CE008 Introducão à Bioestatística

Silvia Shimakura

silvia.shimakura@ufpr.br

Objetivo da disciplina

Conhecer metodologias estatísticas para produção, descrição e análise de dados em contextos relacionados às ciências biológicas.

Programa estatístico

- Ambiente de análise estatística de dados: R
- Livre Gratuito e de código aberto
- Utilizado como ferramenta didática
- http://www.r-project.org

Conteúdo

Introdução

Estatística Descritiva

Estatística Inferencial

Distribuição t de Student e Teste de Hipóteses

Testes Não Paramétricos

Tabelas de Contingência e Teste Qui-quadrado

Quadros de Síntese

Aspectos históricos

- A palavra Estatística provém do latim status, que significa estado.
- A utilização primitiva envolvia compilações de dados e gráficos que descreviam aspectos de um estado ou país.
- Com o desenvolvimento das ciências, da Teoria da Probabilidade e da Informática, a Estatística adquiriu status de Ciência com aplicabilidade em praticamente todas as áreas do saber.

Bioestatística

- Fornece métodos para se tomar decisões na presença de incerteza
- Estabelece faixas de confiança para eficácia dos tratamentos
- Verifica a influência de fatores de risco no aparecimento de doenças

[Soares e Siqueira, 2002]

Estatística / Bioestatística

Estatística Descritiva

- Objetivo: Descrever dados amostrais
- Ferramentas: Tabelas, gráficos, medidas de posição, medidas de tendência central, medidas de dispersão

Estatística Inferencial

- Objetivo: Retirar informação útil sobre a população partindo de dados amostrais
- Ferramentas: Estimativas pontuais e de intervalo de parâmetros populacionais, testes de hipóteses
- A ligação entre as duas se dá através da teoria de probabilidades

Campos ou funções da Estatística

Inferência

Metodologia para efetuar **síntese** do fenômeno em estudo

Descrição do fenômeno em estudo Metodologia para tomada de decisões e grau de confiabilidade nas decisões (validade)

Processo de **generalização** de resultados

Conceitos

População: conjunto de elementos que apresentam uma ou mais características em comum, cujo comportamento interessa analisar (inferir)

- Fatores limitantes:
 - Populações infinitas
 - Custo
 - Tempo
 - Processos destrutivos

Conceitos

Amostra: é um subconjunto de os elementos (sujeitos, medidas, valores, etc.) extraídos da população em estudo.

Amostragem é um conjunto de técnicas para se obter amostras.

Conceitos relacionados a população e amostra

- Parâmetro é um valor ou uma medida numérica que descreve uma característica populacional. (São valores estabelecidos para a população)
- Estimativa é um valor ou uma medida que descreve uma característica de uma amostra (são medidas ou valores estabelecidos para uma amostra)

Um exemplo

Estudo da anemia em crianças com idade entre 5 e 7 anos, numa região do município com uma população de 12000 crianças nessa faixa etária.

Peso médio, estatura média, taxa média de hemoglobina e ferro, proporção de crianças com anemia Estimativas desses parâmetros mediante avaliação da amostra

Estatística Descritiva

Tipos de variáveis, medidas de tendência central, medidas de dispersão, gráficos e tabelas

Tipos de Variáveis

- Quantitativas
 - Discretas
 - Contínuas
- Qualitativas (Categóricas)
 - Ordinais
 - Nominais

Medidas de Tendência Central

Moda

Média

Mediana

Quantis

- Posição das observações
- Quantis
- Mediana
- Quartis
- Percentis

Medidas de Dispersão

- Amplitude
- Amplitude interquartis
- Variância
- Desvio padrão

Tabelas e Gráficos

- Tabela de frequências
 - Frequência absoluta
 - Frequência relativa
 - Frequência cumulativa
- Tabelas de contingência (2 x 2; l x c)
- Gráfico de setores
- Gráfico de barras
- Histograma
- Polígono de frequências
- Diagrama de dispersão
- Box plot (mediana, amplitude inter-quartis)
- Error bar (média, IC 95%)

Probabilidade

- Qualidade de testes diagnósticos
- Distribuição Binomial
- Distribuição Normal

Testes diagnósticos

 Testes diagnósticos: baseados em observações, questionários ou exames de laboratório utilizados para classificar indivíduos em categorias

Ex: taxa de glicose no sangue para diagnóstico de diabetes

- Os testes podem ser imperfeitos e resultar em classificações incorretas.
- Antes de ser adotado deve ser avaliado para verificar a capacidade de acerto.
- Avaliação feita aplicando-se o teste a dois grupos de pessoas: um grupo doente e um grupo não doente.
- O diagnóstico é feito por um teste chamado padrão ouro.

Organização dos resultados

	Screening		
True status	Positive	Negative	Total
Diseased	a	b	a+b
Not diseased	c	d	c+d
Total	a + c	b+d	N

Sensibilidade e Especificidade

- Sensibilidade: Probabilidade de teste positivo num paciente doente
 → capacidade de reação do teste num paciente doente
- Especificidade: Probabilidade de teste negativo num paciente não doente → capacidade de não reação do teste num paciente não doente

Organização dos resultados

	Screening		
True status	Positive	Negative	Total
Diseased	a	b	a+b
Not diseased	c	d	c+d
Total	a+c	b+d	N

sensitivity =
$$\frac{a}{a+b}$$

specificity =
$$\frac{d}{c+d}$$

Exemplo: Câncer de colo do útero

- Doença com alta chance de refreamento se detectada no início
- Procedimento de triagem: Papanicolau
- 16,25% dos testes realizados em mulheres com câncer resultaram em falsos negativos

$$P(T-|D+)=0,1625$$

sensibilidade= $P(T+|D+)=1-P(T-|D+)=0,8375$

 83,75% das mulheres que tinham câncer de colo do útero apresentaram resultados positivos

Exemplo: Câncer de colo do útero (cont.)

- Nem todas as mulheres testadas sofriam de câncer de colo do útero.
- 18,64% dos testes resultaram falsos positivos

$$P(T+|D-)=0,1864$$

especificidade= $P(T-|D-)=1-P(T+|D-)=0,8136$

 81,36% das mulheres que não tinham câncer de colo do útero apresentaram resultados negativos

VPP e VPN

Os índices acima são bons sintetizadores das qualidades gerais de um teste mas: Não ajudam a decisão do médico que precisa concluir se um paciente com resultado positivo, tem a doença.

