DOWN PACKET SCHEDULING METHOD AND RADIO BASE STATION

Publication number: JP2003152630 (A)

Also published as

Publication date:

2003-05-23

2003-03-2

P4012395 (B2)

Inventor(s):

USUDA MASASHI; NAKAMURA TAKEHIRO +

Applicant(s):

NTT DOCOMO INC +

Classification:
- international:

H04B7/26; H04L12/28; H04L12/56; H04Q7/38; H04B7/26;

H04L12/28; H04L12/56; H04Q7/38; (IPC1-7): H04B7/26;

H04L12/28; H04L12/56; H04Q7/38

- European:

Application number: JP20010350599 20011115 Priority number(s): JP20010350599 20011115

Abstract of JP 2003152630 (A)

PROBLEM TO BE SOLVED: To make the temporal transmission allocation of a shared channel equal between mobile stations even when a degree of fluctuation in a down quality is different between the respective mobile stations. SOLUTION: In the radio base station for performing radio communication with a plurality of mobile stations localized in the radio zone of a present station and performing scheduling when transmitting a packet in a down direction,; this radio base station is provided with a priority coefficient calculating part 13C for calculating a cumulative stochastic value in the temporal distribution of the down quality at a moment concerning each of mobile stations as a transmission priority coefficient presenting the priority of packet transmission for each of a plurality of mobile stations on the basis of down quality information at a moment for each mobile station under packet communication and the temporal distribution of the down quality information at a relevant moment concerning each of mobile stations and a priority comparing part 13D for determining a packet to be transmitted on the basis of the calculated transmission quality coefficient for each mobile station and the presence/absence of the packet to be transmitted to each of mobile stations.

Data supplied from the espacenet database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2003-152630

(P2003-152630A)

(43)公開日 平成15年5月23日(2003.5.23)

(51) Int.Cl.7		識別記号	FΙ		ž	7]ド(参考)
H04B	7/26		H04L	12/28	3 0 0 Z	5 K 0 3 0
H04L	12/28	300		12/56	200Z	5 K O 3 3
	12/56	200	H 0 4 B	7/26	С	5 K 0 6 7
H 0 4 Q	7/38				109M	

審査請求 未請求 請求項の数10 OL (全 10 頁)

(21)出願番号	特顧2001-350599(P2001-350599)	(71)出願人 392026693
(22)出顧日	平成13年11月15日(2001.11.15)	株式会社エヌ・ティ・ティ・ドコモ 東京都千代田区永田町二丁目11番1号
		(72)発明者 臼田 昌史
		東京都千代田区永田町二丁目11番1号 株
		式会社エヌ・ティ・ティ・ドコモ内
		(72)発明者 中村 武宏
		東京都千代田区永田町二丁目11番1号 株
		式会社エヌ・ティ・ティ・ドコモ内
		(74)代理人 100088155
		弁理士 長谷川 芳樹 (外4名)

最終頁に続く

(54) 【発明の名称】 下りパケットスケジューリング方法及び無線基地局

(57)【要約】

【課題】 各移動局の下り品質の変動具合が異なる場合でも、共有チャネルの時間的な送信割り当てを移動局間で公平とする。

【解決手段】 自局の無線ゾーンに在圏する複数の移動局の各々との間で無線通信を行うとともに下り方向のパケット送信の際にスケジューリングを行う無線基地局において、パケット通信中の各移動局についての瞬時の下り品質情報と各移動局についての当該瞬時の下り品質情報の時間的な分布とに基づいて、複数の移動局における各移動局についてのパケット送信の優先度を表す送信優先度係数として、各移動局についての瞬時の下り品質の時間的な分布の累積確率値を算出する優先度係数計算部13Cと、算出した各移動局についての送信優先度係数と各移動局に対して送信すべきパケットの有無とに基づいて、送信すべきパケットを決定する優先度比較部13Dとを設けた。

【特許請求の範囲】

【請求項1】 無線基地局と当該無線基地局により形成される無線ブーンに在圏する複数の移動局の各々との間で無線通信を行う移動通信システムにおける、前記無線基地局から前記移動局への下り方向のパケット送信に関する下りパケットスケジューリング方法であって、前記報基地局が、パケット通信中の各移動局についての瞬時の下り品質情報と各移動局についての当該瞬時の下り品質情報の時間的な分布とに基づいて、前記複数の移動局における各移動局についてのパケット送信の優先度を表す送信優先度係数を算出する優先度係数算出工程と、前記無線基地局が、各移動局についての送信優先度係数と各移動局に対して送信すべきパケットの有無とに基づいて、送信すべきパケットを決定する決定工程と、を有する下りパケットスケジューリング方法。

