

WILL CHAIN
WILL ON BLOCKCHAIN

MR. THITIPONG BOONTHANAKORN
MR. NARONGYOT SOONTHARARAK
MR. SUBTAWEE NGANRUNGRUANG

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF BACHELOR OF ENGINEERING (COMPUTER ENGINEERING)
FACULTY OF ENGINEERING
KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI
2022

Will Chain Will On Blockchain

MR. THITIPONG BOONTHANAKORN
MR. NARONGYOT SOONTHARARAK
MR. SUBTAWEE NGANRUNGRUANG

A Project Submitted in Partial Fulfillment
of the Requirements for
the Degree of Bachelor of Engineering (Computer Engineering)
Faculty of Engineering
King Mongkut's University of Technology Thonburi
2022

Project Committee	
(Asst.Prof. Marong Phadoongsidhi, Ph.D.)	Project Advisor
(Mrs. Piyanit Wepulanon , Ph.D.)	Committee Member
(Asst.Prof. Thumrongrat Amornraksa , Ph.D.)	Committee Member
(Asst.Prof. Surapont Toomnark)	Committee Member

Copyright reserved

Project Title Will Chain

Will On Blockchain

Credits 3

Member(s) MR. THITIPONG BOONTHANAKORN

MR. NARONGYOT SOONTHARARAK MR. SUBTAWEE NGANRUNGRUANG

Project Advisor Asst.Prof. Marong Phadoongsidhi, Ph.D.

Program Bachelor of Engineering
Field of Study Computer Engineering
Department Computer Engineering

Faculty Engineering Academic Year 2022

Abstract

Will Chain is a platform developed with the aim of studying how Blockchain networks work and managing wills in real-world assets. and digital assets. Will Chain will include features for managing and keeping current wills. that can meet both real-life assets and digital assets There will be a feature that will support the addition of a will, namely a feature for delivering assets to beneficiary. If the conditions are the same as in the will Makes wills more secure It is also convenient to make wills. and will have even greater coverage.

Keywords: Asset / Blockchain / Cryptocurrency / Digital Asset / Non-Fungible Token (NFT) / Smart Contract

/ Will

หัวข้อปริญญานิพนธ์ Will Chain

Will on Blockchain

หน่วยกิต

ผู้เขียน นายฐิติพงศ์ บุณธนากร

นายณรงค์ยศ สุนทรารักษ์

นายทรัพย์ทวี งานรุ่งเรื่อง

 อาจารย์ที่ปรึกษา
 ผศ.ดร.มารอง ผดุงสิทธิ์

 หลักสูตร
 วิศวกรรมศาสตรบัณฑิต

 สาขาวิชา
 วิศวกรรมคอมพิวเตอร์

 ภาควิชา
 วิศวกรรมคอมพิวเตอร์

 คณะ
 วิศวกรรมศาสตร์

ปีการศึกษา 2565

บทคัดย่อ

Will Chain เป็นแพลตฟอร์มที่ถูกพัฒนาขึ้นมาโดยมีวัตถุประสงค์เพื่อศึกษาการทำงานของเครือข่าย Blockchain และจัดการ เกี่ยวกับพินัยกรรมในด้านของสินทรัพย์ในโลกความเป็นจริง และสินทรัพย์ดิจิทัล โดยที่ Will Chain นั้นจะมีฟีเจอร์ในการจัดการและเก็บ รักษาพินัยกรรมที่มีอยู่ในปัจจุบัน ที่จะสามารถตอบโจทย์ได้ทั้งสินทรัพย์ในชีวิตจริงและสินทรัพย์ดิจิทัล โดยจะมีฟีเจอร์ที่จะรองรับการทำ พินัยกรรมเพิ่มเติมคือฟีเจอร์สำหรับการส่งมอบสินทรัพย์ให้กับทายาท ถ้ามีเงื่อนไขตรงกับในพินัยกรรม ทำให้การทำพินัยกรรมนั้นมีความ ปลอดภัยมากขึ้น อีกทั้งสะดวกในการทำพินัยกรรม และจะมีความครอบคลุมที่มากยิ่งขึ้น

คำสำคัญ: Asset / Blockchain / Cryptocurrency / Digital Asset / Non-Fungible Token (NFT) / Smart Contract / Will

กิตติกรรมประกาศ

การทำโครงงานครั้งนี้สำเร็จลงได้ด้วยความช่วยเหลือของ ผู้ช่วยศาสตราจารย์ ดร. มารอง ผดุงสิทธิ์ ที่ปรึกษาโครงงาน ซึ่งได้ให้ ความกรุณา สละเวลาให้คำปรึกษา คำแนะนำ ข้อเสนอแนะอันมีประโยชน์อย่างมาก และความช่วยเหลือตลอดการทำโครงงานนี้จนสำเร็จลุ ล่วงได้ด้วยดี ผู้จัดทำโครงงานจึงขอกราบขอบพระคุณเป็นอย่างสูง

ขอขอบพระคุณวราณัฐ สุทธิการณ ซึ่งได้ให้ความกรุณาสละเวลาให้คำแนะนำการออกแบบ Smart Contract และความช่วยเหลือ ตลอดการทำโครงการนี้

ขอขอบพระคุณ ผ.ศ.สุรพนธ์ ตุ้มนาค , ดร.ปิยนิตย์ เวปุลานนท์ และ รศ.ดร.ธำรงรัตน์ อมรรักษา ที่ได้สละเวลา ร่วมเป็นคณะ กรรมการตรวจสอบโครงงานในครั้งนี้

ท้ายที่สุดนี้ โครงงานนี้อาจจะไม่สำเร็จเลยหากไม่มีเพื่อนในภาควิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า ธนบุรีที่ให้ ความช่วยเหลือ การสนับสนุน รวมทั้งคอยเป็นกำลังใจสำคัญเสมอมา

ทีมผู้จัดทำหวังว่าโครงงานนี้จะก่อให้เกิดประโยชน์ต่อการทำพินัยกรรมในปัจจุบัน และสามารถครอบคลุมไปถึงพินัยกรรมของ สินทรัพย์ดิจิทัลที่ยังไม่มีเทคโนโลยีรองรับในตอนนี้ และเกิดการเปลี่ยนแปลงที่ดีขึ้นในอนาคต

สารบัญ

	หน้า
ABSTRACT	ii
บทคัดย่อ	iii
กิตติกรรมประกาศ	iv
สารบัญ	V
สารบัญตาราง	vii
สารบัญรูปภาพ	viii
สารบัญคำศัพท์ทางเทคนิคและคำย่อ	ix
ELIA DEĞILILIMINI INENLITALIBERENLI IOD	12
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์	1
1.3 ขอบเขตของโครงงาน	1
1.4 ประโยชน์ที่คาดว่าจะได้รับ	1
1.5 เนื้อหาทางวิศวกรรมที่เป็นต้นฉบับ	1
1.6 การแยกย่อยงาน และร่างแผนคำแนะนำจากอาจารย์ที่ปรึกษา	2
1.7 ตารางการดำเนินงาน	3
1.8 ผลการดำเนินงานในภาคการศึกษาที่ 1	4
1.9 ผลการดำเนินงานในภาคการศึกษาที่ 2	4
บทที่ 2 ทฤษฎีความรู้และงานที่เกี่ยวข้อง	5
2.1 ทฤษฎีที่เกี่ยวข้อง	5
2.1.1 Blockchain [1]	5
2.1.2 ERC-20 [2]	5
2.1.3 ERC-721 [?]	5
2.1.4 Ethereum Chain and ETH[3]	5
2.1.5 Soulbound Token (SBTs)[?]	5
2.1.6 Software Engineering [4, 5]	6
2.1.7 Smart Contract [6]	6
2.1.8 Non-Fungible Token (NFT) [7]	6
2.1.9 Asset (สินทรัพย์) [8]	7
2.1.10 Digital Asset (สินทรัพย์ดิจิทัล) [9]	7
2.1.11 พินัยกรรม [10]	7
2.2 งานวิจัยที่เกี่ยวข้อง	8
2.2.1 CryptoWill [11] 2.3 เทคนิคและเทคโนโลยีที่ใช้	8
2.3 เทศนคแสะเทศเนสยทเช 2.3.1 Ethereum Chain [3]	8
2.3.2 GitHub [12]	8
2.3.3 MetaMask [13]	8
2.3.4 NestJS [14]	9
2.3.5 Next.js [15]	9
2.3.6 Solidity [16]	9
2.3.7 TypeScript [17]	9
2.3.8 Web3.js [18]	9
2.3.9 Hardhat [?]	10

	2.3.10 IPFS [?]	10
บทที่ 3	การออกแบบและวิธีการดำเนินงาน	11
3.1	ระบบการทำงาน	11
	3.1.1 ภาพรวมของระบบ	11
	3.1.2 User Journey	11
3.2	Cryptocurrency Wallet	12
3.3	Diagram Unified Modelling Language (UML)	12
	3.3.1 แผนภาพ Use Case Diagram	12
	3.3.2 Use Case Narrative	13
	3.3.3 Smart Contract	17
	3.3.4 System Architecture Diagram	17
	3.3.5 Sequence Diagram	19
3.4	ส่วนติดต่อผู้ใช้งาน (User Interface)	29
	3.4.1 หน้าแรก	29
	3.4.2 หน้าโปรไฟล์	29
	3.4.3 หน้าสินทรัพย์ของคุณ	30
	3.4.4 หน้าบันทึกสินทรัพย์	31
	3.4.5 หน้ารายชื่อคนรับมรดก	31
	3.4.6 หน้าพินัยกรรมของคุณ	32
	3.4.7 หน้าบันทึกพินัยกรรม	32
	3.4.8 หน้าพินัยกรรมที่ได้รับ	34
3.5	ออกแบบการทดสอบ	34
บทที่ 4	ผลการดำเนินงาน	35
4.1	Site map	35
4.2	Token ที่ใช้ใน Will-Chain	35
4.3	Test Plan	35
4.4	Software Testing	36
หนังสือ	อ้างอิง	37

สารบัญตาราง

ตาราง	งที่	หน้า
1.1	ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 1/2565	3
1.2	ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 2/2565	3
3.1	ตารางแสดงรายละเอียดของ Use Case Connect MetaMask Wallet	13
3.2	ตารางแสดงรายละเอียดของ Use Case Create Will	13
3.3	ตารางแสดงรายละเอียดของ Use Case Upload Will	13
3.4	ตารางแสดงรายละเอียดของ Use Case Add Asset	14
3.5	ตารางแสดงรายละเอียดของ Use Case Select Baneficiary	14
3.6	ตารางแสดงรายละเอียดของ Use Case Delete Will	14
3.7	ตารางแสดงรายละเอียดของ Use Case View Will	15
3.8	ตารางแสดงรายละเอียดของ Use Case Check User Status	15
3.9	ตารางแสดงรายละเอียดของ Use Case Notify User	15
3.10	ตารางแสดงรายละเอียดของ Use Case Claim Will	16
3.11	ตารางแสดงรายละเอียดของ Connect MetaMask Sequence Diagram	19
3.12	ตารางแสดงรายละเอียดของ Upload Pdf Will Sequence Diagram	20
3.13	ตารางแสดงรายละเอียดของ Create Will Sequence Diagram	21
3.14	ตารางแสดงรายละเอียดของ Delete Will Sequence Diagram	22
3.15	ตารางแสดงรายละเอียดของ View Will Sequence Diagram	23
3.16	ตารางแสดงรายละเอียดของ View Asset Sequence Diagram	23
3.17	ตารางแสดงรายละเอียดของ Delete Asset Sequence Diagram	24
3.18	ตารางแสดงรายละเอียดของ Check Status Death Sequence Diagram	25
3.19	ตารางแสดงรายละเอียดของ Create Real Asset Sequence Diagram	26
3.20	ตารางแสดงรายละเอียดของ Create Digital Asset Sequence Diagram	27
3.21	ตารางแสดงรายละเอียดของ Claim Asset Sequence Diagram	28

