Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Пог	Погрешности				
	1.1	Погрешности приближенных вычислений	3			
		1.1.1 Погрешности арифметических действий	3			
		1.1.2 Обратная задача погрешности	4			
		1.1.3 Статистический подход	4			
		1.1.4 Примеры неустойчивых задач и методов	4			
2	Лиг	нейные уравнения	5			
	2.1	Решение систем линейных уравнений	5			
		2.1.1 Число обусловленности	6			
		2.1.2 Метод Гаусса	6			
		2.1.3 LU-разложение	6			
		2.1.4 QR-разложение	6			
		2.1.5 Итерационные методы решения СЛАУ	8			
3	Нел	пинейные уравнения	10			
	3.1	Метод половинного деления	10			
	3.2	Метод простой итерации	10			
	3.3	Метод Ньютона	10			
	3.4	Метод секущих	11			
	3.5	Модифицированный метод Ньютона	11			
4	Инт	герполяция и приближение функций	12			
	4.1	Общие задачи интерполяции	12			
	4.2	Алгебраическое интерполирование	12			
	4.3	Интерполяционный полином Лагранжа	13			
		4.3.1 Погрешность интерполяционного полинома Лагранжа	13			
		4.3.2 Выбор узлов интерполирования	14			
	4.4		15			
			16			
	4.5		16			
	4.6	1 1	17			
	4.7		18			
	4.8		19			

Погрешности 1

1.1Погрешности приближенных вычислений

- 1) Погрешность начальных данных (задачи, измерений).
- 2) Методическая погрешность.
- 3) Вычислительная погрешность.

Определение 1.1. Если a — приближенное значение, A — точное, тогда $\Delta a = |A - a|$ абсолютная погрешность.

Определение 1.2. $\delta a = \frac{\Delta a}{|a|}$ — относительная погрешность. Она показывает, сколько верных знаков в записи числа

Рассмотрим, как погрешности ведут себя при вычислениях.

1.1.1 Погрешности арифметических действий

 $x_1 \pm \Delta x_1$ и $x_2 \pm \Delta x_2$ — неточные числа.

Тогда:

1)
$$(x_1 + x_2) + \Delta(x_1 + x_2) = x_1 + \Delta x_1 + x_2 + \Delta x_2 \Rightarrow \Delta_+ = x_1 + x_2$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \le \delta x_1 + \delta x_2$$

Таким образом, $|\Delta_{\pm}| \leq |\Delta x_1| \pm |\Delta x_2|$. Отсюда абсолютная: $\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \leq \delta x_1 + \delta x_2$. Если $x_1, x_2 > 0$, то $\delta_+ \leq \max \delta x_i$. А вот для вычитания $\frac{\Delta(x_1-x_2)}{(x_1-x_2)}$ и возникает большая проблема для относительной погрешности.

2)
$$(x_1x_2) + \Delta(x_1x_2) = x_1x_2 + x_1\Delta x_2 + x_2\Delta x_1 + \Delta x_1\Delta x_2 \Rightarrow \Delta_+ \approx x_1\Delta x_2 + x_2\Delta x_1$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1, x_2)}{x_1 x_2} \approx \frac{\Delta x_2}{x_2} + \frac{\Delta x_1}{x_1} \Rightarrow |\delta| \leq |\delta x_1| + |\delta x_2|$$
. Пусть $f(\overline{x_1}, ..., \overline{x_n})$, где $\overline{x_1} = x_1 + \Delta x_1, ..., \overline{x_n} = x_n + \Delta x_n$.

Пусть
$$f(\overline{x_1},...,\overline{x_n})$$
, где $\overline{x_1}^2 = x_1 + \Delta x_1,...,\overline{x_n} = x_n + \Delta x_n$

Посчитаем

$$\Delta f = f(x_1, ..., x_n) - f(\overline{x_1}, ..., \overline{x_n}) = \left[\frac{\partial f}{\partial x_1}(x_1, ..., x_n) \Delta x_1 + ... + \frac{\partial f}{\partial x_n}(x_1, ..., x_n) \Delta x_n \right] + o\left((\Delta x)^2\right)$$

откуда абсолютная погрешность:

$$|\Delta f| \le \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right| |\Delta x_i|$$

Рассмотрим относительную:

$$\frac{\Delta f}{f} = \delta f = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \cdot \frac{1}{f} \right| |\Delta x_i| = \sum_{i=1}^{n} \left| \frac{\partial \ln f}{\partial x_i} \Delta x_i \right|$$

где
$$\frac{\partial \ln f}{\partial x_i} = \frac{\partial f}{f \partial x_i}$$
.

Отсюда
$$\ln(x_1 \cdot \dots \cdot x_n) = \ln x_1 + \dots + \ln x_n \Rightarrow \frac{\partial \ln(x_1 \cdot \dots x_n)}{\partial x_i} = \frac{1}{x_i}$$
.

To есть для деления $|\delta_{\div}| \leq |\delta x_1| + |\delta x_2|$.

1.1.2 Обратная задача погрешности

Проблема. По требуемой на Δf (δf) найти допустимые Δx (δx).

Пример 1.1.

1) Принцип равных влияний: считаем, что вклад всех слагаемых в погрешность одинаков:

$$\left| \frac{\partial f}{\partial x_1} \right| \cdot \Delta x_1 = \left| \frac{\partial f}{\partial x_2} \right| \cdot \Delta x_2 = \dots = \text{const}$$

Откуда

$$\Delta x_i \le \frac{|\Delta f|}{n \left| \frac{\partial f}{\partial x_i} \right|}$$

2) Принцип равных погрешностей: требуем одинаковых Δx_i :

$$\Delta x_1 = \Delta x_2 = \dots = \text{const} = \Delta x$$

Откуда

$$|\Delta x| \le \frac{|\Delta f|}{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right|}$$

1.1.3 Статистический подход

 $\Delta S_n \div \sqrt{n}$, где S_n — сумма n слагаемых (n > 10). Тогда $\Delta S_n \approx \sqrt{3n} \cdot 0.5 \cdot 10^{-m}$ если $\Delta x_i \le 0.5 \cdot 10^{-m}$.

Таким образом, при статистическом подходе погрешность $\frac{\Delta S_n}{n} \to 0 \ n \to \infty$.

1.1.4 Примеры неустойчивых задач и методов

1) Требуется решить $(x-a)^n=\varepsilon$, где a,n,ε — заданные числа, при этом $n>>1,\,n\in\mathbb{N},$ $0<\varepsilon<1$

x = a — приближенное.

