T07: Transações e Concorrência

Transações

Requisitos (ACID)

Estados de Transação

Execuções Concorrentes

Esquemas de Controlo de Concorrência

Escalonamento

Serialização

Testando Serialização

Protolocos Baseados em Trincos

Matriz de Compatibilidade de Trincos

Transações

Uma **transação** é uma unidade de execução de um programa que acede e (possivelmente) atualiza vários dados.

Requisitos (ACID)

• Atomicidade:

- Uma transação tem de ser tratada como uma unidade atómica;
- Todas as suas operações são executadas ou nenhuma é executada;
- Não deve haver nenhum estado numa BD em que uma transação seja deixada parcialmente concluída.

• Consistência:

- A BD tem de estar num estado consistente após qualquer transação;
- Nenhuma transação deve ter qualquer efeito adverso sobre os dados armazenados.

• Durabilidade:

- A BD deve ser durável o suficiente para conter todas as suas atualizações mais recentes, mesmo se o sistema falhar;
- Se uma transação atualiza parte dos dados e confirma, a BD manterá os dados modificados.

• Isolamento:

- Num SGBD onde mais de uma transação está a ser executada em paralelo, esta propriedade afirma que todas as transações serão realizadas e executadas como se fossem a única transação no sistema;
- Nenhuma transação afetará a existência de qualquer outra transação.

Estados de Transação

Execuções Concorrentes

- Várias transações podem ser executadas simultaneamente no sistema:
 - aumenta a utilização do disco e do CPU, levando a um melhor throughput de transações;
 - redução do tempo médio de resposta para transações;

Esquemas de Controlo de Concorrência

- Mecanismos que alcançam o isolamento:
 - Controlam a interação entre as transações concorrentes, a fim de impedí-los de destruir a consistência da BD;

Escalonamento

- Sequência de instruções que especificam a ordem cronológica na qual instruções de transações concorrentes são executadas:
 - Um escalonamento para um conjunto de transações consiste em todas as instruções dessas transações;
- Uma transação que conclui sua execução com sucesso terá a instrução commit como a última declaração;
- Uma transação que falha em concluir a sua execução com sucesso terá a instrução ABORT como a última declaração;

Serialização

- Uma escalonamento (possivelmente concorrente) é serializável se for equivalente a um escalonamento em série;
- Diferentes formas de concorrência equivalente dão origem às noções de:
 - Conflict Serializability: um escalonamento é serializável por conflito se puder ser transformado num escalonamento serial por meio da troca de operações não conflitantes;
 - Duas operações são consideradas conflitantes se todas as condições forem satisfeitas:
 - Pertencem a diferentes transações;
 - Operam sobre os mesmos dados;
 - Pelo menos uma das operações é WRITE.

Testando Serialização

- Grafo de Precedência: um grafo direcionado onde os vertices são transações;
- É feito um arco de T_i a T_j se as duas transações forem conflitantes, e T_i acedeu ao dado no qual foi originado o conflito.

T_1	T ₂	T ₃	T_4	T ₅	
read(Y) read(Z)	read(X)			read(V) read(W) read(W)	T_1 T_2
read(U)	read(Y) write(Y)	write(Z)	read(Y) write(Y) read(Z)		T_3
read(U) write(U)			write(Z)		T ₅

Protolocos Baseados em Trincos

- Um trinco é um mecanismo utilizado para controlar acesso concorrente a dados;
- Dados podem ser "fechados" em dois modos:
 - \circ **EXCLUSIVE** (X): dado pode ser lido e escrito;
 - \circ SHARED (S): dado pode ser apenas lido.

Matriz de Compatibilidade de Trincos

MODO	S	X
S	TRUE	FALSE
X	FALSE	FALSE