## Índice general

| 7. | Funciones Trigonométricas                       | 3 |
|----|-------------------------------------------------|---|
|    | 7.1. ¿Cómo graficar una función trigonométrica? | 3 |
|    | 7.1.1. Amplitud                                 | 3 |
|    | 7.1.2. Periodo                                  | 4 |
|    | 7.1.3. Desfasamiento                            | 4 |
|    | 7.1.4. Desplazamiento                           | 4 |
|    | 7.2. Función Trigonométrica Seno                | 5 |
|    | 7.3. Función Coseno                             | 6 |
|    | 7.4. Función Trigonométrica Cosecante           | 7 |
|    | 7.4.1. ¿Cómo encontrar las asíntotas?           | 8 |
|    | 7.5 Fiercicios                                  | Q |

# Clase Funciones Trigonométricas

Las funciones trigonométricas son seis (6)

- O Seno que se escribe matemáticamente como  $f(x) = \sin(x)$
- O Coseno que se escribe matemáticamente como  $f(x) = \cos(x)$
- O Tangente que se escribe matemáticamente como  $f(x) = \tan(x)$
- O Cotangente que se escribe matemáticamente como  $f(x) = \cot(x)$
- O Secante que se escribe matemáticamente como f(x) = sec(x)
- O Cosecante que se escribe matemáticamente como  $f(x) = \csc(x)$

# 7.1 ¿Cómo graficar una función trigonométrica?

Para graficar una función trigonométrica se deben tener en claro algunos conceptos importantes:

#### 7.1.1 Amplitud

La amplitud como su nombre lo indica, determina la medida de las ondas de la función trigonométrica, medida desde un máximo hasta un mínimo de forma vertical.

#### **7.1.2** Periodo

El periodo determina en que intervalo estará graficado un **ciclo completo** de la función

#### 7.1.3 Desfasamiento

El desfasamiento indica cuántas unidades angulares se desfasará la función trigonométrica sobre el eje  $\boldsymbol{x}$ 

### 7.1.4 Desplazamiento

El desplazamiento **(desplazamiento vertical)** mueve la gráfica hacia arriba o hacia abajo dependiendo de su valor.



Figura 7.1: Gráfica de la función trigonométrica en el intervalo  $[0,2\pi]$ 

## 7.2 Función Trigonométrica Seno

Ejemplo: Graficar la función trigonométrica

$$f(x) = 3\sin\left(\frac{1}{2}x + \pi\right) + 1$$

Solución Sacar los datos

- O Amplitud es 3
- O **Periodo**: Para la función seno se sabe que un ciclo completo se obtiene de 0 a  $2\pi$ , de tal manera que para encontrar el nuevo periodo se debe calcular mediante la siguiente formula

$$P = \frac{2\pi}{b}$$
$$= \frac{2\pi}{\frac{1}{2}} = 4\pi$$

O **Desfasamiento**: Se obtiene de la función que tiene la forma

$$f(x) = a\sin(bx - c) + d$$

en el caso de la función del ejemplo hacemos

$$f(x) = 3\sin\left(\frac{1}{2}x + \pi\right) + 1$$

- $\square$  Si el signo de c es negativo el desplazamiento horizontal es hacia la derecha.
- lacksquare Si el signo de c es positivo el desplazamiento horizontal es hacia la izquierda
- O **Desplazamiento** es una unidad hacia arriba.

La gráfica de la función hecha de forma manual es la siguiente, donde la función terminal es la de color morado.



