## **TRANSIENTS**

#### Overview

- 1. Solve first-order RC or RL circuits.
- 2. Understand the concepts of transient response and steady-state response.
- 3. Relate the transient response of first-order circuits to the time constant.
- 4. Solve *RLC* circuits in dc steady-state conditions.
- 5. Solve second-order circuits.
- 6. Relate the step response of a second-order system to its natural frequency and damping ratio.

#### **Transients**

The time-varying currents and voltages resulting from the sudden application of sources, usually due to switching, are called **transients**. By writing circuit equations, we obtain integrodifferential equations.

#### First Order RC Circuit

- □ Capacitor charged to initial voltage V<sub>i</sub>.
- □ At t=0, switch closes and capacitor discharges.







# Discharge of a Capacitance through a Resistance

$$C\frac{dv_C(t)}{dt} + \frac{v_C(t)}{R} = 0$$

$$v_C(t) = Ke^{st}$$

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 0 \qquad RCKse^{st} + Ke^{st} = 0$$

# Capacitance Discharge (Contd.)

$$s = \frac{-1}{RC}$$

$$v_C(0+) = V_i$$

$$v_C(t) = Ke^{-t/RC}$$

$$v_C(t) = V_i e^{-t/RC}$$

## Capacitance Discharge (Contd.)

□ Voltage vs. time



#### Time Constant

□ The time interval  $\tau = RC$  is called the time constant of the circuit.

$$v_C(t) = V_i e^{-t/\tau}$$

□ After 5 time constants, voltage on capacitor is negligible.

## Application

□ Garage Door Opener





- □ Light on for 30 seconds
- Other timing applications

## Charging a Capacitance

- □ Switch closes at t=0.
- Steady-state and transient response



# **Charging Transient**



## DC Steady State

- The steps in determining the forced response for RLC circuits with DC sources are:
  - Replace capacitances with open circuits.
  - Replace inductances with short circuits.
  - 3. Solve the remaining circuit for steady-state current and voltages.

# **Example Exercise**



## **Example Exercise**





#### **RL** Circuits

- The steps involved in solving simple circuits containing do sources, resistances, and one energy-storage element (inductance or capacitance) are:
  - 1. Apply Kirchhoff's current and voltage laws to write the circuit equation.
  - 2. If the equation contains integrals, differentiate each term in the equation to produce a pure differential equation.
  - 3. Assume a solution of the form  $K_1 + K_2 e^{st}$ .
  - Substitute the solution into the differential equation to determine the values of  $K_1$  and s. (Alternatively, we can determine  $K_1$  by solving the circuit in steady state)
  - 5. Use the initial conditions to determine the value of  $K_2$ .
  - Write the final solution.

## **Example Exercise**



$$i(t) = 2 + K_2 e^{-tR/L}$$





# **Example Exercise**



## **Example Exercises**



#### RC and RL Circuits With General Sources



## Example

$$\frac{L}{R}\frac{di(t)}{dt} + i(t) = \frac{v_t(t)}{R}$$

In general

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

where f(t) is the forcing function. Setting the forcing function to zero yields the homogeneous equation.

#### RC and RL Circuits With General Sources

- □ The general solution consists of two parts:
  - Particular Solution: (also called the forced response) is any expression that satisfies the equation.
  - Complementary Solution: (also called the natural response) is one that satisfies the initial conditions
    - Obtained by solving the homogeneous equation (obtained by setting the forcing function to zero)

## Step-by-Step Solution

- Write the circuit equation and reduce it to a firstorder differential equation.
- Find a particular solution. The details of this step depend on the form of the forcing function.
- Obtain the complete solution by adding the particular solution to the complementary solution, which contains the arbitrary constant K.
- 4. Use initial conditions to find the value of K.

