Aula 3 – Softwares para Simulações de Sistemas Fotovoltaicos

Prof. Dr. João Lucas de Souza Silva Email: ProfJL@unicamp.br

Disciplina IT306-I

Agenda

- Introdução aos softwares de simulação fotovoltaica;
- Arquiteturas Fotovoltaicas em simulação;
- Estudo de Caso de Plantas do projeto Campus Sustentável em softwares FV;
- Considerações para simulação Fotovoltaica;
- Dimensionamento de sistema fotovoltaico conectado à rede manual;
- Dimensionamento de sistema fotovoltaico conectado à rede no PVsyst;
- Modo Rápido;
- Modo Completo;
- Sombreamento;
- Avaliação Econômica;
- Fatores P90 e P95.

Software Fotovoltaicos

- Tem o objetivo de **estimar a geração de energia** considerando as mais diversas perdas existentes, como exemplo: perdas por sombras, temperaturas, condutores, transformadores, degradação, entre outras.
- Na literatura pode-se encontrar referências que indicam que a diferença de geração de energia pode ser de $\pm 30\%$ mensal e $\pm 10\%$ anual [1].
- O erro está atrelado principalmente a questão da irradiância que é de difícil predição ou o uso incorreto do software e de aplicação de elementos causadores de sombra.

Principais softwares do Mercado

- PVsyst:
- Destaque para simulação de sistemas conectados à rede com excelente precisão e reconhecimento do mercado;
- Software Pago;
- Requer treino para melhorar a usabilidade.
- PV*SOL:
- Destaque para simulação de sistemas conectados à rede com uma interface userfriendly (facilidade principalmente para quem está começando);
- Software Pago;
- Menos configurável que o PVsyst, o que pode dificultar o uso para atividades científicas.

- SOLergo:
- Destaque para a possibilidade de gerar diagramas elétricos completos;
- Software Pago;
- Helioscope:
- Facilidade para simulações rápidas em qualquer lugar e computador (site);
- Site Pago;
- É recomendável para uma simulação inicial do projeto.

HOMER:

- Destaque para possibilidade de simular diversos tipos de sistemas de geração de energia em conjunto;
- Software Pago;
- Simulações com parâmetros mais genéricos por padrão, sem desenho 3D.

SAM (System Advisor Model):

- Destaque para simulações de grandes usinas FV e possibilidade de integração com MATLAB e outros softwares FV;
- Software Gratuito;
- Usabilidade muito complexa, sendo indicado para uso mais científico.

HOMER: \$1500/Ano + Módulos extras...

• PVSOL: \$878 + Atualizações anuais...

PVsyst: \$789/Ano

Object	Description	HOMER	PV*SOL	PVsyst
	Stand-alone (Off-grid)	✓	~	~
	Grid-Tie PV systems (On-grid)	~	✓	~
System Simulations	Pump systems		~	~
•	Hybrid systems Photovoltaic and Battery	~	~	
	Others Hybrid systems	~		
	Photovoltaic System for Electric Vehicles		✓	
	Analysis of the terrain data			
Site Paramethers	Weather database	~	~	~
	Temperature Settings of the Site	~	~	~
	Building 3D modeling			~
Building Physics	Image capturing/Geo maps		✓	
Dunding Thysics	Import maps image		✓	~
	Shading analysis due to neighboring buildings		~	~
D.T.E. D.C.	Monthly			
Building Energy Performance	Hourly	\checkmark	\checkmark	~
	Ground	<u> </u>	~	
	Roof	~	✓	~
Mounting Forms System	Roof integrated	~	✓	~
	Facade integrated			~
	Solar Tracker	~	~	~
	Payback prediction	~	~	~
Financial	Direct Finance	~	~	~
	Loan/Lease/Mortgage	✓	✓	~
Emissions avoided	CO ₂	✓	✓	~
	Windows Vista, 7, 8 e 10 MACOS Linux	~	~	~
Operating System Compatibility	Virtualization of Windows in Linux or MACOS with VirtualBox	~		~
	Virtualization of Windows in Linux with VMWare	~	✓	
	Virtualization of Windows in Linux or MACOS with Parallels	· /	~	~

Exemplo de Situação em que é importante...

