Association Rule Mining FPGrowth

Huiping Cao

Issues with Apriori-like approaches

■ Candidate set generation is costly, especially when there exist prolific patterns and/or long patterns.

 Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without Candidate Generation. SIGMOD 2000:1-12.

Concepts

- Set of items: $I = \{a_1, \dots, a_m\}$
- Transaction database: $DB = \langle T_1, \dots, T_n \rangle$ where T_i is a transaction containing a set of items in I.
- A pattern A: a set of items
- Support (or occurrence frequency) of a pattern A: the number of transactions that contain A, denoted as sup(A)
- Frequent pattern: if $sup(A) \ge \xi$
- Problem: Given DB and ξ , find the complete set of frequent patterns.

Running example & basic ideas

• Given $\xi = 3$ and DB

	,	
TID	Items Bought	
100	f, a, c, d, g, i, m, p	
200	a, b, c, f, l, m, o	
300	b, f, h, j, o	
400	b, c, k, s, p	
500	a, f, c, e, l, p, m, n	

- Observations and basic ideas
 - Only keep the frequent items in the transaction (one scan)
 - Store the set of frequent items in a compact data structure (FP-tree)

Construct a frequent pattern tree (Example)

■ Scan DB once, find frequent 1-itemset (single item pattern) A scan of *DB* to derive a list of frequent items

$\langle (f:4), (c:4), (a:3), (b:3), (m:3), (p:3) \rangle$			
TID	Items Bought	(Ordered) Frequent Items	
100	f, a, c, d, g, i, m, p	f, c, a, m, p	
200	a, b, c, f, l, m, o	f, c, a, b, m	
300	b, f, h, j, o	f, b	
400	b, c, k, s, p	c, b, p	
500	a, f, c, e, l, p, m, n	f, c, a, m, p	

- Sort frequent items in frequency descending order, f-list = f c a b m p
- Scan DB again, construct FP-tree

Construct a frequent pattern tree (Example)

- Create the root of a tree labeled with null.
- Scan the DB the second time to update the tree.
 - 1st transaction: creates a branch \((f:1),(c:1),(a:1),(m:1),(p:1)\)
 2nd transection: (f, c, a, b, m), which shares a common prefix
 - (f, c, a) with the first transaction
 - the count of each node along the prefix is incremented by $\boldsymbol{1}$
 - Create a new node (b:1) as a child of (a:2)
 - Create a new node (m:1) as a child of (b:1)
 - 3rd transaction: (f, b), which share a common prefix f with the previous two transactions
 - the count for node with f is incremented by 1
 - create a new node (b:1) as a child of (f:3)
 - 4th transaction: (c, b, p), create a second branch $\langle (c:1), (b:1), (p:1) \rangle$
 - 5th transaction: is identical to the 1st transaction, increment the counts on each node.

Header table

- head of node-link
- node-links

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to *f*-list
 - f-list=f c a b m p
 - Patterns containing p
 - Patterns having *m* but no *p*,
 - . . .
 - Patterns having c but no a nor b, m, p
 - Pattern f

Conditional pattern base

item	cond. pattern base	
С	f:3	
а	fc: 3	
b	fca:1, f:1, c:1	
m	fca:2, fcab:1	
р	fcam:2, cb:1	

From Conditional Pattern-bases to Conditional FP-trees

■ For each pattern-base

Accumulate the count for each item in the base

 Construct the FP-tree for the frequent items of the pattern base

Algorithm - Mining frequent patterns using FP-Tree

- Node-Link property: for any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node links, starting from a_i 's head in the FP-tree header.
- All patterns that a_i participate: start from a_i 's head and follow a_i 's node-links
- Start from the bottom of the header table: p, m, \cdots
 - Starting at the frequent item header table in the FP-tree
 - Traverse the FP-tree by following the link of each frequent item p
 - Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Algorithm - FPGrowth

```
Input: FP-tree, minimum support threshold \xi
```

Output: the complete set of frequent patterns

Initial call: FP-Growth(FP-tree tree, null)

 $\mathsf{FP}\text{-}\mathsf{Growth}(\mathsf{FP}\text{-}\mathsf{tree}\ \mathit{tree},\alpha)$

- If tree contains a single path P
 - for each node-combination β of P, – generate $\beta \cup \alpha$ with support $= sup(\beta)$
- else
 - for each α_i in the header of *tree*
 - (1) generate pattern $\beta = \alpha_i \cup \alpha$ with support $= \sup(\alpha_i)$
 - (2) Calculate β 's conditional pattern base
 - (3) Construct β 's FP-tree $tree_{\beta}$
 - (4) if $tree_{\beta} \neq \emptyset$, call FP-Growth($Tree_{\beta}, \beta$)

FPGrowth example

Given tree t1 as shown in the figure.

Initial call: FP-Growth(t1, null)

■ The else branch of FP-Growth is executed because t1 contains a complex tree (not a single path p).

The else branch needs to check every itemset in the header table. For this example, α_i can be p, m, b, a, c, and f.

- For $\alpha_i = \{p\}$, (1) generate a pattern $\beta = \{p\}$ with support 3; (2) calculate p's conditional base, which are fcam : 2 and cb : 1; (3) create a FP tree t_p from the conditional base; (4) recursively call **FP-Growth**(t_p , p). Details see following slides.
- For $\alpha_i = \{m\}$, (1) generate a pattern $\beta = \{m\}$ with support 3; (2) calculate m's conditional base, which are fca : 2 and fcab : 1; (3) create a FP tree t_m from the conditional base; (4) recursively call **FP-Growth**(t_m , m). Details see following slides.
- For $\alpha_i = \{b\}$, $\{a\}$, $\{c\}$, and $\{f\}$ do similar.

