SEQUENCE LISTING

<110> NAGOYA INDUSTRIAL SCIENCE RESEARCH INSTITUTE GIFU INTERNATIONAL INSTITUTE OF BIOTECHNOLOGY YAMADA, Yoshiji YOKOTA, Mitsuhiro

<120> Method for diagnosing a risk of restenosis after percutaneous coronary intervention

- <130> C0200501
- <150> JP P2002-233041
- <151> 2002-08-09
- <160> 67
- <170> PatentIn version 3.1
- <210> 1
- <211> 5515
- <212> DNA
- <213> Homo sapiens

<400> 1 ggaacttgat gctcagagag gacaagtcat ttgcccaagg tcacacagct ggcaactggc 60 agacgagatt cacgccctgg caatttgact ccagaatcct aaccttaacc cagaagcacg 120 180 gcttcaagcc ctggaaacca caatacctgt ggcagccagg gggaggtgct ggaatctcat ttcacatgtg gggaggggc tcctgtgctc aaggtcacaa ccaaagagga agctgtgatt 240 300 aaaacccagg tcccatttgc aaagcctcga cttttagcag gtgcatcata ctgttcccac 360 ccctcccatc ccacttctgt ccagccgcct agccccactt tcttttttt cttttttga gacagtetee etettgetga ggetggagtg eagtggegag ateteggete aetgtaacet 420 ccgcctcccg ggttcaagcg attctcctgc ctcagcctcc caagtagcta ggattacagg 480 540 cgcccgccac cacgcctggc taacttttgt atttttagta gagatggggt ttcaccatgt tggccaggct ggtctcaaac tcctgacctt aagtgattcg cccactgtgg cctcccaaag 600 660 tgctgggatt acaggcgtga gctaccgccc ccagcccctc ccatcccact tctgtccagc cccctagccc tactttcttt ctgggatcca ggagtccaga tccccagccc cctctccaga 720 ttacattcat ccaggcacag gaaaggacag ggtcaggaaa ggaggactct gggcggcagc 780 ctccacattc cccttccacg cttggccccc agaatggagg agggtgtctg tattactggg 840 cgaggtgtcc tcccttcctg gggactgtgg ggggtggtca aaagacctct atgccccacc 900 tectteetee etetgeeetg etgtgeetgg ggeaggggga gaacageeca cetegtgaet 960 1020 gggctgccca gcccgcccta tccctggggg agggggggg acagggggag ccctataatt ggacaagtct gggatccttg agtcctactc agccccagcg gaggtgaagg acgtccttcc 1080

1140 ccaggagccg gtgagaagcg cagtcggggg cacggggatg agctcagggg cctctagaaa 1200 gagetgggae cetgggaage cetggeetee aggtagtete aggagageta eteggggteg 1260 ggcttgggga gaggaggagc gggggtgagg caagcagcag gggactggac ctgggaaggg ctgggcagca gagacgaccc gacccgctag aaggtggggt ggggagagca gctggactgg 1320 gatgtaagcc atagcaggac tccacgagtt gtcactatca ttatcgagca cctactgggt 1380 1440 gtccccagtg tcctcagatc tccataactg gggagccagg ggcagcgaca cggtagctag ccgtcgattg gagaacttta aaatgaggac tgaattagct cataaatgga acacggcgct 1500 1560 taactgtgag gttggagctt agaatgtgaa gggagaatga ggaatgcgag actgggactg 1620 agatggaacc ggcggtgggg aggggtggg gggatggaat ttgaaccccg ggagaggaag atggaatttt ctatggaggc cgacctgggg atggggagat aagagaagac caggagggag 1680 ttaaataggg aatgggttgg gggcggcttg gtaaatgtgc tgggattagg ctgttgcaga 1740 taatgcaaca aggcttggaa ggctaacctg gggtgaggcc gggttggggg cgctgggggt 1800 gggaggagtc ctcactggcg gttgattgac agtttctcct tccccagact ggccaatcac 1860 1920 aggcaggaag atgaaggttc tgtgggctgc gttgctggtc acattcctgg caggtatggg 1980 ggeggggett geteggttee eccegeteet ecceetetea teeteacete aaceteetgg ccccattcag acagaccctg ggccccctct tctgaggctt ctgtgctgct tcctggctct 2040 2100 gaacagegat ttgaegetet etgggeeteg gttteeecea teettgagat aggagttaga 2160 agttgttttg ttgttgttgt ttgttgttgt tgttttgttt ttttgagatg aagtctcgct ctgtcgccca ggctggagtg cagtggcggg atctcggctc actgcaagct ccgcctccca 2220 2280 ggtccacgcc attctcctgc ctcagcctcc caagtagctg ggactacagg cacatgccac 2340 cacaccegae taactttttt gtattttcag tagagaeggg gtttcaccat gttggccagg 2400 etggtetgga actectgace teaggtgate tgecegttte gateteecaa agtgetggga 2460 ttacaggcgt gagccaccgc acctggctgg gagttagagg tttctaatgc attgcaggca 2520 gatagtgaat accagacacg gggcagctgt gatctttatt ctccatcacc cccacacagc cctgcctggg gcacacaagg acactcaata catgcttttc cgctgggccg gtggctcacc 2580 2640 cctgtaatcc cagcactttg ggaggccaag gtgggaggat cacttgagcc caggagttca 2700 acaccageet gggcaacata gtgagaeeet gtetetaeta aaaatacaaa aattageeag gcatggtgcc acacacctgt gctctcagct actcaggagg ctgaggcagg aggatcgctt 2760 2820 gageceagaa ggteaaggtt geagtgaace atgtteagge egetgeacte cageetgggt gacagagcaa gaccctgttt ataaatacat aatgctttcc aagtgattaa accgactccc 2880 ccctcaccct gcccaccatg gctccaaaga agcatttgtg gagcaccttc tgtgtgcccc 2940

3000 taggtageta gatgeetgga eggggteaga aggaceetga eeegacettg aacttgttee 3060 acacaggatg ccaggccaag gtggagcaag cggtggagac agagccggag cccgagctgc 3120 gccagcagac cgagtggcag agcggccagc gctgggaact ggcactgggt cgcttttggg attacctgcg ctgggtgcag acactgtctg agcaggtgca ggaggagctg ctcagctccc 3180 3240 aggtcaccca ggaactgagg tgagtgtccc catcctggcc cttgaccctc ctggtgggcg 3300 gctatacete eccaggteca ggttteatte tgeceetgte getaagtett ggggggeetg ggtctctgct ggttctagct tcctcttccc atttctgact cctggcttta gctctctgga 3360 attetetete teagetttgt etetetetet teeettetga eteagtetet cacactegte 3420 3480 ctggctctgt ctctgtcctt ccctagctct tttatataga gacagagaga tggggtctca 3540 ctgtgttgcc caggctggtc ttgaacttct gggctcaagc gatcctcccg cctcggcctc ccaaagtgct gggattagag gcatgagcac cttgcccggc ctcctagctc cttcttcgtc 3600 tetgeetetg ecetetgeat etgetetetg eatetgtete tgteteette teteggeete 3660 tgccccgttc cttctctccc tcttgggtct ctctggctca tccccatctc gcccgcccca 3720 3780 teccageest teteceesge etecceasty tycgasaces teccyceste teggeegeag 3840 ggcgctgatg gacgagacca tgaaggagtt gaaggcctac aaatcggaac tggaggaaca 3900 actgaccccg gtggcggagg agacgcgggc acggctgtcc aaggagctgc aggcggcgca 3960 ggcccggctg ggcgcggaca tggaggacgt gcgcggccgc ctggtgcagt accgcggcga 4020 ggtgcaggcc atgctcggcc agagcaccga ggagctgcgg gtgcgcctcg cctcccacct 4080 gegeaagetg egtaagegge teeteegega tgeegatgae etgeagaage geetggeagt 4140 gtaccaggec ggggcccgcg agggcgccga gcgcggcctc agcgccatcc gcgagcgcct 4200 ggggcccctg gtggaacagg gccgcgtgcg ggccgccact gtgggctccc tggccggcca 4260 gccgctacag gagcgggccc aggcctgggg cgagcggctg cgcgcgcgga tggaggagat 4320 gggcagccgg acccgcgacc gcctggacga ggtgaaggag caggtggcgg aggtgcgcgc 4380 caagctggag gagcaggccc agcagatacg cctgcaggcc gaggccttcc aggcccgcct 4440 caagagetgg ttegageeee tggtggaaga catgeagege cagtgggeeg ggetggtgga gaaggtgcag gctgccgtgg gcaccagcgc cgccctgtg cccagcgaca atcactgaac 4500 4560 geogaageet geagecatge gaceceaege cacecegtge etcetgeete egegeageet 4620 gcagcgggag accetgtece egceecagee gteeteetgg ggtggaceet agtttaataa 4680 agattcacca agtttcacgc atctgctggc ctcccctgt gatttcctct aagccccagc ctcagtttct ctttctgccc acatactgcc acacaattct cagccccctc ctctccatct 4740

<210> 2

<211> 5373

<212> DNA

<213> Homo sapiens

<400> 2

60 gaatteetge aaacceageg caactaeggt eeceeggtea gacceaggat ggggeeagaa cggacagggg ccgcgccgct gccgctgctg ctggtgttag cgctcagtca aggcatttta 120 180 aattgttgtt tggcctacaa tgttggtctc ccagaagcaa aaatattttc cggtccttca 240 agtgaacagt ttgggtatgc agtgcagcag tttataaatc caaaaggcaa ctggttactg 300 gttggttcac cctggagtgg ctttcctgag aaccgaatgg gagatgtgta taaatgtcct 360 gttgacctat ccactgccac atgtgaaaaa ctaaatttgc aaacttcaac aagcattcca 420 aatgttactg agatgaaaac caacatgagc ctcggcttga tcctcaccag gaacatggga 480 actggaggtt ttctcacatg tggtcctctg tgggcacagc aatgtgggaa tcagtattac acaacgggtg tgtgttctga catcagtcct gattttcagc tctcagccag cttctcacct 540 600 gcaactcagc cctgcccttc cctcatagat gttgtggttg tgtgtgatga atcaaatagt atttatcctt gggatgcagt aaagaatttt ttggaaaaat ttgtacaagg ccttgatata 660 720 ggccccacaa agacacaggt ggggttaatt cagtatgcca ataatccaag agttgtgttt 780 aacttgaaca catataaaac caaagaagaa atgattgtag caacatccca gacatcccaa tatggtgggg acctcacaaa cacattcgga gcaattcaat atgcaagaaa atatgcctat 840