【請求項2】 前記優先度係数算出工程では、前記無線 基地局が、前記送信優先度係数として、各移動局についての瞬時の下り品質情報の時間的な分布の累積確率値を 算出することを特徴とする請求項1記載の下りパケットスケジューリング方法。

【請求項3】 前記優先度係数算出工程では、前記無線 基地局が、前記各移動局についての瞬時の下り品質情報、前記各移動局についての瞬時の下り品質情報の時間 的な分布から得られる当該瞬時の下り品質情報の平均値 及び当該瞬時の下り品質情報の標準偏差に基づいて、前記各移動局についての送信優先度係数を算出することを特徴とする請求項1記載の下りパケットスケジューリング方法。

【請求項4】 前記優先度係数算出工程では、前記無線 基地局が、前記送信優先度係数として、前記瞬時の下り 品質情報と、当該瞬時の下り品質情報の平均値及び当該 下り品質情報の標準偏差の積との比を算出することを特 徴とする請求項3記載の下りパケットスケジューリング 方法。

【請求項5】 前記瞬時の下り品質情報は、前記無線基地局から送信するリファレンスチャネルの信号電力対干 沙電力比、前記移動局から前記無線基地局に送信される 推奨の変調・符号化レベル、下り回線で各移動局との間 に設定される付随個別チャネルの送信電力レベル、前記 無線基地局から送信するリファレンスチャネルの受信信 号電力レベル、又は前記無線基地局から送信するリファ レンスチャネルの受信信号電力対帯域内信号電力比の何 れかであることを特徴とする請求項1~4の何れか1項 に記載の下りパケットスケジューリング方法。

【請求項6】 自局により形成される無線ゾーンに在圏 する複数の移動局の各々との間で無線通信を行うととも に、当該無線通信における前記移動局への下り方向のパケット送信の際に下りパケットスケジューリングを行う 無線基地局であって、パケット通信中の各移動局についての瞬時の下り品質情報と各移動局についての当該瞬時

の下り品質情報の時間的な分布とに基づいて、前記複数 の移動局における各移動局についてのパケット送信の優 先度を表す送信優先度係数を算出する優先度係数算出手 段と、各移動局についての送信優先度係数と各移動局に 対して送信すべきパケットの有無とに基づいて、送信す べきパケットを決定する決定手段と、を備えた無線基地 局。

【請求項7】 前記優先度係数算出手段は、前記送信優 先度係数として、各移動局についての瞬時の下り品質情 報の時間的な分布の累積確率値を算出することを特徴と する請求項6記載の無線基地局。

【請求項8】 前記優先度係数算出手段は、前記各移動局についての瞬時の下り品質情報、前記各移動局についての瞬時の下り品質情報の時間的な分布から得られる当該瞬時の下り品質情報の平均値及び当該瞬時の下り品質情報の標準偏差に基づいて、前記各移動局についての送信優先度係数を算出することを特徴とする請求項6記載の無線基地局。

【請求項9】 前記優先度係数算出手段は、前記送信優 20 先度係数として、前記瞬時の下り品質情報と、当該瞬時 の下り品質情報の平均値及び当該下り品質情報の標準偏 差の積との比を算出することを特徴とする請求項8記載 の無線基地局。

【請求項10】 前記瞬時の下り品質情報は、前記無線 基地局から送信するリファレンスチャネルの信号電力対 干渉電力比、前記移動局から前記無線基地局に送信される推奨の変調・符号化レベル、下り回線で各移動局との間に設定される付随個別チャネルの送信電力レベル、前 記無線基地局から送信するリファレンスチャネルの受信 信号電力レベル、又は前記無線基地局から送信するリファレンスチャネルの受信信号電力対帯域内信号電力比の何れかであることを特徴とする請求項6~9の何れか1項に記載の無線基地局。

【発明の詳細な説明】

[0001]

30

【発明の属する技術分野】本発明は、下りパケットスケジューリング方法及び無線基地局に係り、より詳しくは、無線基地局と当該無線基地局により形成される無線ゾーンに在圏する複数の移動局の各々との間で無線通信を行う移動通信システムにおける、無線基地局から移動局への下り方向のパケット送信に関する下りパケットスケジューリング方法、及び当該移動通信システムを構成する無線基地局に関する。

[0002]