สารบัญรูป

รูปที่		หน้า
2.1	ความแตกต่างระหว่าง Waterfall Method กับ Agile Method	6
2.2	ภาพแสดงหลักการทำงานของโปรเจค CryptoWill	8
3.1	ภาพรวมแสดงการทำงานของระบบ	11
3.2	แสดง User Journey	11
3.3	แสดงการทำงานของระบบทั้งหมด Use Case Diagram	12
3.4	แสดงการ interaction ของ Smart Contract ของระบบ Will Chain	17
3.5	แสดงภาพออกแบบสถาปัตยกรรมของระบบ Will Chain	17
3.6	แสดง Connect MetaMask Sequence Diagram	19
3.7	แสดง Upload Pdf Will Sequence Diagram	20
3.8	แสดง Create Will Sequence Diagram	21
3.9	แสดง Delete Will Sequence Diagram	22
3.10	แสดง View Will Sequence Diagram	23
3.11	แสดง View Asset Sequence Diagram	23
3.12	แสดง Delete Asset Sequence Diagram	24
3.13	แสดง Check Status Death Sequence Diagram	25
3.14	แสดง Create Real Asset Sequence Diagram	26
3.15	แสดง Create Digital Asset Sequence Diagram	27
3.16	แสดง Claim Asset Sequence Diagram	28
3.17	หน้าแรก	29
3.18	หน้าโปรไฟล์	29
3.19	หน้าสินทรัพย์ของคุณ	30
3.20	หน้าบันทึกสินทรัพย์	31
3.21	หน้ารายชื่อคนรับมรดก	31
3.22	หน้าพินัยกรรมของคุณ	32
3.23	บันทึกพินัยกรรม	32
3.24	drop down เลือกคนรับพินัยกรรม	33
3.25	drop down สินทรัพย์	33
3.26	drop down สินทรัพย์ดิจิทัล	33
3.27	พินัยกรรมที่ได้รับ	34

สารบัญคำศัพท์ทางเทคนิคและคำย่อ

Asset = ทรัพย์สินที่เรามีอยู่ทั้งหมด เงินที่อยู่ในบัญชีทั้งหมดอยู่ในกระเป๋าทั้งหมดรวมทั้งหนี้สินที่เรามีอยู่ทั้งหมด

Blockchain = ระบบโครงข่ายในการเก็บบัญชีธุรกรรมออนไลน์

Cryptocurrency = สกุลเงินเข้ารหัส เป็นสินทรัพย์ดิจิทัล

Digital Asset = สิ่งที่มีมูลค่าและเราสามารถเป็นเจ้าของได้ แต่ไม่สามารถแตะต้องได้ทางกายภาพ Non-Fungible = สิ่งของที่มีความแตกต่างเฉพาะตัวไม่สามารถทดแทนกันได้หรือซื้อเป็นหน่วยย่อยได้

Token(NFT)

Smart Contract = กระบวนการทางดิจิทัล ที่กำหนดขั้นตอนการทำธุรกรรมโดยอัตโนมัติไว้ล่วงหน้า โดยไม่ต้องอาศัยตัวกลาง

Will = พินัยกรรมที่เก็บคำสั่งเสียสุดท้ายในการทำกิจการต่าง ๆ

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

ในปัจจุบันนั้นเทคโนโลยีเข้ามามีบทบาทในการใช้ชีวิตของผู้คนเป็นอย่างมาก ไม่ว่าจะเป็นในด้านของ การเงิน สินทรัพย์ เป็นต้น แต่ว่าจะมีในด้านของพินัยกรรมที่นับว่าเป็นเอกสารที่ไม่มีการใช้เทคโนโลยีเข้ามาช่วยเหลือในปัจจุบัน โดยยังที่จะต้องทำการเก็บรักษาไว้ ที่ตัวเองหรือไม่ก็เก็บไว้ที่ทนายของตนเองทำให้บางครั้งพินัยกรรมนั้น ๆ อาจเกิดการเสียหายหรือสูญหายได้ หรือแม้กระทั่งอาจเกิดโอกาส เปลี่ยนแปลงจากบุคคลที่สามได้ ทำให้การทำพินัยกรรมในแต่ละครั้งมีความยุ่งยากและไม่ปลอดภัยสำหรับผู้ที่จะทำพินัยกรรม รวมถึงพินัยกรรม ในส่วนนี้ยังครอบคลุมในด้านของการสืบทอดสินทรัพย์ดิจิทัล อย่างเช่น Cryptocurrency ได้ เนื่องจากยังไม่มีเทคโนโลยีที่รองรับในปัจจุบัน

จึงเกิดแนวคิดที่จะสร้าง แพลตฟอร์มสำหรับจัดการพินัยกรรมทั้งสินทรัพย์ในโลกความเป็นจริง และสินทรัพย์ดิจิทัลผ่านระบบ Blockchain ที่สามารถนำพินัยกรรมที่มีอยู่ในปัจจุบันนั้นเอาขึ้นระบบ Blockchain เพื่อเก็บรักษาพินัยกรรมนั้น และสามารถทำการสืบทอด สินทรัพย์ไปยังผู้รับพินัยกรรมได้ รวมไปถึงสินทรัพย์ดิจิทัลอีกด้วย โดยคำนึงถึงความปลอดภัยและความสะดวกสบายของผู้ใช้งาน

1.2 วัตถุประสงค์

- เพื่อศึกษาเทคโนโลยี Blockchain
- เพื่อสร้างแพลตฟอร์มสำหรับจัดการพินัยกรรมทั้งสินทรัพย์ในโลกความเป็นจริง และสินทรัพย์ดิจิทัล
- เพื่อให้พินัยกรรมในปัจจุบันสามารถครอบคลุมถึงสินทรัพย์ดิจิทัล
- เพื่อเก็บรักษาพินัยกรรมให้มีความปลอดภัยมากขึ้น
- เพื่ออำนวยความสะดวกในการเก็บพินัยกรรม

1.3 ขอบเขตของโครงงาน

- พัฒนาแพลตฟอร์มพินัยกรรมที่สามารถใช้งานได้บน Ethereum chain (Test-network) เท่านั้น
- พัฒนาแพลตพอร์มสำหรับจัดการพินัยกรรมทั้งสินทรัพย์ในโลกความเป็นจริง และสินทรัพย์ดิจิทัล
- ใช้ภาษา Solidity ในการพัฒนา Smart Contract

1.4 ประโยชน์ที่คาดว่าจะได้รับ

Will Chain เป็นการใช้เทคโนโลยี Blockchain เพื่อการทำพินัยกรรมโดยจะสามารถถ่ายทอดมรดกที่เป็นสินทรัพย์ที่ระบบรองรับ จากผู้ที่ทำการเขียนพินัยกรรม ไปหาผู้รับสินทรัพย์ได้ด้วยรูปแบบของ NFT

1.5 เนื้อหาทางวิศวกรรมที่เป็นต้นฉบับ

โครงงานนี้พัฒนาขึ้นมาจากการใช้ความรู้ในด้าน Blockchain Technology (Ethereum chain โดยใช้เครื่องมือพัฒนา Smart Contract ด้วยภาษา Solidity ในการพัฒนา) และใช้ความรู้เรื่อง NFT เพื่อใช้ในการเก็บข้อมูลพินัยกรรมของตัวโปรเจคของเรา รวมถึง การทำ Decentralize Application ที่ใช้ Next Typescript Framework ในการพัฒนาส่วนติดต่อกับผู้ใช้รวมไปถึงความรู้ด้าน วิศวกรรม ชอฟแวร์ และ ด้านพินัยกรรม เพื่อที่จะสามารถทำการถ่ายทอดพินัยกรรมได้ภายใน Decentralize Application

1.6 การแยกย่อยงาน และร่างแผนคำแนะนำจากอาจารย์ที่ปรึกษา

- 1. ศึกษาค้นคว้าที่มาและความสำคัญของปัญหา
- 2. เสนอหัวข้อโครงการให้กับอาจารย์ที่ปรึกษา
- 3. ทำการสำรวจหรือศึกษาค้นคว้าข้อมูลที่เกี่ยวข้องกับโครงงาน
 - ศึกษาเรื่องพินัยกรรม
 - ศึกษาเรื่องกฎหมาย
 - ศึกษาเรื่องสินทรัพย์
- 4. นำเสนอโครงการและข้อมูลที่ศึกษาค้นคว้าให้กับอาจารย์ที่ปรึกษา
- 5. จัดทำข้อเสนอโครงการ
- 6. นำเสนอข้อเสนอโครงการ
- 7. จัดทำรายงาน
 - รายงานบทที่ 1 จากข้อมูลข้อเสนอโครงงาน
 - รายงานบทที่ 2 จากข้อมูลการศึกษาค้นคว้าเกี่ยวกับทฤษฎีที่เกี่ยวข้อง
 - รายงานบทที่ 3 รายงานการออกแบบการทำงานของระบบเบื้องต้น
- 8. วิเคราะห์และออกแบบระบบ
 - ออกแบบการทำงาน Algorithms ของ Smart Contract ที่ใช้งานในระบบ
 - ออกแบบรูปแบบพินัยกรรมที่จะใช้ในระบบ
 - ออกแบบส่วนของผู้ใช้งาน (UX/UI)
- 9. ศึกษาและพัฒนา Blockchain และ Smart Contract
 - ศึกษาการทำงานของ Blockchain ด้วย Ethereum chain
 - ศึกษาและพัฒนาส่วนของ Smart Contract ที่ใช้ในการควบคุมระบบด้วยภาษา Solidity
 - ศึกษาและพัฒนา NFT ในระบบ
- 10. ศึกษาและพัฒนา Web application
 - ศึกษาและพัฒนาส่วนของผู้ใช้งานด้วย Next.js Typescript และ User Interface Framework อื่น ๆ
 - ศึกษาเกี่ยวกับ API ของหน่วยงานรัฐ
- 11. นำเสนอโครงงาน 3 บท
- 12. ศึกษาและพัฒนา Blockchain และ Smart Contract (ต่อจากภาคการศึกษาที่ 1)
- 13. ทดสอบการทำงานของ Ethereum chain
- 14. ปรับปรุงและแก้ไข Ethereum chain
- 15. ศึกษาและพัฒนา Web application (ต่อจากภาคการศึกษาที่ 1)
- 16. ทดสอบการทำงานของ Web application
- 17. ปรับปรุงและแก้ไข Web application
- 18. จัดทำรายงงานโครงงานฉบับสมบูรณ์
- 19. นำเสนอโครงงาน

1.7 ตารางการดำเนินงาน

ตารางที่ 1.1 ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 1/2565

	ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 1/2565																				
		ระยะเวลา																			
ที่	หัวข้อการดำเนินงาน		สิงห	าคม		กันยายน			ตุลาคม				٩	พฤศจิ	ำกายเ	ĵ					
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	ศึกษาค้นคว้าที่มาของและ ความสำคัญของปัญหา																				
2	เสนอหัวข้อโครงการให้กับอาจารย์ ที่ปรึกษา																				П
3	ทำการสำรวจหรือศึกษาค้นขว้า ข้อมูลที่เกี่ยวข้องกับโครงงาน																				П
4	นำเสนอโครงการและข้อมูลที่ศึกษาค้นคว้าให้กับอาจารย์ที่ปรึกษา																				
5	จัดทำข้อเสนอโครงการ																				П
6	นำเสนอข้อเสนอโครงการ																				П
7	จัดทำรายงาน																				П
8	วิเคราะห์และออกแบบระบบ																				
9	ศึกษาและพัฒนา Blockchain และ Smart Contract																				
10	0 ศึกษาและพัฒนา Web application																				
11	นำเสนอโครงงาน 3 บท																				

