2. (1) frest -jut dt = [frest e-jut dt +(+)为偶函数 f Ct)= = = (+00 [f(t) coswede] dw = = = (1-t) COSWE. de Jusut = x for sinw-wcosw coswtdw (2) $f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(\tau) e^{-j\omega \tau} d\tau \right] e^{j\omega \tau} d\omega$ = = = for the sinze e - jut de] e du = = [+ 0 [] Sinze. e(jw+1) [de] e dw $=\frac{1}{22}\int_{-\infty}^{+\infty}\frac{1}{5-\omega^{2}+2jw}\frac{1}{5-\omega^{2}+2jw}\frac{1}{2\omega\sin\omega t+(5-\omega^{2})\cos\omega t}d\omega}$ $=\frac{2}{25-6\omega^{2}+\omega^{2}}\frac{1}{25-6\omega^{2}}\frac{1}{25-6\omega^{2}}\frac{1}{25-6\omega^{2}}\frac{1}{25-6\omega^{2}}\frac{1}{25$ f(t) = e - BIt1 = = = ft = Ft coswed to du = = for B cos wtdw $\frac{\beta}{\beta} \int_{\beta} \frac{1}{\beta^{2} + \lambda^{2}} \cos w t \, dw = \frac{z}{2\beta} e^{-\beta |t|}$

 $\int \frac{dx}{dx} = \int \frac{dx}{dx} \int$ 3.(3) fu为奇函数 $=\frac{2}{2}\int_{0}^{+\infty}\frac{\sin \omega t}{1-\omega^{2}}\frac{\sin \omega t}{1-\omega^{2}}\frac{1$ = . 1. $F(w) = \int_{-\infty}^{+\infty} f(t) e^{-jwt} dt$ $= \int_{0}^{\tau} A \cdot e^{-j\omega t} dt$ $= \left(l - e^{-j\omega \tau} \right) \frac{A}{i\omega}$ 2. f(w): | +00 f(t) e - jwt .dt $f(t) = \frac{1}{m} \int_{-\infty}^{\infty} F(w) e^{\int wt} dw$ $Of(w) \times f(h) = f(-t), \quad F(-w) = \int_{-\infty}^{+\infty} f(t) e^{\int wt} dt$ $= \int_{-\infty}^{+\infty} f(-t) e^{\int wt} dt = \int_{-\infty}^{+\infty} f(x) e^{\int wx} dx = F(w)$ $F(-w) = F(w) = F(w) \times f(h) = F(w) = F(-w)$ $f(t) = \frac{1}{m} \int_{-\infty}^{\infty} F(w) e^{\int wt} dw = \frac{1}{m} \int_{-\infty}^{+\infty} F(w) e^{\int wt} dw = f(t)$

3. (1) F(w)= ft f(t) e dt = (to xp- ftp-jwt dt = 1 +00 - (b+jw) t d+ $f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{d(\beta-j\omega)}{\beta^2+\omega^2} d\omega$ $f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{d(\beta-j\omega)}{\beta^2+\omega^2} e^{j\omega t} d\omega$ = = 1 from & B-owj ejut = = 1 +00 df-dwj (coswt+j sinwt)dw = 1 / to B cos wt + w sin wt dw $\int_{0}^{+\infty} \frac{\beta \cos wt + \omega \sin wt}{\beta^{2} + \omega^{2}} d\omega = \frac{\lambda}{2} \int_{0}^{+\infty} \frac{\pi e^{-\beta t}}{\frac{\lambda}{2}, t=0}$ 0 , t<0 当f(t)为奇函数时,同理引得F(w)特函数. 当下心)特趣时,同谜可得长的为新题.

(2) FW1= f+0 f(+) e-jwt dw =2 fet) ws wt dt =2/2 cost wswtdt = f 2 [cos (1-w) + cos (1+w)t] dt = 2 W SINWZ f(t) = 1 from Five pjut dt = 1 for ZWSinWZ (coswet/Sinwt) dt = 2 ftos Wsinwa Coscut dw $|t| = \pi B_1^{\dagger}$. $f(t) = \frac{1}{2} \frac{f(t-0) + f(t+0)}{2}$ $\int_{0}^{+} dw \sin w \cos w dw = \int_{-\frac{\pi}{4}}^{2} \cos t \left| t \right| \leq \pi$ f(t)= ft Sinw e jwtdw = = fto sinw (coswt+ j sinwt)dw = Z / too sin w cos we dw = 1 (+00 sin(1+t)·w + 1/2 / 100 sin(1-t) w dw 当年10万元文章(日本文章)

