Documentation pas-echant.mod.tex

Version 1.00 - 22 mars 2015

Stéphane Pasquet

	Sommaire				
1 Int	1 Introduction et installation				
2 Ins	2 Installation de Giac/Xcas				
3 Pa	3 Paramétrage de l'éditeur LaTeX				
	s trois fonctions principales	2			
4.1	Construire un tableau complet	3			
4.2	Construire un tableau minimal	4			
4.3	Construire un tableau minimal tronqué	5			
5 Ch	5 Changer les couleurs				
5.1	Couleur des lignes pour a et b	7			
5.2	Couleur de la première ligne	7			
5.3	Couleur des traits	7			

1 Introduction et installation

Le module (et non l'extension) pas-echant.mod.tex a été conçu dans le but de créer facilement une table de valeurs de $P(X \leq k)$, pour $0 \leq k \leq n$, où $X \hookrightarrow \mathcal{B}(n; p)$.

Ce module charge les extensions suivantes :

```
xcolor (avec l'option : table)
amsmath
amssymb
fancyvrb
cellspace
longtable
```

et définit :

```
1 \setlength{\cellspacetoplimit}{3pt}
2 \setlength{\cellspacebottomlimit}{3pt}
```

Ce module utilise Giac/Xcas. Il est donc nécessaire de faire quelques réglages avec votre éditeur de sorte qu'il reconnaisse l'utilisation de Giac/Xcas.

Sous Ubuntu, on pourra décompresser pas-echant.zip dans le répertoire :

```
./texlive/texmf-local/tex/latex/
```

de sorte à avoir :

```
./texlive/texmf-local/tex/latex/pas-echant/latex/pas-echant.mod.tex
./texlive/texmf-local/tex/latex/pas-echant/doc/pas-echant.tex
./texlive/texmf-local/tex/latex/pas-echant/doc/doc.codes.tex
./texlive/texmf-local/tex/latex/pas-crosswords/doc/doc.styles.tex
./texlive/texmf-local/tex/latex/pas-echant/doc/pas-echant.pdf
```

Après installation, n'oubliez pas de taper la commande texhash dans le terminal pour mettre à jour la base de données des extensions.

Avec Miktex (sous Windows) ou macTex (sous Mac OS), j'imagine que l'arborescence ressemble à ce qui est écrit précédemment.

Pour faire appel à ce module, on l'appellera en préambule :

```
1 \documentclass{article}
2 ...
3 \input{pas-echant.mod.tex}
4 \begin{document}
5 ...
6 \end{document}
```

2 Installation de Giac/Xcas

Le module pas-echant.tex fait appel à Giac/Xcas; par conséquent, vous devez installer Xcas à partir, par exemple, de la page:

```
http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html
```

3 Paramétrage de l'éditeur LaTeX

N'oubliez pas de mettre en option de compilation :

```
--shell-escape
```

afin que les commande Xcas s'exécutent. Par exemple, en compilant avec Pdflatex, on aura (avec TexMaker, mais pour les autres éditeurs, ça ressemble à cela aussi) :

pdflatex -synctex=1 -interaction=nonstopmode --shell-escape %.tex

4 Les trois fonctions principales

```
1 \begin{echantillon}
2 build("<nom du tableau>","<option>",[n,p <,options>]);
3 \end{echantillon}
4 \input{<nom du tableau>}
```

Ici, la commande build va construire un tableau de valeurs selon l'option indiquée et va le sauvegarder dans un fichier externe .tex dont le nom est celui informé pour la <nom du tableau>. Ensuite, on affiche le tableau de valeurs à l'aide de la commande \input{<nom du tableau>}.