Situações em que se tem que trabalhar com perdas!

Aqui já são erros de projeto...

534kWp

Elementos	Modelo	Quantidade	
Módulos	Canadian CS6K-	1248 (336.96	
FV	270P	kWp)	
Inversores	Ingecon Sun 55TL	5	
	PRO	3	

Ginásio FEF/UNICAMP

Ginásio FEF/UNICAMP

Sistema FEEC 1				
Elementos	Modelo	Quantidade		
Módulos FV	BYD 320P6D-36	174 (55.68 kWp)		
Inversores	Fronius Symo 15.0-3 208	3		
	Fronius Primo 8.2-1	1		

Sistema FEEC 2				
Elementos	Modelo	Quantidade		
Módulos FV	Canadian CS6K-	34 (9.18 kWp)		
	270P	34 (9. 10 KVVP)		
	BYD 320P6D-36	93 (29.76 kWp)		
	Fronius Symo 15.0-	2		
Inverserse	3	2		
Inversores	Fronius Primo 4.0-1	1		
	Fronius Primo 8.2-1	1		

ELEMENTOS	MODELO	QUANTIDADE
Módulos FV	Canadian CS6K-270P	144 (38.88 kWp)
Inversores	Fronius Symo 15.0-3	1
	Fronius Primo 8.2-1	2
	Fronius Primo 6.0-1	1

NIPE/UNICAMP

NIPE/UNICAMP

Elementos	Modelo	Quantidade
Módulos FV	Canadian CS6K- 270P	15 (4.05 kWp)
Inversores	Fronius Primo 6.0-1	1

MUSEU/UNICAMP

Elementos	Modelo	Quantidade
Módulos FV	Canadian CS6K-270P	85 (22.95 kWp)
Inversores	Fronius Symo 12.0-3 208- 240	2

EXTECAMP/UNICAMP

Elementos	Modelo	Quantidade
Módulos FV	Canadian CS6K-270P	140 (37.80 kWp)
Inversores	Fronius Symo 12.0-3 208-240	3

EXTECAMP/UNICAMP

Estudo de Caso Ginásio da Unicamp

Month	Energy (MWh	1)	Error (%)
	Real	PVsyst	
January	48.62	42.60	12.38
February	38.92	41.98	-7.86
March	50.83	41.26	18.83
April	42.02	36.88	12.23
May	32.98	34.70	-5.22
June	33.59	31.28	6.88
July	35.74	35.87	-0.36
August	38.32	40.21	-4.93
September	41.76	40.41	3.23
October	52.67	42.98	18.40
November	48.70	47.94	1.56
December	49.47	45.05	8.93
Average	42.80	40.10	6.32
Total	513.62	481.16	-

Estudo de Caso Ginásio da Unicamp

- HOMER foi mais otimista, PV*SOL mais conservador, e o PVsyst foi o mais preciso (isso pode ser diferente em outras cidades e sistemas);
- PV*SOL é mais fácil de ser utilizado, com poucos cliques para realização de uma simulação;
- Homer possui maior variedades de fontes de energia para simulações hibridas;
- PVsyst é o mais difícil para utilização, mas tem geralmente maior precisão e mais configurações.

