Column-Oriented Database Systems

VLDB 2009 Tutorial

Part 1: Stavros Harizopoulos (HP Labs)

Part 2: Daniel Abadi (Yale)

Part 3: Peter Boncz (CWI)

What is a column-store?

row-store

column-store

- + easy to add/modify a record
- + only need to read in relevant data
- might read in unnecessary data
- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Are these two fundamentally different?

- The only fundamental difference is the storage layout
- However: we need to look at the big picture

How did we get here, and where we are heading

How do we improve CPU efficiency when operating on Cs

Part 2

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Telco Data Warehousing example

Typical DW installation

Real-world example

"One Size Fits All? - Part 2: Benchmarking Results" Stonebraker et al. CIDR 2007

QUERY 2

SELECT account.account_number,
sum (usage.toll_airtime),
sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in ('AE'. 'AA')
AND usage.toll_price > 0
AND source.type != 'CIBER'
AND toll.rating_method = 'IS'
AND usage.invoice_date = 20051013

GROUP BY account.account number

	Column-store	Row-store
Query 1	2.06	300
Query 2	2.20	300
Query 3	0.09	300
Query 4	5.24	300
Query 5	2.88	300

Why? Three main factors (next slides)

Telco example explained (1/3): read efficiency

row store

read pages containing entire rows

one row = 212 columns!

is this typical? (it depends)

What about vertical partitioning? (it does not work with ad-hoc aueries)

read only columns needed

in this example: 7 columns

caveats:

- "select * " not any faster
- clever disk prefetching
- clever tuple reconstruction

Telco example explained (2/3): compression efficiency

- Columns compress better than rows
 - Typical row-store compression ratio 1:3
 - Column-store 1 : 10

」 Why?

- Rows contain values from different domains=> more entropy, difficult to dense-pack
- Columns exhibit significantly less entropy
- Examples:

Male, Female, Female, Male 1998, 1998, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

Telco example explained (3/3): sorting & indexing efficiency

- Compression and dense-packing free up space
 - Use multiple overlapping column collections
 - Sorted columns compress better
 - Range queries are faster
 - Use sparse clustered indexes

What about heavily-indexed row-stores? (works well for single column access, cross-column joins become increasingly expensive)

Additional opportunities for column-stores

- Block-tuple / vectorized processing
 - Easier to build block-tuple operators
 - 1 Amortizes function-call cost, improves CPU cache performance
 - Easier to apply vectorized primitives
 - Software-based: bitwise operations
 - Hardware-based: SIMD

Part 3

- Opportunities with compressed columns
 - Avoid decompression: operate directly on compressed
 - Delay decompression (and tuple reconstruction)
 - Also known as: late materialization
- Exploit columnar storage in other DBMS components
 - Physical design (both static and dynamic)

See: *Database Cracking*, from CWI

more

in Part 2

Effect on C-Store performance

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Hachem, and Madden. SIGMOD 2008.

Summary of column-store key features

Storage layout

columnar storage

header/ID elimination

compression

Part 1

Part 1

multiple sort orders

Execution engine

column operators

Part 1

Part 2

avoid decompression

Part 2

late materialization

vectorized operations

Part 3

Design tools, optimizer

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- 1 Part 2: Column-oriented execution Daniel
- 1 Part 3: MonetDB/X100 and CPU efficiency Peter

From DSM to Column-stores

70s -1985:

TOD: Time Oriented Database – Wiederhold et al. "A Modular, Self-Describing Clinical Databank System," Computers and Biomedical Research, 1975 More 1970s: Transposed files, Lorie, Batory,

"An overview of cantor: a new system for data analysis" Karasalo, Svensson, SSDBM 1983

1985: DSM paper "A decomposition storage model" Copeland and Khoshafian. SIGMOD 1985.

1990s: Commercialization through SybaselQ

Late 90s – 2000s: Focus on main-memory performance

DSM "on steroids" [1997 – now] CWI: MonetDB

Hybrid DSM/NSM [2001 – 2004] Wisconsin: PAX, Fractured Mirrors

Michigan: Data Morphing CMU: Clotho

2005 – : Re-birth of read-optimized DSM as "column-store"

MIT: C-Store

CWI: MonetDB/X100

10+ startups

The original DSM paper

"A decomposition storage model" Copeland and Khoshafian. SIGMOD 1985.

- Proposed as an alternative to NSM
- 2 indexes: clustered on ID, non-clustered on value
- Speeds up queries projecting few columns
- Requires more storage

Memory wall and PAX

90s: Cache-conscious research

from:

"Cache Conscious Algorithms for Relational Query Processing." Shatdal, Kant, Naughton. VLDB 1994.

"Database Architecture Optimized for to: the New Bottleneck: Memory Access." Boncz, Manegold, Kersten. VLDB 1999. and:

"DBMSs on a modern processor: Where does time go?" Ailamaki, DeWitt, Hill, Wood. VLDB 1999.

PAGE HEADER

PAX PAGE

- 3859 | 5523
- "Weaving Relations for Cache Performance." Ailamaki, DeWitt, Hill, Skounakis, VLDB 2001.

- Retains NSM I/O pattern
- Optimizes cache-to-RAM communication

0962 7658

More hybrid NSM/DSM schemes

Dynamic PAX: Data Morphing

"Data morphing: an adaptive, cache-conscious storage technique." Hankins, Patel, VLDB 2003.

Clotho: custom layout using scatter-gather I/O

"Clotho: Decoupling Memory Page Layout from Storage Organization." Shao, Schindler, Schlosser, Ailamaki, and Ganger. VLDB 2004.

- Fractured mirrors
 - Smart mirroring with both NSM/DSM copies

"A Case For Fractured Mirrors." Ramamurthy, DeWitt, Su, VLDB 2002.

