- An index of her own: An investigation of the proportion of women indexed in evolutionary psychology textbooks.
- Thomas V. Pollet ¹, Jeanne Bovet ¹, Elizabeth Renner ¹, & Louise Barrett ²
- ¹ Dept. of Psychology, Northumbria University, Newcastle upon Tyne, UK
- ² Dept. of Psychology, University of Lethbridge, Lethbridge, Canada

6 Author Note

- Thomas V. Pollet and Jeanne Bovet were supported by BA Leverhulme small grant.
- The authors made the following contributions. Thomas V. Pollet ©:
- 9 Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation,
- 10 Methodology, Project administration, Resources, Software, Supervision, Validation,
- 11 Visualization, Writing original draft, Writing review & editing; Jeanne Bovet ©:
- ¹² Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation,
- 13 Methodology, Project administration, Resources, Software, Validation, Visualization,
- Writing original draft, Writing review & editing; Elizabeth Renner ©: Investigation,
- Writing original draft, Writing review & editing; Louise Barrett : Investigation,
- Writing original draft, Writing review & editing.
- 17 Correspondence concerning this article should be addressed to Thomas V. Pollet ©,
- NB 165, Northumberland Building, 2 Ellison Place, NE18ST, Newcastle Upon Tyne, UK...
- E-mail: thomas.pollet@northumbria.ac.uk

20 Abstract

Gender bias is ubiquitous in academia. It has been demonstrated across a broad range of 21 domains, including grant awards and peer review. Previous research has also found that this bias is reflected in textbooks. Here we evaluated seven books on evolutionary 23 psychology, five of which were edited volumes. We assessed whether (1) women were less likely to be indexed than men and (2) women were less likely to be a contributor to edited 25 volumes than men. In addition, we examined which women were featured in more than one book. Using descriptive statistics and meta-analytical techniques, we found that around 1 27 in 4 entries in the book indexes were women, and around 4 in 10 contributors to edited volumes were women. Around 50 women (out of 835) were indexed in more than one 29 volume. We discuss the potential mechanisms that could produce these findings. Finally, we offer suggestions on how the inclusion of women could be improved. This is a 31 preprint cite at own risk, this version 5-12-2024.

33 Keywords: Gender; Women; Textbooks; Citation; Evolutionary Psychology

Word count: 6,725

An index of her own: An investigation of the proportion of women indexed in evolutionary psychology textbooks.

Gender disparities are well documented in academia, across a number of domains 37 (Shannon et al., 2019; Llorens et al., 2021). These include knowledge production (e.g., Bird, 38 2011; West et al., 2013; Mihaljević-Brandt, Santamaría & Tullney, 2016; Sá et al., 2020; Wheatley & Ogunlana, 2023), outcomes from peer review (Fox & Paine, 2019; but see Squazzoni et al., 2021), talk invitations (e.g., Schroeder et al., 2013), audience size at a conference (Barreto et al., 2024), tenure of a leadership position (e.g., Chowdhary et al., 2020; Llorens et al., 2021), editorial board membership (Cho et al., 2014), inclusion on reading lists (e.g., Harris et al., 2020), prizes (Lincoln et al., 2012), grants (e.g., Chaudhary et al., 2021; Schiffbaenker et al., 2022) and receiving adequate grant reviews (Silbiger & Stubler, 2019; e.g., Biernat et al., 2020). In (nearly) all cases, women tend to be disadvantaged compared to men. Other characteristics such as ethnicity or disability status exacerbate these disparities (e.g. Ginther, Kahn & Schaffer, 2016). Recently, Ceci, Kahn and Williams (2023) examined six different domains of academia for gender bias: (1) 49 tenure-track hiring, (2) grant funding, (3) teaching ratings, (4) journal acceptances, (5) salaries, and (6) recommendation letters. Across three domains—grant funding, journal 51 acceptances, and recommendation letters—they found relative parity between men and women. Across two domains, teaching ratings and salaries, they found support for a bias 53 against women. The authors commented that these biases, though sizable, were smaller than expected based on the literature. In one domain, hiring, they found a relative advantage for women over men.

In this paper, we focus on the question of gender bias in academic texts. A large body of research has documented that women tend to receive fewer citations than men in the scientific literature. A bias in citations has been documented in both STEM (science, technology, engineering, and mathematics) and non-STEM subjects (Ghiasi, Larivière &

- Sugimoto, 2015; e.g., Caplar, Tacchella & Birrer, 2017; Dion, Sumner & Mitchell, 2018;
 Odic & Wojcik, 2020; Dworkin et al., 2020; Wang et al., 2021; Fulvio, Akinnola & Postle,
 2021; Chatterjee & Werner, 2021; Teich et al., 2022; but see Esarey & Bryant, 2018). For
 example, Caplar, Tacchella and Birrer (2017) estimated that women received around 10%
 fewer citations than expected compared to men in astronomy. This estimate is close to
 estimates from other STEM disciplines, for example, engineering (e.g., Ghiasi, Larivière &
 Sugimoto, 2015). Even in the social sciences, where women are more visible and/or
 research active, and researchers are argued to be more aware of these biases (e.g., sociology:
 Davenport & Snyder, 1995), a comparable disparity in citations exists.
- There is considerable debate over the size of the 'citation gap' attributable to gender. 70 In a study covering 37,000 publications by 8,500 Norwegian researchers, Aksnes et al. 71 (2011) found that women were cited less than men in four of five categories of academic 72 rank, in four of six age groups, and in 9 of 14 disciplines. However, they argued that the 73 citation gap was small and that ambiguity existed, suggesting that the gap is attributable in part to the volume of articles produced by men and women respectively. That is, men 75 produce more articles than women, and other research has also argued that men are more likely to self-cite than women (King et al., 2017; e.g., Andersen et al., 2019). Thelwall and Nevill (2019) found a small male citation advantage in journal articles from biochemistry, genetics and molecular biology, consistent with an average male citation advantage of 0.2% (Thelwall, 2018). Fox and Paine (2019) analysed over 12,000 articles from journals in Ecology and Evolution and estimated that the difference in citations between men and 81 women was around 2\%. A minority of studies has found no support for a citation gap and even an advantage for women. For example, Hengel (2019) found that, after accounting for the higher citation rate of male Nobel Prize winners, women were cited more than men (also see Hengel & Moon, 2020). It should also be noted that the size of the citation gap depends on which metrics are chosen. For example, some authors take into account authorship position, whereas others do not. Some authors employ a large window for

tracking citations (e.g., > 5 years), others do not. Wu (2024) reviews the different operationalisations of tests for the gender gap and how they are impacted by different choices. A key conclusion from their review, is that part of the citation gap is attributable to the fact that women produces fewer articles throughout their career.

