

Neural Networks and Deep Learning Lecture 5

Wei WANG

cs5242@comp.nus.edu.sg

Recap

Training techniques for DNN

- Parameter initialization
 - Randomness to break symmetry for W
 - Gaussian, Uniform for W
 - Gaussian N(0, sqrt(2/(fan_in + fan_out))
 - Gaussian N(sqrt(2/fan_in))
- Batch normalization
 - After affine/linear transformation, before non-linear activation

•
$$\widehat{z_k} = \frac{z_k - E[z_k]}{\sqrt{var[z_k]}}$$
, $\overline{z_k} = \gamma_k \widehat{z_k} + \beta_k$

Training techniques for DNN

- Dropout
 - Randomly set some neurons to be zero with probability p
 - Scale the neurons by 1/(1-p)
- Early stopping
 - To prevent overfitting
- Data (image) augmentation
 - Random crop/rotation/resize during training
 - Fixed crop/rotation/resize during test

Image augmentation (pseudo code) # train augmentation (random)

```
for i in range(num_iters):
      batch = []
      for b in range(batchsize):
            img = load_image("path")
            img = img.resize((256,256))
            x = \text{math.random.randint}(0, 256-224)
            y = math.random.randint(0, 256-224)
            img = img.crop((x, y, 224, 224))
            if math.random.randint(0,1) == 0:
                       img = img.flip()
            batch.append(img)
      train(batch)
# test time augmentation
img = load_image("path")
img = img.resize((256,256))
offsets = [(0,0), (0, 32), (32, 0), (32, 32), (16, 16)]
for (x, y) in offsets:
      img = img.crop((x, y, 224, 224))
      batch.append(img)
      batch.append(img.flip())
results = predict(batch) # a matrix of shape 5xC
print('prediction is %d' % np.argmax(results.average(axis=0)))
```

Convolutional neural network (CNN)

From MLP to CNN

CS5242

Softmax FC 1000

Convolution

- 1D convolution
 - Text processing
- 2D convolution
 - Image processing
- 3D convolution
 - 3D data, e.g. CT.

3	2	2				
1	0	2	2	3	1	0
	3	2	2			
1	0	2	2	3	1	0
		3	2	2		
1	0	2	2	3	1	0
		_	3	2	2	
1	0	2	2	3	1	0
				3	2	2
1	0	2	2	3	1	0

• Cross-correlation (https://en.wikipedia.org/wiki/Cross-correlation)

$$y_t = \sum_{i=0}^{k-1} w_i \times x_{t+i}$$

- In CNN, convolution refers to cross-correlation
- w is called kernel/filter; the parameters to be trained; length k
- x is the input; length l
- the input area, i.e. t-(k-1),..., t-1, t is called the receptive field
 - One receptive field generates one output value
- y_t is the output feature; length o

Properties (Why Convolution better?)

- Sparse connection
 - Fewer parameters
 - Less overfitting
- Weight sharing
 - Regularization
 - Less overfitting
- Location invariant
 - Robust to object position in the image
 - Make the same prediction no matter where the object is in the image

Perceptron, MLP and Convolution

Perceptron

Perceptron is too simple

→ underfitting → add

more layers → MLP

MLP

MLP has too many parameters

→ High dimension → difficult to optimize and overfitting → CNN (with more regularization)

CNN

- $o = l k + 1 \le l 1 \ (k \ge 2)$
 - By stacking multiple convolution layers, the output is shorter and shorter
 - Less information per layer

- Manual padding (p)
 - Output feature values for p=1
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x2+2x1=14
 - 3x3+2x1+2x0=11
 - Torch, PyTorch, Caffe, SINGA
 - https://github.com/apache/incubator-singa

- Manual padding (p)
 - Kernel size/length: *k*
 - Input length: *l*
 - # outputs o = l + p k + 1

- Valid/No padding (p = 0)
 - # inputs denoted as l
 - # outputs o = l k + 1 = 6 3 + 1 = 4
 - Output feature values
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x2+2x1=14
 - Outputs become shorter
 - TensorFlow, Keras

- Same padding (p?)
 - l + p k + 1 = l
 - p = k 1
 - Left padding = $\lfloor p/2 \rfloor$
 - Right padding = $\lfloor p/2 \rfloor$
 - Output values
 - 3x0+2x1+2x0=2
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x3+2x1=14
 - 3x3+2x1+2x0=11
 - TensorFlow, Keras

Stride (Why?)

