Complex Geometry

An

October 3, 2022

Contents

1	Loca	al Theory	1
	1.1	Holomorphic Functions of Several Variables	1

1 Local Theory

1.1 Holomorphic Functions of Several Variables

Definition 1.1 (Holomorphic Functions). There is 3 equivalent definitions: Given $U \subset \mathbb{C}$ an open subset. A function $f: U \to \mathbb{C}$ is called holomorphic if

(1) for any $z_0 \in U$ there exists a ball $B_{\epsilon}(z_0) \subset U$ such that on $B_{\epsilon}(z_0)$ can be written as a convergent power series, i.e. $\forall z \in B_{\epsilon}(z_0)$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

(2) f is continuously differentiable and $\forall z_0 \in U$, $\frac{\partial f}{\partial \overline{z}} = 0$.

(3) f is continuously differentiable and $\forall \overline{B_{\epsilon}(z_0)} \subset U$,

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial B_{\epsilon}(z_0)} \frac{f(z)}{z - z_0} dz$$

Remark 1.1. For a holomorphic function, there are following theorems:

- Maximum Principle. If f is a holomorphic non-constant function defined on connected open set U, then |f| has no local maximum in U.
- Identity Theorem. If $f, g: U \to \mathbb{C}$ are two holomorphic functions on a connected open set $U \subset \mathbb{C}$ such that f(z) = g(z) for all z in a non-empty open subset $V \subset U$, then f = g.
- Riemann Extension Theorem. Let $f: B_{\epsilon}(z_0) \setminus \{z_0\} \to \mathbb{C}$ be a bounded holomorphic function. Then f can be extended to a holomorphic function $f: B_{\epsilon}(0) \to \mathbb{C}$.
- Riemann Mapping Theorem. Let $U \subset \mathbb{C}$ be a simply connected proper open subset. Then U is biholomorphic to the unit ball.
- ullet Liouville Theorem. Every bounded holomorphic function from $\mathbb C$ to itself is constant.
- Residue Theorem. Let $f: B_{\epsilon}(0) \setminus \{0\} \to \mathbb{C}$ be a holomorphic function. Then f can be expanded in a Laurent series $f(z) = \sum_{-\infty}^{\infty} a_n z^n$ and $a_{-1} = 1/(2\pi i) \int_{|z| = \epsilon/2} f(z) dz$.

Definition 1.2 (Multi-value Holomorphic Functions). Let $U \subset \mathbb{C}^n$ be an open subset and $f: U \to \mathbb{C}$ be a continuously differentiable function. Then f is said to be holomorphic if f is holomorphic respect to every variable.

Theorem 1.1. Let $f: \overline{B_{\epsilon}(w)} \to \mathbb{C}$ be a holomorphic function. Then $\forall z \in B_{\epsilon}(w)$,

$$f(z) = \frac{1}{(2\pi i)^n} \int_{|\xi_i - w_i| = \epsilon_i} \frac{f(\xi_1, \dots, \xi_n)}{(\xi_1 - z_1) \dots (\xi_n - z_n)} d\xi_1 \dots d\xi_n$$

Proof. This immediately follows by applying the cauthy theorem of a single variable repeatedly. \Box

Theorem 1.2. Any holomorphic function $f: B_{\epsilon}(0) \to \mathbb{C}$ can be written as a power series on $B_{\epsilon}(0)$.

Proof. By the definition of holomorphic function, $f(z_1, w) = \sum_{n=0}^{\infty} a_n(w) z_1^n$. Since

$$a_n(w) = \int_{|\xi - z_1| = \delta} \frac{f(\xi, w)}{\xi - z_1} d\xi$$

 $a_n(w)$ is holomorphic with respect to w.

Remark 1.2. The Maximum Principle, Identity Theorem and the Liouville Theorem holds for higher dimention. The Riemann Mapping Theorem will fail.

Lemma 1.1. Let $U \subset \mathbb{C}^n$ be an subset and let $V \subset \mathbb{C}$ be an open neighbourhood of the boundary of $B_{\epsilon}(0) \subset \mathbb{C}$. Assume that $f: V \times U \to \mathbb{C}$ is a holomorphic function. Then

$$g(z) := g(z_1, \dots, z_n) := \int_{|\xi| = \epsilon} f(\xi, z_1, \dots, z_n) d\xi$$

is a holomorphic function on V.

Proof. Since $\partial B_{\epsilon}(0)$ is compact, there exists a finite cover $B_{\delta(\xi_i)}(\xi_i)$. Therefore the unit disk is divided by this open cover, denote each segment by $1, \ldots, m$. Therefore

$$g(z) = \sum_{i=1}^{m} \int_{i} f(\xi, z_1, \dots, z_n) d\xi$$

On each segment f is uniformly continuous since f is on a unit disk. Thus for every segment

$$\int_{i} f(\xi, z_{1}, \dots, z_{n}) d\xi = \int_{i} \sum_{k_{0}, \dots, k_{n+1}=0}^{\infty} a_{in}(\xi - \xi_{i})^{k_{0}} (z_{1} - z_{1_{i}})^{k_{1}} \dots (z_{n} - z_{n_{i}})^{k_{n+1}} d\xi$$

the integral and the summation commutes, therefore g(z) can still be written as a power series, hence g(z) is holomorphic.

