The goal of this problem is to run a linear perceptron algorithm. Assume that you have three training samples:

- 1. Sample $\mathbf{x_1} = [1, 3]^T$ from Class 1 $(y_1 = 1)$
- 2. Sample $\mathbf{x_2} = [3, 2]^T$ from Class 2 $(y_2 = -1)$
- 3. Sample $\mathbf{x_3} = [4,1]^T$ from Class 2 $(y_3 = -1)$

The linear perceptron is initialized with a line with corresponding weight $\mathbf{w}(\mathbf{0}) = [-\frac{1}{3}, 1]^T$. In the following, for the sake of simplicity, you will assume that all lines of the perceptron intersect point (0,0), therefore you do not have to include any intercept w_0 or x_0 in the following calculations.

(1) Plot $\mathbf{x_1}$, $\mathbf{x_2}$, and $\mathbf{x_3}$ in the given 2D space. Find and plot the line corresponding to weight $\mathbf{w}(\mathbf{0})$.

(3) Using the weight update rule from the linear perceptron algorithm, please find the value of the new weight $\mathbf{w}(\mathbf{1})$. Find and plot the new line corresponding to weight $\mathbf{w}(\mathbf{1})$ in the 2D space.

Note: The update rule is $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x_s}$, where $\mathbf{x_s}$ and $y_s \in \{-1, 1\}$ is the feature and class label of missclassified sample s.

(4) Using the rule $sign(\mathbf{w}(\mathbf{t})^T\mathbf{x_n})$, please indicate in which class are samples $\mathbf{x_1}$, $\mathbf{x_2}$, and $\mathbf{x_3}$ classified using the weight $\mathbf{w}(\mathbf{1})$. Which samples are not correctly classified based on this rule? **Note:** You have to compute the inner product $\mathbf{w}(\mathbf{1})^T\mathbf{x_n}$, n = 1, 2, 3, and see if it is greater or less than 0.

(5) Using the weight update rule from the linear perceptron algorithm, please find the value of the new weight $\mathbf{w}(2)$. Find and plot the new line corresponding to weight $\mathbf{w}(2)$ in the 2D space. How many samples are correctly classified now?

Note: The update rule is $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x_s}$, where $\mathbf{x_s}$ and $y_s \in \{-1, 1\}$ is the feature and class label of missclassified sample s.