Теория групп

Артём Рашевский

2025

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы	4
2	Подгруппы. Циклические подгруппы и группы. Порядок элемента	6
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа	ç
4	Группы движений	11
5	Группы перестановок	13
6	Нормальные подгруппы. Факторгруппы	16
7	Гомоморфизмы групп. Четверная группа Клейна. Теорема Кэли	18
8	Теорема о гомоморфизме. Классификация циклических групп	22
9	Группы автоморфизмов	2 4
10	Классы сопряжённости	27
11	Прямое произведение групп	29
12	Свободные абелевы группы	31
13	Структура абелевых групп	33
14	Порождающие элементы	35
15	Коммутант	36
16	Разрешимые группы	39
17	Простые группы	40
18	Действия групп. Формула Бёрнсайда	41

19 р-группы. Теоремы Силова	4 4
20 Кольца и поля	45
21 Приложения теории групп в криптографии*	48
22 Группы Ли*	49
23 Введение в гомологическую алгебру*	50
Список литературы	51

1 Бинарные операции. Полугруппы, моноиды и группы

Определение 1.1. Пусть M — непустое множество. Eинарной операцией \circ на множестве M называется отображение $\circ: M \times M \to M$, $\forall a,b \in M \colon (a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 1.2. Множество с бинарной операцией (M, \circ) называется полугруппой, если данная бинарная операция ассоциативна, т.е.

$$\forall a, b, c \in M: a \circ (b \circ c) = (a \circ b) \circ c.$$

Определение 1.3. Полугруппа (M, \circ) называется *моноидом*, если в ней есть *нейтральный элемент*, т.е.

$$\exists e \in M : \forall a \in M : e \circ a = a \circ e = a.$$

Определение 1.4. Моноид (M, \circ) называется *группой*, если для каждого элемента $a \in M$ найдется *обратный элемент*, т.е.

$$\forall a \in M \ \exists a^{-1} \in M : a \circ a^{-1} = a^{-1} \circ a = e.$$

Определение 1.5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, т.е.

$$\forall a,b \in G : ab = ba.$$

Определение 1.6. Порядком |G| группы G называется число элементов в ней. Группа называется конечной, если её порядок конечен, и бесконечной иначе.

Примеры.

1. Числовые аддитивные группы:

$$\mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+, \mathbb{C}^+, \mathbb{Z}_n^+.$$

2. Числовые мультипликативные группы:

$$\mathbb{Q}^{\times} \setminus \{0\}, \ \mathbb{R}^{\times} \setminus \{0\}, \ \mathbb{C}^{\times} \setminus \{0\}, \ \mathbb{Z}_p^{\times} \setminus \{0\}, \ p$$
— простое.

3. Группы матриц:

$$\mathbf{GL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A \neq 0\}$$
 — полная линейная группа; $\mathbf{SL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A = 1\}$ — специальная линейная группа;

$$\mathbf{O}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid A \cdot A^T = I\}$$
 — ортогональная группа; $\mathbf{SO}_n(\mathbb{R}) = \mathbf{O}_n(\mathbb{R}) \cap \mathbf{SL}_n(\mathbb{R})$ — специальная ортогональная группа; $\mathbf{U}_n = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{C}) \mid A \cdot A^\dagger = I\}$ — унитарная группа; $\mathbf{SU}_n = \mathbf{U}_n \cap \mathbf{SL}_n(\mathbb{C})$ — специальная унитарная группа.

4. Группы перестановок:

симметрическая группа S_n — все перестановки длины n; знакопеременная группа A_n — все чётные перестановки длины n.

- 5. Группы преобразований подобия: гомотетии, движения (осевые и скользящие симметрии, параллельные переносы, повороты).
- 6. Группа кватернионов:

Множество $Q_8=\{\pm 1,\pm i,\pm j,\pm k\}$ с операцией умножения заданной следующим образом: $i^2=j^2=k^2=-1,\,ij=k,\,ji=-k.$

Определение 1.7. Для описания структур групп часто используются *таблицы Кэли*. Они представляют собой квадратные таблицы, заполненные результатами применения бинарной операции к элементам множества.

Пример. Таблица Кэли для группы $(\{1,3,5,7\}, \times (\text{mod } 8))$:

2 Подгруппы. Циклические подгруппы и группы. Порядок элемента

Определение 2.1. Подмножество H группы G называется noderpynnoй и обозначается H < G, если выполнены следующие условия:

- 1. $e \in H$;
- 2. $\forall a, b \in H : ab \in H$;
- 3. $\forall a \in H: a^{-1} \in H$.

В каждой группе G есть H есть H

Примеры.

- 1. $n\mathbb{Z}^+ < \mathbb{Z}^+ < \mathbb{Q}^+ < \mathbb{R}^+ < \mathbb{C}^+$;
- 2. $SO_n(\mathbb{R}) < O_n(\mathbb{R}) < GL_n(\mathbb{R});$
- 3. $A_n < S_n$.

Теорема (критерий подгруппы). $\Pi y cmb \ G - \epsilon p y nna, \ mor \partial a$

$$H < G \iff \forall a, b \in H : a \circ b^{-1} \in H.$$

Доказательство. Определим на H вспомогательное отношение $R_H = \{(a,b) \mid a \circ b^{-1} \in H\}$. Покажем, что R_H является отношением эквивалентности. Для этого проверим, что оно рефлексивно (1), симметрично (2) и транзитивно (3):

- 1. $a \circ a^{-1} = e \in H$;
- 2. $ab^{-1} \in H \Longrightarrow ba^{-1} = (ab^{-1})^{-1} \in H$;
- 3. $ab^{-1} \in H$, $bc^{-1} \in H \Longrightarrow ac^{-1} = (ab^{-1})(bc^{-1}) = a(b^{-1}b)c^{-1} \in H$.

Рефлексивность R_H определяет наличие нейтрального элемента, симметричность — наличие обратного элемента, транзитивность — ассоциативность заданной бинарной операции. Каждый класс эквивалентности будет ассоциирован с некоторой подгруппой (как с алгебраически замкнутым множеством).

Утверждение 2.1. Всякая подгруппа в \mathbb{Z}^+ имеет вид $k\mathbb{Z}$ для некоторого $k \in \mathbb{N}_0$.

Доказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} . Пусть $H < \mathbb{Z}$. Если $H = \{0\}$, то $H = 0\mathbb{Z}$. Иначе положим $k = \min(H \cap N) \neq 0$ (это множество непусто, т.к. $\forall x \in H \cap N \colon -x \in H$), тогда $k\mathbb{Z} \subseteq H$. Покажем, что $k\mathbb{Z} = H$. Пусть $a \in H$ — произвольный элемент. Поделим его на k с остатком:

$$a = qk + r$$
, где $k \in H$, $0 \leqslant r < k \Rightarrow r = a - qk \in H$.

В силу выбора k получаем: $r=0 \Rightarrow a=qk \in k\mathbb{Z}$.

Определение 2.2. Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Степень элемента g определяется следующим образом:

$$g^{n} = \begin{cases} \underbrace{g \dots g}_{n}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1} \dots g^{-1}}_{n}, & n < 0 \end{cases}$$

и обладает свойствами:

 $\forall m, n \in \mathbb{Z}$:

- $1. g^m \cdot g^n = g^{m+n};$
- 2. $(g^m)^{-1} = g^{-m}$;
- 3. $(g^m)^n = g^{mn}$.

Определение 2.3. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\} \subseteq G$.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется nopoxcdawuum или ofpasywuum для подгруппы $\langle g \rangle$.

Пример. Подгруппа $2\mathbb{Z} < \mathbb{Z}^+$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$.

Определение 2.4. Группа G называется $uu\kappa nuveckou$, если

$$\exists g \in G : G = \langle g \rangle.$$

 $\mathbf{\Pi}$ римеры. \mathbb{Z}^+ ; \mathbb{Z}_n^+ , $n \geqslant 1$.

Определение 2.5. Пусть G — группа и $g \in G$. Порядком элемента g называется наименьшее $m \in \mathbb{N}$: $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности. Порядок элемента обозначается $\operatorname{ord}(g)$.

Замечание.

$$\operatorname{ord}(g) = 1 \iff g = e.$$

Утверждение 2.2. Если $G - \varepsilon pynna\ u\ g \in G,\ mo\ {\rm ord}(g) = |\langle g \rangle|.$

Доказательство. Заметим, что если $g^k=g^s$, то $g^{k-s}=e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же $\operatorname{ord}(g)=m$, то из минимальности числа m следует, что элементы $e=g^0,g^1,g^2,\ldots,g^{m-1}$ попарно различны. Далее, $\forall n \in \mathbb{Z} \colon n=mq+r$, где $0\leqslant r \leq m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно,
$$\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$$
 и $|\langle g \rangle| = m$.

