I. Définition et conventions

I.1. Définition

Un diagramme E = f(pH) donne dans le plan d'abscisse : E et d'ordonnée : pH, les domaines d'existence des phases condensées (et gazeuses) et les domaines de prédominance des espèces dissoutes pour les différents états d'oxydation d'un élément considéré.

I.2. Frontières d'un diagramme E-pH

Frontières : portions de droites séparant les différents domaines ; sur la frontière on ne tient compte que des 2 espèces voisines.

Différents types de frontières

- Frontières dites verticales
 - Frontière acido-basique : AH + H₂O = A⁻ + H₃O⁺ (pH = pK_A sur la frontière : AQ1)
 - Frontière d'existence d'un précipité : $A^- + C^+ = AC_{(s)}$ (utilisation de K_S : AQ2)
- Frontières dites horizontales
 - Frontière redox : $\alpha Ox + ne^{-} + \gamma H^{+} = \beta Red + \delta H_2O$

I.3. Conventions

Le potentiel de Nernst
$$\alpha Ox + ne^- + \gamma H^+ = \beta Red + \delta H_2O$$

$$E = E^\circ_{ox/red} + \frac{0.06}{n} log \frac{[Ox]^\alpha [H^+]^\gamma}{[Red]^\beta} = E^\circ_{ox/red} - \frac{0.06\gamma}{n} pH + \frac{0.06}{n} log \frac{[Ox]^\alpha}{[Red]^\beta}$$

• Limite entre deux solutés

Frontières rédox : Elles sont définies pour une concentration totale de l'élément en solution c₀ fixée et pour la détermination d'une frontière entre deux composés on ne tient compte que de ces 2 espèces.

<u>Convention 1</u>: le domaine frontière entre deux espèces en solution correspond à l'équirépartition de l'élément entre les deux nombres d'oxydation (en ne tenant compte que de ces deux espèces).

Exemple 1: Considérons le couple Fe³⁺ / Fe²⁺.

Réaction :
$$Fe^{3+} + e^{-} = Fe^{2+}$$

Le potentiel :E =
$$E^{\circ}_{Fe3+/Fe2+} + 0.06 \log \frac{[Fe^{3+}]}{[Fe^{2+}]}$$

A la frontière :
$$[Fe^{3+}] = [Fe^{2+}] \Rightarrow E_F = E^{\circ}_{Fe^{3+}/Fe^{2+}}$$

Exemple 2 : Considérons le couple Br₂ / Br.

La réaction :
$$Br_2 + 2e^- = 2Br^-$$

 $E = E^{\circ}_{Br2/Br^-} + \frac{0,06}{2} log \frac{[Br_2]}{[Br^-]^2}$

Soit
$$C_0$$
 la concentration totale en élément brome: $[Br^0] + [Br^1] = C_0 = 2[Br_2] + [Br^1]$.
La frontière entre les deux formes correspond à $[Br^0] = [Br^1] \Rightarrow 2[Br_2] = [Br^1] = C_0 / 2$.

$$\Rightarrow E_F = E^{\circ}_{Br2/Br-} + \frac{0.06}{2} log(1/C_0)$$

<u>Convention 2</u>: sur le domaine frontière, on écrit l'égalité des deux concentrations, [Ox] = [Red] et la prépondérance de ces deux espèces par rapport à toutes les autres.

• Limite entre un soluté et un solide

Présence d'une phase solide dans le couple redox (c_0 arbitrairement fixé). La frontière traduit l'apparition du premier grain de solide : [A $_{en\ solution}$] = c_0 .

Exemple: Considérons le couple Fe²⁺ / Fe_(s)

La réaction : $Fe^{2+} + 2e^- = Fe_{(s)}$ Le potentiel : $E = E^\circ_{Fe^{2+}/Fe(s)} + \frac{0.06}{2} log [Fe^{2+}]$

Soit C_0 la concentration totale en élément fer, à la première trace de $Fe_{(S)}$ on a $[Fe^{2+}] = C_0$

$$\Rightarrow E_F = E^{\circ}_{Fe2+/Fe(s)} + \frac{0.06}{2} log C_0$$

• Limite entre un soluté et un gaz

On fixe conventionnellement la pression partielle de l'espèce gazeuse à un bar et on est ramené au cas précédent.

Exemple: Considérons le couple Cl_{2(q)} / Cl⁻

La réaction : $Cl_{2(g)} + 2e^{-} = 2Cl^{-}$

Le potentiel :E = $E^{\circ}_{Cl2(g)/Cl^{-}} + \frac{0.06}{2}log \frac{P_{Cl2}/P_{0}}{ICl^{-1}^{2}}$

Déterminons la frontière de séparation.