900 tcagcagctt ctggtgggcg acgaagtgct acgaaagtaa tggtagttgt aactgacggt gaatcacatg atggttcaat gttgaaagct gtgattgatc aatgcaacca tgacaatata 960 1020 ctgaggtttg gcatagcagt tcttgggtac ttaaacagaa acgcccttga tactaaaaat ttaataaaag aaataaaagc gatcgctagt attccaacag aaagatactt tttcaatgtg 1080 tctgatgaag cagctctact agaaaaggct gggacattag gagaacaaat tttcagcatt 1140 1200 gaaggtactg ttcaaggagg agacaacttt cagatggaaa tgtcacaagt gggattcagt gcagattact cttctcaaaa tgatattctg atgctgggtg cagtgggagc tttttggctgg 1260 agtgggacca ttgtccagaa gacatctcat ggccatttga tctttcctaa acaagccttt 1320 gaccaaattc tgcaggacag aaatcacagt tcatatttag gttactctgt ggctgcaatt 1380 tctactggag aaagcactca ctttgttgct ggtgctcctc gggcaaatta taccggccag 1440 1500 atagtgctat atagtgtgaa tgagaatggc aatatcacgg ttattcaggc tcaccgaggt gaccagattg gctcctattt tggtagtgtg ctgtgttcag ttgatgtgga taaagacacc 1560 attacagacg tgctcttggt aggtgcacca atgtacatga gtgacctaaa gaaagaggaa 1620 1680 ggaagagtet acctgtttac tatcaaaaag ggcattttgg gtcagcacca atttcttgaa 1740 ggccccgagg gcattgaaaa cactcgattt ggttcagcaa ttgcagctct ttcagacatc aacatggatg gctttaatga tgtgattgtt ggttcaccac tagaaaatca gaattctgga 1800 1860 gctgtataca tttacaatgg tcatcagggc actatccgca caaagtattc ccagaaaatc 1920 ttgggatccg atggagcctt taggagccat ctccagtact ttgggaggtc cttggatggc tatggagatt taaatgggga ttccatcacc gatgtgtcta ttggtgcctt tggacaagtg 1980 2040 gttcaactct ggtcacaaag tattgctgat gtagctatag aagcttcatt cacaccagaa 2100 aaaatcactt tggtcaacaa gaatgctcag ataattctca aactctgctt cagtgcaaag 2160 ttcagaccta ctaagcaaaa caatcaagtg gccattgtat ataacatcac acttgatgca 2220 gatggatttt catccagagt aacctccagg gggttattta aagaaaacaa tgaaaggtgc 2280 ctgcagaaga atatggtagt aaatcaagca cagagttgcc ccgagcacat catttatata 2340 caggageeet etgatgttgt caactetttg gatttgegtg tggacateag tetggaaaac cctggcacta gccctgccct tgaagcctat tctgagactg ccaaggtctt cagtattcct 2400 2460 ttccacaaag actgtggtga ggatggactt tgcatttctg atctagtcct agatgtccga 2520 caaataccag ctgctcaaga acaacccttt attgtcagca accaaaacaa aaggttaaca 2580 ttttcagtaa cactgaaaaa taaaagggaa agtgcataca acactggaat tgttgttgat ttttcagaaa acttgttttt tgcatcattc tccctaccgg ttgatgggac agaagtaaca 2640 2700 tgccaggtgg ctgcatctca gaagtctgtt gcctgcgatg taggctaccc tgctttaaag

2760 agagaacaac aggtgacttt tactattaac tttgacttca atcttcaaaa ccttcagaat 2820 caggogtoto toagtttoca agoottaagt gaaagooaag aagaaaacaa ggotgataat ttggtcaacc tcaaaattcc tctcctgtat gatgctgaaa ttcacttaac aagatctacc 2880 2940 aacataaatt tttatgaaat ctcttcggat gggaatgttc cttcaatcgt gcacagtttt 3000 gaagatgttg gtccaaaatt catcttctcc ctgaaggtaa caacaggaag tgttccagta 3060 3120 tacctaactg gggtgcaaac agacaaggct ggtgacatca gttgtaatgc agatatcaat 3180 ccactgaaaa taggacaaac atcttcttct gtatctttca aaagtgaaaa tttcaggcac accaaagaat tgaactgcag aactgcttcc tgtagtaatg ttacctgctg gttgaaagac 3240 3300 gttcacatga aaggagaata ctttgttaat gtgactacca gaatttggaa cgggactttc gcatcatcaa cgttccagac agtacagcta acggcagctg cagaaatcaa cacctataac 3360 3420 cctgagatat atgtgattga agataacact gttacgattc ccctgatgat aatgaaacct gatgagaaag ccgaagtacc aacaggagtt ataataggaa gtataattgc tggaatcctt 3480 3540 ttgctgttag ctctggttgc aattttatgg aagctcggct tcttcaaaag aaaatatgaa 3600 aagatgacca aaaatccaga tgagattgat gagaccacag agctcagtag ctgaaccagc 3660 agacctacct gcagtgggaa ccggcagcat cccagccagg gtttgctgtt tgcgtgcatg 3720 gatttctttt taaatcccat atttttttta tcatgtcgta ggtaaactaa cctggtattt 3780 taagagaaaa ctgcaggtca gtttggatga agaaattgtg gggggtgggg gaggtgcggg gggcaggtag ggaaataata gggaaaatac ctattttata tgatggggga aaaaaagtaa 3840 3900 tetttaaaet ggetggeeca gagtttaeat tetaatttge attgtgteag aaacatgaaa 3960 tgcttccaag catgacaact tttaaagaaa aatatgatac tctcagattt taagggggaa 4020 aactgttctc tttaaaatat ttgtctttaa acagcaacta cagaagtgga agtgcttgat 4080 atgtaagtac ttccacttgt gtatatttta atgaatattg atgttaacaa gaggggaaaa caaaacacag gttttttcaa tttatgctgc tcatccaaag ttgccacaga tgatacttcc 4140 aagtgataat tttatttata aactaggtaa aatttgttgt tggttccttt tataccacgg 4200 ctgccccttc cacaccccat cttgctctaa tgatcaaaac atgcttgaat aactgagctt 4260 4320 agagtatacc tcctatatgt ccatttaagt taggagaggg ggcgatatag agactaaggc 4380 acaaaatttt gtttaaaact cagaatataa catttatgta aaatcccatc tgctagaagc 4440 ccatcctgtg ccagaggaag gaaaaggagg aaatttcctt tctcttttag gaggcacaac agttctcttc taggatttgt ttggctgact ggcagtaacc tagtgaattt ttgaaagatg 4500

<210> 3
<211> 1178
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (881)..(881)

<223> n stands for any base

<400> 3 60 ggggaagcaa aggagaagct gagaagatga aggaaaagtc agggtctgga ggggcggggg 120 tcagggagct cctgggagat atggccacat gtagcggctc tgaggaatgg gttacaggag 180 acctctgggg agatgtgacc acagcaatgg gtaggagaat gtccagggct atggaagtcg 240 agtatcgggg acccccctt aacgaagaca gggccatgta gagggcccca gggagtgaaa gagectecag gaeetecagg tatggaatae aggggaegtt taagaagata tggeeacaea 300 360 ctggggccct gagaagtgag agcttcatga aaaaaatcag ggaccccaga gttccttgga 420 agccaagact gaaaccagca ttatgagtct ccgggtcaga atgaaagaag aaggcctgcc ccagtggtct gtgaattccc gggggtgatt tcactccccg ggctgtccca ggcttgtccc 480 tgctaccccc acccagcett tectgaggee teaagetgee accaageeee cageteette 540

600 toccogcaga cocaaacaca ggootcagga otcaacacag ottttocoto caaccoogtt 660 ttctctccct caaggactca gctttctgaa gcccctccca gttctagttc tatctttttc 720 ctgcatectg tetggaagtt agaaggaaac agaccacaga cetggteece aaaagaaatg gaggcaatag gttttgaggg gcatggggac ggggttcagc ctccagggtc ctacacacaa 780 840 atcagtcagt ggcccagaag accccctcg gaatcggagc agggaggatg gggagtgtga 900 ggggtatcct tgatgcttgt gtgtccccaa ctttccaaat ncccgccccc gcgatggaga agaaaccgag acagaaggtg cagggcccac taccgcttcc tccagatgag cttatgggtt 960 1020 tetecaceaa ggaagtttte egetggttga atgattettt eccegeeete etetegeeee agggacatat aaaggcagtt gttggcacac ccagccagca gacgctccct cagcaaggac 1080 agcagaggac cagctaagag ggagagaagc aactgcagac ccccctgaa aacaaccctc 1140 1178 agacgccaca tcccctgaca agctgccagg caggttct

<210> 4

<211> 1523

<212> DNA

<213> Homo sapiens

<400> 4

60 gggtcgatgg gggagatgga gcaactgcgt caggaagcgg agcagctcaa gaagcagatt 120 gcagatgcca ggaaagcctg tgctgacgtt actctggcag agctggtgtc tggcctagag 180 gtggtgggac gagtccagat gcggacgcgg cggacgttaa ggggacacct ggccaagatt tacgccatgc actgggccac tgattctaag ctgctggtaa gtgcctcgca agatgggaag 240 300 ctgatcgtgt gggacagcta caccaccaac aaggtgcacg ccatcccact gcgctcctcc 360 tgggtcatga cctgtgccta tgccccatca gggaactttg tggcatgtgg ggggctggac 420 aacatgtgtt ccatctacaa cctcaaatcc cgtgagggca atgtcaaggt cagccgggag 480 ctttctgctc acacaggtta tctctcctgc tgccgcttcc tggatgacaa caatattgtg 540 accagetegg gggacaccae gtgtgeettg tgggacattg agaetgggea geagaagaet gtatttgtgg gacacacggg tgactgcatg agcctggctg tgtctcctga cttcaatctc 600 ttcatttcgg gggcctgtga tgccagtgcc aagctctggg atgtgcgaga ggggacctgc 660 720 cgtcagactt tcactggcca cgagtcggac atcaacgcca tctgtttctt ccccaatgga gaggccatct gcacgggctc ggatgacgct tcctgccgct tgtttgacct gcgggcagac 780 caggagetga tetgettete ceaegagage ateatetgeg geateaegte egtggeette 840 tccctcagtg gccgcctact attcgctggc tacgacgact tcaactgcaa tgtctgggac 900 tccatgaagt ctgagcgtgt gggcatcctc tctggccacg ataacagggt gagctgcctg 960

1020 ggagtcacag ctgacgggat ggctgtggcc acaggttcct gggacagctt cctcaaaatc 1080 tggaactgag gaggctggag aaagggaagt ggaaggcagt gaacacactc agcagccccc 1140 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag ctttctcctt tgagggcagt ggggagcatg ggactgtgcc tttggggaggc agcatcaggg 1200 acacaggggc aaagaactgc cccatctcct cccatggcct tccctcccca cagtcctcac 1260 agectetece ttaatgagea aggacaacet geceeteece agecetttge aggeeeagea 1320 gacttgagtc tgaggcccca ggccctagga ttcctccccc agagccacta cctttgtcca 1380 1440 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcacca ctagggtcct 1500 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct 1523 gcaataaagt gtagcaccct ggt

