENSIONS	
19.5.	TSSOP16 - PINOUT AND MARKING	
19.6.	TSSOP16 - IMC POSITIONNING	
20 DIG	CL AIMED	40

2. Glossary of Terms – Abbreviations – Acronyms

- Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G
- TC: Temperature Coefficient (in ppm/Deg.C.)
- > NC: Not Connected
- > PWM: **P**ulse **W**idth **M**odulation
- \triangleright %DC: **D**uty **C**ycle of the output signal i.e. $T_{ON} / (T_{ON} + T_{OFF})$
- > ADC: Analog-to-Digital Converter
- > DAC: Digital-to-Analog Converter
- LSB: Least Significant Bit
- MSB: Most Significant Bit
- > DNL: Differential Non-Linearity
- ➤ INL: Integral Non-Linearity
- > RISC: Reduced Instruction Set Computer
- > ASP: Analog Signal Processing
- > DSP: Digital Signal Processing
- > ATAN: trigonometric function: arctangent (or inverse tangent)
- IMC: Integrated Magneto-Concentrator (IMC®)
- CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
- ➤ EMC: Electro-Magnetic Compatibility

3. Pinout¹

Pin#	SO	IC-8	TSSOP-16	
	Analog / PWM	Serial Protocol	Analog / PWM	Serial Protocol
1	VDD	VDD	VDIG ₁	VDIG ₁
2	Test 0	Test 0	VSS ₁ (Ground ₁)	VSS ₁ (Ground ₁)
3	Not Used	/SS	VDD ₁	VDD ₁
4	Out 2	SCLK	Test 0 ₁	Test 0 ₁
5	Out 1	MOSI / MISO	Not Used	/SS ₂
6	Test 1	Test 1	Out 2 ₂	SCLK₂
7	Vdig	Vdig	Out 1 ₂	MOSI ₂ / MISO ₂
8	Vss (Ground)	Vss (Ground)	Test 1 ₂	Test 1 ₂
9			VDIG ₂	VDIG ₂
10			VSS ₂ (Ground ₂)	VSS ₂ (Ground ₂)
11			VDD2	VDD ₂
12			Test 0 ₂	Test 0 ₂
13			Not Used	/SS ₁
14			Out 2 ₁	SCLK₁
15			Out 1 ₁	MOSI ₁ / MISO ₁
16			Test 1₁	Test 1 ₁

For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 15)

3901090333 Page 7 of 48 Data Sheet Rev. 007 Jul/2013

¹ See Section 13.1 for the Out 1 and Out 2 configuration

4. Absolute Maximum Ratings

Parameter	Value
Supply Voltage, VDD (overvoltage)	+ 20 V
Reverse Voltage Protection	- 10 V
Positive Output Voltage (Analog or PWM) Both outputs OUT 1 & OUT 2	+ 10 V + 14 V (200 s max - T _A = + 25°C)
Output Current (Iоит)	± 30 mA
Reverse Output Voltage Both outputs OUT 1 & OUT 2	- 0.3 V
Reverse Output Current Both outputs OUT 1 & OUT 2	– 50 mA
Operating Ambient Temperature Range, T _A	− 40°C + 150°C
Storage Temperature Range, Ts	− 40°C + 150°C
Magnetic Flux Density	± 4 T

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5. Detailed Description

As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is sensed through the Tria⊗is® sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4).

Figure 4 - Tria⊗is® sensor front-end (4 Hall plates + IMC® disk)

Two orthogonal components (respectively $B_{X\perp}$ and $B_{Y\perp}$) proportional to the parallel components (respectively $B_{X/\!\!/}$ and $B_{Y/\!\!/}$) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. The third component B_Z is also sensed by those four (4) conventional Hall plates as shown above.

Tria⊗is® Position Sensor

In summary, along X-axis, the left Hall plate measures " $B_{X\perp}$ - B_Z " while the right Hall plate measures " $B_{X\perp}$ - B_Z ". Similarly, along the Y-axis, the left Hall plate measures " $B_{Y\perp}$ - B_Z " while the right Hall plate measures " $B_{Y\perp}$ - B_Z ".

Through an appropriate signal processing, the Tria®is® sensor front-end reports the three (3) components of the applied magnetic flux density B i.e. Bx, By and Bz.

Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components $B_{X\perp}$ and $B_{Y\perp}$ are measured while B_Z is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in each pair, the component B_Z is measured while $B_{X\perp}$ and $B_{Y\perp}$ are cancelled

In a joystick based on a "gimbal" mechanism as shown on Figure 3 (left), the magnet (axial magnetization) moves on a hemisphere centered at the IC. The flux density is described through the following relationships:

$$B_{\scriptscriptstyle X} = COS(\alpha) \cdot SIN(\beta)$$

$$B_{\gamma} = SIN(\alpha) \cdot COS(\beta)$$

$$B_Z = SIN(\alpha) \cdot SIN(\beta)$$

Those components are plotted on the Figure 5, Figure 6 and Figure 7.

Figure 5 – Magnetic Flux Density – B_X, B_Y, B_Z

Figure 6 – Magnetic Flux Density – β = 90 Deg – $B_X \propto cos(\alpha)$, $B_Y = 0 \& B_Z \propto sin(\alpha)$

Figure 7 – Magnetic Flux Density – α = 0 Deg – B_X = 0, $B_Y \propto cos(\beta)$ & $B_Z \propto sin(\beta)$

Three (3) differential voltages corresponding to the three (3) components of the applied flux density are provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).

The amplitude of V_z is smaller than the other two (2) components V_X and V_Y due to fact that the magnetic gain of the IMC only affects the components parallel to the IC surface.

