# **SYNOPSYS®**

# DesignWare® Building Block IP User Guide

DesignWare Building Blocks — Product Code: 2925-0

#### **Copyright Notice and Proprietary Information**

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

#### **Destination Control Statement**

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

#### **Disclaimer**

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

#### **Trademarks**

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

#### Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

#### **Third-Party Links**

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com

## **Contents**

| Revision History                | 5  |
|---------------------------------|----|
| Preface                         | 7  |
| Chapter 1                       |    |
| Introduction                    | 9  |
| 1.1 Features and Benefits       | 10 |
| 1.2 License Requirements        |    |
| 1.3 Documentation               |    |
| 1.4 File Structure              |    |
| 1.5 DesignWare Library for DWBB |    |
| 1.6 Synthesis Optimization Flow | 14 |
| 1.7 minPower Overview           | 15 |
| Chapter 2                       |    |
| DWBB Components                 | 17 |
| Appendix A                      |    |
| Standard Synthetic Operators    | 27 |
| Appendix B                      |    |
| minPower Components By Category | 29 |

# **Revision History**

For notes about this release, see the *DesignWare Building Block IP Release Notes*.

For web access to all Synopsys DesignWare Building Block IP components and the latest documents, see:

https://www.synopsys.com/dw/buildingblock.php

For a version of this user guide with visible change bars, click here.

| Date           | Version       | Description                                                                               |
|----------------|---------------|-------------------------------------------------------------------------------------------|
| March 2022     | DWBB_202203.0 | ■ Added some overview material; no technical updates                                      |
| September 2021 | DWBB_202106.2 | ■ Added "STAR on the Web (SotW)" on page 7                                                |
| January 2021   | DWBB_202009.3 | ■ Resolved link issues; no technical updates                                              |
| December 2019  | DWBB_201912.0 | ■ Updated title of the DW_crc_s component in Table 2-1 on page 17                         |
| March 2019     | DWBB_201903.0 | ■ Re-organized the structure and refreshed all content in this user guide                 |
| January 2019   | DWBB_201806.5 | ■ Updated comments in example in "Example in Verilog" on page 40                          |
| December 2018  | DWBB_201806.4 | ■ Updated "Library" statements in blocks of VHDL code                                     |
|                |               | <ul> <li>Added this Revision History table and the document links on this page</li> </ul> |

Revision History Building Block IP User Guide

Building Block IP User Guide Preface

#### **Preface**

#### **About This Manual**

This manual is the entry point to the Synopsys<sup>®</sup> DesignWare<sup>®</sup> Building Block (DWBB) IP product and documentation. It is intended for users of Synopsys synthesis tools. The DWBB IP are part of the overall DesignWare IP Library.

These building blocks are technology-independent, micro architecture-level components that are tightly integrated into the Synopsys synthesis environment.

#### **Manual Overview**

This manual contains the following chapters and appendixes:

| Chapter 1, "Introduction"                     | An introduction to the DWBB product and a starting point for its usage |
|-----------------------------------------------|------------------------------------------------------------------------|
| Chapter 2, "DWBB Components"                  | A list of all DWBB components with hyperlinks to datasheets            |
| Appendix A, "Standard Synthetic Operators"    | A list of synthetic operators                                          |
| Appendix B, "minPower Components By Category" | A set of lists of minPower components by category                      |

#### STAR on the Web (SotW)

You must review all STARs on the Web (SotWs) associated with your product. SotWs are considered a part of the Synopsys documentation suite, and show critical information related to your product. To review product SotWs, refer to the DesignWare IP product information:

https://www.synopsys.com/designware-ip.html

#### Synopsys Statement on Inclusivity and Diversity

Synopsys is committed to creating an inclusive environment where every employee, customer, and partner feels welcomed. We are reviewing and removing exclusionary language from our products and supporting customer-facing collateral. Our effort also includes internal initiatives to remove biased language from our engineering and working environment, including terms that are embedded in our software and IPs. At the same time, we are working to ensure that our web content and software applications are usable to people of varying abilities. You may still find examples of non-inclusive language in our software or documentation as our IPs implement industry-standard specifications that are currently under review to remove exclusionary language.

Preface Building Block IP User Guide

#### **Customer Support**

- First, prepare debug information, if applicable. For example:
  - Create a waveforms file (such as VPD or VCD)
  - □ Identify the hierarchy path to the DWBB instance
  - Identify the timestamp of any signals or locations in the waveforms that are not understood
- *For fastest response*, enter a case through SolvNetPlus:
  - a. https://solvnetplus.synopsys.com



SolvNetPlus does not support the Internet Explorer browser. Use a supported browser such as Google Chrome, Mozilla Firefox, Microsoft Edge, or Apple Safari.

- b. Click the Cases menu and then click Create a New Case (below the list of cases).
- c. Complete the mandatory fields that are marked with an asterisk and click **Save**. Note the following information:
  - **Product L1:** *DesignWare Building Blocks*
  - **Product L2:** Choose the component category
  - Product L3: Choose the component (for example, DW01\_add)
  - **Release:** *T-2022.03*
  - Describe the details to clarify your problem; include configurations of DWBB components you are using and any warning or error messages. For simulation issues, include the timestamp of any signals or locations in waveforms that are not understood.
- d. After creating the case, attach any debug files you created in the previous step.

