Solution and Marking Scheme Experiment

II. Cylindrical Bore

a) Derivation of moment of inertia I (0.5 points) Configuration Fig. 1.2(a)

$$I_{1} = \frac{1}{6}Ma^{2} - \frac{1}{2}mb^{2} = \frac{1}{6}(\rho a^{3})a^{2} - \frac{1}{2}(\rho \pi b^{2}a)b^{2}$$
$$= \frac{1}{6}\rho a^{5} - \frac{1}{2}\rho \pi ab^{4}$$

Configuration Fig. 1.2(b)

$$I_{2} = \frac{1}{6}Ma^{2} - \frac{1}{12}ma^{2} - \frac{1}{4}mb^{2} = \frac{1}{6}(\rho a^{3})a^{2} - \frac{1}{12}(\rho \pi b^{2}a)a^{2} - \frac{1}{4}(\rho \pi b^{2}a)b^{2}$$
$$= \frac{1}{6}\rho a^{5} - \frac{1}{12}\rho \pi a^{3}b^{2} - \frac{1}{4}\rho \pi ab^{4}$$

Derivation of period of oscillation T

For both configurations:

the restoring torque τ

where

$$F = \frac{1}{2} m_0 g \frac{\delta s}{\ell}$$
 and $\frac{\delta s}{d/2} \approx \theta$
 $F \approx \frac{1}{2} m_0 g \frac{d}{2\ell} \theta$ (0.5 points)

net mass
$$m_0 = \rho a^3 \left(1 - \pi \frac{b^2}{a^2} \right) = \rho a^3 \left(1 - \pi x^2 \right)$$
 where $x \equiv \frac{b}{a}$

since
$$\tau = I\alpha$$
, $\alpha = \frac{\frac{1}{4}m_0g\frac{d^2}{\ell}\theta}{I}$ (0.5 points)

$$\omega^{2} = \frac{4\pi^{2}}{T^{2}} = \frac{\frac{1}{4}m_{0}g\frac{d^{2}}{\ell}}{I}$$

$$T^{2} = \frac{4\pi^{2}I\ell}{\frac{1}{4}m_{0}gd^{2}} = \left(\frac{16\pi^{2}I}{m_{0}gd^{2}}\right)\ell$$

For configuration in Fig. 2.2(a),

$$T_1^2 = \left(\frac{16\pi^2}{gd^2} \frac{\frac{1}{6}\rho a^5 - \frac{1}{2}\rho \pi a b^4}{\rho a^3 (1 - \pi x^2)}\right) \ell$$

$$= \frac{8\pi^2}{3g} \left(\frac{a}{d}\right)^2 \left(\frac{1 - 3\pi x^4}{1 - \pi x^2}\right) \ell \qquad (0.5 \text{ points})$$
For configuration in Fig. 2.2(b),
$$T_2^2 = \left(\frac{16\pi^2 \frac{1}{6}\rho a^5 \left(1 - \frac{\pi}{2} \frac{b^2}{a^2} - \frac{3\pi}{2} \frac{b^4}{a^4}\right)}{\rho a^3 (1 - \pi x^2) g d^2}\right) \ell$$

$$= \frac{8\pi^2}{3g} \left(\frac{a}{d}\right)^2 \left(\frac{1 - \frac{\pi x^2}{2} - \frac{3\pi}{2} x^4}{1 - \pi x^2}\right) \ell$$

b) For configuration in Fig. 2.2(a), d = 7.0 cm

ℓ (cm)	T_1 for 40 oscillations(s)			$T_{I}\left(\mathbf{s}\right)$	$(T_l)^2 (s^2)$
16.5	20.60	20.50	20.70	0.515	0.265
17.9	21.35	21.35	21.30	0.533	0.284
22.6	24.05	24.00	24.00	0.601	0.362
27.4	26.55	26.45	26.55	0.663	0.440
29.0	27.40	27.40	27.40	0.685	0.469
34.2	29.75	29.70	29.65	0.743	0.551
36.1	30.60	30.60	30.50	0.764	0.584
43.0	33.40	33.35	33.50	0.835	0.698

(3 points):

3 sets of *n* oscillations (1 point) [2 sets -0.3, 1 set -0.7] $n \ge 20$ (1 point) [≥ 15 , -0.3, ≥ 10 , -0.7, < 10, -1.0] number of lengths, ℓ , ≥ 5 (1 point) [4, -0.3, 3, -0.5, 1 or 2, -1.0]

slope of graph:
$$s_1 = \frac{0.698 - 0.265}{(43.0 - 16.5) \times 10^{-2}} = \frac{0.433}{26.5 \times 10^{-2}} = 1.634 \text{ s}^2/\text{m}$$

$$x = \frac{b}{a} = 0.24 \pm 0.02$$

For configuration in Fig. 2.2(b), d = 4.9 cm

ℓ (cm)	T_2 for 40 oscillations (s)			$T_2(\mathbf{s})$	$(T_2)^2 (s^2)$
43.8	46.95	46.90	46.80	1.172	1.374
36.0	42.70	42.45	42.50	1.064	1.132
30.9	39.60	39.40	39.35	0.986	0.973
26.5	36.40	36.30	36.45	0.909	0.827
19.5	30.80	30.85	30.75	0.776	0.593

slope of graph:
$$s_2 = \frac{1.374 - 0.827}{(43.8 - 26.5) \times 10^{-2}} = \frac{0.547}{17.3 \times 10^{-2}} = 3.14 \text{ s}^2/\text{m}$$

$$x = \frac{b}{a} = 0.25 \pm 0.03$$

graph (3.0 points):

good graph

(1.5 points)

slope

(1.0 point)

error of experimental points

(0.5 point)

calculation for $\frac{b}{a}$ (1.0 point)

error estimation

(1.0 point)