Отчет о выполнении лабораторной работы 5.10.1 Электронный парамагнитный резонанс

Выполнил: Голубович Тимур, группа Б01-110 08.11.2023

Цель работы

Исследовать электронный парамагнитный резонанс в молекуле Д Φ ПГ, определить g-фактор электрона, измерить ширину ЭПР.

Оборудование и приборы

Источник γ -квантов со свинцовым коллиматором; набор поглотителей из различных материалов; сцинтилляционныйй счётчик; пересчётный прибор.

Теоретическое введение

Энергетический уровень электрона в присутствии магнитного поля с индукцией B расщепляется на два подуровня, расстояние между которыми равно

$$\Delta E = E_2 - E_1 = 2\mu B_0.$$

Здесь μ – абсолютная величина проекции магнитного момента на направление поля.

Между этими двумя уровнями возможны переходы. Эти переходы могут возбуждаться внешним высокочастотным электромагнитным полем, если оно имеет нужную частоту и нужное направление.

Резонансное значение частоты определяется из очевидной формулы:

$$\hbar\omega_0 = \Delta E$$
.

При переходе с нижнего на верхний уровень энергии электрон поглощает квант электромагнитной энергии, а при обратном переходе такой же квант излучается. Возбуждение электронных резонансных переходов электромагнитным полем, имеющим частоту ω_0 , носит название электронного парамагнитного резонанса (ЭПР).

В настоящей работе необходимо получить сигнал ЭПР на кристаллическом дифенилпикрилгидразиле (ДФПГ) и определить значение g-фактора для электрона. Как известно, связь между магнитным моментом μ электрона и его механическим моментом \mathbf{M} выражается через гиромагнитное отношение γ с помощью формулы

$$\mu = \gamma M$$
.

Если магнитный момент частицы измерять в магнитонах Бора, а механический - в \hbar , то их связь можно записать через g-фактор:

$$\frac{\mu}{\mu_{\rm B}} = g \frac{M}{\hbar} = g \frac{s\hbar}{\hbar} = gs = \frac{\hbar\omega_0}{2B_0\mu_{\rm B}}$$

,где s = 1/2 – спин электрона Значит g-фактор:

$$g = \frac{\hbar\omega_0}{\mu_{\rm B}B_0}.$$

Экспериментальная установка

Схема экспериментальной установки приведена на рис.1.

Рис. 1: Схема экспериментальной установки.

Схема установки представлена на Рис. 1. Образец (порошок ДФПГ) в стеклянной ампуле помещается внутрь катушки индуктивности, входящей в состав колебательного контура. Входящий в состав контура конденсатор состоит из двух пластин, разделённых воздушным зазором, одна из пластин может перемещаться поворотом штока. Колебания в контуре возбуждаются антенной, соединённой с генератором высокой частоты (ВЧ) Г4-116. Амплитуда колебаний поля в катушке индуктивности измеряется по наводимой в петле связи ЭДС индукции. Высокочастотные колебания

ЭДС индукции в приёмном контуре детектируются диодом, измеряемая при помощи осциллографа низкочастотная огибающая этого сигнала пропорциональна квадрату амплитуды колебаний поля в катушке.

Постоянное магнитное поле создаётся пропусканием тока от источника постоянного тока через основные катушки.

Ход работы

Характеристики пробной катушки

N, шт	D, mm
49	14.3

1. Настройка ВЧ генератора на частоту колебательного контура. Подстройкой частоты добиваемся максимальной амплитуды сигнала на экране осциллографа. Эта частота равна $f_0 = 124.0 \ \mathrm{M}\Gamma$ ц. Осциллограмма при настройке генератора изображена на рис.2.

Рис. 2: Осциллограмма при настройке генератора.

2. **Наблюдение сигнала резонансного поглощения.** Для этого подключаем основные катушки к источнику постоянного тока, а модуляционные катушки к трансформатору ЛАТР. Подбираем величину постоянного магнитного поля в основных катушках так, чтобы наблюдался сигнал резонансного поглощения. Добиваемся эквидистантности пиков.