A discrepancy in citations and coverage of women's research as compared to men's 92 also extends to textbooks and course curricula (Harris et al., 2020). The data suggest that work by women is less likely to be included in a textbook than that by men. An early study by Mayer (1989) examined eight human geography textbooks and found that 95 women's work received less coverage than men's. Mathews and Andersen (2001) found that women were not adequately represented in political science books edited by men. In the life sciences, women were found to be underrepresented in textbooks (Damschen et al., 2005; Wood et al., 2020; Simpson, Beatty & Ballen, 2021). In a sample of twelve textbooks from geosciences, Phillips and Hausbeck (2000) found that more than 9 out of 10 innovations or 100 discoveries were attributed to men. Wood et al. (2020) examined seven textbooks in 101 biology, and in addition to an underrepresentation of authors of colour, they found women to be underrepresented. Harris et al. (2020) evaluated 2,435 readings from 129 unique 103 courses at an American university. They found that the mean percentage of female authors 104 per reading was around 34%. Around one third of readings were female-led, i.e., by a 105 female first or sole author. The highest percentage was found in the social sciences (40%), 106 but men still outnumbered women. 107

Current study

Relatively little is known about a potential gender bias in citations for evolutionary psychology and related disciplines. Schmitt (2015) has argued that, overall, evolutionary psychology is relatively unbiased in its citations. In order to contribute some additional data to this debate, we examined the indexes of seven major recent textbooks and reference works covering evolutionary psychology. We also examined the gender of

contributors to edited volumes. Our prior assumption was that fewer women than men would be indexed in textbooks and contribute to edited volumes, but we did not have any specific estimate in mind regarding the magnitude of any such difference. Our project is thus both exploratory and descriptive.

118 Methods

119 Ethical approval

This research was approved by the Faculty of Health and Life Sciences ethics committee at Northumbria University (Ref. 51237)

122 Data source

132

137

138

- We selected textbooks and reference works based on recency (within the last 5 years of the inception of this project, thus excluding Barrett, Dunbar & Lycett, 2002; Dunbar & Barrett, 2007, for example) and coverage. For example, we excluded textbooks focusing on a specific approach to evolutionary psychology (e.g., Neuroscience: Ray, 2012) or books by authors from evolutionary psychology but on a specific subject (e.g., Religion: Liddle & Shackelford, 2020). We also excluded books more broadly dealing with evolution and human behaviour (Laland & Brown, 2011; e.g., Boyd & Silk, 2014). We excluded 'living' online-only resources as their content could change during the project (Shackelford & Weekes-Shackelford, 2021). The seven textbooks and reference works selected were:
 - Buss (2019) Evolutionary Psychology New Science of the Mind (6th ed.),
- Shackelford (2020a) The SAGE Handbook of Evolutionary Psychology: Foundations
 of Evolutionary Psychology,
- Shackelford (2020b) The SAGE Handbook of Evolutionary Psychology: Integration of

 Evolutionary Psychology with Other Disciplines,
 - Shackelford (2020c) The SAGE Handbook of Evolutionary Psychology: Applications of Evolutionary Psychology,

- Welling and Shackelford (2020) The Oxford Handbook of Evolutionary Psychology
 and Behavioral Endocrinology,
 - Workman and Reader (2021) Evolutionary Psychology: an introduction (4th ed.) and
- Workman, Reader and Barkow (2020) The Cambridge Handbook of Evolutionary

 Perspectives on Human Behavior.

Five of the textbooks and reference works selected were edited volumes (Shackelford, 144 2020a,b,c; Welling & Shackelford, 2020; Workman, Reader & Barkow, 2020). For brevity, 145 we refer to the seven textbooks and reference works in what follows in the paper as 146 'textbooks'. We are however, well aware that while Buss (2019) and Workman and Reader 147 (2021) might be assigned as textbooks for undergraduate or postgraduate study, this is less 148 likely to be the case for the other books. We believe that the other books are unlikely to be 149 assigned as course reading in their entirety, though likely chapters will be used in teaching 150 and research at postgraduate level. 151

Our research questions are (1) whether women were less likely to be indexed than
men in evolutionary psychology textbooks and (2) whether women were less likely to be a
contributor to edited volumes than men. In addition, we examined which women were
featured in more than one textbook.

156 Coding

141

A research assistant and the first author completed the coding. We coded all entries for individuals listed in the index at the end of each book, provided they were an (academic) author (e.g., excluding Genghis Khan, Mark Zuckerberg or Kofi Annan), as famous non-academic figure entries might be biased toward men. We thus excluded historical figures and also famous exemplars from literature (e.g., Homer) or philosophy (e.g., Aristotle), unless they were associated with psychology, in which case they were included (e.g., William James) or where they were cited in context (for example, a famous

writer is cited in the context of evolutionary approaches to literary studies, such as Jane 164 Austen). Rarely, and mostly restricted to Shackelford (2020c), the entry was for a paper 165 written by a journalist rather than an academic. We decided to include the entries in those 166 few instances. Similar to Wood et al. (2020), we relied on the author's first name to 167 determine whether they presented themselves as a man or a woman. Where the first name 168 was not included but rather the initials were given, we conducted a search for the cited 169 publication and/or academic websites (e.g., GoogleScholar) to determine author sex. 170 Where we suspected that first names could be ambivalent (e.g., Robin), we looked up the 171 person on their university page, personal website or other source (e.g., Scholar Google) to 172 determine coding. We acknowledge that this is a binary construction of gender and 173 assumes that an individual's gender identity matches how they present themselves. This 174 coding scheme can misclassify individuals, given cultural differences in the kinds of names that are given to women versus men, and also the fact that many names are unisex. This 176 coding scheme also cannot take into account self-reported gender categories (i.e., cisgender, 177 transgender, gender-non-conforming, non-binary, and agender identities, Wood et al., 2020). 178 With respect to the latter issues, we would just note that science as an institution 170 historically has been biased against members of the female sex, with limited opportunities 180 for women to receive an academic training: in the UK, for example, the University of 181 London admitted its first female students ("the London Nine") only in 1868–156 years 182 ago—while Oxford did not award degrees to women until 1920, and Cambridge did not do 183 until the late 1940s (Carter, 2018; Delap & Griffin, 2020; University of Oxford, 2024). In 184 part, then, our interest stems from whether these historical limitations on women's 185 opportunities might still play out in some way in the current scientific literature. For three 186 authors from the index of Shackelford (2020a) and three authors from the index of 187 Shackelford (2020c), we were unable to attribute the gender. We coded only inclusion and 188 not the number of index entries, as the textbooks varied in layout and length; this hampers 180 any comparison. Similarly, given that an author could be indexed by multiple contributors 190

to an edited volume and that volumes differ in typesetting, we did not attribute where the author was indexed in edited volumes.