Estudo de Caso Extecamp

SOFTWARE	MÊS	REAL	SIMULAÇÃO	ERRO
	Junho	1,92	2,11	10,18 %
	Julho	2,30	2,31	0,52 %
HelioCoope	Agosto	2,47	2,67	7,89 %
HelioScope	Setembro	2,59	2,81	8,62 %
	Outubro	3,30	3,07	-6,71 %
	Total	12,57	12,97	3,21 %
	Junho	1,92	1,96	2,51 %
	Julho	2,30	2,23	-2,79 %
DI MAGOL	Agosto	2,47	2,58	4,29 %
PV*SOL	Setembro	2,59	2,62	1,31 %
	Outubro	3,30	2,88	-12,75 %
	Total	12,57	12,27	-2,36 %
	Junho	1,92	2,01	4,80 %
	Julho	2,30	2,31	0,30 %
DVovet	Agosto	2,47	2,62	6,07 %
PVsyst	Setembro	2,59	2,72	5,06 %
	Outubro	3,30	2,94	-10,71 %
	Total	12,57	12,60	0,21 %

Estudo de Caso University of Kashan (12 kWp)

[11]

Estudo de Caso Sri Lanka (1 MW)

Month	Actual Energy output (MWh)	Simulated (P90) Using MT8 (MWh)	Error compared to actual
December	90.92	103.8	14.2%
January	111.28	125.7	13.0%
February	132.42	118.8	-10.3%
March	138.04	140.1	1.5%
April	135.69	128.7	-5.2%
May	119.1	111.9	-6.0%

[12]

Estudo de Caso de Otimizadores Tigo com PVsyst LESF-MV

Estudo de Caso de Otimizadores Tigo com PVsyst 🗱 LESF-MV

Resultado sem sombras: 3556 kWh/Ano

Resultado com sombras: 3264 kWh/Ano

Resultado com organização dos módulos FV no telhado: 3400

kWh/Ano

Resultado com organização dos módulos FV e Tigo: 3551 kWh/Ano

Ganho com o otimizador no primeiro ano em relação ao sistema com sombras, 4,44%. Esse ganho aumenta com a degradação dos módulos.

Considerações para Dimensionamento

- A ideia da aula é mostrar quanto um sistema fotovoltaico para consumidor do Grupo B (tensão inferior a 2,3 kV), com base em uma conta de energia real, irá produzir nas diferentes formas de dimensionamento;
- Na prática seria necessário também testar diferentes arquiteturas fotovoltaicas, avaliar perdas, modelos de módulos fotovoltaicos, melhor forma de conectar os módulos com base na arquitetura (distribuição das *strings*), impactos do sombreamento, impactos da temperatura no conversor, proteções, avaliação econômica de cada tipo de arquitetura, testar diferentes bases solarimetricas, e entre outros;

Considerações para Dimensionamento

- O bom projetista fotovoltaico irá saber (com software e experiência) a hora certa de utilizar cada tecnologia, e isso vai ser um fator para o sucesso de suas instalações fotovoltaicas;
- Quem utiliza software consegue estimar a geração de energia mais próxima do real e oferecer garantias até um certo nível de entrega;
- O projetista limitado, irá sempre recorrer a um kit fotovoltaico com base em uma potência e utilizar, sem realizar refinamentos, e muitas vezes sem uso do software.
 Isso pode ser um problema, que aumenta em conjunto com a potência do sistema.

Dimensionamento Manual

DESCR	ÇAO	QUANTIDADE	PREÇO	VALOR (R\$)			
Consumo Ativo(kWh)-TUSD		405,00	0,51397283	208,15			
Consumo Ativo(kWh)-TE		405,00	0,34053887	137,91			
Acréscimo Bandeira VERME	НА			19,98			
Contrib. Ilum. Pública Munic	pal		i	37,04			
Seguro Proteção Familiar - 0	00-200-9032	<u> </u>	i	3,82			
Compensação DMIC 10/20			<u> </u>	1,47-	Tarifas Aplicadas	HISTÓRICO DO CONSUMO	kWh
			<u> </u>		Consumo Ativo(kWh)- TUSD 0,34676000	DEZ 20	405
			1		Consumo Ativo(kWh)-TE 0,22975000	NOV 20	430 260
		-	-			OUT 20	170
						AGO 20	137
TOTAL DA	ATURA			405,43	COMPOSIÇÃO DO CONSUMO	JUL 20	223
	INFORMAÇÕES DE	TDIBLITOS			R\$ % Geração de Energia 109,80 30,00	JUN 20	274
	INFORMAÇÕES DE	TRIBUTUS			Transmissão 13,61 3,72	MAI 20	323
ICMS	PIS		CO	FINS	Distribuição (Coelba) 87,92 24,02	ABR 20	339
BASE DE % VALOR			BASE DE .	VALOR DO	Encargos Setoriais 14,30 3,91	MAR 20	321
CÁLCULO 70 IMPOS	O CÁLCULO 7º	IMPOSTO	ÁLCULO	° IMPOSTO	Tributos 119,07 32,52 Perdas de Energia 21,34 5,83	FEV 20	304
366,04 27,00 98,8	267,20 1,35	3,60	267,20 6,2	16,64	TOTAL 366,04 100	JAN 20	350
						DEZ 19	369

