Esame del 26/06/2015

Ingegneria Elettronica e Informatica

Esercizio 1: Una particella α^{++} si trova in quiete ad una distanza d = 100 μ m da un piano metallico verticale mantenuto a potenziale nullo.

- i. Calcolare le componenti del campo \vec{E} in un generico punto P del semispazio che contiene la particella α^{++} . Si consiglia di utilizzare il metodo della carica immagine.
- ii. Calcolare la forza elettrostatica \vec{F} che agisce sulla particella.
- iii. Calcolare la distribuzione superficiale di carica $\sigma(y)$ sul piano mantenuto a potenziale nullo.
- iv. Calcolare la carica totale q_{ind} indotta sul piano mantenuto a potenziale nullo.

Esercizio 2: Si considerino due bobine di 300 spire percorse da una corrente i_0 = 50 A. Esse sono disposte coassialmente, come mostrato in figura, ad una distanza pari al loro raggio R = 5 cm.

- i. Calcolare le componenti del campo \overline{B} nel punto P che giace sull'asse z nel punto intermedio tra le due bobine.
- ii. Dimostrare che il campo \vec{B} rimane costante lungo l'asse z nell'intorno del punto P.
- iii. Si supponga che le bobine siano percorse da una corrente i(t) = i_0 * $sin(\omega t)$ avente periodo 25 ms. Calcolare all'istante t = 18.75 ms la FEM indotta in una spira di raggio r_s = 2 mm centrata nel punto P e avente normale diretta lungo l'asse z.

Esercizio 3: Un condensatore piano ha le armature circolari di raggio r_1 = 25 cm, distanti tra di loro h = 2.5 cm; nello spazio tra le armature, coassiale all'asse di simmetria e ortogonale a questo, è inserito un avvolgimento toroidale di N = 10^3 spire a sezione rettangolare di lati a = 2 cm e b = 1 cm, il cui raggio medio è r_2 = 20 cm. Il condensatore è collegato attraverso una resistenza R_0 = 0 Ω (TRASCURARE LA RESISTENZA) ad un generatore di f.e.m. alternata di valore efficace 100 V e frequenza υ = 13.56 MHz. Si consideri la f.e.m. ai capi del generatore come una onda sinusoidale.

- i. Trascurando gli effetti di bordo, calcolare l'espressione del modulo del campo \vec{E} tra le armature del condensatore.
- ii. Calcolare la funzione che descrive la corrente di spostamento tra le armature del condensatore.
- iii. Calcolare il campo modulo e direzione \vec{B} all'istante t = 1 ms ad una distanza r_2 dall'asse di simmetria del condensatore (inferiore a r_1).
- iv. Calcolare la forza elettromotrice indotta del solenoide toroidale in funzione del tempo ed indicarne il valore per t = 1 ms.

Teoria: Il campo elettrico nei dielettrici: discutere della interpretazione microscopica del vettore \vec{P} , introdurre il concetto di densità superficiale e volumetrica di carica, discutere il significato e le proprietà del vettore \vec{D} , esplicitare e commentare le condizioni di continuità dei campi \vec{E} e \vec{D} all'interfaccia tra due mezzi di costante dielettrica diversa.

Ingegneria Elettronica e Informatica

Ex.3

Elettrostatica

Legge di Coulomb

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

Campo generato da una carica puntiforme

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

Potenziale generato da una carica puntiforme

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

Teorema di Gauss

$$\iint_{S} \vec{E} \cdot \hat{n} \ ds = \frac{q_{tot}}{\epsilon_{0}}$$

Campo generato da un piano carico

$$\left| \vec{E} \right| = \frac{\sigma}{2\epsilon_0}$$

Campo generato da un filo carico di lunghezza infinita

$$\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r} \hat{r}$$

Teorema di Coulomb (campo in prossimità di un conduttore carico)

$$\left| \vec{E} \, \right| = \frac{\sigma}{\epsilon_0}$$

Capacità di un condensatore piano

$$C = \varepsilon_0 \varepsilon_r \frac{S}{d}$$

Campo E in un condensatore piano

$$|\vec{E}| = \frac{V}{d} = \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{q}{S \cdot \varepsilon_0 \varepsilon_r}$$

