Aufgabe 1. [10 Punkte]

Sei K ein Körper, $n \in \mathbb{N} \setminus \{0\}$ und $a_0, ..., a_n, b_0, ..., b_n \in K$ gegeben. In dieser Aufgabe wird nach einem Polynom $f(X) := f_n X^n + ... + f_1 X + f_0 \in K[X]$ vom Grad höchstens n (es gilt $\operatorname{grad}(f) = n$ genau dann, wenn $f_n \neq 0$) gesucht, so dass

$$f(a_i) = b_i, \ \forall i \in \{0, ..., n\}.$$
 (1)

(a) (2 Punkte) Leiten Sie aus (1) einen linearen Gleichungssystem

$$A \cdot x = b$$

her, wo A eine Matrix ist und x, b Spaltenvektoren, so dass die Koeffizienten $f_0, ..., f_n$ des gesuchten Polynoms f durchs Lösen diesen Systems bestimmt werden.

- (b) (3 Punkte) Seien $b_0 = ... = b_n = 0$ und $a_0, ..., a_n$ paarweise verschieden. Zeigen Sie, dass es in diesem Fall genau ein Polynom f vom Grad höchstens n existiert, der (1) erfüllt.
- (c) (2 Punkte) Welche Bedingungen müssen $a_0, ..., a_n, b_0, ..., b_n \in K$ erfüllen, damit das System $A \cdot x = b$ von (a) eine eindeutige Lösung hat?
- (d) (3 Punkte) Sei $K := \mathbb{Z}_3$, n := 2, $a_0 := \overline{0}$, $b_0 := \overline{0}$, $a_1 := \overline{1}$, $a_2 := \overline{2}$, $b_1 = b_2 := \overline{1}$, (hier bedeutet \overline{k} , für $k \in \mathbb{Z}$, die Restklasse von k modulo 3). Finden Sie alle Polynome $f \in \mathbb{Z}_3[X]$ von Grad höchstens 2, die (1) erfüllen.
- (e)* (4 Punkte) Sei $K := \mathbb{Z}_p$ und n := p-1, p eine ungerade Primzahl. Sei $\{a_0, ..., a_{p-1}\} := \mathbb{Z}_p \setminus \{\bar{0}\}$ und $b_k := a_k^{-1}, \ \forall k \in \{0, ..., p-1\}$ (hier ist a^{-1} das inverse Element zu $a \in \mathbb{Z}_p \setminus \{\bar{0}\}$ für die Multiplikation im Körper \mathbb{Z}_p). Finden Sie alle Polynome $f \in \mathbb{Z}_p[X]$ von Grad höchstens p-1, die (1) erfüllen.

Lösung. (a) Wir schreiben $f(a_i) = b_i \ \forall i \in \{0,..,n\} \Leftrightarrow f_n a_i^n + ... + f_1 a_i + f_0 = b_i \ \forall i \in \{0,..,n\} \Leftrightarrow f_n a_i^n + ... + f_n a_i + f$

$$\underbrace{\begin{pmatrix} 1 & a_0 & \dots & a_0^{n-1} & a_0^n \\ 1 & a_1 & \dots & a_1^{n-1} & a_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & a_n & \dots & a_n^{n-1} & a_n^n \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}}_{b}$$

mit $A \in Mat((n+1) \times (n+1), K), x, b \in K^{n+1}$.

