A predictive method for full-pose predictive distributed leader-follower formation control for non-holonomic robots

Titouan Renard, 2021

April 10, 2021

1 Problem Statement

We have a team of N differential-wheeled robots $\mathcal{R}_1, ..., \mathcal{R}_n$ described by the kinematic equations (the robot's dynamics are neglected):

$$\dot{f}(\vec{x}, \vec{u}) = \begin{cases} \dot{x}_i = u_i \cos \theta_i \\ \dot{y}_i = u_i \sin \theta_i \\ \dot{\theta}_i = \omega_i \end{cases}$$
(1)

Where $\vec{u}_i = [u_i, \omega_i]^T$ is the control input vector of \mathcal{R}_i with u_i linear translational speed and ω_i rotational speed. And where $\vec{x}_i = [x_i, y_i, \theta_i]^T$ is the pose vector of \mathcal{R}_i . We denote the full pose and control input of the system as:

$$\vec{x} = [x_1, y_1, \theta_1, x_2, y_2, \theta_2, ..., x_N, y_N, \theta_N]^T$$
(2)

$$\vec{u} = [u_1, \omega_1, u_2, \omega_2, ..., u_N, \omega_N]^T$$
(3)

We denote $\mathbf{R} = \{\mathcal{R}_1, ..., \mathcal{R}_n\}$ the set of all robots. Each robot \mathcal{R}_i has a set of neighboring robots $\mathcal{N}_i \subseteq \mathbf{R}$, which contains the set of robots for which \mathcal{R}_i can get a position estimation. The pose of \mathcal{R}_j estimated by \mathcal{R}_i is given by a range ρ_{ij} and a bearing α_{ij} . Each pose estimation is affected by noise which is denoted ϵ_z and is denoted by a vector:

$$z_{ij} = \begin{bmatrix} \tilde{\rho}_{ij} \\ \tilde{\alpha}_{ij} \end{bmatrix} = \begin{bmatrix} \rho_{ij} \\ \alpha_{ij} \end{bmatrix} + \epsilon_z. \tag{4}$$

At time t robot \mathcal{R}_i gathers an observation list :

$$\mathcal{Z}_i = \{ z_{ij} | \ \mathcal{R}_i \in \mathcal{N}_i \}. \tag{5}$$

Our goal is to have robots $\mathcal{R}_2, ..., \mathcal{R}_N$ (that we call *followers*) maintain formation with the robot \mathcal{R}_1 (which we call *leader*) while avoiding obstacles in their trajectories. We look for a control law that can be implemented in a distributed fashion for robots $\mathcal{R}_2, ..., \mathcal{R}_N$, while the control law of \mathcal{R}_1 is defined arbitrarily.

The formation is defined by a set of biases $\vec{\beta}_i = [\delta_i^x, \delta_j^x, \delta_i^\theta]^T$, $\forall i = 2...N$ which denotes the expected pose of \mathcal{R}_i relative to \mathcal{R}_1 within the formation. We can thus express the pose error \bar{x}_i for \mathcal{R}_i as:

$$\bar{x}_i = \vec{x}_i - \vec{\beta}_i = \begin{bmatrix} x_i - \delta_i^x \\ y_i - \delta_i^y \\ \theta_i - \delta_i^\theta \end{bmatrix}$$

$$(6)$$

The problem of maintaining formation thus becomes the problem of reducing the total pose error $\mathcal{E} = \sum_{2...N} \|\vec{e_i}\|$ in a distributed fashion.

2 Laplacian-based feedback for formation control

Let $G = (\mathbf{R}, \mathbf{E})$ be an undirected graph constructed such that

- 1. it's vertex set $\mathbf{R} = \{\mathcal{R}_1, ..., \mathcal{R}_n\}$ contains every single robot in the team
- 2. it's edges set contains an arbitrarily oriented edge for each robot in line of sight of another

$$\mathbf{E} = \{ (\mathcal{R}_i, \mathcal{R}_j) | \ \mathcal{R}_j \in \mathcal{N}_i \}.$$

Let \mathcal{I} denote the *incidence* matrix (with arbitrary orientations) of G and \mathcal{W} it's weight matrix. We compute the *weighted laplacian matrix* of G as follows:

$$\mathcal{L} = \mathcal{I} \cdot \mathcal{W} \cdot \mathcal{I}^T$$

Note that the weighted laplacian matrix $\mathcal L$ is constructed in such a way that :

$$\dot{\vec{x}} = -\mathcal{L}x(t) \tag{7}$$

$$\dot{x}_i = \sum_{\mathcal{R}_j \in \mathcal{N}_i} w_{ij} (x_j - x_i) \tag{8}$$

A standard approach to formation control is to implement a Laplacian based feedback equation (which can be tough of as a PI controller) such as:

$$\dot{x} = -\mathcal{L}\bar{x} + K_I \int_0^t \mathcal{L}(\tau)\bar{x}(\tau)d\tau \tag{9}$$

2.1 Predictive approach to the laplacian-based formation control problem

We propose to apply an optimization based predictive control law to our robots :