This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-296825

(43)Date of publication of application: 25.10.1994

(51)Int.CI.

B01D 53/34 B01D 53/34

CO5C CO5C 3/00

(21)Application number : 05-338018

(71)Applicant: EBARA CORP

(22)Date of filing:

28.12.1993

(72)Inventor: AOKI SHINJI

HIRAYAMA MITSUO MAEZAWA AKIHIKO

(54) TREATMENT OF BYPRODUCT MANURING EFFECT SUBSTANCE

(57)Abstract:

PURPOSE: To prevent a crop injury even when sulfamic acid type impurities are slightly mixed by adding an alkaline substance (excepting ammonia) to a recovered byproduct to adjust the pH of a byproduct manuring effect substance to a specific value or more. CONSTITUTION: For example, the exhaust gas from

boiler equipment 1 is guided to a cooling tower 3 to be cooled to the temp. range from a dew point to 100\$° cooling water sprayed from a cooling water pipe 4 and receives the addition of ammonia from a flow rate control valve 6 on the way of an exhaust gas conduit 5 to be guided to a reactor 7. Here, the exhaust gas is irradiated with electron beam from an electron beam generator 9 and SOx and/or NOx in the gas are reacted with ammonia to be changed to ammonium sulfate and/or ammonia nitrate. These compds. are removed by a dust

collector and the purified exhaust gas is discharged to the atmosphere from a flue 13 and the removed ammonium sulfate and/or ammonium nitrate are recovered as a byproduct from a discharge pipe 12. An alkaline substance (excepting ammonia) is added to the recovered byproduct to adjust the pH of the byproduct manuring effect substance to 6 or higher.

LEGAL STATUS

[Date of request for examination]

02.05.1994

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other

Reference 3

PATENT APPLICATION PUBLIC DISCLOSURE (KOKAI) No. 6-296825

Published: October 25, 1994

Patent Application No. 5-338018 divided out from J.P.App. No. 62-312544

Filed: December 10, 1987 Inventors: S. Aoki, et al. Applicant: Ebara Corp.

Title: Treatment of Byproduct Manuring Effect Substance

10 Claims:

5

25

30

- 1. Process for treating byproduct manuring effect substance generated in a process for treating an exhaust gas comprising the steps of: leading an exhaust gas containing sulfur oxides (SO_x) and/or nitrogen oxides (NO_x) to a radiation irradiation zone; adding ammonia (NH₃) to the exhaust gas before, during or after the irradiation; collecting the resulting byproducts (ammonium sulfate and/or ammonium nitrate) by means of a dust collector; and then releasing the exhaust gas into atmosphere, characterized in that it comprises adding an alkaline substance (other than ammonia) to the byproduct recovered in order to obtain a pH of 6 of the byproduct manuring effect substance.
 - 2. Process according to claim 1, wherein the alkaline substance is added in an amount of 1.0 to 10 % by weight of the byproduct manuring effect substance.
 - 3. Process according to claim 1 or 2, wherein as the alkaline substance, calcium hydroxide (Ca(OH)₂), calcium oxide (CaO), sodium carbonate (Na₂CO₃), sodium hydrogencarbonate (NaHCO₃), magnesium hydroxide (Mg(OH)₂), calcium carbonate (CaCO₃), or a mixture of two or more of them is added in the state of powder.

4. Process according to any one of claims 1 to 3, wherein the radiation is an electron beam from an electron beam accelerator.

- 4 -

5 Specification:

[0001] This invention relates to a process for treating byproduct manuring effect substance generated in a process for treating an exhaust gas containing harmful gas components such as SO_x and/or NO_x.

10 (----)

> (----) As the alkaline substance, inorganic salts formed by [0012] calcium, sodium, potassium or magnesium, such as Ca(OH)2, CaO, CaCO3, Na₂CO₃, NaHCO₃ and Mg(OH)₂, alone or as a mixture, are preferable.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-296825