【従来の技術】移動通信システムの下りリンクにおいて、無線基地局が、当該無線基地局の形成する無線ゾーンに在圏する複数の移動局との間で、一つの物理チャネルを共有して用いる場合がある。以下、この時に用いられる物理チャネルを「下り共有チャネル」と呼ぶ。この下り共有チャネルにおいては、無線基地局が、通信相手

10

である複数の移動局に対する送信順序を、各移動局の瞬時の無線品質に基づいて制御することによって、その基地局で提供できるスループットを高めることが出来る。このような無線基地局による送信順序制御は、スケジューリングと呼ばれる。特に、伝送遅延に対する要求条件がさほど厳しくないパケットデータ伝送については、スケジューリングを適用することにより、通信容量が増大し、あるいは、通信品質が向上することが知られている(例えば、文献:J.M. Holtzman、IEEEVTC2000 spring)。

【0003】広帯域CDMA無線通信システムの2つの標準化プロジェクト「3GPP」(3rd generation partnership project)と「3GPP2」(3rd generation partnership project 2)において、下り方向高速パケット伝送方式である「HSDPA」(文献"3GPP TR25.848 v4.0.0")や「1XEV-Do」(文献"3GPP2 C.S0024Rev.1.0.0)の標準化が行われている。これらの方式においても、回線の通信速度を適応的に変える方式(適応変調・符号化方式)と、数msの周期で動作するスケジューリングを組み合わせて用いることで、個々のユーザに対するスループット、およびシステム全体のスループットを向上させることが出来るようになっている。

【0004】バケットスケジューリング方法として、従来から良く知られるものに、ラウンドロビンスケジューラ、Max C/Iスケジューラ、Proportional fairnessスケジューラと呼ばれるものがある。

【0005】このうちラウンドロビンスケジューラは、 無線基地局に属する移動局に順番に下り共有チャネルの 送信割り当てを行うものである。図7に、無線基地局 が、2つの移動局#1、#2と通信している場合の、そ れぞれの移動局における下り品質の時間的変動と、ラウ ンドロビンスケジューラによる送信割り当てパターンの 一例を示す。ただし、図中の太線で示した部分が、それ ぞれの移動局に送信割り当てが行われた時間区間を示 す。この図7に示されるように、ラウンドロビンスケジ ユーラは、下り品質にかかわらず、各移動局に順番に (図7の例では交互に)送信の割り当てが行われるた め、各移動局に対する送信に割り当てられる時間は公平 となる。しかしながら、各移動局の下り無線品質の良し 悪しに関係なく割り当てが行われるため、以下に説明す る他の2つのタイプのスケジューラに比較して、一般 に、得られるスループットは低くなる。

【0006】Max C/Iスケジューラは、無線基地局に属する移動局のうち、スケジューリング周期の開始時に下り品質が最も高い移動局に対して送信割り当てを行うスケジューリング方法である。図8に、無線基地局が、2つの移動局#1、#2と通信している場合の各移動局における下り品質の時間的変動と、Max C/Iスケジューラによる送信割り当てパターンの一例を示す。通常、伝送する回線の品質が高くなれば、伝送できる情報速度は高

くなることにより、このようなスケジューリング方法が、当該無線基地局のスループットを最大にする。しかしながら、例えば無線基地局から遠くに位置する移動局などの平均的に下り回線状況が悪い移動局に対してはほとんど送信機会が与えられないため、各移動局で得られるスループットが極端に異なるおそれがあるという問題が生じる。すなわち、基地局近傍に位置する移動局は極端に良いスループットを得ることが出来るものの、それ以外の移動局は非常に低いスループットとなる状況が生じうる。

【0007】Proportional fairnessスケジューラは、 上記ラウンドロビンスケジューラのように、各移動局へ の送信に割り当てられる時間は公平にしつつ、個々の移 動局の下り回線状況の瞬時的な変動に応じて送信割り当 てを行うスケジューラである。文献 (A. Jalai, IEEE V TC2000 spring) に、Proportional fairnessスケジュ ーラの詳細が示されている。具体的には、移動局の瞬時 の下り品質と時間平均した下り品質との比が一番高いも のに対して送信割り当てを行う。図9に、無線基地局 が、2つの移動局#1、#2と通信している場合の、そ れぞれの移動局における下り品質の時間的変動と、Prop ortional fairnessスケジューラによる送信割り当てパ ターンの一例を示す。この図9からわかるように、瞬時 下り品質を、平均下り品質で割った値をスケジューリン グの基準とすることで、各々の移動局において、下り品 質が比較的良い状況で送信の割り当てが行われるため、 ラウンドロビンスケジューラに比較して、高いスループ ットを得ることが期待できる。そのうえ、各々の移動局 における下り品質の変動の様子がほぼ等しい状況であれ ば、時間的に公平な割り当てを実現することが出来る、 という利点がある。このような利点により、従来は、Pr oportional fairnessスケジューラが用いられていた。

