Instituto Tecnológico de Costa Rica

Escuela de Matemática

Cátedra Cálculo y Álgebra Lineal

Práctica

Sucesiones y Series

Sucesiones Numéricas

1. Escriba los primeros cinco términos de la sucesión $\{a_n\}$ cuyo término general se indica en cada caso.

$$a) \ a_n = \frac{2n}{n^2 + 1}$$

$$l) \ a_n = 2^{-n} \cos(n\pi)$$

b)
$$a_n = \frac{3^n}{1+2^n}$$

$$m) \ a_n = n^{-2} \operatorname{sen}\left(\frac{n\pi}{2}\right)$$

c)
$$a_n = \frac{(-1)^{n-1}}{5^n}$$

$$n) \ a_n = \frac{n!}{(2n)!}$$

d)
$$a_n = \cos\left(\frac{n\pi}{2}\right)$$

$$\tilde{n}$$
) $a_n = \frac{2(n+1)!}{(n-1)!}$

$$e) \ a_n = \frac{1}{(n-1)!}$$

o)
$$a_n = \frac{(-1)^{n+1}}{n^n}$$

$$f)$$
 $a_n = \frac{(-1)^n \cdot n}{n! + 1}$

$$p) \ a_n = \left(1 + \frac{1}{n}\right)^{n-1}$$

$$g) \ a_n = 2 + \frac{(-1)^n}{n}$$

$$q) \ a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!}$$

$$h) \ a_n = \frac{(-1)^{n-1} \cdot n}{2^n}$$

r)
$$a_n = \frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{2 \cdot 3 \cdot 4 \cdots (n+1)}$$

$$i) \ a_n = \frac{n}{2n+1}$$

s)
$$\begin{cases} \frac{(-1)^{2n+1}}{3} & \text{si } n \text{ es par} \\ \\ n^2 & \text{si es impar} \end{cases}$$

$$j) \ a_n = \left(-\frac{2}{3}\right)^n$$

t)
$$a_n = \frac{(-1)^n x^{2n-1}}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

$$k) \ a_n = \frac{3^n}{n!}$$

u)
$$a_n = \frac{1+2+3+\cdots+n}{n^2}$$

2. Encuentre una fórmula para el término general (n-ésimo término) de las siguientes sucesiones.

a)
$$\left\{-1, \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \dots\right\}$$

$$d) \ \left\{ \frac{3}{2}, -\frac{9}{4}, \frac{27}{8}, -\frac{81}{16}, \dots \right\}$$

b)
$$\{-1,2,-6,24,...\}$$

e)
$$\left\{\frac{1}{2\cdot 3}, \frac{2}{3\cdot 4}, \frac{3}{4\cdot 5}, \frac{4}{5\cdot 6}, \dots\right\}$$

c)
$$\{-1,2,7,14,23,...\}$$

$$f$$
) $\left\{1, 1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \dots\right\}$

3. Las siguientes sucesiones están definidas de manera recursiva. Determine los primeros cinco términos en cada caso.

a)
$$a_1 = -1$$
, $a_n = 3a_{n-1}$, para $n \ge 2$.

b)
$$b_1 = b_2 = 1$$
, $b_{n+1} = b_n + b_{n-1}$, para $n \ge 2$.

c)
$$c_1 = c_2 = 0, c_3 = 1, c_n = \frac{c_{n-1} + c_{n-2}}{3}$$
, para $n \ge 4$.

d)
$$d_1 = 2, d_2 = \frac{1}{2}, d_{n+1} = \frac{1}{1+d_n}$$
, para $n \ge 2$.

4. Considere la sucesión $\{x_n\}$ definida por $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$. Si $f(x) = x^2 + x - 1$ y $x_1 = \frac{1}{2}$, hallar los siguientes tres términos de la sucesión. Además, encuentre $f(x_3)$.

5. Sea
$$\{a_n\}$$
 una sucesión tal que $a_n = \frac{(-1)^n 3^n n!}{2 \cdot 4 \cdot 6 \cdots (2n)}$.

- a) Calcule los términos a_3, a_5 y a_{n+1} .
- b) Determine y simplifique $\frac{a_{n+1}}{a_n}$.

¹En métodos numéricos este método se conoce como Newton-Raphson utilizado para encontrar aproximaciones de los ceros o raíces de una función real.

6. Determine si la sucesión dada es creciente, decreciente o no es monótona.

a)
$$\{\sqrt{n}\}$$

$$f$$
) $\left\{\frac{4^n}{\sqrt{4n^2+1}}\right\}$

$$j) \left\{ \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n \cdot n!} \right\}$$

$$b) \left\{ \frac{n^2}{n+1} \right\}$$

$$f) \left\{ \frac{4^n}{\sqrt{4n^2 + 1}} \right\}$$

$$k) \left\{ \ln \left(\frac{n+1}{n} \right) \right\}$$

c)
$$\{(-1)^n \cdot \sqrt{n}\}$$

$$g) \left\{ \frac{5^n}{1 + 5^{2n}} \right\}$$

$$l) \left\{ \frac{-5}{\sqrt{2n-1}} \right\}$$

$$d) \left\{ \frac{(n+1)^2}{n^2} \right\}$$

$$h) \left\{ \frac{n!}{3^n} \right\}$$

$$m) \left\{ \frac{n!}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right\}$$

n) $\left\{\frac{2^n \cdot (n+1)}{n!}\right\}$

$$e$$
) $\left\{\frac{n^n}{n!}\right\}$

i)
$$\{\cos \pi n\}$$

$$\tilde{n}$$
) $\left\{ \frac{(2n)!}{n! \cdot 1 \cdot 3 \cdot 5 \cdots (2n+1)} \right\}$

- 7. Sea $\{a_n\}$ una sucesión tal que $a_n = \frac{\left[1 \cdot 5 \cdot 9 \cdots (4n+1)\right](2n)!}{(3n)!}$. Determine si $\{a_n\}$ es una sucesión creciente o decreciente.
- 8. Verificar que la sucesión $\left\{\frac{n^4}{e^n}\right\}$ es decreciente para $n \ge 4$.
- 9. Determinar a partir de qué valor de $n \in \mathbb{N}$, la sucesión $b_n = \frac{\ln n}{n}$ es decreciente.
- 10. Considere la sucesión $\left\{\frac{3 \cdot n!}{n \cdot 7^{n+1}}\right\}^{\infty}$. Demostrar que la sucesión es creciente para todo $n \ge 7$.
- 11. Establecer a partir de qué número natural la sucesión dada es creciente o decreciente.

$$a) \left\{ n^6 e^{-n} \right\}_{n=1}^{\infty}$$

$$c) \left\{ \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{2^n \cdot n^n} \right\}_{n=1}^{\infty}$$

$$b) \left\{ \frac{n! \cdot 3^{-n}}{n+1} \right\}_{n=0}^{\infty}$$

d)
$$\left\{23n - 9n^2 - 15 + n^3\right\}_{n=0}^{\infty}$$

12. Demuestre que las sucesiones $\left\{\frac{n^2}{n+3}\right\}$ y $\left\{\frac{n^2}{n+4}\right\}$ son divergentes, pero $\left\{\frac{n^2}{n+3} - \frac{n^2}{n+4}\right\}$ es una sucesión convergente.