 $\int_{0}^{\infty} \frac{\sin \omega t}{\omega} d\omega = \pi \left(u(t) - \frac{1}{2} \right) (t \pm 0)$ U(t)为单位阶跃函数. $f(t) = \frac{1}{2}[u(t+1) + u(1-t) - 1] \cdot [t | \neq 1$ t= ±1/2/ f(t)===[f(t+0)+f(t-0)] -- fit)= (= [u(19t) + u(1-t) -1] /+/*/ f(t)== | to z[s(w+us) +s(w-us)] e Jwtdw = = = f(w+wo) ejutur+ ftoo f(wwb) = = = = = f(w+wo) ejutur = = [[+00 f(w+m,) e) (w+m,) t - just | +00 f(wm,) j(wm,) t (e-jwot + ejwot) = cos wat

$$\frac{\partial \cdot f(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{$$

$$||(1)| = ||f(t)|| =$$

习是是三、2
证明: 由 $f(t) = \frac{1}{22} \int_{-\infty}^{+\infty} F(w) e^{\int wt} dw$
-20
$f(-t) = \frac{1}{\alpha} \int_{-\infty}^{+\infty} F(w) e^{-jwt} dw$
$\mathbb{P}' \int f(w) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(t) e^{jwt} dt$
$\int (-w) = \frac{1}{12} \int_{-\infty}^{+\infty} \tilde{F}(t) e^{-jwt} dt$
$=\int_{-\infty}^{\infty} 2z f(w) = \int_{-\infty}^{+\infty} F(t) e^{jwt} dt$ $=\int_{-\infty}^{+\infty} F(t) e^{-jwt} dt$
$\frac{1}{2\pi}\int_{-\infty}^{\infty} (t \infty) = -i wt dt$
-) 25 (-W) = J_ & F(t) e at
\$ t=-k
$\frac{1}{2} t = -k$ $\Rightarrow 2z f(w) = -\int_{+\infty}^{\infty} F(-k) e^{-jwk} dk$
27 - (-w) - (-00 - (1) Jwk dh
$\int 2\lambda f(-w) = -\int_{+\infty}^{\infty} F(-k) e^{\int wk} dk$
=) 22f(w) = 5t00 F(-k) e-jwkdk
2xf(-w) = fto F(-k) ejwkdk
20
ep zzf(w)= fto F(-t) e-jwt dt
=> 27((w)= F[F(-t)]

5. $F(w) = \int_{-\infty}^{+\infty} f(t) e^{-jwt} dt$
$\frac{d}{dw}f(w) = \frac{d}{dw} \int_{-\infty}^{+\infty} f(t) e^{-jwt} dt = \int_{-\infty}^{+\infty} \frac{d}{dw} [f(t) e^{-jwt}] dt$
$=\int_{-\infty}^{+\infty} (-jt) f(t) e^{-jwt} dt$
$= \mathcal{F}[-jtf(t)]$
6. $F(-w) = \int_{-\infty}^{+\infty} f(t) e^{-j(-w)t} dt$
$=\int_{-\infty}^{+\infty}\int_{-\infty}^{$
$= \mathcal{F} \mathcal{L} f(-\tau)$
9. 江明: F[f(t)]: f(t) e -jwt dt
$= \int_{-1}^{1} e^{-j\omega t} dt = \frac{2 \sin \omega}{\omega}$
$ F[F(t)] = 2\pi f(-\omega)$ $ F[2Sinw] = 2\pi f(-\omega)$

	D TCC++
	$\mathcal{F}\left(\frac{\sin t}{t}\right) = x + (-\omega)$
	= (2 W<1) 0 (W >1)
	0 ([4] >1)
10.	3× 8+27 - W2.
10.	Exm F [A e-Bt2] = \(\frac{1}{2} \) A e 4B
	\$A=1, B=1, F[0-t]=[2.6
	\$A=1, β=1, F[e-t]=[π.
	= - T JE x - Zw. e-Z
	- : -7
	= - (\bar{\pi}) e^-\bar{\pi}
	1 Fact 1
	To sect - fortise of
	110 July 10 - = (7