Casa, com inclinação de telhado de 25°, orientação norte, Cidade: Paulo Afonso - BA

Dimensionamento Manual

 Verificar a potência FV necessária para essa fatura, com base no consumo médio ajustado e descontar ou não a demanda mínima (30 kWh instalações monofásicas, 50 kWh instalações bifásicas e 100 kWh instalações trifásicas);

Mês	kWh
Janeiro	350
Fevereiro	304
Março	321
Abril	339
Maio	323
Junho	274
Julho	223
Agosto	137
Setembro	170
Outubro	260
Novembr o	430
Dezembro	405
Média	<mark>295</mark>

Metódo 1:

Janeiro+Fevereiro+Março+Abril+ Maio+Junho+Julho+Agosto+Setembro+OutubroConsumo $Médio = \frac{+Novembro+Dezembro}{12}$

Consumo Médio Ajustado = Consumo Médio - Taxa de Demanda

Consumo $M\acute{e}dio\ Ajustado = 295 - 30kWh = 265\ kWh$

Consumo $Anual = 265 * 12 = 3180 \ kWh = \frac{3180}{1000} = 3,18 \ MWh$

Metódo 2:

Consumo *Anual Puro* = $295 * 12 = 3540 \, kWh = \frac{3540}{1000} = 3,54 \, MWh$

Dimensionamento Manual

1. Achar a irradiância, pode usar o CRESESB

Irradiância de Paulo Afonso é 5,54kWh/m²dia * 365 = 2022,1 kWh/m²ano

2. Potência FV

$$Potência fv = \frac{\left(\frac{Energia\ Anual}{Irradiância\ anual}\right)}{Fator\ de\ performance}$$

$$Potênciafv = \frac{\left(\frac{3540kWh}{2022,1kWh/m^2}\right)}{1kW/m^2} = 2,05 \ kW$$

3. Número de Placas

$$Num = \frac{Potênciafv}{Potência_uma_placa} = \frac{2,05}{0,405} = 5,06$$

Dimensionamento Manual

4. Inversor

Potência do Inversor FV = Número de módulos * Potência de um módulo * 75%

Potênciainv = 6 placas * 0.405kW * 0.75 = 1.82 kW

Pré-Dimensionamento no PVsyst

- Sistema de 2.1 kWp;
- Quantidade de Módulos, supondo que meu fornecedor tem módulo de 405 Wp:

Qnt.
$$de\ M\'odulos\ FV = \frac{Pot\ \^encia\ total}{Pot\ \^encia\ de\ um\ m\'odulo\ FV} = \frac{2.1kWp\ *1000}{405} = 5,18\ m\'odulos$$

Ou 6 módulos considerando um número inteiro.

Inversor FV:

Potência do Inversor FV = Número de módulos * Potência <math>de um módulo * 75%Potência do Inversor FV = 6*405*75% = 1822,5 $W = \frac{1822,5}{1000} \cong 1,8$ kW.

Logo, tem-se um kit de 6 módulos FV de 405 W, e um inversor na faixa de 1,8 kW.

Posteriormente, é interessante simular o kit FV no modo completo para mostrar ao cliente a energia final que o sistema irá produzir.

