SEQUENCE LISTING

10/573600 <110> The Trustees of the University of Pennsylvania Wilson, James M. Gao, Guangping Alvira, Mauricio R. Vandenberghe, Luk H. FORESCREEPED OLDAR 2006 <120> Adeno-Associated Virus (AAV) Clades, Sequences, Vectors Containing Same, and Uses Therefor <130> UPN-P3230PCT <150> US 60/508,226 2003-09-30 <150> US 60/566,546 2004-04-29 <151> <160> 236 <170> PatentIn version 3.3 <210> 2211 <211> DNA <213> adeno-associated virus, clone hu.31 <400> atggctgccg atggttatct tccagattgg ctcgaggaca accttagtga aggaattcgc 60 gagtggtggg ctttgaaacc tggagcccct caacccaagg caaatcaaca acatcaagac 120 aacgctcgag gtcttgtgct tccgggttac aaataccttg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aggccggaga caacccgtac ctcaagtaca accacgccga cgccgagttc 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattggc 480 aaatcgggtg cacagcccgc taaaaagaga ctcaatttcg gtcagactgg cgacacagag 540 tcagtcccag accctcaacc aatcggagaa cctcccgcag ccccctcagg tgtgggatct 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 caggtcaaag aggttacgga caacaatgga gtcaagacca tcgccaataa ccttaccagc 1020 acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgettaatg atggaageca ggeegtgggt egttegteet tttactgeet ggaatattte 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gtgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tggacaagtg 1740

1800

1860

gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga

atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc

1920

aaaattcctc acacggacgg caactttcac ccttctccgc tgatgggagg gtttggaatg aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg 1980 gccttcaaca aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc 2040 gtggagatcg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag 2100 tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta 2160 tatagtgaac cccgccccat tggcaccaga tacctgactc gtaatctgta a 2211 2 2211 <210> <211> DNA <213> new AAV serotype, clone hu.32 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 Cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacqac 240 cagcagetea aggeeggaga caaccegtae etcaagtaca accaegeega egeegagtte 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattgqc 480 aaatcgggtt cacagcccgc taaaaagaaa ctcaatttcg gtcagactgg cgacacagag 540 tragtriccin accetraace aateggagaa ceteergeag ecceetragg tgtgggatet 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 caggicaaag aggitacgga caacaaigga gicaagacca icgccaataa ccitaccagc 1020 acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgcttaatg atgggagcca ggccgtgggt cgttcgtcct tttactgcct ggaatatttc 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gcgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tqqacaaqtq 1740 gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga 1800 atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc 1860 aaaattcctc acacggacgg caactttcac ccttctccgc taatgggagg gtttggaatg 1920 aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg 1980 gctttcaata aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc 2040 gtggagattg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag 2100 tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta 2160

gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcagg	ac 120
gacggccggg gtctggtgct tcctggctgc aagtacctcg gacccttcaa cggactcg	ac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacg	jac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagt	tt 300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttcc	ag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctc	ct 420
ggaaagaaga gaccggtaga gccatcaccc cagcgttctc cagactcctc tacgggca	itc 480
ggcaagacag gccagcagcc cgcgaaaaag agactcaact ttgggcagac tggcgact	ca 540
gagtcagtgc ccgaccctca accaatcgga gaaccccccg caggcccctc tggtctgg	ga 600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccg	ac 660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagag	tc 720
atcaccacca gcacccgaac ctgggccctc cccacctaca acaaccacct ctacaag	aa 780
atctccaacg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagca	icc 840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactgg	ag 900
cgactcatca acaacaactg gggattccgg cccaagagac tcaacttcaa gctcttca	ac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctta	icc 1020
agcacgattc aggtctttac ggactcggaa taccagctcc cgtacgtcct cggctctg	ıcg 1080
caccagggct gcccgcctcc gttcccggcg gacgtcttca tgattcctca gtacgggt	ac 1140
ctgactctga acaacggcag tcaggccgtg ggccgttcct ccttctactg cctggagt	ac 1200
tttccttctc aaatgcggag aacgggcaac aactttgagt tcagctacca gtttgagg	jac 1260
gtgccttttc acagcagcta cgcgcatagc caaagcctgg accggctgat gaacccc	tc 1320
atcgaccagt acctgtacta cctgtctcgg actcagtcca cgggaggtac cgcaggaa	ict 1380
cagcagttgc tattttctca ggccgggcct aataacatgt cggctcaggc caaaaact	gg 1440
ctacccgggc cctgctaccg gcagcaacgc gtctccacga cactgtcgca aaataaca	ac 1500
agcaactttg cttggaccgg tgccaccaag tatcatctga atggcagaga ctctctgg	
aatcccggtg tcgctatggc aacgcacaag gacgacgaag agcgatttt tccatcca	ıgc 1620
ggagtcttga tgtttgggaa acagggagct ggaaaagaca acgtggacta tagcagcg	
atgctaacca gtgaggaaga aatcaaaacc accaacccag tggccacaga acagtacg	
gtggtggccg ataacctgca acagcaaaac gccgctccta ttgtaggggc cgtcaaca	igt 1800
caaggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtccta	
tgggccaaga ttcctcacac ggacggcaac tttcatcctt cgccgctgat gggaggct	
ggactgaaac acccgcctcc tcagatcctg attaagaata cacctgttcc cgcggatc	
ccaactacct tcagtcaagc caagctggcg tcgttcatca cgcagtacag caccggac	ag 2040
gtcagcgtgg aaattgaatg ggagctgcag aaagagaaca gcaagcgctg gaacccag	ag 2100
attcagtata cttccaacta taacaaatct gttaatgtgg actttactgt ggacacta	•
ggtgtgtatt Cagagcctcg ccccattggc accagatacc tgactcgtaa tctgtaa	2217
<210> 5 <211> 2217 <212> DNA <213> new AAV serotype, clone hu.6	
<pre><400> 5 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattc</pre>	gc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcagg	
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcg	
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacg	
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagt	
Caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttcc	

420

480

gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct

ggaaagaaga gaccggtaga gccatcaccc cagcgttctc cagactcctc tacgggcatc

•		•	• •	_		
ggcaagacag	gccagcagcc	cgcgaaaaag	agactcaact	ttgggcagac	tggcgactca	540
gagtcagtgc	ccgaccctca	accaatcgga	gaaccccccg	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattccg	catggctggg	cgacagagtc	720
atcaccacca	gcacccgacc	ctgggccctc	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcaacttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtctttac	ggactcggaa	taccagctcc	cgtacgtcct	cggctctgcg	1080
caccagggct	gcccgcctcc	gttcccggcġ	gacgtcttca	tgattcctca	gtacgggtac	1140
ctgactctga	acaacggcag	tcaggccgtg	ggccgttcct	ccttctactg	cctggagtac	1200
tttccttctc	aaatgcggag	aacgggcaac	aactttgagt	tcagctacca	gtttgaggac	1260
gtgccttttc	acagcagcta	cgcgcatagc	caaagcctgg	accggctgat	gaaccccctc	1320
atcgaccagt	acctgtacta	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	1380
cagcagttgc	tattttctca	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	1440
ctacccgggc	cctgctaccg	gcagcaacgc	gtctccacga	cactgtcgca	aaataacaac	1500
agcaactttg	cttggaccgg	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	1560
aatcccggtg	tcgctatggc	aacgcacaag	gacgacgaag	agcgatttt	tccatccagc	1620
ggagtcttga	tgtttgggaa	acagggagct	ggaaaagaca	acgtggacta	tagcagcgtt	1680
atgctaacca	gtgaggaaga	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	1740
gtggtggccg	ataacctgca	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	1920
ggactgaaac	acccgcctcc	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	1980
ccaactacct	tcagtcaagc	caagctggcg	tcgttcatca	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatactgag	2160
			acccgttacc			2217
		oe, clone hu	ı.41			
<400> 6 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tacaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ccggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgccacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga Page 5	aggcgccgac	660

720

ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc

atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc	840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac	960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccgtcgccaa taaccttacc	1020
agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg	1080
caccaggget gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac	1140
cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat	1200
tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac	1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt	1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt	1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc	1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc	1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct	1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag	2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgttg gaacccagag	2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag	2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa	2217
<210> 7	
<pre><211> 2217 <212> DNA</pre>	
<213> new AAV serotype, clone rh.38	
<400> 7 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tacaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcggcc cgctaaaaag agactgaact ttggtcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc	840
CCCtgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag	900
Cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gcccttcaac	960
Page 6	-

atccaggtca aggaggtcac gcagaatgaa ggcacca	aga ccatcgccaa taaccttacc 1020
agcacgattc aggtatttac ggactcggaa taccagc	tgc cgtacgtcct cggctccgcg 1080
caccagggct gcctgcctcc gttcccggcg gacgtct	tca tgattcccca gtacggctac 1140
cttacactga acaatggaag tcaagccgta ggccgtt	cct ccttctactg cctggaatat 1200
tttccatctc aaatgctgcg aactggaaac aattttg	aat tcagctacac cttcgaggac 1260
gtgcctttcc acagcagcta cgcacacagc cagagct	tgg accgactgat gaatcctctc 1320
atcgaccagt acctgcacta cttatccaga actcagt	cca caggaggaac tcaaggtacc 1380
cagcaattgt tattttctca agctgggcct gcaaaca	tgt cggctcaggc taagaactgg 1440
ctacctggac cttgctaccg gcagcagcga gtctcta	cga cactgtcgca aaacaacaac 1500
agcaactttg cttggactgg tgccaccaaa tatcacc	tga acggaagaga ctctttggta 1560
aatcccggtg tcgccatggc aacccacaag gacgacg	agg aacgcttctt cccgtcgagt 1620
ggagtcctga tgtttggaaa acagggtgct ggaagag	aca atgtggacta cagcagcgtt 1680
atgctaacca gcgaagaaga aattaaaacc actaacc	ctg tagccacaga acaatacggt 1740
gtggtggctg acaacttgca gcaaaccaat acagggc	cta ttgtgggaaa tgtcaacagc 1800
caaggagcct tacctggcat ggtctggcag aaccgag	acg tgtacctgca gggtcccatc 1860
tgggccaaga ttcctcacac ggacggcaac ttccacc	ctt caccgctaat gggaggattt 1920
ggactgaagc acccacctcc tcagatcctg atcaaga	aca cgccggtacc tgcggatcct 1980
ccaacaacgt tcagccaggc gaaattggct tccttca	tta cgcagtacag caccggacag 2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggaga	aca gcaaacgctg gaacccagag 2100
attcagtaca cttcaaacta ctacaaatct acaaatg	tgg actttgctgt caatacagag 2160
ggaacttatt ctgagcctcg ccccattggt actcgct	acc tcacccgtaa tctgtaa 2217
<210> 8 <211> 2217 <212> DNA <213> new AAV serotype, clone hu.42	
<400> 8	
atggctgctg acggttatct tccagattgg ctcgagg	aca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccc aagccca	agg ccaaccagca gaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacc	tcg gaccettcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccc	tcg agcacgacaa ggcctacgac 240
cagcagetea aagegggtga caateegtae etgeggta	ata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaa	acc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttga	agg aagcggctaa gacggctcct 420
ggaaagaaga gaccggtaga accgtcacct cagcgtte	ccc ccgactcctc cacgggcatc 480
ggcaagaaag gccagcagcc cgctaaaaag agactgaa	act ttggtcagac tggcgactca 540
gagtcagtcc ccgaccctca accaatcgga gaaccac	cag caggcccctc tggtctggga 600
tctggtacaa tggctgcagg cggtggcgct ccaatgg	cag acaataacga aggcgccgac 660
ggagtgggta gttcctcagg aaattggcat tgcgatte	cca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctg cccaccta	
atatccaatg ggacatcggg aggaagcacc aacgaca	aca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt caacagattc cactgcca	
cgactcatca acaacaactg gggattccgg ccaaaaa	gac tcagcttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaa	aga ccatcgccaa taaccttacc 1020

agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg

caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac

cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat

tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac

1080

1140

1200

1260

PCT/US2004/028817

WO 2005/033321	P
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aagcaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt	1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt	1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc	1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc	1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggactt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct	1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag	2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag	2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag	2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa	2217
<210> 9 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.72 <400> 9	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780

atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc

ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac

atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc

agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg

caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac

cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat

tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac

gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc

atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc

cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg

ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac

agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta

Page 8

840 900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1680 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1740 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 Caaggageet tacctggeat ggtetggeag aaccgagaeg tgtacetgea gggteecate 1860 tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920 ggactgaagc acceaectee teagateetg ateaaqaaca egeeggtace tgeggateet 1980 CCaaCaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attragtaca cttraaacta ctaraaatrt acaaatgtgg actttgctgt caataragag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 10 2217 DNA new AAV serotype, clone hu.37 <213> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga qqqcattcqc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc CCgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacqqqcatc 480 ggCaagaaag gcCagcagcc cgCtaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactqqcaq 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggica aggaggicac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcqaqt 1620 ggagtcctga tgttcggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccccg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860

tgggccaaga ttcctcacac ggacggcaac ttccaccctt	caccgctaat gggaggattt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca	cgccggtacc tgcggatcct	1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta	cgcagtacag caccggacag	2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca	gcaaacgctg gaacccagag	2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg	actttgctgt caatacagag	2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc	tcacccgtaa tctgtaa	2217
<210> 11		
<211> 2217		
<212> DNA <213> new AAV serotype, clone hu.40		
<400> 11		
atggctgctg acggttatct tccagattgg ctcgaggaca		
gagtggtggg acctgaaacc tggagccccc aagcccaagg		
gacggccggg gtctggtgct tcctggctac aagtacctcg	_	
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg		
cagcagctca aagcgggtga caatccgtac ctgcggtata		
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc	tcgggcgagc agtcttccag	
gccaagaagc gggttctcga acctctcggt ctggttgagg	aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc		
ggcaagaaag gccagcagcc cgctaaaaag agactgagct	ttggtcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag	caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag	acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattcca	catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca	acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaaca	cctacttcgg ctacagcacc	840
ccctgggggt attttgactt caacagattc cactgccact	tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg ccaaaaagac	tcagcttcaa gctcttcaac	960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga	ccatcgccaa taaccttacc	1020
agcacgattc aggtatttac ggactcggaa taccagctgc	cgtacgtcct cggctccgcg	1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca	tgattcccca gtacggctac	1140
cttacactga acaatggaag tcaagccgta ggccgttcct	ccttctactg cctggaatat	1200
tttccatctc aaatgctgcg aactggaaac aattctgaat	tcagctacac cttcgaggac	1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg	accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca	caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt	cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga	cactgtcgca aaacaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga	acggaagaga ctctttggta	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg	aacgcttctt cccgtcgagt	1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca	atgtggacta cagcagcgtt	1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg	tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaaaccaat acagggccta	ttgtgggaaa tgtcaacagc	1800
caaggagcct tacctggcat ggtctggcag aaccgagacg	tgtacctgca gggtcccatc	1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt	caccgctaat gggaggattt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca		1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta		2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca		2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg		2160
	Page 10	

ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> <211> 12 2217 <212> DNA <213> new AAV serotype, clone hu.38 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccacctg caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg agggagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccaggget geetgeetee gtteeeggeg gaegtettea tgatteeeca gtaeggetae 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggageet tacctggeat ggtetggeag aaccgagaeg tgtacctgea gggteecate 1860 tgggccaaga ttcctcacac ggacggcaac tgccaccctt caccgctaat gggaggattt 1920 ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 13 2217 DNA new AAV serotype, clone rh.39

<213>

<400> 13

atggctgctg acggttatct tccagattgg ctcgaggaca ac	cctctctga gggcattcgc 60	
gagtggtggg acctgaaacc tggagccccc aagcccaagg co	caaccagca gaagcaggac 120	
gacggccggg gtctggtgct tcctggctac aagtacctcg ga	acccttcaa cggactcgac 180	
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg ag	gcacgacaa ggcctacgac 240	
cagcagctca aagcgggtga caatccgtac ctgcggtata ac	ccacgccga cgccgagttt 300	
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc to	cgggcgagc agtcttccag 360	
gccaagaagc gggttctcga acctctcggt ctggttgagg aa	agctgctaa gacggctcct 420	
ggaaagaaga gaccggtaga accgtcacct cagcgttccc co	cgactcctc cacgggcatc 480	
ggcaagaaag gccagcagcc cgctaaaaag agactgaact tt	tggtcagac tggcgactca 540	
gagtcagtcc ccgaccctca accaatcgga gaaccaccag ca	aggcccctc tggtctggga 600	
tctggtacaa tggctgcagg cggtggcgct ccaatggcag ac	caataacga aggcgccgac 660	
ggagtgggta gttcctcagg aaattggcat tgcgattcca ca	atggctggg cgacagagtc 720	
atcaccacca gcacccgaac ctgggccctg cccacctaca ac	caaccacct ctacaagcaa 780	
atatccaatg ggacatcggg aggaagcacc aacgacaaca co	ctacttcgg ctacagcacc 840	
ccctgggggt attttgactt caacagattc cactgccact to	ctcaccacg tgactggcag 900	
cgactcatca acaacaactg gggattccgg ccaaaaagac to	cagcttcaa gctcttcaac 960	
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga co	catcgccaa taaccttacc 1020	
agcacgattc aggtatttac ggactcggaa taccagctgc cg	gtacgtcct cggctccgcg 1080	
caccagggct gcctgcctcc gttcccggcg gacgtcttca tg	gattcccca gtacggctac 1140	
cttacactga acaatggaag tcaagccgta ggccgttcct cc	cttctactg cctggaatat 1200	
tttccatctc aaatgctgcg aactggaaac aattttgaat to	cagctacac cttcgaggac 1260	
gtgcctttcc acagcagcta cgcacacagc cagagcttgg ac	ccgactgat gaatcctctc 1320	
atcgaccagt acctgtacta cttatccaga actcagtcca ca	aggaggaac tcaaggtacc 1380	
cagcaattgt tattttctca agctgggcct gcaaacatgt cg	ggctcaggc taagaactgg 1440	
ctacctggac cttgctaccg gcagcagcga gtctctacga ca	actgtcgca aaacaacaac 1500	
agcaactttg cttggactgg tgccaccaaa tatcacctga ac	cggaagaga ctctttggta 1560	
aatcccggtg tcgccatggc aacccacaag gacgacgagg aa	acgcttctt cccgtcgagt 1620	
ggagtcctga tgtttggaaa acagggtgct ggaagagaca at	tgtggacta cagcagcgtt 1680	
atgctaacca gcgaagaaga aattaaaacc actaaccctg ta	agccacaga acaatacggt 1740	
gtggtggctg ataacttgca gcaaaccaat acggggccta tt	tgtgggaaa tgtcaacagc 1800	
caaggageet tacetggeat ggtetggeag aacegagaeg tg	gtacctgca gggtcccatc 1860	
tgggccaaga ttcctcacac ggacggcaac ttccaccctt ca	accgctaat gggaggattt 1920	
ggactgaagc acccacctcc tcagatcctg atcaagaaca cg	gccggtacc tgcggatcct 1980	
ccaacaacgt tcagccaggc gaaattggct tccttcatta cg	gcagtacag caccggacag 2040	
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gc	caaacgctg gaacccagag 2100	
attcagtaca cttcaaacta ctacaaatct acaaatgtgg ac	ctttgctgt caatacagag 2160	
ggaacttatt ctgagcctcg ccccattggt actcgttacc to	cacccgtaa tctgtaa 2217	
<210> 14 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.40		
<400> 14 atggctgctg acggttatct tccagattgg ctcgaggaca ac	cctctctga gggcattcgc 60	
gagtggtggg acctgaaacc tggagccccc aagcccaagg cc		
gacggccggg gtctggtgct tcctggctac aagtacctcg ga		
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg ag		
cagcagctca aagcgggtga caatccgtac ctgcggtata ac	-	
ggg-gggggu caaceegtat etgeggtald de	-cacyceya cyceyayett 300	

cagg	agcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gcca	agaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaa	agaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggca	agaaag	gccagcagcc	cgctaaaaaġ	agactgaact	ttggtcagac	tggcgactca	540
gagt	cagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctg	gtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggag	tgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atca	ccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atat	ccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccct	gggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgac	tcatca	acaacaactg	gggattccgġ	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atcc	aggtca	aggaggtcac	gcaggatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agca	cgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
cacc	agggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
ctta	cactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttc	catctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgc	ctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcg	accagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cago	aattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcgggc	taagaactgg	1440
ctac	ctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agca	actttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatc	ccggtg	ttgctatggc	aacgcataag	gacgacgagg	aacgtttctt	tccatcgagc	1620
ggag	tcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	tagcagcgtt	1680
atgc	taacca	gcgaggaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtgg	tggctg	acaacttgca	gcaagccaat	acagggccta	ttgtgggaaa	tgtcaacagc	1800
caag	gagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tggg	ccaaaa	ttcctcacac	ggacggcaat	tttcacccgt	ctcctctgat	gggcggcttt	1920
ggac	tgaagc	acccacctcc	ccagatcctg	atcaagaata	cgccggtacc	tgcggatcct	1980
ccaa	cgacgt	tcagccaggc	aaaattggct	tccttcatca	cgcagtacag	caccggccag	2040
gtca	gcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgatg	gaacccagaa	2100
atto	agtaca	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	caattctgag	2160
ggta	catatt	cagagcctcg	ccccattggt	actcgttatc	tgacacgtaa	tctgtaa	2217
<210: <211: <212: <213:	> 2217 > DNA	7 AAV serotyp	oe, clone ri	1.64			
<400: atgg	> 15 ctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagt	ggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacg	gccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagg	gggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagc	agctca	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
cagg	agcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
		gggttctcga					420
		gaccggtaga					480
		gccagcagcc					540
gagt	cagtcc	ccgaccctca	acctatcggå	gaacctccag	cagcgccctc	tagtgtggga	600

660

tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac

```
720
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     780
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     840
atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     900
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     960
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgtgg agatcgtgtg ggagctgcag aaggagaaca gcaagcgcag gaacccagag
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
      16
<210>
       2217
<213>
      new AAV serotype, clone rh.68
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccqactcctc cacqqqcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
```

900

ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag

960

```
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
                                                                    1080
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
                                                                    1260
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
                                                                    1500
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccacccagc
                                                                    1620
ggCatCctca tgtttggCaa gcagggagCt ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgtgg tgatcgagtg ggagctgcag aaggagaaca gcaagcgctq gaacccaqaq
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcttcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
<210>
      17
       2217
      DNA
      new AAV serotype, clone rh.53
<213>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcaccà cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     900
CgactCatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
```

1260

```
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
gtgcctttcc acagcagcta cgtgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
                                                                    1380
attgactagt acttgtacta cttgtcaaga acttagtcta cgggaggcat agtgggaact
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
                                                                    1560
agCaactttg cctggactgg tgccaccaag tatCatctga acggcagaga ctctctggtg
aattcgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtqg actttqctqt taatactqaq
                                                                    2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc ccacccgtaa tctgtaa
                                                                    2217
<210>
      18
      2217
      DNA
      new AAV serotype, clone rh.52
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga qqqcattcqc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa tagcctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaà taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactccca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgtcttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
```

agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg	1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc	1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg	1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc	1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc	1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacttgca gggtcctatt	1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt	1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct	1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa	2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag	2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag	2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa	2217
<210> 19 <211> 2217 <212> DNA	
<212> DNA <213> new AAV serotype, clone rh.46	
<400> 19	60
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	120
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	180
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagetta aagegggtga caateegtae etgeggtata ateaegeega egeegagttt	300
caggagegte tgcaagaaga tacgtettt gggggcaace tegggegage agtettecag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc	480 540
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca	
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660 720
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc	720 780
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac	960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc	1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc	1080
caccaggget gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac	1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac	1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac	1260 1320
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc	
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc	1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg	1440
ctgcctggac cctgctacag acagcagcg gtctccacga cactgtcgca aaacaacaac	1500 1560
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg	1620
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc	1680
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg	1740
atgctaacca gcgaggaaga aatcaaggcc accaaccccg tggccacaga acagtatggc	
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc	1800

cagggagcct tacctggcat ggtctggcaq aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210> <211> 20 2217 new AAV serotype, clone rh.70 <213> atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccgcctaca acaaccacct ctacaagcaa 780 atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gatgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgq 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga gcggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctqca qqqtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcqqcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tcttccatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100

attcägtätä ciiccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tttgtaa 2217 <210> 2217 DNA new AAV serotype, clone rh.61 <213> atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaagg ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgacccatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctaccc tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgq 1440 ctgcctggac cctgctacag acagcagcgè gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaagac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcaggtcctc atcaaaaaca ctcctgttcc tqcqqatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210> 22 2217 DNA

<213> new AAV serotype, clone rh.51

"-"<400> "-22"							
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60	
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcagggc	120	
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180	
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240	
cagcagctta	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagctt	300	
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360	
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420	
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480	
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540	
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600	
tctggtacaa	tggctgcagg	cggtggcgcg	ccaatggcag	acaataacga	aggtgccgac	660	
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720	
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780	
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840	
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900	
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960	
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020	
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080	
caccagggct	gccagcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140	
ctgactctca	acaacggtag	tcaggccgtġ	ggacgttcct	ccttctactg	cctggagtac	1200	
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260	
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320	
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380	
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440	
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500	
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560	
aatccgggcg	tcgccatggc	aaccaacaaġ	gacgacgagg	accgcttctt	cccatccagc	1620	
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680	
		aatcaagacc				1740	
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800	
		ggtctggcag				1860	
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920	
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980	
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040	
gtcagcgtgg	agatcgagtg	ggagccgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100	
		ctacaaatct				2160	
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217	
		pe, clone r	n. 50				,
<400> 23 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60	
		tggagccccg		_		120	
		tcctggctac			-	180	
		ggcggacgca				240	
		caatccgtac				300	
				Page 20			

caggagcgtc	tgcaagaaga	tacgtcttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgccggaaag	agactcaatt	tcggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggcag	acaataacga	aggtgccgac	660
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattç	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
gtcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gagcccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
240 24						
<210> 24 <211> 221	7					
<212> DNA <213> new	AAV seroty	oe, clone hu	ı.39			
<400> 24 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
	ccgtcaacgc					240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
	gaccggtaga					480
	gccagcagcc					540
		-				

gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600

tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtt	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt atcttgactt taacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac	960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcgcc	1020
agcaccatcc aggtgtttac ggactcggaa taccagccgc cgtacgtcct cggctctgcc	1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac	1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac	1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac	1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc	1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc	1380
cagcagttgc tgttttctcg ggccgggcct agcaacatgt cggctcaggc cagaaactgg	1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac	1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg	1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc	1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg	1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc	1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ctgtgggggc cgtcaacagc	1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt	1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt	1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct	1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatcg cgcagtacag caccggacaa	2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag	2100
attcagtata cttccaacta ctacaaatct acaaatgcgg actttgctgt taatactgag	2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa	2217
240 25	
<210> 25 <211> 2217	
<212> DNA <213> new AAV serotype, clone rh.49	
<400> 25	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagetea aagegggtga caateegeac etgeggtata ateaegeega egeegagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca	540
gagtcagtcc ccgaccctca acttatcgga gaacctccag cagcgccctc tagtgtggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag	900

cgactcatca acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960	
atccaggtca aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020	
agcaccatcc aggtgtttac	ggactcggag	taccagctgc	cgtacgtcct	cggctctgcc	1080	٠
caccagggct gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggcaac	1140	
ctgactctca acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200	
ttcccctctc agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260	
gtgcctttcc acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320	
atcgaccagt acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380	
cagcagttgc tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440	
ctgcctggac cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500	
agcaactttg cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560	
aatccgggcg tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620	
ggcatcctca tgtttggcaa	gcagggagct	ggaaaagaca	acatgggcta	tagcaacgtg	1680	
atgctaacca gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740	
gtggtggctg ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800	
cagggagcct tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860	
tgggccaaga ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920	•
ggacttaaac atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980	
ccaacagcgt tcaaccaggc	caagctgaat	tctttcatca	cgcagtacgg	caccggacaa	2040	
gtcagcgtgg agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100	
attcagtata cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160	
	cccattage	25+50++255	+caccca+aa	+c+a+>>	2217	
ggtgtttact ctgagcctcg	cccartggc	actigitati	tcacccytaa	ccigiaa	2217	
<pre><210> 26 <211> 2217 <212> DNA <213> new AAV seroty</pre>			tcacccytaa	ttigtaa	221,	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26	pe, clone ri	1.57				
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct	pe, clone rh tccagattgg	n.57 ctcgaggaca	acctctctga	gggcattcgc	60	·
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc	pe, clone rh tccagattgg tggagccccg	n.57 ctcgaggaca aagcccaaag	acctctctga ccaaccagca	gggcattcgc aaagcaggac	60 120	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct	pe, clone ri tccagattgg tggagccccg tcctggctac	n.57 ctcgaggaca aagcccaaag aagtacctcg	acctctctga ccaaccagca gacccttcaa	gggcattcgc aaagcaggac cggactcgac	60 120 180	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc	tccagattgg tggagccccg tcctggctac ggcggacgca	n.57 ctcgaggaca aagcccaaag aagtacctcg	acctctctga ccaaccagca gacccttcaa agcacgacaa	gggcattcgc aaagcaggac cggactcgac ggcctacgac	60 120 180 240	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga	tccagattgg tggagccccg tcctggctac ggcggacgca	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt	60 120 180 240 300	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagctgc tgcaagaaga	tccagattgg tggagccccg tcctggctac ggcggacgca caatccgtac	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag	60 120 180 240 300 360	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga	tccagattgg tggagccccg tcctggctac ggcggacgca caatccgtac tacgtctttt	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct	60 120 180 240 300 360 420	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct	60 120 180 240 300 360 420 480	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc	60 120 180 240 300 360 420 480 540	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtcc ccgaccctca	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgcagaaag acctatcgga	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttcccag	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca	60 120 180 240 300 360 420 480 540	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtcc ccgaccctca tctggtacaa tggctgcagg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac	60 120 180 240 300 360 420 480 540 600 660	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttcctcggg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc	60 120 180 240 300 360 420 480 540 600 660 720	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttcctcggg gaatcaccacca gcacccgaac	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgcacaaa cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa	60 120 180 240 300 360 420 480 540 600 660 720 780	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttcctcggg atcaccacca gcacccgaac acctccaacg ggacctcggg	tccagattgg tggagccccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcacc	60 120 180 240 300 360 420 480 540 600 660 720 780 840	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga cagcagctgc aggcgggtga cagaagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtcc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttcctcggg gaagtgggta gttcctcggg ccctgggggt attttgactt	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct cctactttgg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag	60 120 180 240 300 360 420 480 540 600 660 720 780	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttctcggg gagtgggta gttctcggg ccctggggta gttctcggg ccctcgacctca tctggtacaa tggctgcagg ccctggggta gttctcggg atcaccacca gcaccccgaac acctccaacg ggacctcggg ccctgggggt attttgactt cgactcatca acaacactg	tccagattgg tggagccccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc tacagattc	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gaccggtaga ggcaagaaga gaccggtaga ggcaagaaga gaccggtaga ggaagaaga gaccggtaga ggaatcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttctcggg atcaccacca gcacccgaac acctccaacg ggacctcggg ccctgggggt attttgactt cgactcatca acaacactg atccaggtca aagaggtcac	tccagattgg tggagccccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc taacagattc gggattccgg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact cccaagagac	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgcctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg tcagctcaa ccatcgccaa	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag gctcttcaac tagactgcag	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960	
<210> 26 <211> 2217 <212> DNA <213> new AAV seroty <400> 26 atggctgccg atggttatct gagtggtggg cgctgaaacc gacggccggg gtctggtgct aagggggagc ccgtcaacgc cagcagctgc aggcgggtga caggagcgtc tgcaagaaga gccaagaagc gggttctcga ggaaagaaga gaccggtaga ggcaagaaga gccagcagcc gagtcagtc ccgaccctca tctggtacaa tggctgcagg ggagtgggta gttctcggg gagtgggta gttctcggg ccctggggta gttctcggg ccctcgacctca tctggtacaa tggctgcagg ccctggggta gttctcggg atcaccacca gcaccccgaac acctccaacg ggacctcggg ccctgggggt attttgactt cgactcatca acaacactg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc taacagattc gggattccgg gcagaatgaa ggactcggaa	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca accgacaca cactgccact cccaagagac ggcaccaaga taccagctgc	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgcagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg tcagcttcaa ccatcgccaa ccatcgccaa ccatcgccaa	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac tagctgccg	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020	

ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200

ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1260 1320 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgcgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210>

