

<120> Isolated Cytokine Receptor LICR-2

<130> LUD 5752 NDH

Hor, Simon

<140> US10/026,106

<141> 2001-12-21

<160>19

<210>1

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400> 1

gggaaccaag gagctgctat g

21

<210>2

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400>2

tggcactgag gcagtggtgt t

21

<210>3

<211>20

<212> DNA

<213> Homo sapiens

<220>

<400>3

aaggccatgg cgggcccga

20

<210>4

<211>20

```
<212> DNA
<213> Homo sapiens
<220>
<400> 4
cagaaggtca gtgctgaag
                                         20
<210> 5
<211>21
<212> DNA
<213> Homo sapiens
<220>
<400> 5
                                         21
acctgcttct tgctggaggt c
<210>6
<211>21
<212> DNA
<213> Homo sapiens
<220>
<400> 6
                                           21
catcagattc ggtgggatgt c
<210>7
<211>
<212> DNA
<213> Homo sapiens
<220>
<400> 7
                                                                          60
aaggecatgg eggggeeega gegetgggge eeeetgetee tgtgeetget geaggeeget
                                                                         120
ccaggagge cccgtctgge ccctccccag aatgtgacge tgctctccca gaacttcage
                                                                         180
gtgtacctga catggctcc cagggcttggc aacccccagg atgtgaccta ttttgtggcc
atcagaget eteceaceg tagaeggtgg egegaagtgg aagagtgtge gggaaceaag
                                                                         240
                                                                         300
gagctgctat gttctatgat gtgcctgaag aaacaggacc tgtacaacaa gttcaaggga
                                                                         360
cgcgtgcgga cggtttctcc cagctccaag tcccctgg gtggagtccga atacctggat
                                                                         420
tacctttttg aagtggagcc ggccccacct gtcctggtgc tcacccagac ggaggagat
                                                                         480
cctgagtgcca atgccacgta ccagctgccc ccctgcatgc ccccactgga tctgaagtat
                                                                         540
gaggtggcat tctggaagga gggggccgga aacaagaccc tatttccagt cactccccat
                                                                         600
ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc
                                                                         660
agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc
                                                                         720
ttgctggagg tcccagaagc caactgggct ttcctggtgc tgccatcgct tctgatactg
                                                                         780
ctgttagtaa ttgccgcagg gggtgtgatc tggaagaccc tcatggggaa cccctggttt
```

cagegggeaa agatgeeaeg ggeeetggae ttttetggae acacacace tgtggeaace	840
tttcagccca gcagaccaga gtccgtgaat gacttgttcc tctgtcccca aaaggaactg	900
accagagggg teaggeegae geetegagte agggeeceag eeacceaaca gacaagatgg	960
aagaaggacc ttgcagagga cgaagaggag gaggatgagg aggacacaga agatggcgtc	1020
agettecage cetacattga accacettet tteetgggge aagageacca ggeteeaggg	1080
cacteggagg etggtggggt ggacteaggg aggeecaggg eteetetggt eccaagegaa	1140
ggeteetetg ettgggatte tteagacaga agetgggeea geaetgtgga eteeteetgg	1200
gacagggctg ggtcctctgg ctatttggct gagaaggggc caggccaagg gccgggtggg	1260
gatgggcacc aagaatetet eecaccacet gaatteteea aggaeteggg ttteetggaa	1320
gageteecag aagataacet eteeteetgg gecacetggg geacettace aeeggageeg	1380
aatetggtee etgggggaee eccagtttet etteagaeae tgaeettetg etgggaaage	1440
agccctgagg aggaaggga ggcgagggaa tcagaaattg aggacagcga tgcgggcagc	1500
tggggggctg agagcaccca gaggaccgag gacaggggcc ggacattggg gcattacatg	1560
gccaggtgag ctgtcccccg acatcccacc gaatctgatg	1600

```
<210>8
<211> 522
<212> PRT
<213> Homo sapiens
<220>
<400>8
Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu
                                                   30
           20
                               25
Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly
                           40
Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr
    50
                        55
                                           60
Arg Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu
                    70
                                        75
Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe
                                     90
                85
Lys Gly Arg Val Arg Thr Val Ser Pro Ser Ser Lys Ser Pro Trp Val
                               105
Glu Ser Glu Tyr Leu Asp Tyr Leu Phe Glu Val Glu Pro Ala Pro Pro
       115
                           120
                                                125
Val Leu Val Leu Thr Gln Thr Glu Glu Ile Leu Ser Ala Asn Ala Thr
                                          140
                        135
    130
```