Очевидно, что всякая циклическая группа коммутативна и не более чем счётна.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа

Определение 3.1. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH \stackrel{\mathrm{def}}{=} \{gh \mid h \in H\},\$$

аналогично определяется правый смежный класс:

$$Hg \stackrel{\text{def}}{=} \{hg \mid h \in H\}.$$

Лемма 3.1. Пусть G — конечная подгруппа, тогда $\forall g \in G$: |gH| = |H|.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножив слева на g^{-1} , получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 3.2. Пусть G — группа, H < G. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема (Лагранж). Пусть G — конечная группа, H < G. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (по следствию из доказательства критерия подгруппы) и каждый из них содержит по |H| элементов (по предыдущей лемме).

Следствие 3.1. |G| : |H|.

Следствие 3.2. |G| : ord(g).

Доказательство. Вытекает из следствия 1 и того, что $\operatorname{ord}(g) = |\langle g \rangle|$.

Следствие 3.3. $g^{|G|} = e$.

Доказательство. Из предыдущего следствия получаем:
$$|G|=\operatorname{ord}(g)\cdot s,\ s\in\mathbb{N}\Longrightarrow g^{|G|}=(g^{\operatorname{ord}(g)})^s=e^s=e.$$

Следствие 3.4 (Малая теорема Ферма). Пусть \overline{a} — ненулевой вычет по простому модулю p, тогда $\overline{a}^{p-1} \equiv 1 \pmod{p}$.

Доказательство. Применим следствие 3 к группе $\mathbb{Z}_p^{\times} \setminus \{0\}$.

Следствие 3.5. Пусть |G| — простое число, тогда G — циклическая группа, порождённая любым своим не нейтральным элементом.

Доказательство. Пусть $g \in G$ — произвольный не нейтральный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

4 Группы движений

Определение 4.1. Упорядоченная пара (M, d), состоящая из множества M и отображения $d: M \times M \to \mathbb{R}$, называется метрическим пространством, если $\forall x, y \in M$:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$ (аксиома тождества);
- 2. $d(x,y) \geqslant 0$ (аксиома неотрицательности);
- 3. d(x,y) = d(y,x) (аксиома симметричности);
- 4. $d(x,y) + d(y,z) \geqslant d(x,y)$ (аксиома или неравенство треугольника).

Определение 4.2. Пусть X и Y — метрические пространства. Отображение $f: X \to Y$ называется *изометрией*, если оно сохраняет расстояние между точками:

$$\forall x, x' \in X: |f(x) - f(x')|_Y = |x - x'|_X,$$

Если X = Y, f называют движением.

Определение 4.3. Движение называют *собственным*, если оно сохраняет *ориентацию* пространства.

Определение 4.4. Пусть E - eвклидово аффинное пространство и $F \subseteq E$ — геометрическая фигура. Группой движений (изометрий) Isom(F) фигуры F называется множество тех движений аффинного пространства E, которые переводят фигуру F в себя:

$$\operatorname{Isom}(F) \stackrel{\text{def}}{=} \{ \varphi : E \to E \mid \varphi - \operatorname{движение}, \ \varphi(F) = F \}.$$

В качестве групповой операции рассматривается операция композиции движений.

Замечание. Группа собственных движений $Isom(F)^+$ является подгруппой группы движений Isom(F) фигуры F.

Определение 4.5. Группа движений правильного n-угольника $\Delta_n \subset \mathbb{R}^2$ называется $\partial u \ni \partial p$ альной группой D_n :

$$D_n \stackrel{\text{def}}{=} \text{Isom}(\Delta_n).$$

Утверждение 4.1. $|D_n| = 2n$.

Доказательство. Есть всего 2 вида движений:

- 1. n вращений относительно центра на угол, кратный $\frac{2\pi}{n}$ (вращение на угол φ обозначается \mathbf{R}_{φ});
- 2. n симметрий относительно осей симметрии (симметрия относительно прямой l обозначается S_l).

В случае нечётного n любая ось симметрии проходит через центр Δ_n и одну из вершин, в случае чётного n любая ось симметрии проходит либо через противоположные вершины, либо через середины противоположных сторон.

Замечание. Группа собственных движений Δ_n содержит только повороты:

Isom
$$(D_n)^+ = \{R_{\frac{2\pi k}{n}}\}, \ k = \overline{0, \ n-1}.$$

 $\mathbf{\Pi pumep}$. Таблица Кэли группы D_4 квадрата ABCD:

		1			1			1
0	id	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$	S_h	S_v	S_{AC}	S_{BD}
id	id	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$	S_h	S_v	S_{AC}	S_{BD}
$R_{\frac{\pi}{2}}$	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$	id	S_{BD}	S_{AC}	S_h	S_v
R_{π}	R_{π}	$R_{\frac{3\pi}{2}}$	id	$R_{\frac{\pi}{2}}$	S_v	S_h	S_{BD}	S_{AC}
$R_{\frac{3\pi}{2}}$	$R_{\frac{3\pi}{2}}$	id	$\mathrm{R}_{rac{\pi}{2}}$	R_{π}	S_{AC}	S_{BD}	S_v	S_h
S_h	S_h	S_{AC}	S_v	S_{BD}	id	R_{π}	$R_{\frac{\pi}{2}}$	$R_{\frac{3\pi}{2}}$
S_v	S_v	S_{BD}	S_h	S_{AC}	R_{π}	id	$R_{\frac{3\pi}{2}}$	$R_{\frac{\pi}{2}}$
S_{AC}	S_{AC}	S_v	S_{BD}	S_h	$R_{\frac{3\pi}{2}}$	$R_{\frac{\pi}{2}}$	id	R_{π}
S_{BD}	S_{BD}	S_h	S_{AC}	S_v	$R_{\frac{\pi}{2}}$	$R_{\frac{3\pi}{2}}$	R_{π}	id

5 Группы перестановок

Определение 5.1. Пусть задано множество $X = \{1, 2, ..., n\}, n \in \mathbb{N}$. Множество всех возможных биекций $X \leftrightarrow X$ с операцией композиции образует группу S_n , называемую симметрической группой или группой перестановок.

Утверждение 5.1.

$$|S_n| = n!$$

Доказательство. Символ 1 можно подходящей перестановкой σ перевести в любой другой символ $\sigma(1)$, для чего существует в точности n различных возможностей. Но зафиксировав $\sigma(1)$, в качестве $\sigma(2)$ можно брать лишь один из оставшихся n-1 символов и т.д. Всего возможностей выбора $\sigma(1), \sigma(2), \ldots, \sigma(n)$, значит и всех перестановок будет $n(n-1)\ldots 2\cdot 1=n!$.

Утверждение 5.2. Любая перестановка может быть представлена в виде композиции независимых циклов единственным образом с точностью до порядка множителей.

Утверждение 5.3. Независимые циклы коммутируют.

Утверждение 5.4. Порядок цикла равен его длине.

Утверждение 5.5. Порядок перестановки равен НОК длин циклов в его цикловом разложении.

Определение 5.2. Цикл длины 2 называется транспозицией.

Лемма 5.1. Любая перестановка является произведением транспозиций.

Доказательство. Достаточно доказать это для циклов непосредственной проверкой:

$$(i_1i_2i_3\ldots i_k)=(i_1i_2)(i_2i_3)\ldots(i_{k-1}i_k).$$

Определение 5.3. *Инверсией* в перестановке называется пара индексов k < s, таких что $i_k > i_s$.

Определение 5.4. *Чётностью* перестановки называется чётность числа инверсий в ней.

Лемма 5.2. Пусть (ij) — произвольная транспозиция, тогда $\forall \sigma \in S_n$ чётности перестановок σ и $\sigma(ij)$ различны.

Доказательство. Рассмотрим два случая:

- 1. $(ij) = (i \ i + 1)$ число инверсий изменилось на одну, чётность изменилась.
- 2. (ij) любая, тогда

$$(ij) = (j-1 \ j) \dots (i+1 \ i+2)(i \ i+1)(i+1 \ i+2) \dots (j-1 \ j), \quad (1)$$

что подтверждается непосредственной проверкой.

Следствие. Любая перестановка является композицией произведением соседних элементов.

Доказательство. В разложении (1) 2(j-i-1)+1 сомножителей, т.е, нечётное число. При перемене чётности нечётное число раз, она изменится, что доказывает следствие.

Теоерма 5.1. B S_n число чётных перестановок равно числу нечётных перестановок.

Доказательство. Пусть $\sigma_1, \ldots, \sigma_k$ — все чётные перестановки длины n, тогда $\sigma_1(12), \ldots, \sigma_k(12)$ — нечётные перестановки. Если σ — чётная, то $\sigma(12)$ — нечётная $\Longrightarrow \sigma = (\sigma(12))(12) = \sigma(12)^2 = \sigma \text{ id} = \sigma \Longrightarrow \text{ среди}$ $\sigma_1, \ldots, \sigma_k$ встретятся все нечётные перестановки. Значит, мы установили биекцию между множеством чётных и множеством нечётных перестановок \Longrightarrow эти множества равномощны.

