Word2Vec

곽지호

텍스트 단어를 분석하려면?

단어들을 벡터로 만들어야 한다.

가장 쉽고 고전적인 방법!

One-Hot Encoding

저는 데이터 분석을 좋아합니다

['저', '는', '데이터', '분석', '을', '좋아합니다']

One-Hot Encoding의 한계는 무엇이죠?

- 1. Sparce Matrix (희소 행렬) 이 만들어진다.
 - a. 주어진 Corpus 즉, 문서의 단어 개수가 N이라면 N차원 공간이 필요하다.
 - b. But, 1개 차원의 벡터만 1로 기록되고, 나머지 차원은 모두 0으로 채워진다.

차원의 저주 : 큰공간에 적은량의 정보는 과적합을 일으킵니다.

- 1. 단어 간의 관계를 표현하지 못하고 모두 독립적이라고 가정한다.
 - b. '데이터'와 '분석'의 관계나, '데이터'와 '좋아합니다'의 관계가 동일하게 간주된다.
 - c. 수학적으로 각 단어는 차원공간상에서 서로 직교한다.

단어가 가지는 의미와 맥락을 알아내지 못합니다.

그렇다면 인코딩이 아닌 임베딩이다!

1. Embedding 이란?

- a. Dense Representation : 특정 차원수, 즉 특징수에 각 단어를 분산해서 표현.
- b. 각 차원은 임의의 특징벡터를 표현하여 각 차원에 분산해서 표현
- c. 차원의 의미는 알수 없음.
- d. Sparce Representation을 하는 one-hot encoding보다 저차원으로 표현가능

-	0	1	2	3	4	5
데이터	0	0	1	0	0	0
분석	0	0	0	1	0	0

특성요소 f1에 대해 두 단어가 유사하다고 해석 가능

임베딩 벡터는 어떻게 얻을수 있나요?

출현빈도 기반 임베딩

(Frequency based Embedding)

BoW \rightarrow TDM \rightarrow LSA or LDA

문서별 단어 출현 빈도 카운트

TF-IDF \rightarrow **TDM** \rightarrow **LSA** or **LDA**

해당문서 출현빈도와 문서전체 출현빈도 비율

출력 = 축소된 N차원 X 단어종류수

뉴럴네트워크 기반 임베딩

(NN based Embedding)

Word2Vec

N차원의 1개 은닉층의 두고 연관단어 예측

FastText, GloVe, ELMo

글자단위, 통계하이브리드, 다의어처리

출력 = 단어종류수 X N차원

Word2Vec 아이디어

- 맥락으로 단어를 예측할 수 있다는 predictive method 에 기반
 a. '나는 사과를 마트에서 자주 00' → "구매한다"
- 2. 신경망 역전파 알고리즘에 의해 지도학습 방식으로 가중치벡터 W를 획득
 - a. 지도학습을 통해 비지도학습 문제해결을 달성

Word2Vec 알고리즘

Skip-gram 방식

- 윈도우사이즈 2의 skim-gram 2차원 임베딩 개념도 예시

결국 단어 유사도를 파악할 수 있게된다

one-hot encoding					
스시	1	0	0	0	0
일본	0	1	0	0	0
김밥	0	0	0	0	1
한국	0	0	0	1	0

word2vec embedding				
-	1차원	2차원		
스시	0.1	1.5		
일본	0.3	1.2		
김밥	0.7	0.95		
한국	0.9	0.7		

코사인 유사도 행렬						
-	스시	일본	김밥	한국		
스시	1.00	0.98	0.84	0.67		
일본	0.98	1.00	0.92	0.79		
김밥	0.84	0.92	1.00	0.96		
한국	0.67	0.79	0.96	1.00		

스시 - 일본 + 한국 = 김밥

Word2Vec 시각화 시뮬레이션

https://ronxin.github.io/wevi/