- 13. Verifique que las sucesiones $\left\{\frac{4n^3}{2n^2+1}\right\}$ y $\left\{\operatorname{sen}\frac{n}{\pi}\right\}$ son convergentes. ¿Qué se puede concluir sobre la convergencia de la sucesión $\left\{\frac{4n^3}{2n^2+1} \operatorname{sen} \frac{\pi}{n}\right\}$?
- 14. Determine si la sucesión cuyo término general es a_n converge o diverge. Si converge, encuentre el límite respectivo.

a)
$$a_n = \frac{1}{n^{3/2}}$$

$$i) \ a_n = \operatorname{sen}\left(\frac{n\pi}{2}\right)$$

$$p) \ a_n = \frac{4^n}{2^n + 10^6}$$

b)
$$a_n = 3 - \frac{1}{5^n}$$

$$j) \ a_n = \arctan(2n)$$

$$q) \ a_n = \ln\left(\frac{2^n}{n+1}\right)$$

$$c) \ a_n = \frac{n^2 - 1}{n + 1}$$

$$k) \ a_n = \sqrt{n+2} - \sqrt{n}$$

$$r) \ a_n = \ln n - \ln(n+1)$$

d)
$$a_n = \frac{4n+3}{3n+4}$$

$$l) \ a_n = \ln(n+1) - \ln n$$

$$s) \ a_n = \left(1 + \frac{3}{n}\right)^n$$

$$e) \ a_n = \frac{(n-2)!}{n!}$$

$$m) \ a_n = n \cdot 2^{-n}$$

$$t) \ a_n = \frac{\ln\left(2 + e^n\right)}{3n}$$

$$f) \ a_n = \frac{n}{\sqrt{n^2 + 1}}$$

$$n) \ a_n = \frac{\ln\left(n^2\right)}{n}$$

$$u) \ a_n = \frac{n^2}{2n+1} - \frac{n^2}{2n-1}$$

$$g) \ a_n = \frac{\sqrt{n} + \sqrt[5]{n}}{\sqrt[3]{n} + \sqrt[4]{n}}$$

$$\tilde{n}$$
) $a_n = \arctan\left(\frac{2n}{2n+1}\right)$ v) $a_n = n \operatorname{sen}\left(\frac{1}{n}\right)$

$$v) \ a_n = n \operatorname{sen}\left(\frac{1}{n}\right)$$

$$h) \ a_n = 1 - \left(\frac{\pi}{3}\right)^n$$

$$o) \ a_n = \frac{e^n n}{n}$$

$$w) \ a_n = 3 - \frac{2n}{2^n - 1}$$

$$x) \ a_n = n^2 e^{-n}$$

15. a) Demuestre por inducción la siguiente igualdad:

$$2+6+10+...+(4n-2)=2n^2$$
.

b) Verifique que la sucesión $a_n = \frac{2+6+10+...+(4n-2)}{(3-n)(4+n^2)}$ converge a 0.

- 16. La sucesión $\{a_n\}$ definida por $a_1=1$ y $a_{n+1}=\sqrt{3a_n+2}$ es convergente. Calcule su límite.
- 17. Dada la sucesión convergente $\{a_n\}_{n=1}^{\infty}$ donde $a_1 = 7$ y $a_{n+1} = \sqrt{\frac{(a_n)^2 + 2}{a_n + 2}}$ para $n \in \mathbb{N}$, calcule su límite.
- 18. Sea $\{a_n\}$ una sucesión de números reales. Si $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, entonces $\lim_{n \to \infty} a_n = 0$ y por lo tanto la sucesión $\{a_n\}$ es convergente. Verifique que cada una de las siguientes sucesiones de término general a_n son convergentes de acuerdo a este criterio.

a)
$$a_n = \frac{5^n}{n!}$$

$$b) \ a_n = \frac{n!}{n^n}$$

c)
$$a_n = \frac{n!}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

19. Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones dadas por $a_n = \sqrt[n]{4^n + 3^n}$ y $b_n = \sqrt{6n + 5} - \sqrt{6n}$. Si la sucesión

$$\left\{ \left(\frac{3}{a_n} \right)^{3+b_n} \right\}$$

es convergente, calcule su límite.

20. Sea $\{a_n\}$ una sucesión de términos positivos que satisface $3 \cdot 2^n \le (5a_n + 1)^n \le 2^n \cdot \frac{n^2 + 17}{n + 5}$. Sabiendo que la sucesión es convergente, calcule $\lim_{n \to \infty} a_n$.

Sumas Parciales, Criterio de Divergencia, Series Geométricas y Series Telescópicas

1. Para cada una de las siguientes series, determine los primeros cuatro términos de la sucesión de sumas parciales $\{S_n\}$.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

d)
$$\sum_{n=1}^{\infty} \frac{2}{5^{n-1}}$$

$$b) \sum_{n=1}^{\infty} n$$

e)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

$$c) \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

2. Usando inducción matemática, demuestre para cada serie que se presenta, que el término n—ésimo de la sucesión de sumas parciales $\{S_n\}$ es el que se indica en cada caso.

a)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)}$$
, $S_n = \frac{n(n+3)}{4(n+1)(n+2)}$

b)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k} + \sqrt{k+1}}$$
, $S_n = \sqrt{n+1} - 1$

c)
$$\sum_{k=1}^{\infty} \frac{2k-1}{2^k}$$
, $S_n = 3 - \frac{2n+3}{2^n}$

d)
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)(k-1)!}$$
, $S_n = 1 - \frac{1}{(n+1)!}$

e)
$$\sum_{k=1}^{\infty} \ln(k+1)$$
, $S_n = \ln(n+1)$!

$$f) \sum_{k=1}^{\infty} \frac{k}{2^k}, S_n = 2 - \frac{2+n}{2^n}$$

g)
$$\sum_{k=1}^{\infty} \frac{2^k + k(k+1)}{2^{k+1}(k^2+k)}$$
, $S_n = 1 - \frac{1}{2n+2} - \frac{1}{2^{n+1}}$

h)
$$\sum_{k=1}^{\infty} \log_3 \left(\frac{2k-1}{2k+1} \right)$$
, $S_n = -\log_3(2n+1)$

i)
$$\sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^2 + 2k} \right)$$
, $S_n = \ln 2 + \ln \left(\frac{n+1}{n+2} \right)$

$$j$$
) $\sum_{k=1}^{\infty} \log \left(\frac{k+1}{k} \right)^k$, $S_n = \log \left[\frac{(n+1)^n}{n!} \right]$

k)
$$\sum_{k=0}^{\infty} (-1)^{k-1} \frac{4(k+1)}{(2k+1)(2k+3)}$$
, $S_n = \frac{1}{3} + (-1)^{n-1} \frac{1}{2n+3}$

- 3. Analice la convergencia de las series numéricas del ejercicio 2. En caso de ser convergente, indique el valor al que converge.
- 4. Usando inducción matemática, demostrar que $\sum_{j=2}^{n} \frac{2^{j-1}}{3^j} = \frac{2}{3} \left(\frac{2}{3}\right)^n$ para todo $n \ge 2$. ¿Es convergente la serie $\sum_{j=2}^{\infty} \frac{2^{j-1}}{3^j}$?
- 5. Considere la serie $\sum_{k=1}^{\infty} \frac{k+2}{(k^2+k) \cdot 2^k}.$
 - a) Usando inducción matemática, demuestre que el término n-ésimo de la sucesión de sumas parciales $\{S_n\}$ asociada a la serie es $S_n = 1 \frac{1}{(n+1) \cdot 2^n}$.
 - b) Determine si la serie $\sum_{n=1}^{\infty} \left[(n+1) \cdot \sum_{k=1}^{n} \frac{k+2}{(k^2+k) \cdot 2^k} \right]$ es convergente o divergente.
- 6. Determine si las siguientes series son convergentes o divergentes. En caso de ser convergente, calcule su suma. ².

a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

b) $\sum_{n=1}^{\infty} [1+(-1)^n]$
e) $\sum_{n=1}^{\infty} \ln\left(\frac{1}{n}\right)$

c)
$$\sum_{j=1}^{\infty} \left(\frac{2}{3}\right)^j$$
 f) $\sum_{k=1}^{\infty} \frac{2}{3^{k-1}}$

²En algunas requerirá el criterio de divergencia.

g)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{2^n}$$

$$i) \sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

$$h) \sum_{n=1}^{\infty} e^{-n}$$

$$j) \sum_{n=1}^{\infty} \frac{1}{1 + \left(\frac{2}{3}\right)^n}$$

7. Sea
$$a_n = \frac{5n^2}{1 - 4n^2}$$
.

- a) Determine si $\{a_n\}$ es convergente.
- b) Indique si la serie $\sum_{n=1}^{\infty} a_n$ es convergente.
- 8. Considere la serie convergente $\sum_{n=1}^{\infty} b_n$. Utilice el criterio de la divergencia para verificar que la serie

$$\sum_{n=1}^{\infty} \frac{1+3n}{4n+b_n}$$

diverge.

