Business Case: Target SQL

Data from 100,000 orders placed at Target in Brazil between 2016 and 2018 is included in this business case. It is the top retail chain in America. Eight tables include data about orders from several aspects, including order status, payment information, order location and time, client who made the purchase, items in the order, product details, vendor information, order reviews, etc.

ANAYLISIS

1. Initial exploration of dataset

i. Data type of all columns of different tables in the "Target" dataset.

```
\rightarrow \rightarrow Query:
```

```
SELECT
  table_schema,
  table_name,
  column_name,
  data_type
FROM
  `Target`.INFORMATION_SCHEMA.COLUMNS;
```

\rightarrow Result:

ii. The timespan of available data.

```
\rightarrow \rightarrow Query:
```

```
SELECT
  MIN(DATE(order_purchase_timestamp)) AS first_order_date,
  MAX(DATE(order_purchase_timestamp)) AS last_order_date
FROM
  `Target.orders`;
```


iii. Number of cities per State of customers who ordered during the given period.

\rightarrow \rightarrow Query:

```
SELECT
  DISTINCT c.customer_state , count (c.customer_city) as No_of_Cities
FROM
   `Target.customers` c
RIGHT JOIN
   `Target.orders` o
ON
   c.customer_id = o.customer_id
GROUP BY c.customer_state
ORDER BY No_of_Cities DESC, c.customer_state;
```

\rightarrow Result:

JOB IN	FORMATION RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row	customer_state ▼	No_of_Cities ▼	1.		
1	SP	41746			
2	RJ	12852			
3	MG	11635			
4	RS	5466			
5	PR	5045			
6	SC	3637			
7	BA	3380			
8	DF	2140			
9	ES	2033			
10	GO	2020			
11	PE	1652			

iv. Distribution of total orders as per their status.

```
SELECT
  DISTINCT c.customer_state , count (c.customer_city) as No_of_Cities
FROM
```

```
`Target.customers` c
RIGHT JOIN
   `Target.orders` o
ON
   c.customer_id = o.customer_id
GROUP BY c.customer_state
ORDER BY No_of_Cities DESC, c.customer_state;
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	order_status ▼	le	order_count ▼	1.		
1	delivered		9647	8		
2	shipped		110	7		
3	canceled		62	5		
4	unavailable		60	9		
5	invoiced		31	4		
6	processing		30	1		
7	created			5		
8	approved			2		

2. In-Depth Analysis

i. Top 10 cities with largest customer base.

```
SELECT
time_period, order_count,
ROUND((((order_count - LAG(order_count) OVER(ORDER BY year, month)) /
LAG(order_count) OVER(ORDER BY year, month))* 100), 2) AS growth_percent
FROM
(SELECT
EXTRACT (MONTH FROM order_purchase_timestamp) AS month,
EXTRACT (YEAR FROM order_purchase_timestamp) AS year,
FORMAT_DATE('%b %Y', DATE(order_purchase_timestamp)) AS time_period,COUNT(order_id)
AS order_count
FROM `Target.orders`
WHERE order_status = 'delivered'
GROUP BY month, year, time_period) as T1
ORDER BY year, month;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	customer_city ~	/ ₁	lo_Customers_	City		
1	sao paulo		155	40		
2	rio de janeiro		68	82		
3	belo horizonte		27	73		
4	brasilia		21	31		
5	curitiba		15	21		
6	campinas		14	44		
7	porto alegre		13	79		
8	salvador		12	45		
9	guarulhos		11	89		
10	sao bernardo do camp	00	9	38		