Les 3 options possibles sont :

- « complet »
- « min »
- « minbreak »

4.1 Construire un tableau complet

J'ai ici construit le tableau des valeurs avec n = 50 et p = 0,487:

```
1 \begin{center}
2 \begin{echantillon}
3 build("tableau1","complet",[50,0.487])
4 \end{echantillon}
5 \input{tableau1}
6 \end{center}
```

k	$P(X \leqslant k)$
0	3.20529684152e-15
1	1.55347554329e-13
2	3.69391547871e-12
3	5.74415202873e-11
4	6.5696828757e-10
5	5.89306912214e-09
6	4.31734946548e-08
7	2.65631015767e-07
8	1.40073894696e-06
9	6.4294367214e-06
10	2.60021479226e-05
11	9.3568409521e-05
12	0.000302029424228
13	0.000880493892391
14	0.00233180985616
15	0.00563843382977
16	0.0125050768159
17	0.0255423288012
18	0.048232568855
19	0.0845108802326
20	0.137892329245
21	0.210286552774
22	0.300878757177

23	0.405575366994
24	0.517389509497
25	0.62778254438
26	0.728549915777
27	0.813581251918
28	0.879888408428
29	0.927640971099
30	0.95937361947
31	0.978808694308
32	0.989763418203
33	0.995435880231
34	0.998128364644
35	0.999296832399
36	0.999759018719
37	0.999925036648
38	0.999978953726
39	0.999994702784
40	0.999998814271
41	0.999999766248
42	0.999999959904
43	0.999999994107
44	0.99999999273
45	0.99999999927
46	0.99999999994
47	1.0
48	1.0
49	1.0
50	1.0

Cette fonction surligne les valeurs de a et b telles que :

- $P(X \le a) > 2.5\%$
- $P(X \le b) \ge 97.5\%$

L'intervalle de fluctuation au seuil de 95% est alors $\left[\frac{a}{n}; \frac{b}{n}\right]$.

4.2 Construire un tableau minimal

Quand n est très grand, pour éviter que la construction se mette sur plusieurs pages, on peut utiliser la fonction :

```
1 \begin{echantillon}
2 build("tableau2","min",[50,0.487,15,33]);
3 \end{echantillon}
4 \input{tableau2}
```

k	$P(X \leqslant k)$
15	0.00563843382977
16	0.0125050768159
17	0.0255423288012
18	0.048232568855
19	0.0845108802326
20	0.137892329245
21	0.210286552774
22	0.300878757177
23	0.405575366994
24	0.517389509497
25	0.62778254438
26	0.728549915777
27	0.813581251918
28	0.879888408428
29	0.927640971099
30	0.95937361947
31	0.978808694308
32	0.989763418203
33	0.995435880231

4.3 Construire un tableau minimal tronqué

Dans l'éventualité où il y aurait beaucoup de valeurs entre a et b, on peut tronquer le tableau avec la $3^{\rm e}$ option :

```
1 \begin{echantillon}
2 build("tableau3","minbreak",[50,0.487,16,32,18,30]);
3 \end{echantillon}
4 \input{tableau3}
```

k	$P(X \leqslant k)$
16	0.0125050768159
17	0.0255423288012
18	0.048232568855
:	:
30	0.95937361947
31	0.978808694308
32	0.989763418203

5 Changer les couleurs

5.1 Couleur des lignes pour *a* et *b*

```
1 \def\bkcolor{<couleur souhaitée>}
2 % Par défaut, la couleur est : gray!10
```

5.2 Couleur de la première ligne

```
1 \def\fstlinecolor{<couleur souhaitée>} % couleur de fond
2 % Par défaut, la couleur est : gray
3 \def\txtfstlinecolor{<couleur souhaitée>} % couleur du texte
4 % Par défaut, la couleur est : white
```

5.3 Couleur des traits

```
1 \def\bordercolor{<couleur souhaitée>}
2 % Par défaut, la couleur est : black
```

```
1 \def\fstlinecolor{blue!40}
2 \def\txtfstlinecolor{blue!50!black}
3 \def\bkcolor{blue!20}
4 \def\bordercolor{blue!50!black}
5 \begin{center}
6 \input{tableau3}
7 \end{center}
```

k	$P(X \leqslant k)$
16	0.0125050768159
17	0.0255423288012
18	0.048232568855
:	÷
30	0.95937361947
31	0.978808694308
32	0.989763418203