 Probabilidade de uma pessoa ter a doença sabendo-se que tem teste positivo: P(D+|T+)
 Valor preditivo positivo (VPP)

Probabilidade de uma pessoa não ter a doença sabendo-se que tem teste negativo: P(D-|T-) Valor preditivo negativo (VPN)

Organização dos resultados

	Screening		
True status	Positive	Negative	Total
Diseased	a	b	a+b
Not diseased	c	d	c+d
Total	a + c	b+d	N

sensitivity =
$$\frac{a}{a+b}$$

specificity =
$$\frac{d}{c+d}$$

positive predictive value
$$= \frac{a}{a+c}$$

negative predictive value
$$= \frac{d}{b+d}$$

VPP e VPN

VPP e VPN só podem ser calculados diretamente da tabela se a prevalência estimada for próxima à prevalência populacional

	T+	T-	Total	
D+	10	10	20	
D-	30	70	100	
Total	40	80	120	
VPP=10/40=0,25				

	T+	T-	Total
D+	20	20	40
D-	24	56	80
Total	44	76	120
VPP=20/44=0,45			

Aplicação do Teorema de Bayes

Queremos obter P(D+|T+)

$$P\left(D_{+}|T_{+}\right) = \frac{P\left(D_{+}\cap T_{+}\right)}{P\left(T_{+}\right)} = \frac{P\left(T_{+}|D_{+}\right)P\left(D_{+}\right)}{P\left(T_{+}|D_{+}\right)P\left(D_{+}\right) + P\left(T_{+}|D_{-}\right)P\left(D_{-}\right)}$$

- Temos: P(T+|D+)=0.8375 e P(T+|D-)=0.1864
- Precisamos de P(D+) e P(D-) P(D+)=0,000083 (prevalência: 83 por 1.000.000) P(D-)=1-P(D+)=1-0,000083=0,999917

Aplicação do Teorema de Bayes (cont.)

$$P(D_{+}|T_{+}) = \frac{0,000083 \times 0,8375}{(0,000083 \times 0,8375) + (0,999917 \times 0,1864)} = 0,000373$$

Para cada 1.000.000 de mulheres com Papanicolau positivos, 373 casos de câncer de colo do útero → VPP

Aplicação do Teorema de Bayes (cont.)

$$P(D|T) = \frac{0,999917 \times 0,8136}{(0,999917 \times 0,8136) + (0,000083 \times 0,1625)} = 0,999983$$

Para cada 1.000.000 de mulheres com Papanicolau negativos, 999.983 não sofrem de câncer de colo do útero → VPN

Cálculo de VPP e VPN

$$VPP = \frac{sp}{sp + (1-e)(1-p)}$$

$$VPN = \frac{e(1-p)}{(1-s)p + e(1-p)}$$

Acurácia

- Valores preditivos variam de acordo com a prevalência da doença na população
- Sensibilidade e especificidade não variam com a prevalência da doença pois consideram doentes e não doentes separadamente
- Para um teste baseado em uma medida contínua, a escolha do ponto de corte é importante pois altera a sensibilidade e a especificidade do teste

Exemplo

Example 1.1: Enzyme tests and myocardial infarction (MI): use of creatinine kinase (CK) assay in a coronary care unit. The data obtained were as follows:

CK activity	MI	non-MI
0 - 49	2	32
50-99	4	10
100 – 149	6	5
150 – 399	14	2
400+	21	0
Total no. patients	47	49

CK			
	< 50 (-ve)	$\geq 50 \; (+ ve)$	Total
MI	2	45	47
Non-MI	32	17	49
Total	34	62	96

sensitivity 45/47 = 0.96 specificity 32/49 = 0.65

Exemplo (cont.)

			Positive	Negative
Possible			predictive	predictive
cutoff	Sensitivity (%)	Specificity (%)	value (%)	value $(\%)$
50	96	65	73	94
100	87	86	85	88
150	74	96	95	80
400	45	100	100	65

Curva ROC (Receiver Operating Characteristic)

 Não havendo preferência por um teste mais sensível ou mais específico

 Escolhe-se o ponto de corte no canto extremo esquerdo no topo do gráfico

Distribuições de Probabilidade

Exemplo: Eficácia de medicamento

- Uma industria farmacêutica afirma que um certo medicamento alivia os sintomas de angina pectoris em 80% dos pacientes.
- Você prescreve este medicamento a 5 dos seus pacientes com angina mas somente 2 (40%) relatam alívio dos sintomas.
- Se a afirmação do fabricante for verdadeira, é possível obter resultados tão ruins ou ainda piores do que os que você observou?

- Assume-se que:
 - A: alívio dos sintomas
 - Afirmação fabricante verdadeira: P(A)=0,8
 - X: nº pacientes que relatam alívio dos sintomas dentre 5 pacientes

Queremos saber:

$$P(X \le 2) = P(X = 2) + P(X = 1) + P(X = 0)$$

Х	Sequência	P(Sequência)
2	AANNN	P(AANNN)=P(A)P(A)P(N)P(N)P(N)

Supondo independência entre os pacientes

Х	Sequência	P(Sequência)
2	AANNN	$0.8 \times 0.8 \times 0.2 \times 0.2 \times 0.2 = 0.8^2 \times 0.2^3$
2	ANANN	$0.8 \times 0.2 \times 0.8 \times 0.2 \times 0.2 = 0.8^{2} \times 0.2^{3}$
2	ANNAN	$0.8 \times 0.2 \times 0.2 \times 0.8 \times 0.2 = 0.8^{2} \times 0.2^{3}$
2	ANNNA	$0.8 \times 0.2 \times 0.2 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NAANN	$0.2 \times 0.8 \times 0.8 \times 0.2 \times 0.2 = 0.8^2 \times 0.2^3$
2	NANAN	$0.2 \times 0.8 \times 0.2 \times 0.8 \times 0.2 = 0.8^2 \times 0.2^3$
2	NANNA	$0.2 \times 0.8 \times 0.2 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NNAAN	$0.2 \times 0.2 \times 0.8 \times 0.8 \times 0.2 = 0.8^2 \times 0.2^3$
2	NNANA	$0.2 \times 0.2 \times 0.8 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NNNAA	$0.2 \times 0.2 \times 0.2 \times 0.8 \times 0.8 = 0.8^2 \times 0.2^3$