ตารางที่ 1.2 ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 2/2565

	ตารางการดำเนินงาน ประจำภาคการศึกษาที่ 2/2565																
									ระยะ	เวลา							
ที่	หัวข้อการดำเนินงาน		มกร	าคม			กุมภ	าพันธ์			มีน [.]	าคม		เมษายน			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
12	12 ศึกษาและพัฒนา Blockchain และ Smart Contract (ต่อจากภาคการศึกษาที่ 1)																
13	13 ทดสอบการทำงานของ Ethereum chain																
14	ปรับปรุงและแก้ไข Ethereum chain																
15	ศึกษาและพัฒนา Web application (ต่อจากภาคการศึกษาที่ 1)																
16	16 ทดสอบการทำงานของ Web application																
17	17 ปรับปรุงและแก้ไข Web application																
18	18 จัดทำรายงงานโครงงานฉบับสมบูรณ์																
19	19 นำเสนอโครงงาน																

หมายเหตุ : ขั้นตอนการพัฒนา ปรับปรุง แก้ไข และทดสอบ Application ใช้การทำงานแบบ Agile Methodology

1.8 ผลการดำเนินงานในภาคการศึกษาที่ 1

- 1. รูปเล่มรายงานโครงงาน 3 บท
- 2. ออกแบบการทำงานของ Smart contact
 - แบบจำลองโครงสร้างของ Smart Contract
 - แบบจำลองการทำงานของ Smart Contract
- 3. ออกแบบโครงสร้างของ Application
 - แผนผังภาพรวมของระบบ
 - แผนผังการทำงานของ Application
 - แบบจำลองส่วนติดต่อผู้ใช้งาน

1.9 ผลการดำเนินงานในภาคการศึกษาที่ 2

- 1. พัฒนา Blockchain
- 2. พัฒนา Web application (Will Chain)
- 3. เชื่อมต่อส่วนผู้ใช้งาน และ Smart Contract
- 4. ผลการทดสอบการใช้งาน
- 5. ทดสอบการใช้งาน
- 6. รายงานโครงงานฉบับสมบูรณ์

บทที่ 2 ทฤษฎีความรู้และงานที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 Blockchain [1]

Blockchain คือเทคโนโลยีการประมวลผลและจัดเก็บข้อมูลแบบกระจายศูนย์ หรือที่เรียกว่า Distributed Ledger Technology (DLT) ซึ่งเป็นรูปแบบการบันทึกข้อมูลที่ใช้หลักการ Cryptography ร่วมกับกลไก Consensus โดยข้อมูลที่ถูกบันทึกในระบบ Blockchain นั้นจะสามารถทำการแก้ไขเปลี่ยนแปลงได้ยาก ช่วยเพิ่มความถูกต้อง และความน่าเชื่อถือของข้อมูล โดยไม่ต้องอาศัยคนกลาง

Blockchain สามารถแบ่งออกได้เป็น 3 ประเภท โดยพิจารณาจากข้อกำหนดในการ เข้าร่วมเป็นสมาชิกของเครือข่ายคือ Blockchain แบบเปิดสาธารณะ (Public Blockchain) Blockchain แบบปิด (Private Blockchain) และ Blockchain แบบเฉพาะกลุ่ม (Consortium Blockchain)

- 2.1.1.1 Public Blockchain คือ Blockchain วงเปิดที่อนุญาตให้ทุกคนสามารถเข้าใช้งานไม่ว่า จะเป็นการอ่าน หรือการทำ ธุรกรรมต่าง ๆ ได้อย่างงอิสระโดย ไม่จำเป็นต้องขออนุญาต หรือรู้จักกันในอีกชื่อ คือ Permissionless Blockchain
- 2.1.1.2 Private Blockchainคือ Blockchain วงปิดที่เข้าใช้งานได้เฉพาะผู้ที่ได้รับ อนุญาตนั้นซึ่งส่วนใหญ่ถูกสร้างขึ้นเพื่อใช้งาน ภายในองค์กร ดังนั้นข้อมูลการทำธุรกรรมต่าง ๆ จะถูกจำกัดอยู่เฉพาะภายในเครือข่าย
- 2.1.1.3 Consortium Blockchain คือ Blockchain ที่ เปิดให้ใช้งานได้เฉพาะกลุ่ม เท่านั้น โดยเป็นการผสมผสานแนวคิดระหว่าง Public Blockchain และ Private Blockchain ซึ่งส่วนมากเป็นการรวมตัวกันขององค์กรที่มีลักษณะธุรกิจ เหมือนกัน และต้องมีการ แลกเปลี่ยนข้อมูลระหว่างกันอย่างสม่ำเสมออยู่แล้วมารวมตัวกันตั้ง Blockchain ขึ้นมา ทั้งนี้เนื่องจาก ธุรกรรมและข้อมูลที่จัดเก็บ เป็น ข้อมูลที่ เป็นความลับหรือข้อมูลส่วนตัววภายในองค์กร ส่งผลให้ไม่สามารถเปิดเผยข้อมูลดังกล่าวทั้งหมดแก่สาธารณชนได้ ดั้งนั้นผู้เข้าร่วม Blockchain เฉพาะกลุ่ม จำเป็นต้องได้รับ การอนุญาตจากตัวแทนเสียก่อน จึงจะสามารถเขาใช้งานได้ ยกตัวอย่าง เช่น เครือข่ายระหว่าง ธนาคาร ที่ใช้ในการ แลกเปลี่ยนข้อมูลการทำธุรกรรม หรือแลกเปลี่ยนสินทรัพย์ภายในกลุ่ม

2.1.2 ERC-20 [2]

ERC-20 เป็น Protocol มาตรฐานสำหรับการสร้างโทเคนบน Ethereum blockchain โดยมีชื่อเต็มคือ Ethereum Request for Comments ซึ่งมาตรฐาน ERC-20 ถูกนำมาใช้ตั้งแต่ปี 2015 และในปัจจุบันมีโทเคนจำนวนมากที่รองรับ ERC-20

2.1.3 ERC-721 [?]

ERC-721 คือมาตรฐานที่ทำให้ข้อมูลที่เป็นดิจิทัลหรือโทเคนนั้นมีความเฉพาะตัว (Non-Fungible) โดยส่วนมากมักจะถูกนำไปใช้ กับของสะสมต่าง ๆ ที่อยู่ในรูปแบบดิจิทัล ที่ต้องการให้มีความหายากและไม่เหมือนใคร ไม่สามารถทำซ้ำได้ เพราะว่ามันมีโค้ดที่สามารถ ระบุได้ว่าใครเป็นเจ้าของอย่างชัดเจน ในทางกลับกัน ERC-20 นั้นเป็นมาตรฐานที่จะทำให้ทุก ๆ โทเคนที่ถูกสร้างขึ้นมาภายใต้มาตรฐานดัง กล่าวมีความเหมือนกัน

2.1.4 Ethereum Chain and ETH[3]

Ethereum คือแพลตฟอร์มบน Blockchain Network ที่ทำงานด้วย Smart Contract มีลักษณะแพลตฟอร์มเป็นรูปแบบ Decentralized Platform แบบ Open Source ทำให้นักพัฒนาสามารถเข้ามาพัฒนา แก้ไข หรือดัดแปลงโค้ดได้ทุกคน พร้อมทั้งกำ หนดเงื่อนไขต่าง ๆ สำหรับนำไปใช้งานบน Blockchain โดยมี Smart Contract ดำเนินการและระบบจะทำงานตามเงื่อนไขโปรแกรม ที่กำหนดมา ทำให้ผู้ใช้งาน Blockchain ของ Ethereum ทำธุรกรรมได้ โดยไม่ต้องผ่านตัวกลางอื่น นอกจากนี้ การประยุกต์ใช้ Smart Contract และศักยภาพประมวลโดยรวมของแพลตฟอร์มที่สูงกว่า Bitcoin และเหรียญ Ether หรือเหรียญ ETH คือ สกุลเงินดิจิทัลอย่าง หนึ่ง ที่ถูกพัฒนาขึ้นมาบน Blockchain Ethereum มีส่วนช่วยขับเคลื่อนการทำงานในระบบนิเวศของ Ethereum

2.1.5 Soulbound Token (SBTs)[?]

คือ token การระบุตัวตนดิจิทัลที่แสดงถึงคุณลักษณะ และความสำเร็จที่ประกอบขึ้นเป็นบุคคลหรือนิติบุคคลภายในระบบ blockchain ได้โดย soulbound token จะไม่สามารถโอนได้ไปหาผู้อื่นได้

2.1.6 Software Engineering [4, 5]

2.1.6.1 Software Development Methodology

• Agile Software Development เป็นกระบวนการที่ช่วยลดการทำงานที่เป็นขั้นตอนและงานด้านการทำเอกสาร ลง' แต่จะไปมุ่งเน้นในเรื่องการสื่อสารของทีมมากขึ้น เพื่อให้เกิดการพัฒนาสินค้าและบริการใหม่ๆ ได้รวดเร็วขึ้น แล้วจึงนำสิ่งที่ได้ไปให้ผู้ใช้ กลุ่มตัวอย่าง (Target group) ทดสอบใช้งานจริง จากนั้นจึงรวมรวมผลทดสอบมาประเมินดูอีกครั้ง เพื่อใช้เป็นแนวทางในการแก้ไขปรับปรุง สินค้าและบริการนั้นๆ ให้ดีขึ้นทีละนิด ด้วยแนวทางนี้จะทำให้องค์กรสามารถพัฒนาสินค้าและบริการได้อย่างรวดเร็วและตอบโจทย์ผู้ใช้งาน ได้มากขึ้นอย่างสม่ำเสมด

Development Methodologies

รูปที่ 2.1 ความแตกต่างระหว่าง Waterfall Method กับ Agile Method

- Scrum (สกรัม) คือการนำแนวคิดในการทำงานแบบ Agile (อไจล์) มาปฏิบัติตามขั้นตอนของสกรัม เพื่อระบุปัญหา ที่มีความซับซ้อน เปลี่ยนแปลงบ่อย เพื่อให้สามารถส่งมอบผลิตภัณฑ์ที่ตอบสนองต่อการเปลี่ยนแปลงที่เกิดขึ้นได้อย่างรวดเร็ว ช่วยให้การ พัฒนาผลิตภัณฑ์แบบ Agile มีขั้นตอนการการดำเนินงานและผลลัพธ์ที่ชัดเจน โปร่งใส สามารถตรวจสอบประสิทธิภาพของแต่ละขั้นตอน การดำเนินงาน สามารถปรับปรุงและวัดผลการปรับปรุงที่เกิดขึ้นได้
- Kanban ที่มาเริ่มต้นมาจากระบบการทำงานของ Toyota ซึ่งประสบความสำเร็จอย่างมากจนทำให้สามารถผลิต รถออกมาได้ไวกว่าคู่แข่งทั่วโลกจนครองตลาดไปได้มาก สำหรับวงการ Software ได้ถูก David J. Anderson จับนำมาปรับปรุงให้เข้า กับ Software Development เพื่อการพัฒนา Software ได้อย่างรวดเร็วที่สุดด้วยเช่นกัน และสุดท้ายถูกนำไปเป็นส่วนหนึ่งของ Lean Software Development รวมไปถึงถูกจัดให้เป็น Agile อีกแบบหนึ่งนอกเหนือไปจาก Scrum อีกด้วย Kanban มีกฎอยู่แค่ 3 ข้อ
- Visualize the workflow แสดง flow การทำงานของระบบให้ออกมาให้เห็นภาพอย่างชัดเจน สามารถบอก ได้ว่าขณะนี้งานไปติดขัดที่จุดไหน อย่างไรให้ชัดเจน
- Limit Work In Progress (WIP) จุดหลักของ Kanban เลยคือการ limit งานต่อหนึ่งหน่วยย่อย เช่นงาน สำหรับ Development ห้ามถือเกิน 2 งานเพื่อป้องกันไม่ให้งาน Overload มากเกินไป และจะทำให้สูญเสียเวลาไปมากกว่าที่ควรจะเป็น
- Measure the lead time วัดผลการทำงานและปรับปรุงให้ดียิ่งขึ้นไปอีก ตรงนี้จะเรียกว่า Cycle time หรือ ค่าเฉลี่ยที่ Card 1 อันจะอยู่บนบอร์ดตั้งแต่เริ่มต้นไปจนถึงขึ้นบน production จริง

