

I NSTITUTO FEDERAL DO RIO GRANDE DO NORTE CAMPUS CENTRAL DIRETORIA ACADÊMICA DE GESTÃO E TECNOLOGIA DA INFORMAÇÃO

Prof: José Álvaro de Paiva

2ª Lista de Exercícios – Leis de Kirchhoff

- Uma fileira de lâmpadas de Natal consiste em oito Lâmpadas de 6W. Se a fileira de Lâmpadas for projetada para usar uma fonte de 120V, Qual a corrente que circulará e qual a resistência de cada Lâmpada? (Resposta: I = 400 mA e R=37,5 Ω)
- Dois aquecedores são especificados por 1kW e 220V cada. Se considerarmos que a resistência dos aquecedores permanece constante, qual a dissipação total de potência quando os dois são conectados em série numa tensão de 220V? (Resposta: P=500 W)
- 3. Dois resistores estão em série: um de 9,2kΩ especificado para 1 W e outro de 5,1kΩ especificado para 0,5 W. Qual a corrente máxima que poderá percorrer o circuito com segurança? Qual a máxima tensão que seguramente poderá suprir esta combinação? (Resposta: I = 9,9 mA e V=141,57 V)
- 4. Resistores de 1, 2, 5, 10 e 20Ω são conectados em paralelo com uma fonte de 100V. Qual o valor da corrente em cada resistor, a corrente total e a resistência total da combinação em paralelo? (Resposta: I₁ = 100 A; I₂ = 50 A; I₃ = 20 A; I₄ = 10 A; I₅ = 5 A; I_{Total} = 185 A; Req = 540,54 mΩ)
- 5. A resistência equivalente de dois resistores em paralelo é 400Ω . Se um dos resistores é de 1000Ω , qual o valor do segundo resistor? (Resposta: **Req =666,67** Ω)
- 6. Uma corrente de 10mA passa através de três resistores : 47kΩ, 56kΩ e 82kΩ, conectados em paralelo. Qual a corrente em cada ramo e qual o valor das quedas de tensão sobre os resistores?
 (Resposta: I₁ = 4,145 mA; I₂ = 3,479 mA; I₃ = 2,376 A; V₁ = V₂ = V₃ = 194,822 V)
- 7. No circuito elétrico de uma casa são conectados em paralelo: uma lâmpada de 100W, uma torradeira de 1100W e um refrigerador de 240W a uma linha de 110V. Encontre: (a) a corrente consumida por cada elemento, (b) a resistência total e (c) a corrente total.

(Resposta: $I_{L\hat{a}mpada}$ = 909,1 mA; $I_{Torradeira}$ = 10 A; $I_{Refrigerador}$ = 2,182 A; R_{total} = 8,402 Ω ; I_{total} = 13,092 A)

8. Determine a resistência equivalente R_T entre os pontos **a** e **b** da rede resistiva abaixo: Obs.: Todos os resistores estão em Ohm (Ω).

Resposta: Req = 37,26 Ω

- 9. Para o circuito série-paralelo abaixo determine:
 - a) A Resistência equivalente do circuito. (Req = $20,0 \Omega$)
 - b) As correntes I_T , I_2 e I_3 cada resistor do circuito; (I_T = 500 mA; I_2 = 250 mA; I_3 = 250 A)
 - c) As tensões V_1 e V_2 indicadas no circuito; (V_1 = 2,5V; V_2 = 1V)
 - d) A potência dissipada por cada resistor; (P_1 =1,25 W; P_2 =0,1875 W; P_3 =0,25 W; P_4 =0,1875 W; P_5 =0,625 W; P_6 =2,5 W)
 - e) A potência total consumida pelo circuito (P_T=5,0 W).

- 10. Para o circuito série-paralelo a seguir determine:
- a) A Resistência equivalente do circuito. (Req = $20,0 \Omega$)
- b) As correntes I_T , I_2 , I_3 , I_4 e I_5 cada resistor do circuito; (I_T = 500 mA; I_2 = 250 mA; I_3 = 125mA; I_4 = 0 A; I_5 = 62,5 mA)
- c) As tensões V_1 e V_2 indicadas no circuito; V_1 = 2,5V; V_2 = 250mV
- d) A potência dissipada por cada resistor; (P_1 = 1,25 W; P_2 = 0,4375 W; P_3 = 0,625 W; P_4 =0,09375W; P_5 = 0,0625 W; P_6 = 0,015625 W; P_7 =0,015625 W; P_8 = 0 W; P_9 =0 W; P_{10} =2,5 W;)
- e) A potência total consumida pelo circuito. (P_T=5,0 W).

11. Utilize divisor de tensão, divisor de corrente ou relações de separação de corrente para encontrar as tensões e correntes indicadas nos circuitos abaixo.

