MINTS: Unsupervised Temporal Specifications Miner

Pradeep Kumar Mahato, Apurva Narayan
Department of Computer Science
The University of British Columbia
BC, Canada

Outline

- Introduction
- Objective
- Methodology
- Experimental result
- Conclusion and future work

Introduction

Software specifications define system behavior, usage guidelines, program requirements and act as a tool for debugging..

Objective

Mine system behavior from execution logs.

A popular approach for mining system behavior uses a <u>finite state machine</u>. Finite State Machines represents the working of a system and its modules using graphs. State is represented as nodes and edges are used to define change in state on certain action.

Source: By Sebasgui - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=8930080 **Source:** By Chetvorno - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=20269475

Preliminaries

System activities are <u>events</u>. Traces are a <u>collection of events</u>. Alphabet (Σ) \rightarrow { event₁, event₂, ... } An alphabet is a <u>finite set of events</u>.

Trace

Group of events forms a trace

```
Sep 9 12:24:27 pradeep-Dell-System-XPS-L502X pkexec[21417]: pradeep: Executing command [USER=root] [TTY=unknown] [CWD=/home/pradeep] [COMMAND=/usr/lib/gnome-settings-daemon/gsd-backlight-helper --set-brightness 15]
Sep 9 12:24:27 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(polkit-1:session): session opened for user root by (uid=1000)
Sep 9 12:24:27 pradeep-Dell-System-XPS-L502X pkexec[21422]: pradeep: Executing command [USER=root] [TTY=unknown] [CWD=/home/pradeep] [COMMAND=/usr/lib/gnome-settings-daemon/gsd-backlight-helper --set-brightness 15]
Sep 9 12:24:27 pradeep-Dell-System-XPS-L502X pkexec[21427]: pradeep: Executing command [USER=root] [TTY=unknown] [CWD=/home/pradeep] [COMMAND=/usr/lib/gnome-settings-daemon/gsd-backlight-helper --set-brightness 15]
Sep 9 12:26:57 pradeep-Dell-System-XPS-L502X gnome-keyring-daemon[2509]: asked to register item /org/freedesktop/secrets/collection/login/113, but it's already registered
Sep 9 12:54:18 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(polkit-1:session): session opened for user root by (uid=1000)
Sep 9 12:54:18 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(polkit-1:session): session opened for user root by (uid=1000)
Sep 9 12:54:18 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(polkit-1:session): session opened for user root by (uid=1000)
Sep 9 12:54:18 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(cron:session): session opened for user root by (uid=1000)
Sep 9 13:17:01 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(cron:session): session opened for user root by (uid=0)
Sep 9 13:17:01 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(cron:session): session opened for user root by (uid=0)
Sep 9 13:17:01 pradeep-Dell-System-XPS-L502X pkexec: pam_unix(cron:session): session opened for user root by (uid=0)
```

Figure: Snapshot of authentication log from Ubuntu 18.04

Timed Automaton

A finite state machine with **time sensitive** transition.

Figure: Finite State Machine of an ATM (Automatic Teller Machine)

Figure: A <u>timed</u> Finite State Machine of an ATM (Automatic Teller Machine)

Determining Clock Constraint

Extracted Timed Automaton

Nodes represent a state and edges contains the condition for transition.

Each edge, contains the triggering event, acceptable clock range and probability of transition.

Please Note: The probability of transition is different than event prediction (and the probability of event with time).

Experiments and Result

Objective

- Extract a timed automaton of the system
- Extract dominant temporal patterns

Measurement Metrics (Association Rule Mining)

Support: Probability of a certain pattern in the data

Example: 70% of customers buy milk and cereal

 <u>Confidence</u>: Probability of a certain event, given a series of events has already occured

Example: 100% of customers who buys cereal also buys milk

Source: Photo by Visual Stories | Micheile on Unsplash

Dataset

- QNX Operating System Trace collected from a Hexacopter Drone
- Various flight maneuvers were performed
- 600+ Thousand events

Figure: Hexacopter Drone

Figure: Drone controller

Source: Photo by <u>lan Baldwin</u> on <u>Unsplash</u>

Extraction of Dominant Temporal Patterns

Serial	Pattern	Count	Support	Confidence	
1	[-INF,0]SND_MESSAGE [1373,9332]THREPLY	16234	0.029	0.988	
2	[-INF,0]SYNC_CONDVAR_WAIT_82 [3222,156765]MSG_SENDV_11	2042	0.003	0.999	
	$[0,0]$ SND_MESSAGE $[576,5867]$ THREPLY	2042			
3	[-INF,0]THWAITPAGE [647,1773]THRUNNING [677,6843]REC_PULSE	1744	0.003	0.914	
4	[-INF,0]MSG_READV_16 [26259,85259]MSG_REPLYV_15	623	0.007	0.257	
5	[-INF,0]MSG_WRITEV_17 [2087,15713]MSG_WRITEV_17	113	0.000	1.000	
	[3487,20070]SND_PULSE_EXE	113	0.000	1.000	

Table: Top 5 Dominant Temporal Properties extracted from the system trace

Hyperparams: $\mathcal{P} = 0.45$, $\mathcal{D} = 10$

Total Patterns Mined: 384

Specific temporal behavioral patterns were extracted that showed relationship causal relationship among the events.

