ARITHMETIC COMBINATIONAL MODULES AND NETWORKS¹

- SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS
- HALF-ADDER AND FULL-ADDER MODULES
- CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES
- NETWORKS OF ADDER MODULES
- REPRESENTATION OF SIGNED INTEGERS:
 - 1. sign-and-magnitude
 - 2. two's-complement
 - 3. ones'-complement

cont.

- ADDITION AND SUBTRACTION IN TWO'S COMPLEMENT
- ARITHMETIC-LOGIC UNITS (ALU)
- COMPARATOR MODULES AND NETWORKS
- MULTIPLICATION OF POSITIVE INTEGERS

CONVENTIONAL RADIX-2 NUMBER SYSTEM:

$$\underline{x} = (x_{n-1}, \dots, x_0) \Leftrightarrow x$$
, integer
$$x = \sum_{i=0}^{n-1} x_i \times 2^i$$

• RANGE: 0 to $2^n - 1$

Figure 10.1: ADDER MODULE.

$$x + y + c_{\text{in}} = 2^n c_{\text{out}} + z$$

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$

 $\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$
 $c_{\text{in}} \in \{0, 1\}$

OUTPUTS:
$$\underline{z} = (z_{n-1}, \dots, z_0), z_j \in \{0, 1\}$$

 $c_{\text{out}} \in \{0, 1\}$

FUNCTIONS:
$$z = (x + y + c_{in}) \mod 2^n$$

$$c_{\text{out}} = \begin{cases} 1 & \text{if } (x + y + c_{\text{in}}) \ge 2^n \\ 0 & \text{otherwise} \end{cases}$$

EXAMPLE for n=5

\boldsymbol{x}	y	$c_{\rm in}$	z	$c_{ m out}$
12	14	1	$(12 + 14 + 1) \bmod 32 = 27$	0 because $(12+14+1) < 32$
19	14	1	$(19 + 14 + 1) \mod 32 = 2$	1 because $(19 + 14 + 1) > 32$

Figure 10.2: CARRY-RIPPLE ADDER MODULE.

DELAY OF CARRY-RIPPLE ADDER

$$t_p(net) = (n-1)t_c + \max(t_z, t_c)$$

$$t_c = \text{Delay}(c_i \to c_{i+1})$$

 $t_z = \text{Delay}(c_i \to z_i)$

$$x_i + y_i + c_i = 2c_{i+1} + z_i$$

INPUTS: $x_i, y_i, c_i \in \{0, 1\}$

OUTPUTS: $z_i, c_{i+1} \in \{0, 1\}$

FUNCTION: $z_i = (x_i + y_i + c_i) \mod 2$

$$c_{i+1} = \begin{cases} 1 & \text{if } (x_i + y_i + c_i) \ge 2 \\ 0 & \text{otherwise} \end{cases}$$

x_i	y_i	c_i	c_{i+1}	z_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$z_{i} = x_{i}y'_{i}c'_{i} + x'_{i}y_{i}c'_{i} + x'_{i}y'_{i}c_{i} + x_{i}y_{i}c_{i}$$

$$c_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$$

 $\label{eq:Figure 10.3: IMPLEMENTATIONS OF FULL-ADDER MODULE: a) TWO-LEVEL.}$

• ADDITION mod 2 \rightarrow SUM IS 1 WHEN NUMBER OF 1'S IN INPUTS (including the carry-in) IS ODD:

$$z_i = x_i \oplus y_i \oplus c_i$$

• CARRY-OUT IS 1 WHEN $(x_i + y_i = 2)$ or $(x_i + y_i = 1)$ and $c_i = 1$:

$$c_{i+1} = x_i y_i + (x_i \oplus y_i) c_i$$

• INTERMEDIATE VARIABLES

PROPAGATE
$$p_i = x_i \oplus y_i$$

GENERATE $g_i = x_i \cdot y_i$

• HALF-ADDER

x_i	y_i	g_i	p_i
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

ullet FA EXPRESSIONS IN TERMS OF $p_i's$, $g_i's$ and $c_i's$

$$z_i = p_i \oplus c_i$$
$$c_{i+1} = g_i + p_i \cdot c_i$$

Figure 10.3: IMPLEMENTATIONS OF FULL-ADDER MODULE: b) MULTILEVEL GATE NETWORK WITH XORs, ANDs and OR; c) WITH XORs and NANDs.

