- **Задача 4.1.** Для $n = 2^k$ покажите, что $C(KW_{\oplus_n}) \le 2k$.
- **Задача 4.2.** Для $n = 2^k$ покажите, что $C(KW_{\vee_n}) = k$.
- **Задача 4.3.** У Алисы имеется n-битная строка x, а у Боба n-битная строка y. Известно, что у получен из x инвертированием одного бита.
 - а) Придумайте детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x.
 - b) Придумайте однораундовый детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x. (B однораундовом протоколе Алиса посылает некоторое сообщение Бобу, после чего Боб вычисляет результат).
- **Задача 4.4.** Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x,y и хотят узнать существует ли ребро (x,y). Докажите, что детерминированная сложность данной задачи не менее $\log \chi(G)$, где $\chi(G)$ хроматическое число графа G. Подсказка: попробуйте предъявить хорошую раскраску, если есть короткий коммуникационный протокол.
- **Задача 4.5.** Докажите, что $C(\operatorname{CIS}_G) = \mathcal{O}(\log^2 n)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y как характеристическая функция некоторого независимого множества в графе G. $\operatorname{CIS}_G(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.
- **Задача 4.6.** Постройте детерминированный коммуникационный протокол, который вычисляет функцию GT, передавая в среднем константу битов. Функция GT(x,y) определена на парах x,y целых чисел в интервале $\{0,\ldots,2^n-1\}$ и принимает значение 1, если x>y, и значение 0, иначе. Говоря о среднем, мы имеем в виду, что x,y выбираются случайно и независимо среди всех чисел указанного интервала с равномерным распределением.
- **Задача 4.7.** Докажите, что коммуникационная сложность IP равна $n \mathcal{O}(1)$.

Открытая задача 4.8 (очень сложно)

Предлагается улучшить верхнюю оценку из статьи Andrew Chin для отношения $\mathrm{KW}_{\mathrm{MOD}p_n}$ для конкретного значения p>2.

- а) Для p = 3 лучше 2.881 $\log_2 n$,
- b) Для p = 5 лучше $3.475 \log_2 n$,
- с) Для p = 11 лучше $4.930 \log_2 n$.