

Esp8266-01 硬件规格书

文档名称:	Esp8266-01_硬件规格书_V1.04
版本:	1.04
日期:	2016-4-25
状态:	Release
文档控制号:	Esp8266-01_HD_CN_V1.04

前言

8266-01 是一款低成本、低功耗的,集成一件式配置,P2P 远程协议栈的微小体的串口转 wifi 透传模块。主要应用领域为智能家居,物联网,工业智能控制和医疗设备相关领域,还能用于 DIY 专业用户市场,通过模块的封装,大大的降低了无线应用技术门槛,能够让用户很方便快捷的,将模块应用到自己系统或者改造原有有线控制系统,借助 SIMKEIM 的超低功耗 wifi 模块,让物联网变得更加实际和生动,并且提供手机一键配置 wifi 模块实现网络连接功能,无需负载的配置设计,并提供可编程接口和传感器接口功能。成为理想的嵌入式低功耗 wifi 解决方案。

版权声明

本手册版权属于 SIMKEIM, 任何人未经我公司书面同意复制、引用或者修改本手册都将承担法律责任。

应用场景说明

一种典型的物联网 WIFI 模块的使用场景如下图所示。单片机通过 I2C、SPI 等接口获取传感器采集到的数据,然后通过串口将数据送给物联网 WIFI 模块,由 WIFI 模块及无线路由器等将数据传送给公网服务器,以解决低成本单片机的接入国际互联网的需求。同时,公网服务器在需要时也可以向 WIFI 模块端发送数据,然后模块将其转发给单片机,进而对传感器进行控制。

低成本单片机一般没有外挂完整键盘及屏幕,所以不方便输入路由器名称、密码、服务器 IP 等信息。但是很多场合下,最终用户拥有一台 android 系统或者 IOS 系统的手机不是难事。8266-01 模块支持通过手机对模块进行配置的接口。使用金讯公司提供的 apk,用户只需要先连到本地无线路由器,然后在手机应用界面进行几次轻松的点击,几十秒就可以完成模块的路由器信息配置、以及服务器 IP 的配置。大大的方便了传统 WIFI 模块通过串口进行配置十分不便的问题。

目录

2
3
4
7
8
8
8
8
9
9
11
11
14
14
15
15
16

表格索引

表 1:8266-01 主要特性	8
表 2:引脚描述	(
表3.串口的逻辑由平	1′

图片索引

图 1	:	模块管脚应用示意图	. 1
图 1	:	MCU-模块应用示意图	1
图 2	:	串口连接图	. 12
图 3	:	5V 到 3.3V 电平转换电路 TX 参考设计图	1
图 4	:	5V 到 3.3V 电平转换电路 RX 参考设计图	. 1:
图 5	:	RS232 电平转换电路	. 1
图 6	:	模块顶视图的机械尺寸(单位: mm)	. 1:
图 7		储藏条件	1

版本历史

日期	版本	变更描述	作者
2016-1-12	1.01	初版	Bao
2016-3-18	1.02	二版,变更管脚序号	Bao
2016-4-25	1.03	三版,	Bao
		1.增加模块尺寸图	
		2.变更"3.2GPIO,INT,UART等交互设计要点"为"3.2IO	
		接口连接方式""串口电平匹配方案"	
2016-4-26	1.04	四版,	Bao
		添加 MCU-模块接线示意图	

1绪论

1.1 相关文档

本文档描述了8266-01的硬件应用接口,包括相关应用场合的电路连接以及射频接口等。8266-01的应用十分广泛,本文档将详细介绍8266-01的所有功能。

本文档可以帮助用户快速的了解 8266-01 的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的 8266-01 的应用文档,用户可以快速的使用 8266-01 来设计 WIFI 通讯应用方案。

2 8266-01 综述

8266-01 是一个透传 Wifi 模块,工作的频段为: IEEE802.11b/g/n2.4G。

模块的尺寸为 24.8mmx14.3mm, 几乎可以满足所有用户应用中的对空间尺寸的要求.

