DD66175

Patent number:

DD66175

Publication date:

0000-00-00

Inventor:
Applicant:
Classification:
- international:

- european:
Application number:

DDD66175 00000000

Priority number(s):

Report a data error here

Abstract not available for DD66175

Data supplied from the esp@cenet database - Worldwide

Deutsche Demokratische Republik

für Erfindungsund Patentwesen

PATENTSCHRI

Wirtschaftspatent

Brieilt gemäß § 5 Abertz i des Anderungsgesetzes zum Patenigesetz

Zusatzpatent zum Patent:

(WP 12 p / 131 014) 22.111.1968

Priorität:

Anmeidetag:

Ausgabetag:

Kl.: 12 p. 2

66175

IPK .: C 07 d

DK.:

Erfinder zugleich Inhaber:

Dipl.-Chem. Dr. Heinz Tönjes, Radebeul

Dipl.-Chem. Dr. Karlheinz Heidenbluth, Radebeul

Dr. Joachim Schmidt, Magdeburg

Verfahren zur Herstellung von β-lsoindolinoketonen

Die Erfindung betrifft ein Verfahren zur Herstellung von eta-Isoindolinketanen der allgemeinen Formel I, worin Y für ein Wasserstoffatom oder die Nitrogruppe, R1 für ein Wasserstoffatom oder den Phenylrest, Re für Wasserstoff, Niederalkyl- oder Aryloxygruppen stehen und R₈ einen Alkyl-, Aralkyl- oder substituierten oder unsubstituierten Arylrest bedeutet, wobei R₂ und R₃ auch zu einem gesättigten, isocyclischen Sechsring geschlossen sein können.

N-substituierte $oldsymbol{eta}$ -Aminoketone sind mit verschiedenen Indikationen in die Therapie eingeführt worden, so als Lokalanästhetika,, Analgetika oder antinikotinwirksame Verbindungen. β -Aminoketone, die sich vom Isoindolin ableiten, wurden jedoch noch nicht beschrieben.

Es wurde nun gefunden, daß Verbindungen der Formel ((siehe Blatt I, Formeln 1 bis V) wertvolle pharmakologische Eigenschaften zeigen; ferner sind wichtige Vorprodukte zur Herstellung von Isoindolinopropanolen.

Erfindungsgemäß erhölt man die $m{eta}$ -IsoIndolinoketone in der Wêise, daß man entweder

a) ein isoindalin der Formel II, worin Y für Wasserstoff oder die Nitrogruppe steht, bei Temperaturen zwischen Raumtemperatur und 100 °C an ein $lpha_ieta$ -ungesättigtes Keton der Formel III addiert

oder, falls Y für Wasserstoff steht, b) ein β -primäres Aminoketon der Formel IV in Dimethylformamid/Triāthylamin bei 60 bis 100°C mit o-Xylylenchlorid ader -bromid zur Reaktion bringt,

oder, falls R₁ für Wasserstoff steht, c) das Isoindalin der Formel II, warin Y für Wasserstoff oder die Nitrogruppe steht, mit einem Keton der Formei V, worin R₂ und R₃ die obengenannte Bedeutung haben, in Gegenwart einer Mineralsäure und unter Zusatz von Formaldehyd unter den Bedingungen der

Mannich-Kondensation umsetzt. In den nachfolgenden Beispielen wird das erfindungsgemäße Verfahren näher erläutert:

Beispiel 1:

Ein Gemisch von 15,6 g IsoIndolin-hydrochlorid, 4,5 g Paraformaldehyd, 15,5 g 4-Chloracetophenon, 100 ml abs. Athanol und 0,25 ml konz. HCl wird 2 bis 3 Std. am Rückfluß gekocht, wobei man nach etwa 30 Min. weitere 3 g Paraformaldehyd zusetzt. Nach dem Erkalten wird das Hydrochlorid abgesaugt und mit Aceton gewa-

 $oldsymbol{eta}$ -Isoindolino-4-chlorpropiophenon-hydrochlorid F 213 bis 215℃ (aus Æthanol oder Wasser) C₁₇H₁₇Cl₂NO (322, 23); berechnet N 4,35°/₀, gefunden N 4,47%.

Beispiel 2:

Ein Gemisch von 39,33 g 5-Nitroisoindolin-sulfat, 44 g Aceton, 11;5 ml 40% iger Formaldehydlösung und 50 ml Wasser wird 6 Std. am Rückfluß gekocht; nach Vertrelben des überschüssigen Acetons im Vakuum wird mit Äther überschichtet und unter guter Kühlung alkalisiert. Aus dem Ätherextrakt fällt man mit trockenem HCI-Gas das Hydrochlorid und kristallisiert aus Athonol um.

4-(5-Nitroisoindolino)-butanon-(2)-hydrochlorid; Zers. ab

Best Available Copy

170 °C.
C₁₂H₁₈CIN₂O₃ (270,72); berechnet N 10,35%, gefunden N 10,60%.

Beispiel 3:

Zur Lösung von 7,9 g o-Xylylenbromid in 20 ml Dimethylformamid troptt man unter Rühren bei Raumtemperatur das Gemisch von 4,5 g β -Aminopropiophenon, 5 ml Dimethylformamid und 12 ml Triäthylamin, wobei die Temperatur auf etwa 60 °C ansteigt; man rührt noch 2 Std. bei 40 bis 60 °C, verdünnt mit Wasser auf 150 ml und extrahiert erschöpfend mit Benzol. Aus der benzolischen Lösung erhält man mit trockenem Chlorwasserstoff das Hydrochlorid, das aus wenig Athanol/Aceton (3:1) umkristollisiert wird.