<210> 27 <211> 2217 <212> DNA

<213> new AAV serotype, clone rh.58

atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcqactca 540 gagtcagtcc ccgaccctca accaatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggccgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagctgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500

agcaactttg cctggac	tgg tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg tcgccat	ggc aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca tgtttgg	caa gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca gcgagga	aga aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg ataacct	aca gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct tacctgg	cat ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga ttcctca	ıcac agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac atccgcc	tcc tcagatcctc	atcaaaagca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt tcaacca	iggc caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg agatcga	igtg ggagctgcag	aaggagaaca	gcaagtgctg	gaacccagag	2100
attcagtata cttccaa	icta ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact ctgagcc	tcg ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 28					
<211> 2196 <212> DNA	otype, clone p	i.1			
<400> 28					
atggctgctg acggtta					60
gagtggtggg cgctgaa					120
gacggccggg gtctggt					180
aagggggagc ccgtcaa	cga ggcggacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca aagcggg	tga caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
caagagcgtc tgcaaga	aga tacgtccttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaaaaaga gggtact		·			420
ggaaagaagc ggccagt	aga accggactcc	agctcgggca	tcggcaagtc	aggccagcag	480
cccgcgaaaa agagact	gaa ttttgggcag	actggcgact	cagagtcagt	gcctgacccc	540
caacctctct cagaacc	acc cgcaggtccc	tctggtctgg	gatctggtac	aatggctgct	600
ggcggtggcg ctccaat					660
ggaaattggc attgcga	•				720
acctgggccc tccccac	cta caacaaccac	ctctacaagc	aaatctccaa	cgggacctcg	780
ggaggcagca gcaacga	caa cacctacttt	ggctacagca	cccctgggg	gtattttgac	840
tttaacagat tccactg	cca cttttcacca	cgtgactggc	agcgactcat	caacaacaac	900
tgggggttcc ggcccaa	gaa gctcaacttc	aagctcttca	acatccaggt	caaggaggtc	960
acccagaatg aaggcac	caa gaccatcgcc	aataacctca	ccagcacggt	gcaggtcttt	1020
acggactcgg agtacca	gct cccgtacgtg	ctcggctctg	cccaccaggg	ctgcctgcct	1080
ccgttcccgg cggacgt	gtt catgattccg	cagtacgggt	acctgacgct	gaacaacggg	1140
agccaggccg tggggcg	atc ctccttctac	tgcctggagt	actttccctc	gcagatgctg	1200
agaacgggca acaactt	tac cttcagctac	accttcgagg	acgtgccctt	ccacagcagc	1260
tacgcgcaca gccagag	cct ggaccggctg	atgaacccgc	tgattgacca	gtacctgtac	1320
tacctgtctc ggactca	gac caacgggacc	aatgccacgc	agactctgtt	gtttgctcag	1380
gccgggcctc agaacat	gtc ggctcaggcc	aagaactggc	tgcctggtcc	ttgctatcgg	1440
cagcagcgcg tctctac	gac agtgtcgcaa	aacaacaaca	gcaactttac	ctggaccggg	1500
gcgaccaagt accacct	gaa cggccgagac	tccctggtga	gccccggtgt	cgccatggca	1560
acgcacaagg acgacga	gga gcgcttcttc	ccgagcagcg	gggtcctgat	gtttggcaag	1620
cagggcgctg gaaagga	caa tgtcgagtac	accaacgtga	tgctcaccag	cgaggaggag	1680
atcaagacca ccaaccc	tgt ggccacggag	cagtacggcg	tggtggctga	caatctgcag	1740
cagaccaact cagctcc	cat tgtgggggca	gtcaacagcc	agggggcctt	acccggtatg	1800
		1	Page 25		

gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatectga teaaaaacae geeggtaeet geggateeee eggtgaaett taeggaeget	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag tgaaccccgc	2160
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 29 <211> 2196 <212> DNA <213> new AAV serotype, clone pi.3	
<400> 29 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg cgctgaaacc tggagccccg caacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacga ggcggacgcc gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caagagcgtc tgcaagaaga tacgtccttt gggggcaacc tcgggcgagc agtcttccag	360
gccaaaaaga gggtactcga gcctctgggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaagc ggccagtaga accggactcc agctcgggca tcggcaagtc aggccagcag	480
cccgcgaaaa agagactgaa ttttgggccg actggcgact cagagtcagt gcctgacccc	540
caacctctct cagaaccacc tgcaggtccc tctggtctgg	600
ggcggtggcg ctccaatggc agacaataac gaaggcgccg acggagtggg taatgtctca	660
ggaaattggc attgcgattc cacatggctg ggcgaccgag tcatcaccac cagcactcgg	720
acctgggccc tccccaccta caacaaccac ctctacaagc aaatctccaa cgggacctcg	780
ggaggcagca gcaacgacaa cacctacttt ggctacagca ccccctgggg gtattttgac	840
tttaacagat tccactgcca cttttcacca cgcgactggc agcgactcat caacaacaac	900
tggggattcc ggcccaagaa gctcaacttc aagctcttca acatccaggt caaggaggtc	960
acccagaatg aaggcaccaa gaccaccgcc aataacctca ccagcacggt gcaggtcttt	1020
acggactcgg agtaccagct cccgtacgtg ctcggctctg cccaccaggg ctgcctgcct	1080
ccgttcccgg cggacgtgtt catgattccg cagtacgggt acctgacgct gaacaacggg	1140
agccaggccg tggggcgatc ctccttctac tgcctggagt actttcctc gcagatgctg	1200
agaacgggca acaactttac cttcagctat accttcgagg acgtgccctt ccacagcagc	1260
tacgcgcaca gccagagcct ggaccggctg atgaacccgc tgattgacca gtacctgtac	1320
tacctgtctc ggactcagac caacgggacc aatgccacgc agactctgtt gtttgctcag	1380
gccgggcctc agaacatgtc ggctcaggcc aagaactggc tgcctggtcc ttgctatcgg	1440
cagcagcgcg tctctacggc agtgtcgcaa aacaacaaca gcaactttac ctggaccgqq	1500
gcgaccaagt accacctgaa cggccgagac tccctggtga accccggtgt cgccatggca	1560
acgcacaagg acgacgagga gcgcttcttc ccgagcagcg gggtcctgat gtttggcaag	1620
cagggcgctg gaaaggacaa tgtcgagtac accaacgtga tgctcaccag cgaggaggag	1680
atcaagacca ccaaccctgt ggccacggag cagtacggtg tggtggctga caatctgcag	1740
cagaccaact cggctcccat tgtgggggca gtcaacagcc agggggcctt acccggtatg	1800
gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatcctga tcaaaaacac gccggtacct gcggatcccc cggtgaactt tacggacgct	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
Page 26	_~ *

***************************************	2160
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag cgaaccccgc	
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 30 <211> 2196 <212> DNA <213> new AAV serotype, clone pi.2	
<400> 30	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg cgctgaaacc tggagccccg caacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacga ggcggacgcc gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caagagcgtc tgcaagaaga tacgtccttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaaaaaga gggtactcga gcctctgggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaagc ggccagtaga accggactcc agctcgggca tcggcaagtc aggccggcag	480
cccgcgaaaa agagactgaa ttttgggcag actggcgact cagagtcagt gcctgacccc	540
caacctctct cagaaccacc cgcaggtccc tctggtctgg	600
ggcggtggcg ctccaatggc agacaataac gaaggcgccg acggagtggg taatgcctca	660
ggaaattggc attgcgattc cacatggctg ggcgaccgag tcatcaccac cagcactcgg	720
acctgggccc tccccaccta caacaaccac ctctacaagc aaatctccaa cgggacctcg	780
ggaggcagca gcaacgacaa cacctacttt ggctacagca cccctgggg gtattttgac	840
tttaacagat tccactgcca cttttcacca cgtgactggc agcgactcat caacaacaac	900
tggggattcc ggcccaagag gctcaacttc aagctcttca acatccaggt caaggaggtc	960
acccagaatg aaggcaccaa gaccatcgcc aataacctca ccagcacggt gcaggtcttt	1020
acggactcga agtaccagct cccgtacgtg ctcggctctg cccaccaggg ctgcctgcct	1080
ccgttcccgg cggacgtgtt catgattccg cagtacgggt acctgacgct gaacaacggg	1140
agccaggccg tggggcgatc ctccttctac tgcctggagt actttccctc gcagatgctg	1200
agaacgggca acaactttac cttcagctac accttcgagg acgtgccctt ccacagcagc	1260
tacgcgcaca gccagagcct ggaccggctg atgaacccgc tgattgacca gtacctgtac	1320
tacctgtctc ggactcagac caacgggacc aatgccacgc agactctgtt gtttgctcag	1380
gccgggcctc agaacatgtc ggctcaggcc aagaactggc tgcctggtcc ttgctatcgg	1440
cagcagcgcg tctctacgac agtgtcgcaa aacaacaaca gcaactttac ctggaccggg	1500
gcgaccaagt accacctgaa cggccgagac tccctggtga accccggtgt cgccatggca	1560
acgcacaagg acgacgagga gcgcttcttc ccgagcagcg gggtcctgat gtttggcaag	1620
cagggcgctg gaaaggacaa tgtcgagtac accaacgtga tgctcaccag cgaggaggag	1680
atcaagacca ccaaccctgt ggccacggag cagtacggtg tggtggctga caatctgcag	1740
cagaccaact cggctcccat tgtgggggca gtcaacagcc aggggggcctt acccggtatg	1800
gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatectga teaaaaacae geeggtaeet geggateeee eggtgaaett taeggaeget	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag tgaaccccgc	2160
CCCattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 31	

<210> 31 <211> 2208 <212> DNA <213> new AAV serotype, clone rh.60

<400> 31	atggttatct	tccagattog	ctcgaggaca	acctctctga	gggcattcac	60
	acccgaaacc					120
	gtctggtgct					180
	ccgtcaacgc					240
	aagcgggtga					300
	tgcaagaaga					360
	gggttctcga					420
	gaccggtaga					480
	gccagcagcc					540
	ccgaccctca					600
	tggctgcagg					660
	gttcctcggg					720
atcaccacca	gcacccgaac	ctgggccctg	cccacccaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaacg	tctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgtcact	tctcaccacg	tgaccggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cggaaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccttcgagc	1620
ggagtcctga	tttttggaaa	aactggagca	gctaataaga	ctacactgga	aaatgtgtta	1680
atgacaaatg	aagaggaaat	tcgtcctacc	aacccggtag	ccaccgagga	atacgggact	1740
gttagcagca	acctgcaggc	ggctaacact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggtatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
-					cggctttgga	1920
-					cccggaggtg	1980
					ggtcagcgtg	2040
					gattcagtat	2100
acctccaatt	ttgacaaaca	gactggtgtg	gactttgccg	ttgacagcca	gggtgtttat	2160
tctgagcctc	gccccattgg	tactcgttac	ctcacccgta	atctgtaa		2208
<210> 32 <211> 221 <212> DNA <213> new		pe, clone r	h.48			
<400> 32	acoottatct	tccapatton	ctcgaggaca	acctctctoa	gggcattcgc	60
					gaagcaggac	120
					cggactcgac	180
3 55 555						740

aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240

[}- "	leagtagetda	-addcgggtga	"ďaľaťťďďjtác	ctgcggtata	accacgccga	cgccgagttt	300
	caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
	ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
	ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
	gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
	tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacaa	gggcgccgac	660
	ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
	atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
	atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
	tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
	ctcatcaaca	gcaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
	caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccttaccagc	1020
	acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
	cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140
	actctgaaca	atggcagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200
	ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260
	cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320
	gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380
	cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440
	ctgcctggac	cttgcttccg	gcaacaaaga	gtctccaaga	cgctggatca	aaacaacaac	1500
	agcaactttg	cttggactgg	tgccaccaaa	taccatctaa	atggaagaaa	ttcattggtt	1560
	aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccttcgagc	1620
	ggagtcctga	tttttggaaa	aactggagca	gctaataaga	ctacactgga	aaatgtgtta	1680
	atgacaaatg	aagaggaaat	tcgtcctacc	aacccggtag	ccaccgagga	atacgggact	1740
	gttagcagca	acctgcaggc	ggctaacact	gcagcccaga	cacaagttgt	caacaaccag	1800
	ggagccttac	ctggtatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
	gccaagattc	ctcacacgga	cggcaacttt	cacccgtctc	cgctgatggg	cggctttgga	1920
	ctgaagcatc	cgcctcctca	gatcctgatc	aaaaacactc	ctgttcctgc	taatcccccg	1980
	gaggtgttta	cgcctgccaa	gtttgcttct	ttcatcacac	agtacagcac	cggccaggtc	2040
	agcgtggaga	tcgagtggga	gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100
	cagtatacct	ccaattttga	caaacagact	ggtgtggact	ttgccgttga	cagccagggt	2160
	gtttattctg	agcctcgccc	cattggtact	cgttacctca	cccgtaatct	gtaa	2214
	248 22						
	<210> 33 <211> 2214	1					
	<212> DNA <213> new	AAV serotyp	e, clone r	1.62			
	<400> 33 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
		acctgaaacc	-		-		120
		gtctggtgct					180
		ccgtcaacgc		_			240
		aagcgggtga					300
		tgcaagaaga				_	360
		gggttctcga					420
		gaccggtaga					480
		gccagcagcc					540
				J 24	-5555	JJ - J	

							•
"gagtcagtcc"	ccgaccctca	accaatcgga	gagccaccag	caggcccctc	tggtctggga	600	
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacaa	gggcgccgac	660	
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720	
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780	
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840	
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900	
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960	
caggtcaagg	aggtcacaac	gggtgacggc	gtcacgacca	tcgccaataa	ccttaccagc	1020	
acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080	
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140	
actctgaaca	atgacagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200	
ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260	
cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320	
gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380	
cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440	
ctgcctggac	cttgcttccg	gcaacaaaga	gtctccaaga	cgctggatca	aaacaacaac	1500	
agcaactttg	cttggactgg	tgccaccaaa	taccatctaa	atggaagaaa	ttcattggtt	1560	
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccttcgagc	1620	
ggagtcctga	tttttggaaa	aactggagca	gctaataaga	ctacactgga	aaatgtgtta	1680	
atgacaaatg	aagaggaaat	tcgtcctacc	aacccggtag	ccaccgagga	atacgggact	1740	
gttagcagca a	acctgcaggc	ggctaacact	gcagcccaga	cacaagttgt	caacaaccag	1800	
ggagccttac	ctggtatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860	
gccaagattc (ctcacacgga	cggcaacttt	cacccgtctc	cgctgatggg	cggctttgga	1920	
ctgaagcatc	cgcctcctca	gatcctgatc	aaaaacactc	ctgttcctgc	taatcccccg	1980	
gaggtgttta	cgcctgccaa	gtttgcttct	ttcatcacac	agtacagcac	cggccaggtc	2040	
agcgtggaga 1	tcgagtggga	gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100	
cagtatacct	ccaattttga	caaacagact	ggtgtggact	ttgccgttga	cagccagggt	2160	
gtttattctg a	agcctcgccc	cattggtact	cgttacctca	cccgtaatct	gtaa	2214	
<210> 34		•					
<211> 2214 <212> DNA							
	AAV serotyp	e, clone rh	1.44				
<400> 34 atggctgctg a	acggttatct	tccagattgg	ctcgaggaca	acctctctoa	aaacattcac	60	
gagtggtggg a						120	
gacggccggg (-			180	
aagggggagc						240	
cagcggctca a						300	
caggagcgtc 1		-				360	
gccaagaagc g					_	420	
ggaaagaagg g						480	
ggcaagaaag g				_		540	
gagtcagtcc o						600	
tctggtacaa 1						660	
ggagtgggta a						720	
atcaccacca (780	
					=		

atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc 840

```
900
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      960
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     1020
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
                                                                     1260
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                     1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cqqccaggtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
cagtatacct ccaattttga cgaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
       35
2214
       DNA
       new AAV serotype, clone rh.65
<213>
<400>
      35
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
caggicaagg aggicacaac gaatgacggc gicacgacca tcgccaataa ccttaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
```

```
" actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
 CCttctcaaa tgctgagaac qqqcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
 CCCttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
 cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
                                                                     1500
 ctgcctagac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
 agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
 ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
 atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
 gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
 ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
 gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
 ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                     1980
 gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
 cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
 gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
        36
2214
        DNA
        new AAV serotype, clone rh.67
 <213>
 atggctgCtg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
 cagcagctca aagcgggtga caatccgtac ctgcggtata accatgccga cgccgagttt
                                                                      300
 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcctccag
                                                                      360
 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
 ggCaagaaag gcCagCagcc CgCtagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac
                                                                      660
 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                     1020
 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
 actitgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
 ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
 cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
 cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
```

```
ctgcctggac cttgcttccg gcaacaacaa gtctccaaga cgctggatca aaacaacaac
                                                                    1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                    1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                    1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                    1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                    1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                    1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                    1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                    2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                    2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                    2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct qtaa
                                                                    2214
<210>
<211>
      37
2214
       DNA
      new AAV serotype, clone rh.55
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtaCaa tggCtgCagg CggtggCgCa CCaatggCag acaataacga aggtgCCgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca cacggctggg cgacagagtc
                                                                     720
atcaccacca gcacccggac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atttccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc
                                                                     840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                     900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                    1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                    1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                    1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                    1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                    1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                    1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                    1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                    1440
ctgcctggac cttgcttccg gcaacgaaga gtctccaaga cgctggatca aaacaacaac
                                                                    1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                    1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
```

1740

1800

ˈgtˈtaˈgcˈaˈgcaˈ acctgcadjgc ˈˈgˈgctaaccact gcagcccaga cacaagttgt caacaaccag

ggagccttac ctggtatggt ctggcaqaac cgggacgtgt acctgcaggg tcccatctgg 1860 gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga 1920 ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg 1980 gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt 2160 2214 gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa <210> <211> 38 2217 DNA new AAV serotype, clone rh.47 <400× atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagcacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgctga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaaqcaa 780 atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacggttc aggtcttttc ggactcggaa taccagctgc cctacgtcct cggctccgca 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140 ctgactctga acaatggcag ccaatcggtg ggtcgttcct ctttctactg cctggaatat 1200 ttcccttctc aaatgctgag aacgggcaac aacttcacct tcagctacac cttcgaggac 1260 gttcccttcc acagcagcta cgcacacagc cagagcctgg accggctgat gaatcctctt 1320 atcgaccagt acctgtatta cctggccaga acacagagca acgcaggagg cacagctggc 1380 aatcgggaac tgcagtttta tcagggcggg cctaccacca tggccgaaca agccaaaaac 1440 tggctgcctg gaccttgctt ccggcaacaa agagtctcca agacgctgga tcaaaacaac 1500 aacagcaact ttgcttggac tggtgccacc aaataccatc taaatggaag aaattcattg 1560 gttaatcccg gtgtcgccat ggcaacccac aaggacqacg aggaacgctt cttcccttcg 1620 agcggagtcc tgatttttgg aaaaactgga gcagctaata agactacact ggaaaatgtg 1680 ttaatgacaa atgaagagga aattcgtcct accaacccgg tagccaccga ggaatacggg 1740 actgttagca gcaacctgca ggcggctaac actgcagccc agacacaagt tgtcaacaac 1800 cagggageet tacetggtat ggtetggeag aacegggaeg tgtacetgea gggteecate 1860 tgggccaaga ttcctcacac ggacggcaac tttcacccgt ctccgctgat gggcggcttt 1920 ggactgaagc atccgcctcc tcagatcctg atcaaaaaca ctcctgttcc tgctaatccc 1980 ccggaggtgt ttacgcctgc caagtttgct tctttcatca cacagtacag caccggccag 2040

gtdagcgtgg dgatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100
attcagtata cctccaattt tgacaaacag actggtgtgg actttgccgt tgacagccag 2160
ggtgtttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217

<210> 39
<211> 2214
<212> DNA
<213> new AAV serotype, clone rh.69

atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgcc ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa 780 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg 900 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg 1140 actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc 1200 ccttctcaaa tgctgagaac gggcaacaac ttcaccatca gctacacctt cgaggacgtt 1260 cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc 1320 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat 1380 caggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg 1440 ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc 1620 ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta 1680 atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact 1740 gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag 1800 ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatcctcatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagogttca accaggocaa gotgaattot ttoatcacgo agtacagoac oggacaagto 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gtttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214

<210> 40 <211> 2214

<213₺ rnew xXV-serotype,""t1one" rh.54</p>

-400- 40		,				
<400> 40 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagcccċg	aaacccaaag	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctctcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcga	900
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	cttcaacatc	960
caagtcaagg	aggtcacgac	gaatgacggc	gtcacgacca	tcgctaataa	ccttaccagc	1020
acggttcagg	tcttttcgga	ctcggagtac	cagctgccgt	acgtcctcgg	ctctgcccac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttcctcagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtggga	cgttcatcct	tctactgcct	ggaatacttc	1200
ccttctcagg	tgctgagaac	gggtaacaac	ttcaccttca	gttacacctt	cgaggacgtg	1260
cctttccaca	gcagctacgc	gcacagccag	agcctagacc	ggctgatgaa	tccctcatc	1320
gaccagtacc	tgtattacct	ggctagaaca	cagagtaacc	caggaggcac	atctggcaat	1380
cgggaactgc	agttttacca	gggcgggcct	tccaccatgg	ccgaacaagc	caagaactgg	1440
ttacctggac	cttgcttccg	gcaacaaaga	gtttccaaaa	cactggatca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggcagaaa	ctcattggtg	1560
aatcctggtg	tcgccatggc	aactcacaag	gacgacgagg	accgcttttt	cccatccagc	1620
ggagtcctga	tttttggaaa	aactggagca	accaacaaga	ctacattgga	aaacgtgtta	1680
atgacaaatg	aagaagaaat	tcgtcctact	aatcctgtgg	ccacagaaga	atacgggata	1740
gtcagcagca	atttacaagc	ggccaatact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggcatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaaaattc	ctcacacaga	cggcaacttt	cacccgtctc	cgctgatggg	cggctttgga	1920
ctgaagcatc	cgcctcctca	gatcctgatc	aaaaacactc	ctgttcctgc	taatcccccg	1980
gaggtgttta	cgcctgccaa	gtttgcttct	ttcatcacac	agtacagcac	cggccaggtc	2040
agcgtggaga	tcgagtggga	gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100
cagtatacct	ccaattttga	caaacagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttattctg	agcctcgccc	cattggtact	cgttacctca	cccgtaatct	gtaa	2214
	4 AAV serotyp	oe, clone rh	1.45			
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180

gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 Page 36

·	
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa	780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc	840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg	900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc	960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc	1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac	1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg	1140
actctcaaca acggtagtca ggccgtggga cgttcctcct tctactgcct ggagtacttc	1200
ccctctcaga tgctgagaac gggcaacaac ttttccttca gctacacttt cgaggacgtg	1260
cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc	1320
gaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggcacagc gggaacccag	1380
cagttgctgt tttctcaggc cgggcctagc aacatgtcga ctcaggccag aaactggctg	1440
cctggaccct gctacagaca gcagcgcgtc tccacgacac tgtcgcaaaa caacaacagc	1500
aactttgcct ggactggtgc caccaagtat catctgaacg gcagagactc tctggtgaat	1560
ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttcttccc atccagcggc	1620
atcctcatgt ttggcaagca gggagctgga aaagacaacg tggactatag caacgtgatg	1680
ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg	1740
gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag	1800
ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg	1860
gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga	1920
cttaaacatc cgcctcctca gatccttatc aaaaacactc ctgttcctgc ggatcctcca	1980
acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc	2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt	2100
cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt	2160
gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa	2214
<210> 42	
<210> 42 <211> 2217 <212> DNA	
<213> new AAV serotype, clone rh.59	
<400> 42 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
Caggagegte tgcaagaaga taegtetttt gggggcaace tegggegage agtettecag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca	540
Page 37	- · •

gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacga	gggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccctaccagc	1020
acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200
ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260
cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320
gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380
cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 43 <211> 2211 <212> DNA <213> new	-	oe, clone rh	. 43			
<400> 43	ANY SCIOUS	e, crone in				
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gcctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctcg	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccagtaga	gcagtcaccc	caagaaccag	actcctcctc	gggcatcggc	480
aagaaaggcc	aacagcccgc	cagaaaaaga	ctcaattttg	gccagactgg	cgactcagag	540
tcagttccag	accctcaacc	tctcggagaa	cctccagcag	cgccctctgg	tgtgggacct	600
aatacaatgg	ctgcaggcgg	tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	660
gtgggtagtt	cctcgggaaa	ttggcattgc	gattccacat	ggctgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	caagcaaatc	780
tccaacggga	catcgggagg	agccaccaac	_	acttcggcta	cagcaccccc	840

tgggggtatt	ttgactttaa	cagattccac	tgccactttt	caccacgtga	ctggcagcga	900
ctcatcaaca	acaactgggg	attccggccc	aagagactca	gcttcaagct	cttcaacatc	960
caggtcaagg	aggtcacgca	gaatgaaggc	accaagacca	tcgccaataa	cctcaccagc	1020
accatccagg	tgtttacgga	ctcggagtac	cagctgccgt	acgttctcgg	ctctgcccac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtgttcatga	ttccccagta	cggctaccta	1140
acactcaaca	acggtagtca	ggccgtggga	cgctcctcct	tctactgcct	ggaatacttt	1200
ccttcgcaga	tgctgagaac	cggcaacaac	ttccagttta	cttacacctt	cgaggacgtg	1260
cctttccaca	gcagctacgc	ccacagccag	agcttggacc	ggctgatgaa	tcctctgatt	1320
gaccagtacc	tgtactactt	gtctcggact	caaacaacag	gaggcacggc	aaatacgcag	1380
actctgggct	tcagccaagg	tgggcctaat	acaatggcca	atcaggcaaa	gaactggctg	1440
ccaggaccct	gttaccgcca	acaacgcgtc	tcaacgacaa	ccgggcaaaa	caacaatagc	1500
aactttgcct	ggactgctgg	gaccaaatac	catctgaatg	gaagaaattc	attggctaat	1560
cctggcatcg	ctatggcaac	acacaaagac	gacgaggagc	gtttttccc	agtaacggga	1620
tcctgttttt	ggcaacaaaa	tgctgccaga	gacaatgcgg	attacagcga	tgtcatgctc	1680
accagcgagg	aagaaatcaa	aaccactaac	cctgtggcta	cagaggaata	cggtatcgtg	1740
gcagataact	tgcagcagca	aaacacggct	cctcaaattg	gaactgtcaa	cagccagggg	1800
gccttacccg	gtatggtctg	gcagaaccgg	gacgtgtacc	tgcagggtcc	catctgggcc	1860
aagattcctc	acacggacgg	caacttccac	ccgtctccgc	tgatgggcgg	ctttggcctg	1920
aaacatcctc	cgcctcagat	cctgatcaag	aacacgcctg	tacctgcgga	tcctccgacc	1980
accttcaacc	agtcaaagct	gaactctttc	atcacgcaat	acagcaccgg	acaggtcagc	2040
gtggaaattg	aatgggagct	acagaaggaa	aacagcaagc	gctggaaccc	cgagatccag	2100
tacacctcca	actactacaa	atctacaagt	gtggactttg	ctgttaatac	agaaggcgtg	2160
tactctgaac	cccgccccat	tggcacccgt	tacctcaccc	gtaatctgta	a	2211
	_	oe, clone hu	1.3			
<400> 44 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcagagttt	300
caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgcgg	cctggtttga	ggaaacctgt	taagacggct	420
ccgggaaaaa	agaggccggt	agagcactct	cctgtggagc	cagactcctc	ctcgggaacc	480
ggaaaagcgg	gccagcagcc	tgcaagaaaa	agattaaatt	ttggtcagac	tggagacgca	540
gactccgtac	ctgaccccca	gcctctcgga	cagccaccag	cagccccctc	tggtctggga	600
tctactacaa	tggctacagg	cagtggcgca	ccaatggcag	acaataacga	gggtgccgat	660
ggagtgggta	attcctcagg	aaattggcat	tgcgattccc	aatggctgga	cgacagagtc	720

atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa

atctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag cacccctgg

gggtattttg acttcaacag attccactgc cacttttcac cacgtgactg gcaaagactc

atcaacagca actggggatt ccggcccaaa agactcaact tcaagctctt taatattcaa

gtcaaagagg tcacgcagaa tgacggtacg acgacgattg ccaataacct taccagcacg

gttcaggtgt ttactgactc ggagtaccag ctcccgtacg tcccgggctc ggcgcatcaa

ggatgcctcc cgccgtttcc agcggacgtc ttcatggtcc cacagtatgg atacctcacc

Page 39

780

840

900

960

1020

1080

1140

ctgaacaacg ggagtcaggc ggtaggacgc tcttcctttt actgcctgga gtactttcct 1200 1260 tctcagatgc tgcgtactgg aaacaacttt cagttcagct acacttttga agacgtgcct 1320 ttccacagca gctacgctca ctgccagagt ctggatcggc tgatgaatcc tctgatcgac cagtacctgt attatctgaa caagacacaa acaaatagtg gaactcttca gcagtctcgg 1380 ctactgttta gccaagctgg accaaccaac atgtctcttc aagctaaaaa ctggctgcct 1440 ggaccttgct acagacagca gcgtctgtça aaacaggcaa acgacaataa caactgcaac 1500 tttccctgga ctqcaqctac aaaqtatcat ctaaatqqcc gggactcqtt qqttaatcca 1560 1620 ggaccagcta tggccagtca caaggatgac gaagaaaagt ttttccccat gcatggaacc ctgatatttg gtaaacaagg aacaaatgcc aacgacgcgg atttggaaaa tgtcatgatt 1680 acagatgaag aagaaatcag gcccaccaat cccgtggcta cggagcagta cgggactgtg 1740 tcaaataatt tgcaaaactc aaacactggt ccaactacag gaactgtcaa tcaccaagga 1800 gcgttacctg gtatggtgtg gcaggatcga gacgtgtacc tgcagggacc catttgggcc 1860 aagattcctc acaccgatgg acactttcat ccttctccac tgatgggagg ttttggactc 1920 aaacacccgc ctcctcagat catgatcaaa agcactcccg ttccagccaa tcctcccaca 1980 aacttcagtt ctgccaagtt tgcttcttcc atcacacagt attccacggg acaggtcagc 2040 gtggagatcg agtgggagct gcagaaggag aacagcaaac gctggaatcc cgaaattcag 2100 tacacttcca actacaacaa gtctgttaat gtggacttta ctgtggacac taatggtgtg 2160 tattcagage ctcgccccat tggcaccaga tacctgacte gtaatctgta a 2211

<210> 45 <211> 2208

<212> DNA <213> new AAV serotype, clone hu.5

atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccqqa 480 aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 CagatgCtgC gtaCtggaaa CaaCtttCag ttCagCtaCa Cttttqaaqa CqtgCCtttC 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440

ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcgcaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 1680 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tggaeteaaa 1920 cacccgcctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 2208 <211> DNA <212> new AAV serotype, clone hu.1 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 teegtaeetg acceeragee teteggaeag ceaceageag ceeetetgg tetgggatet 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggqqg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatgg cggtacgacg acqattgcca ataaccttac caqcacqqtt 1020 caggigita cigacicgga giaccagcic ccgiacgic igggcicggc gcaicaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgeteacag ecagagtetg gateggetga tgaateetet gategaecag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 Ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg gcaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 CCagCtatgg CCagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740

aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacCtgc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga cgggaggttt tggactcaaa 1920 cacccgctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 47 2208 DNA <213> new AAV serotype, clone hu.4 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc Cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcgtc 900 aacaacaacc ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta Ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcacctq 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tggaeteaaa 1920 CACCCGCCTC CTCAGATCAT GATCAAAAAC ACTCCCGTTC CAGCCAATCC TCCCACAAAC 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040

2100

gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 48 2209 DNA new AAV serotype, clone hu.2 <213> atggctgccg atggttatcc tccagattgg ctcgaggaca ctctctctga agggataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcggcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatcg ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tggactcaaa 1920 caccegette cteagateat gateaaaaac acteeegtte cageeaatee teecacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaat 2209

42124 DNA" " <213> new AAV serotype, clone hu.25 <400> 49 60 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 ggcagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 300 cggcagctca acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 360 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg 420 ggaaaaaaga gaccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 600 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accacaagca ctcgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc aaacgacaac cactattttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct cccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcaget acgeteacag ceagagtetg gateggetga tgaateetet gategaecag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcqqcta 1380 ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagat gtgtaccttc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tggactcaaa 1920 caccegete etcagattat gateaaaaac actecegtte cagecaatee tectacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacaataa tggcgtgtac 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 50 2208 DNA new AAV serotype, clone hu.15 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactctac 180

aagggagagacgc gcg	gccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctc	aagtaca accacgccga cgcggagttt 300
caggagcgcc ttaaagaaga tacgtctttt gggg	ggcaacc tcggacgagc agtcttccag 360
gccaaaaaga gggttcttga acctctgggc ttg	gttgggg agcctgttaa aacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gtg	gagccag actcctcctc gggaaccgga 480
aaagcgggca accagcctgc aagaaaaaga ttg	aattttg gtcagactgg agacgcagac 540
tccgtacctg accccagcc tctcggacag cca	ccagcag cccctctgg tctgggatct 600
actacaatgg ctacaggcag tggcgcacca gtg	gcagaca ataacgaggg tgccgatgga 660
gtgggtaatt cctcaggaaa ttggcattgc gat	tcccaat ggctgggcga cagagtcatc 720
accaccagca cccgaacctg ggctctgccc acc	tacaata accacctcta caagcaaatc 780
tccagccaat caggagcctc aaacgacaac cac	tactttg gctacagcac cccctggggg 840
tattttgact tcaacagatt ccactgccac ttt	tcaccac gtgaccggca aagactcatc 900
aacaacaact ggggattccg accaaaaaga ctc	aacttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acg	attgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcggg gtaccagctc ccg	tacgtcc tcggcttggc gcatcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atg	gtgccac agtatggata cctcaccctg 1140
aacaacggga gtcaggcggt aggacgctct tcc	ttttact gcctggagta ctttccttct 1200
cagatgctgc gtactggaaa caactttcag ttca	agctaca cctttgaaga cgttcctttc 1260
cacagcagct acgctcacag ccagagtctg gate	cggctga tgaatcctct gatcgaccag 1320
tacctgtatt atctgaacaa gacacaatca aata	agtggaa ctcttcagca gtctcggcta 1380
ctgtttagcc aagctggacc caccagcatg tctd	cttcaag ctaaaaactg gctgcctgga 1440
ccttgctaca gacagcagcg tctgtcaaag cag	gcaaacg acaacaacaa cagcaacttt 1500
ccctggactg cggctacaaa gtatcatcta aatq	ggccggg actcgttggt taatccagga 1560
ccagctatgg ccagccacaa agacgatgaa gaaa	aagtttt tccccatgca tggaaccctg 1620
atatttggta aacaaggaac aaatgctaac gac	gcggatt tggacaatgt catgattaca 1680
gatgaagaag aaatccgcac caccaatccc gtg	gctacgg agcagtacgg atatgtgtca 1740
aataatttgc aaaactcaaa tactggtcca acta	actggaa ctgtcaatca ccaaggagcg 1800
ttacctggta tggtgtggca ggatcgagac gtg	tacctgc agggacccat ttgggccaag 1860
attcctcaca ccgatggaca ctttcatcct tctc	ccactta tgggaggttt tggactcaaa 1920
cacccacctc ctcagatcat gattaaaaac actc	cccgttc cagccaatcc tcccacaaac 1980
ttcagttctg ccaagtttgc ttctttcatc acad	cagtatt ccacgggaca agtcagcgtg 2040
gagatcgagt gggagctgca gaaggaggac agca	aaacgct ggaaccccga gatccagtac 2100
acttccaact ataacaaacc tgttaatgtg gact	tttactg tggacactaa tggtgtgtat 2160
tcagagcctc gccccattgg caccagatac ctga	actcgta atctgtaa 2208
<210> 51 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.16	
<400> 51	
atggctgccg atggttatct tccagattgg ctcg	gaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccg	ccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagt	tacctcg gacccttcaa cggactctac 180
aagggagagc cggtcaacga ggcagacgcc gcgg	gccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctca	aagtaca accacgccgg cgcggagttt 300
caggagcgcc ttaaagaaga tacgtctttt gggg	ggcaacc tcggacgagc agtcttccag 360
gccaaaaaga gggttcttga acctctgggc ttgg	gttgagg agcctgttaa aacggctccg 420

ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480

540

aaagcggggca accagccctgc aagaaaaga ttgaattttg gtcagactgg agacgcagac

	-mga teganetery grangately ageographic sto	
tccgtacctg acccccagcc tctcgg	acag ccaccagcag cccctctgg tctgggatct 600	
actacaatgg ctacaggcag tggcgc	acca gtggcagaca ataacgaggg tgccgatgga 660	
gtgggtaatt cctcaggaaa ttggca	ttgc gattcccaat ggctgggcga cagagtcatc 720	
accaccagca cccgaacctg ggctct	gccc acctacaaca accacctcta caagcaaatc 780	
tccagccaat caggagcctc aaacga	caac cactactttg gctacagcac cccctggggg 840	
tattttgact tcaacagatt ccactg	ccac ttttcaccac gtgactggca aagactcatc 900	
aacaacaact ggggattccg accaaa	gaga ctcaacttca agctctttaa cattcaagtc 960	
aaagaggtca cgcagaatga cggtac	gacg acgattgcca ataaccttac cagcacggtt 1020	
caggtgttta ctgactcgga gtacca	gctc ccgtacgtcc tcggctcggc gcatcaagga 1080	
tgcctcccgc cgttcccagc agacgt	cttc atggtgccac agtatggata cctcaccctg 1140	
aacaacggga gtcaggcggt aggacg	ctct tccttttact gcctggagta ctttccttct 1200	
cagatgctgc gtactggaaa caactt	tcag ttcagctaca cctttgaaga cgttcctttc 1260	
cacagcagct acgctcacag ccagag	tctg gatcggctga tgaatcctct gatcgaccag 1320	
tacctgtatt atctgaacaa gacaca	atca aatagtggaa cccttcagca gtctcggcta 1380	
ctgtttagcc aagctggacc caccag	catg tctcttcaag ctaaaaactg gctgcctgga 1440	
ccttgctaca gacagcagcg tctgtc	aaag caggcaaacg acaacaacaa cagcaacttt 1500	
ccctggactg cggctacaaa gtatca	tcta aatggccggg actcgttggt taatccagga 1560	
ccagctatgg ccagccacaa agacga	tgaa gaaaagtttt tccccatgca tggaaccctg 1620	
atatttggta aacaaggaac aaatgc	taac gacgcggatt tggacaatgt catgattaca 1680	
gatgaagaag aaatccgcac caccaa	tccc gtggctacgg agcagtacgg atatgtgtca 1740	
aataatttgc aagactcaaa tactgg	tcca actactggaa ctgtcaatca ccaaggagcg 1800	
ttacctggta tggtgtggca ggatcg	agac gtgtacctgc agggacccat ttgggccaag 1860	
attcctcaca ccgatggaca ctttca	tcct tctccactta tgggaggttt tggactcaaa 1920	
cacccacctc ctcagatcat gattaa	aaac actcccgttc cagccaatcc tcccacaaac 1980	
ttcagttctg ccaagtttgc ttcttt	catc acacagtatt ccacgggaca agtcagcgta 2040	
	gaac agcaaacgct ggaaccccga gatccagtac 2100	
acttccaact ataacaaatc tgttaa	tgtg gactttactg tggacactaa tggtgtgtat 2160	
tcagagcctc gccccattgg caccag	atac ctgactcgta atctgtaa 2208	
<210> 52 <211> 2208		
<pre><212> DNA <213> new AAV serotype, clos</pre>	ne hu.18	
<400> 52	•	
atggctgccg atggttatct tccaga	ttgg ctcgaggaca ctctctctga aggaataaga 60	
cagtggtgga agctcaaacc tggccca	acca ccaccaaagc ccgcagagcg gcataaggac 120	
gacagcaggg gtcttgtgct tcctgg	gtac aagtacctcg gacccttcaa cggactcgac 180	
aagggagagc cggtcaacga ggcaga	gcc gcggccctcg agcacgacaa ggcctacgac 240	
cggcagctcg aaagcggaga caaccc	gtac ctcaagtaca accacgccga cgcggagttt 300	
caggagcgtc ttaaagaaga tacgtc	tttt gggggcaacc tcggacgagc agtcttccag 360	
gcgaaaaaga gggttcttga acctct	gggc ctggttgagg agcctgttaa aacggctccg 420	
ggaaaaaaga ggccggtaga gcactc	cct gtggagccag actcctcctc gggaaccgga 480	
aaagcgggcc agcagcctgc gagaaa	aga ttgaattttg gtcagactgg agacgcagac 540	
tccgtacctg acccccagcc tctcgga	acag ccaccagcag ccccctctgg tctgggatct 600	
actacaatgg cttcaggcag tggcgca	acca gtggcagaca ataacgaggg tgccgatgga 660	
gtgggtaatt cctcaggaaa ttggca	tgc gattcccaat ggctgggcga cagagtcatc 720	
accaccagca cccgaacctg ggccctg	OCCC acctacaaca accacctcta caagcaaatc 780	
	•	

```
tccdgccadr cdgagcctc aaacgacaac cactactttg gctacagcac cccctggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacagct ggggattccg acccaaaaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttt atggtcccac agtatggata cctcacctg
                                                                   1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                   1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcccttc
                                                                   1260
cacagcaget acgeteacag ecagagtetg gateggetge tgaateetet gategaceag
                                                                   1320
tacctatatt atctgaacaa gacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                   1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga
                                                                   1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                   1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga
                                                                   1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tqqaaccctq
                                                                   1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                   1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                   1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                   1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                   1860
attcctcaca cggacgggca ctttcatcct tctccactaa tgggaggttt tgggctcaaa
                                                                   1920
cacccgctt ctcagatcat gatcaaaaac actcccgttc cagccaatcc tcctacaaac
                                                                   1980
ttcagttctt ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtat
                                                                   2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ccgactcgta atctgtaa
                                                                   2208
<210>
       53
2208
       DNA
       new AAV serotype, clone hu.8
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaacaaga
                                                                    60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                    540
tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                    600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                    660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                   720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                    780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
```

tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc

aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc

aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt

caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga

840

900

960

1020

1080

1140

"tgcdtbccdd" cgrrrccago" ggacgrcttc atggtcccac agtatggata cctcaccctg

```
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                     1200
cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                     1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
Ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                     1500
ccctggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                     1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                    1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                    1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tgggctcaaa
                                                                    1920
caccegette etcagateat gateaaaaac acteeegtte cageeaatee teccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                     2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                     2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                     2208
<210>
       54
2208
       DNA
       new AAV serotype, clone rh.56
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                       60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                      300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                      360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                      540
tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                      600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt CttCaggaaa ttggCattgC gattCCCaat ggCtgggCga CagagtCatC
                                                                     720
accaccagea eccgaacetg ggeecageee acctacaaca accaceteta caageaaate
                                                                     780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac caqcacqqtt
                                                                     1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                     1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatqqata cctcaccctq
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggag ctcttcagca gtctcggcta
                                                                    1380
```

```
ctgtttagtt aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                    1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                    1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccgaggagcg
                                                                    1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tgggeteaaa
                                                                    1920
caccegete etcagateat gateaaaaac actecegtte cagecaatee teccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
       55
2208
       DNA
       new AAV serotype, clone hu.7
<400×
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                      120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggaqttt
                                                                      300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                      360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg gacctgttaa gacggctccg
                                                                      420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                      540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgette gtactggaaa caacttteag tteagetaea eetttgaaga egtteette
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtatcaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                    1680
```

gátgaagaag aaatccgcaatccc gtggctacgg agcagtacgg atatgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca eegatggaca ettteateet tetecaetga tgggaggttt tgggeteaaa 1920 caccogcote etcagateat gateaaaaac actecegtte cagecaatee teccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 2208 DNA new AAV serotype, clone hu.10 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc tcgcagagcg qcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aaaggagagc Cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag cccccacaag tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea coogaacctg ggccotgccc acctacaaca accacctota caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc acggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caaccttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcaget aegeteacag ecagagtttg gaceggetga tgaateetet gategaecag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgaeggaca ettteaceet tetecactga tgggaggttt tggaeteaaa 1920 caccegette etcaaateat gateaaaaac acteeegtte cageeaatee teccacaaac 1980

2040

tacagitictg ccaagititgs tictiticate acacagitati ccaegggeea ggicagegtg gagattgagt gggagctgcg gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 2208 <211> <213> new AAV serotype, clone hu.11 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa qacggctccq 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag cccccacaag tttgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcgtcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attcctcaca ccgacggaca ctttcaccct tctccactga tgggaggttt tggactcaaa 1920 Caccegette etcaaateat gateaaaaac acteeegtte cageeaatee teceacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacqqqcca ggtcagcgtq 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

<"211>"""2"08" <212> DNA <213> new AAV serotype, clone hu.9 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg qcatcaggac 120 aacagcaggg gtcttgtgct tcctgggtac aagtacctcg gaccctccaa cggactcgac 180 aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag cccccacaaq tttqqqatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctgcagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca Cgcagaatga Cggtacgacg acgattgcca ataaccttac cagcacgqtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcacctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatqca tqqaaccctq 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacqtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attcctcaca ccgacggaca ctttcaccct tctccactga tgggaggttt tggactcaaa 1920 cacccgcctc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggcca ggtcagcgtg 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctt gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 59 2208 <211> DNA <213> new AAV serotype, clone hu.12 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120

gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180

aaaggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc	atcagcctgc	gagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	ccccacaag	tttgggatct	600
actacaatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt	cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	caagcaaatc	780
tccagccaat	caggagcctc	gaacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact	tcaacagatt	ccactgtcac	ttctccccac	gtgattggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgtttccagc	ggacgtcttc	atggtcccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcggt	aggacgccct	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtactggaaa	caactttacc	ttcagctaca	cctttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtttg	gaccggctga	tgaatcctct	gatcgaccag	1320
tatctatatt	atctgaacag	gacacaatca	aatagtggaa	ctcttcagca	gtctaggcta	1380
ctgtttagcc	aagctggacc	caccagcatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca	gacagcagcg	tctttcaaag	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg	cggctacaaa	gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg	ccagccacaa	agacgatgaa	gaaaagtttt	tccccatgca	tgggaccctg	1620
atatttggta	aacaaggaac	aaatgctaac	gacgcggatt	tggagcatgt	tatgattaca	1680
gatgaagaag	aaatcaggac	caccaatcct	gtggctacag	agcagtacgg	aaacgtgtca	1740
aataatttgc	aaaactcaaa	tactggtcca	actacagaaa	atgtcaatca	ccagggagcg	1800
ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca	ccgacggaca	ctttcaccct	tctccactga	tgggaggttt	tggactcaaa	1920
cacccgcctc	ctcaaatcat	gatcaaaaac	actcccgttc	cagccaatcc	tcccacaaac	1980
ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacgggcca	ggtcagcgtg	2040
gagattgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaaccccga	gatccagtat	2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 60 <211> 2203 <212> DNA <213> new	8 AAV serotyp	oe, clone hu	ı.23			
<400> 60	atggttatct	treanatton	ctcaaaaaa	ctctctctc	200224222	20
_	agctcaaacc			•		120
	gtcttgtgct			_		120
						180
	cggtcaacga					240
	acagcggaga					300
	ttaaagaaga	•				360
yccaaaaaga	ggattcttga	accictgggc	ctggttgagg	aacctgttaa	gacggctccg	420

ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480

aaagcgggcc agcagcctgc aagaaagaġa ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgcacctg ggccctgccc acctgcaaca accatctgta caagcaaatc	780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ttttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
acctacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc ggggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccetecte cacaaattet catcaagaac acceeggtac etgegaatee ttegaceaet	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 61 <211> 2208 <212> DNA	
<213> new AAV serotype, clone hu.26	
<400> 61 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac	540
tragtactty accercages teteggacag ceaccageag ecceetetgg tetgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660

720

780

gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc

accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc

tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgette gtaceggaaa caaetttace tteagetaca eetttgaaga egtteette	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc agggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<pre><cli><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19</cli></pre>	2208
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62	
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	60 120
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	60 120 180
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	60 120 180 240
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	60 120 180 240 300
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag	60 120 180 240 300 360
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg</pre>	60 120 180 240 300 360 420
<pre><210> 62 <211> 2208 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga</pre>	60 120 180 240 300 360 420 480
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac</pre>	60 120 180 240 300 360 420 480 540
<pre><210> 62 <211> 2208 <211> 2208 <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact</pre>	60 120 180 240 300 360 420 480 540 600
<pre><210> 62 <211> 2208 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagtt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga</pre>	60 120 180 240 300 360 420 480 540 600 660
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagtt caggagctc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggc agcagcagc accagcaga ctcagaac tcagtacctg accagaccgaa ccccctcct gggaaccgga acacctgtaa gacggaccag acacctgtaa gacggaacc tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctcttgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagac ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggattgc gattccacat ggatgggcga cagagtcatc	60 120 180 240 300 360 420 480 540 600 660 720
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgaga agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctccgggaaa ttggtattgc gattccacat ggatggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accactctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac ccccttggggg</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacga gtgggtaatt cctcgggaaa ttggattgc gattccacat ggatgggca cagagtcatc accaccagca cccgcacctg ggccctgcc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg tattttgact tcaacagatt ccactgccac ttctccccc gtgactggc aagactcatc</pre>	60 120 180 240 300 360 420 480 540 660 720 780 840 900
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agaccgga acagcaggc ctcaggacg ctccagacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgcc acctacaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg tattttgact tcaacagatt ccactgccac ttctccccac gtgactgca aagactcatc aacaacaacact ggggattccg gcccaagaga ctcacttca agcttttaa cattcaagtc	60 120 180 240 300 360 420 480 540 600 720 780 840 900
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacga gtgggtaatt cctcgggaaa ttggattgc gattccacat ggatgggca cagagtcatc accaccagca cccgcacctg ggccctgcc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg tattttgact tcaacagatt ccactgccac ttctccccc gtgactggc aagactcatc</pre>	60 120 180 240 300 360 420 480 540 660 720 780 840 900

tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctcg tgggcggatt cggacttaaa	1920
caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceaet	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 63 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.20 <400> 63	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aggtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgtcga cgcggagttt	300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa ggcggctccg	420
ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc	780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
cattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	
tacctgtatt acttgagcag aacaacact ccaagcggaa ccaccacgat gtccaggctt	1320

cagttttctc aggccggagc a	agtgacatt	cgggaccagt	ctagaaactg	gcttcctgga	1440
ccctgttacc gccagcagcg a	igtatcaaag	acagctgcgg	acaacaacaa	cagtgattac	1500
tcgtggactg gagctaccaa g	jtaccacctc	aatggaagag	actctctggt	gaatccgggc	1560
ccagctatgg ccagccacaa g	gacgatgaa	gaaaaatatt	ttcctcagag	cggggttctc	1620
atctttggaa aacaagactc g	ggaaaaact	aatgtggaca	ttgaaaaggt	tatgattaca	1680
gacgaagagg aaatcaggac c	accaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc agagcggcaa c	acacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca tggtctggca g	gacagagac	gtgtacctgc	aggggcccat	ctgggcaaag	1860
attccacaca cggacggaca t	tttcacccc	tctccccca	tgggcggatt	cggacttaaa	1920
caccetecte cacaaattet e	atcaagaac	accccggtac	ctgcgaatcc	ttcgaccact	1980
ttcagtgcgg caaagtttgc t	tccttcatc	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt gggagctgca g	jaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact acaacaaatc t	gttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc gccccattgg c	gccagatac	ctgactcgta	atctgtaa		2208
<210> 64 <211> 2208 <212> DNA <213> new AAV serotype	e, clone hu	1.27			
<400> 64 atggctgccg atggttatct t	ccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga agctcaaacc t	ggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg gtcttgtgct t	cctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc cggtcaacga g	gcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg acagcggaga c	aacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc ttaaagaaga t	acgtcttt	gggggcaacc	tcggacgagc	agtcttccag	360
gccaaaaaga ggattcttga a	ıcctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga ggccggtaga g	cactctcct	gcggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc agcagcctgc a	agaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg acccccagcc t	ctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg cttcaggcag t	ggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt cctcgggaaa t	tggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca cccgcacctg g	gccctgccc	acctacaaca	accatctgta	caagcaaatc	780
tccagccagt ctggagccag c	aacgacaac	cactactttg	gctacagcac	cccctggggg	840
tatttcgact tcaacagatt c	cactgccac	ttctccccac	gtgactggca	aagactcatc	900
aacaacaact ggggattccg g	cccaagaga	ctcagcttca	agctctttaa	cattcaagtc	960
aaagaggtca cgcagaatga c					1020
caggtgttta ctgactcggg g					1080
tgccttccgc cgttcccagc a	igacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggca gtcaggcggt a	iggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgcttc gtaccggaaa c		_		_	1260
catagcagct acgctcacgg c					1320
tacctgtatt acttgagcag a					1380
cagttttctc aggccggagc a		_			1440
ccctgttacc gccagcagcg a					1500
tcgtggactg gagctaccaa g					1560
ccagctatgg ccagccacaa g					1620
gtctttggaa aacaagactc g	ggaaaaact		ttgaaaaggt	tatgattaca	1680

1740

gacgaagagg aaatcaggac caccaatccc gcggctacgg agcagtatgg ttctgtatct

accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact 1980 ttcagtgcgg caaagtttgt ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagCtgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 65 2208 DNA new AAV serotype, clone hu.21 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ccctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga taacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagagga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tragtacity accordage teteggacay craccageay eccepting tetgggaact 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgqa 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 ত aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagaq cggggttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceaet 1980 Page 58

ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 2100 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 66 2208 DNA <213> new AAV serotype, clone hu.24 <400> 66 atggctgccg atggttatct tccagattgg ctcgaggaca ccctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga taacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagagga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg accccggcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagea cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cgqqqttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcaq atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc agggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceaet 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

67 2208 DNA new AAV serotype, clone hu.22 <213> <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaaggaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccqqa 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tragtarrig accertager tetergarrig craceagering eccepting tetinggarright 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcgg cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac caqcacqqtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagacgette gtaceggaaa caactttace tteagetaca cetttgaaga egtteettte 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcqtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctggqcaaaq 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtac etgegaatee ttegaceact 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 68 2208 DNA new AAV serotype, clone hu.28 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga aactcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120

"gacagcaggg gt	tcttgtgct	tcctgggtạc	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc co	ggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg ad	cagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgcc ti	taaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcaaaaaaga gg	ggttctgga	acctctgagc	ctggttgagg	agcctgttaa	gacggctccg	420
ggaaaaaaga gg	gccggtaga	gcactctccc	gcagagccag	attcctcctc	cggaactgga	480
aagtcgggca ad	ccagcctgc	aagaaagaga	ttgaatttcg	gtcagactgg	agactcagac	540
tccgtacctg ac	ccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg c	tacaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt co	ctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca co	ccgaacctg	ggccctgccc	acctacaaca	accatctgta	caagcaaata	780
tccagccagt ct	tggagccag	caacgacaat	cactactttg	gctacagcac	cccctggggg	840
tattttgact to	caacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact g	gggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca co	gcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta ci	tgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc cg	gttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga g1	tcaggcagt	aggacgctct	tcattttact	gcctagagta	ctttccttct	1200
cagatgctgc g1	taccggaaa	caactttacc	ttcagctaca	cctttgagga	cgttcctttc	1260
cacagcagct ad	cgctcacag	ccagagtttg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt ac	cttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtccaggctt	1380
cagttttctc ag	ggccggagc	gagtgacatt	caggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc gt	tcagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg ga	agctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg co	cagccacaa	agacgatgaa	gaaaagtttt	ttcctcagag	cggggttctt	1620
atctttggga ag	gcaaggctc	agagaaaaca	aatgtggata	ttgaaaaggt	catgattaca	1680
gacgaagagg aa	aatcaggac	caccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc ag	gagcggcaa	cacacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca to	ggtcgggca	agacagagac	gtgtacctgc	aggggcctac	ttgggcaaag	1860
attccacaca co	ggacggaca	ttttcacccc	tctccctca	tgggcggatt	tggacttaaa	1920
caccctcctc ca	acagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg ca	aaagtttgc	ttccttcatt	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt gg	ggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	gatccagtac	2100
acttccaact ac	caacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc go	cccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 69 <211> 2208 <212> DNA <213> new AA	∜V serotyp	e, clone hu	ı.29			
<400> 69 atggctgccg at	tggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga ag						120
gacagcaggg gt						180
aagggagagc cg						240
cggcagctcg ac	tagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcagagttt	300
caggagcgcc tt	taaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360

420

gcaaaaaaga gggttctgga acctctgggc ctggttgagg agcctgttaa gacggctccg

480

540 600

ggaaaaaaga ggccggtaga gcactctcct gcagagccag attcctcctc cggaactgga

aagtcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agactcagac

tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact

aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata	780
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc	900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagggta ctttccttct	1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc	1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt	1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc	1560
ccggccatgg ccagccacaa agacgatgaa gaaaagtttt ttcctcagag cggggttctt	1620
atctttggga agcaaggccc agagaaaaca aatgtggata ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca agacagagac gtgtacctgc aggggcctat ttgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc	1980
ttcagtgcgg caaagtttgc ttccttcatt.acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac	2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 70 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.30 <400> 70	
<400> 70 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgcc ttaaagagga tacgtctttt gggggcaacc tcggacgagc agtcttccag	360
gcaaaaaaga gggttctgga acctctgggc ctggttgagg agcctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gcagagccag attcctcctc cggaactgga	480
aagtcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agactcagac	540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
Page 62	

```
780
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata
                                                                    840
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                   1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagagta ctttccttct
                                                                   1200
cagatgctgc gtaccggaaa cagctttacc ttcagctaca cctttgagga cgttcctttc
                                                                   1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                   1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                   1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                   1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                   1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                   1560
ccggccatgg ccagccacaa agacgatgaa gaaaagttct ttcctcagag cggggttctt
                                                                   1620
atctttggga agcaaggctc agagaaaaca aatgtggata ttgaaaaggt catgattaca
                                                                   1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatqq ttctqtatct
                                                                   1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                   1800
cttccaggca tggtctggca agacagagac gtgtacctgc aggggcctat ttgggcaaag
                                                                   1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa
                                                                   1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc
                                                                   1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccaqtac
                                                                   2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                   2208
<210>
      71
2208
<213>
      new AAV serotype, clone hu.13
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                     60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcgqaqttt
                                                                    300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac
                                                                    540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                   600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                   720
accaccagca cccgaacttg ggccctgccc acctacaaca accatctcta caagcaaatc
                                                                   780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                   900
aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgaeg acgattgcca ataaccttac cagcacggtt
```

1020

```
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                 1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc
                                                                 1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                 1320
                                                                 1380
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                 1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                 1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                 1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                 1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                 1740
accaacctgc agggcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                 1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag
                                                                 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa
                                                                 1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc
                                                                 1980
ttcagtgcgg caaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                 2100
acttccaact acaacaaatc tgttaatgtg gactttactg ttgacactaa tggcgtgtat
                                                                 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                 2208
<210>
      72
2208
      DNA
      new AAV serotype, clone hu.34
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                   60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac
                                                                  120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                  180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac
                                                                  240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                  300
caggagcgcc ttaaagaaga tacgtccttt gggggcaacc tcggacgagc agtcttccag
                                                                  360
gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                  420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                  480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                  540
tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                  600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                  660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                  720
accaccagea eccgaacetg ggeeetgeee acctacaaca accaceteta caaacaaatt
                                                                  780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg
                                                                  840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                  900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                  960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                 1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                 1140
aacaacgaga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc
                                                                 1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag
                                                                 1320
```

```
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                    1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                    1500
                                                                    1560
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                    1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                    1680
                                                                    1740
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                    1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag
                                                                    1860
                                                                    1920
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa
                                                                    1980
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc
                                                                    2040
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg
                                                                    2100
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
                                                                    2208
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
```

<210> 73 <211> 2208

<213> new AAV serotype, clone hu.35

atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 300 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagegee ttaaagaaga taegtetttt gggggeaace teggaegage agtetteeag 360 420 gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tragtactty accercages teteggaray craccageay ecceptotyg tetgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtaccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620

```
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt Catgattaca
                                                                  1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                  1740
accaacetee agagaggeaa caqacaagea getacegeag atgteaacae acaaggegtt
                                                                  1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag
                                                                  1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa
                                                                  1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc
                                                                  1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg
                                                                  2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac
                                                                  2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                  2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                  2208
      74
2208
      DNA
<213>
      new AAV serotype, clone hu.36
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                    60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac
                                                                   120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                   180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac
                                                                   240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                   300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                   360
gcgaaaaaga gggtactcga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                   420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccqga
                                                                   480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                   540
tcagtacctg acccccagcc tctcggacag ccaccagcag cccctctgg tctgggaact
                                                                   600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                   660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                   720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt
                                                                   780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg
                                                                   840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                   900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                   960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                  1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctq
                                                                  1140
aacaacggga gtcaggcagc aggacgctct tcattttact gcctggagta ctttccttct
                                                                  1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc
                                                                  1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag
                                                                  1320
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt
                                                                  1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                  1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                  1500
tcgtggactg gagctaccaa gtaccaccic aatggcagag actctctggt gaatccgggc
                                                                  1560
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                  1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                  1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctqtatct
                                                                  1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                  1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag
                                                                  1860
attccacaca cggacggaca ttttcacccc tctccctca tgggtggatt cggacttaaa
```

1920

1980 caccctcctc cacagattct catcaagaac acccggtac ctgcgaatcc ttcgaccacc ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtaC 2100 acttccaact acaacaagtc cgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> <211> 75 2208 <212> DNA <213> new AAV serotype, clone hu.33 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cageggtgga ageteaaace tggeecacea ceaceagage cegeagageg geataaggae 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttgqqqq 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cggcacqqtt 1020 caggigita cigacicoga giaccagete eegiacgiee teggetegge geateaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920 caccctcctc cacagattct catcaagaac accccggtac ctgcqaatcc ttcgaccacc 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

<210> 76 2208 DNA new AAV serotype, clone hu.45 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120 180 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 300 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 480 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccqacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata ccccaccctq 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccgtgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920 caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceaee 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 77 2208 <210> DNA new AAV serotype, clone hu.47 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120

gacagcagg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagag	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	agcctacgac	240
cggcagctc	g acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	a gggttcttga	acctctgggc	ctggttgggg	aacctgttaa	gacggctccg	420
ggaaaaaaga	a ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaggcgggc	agcagcctgc	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
	acccccagcc					600
	ctacaggcag					660
	cctcgggaaa					720
	cccgaacctg					780
	caggagcctc					840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
	cgcagaatga					1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cttttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcac	aacaaacact	ccaagtggaa	ccaccacgca	gtcaaggctc	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	caagccacaa	ggacaatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
	aaatcaggac					1740
accaacctcc	agagaggcaa	cagacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
	cggacggaca					1920
	cacagattct					1980
	caaagtttgc					2040
	gggagctgca					2100
	acaacaagtc				tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 78 <211> 221: <212> DNA <213> new	l AAV serotyp	e, clone hu	.48			
<400> 78	2100****	+ccama+	*****			
	atggttatct					60
	acttgaaacc					120
	gtctggtgct				=	180
	ccgtcaacgc				_	240
	aagcgggtga					300
	tgcaagaaga				-	360
gccaagaagc	gggttctcga	acctctcggt (aaggcgctaa age 69	gacggctcct	420

ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gccagactgg cgactcagag	540
tragtroccg atroacaaco traggagaa crtrcagraa crcccgrtgr tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	
tccagtactt caacgggggc cagcaacgac aaccactact tcggctacgg cacccctgg	780
	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcgaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
caatacctgt attacctgaa cagaacacaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcaccgctg tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaagcactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2211
<210> 79	
<211> 2211	
<212> DNA <213> new AAV serotype, clone rh.71	
<400> 79	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
Page 70	

	780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag cacccctgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2211
<210> 80	
<211> 2214	
<212> DNA .	
<212> DNA <213> new AAV serotype, clone hu.43	
<213> new AAV serotype, clone hu.43 <400> 80	60
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60 120
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	_
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	120 180
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt	120 180 240
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag	120 180 240 300
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agcctccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	120 180 240 300 360
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtctccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	120 180 240 300 360 420
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcggggcgac agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc ggcaagaaag gccagcagcc cgctaaaaaag agactgaact ttggtcagac tggcgactca	120 180 240 300 360 420 480
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtctccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	120 180 240 300 360 420 480 540
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctct ggaaagaaga gaccggtaga accgtcacct cagcgttcc ccgactcct cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca ggatcagtcc ccgaccctca accaatcgga gaaccaccag caggcccct tggtctggga	120 180 240 300 360 420 480 540 600
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtctccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcct cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	120 180 240 300 360 420 480 540 600 660
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttcc ccgactcct cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccct tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctgg cgacagagtc	120 180 240 300 360 420 480 540 600 660 720
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcct cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctgg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa	120 180 240 300 360 420 480 540 600 660 720 780
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaaga ggcttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcct cacgggcatc ggcaagaaag gccagcagc cgctaaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccact acttcggcta cagcaccccc	120 180 240 300 360 420 480 540 600 660 720 780 840
<213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtgggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggggagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaggatc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacc ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccact acttcggcta cagcacccc tgggggtatt ttgattcaa cagattccac tgccactttt caccacgtga ctggcagcga	120 180 240 300 360 420 480 540 600 660 720 780 840 900

acggttcaag tcttctcgga	ctcggagtac	cagcttccgt	acgtcctcgg	ctctgcgcac	1080
cagggctgcc tccctccgtt	cccggcggac	gtgttcatga	ttccgcaata	cggctacctg	1140
acgctcaaca atggcagcca	agccgtggga	cgttcatcct	tttactgcct	ggaatatttc	1200
ccttctcaga tgctgagaac	gggcaacaac	tttaccttca	gctacacctt	tgaggaagtg	1260
cctctccaca gcagctacgc	gcacagccag	agcctggacc	ggctgatgaa	tcctctcatc	1320
gtccaatacc tgtattacct	gaacagaact	caaaatcagt	ccggaagtgc	ccaaaacaag	1380
gacttgctgt tcagccgtgg	gtctccagct	ggcatgtctg	ttcagcccaa	aaactggcta	1440
cctggaccct gttatcggca	gcagcgcgtt	tctaaaacaa	aaacagacaa	caacaacagc	1500
aattttacct ggactggtgc	ttcaaaatat	aacctcaatg	ggcgtgaatc	catcatcaac	1560
cctggcactg ctatggcctc	acacaaagac	gacgaagaca	agttctttcc	catgagcggt	1620
gtcatgattt ttggaaaaga	gagcgccgga	gcttcaaaca	ctgcattgga	caatgtcatg	1680
attacagacg aagaggaaat	taaagccact	aaccctgtgg	ccaccgaaag	atttgggacc	1740
gtggcagtca atttccagag	cagcagcaca	gaccctgcga	ccggagatgt	gcatgctatg	1800
ggagcattac ctggcatggt	gtggcaagat	agagacgtgt	acctgcaggg	tcccatttgg	1860
gccaaaattc ctcacacaga	tggacacttt	cacccgtctc	ctcttatggg	cggctttgga	1920
ctcaagaacc cgcctcctca	gatcctcatc	aaaaacacgc	ctgttcctgc	gaatcctccg	1980
gcggagtttt cagctacaaa	gtttgcttca	ttcatcaccc	aatactccac	aggacaagtg	2040
agtgtggaaa ttgaatggga	gctgcagaaa	gaaaacagca	agcgctggaa	tcccgaagtg	2100
cagtacacat ccaattatgc	aaaatctgcc	agcgttgatt	ttactgtgga	caacaatgga	2160
ctttatactg agcctcgccc	cattggcacc	cgttacctta	cccgtcccct	gtaa	2214
<210> 81 <211> 2211					
<212> DNA <213> new AAV serotyp	oe, clone h	1.44			
			ctctctctga	aggaataaga	60
<213> new AAV serotyp <400> 81	tccagattgg	ctcgaggaca	_		60 120
<213> new AAV serotyp <400> 81 atggctgccg atggttatct	tccagattgg tggcccacca	ctcgaggaca ccaccaaagc	ccgcagagcg	gcataaggac	
<213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc	tccagattgg tggcccacca tcctgggtac	ctcgaggaca ccaccaaagc aagtacctcg	ccgcagagcg gacccttcaa	gcataaggac cggactcgac	120
<213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct	tccagattgg tggcccacca tcctgggtac ggcagacgcc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg	ccgcagagcg gacccttcaa agcacgacaa	gcataaggac cggactcgac agcctacgac	120 180
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga	gcataaggac cggactcgac agcctacgac cgcggagttt	120 180 240
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca ggggggcaacc	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag	120 180 240 300
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct	120 180 240 300 360
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct	120 180 240 300 360 420
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc	120 180 240 300 360 420 480
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa	ctcgaggaca ccaccaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct	120 180 240 300 360 420 480 540
<pre><213> new AAV serotyp <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga	120 180 240 300 360 420 480 540
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaatttg cctccagcaa atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca ggggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660 720
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcgggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac	ctcgaggaca ccaccaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaatttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg	120 180 240 300 360 420 480 540 600 660 720 780
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcgggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg tccagtgctt caacgggggc</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgcc cagcaacgac attccactgc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg	120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcgggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg tccagtgctt caacgggggc gggtattttg atttcaacag</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc	ctcgaggaca ccaccaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact	ccgcagagcg gacccttcaa agcacgacaa accacgcga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcgggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg tccagtgctt caacggggc gggtattttg atttcaacag atcaacaaca attggggatt</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaa g	ctcgaggaca ccaccaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaatttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cactttcac agactcaact	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcgggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg tccagtgctt caacgggggc gggtatttg attcaacag atcaacaca attggggatt gtcaaggagg tcacgacgaa</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgcc cagcaacgac attccactgc ccggcccaag tgatggcgtc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca ggggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact acaaccactg cttccgtacg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcactg tccagtgctt caacgggggc gggtatttg atttcaacag atcaacaaca attggggatt gtcaaggagg tcacgacgaa gttcaagtct tctcggactc</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaa gtgatggcgtc ggagtaccag ggcggacgtg	ctcgaggaca ccaccaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaatttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact actaccact ctcgttgagg ctcaggaca gttccacat acctacat	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tcctcggctc cgcaatacgg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag tgcgcaccag tgcgcaccag	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
<pre><213> new AAV serotype <400> 81 atggctgccg atggttatct cagtggtgga agctcagacc gacagcaggg gtcttgtgct aagggagagc cggtcaacga cggcagctcg acagcggaga caggagcgcc ttaaagaaga gccaagaagc gggttctcga ggaaagaaac gtccggtaga aagacaggcc agcagcccgc tcagtccccg atccacaacc actacaatgg cttcaggcgg gtgggtaatg cctcaggaaa accaccagca cccgcacctg tccagtgctt caacggggc gggtatttg attcaacag atcaacaca attggggatt gtcaagagg tcacgacaga gttcaagtct tctcggactc ggctgcctcc ctccgttccc</pre>	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tctcggagaa tggcgcacca ttggcattgc cagcaacgac attccactgc ccggcccaag tgatggcgtc ggagtaccag ggcggacgtg cgtgggacgt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact actaccatcg cttccgtacg ttcatgattc tcatcctttt	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tctctcggctc cgcaatacgg actgcctgga	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctgacg atatttccct	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140