- (b) Falls $b_i = 0$ und Gleichung (1) ist erfüllt, so sind die a_i alle Nullstellen von f, das heißt $(X a_i) \mid f$. Falls $a_0, ..., a_n$ paarweise verschieden sind, so sind die $X a_0, ..., X a_n$ paarweise teilerfremd. Dann gilt also auch $\prod_{i=0}^n (X a_i) \mid f$. Für $f \neq 0$ würde dann folgen, dass $n \geq \operatorname{grad}(f) = \operatorname{grad}(\prod_{i=0}^n (X a_i)) = n + 1$. Die Gleichung (1) kann also nur durch f = 0 erfüllt werden.
- (c) Um eine eindeutige Lösung des Systems Ax = b zu erhalten, muss A invertierbar sein, oder rang A = n + 1. Dies ist äquivalent dazu, dass das homogene System Ax = 0 nur die triviale Lösung hat. Aus (b) folgt also rang A = n + 1, falls $a_0, ..., a_n$ paarweise verschieden sind. Falls $a_i = a_j$ für ein $i \neq j$, so sind die entsprechenden Zeilen von A identisch. Der Rang kann dann also höchstens n sein. Es gilt also: Ax = b hat eine eindeutige Lösung $\Leftrightarrow a_0, ..., a_n$ sind paarweise verschieden. Insbesondere können die $b_0, ..., b_n$ beliebige Werte sein.
- (d) Aus dem Satz von Fermat folgt $\overline{x}^2 = \overline{1}$ für alle $x \in K^{\times} = K \setminus \{0\}$. Weiter gilt $\overline{0}^2 = \overline{0}$. Es erfüllt also $f = X^2$ die Gleichung (1). Aus (c) schließen wir, dass dies das einzige solche Polynom ist.
- (e)* Wir suchen ein Polynom $f \in K[X]$ so dass $a \cdot f(a) = \overline{1} \ \forall a \in \mathbb{Z}_p \setminus \{0\}$ und grad $f \leq p-1$. Der Satz von Fermat sagt $\overline{1} = a^{p-1} \ \forall a \in \mathbb{Z}_p \setminus \{0\}$, also haben die Polynome $q_1(X) := X \cdot f(X) \overline{1}$ und $q_2(X) := X \cdot f(X) X^{p-1}$ die Nullstellen $\overline{1}, ..., \overline{p-1}$. Da p > 1, ist $\overline{0} \in \mathbb{Z}_p$ auch eine Nullstelle von q_2 . Falls grad $f \leq p-1$, so ist grad $q_2 \leq p$ und wir leiten wie in (b) her, dass $q_2(x)$ mit der Eigenschaft $q_2(a) = \overline{0} \ \forall a \in \mathbb{Z}_p$ eindeutig ist. Nun wissen wir, dass $q_3(X) := X^p X \in \mathbb{Z}_p[X]$ ebenfalls diese

Eigenschaft besitzt, also diese zwei Polynome, beide vom Grad $\leq p$, haben X-a, für alle $a\in\mathbb{Z}_p$, als gemeinsame Faktoren. Da alle diese p lineare Faktoren paarweise teilerfremd sind, sind beide Polynome q_2 und q_3 durch das Produkt $X\cdot(X-\overline{1})\cdot\ldots\cdot(X-\overline{p-1})$ (auch ein Polynom vom Grad p) teilbar. Es folgt $Xf(X)-X^{p-1}=\overline{k}\cdot(X^p-X)$ für ein $\overline{k}\in\mathbb{Z}_p$. Da beide Seiten durch X teilbar sind, erhalten wir

$$f(X) - X^{p-2} = \overline{k} \cdot (X^{p-1} - \overline{1}),$$

also $f(X) = \overline{k} \cdot (X^{p-1} - \overline{1}) + X^{p-2}$, für ein $\overline{k} \in \mathbb{Z}_p$. Es gibt also p solche Polynome, eines für jeden Wert $\overline{k} \in \mathbb{Z}_p$.