Figure 8 – ADC Input Signals – β = 90 Deg – $V_X \propto B_X \propto cos(\alpha)$, V_Y = B_Y = 0 & $V_Z \propto B_Z \propto sin(\alpha)$

Figure 9 – ADC Input Signals – α = 90 Deg – V_X = B_X = 0, $V_Y \propto B_Y \propto cos(\beta)$ & $V_Z \propto B_Z \propto sin(\beta)$

Tria⊗is® Position Sensor

The conditioned analog signals are converted through an ADC (configurable – 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the two (2) angular information from the three (3) raw signals (after so-called front-end compensation steps) through the following operations:

$$\alpha = ATAN \left(\frac{k_z V_z}{V_X} \right)$$

$$\beta = ATAN \left(\frac{k_z V_z}{V_Y} \right)$$

where k_Z is a programmable parameter. First of all, k_Z is used to compensate the smaller amplitude of V_Z vs. V_X & V_Y . On the other hand, k_Z allows also a targeted reduction of the linearity error through a normalization of the raw signals prior to performing the "ATAN" function.

In a joystick based on a "ball & socket" joint as shown on Figure 3 (right), the magnet (axial magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular informations:

$$\alpha = ATAN \left(\frac{\sqrt{(k_z V_z)^2 + (k_t V_y)^2}}{V_X} \right)$$

$$\beta = ATAN \left(\frac{\sqrt{(k_z V_z)^2 + (k_t V_x)^2}}{V_Y} \right)$$

where k_Z and k_t are programmable parameters.

The DSP functionality is governed by the micro-code (firmware - F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the "ATAN" function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes.

In the MLX90333, the "ATAN" function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm).

Due to the fact that the "ATAN" operation is performed on the ratios " V_Z/V_X " and " V_Z/V_Y ", the angular information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy vs. joystick based on conventional linear Hall sensors.

Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as:

- an analog output level through a 12 bit DAC followed by a buffer
- a digital PWM signal with 12 bit depth (programmable frequency 100 Hz ... 1 kHz)
- a digital Serial Protocol (SP 16 bits computed angular information available)

Tria⊗is® Position Sensor

For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic:

 $Vout(\alpha) = ClampLo \qquad \qquad \text{for } \alpha \leq \alpha min$

 $Vout(\alpha) = Voffset + Gain \times \alpha \qquad \text{for } \alpha min \leq \alpha \leq \alpha max$

 $Vout(\alpha) = ClampHi \qquad \qquad \text{for } \alpha \geq \alpha max$

 $Vout(\beta) = ClampLo \qquad \qquad \text{for } \beta \leq \beta min$

 $Vout(\beta) = Voffset + Gain \times \beta \qquad \text{for } \beta min \leq \beta \leq \beta max$

 $Vout(\beta) = ClampHi \qquad \qquad \text{for } \beta \geq \beta max$

where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.

The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is used, a 5 point calibration is also available for further improvement of the linearity.

The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).

The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and dedicated software tools (DLL – User Interface).

6. MLX90333 Electrical Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Nominal Supply Voltage	Vdd		4.5	5	5.5	V
Supply Current ⁽²⁾	ldd	Slow mode ⁽³⁾ Fast mode ⁽³⁾		8.5 13.5	11 16	mA mA
POR Level	VDD POR	Supply Under Voltage	2	2.7	3	V
Output Current Both outputs OUT 1 & OUT 2	lout	Analog Output mode PWM Output mode	-8 -20		8 20	mA mA
Output Short Circuit Current Both outputs OUT 1 & OUT 2	I _{short}	Vout = 0 V Vout = 5 V Vout = 14 V (T _A = 25°C)		12 12 24	15 15 45	mA mA mA
Output Load Both outputs OUT 1 & OUT 2	R_L	Pull-down to Ground Pull-up to 5V ⁽⁴⁾	1	10 10	∞(5) ∞(5)	kΩ kΩ
Analog Saturation Output Level	Vsat_lo	Pull-up load $R_L \ge 10 \text{ k}\Omega$			3	%VDD
Both outputs OUT 1 & OUT 2	Vsat_hi	Pull-down load $R_L \ge 5 \text{ k}\Omega$	96			%VDD
Digital Saturation Output Level	VsatD_lo	Pull-up Low Side $R_L \ge 10 \text{ k}\Omega$ Push-Pull (IOUT = -20mA)			1.5	%VDD
Both outputs OUT 1 & OUT 2	VsatD_hi	Push-Pull (IOUT = 20mA)	97			%VDD
Active Diagnostic Output Level	Diag_lo	Pull-down load $R_L \ge 5 \ k\Omega$ Pull-up load $R_L \ge 10 \ k\Omega$			1 1.5	%VDD
Both outputs OUT 1 & OUT 2	Diag_hi	Pull-down load $R_L \ge 5 \ k\Omega$ Pull-up load $R_L \ge 5 \ k\Omega$	96 98			%VDD
	BVssPD	Broken Vss& Pull-down load $R_L \le 10 \text{ k}\Omega$			4(6)	%VDD
Passive Diagnostic Output Level	BVssPU	Broken Vss(6) & Pull-up load $R_L \ge 1k\Omega$	99	100		%VDD
Both outputs OUT 1 & OUT 2 (Broken Track Diagnostic) (6)	BVDDPD	Broken $VDD^{(6)}$ & Pull-down load $R_L \ge 1k\Omega$		0	1	%VDD
	BVddPU	Broken VDD & Pull-up load to 5V	No Broken Track diagnostic		%VDD	
Clamped Output Level	Clamp_lo	Programmable	0		100	%VDD ⁽⁷⁾
Both outputs OUT 1 & OUT 2	Clamp_hi	Programmable	0		100	%VDD ⁽⁷⁾

² For the dual version, the supply current is multiplied by 2

³ See section 13.5.1 for details concerning Slow and Fast mode

⁴ Applicable for output in Analog and PWM (Open-Drain) modes

⁵ RL < ∞ for output in PWM mode

⁶ For detailed information, see also section 14

⁷ Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)

Tria⊗is® Position Sensor

As an illustration of the previous table, the MLX90333 fits the typical classification of the output span described on the Figure 10.

