Capítulo 1

Integrales sobre curvas

1.1. Integrales de campos escalares sobre curvas

Definición 1.1: Parametrización

Llamamremos **parametrización** a toda función $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$, donde I es un intervalo en \mathbb{R} .

Definición 1.2: Curva suave

Sea \mathcal{C} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 $\mathcal C$ es una curva suave \iff existe una parametrización $\alpha:I\subseteq\mathbb R\to\mathbb R^3$ de clase C^1 tal que $\mathcal C=\alpha(I)$

Definición 1.3: Inmersión

Consideremos una parametrización $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$.

Diremos que α es una **inmersión** \iff $\left\{ \begin{array}{l} 1. \ \alpha \text{ es de clase } C^1 \\ 2. \ \alpha'(t) \neq 0 \end{array} \right. \ \forall t \in I$

Definición 1.4: Curva regular

Sea \mathcal{C} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{C} es una curva regular \iff existe una inmersión $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ de clase C^1 tal que $\mathcal{C} = \alpha(I)$

Definición 1.5: Curva simple

Sea \mathcal{C} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{C} es una **curva simple** \iff <u>existe</u> una inmersión $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ de clase C^1 tal que $\mathcal{C} = \alpha(I)$ y además α es inyectiva en el interior de I

Definición 1.6: Curva cerrada

Sea \mathcal{C} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{C} es una **curva cerrada** \iff <u>existe</u> una inmersión $\alpha : [a,b] \subseteq \mathbb{R} \to \mathbb{R}^3$ de clase C^1 tal que $\mathcal{C} = \alpha(I)$ y se cunple que $\alpha(a) = \alpha(b)$

Definición 1.7: Cambio de parámetros

Consideramos una función $h:I\to\mathbb{R},$ donde I es un intervalo de $\mathbb{R}.$ Diremos que

h es un cambio de parámetros \iff $\begin{cases} 1) h \text{ es de clase } C^1 \\ 2) h'(t) \neq 0 \quad \forall t \in I \end{cases}$

Proposición 1.1

Sea $\alpha:I\to\mathbb{R}^3$ es una parametrización de clase C^1 de una curva $\mathcal{C}\subset\mathbb{R}^3$ y $h:I\to\mathbb{R}^3$ un cambio de parámetros, y sea J=h(I).

Entonces (1) la función

$$\beta \stackrel{\text{def}}{=} \alpha \circ h^{-1} : J \to \mathbb{R}^n$$

es una parametrización de clase C^1 de la curva C, llamada **reparametrización** de α a través del cambio de parámetros h.

- (2) Si α es invectiva entonces β también es invectiva.
- (3) Si α es una inmersión entonces β también es una inmersión.

Proposición 1.2

Si $\alpha:I\to\mathbb{R}^3$ y $\beta:J\to\mathbb{R}^3$ son dos inmersiones inyectivas de una misma curva $\mathcal{C}\subseteq\mathbb{R}^3$ entonces existe un cambio de parámetros $h:I\to\mathbb{R}$ con h(I)=J tal que $\beta=\alpha\circ h^{-1}$

Definición 1.8: Integral de un campo escalar sobre una curva

Sea $\mathcal{C} \subset \mathbb{R}^3$ una curva regular simple y $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ un campo escalar continuo en un abierto U que contiene a \mathcal{C} . Si $\alpha: [a,b] \to \mathbb{R}^3$ es una inmersión de la curva \mathcal{C} definimos la integral del campo escalar f sobre la curva \mathcal{C} como:

$$\left| \int_{\mathcal{C}} f ds \stackrel{\text{def}}{=} \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| dt \right|$$
 (1.1)

Teorema 1.1: Independencia respecto a la parametrización

Sea $\mathcal{C} \subset \mathbb{R}^3$ una curva regular simple y $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ un campo escalar continuo en un abierto U que contiene a \mathcal{C} .