Aufgabe 2. [10 Punkte]

Sei $A_s \in \operatorname{Mat}(3 \times 3, \mathbb{C})$ die folgende Matrix, die vom Parameter $s \in \mathbb{C}$ abhängt:

$$A_s := \begin{pmatrix} 1 & 1 & 1 \\ 1 & s & s^2 \\ 1 & s^3 & 1 \end{pmatrix}.$$

- (a) (5 Punkte) Bestimmen Sie den Rang der Matrix A_s in Abhängigkeit von $s \in \mathbb{C}$. Zeigen Sie, A_0 ist invertierbar und berechnen Sie A_0^{-1} .
- (b) (2 Punkte) Sei $f_s: \mathbb{C}^3 \to \mathbb{C}^3$, $f_s(x):=A_s \cdot x$. Geben Sie eine Basis von ker f_1 an.
- (c) (3 Punkte) Geben Sie die Lösungsmenge des linearen Gleichungssystems

$$A_{\lambda} \cdot \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$

an, wobei $\lambda := -\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Lösung. (a) Wir führen Elementare Zeilenumformungen durch

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & s & s^{2} & 0 & 1 & 0 \\
1 & s^{3} & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{II-I}
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & s-1 & s^{2}-1 & -1 & 1 & 0 \\
0 & s^{3}-1 & 0 & -1 & 0 & 1
\end{pmatrix}$$

$$III-(s^{2}+s+1)\cdot II
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & s-1 & s^{2}-1 & -1 & 1 & 0 \\
0 & 0 & -(s+1)(s^{3}-1) & s^{2}+s & -(s^{2}+s+1) & 1
\end{pmatrix}$$
(*)

Es gilt also $s=1\Rightarrow \operatorname{rang} A_s=1$ und $s\neq 1\Rightarrow \operatorname{rang} A_s\geq 2$. Weiter $\operatorname{rang} A_s=2\Leftrightarrow s=-1\vee s^2+s+1=0$. Man rechnet leicht nach $s^2+s+1=0\Leftrightarrow s\in\left\{-\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right\}=\left\{\lambda,\overline{\lambda}\right\}$ mit der Notation aus (c). Damit gilt A_s invertierbar $\Leftrightarrow s\in\mathbb{C}\setminus\left\{-1,1,\lambda,\overline{\lambda}\right\}$. Insbesondere ist A_0 invertierbar und es gilt (wir setzen s=0 in (*) ein):

$$(A_0 \mid I_3) \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{I+II} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix}$$

$$\stackrel{II+III}{\longrightarrow}_{II\cdot(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix}$$

Also
$$A_0^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

(b) Es ist
$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 und $A_1 \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow x_1 + x_2 + x_3 = 0$. Eine Basis von $\ker f_1$ ist
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}, \text{ denn die Vektoren sind linear unabhängig und dim } \ker f_1 = 3 - \operatorname{rang} A_1 = 3 - 1 = 2.$$

(c) Wir setzen $s=\lambda$ in (*) ein und bemerken $\lambda^2=\overline{\lambda}=\lambda^{-1}$, denn $\lambda^3=1$, also auch $\overline{\lambda}^2=\lambda$. Weiter gilt $\lambda-1=-i\sqrt{3}\cdot\overline{\lambda}$ und $\overline{\lambda}-1=i\sqrt{3}\lambda$. Wir bringen nun die erweiterte Matrix $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ in Zeilenstufenform:

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & \lambda & \overline{\lambda} & 3 \\
1 & 1 & 1 & 0
\end{pmatrix} \xrightarrow{III-I} \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & \lambda - 1 & \overline{\lambda} - 1 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix} \xrightarrow{II \cdot \frac{i}{\sqrt{3}} \lambda} \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & -\overline{\lambda} & i\sqrt{3}\lambda \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\stackrel{I-II}{\longrightarrow} \begin{pmatrix}
1 & 0 & 1 + \overline{\lambda} & -i\sqrt{3}\lambda \\
0 & 1 & -\overline{\lambda} & i\sqrt{3}\lambda \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & -\lambda & 1 - \overline{\lambda} \\
0 & 1 & -\overline{\lambda} & \overline{\lambda} - 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(2)

Das System (2) ist also äquivalent zu $\begin{cases} x_1 - \lambda x_3 = \lambda - 1 \\ x_2 - \overline{\lambda} x_3 = \overline{\lambda} - 1 \end{cases}$. Wählen wir hier $x_3 = \lambda$, so ist $x_1 = 1$ und

