

Endemic-epidemic modelling with surveillance

Sebastian Meyer Institute of Medical Informatics, Biometry, and Epidemiology Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany 23 March 2022

library("surveillance")

Some background:

- Michael H\u00f6hle had worked on statistical methods for outbreak detection and published a first version of surveillance on CRAN in November 2005
- Back then, we had R 2.2.0 and only about 600 packages on CRAN.
- Since 2011, surveillance additionally provides three classes of regression models for infectious disease surveillance data

Journal of Statistical Software

April 2017, Volume 77, Issue 11.

doi: 10.18637/jss.v077.i11

Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance

Sebastian Meyer

Friedrich-Alexander-Universität Erlangen-Nürnberg Leonhard Held University of Zurich Michael Höhle Stockholm University

Abstract

The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The open source R package surveillance can handle various levels of aggregation at which infective events have been recorded:

Two types of supported surveillance data

Individual-level data

C	oord:	inates	time	sex	agegrp	
1 (4	112,	3203)	1	male	[3,19)	
2 (4	123,	3077)	1	male	[3,19)	
3 (4	412,	2916)	6	female	[19, Inf)	
[.]					

Count time series

	09162	09184	09179	09174	
2005-W01	7	0	0	1	
2005-W02	2	1	0	0	
2005-W03	1	4	0	0	
[]					

Basic modelling concept

Decomposed disease risk:

Endemic: background risk driven by seasonality, demographics, ...

 \oplus

Epidemic: force of infection by previously

infected individuals

 Force of infection may depend on social mixing and spatial/temporal distance to infective

Endemic-epidemic modelling frameworks in surveillance

	twinstim	hhh4	twinSIR	
Data	individual events in continuous space-time	event counts aggregated in space and time	individual SI[R][S] history of a fixed population	
Example	case reports of IMD, Germany, 2002–2008	week×district counts of measles, Weser-Ems region, 2001–2002	measles outbreak among households, Hagelloch, 1861	
Model	spatio-temporal PP	multivariate NegBin time series	multivariate temporal PP	
Rate	$\lambda(s,t)$	μ_{it}	$\lambda_i(t) \{i \in S(t)\}$	
= Endemic +	$v_{[s][t]} ho_{[s][t]}$	V _{it} e _{it}	$v_i(t)\lambda_0(t)$	
Epidemic	$\int_{j:t_j < t} \eta_j f(\ s - s_j\) g(t - t_j)$	$\lambda_{it} Y_{i,t-1} + \phi_{it} \sum_{j \neq i} w_{ji} Y_{j,t-1}$	$\sum_{j\in I(t)} f(s_i-s_j)$	

visualization

model assessment

likelihood inference

simulation

Starting point for hhh4()

We have:

- Public health surveillance counts Y_{grt} indexed by [group,] [region,] time
- Maybe a social contact matrix $C = (c_{g'g})$
- Maybe additional covariates: vaccination coverage, climate, socio-demographics, . . .

We want: a joint model of all three data dimensions

- g: social mixing patterns between age groups
- r: spatial dynamics through human travel
- t: temporal dependencies inherent to communicable diseases

$$egin{aligned} Y_{grt}|Y_{.,\cdot,t-1} &\sim \mathsf{NegBin}(\mu_{grt},\psi_{gr}) \ \mu_{grt} &= v_{grt} + \phi_{grt} \sum_{g',r'} c_{g'g} \, w_{r'r} \, Y_{g',r',t-1} \end{aligned}$$

$$egin{aligned} Y_{grt}|Y_{\cdot,\cdot,t-1} &\sim \mathsf{NegBin}(\mu_{grt},\psi_{gr}) \ \mu_{grt} &= v_{grt} + \phi_{grt} \sum_{g',r'} \boxed{c_{g'g}} w_{r'r} \, Y_{g',r',t-1} \end{aligned}$$

Contact matrix $(c_{a'a})$ for $g' \to g$, for example from POLYMOD

$$egin{aligned} Y_{grt}|Y_{.,\cdot,t-1} &\sim \mathsf{NegBin}(\mu_{grt},\psi_{gr}) \ \mu_{grt} &= v_{grt} + \phi_{grt} \sum_{g',r'} c_{g'g} \boxed{w_{r'r}} Y_{g',r',t-1} \end{aligned}$$

$$Y_{grt}|Y_{\cdot,\cdot,t-1} \sim \mathsf{NegBin}(\mu_{grt},\psi_{gr})$$

$$\mu_{grt} = \boxed{v_{grt}} + \boxed{\phi_{grt}} \sum_{g',r'} c_{g'g} w_{r'r} Y_{g',r',t-1}$$

Spatial weights for $r' \rightarrow r$, e.g.,

power-law decay $w_{r'r} = (o_{r'r} + 1)^{-\rho}$

Contact matrix $(c_{g'g})$ for $g' \to g$, for example from POLYMOD

00-0405-1415-2425-4445-64 65+ age group of contact 0.5 0.4 0.3 0.2 0.1 1.5% 3.0% Log-linear predictors v_{grt} and ϕ_{grt}

- Population
- Seasonality
 - Groupspecific susceptibility
- (Covariates)

65+

45-64

15-24

05-14

00-04

ge group of participant

A simple example: data("measlesWeserEms")

```
plot(measlesWeserEms,
     type = observed ~ unit)
```

2001-W01 to 2002-W52

Following slides: univariate model for the (right-hand) overall time series

measles1 <- aggregate(measlesWeserEms, by = "unit")</pre>

Univariate hhh4() model

Number of cases at time t

$$Y_t | Y_{t-1} \sim \mathsf{NegBin}(\mu_t, \psi)$$

Endemic-Epidemic decomposition of disease risk:

$$\mu_t = v_t + \lambda Y_{t-1}$$

Seasonality via sine-cosine terms in log-linear predictor V_t :

$$\log(v_t) = \alpha + \gamma \sin(2\pi t/52) + \delta \cos(2\pi t/52)$$

Univariate hhh4() model

```
measlesModel <- list(end = list(f = endemic), # "nu"</pre>
                   ar = list(f = ~1), # "lambda"
                   family = "NegBin1")
measlesFit <- hhh4(measles1, control = measlesModel)</pre>
summarv(measlesFit. amplitudeShift = TRUE. idx2Exp = TRUE)
Call:
hhh4(sts0bj = measles1, control = measlesModel)
Coefficients:
                    Estimate Std. Error
exp(ar.1)
                  0.90977 0.09211
exp(end.1)
             0.90641 0.20787
end.A(2 * pi * t/52) 1.43597 0.37315
end.s(2 * pi * t/52) -0.77073 0.19739
overdisp
             0.34459 0.07951
Log-likelihood: -271.32
ATC:
        552.64
```

565.82

BTC:

Fitted mean components

plot(measlesFit, type = "fitted")

Methods for "hhh4" objects

Display	Extract	Modify	Other
print summary plot	nobs coef fixef ranef vcov confint coeflist logLik residuals terms formula getNEweights	update	<pre>predict simulate pit scores calibrationTest all.equal oneStepAhead</pre>