CS-4049 Bioinformatics

Spring 2025

Rushda Muneer

What is DNA?

- **Deoxyribonucleic Acid (DNA)** is the genetic material that carries instructions for the growth, development, and functioning of all living organisms.
- Key Features:
- Double Helix Structure (discovered by Watson & Crick)
- Made of Nucleotides (Adenine, Thymine, Cytosine, Guanine)
- Carries Genetic Information (codes for proteins)
- Passed from Parents to Offspring
- In Short DNA is the blueprint of life!

What is genome?

- A **genome** is the complete set of genetic material (DNA) in an organism. Total amount of DNA (nucleus and mitochondria)
- Think of the genome as the biological instruction book of life in which DNA is a blueprint

DNA Replication Process

- DNA replication begins at the origin of replication (ori) and proceeds bidirectionally (assumption).
- The two complementary DNA strands unwind, forming replication forks that expand around the chromosome.
- Replication continues until the replication terminus (ter), located opposite to ori, is reached.
- DNA polymerase does not wait for full strand separation; it starts copying while the strands unravel.
- Four DNA polymerases, each responsible for a half-strand, initiate replication at ori.
- A primer (short complementary segment) is needed to start replication.

Replication Mechanism

- Nucleotides are added in either clockwise or counterclockwise direction until ter is reached.
- Complete chromosome replication results in two pairs of complementary DNA strands.
- The cell is now ready to divide.

Directionality of DNA Polymerase

- Our previous description incorrectly assumed that DNA polymerases can copy DNA in both directions along a strand.
- In reality, DNA polymerases are unidirectional and can only traverse a template strand in the 3' → 5' direction.
- DNA synthesis occurs only in the 5' →
 3' direction.
- This unidirectionality influences the mechanisms of leading and lagging strand synthesis.

Understanding DNA Strands

- The unidirectionality of DNA polymerase necessitates a major revision of our naive replication model.
- If you walk along DNA from ori to ter, you will encounter four different halfstrands of parent DNA.
- These half-strands are categorized based on their directionality:
 - Forward Half-Strands (thin blue and green lines): 5' → 3' direction.
 - Reverse Half-Strands (thick blue and green lines): 3' → 5' direction.

Asymmetry in DNA Replication

- DNA replication is asymmetric, meaning forward and reverse halfstrands undergo very different replication processes.
- Reverse half-strands (3' → 5' direction): DNA polymerase can copy nucleotides continuously from ori to ter (leading).
- Forward half-strands (5' → 3'
 direction): DNA polymerase must
 replicate backwards toward ori
 because it cannot move in the 5' → 3'
 direction (lagging).

Traversal of DNA ploymerase (3' -> 5') and direction of Reverse half strands (3' -> 5') is the same (leading)

Traversal of DNA ploymerase (3' -> 5') and direction of Forward half strands (5' -> 3') is the opposite (lagging)

Replication on Forward Half-Strand

- DNA polymerase on a forward halfstrand must wait for the replication fork to open (~2,000 nucleotides).
- A **new primer** is formed at the end of the replication fork.
- DNA polymerase then starts replicating a small DNA fragment from the primer backward toward ori.

Okazaki Fragments on Forward Half-Strands

- Replication on reverse half-strands progresses continuously with a single primer.
- Replication on forward half-strands is discontinuous and requires multiple primers.
- DNA polymerase must **pause** after replicating a fragment until the replication fork opens another ~2,000 nucleotides.
- A new primer is required for each new fragment.
- This results in the formation of Okazaki fragments, which are short DNA segments synthesized from multiple primers.

- The replication fork continues to expand.
- Reverse half-strands (thick lines) require only one primer.
- Forward half-strands (thin lines) require multiple
 primers (shown in red) to synthesize Okazaki fragments.

Finalizing DNA Replication

- When the replication fork reaches ter, most of the DNA has been synthesized, but gaps remain between Okazaki fragments.
- DNA ligase **sews together** consecutive Okazaki fragments.
- This process results in two intact daughter chromosomes, each with one parent strand and one newly synthesized strand.
- In reality, DNA ligase works continuously, sealing Okazaki fragments as they are formed rather than waiting until the end.

