PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED (JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:	(11) International Publication Number: WO 98/30717	
C12Q 1/08	A2	(43) International Publication Date: 16 July 1998 (16.07.98)
(21) International Application Number: PCT/EP((22) International Filing Date: 2 December 1997 (CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,	
(30) Priority Data: 60/032,069 2 December 1996 (02.12.96)) U	Published Without international search report and to be republished upon receipt of that report.
(71) Applicant (for all designated States except US): BIOC [FR/FR]; Campus Universitaire des Cézeaux, 24, av Landais, F-63170 Aubière (FR).	A. es	
(72) Inventor; and (75) Inventor/Applicant (for US only): MURIGNEUX [FR/FR]; Biocem S.A., Campus Universitaire des 24, avenue des Landais, F-63170 Aubière (FR).		
(74) Agent: BREESE-MAJEROWICZ; 3, avenue de F-75001 Paris (FR).	а,	
• .		
•		
(54) Title: VEGETAL SEQUENCES INCLUDING A PO	LYMO	RPHIC SITE AND THEIR USES
(57) Abstract		
A nucleic acid segment comprising at least 10 contig complement of the segment.	ucleotides from a vegetal sequence including a polymorphic site; or the	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

٨L	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armonia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	keland	MW	Malawi	US	United States of Americ
CA	Canada	TI	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/30717 PCT/EP97/07134

5

10

15

20

25

30

35

VEGETAL SEQUENCES INCLUDING A POLYMORPHIC SITE AND THEIR USES

The genomes of all organisms undergo spontaneous mutation in the course of their continuing evolution generating variant forms of progenitor sequences (Gusella, Ann, Rev. Biochem. 55, 831-854 (1986)). The variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form or may be neutral. In some instances, a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism. In other instances, a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form. In many instances, both progenitor and variant form(s) survive and co-exist in a species population. The coexistence of multiple forms of a sequence gives rise to polymorphisms.

Several different types of polymorphism have been reported. A restriction fragment length polymorphism (RFLP) means a variation in DNA sequence that alters the length of a restriction fragment as described in Botstein et al., Am. J. Hum. Genet. 32, 314-331 (1980). The restriction fragment length polymorphism may create or delete a restriction site, thus changing the length of the restriction fragment. RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; WO 90/11369; Donis-Keller, Cell 51, 319-337 (1987); Lander et al., Genetics 121, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.

Other polymorphisms take the form of short tandem repeats (STRs) that include tandem di-, tri- and tetra-nucleotide repeated motifs These tandem repeats are also referred to as variable number tandem repeat (VNTR) polymorphisms. VNTRs have been used in identity and

10

15

20

25

30

35

primers).

paternity analysis (US 5,075,217; Armour et al , FEBS Lett. 307, 113-115 (1992); Horn et al., WO 91/14003; Jeffreys, EP 370,719), and in a large number of genetic mapping studies.

Other polymorphisms take the form of single

nucleotide variations between individuals of the same species. Such polymorphisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymorphisms occur in proteincoding sequences, in which case, one of the polymorphic forms may give rise to the expression of a defective or other variant protein. Other single nucleotide polymorphisms occur in noncoding regions. Some of these polymorphisms may also result in defective or variant protein expression (e.g., as a result of defective splicing). Other single nucleotide polymorphisms have no phenotypic effects. Single nucleotide polymorphisms can be used in the same manner as RFLPs, and VNTRs but offer several advantages. Single nucleotide polymorphisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymorphism. The greater frequency and uniformity of single nucleotide polymorphisms means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest than would be the case for other polymorphisms. Also, the different forms of characterised

Despite the increased amount of nucleotide sequence data being generated in recent years, only a minute proportion of the total repository of polymorphisms has so far been identified. The paucity of polymorphisms hitherto identified is due to the large amount of work required for their detection by conventional methods. For example, a conventional approach to identifying polymorphisms might be to sequence the same stretch of oligonucleotides in a

single nucleotide polymorphisms are often easier to distinguish that other types of polymorphism (e.g., by use of assays employing allele-specific hybridization probes or WO 98/30717 PCT/EP97/07134

3

population of individuals by didoxy sequencing. In this type of approach, the amount of work increases in proportion to both the length of sequence and the number of individuals in a population and becomes impractical for large stretches of

SUMMARY OF THE INVENTION

DNA or large numbers of subjects.

5

10

15

20

25

30

35

The invention provides nucleic acid segments containing at least 10, 15 or 20 contiguous bases from a vegetal fragment including a polymorphic site notably a single nucleotide polymorphism (SNP). In a particular embodiment, a vegetal fragment does not belong to the Cruciferae family.

The segments can be DNA or RNA, and can be double- or single-stranded. Some segments are 10-20 or 10-50 bases long. Preferred segments include a diallelic polymorphic site. In a preferred embodiment, the invention concerns nucleic acid segments from a fragment shown in Table I (corn).

The Invention further provides allele-specific oligonucleotides that hybridizes to a segment of a vegetal fragment, for example fragment in Table I. These oligonucleotides can be probes or primers. Also provided are isolated nucleic acid" comprising a sequence of Table I or the complement thereto, in which the polymorphic site within the sequence is occupied by a base other than the reference base shown in Table I.

The invention further provides a method of analyzing a nucleic acid from a subject. The method determines which base or bases is/are present at any one of the polymorphic vegetal sites for example of those of Table I. Optionally, a set of bases occupying a set of the polymorphic sites shown in Table I is determined. This type of analysis can be performed on a plurality of subjects who are tested for the presence of a phenotype. The presence or absence of phenotype can then be correlated with a base or

10

15

20

25

30

35

set of bases present at the polymorphic sites in the subjects tested.

DEFINITIONS

A nucleic acid, such an oligonucleotide, oligonucleotide can be DNA or RNA, and single- or double-stranded. Oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means. Preferred nucleic acids of the invention include segments of DNA, or their complements including any one of the polymorphic sites shown in Table I. The segments are usually between 5 and 100 bases, and often between 5-10, 5-20, 10-20, 10-50, 20-50 or 20-100 bases. The polymorphic site can occur within any position of the segment. The segments can be from any of the allelic forms of DNA shown in Table I. Methods of synthesizing oligonucleotides are found in, for example, Oligonucleotide Synthesis: A Practical ApproacA (Gait, ed., IRL Press, Oxford, 1984).

Hybridization probes are oligonucleotides capable of binding in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen et al., Science 254, 1497-1500 (1991).

The term primer refers to a single-stranded oligonucleotide capable of acting as a point of initiation of template-directed DNA synthesis under appropriate conditions (i.e., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as, DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template A primer need not reflect the exact sequence of the template but must be sufficiently complementary to hybridize with a template. The term primer site refers to the area of the target DNA to which a primer

WO 98/30717

5

10

15

20

25

30

35

5

hybridizes. The term primer pair means a set of primers including a 5' upstream primer that hybridizes with the 5' end of the DNA sequence to be amplified and a 3', downstream primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

Linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome, and can be measured by percent recombination between the two genes, alleles, loci or genetic markers.

Polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be a' small as one base pair. Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu. The first identified allelic form is arbitrarily designated as a the reference form and other allelic forms are designated as alternative or variant alleles. The allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms. A diallelic polymorphism has two forms. A triallelic polymorphism has three forms.

A single nucleotide polymorphism occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in 1QSS than 1/100 or 1/1000 members of the populations).

A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A transition is the replacement of one purine by another purine or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele.

Hybridizations are usually performed under stringent conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25°C For example, conditions of 5X SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30°C are suitable for allele-specific probe hybridizations.

Nucleic acids of the invention are often in isolated form. An isolated nucleic acid means an object species that is the predominant species present (i.B., on a molar basis it is more abundant than any other individual species in the composition). Preferably, an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present. Most preferably, the object species is purified to essential homogeneity (contaminant specie" cannot be detected in the composition by conventional detection methods).

25

5

10

15

20

DESCRIPTION OF THE PRESENT INVENTION I. Novel Polymorphisms of the Invention

The present application provides for example oligonucleotides containing polymorphic sequences isolated from graminae species for example maize. The invention also includes various methods for using those novel oligonucleotides to identify, distinguish, and determine the relatedness of individual strains or pools of nucleic acids from plants.

35

30

EXAMPLES

Example 1. Maize DNA extraction

10

15

20

30

35

DNA was extracted from maize lines as described in Rogers and Bendich (1988 Plant Mol Biol Manual A6 : 1-10) with modification described in Murigneux et al (1993 theo Appl Genet 86 : 837-842).

PCR amplification was done on six maize lines representing a wide range of genetic variability and including both european flint material and US dent germplasm. Those six maize lines have been choosen to maximize the genetic variability of cultivated maize. Doing so, optimize the chance of finding polymorphism in the allelic sequences. For example G1, an european flint line and G3, an US Corn Belt Stiff Stalk line, are completly unrelated. Their genetic distance (coefficient of dissimilarity) calculated with our standard approach (89 RFLP probe/enzyme combinations and Nei-li distance) is 0.69. This value is close to the maximum distance between two cultivated maize lines.

Among the 15 genetic distance between couple of these 6 lines: 8 are superior to 0.6, 6 superior to 0.5 and only one inferior to 0.5. This shows that the choice of the lines avoided as much as it was possible the potential redudancy (or similarity) of allele at the locus sequenced. With the same effort of sequencing we should therefore have collected the maximum number of polyphomism.

25 Genotypes:

G1=flint line

G2=flint line

G3=Dent line

G4=Dent line

G5=Dent line

G6=Dent line

Example 2. Choice of the markers

The markers have been chosen with the following criteria.

1. Selection of markers that give a single band in southern hybridization. This is to avoid as much as

10

30

35

possible the problems of duplicated sequences (very frequent in plants). If the same (or nearly the same) sequence occurs at several position in the genome (locus 1 and 2) and if the primers used to type the SNP found on locus 1 allow amplification of the sequence at the locus 2, the results of hybridization on the chips will be the addition of two markers pattern and therefore impossible to use.

- 2. Distribution on the genome : most of the genetic analysis in plant aim to characterize the whole genome (genetic variability evaluation, mapping quantitative trait-locus, back-cross assisted selection). The second criteria was therefore to choose markers nicely distributed over the 10 chromosomes (see Table A hereunder for map position).
- 3. Selection of gene coding for enzymes involved in the Carbone metabolism. Wx1, Ae1, Sh2, Brel, Bt1, Ssu, Bt2 are involved in sugar-starch metabolism. Such a choice will allow to have a very fast characterization of the allelic variability (possibly linked to efficiency) of gene involved in this metabolism.

The following markers have been used : see Table A.

