Fondamenti di Model-Checking

Formulazione classica Model Checking

- input:
 - temporal logic formula
 - finite-state model (Kripke)
- output
 - yes
 - no + counterexample

Macchina a stati finiti (FSM)

$$M = (\Sigma, Q, I, \delta)$$

 \Box Σ insieme finito di simboli

Q insieme finito di stati

□ I ⊆ Q insieme di stati iniziali

- Es. ({a,b}, {0,1},{0}, {(0,a,0), (0,a,1), (1,a,0), (1,b,1)})

- Esecuzione: $r=(q_0,a_1,q_1)$ (q_1,a_2,q_2) ... (q_{n-1},a_n,q_n) , $(q_{i-1},a_i,q_i) \in \delta$

Struttura di Kripke

(Macchina a stati finiti con stati etichettati)

- traccia: $\lambda(q_0)$ $\lambda(q_1)$... $\lambda(q_n)$ dove $q_0 \in Q_i$ e (q_0,a_1,q_1) (q_1,a_2,q_2) ... (q_{n-1},a_n,q_n) è un ω-esecuzione
- L(K) insieme di tracce di K

LTL model-checking

- parola infinita etichettata con proposizioni atomiche:
 - □ w: N→ 2^{AP} (ogni intero rappresenta un istante e per ogni istante *i* le proposizioni atomiche vere ad i sono w(i))
- soddisfacimento di una formula definito rispetto ad parola infinita (prossima slide)
- data una formula φ, se φ è soddisfatta su w allora w è un modello di φ
- Model checking: dato un sistema di transizione T etichettato con proposizioni atomiche (struttura di Kripke) e una formula LTL φ, è vero che tutte le computazioni di T sono modelli di φ?

LTL (Linear Temporal Logic)

Sintassi

$$\phi := p | \phi \wedge \phi | \phi \vee \phi | \phi \phi | \phi \phi | \phi U \phi$$

Semantica

LTL model checking

- Problema di decisione (risposta SI/NO)
- Soluzione efficiente si basa su applicazione teoria degli automi
- Riduzione al problema del vuoto per gli automi di Büchi

LTL model-checking (LTL-MC)

- AP: proposizioni atomiche K: struttura di Kripke su AP φ: formula LTL su AP
- **Def.** K è un modello di φ se φ è soddisfatta su ogni traccia di K
- Model-checking: K è un modello della formula φ?
 - □ $K \grave{e}$ un modello di φ se e solo se $L(K) \subseteq L(φ)$ se e solo se $L(K) \cap \overline{L(φ)} = ∅$ se e solo se $L(K) \cap L(¬φ) = ∅$
 - Se costruiamo un automa di Büchi che accetta tutte le ωparole su AP che soddisfano φ abbiamo soluzione a LTL model-checking (automata-theoretic approach)
 - si sfrutta chiusura rispetto all'intersezione e decidibilità del vuoto degli automi di Büchi

Automa finito

```
A = (\Sigma, Q, Q_in, \delta, Q_fin)
```

- \Box (Σ , Q, Q_in, δ) macchina a stati finiti
- □ Q_fin ⊆ Q insieme di stati finali
- esecuzione: $r=(q_0,a_1,q_1)$ (q_1,a_2,q_2) ... (q_{n-1},a_n,q_n) , $(q_{i-1},a_i,q_i) \in \delta$
- parola associata a esecuzione: a₁a₂ ... a_n associata a r
- esecuzione di accettazione: q₀∈Q_in e q_n∈Q_fin
- linguaggio accettato (denotato L(A)): insieme di parole associate ad esecuzioni di accettazione

Nota:

- determinare se L(A) è non vuoto corrisponde a verificare se
 Q_fin è raggiungibile
- □ l'automa che accetta L(A) ∩ L(A') è dato dal prodotto delle macchine a stati finiti sottostanti e scegliendo Q_fin x Q'_fin come insieme di stati finali

Model checking con automi finiti

Dati gli automi finiti M (modello) e S (specifica), $L(M) \subseteq L(S)$?