 $x_2 = \overline{\lambda}$ eine Lösung. Die allgemeine Lösung ist also gegeben durch $\begin{pmatrix} 1 \\ \overline{\lambda} \\ \lambda \end{pmatrix} + a \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ für $a \in \mathbb{C}$ wobei

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{ ein nicht-trivialer Basisvektors von } \ker f_{\lambda} \text{ ist. Es gilt } \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \ker f_{\lambda} \Leftrightarrow \begin{cases} y_1 - \lambda y_3 = 0 \\ y_2 - \overline{\lambda} y_3 = 0 \end{cases}.$$

Man sieht, dass $y_3 = 1, y_1 = \lambda, y_2 = \overline{\lambda}$ diese Bedingung erfüllt. Also ist die allgemeine Lösung von (2) gegeben durch

$$L = \left\{ \begin{pmatrix} \frac{1}{\lambda} \\ \lambda \end{pmatrix} + a \begin{pmatrix} \frac{\lambda}{\lambda} \\ 1 \end{pmatrix} \mid a \in \mathbb{C} \right\}$$

Aufgabe 3. [10 Punkte]

Seien $p, q \in \mathbb{N} \setminus \{0\}$ und sei n := p+q. Sei $T_{p,q}$ die Menge der $n \times n$ Matrizen, die die folgende Blockdarstellung haben:

$$A \in T_{p,q} :\iff A = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}, \ B \in \operatorname{Mat}(p \times p, \mathbb{R}), \ D \in \operatorname{Mat}(q \times q, \mathbb{R}), \ C \in \operatorname{Mat}(q \times p, \mathbb{R}).$$

(Die Null in der obere rechte Ecke dieser Blockdarstellung steht für die $p \times q$ Nullmatrix.)

- (a) (3 Punkte) Zeigen Sie, $T_{p,q}$, betrachtet mit der Matrixaddition, bzw. -multiplikation, ist ein Ring mit Einselement.
- (b) (3 Punkte) Sei A eine invertierbare $n \times n$ Matrix. Zeigen Sie, $A \in T_{p,q} \Rightarrow A^{-1} \in T_{p,q}$
- (c) (4 Punkte) Zeigen Sie, $\forall k \in \mathbb{N} \setminus \{0\}$, es gilt

$$\begin{pmatrix} B & 0 \\ C & D \end{pmatrix}^k = \begin{pmatrix} B^k & 0 \\ C_k & D^k \end{pmatrix}$$

, wobei $C_k = \sum_{i=0}^{k-1} D^i \cdot C \cdot B^{k-1-i}$

(d)* (4 Punkte) Sei $A = (a_{ij})_{i,j \in \{1,...,n\}} \in \text{Mat}(n \times n, \mathbb{R})$, so dass $a_{ij} = 0 \ \forall i,j \in \{1,...,n\}, i \leq j$ (A ist eine untere Dreiecksmatrix ohne Diagonaleinträgen). Zeigen Sie, $A^n = 0$.

Hinweis: Beweis per Induktion über n. Benutzen Sie $A \in T_{1,n-1} \cap T_{n-1,1}$ und der Punkt (c) von dieser Aufgabe.