Определение 5.5. Знак перестановки $\mathrm{sgn}(\sigma) \stackrel{\mathrm{def}}{=} \begin{cases} 1, & \sigma - \text{чётная} \\ -1, & \sigma - \text{нечётная}. \end{cases}$

Теоерма 5.2.

$$\forall \sigma, \tau \in S_n : \operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau).$$

Доказательство. Пусть $\sigma = \sigma_1, \dots, \sigma_k, \ \tau = \tau_1, \dots, \tau_s$ — произведение транспозиций. Тогда $\operatorname{sgn}(\sigma) = (-1)^k, \ \operatorname{sgn}(\tau) = (-1)^s$.

$$\sigma \tau = \sigma_1, \dots, \sigma_k \tau_1, \dots, \tau_s \Longrightarrow \operatorname{sgn}(\sigma \tau) = (-1)^{k+s}.$$

Следствие.

$$sgn(\sigma) = sgn(\sigma^{-1}).$$

Доказательство.

$$\operatorname{sgn}(\sigma)\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma\sigma^{-1}) = \operatorname{sgn}(\operatorname{id}) = 1.$$

Пример. Пусть $G = S_3$, $H = \langle (12) \rangle = \{ \mathrm{id}, (12) \}$. Найдём все левые и правые смежные классы G по H (произвольный элемент обозначим a):

a	aH	Ha
id	aH	Ha
$\boxed{(12)}$	$\{(12), id\}$	$\{(12), id\}$
$\boxed{(13)}$	{(13), (123)}	{(13), (132)}
(23)	{(23), (132)}	{(23), (123)}
$\boxed{(123)}$	{(123), (13)}	{(123), (23)}
$\boxed{(132)}$	$\{(132), (23)\}$	{(132), (13)}

6 Нормальные подгруппы. Факторгруппы

Определение 6.1. Подгруппа H группы G называется *нормальной*, если

$$\forall g \in G: gH = Hg.$$

Обозначается $H \triangleleft G$.

Утверждение 6.1. Пусть H — подгруппа группы G, тогда следующие условия эквивалентны:

- 1. Н нормальна;
- 2. $\forall g \in G: gHg^{-1} = H;$
- 3. $\forall g \in G: gHg^{-1} \subseteq H$.

Доказательство.

- $(1) \implies (2): gH = Hg \mid g^{-1} \implies gHg^{-1} = H.$
- $(2) \Longrightarrow (3)$: очевидно.
- $(3) \implies (2): gHg^{-1} \subseteq H \implies gHg^{-1} \subseteq H \mid \cdot g \implies gH \subseteq Hg.$ Если $g = g^{-1}$, то $g \cdot \mid g^{-1}Hg \subseteq H \implies Hg \subseteq gH \implies gH = Hg. <math>\blacksquare$

Рассмотрим множество смежных классов по нормальной подгруппе, обозначенной G/H. Определим на G/H бинарную операцию, полагая, что $(g_1H)(g_2H)=(g_1g_2)H$.

Пусть $g_1'H=g_1H$ и $g_2'H=g_2H$, тогда $g_1'=g_1h_1,\ g_2'=g_2h_2,$ где $h_1,h_2\in H.$

$$(g_1'H)(g_2'H) = (g_1g_2')H = (g_1h_1g_2h_2)H = (g_1g_2\underbrace{g_2^{-1}h_1g_2}_{\in H}h_2)H \subseteq (g_1g_2)H \Longrightarrow$$
$$\Longrightarrow (g_1'g_2')H = (g_1g_2)H.$$

Утверждение 6.2. G/H является группой.

Доказательство. Проверим аксиомы группы:

- 1. Ассоциативность очевидна.
- 2. Нейтральный элемент eH.
- 3. Обратный к $gH g^{-1}H$.

Определение 6.2. Множество G/H с указанной операцией называется ϕ акторгруппой группы G по нормальной подгруппе H.

 $\pmb{Hpuмep}$. Если $G=\mathbb{Z}^+$ и $H=n\mathbb{Z}$, то G/H — группа вычетов \mathbb{Z}_n^+

7 Гомоморфизмы групп. Четверная группа Клейна.Теорема Кэли

Определение 7.1. Пусть (G, \circ) и (F, *) — группы.

Отображение $\varphi: G \to F$ называется гомоморфизмом, если

$$\forall g_1, g_2 \in G: \varphi(g_1 \circ g_2) = \varphi(g_1) * \varphi(g_2).$$

Замечание. Пусть $\varphi: G \to F$ — гомоморфизм групп, и пусть e_G, e_F — нейтральные элементы групп G и F соответственно, тогда:

- 1. $\varphi(e_G) = e_F$
- 2. $\forall g \in G: \varphi(g^{-1}) = \varphi(g)^{-1}$

Доказательство.

1. $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G)\varphi(e_G)$.

Домножив обе крайние части равенства на $\varphi(e_G)^{-1}$, получим $e_F = \varphi(e_G)$.

2. $\varphi(g * g^{-1}) = e_F = \varphi(g)\varphi(g^{-1}).$

Умножив обе части на $\varphi(g)^{-1}$, получаем необходимое.

Определение 7.2. Гомоморфизм групп $\varphi:G \to F$ называется

- эндоморфизмом, если F = G;
- *мономорфизмом*, если φ инъективно;
- *эпиморфизмом*, если φ сюръективно;
- *изоморфизмом*, если φ биективно;
- *автоморфизмом*, если φ является эндоморфизмом и изоморфизмом.

Группы G и F называются uзоморфнымu, если между ними существует изоморфизм. Обозначается: $G\cong F$.

Пример. Четверная группа Клейна— ациклическая коммутативная группа четвёртого порядка, задающаяся следующей таблицей Кэли:

Порядок каждого элемента, отличного от нейтрального, равен 2.

Обозначается V или V_4 (от нем. Vierergruppe — четверная группа).

Любая группа четвёртого порядка изоморфна либо циклической группе, либо четверной группе Клейна, наименьшей по порядку нециклической группе. Симметрическая группа S_4 имеет лишь две нетривиальные нормальные подгруппы — знакопеременную группу A_4 и четверную группу Клейна V_4 , состоящую из перестановок id, (12)(34), (13)(24), (14)(23).

Несколько примеров изоморфных ей групп:

- npямая cyмма $\mathbb{Z}_2 \oplus \mathbb{Z}_2;$
- диэдральная группа D_2 ;
- множество $\{0,1,2,3\}$ с операцией XOR;
- группа симметрий ромба ABCD в трёхмерном пространстве, состоящая из 4 преобразований: $id, R_{\pi}, S_{AC}, S_{BD}$;
- группа поворотов тетраэдра на угол π вокруг всех трёх рёберных медиан (вместе с тождественным поворотом).

Определение 7.3. \mathcal{A} *дром* гомоморфизма $\varphi: G \to F$ называется множество всех элементов G, которые отображаются в нейтральный элемент F, т.е.

$$\ker \varphi \stackrel{\text{def}}{=} \{ g \in G \mid \varphi(g) = e_F \}.$$

 $Oбраз \varphi$ определяется как

$$\operatorname{Im} \varphi \stackrel{\text{def}}{=} \varphi(G) = \{ f \in F \mid \exists g \in G : \varphi(g) = f \}.$$

Очевидно, что $\ker \varphi < G$ и $\operatorname{Im} \varphi < F$.

Лемма 7.1. Гомоморфизм групп $\varphi: G \to F$ инъективен тогда и только тогда, когда $\ker \varphi = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\ker \varphi = \{e_G\}$.

Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \ker \varphi$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие. Гомоморфизм групп $\varphi : G \to F$ является изоморфизмом тогда и только тогда, когда $\ker \varphi = \{e_G\}$ и $\operatorname{Im} \varphi = F$.

Утверждение 7.1. Пусть $\varphi: G \to F$ гомоморфизм групп, тогда $\ker \varphi \lhd G.$

Доказательство. Достаточно проверить, что

$$\forall g \in G \ \forall h \in \ker \varphi \colon g^{-1}hg \in \ker \varphi.$$

Это следует из цепочки равенств:

$$\varphi(g_1^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

Теорема (Кэли). Любая конечная группа G порядка n изоморфна некоторой подгруппе S_n .