Figure 10.2: CARRY-RIPPLE ADDER MODULE.

WORST-CASE DELAY

$$t_p = t_{XOR} + 2(n-1)t_{NAND} + \max(2t_{NAND}, t_{XOR})$$

Input	[standard loads]
c_i	1.3
x_i	1.1
y_i	1.3

Size: 7 [equivalent gates]

From	То	Propagation delays		
		t_{pLH}	t_{pHL}	
		[ns]	[ns]	
c_i	z_i	0.43 + 0.03L	0.49 + 0.02L	
x_i	z_i	0.68 + 0.04L	0.74 + 0.02L	
y_i	z_i	0.68 + 0.04L	0.74 + 0.02L	
c_i	c_{i+1}	0.36 + 0.04L	0.40 + 0.02L	
x_i	c_{i+1}	0.73 + 0.04L	0.71 + 0.02L	
y_i	c_{i+1}	0.37 + 0.04L	0.64 + 0.02L	

L: load on the gate output

- FASTER IMPLEMENTATION
- ADDITION AS A TWO-STEP PROCESS:
 - 1. DETERMINE THE VALUES OF ALL THE CARRIES
 - 2. SIMULTANEOUSLY COMPUTE ALL THE RESULT BITS

Figure 10.4: CARRY-LOOKAHEAD ADDER MODULE.

• INTERMEDIATE CARRIES:

$$c_{i+1} = g_i + p_i \cdot c_i$$

BY SUBSTITUTION,

$$c_{1} = g_{0} + p_{0}c_{0}$$

$$c_{2} = g_{1} + p_{1}c_{1}$$

$$= g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}$$

$$c_{3} = g_{2} + p_{2}c_{2}$$

$$= g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}$$

$$c_{4} = g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}p_{0}c_{0}$$

Figure 10.5: CARRY-LOOKAHEAD ADDER: a) 4-BIT CARRY-LOOKAHEAD GENERATOR WITH P and G OUTPUTS (CLG-4).

Figure 10.5: CARRY-LOOKAHEAD ADDER: b) 4-BIT MODULE (CLA-4); (CLG-4).

$$t_p(x_0 \to c_4) = t_{pg} + t_{CLG-4}$$

 $t_p(c_0 \to c_4) = t_{CLG-4}$
 $t_p(x_0 \to P, G) = t_{pg} + t_{CLG-4}$
 $t_p(x_0 \to z_3) = t_{pg} + t_{CLG-4} + t_{XOR}$

P=1: $c_{\rm in}$ PROPAGATED BY THE MODULE

G=1: $c_{
m out}=1$ GENERATED BY THE MODULE, IRRESPECTIVE OF $c_{
m in}$

$$P = \begin{cases} 1 & \text{if } x + y = 2^4 - 1 \\ 0 & \text{otherwise} \end{cases}$$
$$G = \begin{cases} 1 & \text{if } x + y \ge 2^4 \\ 0 & \text{otherwise} \end{cases}$$

$$c_{out} = G + P \cdot c_{in}$$

$$P = p_3 p_2 p_1 p_0$$

$$G = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$$

ITERATIVE (CARRY-RIPPLE) ADDER NETWORK

$$\underline{x} = (\underline{x}^{(3)}, \underline{x}^{(2)}, \underline{x}^{(1)}, \underline{x}^{(0)})$$

$$\underline{x}^{(3)} = (x_{15}, x_{14}, x_{13}, x_{12})$$

$$\underline{x}^{(2)} = (x_{11}, x_{10}, x_{9}, x_{8})$$

$$\underline{x}^{(1)} = (x_{7}, x_{6}, x_{5}, x_{4})$$

$$\underline{x}^{(0)} = (x_{3}, x_{2}, x_{1}, x_{0})$$

where

$$x = 2^{12}x^{(3)} + 2^8x^{(2)} + 2^4x^{(1)} + x^{(0)}$$

16-BIT CARRY-RIPPLE ADDER

Figure 10.6: 16-BIT CARRY-RIPPLE ADDER NETWORK USING 4-BIT ADDER MODULES.

Figure 10.7: 32-BIT CARRY-LOOKAHEAD ADDER USING CLA-4 AND CLG-4 MODULES.