Risolvibile in spazio polinomiale (Pspace):

$$L(M) \subseteq L(S)$$
 sse $L(M) \cap \overline{L(S)} = \emptyset$

- □ automa S̄ che accetta complemento di L(S) ha taglia esponenziale in |S| (determinizzazione di S)
- □ automa che accetta intersezione ha taglia lineare in |M|x|S|, e quindi proporzionale a |M|x2|S|
- vuoto può essere testato in tempo lineare
- spazio polinomiale deriva dal fatto che S può essere costruito on-the-fly durante il test del vuoto

Automi su parole infinite: automi di Büchi

$$A = (\Sigma, Q, Q_{in}, \delta, Q_{fin})$$
 ---- come per automi finiti

- ω-esecuzione: r=(q₀,a₁,q₁) (q₁,a₂,q₂) ... (qᵢ-1,aᵢ,qᵢ)..... dove (qᵢ-1,aᵢ,qᵢ)∈δ per ogni i∈N
- ω-parola associata a ω-esecuzione:
 a₁a₂ ... a_i associata a r
- accettazione alla Büchi: q₀∈Q_in e esistono infiniti indici n∈N tali che q_n∈Q_fin (Q_fin è visitato infinite volte)
- linguaggio accettato alla Büchi da A: insieme di ω-parole associate ad esecuzioni di accettazione
 - usiamo L(A) per denotare questo linguaggio

Automata-theoretic approach

- Proviamo i seguenti risultati:
 - Teorema 1. La classe degli automi di Büchi è chiusa rispetto all'intersezione. L'automa che accetta il linguaggio intersezione si può effettivamente costruire e ha taglia proporzionale al prodotto della taglia degli automi di partenza.
 - Teorema 2. Il problema del vuoto per gli automi di Büchi è decidibile in tempo lineare nella taglia dell'automa.
 - Teorema 3. Data una formula LTL è possibile costruire un automa di Büchi che accetta esattamente tutti i suoi modelli.

Chiusura rispetto a intersezione

- Automi di Büchi: $A_i = (\Sigma, Q_i, Q_i, Q_i, \delta_i, Q_fin_i), i=1,2$
- Sia A = $(\Sigma, Q, Q_in, \delta, Q_fin)$ dove:
 - $Q = Q_1 \times Q_2 \times \{0,1,2\}, \quad Q_i = Q$
 - $Q_1 = Q_1 \times Q_2 \times \{0\}$
 - □ δ contiene regole del tipo (q1, q2, i) $-a \rightarrow$ (q1', q2', i') t.c.:
 - $= q1 a \rightarrow q1' \in \delta_1, q2 a \rightarrow q2' \in \delta_2 e$
 - $> i' = i + 1 \mod 3$ se i = 0 oppure $qi \in Q_fin$
 - > i' = i, altrimenti
- A simula ogni A_i nella componente i del suo stato
- la terza componente diventa infinite volte 0 sse gli stati finali di entrambi A₁ e A₂ vengono visitati infinite volte
 - se ad es. l'automa A_j da un certo punto non visita più uno stato finale, allora la terza componente rimane bloccata su i

Decidere il vuoto per gli automi di Büchi

- Algoritmo 1 ---componenti fortemente connesse:
 - computa componenti fortemente connesse del grafo di transizione ---tempo O(|Q|+|δ|)
 - denota come finali le componenti che contengono uno stato finale ---contestualmente a step precedente
 - risolvi raggiungibilità con insieme target gli stati delle componenti fortemente connesse finali ---tempo O(|Q|+|δ|)
 - output risultato raggiungibilità
- Si può verificare che Algoritmo 1 da una risposta affermativa sse l'automa di Büchi in input accetta un linguaggio non vuoto

Nested depth-first search

- Idea: eseguire due DFS interfogliate
 - una esterna per visitare tutti gli stati finali raggiungibili
 - una interna per individuare cicli su stati finali
- Algoritmo 2 ---nested DFS:
 - non appena terminata la visita DFS esterna da tutti i successori di s, se s è finale parte la DFS interna da s
 - nella DFS interna, vengono esplorati tutti gli stati raggiungibili da s non ancora visitati nella DFS interna (la DFS interna è fatta a pezzi, e si interfoglia con quella esterna)
 - nessun ciclo su s? continua la DFS esterna

Nested depth-first search

- Generazione del controesempio: concatena gli stack DFS
 - stack U usato per la DFS esterna = cammino da s0 ∈ l a s
 (dal bottom al top)
 - stack V usato per la DFS interna = ciclo da s a s (dal bottom al top)
- Tempo di esecuzione O(|Q|+|δ|)
- Si può verificare che Algoritmo 2 da una risposta affermativa sse l'automa di Büchi in input accetta un linguaggio non vuoto
- Inoltre, in caso di risposta affermativa viene generato un cammino da uno stato iniziale a uno stato di accettazione seguito da un ciclo su questo stato
 - se automa di Büchi esprime negazione specifica, output è controesempio

