Spacecraft Charging: Anomaly and Failure Mechanisms

Joseph I. Minow
NASA, Marshall Space Flight Center
Huntsville, AL USA
Joseph.minow@nasa.gov

Linda Neergaard Parker Jacobs, ESSSA Huntsville, AL USA Linda.parker@nasa.gov

Spacecraft Anomalies and Failures Workshop
Chantilly, VA 24 July 2014

Introduction

Outline

- Spacecraft charging physics
- Charging anomaly, failure mechanisms
- History/examples of spacecraft charging anomalies and failures
- High voltage solar arrays
- Summary

Space Environment Impacts on Space Systems							
Anomaly Diagnosis	Number 	% 					
ESD-Internal, surface	162	54.1					
and uncategorized							
SEU (GCR, SPE, SAA, etc.)	85	28.4					
Radiation dose	16	5.4					
Meteoroids, orbital	10	3.3					
debris							
Atomic oxygen	1	0.3					
Atmospheric drag	1	0.3					
Other	24	8.0					
Total	299	100.0%					

[Koons et al., 2000]

What is Charging?

- The build up of current on or within spacecraft materials. The sum of the currents = 0 at equilibrium.
 - Surface
 - Deep dielectric

$\frac{dQ}{dt} = C \frac{dQ}{dt}$	$\frac{d\sigma}{dt}A = \sum_{k} I_{k} =$
incident ions	$+I_{i}(V)$
incident electrons	$-I_{e}(V)$
backscattered electrons	$+I_{bs,e}(V)$
conduction currents	$+I_{c}(V)$
secondary electrons due to I _e	$+I_{se}(V)$
secondary electrons due to I _i	$+I_{si}(V)$
photoelectrons	$+I_{ph,e}(V)$
active current sources (beams, thrusters)	$+I_b(V)$

Potential Distributions on Spacecraft Surfaces

Electrostatic potentials

 Due to net charge density on spacecraft surfaces or within insulating materials due to current collection to/from the space environment

• Electrodynamic (inductive) potentials

- Modification of frame potentials without change in net charge on spacecraft
- Plasma environment not required
- Examples include
 - EMF generated by motion of conductor through magnetic field
 - Externally applied electric fields

Surface charging

$$\frac{dQ}{dt} = C \frac{d\phi}{dt} = \sum_{k} I_{k} \quad \text{~ 0 at equilibrium}$$

[c.f., *Whipple*, 1981; p. 272 *Wangness*, 1986; p. 210 *Jackson*, 1975; *Maynard*, 1998]

Internal (deep dielectric) charging

$$\vec{\nabla} \cdot \vec{D} = \vec{\nabla} \cdot \varepsilon \vec{E} = \vec{\nabla} \cdot \varepsilon (-\vec{\nabla} \phi) = \rho$$

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon}$$

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot J \quad \text{where } J = J_R + J_C$$

Electrodynamic (inductive) potentials

$$ec{F} = q(ec{E} + ec{v} imes ec{B})$$
 Laboratory frame $ec{F}' = q ec{E}'$ Spacecraft rest frame $ec{E}' = ec{E} + ec{v} imes ec{B}$ Forces equal in both frames! $arepsilon_m' = \oint_C ec{E}' \cdot dec{S} = \oint_C (ec{E} + ec{v} imes ec{B}) \cdot dec{S}$ $\Delta \phi' = \oint_C (ec{E} + ec{v} imes ec{B}) \cdot dec{S}$

Charging Anomaly and Failure Mechanism

- Accumulation of excess negative charge or inductive redistribution of charge generates potential differences between spacecraft and space (frame potential) or between two points on the spacecraft (differential potential)
- An electrostatic discharge (ESD) results when electric fields associated with potential differences ($\mathbf{E} = -\nabla \Phi$) exceed the dielectric breakdown strength of materials allowing charge to flow in an arc
- Damage depends on energy available to arc $F = \frac{1}{2}CV^2$
- Charging anomalies and failures depend on
 - Magnitudes of the induced potentials and strength of the electric fields
 - Material configuration (and capacitance)
 - Electrical properties of the materials
 - Surface and volume resistivity, dielectric constant
 - Secondary and backscattered electron yields, photoemission yields
 - Dielectric breakdown strength

ISS MMOD shield 1.3 μm chromic acid anodized thermal control coating (T. Schneider/NASA)

PMMA (acrylic) charged by ~2 to 5 MeV electrons

Impact of Charging on Spacecraft

Electrostatic discharge (ESD) currents

- Compromised function and/or catastrophic destruction of sensitive electronics
- Solar array string damage (power loss), solar array failures
- Un-commanded change in system states (phantom commands)
- Loss of synchronization in timing circuits
- Spurious mode switching, power-on resets, erroneous sensor signals
- Telemetry noise, loss of data

Electromagnetic interference (EMI)

- EMI noise levels in receiver band exceeding receiver sensitivity
- Communications issues due to excess noise
- Phantom commands, signals

Material damage

- ESD damage to mission critical materials including thermal control coatings, re-entry thermal protection systems, optical materials (dielectric coatings, mirror surfaces)
- Re-attracted photo ionized outgassing materials deposited as surface contaminants

Other

- Compromised science instrument, sensor function
 - » Modified "Ion line" charging signature in ion spectrum
 - » Photoelectron contamination in electron spectrum
- Parasitic currents and solar array power loss (LEO)