 $\Delta x = \sqrt[n]{\varepsilon}$ если $\varepsilon \approx 10^{-16}$, $n \approx 10$, $\Delta x \approx 10^{-2}$.

2) (x-1)(x-2)...(x-20) — полином. Раскроем: $x^{20}-210x^{19}+...+20!$. А вот если мы получили погрешность округления вида $210+10^{-7}$. Тогда корни этого полинома не просто изменятся, но будут иметь вид:

$$x = 1.000$$

:

$$x_7 = 7.000$$

$$x_8 = 8.007$$

$$x_9 = 8.897$$

$$x_{\overline{10,19}} \in \mathbb{C}$$

$$x_{20} = 20.847$$

3) Линейная система:

$$\int x + 10y = 11$$

$$)100x + 1001y = 1101$$

Решение очевидно: x = 1, y = 1.

Добавим погрешность:

$$\begin{cases} x + 10y = 11.01\\ 100x + 1001y = 1101 \end{cases}$$

Решение получилось: x = 11.01, y = 0.

4) Вычислить набор интегралов

$$\frac{1}{e} \int_0^1 x^n e^x dx$$

где n = 0, 1, ...

Пусть I_n — этот интеграл. Тогда запишем рекуррентную формулу:

$$I_n = 1 - nI_{n-1}, \ I_0 = 1 - \frac{1}{e}$$

На старых машинах при n=14 уже получались неверные ответы. Альтернатива: перевернуть формулу и записать ее в виде

$$I_{n-1} = \frac{1}{n}(1 - I_n)$$

2 Линейные уравнения

2.1Решение систем линейных уравнений

Определение 2.1. Норма: ||.||;

- 1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- $2) ||\lambda x|| = |\lambda| \cdot ||x||;$
- 3) $||x+y|| \le ||x|| + ||y||$;

Пример 2.1. Нормы векторов

 $\|x\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$ — долгая и неблагодарная норма; $\|x\|_1 = |x_1| + \ldots + |x_n|$ — более простая норма; $\|x\|_p = (|X_1|^p + \ldots + |x_n|^p)^{1/p}$ — строгая математическая норма; $\|x\|_{\infty} = \max_{i=\overline{1,n}} |x_i|$ — наиболее частоиспользуемая норма.

Все эти нормы эквивалентны, то есть $\|.\|_{\alpha}$, $\|.\|_{\beta}$ эквивалентны, если $\exists c_1, c_2 : \forall x$ выполняется $c_1 ||x||_{\beta} \le ||x||_{\alpha} \le c_2 ||x||_{\beta}$.

Определение 2.2. Рассмотрим линейный оператор A; здесь $||Ax|| \leq C$. Тогда $\min_x C =$ ||A|| — норма матрицы, согласованная с нормой вектора, если $||Ax|| \le ||A|| \, ||x||$.

Определение 2.3. Норма матрицы, подчиненная норме вектора:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

Пример 2.2.

- 1) $||A||_1 = \max_{j=\overline{1,n}} \sum_{i=1}^n |a_{ij}|;$
- 2) $||A||_2 = \sqrt{\max_{i=\overline{1,n}} \lambda(A^T A)};$
- 3) $||A||_{\infty} = \max_{i=\overline{1,n}} \sum_{j=1}^{n} |a_{ij}|.$

Норма Фробениуса: $\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2}$.

Число обусловленности 2.1.1

Рассмотрим систему Ax = b и пусть $b + \Delta b$. Как Δb повлияет на Δx ?

$$A(x + \Delta x) = b + \Delta b; A\Delta x = \Delta b.$$

 $||A\Delta x|| = ||\Delta b||$, раскрыв скобки, $||A|| \, ||\Delta x|| \ge ||\Delta b||$;

Откуда $\|\Delta x\| \leq \|A^{-1}\| \cdot \|\Delta b\|$. Но это абсолютная погрешность. Что с относительной?

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\| \|\Delta b\|}{\|b\|}$$

и тогда $\nu(A) = \|A^{-1}\| \, \|A\|$ — число обусловленности системы.

И если $\nu(A) >> 1$, то система плохо обусловлена.

Есть способы т.н. предобусловлевания систем, однако мы их смотреть пока не будем.

Пример плохо обусловленной системы:

$$\left(\begin{array}{cc} 1 & 10 \\ 100 & 1001 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 11 \\ 11.01 \end{array}\right)$$

2.1.2 Метод Гаусса

Обычный метод Гаусса.

LU-разложение 2.1.3

A = LU, где L — нижнетреугольная матрица, а U — верхнетреугольная. Потребуем, чтобы на главной диагонали L стояли единицы для однозначного разложения.

U — матрица, получающаяся в ходе прямого разложения Гаусса. L получается, как матрица, в которой запомнены коэффициенты, на которые мы домножали: $\frac{a_{21}}{a_{11}}$, к примеру. Но если наше разложение наткнется на нуль на диагонали, будет больно.

Поэтому используют $A = P^{-1}LU$, где P —матрица перестановка с аналогичными желаемым перестановками.

Для решения уравнения будем использовать PAx = Pb. Затем Ly = Pb.

Как ее построить? Если мы переставляли строки в исходной матрице, то аналогично должны переставить в матрице P. Затем воспользуемся тем, что P ортогональна: P^{-1} P^T .

QR-разложение 2.1.4

Метод вращений Гивенса:

Строим QR = A, где R — верхнетреугольная матрица, а Q — ортонормированная.

Строим QR = A, где n — верапотрој $\begin{pmatrix} a_{11}^{(0)} \\ 0 \\ a_{31}^{(0)} \\ \vdots \\ n \end{pmatrix}$. Матрицы поворота выгля-

$$\left(\begin{array}{c} a_{n1}^{(0)} \end{array}\right)$$
 дят так: $\left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right)$. Матрица обратного поворота, аналогично, $\left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right)$.

Теперь, если мы домножим на матрицу $Q_{21}=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\alpha&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}$. Тогда обнулится элемент a_{21} . Аналогично, далее используем матрицу $Q_{31}=\begin{pmatrix}\cos\alpha&0&-\sin\alpha&0\\0&1&0&0\\\sin\alpha&0&\cos\alpha&0\\0&0&0&1\end{pmatrix}$ и так

далее. Таким образом, $Q_{n,n-1}Q_{n,n-2},...,Q_{21}$.

Это разложение нам понадобится для решения уравнения вида Ax=b решая уравнение Rx = Qb.