Si $\alpha:[a,b]\to\mathbb{R}^3$ y $\beta:[c,d]\to\mathbb{R}^3$ son dos inmersiones inyectivas de la curva $\mathcal C$ entonces se cumple que:

$$\int_{a}^{b} f(\alpha(t))||\alpha'(t)||dt = \int_{c}^{d} f(\beta(s))||\beta'(s)||ds$$

Demostración

Por la proposición 1.1 y 1.2 sabemos que β es una reparametrización de α a través de un cambio de parámetros $h:[a,b]\to [c,d]$ esto es:

$$\alpha = \beta \circ h$$

Primer caso: Si $h'(t) > 0 \quad \forall t \in [a, b]$ la función $h : [a, b] \to [c, d]$ es creciente y se cumple que

$$\begin{cases} h(a) = c \\ h(b) = d \end{cases}$$

Luego

$$\int_{a}^{b} f(\alpha(t))||\alpha'(t)||dt = \int_{a}^{b} f(\beta(h(t)))||[\beta(h(t))]'||dt
= \int_{a}^{b} f(\beta(h(t)))||\beta'(h(t))h'(t)||dt
= \int_{a}^{b} f(\beta(h(t)))||\beta'(h(t))||h'(t)dt
= \int_{h(a)}^{h(b)} f(\beta(s)||\beta'(s)||ds
= \int_{c}^{d} f(\beta(s)||\beta'(s)||ds$$

Segundo caso: Si $h'(t) < 0 \quad \forall t \in [a,b]$ la función $h:[a,b] \to [c,d]$ es decreciente y se cumple que

$$\begin{cases} h(a) = d \\ h(b) = c \end{cases}$$

Luego

$$\int_{a}^{b} f(\alpha(t))||\alpha'(t)||dt = \int_{a}^{b} f(\beta(h(t)))||[\beta(h(t))]'||dt
= \int_{a}^{b} f(\beta(h(t)))||\beta'(h(t))h'(t)||dt
= - \int_{a}^{b} f(\beta(h(t)))||\beta'(h(t))||h'(t)dt
= - \int_{h(a)}^{h(b)} f(\beta(s)||\beta'(s)||ds
= - \int_{c}^{d} f(\beta(s)||\beta'(s)||ds
= \int_{c}^{d} f(\beta(s)||\beta'(s)||ds$$

1.2. Integrales de campos vectoriales sobre curvas

Definición 1.9: Espacio de direcciones tangente

Sea \mathcal{C} una curva regular y simple en \mathbb{R}^3 y $p \in \mathcal{C}$.

Si $\alpha:I\to\mathbb{R}^3$ es una inmersión inyectiva de la curva $\mathcal C$ existe un único $t\in I$ tal que

$$p = \alpha(t)$$

Definimos el **espacio de direcciones tangentes** C en p, y lo indicamos por $T_p(C)$, al subespacio vectorial de \mathbb{R}^3 generado por $\alpha(t)$, esto es

$$T_p(\mathcal{C}) \stackrel{\text{def}}{=} [\alpha'(t)]$$

Y diremos que

 $v \neq 0$ es una dirección tangente a \mathcal{C} en $p \iff v \in T_p(\mathcal{C})$

Definición 1.10: Orientación

Sea \mathcal{C} una curva regular y simple en \mathbb{R}^3 .

Un campo vectorial $\vec{T}: \mathcal{C} \to \mathbb{R}^3$ es una **orientación** en $\mathcal{C} \iff$ cumple las siguientes propiedades:

- 1. \vec{T} es continuo
- 2. \vec{T} es un versor (esto es $||\vec{T}|| = 1$)
- 3. $\vec{T}(p)$ es una dirección tangente a \mathcal{C} en p (esto es $\vec{T}(p) \in T_p(\mathcal{C})$)

Una **curva orientada** es una curva en la cual hemos elegido una orientación.

Definición 1.11: Integral de un campo vectorial sobre una curva

Sea $\mathcal{C} \subset \mathbb{R}^3$ una curva regular simple orientada por el campo continuo \vec{T} de versores tangentes.

