

APVC

Modelos pré-treinados e Transferência de conhecimento

Sumário

- Modelos pré-treinados de redes neuronais convolucionais
 - Redes da família VGG
 - Redes MobileNet
 - Redes da família ResNet

- Transferência de conhecimento
 - Conceito
 - Exemplos

Representação de uma CNN

Relembrando a aula passada...

- Camadas convolucionais
- Camadas de pooling
- Camadas densas ou completamente ligadas

Representação das camadas de uma CNN

- H e W dimensões horizontal e vertical de cada feature map
- N_F número de filtros
- F_H e F_W dimensões dos filtros
- C número de matrizes (canais) que entram na camada

- Número total de neurónios:
 N_F x H x W
- Número total de parâmetros a estimar:
 (F_H x F_W x C + 1) x N_F

Representação "em volume" de uma CNN

Modelos pré-treinados

AlexNet: a rede que colocou as CNNs na ribalta

- AlexNet (2012)
 - Embora a primeira CNN **Neocognitron** tenha sido proposta em 1980 por Kunihiko Fukushima, a **AlexNet**, de Alex Krizhevsky, foi a que trouxe mais notoriedade às CNNs
 - Foi a primeira CNN a vencer a competição de classificação do ImageNet
 - Introdução de muitos conceitos usados hoje em dia
 - Função de ativação ReLU
 - Data augmentation e dropout no treino da rede para evitar overfitting
 - Composta por mais de 60 milhões de parâmetros a otimizar no treino da rede

O conjunto ImageNet

Composto por mais de 14 milhões de imagens, distribuídas por 21841 classes

Exemplo: classe *banana*, composta por 1409 imagens

Modelos pré-treinados

- É possível utilizar redes CNN mais complexas que foram treinadas para resolver problemas de classificação similares
 - Diretamente, se as classes do nosso problema estiveram incluídas no treino original dessas redes
 - Usando transferência de conhecimento, se tivermos classes diferentes das usadas no treino dessas redes
- Existem várias famílias de redes pré-treinadas
 - VGG
 - ResNet
 - MobileNet
 - ...

A família VGG

- Venceu competição de classificação do ImageNet em 2014
- Várias versões, cuja diferença principal é o número de camadas
 - VGG-11
 - VGG-13
 - VGG-16 (disponível no tensorflow)
 - VGG-19 (disponível no tensorflow)
- A principal diferença face à AlexNet reside nas dimensões dos filtros
 - em geral 3x3 na VGG...
 - ... e que na realidade acabam por produzir efeitos semelhantes a filtros maiores, dado que a arquitetura utiliza camadas convolucionais consecutivas sem *pooling* entre elas

A família VGG

A família ResNet

- Primeiras versões em 2015
 - ResNet34
 - ResNet50 (disponível no tensorflow)
 - ResNet101 (disponível no tensorflow)
 - ResNet152 (disponível no tensorflow)
- Introduziram o conceito de skip-connection
 - O input de um módulo de camadas convolucionais tem um caminho em paralelo que lhe permitir "saltar" esse módulo
 - A vantagem é essencialmente no treino com back propagation, pois evita-se o problema do "vanishing gradient" em redes com uma profundidade muito grande

A família MobileNet

- Primeira versão em 2017
 - MobileNet
 - MobileNetV2
 - MobileNetV3
- Dimensionada tendo em vista a aplicação a telemóveis
- Introduziram o conceito de convolução separável

- cionadas com a convolução à custa de uma
- Reduz o número operações aritméticas relacionadas com a convolução à custa de uma pequena degradação no desempenho
- De resto, conceitos similares ao que foi visto para nas famílias anteriores

Outras famílias dignas de registo

- Inception (2014), Inception-ResNet (2016) e Xception (2016)
 - Conceito de "módulos" que contemplam vários tipos de camadas convolucionais em paralelo

- EfficientNet (2019)
 - Uma arquitetura mais recente cujas dimensões (resoluções, profundidade, filtros) são facilmente escaladas para se adaptar ao contexto dos problemas
 - Pode ser configurada para ser mais leve, de modo que é tb uma alternativa à MobileNet

Utilização de redes pré-treinadas no Tensorflow

```
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras import utils
from tensorflow.keras.applications.vgg16 import preprocess input, decode predictions
import numpy as np
model = VGG16(weights='imagenet', classes=1000)
img_path = 'sampleImages/shark.jpg'
img = utils.load img(img path, target size=(224, 224))
x = utils.img_to_array(img)
x = np.expand dims(x)
x = preprocess_input(x)
preds = model.predict(x)
decoded preds = decode predictions(preds, top=5)[0]
print('Predicted: ')
for p in decoded preds:
```

Importar o modelo. Dependendo do modelo que é, podem haver diferentes formas de parametrizar

Tipicamente os modelos pré-treinados incluem métodos para pre-processamento das imagens, que convém utilizar (alteram as dimensões, realizam normalizações, etc.)

Outro método incluído no modelo – este serve para dar as predições de forma a que não tenhamos que realizar processamento para as obter

Mais info em: https://www.tensorflow.org/api_docs/python/tf/keras/applications

print(p[1], ":", p[2])

Transferência de conhecimento

Transferência de conhecimento

- A CNN pode ser vista como a junção de duas partes
 - Camadas convolucionais e de pooling responsáveis por gerar as features
 - As camadas completamente ligadas e de saída que na prática implementam um classificador idêntico a uma rede neuronal clássica

Transferência de conhecimento

- Este processo designa-se por transferência de conhecimento (transfer learning)
- É habitual usar desta forma arquiteturas mais complexas, e.g., VGG16,
 MobileNet, etc. que foram previamente treinadas

Transferência de conhecimento no Tensorflow

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.applications.mobilenet import MobileNet

mobileNetModel = MobileNet(input_shape=(img_height, img_width, 3), include_top=False)
mobileNetModel.summary()
mobileNetModel.trainable = False

Importar o modelo. include_top=False significa que não se pretendem incluir as camadas densas originais do modelo

Importante! Assinalar que não se pretende treinar os pesos do modelo importado

```
model = tf.keras.models.Sequential([
    layers.Rescaling(2./255, offset=-1, input_shape=(img_height, img_width, 3)),
    mobileNetModel,
    layers.Flatten(),
    layers.Dense(256, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(5, activation="softmax")
])
model.compile(...)
...
```

Definir o modelo

Normalizar os inputs para o que é esperado à entrada da MobileNet: valores entre -1 e 1 (documentação da MobileNet)

Juntar o modelo pré-treinado às restantes camadas da rede

Resultados no dataset Flower_Photos

CNN custom (
$$Acc_{val} = 68.7\%$$
)

Resultados no dataset Flower_Photos

CNN custom + dropout + data augmentation ($Acc_{val} = 75.2\%$)

Resultados no dataset Flower_Photos

CNN com transferência de conhecimento – MobileNet (Acc_{val} = 87.5%)

Resultados no dataset Flower Photos

CNN custom + dropout + data augmentation

CNN com transfer learning (MobileNet)

$$Acc_{val} = 87.5\%$$

Recursos

VGG

Karen Simonyan & Andrew Zisserman, *Very Deep Convolutional Networks for Large-Scale Image Recognition*, Computer Vision and Pattern Recognition, 2015, https://arxiv.org/abs/1409.1556

ResNet

Kaiming He et. al., *Deep Residual Learning for Image Recognition*, Computer Vision and Pattern Recognition, 2015, https://arxiv.org/abs/1512.03385

MobileNet

Andrew G. Howard et al., *MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications*, Computer Vision and Pattern Recognition, 2017, https://arxiv.org/abs/1704.04861

• ...