MonetDB (more in Part 3)

- Late 1990s, CWI: Boncz, Manegold, and Kersten
- Motivation:
 - Main-memory
 - Improve computational efficiency by avoiding expression interpreter
 - DSM with virtual IDs natural choice
 - Developed new query execution algebra
- Initial contributions:
 - Pointed out memory-wall in DBMSs
 - Cache-conscious projections and joins
 - 1 ...

2005: the (re)birth of column-stores

- New hardware and application realities
 - Faster CPUs, larger memories, disk bandwidth limit
 - Multi-terabyte Data Warehouses
- New approach: combine several techniques
 - Read-optimized, fast multi-column access, disk/CPU efficiency, light-weight compression
- C-store paper:
 - 1 First comprehensive design description of a column-store
- MonetDB/X100
 - 1 "proper" disk-based column store
- Explosion of new products

Performance tradeoffs: columns vs. rows

DSM traditionally was not favored by technology trends How has this changed?

- Optimized DSM in "Fractured Mirrors," 2002
- "Apples-to-apples" comparison

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB'06

Follow-up study

"Read-Optimized Databases, In-Depth" Holloway, DeWitt, VLDB'08

Main-memory DSM vs. NSM

"DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing" Boncz, Zukowski, Nes, DaMoN'08

Flash-disks: a come-back for PAX?

"Fast Scans and Joins Using Flash Drives" Shah, Harizopoulos, Wiener, Graefe. DaMoN'08 "Query Processing Techniques for Solid State Drives" Tsirogiannis, Harizopoulos, Shah, Wiener, Graefe,

1-Oriented Databa

SICMOD'00

Fractured mirrors: a closer look

- Store DSM relations inside a B-tree
 - Leaf nodes contain values

"A Case For Fractured Mirrors" Ramamurthy, DeWitt, Su, VLDB 2002.

- Eliminate IDs, amortize header overhead
- Custom implementation on Shore

Tuple Header	TID	Column Data
	1	a1
	2	a2
	3	a3
	4	a4
	5	a5

Similar: storage density comparable to column stores

"Efficient columnar storage in B-trees" Graefe. Sigmod Record 03/2007.

Fractured mirrors: performance

From PAX paper:

- Read in segments of M pages
- Merge segments in memory
- Becomes CPU-bound after 5 pages

Re-use permitted when acknowledging the original © Stavros Harizopoul

Column-scanner implementation

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB'06

row scanner

column scanner

Scan performance

- Large prefetch hides disk seeks in columns
- Column-CPU efficiency with lower selectivity
- 1 Row-CPU suffers from memory stalls
- Memory stalls disappear in narrow tuples
- Compression: similar to narrow

__ not shown, details in the paper

Even more results

- Same engine as before
- Additional findings

"Read-Optimized Databases, In-Depth" Holloway, DeWitt, VLDB'08

Non-selective queries, narrow tuples, favor well-compressed rows

Materialized views are a win

Scan times determine early materialized joins

Column-joins are covered in part 2!

Speedup of columns over rows

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB'06

- Rows favored by narrow tuples and low cpdb
 - Disk-bound workloads have higher cpdb

Varying prefetch size

No prefetching hurts columns in single scans

Varying prefetch size

- No prefetching hurts columns in single scans
- Under competing traffic, columns outperform rows for any prefetch size

"DSM vs. NSM: CPU performance trade CPU Performance offs in block-oriented query processing" Boncz, Zukowski, Nes, DaMoN'08

- Benefit in on-the-fly conversion between NSM and DSM
- DSM: sequential access (block fits in L2), random in L1
- NSM: random access, SIMD for grouped Aggregation

Figure 5: TPC-H Q1, with a varying number of keys and different data organizations (ht – hash table)

New storage technology: Flash SSDs

- Performance characteristics
 - very fast random reads, slow random writes fast sequential reads and writes
- Price per bit (capacity follows)
 - cheaper than RAM, order of magnitude more expensive than Disk
- Flash Translation Layer introduces unpredictability
 - avoid random writes!
- Form factors not ideal yet
 - SSD (Ł small reads still suffer from SATA overhead/OS limitations)
 - PCI card (Ł high price, limited expandability)
- Boost Sequential I/O in a simple package
 - Flash RAID: very tight bandwidth/cm³ packing (4GB/sec inside the box)
- Column Store Updates
 - useful for delta structures and logs
- Random I/O on flash fixes unclustered index access
 - still suboptimal if I/O block size > record size
 - therefore column stores profit mush less than horizontal stores
- Random I/O useful to exploit secondary, tertiary table orderings
 - the larger the data, the deeper clustering one can exploit

Even faster column scans on flash SSDs

New-generation SSDs

30K Read IOps, 3K Write Iops 250MB/s Read BW, 200MB/s Write

- Very fast random reads, slower random writes
- Fast sequential RW, comparable to HDD arrays
- No expensive seeks across columns
- FlashScan and Flashjoin: PAX on SSDs, inside Postgres

Column-scan performance over time

optimized DSM (2002)

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs

 Column-store architecture overview
 - Will rows and columns ever converge?
- 1 Part 2: Column-oriented execution Daniel
- 1 Part 3: MonetDB/X100 and CPU efficiency Peter

Architecture of a column-store

storage layout

- read-optimized: dense-packed, compressed
- organize in extends, batch updates
- multiple sort orders
- sparse indexes

engine

- block-tuple operators
- new access methods
 - optimized relational operators

system-level

- system-wide column support
- loading / updates
- scaling through multiple nodes
- transactions / redundancy

C-Store

"C-Store: A Column-Oriented DBMS." Stonebraker et al. VLDB 2005.