9. Determine si cada una de las siguientes series geométricas convergen o divergen. En caso de ser convergente calcule su suma.

a)
$$\frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \cdots$$

g)
$$\sum_{n=1}^{\infty} (2^{-n} + 3^{-n})$$

b)
$$\sum_{n=0}^{\infty} \frac{2^n + 3^n}{5^n}$$

$$h) \sum_{k=2}^{\infty} \left(e^{-n} + e^n \right)$$

c)
$$\sum_{k=2}^{\infty} (-1)^n \cdot \frac{10^n}{9^n}$$

$$i) \sum_{n=1}^{\infty} \left(\frac{3}{2^n} - \frac{2}{3^n} \right)$$

d)
$$0.3 + 0.03 + 0.003 + \dots + \frac{3}{10^n} + \dots$$

e) $\sum_{i=1}^{\infty} (-1)^n \left(e^{6-3n} \cdot 5^{4-2n} \right)$

$$j) \sum_{k=1}^{\infty} 2^{2n} \cdot 3^{1-n}$$

$$f) \sum_{n=2}^{\infty} \left(\frac{25}{10^n} - \frac{6}{100^n} \right)$$

k)
$$\sum_{n=2}^{\infty} \left[(0.8)^{n-1} - (0.3)^n \right]$$

10. Determine si la serie siguiente es convergente o divergente. Si es convergente calcule su suma

9

$$4+3+\frac{9}{4}+\frac{27}{16}+\cdots$$

- 11. Encuentre la suma de la serie $\sum_{n=0}^{\infty} x^n$, donde |x| < 1.
- 12. Exprese el número 2.317 como una razón de enteros.
- 13. Calcule los valores de *x* para los cuales la serie converge. Determine la suma de la serie para dichos valores de *x*.

$$a) \sum_{n=1}^{\infty} (-5)^n x^n$$

b)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$$

- 14. Encuentre el valor de c si $\sum_{n=2}^{\infty} (1+c)^{-n} = 2$.
- 15. Considere la siguiente serie $\sum_{n=3}^{\infty} \frac{(5p)^n}{2^{n+1}}.$
 - a) Determine para qué valores de $p, p \in \mathbb{R}$ la serie es convergente.
 - b) Para los valores de p donde la serie converje, determine el valor de la suma infinita en términos de p.
- 16. Determine si existe un valor r de manera que se pueda garantizar que la serie $\sum_{n=1}^{\infty} r^n$ converja a 5. En caso de existir, indique cuál es.
- 17. Determine si la serie es convergente o divergente al expresar a_n como la suma telescópica. Si es convergente encuentre su suma.

a)
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

b)
$$\sum_{n=1}^{\infty} \left[\cos \frac{1}{n^2} - \cos \frac{1}{(n+1)^2} \right]$$

c)
$$\sum_{n=2}^{\infty} \left(e^{1/n} - e^{1/(n+1)} \right)$$

$$d) \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

$$e) \sum_{n=1}^{\infty} \frac{1}{(4n-3)(4n+1)}$$

$$f) \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$

g)
$$\sum_{n=1}^{\infty} \frac{1}{(n+2)(2n+2)}$$

h)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

i)
$$\sum_{n=1}^{\infty} \left[\operatorname{sen}\left(\frac{1}{n}\right) - \operatorname{sen}\left(\frac{1}{n+1}\right) \right]$$

$$j$$
) $\sum_{n=1}^{\infty} \left(\arctan \frac{1}{n+1} - \arctan \frac{1}{n} \right)$

$$k) \sum_{n=2}^{\infty} \log \left(\frac{n^2}{n^2 - 1} \right)$$

- 18. Considere la serie $N = \sum_{n=0}^{\infty} \frac{n!}{2^n \left(1 + \frac{1}{2}\right) \cdots \left(1 + \frac{n}{2}\right)}$.
 - a) Demuestre usando inducción matemática que la igualdad

$$\left(1+\frac{1}{2}\right)\left(1+\frac{2}{2}\right)\cdots\left(1+\frac{n}{2}\right)=\frac{(n+2)!}{2^{n+1}}$$

es válida para todo $n \ge 1$.

- b) Calcule la suma de la serie N.
- 19. Sea $a_n = \int_n^{n+1} \frac{\mathrm{d}x}{x^5}$ para todo $n \in \mathbb{N}$.
 - a) Hallar el término general de la sucesión $\{a_n\}$.
 - b) Determinar si la serie $\sum_{n=3}^{\infty} a_n$ es convergente, y en caso de serlo, calcular la suma.
- 20. Si la n-ésima suma parcial de una serie $\sum_{n=1}^{\infty} a_n$ es $S_n = \frac{n-1}{n+1}$ determine a_n y la suma de la serie.
- 21. Calcule la suma de la serie $\sum_{k=2}^{\infty} \left[\frac{(-2)^{-3n-1}}{3^{n-2}} + \frac{1}{4n+4n^2} \right]$.
- 22. Justifique si las siguientes afirmaciones son verdaderas o falsas.
 - a) Sea $\{S_n\}_{n\geq 1}$ la sucesión de n-ésimas sumas parciales de la serie $\sum_{n=3}^{\infty} a_n$. Si $\lim_{n\to\infty} S_n = \frac{3}{4}$, entonces la serie es divergente.
 - b) Si la serie $\sum_{n=1}^{\infty} a_n$ diverge y $\lim_{n\to\infty} b_n = 3$, entonces con certeza la serie $\sum_{n=1}^{\infty} (a_n + b_n)$ diverge.
 - c) Si $\{a_n\}_{n\geq 1}$ y $\{b_n\}_{n\geq 1}$ son dos sucesiones tales que $\lim_{n\to\infty}\frac{b_n}{a_{n+1}}=\frac{1}{2}$, entonces la serie

$$\sum_{n=1}^{\infty} \frac{a_{n+2}b_n - a_{n+1}b_{n+1}}{a_{n+1}a_{n+2}}$$

converge a $\frac{b_1}{a_2} - \frac{1}{2}$.

23. Para cada una de las series siguientes, determine si convergen o divergen. En caso de ser convergente, calcule su suma.

a)
$$\sum_{n=1}^{\infty} \frac{(-9)^n}{7^{n-2}}$$

$$b) \sum_{n=3}^{\infty} \frac{2}{n^2 - 2n}$$

c)
$$\sum_{j=1}^{\infty} \frac{1}{4j^2 - 1}$$

$$d) \sum_{k=3}^{\infty} \frac{(-2)^{k+2}}{3^{k-2}}$$

$$e) \sum_{n=1}^{\infty} \frac{2^{n+3} + 3^{n-2}}{7^n}$$

$$f) \sum_{n=2}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n-1}}$$

g)
$$\sum_{n=1}^{\infty} \frac{2}{(2n+1)(2n+5)}$$

$$h) \sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$

$$i) \sum_{k=4}^{\infty} \frac{3^{k-2} + 4^{k-2}}{6^{k-1}}$$

$$j) \sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^{1-n}$$

$$k) \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

$$l) \sum_{k=2}^{\infty} \frac{2^{k+1} - 1}{4^{k-2}}$$

$$m) \sum_{n=2}^{\infty} \frac{(-3)^{n+1} + 5 \cdot 2^{n+1}}{4^n}$$

$$n) \sum_{n=2}^{\infty} \frac{6}{(3n-5)(3n+1)}$$

$$\tilde{n}) \sum_{n=2}^{\infty} \left[\frac{1}{n(n+2)} + 3\left(-\frac{1}{2}\right)^n \right]$$