- Lösung. (a) Seien $A = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$ und $A' = \begin{pmatrix} B' & C \\ C' & D' \end{pmatrix}$ in $T_{p,q}$. Das Produkt einer der ersten p Zeilen [a] aus A mit einer der Spalten p+1,...,n (b) aus A' ist Null, denn $[a]=(a_1,..,a_p,0,..,0)$ und $(b)=(0,..,0,b_1,..,b_q)^t$. Also ist $A\cdot A'\in T_{p,q}$. Analog gilt $A+\lambda A'\in T_{p,q}$ für alle $A,A'\in T_{p,q},\lambda\in\mathbb{R}$. Also ist $T_{p,q}$ ein Untervektorraum von $\mathrm{Mat}(n\times n,\mathbb{R})$, insbesondere also eine abelsche Gruppe. Weiter definiert die Matrizenmultiplikation eine Verknüpfung auf $T_{p,q}$, die assoziativ ist und distributiv bezüglich der Addition, da diese Eigenschaften bereits auf $\mathrm{Mat}(n\times n,\mathbb{R})$ gelten.
 - (b) Sei $A^{-1} = \begin{pmatrix} B' & A' \\ C' & D' \end{pmatrix}$ mit $B' \in \operatorname{Mat}(p \times p, \mathbb{R}), D' \in \operatorname{Mat}(q \times q, \mathbb{R}), C' \in \operatorname{Mat}(q \times p, \mathbb{R}), A' \in \operatorname{Mat}(p \times q, \mathbb{R}).$ Wir wissen

$$\begin{pmatrix} B & 0 \\ C & D \end{pmatrix} \begin{pmatrix} B' & A' \\ C' & D' \end{pmatrix} = \begin{pmatrix} BB' & BA' \\ CB' + DC' & CA' + DD' \end{pmatrix} = I_n$$

Es folgt $BB' = I_p$ und BA' = 0. Also ist B invertierbar mit Inverser Matrix B' und es folgt 0 = B'BA = A'. Also ist $A^{-1} \in T_{p,q}$.

(c) Induktion über $k \in \mathbb{N} \setminus \{0\}$:

k=1: B'=B, C_1 hat genau einen Term, der gleich C ist, also $A^1=A$ und die Formel gilt.

k>1: Nach der Induktionvoraussetzung $A^{k-1}=\begin{pmatrix} B^{k-1} & 0 \\ C_{k-1} & D^{k-1} \end{pmatrix}$. Es folgt

$$A^{k} = AA^{k-1} = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} \begin{pmatrix} B^{k-1} & 0 \\ C_{k-1} & D^{k-1} \end{pmatrix} = \begin{pmatrix} B^{k} & 0 \\ CB^{k-1} + DC_{k-1} & D^{k} \end{pmatrix}$$

Es gilt $C_{k-1} = \sum_{i=0}^{k-2} D^i C B^{k-2-i} \Rightarrow D C_{k-1} = \sum_{i=1}^{k-1} D^i C B^{k-1-i}$ und $C B^{k-1}$ entspricht dem Term i = 0 in $C_k = \sum_{i=0}^{k-1} D^i C B^{k-1-i}$, also $C B^{k-1} + D C_{k-1} = C_k$ und $A^k = \begin{pmatrix} B^k & 0 \\ C_k & D^k \end{pmatrix}$.

(d)* Induktion über $n \in \mathbb{N} \setminus \{0\}$:

n=1: Die Matrix A ist 0. Also $A^1=0$

n > 1: Wir schreiben $A = \begin{pmatrix} B' & 0 \\ C' & D' \end{pmatrix} \in T_{1,n-1}$ wobei die 1×1 Matrix B' notwendigerweise 0 ist und D' ist eine $(n-1) \times (n-1)$ untere Dreiecksmatrix ohne Diagonaleinträge. Nach Induktionsvoraussetzung ist $(D')^{n-1} = 0$, also hat A^{n-1} keine nicht-trivialen Einträge außerhalb der ersten Spalte. Jetzt schreiben wir $A = \begin{pmatrix} B'' & 0 \\ C'' & D'' \end{pmatrix} \in T_{n-1,1}$. Jetzt ist die $(n-1) \times (n-1)$ Matrix B'' eine untere

Dreiecksmatrix ohne Diagonaleinträge. Nach Induktionsvoraussetzung ist $(B'')^{n-1} = 0$ und es hat A^{n-1} keine nicht-trivialen Einträge außerhalb der letzten Zeile. Es folgt:

$$A^{n-1} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \\ a & 0 & \dots & 0 \end{pmatrix}, a \in \mathbb{R}$$

Berechnet man nun AA^{n-1} , so kommt 0 heraus, da alle Zeilen von A haben 0 an der letzten Stelle, welche die einzigen sind, welche mit a multipliziert werden.