For more information about general usage information, refer to the following article in SolvNetPlus:

https://solvnetplus.synopsys.com/s/article/SolvNetPlus-Usage-Help-Resources

- Or, send an e-mail message to support\_center@synopsys.com (your e-mail will be queued and then, on a first-come, first-served basis, manually routed to the correct support engineer):
  - Include the Product L1 and Product L2 names, and Version number in your e-mail so it can be routed correctly.
  - For simulation issues, include the timestamp of any signals or locations in waveforms that are not understood
  - Attach any debug files you created.
  - Or, telephone your local support center:
    - North America:
      - Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.
    - All other countries:
       https://www.synopsys.com/support/global-support-centers.html

SolvNetPlus Synopsys, Inc. Version DWBB\_202203.0
DesignWare.com March 2022

### -Introduction

The Synopsys<sup>®</sup> DesignWare<sup>®</sup> Building Blocks (DWBB) Library is a collection of reusable intellectual property blocks that are tightly integrated into the Synopsys synthesis environment.

Components in the DWBB Library include a VHDL simulation model, a Verilog simulation model, and one or more synthesis models.

The simulation models are provided in plain text form that is readable by all available HDL simulation environments. The simulation models are written in a behavioral style that is not intended for synthesis. They include constructs that are designed to detect invalid parameter value selection and also detect types of aberrant behavior (such as unknown values on critical input ports) during RTL simulation.

The synthesis models, on the other hand, are implemented using specialized hardware structures at the RTL level. Synthesis models are encrypted and can only read by Synopsys tools.

The DWBB is part of the DesignWare Library. For an overview of the DesignWare Library, see:

https://www.synopsys.com/designware-ip/soc-infrastructure-ip/designware-library.html

This document is the entry point to the DWBB product and documentation. This chapter contains the following main sections:

- "Features and Benefits" on page 10
- "License Requirements" on page 11
- "Documentation" on page 11
- "File Structure" on page 12
- "DesignWare Library for DWBB" on page 13
- "Synthesis Optimization Flow" on page 14
- "minPower Overview" on page 15

#### 1.1 Features and Benefits

The DWBB supports the entire design flow by providing multiple views, including synthesizable models, simulation models, datasheets, and examples. It includes the following:

- Synthesis models for Synopsys synthesis tools
   Note: third-party synthesis tools are not supported
- Separate simulation models that are supported for all simulators
- Formal verification resources for Formality

The DWBB components are:

- Pre-verified for quality
- Linked to high-level synthesis
- Parameterized in size and, for some components, functionality
- Technology-independent

The DWBB components can be organized into the following groups:

- Logic components: Combinational and sequential
- **Math components**: Arithmetic and trigonometric
- **Floating point components**: Arithmetic and trigonometric
- Memory: Registers, FIFOs, and FIFO controllers; RAMS; stack components
- Clock Domain Crossing components: Synchronization
- Application-specific components: Data integrity, interface, and JTAG components
- **DSP components**: Digital filters for digital signal processing (DSP) applications
- **GTECH components**: A technology-independent, gate-level library
- minPower components: Low-power versions of frequently used instantiated IP

While several minPower components exist only as low-power components, many are DWBB components that have low-power features such as:

- Datapath gating (with enable control)
- Low-power pipeline control
- Enhanced clock gating

10

#### 1.2 License Requirements

For DWBB, the license requirements depend on which version you are using, as listed in Table 1-1:

**Table 1-1** License Requirements

| Version             | License Feature Required                           |  |
|---------------------|----------------------------------------------------|--|
| P-2019.03 and later | DesignWare                                         |  |
| Before P-2019.03    | DesignWare DesignWare-LP (for minPower components) |  |

For general license setup and usage when running Synopsys synthesis tools, refer to the synthesis tool documentation.

#### 1.3 Documentation

Documents for DWBB reside at \$SYNOPSYS/dw/doc and include the following:

- User Guide (this document)
- Component datasheets
- DesignWare Building Block IP Release Notes

Related documentation includes:

- Synopsys synthesis tools (see SolvNetPlus)
- DesignWare GTECH Library Databook
- DesignWare Developers Guide (for third-party model developers)

For the most recent DWBB documentation, see <a href="https://www.synopsys.com/dw/buildingblock.php">https://www.synopsys.com/dw/buildingblock.php</a>. Click on a specific component and click Show Documents.

#### 1.4 File Structure

The high-level file structure for DWBB is shown in Figure 1-1.

Figure 1-1 DWBB File Structure



Prior to version P-2019.03, note that the minPower file structure is different, as shown in Figure 1-2.

Figure 1-2 minPower File Structure (Versions Before P-2019.03)



12

#### 1.5 DesignWare Library for DWBB

To make DWBB components accessible to the Synopsys tools, you specify paths to the necessary synthetic library files and design library directories.

- A synthetic library is a binary file that Synopsys synthesis tools use. It includes the following:
  - Port information
  - Parameters
  - □ Implementations (multiple architectural realizations of a synthetic module)
  - Bindings to synthetic operators
  - License requirements
- A design library is a UNIX directory that contains circuit descriptions (elaborated synthesis model) stored in binary formats.