- Compress columns
- No alignment
- Big disk blocks
- Only materialized views (perhaps many)
- Focus on Sorting not indexing
- Data ordered on anything, not just time
- Automatic physical DBMS design
- Optimize for grid computing
- Innovative redundancy
- Xacts but no need for Mohan
- Column optimizer and executor

C-Store: only materialized views (MVs)

- Projection (MV) is some number of columns from a fact table
- Plus columns in a dimension table with a 1-n join between Fact and Dimension table
- Stored in order of a storage key(s)
- Several may be stored!
- With a permutation, if necessary, to map between them
- Table (as the user specified it and sees it) is not stored!
- No secondary indexes (they are a one column sorted MV plus a permutation, if you really want one)

User view:

EMP (name, age, salary, dept)
Dept (dname, floor)

Possible set of MVs:

MV-1 (name, dept, floor) in floor order

MV-2 (salary, age) in age order

MV-3 (dname, salary, name) in salary order

Continuous Load and Query (Vertica)

Hybrid Storage Architecture

> Write Optimized Store (WOS)

TUPLE MOVER
Asynchronous
Data Transfer

- § Memory based
- S Unsorted / Uncompressed
- **Segmented**
- SLow latency / Small quick inserts

- > Read Optimized Store (ROS)
 - On disk
 - Sorted / Compressed
 - Segmented
 - Large data loaded direct

Loading Data (Vertica)

- > INSERT, UPDATE, DELETE
- > Bulk and Trickle Loads

SCOPY

SCOPY DIRECT

- > User loads data into logical Tables
- > Vertica loads atomically into storage

Write-Optimized Store (WOS)

In-memory

Automatic Tuple Mover

Read-Optimized Store (ROS) On-disk

Applications for column-stores

- Data Warehousing
 - High end (clustering)
 - Mid end/Mass Market
 - Personal Analytics
- Data Mining
 - 1 E.g. Proximity
- Google BigTable
- 1 RDF
 - Semantic web data management
- Information retrieval
 - Terabyte TREC
- Scientific datasets
 - SciDB initiative
 - SLOAN Digital Sky Survey on MonetDB

List of column-store systems

- Cantor (history)
- Sybase IQ
- SenSage (former Addamark Technologies)
- 1 Kdb
- 1 1010data
- 1 MonetDB
- C-Store/Vertica
- X100/VectorWise
- 1 KickFire
- SAP Business Accelerator
- 1 Infobright
- ParAccel
- Exasol

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 Will rows and columns ever converge?
- 1 Part 2: Column-oriented execution Daniel
- 1 Part 3: MonetDB/X100 and CPU efficiency Peter

Simulate a Column-Store inside a Row-Store

Date	Store	Product	Customer	Price
01/01	BOS	Table	Mesa	\$20
01/01	NYC	Chair	Lutz	\$13
01/01	BOS	Bed	Mudd	\$79

Option A: Vertical Partitioning

Date		S	tore	Pr
TID	Value	TID	Value	TID
1	01/01	1	BOS	1
2	01/01	2	NYC	2
3	01/01	3	BOS	3

Pı	roduct	oduct Customer			Price		
ΊD	Value		TID	Value	TID	Value	
1	Table		1	Mesa	1	\$20	
2	Chair		2	Lutz	2	\$13	
3	Bed		3	Mudd	3	\$79	

Option B: Index Every Column

Simulate a Column-Store inside a Row-Store

Date	Store	Product	Customer	Price
01/01	BOS	Table	Mesa	\$20
01/01	NYC	Chair	Lutz	\$13
01/01	BOS	Bed	Mudd	\$79

Option A: Vertical Partitioning

Date				
Value	StartPos	Length		
01/01	1	3		

Can explicitly runlength encode date

"Teaching an Old Elephant New Tricks." Bruno, CIDR 2009.

S	tore	Product		Product Customer		Price	
TID	Value	TID	Value	TID	Value	TID	Value
1	BOS	1	Table	1	Mesa	1	\$20
2	NYC	2	Chair	2	Lutz	2	\$13
2	DOC.	2	Dod	2	Mudal	3	Ф 70

Option B: Index Every Column

Experiments

Star Schema Benchmark (SSBM)

Adjoined Dimension Column Index (ADC Index) to Improve Star Schema Query Performance". O'Neil et. al. ICDE 2008.

- Implemented by professional DBA
- Original row-store plus 2 column-store simulations on same row-store product

What's Going On? Vertical Partitions

- Vertical partitions in row-stores:
 - Work well when workload is known
 - ..and queries access disjoint sets of columns
 - See automated physical design
- Do not work well as full-columns
 - TupleID overhead significant
 - Excessive joins

l uple Header	טוו	Data
	1	
	2	
	3	

"Column-Stores vs. Row-Stores: How Different Are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008. Queries touch 3-4 foreign keys in fact table, 1-2 numeric columns

Complete fact table takes up ~4 GB (compressed)

Vertically partitioned tables take up 0.7-1.1 GB (compressed)

What's Going On? All Indexes Case

- 1 Tuple construction
 - Common type of query:

SELECT store_name, SUM(revenue)
FROM Facts, Stores
WHERE fact.store_id = stores.store_id
 AND stores.country = "Canada"
GROUP BY store_name

- Result of lower part of query plan is a set of TIDs that passed all predicates
- Need to extract SELECT attributes at these TIDs
 - BUT: index maps value to TID
 - 1 You really want to map TID to value (i.e., a vertical partition)
 - Tuple construction is SLOW

So....