Consideremos un campo vectorial $\vec{X}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ continuo en un abierto U que contiene a \mathcal{C} . Definimos la integral del campo vectorial \vec{X} a lo largo de la curva \mathcal{C} como:

$$\int_{\mathcal{C}} \vec{X} ds \stackrel{\text{def}}{=} \int_{\mathcal{C}} \vec{X} \cdot \vec{T} ds$$

Proposición 1.3

Sea $\mathcal{C} \subset \mathbb{R}^3$ una curva regular simple orientada por el campo continuo \vec{T} de versores tangentes y $\vec{X}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial continuo en un abierto U que contiene a \mathcal{C} .

Si $\alpha:[a,b] \to \mathbb{R}^3$ es una inmersión de la curva $\mathcal C$ entonces

$$\int_{\mathcal{C}} \vec{X} ds = \pm \int_{a}^{b} \vec{X}(\alpha(t)) \cdot \alpha'(t) dt$$
(1.2)

Demostración

$$\int_{\mathcal{C}} \vec{X} ds \stackrel{\text{def}}{=} \int_{\mathcal{C}} \vec{X} \cdot \vec{T} ds
= \int_{a}^{b} (\vec{X}(\alpha(t)) \cdot \vec{T}(\alpha(t))) ||\alpha'(t))|| dt
= \pm \int_{a}^{b} (\vec{X}(\alpha(t)) \cdot \frac{\alpha'(t)}{||\alpha'(t)||}) ||\alpha'(t))|| dt
= \pm \int_{a}^{b} \vec{X}(\alpha(t)) \cdot \alpha'(t) dt$$

Capítulo 2

Integrales sobre superficies

2.1. Integrales de campos escalares sobre superficies

Definición 2.1: Parametrización

Llamaremos **parametriación** a toad función $\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$, donde D es un conjunto abierto y conexo en \mathbb{R}^2 .

Definición 2.2: Superficie suave

Sea \mathcal{S} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{S} es una superficie suave \iff existe una parametrización $\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ de clase C^1 tal que $\mathcal{S} = \varphi(D)$ siendo D un conjunto conexo de \mathbb{R}^2 .

Definición 2.3: Inmersión

Consideremos una parametrización $\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$.

Diremos que

 φ es una **inmersión** \iff $\left\{ \begin{array}{l} 1. \ \varphi \ \text{es de clase} \ C^1 \\ 2. \ \varphi_u(u,v) \times \varphi_v(u,v) \neq 0 \end{array} \right.$

Definición 2.4: Superficie regular

Sea \mathcal{S} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{S} es una superficie regular \iff existe una inmersión

$$\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3 \text{ tal que } \mathcal{S} = \varphi(D)$$

Definición 2.5: Superficie simple

Sea \mathcal{S} un conjunto no vacío de \mathbb{R}^3 .

Diremos que

 \mathcal{S} es una superficie simple \iff existe una parametrización

 $\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ de clase C^1 tal que $\mathcal{S} = \varphi(D)$ con φ inyectiva en D.

Definición 2.6: Integral de un campo escalar sobre una superficie

Sea $\mathcal{S} \subset \mathbb{R}^3$ una superficie regular y simple y $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ un campo escalar continuo en un abierto U que contiene a \mathcal{S} . Si $\varphi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ es una inmersión inyectiva que cuber a \mathcal{S} definimos la integral del campo escalar f sobre la superficie \mathcal{S} como:

$$\iint_{\mathcal{S}} f dS \stackrel{\text{def}}{=} \iint_{D} f(\varphi(u, v)) ||\varphi_{u}(u, v) \times \varphi_{v}(u, v)|| du dv$$
 (2.1)

Proposición 2.1

Sean v_1, v_2, w_1, w_2 vectores en \mathbb{R}^3 y A una matriz real 2×2 y las matrices V y W siendo conformadas por los vectores v_1, v_2 y w_1, w_2 puestos como columnas respectivamente, tales que

$$V = WA$$

entonces

$$v_1 \times v_2 = \det(A)(w_1 \times w_2)$$

Proposición 2.2

Si φ es una reparametrización de ψ a través del cambio de parámetros h entonces

$$\varphi_u(u,v) \times \varphi_v(u,v) = \det(\mathbb{J}h(u,v))(\psi_s(s,t) \times \psi_t(s,t))$$

donde (s,t) = h(u,v).