<210> 5

•

5

<211> 1419

<212> DNA

<213> Homo sapiens

<400> 5 60 gaattetgag ggeagagegg geeactttet aggeetetga ttteataetg tggtgttagt tacttctgag aggacagctt gctgccagag ctctattttt tatgttagag gctccttctg 120 cctgcagact ctgctgtctg ggaagggcac agcgttagga gggagaggga ggtgtgagtc 180 cctccgtgga cccgctgctt tgtacttctc tatctcattt ccttttcagc accactctgg 240 gaaatcagta ttccagcccc attttatcct cagaaaattg aggctctgag atgttatctc 300 360 tgtgacctgg gtcctattac gtgccaaagg catcatttaa gcctaagatg tcctggctcc 420 aaggtgtcag catctggaag acaggcgcct catcctgcca tccctgctgc ggcttcactg tggcccaggg gacateteag eeegagaagg teageggeee eeteetggae eacegaetee 480 540 ccgcagaact cctctgtgcc ctctcctcac cagaccttgt tcctcccagt tgctcccaca 600 gccagggggc agtgagggct gctcttcccc cagccccact gaggaaccca ggaaggtgaa cgagagaatc agtcctggtg ggggctgggg agggccccag acatgagacc agctcctccc 660 ccaggggatg ttatcagtgg gtccagaggg caaaataggg agcctggtgg agggaggggc 720 780 aaaggeeteg ggetetgage ggeettggee ttetecacea acceeteeet acaeteaggg ggaggcggcg gtggggcaca cagggtgggg ggcgggtggc gggctgctgg gtgagcagca 840 900 ctcgcctgcc tggattgaaa cccagagatg gaggtgctgg gaggggctgt gagagctcag 960 ccctgtaacc aggccttgcc ggagccactg atgcccggtc ttctgtgcct ttactccaaa 1020 catcccccag cccaagccac ccacttgttc tcaagtctga agaagaagtc cctcacccct

ctactccagg ctgtgttcag ggcttggggc tggtggaggg aggggcctga aattccagtg 1080
tgaaaggctg agatgcccga gcccctggcc tatgtccaag ccatttcccc tctctcacca 1140
gcctctccct ggggagccag tcagctagga aggaatgagg gctccccagg cccaccccca 1200
gttcctgagc tcatctgggc tgcagggctg gcgggacagc agcgtggact cagtctccta 1260
gggatttccc aactctcccg cccgcttgct gcatctggac accctgcctc aggccctcat 1320
ctccactggt cagcaggtga cctttgccca gcgccctggg tcctcagtgc ctgctgccct 1380
ggagatgata taaaacaggt cagaaccctc ctgcctgtc 1419

<210> 6

5

<211> 1278

<212> DNA

<213> Homo sapiens

<400> 6 ccagacaagt gatttttgag gagtccctat ctataggaac aaagtaatta aaaaaatgta 60 120 tttcagaatt tacaggccca tgtgagatat gattttttta aatgaagatt tagagtaatg 180 ggtaaaaaag aggtatttgt gtgtttgttg attgttcagt cagtgaatgt acagcttctg 240 cctcatatcc aggcaccatc tcttcctgct ctttgttgtt aaatgttcca ttcctgggta 300 atttcatgtc tgccatcgtg gatatgccgt ggctccttga acctgcttgt gttgaagcag 360 gatetteett eetgteeett eagtgeeeta ataecatgta tttaaggetg gacacateae 420 cacteceaac etgeeteace caetgegtea ettgtgatea etggettetg gegaetetea ccaaggtctc tgtcatgccc tgttataacg actacaaaag caagtcttac ctataggaaa 480 540 ataagaatta taaccetttt actggtcatg tgaaacttac catttgcaat ttgtacagca 600 taaacacaga acagcacate tttcaatgee tgeateetga aggeattttg tttgtgtett 660 tcaatctggc tgtgctattg ttggtgttta acagtctccc cagctacact ggaaacttcc 720 agaaggcact tttcacttgc ttgtgtgttt tccccagtgt ctattagagg cctttgcaca 780 gggtaggctc tttggagcag ctgaaggtca cacatcccat gagcgggcag cagggtcaga agtggccccc gtgttgccta agcaagactc tcccctgccc tctgccctct gcacctccgg 840 900 cctgcatgtc cctgtggcct cttgggggta catctcccgg ggctgggtca gaaggcctgg 960 gtggttggcc tcaggctgtc acacacctag ggagatgctc ccgtttctgg gaaccttggc cccgactcct gcaaacttcg gtaaatgtgt aactcgaccc tgcaccggct cactctgttc 1020 1080 agcagtgaaa ctctgcatcg atcactaaga cttcctggaa gaggtcccag cgtgagtgtc 1140 gcttctggca tctgtccttc tggccagcct gtggtctggc caagtgatgt aaccetcctc 1200 tocagootgt gcacaggcag cotgggaaca gctccatccc caccootcag ctataaatag

ggcctcgtga cccggccagg ggaagaagct gccgttgttc tgggtactac agcagaag	gt 1260
aageegggg ceeetea	1278
<210> 7 <211> 3074 <212> DNA <213> Homo sapiens	
<400> 7 gaattccggg gagcaggaag agccaacatg ctggccccgc gcggagccgc cgtcctcc	tg 60
	3
ctgcacctgg tcctgcagcg gtggctagcg gcaggcgccc aggccacccc ccaggtct	
gacettetee catettecag teagaggeta aaceeaggeg etetgetgee agteetga	
gaccccgccc tgaatgatct ctatgtgatt tccaccttca agctgcagac taaaagtt	
gccaccatet teggtettta etetteaaet gacaacagta aatattttga atttaetg	tg 300
atgggacgct taagcaaagc catcctccgt tacctgaaga acgatgggaa ggtgcatt	tg 360
gtggttttca acaacctgca gctggcagac ggaaggcggc acaggatect cctgaggc	tg 420
agcaatttgc agcgaggggc cggctcccta gagctctacc tggactgcat ccaggtgg	at 480
teegtteaca ateteeceag ggeetttget ggeeceteee agaaacetga gaccattg	aa 540
ttgaggactt tccagaggaa gccacaggac ttcttggaag agctgaagct ggtggtga	ga 600
ggctcactgt tccaggtggc cagcctgcaa gactgcttcc tgcagcagag tgagccac	tg 660
gctgccacag gcacagggga ctttaaccgg cagttcttgg gtcaaatgac acaattaa	ac 720
caactcctgg gagaggtgaa ggaccttctg agacagcagg ttaaggaaac atcatttt	tg 780
cgaaacacca tagctgaatg ccaggcttgc ggtcctctca agtttcagtc tccgaccc	ca 840
agcacggtgg tegecegge tececetgea eegecaacae geceaecteg teggtgtg	ac 900
tecaacecat gttteegagg tgteeaatgt acegacagta gagatggett ceagtgtg	gg 960
ccctgccccg agggctacac aggaaacggg atcacctgta ttgatgttga tgagtgca	aa 1020
taccatecet getaceeggg egtgeactge ataaatttgt eteetggett eagatgtg	ac 1080
gcctgcccag tgggcttcac agggcccatg gtgcagggtg ttgggatcag ttttgcca	ag 1140
tcaaacaage aggtetgeae tgacattgat gagtgtegaa atggagegtg egtteeca	ac 1200
tcgatctgcg ttaatacttt gggatcttac cgctgtgggc cttgtaagcc ggggtata	ct 1260
ggtgatcaga taaggggatg caaagtggaa agaaactgca gaaacccaga gctgaacc	
tgcagtgtga atgcccagtg cattgaagag aggcaggggg atgtgacatg tgtgtgtg	
gtcggttggg ctggagatgg ctatatctgt ggaaaggatg tggacatcga cagttacc	
geoggeogge eeggagaegg eeacaceege ggaaaggaeg eggaeacega eagteace	

gacgaagaac tgccatgctc tgccaggaac tgtaaaaagg acaactgcaa atatgtgcca 1500

1560 aattctggcc aagaagatgc agacagagat ggcattggcg acgcttgtga cgaggatgct 1620 gacggagatg ggatcctgaa tgagcaggat aactgtgtcc tgattcataa tgtggaccaa 1680 aggaacagcg ataaagatat ctttggggat gcctgtgata actgcctgag tgtcttaaat aacgaccaga aagacaccga tggggatgga agaggagatg cctgtgatga tgacatggat 1740 1800 ggagatggaa taaaaaacat tctggacaac tgcccaaaat ttcccaatcg tgaccaacgg 1860 gacaaggatg gtgatggtgt gggggatgcc tgtgacagtt gtcctgatgt cagcaaccct aaccagtctg atgtggataa tgatctggtt ggggactcct gtgacaccaa tcaggacagt 1920 1980 gatggagatg ggcaccagga cagcacagac aactgcccca ccgtcattaa cagtgcccag 2040 ctggacaccg ataaggatgg aattggtgac gagtgtgatg atgatgatga caatgatggt 2100 2160 gaggatagca acagcgacgg agtgggagac atctgtgagt ctgactttga ccaggaccag gtcatcgatc ggatcgacgt ctgcccagag aacgcagagg tcaccctgac cgacttcagg 2220 gcttaccaga ccgtgggcct ggatcctgaa ggggatgccc agatcgatcc caactgggtg 2280 2340 gtcctgaacc agggcatgga gattgtacag accatgaaca gtgatcctgg cctggcagtg 2400 gggtacacag cttttaatgg agttgacttc gaagggacct tccatgtgaa tacccagaca gatgatgact atgcaggett tatetttgge taccaagata getecagett etaegtggte 2460 2520 atgtggaagc agacggagca gacatattgg caagccaccc cattccgagc agttgcagaa 2580 cctggcattc agctcaaggc tgtgaagtct aagacaggtc caggggagca tctccggaac tccctgtggc acacggggga caccagtgac caggtcaggc tgctgtggaa ggactccagg 2640 2700 aatgtgggct ggaaggacaa ggtgtcctac cgctggttcc tacagcacag gccccaggtg 2760 ggctacatca gggtacgatt ttatgaaggc tctgagttgg tggctgactc tggcgtcacc 2820 atagacacca caatgcgtgg aggccgactt ggcgttttct gcttctctca agaaaacatc 2880 atctqqtcca acctcaaqta tcqctqcaat gacaccatcc ctgaggactt ccaagagttt 2940 caaacccaga atttcgaccg cttcgataat taaaccaagg aagcaatctg taactgcttt 3000 toggaacact aaaaccatat atattttaac ttcaattttc tttagctttt accaacccaa 3060 atatatcaaa acgttttatg tgaatgtggc aataaaggag aagagatcat ttttaaaaaa 3074 aaaaaaaaa aaaa