Figure: Temporal Behavioral Patterns [Yang et al, 2004]

Type	From-To Event	Count	Support	Confidence	
Response Pattern	SND_MESSAGE - THREPLY	[-INF,0]SND_MESSAGE [1373,9332]THREPLY		0.029	0.988
	THREADY - MSG_REPLYV_15	[-INF,0]THREADY [371,1246]MSG_REPLYV_15	11069	0.029	0.367
	EVENT_2 - MSG_RECEIVEV_14	[-INF,0]EVENT_0 [0,0]MSG_RECEIVEV_14	1496	0.002	0.499
Alternating Pattern	THRECEIVE - THRUNNING	[-INF,0]THRECEIVE [306,640]THRUNNING	9040	0.068	0.996
	SND_PULSE_EXE - REC_PULSE	[-INF,0]SND_PULSE_EXE [2109,9901]REC_PULSE	6886	0.015	0.110
	SYNC_CONDVAR_WAIT_82 - MSG_SENDV_11	$[-INF,0] SYNC_CONDVAR_WAIT_82 \ [3222,156765] MSG_SENDV_11$	2061	0.003	0.453
Multi Cause	TIMER_TIMEOUT_75 - EVENT_1	[-INF,0]TIMER_TIMEOUT_75 [1330,22081]EVENT_1	1490	0.002	0.452
	MSG_READV_16 - MSG_REPLYV_15	[-INF,0]MSG_READV_16 [26259,85259]MSG_REPLYV_15	623	0.007	0.257
	CONNECT_FLAGS_43 - MSG_SENDV_11	[-INF,0]CONNECT_FLAGS_43 [824,3063]MSG_SENDV_11	36	0.000	0.494
Multi Effect	TIMER_TIMEOUT_75 - EVENT_1	[-INF,0]TIMER_TIMEOUT_75 [1330,22081]EVENT_1	1490	0.002	0.452
	REC_PULSE - BUFFER	[-INF,0]REC_PULSE [925,2049]BUFFER	28	0.001	0.013
	THWAITPAGE - THRUNNING	[-INF,0]THWAITPAGE [647,1773]THRUNNING	768	0.003	1.000

Table: 4 Temporal Behavioral Properties were extracted and validated

Feature Comparison

	Features							
Algorithm (Author names used if algorithm has no name)	Pattern Extraction	Timed Pattern Extraction	Pattern Monitoring	Timed Pattern Monitoring	DFA Extraction	Timed DFA Extraction	Event Prediction	
UPPAAL SMC			•	✓			✓	
Texada	1		1					
Weiss et al.			1	1	✓			
J. An et al.					✓	✓		
MONTRE			1	✓				
Cutulenco et al.	1	✓	1	/				
QMine	1		1					
MINTS	1	1	1	1	*	1	/	

Table: Feature comparison with other prominent specification mining framework

Performance

Total time to mine: $\mathcal{O}(nD-D^2+\Sigma^D)$

Alphabet Size vs Time

Trace Length vs Time

Depth of Timed Trie vs Time

Conclusion and future work

- MINTS is capable of mining as well as monitoring of both timed and untimed specification
- Unsupervised learning of system behavior
- MINTS presents the learned model as Graphs
- MINTS is highly scalable
- MINTS has 100% theoretical soundness and completeness

Future Work

- Represent simpler timed-automaton using MINTS
- Simplify usage of the framework

Source: Photo by <u>Simon Abrams</u> on <u>Unsplash</u>

References

- P. K. Mahato and A. Narayan. Qmine: A framework for mining quantitative regular expressions from system traces., QRS, 2020
- Dana Angluin. Learning regular sets from queries and counterexamples. Volume 75, page 87{106, USA, November 1987. Academic Press, Inc.
- A. Narayan, N. Benann, and S. Fischmeister. Mining specifications using nested words. In 2017 6th International Workshop on Software Mining (SoftwareMining),
- Apurva Narayan, Greta Cutulenco, Yogi Joshi, and Sebastian Fischmeister. Mining timed regular specifications from system traces. volume 17. Association for Computing Machinery
- Dogan Ulus. Montre: A tool for monitoring timed regular expressions. In Rupak Majumdar and Viktor Kun*cak, editors, Computer Aided Verification
- Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev Khanna. Streamqre: modular specification and efficient evaluation of quantitative queries over streaming data

Thank You

Intentionally left blank