西南交通大学 2016-2017 学年第(一)学期考试试卷

课程代码 1271046 课程名称 <u>高等数学 BI (A 卷)</u>考试时间 120 分钟

C).

木作:1049 <u>12/1040</u> 床作:11/10 _	同寸双于 DI (A 仓	S) ~5 W(H기미 <u>12</u> (
一. 选择题(每小题4分,共20)分)	
1、对于函数 $f(x) = \frac{x^2 - 1}{x - 1}e^{\frac{1}{x - 1}}$, $x = 1$	 	
(A) 连续点;	(B) 第二类间断点;	
(C) 可去间断点;	(D) 跳跃间断点.	
2、设函数 f(x) 在(-∞,+∞) 上连续,	其导数的图形如下图	所示,则 f(x)有(
(A) 一个极小值点和两个极大值点;		
(B) 两个极小值点和一个极大值点;		
(C) 两个极小值点和两个极大值点;		
(D) 三个极小值点和一个极大值点.		
3、下列等式中正确的是(A).		
(A) $\frac{\mathrm{d}}{\mathrm{d}x} \int f(x) \mathrm{d}x = f(x)$;	(B) $\int df(x) =$	f(x);
(C) $\int f'(x) dx = f(x);$	(D) $\mathrm{d}\int f(x) = \int_{0}^{\infty} f(x) dx$	f(x).
4、方程 $y'' + 2y' + 2y = x \cos x$ 的特解形	/式为: (C) ((<i>a,b,c,d</i> 为常数) .
(A) $x[(ax+b)\cos x + (cx+d)\sin x]$;	(B) $(ax+b)\cos x$;	
(C) $(ax+b)\cos x + (cx+d)\sin x$;	(D) $x(ax+b)c$	$\cos x$.
5、积分 $\int_{-1}^{1} (x + \sqrt{1 - x^2})^2 dx = (D$) .	
(A) 0; (B) 1;	(C) 1.5;	(D) 2.
二. 填空题(每小题 4 分, 共 20)分)	
6、当 $x \to 0$ 时, $(1-\cos x)\ln(1+2x^3)$	和 x sin(x") 是同阶的	无穷小,则 <i>n</i> =4 .
7、曲线 $\begin{cases} x = \sec t \\ y = e^{4t-\pi} & \text{在点}(\sqrt{2}, 1) \text{处的切} \end{cases}$	线方程为 <u>y</u> = 2√2x − 3	3.
8. $\mathcal{U} f'(e^x) = 1 + x$, $\mathcal{U} f(x) = \frac{x \ln x + 0}{1 + x + 1}$	<u>C.</u>	

9. $\int_0^{+\infty} \frac{\mathrm{d}x}{1 + e^x} = \underline{\ln 2}$.

10、微分方程
$$(x^2+1)y''-2xy'=0$$
 的通解是 $y=C_1(x+\frac{x^3}{3})+C_2$.

- 三. 计算题(每小题8分,共24分)
- 11、计算极限 $\lim_{x\to 0} \frac{\int_0^{\sin 2x} \ln(1+t) dt}{e^{x^2} 1}$.

解:
$$\lim_{x \to 0} \frac{\int_0^{\sin 2x} \ln(1+t) dt}{e^{x^2} - 1} = \lim_{x \to 0} \frac{\int_0^{\sin 2x} \ln(1+t) dt}{x^2}$$
$$= \lim_{x \to 0} \frac{\ln(1+\sin 2x) \cdot 2\cos 2x}{2x}$$
$$= \lim_{x \to 0} \frac{\sin 2x}{x} \cdot \lim_{x \to 0} \cos 2x = 2.$$

12、计算定积分 $\int_0^a x^2 \sqrt{a^2 - x^2} \, dx \ (a > 0)$.

13、设函数 y = y(x) 由方程 $e^{y} + xy = e$ 所确定,求 $\frac{d^{2}y}{dx^{2}}\Big|_{x=0}$.

