MAGNETIC RESONANCE IMAGING APPARATUS

Patent number:

JP2003061927

Publication date:

2003-03-04

Inventor:

SATO HIROSHI

Applicant:

GE MED SYS GLOBAL TECH CO LLC

Classification:

- international:

A61B5/055; G01R33/36; G01R33/54; A61B5/055; G01R33/32; G01R33/54; (IPC1-7): A61B5/055;

G01R33/36; G01R33/54

- european:

Application number: JP20010245912 20010814 Priority number(s): JP20010245912 20010814

Report a data error here

Abstract of JP2003061927

PROBLEM TO BE SOLVED: To provide a magnetic resonance imaging apparatus capable of performing properly imaging regardless of vibration of static magnetic field intensity. SOLUTION: In this magnetic resonance imaging apparatus, static magnetic field, gradient magnetic field and RF magnetic field are applied to a radiograph object to generate a magnetic resonance signal, the magnetic resonance signal is detected, and received, and according to the received signal, an image is developed. The frequency of the RF magnetic field is varied according to the vibration of the static magnetic field intensity (208, 206), and RF excitation corresponding to the frequency change of spin by magnetic field vibration is performed. The frequency of a carrier signal for detecting a magnetic resonance signal is varied according to the vibration of the static magnetic field intensity (208, 304), and detection corresponding to the frequency change of a magnetic resonance signal by the static magnetic field vibration is performed.

Data supplied from the esp@cenet database - Worldwide

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2003-61927

(P2003-61927A)

(43)公開日 平成15年3月4日(2003.3.4)

(51) Int.Cl. ⁷		識別記号		FI			5	·-7]-ド(多考)
A 6 1 B	5/055			A 6 1 B	5/05		370	4 C O 9 6
G 0 1 R	33/36						351	
	33/54						364	
							374	
				G01N	24/04		5 3 0 A	
			審查請求	未請求 請求	マスティア 教 8	OL	(全 11 頁)	最終頁に続く

(21) 出顧番号 特顧2001-245912(P2001-245912)

(22)出顧日 平成13年8月14日(2001.8.14)

(71) 出願人 300019238

ジーイー・メディカル・システムズ・グロ ーパル・テクノロジー・カンパニー・エル エルシー

アメリカ合衆国・ウィスコンシン州・ 53188・ワウケシャ・ノース・グランドヴュー・ブールバード・ダブリュー・710・ 3000

(74)代理人 100085187

弁理士 井島 藤治 (外1名)

最終頁に続く

(54) 【発明の名称】 磁気共鳴撮影装置

(57)【要約】

【課題】 静磁場強度の振動にかかわらず適正な撮影を 行う磁気共鳴撮影装置を実現する。

【解決手段】 撮影の対象に静磁場、勾配磁場およびR F磁場を印加して磁気共鳴信号を発生させ、磁気共鳴信号を検波して受信し、受信信号に基づいて画像を生成する磁気共鳴撮影装置において、RF磁場の周波数を静磁場強度の振動に応じて変化させ(208,206)、磁場振動によるスピンの周波数変化に合わせたRF励起を行う。また、磁気共鳴信号を検波するためのキャリア信号の周波数を静磁場強度の振動に応じて変化させ(208,304)、静磁場振動による磁気共鳴信号の周波数変化に合わせた検波を行う。

【特許請求の範囲】

【請求項1】 撮影の対象に静磁場、勾配磁場およびR F磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、前記RF磁場の周波数を前記静磁場強度の振動に応じて変化させるRF周波数調節手段と、

前記磁気共鳴信号を検波するためのキャリア信号の周波 数を前記静磁場強度の振動に応じて変化させる検波周波 数調節手段と、を具備することを特徴とする磁気共鳴撮 影装置。

【請求項2】 撮影の対象に静磁場、渦電流の影響を補正した勾配磁場およびRF磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、

前記RF磁場の周波数を前記静磁場強度の振動に応じて変化させるRF周波数調節手段と、

前記磁気共鳴信号を検波するためのキャリア信号の周波 数を前記静磁場強度の振動に応じて変化させる検波周波 数調節手段と、を具備することを特像とする磁気共鳴撮 影装置。

