Network Flow

(pp. 238~243)

Network & Network Flows

- Let G=(V, E) be a directed graph with 2 distinguished vertices,
 - s (source, indegree = 0), t (sink, outdegree =0)
 - \square capacity: each edge e is associated with a positive weight c(e)
 - \square flow: a function f on the edges that satisfies
 - $0 \le f(e) \le c(e)$
 - $\forall v \in V$ $\{s, t\}$, $\sum f(u, v) = \sum f(v, w)$

Maximum Flows

■ Maximum?

Observation: Reducing Partite Graph to Network Flow

■ M is a maximum matching in G iff the corresponding flow is a maximum flow in G'

Observation: Reducing Partite Graph to Network Flow

■ M is a maximum matching iff the corresponding flow is a maximum flow in G'

Proof of Alternating-Path Theorem

- a matching is maximum iff it has no alternating paths
- Proof (reduce to maximum flow problem)
- (1) if flow is maximum, it is a maximum matching Otherwise, there would be a larger flow
- (2) if it is a maximum matching, its corresponding flow is maximum if M is maximum matching, no alternating path for it
 - => no augmenting path in G'
 - => flow is maximum

Augmenting Paths

- An augmenting path with respect to a given flow *f* is a directed path from *s* to *t*, each edge (v, u) satisfies
 - ☐ forward edge
 - (v, u) is in the same direction as it is in G, f(v, u) < c(v, u)
 - * slake of edge = c(v, u) f(v, u), room for flow
 - □ backward edge
 - (v, u) is in the opposite direction in G, f(u, v) > 0
 - * it is possible to borrow some flow from backward edge

Increment of Flow in Augmenting Path

- Increase is equal to minimum of either
 - □ the minimal slake of forward edges or
 - □ minimal current flow through backward edges

Algorithm for Searching for Augmenting Paths

residual graph, R=(V, F)

Algorithm for Searching for Augmenting Paths

- residual graph, R=(V, F)
 with respect to a network G=(V, E) and a flow f,
 but with different directions & capacities
- An edge (v,w) belongs to F if it is either a forward edge (capacity = c(v,w)-f(v,w)) or a backward edge (capacity F(v,w))
- An augmenting path = directed path from s to t in the residual graph
- Constructing the residual graph requires |E| steps

Algorithm of Maximum Flow

- Start with a flow of 0
- Repeat
 - construct the residual graph for the current flow search for augmenting paths augment the flow
 - Until no more augmenting paths

An Example

An Example

Cut in Graph

- **ut:** a set of edges that separate s from t
- precise definition of cut
 - \Box let A be a set of vertices of V such that $s \in A$ and $t \notin A$
 - $\square B=V-A$, the rest of vertices
 - $\square A$ cut is the set of edges $\{(v, w) \in E\}$ such that $v \in A$ and $w \in B$
- **capacity** of the cut: sum of capacities of its edges
- no flow can exceed the capacity of any cut

Augmenting-Path Theorem (cont.)

Augmenting-Path Theorem

- A flow is maximum iff it admits no augmenting path
- Proof
- (1) if flow admits an augmenting path, then it is not maximum (if a flow is maximum, it admits no augmenting path)
- (2) if it admits no augmenting path, a flow is maximum
 - ☐ if a flow admits no augmenting paths, it is equal to capacity of a cut
 - Let $A \subset V$ be a set of vertices such that $\forall v \in A, \exists$ an augmenting path, with respect to the flow f, from s to v
 - A defines a cut ($s \in A, t \notin A$)
 - for all edges (v, w) in that cut, f(v, w) = c(v,w)
 otherwise, (v, w) would be a forward edge, an augmenting path to w
 or a backward edge
 - ☐ if a flow equals to capacity of a cut, it is maximum

More Theorems concerning Maximum Flow

- Max-Flow Min-Cut Theorem
 The value of a maximum flow in a network is equal to the minimum capacity of a cut
- Integral-Flow Theorem

