

AOTL66912

100V N-Channel AlphaSGT™

General Description

- \bullet Trench Power MOSFET AlphaSGT $^{\text{TM}}$ technology
- \bullet Combination of low $R_{\text{DS}(\text{ON})}$ and wide safe operating area (SOA)
- Higher in-rush current enabled for faster start-up and shorter down time
- RoHS and Halogen-Free Compliant

Applications

- Telecom hotswap
- Load switch
- Solar
- Battery management

Product Summary

 $\begin{array}{ll} V_{DS} & 100V \\ I_D \ (at \ V_{GS} = 10V) & 380A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & < 1.7 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 6V) & < 2.5 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Orderable Part Number	rable Part Number Package Type		Minimum Order Quantity
AOTL66912	TOLLA	Tape & Reel	2000

Absolute Waximum	Ratings T _A =25°C unles	1			
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage	Э	V_{DS}	100	V	
Gate-Source Voltage)	V_{GS}	±20	V	
Continuous Drain	T _C =25°C	1_	380		
Current	T _C =100°C	I _D	269	A	
Pulsed Drain Current	t ^C (≤100µS)	I _{DM}	1520		
Continuous Drain	T _A =25°C		49	^	
Current	T _A =70°C	IDSM	39	A	
Avalanche Current ^C	•	I _{AS}	90	A	
Avalanche energy	L=0.1mH ^C	E _{AS}	405	mJ	
	T _C =25°C	P _D	500	W	
Power Dissipation ^B	T _C =100°C	T D	250	VV	
	T _A =25°C	В	8.3	W	
Power Dissipation A	T _A =70°C	P _{DSM}	5.3	VV	
Junction and Storage	e Temperature Range	T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	10	15	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{ hetaJA}$	35	45	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.2	0.3	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PARAMETERS							
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		100			V
lana	I _{DSS} Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μΑ
I _{DSS}	Zero Gate Voltage Brain Gurrent					5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2.5	3.0	3.5	V
		V_{GS} =10V, I_{D} =20A			1.4	1.7	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		2.25	2.75	11177
		V_{GS} =6V, I_D =20A			2.0	2.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A			70		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.67	1	V
Is	Maximum Body-Diode Continuous Curi	rent			330	Α	
DYNAMIC	PARAMETERS						
C_{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz			12500		pF
C _{oss}	Output Capacitance				3190		pF
C_{rss}	Reverse Transfer Capacitance				55		pF
R_g	Gate resistance	f=1MHz		8.0	1.75	2.7	Ω
SWITCHI	NG PARAMETERS						
$Q_g(10V)$	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =20A			155	220	nC
Q_{gs}	Gate Source Charge				48		nC
Q_gd	Gate Drain Charge				31		nC
Q _{oss}	Output Charge	V_{GS} =0V, V_{DS} =50V			269		nC
$t_{D(on)}$	Turn-On DelayTime				36		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =2.5 Ω , R_{GEN} =3 Ω			25		ns
$t_{D(off)}$	Turn-Off DelayTime				90		ns
t _f	Turn-Off Fall Time				40		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs			55		ns
Q_{rr}	Body Diode Reverse Recovery Charge	$I_F=20A$, di/dt=500A/ μ	S		335		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175 $^{\circ}$ C.

D. The R_{AJA} is the sum of the thermal impedance from junction to case R_{AJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 V_{DS} (Volts) Figure 1: On-Region Characteristics (Note E)

 $\begin{array}{c} I_{\text{D}}\left(A\right) \\ \text{Figure 3: On-Resistance vs. Drain Current and Gate} \\ \text{Voltage (Note E)} \end{array}$

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts)
Figure 6: Body-Diode Characteristics
(Note E)

I_s (A)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

Pulse Width (s)
Figure 10: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C)
Figure 11: Power De-rating (Note F)

T_{CASE} (° C)
Figure 12: Current De-rating (Note F)

V_{DS} (Volts) Figure 13: Coss stored Energy

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-toAmbient (Note G)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

