MULTIPLE REGRESSION

STATISTICAL MODELS DALE BARR PSYCHOLOGY, UNIVERSITY OF GLASGOW

Created: 2020-10-11 Sun 16:58

MOVING BEYOND SIMPLE REGRESSION

- 1. introduction
 - estimation and interpretation
- 2. using multiple regression
 - partial variable plots
 - standardized coefficients
 - model comparison
- 3. categorical predictors
 - dummy coding schemes
 - one factor ANOVA using regression

MULTIPLE REGRESSION

General model for single-level data with m predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_m X_{mi} + e_i$$

individual Xs can be any combination of continuous and categorical predictors (and their interactions)

Each eta_j is the partial effect of X_j holding all other Xs constant

(NB: single-level data is rare in psychology)

EXAMPLE

Are lecture attendance and engagement with online materials associated with higher grades in statistics?

Does this relationship hold after controlling for overall GPA?

DATA IMPORT

grades.csv

```
grades <- read csv("data/grades.csv",</pre>
                  col types = "ddii")
grades
# A tibble: 100 x 4
  grade GPA lecture nclicks
  <dbl> <dbl> <int> <int>
 1 2.40 1.13
                           88
                          96
 2 3.67 0.971
 3 2.85 3.34
                          123
                           99
 4 1.36 2.76
 5 2.31 1.02
                           66
 6 2.58 0.841
                           99
7 2.69 4
                           86
   3.05 2.29
                          118
9 3.21 3.39
                           98
10 2.24 3.27
                   10
                          115
# ... with 90 more rows
```

CORRELATIONS

```
library("corrr")
grades %>%
  correlate() %>%
  shave() %>%
  fashion()
Correlation method: 'pearson'
Missing treated using: 'pairwise.complete.obs'
  rowname grade GPA lecture nclicks
 grade
     GPA .25
3 lecture .24 .44
4 nclicks .16 .30 .36
```

VISUALIZATION

```
grades %>%
  pairs()
```


ESTIMATION AND INTERPRETATION

$$Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\ldots+eta_mX_{mi}+e_i$$
 lm(Y ~ X1 + X2 + \ldots + Xm, data)

```
my model <- lm(grade ~ lecture + nclicks, grades)</pre>
summary(my model)
Call:
lm(formula = grade ~ lecture + nclicks, data = grades)
Residuals:
          10 Median 30
    Min
                                      Max
-2.21653 -0.40603 0.02267 0.60720 1.38558
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.462037 0.571124 2.560 0.0120 *
lecture 0.091501 0.045766 1.999 0.0484 *
nclicks 0.005052 0.006051 0.835 0.4058
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8692 on 97 degrees of freedom
Multiple R-squared: 0.06543, Adjusted R-squared: 0.04616
F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

USING MULTIPLE REGRESSION

VISUALIZING PARTIAL EFFECTS

See ?predict.lm(), ?tidyr::crossing()

STANDARDIZED COEFFICIENTS

Which predictor matters more?

```
grades2 <- grades %>%
  mutate(lecture_c = (lecture - mean(lecture)) / sd(lecture),
        nclicks c = (nclicks - mean(nclicks)) / sd(nclicks))
summary(lm(grade ~ lecture c + nclicks c, grades2))
Call:
lm(formula = grade \sim lecture c + nclicks c, data = grades2)
Residuals:
    Min
          10 Median 30 Max
-2.21653 -0.40603 0.02267 0.60720 1.38558
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.59839 0.08692 29.895 <2e-16 ***
lecture c 0.18734 0.09370 1.999 0.0484 *
nclicks_c 0.07823 0.09370 0.835 0.4058
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8692 on 97 degrees of freedom
Multiple R-squared: 0.06543, Adjusted R-squared: 0.04616
F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

See ?base::scale()

STANDARDIZED VS NON-STANDARDIZED

standardized

not standardized

MODEL COMPARISON

Is engagement (as measured by lecture attendance and downloads) positively associated with final course grade **above and beyond** student ability (as measured by GPA)?

STRATEGY

Create a "base" model with all control vars and compare to a "bigger" model with all control and focal vars

```
base_model <- lm(grade ~ GPA, grades)
big_model <- lm(grade ~ GPA + lecture + nclicks, grades)
anova(base_model, big_model)

Analysis of Variance Table

Model 1: grade ~ GPA
Model 2: grade ~ GPA + lecture + nclicks
   Res.Df   RSS Df Sum of Sq   F Pr(>F)
1   98 73.528
2   96 71.578 2  1.9499 1.3076 0.2752
```

$$F(2,96) = 1.31, p = .275$$

If $p < \alpha$, bigger model is better.

CATEGORICAL PREDICTORS

DUMMY CODING BINARY VARS

Arbitrarily assign one of the two levels to 0; assign the other to 1.

NB: sign of the variable depends on the coding!

See ?dplyr::if_else()

FACTORS WITH k>2

Arbitrarily choose one level as "baseline" level.

	ullet $k=3$			ullet $k=4$			
	A2v1	A3v1		A2v1	A3v1	A4v1	
A_1	0	0	A_1	0	0	0	
A_2	1	0	A_2	1	0	0	
A_3	0	1	A_3	0	1	0	
			A_4	0	0	1	

ONE FACTOR ANOVA

$$Y_{ij} = \mu + A_i + S(A)_{ij}$$
 $Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + e_i$