Elle est déterminée par des valeurs fixées de $P_{Cl2} = P_{Cl20}$ et de $[Cl^{-}] = C_{0}$

$$\Rightarrow E_F = E^{\circ}_{Cl2(g)/Cl} + \frac{0.06}{2} \log \frac{P_{Cl20}}{C_0^2}$$

Obtention de la frontière horizontale

- → On écrit la ½ équation rédox
- → On écrit le potentiel de Nernst
- → On calcule E_F avec les conventions

I.4. Méthode générale conseillée

- ① On recense toutes les espèces devant intervenir dans le diagramme sur un axe gradué en n.o.
- ② On détermine les frontières acido-basiques et celles d'existence des précipités (frontières « verticales »)
- 3 On établit le diagramme primitif : on classe les espèces par degré d'oxydation croissant, en plaçant sur une même ligne les espèces correspondant au même n.o. dans l'ordre de leurs domaines de prédominance (ou d'existence) en fonction du pH.
- ④ On étudie et on construit le diagramme E-pH par zone de pH définis dans le diagramme primitif.
- © Le tracé final du diagramme ne doit faire apparaître que les espèces thermodynamiquement stables.

II. Diagramme E-pH de l'eau

- Les espèces

L'eau participe à 2 couples rédox : le couple H₂O/H_{2(G)} dans lequel elle est oxydante (élément réduit : H) et le couple O_{2(G)} / H₂O dans lequel elle est réductrice (élément oxydé : O). On se limite à ces 2 couples.

- Frontières verticales

Il n'y en a pas dans ce cas

- Diagramme primitif

Espèce	$H_{2(g)}$	H ₂ O	$O_{2(G)}$
n.o. de l'élément H	0	+I	
n.o. de l'élément O		-II	0

- Les frontières horizontales

 \rightarrow Couple: H₂O/H_{2(G)} E°_{H2O/H2(G)} = 0.00V

Demi-équation électronique : $H_3O^+ + e^- = \frac{1}{2}H_{2(G)} + H_2O$

Formule de Nernst : $E = E^{\circ}_{H2O/H2} + 0.06 \text{ Log} \frac{h}{P_{H2}^{1/2}} = E^{\circ}_{H2O/H2} - 0.06 \text{ pH} - \frac{0.06}{2} \text{Log} P_{H2}$

La frontière entre H_2O et $H_{2(G)}$: On a $P_{H2(G)}=P_{H2(G)0}=P_{ref}=1$ bar D'où $E_{F1}=E^\circ_{H2O/H2}-0.06$ pH = -0.06 pH

 \rightarrow Couple : $O_{2(G)}/H_2O$ $E^{\circ}_{O2(G)/H2O} = 1.23V$

Demi-équation électronique : $\frac{1}{2}O_{2(G)} + 2H_3O^+ + 2e^- = 3H_2O$

Formule de Nernst : $E = E^{\circ}_{O2(G)/H2O} + \frac{0.06}{2} Log(h^2 P_{O2}^{1/2}) = E^{\circ}_{O2(G)/H2O} - 0.06 \text{ pH} + \frac{0.06}{4} Log P_{O2}^{1/2}$

La frontière entre H_2O et $O_{2(G)}$: On a $P_{O2(G)}^- = P_{O2(G)0} = P_{ref} = 1$ bar

D'où $E_{F2} = E^{\circ}_{O2(G)/H2O} - 0.06 \text{ pH} = 1.23 - 0.06 \text{ pH}$

- Tracé du diagramme

- Interprétation

- L'eau est thermodynamiquement stable dans le domaine situé entre les deux droites (a) et (b) : toute solution dont le point représentatif (pH, E) se situe dans ce domaine ne peut être le siège d'une réaction d'oxydoréduction faisant intervenir l'un des couples de l'eau.
- Dans le domaine défini par E < -0.06 pH, l'eau est oxydante, c'est-à-dire qu'elle peut être réduite en dihydrogène gazeux qui se dégage.

Des métaux tels que le fer, le zinc, l'aluminium, le sodium réduisent l'eau.

- Dans le domaine défini par E > 1.23-0.06pH, l'eau est réductrice, c'est-à-dire qu'elle peut être oxydée en dioxygène gazeux qui se dégage.