<210> 8

<211> 4593

<212> DNA

<213> Homo sapiens

ggatccagct gtctctcctt gcgatcctgt cttcggggaa gtccacgtcc taggcaggtc 60 120 ctcccaaagt gcccttggtg ccgatcaccc ctcccagcgt cttgcaggtc ctgtgcacca cctccccac tccccattca aagccctctt ctctgaagtc tccggttccc agagctcttg 180 240 caatccaggc tttccttgga agtggctgta acatgtatga aaagaaagaa aggaggacca 300 agagatgaaa gagggctgca cgcgtggggg cccgagtggt gggcggggac agtcgtcttg 360 420 tgcgccaggg cagggtttac tcatcccggc gaggtgatcc catgcgcgag ggcgggcgca 480 agggeggeca gagaacccag caatcegagt atgeggeate agecetteee accaggeact 540 teetteettt teeegaaegt eeagggaggg agggeeggge aettataaae tegageeetg 600 gccgatccgc atgtcagagg ctgcctcgca ggggctgcgc gcagcggcaa gaagtgtctg ggctgggacg gacaggagag gctgtcgcca tcggcgtcct gtgcccctct gctccggcac 660 ggccctgtcg cagtgcccgc gctttccccg gcgcctgcac gcggcgcgcc tgggtaacat 720 gettggggte etggteettg gegegetgge eetggeegge etggggttee eegeaceege 780 agagccgcag ccgggtggca gccagtgcgt cgagcacgac tgcttcgcgc tctacccggg 840 900 ccccgcgacc ttcctcaatg ccagtcagat ctgcgacgga ctgcggggcc acctaatgac 960 agtgegetee teggtggetg cegatgteat tteettgeta etgaaeggeg aeggeggegt 1020 tggccgccgg cgcctctgga tcggcctgca gctgccaccc ggctgcggcg accccaagcg cctcgggccc ctgcgcggct tccagtgggt tacgggagac aacaacacca gctatagcag 1080 gtgggcacgg ctcgacctca atggggctcc cctctgcggc ccgttgtgcg tcgctgtctc 1140 1200 cgctgctgag gccactgtgc ccagcgagcc gatctgggag gagcagcagt gcgaagtgaa 1260 ggccgatggc ttcctctgcg agttccactt cccagccacc tgcaggccac tggctgtgga 1320 geoeggegee geggetgeeg eegtetegat cacetaegge acceegtteg eggeeegegg 1380 ageggaette caggegetge eggtgggeag etcegeegeg gtggeteece teggettaca 1440 gctaatgtgc accgcgccgc ccggagcggt ccaggggcac tgggccaggg aggcgccggg 1500 cgcttgggac tgcagcgtgg agaacggcgg ctgcgagcac gcgtgcaatg cgatccctgg ggeteecege tgecagtgee eageeggege egecetgeag geagaeggge geteetgeae 1560 1620 cgcatccgcg acgcagtcct gcaacgacct ctgcgagcac ttctgcgttc ccaaccccga 1680 ccagccgggc tcctactcgt gcatgtgcga gaccggctac cggctggcgg ccgaccaaca 1740 ccggtgcgag gacgtggatg actgcatact ggagcccagt ccgtgtccgc agcgctgtgt caacacacag ggtggcttcg agtgccactg ctaccctaac tacgacctgg tggacggcga 1800 1860 gtgtgtggag cccgtggacc cgtgcttcag agccaactgc gagtaccagt gccagcccct

1920 gaaccaaact agetacetet gegtetgege egagggette gegeecatte eccaegagee 1980 gcacaggtgc cagatgtttt gcaaccagac tgcctgtcca gccgactgcg accccaacac ccaggctagc tgtgagtgcc ctgaaggcta catcctggac gacggtttca tctgcacgga 2040 2100 categacgag tgcgaaaacg gcggcttctg ctccggggtg tgccacaacc tccccggtac 2160 cttcgagtgc atctgcgggc ccgactcggc ccttgtccgc cacattggca ccgactgtga 2220 ctccggcaag gtggacggtg gcgacagcgg ctctggcgag cccccgccca gcccgacgcc 2280 eggetecace ttgactecte eggeegtggg getegtgeat tegggettge teataggeat ctccatcgcg agcctgtgcc tggtggtggc gcttttggcg ctcctctgcc acctgcgcaa 2340 2400 gaagcagggc gccgccaggg ccaagatgga gtacaagtgc gcggcccctt ccaaggaggt 2460 agtgctgcag cacgtgcgga ccgagcggac gccgcagaga ctctgagcgg cctccgtcca ggagcctggc tccgtccagg agcctgtgcc tcctcacccc cagctttgct accaaagcac 2520 2580 cttagctggc attacagctg gagaagaccc tccccgcacc ccccaagctg ttttcttcta 2640 ttccatggct aactggcgag ggggtgatta gagggaggag aatgagcctc ggcctcttcc gtgacgtcac tggaccactg ggcaatgatg gcaattttgt aacgaagaca cagactgcga 2700 2760 tttgtcccag gtcctcacta ccgggcgcag gagggtgagc gttattggtc ggcagccttc 2820 tgggcagacc ttgacctcgt gggctaggga tgactaaaat atttatttt tttaagtatt 2880 taggtttttg tttgtttcct ttgttcttac ctgtatgtct ccagtatcca ctttgcacag ctctccggtc tctctctc tacaaactcc cacttgtcat gtgacaggta aactatcttg 2940 3000 gtgaattttt ttttcctagc cctctcacat ttatgaagca agccccactt attccccatt 3060 cttcctagtt ttctcctccc aggaactggg ccaactcacc tgagtcaccc tacctgtgcc 3120 tgaccctact tcttttgctc ttagctgtct gctcagacag aacccctaca tgaaacagaa 3180 acaaaaacac taaaaataaa aatggccatt tgctttttca ccagatttgc taatttatcc 3240 tgaaatttca gattcccaga gcaaaataat tttaaacaaa ggttgagatg taaaaggtat taaattgatg ttgctggact gtcatagaaa ttacacccaa agaggtattt atctttactt 3300 ttaaacagtg agcctgaatt ttgttgctgt tttgatttgt actgaaaaat ggtaattgtt 3360 3420 gctaatcttc ttatgcaatt tccttttttg ttattattac ttatttttga cagtgttgaa aatgttcaga aggttgctct agattgcgag aagagacaaa cacctcccag gagacagttc 3480 3540 aagaaagctt caaactgcat gattcatgcc aattagcaat tgactgtcac tgttccttgt 3600 cactggtaga ccaaaataaa accagctcta ctggtcttgt ggaattggga gcttgggaat 3660 ggatcctgga ggatgcccaa ttagggccta gccttaatca ggtcctcaga gaatttctac

÷.

3720 3780 atgggagetg gttagaaatg cagaateeta ggeteeacce catecagtte atgagaatet atatttaaca agatctgcag ggggtgtgtc tgctcagtaa tttgaggaca accattccag 3840 3900 actgcttcca attttctgga atacatgaaa tatagatcag ttataagtag caggccaagt caggccctta ttttcaagaa actgaggaat tttctttgtg tagctttgct ctttggtaga 3960 aaaggctagg tacacagctc tagacactgc cacacagggt ctgcaaggtc tttggttcag 4020 ctaagctagg aatgaaatcc tgcttcagtg tatggaaata aatgtatcat agaaatgtaa 4080 4140 cttttgtaag acaaaggttt tcctcttcta ttttgtaaac tcaaaatatt tgtacatagt 4200 tatttattta ttggagataa tctagaacac aggcaaaatc cttgcttatg acatcacttg 4260 tacaaaataa acaaataaca atgtgctctc gggttgtgtg tctgttcatt ttcctccctc agtgccctca ttttatgtca ttaaatgggg ctcacaaacc atgcaaatgc tatgagatgc 4320 atggaggget gecetgtace ecageacttg tgttgtetgg tgatggeace atetetgatt 4380 ttcaaagctt tttccagagg ctattatttt cactgtagaa tgatttcatg ctatctctgt 4440 4500 gtgcacaaat atttattttc tttctgtaac cataacaact tcatatatga ggacttgtgt 4560 ctctgtgctt ttaaatgcat aaatgcatta taggatcatt tgttggaatg aattaaataa 4593 accettectg gggcatetgg cgaateccag etg

<210> 9 <211> 6163 <212> DNA

<213> Homo sapiens

<400> 9

60 tggggtetee ecectetgtg tggggagaag tgtgeeagag agaegeatgt ecteeteetg tggaggggct gttctccacc accacatgtc ttcctaccaa tctgctcccc agagggctgc 120 180 ctgctgtgca cttgggtcct ggagcccttc tccacccggt gagtggccag cagggtgtgg 240 ggttatgtga gggtagaaag gacagcaaag agaaatggcc tcccagctgg gggaggggca 300 ggcaaactgg aacctacagg cactgacctt tgtcgagaag agtgtagcct tcccagaatg ggaggagcag ggcagagcag gggtaggggg tggggtgctg ttttctgagg gactgatcac 360 420 ttacttggtg gaatacagca cagccctggc tggccctaag gaaaggggac atgagcccag 480 ggagaaaata agagagggag ctgcacttag ggcttagcaa acacagtagt aagatggaca 540 cagececaat ecceattett agetggteat teetegttag ettaaggtte tgaatetggt 600 gctggggaag ctgggccagg caagccaggg cgcaaggaga gggtaatggg aggaggccca 660 ctcatgttga cagacctaca ggaaatccca atattgaatc aggtgcaagc ctctttgcac

