Online Learning Summer School Copenhagen 2015 Lecture 2

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Online Learning

Outline

- Regret
 - Relaxing the prior knowledge
 - Cover's impossibility Result
- Online Convex Optimization
 - Convexity
 - Online Convex Optimization
 - Convexification
- Follow The (Regularized) Leader
- Online Gradient Descent and Online Mirror Descent
 - Linearization
 - Online Gradient Descent
 - Online Mirror Descent

Reminder: The Online Classification Game

For t = 1, 2, ...

- Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- Learner pays $1[\hat{y}_t \neq y_t]$

Reminder: The Online Classification Game

For t = 1, 2, ...

- ullet Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- Learner pays $1[\hat{y}_t \neq y_t]$

- Realizability by \mathcal{H} assumption: $\exists f \in \mathcal{H} \text{ s.t. } \forall t, \ y_t = f(x_t)$
- What if this assumption is wrong? What should be a reasonable goal for the learner?

Relaxing the prior knowledge

• Regret: the difference between the number of mistakes the learner made and the number of mistakes of the best $f \in \mathcal{H}$

Regret_T :=
$$\sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t]$$

Relaxing the prior knowledge

• Regret: the difference between the number of mistakes the learner made and the number of mistakes of the best $f \in \mathcal{H}$

$$\operatorname{Regret}_T := \sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t]$$

• Vanishing regret: Our modified goal is to have $\operatorname{Regret}_T = o(T)$. If this holds then

$$\frac{1}{T} \sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - \min_{f \in \mathcal{H}} \frac{1}{T} \sum_{t=1}^{T} 1[f(x_t) \neq y_t] \rightarrow 0$$

Relaxing the prior knowledge

• Regret: the difference between the number of mistakes the learner made and the number of mistakes of the best $f \in \mathcal{H}$

$$\operatorname{Regret}_T := \sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t]$$

• Vanishing regret: Our modified goal is to have $\operatorname{Regret}_T = o(T)$. If this holds then

$$\frac{1}{T} \sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - \min_{f \in \mathcal{H}} \frac{1}{T} \sum_{t=1}^{T} 1[f(x_t) \neq y_t] \rightarrow 0$$

• Is this a good goal ?

Is low regret a good goal?

- ullet Data dependent: yes, if there's $f\in \mathcal{H}$ that makes a "small" number of mistakes
- ullet We'll later generalize ${\cal H}$ to be strategies (instead of fixed functions), and then the concept of regret becomes even stronger

Can we have a vanishing regret for a finite ${\cal H}$?

Can we have a vanishing regret for a finite \mathcal{H} ?

ullet Take $\mathcal{H}=\{h_+,h_-\}$ where $h_+(x)$ is always 1 and $h_-(x)$ is always -1

Can we have a vanishing regret for a finite \mathcal{H} ?

- Take $\mathcal{H} = \{h_+, h_-\}$ where $h_+(x)$ is always 1 and $h_-(x)$ is always -1
- ullet For every choice \hat{y}_t the adversary will pick $y_t = -\hat{y}_t$

Can we have a vanishing regret for a finite \mathcal{H} ?

- Take $\mathcal{H} = \{h_+, h_-\}$ where $h_+(x)$ is always 1 and $h_-(x)$ is always -1
- ullet For every choice \hat{y}_t the adversary will pick $y_t = -\hat{y}_t$
- Claim: the regret is $\geq T/2$

Can we have a vanishing regret for a finite \mathcal{H} ?

- Take $\mathcal{H} = \{h_+, h_-\}$ where $h_+(x)$ is always 1 and $h_-(x)$ is always -1
- ullet For every choice \hat{y}_t the adversary will pick $y_t = -\hat{y}_t$
- Claim: the regret is $\geq T/2$
- Proof: The learner makes T mistakes while $h_{\rm MAJORITY(y_1,...,y_T)}$ makes at most T/2 mistakes.

Circumventing the impossibility result

Intuitively, we can:

- Make the adversary (slightly) weaker
- Make the regret (slightly) weaker

Circumventing the impossibility result

- Randomization: the learner calculates $p_t \in [0, 1]$, and the loss is redefined to be $\mathbb{P}_{\hat{y}_t \sim p_t}[\hat{y}_t \neq y_t]$
- Multiplicative factor: redefine the regret to be

$$\sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - 2 \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t]$$

Circumventing the impossibility result

- Randomization: the learner calculates $p_t \in [0,1]$, and the loss is redefined to be $\mathbb{P}_{\hat{y}_t \sim p_t}[\hat{y}_t \neq y_t]$
- Multiplicative factor: redefine the regret to be

$$\sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] - 2 \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t]$$

As we'll show, both techniques rely on convexification

Outline

- Regret
 - Relaxing the prior knowledge
 - Cover's impossibility Result
- Online Convex Optimization
 - Convexity
 - Online Convex Optimization
 - Convexification
- Follow The (Regularized) Leader
- 4 Online Gradient Descent and Online Mirror Descent
 - Linearization
 - Online Gradient Descent
 - Online Mirror Descent

Definition (Convex Set)

A set C in a vector space is convex if for any two vectors \mathbf{u}, \mathbf{v} in C, the line segment between \mathbf{u} and \mathbf{v} is contained in C. That is, for any $\alpha \in [0,1]$ we have that the convex combination $\alpha \mathbf{u} + (1-\alpha)\mathbf{v}$ is in C.