LEGEND OF TABLE A

25 Probe = name of the marker COD = in-house code.

MAP Pos = map position, given by the bin location of the University of Missouri map (Maize Genetic Newsletter $n^{\circ}69$ 1995). Examples of reading the "MAP Pos" and "Prim" columns : 1.01-1.02 means that it is the core probe that delimit the bins 1 and 2 on chromosome 1

5.01 means that it is located in the bin 5.01 (on chromosome 5)

4 means that it is located on chromosome 4
S01F is the forward primer for probe 1
S01R is the reverse primer for probe 1
Genbank/ EMBL = Genbank/ EMBL number

TABLE A

	Csnpld	(33 1	markers)			
5	PROBE	COD :	Map Pos	PRIM	SEQUENCES OLIGOS	Senbank/EMBL
	UMC157	S01	1.01-1.02	S01F	CGCACGCACATTAGCTTTCG	G10822
				S01R	TGCAACCGAACAGGATCTGC	G10823
	UMC76	S02	1.02-1.03	S02F	ATTATTCGGCGTCCAGCCCC	G10865
10				S02R	TTACCAGCGGTGAGAGCTGC	G10866
	UMC67	S03	1.05-1.06	S03F	CGTTCGTGTGGCATCAATCG	G10864
				S03R	CGACATCATCATCGGCAACC	G13173
	UMC161	S06	1.10-1.11	S06F	CAGACCTTGGTTGGAGGCAAC	G10824
				S06R	TCGCTCCCCTTCTTCCTTCC	G10825
15	UMC53	S08	2.01-20.2	S08F	CGGACGTGATGCAAGTTTCG	G10851
			0 04 0 05	S08R	AGCGGCTCAAGCTCTCCATC	G10852
	UMC131	S10	2.04-2.05	S10F2	TCCTTGGCACTCACGCTACC	G10816
	TD 40 40	~1 ~	2 00 2 00	S10R2	AGCATGGGGGGCAACAACTC	G10817
20	UMC49	S12	2.08-2.09	S12F	CAGAGAGCCGTCTCGAATCG	G10845
20	7B4C102	S14	2 04 2 05	S12R S14F	TTGATACTGCCGTCTGCCG	G10846 .
	UMC102	514	3.04-3.05	S14F S14R	TGCTGTGCTGTCACATGGCG CTGGGTCGTCGTGCTTTGAG	G10801
	UMC 63	S16	3.08-3.09	514K 516F2	ACGCCCTGACAGAACCATCG	G10802 G10857
	0110 03	510	3.00 3.07	S16R	TTGCTCACTCGTGGTCGTGG	G10857
25	Adh2	S17	4.03	S17F2	TGCCTGCTGCATCTCTAGCC	X02915
	114112	01.		S17R2	CAAGCCCGAAAATCGCCAC	X02915
	UMC 66	S19	4.06-4.07	S19F	TGGAGTGTCCAAAGACCGACC	G10862
				S19R	ACCAAAACGGGTGGTCTGCC	G10863
	UMC90	522	5.01	S22F	GCAGGTGAACAATGCTGCCC	G10870
30				S22R	CCAAAAGGCGGAGAACCGAC	G10871
	Ae1	S23	5.05	S23F	TCGCTGGGGTTTTAGCATTG	L08065
				S23R	CACTCGAACTCTGTTCAAGGCTTG	L08065
	UMC59	S26	6.01-6.02	S26F	TCCAAAGCGAAAGCCTGATG	G10853
				526R	TACGATGGCCGTGACCCTTC	G10854
35	UMC 65	s27	6.03-6.04	S27F	TTCCAGCTTTCCTCGGCACC	G10860
				527R	AGCAGCAAGAGCAGAGCGTG	G10861
	UMC21	S28	6.04-6.05	S28F	TGCAGATGTGCCTTTCCTGTG	G10830
				S28R	CAGTGGATTCGCTCCCTTCTC	G10831
10	UMC132	529	6.06-6.07	S29F	CGCACAGAGGCAGATGCAGC	G10824
40	IMODE 4	S33	7.03-7.04	S29R	CGCTAGGCAGAGGTTCGAGC	G10819
	UMC254	233	7.03-7.04	S33F S33R	CCGGGCGCAAAAGAATGTG AAGAAACCAGCACCAGCGGG	G10832 G10833
	UMC80	S34	7.04	S34F	TCGCCTTTATCGGTGCAATG	G10833 G10867
	OMCOU	224	7.04	S34R	TGGAGCAAGCATGGAGATCG	G10868
45	BNL9-11	538	8.01-8.02	S38F2	CGAGGGAATGTCATCAACCC	G10008
	DD. 11		0.01 0.02	S38R2	ACCAAAGCTCCTCAGCCAAG	G10779
	UMC109	S42	9.00-9.01	S42F	GCACCGTCGTTTACCTCAAGC	G13177
				S42R	TAGCCATCATCAGCGCGTG	G10807
	Wx1	S43	9.02-9.03	S43F	CGTGCTACCTCAAGAGCAAC	X03935
50				S43R	ACTTCACGGCGATGTACTTG	X03935
/	UMC95	S44	9.04-9.05	S44F	CACTCGGAAGTCGGAATCGC	G10872
				S44R	ACCTTCGCAGTGTTGCGGAC	G10872
	CSU61	S45	9.05-9.06	S45F	TCTCCACGAATCCCACCGTC	T12691
				S45R	AAGGGAGGAATCCTCTACCG	T12691
55	UMC130	S48	10.02-10.03	S48F	AAGGGGGAAGAAGGTCATC	G10814
		.0		S48R	CGATGGCAACAACTACCAGTAG	G10815
	CSU109	<i>\$</i> 53	2.09	S53F	GCTTTCGGTTCCGGATAGCG	T12721
		ar -		S53R	ACTGGGCCATCTCCGACCAG	T12721
60	UAZ77	S56	5.04	S56F2	GCAACCAACTGCAACATCGC	T18762
60				S56R2	GAAGGAGCTCAAGGCCAAGG	T18762

WO 98/30717 PCT/EP97/07134

10

	Sh1	S 57	9.01	S57F	TGCTGTTATTGCGTGCCGTG	X02382
				S57R2	AAGGTGGCACCAAGGCGTTC	X02382
	Sh2	S63	3.09	S63F	TTCTTCACTGCACCCCGATG	M81603
				S63R	CTGCTCACTCTGCAATGCCC	M81603
5	Bre1	S65	6	S65F	AGCAGCAGATCAGGCACACC	U17897
				S65R	TTGAAGTTCGTTTCGGGCAC	U17897
	Bt1	S66	5	S66F	GGCAAGGATCGGAGTTGCTC	M79333
				S66R	TAGCGTGGAGGACGTTCTGG	M79333
	Ssu	S67		S67F	GCAAGCAAGCAAGCAGCGAG	D00170
10				· S67R	GACCCGAAGCAAAACCGAAC	D00170
	Bt2	S71	4	S71F	TGCCGAAAAAGGTGGCATTC	Seq (Bae et al
						1990)
				S71R	GCCCCCAATGTCGATTCAAC	

15

20

25

30

35

40

Example 3. PCR amplification

PCR amplification was done with primer designed using the DNA sequences of the markers listed above. The sequences for all markers/genes were available on Genbank/EMBL.

Forward and reverse primers are given in the table A hereabove.

PCR condition were as followed

For each reaction in 30 microliters: DNA:60 ng; Taq DNA polymerase (Amersham): 0.9 unit; Buffer 10x: 3 microliter; dNTP's: 0.2 mM each; MgCl2: 1.5 mM; BSA 0.8mg/ml; primers 1.5 ng/microliter each; glycerol 5%.

Polymerisation was done in a perkin Elmer 9600 : 1' at 95°C, followed by 35 cycles of (30° at 94°C, 30° at 60°C, 1'30° at 72°C) followed by 1'30° at 72° C.

The sequencing of 186 maize amplicon was then done with the primers used for DNA allele amplification. DNA sequences were edited and aligned. Sequence surronding polymorphism (see table I here-under were collected from these alignments.

LEGEND OF TABLE I (with references to the Bt2 gene for instance.)

Column 1 (Bt2) represents the name of the marker or gene.

Column 2 (Bt2-G2/G6-1) represents :

- the name of the maker (Bt2)

- the genotype number (G2)
- the second genotype number (G6)

- and the number of the SNP (single nucleotide polymorphism). So, in this case, it is a SNP found on a sequence nucleotide Bt2 between the genotypes (strains of maize) G2 and G6 and this SNP was numbered 1 (Sometimes there are several SNP between two genotypes for the same sequence)

Column 3 represents : similar to column 2, but
with the codification of the marker/gene.

Column 4 represents sequence holding the SNP. Into brackets: [G/T] means that the sequence of G2, at this position of Bt2 gene, is G, while for G6, it is T.

On the other hand, /G (CSU61-G1/G5-1A) means deletion of the base pair G in G1 compared to G5.