(43)公開日 平成6年(1994)10月25日

(51) Int.Cl. ⁵ B 0 1 D 53/34	識別記号 庁内整理番号 132 A 2AB	F I 技術表示箇所
C 0 5 C 1/00 3/00	7537 – 4H 7537 – 4H	
	1001 411	審査請求 有 発明の数1 OL (全 7 頁)
(21)出願番号 (62)分割の表示	特顧平5-338018 特顧昭62-312544の分割	(71)出願人 000000239 株式会社在原製作所
(22)出顧日	昭和62年(1987)12月10日	東京都大田区羽田旭町11番1号
		(72)発明者 育木 慎治 東京都大田区羽田旭町 11番1号 株式会 社荏原製作所内
		(72)発明者 平山 詳郎 東京都大田区羽田旭町 11番1号 株式会 社荏原製作所内
		(72)発明者 前沢 章彦 東京都大田区羽田旭町 11番1号 株式会 社荏原製作所内
		(74)代理人 弁理士

(54) 【発明の名称】 副生品肥効物質の処理法

(57)【要約】

【目的】 SOxおよび/またはNOx等の有害ガス成分を含む排ガスの処理法において、副生品肥効物質のスルファミン酸系不純物の薬害問題解消する。

【構成】 SOxおよび/またはNOx等を含む排ガスを放射線照射区域に誘導し、照射前、照射中または照射後の排ガスにNH₃を添加し、形成された副生品を集じん機で捕集した後、排ガスを大気に放出し、前配副生品にアルカリ性物質(NH₃を除く)を添加して、該副生品肥効物質のpHを6以上とすることからなる。

【特許請求の範囲】

【請求項1】 硫黄酸化物 (SOx) および/または窒 素酸化物(NOx)を含む排ガスを放射線照射区域に誘 導すること、照射前、照射中または照射後の排ガスにア ンモニア (NH₃) を添加すること、並びに形成された 副生品(硫安および/または硝安)を集じん機で捕集し た後、排ガスを大気に放出することからなる排ガス処理 法において、回収した副生品にアルカリ性物質 (アンモ ニアを除く)を添加して、該副生品肥効物質のpHを6 法。

【請求項2】 アルカリ性物質を副生品肥効物質に対 し、1.0wt%~10wt%の範囲で添加する、請求 項1記載の処理法。

【請求項3】 アルカリ性物質として、水酸化カルシウ ム (Ca (OH) 2)、酸化カルシウム (CaO)、炭 酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(N a H C O₁)、水酸化マグネシウム (Mg (OH)₂)、 炭酸カルシウム(CaCOs)、またはそれらの2種以 上の混合物を粉末状態で添加する、請求項1又は2記載 20 の処理法。

【請求項4】 放射線が、電子線加速機からの電子線で ある、請求項1乃至3のいずれかに記載の処理法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、SOxおよび/または NOx等の有害ガス成分を含む排ガスの処理法におけ る、副生品肥効物質の処理法に関する。

[0002]

【従来の技術】従来重油燃焼炉等からのSOxおよび/ 30 次式で求めることができる。 またはNOxを含む排ガスを処理して無害のガスとする ためには図1に示す如く、例えばポイラー設備1からの*

*排ガス(通常130℃以上)を排ガス導管2を経て冷却 塔3に導く。こゝで排ガスは冷却水管4からスプレーさ れる冷却水により露点以上100℃以下の温度に冷却さ れ、しかる後排ガス導管5を経て反応器7に導かれる。 この際排ガス導管5の途中で流量調節弁6からアンモニ アを添加する。

【0003】反応器7に導入された排ガスは電子線発生 装置9からの電子線を照射され、ガス中のSOxおよび /またはNOxがアンモニアと反応して硫安および/ま 以上とすることを特徴とする、副生品肥効物質の処理 10 たは硝安に変化する。次にこれを集じん機11で除去 し、浄化された排ガスは煙突13から大気中に放出され る。除去された硫安および/または硝安は副生品として 排出管12から回収される。 なお電子線照射による発熱 および脱硫脱硝に伴なう発熱による排ガスの温度上昇を 防止し、最適温度に維持するため、反応器中の照射前、 照射中、照射後のいずれかの位置またはこれらを組合せ た位置で、冷却水スプレー装置8から冷却水をスプレー する。最も望ましいのは照射後である(特開平1-13 5519号参照)。

> 【0004】使用する集じん機11には電極式 (EP) とパグフィルターとの組合せ型、EP単独型およびパグ フィルター単独型等がある。パグフィルター単独型は排 ガスの圧力損失が短時間に上昇するため、安定運転のた めには大容量のパグフィルターを要し、コスト高にな る。図中の符号14, 15, 16は夫々SOx分析計、 NOx分析計および排ガス流量計を示し、アンモニアの 添加量 (NH₃) は、排ガス流量 (QNm³/h)、SO x濃度([SOx] ppm)、NOx濃度([NOx] ppm)、脱硫率 (ηsor) 及び脱硝率 (ηκοr) により

[0005]

 NH_3 量 (kg/h) = Q×17.03/22.41×10⁻⁶×

 $(2 [SOx] \eta SOx/100+$

[NOx] η NOx/100) $\cdot \cdot \cdot \cdot$ (1)

近年、有害成分の排出量を低減させるため、排ガス処理 設備には脱硫率90%以上、脱硝率80%以上、リーク アンモニア10ppm以下と、極めて厳しい規制値が要 40 求されてきており、今後更に厳しさを増すものと予想さ れる.

