

Dataset Regeneration for Sequential Recommendation

Mingjia Yin¹, Hao Wang^{1*}, Wei Guo², Yong Liu², Suojuan Zhang¹, Sirui Zhao¹, Defu Lian¹, Enhong Chen¹

- 1. University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence
 - 2. Huawei Singapore Research Center

Code: https://github.com/USTC-StarTeam/DR4SR

>Users interacted with items provided by recommender systems

These behaviors are usually organized in a chronological order

> Sequential recommendation in a model-centric paradigm

> Sequential recommendation in a model-centric paradigm

Motivation

➤ Model-centric paradigm: dilemma

Potential quality issues hard to learn

Motivation

➤ Data-centric paradigm: model-agnostic dataset regeneration

How to regenerate data?

Traditional recommenders need to learn a direct mapping from X to $\mathcal H$

Recommender

It will be easier to learn a recommender that maps \mathcal{X}' to H

Key idea: learning a dataset explicitly contains item transition patterns

Dataset regeneration is a Seq2Seq

Dataset regeneration with vanilla transformer

Dilemma: no sequence-pattern pair datasets

How to train the regenerator without labeled data?

New issue: one-to-many mapping

The vanilla transformer memory fails to tackle the one-to-many mapping issue

Different memories for different target patterns

Different memories for different target patterns

Target-pattern-aware selection with a diversity promoter (a Transformer encoder)

Dataset regeneration with hybrid inference

- Restrictive mode (Exploitation): limited to selecting items in input sequence
- ➤ Generative mode (Exploration): no limitation

Motivation

➤ Data-centric paradigm: dataset regeneration

Motivation

➤ Data-centric paradigm: model-aware dataset regeneration

How to personalize data?

Learning coefficients for different patterns

Dataset personalization with an MLP-based personalizer

Personalized datasets functions in the training loss

$$\mathcal{L}_{rec-ori} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \mathcal{L}_{next-item}(i,t) \qquad \text{weighted} \qquad \mathcal{L}_{rec} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \sum_{---}^{---} \mathbf{w}_{i,t} \mathcal{L}_{next-item}(i,t)$$

$$w_{i,t} = Gumbel - Softmax \left(g_{\phi}(h_t^i)\right)_0$$
 , where $g_{\phi}(h_t^i) \in \mathbb{R}^2$

Trivial optimization leads to model collapse

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$
s.t.
$$\theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi).$$

Bi-level optimization problem

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$

$$s.t. \quad \theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi) \longrightarrow \mathcal{L}_{rec} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \mathbf{w}_{i,t} \mathcal{L}_{next-item}(i, t)$$

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$

$$s.t. \quad \theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi) \longrightarrow \mathcal{L}_{rec} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \mathbf{w}_{i,t} \mathcal{L}_{next-item}(i, t)$$

Lower optimization: Obtain a best recommender given a fixed personalizer

Personalizer

Dataset personalization as a bi-level optimization problem

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)) \qquad \mathcal{L}_{rec-ori} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \mathcal{L}_{next-item}(i, t)$$
s.t.
$$\theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi)$$

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

Personalizer

Upper optimization: Validate and update the personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)) \qquad \mathcal{L}_{rec-ori} = \sum_{i=1}^{|\mathcal{X}'|} \sum_{t=2}^{|p_i|} \mathcal{L}_{next-item}(i, t)$$
s.t. $\theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi)$

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

Upper optimization: Validate and update the personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$
 $s.t. \quad \theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi).$

Prevent Collapse!

