MTH 100: Worksheet 7

- 1. Show that $B = \{v_1, v_2, ... v_p\}$ is a basis of the vector space V if and only if every vector $v \in V$ is uniquely expressible as a linear combination of the elements of B.
- 2. Find a basis for the vector space V of all 2×2 matrices over \mathbf{R} . Generalize the idea to find a basis for the vector space of all $m \times n$ matrices over \mathbf{R} .
- 3. Given the standard basis $\mathbf{B} = \{e_1, e_2, e_3\}$ of \mathbf{R}^3 and the linearly independent vectors $v_1 = (0, 1, 1)$ and $v_2 = (1, 1, 1)$, apply the method of Steinitz Exchange Lemma to exchange two of the vectors in B and obtain a basis C which includes v_1 and v_2 . Show your calculations in detail.
- 4. Expand the linearly independent set $S = \{u, w\}$ to a basis of \mathbf{R}^3 , using the propositions proved in the class. Here u = (3, 3, 7) and w = (10, 9, 21). Justify your answer.
- 5. Show that any $m \times m$ matrix A with real entries is invertible iff its columns form a basis for $\mathbf{R}^{\mathbf{m}}$
- 6. Given any $m \times m$ (square) matrix A and any polynomial $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n(a_n \neq 0)$ of degree n, we say that A satisfies the **polynomial p(t)** if $p(A) = a_0I_m + a_1A + a_2A^2 + \cdots + a_nA^n = \mathbf{0}$, i.e. the zero matrix. Show that any non-zero $m \times m$ matrix A must satisfy at least one (non-zero) polynomial of degree $\leq m^2$.
- 7. Consider the space **C** of complex numbers as a vector space over the field **R** of real numbers.
 - (a) Is ${\bf C}$ finite dimensional (YES/NO)? If YES, determine the dimension of ${\bf C}$
 - (b) Prove or disprove: There exists a field F lying strictly between **R** and **C**,i.e there is a field F such that $\mathbf{R} \subseteq F$ but $\mathbf{R} \neq F$, and $F \subseteq \mathbf{C}$ but $F \neq \mathbf{C}$.
- 8. (a) Show that if the vectors $v_1, v_2, ..., v_n$ are linearly independent, then so are the vectors $v_1 v_2, v_2 v_3, ..., v_{n-1} v_n, v_n$, which have been obtained by subtracting from each vector the following vector (except the last one).
 - (b) Let V be a vector space over a field F. Suppose $S = \{v_1, v_2, ..., v_n\}$ is a linearly independent set of vectors in V, and $w \in V$. Show that if $v_1+w, v_2+w, ..., v_n+w$ are linearly dependent in V, then $w \in \text{Span}(S)$.

- 9. Consider the vector space V = C[a,b], the space of all continuous real valued functions with domain closed interval [a,b]. Is V finite dimensional (YES/NO)? Justify your answer. If YES, construct a basis for V and determine its dimension.
- 10. Let $V = \mathbf{R}^{\infty}$, $W = \{ \langle a_n \rangle : \text{ only finitely many of the terms in } \langle a_n \rangle \text{ are non-zero} \}$ (NB: in future, we will use notation p_{∞} for the subspace W defined here)
 - (a) Show that W is a subspace of V
 - (b) Is W finite dimensional? Justify your answer.
 - (c) Is V finite dimensional? Justify your answer.
 - (d) Consider c, the vector space of all convergent sequences in \mathbf{R}^{∞} , is c finite dimensional? Justify your answer.
- 11. Let $F = Z_2$ and consider the vector space $V = F^n$, the space of all ordered n-tuples with entries from F, where n is an arbitrary but fixed positive integer, Recall that for any finite set X, the order of X is the number of elements in X,notation |X|. Let W be any non-zero subspace of V. Determine the possible values of |W|. Justify your answer.
- 12. Expand the linearly independent set $S = \{u, w\}$ to a basis of \mathbb{R}^3 using the approach of propositions proved in class. Here u = (1, 2, 3) and w = (2, 4, 5).

Justify your answer.