Theorem 1.3 (Hartogs' Theorem). Suppose ϵ and ϵ' which $\epsilon'_i < \epsilon_i$. When n > 1, $\forall f : B_{\epsilon}(0) \setminus \overline{B'_{\epsilon}(0)} \to \mathbb{C}$ holomorphic, then f can be uniquely extended to a holomorphic map $f : B_{\epsilon}(0) \to \mathbb{C}$

Proof. Assume $\epsilon = (1, \dots, 1), \epsilon' = (1 - \delta, \dots, 1 - \delta)$. Let

$$\widetilde{f}(z_1, w) = \frac{1}{2\pi i} \int_{|\xi|=1-\frac{\delta}{2}} \frac{f(\xi, w)}{\xi - z_1} d\xi$$

Since $\frac{f(\xi,w)}{\xi-z_1}$ is holomorphic on $V\times\{|z_1|<1-3\delta/4\}\times B_{\epsilon_{i>1}}(0)$ where V is a small open neighbourhood containing the integration path. Therefore $\widetilde{f}(z_1,w)$ is holomorphic on $\{|z_1|<1-3\delta/4\}\times B_{\epsilon_{i>1}}(0)$. Because $f(z_1,w)=\widetilde{f}(z_1,w)$ on some openset in $\{1-3\delta/4<|z_1|<1-\delta/2\}\times B_{\epsilon_{i>1}}(0)$. Therefore by the identity theorem $f=\widetilde{f}$ on the intersection of their domain. Hence f can be extended to $B_{\epsilon}(0)$. The uniqueness is also obvious by the identity theorem.

Theorem 1.4 (Weierstrass Preparation Theorem). Given $f: B_{\epsilon}(0) \to \mathbb{C}$ a holomorphic function. Assume $f(0) = 0, f_0(z_1) \not\equiv 0$. Then there exists a weierstrass polynomial

$$g(z_1, w) = z_1^d + \alpha_1(w)z + 1^{d-1} + \dots + \alpha_d(w)$$

where each $\alpha_i(w)$ is holomorphic and $\alpha_i(0) = 0$ and a holomorphic function h such that f = gh and $h(0) \neq (0)$. Moreover, g is unique.

Proof. Since f(0) = 0, $f_0(z_1) \neq 0$, there exists a disk $B_{\epsilon_1}(0)$ such that $\forall z_1 \in B_{\epsilon_1}(0)$, $f_0(z_1) \neq 0$. Take $\epsilon_{i>1} > 0$ such that $\forall |z_1| = \epsilon_1, |z_i| < \epsilon_i, f(z_1, w) \neq 0$.

Since f is holomorphic,

$$R(w) = \int_{|\xi| = \epsilon_1} \frac{f'_w(\xi)}{f_w(\xi)} d\xi$$

Obviously R(w) is the number of roots when z_1 is restricted to the disk. Since $R(w) \in \mathbb{Z}$ is holomorphic, R(w) = d, where d is the multiplicity at z = 0. Therefore

$$f(z_1, w) = \prod_{i=1}^{d} (z_1 - a_i(w))h_w(z_1) = g_w(z_1)h_w(z_1)$$

where $a_i(w)$ is zeros of f. Therefore for $k = 1, \ldots, d$,

$$\sigma_k(w) := \sum_{i=1}^d a_i(w)^k = \frac{1}{2\pi i} \int_{|\xi| = \epsilon_1} \xi^k \frac{f'_w(\xi)}{f_w(\xi)} d\xi$$

By the lemma $\sigma_k(w)$ is holomorphic to w, therefore $a_i(w)$ is holomorphic, $g(z_1, w)$ is holomorphic. Let

$$h(z_1, w) = \int_{|\xi| = \epsilon_1} \frac{f(\xi, w)}{g(\xi, w)(\xi - z_1)} d\xi$$

it is obvious that $h(z_1, w)$ is holomorphic, and it is equal to f(z)/g(z) when g(z) is non-zero. Therefore f = gh. For the uniqueness of g, since $h(0) \neq 0$, f_w and g_w will have the same zeros. Therefore the polynomial is unique.

Theorem 1.5. Given a open subset $U \subset \mathbb{C}^*$, $f: U \to \mathbb{C}$ holomorphic. Denote the zeros of f with Z(f). $g: U \setminus Z(f) \to \mathbb{C}$ is holomorphic and locally bounded near Z(f), then g can be uniquely extend to $\widetilde{g}: U \to \mathbb{C}$.

Proof. Assume $U = B_{\epsilon}(0)$ and $f_0(z_1) \neq 0$ for any $0 < |z_1| < \epsilon_1$. and $f(z) \neq 0$ for any $|z_1| = \epsilon_1/2$