Tyr Gln L	eu Pro	Pro Cys	Met Pro	Pro Le	u Asp	Leu Lys	Tyr Glu V	⁷ al
145		150			155		1	60
Ala Phe T	rp Lys	Glu Gly 165	Ala Gly		ys Thr I	Leu Phe	Pro Val T 175	hr
Pro His V	al Thr 180	Pro His (Pro Val 185	Gln Il	e Thr Le	eu Gln Pro 0	
		His His (Cys Leu 200	Ser Ala	Arg T	hr Ile Ty 205	yr Thr Phe	
		Tyr Ser		Ser Lys	s Pro T		he Leu Le	eu
210		•	215	•		20		
Glu Val P	ro Glu	Ala Asn	Trp Ala	Phe Le	u Val I	Leu Pro	Ser Leu Le	eu
225		230			235		24	0
Ile Leu Le	eu Leu	Val Ile A 245	la Ala (Gly Gly 250	Val Ile	Trp Ly	s Thr Leu 255	
Met Gly A	Asn Pro 260	Trp Phe	Gln Ar		ys Met	Pro Arg	Ala Leu A	Asp
			His Pro		Thr Pl	ne Gln P 285	ro Ser Arg	,
		Asn Asp		e Leu C	-		Glu Leu T	hr
	/al Arg	Pro Thr 310	Pro Arg	; Val Ar			Gln Gln Tl	hr 20
	.vs I.vs			ıı Asn G		Glu Gli	ı Asp Thr	
5 p	2,0 2,0	325	Tilu Ol		30	Giù Giù	335	014
Asp Gly V	Val Ser 340	Phe Gln	-			o Ser Ph	ne Leu Gly	,
				Ser Glu	ı Ala G		/al Asp Se	r
		Ala Pro			r Glu C		Ser Ala Trp)
370	101116		375			80		•
Asp Ser S	er Asp	Arg Ser	Trp Ala	Ser Th	r Val A	sp Ser S	er Trp Asp	þ
385	-	390			395		400)
Arg Ala (•	Ser Gly ' 405	Tyr Leu	Ala Glu 41	-	Gly Pro (Gly Gln Gl 415	y
Pro Gly C	aly Asp 420		Gln Glu	Ser Le 425	u Pro F		Glu Phe Se 30	r
Lvs Asn S			Glu Gh		ro Glu		Leu Ser S	Ser
-	35	1 110 Dou	44(. J GIW	445		
		Gly Thr			ı Pro P		Leu Val Pr	o
450	r	-	455			60		