模块和用户移动应用的物理接口为 8 个 2.54mm 间距插针引脚,并且使用板载 PCB 天线。

2.1 8266-01 主要特性

表 1:8266-01 主要特性

特性	说明
供电	● 单电压: 3.0-3.6V
频段	● EEE802.11b/g/n2.4G
天线接口	● 板载天线
发射功率	• 802.11b:+16+/-2dBm(@11Mbps)
	• 802.11g:+14+/-2dBm(@54Mbps)

	• 802.11n:+13+/-2dBm(@HT20,MCS7)
接收灵敏度	• 802.11b:-93dBm(@11Mbps,CCK)
	• 802.11g:-85dBm(@54Mbps,OFDM)
	• 802.11n:-82dBm(@HT20,MCS7)
GPIO 驱动能力	Max: 15ma
串口	● 支持2线串口
	● 传输速率支持 115200bps
	● 可以通过串口发送 AT 命令以及帧包
	● 用于调试
机械尺寸	• 24.8mmx14.3mm
软件升级	● 通过串口升级软件

3应用接口

8266-01 通过 8 个 2.54 插针和移动应用平台连接。下面的章节将详细描述各个接口功能:

3.1 8266-01 引脚描述

表 2:引脚描述

引脚名称	序列	I/0	描述	DC特性	备注
UTXD	1		AT 串口发送输出	3. 3V	开机时禁止下拉
GND	2				
CH_PD	3		模块断电信号	3. 3V	 高电平工作; 低电平模块供电关掉;
GPI02	4		预留,默认悬空	3. 3V	1) 开机上电时必须 为高电平,禁止硬件 下拉; 内部默认已拉高

RESET (GPI016)	5	I	复位信号	3. 3V	低电平复位,高电平工作(默认高);
GP100	6		模块状态灯/工作 模式选择	3. 3V	1) 默认WiFiStatus: WiFi工作状态指示灯控制信号; 2) 工作模式选择: 上拉: FlashBoot, 工作模式; 下拉: UARTDownload, 下载模式;
VCC	7	Ι	模块采用单电源 供电,通过1个 VCC 电源引脚供 电,电压范围: 3.0V-3.6V, 电 流>600mA	Vmax=3.6V Vmin=3.0V Vnorm=3.3V	电源供电能力请大于 600mA;否则可能会引 起模块工作异常,或 者无线性能不好。
URXD	8		AT 串口发送输入	3. 3V	

3.2 模块管脚应用示意图

8266 Connect to MCU V1.0

图 1: 模块管脚应用示意图

图 2: MCU-模块接线示意图

3.3 串口电气性能及电平匹配方案

引脚名称	序列	I/O	描述	DC特性	备注
TXD	5	О	AT串口发送输出	3.3V	
RXD	6	I	AT串口发送输入		

表 6:串口引脚定义

图 3: 串口连接图

串口:

- TXD: 发送数据到 DTE 设备的 RXD 信号线上。
- RXD:从 DTE 设备的 TXD 信号线上接收数据。

串口逻辑电平如下表描述。

表 3:串口的逻辑电平

参数	最小	最大	单位
VIL	0	0.7	V
VIH	2.1	3.6	V
VOL	0	0.4	V
VOH	2.4	-	V

模块采用3.0-3.6V的I0电源系统,所有I0口的最高输入限制电压最大不能超过3.6V,否则可能损坏模块I0口。

如果用户使用 5V 的电平,可以参考如下电路进行电平匹配,这里只列出 TX 和 RX 上的匹配电路,其他引脚可以参考这两个电路。

图 4: 5V 到 3.3V 电平转换电路 TX 参考设计图

图 5: 5V 到 3.3V 电平转换电路 RX 参考设计图

串口支持的通讯波特率如下:

115200bps。

串口不支持 RS232 电平,只支持 3.3VTTL 电平。如果要连接到计算机,在 DCE 和 DTE 间必须加一个电平转换 IC,具体请参考下图。

图 6: RS232 电平转换电路

4天线接口

模块提供了一个板载天线。

5静电防护

模块没有专门针对静电放电做保护。因此,用户在使用中需要对模块做一些适当的防护措施。在生产、装配和操作模块时必须注意适当的静电防护。

6 机械尺寸

这一章描述的机械尺寸。

6.1 8266-01 的机械尺寸

下图为8266-01的机械尺寸图(顶视图,侧视图和底视图)。

图 7: 模块顶视图的机械尺寸(单位: mm)

7储藏条件

This bag con MOISTURE-SENSITI		LEVEL 3 If Blank, see adjace bar code label
 Calculated shelf life in sealed bag: 12 relative humidity (RH) 	months at < 40	°C and < 90%
2. Peak package body temperature:	260	°C
 After bag is opened, devices that will it or other high temperature process mu a) Mounted within: 168 If Blank, see adjacent bar co ≤ 30°C/60%RH, OR b) Stored at <10% RH 	st hrs. of fact	
 Devices require bake, before mounting Humidity Indicator Card is > 10% w 3a or 3b not met. 		± 5°C
5. If baking is required, devices may be	baked for 48 hrs	s. at 125 ± 5°C
Note: If device containers cannot be sor shorter bake times are desired, reference bake procedure		
Bag Seal Date:		
	cent bar code label	
Note: Level and body temperature define	d by IPC/JEDE	C J-STD-020

图 8: 储藏条件