School of Mathematics and Statistics Math1131-Algebra

Lec20: Properties of Determinants

Laure Helme-Guizon (Dr H)
Laure@unsw.edu.au
Jonathan Kress
j.kress@unsw.edu.au

Red-Centre, Rooms 3090 and 3073

2020 Term 1

Determinants and inverses

Exercise 1. Use $\det(AB) = \det(A)\det(B)$ to prove that

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Properties of determinants

Properties of determinants

- (a) $det(A^T) = det(A)$
- (b) det(AB) = det(A)det(B)
- (c) $R_i \leftarrow R_i + \alpha R_j$ for $i \neq j$ does not change the determinant.
- $R_i \leftrightarrow R_j$ for $i \neq j$ changes the sign of the determinant.
- (e) $R_i \leftarrow \alpha R_i$ scales the determinant by α .
- If A has a zero row or column then det(A) = 0.

Some important consequences:

Note that it is α^n not α

- (h) $\det(A^{-1}) = 1/\det(A)$.
- Swapping two columns changes the sign of the determinant.
- Row operations can simplify the calculation of determinants.
- (k) A is invertible if and only $det(A) \neq 0$.
- If one row of A is a multiple of another row then det(A) = 0. (I)
- If one column of A is a multiple of another column then det(A) = 0. (m)

Exercise 2.

Suppose that A is a 3×3 matrix and $\det(A) = 5$. Find $\det(B)$ if B is given by

- 1. A^T .
- 2. A with the first two rows swapped.
- 3. A with the first two rows swapped and the last two columns swapped.
- 4. A with the second row multiplied by 7.
- 5. 2*A*.
- 6. A with the second row replaced by 3 times the first row.
- 7. A^{-1} .

Determinants: Checking the rules on an example

Exercise 3. Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix}$$
.

- 1. Find det(A).
- 2. Check that $R_2 \leftarrow R_2 5R_1$ doesn't change the determinant.
- 3. Check that $C_2 \leftarrow C_2 + 4C_1$ doesn't change the determinant.
- 4. Show that $R_2 \leftarrow 3R_2 + 4R_1$ does change the determinant.

Determinants: Checking the rules on an example

Exercise 3, continued.
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix}$$
.

- 4. Show that $R_2 \leftarrow 3R_2 + 4R_1$ does change the determinant.
- 5. Find the determinant after swapping the rows of A.
- 6. Reduce A to echelon form and find the determinant.

Determinants and inverses

Determinants and inverses.

For a square matrix A, the following are equivalent:

- $det(A) \neq 0$
- \bullet A is invertible
- $A\overrightarrow{x} = \overrightarrow{0}$ has the unique solution $\overrightarrow{x} = \overrightarrow{0}$
- $A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution for all $\overrightarrow{b} \in \mathbb{R}^n$.

The determinant is a detector of invertible matrices

Exercise 4. Last lecture, we found that
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 does not have an inverse.

Verify this fact by checking that $\det(A) = 0$.

Exercise 5. For what values of
$$\alpha$$
 is $A=\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ \alpha & 0 & 1 \end{pmatrix}$ invertible?

Determinants with Maple

Exercise 6. Find
$$\begin{vmatrix} 1 & -1 & 0 & 3 \\ 2 & -2 & 6 & -1 \\ 4 & -2 & 1 & 7 \\ 3 & 5 & -7 & 2 \end{vmatrix}$$

Exercise 7. Find
$$\begin{vmatrix} 1 & 5 & 4 & 3 \\ 3 & -2 & 12 & -2 \\ 1 & -3 & 4 & 3 \\ 2 & -11 & 8 & 1 \end{vmatrix}$$

Exercise 8. Let $t \in (-\pi, \pi]$. For what values of t is

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 + \cos t & 1 + \sin 2t \\ 1 & 1 + \sin t & 1 + \sin 2t \end{pmatrix}$$

invertible?

Exercise 8, continued. Let $t \in (-\pi, \pi]$. For what values of t is

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 + \cos t & 1 + \sin 2t \\ 1 & 1 + \sin t & 1 + \sin 2t \end{pmatrix}$$

invertible?

Determinant with Maple

```
> restart:
   with (LinearAlgebra):
> # Enter the matrices columnwise
  A := \langle \langle 1, 1, 1 \rangle | \langle 1, 1 + \cos(t), 1 + \sin(t) \rangle | \langle 1, 1 + \sin(2*t), 1 + \sin(2*t) \rangle >;
                                    A := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 + \cos(t) & 1 + \sin(2t) \\ 1 & 1 + \sin(t) & 1 + \sin(2t) \end{bmatrix}
> # Calculate the determinant of A
   Det of A := Determinant(A);
                               Det of A := \cos(t) \sin(2t) - \sin(2t) \sin(t)
> # Factorise the determinant of A
   factor (Det of A);
                                         \sin(2t)(\cos(t) - \sin(t))
> # A is invertible unless det(A) = 0
    solve (Det of A = 0, t);
                                                    \frac{\pi}{4}, 0
```


THE END

- Check online that your marks are correctly recorded.
- Read the information about the online final exam on Moodle!
- Make sure you book at time for your exam.
- Past papers with solutions are in the course pack and on Moodle. The 2019 past paper give you an idea of what to expect.
- A link to last semester's exam revision live stream will be posted online.
- Make sure you have a UNSW approved calculator.
- Please complete the myExperience surveys.
- A pre-exam consultation roster will be posted on Moodle.

Good luck!

