MatSci 193/203 - Atomic Arrangements in Solids

Autumn 2012

Instructor: Prof. Evan Reed

Durand 133

evanreed@stanford.edu

Time/room: MWF 10:00-10:50am, Cummings 2

M 2:15-5:00pm, 260-113

Note: The Monday afternoon session is for group problem-solving with real-time help from the CA. Attendance is optional but *strongly encouraged*.

Texts: This course will draw from multiple sources, including:

1. "Crystallography and Crystal Defects," Kelly and Knowles. (Available electronically through Stanford Libraries.)

- 2. "The Basics of Crystallography and Diffraction," C. Hammond (3rd edition, 2010).
- 3. "Structure of Materials," M. de Graef and M. E. McHenry, (2007).

You may find that Ref. 1 is sufficient for your needs, but you may also find that Ref. 2 and or Ref. 3 are useful for some portions of the class.

Tentative syllabus:

- 1. Structures and bonding in materials:
 - a. Metallic structures
 - i. FCC
 - ii. BCC
 - iii. HCP
 - iv. Interstitial sites
 - v. Ordered alloys and superlattices
 - b. Semiconductors
 - i. Diamond cubic
 - ii. Zinc blende
 - iii. Wurtzite
 - iv. Amorphous structures
 - c. Carbon structures and monolayer materials
 - d. Ionic structures
 - i. CsCl
 - ii. NaCl
 - iii. ZnS
 - iv. NiAs
 - v. CaF₂

- vi. CaTiO₃
- vii. SiO₂
- viii. Ice
- ix. Ionic radius ratio
- e. Energy models
 - i. Lennard-Jones and structure prediction
 - ii. Ionic models
 - iii. Density functional theory
- f. Themodynamics of crystals
 - i. High pressure; Enthalpy
 - ii. Lattice vibrations; Helmholtz energy
- 2. Crystal symmetry
 - a. Unit cells and lattice
 - b. Miller and Miller-Bravais indices
 - c. Weiss zone law
 - d. Reciprocal lattice
 - e. 2D and 3D point groups
 - f. 2D space groups
- 3. Macroscopic consequences of symmetry
 - a. Tensor transformations
 - b. Optical, piezoelectric, and transport properties