[0008]

【発明が解決しようとする課題】しかしながら、Propor tional fairnessスケジューラは、各々の移動局におけ る下り品質の変動具合が異なる場合には、時間的に公平 なスケジューリングが実現できない、という問題点があ る。即ち、下り品質の変動は、同じ無線基地局に属する 移動局の中でも、移動局の移動速度や移動局近傍の伝搬 条件などにより、大きく異なることもある。その場合、 変動が大きい移動局においては、その変動のピークに近 い部分で送信割り当てが行われるが、変動がほとんど生 じないような移動局においては、ほとんど送信割り当て が行われないという問題が生じうる。図10に、無線基 地局が3つの移動局#1、#2、#3と通信している場 合の、各移動局における下り品質の時間的変動とPropor tional fairnessスケジューラによる送信割り当てパタ ーンの一例を示す。図10において、移動局#3のよう な下り品質の変動が小さい移動局に対しては、送信割り 50 当て時間が極端に短くなり、時間的な公平性を実現でき

20

5

ないといった不都合が生じうる。

【0009】本発明は、上記課題を解決するために成されたものであり、各移動局の下り品質の変動具合が異なる場合においても、各移動局の下り品質が、当該移動局の平均的な下り品質に比べて良い場合に送信割り当てを移動局間で公平とすることができる下りパケットスケジューリング方法及び無線基地局を提供することを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため に、本発明に係る請求項1記載の下りパケットスケジュ ーリング方法は、無線基地局と当該無線基地局により形 成される無線ゾーンに在圏する複数の移動局の各々との 間で無線通信を行う移動通信システムにおける、前記無 線基地局から前記移動局への下り方向のパケット送信に 関する下りパケットスケジューリング方法であって、前 記無線基地局が、パケット通信中の各移動局についての 瞬時の下り品質情報と各移動局についての当該瞬時の下 り品質情報の時間的な分布とに基づいて、前記複数の移 動局における各移動局についてのパケット送信の優先度 を表す送信優先度係数を算出する優先度係数算出工程 と、前記無線基地局が、各移動局についての送信優先度 係数と各移動局に対して送信すべきパケットの有無とに 基づいて、送信すべきパケットを決定する決定工程と、 を有することを特徴とする。

【0011】請求項1に記載の構成によれば、無線基地局は、優先度係数算出工程にて、パケット通信中の各移動局についての瞬時の下り品質情報と各移動局についての当該瞬時の下り品質情報の時間的な分布(例えば、当該分布から得られる瞬時下り品質の平均値に加え、変動具合を表す値(標準偏差など))とに基づいて、複数の移動局における各移動局についてのパケット送信の優先度を表す送信優先度係数を算出し、決定工程にて、各移動局についての送信優先度係数と各移動局に対して送信すべきパケットの有無とに基づいて、送信すべきパケットを決定する。例えば、送信すべきパケットが存在する移動局の中で、算出された送信優先度係数が最も高い移動局のパケットを、送信すべきパケットとして決定することができる。

【0012】ここで、上記発明の作用を、具体例を挙げて説明する。図1(a)、(b)は、2つの移動局#1、#2における、下り品質の累積分布の一例を示したものである。この例では、2つの移動局の下り品質の分布が互いに異なる形状となっており、図1(a)に示す移動局#1の下り品質値は、変動幅が小さく、平均値の近傍に集中しているのに対し、図1(b)に示す移動局#2の下り品質値は、変動幅が大きく、広範囲に分布している。

【0013】ある時刻t0において、各移動局の下り品 50 ②移動局から無線基地局に送信される推奨の変調・符号

質値が、この図1に示すような時間的分布をとる場合には、従来のProportional fairnessスケジューラでは、(瞬時下り品質/平均下り品質)の値が高い方が選択されるので、この図1の例では、移動局#2が選択される。

【0014】一方、この発明では、瞬時下り品質の時間的な分布も考慮して選択が行われる。例えば、時刻 t 0 での瞬時値の累積確率は、移動局#1が「0.9」で、移動局#2が「0.7」であるが、この瞬時値の累積確率が高い方の移動局#1が、移動局#2よりも優先される。すなわち、上記発明は、各移動局の下り品質の変動度合いが異なる場合においても、時間的に公平な送信割り当てを行うように作用する。

