Supervised Machine Learning

Elliott Ash, Malka Guillot, Philine Widmer

ETH Zürich | SICSS Zürich 2021

Table of Contents

- 1. Prologue
- 2. Accuracy Measurement
- 3. How to choose training and test set?
- 4. <u>Linear Regression</u>
- 5. <u>Regularized Regression</u>
- 6. <u>Double Machine Learning</u>
- 7. Final Thoughts

Prologue

=

Econometrics vs. Machine Learning

- Classical computer programming: humans input the rules and the data, and the computer provides answers.
- Supervised ML: humans input the data and the answer, and the computer learns the rules.

The Machine learning landscape

Today

- Focus on regressions
 Not covered
- <u>Classification</u>
- Advanced ML methods: XGboost <u>notebook</u>
- Unsupervised learning <u>slides</u>, <u>notebook</u>

Reference:

- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An Introduction to Statistical Learning.*, book, chap 3, 6.2
- Géron, A., *Hands-On Machine Learning with Scikit-Learn and TensorFlow*. <u>book</u>, chapter 2, and <u>notebooks</u>

Modeling theory and accuracy measurement

8 of 59

Mean Squared Error (MSE)

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

- Regression setting: the mean squared error is a metric of how well a model fits the data.
- But it's in-sample.
- What we are really interested in is the out-of-sample fit!

Measuring fit (1)

- ullet We would like $(y_0-\hat{f}\,(x_0))^2$ to be small for some (y_0,x_0) , not in our training sample $(x_i,y_i)_{i=1}^n.$
- ullet Assume we had a large set of observations (y_0,x_0) (a test sample),
- ullet then we would like a low $Ave(y_0-\hat{f}\left(x_0
 ight))^2$
- i.e a low average squared prediction error (test MSE)

6/15/21, 10:22 PM

Measuring fit (2)

To estimate model fit we need to partition the data:

- 1. Training set: data used to fit the model
 - Training MSE: how well our model fits the training data.
- 2. Test set: data used to test the fit
 - Test MSE: how well our model fits new data

We are most concerned in minimizing test MSE

11 of 59

Training MSE, test MSE and model flexibility

Red (grey) curve is test (train) MSE Increasing model flexibility tends to decrease training MSE but will eventually increase test MSE

Overfitting

- As model flexibility increases, training MSE will decrease, but the test MSE may not.
- When a given method yields a small training MSE but a large test MSE, we are said to be overfitting the data.
- (We almost always expect the training MSE to be smaller than the test MSE)
- Estimating test MSE is important, but requires training data...

How to choose training and test set?

Resamling methods

Estimate the test error rate by holding out a subset of the training observations from the fitting process, + then applying the statistical learning method to those held out observations

Validation set approach

• Randomly divide labeled data randomly into two parts: training and test (validation) sets.

=

Two concerns

- Arbitrariness of split
- Only use parts of the data for estimation
 - ightarrow we tend to overestimate test MSE because our estimate of f(x) is less precise

17 of 59

Leave-One-Out Cross-Validation (LOOC)

- ullet Fit on n-1 training observations, and a prediction the Last
- ullet Iterate n times
- Assess the average model fit across each test set. Estimate for the test MSE:

$$CV_n = \sum_{i=1}^n MSE_i$$

Leave-One-Out Cross-Validation (LOOC)

- less bias than the validation set approach
- always yield the same results
- potentially too expensive to implement

=

k-fold Cross-validation

- ullet Leave-One-Out Cross-Validation with k=1
- ullet Randomly dividing the data into the set of observations into k groups
- ullet 1st fold is treated as a validation set, and the method is fit on the remaining k-1 folds
- Iterate k times Estimate for the test MSE:

$$CV_k = \sum_{i=1}^k MSE_i$$

k-fold Cross-validation

 \Rightarrow Arguably the contribution to econom(etr)ics: Cross-validation (to estimate test MSE)!

