Matematiska Institutionen KTH

Tentamen i Linjär Algebra, SF1604 14 december, 2010.

Kursexaminator: Sandra Di Rocco

OBS! Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel är tillåtna. Betyg enligt följande tabell:

- A minst 35 poäng
- B minst 30 poäng
- C minst 25 poäng
- D minst 20 poäng
- E minst 15 poäng
- Fx 13-14 poäng

Betyg Fx ger möjlighet till att komplettera till betyg E. Datumet och formen på kompletteringsprovet meddelas via email. **Skriv din email adress på tentamen.**

Del I

Totalt 15 poäng, inklusive bonuspoäng.

Bonus-poäng från KS1 kommer att läggas till de poäng från uppgift 1. Bonus-poäng från KS2 kommer att läggas till de poäng i uppgift 2. Den totala påäng från uppgift 1, respektive 2, kan vara på högst 5 poäng.

- 1. (a) (1 p.) Bestäm k så att punkterna (1,2),(2,4),(k,-1) ligger på en linje i \mathbb{R}^2 . Punkterna ligger på ett linje om två ligger i delrummet som den tredje genererar. Vi ser att (2,4)=2(1,2) och (k,-1)=t(1,2) om $k=t=-\frac{1}{2}$.
 - (b) (2 p.) Bestäm k så att vektorerna (k+3,5,4), (5,k+3,5), (k-7,-5,k-7) spänner upp ett plan i \mathbb{R}^3 (d.v.s ett delrum av dimension 2).

De tre vektorer (k+3,5,4), (5,k+3,5), (k-7,-5,k-7) måste vara linjärt beroende, men två av dem måste vara linjärt oberoende. Man ser att

$$a(k+3,5,4), +b(5,k+3,5) + c(k-7,-5,k-7) = (0,0,0) \Rightarrow \begin{cases} a(k+3) + 5b + c(k-7) & = & 0 \\ 5a + b(k+3) - 5c & = & 0 \\ 4a + 5b + c(k-7) & = & 0 \end{cases}$$

Matrisen associerad till systemet är:

$$A = \begin{pmatrix} k+3 & 5 & k-7 \\ 5 & k+3 & -5 \\ 4 & 5 & k-7 \end{pmatrix}$$

För att de tre vektorer ska ligga på ett plan måste matrisen A ha rang < 3.

$$\det(A) = (k-1)(k-2)^2$$

som visar att rang(A) < 3 bara om k = 1, 2. Sen kan vi kolla att

$$k = 1 : rang \begin{pmatrix} 4 & 5 & -6 \\ 5 & 4 & -5 \\ 4 & 5 & -6 \end{pmatrix} = 2 \text{ och } k = 2 : rang \begin{pmatrix} 5 & 5 & -5 \\ 5 & 5 & -5 \\ 4 & 5 & -5 \end{pmatrix} = 2$$

Svaret är k=1,2.

- (c) (1 p.) Bestäm k så att vektorerna (k+3,5,4), (5,k+3,5), (k-7,-5,k-7) utgör en bas till \mathbb{R}^3 . Eftersom vi har tre vektorer så kommer de att utgöra en bas när de är linjärt oberoende. Vi redan visat att detta händer när $\det(A) \neq 0$, d.v.s. för $k \neq 1, 2$.
- (d) (1.p) Välj en k så att vektorerna $B = \{(k+3,5,4), (5,k+3,5), (k-7,-5,k-7)\}$ utgör en bas till \mathbb{R}^3 och skriv koordinaterna till vektor (1,1,1) (given här med koordinater i standardbasen) i basen B.

Man kan välja, till exempel, k = 0. Låt (x, y, z) vara koordinaterna i basn B.

$$(1,1,1) = x(3,5,4) + y(5,3,5) + z(-7,-5,-7) \Rightarrow \begin{cases} 3x + 5y - 7z & = 1 \\ 5x + 3y - 5z & = 1 \\ 4x + 5y - 7z & = 1 \end{cases}$$

Genom Gauss elimination ser man att systemet har $(x, y, z) = (0, -\frac{1}{2}, -\frac{1}{2})$.

