Фрактальный анализ и синтез оптических изображений морского волнения*

¹Московский физико-технический институт (Государственный Университет); ²Организация

Работа посвящена исследованию проблемы определения спектра волн возвышений морской поверхности и его связи с фрактальной размерностью. Предложен подход определения степени спектра с помощью сверточной нейронной сети. С помощью "" подхода по определению фрактальной размерности и нейронной сети устанавливается зависимость между показателем спектра волн возвышений и фрактальной размерностью изолиний яркости.

Ключевые слова: дистанционное зондирование, аэрокосмические изображения, спектры волнения, поверхностное волнение, обработка изображений, приповерхностный слой океана, оценка фрактальной размерности .

Название на заморском*

Author F. S.¹, CoAuthor F. S.², Name F. S.²

¹Moscow Institute of Physics and Technology (State University); ²Organization

This document is

Keywords: keyword, keyword, more keywords.

Введение

Изучение поведения поверхности океана носит важный прикладной характер. Для большинства задач контроля состояния морской поверхности требуется восстановление спектров высот и уклонов волнения по данным дистанционного зондирования, в частности по его оптическим изображениям. Такие спектры позволяют получать важную информацию о различных процессах и явлениях, происходящих на поверхности и в приповерхностном слое морей и океанов, об энергетических особенностях морских волн, о характеристиках приводного слоя атмосферы и ветровом режиме, а также выявлять зоны негативных естественных антропогенных воздействий на водную среду, свидетельствовать о чрезвычайных ситуациях в океане и др. Изучение спектра морской поверхности сложная и актуальная задача. В работе [1] было установлено, что спектр уклонов высот морской поверхности является степенным. Известно, что если спектр является степенным, то данная структура является фрактальной. Знание показателя степени спектра дает ответы на вопрос о структуре волнения. В [1] было показано, что фрактальная размерность изолинии яркости изображения морской поверхности линейно зависит от показателя спектра в исследуемом диапазоне, однако весовые функции зависят от площади изолинии. Так же в [1] был предложен алгоритм восстановления изображения морского волнения по показателю спектра. На практике, показатель спектра p — неизвестен, но есть изображение морской поверхности. Поэтому хотелось бы восстанавливать p по изображению.

В данной работе, с помощью методов машинного обучения предлагается решение данной

Работа выполнена при финансовой поддержке Р $\Phi\Phi$ И, проект 00-00-00000. Научный руководитель: Стрижов В. В. Задачу поставил: Матвеев И. О. Консультант: Консультант И. О.

2 Автор И.О. и др.

проблемы. С помощью алгоритма из [1] была сгенерирована выборка изображений с различными p и при различных атмосферных условиях. Чтобы избавится от условий съемки, все изображения были подвергнуты линейному преобразованию (конкретнее) над полем контрастности.

Рис. 1. Пример изображения после преобразования над контрастностью

Определение фрактальной размерности

Опорой при исследовании фрактальной размерности изображения была работа [3]. Для вычисления фрактальной размерности структур нашего изображения было использовано следующее определение:

Definition 0.1 (Определение фрактальной размерности).

$$D_2 = \frac{\partial \log \sum_{i} C_{r,i}^2}{\partial \log r}, \quad r \in [r_1, r_2]$$

Получается следующий алгоритм для вычисления:

- 1. На вход подается изображение нашего «безобразия»
- 2. Для набора точек в n-мерном пространстве определяется его конечное покрытие
- 3. Последнее разбивается сеткой разной мелкости.
- 4. Для каждой мелкости разбиения r, производится подсчёт непустых ячеек N либо квадрат числа точек, оказавшихся в ячейке, C.
- 5. Строится график N либо C vs. r в log-log масштабе.
- 6. Наклон кривой на «линейном» участке является фрактальной размерностью, которая подается на выход.