Доказательство. $\forall a \in G$ рассмотрим отображение $L_a: G \to G,$ определённое формулой $L_a(g) = ag.$

Если e,g_2,\ldots,g_n — все элементы G, то a,ag_2,\ldots,ag_n будут теми же элементами, но расположенными в каком-то другом порядке. Значит, L_a — биекция, обратной к которой будет $L_a^{-1}=L_{a^{-1}}$, тождественным отображением является L_e . Тогда $L_{ab}(g)=(ab)g=a(bg)=L_a(L_b(g))$, т.е. $L_{ab}=L_aL_b$. Следовательно множество $L_e,L_{g_2}\ldots,L_{g_n}$ образует подгруппу $H< S(G)=S_n$, а $L:a\mapsto L_a$ является изоморфизмом.

8 Теорема о гомоморфизме. Классификация циклических групп

Теорема (о гомоморфизме). Пусть $\varphi: G \to F$ — гомоморфизм групп, тогда

$$\operatorname{Im} \varphi \cong G/\ker \varphi.$$

Доказательство. Рассмотрим отображение $\psi: G/\ker \varphi \to \operatorname{Im} \varphi$, заданное формулой $\psi(g\ker \varphi) = \varphi(g)$.

Достаточно проверить определение изоморфизма для ψ . Для этого покажем, что заданное отображение корректно определено, биективно и гомоморфно.

1. Проверим корректность ψ :

$$\exists h_1, h_2 \in \ker \varphi \colon g_1 \ker \varphi = g_2 \ker \varphi \Longrightarrow g_1 h_1 = g_2 h_2;$$

$$\psi(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_1 h_1) = \varphi(g_2 h_2) = \varphi(g_2) = \psi(g_2 \ker \varphi).$$

2. Докажем, что ψ — гомоморфизм:

$$\psi((g_1 \ker \varphi)(g_2 \ker \varphi)) = \psi((g_1 g_2) \ker \varphi) = \varphi(g_1 g_2) = \varphi(g_1)\varphi(g_2) =$$
$$= \psi(g_1 \ker \varphi)\psi(g_2 \ker \varphi).$$

- 3. Сюръективность видна из построения.
- 4. Инъективность:

$$\psi(g_1 \ker \varphi) = \psi(g_2 \ker \varphi) \Longrightarrow \varphi(g_1) = \varphi(g_2) \Longrightarrow \varphi(g_1) \varphi(g_2)^{-1} = e_F \Longrightarrow$$
$$\Longrightarrow \varphi(g_1 g_2^{-1}) = e_F \Longrightarrow g_1 g_2^{-1} \in \ker \varphi \Longrightarrow g_1 \ker \varphi = g_2 \ker \varphi. \quad \blacksquare$$

Примеры.

- 1. Пусть $G = \mathbb{R}^+$ и $H = \mathbb{Z}^+$. Рассмотрим группу $F = \mathbb{C}^\times \setminus \{0\}$ и гомоморфизм $\varphi : G \to F$, $g \mapsto e^{2\pi i g} = \cos(2\pi g) + i\sin(2\pi g)$. Тогда $\ker \varphi = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящей из комплексных чисел с модулем равным 1. Если положить $G = (\mathbb{R}^2, +)$, $H = (\mathbb{Z}^2, +)$ и $\varphi : (g, g') \mapsto (e^{2\pi i g}, e^{2\pi i g'})$, то $G/H \cong S^1 \times S^1 \cong \mathbb{T}^2$ двумерный тор.
- 2. Пусть $G = \mathbf{GL}_n(\mathbb{R}), \quad H = \mathbf{SL}_n(\mathbb{R}).$ Построим гомоморфизм $\varphi : \mathbf{GL}_n(\mathbb{R}) \to \mathbb{R}^{\times}, \ A \mapsto \det A \Rightarrow \ker \varphi = \mathbf{SL}_n(\mathbb{R}).$

Теорема (о классификации циклических групп). $\Pi ycmb$ G — uuknuчеckas группа.

- 1. Если $|G| = \infty$, то $G \cong \mathbb{Z}^+$.
- 2. Ecnu $|G| = n < \infty$, mo $G \cong \mathbb{Z}_n^+$.

Доказательство. Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi: \mathbb{Z} \to G, \quad k \mapsto g^k.$

$$arphi(k+l)=g^{k+l}=g^kg^l=arphi(k)arphi(l),$$
 поэтому $arphi$ — гомоморфизм.

Из определения циклической группы следует, что φ сюръективен, т.е. $\operatorname{Im} \varphi = G$. По теореме о гомоморфизме получаем $G \cong \mathbb{Z}/\ker \varphi$, т.к. $\ker \varphi < \mathbb{Z} \Longrightarrow \exists m \geqslant 0$: $\ker \varphi = m\mathbb{Z}$ (любая подгруппа \mathbb{Z} имеет вид $k\mathbb{Z}$). Если m = 0, то $\ker \varphi = \{0\}$, откуда $G \cong \mathbb{Z}/\{0\} \cong \mathbb{Z}$. Если m > 0, то $G \cong \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

9 Группы автоморфизмов

Утверждение 9.1. Пусть G — группа. Множество её автоморфизмов $\operatorname{Aut}(G)$ несёт каноническую структуру группы с операцией композиции отображений.

Доказательство. Необходимые свойства: ассоциативность верна для композиции любых отображений, в том числе и автоморфизмов; нейтральный элемент — тождественное отображение; обратный элемент существует, так как автоморфизмы биективны. ■

Утверждение 9.2.

- 1. Aut $(\mathbb{Z}) \cong \mathbb{Z}_2$;
- 2. Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.

Доказательство. Пусть $G_1 = \langle g \rangle$. Тогда любой гомоморфизм $\varphi: G_1 \to G_2$ однозначно определяется образом порождающего элемента $\varphi(g) \in G_2$. В самом деле, $\forall m \in \mathbb{Z} : \varphi(g^m) = \varphi(g)^m$. Пусть $\varphi: G_1 \to G_1$ — автоморфизм. Тогда, из сюръективности, $\exists k \in \mathbb{Z} : \varphi(g) = g^k$, и это порождающий элемент G.

- 1. В ℤ всего два порождающих. Для каждого из них есть гомоморфизм:
 - $\varphi_1: 1 \mapsto 1 \ (\varphi_1 = id);$
 - $\varphi_1: 1 \mapsto -1 \ (\varphi_1 = -\mathrm{id}).$

Это автоморфизмы $\Rightarrow |\mathrm{Aut}(\mathbb{Z})| = 2 \Rightarrow \mathrm{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$.

2. В \mathbb{Z}_n порождающие — это \overline{k} : HOД(k,n)=1. Построим $\varphi_{\overline{k}}:\overline{1}\mapsto \overline{k}, \ \overline{m}\mapsto \overline{km}$. Это биекция из множества в само себя, значит, это автоморфизм. Проверим, что отображение $\overline{k}\mapsto \varphi_{\overline{k}}$ сохраняет операцию. Действительно,

$$\varphi_{\overline{s}}(\varphi_{\overline{k}}(\overline{m})) = \overline{skm} = \varphi_{\overline{sk}}(\overline{m}) \Rightarrow \operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}.$$

Определение 9.1. Пусть G — группа, $g \in G$. Внутренним автоморфизмом группы G, определяемым g, называется отображение $i_g: G \to G, \ a \mapsto gag^{-1}.$

Проверим, что это автоморфизм:

$$i_g(ab) = gabg^{-1} = gag^{-1}gbg^{-1} = i_g(a)i_g(b),$$

обратный к нему существует, и это $i_{q^{-1}}$.

Множество всех внутренних автоморфизмов группы G обозначается как $\operatorname{Inn}(G)$.

Лемма 9.1.

- 1. Inn $(G) \triangleleft \operatorname{Aut}(G)$;
- 2. Отображение $i: G \to \operatorname{Inn}(G), g \mapsto i_g$ является гомоморфизмом групп.

Доказательство.

1. Поскольку ${\rm Inn}\,(G)={\rm Im}\,i\subseteq {\rm Aut}\,(G),$ то это подгруппа. Для проверки нормальности возьмём произвольные $\varphi\in {\rm Aut}\,(G)$ и $i_g\in {\rm Inn}\,(G)$ и сопряжём их:

$$(\varphi i_g \varphi^{-1})(a) = \varphi(g \varphi^{-1}(a) g^{-1}) = \varphi(g) a \varphi(g^{-1}) = i_{\varphi(g)}(a).$$

Таким образом, $\varphi i_a \varphi^{-1} \in \text{Inn}(G) \Rightarrow \text{Inn}(G) \triangleleft \text{Aut}(G)$.

2.
$$i_{gh}(a) = gha(gh)^{-1} = ghah^{-1}g^{-1} = g(hah^{-1})g^{-1} = i_g(i_h(a)) =$$

= $(i_g \circ i_h)(a)$, то есть операция сохраняется.

Определение 9.2. *Центром* группы G называется множество всех элементов группы, коммутирующих со всеми элементами группы:

$$Z(G) \stackrel{\text{def}}{=} \{ g \in G \mid \forall g' \in G \colon gg' = g'g \}.$$

 ${\it 3ame}$ чание. $G=Z(G)\Leftrightarrow G$ абелева.