Campo D in un mezzo isotropo e omogeneo

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi) \vec{E} = \varepsilon_0 \varepsilon_r \vec{E}$$

Campo D in un condensatore piano

$$\left| \overrightarrow{D} \right| = \sigma_{lib} = \frac{q_{lib}}{S}$$

Esame del 26/06/2015

Ingegneria Elettronica e Informatica

Teorema di Gauss applicato al campo D

$$\iint_{S} \vec{D} \cdot \hat{n} \ ds = q_{lib}$$

Campo P di polarizzazione

$$\vec{P} = \epsilon_0 \chi \vec{E}$$

Densità superficiale di carica di polarizzazione

$$\sigma_{\text{p}} = \overrightarrow{P} \cdot \boldsymbol{\hat{n}}$$

Densità volumetrica di carica di polarizzazione

$$\rho_{\rm p} = -\vec{\nabla} \cdot \vec{P}$$

Energia elettrostatica in un condensatore

$$U_{el} = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

Forza a carica costante

$$\vec{F} = -\frac{\partial U_{tot}}{\partial x}\hat{x} = -\frac{\partial U_{el}}{\partial x}\hat{x}$$

Forza a potenziale costante

$$\vec{F} = -\frac{\partial U_{tot}}{\partial x}\hat{x} = +\frac{\partial U_{el}}{\partial x}\hat{x}$$

Costanti universali

$$c = 2.9979 \times 10^8 \left[\frac{m}{s} \right]$$

$$g = 9.806 \left[\frac{m}{s^2} \right]$$

$$m_e = 9.109 \times 10^{-31} \ [kg]$$

$$m_p = 1.673 \times 10^{-27} \ [kg]$$

$$m_n = 1.674 \times 10^{-27} \ [kg]$$

$$e = 1.602 \times 10^{-19} [C]$$

$$\epsilon_0 = 8.854 \times 10^{-12} \left[\frac{F}{m} \right]$$

$$\mu_0 = 4\pi \times 10^{-7} \ \left[\frac{H}{m}\right]$$

Magnetismo

Prima legge di Laplace

$$d\vec{B} = \frac{\mu_0}{4\pi} i \cdot \frac{d\vec{l} \times \hat{r}}{r^2}$$

Seconda legge di Laplace

$$d\vec{F} = i \cdot d\vec{l} \times \vec{B}$$

Legge di Biot-Savart

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{circuito} i \cdot \frac{d\vec{l} \times \hat{r}}{r^2}$$

Forza di Lorentz

$$\vec{F} = q\vec{v} \times \vec{B}$$

Flusso del vettore induzione magnetica

$$\Phi(\vec{B}) = \iint_{S} \vec{B} \cdot \hat{n} \, ds$$

Legge di Faraday-Newmann-Lenz

$$V_i = -\frac{\partial \Phi(\vec{B})}{\partial t}$$

Teorema di Ampere

$$\oint_{\gamma} \vec{B} \cdot d\vec{l} = \mu_0 \cdot \sum_{r} (i_c + i_d)$$

$$\oint_{\mathcal{U}} \vec{H} \cdot d\vec{l} = \sum_{c} i_{c}$$

Equazioni di Maxwell

$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_{tot}}{\varepsilon_0}$$

Campi ausiliari D e H

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \xrightarrow[]{mezzo~isotropo} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi \vec{E} := \varepsilon_0 \varepsilon_r \vec{E}$$

Esame del 26/06/2015

Ingegneria Elettronica e Informatica

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) \xrightarrow{\substack{mezzo \ isotropo \\ senza \ isteresi \\ = \mu_0 \vec{H} + \mu_0 \chi_m \vec{H} := \mu_0 \mu_r \vec{H} }$$