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

Upper optimization: Validate and update the personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$

$$s.t. \quad \theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi).$$

Direct optimization with gradient descent

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

Upper optimization: Validate and update the personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$
s.t. $\theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi)$

We need to calculate $\nabla_{\phi} L_{dev}(\theta^*(\phi))$, where $\theta^*(\phi)$ is an implicit function of ϕ

 ϕ : Parameters of the personalizer

 θ : Parameters of downstream recommenders

Lower optimization: Obtain a best recommender given a fixed personalizer

Upper optimization: Validate and update the personalizer

$$\phi^* = \arg\min_{\phi} L_{\text{dev}}(\theta^*(\phi)),$$
s.t. $\theta^*(\phi) = \arg\min_{\theta} L_{\text{train}}(\theta, \phi)$

Implicit gradient [1,2] for efficient upper optimization

[1] Navon, Aviv, et al. "Auxiliary learning by implicit differentiation." arXiv preprint arXiv:2007.02693 (2020).

[2] Chen, Hong, et al. "Cross-domain recommendation with behavioral importance perception." Proceedings of the ACM Web Conference 2023.

Table 3: The overall performance. Considering a target model, the best result is bolded while the second-best result is underlined. Superscript * means improvements are statistically significant with p<0.05 while ** meaning p<0.01.

Dataset	Beauty					Spo	orts			To	ys			Ye	elp	
Metric	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20
∞-AE	0.0478	0.0661	0.0262	0.0308	0.0256	0.0373	0.0144	0.0173	0.0450	0.0593	0.0268	0.0304	0.0252	0.0424	0.0121	0.0162
MELT	0.0577	0.0879	0.0303	0.0379	0.0311	0.0488	0.0163	0.0208	0.0709	0.0987	0.0401	0.0473	0.0293	0.0497	0.0143	0.0195
GRU4Rec	0.0204	0.0382	0.0107	0.0150	0.0160	0.0279	0.0085	0.0115	0.0212	0.0357	0.0099	0.0136	0.0215	0.0364	0.0105	0.0143
DR4SR	0.0252**	0.0448**	0.0128**	0.0177**	0.0208**	0.0341^{**}	0.0102**	0.0135**	0.0252**	0.0418^{**}	0.0124**	0.0165**	0.0235**	0.0403^{**}	0.0114^{**}	0.0156**
Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151**	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415^{**}	0.0120^{**}	0.0164^{**}
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	0.0595**	0.0906**	0.0317^{**}	0.0395**	0.0330**	0.0512^{**}	0.0174^{**}	0.0220**	0.0762**	0.1049^{**}	0.0432^{**}	0.0504^{**}	0.0304*	0.0512^{*}	0.0151^{*}	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412**	0.0349**	0.0525**	0.0191**	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211^{**}
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332**	0.0421	0.0345	0.0559	0.0177^{**}	0.0230^{**}	0.0717**	0.1061^{**}	0.0400^{**}	0.0486^{**}	0.0316**	0.0524^{**}	0.0158**	0.0210^{**}
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524**	0.0353**	0.0582**	0.0171**	0.0231**
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0311	0.0476	0.0167	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611**	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525**	0.0182^{**}	0.0230**	0.0736**	0.1031**	0.0424^{**}	0.0498**	0.0268**	0.0451^{*}	0.0129**	0.0175*
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%
DR4SR+	0.0637**	0.0953**	0.0334**	0.0414**	0.0351**	0.0545**	0.0189**	0.0238**	0.0771**	0.1082**	0.0442**	0.0521**	0.0272**	0.0471**	0.0134**	0.0184**
Improv	11.8%	10.9%	7.40%	7.81%	12.9%	14.5%	13.2%	12.8%	10.6%	12.9%	9.68%	11.1%	12.4%	9.53%	13.6%	10.8%
CL4SRec	0.0653	0.0947	0.0370	0.0441	0.0381	0.0559	0.0215	0.0259	0.0781	0.1075	0.0456	0.0530	0.0322	0.0535	0.0159	0.0212
DR4SR	0.0732**	0.1016**	0.0423**	0.0495**	0.0401**	0.0600**	0.0227**	0.0274**	0.0821**	0.1113*	0.0481**	0.0551*	0.0344**	0.0561**	0.0174**	0.0229**
Improv	12.1%	7.29%	14.3%	12.2%	5.25%	7.33%	5.58%	5.79%	5.12%	3.53%	5.48%	3.96%	6.83%	4.86%	9.43%	8.02%
DR4SR+	00756**	0.1062**	0.0440**	0.0517**	0.0448**	0.0655**	0.0247**	0.0299**	0.0829**	0.1140**	0.0489**	0.0567**	0.0363**	0.0598**	0.0183**	0.0241**
Improv	15.8%	1.12%	18.9%	17.2%	17.6%	17.2%	14.8%	15.4%	6.15%	6.05%	7.24%	6.98%	12.7%	11.8%	15.1%	13.7%