Figure 10 - Output Span Classification

7. MLX90333 Isolation Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (K or L). Only valid for the package code GO i.e. dual die version.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Isolation Resistance		Between 2 dies	4			МΩ

8. MLX90333 Timing Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Main Clock Frequency	Ck	Slow mode ⁽⁸⁾		7		MHz
		Fast mode ⁽⁸⁾		20		MHz
Sampling Rate	Ст	Slow mode ⁽⁸⁾		600	1000	μs
		Fast mode ⁽⁸⁾		200	330	μs
Step Response Time	Ts	Slow mode ⁽⁸⁾ , Filter=5 ⁽⁹⁾			4	ms
		Fast mode ⁽⁸⁾ , Filter=0 ⁽⁹⁾		400	600	μs
Watchdog	Wd	See Section 14			5	ms
Start-up Cycle	Tsu	Slow and Fast mode ⁽⁸⁾			15	ms
Analog Output Slew Rate		C _{OUT} = 42 nF		200		V/ms
		C _{OUT} = 100 nF		100		V/IIIS
PWM Frequency	F _{PWM}	PWM Output Enabled	100		1000	Hz
Digital Output Rise Time		Mode 5 – 10nF, R_L = 10 k Ω		120		μs
Both outputs OUT 1 & OUT 2		Mode 7 – 10nF, R_L = 10 k Ω		2.2		μs
Digital Output Fall Time		Mode 5 – 10nF, R_L = 10 k Ω		1.8		μs
Both outputs OUT 1 & OUT 2		Mode 7 – 10nF, R_L = 10 k Ω		1.9		μs
		AGC 90% ⁽¹¹⁾				
		Slow mode ⁽⁸⁾ - Field Freq> 40Hz	-10		10	%
Maximum Field amplitude		Field Freq= 20Hz	-30		30	%
Change ⁽¹⁰⁾ (%) vs. Field		Fast mode(8) -Field Freq> 150Hz	-12		12	%
Frequency(Hz)		Field Freq= 50Hz	-30		30	%
		AGC 64% (90333BCT only)				
		Slow mode(8) -Field Freq> 80Hz	-22		22	%
		Field Freq=50Hz	-30		30	%
		Fast mode(8) - Field Freq> 250Hz	-30		30	%
		Field Freq=50Hz	-60		60	%

⁸ See section 13.5.1 for details concerning Slow and Fast mode

⁹ See section 13.6 for details concerning Filter parameter

¹⁰ Ex.: Magnetic field amplitude change in case of vibration.

¹¹ Automatic Gain Control – see Section 13.5.2 for more information.

Tria⊗is® Position Sensor

9. MLX90333 Accuracy Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ADC Resolution on the raw signals X, Y and Z	Radc	Slow Mode ⁽¹²⁾ Fast Mode ⁽¹²⁾		15 14		bits bits
Offset on the Raw Signals X, Y and Z	X0, Y0, Z0	T _A = 25°C	-60		60	LSB ₁₅
Mismatch on the Raw Signals X, Y and Z	SMISM _{XY} SMISM _{XZ} SMISM _{YZ}	T _A = 25°C Between X and Y Between X and Z ⁽¹³⁾ Between Y and Z ⁽¹³⁾	-1 -30 -30		1 30 30	% % %
Magnetic Angle Phase error	ORTH _{XY} ORTH _{XZ} ORTH _{YZ}	T _A = 25°C Between X and Y Between X and Z Between Y and Z	-0.3 -10 -10		0.3 10 10	Deg Deg Deg
Thermal Offset Drift #1 on the raw signals X, Y and Z ⁽¹⁴⁾		Thermal Offset Drift at the DSP input (excl. DAC and output stage) Temperature suffix K Temperature suffix L	-60 -90		+60 +90	LSB ₁₅ LSB ₁₅
Thermal Offset Drift #2 (to be considered only for the analog output mode)		Thermal Offset Drift of the DAC and Output Stage Temperature suffix K Temperature suffix L	- 0.3 - 0.4		+ 0.3 + 0.4	%VDD %VDD
Thermal Drift of Sensitivity Mismatch	ΔSMISM _{XY}	Temperature suffix K Temperature suffix L	- 0.3 - 0.5		+ 0.3 + 0.5	% %
	ΔSMISM _{XZ} ΔSMISM _{YZ}	Temperature suffix K Temperature suffix L	- 1 - 1.5		+ 1 + 1.5	% %
Analog Output Resolution	Rdac	12 bits DAC (Theoretical – Noise free) INL DNL	-4 -1	0.025	+4 1	%VDD/LSB LSB LSB
Output stage Noise		Clamped Output		0.05		%VDD
MLX90333 Accuracy Specification	n continues					
MLX90333 Accuracy Specificat	ion			T	T	1
Noise pk-pk ⁽¹⁵⁾		Gain = 14, Slow mode, Filter=5		5	10	LSB ₁₅

 $^{^{12}}$ 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB₁₅ in Low Speed Mode and 0.01Deg/LSB₁₄ in High Speed.

 $^{^{13}}$ The mismatch between X and Z (Y and Z) can be reduced through the calibration of the 2 parameters k_Z and k_t as described in the formulas page 12 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical).

 $^{^{14}}$ To evaluate the error affecting the computed angle i.e. "ATAN" function (See section 5), it is important to take into account the actual value of the factor k_Z as it amplifies the signal V_Z and consequently its drift too.

¹⁵ The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 13.6).