15

10

TABLE I

csnp1d

Bt2-G2/G6-1 Bt2 S71G2/G6-1 ATAATACTTGATATGCCATT[G/T]TGTCCTCTTATTTTTAACAT Ssu Ssu- G1/G5-1 S67G1/G5-1 ATGGCCTCGTCGGCCACTGC[A/C]GTCGCTCCGTTCCATGGGCT Ssu-G1/G3-1 Ssu S67G1/G3-1 GCCGCTCCTCCAGAAGCCTC[G/A]GCAACGTCAGCAACGGCGGA Ssu-G1/G3-2 Ssu S67G1/G3-2 GTGTTGCCCATCCCATCCCA[A/T]TTCCCAACCCCAAACGAACC Ssu-G1/G3-3 GTACCTGCCGCCGCTGTCGA[CG/AC]GGACGACCTGCTGAAGCAGG Ssu S67G1/G3-3 Bt1 Bt1-G2/G3-1 S66G2/G3-1 AGTGAGCCCGCTTCTTATTC//TJTAAGGTGATAGGTTTCTAAA **Bt1** Bt1-G2/G3-2 S66G1/G3-1 AATGTAATGGTACTCCGCGCTT/CJATGGCTCTGGTACTTAGGAA Bt1-G2/G3-3 Bt1 S66G1/G2-1 AAATAGGCTCGGGCAATTAT[C]CAGCTTAGGGACAGCAAGCG Bre1 Bre1-G3/G6-1 S65G3/G6-1 TCCGCCCTGCCTCCGGTTTT[AT]GCCCGACCTTCGAAACATTC Bre1-G3/G6-2 Bre1 S65G3/G6-2 ACCACTGACGTAGCACCTCC[G/TJACTTCTCGTTGTAAAACCCC Bre1-G3/G5-1 GGAGGTTCGCCTCATGTTATIC/TIGTTGACGAGCCACATCCACT Bre1 S65G3/G5-1 Bre1 Bre1-G4/G6-1 S65G4/G6-1 GCTCCGACTTCCAATCTTGAJACJCCTCCACCCTGCCTCCGGTT ASG12 ASG12-G1/G3-1 S64G1/G3-1 CTGGTTGAAATGTGTTGAAG[C/A]TACTAGTGATGAACTGCTTG ASG12 ASG12-G1/g3-2A S64G1/a3-2A GCTGCTCCAAGCGAGCCCGCCCCCCCGAAAAAGGAAAAAGGTGA ASG12 ASG12-G1/g3-2B S64G1/g3-2B GCTGCTCCAAGCGAGCCCGC[C/G]CCGAAAAAGGAAAAGTTGA ASG12 S64G1/g3-3A CGCCCGAAAAAGGAAAAAG[G/T]TGAAGGTCCTTACTCACCGA ASG12-G1/g3-3A ASG12 ASG12-G1/g3-3B S64G1/g3-3B CGCGCCGAAAAAGGAAAAAG[G/T]TGAAGGTCCTTACTCACCGA GAACCGGCCACAGTGCCTGA[T/A]TTTGGCGGTGAGACCTCTTC
GAACCGGCCACAGTGCCTGA[T/A]TTTGGCGGTGAGACTTCTTC ASG12 ASG12-G1/gG3-4A S64G1/gG3-4A ASG12 ASG12-G1/g3-4A S64G1/g3-4A Sh2-G5/G6-1 Sh2 S63G5/G6-1 Sh2-G4/G6-1 Sh2 S63G4/G6-1 TACTGAGAGAATGCAACATC[C/GJAGCATTCTGTGATTGGAGTC Sh2-G4/G5-1A Sh2 TTTTAGTGTACTTGACTTGT[C/T]CTCCTCCACAGATGAAATAT S63G4/G5-1A Sh2 Sh2-G4/G5-1B S63G4/G5-1B TTTTTGTGTACTTGACTTGTTCTTCTCCACAGATGAAATAT Sh2 Sh2-G3/G6-1 S63G3/G6-1 TCTGTGATTGGAGTCTGCTC[G/A]CGTGTCAGCTCTGGATGTGA Sh1-G5/G6-1 Sh1 S57G5/G6-1 AACTACAAAAAGCATCTCCTTG/TJGGATTTGGCTATCTCCTTTT Sh1 Sh1-G2/G5-1 S57G2/G5-1 TTAGCGCGAAAAAAAACTC//TJTTTTTTTTTTTGTCCTTTTACT Sh1-G2/G3-1 Sh1 S57G2/G3-1 TCAATCCAATCAATTTAATT[T/C]CTTCCTTTAAAAATATTATC Shi Sh1-G1/G2-1 S57G1/G2-1 TTACTACGAAAAACTCTTGA[G/I]TCTAGGAATTTGAATTTGTG Shi Sh1-G1/G2-2A S57G1/G2-2A CTTCTTGGATTTTGCTATCTTT/C)CTTTTACTACGAAAAACTCT Sh1 Sh1-G1/G2-2B S57G1/G2-2B CTCCTTGGATTTTGCTATCT[T/C]CTTTTACTACGAAAAACTCT Sh1 Sh1-G1/G2-3A S57G1/G2-3A TTTTACTACGAAAAGCATCT[T/C]CTTGGATTTTGCTATCTTCT Sh1 Sh1-G1/G2-3B S57G1/G2-3B TTTTACTACGAAAAGCATCT[T/C]CTTGGATTTTGCTATCTCCT Sh1 S57G1/G2-4 S57G1/G2-4 GAAGCCAAATCCTATTATTTTTACCTGCCTCTAGGGTCTGAATG UAZ77 UAZ77-G4/G6-1 GTACACTGTTACAATCACAC[T/G]TAGTGAAGCGCAACACAGAT S56G4/G6-1 UAZ77 UAZ77-G4/G6-2 S56G4/G6-2 GCCTTATCATCCTCTAGGTAT/AJTGGAGACGAGTGACCAGTCT UAZ77 UAZ77-G4/G6-3 S56G4/G6-3 CTTTCTTCAGACCCGAGCCCCTTCTGTGC UAZ77 UAZ77-G4/G6-3 S56G4/G6-3 CTTTTCTTCAGACCCGAGCC[C/T]CCAATCGCGCCCTTTTGTGC UAZ77 UAZ77-G4/G5-1A S56G4/G5-1A GAGCCCCAATCGCGCCCTT[C/T]TGTGCCTTGGCCTTGAGCTC UAZ77 UAZ77-G4/G5-1A S56G4/G5-1A GAGCCTCCAATCGCGCCCTT[C/T]TGTGCCTTGGCCTTGAGCTC **UAZ171** UAZ171G1/G3-1 S55G1/G3-1 GAAGGAGCAGCAGCGCAAGG[AJACGTGTTCCAAGTCAACGTC **UMC17** UMC117-G2/G3-1 S54G2/G3-1 GTAGAAAGTTAGCAAAAACATA **UMC17** UMC117-G2/G3-2 S54G2/G3-2 ATTGTGGCTAGAAACTTTGG/TJTTTTTTTAAATTATGGTCAT **CSU109** CSU109-G5/G6-1 S53G5/G6-1 GCAAACCAACACCAATCTTC|G/C|AAATGAGCAAAGCAGAGACT **CSU109** CSU109-G5/G6-2 S53G5/G6-2 CAGATOGGTTGTCCTCAGAGIAJAAGTCACCTACCTGCAAACC CSUMOS CSU109-G5/G6-3 853G5/G6-3 **AATTCTACATAGGAGTCATG[C/T]ACAAGTACTTGTTTAAAGGA** CSU109 CSU109-G5/G6-4 S53G5/G6-4 **ACAAGTACTTGTTTAAAGGAIC/CATGCCGGAATACACGCTGC CEU109** CSU109-G5/G6-5A S53G5/G6-5A GAGCGAGATCGATCCTGTTG[T/C]CATCCATCACTGCCATAGGA CSU109 CSU109-G5/G6-5B \$53G5/G6-5B GAGCGAGATCGATCCTGTTG[T/C]CATCCATCACTGCCGTAGGA CSU109 CSU109-G4/G6-1 S53G4/G6-1 TAGTCATAGCAACAGCATGC[G/A]TCGTGATGTAGCGTTCACCC **CSU109** CSU109-G4/G6-2 S53G4/G6-2 CAATTGAAGAGGAAAAAAAAATTTCTACATAGGAGTCATGTAC CSU109 CSU109-G4/G5-1 S53G4/G5-1 CAGAGACTOCACAAGGCGAAAACIGGAGTCCACAATAGTTCGTC CCCACGGGGGAGATGGTGG[T/]TAGAAGCGGAACCACCGAGC CSU109 CSU109-G3/G5-1 S53G3/G5-1 CSU109 CSU109-G2/G6-1 853G2/G6-1 **ACTTGTTTAAAGGACATGCC[G/JGGAATACACGCTGCCCAGGC CSU109** CSU109-G2/G3-1 85302/03-1 CCCAGGCCTTCCCACGGCGGAGGATGGTGGTTAGAAGCGGAA CSU109 CSU109-G1/G6-1 S53G1/G6-1 CAAAGCAGAGACTCCACAAGIAGICGAACAGAGTCCGCAATAGT **CSU109** CSU109-G1/G6-2 853G1/G6-2 GAACAGAGTCCGCAATAGTT[T/C]ATCCTAATGCTACTTCGAGC UMC130 UMC130-G3/G6-1 GATTCAGAAACAGTGGCGGCJAGJGATGTAGCATCAACACGCCC S48G3/G6-1 **CSU61** CSU61-G5/G6-1 S45G5/G6-1 ATGAGTATATTCAAGTCATATT/CJTGTGAACTAGAATGTTATTT CSU61 CSU61-G5/G6-2A S45G5/G6-2A CCTAGACGCTGACCGCCACA[G/A]ACGCGGGGGGGCTGCCAAATC **CSU61** CSU61-05/08-28 SASGS/GR-7R CCTAAACGCTGACCGCCACA[B/A]ACGGCGGCGGCTGCCAAATC CSU61 CSU61-G5/G6-3 S45G5/G6-3 TGAACAAACCATGCGCTACCCCTTAGCTAGGTGTTTTAAAGTAA CRURT CSU61-G4/G6-1 845G4/G6-1 TCCGCGGAAACAACATCCGATGTTTTCTTGAGGATAACCCAGCT **CSU61** CSU61-G4/G5-1 S45G4/G5-1 GGGAGGGAAAAAAAAGAAG/AJAGCGTTGCTTGCGGTTCAGT **CSU61** CSU61-G4/G5-2 S45G4/G5-2 GGCGGCTGCCAAATCCGCGG/JAJAAACGACATCCGAGTTCTTG **CSU61** C\$U61-G2/G4-1A S45G2/G4-1A CTAGAATGTTATTTCTTCAC/C/A/GTTGACCATGGAAAAAAAAA CSU61 CSU61-G2/G4-1B S45G2/G4-1B CTAGAATGTTATTTCTTCAC/C/A/GTTGACCATGGAAAGAAACA **CSU61** CSU61-G2/G4-2A 545G2/G4-2A TTCACCGTTGACCATGGAAAJAGJAAACAGTAATAAGTTCTTGT **CSU61** CSU61-G2/G4-2B S45G2/G4-2B TTCACAGTTGACCATGGAAA/AGJAAACAGTAATAAGTTCTTGT TTCTTCACAGTTGACCATGGYAMAAAAACAGTAATAAGTTC **CSU61** CSU61-Q1/G6-1 S45G1/G6-1 CSU61 CSU61-G1/G5-1A S45G1/G5-1A GAACCCACCGTGCCCTGGGA/GJGGGAAAAAAAAAAAAAAAAAGAGCG **CSU61** CSU61-G1/G5-1B S45G1/G5-1B CSU61 CSU61-G1/G5-2A 845G1/G5-2A TGGGAGGGAAAAAAAAGAAGA/G/AJAGCGTTGGTTGCGGTTCAGT CSU61 CSU61-G1/G5-3 S45G1/G5-3 CGTACCAGCTAGGAATCGTA(A/G)AAAAGCCTAGACGCTGACCG UMC95 UMC95-G5/G6-1 S44G5/G6-1 GCTGCGTCAATCATCACTTCTT/ACCCACAGGCGTCAAGTACAG **UMC85** UMC95-G3/G4-1 GACAGATTCCAAAGTAGTCG[C/T]CGGCCAGGTCGAAAAAGAAT S44G3/G4-1 UMC95 UMC95-G2/G6-1 S44G2/G6-1 GGCGCTGCGTCAATCATCACQATTTCACCCACAGGCGTCAAGTA

