we see that

$$d_1 = 0$$
, $d_2 = -1$, and $d_3 = 1$.

Thus, Eq. (8) has the form

$$T^{k}(x + 2) = 2^{k}(-1)x^{2} + 4^{k}(1)(x^{2} + x + 2)$$

In particular,

$$T^4(x+2) = -16x^2 + 256(x^2 + x + 2) = 240x^2 + 256x + 512.$$

SUMMARY

Let $T: V \rightarrow V$ be a linear transformation of a finite-dimensional vector space into itself.

1. If B and B' are ordered bases of V, then the matrix representations R_B and R_B of T relative to B and to B' are similar. That is, there is an invertible matrix C—namely, $C = C_{B,B}$ —such that

$$R_{R'} = C^{-1}R_RC.$$

- 2. Conversely, two similar $n \times n$ matrices represent the same linear transformation of \mathbb{R}^n into \mathbb{R}^n relative to two suitably chosen ordered bases.
- 3. Similar matrices have the same eigenvalues with the same algebraic and geometric multiplicities.
- 4. If A and R are similar matrices with $R = C^{-1}AC$, and if v is an eigenvector of A, then $C^{-1}v$ is an eigenvector of R corresponding to the same eigenvalue.
- 5. The transformation T is diagonalizable if V has a basis B consisting of eigenvectors of T. In this case, the matrix representation R_B is a diagonal matrix and computation of $T^k(v)$ by $R_B^k(v_B)$ becomes relatively easy.

EXERCISES

In Exercises 1–14, find the matrix representations R_B and R_B and an invertible matrix C such that $R_B = C^{-1}R_BC$ for the linear transformation T of the given vector space with the indicated ordered bases B and B'.

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T([x, y]) = [x y, x + 2y]; B = ([1, 1], [2, 1]), B' = E
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T([x, y]) = [2x + 3y, x + 2y]; B = ([1, -1], [1, 1]), B' = ([2, 3], [1, 2])

- 3. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T([x, y, z]) = [x + y, x + z, y z]; B = ([1, 1, 1], [1, 1, 0], [1, 0, 0]), B' = E
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T([x, y, z]) = [5x, 2y, 3z]; B and B' as in Exercise 3
- 5. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T([x, y, z]) = [z, 0, x];B = ([3, 1, 2], [1, 2, 1], [2, -1, 0]), B' = ([1, 2, 1], [2, 1, -1], [5, 4, 1])
- 6. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as reflection of the plane through the line 5x = 3y; B = ([3, 5], [5, -3]), B' = E

- 7. $T: \mathbb{P}^3 \to \mathbb{R}^3$ defined as reflection of \mathbb{R}^3 through the plane x + y + z = 0; B = ([1, 0, -1], [1, -1, 0], [1, 1, 1]), B' = E
- 8. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as reflection of \mathbb{R}^3 through the plane 2x + 3y + z = 0; B = ([2, 3, 1], [0, 1, -3], [1, 0, -2]), B' = E
- 9. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as projection on the plane $x_2 = 0$; B = E, B' = ([1, 0, 1], [1, 0, -1], [0, 1, 0])
- 10. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as projection on the plane x + y + z = 0; B and B' as in Exercise 7.
- 11. $T: P_2 \to P_2$ defined by T(p(x)) = p(x+1) + p(x); $B = (x^2, x, 1)$, $B' = (1, x, x^2)$
- 12. $T: P_2 \to P_2$ as in Exercise 11, but using $B = (x^2, x, 1)$ and $B' = (x^2 + 1, x + 1, 2)$
- 13. $T: P_3 \to P_3$ defined by T(p(x)) = p'(x), the derivative of p(x); $B = (x^3, x^2, x, 1)$, $B' = (1, x + 1, x^2 + 1, x^3 + 1)$
- 14. $T: W \to W$, where $W = \operatorname{sp}(e^x, xe^x)$ and T is the derivative transformation; $B = (e^x, xe^x)$, $B' = (2xe^x, 3e^x)$
- 15. Let T: P₂ → P₂ be the linear transformation and B' the ordered basis of P₂ given in Example 3. Find the matrix representation R_{B'} of T by computing the matrix with column vectors T(b'₁)_{B'}, T(b'₂)_{B'}, T(b'₃)_{B'}.
- 16. Repeat Exercise 15 for the transformation in Example 5 and the basis $B' = (x + 1, -1, x^2 + x)$ of P_2 .

In Exercises 17–22, find the eigenvalues λ_i and the corresponding eigenspaces of the linear transformation T. Determine whether the linear transformation is diagonalizable.

- 17. T defined on \mathbb{R}^2 by T([x, y]) = [2x 3y, -3x + 2y]
- 18. T defined on \mathbb{R}^2 by T([x, y]) = [x y, -x + y]
- 19. T defined on \mathbb{R}^3 by $T([x_1, x_2, x_3]) = [x_1 + x_3, x_2, x_1 + x_3]$

- **20.** T defined on \mathbb{R}^3 by $T([x_1, x_2, x_3]) = [x_1, 4x_2 + 7x_3, 2x_2 x_3]$
- 21. T defined on \mathbb{R}^3 by $T([x_1, x_2, x_3]) = [5x_1, -5x_1 + 3x_2 5x_3, -3x_1 2x_2]$
- 22. T defined on \mathbb{R}^3 by $T([x_1, x_2, x_3]) = [3x_1 x_2 + x_3, -2x_1 + 2x_2 x_3, 2x_1 + x_2 + 4x_3]$
- 23. Mark each of the following True or False
- a. Two similar $n \times n$ matrices represent the same linear transformation of \mathbb{R}^n into itself relative to the standard basis.
- ___ b. Two different $n \times n$ matrices represent different linear transformations of \mathbb{R}^n into itself relative to the standard basis.
- c. Two similar $n \times n$ matrices represent the same linear transformation of \mathbb{R}^n into itself relative to two suitably chosen bases for \mathbb{R}^n .
- ____ d. Similar matrices have the same eigenvalues and eigenvectors.
- e. Similar matrices have the same eigenvalues with the same algebraic and geometric multiplicities.
- ___ f. If A and C are $n \times n$ matrices and C is invertible and v is an eigenvector of A, then $C^{-1}v$ is an eigenvector of $C^{-1}AC$.
- ___ g. If A and C are $n \times n$ matrices and C is invertible and v is an eigenvector of A, then Cv is an eigenvector of CAC^{-1} .
- h. Any two n × n diagonal matrices are similar.
- i. Any two $n \times n$ diagonalizable matrices having the same eigenvectors are similar.
- ___ j. Any two $n \times n$ diagonalizable matrices having the same eigenvalues of the same algebraic multiplicities are similar.
- 24. Prove statement 2 of Theorem 7.2.
- 25. Prove statement 3 of Theorem 7.2.
- 26. Let A and R be similar matrices. Prove in two ways that A² and R² are similar matrices: using a matrix argument, and using a linear transformation argument.
- 27. Give a determinant proof that similar matrices have the same eigenvalues.