We also coded all contributors to edited volumes. For contributors, we did not code introductory or concluding chapters as these are by the editors. Given the limited number of contributors, we counted contributors only once within a volume, even if they contributed to multiple chapters.

Data analysis

All analyses were conducted in R 4.2.1 (R Development Core Team, 2008). We report 198 descriptive statistics (i.e. the proportions or percentages) and a Random Effect 199 Meta-Analysis on the proportions via the 'meta' package (Schwarzer, Carpenter & Rücker, 200 2015; Balduzzi, Rücker & Schwarzer, 2019). The meta-analysis was estimated via 201 Maximum Likelihood, and the Agresti-Coull method (Agresti & Coull, 1998) was used for 202 the estimation of the confidence interval. Next, we used a fuzzy joining procedure via 203 optimal string alignment ('OSA') of eight characters, in combination with a strict match of 204 the first three letters of the last name, to identify which women were indexed in more than 205 one textbook (Navarro, 2001; Robinson, 2020). The data, code, and analysis document are 206 available from the Open Science Framework. 207

208 Results

209 Proportion of women indexed in textbooks

Figure 1 shows the distributions for women and men indexed in the seven textbooks.

Shackelford (2020c) has the most entries overall and Welling and Shackelford (2020) has
the highest proportion of women included.

Figure 1. Women indexed in Evolutionary Psychology textbooks and reference works. Note: Buss = Buss (2019); Shack.: A. = Shackelford (2020): Applications; Shack.: F. = Shackelford (2020): Foundations; Shack.: I. = Shackelford (2020): Integration; Well. = Welling and Shackelford (2020); Work20 = Workman, Reader and Barkow (2020); Work21 = Workman and Reader (2021)

Figure 2 summarises the results of the meta-analysis for the seven textbooks. There 213 were 3,077 entries in total of which 835 (27.1%) were women. The pooled random effect 214 estimate showed that around 1 in 4 entries were women, 25.91%, 95% CI [20.69%; 33.43%]. 215 Welling and Shackelford (2020) stood out as having substantially more women included 216 than other textbooks, 43.01%, 95% CI [38.16%; 47.99%]. Each of the remaining six 217 textbooks indexed less than 30% women. Excluding Welling and Shackelford (2020) leads 218 to an estimate of less than 1 in 4 entries being women (random effect estimate of 23.97%, 219 95%CI [20.83%; 27.41%]). Excluding the book with most authors indexed overall 220 (Shackelford, 2020c) leads to a random effect estimate of 26.03\%, 95\%CI [19.92\%; 33.23\%], 221 which is close to the original estimate with all books of 25.91%. It is thus unlikely that the 222 overall result is an artefact of this single volume. 223

Figure 2. Forest plot of proportions of women indexed ('events' are women indexed). The tips of the diamond present the 95% CI for the effect size estimates, the red bar interval represents the prediction interval.

Women receiving more than one index entry across textbooks

Our matching procedure found that 53 women (out of 835) were indexed in more than one textbook (Table 1). The majority of these women, 34 out of 53, were indexed in two

out of seven textbooks. Nine women were indexed in three textbooks, and six were indexed in four textbooks (Mary Ainsworth, Laura Betzig, Elaine Hatfield, Margaret Mead, Linda Mealey, and Catherine Salmon). Anne Campbell and Maryanne Fisher were indexed in five out of seven textbooks, and Leda Cosmides was indexed in six out of seven. Margo Wilson was indexed in all seven textbooks. Figure 3 is a word cloud summary with the names of women who were indexed as a function of the number of textbooks in which they appear.

Table 1
Women indexed more than once in textbook

	Buss 2019	Shackelford 2020: App.	Shackelford 2020: Found.	Shackelford 2020: Int.	Welling and Shackelford 2020	Workman and Reader 2021	Workman, Reader and Barkow 2020
Ainsworth, M.			X	X	X	X	
Arístegui, I			X	X			
Barrett, L.				X		X	X
Betzig, L.	X		X	X			X
Brosnan, S.F.		X		X			
Brown, G.R.		X				X	
Burbank, V.	X				X		
Burch, R. L.				X			X
Campbell, A.	X	X	X		X		X
Carey, S.				X		X	
Cashdan, E.	X			X			
Chiao, J.Y.		X		X			
Cosmides, L.	X	X	X	X	X	X	
Dijkstra, P.			X		X		
Draper, P.				X	X	X	
Eagly, A.H.				X		X	
Fine, C.			X	X			
Fisher, M.L.	X	X		X	X		X
Fiske, S.T.		X	X				
Fleischman, D.	X	X					
Goldman-Rakic, P.S.				X	X		
Grabe, M.E.		X			X		
Hatfield, E.			X	X	X	X	
Harris, C.R.			X	X			
Harris, J.R.				X		X	X
Haselton, M.G.				X	X		
Hawkes, K.	X			X	X		
Hawley, P.H.	X			X			

Table 1
Women indexed more than once in textbook (continued)

							<u>_</u>
	Buss 2019	Shackelford 2020: App.	Shackelford 2020: Found.	Shackelford 2020: Int.	Welling and Shackelford 2020	Workman and Reader 2021	Workman, Reader and Barkow 2020
Heerwagen, J.H.	X	X		X			Z
Hill, S.E.	X				X		H
Hopcroft, R.L.	X		X	X			ND TEXTBOOKS
Hrdy, S.B.				X	X		x 🗎
Karmiloff-Smith, A.				X		X	30
Langlois, J.H.	X				X		O _I
Low, B.S.	X		X	X			\mathbf{S}
Mace, R.			X	X			
Mead, M.	X			X		X	x
Mealey, L.	X	X		X		X	
Neel, R.				X	X		
Petrie, M.		X	X		X		
Polderman, T.J.C.			X	X			
Salmon, C.	X	X	X				X
Scelza, B.A.			X		X		
Spelke, E.				X		X	
Still, M.C.		X		X			
Syme, K.	X	X					
Taylor, S.E.	X				X		
Quinlan, M.B.	X				X		
West-Eberhard, M.J.		X		X			
Wilson, M.	X	X	X	X	X	X	X
Yorzinski, J.L.		X		X			
van Anders, S.M.				X	X		
Zuk, M.			X			X	

Figure 3. Word cloud illustration of most prominent women. Size of the name as a function of the number of textbooks in which they were indexed. Note not all entries from Table 1 are shown.

