$$f(x, y) = -x^3 - y^3 + 3xy$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right) \text{ (smaller } x\text{-value)} \quad \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right) \text{ (larger } x\text{-value)} \quad \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array}$$

y) = ((larger x-value)	Select V				
Find	antical	peinls				
f _x = -3	5x ² + 3y Sy ² + 3x					
fy=-3	sy + 5x					
0 = -3	$3\chi^2 + 3\gamma$ $3\gamma^2 + 3$	×				
0 = -	X ² + Y Y ² + X					
$C = -x$ $y^2 = x$						
0 = - y 4 = x	χ ² + γ					
y4 =						
y 4 - >	(=0					
Y(Y	3-()=	0				
Y = 0	V =	<u> </u>				

(0,0)

(1,1)

Second Derivative Test

$$f_x = -3x^2 + 3y$$
 $f_{xx} = -6x$
 $f_y = -3y^2 + 3x$
 $f_{yy} = -6y$
 $f_{xy} = 3$

D(x,y) = C-6x)(-6y) - C3)²

= 36xy - 9

Test Paint (0,0)

D(0,0) = -9

Souddle Paint

Test Point (1,1)

h	2	<i>((((((((((</i>	27		
1) (1,1)) = 5	6-9	= 27		
Max a	er m	in			
Fxx (1,	1) = -	-6			
Local	Max	(

Find the critical points of the given function. Then use the second derivative test to determine if the critical points correspond to local maxima, local minima, or saddle points of the graph of the function, or if the test is inconclusive. (Order your answers from smallest to largest x, then from smallest to largest y.)

$$f(x, y) = (x + y)(2x + xy)$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \end{array}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \end{array}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \end{array}$$

(x, y) = (Select \forall)	
Find critical points	
	ху
F = (x + y)(2x + xy)	$2x 2x^2 2xy$
$=2x^{2}+2xy+x^{2}y+xy^{2}$	xy x²y xy²
$f_x = 4x + 2y + 2xy + y^2$ $f_y = 2x + x^2 + 2xy$	
ty = 2 x + x + 2xy	
$0 = 4x + 2y + 2xy + y^2$	
$O = 2x + x^2 + 2xy$	
$0 = x(4+2y) + 2y + y^2$	
0 = x (2 + x + 2y)	

Solve for 0=x and 0=2+x+2y
$O = x (4 + 2y) + 2y + y^2$ C = x
$C = 2y + y^2$
$C = \gamma (2+\gamma)$
y = 0
O = x (4) $C = x (4-4) - 4 + 4$
X = 0 $C = C$
Use other equation
$O = \times (2 + x - 4)$
Solve For x=0 and 0=2+x-4
X =O
x = 2
(0,0), (c,-2), and (2,-2)

$$0 = x(4+2\gamma) + 2\gamma + \gamma^{2}$$

$$0 = 2+x + 2\gamma$$

$$0 = x(4+2\gamma) + 2\gamma + \gamma^{2}$$

$$x = -2 - 2\gamma$$

$$0 = (-2-2\gamma)(4+2\gamma) + 2\gamma + \gamma^{2}$$

$$0 = -8 - 4\gamma - 8\gamma - 4\gamma^{2} + 2\gamma + \gamma^{2}$$

$$0 = -3\gamma^{2} - 10\gamma - 8$$

$$0 = (-3\gamma + 4)(\gamma - 2)$$

$$0 = (-3\gamma + 4)(\gamma + 2)$$

$$y = -\frac{4}{3}$$

$$x = -2 - 2(-\frac{4}{3})$$

$$x = -2 - 2(-2)$$

$$= -\frac{6}{3} + \frac{8}{3}$$

$$x = -2 + 4$$

$$= \frac{2}{3}$$

$$(\frac{2}{3}, -\frac{4}{3})$$

$$x = 0$$

$$x = 2$$

$$(\frac{2}{3}, -\frac{4}{3})$$

$$x = 2$$

(0,0), (0,-2), (2,-2), (
$$\frac{2}{3}$$
, $-\frac{4}{3}$)

Second Derivativate Test

 $f_{xx} = 4 + 2y$
 $f_{yy} = 2x$
 $f_{xy} = 2 + 2x + 2y$
 $f_{xy} = (4+2y)(2x) - (2+2x+2y)^2$

Test Point (0,0)

 $f_{xy} = (2+2x+2y)(2x) - (2+2x+2y)^2$

Test Point (0,-2)

 $f_{xy} = (4+2y)(2x) - (2+2x+2y)^2$
 $f_{xy} = (4+2y)(2x) - (2+2x+2y)^2$
 $f_{xy} = (4+2y)(2x) - (2+2x+2y)^2$
 $f_{xy} = (4+2y)(2x) - (2+2y+2y)^2$
 $f_{xy} = (4+2y)(2x) -$