o)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$

$$p) \sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

q)
$$\sum_{n=0}^{\infty} \frac{(-1)^n + 2^{3n-1}}{3^{4n}}$$

$$r) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{7^n}$$

$$s) \sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

t)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)}$$

$$u) \sum_{n=1}^{\infty} \ln \left[1 + \frac{2}{n(n+3)} \right]$$

$$v) \sum_{k=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right)$$

$$w) \sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$$

Criterios de Convergencia

1. Mediante el criterio de la integral determine si la serie es convergente o divergente.

$$a) \sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$

$$h) \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$

$$n) \sum_{n=2}^{\infty} \frac{1}{n \left(\ln n \right)^2}$$

$$b) \sum_{n=1}^{\infty} \frac{1}{n^5}$$

i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

$$\tilde{n}) \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+3)^3}$$

$$j) \sum_{n=3}^{\infty} \frac{3n-4}{n^2-2n}$$

$$o) \sum_{n=3}^{\infty} \frac{n^2}{e^n}$$

$$d) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$$

$$k) \sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

$$p) \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

$$e) \sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

$$l) \sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13}$$

$$q) \sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

$$f) \sum_{n=1}^{\infty} n^2 e^{-n^3}$$

$$r) \sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$$

$$g) \sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^2}$$

$$m) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

$$s) \sum_{n=1}^{\infty} \frac{e^{\arctan n}}{n^2 + 1}$$

2. Utilice el criterio de la integral y el criterio de p-series para analizar la convergencia de las series siguientes.

$$a) \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}-1)}$$

$$d) \sum_{n=1}^{\infty} n e^{-n}$$

$$g) \sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

$$b) \sum_{n=1}^{\infty} \frac{1}{(4n+1)^3}$$

$$e) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

$$h) \sum_{n=2}^{\infty} \frac{1}{n \ln \sqrt{n}}$$

c)
$$\sum_{n=3}^{\infty} (n^{-1.001} + n^{-0.99})$$
 f) $\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n^2}$

$$f$$
) $\sum_{n=1}^{\infty} \frac{\operatorname{sen}\left(\frac{1}{n}\right)}{n^2}$

13

$$i) \sum_{n=1}^{\infty} \frac{3n^2 + 1}{\sqrt[3]{n^3 + n + 1}}$$

j)
$$\sum_{n=2}^{\infty} \left(\frac{2}{n\sqrt{n}} + \frac{3}{n^3} \right)$$
 k) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$

$$k) \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$$

$$l) \sum_{n=1}^{\infty} \frac{1}{(n+1) \ln^2 (n+1)}$$

- 3. Demostrar usando el criterio de la integral que la p-serie, $\sum_{p=1}^{\infty} \frac{1}{n^p}$, es convergente si p > 1 y es divergente si $p \le 1$.
- 4. Justifique por qué no es posible utilizar el criterio de la integral para determinar si la serie es convergente.

$$a) \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$$

$$b)\sum_{n=1}^{\infty} \frac{\cos^2 n}{1+n^2}$$

5. Utilice el criterio de comparación directa o el criterio de comparación por paso al límite para analizar la convergencia de las siguientes series.

a)
$$\sum_{n=1}^{\infty} \frac{2n+3}{3n^4-2n+1}$$

$$h) \sum_{k=1}^{\infty} \frac{k + \ln k}{k^2 + 1}$$

$$b) \sum_{n=1}^{\infty} \frac{1}{2^n - n}$$

i)
$$\sum_{n=1}^{\infty} \frac{n2^n + 5}{4n^3 + 3n}$$

$$c) \sum_{n=1}^{\infty} \frac{4 + \cos n}{\sqrt[3]{n}}$$

$$j) \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

$$d) \sum_{n=1}^{\infty} \frac{1 + \operatorname{sen} n}{2^n - 1}$$

$$k) \sum_{n=1}^{\infty} \frac{\arctan n}{n\sqrt{n}}$$

$$e) \sum_{n=1}^{\infty} \frac{n+\sqrt{n}}{2n^3-1}$$

$$l) \sum_{n=1}^{\infty} \frac{\cos^2(n-1)}{n^3 + 1}$$

$$f) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{(n+1)^2 - 1}}$$

$$m) \sum_{k=1}^{\infty} \frac{\ln k}{e^k}$$

$$g) \sum_{m=1}^{\infty} \frac{3 - \operatorname{sen} m}{2m + 1}$$

$$n) \sum_{k=1}^{\infty} \frac{k}{e^k}$$

$$\tilde{n}$$
) $\sum_{n=1}^{\infty} \frac{1}{e^n - \cos n}$

$$t) \sum_{k=1}^{\infty} \frac{\ln k}{k+1}$$

$$o) \sum_{k=1}^{\infty} \frac{2 + \operatorname{sen}^2 k}{\sqrt{k} + 1}$$

$$u) \sum_{n=1}^{\infty} \frac{\sqrt[4]{n}}{\sqrt[3]{n} + \sqrt[4]{n^2 + n}}$$

$$p) \sum_{k=1}^{\infty} \frac{\ln k}{\sqrt{k+1}}$$

$$v) \sum_{n=1}^{\infty} \frac{n^2 - 2n}{\sqrt[3]{n^{10} - 4n^2}}$$

$$q) \sum_{n=1}^{\infty} \frac{2 + \cos n}{n^3 + 1}$$

$$w) \sum_{n=1}^{\infty} \frac{2n^2 + 7n}{3^n (n^2 + 5n - 1)}$$

r)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n^2+n)}{3^n+4}$$

$$x) \sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{3n^3 + 4n^2 - 2}$$

$$s) \sum_{n=1}^{\infty} \frac{1}{(2n-1) 2^{n+1}}$$

y)
$$\sum_{n=1}^{\infty} \frac{5^n + n - 1}{3^n - 2}$$

z)
$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$$

6. Leonhard Euler calculó la suma exacta de la serie p para p=2:

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Utilice este hecho para calcular la suma de la serie siguiente:

$$\sum_{n=3}^{\infty} \frac{1}{(n+1)^2}$$

7. Utilice los criterios del cociente (razón o D'Alambert) o de la raíz (Cauchy) para analizar la convergencia de las series siguientes.

15

$$a) \sum_{k=1}^{\infty} \frac{(-1)^k}{(\arctan k)^k}$$

c)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n n^2}{(n+2)!}$$

$$d) \sum_{n=1}^{\infty} \frac{(3n)^n}{n^{2n}}$$

e)
$$\sum_{n=2}^{\infty} \frac{2^{n-1}}{4 \cdot 7 \cdot 10 \cdots (3n-2)}$$

$$n) \sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$$

$$f) \sum_{n=1}^{\infty} \frac{(-5)^{n+1} n!}{1 \cdot 5 \cdot 9 \cdots (4n-3)}$$

$$\tilde{n}) \sum_{k=1}^{\infty} \left(\frac{1-3k}{3+4k} \right)^k$$

g)
$$\sum_{k=1}^{\infty} \frac{k^{100}}{(k+5)!}$$

$$o) \sum_{k=1}^{\infty} \left(\frac{k+1}{2k-1} \right)^{2k-1}$$

$$h) \sum_{k=2}^{\infty} \left(\frac{\ln k}{k} \right)^k$$

$$p) \sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{(2n+1)!}$$

$$i) \sum_{n=1}^{\infty} \frac{2^n - 1}{n^n}$$

q)
$$\sum_{n=2}^{\infty} \frac{(n-2)!}{3^{n-2}}$$

$$j) \sum_{n=1}^{\infty} \frac{(-5)^{k-1}}{k \cdot k!}$$

r)
$$\sum_{k=0}^{\infty} \frac{(-1)^k (k+2)!}{k! \cdot 10^k}$$

$$k) \sum_{n=1}^{\infty} \frac{(-n)^{n+1}}{e^n}$$

$$s) \sum_{n=1}^{\infty} \left(\frac{5n+1}{4n-1} \right)^{n/2}$$

$$l) \sum_{n=1}^{\infty} \left(2\sqrt[n]{n}+1\right)^n$$

$$t) \sum_{n=1}^{\infty} \frac{10^{2n}}{(2n-1)!}$$

$$m) \sum_{n=1}^{\infty} \frac{3 \cdot 4 \cdot 5 \cdots (n+2)}{4 \cdot 6 \cdot 8 \cdots (2n+2)}$$

$$u) \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

- 8. Determine si la serie $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ converge o diverge.
- 9. Pruebe que la serie $\sum_{n=1}^{\infty} \frac{1}{n^2 \log \left(1 + \frac{1}{n}\right)}$ es convergente.
- 10. Determinar la convergencia o divergencia de la serie $\sum_{n=1}^{\infty} \frac{2 + \sin^3(n+1)}{2^n + n^3}$.
- 11. Pruebe que la serie $\sum_{n=1}^{\infty} \frac{|\operatorname{sen} n|}{n^2 + 1}$ es convergente.
- 12. Verificar que la serie $\sum_{n=1}^{\infty} \sqrt{n} \left(\sqrt{n^6 + 2} \sqrt{n^6 + 1} \right)$, es convergente.