Tria⊗is® Position Sensor

		Gain = 14, Fast mode, Filter=0		10	20	LSB ₁₅
Ratiometry Error			-0.1	0	0.1	%VDD
PWM Output Resolution	R _{PWM}	12 bits (Theoretical – Jitter free)		0.025		%DC/LSB
PWM Jitter	J _{PWM}	Gain = 11, F _{PWM} = 250 Hz – 800Hz			5	LSB ₁₂
Serial Output Resolution	Rspi	Theoretical – Jitter free		16		bits

10. MLX90333 Magnetic Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Magnetic Flux Density	Bx, By ⁽¹⁶⁾		20	50	70(17)	mT
Magnetic Flux Density	Bz(16)		24	75	140	mΤ
Magnet Temperature Coefficient	TCm		-2400		0	ppm/°C
IMC Gain ⁽¹⁸⁾	GainIMC		1.2	1.4	1.8	

11. MLX90333 CPU & Memory Specification

The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ROM				10		kB
RAM				256		В
EEPROM				128		В

 $^{^{16}}$ The condition must be fulfilled for at least one field $B_{X},\,B_{Y}$ or $B_{Z}.$

¹⁷ Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.

 $^{^{18}}$ This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to BX and BY and not to BZ. This is the overall variation. Within one lot, the part to part variation is typically \pm 10% versus the average value of the IMC gain of that lot

12. MLX90333 End-User Programmable Items

			Default Values			
Parameter	Comments	BCH	BCH	BCT	# bit	
		STD/IP1	SPI	STD/IP1		
MAINMODE	Select Outputs Configuration	0	0	0	2	
Outputs Mode	Define the output stages mode	2	N/A	2	3	
PWMPOL1	PWM Polarity (Out 1)	0	N/A	0	1	
PWMPOL2	PWM Polarity (Out 2)	0	N/A	0	1	
PWM_Freq	PWM Frequency	1000h	N/A	1000h	16	
3-Points	4 segments transfer curve for single angle output	0	0	0	1	
ALPHA_POL	Revert the Sign of Alpha	0	0	0	1	
ALPHA_MOD180	Modulo Operation (180deg) on Alpha	1	1	1	1	
ALPHA_DP	Alpha Discontinuity Point	0	0	0	8	
ALPHA_DEADZONE	Alpha Dead Zone	0	0	0	6	
ALPHA_S0	Initial Slope	4000h	4000h	4000h	16	
ALPHA_X	Alpha X Coordinate	4000h	4000h	4000h	16	
ALPHA_Y	Alpha Y Coordinate	8000h	8000h	8000h	16	
ALPHA_S1	Alpha S Coordinate	4000h	4000h	4000h	16	
BETA_POL BETA_MOD180	Revert the Sign of Beta	0	1	0	1 1	
BETA_MODIOU	Modulo Operation (180deg) on Beta Beta Discontinuity Point	0	0	0	6	
BETA_DP BETA_DEADZONE	Beta Discontinuity Point Beta Dead Zone	0	0	0	8	
BETA_S0	Beta Dead Zone Beta Dead Zone	4000h	4000h	4000h	16	
BETA_X	Beta X Coordinate	4000h	4000h	4000h	16	
BETA_Y	Beta Y Coordinate Beta Y Coordinate	8000h	8000h	8000h	16	
BETA S1	Beta S Coordinate Beta S Coordinate	4000h	4000h	4000h	16	
CLAMP LOW	Clamping Low	0%	0%	0%	16	
CLAMP HIGH	Clamping High	100%	100%	100%	16	
2D	C.G. Iping Ting.	0	0	0	1	
XYZ	SPI Only	0	0	0	1	
KZ		B3h	B3h		8	
KT ⁽¹⁹⁾		80h	80h	N/A	8	
FIELDTHRES_LOW		0h	0h	0h	8	
FIELDTHRES_HIGH		0h	0h	0h	8	
DERIVGAIN		40h	40h	40h	8	
FILTER		3	0	3	8	
FILTER A1	Filter coefficient A1 for FILTER=6	6600h	6600h	6600h	16	
FILTER A2	Filter coefficient A2 for FILTER=6	2A00h	2A00h	2A00h	16	
FILTERFIRST		0	0	0	1	
FHYST		0	0	0	8	
MELEXISID1		MLX	MLX	MLX	16	
MELEXISID2		MLX	MLX	MLX	16	
MELEXISID3		MLX	MLX	MLX	16	
CUSTUMERID1		1 1	1	1	16	
CUSTUMERID2		17d ⁽²⁰⁾	37d	38d	16	
CUSTUMERID3		MLX	MLX	MLX	16	
HIGHSPEED		0	0	0	1	
GAINMIN		0	0	0	8	

¹⁹ Only applicable for 90333BCH

²⁰ CUŚTUMERID2 = 29d for MLX90333SDC-BCH-STANDARD

Tria⊗is® Position Sensor

GAINMAX		41d	41d	41d	8
End-User Programmable Ite	ems continues	110	110		
End-User Programmable Items					
EEHAMHOLE		3131h	0h	3131h	16
RESONFAULT	Diagn mode	1h	N/Ah	0h	2
MLXLOCK		0h	0h	0h	1
LOCK		0h	1h	0h	1
Extra end-User Programma	ble Items 90333BCT				
AGCRADIUSTARGET ⁽²¹⁾	Define Gain target 64% / 90% ADC	N/A	N/A	0	1
SWTHRES	Angle Trigger level for switch on out2	N/A	N/A	FFFFh	16
SWLOW	Switch Low level output on out2	N/A	N/A	40h	8
SWHIGH	Switch high level output on out2	N/A	N/A	FFh	8
SWHYST	Switch hysteresis	N/A	N/A	0	8
CodePWMLATCH	Enable synchronized % DC update	N/A	N/A	1	1
OUT1DIAG	Active Diagnostic Output 1 behavior	N/A	N/A	0	1
OUT2DIAG	Active Diagnostic Output 2 behavior	N/A	N/A	0	1
CodeKTALPHA	"Joystick" ALPHA angle correction parameter	N/A	N/A	80h	8
CodeKTBETA	"Joystick" BETA angle correction parameter	N/A	N/A	80h	8
CodeORTHZXALPHA	Front-end "Joystick" angle correction parameter	N/A	N/A	0	8
CodeORTHZYALPHA	Front-end "Joystick" angle correction parameter	N/A	N/A	0	8
CodeORTHZXBETA	Front-end "Joystick" angle correction parameter	N/A	N/A	0	8
CodeORTHZYBETA	Front-end "Joystick" angle correction parameter	N/A	N/A	0	8
CodeENHORTH	Enable enhanced Front-end "Joystick" angle correction	N/A	N/A	0	1