Как найти α ? У нас есть a_{11} и a_{21} и мы именно этот вектор хотим домножить на матрицу вращения. Уравнение:

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} a_{11}^{(1)} \\ 0 \end{pmatrix}$$

Легко выводится, что $\begin{cases} \sin\alpha a_{11} + \cos\alpha a_{21} = 0\\ \sin^2\alpha + \cos^2\alpha = 1 \end{cases}, \sin\alpha = -\frac{\cos\alpha a_{21}}{a_{11}}, \cos^2\alpha + \cos^2\alpha (\frac{a_{21}}{a_{11}}) = 1,$ откуда $\cos^2\alpha = \frac{a_{11}}{a_{21}^2 + a_{21}^2}$, отсюда $\cos\alpha = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \sin\alpha = -\frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}.$

Плюсы в сравнении с методом Гаусса: не нужно выбирать ве, вычислительная погрешность. Из минусов: работает в 4 раза медленнее.

Метод отражений Хаусхольдера:

Рассмотрим вспомогательный вектор
$$\omega$$
 — вектор единичной длины. $\omega^T \omega = 1$. Рассмотрим $U = E - 2\omega\omega^T$, $U^T U = E - 4\omega\omega^T + 4\omega\underbrace{\omega^T \omega}_{;} \omega^T = E \Rightarrow U^{-1} = U^T$.

 $U_{\omega} = (E \cdot 2\omega\omega^T)\omega = \omega - 2\omega = -\omega \Rightarrow \omega$ — собственный вектор с собственным числом

 $v\perp\omega$, то есть $v^T\omega=0$ или $\omega^Tv=0,~U_v=\left(E-2\omega\omega^T\right)v=v-2\omega\omega^Tv=v\Rightarrow v$ собственный вектор с собственным числом 1.

Таким образом, $y = v + \alpha \omega \Rightarrow Uy = v - \alpha \omega$, то есть матрица U отражает вектор.

Пусть y, z - ... векторы. Нам нужно найти U, такую, что $Uy = \alpha z$. Смотрим:

$$||Uy|| = ||y|| = ||\alpha z|| \Rightarrow \alpha = \frac{||y||}{||z||}$$

$$\omega = \frac{y - \alpha z}{\|y - \alpha z\|}$$

Теперь, используя A_1 как y, e_1 как z, строим $U_1 = E - 2\omega\omega^T$. Тогда U_1A будет иметь нулевой первый столбец (исключая элемент $a_{11}^{(1)}$).

Тогда $Q = U_{n-1} \cdot \ldots \cdot U_1$.

Тогда решением Ax = b будет являться $Rx = Q^T b$.

Симметричная матрица — метод квадратного корня.

 $A = S^T S$, где S — верхнетреугольная. Такое разложение возможно и единственно только для симметричной матрицы.

Рассмотрим A — положительно определенная матрица, следовательно, $s_{ij} \in \mathbb{R}$. Просто расписав матрицы, получим $s_{11}^2=a_{11},\ s_{11}s_{12}=a_{12},...,s_{11}s_{1n}=a_{1n}.$ Теперь посмотрим на вторую строку: $s_{22}^2 + s_{12}^2 = a_{22}$, $s_{23}s_{22} + s_{12}s_{13} = a_{23}$ и так далее.

Метод квадратного корня требует в 2 раза меньше операций, чем в методе Гаусса + $n_{\checkmark}/.$

2.1.5 Итерационные методы решения СЛАУ

Это методы, в которых мы находим начальное приближение к решению и, итерируя, уточняем его.

Рассматриваемая нами система Ax = b путем неких изменений может быть приведена к форме x = Bx + c. И задача нахождения x становится задачей нахождения неподвижной точки.

Допустим, мы преобразовали наше уравнение ко второму виду. Теперь мы строим итератор:

$$x^{(k+1)} = Bx^{(k)} + c$$

Интуитивно понятно, что ||B|| > 1 влечет $||x_k|| \to \infty$.

Лемма 2.1. Все собственные числа матрицы B по модулю меньше единицы тогда и только тогда, когда

1)
$$B^k \to_{k\to\infty} 0$$
;

2)
$$\exists (I-B)^{-1} = (I+B+B^2+...+B^k+...);$$

Лемма 2.2. Если $||B|| \le q < 1$, то $(I - B)^{-1}$ существует, равна $\sum_{i=1}^{\infty} B^i$ и $||(I - B)^{-1}|| \le \frac{1}{1-q}$.

Доказательство. $||B|| \le q < 1 \Rightarrow ||i+B+...+B^k+...|| \le ||I|| + ||B|| + ... + ||B^k|| + ... \le ||I|| + ||B|| + ... + ||B||^k + ... \le 1 + q + ... + q^k + ... = \frac{1}{1-q}$, следовательно, существует $V = \sum_{k=0}^{\infty} B^i$, такое, что $||V|| \le \frac{1}{1-q}$.

Тогда
$$(I-B)V=IV-BV=I+B+B^2+...+B^k+...-B-B^2-...-B^k-...=I,$$
 следовательно $\|(I-B)^{-1}\| \leq \frac{1}{1-a}.$

Теорема 2.1. Необходимым и достаточным условием сходимости метода простой итерации с любым начальным приближением $x^{(0)}$ $\kappa \, x^* : x^* = B x^* + c$ является ограниченность собственных чисел матрицы B числом, меньшим единицы.

Доказательство.

Достаточность:

$$x^{(1)} = Bx^{(0)} + c$$

$$x^{(2)} = B(Bx^{(0)} + c) + c = B^2x^{(0)} + Bc + c$$

$$x^{(k)} = B^k x^{(0)} + (B^{(k-1)} + \dots + I)c$$

Из условий 1) $B^k \to_{k\to\infty} 0; 2)$ $\exists (I-B)^{-1} = \sum_{i=0}^{\infty} B^i$ следует, что при $k\to\infty$ выполняется $x^{(k)} \to (I-B)^{-1}c$.

Преобразуем $x = Bx + c \Leftrightarrow (I - B)x = c$, следовательно, $(E - B)^{-1}c$ является решением. Пусть $\exists x^{**} -$ другое решение. Тогда $x^* = Bx^* + c$, $x^{**} = Bx^{**} + c$ и $x^* - x^{**} = B(x^* - x^{**})$, следовательно, $\lambda = 1$ является собственным числом B с собственным вектором $x^* - x^{**}$, а это противоречие.

Необходимость:

 $x^{(k)} \to_{k \to \infty} x^* \Rightarrow I + B + ... + B^k + ... = V, V$ — конечная матрица и $V = (I - B)^{-1}$. Тогда $x^* = \lim_{k \to \infty} B^k x^{(0)} + (I - B)^{-1}c$, подставив в уравнение, получим $(I - B)x^* = c$, откуда $(I - B)(I - B)^1c + (I - B)\lim_{k \to \infty} B^k x^{(0)} = c$ следовательно, $\lim_{k \to \infty} B^k$, следовательно, собственные числе матрицы равны ???