- 13. Estudiar la serie $\frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \cdots$
- 14. Pruebe que la serie $\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{sen}\left(\left(\frac{n+1}{n}\right)\pi\right)$, es convergente. (Sug: sen(x+y) = sen x sen y + cos x cos y)
- 15. Usando el criterio de Cauchy, verifique que la serie $\sum_{n=1}^{\infty} n^2 \left(\frac{5+(-2)^n}{9}\right)^n$, es divergente.
- 16. Pruebe que la serie $J = \sum_{n=1}^{\infty} \frac{n+1}{n^2 (n+2)^2}$ es convergente, utilizando el criterio de comparación por paso al límite.
- 17. Determine si la serie $\sum_{n=1}^{\infty} \frac{n^{2018} [2 + (-1)^n]^n}{9^n}$ converge o diverge. (Sugerencia: note que $1 \le 2 +$ $(-1)^n \le 3$ para todo $n \in \mathbb{N}$
- 18. Determine si la serie $\sum_{k=2}^{\infty} \frac{1}{3^{\ln k} \cdot k}$ converge o diverge. (Recuerde que $(b^u)' = b^u \cdot \ln b$ para cualquier b > 0 constante)
- 19. Determinar si la serie $\frac{1}{2} + \left(\frac{2}{3}\right)^2 + \left(\frac{3}{8}\right)^+ \cdots + \left(\frac{n}{3n-1}\right)^{2n-1}$ es convergente o divergente.
- 20. Considere la serie $J = \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n(n+2)} \right)$.
 - a) Pruebe usando el criterio de comparación por paso al límite que la serie J es convergente.
 - b) Calcule la suma de la serie J.
- 21. Determinar la convergencia o divergencia de las series siguientes.

$$a) \sum_{n=1}^{\infty} \frac{n^2}{n^4 + n}$$

$$d) \sum_{n=1}^{\infty} \frac{n^n}{e^n}$$

g)
$$\sum_{n=1}^{\infty} \frac{2+10^6 \operatorname{sen}^2(3n)}{n^2}$$

$$b) \sum_{n=1}^{\infty} \frac{|\cos n|}{n^2 + n}$$

e)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)(n+1)}}$$
 h) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2-1}}$

17

h)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

$$c) \sum_{n=1}^{\infty} \frac{n \operatorname{sen} n + 1}{n^3 + 1}$$

$$f) \sum_{n=1}^{\infty} \frac{|\sec n|}{\sqrt{n}}$$

$$i) \sum_{n=2}^{\infty} \frac{1}{n^2 \ln n}$$

$$j) \sum_{n=1}^{\infty} \frac{4n^2 + 5n - 2}{n(n^2 + 1)^{3/2}}$$

$$\tilde{n}$$
) $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(n+4)}$

$$s) \sum_{n=1}^{\infty} \frac{(n+1)^n}{e^{n^2}}$$

$$k) \sum_{n=1}^{\infty} \sqrt{\frac{n - \ln n}{n^2 + 10n^3}}$$

$$o) \sum_{n=1}^{\infty} \frac{(n+1)2^n}{n!}$$

t)
$$\sum_{n=1}^{\infty} \frac{n^3 \left(\sqrt{2} + (-1)^n\right)^n}{3^n}$$

$$l) \sum_{n=1}^{\infty} \frac{3^n}{n \cdot 5^n}$$

p)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{\ln(n+1)}}$$
 u) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n^2 - \sec^2(100^n)}$

$$u) \sum_{n=2}^{\infty} \frac{\sqrt{n}}{n^2 - \sin^2(100^n)}$$

$$m) \sum_{n=2}^{\infty} \frac{1}{n \ln n + \sqrt{\ln^3 n}}$$

$$q) \sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$$

$$v) \sum_{n=1}^{\infty} \frac{n\cos^2\left(\frac{\pi n}{3}\right)}{2^n}$$

$$n) \sum_{n=2}^{\infty} \frac{1}{n^3 \sqrt{n} - \sqrt{n}}$$

$$r) \sum_{k=10}^{\infty} \frac{2^{\ln(\ln k)}}{k \ln k}$$

w)
$$\sum_{n=1}^{\infty} \frac{3^n + 4n^2}{n! + 7n}$$

22. Si se sabe que $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, determine la convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{n^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

Series Alternadas y Series de Potencias

1. Determine si las siguientes series son convergentes o divergentes.

a)
$$\frac{2}{3} - \frac{2}{5} + \frac{2}{7} - \frac{2}{9} + \frac{2}{11} - \cdots$$

$$e) \sum_{n=1}^{\infty} (-1)^n e^{-n}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1}$$

$$f) \sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+4)}$$

$$g) \sum_{n=1}^{\infty} (-1)^{n-1} e^{2/n}$$

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}}$$

$$h) \sum_{n=1}^{\infty} \frac{n\cos(n\pi)}{2^n}$$

2. Determine para qué valores de p es convergente cada una de las series dadas.

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$$

b)
$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$$

3. Utilice el criterio de las series alternadas para analizar la convergencia de las series siguientes. En caso de convergencia, determine si es absoluta o condicional.

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2n-1}$$

$$e) \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$

$$b) \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

$$f) \sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$$

c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{\ln(n+1)}$$

g)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$$

$$d) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^3}{3n^3 + 5}$$

h)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n}}{n^2 - 2}$$

i)
$$\sum_{n=1}^{\infty} (-3)^n n^{-2}$$

$$j) \sum_{n=0}^{\infty} (-1)^n e^{-n^2}$$

$$k) \sum_{n=2}^{\infty} (-1)^n \frac{n}{n^3 - 1}$$

$$l) \sum_{n=1}^{\infty} (-1)^n \frac{4n}{n^2 + 1}$$

$$m) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+4}$$

$$n) \sum_{n=3}^{\infty} (-1)^{n-1} \frac{n-2}{2^n}$$

4. Analice la convergencia de las siguientes series alternadas. De ser convergentes, comprobar si lo son absoluta o condicionalmente.

a)
$$1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} + \dots$$

b)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \dots + \frac{(-1)^{n-1}}{\sqrt{n}} + \dots$$

c)
$$1 - \frac{1}{4} + \frac{1}{9} - \dots + \frac{(-1)^{n-1}}{n^2} + \dots$$

d)
$$1 - \frac{2}{7} + \frac{3}{13} - \dots + (-1)^{n-1} \frac{2n+1}{n(n+1)} + \dots$$

e)
$$-\frac{3}{4} + \left(\frac{5}{7}\right)^2 - \left(\frac{7}{10}\right)^3 + \dots + (-1)^n \left(\frac{2n+1}{3n+1}\right)^n + \dots$$

$$f) \ \frac{3}{2} - \frac{3 \cdot 5}{2 \cdot 5} + \frac{3 \cdot 5 \cdot 7}{2 \cdot 5 \cdot 8} - \dots + (-1)^{n-1} \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{2 \cdot 5 \cdot 8 \cdots (3n-1)} + \dots$$

$$g) \sum_{n=1}^{\infty} (-1)^{n-1} \tan \left(\frac{1}{n\sqrt{n}} \right)$$

h)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[n]{n}}$$

$$i) \sum_{n=1}^{\infty} (-1)^n \frac{\operatorname{sen} n}{n}$$

$$j) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n (\log n)^{3/2}}$$

$$k) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{n^n}$$

- 5. Considere las siguientes series alternadas convergentes.
 - a) Aproxime la suma de la serie con la exactitud indicada (E: error).

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4}$$
, $E < 0.001$

5)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 2^n}$$
, $E < 0.001$

2)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n \cdot n!}$$
, $E < 0.00001$

6)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!}$$
, $E < 0.00001$

3)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}$$
, $E < 0.00001$

7)
$$\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}$$
, $E < 0.01$

4)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n^3-1}$$
, $E < 0.001$

$$8) \sum_{n=0}^{\infty} \frac{(-1)^n \cdot n}{4^n}$$

b) Halle el número de términos necesarios para aproximar la suma de la serie con la exactitud indicada (E : error).

