CS4.301: Data and Applications (Monsoon 2022) **Quiz - 2**

Time: 45 minutes

Maximum Marks: 22

1. List down 3 differences between Primary and Foreign keys.

(3)

Define and give an example of an Artificial key.

(2)

3. Using the entity type described below, answer the following questions.

- a. Which of the following can be a superkey of the entity type depicted above?
 - i. {DOB, Address}
 - ii {SID}
 - {Name, Address, SID} λίi.
 - {DOB, Gender}
- b. Calculate the number of superkeys possible and list down atleast 8 of them.

(2+4)

- 4. A relation can have one or more attributes that take distinct values. Any of these attributes can be used to uniquely identify the tuples in the relation. Such attributes are called _____ key.
 - (a) Primary
 - (b) Candidate
 - (c) Composite
 - (d) Foreign

5. Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course. Specify the foreign keys for this schema, stating any assumptions you make.

> STUDENT(Ssn, Name, Major, Bdate) COURSE(Course#, Cname, Dept) ENROLL(Ssn, Course#, Quarter, Grade) BOOK_ADOPTION(Course#, Quarter, Book_isbn) TEXT(Book_isbn, Book_title, Publisher, Author)

(4)6. For a given relational database schema, the referential integrity constraints and its initial state is given below. Discuss all integrity constraints (if any) that will be violated by the following operations.

	users			orders			books	
ser_id	email	name	order_no	vuser_id	product_sku	 product_sku	title	price
10	sadio@example.com	Sadio	93	11	123	123	Aurora	15
11	mo@example.com	Mohamed	94	11	789	456	Blind take	10
12	rinsola@example.com	Rinsola	95	13	789	789	Invisible Planets	25
13	amalie@example.com	Amalie	96 ,	10	101	101	The Sparrow	15
			47	nikeman basa ang m	456.			

a. INSERT <97, 14, 456> INTO orders

b. INSERT <412, 10, 101> INTO orders

- c. DELETE tuple from books WHERE product_sku = 456
- d. DELETE tuple from books WHERE product_sku = 101
 - e. MODIFY the product_sku attribute of the orders tuple with order_no = 96 to 456
 - MODIFY the user_id attribute of the orders tuple with order_no = 94 to 14

(6)

CS4.301: Data and Applications (Monsoon 2022)

End-Semester

Date: Nov 21, 2022

Time: 3 hours

Maximum Marks: 50

Ques 1. Consider the following ER diagram with the following functional dependencies.

- $b1 \rightarrow b4$
- $b4 \rightarrow b5$
- All other functional dependencies are apparent from the ER diagram
 - Each of the non-prime attributes of an entity are dependent on all of its prime attributes.
 - Each of the attributes of a relationship are dependent on the prime attributes of the participating entities.

- (a) Convert the ER diagram into a relational model.
- (b) Convert the resulting relational model into 1NF, 2NF, and 3NF.

Note: Multiple normal forms can be the same as each other or the same as the initial relational model.

You are expected to draw at least 1 and at most 4 relational models corresponding to each of the forms of the relational model:

(i) Un-normalized (ii) 1NF (iii) 2NF (iv) 3NF

Ques 2. Consider two tables namely, emp_department and emp_details. DPT_CODE and EMP_IDNO are the Primary Keys for emp_department and emp_details respectively. EMP_DEPT in emp_details is a Foreign Key referencing DPT_CODE of emp_department.

What will be the output for the following query?

SELECT emp_department.DPT_NAME FROM emp_details INNER JOIN emp_department ON EMP_DEPT = DPT_CODE GROUP BY emp_department.DPT_NAME HAVING COUNT(*) > 2;

(3)

emp_department

DPT_CODE	DPT_NAME	DPT_ALLOTMENT
57	IT	65000
63	Finance	15000
47	HR	240000
27	RD	55000
89	QC	75000

emp_details

EMP_IDNO	EMP_FNAME	EMP_LNAME	EMP_DEPT
1	Madhvi	Reddy	· 57
2	Pria	Khanna	63
3	Sandeep	Rajput	
4	Ashirwad	Sharma	57
5	Piyush	Khatri	63
6	Shivani	Parashar	47
7	Sreoshi	Das	47
8	Kabir	Thapar	57
9	Naina	Talwar	47
10	Avi	Malhotra	57
11	Mohan	Bhargav	27
12	Guru	Arvind	63
13	Komaram		27
		Bheem	57

DPT.name	Count.
57 (II)	5
63 (F)	3
47 (HR)	3
27 (Ro	2
1 89139	D.
	57(It) 63 (f) 47 (HR) 27(Ro

Ques 3. Consider two tables *company_mast* and *item_mast* with com_id and pro_id as their Primary Keys respectively. pro_com is a Foreign Key referencing the com_id of *company_mast*.

company_mast

com_id	com_name
11	Samsung
12	iBall
13	Epsion
14	Zebronics
15	Asus
16	Frontech

item	mast
TCCIII	mast

item_mas	it			•
pro_id	pro_name	pro_price	pro_com]
101	Mother Board	-3200.00	15	
102	Key Board	-450.00	16	
103	Zip Drive	250.00	14 🗴 🥹	2000
104	Speaker	-550.00	16	
105	Monitor	-5000.00	11 🛩	
106	DVD	-900.00	12	935
107	CD	-800.00	12	
108	Printer	.2600.00	13 -	1475.
109	Refill Cartridge	-350.00	13	1
110	Mouse	250.00	12 _	

Show the output for the following queries.