[0006]

【解決を要する技術上の問題点】しかるに上記従来の方 法において、副生品に関してスルファミン酸系不純物の

薬害問題があった。以下これについて更に詳しく述べ る。図2は石炭燃焼排ガスにおけるSOx濃度、NOx 濃度変動の代表的チャートを示す。SOx濃度は平均値 1500ppmに対し約±100ppmの変動が、また NOx 濃度は平均値300ppmに対して約±20pp mの変動がみられる。脱硫率90%、脱硝率80%の場 合の添加すべきアンモニアを (1) 式により求める。

[0007]

添加すべき最大濃度=

 $2 \times 1600 \times 0$. $9 + 320 \times 0$. 8 = 3136 ppm

添加すべき最低濃度=

 $2 \times 1400 \times 0$. $9 + 280 \times 0$. 8 = 2744 ppm

添加すべき平均濃度=

 $2 \times 1500 \times 0$. $9 + 300 \times 0$. 8 = 2940 ppm

2744ppmから3136ppmの範囲のアンモニア を±10ppmの精度で供給する必要がある。

[0008] [0008] [0008] [0008] [0008]6、10/2744) という精度を意味しており、通常 のコントロール精度(フルスケールの1~2%)に比較 して、かなり小さく、リークアンモニアを10ppm以 下にコントロールすることは非常に困難であった。また 副生品は硫安、硝安が主成分で夫々有用な窒素肥料であ るが、排ガス中のCO濃度がSOェ濃度の10倍以下に なると、数%と僅かではあるが、植物に有害なスルファ 20 4/3136~2744/2744)となる。 ミン酸が生成し、そのため植物の成長を阻害するという 問題があった(スルファミン酸化合物の熱分解除去方法 は特公平2-57979号に開示されている)。

[0009]

【問題点を解決するための手段】本発明者等は回収副生 品の改質について、回収副生品のpHを6以上、好まし くは7以上となるようにすることにより、スルファミン 酸系不純物の薬害を実質的に阻止できることができた。

【0010】添加アンモニアの理論量は前記の(1)式*

許容リークアンモニア濃度を前述の10ppmとすれば 10*から求められるが、実際の添加量はSOx、NOxの濃 度の変動パターンに応じて65%~100%となる。す なわち、実質的に大部分の脱硫、脱硝は反応の早いアン モニアによって行なわせることになる。添加量の選定方 法としては変動パターン中の最低濃度を基準として求め ることが望ましい。図2の場合、SOxの最低濃度は1 400ppm、NOxは280ppmなので添加量は前 述のように2744ppmとなる。これに対して最高濃 度に対する理論量は3136ppmなので実添加量の理 論添加量に対する割合は87.5%~100% (274

> 【0011】図3は入口SOx、NOxの濃度変動の比 較的大きい場合を示しており、それぞれの最高濃度は1 200ppm、320ppm、最低濃度は800pp m、280ppmである。所望の脱硫率と脱硝率は、都 市近郊、海岸線など排ガス処理場所によって要求される 程度、すなわち目標値は異なるが、脱硫率90%、脱硝 率80%の場合に添加すべきアンモニアの量は(1)式 から次の通りになる。

[0012]

最大理論量=

 $2 \times 1200 \times 0$. $9 + 320 \times 0$. 8 = 2416 (ppm)

最低理論量=

 $2 \times 800 \times 0$. $9 + 280 \times 0$. 8 = 1664 (ppm)

従って最低理論量に基づいてアンモニアを添加するとな ると、その変動チャートに対する比率は68.9%~1 00% (1664/2416~1664/1664) と なる。アルカリ性物質としてはカルシウム、ナトリウ ム、カリウム、マグネシウムが形成する無機塩類、具体 40 からの電子線が望ましい。 的にはCa (OH) 2, CaO, CaCO3, Na2C Os, NaHCOs, Mg (OH) 2等の1種または2種 以上の混合物が望ましい。