=

Linear Regression as a Predictive Model

Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

one of the simplest algorithms for doing supervised learning
 A good starting point before studying more complex learning methods

Estimation by Ordinary Least Squares

 $RSS= ext{Residual sum of squares} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Minimizing RSS gives a closed form solution for the $\hat{eta}_1, \cdots \hat{eta}_p$ Most ML models do not have a a closed form solution

6/15/21, 10:22 PM

25 of 59

Extensions of the Linear Model

Going further model's assumptions:

- ullet the additive: the effect of changes in a predictor X_j on the response Y is independent of the values of the other predictors
- ullet linearity: the change in the response Y due to a one-unit change in X_j is constant

=

Interactions

- Adding interacted variable can help
- Should respect the hierarchy principle:
 - if an interaction is included, the model should always include the main effects as well

Non Linearity

- Include transformed versions of the predictors in the model
 - \Rightarrow Including polynomials in X may provide a better fit

Linear Models: pros and cons

- <u>Pros</u>:
 - Interpretability
 - Good predictive performance
 - Accuracy measures for
 - coefficient estimates (standard errors and confidence intervals)
 - $\circ \ \ \text{the model}$
- <u>Cons</u>:
 - lacksquare When p>n
 - Tend to over-fit training data.
 - Cannot handle multicollinearity.

29 of 59

Generalization of the Linear Models

- Classification problems: logistic regression, support vector machines
- Non-linearity: nearest neighbor methods
- Interactions: Tree-based methods, random forests and boosting
- Regularized fitting: ridge regression and lasso

Regularized Regressions

Why Regularization?

- Solution against over-fitting
- Allow High-Dimensional Predictors
 - ullet p>>n: OLS no longer has a unique solution
 - $lacktriangleq x_i$ "high-dimensional" i.e. very many regressors
 - o pixels on a picture

Adding a Regularization Term to the Loss Function $L(.\,)$

$$\hat{eta} = argmin_{eta} rac{1}{n} \sum_{i=1}^n L(h(x_i,eta),y_i) + \lambda R(eta)$$

- $R(\beta)$ = regularization function
 - $lacksquare R(eta) = \sum_{i=1}^n p(eta_i)$ for p(.) the penalty function
- ullet λ is a hyperparameter where higher values increase regularization

Different Penalty Functions p()

- ullet Ridge (L2): $p(eta_j)=eta_j^2$
- LASSO (L1): $p(eta_j) = |eta_j|$
- ullet Elastic Net: $p(eta_j) = lpha |eta_j| + (1-lpha)eta_j^2$
- ullet Subset selection: $p(eta_j)=1\{eta_j
 eq 0\}$

How to Solve Without a Closed-form Solution?

Gradient Descent

Gradient descent measures the local gradient of the error function, and then steps in that direction.

ightarrow Minimum in 0

=

Stochastic Gradient Descent

- 1. Picks a random instance in the training set
- 2. Computes the gradient only for that single instance
- Pro: SGD is much faster to train,
- Cons: bounces around even after it is close to the minimum.
 - ightarrow Compromise: mini-batch gradient descent, selects a sample of rows (a "mini-batch") for gradient compute

Varients of Gradient Descent

Ridge Regression

$$min_{eta}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}+\lambda\sum_{j=1}^{p}eta_{j}^{2}$$
 Where

- $\lambda > 0$ = penalty parameter
- ullet covariates can be high-dimensionnal p>>N Trade-off, from the minimization of the sum of
- 1. RSS
- 2. shrinkage penalty: decreases with β_j
 - ightarrow relative importance given by λ

Ridge Regression: shrinkage to $\boldsymbol{0}$

Squared bias (black), variance (green), [test] MSE (red)

Ridge vs. Linear Models

- when outcome and predictors are close to having a linear relationship, the OLS will have low bias but potentially high variance
 - ullet small change in the training data ightarrow large change in the estimates
 - lacksquare worse with p close tp n
 - ullet if p>n, OLS do not have a unique solution
 - ightarrow ridge regression works best in situations where the least squares estimates have high variance

LASSO

Overcome an important drawback of Ridge (all p predictors are included in the final model) LASSO proposes a method to build a model which just includes the most important predictors.