$$\binom{5}{2} = 10$$

Sequências possíveis

Х	Sequência	P(Sequência)
2	AANNN	$0.8 \times 0.8 \times 0.2 \times 0.2 \times 0.2 = 0.8^2 \times 0.2^3$
2	ANANN	$0.8 \times 0.2 \times 0.8 \times 0.2 \times 0.2 = 0.8^2 \times 0.2^3$
2	ANNAN	$0.8 \times 0.2 \times 0.2 \times 0.8 \times 0.2 = 0.8^{2} \times 0.2^{3}$
2	ANNNA	$0.8 \times 0.2 \times 0.2 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NAANN	$0.2 \times 0.8 \times 0.8 \times 0.2 \times 0.2 = 0.8^2 \times 0.2^3$
2	NANAN	$0.2 \times 0.8 \times 0.2 \times 0.8 \times 0.2 = 0.8^2 \times 0.2^3$
2	NANNA	$0.2 \times 0.8 \times 0.2 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NNAAN	$0.2 \times 0.2 \times 0.8 \times 0.8 \times 0.2 = 0.8^2 \times 0.2^3$
2	NNANA	$0.2 \times 0.2 \times 0.8 \times 0.2 \times 0.8 = 0.8^2 \times 0.2^3$
2	NNNAA	$0.2 \times 0.2 \times 0.2 \times 0.8 \times 0.8 = 0.8^2 \times 0.2^3$
P(X	(=2)	$10 \times 0.8^2 \times 0.2^3 = 0.0514$

$$\binom{5}{2} = 10$$

Sequências possíveis

Х	Sequência	P(Sequência)
1	ANNNN	$0.8 \times 0.2 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NANNN	$0.2 \times 0.8 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNANN	$0.2 \times 0.2 \times 0.8 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNAN	$0.2 \times 0.2 \times 0.2 \times 0.8 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNNA	$0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.8 = 0.8^{1} \times 0.2^{4}$
P(X=1)		$5 \times 0.8^{1} \times 0.2^{4} = 0.0064$

Sequências possíveis

Х	Sequência	P(Sequência)
1	ANNNN	$0.8 \times 0.2 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NANNN	$0.2 \times 0.8 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNANN	$0.2 \times 0.2 \times 0.8 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNAN	$0.2 \times 0.2 \times 0.2 \times 0.8 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNNA	$0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.8 = 0.8^{1} \times 0.2^{4}$
P(X=1)		$5 \times 0.8^{1} \times 0.2^{4} = 0.0064$
0	NNNN	$0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.2 = 0.8^{\circ} \times 0.2^{\circ}$
P(X=0)		$1 \times 0.8^{\circ} \times 0.2^{\circ} = 0.00032$

$$\binom{5}{1} = 5$$

Sequências possíveis

$$\binom{5}{0} = 1$$

Х	Sequência	P(Sequência)
1	ANNNN	$0.8 \times 0.2 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NANNN	$0.2 \times 0.8 \times 0.2 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNANN	$0.2 \times 0.2 \times 0.8 \times 0.2 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNAN	$0.2 \times 0.2 \times 0.2 \times 0.8 \times 0.2 = 0.8^{1} \times 0.2^{4}$
1	NNNNA	$0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.8 = 0.8^{1} \times 0.2^{4}$
P(X=1)		$5 \times 0.8^{1} \times 0.2^{4} = 0.0064$
0	NNNNN	$0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.2 = 0.8^{\circ} \times 0.2^{5}$
P(X=0)		$1 \times 0.8^{\circ} \times 0.2^{\circ} = 0.00032$

$$\begin{vmatrix} 5 \\ 1 \end{vmatrix} = 5$$

Sequências possíveis

$$\binom{5}{0} = 1$$

Se a afirmação do fabricante for verdadeira, a chance de se obter resultados tão ruins ou ainda piores do que os observados é de 5,8%.

CONCLUSÃO?

Distribuição Binomial

- n: no. ensaios (independentes)
- X: no. sucessos nos n ensaios
- p: prob. sucesso num ensaio

$$P(X=x) = {n \choose x} p^x (1-p)^{n-x}$$

$$P(X=0)+P(X=1)+...+P(X=n)=1$$

Distribuição binomial(5,0.8)

Se n=5 pacientes usarem o medicamento e a prob. alívio dos sintomas for p=0,8

A cada 5 pacientes esperase em **média** nxp=4 pacientes com alívio dos sintomas

$$P(X=0)+P(X=1)+...+P(X=5)=1$$

Distribuição binomial(5,0.8)

Se n=5 pacientes usarem o medicamento e a prob. alívio dos sintomas for p=0,8

A cada 5 pacientes esperase em **média** nxp=4 pacientes com alívio dos sintomas

A **variância** será nxpx(1-p)=0.8

$$P(X=0)+P(X=1)+...+P(X=5)=1$$

Calculadora

http://onlinestatbook.com/2/java/binomialProb.html

Distribuição Normal

 Diversas variáveis contínuas tais como, altura, peso, níveis de colesterol, pressão sistólica e diastólica, podem ser descritas pela distribuição normal

Formato da curva definido por 2 parâmetros:

Média (Centro) Desvio-padrão

(Espalhamento)

Simétrica em Área total sob Notação: $N(\mu, \sigma)$ Forma de sino torno de µ a curva é 100% 0.5 0.4 N(12,0.8) 0.3 N(0,1) N(3,1) 0.2 N(12,2) 0.1 0.0 5 10 15 20 X

Amostra de 100 recém-nascidos com peso<1500g em Boston, Massachusetts

Amostra de 100 recém-nascidos com peso<1500g em Boston, Massachusetts

Equação:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}$$

Equação:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}$$

Padronização

X~N(μ,σ) é transformada numa forma padronizada Z~N(0,1)

$$Z = \frac{X - \mu}{\sigma}$$

Padronização

Peso \sim N(2800,500) é transformado em Z \sim N(0,1)

$$z1 = \frac{(a-2800)}{500} = -1,65$$

$$z2 = \frac{(b-2800)}{500} = 1,65$$

Exemplo: PAS

Suponha que a pressão arterial sistólica de pessoas jovens saudáveis seja N(120,10)

Qual é o percentual dessas pessoas com pressão sistólica acima de 140mmHg?