Peculiar Statistics of the Forward and Reverse Half-Strands

Key Observation:

- A surprising pattern emerges when analyzing cytosine frequency across the E. coli genome.
- The genome is partitioned into 46 equal-sized fragments (~100,000 nucleotides each), starting at ter.

• Findings:

- The first 23 fragments (reverse half-strand) have a high cytosine frequency (above 25%).
- The last 23 fragments (forward half-strand) have a low cytosine frequency (below 25%).

- Histogram shows cytosine frequency across the genome.
- ter is at position 0, and ori is ~2.3 million nucleotides away.
- Reverse half-strand spans first half; forward halfstrand spans second half.

Peculiar Statistics of the Forward and Reverse Half-Strands

Key Observation:

 A contrasting pattern appears when analyzing guanine frequency across the E. coli genome.

• Findings:

- Reverse half-strand: Most fragments have a low guanine frequency (below 25%).
- Forward half-strand: Most fragments have a high guanine frequency (above 25%).

Implication:

 This pattern suggests a strandspecific nucleotide composition bias that may have biological significance.

G-C Frequency Difference Analysis

- A striking visualization emerges when comparing guanine (G) and cytosine (C) frequency differences across genome fragments.
- The difference in G and C frequencies highlights a peculiar statistical bias between the reverse and forward halfstrands.
- Forward and reverse half strands unite at ori or ter.
- The striking frequency difference can assist in finding the origin of replication

Using GC Frequency to Identify ori

• The transition point where **G** - **C** frequency shifts from negative to positive provides a clue about the location of ori.

• Implication:

- If this pattern is **not** a **statistical fluke**, it suggests a **simple test** to identify ori.
- By scanning the genome for the G C frequency transition, we can estimate the replication origin.

Deamination

Replication Fork Asymmetry:

• DNA polymerase synthesizes DNA quickly on the reverse half-strand but faces delays on the forward half-strand.

Single-Stranded vs Double-Stranded DNA:

- Reverse half-strand remains double-stranded most of the time.
- Forward half-strand spends more time single-stranded, which increases mutation rates.

Mutation Rate Discrepancy:

- Single-stranded DNA has a higher mutation rate.
- A nucleotide with a higher mutation tendency in single-stranded DNA will be underrepresented on the forward half-strand.

Example: Thermotoga petrophila Genome

- Compare the nucleotide counts of the reverse and forward halfstrands to detect substantial differences.
- This will help design an algorithm for locating ori in genomes where it's unknown.
- Nucleotide counts for forward and reverse half-strands are shown in the table.
- Key Question:
 - **STOP and Think:** Do you notice anything about the nucleotide counts in this table? What differences can be observed between the two strands?

	#C	#G	# A	#T
Entire strand	427419	413241	491488	491363
Reverse half-strand	219518	201634	243963	246641
Forward half-strand	207901	211607	247525	244722
Difference	+11617	-9973	-3562	+1919

Deamination and Nucleotide Frequency Discrepancies

- A & T: Frequencies are nearly identical between the forward and reverse half-strands.
- C & G: Noticeable discrepancies:
 - C is more frequent on the reverse half-strand (+11617).
 - G is more frequent on the forward half-strand (-9973).

	#C	#G	$\#\mathbf{A}$	$\#\mathbf{T}$
Entire strand	427419	413241	491488	491363
Reverse half-strand	219518	201634	243963	246641
Forward half-strand	207901	211607	247525	244722
Difference	+11617	-9973	-3562	+1919

Deamination and Nucleotide Frequency Discrepancies

- Deamination Process:
 - C → T Mutation: Cytosine (C) deaminates to thymine (T), especially in single-stranded DNA.
- Impact on G: Deamination of C on the forward strand leads to a decrease in guanine (G) on the reverse strand.

Locating Ori Using Deamination Statistics

- The difference between guanine (G) and cytosine (C) is used to track strand direction.
 - The reverse half-strand shows a negative G-C difference: 201634-219518=-17884
 - The forward half-strand shows a positive G-C difference: 211607-207901=+3706
- Running Total of G C Difference:
 - Traverse the genome and calculate the difference between the counts of G and C.
 - Increasing Difference: Suggests we are on the forward half-strand.
 - Decreasing Difference: Suggests we are on the reverse half-strand.