Теорема 2.2. Пусть $||B|| \le q < 1$, тогда МПИ сходится $\forall x^{(0)} \ \kappa \ x^* : x^* = Bx^* + c \ u$ верны следующие оценки:

$$\|x^* - x^{(k)}\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\| - anocmepuop$$
ная оценка;

2)
$$||x^* - x^{(k)}|| \le \frac{q^k}{1-q} ||x^{(1)} - x^{(0)}|| - anpuophas oценка.$$

Доказательство. $x^{(k-1)} - x^{(k)} = Bx^{(k)} + c - Bx^{(k-1)} + c = B(x^{(k)} - x^{(k-1)}) \Rightarrow ||x^{(k+1)} - x^{(k)}|| \le c$ $q \|x^{(k)} - x^{(k-1)}\|$

Тогда
$$||x^* - x^{(k)}|| \le \frac{1}{1-a} ||x^{(k+1)} - x^{(k)}|| \le \frac{q}{1-a} ||x^{(k)} - x^{(k-1)}||.$$

 $q^k \| x^{(1)} - x^{(0)} \|$. Таким образом, при $k \to \infty$ последовательность сходится в себе, \mathbb{R}^n полное, следовательно, существует $x^* = \lim_{k \to \infty} x^{(k)}$.

$$(I-B) \left(B^k x^{(0)} + (I-B)^{-1} c \right) = c, \ B^k x^{(0)} = 0, \ \text{так как } \|B\| \le q \Rightarrow \|B^k\| \le q^k.$$
 И в результате $\|x^* - x^{(k)}\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|$

Замечание 2.1. Апостериорная оценка точнее, чем априорная.

Замечание 2.2. Другая априорная оценка: $x^* = (I-B)^{-1}c = (I+B+...+B^k+...)c$, соответственно, $x^{(k)} = B^k x^{(0)} + (I+...+B^k)c$. Тогда $x^* - x^{(k)} = B^k x^{(0)} + (B^k+B^{k-1}+...)c$. Если взять норму: $\|x^* - x^{(k)}\| \le q^k \|x^{(0)}\| + q^k \|(I - B)^{-1}\| c \le q^k (\|x^0\| + \frac{\|c\|}{1-q})$. Кажется,

Замечание 2.3. Как выбрать $x^{(0)}$?

Метод Якоби:

Ax = b.

Берем матрицу и делим каждую из ее строк на диагональный элемент в этой строке. Мы в каждой строке получим x с соответствующим номером с единичным коэффициентом.

$$x_1 = -\frac{a_{12}}{a_{11}} x_2 - \dots - \frac{a_{1m}}{a_{11}} x_m + \frac{b_1}{a_{11}}$$

$$x_2 = -\frac{a_{21}}{a_{22}} x_1 - \frac{a_{23}}{a_{22}} x_3 \dots - \frac{a_{2m}}{a_{22}} x_m + \frac{b_2}{a_{22}}$$

 $x_1=-\frac{a_{12}}{a_{11}}x_2-\ldots-\frac{a_{1m}}{a_{11}}x_m+\frac{b_1}{a_{11}}$ $x_2=-\frac{a_{21}}{a_{22}}x_1-\frac{a_{23}}{a_{22}}x_3\ldots-\frac{a_{2m}}{a_{22}}x_m+\frac{b_2}{a_{22}}$ и так далее. Теперь матрица B будет иметь нули на диагонали. Соответственно, метод Якоби есть МПИ в такой системе.

Теорема 2.3. Для матрицы с диагональным преобладанием метод Якоби сходится.

Определение 2.4. Матрица с диагональным преобладанием — матрица, такая, что

$$\forall i = \overline{1, n} : |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

$$\delta = \min_{i=1,n} \left(|a_{ii}| - \sum_{i=1}^{n} |a_{ij}| \right)$$

— величина диагонального преобладания. Чем больше, тем быстрее матрица сойдется.

Теорема 2.4. Метод Якоби сходится тогда и только тогда, когда все корни уравнения

$$\det \begin{pmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{pmatrix}$$

Метод Зейделя:

Когда мы применяем метод простой итерации, мы строим $x_1^{(k+1)} = b_{11}x_1^{(k)} + b_{12}x^{(k)} + \dots + b_{1n}x_n^{(k)} + c_1$. Остальное аналогично с другими сторками.

3 Нелинейные уравнения

f(x) = 0 — поиск корней нелинейной функции.

3.1 Метод половинного деления

Рассматриваем отрезок [a,b], на котором есть корни, то есть f(a)f(b) < 0. Вычисляем $c = \frac{a+b}{2}$, f(c) и сравниваем:

- $1)^{2} f(a) f(c) < 0 \Rightarrow b := c, \ f(b) := f(c)$ и рекуррентно выполняем.
- 2) f(a) f(c) > 0. Все то же самое, но наоборот.
- 3) f(a)f(c) = 0 вернуть c.

Делаем, пока $\frac{b-a}{2} > \varepsilon$.

3.2 Метод простой итерации

Переформулируем f(x) = 0 в x = S(x) и выбрав x_0 будем искать неподвижную точку: $x_{k+1} = S(x_k)$.

Например, $S(x) = x - \tau(x) - f(x)$, $\tau(x) \neq 0$ в окрестности x^* . Если $\tau(x) \equiv \tau \neq 0$ $S(x) = x - \tau f(x)$.

Теорема 3.1. Если f(x) липшицова $c \ q \in (0,1)$ на отрезке $V_r(a) \ u \ |S(a) - a| \le (1-q)r$, то уравнение x = S(x) имеет на $V_r(a)$ единственное решение x^* , МПИ сходится $\forall x_0 \in V_r(x)$ $u \ |x^* - x_k| \le q^k \ |x^* - x_0|$.

Если S(x) непрерывно дифференцируема на отрезке $u |S'(x)| \le q < 1$ и выполнено условие $|S(a) - a| \le (1 - q)r$, то решение существует $u \ \forall x_0$ метод простой итерации сходится.

3.3 Метод Ньютона

f(x) = 0.

Разложим функцию $f(x^*)$ в ряд по $(x_k - x^*)$. x_k — приближение к решению.