233 Proportion of women as contributors to edited volumes

Five books were edited volumes. There were 257 unique contributors, of which 100 were women. There were 11 authors (4 women) contributing to more than one chapter within a volume. The pooled random effect estimate showed that around 4 in 10 contributors were women, 38.25%, 95%CI [28.41%; 49.16%; Figure 4]. Welling and Shackelford (2020) stood out as having substantially more women contributors than other textbooks, 59.65%, 95% CI [46.68%; 71.40%]. Excluding this volume leads to an estimate

of 1 in 3 contributors being women, 33.00%, 95%CI [26.84%; 39.81%].

Figure 4. Forest plot of proportions of women contributors to edited volumes ('events' are women contributing). The tips of the diamond present the 95% CI for the effect size estimates, the red bar interval represents the prediction interval.

Discussion and conclusion

We examined the proportion of women represented within seven major recent evolutionary psychology textbooks or reference works. Across all volumes, we found that around 1 in 4 author entries in the indexes were female. However, it should be noted that there is considerable heterogeneity, with one textbook in particular standing out in its inclusion of a greater proportion of women in the index. In addition, we found that, for the examined edited volumes, approximately 4 out of 10 contributors were women. Although we should note that here was one volume which contributed strongly to this estimate with approximately 6 out of 10 contributors being female. If we drop this volume, the estimate of female contributors drops to 1 in 3.

Our data do not speak to the potential mechanisms that lead to fewer women being represented in textbooks and whether this constitutes evidence for discrimination against women. Our results could indicate the presence of a citation bias, with outputs of female

authors less cited than those by men (e.g., Chatterjee & Werner, 2021). This could occur 254 upstream of the citation process (e.g., differential retention) or during the citation process, 255 and be either explicit or implicit. However, it could also be argued that there are simply 256 fewer women to cite. For example, Schmitt (2015) suggested that the proportion of women 257 cited in a paper on evolutionary psychology and feminism (Buss & Schmitt, 2011) was 258 sociohistorically appropriate, as this value of 37.2% mirrored the percentage of female 250 authors at the Human Behavior and Evolution Society meeting of 2013 (Meredith, 2013). 260 Similarly, a recent survey among scholars in 'Evolutionary Human Science' reported that 261 38.1% (n = 579) were women (Kruger et al., 2022). Those numbers are similar to our 262 results regarding the proportion of female contributors, although higher than the 263 proportion of women indexed in the textbooks (25%). The underrepresentation of female 264 authors could also reflect a historical (rather than contemporary) gender bias. Historically, evolutionary psychology and related scientific fields (Sociobiology, Ethology, Evolutionary Biology) have been male-dominated fields. More generally, as noted above, women were systematically excluded from higher education and research opportunities, resulting in 268 fewer women contributing to foundational research and theories that are often cited in 269 textbooks. When science as an institution historically has been biased against members of 270 the female sex, with limited opportunities for women to receive an academic training: in 271 the UK, for example, the University of London admitted its first female students ("the 272 London Nine") only in 1868–156 years ago-while Oxford did not award degrees to women 273 until 1920, and Cambridge did not do until the late 1940s (Carter, 2018; Delap & Griffin, 274 2020; University of Oxford, 2024). In part, then, our interest stems from whether these 275 historical limitations on women's opportunities might still play out in some or other way in 276 the current scientific literature. Even today, various paths could lead to bias against 277 women (Greska, 2023). For example, women could be less likely to survive and thrive in 278 the field of evolution and human behaviour (as in biology, e.g. Sheltzer & Smith, 2014), 279 and could be more likely to leave the field. Women could also apply for less funding than 280

men (Hechtman et al., 2018), be less able to travel to international meetings, or produce fewer outputs than men (Addessi, Borgi & Palagi, 2012).

What is the relevance of this study to the field if the data do not allow (causal) 283 inferences about bias? We argue that, even at a descriptive level, the data tell us 284 something about the representation of women, which is valuable in and of itself, given that 285 textbooks shape the perception that a discipline is open to 'people like me' (e.g., Good, 286 Woodzicka & Wingfield, 2010; Wood et al., 2020). As such, any obvious bias might lead 287 women to decide that evolutionary psychology (or research) is not for them. Textbooks are 288 generally encountered in the early stages of a career, and may therefore have a 280 disproportionate and longstanding influence on people's perceptions of their belonging in a 290 discipline. This last point remains an empirical question, and will likely depends on the way scientists are featured in textbooks (e.g., inclusion of pictures or pronouns).

293 Limitations

In addition to the limitations already mentioned, such as the degree to which these 294 books are assigned as readings, there are several others that we need to consider. First, we 295 examined only seven recent textbooks or reference works. Of these, only one volume was 296 co-edited by a woman, and this was the one with higher proportions of women in terms of 297 both contributors and index entries. As we have only this single example, however, this has 298 limited analytic value. Another issue is that the books we selected represent a 290 non-independent sample, given that, one author, Shackelford, is an editor of four of the 300 volumes, Workman and Reader are also editors for two volumes. The books selected are also not a homogeneous set, they cover some texts which are more likely to be used as a textbook for study than others. Another consideration is that two of the books, Buss (2019) and Workman and Reader (2021), have multiple editions and may have undergone limited updating since their inception. The sample we used limits the degree to which our 305 findings can be generalised.

Second, we are reluctant to recommend an 'ideal' number of women to index. Several potential benchmarks are available, though each should be considered with caution. A value of 50% would indicate authorship parity, but may not be reflective of the underlying proportions of active scholars in the field. By the same token, however, it seems unlikely, however, that this value would be as low as 1 in 3 as we found here. Although we have provided some heuristics for comparison, further reflection and discussion among those active in the field will be necessary to both assess and address potential gender biases.

Third, while our procedures are similar to those of other projects of this nature

(Wood et al., 2020), it cannot take into account self-reported gender categories, and coding

is an imperfect process where errors can occur. It is therefore possible that we have

misclassified the gender of some author(s). We have made the data and analysis publicly

available for potential scrutiny and further interrogation.