Table 3: The overall performance. Considering a target model, the best result is bolded while the second-best result is underlined. Superscript * means improvements are statistically significant with p<0.05 while ** meaning p<0.01.

Dataset	Beauty					Spo	orts			To	ys			Ye	elp	
Metric	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20
∞-AE	0.0478	0.0661	0.0262	0.0308	0.0256	0.0373	0.0144	0.0173	0.0450	0.0593	0.0268	0.0304	0.0252	0.0424	0.0121	0.0162
MELT	0.0577	0.0879	0.0303	0.0379	0.0311	0.0488	0.0163	0.0208	0.0709	0.0987	0.0401	0.0473	0.0293	0.0497	0.0143	0.0195
GRU4Rec	0.0204	0.0382	0.0107	0.0150	0.0160	0.0279	0.0085	0.0115	0.0212	0.0357	0.0099	0.0136	0.0215	0.0364	0.0105	0.0143
DR4SR	0.0252**	0.0448**	0.0128**	0.0177**	0.0208**	0.0341^{**}	0.0102**	0.0135**	0.0252**	0.0418^{**}	0.0124**	0.0165**	0.0235**	0.0403^{**}	0.0114^{**}	0.0156**
Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151**	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415^{**}	0.0120^{**}	0.0164^{**}
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	0.0595**	0.0906**	0.0317^{**}	0.0395**	0.0330**	0.0512^{**}	0.0174^{**}	0.0220**	0.0762**	0.1049^{**}	0.0432^{**}	0.0504^{**}	0.0304*	0.0512^{*}	0.0151^{*}	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412**	0.0349**	0.0525**	0.0191**	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211^{**}
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332**	0.0421	0.0345	0.0559	0.0177^{**}	0.0230^{**}	0.0717**	0.1061^{**}	0.0400^{**}	0.0486^{**}	0.0316**	0.0524^{**}	0.0158**	0.0210^{**}
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524**	0.0353**	0.0582**	0.0171**	0.0231**
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0311	0.0476	0.0167	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611**	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525**	0.0182^{**}	0.0230**	0.0736**	0.1031**	0.0424^{**}	0.0498**	0.0268**	0.0451^{*}	0.0129**	0.0175*
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%
DR4SR+	0.0637**	0.0953**	0.0334**	0.0414**	0.0351**	0.0545**	0.0189**	0.0238**	0.0771**	0.1082**	0.0442**	0.0521**	0.0272**	0.0471**	0.0134**	0.0184**
Improv	11.8%	10.9%	7.40%	7.81%	12.9%	14.5%	13.2%	12.8%	10.6%	12.9%	9.68%	11.1%	12.4%	9.53%	13.6%	10.8%
CL4SRec	0.0653	0.0947	0.0370	0.0441	0.0381	0.0559	0.0215	0.0259	0.0781	0.1075	0.0456	0.0530	0.0322	0.0535	0.0159	0.0212
DR4SR	0.0732**	0.1016**	0.0423**	0.0495**	0.0401**	0.0600**	0.0227**	0.0274**	0.0821**	0.1113*	0.0481**	0.0551*	0.0344**	0.0561**	0.0174**	0.0229**
Improv	12.1%	7.29%	14.3%	12.2%	5.25%	7.33%	5.58%	5.79%	5.12%	3.53%	5.48%	3.96%	6.83%	4.86%	9.43%	8.02%
DR4SR+	00756**	0.1062**	0.0440**	0.0517**	0.0448**	0.0655**	0.0247**	0.0299**	0.0829**	0.1140**	0.0489**	0.0567**	0.0363**	0.0598**	0.0183**	0.0241**
Improv	15.8%	1.12%	18.9%	17.2%	17.6%	17.2%	14.8%	15.4%	6.15%	6.05%	7.24%	6.98%	12.7%	11.8%	15.1%	13.7%

