Entrega 6 Més distribucions

1. Sigui p(x) un polinomi. Llavors, existeix una distribució $T\in \mathcal{D}'(\mathbb{R})$ tal que p(x)T=1.

2. Sigui $T \in \mathcal{D}'(\mathbb{R}^n)$. El suport de T es defineix com la intersecció de tots els K tancats amb la propietat següent: si $\varphi \in \mathcal{D}(\mathbb{R}^n)$ té support a $\mathbb{R}^n \setminus K$, llavors $\langle T, \varphi \rangle = 0$.

Considereu l'espai $\mathcal{E}(\mathbb{R}^n) = \mathcal{C}^{\infty}(\mathbb{R}^n)$ i el seu dual $\mathcal{E}'(\mathbb{R}^n)$ (i.e. l'espai dels funcionals lineals i continus sobre les funcions test $\mathcal{C}^{\infty}(\mathbb{R}^n)$).

És fàcil veure que $T \in \mathcal{E}'(\mathbb{R}^n)$ si i només si existeixen C>0 i $N,\ m$ naturals tals que

$$|\langle T, \varphi \rangle| \le C \sum_{|\alpha| \le m} \sup_{|x| \le N} |(\partial^{\alpha} \varphi)(x)|,$$

per a tota $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$.

- (a) Demostreu que T és una distribució amb suport compacte si i només si $T \in \mathcal{E}'(\mathbb{R}^n)$.
- (b) Si $T \in \mathcal{S}'(\mathbb{R}^n)$ està suportada en un punt x_0 , llavors té la forma

$$T = \sum_{|\alpha| \le k} a_{\alpha} \partial^k \delta_{x_0}.$$

- (c) Deduïu que si $T \in \mathcal{S}'(\mathbb{R}^n)$ és tal que \hat{T} està suportada a ξ_0 , llavors T és una combinació lineal finita de funcions $(-2\pi i\xi)^{\alpha}e^{2\pi i\xi\cdot\xi_0}$ (sent α un multiíndex). En particular, si \hat{T} està suportada a l'origen, llavors T és un polinomi.
- (d) Deduïu que si $u \in \mathcal{S}'(\mathbb{R}^n)$ és tal que $\Delta u = 0$, llavors u és un polinomi.