【請求項3】 撮影の対象に静磁場、勾配磁場およびR F 磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、前記R F 磁場の周波数を前記勾配磁場の印加にともなって発生する渦電流および前記静磁場強度の振動に応じて変化させるR F 周波数調節手段と、

前記磁気共鳴信号を検波するためのキャリア信号の周波 数を前記勾配磁場の印加にともなって発生する渦電流および前記静磁場強度の振動に応じて変化させる検波周波 数調節手段と、を具備することを特徴とする磁気共鳴撮 影装置。

【請求項4】 エコースペースを前記静磁場強度の振動 周期の整数倍としたファーストスピンエコー法に基づい て前記磁場印加手段および前記受信手段を制御する制御 手段、を具備することを特徴とする請求項1ないし請求 項3のうちのいずれか1つに記載の磁気共鳴撮影装置。

【請求項5】 撮影の対象に静磁場、勾配磁場およびR F磁場を印加して磁気共鳴信号を発生させる磁場印加手 段と、前記磁気共鳴信号を検波して受信する受信手段 と、前記受信した磁気共鳴信号に基づいて画像を生成す る画像生成手段とを有する磁気共鳴撮影装置であって、 エコースペースを前記静磁場強度の振動周期の整数倍と したファーストスピンエコー法に基づいて前記磁場印加 手段および前記受信手段を制御する制御手段、を具備す ることを特徴とする磁気共鳴撮影装置。磁気共鳴撮影装 の

【請求項6】 前記受信した磁気共鳴信号の位相を補正 する位相補正手段、を具備することを特徴とする請求項 4または請求項5に記載の磁気共鳴撮影装置。

【請求項7】 前記位相の補正量をリファレンススキャン時に受信した磁気共鳴信号に基づいて計算する補正量計算手段、を具備することを特徴とする請求項6に記載の磁気共鳴撮影装置。

【請求項8】 前記計算に用いる磁気共鳴信号は位相エンコード量が0の磁気共鳴信号である、ことを特徴とする請求項7に記載の磁気共鳴撮影装置。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、磁気共鳴撮影装置に関し、とくに、撮影の対象に静磁場、勾配磁場および RF (radio frequency) 磁場を印加し て獲得した磁気共鳴信号に基づいて画像を生成する磁気 共鳴撮影装置に関する。

[0002]

【従来の技術】磁気共鳴撮影(MRI: Magnetic Resonance Imaging)装置では、マグネットシステム(magnet system)の内部空間、すなわち、静磁場を形成した撮影空間に撮影の対象を搬入し、勾配磁場およびRF磁場を印加して対象内のスピン(spin)から磁気共鳴信号を発生させ、その受信信号に基づいて画像を再構成する。

[0003]

【発明が解決しようとする課題】勾配磁場を発生するための勾配コイル (coil) はマグネットシステムの静磁場空間内に配置されるので、勾配磁場発生用のパルス (pulse) 電流を流すたびに、勾配コイルは電流と磁場の相互作用に基づく衝撃的な力を発生する。

【0004】マグネットシステムの構造によっては、勾配コイルが発生するこのような力によってある程度の振動が発生するのが避けられない。とくに、撮影空間に対する外部からのアクセス(access)性を良くした開放型のマグネットシステムは、撮影空間を挟んで互いに対向する1対のマグネットを概ねC字形のヨーク(yoke)で支えるようにしているので、音叉に似た構造を有し固有振動を生じやすい。

【0005】マグネットシステムが振動すると、静磁場強度が振動的に変化する。静磁場強度の振動は再構成画像に偽造を生じさせ画質低下の原因になる。とりわけ、ファーストスピンエコー(FSE: Fast Spin

Echo) 法のパルスシーケンス (pulse se quence) はRF信号の位相に敏感なので、静磁場強度の振動の影響を受けやすい。

【0006】そこで、本発明の課題は、静磁場強度の振動にかかわらず適正な撮影を行う磁気共鳴撮影装置を実

現することである。本書では、静磁場強度の振動を単に 静磁場振動ともいう。

[0007]