	#C	#G
Entire strand	427419	413241
Reverse half-strand	219518	201634
Forward half-strand	207901	211607

Skew Diagram Approach:

The difference between G and C provides a way to visualize strand direction, helping to identify ori.

Skew Diagram

- **Skew**_i (**Genome**): Difference between the total occurrences of G and C in the first *i* nucleotides of the genome.
- Skew Diagram: Plots Skew_i(Genome) as i ranges from 0 to the length of the genome (|Genome|), with Skew₀(Genome) = 0.
- Skew Calculation:
- For each nucleotide position *i* in the genome:
 - **If G:** Skew_{i+1} = Skew_i + 1
 - **If C:** Skew_{i+1} = Skew_i 1
 - Otherwise (A or T): Skew_{i+1}=Skew_i

Skew Diagram

• Example:

• DNA sequence **CATGGGCATCGGCCATACGCC**.

Skew Diagram for E. coli Genome

- The skew diagram of the linearized *E. coli* genome shows a clear pattern.
- The shape of the skew diagram is often similar in many bacterial genomes.
- STOP and Think: Based on the skew diagram, where do you think the origin of replication (ori) is located in E. coli?

Solving the Minimum Skew Problem and Locating Ori in E. coli

aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggtatgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaagacctgggatcctgggtattaaaaagaagatctattattattaaggatcgttctattgtgatctcttattaggatcgcactgcctgtggataacaaggatccggctttaagatcaacaacctggaaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcagaatgaggggttatacacaactcaaaaactgaacaacagttgttctttggataactaccggttgatccaagcttcctgacagagttatccacagtagatcgcacgatctgtatacttatttgagtaaattaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatcaagaatgttgatcttcagtg

Minimum Skew Result:

• Approximate location of ori in *E. coli* is at **position 3923620** based on the skew diagram.

Testing the Hypothesis:

• Solving the **Frequent Words Problem** in a window of length 500 starting at position 3923620 reveals no 9-mers (including reverse complements) that appear 3 or more times.

Results:

• Despite locating ori at position 3923620, **no ori** was found in this region, suggesting further exploration is needed to find DnaA boxes in *E. coli*.

Observations from Vibrio cholerae ori

- In addition to the three occurrences of ATGATCAAG and its reverse complement CTTGATCAT, the ori contains:
 - ATGATCAAC
 - CATGATCAT
- These sequences differ from ATGATCAAG and CTTGATCAT by only a single nucleotide.
- This suggests that subtle variations in the DnaA box sequences might be the solution.
- This observation could guide adjustments to the algorithm to better identify DnaA boxes in *E. coli* and other bacterial genomes.

Frequent Words Problem with Mismatches

- Modify the algorithm for the Frequent Words Problem to find DnaA boxes by identifying frequent k-mers with possible mismatches.
- Count(Text, Pattern, d): The total number of occurrences of *Pattern* in *Text* with at most *d* mismatches.
- Example:
 - Count(<u>AACAA</u>GCTG<u>ATAAACA</u>TTT<u>AAAGA</u>G, AAAAA, 1) = 4
 - AAAAA appears four times with at most one mismatch: AACAA, ATAAA,
 AAACA, AAAGA (two occurrences overlap).
- Exercise: Compute *Count* (AACAAGCTGATAAACATTTAAAGAG, AAAAA,2).

 Answer:11

Summary

- Genome Replication
- Decyphering DNA language
- Origin of Replication Finding Problem
- Frequent Word Problem
- Replication Process
- Asymetry in DNA Replication
- G-C Frequency Analysis
- Skew Diagram
- Frequent Word Problem with Mismatches

Assignment 1

- Details will be uploaded to google classroom by Friday (January 24)
- Submission on google classroom Friday(January 31)
- Design algorithms for topics discussed in class
- Check the uploaded assignment questions before the next class
- If you have any questions dicuss in the next class