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + f''(x_k)\frac{(x^* - x_k)^2}{2} + \dots$$

отсюда

$$x^* \approx x_k - \frac{f(x_k)}{f'(x_k)} = x_{k+1}$$

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, то есть $S(x) = \frac{f(x)}{f'(x)}$, если $|S'(x)| \le q \le 1$ в некоторой окрестности, то МПИ сходится.

$$S'(x) = -\frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} + 1$$

то есть $S'(x) = \frac{f(x)f'(x)}{(f'(x))^2}$. Таким образом,

$$\left| \frac{f(x)f''(x)}{(f'(x))^2} \right| < 1$$

то есть МПИ сходится в некоторой окрестности x^* . Оценим скорость сходимости:

$$f(x_k) + f'(x_k)(x^* - x_k) = F(x_k)$$

$$F(x) = f(x) + f'(x)(x^* - x); \ F(x^*) = 0$$

$$F(x_k) = F(x^*) + \int_{x^*}^{x_k} F'(x) dx$$

$$F'(x) = f'(x) + f''(x)(x^* - x) + f'(x)(-1) = f''(x)(x^* - x)$$

$$F(x_k) = \int_{x^*}^{x_k} f''(x)(x^* - x) dx = f''(\xi) \int_{x^*}^{x_k} (x^* - x) dx = f''(\xi) \frac{(x^* - x_k)^2}{2}$$

$$x^* - x_{k+1} = x^* - x_k + \frac{f(x_k)}{f'(x_k)}$$

$$f'(x)(x^* - x_{k+1}) = F(x_k)$$

$$|x^* - x_{k+1}| \le \frac{M_2}{f'(x_k)} |x^* - x_k|^2$$

таким образом,

$$|x^* - x_{k+1}| \le \frac{q^{2^{(k+1)}-1}}{1-q} |x^* - x_0|$$

Теорема 3.2. Если на отрезке [a,b] существует корень, $f'(x) \neq 0$ на [a,b] и $f''(x) \neq 0$, то метод Ньютона сходится $\forall x_0$, такого, что $f(x_0)f''(x_0) > 0$.

Метод Ньютона имеет так называемую квадратичную сходимость для простых корней.

3.4 Метод секущих

Применяется в случае, если не работает метод Ньютона. //дописать про метод Ньютона

3.5 Модифицированный метод Ньютона

Фиксируем матрицу Якоби $J(x^{(m)})$ и далее используем ее (часто берут m=0). Переназначим: $J(x^{(k)})=J_k, \ F(x^{(k)})=F_k$. Тогда метод Ньютона говорит, что $J_k\Delta x^{(k+1)}=-F_k$, а модифицированный метод Ньютона: $J_m\Delta x^{(k+1)}=-F_k$.

Сходимость модифицированного метода Ньютона линейная (геометрическая прогрессия), но экономия достигается на вычислении J_k и LU разложении.

Часто методу Ньютона задают ограничение на число итераций.

4 Интерполяция и приближение функций

4.1 Общие задачи интерполяции

f(x) задана на [a,b] и f(x) — «сложная» или таблично задана в точках $\{\overline{x_1},...,\overline{x_n}\}$. Наша задача — быстро вычислять приближение к f(x) или просто f(x) в $x \notin \{\overline{x_1},...,\overline{x_n}\}$. Для этого f заменяется на $a_0\varphi_0+...+a_n\varphi_n$, где $\varphi_0,...,\varphi_n$ — «простые» функции, причем $a_0\varphi_0(x_i)+...+a_n\varphi_n(x_i)=f(x_i)$ для некоторых $\{x_0,...,x_n\}\subset [a,b]$ или из $\{\overline{x_1},...,\overline{x_n}\}$. Такой прием называется интерполяцией.

Интерполяционный полином $a_0\varphi_0 + ... + a_n\varphi_n$ может быть построен для заданной точности, только если функции $\varphi_0, ..., \varphi_n$ обладают следующими свойствами:

- 1) $\varphi_0,...,\varphi_n,...$ линейно независимы, то есть любой конечный набор из них линейно независим.
- 2) $\varphi_0, ..., \varphi_n, ...$ полная система функций в некотором рассматриваемом функциональном пространстве, то есть $\forall f \; \exists b_0, ..., b_n, ... \; f = \sum_{i=0}^{\infty} b_i \varphi_i$.

Пример 4.1. Попытка приблизить f(x) = |x| на [-1,1] по равноотстоящим узлам провалена, как и попытка показать нам, что это будет.

При этом существует единственный интерполяционный полином $a_0\varphi_0 + ... + a_n\varphi_n = \varphi$, удовлетворяющий условию $\varphi(x_i) = f(x_i)$, $i = \overline{0,n}$, если все x_i различны и φ_i линейно независимы, который находится решением СЛАУ с матрицей

$$\begin{pmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_n) & \varphi_0(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

Определение 4.1. Интерполяционный процесс — последовательное приближение f по

узлам
$$\begin{pmatrix} x_0^{(0)} & & & \\ x_0^{(1)} & x_1^{(1)} & & & \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & & \\ & \ddots & \ddots & \ddots & \dots \end{pmatrix}$$
 с помощью полиномов (дописать). Говорят, что интерполя-

ционный полином по X для $\{\varphi_i\}$ $i=\overline{0,\infty}$ сходится на [a,b] если $0\forall f\exists x$: интерполяционный полином сходится и $\forall x\exists f$ не сходится (WAT).

4.2 Алгебраическое интерполирование

Основная схема: $\varphi_i = x^i, \ i = \overline{0, \infty}$. Линейно независимы $1, x, x^2, ..., x^n, ...$ и

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

— определитель Вандермонда который не равен 0 для различных x_i . При этом $1, x, x^2, ...$ полная система функций в пространстве $C_{\mathbb{R}}$.

Рассмотрим построение интерполяционного полинома степени n по n+1 узлу $x_0, ..., x_n$ и ... $f_0, ..., f_n$, где $f_i = f(x_i)$.

4.3 Интерполяционный полином Лагранжа

Будем обозначать такой полином степени n как L_n .

Итак, должно выполняться $L_n(x_i) = f(x_i)$. Представим $L_n(x) = l_i(x)f(x_i)$, где $l_i(x_j) = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$ — символ Кронекера.