Finally, our analysis does not cover author ethnicity (e.g., Arif et al., 2021; Berhe et al., 2022) or any characteristics other than gender. Ethnicity and other information may be difficult to recover from indexes. It is possible or even likely that underrepresentation may occur in evolutionary psychology along dimensions other than the binary gender scheme we examined here.

Future directions

To take this work further, any future analysis would benefit from a consideration of
the mechanisms by which a gender imbalance could arise, as well as thinking through how
any such imbalance could be mitigated. In particular, it is important to investigate
whether there is a citation bias, because citation is a proxy of impact, with potential
implications for hiring and promotion (Mott & Cockayne, 2017).

However, even without any bias at the citation level, we believe that it would be beneficial to include the work of more women in evolutionary textbooks, given our point

above regarding female students' perceptions of the discipline. Our data show that there 332 are plenty of female scholars one could include and, indeed, one volume revealed a 333 male: female ratio that was much closer to parity (4 out of 10 entries being women, Welling 334 & Shackelford, 2020). Though this might require some additional reflection, we would 335 argue that it is not difficult to include more women in any review of the literature. There 336 are several examples of women who could be more consistently included in the curriculum 337 (e.g., Eva Jablonka, Hanna Kokko, Anne Campbell, Rosemary Grant, Linda Mealey, to 338 name but a few). Perhaps this requires a broader definition of fields relevant to 339 Evolutionary Psychology. However, we also note that, when it comes to its 'core business', 340 for example, sexual selection, textbooks (e.g., Buss, 2019) continue to cite older (albeit 341 classic) work by Robert Trivers (e.g., Trivers, 1972) or Randy Thornhill (e.g., Thornhill, 342 1980), but ignore more recent and, arguably, more relevant work (given advances in evolutionary biology more generally) by Hanna Kokko (e.g., Kokko & Jennions, 2008; Kokko, Klug & Jennions, 2012).

Individual authors have considerable power for change in this area. Each can assess 346 their own reference lists for bias without the need for institutional change. Mott and 347 Cockayne (2017) argues for a practice called 'conscientious engagement', whereby authors 348 consider who they would like to 'bring along' with them. However, those most likely to take up this practice—which does require time and effort—are those who are already aware 350 of the issue. At the publisher level, it is possible that, for example, citation checks by 351 author gender could move the needle on parity. If journal instructions for authors or 352 reviewers were to highlight a citation check as one of the steps in the writing or review process, would this result in final versions with more balanced reference lists? A potential first step could be the implementation of a check-list, as there is reasonable evidence from 355 other domains that such a practice would work (e.g., patient safety, Thomassen et al., 356 2014). Again, this would require resources and effort to achieve. In a time when for-profit 357 scientific publishers have been criticised for excessive publication costs (e.g., Beverungen, 358

Böhm & Land, 2012; Rodrigues Marcio L. & Morel Carlos M., 2016), reference list checks could be a way to differentiate among publishers who claim they provide added value to 360 the dissemination process. Note that we are not claiming here that we should be including 361 women just for the sake of parity. Including citations just based on gender could lead 362 authors to include less relevant work and more broadly this type of balancing could have 363 adverse consequences (e.g., Yoder, 1991). All that we are advocating here is a greater 364 reflexivity when it comes to whom we cite, and we reiterate gender is but one dimension. 365 We believe a checklist might be helpful first step to mitigate the extremes, in a similar way as we curb, for example, excessive self-citation. 367

368 Conclusion

This descriptive study assessed the proportion of women researchers who contribute 369 to or are listed in the indexes of evolutionary psychology textbooks or reference works. We 370 found that the proportions of women and men remain far from parity. We consider this to 371 be a first awareness-raising step across the field. Our data do not speak to bias or 372 discrimination, and we are not arguing that parity should be the norm. Rather we believe 373 our paper might serve as a talking point for those who consider writing a textbook or 374 reference work on whom to include, at least with regard to one dimension, whether they 375 are a man or a woman. 376

Addressing gender bias in the sciences should lead to higher-quality research, as
currently, biases may prevent contributions from underrepresented scholars from being
included in our knowledge base. Achieving parity is a challenge. Gender bias is entrenched
across societies, not just in institutions of knowledge production.

We do not yet know whether 'real change' in scientific citation practices is possible.

However, this will not be apparent until genuine attempts have been made. We encourage
researchers and publishers to consider their roles in these practices and whether they are

satisfied with the status quo.

385

Acknowledgments

We thank Karolína Kovářová for her assistance with the coding of the textbooks.

References 387 Addessi E, Borgi M, Palagi E. 2012. Is Primatology an Equal-Opportunity 388 Discipline? *PLOS ONE* 7:e30458. DOI: 10.1371/journal.pone.0030458. 380 Agresti A, Coull BA. 1998. Approximate is better than "exact" for interval 390 estimation of binomial proportions. The American Statistician 52:119–126. DOI: 391 10.1080/00031305.1998.10480550.392 Aksnes DW, Rorstad K, Piro F, Sivertsen G. 2011. Are female researchers less cited? 393 A large-scale study of Norwegian scientists. Journal of the American Society for 394 Information Science and Technology 62:628–636. DOI: 10.1002/asi.21486. 395 Andersen JP, Schneider JW, Jagsi R, Nielsen MW. 2019. Meta-Research: Gender 396 variations in citation distributions in medicine are very small and due to 397 self-citation and journal prestige. eLife 8:e45374. DOI: 10.7554/eLife.45374. 398 Arif S, Massey MDB, Klinard N, Charbonneau J, Jabre L, Martins AB, Gaitor D, 399 Kirton R, Albury C, Nanglu K. 2021. Ten simple rules for supporting 400 historically underrepresented students in science. PLOS Computational Biology 401 17:1–16. DOI: 10.1371/journal.pcbi.1009313. 402 Balduzzi S, Rücker G, Schwarzer G. 2019. How to perform a meta-analysis with R: 403 A practical tutorial. Evidence-Based Mental Health 22:153–160. DOI: 404 10.1136/ebmental-2019-300117. 405 Barreto JR, Romitelli I, Santana PC, Assis APA, Pardini R, de Souza Leite M. 406 2024. Is the audience gender-blind? Smaller audience in female talks highlights 407 prestige differences in academia. *Ecoevorxiv*. DOI: 10.32942/X25607. 408 Barrett L, Dunbar RIM, Lycett J. 2002. Human Evolutionary Psychology. 409 Basingstoke, UK: Palgrave. 410 Berhe AA, Barnes RT, Hastings MG, Mattheis A, Schneider B, Williams BM, Marín-Spiotta E. 2022. Scientists from historically excluded groups face a hostile 412

obstacle course. Nature Geoscience 15:2-4. DOI: 10.1038/s41561-021-00868-0.