The following synthetic library files, which reside at \$SYNOPSY/libraries/syn, are needed for DWBB components:

- standard.sldb
- dw\_foundation.sldb
- dw\_minpower.sldb<sup>1</sup>

These synthetic libraries are added to the search\_path variable in the setup file in \$SYNOPSYS/admin/setup/. If you alter the search path, make sure it includes the synthetic libraries needed for DWBB.

In Fusion Compiler, the DWBB synthetic libraries are automatically located for you.

In Design Compiler, the synthetic\_library variable specifies the synthetic libraries you can use. (The physical location of synthetic library files is specified in the search\_path variable.) For example, to use the DWBB synthetic library, set the following:

```
set synthetic_library dw_foundation.sldb
set link library {* $target library $synthetic library}
```

To locate the design library for DWBB, the synthesis tools use the following files:

Design Compiler:

```
$SYNOPSYS/admin/setup/.synopsys vss.setup
```

Fusion Compiler:

```
$SYNOPSYS/admin/setup/.synopsys_fc.setup
```

 Needed only for versions before P-2019.03 when using minPower components. To use minPower components in pre-P-2019.03 versions, you must have the DesignWare-LP license and specify the necessary synthetic libraries: set synthetic\_library {dw\_foundation.sldb dw\_minpower.sldb} set link\_library {\* \$target\_library \$synthetic\_library}

#### 1.6 Synthesis Optimization Flow

Figure 1-3 shows how Synopsys synthesis tools optimize DWBB components.

Figure 1-3 Optimization Flow



In the flow shown in Figure 1-3, the Synopsys synthesis tool performs the following:

- 1. During elaboration, maps HDL operators to synthetic operators that appear in the generic netlist. For a list of the standard synthetic operators, see Appendix A, "Standard Synthetic Operators".
- 2. Checks for the DesignWare licenses and initializes the synthetic library.
- 3. During high-level datapath optimization, manipulates the synthetic operators and applies optimizations such as arithmetic simplifications and resource sharing.
- 4. During implement synthetic parts, maps synthetic modules to DWBB implementations (architectural representations), and uses the datapath generator to implement arithmetic components and generate the best implementations. In addition, if you are using DC Ultra, the tool performs advanced datapath transformations on the extracted datapath blocks.
- 5. During incremental implementation selection, explores alternative implementations for each arithmetic component. The tool evaluates and replaces synthetic implementations along the critical path to improve delay cost.

#### 1.7 minPower Overview

The minPower components include low-power datapath generators and reusable intellectual property blocks for many basic datapath functions, and include IP that implement more advanced arithmetic and floating-point functions.

To reduce power usage, minPower components focus on the following:

- Maximizing clock gate insertion structures within components
- Inserting datapath gating structures with enable control
- Pipeline management for pipelined components

Power saving techniques include:

- **Innovative low-power architectures:** Unique low-power datapath structures that can suppress switching and glitch activities.
- **Power costing and switching-activity-aware optimization:** Datapath tree structures and operand encodings are optimized for power savings. This is accomplished by including power and switching activity into the cost function along with other design constraints.
- Built-in datapath gating logic: An intelligent scheme isolates the operands from activity when the output of the datapath structure is not required. Isolation logic is inserted and optimized so there is no negative impact to the overall design. Many minPower components have built-in isolation logic that is strategically placed on paths with minimal area overhead and no timing impact.
- **Low-power instantiated IP:** Low-power versions of frequently used instantiated IP are included. The power optimizations result from efficient coding to maximize clock gating, support for datapath gating, and so on. Also, pipelined components reduce register switching for better dynamic power performance.

For sets of minPower components that fit several categories, see Appendix B, "minPower Components By Category".

Note the following about minPower components:

- All minPower components are used by instantiating them in RTL.
- In version P-2019.03 (and later), all minPower components are defined in the DWBB synthetic library file and require no special license.
- For versions prior to P-2019.03, you need the DesignWare-LP license and you must explicitly include the minPower synthetic library (dw\_minpower.sldb), as mentioned in "DesignWare Library for DWBB" on page 13.

# **2** DWBB Components

Table 2-1 summarizes all DWBB components and provides a link to the detailed datasheet.

Datasheets include coding examples for instantiation, as well as for operator and function inference, where appropriate.

