

Transfer Learning Without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources

Yun-Yun Tsai¹ (s107062548@m107.nthu.edu.tw)

Joint work with Pin-Yu Chen ², Tsung-Yi Ho ¹

¹Department of Computer Science, National Tsing Hua University, Taiwan

² IBM Research

- Motivation & Main Idea
- Related Works
- Proposed Method
- Evaluation
- Conclusions

Motivation & Main Idea

General classification task:

- MNIST, CIFAR10, Fashion MNIST..., etc.
- Train from scratch with State-Of-The-Art DNN model.

Motivation

General classification task:

- MNIST, CIFAR10, Fashion MNIST..., etc.
- Train from scratch with State-Of-The-Art DNN model.
- Specific classification task:
 - Relevance data is **scarce** and **limited**.
 - Not enough feature for training large-scale DNN.

Specific classification task:

- Relevance data is scarce and limited.
- Not enough feature for training large-scale DNN.

- General solution: Transfer learning
 - Sharing pretrained models' parameters.
 - Learning representation faster.

Motivation

General solution: Transfer learning

- Sharing pretrained models' parameters.
- Learning representation faster.

Limitations:

- Negative transfer.
- Domain shift should be small.

Limitations & Challenges

General solution: Transfer learning

- Sharing pretrained models' parameters.
- Learning representation faster.

Challenges:

- It can only transfer by modifying and finetuning a well-known network.
- Black-box networks are unavailable, such as Google AutoML,
 Microsoft Custom Vision..., etc.

Limitations & Challenges

For those black-box models which have high performance and powerful learning ability, they might have great potential for transfer learning.

Main Idea

Black-box Adversarial Reprogramming

Google AutoML Microsoft Custom Vision

Performance Learning ability

Is it possible to transfer learning?

For those black-box models which have high performance and powerful learning ability, they might have great potential for transfer learning.

- Black-box Adversarial Reprogramming (BAR):
 - Re-purposing black-box DNN model for different classification tasks.
 - It can handle domain shift problem better than transfer learning.

Main Idea

Black-box Adversarial Reprogramming

For those black-box models which have high performance and powerful learning ability, they might have great potential for transfer learning.

- Black-box Adversarial Reprogramming (BAR):
 - Re-purposing black-box DNN model for different classification tasks.
 - It can handle domain shift problem better than transfer learning.

Main Idea

Black-box Adversarial Reprogramming

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Cannot modify the target model, and instead must find a universal adversarial perturbation that can be added to all test-time inputs.
- 2. Training an adversarial program in White-box setting.

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Cannot modify the target model, and instead must find a universal adversarial perturbation that can be added to all test-time inputs.
- Training an adversarial program in White-box setting.

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Cannot modify the target model, and instead must find a universal adversarial perturbation that can be added to all test-time inputs.
- Training an adversarial program in White-box setting.

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Cannot modify the target model, and instead must find a universal adversarial perturbation that can be added to all test-time inputs.
- 2. Training an adversarial program in White-box setting.

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Cannot modify the target model, and instead must find a universal adversarial perturbation that can be added to all test-time inputs.
- Training an adversarial program in White-box setting.

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

- Derivative-free optimization method, where only the objective function value f(x) at any input x is needed.
- Suitable for problems where the gradients (or back-propagation) are:
 - Unavailable
 - Un-computable

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]

• Introduce a basis vector e_i for every pixel in x,

$$\mathbb{E}\left[\frac{f(x+\varepsilon e_i)-f(x)}{\varepsilon}\right] = \frac{f(x+\varepsilon e_i)-f(x-\varepsilon e_i)}{2\varepsilon} \approx \frac{\partial f(x)}{\partial x}$$
If $x \in \mathbb{R}^p$, it requires $2p$ queries to estimate gradient.

Query inefficient!

- Idea of Adversarial Reprogramming (AR)
 - Adversarial Reprogramming of Neural Networks [Elsayed et al., 2019]
- Black-box attack methods
 - ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models [Chen et al., 2017]
 - AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks [Tu et al., 2019]
- Solving query inefficient problem of previous ZOO method.
 - An autoencoder (AE) to learn reconstruction from a dimension-reduced representation.
 - 2. An adaptive random gradient estimation strategy to balance number of queries and distortion.

Step:

Generate adversarial example from adversarial program.

$$\widetilde{X}_i = \{T_i\}_{padding} + P$$
, and $P = tanh(\mathbf{W} \odot M)$ Trainable parameters: $W \in \mathbb{R}^d$

Step:

Generate adversarial example from adversarial program.

$$\widetilde{X}_i = \{T_i\}_{padding} + P$$
, and $P = tanh(W \odot M)$

Binary Mask: $M \in \mathbb{R}^d$,

• Note: $M_j = 0$ means the area is used for embedding T_i , otherwise $M_i = 1$.

Step:

- Generate adversarial example from adversarial program.
- 2. Multi-map source label to target.

• Uses h_i (·) to denote m to 1 mapping function

$$h_{ASD}(F(X)) = \frac{F_{Tench}(X) + F_{Goldenfish}(X) + F_{Hammerhead}(X)}{3}$$

Step:

- Generate adversarial example from adversarial program.
- 2. Multi-map source label to target.
- 3. Optimize adversarial program with parameter *W* by ZOO method.
- Loss function:
- 1. Maximize the probability of $p_t = P(h_i(y_{target})|X_{target})$
- 2. Uses Focal loss

$$L_{focal}(p_t) = -\omega (1 - p_t)^{\gamma} log(p_t)$$

Step:

- Generate adversarial example from adversarial program.
- 2. Multi-map source label to target.
- 3. Optimize adversarial program with parameter W by ZOO method.

