Лекция 7. Теорема Коши

Теория функций комплексного переменного

Теорема Коши: версия 1

Теорема 5.1 (теорема Коши, версия 1). Пусть $U \subset \mathbb{C}$ — открытое подмножество, $f: U \to \mathbb{C}$ — голоморфная функция $u \ \Delta \subset U$ — треугольник. Тогда $\int_{\partial \Delta} f(z) \, dz = 0$.

Рис. 5.1. Если границы всех треугольников ориентированы одинаково, то интеграл по большому треугольнику равен сумме интегралов по четырем маленьким

Огюстен Луи Коши (1789 — 1857)

- французский математик и механик, член Парижской академии наук, Лондонского королевского общества, Петербургской академии наук и других академий.
- написал свыше 800 работ, полное собрание его сочинений содержит 27 томов. Его работы относятся к различным областям математики (преимущественно к математическому анализу) и математической физики.

Первообразная

Предложение 5.2. Пусть $U \subset \mathbb{C}$ — выпуклое открытое множество и $f: U \to \mathbb{C}$ — голоморфная функция. Тогда для f существует первообразная, m.e. функция $F: U \to \mathbb{C}$, для которой F'(a) = f(a) при всех $a \in \mathbb{C}$.

$$F(z) = \int_{[z_0;z]} f(t) dt$$

$$F(z+h) - F(z) = \int_{[z,z+h]} f(t)dt$$
$$= f(z)h + o(h)$$

Теорема Коши, версия 2

- **Теорема 5.3** (теорема Коши, версия 2). Пусть $U \subset \mathbb{C}$ выпуклое открытое множество и $f: U \to \mathbb{C}$ голоморфная функция. Тогда:
- (a) интеграл от f по любому замкнутому пути, лежащему в U, равен нулю;
- (б) если $p,q \in U$ две точки, а γ_1 и γ_2 два пути в U, соединяющие точки p и q, то интегралы от функции f по γ_1 и γ_2 совпадают.

Доказательство. По предложению 5.2 функция f имеет первообразную в U; теперь все вытекает из следствия 4.11 и предложения 4.10.

Теорема Коши, версия 3

«Теорема» 5.4 (теорема Коши, версия 3). Предположим, что $f: U \to \mathbb{C}$ — голоморфная функция на открытом множестве $U \subset \mathbb{C}$.

- (а) Пусть $\gamma_1, \gamma_2 \subset U$ замкнутые несамопересекающиеся и не пересекающиеся друг с другом кривые, ориентированные положительно (против часовой стрелки). Если часть плоскости, заключенная между γ_1 и γ_2 , целиком содержится в U, то $\int_{\gamma_1}^{\gamma_2} f \, dz = \int_{\gamma_2}^{\gamma_2} f \, dz$.
- (б) Пусть γ_1 и γ_2 две кривые в U, соединяющие точки $p \in U$ и $q \in U$. Если часть плоскости, заключенная между γ_1 и γ_2 , целиком содержится в U, то $\int f \, dz = \int f \, dz$.

«Доказательство» версии 3

Рис. 5.2. (а) Замкнутые кривые γ_1 и γ_2 ориентированы положительно; (б) кривые γ_1 и γ_2 соединяют точки p и q. Жирным пунктиром обозначена граница области U. Часть плоскости между γ_1 и γ_2 разбита отрезками на «малые» части; одна из этих частей заштрихована, и изображен содержащий ее круг, который, в свою очередь, содержится в U.

Примеры применения версии 3

Теорема Коши vs формула Стокса (Грина)

• Пусть U — гладкое многообразие с краем, а ω дифференциальная C^1 -форма на U. Формула Стокса:

$$\int_{\partial U} \omega = \int_{U} d\omega.$$

• Пусть
$$U \subset \mathbb{R}^2$$
. Тогда формула Стокса = формула Грина:
$$\int_{\partial U} A(x,y) dx + B(x,y) dy = \int_{U} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx \wedge dy.$$

- В классическом изложении требуется, чтобы $A, B \in C^1(\overline{U})$.
- На самом деле достаточно: $A,B\in D^1(\overline{U}),\ B_x-A_v\in C^1(\overline{U}).$

Теорема Коши vs формула Стокса (Грина)

- f(z)dz = (u + iv)(dx + idy) = (u dx v dy) + i(v dx + u dy).
- $d(fdz) = (-(v_x + u_y) + i(u_x v_y)) dx \wedge dy$.
- В комплексных терминах $d(fdz) = -f_{\overline{z}} dz \wedge d\overline{z}$.
- Если f голоморфна, то d(f(z)dz) = 0 согласно условиям Коши-Римана.
- Таким образом, формулу Коши можно вывести из формулы Грина, но не из той версии формулы Грина, которую обычно приводят в курсе «гладких многообразий».

Формула Коши

Теорема 5.8 (формула Коши). Пусть $U \subset \mathbb{C}$ — часть комплексной плоскости, ограниченная замкнутой несамопересекающейся кривой γ (кривая γ входит в \bar{U}); положим $\operatorname{Int}(\bar{U}) = U$. Если функция $f: \bar{U} \to \mathbb{C}$ непрерывна на \bar{U} и голоморфна в U, то для всякого $a \in U$ выполнено равенство

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) dz}{z - a},$$
 (5.6)

где кривая ү ориентирована в положительном направлении.

Идея доказательства. По теореме Коши, достаточно рассмотреть маленькую окружность с центром в точке a.

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Wolfram Mathematica
- https://wikipedia.org

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