Проблемы населенности типов и их разрешимость: _____ система λ∩

Денис Николаевич Москвин

25.11.2017

План лекции

1 Система λ∩

2 Обитаемость типов

План лекции

1 Система λ∩

Обитаемость типов

Мотивация для системы $\lambda \cap$

• Рассмотрим следующий редукционный переход

$$(\lambda x.\, x\, x)(\lambda y.\, y) \to_\beta (\lambda y.\, y)(\lambda y.\, y)$$

- ullet В системе $\lambda_{
 ightarrow}$ правая часть типизируема, а левая нет.
- Проблема в том, что I используется при подстановке в двух разных местах с разными, неунифицируемыми требованиями к типизации:

$$\lambda y^{\alpha \to \alpha}. y: (\alpha \to \alpha) \to \alpha \to \alpha$$
$$\lambda y^{\alpha}. y: \alpha \to \alpha$$

• Идея: разрешить приписывать терму несколько типов одновременно.

$$(\lambda x^{(\alpha \to \alpha) \cap ((\alpha \to \alpha) \to \alpha \to \alpha)}. \, x \, x)(\lambda y. \, y)^{(\alpha \to \alpha) \cap ((\alpha \to \alpha) \to \alpha \to \alpha)}$$

• Протокол использования порождает естественное отношение подтипизации: $\sigma \cap \tau \leqslant \sigma$.

Мотивация для универсального типа

• Рассмотрим следующий редукционный переход

$$(\lambda x y. y) \Omega \rightarrow_{\beta} \lambda y. y$$

- ullet В системе $\lambda_{
 ightarrow}$ правая часть типизируема, а левая нет.
- Однако тут нет никакого пересечения, то есть оно пустое.
- Вводят универсальный тип ω , который можно приписать любым термам.

$$(\lambda x^\omega\,y^\alpha.y)\,\mathbf{\Omega}^\omega:\alpha\to\alpha$$

Типы системы $\lambda \cap$

Определение

Множество *типов* $\mathbb T$ системы $\lambda\cap$ строится из типовых переменных переменных из $\mathbb V=\{\alpha,\beta,\ldots\}$:

$$lpha\in\mathbb{V}\Rightarrow lpha\in\mathbb{T}$$
 (переменные типа) $\sigma, au\in\mathbb{T}\Rightarrow \sigma\! o\! au\in\mathbb{T}$ (типы пространства функций) $\sigma, au\in\mathbb{T}\Rightarrow \sigma\cap au\in\mathbb{T}$ (типы-пересечения)

• В абстрактном синтаксисе:

$$\mathbb{T} ::= \mathbb{V} \mid \mathbb{T} \rightarrow \mathbb{T} \mid \mathbb{T} \cap \mathbb{T} \mid \boldsymbol{\omega}$$

ullet Приоритет \cap выше, чем \to .

Предпорядок на типах λ \cap

Если $\sigma\leqslant \tau$ и $\tau\leqslant \sigma$, то вводят отношение эквивалентности $\sigma=\tau$. При этом синтаксическое равенство обозначают $\sigma\equiv\tau$.

Примеры

Покажите, что

- $\sigma \cap \tau = \tau \cap \sigma$.
- $\sigma = \sigma \cap \sigma$.
- $\sigma = \sigma \cap \omega$.

Лемма

Отношение \leqslant разрешимо, то есть существует алгоритм, который для заданных σ и τ проверяет, выполняется ли $\sigma \leqslant \tau$ или нет.

Типизация для системы $\lambda \cap$

Понятие контекста определено так же как в $\lambda \rightarrow \infty$

Типизация для системы λ∩ пример

Вывод типа для $\lambda x.\, x\, x.\,$ Для компактности введено $\Gamma=x:\alpha\cap(\alpha o\beta).$

$$\frac{\frac{\Gamma \vdash x : \alpha \cap (\alpha \to \beta)}{\Gamma \vdash x : \alpha \to \beta} (\leqslant) \qquad \frac{\Gamma \vdash x : \alpha \cap (\alpha \to \beta)}{\Gamma \vdash x : \alpha} (\leqslant)}{\frac{x : \alpha \cap (\alpha \to \beta) \vdash xx : \beta}{\vdash \lambda x. \, xx : \alpha \cap (\alpha \to \beta) \to \beta}} (I \to)$$

- Если α и β рассматривать как метапеременные, то можно говорить о *схеме вывода*.
- Постройте дерево вывода для утверждения типизации $\vdash Y : (\omega \to \sigma) \to \sigma.$

Типизация для системы λ ∩ пример (2)

Вывод типа для $\lambda f x$. $(\lambda y. x) (f x)$.