Table 3: The overall performance. Considering a target model, the best result is bolded while the second-best result is underlined. Superscript * means improvements are statistically significant with p<0.05 while ** meaning p<0.01.

- 1. DR4SR can regenerate informative and generalizable datasets
- 2. Different models favor different datasets

DR4SR	0.0252**	0.0448**	0.0128**	0.0177**	0.0208**	0.0341**	0.0102**	0.0135**	0.0252**	0.0418**	0.0124**	0.0165**	0.0235**	0.0403**	0.0114**	0.0156**
Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151**	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415^{**}	0.0120**	0.0164**
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	0.0595**	0.0906**	0.0317**	0.0395**	0.0330**	0.0512**	0.0174^{**}	0.0220**	0.0762**	0.1049**	0.0432**	0.0504**	0.0304*	0.0512*	0.0151^*	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412**	0.0349**	0.0525**	0.0191**	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211^{**}
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332**	0.0421	0.0345	0.0559	0.0177^{**}	0.0230**	0.0717**	0.1061**	0.0400**	0.0486^{**}	0.0316**	0.0524**	0.0158**	0.0210^{**}
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524**	0.0353**	0.0582**	0.0171**	0.0231**
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0311	0.0476	0.0167	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611**	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525**	0.0182**	0.0230**	0.0736**	0.1031**	0.0424**	0.0498^{**}	0.0268**	0.0451^{*}	0.0129**	0.0175*
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%
DR4SR+	0.0637**	0.0953**	0.0334**	0.0414^{**}	0.0351**	0.0545**	0.0189**	0.0238**	0.0771**	0.1082**	0.0442**	0.0521**	0.0272**	0.0471**	0.0134**	0.0184**
Improv	11.8%	10.9%	7.40%	7.81%	12.9%	14.5%	13.2%	12.8%	10.6%	12.9%	9.68%	11.1%	12.4%	9.53%	13.6%	10.8%
CL4SRec	0.0653	0.0947	0.0370	0.0441	0.0381	0.0559	0.0215	0.0259	0.0781	0.1075	0.0456	0.0530	0.0322	0.0535	0.0159	0.0212
DR4SR	0.0732**	0.1016^{**}	0.0423**	0.0495**	0.0401**	0.0600**	0.0227**	0.0274**	0.0821**	0.1113*	0.0481^{**}	0.0551^{*}	0.0344**	0.0561^{**}	0.0174^{**}	0.0229**
Improv	12.1%	7.29%	14.3%	12.2%	5.25%	7.33%	5.58%	5.79%	5.12%	3.53%	5.48%	3.96%	6.83%	4.86%	9.43%	8.02%
DR4SR+	00756**	0.1062**	0.0440^{**}	0.0517^{**}	0.0448**	0.0655**	0.0247^{**}	0.0299**	0.0829**	0.1140**	0.0489**	0.0567**	0.0363**	0.0598**	0.0183**	0.0241^{**}
Improv	15.8%	1.12%	18.9%	17.2%	17.6%	17.2%	14.8%	15.4%	6.15%	6.05%	7.24%	6.98%	12.7%	11.8%	15.1%	13.7%

Table 3: The overall performance. Considering a target model, the best result is bolded while the second-best result is underlined. Superscript * means improvements are statistically significant with p<0.05 while ** meaning p<0.01.