Pseudo-codice nested DFS

```
set of states R := \emptyset; //stati visitati DFS est.
stack of states U := \varepsilon; // stack DFS est.
set of states T := \emptyset; //stati visitati DFS int.
stack of states V := \varepsilon; //stack DFS int.
boolean cycle found := false;
while (Q_{in} \ R = \emptyset \land !cycle found) do
   let s \in Q_{in} \ R; // explore the reachable
      reachable cycle(s); // outer DFS
od
if !cycle found then return ("yes")
else return ("no", reverse(V.U))
```

```
procedure reachable cycle (state s)
  push(s,U); R := R \cup \{s\};
  repeat
     s := top(U);
     if Post(s) \setminus R != \emptyset then
        let s \in Post(s) \setminus R;
        push(s, U); R := R \cup \{s\};
     else
        pop(U); // DFS est. finita per s
        if s è finale then
           cycle found := cycle_check(s); fi
     fi
  until ((U = \varepsilon) \lor cycle found)
endproc
```

Pseudo-codice nested DFS: cycle_check

```
/* esegue DFS interna */
procedure boolean cycle_check(state s)
  boolean cycle found := false;
  push(s, V); // V è uno stack
  T := T \cup \{s\};
  repeat
     s' := top(V);
     if s \in Post(s') then
       cycle found := true;
       push(s, V);
     else
```

```
if Post(s') \setminus T! = \emptyset then
            // stati già visitati in DFS interna
                         // non vengono rivisitati
            let s'' \in Post(s') \setminus T;
            push(s'', V);
             T := T \cup \{s''\};
         else
            pop(V);
      fi
   until ((V = \varepsilon) \ V \ cycle \ found)
   return cycle found
endproc
```

Correttezza nested DFS

- Supponiamo che un ciclo su stato finale s non viene scoperto
 - DFS interna è in carico di scoprire i cicli su stati finali
 - possibile errore: non rivisitiamo stato cruciale per ciclo
- Questo accade quando l'algoritmo:
 - (1) da s scopre s' nella DFS interna, ma
 - (2) s' è già stato visitato e
 - (3) c'è un ciclo c su s che passa da s'

 Da (2), esiste stato finale s" da cui raggiungiamo s' nella DFS interna (e quindi tutto il ciclo c, ed in particolare s, è già visitato nella DFS interna)

Correttezza nested DFS

- Ipotesi per assurdo:
 - Siano s, s' e s" i primi stati che soddisfano la condizione precedente durante la computazione
 - □ cioè:
 - (1) s' è scoperto da s nella DFS interna
 - (2) s' è già stato visitato nella DFS interna da s"
 - (3) c'è un ciclo c su s che passa da s'

Correttezza nested DFS

- Due casi possibili:
 - s" scoperto da s in DFS esterna, allora esiste ciclo su s" che dovrebbe essere scoperto prima e terminare l'algoritmo (assurdo)

 altrimenti, DFS esterna avrebbe dovuto scoprire s da s" tramite s' e quindi s' non potrebbe essere stato già visitato quando viene scoperto in DFS interna da s (assurdo)

- DFS interna partirebbe prima da s e poi da s"

Algoritmo 1 vs Algoritmo 2

- per applicazioni in model-checking è preferibile utilizzare la nested DFS
- principali vantaggi:
 - ha un'implementazione on-the-fly (richiede meno spazio)
 - consente di generare un controesempio facilmente
- stessa complessità asintotica

Automa di Büchi generalizzato (GBA)

 $A = (\Sigma, Q, Q_{in}, \delta, F)$ dove:

- Σ, Q, Q_in, δ come in automa di Büchi
- F={F₁,...,F_k} famiglia di insiemi di stati finali, F_i ⊆ Q per ogni i
- accettazione alla Büchi generalizzata:
 - data un'ω-esecuzione

$$r=(q_0,a_1,q_1) (q_1,a_2,q_2) ... (q_{i-1},a_i,q_i)....$$

- \square per ogni $F_h \in F$: $q_i \in F_h$ per un numero infinito di indici i
- utile per costruire automa equivalente a formula LTL
- Esercizio: provare che dato un automa di Büchi generalizzato A come sopra, esiste un automa di Büchi B tale che L(A)=L(B) e |B|=O(k |A|)

