```
In [1]:
```

```
import pandas as pd
df=pd.read csv("Churn Modelling.csv") # import dataset
print(df)
     RowNumber CustomerId
                             Surname CreditScore Geography Gender Age
0
            1
                  15634602 Hargrave 619 France Female
                                                                     42
1
             2
                  15647311
                             Hill
                                              608
                                                     Spain Female
                                                                      41
2
             3
                                              502
                 15619304
                                 Onio
                                                     France Female
                                                                      42
3
                 15701354
                                              699 France Female
             4
                                Boni
             5
                                              850
4
                 15737888 Mitchell
                                                     Spain Female 43
                      . . .
                                 . . .
                                              . . .
                                                       . . .
                                                              . . . . . . . .
           . . .
          9996
                  15606229 Obijiaku
                                              771
9995
                                                    France
                                                               Male
9996
          9997
                 15569892 Johnstone
                                              516 France
                                                             Male
9997
          9998
                 15584532
                                 T. i 11
                                              709
                                                    France Female
9998
          9999
                  15682355 Sabbatini
                                              772
                                                             Male
                                                                     42
                                                    Germany
9999
         10000
                  15628319
                                              792
                            Walker
                                                    France Female
                                                                      28
               Balance NumOfProducts HasCrCard IsActiveMember
     Tenure
0
         2
                  0.00
                                   1
                                              1
                                                              1
1
             83807.86
                                               0
2
             159660.80
                                    3
                                               1
                                                              0
3
                                    2
          1
                  0.00
                                               0
                                                              0
          2
4
            125510.82
                                    1
                                               1
                                                              1
. . .
        . . .
                  . . .
                                  . . .
                                             . . .
                                   2
9995
         5
                  0.00
                                              1
                                                              0
         10
                                   1
                                               1
                                                              1
9996
             57369.61
         7
                                              0
9997
                 0.00
                                   1
                                                              1
                                   2
9998
         3
             75075.31
                                              1
                                                              0
9999
          4 130142.79
                                   1
                                              1
                                                              0
     EstimatedSalary Exited
0
           101348.88
           112542.58
1
2
           113931.57
                          1
3
                          0
            93826.63
                          0
4
            79084.10
                 . . .
           96270.64
9995
                          0
9996
           101699.77
                           0
9997
            42085.58
                           1
9998
            92888.52
                           1
9999
            38190.78
[10000 rows x 14 columns]
In [30]:
#@title 1. Univarient Analysis
In [32]:
import matplotlib.pyplot as plt
plt.figure(figsize=(5,5))
plt.pie(df['Geography'].value_counts(), startangle=90, autopct='%.3f', labels=['france', 'sp
ain','germany'])
Out[32]:
([<matplotlib.patches.Wedge at 0x7faff9505490>,
  <matplotlib.patches.Wedge at 0x7faff9505bd0>,
  <matplotlib.patches.Wedge at 0x7faff950f490>],
 [Text(-1.0999893606763749, -0.004838015996287074, 'france'),
 Text(0.786805947043686, -0.7687238787085312, 'spain'),
 Text(0.7721769705773018, 0.7834173384027577, 'germany')],
 [Text(-0.599994196732568, -0.002638917816156585, '50.140'),
 Text(0.4291668802056469, -0.419303933841017, '25.090'),
```

Text(0.42118743849671003, 0.427318548219686, '24.770')])

In []:

#@title 2. Bi - Variate Analysis

In [37]:

```
dfs1 = df.head(20)
plt.scatter(dfs1.CreditScore, dfs1.Balance)
plt.title('Scatterplot-Banking')
plt.xlabel("CreditScore")
plt.ylabel("Balance")
```

Out[37]:

Text(0, 0.5, 'Balance')

In [10]:

```
import numpy as np
import seaborn as sns
```

In [28]:

```
#@title 3. Multi - Variate Analysis
```

In [34]:

```
df=sns.catplot(x="Geography", y="EstimatedSalary", hue="Gender", kind="swarm", data=df)
print(df)
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 80.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

```
warnings.warn(msg, UserWarning)
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 62.1% of the points cannot be placed; you may want to decrease the size of the markers or use stri

pplot.
 warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 62.5% of the points cannot be placed; you may want to decrease the size of the markers or use stri pplot.
 warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid object at 0x7faff96fb610>

In []:

#@title 4. Perform descriptive statistics on the dataset.

