

Inspire...Educate...Transform.

Clustering and IBL

Jeevan Sreerama Sr. Data Scientist, INSOFE

August 8th, 2016

DISTANCE METRICS

• If d_1 is near d_2 , then d_2 is near d_1 .

• If d_1 near d_2 , and d_2 near d_3 , then d_1 is not far from d_3 .

No document is closer to d than d itself.

Distance for numeric attributes

- We denote distance with: dist(x_i, x_j)
 - Where \mathbf{x}_i and \mathbf{x}_i are data points (vectors)
- Minkowski distance

$$dist(\mathbf{x}_{i},\mathbf{x}_{j}) = ((x_{i1} - x_{j1})^{h} + (x_{i2} - x_{j2})^{h} + \dots + (x_{ir} - x_{jr})^{h})^{\overline{h}}$$

- Where h is positive integer.
- h = 2 is Euclidean distance
- h = 1 is Manhattan distance

When to choose what?

- When all attributes have similar scale: (1,2), (2,1)
 - Manhattan = Abs(1-2)+Abs(2-1) = 2
 - Euclidean = $\sqrt{2}$

Choosing the distance metric

- When attributes have different ranges (10, 100), (50, 500)
 - Manhattan = 440
 - Euclidean = 401.99
- Manhattan is more stable than Euclidean
 - Scaling is better

Squared Euclidean and Chebyshev distance

 Squared Euclidean distance: Place greater weight on data points that are further apart

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}$$

 Chebyshev distance: Two data points are "different" if they are different on any one of the attributes.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$$

Security alerts

More metrics

http://www.insofe.edu.in

- Weighted squares
 - ➤ A particular attribute may be a lot more important than other attributes
- Text: Cosine similarity

Dot product
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|_{\bullet}} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

Doc	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	loss
Doc1	5	0	3	0	2	0	0	2	0
Doc2	3	0	2	0	1	1	0	1	0
Doc3	0	7	0	2	1	0	0	3	0
Doc4	0	1	0	0	1	2	2	0	3

Distance functions for Binary & Nominal attributes

 We use a confusion matrix to introduce the distance functions/measures.

Confusion matrix

$$Hamming \ distance = \frac{\#of \ dissimilar \ attributes}{\#of \ dissimilar + \#of \ similar} = \frac{b+c}{b+c+a+d}$$

Confusion matrix

	x ₁	X ₂	X ₃	X ₄	X ₅
R ₁	1	0	0	1	1
R_2	0	0	0	1	0

What is the Manhattan Distance for R₁-R₂?

2

What is the distance normalized for # of attributes?

2/5

		R ₂		
		1	0	
D	1	1 (a)	2 (b)	
R_1	0	0 (c)	2 (d)	

$$Distance = \frac{b+c}{a+b+c+d} = \frac{2}{5}$$

Symmetric binary attributes

 A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same

weights, e.g., male and female of the attribute Gender

Asymmetric binary attributes

- Asymmetric: if one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state,
 which is typically the rare or infrequent state.
 - Jaccard coefficient is a popular measure

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{b+c}{a+b+c}$$
 Data point i

Data point j1 0

1 a b a+b0 c d c+d a+c b+d a+b+c+d

We can have some variations, adding weights

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y (Yes) and P (Positive) be set to 1, and the value N
 (Negative) be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

Value difference measure (VDM):d_{ij}

All classes

$$\sum_{h=1}$$

$$|P(h|val_i) - P(h|val_j)$$

			1)	Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Distance between F1 and F2

$$= |P(0|F1) - P(0|F2)| + |P(1|F1) - P(1|F2)|$$

$$= |0.5 - 0| + |0.5 - 1|$$

= 1

Ordinal variables

Same as numeric

Look up is better than computation

Look up matrix for ordinal with 3 states

	1	2	3
1	0	1	4
2	1	0	1
L 3	4	1	$0 \rfloor$

Clustering

Unsupervised learning

Supervised: Data and target

Unsupervised: Just data

Clustering

- One of the unsupervised learning techniques
- Finding similarity groups in data, called clusters, i.e.,
 - Data instances that are similar to (near) each other are in the same cluster
 - Data instances that are very different (far away) from each other fall in different clusters.

A few clustering applications

- In marketing, segment customers according to their similarities
 - To do targeted marketing
 - It is not uncommon to have over 100,000 segments in insurance clustering

Google search

- Given a collection of text documents, organize them according to their content similarities
 - e.g., Google news

Algorithms

- <u>Hierarchical approach</u>: Create a hierarchical decomposition of the set of data (or objects) using some criterion (Wald)
- Partitioning approach: Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors (K-means, Spectral clustering)
- <u>Model-based methods</u>: A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other (EM)

HIERARCHICAL (AGGLOMERATIVE) CLUSTERING

Agglomerative clustering (Hierarchical)

- Assign each item to its own cluster, so that if you have N items, you now have N clusters, each containing just one item.
- Merge most similar clusters into a single cluster, so that now you have one less cluster.
- Compute distances (similarities) between the new cluster and each of the old clusters.
- Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