Chiusura e insiemi elementari

- Sia φ una formula LTL, l'insieme closure(φ) è l'insieme di tutte e sole le sottoformule ψ di φ e della loro negazione ¬ψ (dove ψ e ¬¬ψ sono identificate)
- $B \subseteq closure(\phi)$ è elementare se
 - □ B
 in logically consistent: per ogni $\phi_1 \land \phi_2$, $\psi \in closure(\phi)$
 - $\rightarrow \phi_1 \land \phi_2 \in B \Leftrightarrow \phi_1 \in B \in \phi_2 \in B$
 - $\rightarrow \Psi \in B \Rightarrow \neg \Psi \notin B$
 - > true ∈ closure(φ) \Rightarrow true ∈ B
 - □ B è *locally consistent*: per ogni ϕ_1 U ϕ_2 ∈ closure(ϕ)
 - \rightarrow $\phi_2 \in B \Rightarrow \phi_1 \cup \phi_2 \in B$
 - \rightarrow $\phi_1 \cup \phi_2 \in B$ and $\phi_2 \notin B \Rightarrow \phi_1 \in B$
 - □ B è massimale: per ogni ψ ∈ closure(φ)
 - $\rightarrow \Psi \notin B \Rightarrow \neg \Psi \in B$

GBA equivalente a LTL formula

Per una LTL-formula ϕ , sia $G_{\phi} = (2^{AP}, Q, Q_{in}, \delta, F)$ dove

- Q = tutti gli insiemi elementari B ⊆ closure(φ)
- $Q_{in} = \{B \in Q \mid \phi \in B \}$
- $F = \{ \{B \in Q \mid \phi_1 \cup \phi_2 \notin B \text{ or } \phi_2 \in B \} \mid \phi_1 \cup \phi_2 \in closure(\phi) \}$
- La relazione di transizione $\delta: Q \times 2^{AP} \rightarrow 2^Q$ è data da:
 - □ Se A ≠ B ∩ AP, allora δ (B,A) = Ø
 - □ δ(B, B ∩ AP) è l'insieme B' di tutti gli insiemi elementari di formule che soddisfano:
 - (i) Per ogni $\circ \psi \in closure(\phi)$: $\circ \psi \in B \Leftrightarrow \psi \in B'$, and
 - (ii) For every $\phi_1 \cup \phi_2 \in closure(\phi)$:

$$\phi_1 \cup \phi_2 \in B \Leftrightarrow \phi_2 \in B \vee (\phi_1 \in B \wedge \phi_1 \cup \phi_2 \in B')$$

GNBA for LTL-formula $\bigcirc a$

$$Q_0 = \{\,B_1, B_3\,\} \text{ since } \bigcirc a \in B_1 \text{ and } \bigcirc a \in B_3$$
 $\delta(B_2, \{\,a\,\}) = \{\,B_3, B_4\,\} \text{ as } B_2 \cap \{\,a\,\} = \{\,a\,\}, \, \neg \bigcirc a = \bigcirc \neg a \in B_2, \, \text{and } \neg a \in B_3, B_4$ $\delta(B_1, \{\,a\,\}) = \{\,B_1, B_2\,\} \text{ as } B_1 \cap \{\,a\,\} = \{\,a\,\}, \, \bigcirc a \in B_1 \text{ and } a \in B_1, B_2$ $\delta(B_4, \{\,a\,\}) = \emptyset \text{ since } B_4 \cap \{\,a\,\} = \emptyset \neq \{\,a\,\}$

The set \mathcal{F} is empty, since $\varphi = \bigcap a$ does not contain an until-operator

GNBA for LTL-formula $a \cup b$

Automi di Büchi più espressivi di LTL

- AP={p}
- Sia L il linguaggio di tutte le sequenze sull'alfabeto 2^{p} tali che {p} sia il simbolo ad ogni posizione pari:

$$L = \{A_1 A_2 A_3 \dots / A_{2i} = \{p\} \text{ per ogni i } \ge 0\}$$

- Non esiste alcuna formula LTL φ su AP tale che L(φ) = L
- Tuttavia esiste un automa di Büchi B tale che L(B) = L (Esercizio)

