Essentials of MOSFETs

Unit 3: MOS Electrostatics

Lecture 3.2: The Depletion Approximation

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

1D MOS electrostatics

Depletion

Poisson equation

$$\frac{dD(y)}{dy} = \rho(y)$$

$$\frac{d\mathcal{E}}{dy} = \frac{\rho(y)}{\varepsilon_S} = -\frac{qN_A}{\varepsilon_S}$$

$$\varepsilon_S = \kappa_{Si} \varepsilon_0$$

Electric field

$$\mathcal{E}(y) = \frac{qN_A}{\varepsilon_S} (W_D - y)$$

$$\mathcal{E}_{S} = \frac{qN_{A}W_{D}}{\varepsilon_{S}} = \frac{-Q_{S}}{\varepsilon_{S}}$$

Electrostatic potential

$$\mathcal{E}(y) = -d\psi(y)/dy \quad \psi(y) = -\int \mathcal{E}(y)dy$$
$$\psi_S = \frac{1}{2} \mathcal{E}_S W_D$$

$$W_D = \sqrt{2\varepsilon_S \psi_S / q N_A}$$

Depletion charge per cm²

$$W_D = \sqrt{2\varepsilon_S \psi_S / q N_A}$$

$$Q_D = -qN_AW_D = -\sqrt{2qN_A\varepsilon_S\psi_S} \quad \text{C/cm}^2$$

(depletion charge)

$$Q_S = Q_D + Q_n$$
 C/cm²

(total charge in semiconductor)

$$|Q_S| \approx |Q_D| \sim \sqrt{\psi_S}$$

MOS electrostatics

Example

$$N_A = 10^{18} \text{ cm}^{-3}$$

$$T = 300 \text{ K}$$

$$n_i$$
 (300 K) = 10^{10} cm⁻³

$$\kappa_{Si} = 11.8$$

$$\psi_{S} = 0.5 \text{ V}$$

$$k_B T/q = 0.026 \text{ V}$$

Find:

- i) the width of the depletion layer
- ii) the electric field at the surface

Example

P-type Si doped at:
$$N_A = 10^{18} \text{ cm}^{-3}$$

$$T = 300 \text{ K}$$
 $n_i (300 \text{ K}) = 10^{10} \text{ cm}^{-3}$

$$\psi_{S} = 0.5 \text{ V}$$

1) Check to see if we are in depletion or inversion.

$$\psi_S < 2\psi_B$$
?

$$\psi_B = \frac{k_B T}{q} \ln \left(\frac{N_A}{n_i} \right) = 0.026 \ln \left(\frac{10^{18}}{10^{10}} \right) = 0.48 \text{ V}$$
depletion

$$\psi_S < 2\psi_B$$
?
 $0.5 < 0.96 \text{ V}$
depletion

Depletion layer thickness

P-type Si doped at:
$$N_A = 10^{18} \text{ cm}^{-3}$$

$$T = 300 \text{ K}$$

$$n_i$$
 (300 K) = 10^{10} cm⁻³

$$\kappa_{Si} = 11.8$$

$$\psi_{S} = 0.5 \text{ V}$$

$$k_B T/q = 0.026 \text{ V}$$

$$W_D = \sqrt{2\varepsilon_S \psi_S / q N_A}$$

$$W_D = \sqrt{2(11.8)(8.854 \times 10^{-12})(0.5)/[(1.6 \times 10^{-19})10^{24}]}$$

$$W_D = 25.6 \text{ nm}$$

$$W_D = 25.6 \times 10^{-9} \text{ m}$$

Electric field at the surface

P-type Si doped at:
$$N_A = 10^{18} \text{ cm}^{-3}$$

$$T = 300 \text{ K}$$

$$n_i$$
 (300 K) = 10^{10} cm⁻³ $\kappa_{Si} = 11.8$

$$\kappa_{c_i} = 11.8$$

$$\psi_{S} = 0.5 \text{ V}$$

$$k_{\rm B}T/q = 0.026 \, {\rm V}$$

$$\psi_{S} = \frac{1}{2} \mathcal{E}_{S} W_{D}$$

$$\psi_S = \frac{1}{2} \mathcal{E}_S W_D$$
 $\mathcal{E}_S = \frac{2\psi_S}{W_D} = \frac{2(0.5)}{25.6 \times 10^{-9}}$

$$\mathcal{E}_{S} = 3.9 \times 10^{5} \frac{V}{cm}$$

$$\mathcal{F}_{S} = \frac{2\psi_{S}}{W_{D}}$$

$$\mathcal{E}_{S} = \frac{2\psi_{S}}{W_{D}} \qquad \mathcal{E}_{S} = 3.9 \times 10^{7} \, \frac{\text{V}}{\text{m}}$$

$$\mathcal{E}_{S} = 390 \, \frac{\text{kV}}{\text{cm}}$$

Summary

Next topic

Given a surface potential, we can compute the electric field and depletion layer thickness (if we are in depletion), but what gate voltage produced this surface potential?

That is the subject of the next lecture.