Transmission d'informations entre la Terre et les sondes spatiales

Tom Hubrecht

Table des matières

- Généralités
 - Problématique
 - Modélisation
 - Algorithmes de codage
- 2 Turbocodes
 - Codage
 - Décodage
 - Expérience
- 3 Codes LDPC
 - Fonctionnement
 - Décodage
 - Décodage brut
 - Décodage doux

Généralités

La sonde Voyager 2 communique avec le Terre alors qu'elle est à 18 milliards de kilomètres.

Théorie de l'information

ullet Capacité du canal C

Cas de l'espace

- Canal de propagation gaussien
- Capacité : $C = W.\log_2(1 + \frac{E_b}{N_0}) \ bit.s^{-1}$
 - W : nombre de bits émis par seconde
 - $\frac{E_b}{N_0}$: rapport signal sur bruit

Définitions

- Rapport de vraisemblance logarithmique (LLR) : $\Lambda(d_k) = \log(\frac{\mathbf{P}(d_k=1)}{\mathbf{P}(d_k=0)})$
- Taux de transmission : $R = \frac{\text{nombre de bits du message}}{\text{nombre de bits envoyés}}$
- Codage systématique
- Probabilité à posteriori (PAP)

Plusieurs classes de codes

Généralités

- Codage par convolution
- Turbocodes
- Codes LDPC (Low Density Parity Checks)
- Codes Reed-Solomon

Schéma d'un encodeur

Composant Enc

Schéma

Processus de décodage

Le décodeur reçoit en entrée trois variables réelles pour le code avec $R=\frac{1}{2}$:

$$x_k = (2.X_k - 1) + a_k$$

$$y_{1,k} = (2.Y_{1,k} - 1) + b_k$$

$$y_{2,k} = (2.Y_{2,k} - 1) + c_k$$

où a_k, b_k et c_k sont des variables aléatoires suivant une loi normale de moyenne nulle et de variance σ^2

Principe de décodage

On note S_k l'état de l'encodeur au moment k,

$$S_k = (a_k, a_{k-1}, a_{k-2}, a_{k-3})$$

 $S_0 = S_N = 0$

La sortie du canal fournie à l'entrée du décodeur est la suite

$$R_1^N = (R_1, \dots, R_k, \dots, R_N)$$
 où $R_k = (x_k, y_{j,k})$

On introduit
$$\lambda_k^i(m) = \mathbf{P}(X_k = i, S_k = m/R_1^N)$$
, d'où

$$\mathbf{P}(d_k = i/R_1^N) = \sum_m \lambda_k^i \text{ et } \Lambda(X_k) = \log \left(\frac{\sum\limits_m \lambda_k^1}{\sum\limits_m \lambda_k^0} \right)$$

Codes I DPC

On introduit des fonctions :

•
$$\alpha_k^i(m) = \frac{\mathbf{P}(X_k = i, S_k = m, R_1^k)}{\mathbf{P}(R_1^k)} \cdot \mathbf{P}(X_k = i, S_k = m/R_1^k)$$

•
$$\beta_k(m) = \frac{\mathbf{P}(R_{k+1}^N/S_k = m)}{\mathbf{P}(R_(k+1)^N/R_1^k)}$$

•
$$\gamma_i(R_k, m', m) = \mathbf{P}(X_k = i, R_k, S_k = m/S_{k-1} = m')$$

On a par le calcul : $\lambda_k^i(m) = \alpha_k^i(m).\beta_k(m)$

- Étape 0 : On initialise les probabilités, $\alpha_0^i(0) = 1, \ \alpha_0^i(m) = 0 \quad \forall m \neq 0$ $\beta_N(0) = 1, \ \beta_N(m) = 0 \quad \forall m \neq 0$
- Étape 1 : Pour chaque inforation reçue R_k , on calcule $\alpha_k^i(m)$, $\gamma_i(R_k,m',m)$
- Étape 2 : Après la réception du message, on calcule $\beta_k(m)$ puis $\lambda_k^i(m)$ et enfin $\Lambda(X_k)$

Avant décodage

Après décodage

Bruit élevé

Avant décodage

Après décodage

Principe mathématique

- Le codage comme multiplication matricielle dans \mathbb{F}_2
- Utilisation de matrices peu denses $A \in \mathcal{M}_n(\mathbb{F}_2)$
- Code (n, j, k)

Génération d'un code LDPC

Utilisation de la méthode de Robert Gallager pour un code (n, j, k).

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_j \end{pmatrix} \quad A_1 = \begin{pmatrix} 1 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}$$

$$\forall l \in 2, j, \quad A_i = \left(C_{\sigma(1)}|\dots|C_{\sigma(j)}\right)$$
 où $A_1 = \left(C_1|\dots|C_j\right)$

La matrice de codage obtenue est alors $G = \begin{pmatrix} A \\ I \end{pmatrix}$ et la matrice de décodage $H = \begin{pmatrix} A & I \end{pmatrix}$

Codage d'un message

Soit $m = (m_1, \ldots, m_n)$ un message à coder, on a $c = (c_1, \ldots, c_r)$ le message obtenu après codage,

$$c = G.m^T$$
 où $r = \frac{nj}{k} + n$,

Le taux de transmition vaut donc $R = \frac{k}{k+i}$

Enfin,
$$H.c^T = 0$$

Représentation de Tanner

Généralités

Un graphe de Tanner est associé à la matrice de décodage H et comprend :

- r noeuds messagers
- $\frac{n.j}{k}$ noeuds de contrôle

Noeuds messagers

Noeuds de contrôle

- Décodage brut (Hard decoding)
- Décodage à décision douce (Soft decoding)

Plusieurs méthodes Décodage brut

- Traduction du message reçu à l'aide d'une fonction seuil
- Calcul des sommes au niveau des noeuds de contrôle
- Modification des noueds messagers reliés aux noeuds de contrôles non satisfaits
- Itération jus'à satisfaction des noeuds de contrôle où itération maximale atteinte

Bruit relativement faible

Avant décodage

Après décodage

AFTER TRAVELING 17 SILLION MILES THE JUNO SPACECRIAT REACHED JUPITER LYTHINGHE SECOND OF ITS SCHEDULED ASSIVAL TIME

Avant décodage

Après décodage

Plusieurs méthodes Décodage doux

Utilisation de probabilités,

- Envoi des LLR par les noeuds messagers aux noeuds de contrôle
- Calcul des nouveaux LLR
- Itération jus'à des LLR suffisament élevés où itération maximale atteinte

En fin de compte, on dispose de codages très performants pour pallier au bruit engendré par l'espace.