720 aacttgtgaa aggaggagga agccatgtgg ggggtcctgt gaaggaaccg gaaggggttc 780 tgccaagggg gcagggaggc aggtgtgatc tatgagacag atatgttagt gggcgcctaa gacaaggtaa gcccctaagg tgggcatcac ccagcaggtg cccgttcctg ggcagctggt 840 900 ctcaggaagg aagtcccaga actgttagcc catctcttgg cctcagataa tggagtattt 960 caggacttgg agtccagaga aaagctccag tggctttatg tgtgggggta gatagggaaa 1020 gatagaggtt aattteteec atacegeett ttaateetga eetetagtgg teecagttae 1080 agetttgtgc agttcccctc cccagcccca ctccccaccg cagaagttac ccctcaacat 1140 attgcgcccg tttgccagtt cctcacccag gccctgcatc ccattttcca ctctctctc 1200 caggetgaag ccacaatact tteettetet atecceatee cagattttet etgacetaae 1260 aaccaaggtt gctcagaatt taaggctaat taagatatgt gtgtatacat atcatgtcct gctgctctca gcaggggtag gtggcaccaa atccatgtcc gattcactga ggagtcctga 1320 caaaaaggag acaccatatg ctttcttgct ttctttcttt ctttctttct ttctttttt 1380 tttttgagac ggagtttcac tcttattgcc caggctggag tgcaatggtg cgatctcggc 1440 1500 teaccacaac etecgeetee eaggtacaag egatteteet gteteageet eccaagtage 1560 ttggattaca ggcatgaacc accacacct gctagttttt ttgtatttcg tagagccggg 1620 gtttcaccat gttagtgagg ctggtggcga actcctgacc tcaggtgatc cacccgcctt 1680 ggactcccaa agtgctggga ttacaggcat gagccactgc acceggcaca ccatatgctt tcatcacaag aaaatgtgag agaattcagg gctttggcag ttccaggctg gtcagcatct 1740 caagecetee ecageatetg tteaceetge caggeagtet etteetagaa aettggttaa 1800 1860 atgttcactc ttcttgctac tttcaggata gattcttcac ccttggtccg cctttgcccc 1920 accetactet geecagaagt geaagageet aageegeete catggeecea ggaaggatte 1980 aggggagagg ccccaaacag ggagccacgc cagccagaca ccccggccag aatggagctg 2040 actggtgaga acacacctga ggggctaggg ccatatggaa acatgacaga aggggagaga 2100 gaaaggagac acgctgcagg gggcaggaag ctgggggaac ccattctccc aaaaataagg ggtctgaggg gtggattccc tgggtttcag gtctgggtcc tgaatgggaa ttcctggaat 2160 accagetgae aatgatttee teeteatett teaaceteae eteteeteat etaagaattg 2220 2280 ctcctcgtgg tcatgcttct cctaactgca aggctaacgc tgtccagccc ggctcctcct 2340 gcttgtgacc tccgagtcct cagtaaactg cttcgtgact cccatgtcct tcacagcaga 2400 ctggtgagaa ctcccaacat tatccccttt atccgcgtaa ctggtaagac acccatactc ccaggaagac accatcactt cctctaactc cttgacccaa tgactattct tcccatattg 2460 tececaceta etgateacae tetetgacaa ggattattet teacaataea gecegeattt 2520 aaaagctctc gtctagagat agtactcatg gaggactagc ctgcttatta ggctaccata 2580 2640 geteteteta titeagetee etteteece caccaatett titeaacaga gecagtgeee agaggttcac cctttgccta cacctgtcct gctgcctgct gtggacttta gcttgggaga 2700 2760 atggaaaacc cagatggtaa gaaagccatc cctaaccttg gcttccctaa gtcctgtctt 2820 cagtttccca ctgcttccca tggattctcc aacattcttg agctttttaa aaatatctca 2880 cetteagett ggecacecta acceaateta catteaceta tgatgatage etgtggataa 2940 gatgatggct tgcaggtcca atatgtgaat agatttgaag ctgaacacca tgaaaagctg gagagaaatc gctcatggcc atgcctttga cctattcccg ttcagtcttc ttaaattggc 3000 3060 atgaagaagc aagactcata tgtcatccac agatgacaca aagctgggaa gtaccactaa 3120 aataacaaaa gactgaatca agattcaaat cactgaaaga ctaggtcaaa aacaaggtga aacaacagag atataaactt ctacatgtgg gccgggggct cacgcctgta atcccagcac 3180 3240 tttgggaggc cgaggcaggc agatcacctg agggcaggag tttgagagca gcctggccaa 3300 catggcgaaa ccccgtctct actaagaata cagaattagc cgggcatggt agtgcatgcc 3360 tgtaatccca gctacttgga aggctgaagc aggagaatcc cttgaaccca ggaggtggag 3420 gttgtagtga gctgagatca tgccaatgca ctccagcctg ggtgacaaga gcaaaactcc 3480 gtctcaaaaa gaaaaaaaaa ttctacatgt gtaaattaat gagtaaagtc ctattccagc 3540 tttcaggcca caatgccctg cttccatcat ttaagcctct ggccctagca cttcctacga 3600 aaaggatctg agagaattaa attgccccca aacttaccat gtaacattac tgaagctgct attettaaag etagtaatte ttgtetgttt gatgtttage atccccattg tggaaatget 3660 3720 cgtacagaac tctattccga gtggactaca cttaaatata ctggcctgaa caccggacat 3780 ccccctgaag acatatgcta atttattaag agggaccata ttaaactaac atgtgtctag 3840 aaagcagcag cctgaacaga aagagactag aagcatgttt tatgggcaat agtttaaaaa 3900 actaaaatct atcctcaaga accctagcgt cccttcttcc ttcaggactg agtcagggaa gaagggcagt tcctatgggt cccttctagt cctttcttt catccttatg atcattatgg 3960 4020 tagagtetea tacetacatt tagtttattt attattatta tttgagaegg agteteacte tatececcag getggagtge agtggeatga teteaactea etgeaacete ageeteeegg 4080 4140 attcaagcga ttctcctgtc tcagtctccc aagtagctgg gattacaggt gcccaccacc 4200 atgcccagct aatttgtgta tttgtggtag agatggggtt tcaccatgtt gggcaggctg 4260 atcttgaact cctgacctca ggtgatccac ctgcctcagc ctcccaaagt gctgggatta caggogtgag ccactgcacc cagcettcat tcagtttaaa aatcaaatga tcctaaggtt 4320

4380 ttgcagcaga aagagtaaat ttgcagcact agaaccaaga ggtaaaagct gtaacagggc agatttcagc aacgtaagaa aaaaggagct cttctcactg aaaccaagtg taagaccagg 4440 ctggactaga ggacacggga gtttttgaag cagaggctga tgaccagctg tcgggagact 4500 gtgaaggaat teetgeeetg ggtgggaeet tggteetgte eagtteteag eetgtatgat 4560 4620 tcactctgct ggctactcct aaggctcccc acccgctttt agtgtgccct ttgaggcagt 4680 gegettetet ettecatete ttteteagga ggagaceaag geacaggaea ttetgggage agtgaccett etgetggagg gagtgatgge ageaegggga caaetgggae ecaettgeet 4740 4800 ctcatccctc ctggggcagc tttctggaca ggtccgtctc ctccttgggg ccctgcagag 4860 cctccttgga acccaggtaa gtccccagtc aagggatctg tagaaactgt tcttttctga 4920 ctcagtcccc ctagaagacc tgagggaaga agggctcttc cagggaagctc aagggcagaa gagetgatet actaagagtg etecetgeea gecaeaatge etgggtaetg geateetgte 4980 tttcctactt agacaaggga ggcctgagat ctggccctgg tgtttggcct caggaccatc 5040 ctctgccctc agcttcctcc acagggcagg accacagctc acaaggatcc caatgccatc 5100 ttcctgagct tccaacacct gctccgagga aaggtgcgtt tcctgatgct tgtaggaggg 5160 tecaecetet gegteaggeg ggeeceaece accaeagetg teceeageag aaceteteta 5220 gtcctcacac tgaacgagct cccaaacagg acttctggat tgttggagac aaacttcact 5280 5340 gcctcagcca gaactactgg ctctgggctt ctgaagtggc agcagggatt cagagccaag 5400 attectggte tgetgaacea aaceteeagg teeetggace aaateeeegg atacetgaae aggatacacg aactettgaa tggaactegt ggactettte etggaceete acgeaggace 5460 5520 ctaggagccc cggacatttc ctcaggaaca tcagacacag gctccctgcc acccaacctc 5580 cageetggat atteteette cecaacecat cetectaetg gacagtatae getetteeet cttccaccca ccttgcccac ccctgtggtc cagctccacc ccctgcttcc tgacccttct 5640 5700 gctccaacgc ccacccctac cagccctctt ctaaacacat cctacaccca ctcccagaat 5760 ctgtctcagg aagggtaagg ttctcagaca ctgccgacat cagcattgtc tcgtgtacag 5820 etecettece tgeagggege ecetgggaga caactggaca agattteeta ettteteetg aaacccaaag ccctggtaaa agggatacac aggactgaaa agggaatcat ttttcactgt 5880 5940 acattataaa ccttcagaag ctatttttt aagctatcag caatactcat cagagcagct 6000 agctctttgg tctattttct gcagaaattt gcaactcact gattctcaac atgctctttt 6060 tctgtgataa ctctgcaaag acctgggctg gcctggcagt tgaacagagg gagagactaa ccttgagtca gaaaacagag gaagggtaat ttcctttgct tcaaattcaa ggccttccaa 6120 6163 cgccccatc ccctttacta tcattctcag tgggactctg atc

<210> 10 <211> 1505 <212> DNA

<213> Homo sapiens

<400> 10 60 gctggtcgga ggctcgcagt gctgtcggcg agaagcagtc gggtttggag cgcttgggtc 120 gcgttggtgc gcggtggaac gcgcccaggg accccagttc ccgcgagcag ctccgcgccg cgcctgagag actaagctga aactgctgct cagctcccaa gatggtgcca cccaaattgc 180 240 atgtgctttt ctgcctctgc ggctgcctgg ctgtggttta tccttttgac tggcaataca 300 taaatcctgt tgcccatatg aaatcatcag catgggtcaa caaaatacaa gtactgatgg 360 ctgctgcaag ctttggccaa actaaaatcc cccggggaaa tgggccttat tccgttggtt gtacagactt aatgtttgat cacactaata agggcacctt cttgcgttta tattatccat 420 cccaagataa tgatcgcctt gacacccttt ggatcccaaa taaagaatat ttttggggtc 480 ttagcaaatt tcttggaaca cactggctta tgggcaacat tttgaggtta ctctttggtt 540 600 caatgacaac tcctgcaaac tggaattccc ctctgaggcc tggtgaaaaa tatccacttg ttgttttttc tcatggtctt ggggcattca ggacacttta ttctgctatt ggcattgacc 660 720 tggcatctca tgggtttata gttgctgctg tagaacacag agatagatct gcatctgcaa 780 cttactattt caaggaccaa tctgctgcag aaatagggga caagtcttgg ctctacctta 840 gaaccctgaa acaagaggag gagacacata tacgaaatga gcaggtacgg caaagagcaa aagaatgttc ccaagctctc agtctgattc ttgacattga tcatggaaag ccagtgaaga 900 960 atgcattaga tttaaagttt gatatggaac aactgaagga ctctattgat agggaaaaaa 1020 tagcagtaat tggacattct tttggtggag caacggttat tcagactctt agtgaagatc 1080 agagattcag atgtggtatt gccctggatg catggatgtt tccactgggt gatgaagtat 1140 attccagaat tcctcagccc ctctttttta tcaactctga atatttccaa tatcctgcta 1200 atatcataaa aatgaaaaaa tgctactcac ctgataaaga aagaaagatg attacaatca 1260 ggggttcagt ccaccagaat tttgctgact tcacttttgc aactggcaaa ataattggac acatgctcaa attaaaggga gacatagatt caaatgtagc tattgatctt agcaacaaag 1320 1380 cttcattagc attcttacaa aagcatttag gacttcataa agattttgat cagtgggact 1440 gcttgattga aggagatgat gagaatctta ttccagggac caacattaac acaaccaatc 1500 aacacatcat gttacagaac tcttcaggaa tagagaaata caattaggat taaaataggt 1505 ttttt

