Eine Woche, ein Beispiel 12.17 calculation of NMD

NMD
$$(\mathcal{F}', S) = (R\Gamma_{ff|Nnx} \ge f(x))^{2} (\mathcal{F}'|Nnx))_{x}$$

$$\begin{array}{ccc}
S = f(x) \\
f(x) \ge 0 \\
\hline
Compatible & (R\Gamma_{ff \ge 0})^{2} (\mathcal{F}') \\
\hline
& = (x^{*})^{2}\mathcal{F}' \\
& = R\Gamma(x, ff < 0, \mathcal{F}') \\
& = Fiber (R\Gamma(x, \mathcal{F}') \longrightarrow R\Gamma(ff < 0, \mathcal{F}')) \\
& = Fiber (\mathcal{F}_{x} \longrightarrow R\Gamma(Lx, \mathcal{F}'))
\end{array}$$

- 1. low dimensional case
- 2 quadratic hypersurface
- 3 du val singularity
- 4. other quantities

Ref:

https://bastian.rieck.me/blog/posts/2019/morse_theory/

https://oldbookstonew.blogspot.com/ Contains the following books:

[MilnorMT]: Morse Theory by Milnor

[MilnorCC]: Characteristic Classes by Stasheff and Milnor

[MilnorSing]: singular points of complex hypersurfaces by Milnor

[Maxim20]:notes on vanishing cycles and applications https://people.math.wisc.edu/~lmaxim/vanishing.pdf

1. low dimensional case

E.g.
$$X = \mathbb{C}\mathbb{P}'$$
 $f: \mathbb{C}\mathbb{P}' - \to \mathbb{C} \xrightarrow{Rez} \mathbb{R}$ $\mathcal{L}_{x} = [*]$ $S = [\infty]$

F	NMD(F,S)	T _x	RT(W.F)
ix @ 803	Q	Q	o
<u>Q</u> c1P, [1]	0	Q[1]	Q[1]
R _{1*} Q _C [1]	Q	Q & Q[1]	Q[1]
j! @c [1]	Q	o	Q[1]
P(\(\phi \)	Q'	Q	Q[1]

E.g.
$$X = \{z_{k}^{2} = z_{k}^{3}\}$$
 $f: X \hookrightarrow \mathbb{C}^{2} \xrightarrow{z_{k}} \mathbb{C} \xrightarrow{Re z_{k}} \mathbb{R}$ $k = \{a, b\}$ $S = \{a, b\}$ $S = \{a, b\}$

F	NMD(F,S)	Fx	RP(W.F)
i* Qz Qx[1] Rj* Qu[1] j: Qu[1] P(\$)	Ø Ø Ø Ø' Ø'	Q Q[1] Q(1] O Q(1)	0 Q[1] Q[1] Q[1] Q[1]
	α	Α	W(I)

$$E.g. \quad X = \mathbb{C} \cup_{k3} \mathbb{C} = \{(z_{.}, z_{.}) \in \mathbb{C}^{2} \mid z_{.}z_{.} = 0\}$$

$$f: X \longrightarrow \mathbb{C}^{2} \xrightarrow{z_{.}+z_{.}} \mathbb{C} \xrightarrow{Rez} \mathbb{R} \qquad \{x = \{a,b\} \} \qquad S = \{o\}$$

F	NMD(F,S)	F _x	RT(Lx.F)
i∗ Q z	Q	Q	o
@ _x [1]	Q	Q[1]	Q`[1]
Rj+ Qu[1]	Q`	Q`&Q`[1]	Q (1)
j: Qu[1]	Q ¹	o	Q [1]
π' Q[-1]	Q	Q @ Q^[1]	Q`[1]
IC(Qu[1])	0	Q²[1]	Q`[1]

E.g.
$$X = X_3$$
 $f: X \hookrightarrow \mathbb{C}^3 \xrightarrow{z_3} \mathbb{C} \xrightarrow{Re z} \mathbb{R}$ $Lx = \mathbb{C}^x$ $S = \{0\}$

