Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. Claudia Linnhoff-Popien

Tutoriumsblatt 1 Rechnerarchitektur im SoSe 2020

Zu den Modulen A, B

Tutorium: Im Rahmen eines einstündigen wöchentlichen Tutoriums werden Aufgaben zur voran-

gegangenen Vorlesung vorgestellt. Die Aufzeichnungen zum Tutorium 1 werden am

23. April 2020 (17 Uhr) online zur Verfügung gestellt.

Ankündigungen: Um kurzfristige Ankündigungen nicht zu verpassen, bitten wir Sie regelmäßig die

Website zur Vorlesung zu besuchen:

http://www.mobile.ifi.lmu.de/lehrveranstaltungen/

rechnerarchitektur-sose20/

Aufgabe T1: Bunte Bilder

(- Pkt.)

Manche Digitalkameras der 16-Megapixel-Klasse haben eine Auflösung von 4992 \times 3328 Punkten (Pixeln). (Das bedeutet, ein Foto besteht aus 4992 \times 3328 Punkten). Gehen Sie bei den folgenden Aufgaben davon aus, dass 1 KB = 2^{10} Byte entspricht.

- a. Wie viel Speicher (in Bytes, KB und MB) wird benötigt, um ein unkomprimiertes Bild zu speichern, wenn
 - (i) jedes Pixel nur schwarz oder weiß ist?
 - (ii) für jedes Pixel 8-Bit Graustufen verwendet werden?
 - (iii) für jedes Pixel drei (rot, grün und blau) 8-Bit Farbskalen verwendet werden?
- b. Wie viel Speicher (in GB) wird benötigt, um ohne Kompression eine Minute Film zu speichern, wenn die Kamera 25 Bilder pro Sekunde aufzeichnet? Geben Sie die Antwort wieder für
 - (i) Schwarz-Weiß-Bilder,
 - (ii) 8-Bit Graustufen-Bilder und
 - (iii) 3*8 Bit-Farbbilder an.
- c. Wie viele Sekunden unkomprimierten Videos können auf einer DVD-5 mit 4,700,000,000 Byte (\approx 4,38 GB) Kapazität gespeichert werden? Antwort wieder für
 - (i) Schwarz-Weiß-Bilder,
 - (ii) 8-Bit Graustufen-Bilder und
 - (iii) 3*8 Bit-Farbbilder.

Aufgabe T2: Bits und Bytes

(- Pkt.)

Verschiedene Speichermedien besitzen unterschiedliche Kapazitäten. Im Folgenden sind einige Speichermedien und mögliche Kapazitäten aufgeführt:

- i. Diskette/USB-Stick: a) 1,44 MBytes, b) 2 GBytes
- ii. CDs/Blu-ray Disc Dual Layer: a) 700 MBytes, b) 50 GBytes
- a. Konvertieren Sie für jedes Medium die Kapazität in α) Anzahl Bits, β) Anzahl Bytes, γ) Anzahl Kilobytes, δ) Anzahl Megabytes, ϵ) Anzahl Gigabytes und ϕ) Anzahl Terabytes. Gehen Sie davon aus, dass 1 KByte 2^{10} Byte entspricht und geben Sie ungerade Ergebnisse mit genügend Nachkommastellen an, so dass Ihr Ergebnis korrekt überprüft werden kann. Ein Rechenweg ist nicht notwendig.
- b. Ist eine solche Umrechnung jeweils sinnvoll? Begründen Sie Ihre Antwort!

Aufgabe T3: Von-Neumann-Modell

(- Pkt.)

Bearbeiten Sie folgende Teilaufgaben zum Von-Neumann-Modell.

- a. Skizzieren Sie die grundlegende Architektur der Von-Neumann-Rechner und beschreiben Sie kurz die Funktionalität der einzelnen Komponenten.
- b. Erklären Sie, wie eine Programmzeile Code im Von-Neumann-Modell abgearbeitet wird und welcher Vorteil sich ergibt, wenn Programm und Daten in dem selben Speicher gehalten werden.
- c. Beschreiben Sie die Probleme der von-Neumann-Architektur und deren Lösungsmöglichkeiten.
- d. Der Speicher hat 2ⁿ Zellen. Jede Zelle kann 4 Byte aufnehmen. Wie breit müssen jeweils Adress- und Datenbus sein (d.h. aus wie vielen Leitungen bestehen die Busse) unter der Annahme, dass pro Leitung 1 Bit kodiert werden kann?