Analysis Qualifying Exam

January 2016

Please solve any 5 of the following 8 problems. Be sure to write clearly and give sufficient explanations. Solving more than 5 will not result in extra points.

Problem 1

- (a) State the Monotone Convergence Theorem (MCT).
- (b) State Fatou's Lemma.
- (c) Use Fatou's Lemma to prove MCT.

Problem 2

Let $\{f_n\}_{n=1}^{\infty}$, f be real-valued, Lebesgue measurable functions on the interval [0,1]. Prove, or provide a counterexample, to each of the following:

- (a) If $f_n \to f$ in L^1 , then $f_n \to f$ almost everywhere.
- (b) If $f_n \to f$ in measure, then $f_n \to f$ in L^1 .
- (c) If $f_n \to f$ almost uniformly, then $f_n \to f$ almost everywhere. (Note: $f_n \to f$ almost uniformly if, for each $\epsilon > 0$, there exists a set $E \subset [0,1]$ with $m(E) < \epsilon$ so that on $[0,1] \setminus E$, $f_n \to f$ uniformly.)

Problem 3

Let (X, \mathbb{A}, μ) be any sigma-finite measure space, and $\{A_n\}_{n=1}^{\infty}$ a sequence of measurable subsets of X. Show that:

(a)
$$\mu(\bigcup_n A_n) \le \sum_n \mu(A_n)$$
.

(b) Let
$$\limsup A_n = \bigcap_{n \ge 1} \bigcup_{n \ge k} A_n$$
. Show that $\mu(\limsup A_n) \ge \limsup \mu(A_n)$.

Problem 4

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be monotone increasing. Show that $\{x: f \text{ is not continuous at } x\}$ is countable
- (b) Show that if $f:[a,b] \to \mathbb{R}$ is absolutely continuous, then f is of bounded variation.
- (c) Give an example of a function $f:[0,1]\to\mathbb{R}$ which is monotone, of bounded variation, and not absolutely continuous. Justify!

Problem 5

Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot) . Prove the equivalence of the following properties of an orthonormal set $\{e_k\}_{k=1}$ in \mathcal{H} .

- (i) Finite linear combinations of elements in $\{e_k\}_{k=1}$ are dense in \mathcal{H} .
- (ii) If $f \in \mathcal{H}$ and $(f, e_j) = 0$ for all j, then f = 0.
- (iii) If $f \in \mathcal{H}$, and $S_N(f) = \sum_{k=1}^N a_k e_k$, where $a_k = (f, e_k)$, then $S_N(f) \to f$ as $N \to \infty$ in the norm.
- (iv) If $a_k = (f, e_k)$, then $||f||^2 = \sum_{k=1}^{\infty} |a_k|^2$.

Problem 6

- (a) Define the orthogonal complement of a closed subspace of a Hilbert space.
- (b) Prove that if S is a closed subspace of a Hilbert space \mathcal{H} then $\mathcal{H} = S \bigoplus S^{\perp}, S^{\perp}$ denotes the orthogonal complement of S.
- (c) If S is a subspace of a Hilbert space, is it true that $(S^{\perp})^{\perp} = S$? Explain your answer.

Problem 7

Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot) . Let $T : \mathcal{H} \to \mathcal{H}$ be a bounded linear transformation. Prove that there exists a unique bounded linear transformation T^* on \mathcal{H} satisfying the following properties:

- (i) $(Tf,g) = (f, T^*g),$
- (ii) $||T|| = ||T^*||$, and
- (iii) $(T^*)^* = T$.

Problem 8

All questions in this problem refer to Lebesgue measure.

- (a) Is $L^1[0,1]$ contained in $L^2[0,1]$? Is $L^2[0,1]$ contained in $L^1[0,1]$? Justify!
- (b) Is $L^1(0,\infty)$ contained in $L^2(0,\infty)$? Is $L^2(0,\infty)$ contained in $L^1(0,\infty)$? Justify!