

DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustc.edu.cn

Tree Traversal

■ The procedures for systematically visiting every vertex of an ordered tree are called *traversals*.

Tree Traversal

The procedures for systematically visiting every vertex of an ordered tree are called *traversals*.

The three most commonly used traversals are *preorder* traversal, inorder traversal, postorder traversal.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *preorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *preorder traversal* begins by visiting r, and continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *preorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *preorder traversal* begins by visiting r, and continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

Example


```
procedure preorder (T: ordered rooted tree)
r := root of T
list r
for each child c of r from left to right
    T(c) := subtree with c as root
    preorder(T(c))
```


■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *inorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *inorder traversal* begins by traversing T_1 in inorder, then visiting r, and continues by traversing T_2 in inorder, and so on, until T_n is traversed in inorder.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *inorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *inorder traversal* begins by traversing T_1 in inorder, then visiting r, and continues by traversing T_2 in inorder, and so on, until T_n is traversed in inorder.

Example


```
procedure inorder (T: ordered rooted tree)
r := \text{root of } T
if r is a leaf then list r
else
   l := first child of r from left to right
  T(l) := subtree with l as its root
  inorder(T(l))
  list(r)
  for each child c of r from left to right
      T(c) := subtree with c as root
      inorder(T(c))
```


■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the *postorder traversal* of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The *postorder traversal* begins by traversing T_1 in postorder, then T_2 in postorder, and so on, after T_n is traversed in postorder, r is visited.

■ **Definition** Let T be an ordered rooted tree with root r. If T consists only of r, then r is the postorder traversal of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees of r from left to right in T. The postorder traversal begins by traversing T_1 in postorder, then T_2 in postorder, and so on, after T_n is traversed in postorder, r is visited.

Example


```
procedure postordered (T: ordered rooted tree)
r := root of T
for each child c of r from left to right
    T(c) := subtree with c as root
    postorder(T(c))
list r
```


Preorder, Inorder, Postorder Traversal

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Example

consider the expression $((x + y) \uparrow 2) + ((x - 4)/3)$

Expression Trees

 Complex expressions can be represented using ordered rooted trees

Example

consider the expression $((x + y) \uparrow 2) + ((x - 4)/3)$

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

An inorder traversal of the tree representing an expression produces the original expression when parentheses are included except for unary operation.

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

Operators precede their operands in the prefix notation. Parentheses are not needed as the representation is unambiguous.

■ The preorder traversal of expression trees leads to the *prefix* form of the expression (*Polish notation*).

Operators precede their operands in the prefix notation. Parentheses are not needed as the representation is unambiguous.

Prefix expressions are evaluated by working from right to left. When we encounter an operator, we perform the operation with the two operands to the right.

Example

$$+ \ - \ * \ 2 \ 3 \ 5 \ / \ \uparrow \ 2 \ 3 \ 4$$

Example

■ The postorder traversal of expression trees leads to the postfix form of the expression (reverse Polish notation).

The postorder traversal of expression trees leads to the postfix form of the expression (reverse Polish notation).

Operators follow their operands in the postfix notation. Parentheses are not needed as the representation is unambiguous.

The postorder traversal of expression trees leads to the postfix form of the expression (reverse Polish notation).

Operators follow their operands in the postfix notation. Parentheses are not needed as the representation is unambiguous.

Postfix expressions are evaluated by working from left to right. When we encounter an operator, we perform the operation with the two operands to the left.

Example

$$7\ 2\ 3\ *\ -\ 4\ \uparrow\ 9\ 3\ /\ +$$

Example

$$723*-4 + 93/+
723*-4 + 93/+
2*3=6
76-4 + 93/+
7-6=1
14+1 93/+
14=1
193/+
9/3=3
13+1
1+3=4$$

Spanning Trees

■ **Definition** Let *G* be a simple graph. A *spanning tree* of *G* is a subgraph of *G* that is a tree containing every vertex of *G*.

Spanning Trees

Definition Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G.

Definition Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G.

remove edges to avoid circuits

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

Proof

■ **Theorem** A simple graph is connected if and only if it has a spanning tree.

Proof

"only if" part

Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

"only if" part

The spanning tree can be obtained by removing edges from simple circuits.

Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

```
"only if" part
```

The spanning tree can be obtained by removing edges from simple circuits.

```
"if" part
```


Theorem A simple graph is connected if and only if it has a spanning tree.

Proof

```
"only if" part
```

The spanning tree can be obtained by removing edges from simple circuits.

```
"if" part easy
```


We can find spanning trees by removing edges from simple circuits.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

Instead, we build up spanning trees by successively adding edges.

First arbitrarily choose a vertex of the graph as the root.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.
- ♦ If the path goes through all vertices of the graph, the tree is a spanning tree.

We can find spanning trees by removing edges from simple circuits.

But, this is inefficient, since simple circuits should be identified first.

- First arbitrarily choose a vertex of the graph as the root.
- Form a path by successively adding vertices and edges.
 Continue adding to this path as long as possible.
- If the path goes through all vertices of the graph, the tree is a spanning tree.
- Otherwise, move back to some vertex to repeat this procedure (backtracking)

Example

Depth-First Search Algorithm

```
procedure DFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
visit(v<sub>1</sub>)

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
  add vertex w and edge {v,w} to T
  visit(w)
```


Depth-First Search Algorithm

```
procedure DFS(G: connected graph with vertices <math>v_1, v_2, ..., v_n) T := tree consisting only of the vertex <math>v_1 visit(v_1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T add vertex w and edge \{v, w\} to T visit(w)
```

time complexity: O(e)

This is the second algorithm that we build up spanning trees by successively adding edges.

