

Grundlagen der Elektrotechnik II

Wechselstromwiderstände und Brückenschaltungen

Studien- und Versuchsaufgaben

Autor: Richard Grünert 16.5.2019

1 Vorbereitungsaufgaben

$$\underline{I} = \frac{\underline{U}}{\underline{Z}}, \quad \underline{U} = \hat{U} \cdot e^{j(\omega t + \phi_u)}$$

$$\underline{Z} = R + j\omega L + \frac{1}{j\omega C}$$

$$\underline{I} = \frac{\hat{U} \cdot e^{j(\omega t + \phi_u)}}{R + j(\omega L - \frac{1}{\omega C})}$$

Betrag:

$$|\underline{I}| = \hat{I} = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

Phase:

$$\phi_i = \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Gesamt:

$$i(t) = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \cdot \cos\left(\omega t + \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)\right)$$

$$\begin{array}{c|c}
R_{sL} & L & i_{\text{eff}} \\
\hline
U_{R_{\text{eff}}} & U_{L_{\text{eff}}}
\end{array}$$

$$I = 1.5 \text{ mA}, R_{sL} = 200\Omega, L = 60 \text{ mH}$$

$$\underline{U}_{\rm ges} = \underline{I} \cdot (R_{sL} + j\omega L)$$

$$\hat{U}_{\rm ges} = \hat{I} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2}$$

$$\hat{U}_{\rm ges} = I_{\rm eff} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2} = 1.5 \text{mA} \cdot \sqrt{(200\Omega)^2 + 4\pi^2 f^2 \cdot (60 \text{mH})^2}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$U_{L_{\textrm{eff}}} = I_{\textrm{eff}} \cdot \omega L = 1.5 \textrm{mA} \cdot 2 \pi f \cdot 60 \textrm{mH}$$

$$I=1.5~{\rm mA},~R=200\Omega,~C_1=0.5~{\rm \mu F},~C_2=1~{\rm \mu F}$$

$$\begin{split} \underline{U}_{\rm ges} &= \underline{I} \cdot (R - j \frac{1}{\omega C}) \\ \hat{U}_{\rm ges} &= \hat{I} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} \\ \hat{U}_{\rm ges}_{\rm eff} &= I_{\rm eff} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} = 1.5 \mathrm{mA} \cdot \sqrt{(200\Omega)^2 + \frac{1}{4\pi^2 f^2 C^2}} \end{split}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$\begin{split} U_{C_{\text{eff}}} &= I_{\text{eff}} \cdot \frac{1}{\omega C} \\ U_{C_{\text{eff}_1}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_1} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 0.5 \mu \text{F}} \\ U_{C_{\text{eff}_2}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_2} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 1 \mu \text{F}} \end{split}$$

a) Spule

Der Winkel δ , den die Impedanz \underline{Z} mit der imaginären Achse bildet, wird Verlustwinkel genannt. Der Verlustfaktor d ergibt sich dann aus:

$$d = \tan \delta = \frac{R_{sL}}{L_s}$$

Die Güte Q ist definiert als der Kehrwert des Verlustfaktors, also:

$$Q_{Ls} = \frac{1}{d} = \frac{\omega L_s}{R_{sL}}$$

Zeigerbild der Admittanz einer verlustbehafteten Induktivität / Spule im Parallelmodell

Analog ist der Verlustwinkel δ der Winkel der Admittanz mit der imaginären Achse:

$$d = \tan \delta = \frac{\frac{1}{R_{pL}}}{|-\frac{1}{\omega L_p}|} = \frac{\omega L_p}{R_{pL}}$$

Demnach ist auch die Güte der Kehrwert des Verlustfaktors:

$$Q_{Lp} = \frac{1}{d} = \frac{R_{pL}}{\omega L_p}$$

Für die gleich Frequenz gilt damit:

$$Q_{L_s} = Q_{L_p} = Q_L$$

b) Kondensator

Zeigerbild der Impedanz einer verlustbehafteten Kapazität / Kondensator im Serienmodell

Der Winkel δ , den die Impedanz \underline{Z} mit der imaginären Achse bildet, wird Verlustwinkel genannt. Der Verlustfaktor d ergibt sich dann aus:

$$d = \tan \delta = \frac{R_{sC}}{|-\frac{1}{\omega C_s}|} = R_{sC} \cdot \omega C_s$$