²¹ Option to use same ADC target as 90333BCH. Default value equals lowered % ADC target

13. Description of End-User Programmable Items

13.1. Output Configuration

The parameter MAINMODE defines the output stages configuration

MAINMODE	OUT1	OUT2
0	ALPHA	BETA
1	BETA	ALPHA
2	ALPHA	ALPHA DERIVATE / SWITCH(22)
3	BETA	BETA DERIVATE / SWITCH(22)

13.2. Output Mode

The MLX90333 outputs type is defined by the Output Mode parameter.

Parameter	Value	Description
Analog Output Mode	2	Analog Rail-to-Rail
PWM Output Mode	5	Low Side (NMOS)
F WW Output Wode	7	Push-Pull
Serial	N/A	Low Side (NMOS)

13.2.1. Analog Output Mode

The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor.

13.2.2. PWM Output Mode

If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM).

In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD.

In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD.

The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter:

- PWMPOL1 (PWMPOL2) = 0 for a low level at 100%
- PWMPOL1 (PWMPOL2) = 1 for a high level at 100%

The PWM frequency is selected by the PWM_Freq parameter.

PWM Frequency Code					
Oppillator Made	Pulse-Width Modulation Frequency (Hz)				
Oscillator Mode	100	200	500	1000	
Low Speed	35000	17500	7000	3500	

²² Derivate = BCH , Switch = BCT

Tria⊗is® Position Sensor

High Speed - 50000 20000 10000

For instance, in Low Speed Mode, set PWM Freq = 7000 (decimal) to set the PWM frequency at 500Hz.

13.2.3. Serial Protocol Output Mode

The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The frame layer type is defined by the parameter XYZ as described in the next table.

Parameter	Value	Description
VV7	0	Regular SPI Frame Alpha, Beta
۸۲۷	1	X,Y, Z Frame

See the dedicated Serial Protocol section for a full description (Section 15).

13.2.4. Switch Out

Parameter	Value	Unit
SWTHRES	0100	%
SWHYST	0 0.39	%
SWLOW	0100	%
SWHIGH	0100	%

The output level on out2 is changed from SWLOW to SWHIGH when the output value is greater than the value stored in the SWTHRES parameter.

The SWHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital output value is greater than SWTHRES+SWHYST. It is deactivated if the digital output value is less than SWTHRES-SWHYST.

If the Switch feature is not used in the application, the output pin needs to be connected to the ground and disabled in EEPROM.

13.3. Output Transfer Characteristic

Parameter	Value	Description
3-Points	0	Regular Alpha, Beta Output (2 times 2 segments)
5-Points	1	Alpha (or Beta) Single Output (1 time 4 segments)

The 3-Points parameters allow the user to use the 3-points mapping (4 segments). This mode can only be used for Mainmode equals 2 and 3.

• 3-Points = 0, the parameters list is described as bellow (Angle Alpha and Beta):

Parameter	Value	Unit
ALPHA_POL BETA_POL	0 1	

ALPHA_MOD180 BETA_MOD180	0 1	
ALPHA_DP BETA_DP	0 359.9999	deg
ALPHA_X BETA_X	0 359.9999	deg
ALPHA_Y BETA_Y	0 100	%
ALPHA_S0 ALPHA_S1 BETA_S0 BETA_S1	0 17	%/deg
CLAMP_LOW	0 100	%
CLAMP_HIGH	0 100	%
ALPHA_DEADZONE BETA_DEADZONE	0 359.9999	deg

• 3-Points = 1, the parameters list is described as bellow (Alpha or Beta):

Parameter	Value	Unit
ALPHA_POL	0 → CCW 1 → CW	
DP	0 359.9999	deg
LNR_A_X LNR_B_X LNR_C_X	0 359.9999	deg
LNR_A_Y LNR_B_Y LNR_C_Y	0 100	%
LNR_S0 LNR_A_S LNR_B_S	0 17	%/deg
LNR_C_S	-17 0 17	%/deg
CLAMP_LOW	0 100	%
CLAMP_HIGH	0 100	%
DEADZONE	0 359.9999	deg

13.3.1. The Polarity and Modulo Parameters

The angle Alpha is defined as the arctangent of Z/X and Beta as the arctangent of Z/Y. It is possible to invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to "1".

The MLX90333 can also be insensitive to the field polarity by setting the ALPHA_MOD180/BETA_MOD180 to "1".

13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)

The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places the origin at any location of the trigonometric circle (see Figure 13). For a Joystick Application, Melexis recommends to set the DP to zero.

13.3.3. LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angles (Alpha and Beta) and the output signals.

The shape of the MLX90333 transfer function from the digital angle values to the output voltages is described by the drawing below (See Figure 11). Four segments can be programmed but the clamping levels are necessarily flat (3-Points = 0).

Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta)

In the case of one single angle output (3-Points = 1), the shape of the MLX90333 transfer function from the digital angle values to the output voltage is described by the drawing below (See Figure 12). Six

Tria⊗is® Position Sensor

segments can be programmed but the clamping levels are necessarily flat.

Figure 12 - Digital Angle (Alpha) Transfer Characteristic for Single Angle Output

13.3.4. CLAMPING Parameters

The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg.

13.3.5. DEADZONE Parameter

The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 13). When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be set to "1" – See 13.8.2).