Des oxydants tels que le dichlore Cl_2 , l'eau oxygénée H_2O_2 , l'ion permanganate (MnO₄-), l'ion dichromate (Cr_2O_7 -2), ... oxydent l'eau ; mais, la plupart de ces réactions sont très lentes.

Remarque importante :

En pratique le domaine de stabilité de l'eau est plus grand du fait de l'existence de blocages cinétiques. On parle de métastabilité.

III. Diagramme E-pH du fer

III.1. Les données

- Nous nous limiterons ici aux espèces suivantes : Fe_(S), Fe²⁺, Fe(OH)_{2(S)}, Fe³⁺, Fe(OH)_{3(S)}
- Données thermodynamiques à 25° C
 - ightarrow Potentiels standards des couples : $E^{\circ}(Fe^{2+}/Fe_{(S)}) = -0.44V$ $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V}$

→ Produits de solubilité des hydroxydes : $Fe(OH)_{3(S)}$ pK_{S1}= 37.7 $Fe(OH)_{2(S)}$ pK_{S2}= 15.1

• Le diagramme sera établi pour une concentration totale en élément fer sous forme dissoute $c_0 = 10^{-2} \text{ mol.L}^{-1}$

$$\Rightarrow \begin{cases} [Fe^{3+}] + [Fe^{2+}] = c_0 \text{ en l'absence de solide} \\ [Fe^{3+}] + [Fe^{2+}] < c_0 \text{ en présence de solide} \end{cases}$$

Ainsi on a le premier schéma :

N.O.	éléments
+III	Fe ³⁺ et Fe(OH) _{3(s)}
+II	Fe ²⁺ et Fe(OH) _{2(s)}
0	Fe

III.2. Frontières verticales : pH d'apparition des précipités

Lorsque plusieurs espèces au même degré d'oxydation existent, il convient de définir leur domaine de prédominance en fonction du pH.

Notamment ici chaque ion fer peut donner l'hydroxyde correspondant (no(Fe dans Fe²⁺) = +II et no(Fe dans $Fe(OH)_{2(s)}$) = +II); il faut donc déterminer le pH d'apparition des hydroxydes.

Chaque limite de précipitation est déterminée en supposant que l'ion considéré est le seul représentant de l'élément en solution. (On ne tient compte que des deux espèces pour lesquelles on cherche la frontière)

• pH de début de précipitation de Fe(OH)_{2(S)}

 $Fe(OH)_{2(S)} = Fe^{2+} + 2HO^{-}$ $K_{S2} = [Fe^{2+}][HO^{-}]^{2}$ Réaction :

au premier grain de précipité [Fe²+]≈ c₀ et le K₅₂ est vérifié Frontière:

d'où $K_{S2} = c_0[HO^-]^2 = c_0 \frac{K_e^2}{h^2} \Rightarrow h^2 = c_0 \frac{K_e^2}{K_{S2}}$ ainsi pH₁ = pK_e + $\frac{1}{2}$ (pc₀ - pK_{s2}) \Rightarrow pH₁ = 7.45

• pH de début de précipitation de Fe(OH)_{3(S)}

 $Fe(OH)_{3(S)} = Fe^{3+} + 3HO K_{S1} = [Fe^{3+}][HO^{-}]^{3}$ Réaction:

Frontière:

au premier grain de précipité [Fe³+] \approx c₀ et le K_{S1} est vérifié d'où K_{S1} = c₀[HO⁻]³=c₀ $\frac{K_e^3}{h_3}$ \Rightarrow h3 = c₀ $\frac{K_e^3}{K_{S1}}$ ainsi pH₂ = pK_e + $\frac{1}{2}$ (pc₀ - pK_{s1}) \Rightarrow pH₂ = 2.1

• Diagramme primitif

n.o/pH	0 2.	.1	7.5		14
III	Fe ³⁺		Fe(OH) _{3(S)}		
II		Fe ²⁺		Fe(OH) _{2(S)}	
0		Fe			

III.3. Frontières horizontales

• 0 < pH < 2: Couple Fe^{3+}/Fe^{2+} :

Demi-équation électronique : Fe³⁺ + e⁻ = Fe²⁺

Formule de Nernst : E = $E^{\circ}_{Fe3+/Fe2+}$ + 0.06 $log \frac{[Fe^{2+}]}{[Fe^{2+}]}$

Frontière entre Fe^{3+} et Fe^{2+} : convention $[Fe^{2+}] = [Fe^{3+}]$

d'où $E_{F1} = E^{\circ}_{Fe3+/Fe2+} = 0.77V$

• $2.1 \le pH \le 7.5$: Couple Fe(OH)_{3(S)}/Fe²⁺:

Demi-équation électronique : $Fe(OH)_{3(S)} + e^{-} + 3H^{+} = Fe^{2+} + 3H_{2}O$

Formule de Nernst : E = $E^{\circ}_{Fe(OH)3(s)/Fe2+} + 0.06 log \frac{h^3}{[Fe^{2+}]} = E^{\circ}_{Fe(OH)3(s)/Fe2+} - 3x0.06pH - 0.06 log [Fe^{2+}]$

Frontière entre $Fe(OH)_{3(S)}$ et Fe^{2+} : convention on a le premier grain de $Fe(OH)_{3(S)}$ et $[Fe^{2+}] = c_0$ d'où $E_{F2} = E^{\circ}_{Fe(OH)3(S)/Fe2+}$ -0.18pH+0.12

Valeur de $E^{\circ}_{Fe(OH)3(s)/Fe2+}$: on la trouve par continuité du diagramme En pH = 2.1 on a E_{F1} = E_{F2} soit 0.77 = $E^{\circ}_{Fe(OH)3(s)/Fe2+}$ -0.18 x 2.1+0.12 D'où $E^{\circ}_{Fe(OH)3(s)/Fe2+}$ = 1.03V

Ainsi $E_{F2} = 1.15 - 0.18$ pH

7.5≤ pH ≤ 14 : Couple Fe(OH)_{3(S)}/Fe(OH)_{2(S)}

Demi-équation électronique : $Fe(OH)_{3(S)} + e^- + H^+ = Fe(OH)_{2(S)} + H_2O$ Formule de Nernst : $E = E^\circ_{Fe(OH)3(S)/Fe(OH)2(S)} + 0.06$ logh $= E^\circ_{Fe(OH)3(S)/Fe(OH)2(S)} -0.06$ pH Frontière entre $Fe(OH)_{3(S)}$ et $Fe(OH)_{2(S)}$ d'où $E_{F3} = E^\circ_{Fe(OH)3(S)/Fe(OH)2(S)} -0.06$ pH

Valeur de $E^{\circ}_{Fe(OH)3(s)/Fe(OH)2(s)}$: on la trouve par continuité du diagramme En pH = 7.5 on a E_{F2} = E_{F3} soit 1.15-0.18x7.5 = $E^{\circ}_{Fe(OH)3(s)/Fe(2+}$ -0.06 x 7.5 D'où $E^{\circ}_{Fe(OH)3(s)/Fe(OH)2(s)}$ = 0.25V

Ainsi $E_{F3} = 0.25 - 0.06$ pH

• $0 \le pH \le 7.5$: Couple $Fe^{2+}/Fe_{(S)}$:

Demi-équation électronique : $Fe^{2+} + 2e^- = Fe_{(S)}$ Formule de Nernst : $E = E^\circ_{Fe2+}/_{Fe(S)} + \frac{0.06}{2}log$ [Fe $^{2+}$] Frontière entre Fe^{2+} et $Fe_{(S)}$: convention on a le premier grain de $Fe_{(S)}$ et [Fe $^{2+}$] = c_0 d'où $E_{F4} = E^\circ_{Fe2+}/_{Fe(S)} + \frac{0.06}{2}log$ $c_0 = -0.50V$

• 7.5< pH < 14 : **Couple** Fe(OH)_{2(S)}/Fe_(S)

Demi-équation électronique : Fe(OH)_{2(S)} + 2e⁻ + 2H⁺ = Fe $_{(S)}$ + 2H₂O Formule de Nernst : E = E°_{Fe(OH)2(S)}/Fe $_{(S)}$ + 0.06 logh = E°_{Fe(OH)2(S)}/Fe $_{(S)}$ -0.06pH Frontière entre Fe(OH)_{2(S)}/Fe $_{(S)}$ -0.06pH d'où E_{F5} = E°_{Fe(OH)2(S)}/Fe $_{(S)}$ -0.06pH

Valeur de $E^{\circ}_{Fe(OH)2(s)/Fe\ (S)}$: on la trouve par continuité du diagramme En pH = 7.5 on a E_{F4} = E_{F5} soit -0.50 = $E^{\circ}_{Fe(OH)2(s)/Fe\ (S)}$ - 0.06 x 7.5 D'où $E^{\circ}_{Fe(OH)2(s)/Fe\ (S)}$ = -0.05 V

Ainsi $E_{F5} = -0.05 - 0.06pH$

III.4. Tracer du diagramme

III.5. Utilisation du diagramme

III.5.1. Stabilité des diverses espèces

Les 5 espèces considérées présentent un domaine de prédominance ou d'existence propre. Donc, chacune des espèces considérées séparément, peut être stable. Par conséquent, le degré d'oxydation (II) (Fe²⁺ et Fe(OH)_{2(s)}) ne se dismute pas.

