Solutions to Homework #6

1. First draw M_1 to accept ab^*a .

Then draw M_2 to accept ba.

Then draw M_3 to accept $(ab^*a + ab)$.

Then draw M_4 to accept $(ab^*a + ab)^*$.

Then draw M_5 to accept a^*b .

Then draw M_6 to accept $(ab^*a + ab)^* + a^*b$.

Then draw M_7 to accept $((ab^*a + ab)^* + a^*b)^*$. M_7 is the answer.

2. According to the proof, we need to calculate
$$r_{ij}^k$$
 as follows:
(1). r_{ij}^0 :
$$r_{11}^0 = a + \Lambda$$

$$r_{12}^0 = b$$

$$r_{21}^0 = b$$

$$r_{22}^0 = c + \Lambda$$
(2). r_{ij}^1 :
$$r_{11}^1 = a^*$$

$$r_{12}^1 = r_{11}^0 (r_{11}^0)^* r_{12}^0 + r_{12}^0 = a^*b$$

$$r_{21}^1 = ba^*$$

$$\begin{array}{l} r_{22}^1=r_{21}^0(r_{11}^0)^*r_{12}^0+r_{22}^0=b(a+\Lambda)^*b+c+\Lambda=ba^*b+c+\Lambda\\ \text{The answer is }L(M)=\\ r_{12}^2=r_{12}^1(r_{22}^1)^*r_{22}^1+r_{12}^1=a^*b(ba^*b+c+\Lambda)^*(ba^*b+c+\Lambda)+a^*b \end{array}$$

- 3. Suppose $L=\{0^n1^m:n\geq 1, m\geq 1, n\leq m\}$ is regular. Let n be the integer in the pumping lemma. Pick $z=0^n1^n\in L$. It can be verified that $|z|\geq n$. From the lemma, there are u,v,w such that z=uvw and $|uv|\leq n$ and $|v|\geq 1$. From the lemma, uvvw (take i=2 in the lemma) should be L. But this is impossible, since $uvvw=0^{n+|v|}1^n\not\in L$ (since n+|v|>n). A contradiction. Thus, L is not regular.
- 4. Suppose $L = \{xx^Rx : x \in (a+b)^*\}$ is regular. Let n be the integer in the pumping lemma. Pick $z = a^nb^nb^na^na^nb^n \in L$. It can be verified that $|z| \geq n$. From the lemma, there are u, v, w such that z = uvw and $|uv| \leq n$ and $|v| \geq 1$. From the lemma, uvvw (take i=2 in the lemma) should be L. But this is impossible, since $uvvw = a^{n+|v|}b^nb^na^na^nb^n \notin L$. A contradiction. Thus, L is not regular.
- 5. (1). $L = \{0^m 1^n 0^{m+n} : m \ge 1, n \ge 1\}$ is not regular. Suppose L is regular. Let n be the integer in the pumping lemma. Pick $z = 0^n 1^n 0^{2n}$ in L. It can be verified that $|z| \ge n$. From the lemma, there are u, v, w such that z = uvw and $|uv| \le n$ and $|v| \ge 1$. From the lemma, uvvw (take i = 2 in the lemma) should be L. But this is impossible, since $uvvw = 0^{n+|v|} 1^n 0^{2n} \notin L$ (since $n + |v| + n \ne 2n$). A contradiction. Thus, L is not regular.
 - (2). $\{0^m0^n0^{m+n}: m \ge 1, n \ge 1\}$ is regular, since it is $0000(00)^*$.
 - (3). $\{xwx^R : x \in (0+1)^*, w \in (0+1)^*\}$ is regular, since it is $(0+1)^*$.
- (4). $\{0^n1^m : n \ge 1, m \ge 1, n > m\}$ is not regular, since it is the complement of the L in Problem 3. (We know the complement of a regular language is regular Homework #1 Problem 5).