csnp1d

UMC95	UMC95-G2/G4-1A	S44G2/G4-1A
UMC95	UMC95-G2/G4-1B	S44G2/G4-1B
UMC95	UMC95-G2/G4-2A	S44G2/G4-2A
UMC95	UMC95-G2/G4-2B	S44G2/G4-2B
UMC95	UMC95-G2/G3-1A	S44G2/G3-1A
UMC95	UMC95-G2/G3-1B	S44G2/G3-1B
UMC95	UMC95-G1/G6-1	S44G1/G6-1
UMC95	UMC95-G1/G2-1	S44G1/G2-1
Wx1	Wx1-G2/G6-1	S43G2/G6-1
Wx1	Wx1-G2/G6-2	S43G2/G6-2
Wx1	Wx1-G2/G6-1B	S43G2/G6-1B
Wx1	Wx1-G2/G6-2B	S43G2/G6-2B
Wx1	Wx1-G2/G6-3	S43G2/G6-3
Wx1	Wx1-G2/G5-1	S43G2/G5-1
Wx1	Wx1-G2/G4-1	S43G2/G4-1
Wx1	Wx1-G6/G1-1	S43G6/G1-1
Wx1	Wx1-G1/G6-1	S43G1/G6-1
Wx1	Wx1-G1/G5-1	S43G1/G5-1
Wx1	Wx1-G2/G6-1	S43G2/G6-1
Wx1	Wx1-G2/G6-1B	S43G2/G6-1B
Wx1	Wx1-G2/G6-2	S43G2/G6-2
Wx1	Wx1-G2/G6-2B	S43G2/G6-2B
Wx1	Wx1-G2/G6-5	\$43G2/G6-5
	Wx1-G2/G6-3 Wx1-G2/G4-1	\$43G2/G4-1
Wx1 Wx1	Wx1-G2/G3-1	S43G2/G3-1
		\$43G2/G3-1 \$43G2/G3-3
Wx1	Wx1-G2/G3-3	
Wx1	Wx1-G1/G6-1	S43G1/G6-1
Wx1	Wx1-G6/G1-1	\$43G6/G1-1
Wx1	Wx1-G6/G1-1	S43G6/G1-1
Wx1	Wx1-G1/G6-2	\$43G1/G6-2
Wx1	Wx1-G1/G6-3	S43G1/G6-3
Wx1	Wx1-G1/G5-1	S43G1/G5-1
Wx1	Wx1-G1/G4-1	S43G1/G4-1
Wx1	Wx1-G1/G4-1	\$43G1/G4-1
Wx1	Wx1-G1/G3-1	S43G1/G3-1
Wx1	Wx1-G5/G6-1	\$43G5/G6-1
UMC109	UMC109-G2/G6-1	S42G2/G6-1
UMC109	UMC109-G2/G3-1A	\$42G2/G3-1A
UMC109	UMC109-G2/G3-1B	\$42G2/G3-1B
UMC109	UMC109-G2/G3-1C	S42G2/G3-1C
UMC109	UMC109-G2/G3-1D	S42G2/G3-1D
UMC80	UMC80-G3/G5-1	S34G3/G5-1
UMC80	UMC80-G3/G5-2	S34G3/G5-2
UMC80	UMC80-G3/G5-3	S34G3/G5-3
UMC80	UMC80-G3/G4-1	S34G3/G4-1
UMC80	UMC80-G3/G4-2	S34G3/G4-2
UMC80	UMC80-G3/G4-2B	S34G3/G4-2B
UMC80	UMC80-G2/G5-1	S34G2/G5-1
UMC80	UMC80-G2/G5-2	S34G2/G5-2
UMC80	UMC80-G2/G5-3	634G2/G5-3
UMC80	UMC80-G2/G3-1	834G2/G3-1
UMC254	UMC254-G5/G8-1A	S33G5/G6-1A
UMC254	UMC254-G5/G6-1B	\$33G5/G6-1B
UMC254	UMC254-G5/G6-2	S33G5/G6-2
UMC254	UMC254-G5/G6-3	S33G5/G6-3
UMC254	UMC254-G5/G6-4	S33G5/G6-4
UMC254	UMC254-G5/G6-5A	S33G5/G6-5A
UMC254	UMC254-G5/G6-5B	S33G5/G6-5B
UMC254	UMC254-G4R/G6-1A	S33G4R/G6-1A
UMC254	UMC254-G4R/G6-1B	S33G4R/G6-1B
UMC254	UMC254-G3R/G8-1A	S33G3R/G6-1A
UMC254	UMC254-G3R/G6-1B	S33G3R/G6-1B
UMC254	UMC254-G3R/G6-2A	S33G3R/G6-2A
UMC254	UMC254-G3R/G6-2B	\$33G3R/G6-2B
UMC254	UMC254-G3/G6-3	S33G3/G6-3
		S33G3/G5-1A
UMC254	UMC254-G3/G5-1A	
UMC254	UMC254-G3/G5-1B	S33G3/G5-1B
UMC254	UMC254-G2R/G3-1A	833G2R/G3-1A
UMC254	UMC254-G2R/G3-1B	S33G2R/G3-1B
UMC254	UMC254-G1R/G2-1	S33G1R/G2-1
ASG49		S32G3/G5-1
ASG49	ASG49-G3/G5-2	S32G3/G5-2
ASG49	ASG49-G3/G5-3	\$32G3/G5-3
ASG49	ASG49-G3/G5-4	S32G3/G5-4
ASG8	ASG8-G3/G5-1	\$31G3/G5-1
ASG8	ASG8-G3/G4-1	S31G3/G4-1

TCGGTGTCACCACATGCATA[T/G]TCAGGACAGATTCCAAACTA TCGGTGTCACCACATGCATAIT/GITCAGGACAGATTCCAAAGTA GTCGCCGGCCAGGTCGAAAAIG/AIGAATACTCAGCAAAAGACCC GTCGTCGGCCAGGTCGAAAAJGAJGAATACTCAGCAAAAGACCC TATTCAGGACAGATTCCAAAJCAGJTAGTCGCCGGCCAGGTCGAA TAGTCAGGACAGATTCCAAAIC/GJTAGTCGCCGGCCAGGTCGAA GCGTCAAGTACAGATACGCAJA/GJCACGCCTCAGCTTCGCCTTG CCTGGGACTCCGCAAATTGC[G/A]AGCACTCGGTGTCACCACAT GCTGGTTCATTATCTGACCT[G/T]GATTGCATTGCAGCTACAAG CTGGATTGCATTGCAGCTACIA/GJAGAAGCCCGTGGAAGGCCGG GCTGGTTCATTATCTGACCT[G/T]GATTGCATTGCAGCTACGAG CTTGATTGCATTGCAGCTACIA/GJAGAAGCCCGTGGAAGGCCGG TCAGCCCCTACTACGCCGAAIG/JGAGCTCATCTCCGGCATCGC TACCCGGAGCTGAACCTCCC[C/G]GAGAGATTCAAGTCGTCCTTTGCATGTGAACATTCATGAA[T/C]GGTAACCCACAACTGTTCGC CTCCTACCAGGGCCGGTTCG[T/]CCTTCTCCGACTACCCGGAG TGAATGGTAACCCACAACTG[C/T]TCGCGTCCTGCTGGTTCATT GCCGACAGGGTCCTCACCGTTG/CJAGCCCCTACTACGCCGAAGA GCTGGTTCATTATCTGACCT[G/T]GATTGCATTGCAGCTACAAG GCTGGTTCATTATCTGACCT[G/T]GATTGCATTGCAGCTACGAG CTGGATTGCATTGCAGCTACIA/GJAGAAGCCCGTGGAAGGCCGG CTTGATTGCAGTACIA/GIAGAAGCCCGTGGAAGGCCGG TCAGCCCCTACTACGCCGAAIG/JGAGCTCATCTCCGGCATCGC TGCATGTGAACATTCATGAA(T/C)GGTAACCCACAACTGTTCGC CTGGTGGTGGTGCTTCTCTG[AAAC/JTGAAACTGAAACTGACTGCA GACCATCTTCACGTACTACCITACCIAGACCGCTTTCTGCATCCAC CTGACCATCTTCACGTACTA/CCTA/CCAGACCGCTTTCTGCATCC CTCCTACCAGGGCCGGTTCG[T/JCCTTCTCCGACTACCCGGAG GAGATTCAAGTCGTCCTTCG[G/ATTTCATCGACGGGTCTGTT TGAATGGTAACCCACAACTG[C/T]TCGCGTCCTGCTGGTTCATT GCCGACAGGGTCCTCACCGTTG/CJAGCCCCTACTACGCCGAAGA TCTGACCATCTTCACGTACTTACCT/JACCAGACCGCTTTCTGCATC CTTGATTGCATTGCAGCTAC[G/A]AGAAGCCCGTGGAAGGCCGG CTGGATTGCATTGCAGCTAC[G/A]AGAAGCCCGTGGAAGGCCGG GCTGGTTCATTATCTGACCT[T/G]GATTGCATTGCAGCTACGAG AGAGATTCAAGTCGTCCTTC[G/JGATTTCATCGACGGGTCTGT CTCCATGAAAAAGGTGCCGCVGJTACTCTCTCAGTCAGCTACT CTGCACTCCGATTGAGGGTC[C/G]GAAGCAGGGCAGCGCGTGTGCCACTCCGATTGAGGGTC[C/G]GAAGCAGGGCAGCGCGTTGT CTGCACTCCGATTGAGGGTC[C/G]GAAGCAGGGCAGCGCGTTTG CTGCACTCCGATTGAGGGTC[C/G]GAAGCAGGGCAGCGCGTTTT CATGCCTCTGTTGATATTTT[G/C]GTGCACCTTTTGCTTGCAAC **GATTTTGTAGGTTGATGCAT[C/T]GTTTGATCTTTCTTATCTCC** TGCTTGCAACTAAATTAATCJAGJTGCTCTATTTGACTAAGAGT ACATGTCCAGGACGCATGGT[C/JCCCAATATTGTTGTTGGAAG TTGATCTTTCTTATCTCCTT//CCGAATTTGTTCTGTGTTATA TTGATCTTTCTTATCTCCTTI/C/CCAATTTGTTCTGTGTATAC
TGTAGGACTTGCAGAGCTTGCAGTTAATTTACACATCCCTCTGT
CATCCCTCTGTTGATATTTTTCCCTGCCACCTTTTCCTTGCAAC GATTTTGTAGGTTGATGCATIC/TJGTTTGATCTTTCTTATCTCC GAGACATTTCCTACTCAATAIC/TIAATTATTTGATGAAATTATT AGTATCACAGACTAATCTGA[AG]TATCTGGTTGCCACGAAAAC AGTATCACAGACTAATCTGAAGTTATCTGGTTGCCACAAAAAC
TCAAAGTGGTGCAATCCCAATTCCCACTTGGGCTTGCCGTGGT CCACTTGGGCTTGCCGTGGTTC/CGTATCGTACGCAGGTAGCA AGCATTTTTGTTTTGTTTT[T/C]CCTTGGCAGACAACAGACAG CAGTCCCGAGAATCCCAAATIC/CAGAAAAAGGTTTTGTTTTT CAGTCCCGAGAATCCCAAATIC/CAGAAAAAGGTTTTGTTTTA GGCAGACAACAGACAGATCAIAG/CAICAGCTTGCATTTACTCCCA **GGCAGACAACAGACAGATCAJAGACAJCATGCTTGCATTTACTCTCA** GTGATCACAGACTAATCTGAJAGJTATCTGGTTGCCACGAAAAC GTGATCACAGACTAATCTGAIAGITATCTGGTTGCCACAAAAAC TCTGAATATCTGGTTGCCACIG/AJAAAACCGGGACACAAGAGAG TCTGAGTATCTGGTTGCCACIG/AJAAAACCGGGACACAAGAGAG TCAGTCAAACTCAGTCCCGAĮAGJAATCCCAAATCAGAAAAAGG GGTTGCCACGAAAACCGGGA[C/G]ACAAGAGAGAAACTCAGAGT GGTTGCCACGAAAACCGGGA[C/G]ACAAGAGAGAAACTCAAAGT ACGCATGCTTGCATTTACTC[C/T]CAGTCAAACTCAGTCCCGAA ACACATGCTTGCATTTACTC[C/T]CAGTCAAACTCAGTCCCGAA TATTATTCAATTTTGAATAA/GJGAAGGAAATTTTAGCACCTC ATTAATAAATGCATCCTCTG[C/G]TAAAAAACCCATTTTGAAT ATGAATTGAAGCTCTGAATAIC/TJAGAATCCACCATTCTTCCGA GAATCCACCATTCTTCCGAAJA/GJCTGCTTCCTACAAAACTCGA GAAAGGATGTGTTTTTGATAIG/AICCTTCAGTCTTTCAGATGGA CAATGTCTTGTTCGTTATCA[AG]CGAAAGTTTGAATCCCCACA TGTATCGGCTAGTCTGGATG[G/A]TCGCACTGGCACTCAGTGCT