Definition (Convex function)

Let C be a convex set. A function $f:C\to\mathbb{R}$ is convex if for every $\mathbf{u},\mathbf{v}\in C$ and $\alpha\in[0,1]$,

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$$
.

Epigraph

A function f is convex if and only if its epigraph is a convex set:

$$epigraph(f) = \{(\mathbf{x}, \beta) : f(\mathbf{x}) \le \beta\}.$$

Relevant Property: tangents lie below f

If f is convex and differentiable, then

$$\forall \mathbf{u}, f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} - \mathbf{w} \rangle$$

(recall,
$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$
 is the gradient of f at \mathbf{w})

Sub-gradients

- ullet v is sub-gradient of f at ${f w}$ if $orall {f u}, \ f({f u}) \geq f({f w}) + \langle {f v}, {f u} {f w}
 angle$
- The differential set, $\partial f(\mathbf{w})$, is the set of sub-gradients of f at \mathbf{w}
- Lemma: f is convex iff for every \mathbf{w} , $\partial f(\mathbf{w}) \neq \emptyset$

Tangents lie below f

f is "locally flat" around \mathbf{w} (i.e. $\mathbf{0}$ is a sub-gradient) iff \mathbf{w} is a global minimizer

Exercises:

• If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable then f is convex iff f' is monotonically non-decreasing iff f'' is non-negative

Exercises:

- If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable then f is convex iff f' is monotonically non-decreasing iff f'' is non-negative
- Composing convex function on linear function preserves convexity

Exercises:

- If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable then f is convex iff f' is monotonically non-decreasing iff f'' is non-negative
- Composing convex function on linear function preserves convexity
- Max of convex functions is convex

Exercises:

- If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable then f is convex iff f' is monotonically non-decreasing iff f'' is non-negative
- Composing convex function on linear function preserves convexity
- Max of convex functions is convex
- Positive sum of convex functions is convex

Online Convex Optimization

Game Board:

- ullet \mathcal{X} : a set of contexts
- S: A convex set of vectors
- \bullet \mathcal{F} : A set of convex loss functions from S to \mathbb{R}

The Online Convex Optimization Game

For t = 1, 2, ..., T

- ullet Environment presents a context $x_t \in \mathcal{X}$
- Learner predicts $\mathbf{w}_t \in S$
- Environment picks a loss function $f_t \in \mathcal{F}$
- Learner pays $f_t(\mathbf{w}_t)$

Outline

- Regret
 - Relaxing the prior knowledge
 - Cover's impossibility Result
- Online Convex Optimization
 - Convexity
 - Online Convex Optimization
 - Convexification
- Follow The (Regularized) Leader
- Online Gradient Descent and Online Mirror Descent
 - Linearization
 - Online Gradient Descent
 - Online Mirror Descent

Modeling Online Classification using OCO

Online Classification

For t = 1, 2, ..., T

- Environment presents a context $x_t \in \mathcal{X}$
- Learner predicts $\hat{y}_t \in \{\pm 1\}$
- Environment reveals $y_t \in \{\pm 1\}$
- Learner pays $1[\hat{y}_t \neq y_t]$

Online Convex Optimization

For t = 1, 2, ..., T

- Environment presents a context $x_t \in \mathcal{X}$
- Learner predicts $\mathbf{w}_t \in S$
- ullet Environment picks a loss function $f_t \in \mathcal{F}$
- Learner pays $f_t(\mathbf{w}_t)$

Convexification

• Suppose $\mathcal{H} = \{h_1, \dots, h_d\}$, the state of the online convex optimizer will be a distribution over \mathcal{H} : $S = \{\mathbf{w} \in [0,1]^d : \|\mathbf{w}\|_1 = 1\}$

Convexification

• Suppose $\mathcal{H} = \{h_1, \dots, h_d\}$, the state of the online convex optimizer will be a distribution over \mathcal{H} : $S = \{\mathbf{w} \in [0, 1]^d : \|\mathbf{w}\|_1 = 1\}$

- Given $x_t \in \mathcal{X}$ define $\mathbf{v}_t = (h_1(x_t), \dots, h_d(x_t))$
- With $\mathbf{w}_t \in S$, the prediction will be:
 - **1** Majority: $\hat{y}_t = \operatorname{sign}(\langle \mathbf{w}_t, \mathbf{v}_t \rangle)$
 - **2** Random: $\mathbb{P}[\hat{y}_t = 1] = p_t := \frac{1 + \langle \mathbf{w}_t, \mathbf{v}_t \rangle}{2}$