2. Betrakta följande matris:

$$A = \left(\begin{array}{ccc} 3 & 2 & 2\\ 1 & 4 & 1\\ -2 & -4 & -1 \end{array}\right)$$

(a) (2 p.) Bestäm samtliga egenvärden till A och tillhörande egenvektorer.

 $\det(A - \lambda I_3) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0$ har tre distinkta lösningar: $\lambda = 1, 2, 3$.

Egenvärden $\lambda = 1$ leder till systemet $(A - I_3)\underline{x} = 0$:

$$\begin{pmatrix} 2 & 2 & 2 \\ 1 & 3 & 1 \\ -2 & -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Alltså är $t(-1,0,1), t \neq 0$ egenvektorer till $\lambda=1$. Egenvärden $\lambda=2$ leder till systemet $(A-2I_3)\underline{x}=0$:

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Alltså är $t(-2,1,0), t \neq 0$ egenvektorer till $\lambda=1$. Egenvärden $\lambda=3$ leder till systemet $(A-3I_3)\underline{x}=0$:

$$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ -2 & -4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Alltså är $t(0,1,-1), t \neq 0$ egenvektorer till $\lambda = 1$.

(b) (1 p.) Ange matrisen P och den diagonala matrisen D sådana att $P^{-1}AP = D$. D består av egenvärden på diagonalen och P är barbytes matris från basen av egenvektoren till standard basen:

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, P = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

(c) (2 p.) Bestäm A^5 . Observera att $A = PDP^{-1}$ och $A^5 = PD^5P^{-1}$. Genom Gauss eliminering ser man att

$$P^{-1} = \left(\begin{array}{rrr} 1 & 2 & 2 \\ -1 & -1 & -1 \\ 1 & 2 & 1 \end{array}\right)$$

och att

$$A^{5} = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & 3^{5} \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ -1 & -1 & -1 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 63 & 62 & 62 \\ 211 & 453 & 211 \\ -242 & -484 & -241 \end{pmatrix}$$

3. Låt M vara det linjära rummet:

$$M = \{(x, y, z) \in \mathbb{R}^3 \text{ s.a. } 2x - y + 3z = 0\}$$

- (a) (1 p.) Bestäm en bas till M. Man ser att $(x,y,z)\in M$ om (x,y,z)=(t,2t+3s,s) för några $t,s\in\mathbb{R}$. Detta betyder att M=Span((1,2,0),(0,3,1)). Eftersom är (1,2,0),(0,3,1) linjärt oberoende utgör de en bas till M.
- (b) (2 p.) Bestäm en ON-bas till M. Man kan använda Gram-Schmidt och får:

$$\begin{array}{rcl} \vec{w_1} & = & (1,2,0) \\ \vec{w_2} & = & (0,3,1) - \frac{(1,2,0) \cdot (0,3,1)}{\|(1,2,0)\|^2} (1,2,0) = (\frac{-6}{5},\frac{3}{5},5) \end{array}$$

Det följer att

$$(\frac{\vec{w_1}}{\|\vec{w_1}\|}, \frac{\vec{w_2}}{\|\vec{w_2}\|}) = (\frac{1}{\sqrt{5}}(1, 2, 0), \frac{5}{\sqrt{70}}(-6, 3, 5))$$

utgör en ON-bas till M.

(c) (2 p.) Visa att M är isomorft till \mathbb{R}^2 . Man ska bestämma en isomorfi $\phi:W\to\mathbb{R}^2$. Vi kan bestämma hur ϕ ska fungerar på bas-vektorerna: $\phi(1,2,0)=(1,0), \phi(0,3,1)=(0,1)$ s.a. om $\vec{v}\in M, \vec{v}=t((1,2,0)+s(0,3,1)$ gäller att:

$$\phi((t, 2t + 3s, s) = (t, s) \in \mathbb{R}$$

där (t,s) är koordinater in den standard basen. Matrisen associerat till ϕ är T_2 som är inverterbar, vilket betyder att ϕ är en isomorfi.