438

439

440

- Beverungen A, Böhm S, Land C. 2012. The poverty of journal publishing. 414 Organization 19:929–938. DOI: 10.1177/1350508412448858. 415 Biernat M, Carnes M, Filut A, Kaatz A. 2020. Gender, race, and grant reviews: 416 Translating and responding to research feedback. Personality and Social 417 Psychology Bulletin 46:140–154. DOI: 10.1177/0146167219845921. 418 Bird KS. 2011. Do women publish fewer journal articles than men? Sex differences 419 in publication productivity in the social sciences. British Journal of Sociology of 420 Education 32:921–937. DOI: 10.1080/01425692.2011.596387. 421 Boyd R, Silk JB. 2014. How humans evolved. New York, NY: WW Norton & 422 Company. 423 Buss DM. 2019. Evolutionary psychology: The new science of the mind. London, 424 UK: Psychology Press. 425 Buss DM, Schmitt DP. 2011. Evolutionary Psychology and Feminism. Sex Roles 426 64:768–787. DOI: 10.1007/s11199-011-9987-3. Caplar N, Tacchella S, Birrer S. 2017. Quantitative evaluation of gender bias in 428 astronomical publications from citation counts. Nature astronomy 1:0141. DOI: 429 10.1038/s41550-017-0141. 430 Carter P. 2018. The first women at university: Remembering "the London Nine." 431 Times Higher Education (THE). 432 Ceci SJ, Kahn S, Williams WM. 2023. Exploring gender bias in six key domains of 433 academic science: An adversarial collaboration. Psychological Science in the 434 Public Interest 24:15–73. DOI: 10.1177/15291006231163179. 435 Chatterjee P, Werner RM. 2021. Gender disparity in citations in high-impact 436
 - Chaudhary AMD, Naveed S, Safdar B, Saboor S, Zeshan M, Khosa F. 2021. Gender differences in research project grants and R01 grants at the National Institutes

journal articles. JAMA Network Open 4:e2114509-e2114509. DOI:

10.1001/jamanetworkopen.2021.14509.

of Health. Cureus 13. DOI: 10.7759/cureus.14930. 441 Cho AH, Johnson SA, Schuman CE, Adler JM, Gonzalez O, Graves SJ, Huebner 442 JR, Marchant DB, Rifai SW, Skinner I, Bruna EM. 2014. Women are 443 underrepresented on the editorial boards of journals in environmental biology 444 and natural resource management. PeerJ 2:e542. DOI: 10.7717/peerj.542. 445 Chowdhary M, Chowdhary A, Royce TJ, Patel KR, Chhabra AM, Jain S, Knoll 446 MA, Vapiwala N, Pro B, Marwaha G. 2020. Women's representation in 447 leadership positions in academic medical oncology, radiation oncology, and 448 surgical oncology programs. JAMA Network Open 3:e200708–e200708. DOI: 449 10.1001/jamanetworkopen.2020.0708. 450 Damschen EI, Rosenfeld KM, Wyer M, Murphy-Medley D, Wentworth TR, Haddad 451 NM. 2005. Visibility matters: Increasing knowledge of women's contributions to 452 ecology. Frontiers in Ecology and the Environment 3:212–219. DOI: 453 10.1890/1540-9295(2005)003[0212:VMIKOW]2.0.CO;2. Davenport E, Snyder H. 1995. Who cites women? Whom do women cite? An 455 exploration of. Journal of Documentation 51:404–410. DOI: 10.1108/eb026958. 456 Delap L, Griffin B. 2020. Women at Cambridge: Women's struggle for education. 457 Dion ML, Sumner JL, Mitchell SM. 2018. Gendered citation patterns across 458 political science and social science methodology fields. *Political Analysis* 459 26:312–327. DOI: 10.1017/pan.2018.12. 460 Dunbar RIM, Barrett L. 2007. Oxford Handbook of Evolutionary Psychology. 461 Oxford, UK: Oxford University Press. 462 Dworkin JD, Linn KA, Teich EG, Zurn P, Shinohara RT, Bassett DS. 2020. The 463 extent and drivers of gender imbalance in neuroscience reference lists. Nature 464 Neuroscience 23:918–926. DOI: 10.1038/s41593-020-0658-y. 465 Esarey J, Bryant K. 2018. Are Papers Written by Women Authors Cited Less 466 Frequently? *Political Analysis* 26:331–334. DOI: 10.1017/pan.2018.24. 467

Fox CW, Paine CT. 2019. Gender differences in peer review outcomes and 468 manuscript impact at six journals of ecology and evolution. Ecology and 469 Evolution 9:3599–3619. DOI: 10.1002/ece3.4993. 470 Fulvio JM, Akinnola I, Postle BR. 2021. Gender (im)balance in citation practices in 471 cognitive neuroscience. Journal of Cognitive Neuroscience 33:3-7. DOI: 472 10.1162/jocn_a_01643. 473 Ghiasi G, Larivière V, Sugimoto CR. 2015. On the compliance of women engineers 474 with a gendered scientific system. *PloS one* 10:e0145931. DOI: 475 10.1371/journal.pone.0145931. 476 Ginther DK, Kahn S, Schaffer WT. 2016. Gender, race/ethnicity, and National 477 Institutes of Health R01 research awards: Is there evidence of a double bind for 478 women of color? Academic medicine: journal of the Association of American Medical Colleges 91:1098. DOI: 10.1097/ACM.000000000001278. 480 Good JJ, Woodzicka JA, Wingfield LC. 2010. The effects of gender stereotypic and 481 counter-stereotypic textbook images on science performance. The Journal of 482 Social Psychology 150:132–147. DOI: 10.1080/00224540903366552. 483 Greska L. 2023. Women in academia: Why and where does the pipeline leak, and 484 how can we fix it? MIT Science Policy Review 4:102–109. DOI: 485 10.38105/spr.xmvdiojee1. 486 Harris JK, Croston MA, Hutti ET, Eyler AA. 2020. Diversify the syllabi: 487 Underrepresentation of female authors in college course readings. PLOS ONE 488 15:1–14. DOI: 10.1371/journal.pone.0239012. 489 Hechtman LA, Moore NP, Schulkey CE, Miklos AC, Calcagno AM, Aragon R, 490 Greenberg JH. 2018. NIH funding longevity by gender. Proceedings of the 491 National Academy of Sciences 115:7943-7948. DOI: 10.1073/pnas.1800615115. 492 Hengel E. 2019. Gender differences in citations at top economics journals. In: Allied 493

Social Science Associations Annual meeting. Atlanta, GA,.

