N76-29268

(NASA-TM-X-73153) ANALYTICAL MODELS FOR ROTOR TEST MODULE, STRUT, AND BALANCE FRAME DYNAMICS IN THE 40 BY 80 FT WIND TUNNEL (NASA) 18 p HC \$3.50 CSCL 14B

Unclas G3/39 48387

MASA TECHNICAL MEMORANDUM

NASA TM X-73,153

NASA TM X-73,153

ANALYTICAL MODELS FOR ROTOR TEST MODULE, STRUT, AND BALANCE FRAME DYNAMICS IN THE 40- BY 80-FT WIND TUNNEL

Wayne Johnson

Ames Research Center Moffett Field, California 94035

June 1976

AUS (C.) RECEIVED NASA SU FARRIY INPUT BRANCH

1. Report No. NASA 'TM X-73,153	2. Government Azcassion No.	3, Recipient's Catalog No.	
4. Title and Subtitle ANALYTICAL MODELS FOR ROTO	R TEST MODULE, STRUT, AND	5, Report Date	
BALANCE FRAME DYNAMICS IN TUNNEL	THE 40- BY 80-FT WIND	6, Performing Organization Code	
7. Author(s) Wayne Johnson		8, Performing Organization Report No. A-6692	
9. Performing Organization Name and Address		10. Work Unit No. 505-10-22	
Ames Research Center, NASA Ames Directorate, USAAMRDL		11, Contract or Grant No.	
Noffett Field, California 94035 12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered Technical Memorandum	
NASA, Washington, D. C. 20 U.S. Army Air Mobility R&D California 94035	546 and Laboratory, Moffett Field,	14. Sponsoring Agency Code	
15. Supplementary Notes			

16, Abstract

A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40- by 80-Ft Wind Tunnel. A model for ground resonance calculations is also described.

19. Security Classif, (of this report)	20. Security Classif. (of this page)	21, No, of Pages	22. Price"
Rotor testing	Unlimite	STAR Categor	
 Key Words (Suggested by Author(s)) Wind tunnel module-balance 	18. Distribution Statements dynamics		

nc ienglature

rotor blade two-dimensional lift-curve slope
rotor drag force coefficient
motor roll moment coefficient
rotor pitch moment coefficient
rator tornue coefficient
rotor thrust coefficient
rotor si'e force coefficient
vector of rotor forces and moments acting on hub
vector of aerodynamic gust velocity components
unit vectors of shaft axis system
rotor radius
rotation matrix between shaft axis and tunnel axis systems
longitudinal gust velocity
lateral gust velocity
vector of support system input variables
vertical gust velocity
shaft axis components of rotor hub linear displacement
vector of support system degrees of freedom
vector of rotor hub linear and angular motion
shaft axis components of rotor hub angular displacement
rotor Lock number
air density
rotor solidity ratio
rotor rotational speed

ANALYTICAL MCDELS FOR ROTOR TEST MCDULE, STRUT, AND BALANCE FRAME DYNAMIUS IN THE 40- BY 80-FT WIND TUNNEL

Wayne Johnson*

U.S. Army Air Mobility 320 Laboratory
Moffett Field, California

SUMMARY

A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40- by 80-ft wind tunnel. A model for ground resonance calculations is also described.

INTRODUCTION

The wind tunnel testing of helicopter rotors requires a consideration of the dynamic characteristics of the coupled rotor and wind tunnel support system. An aeroelastic analysis of a rotor in a wind tunnel is described in reference 1. Such an analysis requires a mathematical description of the wind tunnel balance, strut, and test module. This report documents a model developed for the dynamics of a wind tunnel support system, including data for particular rotor test modules in the Ames 40- by 80-ft wind tunnel.