Qual é o intervalo simétrico em torno da média que engloba 90% dos valores das pressões sistólicas de pessoas jovens e saudáveis?

Calculadora

http://onlinestatbook.com/2/calculators/normal.html

Estatística Inferencial

Estimação, Intervalos de Confiança, Testes de hipóteses

Estatística Inferencial

- Populações X Amostras
- Parâmetros X Estimativas
- Estimativas: Pontuais ou Intervalares
- Testes de Hipóteses

Teoria Elementar da Amostragem

- Teoria da amostragem
 - Retira informação sobre a população a partir de amostras
 - Estimativas pontuais ou intervalares
 - Testes de Hipóteses
- Números e amostras aleatórias
 - As conclusões da teoria de amostragem e da inferência estatística serão válidas se as amostras forem representativas da população
 - Um método para obter amostras representativas é a amostragem aleatória simples

Teorema Central do Limite

- Valores estatísticos amostrais
 - Valores estatísticos obtidos de amostras são eles próprios variáveis
 - Assim, podem ser definidas distribuições a valores estatísticos amostrais
- Teorema central do limite
 - As médias de amostras de tamanho n retiradas de uma população normal têm sempre uma distribuição normal
 - As médias de amostras de tamanho n retiradas de uma população não normal têm uma distribuição que tende para a normal à medida que n aumenta (geralmente, a partir de n≥30 é já uma boa aproximação da normal)

Exemplo: TCL

Teorema Central do Limite (cont.)

 A distribuição das médias amostrais tende para uma distribuição N(μ,σ/√n)

- Erro Padrão
 - Erro Padrão é o desvio padrão das estatísticas amostrais
 - Assim, o Erro Padrão da Média=σ/√n uma vez que é o desvio padrão das médias amostrais

Teoria da Estimação Paramétrica

- Estimação Paramétrica
 - Um dos problemas da estatística inferencial é a estimação de parâmetros populacionais, também designada por Estimação Paramétrica
- Estimação
 - Pontual
 - Intervalar

Teoria da Estimação Paramétrica

- Intervalos de Confiança para parâmetros populacionais
- Intervalos de Confiança (IC) para a Média

 $\left(\bar{X} \pm z \frac{\sigma}{\sqrt{n}}\right)$

- z é um valor da distribuição normal padrão
- No caso do IC 95% \implies z = 1,96
- No caso do IC 99% \implies z = 2,58

Intervalos de Confiança para a Média

Interpretação

O intervalo $\mu \pm 1,96$ (σ/\sqrt{n}) contém 95% das possíveis médias amostrais, então, há uma probabilidade de 95% da média da nossa amostra estar dentro deste intervalo

Assim sendo, pode-se afirmar analogamente que 95% dos intervalos definidos por **Média amostral** \pm **1,96** (σ/\sqrt{n}) cobrem a média da população (μ)

O intervalo **Média amostral ± 1,96 (σ/√n)** é chamado de **Intervalo de Confiança a 95% para a Média**

Distribuição t de Student e Teste de Hipóteses

Distribuição t de Student, Teste de Hipóteses, Teste t para uma média, teste t para a diferença entre duas médias e teste t para dados pareados

Tendo em conta o Teorema Central do Limite, temos que:

$$\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right) \sim N(0,1)$$

Este resultado assume que σ é conhecido mas na prática não é.

Para resolver este problema Gossett (1908), com o pseudonimo de Student, propôe uma distribuição que utiliza o desvio padrão da amostra ao invés do desvio padrão da população

$$t = \left(\frac{\bar{X} - \mu}{s / \sqrt{n}}\right)$$

Se a variável em estudo segue uma distribuição normal, então t segue uma distribuição t de Student com n-1 graus de liberdade

- É semelhante à distribuição normal, mas com uma maior dispersão em torno do valor central
- Esta distribuição tem uma forma diferente em função do tamanho da amostra (n)
- À medida que n aumenta a distribuição tende para uma distribuição normal

Assim, se não conhecermos o desvio padrão da população o Intervalo de Confiança de 95% para a Média poderá ser calculado do seguinte modo:

$$\left(\overline{X} \pm t_{(n-1;0,05)} \frac{s}{\sqrt{n}}\right)$$

Intervalo de Confiança a 95% para a Média: Erro Padrão IC 95% = Média da amostra \pm $t_{(n-1)}$ (s/ \sqrt{n})

Valor apropriado da distribuição t com (n-1) graus de liberdade

Exemplo:

Estatística descritiva (n=462)

			Estatística	Erro Padrão
Peso da criança ao	Média		3263,23	25,752
nascer	Intervalo de confiança	Limite inferior	3212,62	
	a 95% para a média	Limite superior	3313,83	

```
IC 95% = 3263,23 ± \mathbf{t}(462-1) (25,752)
IC 95% = 3263,23 ± 1,965 (25,752) = [3212,62; 3313,83]
```

Testes de Hipóteses

 Utilizando a mesma estrutura teórica que nos permite calcular Intervalos de Confiança podemos testar hipóteses sobre um parâmetro populacional

Exemplo: Queremos testar a hipótese de que a altura média de uma certa população é 160 cm. Numa amostra aleatória de 9 pessoas a altura média amostral foi 170 cm com desvio padrão amostral de 10 cm.

Qual é a probabilidade de se obter uma média amostral tão distante, ou ainda mais distante, da hipótese inicial de 160 cm?

Testes de Hipóteses

 Utilizando a mesma estrutura teórica que nos permite calcular Intervalos de Confiança podemos testar hipóteses sobre um parâmetro populacional

Exemplo: Queremos testar a hipótese de que a altura média de uma certa população é 160 cm. Numa amostra aleatória de 9 pessoas a altura média amostral foi 170 cm com desvio padrão amostral de 10 cm.