csnp1d

TCTATTCAGCAGTCTGAGAAIGCA/CTJAGGATGGTCGGCTTCTTCAG UMC132-G4/G5-1 S29G4/G5-1 UMC132 CCTTACACTATTAACAGGCC[C/T]GTGATCTACCTGAATGCCTG UMC132-G1/G5-1 S29G1/G5-1 **UMC132** UMC21-G5/G6-1 S28G5/G6-1 CAAGAAGCCTCTTCAGTGTC[AVC]GTCGTAGCTTCCTCAAGACC UMC21 AGACCTTCCTGATGTGCGGA[T/C]GCTAATCCATGGAGCAGGGA S28G5/G6-2 UMC21 UMC21-G5/G6-2 AAGACCTCCTGATGTGCGGA[T/C]GCTAATCCATGGAGCAGGGA UMC21-G5/G6-28 S28G5/G6-2B UMC21 UMC21 UMC21-G5/G6-3 S28G5/G6-3 S28G4/G5-1 TCGTCGCGAATACAGCCGGG[G/C]GAGGGGGTGGTCGCGACTGG UMC21-G4/G5-1 UMC21 GTCGTAGCTTCCTCAAGACC[T/]TCCTGATGTGCGGACGCTAA S28G3/G6-1 UMC21 UMC21-G3/G6-1 GAGTCGTCGCGAATACAGCCIA/GIGGGGAGGGGGTGGTCGCGAC 528G3/G4-1 UMC21 UMC21-G3/G4-1 AGGGGGTGGTCGCGACTGGA[T/G]CGCCCGAGCAGCGAGCAAGC UMC21 UMC21-G3/G4-2 S28G3/G4-2 AAGCACATGTTTTAACCTTT[T/G]ATTCAAACTTTCCAGCCGTT UMC21 UMC21-G3/G4-3 S28G3/G4-3 AAGCACATGTTTTAACCTTT[T/G]ATTCAAACTTTCCAGCGTTA UMC21-G3/G4-3B S28G3/G4-3B UMC21 GAATGTTGCTGTTATATTACTT/CCGTAGGTGACAAAGGGTTCA S28G2/G6-1 UMC21 UMC21-G2/G6-1 AGAAAAATTTACATAAAAAA(G/C)CACACTCCATGATTGTTAAA UMC21 UMC21-G2/G4-1 S28G2/G4-1 AGAAAAATTTACATAAAAAA(GAC)CACACTCCATGATTGTTTAA UMC21-G2/G4-1B S28G2/G4-1B UMC21 CITITATTCAAACTITCCAGI/CICGTTAATTTGTTATCCGTTG S28G2/G3-1 UMC21 UMC21-G2/G3-1 TGTTGAACATGCTCTCAGGAĮ/CC/CCCCTATTGTGACACAGCA UMC21-G6/G1-1 S28G6/G1-1 UMC21 UMC21-G1/G3-1 S28G1/G3-1 TACATCTTAACAAGCACATG[TG/TT]]TAACCTTTTATTCAAACTTT UMC21 S27G3/G6-1A AGTAATGTGTGACTGTGGGC[C/G]CGTGTGACAGCTTTTACGTA UMC65 UMC65-G3/G6-1A S27G3/G6-1B AGTAGTGTGTGACTGTGGGCCC/GCGTGTGACAGCTTTTACGTA UMC65 UMC65-G3/G6-1B TTCGCTTGGTAGCCGTAGCA[Q/A]TATACTTTTACCGGCCACAG UMC65-G3/G6-2 S27G3/G6-2 UMC65 GGGCTTTGGGTTGTGAACTTTCCA/CJAAAAAAAAAAAAAAAATTTCCC S27G3/G6-3 UMC65 UMC65-G3/G6-3 UMC59 UMC59-G5/G6-1 UMC59-G5/G6-1 CCAAGAAAGATTAATGCTGG//TJTAAAATATTGTTTCCAGTCT UMC59-G5/G6-2 AAAATCAGGACTGCGAAAAAIA/CJCCAAGAAAGATTAATGCTGG **UMC59** UMC59-G5/G6-2 AAAATCAGGACTGCGAAAAA[AVC]CCAAGAAGATTAATGCTGGT UMC59-G5/G6-2B **UMC59** UMC59-G5/G6-2B AAAGTGTGTTGTTGCCCAIG/AIATGATTCCATTCCACACAAG UMC59-G5/G6-3 UMC59 UMC59-G5/G6-3 AGGACTGCGAAAAAACCAAGIAJAAGATTAATGCTGGTAAAAT UMC59-G4/G5-1 UMC59-G4/G5-1 UMC59 ATGCTGGTAAAATATTGTTTI/CICAGTCTTTCACAAAGTGTGT UMC59-G4/G5-2 UMC59 UMC59-G4/G5-2 CTACAAAATCAGGACTGCG[/AJAAAAACCAAGAAGATTAATG UMC59-G3/G4-1 **UMC59** UMC59-G3/G4-1 TTGTTTCAGTCTTTCACAAA/GTJGTGTGTGTGCCAGATGATTC UMC59-G3/G4-2 UMC59-G3/G4-2 UMC59 TCACACACCGACCTGCCTGGI/TTATCAGGAACCATCCTCCTG UMC59 UMC59-G3/G4-3 UMC59-G3/G4-3 GGTGAATTGGTGATGCATGC[T/G]GGGGGTGCTCGAGTTGGATG S23G4/G5-1 Ae1-G4/G5-1 Ae1 TTCCAGTCGGATGAACTGGA[T/G]GTTCGTCATCCACTCGTCAC Ae1-G4/G5-2 S23G4/G5-2 Ae1 GGTGAATTGGTGATGCATGCJATJGGGGGTGCTCGAGTTGGATG Ae1-G3/G6-1 S23G3/G6-1 Ac1 TTAAGTGAAGATGCCCAAAC[C/G|GTTAAACTTTCCATGGAACT Ae1-G5/G3-1 S23G5/G3-1 Ae1 ATTAATGAAGATGCCCAAAC[C/G]GTTAAACTTTCCATGGAACT S23G5/G3-1B Ae1 Ae1-G5/G3-1B TGATTCGGGTCTGTATGCGA[G/T]TGTTGTGGTGGTGAACTGGT Ae1-G1/G6-1 S23G1/G6-1 Ant CGGGTCTGTATGCGAGTGTT[G/ATGGTGGTGAACTGGTGAATT Ae1-G1/G5-1 S23G1/G5-1 Ae1 GTTCGCGGTTTCTGGGGCCG[G/T]GGGCGGTGCTCGGTGGGGCC Ae1-G1/G4-1 S23G1/G4-1 Ae1 UMC90-G5/G6-1 S22G5/G6-1 CAGATTGGTGTCGTTTACTA[A/G]AATTCAGTTCTGTCCATTTG UMC90 S22G5/G6-2 AAGTAAGCATTCTTTATATG[/T]TACTTCCCATGATAAACTTT UMC90 UMC90-G5/G6-2 CAAAGGCTTACTGTACTTTYC/CATCTTATTGGCAGGGCACC S22G5/G6-3 UMC90 UMC90-G5/G6-3 ACTTGGCCGGGGACGTCGACIG/AVATCGTCGTAGCACTACTGGT UMC66 UMC66-G5/G6-1 S19G5/G6-1 AGTACATGGCGAGCGTTGTA[G/C]CAGCTGCTTAGGTGATGTGG S19G5/G6-2 UMC66 UMC66-G5/G6-2 CTATTTCCAAGCTAACAACCICAGICTCTTGGTCCCAACATCCTG Adh2-G4/G6-1 S17G4/G6-1 Adh2 **GGTTCTAAACATAGCTCGTCJC/AJATTCATGATTCATCTCGAGC** Adh2-G3/G6-1 S17G3/G6-1 Adh2 TCAGCAAGCCTCCAAGGCTCC/AJAATGGTCCAGTTACTTGGTT UMC63 UMC63-G4/G6-1 S16G4/G6-1 GTGTGTAGCTTCATTCGCAATG/ATJTTTGAACAGCCTCTGCAAGT S16G2/G6-1 UMC63 UMC63-G2/G6-1 GTGCTTTCGTAAACCTAGAG[T/C]TGACCAGCTGTGATTTCGGT S16G2/G6-2A **UMC63** UMC63-G2/G6-2A GTGCTTTCGTAAACCTAGAG[T/C]TGACCAGCTGTGATTTCGAT UMC63 UMC63-G2/G6-2B \$16G2/G6-2B GCTGACCAGCTGTGATTTCG[G/A]TGTATTCCACGACCACGAGT S16G2/G6-3A UMC63 UMC63-G2/G6-3A TGTGTAGCTTCATTCGCAAAIG/TJTTTGAACAGCCTCTGCAAGT S16G1/G6-1 UMC63 UMC63-G1/G6-1 GTGCTTCCGTAAACCTAGAG[T/C]TGACCAGCTGTGATTTCGAT UMC63 UMC63-G1/G3-2A S16G1/G3-2A GTGCTTCCGTAAACCTAGAG[T/C]TGACCAGCTGTGATTTCGGT S16G1/G3-2B UMC63 UMC63-G1/G3-2B GTGTGTAGCTTCATTCGCAA[AVT]GTTTGAACAGCCTCTGCAAG UMC63 UMC63-G1/G2-1 S16G1/G2-1 **UMC102** S14G5/G6-1 GCTCAGCTGCCGGAGTACGT[AT]GGCTTGCTCTCCGGCCGGCC UMC102-G5/G6-1 ATAGCTCTGCCGGAGTACGTJATJGGCTTGCTCTCCGGCCGGCC S14G5/G8-1B **UMC102** UMC102-G5/G6-1B TTTCACAACTCAACTGATTG/WT/CTTGCTTTGATGTGGATTCT ASG24 ASG24-G5/G6-1 S13G5/G6-1 TTGGTAATTTCAGAGCTAGA[CAG]AACTTACTGTGGTACACGCC ASG24 ASG24-G2/G6-1 S13G2/G6-1 ACCTTTGCTGTGTTTTTTTTTIT/GJGTATTCGAATGGAGGGAGTA UMC49 UMC49-G4/G6-1 S12G4/G6-1 AAAACAGCCAAGGTGGTGGT[C/G]AAAGGAAGGTGTCAGAAGGT S12G2/G5-1 UMC49 UMC49-G2/G5-1 TCTGTTCGTTCCATCTCTTTWGJCAGTAAATATCCGTAATTAC \$12G2/G5-2 UMC49 UMC49-G2/G5-2 UMC49 UMC49-G2/G5-3 \$12G2/G5-3 TATATATATCCTCATTTCANATTGAACAGTCAAAGTTAGTTTT S12G2/G5-4 **UMC49** UMC49-G2/G5-4 TATATATATCCTCATTTCAA(A/T)GAACAGTCAAAGTAGTTTTG S12G2/G5-4B UMC49 UMC49-G2/G5-4B TATTTCTTATCCAGGATTGTTT/C/CTTTGGCCAAAGCATGGTAC S12G2/G4-1 UMC49 UMC49-G2/G4-1 CGTTCCATCTCTTTACAGTA/A/GJATATCCGTAATTACTTTGTT **UMC49** UMC49-G2/G4-2 S12G2/G4-2 ATCCGTAATTACTTTGTTACTAVAC/CTAAGTAATTTTATATATATAT UMC49 UMC49-G2/G4-3 S12G2/G4-3 GTAATTACTTTGTTACTACTM/AGTAATTTTATATATATCCT **UMC49** UMC49-G2/G3-4 S12G2/G3-4 CTGTGTTTTTTTTGGTATT[G/C]GAATGGAGGGAGTATTATTT S12G1/G6-1 **UMC49** UMC49-G1/G6-1 GCTGTGTTTTTTTGGTATT|GAC|GAATGGAGGGAGTATTATTT UMC49-G1/G6-1B S12G1/G6-1B **UMC49** ACTTAGATGATGACCAGGTG|A/AGAGTTTGGCACCTTTGCTG UMC49 S12G1/G5-1 UMC49-G1/G5-1 AGTTTGGCACCTTTGCTGTGT/JTTTTTTTTGGTATTGGAATG S12G1/G5-2 **UMC49** UMC49-G1/G5-2 CTTTACTGATTGGGTTACANIA/GJAGGTTATTTCTTATTCAGGC **UMC49** UMC49-G1/G5-3 S12G1/G5-3 AATTACTTTGTTACTACCAG[T/]TAATTTTATATATATCCTCC UMC49 UMC49-G1/G5-4 S12G1/G5-4 AGCGACAGGGATGTCGAGCA[G/T]CTACGGAAGGCAATAATGAG **UMC131** UMC131-G4/G6-1 S10G4/G6-1