WO 2005/033321 PCT/US2004/028817

caatacctgt attacccgaa cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac	cctgcgaccg	gagatgtgca	tgctatggga	1800
gcattacctg gcatggtgtg gcaaggtaġa	gacgtgtacc	tgcagggtcc	catttgggcc	1860
aaaattcctc acacagatgg acactttcac	ccgtctcctc	ttatgggcgg	ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa	aacacgcctg	ttcctgcgaa	tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc	atcacccaat	actccacagg	acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa	aacagcaagc	gctggaatcc	cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac	gttgatttta	ctgtggacaa	caatggactt	2160
tatactgagc ctcgccccat tggcacccgt	taccttaccc	gtcccctgta	a	2211
<210> 82				
<211> 2211 <212> DNA				
<213> new AAV serotype, clone h	u.46			
<400> 82 atggctgccg acggttatct tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga agctcaaacc tggcccacca				120
gacagcaggg gtcttgtgct tcctgggtac	_			180
aagggagagc cggtcaacga ggcagacgcc			_	240
cggcagctcg acagcggaga caacccgtac			-	300
caggagcgcc ttaaagaaga tacgtctttt				360
gccaagaagc gggttctcga acctctcggt				420
ggaaagaaac gtccggtaga gcagtcgcca				480
aagacaggcc agcagcccgc taaaaagaga	ctcaattttg	gtcagactgg	cgactcagag	540
tcagtccccg atccacaacc tctcggagaa				600
actacaatgg cttcaggcgg tggcgcacea				660
gtgggtaatg cctcaggaaa ttggcactgc	gattccacat	ggctgggcga	cagagtcatc	720
accaccagca cccgcacctg ggccttgccc	acctacaata	accacctcta	caagcaaatc	780
tccagtgctt caacgggggc cagcaacgac	aaccactact	tcggctacag	caccccctgg	840
gggtattttg atttcaacag attccactgc	cacttttcac	cacgtgactg	gcagcgactc	900
atcaacaaca attggggatt ccggcccaag	agactcaact	tcaaactctt	caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc	acaaccatcg	ctaataacct	taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag	cttccgtacg	tcctcggctc	tgcgcaccag	1080
ggccgcctcc ctccgttccc ggcggacgtg	ttcatgattc	cgcaatacgg	ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt	tcatcctctt	actgcctgga	atatttccct	1200
tctcagatgc tgagaacggg caacaacttt	accttcagct	acacctttga	ggaagtgcct	1260
ctccacagca gctgcgcgca cagccagagc	ctggaccggc	tgatgaatcc	tctcatcgac	1320
caatacctgt attacctgaa cagaactcaa	aatcagtccg	gaagtgccca	aaacagggac	1380
ttgctgttca gccgtgggtc tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620

WO 2005/033321 PCT/US2004/028817

atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccgcagg acaagtgagt 2040 gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgage etegececat tggcaccegt tacettacce gteceetgta a 2211

PRT vp1, clone hu.17

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40

Gly Cys Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80

Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160

Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190

Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220

Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235

Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415 Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610

615

620

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 640

Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val

Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu

Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr

Ser Asn Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn
705 Asn Lys Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
Asn Leu

Asn Leu

<210> 84 <211> 738 <212> PRT <213> vp1, clone hu.6 <400> 84

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Gly Ala Asp Asn Cleu Pro Asp Ash Ash Ala Ash Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Asp Tyr Lys Tyr Leu Gly Pro Phe Ash Gly Leu Asp Lys Gly Glu Pro So So Ash Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 80
Gln Gln Leu Lys Ala Gly Asp Ash Pro Tyr Leu Arg Tyr Ash His Ala Asp Ala Glu Pro Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Ash Leu Gly Pro 115
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Ash Leu Gly Leu Asp Thr Ser Phe Gly Gly Ash Leu Gly Leu Val Glu Glu Gly Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Ash Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Ala Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Pro Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

 Met
 Leu
 Thr
 Ser
 Glu
 Glu
 Glu
 Ile
 Lys
 Thr
 Asn
 Pro
 Val
 Ala Ala

 Glu
 Gln
 Tyr
 Gly
 Val
 Val
 Ala Asp
 Asn
 Leu
 Gln
 Gln
 Gln
 Asn
 Asn
 Asn
 Leu
 Gln
 Gln
 Gln
 Gln
 Gln
 Asn
 Leu
 Gln
 Gly
 Ala
 Leu
 Gln
 Gly
 Pro
 Gly
 Met
 Val

 Fro
 Gln
 Asn
 Arg
 Asp
 Val
 Tyr
 Leu
 Gln
 Gly
 Pro
 Gly
 Gly
 Fro
 Gly
 Gly
 Fro
 Gly
 Fro
 Gly
 Fro
 Gly

<210> 85 <211> 738 <212> PRT <213> vpl, clone hu.42

Asn Leu

Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $\frac{355}{360}$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Ser Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Leu 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

86 738 PRT vp1, clone rh.38

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Arg Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 . 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Pro Phe Asn 305 310 320 ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu His Tyr Leu 435 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Page 81

WO 2005/033321 PCT/US2004/028817

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<400> 87

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45

<210> 87

<211> /30

<213> vp1, clone hu.40

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Ser Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Ser Glu Phe Ser Tyr

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 440 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

88 738 PRT vp1, clone hu.37

<400> 88 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gla Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

WO 2005/033321 PCT/US2004/028817

Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 89 <211> 738 <212> PRT <213> vpl, clone rh.39

<400> 89 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
440
445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670

WO 2005/033321 PCT/US2004/028817

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735

Asn Leu

90 738 PRT vp1, clone AAV4407

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 91 <211> 738 <212> PRT <213> vp1, clone hu.41

<400> 91

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Pro Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly

T95"

200 -

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Val Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $355 \hspace{1cm} 360 \hspace{1cm} 365$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
440
445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

'Met Leu Thr ser GIU GIU GIU Ile Lys Thr Thr Asn Pro Val Ala Thr 575 Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly S80 Val Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 Glo Asn Val Asn Ser Gln Gly Pro Ile Trp Ala Lys Ile Glo Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val G19 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 665 Gln Ala Lys Leu Ala Ser Phe 665 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr G10 G19 Thr Tyr Ser G10 Pro Arg Pro Ile G19 Thr Arg Tyr Leu Thr Arg Tyr Lys Ser Glu Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg Tyr Lys Ser Thr Arg Tyr Lys Glu Arg Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Tyr Lys Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Lys Arg Tyr Lys Tyr Lys Tyr Lys Tyr Lys T

<210> 92 <211> 738 <212> PRT <213> vpl, clone rh.40

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 Asn Ala Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Gly Arg Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg

َّ Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asp Glu Gly Thr Lys Thr Ile Ala 325 330 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 . 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Arg Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Ala Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asm Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Ser Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 93 <211> 731 <212> PRT <213> vpl, clone pi.1

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 . 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 155 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 235 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly
340 345 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 lle Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val 370 380 Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 395 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro 405 415 Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 435 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln 450 455 460

Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Asn Ser Asn Phe
485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Ser Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 695 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 94 <211> 731 <212> PRT <213> vp1, clone pi.3

Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 150 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Pro Thr Gly Asp Ser Glu Ser 165 170 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Thr Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn

Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 440 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln
450 455 460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 480 Gln Gln Arg Val Ser Thr Ala Val·Ser Gln Asn Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 535 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 590 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 615 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro 625 630 635 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

⁹⁵ 731 PRT vp1, clone pi.2

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro

30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys Ser Gly Arg Gln 145 155 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Lys Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val "GTy Arg Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro 405 410 Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 445 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln
450
460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 480 Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala
565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 615 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 96 <211> 738 <212> PRT

WO 2005/033321 PCT/US2004/028817

--<213> "vp1", "clone rn. 52 <400> 96 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Ser Leu Thr Ser Thr Ile Gln val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Pro Asn 370 380 Asn Gly Ser Gln Ala val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Ser Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
680
685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 WO 2005/033321 PCT/US2004/028817

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735

<210> 97 <211> 738 <212> PRT <213> vp1, clone rh.53

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 . 330 . 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Val His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Ser Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg 725 730 735 Asn Leu

<210> 98 <211> 738 <212> PRT <213> vp1, clone rh.70

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Ala Tyr Asn Asn His

255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Ser Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 . 585 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605

Try Gin Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625

Gly Leu Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val

Fro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Ser

Gle Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu

Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr

Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

735

<210> 99 <211> 738 <212> PRT <213> vp1, clone rh.64

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Glu Asp Asn Leu Pro Asp Asp Gly Arg Gly Leu Val Leu Pro Asp Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro So Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Asp Asp Ala Glu Pro Tyr Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Pro Gli Glu Arg Leu Gli Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Glu Pro Ileu Arg Tyr Asn His Ala Asp Ala Glu Pro Ileu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Ileu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ileu Gly Lys Lys Gly Gln Arg Ser Pro Asp Ser Ser Thr Gly Ileu Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Cly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Ileu Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ileu Gly Glu Pro Ileu Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ileu Gly Glu Fro Ileu Gly Glu Pro Ileu Gly Glu Fro Ileu Gly Glu Fro Ile

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln $340 \ \ 345 \ \ 350$ Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

WO 2005/033321 PCT/US2004/028817

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Val Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Arg Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

PRT Vp1, clone rh.68

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

WO 2005/033321 PCT/US2004/028817

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Pro Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Val Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Leu Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

¹⁰¹ 738 PRT vp1, clone rh.46

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Ala Pro Ser Ser Val Glÿ Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu

450

455

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 102 <211> 738 <212> PRT <213> vp1, clone hu.39

<400> 102

•••

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Arg Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Leu Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300$ Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Ala Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350Pro Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400

405

410

415

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Arg Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 470 . 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Thr Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 655 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Ala Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Ala Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 103 <211> 738

<211> 738 <212> PRT <400> 103 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro His Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Leu Ile Gly Glu Pro 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Asn Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Met Gly Tyr Ser Asn Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Gly Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735
Asn Leu

<210> 104 <211> 738 <212> PRT

vp1, clone rh.51 Met Val Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Gly Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Leu Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 285

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Gln Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

. 665

670

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685 Pro Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735 Asn Leu

<210> 105 <211> 738 <212> PRT <213> vp1, clone rh.57

<400> 105 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

Leu Tyr Lys Gln Thr Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605

ቼτኖρ ਫੀਜਾਂ 4sh ጃኖg ጃኖρ Vãi Tỳr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Ala Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro

¹⁰⁶ 738 PRT vpl, clone rh.58

Pro Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 235 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 . 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 : 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 630 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Cys Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140

<210> 107 <211> 738 <212> PRT <213> vp1, clone rh.61

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Pro Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Pro Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asp Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640 Gly Leu Lys His Pro Pro Pro Gln Val Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$ Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

¹⁰⁸ 738 PRT vpl, clone rh.50

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Gly Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $\frac{265}{260}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 . 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu
440 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Page 128

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 630 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Ser Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 109 <211> 737 <212> PRT <213> vp1, clone rh.45

. ·

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $\frac{245}{255}$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 . 310 . 315Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe

Pro ser of n Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 ASP Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Thr Gln Ala Arg Asn Trp Leu 465 470 475 480Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln 485 490 Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn 515 520 525 Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe 530 540 Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val Met 545 550 560 Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu 565 570 Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro 580 585 590 Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 650 655 Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly 705 710 720 Ala Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn

Leu

<210> 110 <211> 738

'<213> ""vp1,""c1öne "rh. 59" <400> 110 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \,$ $250 \,$ $255 \,$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 335 Asn Pro Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345

WO 2005/033321

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 435 440 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 455 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asm Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735
Asn Leu

111 737 PRT vp1, clone rh.44 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Ser Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Cys Asp 65 70 75 Gln Arg Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 . 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300

ASN Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 . 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Glu Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 Leu

<210> 112 <211> 737 <212> PRT <213> vp1, clone rh.65

<400> 112 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr
405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 435 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Arg Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gin Asn Arg Asp Val Tyr Leu Gin Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 640

Leu Lys His Pro Pro Pro Gin Ile Leu Ile Lys Asn Thr Pro Val Pro 655

Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 670

Thr Gin Tyr Ser Thr Gly Gin Val Ser Val Glu Ile Glu Trp Glu Leu Gin Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gin Tyr Thr Ser Asn Phe Asp Lys Gin Thr Gly Val Asp Phe Ala Val Asp Ser Gin Gly 705

Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 113 <211> 737 <212> PRT <213> vpl, clone rh.67

 <400> 113

 Met Ala Ala Asp Soly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is

 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Asp Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Sol Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Rol Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Asn Leu Gly Arg Ala Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro

Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 360 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 \$50 \$55

 Met
 Thr
 Asn
 Glu
 Glu
 Ile
 Arg
 Pro
 Thr
 Asn
 Pro
 val
 Ala
 Ala</th

.210. 11

Leu

<210> 114 -211> 737

<212> PRT <213> vp1, clone rh.62

<400> 114

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 15 Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Gly Glu Pro Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Ala Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gin Val Lys Glu Val Thr Thr Gly Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asp Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ilè Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 635 635 640Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 650 655Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735 Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

¹¹⁵ 737 PRT vp1, clone rh.48

WO 2005/033321 PCT/US2004/028817

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 . 185 . 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser 290 295 . 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420
430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln

Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 695 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 730

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

PRT vp1, clone rh.54

35

40

45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 175 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 . 265 . 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe

Pro Ser Gln Val Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Pro Gly Gly Thr Ser Gly Asn Arg Glu Leu Gln 450 455 460 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

<210> 117 <211> 737 <212> PRT <213> "vp1, clone rh.55 <400> 117 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 . 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 360 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Arg Arg Val Ser Lys Thr Leu Asp 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 . 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 695 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 710 715 720

Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

118 738 PRT vp1, clone rh.47 <400> 118 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys His Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln 340 345 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr 405 410 415Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu 450 460 Gln Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn 470 475 480 Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu 485 490 495 Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr
500 505 510 His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala 515 520 525 Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu 530 540 Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val 545 550 560 Leu Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr 565 570 575 Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala 580 585 Ala Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln 705 710 725 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

119 737 PRT vp1, clone rh.69

<400> 119 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 . 105 . 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

255

Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Ile Ser Tyr Thr
405
415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Gln Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485
495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
640

Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Gly Trp Glu Leu
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly
705

Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
Leu

<210> 120 <211> 735 <212> PRT <213> vp1, clone rh.60 <400> 120

 Met
 Ala
 Ala
 Asp
 Gly
 Tyr
 Leu
 Pro
 Asp
 Trp
 Leu
 Glu
 Asp
 Asp
 Asp
 Leu
 Gly
 Ala
 Asp
 Lys
 Pro
 Gly
 Ala
 Asp
 Lys
 Pro
 Gly
 Ala
 Asp
 Lys
 Pro
 Gly
 Ala
 Ala
 Leu
 Pro
 Asp
 Asp
 Ala
 Ala</th

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr His Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270Asn Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445Ser Arg Thr Gln Ser Thr Glu Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 . 570 . 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe 690 700Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 . 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 160

<210> 121 <211> 736 <212> PRT <213> vp1, clone hu.31

Lys Ser Gly Ser Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 265 270Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 375 380 Gly Gly Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu 405 415Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser 450 460 Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn 485 . 490 . 495 Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 560 Thr Asn Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 565 570 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln S80 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Ser Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser $1 \hspace{1cm} 15$ Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125

<210> 122 <211> 736 <212> PRT <213> vp1, clone hu.32

WO 2005/033321

Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 160 Lys Ser Gly Ser Gln Pro Ala Lys Lys Lys Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 265 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 435 445 Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser 450 460 Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn

Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 505 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 560 Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln 580 590 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

<210> 123 <211> 736 <212> PRT <213> capsid of hu.14\AAV9

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 155 160 Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 . 265 . 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asp $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430

Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 445

Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro 465 470 475 480 Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 510 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 560 Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 575 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln 580 590 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 640 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro

<210> 124 <211> 735 <212> PRT <213> vp1, clone hu.33

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Gly Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415

Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg
420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440. Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1cm} 500 \hspace{1cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

¹²⁵ 735 PRT vp1, clone hu.34

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser

Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Glu Ser 370 375 380

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700 Asn Lys Ser Val Asp Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<211> 735 <212> PRT <213> vp1, clone hu.36

<400> 126 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Ala Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
735 735

<210> 127 <211> 735 <212> PRT <213> vp1, clone hu.45 <400> 127

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Pro Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1cm} 500 \hspace{1cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Val Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln val Ser val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 128 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Ser His Tyr

<210> 128 <211> 735 <212> PRT <213> vp1, clone hu.47

Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635

His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 129 <211> 735 <212> PRT <213> vpl, clone hu.13

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 470 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Gly Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Ser Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly

¹³⁰ 735 PRT vp1, clone hu.28

195

200 .

205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Gln Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560

ASP Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Gly Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Thr Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 . 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155

<210> 131 <211> 735 <212> PRT <213> vp1, clone hu.30

<400> 131

Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200. 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Ser Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $600 \cdot 605$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

<210> 132 <211> 735 <212> PRT <213> vp1, clone hu.29

Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Gly Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 WO 2005/033321 PCT/US2004/028817

Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 . 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $600 \ \ 605$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90

<210> 133 <211> 735 <212> PRT <213> vpl, clone hu.19

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp Tyr Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln

Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Val Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser $1 \hspace{1cm} 15$ Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

<210> 134 <211> 735 <212> PRT <213> vp1, clone hu.20

5:

60

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Val Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Ala Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly His Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415

Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 . 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620Asp Gly His Phe His Pro Ser Pro Pro Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Ala Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 135 <211> 735 <212> PRT <213> vpl, clone hu.21

<400> 135

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 136 <211> 735

PRT vp1, clone hu.24 <212> <213> Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Page 187

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 . 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 600 605Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr

720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

705

<210> 137 <211> 735 <212> PRT <213> vp1, clone hu.23-2 <400> 137 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val 1le 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Cys Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val

310

315

320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Tyr Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 138 <211> 735 <212> PRT <213> vp1, clone hu.22

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Gly Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200. Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Gly Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270

Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Thr Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Île Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1cm} 505$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635

His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 139 <211> 735 <212> PRT <213> vpl, clone hu.26

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Arg Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Page 194

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 140 <211> 735 <212> PRT <213> vpl, clone hu.27

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Gly Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Val Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 470 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Val Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Ala Ala Thr Glu Gln Tyr

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Val Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730

Met Ala Ala Asp Gly Tyr Leu Prò Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 141 <211> 735 <212> PRT <213> vpl, clone hu.4

175

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Val Asn Asn Asn Arg 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 485 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515

Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<400> 142

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 . 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

<210> 142 <211> 735 <212> PRT <213> vp1, clone hu.5

"Ted Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490

Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser Arg Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Pro Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 95

<210> 143 <211> 735 <212> PRT <213> vp1, clone hu.2

<400> 143

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Arg Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 446 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460

Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 . 585 Gly Thr Val Asn Arg Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

¹⁴⁴ 735 PRT vpl, clone hu.1

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Gly Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Gly Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 520 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Thr Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 145 <211> 736 <212> PRT <213> vp1, clone hu.3

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

30

Lys Pro Ala Glu Arg His Lys Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Arg Pro Gly Leu Arg Lys Pro Val Lys Thr Ala Pro Gly Lys Lys 130 135 140 Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Ser Gly Thr 145 150 160 Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro 180 190 Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Asp Asp Arg val 225 230 235 Ile Ala Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Cys Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 320 Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380

รริยา Ghr ผู้ใช้ Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe 405 415 Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Cys Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys 445 Thr Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser 450 455 460 Gln Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn 490 495 Asn Asn Cys Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn 505 Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly 530 540 Lys Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Gln 565 570 575 Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr 580 595 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 605 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Met Ile Lys Ser Thr Pro Val Pro Ala 645 650 655 Asn Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Ser Ile Thr 660 670 Gin Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 146 <211> 735 <212> PRT

213 vp1, clone hu.25 <400> 146 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp GTy Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asn Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 · 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Pro Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Asn Asn Gly Val Tyr 705 710 . 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 147 <211> 735 <212> PRT <213> vp1, clone hu.15

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro 50 60 Val Asp Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Leu Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 470 475 480Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys

Glu Asp Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Pro Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725
730

<210> 148 <211> 735 <212> PRT <213> vp1, clone hu.16 <400> 148 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Gly Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275"

~280

285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asp Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys

Ais Pro Pro Pro Gla Tile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 149 <211> 735 <212> PRT <213> vp1, clone hu.18

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 $\,$ 30 $\,$ Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Glu Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240

"The The See The Arg The Trp Ala Leu Pro The Tyr Asn Asn His Leu 245 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Ser Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Leu Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ser Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Gly Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205

<210> 150 <211> 735 <212> PRT <213> vpl, clone hu.7

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gin Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Thr Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 151 <211> 735 <212> PRT <213> vpl, clone hu.8

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 · 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 . 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys

530

535

540

Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 . 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 . 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 152

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

<210> 152 <211> 735 <212> PRT <213> vp1, clone rh.56

130 135

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Gln Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Ala Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495

Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Arg Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 153 <211> 735 <212> PRT <213> vpl, clone hu.11

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 -sp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gin Ser Asn Ser Gly Thr Leu Gin Gin Ser Arg Leu Leu Phe Ser Gin
450 455 460

Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr Arg Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 595 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60

<210> 154 <211> 735 <212> PRT <213> vpl, clone hu.12

<400> 154

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 .345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Pro Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 155 <211> 735 <212> PRT <213> vpl, clone hu.9

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

Lys Pro Ala Glu Arg His Gln Asp Asn Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Ser Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Cys Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Pro Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 "...

390

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420
430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 . 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Cys Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 156 <211> 735 <212> PRT <213> vp1, clone hu.10

<400> 156 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Leu Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Thr Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Leu Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Tle Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Tyr Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Arg Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

157 736 PRT vp1, clone hu.48

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 255 Tyr Lys Gln Ile Ser Ser Thr Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Gly Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320 Val Glu Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 . 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 455 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Val Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Ser Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 590 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr $660 \hspace{0.25cm} 665 \hspace{0.25cm} 665$ Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Page 232

Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 725 730

<210> 158 <211> 736 <212> PRT <213> vp1, clone hu.44 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Arg Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Glu Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Gly Pro Asp Ser Ser Gly Ile Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285

His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Pro Asn Arg 435 440 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Glu 1le Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Gly Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 615 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala

Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr
660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> <211> <212> <213>

159 736 PRT vpl, clone hu.46

<400> 159 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Pro Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu

255

250

Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Arg Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Ser Tyr Cys Leu Glu Tyr Phe Pro 385 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile $545 \ 550 \ 555$ Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605

Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gin Tyr Ser Ala Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> 160 <211> 737 <212> PRT <213> vpl, clone hu.43

<400> 160

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 . 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Pro Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 260 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gin Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Glu Val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Val Gln Tyr Leu Tyr Tyr Leu Asn 445 Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe 450 455 460 Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp
485
490
495 Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met lle Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu 565 570 575 WO 2005/033321

Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro 580 585 590 Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp 595 600. Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser 690 700 Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn Gly 705 710 720 Leu Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735

161 738 PRT vp1, clone hu.38

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 . 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 WO 2005/033321

His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 535 Als Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 566 Met Leu Thr Ser Gly Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 585 Glu Asn Val Ash Ser Gln Gly Ala Leu Pro Gly Met Val Fro Glo Asn Arg Asp Val Tyr Leu Gln Gly Pro Glo Trp Ala Lys Ile Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Ala Asp Ash Ser Gln Ala Lys Leu Ala Asp Ash Thr Gly Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Ala Asp Ash Asp Ash Cys His Pro Ser Pro Leu Met Gly Gly Phe G25 His Thr Asp Gly Ash Cys His Pro Ser Gln Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glo Trp Ala Lys Ile Cheu Gln Lys Ash Thr Pro Ser Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe G65 Gln Lys Glu Ash Ser Lys Arg Trp Ash Pro Glu Ile Gln Tyr Thr Ser Ash Tyr Tyr Lys Ser Thr Ash Val Asp Phe Ala Val Ash Thr Glu 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Tyr Leu Thr Arg Tyr Leu Thr Arg 735 Arg 735

Asn Leu

<210> 162 <211> 736

<213> vpl, clone rh.71

<400> 162

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Gly Glu Pro Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Gly

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 . 265 . 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro

46⁵

470

475

480

Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys
520
525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp

¹⁶³ 736 PRT vpl, clone rh.43

75

80

Gln Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 . 155 Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe 450 460 Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp Leu 465 470 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly Gln
485 490 495 Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr His 515 520 525 Lys Asp Asp Glu Glu Arg Phe Phe Pro Val Thr Gly Ser Cys Phe Trp 530 535 540 Gln Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu 565 570 575 Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln
585 Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 615 . 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe Ile Thr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$ Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30

<210> 164 <211> 735 <212> PRT <213> vpl, clone hu.35

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 . 410 . 415 ASP Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450
455
460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 . 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530
535
540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

¹⁶⁵ 3161 DNA new AAV serotype, clone hu 136.1

<400> 165

gattgaattt	agcggccgcg	aattcgccct	tgctgcgtca	actggaccaa	tgagaacttt	60
ccattcaatg	attgcgtcga	caagatggtg	atctggtggg	aggagggaaa	gatgaccgcc	120
aaggtcatgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgcgt	ggaccagaaa	180
tgtaagtcct	cggcccagat	agacccgact	cccgtgattg	tcacctccaa	caccaacatg	240
tgcgccgtga	ttgacgggaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
atgttcaaat	ttgaactcac	ccgccgtctg	gatcatgact	ttgggaaggt	caccaagcag	360
gaagtcaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgaattc	420
tacgtcaaaa	agggtggagc	caagaaaaga	cccgccccca	gtgacgcaga	tataagtgag	480
cccaaacggg	cgcgcgggtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
aactacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
tttccctgca	gacaatgcga	gagaatgaat	caaaattcaa	atatctgctt	cactcacgga	660
cagaaggact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
aaggcgtatc	agaaactttg	ctacattcat	catatcatgg	gaaaggtgcc	agacgcttgc	780
actgcctgcg	atctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
taaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcaaggaca	ctctctctga	900
aggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	960
gcataaggac	gacagcgggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	1020
	aagggagagc			-	•	1080
-	cggcagctcg			• • • •	•	1140
	caggagcgcc			_		1200
	gcgaaaaaga					1260
	ggaaaaaaga	_			_	1320
	aaagcgggcc					1380
	tccgtacctg				-	1440
	aatacgatgg					1500
	gtgggtaatt					1560
	accaccagca					1620
	tccagccaat					1680
	tattttgact					1740
	aacaacaact	_	_			1800
_					•	1860
	aaggaggtca					
	caggtgttta					1920
	tgcctcccgc					1980
	aacaacggga					2040
	cagatgcttc					2100
	cacagcagct			-	=	2160
	tacctgtatt				•	2220
	cagttttctc				•••	2280
	ccctgttacc		-			2340
	tcgtggactg					2400
	ccggccatgg	-			•	2460
	atctttggga				-	2520
	gacgaagagg					2580
	accaacctcc					2640
	cttccaggca					2700
ctgggcaaag	attccacaca	cggacggaca	ttttcacccc	tctcccctca	tgggcggatt	2760

tggacttaaa caccetecte cacagattet catcaagaac acceeggtae etgcaaatee 2820 ttcgaccacc ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacagggca 2880 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga 2940 gatccagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa 3000 tggtgtgtat tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaatt 3060 gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc 3120 gaattcgttt aaaccctgca ggactagtcc ctttagtgag g 3161 <210> 166 3162 DNA new AAV serotype, clone hu 140.1 <400× 166 gaattgaatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga 60 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa 120 tggggcgagg ctctgaatac acgccattag tgtccacagt aaagtccaca ttaacagact 180 tgttgtagtt ggaagtgtac tgaatttcgg gattccagcg tttgctgttt tccttctgca 240 gctcccactc gatctccacg ctgacctgtc ccgtggagta ctgtgtgatg aaggaagcaa 300 actttgccgc actgaaggtg gtcgaaggat tcgcaggtac cggggtgttc ttgatgagaa 360 tctgtggagg agggtgttta agtccgaatc cacccatgag gggagagggg tgaaaatgtc 420 cgtccgtgtg tggaatcttt gcccagatgg gcccctgaag gtacacatct ctgtcctgcc 480 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc ggtagctgct tgtctgttgc 540 ctctctggag gttggtagat acagaaccgt actgctccgt agccacggga ttggttgtcc 600 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgagc 660 cttgcttccc aaagatgaga accccgctct gaggaaaaaa cttttcttca ttgtccttgt 720 ggcttgccat ggccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg 780 tagctccagt ccacgagtat tcactgttgt tgttatccgc agatgtcttt gatactcgct 840 gctggcggta acagggtcca ggaagccagt tcctagactg gtcccgaatg tcactcgctc 900 cggcctgaga aaactgaagc cttgactgcg tggtggttcc acttggagtg tttgttgtgc 960 tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaga ctctggctgt 1020 gagcgtagcc gctgtggaaa ggaacgtcct caaaagtgta gctgaaggta aagttgtttc 1080 cggtacgcag catctgagaa ggaaagtact ccaggcagta aaatgaagag cgtcctactg 1140 cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctg 1200 ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg 1260 agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccgtcat 1320 tctgcgtgac ctctttgact tgaatgttaa agagcttgaa gttgagtctc ttgggtcgga 1380 atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc 1440 tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtgattg tcgttcgagg 1500 ctcctgattg gctggaaatt tgtttgtaga ggtggttgtt gtaggtgggc agggcccagg 1560 ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc 1620 ccgaggaatt acccactccg tcggcgccct cgttattgtc tgccattggt gcgccactgc 1680 ctgtagccat cgtattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct 1740 gggggtcagg tactgagtct gcgtctccag tctgaccaaa attcaatctt tttcttgcag 1800 gctgctggcc cgcctttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta 1860 ccggcctctt ttttcctgga gccgtcttga caggttcccc aaccaggccc agaggttcaa 1920 gaaccctctt tttcgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt 1980 ctttaaggcg ctcctgaaac tccgcgtcgg cgtggttgta cttgaggtac gggttgtctc 2040 cgctgtcgag ctgccggtcg taggctttgt cgtgctcgag ggccgcggcg tctgcctcgt 2100