- All indexes approach is a poor way to simulate a column-store
- Problems with vertical partitioning are NOT fundamental
 - Store tuple header in a separate partition
 - Allow virtual TIDs
 - Combine clustered indexes, vertical partitioning
- So can row-stores simulate column-stores?
 - Might be possible, BUT:
 - Need better support for vertical partitioning at the storage layer
 - Need support for column-specific optimizations at the executer level
 - Full integration: buffer pool, transaction manager, ...
 - When will this happen?
 - Most promising features = soon

See Part 2, Part 3 for most promising features

 ..unless new technology / new objectives change the game (SSDs, Massively Parallel Platforms, Energy-efficiency)

End of Part 1

- Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Part 2 Outline

- 1 Compression
- Tuple Materialization
- 1 Joins

Column-Oriented Database Systems

VLDB 2009 Tutorial

Compression

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE'06

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi, Madden, and Ferreira, SIGMOD '06

•Query optimization in compressed database systems" Chen, Gehrke, Korn, SIGMOD'01

Compression

- Trades I/O for CPU
- Increased column-store opportunities:
 - Higher data value locality in column stores
 - Techniques such as run length encoding far more useful
 - Can use extra space to store multiple copies of data in different sort orders

Run-length Encoding

Quarter	Product ID	Price	Quarter	Product ID	Price
Q1	1	5	(value, start_pos, run_length)	(value, start_pos, run_lenç	
Q1	1	7	(Q1, 1, 300)	(1, 1, 5)	5
Q1	1	2	(Q2, 301, 350)	(2, 6, 2)	7
Q1	1	9	(QZ, 301, 330)	•••	2
Q1	1	6	(Q3, 651, 500)	(1, 301, 3)	9
Q1	2	8	(Q4, 1151, 600)	(2, 304, 1)	6
Q1	2	5	(4, 1101, 000)	(2, 004, 1)	8 5
•••	•••	•••		•••	
Q2	1	3			
Q2	1	8			3
Q2	1	1			8
Q2	2	4			1
QZ		-			1

Bit-vector Encoding

- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once

Frame Of Reference Encoding

- Encodes values as b bit offset from chosen frame of reference
- Special escape code (e.g. all bits set to 1) indicates
 a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written

"Compressing Relations and Indexes "Goldstein, Ramakrishnan, Shaft, ICDE'98

Differential Encoding

- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - 1 timestamps
 - object IDs
 - sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE'06

What Compression Scheme To Use?

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE'06

Heavy-Weight Compression Schemes

Algorithm	Decompression Bandwidth
BZIP	10 MB/s
ZLIB	80 MB/s
LZO	300 MB/s

- Modern disk arrays can achieve > 1GB/s
- 1/3 CPU for decompression Ł 3GB/s needed
- Lightweight compression schemes are better
- Even better: operate directly on compressed data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

- I/O CPU tradeoff is no longer a tradeoff
- 1 Reduces memory-CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

Column-Oriented Database Systems

VLDB 2009 Tutorial

Tuple Materialization and Column-Oriented Join Algorithms

"Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

"Self-organizing tuple reconstruction in column-stores", Idreos, Manegold, Kersten, SIGMOD'09

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008. "Query Processing Techniques for Solid State Drives" Tsirogiannis, Harizopoulos Shah, Wiener, and Graefe, SIGMOD 2009.

"Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB'04

When should columns be projected?

- Where should column projection operators be placed in a query plan?
 - Row-store:
 - Column projection involves removing unneeded columns from tuples
 - Generally done as early as possible
 - Column-store:
 - Operation is almost completely opposite from a row-store
 - Column projection involves reading needed columns from storage and extracting values for a listed set of tuples
 - S This process is called "materialization"
 - Early materialization: project columns at beginning of query plan
 - **Second Straightforward since there is a one-to-one mapping across columns**
 - Late materialization: wait as long as possible for projecting columns
 - More complicated since selection and join operators on one column obfuscates mapping to other columns from same table
 - Most column-stores construct tuples and column projection time
 - Many database interfaces expect output in regular tuples (rows)
 - Rest of discussion will focus on this case

When should tuples be constructed?

custID

price

QUERY:

SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

- Solution 1: Create rows first (EM). But:
 - Need to construct ALL tuples
 - Need to decompress data
 - Poor memory bandwidth utilization

storeID

prodID

QUERY:

SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

QUERY:

SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

SELECT custID,SUM(price) FROM table WHERE (prodID = 4) AND (storeID = 1) AND GROUP BY custID

QUERY:

"Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

For plans without joins, late materialization is a win

QUERY:

SELECT C_1 , SUM(C_2)
FROM table
WHERE (C_1 < CONST) AND
(C_2 < CONST)
GROUP BY \mathbf{C}_1

Ran on 2 compressed columns from TPC-H scale 10 data

"Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

Even on uncompressed data, late materialization is still a win

QUERY: SELECT C_1 , SUM(C_2) FROM table WHERE (C_1 < CONST) AND

 $(C_2 < CONST)$

GROUP BY C₁

Materializing late still works best

What about for plans with joins?

70

What about for plans with joins?

71

Early Materialization Example

Early Materialization Example

QUERY:

SELECT C.lastName,SUM(F.price)
FROM facts AS F, customers AS C
WHERE F.custID = C.custID
GROUP BY C.lastName

Late Materialization Example

Late Materialized Join Performance

- Naïve LM join about 2X slower than EM join on typical queries (due to random I/O)
 - This number is very dependent on
 - 1 Amount of memory available
 - Number of projected attributes
 - Join cardinality
- But we can do better
 - Invisible Join
 - Jive/Flash Join
 - Radix cluster/decluster join

Invisible Join

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

- Designed for typical joins when data is modeled using a star schema
 - One ("fact") table is joined with multiple dimension tables
- Typical query:

```
select c_nation, s_nation, d_year,
    sum(lo_revenue) as revenue
from customer, lineorder, supplier, date
where lo_custkey = c_custkey
    and lo_suppkey = s_suppkey
    and lo_orderdate = d_datekey
    and c_region = 'ASIA'
    and s_region = 'ASIA'
    and d_year >= 1992 and d_year <= 1997
group by c_nation, s_nation, d_year
order by d_year asc, revenue desc;
```