III.5.2. Stabilité des solutions aqueuses

On superpose le diagramme E = f(pH) de l'eau à celui de l'élément fer.

Toute espèce ne disposant pas d'un domaine commun de stabilité avec l'eau est amenée à réagir avec l'eau afin de former des espèces compatibles, c'est-à-dire disposant d'un domaine de stabilité commun.

On constate que:

→ fer solide n'a aucun domaine d'existence commun avec l'eau. Une lame de fer plongée dans l'eau s'oxyde.

La nature des produits de cette oxydation est fonction du pH de la solution

pH< 7.5 on obtient des ions Fe²⁺ selon la réaction :

$$Fe_{(S)} + 2 H_3O^+ = Fe^{2+} + H_{2(G)} + 2H_2O$$

pH>7.5 on obtient le précipité de Fe(OH)_{2(S)} selon la réaction :

$$Fe_{(S)} + 2H_2O = Fe(OH)_{2(S)} + H_{2(G)}$$

 \rightarrow les ions Fe²⁺, Fe³⁺ et les hydroxydes Fe(OH)_{2(s)} et Fe(OH)_{3(s)} ont des domaines de stabilité qui recouvrent partiellement celui de l'eau H₂O.

Les solutions obtenues par dissolution de sels de fer II ou de fer III dans l'eau pure peuvent être stables.

En revanche, en présence de O_2 dissous, Fe^{2+} ou $Fe(OH)_{2(s)}$ sont oxydés en Fe^{3+} ou $Fe(OH)_{3(s)}$ suivant la valeur du pH de la solution.

IV. Diagramme E-pH du cuivre

IV.1. Remarques

- Nous nous limiterons ici aux espèces suivantes : Cu_(S), Cu⁺, Cu₂O_(S), Cu²⁺, Cu(OH)_{2(S)}
- Diagramme primitif

n.o/pH	0	pH₁	pH ₂		14
II		Cu ²⁺	Cu^{2+} $Cu(OH)_{3(S)}$		
I	Cu⁺		Cu ₂ O		
0			Cu _(S)		

• Dismutation du cuivre I

Une étude identique à celle faite pour le diagramme potentiel-pH du fer mène au diagramme cidessous :

On se rend compte que Cu^+ n'a pas de domaine de stabilité propre. Les courbes se coupent en pH_0 .

Il faut donc calculer la frontière entre Cu²⁺/Cu_(S).

IV.2. Lecture du diagramme potentiel-pH du cuivre

• Nous nous limiterons ici aux espèces suivantes : Cu_(S), Cu⁺, Cu₂O_(S), Cu²⁺, Cu(OH)_{2(S)} Les espèces dissoutes sont les ions ; les autres sont des solides.

On donne : $c_0 = [Cu^{2+}] + [Cu^{+}] = 0.01 \text{ mol.L}^{-1}$.

• Méthode de lecture

Très souvent les diagrammes potentiel-pH sont fournis, et il faut apprendre à les lire ou à déduire graphiquement des valeurs numériques E° , pK_{s} .

Le premier travail consiste à identifier les divers domaines. Pour cela un diagramme préalable du type n.o. = f(pH) nous donne aisément la réponse.

La lecture des E° se fait pour pH = 0. Ne pas oublier de tenir compte de la concentration c_0 choisie pour le tracé.

La lecture des pK_A ou pK_s se déduit des ruptures de pente.

- Un diagramme unique permet de prévoir les propriétés chimiques des divers n.o. d'un élément :
 - → stabilité de chaque n.o. si existence d'un domaine propre (ou dismutation éventuelle),
- La superposition de diagrammes permet de prévoir les réactions spontanées du point de vue thermodynamique.

Deux espèces n'ayant pas de domaine d'existence ou de prédominance commun réagissent l'une sur l'autre.