2.1.7 Smart Contract [6]

Smart Contract หมายถึง กระบวนการทางดิจิทัล ที่กำหนดขั้นตอนการทำธุรกรรมโดยอัตโนมัติไว้ล่วงหน้า โดยไม่ต้องอาศัย ตัวกลาง อย่างเช่น ธนาคาร ซึ่งการสร้าง Smart Contract ที่เป็นระบบอัตโนมัติอย่างเต็มรูปแบบ โดยคู่สัญญาทั้งสองฝ่ายจะมีการตกลงกัน ก่อนหน้านี้ ถึงขั้นตอน กลไก ในการทำรายการธุรกรรมดังกล่าว ซึ่งการพัฒนานี้ส่งผลกระทบต่อรูปแบบธุรกิจแบบดั้งเดิมของธนาคาร

2.1.8 Non-Fungible Token (NFT) [7]

NFT ย่อมาจาก Non-Fungible Token เป็นชื่อเรียกของ Cryptocurrency ประเภทหนึ่ง เป็นสินทรัพย์ดิจิทัลที่มีเพียงชิ้นเดียวใน โลก ไม่สามารถทำซ้ำหรือคัดลอกได้ ต่อให้มีการก๊อบปี้ไป แต่ต้นฉบับของจริงจะมีอยู่เพียงหนึ่งเดียวเท่านั้น ส่วนโทเคน NFT ก็เป็นเหมือน โฉนด เพื่อแสดงความเป็นเจ้าของสินทรัพย์ชิ้นนั้น

2.1.9 Asset (สินทรัพย์) [8]

Asset หมายถึง ทรัพยากรที่มีและอยู่ในการควบคุมของกิจการ สินทรัพย์นี้อาจจะเป็นสิ่งที่มีตัวตนหรือไม่มีตัวตนก็ได้ ซึ่งสามารถตี ราคามูลค่าเป็นเงินได้ ทรัพยากรดังกล่าวเป็นผล ของ เหตุการณ์ในอดีต ซึ่งกิจการคาดว่าจะได้รับประโยชน์เชิงเศรษฐกิจจากทรัพยากรนั้น ในอนาคต

2.1.10 Digital Asset (สินทรัพย์ดิจิทัล) [9]

คือ "สิ่งที่มีมูลค่าและเราสามารถเป็นเจ้าของได้ แต่ไม่สามารถแตะต้องได้ทางกายภาพ" สิ่งเหล่านั้นถูกสร้างขึ้นในระบบดิจิทัล และ เก็บไว้ในอุปกรณ์อิเล็กทรอนิกส์อย่าง คอมพิวเตอร์ ฮาร์ดแวร์ แล็ปท็อป หรือ อุปกรณ์เก็บข้อมูลต่าง ๆ เป็นต้น

2.1.11 พินัยกรรม [10]

พินัยกรรม หมายถึง การแสดงเจตนากำหนดการเผื่อตายซึ่งให้มีผลบังคับได้เมื่อถึงแก่ความตาย หรือถ้าเป็นภาษาพูดก็ได้แก่คำสั่ง เสียของผู้ตาย โดยในการทำพินัยกรรม กฎหมายกำหนดรูปแบบไว้ 5 แบบด้วยกัน ดังนี้

- 2.1.11.1 พินัยกรรมแบบธรรมดา ผู้ทำต้องทำเป็นหนังสือ คือการพิมพ์ข้อความพินัยกรรมลงในกระดาษ มากน้อยหรือจำนวน กี่แผ่นก็ต้องแล้วแต่เนื้อหาหรือจำนวนทรัพย์สิน ลงวัน เดือน ปี ที่ทำให้ชัดเจน และผู้ทำต้องลงลายมือชื่อไว้ต่อหน้าพยานอย่างน้อย 2 คน และพยานต้องลงลายมือชื่อรับรองการทำพินัยกรรมในขณะทำด้วย
- 2.1.11.2 พินัยกรรมแบบเขียนเองทั้งฉบับ ผู้ทำพินัยกรรมจะทำเป็นเอกสารเขียนเองทั้งฉบับก็ได้ แต่ผู้ทำนั้นต้องเขียนพินัยกรรม นั้นด้วยลายมือตนเอง ลงวัน เดือน ปีที่ทำ และที่สำคัญต้องลงลายมือชื่อผู้ทำด้วย กรณีนี้จะมีพยานมารับรู้การทำพินัยกรรมด้วยหรือไม่มี ก็ได้
- 2.1.11.3 พินัยกรรมแบบเอกสารฝ่ายเมือง เป็นแบบพินัยกรรมที่ต้องอาศัยกระบวนการโดยเฉพาะที่มีเจ้าหน้าที่รัฐเข้ามาเกี่ยวข้อง ผู้ทำพินัยกรรมต้องไปแจ้งความประสงค์โดยให้ถ้อยคำข้อความของตนแก่เจ้าพนักงานที่เขตหรืออำเภอพร้อมพยานอย่างน้อย 2 คน เจ้า พนักงานจะอ่านข้อความให้ผู้ทำพินัยกรรมและพยานฟัง เมื่อเห็นว่าถูกต้องครบถ้วนแล้ว ผู้ทำพินัยกรรมพร้อมพยานทั้งสองต้องลงลายมือ ชื่อไว้ ต่อจากนั้น เจ้าพนักงานจะลงลายมือชื่อ วัน เดือน ปี ที่ทำ พร้อมประทับตราตำแหน่ง
- 2.1.11.4 พินัยกรรมแบบเอกสารลับ ผู้ทำพินัยกรรมทำพินัยกรรมแล้วปิดผนึก และนำไปที่ที่ทำการอำเภอหรือเขต ผู้ทำพินัยกรรม ต้องลงลายมือชื่อและพยานอีกอย่างน้อย 2 คน และให้ถ้อยคำต่อบุคคลเหล่านั้นว่าเป็นพินัยกรรมของตน เจ้าหน้าที่จะบันทึกถ้อยคำลง วัน เดือน ปี ที่ทำพินัยกรรมแสดงไว้บนชองและประทับตราตำแหน่งไว้เป็นสำคัญโดยผู้ทำพินัยกรรม พยานและเจ้าหน้าที่ต้องลงลายมือชื่อไว้ หน้าชองตรงที่ปิดผนึก
- 2.1.11.5 พินัยกรรมแบบทำด้วยวาจา กรณีมีพฤติการณ์พิเศษที่บุคคลไม่สามารถทำพินัยกรรมแบบอื่นที่กล่าวมาข้างต้น เช่น การตกอยู่ในภยันตรายใกล้ความตาย หรืออยู่ในระหว่างสงคราม หรือเกิดมีโรคระบาด เราสามารถทำพินัยกรรมแบบทำด้วยวาจาก็ได้ โดยผู้ ทำพินัยกรรมต้องแสดงเจตนาทำพินัยกรรมต่อหน้าพยานอย่างน้อย 2 คนพร้อมกัน พยานต้องรับฟังข้อความนั้นแล้วไปแจ้งต่อทางราชการ โดยเร็วที่สุด ทั้งยังต้องแจ้งวัน เดือน ปี สถานที่ทำพินัยกรรมและพฤติการณ์พิเศษนั้นด้วย เจ้าพนักงานต้องจดข้อความที่พยานแจ้งไว้ และ พยาน 2 คนนั้นต้องลงลายมือชื่อไว้

ข้อจำกัดและข้อควรระวังในการทำพินัยกรรม

- 1. พินัยกรรมเป็นนิติกรรมที่ต้องทำตามแบบที่กำหนดเท่านั้น
- 2. ต้องเขียน วัน เดือน ปี ลงลายมือชื่อทั้งผู้ทำพินัยกรรมและผู้ที่เป็นพยาน
- 3. ผู้ที่เป็นพยานจะต้องไม่เป็นผู้เยาว์หรือผู้หย่อนความสามารถ และต้องไม่เป็นผู้มีส่วนได้เสียในกองมรดกนั้นด้วย
- 4. ผู้ทำพินัยกรรมต้องมีอายุ 15 ปีบริบูรณ์ขึ้นไป
- 5. พินัยกรรมควรจะตั้งผู้จัดการมรดกโดยสามารถระบุผู้ทำหน้าที่ผู้จัดการมรดกที่เจ้ามรดกไว้ใจลงในพินัยกรรมไปได้

เลย

6. สิทธิ หน้าที่ และความรับผิดชอบ ก็สามารถกำหนดในพินัยกรรมได้

- 7. ทรัพย์สินที่ระบุในพินัยกรรมต้องเป็นทรัพย์สินหรือสิทธิของผู้ทำพินัยกรรมเท่านั้น ทั้งต้องแยกสินส่วนตัวออกจากสิน สมรสด้วย
- 8. เงินประกันชีวิต เงินบำเหน็จตกทอด เงินมีบำนาญตกทอด เงินฌาปนกิจสงเคราะห์ตกทอด ไม่อาจเป็นมรดกที่ระบุลง ในพินัยกรรมได้ เพราะไม่ใช่ทรัพย์ที่เจ้ามรดกมีอยู่ก่อนตาย

2.2 งานวิจัยที่เกี่ยวข้อง

ในส่วนนี้เป็นการสรุปเนื้อหาโดยรวมของงานวิจัยที่เกี่ยวข้องกับการพัฒนาโครงงาน Will Chain Web application ที่มีการใช้งาน ในส่วนของ Digital Asset คือ CryptoWill

2.2.1 CryptoWill [11]

โปรเจคนี้ได้อธิบายวิธีการทำระบบ CryptoWill ด้วยการให้ user ทำการเลือกเหรียญที่ต้องการทำ Smart Contract ที่ต้องการ ส่งให้ทายาทและหลังจากนั้นตัวระบบจะทำการให้กำหนดเวลาของการ contract นี้จะส่งต่อเมื่อไหร่ อย่างเช่น ถ้าตั้ง 2 ปี ผู้ใช้งานจะต้อง มาก่อนเวลาที่จะเกิด contract นี้ โดยรูปแบบของการทำจะมีวิธีการดำเนินการดังรูป

รูปที่ 2.2 ภาพแสดงหลักการทำงานของโปรเจค CryptoWill

โดยเจ้าของพินัยกรรมจะทำพินัยกรรมและจะเก็บสินทรัพย์ไว้ใน blockchain และหลังจากนั้นจะส่งต่อให้ทายาทไปเมื่อถึงเวลาของพินัยกรรม

2.3 เทคนิคและเทคโนโลยีที่ใช้

2.3.1 Ethereum Chain [3]

Ethereum คือแพลตฟอร์มบน Blockchain Network ที่ทำงานด้วย Smart Contract มีลักษณะแพลตฟอร์มเป็นรูปแบบ Decentralized Platform แบบ Open Source ทำให้นักพัฒนาสามารถเข้ามาพัฒนา แก้ไข หรือดัดแปลงโค้ดได้ทุกคน พร้อมทั้งกำ หนดเงื่อนไขต่าง ๆ สำหรับนำไปใช้งานบน Blockchain โดยมี Smart Contract ดำเนินการและระบบจะทำงานตามเงื่อนไขโปรแกรมที่กำ หนดมา ทำให้ผู้ใช้งาน Blockchain ของ Ethereum ทำธุรกรรมได้ โดยไม่ต้องผ่านตัวกลางอื่น

2.3.2 GitHub [12]

Git คือ Version Control ที่ถูกพัฒนาขึ้นมาเพื่อใช้ในกระบวนการพัฒนาชอฟต์แวร์ คือ ระบบที่ถูกพัฒนาขึ้นมาเพื่อใช้สำหรับการติ ดตาม ตรวจสอบ การพัฒนา แก้ไข Source Code ไฟล์ต่าง ๆ ในขั้นตอนการพัฒนา ที่สามารถตรวจสอบ ได้ทุกตัวอักษร ทุกบรรทัด ทุกไฟล์ ที่มีการแก้ไข และยังมีคุณณลักษณะที่สนับสนุนการทำงานแบบ Agile อีกด้วย จึงทำให้เราสามารถทำงานได้อย่างมีประสิทธิภาพมากยิ่งขึ้น

