DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER VI [COMPUTER ENGINEERING] SUBJECT: (CE611) NAME: COMPUTER NETWORKS

Examination Date

Seat No

Time

:10.00

Day Max. Marks

INSTRUCTIONS:

- Answer each section in separate answer book.
- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly. 4.
- 5. Draw neat sketches wherever necessary.

SECTION - I

Q.1 Do as directed. [10]What is the subnet mask for a Class C IP address using 3 bits for subnetting? Show your [2] calculation.

CO4 The address 43:7B:6C:ED:10:00 has been shown as the source address in an Ethernet frame. The receiver has discarded the frame. Why?

A management station, called a ____ (manager / agent), is a host that runs the __ (SNMP Server program / SNMP client program) and a managed station, called an _ (manager / agent), is a router or a host that runs the _____(SNMP Server program / SNMP client program).

CO3 U (d) Describe the loop problem created by redundant bridges in the system with suitable [2] diagram.

CO3 N (e) For each of the following, identify whether it occurs as part of distance vector routing or link state routing.

1. Only neighbors exchange information about their routes.

2. Non-neighbors exchange information about their routes.

3. The count to infinity problem might be encountered.

4. The algorithm determines the complete topology of the network.

Q.2 Attempt Any TWO from the following questions.

[10]

CO3 C (a) You are given a block of IP addresses: 192.168.100.0/24. Design an IP addressing scheme using subnetting for an organization with 4 departments having 60, 30, 25, and 12 devices respectively.

CO3 E (b) You are given the following IPv4 fragment headers received at the destination: [5] Fragment 1: ID = 3004, Offset = 0, MF = 1, Total Length = 580 Fragment 2: ID = 3004, Offset = 140, MF = 0, Total Length = 180

Fragment 3: ID = 3004, Offset = 70, MF = 1, Total Length = 580 Consider that all numbers are presented in decimal. Do all these fragments belong to the same original IP packet? Justify your answer. Calculate the data size of each fragment. What is the total size of the original IP payload (excluding headers)? Show your calculation. Identify the first fragment and the last fragment. Justify your answers

For the subnet shown in figure below, dark links show a sink tree for router A. How many packets are generated by a broadcast from A using Spanning tree-based broadcast technique? Build a tree generated by Reverse Path Forwarding. How many packets are generated by a broadcast from A using Reverse Path Forwarding broadcast technique?

Attempt the following questions. Q.3CO1 U (a) Briefly describe co-axial cable as medium of communication. Draw a cutaway view of [3] [10]

coaxial cable.

CO1 A (b) A large population of ALOHA users manages to generate 50 requests/sec, including both [4] originals and retransmissions. Time is slotted in units of 40 msec.

1. What are the chances of success on the first attempt?

2. What is the probability of exactly k collisions and then a success, where k=5?

CO1 N (c) Assume that there are only two stations, A and B, in a CSMA/CD network. The distance [3] between the two stations is 2000m and the propagation speed is 2 x 108m/s. If station A starts transmission at time t1:

(1) Does the protocol allow station B to start transmitting at time t1+8 µs? If the answer is yes, what will happen? If the answer is no, why not? (2) Does the protocol allow station B to

start transmitting at time $t1+11~\mu s$? If the answer is yes, what will happen? If the answer is no, why not?