WO 2005/033321	101
	2160
tgaccggctc tcccttgtcg agtccgttga agggtccgag gtacttgtac ccuggung	2220
caagacccct gctgtcgtcc ttatgccgct ctgcgggctt tggtggtggt gggccussion	2280
tgagcttcca ccactgtctt attccttcag agagagtgtc ctcgagctaa cctggange	2340
aaccatcggc agccatacct gatttaaatc atttattgtt caaagatgca gccatacaa	2400
tccacattga ccagatcgca ggcagtgcaa gcgtctggca cctttccat gutatgatga	2460
atgtagcaca gtttctgata cgcctttttg acgacagaaa cgggttgaga cccts	2520
ggaaagcact ctaaacagtc tttctgtccg tgagtgaagc agatattiga accessure	2580
attetetege attgtetgea gggaaacage attagattea tgeetacyty acquisition	2640
ttgttttggt acctgtctgc gtagttgatc gaagcttccg cgtctgacgt cgatggctgt	2700
gcaactgact cgcgcacccg tttgggctca cttatatctg cgtcactggg ggcgggtctt	2760
ttcttggctc caccettttt gacgtagaat tcatgctcca cctcaaccac gtgatccttt	2820
gcccaccgga aaaagtcttt gacttcctgc ttggtgacct tcccaaagtc atgatccaga	2880
cggcgggtga gttcaaattt gaacatccgg tcttgcaacg gctgctggtg ttcgaaggtc	2940
gttgagttcc cgtcaatcac ggcgcacatg ttggtgttgg aggtgacgat cacgggagtc	3000
gggtctatct gggccgagga cttgcatttc tggtccacgc gcaccttgct tcctccgaga	3060
atggetttgg cegaetecae gaeettggeg gteatettee eetecteca ecagateaee	3120
atcttgtcga cacagtcgtt gaagggaaag ttctcattgg tccagttgac gcagcaaggg	3162
cgaattcgtt taaacctgca ggactagtcc ctttagtgag gg	3102
<210> 167 <211> 3164 <212> DNA <213> new AAV serotype, clone hu 140.2	
<400> 167 gcgaattgaa tttagcggcc gcgaattcgc ccttcgcaga gaccaaagtt caactgaaac	60
gaattaaacg gtttattgat taacaagcaa ttacaaatta cgagtcaggt atctggtgcc	120
aatggggcga ggctctgaat acacgccatt agtgtccaca gtaaagtcca cattaacaga	180
cttgttgtag ttggaagtgt actgaatttc gggattccag cgtttgctgt tttccttctg	240
cageteccae tegateteca egetgaeetg teeegtggag taetgtgtga tgaaggaage	300
aaactttgcc gcactgaagg tggtcgaagg attcgcaggt accggggtgt tcttgatgag	360
aatctgtgga ggagggtgtt taggtccgaa tccacccatg aggggagagg ggtgaaaatg	420
tccgtccgtg tgtggaatct ttgcccagat gggcccctga aggtacacat ctctgtcctg	480
ccagaccatg cctggaagaa cgccttgtgt gttgacatct gcggtagctg cttgtctgtt	540
gcctctctgg aggttggtag atacagaacc atactgctcc gtagccacgg gattggttgt	600
cctgatttcc tcttcgtctg taatcatgac cttttcaatg tccacatttg ttttctctga	660
gccttgcttc ccaaagatga gaaccccgct ctgaggaaaa aacttttctt cattgtcctt	720
gtggcttgcc atggccgggc ccggattcac cagagagtct ctgccattga ggtggtactt	780
ggtagctcca gtccacgagt attcactgtt gttgttatcc gcagatgtct ttgatactcg	840
ctgctggcgg taacagggtc caggaagcca gttcctagac tggtcccgaa tgtcactcgc	900
tccggcctga gaaaactgaa gccttgactg cgtggtggtt ccacttggag tgtttgttgt	960
gctcaagtaa tacaggtact ggtcgatgag aggattcatg agacggtcca gactctggct	1020
and tagget changes and taggetaang taggetatit	1080

gtgagcgtag ctgctgtgga aaggaacgtc ctcaaaagtg tagctgaagg taaagttgtt

tccggtacgc agcatctgag aaggaaagta ctccgggcag taaaatgaag agcgtcctac

tgcctgactc ccgttgctca gggtgaggta tccatactgt ggcaccatga agacgtctgc

tgggaacggc gggaggcatc cttgatgcgc cgagccgagg acgtacggga gctggtactc

cgagtcagta aacacctgaa ccgtgctggt aaggttattg gcaatcgtcg tcgtaccgtc

attctgcgtg acctctttga cttgaatgtt aaagagcttg aagttgagtc tcttgggtcg

1080

1140

1200

1260

1320 1380

1440

1500

tctgttgaag tcaaaatacc cccaaggggt gctgtagcca aagtagtgat tgtcgttcga

congregated commence commenced by sending and address of the sending address of th	J
ggctcctgat tggctggaaa tttgtctgta gaggtggttg ttgtaggtgg gcagggcc	ca 1560
ggttcgggtg ctggtggtga tgactctgtc gcccatccat gtggaatcgc aatgccga	tt 1620
tcccgaggaa ttacccactc cgtcggcgcc ctcgttattg tctgccattg gtgcgcca	ct 1680
gcctgtagcc atcgtattag ttcccagacc agagggggct gctggtggct gtccgaga	gg 1740
ctgggggtca ggtactgagt ctgcgtctcc agtctgacca aaattcaatc tttttctt	gc 1800
aggctgctgg cccgcctttc cggttcccga ggaggagtct ggctccacag gagagtgc	tc 1860
taccggcctc tttttcccg gagccgtctt aacaggttcc ccaaccaggc ccagaggt	tc 1920
aagaaccctc tttttcgcct ggaagactgc tcgtccgagg ttgcccccaa aagacgta	tc 1980
ttctttaagg cgctcctgaa actccgcgtc ggcgtggttg tacttgaggt acgggttg	tc 2040
tccgctgtcg agctgccggt cgtaggcttt gtcgtgctcg agggccgcgg cgtctgcc	tc 2100
gttgaccggc tctcccttgt cgagtccgtt gaagggtccg aggtacttgt acccagga	ag 2160
cacaagaccc ctgctgtcgt ccttatgccg ctctgcgggc tttggtggtg gtgggcca	gg 2220
tttgagcttc caccactgtc ttattccttc agagagagtg tcctcgagcc aatctgga	ag 2280
ataaccatcg gcagccatac ctgatttaaa tcatttattg ttcaaagatg cagtcatc	ca 2340
aatccacatt gaccagatcg caggcagtgc aagcgtctgg cacctttccc atgatatg	at 2400
gaatgtagca cagtttctga tacgcctttt tgacgacaga aacgggttga gattctga	ca 2460
cgggaaagca ctctaaacag tctttctgtc cgtgagtgaa gcagatattt gaattctg	at 2520
tcattctctc gcattgtctg cagggaaaca gcatcagatt catgcccacg tgacgaga	ac 2580
atttgttttg gtacctgtct gcgtagttga tcgaagcttc cgcgtctgac gtcgatgg	ct 2640
gcgcaactga ctcgcgcacc cgtttgggcc cacttatatc tgcgtcactg ggggcggg	tc 2700
ttttcttggc tccacccttt ttgacgtaga attcatgctc cacctcaacc acgtgatc	ct 2760
ttgcccaccg gaaaaagtct ttgacttcct gcttggtgac cttcccaaag tcatgatc	ca 2820
gacggcgggt gagttcaaat ttgaacatcc ggtcttgcaa cggctgctgg tgttcgaa	gg 2880
tcgttgagtt cccgtcaatc acggcgcaca tgttggtgtt ggaggtgacg atcacggg	ag 2940
tcgggtctat ctgggccgag gacttgcatt tctggtccac gcgcaccttg cttcctcc	ga 3000
gaatggcttt ggccgactcc acgaccttgg cggtcatctt cccctcctcc caccagat	ca 3060
ccatcttgtc gacacagtcg ttgaagggaa agttctcatt ggtccagttg acgcagca	ag 3120
ggcgaattcg tttaaacctg caggactagt ccctttagtg aggg	3164
<210> 168 <211> 3159 <212> DNA <213> new AAV serotype, clone hu 147.2 <400> 168	
gattgattta gcggccgcga attcgccctt gctgcgtcaa ctggaccaat gagaactt	tc 60
ccttcaacga ttgcgtcgac aagatggtga tctggtggga ggagggaaag atgaccgc	ca 120
aggtcgtgga gtcggccaaa gccattctcg gaggaagcaa ggtgcgtgtg gaccaaaa	gt 180
gcaagtcttc ggcccagatc gacccgactc ccgtgatcgt cacctccaac accaacat	gt 240
gcgccgtgat tgatggaaac tcaacgacct tcgagcacca gcagccgttg caagaccg	ga 300
tgttcaaatt tgaacttacc cgccgtctgg atcatgactt tggaaaggtc accaagca	gg 360
aagtgaaaga ctttttccgg tgggcaaagg atcacgtggt tgaggtggag catgagtt	ct 420
acgtcaaaaa gggtggagcc aaaaaaagac ccgcccccag tgacgcagat ataagtga	gc 480
ccaaacgggc gcgcgagtca gttgcgcagc catcgacgtc agacgcggaa gcttcgat	ca 540
actacgcgga caggtaccaa aacaaatgtt ctcgtcacgt gggcatgaat ctgatgct	gt 600
ttccctgcag acaatgcgag agaatgaatc agaattcaaa tatctgcttc actcacgg	ac 660
agaaagactg tccatagtgc tttcccgtgt cagaatctca acccgtttct gtcgtcaa	aa 720
aggcgtatca gaaactgtgc tacattcatc acatcatggg aaaggtgcca gacgcttg	ca 780
Page 251	

	040
ctgcttgcga cctggtcaat gtggatttgg atgactgcat ctctgaacaa taaatgattt	840
aaatcaggta tggctgccga tggttatctt ccagattggc tcgaggacac tctctctgaa	900
ggaataagac agtggtggaa gctcaaacct ggcccaccac caccaaagcc cgcagagcgg	960
cataaggacg acagcagggg tcttgtgctt cctggataca agtacctcgg acccttcaac	1020
ggactcgaca agggagagcc ggtcaacgag gcagacgccg cggccctcga gcacgacaag	1080
gcctacgacc ggcagctcga cagcggagac aacccgtacc tcaagtacaa ccacgccgac	1140
gcggagtttc aggagcgcct taaagaagat acgtcttttg ggggcaacct cggacgagca	1200
gtcttccagg cgaaaaagag ggttcttgaa cctctgggcc tggttgagga acctgttaag	1260
acggctccgg gaaaaaagag gccggtagag cactctcctg tggagccaga ctcctcctcg	1320
ggaaccggaa aagcgggcaa ccagcctgca agaaaaagat tgaatttcgg tcagactgga	1380
gacgcagact ccgtacctga cccccagcct ctcggacagc caccagcatc cccctctggt	1440
ctgggaacta atacgatggc tacaggcagt ggcgcaccaa tggcagacaa taacgagggc	1500
gccgacggag tgggtaattc ctcgggaaat tggcattgcg attccacatg gatgggcgac	1560
agagtcgtca ccaccagcac ccgcacctgg gccctgccca cctacaacaa ccacctctac	1620
aagcagattt ccagccaatc aggagccagc aacgacaacc actactttgg ctacagcacc	1680
ccttgggggt attttgactt caacagattc cactgccact tttcgccacg cgactggcag	1740
agactcatca acaacaactg gggattccgg cccaaaagac tcaacttcaa gctgtttaac	1800
attcaagtca aggaggtcac gcagaatgac ggtacgacga cgattgccaa taaccttacc	1860
agcacggttc aggtgtttac tgacttggag taccagctcc cgtacgtcct cggctcggcg	1920
catcaaggat gcctcccgcc gttcccagca gacgtcttca tggtgccaca gtatggatac	1980
ctcaccctga acaacgggag tcaggcggta ggacgctctt ccttttactg cctggagtac	2040
tttccttctc agatgcttcg caccggaaac aactttacct tcagctacac ttttgaagac	2100
gttcctttcc acagcagcta cgctcacagt caaagtctgg accgtctcat gaatcctctc	2160
atcgaccagt acctgtatta cttgagcaga acaaacactc caagcggaac cactacgcag	2220
tccaggcttc agttttctca ggccggagcg agtgacattc gggaccagtc taggaactgg	2280
cttcctggac cctgttaccg ccagcagcga gtatcaaaga cagctgcgga taacaacaac	2340
agtgaatact cgtggactgg agctaccaag taccacctca atggcagaga ctctctggtg	2400
aatccgggcc cggccatggc cagccacaag gacgatgaag aaaagttttt tcctcaaagc	2460
ggggttctca tctttgggaa gcaaggctca gagaaaacaa atgtggacat tgaaaaggtc	2520
atgattacag acgaagagga aatcaggacc accaatcccg tggctacgga gcagtatggt	2580
tctgtatcta ccaacctcca gagcggcaac acacaagcag ctacctcaga tgtcaacaca	2640
caaggcgttc ttccaggcat ggtctggcag gacagagacg tgtacctgca ggggcccatc	2700
tgggcaaaaa ttccacacac ggacggacat tttcacccct ctcccctcat gggcggattt	2760
ggacttaaac accctcctcc acagattctc attaagaata ccccggtacc tgcgaatcct	2820
tcgaccacct tcagcgcggc aaagtttgct tccttcatca cacagtattc cacggggcag	2880
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaatcccgaa	2940
attcagtaca cttccaacta caacaaatct gttaatgtgg actttactgt ggacactaat	3000
ggggtgtatt cagagcctcg ccctattggc accagatacc tgactcgtaa tctgtaattg	3060
cttgttaatc aataaaccgt ttaattcgtt tcagttgaac tttggtctct gcgaagggcg	3120
	3159
aattcgttta aacctgcagg actagtccct ttagtgagg	7133
<210> 169 <211> 3156	
<212> DNA	
<213> new AAV serotype, clone hu 147.3 <400> 169	
cgattgaatt tagcggccgc gaattcgccc ttgctgcgtc aacggaccaa tgagaacttt	60
cccttcaacg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc	120

cccttcaacg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120

aaggtcgtgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgtgt	ggaccaaaag	180
tgcaagtctt	cggcccagat	cgacccgact	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	ttgatggaaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
atgttcaaat	ttgaacttac	ccgccgtctg	gatcatgact	ttggaaaggt	caccaagcag	360
gaagtgaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgagttc	420
tacgtcaaaa	agggtggagc	caaaaaaaga	cccgccccca	gtgacgcaga	tataagtgag	480
cccaaacggg	cgcgcgagtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
aactacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
tttccctgca	gacaatgcga	gcgaatgaaṭ	cagaattcaa	atatctgctt	cactcacgga	660
cagaaagact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
aaggcgtatc	agaaactgtg	ctacattcat	cacatcatgg	gaaaggtgcc	agacgcttgc	780
actgcttgcg	acctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
taaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	900
aggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaaagcccg	cagagcggca	960
taaggacgac	agcaggggtc	ttgtgcttcc	tggatacaag	tacctcggac	ccttcaacgg	1020
actcgacaag	ggagagccgg	tcaacgaggc	agacgccgcg	gccctcgagc	acgacaaggc	1080
ctacgaccgg	cagctcgaca	gcggagacaa	cccgtacctc	aagtacaacc	acgccgacgc	1140
ggagtttcag	gagcgcctta	aagaagatac	gtcttttggg	ggcaacctcg	gacgagcagt	1200
cttccaggcg	aaaaagaggg	ttcttgaacc	tctgggcctg	gttgaggaac	ctgttaagac	1260
ggctccggga	aaaaagaggc	ccgtagagca	ctctcctgtg	gagccagact	cctcctcggg	1320
aaccggaaaa	gcgggcaacc	agcctgcaag	aaaaagattg	aatttcggtc	agactggaga	1380
cgcagactcc	gtacctgacc	cccagcctct	cggacagcca	ccagcagccc	cctctggtct	1440
gggaactaat	acgatggcta	caggcagtgg	cgcaccaatg	gcagacaata	acgagggcgc	1500
cgacggagtg	ggtaattcct	cgggagattg	gcattgcgat	tccacatgga	tgggcgacag	1560
agtcatcacc	accagcaccc	gcacctgggc	cctgcccacc	tacaacaacc	acctctacaa	1620
gcagatttcc	agccaatcag	gagccagcaa	tgacaaccac	tactttggct	acagcacccc	1680
ttgggggtat	tttgacttca	acagattcca	ctgccacttt	tcgccacgcg	actggcagag	1740
actcatcaac	aacaactggg	gattccggcc	caaaagactc	aacctcaagc	tgtttaacat	1800
tcaagtcaag	gaggtcacgc	agaatgacgg	tacgacgacg	attgccaata	accttaccag	1860
cacggttcag	gtgtttactg	acttggagta	ccagctcccg	tacgtcctcg	gctcggcgca	1920
tcaaggatgc	ctcccgccgt	tcccagcaga	cgtcttcatg	gtgccacagt	atggatacct	1980
caccctgaac	aacgggagtc	aggcggtagg	acgctcttcc	ttttactgcc	tggagtactt	2040
tccttctcag	atgcttcgta	ccggaaacaa	ctttaccttc	agctacactt	ttgaagacgt	2100
tcctttccac	agcagctacg	ctcacagtca	aagtctggac	cgtctcatga	atcctctcat	2160
cgaccagtac	ctgtattact	tgagcagaac	aaacactcca	agcggaacca	ctacgcagtc	2220
caggcttcag	ttttctcagg	ccggagcgag	tgacattcgg	gaccagtcta	ggaactggct	2280
tcctggaccc	tgttaccgcc	agcagcgagt	atcaaagaca	gctgcggata	acaacaacgg	2340
	tggactggag	-				2400
tccgggcccg	gccatggcca	gccacaagga	cgatgaagaa	aagtttttc	ctcaaagcgg	2460
	tttgggaagc		_			2520
	gaagaggaaa					2580
	aacctccaga					2640
	ccaggcatgg					2700
	ccacacacgg					2760
acttaaacac	cctcctccac	agattctcat	taagaatacc	ccggtacctg	cgaatccttc	2820

gaccactite agegeggeam agettegette etteateaca cagtatteca eggggeaggt 2880 cagcgtggag atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat 2940 tcagtacact tccaactaca acaaatctqt taatgtggac tttactgtgg acactaatgg 3000 ggtgtattca gagcctcgcc ctattggcac cagatacctg actcgtaatc tgtaattgct 3060 3120 tgttaatcaa taaaccgttt aattcgtttc agttgaactt tggtctctgc gaagggcgaa ttcgtttaaa cctgcaggac tagtcccttt agtgag 3156 170 <210> 3158 <211> <212> DNA <213> new AAV serotype, clone hu 161.10 <400> 170 gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt 60 cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120 aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgc ggaccagaaa 180 tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccaacatg 240 tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg 300 atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt caccaagcag 360 420 gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga gcatgaattc tacgtcaaaa agggtggagc taagaaaaga cccgcccca gtgacgcaga tataagtgag 480 cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc 540 aactacgcgg gcaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg 600 tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga 660 cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcgtcaaa 720 aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtqcc agacqcttqc 780 actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt 840 taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga 900 aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg 960 gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa 1020 cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa 1080 ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaaqtaca accacqccqa 1140 cgcggagttt caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacqaqc 1200 agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa 1260 aacggctccg ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc 1320 gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg 1380 agacgcagac tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg 1440 tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg 1500 tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga 1560 cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta 1620 caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac 1680 cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca 1740 aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa 1800 cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac 1860 cagcacggtt caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcgqc 1920 gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata 1980 cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta 2040 ctttccttct cagatgctgc gtaccggaaa caactttcaa ttcagctaca cttttgaaga 2100 cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct 2160

```
- ggtcgdccdg: tacttgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca
                                                                      2220
 gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg
                                                                      2280
 gctgcctgga ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa
                                                                      2340
 cagcaacttt ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt
                                                                      2400
 taatccagga ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca
                                                                      2460
 tggaaccctt atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt
                                                                      2520
 catgattaca gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg
                                                                      2580
 aactgtatca aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca
                                                                      2640
 ccaaggagcg ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat
                                                                      2700
 ttgggccaag attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt
                                                                      2760
 tggactcaaa cacccactc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc
                                                                      2820
 tcccacaaac ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca
                                                                      2880
 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga
                                                                      2940
 aattcagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa
                                                                      3000
 tggtgtgtat tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaatt
                                                                      3060
 gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc
                                                                      3120
 gaattcgttt aaacctgcag gactagtccc tttagtga
                                                                      3158
 <210>
        171
        3167
        DNA
        new AAV serotype, clone hu 172.1
 <400> 171
 attgaattta gcggccgcga attcgccctt cgcagagacc aaagttcaac tgaaacgaat
                                                                        60
 taaacggttt attgattaac aagcaattac agattacgag tcaggtacct gqtqccaatq
                                                                       120
 gggcgaggct ctgaatacac accattagtg tccacagtaa agtccacatt aacagatttg
                                                                       180
 ttgtagttgg aagtgtactg aatctcggga ttccagcgtt tgctgttctc cttctgcagc
                                                                       240
 tcccactcga tctccacgct gacctgcccc gtggagtact gtgtaatgaa ggaagcaaac
                                                                       300
 tttgccgcac tgaaggtagt cgaaggattc gcaggtaccg gggtgttctt gatgagaatc
                                                                       360
 tgcgggggag ggtgtttaag tccgaatccg cccatgaggg gagaggggtg aaaatgtccg
                                                                       420
 tccgtgtgtg gaatctttgc ccagatgggc ccctgcaggt acacgtctct gtcctgccac
                                                                       480
 accatgcctg gaagaacgcc ttgtgtgttg acatctgagg tagctgcttg tgtgttgccq
                                                                       540
 ctctggaggt tggtagatac agaaccatac tgctccgtag ccacgggatt ggtggtcctg
                                                                       600
 atttcctctt cgtctgtaat catgaccttt tcaatgtcca cattagtttt tcccgagtct
                                                                       660
 tgttttccaa agatgagaac cccgctctga ggaaaaaact tttcttcatc gtccttgtgg
                                                                       720
 ctggccatgg ccgggcccgg attcaccaga gagtctcttc cattaaggtg gtacttggta
                                                                       780
 gctccagtcc acgagtattc actgttgttg ttatccgcag atgtctttga tactcgctgc
                                                                       840
 tggcggtaac agggtccagg aagccagttc ctagactggt cccgaatgtc acttgctccg
                                                                       900
 gcctgagaaa actgaagcct tgactgcgtg gtggttccgc ttggagtgtt tgttctgctc
                                                                       960
 aagtaataca ggtactggtc gatgagagga ttcatgagac ggtccaaact ctggctgtgg
                                                                      1020
 gcgtagctgc tgtggaaagg aacgtcctca aaggtgtagc tgaaggtaaa gttgtttccq
                                                                      1080
 gtacgcagca tctgagaagg aaagtactcc aggcagtaaa atgaagagcg tcctactgcc
                                                                      1140
 tgactcccgt tgttcagggt gaggtatcca tactgtggca ccatgaagac gtctgctggg
                                                                      1200
 aacggcggga ggcatccttg atgcgccgag ccgaggacgt acgggagctg gtactccgag
                                                                      1260
 tcagtaaaca cctgaaccgt gctggtaagg ttattggcaa tcgtcgtcgt accgtcattc
                                                                      1320
 tgcgtgacct ccttgacttg aatgttaaag agcttgaagt tgagtctttt gggccggaat
                                                                      1380
 ccccaattgt tgttgatgag tctttgccag tcacgtggcg aaaagtggca gtggaatctg
                                                                      1440
 ttgaagtcaa aataccccca aggggtgctg tagccaaagt agtggttgtc gtttgaggct
                                                                      1500
```

```
"cdtgattggt "tggaaatctg cttgtagagg tggttgttgt aggtgggcag agcccaggtg
                                                                      1560
 cgggtgctgg tggtgatgac tctgtcgccc atccatgtgg aatcgcaatg ccaatttccc
                                                                      1620
 gaggaattac ccactccgtc ggcgccctcg ttattgtctg ccattggtgc gccactgcct
                                                                      1680
 gtagccatcg tattagttcc cagaccagag ggggctgctg gtggctgtcc gagaggctgg
                                                                      1740
 gggtcaggta cggagtctgc gtctccagtc tgaccgaaat tcaatctctt tcttgcaggc
                                                                      1800
 tgctggcccg cttttccggt tcccgaggag gagtctggct ccgcaggaga gtgctctacc
                                                                      1860
 ggcctctttt ttcccggagc cgtcttaaca ggttcctcaa ccaggcccag aggttcaaga
                                                                      1920
 accetettt tegeetggaa gaetgetegt eegaggttge eeccaaaaga egtatettet
                                                                      1980
 ttaagacgct cctggaactc cgcgtcggcg tggttgtact tggggtacgg gttgtctccg
                                                                      2040
 ctgtcgagct gccggtcgta ggccttgtcg tgctcgaggg ccgcggcgtc tgcctcgttg
                                                                      2100
 accggctctc ccttgtcgag tccgttgaag ggtccaaggt acttgtaccc aggaagcaca
                                                                      2160
 agacccctgc tgtcgtcctt atgccgctct gcgggctttg gtggtggtgg gccaggtttg
                                                                      2220
 agcttccacc actgtcttat tccttcagag agagtgtcct cgagccaatc tggaagataa
                                                                      2280
 ccatcggcag ccatacctga tttaaatcat ttattgttca gagatgcagt catccaaatc
                                                                      2340
 cacattgacc agatcgcaag cagtgcaagc gtctggcacc tttcccatga tatgatgaat
                                                                      2400
 gtagcacagt ttctgatacg cctttttgac gacagaaacg ggttgagatt ctgacacggg
                                                                      2460
 aaagcactct aaacagtctt tctgtccgtg agtgaagcag atatttgaat tctgattcat
                                                                      2520
 tctctcgcat tgtctgcagg gaaacagcat cagattcatg cccacgtgac gagaacattt
                                                                      2580
 gttttggtac ctgtccgcgt agttgattga agcttccgcg tctgacgtcg atggctgcgc
                                                                      2640
 aactgactcg cgcgcccgtt tgggctcact tatatctgcg tcactggggg cgggtctttt
                                                                      2700
 tttggctcca ccctttttga cgtagaattc atgctctacc tcaaccacgt gatcctttgc
                                                                      2760
 ccaccggaaa aagtctttga cttcctgctt ggtgaccttc ccaaagtcat gatccagacg
                                                                      2820
 gcgggtgagt tcaaatttga acatccggtc ttgcaacggc tgctggtgtt cgaaggtcgt
                                                                      2880
 tgagttcccg tcaatcactg cgcacatgtt ggtgttggag gtgacaatca cgggagtcgg
                                                                      2940
 gtctatctgg gccgaggact tgcatttctg gtccacgcgc accttgcttc ctccgagaat
                                                                      3000
 ggctttggcc gactccacga ccttggcggt catcttcccc tcctcccacc agatcaccat
                                                                      3060
 cttgtcgacg caatcattga aaggaaagtt ctcattggtc cagttgacgc agccgtagaa
                                                                      3120
 agggcgaatt cgtttaaacc tgcaggacta gtccctttag tgagggt
                                                                      3167
  <210>
        172
        3161
        DNA
        new AAV serotype, clone hu 172.2
 aattgaattt agcggccgcg aattcgccct tcgcagagac caaagttcaa ctgaaacqaa
                                                                        60
 ttaaacggtt tattgattaa caagcaatta cagattacga gtcaggtatc tggtgccaat
                                                                       120
 ggggcgaggc tctgaataca caccattagt gtccacagta aagtccacat taacagattt
                                                                       180
 gttgtagttg gaagtgtact gaatctcggg attccagcgt ttgctgttct ccttctgcag
                                                                       240
 ctcccactcg atctccacgc tgacctgccc cgtggagtac tgtgtaatga aggaagcaaa
                                                                       300
 ctttgccgca ctgaaggtag tcgaaggatt cgcaggtacc ggggtgttct tgatgagaat
                                                                       360
 ctgcggggga gggtgtttaa gtccgaatcc. gcccatgagg ggagaggggt gaaaatgtcc
                                                                       420
 gtccgtgtgt ggaatctttg cccagatggg cccctgcagg tacacgtctc tqtcctqcca
                                                                       480
 caccatgcct ggaagaacgc cttgtgtgtt gacatctgag gtagctgctt gtgtgttgcc
                                                                       540
 gctctggagg ttggtagata cagaaccata ctgctccgta gccacgggat tggtggtcct
                                                                       600
 gatttcctct tcgtctgtaa tcatgacctt ttcaatgtcc acattagttt ttcccgagtc
                                                                       660
 ttgttttcca aagatgagaa ccccgctctg aggaaaaaac ttttcttcat cgtccttgtg
                                                                       720
 gctggccatg gccgggcccg gattcaccag agagtctctt ccattaaggt ggtacttggt
                                                                       780
 agctccagtc cacgagtatt cactgttgtt gttatccgca gatgtctttg atactcgctg
                                                                       840
```

"ˈctggcggtäa cagggtccag	gaagccagtt	cctagactgg	tcccgaatgt	cacttgctcc	900
ggcctgagaa aactgaagcc					960
caagtaatac aggtactggt	cgacgagagg	attcatgaga	cggtccaaac	tctggctgtg	1020
ggcgtagctg ctgtggaaag	gaacgtcctc	aaaggtgtag	ctgaaggtaa	agttgtttcc	1080
ggtacgcagc atctgagaag	gaaagtactc	caggcagtaa	aatgaagagc	gtcctactgc	1140
ctgactcccg ttgttcaggg	tgaggtatcc	atactgtggc	accatgaaga	cgtctgctgg	1200
gaacggcggg aggcatcctt	gatgcgccga	gccgaggacg	tacgggagct	ggtactccga	1260
gtcagtaaac acctgaaccg	tgctggtaag	gttattggca	atcgtcgtcg	taccgtcatt	1320
ctgcgtgacc tccttgactt	gaatgttaaa,	gagcttgaag	ttgagtcttt	tgggccggga	1380
tccccaattg ttgttgatga	gtctttgcca	gtcacgtggc	gaaaagtggc	agtggaatct	1440
gttgaagtca aaataccccc	aaggggtgct	gtagccaaag	tagtggttgt	cgtttgaggc	1500
tcctgattgg ctggaaatct	gcctgtagag	gtggttgttg	taggtgggca	gagcccaggt	1560
gcgggtgctg gtggtgatga	ctctgtcgcc	catccatgtg	gaatcgcaat	gccaatttcc	1620
cgaggaatta cccactccgt	cggcgccctc	gttattgtct	gccattggtg	cgccactgcc	1680
tgtagccatc gtattagttc	ccagaccaga	gggggctgct	ggtggctgtc	cgagaggctg	1740
ggggtcaggt acggagtctg	cgtctccagt.	ctgaccgaaa	ttcaatctcc	ttcttgcagg	1800
ctgctggccc gcttttccgg	ttcccgagga	ggagtctggc	tccgcaagag	agtgctctac	1860
cggcctcttt tttcccggag	ccgtcttaac	aggttcctca	accaggccca	gaggttcaag	1920
aaccctcttt ttcgcctgga	agactgctcg	tccgaggttg	ccccaaaag	acgtatcttc	1980
tttaagacgc tcctggaact	ccgcgtcggc	gtggttgtac	ttgaggtacg	ggttgtctcc	2040
gccgtcgagc tgccggtcgt	aggccttgtc	gtgctcgagg	gccgcggcgt	ctgcctcgtt	2100
gaccggctct cccttgtcga	gtccgttgaa	gggtccaagg	tacttgtacc	caggaagcac	2160
aagacccctg ctgtcgtcct	tatgccgctc.	tgcgggcttt	ggtggtggtg	ggccaggttt	2220
gagcttccac cactgtctta	ttccttcaga	gagagtgtcc	tcgagccaat	ctggaagata	2280
accatcggca gccatacctg	atttaaatca	tttattgttc	agagatgcag	tcatccaaat	2340
ccacattgac cagatcgcaa	gcagtgcaag	cgtctggcac	ctttcccatg	atatgatgaa	2400
tgtagcacag tttctgatac	gcctttttga	cgacagaaac	gggttgagat	tctgacacgg	2460
gaaagcactc taaacagtct	ttctgtccgt	gagtgaagca	gatatttgaa	ttctgattca	2520
ttctctcgca ttgtctgcag	ggaaacagca	tcagattcat	gcccacgtga	cgagaacatt	2580
tgttttggta cctgtccgcg	tagttgattg	aagcttccgc	gtctgacgtc	gatggctgcg	2640
caactgactc gcgcgcccgt	ttgggctcac	ttatatctgc	gtcactgggg	gcgggtcttt	2700
ttttggctcc accctttttg	acgtagaatt	catgctctac	ctcaaccacg	tgatcctttg	2760
cccaccggaa aaagtctttg	acttcctgct	tggtgacctt	cccaaagtca	tgatccagac	2820
ggcgggtgag ttcaaatttg	aacatccggt	cttgcaacgg	ctgctggtgt	tcgaaggtcg	2880
ttgagttccc gtcaatcact	gcgcacatgt	tggtgttgga	ggtgacaatc	acgggagtcg	2940
ggtctatctg ggccgaggac	ttgcatttct	ggtccacgcg	caccttgctt	cctccgagaa	3000
tggctttggc cgactccacg	accttggcgg [*]	tcatcttccc	ctcctcccac	cagatcacca	3060
tcttgtcgac gcaatcattg	aaaggaaagt	tctcattggt	ccagttgacg	cagcaagggc	3120
gaattcgttt aaacctgcag	gactagtccc	tttagtgagg	g		3161
<210> 173 <211> 3172 <212> DNA <213> new AAV seroty	pe, clone hu	173.4			
<400> 173 gattgaattt agcggccgcg	aattcoccct	tactacates	actooaccaa	toagaacttt	60
cccttcaacg attgcgtcga					120
aaggtcgtgg agtccgccaa			-	-	180
aayyeeyeyy ayeeeyeeaa	Jaccareera	aaraanaa	"AA -A-A-A	-ar-rudad	100

Page 257

'tgcãaÿtcãt	čģgcccagat	cgaccccacg	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	tcgacgggaa	cagcaccacc	ttcgagcacc	agcagcccct	gcaggaccgc	300
atgttcaagt	tcgagctcac	ccgccgtctg	gagcacgact	ttggcaaggt	gaccaagcag	360
gaagtcaaag	agttcttccg	ctgggctcag	gatcacgtga	ctgaggtggc	gcatgagttc	420
tacgtcagaa	agggcggagc	caccaaaaga	cccgccccca	gtgacgcgga	tataagcgag	480
cccaagcggg	cctgcccctc	agttgcggag	ccatcgacgt	cagacgcgga	agcaccggtg	540
gactttgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
gtcagagact	gctcagagtg	cttccccggc	gcgtcggaat	ctcaacccgt	cgtcagaaaa	720
aagacgtatc	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
acttaaacca	ggtatggctg	ctgacggtta	tcttccagat	tggctcgagg	acaacctctc	900
tgagggcatt	cgcgagtggt	gggacctgaa	acctggagcc	cccaagccca	aggccaacca	960
gcagaagcag	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	1020
caacggactc	gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	1080
caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	1140
cgacgccgag	tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	1200
agcagtcttc	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaagctgc	1260
taagacggct	cctggaaaga	agagaccggt	agaaccgtca	cctcagcgtt	ccccgactc	1320
ctccgcgggc	atcggcaaga	aaggccagca	gcccgctaaa	aagagactga	actttggtca	1380
gactggcgac	tcagagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	1440
ctctggtctg	ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	1500
cgaaggcgcc	gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	1560
gggcgacaga	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	1620
cctctacaag	caaatatcca	atgggacatc	gggaggaagc	accaacgaca	acacctactt	1680
cggctacagc	acccctggg	ggtattttga	cttcaacaga	ttccactgcc	acttctcacc	1740
acgtgactgg	cagcgactca	tcaacaacaa	ctggggattc	cggccaaaaa	gactcagctt	1800
caagctcttc	aacatccagg	tcaaggaggt	cacgcagaat	gaaggcaccg	agaccatcgc	1860
caataacctt	accagcacga	ttcaggtatt	tacggactcg	gaataccagc	tgccgtacgt	1920
cctcggctcc	gcgcaccagg	gctgcctgcc	tccgttcccg	gcggacgtct	tcatgattcc	1980
ccagtacggc	taccttacac	tgaacaatgg	aagtcaagcc	gtaggccgtt	cctccttcta	2040
ctgcctggaa	tattttccat	ctcaaatgct	gcgaactgga	aacaattttg	aattcagcta	2100
caccttcgag	gacgtgcctt	tccacagcag	ctgcgcacac	agccagagct	cggaccgact	2160
gatgaatcct	ctcatcgacc	agtacctgta	ctacttatcc	agaactcggt	ccacaggagg	2220
aactcaaggt	acccagcaat	tgttattttc	tcaagctggg	cctgcaaaca	tgtcggctca	2280
ggctaagaac	tggctacctg	gaccttgcta	ccggcagcag	cgagtctcta	cgacactgtc	2340
gcaaaacaac	aacagcaact	ttgcttggac	tggtgccacc	aaatatcacc	tgaacggaag	2400
agactctttg	gtaaatcccg	gtgtcgccat	ggcaacccac	aaggacgacg	aggaacgctt	2460
cttcccgtcg	agtggagtcc	tgatgtttgg	aaaacagggt	gctggaagag	acaatgtgga	2520
ctacagcagc	gttatgctaa	ccagcgaaga	agaaattaaa	accactaacc	ctgtagccac	2580
agaacaatac	ggtgtggtgg	ctgacaactt	gcagcaaacc	aatacagggc	ctattgtggg	2640
aaatgtcaac	agccaaggag	ccttacctgġ	catggtctgg	cagaaccgag	acgtgtacct	2700
gcagggtccc	atctgggcca	agattcctca	cacggacggc	aacttccacc	cttcaccgct	2760
aatgggagga	tttggactga	agcacccacc	tcctcagatc	ctgatcaaga	acacgccggt	2820
acctgcggat	cctccaacaa	cgttcagcca	ggcgaaattg	gcttccttca	ttacgcagta	2880
cagcaccgga	caggtcagcg	tggaaatcga			acagcaaacg	2940
				Page 258		