11. (1) F[f(2t)]= = = = [[]
$\int [tf(zt)] = -\frac{1}{2} \frac{d}{dw} \int [f(zt)]$
= - \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}
= = = d F(\frac{w}{2})
(3) + (9(t)) = +((t-2)f(-2t))
$= \mathcal{F}(tf(-2\tau)) - 2\mathcal{F}(f(-2t))$
$= -\frac{1}{J} \frac{d}{dw} + \left[f(-x)\right] - 2 + \left[\frac{1}{-2}\right] + \left(\frac{w}{-2}\right)$
$= j \frac{1}{1+2 du } \left(\frac{w}{2}\right) - F\left(\frac{w}{2}\right)$
$=\frac{jdF(-\frac{w}{2})-F(-\frac{w}{2})}{2}$
$= \frac{1}{2} \frac{d}{dw} F(-\frac{w}{2}) - F(-\frac{w}{2})$
=> Tr. 1 Tr. (1)- 1 d Pr. 1
5) $F[g(t)] = F[tf'(t)] = \frac{1}{j} \int_{W} f[f'(t)]$
$= -\frac{1}{1}\frac{d}{dw}\left(jwF(w)\right) = -\frac{d}{dw}(wF(w))$

1 d # 1 d d
$= -\left(F(\omega) + \omega \frac{dF(\omega)}{d\omega}\right) = -F(\omega) - \omega \frac{d}{d\omega}F(\omega)$
702 D
习题 (D).
$\frac{2}{2!} \int f(t) = \left(e^{-\alpha t} (t > 0) \right)$
$f_2(t) = \left(\text{Sint } (t)0 \right)$
0 (tco)
$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(t) \cdot f_1(t-t) dt$
[T)0 = 1 T70 = 0 < Tct
(T)0 ⇒ (T)0 ⇒ o <tct< td=""></tct<>
$\frac{-1}{1+t} + \int_{0}^{t} \frac{t}{1+t} \int_{0}^{t} \frac{t}{1+t} \int_{0}^{t} \frac{t}{1+t} dt$
$= \begin{cases} t & \text{Sint } e^{-\alpha(t-\epsilon)} d\epsilon \end{cases}$
1878 +
$= \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} dt$ $= \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} dt$
- a-talt cit o dit
- dsint - costte-at
7271
(511) 3-
De Age to

3. $f_1 * f_2 = f_2 * f_1 = \int_{-\infty}^{+\infty} f_2(\epsilon) \times f_1(\epsilon)$	t-t) dt
105(5) > (0525)	
	, <u></u>
00 <t 2="" <="" pt<="" td=""><td></td></t>	
·原式= t f2(c) x f(t-c) dt	
$= \int_{0}^{t} \frac{-(t-\tau)}{\int_{0}^{t} d\tau}$	* HI
= St Sinte t-t dt	J
	3
= p-t sint et dt	+ (n)
= Sint-co>t+e-t	
- 18th = 13 fatc) " f. (t-2) dt	+ -
$= \int_{-\infty}^{\infty} \sin z e^{-(t-z)} dz$	
=+fo sint et dt	
$=\frac{1}{2}e^{-t}(\operatorname{Ir}e^{\frac{2}{t}})$	
① t cont. 原式=0,	
*****	17.