<210> 11 <211> 3834 <212> DNA

<213> Homo sapiens

<400> 11 cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc 60 ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtcatga 120 180 ttgcttcaca gtttctctca gctctcactt tggtgcttct cattaaagag agtggagcct ggtcttacaa cacctccacg gaagctatga cttatgatga ggccagtgct tattgtcagc 240 300 aaaggtacac acacctggtt gcaattcaaa acaaagaaga gattgagtac ctaaactcca 360 tattgagcta ttcaccaagt tattactgga ttggaatcag aaaagtcaac aatgtgtggg tctgggtagg aacccagaaa cctctgacag aagaagccaa gaactgggct ccaggtgaac 420 480 ccaacaatag gcaaaaagat gaggactgcg tggagatcta catcaagaga gaaaaagatg tgggcatgtg gaatgatgag aggtgcagca agaagaagct tgccctatgc tacacagctg 540 600 cctgtaccaa tacatcctgc agtggccacg gtgaatgtgt agagaccatc aataattaca 660 cttgcaagtg tgaccctggc ttcagtggac tcaagtgtga gcaaattgtg aactgtacag 720 ccctggaatc ccctgagcat ggaagcctgg tttgcagtca cccactggga aacttcagct acaattette etgetetate agetgtgata ggggttacet gecaageage atggagaeea 780 840 tgcagtgtat gtcctctgga gaatggagtg ctcctattcc agcctgcaat gtggttgagt 900 gtgatgctgt gacaaatcca gccaatgggt tcgtggaatg tttccaaaac cctggaagct tcccatggaa cacaacctgt acatttgact gtgaagaagg atttgaacta atgggagccc 960 1020 agagcettea gtgtacetea tetgggaatt gggacaaega gaagecaaeg tgtaaagetg 1080 tgacatgcag ggccgtccgc cagcctcaga atggctctgt gaggtgcagc catteccctg ctggagagtt caccttcaaa tcatcctgca acttcacctg tgaggaaggc ttcatgttgc 1140 1200 agggaccage ccaggttgaa tgeaceaete aagggeagtg gacacageaa ateccagttt 1260 gtgaagettt ccagtgcaca gccttgtcca accccgageg aggctacatg aattgtette ctagtgette tggcagttte egttatgggt ccagetgtga gtteteetgt gagcagggtt 1320 1380 ttgtgttgaa gggatccaaa aggctccaat gtggccccac aggggagtgg gacaacgaga 1440 agcccacatg tgaagctgtg agatgcgatg ctgtccacca gcccccgaag ggtttggtga ggtgtgctca ttcccctatt ggagaattca cctacaagtc ctcttgtgcc ttcagctgtg 1500 1560 aggagggatt tgaattatat ggatcaactc aacttgagtg cacatctcag ggacaatgga 1620 cagaagaggt teetteetge caagtggtaa aatgtteaag eetggeagtt eegggaaaga

tcaacatgag ctgcagtggg gagcccgtgt ttggcactgt gtgcaagttc gcctgtcctg

1680

1740 aaggatggac gctcaatggc tctgcagctc ggacatgtgg agccacagga cactggtctg 1800 gcctgctacc tacctgtgaa gctcccactg agtccaacat tcccttggta gctggacttt ctgctgctgg actctccctc ctgacattag caccatttct cctctggctt cggaaatgct 1860 1920 tacggaaagc aaagaaattt gttcctgcca gcagctgcca aagccttgaa tcagacggaa 1980 gctaccaaaa gccttcttac atcctttaag ttcaaaagaa tcagaaacag gtgcatctgg 2040 ggaactagag ggatacactg aagttaacag agacagataa ctctcctcgg gtctctggcc 2100 cttcttgcct actatgccag atgcctttat ggctgaaacc gcaacaccca tcaccacttc 2160 aatagatcaa agtccagcag gcaaggacgg ccttcaactg aaaagactca gtgttccctt tectaetete aggateaaga aagtgttgge taatgaaggg aaaggatatt ttetteeaag 2220 caaaggtgaa gagaccaaga ctctgaaatc tcagaattcc ttttctaact ctcccttgct 2280 cgctgtaaaa tcttggcaca gaaacacaat attttgtggc tttctttctt ttgcccttca 2340 2400 cagtgtttcg acagctgatt acacagttgc tgtcataaga atgaataata attatccaga 2460 gtttagagga aaaaaatgac taaaaatatt ataacttaaa aaaatgacag atgttgaatg 2520 cccacaggca aatgcatgga gggttgttaa tggtgcaaat cctactgaat gctctgtgcg agggttacta tgcacaattt aatcactttc atccctatgg gattcagtgc ttcttaaaga 2580 2640 gttcttaagg attgtgatat ttttacttgc attgaatata ttataatctt ccatacttct 2700 tcattcaata caagtgtggt agggacttaa aaaacttgta aatgctgtca actatgatat ggtaaaagtt acttattcta gattaccccc tcattgttta ttaacaaatt atgttacatc 2760 2820 tgttttaaat ttatttcaaa aagggaaact attgtcccct agcaaggcat gatgttaacc 2880 agaataaagt tetgagtgtt tttactacag ttgttttttg aaaacatggt agaattggag 2940 agtaaaaact gaatggaagg tttgtatatt gtcagatatt ttttcagaaa tatgtggttt 3000 ccacgatgaa aaacttccat gaggccaaac gttttgaact aataaaagca taaatgcaaa 3060 cacacaaagg tataatttta tgaatgtctt tgttggaaaa gaatacagaa agatggatgt gctttgcatt cctacaaaga tgtttgtcag atgtgatatg taaacataat tcttgtatat 3120 tatggaagat tttaaattca caatagaaac tcaccatgta aaagagtcat ctggtagatt 3180 3240 tttaacgaat gaagatgtct aatagttatt ccctatttgt tttcttctgt atgttagggt gctctggaag agaggaatgc ctgtgtgagc aagcatttat gtttatttat aagcagattt 3300 3360 aacaattcca aaggaatctc cagttttcag ttgatcactg gcaatgaaaa attctcagtc 3420 agtaattgcc aaagctgctc tagccttgag gagtgtgaga atcaaaactc tcctacactt 3480 ccattaactt agcatgtgtt gaaaaaaaa gtttcagaga agttctggct gaacactggc

aacgacaaag ccaacagtca aaacagagat gtgataagga tcagaacagc agaggttctt 3540 3600 ttaaaggggc agaaaaactc tgggaaataa gagagaacaa ctactgtgat caggctatgt 3660 atggaataca gtgttatttt ctttgaaatt gtttaagtgt tgtaaatatt tatgtaaact gcattagaaa ttagctgtgt gaaataccag tgtggtttgt gtttgagttt tattgagaat 3720 3780 3834 tcagacctat ttgacataac actataaagg ttgacaataa atgtgcttat gttt

<210> 12

5204 <211>

<212> DNA

<213> Homo sapiens

<400> 12 gtaatatett gggcaageee tagagettet tteetgaeee ttagttaata agatgttate 60 tggtcacatt cagtcacaat aatagactca ttttagtaat aaacatctta agactagtaa 120 180 ttaaaactct ttacttcaca ccaagtttcc tccccaagct tggcctgttc ctggctggca

240

1260

gcctgaagta gggaaaggag agatatggtg accttttctt tgtacctttc tagctaccct 300 ctataccctg accccacata cataattgag ctgtggcttc tgactctact gggtttgggg 360 atgagaggca gtgagagtaa aatgaaggag tggttttaat taatggcaca gctaaaactg gattttgttc tctctgcaca tggcagatgt ttaaagctca ttctttcttt tatgcaagtt tttacaccat ccagcctcat ttgtacctct tgaatttttg ctcagtggcc tatcaccatt caggatcaag acaaaaatca atgagcactt attgtgtgtc atgcacccta caaagtgcca

420 480 540 600 ggatatttat ccaaactcct ggcaatgcta aacacaatgc aaaaagacat attagaaaac 660 gaatettatt aactttaget tttcaactgt atttcateat aaagtettae tttacaagat 720 aattgctgtt gtgaaaaagg gaaaggtcat ggtctcattt cccagatgtt atttgatata 780 tgctataaat tatattacct ccaacatagt ctgcactttg aacttagaaa aacaatcttc 840 agacggcatg cattctaatt cttgaaataa gtatgcccac aaactgtagt ttaagacaga 900 ataggtatgc ttctcatgtt ttaattcagt tgaatttcag aagatctcag gaatgtacag 960 ggtgatttcc tgaactttaa gcttccacat cacagtatga agttggttca agataagaaa 1020 1080 tataataaat tetegeecaa ggacagaeet gaatetetag etgeetagag getgaeteaa 1140 ctgaaatcat ggcgtttgac agcacttgga aggtagaccg gagtgaaaac tatgacaagt tcatggaaaa aatgggtaaa gactttattt ctttgtggct cattctttgc tttcttacaa 1200