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
, $E < 0.001$

3)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
, $E < 0.001$

2)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}$$
, $E < 0.0001$

4)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^n}{(2n+1)!}$$
, $E < 0.0001$

6. Pruebe que las series siguientes son convergentes, determine una aproximación a su suma con un error menor que 10^{-3} .

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$

b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$

c)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{n^n}$$

7. Hallar el intervalo de convergencia de cada una de las series de potencias que se indica.

a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^{2n}}{(n+1)\ln(n+1)}$$

$$m) \sum_{n=1}^{\infty} n^n (x+3)^n$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{(2n+1)\sqrt{n+1}}$$

$$n) \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{(x-5)^n}{n \cdot 3^n}$$

c)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} (x-1)^n$$

$$\tilde{n}) \sum_{n=0}^{\infty} (-1)^{n+1} \cdot \frac{(2n-1)^{2n} \cdot (x-1)^n}{(3n-2)^{2n}}$$

$$d) \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$o) \sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{(2n+1)\sqrt{n+1}}$$

$$e) \sum_{n=1}^{\infty} \frac{2^n x^n}{n}$$

$$p) \sum_{n=1}^{\infty} \frac{(x-1)^n}{(n+1) \ln^2(n+1)}$$

$$f) \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{n!}$$

q)
$$\sum_{n=0}^{\infty} \frac{(3n-2) \cdot (x-3)^n}{(n+1)^2 \cdot 2^{n+1}}$$

g)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$$

$$r) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdots 6 \cdots (2n)} \cdot x^n$$

h)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$

s)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{2^n}$$

i)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}x^{2n-1}}{(4n-3)^2}$$

t)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \cdot n! \cdot (x-2)^n}{(2n)!}$$

$$j) \sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^{2n-1} x^n$$

$$u) \sum_{n=0}^{\infty} \frac{n! \cdot (2x-1)^n}{5^n}$$

$$k) \sum_{n=2}^{\infty} \frac{x^{n-1}}{n \cdot 3^n \cdot \ln n}$$

$$v) \sum_{n=1}^{\infty} \frac{(x+4)^{2n-1}}{2n-1}$$

$$l) \sum_{n=1}^{\infty} \frac{n! \cdot (x+3)^n}{n^n}$$

$$w) \sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n \cdot n^3}$$

$$x) \sum_{n=1}^{\infty} \frac{(-3)^n (x-1)^n}{\sqrt{n+1}}$$

y)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} x^n$$

$$z) \sum_{n=1}^{\infty} \left(\frac{n}{2}\right)^n (x+6)^n$$

8. Determine el radio de convergencia en cada una de las series siguientes.

$$a) \sum_{n=1}^{\infty} (-1)^n nx^n$$

$$k) \sum_{n=1}^{\infty} n! \cdot (2x-1)^n$$

$$b) \sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$

$$l) \sum_{n=1}^{\infty} \frac{x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

$$c) \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

m)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}$$

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$

$$n) \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^{n+1} (1-x)^n}{2^{3n}}$$

$$e) \sum_{n=1}^{\infty} \frac{(-3)^n}{n\sqrt{n}} x^n$$

$$\tilde{n}$$
) $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$

$$f) \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$$

o)
$$\sum_{n=0}^{\infty} \frac{n(2x-1)^n}{4^n}$$

g)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$$

$$p) \sum_{n=1}^{\infty} \frac{n(x+3)^n}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$$

h)
$$\sum_{n=1}^{\infty} \frac{3^n (x+4)^n}{\sqrt{n}}$$

$$q) \sum_{n=1}^{\infty} \frac{(3x-1)^n \ln n}{n}$$

$$i) \sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$

r)
$$\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n+1}$$

j)
$$\sum_{n=1}^{\infty} \frac{n}{b^n} (x-a)^n, \ b > 0$$

s)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2n)! x^n}{n}$$

t)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$$

$$v) \sum_{n=1}^{\infty} \frac{n!(x-3)^n}{1 \cdot 4 \cdot 7 \cdots (3n-2)}$$

$$u) \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+4) \cdot 3^n}$$

w)
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{2n}{3n+2}\right)^{n+1} (x-2)^n$$

9. Usando la definición encontrar la serie de Taylor y su intervalo de convergencia para cada una de las siguientes funciones.

a)
$$f(x) = e^x$$
 alrededor de $x = 0$

b)
$$f(x) = \ln(x)$$
 alrededor de $x = 1$

c)
$$f(x) = \cos(x)$$
 alrededor de $x = 0$

d)
$$f(x) = \frac{1}{x}$$
 alrededor de $x = 1$

$$e)$$
 $f(x) = \arctan(x)$ alrededor de $x = 0$

$$f)$$
 $f(x) = \arcsin(x)$ alrededor de $x = 0$

$$g)$$
 $f(x) = sen(x)$ alrededor de $x = 0$

h)
$$f(x) = \frac{1}{1+x}$$
 alrededor de $x = 0$

i)
$$f(x) = \frac{1}{1-x}$$
 alrededor de $x = 0$

$$j)$$
 $f(x) = \frac{1}{1+x^2}$ alrededor de $x = 0$

10. Obtenga una serie de potencias de x para las funciones que se dan a continuación e indique el intervalo de convergencia. (Haga uso de las series de Taylor obtenidas en el ejercicio anterior).

$$a) \ f(x) = e^{3x}$$

$$f) \ f(x) = xe^{-x}$$

$$b) f(x) = e^{-x^2}$$

$$d) \ f(x) = \frac{\arctan(x)}{x}$$

$$g) \ f(x) = \frac{1 - \cos(x)}{x}$$

c)
$$f(x) = \frac{\sin x}{x}$$

$$e) f(x) = x \arctan(x)$$

h)
$$f(x) = \frac{1}{1+3x}$$

$$i) \ f(x) = \cos\left(x^3\right)$$

$$j)$$
 $f(x) = sen(2x)$

$$k) f(x) = \sqrt{x} \cdot \operatorname{sen}(x)$$

11. Usando series de potencias, aproxime cada una de las integrales siguientes con la exactitud indicada (*E* : error).

a)
$$\int_0^1 e^{-x^2} dx (E \le 0.001)$$

g)
$$\int_0^1 \frac{1 - \cos(2x)}{2x} dx (E \le 0.001)$$

b)
$$\int_0^{1/2} \frac{\sin x}{x} dx (E \le 0.0001)$$

h)
$$\int_0^{1/2} x^2 \cdot \arctan(x) \, dx \, (E \le 0.001)$$

c)
$$\int_0^1 \frac{\arctan(x^2)}{x} dx (E \le 0.0001)$$

i)
$$\int_0^1 \cos(x^3) dx (E \le 0.0001)$$

$$d) \int_0^1 \cos\left(\sqrt{x}\right) dx \left(E \le 0.0001\right)$$

$$j) \int_0^{1/2} \frac{1}{1+x^6} \, \mathrm{d}x \, (E \le 0.0001)$$

e)
$$\int_0^{1/2} \frac{\ln(x+1)}{x} dx (E \le 0.0001)$$

k)
$$\int_0^{1/2} x^2 \cdot e^{-x^2} dx \ (E \le 0.001)$$

$$f) \int_0^1 \frac{1 - e^{-x/2}}{x} \, \mathrm{d}x \, (E \le 0.001)$$

l)
$$\int_0^1 \sin(x^2) dx (E \le 0.0001)$$

Soluciones

Sucesiones Numéricas

c)
$$1/5, -1/25, 1/125, -1/625, 1/3125$$

$$d) 0, -1, 0, 1, 0$$

$$f) -1/2, 2/3, -3/7, 4/25, -5/121$$

h)
$$1/2, -1/2, 3/8, -1/4, 5/32$$

$$j) -2/3,4/9,-8/27,16/81,-32/243$$

2.
$$a) a_n = (-1)^n/2^{n-1}$$

b)
$$a_n = (-1)^n n!$$

c)
$$a_n = \frac{(-1)^{n+1}(n+1)}{2n+1}$$

3. *a*)
$$-1, -3, -9, -27, -81$$

$$c)$$
 0,0,1,1/2,4/9

$$l) -1/2, 1/4, -1/8, 1/16, -1/32$$

$$m)$$
 1,0,-1/9,0,1/25

$$\tilde{n}$$
) 4, 12, 24, 40, 60

$$o)$$
 1, $-1/4$, $1/27$, $-1/256$, $1/3125$

$$s)$$
 1, $-1/3$, 9, $-1/3$, 25

t)
$$-x, x^3/3, -x^5/15, x^7/105, -x^9/945$$

$$u)$$
 1,3/4,2/3,5/8,3/5

d)
$$a_n = (-1)^{n+1} (3/2)^n$$

e)
$$a_n = \frac{n}{(n+1)(n+2)}$$

$$f) \ a_n = 1/(n-1)!$$

4. $x_2 = 0.625, x_3 = 0.6180\overline{5}, x_4 = 0.6180339890..., f(x_3) = 0.00004822530864...$