DEL 2

Totalt 15 poäng, inklusive bonuspoäng. Bonus-poäng från uppsatsen kommer att läggas till de poäng i detta avsnitt. Den totala kan vara på högst 15 poäng.

4. Låt $T_{\alpha}: \mathbb{R}^3 \to \mathbb{R}^3$ vara en linjär avbildning med matris (med avseende till standardbasen)

$$A_{\alpha} = \left(\begin{array}{ccc} 2 & \alpha+1 & 0 \\ 0 & 1 & 0 \\ 2 & \alpha & \alpha-1 \end{array}\right)$$

(a) (2 p.) Bestäm dim $(Ker(T_{\alpha}))$, för varje $\alpha \in \mathbb{R}$. $Ker(T_{\alpha}) = \{\underline{x} \in \mathbb{R}^3 \text{ s.a. } A_{\alpha}\underline{x} = 0\}$. Systemet

$$\begin{cases} 2x + (\alpha + 1)y &= 0\\ y &= 0\\ 2x + \alpha y + (\alpha - 1)x &= 0 \end{cases}$$

Har icke-noll lösningar bara om $\alpha=1$ när lösningar blir av form $t(0,0,1),t\in\mathbb{R}.$ Det följer att

$$\dim(Ker(T_{\alpha})) = \begin{cases} 0 & \alpha \neq 1\\ 1 & \alpha = 1 \end{cases}$$

(b) (1 p.) Bestäm $\dim(Im(T_{\alpha}))$, för varje $\alpha \in \mathbb{R}$. (Obs Im(T) = R(T) betecknar delrummet $Im(T) = \{\vec{v} \in \mathbb{R}^3, \text{ s.a. } \vec{v} = T_{\alpha}(\vec{w}) \text{ för någon } \vec{w} \in \mathbb{R}^3.$)

Eftersom gäller att $3 = \dim \mathbb{R}^3 = \dim(Ker(T_\alpha)) + \dim(Im(T_\alpha))$, är:

$$\dim(Im(T_{\alpha})) = \begin{cases} 3 & \alpha \neq 1 \\ 2 & \alpha = 1 \end{cases}$$

(c) (2 p.) För vilken $\alpha \in \mathbb{R}$ är T_{α} diagonaliserbar?

 $\det(A_{\alpha}-I_3)=(1-\lambda)(2-\lambda)(\alpha-1-\lambda)$. Det följer att om $\alpha\neq 2,3$ har matrisen 3 distinkta egenvärden vilket betyder att den är diagonaliserbar.

Om $\alpha = 2$ då har matrisen

$$A_2 = \left(\begin{array}{ccc} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{array}\right)$$

egenvärdet $\lambda=2$ av algebraisk multiplicitet a.m(2)=1 och $\lambda=1$ av algebraisk multiplicitet a.m(1)=2. Egenrummet $E_1=Span(0,0,1)$ som ger att $\lambda=1$ har geometrisk multiplicitet g.m(1)=1. Detta betyder att A_2 och då F_2 inte är diagonaliserbar.

Om $\alpha = 3$ då har matrisen

$$A_3 = \left(\begin{array}{ccc} 2 & 4 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 2 \end{array}\right)$$

egenvärdet $\lambda=2$ av algebraisk multiplicitet a.m(2)=2 och $\lambda=1$ av algebraisk multiplicitet a.m(1)=1. Egenrummet $E_2=Span(0,0,1)$ som ger att $\lambda=2$ har geometrisk multiplicitet g.m(2)=1. Detta betyder att A_2 och då F_2 inte är diagonaliserbar.

Slutsatsen är att F_{α} är diagonaliserbar om och endast om $\alpha \neq 2, 3$.

5. Given är linjen $l \in \mathbb{R}^3$ av ekvation:

$$l: \left\{ \begin{array}{rcl} 3x - y + 2z & = & 2\\ x + 2y - z & = & 6 \end{array} \right.$$

(a) Bestäm ekvationen av planet $\pi_1 \in \mathbb{R}^3$ som innehåller l och punkten (0,0,0).

