SIMPLE RISC INSTRUCTION SET ARCHITECTURE

v.3.2

1 oct. 2020

1. MAIN PARAMETERS

Data bus size: **D_BITS** (default value: 32) Address bus size: **A_BITS** (default value: 10)

2. REGISTER SET:

8 general purpose registers, D_BITS wide: R0 ... R7

3. MEMORY:

SRAM **MEMSIZE** words \times D_BITS bits where MEMSIZE = 2^{A_BITS}

4.1 INTEGER DATA FORMAT:

Signed, 2's complement

4.2 FLOATING POINT DATA FORMAT:

Complies with IEEE 754 Floating Point Standard (default values E_BITS = 8, M_BITS = 23)

5. INSTRUCTION SET (not complete):

NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD op0 op1 op2

R[op0] = R[op1] + R[op2] (integer addition)

15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0
	op 0	op 1	op 2

ADDF op0 op1 op2

R[op0] = R[op1] + R[op2] (floating point addition)

T					$\frac{1}{\mathbf{on}}$	2
1	ob ,	U	υp.	1	υp.	4

SUB op0 op1 op2

R[op0] = R[op1] - R[op2] (integer subtraction)

	op 0	op 1	op 2
15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0

SUBF op0 op1 op2

R[op0] = R[op1] - R[op2] (floating point subtraction)

15 14 13 12 11 10 9			
	op 0	op 1	op 2

AND op0 op1 op2

R[op0] = R[op1] & R[op2]

	op 0	op 1	op 2
15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0

OR op0 op1 op2

 $R[op0] = R[op1] \mid R[op2]$

15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0
	op 0	op 1	op 2

XOR op0 op1 op2

 $R[op0] = R[op1] ^ R[op2]$

	op 0	op 1	op 2
15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0

NAND op0 op1 op2

 $R[op0] = \sim (R[op1] \& R[op2])$

15 14 13 12 11 10 9			ı
	op 0	op 1	op 2

NOR op0 op1 op2

 $R[op0] = \sim (R[op1] | R[op2])$

	op 0	op 1	op 2
15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0

NXOR op0 op1 op2

 $R[op0] = \sim (R[op1] \land R[op2])$

15 14 13 12 11 10 9	8 7 6	5 4 3	2 1 0
	op 0	op 1	op 2

SHIFTR op0 #val

R[op0] = R[op0] >> val

SHIFTRA op0 #val

R[op0] = R[op0] >> val (shift with sign extension)

	op 0	val	
15 14 13 12 11 10 9	8 7 6	5 4 3 2 1 0	

SHIFTL op0 #val

R[op0] = R[op0] << val

	op 0	val
15 14 13 12 11 10 9	8 7 6	5 4 3 2 1 0

LOAD op0 op1

R[op0] = M[R[op1]]

Only the last A_BITS of R[op1] are used as memory address.

LOADC op0 #const

 $R[op0] = \{R[op0][D_BITS-1:8], \#const\}$

STORE op0 op1

M[R[op0]] = R[op1]

Only the last A_BITS of R[op0] are used as memory address.

JMP op0

PC = R[op]

JMPR #offset

PC = PC + offset

offset: 6 bit signed, 2's complement

JMPcond op0 op1

cond = N/NN/Z/NZ

if (cond(op0)) PC = R[op1]

for cond(op0) interpretation see \$5.1

JMPRcond op0 #offset

cond = N/NN/Z/NZ

if (cond(op0)) PC = PC + offset

for cond(op0) interpretation see \$5.1 offset: 6 bit signed, 2's complement

HALT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5.1. CONDITIONAL JUMP CONDITIONS:

cond code	cond	meaning of cond(op0)
000	N	R[op0] < 0
001	NN	R[op0] >= 0
010	Z	R[op0] == 0
011	NZ	R[op0] != 0
1xx	reserved	