Aula 1

Prof. Márcio Sampaio Gomes Filho

Observação

- Esses slides são um complemento à aula ministrada em sala;
- Explicações/desenvolvimentos serão feitas no quadro.

https://www.atlearner.com/2023/09/ Quantum-mechanics.html

The Scale of Things – Nanometers and More

https:

//www.azquotes.com/quote/847297#google_vignette

Calor específico molar de gases

TABELA 17.3 | Calor específico molar de vários gases

Gás	C_P	C_V	$C_P - C_V$	$\gamma = C_P/C$
	G	ases mo	noatômico	s
He	20,8	12,5	8,33	1,67
Ar	20,8	12,5	8,33	1,67
Ne	20,8	12,7	8,12	1,64
Kr	20,8	12,3	8,49	1,69
		Gases d	iatômicos	
H_2	28,8	20,4	8,33	1,41
N_2	29,1	20,8	8,33	1,40
O_2	29,4	21,1	8,33	1,40
CO	29,3	21,0	8,33	1,40
Cl_2	34,7	25,7	8,96	1,35
	(Gases po	oliatômicos	
CO_2	37,0	28,5	8,50	1,30
SO_2	40,4	31,4	9,00	1,29
H_2O	35,4	27,0	8,37	1,30
CH_4	35,5	27,1	8,41	1,31

Calor específico molar de gases

Calor específico molar a volume constante, para o gás hidrogênio (H₂). A temperatura é representada em escala logarítmica.

Calor específico molar a volume constante, para o gás hidrogênio (H₂). A temperatura é representada em escala logarítmica.

Física Quântica: Evidências Experimentais

Radiação e Temperatura

Espectro eletromagnético

https://adenilsongiovanini.com.br/blog/ espectro-eletromagnetico/

Espectro eletromagnético

A descoberta do espectro eletromagnético

Luz branca

Ondas eletromagnética

Campos eletromagnéticos. (Imagem: Educa Mais Brasil)

Radiação vs Temperatura

https:

//phet.colorado.edu/sims/html/blackbody-spectrum/
latest/blackbody-spectrum_all.html?locale=pt_BR

PhET: Espectro de corpo negro (simulação)

https:

//phet.colorado.edu/sims/html/blackbody-spectrum/
latest/blackbody-spectrum_all.html?locale=pt_BR

Teste: Qual estrela tem a maior Temperatura?

https://www.youtube.com/watch?v=JSpSVL315NA

Teste: Qual estrela tem a maior Temperatura?

https://www.youtube.com/watch?v=JSpSVL315NA

Aula 1

Corpo negro (ideal)

https://www.youtube.com/watch?v=I9dnJT5dEYY&list= PLpDFI2iyrPsx0T4ttkHZ-Z1vSONcT-AbL&index=2

Corpo negro (ideal)

https://www.youtube.com/watch?v=I9dnJT5dEYY&list= PLpDFI2iyrPsx0T4ttkHZ-Z1vSONcT-AbL&index=2

Lei de deslocamento de Wien

A equação de Rayleigh-Jeans (RJ) e a distribuição espectral de energia determinada experimentalmente.

Lei de Planck