Для того, чтобы построить такой полином, нам нужно, чтобы у $l_i(x)$ корнями являлись $x_0,...,x_{i-1},x_{i+1},...x_n$. Тогда

$$l_i(x) = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

Запишем более кратко:

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

откуда

$$L_n(x) = \sum_{i=0}^{n} \left(\prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)} \right) f(x_i)$$

Если ввести $\omega(x)$ — угловой многочлен, который равен $\omega_n(x)=(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)$, то

$$l_i(x) = \frac{\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$

и тогда

$$L_n(x) = \sum_{i=0}^{n} \frac{f(x_i)\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$

4.3.1 Погрешность интерполяционного полинома Лагранжа

Погрешность $r_n(x) = L_n(x) - f(x)$. Рассмотрим вспомогательную функцию $\Delta(x) = r_n(x) - K\omega_n(x)$.

Выясним, чему равна $r_n(x^*)$, где $x^* \in [a, b]$ и $x^* \neq x_i$.

Потребуем, чтобы $\Delta(x^*) = 0$, то есть

$$K = \frac{r_n(x^*)}{\omega_n(x^*)}$$

 $\Delta(x)$ имеет n+2 корня на [a,b], следовательно, по теореме Ролля $\Delta'(x)$ имеет n+1 корень между $\min(x_0,x^*)$ и $\max(x_n,x^*)$. У $\Delta^{(n+1)}(x)$ существует 1 корень и он в [a,b]. Пусть это некоторая точка ξ . То есть $\Delta^{(n+1)}(\xi) = r_n^{(n+1)}(\xi) - K \cdot (n+1)! = -f^{(n+1)}(\xi) - K(n+1)! = 0$, отсюда $r_n(x^*) = -\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_n(x^*)$. И теперь в силу произвольности, так как x^* — любое, то

$$\Gamma_n(x) = -\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_n(x)$$

Оценим сверху погрешность полинома Лагранжа:

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)|$$

где
$$M_{n+1} \ge |f^{(n+1)}(x)|, x \in [a, b]$$

Для более гладкой f: $M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|$. Рассмотрим $f(x) = M_{n+1}x^{n+1} + P_n(x)$, тогда $f^{(n+1)}(x) = M_{n+1}$ и $R_n = \frac{M_{n+1}}{(n+1)!}\omega(x)$, то есть $|R_n| = \frac{M_{n+1}}{(n+1)!} |\omega(x)|.$

4.3.2 Выбор узлов интерполирования

Задача: $|\omega(x)| \to \min$ для $(x_0, ..., x_n)$. Эта задача решается многочленами Чебышёва. Многочлены Чебышёва обозначаются как T:

$$T_n(x) = \cos(n \arccos x)$$

 $T_0(x) = 1$, $T_1(x) = x$. Далее существует рекуррентная формула:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Свойство этих многочленов в том, что если строить из графики, то на отрезке [-1,1]находятся все корни, экстремумы и экстремумы принимают значения -1 и 1.

Однако гораздо больше нам интересны многочлены \overline{T} :

$$\overline{T}_n(x) = \frac{1}{2^{n-1}} T_n(x)$$

Корни $T_n(x)$:

$$\cos\left(\frac{\pi}{2n} + \frac{\pi k}{n}\right)$$

где $k = \overline{1, n}$. Соответственно, перенос на [a, b] корней $T_{n+1}(x)$:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\cos\left(\frac{\pi}{2(n+1)} - \frac{\pi(k+1)}{n+1}\right)$$

где $k=\overline{0,n}$. Эти узлы дают наименьшуу максимальную погрешность интерполирования на отрезке [a, b].

Свойства полиномов Чебышёва:

- 1) Экстремумы на [-1,1] в точке $\cos(\frac{\pi k}{n}),\ k=\overline{0,n}$
- 2)

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} \text{не ноль} & i=j\\ 0 & i \neq j \end{cases}$$

Если f задано таблицей то выбор $x_0,...,x_n$, так, чтобы $|\omega(x)| \to \min$ — более сложная задача.

Пример 4.2. Пусть задана таблица:

	•			
x	0	2	3	
f(x)	2	5	4	

Тогда полином Лагранжа будет иметь вид:

$$L_2(x) = 2\frac{(x-2)(x-3)}{6} + 5\frac{x(x-3)}{-2} + 4\frac{x(x-2)}{3} = \frac{-5x^2 + 19x + 12}{6}$$

Если по этим точкам не очень хорошо получилось приближение функции, то мы можем добавить одно значение и построить полином третьего порядка по четырем точкам:

x	0	1	2	3
f(x)	2	4	5	4

 $\overline{\text{Построение } L_3}$ будет так же сложно (потребует сделать все то же самое). Для таких случаев рассмотрим

4.4 Интерполяционный полином Ньютона

Определение 4.2. Рассмотрим следующие величины: $f(x_0),...,f(x_n)$. Величина $f(x_0,x_1)=\frac{f(x_1)-f(x_0)}{x_1-x_0}$ называется разделенной разностью первого порядка функции f по точкам x_1,x_0 .

Разделенная разность k-ого порядка определяется через разделенные разности k-1-го порядка как:

$$f(x_0, ..., x_k) = \frac{f(x_1, ..., x_k) - f(x_0, ..., x_{k-1})}{x_k - x_0}$$

Свойства разделенной разности:

- 1) Инвариантны относительно порядка узлов: $f(x_0,...,x_k) = f(\sigma(x_0,...,x_k))$, где σ перестановка. Поэтому будем считать, что узлы расположены в порядке возрастания.
 - 2) Линейность: $(\alpha f + \beta g)(x_0, ..., x_n) = \alpha f(x_0, ..., x_n) + \beta g(x_0, ..., x_n)$.

Пусть по $x_0, ..., x_{n-1}$ построен $L_{n-1}(x)$ и по $x_0, ..., x_n$ построен $L_n(x)$. Давайте поможем Даше найти между ними связь: $L_n - L_{n-1}$ — полином n-ой степени и $x_0, ..., x_{n-1}$ — его корни, следовательно, $L_n(x) - L_{n-1}(x) = A \cdot \omega_{n-1}(x)$. $L_n(x) = L_{n-1}(x) + A\omega_{n-1}(x)$. $L_n(x) = f(x_n)$, откуда $L_{n-1}(x_n) + A\omega_{n-1}(x_n) = f(x_n)$. Тогда

$$A = \frac{f(x_n) - L_{n-1}(x)}{\omega_{n-1}(x)}$$

$$L_n = L_{n-1} + A_{n-1}\omega_{n-1}(x).$$

 $L_n = L_{n-2} + A_{n-2}\omega_{n-2}(x) + A_{n-1}\omega(x) = \dots = L_0(x) + A_0\omega_0(x) + A_1\omega_1(x) + \dots + A_{n-1}\omega_{n-1}(x)$
Так как $L_0 = f(x_0),$

$$A_0 = \frac{f(x_1 - f(x_0))}{x_1 - x_0} = f(x_0, x_1)$$

$$A_{1} = \frac{f(x_{2}) - [f(x_{0}) + f(x_{0}, x_{1}) \cdot (x - x_{0})]}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{f(x_{2}) - f(x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{0}x_{1})}{x_{2} - x_{1}} = \frac{f(x_{0}, x_{2}) - f(x_{0}, x_{1})}{(x_{2} - x_{1})} = f(x_{0}, x_{1}, x_{2})$$

Откуда

$$L_n(x) = \sum_{k=1}^n f(x_0, ..., x_k) \omega_{k-1}(x)$$

где $\omega_{k-1}(x) = (x - x_0), ..., (x - x_{k-1})$ и $\omega_1(x) \equiv 1$.