acatttttct ttctaactcc taaatctcta ggagattaca gatagcttac agatagctcc

tgatgtggta gagagggatc cagaagatgt tcagaggagg gaaaccatat tttcccttct 1320 1380 tacattagga agaatccact atctcactaa tggaagaaaa gattctttga gtgctgttct ctgaaacaca ccaaaaagat ccagaaatgt ttccttcact ctttaactga aaaatgactt 1440 tttttgttgt ttacagtaag aaaatggcag cgtgtaatga taacttccag atctgaaaat 1500 gttaaattct aggagatgga aaaacaaaga ccatataaga aagtaatgga aaaagttctc 1560 1620 ttaaaattta tagctctgaa taagttagat ttaattctga tttcttctaa cttaaaaaaag ttttggaata atcttgagaa gctgtgtagt tttctccagg gcgtttaatt taactgattt 1680 1740 1800 tgtcattccc ctaaaagaaa aatctgcatc aattatagct tacagtttag gaactctaag tttaaattta taaaagttgt agattettat agtgattttg gettaatatt tgetaatttt 1860 1920 ctcatttttg tgtcagaaag aaatgccaca agaagcaaat agaactataa agttcaaaat 1980 gttaaagcca ctaagaaaaa caaaggggca tttaagaaaa aagaatactg tatatgtgga 2040 attaaagatg tgcttcctta taaatatatg aatatacatt ttaatccttc atttaatatt 2100 tctagaattt gatttactta acactgaaat gaacagtttg ttaatcttat taaggttgct 2160 cagctctaag attctataat tctgtactct acttaatttt tctcaagtta tggaaaaaca actttaatca gttctcttga tcggattgaa cctgaacttc tatagaagca atctgaatgt 2220 2280 tettgtgeaa aggeaatget acegagtttt etteceaece teaaaataaa caaacaaaae 2340 ataacttgga aaaataaaca cttcctatgg gatttgactt tattttctcc attgtcttac cttttacagg tgttaatata gtgaaaagga agcttgcagc tcatgacaat ttgaagctga 2400 2460 caattacaca agaaggaaat aaattcacag tcaaagaatc aagcgctttt cgaaacattg 2520 aagttgtttt tgaacttggt gtcaccttta attacaacct agcagacgga actgaactca 2580 gggtaagaat ttttttttt atgagcaatg cattcttgat ttttctaccc aatattaaaa 2640 tgatttctgc tctatttcat tggatggttt aattaatgca ggtctccttc actaactgaa 2700 gaagccaatg aagtttgtct acattatata ttacacaaat tggcagggta tttaaatatg cttttatttt tatacgcatc tgtgaagaat ctgaattgaa cagtaagaat tagaaaacta 2760 2820 tettttgaat gaetgaatat agaeetatte ataaagaaat ttaaaaeetgt gtttttaaae 2880 agtacagcaa aagaagcctt tagagttaat atgtaactta actgtaacat gttgaaataa taaaagaaat gaatagatga acaaatgagt gagttaccaa atggaaagat ttgatgtatt 2940 3000 gtaggtcatt gggagtgtac cttttcatgt ttaagataac acattttagg aagtcatcat tttcaacaaa ttttttaaaa acttttttta gcctcaacat ttttctattt aaattacatg 3060 tttgtaatga caatttaact actgaatgtt ttatcgtaag ttatgtcttt ccttaattag 3120

3180 taccacaatc acacaaatta aaacaagcac aggttattaa catctccgtg aaactaattt 3240 taaccatgac tatatttctg gacacgtaac atgaaagatt cagaaagaag tgctgctcat ctgccttaaa attcagcgta tggaaattat tgaagagaac aagcataatg gttatcaaca 3300 3360 catactctgt agcccaatgg cctaggttca atcctcactc tgtgacttta ggtgaatcac 3420 tgtgccattt tacagtctcc tcttctgcaa agtagagata gtagtatcag tttcataggg 3480 tcaccatgaa gattaaatga aaaagtgtgt ctacagaact cagaacagtg cctgacatgt 3540 3600 tgtaggggac ctggagcctt gagggaaata aacttattgg aaaattcaaa cggacagaca atggaaacga actgaatact gtccgagaaa ttataggtga tgaactagtc caggtgagtt 3660 gtcaaattta tagctatttt caaaaggcaa aaattactac aaaacaataa tttttgtcac 3720 tgctgagcca gatcttcagt aaactgacta cttcttttct cataaatctt actgatttta 3780 3840 aaaatattgt atagctattt tctgatgcct atttactaaa gacaacttat atatgtcaaa 3900 taatcaatgc ctattttaac tgaaaatata aatgactaca aaccaacatg tgttttaaaa 3960 tggctgtatc ccatatctgt ataaatcttg ctatcaagta caagaaaaaa ttgtataaac 4020 tcatactcat ataatatata tgaatatata atataaaaaat agtataaact catatagtat 4080 aaaactataa tactactttt tcttaactta gatgtaaacc ttaaagataa attcttctgt 4140 ttgttaacac ctttcagact tatgtgtatg aaggagtaga agccaaaagg atctttaaaa aggattgagc attattcttg gcgcacagtc caaaatacaa attggacaga agatctatat 4200 4260 tgtaccagaa ctgtttattt caccccatca agtataaggt tactgattga ttggtccttt 4320 tataaacatt ggtatatttc cattcatgcc aaagcaaaag aagtaaaagc taattaggat 4380 ttaatttgtt ttatattctc taagatatat atttactaaa agaatttgtg acattttaaa 4440 4500 aagtatgtga atatgaattg acagattgtt ttcgtagaga gagggtctta ctctttcact caggetggaa tgcagtggag agatcatage teaetgtaae etcaaaetee tggaeteatg 4560 caatcttcct gcctcaggct tctgagtagc taggactatg ggtacattcc acagtgccca 4620 4680 gctaattttt gttttgtttt ctttttattt tttttagaga tggggtcttg ctatattgcc 4740 caggetggte ttgaacceet ggeetcaage aateeteetg cetcageete teaagttgtt 4800 tttttcttta catttgataa actaaaagca taggctgcat atgagtcttt aacatcttga actggttgtg aataattttc tggcactggt tgtaagtaat atctattatt ataaaaataa 4860 tatatgctca accagaaaac ttagaaataa gaaacacaaa tgtaaaataa gtatttccat 4920

aactcataat ccagagataa	ttgccattct	gattttgata	gatatcctct	cagctctctt	4980
ccctgggggc agatatttcc	caatacatac	cactttgaat	aggatgatag	gaaataaatg	5040
atgtactaca ttaaattaaa	ttattgtatt	acatttttgt	acacatcagt	cattcccagg	5100
cttggctgaa aatcaggatc	atctgagaaa	cttaaacaat	ttctgcattc	ttaatctcca	5160
ctgttattct attatatcag	aatcgctaat	agaaccaaga	attc		5204
<210> 13 <211> 2480 <212> DNA <213> Homo sapiens					
<400> 13 gacgctctgt gccttcggag	gtctttctgc	ctgcctgtcc	tcatgcctct	cctcctcttg	60
ctgctcctgc tgccaagccc	cttacacccc	caccccatct	gtgaggtctc	caaagtggcc	120
agccacctag aagtgaactg	tgacaagagg	aatctgacag	cgctgcctcc	agacctgccg	180
aaagacacaa ccatcctcca	cctgagtgag	aacctcctgt	acaccttctc	cctggcaacc	240
ctgatgcctt acactcgcct	cactcagctg	aacctagata	ggtgcgagct	caccaagctc	300
caggtcgatg ggacgctgcc	agtgctgggg	accctggatc	tatcccacaa	tcagctgcaa	360
agcctgccct tgctagggca	gacactgcct	gctctcaccg	tcctggacgt	ctccttcaac	420
cggctgacct cgctgcctct	tggtgccctg	cgtggtcttg	gcgaactcca	agagctctac	480
ctgaaaggca atgagctgaa	gaccctgccc	ccagggctcc	tgacgcccac	acccaagctg	540
gagaagctca gtctggctaa	caacaacttg	actgagctcc	ccgctgggct	cctgaatggg	600
ctggagaatc tcgacaccct	tctcctccaa	gagaactcgc	tgtatacaat	accaaagggc	660
ttttttgggt cccacctcct	gccttttgct	tttctccacg	ggaacccctg	gttatgcaac	720
tgtgagatcc tctattttcg	tcgctggctg	caggacaatg	ctgaaaatgt	ctacgtatgg	780
aagcaaggtg tggacgtcaa	ggccatgacc	tctaacgtgg	ccagtgtgca	gtgtgacaat	840
tcagacaagt ttcccgtcta	caaataccca	ggaaaggggt	gccccaccct	tggtgatgaa	900

ggtgacacag acctatatga ttactaccca gaagaggaca ctgagggcga taaggtgcgt

gccacaagga ctgtggtcaa gttccccacc aaagcccata caaccccctg gggtctattc

tactcatggt ccactgcttc tctagacagc caaatgccct cctccttgca tccaacacaa

gaatccacta aggagcagac cacattccca cctagatgga ccccaaattt cacacttcac

atggaatcca tcacattctc caaaactcca aaatccacta ctgaaccaac cccaagcccg

accacctcag agcccgtccc ggagcccgcc ccaaacatga ccaccctgga gcccactcca

agecegacea ecceagagee caceteagag eccgececea gecegaceae eccggageee

960

1020

1080

1140

1200

1260

1320

1380 accecaatee egaceatege cacaageeeg accateetgg tgtetgeeac aageetgate 1440 actocaaaaa goacattttt aactaccaca aaaccogtat cactottaga atcoaccaaa 1500 aaaaccatcc ctgaacttga tcagccacca aagctccgtg gggtgctcca agggcatttg gagageteca gaaatgaeee tttteteeae eeegaetttt getgeeteet eeseetggge 1560 ttctatgtct tgggtctctt ctggctgctc tttgcctctg tggtcctcat cctgctgctg 1620 1680 agctgggttg ggcatgtgaa accacaggcc ctggactctg gccaaggtgc tgctctgacc acagccacac aaaccacaca cetggagetg cagaggggac ggcaagtgac agtgeceegg 1740 1800 geetggetge tetteetteg aggttegett eccaetttee geteeageet etteetgtgg 1860 gtacggccta atggccgtgt ggggcctcta gtggcaggaa ggaggccctc agctctgagt cagggtcgtg gtcaggacct gctgagcaca gtgagcatta ggtactctgg ccacagcctc 1920 1980 tgagggtggg aggtttgggg accttgagag aagagcctgt gggctctcct attggaatct agttgggggt tggaggggta aggaacacag ggtgataggg gaggggtctt agttcctttt 2040 totgtatcag aagooctgto ttoacaacac aggoacacaa tttoagtooc agooaaagoa 2100 2160 2220 gcgctgccag atctcacggt gaaccatttt ggcagaatac agcatggttc ccacatgcat ttatgcacag aagaaaatct ggaaagtgat ttatcaggat gtgagcactc gttgtgtctg 2280 gatgttacaa atatgggtgg ttttattttc tttttccctg tttagcattt tctagttttc 2340 2400 ttatcaggat gtgagcactc gttgtgtctg gatgttacaa atatgggtgg ttttattttc tttttccctg tttagcattt tctagttttc cactattatt gtatattatc tgtataataa 2460 2480 aaaataattt tagggttggg

