MJERNI PRETVORNICI - PRIMJENE

MJERNI SUSTAV

Figure 1.3 Seamless sensor system on the chip.

MJERNI PRETVORNIK = OSJETILO (SENZOR) + PRETVORNIČKI ELEMENT

MEASUREMENT TRANSDUCER = SENSING ELEMENT + TRANSDUCTION ELEMENT

PRIMJER: PRETVORNIK ZA MJERENJE TEMPERATURE

Figure 1.1 Gas-filled-bulb transducer for measuring temperature. 1 = gas-filled bulb, 2 = capillary tube, 3 = pressure-sensitive diaphragm, 4 = cantilever, 5 = strain gages.

PODJELA MJERNIH PRETVORNIKA

- s obzirom na mjerenu veličinu
- s obzirom na način pretvorbe mjerene veličine u električki signal

S OBZIROM NA MJERENU VELIČINU (FIZIKALNA VELIČINA, SVOJSTVO ILI STANJE)

Figure 1.2 The six signal domains.

S OBZIROM NA NAČIN PRETVORBE MJERENE VELIČINE U ELEKTRIČKI SIGNAL

npr. promjena:

- otpora
- induktiviteta ili međuinduktiviteta
- kapaciteta
- naboja, napona ili struje generiranih od samog pretvornika

AKTIVNI PRETVORNICI (engl. self-generating, self-exciting) **PASIVNI PRETVORNICI** (engl. modulating)

Figure 1.3 Basic representation of self-exciting and modulating sensor systems.

KARAKTERISTIKE MJERNIH PRETVORNIKA

STATIČKE KARAKTERISTIKE:

IDEALNA KARAKTERISTIKA

Figure 1.2 Ideal transducer characteristics.

PROMJENA OSJETLJIVOSTI

Figure 1.4 Transducer characteristics with change in sensitivity.

POSMAK NULE

Figure 1.3 Transducer characteristics with zero offset.

NELINEARNA KARAKTERISTIKA

Figure 1.5 Nonlinear characteristics of transducer.

ISKAZIVANJE NELINEARNOSTI

Figure 1.6 Nonlinearity with reference to zero-to-full-scale-output line.

ISKAZIVANJE NELINEARNOSTI

Figure 1.7 Nonlinearity with reference to tangent at origin.

ISKAZIVANJE NELINEARNOSTI

Figure 1.8 Nonlinearity with reference to best straight line.

ODSTUPANJE OD KARAKTERISTIKE KOJA JE IZVORNO NELINEARNA

General Characteristics

Figure 1.9 Nonconformity with reference to theoretical curve, which is naturally nonlinear.

HISTEREZA

Figure 1.10 Transducer hysteresis.

PONOVLJIVOST I MRTVI HOD

FIGURE 2.7. A: Repeatability error. The same output signal S_1 corresponds to two different input signals. B: Dead-band zone in a transfer function.

Output (% of FSO) Reference (theoretical line) Practical curve distorted because of zero offset, nonlinearity, hysteresis, etc. Error band Input (% of max measurand)

Figure 1.14 Static error band referred to theoretical line.

DEFINICIJA GRANICA POGREŠAKA

DEFINICIJA GRANICA

POGREŠAKA

Figure 1.15 Stepped error band referred to theoretical line.

DINAMIČKE KARAKTERISTIKE:

Figure 1.12 Transducer's time characteristics.

Figure 1.11 Response of transducer to step change in measurand.

Figure 1.13 Transducer's frequency response.

Senzorske tehnologije - prilog predavanjima

$$U = U_0 \frac{R + \Delta R}{R + R + \Delta R} = U_0 \frac{R + \Delta R}{2R + \Delta R}$$

$$U = U_0 \frac{R}{2R + \Delta R} + U_0 \frac{\Delta R}{2R + \Delta R}$$

velika DC razina + male promjene

Neuravnoteženi mostovi

1. promjena u jednoj grani

$$\Delta U = U_0 \frac{R + \Delta R}{R + R + \Delta R} - U_0 \frac{R}{2R}$$

$$\Delta U = U_0 \left(\frac{R + \Delta R}{R \left(2 + \frac{\Delta R}{R} \right)} - \frac{1}{2} \right) uz \quad \frac{\Delta R}{R} = \delta \ dobivamo$$

$$\Delta U = U_0 \left(\frac{1+\delta}{2+\delta} \right) - \frac{1}{2} = U_0 \frac{\delta}{2(2+\delta)} \quad nelinearno$$

2. promjena u dvije nasuprotne grane

$$\Delta U = U_0 \left(\frac{R(1+\delta)}{R+R(1+\delta)} - \frac{R}{R+R(1+\delta)} \right)$$

$$\Delta U = U_0 \frac{R(1+\delta)-R}{R+R(1+\delta)} = U_0 \frac{1+\delta-1}{1+1+\delta}$$

$$\Delta U = U_0 \frac{\delta}{2+\delta} \quad za \quad \delta << 2 \Rightarrow \frac{\Delta U}{U_0} = \frac{\delta}{2}$$

3. promjena u sve četiri grane

$$\Delta U = U_0 \left(\frac{R(1+\delta)}{2R} - \frac{R(1-\delta)}{2R} \right)$$

$$\Delta U = U_0 \delta$$
 linearnost

4. polumost, najčešća izvedba

$$\frac{\Delta U}{U_0} = \frac{R(1+\delta)}{2R} - \frac{R}{2R} = \frac{1+\delta-1}{2}$$

$$\Delta U = U_0 \frac{\delta}{2}$$
 linearnost

Uravnoteženje mosta

Najčešće se koristi kod tenzometara. Što je R₁ veći to je finije podešavanje

Umjeravanje (baždarenje) mjernog lanca

Razdesimo most ubacivanjem otpornika R_B poznatog iznosa što treba rezultirati točno određenom promjenom ΔU . Na temelju toga podesimo pojačanje.