Лемма 9.2. Пусть $G- \mathit{группа}, \mathit{morda}$

- 1. $Z(G) \triangleleft G$;
- 2. $\forall i \in \text{Aut}(G)$: $\ker i = Z(G)$.

Доказательство. Достаточно доказать только пункт 2, так как пункт 1 из него следует.

2. Проверим, что $\forall a \in G: i_g(a) = a:$

$$g \in Z(G) \Leftrightarrow \forall a \in G: ga = ag \Leftrightarrow gag^{-1} = a \Leftrightarrow i_q(a) = a.$$

3амечание. $Inn(G) = e \Leftrightarrow G$ абелева.

Утверждение 9.3. Пусть $G - \epsilon pynna, mor \partial a \operatorname{Inn}(G) \cong G/Z(G)$.

Доказательство. Рассмотрим гомоморфизм $i: G \to \operatorname{Aut}(G), g \mapsto i_g$. Тогда $\operatorname{Im} i = \operatorname{Inn}(G), \ker i = Z(G)$ по предыдущей лемме. По теореме о гомоморфизме, $\operatorname{Im} i = \operatorname{Inn}(G) \cong G/\ker i = G/Z(G)$.

Примеры.

1.
$$Z(S_n) = \begin{cases} S_n, & n \leq 2, \\ \{e\}, & n \geq 3. \end{cases}$$
$$Z(A_n) = \begin{cases} A_n, & n \leq 3, \\ \{e\}, & n \geq 4. \end{cases}$$

2.
$$Z(\mathbf{GL}_n(\mathbb{R})) = \{\lambda I \mid \lambda \in \mathbb{R} \setminus \{0\}\}.$$

3.
$$Z(D_n) = \begin{cases} \{e, R_{\pi}\}, & n = 2k, \\ \{e\}, & n = 2k + 1. \end{cases}$$

4.
$$Z(Q_8) = \{\pm 1\}.$$

Определение 9.3. *Множество внешних автомрфизмов* группы G определяется как

$$\operatorname{Out}\left(G\right)\stackrel{\mathrm{def}}{=}\operatorname{Aut}\left(G\right)\!/\!\operatorname{Inn}\left(G\right).$$

10 Классы сопряжённости

Определение 10.1. Пусть G — группа. Элементы $a, b \in G$ называются conpsжеёнными и обозначаются $a \sim b$, если $\exists g \in G : a = gbg^{-1}$.

Определение 10.2. *Классом сопряжённости* элемента a группы G называется множество

$$C_G(a) \stackrel{\text{def}}{=} \{ b \in G \mid a \sim b \}.$$

Лемма 10.1. $\Pi ycmv G - \varepsilon pynna$.

- 1. Отношение сопряжённости является отношением эквивалентности.
- 2. $C_G(a) = \{a\} \Leftrightarrow a \in Z(G)$.

Доказательство.

- 1. Проверим свойства отношения эквивалентности:
 - Рефлексивность: $a = eae^{-1} \Rightarrow a \sim a$;
 - Симметричность: $a = qba^{-1} \Leftrightarrow b = q^{-1}aq$;
 - Транзитивность: $(a = gbg^{-1}, b = hch^{-1} \Rightarrow a = ghch^{-1}g^{-1}) \Rightarrow (a \sim b, b \sim c \Rightarrow a \sim c).$

2.
$$C_G(a) = \{a\} \Leftrightarrow \forall g \in G : gag^{-1} = a \Leftrightarrow a \in Z(G).$$

Лемма 10.2. Пусть $G - \varepsilon pynna, a, b \in G$.

 $Tor \partial a \ b \in C_G(a) \Rightarrow \operatorname{ord}(b) = \operatorname{ord}(a).$

Доказательство. Пусть $b = gag^{-1}$, $a^n = e$.

Тогда $b^n = (gag^{-1})^n = ga^ng^{-1} = gg^{-1} = e$ и наоборот из симметричности сопряжённости \Rightarrow минимальные показатели совпадают.

Определение 10.3. *Централизатором* элемента a группы G называется множество

$$Z_G(a) \stackrel{\text{def}}{=} \{ g \in G \mid ga = ag \}.$$

Замечание. $Z_G(a) < G$.

Утверждение 10.1. Пусть G — конечная группа, $a \in G$. Тогда $|C_G(a)| = |\frac{|G|}{|Z_G(a)|}|$. B частности, $|G| : |C_G(a)|$.

Доказательство. Пусть $G/Z_G(a)$ — множество левых смежных классов (не факторгруппа, т.к. $Z_G(a)$ не обязательно нормальна). Достаточно установить биекцию $G/Z_G(a) \leftrightarrow C_G(a)$.

Определим отображение $G/Z_G(a) \to C_G(a), gZ_G(a) \mapsto gag^{-1}$. Проверим:

1. Корректность:

$$h \in Z_G(a) \Rightarrow ghZ_G(a) \mapsto (gh)a(gh)^{-1} = ghah^{-1}g^{-1} = gahh^{-1}g^{-1} =$$

= $gag^{-1} \leftrightarrow gZ_G(a)$;

- 2. Сюръективность: по построению;
- 3. Инъективность:

$$gag^{-1} = g'a(g')^{-1} \Leftrightarrow ag^{-1}g' = g^{-1}g'a \Leftrightarrow g^{-1}g' \in Z_G(a) \Leftrightarrow g' \in Z_G(a).$$

11 Прямое произведение групп

Определение 11.1. Прямым произведением групп G_1, \ldots, G_m называется группа

$$G_1 \times \ldots \times G_m \stackrel{\text{def}}{=} \{ (g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m \}$$

с операцией $(g_1,\ldots,g_m)(g_1',\ldots,g_m')=(g_1g_1',\ldots g_mg_m').$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом (e_{G_1},\ldots,e_{G_m}) и для каждого элемента (g_1,\ldots,g_m) есть обратный элемент $(g_1^{-1},\ldots,g_1^{-1})$.

Замечание. Группа $G_1 \times \ldots \times G_m$ коммутативна тогда и только тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание. Если все группы G_1, \dots, G_m конечны, то $|G_1 \times \dots \times G_m| = |G_1| \dots |G_m|$.

Определение 11.2. Говорят, что группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_m \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \ldots h_m$ является изоморфизмом.

Теоерма 11.1. Пусть n = pq - pазложение натурального числа n на два взаимно простых сомножителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$$
.

Доказательство. Рассмотрим отображение

$$\varphi: \mathbb{Z}_n \to \mathbb{Z}_p \times \mathbb{Z}_q, \quad \varphi(a \mod n) = (a \mod p, a \mod q).$$

- 1. Корректность следует из того, что n : p, n : q.
- 2. φ гомоморфизм, т.к.

$$\varphi((a+b) \bmod n) = \varphi(a \bmod n) + \varphi(b \bmod n).$$

 $3. \ \varphi$ инъективен:

Если $\varphi(a \bmod n)=(0,\,0),$ то $a\stackrel{.}{:} p,\; a\stackrel{.}{:} q.$ Но так как $\mathrm{HOД}(p,\,q)=1,$ получаем, что $a\mid n.$ Тогда $a\equiv 0\;(\mathrm{mod}\,n),$ т.е. $\ker \varphi=\{0\}.$

4. φ сюръективен, т.к. $|\mathbb{Z}_n| = n = p \cdot q = |\mathbb{Z}_p \times \mathbb{Z}_q|$.

Следствие. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей $(p_i \neq p_j \text{ при } i \neq j)$. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

12 Свободные абелевы группы

Определение 12.1. *Кручением* или *периодической частью* группы G называется множество элементов конечного порядка

Tor
$$(G) \stackrel{\text{def}}{=} \{ g \in G \mid \operatorname{ord}(g) < \infty \}.$$

Лемма 12.1. Если группа A — абелева, то Tor(A) < A.

Доказательство. Пусть
$$\operatorname{ord}(a) = n$$
, $\operatorname{ord}(b) = m$, $a, b \in A$. Тогда $nm(a+b) = 0 \Longrightarrow \operatorname{ord}(a+b) = 0$.

Замечание. В неабелевой группе элементы конечного порядка не всегда образуют подгруппу.

Определение 12.2. Группа A называется конечнопорождённой, если $\forall a \in A \; \exists a_1, \ldots, a_n \in A$: $a = k_1 a_1 + \ldots + k_n a_n$ для некоторых $k_1, \ldots, k_n \in \mathbb{Z}$. Такой набор $\{a_1, \ldots, a_n\}$ называется системой образующих или порождающих.

Примеры.

