

Relevant Formulae (After Topics 1&2&3&4)

$\rho = \frac{nA}{V_C N_A}$ Avogadro number $\mathbf{N_A} = 6.022 \times 10^{23} \text{ atoms/mol}$ $\frac{N_V}{N} = exp^{\left(-\frac{Q_V}{kT}\right)}$ Boltzmann's constant	$APF = rac{Volume\ of\ atoms\ in\ a\ unit\ cell}{Volume\ of\ unit\ cell}$ $N_S = ho\left(rac{N_A}{A} ight)$ Avogadro number
$k_B = 8.62 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/atom-K}$	$N_A = 6.022 \times 10^{23}$ atoms/mol
$E = \frac{\sigma}{\varepsilon}$	$\sigma = \frac{F}{A}$
$\varepsilon = \frac{\Delta l}{l}$	$\delta = \frac{FL^3}{48EI}$ I=second moment of area (this will be provided in the question)
Strain hardening (cold work)	Hall-Petch Equation (grain boundary
$\%CW = \frac{A_o - A_f}{A_o} \times 100$	reduction) $\sigma_y = \sigma_0 + k_y d^{-0.5}$
	$K_{IC} = Y\sigma\sqrt{\pi a}$
$\Delta \sigma_{\sigma_m} = \Delta \sigma_{\sigma_0} \left(1 - \frac{\sigma_m}{\sigma_{TS}} \right)$	$\Delta \sigma = \sigma_{max} - \sigma_{min}$ $\sigma_a = \frac{\Delta \sigma}{2}$ $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$
1 N/m ² = 1 Pa 1 N/mm ² = 1 MPa	1mm = 0.001m