Example of agglomerative clustering

	BOS	NY	DC	МІА	СНІ	SEA	SF	LA	DEN
BOS	0	206	429	1504	963	2976	3095	2979	1949
NY	206	0	233	1308	802	2815	2934	2786	1771
DC	429	233	0	1075	671	2684	2799	2631	1616
MIA	1504	1308	1075	0	1329	3273	3053	2687	2037
СНІ	963	802	671	1329	0	2013	2142	2054	996
SEA	2976	2815	2684	3273	2013	0	808	1131	1307
SF	3095	2934	2799	3053	2142	808	0	379	1235
LA	2979	2786	2631	2687	2054	1131	379	0	1059
DEN	1949	1771	1616	2037	996	1307	1235	1059	0

- No assignment of centroid upfront.
- Each point is considered a cluster.
- Find the closest clusters and merge them.

	BOS/NY	DC	MIA	СНІ	SEA	SF	LA	DEN
BOS/NY	0	223	1308	802	2815	2934	2786	1771
DC	223	0	1075	671	2684	2799	2631	1616
МІА	1308	1075	0	1329	3273	3053	2687	2037
СНІ	802	671	1329	0	2013	2142	2054	996
SEA	2815	2684	3273	2013	0	808	1131	1307
SF	2934	2799	3053	2142	808	0	379	1235
LA	2786	2631	2687	2054	1131	379	0	1059
DEN	1771	1616	2037	996	1307	1235	1059	0

	BOS/NY/DC	МІА	СНІ	SEA	SF	LA	DEN
BOS/NY/DC	0	1075	671	2684	2799	2631	1616
MIA	1075	0	1329	3273	3053	2687	2037
сні	671	1329	0	2013	2142	2054	996
SEA	2684	3273	2013	0	808	1131	1307
SF	2799	3053	2142	808	0	379	1235
LA	2631	2687	2054	1131	379	0	1059
DEN	1616	2037	996	1307	1235	1059	0

	BOS/	MIA	СНІ	SEA	SF/LA	DEN
	NY/DC					
BOS/NY/DC	0	1075	671	2684	2631	1616
МІА	1075	0	1329	3273	2687	2037
СНІ	671	1329	0	2013	2054	996
SEA	2684	3273	2013	0	808	1307
SF/LA	2631	2687	2054	808	0	1059
DEN	1616	2037	996	1307	1059	0

	BOS/NY/DC/	МІА	SEA	SF/LA	DEN
	сні				
BOS/NY/DC/CHI	0	1075	2013	2054	996
МІА	1075	0	3273	2687	2037
SEA	2013	3273	0	808	1307
SF/LA	2054	2687	808	0	1059
DEN	996	2037	1307	1059	0

	BOS/NY/DC/CHI	МІА	SF/LA/SEA	DEN
BOS/NY/DC/CHI	0	1075	2013	996
MIA	1075	0	2687	2037
SF/LA/SEA	2054	2687	0	1059
DEN	996	2037	1059	0

	BOS/NY /DC/CHI/DEN	MIA	SF/LA/SEA
BOS/NY/DC/CHI/DEN	0	1075	1059
МІА	1075	0	2687
SF/LA/SEA	1059	2687	0

	BOS/NY /DC/CHI /DEN/SF /LA/SEA	MIA
BOS/NY/DC/CHI/DEN/SF/LA/SEA	0	1075
MIA	1075	0

Hierarchical Clustering

Decomposes data objects into a several levels of nested partitioning (tree of clusters).

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster.

Partitioning algorithms

K-MEANS AND K-MEDOIDS

K-means clustering

- K-means is a partitional clustering algorithm as it partitions the given data into k clusters.
 - Each cluster has a cluster **center**, called **centroid**.
 - k is specified by the user

K-means algorithm

- Given *k*, the *k-means* algorithm works as follows:
 - Randomly choose k data points (seeds) to be the initial centroids, cluster centers
 - Assign each data point to the closest centroid
 - Re-compute the centroids using the current cluster memberships.
 - 4. If a convergence criterion is not met, or **if some clusters** don't get any points go to 2.

Optimizing

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Stopping/convergence criterion

- No (or minimum) re-assignments of data points to different clusters,
- 2. No (or minimum) change of centroids, or
- 3. Minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
(1)

- C_i is the *j*th cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j

Local optima

What Is the Problem with K-Means?

The k-means algorithm is sensitive to outliers!

 K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

What Is the Problem with Medoids?

- More robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Works efficiently for small data sets but does not scale well for large data sets.
 - $O(k(n-k)^2)$ for each iteration

where n is # of data,k is # of clusters

HOW DO WE EMPLOY DISTANCE IN A CLUSTER?

R CODE DEMO

K-means versus Hierarchical

- single partitioning
- Flat clustering needs the number of clusters to be specified
- Flat clustering is usually more efficient run-time wise

- Flat clustering produces a Hierarchical Clustering can give different partitionings depending on the level-of-resolution we are looking at
 - Hierarchical clustering doesn't need the number of clusters to be specified
 - Hierarchical clustering can be slow (has to make several merge/Split decisions)

ENGINEERING

Stability Check of the Clusters

 To check the stability of the clusters take a random sample of 95% of records. Compute the clusters. If the clusters formed are very similar to the original, then the clusters are fine.