- 1. Любая конечная абелева группа конечнопорождена.
- 2. Pemёmка $\mathbb{Z}^n = \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n \text{ раз}} = \{(c_1, \ldots, c_n) \mid c_i \in \mathbb{Z}\}.$ Системой порождающих будет $cman \partial apm n b$ й basuc

$${e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)}.$$

Определение 12.3. Система порождающих $\{a_1, \ldots, a_n\}$ группы A называется базисом, если $\forall a \in A$ запись $a = k_1 a_1 + \ldots + a_n k_n$ единственна. Группа, обладающая базисом, называется $c 6 6 6 0 \partial n 0 \tilde{u}$. Число элементов в базисе называется panson и обозначается rank A.

Утверждение 12.1. Все базисы свободной абелевой группы содержат одно и то же число элементов.

Лемма 12.2. Свободная абелева группа A ранга n изоморфна \mathbb{Z}^n .

Доказательство. Если $\{e_1,\ldots,e_n\}$ — базис в A, то $a=k_1e_1+\ldots+k_ne_n \leftrightarrow (k_1,\ldots,k_n) \in \mathbb{Z}^n$. Для этого отображения простым образом проверяются корректность, биективность и сохранение операции.

Теоерма 12.1. Всякая подгруппа B свободной абелевой группы A ранга n является свободной абелевой группой ранга $\leq n$.

Утверждение 12.2. Пусть A — свободная абелева группа c базисом $\{e_1, \ldots, e_n\}$, D — произвольная абелева группа, $d_1, \ldots, d_n \in D$ — произвольные элементы. Тогда $\exists !$ гомоморфизм

$$\varphi: A \to D, \ \varphi(e_i) = d_i, \ i = \overline{1, n}.$$

Доказательство. $\forall a \in A: a = k_1 e_1 + \ldots + k_n e_n$.

Положим $\varphi(a) = k_1 \varphi(e_1) + \ldots + k_n \varphi(e_n)$. Это гомоморфизм, что проверяется очевидным образом.

Следствие. Для любой конечнопорождённой абелевой группы D существует эпиморфизм $\varphi: A woheadrightarrow D$ из некоторой свободной абелевой группы A.

Доказательство. Пусть $\{d_1,\ldots,d_n\}$ — порождающие элементы группы D. Положим $A=\mathbb{Z}^n$ и определим φ условием $\varphi(e_i)=d_i$, где $\{e_1,\ldots,e_n\}$ — стандартный базис в \mathbb{Z}^n . Тогда φ сюръективен, т.к. d_1,\ldots,d_n — порождающие.

13 Структура абелевых групп

Определение 13.1. Конечная абелева группа A называется nримарной, если $|A| = p^k$ для некоторого $k \in \mathbb{N}$, где p — простое.

Теоерма 13.1. Любая конечнопорождённая абелева группа A изоморфна прямой сумме примарных циклических групп и бесконечных циклических групп:

$$A \cong \mathbb{Z}^n \oplus \mathbb{Z}_{p_1^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_t^{k_t}},$$

где p_1, \ldots, p_t — простые числа (не обязательно различные) и $k_1, \ldots, k_t \in \mathbb{N}$. Более того, набор примарных циклических множителей $\mathbb{Z}_{p_1^{k_1}}, \ldots, \mathbb{Z}_{p_t^{k_t}}$ определен однозначно с точностью до перестановки (в частности, число этих множителей определено однозначно).

Определение 13.2. Экспонентой конечной группы G называется число

$$\exp G \stackrel{\text{def}}{=} \min\{m \in \mathbb{N} \mid \forall g \in G : mg = 0\}.$$

Замечание.

- 1. Из того, что $\forall g \in G \ \forall m \in \mathbb{Z} \colon mg = 0 \iff m \colon \mathrm{ord}(g)$, определение экспоненты можно переписать в виде $\exp G \stackrel{\mathrm{def}}{=} \mathrm{HOK}\{\mathrm{ord}(g) \mid g \in G\}$.
- 2. Из того, что $\forall g \in G$: |G| : $\mathrm{ord}(g)$, следует, что |G| общее кратное множества $\{\mathrm{ord}(g) \mid g \in G\}$, а значит, |G| : $\exp G$. В частности, $\exp G \leqslant |G|$.

Примеры.

- 1. $\exp(\mathbb{Z}_n) = n;$
- 2. $\exp(\mathbb{Z}_2 \oplus \mathbb{Z}_2) = 2;$
- 3. $\exp(S_3) = 6$.

Теорема (критерий цикличности). Группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

Доказательство. Пусть $|A|=n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ — разложение на простые множители, где p_i — простое и $k_s\in\mathbb{N}$ $(p_i\neq p_j$ при $i\neq j).$

Heoбxoдимость. Если $A = \langle a \rangle$, то ord(a) = n, откуда exp A = n.

Достаточность. Если $\exp A = n$, то для $i = 1, \ldots, s$ $\exists c_i \in A$: $\operatorname{ord}(c_i) = p_i^{k_i} m_i$, $m_i \in \mathbb{N}$. Для каждого $i = 1, \ldots, s$ положим $a_i = m_i c_i$, тогда $\operatorname{ord}(a_i) = p_i^{k_i}$. Рассмотрим элемент $a = a_1 + \ldots + a_s$ и покажем, что $\operatorname{ord}(a) = n$. Пусть $\exists m \in \mathbb{N}$: ma = 0, т.е. $ma_1 + \ldots + ma_s = 0$. При фиксированном $i \in \{1, \ldots, s\}$ умножим обе части последнего равенства на $n_i = n/p_i^{k_i}$. Видно, что $\forall i \neq j$: $mn_i a_j = 0$, поэтому в левой части останется только слагаемое $mn_i a_i$, откуда $mn_i a_i = 0 \Longrightarrow mn_i : p_i^{k_i}$, а т.к. $n_i/:p_i$, то $m : p_i^{k_i}$. В силу произвольности выбора i отсюда вытекает, что m : n, и т.к. na = 0, то окончательно получаем $\operatorname{ord}(a) = n$. Значит, $A = \langle a \rangle$ — циклическая группа.

14 Порождающие элементы

Определение 14.1. Подгруппа в группе G называется порождённой подмножеством S, если эта группа есть множество элементов вида $g_{i_1}^{\varepsilon_1}, \ldots, g_{i_k}^{\varepsilon_k}$, где $g_{i_p} \in S, \varepsilon_p \in \{\pm 1\}$. Легко заметить, что это наименьшая подгруппа в G, содержащая S.

Утверждение 14.1. Группа A_n порождается:

- 1. парами транспозиций;
- 2. тройными циклами;
- 3. парами независимых транспозиций при $n \ge 5$.

Доказательство.

- 1. $\forall \sigma \in S_n$: $\sigma = \tau_1 \dots \tau_k$, где τ_i транспозиция. Если σ чётная, то k = 2s. Из этого следует, что $\sigma = (\tau_1 \tau_2) \dots (\tau_{2s-1} \tau_{2s})$.
- 2. Выразим пары транспозиций через тройные циклы:

$$(ij)(ij) = e, (ij)(jk) = (ijk), (ij)(kl) = (ijk)(jkl).$$

3. Выразим пару зависимых транспозиций через пары независимых транспозиций:

$$(ij)(jk) = ((ij)(lm))((jk)(lm)), l, m \in \{i, j, k\}.$$

Определение 14.2. Задание (копредставление или генетический код) группы — один из методов описания группы. Пусть подмножество S группы G порождает её. При такой кодировке конкатенация слов соответствует умножению элементов группы, а значит, теоретически вся групповая структура задаётся информацией о том, какие пары таких слов представляют один и тот же элемент группы G. Такие пары называются соотношениями. Метод состоит в том, чтобы указать (по возможности небольшой) список R определяющих соотношений, которого, с учётом заранее оговоренных правил вывода, хватит для хранения полной информации о группе. В этом случае пишут $G \cong \langle S \mid R \rangle$.

15 Коммутант

Определение 15.1. Пусть G — группа. Коммутатором двух элементов $x,y\in G$ называется $[x,y]\stackrel{\mathrm{def}}{=} xyx^{-1}y^{-1}\in G$.

Замечание.

- 1. $[x,y] = e \iff xy = yx;$
- 2. xy = [x, y] yx, поэтому [x, y] называют корректирующим множителем;
- 3. [x, x] = e;
- 4. $[x, y]^{-1} = (xyx^{-1}y^{-1})^{-1} = yxy^{-1}x^{-1} = [y, x].$

Определение 15.2. Коммутантом или производной подгруппой группы G называется подгруппа G' (или [G,G]) $\leqslant G$, порождённая всеми коммутаторами в G.

 ${\it 3ame}$ чание. $[G,G]=\{e\}\Longleftrightarrow G$ — абелева.