И теперь мы можем сделать вывод, что

$$L_n(x) = L_{n-1}(x) + f(x_0, ..., x_n)\omega_{n-1}(x)$$

Пример 4.3. Рассмотрим для

x	0	1	2	3
f(x)	2	4	5	4

Построим таблицу для вычисления разделенных разностей:

x	f(x)	f(x,x)	f(x, x, x)	f(x,x,x,x)
0	2	2	1	
1	4	1	$-\frac{1}{2}$	_ 1
2	5	_1	_1	$-\frac{1}{6}$
3	4	1	—1	

$$L_3 = L_2(x) + \left(-\frac{1}{6}\right)(x-0)(x-2)(x-3) = \frac{-5x^2}{6} + \frac{19x}{6} + 2 - \frac{x^3}{6} + \frac{5x}{6}$$

дописать.

4.4.1 Конечные разности и полином Ньютона по равноотстоящим узлам

Разделенные разности по равноотстоящим узлам упрощены: $x_0 = a, x_i = a + ih; h = \frac{b-a}{n}, i = \overline{1,n}$

Тогда $f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{h}$

$$f(x_0, x_1, x_2) = \frac{\frac{f(x_2) - f(x_1)}{h} - \frac{f(x_1) - f(x_0)}{h}}{2h} = \frac{f(x_2) - 2f(x_1) + f(x_0)}{2h^2}$$

Но постоянно считать это неудобно. Рассмотрим конечные разности первого порядка:

$$\Delta_f(x_0, x_1) = f(x_1) - f(x_0)$$

Рассмотрим $E: Ef(x_0) = f(x_0 + h); E^0 \equiv I.$ Тогда $f(x_i) = E^i f(x_0), i = \overline{0, n}.$

Конечная разность k-го порядка: $\Delta_f(x_0,...,x_k) = (E-I)^k f(x_0) = \left(E^k - E^{k-1} \cdot k + E^{k-2} \frac{k(k-1)}{2} + ... + E^{k-2}$

Таким образом, $\Delta_f(x_0, x_1, x_2) = f(x_2) - 2f(x_1) + f(x_0)$, откуда $f(x_0, ..., x_n) = \frac{\Delta_f(x_0, ..., x_n)}{k! \cdot h^k}$.

В чем преимущество такого вида записи? Если мы рассмотрим теперь полином Ньютона:

$$L_n(x) = \sum_{k=0}^{n} f(x_0, ..., x_k) \cdot \omega_{k-1}(x)$$

Рассматриваем $\omega_{k-1}(x)=(x-x_0)(x-x_0-h)(x-x_0-2h)...(x-x_0-(k-1)h)$. Заменим $x=x_0+th$, тогда $\overline{\omega}_{k-1}(t)=t(t-1)(t-2)...(t-(k-1))h^k$. Отсюда

$$f(x_0, ..., x_k) = \frac{\Delta_f(x_0, ..., x_n)}{k!h^k}$$

И тогда

$$L_n(x) = \sum_{k=0}^n \frac{\Delta_f(a, a+h, ..., a+kh)}{k!} \cdot t(t-1)...(t-(k-1))$$

$$L_n(x) = \sum_{i=0}^{n} \frac{\omega(x)}{(x - x_i)\omega'(x_i)} f(x_i)$$

дописать.

4.5 Кратное интерполирование

Допустим, заданы не только значения f в точках $x_0, ..., x_n$, но и их производные порядков m_i-1 в x_i . И мы хотим построить полином H(x), такой, что $H(x_i)=f_i$, $H'(x_i)=f_i',...,H^{(m_i-1)}(x_i)=f_i^{(m_i-1)}$, $i=\overline{0,n}$. Такой интерполяционный полином носит название полинома Эрмита.

Погрешность полинома Эрмита:

$$r_{m-1}(x) = \frac{f^{(m)}(x)}{m!} \Omega(x)$$

где
$$\Omega(x) = (x - x_0)^{m_0} \cdot ... \cdot (x - x_n)^{m_n}$$
.

4.6 Численное дифференцирование

Производная первого порядка f'(x) может быть приближена как

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

следовательно,

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

при некотором малом h.

Или, если у нас есть 2 точки, (x_0, f_0) и (x_1, f_1)

$$f'(x_0) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

это так называемая правая производная.

Аналогично определяется левая производная:

$$f'(x_1) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

По сути, это производная интерполяционного полинома Лагранжа по точкам (x_0, f_0) и (x_1, f_1) . Если у нас есть (x_0, f_0) , (x_1, f_1) и (x_2, f_2) то можно взять левую и правую производную в x_1 .

Однако полином Лагранжа (первой степени) дает нам погрешность $r_1 \leq \frac{M_2}{2!}(x-x_0)(x-x_1) \leq \frac{M_2}{2!}h^2$, следовательно, погрешность по 2 точкам равна O(h).

Тогда для увеличения точности численной производной следует увеличить точность полинома Лагранжа (то есть число узлов).

Построим $L_2(x) = f(x_0) + (x - x_0)f(x_1, x_0) + (x - x_0)(x - x_1)f(x_2, x_1, x_0)$. Тогда $L_2'(x) = f(x_1, x_0) + (2x - x_0 - x_1)f(x_2, x_1, x_0)$.

$$f'(x) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0} + (2x - x_1 - x_0) \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0} \dots}{(x_2 - x_0)}$$

Hапример в x_1 :

$$f'(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} + \frac{f(x_1) - f(x_0)}{x_2 - x_0} - \frac{(f(x_2) - f(x_1))(x_1 - x_0)}{(x_2 - x_1)(x_2 - x_0)}$$

Пусть сетка равномерна, то есть $x_i = x_0 + hi$, тогда

$$f'(x_0 + h) \approx \frac{f(x_0 + 2h) - f(x_0)}{2h}$$

это называется центральной производной.