$$\frac{\frac{f:\alpha,x:\beta,y:\omega\vdash x:\beta}{f:\alpha,x:\beta\vdash \lambda y.\,x:\omega\to\beta}(I\to) \qquad \frac{f:\alpha,x:\beta\vdash (fx):\omega}{f:\alpha,x:\beta\vdash (hx):\omega}(\omega)}{\frac{f:\alpha,x:\beta\vdash (\lambda y.\,x)\,(fx):\beta}{\frac{f:\alpha\vdash \lambda x.\,(\lambda y.\,x)\,(fx):\beta\to\beta}{\vdash \lambda f\,x.\,(\lambda y.\,x)\,(fx):\alpha\to\beta\to\beta}(I\to)}}(I\to)$$

- В λ_{\rightarrow} выводимо лишь $\lambda f x. (\lambda y. x) (f x) : (\beta \rightarrow \gamma) \rightarrow \beta \rightarrow \beta.$
- В λ_{\to} этому терму невозможно приписать тип $\alpha \to \beta \to \beta$, хотя можно его сокращению.
- В отличие от простой системы экспансия в $\lambda \cap$ сохраняет тип.

Связь типизируемости и нормализуемости для $\lambda \cap$

Теорема

Замкнутый терм M имеет головную нормальную форму (HNF) тогда и только тогда, когда существует отличный от ω тип σ , такой что $\vdash M : \sigma$.

Например, \vdash **Y** : (ω → σ) → σ, но \vdash Ω : ω.

Теорема

Замкнутый терм M имеет нормальную форму (NF) тогда и только тогда, когда существует не содержащий ω тип σ , такой что $\vdash M$: σ .

Рассмотрим систему λ ∩ $^-$ без типа ω .

Teopeмa (van Bakel, Krivine)

Замкнутый терм M сильно нормализуем тогда и только тогда, когда он типизируем в системе $\lambda \cap \bar{\ }$.

Проблемы разрешимости для $\lambda \cap$

• Есть ли алгоритм, который позволяют решить задачу?

$\Gamma \vdash M : \sigma$?	Задача проверки типа	ЗПТ
	Type Checking Problem	TCP
?⊢M:?	Задача синтеза типа Type Synthesis (or Assgnment) Problem	3CT TSP, TAP
Γ ⊢ ?:σ	Задача обитаемости типа Type Inhabitation Problem	30T TIP

- Для λ∩ ЗПТ неразрешима.
- Для $\lambda \cap$ ЗСТ разрешима тривиально все термы типизируемы с помощью ω .
- Для λ ∩ $^-$ (система без типа ω) ЗСТ неразрешима.

План лекции

1 Система λ∩

2 Обитаемость типов

ЗОТ для λ∩ неразрешима

- Павел Уржицин (Pawel Urzyczyn, 1999) доказал неразрешимость задачи обитаемости для λ∩.
- Скелет доказательства:
 - процесс конструирования обитателя для типа выражает поведение некоторой машины (tree-maker);
 - проблема останова для этой машины сводима к проблеме останова для queue automata.
- Доказательство работает для 4х вариантов системы с пересечениями (при наличии или отсутствии универсалього типа и подтипизации).

ЗОТ для λ∩ неразрешима

- Павел Уржицин (Pawel Urzyczyn, 1999) доказал неразрешимость задачи обитаемости для λ∩.
- Скелет доказательства:
 - процесс конструирования обитателя для типа выражает поведение некоторой машины (tree-maker);
 - проблема останова для этой машины сводима к проблеме останова для queue automata.
- Доказательство работает для 4х вариантов системы с пересечениями (при наличии или отсутствии универсалього типа и подтипизации).
- Однако есть ограниченные версии, для которых задача обитаемости разрешима.

Ранги типов по Leivant

Определение (порядок типа в λ_{\rightarrow})

$$\begin{aligned} & \operatorname{ord}(\alpha) = 0 \\ & \operatorname{ord}(\sigma \to \tau) = \max(\operatorname{ord}(\sigma) + 1, \operatorname{ord}(\tau)) \end{aligned}$$

Типы второго порядка — это типы, среди аргументов которых есть функции первого порядка, но не выше.

Определение (ранг типа в $\lambda \cap$)

$$\begin{aligned} \operatorname{rank}(\alpha) &= 0 \\ \operatorname{rank}(\sigma \to \tau) &= \operatorname{max}(\operatorname{rank}(\sigma) + 1, \operatorname{rank}(\tau)) \\ \operatorname{rank}(\sigma \cap \tau) &= \operatorname{max}(1, \operatorname{rank}(\sigma), \operatorname{rank}(\tau)) \end{aligned}$$

Во втором уравнении в σ или τ должны быть пересечения.