Пример. $G = S_n \Rightarrow [\sigma, \tau] = \sigma \tau \sigma^{-1} \tau^{-1}$ — чётная $\Rightarrow G' \leqslant A_n$. С другой стороны, A_n порождается тройными циклами, которые, в свою очередь, представимы как коммутаторы:

$$(ijk) = (ij)(ik)(ij)(ik) = (ij)(ik)(ij)^{-1}(ik)^{-1} = [(ij), (ik)] \Rightarrow A_n \leqslant G' \Rightarrow A_n = G'.$$

Утверждение 15.1. Пусть $G - \epsilon pynna, mor \partial a$:

- 1. $G' \triangleleft G$;
- $2. \ G/G'$ абелева;
- 3. если $N \triangleleft G$, то G/N абелева $\Leftrightarrow G' \leqslant N$;
- 4. $ecnu G' \leq K \leq G$, mo $K \triangleleft G$.

Доказательство. Достаточно доказать только факты 3 и 4, из которых сразу следуют 2 и 1, соответственно.

- 3. $\forall g, h \in G: (gN)(hN) = (hN)(gN) \Leftrightarrow (gN)(hN)(gN)^{-1}(hN)^{-1} = (ghg^{-1}h^{-1}N) = eN \Leftrightarrow ghg^{-1}h^{-1} \in N \Leftrightarrow \Leftrightarrow N$ содержит все коммутаторы $\Leftrightarrow G' \leqslant N$.
- 4. Если $g \in G$, $k \in K$, то $gkg^{-1} = gkg^{-1}k^{-1}k = [g,k]k$. Так как $[g,k] \in K$, то $gkg^{-1} \in K \Rightarrow K \triangleleft G$.

Лемма 15.1. Пусть $\varphi: G_1 \to G_2$ — гомоморфизм. Тогда $\varphi(G_1') \leqslant G_2'$. Если φ сюръективен, то $\varphi(G_1') = G_2'$.

Доказательство.

$$\varphi([x,y]) = \varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = [\varphi(x), \varphi(y)] \in G_2' \Rightarrow \varphi(G_1') \leqslant G_2'.$$

Если
$$\varphi$$
 сюръективен и $a, b \in G_2$, то $\exists x, y \in G_1$: $a = \varphi(x), b = \varphi(y)$. Тогда $[a, b] = [\varphi(x), \varphi(y)] = \varphi([x, y]) \in \varphi(G_1') \Rightarrow G_2' \leqslant \varphi(G_1') \Rightarrow \varphi(G_1') = G_2'$.

Определение 15.3. Пусть G — группа. Подгруппа $H \leqslant G$ называется $x a p a \kappa m e p u c m u u e c \kappa o \ddot{u}$, если она устойчива относительно всех автоморфизмов, т.е. $\forall \varphi \in \operatorname{Aut}(G) \colon \varphi(H) = H$.

Замечание. Центр группы является характеристической подгруппой.

Утверждение 15.2. Коммутант группы является характеристической подгруппой.

Доказательство. Достаточно проверить, что
$$\forall \varphi \in \text{Aut}(G) : \varphi([x,y]) \in G'.$$
 $\varphi([x,y]) = [\varphi(x), \varphi(y)] \in G'.$

Замечание. Если $H \leqslant G$, то $H' \subseteq G'$.

Лемма 15.2.
$$D'_n = \begin{cases} \langle \mathbf{R}_{\frac{2\pi}{n}} \rangle, & n = 2s + 1, \\ \langle \mathbf{R}_{\frac{2\pi}{s}} \rangle, & n = 2s. \end{cases}$$

Доказательство. Коммутаторы вращений тривиальны.

$$R_{\varphi}S_vR_{-\varphi}S_v = S_{R_{\varphi}v}S_v = R_{2\varphi}.$$

 $S_1S_2S_1S_2=R_{2\varphi}R_{2\varphi}=R_{4\varphi},$ где φ — угол между осями симметрий.

Бъргатор Семин Симметрии. Таким образом,
$$D_n' = \{ \mathbf{R}_{2 \cdot \frac{2\pi k}{n}} \}_{k=0}^{n-1} = \begin{cases} \langle \mathbf{R}_{\frac{2\pi}{n}} \rangle, & n = 2s+1, \\ \langle \mathbf{R}_{\frac{2\pi}{n}} \rangle, & n = 2s. \end{cases}$$

Лемма 15.3.
$$A_n' = \begin{cases} e, & n \leqslant 3, \\ V_4, & n = 4, \\ A_n, & n \geqslant 5. \end{cases}$$

Доказательство. При $n \leq 3 \ A_n$ абелева.

При n=4: $V_4 \triangleleft A_n$, $|A_4/V_4| = \frac{12}{4} = 3$ — простое число $\Rightarrow A_4/V_4 \cong \mathbb{Z}_3$ — абелева $\Rightarrow A_4' \leqslant V_4$. С другой стороны, $A_4' \neq \{e\}$, т.к. A_4 не абелева. Но A_4 состоит из двух классов сопряжённости \Rightarrow в V_4 нет собственных подгрупп, нормальных в $A_4 \Rightarrow A_4' = V_4$.

При $n \geqslant 5$: применяя вышеописанные рассуждения к произвольной четвёрке индексов i,j,k,l, увидим, что юбая пара независимых транспозиций лежит в A'_n . Такие пары порождают A_n , значит, $A'_n = A_n$.

Лемма 15.4. $GL'_n(F) = SL_n(F) \ npu \ |F| \ge 4, \ n \ge 2.$

Доказательство.
$$\det[A, B] = \det(ABA^{-1}B^{-1}) = 1 \Rightarrow \mathbf{GL}'_n(F) \subseteq \mathbf{SL}_n(F)$$
.
С другой стороны, $\mathbf{SL}'_n(F) = \mathbf{SL}_n(F) \subseteq \mathbf{GL}'_n(F)$. Значит, $\mathbf{GL}'_n(F) = \mathbf{SL}_n(F)$.

16 Разрешимые группы

17 Простые группы

18 Действия групп. Формула Бёрнсайда

Определение 18.1. Пусть G — группа, X — произвольное множество. Действием группы G на множестве X называется гомоморфизм $\alpha:G\to S(X)$, где S(X) — группа биекций на X. Альтернативное определение заключается в том, что действие — отображение $G\times X\to X,\ (g,x)\mapsto gx,$ удовлетворяющее условиям:

- 1. $\forall x \in X : ex = x$;
- 2. $\forall g, h \in G \ \forall x \in X : g(hx) = (gh)x$.

Действие G на X обозначается $G \curvearrowright X$ или G: X.

Замечание. Эти определения эквивалентны.

Определение 18.2. *Орбитой* точки $x \in X$ называется множество

$$Orb(x) \stackrel{\text{def}}{=} \{gx \mid g \in G\} \subseteq X.$$

Определение 18.3. Стабилизатором (стационарной подгруппой, подгруппой изотропии) точки $x \in X$ называется множество

$$St(x) \stackrel{\text{def}}{=} \{g \in G \mid gx = x\} \subseteq G.$$

3 aмечание. St(x) < G.

Определение 18.4. Действие

- *транзитивно*, если $\forall x, y \in X \; \exists g \in G : y = gx$ (т.е. X состоит из одной орбиты);
- свободно, если $\exists x \in X : gx = x$ влечёт $St(x) = \{e\};$
- эффективно, если $\forall x \in X : gx = x$ влечёт g = e (т.е. действие инъективно).

Определение 18.5. Ядром неэффективности действия а назывется множество

$$\ker \alpha \stackrel{\text{def}}{=} \{ g \in G \mid \forall x \in X \colon gx = x \}.$$

 $egin{aligned} {\it 3ame vanue}. & {\rm Ot} & {\rm действия} & {\it G} \curvearrowright {\it X} & {\rm можно} & {\rm перейти} & {\rm к} & {\rm действию} \\ {\it G}/{\ker \alpha} \curvearrowright {\it X}: g \ker \alpha = gx, \, {\rm котороe} \, {\rm будет} \, {\rm эффективным}. \end{aligned}$

Примеры.

1. $\mathbf{SO}_n(\mathbb{R}) \curvearrowright \mathbb{R}^n$, $(A, v) \mapsto Av$.

Орбитами этого действия при n=2 будут концентрические окружности с центром в начале координат (а также сама точка начала координат, считающаяся окружностью с нулевым радиусом). В общем случае это сферы с центром в начале координат, а также сама точка начала координат.

Стабилизатор ненулевого вектора $St(v) \cong \mathbf{SO}_{n-1}(\mathbb{R})$ — все специальные ортогональные преобразования в ортогональной плоскости к v. Если же v=0, то $St(v)=\mathbf{SO}_n(\mathbb{R})$. Действие не транзитивно (длина сохраняется), не свободно (хотя при n=2 очень к этому близко) и эффективно.

2. $S_n \curvearrowright \{1, \ldots, n\}, i \mapsto \sigma(i)$.