5.
$$a)$$
 $a_3 = -27/8, a_5 = -243/32, a_{n+1} = \frac{(-3)^{n+1}(n+1)!}{2 \cdot 4 \cdot 6 \cdot (2n)(2n+2)}$

$$b) -3/2$$

a) Creciente 6.

f) Creciente

k) Decreciente

b) Decreciente

g) Decreciente

1) Creciente

- c) No monótona
- h) Creciente

m) Decreciente

d) Decreciente

- *i*) No monótona
- n) Decreciente

e) Creciente

j) Decreciente

 \tilde{n}) Creciente

- 7. Decreciente
- 8. Sugerencia: Analice en variable continua
- 9. $n \ge 3$
- 10. Se omite
- 11. *a*) Decreciente para $n \ge 6$

c) Decreciente para $n \ge 1$

b) Creciente para $n \ge 3$

d) Creciente para $n \ge 4$

- 12. Se omite
- 13. Se omite
- 14. a) $a_n \rightarrow 0$

j) $a_n \rightarrow \pi/2$

r) $a_n \rightarrow 0$

b) $a_n \rightarrow 3$

k) $a_n \rightarrow 0$

s) $a_n \rightarrow e^3$

- c) $a_n \to \infty$ (diverge) l) $a_n \to 0$

t) $a_n \rightarrow 1/3$

d) $a_n \rightarrow 4/3$

m) $a_n \rightarrow 0$ n) $a_n \rightarrow 0$

u) $a_n \rightarrow -1/2$

e) $a_n \rightarrow 0$ f) $a_n \rightarrow 1$

 \tilde{n}) $a_n \to \pi/4$

v) $a_n \rightarrow 1$

- $g) a_n \rightarrow \infty \text{ (diverge)}$
- o) $a_n \to \infty$ (diverge)
- w) $a_n \rightarrow 3$

h) a_n diverge

- p) $a_n \to \infty$ (diverge)

i) a_n diverge

- q) $a_n \rightarrow \infty$ (diverge)
- x) $a_n \to 0$

- 15. Se omite
- 16. $L = \frac{3 + \sqrt{17}}{2}$
- 17. L = 0
- 18. En a),b) y c) calcular $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ y verifique que L < 1.
- 19. $L = \frac{27}{64}$
- 20. $\frac{1}{5}$

Soluciones

Sumas Parciales, Criterio de Divergencia, Series Geométricas y Series Telescópicas

1. *a*)
$$S_1 = 1/3, S_2 = 2/5, S_3 = 3/7, S_4 = 4/9$$

b)
$$S_1 = 1, S_2 = 3, S_3 = 6, S_4 = 10$$

c)
$$S_1 = \ln\left(\frac{1}{2}\right), S_2 = \ln\left(\frac{1}{3}\right), S_3 = \ln\left(\frac{1}{4}\right), S_4 = \ln\left(\frac{1}{5}\right)$$

d)
$$S_1 = 2, S_2 = 12/5, S_3 = 62/25, S_4 = 312/125$$

e)
$$S_1 = 3/4, S_2 = 4/5, S_3 = 611/720, S_4 = 196/225$$

2. Se omite

3. *a*)
$$S = \frac{1}{4}$$

e) diverge

i) $S = \ln 2$

f) S = 2

j) diverge

c)
$$S = 3$$

g) 1

k) diverge

d)
$$S = 1$$

h) diverge

4. Converge a $\frac{2}{3}$

5. *a*) Se omite

b) divergente

6. *a*) diverge

f) S = 3

b) diverge

g) diverge

c) S = 2

h) 1/e - 1

d) diverge

i) diverge

e) diverge

j) diverge

a) convergente

b) divergente por el criterio de divergencia

- 8. Se omite
- 9. *a*) 2

 $e) - \frac{625e^6}{25e^3 + 1}$

h) diverge

b) 25/6

 $f) \frac{2150}{99}$

i) 2

c) diverge

j) diverge

d) 1/3

 $g) \frac{3}{2}$

 $k) \frac{271}{70}$

- 10. 16
- 11. $\frac{1}{1-x}$
- 12. $2.3171717... = \frac{1147}{495}$
- 13. *a*) $-\frac{1}{5} < x < \frac{1}{5}, S = -\frac{-5x}{1+5x}$
 - b) $-1 < x < 5, S = \frac{3}{5-x}$
- 14. $c = \frac{1}{2} \left(\sqrt{3} 1 \right)$
- 15. *a*) $p \in \left] -\frac{2}{5}, \frac{2}{5} \right[$
 - b) $S = \frac{125p^3}{16 40p}$
- 16. $r = \frac{5}{6}$
- 17. *a*) $\frac{3}{2}$
 - *b*) cos 1
 - c) e 1
 - $d) \frac{1}{2}$
 - $e) \frac{1}{4}$
 - *f*) 1

- $g) \frac{1}{2}$
- $h) \frac{1}{4}$
- *i*) sen 1
- $j) -\frac{\pi}{4}$
- $k) \log 2$

- 18. *a*) Se omite.
 - *b*) 1
- 19. *a*) $a_n = \frac{1}{4n^4} \frac{1}{4(n+1)^4}$
 - b) -1/324
- 20. $a_n = \frac{2}{n(n+1)}$; S = 1
- 21. $S = \frac{47}{400}$
- 22. *a*) Falso
 - b) Falso
 - c) Verdadero
- 23. *a*) diverge
 - *b*) $\frac{3}{2}$
 - c) $\frac{1}{2}$
 - $d) \frac{32}{5}$
 - $e) \frac{197}{60}$
 - f) diverge
 - $g) \ \frac{4}{15}$
 - $h) \ \frac{11}{18}$

- i) $-\frac{5}{36}$
- j) diverge
- k) diverge
- $l) \frac{44}{3}$
- $m) \frac{113}{28}$
- $n) \frac{5}{4}$
- \tilde{n}) $\frac{11}{12}$
- *o*) $\frac{1}{6}$

- $p) \frac{3}{4}$
- $q) \frac{163}{82}$
- $r) \frac{1}{8}$
- s) -ln2
- $t) \frac{1}{4}$
- *u*) $\frac{7}{36}$
- v) diverge
- $w) \frac{e}{e-1}$

Soluciones

Criterios de Convergencia

1. *a*) divergente

h) divergente

 \tilde{n}) convergente

b) convergente

i) convergente

o) divergente

c) convergente

j) divergente

p) convergente

d) divergente

k) convergente

q) convergente

e) divergente

l) convergente

r) convergente

g) convergente

f) convergente

m) divergente

n) convergente

s) convergente

a) diverge

2.

