Contrôle continu 2

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Soit u=(2,1) et D la droite vectorielle dirigee par u (i.e. $D=\mathbb{R}u$). Soit $x=(x_1,x_2)\in\mathbb{R}^2$:

1. Calculer $d_1(x)$ la distance de x a D en fonction de x_1 et x_2 .

On applique la formule du cours en remarquant que la droite passe par l'origine O du repère. On obtient

$$d_1(x) = \frac{\det(x, u)}{\|u\|} = \frac{|x_1 - 2x_2|}{\sqrt{5}}.$$

2. Calculer $d_2(x) = \langle x, u \rangle$ en fonction de x_1 et x_2 .

On applique la définition du cours :

$$d_2(x) = 2x_1 + x_2.$$

3. Montrer que $N(x) = \sqrt{5}|d_1(x)| + |d_2(x)|$ définit une norme sur \mathbb{R}^2 .

Il est clair que $N:\mathbb{R}^2\to [0,\infty[$. On envisage donc les trois points caractéristiques d'une norme :

Séparation: $N(x_1, x_2)$ étant la somme de deux termes positifs, si $N(x_1, x_2) = 0$ on a $d_1(x) = d_2(x) = 0$. En particulier, on obtient $x_1 - 2x_2 = 0$ et $2x_1 + x_2 = 0$. En ajoutant 2 fois la deuxième équation à la première, on obtient $x_1 = 0$ et donc $x_2 = 0$. Si $N(x_1, x_2) = 0$ on a donc x = 0.

Homogénéité : Pour $x = (x_1, x_2) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, on a :

$$N(\lambda x) = |\lambda x_1 - 2\lambda x_2| + |2\lambda x_1 + \lambda x_2|$$

= $|\lambda| (|x_1 - 2x_2| + |2x_1 + x_2|)$
= $|\lambda| N(x)$.

Inégalité triangulaire: Pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ dans \mathbb{R}^2 , on remarque que, en appliquant l'inégalité triangulaire dans \mathbb{R} :

$$N(x+y) = |(x_1 + y_1 - 2(x_2 + y_2))| + |2(x_1 + y_1) + (x_2 + y_2)|$$

$$\leq |x_1 - 2x_2| + |y_1 - 2y_2| + |2x_1 + x_2| + |2y_1 + y_2|$$

$$\leq N(x) + N(y).$$

4. Dessiner la boule unité pour la norme N.

On note que l'expression de N dépend du signe de $x_1 - 2x_2$ et de $2x_1 + x_2$. Ceci correspond au découpage de \mathbb{R}^2 en les quatre quarts de plan délimité par les deux droites D et $D^{\perp} := \{2x_1 + x_2 = 0\}$.

Si $x_1 - 2x_2 > 0$, et $2x_1 + x_2 > 0$, N(x) < 1 équivaut à

$$x_1 - 2x_2 + 2x_1 + x_2 < 1 \Leftrightarrow 3x_1 - x_2 < 1$$
.

Ceci correspond au triangle délimité par les trois droites D, D^{\perp} et la droite d'équation $3x_1 - x_2 = 1$ ou au triangle dont les sommets sont l'origine, (2/5, 1/5) et (1/5, -2/5). Par symétrie, la boule unité pour N est donc le quadrilatère dont les sommets sont les points de coordonnées (-2/5, -1/5), (1/5, -2/5), (2/5, 1/5), (-1/5, 2/5).

5. Montrer que N est $||\cdot||_2$ sont équivalentes.

La boule unité pour la norme N contient la boule euclidienne de rayon 1/5 et est contenue dans la boule euclidienne de rayon 1 (voir l'illustration ci-dessous, la boule euclidienne de rayon 1/5 est en bleu et la boule euclidienne de rayon 1 en gris). Par conséquent, pour tout $x \in \mathbb{R}^2 \setminus \{(0,0)\}$, en considérant que x/N(x) se trouve sur le bord de la boule unité pour N, on obtient que :

$$1/5 \le ||x/N(x)||_2 \le 1$$
 et donc $\frac{N(x)}{5} \le ||x||_2 \le N(x)$.

Exercice 2. Soit la courbe paramétrée $\Gamma = (\mathbb{R}, \phi)$ définie par $\phi(t) = \begin{cases} x(t) = t - \tanh t \\ y(t) = \frac{1}{\cosh t} \end{cases}$

1. Étudier la parité des fonctions $x(\cdot)$ et $y(\cdot)$. Quelle(s) symétrie(s) cela implique-t-il sur le support de la courbe Γ ? Peut on réduire le domaine d'étude ?

On a $x(-t) = -t - \tanh(-t) = -(t - \tanh(t)) = -x(t)$ et $y(-t) = 1/\cosh(-t) = 1/\cosh(t) = y(t)$. Ainsi, on remarque que le support de la courbe Γ admet une symétrie axiale par rapport à l'axe Oy.

- 2. Calculer ϕ', ϕ'' (on donne $\phi'''(t) = \begin{pmatrix} 2(1-2\sinh^2 t)/\cosh^4 t \\ (5\tanh t 6\tanh^3 t)/\cosh t \end{pmatrix}$) et déterminer si Γ à un/des point(s) stationnaire(s). On a $\phi'(t) = \begin{pmatrix} 1-1/\cosh^2 t \\ -\sinh t/\cosh^2 t \end{pmatrix}$ et On a $\phi''(t) = \begin{pmatrix} 2\sinh t/\cosh^3 t \\ (2\sinh^2 t \cosh^2 t)/\cosh^3 t \end{pmatrix}$ L'unique point stationnaire ($\phi'(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$) est en t = 0.
- 3. On se place en t = 0: donner la nature du point $\phi(0)$ ainsi que le comportement local de la courbe (faire un petit dessin).

On a $\phi''(t) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ et $\phi'''(t) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$. Autrement dit, avec les notations du cours : on a p=2 et q=3. C'est donc un point de rebroussement de 1ère espèce admettant une tangente verticale :

4. On se place au voisinage de $t=+\infty$. Étudier la branche infinie (asymptote et position relative).

On a $\lim_{t\to+\infty} x(t) = +\infty$ et $\lim_{t\to+\infty} y(t) = 0$. La courbe Γ admet dont une asymptote horizontale en $t = +\infty$. De plus, on a y(t) > 0 et Γ est située au dessus de son asymptote.

5. Compléter le tableau de variations suivant :

t	$-\infty$	0		∞
signe de $x'(t)$	+	0	+	
variation de $x(t)$	7		7	
signe de $y'(t)$	+	0	-	
variation de $y(t)$	7		Y	

6. Sur le graphique suivant, tracer la courbe Γ ainsi que les tangentes et asymptotes étudiées aux questions précédentes.