PROPAGATION DELAY:

$$t_p(net) = t_{PG} + 2t_{CLG-4} + t_{ADD}$$

CLA ADDER (cont.)

$$c_{4} = G_{0} + P_{0}c_{0}$$

$$c_{8} = G_{1} + P_{1}G_{0} + P_{1}P_{0}c_{0}$$

$$c_{12} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}c_{0}$$

$$c_{16} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}c_{0}$$

$$P_{0} = p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0}$$

$$G_{0} = g_{3} + g_{2}p_{3} + g_{1}p_{3}p_{2} + g_{0}p_{3}p_{2}p_{1}$$

REPRESENTATION OF SIGNED INTEGERS AND BASIC OPERATIONS

- TWO COMMON REPRESENTATIONS:
 - SIGN-AND-MAGNITUDE (SM)
 - TRUE-AND-COMPLEMENT (TC)

SIGN-AND-MAGNITUDE (SM) SYSTEM

• x REPRESENTED BY PAIR (x_s, x_m) sign:

$$x_s = \begin{cases} 0 & \text{if} \quad x \ge 0 \\ 1 & \text{if} \quad x \le 0 \end{cases}$$

magnitude:

 x_m

RANGE OF SIGNED INTEGERS

total number of bits: n

sign: 1

magnitude: n-1

$$-(2^{n-1}-1) \le x \le 2^{n-1}-1$$

• TWO REPRESENTATIONS OF ZERO:

$$x_s = 0, x_m = 0$$
 (positive zero) $x_s = 1, x_m = 0$ (negative zero)

 NO SEPARATION BETWEEN THE REPRESENTATION OF SIGN

AND REPRESENTATION OF MAGNITUDE

- ullet SIGNED INTEGER x REPRESENTED BY POSITIVE INTEGER x_R
- ullet MAP 2: BINARY REPRESENTATION OF x_R

$$x_R = \sum_{i=0}^{n-1} x_i 2^i$$
 , $0 \le x_R \le 2^n - 1$

MAP 1: TWO'S COMPLEMENT

$$x_R = x \bmod 2^n$$

BY DEFINITION OF mod, FOR $|x| < 2^n$: equivalent to

$$x_R = \begin{cases} x & \text{if } x \ge 0\\ 2^n - |x| & \text{if } x < 0 \end{cases}$$

FOR UNAMBIGUOUS SYMMETRICAL REPRESENTATION

$$|x|_{max} \le 2^{n-1} - 1$$

$$\frac{x -4 -3 -2 -1 0 1 2 3}{x_R 4 5 6 7 0 1 2 3}$$

Figure 10.8: SIGNED INTEGER REPRESENTED BY POSITIVE INTEGER.

Figure 10.9: TWO'S COMPLEMENT REPRESENTATION FOR n=4.

MAPPING IN TWO'S-COMPLEMENT SYSTEM

x	x_R	\underline{x}	
0	0	00000	
1	1	00001	
2	2	00010	
_	-	-	True forms
_	-	-	(positive)
-	-	-	$x_R = x$
$2^{n-1}-1$	$2^{n-1} - 1$	01111	
-2^{n-1}	2^{n-1}	10000	
$-(2^{n-1}-1)$	$2^{n-1} + 1$	10001	
-	-	-	
_	-	-	Complement forms
_	-	_	(negative)
-2	$2^{n}-2$	11110	$x_R = 2^n - x $
-1	$2^{n} - 1$	11111	

x	x_R	<u>x</u>
3	3	011
2	2	010
$\mid 1 \mid$	1	001
0	0	000
-1	7	111
-2	6	110
-3	5	101
-4	4	100

CONVERSE MAPPING

$$x = \begin{cases} x_R & \text{if } x_R \le 2^{n-1} - 1 & (x \ge 0) \\ x_R - 2^n & \text{if } x_R \ge 2^{n-1} & (x < 0) \end{cases}$$

IN TERMS OF BIT VECTOR $(x_{n-1}, x_{n-2}, ..., x_1, x_0)$

i) For $x_R < 2^{n-1}$, bit x_{n-1} is 0 and $x \ge 0$.

$$x = x_R = 0 \times 2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

ii) For $x_R \ge 2^{n-1}$ bit x_{n-1} is 1 and x < 0.

$$x = x_R - 2^n = (1 \times 2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i) - 2^n = -1 \times 2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