【課題を解決するための手段】(1)上記の課題を解決するためのひとつの観点での発明は、撮影の対象に静磁場、勾配磁場およびRF磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、前記RF磁場の周波数を前記静磁場強度の振動に応じて変化させるRF周波数調節手段と、前記磁気共鳴信号を検波するためのキャリア信号の周波数を前記静磁場強度の振動に応じて変化させる検波周波数調節手段と、を具備することを特徴とする磁気共鳴撮影装置である。

【0008】(2)上記の課題を解決するための他の観点での発明は、撮影の対象に静磁場、渦電流の影響を補正した勾配磁場およびRF磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、前記RF磁場の周波数を前記静磁場強度の振動に応じて変化させるRF周波数調節手段と、前記磁気共鳴信号を検波するためのキャリア信号の周波数を前記静磁場強度の振動に応じて変化させる検波周波数調節手段と、を具備することを特徴とする磁気共鳴撮影装置である。

【0009】(1)および(2)に記載の各観点での発明では、RF磁場の周波数を静磁場強度の振動に応じて変化させるので、静磁場振動によるスピンの周波数変化に合わせたRF励起を行うことができる。また、磁気共鳴信号を検波するためのキャリア信号の周波数を静磁場強度の振動に応じて変化させるので、静磁場振動による磁気共鳴信号の周波数変化に合わせた検波を行うことができる。これによって、静磁場振動にかかわらず適正な撮影を行うことができる。

【0010】(3)上記の課題を解決するための他の観点での発明は、撮影の対象に静磁場、勾配磁場およびRF磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、前記RF磁場の周波数を前記勾配磁場の印加にともなって発生する渦電流および前記静磁場強度の振動に応じて変化させるRF周波数調節手段と、前記磁気共鳴信号を検波するためのキャリア信号の周波数を前記勾配磁場の印加にともなって発生する渦電流および前記静磁場強度の振動に応じて変化させる検波周波数調節手段と、を具備することを特徴とする磁気共鳴撮影装置である。

【0011】(3)に記載の観点での発明では、RF磁

場の周波数を勾配磁場の印加にともなって発生する渦電流および静磁場強度の振動に応じて変化させるので、渦電流が形成する磁場と静磁場振動とによるスピンの周波数変化に合わせたRF励起を行うことができる。また、磁気共鳴信号を検波するためのキャリア信号の周波数を渦電流および静磁場振動に応じて変化させるので、渦電流が形成する磁場と静磁場振動とによる磁気共鳴信号の周波数変化に合わせた検波を行うことができる。これによって、静磁場振動にかかわらず適正な撮影を行うことができる。

【0012】エコースペースを前記静磁場強度の振動周期の整数倍としたファーストスピンエコー法に基づいて前記磁場印加手段および前記受信手段を制御する制御手段を具備することが、ファーストスピンエコー法によって撮影した画像の画質を良くする点で好ましい。

【0013】(4)上記の課題を解決するための他の観点での発明は、撮影の対象に静磁場、勾配磁場およびRF磁場を印加して磁気共鳴信号を発生させる磁場印加手段と、前記磁気共鳴信号を検波して受信する受信手段と、前記受信した磁気共鳴信号に基づいて画像を生成する画像生成手段とを有する磁気共鳴撮影装置であって、エコースペースを前記静磁場強度の振動周期の整数倍としたファーストスピンエコー法に基づいて前記磁場印加手段および前記受信手段を制御する制御手段、を具備することを特徴とする磁気共鳴撮影装置である。

【0014】(4)に記載の観点での発明では、エコースペースを静磁場強度の振動周期の整数倍としたファーストスピンエコー法に基づいて磁場印加手段および受信手段を制御するので、ファーストスピンエコー法によって撮影した画像の画質を良くすることができる。

【0015】前記受信した磁気共鳴信号の位相を補正する位相補正手段を具備することが、画像の品質をさらに高める点で好ましい。前記位相の補正量をリファレンススキャン時に受信した磁気共鳴信号に基づいて計算する補正量計算手段を具備することが、位相補正を適正に行う点で好ましい。