Die Güte Q ist definiert als der Kehrwert des Verlustfaktors, also:

$$Q_{Cs} = \frac{1}{d} = \frac{1}{\omega R_{sC} C_s}$$

Analog ist der Verlustwinkel δ im Parallelmodell der Winkel der Admittanz mit der imaginären Achse:

$$d = \tan \delta = \frac{\frac{1}{R_{pC}}}{\omega C_p} = \frac{1}{\omega R_{pC} C_p}$$

Demnach ist auch die Güte der Kehrwert des Verlustfaktors:

$$Q_{Cp} = \frac{1}{d} = \omega R_{pC} C_p$$

Für die gleich Frequenz gilt damit:

$$Q_{C_s} = Q_{C_p} = Q_C$$

1.6

 $R_1 = 25 \text{ k}\Omega, \ R_2 = 100 \text{ k}\Omega, \ C = 1 \text{ nF}, \ L = 0.25 \text{ H}, \ f = 800 \text{ Hz}$

a)

$$\underline{Z} = R_1 + j\omega L + \frac{1}{\frac{1}{R_2} + j\omega C} = R_1 + j\omega L + \frac{\frac{1}{R_2} - j\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}$$

$$\underline{Z} = R_1 + \frac{\frac{1}{R_2}}{\frac{1}{R_2^2} + \omega^2 C^2} + j\underbrace{\left(\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}\right)}_{\text{Imaginărteil (Resistanz)}}$$

$$\underline{Imaginărteil (Resistanz)}$$

$$Re(\underline{Z}) = 25k\Omega + \frac{1}{100k\Omega\left(\frac{1}{(100k\Omega)^2} + (2\pi \cdot 800Hz \cdot 1nF)^2\right)} = 104.83 \text{ k}\Omega$$

$$\mathrm{Im}(\underline{Z}) = 2\pi \cdot 800 \mathrm{Hz} \cdot \left(0.25 \mathrm{H} - \frac{1 \mathrm{nF}}{\frac{1}{(100 \mathrm{k}\Omega)^2} + (2\pi \cdot 800 \mathrm{Hz} \cdot 1 \mathrm{nF})^2}\right) = \underbrace{-38.87 \ \mathrm{k}\Omega}_{\mathrm{kapazitiv}}$$

$$\underline{Z} = 104.83 \text{ k}\Omega - j38.87 \text{k}\Omega$$

b)

$$|\underline{Z}| = \sqrt{\left(R_1 + \frac{1}{\frac{1}{R_2} + \omega^2 C^2 R_2}\right)^2 + \left(\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}\right)^2}$$

$$|\underline{Z}| = 111.8 \text{ k}\Omega$$

$$\phi_{\underline{Z}} = \arctan\left(\frac{\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}}{R_1 + \frac{1}{\frac{1}{R_2} + \omega^2 C^2 R_2}}\right) = \arctan\left(\frac{-38.87 \text{k}\Omega}{104.83 \text{k}\Omega}\right)$$

$$\phi_{\underline{Z}} = 20.36$$
 °

Abgleich bei $U_2 = 0$

$$\frac{R_2}{R_1} = \frac{Z_x}{Z_N} = \frac{\frac{1}{\frac{1}{R_x} + j\omega C_x}}{\frac{1}{\frac{1}{R_N} + j\omega C_N}} = \frac{\frac{1}{R_N} + j\omega C_N}{\frac{1}{R_x} + j\omega C_x}$$
$$\frac{R_2}{R_x} + j\omega R_2 C_x = \frac{R_1}{R_N} + j\omega C_N$$

Realteilvergleich:

$$\frac{R_2}{R_x} = \frac{R_1}{R_N} \implies R_x = \frac{R_N \cdot R_2}{R_1}$$

Imaginärteilvergleich:

$$\omega R_2 C_x = \omega R_1 C_N \implies C_x = C_N \cdot \frac{R_1}{R_2}$$

1.8

Abgleich bei $U_2 = 0$

$$\frac{R_2}{Z_N} = \frac{Z_x}{R_3}$$

$$\frac{R_2}{\frac{1}{R_N} + j\omega C_N} = \frac{R_x + j\omega L_x}{R_3}$$

$$\frac{R_2}{R_N} + j\omega R_2 C_N = \frac{R_x}{R_3} + j\frac{\omega L_x}{R_3}$$

Realteilvergleich:

$$\frac{R_2}{R_N} = \frac{R_x}{R_3} \implies R_x = \frac{R_2 \cdot R_3}{R_N}$$

Imaginärteilvergleich:

$$\omega R_2 C_N = \frac{\omega L_x}{R_3} \implies L_x = R_2 R_3 C_N$$

2 Versuchsaufgaben