Anomalies and Failures Attributed to Charging

Spacecraft	Year(s)	Orbit	Impact*	Spacecraft	Year(s)	Orbit	Impact*
DSCS II	1973	GEO	LOM	Intelsat K	1994		Anom
Voyager 1	1979	Jupiter	Anom	DMSP F13	1995	LEO	Anom
SCATHA	1982	GEO	Anom	Telstar 401	1994, 1997	GEO	Anom/LOM
GOES 4	1982	GEO	LOM	TSS-1R	1996	LEO	Failure
AUSSAT-A1, -A2, -A3	1986-1990	GEO	Anom	TDRS F-1	1986-1988	GEO	Anom
FLTSATCOM 6071	1987	GEO	Anom	TDRS F-3,F-4	1998-1989	GEO	Anom
GOES 7	1987-1989	GEO	Anom/SF	INSAT 2	1997	GEO	Anom/LOM
Feng Yun 1A	1988	LEO	Anom/LOM	Tempo-2	1997	GEO	LOM
MOP-1,-2	1989-1994	GEO	Anom	PAS-6	1997	GEO	LOM
GMS-4	1991	GEO	Anom	Feng Yun 1C	1999	LEO	Anom
BS-3A	1990	GEO	Anom	Landsat 7	1999-2003	LEO	Anom
MARECS A	1991	GEO	LOM	ADEOS-II	2003	LEO	LOM
Anik E1	1991	GEO	Anom/LOM	TC-1,2	2004	~2GTO, GTO	Anom
Anik E2	1991	GEO	Anom	Galaxy 15	2010	GEO	Anom
Intelsat 511	1995	GEO	Anom	Echostar 129	2011	GEO	Anom
SAMPEX	1992-2001	LEO	Anom	Suomi NPP	2011-2014	LEO	Anom

^{*}Anom=anomaly, LOM=Loss of mission, SF=system failure

Charging Failures are Expensive!

Total claims (1994 - 2013) = USD 12,640m

[Wade, 2014]

GEO Charging Examples

Magnetospheric Specification Model
& Spacecraft Charging

Electrons
17.5 KeV

During the early phase of a geomagnetic substorm electrons are injected into geostationary orbit.

Midnight

**Each black dot represents a surface charging anomaly from GOES-4 or GOES-5.

**National Geophysical Open Company or GOES-5.*

**Pational Company or GOES-4 or GOES-5.*

**Pational Company or GOES-6.*

**Pational Company or

Record ATS-6 charging event $\Phi \sim -19 \text{ kV}$

- GEO surface charging potentials to 1 to 10 kV
- Surface charging most common in midnight through dawn sector
- Internal charging independent of local time

GOES Solar Cycle 21 Internal Charging Anomalies

Black: GOES phantom commands

2-day fluence (F2) > 2 MeV electrons

Red: $F2 \ge 10^9 \, e^{-1} / cm^2 - sr$

Amber: $10^9 > F2 \ge 10^8 e^{-1} / cm^2 - sr$

Green: $F2 < 10^8 e^{-1} / cm^2 - sr$

White: no data

High Inclination LEO Charging Examples

[adapted from Anderson, 2012]

- Polar surface charging potentials to 1 or 2 kV
- Surface charging caused by 10's keV auroral electrons limited to high latitudes

Solar Array Arcing

- Charging issues for low voltage PVA systems are typically limited to extreme LEO auroral and GEO charging environments
- High voltage systems are at risk for ESD due to plasma currents collected on exposed high voltage components, arcing through insulators
- Two types of solar array arcs:
 - Trigger arcs: fast, transient arc
 - Damage limited to local capacitance
 - EMI noise
 - Sustained arcs: long duration, continuous arcs
 - Solar array currents feed power into arc site producing significant damage to cell strings
 - Can lead to total loss of array

ESA EURECA solar array sustained arc damage (ESA)

Sustained arc

http://laplace.ele.kyutech.ac.jp/mengu/400V.htm

Mitigation Strategies

- Follow good EMC, grounding/bonding and charging design practices
 - Ground conductive materials to assure an equipotential (eliminate differential charging)
 - Use static dissipative materials when conductors can not be used
- Analyze spacecraft configuration in charging environment
 - Nascap-2k, In. cam, NUMIT
- Test insulating materials with electron beams at relevant energy (10's keV) and current (~1-10 nA/cm²) to determine if (a) arcing will occur and (b) if it will result in damage

Anomaly Investigations

- Complete anomaly investigation requires
 - Information on environment at time of anomaly
 - Information on spacecraft configuration (material properties, shielding thickness, grounding/bonding details)
 - System vulnerabilities to ESD
- Orbit and environment assessment through analysis of charged particle data during anomaly timeframe
 - Best if your satellite has plasma, particle detectors
 - Data from other sources including nearby satellites if necessary

Common Cause Charging, Radiation Anomalies

- Charging and radiation anomalies can be generated by the same environments
- Chandra X-ray Observatory star tracker anomalies in spring 2010 were caused by outer radiation belt energetic electron enhancements
- The same environment resulted in the Galaxy 15 ESD anomaly on 5 April 2010
- High flux of penetrating MeV electrons impacts well shielded CCD imager, results in charging threat

Summary

- Charging can cause significant damage to spacecraft resulting in loss of mission, loss of functionality, loss of money
- Complicated physical process that is dependent on spacecraft configuration, material selection, and orbit (environment)
- Failures and anomalies include
 - Destruction of sensitive electronics
 - Solar array string damage
 - Phantom commands
 - Telemetry noise, loss of data
 - ESD damage to mission critical materials
 - Re-attracted photo ionized outgassing materials deposited as surface contaminants
 - Compromised science instruments, sensor function
 - Parasitic currents and solar array power loss
- Build spacecraft to withstand or avoid charging
 - Characterize charging environment
 - Modeling spacecraft response to charging environment
 - Testing components in relevant charging environments
- Anomaly investigation