F	NMD(F,S)	F _x	RT(W.F)
i∗ <u>Q</u> z	Q	Q	o
Q _x [2] = π'Q[-2]	Q	Q[2]	Q[1] &Q[2]
Rj+Qu[2]	Q#Q[-1]	Q[] \(\PQ[-1]	Q[1] &Q[2]
j: <u>Q</u> u[2]	QOQ[1]	o	Q[1] @Q[2]
IC(Qu[2])	Q	Q [2]	Q[1] &Q[2]

2 quadratic hypersurface

$$X_{n} := \{(z_{1}, ..., z_{n}) \in \mathbb{C}^{n} \mid z_{1}^{2} + z_{2}^{2} + ... z_{n}^{2} = 0\}$$

$$\begin{cases} M_{n} := \{[z_{1}, ..., z_{n}] \in \mathbb{C}[\mathbb{P}^{n}] \mid z_{1}^{2} + z_{2}^{2} + ... z_{n}^{2} = 0\} \end{cases}$$

 H ⁱ (X; ℤ)	0	_	2	3	4	5	6	7	8	9	10	11	
Mz = fa.b}	Z,												
M3 ≥ CIP'	\mathbb{Z}		Z										
\mathcal{M}_{ϕ}	Z		Z²		Z								
$_{\perp}$	Z		Z		Z		Z						
M6	Z		Z		Z²		Z		Z				
M_7	Z		Z		Z		Z		Z		Z		

This table is computed by Lefschetz hyperplane theorem and Chern class.

H ⁱ (X;ℤ)	0	1	2	3	4	5	6	7	8	9	10	η	
$M_2-M_1 \cong \{a,b\}$	Z²												
M3 - M2 ≥ C×	Z	Z											
M4-M3	Z		Z										
Ms - M4	Z			Z									
M_{\bullet} – M_{\pm}	Z				Z								
M7-M6	Z					Z							

This table is computed by open-closed formalism. (Q-coefficient)
Using the Morse theory, one can show that (A variant of [Maxim20, Example 2.18])

$$M_n - M_{n-1} \sim S^{n-2}$$

thomotopy equivalence

H ⁱ (X; Q)	0	1	2	3	4	5	6	7	8	9	10	1)	
X'-0 ₹ C, ⊓C,	Q°	Q`											
X3 - 0	Q		7/27/2	Q									
X4 - 0	Q		Q	Q		Q							
Xs - 0	Q				7/27/2			Q					
X ₆ - 0	Q				Q	Q				Q			
X, -0	Q						7/27/					Q	
(h-3)-connected							tru	n cat	tion				

This table is computed by spectral sequence and Euler class. Using the Morse theory, one can show that

$$X_n - 0$$
 is $(n-3)$ - connected.

To compute the stalk of IC sheaf, one truncates in the middle. Z-coefficient cohomology need more work on Euler class.

3 hyperplane intersect at 2 pts.

H1(Xn-0, Mn-Mn-1; Q)	0	1	2	3	4	5	6	7	8	9	10	11	
2	0	Q`											
3			Q	Q									
4				Q		W							
5					8			Q					
6						Q				Q			
7							Q					Q	

After truncation, only the red one remains.

The
$$\mathbb{Z}_{12} = \mathbb{F}_{L}$$
 - coefficient is as follows: (Assuming NMD(X,IC(\mathbb{Z}_{u}))) support at index o

$H^{i}(X_{n}-0, M_{n}-M_{n-1}; F_{n})$	0	ı	2	3	4	5	6	7	8	9	10	11	
2		lFz,											
3			IF.	F									
4				F.		F							
5					Ľ			E					
Ь						F.				E			
7							F					E	

After truncation, nothing remains.