Qual é a probabilidade de se obter uma média amostral tão distante, ou ainda mais distante, da hipótese inicial de 160 cm?

Se essa probabilidade for muito baixa, podemos rejeitar a hipótese inicial.

H₀: μ =160cm × H_A: μ ≠160cm

$$n=9 \ \bar{X} = 170 \, cm \ s = 10 \, cm$$

$$T = \left| \frac{\overline{X} - \mu}{s / \sqrt{n}} \right| = \left| \frac{170 - 160}{10 / \sqrt{9}} \right| = 3 \sim t_{(9-1)} = t_8$$

$$P(T<-3)+P(T>3)=2\times0,0085=0,017$$

- Suposição:
 - Distribuição normal ou aproximadamente normal da variável de interesse

1. Especificar Ho e HA

$$H_0: \mu = \mu_0$$
 $H_A: \mu \neq \mu_0$

- 2. Escolher o nível de significância (α = 5%)
- 3. Calcular a estatística de teste

$$T = \left| \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \right|$$

- 4. Comparar o valor de T com uma distribuição de t com n-1 graus de liberdade
- 5. Calcular o valor de p e comparar com α
- 6. Descrever os resultados e conclusões estatísticas

Tipos de Erros

- Erro tipo I (α)
- Probabilidade de rejeitar a H0 quando H0 é verdadeira
- Erro tipo II (β)
- Probabilidade de não rejeitar a H0 quando H0 é falsa

Exemplo:

One-Sample Statistics					
			Std. Error		
N	Mean	Std. Deviation	Mean		
462	3263,23	553,516	25,752		
•	N	N Mean	N Mean Std. Deviation		

Teste t para a diferença entre duas médias

1. Especificar Ho e HA

```
H<sub>0</sub>: \mu_1 = \mu_2 H<sub>A</sub>: \mu_1 \neq \mu_2 H<sub>O</sub>: \mu_1 - \mu_2 = 0 H<sub>A</sub>: \mu_1 - \mu_2 \neq 0
```

- 2. Escolher o nível de significância (α = 0,05 ou 5%)
- 3. Calcular a estatística e a estatística de teste

Média das duas amostras

```
t = [(Média 1 - Média 2) - (\mu_1 - \mu_2)] / [s_{(Média 1 - Média 2)}]
```

- 4. Comparar o valor de t com uma distribuição de t com (n₁ + n₂ -
 - 2) graus de liberdade
- 5. Calcular o valor de p
- 6. Comparar p e α
- 7. Descrever os resultados e conclusões estatísticas

Teste t para a diferença entre duas médias

- Suposições:
 - Distribuição normal ou aproximadamente normal da variável nos dois grupos
 - Independência entre os grupos

Exemplo:

Group Statistics Std. Error Premature birth? Ν Mean Std. Deviation Mean Birthweight No 401 3367,13 442,718 22,108 Yes 59 2558,98 697,190 90,766

Teste t para a diferença entre duas médias

Group Statistics

					Std. Error
	Sex of baby	N	Mean	Std. Deviation	Mean
Birthweight	Male	250	3290,02	580,145	36,692
	Female	212	3231,63	519,954	35,711

Valor de p

Exemplo: Birthweight (cont.)

- Dados>Modificação de variáveis...>Converter variável numérica...
- Estatísticas>Médias>Teste t para amostras independentes

Rcmdr: Convertendo variável numérica

Rcmdr: Teste de Levene

Rcmdr: Teste t para amostras independentes

Teste t para dados pareados

- 1. Especificar Ho e HA
- H₀: $\mu_d = 0$ H_A: $\mu_d \neq 0$
- 2. Escolher o nível de significância (α = 0,05 ou 5%)
- 3. Calcular a estatística e a estatística de teste Média das duas amostras
 - t = (Média das diferenças μd) / S(diferenças)
- 4. Comparar o valor de t com uma distribuição de t com (n-1) graus de liberdade
- 5. Calcular o valor de p
- 6. Comparar p e α
- 7. Descrever os resultados e conclusões estatísticas

Teste t para dados pareados

- Assume-se
 - Distribuição normal ou aproximadamente normal das diferenças
 - Dependência (correlação) entre os grupos

Teste t para dados pareados

Exemplo:

do tratamento

Paired Samples Statistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Score na escala de depressão antes do tratamento	62,10	10	7,249	2,292
	Score na escala de depressão depois	55,80	10	11,545	3,651

Valor de p

Paired Samples Test Paired Differences 95% Confidence Interval of the Difference Std. Error Std. Deviation Mean Lower Upper Sig. (2-tailed) Mean Pair Score na escala de depressão antes do tratamento - Score na 6,30 9.298 2.940 -,35 12.95 2,143 9 .061 escala de depressão depois do tratamento

Exemplo: Escores de depressão

- Dados>Importar arquivos de dados>de arquivo texto...
- Estatísticas>Médias>Teste t (dados pareados)

Rcmdr: Lendo banco de dados de arquivo texto

Rcmdr: Teste t para dados pareados

Análise de variância

Comparação de médias de 2 grupos Teste t

```
H<sub>0</sub>: \mu_1 = \mu_2 Erro tipo I (\alpha) = 1-0,95 = 0,05
```

Mais de 2 grupos:

```
Ex: H_0: \mu_1 = \mu_2 = \mu_3 (1) H_0: \mu_1 = \mu_2 (2) H_0: \mu_1 = \mu_3 (3) H_0: \mu_2 = \mu_3 Erro tipo I = 1-0.95^3 = 0.14
```

Comparação de médias de mais de 2 grupos ANOVA

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

Considere um conjunto de k grupos, com n_i indivíduos cada um, um total de n indivíduos, uma média de cada grupo x_i e uma média comum X

Ex: Considere os pesos (em kg) de 3 grupos de indivíduos de grupos étnicos diferentes (caucasianos, latinos e asiáticos). Grupo 1: 80; 75; 82; 68; 76; 86; 78; 90; 85; 64 $\xrightarrow{\star}$ $x_1 = 78,40$ kg

Grupo 1: 80; 75; 82; 68; 76; 80; 78; 90; 85; 64
$$x_1 = 78,40$$
 kg Grupo 2: 65; 84; 63; 54; 86; 62; 73; 64; 69; 81 $x_2 = 70,10$ kg Grupo 3: 58; 59; 61; 63; 71; 53; 54; 72; 61; 57 $x_3 = 60,90$ kg $x =$

