un automa a stati finiti ha un insieme di stati e un controllo che si muove da stato a stato in risposta a input esterni. Si ha una distinzione:

- automi deterministici: dove l'automa non può essere in più di uno stato per volta
- automi non deterministici: dove l'automa può trovarsi in più stati contemporaneamente

0.0.1 Automi deterministici

Un automa a stati finiti deterministico (*DFA*), un automa che dopo aver letto una qualunque sequenza di input si trova in un singolo stato. Il termine deterministico concerne il fatto che per ogni input esiste un solo stato verso il quale l'automa passa dal suo stato corrente. Un automa a stati finiti deterministico consiste nelle seguenti parti:

- un insieme finito di stati, spesso indicato con Q
- un insieme finito di simboli di input, spesso indicato con Σ
- una funzione di transizione, che prende come argomento uno stato e un simbolo di input e restituisce uno stato. La funzione di transizione sarà indicata comunemente con δ . Nella rappresentazione grafica informale di automi δ è rappresentata dagli archi tra gli stati e dalle etichette sugli archi. Se q è uno stato e a è un simbolo di input, $\delta(q,a)$ è lo stato p tale che esiste un arco etichettato con a da q a p^2
- uno stato iniziale, uno degli stati in Q
- un insieme di stati finali, o accettanti , F. L'insieme F è un sottoinsieme di Q

Nel complesso un DFA è rappresentato in maniera concisa con l'enumerazione dei suoi elementi, quindi con la quintupla:

$$A = (Q, \Sigma, \delta, q_0, F)$$

con A nome del DFA, Q insiem degli stati, Δ rappresentante i simboli di input, δ la sua funzione di transizione, q_0 il suo stato iniziale e F l'insieme degli stati accettanti.

Vediamo come decidere se accettare o meno una stringa (sequenza di caratteri) in input mediante un DFA.

Ho una sequenza in input $a_1...a_n$. Parto dallo stato iniziale q_0 , consultando

la funzione di transizione δ , per esempio $\delta(q_0, a_1) = q_1$ e trovo lo stato in cui il DFA entra dopo aver letto a_1 . Poi passo a $\delta(q_1, a_2) = q_2$ e così via, $\delta(q_{i-1}, a_i) = q_i$ fino a ottenere q_n . Se q_n è elemento di F allora $a_1...a_n$ viene accettato, altrimenti viene rifiutato.

Esempio 1. specifico DFA che accetta tutte le strighe binarie in cui compare la sequenza 01:

 $L = \{w|w \ \ \dot{e} \ \ della \ forma \ x01y, \ con \ x \ e \ y \ pari \ a \ 0 \ o \ 1\} = \{01, 11010, 100011, ...\}$ o anche:

$$L = \{x01y | x, y \in \{0, 1\}^*\}$$

abbiamo quindi:

$$\Sigma = \{0, 1\}$$

ragioniamo sul fatto che A:

- 1. se ha "già visto" 01, accetterà qualsiasi input
- 2. pur non avendo ancora visto 01, l'input più recente è stato 0, cosicché se ora vede un 1 avrà visto 01
- 3. non ha ancora visto 01, ma l'input più recente è nullo (siamo all'inizio), in tal caso A non accetta finché non vede uno 0 e subito dopo un 1

la terza condizione rappresenta lo stato iniziale. All'inizio bisogna vedere uno 0 e poi un 1. Ma se nello stato q_0 si vede per primo un 1 allora non abbiamo fatto alcun passo verso 01, e dunque dobbiamo permanere nello stato q_0 , $\delta(q_0,1)=q_0$. D'altra parte se nello stato iniziale vedo 0 siamo nella seconda condizione, uso quindi q_2 per questa condizione, si avrà quindi $\delta(q_0,0)=q_2$. Vedo ora le transizoni di q_2 , se vedo 0 ho che 0 è l'ultimo simbolo incontrato quindi uso nuovamente q_2 , $\delta(q_2,0)=q_2$, in attesa di un 1. Se arriva 1 passo allo stato accertante q_1 corrispondente alla prima condizione, $\delta(q_2,1)=q_1$. Ora abbiamo incontrato 01 quindi può succedere qualsiasi cosa e dopo qualsiasi cosa accada potremo nuovamente aspettarci qualsiasi cosa, ovvero $\delta(q_1,0)=\delta(q_1,1)=q_1$. Si deduce quindi che:

$$Q = \{q_0, q_1, q_2\} \ e \ F = \{q_1\}$$

quindi:

$$A = \{\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\}\}\$$

con in totale le sequenti transizioni:

$$\delta(q_0, 1) = q_0$$

$$\delta(q_0, 0) = q_2$$

$$\delta(q_2, 0) = q_2$$

$$\delta(q_2, 1) = q_1$$

$$\delta(q_1, 0) = q_1$$

$$\delta(q_1, 1) = q_1$$

posso rappresentarle in maniera tabulare, con lo stato inizale indicato da \rightarrow e quelli accettanti con *:

δ	0	1
$\rightarrow q_0$	q_1	q_0
$*q_1$	q_1	q_1
$\overline{q_2}$	q_2	q_1

o col diagramma di transizione:

Esempio 2. Trovo automa per:

 $L = \{w \in \{a, b\}^* | w \text{ che contiene un numero pari di b}\}$

ovvero se da q_0 vado a q_1 sono obbligato ab generare due b, dato che il nodo accettnate è q_0 . In entrambi i nodi posso generare quante a voglio.

Esempio 3. Trovo automa per:

 $L = \{w \in \{a, b\}^* | w \text{ che contiene un numero dispari di } b\}$

ovvero se da q_0 vado a q_1 sono obbligato ab generare una sola b, dato che il nodo accettnate è q_1 . In entrambi i nodi posso generare quante a voglio e posso tornare da q_1 a q_0 per generare altre b.

Esempio 4. Trovo automa per:

$$L = \{w \in \{0, 1\}^* | w = 0^n 1^m \}$$

vediamo i vari casi:

• $n, m \ge 0$:

ovvero posso non generare nulla e uscire subito con q_0 , generare solo un 1 e passare a q_1 e uscire oppure generare 0 e 1 a piacere con l'ultimo stato o generare 0 a piacere dal primo e 1 a piacere dal secondo.

• $n \ge 0 \ m > 0$:

ovvero come l'esempio sopra solo che non posso uscire in q_0 in quanto almeno un 1 deve essere per forza generato

• $n > 0 \ m \ge 0$:

CHIARIRE

• n, m > 0:

CHIARIRE

Esempio 5. Trovo automa per:

 $L = \{w \in \{a,b\}^* | w \text{ che contiene un numero pari di } a \text{ e dispari di } b\}$

Esempio 6. Trovo automa per:

 $L = \{w \in \{a,b\}^* | \ w \ che \ contiene \ un \ numero \ pari \ di \ a \ seguito \ da \ uno \ dispari \ di \ b\}$

$$L = \{a^{2n}b^{2k+1}|j, k \ge 0\}$$

ovvero in tabella:

δ	$\mid a \mid$	$\mid b \mid$
$\rightarrow q_0$	q_1	q_2
q_1	q_0	q_E
$*q_2$	q_E	q_3
q_S	q_E	q_2
q_E	q_E	q_E

Esempio 7. Trovo automa per:

$$L = \{a^{2k+1}b^{2h} | h, k \ge 0\}$$

Esempio 8. Trovo automa per:

$$L = \{a^{2n+1}b^{2k+1} | n, k \ge 0\}$$

Esempio 9. Trovo automa per:

$$L = \{x010y | x, y \in \{o, 1\}^*\}$$

0.0.2 Automi non deterministici

In sigla NFA sono delle quintuple $A = (Q, \Sigma, \delta, q, F)$ ma ora la delta prende uno stato e un simbolo e ci manda in un insieme di stati:

$$\delta:Q\times\Sigma\to 2^Q$$

delta è delta cappuccio

$$DFA: L(A) = \{ w \in \Sigma^* | \delta(q_0, w) \in F \}$$

$$NFA: L(A) = \{ w \in \Sigma^* | \delta(q_0, w) \cap F \neq \emptyset \}$$