<210> 14 <211> 959

<212> DNA

<213> Homo sapiens

<400> 14

aagcttttac catggtaacc cetggteeg tteagceace accaeceac ceagcacace 60
tecaacetea gecagacaag gttgttgaca caagagagee etcaggggea cagagagagt 120
ctggacacgt gggggagtea geegtgtate ateggaggeg geegggeaca tggeagggat 180
gagggaaaga ceaagagtee tetgttggge ceaagteeta gacagacaaa acctagacaa 240
teaegtgget ggetgeatge eetgtggetg ttgggetggg eecaggaga gggaggggeg 300
ctettteetg gaggtggtee agageacegg gtggacagee etgggggaaa actteeacgt 360
tttgatggag gttatetttg ataacteeac agtgacetgg ttegecaaag gaaaageagg 420

caaacgtgag ctgttttttt tttctccaag ctgaacacta ggggtcctag gctttttggg 480 540 tcacccggca tggcagacag tcaacctggc aggacatccg ggagagacag acacaggcag 600 agggcagaaa ggtcaaggga ggttctcagg ccaaggctat tggggtttgc tcaattgttc ctgaatgctc ttacacacgt acacacacag agcagcacac acacacaca acacatgcct 660 cagcaagtcc cagagaggga ggtgtcgagg gggacccgct ggctgttcag acggactccc 720 780 agagecagtg agtgggtggg getggaacat gagtteatet attteetgee cacatetggt ataaaaggag gcagtggccc acagaggagc acagctgtgt ttggctgcag ggccaagagc 840 gctgtcaaga agacccacac gccccctcc agcagctgaa ttcctgcagc tcagcagccg 900 959 ccgccagagc aggacgaacc gccaatcgca aggcacctct gagaacttca ggtaggaga

<210> 15

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 15 60 cccccgacca tggcgaagct gattgcgctc accctcttgg ggatgggact ggcactcttc 120 aggaaccacc agtcttctta ccaaacacga cttaatgctc tccgagaggt acaacccgta 180 gaacttccta actgtaattt agttaaagga atcgaaactg gctctgaaga catggagata 240 ctgcctaatg gactggcttt cattagctct ggattaaagt atcctggaat aaagagcttc 300 aaccccaaca gtcctggaaa aatacttctg atggacctga atgaagaaga tccaacagtg 360 ttggaattgg ggatcactgg aagtaaattt gatgtatctt catttaaccc tcatgggatt 420 agcacattca cagatgaaga taatgccatg tacctcctgg tggtgaacca tccagatgcc 480 aagtccacag tggagttgtt taaatttcaa gaagaagaaa aatcgctttt gcatctaaaa 540 accatcagac ataaacttct gcctaatttg aatgatattg ttgctgtggg acctgagcac 600 ttttatggca caaatgatca ctattttctt gacccctact tacaatcctg ggagatgtat 660 ttgggtttag cgtggtcgta tgttgtctac tatagtccaa gtgaagttcg agtggtggca 720 gaaggatttg attttgctaa tggaatcaac atttcacccg atggcaagta tgtctatata 780 gctgagttgc tggctcataa gattcatgtg tatgaaaagc atgctaattg gactttaact ccattgaagt cccttgactt taataccctc gtggataaca tatctgtgga tcctgagaca 840 900 ggagacettt gggttggatg ccateccaat ggcatgaaaa tettetteta tgaetcagag 960 aatcctcctg catcagaggt gcttcgaatc cagaacattc taacagaaga acctaaagtg acacaggttt atgcagaaaa tggcacagtg ttgcaaggca gtacagttgc ctctgtgtac 1020

aaagggaaac tgctgattgg cacagtgttt cacaaagctc tttactgtga gctctaacag

1080

accgatttgc acccatgcca tagaaactga ggccattatt tcaaccgctt gccatattcc 1140 gaggacccag tgttcttagc tgaacaatga atgctgaccc taaatgtgga catcatgaag 1200 catcaaagca ctgtttaact gggagtgata tgatgtgtag ggcttttttt tgagaataca 1260 ctatcaaatc agtcttggaa tacttgaaaa cctcatttac cataaaaatc cttctcacta 1320 1337 aaatggataa atcagtt <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <220> <221> misc_feature <222> (16)..(16) <223> n stands for any base <400> 16 18 ggacatggag gacgtncg <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <220> <221> misc_feature <222> (17)..(17) <223> n stands for any base <400> 17 19 cggacatgga ggacgtntg <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <400> 18 18 cgcggtactg caccaggc

<210> 19 <211> 25

<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <220> <221> misc_feature <222> (23)..(23) <223> n stands for any base <400> 19 25 gagtctacct gtttactatc aanaa <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <220> <221> misc_feature <222> (23)..(23) <223> n stands for any base <400> 20 25 gagtctacct gtttactatc aanga <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <400> 21 24 accagtacta aagcaaatta aact <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <220> <221> misc_feature <222> (18)..(18) <223> n stands for any base

<400> 22

ggccctgtct tcgttaangg 2			
<210><211><212><212><213>	22		
<220> <223>	Description of Artificial Sequence:Primer		
<222>	misc_feature (20)(20) n stands for any base		
<400> atggcc	23 ctgt cttcgttaan tg	22	
<210><211><211><212><213>	24		
<220> <223>	Description of Artificial Sequence:Primer		
<400> ccaggge	24 ctat ggaagtcgag tatc .	24	
<210><211><212><213>	18		
<220> <223>	Description of Artificial Sequence:Primer		
<222>	misc_feature (16)(16) n stands for any base		
<400> tctgcg	25 gcat cacgtneg	18	
<210><211><212><213>	26 18 DNA Artificial Sequence		
<220> <223>	Description of Artificial Sequence:Primer		
<220> <221>	misc_feature		

```
<222> (16)..(16)
<223> n stands for any base
<400> 26
tctgcggcat cacgtntg
                                                                     18
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<400> 27
                                                                     20
gaatagtagg cggccactga
<210> 28
<211>
      18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (16)..(16)
<223> n stands for any base
<400> 28
cggagccact gatgcncg
                                                                     18
<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (16)..(16)
<223> n stands for any base
<400> 29
cggagccact gatgcntg
                                                                     18
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence:Primer
<400> 30
tgtttggagt aaaggcacag aa
                                                                       22
<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (16)..(16)
<223> n stands for any base
<400> 31
cggcagcttc ttcccncg
                                                                       18
<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (16)..(16)
<223> n stands for any base
<400> 32
                                                                       18
cggcagcttc ttcccntg
<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<400> 33
                                                                       22
ccaccctca gctataaata gg
<210> 34
<211> 19
<212> DNA
<213> Artificial Sequence
```

í

1

<220>

<223>	Description of Artificial Sec	quence:Primer
<222>	misc_feature (17)(17) n stands for any base	
<400> cgagtt	34 ggga acgcacnct	19
<211> <212>	35 19 DNA Artificial Sequence	
<220> <223>	Description of Artificial Sec	quence:Primer
<222>	misc_feature (17)(17) n stands for any base	
<400> cgagtte	35 ggga acgcacngt	19
	22	
<220> <223>	Description of Artificial Sec	quence:Primer
<400> ggtctg	36 cact gacattgatg ag	22
	37 18 DNA Artificial Sequence	
<220> <223>	Description of Artificial Sec	quence:Primer
<222>	misc_feature (16)(16) n stands for any base	
<400> cccgact	37 tegg ceettnee	18

<210> 38

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (16)..(16)
<223> n stands for any base
<400> 38
                                                                       18
cccgactcgg cccttntc
<210>
       39
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:Primer
<400> 39
                                                                       20
gtcacagtcg gtgccaatgt
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222> (19)...(19)
<223> n stands for any base
<400> 40
                                                                       21
ccgacatcag cattgtctna t
<210> 41
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221> misc feature
<222> (19)..(19)
```

<223> n stands for any base

<400>	41 ccag cattgtctng t	21
cegacat	cay carrycong c	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer	
<400>	42	
	ggaa gggagctgt	19
<210>	43	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence:Primer	
<220>		
<221>	misc_feature	
	(19)(19)	
<223>	n stands for any base	
<400>		_
ttcttt	ggt ggagcaacng t	21
<210>	44	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer	
<220>		
	misc feature	
	(20)(20)	
	n stands for any base	
12232	n beards for any base	
<400>	44	
	tgg tggagcaacn tt	22
accett	ctgg tggagcaach tt	22
-210	45	
<210>	45	
<211>	24	
<212>	DNA Artificial Seguence	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer	

<400> 45

tcttacctga atctctgatc ttca 24			
<210><211><211><212><213>	19		
<220> <223>	Description of Artificial Sequence: Primer		
<222>	misc_feature (17)(17) n stands for any base		
<400> acattc	46 accg tggccantg	19	
<210><211><212><213>	18		
<220> <223>	Description of Artificial Sequence: Primer		
<222>	<pre>misc_feature (16)(16) n stands for any base</pre>		
<400> cattca	47 ccgt ggccangg	18	
<210><211><211><212><213>	48 22 DNA Artificial Sequence		
<220> <223>	Description of Artificial Sequence:Primer		
<400> agctgc	48 ctgt accaatacat cc	22	
<210><211><211><212><213>	22		
<220> <223>	Description of Artificial Sequence: Primer		
<220> <221>	misc_feature		

<220> <223>	Description of Artificial Sequence: Primer	
<222>	misc_feature (15)(15) n stands for any base	
<400> ccccag	53 ggct cctgntg	17
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Primer	
<400> tgagct	54 tete cagettgggt g	21
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: Primer	
<400> ggcaca	55 gaga gagtctggac acg	23
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Primer	
<400> ggccgc	56 ctcc gatgataca	19
<210><211><212><213>	24 DNA	
<220> <223>	Description of Artificial Sequence:Primer	
<220><221><222><222><223>	$(22)^{-}$. (22)	

<400> acccaa	57 atac atctcccagg ancg	24
<211> <212>	58 24 DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (22)(22) n stands for any base	
	58 aata catctcccag gnct	24
<210><211><211><212><212><213>		
<220> <223>	Description of Artificial Sequence:Primer	
<400> gaatga	59 tatt gttgctgtgg gac	23
	60 19 DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence:Probe	
	misc_feature (13)(13) n stands for any base	
<400> agccac	60 tgat gcncggtct	19
<210><211><211><212><213>		
<220> <223>	Description of Artificial Sequence:Probe	

```
<220>
<221> misc_feature
<222> (13)..(13)
<223> n stands for any base
<400> 61
                                                                        19
agccactgat gcntggtct
<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Probe
<220>
<221> misc_feature
<222> (12)...(12)
<223> n stands for any base
<400> 62
                                                                        20
caccgtggcc antgcaggat
<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Probe
<220>
<221> misc_feature
<222> (12)..(12)
<223> n stands for any base
<400> 63
                                                                        20
caccgtggcc anggcaggat
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Probe
<220>
<221> misc_feature
<222> (9)..(9)
<223> n stands for any base
```

<400>	64	
	agng cttttcgaaa catt	24
.010.		
<210> <211>	·	The same
<211>		** VC
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Probe	
222		
<220>	misc_feature	
	(9) (9)	
	n stands for any base	
	•	
	65	2.4
gaatca	agna cttttcgaaa catt	24
<210>	66	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Probe	
12207		
<400>	66	
tggaca	cgtg ggggagtcag	20
<210>	67	
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>	Description of Artificial Company Proba	
<223>	Description of Artificial Sequence:Probe	
<400>	67	
	cgtg gggagtcagc	20