SUPPORT EQUATIONS OF MCTION

The required description of the rotor support system takes the form of a set of linear, constant coefficient differential equations, excited by forces and moments at the rotor hub (and also possibly by fixed system control inputs), plus the rotor hub motion produced by the support degrees of freedom (see reference 1). Let \mathbf{x}_{s} be the vector of support degrees of freedom, and \mathbf{v}_{s} the vector of control inputs for the support system. Let

^{*}Research Scientist, Large Scale Aerodynamics Branch, NASA-Ames Research Center

be the linear and angular shaft motion at the rotor hub, F the rotor forces and moments acting on the hub, and g the vector of aerodynamic gust components. Following the definitions of reference 1, the components of \propto , F, and g are:

$$\alpha = \begin{bmatrix}
x_{1} \\
y_{1} \\
2x_{1} \\
\alpha x_{2} \\
\alpha x_{3} \\
\alpha x_{4} \\
\alpha x_{5} \\
\alpha$$

The gust components are in a tunnel axis system (x aft, y right, and z up), while \propto and F are in the shaft axis system (see reference 1). These quantities are dimensionless -- g based on the rotor tip speed Ω R, the linear hub displacements based on the rotor radius R, and the hub forces and moments in rotor coefficient form. The general form considered for the rotor support equations of motion and the hub motion is thus:

$$a_2\ddot{x}_s + a_1\dot{x}_s + a_0x_s = bv_s + b_Gg + \tilde{a}F$$

$$\propto = cx_s$$

For use in the aeroelastic analysis of reference 1, these equations are made dimensionless, based on $_{\mbox{\scriptsize N}}$, $_{\mbox{\scriptsize N}}$, and R. With F in rotor coefficient form it is also convenient to normalize the equations by dividing by $(N/2)I_{\mbox{\scriptsize D}}$ (where N is the number of blades, and $I_{\mbox{\scriptsize D}}$ the characteristic inertia of the rotor blade). Note that the matrix $\tilde{\mbox{\scriptsize a}}$ may always be obtained from the matrix c (reciprocity theorem).

Normal Mode Description

Consider a general normal mode description of the elastic wind tunnel support system. The displacement $\vec{u}(\vec{r},t)$ and rotation $\vec{\Theta}(\vec{r},t)$ at an

arbitrary point \hat{r} are expanded in series of orthogonal vibration modes, with the generalized coordinates $q_k(t)$:

$$\vec{u}(\vec{r},t) = \sum_{k} q_{k}(t) \vec{s}_{k}(\vec{r})$$

$$\vec{b}(\vec{r},t) = \sum_{k} q_{k}(t) \vec{s}_{k}(\vec{r})$$

The differential equations for the degrees of freedom $\boldsymbol{q}_{\mathbf{k}}$ are then

$$\eta_k(\ddot{q}_k + g_e \omega_k \dot{q}_k + \omega_k^2 q_k) = Q_k$$

where M_k is the modal mass and ω_k the natural frequency; n_s is the structural damping coefficient for the mode; and Q_k is the generalized force. The hub motion is obtained from the mode shapes 3 and 3 at the rotor hub:

where

$$C = \begin{bmatrix} \frac{1}{2} \cdot \frac{1}{3}k \\ \frac{1}{3} \cdot \frac{1}{3}k \\ \frac{1}{6} \cdot \frac{1}{3}k \\ \frac{1}{6} \cdot \frac{1}{3}k \end{bmatrix}$$

$$= \begin{bmatrix} R_{ST} \frac{1}{3}k \\ R_{ST} \frac{1}{3}k \\ \frac{1}{6} \cdot \frac{1}{3}k \\ \frac{1}{6} \cdot \frac{1}{3}k \end{bmatrix}$$

Here $\vec{\xi}$ and $\vec{\delta}$ are in the tunnel axis system, so R_{ST} is the rotation matrix to the shaft axes. The generalized forces due to the rotor hub forces and moments are:

where

$$\tilde{a} = \begin{bmatrix} 2\vec{k}_{S} \cdot \hat{j}_{K} & \vec{i}_{S} \cdot \hat{j}_{K} & -\vec{j}_{S} \cdot \hat{j}_{K} & -\vec{k}_{S} \cdot \hat{j}_{K} & -\vec{k}_{S} \cdot \hat{j}_{K} & -\vec{k}_{S} \cdot \hat{j}_{K} \end{bmatrix}$$

Making these equations dimensionless as appropriate produces the required support equations of motion.