Saddle Point

Test Pcint
$$(2, -2)$$
 $0(2, -2) = (4 + 2(-2))(2(2)) - (2 + 2(2) + 2(-2))^2$
 $= (0)(4) - (6 - 4)^2$
 $= -4$

Saddle paint

Test Paint $(\frac{2}{3}, -\frac{4}{3})$
 $0(\frac{1}{3}, -\frac{4}{3}) = (4 + 2(\frac{2}{3}))(2(\frac{1}{3})) - (2 + 2(\frac{2}{3}) + 2(-\frac{4}{3}))^2$
 $= (\frac{12}{3} + \frac{4}{3})(\frac{4}{3}) - (\frac{6}{3} + \frac{8}{3} - \frac{8}{3})^2$
 $= (\frac{48}{3})(\frac{4}{3}) - (\frac{6}{3})^2$
 $= \frac{192}{9} - \frac{36}{9}$
 $= \frac{156}{9}$
 $= \frac{156}{9}$
 $= \frac{12}{3} - \frac{8}{3}$

		=	4					
			5					
M	αX							

global maximum

global minimum			
Critical Paints	ef f		
$f_{x} = 2x - y$			
$f_{x} = 2x - y$ $f_{y} = -x + 2y$			
,			
O = 2x - y			
O = 2x - y $C = -x + 2y$			
O = 2x - y			
O = 2x - y $O = -2x + 4y$			
0 = 34			
y = 0			
X = ()			
$(\mathcal{O},\mathcal{O})$			
Check bound	X=6 in	0 = 4 = 6	

Find the critical points of the given function. Then use the second derivative test to determine if the critical points correspond to local maxima, local minima, or saddle points of the graph of the function, or if the test is inconclusive. (Order your answers from smallest to largest x, then from smallest to largest y.)

$$f(x, y) = 8xye^{-x^2 - y^2}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \\ \\ \end{array}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \\ \end{array}$$

$$(x, y) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \begin{array}{c} \text{---Select---} \\ \\ \end{array}$$

(x, y) = (

$$f = g_y(xe^{-x^2-y^2})$$

 $f = g_x(ye^{-x^2-y^2})$

$$f_{x} = 8_{\gamma} [(x)(-2xe^{-x^{2}-y^{2}}) + (e^{-x^{2}-y^{2}})(x)]$$

$$f_{\gamma} = 8 \times [(\gamma)(-2\gamma e^{-\chi^2-\gamma^2}) + (e^{-\chi^2-\gamma^2})(1)]$$

$$=8xe^{-x^2-y^2}(-2y^2+1)$$

$$0 = 8ye^{-x^2-y^2}(-2x^2+1)$$

 $8 = 8xe^{-x^2-y^2}(-2y^2+1)$

Eliminate case	
Cerse la 2 c	
V-a	
Y=0 0 /	
Eliminate (use	
Case 162a	
$O = e^{-x^2y^2}$ $X = 0$	
X=0	
$(n(a) = -\gamma^2$	
X=O	
DVE x=0	
Eliminale Cuse	
Case 1626	
- 82 82	
$O = e^{-x^2 - \gamma^2}$ $O = e^{-x^2 - \gamma^2}$	
$O = e^{-x}$	

True but not useful
Case 162c
$O = e^{-x^2 \cdot y^2}$ $O = -2y^2 + 1$
$C = e^{-X^2 - \gamma^2}$
$C = e^{-X^2 - y^2}$ $2y^2 = 1$
$Q = e^{-x^2 - y^2}$ $Y = \sqrt{V_2}$
$C = e^{-\chi^2 - \frac{1}{2}}$
Y=152
$ n(a) = -x^2 - 1/2$ $Y = \sqrt{y_2}$
ONE Y=V/2
Y = 1/2
Eliminarie Case
I I WII VIO. /C CO. YC
Case 162a
0=-2x2+1

$$x = 0$$
 $0 \neq 1$
 $E = 0$
 $C = 0$
 C

$$2y^{2}$$
 1

 $x = \frac{1}{2} (y_{2})$
 $y = \frac{1}{2} \sqrt{y_{2}}$

($\sqrt{y_{2}}$, $\sqrt{y_{2}}$), $(-\sqrt{y_{2}}, -\sqrt{y_{2}})$ and $(\sqrt{y_{2}}, -\sqrt{y_{2}})$

Points cx Intrest

($\sqrt{y_{2}}$, $\sqrt{y_{2}}$), $(-\sqrt{y_{2}}, -\sqrt{y_{2}})$, $(\sqrt{y_{2}}, -\sqrt{y_{2}})$, $(\sqrt{y_{2}}, -\sqrt{y_{2}})$, and $(\sqrt{y_{2}},$

Optimize abc subject to
$$7a + b + c = 10$$

$$F(a,b,c) = abc$$

$$g(a,b,c) = 7a + b + c - 10$$

$$\nabla F = \lambda \nabla g$$

$$bc = \lambda(7)$$

$$ac = \lambda(1)$$

$$ab = \lambda(1)$$

