Структура множества точек разрыва

f - ограничена и определена на \mathbb{R} . Мы ввели понятия колебания и колебания функции в точке a:

$$\omega(f, E) = \sup_{x,y \in E} |f(x) - f(y)|, \ \omega(f, a) = \lim_{\delta \to 0+} \omega(f, \mathcal{U}_{\delta}(a))$$

Утв. 1. f непрерывна в точке $a \Leftrightarrow \omega(f, a) = 0$.

Следствие 1. Множество точек разрыва = $\bigcup_{n} \{ a : \omega(f, a) \ge \frac{1}{n} \}.$

Утв. 2. Множество $\bigcup_{n} \{ a : \omega(f, a) \ge \frac{1}{n} \}$ - замкнуто.

□ Покажем, что дополнение - открыто.

Пусть $b \in \mathbb{R} \setminus \{a : \omega(f,a) \geq \frac{1}{n}\} = \{a : \omega(f,a) < \frac{1}{n}\} \Rightarrow$ надо показать, что b принадлежит этому множеству с некоторой окрестностью. Знаем, что $\omega(f,b) < \frac{1}{n} \Rightarrow \lim_{\delta \to 0+} \omega(f,\mathcal{U}_{\delta}(b)) < \frac{1}{n}$. По теореме отделимости при значениях δ близких к нулю, значения функции $\omega(f,\mathcal{U}_{\delta}(b)) < \frac{1}{n}$.

Рассмотрим по определению: $\forall \varepsilon > 0, \ \exists \ \hat{\delta} > 0 \colon \forall \delta \in (0, \hat{\delta}) \Rightarrow |\omega(f, \mathcal{U}_{\delta}(b)) - \omega(f, b)| < \varepsilon \Rightarrow \omega(f, \mathcal{U}_{\delta}(b)) < \omega(f, b) + \varepsilon.$ Возьмем $\varepsilon = \frac{1}{n} - \omega(f, b) > 0 \Rightarrow$

$$\omega(f, \mathcal{U}_{\delta}(b)) < \frac{1}{n} - \omega(f, b) + \omega(f, b) = \frac{1}{n}$$

Таким образом, $\exists \, \delta > 0 \colon \omega(f, \mathcal{U}_{\delta}(b)) < \frac{1}{n}$.

Возьмем точку c из этого интервала $\mathcal{U}_{\delta}(b)$ и возьмем окрестность вокруг этой точки: $\mathcal{U}_{\gamma}(c)$ так, чтобы $\mathcal{U}_{\gamma}(c) \subset \mathcal{U}_{\delta}(b)$.

$$\begin{array}{ccc}
b - \delta & \mathcal{U}_{\gamma}(c) & b + \delta \\
\hline
\begin{pmatrix}
& & \\
b & c
\end{pmatrix}$$

Рис. 1: Колебания функции на интервале $\omega(f, \mathcal{U}_{\gamma}(c)) \leq \omega(f, \mathcal{U}_{\delta}(b))$.

Точная верхняя грань на большем множестве не меньше, чем точная верхняя грань на меньшем \Rightarrow $\omega(f, \mathcal{U}_{\gamma}(c)) \leq \omega(f, \mathcal{U}_{\delta}(b)) < \frac{1}{n} \Rightarrow \lim_{\gamma \to 0+} \omega(f, \mathcal{U}_{\gamma}(c)) = \omega(f, c) < \frac{1}{n}$ поскольку величины $\omega(f, \mathcal{U}_{\gamma}(c))$ убывают при стремлении γ к нулю. Следовательно интервал $(b - \delta, b + \delta) \subset \mathbb{R} \setminus \{a : \omega(f, a) \geq \frac{1}{n}\} \Rightarrow$ дополнение открыто \Rightarrow исходное множество замкнуто.

Теорема выше говорит о том, что множество точек разрыва f - это объединение не более чем счетного набора замкнутых множеств.

Пример: множество иррациональных чисел не является множеством точек разрыва.

Глобальные свойства непрерывных функций

Опр: 1. Функция f непрерывна на множестве D, если функция f непрерывна в каждой точке D по множеству D.

Первая теорема Вейрштрасса

Теорема 1. (Первая теорема Вейрштрасса) Если f непрерывна на компакте K, то f ограниченна на K, то есть

$$\exists C > 0 \colon |f(x)| < C, \forall x \in K$$

(I) способ: (От противного) Пусть $\forall n, \exists x_n \in K \colon |f(x_n)| > n \Rightarrow$ получили последовательность по которой $|f(x_n)|$ уходит в бесконечность. Так как K - компакт, то $\exists x_{n_k} \colon x_{n_k} \to x_0 \in K \Rightarrow$ из-за непрерывности $f \Rightarrow f(x_{n_k}) \to f(x_0)$, то есть, последовательность сходится к $f(x_0)$.