Ground Resonance Model

A simple model for ground resonance calculations is obtained by describing the support by lateral and longitudinal inplane flexibility with an arbitrary number of modes. Vertical, yaw, pitch, and roll motions of the hub are neglected. It is assumed that the measured hub impedance is available from shake tests. Then the equations of motion for the generalized coordinates \mathbf{q}_k are:

$$M_k \dot{q}_k + C_k \dot{q}_k + M_k \omega_k^2 q_k = f_k$$

where f_{k} = H or Y for longitudinal and lateral modes respectively. The hub motion is

The natural frequency ω_k , generalized mass M_k , and modal damping coefficient C_k may be obtained from the hub impedance. The matrices in the support equations of motion are thus

$$a_2 = \begin{bmatrix} M_k^* \end{bmatrix} \qquad a_1 = \begin{bmatrix} C_k^* \end{bmatrix} \qquad a_0 = \begin{bmatrix} K_k^* \end{bmatrix}$$

where $M_k^* = M_k/(\frac{1}{2}NI_b/R^2)$, $C_k^* = C_k/(\frac{1}{2}NI_b\Omega/R^2)$, and $K_k^* = M_k^*(\omega_k/\Omega)^2$; and the hub motion matrices are zero except for the elements:

$$a_{k2} = c_{1k} = 1$$
 longitudinal modes
 $-a_{k3} = c_{2k} = 1$ lateral modes

Cantilever Wing

A model for a wing attached to the wind tunnel with cantilever root restraint (no balance motions) is developed in reference 2 for proprotor dynamics calculations. The rotor is located on a pylon at the wing tip, with the rotor hub a distance h forward of the wing tip elastic axis. An arbitrary angle of the pylon with respect to the tunnel velocity is considered. The wing motion is described by three degrees of freedom: vertical bending, chordwise bending, and torsion. For further details of the model, see ref. 2.

BALANCE, STRUT, AND MCDULE MCDEL

We shall now develop a generalized coordinate description of a wind tunnel support consisting of a balance frame, struts, and an aircraft body or rotor test module. The analysis will use the free vibration modes of the aircraft or module, coupled with a simple model for the balance frame and strut system. The resulting equations in normal mode form are

$$C_{k}(\ddot{q}_{k} + \omega_{k}^{2}q_{k}) + \leq C_{k1}q_{1} = Q_{k} = \tilde{a}_{k}^{T}F$$

$$\leq C_{k}q_{k}$$

Here q_k are the generalized coordinates for the complete system. The matrix \widetilde{a} (with rows \widetilde{a}_k^T) may be obtained from the matrix c (with columns c_k) always.

Balance Frame

Consider a balance frame supported by a scale system. The balance has a turntable; the turntable yaw angle $\boldsymbol{\mathcal{W}}$ is defined positive to the right, $\boldsymbol{\mathcal{V}}=0$ with the main struts forward and the tail strut aft. The balance frame motion is described by the six linear and angular rigid body degrees of freedom $-\boldsymbol{x}_B$, \boldsymbol{y}_B , \boldsymbol{z}_B , \boldsymbol{x}_B , \boldsymbol{x}_B , and \boldsymbol{x}_B . The elastic deflections of the balance frame are neglected. Thus the motion of an arbitrary point (x,y,z) relative to the balance frame CG is given by

$$\Delta x = x_8 + \alpha_{8y} = -\alpha_{8z} y$$

$$\Delta y = y_8 - \alpha_{8x} = + \alpha_{8z} x$$

$$\Delta z = z_8 + \alpha_{8x} y - \alpha_{8y} x$$

The balance scale system is represented by springs to fixed ground: four lift scales (K_L) , two side scales (K_S) , and one drag scale (K_D) . The balance system optionally has viscous dampers between the frame and ground -eight dampers at the corners of the balance frame (8 working vertically, 4 longitudinally, and 4 laterally).