COMBINING BOTH CASES

$$x = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

$$x = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

8-BIT EXAMPLES:

$$\begin{array}{c|cccc} \underline{x} & x & \\ \hline 01000101 & 0+69 & = 69 \\ 11000101 & -128+69 & = -58 \\ \end{array}$$

SIGN DETECTION:

$$x \ge 0$$
 if $x_{n-1} = 0$
 $x < 0$ if $x_{n-1} = 1$

$$x_R = x \bmod C$$

ONES'-COMPLEMENT SYSTEM: $C = 2^n - 1$

- ullet the ones'-complement system symmetrical, with the range $-(2^n-1) \le x \le 2^n-1$;
- ullet two representations for zero, namely $x_R=0$ and $x_R=2^n-1$;
- the sign also detected by the most-significant bit

$$x \ge 0$$
 if $(x_{n-1} = 0)$ or $(x_R = 2^n - 1)$

x	x_R	<u>x</u>	
0	0	00000	
1	1	00001	
2	2	00010	
_	_	_	True forms
_	_	_	(positive)
_	_	_	$x_R = x$
$2^{n-1}-1$	$2^{n-1}-1$	01111	
$-(2^{n-1}-1)$	2^{n-1}	10000	
_	-	_	
_	_	_	Complement forms
-2	$2^n - 3$	11101	(negative)
-1	$2^{n}-2$	11110	$x_R = 2^n - 1 - x $
0	$2^{n}-1$	11111	

• TO GET

$$z = x + y$$

COMPUTE

$$z_R = (x_R + y_R) \ mod \ 2^n$$
 CORRECT IF $-2^{n-1} \le (x+y) \le 2^{n-1} - 1$

PROOF: SHOW THAT

$$(x_R + y_R) \mod 2^n$$

CORRESPONDS TO z_R BY DEFINITION OF THE REPRESENTATION,

$$x_R = x \mod 2^n$$
 and $y_R = y \mod 2^n$

THEREFORE,

$$(x_R + y_R) \mod 2^n = (x \mod 2^n + y \mod 2^n) \mod 2^n$$
$$= (x + y) \mod 2^n$$
$$= z \mod 2^n$$

BY DEFINITION OF REPRESENTATION $z \mod 2^n = z_R$

AND, CONSEQUENTLY, $(x_R + y_R) \mod 2^n = z_R$

- 1. ADD x_R AND y_R (use adder for positive operands)
- 2. PERFORM THE mod OPERATION
- DOES NOT DEPEND ON THE RELATIVE MAGNITUDES OF THE OPERANDS AND ON THEIR SIGNS (simpler than in S+M)

EXAMPLES OF ADDITION FOR C=64 and $-32 \le x, y, z \le 31$

Sig	ned	Representation		Two's-complement	Signed
operands			addition	result	
x	y	x_R	y_R	$(x_R + y_R) \bmod 64 = z_R$	z
13	9	13	9	$22 \mod 64 = 22$	22
13	-9	13	55	$68 \mod 64 = 4$	4
-13	9	51	9	$60 \mod 64 = 60$	-4
-13	-9	51	55	$106 \mod 64 = 42$	-22

• Let $w_R = x_R + y_R$. Then

$$x_R, y_R < 2^n \implies w_R < 2 \times 2^n$$

$$z_R = w_R \mod 2^n = \begin{cases} w_R & \text{if } w_R < 2^n \\ w_R - 2^n & \text{if } 2^n \le w_R < 2 \times 2^n \end{cases}$$

• Since $w_R < 2 \times 2^n$

$$\underline{w} = (w_n, w_{n-1}, ..., w_0)$$

$$w_R = \begin{cases} < 2^n & \text{if } w_n = 0 \\ \ge 2^n & \text{if } w_n = 1 \end{cases}$$

Case 1. $w_R < 2^n$. Then $w_R \mod 2^n = w_R \Leftrightarrow (w_{n-1}, ..., w_0)$. Case 2. $w_R \ge 2^n$

$$w_R \bmod 2^n = w_R - 2^n \Leftrightarrow (1, w_{n-1}, \dots, w_0) - (1, 0, \dots, 0)$$

= (w_{n-1}, \dots, w_0)

• CONCLUSION: $w_R \mod 2^n = (w_{n-1}, ..., w_0)$

- ullet mod OPERATION PERFORMED BY DISCARDING MOST-SIGNIFICANT BIT OF w
- 2'S COMPLEMENT ADDITION:
 RESULT CORRESPONDS TO OUTPUT OF ADDER, DISCARD-ING THE CARRY-OUT

$$\underline{z} = ADD(\underline{x}, y, 0)$$

Figure 10.10: TWO'S-COMPLEMENT ADDER MODULE.