Invisible Join

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

Apply "region = 'Asia'" On Customer Table

custkey	region	nation	
1	ASIA	CHINA	
2	ASIA	INDIA	
3	ASIA	INDIA	
4	EUROPE	FRANCE	•••

Hash Table (or bit-map)
Containing Keys 1, 2 and 3

Apply "region = 'Asia" On Supplier Table

suppkey	region	nation	
1	ASIA	RUSSIA	
2	EUROPE	SPAIN	
3	ASIA	JAPAN	

Hash Table (or bit-map) Containing Keys 1, 3

Apply "year in [1992,1997]" On Date Table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash Table Containing Keys 01011997, 01021997, and 01031997

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Original Fact Table "Column-Stores vs Row-Stores: custkey suppkey orderdate revenue orderkey How Different are They Really?" Abadint. al. SICMOD 2008. **Hash Table Hash Table Hash Table Containing Containing Containing** Keys 01011997, **Keys 1, 2 and 3** Keys 1 and 3 01021997, and 01031997 orderdate custkey suppkey

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

Invisible Join

Apply "region = 'Asia'" On Customer Table

custkey	region	nation	
1	ASIA	CHINA	
2	ASIA	INDIA	
3	ASIA	INDIA	
4	EUROPE	FRANCE	•••

Range [1-3] (between-predicate rewriting)

Apply "region = 'Asia'" On Supplier Table

suppkey	region	nation	
1	ASIA	RUSSIA	
2	EUROPE	SPAIN	
3	ASIA	JAPAN	

Hash Table (or bit-map)
Containing Keys 1, 3

Apply "year in [1992,1997]" On Date Table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash Table Containing Keys 01011997, 01021997, and 01031997

Invisible Join

Bottom Line

- Many data warehouses model data using star/snowflake schemes
- Joins of one (fact) table with many dimension tables is common
- Invisible join takes advantage of this by making sure that the table that can be accessed in position order is the fact table for each join
- Position lists from the fact table are then intersected (in position order)
- This reduces the amount of data that must be accessed out of order from the dimension tables
- "Between-predicate rewriting" trick not relevant for this discussion

Jive/Flash Join

"Fast Joins using Join Indices". Li and Ross, VLDBJ 8:1-24, 1999.

CHINA
INDIA
INDIA
FRANCE

Still accessing table out of order

"Query Processing Techniques for Solid State Drives". Tsirogiannis, Harizopoulos et. al. SIGMOD 2009.

Jive/Flash Join

- Add column with dense ascending integers from 1
- Sort new position list by second column
- 3. Probe projected column in order using new sorted position list, keeping first column from position list around
- Sort new result by first column

Jive/Flash Join

Bottom Line

- Instead of probing projected columns from inner table out of order:
 - Sort join index
 - Probe projected columns in order
 - Sort result using an added column
- **LM vs EM tradeoffs:**
 - LM has the extra sorts (EM accesses all columns in order)
 - LM only has to fit join columns into memory (EM needs join columns and all projected columns)
 - Results in big memory and CPU savings (see part 3 for why there is CPU savings)
 - LM only has to materialize relevant columns
 - In many cases LM advantages outweigh disadvantages
- LM would be a clear winner if not for those pesky sorts ... can we do better?

Radix Cluster/Decluster

- The full sort from the Jive join is actually overkill
 - We just want to access the storage blocks in order (we don't mind random access within a block)
 - So do a radix sort and stop early
 - By stopping early, data within each block is accessed out of order, but in the order specified in the original join index
 - Use this pseudo-order to accelerate the post-probe sort as well
 - "Database Architecture Optimized for the New Bottleneck: Memory Access" VLDB'99
 - •"Generic Database Cost Models for Hierarchical Memory Systems", VLDB'02 (all Manegold, Boncz, Kersten)

"Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB'04

Radix Cluster/Decluster

Bottom line

- Both sorts from the Jive join can be significantly reduced in overhead
- Only been tested when there is sufficient memory for the entire join index to be stored three times
 - Technique is likely applicable to larger join indexes, but utility will go down a little
- Only works if random access within a storage block
 - Don't want to use radix cluster/decluster if you have variablewidth column values or compression schemes that can only be decompressed starting from the beginning of the block

LM vs EM joins

- Invisible, Jive, Flash, Cluster, Decluster techniques contain a bag of tricks to improve LM joins
- Research papers show that LM joins become 2X faster than EM joins (instead of 2X slower) for a wide array of query types

Tuple Construction Heuristics

- For queries with selective predicates, aggregations, or compressed data, use late materialization
- For joins:
 - 1 Research papers:
 - Always use late materialization
 - **1 Commercial systems:**
 - Inner table to a join often materialized before join (reduces system complexity):
 - Some systems will use LM only if columns from inner table can fit entirely in memory

Outline

- Computational Efficiency of DB on modern hardware
 - how column-stores can help here
 - Keynote revisited: MonetDB & VectorWise in more depth
- CPU efficient column compression
 - vectorized decompression
- 1 Conclusions
 - future work

Column-Oriented Database Systems

VLDB 2009 Tutorial

40 years of hardware evolution

VS.

