

FACULTAD DE INGENIERÍA

LABORATORIO DE CIRCUITOS DIGITALES Y ELÉCTRICOS

Reporte elaborado por:				

Práctica 3. Medición de corriente.

Objetivos

- Reforzar el uso de la tablilla de pruebas.
- Aprender a medir corriente con el multímetro.

Lista de materiales

- 1 Tablilla de pruebas.
- 1 Multímetro.
- 1 Fuente de voltaje.
- Cables para conectar la fuente a la tablilla de pruebas.
- 1 Resistor de cada uno de los siguientes valores de resistencia: 470Ω , $1K\Omega$, $4.7K\Omega$, $100K\Omega$ todas de potencia máxima 2W, tolerancia 5%.

Nota importante: La medición de corriente es diferente que la medición de voltaje, ponga mucha atención antes de hacer cualquier conexión y/o medición.

Antecedentes

Cada resistor en el circuito tiene una constante asociada (su resistencia, por ejemplo, 470Ω) y dos variables, su voltaje y su corriente, esta práctica está destinada a la medición de corriente utilizando el multímetro.

Asegúrese de tener seleccionado la corriente de cd en el multímetro antes de comenzar la medición. Y asegúrese de conectar las puntas al común y a la conexión roja con el símbolo de la letra mA.

Fig. 1 Multímetro.

Nota importante: para medir el corriente, conectaremos el circuito a la fuente de voltaje, a eso se le llama energizar, **NO** intente medir la resistencia de algún resistor cuando esté energizado, esto podría dañar el equipo de medición.

Desarrollo de la práctica:

Configure la fuente de voltaje a 15 V, RECORDANDO que para medir voltaje es necesario cambiar la punta del multímetro de la conexión mA a la conexión V.

• Circuito 1:

En este circuito, vea la Fig. 2, no se utilizarán resistencias, solamente la fuente de voltaje.

Fig. 2 (a) Medición del voltaje V_{n1-n2} , (b) medición del voltaje V_{n2-n1} .

• Circuito 2:

En este circuito, vea la Fig. 3, se utilizarán dos resistencias, una de 330Ω y otra de 680Ω , recuerde que estos son los valores nominales, antes de conectar el circuito mida individualmente cada una de las resistencias y llene la siguiente tabla para conocer los valores reales o medidos los cuales deben de ser cercanos, pero podrían ser ligeramente diferentes a los nominales.

	R_1	R_2
Nominal	1KΩ	4.7KΩ
Medido		

Una vez conocidos los valores medidos, arme el circuito como se muestra a continuación:

Observaciones del circuito

- 1. Una vez conectado el circuito NO intente medir la resistencia de los resistores, eso no se debe hacer cuando el circuito se encuentra energizado.
- 2. El circuito tiene 3 nodos, pero todos los elementos se encuentran en serie, por lo tanto, la corriente del circuito es las misma, para comprobarlo mida la corriente de R1 y R2.

	I_{R1}	I_{R2}
Corriente teórico		
Corriente medido		

Fig. 3 Circuito 2 y ejemplo de cómo se mediría la corriente I_{R2} .

• Circuito 3:

Este circuito consta de dos resistencias en paralelo (ver Fig. 4), por lo tanto, existen dos corrientes en el circuito. Medir las corrientes que pasan por R1 y R2. Posteriormente medir la corriente total del circuito.

	I_{R1}	I_{R2}	I_T
Corriente teórico			
Corriente medido			

Fig. 4 Circuito 3 resistencias en paralelo.

• Circuito 4:

En este circuito, vea la Fig. 5, se utilizarán cuatro resistencias, una de cada una de los siguientes valores: 470Ω , $1K\Omega$, $4.7K\Omega$ y $100K\Omega$, recuerde que estos son los valores nominales, antes de conectar el circuito mida individualmente cada una de las resistencias y llene la siguiente tabla para conocer los valores reales o medidos los cuales deben de ser cercanos, pero podrían ser ligeramente diferentes a los nominales.

	R_1	R_2	R_3	R_4
Nominal	470Ω	1ΚΩ	4.7ΚΩ	100ΚΩ
Medido				

Una vez conocidos los valores medidos, arme el circuito como se muestra a continuación:

Y procederemos a medir las corrientes, y a llenar la siguiente tabla con los resultados.

	I_{R1}	I_{R2}	I_{R3}	I_{R4}	I_T
Valor teórico					
Voltaje medido					