Image Generation from Layout

Bo Zhao Lili Meng Weidong Yin Leonid Sigal University of British Columbia

{bzhao03, menglili, wdyin, lsigal}@cs.ubc.ca

CVPR 2019 (Oral)

2019.09.24

발표자: 김용규

Github link: https://github.com/zhaobozb/layout2im

- 사용자가 그림을 그리면서 설명할 수 있도록 편의를 제공
- Artist가 그림 초안을 그려 볼 수 있음
- 사용자가 쉽게 생성한 그림을 가지고 그림을 통한 검색도 가능

Previous relevant work: Text-to-image approach

- 단순한 이미지에 대해서만 그럴듯하게 생성함
- 사람마다 기준이 단어(작은, 큰)로 인한 애매모호함
- 복잡한 이미지(Multiple Object)에서 생성이 어려움

Layout2Im

- Coarse layout (bounding boxes + object categories)
- It is much more controllable and flexible to generate an image from layout than textual description

Two challenges

- Image generation from layout is a difficult one-to-many problem
 - interaction
- The information conveyed by a bounding box and corresponding label is very limited
 - Category & location 만으로 이미지가 결정되는게 아니라 interaction도 고려해야함
 - 공간적으로 가까운 물체는 bounding box가 겹칠 수 있음

Contribution

- Coarse layout (bounding boxes + object categories) 로부터 유연한 이미지 생성

- Representation of objects를 category & appearance로 disentangle

: 같은 layout에서 다양한 Image 생성

- Segmentation mask 없이 COCO-Stuff and Visual Genome datasets 에서 좋은 성능

$$\mathbf{z}_{ri} \sim Q(\mathbf{z}_{ri}|\mathbf{O}_i) = \mathcal{N}(\mu(\mathbf{O}_i), \sigma(\mathbf{O}_i))$$

Word embedding: Identity of the object / Object latent code: appearance of a specific instance

- 모든 object가 각각 원하는 위치에 존재

- 다른 object를 보고 object representation을 조정

- 배경 같이 정해지지 않은 지역(unspecified regions)을 채워야 함

- Hidden state & Cell state : Feature map
- Convolutional layer

- Spatial information 유지
- Location & category information in H

- Object latent code regression
 - : Many-to-one 방지(다양한 이미지 생성 / mean vector 사용

- Discriminator 역할: (real image, real object, classification)

Total loss

- KL Loss $\mathcal{L}_{\mathrm{KL}} = \sum_{i=1}^{o} \mathbb{E}[\mathcal{D}_{\mathrm{KL}}(Q(\mathbf{z}_{ri}|\mathbf{O}_i)||\mathcal{N}(\mathbf{z}_r))]$ computes the KL-Divergence between the distribution $Q(\mathbf{z}_r|\mathbf{O})$ and the normal distribution $\mathcal{N}(\mathbf{z}_r)$, where o is the number of objects in the image/layout.
- Image Reconstruction Loss $\mathcal{L}_1^{\mathrm{img}} = ||\mathbf{I} \hat{\mathbf{I}}||_1$ penalizes the \mathcal{L}_1 difference between ground-truth image \mathbf{I} and reconstructed image $\hat{\mathbf{I}}$.
- Object Latent Code Reconstruction Loss L₁^{latent} = ∑_{i=1}^o ||z_{si} - z'_{si}||₁ penalizes the L₁ difference between the randomly sampled z_s ~ N(z_s) and the re-estimated z'_s from the generated objects O'.
- Image Adversarial Loss \(\mathcal{L}_{GAN}^{img} \) is defined as in Eq. (1), where \(x \) is the ground truth image \(\mathbf{I} \), \(y \) is the reconstructed image \(\mathbf{I} \) and sampled image \(\mathbf{I}' \).

- Object Adversarial Loss L^{obj}_{GAN} is also defined as in Eq. (1), where x is the objects O cropped from the ground truth image I, y are Ô and O' cropped from the reconstructed image Î and sampled image I'.
- Auxiliar Classification Loss \(\mathcal{L}_{AC}^{obj} \) from \(D_{obj} \) encourages
 the generated objects \(\hat{O}_i \) and \(\hat{O}_i' \) to be recognizable as
 their corresponding categories.

Therefore, the final loss function of our model is defined as:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{KL} + \lambda_2 \mathcal{L}_1^{img} + \lambda_3 \mathcal{L}_1^{latent} + \lambda_4 \mathcal{L}_{adv}^{img} + \lambda_5 \mathcal{L}_{adv}^{obj} + \lambda_6 \mathcal{L}_{AC}^{obj},$$

where, λ_i are the parameters balancing different losses.

COCO-Stuff & Visual Genome datasets

Dataset	Train	Val.	Test	# Obj.	# Obj. in Image
COCO [1]	24,972	1,024	2,048	171	3 ∼ 8
VG [18]	62,565	5,506	5,088	178	3 ~ 30

	Inception Score		Accuracy		Diversity Score	
Method	COCO	VG	coco	VG	COCO	VG
Real Images (64×64)	16.3 ± 0.4	13.9 ± 0.5	55.16	49.13	-	-
pix2pix [12]	3.5 ± 0.1	2.7 ± 0.02	12.06	9.20	0	0
sg2im (GT Layout) [13]	7.3 ± 0.1	6.3 ± 0.2	30.04	40.29	0.02 ± 0.01	0.15 ± 0.12
Ours	$\textbf{9.1} \pm \textbf{0.1}$	$\textbf{8.1} \pm \textbf{0.1}$	50.84	48.09	$\textbf{0.15} \pm \textbf{0.06}$	$\boxed{\textbf{0.17} \pm \textbf{0.09}}$

Method	IS	Accu.	DS
w/o $\mathcal{L}_1^{\mathrm{img}}$	7.6 ± 0.2	49.03	0.17 ± 0.09
w/o $\mathcal{L}_1^{\mathrm{latent}}$	7.5 ± 0.1	48.90	0.16 ± 0.09
w/o $\mathcal{L}_{ ext{AC}}^{ ext{obj}}$	6.5 ± 0.1	10.06	$\textbf{0.37} \pm \textbf{0.11}$
w/o $\mathcal{L}_{ ext{ady}}^{ ext{img}}$	7.1 ± 0.1	56.17	0.13 ± 0.09
w/o $\mathcal{L}_{ ext{adv}}^{ ext{obj}}$	7.3 ± 0.1	57.74	0.14 ± 0.09
full model	8.1 ± 0.1	48.09	0.17 ± 0.09

Conclusion

- High resolution

More controllable image generation