$ \frac{1}{2} \left(-\cos t + \sin t + e^{-t} \right) \cdot e^{-t} \leq \overline{z} $ $ \frac{1}{2} e^{-t} \left(\frac{1}{2} e^{-t} \right), t > \overline{z} $ $ \frac{1}{2} e^{-t} \left(\frac{1}{2} e^{-t} \right), t > \overline{z} $ $ \frac{1}{2} e^{-t} \left(\frac{1}{2} e^{-t} \right), t > \overline{z} $ $ = \int_{0}^{+\infty} \left(\frac{1}{2} e^{-t} $ $ = \int_{0}^{+\infty} \left(\frac{1}{2} e^{-t} e^{$	() () () () ()
$ \frac{1}{2} \left(-\cos t + \sin t + o^{-t} \right) \cdot o < t \le \overline{z} $ $ \frac{1}{2} e^{-t} \left(H e^{-\frac{z}{z}} \right) \cdot t > \overline{z} $ $ \frac{1}{2} e^{-t} \left(H e^{-\frac{z}{z}} \right) \cdot t > \overline{z} $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) - e^{-\beta t} \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) - e^{-\beta t} \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) - e^{-\beta t} \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v \cdot t dt $ $ = \int_{0}^{+\infty} \left(\beta t + jwt \right) + \cos \omega v $:- (3 x. f, 165 = 1 0 , t = 0
5. (3) $ \begin{aligned} & f(t) = \int_{e^{j\omega}}^{tod} e^{-\beta t} & \text{os } \omega_{st} \cdot \omega_{t} \\ & = \int_{-\infty}^{t\infty} \left(\frac{\beta t + j\omega_{t}}{\omega_{s}} \right) & \text{os } \omega_{st} dt \\ & = \int_{0}^{t\infty} e^{-\left(\frac{\beta t + j\omega_{t}}{\omega_{s}} \right) t} \cos \omega_{st} dt \\ & = \int_{0}^{t} e^{-\left(\frac{\beta t + j\omega_{t}}{\omega_{s}} \right) t} \cos \omega_{st} dt \\ & = \int_{0}^{t} e^{-\left(\frac{\beta t + j\omega_{t}}{\omega_{s}} \right) t} \cos \omega_{st} dt \\ & = \int_{0}^{t} e^{-\left(\frac{\beta t + j\omega_{t}}{\omega_{s}} \right) t} \cos \omega_{st} dt \\ & = \int_{0}^{t} \frac{d}{d\omega_{s}} \left(\frac{1}{j\omega_{s}} + z \int_{0}^{t} (\omega_{s}) \right) \\ & = \int_{0}^{t} \frac{d}{d\omega_{s}} \left(\frac{1}{j\omega_{s}} + z \int_{0}^{t} (\omega_{s}) \right) \\ & = -\frac{1}{j\omega_{s}} \frac{d}{d\omega_{s}} \left(\frac{1}{j\omega_{s}} + z \int_{0}^{t} (\omega_{s}) \right) \end{aligned} $	$\pm \left(-\cos t + \sin t + o^{-t}\right), 0 < t \leq \overline{z}$
5. (3) $ \int [f(t)] = \int_{e^{j\omega t}}^{t} e^{-\beta t} \cos \omega t \cdot \omega t dt $ $ = \int_{0}^{t} e^{-(\beta t + j\omega t)} \cos \omega t dt $ $ = $	10-t(1+03), +>5
$= \int_{-\infty}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jw\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) $	
$= \int_{-\infty}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) \\ = \int_{0}^{+\infty} \left(\beta t + jw\right) \\ = \int_{0}^{+\infty} \left(\beta t + jwt\right) $	5. (3) F[f(t)] = [tox - ft]
$= \int_{0}^{+\infty} \frac{(\beta t + j\omega t)}{(cos\omega t)} dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos \omega t dt$ $= \int_{0}^{+\infty} e^{-(\beta t + j\omega)t} \cos $	Jejule cos wat wer of
$= \int_{0}^{+\infty} e^{-(\beta+j\omega)t} \cos \omega dt$ $= \int_{0}^{+j\omega} \frac{e^{-(\beta+j\omega)t} \cos \omega dt}{(\beta+j\omega)^{2}+\omega_{0}^{2}}$ $= \int_{0}^{+\infty} e^{-(\beta+j\omega)t} \cos \omega dt$ $= \int_{0}^{+\infty} e^{-(\beta+j\omega)$	-00