ii. Top 10 cities with the greatest number of orders.

```
SELECT
 Tempo.geolocation_city, COUNT(Tempo.geolocation_city) as Orders_per_City
FROM
  `Target.orders` as o
INNER JOIN
  (SELECT c.customer_id ,g.geolocation_city
    `Target.customers` as c
  INNER JOIN
    `Target.geolocation` as g
    c.customer_zip_code_prefix = g.geolocation_zip_code_prefix) AS Tempo
  Tempo.customer_id = o.customer_id
GROUP BY
 Tempo.geolocation_city
ORDER BY
 Orders_per_City DESC
LIMIT 10
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAP
Row /	geolocation_city ▼	Orders	_per_City 🔻 //			
1	rio de janeiro		1913913			
2	sao paulo		1164470			
3	belo horizonte		737556			
4	niteroi		393175			
5	curitiba		255731			
6	santos		238952			
7	porto alegre		228803			
8	são paulo		207882			
9	campinas		170318			
10	uberlandia		160498			

iii. <u>Is there a growing trend in the no. of orders placed over the past years?</u>

\rightarrow Query:

```
SELECT
time_period, order_count,
ROUND((((order_count - LAG(order_count) OVER(ORDER BY year, month)) /
LAG(order_count) OVER(ORDER BY year, month))* 100), 2) AS growth_percent
FROM
(SELECT
EXTRACT (MONTH FROM order_purchase_timestamp) AS month,
EXTRACT (YEAR FROM order_purchase_timestamp) AS year,
FORMAT_DATE('%b %Y', DATE(order_purchase_timestamp)) AS time_period, COUNT(order_id)
AS order_count
FROM `Target.orders`
WHERE order_status = 'delivered'
GROUP BY month, year, time_period) as T1
ORDER BY year, month;
```

JOB IN	FORMATION	RESULTS	CHART J	SON EXECUTI	ON DETAILS	EXECUTION GRAPH
Row /	time_period ▼	h	order_count ▼	growth_percent ▼//		
1	Sep 2016		1	null		
2	Oct 2016		265	26400.0		
3	Dec 2016		1	-99.62		
4	Jan 2017		750	74900.0		
5	Feb 2017		1653	120.4		
6	Mar 2017		2546	54.02		
7	Apr 2017		2303	-9.54		
8	May 2017		3546	53.97		
9	Jun 2017		3135	-11.59		
10	Jul 2017		3872	23.51		

There is no concrete evidence to show any pattern that shows seasonality in orders placed. However, it is seen that there is growing trend in no. of orders placed over the past years.

iv. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

\rightarrow Query:

```
SELECT order_time, count(*) AS Total_Orders
FROM
(SELECT
   order_id,
     WHEN TIME(order_purchase_timestamp) BETWEEN "00:00:00" AND "07:00:00" THEN
"Dawn"
     WHEN TIME(order_purchase_timestamp) BETWEEN "07:00:01" AND "12:00:00" THEN
"Morning"
      WHEN TIME(order_purchase_timestamp) BETWEEN "12:00:01" AND "18:00:00" THEN
      WHEN TIME(order_purchase_timestamp) BETWEEN "18:00:01" AND "23:59:59" THEN
"Night"
    END AS order_time
 FROM
    `Target.orders`) AS ORDER_SLOTS
GROUP BY order_time
ORDER BY Total_Orders DESC
```

NFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
order_time ▼	10	Total_Orders ▼	1.		
Afternoon		383	65		
Night		340	96		
Morning		217	38		
Dawn		52	42		
	order_time ▼ Afternoon Night Morning	order_time Afternoon Night Morning	order_time ▼ Total_Orders ▼ Afternoon 383 Night 340 Morning 217	order_time ▼ Total_Orders ▼ Afternoon 38365 Night 34096 Morning 21738	order_time ▼ Total_Orders ▼ Afternoon 38365 Night 34096 Morning 21738

It is seen that the Brazilian customers tend to place most of their orders during afternoon and night.

3. Evolution of E-commerce orders in the Brazil region

i. Month on month orders by states