	2000
ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc	3000
tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg	3060
taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc	3120
tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg	3172
<210> 174	
<211> 3159 <212> DNA	
<213> new AAV serotype, clone hu 161.8	
<400> 174 gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt	60
cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc	120
aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgt ggaccagaaa	180
tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccgacatg	240
tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg	300
atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttggggaaggt caccaagcag	360
gaagtcaaag actititccg gigggcaaag gatcacgigg tigaggigga gcatgaatic	420
tacgtcaaaa agggtggagc taagaaaaga cccgccccca gtgacgcaga tataagtgag	480
cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc	540
aactacgcgg acaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg	600
tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga	660
cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcgtcaaa	720
aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtgcc agacgcttgc	780
actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt	840
taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga	900
aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg	960
gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa	1020
cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa	1080
ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga	1140
cgcggagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc	1200
agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg aacctqttaa	1260
aacggctccg ggaaaaaaga ggccggtaga gcaccctcct gtggagccag actcctcctc	1320
gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg	1380
agacgcagac tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg	1440
totgggatot actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg	1500
tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga	1560
	1620
cagagitate accaccagea ecegeacity ggeecityce acciacaaca accaccita	
caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac	1680
cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca	1740
aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa	1800
cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac	1860
cagcacggtt caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1920
gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata	1980
cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta	2040
ctttccttct cagatgctgc gtaccggaaa caactttcag ttcagctaca cttttgaaga	2100
cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct	2160
gatcgaccag tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca	2220
gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaaccg	2280
Page 259	

					•	
gctgcctgga	ccttgctaca	gacagcagcg	tctgtcaaag	caggcaaacg	acaacaacaa	2340
cagcaacttt	ccctggaccg	cagctacaaa	gtatcatcta	aatggccggg	actcgttggt	2400
taatccagga	ccagctatgg	ccagtcacaa	ggatgacgaa	gaaaagtttt	tccccatgca	2460
tggaaccctt	atatttggta	aacaaggaac	aaatgccaac	gacgcggatt	tggaaaatgt	2520
catgattaca	gatgaagaag	aaatcaggac	caccaatccc	gtggctacgg	agcagtacgg	2580
aactgtatca	aataatttgc	aaaactcaaa	cactggtcca	actactggaa	ctgtcaatca	2640
ccaaggagcg	ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	2700
ttgggccaag	attcctcaca	ccgatggaca	ctttcatcct	tctccactgg	tgggaggttt	2760
tggactcaaa	cacccacctc	ctcaaatcat	gatcaaaaac	actcccgttc	cagccaatcc	2820
tcccacaaac	ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacggggca	2880
ggtcagcgtg	gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	2940
aattcagtac	acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	3000
tggtgtgtat	tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaatt	3060
gcttgttaat	caataaaccg	tttaattcgt	ttcagttgaa	ctttggtctc	tgcgaagggc	3120
gaattcgttt	aaacctgcag	gactagtccc	tttagtgag			3159
210 175						
<210> 175 <211> 3172	2	•				
<212> DNA <213> new	AAV seroty	oe, clone hu	173.8			
<400> 175		•				
		aattcgccct				60
cccttcaacg	attgcgtcga	caagatggtg	atctggtggg	aggagggcaa	gatgaccgcc	120
aaggtcgtgg	agtccgccaa	ggccattctg	ggtggaagca	aggtgcgcgt	ggaccaaaag	180
		cgaccccacg			_	240
tgcgccgtga	tcggcgggaa	cagcaccacc	ttcgagcacc	agcagcccct	gcaggaccgc	300
		ccgccgtctg				360
		ctgggctcag				420
tacgtcagaa	agggcggagc	caccaaaaga	cccgccccca	gtgacgcgga	tataagcgag	480
cccaagcggg	cctgcccctc	agttgcggag	ccatcgacgt	cagacgcgga	agcaccggtg	540
gactttgcgg	acaggtacca	aaac aaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
gtcagagact	gctcagagtg	cctccccggċ	gcgtcagaat	ctcaacccgt	cgtcagaaaa	720
aagacgtatc	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
		ctgacggtta	_			900
		gggacctgaa				960
		ggggtctggt				1020
		agcccgtcaa				1080
		tcaaagcggg				1140
		gtctgcaaga				1200
		agcgggttct				1260
		agagaccggt				1320
ctccacgggc	atcggcaaga	aaggccagca	gcccgctaaa	aagagactga	actttggtca	1380
gactggcgac	tcagagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	1440
ctctggtctg	ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	1500
cgaaggcgcc	gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	1560
9ggcgacaga	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	1620
				Page 260		

•	
cctctacaag caaatatcca atgggacatc gggaggaagc accaacgaca acacctactt	1680
cggctacagc accccctggg ggtattttga cttcaacaga ttccactgcc acttctcacc	1740
acgtgactgg cagcgactca tcaacaacaa ctggggattc cggccaaaaa gactcagctt	1800
caagctcttc aacatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc	1860
caataacctt accagcacga ttcaggtatt tacggactcg gaataccagc tgccgtacgt	1920
cctcggctcc gcgcaccagg gctgcctgcc tccgttcccg gcggacgtct tcatgattcc	1980
ccagtacggc taccttacac tgaacaatgg aagtcaagcc gtaggccgtt cctccttcta	2040
ctgcctggaa tattttccat ctcaaatgct gcgaactgga aacaattttg aattcagcta	2100
caccttcgag gacgtgcctt tccacagcgg ctacgcacac agccagagct tggaccgact	2160
gatgaatcct ctcatcgacc agtacctgta ctacttatcc agaactcagt ccacaggagg	2220
aactcaaggt acccagcaat tgttattttc tcaagctggg cctgcaaaca tgtcggctca	2280
ggctaagaac tggctacctg gaccttgcta ccggcagcag cgagtctcta cgacactgtc	2340
gcaaaacaac aacagcaact ttgcttggac tggtgccacc aaatatcacc tgaacggaag	2400
agactctttg gtaaatcccg gtgtcgccat ggcaacccac aaggacgacg aggaacgctt	2460
cttcccgtcg agtggagtcc tgatgtttgg aaaacagggt gctggaagag acaatgtgga	2520
ctacagcagc gttatgctaa ccagcgaaga agaaattaaa accactaacc ctgtagccac	2580
agaacaatac ggtgtgggtgg ctgacaactt gcagcaaacc aatacagggc ctattgtggg	2640
aaatgtcaac agccaaggag ccttacctgg catggtctgg cagaaccgag acgtgtacct	2700
gcagggtccc atctgggcca agattcctca cacggacggc aacttccacc cttcaccgct	2760
aatgggagga tttggactga agcacccacc tcctcagatc ctgatcaaga acacgccggt	2820
acctgcggat cctccaacga cgttcagcca ggcgaaattg gcttccttca ttacgcagta	2880
cagcaccgga caggtcagcg tggaaatcga gtgggagctg cagaaggaga acagcaaacg	2940
ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc	3000
tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg	3060
taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc	3120
tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg	3172
<210> 176 <211> 3160	
<212> DNA <213> new AAV serotype, clone hu 145.1	
<400> 176	
accetteact aaagggacta gteetgeagg tttaaacgaa ttegeeettg etgegteaac	60
tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag	120
gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag	180
gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc	240
acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag	300
cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt	360
gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt	420
gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgcccctagt	480
gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca	540
gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg	600
ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat	660
atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa	720
cctgtttctg tcgtcaaaaa ggcgtatcag aaactgtgct acattcatca tatcatggga	780
aaggtgccag acgcttgcac tgcctgcgat ctggtcaatg tggatttgga tgactgcatc	840
tctgaacaat aaatgattta aatcaggtat ggctgccgat ggttatcttc cagattggct	900

accaaagccc gcagagcggc ataaggacga cagcaggggt cttgtgcttc ctgggtacaa	1020
gtacctcgga cccttcaacg gactcgacaa gggagagccg gtcaacgagg cagacgccgc	1080
ggccctcgag cacgacaagg cctacgaccg gcagctcgac agcggagaca acccgtacct	1140
caagtacaac cacgccgacg cggagtttca ggagcgtctt aaagaagata cgtcttttgg	1200
gggcaacctc ggacgagcag tcttccaggc gaaaaagagg gttcttgaac ctctgggcct	1260
ggttgaggaa cctgttaaga cggctccggg aaaaaagagg ccggtagagc actctcctgc	1320
ggagccagac tcctcctcgg gaaccggaaa agcgggccag cagcctgcaa gaaaaagact	1380
gaatttcggt cagactggag acgcagactc cgtacctgac ccccagcctc tcagacagcc	1440
accagcagcc cccacaagtt tgggatctac tacaatggct acaggcagtg gcgcaccaat	1500
ggcagacaat aacgagggtg ccgatggagt gggtaattcc tcaggaaatt ggcattgcga	1560
ttcccaatgg ctgggcgaca gagtcatcac caccagcacc cgaacctggg ccctgcccac	1620
ctacaacaac cacctttaca agcaaatctc cagccaatca ggagcctcaa acgacaacca	1680
ctactttggc tacagcaccc cctgggggta ttttgacttc aacagattcc actgccactt	1740
ttcaccacgt gactggcaaa gactcatcaa caacaactgg ggattccgac ccaagagact	1800
caacttcaag ctctttaaca ttcaagtcaa agaggtcacg cagaatgacg gtacgacgac	1860
gattgccaat aaccttacca gcacggttca ggtgtttact gactcggagt accagctccc	1920
gtacgtcctc ggctcggcgc atcaaggatg cctcccgccg tttccagcgg acgtcttcat	1980
ggtcccacag tatggatacc tcaccctgaa caacgggagt caggcggtag gacgctcttc	2040
cttttactgc ctggagtact ttccttctca gatgctgcgt actggaaaca actttcagtt	2100
Cagctacact tttgaagacg tgcctttcca cagcagctac gctcacagcc agagtttgga	2160
tcggctgatg aatcctctga tcgaccagta cctgtattat ctaaacagaa cacaaacagc	2220
tagtggaact cagcagtctc ggctactgtt tagccaagct ggacccacaa gcatgtctct	2280
tcaagctaaa aactggctgc ctggaccgtg ttatcgccag cagcgtttgt caaagcaggc	2340
aaacgacaac aacaacagca actttccctg gactggagct accaagtact acctcaatgg	2400
cagagactct ttggtgaacc cgggcccggc catggccagc cacaaggacg atgaagaaaa	2460
gtttttcccc atgcatggaa ccctaatatt tggtaaagaa ggaacaaatg ctaccaacgc	2520
ggaattggaa aatgtcatga ttacagatga agaggaaatc aggaccacca atcccgtggc	2580
tacagagcag tacggatatg tgtcaaataa tttgcaaaac tcaaatactg ctgcaagtac	2640
tgaaactgtg aatcaccaag gagcattacc tggtatggtg tggcaggatc gagacgtgta	2700
cctgcaggga cccatttggg ccaagattcc tcacaccgat ggacactttc atccttctcc	2760
actgatggga ggttttggac tcaaacaccc gcctcctcag attatgatca aaaacactcc	2820
cgttccagcc aatcctccca caaacttcag ttctgccaag tttgcttcct tcatcacaca	2880
gtattccacg ggacaggtca gcgtggagat cgagtgggag ctgcagaagg agaacagcaa	2940
acgctggaat cccgaaattc agtacacttc caactacaac aaatctgtta atgtggactt	3000
tactgtggac actaatggtg tgtattcaga gcctcgcccc attggcacca gatacctgac	3060
tcgtaatctg taattgcttg ttaatcaata aaccgtttaa ttcgtttcag ttgaactttg	3120
gtctctgcga agggcgaatt cgcggccgct aaatcaatcg	3160
310 137	
<210> 177 <211> 3157 <212> DNA <213> new AAV serotype, clone hu 145.5	
<400> 177	
ctcactaagg gactagtcct gcaggtttaa acgaattcgc ccttgctgcg tcaactggac	60
caatgagaac tttcccttca acgactgtgt cgacaagatg gtgatttggt gggaggaggg	120
gaagatgacc gccaaggtcg tggagtcggc caaagccact ctcggaggaa gcaaggtgcg	180
cgtggaccag aaacgcaagt cctcggccca gatagatccg actcccgtga tcgtcacctc	240
caacaccaac atgtgcgccg tgattgacgg gaactcaacg accttcgaac accagcagcc	300

gttgcaagac	cgaatgttca	aatttgaact	cacccgccgt	ctggatcatg	acttcgggaa	360
ggtcaccaag	caggaagtca	aagactttt	ccggtgggca	aaggatcacg	tggttgaggt	420
ggagcatgaa	ttctacgtca	aaaagggtgg	agccaagaaa	agacccgccc	ctagtgacgc	480
agatataagt	gagcccaaac	gggtgcgcga	gtcagttgcg	cagccatcga	cgtcagacgc	540
ggaagcttcg	atcaactacg	cggacaggta	ccaaaacaaa	tgttctcgtc	acgtgggcat	600
gaatctgatg	ctgtttccct	gcagacaatg	cgagagaatg	aatcaaaatt	caaatatctg	660
cttcactcac	ggacagaaag	actgtttaga	gtgctttccc	gtgtcagaat	ctcaacctgt	720
ttctgtcgtc	aaaaaggcgt	atcagaaact	gtgctacatt	catcatatca	tgggaaaggt	780
gccagacgct	tgcactgcct	gcgatctggt	caatgtggat	ttggatgact	gcatctctga	840
acaataaatg	atttaaatca	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	900
acactctctc	tgaaggaata	agacagtggt	ggaagctcaa	acctggccca	ccaccaccaa	960
agcccgcaga	gcggcataag	gacgacagca	ggggtcttgt	gcttcctggg	tacaagtacc	1020
tcggaccctt	caacggactc	gacaagggag	agccggtcaa	cgaggcagac	gccgcggctc	1080
tcgagcacga	caaggcctac	gaccggcagc	tcgacagcgg	agacaacccg	tacctcaagt	1140
acaaccacgc	cgacgcggag	tttcaggagc	gtcttaaaga	agatacgtct	tttgggggca	1200
acctcggacg	agcagtcttc	caggcgaaaa	agagggttct	tgaacctctg	ggcctggttg	1260
aggaacctgt	taagacggct	ccgggaaaaa	agaggccggt	agagcactct	cctgcggagc	1320
cagactcctc	ctcgggaacc	ggaaaagcgg	gccagcagcc	tgcaagaaaa	agactgaatt	1380
tcggtcagac	tggagacgca	gactccgtac	ctgaccccca	gcctctcgga	cagccaccag	1440
cagcccccac	aagtttggga	tctactacaa	tggctacagg	cagtggcgca	ccaatggcag	1500
acaataacga	gggtgccgat	ggagtgggta	attcctcagg	aaattggcat	tgcgattccc	1560
aatggctggg	cgacagagtc	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	1620
acaaccacct	ttacaagcaa	atctccagcc	aatcaggagc	ctcaaacgac	aaccactact	1680
ttggctacag	caccccctgg	gggtattttg	acttcaacag	attccactgc	cgcttttcac	1740
cacgtgactg	gcaaagactc	atcaacaaca	actggggatt	ccgacccaag	agactcaact	1800
tcaagctctt	taacattcaa	gtcaaagagg	tcacgcagaa	tgacggtacg	acgacgattg	1860
ccaataacct	taccagcacg	gttcaggtgt	ttactgactc	ggagtaccag	ctcccgtacg	1920
tcctcggctc	ggcgcatcaa	ggatgcctcc	cgccgtttcc	agcggacgtc	ttcatggtcc	1980
cacagtatgg	atacctcacc	ctgaacaacg	ggagtcaggc	ggtaggacgc	tcttcctttt	2040
actgcctgga	gtactttcct	tctcagatgc	tgcgtactgg	aaacaacttt	cagttcagct	2100
acacttttga	agacgtgcct	ttccacagca	gctacgctca	cagccagggt	ttggatcggc	2160
tgatgaatcc	tctgatcgac	cagtacctgt	attatctaaa	cagaacacaa	acagctagtg	2220
gaactcagca	gtctcggcta	ctgtttagcc	aagctggacc	cacaagcatg	tctcttcaag	2280
ctaaaaactg	gctgcctgga	ccgtgttatc	gccagcagcg	tttgtcaaag	caggcaaacg	2340
acaacaacaa	cagcaacttt	ccctggactg	gagctaccaa	gtaccacctc	aatggcggag	2400
actctttggt	gaacccgggc	ccggccatgg	ccagccacaa	ggacgatgaa	gaaaagtttt	2460
tccccatgca	tggaacccta	atatttggta	aagaaggaac	aaatgctacc	aacgcggaat	2520
tggaaaatgt	catgattaca	gatgaagaġg	aaatcaggac	caccaatccc	gtggctacag	2580
agcagtacgg	atatgtgtca	aataatttgc	aaaactcaaa	tactgctgca	agtactgaaa	2640
ctgtgaatca	ccaaggagca	ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	2700
ggggacccat	ttgggccaag	attcctcacg	ccgatggaca	ctttcatcct	tctccactga	2760
tgggaggttt	tggactcaaa	cacccgcctc	ctcagattat	gatcaaaaac	actcccgttc	2820
cagccaatcc	tcccacaaac	ttcagttctg	ccaagtttgc	ttccttcatc	acacagtatt	2880
	ggtcagcgtg	_				2940
ggaatcccga	aattcagtac	acttccaact	acaacaaatc	tgttaatgtg	gactttactg	3000

ˈˈtggˈacacttaa tgˈgʻtgtgtatt tcagagcctc gccccattgg caccagatac ctgactcgta	3060
atctgtaatt gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc	3120
tgcgaagggc gaattcgcgg ccgctaaatt caattcg	3157
<210> 178 <211> 3163 <212> DNA <213> new AAV serotype, clone hu 145.6	
<213> new AAV serotype, clone hu 145.6 <400> 178	
accetcacta aagggactag tectgeaggt ttaaacgaat tegecettge tgegteaact	60
ggagcaatga gaactttccc ttcaacgact gtgtcgacaa gatggtgatt tggtgggagg	120
aggggaagat gaccgccaag gtcgtggagt cggccaaagc cattctcgga ggaagcaagg	180
tgcgcgtgga ccagaaatgc aagtcctcgg cccagataga tccgactccc gtgatcgtca	240
cctccaacac caacatgtgc gccgtgattg acgggaactc aacgaccttc gaacaccagc	300
agccgttgca agaccggatg ttcaaatttg aactcacccg ccgtctggat catgactttg	360
ggaaggtcac caagcaggaa gtcaaagact ttttccggtg ggcaaaggat cacgtggttg	420
aggtggagca tggattctac gtcaaaaagg gtggagccaa gaaaagaccc gcccctagtg	480
acgcagatat aagtgagccc aaacgggtgc gcgagtcagt tgcgcagcca tcgacgtcgg	540
acgcggaagc ttcgatcaac tacgcggaca ggtaccaaaa caaatgttct cgtcacgtgg	600
gcatgaatct gatgctgttt ccctgcagac aatgcgagag aatgaatcaa aattcaaata	660
tctgcttcac tcacggacag aaagactgtt tagagtgctt tcccgtgtca gaatctcaac	720
ctgtttctgt cgtcaaaaag gcgtatcaga aactgcgcta cattcatcat atcatgggaa	780
aggtgccaga cgcttgcact gcctgcgatc tggtcaatgt ggatttggat gactgcatct	840
ctgaacaata aatgatttaa atcaggtatg gctgccgatg gttatcttcc agattggctc	900
gaggacactc tctctgaagg aataagacag tggtggaagc tcaaacctgg cccaccacca	960
ccaaagcccg cagagcggca taaggacgac agcaggggtc ttgtgcttcc tgggtacaag	1020
tacctcggac ccttcaacgg actcgacaag ggagagccgg tcaacgaggc agacgccgcg	1080
gccctcgagc acgacaaggc ctacgaccgg cagctcgaca gcggagacaa cccgtacctc	1140
aagtacaacc acgccgacgc ggagtttcag gagcgtctta aagaagatac gtcttttggg	1200
ggcaacctcg gacgagcagt cttccaggcg aaaaagaggg ttcttgaacc tctgggcctg	1260
gttgaggaac ctgttaagac ggctccggga aaaaagaggc cggtagagca ctctcctgcg	1320
gagccagact cctcctcggg aaccggaaaa gcgggccagc agcctgcaag aaaaagactg	1380
aatttcggtc agactggaga cgcagactcc gtacctgacc cccagcctct cggacagcca	1440
ccagcagccc ccacaagttt gggatctact acaatggcta caggcagtgg cgcaccaatg	1500
gcagacaata acgagggtgc cgatggagtg ggtaattcct caggaaattg gcattgcgat	1560
tcccaatggc tgggcgacag agtcatcacc accagcaccc gaacctgggc cctgcccacc	1620
tacaacaacc acctttacaa gcaaatctcc agccaatcag gagcctcaaa cgacaaccac	1680
tactttggct acagcacccc ctgggggtat tttgacttca acagattcca ctgccacttt	1740
tcaccacgtg actggcaaag actcatcaac aacaactggg gattccgacc caagagactc	1800
aacticaagc tetttaacat teaagteaaa gaggteacge agaatgaegg taegaegaeg	1860
attgccaata accttaccag cacggttcag gtgtttactg actcggagta ccagctcccg	1920
tacgtcctcg gctcggcgca tcaaggatgc ctcccgccgt ttccagcgga cgtcttcatg	1980
gtcccacagt atggatacct caccctgaac aacgggagtc aggcggtagg acgctcttcc	2040
ttttactgcc tggagtgctt tccttctcag atgctgcgta ctggaaacaa ctttcagttc	2100
agctacactt ttgaagacgt gcctttccac agcagctacg ctcacagcca gagtttggat	2160
cggctgatga atcctctgat cgaccagtac ctgtattatc taaacagaac acaaacagct	2220
agtggaactc agcagtctcg gctactgttt agccaagctg gacccacaag catgtctctt	2280
caagctaaaa actggctgcc tggaccgtgt tatcgccagc agcgtttgtc aaagcaggca	2340
J	2370

```
aacgacaaca acaacagcaa ctttccctgg actggagcta ccaagtacca cctcaatggc
                                                                     2400
 agagactett tggtgaacce gggeeeggee atggeeagee acaaggaega tgaagaaaag
                                                                    2460
 tttttcccca tgcatggaac cctaatattt ggtaaagaag gaacaaatgc taccaacgcg
                                                                    2520
                                                                    2580
 gaattggaaa atgtcatgat tacagatgaa gaggaaatca ggaccaccaa tcccgtggct
 acagagcagt acggatatgt gtcaaataat ttgcaaaact caaatactgc tgcaagtact
                                                                    2640
 gaaactgtga atcaccaagg agcattacct ggtatggtgt ggcaggatcg agacgtgtac
                                                                     2700
 ctgcagggac ccatttgggc caagattcct cacaccgatg gacactttca tccttctca
                                                                    2760
 ctgatgggag gttttggact caaacacccg cctcctcaga ttatgatcaa aaacactccc
                                                                    2820
 gttccagcca atcctcccac aaacttcagt tctgccaagt ttgcttcctt catcacacag
                                                                    2880
 tattccacgg gacaggtcag cgtggagatc gagtgggagc tgcagaagga gaacagcaaa
                                                                    2940
 cgctggaatc ccgaaattca gtacacttcc aactacaaca aatctgttaa tgtggacttt
                                                                     3000
 actgtggaca ctaatggtgt gtattcagag cctcgcccca ttggcaccag atacctgact
                                                                     3060
 cgtaatctgt aattgcttgt taatcaataa accgtttaat tcgtttcagt tgaactttgg
                                                                     3120
 3163
 <210>
        179
        3161
        DNA
       new AAV serotype, clone hu 156.1
 <213>
 <400>
       179
 cgaattgatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga
                                                                       60
 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa
                                                                     120
 tggggcgagg ctctgaatac acaccattag tgtccacagt aaagtccaca ttaacagatt
                                                                     180
 tgttgtagtt ggaagtgtac tggatctcgg gattccagcg tttgctgttc tccttctgta
                                                                     240
 gctcccactc gatctccacg ctgacccgcc ccgtggaata ctgtgtgatg aaggaagcaa
                                                                     300
 actittgccgc actgaaggtg gtcgaaggat tcgcaggtac cggggtgttt ttgatqaqaa
                                                                     360
 tctgtggagg agggtgttta agtccgaatc cgcccatgag gggagagggg tgaaaatgtc
                                                                     420
 cgtccgtgtg cggaatcttt gcccagatag gcccctgcag gtacacgtct ctgtcctgcc
                                                                     480
 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc agtagatgct tgtgttgc
                                                                     540
 cgctctggag gttggtagat acagaaccat actgctccgt ggccacggga ttggtggttc
                                                                     600
 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgatc
                                                                     660
 cttgttttcc aaagatgaga accccgctct gaggaaaaaa cttttcttca tcgtccttgt
                                                                     720
 ggctggccat tgccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg
                                                                     780
 tagctccaat ccacgagtat tcactgttgt tgttgtccgc agatgtcttt gatactcgct
                                                                     840
 gctggcggta acagggtcca ggaagccagt tcctagactg atcccgaatg tcactcgctc
                                                                     900
 cggcctgaga aaactgaagc ctggactgcg tggtggttcc gcttggagtg tttqttctqc
                                                                     960
 tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaaa ctctggctgt
                                                                    1020
 gagcgtagct gctgtggaaa ggaacatcct caaaggtgta gctgaaggta aagttgtttc
                                                                    1080
 cggtacgcag catctgagaa gggaagtact ccaggcagta aaatgaagag cgtcctactg
                                                                    1140
 cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctg
                                                                    1200
 ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg
                                                                    1260
 agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccatcat
                                                                    1320
 tctgcgtgac ctctctgact tgaatgttaa agagcttgaa gttgagtctc ttgggccgga
                                                                    1380
 atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc
                                                                    1440
 tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtggttg tcgttgctgg
                                                                    1500
 ctcctgattg gctggaaatc tgcttgtaca gatggttgtt gtaggtgggc agagcccagg
                                                                    1560
 ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc
                                                                    1620
 ccgaggaatt acccactccg tcggcgccat cgttattgtc tgccattggt gcgccactgc
                                                                    1680
```

```
ctgtagccat cgaattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct
                                                                     1740
gggggtcagg tacggagtct gcgtctccag tctgaccgaa attcaatctc tttcttgcag
                                                                     1800
gctggttgcc cgcttttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta
                                                                     1860
ccggcctctt ttttcccgga gccgtcttaa caggctcctc aaccaggccc agaggttcaa
                                                                     1920
gaaccctctt ttttgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt
                                                                     1980
ctttaaggcg ctcctgaaac tccgcgtcgg cgtggtcgta cttgaggtac gggttgtctc
                                                                     2040
cgctgtcgag ctgccggtcg taggccttgt cgtgctcgag ggccgcggcg tctgcctcgt
                                                                     2100
tgaccggctc tcccttgtcg agtccgttga agggtccgag gtacttgtac ccaggaagca
                                                                     2160
caagacccct gctgtcgtcc ttatgccgct ctgcgggctt tggtggtggt gggccaggtt
                                                                     2220
tgagcttcca ccactgtctt attccttcag agagagtgtc ctcgagccaa tctggaagat
                                                                     2280
aaccatcggc agccatacct gatttaaatc atttattgtt cagagatgca gtcatccaaa
                                                                     2340
tccacattga ccagatcgca ggcagtgcaa gcgtctggca cctttcccat gatatgatga
                                                                     2400
atgtagcaaa gtttctgata cgcctttttg acgacagaaa cgggttgaga ttctgacacg
                                                                     2460
ggaaagcact ctaaacagtc tttctgtccg tgagtgaagc agatatttga attctgattc
                                                                     2520
attctctcgc attgtctgca gggaaacagc atcagattca tgcccacgtg acgagaacat
                                                                     2580
ttgttttggt acctgtccgc gtagttgatc gaagcttccg cgtctgacgt cgatggctgc
                                                                     2640
gcaactgact cgcgcgcccg tttgggctca cttatatctg cgtcactggg ggcgggtctt
                                                                     2700
ttcttggctc caccetttt gacgtagaat tcatgeteca ceteaaceae gtgateettt
                                                                     2760
gcccaccgga aaaagtcttt cacttcctgc ttggtgacct tcccaaagtc atgatccaga
                                                                     2820
cggcgggtta gttcaaattt gaacatccgg tcttgcaacg gctgctggtg ttcgaaggtc
                                                                     2880
gttgagttcc cgtcaatcac ggcgcacatg ttggtgttgg aggtggcgat cacgggagtc
                                                                     2940
gggtctatct gggccgagga cttgcacttt tggtccacgc gcaccttgct tcctccgaga
                                                                     3000
atggcttcgg ccgattccac gaccttggcg gtcatctttc cctcctccca ccagatcacc
                                                                     3060
atcttgtcga cacagtcgtt gaagggaaag ttctcattgg tccagttgac gcagcaaggg
                                                                     3120
cgaattcgtt taaacctgca ggaactagtc ccttagtgag g
                                                                     3161
<210>
      180
<211>
       4721
      DNA
<213> adeno-associated virus serotype 7
ttggccactc cctctatgcg cgctcgctcg ctcggtgggg cctgcggacc aaaggtccgc
                                                                       60
agacggcaga gctctgctct gccggcccca ccgagcgagc gagcgcgcat agagggagtg
                                                                      120
gccaactcca tcactagggg taccgcgaag cgcctcccac gctgccgcgt cagcgctgac
                                                                      180
gtaaatcacg tcatagggga gtggtcctgt attagctgtc acgtgagtgc ttttgcgaca
                                                                      240
ttttgcgaca ccacgtggcc atttgaggta tatatggccg agtgagcgag caggatctcc
                                                                      300
attttgaccg cgaaatttga acgagcagca gccatgccgg gtttctacga gatcgtgatc
                                                                      360
aaggtgccga gcgacctgga cgagcacctg ccgggcattt ctgactcgtt tgtgaactgg
                                                                      420
gtggccgaga aggaatggga gctgcccccg gattctgaca tggatctgaa tctgatcgag
                                                                      480
caggcacccc tgaccgtggc cgagaagctg cagcgcgact tcctggtcca atggcgccgc
                                                                      540
gtgagtaagg ccccggaggc cctgttcttt gttcagttcg agaagggcga gagctacttc
                                                                      600
caccttcacg ttctggtgga gaccacgggg gtcaagtcca tggtgctagg ccgcttcctg
                                                                      660
agtcagattc gggagaagct ggtccagacc atctaccgcg gggtcgagcc cacgctgccc
                                                                      720
aactggttcg cggtgaccaa gacgcgtaat ggcgccggcg gggggaacaa ggtggtggac
                                                                      780
gagtgctaca tccccaacta cctcctgccc aagacccagc ccgagctgca gtgggcgtgg
                                                                      840
actaacatgg aggagtatat aagcgcgtgt ttgaacctgg ccgaacgcaa acggctcgtg
                                                                      900
gcgcagcacc tgacccacgt cagccagacg caggagcaga acaaggagaa tctgaacccc
                                                                      960
aattctgacg cgcccgtgat caggtcaaaa acctccgcgc gctacatgga gctggtcggg
                                                                     1020
```