Random vectorbased estimation

$$g_j = b \cdot \frac{f(W + \varepsilon u) - f(W)}{\varepsilon} \cdot u$$

Notes: b is a tuning parameter
 u is a random unit vector.

Step:

- Generate adversarial example from adversarial program.
- 2. Multi-map source label to target.
- 3. Optimize adversarial program with parameter W by ZOO method.

Notes: q is number of random unit vectors.

Step:

- 1. Generate adversarial example from adversarial program.
- 2. Multi-map source label to target.
- 3. Optimize adversarial program with parameter W by ZOO method.

$$W_{t+1} = W_t - \alpha_t \cdot \nabla f(W_t)$$

Evaluation

Evaluation

Model

pretrained ImageNet models

- ResNet 50
- Inception V₃
- DenseNet 121

Baselines

Dataset

Medical imaging classification

- Autism Spectrum Disorder (ASD)
 - 2 classes
- Diabetic Retinopathy (DR)
 - 5 classes
- Melanoma
 - 7 classes

Online ML APIs

Real-life Black-box ML Models

- Clarifai.com
- Microsoft Custom Vision API

- Vanilla adversarial reprogramming (white-box AR)
- Transfer learning with finetuned
- Train from scratch
- State-of-the-art (SOTA) of each task

Autism Spectrum Disorder (ASD)

- Autism Brain Imaging Data Exchange (ABIDE) database.
- 503 ASD and 531 non-ASD.
- The data sample is a 200×200 brainregional correlation graph of fMRI measurements.

Model	Accuracy	Sensitivity	Specificity
Resnet 50 (AR)	72.99%	73.03%	72.13%
Resnet 50 (BAR)	70.33%	69.94%	72.71%
Train from scratch	50.96%	50.13%	52.34%
Transfer Learning (finetuned)	52.88%	54.13%	53.50%
Incept.V3 (AR)	72.30%	71.94%	74.71%
Incept.V3 (BAR)	70.10%	69.40%	70.00%
Train from scratch	49.80%	50.40%	51.55%
Transfer Learning (finetuned)	50.10%	51.23%	47.42%
SOTA 1. (Heinsfeld et al., 2018)	65.40%	69.30%	61.10%
SOTA 2. (Eslami et al., 2019)	69.40%	66.40%	71.30%

- Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the abide dataset. In NeuroImage: Clinical, 2018.
- Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., and Saeed, F. Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data. Frontiers in Neuroinformatics, 13, Nov 2019.

Diabetic Retinopathy (DR)

Model	From Scratch	Finetuning	AR	BAR
Resnet 50	66.23%	76.63%	80.48%	79.33%
Incept.V3	63.00%	74.20%	76.42%	74.33%
DenseNet 121	64.12%	71.29%	75.22%	72.33%

Notes: The performance of **SOTA is 81.36%,** which requires additional data augmentation with fine-tuning on single Resnet 50.

Melanoma

Model	From Stratch	Finetuning	AR	BAR
Resnet 50	59.01%	76.90%	82.05%	81.71%
Incept.V3	52.91%	58.63%	82.01%	80.20%
Densenet 121	52.28%	58.88%	80.76%	78.33%

- Notes: The performance of **SOTA is 78.65%,** which uses specifically designed data augmentation with finetuning on Densenet.
- Sarki et al. Convolutional neural networks for mild diabetic retinopathy detection: an experimental study. bioRxiv, 763136.
- Li, et al. Skin lesion analysis towards melanoma detection via end-to-end deep learning of convolutional neural networks. arXiv preprint arXiv:1807.08332, 2018.

Evaluation

Dataset

Medical imaging classification

- Autism Spectrum Disorder (ASD)
 - 2 classes

Online ML APIs

Real-life Black-box ML Models

- Clarifai.com
- Microsoft Custom Vision API

Baselines

- Vanilla adversarial reprogramming (white-box AR)
- Transfer learning with finetuned
- Train from scratch
- State-of-the-art (SOTA) of each task

Reprogramming Real-life Prediction APIs

• Clarifai NSFW API (2 classes)

- Recognize images or videos with inappropriate contents (e.g., "porn", "sex", or "nudity").
- Two output labels: NSFW & SFW.
- Clarifai Moderation API (5 classes)
 - Recognize images or videos have contents such as "gore", "drugs", "explicit nudity", or "suggestive nudity".

Orig. Task to New Task	q	# of query	Accuracy	cost
NSFW to ASD	15	12.8k	64.04%	\$14.24
	25	24k	65.70%	\$23.2
Moderation to ASD	15	11.9k	65.14%	\$13.52
	25	23.8k	67.32%	\$23.04

Microsoft Custom Vision API

- An online training platform for customized model.
- Reprogramming Traffic sign classification task → ASD task.

Original task to New task	q	# of query	Accuracy	Cost
Microsoft Custom Vision API to ASD	1	1.86k	48.15%	\$3.72
	5	5.58k	62.34%	\$11.16
	10	10.23k	69.15%	\$20.46

- https://www.clarifai.com
- https://azure.microsoft.com/zh-tw/services/cognitive-services/custom-vision-service/

- We proposed a novel black-box adversarial reprogramming framework for limited data classification tasks.
- 2. We used multi-label mapping and gradient-free approach to handle the infeasible gradient through black-box model.
- 3. Reprogrammed black-box ImageNet models for **three medical imaging tasks** and outperformed the general transfer learning methods.
- 4. We demonstrated the practicality of BAR by reprogramming online classification APIs from **Clarifai.com and Microsoft Custom Vision.**

Conclusions

Thanks for your attention