

Figure 1: Kalman filter system model

This is the system model of the (linear) Kalman filter. At each time step the state vector \mathbf{x}_k is propagated to the new state estimation \mathbf{x}_{k+1} by multiplication with the constant state transition matrix \mathbf{A} . The state vector \mathbf{x}_{k+1} is additionally influenced by the control input vector \mathbf{u}_{k+1} multiplied by the input matrix \mathbf{B} , and the system noise vector \mathbf{w}_{k+1} . The system state cannot be measured directly. The measurement vector \mathbf{z}_k consists of the information contained within the state vector \mathbf{x}_k multiplied by the measurement matrix \mathbf{H} , and the additional measurement noise \mathbf{v}_k .