In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will generate a "deadzone" fault, unless DEADZONE=0.

Figure 13 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta)

13.4. Identification

Parameter	Value	Unit
MELEXSID1	0 65535	
MELEXSID2	0 65535	
MELEXSID3	0 65535	
CUSTUMERID1	0 65535	
CUSTUMERID2	0 65535	
CUSTUMERID3	0 65535	

Identification number: 48 bits freely useable by Customer for traceability purpose.

13.5. Sensor Front-End

Parameter	Value	Unit
HIGHSPEED	0 = Slow mode 1 = Fast mode	
GAINMIN	0 41	
GAINMAX	0 41	
FIELDTHRES_LOW	0 100	%
FIELDTHRES_HIGH	0 100	%

13.5.1. HIGHSPEED Parameter

The HIGHSPEED parameter defines the main frequency for the DSP.

- HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
- HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.

For better noise performance, the Slow Mode must be enabled.

Tria⊗is® Position Sensor

13.5.2. GAINMIN and GAINMAX Parameters

The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on $Max(|V_X|, |V_Y|, |V_Z|) = |Amplitude| = Radius$

and it targets an amplitude of 90% of the ADC input span.

In MLX90333BCT, this default target is changed to 64% but can be set to 90% by enabling the parameter AGCRADIUSTARGET.

The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude).

GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range, the outputs are set in diagnostic low.

13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters

The strength of the applied field is constantly calculated in a background process. The value of this field can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude).

FIELDTHRES_LOW & FIELDTHRES_HIGH define the boundaries within the actual field strength (Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low.

13.6. FILTER

Parameter	Value	Unit
FHYST	0 11 ; step 0.04	deg
FILTER	0 6	
FILTERFIRST	0 1	

The MLX90333 includes 3 types of filters:

- Hysteresis Filter: programmable by the FHYST parameter
- Low Pass FIR Filters controlled with the Filter parameter
- Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2

Note: if the parameter FILTERFIRST is set to "1", the filtering is active on the digital angle. If set to "0", the filtering is active on the output transfer function.

13.6.1. Hysteresis Filter

The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level.

13.6.2. FIR Filters

The MLX90333 features 6 FIR filter modes controlled with Filter = 0...5. The transfer function is described below:

$$y_n = \frac{1}{\sum_{i=0}^{j} a_i} \sum_{i=0}^{j} a_i x_{n-i}$$

The characteristics of the filters no 0 to 5 is given in the Table 1.

Filter No (j)	0	1	2	3	4	5
Туре	Disable	Finite Impulse Response				
Coefficients a ₀ a ₅	N/A	110000	121000	133100	111100	122210
Title	No Filter	Extra Light Light				
90% Response Time (C _T)	1	2	3	4	4	5
99% Response Time (C _T)	1	2	3	4	4	5
Efficiency RMS (dB)	0	2.9	4.0	4.7	5.6	6.2
Efficiency P2P (dB)	0	2.9	3.6	5.0	6.1	7.0

Table 1 - FIR Filters Selection Table

Figure 14 - Step Response and Noise Response for FIR (No 3) and FHYST=10

13.6.3. IIR Filters

The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is given in Figure 15. Only the parameter A1 and A2 are configurable (See Table 2).

Figure 15 - IIR Diagram

Filter No		6				
Туре		2 nd	Order Infinite I	mpulse Respon	se (IIR)	
Title			Mediu	m & Strong		
90% Response Time (C _T)	11	16	26	40	52	100
Efficiency RMS (dB)	9.9	11.4	13.6	15.3	16.2	>20
Efficiency P2P (dB)	12.9 14.6 17.1 18.8 20 >20				>20	
Coefficient A1	26112	28160	29120	30208	31296	31784
Coefficient A2	10752	12288	12992	13952	14976	15412

Table 2 - IIR Filter Selection Table

The Figure 16 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.

Figure 16 - Noise Response for the IIR Filter

13.7. Programmable enhanced "joystick' angle correction²³

Parameter	Value	Unit
KTALPHA KTBETA	[0200] / 128	LSB
ORTHZXALPHA ORTHZYALPHA ORTHZXBETA ORTHZYBETA	[-128127] / 256	LSB
ENHORTH	Disable = 0 Enable = 1	

²³ Only applicable for 90333BCT

13.7.1. Enhanced "Joystick "Angle Formula

$$\alpha = ATAN \left(\frac{\sqrt{(k_z V_z)^2 + (k_t (V_y - ORTHzy * V_z))^2}}{V_x - ORTHzx * Vz} \right)$$

$$\beta = ATAN \left(\frac{\sqrt{(k_z V_z)^2 + (k_t (Vx - ORTHzx * V_z))^2}}{V_y - ORTHzy * V_z} \right)$$

The enhanced "joystick" angle function is enabled by parameter ENORTH. Parameters are automatically calculated when using the 90333BCT/ 9 points solver to optimize the shape of Betaout vs Alphaout in accordance to the mechanical boundaries of the Joystick

13.8. Programmable Diagnostic Settings

Parameter	Value
OUT1DIAG	DIAGLOW = 0
001121110	DIAGHIGH = 1
OUT2DIAG	DIAGLOW = 0
OUTZDIAG	DIAGHIGH = 1
RESONFAULT	Disable = 0
RESUNFAULT	Enable = 1
EEHAMHOLE	Enable = 0
EEHAWIHOLE	Disable = 3131h

13.8.1. OUTxDIAG Parameter

This OUT1DIAG, OUT2DIAG parameters define the behavior of the output in case of a diagnostic situation.

13.8.2. RESONFAULT Parameter

This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to 1. It is recommended to set it to "1" to activate the self diagnostic modes (See section 14).

Note that in the User Interface (MLX90333UI), the RESONFAULT is a cluster of the following two bits, i.e. the 2 bits are both disabled or both enabled:

- DRESONFAULT: disable the reset in case of a fault.
- DOUTINFAULT: disable output in diagnostic low in case of fault.

