INFORMATION SHEET FOR LAPLACE TRANSFORMS

Formula	Name, Comments
$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty e^{-st} f(t) dt$ $f(t) = \mathcal{L}^{-1}\lbrace F(s)\rbrace$	Definition of Transform Inverse Transform
$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}$	Linearity
$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$ $\mathcal{L}(f'') = s^{2}\mathcal{L}(f) - sf(0) - f'(0)$ $\mathcal{L}(f^{(n)}) = s^{n}\mathcal{L}(f) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$	Differentiation of Function
$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}\mathcal{L}(f)$	Integration of Function
$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$ $\mathcal{L}^{-1}\lbrace F(s-a)\rbrace = e^{at}f(t)$	s-Shifting (1st Shifting Theorem)
$\mathcal{L}\lbrace f(t-a)u(t-a)\rbrace = e^{-as}F(s)$ $\mathcal{L}^{-1}\lbrace e^{-as}F(s)\rbrace = f(t-a)u(t-a)$	t-Shifting (2nd Shifting Theorem)
$\mathcal{L}\{tf(t)\} = -F'(s)$	Differentiation of Transform
$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\tilde{s})d\tilde{s}$	Integration of Transform
$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$ $= \int_0^t f(t - \tau)g(\tau)d\tau$ $\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g)$	Convolution
$\mathcal{L}(f) = \frac{1}{1 - e^{-\ell s}} \int_0^\ell e^{-st} f(t) dt$	f Periodic with Period ℓ

Table of Laplace Transforms

$F(s) = \mathcal{L}\{f(t)\}\$	f(t)
1/s	1
$1/s^2$	$\mid t \mid$
$1/s^n (n=1,2,\ldots)$	$t^{n-1}/(n-1)!$
$1/\sqrt{s}$	$1/\sqrt{\pi t}$
$1/s^{3/2}$	$2\sqrt{t/\pi}$
$1/s^a (a > 0)$	$t^{a-1}/\Gamma(a)$
$\frac{1}{s-a}$	e^{at}
$\frac{1}{(s-a)^2}$	te^{at}
$\frac{1}{(s-a)^n} (n=1,2,\ldots)$	$\frac{1}{(n-1)!} t^{n-1} e^{at}$
$\frac{1}{(s-a)^k} (k>0)$	$\frac{1}{\Gamma(k)} t^{k-1} e^{at}$
$\frac{1}{(s-a)(s-b)} (a \neq b)$	$\frac{1}{(a-b)} \left(e^{at} - e^{bt} \right)$
$\frac{s}{(s-a)(s-b)} (a \neq b)$	$\frac{1}{(a-b)} \left(ae^{at} - be^{bt} \right)$

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)
	$\frac{1}{s^2 + \omega^2}$	$\frac{1}{\omega} \sin \omega t$
,	$\frac{s}{s^2 + \omega^2}$	$\cos \omega t$
	$\frac{1}{s^2 - a^2}$	$\frac{1}{a} \sinh at$
	$\frac{s}{s^2 - a^2}$	$\cosh at$
	$\frac{1}{(s-a)^2 + \omega^2}$	$\frac{1}{\omega} e^{at} \sin \omega t$
	$\frac{s-a}{(s-a)^2 + \omega^2}$	$e^{at}\cos\omega t$
	$\frac{1}{c(c^2+c^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$
	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^3} \left(\omega t - \sin \omega t \right)$
	$\frac{1}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega^3} \left(\sin \omega t - \omega t \cos \omega t \right)$
	$\frac{s}{(s^2 + \omega^2)^2}$	$\frac{t}{2\omega} \sin \omega t$
	$\frac{s^2}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega} \left(\sin \omega t + \omega t \cos \omega t \right)$
	$\frac{s}{(s^2+a^2)(s^2+b^2)} \ (a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} \left(\cos at - \cos bt \right)$
	e^{-as}/s	u(t-a)
	e^{-as}	$\delta(t-a)$