DBMS computational efficiency

CPU Architecture

Elements:

- Storage
 - 1 CPU caches L1/L2/L3
- 1 Registers
- Execution Unit(s)
 - Pipelined
 - 1 SIMD

CPU Metrics

Processor	16-bit	32
	address/,	add
	bus,	b
	micro-	$_{ m mi}$
	coded	co
Product	80286	80
Year	1982	19
Transistors	134	2
(thousands)		
Latency	6	
(clocks)		
Bus width	16	
(bits)		
Clock rate	12.5	1
(MHz)		
Bandwidth	2	
(MIPS)		
Latency	320	3
(ns)		

CPU Metrics

Processor	16-bit	32-bit	5-stage	2-way	Out-of-	Out-of-order,	Multi-core
	address/,	address/	pipeline,	super-	order,	super-	
	bus,	bus,	on-chip	scalar,	3-way	pipelined,	
	micro-	micro-	I&D caches	64-bit bus	super-	on-chip	
	coded	coded	FPU		$_{ m scalar}$	L2 cache	
Product	80286	80386	80486	Pentium	PentiumPro	Pentium4	CoreDuo
Year	1982	1985	1989	1993	1997	2001	2006
Transistors	134	275	1,200	3,100	5,500	42,000	151,600
(thousands)							
Latency	6	5	5	5	10	22	12
(clocks)							
Bus width	16	32	32	64	64	64	64
(bits)							
Clock rate	12.5	16	25	66	200	1500	2333
(MHz)							
Bandwidth	2	6	25	132	600	4500	21000
(MIPS)							
Latency	320	313	200	76	50	15	5
(ns)							

DRAM Metrics

Super-Scalar Execution (pipelining)

Hazards

1 Data hazards	Control Hazards
Dependencies between instructions	Branch mispredictions
1 L1 data cache misses	Computed branches (late binding)
	L1 instruction cache misses

Result: bubbles in the pipeline

	Flushed instructions												
Instruction fetch	IF-1	IF-2	IF-3	IF-4	IF-5	IF-6	<i>\$\$\\\\\\</i>	XF//8//	S//Y/	IF-7			
		15 4	ID 0	ID 0	15 4	IB 5	IB 6	//////		•	ID 7	<u>'</u>	
Instruction decode	• • • •	ID-1	ID-2	ID-3	ID-4	ID-5	ID-6	<i>1971111</i>	30/8 /		ID-7		• • • •
	<u> </u>	<u> </u>		->-					///////			->-	-
Execute	• • • •	• • • •	EX-1	EX-2	EX-3	EX-4	EX-5	EX-6	EX /1/			EX-7	• • • •
		1		ı	l	<u> </u>	ı						
Write back				WB-1	WB-2	WB-3	WB-4	WB-5	WB-6				WB-7
												l	

Out-of-order execution addresses data hazards

control hazards typically more expensive

- Single Instruction Multiple Data
 - Same operation applied on a vector of values
 - MMX: 64 bits, SSE: 128bits, AVX: 256bits
 - SSE, e.g. multiply 8 short integers

A Look at the Query Pipeline

SELECT id, name
(age-30)*50 AS bonus
FROM employee
WHERE age > 30

A Look at the Query Pipeline

Operators

Iterator interface

-open()

-next(): tuple

-close()

A Look at the Query Pipeline

Primitives

Provide computational functionality

All arithmetic allowed in expressions, e.g. Multiplication

mult(int,int) Ł int

Database Architecture causes Hazards

DB workload execution on a modern computer

"DBMSs On A Modern Processor: Where Does Time Go?" Ailamaki, DeWitt, Hill, Wood, VLDB'99

DBMS Computational Efficiency

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- 1 Results:
 - 1 C program: ?
 - 1 MySQL: 26.2s
 - 1 DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

DBMS Computational Efficiency

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- 1 Results:

1 C program: 0.2s

1 MySQL: 26.2s

1 DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

Column-Oriented Database Systems

VLDB 2009 Tutorial

MONET DB a column-store

- "save disk I/O when scan-intensive queries need a few columns"
- "avoid an expression interpreter to improve computational efficiency"

SELECT id, name, (age-30)*50 as bonus

FROM people

WHERE age > 30

RISC Database Algebra

CPU happy? Give it "nice" code!

- few dependencies (control,data)
- CPU gets out-of-order execution
- compiler can e.g. generate SIMD

One loop for an entire column

- no per-tuple interpretation
- arrays: no record navigation
- better instruction cache locality

Simple, hardcoded semantics in operators

RISC Database Algebra

CPU happy? Give it "nice" code!

- few dependencies (control,data)
- CPU gets out-of-order execution
- compiler can e.g. generate SIMD

One loop for an entire column

- no per-tuple interpretation
- arrays: no record navigation
- better instruction cache locality

```
for(i=0; i<n; i++)
    res[i] = col[i] - val;
}</pre>
```


a column-store

- "save disk I/O when scan-intensive queries need a few columns"
- "avoid an expression interpreter to improve computational efficiency"

How?

- RISC query algebra: hard-coded semantics
 - Decompose complex expressions in multiple operations
- Operators only handle simple arrays
 - No code that handles slotted buffered record layout
- Relational algebra becomes array manipulation language
 - Often SIMD for free
 - 1 Plus: use of cache-conscious algorithms for Sort/Aggr/Join

a Faustian pact

- 1 You want efficiency
 - Simple hard-coded operators
- 1 I take scalability
 - Result materialization

C program: 0.2s

MonetDB: 3.7s

MySQL: 26.2s

DBMS "X": 28.1s

Column-Oriented Database Systems

VLDB 2009 Tutorial

MONET DB as a research platform

SIGMOD 1985

A DECOMPOSITION STORAGE MODEL

Copela

Micr ctronics And Tec. imple systems over complex systems Support Multiva that a set of fewer and simpler MonetDB supports funct na, given fixed development resources. ther further tuned in software or a lued SQL, XML, ODMG, further into hardware to improve performance 2 2 Supp is aidilar to the RISC (Patterson and Ditzel 1980) h in general purpose architectures

• "MIL Primitives for Querying a Fragmented World", Boncz, Kersten, VLDBJ'98

"Flattening an Object Algebra to Provide Performance"
 Boncz, Wilschut, Kersten, ICDE'98

