AP Calculus Homework 4

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Differentiate the following functions.

a)
$$y = e^{u}(\cos u + cu)$$
 b) $y = \frac{\sin x}{x^{2}}$ c)* $f(x) = xe^{x} \csc x$

d)**
$$y = \frac{(1+x^2)\tan^{-1}x - x}{2}$$

2. Find an equation of the tangent line to the curve $y = \sec x - 2\cos x$ at the point $(\pi/3, 1)$.

3. Find the derivative of the function (Choose any five problems)

a)
$$g(t) = \frac{1}{(t^4 + 1)^3}$$
 b) $y = xe^{-kx}$ c) $y = (x^2 + 1)\sqrt[3]{x^2 + 2}$

d)
$$y = e^{-5x} \cos 3x$$
 e) $y = \sin(\tan 2x)$ f) $y = 2^{3x^2}$ g) $y = [x + (x + \sin^2 x)^3]^4$

4. Find an equation of the tangent line to the curve $y = (1+2x)^{10}$ at the point (0,1).

5.* If
$$F(x) = f(xf(xf(x)))$$
, where $f(1) = 2$, $f(2) = 3$, $f'(1) = 4$, $f'(2) = 5$, and $f'(3) = 6$, find $F'(1)$.

6.** Find the derivative of the following function

$$f(x) = \frac{1}{x - \frac{2}{x + \sin x}}$$

7. Find $\frac{dy}{dx}$ by implicit differentiation.

a)
$$y^5 + x^2y^3 = 1 + ye^{x^2}$$
 b) $y \sin(x^2) = x \sin(y^2)$ c) $\sqrt{xy} = 1 + x^2y$

8.* Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

1

$$x^2 + y^2 = (2x^2 + 2y^2 - x)^2$$
 at $(0, 1/2)$.

- 9. Find the derivative of the function. Simplify where possible.
- a) $g(x) = \sqrt{x^2 1} \sec^{-1} x$ b) $h(t) = \cot^{-1} (t) + \cot^{-1} (1/t)$
- $c)^* F(\theta) = \arcsin \sqrt{\sin \theta}$
- 10. Find the second derivative of the function $y = xe^{cx}$
- 11. If g is a twice differentiable function and $f(x) = xg(x^2)$, find f'' in terms of g, g', and q''.
- 12. If $f(x) = x\sqrt{2x-3}$, then f'(x) =

- A) $\frac{3x-3}{\sqrt{2x-3}}$ B) $\frac{x}{\sqrt{2x-3}}$ C) $\frac{1}{\sqrt{2x-3}}$ D) $\frac{-x+3}{\sqrt{2x-3}}$ E) $\frac{5x-6}{2\sqrt{2x-3}}$
- 13. $\frac{d}{dx}\left(xe^{\ln x^2}\right) =$

- A) 1 + 2x B) $x + x^2$ C) $3x^2$ D) x^3 E) $x^2 + x^3$
- 14. The slope of the tangent line to the curve $y^2 + (xy + 1)^3 = 0$ at (2, -1) is
- A) $-\frac{3}{2}$ B) $-\frac{3}{4}$ C) 0 D) $\frac{3}{4}$ E) $\frac{3}{2}$

- 15. If $\frac{dy}{dx} = \sqrt{1 y^2}$, then $\frac{d^2y}{dx^2} = \frac{1}{1 + y^2}$

- A) -2y B) -y C) $\frac{-y}{\sqrt{1-y^2}}$ D) y E) $\frac{1}{2}$