VISION AI – CIFAR-10 IMAGE CLASSIFICATION

Using CNN & MobileNetV2 Transfer Learning

By, Dipayan Majumdar

Highlights

- □ Dataset: CIFAR-10 (60,000 images, 10 categories)
- ☐ Tech Stack: Python, TensorFlow, Keras, Google Colab
- □ Key Skills: Data preprocessing, Deep Learning, Transfer Learning, Model Evaluation

DATASET & PREPROCESSING

Dataset: CIFAR-10

➤ **Size:** 60,000 images (32×32 pixels)

Classes: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck

> Train: 45,000 | Validation: 5,000 | Test: 10,000

➤ Source: CIFAR-10 Dataset

Preprocessing:

- ➤ Normalized pixel values to [0,1]
- Train/validation/test split
- > Applied augmentation: rotation, width/height shift, horizontal flip

MODELS & METHOD

1. Baseline CNN

- 3 Conv2D layers + MaxPooling
- Dense layers for classification
- Adam optimizer, 10 epochs

2. MobileNetV2 Transfer Learning

- Pretrained on ImageNet
- On-the-fly resizing to 160×160
- Frozen base layers + trained dense head
- Fine-tuned last 30 layers
- Adam optimizer (Ir=1e-5), 5+5 epochs

RESULTS

Accuracy:

Model	Val Accuracy	Test Accuracy
Baseline CNN	~72%	~72%
MobileNetV2 (fine-tuned)	~85%	~84%

Visuals:

Accuracy Curves

Sample Predictions

Confusion Matrix

CONCLUSION

Key Takeaways

- MobileNetV2 with fine-tuning achieved 84% test accuracy
- Significant improvement over baseline CNN
- Demonstrated skills in preprocessing, CNN architecture, transfer learning, and evaluation

Future Improvements

- Train longer for higher accuracy
- Try EfficientNet or ResNet architectures
- Experiment with advanced augmentation