【0016】前記計算に用いる磁気共鳴信号は位相エンコード量が0の磁気共鳴信号であることが、位相補正量計算が容易な点で好ましい。

[0017]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本発明は実施の形態に限定されるものではない。図1に磁気共鳴撮影装置のブロック(block)図を示す。本装置は本発明の実施の形態の一例である。本装置の構成によって、本発明の装置に関する実施の形態の一例が示される。

【0018】同図に示すように、本装置はマグネットシステム100を有する。マグネットシステム100は主磁場マグネット部102、勾配コイル部106およびR Fコイル部108を有する。主磁場マグネット部10 2、勾配コイル部106およびRFコイル部108は、 いずれも空間を挟んで互いに対向する1対のものからな る。また、いずれも概ね円盤状の形状を有し中心軸を共 有して配置されている。

【0019】マグネットシステム100における主磁場マグネット部102、勾配コイル部106およびRFコイル部108は、後述するマグネットカバー(magnetcover)内に収容されている。

【0020】マグネットシステム100の内部空間(ボア:bore)に、対象1がテーブル500に搭載されて搬入および搬出される。テーブル500はテーブル駆動部120によって駆動される。

【0021】主磁場マグネット部102はマグネットシステム100の内部空間に静磁場を形成する。静磁場の方向は概ね対象1の体軸方向と直交する。すなわちいわゆる垂直磁場を形成する。主磁場マグネット部102は例えば永久磁石等を用いて構成される。なお、永久磁石に限らず超伝導電磁石あるいは常伝導電磁石等を用いて構成してもよいのはもちろんである。

【0022】勾配コイル部106は、互いに垂直な3軸 すなわちスライス (slice)軸、位相軸および周波 数軸の方向において、それぞれ静磁場強度に勾配を持た せるための3つの勾配磁場を生じる。

【0023】静磁場空間における互いに垂直な座標軸を x, y, z としたとき、いずれの軸もスライス軸とする ことができる。その場合、残り2軸のうちの一方を位相 軸とし、他方を周波数軸とする。また、スライス軸、位 相軸および周波数軸は、相互間の垂直性を保ったまま x, y, z 軸に関して任意の傾きを持たせることも可能 である。本装置では対象1の体軸の方向を z 軸方向とする。

【0024】スライス軸方向の勾配磁場をスライス勾配磁場ともいう。位相軸方向の勾配磁場を位相エンコード(phase encode)勾配磁場ともいう。周波数軸方向の勾配磁場をリードアウト(read out)勾配磁場ともいう。このような勾配磁場の発生を可能にするために、勾配コイル部106は図示しない3系統の勾配コイルを有する。以下、勾配磁場を単に勾配ともいう。

【0025】RFコイル部108は静磁場空間に対象1の体内のスピンを励起するためのRFパルス(radiofrequency pulse)を送信する。RFコイル部108は、また、励起されたスピンが生じる磁気共鳴信号を受信する。RFコイル部108は、送信と受信を同一のコイルで行うものでも別々なコイルで行うものでもどちらでもよい。

【0026】勾配コイル部106には勾配駆動部130 が接続されている。勾配駆動部130は勾配コイル部1 06に駆動信号を与えて勾配磁場を発生させる。勾配駆 動部130は、勾配コイル部106における3系統の勾 配コイルに対応して、図示しない3系統の駆動回路を有する。

【0027】RFコイル部108にはRF駆動部140 が接続されている。RF駆動部140はRFコイル部1 08に駆動信号を与えてRFパルスを送信し、対象1の 体内のスピンを励起する。

【0028】主磁場マグネット部102、勾配コイル部 106、RFコイル部108、勾配駆動部130および RF駆動部140からなる部分は、本発明における磁場 印加手段の実施の形態の一例である。

【0029】RFコイル部108にはデータ収集部15 0が接続されている。データ収集部150は、RFコイル部108が受信した受信信号をサンプリング (sampling)によって取り込み、それをディジタルデータ (digital data)として収集する。RFコイル部108およびデータ収集部150からなる部分は、本発明における受信手段の実施の形態の一例である。

【0030】図2に、RF駆動部140およびデータ収集部150のさらに詳細なブロック図を示す。同図の上半分がRF駆動部140に相当し、下半分がデータ収集部150に相当する。