Но $|f(x_{n_k})| > n_k \to \infty$ что невозможно, так как если последовательность сходится, то она ограниченна \Rightarrow противоречие.

(II) способ: $\forall a \in K, f$ - непрерывна в точке $a \Rightarrow \exists C_a > 0 \land \mathcal{U}(a) \colon |f(x)| \leq C_a, \forall x \in \mathcal{U}(a)$. Заметим, что $K \subset \bigcup_{a \in K} \mathcal{U}(a) \Rightarrow$ по определению компакта $\exists \mathcal{U}(a_1), \dots, \mathcal{U}(a_N) \colon K \subset \mathcal{U}(a_1) \cup \dots \cup \mathcal{U}(a_N)$. Тогда

$$C = \max\{C_{a_1}, \dots, C_{a_N}\} \Rightarrow |f(x)| \le C, \forall x \in K$$

таким образом, f ограниченна на K.

Rm: 1. В данной теореме невозможно отказаться от компактности.

Пример: $f(x) = \frac{1}{x}$, $x \in (0,1)$ - непрерывна, но не явлется ограниченной \Rightarrow теорема не верна.

Рис. 2: При приближении к 0, у функции $\frac{1}{x}$ ограничивающая константа будет расти.

Пример: $f(x) = \frac{1}{x}, x \neq 0 \land f(0) = 0, x \in [0,1]$ - множество является компактом, но функция разрывна в точке $0 \Rightarrow$ теорема не верна.

Вторая теорема Вейрштрасса

Теорема 2. (Вторая теорема Вейрштрасса) Если f непрерывна на компакте K, то она принимает свои наибольшие и наименьшие значения на нем, то есть

$$\exists x_m, x_M \in K \colon f(x_m) = \inf_{x \in K} f(x), f(x_M) = \sup_{x \in K} f(x)$$

Rm: 2. Нарушение любого из условий также влечет нарушение теоремы.

- (a) Непрерывная функция y = x на интервале.
- (b) Функция разрывна на компакте.

Рис. 3: Примеры нарушения условий теоремы Вейрштрасса.

(I) способ: $\forall n, \inf_{x \in K} f(x) + \frac{1}{n}$ - не нижняя грань $\Rightarrow \exists x_n \in K : f(x_n) < \inf_{x \in K} f(x) + \frac{1}{n} \Rightarrow$ получили последовательность точек компакта. Так как K - компакт, то $\exists x_{n_k} \to x_0 \in K$. Для этой подпоследовательности выполнено

$$\inf_{x \in K} f(x) \le f(x_{n_k}) < \inf_{x \in K} f(x) + \frac{1}{n_k}$$

Пусть $k \to \infty \Rightarrow$ так как f - непрерывна на компакте, то

$$f(x_{n_k}) \to f(x_0) \Rightarrow \inf_{x \in K} f(x) \le f(x_0) \le \inf_{x \in K} f(x) \Rightarrow f(x_0) = \inf_{x \in K} f(x)$$

Аналогично для точной верхней грани.

(II) способ: (От противного) $\forall x \in K, \ f(x) > \inf_K f(x)$. Рассмотрим новую функцию

$$g(x) = \frac{1}{f(x) - \inf_{K} f(x)}$$

По условию $f(x) - \inf_K f(x) \neq 0$, $\forall x \in K$ - непрерывная функцию не обращающаяся в 0 на компакте $K \Rightarrow g(x)$ - тоже непрерывная функция на компакте K. По первой теореме Вейрштрасса, непрерывная на компакте функция - ограниченна $\Rightarrow \exists \, C > 0 \colon g(x) < C, \, \forall x \in K \Rightarrow$

$$\frac{1}{f(x) - \inf_{K} f(x)} < C \Rightarrow \frac{1}{C} < f(x) - \inf_{K} f(x) \Rightarrow \frac{1}{C} + \inf_{K} f(x) < f(x), \forall x \in K$$

Таким образом, получаем, что $\frac{1}{C} + \inf_K f(x)$ - нижняя грань, но это невозможно, так как $\inf_K f(x)$ - точная нижняя грань \Rightarrow противоречие.

Теорема Коши о промежуточном значении

Теорема 3. (Коши) Если f непрерывна на отрезке [a,b] и f(a)f(b) < 0 (на концах значения разных знаков), то $\exists c \in [a,b]$: f(c) = 0.

Рис. 4: Функция, непрерывная на отрезка [a,b] с разными значениями на концах.