```
\rightarrow Query:
```

```
SELECT
  state ,year, month, time_period , total_orders,
  LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month ) AS
prev_month_orders_count,
  ROUND(((total_orders - LAG(total_orders) OVER(PARTITION BY state ORDER BY year,
month )) / LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month))* 100,2)
AS MoM_percent_growth
FROM (
  SELECT
    state, time_period, year, month,
    COUNT(*) AS total_orders
 FROM (
    SELECT
      o.order_id, o.order_purchase_timestamp,
      EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
      EXTRACT(Month FROM order_purchase_timestamp) AS month,
      FORMAT_DATE('%b %Y', DATE(order_purchase_timestamp)) AS time_period,
      c.customer_state AS state
    FROM
      `Target.orders` o
      `Target.customers` c
    USING
      (customer_id)
    ORDER BY
       year, month) Tempo
  GROUP BY
    state, time_period, year, month) Tempo1
  ORDER BY state, year, month;
```

Row	state ▼	year ▼	month ▼	time_period ▼	total_orders ▼	prev_month_orders_c	MoM_percent_grow
1	AC	2017	1	Jan 2017	2	null	null
2	AC	2017	2	Feb 2017	3	2	50.0
3	AC	2017	3	Mar 2017	2	3	-33.33
4	AC	2017	4	Apr 2017	5	2	150.0
5	AC	2017	5	May 2017	8	5	60.0
6	AC	2017	6	Jun 2017	4	8	-50.0
7	AC	2017	7	Jul 2017	5	4	25.0
8	AC	2017	8	Aug 2017	4	5	-20.0
9	AC	2017	9	Sep 2017	5	4	25.0
10	AC	2017	10	Oct 2017	6	5	20.0
11	AC	2017	11	Nov 2017	5	6	-16.67

ii. Distribution of customers across states in Brazil

```
\rightarrow Query:
```

```
SELECT
  customer_state AS State,
  COUNT(*) AS Total_Customers
FROM
  `Target.customers`
GROUP BY
  customer_state
ORDER BY
  total_customers DESC;
```

\rightarrow Result:

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	state ▼	h	total_customers	- /4		
1	SP		4174	6		
2	RJ		1285	2		
3	MG		1163	5		
4	RS		546	6		
5	PR		504	5		
6	SC		363	7		
7	BA		338	0		
8	DF		214	.0		

- 4. Impact on Economy: Analyzing the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Percentage increase in the cost of orders from year 2017 to 2018 (including months between Jan to Aug only).

\rightarrow Query:

```
SELECT
   *,
COALESCE((ROUND(((Total_Order_Value - LAG(Total_Order_Value) OVER(ORDER BY
year))/LAG(Total_Order_Value) OVER(ORDER BY year))* 100, 2)), 0) AS YOY
FROM (
   SELECT
    year,
    ROUND(SUM(payment_value), 2) AS Total_Order_Value
FROM (
   SELECT
    o.order_id,
```

```
o.order_purchase_timestamp,
      EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
     EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
     p.payment_value
    FROM
      `Target.orders` o
    INNER JOIN
      `Target.payments` p
   USING
      (order_id)
   WHERE
      o.order_status = "delivered") AS T
 WHERE
   month BETWEEN 1 AND 8
 GROUP BY year) AS T1
ORDER BY Year;
```

ow /	year ▼	Total_Order_	Value / YoY	· //	
1	201	7 34738	62.76	0.0	
2	201	8452	975.2	143.33	

2. Total & Average value of order price and freight value for each state.

\rightarrow \rightarrow Query:

```
SELECT
  c.customer_state,
  ROUND(SUM(oi.price)) AS Total_Price,
  ROUND(AVG(oi.price)) AS Avg_Price,
  ROUND(SUM(oi.freight_value)) AS Total_Freight,
  {\tt ROUND}({\tt AVG}({\tt oi.freight\_value})) AS {\tt Avg\_Freight}
FROM
   `Target.order_items` AS oi
INNER JOIN
   `Target.orders` o
ON
  oi.order_id = o.order_id
INNER JOIN
   `Target.customers` c
ON
  c.customer_id = o.customer_id
GROUP BY
  c.customer_state;
```

JOR IN	FORMATION RE	SULTS	CHART J	SON EXECUTI	ON DETAILS E	XECUTION GRAPH
Row /	customer_state ▼	l.	Total_Price ▼	Avg_Price ▼	Total_Freight ▼	Avg_Freight ▼
1	SP		5202955.0	110.0	718723.0	15.0
2	RJ		1824093.0	125.0	305589.0	21.0
3	PR		683084.0	119.0	117852.0	21.0
4	SC		520553.0	125.0	89660.0	21.0
5	DF		302604.0	126.0	50625.0	21.0
6	MG		1585308.0	121.0	270853.0	21.0
7	PA		178948.0	166.0	38699.0	36.0
8	BA		511350.0	135.0	100157.0	26.0
9	GO		294592.0	126.0	53115.0	23.0
10	RS		750304.0	120.0	135523.0	22.0

5. Analysis based on sales, freight and delivery time.

1. Number of days taken to deliver each order from the order's purchase date as delivery time. Along with, the difference (in days) between the estimated & actual delivery date of an order.

```
SELECT
    * ,T.Actual_Delivery_Time_in_Days - T.Estimated_Delivery_Time_in_Days AS
Diff_Estimated_Delivery
FROM
(SELECT
    order_id,
    TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
Actual_Delivery_Time_in_Days ,
    TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS
Estimated_Delivery_Time_in_Days,
FROM
    `Target.orders`
WHERE
    order_status = "delivered") AS T;
```

JOB IN	FORMATION	RESULTS	CHART JS	SON EXECUTION	ON DETAILS	EXECUTION GRAPH
Row	order_id ▼	1.	Actual_Delivery_Time	Estimated_Delivery_7	Diff_Estimated_Deliy	
1	635c894d068ac	:37e6e03dc54e	30	32	-2	
2	3b97562c3aee8	bdedcb5c2e45	32	33	-1	
3	68f47f50f04c4c	b6774570cfde	29	31	-2	
4	276e9ec344d3b	f029ff83a161c	43	39	4	
5	54e1a3c2b97fb	0809da548a59	40	36	4	
6	fd04fa4105ee80	045f6a0139ca5	37	35	2	
7	302bb8109d097	a9fc6e9cefc5	33	28	5	
8	66057d37308e7	787052a32828	38	32	6	
9	19135c945c554	leebfd7576c73	36	33	3	
10	4493e45e7ca10	84efcd38ddeb	34	33	1	

2. Ranking states with the highest & lowest average freight value.

```
SELECT
  State, Avg_Freight_Value,
  ROW_NUMBER() OVER (ORDER BY Avg_Freight_Value) AS Ranking_for_Lowest,
  ROW_NUMBER() OVER (ORDER BY Avg_Freight_Value DESC) AS Ranking_for_Highest
FROM
  (SELECT DISTINCT c.customer_state as State,
   AVG(oi.freight_value) OVER (PARTITION BY c.customer_state) AS Avg_Freight_Value
  FROM
    `Target.order_items` AS oi
  INNER JOIN
    `Target.orders` AS o
 USING
    (order_id)
  INNER JOIN
    `Target.customers` AS c
   o.customer_id = c.customer_id) AS T
GROUP BY
  State, Avg_Freight_Value;
```

JOB IN	FORMATION	RESULTS	CHART JS	SON EXECUTION	ON DETAILS	EXECUTION GRA
Row /	State ▼	le	Avg_Freight_Value	Ranking_for_Lowest	Ranking_for_Highes	ţ
1	RR		42.98442307692	27	1	
2	PB		42.72380398671	26	2	
3	RO		41.06971223021	25	3	
4	AC		40.07336956521	24	4	
5	PI		39.14797047970	23	5	
6	MA		38.25700242718	22	6	
7	TO		37.24660317460	21	7	
8	SE		36.65316883116	20	8	
9	AL		35.84367117117	19	9	
10	PA		35.83268518518	18	10	

3. Top 5 states with the lowest average delivery time.

\rightarrow Query:

```
DISTINCT c.customer_state ,AVG (o.Actual_Delivery_Time_in_Days) OVER (PARTITION
BY c.customer_state) AS Avg_Delivery_Time
FROM
(SELECT
  customer_id, order_id,
  TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
Actual_Delivery_Time_in_Days ,
  TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS
Estimated_Delivery_Time_in_Days,
FROM
  `Target.orders`
WHERE
  order_status = "delivered") AS o
INNER JOIN
  `Target.customers` AS\ c
USING
  (customer_id)
ORDER BY Avg_Delivery_Time
LIMIT 5;
```

\rightarrow \rightarrow Result

JOB IN	NFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	customer_state	▼	Avg_Delivery_Tim	ne /		
1	SP		8.298093544722			
2	PR		11.52671135486			
3	MG		11.54218777523			
4	DF		12.50913461538			
5	SC		14.47518330513			

The above data provides top 5 states with lowest average delivery time in days. The data for top 5 states with highest average delivery time can be retrieved by ordering the same data by "Avg Delivery Time" in descending order.

6. Analysis based on the payments

1. Month on month number of orders placed using different payment types.

\rightarrow Query:

```
SELECT
  time_period,
 payment_type,
  COUNT(*) AS Total_Orders
FROM
  (SELECT
   p.order_id,
   p.payment_type,
   EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,
   EXTRACT(Month FROM order_purchase_timestamp) AS Month,
    FORMAT_DATE('%b %Y', DATE(order_purchase_timestamp)) AS Time_Period
  FROM
    `Target.payments` AS p
    `Target.orders` AS o
 USING
    (order_id)) T
GROUP BY
  time_period, payment_type, T.YEAR, T.month
ORDER BY
 T.YEAR, T.month, payment_type;
```

\rightarrow \rightarrow *Result*:

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAIL	LS EXECUTION GRAP
Row /	time_period ▼	11	payment_type	•	Total_Orders ▼	1
1	Sep 2016		credit_card		3	3
2	Oct 2016		UPI		63	3
3	Oct 2016		credit_card		254	1
4	Oct 2016		debit_card		2	2
5	Oct 2016		voucher		23	3
6	Dec 2016		credit_card		1	l
7	Jan 2017		UPI		197	7
8	Jan 2017		credit_card		583	3
9	Jan 2017		debit_card		g)
10	Jan 2017		voucher		61	

2. Count of orders based on the no. of payment instalments.

\rightarrow \rightarrow Query:

```
SELECT
  payment_installments,
  COUNT(*) AS Total_Orders
FROM
  `Target.payments`
GROUP BY
  payment_installments;
```

\rightarrow \rightarrow *Result*:

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECUTION GRAP
Row /	payment_installment	Total_Orders	→ /4			
1	0		2			
2	1	52	2546			
3	2	12	2413			
4	3	10	0461			
5	4		7098			
6	5	į.	5239			
7	6	;	3920			
8	7		1626			
9	8	4	4268			
10	9		644			

7. Actionable Insights & Recommendations

1. The orders trajectory shows a sharp rise in the volume of orders within a short period of time. Business in Brazil is growing quickly, according to the general trend, thus companies need to be prepared with more staff. Company may think about employing contract workers to reduce excessive risk.

JOB IN	FORMATION	RESULTS	JSON EXECUTION DETAILS			
Row /	time_period ▼	h	order_count ▼	growth_percent *		
1	Sep 2016		1	nuli		
2	Oct 2016		265	26400.0		
3	Dec 2016		1	-99.62		
4	Jan 2017		750	74900.0		
5	Feb 2017		1653	120.4		
6	Mar 2017		2546	54.02		
7	Apr 2017		2303	-9.54		
8	May 2017		3546	53.97		
9	Jun 2017		3135	-11.59		
10	Jul 2017		3872	23.51		

2. Total 609 orders were unavailable and 625 orders were cancelled during the given time period, which makes it to be around 1.2 % of total orders. We can reduce this number by studying the reasons behind order cancellation and items unavailability.

Quer	y results		
JOB IN	FORMATION RESULTS	JSON EXE	ECUTION DETAILS EXECU
Row /	order_status ▼	orders_count ▼	percent_of_total_orders ▼ //
1	delivered	96478	97.02
2	shipped	1107	1.11
3	canceled	625	0.63
4	unavailable	609	0.61
5	invoiced	314	0.32
6	processing	301	0.3
7	created	5	0.01
8	approved	2	0,0

3. The query below calculates the ratio of review score for each is state. While, the extracted data is ordered to get the states with higher proportion of unsatisfied customers.

\rightarrow Query:

```
SELECT
 customer_state AS State,
 ROUND(_1/Total_Reviews*100,1) AS R1,
 ROUND(_2/Total_Reviews*100,1) AS R2,
 ROUND(_3/Total_Reviews*100,1) AS R3,
  ROUND(_4/Total_Reviews*100,1) AS R4,
  ROUND(_5/Total_Reviews*100,1) AS R5
(SELECT *, (_1 + _2 + _3 + _4 +_5) AS Total_Reviews
FROM
(SELECT
FROM (
 SELECT
   c.customer_state,
   orr.review_score
  FROM
    `Target.order_reviews` orr
    `Target.orders` o
 USING
    (order_id)
  JOIN
    `Target.customers` c
 USING
    (customer_id))
  PIVOT(COUNT(*) FOR review_score IN (1, 2, 3, 4, 5))) AS T)
  ORDER BY R1 DESC, R5;
```

JOB IN	IFORMATION RE	SULTS CH	HART J	SON EXECUTI	ON DETAILS E	EXECUTION GRAPH	
Row /	State ▼	R1 •		R2 ▼	R3 ▼	R4 ▼	R5 ▼
1	RR		19.6	4.3	15.2	17.4	43.5
2	SE		18.1	3.7	8.3	19.2	50.7
3	MA		17.6	4.2	9.9	21.0	47.3
4	AL		17.6	6.3	7.0	21.5	47.6
5	RJ		17.1	3.6	8.2	16.7	54.3
6	PA		16.0	3.6	9.9	20.4	50.1
7	CE		15.8	4.1	9.9	19.8	50.5
8	BA		15.0	3.9	10.0	22.2	48.9
9	PI		14.7	3.7	8.6	21.2	51.9
10	PE		13.4	3.2	8.0	19.6	55.8

4. A closer look reveals that the majority of these complaints mention problems with deliveries that were delayed or that the consumer did not get. However, a lot of the negative reviews are also brought on by things that were shipped incorrectly or damaged. Therefore, the business should concentrate on improving its logistics in order to win over customers and increase profitability. The most popular review titles are displayed with the following query.

\rightarrow Query:

```
SELECT
  review_comment_title, count(review_comment_title) as CNT
FROM
  `Target.order_reviews`
WHERE
  review_score IN (1,2)
GROUP BY
  review_comment_title
ORDER BY
  CNT DESC;
```

\rightarrow \rightarrow *Result*:

JOB IN	FORMATION	RESULTS	CHART	JSON
Row	review_comment_titl	le ▼	CNT ▼	11
1	I recommend			118
2	I didn't receive the pro	oduct		57
3	Bad			52
4	Product not delivered	d		48
5	Wrong product			47
6	Defective product			39
7	PÃ © ssimo			32
8	I didn't receive			24
9	Delivery delay			21
10	Good			21
11	I do not recommend			18

- 5. Rio de Janeirio, Sao Paulo and Belo Horizonte among others cities in Brazil that contribute the major chunk of orders. The company can upscale their businesses by improving their product offerings and logistics in order to attain higher customer satisfaction to gain more trust in these markets. The results of this analysis can be referred from "In-depth Analysis", consisting the data for number of customers and number of orders placed per city.
- 6. Additionally, Brazilian customers show a tendency for shopping online during afternoon and night. The company can focus on scheduling and optimizing their digital marketing campaigns during these hours of the day to increasing customer engagement.