$= \int_{0}^{+\infty} e^{-(\beta+j\omega)t} \cos \omega dt$ $= \int_{0}^{+j\omega} \frac{e^{-(\beta+j\omega)t} \cos \omega dt}{(\beta+j\omega)^{2}+\omega_{0}^{2}}$ $= \int_{0}^{+\infty} e^{-(\beta+j\omega)t} \cos \omega dt$ $= \int_{0}^{+\infty} e^{-(\beta+j\omega)$	P (Stylut)
$ \frac{-\frac{\beta+j\omega}{(\beta+j\omega)^{2}+\omega^{2}}}{(\beta+j\omega)^{2}+\omega^{2}} $ $ (5) $	10 0
$ \frac{-\frac{\beta+j\omega}{(\beta+j\omega)^{2}+\omega_{0}^{2}}}{(\beta+j\omega)^{2}+\omega_{0}^{2}} $ $ (5) $	= fr coswotdt
(5) $ \begin{aligned} & = \int_{-\infty}^{+\infty} e^{j\omega t} u(t-t_0) \cdot e^{-j\omega t} dt \\ & = \int_{-\infty}^{+\infty} e^{j(\omega_0-\omega)t} dt \\ & = e^{-j(\omega-\omega)t_0} \left[\frac{1}{j(\omega-\omega)} + z \int_{-\infty}^{\infty} (\omega-\omega) \right] \\ & = \int_{-\infty}^{+\infty} \frac{d}{d\omega} + \left[u(t) \right] \\ & = -\frac{1}{j} \frac{d}{d\omega} \left(\frac{1}{j\omega} + z \int_{-\infty}^{\infty} (\omega) \right) \end{aligned} $	
(5) $ \begin{aligned} & = \int_{-\infty}^{+\infty} e^{j\omega t} u(t-t_0) \cdot e^{-j\omega t} dt \\ & = \int_{-\infty}^{+\infty} e^{j(\omega_0-\omega)t} dt \\ & = e^{-j(\omega-\omega)t_0} \left[\frac{1}{j(\omega-\omega)} + z \int_{-\infty}^{\infty} (\omega-\omega) \right] \\ & = \int_{-\infty}^{+\infty} \frac{d}{d\omega} + \left[u(t) \right] \\ & = -\frac{1}{j} \frac{d}{d\omega} \left(\frac{1}{j\omega} + z \int_{-\infty}^{\infty} (\omega) \right) \end{aligned} $	- B+jw
$= \int_{t_0}^{+\infty} j(\omega_0 - \omega)t dt$ $= e^{-j(\omega - \omega)t_0} \left[\frac{1}{j(\omega - \omega)} + z \int_{t_0}^{t_0} (\omega - \omega_0) \right]$ $= -\frac{1}{j} \frac{d}{d\omega} \int_{t_0}^{t_0} [u(t)]$ $= -\frac{1}{j} \frac{d}{d\omega} \left(\frac{1}{j\omega} + z \int_{t_0}^{t_0} (\omega) \right)$	
$= \int_{t_0}^{+\infty} j(\omega_0 - \omega)t dt$ $= e^{-j(\omega - \omega)t_0} \left[\frac{1}{j(\omega - \omega)} + z \int_{t_0}^{t_0} (\omega - \omega_0) \right]$ $= -\frac{1}{j} \frac{d}{d\omega} \int_{t_0}^{t_0} [u(t)]$ $= -\frac{1}{j} \frac{d}{d\omega} \left(\frac{1}{j\omega} + z \int_{t_0}^{t_0} (\omega) \right)$	(5) I [[w] = too just 1 = just 1=
$= e^{-jw-\omega}e^{-j\omega} + z \int (w-\omega)$ $= -\frac{i}{j} \frac{d}{dw} + [w(t)]$ $= -\frac{i}{j} \frac{d}{dw} \left(\frac{1}{jw} + z \int (w) \right)$	() () () () () () () () () ()
$= e^{-jw-\omega}e^{-j\omega} + z \int (w-\omega)$ $= -\frac{i}{j} \frac{d}{dw} + [w(t)]$ $= -\frac{i}{j} \frac{d}{dw} \left(\frac{1}{jw} + z \int (w) \right)$	2/ 1 - W)4
$= e^{-j\omega-\omega}e^{-j\omega} + z \int (\omega - \omega_0)$ $= -\frac{i}{j} \frac{d}{d\omega} + [\omega(z)]$ $= -\frac{i}{j} \frac{d}{d\omega} \left(\frac{1}{j\omega} + z \int (\omega) \right)$	= (*\infty)(\infty = \infty) \dt
$= -\frac{1}{j} \frac{d}{dw} \left(\frac{1}{jw} + z \int_{-\infty}^{\infty} (w) \right)$	to
$= -\frac{1}{j} \frac{d}{dw} \left(\frac{1}{jw} + z \int_{-\infty}^{\infty} (w) \right)$	= e-ju-wolfo / - + x s(w-wo)]
$=-\frac{1}{j}\frac{d}{dw}\left(\frac{1}{jw}+z\int(w)\right)$	16) F[+41+2] d + [44)
$=-\frac{1}{j}\frac{d}{dw}\left(\frac{1}{jw}+z\int(w)\right)$	jaw f (MA)
	= - j dw jw + z f (~))
= - W2 + 2) f'(w)	V
	= - w2 + 2) f'(w)