494

```
Hengel E, Moon E. 2020. Gender and equality at top economics journals.
495
           King MM, Bergstrom CT, Correll SJ, Jacquet J, West JD. 2017. Men set their own
496
              cites high: Gender and self-citation across fields and over time. Socius
497
              3:2378023117738903. DOI: 10.1177/2378023117738903.
498
           Kokko H, Jennions MD. 2008. Parental investment, sexual selection and sex ratios.
499
              Journal of Evolutionary Biology 21:919–948. DOI:
500
              10.1111/j.1420-9101.2008.01540.x.
501
           Kokko H, Klug H, Jennions MD. 2012. Unifying cornerstones of sexual selection:
502
              Operational sex ratio, Bateman gradient and the scope for competitive
503
              investment. Ecology Letters 15:1340–1351. DOI:
504
              10.1111/j.1461-0248.2012.01859.x.
505
           Kruger DJ, Fisher ML, Platek SM, Salmon C. 2022. The 2020 Survey of
              Evolutionary Scholars on the State of Human Evolutionary Science. EvoS
507
              Journal 9:37–63.
508
           Laland KN, Brown G. 2011. Sense and nonsense: Evolutionary perspectives on
509
              human behaviour. Oxford, UK: Oxford University Press.
510
           Liddle JR, Shackelford TK. 2020. The Oxford handbook of evolutionary psychology
511
              and religion. Oxford, UK: Oxford University Press.
512
          Lincoln AE, Pincus S, Koster JB, Leboy PS. 2012. The Matilda Effect in science:
513
              Awards and prizes in the US, 1990s and 2000s. Social Studies of Science
514
              42:307–320. DOI: 10.1177/0306312711435830.
515
           Llorens A, Tzovara A, Bellier L, Bhaya-Grossman I, Bidet-Caulet A, Chang WK,
516
              Cross ZR, Dominguez-Faus R, Flinker A, Fonken Y, Gorenstein MA, Holdgraf C,
517
              Hoy CW, Ivanova MV, Jimenez RT, Jun S, Kam JWY, Kidd C, Marcelle E,
518
              Marciano D, Martin S, Myers NE, Ojala K, Perry A, Pinheiro-Chagas P, Riès
519
              SK, Saez I, Skelin I, Slama K, Staveland B, Bassett DS, Buffalo EA, Fairhall AL,
520
              Kopell NJ, Kray LJ, Lin JJ, Nobre AC, Riley D, Solbakk A-K, Wallis JD, Wang
521
```

X-J, Yuval-Greenberg S, Kastner S, Knight RT, Dronkers NF. 2021. Gender bias 522 in academia: A lifetime problem that needs solutions. Neuron 109:2047–2074. 523 DOI: 10.1016/j.neuron.2021.06.002. 524 Mathews AL, Andersen K. 2001. A gender gap in publishing? Women's 525 representation in edited political science books. PS: Political Science & Politics 526 34:143–147. DOI: 10.1017/S1049096501000221. 527 Mayer T. 1989. Consensus and invisibility: The representation of women in human 528 geography textbooks. The Professional Geographer 41:397–409. DOI: 529 10.1111/j.0033-0124.1989.00397.x.530 Meredith T. 2013. A journal of one's own. Journal of Social, Evolutionary, and 531 Cultural Psychology 7:354. DOI: 10.1037/h0099183. 532 Mihaljević-Brandt H, Santamaría L, Tullney M. 2016. The effect of gender in the 533 publication patterns in mathematics. *PLOS ONE* 11:1–23. DOI: 534 10.1371/journal.pone.0165367. 535 Mott C, Cockayne D. 2017. Citation matters: Mobilizing the politics of citation 536 toward a practice of "conscientious engagement." Gender, Place & Culture 537 24:954–973. DOI: 10.1080/0966369X.2017.1339022. 538 Navarro G. 2001. A guided tour to approximate string matching. ACM computing 539 surveys (CSUR) 33:31–88. DOI: 10.1145/375360.375365. 540 Odic D, Wojcik EH. 2020. The publication gender gap in psychology. American 541 Psychologist 75:92–103. DOI: 10.1037/amp0000480. 542 Phillips J, Hausbeck K. 2000. Just beneath the surface: Rereading geology, 543 rescripting the knowledge-power nexus. Women's Studies Quarterly 28:181–202. 544 R Development Core Team. 2008. R: A language and environment for statistical 545 computing. 546 Ray WJ. 2012. Evolutionary psychology: Neuroscience perspectives concerning 547

human behavior and experience. London, UK: Sage Publications.

Robinson D. 2020. Fuzzyjoin: Join tables together on inexact matching. 549 Rodrigues Marcio L., Morel Carlos M. 2016. The Brazilian Dilemma: Increased 550 Scientific Production and High Publication Costs during a Global Health Crisis 551 and Major Economic Downturn. mBio 7:10.1128/mbio.00907-16. DOI: 552 10.1128/mbio.00907-16. 553 Sá C, Cowley S, Martinez M, Kachynska N, Sabzalieva E. 2020. Gender gaps in 554 research productivity and recognition among elite scientists in the U.S., Canada, 555 and South Africa. *PLOS ONE* 15:1–14. DOI: 10.1371/journal.pone.0240903. 556 Schiffbaenker H, van den Besselaar P, Holzinger F, Mom C, Vinkenburg C. 2022. 557 Gender Bias in Peer Review panels:—"The Elephant in the Room." In: 558 Inequalities and the Paradigm of Excellence in Academia. Routledge, 109–128. 559 Schmitt DP. 2015. On accusations of exceptional male bias in evolutionary psychology: Placing sex differences in citation counts in proper evidentiary 561 contexts. Evolutionary Behavioral Sciences 9:69–72. DOI: 10.1037/ebs0000029. 562 Schroeder J, Dugdale HL, Radersma R, Hinsch M, Buehler DM, Saul J, Porter L, 563 Liker A, De Cauwer I, Johnson PJ, Santure AW, Griffin AS, Bolund E, Ross L, 564 Webb TJ, Feulner PGD, Winney I, Szulkin M, Komdeur J, Versteegh MA, 565 Hemelrijk CK, Svensson EI, Edwards H, Karlsson M, West SA, Barrett ELB, 566 Richardson DS, van den Brink V, Wimpenny JH, Ellwood SA, Rees M, Matson 567 KD, Charmantier A, dos Remedios N, Schneider NA, Teplitsky C, Laurance WF, 568 Butlin RK, Horrocks NPC. 2013. Fewer invited talks by women in evolutionary 569 biology symposia. Journal of Evolutionary Biology 26:2063–2069. DOI: 570 10.1111/jeb.12198. 571 Schwarzer G, Carpenter JR, Rücker G. 2015. Meta-analysis with R. New York, NY: 572 Springer. 573 Shackelford TK. 2020a. The SAGE Handbook of Evolutionary Psychology: 574 Foundations of Evolutionary Psychology. London, UK: Sage. 575