【0015】このように、共有チャネルの送信割り当てにおいて、従来のように各移動局についての瞬時の下り品質と平均下り品質のみでなく、当該瞬時の下り品質情報の時間的な分布も判断要素に加えて、共有チャネルの送信割り当てが行われるので、各移動局における下り品質の変動の具合(即ち、時間的な分布の形状)が異なる場合においても、時間的に公平な送信割り当てを行うことが出来る。

【0016】ところで、優先度係数算出工程では、請求項2に記載したように、無線基地局は、送信優先度係数として、各移動局についての瞬時の下り品質情報の時間的な分布の累積確率値を算出することが好ましい。これにより、各移動局の下り品質が良い状況で送信割り当てが行われる上に、送信割り当ての公平化をより精度良く行うことができる。

【0017】また、優先度係数算出工程では、請求項3に記載したように、無線基地局は、各移動局についての瞬時の下り品質情報、各移動局についての瞬時の下り品質情報の時間的な分布から得られる当該瞬時の下り品質情報の平均値及び当該瞬時の下り品質情報の標準偏差に基づいて、各移動局についての送信優先度係数を算出することが好ましい。このように送信優先度係数の算出において、瞬時の下り品質情報の標準偏差を用いることで、各移動局の下り品質が良い状況で送信割り当てが行われる上に、比較的簡易に、時間的に公平なスケジューリングを実現することが出来る。

り 【0018】より具体的には、請求項4に記載したように、優先度係数算出工程では、無線基地局は、送信優先 度係数として、瞬時の下り品質情報と、当該瞬時の下り 品質情報の平均値及び当該下り品質情報の標準偏差の積 との比を算出することが好ましい。上記の比は、例え ば、(瞬時の下り品質情報/(瞬時の下り品質情報の平 均値×当該下り品質情報の標準偏差))で表される。

【0019】また、瞬時の下り品質情報としては、請求項5に記載したように、①無線基地局から送信するリファレンスチャネルの信号電力対干渉電力比(SIR)、

②発動日から無線基地局に送信される機能の意思。符号

化レベル(推奨MCSレベル)、③下り回線で各移動局 との間に設定される付随個別チャネルの送信電力レベ ル、④無線基地局から送信するリファレンスチャネルの 受信信号電力レベル、又は⑤無線基地局から送信するリ ファレンスチャネルの受信信号電力対帯域内信号電力 比、の何れかを採用することができる。

【0020】 ①リファレンスチャネルのSIRを採用すれば、精度よく品質の差別化を計ることが可能となり、②推奨MCSレベルを採用すれば、直接的に各移動局についてのスループットを高めるスケジューリングが可能となる。また、③付随個別チャネルの送信電力レベルを採用すれば、移動局からの下り品質報告を受けることなくスケジューリングを行うことが可能となり、④リファレンスチャネルの受信信号電力レベル又は⑤リファレンスチャネルの受信信号電力対帯域内信号電力比を採用すれば、移動局は簡易的に下り品質を測定することが可能となる。

【0021】上述した下りパケットスケジューリング方法に係る発明は、以下のように無線基地局に係る発明として記述することもできる。これらは実質的に同一の技 20 術的思想に基づくものであり、同様の作用・効果を奏する。

【0022】即ち、本発明に係る無線基地局は、請求項6に記載したように、自局により形成される無線ゾーンに在圏する複数の移動局の各々との間で無線通信を行うとともに、当該無線通信における前記移動局への下り方向のパケット送信の際に下りパケットスケジューリングを行う無線基地局であって、パケット通信中の各移動局についての瞬時の下り品質情報と各移動局についての瞬時の下り品質情報の時間的な分布とに基づいて、前記複数の移動局における各移動局についてのパケット送信の優先度を表す送信優先度係数を算出する優先度係数と各移動局に対して送信すべきパケットの有無とに基づいて、送信すべきパケットを決定する決定手段と、を備えたことを特徴とする。

【0023】ここで、優先度係数算出手段は、請求項7に記載したように、前記送信優先度係数として、各移動局についての瞬時の下り品質情報の時間的な分布の累積確率値を算出するよう構成することが好ましい。

【0024】また、優先度係数算出手段は、請求項8に記載したように、前記各移動局についての瞬時の下り品質情報、前記各移動局についての瞬時の下り品質情報の時間的な分布から得られる当該瞬時の下り品質情報の平均値及び当該瞬時の下り品質情報の標準偏差に基づいて、前記各移動局についての送信優先度係数を算出するよう構成することが好ましい。

