Prepare a script to create the data necessary for the next modeling exercises

Directive: You need to use the external Hive tables to categorize and create the data sets for your model-building activities. The tables, along with their primary keys for each table, are given below —

Dataset Type	Tables	Primary Key
Non-Event Data	train and brand_devices	device_id
Event Data	events and train	device_id
App Data	app_events , app_labels and label_categories	event_id

Note: Assume that the train data is your point of reference while creating event and non-event data by left join.

Hive external table creation and data loading for 'non_event_data' table:

As per the directive, we will first create the 'non_event_data' external table with all the columns from the 'train' and 'brand_device' tables along with specifying the PRIMARY KEY constraint on the device_id column –

Next we will load the data into this table with the result set of a select query using a LEFT OUTER JOIN between the 'train' and 'brand_device' tables joined ON their common device_id column –

We will check the final count of the inserted data and also verify the data for the first 5 rows –

Hive external table creation and data loading for 'event_data' table:

As per the directive, we will create the 'event_data' external table with all the columns from the 'train' and 'events' tables along with specifying the PRIMARY KEY constraint on the device id column –

```
0: jdbc:hive2://localhost:10000/default> create external table if not exists event_data (
..... device_id string,
  . . . . . . . . . . . . . . . gender string,
. . . . . . . . . . . . . . . . . . group_train string,
PRIMARY KEY(device_id) DISABLE NOVALIDATE)
No rows affected (0.097 seconds)
```

Next we will load the data into this table with the result set of a select query using a LEFT OUTER JOIN between the 'train' and 'events' tables joined ON their common device_id column –

We will check the final count of the inserted data and also verify the data for the first 5 rows –

```
0: jdbc:hive2://localhost:10000/default> select count(*) from event data;
```

0: jdbc:hive2://localhost:10000/default> select * from event_data limit 5;

device_id	gender	age	group_train	event_id	event_time	longitude	latitude
-1000369272589010000 -1000572055892390000 -1000643208750510000 -1001337759327040000 -1001337759327040000	F F M M	26 27 29 30 30	F25-32 F25-32 M25-32 M25-32 M25-32	NULL NULL NULL 2774404 3065018	NULL NULL NULL 2016-05-07 09:14:24.0 2016-05-04 10:26:14.0	NULL NULL NULL 119.61 120.29	NULL NULL NULL 29.7 30.42

5 rows selected (0.156 seconds)

Hive external table creation and data loading for 'app_data' table:

As per the directive, we will create the 'app_data' external table with all the columns from the 'app_events', 'app_labels' and 'label categories' tables along with specifying the PRIMARY KEY constraint on the event id column –

Next we will load the data into this table with the result set of a select query using a LEFT OUTER JOIN between the 'app_events' and 'app_labels' tables joined ON their common app_id column, along with a LEFT OUTER JOIN between the 'app_labels' and 'label_categories' tables joined ON their common label_id column –

We will check the final count of the inserted data and also verify the data for the first 5 rows –

```
0: jdbc:hive2://localhost:10000/default> select count(*) from app_data;
```

```
__c0 |
+------+
| 209355710 |
```

```
1 row selected (206.104 seconds)
```

0: jdbc:hive2://localhost:10000/default> select * from app_data limit 5;

event_id	app_id	+ is_installed +	+ is_active +	+ label_id +	category
3231904	-1000044012126765960	1	0	810	Casual puzzle categories
3231904	-1000044012126765960	1	0	405	Custom label
3231904	-1000044012126765960	1	0	795	game
3069897	-1000044012126765960	1	0	810	Casual puzzle categories
3069897	-1000044012126765960	1	0	405	Custom label

⁵ rows selected (0.224 seconds)

Shape of the final datasets:

Dataset	Rows or Observations count	Columns or Features count
non_event_data	74645	6
event_data	1266933	8
app_data	209355710	6

Exporting the datasets to S3:

We will first verify the dataset details in Hadoop -

```
[hadoop@ip-172-31-81-78 ~]$ hadoop fs -ls /user/hadoop/telco/* | grep "_data"
```

We can see that the 'non_event_data' and 'event_data' datasets are available in single partitions, while the 'app_data' dataset is split across 5 partitions. Accordingly we will proceed with exporting the datasets from Hadoop to a new public S3 location s3://upgrad-capstone-mlc/mid-submission/ –

hadoop distcp /user/hadoop/telco/non_event_data/000000_0 s3://upgrad-capstone-mlc/mid-submission/non_event_data.csv

```
Map-Reduce Framework
...
GC time elapsed (ms)=197
CPU time spent (ms)=8460
Physical memory (bytes) snapshot=403492864
Virtual memory (bytes) snapshot=3292930048
Total committed heap usage (bytes)=378011648
DistCp Counters
Bytes Copied=3539045
Bytes Expected=3539045
Files Copied=1
```

hadoop distcp /user/hadoop/telco/event_data/000000_0 s3://upgrad-capstone-mlc/mid-submission/event_data.csv Map-Reduce Framework ... GC time elapsed (ms)=204 CPU time spent (ms)=10840 Physical memory (bytes) snapshot=391241728 Virtual memory (bytes) snapshot=3287490560 Total committed heap usage (bytes)=305135616 DistCp Counters Bytes Copied=88454657 Bytes Expected=88454657 Files Copied=1 hadoop distcp /user/hadoop/telco/app_data/* s3://upgrad-capstone-mlc/mid-submission/app_data/

```
Map-Reduce Framework

...

GC time elapsed (ms)=3202

CPU time spent (ms)=231220

Physical memory (bytes) snapshot=2432987136

Virtual memory (bytes) snapshot=16498540544

Total committed heap usage (bytes)=2024275968

DistCp Counters

Bytes Copied=10400078626

Bytes Expected=10400078626

Files Copied=5
```

Verifying the datasets in S3:

We will finally verify the exported dataset details in S3 –

hadoop fs -ls s3://upgrad-capstone-mlc/mid-submission/*

```
1 hadoop hadoop 2157190341 2021-09-27 19:29 s3://upgrad-capstone-mlc/mid-submission/app_data/000000_0
-rw-rw-rw-
            1 hadoop hadoop 1738942712 2021-09-27 19:27 s3://upgrad-capstone-mlc/mid-submission/app_data/000001_0
-rw-rw-rw-
            1 hadoop hadoop 1904284276 2021-09-27 19:27 s3://upgrad-capstone-mlc/mid-submission/app_data/000002_0
-rw-rw-rw-
            1 hadoop hadoop 1976829842 2021-09-27 19:27 s3://upgrad-capstone-mlc/mid-submission/app data/000003 0
-rw-rw-rw-
            1 hadoop hadoop 2622831455 2021-09-27 19:29 s3://upgrad-capstone-mlc/mid-submission/app_data/000004_0
-rw-rw-rw-
                              88454657 2021-09-27 19:21 s3://upgrad-capstone-mlc/mid-submission/event_data.csv
-rw-rw-rw-
            1 hadoop hadoop
-rw-rw-rw-
            1 hadoop hadoop
                                3539045 2021-09-27 17:25 s3://upgrad-capstone-mlc/mid-submission/non_event_data.csv
```