Aufgabe 4. [10 Punkte]

Sei
$$A_s := \begin{pmatrix} 1 & 0 & 0 & 0 \\ s & 1 & 0 & 0 \\ 0 & 0 & s & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in \operatorname{Mat}(4 \times 4, \mathbb{R}), \ s \in \mathbb{R}.$$

- (a) (3 Punkte) Für alle $s \in \mathbb{R}$, berechnen Sie das charakteristische Polynom von A_s und bestimmen Sie seine Nullstellen und ihre entsprechende Vielfachkeiten (in Abhängigkeit von s).
- (b) (3 Punkte) Bestimmen Sie, in Abhängigkeit von $s \in \mathbb{R}$, die algebraische und geometrische Vielfachkeiten der Eigenwerten von A_s . Für welche $s \in \mathbb{R}$ ist A_s diagonalisierbar? Begründen Sie Ihre Antwort.
- (c) (3 Punkte) Geben Sie, für jede $s \in \mathbb{R}$, je eine Basis für jeden Eigenraum von A_s .
- (d) (1 Punkt) Sei $A \in \text{Mat}(n \times n, \mathbb{R})$ eine schiefsymmetrische Matrix (d.h. $A + A^{\top} = 0$), $n \in \mathbb{N}$ ungerade. Zeigen Sie, A ist nicht invertierbar.

Lösung. (a)

$$\chi_{A_s}(\lambda) = \det \begin{pmatrix} 1 - \lambda & 0 & 0 & 0 \\ s & 1 - \lambda & 0 & 0 \\ 0 & 0 & s - \lambda & 1 \\ 1 & 0 & 0 & -\lambda \end{pmatrix} = \det \begin{pmatrix} 1 - \lambda & 0 \\ s & 1 - \lambda \end{pmatrix} \det \begin{pmatrix} s - \lambda & 1 \\ 0 & -\lambda \end{pmatrix} = (1 - \lambda)^2 (s - \lambda)(-\lambda)$$

- **1. Fall** s=1: Dann $\chi_{A_1}(\lambda)=(1-\lambda)^3(-\lambda)$ hat die Nullstellen 1 und 0 mit Vielfachheiten 3 beziehungsweise 1.
- **2. Fall** s=0: $\chi_{A_0}(\lambda)=(1-\lambda)^2\lambda^2$ hat die Nullstellen 1 und 0 mit Vielfachheiten jeweils 2.
- **3. Fall** $s \neq 0, 1$: $\chi_{A_s}(\lambda) = (1 \lambda)^2 (s \lambda)(-\lambda)$ hat die Nullstellen 1,s und 0 mit Vielfachheiten 2, 1 und 1.
- (b) 1. Fall s=1: Die Eigenwerte von A_1 sind 1 und 0 mit algebraischen Vielfachheiten $a_1=3$ beziehungsweise $a_0=1$. Es folgt $g_0=1$ und $g_1=4-\operatorname{rang}(A_1-I_4)$ sind die geometrischen Vielfachheiten

von 0 beziehungsweise 1. Es hat
$$A_1 - I_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$
 rang 2, da 2 Spalten Null sind und

die anderen beiden linear unabhängig. Also $g_1 = 2$.

2. Fall s=0: Die Eigenwerte sind 1 und 0 mit algebraischen Vielfachheiten $a_1=2, a_0=2$. Wir

Es ist rang $(A_0 - I_4) = 2$ und rang $A_0 = 3$, also $g_1 = 2$ und $g_0 = 1$.