Demostración

Tenemos que

$$\varphi = \psi \circ h$$

y por la regla de la cadena

$$\mathbb{J}\varphi(u,v) = \mathbb{J}\psi(h(u,v)) \cdot \mathbb{J}h(u,v)$$

$$\iff$$
 $\mathbb{J}\varphi(u,v) = \mathbb{J}\psi(s,t) \cdot \mathbb{J}h(u,v)$

Aplicando la proposición 2.1 conluimos

$$\varphi_u(u,v) \times \varphi_v(u,v) = \det(\mathbb{J}h(u,v))(\psi_s(s,t) \times \psi_t(s,t))$$

Teorema 2.1: Independencia respecto a la parametrización

Sea $\mathcal{S} \subset \mathbb{R}^3$ una superficie regular simple y $f: U \subseteq \mathbb{R}^3 \to \mathbb{R}$ un campo escalar continuo en un abierto U que contiene a \mathcal{S} .

Si $\varphi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ y $\psi: E \subset \mathbb{R}^2 \to \mathbb{R}^3$ son dos inmersiones inyectivas de la superficie \mathcal{S} entonces se cumple

$$\iint_{D} f(\varphi(u, v)) ||\varphi_{u}(u, v) \times \varphi_{v}(u, v)|| \ dudv$$

$$=$$

=

$$\iint_{E} f(\psi(s,t))||\psi_{s}(s,t) \times \psi_{t}(s,t)|| \ dsdt$$

Demostración

Tenemos que ψ es una reparametrización de φ a través de un cambio de parámetros $h:D\to E$, esto es:

$$\psi = \varphi \circ h$$

Aplicando el cambio de variables (en integral doble)

$$\begin{cases} (s,t) = h(u,v) \\ dsdt = |det(\mathbb{J}h(u,v))| dudv \end{cases}$$

se tiene que

$$\iint_{E} f(\psi(s,t))||\psi_{s}(s,t) \times \psi_{t}(s,t)||dsdt = \iint_{E} f(\psi(h(u,v))||\psi_{s}h((u,v)) \times \psi_{t}(h(u,v))|||det(\mathbb{J}h(u,v))||dudv$$
 pero como $\varphi = \psi \circ h$

$$f(\psi(h(u,v))) = f(\varphi(u,v))$$

y utilizando la proposición 2.1 se deduce que

$$||\psi_s(h(u,v)) \times \psi_t(h(u,v))|| = ||\varphi_u(u,v) \times \varphi_v(u,v)||$$

sustituyendo obtenemos

$$\iint_{D} f(\varphi(u,v)) ||\varphi_{u}(u,v) \times \varphi_{v}(u,v)|| \ dudv = \iint_{E} f(\psi(s,t)) ||\psi_{s}(s,t) \times \psi_{t}(s,t)|| \ dsdt$$

2.2. Integrales de campos vectoriales sobre superficies

Definición 2.7: Espacio de direcciones normales

Definición 2.8: Orientación

Definición 2.9: Integral de un campo vectorial sobre una superficie

Proposición 2.3

Capítulo 3

Teoremas clásicos del cálulo vectorial

Teorema 3.1: de la curva de Jordan
Teorema 3.2: Green
<u>Demostración</u>
Definición 3.1: Operador de Hamilton
Definición 3.2: Rotor
Teorema 3.3: Stokes
<u>Demostración</u>
Definición 3.3: Divergencia

Teorema 3	4: Gauss	
<u>Demostració</u>	<u>n</u>	