解: 将x = 0代入 $e^y + xy = e$, 得y = 1,

对 $e^y + xy = e$ 两边求导得

$$y'e^{y} + y + xy' = 0$$
 (1)

将
$$x = 0$$
, $y = 1$ 代入(1)式得 $y'(0) = -\frac{1}{e}$,

对(1)式两边再求导得

$$y''e^y + (y')^2 e^y + y' + y' + xy'' = 0$$

将
$$x = 0$$
, $y = 1$, $y'(0) = -\frac{1}{e}$ 代入上式得 $y''(0) = \frac{1}{e^2}$.

四. 解答题(14题8分,15、16题每题10分,共28分)

14、求微分方程 $(x^2-1)y'+2xy-\cos x=0$ 满足初值条件 $y|_{x=0}=-1$ 的特解

解: 原方程变形为 $y' + \frac{2x}{r^2 - 1}y = \frac{\cos x}{r^2 - 1}$, 这是一阶线性微分方程, 故

$$y = e^{-\int \frac{2x}{x^2 - 1} dx} \left(\int \frac{\cos x}{x^2 - 1} e^{\int \frac{2x}{x^2 - 1} dx} dx + C \right)$$

$$= e^{-\ln(x^2 - 1)} \left(\int \frac{\cos x}{x^2 - 1} e^{\ln(x^2 - 1)} dx + C \right)$$

$$= \frac{1}{x^2 - 1} \left(\int \cos x dx + C \right)$$

$$= \frac{\sin x + C}{x^2 - 1}$$

将 $y|_{x=0} = -1$ 代入上式得 C = 1,所以原方程特解为 $y = \frac{\sin x + 1}{x^2 - 1}$.

15、求 $y = x^2$ 与 $y^2 = x^3$ 所围图形分别绕x轴和y轴旋转而成的旋转体体积.

解: 绕 x 轴旋转所成的旋转体体积为

$$V_x = \int_0^1 \pi (x^{\frac{3}{2}})^2 dx - \int_0^1 \pi (x^2)^2 dx$$
$$= \left(\frac{1}{4} - \frac{1}{5}\right) \pi = \frac{\pi}{20}$$

绕v轴旋转所成的旋转体体积为

$$V_{y} = \int_{0}^{1} \pi (y^{\frac{1}{2}})^{2} dy - \int_{0}^{1} \pi (y^{\frac{2}{3}})^{2} dy$$
$$= \left(\frac{1}{2} - \frac{3}{7}\right) \pi = \frac{\pi}{14}$$

16、已知某轮船匀速行驶时每小时燃料费用 y (元)与行驶速度 x (公里/小时)的关系为 $y = \frac{1}{2500} x^3$,除燃料费外其它费用为每小时100元,问轮船行驶速度为多少时,每行驶100公里所需费用最低?

解:设行驶100公里费用为z元,则

$$z(x) = \left(\frac{x^3}{2500} + 100\right) \cdot \frac{100}{x}$$
$$= \frac{x^2}{25} + \frac{10000}{x}$$
$$z'(x) = \frac{2x}{25} - \frac{10000}{x^2}.$$

且z''(50) > 0,则x = 50为极小值点,且x = 50为唯一的驻点,所以根据题意x = 50为最小值点,故轮船行驶速度为每小时50公里时所需费用最低.

五. 证明题(第17题8分,共8分)

17、设函数 f(x) 在 $[0,+\infty]$ 上连续且单调递减,证明: 当 $x \ge 0$ 时,有 $\int_0^x x^2 f(t) dt \ge 3 \int_0^x t^2 f(t) dt$.

证明: 当x > 0时令 $F(x) = \int_0^x x^2 f(t) dt - 3 \int_0^x t^2 f(t) dt$,则

$$F'(x) = 2x \int_0^x f(t) dt + x^2 f(x) - 3x^2 f(x)$$
$$= 2x (\int_0^x f(t) dt - x f(x))$$

由积分中值定理存在 $\xi \in (0,x)$ 使得 $\int_0^x f(t)dt = xf(\xi)$.

又因为 f(x) 在 $[0,+\infty]$ 上单调递减,所以 $\int_0^x f(t)dt = xf(\xi) > xf(x)(x>0)$,故 F'(x)>0, F(x) 在 $[0,+\infty]$ 上单调递增,而 F(0)=0,所以当 $x\geq 0$ 时,有 $F(x)\geq 0$,即

$$\int_0^x x^2 f(t) dt \ge 3 \int_0^x t^2 f(t) dt.$$