Semantic Segmentation

ISTD 50.035 Computer Vision

Acknowledgement: Some images are from various

sources: UCF, Stanford cs231n, etc.

Semantic Segmentation

Label each pixel of an image with a class value -> dense prediction

Semantic Segmentation

Semantic Segmentation with ConvNet

Downside: Preserving image dimensions throughout entire network will be computationally expensive.

Probability vector of C classes at each pixel location

Pixel wise softmax loss

Probability vector of C classes at each pixel location

Loss at each pixel location = $-\log p_y$

Loss = (spatial) sum of loss at each pixel

Semantic Segmentation with ConvNet

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Solution: Make network deep and work at a lower spatial resolution for many of the layers.

Probability vector of C classes at each pixel location

Upsampling

Unpooling: inverse of max/average pooling

Upsampling

Transpose convolution

Standard convolution: input (matrix) * filter (matrix) -> output (scalar) Transpose convolution: input (scalar) * filter (matrix) -> output (matrix)

Fully convolutional network (FCN)

[Long et al. 2014]

- -Well pre-trained network as 'encoder'
- -Transpose convolution layers to upsample the coarse feature map to full-resolution segmentation map
- -Trained end-to-end, pixel-to-pixel

Fully convolutional network (FCN)

Fully connected layer

- -Discard spatial information -> not suitable for SS
- -Can be viewed as convolutions with kernels that cover the entire input region (so no spatial info)

Fully convolutional network (FCN)

Fully connected layer

- -Discard spatial information -> not suitable for SS
- -Can be viewed as convolutions with kernels that cover the

Fully connected layer: 4096 filter masks; filter size = input
Output of fully connected layer: 1x1 feature map (total 4096 channels)

Fully convolutional: use small filter

Issue in baseline FCN

Ground truth target

Predicted segmentation

"Semantic segmentation faces an inherent tension between semantics and location: global information resolves what while local information resolves where"

"Combining fine layers and coarse layers lets the model make local predictions that respect global structure"

Combining what and where

Deep, coarse semantic information

16x upsampling of result

Shallow, fine appearance information

Combining what and where

Combining what and where

U-Net: high capacity decoder

U-Net

Upsampling: not accurate

 Use earlier stages to provide representation for localization: via concatenation

Mask R-CNN for instance segmentation

Mask R-CNN = Faster R-CNN + FCN
Add mask prediction in addition to class and box

The Mask R-CNN framework for instance segmentation

Mask R-CNN for instance segmentation

The Mask R-CNN framework for instance segmentation

Mask R-CNN for instance segmentation

Predict mxm mask from each ROI Mask: encode input object's spatial layout

The Mask R-CNN framework for instance segmentation