System Reset

Monolithic IC PST91XX Series

Outline

The function of this low reset type IC is to accurately reset systems after detecting the supply voltage at the time of switching power on and instantaneous power off in various CPU and other logic systems. Further, this IC, with its super low consumption current and high precision voltage detection capacity, is most suited as a voltage check circuit for a number of products which use batteries.

Features

1. High precision voltage detection Vs±3% max.

2. Super low current consumption Icch=1.5μA typ. Iccl=1.0μA typ.

3. Low operating threshold voltage4. Hysteresis voltage is provided as a detect voltage50mV typ.

5. Large output current at the time ON 15mA typ.

6. The detect voltage can be selected at your discretion at 0.1V step within the range of 1.9 to 4.6V by the following stipulation method.

PST91XX

Detected voltage value

(Example: for 4.2V PST9142)

Package

TO-92A (PST91 $\times \times$) SOT-25A (PST91 $\times \times$ N)

Applications

- 1. Reset circuits for microcomputers, CPU and MPU.
- 2. Reset circuit for logic circuitry.
- 3. Battery voltage check circuit.
- 4. Circuit for changing over to backup battery.
- 5. Level detecting circuit.

Pin Assignment

1	NC
2	SUB
3	GND
4	Vout
5	Vcc

(Note) The pin 2 of SOT-25 package is a SUB terminal. Connect it to GND.

Equivalent Circuit Diagram

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units	
Storage temperature	Tstg	-40~+125	$^{\circ}$ C	
Operating temperature *	Topr	-20~+75	$^{\circ}$ C	
Power supply voltage	Vcc	-0.3~+10	V	
Allowable loss	Pd	150 (SOT-25A)	mV	
	I u	300 (TO-92A)	111 V	

Note: *Some models have an expanded temperature range (-30 ~ +85°C).

Electrical Characteristics (Ta=25°C) (The unit of resistance is Ω unless otherwise indicated.)

Item	Symbol	Measurement Circuit	Measurement conditions	Min.	Тур.	Max.	Units
Detection Voltage	Vs	1			4.6~		
			$R_L=470$, $V_{OL} \le 0.4V$	-3%	1.9	+3%	$ \mathbf{v} $
			Vcc=H→L	typ.	(0.1V	typ.	, v
					step)		
Hysteresis Voltage	∠Vs	1	$R_L=470$, $V_{CC}=L\rightarrow H\rightarrow L$	30	50	100	mV
Detection Voltage	Vs/⊿T	1	R _L =470, Ta=−20~+75°C		±0.01		%/°C
Temperature Coefficient *1							
Low Level Output Voltage	Vol	1	Vcc=Vs min0.05V, RL=470		0.2	0.4	V
Output Leakage Current	Іон	1	Vcc=10V, Vo=Vcc			±0.1	μA
Circuit Current at ON Time	IccL	1	Vcc=Vs min0.05V, R _L =∞		1.0	2.0	μA
Circuit Current at OFF Time	IccH	1	Vcc=Vs typ./0.85V, R _L =∞		1.5	2.5	μA
"H" Transmission Delay Time	tpLH	2	CL=100pF, RL=4.7k		20	60	μs
"L" Transmission Delay Time	tpHL	2	CL=100pF, RL=4.7k		20	60	μs
Operating Threshold Voltage	VopL	1	$R_L=4.7k$, $V_{OL} \le 0.4V$		0.65	0.85	V
Output Current at ON Time 1 IoL1	I ₀ I _. 1	1	Vo=0.4V RL=0, 5				mA
	10171		Vcc=Vs min0.05V, Vo=0.4V				1111
Output Current at ON Time 2*1 IoL2	IoI 2	1	Ta=-30~+80°C, Vo=0.4V	3			mA
	10112		RL=0, Vcc=Vs min0.15V				

Note: $\star 1$ Some models have an expanded temperature range ($-30 \sim +80^{\circ}$ C).

Application Circuits

Characteristics (Example: PST9145)

loL vs. Ta

IccH vs. Ta

■ △Vs vs. Ta

VopL vs. Ta

VoL vs. Ta