(a) SELECT AVG(pro_price), company_mast.com_name FROM item_mast INNER JOIN company_mast
ON item_mast.pro_com= company_mast.com_id
GROUP BY company_mast.com_name
HAVING AVG(pro_price) >= 350;

11/03/3

(b) SELECT A.pro_name, A.pro_price, F.com_name FROM item_mast A INNER JOIN company_mast F ON A.pro_com = F.com_id AND A.pro_price = (3+3)

Ques 4. Consider three tables customer, salesman and orders with customer_id, salesman_id and ord_no as their Primary Keys respectively. salesman_id of customer is a Foreign Key referencing the salesman_id of salesman. customer_id of orders is a Foreign Key referencing the customer_id of customer. salesman_id of orders is a Foreign Key referencing the salesman_id of salesman.

customer

customer_id	cust_name	city a.city	grade	salesman_id
3002	Nick Rimando	New York	100	5001 -
3007	Brad Davis	New York	200	
3008	Julian Green	London	300	5001 •
3005	Graham Zusi	California 🗸		5002
3009	Geoff Cameron	Berlin	200	5002
3004	Fabian Johnson	Paris	100	5003 🛪
3001	Brad Guzan	London	300	5006 •
3003	Jozy Altidor		The second second	5005 ×
		Moscow /	200	5007

salesman

salesman_id	name		
5006	Mc Lyon	city b.city	commission
5001	James Hoog	Paris	0.14
5002	Nail Knite	New York	0.15 _
5003	Lauson Hen	Paris ~	0.13
5005	Pit Alex	San Jose	
5007	Paul Adam	London	0.12 X
		Rome	0.11 🗶
			0.13

orders

ord_no	purch_amt		T	
70001		ord_date	customer_id	salesman_id
	150.5	2022-10-05	3005	5002
70011	75.29	2022-08-17	3003	
70009	270.65	2022-09-10		5007
70002	65.26		3001	5005
70005	03.26	2022-10-05	3002	5001
70005	2400.6	2022-07-27	3007	5001
70004	110.5	2022-08-17	3009	5003
70007	948.5	2022-09-10	3005	5002
70013	3045.6	2022-04-25	3002	5001
70008	5760	2022-09-10	3002	5001
70010	1983.43	2022-10-10	3004	5006
70003	2480.4	2022-10-10	3009	5003
70012	250.45	2022-06-27	3008	5002

(a) Show the output for:

- (i) SELECT a.cust_name AS "Customer Name", a.city, b.name AS "Salesman", b.city, b.commission FROM customer a INNER JOIN salesman b ON a.salesman_id=b.salesman_id WHERE b.commission>.12 AND a.city<>b.city;
- (ii) SELECT a.cust_name, a.city, a.grade, b.name AS "Salesman", c.ord_no, c.ord_date, c.purch_amt FROM customer a
 RIGHT OUTER JOIN salesman b ON b.salesman_id=a.salesman_id LEFT
 OUTER JOIN orders c ON c.customer_id=a.customer_id WHERE
 c.purch_amt>=2000 AND a.grade IS NOT NULL;
- (b) How many tuples will have city as 'London' on executing the following query?

 SELECT a.cust_name, a.city, b.ord_no, b.ord_date, b.purch_amt

 AS "Order Amount" FROM customer a

 FULL OUTER JOIN orders b ON a.customer_id=b.customer_id WHERE

 a.grade IS NOT NULL;

(3+3+3)

Ques 5. Given a relation BOOK(ISBN, Title, Publisher, Address) and Functional Dependency set (ISBN → Title, ISBN → Publisher, Publisher → Address). Determine the normal form of the given relation.

(3)

Ques 7. Refer to the following tables:

StudentDetails

Studid	Name	EnrollmentNo	DateOfJoining	
11	Nick Panchal	1234567	01/02/2019	
21	Yash Panchal	2468101	15/03/2017	
31	Gyan Rathod	3689245	27/05/2018	

StudentStipend

Studld	Project	Stipend
11	P1	80000
21	P2	10000
31	P1	120000

Write an SQL query to:

- (a) Fetch student names and stipend records. Return student details even if the stipend record is not present for the student.
- (b) Fetch all student records from StudentDetails table who have a stipend record in StudentStipend table.
- (c) Retrieve all the Students who also have enrollment No from StudentDetails table.
- (d) Fetch count of students project-wise sorted by project's count in descending order.
- (e) Find the nth highest stipend from the table.

(3*5=15)