- How many steps to move towards the next receptive field
 - s=1, every receptive field is considered -> many outputs
 - s>1, some receptive fields are skipped.
 - Faster
 - Fewer outputs
 - Effective receptive field size is increased quickly

Stride

•
$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

Stride

- Exact matching
 - With padding p (=1)

•
$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

• (6+1-3)/2+1=3

x 1 0 2 2 3 1 0

Stride

- Not exact matching
 - With padding p (=2)

•
$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

• (6+2-3)/2+1=3

Stride (for Tensorflow)

• Given stride s, what is the padding size if we want Valid padding?

$$p = 0, o = \left[\frac{l + p - k}{s}\right] + 1 = 2$$

CS5242 X

Stride (for Tensorflow)

• Given stride s, what is the padding size if we want Same padding?

$$o = \left\lceil \frac{l}{s} \right\rceil$$

$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

$$\frac{l+p-k}{s} \ge o - 1$$

$$p \ge s(o-1) + k - l$$

$$p = \max(s(o-1) + k - l, 0)$$

Implementation (fwd)

W

 3
 2
 1

 1
 0
 2
 2
 3
 1

For loop

 1
 0
 2
 2
 3
 1
 0

 1
 0
 2
 2
 3
 1
 0

 1
 0
 2
 2
 3
 1
 0

receptive field to column

Receptive field to column

Convolution -> affine transformation

Implementation (bwd)

```
dw = dot(dy, x_hat.T())
dx_hat = dot(w.T(), dy)
set dx to 0s
for t in range(o):
    for i in range(k):
        dx[t+i] += dx_hat[i, t]
```


dy

Why addition?

w.T()

Source: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Convolution

http://setosa.io/ev/image-kernels/

- Input $x \in R^{l_h \times l_W}$
- Kernel $W \in R^{k_h \times k_w}$
- Output $y \in R^{o_h \times o_w}$
- $o_h \leftarrow l_h, k_h, s_h, p_h$
- $o_h \leftarrow l_w, k_w, s_w, p_w$

				W
		_		
	1	2	3	2
	2	3	2	5
	1	2	2	1
h [*]	0	2	1	2

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

-1 1	2	
<u>-1</u> 1		

•
$$y_{i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{a,b}$$

- Input $x \in R^{l_h \times l_W}$
- Kernel $W \in R^{k_h \times k_w}$
- Output $y \in R^{o_h \times o_w}$
- $o_h \leftarrow l_h, k_h, s_h, p_h$
- $o_h \leftarrow l_w, k_w, s_w, p_w$

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

-1 1	2	0	
-1/1/1/1			

•
$$y_{i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{a,b}$$

- Input $x \in R^{l_h \times l_W}$
- Kernel $W \in R^{k_h \times k_w}$
- Output $y \in R^{o_h \times o_w}$
- $o_h \leftarrow l_h, k_h, s_h, p_h$
- $o_h \leftarrow l_w, k_w, s_w, p_w$

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

-1 1	2	0	2

•
$$y_{i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{a,b}$$

- Input $x \in R^{l_h \times l_W}$
- Kernel $W \in R^{k_h \times k_w}$
- Output $y \in R^{o_h \times o_w}$
- $o_h \leftarrow l_h, k_h, s_h, p_h$
- $o_h \leftarrow l_w, k_w, s_w, p_w$

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

-1 1	2	0	2
	2		

•
$$y_{i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{a,b}$$

- Input $x \in R^{l_h \times l_w}$
- Kernel $W \in R^{k_h \times k_w}$
- Output $y \in R^{o_h \times o_w}$
- $o_h \leftarrow l_h, k_h, s_h, p_h$
- $o_h \leftarrow l_w, k_w, s_w, p_w$

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

1	2	3	2
2	3	2	5
1	2	2	1
0	2	1	2

-1 1		Ι	
1 1	2	0	2
	2	-1	2
	3	-1	0

•
$$y_{i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{a,b}$$

2D conv implementation

- Img2Col
 - Convert each receptive field into a column
 - All columns construct a matrix
 - Convolution = vector matrix product
- Parameter size
 - $k_h \times k_w$
- Output shape

•
$$(o_h, o_w) = \left(\left\lfloor \frac{l_h + p_h - k_h}{s_h} \right\rfloor + 1, \left\lfloor \frac{l_w + p_w - k_w}{s_w} \right\rfloor + 1\right)$$