2.3.3 MetaMask [13]

MetaMask หรือ MetaMask Wallet กระเป๋าเงินสินทรัพย์ดิจิทัล เป็น Wallet สำหรับเก็บ Cryptocurrency บนระบบนิเวศของ Ethereum ทุกชนิด ในกลุ่ม ERC-20 ซึ่ง Metamask พัฒนาโดยบริษัท ConsenSys โดยมีผู้ก่อตั้งคือ Joseph Lubin เมื่อปี 2016 (Joseph Lubin ยังเป็นผู้ร่วมก่อตั้ง Ethereum และ เคยยังเคยเป็น Speaker ในงาน Techsauce Global Summit)

2.3.4 NestJS [14]

NestJS เป็น Framework สำหรับ Build Node.js ในฝั่ง Server-side Applications โดยสนันสนุนการทำงานแบบ

- TypeScript เต็มรูปแบบ
- OOP (Object Oriented Programming)
- FP (Functional Programming)
- FRP (Functional Reactive Programming)

2.3.5 Next.js [15]

Next.js คือ JavaScript webapps framework ถูกสร้างขึ้น on top จาก library ดัง ๆ อย่าง React, Webpack, และ Babel และมีจุดเด่นที่ server-side rendering ที่สามารถ render หน้าเว็บบน server แทนที่จะ render บน browser ได้ จึงทำให้ข้อมูลที่ส่งให้ ฝั่ง client นั้นถูก render เสร็จเรียบร้อยแล้ว ทำให้ฝั่ง client สามารถนำไปแสดงผลได้ทันที

2.3.6 Solidity [16]

Solidity คือภาษาสำหรับการสร้าง Smart Contract เป็นภาษาที่ได้รับอิทธิพลมาจาก C ++, Python และ JavaScript ที่สำคัญ เลยก็คือเป็นภาษาชนิดที่ statically typed และเป็นภาษาแบบ Object Oriented (OO) เพราะว่ามีคุณสมบัติของการสืบทอดและการทำ struct เป็นต้น

2.3.7 TypeScript [17]

TypeScript เป็นภาษาโปรแกรมที่รวมความสามารถที่ ES2015 เองมีอยู่ สิ่งที่เพิ่มขึ้นมาคือสนับสนุน Type System รวมถึงคุณ สมบัติอื่นๆที่เพิ่มมากขึ้น เช่น Enum และความสามารถที่เพิ่มขึ้นของการโปรแกรมเชิงวัตถุ TypeScript นั้นเป็น transpiler เหมือน Babel นั่นหมายความว่าตัวแปลภาษาของ TypeScript จะแปลโค๊ดที่เราเขียนให้เป็น JavaScript อีกทีนึง จึงมั่นใจได้ว่าผลลัพธ์สุดท้ายจะสามารถ ใช้งานได้บนเว็บเบราเซอร์ทั่วไป

2.3.8 Web3.js [18]

Web3.js เป็น JavaScript API ที่ทำให้ส่วนติดต่อผู้ใช้งานสามารถติดต่อและเรียกใช้ฟังก์ชันจากฝั่งของ Ethereum ได้ โดย Web3.js สามารถส่ง API ไปติดต่อกับฝั่ง Smart Contract ให้สร้าง Transaction สำหรับเรียกใช้ Methods หรือ Get ค่าตัวแปรต่าง ๆ บน Smart Contract ที่อยู่บน Ethereum Blockchain ได้

2.3.9 Hardhat [?]

Hardhat เป็น Development Environment ที่ทำให้เราสามารถพัฒนาตัว Smart Contract ได้โดย Hardhat สามารถทำ Compile, Deploy, Test, Debug ของตัว Smart contract และ สามารถ Test ตัว Smart Contract ได้บน Local Network ตัว เองได้เลย

2.3.10 IPFS [?]

IPFS เป็นเครือข่ายกระจายอำนาจแบบเพียร์ทูเพียร์ที่ช่วยให้ผู้ใช้สำรองไฟล์และเว็บไซต์โดยการโฮสต์ไว้บนโหนดจำนวนมาก ถูก สร้างขึ้นโดย Protocol Labs เป็นบริการที่อาศัยเครือข่ายคอมพิวเตอร์แบบกระจายที่โฮสต์เนื้อหา เช่น หน้าเว็บ ไฟล์ และแอปที่มิเรอร์ ซึ่ง ทั้งหมดนี้คุณสามารถดึงขึ้นมาได้โดยการป้อนลิงก์ Pinatas เป็นบริการโฮสต์ NFT ที่ใช้ IPFS เพื่อสำรองข้อมูลของสะสม crypto สำหรับคู่ ค้าเช่น Rarible และ Sorare

บทที่ 3 การออกแบบและวิธีการดำเนินงาน

เอกสารรายงานบทนี้จะกล่าวถึงระบบการทำงานของโครงงาน รวมถึงแผนภาพต่าง ๆ ที่ใช้อธิบายการทำงานในส่วนต่าง ๆ ของ ระบบ การออกแบบส่วนติดต่อผู้ใช้งาน (User Interface) ไดอะแกรมของระบบ รวมถึงขั้นตอนและวิธีการดำเนินงาน

3.1 ระบบการทำงาน

3.1.1 ภาพรวมของระบบ

โดยภาพรวมของ Will Chain (Web application) จะประกอบไปด้วย 3 ส่วนหลักดังนี้

รูปที่ 3.1 ภาพรวมแสดงการทำงานของระบบ

- ส่วนติดต่อผู้ใช้งานหรือ Frontend จะเป็นส่วนที่ผู้ใช้งานเห็น และใช้งาน
- Smart Contract จะเป็นส่วนที่ควบคุมการทำงานของระบบทั้งหมด โดยที่ผู้ใช้งานจะเข้าใช้งานผ่านทาง Frontend และจะส่งชุดคำสั่งมาเพื่อที่จะสั่งให้ Smart Contract นั้นทำงาน และจะส่งข้อมูลไปเก็บใน Blockchain ต่อไป
 - Ethereum chain สำหรับเก็บข้อมูลการใช้งานของผู้ใช้งาน

3.1.2 User Journey

รูปที่ 3.2 แสดง User Journey

3.2 Cryptocurrency Wallet

ในการออกแบบระบบการทำงานของ Will Chain web application ได้เลือกใช้งาน Cryptocurrency Wallet ที่สามารถเชื่อม ต่อกับ Ethereum chain ได้ เพื่อที่จะทำให้สามารถทดสอบ และใช้งานจริงได้บน Ethereum chain โดย Cryptocurrency Wallet โดย เลือกใช้เป็น Metamask Wallet

3.3 Diagram Unified Modelling Language (UML)

หลังจากได้เขียนความต้องการ และฟังก์ชันแล้ว จึงทำการออกแบบและเขียนแผนภาพไดอะแกรมต่าง ๆ เพื่อให้สามารถเข้าใจ ระบบการทำงานมากยิ่งขึ้น โดยมีรายละเอียดดังนี้

3.3.1 แผนภาพ Use Case Diagram

รูปที่ 3.3 แสดงการทำงานของระบบทั้งหมด Use Case Diagram

จากรูปแสดง Use Case แสดงการทำงานของระบบทั้งหมดโดยจะมีผู้ใช้งาน (User) ที่ต้องการฝากพินัยกรรมไว้ในระบบทำการใช้ งานระบบผ่าน platform ของ Will Chain Web application โดยผู้ใช้งานจำเป็นต้องเชื่อมต่อกระเป๋าเงินอิเล็กทรอนิกส์ของ meta mask ก่อนหลังจากนั้นจึงจะสามารถ สร้าง,ลบหรือ upload พินัยกรรมพร้อมทั้งมีระบบจัดการทรัพย์สินที่ผู้ใช้แนบไว้พร้อมกับพินัยกรรม และ จะมีระบบที่ทำการตรวจสอบสถานะของผู้ใช้งานเพิ่นที่จะทำการส่งผ่านพินัยกรรมไปยังผู้รับผลประโยชน์เมื่อถึงเวลา จากแผนภาพ Use Case Diagram ตามรูปที่ สามารถอธิบายรายละเอียดการทำ งานของแต่ละ Use Case ได้ดังต่อไปนี้ โดยจะกล่าวถึงในหัวข้อ Use Case Narrative ถัดไป

3.3.2 Use Case Narrative

3.3.2.1 Use Case Connect Wallet

ตารางที่ 3.1 ตารางแสดงรายละเอียดของ Use Case Connect MetaMask Wallet

Use Case Name:	Connect MetaMask wallet							
Actors:	User							
Pre-Condition:	User ต้องทำการสร้างกระเป๋าเงิน MetaMask	User ต้องทำการสร้างกระเป๋าเงิน MetaMask						
Post-Condition:	กระเป๋าเงินเชื่อมต่อกับ platform							
Brief Description:	User	System						
Flow of Event:	1.เลือกเมนู Connect Wallet	2.รอผู้ใช้งานเลือก Account และยืนยันการเชื่อมต่อ						
	3.ยืนยันการเชื่อมต่อ MetaMask Wallet	4.เชื่อมต่อ MataMask Wallet กับ Platform						
Exception:								

3.3.2.2 Use Case Create Will

ตารางที่ 3.2 ตารางแสดงรายละเอียดของ Use Case Create Will

Use Case Name:	Create Will							
Actors:	User							
Pre-Condition:	User ต้องทำการเชื่อมบัญชีกับกระเป๋าเงิน meta mas	User ต้องทำการเชื่อมบัญชีกับกระเป๋าเงิน meta mask						
Post-Condition:	พินัยกรรมถูกบันทึกเข้าระบบ							
Brief Description:	User	System						
Flow of Event:	1.เลือกเมนู Create Will	2.รอผู้ใช้งานกรอกรายละเอียดพินัยกรรมให้เสร็จ						
	3.ยืนยันการสร้างพินัยกรรม	4.บันทึกพินัยกรรมเข้าสู่ระบบ						
Exception:								

3.3.2.3 Use Case Upload Will

ตารางที่ 3.3 ตารางแสดงรายละเอียดของ Use Case Upload Will

Use Case Name:	Upload Will						
Actors:	User	User					
Pre-Condition:	User ต้องทำการเชื่อมบัญชีกับกระเป๋าเงิน meta mask						
Post-Condition:	พินัยกรรมถูกบันทึกเข้าระบบ						
Brief Description:	User	System					
Flow of Event:	1.เลือกเมนู Upload Will 2.ยืนยันการ Upload พินัยกรรม	3.บันทึกพินัยกรรมเข้าสู่ระบบ					
Exception:							

3.3.2.4 Use Case Add Asset

ตารางที่ 3.4 ตารางแสดงรายละเอียดของ Use Case Add Asset

Use Case Name:	Add Asset					
Actors:	User					
Pre-Condition:	User ต้องทำการ upload พินัยกรรมเข้าสู้ระบบ					
Post-Condition:	พินัยกรรมถูกบันทึกเข้าระบบ					
Brief Description:	User	System				
Flow of Event:	1.เลือกเมนู Add Asset 2.ทำการ upload สินทรัพย์	3.บันทึกสินทรัพย์ไว้ในพินัยกรรม				
Exception:						

3.3.2.5 Use Case Select Baneficiary

ตารางที่ 3.5 ตารางแสดงรายละเอียดของ Use Case Select Baneficiary

Use Case Name:	Select Baneficiary					
Actors:	User					
Pre-Condition:	User ต้องทำการสร้างพินัยกรรมให้เสร็จก่อน					
Post-Condition:	พินัยกรรมถูกเชื่อมกับบัญชีผู้รับมรดก					
Brief Description:	User	System				
Flow of Event:	1.เลือกเมนู Select Baneficiary	2.ให้ User กรอกบัญชีผู้รับมรดก				
THE TENE	3.ยืนยันบัญชีผู้รับมรดกที่เลือก	4.บันทึกบัญชีผู้รับมรคกเข้ากับพินัยกรรม				
Exception:						