【0031】同図に示すように、RF駆動部140はパルス波形メモリ202を有する。パルス波形メモリ20 2はRFパルスの波形を記憶している。波形データは所定のタイミング(timing)で読み出され、D/A (digital-to-analog)変換ユニット (unit) 204でアナログ信号に変換されて変調ユニット206に入力される。

【0032】変調ユニット206は、入力信号をキャリア (carrier) 発生ユニット208から与えられるRFキャリア信号で変調してRFアンプ (radio

frequency amplifier) 210に 入力する。RFアンプ210は、入力信号を増幅したR F駆動信号を出力する。RF駆動信号は送受切換ユニット212を通じてRFコイル部108に供給される。

【0033】RFコイル部108が受信した磁気共鳴信号は送受切換ユニット212を通じてプリアンプ(preamplifier)302に入力される。プリアンプ302は磁気共鳴信号を増幅して検波ユニット304に入力する。

【0034】検波コニット304は、磁気共鳴信号をキャリア発生ユニット208から与えられるRFキャリア信号で検波する。検波された磁気共鳴信号はA/D(analog-to-digital)変換ユニット306でディジタルデータに変換されて後述のデータ処理部170に入力される。

【0035】テーブル駆動部120、勾配駆動部13 0、RF駆動部140およびデータ収集部150には制 御部160が接続されている。制御部160は、テーブ ル駆動部120ないしデータ収集部150をそれぞれ制御して撮影を遂行する。制御部160は、本発明における制御手段の実施の形態の一例である。

【0036】制御部160は、また、キャリア発生ユニット208を制御してそれが発生するRFキャリア信号の周波数を調節する。制御部160およびキャリア発生ユニット208からなる部分は、本発明におけるRF周波数調節手段の実施の形態の一例である。また、本発明における検波周波数調節手段の実施の形態の一例である。RFキャリア信号の周波数調節についてはのちにあらためて説明する。

【0037】制御部160は、例えばコンピュータ(computer)等を用いて構成される。制御部160は図示しないメモリ(memory)を有する。メモリは制御部160用のプログラムおよび各種のデータを記憶している。制御部160の機能は、コンピュータがメモリに記憶されたプログラムを実行することにより実現される。

【0038】データ収集部150の出力側はデータ処理 部170に接続されている。データ収集部150が収集 したデータがデータ処理部170に入力される。データ 処理部170は、例えばコンピュータ等を用いて構成さ れる。データ処理部170は図示しないメモリを有す る。メモリはデータ処理部170用のプログラムおよび 各種のデータを記憶している。

【0039】データ処理部170は制御部160に接続されている。データ処理部170は制御部160の上位にあってそれを統括する。本装置の機能は、データ処理部170がメモリに記憶されたプログラムを実行することによりを実現される。

【0040】データ処理部170は、データ収集部15 0が収集したデータをメモリに記憶する。メモリ内には データ空間が形成される。このデータ空間は2次元フー リエ(Fourier)空間を構成する。以下、フーリ エ空間をkスペース(k-space)ともいう。デー タ処理部170は、kスペースのデータを2次元逆フー リエ変換することにより対象1の画像を再構成する。データ処理部170は、本発明における画像生成手段の実 施の形態の一例である。

【0041】データ処理部170には表示部180および操作部190が接続されている。表示部180は、グラフィックディスプレー(graphic display)等で構成される。操作部190はポインティングデバイス(pointingdevice)を備えたキーボード(keyboard)等で構成される。

【0042】表示部180は、データ処理部170から 出力される再構成画像および各種の情報を表示する。操 作部190は、使用者によって操作され、各種の指令や 情報等をデータ処理部170に入力する。使用者は表示 部180および操作部190を通じてインタラクティブ (interactive) に本装置を操作する。

【0043】図3、図4および図5にマグネットシステム100のカバー(cover)外観を略図によって示す。図3は正面図、図4は側面図、図5は図3についてのA-A断面である。これらの図に示すように、カバーは、上部カバー112、下部カバー114および1対の支柱カバー116を有する。