WO 2005/033321					PCT/US2004/028817
"tgg៓ctgg៓tgg" accggggcät	cacctccgag	aagcagtgga	tccaggagga	ccaggcctcg	1080
tacatctcct tcaacgccgc	ctccaactcg	cggtcccaga	tcaaggccgc	gctggacaat	1140
gccggcaaga tcatggcgct	gaccaaatcc	gcgcccgact	acctggtggg	gccctcgctg	1200
cccgcggaca ttaaaaccaa	ccgcatctac	cgcatcctgg	agctgaacgg	gtacgatcct	1260
gcctacgccg gctccgtctt	tctcggctgg	gcccagaaaa	agttcgggaa	gcgcaacacc	1320
atctggctgt ttgggcccgc	caccaccggc	aagaccaaca	ttgcggaagc	catcgcccac	1380
gccgtgccct tctacggctg		-			1440
gtcgacaaga tggtgatctg					1500
gccaaggcca ttctcggcgg					1560
cagatcgacc ccacccccgt					1620
gggaacagca ccaccttcga					1680 1740
ctcacccgcc gtctggagca					1800
ttccgctggg ccagtgatca			-		1860
ggagccagca aaagacccgc ccctcagtcg cggatccatc					1920
aggtaccaaa acaaatgttc	_				1980
acgtgcgaga gaatgaatca					· 2040
ttagagtgtt tccccggcgt		_		•	2100
aaactctgcg cgattcatca			_		2160
gacctggtca acgtggacct				•	2220
tatggctgcc gatggttatc	ttccagattg	gctcgaggac	aacctctctg	agggcattcg	2280
cgagtggtgg gacctgaaac	ctggagcccc	gaaacccaaa	gccaaccagc	aaaagcagga	2340
caacggccgg ggtctggtgc	ttcctggcta	caagtacctc	ggacccttca	acggactcga	2400
caagggggag cccgtcaacg	cggcggacgc	agcggccctc	gagcacgaca	aggcctacga	2460
ccagcagctc aaagcgggtg	acaatccgta	cctgcggtat	aaccacgccg	acgccgagtt	2520
tcaggagcgt ctgcaagaag	atacgtcatt	tgggggcaac	ctcgggcgag	cagtcttcca	2580
ggccaagaag cgggttctcg	aacctctcgg	tctggttgag	gaaggcgcta	agacggctcc	2640
tgcaaagaag agaccggtag	agccgtcacc	tcagcgttcc	cccgactcct	ccacgggcat	2700
cggcaagaaa ggccagcagc	ccgccagaaa	gagactcaat	ttcggtcaga	ctggcgactc	2760
agagtcagtc cccgaccctc	aacctctcgg	agaacctcca	gcagcgccct	ctagtgtggg	2820
atctggtaca gtggctgcag	gcggtggcgc	accaatggca	gacaataacg	aaggtgccga	2880
cggagtgggt aatgcctcag					2940
cattaccacc agcacccgaa				-	3000
aatctccagt gaaactgcag		_		_	3060 3120
ctgggggtat tttgacttta actcatcaac aacaactggg					3180
ccaggtcaag gaggtcacga	•				3240
cacgattcag gtattctcgg				_	3300
ccagggctgc ctgcctccgt					3360
gactctcaac aatggcagtc					3420
cccctctcag atgctgagaa		_	-		3480
gcctttccac agcagctacg					3540
cgaccagtac ttgtactacc	tggccagaac	acagagtaac	ccaggaggca	cagctggcaa	3600
tcgggaactg cagttttacc	agggcgggcc	ttcaactatg	gccgaacaag	ccaagaattg	3660
gttacctgga ccttgcttcc	ggcaacaaag	agtctccaaa	acgctggatc	aaaacaacaa	3720
cagcaacttt gcttggactg	gtgccaccaa		aacggcagaa	actcgttggt	3780

taatcccggc gtcgccatgg caactcacaa ggacgacgag gaccgctttt tcccatccag 3840 cggagtcctg attttggaa aaactggagc aactaacaaa actacattgg aaaatgtgtt 3900 aatgacaaat gaagaagaaa ttcgtcctac taatcctgta gccacggaag aatacgggat 3960 agtcagcagc aacttacaag cggctaatac tgcagcccag acacaagttg tcaacaacca 4020 gggagcctta cctggcatgg tctggcagaa ccgggacgtg tacctgcagg gtcccatctg 4080 ggccaagatt cctcacacgg atggcaactt tcacccgtct cctttgatgg gcggctttgg 4140 acttaaacat ccgcctcctc agatcctgat caagaacact cccgttcccg ctaatcctcc 4200 ggaggtgttt actcctgcca agtttgcttc gttcatcaca cagtacagca ccggacaagt 4260 cagcgtggaa atcgagtggg agctgcagaa ggaaaacagc aagcgctgga acccggagat 4320 tcagtacacc tccaactttg aaaagcagac tggtgtggac tttgccgttg acagccaggg 4380 tgtttactct gagcctcgcc ctattggcac tcgttacctc acccgtaatc tgtaattgca 4440 tgttaatcaa taaaccggtt gattcgtttc agttgaactt tggtctcctg tgcttcttat 4500 cttatcggtt tccatagcaa ctggttacac attaactgct tgggtgcgct tcacgataag 4560 4620 aacactgacg tcaccgcggt acccctagtg atggagttgg ccactccctc tatgcgcgct cgctcgctcg gtggggcctg cggaccaaag gtccgcagac ggcagagctc tgctctgccg 4680 4721 gccccaccga gcgagcgagc gcgcatagag ggagtggcca a

<210> 181

<212> PRT
<213> capsid protein of adeno-associated virus serotpye 7

<400> 181

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro

Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro 45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro $50 ext{ } 60$

Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80

Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160

Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly 195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 455 460 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Page 269

565

570

575

 Glu
 Tyr
 Gly
 Sle
 val
 ser
 ser
 Asn
 Leg
 Gln
 Ala
 Ala
 Asn
 Tyr
 Ala
 Ala
 Asn
 Syn
 Ala
 Leu
 Pro
 Gly
 Met
 Val
 Trp

 Gln
 Asn
 Arg
 Asn
 Yal
 Tyr
 Leu
 Gln
 Gly
 Pro
 Ile
 Trp
 Ala
 Lys
 Ile
 Pro
 Gly
 Ala
 Lys
 Ila
 Lys
 Ala
 Lys
 Ila

Leu

<400> 182 cagagaggga gtggccaact ccatcactag gggtagcgcg aagcgcctcc cacgctgccg 60 cgtcagcgct gacgtaaatt acgtcatagg ggagtggtcc tgtattagct gtcacgtgag 120 tgcttttgcg gcattttgcg acaccacgtg gccatttgag gtatatatgg ccgagtgagc 180 gagcaggatc tccattttga ccgcgaaatt tgaacgagca gcagccatgc cgggcttcta 240 cgagatcgtg atcaaggtgc cgagcgacct ggacgagcac ctgccgggca tttctqactc 300 gtttgtgaac tgggtggccg agaaggaatg ggagctgccc ccggattctg acatggatcg 360 gaatctgatc gagcaggcac ccctgaccgt ggccgagaag ctgcagcgcg acttcctggt 420 ccaatggcgc cgcgtgagta aggccccgga ggccctcttc tttgttcagt tcgagaaggg 480 cgagagctac tttcacctgc acgttctggt cgagaccacg ggggtcaagt ccatggtgct 540 aggccgcttc ctgagtcaga ttcgggaaaa gcttggtcca gaccatctac ccgcggggtc 600 gagccccacc ttgcccaact ggttcgcggt gaccaaagac gcggtaatgg cgccggcggg 660 ggggaacaag gtggtggacg agtgctacat ccccaactac ctcctgccca agactcagcc 720 cgagctgcag tgggcgtgga ctaacatgga ggagtatata agcgcgtgct tgaacctggc 780 cgagcgcaaa cggctcgtgg cgcagcacct gacccacgtc agccagacgc aggagcagaa 840 caaggagaat ctgaacccca attctgacgc gcccgtgatc aggtcaaaaa cctccgcgcg 900 ctatatggag ctggtcgggt ggctggtgga ccggggcatc acctccgaga agcagtggat 960 ccaggaggac caggcctcgt acateteett caacgccgcc tecaactege ggtcccagat 1020 caaggccgcg ctggacaatg ccggcaagat catggcgctg accaaatccg cgcccgacta 1080

cctggtgggg ccctcgctgc ccgcggacat tacccagaac cgcatctacc gcatcctcgc

1140

<210> 182 <211> 439 <212> DNA

<212> DNA <213> adeno-associated virus serotype 8

	's' Bon Bott Man man s.				
	ićcťťġ"ťċťťáčijċćgg				1200
_	acacca tctggctgtt			_	1260
	ccacg ccgtgccctt				1320
	ittgcg tcgacaagat				1380
	agtccg ccaaggccat				1440
aaagtgcaag tcgtc	cgccc agatcgaccc	. cacccccgtg	atcgtcacct	ccaacaccaa	1500
catgtgcgcc gtgat	ttgacg ggaacagcac	caccttcgag	caccagcagc	ctctccagga	1560
ccggatgttt aagtt	cgaac tcacccgccg	tctggagcac	gactttggca	aggtgacaaa	1620
gcaggaagtc aaaga	agttct tccgctgggc	cagtgatcac	gtgaccgagg	tggcgcatga	1680
gttttacgtc agaaa	agggcg gagccagcaa	aagacccgcc	cccgatgacg	cggataaaag	1740
cgagcccaag cgggc	ctgcc cctcagtcgc	ggatccatcg	acgtcagacg	cggaaggagc	1800
tccggtggac tttgc	cgaca ggtaccaaaa	caaatgttct	cgtcacgcgg	gcatgcttca	1860
gatgctgttt ccctg	gcaaaa cgtgcgagag	aatgaatcag	aatttcaaca	tttgcttcac	1920
acacggggtc agaga	actgct cagagtgttt	ccccggcgtg	tcagaatctc	aaccggtcgt	1980
cagaaagagg acgta	itcgga aactctgtgc	gattcatcat	ctgctggggc	gggctcccga	2040
gattgcttgc tcggc	ctgcg atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	2100
ataaatgact taaac	caggt atggctgccg	atggttatct	tccagattgg	ctcgaggaca	2160
acctctctga gggca	attcgc gagtggtggg	cgctgaaacc	tggagccccg	aagcccaaag	2220
ccaaccagca aaagc	aggac gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	2280
gacccttcaa cggac	tcgac aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	2340
agcacgacaa ggcct	acgac cagcagctgc	aggcgggtga	caatccgtac	ctgcggtata	2400
accacgccga cgccg	agttt caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	2460
tcgggcgagc agtct	tccag gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	2520
aaggcgctaa gacgg	ctcct ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	2580
cagactcctc tacgg	gcatc ggcaagaaag	gccaacagcc	cgccagaaaa	agactcaatt	2640
ttggtcagac tggcg	actca gagtcagttc	cagaccctca	acctctcgga	gaacctccag	2700
cagcgccctc tggtg	tggga cctaatacaa	tggctgcagg	cggtggcgca	ccaatggcag	2760
acaataacga aggcg	ccgac ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	2820
catggctggg cgaca	igagtc atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	2880
acaaccacct ctaca	agcaa atctccaacg	ggacatcggg	aggagccacc	aacgacaaca	2940
cctacttcgg ctaca	gcacc ccctgggggt	attttgactt	taacagattc	cactgccact	3000
tttcaccacg tgact	ggcag cgactcatca:	acaacaactg	gggattccgg	cccaagagac	3060
tcagcttcaa gctct	tcaac atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	3120
ccatcgccaa taacc	tcacc agcaccatcc	aggtgtttac	ggactcggag	taccagctgc	3180
cgtacgttct cggct	ctgcc caccagggct	gcctgcctcc	gttcccggcg	gacgtgttca	3240
tgattcccca gtacg	gctac ctaacactca	acaacggtag	tcaggccgtg	ggacgctcct	3300
	aatac tttccttcgc				3360
ttacttacac cttcg	aggac gtgcctttcc	acagcagcta	cgcccacagc	cagagcttgg	3420
accggctgat gaatc	ctctg attgaccagt	acctgtacta	cttgtctcgg	actcaaacaa	3480
	atacg cagactctgg				3540
	actgg ctgccaggac	_			3600
	acaat agcaactttg				3660
	tggct aatcctggca				3720
	gtaac gggatcctga				3780
	atgtc atgctcacca				3840
	acggt atcgtggcag				3900
			age 271		

aaattggaac tgtcaacagc cagggggcct tacccggtat ggtctggcag aaccgggacg 3960 tgtacctgca gggtcccatc tgggccaaga ttcctcacac ggacggcaac ttccacccgt 4020 ctccgctgat gggcggcttt ggcctgaaac atcctccgcc tcagatcctg atcaagaaca 4080 cgcctgtacc tgcggatcct ccgaccacct tcaaccagtc aaagctgaac tctttcatca 4140 4200 cgcaatacag caccggacag gtcagcgtgg aaattgaatg ggagctgcag aaggaaaaca gcaagcgctg gaaccccgag atccagtaca cctccaacta ctacaaatct acaagtgtgg 4260 actttgctgt taatacagaa ggcgtgtact ctgaaccccg ccccattggc acccgttacc 4320 tcacccgtaa tctgtaattg cctgttaatc aataaaccgg ttgattcgtt tcagttgaac 4380 tttggtctct gcg 4393

<210> <211> <212> 183 738

<213> capsid protein of adeno-associated virus serotype 8

<400> 183

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp

Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160

Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185

Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly 195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220

Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235

Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

្នុមម៉ា ក្រុម ប្រទាំចាំក្រុម ទីខ្លាំក្នុងទ័ព Gly Thr Ser Gly Gly Ala Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu ASP Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 535 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 720 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 184 <211> 735 <212> PRT <213> vp1, clone hu.60

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 101 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575

Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Pro Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 185 <211> 735 <212> PRT <213> vpl, clone hu.61

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Arg Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys

Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Val Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

<210> 186 <211> 734 <212> PRT <213> vp1, clone hu.53

1.130

¹ ~!**`**135

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Arg Gln Pro Pro 180 185 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 485 495

ቴer ሕሬብ ምትክể ምትና ተኮያ ተከተ GTy Ala Thr Lys Tyr Tyr Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 525 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 655 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 187 <211> 734 <212> PRT <213> vp1, clone hu.55

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Yal Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Glo Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

็ASP ฟิโล"ตีใน Phe ตีใก้ ดีใน Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gin Ile Ser Ser Gin Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Cys Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 440 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460

Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 520 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly 575 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 585 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 655 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 188 <211> 734 <212> PRT <213> vpl, clone hu.54

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys Arg Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Gly Leu Asp Arg
420
430

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Gly $500 \hspace{1cm} 505 \hspace{1cm} 510$ Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 520 520 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly 575 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Ala Asp 610 615 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 189 <211> 735 <212> PRT <213> vpl, clone hu.49

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Lys Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Gly Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu Tyr Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Ser Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val His Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 190 <211> 735 <212> PRT <213> vpl, clone hu.51

<400> 190 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 . 250 . 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350

ਪਿਕੀ ਪਿਊਫਾ ਕੌਜੀ ਤੌਵਾ ਕੈਰਕਾਜੀਤ ਫੀਜੰ Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

191 735 PRT vp1, clone hu.52 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 175Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Arg His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Ser Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Pro Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr.Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gin Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 . Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Pro Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 192 <211> 735 <212> PRT <213> vp1, clone hu.56 <400> 192 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ser Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Val 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285

Cys His Phe Ser Pro Arg Asp Trp.Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn

645

Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Lys 20 25 30Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly 35 40 Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 85 90 95Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu 115 120 125 Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro 130 140 Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly Lys 145 150 155 Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly 165 170 175 Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala 180 190 Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser 210 215 220 Gly Asp Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr 225 230 235 240 Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr

<210> 193 <211> 734 <212> PRT <213> Vp1, clone hu.57

Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys 285 His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly 290 295 300 Phe Arg Pro Lys Arg Leu Asn Leu Lys Leu Phe Asn Ile Gln Val Lys 305 310 315Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr 325 330 335 Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr Val 340 350 Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val 355 360 365 Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln 370 380 Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln 385 . 395 . 400 Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp 405 415 Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu 420 430 Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn 435 440 445Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln Ala 450 455 460 Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro 465 470 475 Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Gly Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 525 525 Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln 530 540 Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
565 570 575 Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Arg Ala Ala Thr Ser 580 585 Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605

ື່Asp Val Tyr Leu Gin Gly Pro lle Trp Ala Lys lle Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 655 Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 194 <211> 735 <212> PRT <213> vp1, clone hu.58

<400> 194

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asp His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Asp Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Arg Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Ile Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1.5cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ser Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Arg Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Pro Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 195 <211> 735 <212> PRT <213> vp1, clone hu.63

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465. 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540

Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Gly Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140

<210> 196 <211> 735 <212> PRT <213> vp1, clone hu.64

WO 2005/033321

Pro Val Glu His Ser Leu Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Ser Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 . 345 . 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 . 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly

505

Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 · 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40. Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly

¹⁹⁷ 738 PRT vp1, clone hu.66

100

105

110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Ala Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 . 170 . 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Glu Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Cys Ala His Ser Gln Ser 420 425 430 Ser Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 Ser Arg Thr Arg Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460

Phe "Ser" Gin Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 . 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

198 738 PRT vp1, clone hu.67

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Leu
40 GIÝ TÝT LÝS TÝT LEU GIY Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 55 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 80 65 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 95 85 ASP Ala Glu Phe Gln Glu Arg Leu Gln Glu ASP Thr Ser Phe Gly Gly 100 100 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 150 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 230 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 320 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 415 Thr Phe Glu Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 495 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His $500\,$ Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 550 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 575 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 730 735 Asn Leu

<210> 199 <211> 2175 <212> DNA

<400> 199

<213> adeno-associated virus serotype 5

atgtctttg	ttgatcaccc	tccagattgg	ttggaagaag	ttggtgaagg	tcttcgcgag	60
tttttgggcc	ttgaagcggg	cccaccgaaa	ccaaaaccca	atcagcagca	tcaagatcaa	120
gcccgtggtc	ttgtgctgcc	tggttataac	tatctcggac	ccggaaacgg	tctcgatcga	180
ggagagcctg	tcaacagggc	agacgaggtc	gcgcgagagc	acgacatctc	gtacaacgag	240
cagcttgagg	cgggagacaa	cccctacctc	aagtacaacc	acgcggacgc	cgagtttcag	300
gagaagctcg	ccgacgacac	atccttcggg	ggaaacctcg	gaaaggcagt	ctttcaggcc	360
aagaaaaggg	ttctcgaacc	ttttggcctg	gttgaagagg	gtgctaagac	ggcccctacc	420
ggaaagcgga	tagacgacca	ctttccaaaa	agaaagaagg	ctcggaccga	agaggactcc	480
aagccttcca	cctcgtcaga	cgccgaagct	ggacccagcg	gatcccagca	gctgcaaatc	540
ccagcccaac	cagcctcaag	tttgggagct	gatacaatgt	ctgcgggagg	tggcggccca	600
ttgggcgaca	ataaccaagg	tgccgatgga	gtgggcaatg	cctcgggaga	ttggcattgc	660
gattccacgt	ggatggggga	cagagtcgtc	accaagtcca	cccgaacctg	ggtgctgccc	720
agctacaaca	accaccagta	ccgagagatc	aaaagcggct	ccgtcgacgg	aagcaacgcc	780
aacgcctact	ttggatacag	cacccctgg	gggtactttg	actttaaccg	cttccacagc	840
cactggagcc	cccgagactg	gcaaagactc	atcaacaact	actggggctt	cagaccccgg	900
tccctcagag	tcaaaatctt	caacattcaa	gtcaaagagg	tcacggtgca	ggactccacc	960
accaccatcg	ccaacaacct	cacctccacc	gtccaagtgt	ttacggacga	cgactaccag	1020
ctgccctacg	tcgtcggcaa	cgggaccgag	ggatgcctgc	cggccttccc	tccgcaggtc	1080
tttacgctgc	cgcagtacgg	ttacgcgacg	ctgaaccgcg	acaacacaga	aaatcccacc	1140
gagaggagca	gcttcttctg	cctagagtac	tttcccagca	agatgctgag	aacgggcaac	1200
aactttgagt	ttacctacaa	ctttgaggag	gtgcccttcc	actccagctt	cgctcccagt	1260
		caacccgctg				1320
acaaataaca	ctggcggagt	ccagttcaac	aagaacctgg	ccgggagata	cgccaacacc	1380
tacaaaaact	ggttcccggg	gcccatgggc	cgaacccagg	gctggaacct	gggctccggg	1440
gtcaaccgcg	ccagtgtcag	cgccttcgcc	acgaccaata	ggatggagct	cgagggcgcg	1500
		gccgaacggc				1560
		gatcttcaac				1620
acgtacctcg	agggcaacat	gctcatcacc.	agcgagagcg	agacgcagcc	ggtgaaccgc	1680
		gcagatggcc			-	1740
		ccaggaaatc				1800
		ctgggccaag				1860
		cggactcaaa				1920
		caccagcttc				1980
		caccgtggag				2040
		ccagtacaca -				2100
		ggaatacaga	accaccagac	ctatcggaac	ccgatacctt	2160
acccgacccc.	tttaa					2175
<210> 200 <211> 2211 <212> DNA <213> aden		ed virus, se	rotype 3-3			
<400> 200	200000	*****	****			
		tccagattgg				60
		tggagtccct				120
		tccgggttac				180
		ggcggacgcg				240
caycaycica	~yyccyycyd	caacccgtac	cccaagtaca	accacgccga	cgccgagttt	300

caggagcgtc ttcaagaag	tacgtctttt	gggggcaacc	ttggcagagc	agtcttccag	360
gccaaaaaga ggatccttg	gcctcttggt	ctggttgagg	aagcagctaa	aacggctcct	420
ggaaagaagg gggctgtag	a tcagtctcct	caggaaccgg	actcatcatc	tggtgttggc	480
aaatcgggca aacagcctg	cagaaaaaga _.	ctaaatttcg	gtcagactgg	agactcagag	540
tcagtcccag accctcaac	tctcggagaa	ccaccagcag	ccccacaag	tttgggatct	600
aatacaatgg cttcaggcg	g tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt cctcaggaa	a ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca ccagaacct	ggccctgccc	acttacaaca	accatctcta	caagcaaatc	780
tccagccaat caggagctt	aaacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact ttaacagat	t ccactgccac	ttctcaccac	gtgactggca	gcgactcatt	900
aacaacaact ggggattcc	g gcccaagaaa	ctcagcttca	agctcttcaa	catccaagtt	960
agaggggtca cgcagaacg	a tggcacgacg	actattgcca	ataaccttac	cagcacggtt	1020
caagtgttta cggactcgg	a gtatcagctc	ccgtacgtgc	tcgggtcggc	gcaccaaggc	1080
tgtctcccgc cgtttccag	ggacgtcttc	atggtccctc	agtatggata	cctcaccctg	1140
aacaacggaa gtcaagcgg	t gggacgctca	tccttttact	gcctggagta	cttcccttcg	1200
cagatgctaa ggactggaa	a taacttccaa	ttcagctata	ccttcgagga	tgtacctttt	1260
cacagcagct acgctcaca	g ccagagtttg	gatcgcttga	tgaatcctct	tattgatcag	1320
tatctgtact acctgaaca	g aacgcaagga	acaacctctg	gaacaaccaa	ccaatcacgg	1380
ctgcttttta gccaggctg	g gcctcagtct	atgtctttgc	aggccagaaa	ttggctacct	1440
gggccctgct accggcaac	a gagactttca	aagactgcta	acgacaacaa	caacagtaac	1500
tttccttgga cagcggcca	g caaatatcat	ctcaatggcc	gcgactcgct	ggtgaatcca	1560
ggaccagcta tggccagtc	a caaggacgat	gaagaaaaat	ttttccctat	gcacggcaat	1620
ctaatatttg gcaaagaag	g gacaacggca	agtaacgcag	aattagataa	tgtaatgatt	1680
acggatgaag aagagattc	g taccaccaat	cctgtggcaa	cagagcagta	tggaactgtg	1740
gcaaataact tgcagagct	c aaatacagct.	cccacgactg	gaactgtcaa	tcatcagggg	1800
gccttacctg gcatggtgt	g gcaagatcgt	gacgtgtacc	ttcaaggacc	tatctgggca	1860
aagattcctc acacggatg	g acactttcat	ccttctcctc	tgatgggagg	ctttggactg	1920
aaacatccgc ctcctcaaa	t catgatcaaa	aatactccgg	taccggcaaa	tcctccgacg	1980
actttcagcc cggccaagt	t tgcttcattt	atcactcagt	actccactgg	acaggtcagc	2040
gtggaaattg agtgggagc	t acagaaagaa	aacagcaaac	gttggaatcc	agagattcag	2100
tacacttcca actacaaca	a gtctgttaat	gtggacttta	ctgtagacac	taatggtgtt	2160
tatagtgaac ctcgcccta	t tggaacccgg	tatctcacac	gaaacttgta	a	2211
<210> 201 <211> 2205 <212> DNA <213> adeno-associa	ted virus, se	erotype 4-4			
<400> 201 atgactgacg gttaccttc	c agattggcta	gaggacaacc	tctctoaaoo	cattcaaaaa	60
tggtgggcgc tgcaacctg					120
gctcggggtc ttgtgcttc	_				180
ggggaacccg tcaacgcag					240
cagctcaagg ccggtgaca					300
cagcggcttc agggcgaca					360
aaaaagaggg ttcttgaac		_			420
aagaagagac cgttgattg					480
aaaggcaagc agccggcta					540
ggacccctg agggatcaa					600

"gctggcggacaa ggtgccgatg	gagtgggtaa	tgcctcgggt	660
gattggcatt gcgattccac ctggtctgag ggccacgtca			720
tgggtcttgc ccacctacaa caaccacctc tacaagcgac	tcggagagag	cctgcagtcc	780
aacacctaca acggattctc cacccctgg ggatactttg	acttcaaccg	cttccactgc	840
cacttctcac cacgtgactg gcagcgactc atcaacaaca	actggggcat	gcgacccaaa	900
gccatgcggg tcaaaatctt caacatccag gtcaaggagg	tcacgacgtc	gaacggcgag	960
acaacggtgg ctaataacct taccagcacg gttcagatct	ttgcggactc	gtcgtacgaa	1020
ctgccgtacg tgatggatgc gggtcaagag ggcagcctgc	ctccttttcc	caacgacgtc	1080
tttatggtgc cccagtacgg ctactgtgga ctggtgaccg	gcaacacttc	gcagcaacag	1140
actgacagaa atgccttcta ctgcctggag tactttcctt	cgcagatgct	gcggactggc	1200
aacaactttg aaattacgta cagttttgag aaggtgcctt	tccactcgat	gtacgcgcac	1260
agccagagcc tggaccggct gatgaaccct ctcatcgacc	agtacctgtg	gggactgcaa	1320
tcgaccacca ccggaaccac cctgaatgcc gggactgcca	ccaccaactt	taccaagctg	1380
cggcctacca acttttccaa ctttaaaaag aactggctgc	ccgggccttc	aatcaagcag	1440
cagggcttct caaagactgc caatcaaaac tacaagatcc	ctgccaccgg	gtcagacagt	1500
ctcatcaaat acgagacgca cagcactctg gacggaagat	ggagtgccct	gacccccgga	1560
cctccaatgg ccacggctgg acctgcggac agcaagttca	gcaacagcca	gctcatcttt	1620
gcggggccta aacagaacgg caacacggcc accgtacccg	ggactctgat	cttcacctct	1680
gaggaggagc tggcagccac caacgccacc gatacggaca	tgtggggcaa	cctacctggc	1740
ggtgaccaga gcaacagcaa cctgccgacc gtggacagac	tgacagcctt	gggagccgtg	1800
cctggaatgg tctggcaaaa cagagacatt tactaccagg	gtcccatttg	ggccaagatt	1860
cctcataccg atggacactt tcacccctca ccgctgattg	gtgggtttgg	gctgaaacac	1920
ccgcctcctc aaatttttat caagaacacc ccggtacctg	cgaatcctgc	aacgaccttc	1980
agctctactc cggtaaactc cttcattact cagtacagca	ctggccaggt	gtcggtgcag	2040
attgactggg agatccagaa ggagcggtcc aaacgctgga	accccgaggt	ccagtttacc	2100
tccaactacg gacagcaaaa ctctctgttg tgggctcccg	atgcggctgg	gaaatacact	2160
gagcctaggg ctatcggtac ccgctacctc acccaccacc	tgtaa		2205
<210> 202			
<211> 2211 .			
<212> DNA <213> adeno-associated virus, serotype 1			
<400> 202			60
atggctgccg atggttatct tccagattgg ctcgaggaca			60
gagtggtggg acttgaaacc tggagccccg aagcccaaag			120
gacggccggg gtctggtgct tcctggctac aagtacctcg			180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg			240
cagcagette aagegggtga caateegtae etgeggtata			300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc			360
gccaagaagc gggttctcga acctctcggt ctggttgagg			420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag			480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg tcagtccccg atccacaacc tctcggagaa cctccagcaa			540 600
actacaatgg cttcaggcgg tggcgcacca atggcagaca			660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat			720
accaccagea cccgcacctg ggccttgccc acctacaata			720
tccagtgctt caacgggggc cagcaacgac aaccactact			840
gggtattttg atttcaacag attccactgc cacttttcac			900
	-ucy cyac cy	32-2-6-	200

atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2211
<210> 203 <211> 2211 <212> DNA <213> adeno-associated virus, serotype 6	
<400> 203 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggatgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaagaaga gggttctcga accttttggt ctggttgagg aaggtgctaa gacggctcct	420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcattggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag	540
tcagtccccg acccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
accaccagca cccgaacatg ggccttgccc acctataaca accacctcta caagcaaatc	780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag cacccctgg	840
gggtattttg atttcaacag attccactgc catttctcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaagctctt caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc acgaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag ttgccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcagtacgg ctacctaacg	1140
ctcaacaatg gcagccaggc agtgggacgg tcatcctttt actgcctgga atatttccca	1200

1260

tcgcagatgc tgagaacggg caataacttt accttcagct acaccttcga ggacgtgcct

ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 cagtacctgt attacctgaa cagaactcag aatcagtccg gaagtgccca aaacaaggac 1380 ttgctgttta gccgggggtc tccaqctggc atgtctgttc agcccaaaaa ctqqctacct 1440 ggaccctgtt accggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaac 1500 tttacctgga ctggtgcttc aaaatataac cttaatgggc gtgaatctat aatcaaccct 1560 ggcactgcta tggcctcaca caaagacgac aaagacaagt tctttcccat gaqcqqtqtc 1620 atgatttttg gaaaggagag cgccggagct tcaaacactg cattggacaa tgtcatgatc 1680 acagacgaag aggaaatcaa agccactaac cccgtggcca ccgaaagatt tgggactgtg 1740 gcagtcaatc tccagagcag cagcacagac cctgcgaccg gagatgtgca tgttatggga 1800 gccttacctg gaatggtgtg gcaagacaga gacgtatacc tgcagggtcc tatttgggcc 1860 aaaattcctc acacggatgg acactttcac ccgtctcctc tcatgggcgg ctttggactt 1920 aagcacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggca 1980 gagttttcgg ctacaaagtt tgcttcattc atcacccagt attccacagg acaagtgagc 2040 gtggagattg aatgggagct gcagaaagaa aacagcaaac gctggaatcc cgaagtgcag 2100 tatacatcta actatgcaaa atctgccaac gttgatttca ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt tacctcaccc gtcccctgta a 2211 <210> 204 2208 <211> <212> DNA <213> new AAV serotype, clone hu.63 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtaccttg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac cccaagtaca accacgccga cgcggagttc 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaatttcg gtcagactgg agacgcagac 540 teegtaeetg acceeragee teteggacag ceaecageag ecceetetgg tetgggaaet 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggctctgccc acctacaaca accacctcta caagcagatt 780 tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcgccac gtgactggca aagactcatc 900 aacaacaatt ggggattccg gcccaaaaga ctcaacttca agctctttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgcccacag ccagagtttg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac

1500

If p Third heart most in comment of the comment of		
tcgtggactg gagctaccaa gtaccacctt aatggaagag actctctgg	t gaatccgggc	1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcaga	g cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaagg	t catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatg	g ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaaca	c acaaggcgtt	1800
cttccaggca tggtgtggca ggacagagac gtgtacctgc aggggccca	t ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggat	t cggacttaaa	1920
caccetecce egeagattet cateaagaac acceeggtac etgegaate	c ttcgactacc	1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggc	a ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccg	a gattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacacta	a tggtgtgtat	2160
tcagagcctc gccccattgg caccaggtac ctgactcgta atctgtaa		2208
<210> 205 <211> 2208		
<212> DNA <213> new AAV serotype, clone hu.56		
<400> 205		
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctg	a aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagc		120
gacagcaggg gtcttgtgct tcctggatac aagtacctcg gacccttca	a cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgaca	a ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccg		300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgag		360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgtta	a gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcct	c gggaaccgga	480
aaagcgggca accagcctgc aagaaaaaga ttgaatttcg gtcagactg	g agacgcagac	540
tccgtacctg acccccagcc tctcggacag ccaccagcat cccctctg	g tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgagg	g cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcg	a cagagtcgtc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accacctct	a caagcagatt	780
tccagccaat caggagccag caacgacaac cactactttg gctacagca	c cccttggggg	840
tattttgact tcaacagatt ccactgccac ttttcgccac gcgactggc	a gagactcatc	900
aacaacaact ggggattccg gcccaaaaga ctcaacttca agctgttta	a cattcaagtc	960
aaggaggtca cgcagaatga cggtacgacg acgattgcca ataacctta	c cagcacggtt	1020
caggtgttta ctgacttgga gtaccagctc ccgtacgtcc tcggctcgg		1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggat	a cctcaccctg	1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagt	a ctttccttct	1200
cagatgcttc gcaccggaaa caactttacc ttcagctaca cttttgaag	a cgttcctttc	1260
cacagcagct acgctcacag tcaaagtctg gaccgtctca tgaatcctc	t catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccactacgc	a gtccaggctt	1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaact	g gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg ataacaaca	a cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctgg	t gaatccgggc	1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcaaa	g cggggttctc	1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaagg	t catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatg	g ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaaca	c acaaggcgtt	1800