Possible direct calculation:

$$H^{i}(X_{n}-0,M_{n}-M_{n-1};\mathbb{Z})\cong H^{BM}_{2n-2-i}\left((M_{n}-M_{n-1})\times\mathbb{R}_{>0}\cup(X_{n-1}-0)\times\mathbb{N}_{>0}\right)$$

$$\cong H^{BM}_{2n-3-i}\left(S^{n-2};Q\right)$$

Conclusion for
$$X_n = \{(z_1, ..., z_n) \in \mathbb{C}^n \mid z_1^2 + z_2^2 + ... \mid z_n^2 = 0\}$$

$$NMD(X_n; IC(Q_u[n-1])) = \begin{cases} Q, & n \text{ odd} \\ 0, & n \text{ even} \end{cases}$$

3. du val singularity

https://math.stackexchange.com/questions/40351/what-are-the-finite-subgroups-of-su-2c

Name	R(x, y, Z)	gp G	# G	G/G'	det (Cartan))
A_n	x2+y2 + zh+1	Z/(n+1) Z/	n+1	Z/(n+1)Z/	ntl	
D_n	x + y = 2 + Z + -1	1BD2(n-2) = Dicn-2	4(n-2)	$\begin{cases} \frac{\mathbb{Z}}{4\mathbb{Z}}, & n \text{ odd} \\ \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{n}, & n \text{ eve} \end{cases}$	4 d	licyclic
E6	x2+ y3 + z4	BT ≥ SL(IF3)	24	7/37/	3	
E,	x2+ y3+ y23	BO ≅ 2.5+	48	7/272	2	48,28)
E_{8}	x + 43 + 25	BD = SL2(IFs)	120	1	1	

U = link	0	١	2	3
H'(U; Z)	Z	0	G/Ġ	Z
H. (U, Z)	Z	G/c'	0	Z

$$\begin{array}{ll} L_{X} & \text{homotopic equiv to} & \begin{cases} S' \\ S' \vee S' \end{cases} & A_{n} \& D_{n} \\ E_{6}, E_{7}, E_{8} \end{cases} \\ \Rightarrow H'(L_{X}; \mathbb{Z}) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}[-1] \\ \mathbb{Z} \oplus \mathbb{Z}^{2}[-1] \end{cases} & E_{6}, E_{7}, E_{8} \\ \Rightarrow H'(\mathcal{U}, L_{X}; \mathbb{Q}) = \begin{cases} \mathbb{Q}[-2] \oplus \mathbb{Q}[-3] \\ \mathbb{Q}[-2] \oplus \mathbb{Q}[-3] \end{cases} & A_{n} \& D_{n} \\ \mathbb{Q}[-2] \oplus \mathbb{Q}[-3] \end{cases} & E_{6}, E_{7}, E_{8} \\ \Rightarrow NMD(X; IC(\mathbb{Q}_{u}[2])) = \begin{cases} \mathbb{Q} \\ \mathbb{Q}^{2} \end{cases} & E_{6}, E_{7}, E_{8} \end{cases} \end{array}$$

Three different arguments for $Lx \sim S'$ or S'VS'.

- 1 Morse index [MilnorSing, Theorem 6.5 & 5.11]
- ② Riemann surface, contract to $\pi^{-1}(C)$
- 3. Join construction, see [Maxim 20, Example 2.18]

These singularities can be used to understand 2-dimensional weighted projective spaces. For weighted projective spaces, the local charts are of form C^n quotient cyclic group.

The topology of cone is still easy to compute by spectral sequence. For the result, see: http://www.map.mpim-bonn.mpg.de/Fake_lens_spaces

However, the equations become harder to get, and we don't know the topology of the link. I just believe that there should be a answer for all these singularities.

4. other quantities

Setting M: analytic mfld $X \subset M$ analytic variety of $dim_{\mathbb{C}}X = m$ $S : \phi \subset foi \subset X$ where o is the only singularity $x_0 \in X - foi$ $F \in Perv_{\mathcal{S}}(X)$ $f : F|_{X-Foi}[-m]$ local system on f(X) with rank f(X)Special case: f(X) f(X)

Task: Compute the following quantities.