Table 2-1 List of DesignWare Building Block IP

| Component                   | Inference?                          | Description                                           |  |
|-----------------------------|-------------------------------------|-------------------------------------------------------|--|
| Application Specific: Contr | Application Specific: Control Logic |                                                       |  |
| DW_arb_2t                   | No                                  | Two-Tier Arbiter with Dynamic/Fair-Among-Equal Scheme |  |
| DW_arb_dp                   | No                                  | Arbiter with Dynamic Priority Scheme                  |  |
| DW_arb_fcfs                 | No                                  | Arbiter with First-Come-First-Served Priority Scheme  |  |
| DW_arb_rr                   | No                                  | Arbiter with Round Robin Priority Scheme              |  |
| DW_arb_sp                   | No                                  | Arbiter with Static Priority Scheme                   |  |
| Datapath: Arithmetic Comp   | onents                              |                                                       |  |
| DW01_absval                 | Function                            | Absolute Value                                        |  |
| DW01_add                    | Operator                            | Adder                                                 |  |
| DW01_addsub                 | Operator                            | Adder-Subtractor                                      |  |
| DW_addsub_dx                | No                                  | Duplex Adder/Subtractor with Saturation and Rounding  |  |
| DW01_ash                    | Function                            | Arithmetic Shifter                                    |  |
| DW_bin2gray                 | Function                            | Binary to Gray Converter                              |  |
| DW01_bsh                    | Function                            | Barrel Shifter                                        |  |
| DW01_cmp2                   | Operator                            | 2-Function Comparator                                 |  |
| DW01_cmp6                   | No                                  | 6-Function Comparator                                 |  |
| DW_cmp_dx                   | No                                  | Duplex Comparator                                     |  |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component          | Inference?         | Description                                                  |
|--------------------|--------------------|--------------------------------------------------------------|
| DW_cntr_gray       | No                 | Gray Code Counter                                            |
| DW_lp_cntr_up_df   | No                 | Low Power "Up" Counter with Dynamic Terminal Count Flag      |
| DW_lp_cntr_updn_df | No                 | Low Power "Up/Down" Counter with Dynamic Terminal Count Flag |
| DW01_csa           | No                 | Carry Save Adder                                             |
| DW01_dec           | Operator           | Decrementer                                                  |
| DW_div             | Function/Operator  | Combinational Divider                                        |
| DW_div_sat         | No                 | Combinational Divider with Saturation                        |
| DW_div_pipe        | No                 | Stallable Pipelined Divider                                  |
| DW_lp_piped_div    | No                 | Low Power Pipelined Divider                                  |
| DW_exp2            | No                 | Base 2 Exponential (2a)                                      |
| DW_gray2bin        | No                 | Gray to Binary Converter                                     |
| DW01_inc           | Operator           | Incrementer                                                  |
| DW01_incdec        | Operator           | Incrementer-Decrementer                                      |
| DW_inc_gray        | Function           | Gray Incrementer                                             |
| DW_inv_sqrt        | No                 | Reciprocal of Square-Root                                    |
| DW_lbsh            | Function           | Barrel Shifter with Preferred Left Direction                 |
| DW_In              | No                 | Natural Logarithm (In(a))                                    |
| DW_log2            | No                 | Base 2 Logarithm (log <sub>2</sub> (a))                      |
| DW02_mac           | Function           | Multiplier-Accumulator                                       |
| DW_minmax          | Function           | Minimum/Maximum Value                                        |
| DW02_mult          | Function*/Operator | Multiplier * Does not support function inference for VHDL    |
| DW02_multp         | No                 | Partial Product Multiplier                                   |
| DW02_mult_2_stage  | No                 | Two-Stage Pipelined Multiplier                               |
| DW02_mult_3_stage  | No                 | Three-Stage Pipelined Multiplier                             |
| DW02_mult_4_stage  | No                 | Four-Stage Pipelined Multiplier                              |
| DW02_mult_5_stage  | No                 | Five-Stage Pipelined Multiplier                              |
| DW02_mult_6_stage  | No                 | Six-Stage Pipelined Multiplier                               |
| DW_mult_dx         | No                 | Duplex Multiplier                                            |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component            | Inference?         | Description                                                                 |
|----------------------|--------------------|-----------------------------------------------------------------------------|
| DW_mult_pipe         | No                 | Stallable Pipelined Multiplier                                              |
| DW_lp_piped_mult     | No                 | Low Power Pipelined Multiplier                                              |
| DW_lp_multifunc      | No                 | Low Power Fixed-Point Multi-Function Unit                                   |
| DW_lp_multifunc_DG   | No                 | Low Power Multi-Function Unit with Datapath Gating                          |
| DW_norm              | No                 | Normalization for Fractional Input                                          |
| DW_norm_rnd          | No                 | Normalization and Rounding                                                  |
| DW_piped_mac         | No                 | Pipelined Multiplier-Accumulator                                            |
| DW_lp_pipe_mgr       | No                 | Low Power Pipeline Manager                                                  |
| DW02_prod_sum        | No                 | Generalized Sum of Products                                                 |
| DW02_prod_sum1       | No                 | Multiplier-Adder                                                            |
| DW_prod_sum_pipe     | No                 | Stallable Pipelined Generalized Sum of Products                             |
| DW_lp_piped_prod_sum | No                 | Low Power Pipelined Sum of Products                                         |
| DW_rash              | Function           | Arithmetic Shifter with Preferred Right Direction                           |
| DW_rbsh              | Function           | Barrel Shifter with Preferred Right Direction                               |
| DW01_satrnd          | No                 | Arithmetic Saturation and Rounding Logic                                    |
| DW_shifter           | Function           | Combined Arithmetic and Barrel Shifter                                      |
| DW_sla               | No                 | Arithmetic Shifter with Preferred Left Direction (VHDL style)               |
| DW_sra               | No                 | Arithmetic Shifter with Preferred Right Direction (VHDL style)              |
| DW_square            | Function           | Integer Squarer                                                             |
| DW_squarep           | No                 | Partial Product Integer Squarer                                             |
| DW_sqrt              | Function/Operator* | Combinational Square Root * Does not support operator inference for Verilog |
| DW_sqrt_pipe         | No                 | Stallable Pipelined Square Root                                             |
| DW_lp_piped_sqrt     | No                 | Low Power Pipelined Square Root                                             |
| DW01_sub             | Operator           | Subtractor                                                                  |
| DW02_sum             | Function           | Vector Adder                                                                |
| DW02_tree            | No                 | Wallace Tree Compressor                                                     |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component                | Inference? | Description                                                    |