2-Isoindolinoäthyl-phenylketon-hydrochlorid; F.: 175 bis 177 $^{\circ}$ C.

C₁₇H₁₈CINO (287,77); berechnet N 4,86%, gefunden N 4,74%.

Beispiel 4:

Zu 41,6 g Benzalacetophenon tropft man unter Rühren bei Raumtemperatur 24 g Isoindolin und erwärmt anschließend 2 Std. auf dem Dampfbad; nach dem Erkalten wird obgesaugt, mit Essigester gewaschen und umkristallisiert.

(2-Isoindolino-2-phenylåthy!)-phenylketon; F.: 124 bis 126 °C (aus Essigester) $C_{28}H_{21}NO$ (327,40)

CHN

berechnet 84,70 6,47 4,28 gefunden 84,37 6,48 4,51

Weitere Beispiele für Verfahrensprodukte der Formel I finden sich in der Tabelle.

Patentanspruch:

Verfahren zur Herstellung von β-lsoindolinaketonen der alle gemeinen Formel (siehe Blatt I, Formeln I bis V), worin Y für ein Wasserstoffatom oder die Nitrogruppe, R₁ für ein Wasserstoffatom oder den Phenylrest, R₂ für Wasserstoff, Niederalkyl- oder Aryloxygruppen stehen und R₂ einen Alkyl-, Arolkyl- oder substituierten oder unsubstituierten Aryl-Rest bedeutet, wobel R₂ und R₃ auch zu einem gesättigten, isocyclischen Sechsring geschlossen sein können, dadurch gekennzeichnet, daß man entweder

o) ein Isoindolin der Formel II, wonin Y für Wasserstoff oder die Nitrogruppe steht, bei Temperaturen zwischen Raumtemperatur und 100 °C an ein α,β -ungesättigtes Keton der Formel III addiert

oder, falls Y für Wasserstoff steht,

 b) ein β-primäres Aminaketan der Formel IV in Dimethylformamid/Triäthylamin bei 60 bis 100°C mit o-Xylylenchlorid oder -bromid zur Reaktion bringt oder, falls R₁ Wasserstoff bedeutet.

c) das Isoindolin der Formel II, worin Y für Wasserstoff oder die Nitrogruppe steht, mit einem Keton der Formel V, worin R₂ und R₃ die obengenannte Bedeutung haben, in Gegenwart einer Mineralsäure und Zusotz von Formaldehyd unter den Bedingungen der Mannich-Kondensation umsetzt.

Hierzu 1 Blatt Formeln, 1 Blatt Tabellen

(I)

(II)

(亚)

(IV)

(Y)

Best Available Copy

Tabelle:
Weitere Verfahrensprodukte der allgemeinen Formel I

Bei- spiel	Υ .	R ₁	R ₂	R ₈	Schmp. °C (Lösungsmittel)	Summenformel (MalGew.)	N-Best. ber./gef
5	н	H ^e	, H	CH₃	165 bis 167 (Athanol/ Aceton)	C ₁₂ H ₁₆ CINO (225,71)	6,21 6.04
6 ·	H .	, H	–CH₃	–CH ₃	118 bis 120 (Aceton)	C ₁₃ H ₁₈ CINO (239,73)	5,84 5,87
7	н	н		(CH ₂) ₄	180 bis 183 (Athanol)	C ₁₅ H ₂₀ CINO (265,77)	5,27 5.30
8	-NO ₂	~ н	H .	–C₅H₅	270 (Zers.) (Wasser)	C ₁₇ H ₁₇ CIN ₂ O ₈ (332,79)	8,42 8,62
9 	н	н	H	-C ₁₀ H ₇	169 bis 172 (Butanol)	C ₈₁ H ₈₀ CINO (337,83)	4,14 3,92
0 .:	н	Н	-CH _a	−C ₈ H ₈	85 bis 86 (Petroläther)	C ₁₈ H ₁₈ NO (265,32)	5,28 4,95
1	н	H	~ н :	-C ₈ H ₄ -p-OH	204 bis 208 (Wasser)	C ₁₇ H ₁₈ CINO ₂ (303,77)	4,61 4,70
2	. н.	Н	н .	-C ₆ H ₄ -p-OCH ₃	201 bis 205 (Wasser)	C ₁₈ H ₂₀ CINO ₂ (317,80)	4,41 4,10
3 .	Н	н.	н	-C ₈ H ₄ -p-OC ₈ H ₇	. 164 (Wasser)	C ₂₀ H ₂₄ CINO ₂ (345,86)	4,06 4,14
4	-NO ₂	н	н	-C ₈ H ₄ -p-OC ₃ H ₇	206 bis 208 (Wasser)	C ₂₀ H ₂₈ CIN ₂ O ₄ (390,86)	7,17 7,13
5	н .	н	H	-C ₀ H ₄ -p-OC ₄ H ₉	148 (Wasser)	C ₈₁ H ₂₆ CINO ₂ (359,87)	3,90 3,78
6 ·	, н	н	Н	-C ₆ H ₈ -3,4- (OCH ₈) ₂	195 bis 200 (Athanol)	C ₁₉ H ₂₂ CINO ₃ (347.83)	4,03 3,97
7	'н .	H	−OC ₆ H ₅	–C₀H₅	163 bis 164 (Dioxan)	C ₈₂ H ₂₂ CINO ₂ (379,88)	3,69 3,47
8.	H	н	-OC6H₄ p-CI	–C ₆ H ₅	152 bis 153 (Essigester)	C ₂₃ H ₂₁ Cl ₂ NO ₂ (414,32)	3,38 3,59