Find Patterns Having p from p-conditional Database

- Two paths: $\langle f: 4, c: 3, a: 3, m: 2, p: 2 \rangle, \langle c: 1, b: 1, p: 1 \rangle$
- Two prefix paths: (f:2,c:2,a:2,m:2),(c:1,b:1). These paths are called p's conditional pattern base.
- Construct an FP-tree on this conditional pattern base, which consists of (c:3) as the only branch. This FP-tree is called p's conditional FP-tree. I.e., tree t_p consists of (c:3) as the only branch.
- Call FP-Growth (t_p, p) .
- The if branch of FP-Growth is executed because it is a path. Thus, it reports frequent pattern (*cp* : 3)

Algorithm - Mining frequent patterns using FP-Tree

For node m

- Two paths: $\langle f:4,c:3,a:3,m:2\rangle, \langle f:4,c:3,a:3,b:1,m:1\rangle$
- m's conditional pattern base: $\{(f:2,c:2,a:2),(f:1,c:1,a:1,b:1)\}.$
- Construct an FP-tree on this conditional pattern base, m's conditional FP-tree, which only has one branch $\langle f: 3, c: 3, a: 3 \rangle$.
- From m's conditional FP-tree t_m , mine($\langle f:3,c:3,a:3\rangle|m$)

Algorithm – $mine(\langle f:3,c:3,a:3\rangle|m)$

 \blacksquare m's conditional FP-tree t_m is shown below.

- Call **FP-Growth(** t_m , m**)**.
- **FP-Growth** (t_m, m) will execute the **if** brach because it contains only one path.
- All the possible combinations are f, fc, fca, c, ca, and a.
- Thus the frequent patterns are fm, fcm, fcam, cm, cam, and am.

Algorithm – FP-Growth (t_m, m) , run else branch (1)

- We demonstrate the execution of the else branch using
 - FP-Growth($t_m = \langle f : 3, c : 3, a : 3 \rangle$, m). α_i can be $\{a\}$, $\{c\}$, and $\{f\}$
 - when $\alpha_i = \{a\}$: (1) $\beta = \{am\}$, β is frequent. OUTPUT am. (2) get am's conditional base, which consists of f: 3, c: 3, (3) construct a FP-tree with one path f: 3, c: 3, call FP-Growth($t_{am} = \langle f: 3, c: 3 \rangle$, am)
 - when $\alpha_i = \{c\}$: (1) $\beta = \{cm\}$, β is frequent. OUTPUT cm. (2) get cm's conditional base, which consists of f: 3, (3) construct a FP-tree with one path f: 3, call FP-Growth($t_{cm} = \langle f : 3 \rangle$, cm)
 - when $\alpha_i = \{f\}$: (1) $\beta = \{fm\}$, β is frequent. OUTPUT fm. (2) get fm's conditional base, which is \emptyset . No recursive call.

Algorithm – FP-Growth (t_m, m) , run else branch (2)

- Run FP-Growth($t_{am} = \langle f : 3, c : 3 \rangle$, am). α_i can be f, c.
 - when $\alpha_i = \{c\}$: (1) $\beta = \{cam\}$, β is frequent. OUTPUT cam. (2) get cam's conditional base, which consists of f: 3, (3) construct a FP-tree with one path f: 3, call FP-Growth($t_{cam} = \langle f: 3 \rangle$, cam)
 - when $\alpha_i = \{f\}$: (1) $\beta = \{fam\}$, β is frequent. OUTPUT fam. (2) get fm's conditional base, which is \emptyset . No recursive call.
- Run FP-Growth($t_{cm} = \langle f : 3 \rangle$, cm). The only α_i is f: (1) $\beta = \{fcm\}$, β is frequent. OUTPUT fcm. (2) get fcm's conditional base, which is \emptyset . No recursive call.

Algorithm – FP-Growth(t_m , m), run else branch (3)

- Run FP-Growth($t_{cam} = \langle f : 3 \rangle$, cam). The only α_i is $f: (1) \beta = \{fcam\}$, β is frequent. OUTPUT fcam. (2) get fcam's conditional base, which is \emptyset . No recursive call.
- The final results are: am, cam, fcam, fam cm, fcm,

Algorithm - Mining frequent patterns using FP-Tree

For node b

- Three paths: $\langle f:4,c:3,a:3,b:1\rangle, \langle f:4,b:1\rangle, \langle c:1,b:1\rangle$
- **b**'s conditional pattern base: $\{(f:1,c:1,a:1),(f:1),(c:1)\}.$
- This generates no frequent items. Terminates.
- For node a
 - **a**'s conditional pattern base: $\{(f:3,c:3)\}$.
 - Frequent patterns {(fa:3), (ca:3), (fca:3)}
- For nodes c and f, do similar things

Analysis - FPGrowth

- Construct FP-tree: one scan of the data in *DB*, output *tree*, which is generally much smaller than *DB*
- The size of FP-tree shrinks in a factor of $20 \sim 100$
- Size of FP-tree is not exponential to the number of frequent patterns.
 - E.g., a frequent pattern a_1, \dots, a_{100} , the complete set of frequent patterns contains 2^{100}
 - Size of the tree is still 100 (a path)

Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory? DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
- Parallel projection is space costly

References

- Chapter 5: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Implementation of the FPGrowth algorithm: https://pypi.org/project/fpgrowth-py/