Complessità LTL model checking

- Gli stati di G_φ sono insiemi elementari di formule in closure(φ)
 - ogni iniseme B può essere rappresentato con un vettore di bit, con un bit in corrispondenza di ogni sottoformula ψ di φ
- Il numero di stati di G_φ è al più 2^{|subf(φ)|}
 - dove subf(φ) è l'insieme di tutte le sottoformule di φ
 - □ siccome $|subf(\phi)| \le 2 \cdot |\phi|$, il numero di stati di G_{ϕ} è $2^{O(|\phi|)}$
- Il numero di insiemi di accettazione di G_φ è O(|φ|)
- Il numero di stati nell'automa di Büchi equivalente A_φ è 2^{O(|φ|)}
 O(|φ|)
- $2^{O(|\phi|)} O(|\phi|) = 2^{O(|\phi| + \log |\phi|)} = 2^{O(|\phi|)}$

Complessità LTL model checking

- Dato che
 - è possibile costruire in tempo lineare un automa A_K che accetta L(K) (tracce di una struttura di Kripke K) di taglia O(|K|)
 - è possibile costruire un automa A che accetta L(K)∩L(A_φ) in tempo O(|K| |A_φ|) e tale che |A|=O(|K| |A_φ|)
 - \Box $|A_{\phi}|=2^{O(|\phi|)}$
 - È possibile testare il vuoto di un automa di Büchi B in tempo
 O(|B|) e spazio logaritmico (NLOGSPACE)
 - LTL model-checking può essere risolto in tempo |K| 2^{O(|φ|)} e spazio polinomiale (PSPACE)
- Inoltre, si può verificare che il problema è anche PSPACEhard, dunque LTL model-checking è PSPACE-complete

Osservazioni sulla complessità

- Le specifiche possono essere spezzettate in formule di taglia piccola (tempo esponenziale nella taglia della formula non è un problema)
- La taglia del modello è solitamente esponenziale nella taglia della sua descrizione (state-space explosion)
 - □ trasformazione variabili → stati:
 esponenziale in numero di bit (per var)
 - □ trasformazione componenti → modello:
 esponenziale in numero componenti

FSM con memoria condivisa e canali

- Comunicazione con altre FSM può avvenire tramite memoria condivisa o canali
- FSM con memoria condivisa
 - □ Stati: (g,l) dove g è condiviso e l è locale
 - □ Transizioni: $(g,l) -a \rightarrow (g',l')$
- FSM con canali (code):
 - Transizioni:
 - (q) $-\text{snd}(\alpha,i) \rightarrow$ (q') invia α sul canale i (inserito in coda)
 - (q) $-\text{rec}(\alpha,i) \rightarrow$ (q') ricevi α sul canale i (prelevato dal front)

Composizione parallela di FSM

- Dato un sistema S composto di n FSM M₁, M₂, ... M_n che interagiscono attraverso:
 - memoria condivisa finita G
 - □ m canali di lunghezza finita l₁,..,lm su alfabeto messaggi
- E' possibile costruire una FSM equivalente M

Composizione parallela di FSM

- FSM M: (Q_i stati locali e I_i stati iniziali di M_i)
 □ Alfabeto: Σ₁ ∪ ... ∪ Σ_n (unione alfabeti M₁, M₂, ... M_n)
 □ Stati: (g,q₁,...,q_n,w₁,...,w_m) ∈ G x Q₁ x...x Q_n x Γ^{I1}x...x Γ^{Im}
 □ Stati iniziali: G₀ x I₁x...x I_n x {ε}x...x {ε}
 □ Transizioni:
 solo una componente muove
 ad es. se M_i muove senza usare canali abbiamo: (g,q₁,...,q_i,...,q_n,w₁,...,w_m) −a → (f,q₁,...,p_i,...,q_n,w₁,...,w_m)
 per una transizione (g,q_i)-a → (f,p_i) di M_i
 - eccetto se send/receive su canale di dimensione 0 (rendez-vouz),
 in questo caso il send e il corrispondente receive sono eseguiti in coppia

Raggiungibilità: problema di verifica base

- Dato una macchina a stati finiti FSM determinare se un insieme di stati target T è raggiungibile
- Soluzione: DFS (o BFS) a partire da stati iniziali, O(|Q|+|δ|)

Estensioni

- Classi di modelli
 - Modelli con stack (chiamate ricorsive programmi)
 - Modelli con stack multipli (programmi multithreaded)
 - Modelli con variabili continue (sistemi embedded real-time e ibridi)
 - Altri modelli a stati infiniti (reti di Petri, higher-order PDA,...)
- Classi di specifiche
 - Logica temporale branching-time (CTL,CTL*)
 - mu-calculus

.