CHAPTER 8

Properties Of Context-Free Languages

By R. Ameri

Today's Lecture

- The Pumping Lemma For
 - Context-free languages
 - Linear context-free languages
- Closure properties for context-free languages
- Decidable problems for context-free languages

Linear Context-Free Grammar

A linear grammar is a context-free grammar that has at most one non-terminal / variable in the right hand side of each of its productions.

Linear languages are a strict subset of the context-free languages.

Linear Context-Free Language

A linear context-free language is a language generated by some linear grammar.

$$L = \{a^n b^n : n \ge 1\}$$
$$S \to aSb \mid ab$$

Non-Linear Context-Free Language

A non-linear context-free language is a language that can't generated by any linear grammar.

$$L = \{ w \mid w \in \{a, b\}^*, \ n_a = n_b \}$$

$$G1: S \rightarrow aSbS \mid bSaS \mid \lambda$$

$$G2: S \rightarrow SS \mid asb \mid bSa \mid \lambda$$

Venn-diagram for Chomsky classification of formal languages

The Pumping Lemma for Context-Free Languages

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write w = uvxyz

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

and it must be:

$$uv^i xy^i z \in L$$
, for all $i \ge 0$

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: v and y consist from only a

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating
$$v$$
 and y

$$k \ge 1$$

$$m+k$$
 m

aaaaaaa...aaaaaaa bbb...bbb ccc...ccc

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k \ge 1$

$$m+k$$
 m

aaaaaaa...aaaaaaa bbb...bbb ccc...ccc

$$u v^2 x v^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: vxy is within b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: vxy is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: Similar analysis with case 1

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

Theorem: The language

$$L = \{a^nb^n\} \cup \{a^nb^{2n}\} \cup \{a^nb^nc^n\}$$
 is **not** context free

Proof: Use the Pumping Lemma for context-free languages ???

Theorem: The language

$$L = \{ww : w \in \{a, b\}^*\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{ww : w \in \{a, b\}^*\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{ww : w \in \{a,b\}^*\}$$

$$w = a^m b^m a^m b^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{ww : w \in \{a, b\}^*\}$$

$$w = a^m b^m a^m b^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case:

$$L = \{ww : w \in \{a, b\}^*\}$$

Case:

From Pumping Lemma: $uv^0xy^0z \in L$

However: $uv^0xy^0z = a^kb^ja^mb^n \notin L, k < m; j < m$

Contradiction!!!

Theorem: The language

$$L = \{a^{n!} : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^{n!} : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n!} : n \ge 0\}$$

$$w = a^{m1}a^k a^{m2}a^j a^{m3}; k + j \ge 1$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m1 + k + m2 + j + m3 = m!$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^{n!} : n \ge 0\}$$

Case 1: From Pumping Lemma: $uv^0xy^0z \in L$

However:

$$uv^{0}xy^{0}z = a^{m1}a^{m2}a^{m3} = a^{m!-(k+j)} \notin L,$$

$$(m-1)! \le m! - (k+j) \le m!$$

Contradiction!!!

Theorem: The language

$$L = \{ww^R w \mid w \in \{a,b\}^*\}$$
 is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{ww^R w \mid w \in \{a, b\}^*\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{ww^R w \mid w \in \{a,b\}^*\}$$

$$w = a^m b^m b^m a^m a^m b^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^k$$
; $y = a^{k1}$; $k + k1 \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{ww^R w \mid w \in \{a, b\}^*\}$$

Case 1: From Pumping Lemma: $uv^0xy^0z \in L$

However:

$$uv^{0}xy^{0}z = a^{m-k-k}b^{m}b^{m}a^{m}a^{m}b^{m} \notin L$$

Contradiction!!!

The Pumping Lemma for Linear Context-Free Languages(LCFL)

The Pumping Lemma for LCFL:

For infinite linear context-free language ${\cal L}$

there exists an integer m such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write w = uvxyz

with lengths $|uvyz| \le m$ and $|vy| \ge 1$

and it must be:

$$uv^i xy^i z \in L$$
, for all $i \ge 0$

Theorem: The language

$$L(M) = \{ w \mid w \in \{a,b\}^* : n_a(w) = n_b(w) \}$$

is **not** linear context free

Proof: Use the Pumping Lemma for linear context-free languages

$$L(M) = \{ w \mid w \in \{a,b\}^* : n_a(w) = n_b(w) \}$$

Assume for contradiction that L is linear context-free

Since L is linear context-free and infinite we can apply the pumping lemma

$$L(M) = \{w \mid w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

$$w = a^m b^m b^m a^m$$

$$w = uvxyz \quad |uvyz| \le m \quad \text{and} \quad |vy| \ge 1$$

$$uv^i xy^i z \in L \quad \text{for all} \quad i \ge 0$$

$$m \quad m \quad m$$

$$aaa...aaa \ bbb...bbb \ bbb...bbb \ aaa...aaa$$

$$u \quad v \quad x \quad v \quad z$$

$$L(M) = \{ w \mid w \in \{a,b\}^* : n_a(w) = n_b(w) \}$$

Case:

From Pumping Lemma: $uv^0xy^0z \in L$

However:

$$uv^{0}xy^{0}z = a^{k1}(a^{k})a^{k2}b^{2m}a^{k3}(a^{k4})a^{k5}$$
$$= a^{k1}a^{k2}b^{2m}a^{k3}a^{k5} \notin L, k+k4 \ge 1$$

Contradiction!!!

Closure properties for context-free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\Longrightarrow}$ L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{\text{not necessarily}}{\text{context-free}}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

is context free \longrightarrow L

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Reverse

Context-free languages are closed under:

Reverse

L is context free lacktriangle L^R context-free

Subtraction

Context-free languages are **not** closed under:

Subtraction

$$L_{
m l}$$
 is context free

 L_2 is context free

not necessarily
context-free

Homomorphism

Let h be a homomorphism. If L is a Context-free language, then its homomorphic image h (L) is also Context-free.

The family of Context-free languages is therefore closed under arbitrary homomorphisms.

Intersection
of
Context-free languages
and
Regular Languages

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

DFA M_2

NPDAM

$$\begin{array}{c}
 q_1, p_1 \\
 \hline
 a, b \rightarrow c \\
 \hline
 q_2, p_2
\end{array}$$
transition

DFA M_2

 (p_1)

NPDA M

$$\begin{array}{c}
q_1, p_1 & \lambda, b \to c \\
\hline
\text{transition}
\end{array}$$

DFA M_2

initial state

initial state

NPDA M

Initial state

DFA M_2

 (p_1)

final state

final states

NPDA M

final states

Example:

context-free

$$L_1 = \{ w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^* \}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of

a context-free language and
a regular language
is a context-free language

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap \overline{L_1}$ context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free **Impossible!!!**

Therefore, L is not context free

Reverse

linear context-free languages are closed under: Reverse

L Is a linear context free context-free

Concatenation

linear context-free languages are not closed under: Concatenation

 L_1 is linear context free L_1L_2 L_2 Is linear context free Is <u>not</u> linear context-free

Union

Deterministic context-free language are <u>not</u> closed under: Union

 L_1 is context free $L_1 \cup L_2$ is context free $L_2 \text{ is not necessarily }$ context-free

Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is non-deterministic context free

Decidable Properties of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

· Exhaustive search parser

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

Dependency graph

Infinite language

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^{2} S(bbb)^{2}$$

$$\stackrel{*}{\Rightarrow} (acbb)^{i} S(bbb)^{i}$$