It is recommended to set both EEPROM parameters to "0" to activate the self diagnostic modes

Tria⊗is® Position Sensor

13.8.3. EEHAMHOLE Parameter

The EEHAMHOLE parameter disables the CRC check and memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. Melexis strongly recommends to set the parameter to 0 (enable memory recovery). The parameter is set automatically to 0 by the solver function "MemLock".

13.9. Lock

Parameter	Value
MLXLOCK	0 1
LOCK	0 1

13.9.1. MLXLOCK Parameter

MLXLOCK locks all the parameters set by Melexis.

13.9.2. LOCK Parameter

LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore.

Note that the lock bit should be set by the solver function "MemLock".

Tria⊗is® Position Sensor

14. MLX90333 Self Diagnostic

The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes ("fail-safe").

	Action	Effect on Outputs	Remark
ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD)	CPU Reset (24)	Diagnostic low ⁽²⁵⁾	All the outputs are already in Diagnostic low - (start-up)
ROM CRC Error (Operation - Background task)	Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low	Immediate Diagnostic low	
RAM Test Fail (Start up)	CPU Reset	Diagnostic low	All the outputs are already in Diagnostic low (start-up)
Calibration Data CRC Error (Start-Up)	Hamming Code Recovery		Start-Up Time is increased by 3 ms if successful recovery
Hamming Code Recovery Error (Start-Up)	CPU Reset	Immediate Diagnostic low	See 13.8.3
Calibration Data CRC Error (Operation - Background)	CPU Reset	Immediate Diagnostic low	
Dead Zone Alpha Dead Zone Beta	Set Outputs in Diagnostic low. Normal Operation until the "dead zone" is left.	Immediate Diagnostic low	Immediate recovery if the "dead zone" is left
ADC Clipping (ADC Output is 0000h or 7FFFh)	Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery	Immediate Diagnostic low	
Radius Overflow (> 100%) or Radius Underflow (< 50 %)	Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery	Immediate Diagnostic low	(50 % - 100 %) No magnet / field too high See also 13.5.2
Field Clipping (Radius < FIELDTHRES_LOW or Radius > FIELDTHRES_HIGH)	Set Outputs in Diagnostic low Normal mode, and No CPU Reset If recovery	Immediate Diagnostic low	
Rough Offset Clipping (RO is < 0d or > 127d)	Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery	Immediate Diagnostic low	
Gain Clipping (Gain < GAINMIN or GAIN > GAINMAX)	Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery	Immediate Diagnostic low	See also 13.5.2
DAC Monitor (Digital to Analog converter)	Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset	Immediate Diagnostic low	
MLX90333 Fault Mode continue	98		

²⁴ CPU reset means

- 1. Core Reset (same as Power-On-Reset). It induces a typical start up time.
- 2. Periphery Reset (same as Power-On-Reset)
- 3. Fault Flag/Status Lost
- The reset can be disabled by clearing the RESONFAULT bit (See 13.8.2)

²⁵ Refer to section 6 for the Diagnostic Output Level specifications

Tria⊗is® Position Sensor

Fault Mode	Action	Effect on Outputs	Remark
ADC Monitor (Analog to Digital Converter)	Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset	Immediate Diagnostic low	ADC Inputs are Shorted
Undervoltage Mode	At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing	- VDD < POR level => Outputs high impedance - POR level < VDD < 3 V => Outputs in Diagnostic low.	
Firmware Flow Error	CPU Reset	Immediate Diagnostic low	Intelligent Watchdog (Observer)
Read/Write Access out of physical memory	CPU Reset	Immediate Diagnostic low	100% Hardware detection
Write Access to protected area (IO and RAM Words)	CPU Reset	Immediate Diagnostic low	100% Hardware detection
Unauthorized entry in "SYSTEM" Mode	CPU Reset	Immediate Diagnostic low	100% Hardware detection
VDD > 7 V	Set Output High Impedance (Analog)	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(25)	100% Hardware detection
VDD > 9.4 V	IC is switched off (internal supply) CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd.
Broken Vss	CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 4% VDD (temperature suffix K) - contact Melexis for temperature suffix L
Broken VDD	CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd.

Tria⊗is® Position Sensor

15. Serial Protocol

15.1. Introduction

The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The serial protocol of the MLX90333 is a three wires protocol (/SS, SCLK, MOSI-MISO):

- /SS pin is a 5 V tolerant digital input
- SCLK pin is a 5 V tolerant digital input
- MOSI-MISO pin is a 5 V tolerant open drain digital input/output

The basic knowledge of the standard SPI specification is required for the good understanding of the present section.

15.2. SERIAL PROTOCOL Mode

- CPHA = 1 → even clock changes are used to sample the data
- CPOL = 0 → active-Hi clock

The positive going edge shifts a bit to the Slave's output stage and the negative going edge samples the bit at the Master's input stage.

15.3. MOSI (Master Out Slave In)

The Master sends a command to the Slave to get the angle information.

15.4. MISO (Master In Slave Out)

The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 k Ω pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90333.

15.5. /SS (Slave Select)

The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error.

15.6. Master Start-Up

/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer.

15.7. Slave Start-Up

The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90333 will cope with any signal from the Master while starting up.

15.8. Timing

To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer.

Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive.

Timings	Min ⁽²⁶⁾	Max	Remarks
t1	2.3 µs / 6.9 µs	-	No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte.
t2	12.5 µs / 37.5 µs	-	t2 the minimum time between any other byte
t4	2.3 µs / 6.9 µs	-	Time between last clock and /SS=high=chip de-selection
t5	300 µs / 1500 µs	-	Minimum /SS = Hi time where it's guaranteed that a frame resynchronizations will be started.
t5	0µs	-	Maximum /SS = Hi time where it's guaranteed that NO frame resynchronizations will be started.
t6	2.3 μs / 6.9 μs	-	The time t6 defines the minimum time between /SS = Lo and the first clock edge
t7	15 µs / 45 µs	-	t7 is the minimum time between the StartByte and the Byte0
t9	-	<1 µs	Maximum time between /SS = Hi and MISO Bus High-Impedance
T _{StartUp}	-	< 10 ms / 16 ms	Minimum time between reset-inactive and any master signal change

²⁶ Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)

15.9. Slave Reset

On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).