• "MonetDB/XQuery: a fast XQuery processor powered by a relational engine" Boncz, Grust, vanKeulen, Rittinger, Teubner, SIGMOD'06

• "SW-Store: a vertically partitioned DBMS for Semantic Web data management" Abadi, Marcus, Madden, Hollenbach, VLDBJ'09

A monet DB supports

SQL, XML, ODMG,

SQL, XML, ODMG,

RDF

2 3 Sup

A da

relations mig allow multiple profit

where a single record can

2 4 Support of roger

relations RDF support on C
relations R

as a research platform

- Cache-Conscious Joins
 - Cost Models, Radix-cluster Radix-decluster
- MonetDB/XQuery:
 - structural joins exploiting positional column access
- Cracking:

MonetDB

- on-the-fly automatic indexing without workload knowledge
- Recycling:
- Run-time Query Optimization:
 - correlation-aware run-time optimization without cost model

- "Database Architecture Optimized for the New Bottleneck: Memory Access" VLDB'99
- "Generic Database Cost Models for Hierarchical Memory Systems", VLDB'02 (all Manegold, Boncz, Kersten)
- "Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB'04

"MonetDB/XQuery: a fast XQuery processor powered by a relational engine" Boncz, Grust, vanKeulen, Rittinger, Teubner, SIGMOD'06

"Database Cracking", CIDR'07

"Updating a cracked database", SIGMOD'07 "Self-organizing tuple reconstruction in columnstores", SIGMOD'09 (all Idreos, Manegold, Kersten)

"An architecture for recycling intermediates in a using materialized intermediates column-store", Ivanova, Kersten, Nes, Goncalves, SIGMOD'09

> "ROX: run-time optimization of XQueries", Abdelkader, Boncz, Manegold, vanKeulen, SIGMOD'09

Column-Oriented Database Systems

VLDB 2009 Tutorial

vectorwise

"MonetDB/X100"

vectorized query processing

MonetDB spin-off: MonetDB/X100

Materialization vs Pipelining

"Vectorized In Cache Processing"

vector = array of \sim 100

processed in a tight loop

CPU cache Resident

Observations:

next() called much less often Ł more time spent in primitives less in overhead

primitive calls process an array of values in a **loop**:

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

Observations:

next() called much less often Ł more time spent in primitives less in overhead

primitive calls process an array of values in a **loop**:

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

Tricks being played:

- Late materialization
- Materialization avoidance using selection vectors


```
map_mul_flt_val_flt_col(
   float *res,
   int* sel,
   float val,
   float *col, int n)
{
   for(int i=0; i<n; i++)
         res[i] = val * col[sel[i]];
selection vectors used to reduce
vector copying
contain selected positions
```



```
map_mul_flt_val_flt_col(
   float *res,
   int* sel,
   float val,
   float *col, int n)
{
   for(int i=0; i<n; i++)
         res[i] = val * col[sel[i]];
selection vectors used to reduce
vector copying
contain selected positions
```


MonetDB/X100

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

- Both efficiency
 - 1 Vectorized primitives
- 1 and scalability...
 - Pipelined query evaluation

C program: 0.2s

MonetDB/X100: 0.6s

MonetDB: 3.7s

MySQL: 26.2s

DBMS "X": 28.1s

Memory Hierarchy

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

Memory Hierarchy

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

Vectors are only the in-cache representation

RAM & disk representation might actually be different

(vectorwise uses both PAX & DSM)

Optimal Vector size?

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

All vectors together should fit the CPU cache

Optimizer should tune this, given the query characteristics.

Varying the Vector size

Varying the Vector size

vectorwise

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size

VLDB 2009 Tutorial

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes. CIDR'09

mented Database Systems

Benefits of Vectorized Processing

- 100x less Function Calls
 - iterator.next(), primitives
- No Instruction Cache Misses
 - High locality in the primitives
- Less Data Cache Misses
 - Cache-conscious data placement
- No Tuple Navigation
 - Primitives are record-oblivious, only see arrays
- Vectorization allows algorithmic optimization
 - Move activities out of the loop ("strength reduction")
- Compiler-friendly function bodies
 - Loop-pipelining, automatic SIMD

"Buffering Database Operations for Enhanced Instruction Cache Performance" Zhou, Ross, SIGMOD'04

> "Block oriented processing of relational database operations in modern computer architectures" Padmanabhan, Malkemus, Agarwal, ICDE'01

"Balancing Vectorized Query Execution with Bandwidth Optimized Storage" Zukowski, CWI 2008

Vectorizing Relational Operators

- Project
- 1 Select
 - Exploit selectivities, test buffer overflow
- Aggregation
 - Ordered, Hashed
- 1 Sort
 - Radix-sort nicely vectorizes
- 1 Join
 - Merge-join + Hash-join

Column-Oriented Database Systems

VLDB 2009 Tutorial

Efficient Column Store Compression

Key Ingredients

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE'06

- 1 Compress relations on a per-column basis
 - 1 Columns compress well
- Decompress small *vectors* of tuples from a column into the CPU cache
 - 1 Minimize main-memory overhead
- Use light-weight, CPU-efficient algorithms
 - Exploit processing power of modern CPUs

Key Ingredients

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE'06

- 1 Compress relations on a per-column basis
 - 1 Columns compress well
- Decompress small vectors of tuples from a column into the CPU cache
 - Minimize main-memory overhead

Vectorized Decompression

Idea:

decompress a vector only

compression:

- -between CPU and RAM
- -Instead of disk and RAM (classic)

RAM-Cache Decompression

- Decompress vectors on-demand into the cache
- RAM-Cache boundary only crossed once
- More (compressed)
 data cached in RAM
- Less bandwidth use