canp1d

UMC131	UMC131-G4/G6-2	S10G4/G6-2
UMC131	UMC131-G3/G6-1	S10G3/G6-1
UMC131	UMC131-G3/G6-2A	S10G3/G6-2A
UMC131	UMC131-G3/G6-2B	S10G3/G6-2B
UMC131	UMC131-G1/G6-1	S10G1/G6-1
UMC53	UMC53-G5/G6-1	UMC53-G5/G6-1
UMC53	UMC53-G5/G6-2	UMC53-G5/G6-2
UMC53	UMC53-G4/G6-1	UMC53-G4/G6-1
UMC53	UMC53-G4/G6-2	UMC53-G4/G6-2
UMC53	UMC53-G3/G6-1	UMC53-G3/G6-1
UMC53	UMC53-G3/G5-1	UMC53-G3/G5-1
UMC53	UMC53-G3/G5-2	UMC53-G3/G5-2
UMC53	UMC53-G3/G4-1	UMC53-G3/G4-1
UMC53	UMC53-G1/G4-1	UMC53-G1/G4-1
UMC161	UMC161-G2/G3-1	S06G2/G3-1
UMC161	UMC161-G2/G3-2	S06G2/G3-2
UMC161	UMC161-G2/G3-2B	S06G2/G3-2B
UMC107	UMC107G2/G4-1	S05G2/G4-1
UMC67	UMC67-G5/G6-1	S03G5/G6-1
UMC67	UMC67-G2/G6-1	S03G2/G6-1
UMC76	UMC76-G4/G6-1	S02G4/G6-1
UMC76	UMC76-G2/G6-1	S02G2/G6-1
UMC76	UMC76-G2/G6-1B	S02G2/G8-1B
UMC76	UMC76-G2/G5-1	S02G2/G5-1
UMC76	UMC76-G2/G5-1B	S02G2/G5-1B
UMC76	UMC76-G2/G5-1	S02G2/G5-1
UMC76	UMC76-G2/G5-1B	S02G2/G5-1B
UMC76	UMC76-G2/G5-2	S02G2/G5-2
UMC76	UMC76-G2/G5-2B	S02G2/G5-2B
UMC76	UMC76-G2/G5-3	S02G2/G5-3
UMC76	UMC76-G2/G5-3B	S02G2/G5-3B
UMC76	UMC76-G2/G5-3C	S02G2/G5-3C
UMC76	UMC76-G2/G5-3D	\$02G2/G5-3D

AATTTGGGAAAATCAATGCA[GAAVCACJATCAGTGATTAATCCACATA GCATGGCGGAGTGAGGGAGGTGJTGTGTGTGTGTGTGTGCTCCACA GGCCGCTACGCCATTTAGCG|G/AJATTTGGGAAAATCAATGCAG GGCCGCTACGCCATTTAGCGGAAAATCAATGCAC CATCCCGCCGGCAGAACAA[C/G]GTACGAGAAGGATGGAATGC GTCCCAGATCAGGTCCACGT[T/C]CGAGCTCGCTGTTCCCGCTT TGGTTCTTCACCACCACCGC[C/G]CCGGGCGCGCCCAGCGCCTC GCAGCCTCAGGTACACGGGG[/AJAAGTCGGAGTGGTTCTTCAC GCCGGCCCCAGCGCCTI/CJCGTCCCAGATCAGGTCCACG GCACGTCGTTGGTGAAGAAG[AC/CA]GCGGTACGGGTGCTTGTCGA AGGTACACGGGGAAGTCGGA[G/T]TGGTTCTTCACCACCACCGC GCACGTCGTTGGTGAAGAAGĮACGGTACGGGTGCTTGTCG NAACCAAACCCTGACTATTA[T/C]AGGTAGATTAGACTAGACAC ACGGTGAGGAGTGGCACATGIACIGATGGAAAGTTCCTGTAGAC ACGGTAAGGAGTGGCACATG|ACGGATGGAAAGTTCCTGTAGAC TATGCTTGGAAAGTGGGAAA(G/GGGAACATACGATGGAGGAC MACAATAATTTTACACAG/TJTGCTAAGGTTTTACTGTTTT ATATCCATGTTGTCGCCTGC(/TG)TGTGCGCTTGCTTGCCGCTA TTGCTGCTATGTTTACTGGG[/T]TGTAGAAAAAAAAAAAAAATAATAT GCTCGGTAATAATTCTGGCT[C/G]CGATGGCACCCATATTCCTC GCTCGGTAATAATTCTGGCTjC/GjCGATGGCACCCATATTCCTG AAAACACGTGGTGTTTGTTA[G/A]GAAAGACCTAGTTTCTCGGC AATCACGTGGTGTTTGTTA[G/A]GAAAGACCTAGTTTCTCGGC
TAGTTTCTCGGCAATTGGCA[G/T]TGTGGAATGACCATCTCGTG
TAGTTTCTCGGCAATTGGCA[G/T]TGTGGAATGACCATCTCGTC GTGTGGAATGACCATCTCGT[G/C]GTGATGCCAGCATGCTGTTA GTGTGGAATGACCATCTCGT[G/C]GTGATGCCAGCATGCTACTA ACCCTGTCAGGCTTCCACAGIA/CITATAATATTTGTTGTGGTGT ACTCTGTCAGGCTTCCACAGIA/CITATAATATTTGTTGTGGTGT ACTCTGTCAGGCTTCCACAGIA/CITATAATATTTGTTGTGTGTG ACCCTGTCAGGCTTCCACAG[A/C]TATAATATTTGTTGTGTGTG

10

15

20

25

30

35

Example 4 Analysis of Polymorphisms

A. Preparation of Samples

Polymorphisms are detected in a target nucleic acid from a plant being analyzed. Target nucleic acids can be genomic or cDNA. Many of the methods described below require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications [or DNA Amplification (ed. H.A. Erlich, Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Patent 4,683,202 (each of which is incorporated by reference for all purposes).

Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)), and self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dSDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

B. Detection of Polymorphisms in Target DNA

There are two distinct types of analysis depending whether a polymorphism in question has already been characterized. The first type of analysis is sometimes referred to as de novo characterization. This analysis compares target sequences in different individual plants to identify points of variation, i.e., polymorphic sites. The de novo identification of the polymorphisms of the invention is described in the Examples section, The second type of

WO 98/30717

17 .

analysis is determining which form(s) of a characterized polymorphism is (are) present in plants under test. There are a variety of suitable procedures, which are discussed in turn.

5

10

15

20

25

30

1. Allele-Specific Probes

The design and use of allele-specific probes for analyzing polymorphisms is described by e.g., Saiki et al., Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one member of a species but do not hybridize to the corresponding segment from another member due to the presence of different polymorphic forms in the respective segments from the two members. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Some probes are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15 mer at the 7 position; in a 16 mer, at either the 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.

Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.

2. Tiling Arrays

35

The polymorphisms can also be identified by hybridization to nucleic acid arrays, some example of which are described by Wo 95/11995 (incorporated by reference in

10

15

20

25

30

35

its entirety for all purposes). One form of such arrays is described in the Examples section in connection with de novo identification of polymorphisms. The same array or a different array can be used for analysis of characterized polymorphisms. WO 95/11995 also describes subarrays that are optimized for detection of a variant forms of a precharacterized polymorphism. Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence. The second group of probes is designed by the same principles as described in the Examples except that the probe" exhibit complementarity to the second reference sequence. The inclusion of a second group (or further groups) can be particular useful for analysing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (i.e., two or more mutations within 9 to 21 bases).

3. Allele-Specific Primers

An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acld Res . 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal Amplification proceeds from the two primers leading to a detectable product signifying the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer. See, e.g., WO 93/22456.

4. Direct-Sequencing

The direct analysis of the sequence of polymorphisms of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam Gilbert method (see Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)).

10

15

5

5. Denaturing Gradient Gel Electrophoresis

Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution, Erlich, ed., PCR Technology, Principles and Applications for DNA Amplification, (W. H. Freeman and Co, New York, 1992), Chapter 7.

20

25

30

35

Analysis

6. <u>Single-Strand Conformation Polymorphism</u>

Alleles οf target sequences be differentiated using single-strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al., Proc, Nat. Acad. Sci. 86, 2766-2770 (1989). Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products. Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence. The different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence difference between alleles of target sequences.

Example 5 . Methods of Use

WO 98/30717 PCT/EP97/07134

20

After determining polymorphic form(s) present in a subject plant at one or more polymorphic sites, this information can be used in a number of methods.

A. Fingerprint Analysis

5

10

15

20

25

30

35

Traits

Analysis of which polymorphisms are present in a plant is useful in determining of which strain the plant is a member and in distinguishing one strain from another. A genetic fingerprint for an individual strain can be made by determining the nucleic acid sequence possessed by that individual strain that corresponds to a region of the genome known to contain polymorphisms. For a discussion of genetic fingerprinting in the animal kingdom, see, for example, Stokening et.al., Am. J. Hum. Genet. 48:370-382 (1991). The probability that one or more polymorphisms in an individual strain is the same as that in any other individual strain decreases as the number of polymorphic sites is increased.

The comparison of the nucleic acid sequences from two strains at one or multiple polymorphic sites can also demonstrate common or disparate ancestry. Since the polymorphic sites are within a large region in the genome, the probability of recombination between these polymorphic sites is low. That low probability means the haplotype (the set of all the disclosed polymorphic sites) set forth in this application should be inherited without change for at least several generations. Knowledge of plant strain or ancestry is useful, for example, in a plant breeding program or in tracing progeny of a proprietary plant. Fingerprints are also used to identify an individual strain and to distinguish or determine the relatedness of one individual strain to another. Genetic fingerprinting can also be useful in hybrid certification, the certification of seed lots, and the assertion of plant breeders rights under the laws of various countries.

B. Correlation of Polymorphisms with Phenotypic

WO 98/30717 PCT/EP97/07134

The polymorphisms of the invention may contribute to the phenotype of a plant in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose a plant to a distinct mutation that is causally related to a certain phenotype.

Phenotypic traits include characteristics such as growth rate, crop yield, crop quality, resistance to pathogens, herbicides, and other toxins, nutrient requirements, resistance to high temperature, freezing, drought, requirements for light and soil type, aesthetics, and height. Other phenotypic traits include susceptibility or resistance to diseases, such as plant cancers. Often polymorphisms occurring within the same gene correlate with the same phenotype.