	Bit-level	Positive	Signed
	computation	representation	values
n=4	$\underline{x} = 1011$	$x_R = 11$	x = -5
	$\underline{y} = 0101$	$y_R = 5$	y = 5
	$\underline{w} = 10000$	$w_R = 16$	
	$\underline{z} = 0000$	$z_R = 0$	z = 0
n = 8	$\underline{x} = 11011010$	$x_R = 218$	x = -38
	y = 11110001	$y_R = 241$	y = -15
	$\underline{w} = 111001011$	$w_R = 459$	
	z = 11001011	$z_R = 203$	z = -53

$$\bullet z = -x$$

$$z_R = (2^n - x_R) \bmod 2^n$$

x=0: since z=-x=0 we have $z_R=x_R=0$. Moreover,

$$z_R = (2^n - 0) \mod 2^n = 0$$

x > 0: since z = -x is negative,

$$|z_R = 2^n - |z| = 2^n - |x|$$

Moreover, x is positive so that

$$x_R = x$$

Substitute: $z_R = 2^n - x_R$.

x < 0: since z = -x is positive,

$$z_R = z = -x$$

Moreover, \boldsymbol{x} is negative so that

$$x_R = 2^n - |x| = 2^n + x$$

Substitute: $z_R = 2^n - x_R$.

CHANGE OF SIGN (cont.)

• DIRECT SUBTRACTION $2^n - x_R$ COMPLEX EXAMPLE:

$$2^{8}$$
 100000000 x_{R} 01011110 10100010

• INSTEAD, USE $2^n = (2^n - 1) + 1$

$$z_R = (2^n - 1 - x_R) + 1$$

• THE COMPLEMENT WITH RESPECT TO 2^n-1 : COMPLEMENT EACH BIT OF \underline{x}

$$x_R = 17$$
 010001
63 - x_R 111111 - 010001
101110

TWO-STEP OPERATION:

- 1. COMPLEMENT EACH BIT OF \underline{x} denoted $\underline{x'}$.
- 2. ADD 1 (set carry-in $c_0 = 1$)
- DESCRIPTION:

$$\underline{z} = ADD(\underline{x'}, \underline{0}, 1)$$

EXAMPLE FOR n = 4, x = -3:

\underline{x}	1101	x = -3
<u>x'</u>	0010	
0	0000	
c_0	1	
<u>z</u>	0011	z=3

$$\bullet z = x - y = x + (-y)$$

$$z_R = (x_R + (2^n - 1 - y_R) + 1) \bmod 2^n$$

THE CORRESPONDING DESCRIPTION

$$\underline{z} = ADD_R(\underline{x}, \underline{y'}, 1)$$

EXAMPLE:

SUMMARY OF 2'S COMPLEMENT OPERATIONS

OPERATION	2's COMPLEMENT SYSTEM
z = x + y	$\underline{z} = ADD(\underline{x}, \underline{y}, 0)$
z = -x	$\underline{z} = ADD(\underline{x'}, 0, 1)$
z = x - y	$\underline{z} = ADD(\underline{x}, \underline{y'}, 1)$

OVERFLOW DETECTION IN ADDITION

OVERFLOW – result exceeds most positive or negative representable integer

$$-2^{n-1} \le z \le 2^{n-1} - 1$$

- BOTH OPERANDS SAME SIGN, RESULT OPPOSITE SIGN

$$v = x'_{n-1}y'_{n-1}z_{n-1} + x_{n-1}y_{n-1}z'_{n-1}$$

Figure 10.11: OVERFLOW IN TWO'S-COMPLEMENT SYSTEM.

