electroussafi.ueuo.com 1/4

Diviseur de tension

5 exercices corrigés

Rappel:

$$U = U_1 + U_2 = R_1 I + R_2 I = (R_1 + R_2) I$$
 \Rightarrow $I = U / (R_1 + R_2)$

$$U_1 = \frac{R_1}{R_1 + R_2} U$$

$$U_2 = \frac{R_2}{R_1 + R_2} U$$

Généralisation:

Dans une branche alimentée par la tension U et comportant n dipôles en série, la tension aux bornes d'un dipôle Ri est :

Le diviseur de tension permet de trouver rapidement les différentes tensions dans un montage série.

electroussafi.ueuo.com 2/4

Exercice 1

Soit le circuit suivant :

On donne : E = 12 V, $R_1 = 2,2 \text{ k}\Omega$,

 $R_2 = 1k\Omega$

et $R_3 = 1.8k\Omega$

- **1.** Exprimer U_1 , U_2 et U_3 en fonction de E, R_1 , R_2 et R_3 .
- **2.** Combien vaut la somme des 3 tensions $U_1+U_2+U_3$?
- **3.** Calculer la valeur la tension U_3 .
- **4.** On désire obtenir une tension $U_3 = 2$ V, sans modifier les valeurs de R_1 et R_3 .Quelle doit être la valeur de R_2 ?

Exercice 2

On donne: E = 10V et $R_1 = R_2 = 1.5 \text{ k}\Omega$

electroussafi.ueuo.com 3/4

- **1.** Exprimer U en fonction de E, R_1 , R_2 et R.
- **2.** Calculer U pour : $R = \infty$, $R = 3.3 \text{ k}\Omega$, $R = 2.2 \text{ k}\Omega$ et $R = 1 \text{ k}\Omega$.

3. En déduire comment évolue U lorsque R diminue.

Exercice 3

- 1. Calculer la résistance équivalente à tout le réseau, vue entre les points A et M.
- 2. Calculer les tensions V_{BM} , V_{CM} et V_{DM} .

Exercice 4

Soit le circuit suivant :

Données : $R_1 = 10k\Omega$ $R_2 = 1k\Omega$ $R_3 = 2,2k\Omega$ E = 12V

electroussafi.ueuo.com 4/4

Lorsque le pont est équilibré, $U_{AB} = 0$.

On se propose de calculer la résistance R₄ permettant de remplir cette condition.

Questions:

- 1) Donner l'expression littérale de U_{AB} en fonction de E, R_1 , R_2 , R_3 et R_4 .
- 2) Donner l'expression de la condition d'équilibre ($U_{AB} = 0$) en fonction de R_1 , R_2 , R_3 et R_4 .
- 3) calculer R₄ à l'équilibre.

Exercice 5

Soit le circuit suivant :

$$E=10V,\,R_1=1k\Omega,\,R_2=R_3=3k\Omega,\,R_4=1,2k\Omega$$
 et $R_5=1,8k\Omega$

- 1. Calculer la tension U_{R1} .
- 2. Calculer la tension U_{AM} .
- 3. Calculer la tension U_{AB} .
- **4.** Calculer la tension U_{BM} .