Paul Gustafson

Texas A&M University - Math 608

Instructor: Grigoris Paouris

HW 4

6.3 If $1 \le p < r \le \infty$, $L^p \cap L^r$ is a Banach space with norm $||f|| = ||f||_p + ||f||_r$, and if p < q < r, the inclusion map $L^p \cap L^r \to L^q$ is continuous.

Proof. The restrictions of $\|\cdot\|_p$ and $\|\cdot\|_r$ to $L^p \cap L^r$ are norms, so their sum is a norm. To see that $L^p \cap L^r$ is complete, suppose $\sum_n f_n$ converges absolutely with respect to $\|\cdot\|$ for $f_n \in L^p \cap L^r$. Then the same series converges absolutely in L^p and L^q . Thus the pointwise limit of the series exists a.e. and lies in $L^p \cap L^q$.

To see that the inclusion map $L^p \cap L^r \to L^q$ is continuous, let $f \in L^p \cap L^r$ and pick λ as in Prop. 6.10. Then $\|f\|_q \le \|f\|_p^{\lambda} \|f\|_q^{1-\lambda} \le \|f\|^{\lambda} \|f\|^{1-\lambda} = \|f\|$.

4 If $1 \le p < r \le \infty$, $L^p + L^r$ is a Banach space with norm $||f|| = \inf\{||g||_p + ||h||_r : f = g + h\}$, and if p < q < r, the inclusion map $L^q \to L^p + L^r$ is continuous.

Proof. To see that $\|\cdot\|$ is positive definite, we must show that $\|f\|=0$ implies f=0 a.e. Suppose that $\mu(\{f>0\})>0$. Then there exist a measurable set E and $\delta>0$ such that $\mu(E)>0$ and $f_{|E}\geq\delta$. Suppose f=g+h for $g\in L^p$ and $h\in L^q$. Then

$$||g||_{p} + ||h||_{r} \ge ||g||_{E} + ||h||_{E} ||_{q}$$

$$\ge ||g||_{E} + \mu(E)^{1/p - 1/q} ||h||_{E} ||_{p}$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) (||g||_{E} ||_{p} + ||h||_{E} ||_{p})$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) ||f||_{E} ||_{p}$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) \delta^{1/p}$$

This implies that $||f|| \ge \min(\mu(E)^{1/p-1/q}, 1)\delta^{1/p} > 0$.

The function $\|\cdot\|$ satisfies the homogeneity condition of a norm. For the triangle inequality, suppose $f_1, f_2 \in L^p + L^r$. Suppose $f_1 = g_1 + h_1$ and $f_2 = g_1 + h_2$ for some $g_1, g_2 \in L^p$ and $h_1, h_2 \in L^r$. Then $\|g_1\|_p + \|h_1\|_q + \|g_2\|_p + \|h_2\|_q \ge \|g_1 + g_2\|_p + \|h_1 + h_2\|_q \ge \|f_1 + f_2\|$. Thus, $\|f_1\| + \|f_2\| \ge \|f_1 + f_2\|$. To see that $L^p + L^r$ is complete, suppose $f_n \in L^p + L^r$ and $\sum_n f_n$ converges

To see that $L^p + L^r$ is complete, suppose $f_n \in L^p + L^r$ and $\sum_n f_n$ converges absolutely. Pick $g_n \in L^p$ and $h_n \in L^r$ such that $||g_n||_p + ||h_n||_r \le ||f|| + 2^{-n}$. Then $\sum_n g_n$ and $\sum_n h_n$ converge absolutely in L^p and L^r respectively. Let $g = \sum_n g_n$ and $h = \sum_n h_n$. Then $\sum_n f_n = g + h$ pointwise a.e. Moreover,

$$\|\sum_{n\geq N} f_n\| \leq \sum_{n\geq N} \|f_n\|$$

$$\leq \sum_{n\geq N} \|g_n\|_p + \|h_n\|_r$$

$$\underset{N\to\infty}{\to} 0,$$

- so $\sum_n f_n = g + h$ in $L^p + L^r$. Hence $L^p + L^r$ is complete.
 - Lemma: if $|f| \le 1$ and $1 < q < r < \infty$, then $||f||_r \le ||f||_q$.

To see that the inclusion $L^q \to L^p + L^r$ is continuous, let $f \in L^q$. Let $E = \{x : f(x) > 1\}$. Then $\mu(E) < \infty$, $f\chi_E \in L^p$ and $f\chi_{E^c} \in L^r$. Hence

$$||f|| \le ||f\chi_E||_p + ||f\chi_{E^c}||_r \le \mu(E)^{1/p - 1/q} ||f\chi_E||_q + \left(\int_{E^c} |f|^r d\mu\right)^{1/r} \le \mu(E)^{1/p - 1/q} ||f||_q + ||f||_q +$$

- **5** Suppose $0 . Then <math>L^p \not\subset L^q$ iff X contains sets of arbitrarily small positive measure, and $L^q \not\subset L^p$ iff X contains sets of arbitrarily large finite measure. (Hint in book).
- **10** Suppose $1 \le p < \infty$. If $f_n, f \in L^p$ and $f_n \to f$ a.e., then $||f_n f||_p \to 0$ iff $||f_n||_p \to ||f||_p$. (Use Exercise 20 in 2.3)
- **12** If $p \neq 2$, the L^p norm does not arise on L^p , except in trivial cases when $\dim(L^p) \leq 1$.
- 13 $L^p(\mathbb{R}^n, m)$ is separable for $1 \leq p < \infty$. However, $L^\infty(\mathbb{R}^n, m)$ is not separable.