15.10. Frame Layer

15.10.1. Frame Type Selection

See the programmable parameter XYZ in section 13.2.3 to select between the Alpha, Beta Frame and the X, Y, Z Frame.

15.10.2. Data Frame Structure

The Figure 17 gives the timing diagram for the SPI Frame. The latch point for the angle measurement is at the last clock before the first data frame byte.

Figure 17 - Timing Diagram for the SPI Frame

A data frame consists of:

Data Frame	XYZ = 0	XYZ = 1			
1 start byte	FFh				
2 data bytes (LSByte first)	Alpha	X			
2 data bytes (LSByte first)	Beta	Υ			
2 data bytes (LSByte first)	Error Code	Z			
1 SUM byte	8 LSB of the sum of the transmitted bytes				

15.10.3. Timing

There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.

Tria⊗is® Position Sensor

15.10.4. Data Structure

The DATA could be a valid angle/field component or an error condition.

DATA: Angle/ Field Component A[15:0] with (Span)/2¹⁶

Less Significant Byte						Most Significant Byte									
msb							Isb	msb							Isb
A7	A6	A5	A4	А3	A2	A1	Α0	A15	A14	A13	A12	A11	A10	A9	A8

DATA: Error

Less Significant Byte						Most Significant Byte									
msb							Isb	msb							Isb
E7	E6	E5	E4	E3	E2	E1	E0	E15	E14	E13	E12	E11	E10	E9	E8

BIT	NAME	
E0	-	
E1	-	
E2	F_ADCMONITOR	ADC Failure
E3	F_ADCSATURA	ADC Saturation (Electrical failure or field too strong)
E4	F_GAINTOOLOW	The gain code is strictly less than EE_GAINMIN
E5	F_GAINTOOHIGH	The gain code is strictly greater than EE_GAINMAX
E6	F_NORMTOOLOW	Goes high when the fast norm (the max of absolute x,y,z) is below 30%
E7	F_FIELDTOOLOW	The norm (Square root) is strictly less than EE_FIELDLOW
E8	F_FIELDTOOHIGH	The norm (Square root) is strictly greater than EE_FIELDHIGH
E9	F_ROCLAMP	Analog Chain Rough Offset Compensation: Clipping
E10	-	
E11	F_DEADZONEALPHA	The angle ALPHA lies in the deadzone
E12	-	
E13	-	
E14	-	
E15	F_DEADZONEBETA	The angle BETA lies in the deadzone

15.10.5. Angle Calculation

All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave:

• Slow Mode: every 1.5 ms at most.

• Fast Mode: every 350 µs at most.

The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset.

15.10.6. Error Handling

In case of any errors listed in section 15.10.4, the Serial protocol will be initialized and the error condition can be read by the master.

In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error...) the Slave's serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent).

16. Recommended Application Diagrams

16.1. Analog Output Wiring with the MLX90333 in SOIC Package

Figure 18 - Recommended wiring for the MLX90333 in SOIC8 package

16.2. PWM Low Side Output Wiring

Figure 19 - Recommended wiring for a PWM Low Side Output configuration

16.3. Analog Output Wiring with the MLX90333 in TSSOP Package

Figure 20 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die).

16.4. Serial Protocol

Generic schematics for single slave and dual slave applications are described.

Figure 21 – MLX90333 – Single Die – Serial Protocol Mode

Tria⊗is® Position Sensor

Application Type	μCtrl Supply (V)	Pull-up Supply (V)	90316 Supply (V)	R1 (Ω)	R2 (Ω)	R3 (Ω)	R4 (Ω)	R5 (Ω)	MOS Type
5V μCtrl w/o O.D. w/o 3.3V	5V	5V	5V	100	1000	20,000	1000	20,000	BS170
5V μCtrl w/o O.D. w/ 3.3V	5V	3.3V	5V	150	1000	N/A	1000	20,000	BS170
3.3V µCtrl w/o O.D. (27)	3.3V	3.3V	5V	150	1000	N/A	N/A	N/A	BS170
5V μCtrl w/ O.D. w/o 3.3V (28)	5V	5V	5V	100	1000	20,000	1000	20,000	N/A
3.3V µCtrl w/ O.D.	3.3V	3.3V	5V	150	1000	N/A	N/A	N/A	N/A

Table 3 - Resistor Values for Common Specific Applications

 $^{^{27}}$ µCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) 28 µCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR $\,$)

Tria⊗is® Position Sensor

17. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis recommends reviewing on our web site the General Guidelines <u>soldering recommendation</u> (http://www.melexis.com/Quality_soldering.aspx) as well as http://www.melexis.com/Quality_soldering.aspx) as well as http://www.melexis.com/Quality_soldering.aspx) as well as http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

18. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

19. Package Information

19.1. SOIC8 - Package Dimensions

19.2. SOIC8 - Pinout and Marking

19.3. SOIC8 - IMC Positionning

19.4. TSSOP16 - Package Dimensions

NOTES:

All dimensions are in millimeters (anlges in degrees).

- * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
 ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
- *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.

Tria⊗is® Position Sensor

19.5. TSSOP16 - Pinout and Marking

19.6. TSSOP16 - IMC Positionning

Tria⊗is® Position Sensor

20. Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2013 Melexis NV. All rights reserved.

For the latest version of this document, go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: sales_europe@melexis.com

America: Phone: +1 248 306 5400 E-mail: sales_usa@melexis.com