Действие транзитивно и эффективно, но не свободно при $n \geqslant 3$, т.к. $St(i) \cong S_{n-1}.$

3. $\sigma \in S_n$, $G = \langle \sigma \rangle \curvearrowright \{1, \dots, n\} = X$.

Орбиты соответствуют независимым циклам в разложении σ . Действие транзитивно $\Leftrightarrow \sigma$ — цикл длины n.

4. $G = \mathbf{GL}_n(F)$ или $\mathbf{SL}_n(F)$ $(n \geqslant 2) \curvearrowright F^n X$, $(A, v) \mapsto Av$. Орбиты: (для $\mathbf{SL}_n(F)$ при n > 1) $F^n \setminus \{0\}$ и $\{0\}$.

5. $G = \mathbf{GL}_n(\mathbb{C}) \curvearrowright \mathrm{Mat}_{n \times n}(\mathbb{C}) = X, \ (g, M) \mapsto gMg^{-1}.$

Орбиты — матрицы одного оператора в разных базисах: $GM = \{M' \mid \mathcal{J}(M') = \mathcal{J}(M)\},$ где $\mathcal{J}(M)$ — жорданова нормальная форма M.

$$St(M) = Z_{\mathbf{GL}_n(\mathbb{C})}(M) = \{g \mid gM = Mg\}.$$

6. $G = \mathbf{GL}_n(F) \curvearrowright \mathrm{Mat}_{n \times n}(\mathbb{C}) = X, \ (g, M) \mapsto gMg^T.$ Орбиты GM — матрицы одной билинейной формы. Три важных действия $G \curvearrowright G$:

- 1. левые сдвиги: $(g,x) \mapsto gx$;
- 2. правые сдвиги: $(g, x) \mapsto xg$;
- 3. сопряжения: $(g, x) \mapsto gxg^{-1}$.

Определение 18.6. Подгруппы $H_1, H_2 < G$ называются conpяжёнными, если $\exists g \in G : gH_1g^{-1} = H_2$.

Теорема (формула Бёрнсайда). Пусть G — конечная группа, X — конечное множество, $G \curvearrowright X$. Тогда число орбит действия равно

$$\frac{1}{|G|} \sum_{g \in G} |X^g|, \ \operatorname{ide} X^g \stackrel{\mathrm{def}}{=} \{x \in X \mid gx = x\}.$$

19 р-группы. Теоремы Силова

20 Кольца и поля

Определение 20.1. *Кольцо* — это множество R, на котором заданы две бинарные операции « + » (сложение) и « · » (умножение), удовлетворяющее следующим условиям:

- 1. (R, +) абелева группа;
- 2. (R, \cdot) полугруппа;
- 3. $\forall a, b, c \in R: a(b+c) = ab + ac \text{ } u(a+b)c = ac + bc.$

Замечание.

- 1. $\forall a \in R: 0 \cdot a = a \cdot 0 = 0;$
- 2. Если |R| > 1, то $1 \neq 0$.

Доказательство.

- 1. $a0 = a(0+0) = a0 + a0 \Longrightarrow 0 = a0$.
- 2. Следует из условий выше.

Примеры.

- 1. Числовые кольца $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
- 2. Кольцо \mathbb{Z}_n вычетов по модулю n;
- 3. Кольцо матриц $\mathrm{Mat}_{n\times n}(\mathbb{R})$;
- 4. Кольцо многочленов $\mathbb{R}[x]$ от переменной x с коэффициентами из \mathbb{R} ;
- 5. Кольцо функций $F(M,\mathbb{R})$ из множества M в \mathbb{R} с поэлементными операциями сложения и умножения:

$$\forall m \in M: (f_1 + f_2)(m) = f_1(m) + f_2(m), \quad (f_1 \cdot f_2)(m) = f_1(m) \cdot f_2(m).$$

Определение 20.2. Кольцо R называется *коммутативным*, если

$$\forall a,b \in R : ab = ba.$$

Определение 20.3. Говорят, что кольцо R содержит единицу, если

$$\exists 1 \in R \ \forall a \in R: 1 \times a = a \times 1 = a.$$

Определение 20.4. Элемент a кольца R называется обратимым, если

$$\exists b \in R: ab = ba = 1.$$

Замечание. Все обратимые элементы кольца образуют группу по умножению.

Определение 20.5. Элемент a кольца R называется левым (соответственно npaвым) делителем нуля, если $a \neq 0$ и $\exists b \neq 0 \in R$: ab = 0 (соответственно ba = 0).

Замечание. Если кольцо коммутативно, то множества левых и правых делителей нуля совпадают. Тогда левые и правые делители нуля называются просто «делителями нуля».

Замечание. Все делители нуля в кольце необратимы.

Доказательство. Пусть R — кольцо; $a \neq 0$, $b \neq 0$. Если ab = 0 и $\exists a^{-1}$, то $a^{-1}ab = a^{-1}0 \Longrightarrow b = 0$ — противоречие.

Определение 20.6. Элемент a кольца R называется нильпотентным (нильпотентом), если $a \neq 0$ и $\exists n \in \mathbb{N}$: $a^n = 0$.

Замечание. Всякий нильпотент является делителем нуля.

Определение 20.7. Кольцо называется *телом*, если оно содержит $1 \neq 0$, и любой ненулевой элемент обратим.

 $\mathbf{\Pi} \mathbf{pumep.} \ \mathbb{H} -$ тело кватернионов.

Определение 20.8. Тело называется полем, если оно коммутативно.

Примеры. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{A}, \mathbb{Z}_p, \mathbb{Q}_p$ для простых p.

Замечание. В полях не существует делителей нуля.

Определение 20.9. Xарактеристикой char F поля F называется такое $n \in \mathbb{N},$ что $\underbrace{1+\ldots+1}_{n \text{ pas}}=0.$

Теоерма 20.1. Кольцо вычетов \mathbb{Z}_p является полем тогда и только тогда, когда p-npocmoe число.

Доказательство.

Heoбxoдимость. Если n=1, то $\mathbb{Z}_n=\{0\}$ — не поле.

Если n>1 и $n=m\cdot k$, где 1< m,k< n, то $\overline{m}\cdot \overline{k}=\overline{0}\Longrightarrow$ в \mathbb{Z}_n есть делитель нуля $\Longrightarrow \mathbb{Z}_n$ — не поле.

Тогда $HOД(a,p)=1 \Longrightarrow \exists k,l \in \mathbb{Z}: ak+pl=1.$ Значит, $\overline{a} \cdot \overline{k} + \overline{p} \cdot \overline{l} = \overline{1} \Longrightarrow a \cdot k \equiv 1 \pmod{p} \Longrightarrow a$ обратим, противоречие.

Утверждение 20.1. Любая конечная подгруппа мультипликативной группы поля является циклической.

Доказательство. Пусть F — поле, $A \leqslant F^{\times}$ — конечная подгруппа, $m = \exp(A)$. Тогда $\forall a \in A : a^m = 1$. Но уравнение $x^m - 1 = 0$ имеет над полем \leqslant m корней \Rightarrow $|A| \leqslant m$. С другой стороны, $|A| : m \Rightarrow m = |A| \Leftrightarrow A$ — циклическая.

Следствие. Если поле F конечно, то F^{\times} — циклическая.

Теорема (Ваддербёрн). Всякое конечное тело является полем.

21 Приложения теории групп в криптографии*

Группы Ли*

23 Введение в гомологическую алгебру*

Список литературы

- [1] Алексеев В.Б. Теорема Абеля в задачах и решениях: МЦНМО, 2024.
- [2] Артин Э. Теория Галуа: МЦНМО, 2004.
- [3] Атья М., Макдональд И. Введение в коммутативную алгебру: МЦНМО, 2021.
- [4] Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств: МЦНМО, 2024.
- [5] Винберг Э.Б. Курс алгебры: МЦНМО, 2019.
- [6] Кострикин А.И. Введение в алгебру: МЦНМО, 2020.
- [7] Курош А.Г. Курс высшей алгебры: Лань, 2007.
- [8] Линдон Р., Шупп П. Комбинаторная теория групп: Мир, 1980.
- [9] Маклейн С. Категории для работающего математика: Физматлит, 2004.
- [10] Авдеев Р.С. Алгебра
- [11] Аржанцев И.В. Алгебра. Часть 1
- [12] Аржанцев И.В. Алгебра. Часть 2
- [13] Аржанцев И.В. Алгебра. Часть 3
- [14] Аржанцев И.В. Конечные поля
- [15] Брагилевский В.Н. и др. Теория категорий
- [16] Савватеев А.В. Геометрия и группы
- [17] Савватеев А.В. Конечные поля
- [18] Савватеев А.В. Теория Галуа
- [19] Элементарное введение в теорию групп (для физиков)