 If the capacities of all edges in the network are integers then there is a maximum flow whose value is an integer

Critical Path

Critical Path Analysis

Activity-node graph

Event-node graph

- **Earliest completion times: longest path**
 - □ computed by topological order
 - \square EC₁=0
 - \square EC_w=max(EC_v+C_{v,w})

- Latest completion times:
 - □ latest time without affecting final completion time
 - □ computed by reverse topological order
 - \square LC_n=EC_n
 - \square LC_v=min(LC_w-C_{v,w})

■ Slack time(v,w)= LC_w - EC_v - $C_{v,w}$

Critical path = zero slack time

Graph Decomposition

Decompositions of Graph

- Graph decomposition
 - □ partition graph into subgraphs
 - such that
 - each subgraph satisfies a certain desirable property.
 - □ examples
 - partition to connected components
 - partitioned undirected graph to biconnected components
 - partitioned directed graph to strongly connected components

18年前因為「這座電塔」 也造成全台大停電

18年前因為這座超高壓電塔倒塌,也造成全台大停電,(記者吳俊鋒攝)

1999/07/29 臺南縣左鎮 編號第326 輸電鐵塔傾斜 全台大停電

2017/08/15 22:33

〔記者吳俊鋒/台南報導〕桃園大潭電廠機組跳電·造成各縣市大規模停電·彷彿讓人回到18年前「729全台大停電」的夢魘!當時·台南市左鎮區澄山里過嶺附近一座345KV超高壓電塔倒塌·也造成全台大停電·郭姓在地居民回憶·當時發生時間是深夜·屋內外一片漆黑·街坊鄰居驚恐不已,甚至還謠傳「阿共丫打過來了」!

1999年的7月29日,台電在左鎮區編號第326的輸電鐵塔,因連日下雨導致地基土壤流失,約於晚間 11點半傾塌,中北部各發電廠因保護機制而跳脫,導致全台5分之4以上電廠因輸電系統低壓震盪跳 機,引發全台大停電。

左鎮區郭姓民眾說,這座超高壓電塔所在位置,是名為「山豹」的部落,屬於砂質土與白堊土的混合 地形,容易因豪雨沖刷而流失,基座不穩,造成傾斜。

729全台大停電事件,許多左鎮耆老仍記憶猶新,當時民眾發現停電事態嚴重,有人懷疑是附近龍崎區的超高壓變電所爆炸,或北部核電廠故障。

住在電塔附近的蔡姓婦人說,當時坊間還流傳是中國發射導彈攻擊,「兩岸開打了」,但也有人幫忙 關謠,斥為無稽之談,停電原因未明朗前,眾說紛紜。

後來台電努力修復倒塌電塔,並全面體檢山區超高壓電塔的基座,之前受制於用地取得不易,執行困難的第3迴路超高壓輸電幹線,也因這起事件而順利推動。

Biconnected Components

- Connected
 - ☐ An undirected graph is connected if there is a path from every vertex to every other vertex
- Biconnected
 - ☐ An undirected graph is biconnected if there are at least two vertex disjoint paths from every vertex to every other vertex
 - ☐ If a graph is not biconnected, then it can be partitioned into subgraphs, each of which is biconnected
- K-connected
 - ☐ An undirected graph is k-connected if there are at least k vertex disjoint paths between every two vertices.

 M. K. Shan, CS, NCCU

Biconnected Components (cont.)

Biconnected Components (cont.)

- A graph is not biconnected iff there is an articulation point
 - Articulation point: vertex whose removal disconnects the graph
- Biconnected component
 - □ a maximal subset of the edges such that its induced subgraph is biconnected

Summary

- Graph Representation
- **■** Graph Traversal (DFS, BFS)
- Finding Cycle in a Graph
- **■** Topological Sorting
- Shortest Path
- **■** Minimum Spanning Tree
- Graph Matching
- Graph Coloring
- **■** Maximum Flow
- Graph Partitioning