

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS 2024/2025 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATIONS

FOR THE DEGREE OF MSC IN PURE MATHEMATICS

COURSE CODE: MAT 825

COURSE TITLE: MEASURE AND

INTEGRATION

DATE: th ., 2025

Instructions: See Inside

Answer question **ONE** in section A and any other **Two** from section B.

SECTION A

Question ONE is Compulsory

QUESTION ONE (20 marks)

(a) Explain two advantages of the Lebesque integral in comparison to the Riemann integrals. [2 marks]

(b) What is a sigma algebra? [3 marks]

(c) List all sigma algebras on $X = \{1, 2, 3\}$. [3 marks]

(d) Let (X, A) be a measurable space. When is a function $f: X \to \mathbb{R}$ said to be Ameasurable? [2 marks]

(e) Show that the function f(x) = x is Borel measurable. [2 marks]

(f) Define a measure. [3 marks]

(g) When is a set $E \subseteq X$ said to be m^* — measurable? [2 marks]

(h) Show that the sets \emptyset , \mathbb{R} are Lebesgue measurable. [3 marks]

SECTION B

Answer any Two questions from this section

QUESTION TWO (20 marks)

(a) The function $\psi : \mathbb{R} \to \mathbb{R}$ is defined as:

$$\psi(x) = \begin{cases} 5 & \text{if } x \in [0, 6] \\ 2 & \text{if } x \in \{7, 8, 9\} \\ 4 & \text{if } x \in (9, 12) \\ 0 & \text{if otherwise} \end{cases}$$

Let m be the Lebesque outer measure. Evaluate

MAT 825 Page 2 of 4

- i) $\int \psi \, \delta m$ [5 marks]
- ii) $\int_E \psi \ \delta m$ where E = (4, 11). [5 marks]
- (b) Let ϕ and ψ be simple functions on (X, \mathcal{A}, μ) , show that $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$ [10 marks]

QUESTION THREE (20 marks)

(a) Let $M^+(X, \mathcal{A})$ denote the collection of all positive measurable functions on X.

Let $f, g \in M^+(X, \mathcal{A})$. If $f(x) \leq g(x)$ for all $x \in X$, show that

$$\int_X f \, d\mu \le \int_X g \, d\mu. \tag{4 marks}$$

(b) Let $M^+(X, \mathcal{A})$ denote the collection of all positive measurable functions on X. Let $f \in M^+(X, \mathcal{A})$, and let $B, C \in \mathcal{A}$ with $B \subset C$.

Show that: $\int_B f d\mu \leq \int_C f d\mu$.

[4 marks]

(c) Let $X = \{1, 2, 3, 4\}$, $\mathcal{A} = \{\emptyset, X, \{1\}, \{2, 3, 4\}\}$, $Y = \{a, b, c\}$ and $\mathcal{B} = \{\emptyset, Y, \{b\}, \{a, c\}\}.$

Define $f: X \to Y$ by $1 \to a, 2 \to a, 3 \to b, 4 \to c$ and

$$g: X \to Y$$
 by $1 \to b, \, 2 \to a, \, 3 \to c, \, 4 \to c.$

Determine whether each of these functions is measurable or not. [6 marks]

(d) Show that the Lebesque outer measure is translation invariant. That is:

$$m^*(A+b) = m^*(A)$$
 [6 marks]

QUESTION FOUR (20 marks)

- (a) Show that the intersection of any two sigma algebras is a sigma algebra. [6 marks]
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 3x + 2 & \text{if } x \in [0, 4] \\ 2x - 4 & \text{if } x \in (5, 10) \\ 0 & \text{if otherwise} \end{cases}$$

MAT 825 Page 3 of 4

show that $38 \leq \int f \ dm \leq 136$ where m is the Lebesque measure.

[8 marks]

(c) Let $(\mathbf{X}, \mathcal{A}, \mu)$ be a measure space, and $\{E_n\}$ be a monotone sequence in \mathcal{A} .

If
$$\{E_n\}$$
 is increasing, show that $\lim_{n\to\infty} \mu\{E_n\} = \mu\left(\lim_{n\to\infty} E_n\right)$

[6 marks]

MAT 825 Page 4 of 4