Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Multiserver and Priority scheduling

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

©()(\$(=)(CC BY-NC-ND 4.0)

1

esempio:

Assumptions:

Arrival rate 1 j/s random

• Average demand Z=4x10⁵ oxat, expo, do not know size

priority scheduling he tulti chiedono)

Analytical models

Possible configurations:

- 1 server of capacity C=10⁶ oxat/s
- Dual-core of C/2 each one

QoS requirements:

- Average waiting $T_Q < 0.15$ s
- For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$

Def.
$$E(S) = Z/C = 0.4 \, \mathrm{s}$$
 (\geq indipendente da C , C e caratteristica física, \geq no!) \sim variable

Capacità processamento macchina != quanto chiede job. alcuni elementi sono caratteristiche fisiche della macchina, non modellabile.

prof. Vittoria de Nitto Personè

2

"il job" = domanda media, quanto chiede?

QoS requirements:
• Average waiting
$$T_Q < 0.15$$
 s

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ solution}$$
• 1 server of capacity C=106 oxerat/s
(NH/1 KP) $E(T_Q) = 0.26 \text{ s} = \frac{PE(S)}{A-P}$ $E(T_Q)^{\text{Abstract-P}} = 0.2243 \text{ s}$
• Dual-core of C/2 each one

$$E(T_A) = \frac{P_L E(S)}{A-0.15} = 0.065$$

$$E(T_A) = \frac{P_L E(S)}{A-0.15} = 0.065$$

$$E(T_A) = \frac{P_L E(S)}{A-0.15} = 0.065$$

$$E(T_A) = \frac{PE(S)}{A-0.15} = 0.065$$

$$E(T_A) = \frac{PE(S)}{A-0.1$$

in E(Tq) erlang calcolo Pq e P0 con le formule citate, usando rho = 0.4 ed E(s) = 0.4

^

Multiserver with priority classes

$$E(T_Q) = p_1 \frac{\rho_1 E(S)}{(1 - \rho_1)} + p_2 \frac{\rho E(S)}{(1 - \rho)(1 - \rho_1)}$$

$$E(T_Q) = p_1 \frac{\rho_Q E(S)}{(1 - \rho_1)} + p_2 \frac{\rho_Q E(S)}{(1 - \rho)(1 - \rho_1)}$$

C'è prelazione, poichè il primo rapporto vede Pq1, ed è in funzione di rho1, non rho generico.

7

Multiserver with priority classes

 $P_{Q_{\rm l}}$ = $Erlang(\rho_{\rm l})$ = 0.03438 = tutti server occupati da job di classe 1, usando erlang.

Multiserver with priority classes

$$P_{Q1} = Erlang(\rho_1) = 0.03438$$
 $P_Q = 0.22857$ (pieni indipendenti delle clossi: sele clossi, note clossi,

$$E\left(T_Q\right) = p_1 \frac{P_{Q1}E(S)}{\left(1-\rho_1\right)} + p_2 \frac{P_QE(S)}{\left(1-\rho\right)\left(1-\rho_1\right)} = 0.12077 \qquad \left(\begin{array}{c} \text{if $\rho(0)$ wato per P_2} \\ \text{wo rempre P_2} \end{array}\right) \qquad \text{when ρ is "suo p_1", given the poly it "suo p_1", given th$$

(dwl core + prelition) QoS requirements:

• Average waiting $T_Q < 0.15 \, {\rm s}$!! bound rispettate

(FLOBALMENTE some sollo il requisito, mon solo lo close 1

9

Qos requirements: (altro requisito)

• For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$

Analytical models priority scheduling

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4 \text{ s}$

1 server of capacity C=10⁶ oxerat/s

of capacity
$$C=10^{\circ}$$
 oxerat/s $E(T_Q)=0.26 \text{ s} + 0.4 > 0.5$, devo dividence be code!

Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{C} = 2\frac{Z}{C} = 2E(S) = 0.8 \text{ s} > 0.5$$
, show contour E(Tax)

prof. Vittoria de Nitto Personè