						OR	1							
Q.3		A	ttempt the following q	uestion	S.								[10	
CO1		(a)	Briefly describe the la	yers of	ATM.								[3] i. [4]	
COI	^	(0)	(b) The following packets arrive at the output port of a switch using a leaky bucket algorithm. The bucket can contain up to 3000 bytes.											
			Packet No	n up to	30001	bytes.	Τ.	16		-	T .			
			Arrival Time(msec)	1	2	3	4	5	6	7	8	9		
			Size (Byte)	100	400	3	1000	1000	6	7	8	9		
				100	400	400	1000	1000	1000	1000	1100			
			The leaky bucket ope packet is transmitted a	as soon	n pack	cets, an	d can s	end I p	acket e	very 3	millise	conds. Firs	t	
			past time 10, show wh	nen nac	kets le	arrives,	1.e. at t	nacket	s are dr	ssuming	g no pa if anv)	Also show	S	
			what packet(s) are left	in the l	buffer,	if any,	at time	10.	ane div	opped (ii airy)	. Also shov	•	
COI	what packet(s) are left in the buffer, if any, at time 10. N (c) Which of the following can be the beginning address of a block that contain										ontains 25	6 [3]		
			addresses? Show your	calcula	tion.		A Resident							
			1) 205.16.37.32	2) 190	.16.42	.0	3) 17	.17.32.5	2					
04		D			SI	ECTIO	N - II							
Q.4 CO4	TT		as directed.		4								[10]	
CO1		(-)	How does IGMP work	in con	junctio	on with	a router	? .			0 117	1 54	[2]	
001	14	(0)	Which Ethernet addre	destina	sed for	r the de	estinatio	n in an	RARP	reques	t? Whi	ch Etherne	t [2]	
CO1	U	(c)	What is the role of aux	desiliary t	mer a	an AK	Preque	SI?	aa talsan	on tim	i	motion?	[2]	
CO ₂		/	Which transport laver	nroto	col(s)	and net	work le	Should i	tocol(g)	on um	er expi	ration?	[2]	
		ì	Which transport layer protocol(s) and network layer protocol(s) are used for video, file transfer, DNS and email?										. [2]	
CO3	A	(e)	If the TCP round-trip time, RTT, is currently 20 msec and the following [2 acknowledgements come in after 22, 20, and 24 msec, respectively, what is the new RTT											
			estimate using the Jaco	bson a	lgorith	m? Use	$\alpha = 0.8$	}	•					
05			4											
Q.5 CO4	N	(2)	tempt Any TWO from t	he follo	wing	questio	ns.						[10]	
CCT	14	(a)	When will "time exc	eeded"	mess	age be	genera	ted in l	ICMP?	Who r	nay ge	enerate this	[5]	
CO4	A	(b)	message? Explain imp	0011 is	transi	I <i>tracer</i>	t in brie	I. e standa	rd CPC	matha	d dono	ribad in tha	[5]	
		` 1	(i) A bit stream 110110011 is transmitted using the standard CRC method described in the text. The generator polynomial is $x3 + 1$. Show the actual bit string transmitted. Suppose the third bit from the left is inverted during transmission. Show how this error is detected at the											
	receiver's end.													
004	-		(ii) What are UA and N	MTA? V	What d	o they	do?							
CO4	E (c) Discuss similarities and differences between data link layer and transport acknowledgement is to be provided only at one layer, at which layer should it be									t layer. If	[5]			
			Why?	be pro	vided	only at	one lay	er, at w	hich lay	er shou	ıld it b	e included?		
			wily:											
0.6		Atte	mpt the following ques	tions										
CO2	A	(a)	A sender uses the Stop	-and-W	ait pro	tocol fo	or reliah	le trans	mission	of fran	ac Er	amaa asa a 6	[10]	
			size 1000 bytes and	the tra	nsmiss	sion rat	te at th	e sende	er is 80) Khns	(1Kb	ne = 1000	[5]	
			bits/second). Size of a	in ackn	owled	gement	is 100	bytes a	and the	transm	ission	rate at the		
			receiver is 8 Kbps. The	e propa	gation	delay i	s 100 n	nilliseco	nds. As	suming	no fra	ame is lost.		
000	» T	<i>a</i> >	find out sender's through	ghput (i	n byte	s/secon	d).							
CO2	N	(b)	All segments are of uni	form si	ze 300	00 bytes	. Transı	mitter al	ways ha	as perm	itted d	ata to send.	[5]	
			Receiver's advertised w	vindow	15 04K	L. Slow	Start 11	nreshold	= 64K					
			(a) What will be acknown	owledg	how r	numbe	r in res	ponse to	a segn	nent wh	nich ha	s sequence		
			number 10? (b) If cwr linear rise? (c) Timeou	it occu	now i	nany cy	d is 20	iii sende	er consu	ime bet	ore en	tering in to		
			ssthresh? (d) If cwnd is	64. wh	at will	he sen	der's wi	ndow?	will be	new va	ilue of	cwnd and		
			(w) 11 0 mm 15	J ., WIII	WIII	OR	act 2 WI	ildow!						
Q.6	A	Atter	npt the following quest	ions.									[10]	
CO2	A	(a)	Consider a selective rep	eat slic	ding w	indow	protoco	l that us	ses a fra	me size	e of 1	KR to cond	[10]	
			data on a 1.2 Mbps link	with a	one-w	vav late	nev of	50 mean	To acl	nievo o	link	iliantia send	[5]	
			70%, What is the minim	יוות חווו	mber o	of hite re	equired	to repre	cont 4	neve a	iink ut	unzation of		
CO2 1	V	(b)	Running TCP across w	reless	netwo	rke mar	lood t	to repre	sent the	seque	nce nur	mber field?		
		(0)	Running TCP across wi at least one solution for	the pro	blem	Also di	scuse 1	perior	mance j	problen	is. Wh	y? Suggest	[5]	
				me pro	Olem.	a riso ui	30u35 II	muauor	is of the	solutio	on if the	ere is any.		