Fontes de variação:

Intra-grupos - Variabilidade das observações em

relação à média do grupo

Within group SS

(sum of squares)

Within group DF

(degrees of freedom)

Within group MS

(mean square = variance)

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{X}_i)^2$$

$$\sum_{i=1}^{k} (n_i - 1) = n - k$$

$$\sum_{i=1}^{k} (n_i - 1) = n - k$$

Withingroup SS
Withingroup DF

- Fontes de variação:
 - Entre-grupos Variabilidade entre os grupos.
 Dependente da média do grupo em relação à média conjunta
 - Between group SS
 - Between group DF

Between group MS

$$k-1$$

Between group SS
Between group DF

A variabilidade observada num conjunto de dados deve-se a:

- Variação em relação à média do grupo Within group MS
- Variação da média do grupo em relação à média comum - Between group MS

- Prova-se que se $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$, então, Between MS e Within MS serão ambas estimativas de σ^2 a variância comum aos k grupos logo, Between MS \approx Within MS
- Se pelo contrário μ₁ ≠ μ₂ ≠ μ₃ ≠ … ≠ μκ , então, Between MS será maior que Within MS
- Assim, para testar a Hipótese nula

H₀:
$$\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$
 calcula-se a estatística F Between group MS
$$F = \frac{\text{Between group MS}}{\text{Within group MS}}$$

- A estatística F tem uma distribuição teórica conhecida -Distribuição F - dependente dos graus de liberdade Between DF e Within DF
- O cálculo da estatística F e seu enquadramento na distribuição adequada permite-nos conhecer um valor de p - probabilidade de obter um F tão ou mais extremo que o calculado se a hipótese nula for verdadeira
- O valor de p é subsequentemente comparado com o grau de significância (α) à partida estabelecido e
 - Se $p \le \alpha$, rejeita-se a $H_0 =>$ Existem diferenças estatisticamente significativas entre as médias dos grupos
 - Se p > α , aceita-se a H $_0$ => Não existem diferenças estatisticamente significativas entre as médias dos grupos

- Suposições:
 - Normalidade
 - Igualdade das variâncias dos grupos
- Funciona melhor se:
 - Igual tamanho dos grupos
 - Igualdade dos grupos exceto na variável de interesse

Exemplo:

Descriptives Peso do indivíduo (Kg) 95% Confidence Interval for Mean Ν Mean Std. Deviation Std. Error **Lower Bound Upper Bound** Minimum Maximum Caucasiano 78,40 8,06 2,55 72,64 84,16 64 90 10 70,10 86 Latino 10 10,61 3,35 62,51 77,69 54 60,90 6,38 2,02 56,33 65,47 72 Asiático 10 53 69,80 **Total** 30 10,98 2,00 65,70 73,90 53 90

Exemplo: Peso x raça

- Crie banco de dados do exemplo acima numa planilha e salve como txt
- Converter grupo em fator
- Realizar teste de Levene
- Fazer a Anova

peso	grupo
80	
80 75	1
82	1 1 1 1 1 1 1
68	1
76	1
86 78	1
78	1
90	1
85	1
64	1
65	2
84	2
63	2
54	1 2 2 2 2 2 2 2
86	2
62	2
73	2

Testes Não Paramétricos

Mann-Whitney Test; Wilcoxon Signed Ranks Test; Kruskal-Wallis Test

- Análogo ao teste t para a diferença entre duas médias
- Quando as assumpções necessárias para a utilização do teste t não são cumpridas (normalidade e igualdade de variâncias) tem que se optar pelos testes análogos não paramétricos
- Não faz assumpções sobre a distribuição da variável
- Faz uso das posições ordenadas dos dados (ranks) e não dos valores da variável obtidos

EX: Para investigar se os mecanismos envolvidos nos ataques fatais de asma provocados por alergia à soja são diferentes dos mecanismos envolvidos nos ataques fatais de asma típica compararam-se o número de células T CD3+ na submucosa de indivíduos destes dois grupos.

Ex: situações possíveis (dois grupos A e B de 5 elementos cada um):

São calculadas as seguintes estatísticas:

```
R_1= soma das posições no grupo 1
```

R₂= soma das posições no grupo 2

- A maior destas estatísticas é comparada com uma distribuição adequada (distribuição da estatística U ou aproximação normal)
- Obtem-se um valor de p probabilidade de se obter uma estatística tão ou mais extrema do que a verificada caso a hipótese nula seja verdadeira
- O valor de p é subsequentemente comparado com o grau de significância (α) à partida estabelecido e
 - Se p ≤ α , rejeita-se a H₀ => Existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos
 - Se p > α , aceita-se a H $_0$ => Não existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos

Exemplo:

Ranks					
	Grupo	N (Mean Rank	Sum of Ranks	
Número de células T	Grupo de alergia à soja	7	4,57	32,00	
CD3+ na submucosa (células/mm2)	Grupo de asma típica	10	12,10	121,00	
	Total	17			

- Análogo do teste t para pares emparelhados ou teste t para a diferença entre 2 médias de grupos dependentes
- **EX:** Num ensaio de um fármaco antidepressivo obtêmse os seguintes scores numa escala de depressão, antes e depois do tratamento:

- Posicionam-se os valores absolutos das diferenças de forma ascendente e atribui-se o sinal da diferença à posição
- Calculam-se as seguintes estatísticas:
- T+ = soma das posições com sinal positivo
- T- = soma das posições com sinal negativo
- Utiliza-se a menor destas estatísticas, sendo esta comparada com uma distribuição adequada (distribuição da estatística T ou aproximação normal)

- Obtem-se um valor de p probabilidade de se obter uma estatística tão ou mais extrema do que a verificada caso a hipótese nula seja verdadeira
- O valor de p é subsequentemente comparado com o grau de significância (α) à partida estabelecido e
 - Se p ≤ α , rejeita-se a H₀ => Existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos
 - Se p > α , aceita-se a H $_0$ => Não existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos

Exemplo:

Valor de

- a. Score na escala de depressão depois do tratamento < Score na escala de depressão antels do tratamento
- b. Score na escala de depressão depois do tratamento > Score na escala de depressão antes do tratamento
- →Score na escala de depressão antes do tratamento = Score na escala de depressão depois do tratamento

Test Statistics^b

Score na escala de depressão depois do tratamento -Score na escala de depressão antes do tratamento

-1,786^a

Asymp. Sig. (2-tailed)

,074

- a. Based on positive ranks.
- b. Wilcoxon Signed Ranks Test

- Análogo da Análise de Variância (ANOVA) para a comparação das médias de 3 ou mais grupos
- Ex: Pesos em Kg de 3 grupos de indivíduos de grupos étnicos diferentes (caucasianos, latinos e asiáticos).

```
Grupo 1: 80; 75; 82; 68; 76; 86; 78; 90; 85; 64
Grupo 2: 65; 84; 63; 54; 86; 62; 73; 64; 69; 81
Grupo 3: 58; 59; 61; 63; 71; 53; 54; 72; 61; 57
```

Organizam-se todos os valores por ordem crescente de modo a cada valor ter uma posição atribuída

Calcula-se a estatística:

- $\mathbf{N} = \mathbf{n}^{\circ}$ total de indivíduos; $\mathbf{n}_{i} = \mathbf{n}^{\circ}$ de indivíduos no grupo i e \mathbf{R}_{i} = soma das posições no grupo i
- Esta estatística será comparada com uma distribuição adequada (distribuição de Quiquadrado com k-1 graus de liberdade)

- Obtem-se um valor de p probabilidade de se obter uma estatística tão ou mais extrema do que a verificada caso a hipótese nula seja verdadeira
- O valor de p é subsequentemente comparado com o grau de significância (α) à partida estabelecido e
 - Se p $\leq \alpha$, rejeita-se a H $_0$ => Existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos
 - Se p > α , aceita-se a H $_0$ => Não existem diferenças estatisticamente significativas relativamente à distribuição da variável entre os grupos

Exemplo:

	Ranks	1	
	Grupo étnico	N	Mean Rank
Peso do indivíduo (Kg)	Caucasiano	10	22,40
	Latino	10	16,20
	Asiático	10	7,90
	Total	30	

Tabelas de Contingência e Teste Qui-quadrado

Tabelas de contingência; teste quiquadrado; teste exato de Fisher; correção de Yates; teste de McNemar; teste qui-quadrado para tendências

Tabelas de Contingência

Forma de representar a relação entre duas variáveis categóricas.
 Distribuição das frequências das categorias de uma variável em função das categorias de uma outra variável.

Region of the United States * Race of Respondent Crosstabulation

Race of Respondent

		-				
			White	Black	Other	Total
Region of North E the United States	North East	Count	582	82	15	679
		% within Region of the United States	85,7%	12,1%	2,2%	100,0%
		% within Race of Respondent	46,0%	40,2%	30,6%	44,8%
		% of Total	38,4%	5,4%	1,0%	44,8%
	South East	Count	307	94	14	415
		% within Region of the United States	74,0%	22,7%	3,4%	100,0%
		% within Race of Respondent	24,3%	46,1%	28,6%	27,4%
		% of Total	20,2%	6,2%	,9%	27,4%
	West	Count	375	28	20	423
		% within Region of the United States	88,7%	6,6%	4,7%	100,0%
		% within Race of Respondent	29,7%	13,7%	40,8%	27,9%
		% of Total	24,7%	1,8%	1,3%	27,9%
Total		Count	1264	204	49	1517
		% within Region of the United States	83,3%	13,4%	3,2%	100,0%
		% within Race of Respondent	100,0%	100,0%	100,0%	100,0%
		% of Total	83,3%	13,4%	3,2%	100,0%

- Quando estamos perante duas variáveis categóricas podemos usar o teste qui-quadrado para testar a hipótese da existência de uma associação entre as variáveis na população.
- As hipóteses nula e alternativa que serão testadas são:
 - H₀: Não existe uma associação entre as categorias de uma variável e as da outra variável na população ou as proporções de indivíduos nas categorias de uma variável não variam em função das categorias da outra variável na população
 - H_A: Existe uma associação entre as categorias de uma variável e as da outra variável na população ou as proporções de indivíduos nas categorias de uma variável variam em função das categorias da outra variável na população

- Podem-se apresentar os dados numa tabela de contingência r×c (r - nº de linhas; c - nº de colunas). As entradas da tabela são frequências e cada célula contem o nº de indivíduos que pertencem simultaneamente àquela linha e coluna.
- Calcula-se as frequências esperadas caso a hipótese nula fosse verdadeira. A frequência esperada numa determinada célula é o produto do total da linha e do total da coluna dividido pelo total global.
- Baseada na estatística de teste (χ²): discrepância entre as frequências observadas e as frequências esperadas, caso a H₀ seja verdadeira, em cada célula da tabela. Se a discrepância for grande é improvável que a hipótese nula seja verdadeira.

A estatística de teste calculada (χ^2) tem a seguinte forma genérica:

- O frequência observada na célula e E frequência esperada na célula, caso a H₀ seja verdadeira.
- A tabela de contingência tem a seguinte forma genérica:

- A estatística de teste segue a Distribuição de Qui-quadrado com $(r-1)\times(c-1)$ graus de liberdade.
- O cálculo da estatística χ^2 e seu enquadramento na distribuição adequada permite-nos conhecer um valor de p (probabilidade de obter um χ^2 tão ou mais extremo que o calculado se a hipótese nula for verdadeira)
- O valor de p é comparado com o grau de significância (α):
 - Se p ≤ α , rejeita-se a H₀ => Existe uma associação entre as categorias de uma variável e as da outra variável na população ou as proporções de indivíduos nas categorias de uma variável variam em função das categorias da outra variável na população
 - Se p > α , não rejeita-se a H₀ => Não existe evidência suficiente de uma associação entre as categorias de uma variável e as da outra variável na população

Ex: Num ensaio clínico compara-se a eficácia de um Medicamento X (n=30 indivíduos) em relação ao placebo (n=32 indivíduos) na melhoria do estado clínico dos doentes 6 meses após o tratamento (melhorado, agravado, falecido).