Correlation is performed for a population of plants, which have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic markers sets. To perform such analysis, the presence or absence of a set of polymorphisms (i.e. a polymorphic set) is determined for a set of the plants, some of whom exhibit a particular trait, and some of which exhibit lack of the trait. The alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest. Correlation can be performed by standard statistical methods such as a K-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted.

Correlations between characteristics and phenotype are useful for breeding for desired characteristics. By analogy, Beitz et al., US 5,292,639 discuss use of bovine mitochondrial polymorphisms in a breeding program to improve milk production in cows. To evaluate the effect of mtDNA D-loop sequence polymorphism on milk production, each cow was assigned a value of 1 if variant or 0 if wildtype with respect to a prototypical mitochondrial DNA sequence at each of 17 locations considered. Each production trait was analyzed individually with the following animal model:

5

10

15

20

25

30

35

 $Y_{ijkpn} = \mu + YS_i + P_j; + X_k \sim \beta_1 + ... \beta_{17} + PE_n + a_n + e_p$ where Yikpn is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record; μ is an overall mean; YS; is the effect common to all cows calving in year-season; X_k is the effect common to cows in either the high or average selection line; β_1 to β_{17} are the binomial regressions of production record on mtDNA D-loop sequence polymorphisms; PEn is permanent environmental effect common to all records of cow n; an is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect; and ep is a random residual. It was found that eleven of seventeen polymorphisms tested influenced at least one production trait. Bovines having the best polymorphic forms for milk production at these eleven loci are used as parents for breeding the next generation of the herd.

One can test at least several hundreds of markers simultaneously in order to identify those linked to a gene or chromosomal region. For example, to identify markers linked to a gene conferring disease resistance, a DNA pool is constructed from plants of a segregating population that are resistant and another pool is constructed from plants that are sensitive to the disease. Those two DNA pools are identical except for the DNA sequences at the resistance gene locus and in the surrounding genomic area. Hybridization of such DNA pools to the DNA sequences listed in Table 1 allows

WO 98/30717 PCT/EP97/07134

23

the simultaneous testing of several hundreds of loci for polymorphisms. Allelic polymorphism-detecting sequences that show differences in hybridization patterns between such DNA pools will represent loci linked to the disease resistance gene.

The method just described can also be applied to rapidly identify rare alleles in large populations of plants. For example, nucleic acid pools are constructed from several individuals of a large population. The nucleic acid pools are hybridized to nucleic acids having the polymorphism-detecting sequences listed in Table I. The detection of a rare hybridization profile will indicate the presence of a rare allele in a specific nucleic acid pool. RNA pools are particularly suited to identify differences in gene expression.

C. Marker assisted back-cross

The markers are used to select, in back-cross populations, the plant that have the higher percentage of recurrent parent, while still remaining the genes given by the donor plant.

Example 6. Modified Polypeptides and Gene

Sequences

5

10

15

20

25

30

35

The invention further provides variant forms of nucleic acids and corresponding proteins. The nucleic acids comprise at least 10 contiguous amino acids of one of the sequences for example as described in Table I, in any of the allelic forms shown. Some nucleic acid encode full-length proteins.

Genes can be expressed in an expression vector in which a gene is operably linked to a native or other promoter. Usually, the promoter is an eukaryotic promoter for expression in a eukaryotic cell. The transcription regulation sequences typically include an heterologous promoter and

WO 98/30717

5

10

15

20

25

30

35

nally an onbangor whi

optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.

24

The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof, and plant cells. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.

The DNA fragments are introduced into cultured plant cells by standard methods including electroporation (From et al., Proc. Natl Acad. Sci, USA 82, 5824 (19853, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., Molecular Biology of Plant Tumors, (Academic Press, New York, 1982) pp. 549-560; Howell, US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., Nature 327, 70-73 (1987)), USQ of pollen as vector (WO 85/01856), or use of Agrobacterium tumefaciens transformed with a Ti plasmid in which DNA fragments are cloned. The Ti plasmid is transmitted to plant cells upon infection by

10

15

20

25

30

35

Agrobacterium tumefaciens, and is stably integrated into the plant genome (Horsch et al., Science, 233, 496-498 (1984); Fraley et al., Proc. Natl. Acad. Sci. USA 80, 4803 (1983)).

The protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Sc:opes, Protein Purification, Principles and Practice', 2nd Edition, Springer-Verlag, New York (1987); and Deutscher (ed), Guide to Protein Purification' Methods in Enzymology, Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.

The invention further provides transgenic plants capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated. Plant regeneration from cultural protoplasts is described in Evans et al., "Protoplasts Isolation and Culture, " Handbook of Plant Cell Cultures 1 , 124-176 (MacMillan Publishing Co., New York, 1983); Davey, "Recent Developments in the Culture and Regeneration of Plant Protoplasts, " Protoplasts, (1983) - pp. 12-29, (Birkhauser, Basal 1983); Dale, "Protoplast Culture and Plant Regeneration of Cereals and Other Recalcitrant Crops, " Protoplasts (1983) - pp. 31-41, (Birkhauser, Basel 1983); Binding, "Regeneration of Plants," Plant ProtopLasts, pp. 21-73, (CRC Press, Boca Raton, 1985). For example, a variant gene responsible for a disease-resistant phenotype can be introduced into the plant to simulate that phenotype. Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer. Inactivation of an exogenous variant genes can be achieved by forming a transgene in which a cloned variant genes is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 (1989). Such transgenic plant are

10

15

20

25

30

35

useful in a variety of screening assays. For example, the transgenic plant can then be treated with compounds of interest and the effect of those compounds on the disease resistance can be monitored. In another example, the transgenic plant can be exposed to a variety of environmental conditions to determine the effect of those conditions on the resistance to the disease.

In addition to substantially full-length polypeptides, the present invention includes blologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.

Polyclonal and/or monoclonal antibodies that specifically bind to one allelic gene products but not to a second allelic gene product are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.

Example 7. Kits

The invention further provides kits comprising at least one allele-specific oligonucleotide as described above. Often, the kits contain one or more pairs of

WO 98/30717

5

10

allele-specific oligonucleotides hybridizing to different forms of a polymorphism. In some kits, the allele-specific oligonucleotides are provided immobilized to a substrate. For example, the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymorphisms shown in Table I. Optional additional components of the kit include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate-buffers for reverse transcription, PCR, or hybridization reactions. Usually, the kit also contains instructions for carrying out the methods.

WO 98/30717 PCT/EP97/07134

CLAIMS

1. A nucleic acid segment comprising at least 10 contiguous nucleotides from a vegetal sequence including a polymorphic site, notably a Single Nucleotide Polymorphism (SNP) or the complement of the segment.

5

10

20

25

30

35

- 2. A nucleic acid segment of claim 1, which is comprised in the sequence shown in Table I.
- 3. A nucleic acid segment of claim 1, less than 100 bases.
 - 4. A nucleic acid segment of claim 1, that is DNA.
 - 5. A nucleic acid segment of claim 1, that is RNA
- 15 6. The segment of claim 1 that is less than 50 bases.
 - 7. The segment of claim 1, that is less than 20 bases.
 - 8. An allele-specific oligonucleotide that hybridizes to a sequence of claim 1 or its complement.
 - 9. An allele-specific oligonucleotide that hybridizes to a sequence of claim 8, sequence shown in Table 1.
 - 10. The allele-specific oligonucleotide of claim 8, that is a probe
 - 11. The allele-specific oligonucleotide of claim 10, wherein the central position of the probe aligns with the polymorphic site in the sequence.
 - 12. The allele-specific oligonucleotide of claim 8, that is a primer.
 - 13. The allele-specific oligonucleotide of claim 12, primer which comprises a sequence shown in Table I
 - 14. The allele-specific oligonucleotide of claim 12, 3' end primer which comprises a sequence shown in Table I.
 - 15. The method of analysing a nucleic acid, comprising: obtaining the nucleic acid from a subject; and

10

15

20

25

30

35

determining a base occupying any one of the polymorphic sites shown in Table I.

- 16. The method of claim 15, wherein the determining comprises determining a set of bases occupying a set of the polymorphic sites shown in Table I.
- 17. The method of claim 16, wherein the nucleic acid is obtained from a plurality of subjects, and a base occupying one of the polymorphic positions is determined in each of the subjects, and the method further comprises testing each subject for the presence of a phenotype, and correlating the presence of the phenotype with the base.
- 18. Kit comprising at least one allele-specific oligonucleotide of claim 1 and optional additional composants (enzymes, buffers, instructions...)
- 19. Kit according to claim 18 comprising at least one allele-specific oligonucleotide of claim 2.
- 20 Use of the nucleic segments according to claims 1 to 17, to demonstrate common or disparate ancestry.
- 21. Use of the nucleic segments according to claims 1 to 17 in plant breeding.
- 22. Use of the nucleic acid segments according to claims 1 to 17 to trace progeny of a priority plant.
- 23. Use of the nucleic acid segments according to claims 1 to 17 in hybrid certification.
- 24. Use of the nucleic acid segments according to claims 1 to 17 to select in a back-cross population the plants that have the higher percentage of recurrent parent (marker assisted back-cross).
- 25. Use of the nucleic segments according to claim 1 to 17, wherein the polymorphisms, all of them or most of them, are linked to a group of genes involved in a given metabolic pathway.
- 26. Use according to 25, wherein the metabolic pathway is selected from the oil metabolic pathway, the starch metabolic pathway, the protein metabolic pathway, the aminoacids metabolic pathway, the lignin and the cell wall

composition metabolic pathway and the pathogene resistance pathway

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 6:		(11) International Publication Number: WO 98/30717
C12Q 1/68	A3	(43) International Publication Date: 16 July 1998 (16.07.98
21) International Application Number: PCT/EP 22) International Filing Date: 2 December 1997 (30) Priority Data: 60/032,069 2 December 1996 (02.12.96 31) Applicant (for all designated States except US): BIOO [FR/FR]; Campus Universitaire des Cézeaux, 24, at Landais, F-63170 Aubière (FR). 32) Inventor; and (for US only): MURIGNEU [FR/FR]; Biocem S.A., Campus Universitaire des 24, avenue des Landais, F-63170 Aubière (FR). 34) Agent: BREESE-MAJEROWICZ; 3, avenue de F-75001 Paris (FR).	02.12.9 CEM S venue d X, Ala Cézeau	CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NI PT, SE). Published With international search report. Before the expiration of the time limit for amending the claim and to be republished in the event of the receipt of amendment. A. es (88) Date of publication of the international search report: 29 April 1999 (29.04.9)
54) Title: VEGETAL SEQUENCES INCLUDING A POST. 57) Abstract A nucleic acid segment comprising at least 10 contional complement of the segment.		DRPHIC SITE AND THEIR USES nucleotides from a vegetal sequence including a polymorphic site; or the

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		200	0	LS	Lesotho	SI	Slovenia
AL	Albania	ES	Spain	LT	Lithuania	SK	Slovakia
AM	Armenia	FI	Finland	_		SN	Senegal
AT	Austria	FR	France	w	Luxembourg	SZ	Swaziland
AU	Australia	GA	Gabon	LV	Latvia	TD	Chad
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco		
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ircland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

International Application No PCT/LP 97/07134

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C120 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,4,8, "Rapid SHATTUCK-EIDENS D M ET AL.: X 10,12,20 detection of maize DNA sequence varition" GENETIC ANALYSIS - TECHNIQUES AND APPLICATIONS, vol. 8, no. 8, 1991, pages 240-245, XP002085038 2,9, Υ see abstract 15-19 see page 240, column 1, paragraph 1 - page 242, column 1, paragraph 1; figures 1,3 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Χ Special categories of cited documents : T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(e) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 16. 03. 1999 20 November 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