3.3.2.6 Use Case Delete Will

ตารางที่ 3.6 ตารางแสดงรายละเอียดของ Use Case Delete Will

Use Case Name:	Delete Will	
Actors:	User	
Pre-Condition:	User ต้องมีพินัยกกรมที่ถูกสร้างไว้เรียบร้อยแล้ว	
Post-Condition:	พินัยกรรมถูกลบออกจากระบบ	
Brief Description:	User	System
Flow of Event:	 1.เลือกเมนู Delete Will 3.เลือกพินัยกรรมที่อยู่ในระบบ 4.ลบพินัยกรรมในระบบ 5.ยืนยันการลบพินัยกรรมในระบบ 	 ระบบทำการแสดงพินัยกรรมที่ถูกบันทึกในระบบ ทำการนำพินัยกรรมออกจากระบบ
Exception:		

ตารางที่ 3.7 ตารางแสดงรายละเอียดของ Use Case View Will

Use Case Name:	View Will	
Actors:	User	
Pre-Condition:	User ต้องมีพินัยกกรรมที่ถูกสร้างไว้เรียบร้อยแล้ว	
Post-Condition:	ระบบทำการแสดงพินัยกรรมในระบบให้ User	
Brief Description:	User	System
Flow of Event:	1.เลือกเมนู View Will 3.เลือกพินัยกรรมที่อยู่ในระบบที่ต้องการดู	2.ระบบทำการแสดงพินัยกรรมที่ถูกบันทึกในระบบ 4.ทำการแสดงพินัยกรรมที่ User เลือก
Exception:		

3.3.2.8 Use Case Check User Status

ตารางที่ 3.8 ตารางแสดงรายละเอียดของ Use Case Check User Status

Use Case Name:	Check user status	
Actors:	System	
Pre-Condition:	ระบบต้องทำการเชื่อม API กับเว็บไซต์กรมการปกครอง	ì
Post-Condition:	ระบบทำการตรวจสอบสถาณะของ User	
Brief Description:	User	System
		1.ระบบทำการตรวจสอบสถาณะของ User
Flow of Event:		จากข้อมูลของกรมการปกครอง
		2.ทำการบันทึกสถาณะของ User ไว้ในระบบ
Exception:		

3.3.2.9 Use Case Notify User

ตารางที่ 3.9 ตารางแสดงรายละเอียดของ Use Case Notify User

Use Case Name:	Notify user	
Actors:	System	
Pre-Condition:	User ที่ทำการสร้างพินัยกรรมเสียชีวิต	
Post-Condition:	ผู้รับผลประโยชน์ได้รับการแจ้งเตือนจากระบบ	
Brief Description:	User	System
Flow of Event:		1.ระบบทำการตรวจสอบสถาณะของ User จากข้อมูลของกรมการปกครอง 2.ระบบทำการยืนยันการเสียชีวิตของ User 3.ระบบทำการส่ง notification ผ่านทางกระเป่า metamask
Exception:		1

ตารางที่ 3.10 ตารางแสดงรายละเอียดของ Use Case Claim Will

Use Case Name:	Claim Will	
Actors:	User	
Pre-Condition:	ระบบทำการแจ้งเตือนว่าผู้ทำพินัยกรรมเสียชีวิตแล้ว	
Post-Condition:	ผู้รับผลประโยชน์เข้ามารับพินัยกรรมและสินทรัพย์	
Brief Description:	User	System
	1.เลือกเมนู Claim Will	2.ระบบทำการแสดงพินัยกรรมที่ผู้รับผลประโยชน์ สามารถรับได้
Flow of Event:	3.เลือกพินัยกรรมในระบบที่สามารถรับได้	4.ทำการส่งพินัยกรรมและสินทรัพย์ ให้ผู้รับผลประโยชน์
Exception:		

3.3.3 Smart Contract

รูปที่ 3.4 แสดงการ interaction ของ Smart Contract ของระบบ Will Chain

จากรูปแสดงการทำงานของตัว Smart Contract ของระบบ จะแบ่งเป็น 2 contract ที่ทำหน้าที่ต่างกันโดย will factory จะ ทำหน้าที่เก็บข้อมูลของทุกพินัยกรรมและรวมถึงการจัดการพินัยกรรมของระบบทั้งหมดโดย will factory สามารถทำการสร้างพินัยกรรม ที่เป็น NFT ที่ใช้ ethereum standards ERC 721 และทำการ mint เก็บไว้ที่ตัวเจ้าของพินัยกรรมและเมื่อเกิดเหตุการณ์เสียชีวิตที่ได้รับ จากระบบจะมีการ setStatusWill ให้เปลี่ยนเป็น active เพื่อที่จะทำการส่งต่อไปหาผู้รับพินัยกรรม ส่วน contract ต่อมาคือ will เป็น contract ที่ทำหน้าที่เกี่ยวกับจัดการมรดกของแต่ละพินัยกรรม โดยสามารถจัดการได้โดยเจ้าของพินัยกรรมว่าภายในพินัยกรรมของตัวเอง

3.3.4 System Architecture Diagram

รูปที่ 3.5 แสดงภาพออกแบบสถาปัตยกรรมของระบบ Will Chain

ระบบของ Will Chain มีส่วนติดต่อกับระบบอื่น ๆ แยกตามประเภทดังนี้

• User เป็นบุคคลที่ต้องการทำพินัยกรรมของ Will Chain

Front-end ของระบบ

- Next.js จะทำหน้าที่แสดงผล UI ของเว็ปไซต์ Will Chain ในการทำพินัยกรรมต่าง ๆ
- Web3.js จะทำหน้าที่ interact กับ method ต่าง ๆ ใน smart contract
- MetaMask จะทำหน้าที่เป็นตัว wallet สำหรับเก็บทรัพย์สินของเราและยังทำหน้าที่เป็นตัว login สำหรับใช้งานในระบบ

Blockchain ของระบบ

- Smart contract จะทำหน้าที่คอยจัดการ transaction ภายใน Ethereum chain
- Ethereum chain จะทำหน้าที่เก็บข้อมูล transaction และการทำพินัยกรรมต่าง ๆ ของระบบ

3.3.5 Sequence Diagram

3.3.5.1 Connect MetaMask

ตารางที่ 3.11 ตารางแสดงรายละเอียดของ Connect MetaMask Sequence Diagram

Sequence Name:	Connect MetaMask
Actors:	User
Pre-Condition:	User จะต้องทำการ Connect MetaMask เพื่อเป็นการ login ใช้งานระบบ

รูปที่ 3.6 แสดง Connect MetaMask Sequence Diagram

จากรูป จะเห็นได้ว่าเมื่อผู้ใช้งานทำงาน Connect MetaMask แล้วทางระบบของ Will Chain จะไปเรียกใช้ MetaMask ที่ทำ การติดตั้งไว้ใน Web browser ที่ทำการใช้งานอยู่ว่าให้เลือก Account ที่ต้องการทำการเชื่อมต่อ Will on Blockchain ซึ่งหลังจากทำการ เลือก Account ที่ต้องการทำการเชื่อมต่อแล้วนั้นทาง Metamask จะให้ถามหา Permission ว่าให้ทำการเชื่อม Account นี้ กับ Will on Blockchain ใช่หรือไม่และหลังจากทำการอนุญาตให้ทำการเชื่อมต่อแล้วจะเสร็จสิ้นการเชื่อม MetaMask กับ Will on Blockchain

3.3.5.2 Upload Pdf Will

ตารางที่ 3.12 ตารางแสดงรายละเอียดของ Upload Pdf Will Sequence Diagram

Sequence Name:	Upload Pdf Will
Actors:	User
Pre-Condition	User จะทำการ Upload Pdf ที่เป็นการเขียนพินัยกรรมด้วยลายมือ

รูปที่ 3.7 แสดง Upload Pdf Will Sequence Diagram

จากรูป ผู้ใช้เลือกใช้งาน Upload พินัยกรรมที่เขียนด้วยมือระบบจะแสดงฟอร์มที่ใช้สำหรับการ upload โดยหลังจากนั้นจะ ต้องทำการเลือกสินทรัพย์ที่จะทำการถ่ายทอดไปยังทายาท โดยจะแสดงสินทรัพย์ที่ทำการผูกไว้กับ Smart Contract และหลังจากนั้น จะทำการแสดงผลสินทรัพย์ของ user โดยต่อมาจะทำการเลือกทายาทที่รับผลประโยชน์โดยจะแสดงถิสของทายาทจากการที่ user ทำการ เพิ่มไว้ในระบบหลังจากนั้นจึงทำการ upload ไฟล์พินัยกรรมที่เขียนด้วยมือและหลังจาก contract success จะแสดง upload สำเร็จ

3.3.5.3 Create Will

ตารางที่ 3.13 ตารางแสดงรายละเอียดของ Create Will Sequence Diagram

Sequence Name:	Create Will
Actors:	User
Pre-Condition	User จะทำการ Create Will ที่เป็นการเขียนพินัยกรรมผ่านเว็ปไซต์

รูปที่ 3.8 แสดง Create Will Sequence Diagram

จากรูป ผู้ใช้เลือกใช้งาน Create Will จะแสดงหน้าจะแสดงฟอร์มสำหรับการทำพินัยกรรมผ่านระบบ ระบบจะให้เลือกสินทรัพย์ ดิจิตอลที่ user ทำการเชื่อมต่อไว้กับ Smart Contract โดยหลังจากนั้นจะทำการลิสต์ที่เชื่อมต่อไว้และหลังจากนั้นก็จะทำการเลือกทายาท ที่จะรับสินทรัพย์นี้ โดยจะแสดงเป็นลิสต์ของทายาทระบบจทำการเช็นสัญญาดิจิตอลเพื่อที่เป็นการทำงานคล้ายพินัยกรรมจริง ๆ สุดท้าย ระบบจะทำการ confirm เพื่อเป็นการเสร็จการทำพินัยกรรมในระบบ

3.3.5.4 Delete Will

ตารางที่ 3.14 ตารางแสดงรายละเอียดของ Delete Will Sequence Diagram

Sequence Name:	Delete Will
Actors:	User
Pre-Condition	User ต้องการที่จะลบพินัยกรรมที่เขียน

รูปที่ 3.9 แสดง Delete Will Sequence Diagram

จากรูป ผู้ใช้ต้องการทำการลบ พินัยกรรมที่มีอยู่ในระบบ โดยระบบจะทำการหาพินัยกรรมที่การที่จะลบภายใน blockchain โดย ระบบจะแสดงสินทรัพย์ที่ทำการเชื่อมไว้กับพินัยกรรมและหลังจากนั้นผู้ใช้ทำการยืนยันว่าจะลบระบบจะทำการลบพินัยกรรมที่เชื่อมไว้กับ Smart Contract โดยหลังจากนั้นจะทำการส่งพินัยกรรมที่มีสินทรัพย์อยู่ด้วยไปที่ MetaMask โดยหลังจากที่ MetaMask ได้รับสินทรัพย์ จะแสดงเตือนไปที่ผู้ใช้ว่าลบพินัยกรรมสำเร็จ

3.3.5.5 View Will

ตารางที่ 3.15 ตารางแสดงรายละเอียดของ View Will Sequence Diagram

Sequence Name:	View Will
Actors:	User
Pre-Condition	User ต้องการดูรายละเอียดพินัยกรรมที่เขียน

รูปที่ 3.10 แสดง View Will Sequence Diagram

จากรูป ผู้ใช้ทำการเลือกพินัยกรรมที่ต้องการจะแสดงโดยจะทำการเรียกใช้ฟังก์ชั่นเพื่อหาพินัยกรรมโดยหลังจากที่ Smart Contract ส่งข้อมูลของพินัยกรรมมา ตัวระบบจะทำการแสดงรายละเอียดพินัยกรรม