- rank($\alpha \cap (\alpha \to \beta \to \gamma)$) = ?
- rank($\alpha \cap \beta \rightarrow \alpha$) = ?
- rank($\alpha \cap (\beta \rightarrow \gamma) \rightarrow \alpha$) = ?
- $\operatorname{rank}(\alpha \cap \beta \to \alpha \cap (\beta \to \gamma) \to \alpha) = ?$

Системы с рангом 3 и выше

- Уже в (Urzyczyn, 1999) было отмечено, что ЗОТ для систем $\lambda \cap$ с рангом выше 3 неразрешима.
- Это следует из доказательства общей неразрешимости, при построении tree-maker'ов используются так называемые «хорошие» типы, рангом не выше 3.
- Для системы ранга 3 неразрешимость была показана в (Urzyczyn, 2009), сведением к Expanding Tape Machine.

Система с рангом 2

- В (Kusmierek, 2007) дан алгоритм и доказана его завершаемость (и сложность EXPTIME-hard).
- Алгоритм представляет собой обобщение алгоритма Ben-Yelles для простых типов на ∩-типы.
- Этот алгоритм универсален в том смысле, что может применяться для систем любого ранга.

Определение

Переменная x называется k-арной в контексте Γ , если этот контекст содержит x: σ , причем выполнено одно из следующих условий:

$$\begin{split} \sigma &= \tau \cap (\rho_1 \to \ldots \to \rho_k \to \alpha) \\ \sigma &= \rho_1 \to \ldots \to \rho_k \to \alpha \end{split}$$

Иными словами, х можно применить к k аргументам.

Процедура удаления пересечений

Введем процедуру превращения утверждения типизации в множество утверждений без пересечений:

Операция Rem

 $\mathrm{Rem}(\Gamma \vdash M : \sigma) = \{\Gamma \vdash M : \sigma\}, \quad$ если σ не пересечение;

$$\operatorname{Rem}(\Gamma \vdash M : \sigma_1 \cap \sigma_2) = \operatorname{Rem}(\Gamma \vdash M : \sigma_1) \cup \operatorname{Rem}(\Gamma \vdash M : \sigma_2).$$

С ее помощью мы будем решать задачу поиска обитателя без целевых ∩-типов, но не одну, а сразу множество:

$$\{\Gamma_1 \vdash M : \sigma_1, \dots, \Gamma_n \vdash M : \sigma_n\}$$

Контексты разные (но носители их одинаковые), типы разные, а терм один.

Алгоритм

• Для заданного целевого типа σ нулевой шаг

$$Z_0 = \operatorname{Rem}(\vdash M : \sigma)$$

• Пусть текущая задача

$$Z = \{\Gamma_1 \vdash M : \sigma_1, \dots, \Gamma_n \vdash M : \sigma_n\}$$

• Случай 1: Все σ_i стрелки (скажем, $\tau_i \to \rho_i$). Вводим свежий χ и удаляем пересечения:

$$Z' = \operatorname{Rem}(\Gamma_1, x \colon \tau_1 \vdash M' : \rho_1) \cup \ldots \cup \operatorname{Rem}(\Gamma_n, x \colon \tau_n \vdash M' : \rho_n)$$

Если рекурсивный вызов алгоритма вернет M', то $M = \lambda x.\,M'$, если вернет ошибку — то ошибка.

Алгоритм (продолжение)

• Напомним, текущая задача

$$Z = \{\Gamma_1 \vdash M : \sigma_1, \dots, \Gamma_n \vdash M : \sigma_n\}$$

• Случай 2: Хотя бы одна σ_i — переменная (скажем, α). Ищем в каждом Γ_i k-арную переменную

$$\Gamma_i \vdash x : \sigma_{i1} \to \ldots \to \sigma_{ik} \to \alpha$$

Если не нашли — возвращаем ошибку; если нашли несколько — выбираем недетерминировано.

- Если k = 0, то M = x.
- Если k>0, то $M=x\,M_1\dots M_k$, где M_i это решение k независимых задач

$$Z_1 = \{\Gamma_1 \vdash M_1 : \sigma_{11}, \dots, \Gamma_n \vdash M : \sigma_{1n}\}$$

$$\dots$$

$$Z_k = \{\Gamma_1 \vdash M_1 : \sigma_{k1}, \dots, \Gamma_n \vdash M : \sigma_{kn}\}$$

Если хоть одна дает ошибку, общий ответ — ошибка.

Алгоритм (примеры)

Используя приведенный выше алгоритм, населите

- $\alpha \cap (\alpha \rightarrow \beta) \rightarrow \beta$
- $\bullet \ \alpha \cap \beta \cap (\alpha \to \beta \to \gamma) \to \gamma$
- $\bullet \ (\alpha \to \beta) \cap (\alpha \to \gamma) \to \alpha \to \beta \cap \gamma$
- $\alpha \rightarrow \beta \rightarrow \alpha \cap \beta$