Figura 7.2: Gráfica de la Función hecha a Mano

## 7.3 Función Coseno

Ejemplo: Graficar la función trigonométrica

$$f(x) = 4\cos\left(2x - \frac{\pi}{4}\right) - 1$$

Solución

- O **Amplitud**: Se determinar por el valor de a=4
- $\bigcirc$  **Periodo**: Se determina por la fórmula

$$P = \frac{2\pi}{b}$$
$$= \frac{2\pi}{2} = \pi$$

- O **Desfasamiento**: Se determinar por el valor de  $c = \frac{\pi}{4}$
- O **Desplazamiento**: Se determinar por el valor de d = -1



Figura 7.3: Gráfica de la función trigonométrica coseno hecha manualmente

## 7.4 Función Trigonométrica Cosecante

Se define la función cosecante como

$$f(x) = \csc(x) = \frac{1}{\sin(x)}$$

#### **Ejemplo**

Graficar la función

$$f(x) = \frac{3}{2}\csc\left(\frac{1}{2}x - \frac{\pi}{2}\right) + \frac{1}{2}$$

#### Solución

- O Amplitud:  $\frac{3}{2}$
- O **Periodo** se calcula usando la fórmula

$$P = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

- O Desfasamiento es  $c = \frac{\pi}{2}$
- O **Desplazamiento** Vertical es  $d = \frac{1}{2}$

#### 7.4.1 ¿Cómo encontrar las asíntotas?

Sabemos que

$$f(x) = \csc(x) = \frac{1}{\sin(x)}$$

entonces si seno se hace cero aparece una asíntota, de tal forma que debemos determinar cuando

$$g\left(x\right) = \sin\left(bx + c\right)$$

se hace cero, entonces

$$\sin(bx + c) = 0$$

$$bx + c = \arcsin(0)$$

$$bx = -c$$

$$x = -\frac{c}{b}$$

y se repite cada medio periodo así que

$$P = \frac{\frac{2\pi}{b}}{2} = \frac{\pi}{b}n$$

donde n es el incrementador de tal manera que la ecuación de las asíntotas esta en

$$x_n = -\frac{c}{b} + \frac{n\pi}{b}$$
$$= \frac{n\pi - c}{b}$$

## 7.5 Ejercicios

Graficar las siguientes funciones trigonométricas

1. 
$$f(x) = 2\sin(x + \pi)$$

- a) Amplitud: 2
- *b*) Periodo:  $2\pi$
- c) Desfasamiento:  $-\pi$
- d) Desplazamiento: 0



Figura 7.4: Gráfica del problema hecha manualmente y en Geogebra

e)

**2.** 
$$f(x) = -3\sin\left(2x - \frac{\pi}{3}\right) - 1$$

- a) Amplitud: -3
- b) Periodo:  $P = \frac{2\pi}{2} = \pi$
- c) Desfasamiento:  $\frac{\pi}{3}$
- *d*) Desplazamiento: -1



Figura 7.5: Gráfica de la Función

3.

**4.** 
$$f(x) = 2\cos(x + \pi)$$

**5.** 
$$f(x) = -3\cos\left(2x - \frac{\pi}{3}\right) - 1$$

**6.** 
$$f(x) = 2\sec\left(x + \frac{\pi}{3}\right) - 1$$

- a) Amplitud: 2
- b) Periodo:  $P=2\pi$
- c) Desfasamiento:  $-\frac{\pi}{3}$
- d) Desplazamiento: -1

#### 7. Para determinar las asíntotas tenemos

$$\sec\left(x\right) = \frac{1}{\cos\left(x\right)}$$

cuando el argumento es bx + c

$$\sec(bx+c) = \frac{1}{\cos(bx+c)}$$

en esta función racional

$$\cos(bx + c) \neq 0$$

$$bx + c \neq \arccos(0)$$

$$bx + c \neq \frac{\pi}{2}$$

$$bx \neq \frac{\pi}{2} - c$$

$$bx \neq \frac{\pi - 2c}{2}$$

$$x \neq \frac{\pi - 2c}{2b}$$

luego como la asíntota se repite cada medio periodo

$$P = \frac{\frac{2\pi}{b}}{2} = \frac{2\pi}{2b}$$

el cual multiplicamos por n para que genere todas las asíntotas, así la fórmula para generar todas las asíntotas es

$$x \neq \frac{\pi - 2c}{2b} + \frac{2\pi n}{2b}$$
$$x \neq \frac{2\pi n + \pi - 2c}{2b}$$



Figura 7.6: Gráfica de la función de forma manual y en Geogebra

8. 
$$f(x) = -2\csc\left(4x - \frac{\pi}{3}\right) - 1$$