3.3.5.6 View Real Asset

ตารางที่ 3.16 ตารางแสดงรายละเอียดของ View Asset Sequence Diagram

Sequence Name:	View Real Asset
Actors:	User
Pre-Condition	User ต้องการดูสินทรัพย์ที่เชื่อมต่อ Smart Contract

รูปที่ 3.11 แสดง View Asset Sequence Diagram

จากรูป ผู้ใช้ต้องการดูสินทรัพย์ที่เชื่อมอยู่ Smart Contract โดยจะทำการเรียกใช้ฟังก์ชั่นเพื่อหาพินัยกรรมโดยหลังจากที่ Smart Contract ส่งข้อมูลของสินทรัพย์มา ตัวระบบจะทำการแสดงรายละเอียดสินทรัพย์นั้น

3.3.5.7 Delete Asset

ตารางที่ 3.17 ตารางแสดงรายละเอียดของ Delete Asset Sequence Diagram

Sequence Name:	Delete Asset
Actors:	User
Pre-Condition	User ต้องการที่จะลบสินทรัพย์ที่เชื่อมอยู่กับ smart contract

รูปที่ 3.12 แสดง Delete Asset Sequence Diagram

จากรูป ผู้ใช้ต้องการที่จะลบสินทรัพย์ โดยจะทำการเรียกใช้ฟังก์ชั่นเพื่อหาพินัยกรรมโดยหลังจากที่ Smart Contract ส่งข้อมูล ของสินทรัพย์มา ตัวระบบจะทำการแสดงรายละเอียดสินทรัพย์นั้นและระบบจะทำการให้ยืนยันการลบสินทรัพย์ออกจาก smart contract และหลังจากนั้นสินทรัพย์จะถูกโอนไปที่ MetaMask ของผู้ใช้และหลังจากนั้นจะแสดงการลบสำเร็จ

3.3.5.8 Check Status Death

ตารางที่ 3.18 ตารางแสดงรายละเอียดของ Check Status Death Sequence Diagram

Sequence Name:	Check status Death	
Actors:	API Death Status	
Pre-Condition	API จะทำหน้าที่ส่งข้อมูลว่า User เสียชีวิตหรือไม่	

รูปที่ 3.13 แสดง Check Status Death Sequence Diagram

จากรูป API Death Status จะทำการส่งสถานะการเสียชีวิตไปที่ระบบ will on blockchain หลังจากนั้นจะส่งไปที่ Smart Contract โดยถ้าสถานะเป็นจริง จะทำการส่งสินทรัพย์และพินัยกรรมไปที่กระเป๋าพินัยกรรมของทายาท

3.3.5.9 Create Real Asset

ตารางที่ 3.19 ตารางแสดงรายละเอียดของ Create Real Asset Sequence Diagram

Sequence Name:	Create Real Asset	
Actors:	User	
Pre-Condition	User จะทำการสร้างสินทรัพย์ประเภท Real Asset เชื่อมกับ Smart Contract	

รูปที่ 3.14 แสดง Create Real Asset Sequence Diagram

จากรูป ผู้ใช้งานต้องการทำจะเพิ่มสินทรัพย์ประเภทที่จับต้องได้อยู่จริง ระบบจะทำการแสดงประเภทของสินทรัพย์โดยผู้ใช้งาน เลือกประเภทและจะทำการกรอกข้อมูลสินทรัพย์ตามประเภทของสินทรัพย์ที่เลือกหลังจากกรอกเสร็จสิ้นจะทำการ submit เพื่อยืนยันว่า จะเก็บพินัยกรรมไว้ที่ blockchain

3.3.5.10 Create Digital Asset

ตารางที่ 3.20 ตารางแสดงรายละเอียดของ Create Digital Asset Sequence Diagram

Sequence Name:	Create Digital Asset
Actors:	User
Pre-Condition	User จะทำการสร้างสินทรัพย์ประเภท Digital Asset เชื่อมกับ Smart Contract

รูปที่ 3.15 แสดง Create Digital Asset Sequence Diagram

จากรูป ผู้ใช้จะสร้างสินทรัพย์ประเภทดิจิตอล ระบบ Will on blockchain จะแสดงประเภทของสินทรัพย์ดิจิตอล ผู้ใช้จะทำการ เลือกประเภทของสินทรัพย์ โดยระบบจะแสดงฟอร์มสำหรับการสร้างสินทรัพย์ดิจิตอลหลังจากเลือกประเภทเหรียญก็จะทำการใส่สินทรัพย์ ที่เหลืออยู่ และจึงจะทำการเก็บไว้ที่ blockchain โดยหลังจากยืนยันระบบจะแสดงว่าทำการสร้างสินทรัพย์ดิจิตอลเสร็จสิ้น

3.3.5.11 Claim Asset

ตารางที่ 3.21 ตารางแสดงรายละเอียดของ Claim Asset Sequence Diagram

Sequence Name:	Claim Asset
Actors:	Beneficiary
Pre-Condition	ทายาทจะทำการรับสินทรัพย์ที่ได้รับจากการเขียนพินัยกรรม

รูปที่ 3.16 แสดง Claim Asset Sequence Diagram

จากรูป ทายาทจะรับสินทรัพย์ที่ได้รับจากการเขียนพินัยกรรมโดยจะทำการเช็คไปที่ Smart Contract ถ้า API check status death ส่งสถานะมาว่าเสียชีวิต ระบบจะทำการแสดงพินัยกรรม ต่อมาผู้ใช้จะทำการ enter เพื่อที่จะทำการรับพินัยกรรมหลังจากนั้น Smart Contract ส่งแจ้งเตือนว่าให้ทำการยืนยันอีกรอบเพื่อที่ระบบจะทำการนำสินทรัพย์ไปเก็บไว้ที่ MetaMask ของผู้ใช้หลังจากทำ รายการรับสินทรัพย์เสร็จแล้วระบบจะแสดงผลลัพท์รับสินทรัพย์เสร็จสิ้น

3.4 ส่วนติดต่อผู้ใช้งาน (User Interface)

การออกแบบส่วนติดต่อผู้ใช้งาน โดยการออกแบบ Will Chain ได้คำนึงถึงการใช้งานของผู้ใช้งาน

3.4.1 หน้าแรก

รูปที่ 3.17 หน้าแรก

จากรูปเป็นหน้าแรกของแพลตฟอร์ม Web application Will Chain ที่ยังไม่ได้ทำการเข้าสู่ระบบ โดยจะประกอบไปด้วย Concept ของแพลตฟอร์ม รวมไปถึงการเข้าถึงคู่มือการใช้งาน และยังสามารถที่ปุ่มขวาบนเพื่อเข้าใช้งานด้วย MetaMask Wallet

3.4.2 หน้าโปรไฟล์

รูปที่ 3.18 หน้าโปรไฟล์

จากรูปเป็นหน้าโปรไฟล์ที่เมื่อกดปุ่มที่แสดงเลข Public key ทางด้านขวาบน จะเข้ามาสู่หน้าโปรไฟล์ ที่จะมีแสดงเลข Public key ของ MetaMask และมีช่องให้ใส่เลขบัตรประจำตัวประชาชน เพื่อยืนยันสำหรับการสืบทอดพินัยกรรม

3.4.3 หน้าสินทรัพย์ของคุณ

รูปที่ 3.19 หน้าสินทรัพย์ของคุณ

จากรูปเป็นหน้าสินทรัพย์ ที่เมื่อกดที่เมนูสินทรัพย์ในแถบเมนูด้านบน จะเข้าสู่หน้านี้ โดยที่จะแสดงสินทรัพย์ และสินทรัพย์ดิจิทัล โดยในส่วนของสินทรัพย์สามารถที่จะแสดงรายละเอียดของสินทรัพย์ที่เคยเพิ่มเข้าไปในระบบ โดยจะแสดงข้อมูล อย่างเช่น ลำดับ ชื่อ ชนิด ข้อมูลสินทรัพย์ สถานะ เป็นต้น โดยที่จะสามารถกด "ดูข้อมูล" เพื่อดูรายละเอียดที่เพิ่มมากขึ้น และสามารถกด "ลบสินทรัพย์" เพื่อลบ สินทรัพย์นั้น ๆ ต่อมาจะเป็นในส่วนของสินทรัพย์ดิจิทัล อย่างเช่น Cryptocurrency, NFT เป็นต้น ที่จะแสดงรายละเอียดของสินทรัพย์ ดิจิทัลที่ดึงมาจาก MetaMask Wallet ตามในตาราง โดยจะแสดงข้อมูล อย่างเช่น ลำดับ ชื่อ จำนวนคงเหลือ ชนิด เป็นต้น และสามารถกด ปุ่ม "ดูข้อมูล" เพื่อดูรายละเอียดเพิ่มเติมได้ และมีปุ่ม "เพิ่มสินทรัพย์" เพื่อไปยังหน้าของการเพิ่มสินทรัพย์

3.4.4 หน้าบันทึกสินทรัพย์

รูปที่ 3.20 หน้าบันทึกสินทรัพย์

จากรูปเป็นหน้าบันทึกสินทรัพย์ ที่หลังจากกดปุ่ม "เพิ่มสินทรัพย์" โดยในหน้านี้จะเป็นการบันทึกสินทรัพย์ในชีวิตจริง โดยที่จะมี ช่องให้ระบุชื่อของสินทรัพย์ ชนิดของสินทรัพย์ อย่างเช่น ฉโนดที่ดิน เล่มทะเบียนรถยนต์ เป็นต้น และช่องสุดท้ายคือการอัพโหลดไฟล์ ป็น pdf โดยที่จะมีตัวเลขกำกับด้านล่างว่า เป็นสินทรัพย์ชิ้นที่เท่าไรในการเพิ่ม และสามารกดเครื่องหมาย "+" เพื่อเพิ่มฟอร์มในการเพิ่มสิน ทรัพย์ชิ้นถัดไปได้ โดยสามารถกดปุ่ม "บันทึกข้อมูล" เพื่อบันทึกข้อมูล และกดปุ่ม "ยกเลิก" เพื่อย้อนกลับไปหน้าแรกได้

3.4.5 หน้ารายชื่อคนรับมรดก

รูปที่ 3.21 หน้ารายชื่อคนรับมรดก

จากรูปเป็นหน้ารายชื่อคนรับมรดก ที่จะแสดงรายชื่อของคนที่เพิ่มเข้ามาในระบบเพื่อรอการทำพินัยกรรมและสืบทอดต่อไปตาม ในตาราง โดยจะแสดง ลำดับ ชื่อ เลขกระเป๋า MetaMask Wallet และพินัยกรรมที่ได้รับ โดยที่สามารถกดปุ่ม "ลบรายชื่อ" เพื่อลบราย ชื่อนั้นออกจากระบบ และสามารเพิ่มรายชื่อได้ โดยการกดที่ปุ่ม "เพิ่มรายชื่อ"

3.4.6 หน้าพินัยกรรมของคุณ

รูปที่ 3.22 หน้าพินัยกรรมของคุณ

จากรูปเป็นหน้าพินัยกรรมของคุณ จากการกดที่เมนู "พินัยกรรม" ด้านบน โดยที่ในหน้านี้จะแสดงพินัยกรรมที่มีอยู่ในระบบ ของผู้ใช้คนนี้ โดยที่ใน 1 พินัยกรรม จะแสดงเลขฉบับที่ของพินัยกรรม สถานะของพินัยกรรม และสามารถกดปุ่ม "ดูพินัยกรรม" เพื่อ ดูพินัยกรรมที่เป็นไฟล์ pdf ฉบับจริงได้ โดยในตารางด้านล่างนั้นจะแสดงจำนวนผู้รับพินัยกรรมและรายชื่อของคนที่รับพินัยกรรม ต่อมา คือแสดงสินทรัพย์ทั้งหมดที่อยู่ในพินัยกรรมฉบับนี้ และแสดงสินทรัพย์ สุดท้ายคือแสดงสินทรัพย์ดิจิทัลทั้งหมดในพินัยกรรมนั้น และแสดง ชนิดของสินทรัพย์ดิจิทัล โดยที่สามารถกดที่ปุ่ม "ดูข้อมูล" เพื่อดูข้อมูลเพิ่มเติม และสามารถกดปุ่ม "ลบพินัยกรรม" เพื่อลบพินัยกรรมนั้น ออกจากระบบได้