【0044】上部カバー112の最下面は天井板112 aとなっている。下部カバー114の最上面は床板11 4aとなっている。天井板112aと床板114aのあいだの空間に対象1がテーブル500によって搬入される。

【0045】このようなカバー内にマグネット本体11 0が収容されている。図6、図7および図8にマグネット本体110の外観を略図によって示す。図6は正面 図、図7は側面図、図8は図6におけるB-B断面であ る。これらの図に示すように、マグネット本体110 は、上部構造111、下部構造113および1対の支柱 115を有する。

【0046】上部構造111の最下部は円柱状の上側磁極部111aとなっている。下部構造113の最上部は円柱状の下側磁極部113aとなっている。上側磁極部111aおよび下側磁極部113aはいずれも主磁場マグネット部102、勾配コイル部106およびRFコイル部108を含む。

【0047】本装置の撮影動作を説明する。図9に、本装置が実行する磁気共鳴信号獲得用のパルスシーケンス(pulse sequence)の一例を略図によって示す。このパルスシーケンスは、ファーストスピンエコー法によるパルスシーケンスである。

【0048】同図(1)はRFパルスのシーケンスであり、(2)、(3)、(4)および(5)は、それぞれ、スライス勾配Gs、リードアウト勾配Gr、位相エンコード勾配GpおよびスピンエコーMRのシーケンスである。パルスシーケンスは時間軸tに沿って左から右に進行する。

【0049】同図に示すように、90°パルスによる90°励起が行われる。90°励起を行うにあたってスライス勾配Gs0が印加され、所定のスライスについての選択励起が行われる。

【0050】90° 励起から所定時間 esp/2の後に 180° パルスによりスピンの反転が行われる。このときスライス勾配Gs1が印加され、同一スライスについての選択的スピン反転が行われる。

【0051】このスピン反転後、所定時間間隔espごとに180°パルスによるスピン反転が複数回行われる。各回のスピン反転は、それぞれスライス勾配Gs2,Gs3を印加した選択反転である。いずれも同一スライスについての選択的スピン反転である。ここではスピン反転回数が3の例を示すが3に限るものではない。

【0052】最初の90°励起と180°励起の間で、リードアウト勾配Gr0による周波数軸方向のディフェーズ(dephase)が行われる。各180°励起の後に、リードアウト勾配Gr1, Gr2, Gr3によるリフェーズ(rephase)が行われ、スピンエコーMR1, MR2, MR3がそれぞれ読み出される。

【0053】リードアウト勾配Gr1, Gr2, Gr3 の印加の前後の時点で、位相エンコード勾配Gp1, Gp1'、Gp2, Gp2'、Gp3, Gp3'がそれぞれ印加され、位相エンコードの付与および除去がそれぞれ行われる。位相エンコードの付与および除去を行う1対の勾配は絶対値が同一で符号が反対である。対が異なるもの同士では絶対値が異なる。

【0054】各スピンエコーMR i (i=1, 2, 3, \cdot \cdot \cdot \cdot) は、エコー中心に関して対称的な波形を持つR F信号となる。各スピンエコーMR i の中心間の間隔がエコースペース(e c h o

【0055】このようなパルスシーケンスが、周期TR(repetition time)で所定回数繰り返される。繰り返しのたびに位相エンコード勾配が変更される。これによって、位相エンコードが異なる例えば64~256ビューのビューデータが得られる。このようにして得られたビューデータが、データ処理部170のメモリのkスペースに収集される。

【0056】 kスペースのデータを2次元逆フーリエ変換することにより、実空間における2次元画像データすなわち再構成画像が得られる。この画像が表示部180で表示される。

 $f_c = f_o + \sum_i \beta_i \cdot s \mid n \mid (\omega_i t + \theta_i)$

【0062】ここで、

f 0:中心周波数

ω i : マグネット本体の固有振動の角周波数

θ j:マグネット本体の固有振動の位相

βj:マグネット本体の固有振動の成分値

なお、中心周波数 f 0 は、静磁場振動が無いときのスライス中心における磁気共鳴信号の周波数である。このようなキャリア周波数を用いることにより、静磁場振動に関わらず選択励起を正しく行うことができる。

