Теория СЛАУ

Содержание

81	принадлежность вектора линеинои ооолочке	1
§2	Однородные СЛАУ	2
83	Неоднородные СЛАУ	4

§1. Принадлежность вектора линейной оболочке

Пусть $V = \mathbb{F}^k$. Поставим вопрос о принадлежности столбца $b \in V$ линейной оболочке векторов $\{a_1, a_2, \dots, a_n\}$ из пространства V

$$b \stackrel{?}{=} x_1 a_1 + x_2 a_2 + \ldots + x_n a_n, \qquad x_i \in \mathbb{F}$$

Он приводит к СЛАУ Ax=b, состоящей из k уравнений и n неизвестных, где A — матрица коэффициентов размера $k\times n$. Пользуясь рассуждениями с предыдущих лекций данную систему можно однозначно описать расширенной матрицей $(A\mid b)$.

Теорема 1.1. (Кронекера-Капелли) СЛАУ совместна тогда и только тогда, когда ранг её матрицы коэффициентов равен рангу расширенной матрицы.

Доказательство. Покажем переход \Rightarrow .

Пусть СЛАУ Ax=b совместна. Тогда существуют такие числа x_i , что $b=x_1a_1+x_2a_2+\ldots+x_na_n$, то есть столбец b является линейной комбинацией столбцов матрицы A. Следовательно, его добавление к системе столбцов матрицы A не меняет её ранга.

Покажем переход ⇐.

Обратно, пусть $\operatorname{rank} A = \operatorname{rank}(A \mid b)$. Выберем в матрице A какой-нибудь базисный минор, но он будет и базисным минором матрицы $\operatorname{rank}(A \mid b)$. По теореме о базисном миноре, последний столбец b будет линейной комбинацией базисных, то есть столбец свободных членов СЛАУ является линейной комбинацией столбцов матрицы коэффициентов.

NtB. Для решения произвольной СЛАУ используется **метод Гаусса**. Приведём матрицу $(A \mid b)$ путём элементарных преобразований к ступенчатому виду $(\widetilde{A} \mid \widetilde{b})$. Ясно, что число ненулевых строк матрицы \widetilde{A} равно $\operatorname{rank} A$, матрицы $(\widetilde{A} \mid \widetilde{b}) - \operatorname{rank}(A \mid b)$.

Возможны три случая:

- $\operatorname{rank}(A \mid b) = \operatorname{rank} A = n$. Тогда однозначно определяется x_n , потом x_{n-1} и так далее до x_1 , то есть решение единственно такие системы называются определёнными.
- $\operatorname{rank}(A \mid b) = \operatorname{rank} A + 1$. То есть возникло уравнение $0x_1 + \ldots + 0x_n = c$, $c \neq 0$. Это означает, что СЛАУ **несовместна**;
- $\operatorname{rank}(A \mid b) = \operatorname{rank} A < n$. В этом случае выберем переменные, коэффициенты при которых образуют базисный минор (эти переменные называются $\operatorname{\textit{базиснымu}}$) и выразим их через оставшиеся переменные (они называются $\operatorname{\textit{свободнымu}}$). Базисные переменные оказываются функциями от свободных выражаются как линейные комбинации последних возможно с дополнительным ненулевым свободным членом. В таком случае имеется более одного решения, а сами системы называются $\operatorname{\textit{неопределённымu}}$. Если поле $\mathbb F$ бесконечно, то и решений бесконечно много.

§2. Однородные СЛАУ

Опр. 2.1. СЛАУ называется *однородной*, если столбец свободных членов является нулевым вектором.

NtB. Часто мы будем использовать запись Ax=0, предполагая, что в данном случае в правой части стоит нулевой вектор из \mathbb{F}^k

Лемма 2.1. Множество $X=\{x\in \mathbb{F}^n|Ax=0\}$ решений однородной СЛАУ образует линейное подпространство $X\leqslant \mathbb{F}^k$.

Доказательство. Рассмотрим линейную комбинацию $\alpha_1 x_1 + \alpha_2 x_2$ векторов $x_1, x_2 \in X \subseteq \mathbb{F}^k$ являющихся решениями однородной СЛАУ. Тогда

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2 = \alpha_1 \cdot 0 + \alpha_2 \cdot 0 = 0$$

NtB. Однородная СЛАУ Ax = 0 всегда совместна. Если число уравнений в ней меньше числа неизвестных, то она всегда имеет ненулевое решение.

Теорема 2.1. (о "степени неопределённости" однородной CЛАУ) Размерность пространства X решений однородной CЛАУ c n неизвестными и матрицей коэффициентов A равна

$$\dim X = n - \operatorname{rank} A$$

Доказательство. Решим СЛАУ Ax = 0 методом Гаусса.