• Le diagramme E-pH

• Lecture des données thermodynamique

→ Déterminer à partir du diagramme la valeur du potentiel E°_{Cu2+/Cu(S)}

Couple Cu²⁺/Cu_(S):

Demi-équation électronique : $Cu^{2+} + 2e^- = Cu_{(S)}$ Formule de Nernst : $E = E^\circ_{Cu2+/Cu(S)} + \frac{0,06}{2}log [Cu^{2+}]$

Frontière entre Cu^{2+} et $Cu_{(S)}$: convention on a le premier grain de $Cu_{(S)}$ et $[Cu^{2+}] = c_0$

d'où
$$E_F = E^{\circ}_{Cu2+/Cu(S)} + \frac{0.06}{2} log c_0 = 0.28V$$

D'où $E^{\circ}_{Cu2+/Cu(S)} = 0.34V$

→ Déterminer à partir du diagramme la valeur du potentiel E°_{Cu(OH)2/Cu2O(S)}

Couple Cu(OH)_{2(S)}/Cu₂O_(S)

 $\begin{array}{l} \text{Demi-\'equation \'electronique}: 2 Cu(OH)_{2(S)} + 2 e^- + 2 H^+ = Cu_2O_{(S)} + 3 H_2O \\ \text{Formule de Nernst}: E = E^\circ_{Cu(OH)2/Cu2O(S)} + \frac{0.06}{2} logh^2 = E^\circ_{Cu(OH)2/Cu2O(S)} - 0.06 pH \\ \end{array}$

Frontière entre $Cu(OH)_{2(S)}/Cu_2O_{(S)}$ d'où $E_F = E^\circ_{Cu(OH)_2/Cu_2O(S)}$ - 0.06pH On prolonge le segment de la frontière jusqu'à pH = 0 on trouve $E^\circ_{Cu(OH)_2/Cu_2O(S)} = 0.75V$

ightarrow Déterminer à partir du diagramme la valeur du potentiel E $^{\circ}_{\text{Cu2+/Cu2O(S)}}$

Couple Cu²⁺/ Cu₂O_(S)

Demi-équation électronique : $2Cu^{2+} + 2e^{-} + H_2O = Cu_2O_{(S)} + 2H^{+}$

Formule de Nernst : $E = E^{\circ}_{Cu2+/Cu2O(S)} + \frac{0.06}{2}log \frac{[Cu^{2+}]^2}{h^2} = E^{\circ}_{Cu2+/Cu2O(S)} + 0.06 log[Cu^{2+}] + 0.06pH$ Frontière entre Cu^{2+} et $Cu_2O_{(S)}$: convention on a le premier grain de $Cu_2O_{(S)}$ et $[Cu^{2+}] = c_0$

d'où $E_F = E^{\circ}_{Cu2+/Cu2O(S)} + 0.06log c_0 + 0.06pH$

On prolonge le segment de la frontière jusqu'à pH = 0 on trouve $E_F = 0.1V$ D'où $E^{\circ}_{Cu2+/Cu2O(S)} = 0.22V$

→ Déterminer à partir du diagramme la valeur du produit de solubilité de Cu(OH)_{2(S)}

Réaction : $Cu(OH)_{2(S)} = Cu^{2+} + 2HO^{-} K_S = [Cu^{2+}][HO^{-}]^2$

Frontière : au premier grain de précipité [Cu²+]≈ c₀ et le K₅ est vérifié

d'où $K_S = c_0[HO^-]^2 = c_0 \frac{K_e^2}{h^2}$

ainsi on lit sur le diagramme $pH_2 = 5$ d'où $pK_S = -logc_0 + 2pK_e - 2pH$

• Propriétés chimiques

- → Stabilité propre des différents nombres d'oxydation de l'élément cuivre
 - * Cu (0) et Cu (+II) peuvent exister pour tout pH.
 - * Par contre Cu (+I) se dismute en milieu acide (pH < 3).

La précipitation sous forme de Cu₂O stabilise Cu (+I).

Remarque : En milieu neutre ou basique on pourra observer la réaction d'amphotérisation ou rétrodismutation : Cu(+II) + Cu(0) = 2 Cu(+I)

→ Stabilité dans l'eau ou les acides

Cu n'est attaqué (oxydé) ni par l'eau (non aérée) ni par les acides à anion non oxydant. (métal noble)

Cu est lentement attaqué par l'eau aérée (présence d'eau et de dioxygène) selon la réaction $2Cu + 2H_2O + O_2 = 2Cu(OH)_{2(S)}$ pour pH>5

AQ4: DIAGRAMMES POTENTIEL-PH

1
1
1
1
2
2
3
3
4
4
6
6
6
6
7
7
7