- 1. DR4SR can regenerate informative and generalizable datasets
- 2. Different models favor different datasets

DR4SR	0.0252**	0.0448**	0.0128**	0.0177**	0.0208**	0.0341**	0.0102**	0.0135**	0.0252**	0.0418**	0.0124**	0.0165**	0.0235**	0.0403**	0.0114**	0.0156**
Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151^{**}	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415^{**}	0.0120^{**}	0.0164**
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	0.0595**	0.0906**	0.0317**	0.0395**	0.0330**	0.0512**	0.0174^{**}	0.0220**	0.0762**	0.1049**	0.0432^{**}	0.0504^{**}	0.0304*	0.0512*	0.0151^*	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412^{**}	0.0349**	0.0525**	0.0191**	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211^{**}
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332**	0.0421	0.0345	0.0559	0.0177**	0.0230**	0.0717**	0.1061^{**}	0.0400**	0.0486^{**}	0.0316**	0.0524**	0.0158**	0.0210**
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524**	0.0353**	0.0582^{**}	0.0171**	0.0231**
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0511	v.v47o	0.0107	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611**	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525**	0.0182**	0.0230**	0.0736**	0.1031**	0.0424**	0.0498**	0.0268**	0.0451^{*}	0.0129**	0.0175*
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%
DR4SR+	0.0637**	0.0953**	0.0334**	0.0414**	0.0351**	0.0545**	0.0189**	0.0238**	0.0771**	0.1082**	0.0442^{**}	0.0521^{**}	0.0272**	0.0471^{**}	0.0134**	0.0184**
Improv	11.8%	10.9%	7.40%	7.81%	12.9%	14.5%	13.2%	12.8%	10.6%	12.9%	9.68%	11.1%	12.4%	9.53%	13.6%	10.8%
CL4SRec	0.0653	0.0947	0.0370	0.0441	0.0381	0.0559	0.0215	0.0259	0.0781	0.1075	0.0456	0.0530	0.0322	0.0535	0.0159	0.0212
DR4SR	0.0732**	0.1016^{**}	0.0423^{**}	0.0495^{**}	0.0401**	0.0600**	0.0227**	0.0274**	0.0821**	0.1113*	0.0481^{**}	0.0551^{*}	0.0344**	0.0561**	0.0174**	0.0229**
Improv	12.1%	7.29%	14.3%	12.2%	5.25%	7.33%	5.58%	5.79%	5.12%	3.53%	5.48%	3.96%	6.83%	4.86%	9.43%	8.02%
DR4SR+	00756**	0.1062^{**}	0.0440^{**}	0.0517**	0.0448**	0.0655**	0.0247^{**}	0.0299**	0.0829**	0.1140**	0.0489**	0.0567**	0.0363**	0.0598**	0.0183**	0.0241^{**}
Improv	15.8%	1.12%	18.9%	17.2%	17.6%	17.2%	14.8%	15.4%	6.15%	6.05%	7.24%	6.98%	12.7%	11.8%	15.1%	13.7%

Table 3: The overall performance. Considering a target model, the best result is bolded while the second-best result is underlined. Superscript * means improvements are statistically significant with p<0.05 while ** meaning p<0.01.

- 1. DR4SR can regenerate informative and generalizable datasets
- 2. Different models favor different datasets
- 3. Denoising is only part of the problem in developing a better training dataset

Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151**	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415^{**}	0.0120**	0.0164**
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	0.0595**	0.0906**	0.0317^{**}	0.0395**	0.0330**	0.0512**	0.0174**	0.0220**	0.0762**	0.1049**	0.0432^{**}	0.0504**	0.0304*	0.0512^{*}	0.0151^*	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412**	0.0349**	0.0525**	0.0191^{**}	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211^{**}
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332**	0.0421	0.0345	0.0559	0.0177**	0.0230**	0.0717**	0.1061**	0.0400**	0.0486^{**}	0.0316**	0.0524**	0.0158**	0.0210^{**}
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524^{**}	0.0353**	0.0582**	0.0171**	0.0231^{**}
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0311	0.0476	0.0167	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611**	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525**	0.0182**	0.0230**	0.0736**	0.1031**	0.0424**	0.0498**	0.0268**	0.0451^{*}	0.0129**	0.0175*
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%
DR4SR+	0.0637**	0.0953**	0.0334**	0.0414**	0.0351**	0.0545^{**}	0.0189**	0.0238**	0.0771**	0.1082**	0.0442**	0.0521**	0.0272**	0.0471^{**}	0.0134**	0.0184^{**}
Improv	11.8%	10.9%	7.40%	7.81%	12.9%	14.5%	13.2%	12.8%	10.6%	12.9%	9.68%	11.1%	12.4%	9.53%	13.6%	10.8%
CL4SRec	0.0653	0.0947	0.0370	0.0441	0.0381	0.0559	0.0215	0.0259	0.0781	0.1075	0.0456	0.0530	0.0322	0.0535	0.0159	0.0212
DR4SR	0.0732**	0.1016^{**}	0.0423**	0.0495**	0.0401**	0.0600**	0.0227**	0.0274**	0.0821**	0.1113*	0.0481^{**}	0.0551^{*}	0.0344**	0.0561^{**}	0.0174**	0.0229**
Improv	12.1%	7.29%	14.3%	12.2%	5.25%	7.33%	5.58%	5.79%	5.12%	3.53%	5.48%	3.96%	6.83%	4.86%	9.43%	8.02%
DR4SR+	00756**	0.1062^{**}	0.0440^{**}	0.0517**	0.0448**	0.0655**	0.0247^{**}	0.0299**	0.0829**	0.1140**	0.0489**	0.0567**	0.0363**	0.0598**	0.0183**	0.0241**
Improv	15.8%	1.12%	18.9%	17.2%	17.6%	17.2%	14.8%	15.4%	6.15%	6.05%	7.24%	6.98%	12.7%	11.8%	15.1%	13.7%

Ablation study

Table 4: Abalation study of DR4SR on NDCG@20.

Dataset	Beauty	Sport	Toys	Yelp
SASRec	0.0368	0.0194	0.0448	0.0193
DR4SR+	0.0412	0.0235	0.0527	0.0211
(A) -diversity	0.0365	0.0211	0.0470	0.0196
(B) pattern	0.0181	0.0184	0.0407	0.0141
(C) end-to-end	0.0026	0.0029	0.0067	0.0035

- >-diversity: replacing the regenerator with a vanilla Transformer
- > pattern: regarding the extracted rule-based patterns as regenerated dataset
- right end-to-end: directly optimizing the dataset personalizer

Extended experiments: more data forms should be regenerated

Figure 5: Relative NDCG@20 improvement of graphs and data augmentations on different datasets.

➤ Which dataset should be used to construct graphs or augmentation data: original one or regenerated one?

Future work

- > Delving deeper into dataset regeneration
 - ◆Regenerating more data formats
 - Graph: graph structure learning
 - Data augmentation: learnable data augmentation
 -
 - ◆Incorporating more knowledge
 - Introducing semantic information by integrating LLMs
 - Introducing multi-domain information by cross-domain dataset regeneration
 -
 - **◆**Application
 - Privacy-preserving
 -

Dataset Regeneration for Sequential Recommendation

Mingjia Yin¹, Hao Wang¹, Wei Guo², Yong Liu², Suojuan Zhang¹, Sirui Zhao¹, Defu Lian¹, Enhong Chen¹

- 1. University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence
 - 2. Huawei Singapore Research Center

Code: https://github.com/USTC-StarTeam/DR4SR

THANK YOU