【0063】(1)式のような周波数を持つキャリア信号は、検波ユニット304用のキャリア信号としても使用される。これによって、静磁場振動の影響により周波数が変化した磁気共鳴信号に合わせた検波を行うことが

【0057】上記のようなパルスシーケンスを実行する過程において、勾配コイル部106で勾配コイル部106が衝撃的な力を発生する。この力が伝わることによりマグネット本体110が振動する。とくに、マグネット本体110が、図7に示したように、横から見た形が概ねC字形をなす場合は、音叉に類似した構造を持つことにより、音叉の振動に類似した振動を行う。振動の周波数はマグネット本体110の固有振動の周波数に一致する。なお、固有振動の周波数は1つとは限らない。

【0058】このような振動に伴って静磁場強度が振動的に変化する。本書では、静磁場強度の振動的な変化を静磁場振動ともいう。静磁場振動の周波数はマグネット本体110の固有振動の周波数に一致する。固有振動周波数はマグネット本体110の構造によって定まるので、シミュレーション(simulation)や実測等により予め知ることができる。

【0059】静磁場振動により磁気共鳴信号の周波数が変化する。そこで、本装置では、静磁場振動による磁気共鳴信号の周波数の変化に合わせてRF励起周波数を調節する。RF励起周波数の調節は、RF駆動部140における変調ユニット206に入力するキャリア信号の周波数を調節することによって行う。周波数の調節は、制御部160でキャリア発生ユニット208を制御することによって行われる。

【0060】制御部160による制御の下で、キャリア発生ユニット208は次のような周波数fcを持つキャリア信号を発生する。

[0061]

【数1】

(1)

できる。

【0064】このように、静磁場振動の影響を受けた磁気共鳴信号の周波数に合わせたRF励起および受信信号の検波を行うので、静磁場振動にもかかわらず偽像等を含まない品質の良い断層像を得ることができる。

【0065】勾配コイル部106の駆動に伴って渦電流が発生するときは、渦電流によって生じる磁場のために磁気共鳴信号の周波数が変化する。以下、これを渦電流による周波数変化ともいう。渦電流による周波数変化にも対応可能にするときは、キャリア信号の周波数を次式で与えられる周波数とする。

[0066]

【数2】

 $f_c = f_0 + \sum_i \beta_j \cdot s \ i \ n \ (\omega_j t + \theta_j) + \sum_i \alpha_i \cdot e \times p \ (- \ \ \nearrow_{T_j})$ (2)

【0067】ここで、

Ti:時定数

α i :成分値

(2) 式の右辺は第2項までは(1)式の右辺と同一で

あり、第3項が渦電流による周波数変化に対応するために付加した項である。この項は指数関数的に減衰する渦 電流の特性に合わせてある。

【0068】なお、渦電流の影響が無視できる場合あるいは勾配駆動部130が渦電流補正付きの勾配駆動を行うときは、(2)式ではなく(1)式によってキャリア周波数fcを与える。

【0069】静磁場振動による周波数の変化は、スピンエコーの位相変化となって現れる。スピンエコーの位相変化は、再構成画像に位相軸方向での偽像を発生させる。FSE法はそのような偽像をとくに生じやすい性質がある。

【0070】本装置では、FSE法におけるそのような偽像を防止するために、エコースペースespをマグネット本体110の固有振動の周期の整数倍に設定する。これにより、図10の(5)に示すように、各スピンエコーMRiはエコー中心における位相Phがすべて同しとなる。ここではエコースペースespを固有振動の周期の1倍とした例を示すが、1倍に限らず適宜の整数倍であってよい。

【0071】また、エコー中心における位相が0°となる例を示したが、スキャンのタイミングによっては0°以外の位相となり得る。そこで、一般的には、位相エンコードを0としたレファレンススキャン(referencescan)のスピンエコーからエコー中心における位相を求め、この位相を用いて本スキャンのスピンエコーが同一の位相を持つので、位相補正はすべて同一でよい。