Shackelford TK. 2020b. The SAGE Handbook of Evolutionary Psychology: 576 Integration of Evolutionary Psychology with Other Disciplines. London, UK: 577 Sage. 578 Shackelford TK. 2020c. The SAGE Handbook of Evolutionary Psychology: 579 Applications of Evolutionary Psychology. London, UK: Sage. 580 Shackelford TK, Weekes-Shackelford VA. 2021. Encyclopedia of evolutionary 581 psychological science. Springer. 582 Shannon G, Jansen M, Williams K, Cáceres C, Motta A, Odhiambo A, Eleveld A, 583 Mannell J. 2019. Gender equality in science, medicine, and global health: Where 584 are we at and why does it matter? The Lancet 393:560–569. DOI: 585 10.1016/S0140-6736(18)33135-0.586 Sheltzer JM, Smith JC. 2014. Elite male faculty in the life sciences employ fewer women. Proceedings of the National Academy of Sciences 111:10107–10112. DOI: 588 10.1073/pnas.1403334111. 589 Silbiger NJ, Stubler AD. 2019. Unprofessional peer reviews disproportionately harm 590 underrepresented groups in STEM. PeerJ 7:e8247. DOI: 10.7717/peerj.8247. 591 Simpson DY, Beatty AE, Ballen CJ. 2021. Teaching between the lines: 592 Representation in science textbooks. Trends in Ecology & Evolution 36:4–8. 593 DOI: 10.1016/j.tree.2020.10.010. 594 Squazzoni F, Bravo G, Farjam M, Marusic A, Mehmani B, Willis M, Birukou A, 595 Dondio P, Francisco Grimaldo. 2021. Peer review and gender bias: A study on 596 145 scholarly journals. Science Advances 7:eabd0299. DOI: 597 10.1126/sciadv.abd0299. 598 Teich EG, Kim JZ, Lynn CW, Simon SC, Klishin AA, Szymula KP, Srivastava P, 599 Bassett LC, Zurn P, Dworkin JD, Bassett DS. 2022. Citation inequity and 600 gendered citation practices in contemporary physics. Nature Physics 601 18:1161–1170. DOI: 10.1038/s41567-022-01770-1. 602

629

Thelwall M. 2018. Do females create higher impact research? Scopus citations and 603 Mendeley readers for articles from five countries. Journal of Informetrics 604 12:1031–1041. DOI: 10.1016/j.joi.2018.08.005. 605 Thelwall M, Nevill T. 2019. No evidence of citation bias as a determinant of STEM 606 gender disparities in US biochemistry, genetics and molecular biology research. 607 Scientometrics 121:1793–1801. DOI: 10.1007/s11192-019-03271-0. 608 Thomassen Ø, Storesund A, Søfteland E, Brattebø G. 2014. The effects of safety 609 checklists in medicine: A systematic review. Acta Anaesthesiologica 610 Scandinavica 58:5–18. DOI: 10.1111/aas.12207. 611 Thornhill R. 1980. Rape in Panorpa scorpionflies and a general rape hypothesis. 612 Animal Behaviour 28:52–59. DOI: 10.1016/S0003-3472(80)80007-8. 613 Trivers RL. 1972. Parental investment and sexual selection. In: Campbell B ed. 614 Sexual selection and the descent of man. New York, NY: Aldine de Gruyter, 615 136-179.616 University of Oxford. 2024. Timeline: 100 years of women's history at Oxford 617 University of Oxford. 618 Wang X, Dworkin JD, Zhou D, Stiso J, Falk EB, Bassett DS, Zurn P, Lydon-Staley 619 DM. 2021. Gendered citation practices in the field of communication. Annals of 620 the International Communication Association 45:134–153. DOI: 621 10.1080/23808985.2021.1960180.622 Welling LL, Shackelford TK. 2020. The Oxford handbook of evolutionary psychology 623 and behavioral endocrinology. Oxford, UK: Oxford University Press. 624 West JD, Jacquet J, King MM, Correll SJ, Bergstrom CT. 2013. The role of gender 625 in scholarly authorship. PLOS ONE 8:1-6. DOI: 10.1371/journal.pone.0066212. 626 Wheatley RM, Ogunlana L. 2023. Gender shapes the formation of review paper 627

collaborations in microbiology. Proceedings of the Royal Society B: Biological

Sciences 290:20230965. DOI: 10.1098/rspb.2023.0965.

630	Wood S, Henning JA, Chen L, McKibben T, Smith ML, Weber M, Zemenick A,
631	Ballen CJ. 2020. A scientist like me: Demographic analysis of biology textbooks
632	reveals both progress and long-term lags. $Proceedings\ of\ the\ Royal\ Society\ B$
633	287:20200877. DOI: 10.1098/rspb.2020.0877.
634	Workman L, Reader W. 2021. Evolutionary psychology: An introduction.
635	Cambridge, UK: Cambridge University Press.
636	Workman L, Reader W, Barkow JH. 2020. The Cambridge handbook of evolutionary
637	perspectives on human behavior. Cambridge, UK: Cambridge University Press.
638	Wu C. 2024. The gender citation gap: Approaches, explanations, and implications.
639	Sociology Compass 18:e13189. DOI: 10.1111/soc4.13189.
640	Yoder JD. 1991. Rethinking Tokenism: Looking Beyond Numbers. Gender &
641	Society 5:178–192. DOI: 10.1177/089124391005002003.