## **Example Exercise**



#### Solution

By KVL 
$$Ri(t) + \frac{1}{C} \int_{0}^{t} i(t) dt + v_{C}(0) - 2\sin(200t) = 0$$

Differentiating

$$R\frac{di(t)}{dt} + \frac{1}{C}i(t) = 400\cos(200t)$$

$$i_p(t) = A\cos(200t) + B\sin(200t)$$
  
=  $200\cos(200t) + 200\sin(200t)\mu A$   
 $i_c(t) = Ke^{-t/RC}$   
=  $-400e^{-t/RC}\mu A$ 

#### Initial Condition

□ Immediately after switch close



# Particular and Complementary Solutions



## Complete Solution



## **Example Exercises**





$$v_C(0) = 5 \text{ V}$$

#### Second Order Circuits

Series RLC Circuit and its mechanical analog





(b) Mechanical analog

#### Second-order Circuits

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int_{0}^{t} i(t)dt + v_{C}(0) = v_{s}(t)$$
Define damping coefficient 
$$\alpha = \frac{R}{2L}$$

and undamped resonant frequency  $\omega_0 = \frac{1}{\sqrt{LC}}$ 

and forcing function 
$$f(t) = \frac{1}{L} \frac{dv_s(t)}{dt}$$

## Second-order Circuits (Contd.)

$$\frac{d^{2}i(t)}{dt^{2}} + 2\alpha \frac{di(t)}{dt} + \omega_{0}^{2}i(t) = f(t)$$

- Particular Solution/Forced Response
  - Replace inductance by short circuit and capacitance by open circuit and then solve.
- Complementary Solution
  - Use trial solution  $i_c(t) = Ke^{st}$  to obtain characteristic equation

$$s^2 + 2\alpha s + w_0^2 = 0$$

## Second-order Circuits (Contd.)

- □ Define damping ratio  $\zeta = \frac{\alpha}{\omega_0}$
- Roots of the characteristic equation

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
  $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$ 

□ 3 cases

## Over Damped

□ If  $\zeta > 1$  (or equivalently, if α > ω<sub>0</sub>), the roots of the characteristic equation are real and distinct. Then, the complementary solution is

$$i_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$$

## Critically Damped

 $\Box$  If  $\zeta=1$  (or equivalently, if  $\alpha=\omega_0$  ), the roots are real and equal. Then the complementary solution is

$$x_c(t) = K_1 e^{s_1 t} + K_2 t e^{s_1 t}$$

## **Under Damped**

 $\zeta$  < 1 (or equivalently, if  $\alpha$  <  $\omega$ 0), the roots are complex. (By the term complex, we mean that roots involve j, the square root of -1.) The complementary solution is of the form

$$i_c(t) = K_1 e^{-\alpha t} \cos(\omega_n t) + K_2 e^{-\alpha t} \sin(\omega_n t)$$

Where the natural frequency is given by

$$\omega_n = \sqrt{\omega_0^2 - \alpha^2}$$

In electrical engineering, we use j rather than i to stand for square root of -1, because we use i for current.

# **Example Exercise**



 $R=300/200/100 \Omega$ 

# Steady State



### R=300 Ohms



Solution for  $R = 300 \Omega$ .

## R=200 Ohms



Solution for  $R = 200 \Omega$ .

#### R=100 Ohms



Solution for  $R = 100 \Omega$ .

#### 3 Solutions



Solutions for all three resistances.

## Step Function

Model for DC source by closing a switch







## Normalized Step Response



Normalized step responses for second-order systems described by Equation 4.99 with damping ratios of  $\zeta = 0.1$ , 0.5, 1, 2, and 3. The initial conditions are assumed to be x(0) = 0 and x'(0) = 0.

#### Parallel LC Circuit



$$C\frac{dv(t)}{dt} + \frac{1}{R}v(t) + \frac{1}{L} \int_{0}^{t} v(t)dt + i_{L}(0) = i_{n}(t)$$

Define

$$\alpha = \frac{1}{2RC}, \omega_0 = \frac{1}{\sqrt{LC}}, f(t) = \frac{1}{C} \frac{di_n(t)}{dt}$$

Similar to series LC circuit

## **Example Exercise**

- □ Initial v(0-) and  $i_{L}(0-)=0$
- $\square$  R=25/50/250 Ohms



$$L = 1 \text{ mH}$$
  $C = 0.1 \mu\text{F}$