

Multi-omics data integration to study human diseases and physiology

Oleg Borisov, PhD

oleg.borisov@uniklinik-freiburg.de

Institute of Genetic Epidemiology, Medical Center - University of Freiburg

Invited presentation at Leibniz Research Institute for Environmental Medicine

Human genome and its variation

Human Genome Project (2003)

The first printout of the human genome

1000 Genomes Project N≈88 million variants in ~2500 genomes (2015)

NHLBI TOPMed Program
N>400 million variants in ~54000 genomes (2021)

Genotype-phenotype associations

Binary phenotypes

Example: Cases with Diabetes vs Healthy Controls

Quantitative phenotypes

Example: Height

Genome-wide association study (GWAS)

Statistical analysis and visualization

Example 1

- GWAS of esophageal adenocarcinoma
- 7 000 cases and 7 000 controls

Example 2

- GWAS of carotid artery intima-media thickness
- 45 185 participants

Dong, J., Maj, C., Tsavachidis, S.,, **Borisov, O.**, et al. (2020). Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology.

Molecular biobanks

As of 2024-10-09, the GWAS Catalog contains 7027 publications, 686504 top associations and 97285 full summary statistics.

Search for a gene, variant, study, or trait...

PCSK9 1_154453788_C_T rs4129267 LDL cholesterol (Willer CJ et al. 2013)

Study ID	Trait	Publication	N Initial	Lead Variant	P- value	Beta
NEALE2_1498	Coffee intake	UKB Neale v2 (2018)	334,659	7_17244953_T_C	3.2e-95	0.039
NEALE2_1727	Ease of skin tanning	UKB Neale v2 (2018)	353,697	7_17095084_G_A	1.5e-83	0.14
GCST008524	Bitter non- alcoholic beverage consumption	Zhong VW (2019)	85,852	7_17244953_T_C	3.0e-75	0.030

Allele frequency spectrum

Rare variants: sequencing studies

- Variant-level and gene-level associations with thousands of human traits
 - Based on the UK Biobank (500,000 individuals)
- Example: APOE gene (phenome-wide associations)

Epidemiological approach for multi-omics data analysis

 The data from large-scale biobanks and population based cohorts enable efficient target identification and drug discovery at scale.

Cohort / Database	Number of participants	Available Data
UK Biobank	500,000	Whole-genome sequencing, proteomics, metabolomics, imaging
All of Us	250,000 (ongoing, up to 1 million)	Genotyping, sequencing, medical endpoints
FinnGen	500,000	Genotyping, National health registries

UK Biobank: multi-omics and deep phenotyping data

- 500,000 volunteer participants.
- Age: 40-69 years at the time of recruitment.
- Genotyping and whole-genome sequencing.
- Proteomics (Olink, 3000 proteins).
- Metabolomics, Radiomics (Imaging).
- Phenotyping data:
- ICD-10 codes: (>7 million codes)
- Self-reported medical conditions.

• ...

Proteogenomics study in the UK Biobank

Article | Open access | Published: 04 October 2023

Plasma proteomic associations with genetics and health in the UK Biobank

Nature 622, 329–338 (2023) Cite this article

110k Accesses | 165 Citations | 324 Altmetric | Metrics

Common variants

- N=54,219 UK Biobank participants.
- protein quantitative trait locus (pQTL) mapping of 2,923.
- N=14,287 primary genetic association (81% previously undescribed).

Article Open access | Published: 04 October 2023

Rare variant associations with plasma protein levels in the UK Biobank

Ryan S. Dhindsa , Oliver S. Burren, Benjamin B. Sun, Bram P. Prins, Dorota Matelska, Eleanor Wheeler, Jonathan Mitchell, Erin Oerton, Ventzislava A. Hristova, Katherine R. Smith, Keren Carss, Sebastian Wasilewski, Andrew R. Harper, Dirk S. Paul, Margarete A. Fabre, Heiko Runz, Coralie Viollet, Benjamin Challis, Adam Platt, AstraZeneca Genomics Initiative, Dimitrios Vitsios, Euan A. Ashley, Christopher D. Whelan, Menelas N. Pangalos, ... Slavé Petrovski + Show authors

Nature 622, 339–347 (2023) | Cite this article

39k Accesses | 25 Citations | 141 Altmetric | Metrics

Rare variants

- N=5,433 rare genotype-protein associations (81% previously undetected in the study of common variants).
- Aggregated signals: 1,962 gene–protein associations.
- Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels.

Mapping genetic associations to causal genes

- Genetic variants identified in GWAS are often located in non-coding regions.
- These variants usually play regulatory role (e.g., modulation of gene expression).

Dissecting the genetic heterogeneity of gastric cancer. T. Hess, C. Maj, **O. Borisov** et al. eBioMedicine, Volume 92, 104616

Genetic colocalization

 A statistical method used to assess shared genetic etiology across two phenotypes (e.g. GWAS of complex disease and gene expression).

Gene expression DNA Phenotypes, diseases Protein expression Metabolites

Only one trait has association

Different causal variants

Same causal variant

PMID: 24830394 (Fig. 1, modified)

UNIVERSITÄTS

KLINIKUM FREIBURG

Resources available for colocalization

Dataset	Study	Phenotypes	Participants
Gene expression	GTEx v8, Human kidney atlas	N > 10,000 genes	N ≈ 15,000 samples N = 49 tissues
Plasma proteomics	Icelanders and UK Biobank proteomics	N > 4,000 proteins	N > 50,000
Phenome-wide association studies	UK Biobank PheWeb and FinnGen (DF9)	N > 3,500 binary outcomes	N > 500,000
•••			

genepicoloc: R package to facilitate colocalization analysis

Input preprocessing

- Perform QC
- Harmonize, liftOver
- Identify significant regions

External studies

Indexed summary statistics

Colocalization

- Computationally efficient
 - 1,000,000+ jobs