Struts

There are two main struts and a tail strut. It is assumed that the main struts are cantilevered at the root (the balance frame), and pinned at the tips. The tail strut is pinned at the tip, pinned at the root longitudinally, and cantilevered at the root laterally. The inertia reaction of the struts is not considered (the strut mass is included in the balance frame inertia). Cnly the apring restraint between the balance and module is considered -- lateral, longitudinal, and vertical for the main struts, and lateral and vertical for the tail strut. The strut deflection model is based on the modes of a uniform cantilever beam. The vertical stiffness of the strut is very high; it is only included as the simplest means of handling the vertical motion constraints. It should be noted that the assumption of pinned joints at the strut tips, and even cantilever at the roots, is probably not very good (based on the stiffnesses required to match various experimental results). The physical system is of course more complex, perhaps so complex that even a sophisticated structural dynamics model such as NASTRAN will not improve correlation much.

A prop test rig is also considered, for which only the two main struts are used. The module is constrained in pitch at the strut tips in that case.

The strut tip displacement is given by the sum of the bending modes of a cantilever beam. Thus for the left main strut, the tip motion due to elastic bending is:

$$\Delta x_e = \sum_{n} q_{msl_x}$$
 longitudinal
 $\Delta y_e = \sum_{n} q_{msl_x}$ lateral
 $\Delta z_e = \sum_{n} q_{msl_x}$ vertical
 $\Delta \alpha y_e = \sum_{n} q_{msl_x} (\phi_n/R)$ pitch

where λ is the strut length. These components are defined with respect to

axes yawed with the balance turntable. The tip deflection for the right main strut (MSR) and the tail strut (TS) are defined similarly (only lateral and vertical deflections for the tail strut, and the main strut pitch motion is only required for the prop test rig). The potential energies of bending and extension of the strut are

bending
$$\frac{1}{2} \frac{1}{2} \frac{1}$$

The modes of a uniform cantilever beam give:

n	Bu	ф,
1	3.091	1.367
2	121.42	4.781
3	952.1 3656.	7.849 10.996

Nominally the spring constants are $K_{\rm bend} = EI/R^3$ and $K_{\rm ext} = EA/R$; in practice these parameters are evaluated by matching to the measured frequencies.

Module

The module motion is described by the normal modes of free vibration; the first six modes are the linear and angular rigid body degrees of freedom. The motion is defined with respect to the yawed axis system, with origin at the module CG. The linear and angular motion of the point $\vec{r} = (x,y,z)$ is thus given by the module generalized coordinates q_{1k} as follows:

$$\vec{\mathbf{q}}_{\text{module}} = \underbrace{\boldsymbol{\xi}}_{\mathbf{k}} \quad q_{M_{\mathbf{k}}}(\mathbf{t}) \, \vec{\boldsymbol{\xi}}_{\mathbf{M}_{\mathbf{k}}}(\vec{\mathbf{r}})$$

$$\vec{\mathbf{e}}_{\text{module}} = \underbrace{\boldsymbol{\xi}}_{\mathbf{k}} \quad q_{M_{\mathbf{k}}}(\mathbf{t}) \, \vec{\boldsymbol{\xi}}_{\mathbf{M}_{\mathbf{k}}}(\vec{\mathbf{r}})$$

For the six rigid body modes

$$\vec{\xi} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ \times \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$$

In particular, the rotor hub motion is given by

Here ζ and Y are in the yawed axis system, so it is necessary to premultiply by the rotation matrix

$$R_{\text{TM}} = \begin{bmatrix} \cos \Psi & -\sin \Psi & 0 \\ \sin \Psi & \cos \Psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

to obtain the hub motion in the tunnel axis system.

Module/Strut Connection

The system has constraints imposed by the connections between the module and strut tips. Specifically, it is required that the strut tip motion (composed of balance motion plus strut bending terms) equal the module motion at the connection points. This constraint is applied to the three linear deflections at the main strut tips, and to the lateral and vertical deflection at the tail strut tip. For the prop test rig, the pitch deflection constraints at the main strut tips replace the tail strut constraints.