TWO'S COMPLEMENT ARITHMETIC UNIT

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$

$$\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$$

$$c_{\text{in}} \in \{0, 1\}$$

$$F = (f_2, f_1, f_0)$$

OUTPUTS: $\underline{z} = (z_{n-1}, \dots, z_0), z_j \in \{0, 1\}$ $c_{\text{out}}, sgn, zero, ovf \in \{0, 1\}$

FUNCTIONS:

\overline{F}	Operation		
001	ADD	add	z = x + y
011	SUB	subtract	z = x - y
101	ADDC	add with carry	$z = x + y + c_{in}$
110	CS	change sign	z = -x
010	INC	increment	z = x + 1

sgn = 1 if z < 0, 0 otherwise (the sign) zero = 1 if z = 0, 0 otherwise ovf = 1 if z overflows, 0 otherwise

Figure 10.12: IMPLEMENTATION OF TWO'S-COMPLEMENT ARITHMETIC UNIT.

CONTROL OF TWO'S-COMPLEMENT ARITHMETIC OPERATIONS

- ullet OPERATION IDENTIFIED BY BIT-VECTOR $F=(f_2,f_1,f_0)$
- COMPLEMENT OPERATION $\underline{a} = \text{compl}(\underline{b}, K)$:

$$a_i = \begin{cases} b_i & \text{if } K = 0 \\ b_i' & \text{if } K = 1 \end{cases}$$

Operation	Op-code		Control Signals		
	$f_2f_1f_0$	<u>z</u>	$K_{\mathcal{X}}$	K_y	K_{MX}
ADD	001	$\mathrm{ADD}(\underline{x},\underline{y},0)$	0	0	1
SUB	011	$ADD(\underline{x}, \underline{y'}, 1)$	0	1	1
ADDC	101	$ADD(\underline{x}, \underline{y}, c_{in})$	0	0	1
CS	110	$ADD(\underline{x'}, \underline{0}, 1)$	1	d.c.	0
INC	010	$ADD(\underline{x}, \underline{0}, 1)$	0	d.c.	0

cont.

• CONTROL SIGNALS:

$$K_{x} = f_{2}f_{1}$$

$$K_{y} = f_{1}$$

$$K_{MX} = f_{0}$$

$$c_{0} = f_{1} + f_{2}f_{0}c_{\text{in}}$$

ALU MODULES AND NETWORKS

- ARITHMETIC-LOGIC UNIT module realizing set of arithmetic and logic functions
- Why build ALUs?
 - 1. Use in many different applications
 - 2. ALU modules used in processors: function selected by control unit

	Function
ZERO	z = 0
ADD	$z = (x + y + c_{\rm in}) \bmod 16$
SUB	$z = (x + y' + c_{\text{in}}) \bmod 16$
EXSUB	$z = (x' + y + c_{\text{in}}) \bmod 16$
AND	$z = \underline{x} \cdot \underline{y}$
OR	$\underline{z} = \underline{x} + \underline{y}$
XOR	$\underline{z} = \underline{x} \oplus \underline{y}$
ONE	z = 1111

a' denotes the integer represented by vector \underline{a}' \cdot , + , and \oplus are applied to the corresponding bits

Figure 10.13: 4-bit ALU.

MODULE HAS NO CARRY-OUT SIGNAL

- cannot be used directly in an iterative (carry-ripple) network
- carry-out signal implemented as

$$c_{\mathrm{out}} = G + P \cdot c_{\mathrm{in}}$$

- carry-skip network

16-bit ALU

Figure 10.14: **16-bit** ALU.

• HIGH-LEVEL DESCRIPTION OF AN n-BIT COMPARATOR:

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$
 $\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$
 $c_{\text{in}} \in \{\mathsf{G}, \mathsf{E}, \mathsf{S}\}$
OUTPUT: $z \in \{\mathsf{G}, \mathsf{E}, \mathsf{S}\}$

FUNCTION:
$$z = \begin{cases} G \text{ if } & (x > y) \text{ or } (x = y \text{ and } c_{\text{in}} = G) \\ E \text{ if } & (x = y) \text{ and } (c_{\text{in}} = E) \\ S \text{ if } & (x < y) \text{ or } (x = y \text{ and } c_{\text{in}} = S) \end{cases}$$

x and y – the integers represented \underline{x} and y

cont.