【0025】また、優先度係数算出手段は、請求項9に 記載したように、前記送信優先度係数として、前記瞬時 の下り品質情報と、当該瞬時の下り品質情報の平均値及 50 び当該下り品質情報の標準偏差の積との比を算出するよう構成することが好ましい。

【0026】更に、瞬時の下り品質情報は、請求項10に記載したように、①無線基地局から送信するリファレンスチャネルの信号電力対干渉電力比、②移動局から前記無線基地局に送信される推奨の変調・符号化レベル、③下り回線で各移動局との間に設定される付随個別チャネルの送信電力レベル、④無線基地局から送信するリファレンスチャネルの受信信号電力レベル、又は⑤無線基地局から送信するリファレンスチャネルの受信信号電力対帯域内信号電力比、の何れかであることが好ましい。【0027】

【発明の実施の形態】[第1実施形態]以下、図面を用 いて本発明の第1実施形態について説明する。図2に は、本発明が適用された移動通信システム1のシステム 構成例を示す。同図に示すように、本発明は、無線基地 局10と複数の移動局20A、20B、20C(以下、 移動局20と総称する。)から構成される移動通信シス テム1を想定している。下り共有チャネル30は、全て の移動局20に対して共有して用いられる下り方向のみ のチャネルであり、各移動局20に対するパケットデー タを伝送するのに用いられる。一方、付随個別チャネル 40A、40B、40C(以下、付随個別チャネル40 と総称する。)は、下り共有チャネル30を用いて通信 を行う各々の移動局20に個別に割り当てられる双方向 のチャネルであり、上りでは、ユーザデータ以外に、パ イロットシンボル、下り付随個別チャネルのための送信 電力制御コマンド、共有チャネルのスケジューリング や、適用変調・符号化に用いるための下り品質情報等が 伝送される。下りでは、上り付随個別チャネルのための 送信電力制御コマンド等が伝送される。

【0028】図3には、本発明が適用される移動通信システムの無線基地局10の概要構成例を示す。同図に示すように、無線基地局10は、アンテナ11を備えた送受信無線部17と、上位ノードインターフェース部12と、下り共有チャネル送信信号処理部13と、付随個別チャネル送受信信号処理部14と、共通パイロットチャネル送信信号処理部15と、各チャネルの送受信信号処理部16とを含んで構成されている。

【0029】無線基地局10では、上位ノードより上位 ノードインターフェース部12を介して入力された各チャネルの送受信データは、各チャネルの送受信信号処理 部16に入力される。各チャネルの送受信信号処理部1 6において、上り方向のチャネルでは、逆拡散、Rake受信、誤り訂正復号やTPCコマンドの復号等の受信信号処理が行われる。また、下り方向のチャネルでは、誤り訂正符号化、下り高速送信電力制御のための送信電力調整、チャネライゼーションコード拡散処理等が行われる。

50 【0030】また、本発明が適用される対象の物理チャ

40

ネルである下り共有チャネル30(図2)の送信信号処 理部13には、各ユーザの付随個別チャネル送受信信号 処理部14より、上り付随チャネルを用いて各移動局2 0から報告された下り品質情報が入力される。

【0031】なお、下り共有チャネル30(図2)につ いては、下り共有チャネル送信信号処理部13により、 後述するスケジューリング等も行われる。送受信無線部 17においては、下り共有チャネル30に関する送信デ ータを下り共有チャネル送信信号処理部13から受け取 り、それらに対し、合成、スクランブルコード拡散を行 った後に、ナイキストフィルタリングや周波数変換が行 われ、アンテナ11より送信される。一方、アンテナ1 1から受信された信号は、送受信無線部17において、 周波数変換、フィルタリング、標本化、量子化が施され た上で、付随個別チャネル送受信信号処理部14および その他のチャネルの送受信信号処理部16に入力され

【0032】次に、図4を用いて、下り共有チャネル送 信信号処理部13の構成と動作を説明する。同図に示す ように、下り共有チャネル送信信号処理部13は、ユー ザデータ蓄積部13Aと、変調・符号化レベル選択部1 3 B と、優先度係数計算部 1 3 C と、優先度比較部 1 3 Dと、変調符号化部13Eとを含んで構成されており、 このうちユーザデータ蓄積部13A、変調・符号化レベ ル選択部13B及び優先度係数計算部13Cは、ユーザ 毎に設けられている。