Better for interpretability than Ridge!

Lasso Coefficients

Lasso: Variance-Bias Trade-Off

Squared bias (black), variance (green), [test] MSE (red)

Constrained Regression

The minimization problem can be written as follow:

$$\sum_{i=1}^n (y_i - x_i'eta)^2 ext{ s.t. } \sum_{j=1}^p p(eta_j) \leq s,$$

Where

- ullet Ridge: $\sum_{j=1}^p eta_j^2 < s o$ equation of a circle
- ullet Lasso: $\sum_{j=1}^p |eta_j| < s \,{ o}$ equation of a diamond

Constraint Regions

Lasso	Ridge

=

Elastic Net = Lasso + Ridge

$$MSE(eta) + \lambda_1 \sum_{j=1}^p |eta_j| + \lambda_2 \sum_{j=1}^p eta_j^2$$

 λ_1 , $\lambda_2=$ strength of L1 (Lasso) penalty and L2 (Ridge) penalty

Selecting Elastic Net Hyperparameters

- Elastic net hyperparameters should be selected to optimize out-of-sample fit (measured by mean squared error or MSE).
- "Grid search"
 - ullet scans over the hyperparameter space ($\lambda_1 \geq 0, \lambda_2 \geq 0$),
 - lacksquare computes out-of-sample MSE for all pairs (λ_1,λ_2) ,
 - selects the MSE-minimizing model.

Evaluating Regression Models: R^2

MSE is good for comparing regression models, but the units depend on the outcome variable and therefore are not interpretable Better to use \mathbb{R}^2 in the test set, which has same ranking as MSE but it more interpretable.

ML & Causal Inference

Double Machine Learning to Adjust for Confounders

- If the treated group and comparison group differ only by a set of observable characteristics \rightarrow "control" for these variables to obtain causal estimates.
- ullet But what if we have 1000 covariates? ullet Machine learning can help.

=

Double ML: Setup

$$Y = \beta D + g(X) + \epsilon$$

- ullet low-dimensional treatment D, high-dimensional set of (observed) confounders X.
 - ullet OLS regression without adjusting for confounders will be biased for \hat{eta}
 - can we just include them in the regression as linear covariates?
 - will not adjust correctly due to potential non-linearities.
 - will probably fail to converge due to high dimensionality / collinearity / overfitting

Double ML method

- 1. Learn Y given X , $\hat{Y}(X)$, using any ML method
- 2. Learn D given X, $\hat{D}(X)$, using any ML method
- 3. Form residuals $ilde{Y} = Y \hat{Y}(X)$ and $ilde{D} = D \hat{D}(X)$
- 4. Regress $ilde{Y}$ on $ilde{D}$ to learn \hat{eta} .

Double ML method - Cross-Fitting

Split into samples A and B, 50% of data each, to prevent overfitting:

- ullet Fit (1) and (2) on sample A, then predict (3) and regress (4) on sample B, to estimate \hat{eta}_A
- vice versa: fit (1)/(2) on sample B, and predict/regress (3)/(4) on sample A, to learn a second estimate for $\hat{\beta}_B$.
- average them to get a more efficient estimator: \$\$\hat{\beta}=\frac{1}{2}(\hat{\beta}{A}+|hat{|beta}{B})\$\$

Final Thoughts

Selecting the Tuning Parameter By Cross-Validation

- 1. Choose a grid of λ values
- 2. Compute the CV error for each lambda
- 3. Select the tuning parameter value for which the CV error is smallest
- 4. Re-fit the model using all available observation and the best λ

Data Prep for Machine Learning

- See Geron Chapter 2 for <u>pandas</u> and <u>sklearn</u> syntax:
 - imputing missing values.
 - feature scaling (coefficient size depends on the scaling)
 - encoding categorical variables.
- Best practice
 - reproducible data pipeline
 - standardize coefficients

Other Supervised Machine Learning Methods

- Forward Selection,
- Backward Selection
- Trees and Forests
- Neural Networks
- Boosting
- Ensemble Methods

"Essentially, all models are wrong, but some are useful" --George Box