 \square (I) способ: Делим отрезок [a,b] пополам, если $f(\frac{a+b}{2})=0$, то $c=\frac{a+b}{2}$. Если $f(\frac{a+b}{2})\neq 0$, то $f(\frac{a+b}{2})f(a)<0 \lor f(\frac{a+b}{2})f(b)<0$

Пусть $[a_1,b_1]$ - та половина на концах которой разные знаки, $b_1-a_1=\frac{b-a}{2}$.

Рис. 5: Поиск отрезка со значениями разных знаков на концах.

Повторяем рассуждения для $[a_1,b_1]$: либо $f(\frac{a_1+b_1}{2})=0\Rightarrow c=\frac{a_1+b_1}{2}$, либо $f(\frac{a_1+b_1}{2})\neq 0$ и $[a_2,b_2]$ - та половина $[a_1,b_1]$, на концах которой f принимает значения разных знаков. И так далее.

В итоге, либо на каком-то шаге найдена точка c, либо построена последовательность вложенных отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$ такая, что их длины $b_n-a_n=\frac{b-a}{2^n}\to 0$ и $f(a_n)f(b_n)<0$.

По теореме о вложенных отрезках $\exists c \in \bigcap_n [a_n, b_n]$. Так как c лежит внутри отрезков, то

$$|c - a_n| \le \frac{b-a}{2^n} \wedge |c - b_n| \le \frac{b-a}{2^n} \Rightarrow a_n \to c \wedge b_n \to c$$

Так как f - непрерывна в точке c, то

$$f(a_n) \to f(c) \land f(b_n) \to f(c) \Rightarrow f(c)^2 = \lim_{n \to \infty} f(a_n) f(b_n) \le 0 \Rightarrow f(c) = 0$$

- (II) способ: (От противного) Пусть f(a) < 0, f(b) > 0 и $f(x) \neq 0$ на отрезке [a,b]. Рассмотрим множество $F^- = \{x \in [a,b] : f(x) \leq 0\}$ и множество $F^+ = \{x \in [a,b] : f(x) \geq 0\}$. Очевидно, что
 - 1) $F^- \cap F^+ = \emptyset$, $F^- \cup F^+ = [a, b]$;
 - 2) $a \in F^-, b \in F^+$, то есть эти множества не пусты;
 - 3) $F^- \wedge F^+$ замкнуты;

Доказав 3), мы представим отрезок в виде двух непересекающихся и непустых замкнутых множеств. Добавим к одному из них $(-\infty, a]$, а к другому $[b, +\infty) \Rightarrow$ получится, что всю числовую прямую представили в виде объединения двух непересекающихся, непустых, замкнутых множеств \Rightarrow противоречие.

Пусть $x_n \in F^- \land x_n \to x_0 \Rightarrow f(x_n) \le 0$, из-за непрерывности $f(x_n) \to f(x_0) \Rightarrow f(x_0) \le 0 \land x_0 \in F \Rightarrow$ это множество замкнуто. Аналогично для F^+ .

Вся числовая прямая представляется, как $\mathbb{R} = ((-\infty, a] \cup F^-) \cup (F^+ \cup [b, +\infty))$. Эти два множества - не пересекаются, так как $F^- \cap F^+ = \emptyset$ и $a \in F^-$, $b \in F^+$. Также эти множества не пустые и замкнутые, что невозможно \Rightarrow противоречие со связностью прямой (числовую прямую нельзя представить в виде объединения двух замкнутых множеств).

Rm: 3. Замкнутость множества нулей непрерывной функции доказывается аналогично доказательству замкнутости множеств F^- и F^+ .

Упр. 1. Доказать, что всякое замкнутое множество является множеством нулей некоторой непрерывной функции.

Следствие 2. (Теорема о промежуточном значении) Пусть f непрерывна на отрезке [a,b] и A = f(a), B = f(b). Тогда $\forall C \colon A \le C \le B, \exists c \in [a,b] \colon f(c) = C$.

 \square Рассмотрим функцию g(x)=f(x)-C. Если $C\neq A\land C\neq B\Rightarrow g(a)g(b)=(A-C)(B-C)<0\Rightarrow$ по предыдущей теореме $\exists\,c\in[a,b]\colon g(c)=0\Leftrightarrow f(c)-C=0\Leftrightarrow f(c)=C$.

Пример: $x^3 + ax^2 + bx + c = 0$ - обязательно \exists корень $\in \mathbb{R}$. $f(x) = x^3 \left(1 + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3}\right) \Rightarrow \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \to 0$ при больших $x \Rightarrow$ знак определяется по x^3 . Возьмем отрезок с большим отрицательным значением на левом конце и большим положительным значением на правом, x^3 будет разных знаков на этих концах \Rightarrow по теореме о промежуточном значении существует точка в которой функция обращается в 0.