

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOM	BRE D	E LA	ASIG	NATU	JRA		

Investigación de operaciones

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	2215130A	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los principales campos de acción de la investigación de operaciones, así como los fundamentos y las diversas aplicaciones de la programación lineal como método de uso extensivo en la solución de los modelos planteados. Estudiar los modelos de redes y algoritmos simplificados para su solución más eficiente.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Naturaleza y objetivos de la investigación de operaciones.
- 1.2. Tipos de modelos de investigación de operaciones.

2. Programación lineal

- 2.1. Programación Lineal, ejemplos de modelado.
- 2.2. Solución gráfica de programas lineales.
- 2.3. Soluciones básicas factibles de un PL, Método simplex.
- 2.4. Degeneración, solución no acotada, óptimos alternativos.
- 2.5. Método dual-simplex.
- 2.6. Dualidad en programación lineal
- 2.7. Análisis de sensibilidad. Programación paramétrica.
- 2.8. Programación entera.
- 2.9. Métodos de punto interior.
- 2.10. Problemas de transporte y asignación.

3. Modelos de redes

- 3.1. Definiciones y ejemplos.
- 3.2. Árbol de expansión mínima, ruta más corta.
- 3.3. Flujo máximo.
- 3.4. Flujo restringido de costo mínimo.
- 3.5. Planeación de proyectos.

4. Modelos diversos.

- 4.1. Programación dinámica.
- 4.2. Líneas de espera.
- 4.3. Toma de decisiones.
- 4.4. Modelos de inventarios.
- 4.5. Modelos Markovianos.

VICE-RECTORIA ACADÉMICA

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO) Básica:

- 1. Introduction to Operational Research, Frederick Hillier, Gerald J. Lieberman, 7th ed. Mc Graw Hill, 2001.
- 2. Investigación de operaciones, Hamdy Taha, Alfaomega, 1991.
- 3. Operations Researh and Magnament Science Handboock, A Ravi Ravindran, Taylor & Francis, 2008.

Consulta:

- 1. Investigación de operaciones Herbert Moskowitz, Gordon P. Wright, Prentice Hall, 1982.
- 2. Programación lineal y no lineal, David E. Luemberguer, Adiison-Wesley Iberoamericana, 2010.
- 3. An Introduction to optimization, Edwin K.P. Chong, Stanislaw H. Zak, Wiley Inter science series in Discrete Mathematics and Optimization, second Edition, 1996.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

DIVISION DE ESTUDIOS Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR POSGRADO

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZÓ DR. AGUSTÍN SANTIAGO ALVARAD

VICE-RECTOR ACADEMICO MICA