Ett plan som innehåller l måste vara en linjär kombination av planerna 3x - y + 2z = 2, x + 3y - z = 6, dvs:

$$\pi_1 = t(3x - y + 2z) + s(x + 2y - z) = 2t + 6s$$
 för någon $s, t \in \mathbb{R}$.

Man ser att $(0,0,0) \in \pi_1$ om 2t = -6s. Vi kan välja t = -3, s = 1 och får ekvationen

$$\pi_1: 8x - 5y + 7z = 0.$$

(b) Bestäm den ekvationen av planet $\pi_2 \in \mathbb{R}^3$ som innehåller l och är parallelt till linjen av parametrikekvation: $x=2+3t, y=\pi+t, z=\sqrt{7}+t$. Som tidigare $\pi_1=t(3x-y+2z)+s(x+2y-z)=2t+6s$ d.d.s:

$$x(3t+s) + y(-t+2s) + z(2t-s) = 2t+6s.$$

som ger att normal vektorn till π_2 är $\vec{n}=(3t+s,-t+2s,2t-s)$. Direktionsvektor till $x=2+3t,y=\pi+t,z=\sqrt{7}+t$ är $\vec{v}=(3,1,1)$ so måste vara ortogonal mot \vec{n} .

$$\vec{n} \cdot \vec{v} = 3(3t+s) - t + 2s + 2t - s = 10t + 4s = 0$$

Välj t.ex t = 2, s = -5 som ger

$$\pi_2: x - 12y + 9z = 26.$$

(c) Bestäm den ekvationen av planet $\pi_3 \in \mathbb{R}^3$ som innehåller l och är parallelt till linjen av ekvation: x-y=0, y+2z=0.

$$\pi_3: 19x - 11y + 16z = 2.$$

Den parametrisk ekvation till linjen x-y=0, y+2z=0 är y=x=2t, z=t. Som tidigare man får att:

6. Låt $S=(\vec{e_1},\ldots,\vec{e_n})$ vara den standardbasen till \mathbb{R}^n och låt $T:\mathbb{R}^n\to\mathbb{R}^n$ vara den linjär avbildning sådan att

$$T(\vec{e_i}) = \left\{ \begin{array}{ll} 0 & i = 1 \\ \vec{e_{i-1}} & i > 1 \end{array} \right.$$

(a) (1 p.) Skriv matrisen av T med avseende till standardbasen: $A=[T]_{S\to S}$. Man ser att:

$$A = \left(\begin{array}{cc} 0 & I_{n-1} \\ 0 & 0 \end{array}\right)$$

(b) (2 p.) Bestäm A^k för k = 1, ..., n. A^k är matrisen associerat till T^k och

$$T^{k}(\vec{e_i}) = \begin{cases} 0 & i = 1, \dots, k \\ \vec{e_{i-k}} & i > k \end{cases}$$

Det följer att

$$A = \left(\begin{array}{cc} 0 & I_{n-k} \\ 0 & 0 \end{array}\right)$$

för $k = 1, \ldots, n$.

(c) (2 p.) Bestäm $Ker(T^k), Im(T^k)$ för $k=1,\ldots,n$. Från matrisen A^k ser man att $Ker(T^k) = Span(\vec{e_1},\ldots,\vec{e_k}) \cong \mathbb{R}^k$ och $Im(T^k) = Span(\vec{e_{k+1}},\ldots,\vec{e_n}) \cong \mathbb{R}^{n-k}$.

DEL 3

7. Låt a_1, \ldots, a_n vara reella tal. Följade matrisen kallas Vandermonde-matris:

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}$$

(a) (3 p.) Visa att $\det(A) = \prod_{1 < j < i < n} (a_i - a_j)$

Vi visar detta med hjälp av induktion på n. Om n = 1 då är A = (1). Om n = 2 då är

$$\det \left(\begin{array}{cc} 1 & 1 \\ a_1 & a_2 \end{array} \right) = a_2 - a_1.$$

