Assembly-line Scheduling

Assembly-line

Assembly-line

- S_{i,i}: station j on line i
- a_{i,j}: the assembly time required at station S_{i,i}
- t_{i,j}: the time to transfer a chassis from assembly line i, after having gone through station S_{i,j}
- e_i, x_i: entry time on line i, exit time on line i

Problem Definition

- There are two assembly lines each with n stations
- The j-th station on line 1, 2 performs the same function
- Determine which stations to choose in order to minimize the total time through the factory

Brute Force Way

- There are 2ⁿ possible ways to choose stations
- So brute force way take Ω(2ⁿ) time complexity
- It is infeasible when n is large

The Structure of the Fastest Way through the Factory (1)

- The fastest way through station S_{1,i} is either
 - the fastest way through station S_{1,j-1} and then directly through station S_{1,j} or
 - the fastest way through station S_{2,j-1}, a transfer from line 2 to line 1, and then through station S_{1,j}

The Structure of the Fastest Way through the Factory (2)

- The fastest way through station S_{2,i} is either
 - the fastest way through station S_{2,j-1} and then directly through station S_{2,j} or
 - the fastest way through station S_{1,j-1}, a transfer from line 1 to line 2, and then through station S_{2,j}

The Structure of the Fastest Way through the Factory (3)

- Solving the problem of finding the fastest way through station j of either line
 - need to solve the sub problems of finding the fastest ways through station j-1 on both lines

Recursive Solution

 f_i[j]: the fastest time to get a chassis from starting point through station S_{i,i}

$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1\\ \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \ge 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1\\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases}$$

The fastest way through the entire factory

$$f* = \min(f_1[n] + x_1, f_2[n] + x_2)$$

Computing the Fastest Times (1)

- We can write a recursive algorithm based on previous recurrence relation
- Let r_i(j) be # of references made to f_i[j] in a recursive algorithm
 - $r_1(n)=r_2(n)=1$
 - $r_1(j)=r_2(j)=r_1(j+1)+r_2(j+1)$ for j=1,...,n-1
 - $r_i(j)=2^{n-j}$ (Exercise 15.1-3)
 - f₁[1] alone is referenced 2ⁿ⁻¹ times
- Thus, the running time is exponential in n

Computing the Fastest Times (2)

- By computing the f_i[j] values in order of increasing station numbers j
 - Can compute the fastest way through the factory in Θ(n) time

j	1	2	3	4	5	6
f ₁ [j]	9	18	20	24	32	35
f ₂ [j]	12	16	22	25	30	37

j	2	3	4	5	6
l ₁ [j]	1	2	1	1	2
l ₂ [j]	1	2	1	2	2

$$f^* = 38$$

FASTEST-WAY(a,t,e,x,n)

```
f_1[1] \leftarrow e_1 + a_{1,1}
f_2[1] \leftarrow e_2 + a_{2,1}
for j \leftarrow 2 to n
         do if f_1[j-1]+a_{1,j} \le f_2[j-1]+t_{2,j-1}+a_{1,j}
                 then f_1[j] \leftarrow f_1[j-1] + a_{1,i}
                          I_1[j] \leftarrow 1
                 else f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}
                          I_1[i] \leftarrow 2
         if f_2[j-1] + a_{2,i} \le f_1[j-1] + t_{1,i-1} + a_{2,i}
                 then f_2[j] \leftarrow f_2[j-1] + a_{2,i}
                           J_2[j] \leftarrow 2
                 else f_2[j] \leftarrow f_1[j-1] + t_{1,j-1} + a_{2,j}
                           ||_{2}[i] \leftarrow 1
if f_1[n] + x_1 \le f_2[n] + x_2
         then f^* = f_1[n] + x_1
                 |*| = 1
         else f^* = f_2[n] + x_2
                 1* = 2
```