【0013】上記の場合、回収副生品のpHが6以上、 好ましくは7以上となるような量のアルカリ性物質を添 加することが望ましい。その理由は植生に有害なスルフ アミン酸系化合物が数%混在しても、アルカリ性物質の 添加量を増やした場合には植生に対する悪影響を防止す ることができるからである。

の濃度、脱硫率、脱硝率によって異なるが、副生品に対 する重量比にして1.0%~10%が望ましい。また本 発明方法で使用する放射線としては電子線、ペータ線、 γ線、α線、X線、中性子線があるが、電子線発生装置

[0015]

【実施例】次に本発明を実施例により更に詳細に説明す

実施例1

図1に示す方式の実験装置を用い、集じん機としてパグ フィルター単独の実験を実施した。ガス温度130℃、 SOx濃度平均1500ppm、NOx濃度平均300 ppm、CO濃度25ppmの排ガス、8000Nm³ / hを冷却塔にて70℃に冷却した後、2744~31
 【0014】アルカリ性物質の添加量はSOx, NOx 50 36ppmのアンモニアを添加した。SOx, NOxの

変動は、図2と同様であり、 $\eta_{101} = 90\%$, $\eta_{101} = 8$ 0%に必要なアンモニアを添加した。その後反応器に導 入し、1.8Mradの電子線を照射した。電子線照射 前の水スプレー装置により水をスプレーし、パグフィル*

*ター出口の排ガスを70℃に調整した。パグフィルター 出口の脱硫率、脱硝率およびNH3濃度を表1に示す。 [0016]

表1

	脱硫率	脱硝率	NH ₃
バグフィルター	88~90%	81%	0~30ppm
出口			

パグフィルターで捕集した副生品のpHは約3であっ た。この副生物に約2. 6 w t %のCa (OH) 2 を添 加しpHを7に調整した。

【0017】 実施例2

※実施例1で得た副生品を用いて小松菜による発芽育成試 験を行ない、市販の硫安・硝安混合肥料と比較した。そ の結果を表2に示す。

表 2

No.	肥料	スルファミン	рН	試験結果	
		酸含有率			
1	実施例1の	4. 8wt%	7	No. 2と同様、	
	副生品			良好な成育	
2	市販混合肥料	0 w t %	-	良好な成育	

Ж

上記の結果に示されている如く、No. 1ではpHが調 整されているため、スルファミン酸の薬害が防止されて いることが判る。

【0018】参考例1

図1に示す方式の実験装置を用い、集じん機として電気 標として下記の実験を実施した。即ちガス温度130 ℃、SOx平均濃度1500ppm、NOx平均濃度3 00ppm (各々の変動は図2に示す。)、CO濃度2 5 p p m の排ガス 8 0 0 0 N m³/h を冷却塔 3 に て 7 0℃に冷却した後2700ppmのアンモニアを添加し て反応器に導入し、1.8Mradの電子線を照射し た。冷却水スプレー装置8から水をスプレーした。電気 集じん機11で副生品の大部分を回収した。回収した副 生品のpHは約2.7であった。副生品にCa (OH) 2、0.5 w t %, 1.0 w t %, 2.0 w t %, 3. 40 排ガスの変動チャートを示す。 0wt%, 4. 0wt%または5. 0wt%加えて生じ るpHを図4に示す。この結果、副生品のpHが7とな

るには約2. 6wt%のCa (OH) 2を添加する必要 のあることが認められた。

[0019]

【発明の効果】上記の如く本発明により、スルファミン 酸系不純物が多少混在してもアンモニア以外のアルカリ 集じん機を使用した。脱硫率90%、脱硝率80%を目 30 性物質の添加によって、回収副生品のpHを6以上、好 ましくは7以上となすことにより、その薬害を阻止する ことができる。また本発明を実施するには従来の装置に 特別な変更を加える必要がないので産業上大きな利益を 得ることができる。

【図面の簡単な説明】

【図1】排ガス処理技術の工程図を示す。

【図2】排ガス中のSOx、NOxの濃度の変動チャー トを示す。

【図3】排ガス中のSOx、NOxの濃度変動の大きい

【図4】Ca (OH) 2含有率と副生品のpHとの関係 を示す。

[図1]

[図2]