Antar att $\det(A) = \prod_{1 \le j < i \le k} (a_j - a_i)$ for en Vandermonde-matris an typ $k \times k$ för $k \le n$. Betrakta polynomet:

$$p(t) = \prod_{j=1}^{n-1} (t - a_j) = t^{n-1} + \sum_{i=1}^{n-2} c_i t^i$$

för några $c_1, \cdots c_{n-1} \in \mathbb{R}$. Efter elementära rad operationer som adderar till den sista raden R_n den linjär kombination, $\sum_1^{n-2} c_i R_i$, av de andra rader $R_1, \cdots R_{n-1}$ man får att:

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ p(a_1) & p(a_2) & \cdots & p(a_n) \end{pmatrix}$$

Men $p(a_i) = 0$ för varje $i \le n - 1$ och $p(a_n) = \prod_{i=1}^{n-1} (a_n - a_j)$ som ger:

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p(a_n) \end{pmatrix} = \Pi_{j=1}^{n-1}(a_n - a_j) \det(B)$$

där B är en Vandermonde-matris an typ $(n-1) \times (n-1)$

(b) (3 p.) Låt V vara ett vektorrum och $\vec{v}_1, \cdots, \vec{v}_n \in V$. Visa att om det finns distinkta $t_1, \cdots t_n$ som uppfyller relationen

$$\vec{v}_1 + t\vec{v}_2 + t^2\vec{v}_3 + \cdots + t^{n-1}\vec{v}_n = \vec{0}$$

Då gäller att $\vec{v}_1 = \vec{v}_2 = \cdots = \vec{v}_n = \vec{0}$.

Antar att det finns $t_1 \neq t_1 \neq \cdots \neq t_t$ s.a

$$\vec{v}_1 + t\vec{v}_2 + t^2\vec{v}_3 + \dots + t^{n-1}\vec{v}_n = \vec{0}, i = 1, \dots, n$$

Detta kan skrivar som:

$$(v_{1j}...v_{nj})\begin{pmatrix} 1 & 1 & \cdots & 1\\ t_1 & t_2 & \cdots & t_n\\ t_1^2 & t_2^2 & \cdots & t_n^2\\ \vdots & \ddots & \ddots & \ddots\\ t_1^{n-1} & t_2^{n-1} & \cdots & t_n^{n-1} \end{pmatrix} = (0\cdots 0)$$

för $j=1,\cdots,m$, där $\vec{v}_i=(v_{i1},\cdots v_{im})$ och $\dim(V)=m$. Eftersom $t_i\neq t_j$ är

$$\det(A) = \det\begin{pmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_n \\ t_1^2 & t_2^2 & \cdots & t_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1^{n-1} & t_2^{n-1} & \cdots & t_n^{n-1} \end{pmatrix} = \Pi_{1 \le j < i \le n}(t_i - t_j) \neq 0$$

Det följer att:

$$(v_{1j}...v_{nj})AA^{-1} = (0\cdots 0)A^{-1} = (0\cdots 0)$$

För $j = 1, \dots, m$, som visar att $\vec{v}_1 = \vec{v}_2 = \dots = \vec{v}_n = \vec{0}$.

8. Låt V vara ett vektorrum av ändlig dimension. Låt $\phi:V\to V$ vara en linjär avbildning med $rang(\phi)=1$. Visa att $\phi\circ\phi=r\phi$ för något $r\in\mathbb{R}$.

Låt $Im(\phi) = Span(\vec{v})$ för någon vektor $v \in V$. För varje $\vec{w} \in V$ gäller att:

$$\phi(\vec{w}) = a_w \phi(\vec{v})$$
, för ett tal $a_w \in \mathbb{R}$.

Så Det finns ett tal $a_{\phi(v)}$ s.a. $\phi(\phi(\vec{v})) = a_{\phi(v)}\phi(v)$. det följer att:

$$\phi \circ \phi(\vec{w}) = \phi(a_w \phi(\vec{v})) = a_w (\phi(\phi(\vec{v}))) = a_w a_{\phi(v)} \phi(\vec{v}) = a_{\phi(v)} (a_w \phi(\vec{v})) = a_{\phi(v)} \phi(\vec{w}).$$

Detta visar att $\phi \circ \phi = a_{\phi(v)}\phi$, i.e. $r = a_{\phi(v)}$.