Degrees of Freedom

The degrees of freedom of the system consist of the six balance rigid body motions, the six module rigid body motions, and $N_{\rm e}$ module elastic modes. The strut deflections do not add degrees of freedom since the strut bending inertia is not considered. The constraint equations thus must be used to eliminate the strut deflections from the set of equations, leaving 12+ $N_{\rm e}$ equations to be solved for the coupled normal modes of the balance/strut/module system.

Energy and Constraints

The kinetic energy of the model described above is

The potential energy is

The constraint equations (at the strut tips) are:

and similarly for the right main strut and the tail strut.

Lagrange's Equations

The differential equations of motion are obtained from Lagrange's equations including constraints. The constraint equations are of the form

$$\oint_{k} (\mathbf{q}_{1} \dots \mathbf{q}_{N}) = 0$$
 for $k = 1 \dots k$

With linear constraints (as here), there equations may be written

Then the Lagrange equations with the constraints are:

$$\frac{\partial}{\partial q_{n}} = \frac{\partial T}{\partial q_{n}} + \frac{\partial U}{\partial q_{n}} = Q_{n} - \frac{E}{K} \lambda_{n} \frac{\partial \Phi_{n}}{\partial q_{n}}$$
 for $n = 1...N$

Thus there are N+E equations for the degrees of freedom q_n and the Lagrange multipliers λ_{K} . Note that the mass and stiffness matrices are symmetrical with linear constraints.

By this procedure the equations describing the balance, strut, and notule dynamic system may be constructed.

Solution

Eliminating the Lagrange multipliers and constraint equations from the system gives a set of $12+N_c$ linear differential equations, of the form:

$$A_2\ddot{x} + A_1\dot{x} + A_0x = 0$$

where it is a damping matrix (balance dampers or aerodynamic damping), and Q is the generalized force vector (due to hub forces and moments; and perhaps contributions from aerodynamic gusts or support system control variables).

The homogeneous, undamped equations are

$$V_{x} + V_{0} = 0$$

where A_2 and A_0 are real symmetric matrices. It follows that the eigenvalues are real and positive, and the eigenvectors real. Let ω_k^2 be the eigenvalues of $A_2^{-1}A_0$, and T the modal matrix (columns are the eigenvectors). Then the modal coordinates for the coupled system are defined by $q = T^{-1}x$; the natural frequencies of the modes are ω_k ; and the (diagonal) generalized mass matrix is

$$\{M_k\} = T^T A_2 T$$

The damping matrix is then

$$\left\{ \mathbf{C}_{\mathbf{k}\mathbf{1}} \right\} = \mathbf{T}^{\mathbf{T}} \mathbf{A}_{\mathbf{1}} \mathbf{T}$$

(only the diagonal terms are usually important). Finally, the hub motion in terms of the modal coordinates of the coupled system is:

$$\alpha = R_{\text{TM}} \left[\cdots \right] \left\{ q_{\text{M}_{1}} \right\}$$

SO

$$c_k = R_{TM} \left[\cdots \right] t_k$$

where $t_{\rm k}$ is the appropriate column of the modal matrix T. This completes the description of the rotor support equations of motion and the hub motion in the required form.

DATA FOR THE AMES 40- BY 80-FT WIND TUNNEL

The following sections give the geometric, mass, and stiffness data for several rotor test modules and strut combinations in the Ames 40- by 80-ft wind tunnel. The geometry was measured directly. The inertia data were obtained from direct measurements and from NASTRAN calculations. The stiffnesses were obtained by matching the calculations with shake test results for the principal natural frequencies of the system. Experiment is the only reliable source for modal damping values, because even for the balance dampers the modal damping is very sensitive to the details of the motion. The shake test data used was from references 3 to 5.