Estado clínico 6 meses após o tratamento * Tramento efectuado Crosstabulation	

		-	Tramer		
			Placebo	Medicamento X	Total
Estado clínico	Melhorado	Count	9	17	26
6 meses após o tratamento		Expected Count	13,4	12,6	26,0
o tratamento	Agravado	Count	12	9	21
		Expected Count	10,8	10,2	21,0
	Falecido	Count	11	4	15
		Expected Count	7,7	7,3	15,0
Total		Count	32	30	62
		Expected Count	32,0	30,0	62,0

$$E_{11} = (26*32)/62 = 13,4$$

$$E_{12} = (26*30)/62 = 12,6$$

$$E_{21} = (21*32)/62 = 10.8$$

$$E_{22} = (21*30)/62 = 10,2$$

$$E_{31} = (15*32)/62 = 7,7$$

$$E_{32} = (15*30)/62 = 7,3$$

Ex: (continuação)

Valor de p

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6,099 ^a	2	,047
Likelihood Ratio	6,264	2	,044
Linear-by-Linear Association	5,947	1	,015
N of Valid Cases	62		

Chi-Square Tests

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 7,26.

- p= 0,047 Logo, p< α => Rejeita-se a H₀.
- Existem uma associação entre o estado clínico 6 meses após o tratamento (melhorado, agravado, falecido) e o tipo de tratamento efectuado (placebo ou medicamento X) ou Existem diferenças estatisticamente significativas quanto ao estado clínico 6 meses anós o tratamento entre

- Assume-se:
 - Independência dos grupos

Caso as variáveis em análise sejam dependentes deverá ser usado o **Teste de McNemar**.

- Pelo menos 80% das frequências esperadas têm valores ≥5

No caso de existirem mais de 20% de células com valores esperados <5 deve **reduzir-se a tabela**, através da fusão de colunas ou linhas (esta fusão deve fazer sentido no contexto da análise que está a ser feita), até ter pelo menos 80% das frequências esperadas com valor ≥5.

Se numa tabela de 2×2 (corresponde à fusão máxima possível) existir uma ou mais frequências esperadas com valor <5, então deverá ser usado o **Teste Exato de Fisher**.

- Teste Exato usado em tabelas de 2×2 (faz o cálculo das probabilidades exatas e não faz uso da distribuição de qui-quadrado como aproximação para o cálculo de probabilidades).
- Utiliza-se no caso de uma tabela de contingência de 2×2, uma ou mais frequências esperadas < 5.</p>
- Ex: num outro ensaio clínico comparou-se a mortalidade no grupo tratado com placebo e tratado com o medicamento X e obtiveram-se os seguintes resultados:

Teste Exato de Fisher

4,35.

Mortalidade 6 meses após o tratamento * Tramento efectuado Crosstabulation							
	Valor de p			Tramento efectuado			
	valor c	ie p		Medicamento Placebo X		Total	
Mortalidade 6 mes		Count		24	29	53	
após o tratamento		Expect	ed Count	27,4	25,6	53,0	
	Morto	Count		8	1	9	
		Expect	ed Count	4,6	4,4	9,0	
Total		Count		32	30	62	
		Expect	ed Count	32,0	30,0	62,0	

	Cl	hi-Square			
	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided) Exact Sig.	
Pearson Chi-Square	5,858 ^p	1	,016		
Continuity Correction ^a	4,242	1	,039		
Likelihood Patio	6,606	1	,010		
Fisher's Exact Test				,027 ,017	
Linear-by-Linear Association	5,763	1	,016		
N of Valid Cases	62				
a. Computed only for	r a 2x2 table				
b. 2 cells (50,0%) have expected count less than 5. The minimum expected count is					

Correção de Yates

Correção para a continuidade em tabelas de 2×2:

Valor de p

Chi-Square Tests

	Value	df	(Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	5,858 ⁰		1	,016		
Continuity Correction ^a	4,242		1	,039		
Likelihood Patio	6,606		1	,010		
Fisher's Exact Test					,027	,017
Linear-by-Linear Association	5,763		1	,016		
N of Valid Cases	62					

a. Computed only for a 2x2 table

b. 2 cells (50,0%) have expected count less than 5. The minimum expected count is 4,35.

Teste de McNemar

Análogo ao teste qui-quadrado mas para variáveis dependentes.

Teste de McNemar

Teste Qui-quadrado para Tendências

Ex:

Grupo etário * Estado clínico 6 meses após o tratamento Crosstabulation

			Estado cl			
			Melhorado	Agravado	Falecido	Total
Grupo	20-35 anos	Count	14	4	3	21
etário		Expected Count	9,5	6,0	5,5	21,0
		% within Grupo etário	66,7%	19,0%	14,3%	100,0%
	36-50 anos	Count	13	6	3	22
		Expected Count	9,9	6,3	5,8	22,0
		% within Grupo etário	59,1%	27,3%	13,6%	100,0%
	51-65 anos	Count	6	7	7	20
		Expected Count	9,0	5,8	5,3	20,0
		% within Grupo etário	30,0%	35,0%	35,0%	100,0%
	>65 anos	Count	3	6	8	17
		Expected Count	7,7	4,9	4,5	17,0
		% within Grupo etário	17,6%	35,3%	47,1%	100,0%
Total		Count	36	23	21	80
		Expected Count	36,0	23,0	21,0	80,0
		% within Grupo etário	45,0%	28,8%	26,3%	100,0%

Teste Qui-quadrado para Tendências

Testes Qui-quadrado no R

- chisq.test()
- fisher.test()
- mcnemar.test()
- prop.trend.test()

Quadros de Síntese

Estatística; testes de hipóteses; testes de hipóteses para variáveis quantitativas; testes de hipóteses para variáveis categóricas; outros métodos

Estatística

Estatística Descritiva

Estatística Inferencial

Modelação Estatística

Tabelas; Gráficos; Medidas de tendência central; Medidas de dispersão Estimativas pontuais; Estimativas de intervalo; Testes de Hipóteses Regressão Linear; Quadrática Log-linear; Logística; de Cox Simples; Múltipla

Testes de Hipóteses - Variáveis Quantitativas

Testes de Hipóteses - Variáveis Categóricas

Outros Métodos