• IMPLEMENTATION OF 4-bit COMPARATOR MODULE

$$\underline{c_{\text{in}}} = (c_{\text{in}}^G, c_{\text{in}}^E, c_{\text{in}}^S) , c_{\text{in}}^G, c_{\text{in}}^E, c_{\text{in}}^S \in \{0, 1\}$$

$$\underline{z} = (z^G, z^E, z^S) , z^G, z^E, z^S \in \{0, 1\}$$

Figure 10.15: 4-BIT COMPARATOR MODULE: a) block diagram; b) gate-network implementation.

$$S_i = x_i' y_i$$

$$E_i = (x_i \oplus y_i)', \quad i = 0, \dots, 3$$

$$G_i = x_i y_i'$$

$$z^{G} = G_{3} + E_{3}G_{2} + E_{3}E_{2}G_{1} + E_{3}E_{2}E_{1}G_{0} + E_{3}E_{2}E_{1}E_{0}c_{in}^{G}$$

$$z^{E} = E_{3}E_{2}E_{1}E_{0}c_{in}^{E}$$

$$z^{S} = S_{3} + E_{3}S_{2} + E_{3}E_{2}S_{1} + E_{3}E_{2}E_{1}S_{0} + E_{3}E_{2}E_{1}E_{0}c_{in}^{S}$$

Figure 10.16: 16-BIT ITERATIVE COMPARATOR NETWORK.

Figure 10.17: 16-BIT TREE COMPARATOR NETWORK.

$$z^G = egin{cases} 1 & ext{if} & g > s \\ 0 & ext{otherwise} \end{cases}$$
 $z^E = egin{cases} 1 & ext{if} & g = s \\ 0 & ext{otherwise} \end{cases}$ $z^S = egin{cases} 1 & ext{if} & g < s \\ 0 & ext{otherwise} \end{cases}$

• g and s are the integers represented by the vectors \underline{g} and \underline{s} , respectively.

• $n \times m$ bits multiplier:

$$0 \le x \le 2^n - 1$$
 (the multiplicand)

$$0 \le y \le 2^m - 1$$
 (the multiplier),

$$0 \le z \le (2^n - 1)(2^m - 1)$$
 (the product).

• The high-level function:

$$z = x \times y$$

$$z = x(\sum_{i=0}^{m-1} y_i 2^i) = \sum_{i=0}^{m-1} x y_i 2^i$$

Since y_i is either 0 or 1, we get

$$xy_i = \begin{cases} 0 & \text{if } y_i = 0 \\ x & \text{if } y_i = 1 \end{cases}$$

Multiplier implementation:

- ullet m arrays of n AND gates
- m-1 n-bit adders

Figure 10.18: IMPLEMENTATION OF AN 8×6 MULTIPLIER: a) PRIMITIVE MODULES; b) NETWORK.

- ullet delay of the buffer which connects signal y_0 to the n AND gates
- delay of the AND gate
- delay of the adders

$$t_{\text{adders}} = t_c(n-1) + t_s + (t_c + t_s)(m-2)$$

If $t_S = t_C$, we get

$$t_{\text{adders}} = (n + 2(m-2))t_s = (n + 2m - 4)t_s$$

FOR THE 8 × 6 CASE: $t_{adders} = (8 + 12 - 4)t_s = 16t_s$

EXAMPLE OF NETWORKS WITH STANDARD ARITHMETIC ** MODULES

Inputs:
$$a[3], a[2], a[1], a[0], b[3], b[2], b[1], b[0] \in \{0, ..., 2^{16} - 1\}$$

$$\underline{e} = (e_3, e_2, e_1, e_0) \quad , \quad e_i \in \{0, 1\}$$
 Outputs:
$$c[3], c[2], c[1], c[0] \in \{0, ..., 2^{17} - 1\}$$

$$d \in \{0, 1, 2, 3\}$$

$$f \in \{0, 1\}$$

Function:

$$f = \begin{cases} 1 & \text{if at least one } e_j = 1 \\ 0 & \text{otherwise} \end{cases}, \quad j = 0, 1, 2, 3$$

$$d = \begin{cases} i & \text{if } e_i \text{ is the highest priority event} \\ 0 & \text{if no event occurred} \end{cases}$$

$$c[i] = \begin{cases} a[i] + b[i] & \text{if } e_i \text{ is the highest priority event} \\ 0 & \text{otherwise} \end{cases}$$

CONSISTS OF

- a PRIORITY ENCODER to determine the highest-priority event;
- an ADDER;
- two SELECTORS (multiplexers) to select the corresponding inputs to the adder;
- a DISTRIBUTOR (demultiplexer) to send the output of the adder to the corresponding system output; and
- an OR gate to determine whether at least one event has occurred.

Figure 10.19: NETWORK IN EXAMPLE 10.5