Зафиксированный сигнал изображен на рис. 3.

Рис. 3: Осциллограмма сигнала поглощения при резонансном постоянном поле.

Вносим пробную катушку в соленоид и измеряем ЭДС-индукции:

$$U = (11.14 \pm 0.01) \text{ MB}$$

По этой величине можем рассчитать величину постоянного магнитного поля:

$$U = N_{
m npo6} S \omega B_0 = > B_0 = \frac{U}{N_{
m npo6} S \omega} = (4.51 \pm 0.01) {
m MT}$$
л

, где $S=\frac{\pi(D)^2}{4}$ — площадь сечения пробной катушки, $\omega=2\pi\vartheta$ — угловая частота переменного тока, $\vartheta=50$ Гц.

3. **Определение ширины линии поглощения.** Переводим осциллограф в режим XY-развертки.

Х - напряжение на модулирующих катушках

Y - сигнал с детектора

Добиваемся появления хорошо прорисованной линии резонансного поглощения. Подстройкой фазовращателя совмещаем два пика, соответствующих прохождению резонансного поглощения на растущем и падающем полупериодах модулирующего напряжения. Наблюдаемый сигнал изображен на рис.5.

Рис. 4: Линия резонансного поглощения в режиме ХҮ-развертки.

4. Для определения ширины линии ЭПР определим по экрану осцилографа полный размах поля A_0 и полную ширину кривой резонансного поглощения на полувысоте $A_{\frac{1}{2}}$.

$$A_0 = 6.0 \pm 0.2$$
дел

$$A_{rac{1}{2}} = 0.6 \pm 0.2$$
 дел

При помощи пробной катушки определим амплитуду модуляции магнитного поля. Для этого внесем её внутрь соленоида. Переменное поле модуляционных катушек наводит в пробной катушке ЭДС индукции ε , по которой можно определить величину поля. Измеренное ЭДС индукции:

$$\varepsilon = (3.21 \pm 0.01) \text{MB}$$

Амплитуда модулирующего поля:

$$B_{ ext{mod}} = rac{2\sqrt{2}arepsilon}{\pi^2 d_{ ext{npo6}}^2 N_{ ext{npo6}} artheta} = (1.84 \pm 0.01) \; ext{мТл}$$

, где $\vartheta = 50~\Gamma$ ц – частота модулирующего напряжения

Тогда ширина линии ЭПР:

$$\Delta B = rac{A_{rac{1}{2}}}{A_0} B_{ ext{mod}} = (0.18 \pm 0.06) \; ext{м}$$
Тл

5. Определение g-фактора. По полученным данным определяем значение эффективного g-фактора исследуемого вещества ($\hbar=1.054\cdot 10^{-34}$ Дж c, $\mu_{\rm B}=927.4\cdot 10^{-26}$ Дж/Тл):

$$g = \frac{\hbar\omega_0}{\mu_{\rm B}B_0} = \frac{\hbar 2\pi f_0}{\mu_{\rm B}B_0} = (1.96 \pm 0.01)$$

Табличное значение g-фактора свободного электрона - $g_{\text{своб}} = 2.0036$. Отклонение от табличного значения - 1%.

Вывод

В данной работе мы исследовали ЭПР в молекуле ДФПГ. Измерили

Ширину линии резонансного поглощения, ее значение составило $\Delta B = 0.18$ мТл.

g-фактор электрона, значение которого составило g=1.96. Данное значение совпадает с точностью 1% с табличным значением для свободного электрона $g_{\text{своб}}=2.0036$, это свидетельствует о том, что ЭПР происходит на неспаренных электронах почти так же, как и на свободных.

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- обратное рассеяние (пики обратного рассеяния)
- аннигиляция позитронов (пик 511 keV в спектре натрия, по которому проводилась калибровка)

Все значения энергии, опеределённые по спектрам, практически совпадали с табличными и расчётными.

Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.

Список литературы

[1] Лабораторный практикум по общей физике. В 3 томах. Том 3. Квантовая физика: учебное пособие под ред. Ю. М. Ципенюка