Погрешность центральной производной на 3 точках есть $O(h^2)$. А производные будут вида:

$$f'(x_0) \approx \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$$

$$f'(x_0 + 2h) \approx \frac{f(x_0) - 4f(x_0 + h) + 3f(x_0 + 2h)}{2h}$$

Для (дописать)

$$\frac{f(x_0+2h)-f(x_0)}{2h} = \left[\frac{f(x_0+2h)-f(x_0+h)}{h} + \frac{f(x_0+h)-f(x_0)}{h}\right] \cdot \frac{1}{2}$$

то есть среднее между правой и левой дает центральную.

То есть вторая производная по 3 точкам:

$$L_2''(x) = 2f(x_0, x_1 x_2)$$

аналогично

$$f''(x) = 2f(x_0, x_1 x_2)$$

с погрешностью O(h).

Для равномерной сетки

$$f''(x) = \frac{f(x_0) - 2f(x_0 + h) + f(x_0 + 2h)}{h^2}$$

Для нахождения производной порядка n нужно использовать n+1 узел. В этом случае точность O(n). Для производной порядка n с точностью $O(h^p)$ требуется, соответственно, n+p узлов.

4.7 Интерполяционный сплайн

$$r_n(x) = \frac{f^{(n)}(\xi)}{n!}\omega(x) \le \frac{M_n}{n!}(b-a)^{n+1}.$$

Если нам недостает точности, разобьем отрезок. На каждом из подотрезков построим свой интерполяционный полином.

Определение 4.3. Сплайном или полиномиальным сплайном порядка n называется кусочно-полиномиальная функция.

Разница между порядком и гладкостью сплайна называется дефектом сплайна

Пример 4.4. Интерполяционный сплайн $S_{1,0}$: первого порядка с дефектом ноль, то есть $S(x_i) = f(x_i)$ для $i = \overline{0,n}$.

$$S_{1,0}(x) = a_i + b_i(x - x_{i-1})$$

при
$$x \in [x_{i-1}, x_i], i = \overline{1, n}$$
. Где $a_i = f(x_{i-1}), b = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$.

Оценим погрешность:

$$R_{1,0}(x) = \frac{f''(\xi)}{2!}(x - x_{i-1})(x - x_i)$$

следовательно

$$|R_{1,0}(x)| \le \frac{M_2}{2!}h^2$$

где $M_2 = \max_{x \in [x_0, x_n]} |f''(x)|, h = \max_{i = \overline{1, n}} |x_i - x_{i-1}|.$

Интерполяционный сплайн с дефектом 0 есть интерполяционный полином.

Самым популярным сплайном является сплайн порядка 3 дефекта 1. Обозначается $S_{3,2}(x)$.

Условия на $S_{3,2}(x)$:

- 1) интерполяционность: $S_{3,2}(x_i) = f(x_i), i = \overline{0,n}.$
- 2) гадкость второго порядка: $S'(x_i 0) = S'(x_i + 0)$ и $S''(x_i 0) = S''(x_i + 0)$

Представим наш полином на отрезке $[x_{i-1}, x_i]$ в следующем виде:

$$S_{3,2}(x) = a_i(x - x_{i-1})^3 + b_i(x - x_{i-1})^2 + c_i(x - x_{i-1}) + d_i$$

(дописать)

(еще одна лекция)

Напомним, что мы вычисляем

$$\int_{a}^{b} f(x)p(x)dx \approx \sum_{i=1}^{n} A_{i}f(x)$$

4.8 Квадратурные формулы наивысшей алгебраической степени точности

Рассмотрим P_m — полином степени m. Его можно представить в виде полинома степени m-1:

$$P_m(x) = P_{n-1}(x)Q_{m-n}(x) + R_{n-1}(x)$$

Погрешность интегрирования P_m КФ с n узлами зависят от $P_{n-1}(x) \cdot Q_{m-n+1}(x)$.

$$\int_{a}^{b} P_{n-1}Q_{m-n+1}p(x)dx - \sum_{i=1}^{n} P_{n-1}(x_i)Q_{m-n+1}(x_i)A_i$$

Пусть $P_{n-1}=\omega_{n-1}=(x-x_1)\cdot\ldots\cdot(x-x_n)$. Тогда $P_{n-1}(x_i)=0$. Если

$$\int_a^b \omega_{n-1}(x)P(x)Q_{m+n-1}(x)dx = 0$$

тогда ACT = m.

Определение 4.4. f(x) и g(x) называются ортогональными на [a,b], если $\int_a^b f(x)g(x)p=0.$

Выберем узлы так, чтобы m было наибольшим. Рассмотрим $\omega(x) = x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$. Рассмотрим x^s при $s = \overline{0, m-n+1}$. Мы хотим, чтобы

$$\int_{a}^{b} x^{s}(x^{n-1} + \dots + a_{1}x + a_{0})p(x)dx = 0$$

Раскроем скобки $\mu_k = \int_a^b p(x) x^k dx$:

$$\mu_{n-1+s} + a_{n-2}\mu_{n-2+s} + \dots + a_1\mu_{s+1} + a_0\mu_s = 0$$

где $s = \overline{0, m-n}$.

(Выше много косяков в индексах)

Существует единственное решение, если m = 2n - 1.

$$\begin{pmatrix} \mu_0 & \mu_1 & \mu_{n-1} \\ \mu_1 & \mu_2 & \mu_n \\ \mu_{n-1} & \mu_n & \mu_{2n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} -\mu_n \\ -\mu_{n+1} \\ \mu_{2n-1} \end{pmatrix}$$

Таким образом, 2n-1 — НАСТ для n узлов. Рассмотрим $\omega^2(x)$:

$$\int_{a}^{b} \underbrace{\omega^{2}(x)}_{\neq 0} \underbrace{p(x)}_{>0} dx \neq \underbrace{\sum_{i=1}^{n} A_{i} \omega^{2}(x)}_{=0}$$

То есть степень точности выше ранее заявленной получить невозможно.

- КФ НАСТ Гаусса: 1) $\mu_k = \int_a^b p(x) x^k dx$, $k = \overline{0, 2n-1}$ 2) Решим систему $\sum_{i=0}^{n-1} \mu_{i+s} a_i = -\mu_{n+s} \ s = \overline{0, n-1}$. 3) Находим корни (узлы) исходя из того, что у нас есть $x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$.
- 4) ИКФ. (дописать)

$$\begin{array}{c|cccc}
1 & U_1 \\
2 & U_2 \\
3 & U_3 \\
4 & U_4 \\
5 & U_5
\end{array}$$