Linearly clustered data

Linearly separable but merged

Linearly separable

 Run 50-500 simulations for small k (2-10). For large k (100 or so), we can do 1-5 simulations

Pick the one that gives the best S

Clustering Process Summary

- Choose an appropriate distance metric and calculate
- Decide k either based on the elbow or business user's intuition when no elbow found
- Kernel (higher dimensions), if required
- Cluster (k-means, etc.)
- Check stability of clusters using 90% or 95% data
- Define a cluster with properties (mean, median, etc.)

Instance Based Learning

Lazy Learning

- Eager Learning
 - Explicit description of target function on the whole training set

- Instance-based / Lazy Learning
 - Learning = Storing all training instances
 - Classification = Assigning target function to a new instance

KNN

Process is simple

- Pick a number of neighbors you want to use for classification or regression (K)
- Choose a method to measure distances (same consideration as clustering)
- Keep a data set with records

Process is simple

 For every new point, identify the number of nearest neighbors you picked using the method you chose

 Let them vote if it is a classification or take a mean/median for regression!

K-NN is

Supervised

Non parametric

Lazy

Local heuristic

kNN Example: Digit Recognition

0123456789

- Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

	Test Error Rate (%)
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskey	wed 2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

K-NN

Comes with a theoretical guarantee

 It is a Gibbs classifier. The accuracy will be bounded by 2* Bayes optimal classifier

Advantages

If lazy

- Simple
- You can draw a very complex decision surface
 - Voronoi diagrams

Decision Regions

A Voronoi diagram

- Each cell contains one sample, and every location within the cell is closer to that sample than to any other sample.
- Every query point will be assigned the classification of the sample within that cell. The decision boundary separates the class regions based on the 1-NN decision rule.
- Knowledge of this boundary is sufficient to classify new points.

Issues with KNN and instance based techniques

- Curse of dimensionality
- Requires more memory and more time

Attributes
Records
Search process

ENGINEERING K-NN

Attributes

Scaling the attributes is important

Attributes with larger range can dominate

 Categorical variables and Ordinal variables need to be converted to numeric

Curse of dimensionality

- K-NN is heavily impacted as all points are at the surface and hence similar
- Reduce the dimensions
 - Correlation
 - Info gain (filter approach: We lose some that are important)
 - Wrapper methods
 - Forward selection, Backward elimination
 - Weighting attributes

Records: Outliers and overfitting

Remove outliers

Records: Handling missing values

K-NN is impacted heavily by missing values

Imputation is one option but might be self defeating

Speeding up search

Delaunay triangulation

Original data

Condensed data

Minimum Consistent Set

Cran library: Class

Speeding up

Clustering

COLLABORATIVE FILTERING

Collaborative filtering

How do I recommend?

- Association rules
- Similarity based (collaborative filtering)
- Model based

84

Collaborative filtering: primitive

Primitive version:

$$\hat{R}_{ik} = \alpha \sum_{X_i \in \mathbf{N}_i} W_{ij} R_{jk}$$

$$\alpha = (\sum |W_{ij}|)^{-1}$$

Similarity (Pearson coefficient):

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_{k} (R_{ik} - \overline{R}_i)^2 (R_{jk} - \overline{R}_j)^2}}$$

Collaborative filtering: More refined

$$\hat{R}_{ik} = \overline{R}_i + \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j)$$

Collaborative filtering

	Matrix	Star Wars	Dark knight	Rocky	Sita Aur Gita	Star Trek	Cliffhanger	A.I.	MI	X-Men
Jim	1	3	1	5	2	1			1	
Sean	2		3	2		4		5		3
John		3		4		5			3	4
Sidd	4				3		4		2	
Penny	5		2		2		5		1	
Pete		5			?		4			4

Collaborative filtering

	Matrix	Star Wars	Dark knight	Rocky	Sita Aur Gita	Star Trek	Cliffhanger	A.I.	МІ	X-Men
Jim	-0.65	0.65	-0.65	1.96	0	-0.65			-0.7	
Sean	-1		-0.14	-1		0.71		1.57		-0.14
John		-1		0.24		1.434			-1	0.24
Sidd	0.783				-0.26		0.78		-1.3	
Penny	1.069		-0.53		-0.53		1.07		-1.1	
Pete		1.15			?		-0.6			-0.58

Project

- Study the papers
 - http://cran.rproject.org/web/packages/recommenderlab/vignette s/recommenderlab.pdf
 - http://blog.yhathq.com/posts/recommender-systemin-r.html
 - http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

International School of Engineering

Plot 63/A, Floors 1&2, Road # 13, Film Nagar, Jubilee Hills, Hyderabad - 500 033

For Individuals: +91-9502334561/63 or 040-65743991

For Corporates: +91-9618483483

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.