

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a VIII-a

Varianta 2

Problema 1. Arătați că dacă $m, n \in \mathbb{N}^*$, atunci

$$\left\{\frac{m}{n}\right\} + \left\{\frac{n}{m}\right\} \neq 1.$$

(Am notat cu $\{x\}$ partea fracționară a numărului real x.)

Gazeta Matematică

Problema 2. Fie $a, b, c \in [1, \infty)$. Demonstrați că

$$\frac{a\sqrt{b}}{a+b} + \frac{b\sqrt{c}}{b+c} + \frac{c\sqrt{a}}{c+a} + \frac{3}{2} \le a+b+c.$$

Problema 3. Fie paralelipipedul dreptunghic ABCDA'B'C'D'. Notăm cu M, N și P mijloacele muchiilor [AB], [BC], respectiv [BB']. Fie $\{O\} = A'N \cap C'M$.

- a) Arătați că punctele D, O, P sunt coliniare.
- b) Arătați că $MC' \perp (A'PN)$ dacă și numai dacă ABCDA'B'C'D' este cub.

Problema 4. a) Fie numerele naturale nenule a,b,c astfel încât a < b < c și $a^2 + b^2 = c^2$. Demonstrați că dacă $a_1 = a^2$, $a_2 = ab$, $a_3 = bc$, $a_4 = c^2$, atunci $a_1^2 + a_2^2 + a_3^2 = a_4^2$ și $a_1 < a_2 < a_3 < a_4$.

b) Demonstrați că, oricare ar fi $n \in \mathbb{N}$, $n \geq 3$, există numerele naturale nenule a_1, a_2, \ldots, a_n care verifică relațiile $a_1^2 + a_2^2 + \ldots + a_{n-1}^2 = a_n^2$ și $a_1 < a_2 < \ldots < a_{n-1} < a_n$.