|--------------------------|------------|----------------------------------------------------------------|
| Datapath: Floating Point |            |                                                                |
| DW_fp_add                | No         | Floating Point Adder                                           |
| DW_fp_add_DG             | No         | Low Power Floating Point Adder with Datapath Gating            |
| DW_lp_piped_fp_add       | No         | Low Power Pipelined Floating Point Adder                       |
| DW_fp_addsub             | No         | Floating Point Adder/Subtractor                                |
| DW_fp_addsub_DG          | No         | Low Power Floating Point Adder/Subtractor with Datapath Gating |
| DW_fp_cmp                | No         | Floating Point Comparator                                      |
| DW_fp_cmp_DG             | No         | Low Power Floating Point Comparator with Datapath Gating       |
| DW_fp_div                | No         | Floating Point Divider                                         |
| DW_fp_div_DG             | No         | Low Power Floating Point Divide with Datapath Gating           |
| DW_lp_piped_fp_div       | No         | Low Power Pipelined Floating Point Divider                     |
| DW_fp_div_seq            | No         | Floating Point Sequential Divider                              |
| DW_fp_dp2                | No         | 2-Term Floating Point Dot-product                              |
| DW_fp_dp3                | No         | 3-Term Floating Point Dot-product                              |
| DW_fp_dp4                | No         | 4-Term Floating Point Dot-product                              |
| DW_fp_exp                | No         | Floating Point Exponential (e <sup>a</sup> )                   |
| DW_fp_exp2               | No         | Floating Point Base-2 Exponential (2a)                         |
| DW_fp_flt2i              | No         | Floating Point to Integer Converter                            |
| DW_fp_i2flt              | No         | Integer to Floating Point Converter                            |
| DW_fp_invsqrt            | No         | Floating Point Reciprocal of Square Root                       |
| DW_fp_In                 | No         | Floating Point Natural Logarithm (In(a))                       |
| DW_fp_log2               | No         | Floating Point Base 2 Logarithm (log <sub>2</sub> (a))         |
| DW_fp_mac                | No         | Floating Point Multiply-and-Add                                |
| DW_fp_mac_DG             | No         | Low Power Floating Point Multiply-and-Add with Datapath Gating |
| DW_fp_mult               | No         | Floating Point Multiplier                                      |
| DW_fp_mult_DG            | No         | Low Power Floating Point Multiplier with Datapath Gating       |
| DW_lp_piped_fp_mult      | No         | Low Power Pipelined Floating Point Multiplier                  |
| DW_lp_fp_multifunc       | No         | Low Power Floating-Point Multi-Function Unit                   |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component               | Inference? | Description                                                                     |
|-------------------------|------------|---------------------------------------------------------------------------------|
| DW_lp_fp_multifunc_DG   | No         | Low Power Floating Point Multi-Function Unit with Datapath Gating               |
| DW_fp_recip             | No         | Floating Point Reciprocal (1/a)                                                 |
| DW_fp_recip_DG          | No         | Low Power Floating Point Reciprocal with Datapath Gating                        |
| DW_lp_piped_fp_recip    | No         | Low Power Pipelined Floating Point Reciprocal                                   |
| DW_fp_sincos            | No         | Floating Point Sine and Cosine                                                  |
| DW_fp_sqrt              | No         | Floating Point Square Root                                                      |
| DW_fp_square            | No         | Floating Point Square                                                           |
| DW_fp_sub               | No         | Floating Point Subtractor                                                       |
| DW_fp_sub_DG            | No         | Low Power Floating Point Subtractor with Datapath Gating                        |
| DW_fp_sum3              | No         | 3-input Floating Point Adder                                                    |
| DW_fp_sum3_DG           | No         | Low Power 3-input Floating Point Adder with Datapath Gating                     |
| DW_lp_piped_fp_sum3     | No         | Low Power Pipelined 3-input Floating Point Adder                                |
| DW_fp_sum4              | No         | 4-input Floating Point Adder                                                    |
| Datapath: Sequential    |            |                                                                                 |
| DW_div_seq              | No         | Sequential Divider                                                              |
| DW_mult_seq             | No         | Sequential Multiplier                                                           |
| DW_sqrt_seq             | No         | Sequential Square Root                                                          |
| Datapath: Trigonometric |            |                                                                                 |
| DW_sincos               | No         | Combinational Sine - Cosine                                                     |
| Data Integrity          |            |                                                                                 |
| DW_crc_p                | No         | Universal Parallel (Combinational) CRC Generator/Checker                        |
| DW_crc_s                | No         | Universal Sequential CRC Generator/Checker                                      |
| DW_ecc                  | No         | Error Checking and Correction                                                   |
| DW_lp_piped_ecc         | No         | Low Power Pipelined Error Correction Code (ECC)                                 |
| DW04_par_gen            | Function*  | Parity Generator and Checker  * Does not support function inference for Verilog |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component                       | Inference? | Description                                                  |
|---------------------------------|------------|--------------------------------------------------------------|
| Data Integrity: Coding          |            |                                                              |
| DW_8b10b_dec                    | No         | 8b10b Decoder                                                |
| DW_8b10b_enc                    | No         | 8b10b Encoder                                                |
| DW_8b10b_unbal                  | No         | 8b10b Coding Balance Predictor                               |
| Digital Signal Processing (I    | OSP)       |                                                              |
| DW_fir DW_fir                   | No         | High-Speed Digital FIR Filter                                |
| DW_fir_seq                      | No         | Sequential Digital FIR Filter Processor                      |
| DW_iir_dc                       | No         | High-Speed Digital IIR Filter with Dynamic Coefficients      |
| DW_iir_sc                       | No         | High-Speed Digital IIR Filter with Static Coefficients       |
| DW_dct_2d                       | No         | Two Dimensional Discreet Cosine Transform                    |
| DW_thermdec                     | No         | Binary Thermometer Decoder and Enable                        |
| Interface: Clock Domain Cr      | ossing     |                                                              |
| DW_data_qsync_hl                | No         | Quasi-Synchronous Data Interface for H-to-L Frequency Clocks |
| DW_data_qsync_lh                | No         | Quasi-Synchronous Data Interface for L-to-H Frequency Clocks |
| DW_data_sync                    | No         | Data Bus Synchronizer with Acknowledge                       |
| DW_data_sync_na                 | No         | Data Bus Synchronizer without Acknowledge                    |
| DW_data_sync_1c                 | No         | Single Clock Filtered Data Bus Synchronizer                  |
| DW_gray_sync                    | No         | Gray Coded Synchronizer                                      |
| DW_pulse_sync                   | No         | Dual Clock Pulse Synchronizer                                |
| DW_pulseack_sync                | No         | Pulse Synchronizer with Acknowledge                          |
| DW_reset_sync                   | No         | Reset Sequence Synchronizer                                  |
| DW_stream_sync                  | No         | Data Stream Synchronizer                                     |
| DW_sync                         | No         | Single Clock Data Bus Synchronizer                           |
