PROVA 1

13 de maio de 2017

QUESTÃO 1

a)

- Se $x \in (-\infty, -1)$ temos: -(x+1) - (x-2) = 4 -2x = 3 $x = -\frac{3}{2}$
- Se $x \in [-1,2)$ temos: +(x+1)-(x-2)=4 3=4Portanto $\not\exists x \in \mathbb{R}$ nesse intervalo que seja solução.
- Se $x \in [2, +\infty)$ temos: +(x+1) + (x-2) = 4 2x = 5 $x = \frac{5}{2}$

Portanto $x = -\frac{3}{2}$ ou $x = \frac{5}{2}$.

- b) Estudando os sinais de cada parcela temos:
- $x \ge 0$

•
$$2x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{2}$$

•
$$(x-2)^3 \ge 0 \Leftrightarrow x-2 \ge 0 \Leftrightarrow x \ge 2$$

•
$$-3x + \ge 0 \Leftrightarrow x \le \frac{2}{3}$$

•
$$(x-1)^2 \ge 0 \Rightarrow x \ge 0$$
 para todo $x \in \mathbb{R}$

Fazendo o estudo de sinais temos que a inequação acima é maior que zero quando

$$x \in (-\infty, 0]$$
 ou $x \in [\frac{2}{3}, 2]$.

- c) Devemos ter $|2x+1| \ge |1-x|$, então:
- Se $x < -\frac{1}{2}$ temos: $-(2x+1) \ge 1-x$ $x \le -2$
- Se $x > -\frac{1}{2}$ temos: $+(2x+1) \ge 1-x$
- Devemos ter também $|2x+1| \neq 0 \Rightarrow x \neq -\frac{1}{2}$ e $1-x \neq 0 \Rightarrow x \neq 1$.

Portanto $x \in [0,1)$ ou $x \in (1,+\infty)$

Suponhamos que $\frac{\sqrt{2}}{\sqrt{5}} + 1$ seja racional. Sabemos que $1 \in \mathbb{Q}$ e que a soma de racionais é racional, logo devemos ter $\frac{\sqrt{2}}{\sqrt{5}} \in \mathbb{Q}$.

Se $\frac{\sqrt{2}}{\sqrt{5}} \in \mathbb{Q}$ então $\exists p, q \in \mathbb{Z}$ onde p e q não tem fatores em comum e $\frac{p}{q} = \frac{\sqrt{2}}{\sqrt{5}}$.

Daí temos que $\frac{p^2}{q^2}=\frac{2}{5}\Rightarrow 5p^2=2q^2$. Vemos que $5p^2$ é par e como 2 não divide 5 temos que p^2 é par e consequentemente p é par, pois todo quadrado de um número par é sempre par.

Seja então p=2r, temos que $5.(2r)^2=2q^2\Rightarrow 5.2r^2=q^2$.

Daí vemos que q^2 é par e consequentemente q é par, o que é um absurso pois p e q não tem fatores em comum.

Logo $\frac{\sqrt{2}}{\sqrt{5}} \notin \mathbb{Q}$ e consequentemente $\frac{\sqrt{2}}{\sqrt{5}} + 1$ não é racional.

QUESTÃO 3

a)
$$D_f = \mathbb{R}$$

b)

• se
$$x < 1$$
 temos
 $f(x) = -(x-1) - (x-2)$
 $f(x) = -2x + 3$

• se
$$1 \le x < 2$$
 temos
 $f(x) = +(x-1) - (x-2)$
 $f(x) = 1$

• se
$$x \ge 2$$
 temos
 $f(x) = +(x-1) + (x-2)$
 $f(x) = 2x - 3$

Logo,

QUESTÃO 4

- a) Falso. Seja x = -2 e y = -1, temos que x < y. Mas $x^2 = 4$ e $y^2 = 1$, $\log y^2 < x^2$.
- b) Verdadeiro.

c) Falso. Seja $x = \frac{1}{4}$. Temos que $\sqrt{\frac{1}{4}} = \frac{1}{2}$ e $\frac{1}{4} \le \sqrt{\frac{1}{4}}$.

QUESTÃO 5

- a) Se x é a idade da pessoa temos que $x + (x 25) = 95 \Rightarrow x = 60$. Portanto a pessoa tem direito de se aposentar aos 60 anos.
- b) Seja x a idade que a pessoa começa a trabalhar e f(x) a idade que a pessoa tem o direito de se aposentar. Sabemos que a soma da idade que a pessoa tem o direito de se aposentar com o tempo de serviço deve ser igual a 95.

Sabemos que o tempo se serviço é dado pela idade da pessoa menos a idade que ela começou a trabalhar, então $f(x)+(f(x)-x)=95 \Rightarrow f(x)=\frac{1}{2}(95+x)$.