Gly Gly Pro Pro Val Ser Leu Gln Thr Leu Thr Phe Cys Trp Glu Ser
465 470 475 480

Ser Pro Glu Glu Glu Glu Glu Ala Arg Glu Ser Glu Ile Glu Asp Ser
485 490 495

Asp Ala Gly Ser Trp Gly Ala Glu Ser Thr Gln Arg Thr Glu Asp Arg
500 505 510

Gly Arg Thr Leu Gly His Tyr Met Ala Arg
515 520

<210>9 <211> 1469 <212> DNA <213> Homo sapiens <220> <400> 9

60 aaggecatgg eggggeeega gegetgggge eeeetgetee tgtgeetget geaggeeget ccagggagge cccgtctgge ccctccccag aatgtgacge tgctctccca gaacttcage 120 180 gtgtacctga catggctccc agggcttggc aacccccagg atgtgaccta ttttgtggcc 240 tatcagaget eteceaceg tagaeggtgg egegaagtgg aagagtgtge gggaaceaag 300 gagetgetat gttetatgat gtgeetgaag aaacaggace tgtacaacaa gtteaaggga 360 cgcgtgcgga cggtttctcc cagctccaag tcccctggg tggagtccga atacctggat 420 tacetttttg aagtggagee ggeeceaect gteetggtge teaceeagae ggaggagate 480 ctgagtgcca atgccacgta ccagctgccc ccctgcatgc ccccactgga tctgaagtat 540 gaggtggcat tctggaagga gggggccgga aacaagaccc tatttccagt cactccccat 600 ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc 660 agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc 720 ttgctggagg tcccaggact tttctggaca cacacacct gtggcaacct ttcagcccag 780 cagaccagag teegtgaatg acttgtteet etgteeccaa aaggaactga ecagaggggt 840 caggccgacg cctcgagtca gggccccagc cacccaacag acaagatgga agaaggacct 900 tgcagaggac gaagaggagg aggatgagga ggacacagaa gatggcgtca gcttccagcc 960 ctacattgaa ccaccttctt tcctggggca agagcaccag gctccagggc actcggaggc 1020 tggtggggtg gactcaggga ggcccagggc tcctctggtc ccaagcgaag gctcctctgc 1080 ttgggattct tcagacagaa gctgggccag cactgtggac tcctcctggg acagggctgg 1140 gtcctctggc tatttggctg agaaggggcc aggccaaggg ccgggtgggg atgggcacca 1200 agaatetete ecaccacetg aattetecaa ggaetegggt tteetggaag ageteecaga 1260 agataacete teeteetggg eeacetgggg eacettaeea eeggageega atetggteee 1320 tgggggaccc ccagtttctc ttcagacact gaccttctgc tgggaaagca gccctgagga 1380 ggaagaggag gcgagggaat cagaaattga ggacagcgat gcgggcagct ggggggctga 1440 gagcacccag aggaccgagg acaggggccg gacattgggg cattacatgg ccaggtgagc

```
<210>10
<211>244
<212> PRT
<213> Homo sapiens
<220>
<400> 10
Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu
Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly
Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr
Arg Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu
Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe
Lys Gly Arg Val Arg Thr Val Ser Pro Ser Ser Lys Ser Pro Trp Val
                               105
Glu Ser Glu Tyr Leu Asp Tyr Leu Phe Glu Val Glu Pro Ala Pro Pro
                           120
                                                125
Val Leu Val Leu Thr Gln Thr Glu Glu Ile Leu Ser Ala Asn Ala Thr
    130
                        135
Tyr Gln Leu Pro Pro Cys Met Pro Pro Leu Asp Leu Lys Tyr Glu Val
                   150
                                        155
                                                            160
Ala Phe Trp Lys Glu Gly Ala Gly Asn Lys Thr Leu Phe Pro Val Thr
                165
                                   170
Pro His Gly Gln Pro Val Gln Ile Thr Leu Gln Pro Ala Ala Ser Glu
                              185
His His Cys Leu Ser Ala Arg Thr Ile Tyr Thr Phe Ser Val Pro Lys
       195
                           200
Tyr Ser Lys Phe Ser Lys Pro Thr Cys Phe Leu Leu Glu Val Pro Gly
    210
                       215
                                           220
```

```
Leu Phe Trp Thr His Thr Pro Cys Gly Asn Leu Ser Ala Gln Gln Thr
225
                  230
                                      235
                                                        240
Arg Val Arg Glu
<210>11
<211>21
<212> DNA
<213> Homo sapiens
<220>
<400> 11
ttcagtgtcc cgaaatacag c
                                   21
<210> 12
<211>20
<212> DNA
<213> Homo sapiens
<220>
<400> 12
                                   20
aagaaggtgg ttcaatgttag
<210> 13
<211>38
<212> DNA
<213> Homo sapiens
<220>
<400> 13
tggcagcacc atgatcaccc agttggcttc tgggacct
                                           38
<210> 14
<211>35
<212> DNA
<213> Homo sapiens
<220>
<400> 14
aagactgagt tgatcaagag aatcagagcc ttaga
                                            35
<210> 15
<211>27
<212> DNA
```

<213> Homo sapiens

<220>	
<400> 15	
aatgtetaga tgetgttete atttace	27
~210~16	
<210>16	
<211> 24	
<212> DNA	
<213> Homo sapiens <220>	
<400> 24	
	24
gctccatggg acgatgccgc tgtg	24
<210> 17	
<211>20	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 17	
gtgaaatatt gctccgtcgt	20
<210> 18	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 18	
gaagaatatt gggctttcct ggtgctg	27
<210> 19	
<211> 20	•
<212> DNA	
<220>	
<400> 19	
cactgcattc tagttgtggt	20
<213> Homo sapiens	