| Logic: Combinational Components |            |                                                              |
| DW01_binenc                     | Function   | Binary Encoder                                               |
| DW01_decode                     | Function   | Decoder                                                      |
| DW_decode_en                    | No         | Binary Decoder with Enable                                   |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component                 | Inference?   | Description                                                       |  |
|---------------------------|--------------|-------------------------------------------------------------------|--|
| DW01_mux_any              | No           | Universal Multiplexer                                             |  |
| DW01_prienc               | Function     | Priority Encoder                                                  |  |
| DW_lod                    | Function     | Leading One's Detector                                            |  |
| DW_lsd                    | Function     | Leading Signs Detector                                            |  |
| DW_lza                    | Function     | Leading Zero's Anticipator                                        |  |
| DW_lzd                    | Function     | Leading Zero's Detector                                           |  |
| DW_pricod                 | Function     | Priority Coder                                                    |  |
| Logic: Sequential Compone | ents         |                                                                   |  |
| DW03_bictr_dcnto          | No           | Up/Down Binary Counter with Dynamic Count-to Flag                 |  |
| DW03_bictr_scnto          | No           | Up/Down Binary Counter with Static Count-to Flag                  |  |
| DW03_bictr_decode         | No           | Up/Down Binary Counter with Output Decode                         |  |
| DW_dpll_sd                | No           | Digital Phase Locked Loop                                         |  |
| DW03_lfsr_dcnto           | No           | LFSR Counter with Dynamic Count-to Flag                           |  |
| DW03_lfsr_scnto           | No           | LFSR Counter with Static Count-to Flag                            |  |
| DW03_lfsr_load            | No           | LFSR Counter with Loadable Input                                  |  |
| DW03_lfsr_updn            | No           | LFSR Up/Down Counter                                              |  |
| DW03_updn_ctr             | No           | Up/Down Counter                                                   |  |
| Memory: FIFO              | Memory: FIFO |                                                                   |  |
| DW_asymdata_inbuf         | No           | Asymmetric Data Input Buffer                                      |  |
| DW_asymdata_outbuf        | No           | Asymmetric Data Output Buffer                                     |  |
| DW_asymfifo_s1_df         | No           | Asymmetric I/O Synchronous (Single Clock) FIFO with Dynamic Flags |  |
| DW_asymfifo_s1_sf         | No           | Asymmetric I/O Synchronous (Single Clock) FIFO with Static Flags  |  |
| DW_asymfifo_s2_sf         | No           | Asymmetric Synchronous (Dual-Clock) FIFO with Static Flags        |  |
| DW_lp_fifo_1c_df          | No           | Low Power Single-clock FIFO                                       |  |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component                | Inference?        | Description                                                                  |  |
|--------------------------|-------------------|------------------------------------------------------------------------------|--|
| DW_fifo_2c_df            | No                | Dual independent clock FIFO                                                  |  |
| DW_fifo_s1_df            | No                | Synchronous (Single Clock) FIFO with Dynamic Flags                           |  |
| DW_fifo_s1_sf            | No                | Synchronous (Single Clock) FIFO with Static Flags                            |  |
| DW_fifo_s2_sf            | No                | Synchronous (Dual-Clock) FIFO with Static Flags                              |  |
| Memory: FIFO Controllers |                   |                                                                              |  |
| DW_asymfifoctl_2c_df     | No                | Asymmetric Dual-Clock FIFO Controller with Dynamic Flags                     |  |
| DW_asymfifoctl_s1_df     | No                | Asymmetric I/O Synchronous (Single Clock) FIFO Controller with Dynamic Flags |  |
| DW_asymfifoctl_s1_sf     | No                | Asymmetric I/O Synchronous (Single Clock) FIFO Controller with Static Flags  |  |
| DW_asymfifoctl_s2_s_f    | No                | Asymmetric Synchronous (Dual-Clock) FIFO Controller with Static Flags        |  |
| DW_lp_fifoctl_1c_df      | No                | Low Power Single-clock FIFO Controller with Dynamic Flags                    |  |
| DW_fifoctl_2c_df         | No                | Dual Clock FIFO Controller with Dynamic Flags                                |  |
| DW_fifoctl_s1_df         | No                | Synchronous (Single Clock) FIFO Controller with Dynamic Flags                |  |
| DW_fifoctl_s1_sf         | No                | Synchronous (Single-Clock) FIFO Controller with Static Flags                 |  |
| DW_fifoctl_s2_sf         | No                | Synchronous (Dual-Clock) FIFO Controller with Static Flags                   |  |
| Memory: Registers        | Memory: Registers |                                                                              |  |
| DW03_pipe_reg            | No                | Pipeline Register                                                            |  |
| DW_pl_reg                | No                | Pipeline Register                                                            |  |
| DW03_reg_s_pl            | No                | Register with Synchronous Enable Reset                                       |  |
| DW03_shftreg             | No                | Shift Register                                                               |  |
| DW04_shad_reg            | No                | Shadow and Multi-bit Register                                                |  |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component          | Inference? | Description                                                          |
|--------------------|------------|----------------------------------------------------------------------|
| Memory: SRAMs      |            |                                                                      |
| DW_ram_r_w_s_dff   | No         | Synchronous Write-Port, Asynchronous Read-Port RAM (Flip-Flop-Based) |
| DW_ram_r_w_s_lat   | No         | Synchronous Write-Port, Asynchronous Read-Port RAM (Latch-Based)     |
| DW_ram_2r_2w_s_dff | No         | Synch. Dual Write-Port, Async Dual Read-Port RAM (Flip-Flop-Based)   |
| DW_ram_2r_w_s_dff  | No         | Synchronous Write-Port, Async Dual Read-Port RAM (Flip-Flop-Based)   |
| DW_ram_2r_w_s_lat  | No         | Synchronous Write-Port, Async Dual Read-Port RAM (Latch-Based)       |
| DW_ram_rw_s_dff    | No         | Synchronous Single-Port, Read/Write RAM (Flip-Flop-Based)            |
| DW_ram_rw_s_lat    | No         | Synchronous Single-Port, Read/Write RAM (Latch-Based)                |
| DW_ram_r_w_a_dff   | No         | Asynchronous Dual-Port RAM (Flip-Flop-Based)                         |
| DW_ram_r_w_a_lat   | No         | Asynchronous Dual-Port RAM (Latch-Based)                             |
| DW_ram_2r_w_a_dff  | No         | Write-Port, Dual-Read-Port RAM (Flip-Flop-Based)                     |
| DW_ram_2r_w_a_lat  | No         | Write-Port, Dual-Read-Port RAM (Latch-Based)                         |
| DW_ram_rw_a_dff    | No         | Asynchronous Single-Port RAM (Flip-Flop-Based)                       |
| DW_ram_rw_a_lat    | No         | Asynchronous Single-Port RAM (Latch-Based)                           |
| Memory: Stacks     |            |                                                                      |
| DW_stack           | No         | Synchronous (Single-Clock) Stack                                     |
| DW_stackctl        | No         | Synchronous (Single Clock) Stack Controller                          |
| Test: JTAG         | •          |                                                                      |
| DW_tap             | No         | TAP Controller                                                       |
| DW_tap_uc          | No         | TAP Controller with USERCODE Support                                 |
| DW_bc_1            | No         | Boundary Scan Cell Type BC_1                                         |
| DW_bc_2            | No         | Boundary Scan Cell Type BC_2                                         |
| DW_bc_3            | No         | Boundary Scan Cell Type BC_3                                         |
| DW_bc_4            | No         | Boundary Scan Cell Type BC_4                                         |
| DW_bc_5            | No         | Boundary Scan Cell Type BC_5                                         |