e) diverge

i) diverge

b) converge

f) converge

j) converge

c) diverge

g) converge

k) diverge

d) converge

h) diverge

l) converge

3. se omite

4. a) f no es positiva ni decreciente

b) f no es positiva ni decreciente

5. *a*) converge: $a_n \sim 1/n^3$

e) converge: $a_n \sim 1/n^2$

b) converge: $a_n \sim 1/2^n$

f) diverge: $a_n \sim 1/n^{2/3}$

c) diverge: $a_n \sim 3/\sqrt[3]{n}$

g) diverge: $a_m \ge 2/(2m+1) \sim 1/m$

d) converge: $a_n \le 2/(2^n - 1) \sim 1/2^n$

h) diverge: $a_k \sim 1/k$

q) converge: $a_n \sim 1/n^3$

i) diverge: $a_n \not\to 0$

r) converge: $a_n \le 1/3^n$

j) converge: $a_n \sim 1/n^{3/2}$

s) converge: $a_n \le 1/2^n$

k) converge: $a_n \sim 1/k^{3/2}$

t) diverge: $a_k \ge 1/(k+1) \sim 1/k$

l) converge: $a_n \le 1/n^3$

u) diverge: $a_k \sim 1/n^{1/4}$

m) converge: $a_k \sim 1/2^k$

v) converge: $a_n \sim 1/n^{4/3}$

n) converge: $a_k \sim 1/2^k$

w) converge: $a_n \sim 1/3^n$

 \tilde{n}) converge: $a_n \sim 1/e^n$

x) converge: $a_n \sim 1/n^{3/2}$

o) diverge: $a_k \sim 1/k^{1/2}$

- y) diverge: $a_n \not\to 0$
- *p*) diverge: $a_k \ge 1/\sqrt{k+1} \sim 1/k^{1/2}$
- z) converge: $a_n \sim 1/n^2$

- 6. $\frac{\pi^2 49}{36}$
- 7. *a*) converge: $L = 2/\pi$

c) diverge: L = 3/e

b) converge: L = 0

d) converge: L = 0

e) converge: L = 0

n) diverge: L = 3/2

f) diverge: L = 5/4

 \tilde{n}) converge: L = 3/4

g) converge: L = 0

o) converge: L = 1/4

h) converge: L = 0

p) converge: L = 0

i) converge: L = 0

q) diverge: $L = \infty$

j) converge: L = 0

r) converge: L = 1/10

k) diverge: $L = \infty$

s) diverge: $L = \sqrt{5}/2$

l) diverge: L = 3

t) converge: L = 0

m) converge: L = 1/2

u) diverge: L = 3/e

- 8. diverge: $a_n \sim \frac{1}{n}$
- 9. $a_n \leq \frac{1}{n^2}$
- 10. converge: $a_n \leq 3/2^n$
- 11. $a_n \leq 1/n^2$

- 12. $a_n \sim 1/n^{5/2}$
- 13. divergente: (use criterio de la integral)
- 14. $a_n \sim -\pi/n^2$
- 15. $L = \infty$
- 16. $a_n \sim 1/n^3$
- 17. converge
- 18. converge
- 19. converge: L = 1/3
- 20. *a*) $a_n \sim 1/n(n+2)$
 - *b*) ln2
- 21. *a*) convergente

- *j*) convergente
- f) divergente

b) convergente

c) convergente

- k) divergente
- g) convergente

l) convergente

- h) convergente
- d) divergente m) divergente
 - *i*) convergente
- e) convergente n) convergente

q) convergente

 \tilde{n}) convergente

u) convergente

r) divergente

o) convergente

v) convergente

s) convergente

p) divergente

w) convergente

t) divergente

22. convergente: L = e/2

Soluciones Series Alternadas y Series de Potencias

1.	a) diverge	d) converge	g) diverge
	b) converge	e) converge	h) converge
	c) converge	f) converge	
2.	a) $p \ge 1$		
	b) $p \le 1$		
3.	a) diverge	i	h) converge absolutamente
	b) converge condicionalmente		i) diverge
	c) diverge		j) converge absolutamente
	d) diverge	,	k) converge absolutamente
	e) converge absolutamente		l) converge condicionalmente
	f) converge absolutamente	r	n) converge condicionalmente
	g) converge condicionalmente	i	n) converge absolutamente

4. *a*) converge condicionalmente

- b) converge condicionalmente
- c) converge absolutamente
- d) converge condicionalmente
- e) converge absolutamente
- f) converge absolutamente
- g) converge absolutamente
- h) Divergente
- *i*) converge absolutamente
- *j*) converge absolutamente
- k) converge absolutamente
- 5. *a*) 1) $S_5 = 0.9475394290...$

 - 3) $S_4 = 0.5403025794...$

2) $S_6 = 0.6065321181...$

- 4) $S_7 = 0.9474829748...$
- b) 1) Hasta n = 499
 - 2) Hasta n = 31
- 6. *a*) $S \approx 0.822971$

- 5) $S_7 = 0.4058035714...$
- 6) $S_4 = 0.8414682540...$
- 7) S7 = 0.1301587302...
- 8) $S_5 = -0.1611328125...$

c) $S \approx 0.655157$

- 3) Hasta n = 3
- 4) Hasta n = 4
- b) $S \approx -0.864903$

7. *a*) 2 < x < 4

 $m) \ x = -3$

b) $2 \le x \le 4$

n) 2 < x < 8

c) $1 - \frac{1}{e} < x < +\frac{1}{e}$

 \tilde{n}) $-\frac{5}{4} < x < \frac{13}{4}$

d) |x| < 1

o) $2 \le x \le 4$

 $e) -\frac{1}{2} \le x < \frac{1}{2}$

p) -2 < x < 0

 $f) \mathbb{R}$

q) 1 < x < 5

 $g) \mathbb{R}$

 $r) -1 \le x < 1$

h) $0 \le x \le 2$

s) -3 < x < 1

i) -1 < x < 1

t) \mathbb{R}

j) -4 < x < 4

u) $x = \frac{1}{2}$ *v*) -5 < x < 3

k) -3 < x < 3

 $w) -1 \le x \le 3$

l) -e-3 < x < e-3

- x) 2/3 < x < 4/3 y) -1 < x < 1
- z) x = -6

8. *a*) 1

b) 1

c) 2

 $d) \frac{1}{3}$

 $k) \frac{1}{5}$

 $q) \frac{1}{3}$

e) 4

l) ∞

r) 2

f) 1

 $m) \infty$

s) 0

 $g) \frac{1}{3}$

 $n) \frac{8}{3}$

t) 1

h) ∞

 \tilde{n}) 1

u) 3

i) *b*

o) 2

v) 3

j) 0

 $p) \infty$

 $w) \frac{3}{2}$

- 9. $a) e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}$
 - b) $\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^n}{n}, \quad 0 < x \le 2$
 - c) $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \ x \in \mathbb{R}$
 - d) $\frac{1}{x} = \sum_{n=0}^{\infty} (-1)^n (x-1)^n, \quad 0 < x < 2$
 - e) $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, -1 \le x \le 1$
 - f) $\arcsin(x) = \sum_{n=0}^{\infty} \frac{(2n)! x^{2n+1}}{(2^n n!) (2n+1)}, -1 \le x \le 1$
 - g) $\operatorname{sen}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \ x \in \mathbb{R}$

h)
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$
, $-1 < x < 1$

i)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n - 1 < x < 1$$

$$j)$$
 $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, -1 < x < 1$

10. *a*)
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$$

$$d) \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2n+1}$$

e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{2n-1}$$

$$f) \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n!} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{(n-1)!}$$

g)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+2)!} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n)!}$$

$$h) \sum_{n=0}^{\infty} (-3)^n x^n$$

i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{6n}}{(2n)!}$$

$$j) \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+1}}{(2n+1)!}$$

$$k) \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+\frac{3}{2}}}{(2n+1)!}$$

11. En cada caso se indican la serie que da el valor exacto y la suma parcial apropiada.

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)n!}$$
; $S_4 \approx 0.7474867725$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{2n+1}}{(2n+1)(2n+1)!}$$
; $S_1 \approx 0.4930555556$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{4n+2}}{(4n+2)(2n+1)}$$
; $S_1 \approx 0.1245659722$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(2n)!}$$
; $S_3 \approx 0.7635416667$

e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{n+1}}{(n+1)^2}$$
; $S_6 \approx 0.4484580499$

$$f) \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)2^{n+1}(n+1)!}; S_2 \approx 0.4\overline{4}$$

g)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^{2n+1}}{(2n+2)(2n+2)!}$$
; $S_2 \approx 0.4240740741$

h)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{2n+4}}{(2n+4)(2n+1)}$$
; $S_0 \approx 0.0156250000$

i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(6n+1)(2n)!}$$
; $S_2 \approx 0.9317765568$

j)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{6n+1}}{6n+1}$$
; $S_1 \approx 0.4988839286$

k)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5^{2n+3}}{(2n+3) \cdot n!}$$
; $S_1 \approx 0.0354166666$

l)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+3)(2n+1)!}$$
; $S_2 \approx 0.3102813853$