【0072】このようなスキャンを上述のキャリア周波 数調節と合わせて行うことにより、静磁場振動の影響の 除去を徹底させることができる。なお、このスキャンは キャリア周波数調節なしに行っても静磁場振動の影響除 去に効果がある。

【0073】位相補正量の計算はデータ処理部170によって行われる。データ処理部170は、本発明における補正量計算手段の実形態の一例である。位相補正もデータ処理部170によって行われる。データ処理部170は、本発明における位相補正手段の実施の形態の一例である。

【0074】エコースペースespをマグネット本体110の固有振動周期の整数倍に設定したスキャンは、必要に応じて行うようにしてもよい。図11に、使用者の選択によってそのようなスキャンを行う場合の、本装置の動作のフロー(flow)図を示す。

【0075】同図に示すように、ステップ(step) 502で、スキャンパラメータ(scan param eter)の入力が行われる。スキャンパラメータ入力 は使用者により操作部190を通じて行われる。スキャ ンパラメータとしては、例えば、スライス位置、スライ ス厚、FOV(Field of View)、画像マトリクスサイズ(matrix size)等がある。【0076】スキャンパラメータ入力の一環として、振動補正オプション(option)がある。振動補正オプションとは静磁場振動に関する補正の要否を選択する操作である。使用者は撮影の目的に合わせて振動補正の要否を指定する。

【0077】次に、ステップ504で、振動補正の指定の有無が判定される。この判定はデータ処理部170によって行われる。振動補正の指定がある場合は、ステップ506で、振動同期espの決定が行われる。振動同期espの決定は、前述のように、エコースペースespを、予めわかっているマグネット本体110の固有振動周期の整数倍となるように定めることである。

【0078】振動補正の指定がない場合は、ステップ506'で、最小espの決定が行われる。最小espの決定は、エコースペースespを勾配駆動部130が許容し得る最小のespとすることにより行われる。

【0079】このようなespの決定の後に、ステップ508でスキャンが行われ、次にステップ510で画像再構成が行われ、次にステップ512で再構成画像の表示および記憶が行われる。

[0080]

【発明の効果】以上詳細に説明したように、本発明によれば、静磁場強度の振動にかかわらず適正な撮影を行う 磁気共鳴撮影装置を実現することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の一例の装置のブロック図である。

【図2】RF駆動部およびデータ収集部のプロック図である。

- 【図3】マグネットシステムの外観を示す略図である。
- 【図4】マグネットシステムの外観を示す略図である。
- 【図5】図3におけるA-A断面を示す略図である。
- 【図 6】マグネット本体110の外観を示す略図である。

【図7】マグネット本体110の外観を示す略図である。

- 【図8】図6におけるB-B断面を示す略図である。
- 【図9】磁気共鳴撮影のパルスシーケンスの一例を示す 図である。

【図10】磁気共鳴撮影のパルスシーケンスの一例を示す図である。

【図11】本発明の実施の形態の一例の装置の動作のフロー図である。

【符号の説明】

1 対象

- 100 マグネットシステム
- 102 主磁場マグネット部
- 106 勾配コイル部

- 108 RFコイル部
- 120 テーブル駆動部
- 130 勾配駆動部
- 140 RF駆動部
- 150 データ収集部
- 160 制御部
- 170 データ処理部
- 180. 表示部
- 190 操作部
- 500 テーブル
- ・ 202 パルス波形メモリ
 - 204 D/A変換ユニット

【図1】

- 206 変調ユニット
- 208 キャリア発生ユニット
- 210 RFアンプ
- 212 送受切換ユニット
- 302 プリアンプ
- 304 検波ユニット
- 306 A/D変換ユニット
- 111 上部構造
- 111a 上側磁極部
- 113 下部構造
- 113a 下側磁極部
- 115 支柱

【図2】

[図7] (図8]

【図10】

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコード(参考)

G 0 1 N 24/02

530Y

(72)発明者 佐藤 博司

東京都日野市旭が丘四丁目7番地の127 ジーイー横河メディカルシステム株式会社 内 Fターム(参考) 4C096 AA20 AB01 AD02 AD10 AD12

AD14 AD23 BA50 BB32 CA05 CA16 CA18 DA03 DA06 DB07

DC01