- Preços;
- Módulo FV: R\$2,50/Wp;
- Suporte: R\$0,2/Wp;
- Inversor: R\$1,50/Wp;
- Projeto e Engenharia: R\$0,3/Wp;
- Instalação: R\$0,2/Wp;
- Lucro: R\$0,3/Wp;
- BOS (Balace of System, são os componentes restantes, como proteção e cabos): R\$0,2/Wp.
- Manutenção R\$ 250,00/Ano...
- Inflação 7%
- Taxa de Desconto 10%

Considerações Finais

- Observamos que em um sistema fotovoltaico existem muitas variáveis e só o software pode estimar as perdas e considerar quase tudo que temos na prática;
- Quanto mais considerações forem realizadas no software (mais perdas inseridas, sombras...), o resultado da modelagem vai ser mais próximo do real;
- Vários refinamentos são necessários em uma simulação, essa foi somente um exemplo para uma palestra, e que já é bem melhor que calcular na mão ou planilhas;
- Sistemas maiores o impacto é muito maior.

O bom projetista tem que conhecer os softwares, e tecnologias para realizar diferentes combinações e obter o sistema ótimo, isso garante menor *payback*, maior lucro, e maior segurança!

Referências

- [1] E. Lorenzo, "Energy Collected and Delivered by PV Modules," Hand- book of Photovoltaic Science and Engineering, 2005. 984–1042 p. ISBN 9780470721698.
- [2] Features of HOMER, https://www.homerenergy.com/products/pro/ (current sep. 05, 2019)
- [3] Features of PVSoI, https://www.valentin-software.com/en/products/photovoltaics/57/pvsoI-premium (current sep. 05, 2019)
- [4] Features of PVSyst, https://www.pvsyst.com/ (current sep. 05, 2019)
- [5] J. L. de Souza Silva, T. S. Costa, K. B. de Melo, E. Y. Sakô, H. S. Moreira and M.
- G. Villalva, "A Comparative Performance of PV Power Simulation Software with an Installed PV Plant," 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 2020, pp. 531-535, doi:

10.1109/ICIT45562.2020.9067138.

Referências

- [6] Minhacasasolar. Inversor Fronius. Disponível em:
- https://www.minhacasasolar.com.br/produto/inversor-fronius-25-0kw-grid-tie-eco-light-25-0-79189. Acesso em 09/03/20.
- [7] SolarEdge Technologies, "Power Optimizer," 2018.
- [8] Tigo, "TS4 Platform One Smart Platform," 2018.
- [9] Solcentral. Enphase. Disponível em:
- http://www.solcentral.com.br/produtos/inversores/enphase/. Acesso em 09/03/20.
- [10] MACHADO, G. M. V.; SILVA, J. L. S.; MOREIRA, H. S.; VARGAS, T. N.;
- PRYM, G. C. S.; LIMA, G. P.; VILLALVA, M. G. . Estudo de Caso de um Sistema
- Fotovoltaico instalado no Campus da Unicamp em diferentes Softwares de
- Simulação. Revista Brasileira de Energia Solar, v. XI, p. 124, 2020.
- [11] M. Nazififard, H. Hashemi-Dezaki and K. Nazififard, "Comparing Actual Measurement and PVsyst Simulation Results for Energy Generation of Microgrid-
- Connected PV Systems," 2023 13th Smart Grid Conference (SGC), Tehran, Iran,
- Islamic Republic of, 2023, pp. 1-6, doi: 10.1109/SGC61621.2023.10459295.

Referências

[12] G. Viduruwan and D. K. A. Induranga, "Validation of Meteonorm 8 for energy estimation of Solar Power Plants in Sri Lanka, Using PVsyst Software," 2021 3rd International Conference on Electrical Engineering (EECon), Colombo, Sri Lanka, 2021, pp. 1-6, doi: 10.1109/EECon52960.2021.9580960.

Meu Obrigado!

Mais informações:

□ www.lesfmv.com

□ www.cursosolarunicamp.com