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtyp	es: float64(2), i:	nt64(9), object((3)
memo	ry usage: 1.1+ MB		

In [4]:

df.describe()

Out[4]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard Is
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550

std	R8881686568	7. CQ366Aner04	Cr 20185 3398	10.48 7896	2. \$9AU7 6	6239 73405468	NumOfProdUcts	Has C4C59d Is
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000
4						1000000		

In [9]:

#@title 5. Handle the Missing values.

In [7]:

```
values={"RowNumber":0, "CustomerId":0, "CreditScore":0, "Age":0, "Tenure":0, "Balance":0
, "NumOfProducts":0, "HasCrCard":0, "IsActiveMember":0, "EstimatedSalary":0, "Exited":0}
df.fillna(value=values)
```

Out[7]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasC
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	
•••											
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	

10000 rows × 14 columns

•

In []:

#@title 6. Find the outliers and replace the outliers

In [17]:

```
df= pd.read_csv("Churn_Modelling.csv")
sns.boxplot(df.CreditScore)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f518dc0c810>


```
400 500 600 700 800
CreditScore
```

In [18]:

```
Q1= df.CreditScore.quantile(0.25)
Q3=df.CreditScore.quantile(0.75)
IQR=Q3-Q1
upper_limit =Q3 + 1.5*IQR
lower_limit =Q1 - 1.5*IQR
df['CreditScore'] = np.where(df['CreditScore']>upper_limit,30,df['CreditScore'])
sns.boxplot(df.CreditScore)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f518db93f10>

In []:

#@title 7. Check for Categorical columns and perform encoding.

In [16]:

df.head(5)

Out[16]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	(
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	,
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	1
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	
4											Þ

In [22]:

#label encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.Gender= le.fit_transform(df.Gender)
df.head(20)
```

Out[22]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	1	15634602	Hargrave	619	France	0	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	0	41	1	83807.86	1	
2	3	15619304	Onio	502	France	0	42	8	159660.80	3	
3	4	15701354	Boni	699	France	0	39	1	0.00	2	
4	5	15737888	Mitchell	850	Spain	0	43	2	125510.82	1	
5	6	15574012	Chu	645	Spain	1	44	8	113755.78	2	
6	7	15592531	Bartlett	822	France	1	50	7	0.00	2	
7	8	15656148	Obinna	376	Germany	0	29	4	115046.74	4	
8	9	15792365	He	501	France	1	44	4	142051.07	2	
9	10	15592389	Н?	684	France	1	27	2	134603.88	1	
10	11	15767821	Bearce	528	France	1	31	6	102016.72	2	
11	12	15737173	Andrews	497	Spain	1	24	3	0.00	2	
12	13	15632264	Kay	476	France	0	34	10	0.00	2	
13	14	15691483	Chin	549	France	0	25	5	0.00	2	
14	15	15600882	Scott	635	Spain	0	35	7	0.00	2	
15	16	15643966	Goforth	616	Germany	1	45	3	143129.41	2	
16	17	15737452	Romeo	653	Germany	1	58	1	132602.88	1	
17	18	15788218	Henderson	549	Spain	0	24	9	0.00	2	
18	19	15661507	Muldrow	587	Spain	1	45	6	0.00	1	
19	20	15568982	Нао	726	France	0	24	6	0.00	2	
4											·

In [24]:

```
#one hot encoding
df_main=pd.get_dummies(df,columns=['Geography'])
df_main.head()
```

Out[24]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM ₀
0	1	15634602	Hargrave	619	0	42	2	0.00	1	1	
1	2	15647311	Hill	608	0	41	1	83807.86	1	0	
2	3	15619304	Onio	502	0	42	8	159660.80	3	1	
3	4	15701354	Boni	699	0	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	0	43	2	125510.82	1	1	
4											Þ

In []:

#@title 8. Split the data into dependent and independent variables.

In [25]:

```
#Splitting the Dataset into the Independent Feature Matrix
df=pd.read_csv("Churn_Modelling.csv")
```

