Lista 1

- 1. Em que situações L^* é finita?
- 2. Seja $L = \{\lambda, a, b, c\}$. Quantas palavras possui L^n para um dado $n \ge 0$? Como você descreveria essa linguagem usando o português?
- 3. Descreva as linguagens a seguir, todas sobre o alfabeto $\{0, 1\}$, usando apenas conjuntos finitos e as operações de união, interseção, complementação, concatenação e fecho de kleene.
 - (a) $\{w \mid |w| = 4 \text{ e } w \text{ não contém a subpalavra } 01 \}.$
 - (b) O conjunto das palavras que contém 01.
 - (c) O subconjunto das palavras de $\{0\}^*\{1\}^*$ com número ímpar de 0s e par de 1s.
 - (d) O conjunto das palavras com três a vinte e sete símbolos.
 - (e) O conjunto das palavras que contém 11, mas não contém 00.
 - (f) O conjunto das palavras em que todo 1 é seguido por pelo menos dois símbolos.
- 4. Dê definições recursivas para as linguagens:
 - (a) $\{0\}^*\{1\}^*$;
 - (b) $\{0^n 1^n \mid n \in N\};$
 - (c) $\{w \in \{0,1\}^* \mid w \text{ \'e pal\'indromo}\};$
 - (d) $\{x01y \mid x, y \in \{0, 1\}^* \text{ e } |x| = |y|\};$
 - (e) $\{w \in \{a, b\}^* \mid w \text{ contém } aa\}.$
- 5. Faça um diagrama de estados para o problema dos missionários e canibais:

Três missionários e três canibais devem atravessar um rio. Para isso dispõem de uma canoa que pode transportar no máximo duas pessoas de cada vez. Durante a travessia, se o número de canibais for maior que o de missionários em qualquer margem, os canibais comem os missionários. Determinar um plano para travessia em que nenhum missionário seja devorado.

- 6. Faça um diagrama de estados para uma máquina que determina se uma sequência ternária (com dígitos 0, 1 e 2) é divisível por 4.
- 7. Construa autômatos finitos determinísticos para as seguintes linguagens:
 - (a) $L_1 = \{ w \in \{a, b, c\}^* \mid w \text{ contém } aac \};$
 - (b) $L_2 = \{w \in \{a, b, c\}^* \mid \text{ os dois últimos símbolos de } w \text{ não são } ba\};$
 - (c) $L_3 = \{xy \mid \text{ os dois últimos símbolos de } x \text{ são } ba \text{ e } y \text{ contém } acc\};$
 - (d) O autômato mínimo que reconheça L_3 .
- 8. Construa um AFN que reconheça $L = \{abc\}\{w \in \{abc\}^* \mid w \text{ não contém } abc\}\{abc\}.$
- 9. Seja o AFN $\lambda M = (\{0, 1, 2, 3\}, \{a, b, c, d\}, \delta, 0, \{3\}),$ em que δ é dada por:

δ	a	b	\mathbf{c}	d	λ
0	{0}	Ø	Ø	Ø	{1}
1	Ø	{1}	Ø	Ø	$\{2\}$
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	Ø	Ø	{2}	Ø	{3}
3	Ø	Ø	Ø	$\{3\}$	Ø

Usando somente métodos vistos em sala de aula ou do livro-texto, construa um autômato finito que reconheça $\overline{L(M)}$.

Departamento de Computação e Sistemas Professor: Gleiph Ghiotto Lima de Menezes Fundamentos Teóricos da Computação DECSI - UFOP e-mail: gleiphgh@gmail.com

Lista 1

- 10. Para cada uma das linguagens a seguir diga se é regular ou não. Caso a linguagem seja regular, construa um autômato finito, caso contrário prove que não é regular.
 - (a) $L = \{b^m a^n b^m a^n b^m \mid n, m \ge 0\}$
 - (b) $L = \{a^n a^n b^m b^m b^m \mid n, m \ge 0\}$
- 11. Emmanuel, um aluno muito curioso, descobriu que as linguagens regulares são fechadas sob a operação de reverso. Ele verificou que dado um AFD $M=(E,\Sigma,\delta,i,F)$, o AFN $M^{'}=(E,\Sigma,\delta^{'},F,\{i\})$, em que a função de transição $\delta^{'}$ é

$$\delta'(e, a) = \{e_1 \mid \delta(e_1, a) = e\}$$

, reconhece a linguagem $L(M)^R$, i.e., a linguagem do reverso de L(M). Agora que você compartilha das informações obtidas por Emmanuel, faça:

- (a) Um autômato finito determinístico que reconheça $L = \{w \in \{a,b\}^* \mid w \text{ começa com } a \text{ ou termina com } b\};$
- (b) A partir do autômato construído no item anterior e das informações obtidas por Emmanuel, construa um AFN que reconheça a linguagem L^R ;
- (c) Use a função de transição estendida, definida em sala de aula, para mostrar o processamento da palavra *aabba* no autômato da letra a e da palavra *abbaa* no autômato construído na letra b.
- 12. Suponha que R é uma linguagem regular e L uma linguagem qualquer. Mostre que:
 - (a) LR pode ser regular ou não;
 - (b) se $L \cap \overline{R}$ não é regular, então L não é regular;
 - (c) se L^* não é regular, então L não é regular.
- 13. Usando o lema do bombeamento, demonstre que a linguagem $L = \{w \in \{a,b\}^* \mid \text{a quantidade de a's em } w$ é igual a quantidade de b's} não é regular.
- 14. Usando propriedades de fechamento, demonstre que a linguagem $L = \{w \in \{a, b\}^* \mid \text{a quantidade de a's em } w \text{ \'e diferente da quantidade de b's} \}$ não \'e regular.
- 15. Bidu estava tentando descobri se a linguagem $L = \{0^n 1^m 0^m \mid n > 0 \text{ e } m \ge 0\} \cup \{1\}^* \{0\}^*$ é regular ou não. Em uma de suas tentativas, ele apresentou a seguinte demonstração de que essa linguagem satisfaz o lema do bombeamento:

Sejam k = 1 e z uma palavra de L tal que $|z| \ge k$.

caso 1:
$$z \in L = \{0^n 1^m 0^m \mid n > 0 \text{ e } m \ge 0\}$$

Como z tem tamanho maior ou igual a 1 e toda palavra de L começa com uma sequência de pelo menos um zero, tem-se que z=0x, com $x\in\{0^n1^m0^m\mid n,m\geq 0\}$. Sejam $u=\lambda$, $v=0,\ w=x$ e $i\in\mathbb{N}$. Claramente,

- z = uvw;
- $|uv| = |0| = 1 \le k;$
- $v = 0 \neq \lambda$; e
- $uv^iw = 0^ix \in L$, se n > 0 e $uv^0w = x \in L$.

caso 2: $z \in \{1\}^*\{0\}^*$ Trivial, pois $\{1\}^*\{0\}^*$ é uma linguagem regular.

Portanto, L satisfaz o lema do bombeamento.

- (a) Sabendo que a prova acima apresentada pelo Bidu está correta, pode-se afirmar que a linguagem L é regular? Justifique.
- (b) Prove que a linguagem $K = \{0^m 1^m 0^n \mid m \ge 0 \text{ e } n > 0\}$ não é regular. Note que $K \ne L$.
- (c) Sabendo que linguagens regulares são fechadas sob a operação de reverso, pode-se afirma que a linguagem L é regular? Justifique.

Lista 1

- 16. Determine se os seguintes problemas de decisão são decidíveis ou não. Justifique sua resposta.
 - (a) Determinar se, dado um AFD M, L(M) por ser reconhecida por um autômato finito com no máximo n estados.
 - (b) Determinar se uma linguagem regular pode ser reconhecida por um AFD de um trilhão de estados.
 - (c) Dado um AFD M, determinar se L(M) é finita.
- 17. Construa autômatos finitos determinísticos (AFDs) mínimos para as seguintes linguagens:
 - (a) $\{w \in \{0,1\}^* \mid |w| = 4 \text{ e } w \text{ não contém a subpalavra } 01 \}.$
 - (b) O conjunto das palavras que contém 01.
 - (c) O subconjunto das palavras de $\{0\}^*\{1\}^*$ com número ímpar de 0s e par de 1s.
 - (d) O conjunto das palavras que contém 11, mas não contém 00.
 - (e) O conjunto das palavras em que todo 1 é seguido por pelo menos dois símbolos.
 - (f) $\{w \in \{0,1\}^* \mid |w| \ge 2 \text{ e o penúltimo símbolo de } w \notin 1 \}.$
 - (g) $\{w \in \{0,1\}^* \mid \text{o último símbolo de } w \text{ é igual ao primeiro } \}$.
 - (h) $\{w \in \{0,1\}^* \mid \text{os três últimos símbolos de } w \text{ não são } 000 \}.$
 - (i) $\{w \in \{0,1\}^* \mid \text{em } w \text{ o símbolo da posição } 2i \text{ é diferente do símbolo da posição } 2i+2 \text{ para cada } i \geq 0\}.$
- 18. Considere as seguintes linguagens sobre $\Sigma = \{0, 1\}$:
 - (a) $L_1 = \{11\}\{10\}^*\{01\}$
 - (b) $L_2 = \{1\}\{0,1\}^*\{0\}$
 - (c) $L_3 = \{0, 1\}^*\{11\}$
 - (d) $L_4 = \{0,1\}^*\{0\}\{0,1\}^*$

A partir do apresentado, faça o que se pede:

- (a) Descreve usando o português cada uma das linguagens descritas acima.
- (b) Construa AFDs mínimos para cada uma dessas linguagens.
- (c) Construa AFDs que reconheça cada uma das linguagens:
 - i. $L_1 \cup L_2$
 - ii. $L_3 \cap L_4$
 - iii. $\overline{L_3}$
 - iv. $L_1 \cap \overline{L_2}$
 - v. $L_4 L_1$
- 19. Sejam as linguagens:
 - $A = \{w \in \{a,b\}^* \mid o \text{ n\'umero de as } em \text{ } w \text{ } \acute{e} \text{ } par\}.$
 - $B = \{w \in \{b, c\}^* \mid o \text{ número de bs } em \text{ } w \text{ } é \text{ } par\}.$
 - $C = \{w \in \{a, c\}^* \mid o \text{ número de cs } em \text{ } w \text{ } é \text{ } par\}.$

Construa um AFN M que reconheca L(M) = ABC.

- 20. Para cada uma das linguagens abaixo prove se são linguagens regulares ou não:
 - (a) $\{0^n 1^{2n} \mid n \ge 0\}$;
 - (b) $\{x \# x \mid x \in \{0,1\}^*\};$
 - (c) $\{ww^R \mid w \in \{0,1\}^*\};$

Lista 1

- (d) $\{0,1\}^* \{0^n 1^n \mid n \ge 0\};$
- (e) $\{w \in \{0,1\}^* \mid o \text{ n\'umero de 0s em } w \text{ \'e igual ao de 1s}\};$
- (f) $\{0^m 1^n \mid m < n\} \cup \{0^m 1^n \mid m > n\} \cup \{0^n 1^n \mid n \ge 0\};$
- (g) $\{0,1\}^* \{01,10\}^*$;
- (h) $\{0^n 1^n \mid 0 \le n \le 10^{1000}\}.$