Balance

$$\begin{aligned} & \text{M} = 53500 \text{ kg} \\ & \text{I}_{\text{X}} = 325000 \text{ kg-m}^2 \\ & \text{I}_{\text{y}} = 340000 \text{ kg-m}^2 \\ & \text{I}_{\text{z}} = 810000 \text{ kg-m}^2 \\ & \text{X}_{\text{CG}} = -.49 \text{ m} \\ & \text{z}_{\text{CG}} = 2.03 \text{ m} \end{aligned} \qquad \begin{aligned} & \text{relative to center turntable, drag} \\ & \text{link elevation; for yaw} \quad \Psi = 0. \end{aligned} \\ & \text{K}_{\text{D}} = 9000000 \text{ N/m} \\ & \text{K}_{\text{S}} = 9000000 \text{ N/m} \\ & \text{K}_{\text{L}} = 36000000 \text{ N/m} \end{aligned}$$

C_{damper} ≗ 15000 N/m/sec

	Position, m			
	(relative center	turntable,	drag link elevation)	
		y	2	
scale springs				
D RS FS RRL RFL LRL LFL	3.086 2.553 -3.899 4.877 -4.877 4.877	0 0 0 -5.153 -5.153 5.153	0 0 0 1.8 1.8 1.8 1.8	
dampers				
long SE SW NE NV lat SE SW	-4.88 -4.88 4.88 4.88 -2.51	-3.05 3.05 -3.05 3.05 -5.15 5.15	1.4 1.4 1.4 1.4 1.4 1.4	
en Wi	3.20 3.20	-5.15 5.15	1.4 1.4	

Rotor Test Apparatus

M = 13800 kg $T_x = 2600 \text{ kg-m}^2$ $T_y = 54500 \text{ kg-m}^2$ $T_z = 49500 \text{ kg-m}^2$ $T_{zx} = 2900 \text{ kg-m}^2$ tail length = 4.521 m
tread = 2.438 m

	long struts	long struts, bal. locked	short struts	short struts, bal. locked
strut height	4,72	4.72	3.96	3.96 m
K _{HS}	1120000	830000	550000	450000 N/m
${\color{red} ^{K}_{MS}}_{\mathbf{y}}$	1780000	920000	830000	500000 N/m
K _{TS}	730000	560000	410000	270 0 00 N/m
^K vert		6 x	10 ⁸ N/m	

		Position, m ative module CG) z
left main strut	-1.503	-1.219	15
right main strut	-1.503	1.219	15
tail strut	3.018	0	15
hub	2.442	0	1.679

Propeller Test Rig

M = 8600 kg

$$I_x = 14600 \text{ kg-m}^2$$

 $I_y = 950 \text{ kg-m}^2$
 $I_z = 14600 \text{ kg-m}^2$
tread = 2.438 m
strut height = 6.07 m

for turntable yaw # = 0

	balance free	balance locked
K _{MS}	310000	310000 N/m
K _{NS}	580000	450000 N/m
K vert	6 x	10 ⁸ N/m

Position, m			
	(relati	ive module CG, 妆 =	0)
	×		24
left main strut	0	-3.39	0
right main strut	0	95	0
hub	Ö	3.20	0

REFERENCES

- 1. Johnson, Wayne, "Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel," NASA TN-D, in preparation
- 2. Johnson, Wayne, "Analytical Model for Tilting Proprotor Aircraft Dynamics, Including Blade Torsion and Coupled Bending Modes, and Conversion Mode Operation." NASA TM X-62369, August 1974
- 3. Johnson, Wayne, and Biggers, James C., "Shake Test of Rotor Test Apparatus in the 40- by 80-ft Wind Tunnel," NASA TM X-62418, February 1975
- 4. Johnson, Wayne, and Biggers, James C., "Shake Test of Rotor Test Apparatus with Balance Dampers in the 40- by 80-ft Wind Tunnel,"

 NASA T: X-62470, July 1075
- 5. Johnson, Wayne, "Shake Test of a Propeller Test Rig in the 40- by 80-ft Wind Tunnel," NASA TM X-73080, November 1975