Θέμα 1

α΄) Να αποδείξετε ότι το εμβαδόν Ε ενός τριγώνου είναι ίσο με το ημιγινόμενο μιας πλευράς επί το αντίστοιχο ύψος. **Μονάδες 15**

Απόδειξη από βιβλίο

- β΄) Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό ή Λάθος
 - i. Λ Το τετράγωνο της κάθετης πλευράς ενός ορθογωνίου τριγώνου ισούται με το γινόμενο της κάθετης πλευράς με την υποτείνουσα.
 - ii. Σ Το μήκος ενός τόξου α ακτινίων σε κύκλο ακτίνας R είναι $l=\alpha R$.
 - iii. Λ Ο λόγος ομοιότητας των εμβαδών δύο όμοιων σχημάτων ισούται με τον λόγο ομοιότητας των πλευρών του.
 - iv. Λ Κανονικό πολύγωνο είναι το σχήμα που έχει όλες τις πλευρές του ίσες.
 - ν. Σ Σε τρίγωνο με πλευρές α , β , γ , αν ισχύει $\beta^2 < \alpha^2 + \gamma^2$ τότε $\hat{B} < 90^\circ$.

Μονάδες 10

Θέμα 2 (21350)

Στο σχήμα δίνονται ότι $\hat{B}=\hat{E}=90^\circ$, AE=8, EB=4 και $\Delta E=4$.

- α) Να αποδείξετε ότι τα τρίγωνα ΑΕΔ και ΑΒΓ είναι όμοια **Μονάδες 10** Αρκεί να δείξουμε ότι έχουν 2 ίσες γωνίες. Είναι ορθογώνια τρίγωνα και έχουν μία οξεία γωνία ίση.
- β) Να γράψετε τους ίσους λόγους που προκύπτουν από την ομοιότητα των τριγώνων $\text{AE}\Delta$ και $\text{AB}\Gamma$

Μονάδες 10

$$\frac{AE}{AB} = \frac{A\Delta}{A\Gamma} = \frac{\Delta E}{B\Gamma}$$

γ) Να υπολογίσετε το μήκος της πλευράς ${\rm B}\Gamma$

Μονάδες 5

$$\mbox{Aπό πριν} \, \frac{\mbox{AE}}{\mbox{AB}} = \frac{\mbox{\Delta E}}{\mbox{B}\Gamma} \implies \mbox{B}\Gamma = 6$$

Έστω ισόπλευρο τρίγωνο πλευράς 2R. Με κέντρο κάθε κορυφή εγγράφουμε στο τρίγωνο κυκλικούς τομείς ακτίνας R όπως το διπλανό σχήμα.

- α) Να βρείτε την περίμετρο του γραμμοσκιασμένου σχήματος ως προς R. Μονάδες $\mathbf{9}$ Οι γωνίες του τριγώνου είναι όλες 60^o , άρα οι 3 κυκλικοί τομείς σχηματίζουν ημικύκλιο. Άρα η περίμετρος είναι $\frac{2\pi R}{2}=\pi R$
- β) Να δείξετε ότι το ύψος του τριγώνου είναι $R\sqrt{3}$. Με Π.Θ. έχουμε $(2R)^2=R^2+v^2\implies \dots$

Μονάδες 4

γ) Να δείξετε ότι το εμβαδό του τριγώνου είναι $R^2\sqrt{3}$. Το εμβαδό του τριγώνου είναι $\frac{2}{2}2R\cdot \upsilon=\dots$

Μονάδες 3

δ) Να υπολογίσετε το εμβαδό του γραμμοσκιασμένου τμήματος ως προς R.

Μονάδες 9

Από το εμβαδό του τριγώνου αφαιρούμε το ημικύκλιο που αναφερόμαστε στο α). Άρα $R^2\sqrt{3}-\frac{\pi R^2}{2}$

Θέμα 4 (16135)

Δίνεται το τρίγωνο $AB\Gamma$ με υποτείνουσα $B\Gamma=10$ και έστω ότι Δ είναι η προβολή της κορυφής A στην $B\Gamma$.

α) Αν $\Delta B = 2$ να υπολογίσετε

i. το ύψος $A\Delta$ του τριγώνου $AB\Gamma$ Ισχύει $A\Delta^2=B\Delta\cdot\Delta\Gamma\implies A\Delta=4$

Μονάδες 7

ii. το εμβαδόν του τριγώνου $\ensuremath{\mathrm{AB}\Gamma}$

Μονάδες 5

$$E = \frac{1}{2}B\Gamma \cdot A\Delta = 5A\Delta = 20$$

- β) Υποθέστε ότι το σημείο A κινείται πάνω στο ημικύκλιο με διάμετρο την $B\Gamma$
 - i. Να ποδείξετε ότι το εμβαδόν του τριγώνου $AB\Gamma$ είναι $(AB\Gamma)=5A\Delta$ Αποδείχθηκε πιο πάνω

Μονάδες 7

Θεωρήστε τον παρακάτω ισχυρισμό:

"Για όλες τις θέσεις του A πάνω στο ημικύκλιο με διάμετρο την $B\Gamma$, το εμβαδόν του τριγώνου $AB\Gamma$ δεν υπερβαίνει το 25"

Είναι αληθής ή ψευδής ο παραπάνω ισχυρισμός; Να αιτιολογήσετε την απάντησή σας. **Μονάδες 6** Αληθής. Με σταθερή βάση, το τρίγωνο έχει μέγιστο εμβαδό, στο μέγιστο ύψος. Το ύψος δεν μπορεί να ξεπερνάει την ακτίνα του κύκλου, δηλαδή $v=\mathrm{A}\Delta \leq 5$. Έτσι $\mathrm{E} \leq 25$