```
X = df.iloc[:, :-1].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
 . . .
 [9998 15584532 'Liu' ... 0 1 42085.58]
 [9999 15682355 'Sabbatini' ... 1 0 92888.52]
 [10000 15628319 'Walker' ... 1 0 38190.78]]
In [26]:
#Extracting the Dataset to Get the Dependent Vector
Y = df.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
In [ ]:
#@title 9. Scale the independent variables
In [27]:
w = df.head()
q = w[['Age', 'Balance', 'EstimatedSalary']] #spliting the dataset into measureable values
Out[27]:
        Balance EstimatedSalary
  Age
0
    42
           0.00
                    101348.88
                    112542.58
1
    41
        83807.86
2
    42 159660.80
                    113931.57
                     93826.63
           0.00
3
    39
    43 125510.82
                     79084.10
In [28]:
from sklearn.preprocessing import scale # library for scallling
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
x scaled = mm.fit transform(q)
x scaled
Out[28]:
                               , 0.63892099],
array([[0.75
                  , 0.
                  , 0.52491194, 0.96014087],
       [0.5
       [0.75
                   , 1. , 1.
                                             ],
       [0.
                   , 0.
                                 , 0.42305883],
                   , 0.78610918, 0.
       [1.
                                             ]])
In [30]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x ss = sc.fit transform(q)
x_s
Out[30]:
array([[ 0.44232587, -1.13763618, 0.09337626],
       [-0.29488391, 0.15434425, 0.96285595],
        [0.44232587, 1.32369179, 1.07074687],
        [-1.76930347, -1.13763618, -0.49092058],
        [ 1.17953565, 0.79723632, -1.6360585 ]])
```

In []:

3 -1.769303 -1.137636

4 1.179536 0.797236

```
#@title 10. Split the data into training and testing
```

-0.490921

-1.636059

```
In [33]:
```

```
x= df[['Age','Balance','EstimatedSalary']]
x
```

Out[33]:

	Age	Balance	EstimatedSalary
0	42	0.00	101348.88
1	41	83807.86	112542.58
2	42	159660.80	113931.57
3	39	0.00	93826.63
4	43	125510.82	79084.10
9995	39	0.00	96270.64
9996	35	57369.61	101699.77
9997	36	0.00	42085.58
9998	42	75075.31	92888.52
9999	28	130142.79	38190.78

10000 rows × 3 columns

In [34]:

```
y = df['Balance']
y
```

Out[34]:

0	0.00
1	83807.86
2	159660.80
3	0.00
4	125510.82
	• • •
9995	0.00
9995 9996	0.00 57369.61
	0.00
9996	57369.61

```
100116.70
,,,,
Name: Balance, Length: 10000, dtype: float64
In [35]:
#scaling
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x \text{ scaled1} = \text{sc.fit transform}(x)
x scaled1
Out[35]:
array([[ 0.29351742, -1.22584767, 0.02188649],
       [ 0.19816383, 0.11735002, 0.21653375], [ 0.29351742, 1.33305335, 0.2406869 ],
       . . . ,
       [-0.27860412, -1.22584767, -1.00864308],
       [0.29351742, -0.02260751, -0.12523071],
       [-1.04143285, 0.85996499, -1.07636976]])
In [36]:
#train and test data
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x scaled1, y, test size = 0.3, rando
m state = 0)
In [37]:
x train
Out[37]:
array([[-0.56466489, 1.11721307, -0.77021814],
       [0.00745665, -1.22584767, -1.39576675],
       [ 3.53553951, 1.35419118, -1.49965629],
       . . . ,
       [-0.37395771, 1.35890908, 1.41441489],
       [-0.08789694, -1.22584767, 0.84614739], [ 0.86563897, 0.50630343, 0.32630495]])
In [38]:
x train.shape
Out[38]:
(7000, 3)
In [39]:
x test
Out[39]:
array([[-0.37395771, 0.87532296, 1.61304597],
       [0.10281024, 0.42442221, 0.49753166],
       [0.29351742, 0.30292727, -0.4235611],
       [ 0.10281024, 1.46672809, 1.17045451],
                       1.25761599, -0.50846777],
       [ 2.86806437,
       [0.96099256, 0.19777742, -1.15342685]])
In [40]:
x test.shape
Out[40]:
(3000, 3)
In [41]:
```

```
y_train
Out[41]:
7681
        146193.60
9031
             0.00
3691
        160979.68
             0.00
202
5625
        143262.04
9225
      120074.97
4859
       114440.24
3264
        161274.05
9845
             0.00
2732
      108076.33
Name: Balance, Length: 7000, dtype: float64
In [42]:
y_test
Out[42]:
9394
        131101.04
898
       102967.41
2398
        95386.82
       112079.58
5906
2343
        163034.82
4004
           0.00
7375
        80926.02
9307
        168001.34
8394
        154953.94
5233
        88826.07
Name: Balance, Length: 3000, dtype: float64
In [ ]:
```