Q of "Inst" food there is a super come some to	
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaaa	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccetecte cacagattet cattaagaat acceeggtae etgegaatee ttegaceaee	1980
ttcagcgcgg caaagtttgc ttccttcatc acacagtatt ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggggtgtat	2160
tcagagcctc gccctattgg caccagatac ctgactcgta atctgtaa	2208
<210> 206 <211> 2205 <212> DNA <213> new AAV serotype, clone hu.57	
<400> 206 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaaagcccg cagagcggca taaggacgac	120
agcaggggtc ttgtgcttcc tggatacaag tacctcggac ccttcaacgg actcgacaag	180
ggagagccgg tcaacgaggc agacgccgcg gccctcgagc acgacaaggc ctacgaccgg	240
cagetegaca geggagacaa ecegtacete aagtacaaee aegeegaege ggagttteag	300
gagcgcctta aagaagatac gtcttttggg ggcaacctcg gacgagcagt cttccaggcg	360
aaaaagaggg ttcttgaacc tctgggcctg gttgaggaac ctgttaagac ggctccggga	420
aaaaagaggc ccgtagagca ctctcctgtg gagccagact cctcctcggg aaccggaaaa	480
gcgggcaacc agcctgcaag aaaaagattg aatttcggtc agactggaga cgcagactcc	540
gtacctgacc cccagcctct cggacagcca ccagcagccc cctctggtct gggaactaat	600
acgatggcta caggcagtgg cgcaccaatg gcagacaata acgagggcgc cgacggagtg	660
ggtaattcct cgggagattg gcattgcgat tccacatgga tgggcgacag agtcatcacc	720
accagcaccc gcacctgggc cctgcccacc tacaacaacc acctctacaa gcagatttcc	780
agccaatcag gagccagcaa tgacaaccac tactttggct acagcacccc ttgggggtat	840
tttgacttca acagattcca ctgccacttt tcgccacgcg actggcagag actcatcaac	900
aacaactggg gattccggcc caaaagactc aacctcaagc tgtttaacat tcaagtcaag	960
gaggtcacgc agaatgacgg tacgacgacg attgccaata accttaccag cacggttcag	1020
gtgtttactg acttggagta ccagctcccg tacgtcctcg gctcggcgca tcaaggatgc	1080
ctcccgccgt tcccagcaga cgtcttcatg gtgccacagt atggatacct caccctgaac	1140
aacgggagtc aggcggtagg acgctcttcc ttttactgcc tggagtactt tccttctcag	1200
atgcttcgta ccggaaacaa ctttaccttc agctacactt ttgaagacgt tcctttccac	1260
agcagctacg ctcacagtca aagtctggac cgtctcatga atcctctcat cgaccagtac	1320
ctgtattact tgagcagaac aaacactcca agcggaacca ctacgcagtc caggcttcag	1380
ttttctcagg ccggagcgag tgacattcgg gaccagtcta ggaactggct tcctggaccc	1440
tgttaccgcc agcagcgagt atcaaagaca gctgcggata acaacaacgg tgaatactcg	1500
tggactggag ctaccaagta ccacctcaat ggcagagact ctctggtgaa tccgggcccg	1560
gccatggcca gccacaagga cgatgaagaa aagtttttc ctcaaagcgg ggttctcatc	1620
tttgggaagc aaggctcaga gaaaacaaat gtggacattg aaaaggtcat gattacagac	1680
gaagaggaaa tcaggaccac caatcccgtg gctacggagc agtatggttc tgtatctacc	1740
aacctccaga gcggcaacac acgagcagct acctcagatg tcaacacaca aggcgttctt	1800
ccaggcatgg tctggcagga cagagacgtg tacctgcagg ggcccatctg ggcaaaaatt	1860
ccacacacgg acggacattt tcacccctct cccctcatgg gcggatttgg acttaaacac	1920
cctcctccac agattctcat taagaatacc ccggtacctg cgaatccttc gaccaccttc	1980
agcgcggcaa agtttgcttc cttcatcaca cagtattcca cggggcaggt cagcgtggag	2040
atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat tcagtacact	2100

2160

tccaactaca acaaatctgt taatgtggac tttactgtgg acactaatgg ggtgtattca gagcctcgcc ctattggcac cagatacctg actcgtaatc tgtaa 2205 <210> <211> 2208 <212> DNA new AAV serotype, clone hu.58 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagage eggteaacga ggcagaegee geggeeeteg ageaegaeaa ggeetaegae 240 cggcagctcg acagcggaga caacccgtac ctcaagtacg accacgccga cgcggagttt 300 caggagegee ttaaagaaga taegtetttt gggggeaace teggaegage agtetteeag 360 gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggca accagcctgc aagaaagaga.ttgaatttcg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgatgg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggctctgccc acctacaaca accatctgta caagcagatt 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc 960 agagaggtca cgcagaatga tggtacgacg acgattgcca ataaccttac caqcacqqtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta cttcccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga tgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggatcagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg acaacaacaa cagtgaatac 1500 tcgtggattg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggcaatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggaa aacaaggatc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcagaac caccaatccc gtggccacgg agcagtatgg ttctqtatct 1740 accaacctcc agagcggcaa cacacaagca tctactgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcctat ctgggcaaag 1860 attccgcaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacagattet cateaaaaac acceeggtae etgegaatee ttegaceaec 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacggggcg ggtcagcgtg 2040 gagatcgagt gggagctaca gaaggagaac agcaaacgct ggaatcccga gatccagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210>

DNA

²⁰⁸ 2208

new AAV serotype, clone hu.51

* 41 of South frank Miller			
<pre><400> 208 atggctgccg atggttatct tcc</pre>	agattgg ctcgaggaca	ctctctctga agg	gaataaga 60
cagtggtgga agctcaaacc tgg	cccacca ccaccaaagc	ccgcagagcg gca	ataaggac 120
gacagcaggg gtcttgtgct tcc	tgggtac aagtacctcg	gaccetteaa eg	gactcgac 180
aagggagagc cggtcaacga ggc	agacgcc gcggccctcg	agcacgacaa ag	cctacgac 240
cggcagctcg acagcggaga caa	cccgtac ctcaagtaca	accacgccga cg	cggagttt 300
caggagcgcc ttaaagaaga tac	gtctttt gggggcaacc	tcggacgagc ag	tcttccag 360
gcgaaaaaga gggttcttga acc	tctgggc ctggttgggg	aacctgtcaa ga	cggctcca 420
ggaaaaaaga ggccggtaga gca	ctctcct gtggagccag	actcctcctc gg	gaaccgga 480
aaggcgggcc agcagcctgc aag	aaaaaga ttgaattttg	gtcagactgg ag	acgcagac 540
tcagtacctg acccccagcc tct	cggacag ccaccagcag	cccctctgg tc	tgggaact 600
aatacgatgg ctacaggcag tgg	cgcacca atggcagaca	ataacgaggg cg	ccgacgga 660
gtgggtaatt cctcgggaaa ttg	gcatigc gattccacat	ggatgggcga ca	gagtcatc 720
accaccagca cccgaacctg ggc	cctgccc acctacaaca	accacctcta ca	aacaaatt 780
tccagccaat caggagcctc gaa	cgacaat cactactttg	gctacagcac cc	cttggggg 840
tattttgact tcaacagatt cca	ctgccac ttttcaccac	gtgactggca aa	gactcatc 900
aacaacaact ggggattccg acc			
aaagaggtca cgcagaatga cgg			
caggtgttta ctgactcgga gta	ccagctc ccgtacgtcc	tcggctcggc gc	atcaagga 1080
tgcctcccgc cgttcccagc aga	cgtcttc atggtgccac	agtatggata cc	tcaccctg 1140
aacaacggga gtcaggcagt agg	acgctct tcattttact	gcctggagta ct	ttccttct 1200
cagatgctgc gtaccggaaa caa	ctttacc ttcagctaca	cttttgagga cg	ttcctttc 1260
cacagoggot acgotoacag coa	gagtctg gaccgtctca	tgaatcctct ca	tcgaccag 1320
tacctgtatt acttgagcac aac	aaacact ccaagtggaa	ccaccacgca gt	caaggctt 1380
cagttttctc aggccggagc gag	tgacatt cgggaccagt	ctaggaactg gc	ttcctgga 1440
ccctgttacc gccagcagcg agt	atcaaag acatctgcgg	ataacaacaa ca	gtgaatac 1500
tcgtggactg gagctaccaa gta	ccacctc aatggcagag	actctctggt ga	atccgggc 1560
ccggccatgg caagccacaa gga	caatgaa gaaaagtttt	ttcctcagag cg	gggttctc 1620
atctttggga agcaaggctc aga			
gacgaagagg aaatcaggac aac	caatccc gtggctacgg	agcagtacgg tt	ctgtatct 1740
accaacctcc agagaggcaa cag	acaagca gctaccgcag	atgtcaacac ac	aaggcgtt 1800
cttccaggca tggtctggca gga			
attccacaca cggacggaca ttt	tcacccc tctcccctca	tgggtggatt cg	gacttaaa 1920
caccetecte cacagattet cat	caagaac accccggtac	ctgcgaatcc tt	cgaccacc 1980
ttcagtgcgg caaagtttgc ttc	cttcatc acacagtact	ccacgggaca gg	tcagcgtg 2040
gagatcgagt gggagctgca gaa	ggaaaac agcaaacgct	ggaatcccga aa	ttcagtac 2100
acttccaact acaacaagtc tgt	taatgtg gactttactg	tggacactaa tg	gcgtgtat 2160
tcagagcctc gccccattgg cac	cagatac ctgactcgta	atctgtaa	2208
<210> 209 <211> 2208 <212> ONA <213> new AAV serotype,	clone hu.49		
<400> 209 atggctgccg atggttatct tcc	agattgg ctcaaqqaca	ctctctctqa aq	gaataaga 60
cagtggtgga agctcaaacc tgg			
gacagegggg gtettgtget tee	_		
aagggagagc cggtcaacga ggc	-	_	,,
-999-9-9		, -g 95	

cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300

caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaacagga	480
aaagcgggcc	agcagcctgc	gagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt	cctcgggaag	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggctctgccc	acctacaaca	accatctgta	caagcagatc	780
tccagccaat	caggagccag	caacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact	tcaacagatt	ccactgccàc	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	gcccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaggaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	ccggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgcttc	gtaccggaaa	caactttacc	ttcagctaca	cctttgagga	tgttcctttc	1260
cacagcagct	acgctcacag	ccagagttig	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtccaggctt	1380
cagttttctc	aggccggagc	aagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acagctgcgg	acaacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	ccagccacaa	ggacgatgaa	gaaaagtttt	ttcctcaaag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcagaac	caccaatccc	gtggccacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctactgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagac	gtgcacctgc	aggggcctat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctcccctca	tgggcggatt	tggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcaaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtatt	ccacagggca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaaccccga	gatccagtac	2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 210 <211> 2208 <212> DNA <213> new	B AAV serotyp	e, clone hu	1.52			
<400> 210 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	agcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgggg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaggcgggcc	agcagcctgc	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600

660

aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga

gtgggtaatt	cctcgggaaa	tcggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	cagacaaatt	780
tccagccaat	caggagcctc	gaacgacaat	cactactttg	gctacagcac	cccttggggg	840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
agcaacggga	gtcaggcagt	aggacgctct	tcattttact	gcccggagta	ctttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cttttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcac	aacaaacact	ccaagtggaa	ccaccacgca	gtcaaggctt	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	caagccacaa	ggacaatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	aaccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagaggcaa	cagacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggtggatt	cggacctaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atttgtaa		2208
<210> 211						
<211> 2208 <212> DNA						
<213> ade	no-associat	ed virus, s	serotype 2			
<400> 211 atooctocco	atoottatct	tccagattog	ctcgaggaca	ctctctctga	angaataana	60
			ccaccaaagc	=		120
			aagtacctcg			180
			gcggccctcg			240
cggcagctcg						300
caggagcgcc						360
gcgaaaaaga						420
ggaaaaaaga						480
aaggcgggcc						540
tcagtacctg						600
aatacgatgg						660
gtgggtaatt						720
accaccagca						780
tccagccaat						840
tattttgact						900
				216	-	

aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc

960

aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cttttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagtggaa	ccaccacgca	gtcaaggctt	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	caagccacaa	ggacgatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	aaccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagaggcaa	cagacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggtggatt	cggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 212 <211> 2208 <212> DNA <213> new	8 AAV serotyj	oe, clone ḥu	J.64			
<211> 2208 <212> DNA <213> new <400> 212	AAV seroty	•	J.64 ctcgaggaca	ctctctctga	aggaataaga	60
<211> 220 <212> DNA <213> new <400> 212 atggctgccg	AAV seroty atggttatct	tccagattgg		_		60 120
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga	AAV seroty atggttatct agctcaaacc	tccagattgg tggcccacca	ctcgaggaca	ccgcagagcg	gcataaggac	
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg	AAV seroty atggttatct agctcaaacc gtcttgtgct	tccagattgg tggcccacca tcctgggtac	ctcgaggaca ccaccaaagc	ccgcagagcg gacccttcaa	gcataaggac cggactcgac	120
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga	tccagattgg tggcccacca tcctgggtac ggcagacgcc	ctcgaggaca ccaccaaagc aagtaccttg	ccgcagagcg gacccttcaa agcacgacaa	gcataaggac cggactcgac ggcctacgac	120 180
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg	ccgcagagcg gacccttcaa agcacgacaa accacgccga	gcataaggac cggactcgac ggcctacgac cgcggagttc	120 180 240
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag	120 180 240 300
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagctcg	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca ggggggcaacc	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg	120 180 240 300 360
<211> 2204 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg	120 180 240 300 360 420
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt	ctcgaggaca ccaccaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac	120 180 240 300 360 420 480
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg	AAV serotylatet agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact	120 180 240 300 360 420 480 540
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga ggaaaaaaga aagcgggcc tccgtacctg aatacgatgg	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact	120 180 240 300 360 420 480 540
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cctcgggaaa	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgcga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660 720
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt ccttggggg	120 180 240 300 360 420 480 540 600 660 720 780
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc accccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc tcaacagatt	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac	ctcgaggaca ccaccaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc	120 180 240 300 360 420 480 540 600 660 720 780 840
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact aacaacaatt	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcggaaa cccgcacctg caggagcctc tcaacagatt ggggatcccg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac gcccaaaaga	ctcgaggaca ccaccaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc cattcaagtc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact aacaacaatt aaggaggtca	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc accccagcc ctacaggcag cctcggaaa cccgcacctg caggagcctc tcaacagatt ggggatcccg cgcagaatga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac gcccaaaaga cggtacgacg	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac ctcaacttca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc cattcaagtc cagcacggtt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact aacaacaatt aaggaggtca caggtgttta	AAV serotyl atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc accccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc tcaacagatt ggggatcccg cgcagaatga ctgactcgga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtcttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac gcccaaaaga cggtacgacg gtaccagctc	ctcgaggaca ccaccaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaattcg ccaccagcag atggcagaca gattccacat acctacaca cactactttg ttttcgccac ctcaacttca acgattgcca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac tcggctcggc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt ccttgggag cagactcatc caggcagatt cccttggggg aagactcatc cattcaagtc cattcaagtc cagcacggtt gcatcaagga	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgt	tcctttc 1260
cacagcagct acgcccacag ccagagtttg gaccgtctca tgaatcctct cgt	cgaccag 1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtc	aaggctt 1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gct	tcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cag	tgaatac 1500
tcgtggactg gagctaccaa gtaccacctt aatggaagag actctctggt gaa	tccgggc 1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cgg	ggttctc 1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt cat	gattaca 1680
gacgaagagg aaatcaggac caccaatccc. gtggctacgg agcagtatgg ttc	tgtatct 1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac aca	aggcgtt 1800
cttccaggca tggtgtggca ggacagagac gtgtacctgc aggggcccat ctg	ggcaaag 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cgg	acttaaa 1920
caccetecce egeagattet cateaagaac acceeggtac etgegaatee tte	gactacc 1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggt	cagcgtg 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gat	tcagtac 2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tgg	tgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 213 <211> 2214	
<212> DNA <213> adeno-associated virus, serotype 7	
<400> 213 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggd	cattcgc 60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaa	gcaggac 120
aacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cgg	actcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggc	ctacgac 240
cagcagetea aagegggtga caateegtae etgeggtata accaegeega ege	cgagttt 300
caggagcgtc tgcaagaaga tacgtcattt gggggcaacc tcgggcgagc agto	cttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gac	ggctcct 420
gcaaagaaga gaccggtaga gccgtcacct cagcgttccc ccgactcctc cac	gggcatc 480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tgg	cgactca 540
gagtcagtcc ccgaccctca acctctcgga gaacctccag cagcgccctc tag	tgtggga 600
tctggtacag tggctgcagg cggtggcgca ccaatggcag acaataacga agg	tgccgac 660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cga	cagagtc 720
attaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctac	caagcaa 780
atctccagtg aaactgcagg tagtaccaac gacaacacct acttcggcta cage	cacccc 840
tgggggtatt ttgactttaa cagattccac tgccacttct caccacgtga ctgg	gcagcga 900
ctcatcaaca acaactgggg attccggccc aagaagctgc ggttcaagct cttc	caacatc 960
caggicaagg aggicacgac gaatgacggc gitacgacca tcgctaataa cct	taccagc 1020
acgattcagg tattctcgga ctcggaatac cagctgccgt acgtcctcgg ctc	tgcgcac 1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggc	tacctg 1140
acteteaaca atggeagtea gtetgtggga egtteeteet tetaetgeet ggag	gtacttc 1200
ccctctcaga tgctgagaac gggcaacaac tttgagttca gctacagctt cgag	ggacgtg 1260
cctttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tccc	ctcatc 1320
gaccagtact tgtactacct ggccagaaca.cagagtaacc caggaggcac agci	
cgggaactgc agttttacca gggcgggcct tcaactatgg ccgaacaagc caag	
ttacctggac cttgcttccg gcaacaaaga gtctccaaaa cgctggatca aaac	aacaac 1500

agcaactttg cttggact	gg tgccaccaaa	tatcacctga	acggcagaaa	ctcgttggtt	1560
aatcccggcg tcgccatg	gc aactcacaag	gacgacgagg	accgctttt	cccatccagc	1620
ggagtcctga tttttgga	aa aactggagca	actaacaaaa	ctacattgga	aaatgtgtta	1680
atgacaaatg aagaagaa	at tcgtcctact	aatcctgtag	ccacggaaga	atacgggata	1740
gtcagcagca acttacaa	gc ggctaatact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac ctggcatg	gt ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaagattc ctcacacg	ga tggcaacttt	cacccgtctc	ctttgatggg	cggctttgga	1920
cttaaacatc cgcctcct	ca gatcctgatc	aagaacactc	ccgttcccgc	taatcctccg	1980
gaggtgttta ctcctgcc	aa gtttgcttcg	ttcatcacac	agtacagcac	cggacaagtc	2040
agcgtggaaa tcgagtgg	ga gctgcagaag	gaaaacagca	agcgctggaa	cccggagatt	2100
cagtacacct ccaacttt	ga aaagcagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttactctg agcctcgc	cc tattggcact	cgttacctca	cccgtaatct	gtaa	2214
.210. 214					
<210> 214 <211> 2217 <212> DNA					
	ated virus, s	erotype 8			
<400> 214 atggctgccg atggttat	ct tccanatton	ctcoaggaca	3000000000	0000311000	60
gagtggtggg cgctgaaa			-		120
		-	_		180
aagggggagc ccgtcaac					240
					300
cagcagctgc aggcgggt					
caggagcgtc tgcaagaa					360
gccaagaagc gggttctc					420
ggaaagaaga gaccggta	•		_		480
ggcaagaaag gccaacag	_				540
gagtcagttc cagaccct					600
cctaatacaa tggctgca					660
ggagtgggta gttcctcg					720
atcaccacca gcacccga				_	780
atctccaacg ggacatcg		-		•	840
ccctgggggt attttgac	_	•	•		900
cgactcatca acaacaac					960
atccaggtca aggaggtc					1020
agcaccatcc aggtgttt					1080
caccagggct gcctgcct					1140
ctaacactca acaacggt					1200
tttccttcgc agatgctg					1260
gtgcctttcc acagcagc					1320
attgaccagt acctgtac					1380
cagactctgg gcttcagc					1440
ctgccaggac cctgttac					1500
agcaactttg cctggact					1560
aatcctggca tcgctatg					1620
gggatcctga tttttggc					1680
atgctcacca gcgaggaa					1740
atcgtggcag ataacttg	ca gcagcaaaac			tgtcaacagc	1800
		F	Page 319		

cagggggcct	tacccggtat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccacccgt	ctccgctgat	gggcggcttt	1920
ggcctgaaac	atcctccgcc	tcagatcctg	atcaagaaca	cgcctgtacc	tgcggatcct	1980
ccgaccacct	tcaaccagtc	aaagctgaac	tctttcatca	cgcaatacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaggaaaaca	gcaagcgctg	gaaccccgag	2100
atccagtaca	cctccaacta	ctacaaatct	acaagtgtgg	actttgctgt	taatacagaa	2160
ggcgtgtact	ctgaaccccg	ccccattggc	acccgttacc	tcacccgtaa	tctgtaa	2217
<210> 215 <211> 2217 <212> DNA <213> new AAV serotype, clone hu.67						
<400> 215 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcttggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaatgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcggcta	cgcacacagc	cagagettgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcaggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
		aacccacaag				1620
		acagggtgct				1680
		aattaaaacc				1740
		gcaaaccaat			_	1800
		ggtctggcag			_	1860
		ggacggcaac				1920
		tcagatcctg			-	1980
		gaaattggct				2040
gtcagcgtgg	aaatcgagtg	ggagctgcag		gcaaacgctg age 320	gaacccagag	2100

2217

attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa

<210> <211> vp1, serotype 5 <400> 216 Met Ser Phe Val Asp His Pro Pro Asp Trp Leu Glu Glu Val Gly Glu Gly Leu Arg Glu Phe Leu Gly Leu Glu Ala Gly Pro Pro Lys Pro Lys Pro Asn Gln Gln His Gln Asp Gln Ala Arg Gly Leu Val Leu Pro Gly
40
45 Tyr Asn Tyr Leu Gly Pro Gly Asn Gly Leu Asp Arg Gly Glu Pro Val Asn Arg Ala Asp Glu Val Ala Arg Glu His Asp Ile Ser Tyr Asn Glu 65 70 80 Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 90 95 Ala Glu Phe Gln Glu Lys Leu Ala Asp Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe 115 120 125 Gly Leu Val Glu Glu Gly Ala Lys. Thr Ala Pro Thr Gly Lys Arg Ile 130 135 140 Asp Asp His Phe Pro Lys Arg Lys Lys Ala Arg Thr Glu Glu Asp Ser 145 150 160 Lys Pro Ser Thr Ser Ser Asp Ala Glu Ala Gly Pro Ser Gly Ser Gln
165 170 175 Gln Leu Gln Ile Pro Ala Gln Pro Ala Ser Ser Leu Gly Ala Asp Thr 180 185 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala 195 200 205 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp 210 215 220 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro 225 230 235 240 Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp 245 255 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln
280 285 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val 290 295 300 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr 305 310 315 320

Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys 340 350 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr 355 360 365 Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn 385 400 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser 405 415 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp 420 425 430 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln
445 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp 450 460 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly 465 470 475 480 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu 485 490 495 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr 500 510 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile 515 520 525 Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu 530 535 . 540 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg 545 550 560 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser 575 575 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro 580 585 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp 595 600 Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn 625 630 635 Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser 645 650 655 Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu 660 670 Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln 675

680

685

Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp 690 695 700 Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> 217 <211> 736 <212> PRT <213> vpl, serotype 3-3 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Val Pro Gln Pro 25 30 Lys Ala Asn Gln Gln His Gln Asp Asn Arg Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly 130 135 140 Ala Val Asp Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Val Gly 145 150 155 160 Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His

280

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Arg Gly Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 . 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 Gln Gly Thr Thr Ser Gly Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser 450 455 460 Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala Arg Asn Trp Leu Pro 465 470 480 Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn 490 495 Asn Asn Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn 500 510 Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn Leu Ile Phe Gly 530 540 Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln 565 570 575 Tyr Gly Thr Val Ala Asn Asn Leu Gln Ser Ser Asn Thr Ala Pro Thr 580 590 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 218 <211> 734 <212> PRT <213> vpl, serotype 4-4

<400> 218

Met Thr Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu 1 15 15 Gly Val Arg Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro Lys 25 30 Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Gln Arg Leu Gln Gly Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu 115 120 125 Gly Leu Val Glu Gln Ala Gly Glu Thr Ala Pro Gly Lys Lys Arg Pro 130 135 140 Leu Ile Glu Ser Pro Gln Gln Pro Asp Ser Ser Thr Gly Ile Gly Lys 145 150 155 Lys Gly Lys Gln Pro Ala Lys Lys Lys Leu Val Phe Glu Asp Glu Thr 165 170 Gly Ala Gly Asp Gly Pro Pro Glu Gly Ser Thr Ser Gly Ala Met Ser 180 190 Asp Asp Ser Glu Met Arg Ala Ala Ala Gly Gly Ala Ala Val Glu Gly Gly Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys 210 215 220 Asp Ser Thr Trp Ser Glu Gly His Val Thr Thr Thr Ser Thr Arg Thr 225 230 235 240

Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Arg Leu Gly Glu Ser Leu Gln Ser Asn Thr Tyr Asn Gly Phe Ser Thr Pro Trp Gly Tyr 260 270 Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Met Arg Pro Lys Ala Met Arg Val 290 295 300 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu 305 310 315 320Thr Thr Val Ala Asn Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp 325 330 335 Ser Ser Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser 340 350 Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr 355 360 365 Cys Gly Leu Val Thr Gly Asn Thr Ser Gln Gln Gln Thr Asp Arg Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Ala Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly 385 390 400 Asn Asn Phe Glu Ile Thr Tyr Ser Phe Glu Lys Val Pro Phe His Ser 405 410 Met Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile 420 430 Asp Gln Tyr Leu Trp Gly Leu Gln Ser Thr Thr Thr Gly Thr Thr Leu 435 440 445 Asn Ala Gly Thr Ala Thr Thr Asn Phe Thr Lys Leu Arg Pro Thr Asn 450 460 Phe Ser Asn Phe Lys Lys Asn Trp Leu Pro Gly Pro Ser Ile Lys Gln 465 470 475 480 Gln Gly Phe Ser Lys Thr Ala Asn Gln Asn Tyr Lys Ile Pro Ala Thr 485 490 495 Gly Ser Asp Ser Leu Ile Lys Tyr Glu Thr His Ser Thr Leu Asp Gly 500 510 Arg Trp Ser Ala Leu Thr Pro Gly Pro Pro Met Ala Thr Ala Gly Pro 515 520 . 525 Ala Asp Ser Lys Phe Ser Asn Ser Gln Leu Ile Phe Ala Gly Pro Lys 530 535 540 Gln Asn Gly Asn Thr Ala Thr Val Pro Gly Thr Leu Ile Phe Thr Ser 545 550 560 Glu Glu Glu Leu Ala Ala Thr Asn Ala Thr Asp Thr Asp Met Trp Gly
575 Asn Leu Pro Gly Gly Asp Gln Ser Asn Ser Asn Leu Pro Thr Val Asp 580 585 Arg Leu Thr Ala Leu Gly Ala Val Pro Gly Met Val Trp Gln Asn Arg

Asp Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 615 620 Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys His 625 630 640 Pro Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 . 650 . 655 Ala Thr Thr Phe Ser Ser Thr Pro Val Asn Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Gln Ile Asp Trp Glu Ile Gln Lys Glu 675 680 685 Arg Ser Lys Arg Trp Asn Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly 690 700 Gln Gln Asn Ser Leu Leu Trp Ala Pro Asp Ala Ala Gly Lys Tyr Thr 705 710 720 Glu Pro Arg Ala Ile Gly Thr Arg Tyr Leu Thr His His Leu

<210> 219 <211> 736 <212> PRT <213> vpl, serotype 1

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
40
45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 505 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg

Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 150 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 220 <211> 736 <212> PRT <213> vp1, serotype 6

WO 2005/033321

Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 . 410 . 415Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Lys Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly

Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Leu Gln Ser Ser Thr Asp Pro Ala 580 590 Thr Gly Asp Val His Val Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

²²¹ 735 PRT vp1, serotype 2

<400> 221

130

135

140

Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

<210> 222 <211> 737 <212> PRT <213> vpl, serotype 7

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 440 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 455 460

Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 · 525 His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 635 640Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Glu Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40

²²³ 738 PRT vp1, serotype 8

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr 405 415

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly
450 455 460 Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Gly 485 490 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 540 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Asn Thr Ala 580 590 Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 224 <211> 736 <212> PRT <213> vpl, modified hu.46

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 365

Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 . 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 590 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 630 640Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720

Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 725 730 735

<210> 225 <211> 735 <212> PRT

PRT vp1, modified hu.29 <400> 225 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 . 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $\frac{600}{605}$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 226 <211> 735 <212> PRT <213> vp1, modified hu.7

<400> 226 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Pro Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655

Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 227 <211> 728 <212> PRT <213> vpl, modified cy.5

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Asn Gly Gln 145 150 160 Pro Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu 165 170 175 Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser 180 185 Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala 195 200 205 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp 210 215 220 His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 235 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255

Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro 290 295 300 Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 335 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser 340 345 Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly 370 380 Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 390 395 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe 405 410 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro 420 430 Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 445 Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met 450 460 Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln 465 470 475 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Asn Ser Asn Phe Ala Trp 485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe 515 520 Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 560Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu 565 570 Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly 580 590 Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly 595 605 Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser

Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Gln Ile Leu 625 630 640 Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro 645 650 655 Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser 660 665 670 Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn 675 685 Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu 690 695 700 Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly 705 710 715 720 Thr Arg Tyr Leu Thr Arg Asn Leu 725

<210> 228 <211> 728 <212> PRT <213> vpl, modified rh.13

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 . 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln 145 150 155 160 Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu 165 170 175 Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser 180 190 Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala 195 200 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp

His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 235 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255 Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser 275 280 285 Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr 305 310 315 320 Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 335 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser 340 350 Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 . 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 390 395 400 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe 405 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro 420 430 Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 445 445 Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln 465 470 475 480 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Ser Asn Phe Ala Trp
485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 510 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe 515 520 525 Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 555 560 Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu 565 570

WO 2005/033321 PCT/US2004/028817

Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly
Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly
Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser
Bro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Gln Ile Leu
640
Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro
Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser
Val Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu
Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Gly Pro Arg Pro Ile Gly
705
Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 229 <211> 729 <212> PRT <213> vp1, modified rh.37

Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Thr Ala 195 200 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp 210 220 His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255 Ser Ser Ser Ser Gly Ala Thr Asn Asp Asn His Tyr Phe Gly Tyr 260 265 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val 370 375 380 Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 400 Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr 440 445 Thr Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr 450 460 Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln 465 470 475 480 Gin Arg Leu Ser Lys Asn Leu Asp Phe Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn Pro Gly Ile Pro Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe Phe Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn 530 540

Lys Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys 545 550 560 Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn 570 Leu Gln Ser Ser Thr Ala Gly Pro Gln Ser Gln Thr Ile Asn Ser Gln 580 590 Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln 595 600 605 Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro 610 620 Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile 625 630 635 Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr 645 655 Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp 675 680 685 Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val 690 695 700 Glu Phe Ala Val Asn Pro Asp Gly Val Tyr Thr Glu Pro Arg Pro 1le 705 710 725 Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 230 <211> 737 <212> PRT <213> vpl, modified rh.67

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr $405 \ \ 410 \ \ \ 415$ Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 730 735

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 . 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Leu Leu

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Gly Ala 580 590 Pro Ile Val Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 232 <211> 738 <212> PRT <213> vpl, modified rh.58

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400

WO 2005/033321 PCT/US2004/028817

Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ser Asm Met Ser Ala Gln Ala Arg Asm Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 233 <211> 738 <212> PRT <213> vpl, modified rh.64 <400> 233

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 . 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 580 580 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 · 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725 720 WO 2005/033321 PCT/US2004/028817

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735 Asn Leu

<210> 234

<212> PRT

<213> vp1, modified ch.5

<400> 234 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Asn Gln Gln His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp His Gln Leu Lys Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Gln Ser Pro Ala Glu Pro Asp Ser Ser Gly Ile Gly 145 150 150 160 Lys Ser Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 250 Tyr Lys Gln Ile Ser Ser Glu Ser Gly Ala Thr Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300

Page 359

Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr 435 440 445 Gln Gly Thr Ser Gly Thr Thr Gln Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Pro Ser Ser Met Ala Gln Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Ser Tyr Arg Gln Gln Arg Met Ser Lys Thr Ala Asn Asp Asn Asn 485 490 495 Asn Ser Glu Phe Ala Trp Thr Ala Ala Thr Lys Tyr Tyr Leu Asn Gly 500 505 Arg Asn Ser Leu Val Asn Pro Gly Pro Pro Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Met His Gly Asn Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Gly Thr Thr Asn Val Asp Ile Glu Ser Val Leu Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Gln Val Ala Thr Asn His Gln Ser Gln Asn Thr Thr Ala Ser Tyr 580 585 590 Gly Ser Val Asp Ser Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ala Thr Thr Phe Thr Pro Gly Lys Phe Ala Ser Phe Ile Thr Gln

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Glu Phe Thr Val Asp Ala Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 235 <211> 736 <212> PRT <213> vp1, modified rh.8

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Pro Asn Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp Asn 50

265

Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ala Leu Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Val 445 445 Arg Thr Gln Thr Thr Gly Thr Gly Gly Thr Gln Thr Leu Ala Phe Ser 450 460 Gln Ala Gly Pro Ser Ser Met Ala Asn Gln Ala Arg Asn Trp Val Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Asn Gln Asn 485 490 495 Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Ala Lys Phe Lys Leu Asn 500 505 Gly Arg Asp Ser Leu Met Asn Pro Gly Val Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly 530 535 Lys Gln Gly Ala Gly Asn Asp Gly Val Asp Tyr Ser Gln Val Leu Ile 545 550 555 Thr Asp Glu Glu Ile Lys Ala Thr Asp Pro Val Ala Thr Glu Glu 565 575 Tyr Gly Ala Val Ala Ile Asn Asn Gln Ala Ala Asn Thr Gln Ala Gln 580 590 Thr Gly Leu Val His Asn Gln Gly Val Ile Pro Gly Met Val Trp Gln 595 600 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620

Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asp Pro Pro Leu Thr Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$ Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220

<210> 236 <211> 737 <212> PRT <213> vp1, modified hu.43

Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 260 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Glu Val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn 435 445 Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe 450 460 Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 475 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp 485 490 495 Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe 530 540 Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met 545 550 560 Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu 565 570 Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro 580 585

Leu

Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp

Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro

His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly

Leu Lys Asn Pro Pro G45 Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro

Ala Asn Pro Pro G60 Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Gly Trp Glu Leu

Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser

Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn Gly

705 Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro

Trp

Arg Pro

Arg Pro

Ile Gly Thr Arg Tyr Leu Thr Arg Pro