【0033】下り共有チャネル送信信号処理部13で は、上位ノードから上位ノードインターフェース部12 を介して受信されたユーザデータは、ユーザデータ蓄積 部13Aに蓄積される。また、付随個別チャネル送受信 信号処理部14からは、各移動局20から付随個別チャ ネル40を用いて伝送された下り共通パイロットチャネ ルの受信SIR(受信に係る信号電力対干渉電力比)の 報告値が、変調・符号化レベル選択部13B及び優先度 係数計算部13Cに入力される。

【0034】優先度係数計算部13Cでは、入力された 下り共通パイロットチャネルの受信SIR報告値に基づ いて優先度が計算され、優先度比較部13Dに入力され る。一方、変調・符号化レベル選択部13Bでは、入力 された下り共通パイロットチャネル受信SIR報告値に 40 基づいて、変調・符号化レベルの選択が行われる。

【0035】優先度比較部13Dでは、各ユーザの優先 度の比較が行われ、ユーザデータ蓄積部13Aにデータ が蓄積されたユーザのうち送信優先度係数がもっとも高 いユーザ向けのユーザデータをユーザデータ蓄積部13 Aから変調符号化部13Eに入力するとともに、変調・ 符号化レベル選択部13Bから変調符号化レベルを変調 符号化部13Eに入力する。変調符号化部13Eでは、 入力されたユーザデータに対して、入力された符号化レ

ら処理後のユーザデータを送受信無線部17へ出力す る。

10

【0036】ここで、図5を用いて、本実施形態にて特 徴的な優先度係数計算部13Cの構成と動作を説明す る。同図に示すように、優先度係数計算部13Cは、下 り品質値累積確率分布作成部C1と累積確率計算部C2 とを含んで構成されている。

【0037】優先度係数計算部13Cでは、下り共通パ イロットチャネル受信SIR報告値が下り品質値累積確 率分布作成部 C 1 に入力され、下り品質値累積確率分布 作成部C1において下り共通パイロット受信SIR報告 値の累積確率分布が作成又は更新される。

【0038】また、累積確率計算部C2には、下り共通 パイロットチャネル受信SIR報告値と当該報告値の累 積確率分布とが入力され、累積確率計算部C2はこれら 累積確率分布および下り共通パイロット受信SIR報告 値を用いて、当該下り共通パイロット受信SIR報告値 の累積確率値を求め、得られた累積確率値を優先度比較 部13Dに出力する。この出力された累積確率値は、前 述したように、優先度比較部13Dにおいて送信優先度 係数として扱われ、送信優先度係数がもっとも高いユー ザ向けのユーザデータに対しスケジューリングされるこ ととなる。

【0039】以上、説明したように、本実施形態におい ては、下り品質の累積確率値をスケジューリングの優先 度として用いるため、個々の移動局20について考えた 場合には、下り品質状況の良い時に送信割り当てが行わ れることとなり、各々の移動局20に割り当てられる時 間を公平とすることができる。また、下り共通パイロッ ト受信SIR報告値を、スケジューリングの基準値とし て用いることにより、よりきめの細かい優先度判定が可 能となる。

【0040】 [第2実施形態] 次に、図面を用いて本発 明の第2実施形態について説明する。本実施形態では、 優先度係数計算部13Cの構成のみが第1実施形態と異 なる。即ち、無線基地局10の概要構成は第1実施形態 と同様、図3のとおりとする。そこで、図6を用いて本 実施形態の優先度係数計算部13Cの構成と動作を説明 する。

【0041】図6に示すように、優先度係数計算部13 Cは、下り共通パイロットチャネルの受信SIR報告値 の平均値を計算する平均値計算部C3と、下り共通パイ ロットチャネルの受信SIR報告値の標準偏差を計算す る標準偏差計算部C4と、除算機能を持つ除算部C5、 C6とを含んで構成される。

【0042】このような優先度係数計算部13Cには、 付随個別チャネル送受信信号処理部14 (図3) より下 り共通パイロットチャネルの受信SIR報告値が入力さ れ、当該報告値は除算部C5、平均値計算部C3、標準 ベルに基づいて、変調処理及び符号化処理を施し、これ 50 偏差計算部C4の各々に入力される。そして、平均値計 10