Пусть x_1, \dots, x_r — базисные переменны $(r = \operatorname{rank} A)$. Выразим их через оставшиеся свободные:

$$\begin{cases} x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_n \\ \dots = \dots \\ x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_n \end{cases}$$

Будем придавать последовательно свободным переменным следующие значения: одной — единица, остальным — нули. Получим при этом столбцы решений

$$\begin{cases}
e_1 = (c_{11}, c_{21}, \dots, c_{r1}, 1, 0, \dots, 0)^T \\
e_2 = (c_{12}, c_{22}, \dots, c_{r2}, 0, 1, \dots, 0)^T \\
\dots \\
e_{n-r} = (c_{1,n-r}, c_{2,n-r}, \dots, c_{r,n-r}, 0, 0, \dots, 1)^T
\end{cases}$$

Нетрудно заметить, что они линейной независимы, а в связи с тем, что они полностью порождают пространство решений СЛАУ, то мы можем сделать вывод, что это базис $X \leq \mathbb{F}^n$.

Опр. 2.2. Базис пространства решений однородной СЛАУ называется **фундаментальной системой решений** (ФСР).

Опр. 2.3. *Общим решением однородной СЛАУ* называется линейная комбинация векторов Φ CP:

$$x_0 = \sum_{1}^{n-r} \lambda_i e_i, \quad \forall \lambda_i \in \mathbb{F}$$

NtB. Вопрос: как задать подпространство с помощью однородной СЛАУ?

Теорема 2.2. Пусть матрица B состоит из столбцов, образующих базис пространства решений $C \Pi A Y A x = 0$. Тогда система $B^T x = 0$ задаёт линейную оболочку строк матрицы A.

Доказательство. Поскольку каждый столбец матрицы B является решением линейной системы Ax=0, имеет место матричное равенство AB=0, которое эквивалентно равенству $B^TA^T=0$. Если B^T интерпретировать как матрицу коэффициентов некоторой СЛАУ, все столбцы A^T (то есть строки A) будут ей удовлетворять.

Покажем, что столбец, не принадлежащий линейной оболочке столбцов матрицы A^T , не удовлетворяет СЛАУ $B^Ty=0$. Пусть в исходной СЛАУ n неизвестных, а $r={\rm rank}\,A$. Тогда ${\rm rank}\,B^T={\rm rank}\,B=n-r$, то есть СЛАУ $B^Ty=0$ имеет n-(n-r) линейно независимых решений. Поскольку ${\rm rank}\,A=r$, это означает, что систем $B^Ty=0$ удовлетворяет лишь линейная оболочка строк матрицы A.

NtB. Проще, однако, искать нужную систему не непосредственно по теореме, а путём элементарных преобразований. Попробуйте сами придумать необходимый алгоритм.

§3. Неоднородные СЛАУ

Теорема 3.1. (о структуре решения CJAY) Общее решение неоднородной CJAY вида Ax = b является суммой общего решения однородной x_0 и произвольного частного решения \widetilde{x} неоднородной:

$$x = \widetilde{x} + x_0 = \widetilde{x} + \sum_{i=1}^{n-r} \lambda_i e_i, \quad \forall \lambda_i \in \mathbb{F},$$

 $e \partial e A x_0 = 0 \ u \ A \widetilde{x} = b.$

Доказательство. Рассмотрим данное представление:

$$A(\widetilde{x} + x_0) = A\widetilde{x} + Ax_0 = b + 0 = b$$

Обратно, пусть \widetilde{x} — произвольное решение $A\widetilde{x}=b$, тогда $x-\widetilde{x}$ — решение соответствующей однородной системы, т.к.

$$A(x - \widetilde{x}) = Ab - Ab = 0$$

Следовательно, x_0 всегда принадлежит общему решению Ax = 0.

Теорема 3.2. (альтернатива Фредгольма) Если в СЛАУ Ax = b число уравнений равно числу неизвестных, то

- либо она имеет единственное решение при любых значениях правой части.
- ullet либо однородная СЛАУ Ax=0 обладает ненулевым решение.

Доказательство. Просто суммирует то, что говорилось до этого.

NtB. Неоднородная СЛАУ описывает линейное многообразие. Соответственно, возникает вопрос, можно ли задать произвольное линейное многообразие с помощью СЛАУ и как это сделать.

Теорема 3.3. Пусть U- подпространство в F^n , $L=x_0+U-$ линейное многообразие. Тогда существует СЛАУ Ax=b, состоящая из $n-\dim U$ линейных уравнений, множество решений которой совпадает с L.

Доказательство. Доказательство следует из возможности задать однородной СЛАУ подпространство и структуры решения СЛАУ.