Here we use notations in https://arxiv.org/abs/2105.13069v2. 6-8 comes from my supervisor's notation, and you may find the definition of Euler obstruction here: Jiang, Yunfeng. Note on MacPherson's local Euler obstruction

A practical way to calculate the Euler obstruction: Brasselet, J.-P., D. Massey, A. J. Parameswaran and J. Seade. Euler Obstruction and Defects of Functions on Singular Varieties.

③ NMD(
$$\mathcal{F}, X - \{0\}$$
) $\cong \mathcal{F}_{X_0} \cong \mathcal{Q}^r[m]$
④ $m(X - \{0\}) = (-1)^{\dim_{\mathcal{C}}(X - \{0\})} \chi(N/MD(\mathcal{F}, X - \{0\}))$
 $= (-1)^m \cdot (-1)^m \cdot r$

$$CC(\mathcal{F}) = m(X - \{0\}) \left[\frac{1}{T_{x-\{0\}}M} \right] + m(\{0\}) \left[\frac{1}{T_{\{0\}}M} \right]$$

$$= r \left[T_{x}^{*}M \right] + m(\{0\}) \left[T_{\{0\}}^{*}M \right]$$

$$= r \underbrace{\Delta_{X}} + m(\{0\}) \underbrace{\Delta_{\{0\}}}$$

$$recall: \left[T_{x}^{*}M \right] = \left[T_{x-\{0\}}^{*}M \right]$$

$$\Delta_{S} := \left[T_{S}^{*}M \right]$$

For
$$X \subset C^*$$
 cuspidal cubic, Sing $(X) = \{p_0\}$,

$$E_{u_X}(p) = \begin{cases} 0 & p \notin X \\ 1 & p \in X - \{p_0\} \\ 2 & p = p_0 \end{cases}$$

In general. from my memory it look's like.

This is wrong. If you consider the cone on a nonsingular plane curve of degree d, then you get 2d-d^2, which is negative when d>3!

$$\begin{array}{lll} & \deg\left(\Delta_{X} \right) := \# \left(\Delta_{X} \cdot \Delta_{M} \right) \\ &= (-1)^{m} \chi \left(\chi, Eu_{X} \right) \\ &= (-1)^{m} \left(\chi (\chi - \delta_{0}^{2}) \cdot Eu_{\chi}(x_{0}) + \chi(\delta_{0}^{2}) \cdot Eu_{\chi}(0) \right) \\ &= (-1)^{m} \left(\chi (\chi - \delta_{0}^{2}) + Eu_{\chi}(0) \right) \\ &= (-1)^{m} \left(\chi (\chi - \delta_{0}^{2}) + Eu_{\chi}(0) \right) \\ &= \chi(\delta_{0}^{2}, Eu_{\delta_{0}^{2}}) \\ &= \chi(\delta_{0}^{2}, Eu_{\delta_{0}^{2}}) \\ &= \chi(\delta_{0}^{2}) \cdot Eu_{\delta_{0}^{2}}(0) \\ &= 1 \\ & \otimes \\ & (-1)^{m} \chi_{IC}(\chi) = \deg\left(CC(\mathcal{F}) \right) \qquad \text{Here} \quad \mathcal{F} = IC\left(\mathcal{Q}_{\chi - \delta_{0}^{2}}[m] \right), \ r = 1 \\ &= \deg\left(r \Delta_{\chi} + m(\delta_{0}^{2}) \Delta_{\delta_{0}^{2}} \right) \\ &= r \cdot \deg \Delta_{\chi} + m(\delta_{0}^{2}) \deg \Delta_{0} \\ &= \deg \Delta_{\chi} + m(\delta_{0}^{2}) \\ & \Rightarrow \chi_{IC}(\chi) = \chi(\chi - \delta_{0}^{2}) + Eu_{\chi}(0) + (-1)^{m} m(\delta_{0}^{2}) \end{array}$$

C

{y2 = x3}