Table 2-1 List of DesignWare Building Block IP (Continued)

| Component                | Inference? | Description                                                         |
|--------------------------|------------|---------------------------------------------------------------------|
| DW_bc_7                  | No         | Boundary Scan Cell Type BC_7                                        |
| DW_bc_8                  | No         | Boundary Scan Cell Type BC_8                                        |
| DW_bc_9                  | No         | Boundary Scan Cell Type BC_9                                        |
| DW_bc_10                 | No         | Boundary Scan Cell Type BC_10                                       |
| Datapath Functions       |            |                                                                     |
| DWF_dp_absval            | Function   | Returns the absolute value (magnitude) of an argument               |
| DWF_dp_blend             | Function   | Implements an alpha blender or linear interpolator                  |
| DWF_dp_count_ones        | Function   | Performs ones count in argument                                     |
| DWF_dp_mult_comb         | Function   | Performs a combined unsigned/signed multiply                        |
| DWF_dp_mult_comb_offldet | Function   | Performs a combined unsigned/signed multiply and overflow detection |
| DWF_dp_mult_comb_sat     | Function   | Performs a combined unsigned/signed multiply and saturation         |
| DWF_dp_mult_ovfldet      | Function   | Performs a multiplication with overflow detection                   |
| DWF_dp_mult_sat          | Function   | Performs a multiplication and saturation                            |
| DWF_dp_rnd               | Function   | Performs arithmetic rounding                                        |
| DWF_dp_rndsat            | Function   | Performs arithmetic rounding and saturation                         |
| DWF_dp_sat               | Function   | Performs arithmetic saturation                                      |
| DWF_dp_sign_select       | Function   | Performs sign selection / conditional two's complement              |
| DWF_dp_simd_add          | Function   | Implements SIMD adder                                               |
| DWF_dp_simd_addc         | Function   | Implements SIMD adder with carry                                    |
| DWF_dp_simd_mult         | Function   | Implements SIMD multiplier                                          |
| DWF_dp_sub_abs           | Function   | Performs a subtraction and returns its absolute value (magnitude)   |