Multi-Core Bandwidth & Compression

Performance Degradation with Concurrent Queries

CPU Efficient Decompression

- Decoding loop over cache-resident vectors of code words
- Avoid control dependencies within decoding loop
 - no if-then-else constructs in loop body
- Avoid data dependencies between loop iterations

Disk Block Layout

Forward growing section of arbitrary size **code words** (code word size fixed per block)

Disk Block Layout

- Forward growing section of arbitrary size code words (code word size fixed per block)
- Backwards growing exception list

Naïve Decompression Algorithm

Use reserved value from code word domain (MAXCODE) to mark exception positions

```
int code[n]; /* temporary machine addressable buffer ,

/* blow up next vector of b-bit input code words into machine addressable representation */
UNPACK[b] (code, input, n);

for(i=j=0; i<n; i++) {
    if (code[i] < MAXCODE) {
        output[i] = DECODE(code[i]);
    } else {
        output[i] = exception[--j]);
    }
}</pre>
```


Deterioriation With Exception%

1.2GB/s deteriorates to 0.4GB/s

Deterioriation With Exception%

Perf Counters: CPU mispredicts if-then-else

Patching

Maintain a patch-list through code word section that links exception positions

Patching

- Maintain a *patch-list* through code word section that links exception positions
- After decoding, patch up the exception positions with the correct values

Patched Decompression

```
/* initialize cur to index of first exception within codes */
int cur = first exception;
int code[n]; /* temporary machine addressable buffer /
/* blow up next vector of b-bit input code words into machine
    addressable representation */
UNPACK[b] (code, input, n) ;
/* LOOP1: decode all values */
for(int i=0; i<n; i++) {
         output[i] = DECODE(code[i]);
/* LOOP2: patch it up */
for(int i=1; cur < n; i++) {
          output[cur] = exception[-i];
          cur = cur + code[cur];
```


Patched Decompression

```
/* initialize cur to index of first exception within codes */
int cur = first exception;
int code[n]; /* temporary machine addressable buffer /
/* blow up next vector of b-bit input code words into machine
    addressable representation */
UNPACK[b] (code, input, n) ;
/* LOOP1: decode all values */
for(int i=0; i<n; i++) {
          output[i] = DECODE(code[i]);
/* LOOP2: patch it up */
for(int i=1; cur < n; i++) {
          output[cur] = exception[-i];
          cur = cur + code[cur];
```


Decompression Bandwidth

Xeon Decompression Bandwidth

Patching makes two passes, but is faster!

Column-Oriented Database Systems

VLDB 2009 Tutorial

Conclusion

Summary (1/2)

- Columns and Row-Stores: different?
 - No fundamental differences
 - Can current row-stores simulate column-stores now?
 - not efficiently: row-stores need change
 - On disk layout vs execution layout
 - actually independent issues, on-the-fly conversion pays off
 - column favors sequential access, row random
 - Mixed Layout schemes
 - Fractured mirrors
 - PAX, Clotho
 - Data morphing

Summary (2/2)

Crucial Columnar Techniques

- Storage
 - Lean headers, sparse indices, fast positional access
- 1 Compression
 - Operating on compressed data
 - Lightweight, vectorized decompression
- Late vs Early materialization
 - Non-join: LM always wins
 - Naïve/Invisible/Jive/Flash/Radix Join (LM often wins)
- Execution
 - Vectorized in-cache execution
 - Exploiting SIMD

Future Work

- looking at write/load tradeoffs in column-stores
 - read-only vs batch loads vs trickle updates vs OLTP

Updates (1/3)

- Column-stores are update-in-place averse
 - In-place: I/O for each column
 - + re-compression
 - + multiple sorted replicas
 - + sparse tree indices

Update-in-place is infeasible!

Updates (2/3)

- Column-stores use differential mechanisms instead
 - Differential lists/files or more advanced (e.g. PDTs)
 - Updates buffered in RAM, merged on each query
 - Checkpointing merges differences in bulk sequentially
 - I/O trends favor this anyway
 - s trade RAM for converting random into sequential I/O
 - s this trade is also needed in Flash (do not write randomly!)
 - How high loads can it sustain?
 - S Depends on available RAM for buffering (how long until full)
 - S Checkpoint must be done within that time
 - The longer it can run, the less it molests queries
 - S Using Flash for buffering differences buys a lot of time
 - S Hundreds of GBs of differences per server

Updates (3/3)

- Differential transactions favored by hardware trends
- Snapshot semantics accepted by the user community
 - can always convert to serialized

 "Serializable Isolation For Snapshot Databases" Alomari,
 Cahill, Fekete, Roehm, SIGMOD'08
- Row stores could also use differential transactions and be efficient!
 - Implies a departure from ARIES
 - Implies a full rewrite

My conclusion:

a system that combines row- and columns needs differentially implemented transactions.

Starting from a pure column-store, this is a limited add-on. Starting from a pure row-store, this implies a full rewrite.

Future Work

- looking at write/load tradeoffs in column-stores
 - read-only vs batch loads vs trickle updates vs OLTP
- database design for column-stores
- column-store specific optimizers
 - compression/materialization/join tricks ½ cost models?
- hybrid column-row systems
 - can row-stores learn new column tricks?
 - Study of the minimal number changes one needs to make to a row store to get the majority of the benefits of a column-store
 - Alternative: add features to column-stores that make them more like row stores

Conclusion

- Columnar techniques provide clear benefits for:
 - Data warehousing, BI
 - Information retrieval, graphs, e-science
- A number of crucial techniques make them effective
 - Without these, existing row systems do not benefit
- Row-Stores and column-stores could be combined
 - Row-stores may adopt some column-store techniques
 - Column-stores add row-store (or PAX) functionality
- Many open issues to do research on!