Vettore magnetizzazione

$$\vec{M} = \frac{\sum \vec{\mu_i}}{N}$$

Densità volumetrica di corrente di magnetizzazione

$$j_m = \overrightarrow{\nabla} \times \overrightarrow{M}$$

Densità superficiale di corrente di magnetizzazione

$$j_{ms} = \overrightarrow{M} \times \hat{n}$$

Condizioni di continuità dei campi B e H all'interfaccia

$$B_{1\perp} = B_{2\perp}$$

$$H_{1\parallel}=H_{2\parallel}$$

Circuiti magnetici (legge di "rifrazione" del campo B)

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\mu_0 \mu_{r1}}{\mu_0 \mu_{r2}} = \frac{\mu_{r1}}{\mu_{r2}} = cost.$$

Legge di Hopkinson

$$f.m.m. = \Phi(\vec{B}) \cdot \Re$$

Riluttanza magnetica

$$\Re = \oint_{\gamma} \frac{dl}{\mu_0 \mu_r \cdot S}$$

Riluttanze in serie

$$\Re_{tot} = \sum_{i} \Re_{i}$$

Riluttanze in parallelo

$$\mathfrak{R}_{tot} = \frac{1}{\frac{1}{\mathfrak{R}_1} + \frac{1}{\mathfrak{R}_2} + \frac{1}{\mathfrak{R}_2} + \cdots}$$

Densità volumetrica di energia del campo magnetico

$$u = \frac{1}{2} \vec{H} \cdot \vec{B}$$

Densità volumetrica di energia del campo elettromagnetico

$$u = \frac{1}{2} \left(\vec{\mathbf{H}} \cdot \vec{B} + \vec{\mathbf{E}} \cdot \vec{D} \right)$$

Autoflusso in un solenoide

$$\Phi_{A}(\vec{B}) = N \iint_{S} \vec{B} \cdot \hat{n} \, ds$$

Coefficiente di autoinduzione in un solenoide

$$L = \frac{\Phi_{A}(\vec{B})}{i}$$

Energia magnetica in un solenoide

$$U_M = l \cdot S \cdot \frac{1}{2} \overrightarrow{H} \cdot \overrightarrow{B} = \frac{1}{2} L i^2$$

Forza magnetica a corrente costante

$$\left| \vec{F} \right| = -\frac{\partial U_{tot}}{\partial x} = \frac{\partial U_{M}}{\partial x}$$

Forza magnetica a flusso costante

$$|\vec{F}| = -\frac{\partial U_{tot}}{\partial x} = -\frac{\partial U_M}{\partial x}$$

Campo B in un solenoide toroidale

$$\left| \vec{B} \right| = \frac{\mu_0 \mu_r N i}{I}$$

Campo H in un solenoide toroidale

$$|\vec{H}| = \frac{Ni}{I}$$

Capacità di un condensatore piano

$$C = \varepsilon_0 \varepsilon_r \frac{S}{d}$$

Campo E in un condensatore piano

$$\left| \vec{E} \right| = \frac{V}{d} = \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{q}{S \cdot \varepsilon_0 \varepsilon_r}$$

Campo D in un condensatore piano

$$\left| \vec{D} \right| = \sigma = \frac{q}{S}$$

Pressione di radiazione

Densità volumetrica di quantità di moto

Esame del 26/06/2015

Ingegneria Elettronica e Informatica

$$p = \frac{u_0}{c}\hat{S} = \varepsilon_0 \vec{E} \times \vec{B} = \frac{1}{c^2}\vec{S}$$

Impulso ceduto nel tempo dt

$$dP = pAc dt$$

Pressione di radiazione

$$P_{rad} = u_0(1+k) = \frac{\vec{S}}{c}(1+k)$$

Valor medio della pressione di radiazione

$$\langle P_{rad} \rangle = \frac{\langle \vec{S} \rangle}{c} (1+k) = \frac{I}{c} (1+k)$$