3.4.7 หน้าบันทึกพินัยกรรม

รูปที่ 3.23 บันทึกพินัยกรรม

รูปที่ 3.24 drop down เลือกคนรับพินัยกรรม

รูปที่ 3.25 drop down สินทรัพย์

รูปที่ 3.26 drop down สินทรัพย์ดิจิทัล

จากรูปเป็นหน้าบันทึกพินัยกรรม ที่จะสามารถบันทึกพินัยกรรมได้ที่หน้านี้ โดยจะเข้าหน้านี้หลังจากกดที่ปุ่ม "เพิ่มพินัยกรรม" ในหน้าพินัยกรรมของคุณ โดยที่จะมีฟอร์มให้ระบุ 2 ส่วน ส่วนแรกคือในส่วนของพินัยกรรมที่จะให้ใส่ชื่อพินัยกรรม และอัพโหลดไฟล์ พินัยกรรมฉบับจริงเป็นไฟล์ pdf ส่วนที่สองคือฟอร์มสำหรับสินทรัพย์โดยที่จะสามารถระบุผู้ที่ได้รับสินxรถกดเลือกว่าจะเพิ่มสินทรัพย์ชนิด ใด แล้วตัวฟอร์มจะเพิ่มมาตามชนิดสินทรัพย์ที่เลือกเอาไว้ โดยสำหรับสินทรัพย์ จะสามารถกดที่ drop down ตามรูปที่ 3.25 เพื่อเลือก สินทรัพย์ได้ และสำหรับสินทรัพย์ดิจิทัลได้ และสามารถใส่จำนวนของ สินทรัพย์ดิจิทัลได้ โดยที่จะมีตัวเลขแสดงด้านล่างเพื่อระบุว่าเป็นบุคคลที่เท่าไรที่ได้รับสินทรัพย์จากพินัยกรรมนั้น และสามารถเพิ่มคนถัด ไปได้ โดยการกดปุ่ม "+" สุดท้ายคือสามารถกดปุ่ม "บันทึกข้อมูล" เพื่อเสร็จสิ้นการใส่ข้อมูล หรือกดปุ่ม "ยกเลิก" เพื่อยกเลิกการทำงาน และย้อนกลับไปหน้าหลัก

3.4.8 หน้าพินัยกรรมที่ได้รับ

รูปที่ 3.27 พินัยกรรมที่ได้รับ

จากรูปเป็นหน้าพินัยกรรมที่ได้รับ ที่หลังจากมีการส่งต่อพินัยกรรมเนื่องมาจากการเสียชีวิต ในหน้านี้จะแสดงพินัยกรรมที่ได้รับ โดยที่สามารถกดปุ่ม "ดูพินัยกรรม" ที่จะสามารถดูพินัยกรรมที่เป็นฉบับจริงเป็น pdf ได้ และในตารางจะมีแสดงรายละเอียดของคนที่ได้ รับ สินทรัพย์ที่ได้รับ และสินทรัพย์ดิจิทัลที่ได้รับ และสามารถกดรับสินทรัพย์ทั้งหมดได้

3.5 ออกแบบการทดสอบ

ทดสอบด้วยการจำลองการใช้งานผ่าน platform โดยมี function ที่จะทดสอบดั้งนี้

- 3.5.1 Function connect MetaMask wallet สำหรับการเชื่อมต่อ wallet ของผู้ใช้งานเข้ากับ MetaMask เพื่อเตรียมพร้อมต่อการ ทดสอบ function อื่น ๆ
 - 3.5.2 Function เกี่ยวกับการจัดการพินัยกรรมรวมถึงการเพิ่มผู้รับผลประโยชน์และสินทรัพย์
 - 3.5.3 Function เกี่ยวกับการจัดการสิยทรัพย์ที่ผู้ใช้ทำการลงทะเบียนไว้ในระบบ
 - 3.5.4 Function การส่งพินัยกรรมและสินทรัพย์ไปให้ผู้รับมรดก

บทที่ 4 ผลการดำเนินงาน

4.1 Site map

- 4.1.1 Homepage
- 4.1.2 หน้าโปรไฟล์
- 4.1.3 สินทรัพย์ของคุณ
- 4.1.4 หน้าบันทึกสินทรัพย์
- 4.1.5 หน้าพินัยกรรมของคุณ
- 4.1.6 หน้าบันทึกพินัยกรรม
- 4.1.7 หน้าพินัยกรรมที่ได้รับ

4.2 Token ที่ใช้ใน Will-Chain

4.2.1 Will-Chain

Will-Chain คือ NFT ที่ทำหน้าที่แทนพินัยกรรมซึ่งทำงานบนระบบ Ethereum โดยใช้มาตรฐาน ERC-721 ซึ่งภายใน Will-Chain จะเก็บสินทรัพย์ของผู้ ทำพินัยกรรมและรายละเอียดของพินัยกรรมต่าง ๆ โดยเมื่อสร้างพินัยกรรมจาก willFactory contract จะทำหน้าที่ไป mint ตัวเหรียญ Will-Chain ออกมา

4.2.2 ETH

ETH คือ เหรียญดิจิทัลที่ใช้เทคโนโลยีบล็อกเชนทำงานอยู่เบื้องหลัง เพื่อใช้จ่ายสำหรับค่าธรรมเนียม สำหรับทุก Smart Contract ที่ผู้ใช้งานต้องการจะใช้บน Ethereum chain

4.3 Test Plan

4.3.1 Validation Testing

ตรวจสอบว่า Software ตรงตาม Requirement หรือไม่ บันทึกข้อผิดพลาดพร้อมกับการแก้ไข

4.3.2 Verification Testing

ตรวจสอบว่า Software ออกแบบได้ตรงตาม UX/UI ที่ออกแบบไว้หรือไม่ ตรวจสอบว่า Software ออกแบบได้ตรงตาม Architecture หรือไม่ ตรวจสอบว่า Software ออกแบบได้ตรงตาม UML design หรือไม่

4.4 Software Testing

System Testing จะใช้การทำ Unit Testing โดยทำการแยกการทดสอบเป็น function ต่าง ๆ ดังนี้

4.4.1 Test Case

Page	Test case	Result
Profile	ใส่รหัสบัตรประชาชนถูกต้อง	
	ใส่รหัสบัตรประชาชนที่ไม่มีในระบบ	
	ใส่รหัสบัตรประชาชนไม่ครบ/เกิน	
	เลือก menu สินทรัพย์	
	เลือก menu พินัยกรรม	
	เลือก menu พินัยกรรมที่ได้รับ	
สินทรัพย์ของคุณ	เลือกเพิ่มสินทรัพย์	
	เลือกลบสินทรัพย์	
	เลือกดูข้อมูลสินทรัพย์	
บันทึกสินทรัพย์	กรอกข้อมูลปรกติแล้วกดบันทึก	
	ไม่กรอกชื่อสินทรัพย์	
	ไม่เลือกข้อมูลเพิ่มเติม	
	ไม่อัพโหลดไฟล์สินทรัพย์	
	เพิ่มจำนวนสินทรัพย์	
	กรอกข้อมูลสินทรัพย์ไม่ครบทุกหน้า	
รายชื่อคนรับมรดก	เลือกเพิ่มรายชื่อ	
	เลือกลบรายชื่อ	
พินัยกรรมของคุณ	เลือกเพิ่มพินัยกรรม	
	เลือกลบพินัยกรรม	
	เลือกดูข้อมูลพินัยกรรม	
บันทึกพินัยกรรม	กรอกข้อมูลปกติแล้วกดบันทึก	
	ไม่กรอกชื่อพินัยกรรม	
	ไม่อัพโหลดไฟล์พินัยกรรม	
	ไม่เลือกผู้ได้รับมรดก	
	ไม่เลือกชนิดของสินทรัพย์ที่ได้รับ	
	เลือกชนิดของสินทรัพย์ไม่ตรงกับสินทรัพย์ที่ได้รับ	
	มอบสินทรัพย์มากว่าที่มีอยู่	
หน้าพินัยกรรมที่ได้รับ	เลือกดูพินัยกรรม	
	กดรับสินทรัพย์ก่อนเวลา	
	กดรับสินทรัพย์เมื่อถึงเวลา	
	1	

หลังจากผ่าน System testing แล้วจะนำไปให้ User ทำการทดสอบว่าตอบสนองความต้องการหรือไม่ โดยจะนำไปให้บุคคลที่มี สินทรัพย์ดิจิทัลที่มีความต้องการที่จะทำพินัยกรรมทดลองใช้ Will Chain ของเรา

- ความง่ายในการใช้งาน
- ความน่าเชื่อถือของ Software
- ความเสถียร ของ Software

หนังสืออ้างอิง

- 1. International Business Machines Corporation, "What is Blockchain Technology?," Available at www.ibm.com/topics/what-is-blockchain, [Online; accessed 5-September-2022].
- 2. Ethereum, 2022, "ERC-20 TOKEN STANDARD," Available at ethereum.org/en/developers/docs/standards/tokens/erc-20/, [Online; accessed 5-September-2022].
- 3. Ethereum, 2022, "What is Ethereum?," Available at ethereum.org/en/what-is-ethereum/, [Online; accessed 5-September-2022].
- 4. Thanyavuth Akarasomcheep, 2018, ``Scrum คืออะไร เริ่มใช้งานอย่างไร?," Available at medium.com/fastwork-engineering/scrum-คืออะไร-เริ่มใช้งานอย่างไร-2483e761a47e, [Online; accessed 5-September-2022].
- 5. Kulawat Pom Wongsaroj, 2019, ``จะเลือก Scrum หรือ Kanban ดี?," Available at kulawat.medium.com/จะเลือก-scrum-หรือ-kanban-ดี-f7c0743f8a45, [Online; accessed 5-September-2022].
- 6. International Business Machines Corporation, "What are smart contracts on blockchain?," Available at www.ibm. com/topics/smart-contracts, [Online; accessed 5-September-2022].
- 7. RAKESH SHARMA, 2022, 'Non-Fungible Token (NFT): What It Means and How It Works," Available at www. investopedia.com/non-fungible-tokens-nft-5115211, [Online; accessed 5-September-2022].
- 8. ADAM BARONE, 2022, "What Is an Asset? Definition, Types, and Examples," Available at www.investopedia.com/terms/a/asset.asp, [Online; accessed 5-September-2022].
- 9. Siam Commercial Bank, "What are digital assets?," Available at www.scb.co.th/en/personal-banking/stories/digital-asset.html, [Online; accessed 5-September-2022].
- 10. Siam Commercial Bank, "พินัยกรรม ทำอย่างไร," Available at www.scb.co.th/th/personal-banking/stories/tips-for-you/testament.html, [Online; accessed 5-September-2022].
- 11. RudreshVeerkhare, "CryptoWill," Available at github.com/RudreshVeerkhare/CryptoWill, [Online; accessed 29-October-2022].
- 12. GitHub, "GitHub," Available at github.com, [Online; accessed 5-September-2022].
- 13. MetaMask, "MetaMask," Available at https://metamask.io/, [Online; accessed 5-September-2022].
- 14. NestJS, "NestJS," Available at docs.nestjs.com, [Online; accessed 5-September-2022].
- 15. NextJS, ``Next.js by Vercel The React Framework," Available at nextjs.org/docs, [Online; accessed 5-September-2022].
- 16. Solidity, "Solidity," Available at docs.soliditylang.org, [Online; accessed 5-September-2022].
- 17. TypeScript, "TypeScript," Available at www.typescriptlang.org, [Online; accessed 5-September-2022].
- 18. Web3.js Developer Team, ``web3.js Ethereum JavaScript API," Available at web3js.readthedocs.io/en/v1.8.1/, [Online; accessed 5-September-2022].