- This is the second algorithm that we build up spanning trees by successively adding edges.
 - ⋄ First arbitrarily choose a vertex of the graph as the root.
 - ♦ Form a path by adding all edges incident to this vertex and the other endpoint of each of these edges
 - ⋄ For each vertex added at the previous level,add edge incident to this vertex, as long as it does not produce a simple circuit.
 - Continue in this manner until all vertices have been added.

Example


```
procedure BFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
L := empty list visit(v<sub>1</sub>)
put v<sub>1</sub> in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
    if w is not in L and not in T then
    add w to the end of the list L
    add w and edge {v,w} to T
```



```
procedure BFS(G: connected graph with vertices v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>)
T := tree consisting only of the vertex v<sub>1</sub>
L := empty list visit(v<sub>1</sub>)
put v<sub>1</sub> in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
    if w is not in L and not in T then
    add w to the end of the list L
    add w and edge {v,w} to T
```

time complexity: O(e)

find paths, circuits, connected components, cut vertices, ...

find paths, circuits, connected components, cut vertices, ...

find shortest paths, determine whether bipartite, ...

• find paths, circuits, connected components, cut vertices, ...

find shortest paths, determine whether bipartite, ...

graph coloring, sums of subsets, ...

find Sum = 0find {27} {31} grap Sum = 31Sum = 27 ${31, 5}$ $\{27, 7\}$ ${31, 7}$ {27, 11} Sum = 38Sum = 36Sum = 34Sum = 38 $\{27, 7, 5\}$ Sum = 39

find a subset of $\{31, 27, 15, 11, 7, 5\}$ with the sum 39

Minimum Spanning Trees

Definition A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Minimum Spanning Trees

Definition A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

two greedy algorithms: Prim's Algorithm, Kruscal's Algorithm

Prim's Algorithm

ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```


Prim's Algorithm

ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

time complexity: e log v

Prim's Algorithm

Example

Kruscal's Algorithm

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```


Kruscal's Algorithm

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

time complexity: e log e

Kruscal's Algorithm

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

```
time complexity: e \log e see CLRS / Algorithm Design, J. Kleinberg, E. Tardos
```


Kruscal's Algorithm

Example

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number Theory

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number Theory

Discrete Probability
Groups, Rings and Fields

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Logical connectives

Logical connectives

$$\neg p$$
, $p \lor q$, $p \land q$, $p \oplus q$, $p \rightarrow q$, $p \leftrightarrow q$

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Predicate logic

contains variables

Logical connectives

$$\neg p$$
, $p \lor q$, $p \land q$, $p \oplus q$, $p \rightarrow q$, $p \leftrightarrow q$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

- Predicate logiccontains variables
- Quantified statements

universal, existential, equivalence

Methods of Proving Theorems

- Basic methods to prove theorems:
 - ♦ direct proof
 - $-p \rightarrow q$ is proved by showing that if p is true then q follows
 - proof by contrapositive
 - show the contrapositive $\neg q \rightarrow \neg p$
 - proof by contradiction
 - show that $(p \land \neg q)$ contradicts the assumptions
 - proof by cases
 - give proofs for all possible cases
 - proof of equivalence
 - $-p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

function?

function?

one-to-one (injective) function?

function?

```
one-to-one (injective) function?
onto (surjective) function?
```


function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```


function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```

counting the number of such functions?

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(n) = O(g(n)) (reads: f(n) is O of g(n)), if there exist some positive constants C and k such that $|f(n)| \le C|g(n)|$, whenever n > k.

Divisibility

Divisibility

Congruence relation

Divisibility

Congruence relation

Primes

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution
$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{5}$

Fermat's Little Theorem

Fermat's Little Theorem

Euler's Theorem

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

RSA cryptosystem

DLP, Diffie-Hellman protocol

A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*) \qquad P(n-1) \to P(n)$$

or

$$(**) \qquad P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \land P(b+1) \land \cdots \land P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of mathematical induction that P(n) is true for all $n \ge b$.

Recurrence

Iterating a recurrence

Recurrence

Iterating a recurrence

bottom up or top down

Recurrence

Iterating a recurrence

bottom up or top down

prove by induction, complexity, ...

■ The sum rule and product rule

The sum rule and product rule

The Inclusion-Exclusion Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The Binomial Theorem, Trinomial

Properties of relations

Properties of relations

Representing relations

Properties of relations

Representing relations

Closures on relations

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Definition A relation R on a set A is called a *partial* ordering if it is reflexive, antisymmetric, and transitive.

Graphs & Trees

Basic concepts

Graphs & Trees

Basic concepts

connected graph, simple graph, isomophism, chromatic number, Euler circuit, Hamilton circuit, shortest path, bipartite graph, complete graph, special graphs $(K_n, K_{m,n}, C_n, W_n)$, m-ary tree, tree traversal, spanning tree ...

Next Lecture

the last lecture ...