- Computation cost
 - $O(k_h \times k_w \times o_h \times o_w)$ (float multiplication ops, FLOP)

CS5242

 o_w

Multiple kernels/filters (what is a filter -> feature engineering)

36

- Img2Col
 - For receptive fields
- Kernels to matrix
 - One per row

		$o_h >$	/ < 0		
	1	2	· • n	2	
k_h	2	3		1	
k _h ×	2	3	•••	1	
c_{W}	3	2		2	
/					

2	3	2	5
1	2	2	1
0	2	1	2
1	2	3	2
2	3	2	5

2

2	3	2	5
1	2	2	1
0	2	1	2

1	2	3	2
7	3	2	5
1	2	2	1
0	2	1	2

•••

Vector to matrix

$$y_{l,i,j} = \sum_{a=0}^{k_h-1} \sum_{b=0}^{k_w-1} x_{i+a,j+b} \times W_{l,a,b}$$
, $l \in [0,f)$

Convolution -> affine transformation

- With multiple kernels (filters)
- Parameter size
 - $f \times k_h \times k_w$
- Output shape

•
$$(f, o_h, o_w) = (f, \left\lfloor \frac{l_h + p_h - k_h}{s_h} \right\rfloor + 1, \left\lfloor \frac{l_w + p_w - k_w}{s_w} \right\rfloor + 1)$$

- Computation cost
 - $O(f \times k_h \times k_w \times o_h \times o_w)$ (float multiplication ops, FLOP)

With multiple input channels and kernels (filters)

http://cs231n.github.io/convolutional-networks/https://www.youtube.com/watch?v=jajksuQW4mc

Img2col

• receptive fields across feature maps are concatenated into to one column

Feature map 0

1	2	1	2	3	4
2	2	3	1	2	0
1	1	2	1	0	1
2	1	2	1	1	3

Feature map 1

0	2	3	2	0	1
1	0	1	1	2	0
2	0	1	1	1	1
1	1	2	1	1	2

1	1	3	1	2	0
2	2	4	1	1	1
2	3	2	2	2	1
2	1	0	1	1	3
0	3	0	2	1	1
2	2	1	0	1	1
1	1	2	1	2	1
0	1	0	1	1	2

 $o_h \times o_w = 2 \times 3$

 With multiple channels and multiple kernels (filters)

 $\boldsymbol{\mathcal{C}}$

 o_w

 o_h

BP of convolution

2D Convolution

- Create filter matrix
 - W=np.random.rand(f, c*k*k) * 0.01
- Forward
 - Convert input feature maps X into matrix \hat{X} (img2col)
 - $Y = W\hat{X}$
- Backward
 - Given $\frac{\partial L}{\partial Y}$
 - Compute $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y} \hat{X}^T$, $\frac{\partial L}{\partial \hat{X}} = W^T \frac{\partial L}{\partial Y}$
 - Column to receptive field
 - Refer to the implementation for 1D convolution

• With multiple channels and kernels (filters)

- Parameter size
 - $f \times (c \times k_h \times k_w)$
- Output shape

•
$$(f, o_h, o_w) = \left(\left[\frac{l_h + p_h - k_h}{s_h} \right] + 1, \left[\frac{l_w + p_w - k_w}{s_w} \right] + 1 \right)$$

- Computation cost
 - $O(f \times c \times k_h \times k_w \times o_h \times o_w)$ (float multiplication ops)

Pooling

- 1D $y_t = OP_{i \in [0,k)}(x_{t+i})$
- 2D $y_{i,j} = OP_{a \in [0,k_w), b \in [0,k_h)} x_{i+a,j+b}$
- Max pooling
 - OP = Max
- Average pooling
 - OP = Average

Pooling

- Reduce the feature size and model size
- Information aggregation
 - Max pooling: invariant to rotation of the **input** image
 - Average pooling: can be replaced by convolution; much cheaper (no weights)

0	1	2	3	flip	3	2	1	0				
4	5	6	7	IIIP	7	6	5	4	Rotate 90 [.]	1	6	
8	9	1	2		2	1	9	8		9	5	
3	4	5	6		6	5	4	3				

Max Pooling

Padding?

for p in range(k):

ii = i + p

for q in range(k):

jj = j + q

if y[i, j] < x[ii, jj]

Set 0 for all dx;

Copy dy[i,j] to dx at position loc[i,j] (accumulation);

Average Pooling

CS5242 *C*