Exame Escrito de Época de Recurso de Física Quântica I e Mecânica Quântica

17-Junho-2021

1. (2pts) Normalize o seguinte estado

$$|\psi\rangle=|a\rangle+e^{\alpha}|b\rangle,$$
onde α é um número real, $\langle a|b\rangle=0$ e $|\langle a|a\rangle=\langle b|b\rangle=\beta$

- 2. (2pts) Calcule o comutador do operador x^2 com o operador momento linear $p=-i\hbar\frac{d}{dx}$ sabendo que $[x,p]=i\hbar$.
- 3. (5pts) Considere o estado de spin

$$|\psi\rangle = 2|+\rangle + \frac{i}{2}|-\rangle,$$

onde os estados |+> e |-> são os estados próprios da matriz de Pauli σ_x associados, respectivamente, aos valores próprios +1 e -1.

- (a) Calcule a probabilidade de numa medida do spin segundo o eixo dos x's sobre o estado $|\psi\rangle$ sair o estado $|-\rangle$.
- (b) Calcule a probabilidade de numa medida do spin segundo o eixo dos z's sobre o estado $|\psi\rangle$ sair o estado $|\uparrow\rangle$, onde este último estado é o estado próprio da matriz de Pauli σ_z com valor próprio +1.
- (c) Se o estado do sistema evoluir de acordo com o hamiltoniano $\hat{H}=E_0\sigma_x$, onde E_0 é uma constante positiva, encontre o estado $|\psi(t)\rangle$, onde t representa o tempo.
- (d) Coloque o estado $|\psi\rangle$ na representação da esfera de Bloch.
- 4 (4pts) Considere uma partícula num estado ligado (energia E negativa) sujeito à seguinte energia potencial

$$V(x) = \begin{cases} \infty & x < 0 \\ -g\delta(x - a) & x > 0 \end{cases},$$

onde q > 0 e a > 0.

- (a) Resolvendo a equação de Schrodinger, encontre a equação transcentende associada à determinação da energia do estado ligado.
- (b) Encontre a condição para a qual há sempre um estado ligado.
- (5pts) Considere o oscilador harmónico unidimensional, cujo hamiltoniano é dado por

$$\hat{H} = \hbar\omega(a^{\dagger}a + 1/2),$$

onde ω é a frequência natural do oscilador e a^{\dagger} e a são os operadores de subida (criação) e descida (destruição), respectivamente.

- (a) Calcule o valor médio de x^2 no **segundo** estado excitado do oscilador.
- (b) Calcule a incerteza na posição, Δx , associada ao segundo estado excitado do oscilador.
- (c) Calcule o valor médio da energia cinética no estado fundamental do oscilador.
- (d) Sabendo que a energia do estado fundamental do oscilador harmónico é ħω/2, use o resultado do item anterior para determinar o valor médio da energia potencial nessse mesmo estado. Diga se o seu resultado satisfaz o teorema da equipartição da energia.
- 6. (2pts) O operador L_z do momento angular no espaço real e em coordenadas esféricas é dado por

$$L_z = -i\hbar \frac{\partial}{\partial \phi}.$$

- (a) Encontre as funções próprias de L_z , ou seja, resolva a equação aos valores próprios $L_zf(\phi)=\Lambda f(\phi).$
- (b) Determine os valores próprios Λ .