2

Knehr, M

International Application No PCT/LP 97/07134

CICaptian	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °		Relevant to claim No.
X	BECKMANN J S: "Oligonucleotide polymorphisms:A new tool for genomic	1,4,8, 20,21,24
	genetics" BIO/TECHNOLOGY, vol. 6, 1988,	
Υ	pages 1061-1064, XP002085039 see the whole document	2,9, 15-17
x	PLASCHKE J ET AL: "DETECTION OF GENETIC DIVERSITY IN CLOSELY RELATED BREAD WHEAT USING MICROSATELLITE MARKERS" THEORETICAL AND APPLIED GENETICS, vol. 91, no. 6/07, November 1995, pages 1001-1007, XP000604133	1,4,8, 12,20,21
	see abstract see page 1001, column 1, paragraph 1 - page 1003, column 1, paragraph 4 see page 1006, column 1, paragraph 4 - page 1007, column 1, paragraph 1; figure 2; table 2	
x	POWELL W ET AL: "HYPERVARIABLE MICROSATELLITES PROVIDE A GENERAL SOURCE OF POLYMORPHIC DNA MARKERS FOR THE CHLOROPLAST GENOME" CURRENT BIOLOGY, vol. 5, no. 9, 1 September 1995, pages 1023-1029, XP000570201 see abstract see page 1023, column 1, paragraph 1 - page 1026, column 2, paragraph 1; figure 2; tables 1,3	1,4,20
X	SENIOR M L ET AL: "MAPPING MAIZE MICROSATELLITES AND POLYMERASE CHAIN REACTION CONFIRMATION OF THE TARGETED REPEATS USING A CT PRIMER" GENOME, vol. 36, no. 5, 1 October 1993, pages 884-889, XP000569589 see abstract see page 885, column 1, paragraph 2 - column 2, paragraph 3; figure 1; table 1	1,4,8

2

PCT/ _ P7/07134

	ALLEN PORTUNENTO CONCIDERED TO BE BELEVANT	PC1/CF 37/07134		
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
		1,4,25,		
X	HANSON M A ET AL.: "Evolution of anthocyanin biosynthesis in maize kernels: The role of regulatory and enzymatic loci" GENETICS, vol. 143, 1996, pages 1395-1407, XP002085040 see abstract see page 1395, column 1, paragraph 1 - column 2, paragraph 2 see page 1396, column 2, paragraph 2 - column 2, paragraph 2 see page 1398, column 2, paragraph 2 - paragraph 3; figure 2	26		
X	SHATTUCK-EIDENS D M ET AL.: "DNA sequence variation within maize and melon: Observations from polymerase chain reaction amplification and direct sequencing" GENETICS, vol. 126, 1990, pages 207-217, XP002085041 see abstract see page 207, column 1, paragraph 1 - page 208, column 2, paragraph 4 see page 211, column 1, paragraph 2 - column 2, paragraph 1; figures 1,2; tables 3-7	1,4,8,12		
х	US 5 437 697 A (SEBASTIAN SCOTT A ET AL) 1 August 1995 * see especially column 17, lines 4 to 33 * see the whole document	1,4, 20-24		
x	US 5 332 408 A (METS LAURENS J ET AL) 26 July 1994 * see especially example 1 * see the whole document	1,4, 20-24		
x	WO 92 07948 A (LUBRIZOL CORP) 14 May 1992	1,3,4, 6-8,12		
Y	see the whole document	18,19		
Y	WO 89 07647 A (PIONEER HI BRED INT) 24 August 1989 see abstract see page 1, paragraph 1 - page 4, paragraph 1 see page 11, paragraph 4; claims 1,2,6,7; table 1	1,4,8,		
Y	EP 0 317 239 A (NATIVE PLANTS INC) 24 May 1989 see the whole document	1,4,8, 12,21-23		

2

International Application No
PCT, CP 97/07134

.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Releva	ant to claim No.
,,X	EP 0 785 281 A (SAPPORO BREWERIES) 23 July 1997		1,3,4, 6-8,12, 18,20
	see the whole document		
E	WO 98 24796 A (LANDRY BENOIT S ;LEMIEUX BERTRAND (CA); MURIGNEUX ALAIN (FR); SAPO) 11 June 1998 see the whole document		1,3-8, 10-14, 18,20-24
E	WO 98 30721 A (PIONEER HI BRED INT ;BIRO RONALD L (US); FEAZEL RHONDA (US); HELEN) 16 July 1998 see the whole document		1,3-8, 10,12
T	WO 98 30717 A (BIOCEM S A ;MURIGNEUX ALAIN (FR)) 16 July 1998 see the whole document		1-26
	·		

Inte 'ional application No.

PCT/EP 97/07134

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). .
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see FURTHER INFORMATION sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: See FURTHER INFORMATION sheet, subject 1.
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-26 (partial)

INVENTION 1:
A nucleic acid segment from a vegetal sequence including a polymorphic site, and in particular SEQ ID NOs: 67 and 68 (Bt2 gene/marker from maize), an allele-specific oligonucleotide hybridizing to such sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

2. Claims: 1-26 (partial)

INVENTION 2: SEQ ID NOs: 69 to 76 (Ssu gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

3. Claims: 1-26 (partial)

INVENTION 3: SEQ ID NOs: 77 to 82 (Bt1 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

4. Claims: 1-26 (partial)

INVENTION 4:
SEQ ID NOs: 83 to 90 (Brel gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

5. Claims: 1-26 (partial)

INVENTION 5: SEQ ID NOs: 91 to 104 (ASG12 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

6. Claims: 1-26 (partial)

INVENTION 6:

SEQ ID NOs: 105 to 114 (Sh2 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

7. Claims: 1-26 (partial)

INVENTION 7:

SEQ ID NOs: 115 to 132 (Sh1 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

8. Claims: 1-26 (partial)

INVENTION 8:

SEQ ID NOs: 133 to 144 (UAZ77 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

9. Claims: 1-26 (partial)

INVENTION 9:

SEQ ID NOs: 145 and 146 (UAZ171 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

10. Claims: 1-26 (partial)

INVENTION 10:

SEQ ID NOs: 147 to 150 (UMC17 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

11. Claims: 1-26 (partial)

INVENTION 11:

SEQ ID NOs: 151 to 178 (CSU109 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these

sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

12. Claims: 1-26 (partial)

INVENTION 12: SEQ ID NOs: 179 to 180 (UMC130 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

13. Claims: 1-26 (partial)

INVENTION 13: SEQ ID NOs: 181 to 212 (CSU61 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

14. Claims: 1-26 (partial)

INVENTION 14: SEQ ID NOs: 213 to 234 (UMC95 gene/marker from maize). an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

15. Claims: 1-26 (partial)

INVENTION 15: SEQ ID NOs: 235 to 290 (Wxl gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

16. Claims: 1-26 (partial)

INVENTION 16: SEQ ID NOs: 291 to 300 (UMC109 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

17. Claims: 1-26 (partial)

INVENTION 17: SEQ ID NOs: 301 to 320 (UMC80 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

18. Claims: 1-26 (partial)

INVENTION 18:

SEQ ID NOs: 321 to 358 (UMC254 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

19. Claims: 1-26 (partial)

INVENTION 19:

SEQ ID NOs: 359 to 366 (ASG49 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

20. Claims: 1-26 (partial)

INVENTION 20:

SEQ ID NOs: 367 to 370 (ASG8 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

21. Claims: 1-26 (partial)

INVENTION 21:

SEQ ID NOs: 371 to 374 (UMC132 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

22. Claims: 1-26 (partial)

INVENTION 22:

SEQ ID NOs: 375 to 406 (UMC21 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these

sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

23. Claims: 1-26 (partial)

INVENTION 23:

SEQ ID NOs: 407 to 416 (UMC65 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

24. Claims: 1-26 (partial)

INVENTION 24:

SEQ ID NOs: 417 to 434 (UMC59 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

25. Claims: 1-26 (partial)

INVENTION 25:

SEQ ID NOs: 435 to 450 (Ac1 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

26. Claims: 1-26 (partial)

INVENTION 26:

SEQ ID NOs: 451 to 456 (UMC90 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

27. Claims: 1-26 (partial)

INVENTION 27:

SEQ ID NOs: 457 to 460 (UMC66 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

28. Claims: 1-26 (partial)

INVENTION 28:

SEQ ID NOs: 461 to 464 (Adh2 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

29. Claims: 1-26 (partial)

INVENTION 29:

SEQ ID NOs: 465 to 482 (UMC63 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

30. Claims: 1-26 (partial)

INVENTION 30:

SEQ ID NOs: 483 to 486 (UMC102 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

31. Claims: 1-26 (partial)

INVENTION 31:

SEQ ID NOs: 487 to 490 (ASG24 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

32. Claims: 1-26 (partial)

INVENTION 32:

SEQ ID NOs: 491 to 522 (UMC49 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

33. Claims: 1-26 (partial)

INVENTION 33:

SEQ ID NOs: 523 to 534 (UMC131 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these

sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

34. Claims: 1-26 (partial)

INVENTION 34:

SEQ ID NOs: 535 to 552 (UMC53 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

35. Claims: 1-26 (partial)

INVENTION 35:

SEQ ID NOs: 553 to 558 (UMC161 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

36. Claims: 1-26 (partial)

INVENTION 36:

SEQ ID NOs: 559 and 560 (UMC107 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

37. Claims: 1-26 (partial)

INVENTION 37:

SEQ ID NOs: 561 to 564 (UMC67 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

38. Claims: 1-26 (partial)

INVENTION 38:

SEQ ID NOs: 565 to 590 (UMC76 gene/marker from maize), an allele-specific oligonucleotide hybridizing to these sequences or their complements, a method of analyzing them, a kit containing such allele-specific oligonucleotides, and the use of such sequences.

Ir nation on patent family members

nternational Application No
PCT/LY 97/07134

Patent document cited in search report		Publication date		ent family ember(s)	Publication date
US 5437697	A	01-08-1995	US	5746023 A	05-05-1998
US 5332408	Α	26-07-1994	NONE		
WO 9207948	Α	14-05-1992	AU CA EP	8953991 A 2073184 A 0509089 A	26-05-1992 07-05-1992 21-10-1992
WO 8907647	Α	24-08-1989	AU AU EP	631562 B 4030289 A 0402401 A	03-12-1992 06-09-1989 19-12-1990
EP 0317239	A	24-05-1989	CA JP JP US	1323553 A 2002400 A 2634208 B 5324631 A	26-10-1993 08-01-1990 23-07-1997 28-06-1994
EP 0785281	A	23-07-1997	AU CZ SK CA CN WO	6531796 A 9700986 A 41797 A 2201127 A 1159212 A 9705281 A	26-02-1997 17-09-1997 08-10-1997 13-02-1997 10-09-1997 13-02-1997
WO 9824796	Α.	11-06-1998	AU AU WO	5511598 A 7206698 A 9830717 A	29-06-1998 03-08-1998 16-07-1998
WO 9830721	A	16-07-1998	AU	6024598 A	03-08-1998
WO 9830717	Α	16-07-1998	AU AU WO	5511598 A 7206698 A 9824796 A	29-06-1998 03-08-1998 11-06-1998