# **Standard Synthetic Operators**

Table A-1 lists the HDL operators that are mapped to synthetic operators.

Table A-1 HDL Operators Mapped to Standard Synthetic Operators

| HDL Operator | Synthetic Operator(s)   |
|--------------|-------------------------|
| +            | ADD_UNS_OP, ADD_TC_OP   |
| -            | SUB_UNS_OP, SUB_TC_OP   |
| *            | MULT_UNS_OP, MULT_TC_OP |
| <            | LT_UNS_OP, LT_TC_OP     |
| >            | GT_UNS_OP, GT_TC_OP     |
| <=           | LEQ_UNS_OP, LEQ_TC_OP   |
| >=           | GEQ_UNS_OP, GEQ_TC_OP   |
| ==           | EQ_UNS_OP, EQ_TC_OP     |
| !=           | NE_UNS_OP, NE_TC_OP     |
| if, case     | SELECT_OP               |

В

## minPower Components By Category

The categories of minPower components include the following:

■ Components with built-in low power features

Here, power-saving circuitry is brought into your design without special controls or settings. These components include the following:

| DW_lp_cntr_up_df   | DW_lp_fifoctl_1c_df |
|--------------------|---------------------|
| DW_lp_cntr_updn_df | DW_lp_fp_multifunc  |
| DW_lp_fifo_1c_df   | DW_lp_multifunc     |

Components with low-power pipeline control and datapath gating

Here again, power-saving circuitry is brought into your design without special controls or settings. These components include the following:

| DW_lp_pipe_mgr   | DW_lp_piped_prod_sum | DW_lp_piped_fp_mult  |
|------------------|----------------------|----------------------|
| DW_lp_piped_div  | DW_lp_piped_sqrt     | DW_lp_piped_fp_recip |
| DW_lp_piped_ecc  | DW_lp_piped_fp_add   | DW_lp_piped_fp_sum3  |
| DW_lp_piped_mult | DW_lp_piped_fp_div   |                      |

Combinational components with datapath gating (with enable control)

For these components, datapath gating circuitry is implemented and can then be controlled by the DG\_ctrl port. Details are provided in the component datasheets. These components are as follows:

| DW_fp_add_DG    | DW_fp_mac_DG   | DW_fp_sum3_DG         |
|-----------------|----------------|-----------------------|
| DW_fp_addsub_DG | DW_fp_mult_DG  | DW_lp_fp_multifunc_DG |
| DW_fp_cmp_DG    | DW_fp_recip_DG | DW_lp_multifunc_DG    |
| DW_fp_div_DG    | DW_fp_sub_DG   |                       |

Sequential components with datapath gating

To achieve minPower benefits for the following components, some extra settings are needed, as explained in the corresponding datasheets:

DW\_8b10b\_dec DW\_piped\_mac
DW\_8b10b\_enc DW\_prod\_sum\_pipe
DW\_div\_pipe DW\_sqrt\_pipe
DW\_mult\_pipe

Components with enhanced clock gating

To achieve minPower benefits for the following components, some extra settings are needed, as explained in the corresponding datasheets:

| DW_arb_dp            | DW_div_seq       | DW_gray_sync     |
|----------------------|------------------|------------------|
| DW_arb_sp            | DW_fifo_2c_df    | DW_mult_seq      |
| DW_asymfifoctl_2c_df | DW_fifoctl_2c_df | DW_sqrt_seq      |
| DW_asymfifoctl_s1_df | DW_fifoctl_s1_df | DW_stackctl      |
| DW_asymfifoctl_s1_sf | DW_fifoctl_s1_sf | DW03_bictr_dcnto |
| DW_cntr_gray         | DW_fp_div_seq    | DW03_bictr_scnto |