Данная программа была апробирована на общеизвестных фракталах

No.	Name of figure	Figure	Dimension	Level
1	Koch snowflake	~5^2~	1.262	4~8
2	Apollonian Gasket		1.328	3~7
3	Vicsek fractal	क विद्यास क विद्यास क्षेत्र	1.465	3~7
4	Sierpinski triangle		1.585	5~9
5	Rand cantor		1.678	Five seeds
6	Koch curve 85°		1.785	5~9
7	Sierpinski Carpet		1.893	3~7

Рис. 2. Тест вычисления фракталной размерности

В частности для фрактала Серпинского:

	а	dp	h	red1	red2	red3	dp+h	dp*h	sqrt(dp)*h+exp(h)*dp**2	y_train
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
mean	1.552328	1.548484	1.549477	1.552231	1.557139	1.553571	3.097961	2.396580	22.020000	16.736888
std	0.837495	0.836141	0.837220	0.836886	0.838756	0.834842	1.180910	1.955536	28.231539	27.524510
min	0.100145	0.100091	0.100017	0.100024	0.100037	0.100067	0.220042	0.012027	0.050513	-0.324576
25%	0.828249	0.824821	0.826110	0.831683	0.832746	0.834455	2.246583	0.786694	3.746293	0.705060
50%	1.555304	1.549505	1.549549	1.554555	1.560352	1.554183	3.096212	1.853881	10.907733	4.902508
75%	2.275450	2.269600	2.275488	2.280282	2.286842	2.276296	3.945308	3.587736	28.250031	20.054569
max	2.999975	2.999999	2.999975	2.999871	2.999952	2.999964	5.977110	8.931434	182.212647	230.371688

Рис. 3. Характеристики алгоритма вычисления фрактальной размерности для треугольника Серпинского

4 Автор И.О. и др.

Рис. 4. График N vs. r в log-log масштабе

Постановка задачи машинного обучения

Для практического применения, очень удачным оказывается тот факт, что в исследуемом диапазоне зависимость фрактальной размерности и показателя спектра изолиний оказывается линейной.

$$D(p) = \beta_o(n) + \beta_1(n)(p - p_0)$$

Данная задача является задачей линейной регрессии. Для ее решения, первое, что может прийти в голову — это решение с помощью метода наименьших квадратов. На языке математики, задача представляется следующим образом:

$$oldsymbol{p} = f\left(oldsymbol{\omega}, oldsymbol{D}
ight) + oldsymbol{
u} = \sum_{i=1}^{N} \omega_i D_i + oldsymbol{
u}$$

Минимизация квадрата разности между фактическими занчениями переменной D и восстановленной $f(\boldsymbol{\omega}, \boldsymbol{D})$ является оптимизационной задачей, из которой находятся веса $\boldsymbol{\omega}$.

$$S = \sum_{i=1}^{N} (f(\boldsymbol{\omega}, \boldsymbol{D}) - \boldsymbol{p})^{2} = |\boldsymbol{A} \cdot \boldsymbol{D} - \boldsymbol{p}|^{2} \to \min$$
$$\boldsymbol{\omega} = \operatorname*{arg \, min}_{\boldsymbol{\omega} \in \mathbb{R}^{3}} S$$

Хотя, вообще говороя данная задача может быть решена аналитически:

$$oldsymbol{\omega} = \left(oldsymbol{A}^Toldsymbol{A}
ight)^{-1}\left(oldsymbol{A}^T\cdotoldsymbol{p}
ight)$$

Рис. 5. Зависимость показателя спектра от фрактальной размерности

Заключение

План работ на следующий семестр таков:

- 1. Хотелось бы миновать стадию определения фрактальной размерности и иметь программу, которая на входе имеет фото морского волнения, а на выходе ответ о показателе спектра.
- 2. Для этого можно попробовать построить нейронную сеть. Архитектура которой, пока что нами не разработана и не продумана.
- 3. Статей по близкой тематике в области машинного обучения нами найдены не были, поэтому данная работа претендует на наличие научной новизны.
- 4. Будет возможность сравнить ответы между двумя способами: нейронной сетью и метода фрактальной размерности.

6 Автор И. О. и др.

Литература

[1] *Лупян Е.* Возможности фрактального анализа оптических изображений морской поверхности // 10-th Int'l. Conf. on Anyscience, 2009. Vol. 11, No. 1. Pp. 111–122.

- [2] *Бондур В. Г.* Методы восстановления спектров морского волнения по спектрам аэрокосмических изображений. Город: Издательство, 2009. 314 с.
- [3] So G. B., So H. R., Jin G. G. Enhancement of the Box-Counting Algorithm for fractal dimension estimation //Pattern Recognition Letters. 2017. T. 98. C. 53-58.
- [4] Мурынин А. Б. Восстановление пространственных спектров морской поверхности по оптическим изображениям в нелинейной модели поля яркости //Исследование Земли из космоса. 1990. №. 6. С. 60-70.