3. Fall $s \neq 0, 1$: Die Eigenwerte sind 1, s, 0 mit algebraischen Vielfachheiten $a_1 = 2, a_s = 1, a_0 = 1$. Daher sind die geometrischen Vielfachheiten $g_s = g_0 = 1$. Um g_1 zu bestimmen betrachten wir

$$A_s-I_4=\begin{pmatrix}0&0&0&0\\s&0&0&0\\0&0&s-1&1\\1&0&0&-1\end{pmatrix}. \text{ Da } s\neq 0 \text{ ist die erste Spalte keine Linearkombination der anderen.}$$

Da $s \neq 1$ ist die dritte Spalte nicht 0 und es ist kein Vielfaches der letzten Spalte. Daher sind die 1.,3.,4. Spalte von $A_s - I_4$ linear unabhängig, also $\operatorname{rang}(A_s - I_4) = 3$ und damit $g_1 = 1$.

In keinem der 3 Fälle ist A_s diagonalisierbar, da nie alle algebraischen Vielfachheiten mit den zugehörigen geometrischen Vielfachheiten übereinstimmen.

(c) **1. Fall**
$$s = 1$$
: ER(1) = ker($A_1 - I_4$) = ker $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$. Die Standardvektoren $(0, 1, 0, 0)^{\top}, (0, 0, 1, 0)^{\top}$

gehören zu ER(1) und da dieser Dimension 2 hat bilden sie eine Basis von diesem.

$$ER(0) = ker(A_1) = ker\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
. Da die letzten beiden Spalten von A_1 identisch sind,

erfüllt $v = (0, 0, 1, -1)^{\top}$ die Gleichung Av = 0. Also ist v eine Basis des eindimensionalen ER(0).

 $\begin{cases} x_3 = x_4 \\ x_1 = x_4 \end{cases}$. Wegen dim ER(1) = 2 liefern damit $(0, 1, 0, 0)^{\top}$, $(1, 0, 1, 1)^{\top}$ eine Basis von ER(1), da sie die Bedingung erfüllen und linear unabhängig sind.

$$\operatorname{ER}(0) = \ker A_0 = \ker \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \ni (0, 0, 1, 0)^{\top}. \text{ Da dim } \operatorname{ER}(0) = 1 \text{ ist } (0, 0, 1, 0)^{\top} \text{ eine Basis }$$
von $\operatorname{ER}(0).$

3. Fall
$$s \neq 0, 1$$
: ER(1) = $\ker(A_3 - I_4) = \ker\begin{pmatrix} 0 & 0 & 0 & 0 \\ s & 0 & 0 & 0 \\ 0 & 0 & s - 1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \ni (0, 1, 0, 0)^{\top}$. Dieser Vektor bildet eine Basis, da $g_0 = 1$.

$$ER(0) = ker(A_s) = ker\begin{pmatrix} 1 & 0 & 0 & 0 \\ s & 1 & 0 & 0 \\ 0 & 0 & s & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
. Da die 3. Spalte ein Vielfaches der 4. ist, suchen wir

einen Vektor der Form
$$(0,0,a,b)$$
 in ER(0). Wegen $A_s \begin{pmatrix} 0 \\ 0 \\ a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ as+b \\ 0 \end{pmatrix}$ liegt also $(0,0,1,-s)^{\top}$

in ER(0) und bildet aus Dimensionsgründen eine Basis.

$$\operatorname{ER}(s) = \ker(A_s - sI_4) = \ker\left(\begin{pmatrix} 1 - s & 0 & 0 & 0 \\ s & 1 - s & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -s \end{pmatrix} \ni (0, 0, 1, 0)^{\top}. \text{ Der Vektor bildet wegen}$$

$$q_s = 1 \text{ eine Basis von } \operatorname{ER}(s).$$

(d) Es gilt $\det(A) = \det(A^{\top})$ für alle Matrizen A. Nach Voraussetzung gilt $A^{\top} = -A$ und es folgt mit $\det(\lambda A) = \lambda^n \det A$ dann wegen n ungerade:

$$\det(A) = \det(A^{\top}) = \det(-A) = (-1)^n \det(A) = -\det(A)$$

und somit det(A) = 0.