11

算部C3において平均値が計算されるとともに、標準偏差計算部C4において標準偏差が計算される。さらに、除算部C5では、入力Aとしての下り共通パイロットチャネルの受信SIR報告値を、入力Bとしての平均値で割る除算が行われ、その除算結果が除算部C6に出力される。さらに、除算部C6では、入力Aとしての上記除算結果(報告値/平均値)を、入力Bとしての標準偏差で割る除算が行われ、その除算結果、即ち、(報告値/(平均値×標準偏差))で表される比の値が送信優先度係数として出力される。

【0043】この出力された比の値は、第1実施形態で述べたように、優先度比較部13D(図4)において送信優先度係数として扱われ、送信優先度係数がもっとも高いユーザ向けのユーザデータに対しスケジューリングされることとなる。

【0044】以上、説明したように、本実施形態においては、スケジューリングの送信優先度係数として、瞬時の下り品質、およびその平均値だけでなく標準偏差も用いて得た値、即ち、(報告値/(平均値×標準偏差))で表される比の値を用いるため、個々の移動局20にお 20ける下り品質の変動具合が異なる場合においても、個々の移動局20について考えた場合には、下り品質状況の良い時に送信割り当てが行われることとなり、各々の移動局20に割り当てられる時間を公平とすることができる。また、このような時間的に公平なスケジューリングを行うための構成として、標準偏差を計算し除算するだけという簡易な構成で実現することができる。また、下り共通パイロットの受信SIRを、スケジューリングの基準値として用いることにより、よりきめの細かい優先度判定が可能となる。 30

【0045】なお、上記第1、第2実施形態では、下り品質報告を、下り共通パイロットチャネルの受信SIRとしているが、これを、移動局20による推奨MCSレベル、付随個別チャネルの送信電力、下り共通パイロットの受信電力、或いは下り共通パイロットのEc/No(受信信号電力対帯域内信号電力比)等とすることもできる。もちろん、下り品質の内容はこの発明を限定するものではない。

[0046]

【発明の効果】以上説明したように、本発明によれば、 共有チャネルの送信割り当てにおいて、従来のように各 移動局についての瞬時の下り品質と平均下り品質のみで なく、当該瞬時の下り品質情報の時間的な分布も判断要 素に加えて、共有チャネルの送信割り当てが行われるので、各移動局における下り品質の変動の具合(即ち、時間的な分布の形状)が異なる場合においても、時間的に公平な送信割り当てを行うことが出来る。

【図面の簡単な説明】

【図1】移動局における下り品質の累積分布の一例を示したグラフであり、(a)は下り品質値の変動幅が小さく平均値の近傍に集中している例を、(b)は下り品質値の変動幅が大きく広範囲に分布している例を、それぞれ示す。

【図2】移動通信システムのシステム構成図である。

【図3】無線基地局の構成図である。

【図4】下り共有チャネル送信信号処理部の構成図である。

【図5】第1実施形態における優先度係数計算部の構成 図である。

【図6】第2実施形態における優先度係数計算部の構成 図である。

【図7】2つの移動局における下り品質の時間的変動と ラウンドロビンスケジューラによる送信割り当てパター ンの一例を示す図である。

【図8】2つの移動局における下り品質の時間的変動と Max C/Iスケジューラによる送信割り当てパターンの一 例を示す図である。

【図9】2つの移動局における下り品質の時間的変動と Proportional fairnessスケジューラによる送信割り当 てパターンの一例を示す図である。

【図10】3つの移動局における下り品質の時間的変動 とProportional fairnessスケジューラによる送信割り 30 当てパターンの一例を示す図である。

【符号の説明】

1…移動通信システム、10…無線基地局、11…アンテナ、12…上位ノードインターフェース部、13…下り共有チャネル送信信号処理部、13A…ユーザデータ蓄積部、13B…変調・符号化レベル選択部、13C…優先度係数計算部、13D…優先度比較部、13E…変調符号化部、14…付随個別チャネル送受信信号処理部、15…共通パイロットチャネル送信信号処理部、16…送受信信号処理部、17…送受信無線部、20…移動局、30…共有チャネル、40…付随個別チャネル、C1…品質值累積確率分布作成部、C2…累積確率計算部、C3…平均値計算部、C4…標準偏差計算部、C5、C6…除算部。

【図2】

【図5】

【図4】

【図3】

【図6】

フロントページの続き

F ターム(参考) 5K030 GA08 HC09 JL01 JT09 LA03 LE05 MA04 MB04

5K033 AA07 CA11 CB18 CC01 DA01

DA17 DB16 EA02

5K067 AA21 BB04 BB21 CC08 DD11

DD43 DD45 DD51 EE02 EE10

FF02 GG04 GG06 HH11 HH22