Convexification – The Loss Function

For the majority option: $f_t(\mathbf{w}) = 1 - y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$

Regret for the majority option

$$f_t(\mathbf{w}) = 1 - y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$$

- Observe:

 - $\forall j, \ f_t(\mathbf{e}_j) = 2 \cdot 1[y_t \neq h_j(x_t)]$
- Therefore, vanishing regret of OCO guarantees:

$$\sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] \leq 2 \cdot \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t] + o(T)$$

Convexification - The Randomized Option

For the random option: $f_t(\mathbf{w}) = \frac{1}{2} \left(1 - y_t \langle \mathbf{w}, \mathbf{v}_t \rangle \right) \mathbb{P}_{\hat{y}_t \sim p_t}[\hat{y}_t \neq y_t]$

Regret for the Convexification by Randomization

Since singletons are in S, vanishing regret of OCO guarantees:

$$\sum_{t=1}^{T} \mathbb{P}_{\hat{y}_t \sim p_t} [\hat{y}_t \neq y_t] \leq \min_{f \in \mathcal{H}} \sum_{t=1}^{T} 1[f(x_t) \neq y_t] + o(T)$$

Outline

- Regret
 - Relaxing the prior knowledge
 - Cover's impossibility Result
- Online Convex Optimization
 - Convexity
 - Online Convex Optimization
 - Convexification
- 3 Follow The (Regularized) Leader
- 4 Online Gradient Descent and Online Mirror Descent
 - Linearization
 - Online Gradient Descent
 - Online Mirror Descent

Follow The Leader

The most straightforward online learner:

Follow The Leader (FTL)

At each round, choose the \mathbf{w}_t in S that minimizes the sum of previous loss functions:

$$\forall t, \quad \mathbf{w}_t = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \sum_{i=1}^{t-1} f_i(\mathbf{w})$$
 (break ties arbitrarily)

Regret of FTL

Lemma

Let $\mathbf{w}_1, \mathbf{w}_2, \dots$ be the sequence of vectors produced by FTL. Then, for all $\mathbf{u} \in S$ we have

$$\operatorname{Regret}_{T}(\mathbf{u}) = \sum_{t=1}^{T} (f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{u})) \leq \sum_{t=1}^{T} (f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{w}_{t+1})).$$

Regret of FTL

Lemma

Let $\mathbf{w}_1, \mathbf{w}_2, \dots$ be the sequence of vectors produced by FTL. Then, for all $\mathbf{u} \in S$ we have

$$\operatorname{Regret}_{T}(\mathbf{u}) = \sum_{t=1}^{T} (f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{u})) \leq \sum_{t=1}^{T} (f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{w}_{t+1})).$$

The lemma shows that for FTL: stability ⇒ Low regret

Equivalent inequalities:

$$\forall \mathbf{u}, \quad \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{u})) \le \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}))$$

Equivalent inequalities:

$$\forall \mathbf{u}, \quad \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{u})) \leq \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}))$$

$$\iff \forall \mathbf{u}, \quad \sum_{t=1}^{T} f_t(\mathbf{w}_{t+1}) \leq \sum_{t=1}^{T} f_t(\mathbf{u})$$

Equivalent inequalities:

$$\forall \mathbf{u}, \quad \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{u})) \leq \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}))$$

$$\iff \forall \mathbf{u}, \quad \sum_{t=1}^{T} f_t(\mathbf{w}_{t+1}) \leq \sum_{t=1}^{T} f_t(\mathbf{u})$$

$$\iff \sum_{t=1}^{T} f_t(\mathbf{w}_{t+1}) \leq \sum_{t=1}^{T} f_t(\mathbf{w}_{T+1})$$

$$\sum_{t=1}^{T} f_t(\mathbf{w}_{t+1}) = \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{t+1})\right) + f_T(\mathbf{w}_{T+1})$$

$$\begin{split} \sum_{t=1}^T f_t(\mathbf{w}_{t+1}) &= \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{t+1})\right) + f_T(\mathbf{w}_{T+1}) \\ &\leq \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_T)\right) + f_T(\mathbf{w}_{T+1}) \quad \text{(inductive assumption)} \end{split}$$

$$\begin{split} \sum_{t=1}^T f_t(\mathbf{w}_{t+1}) &= \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{t+1})\right) + f_T(\mathbf{w}_{T+1}) \\ &\leq \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_T)\right) + f_T(\mathbf{w}_{T+1}) & \text{(inductive assumption)} \\ &\leq \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{T+1})\right) + f_T(\mathbf{w}_{T+1}) & \text{(by def. of } \mathbf{w}_T) \end{split}$$

$$\begin{split} \sum_{t=1}^T f_t(\mathbf{w}_{t+1}) &= \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{t+1})\right) + f_T(\mathbf{w}_{T+1}) \\ &\leq \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_T)\right) + f_T(\mathbf{w}_{T+1}) \quad \text{(inductive assumption)} \\ &\leq \left(\sum_{t=1}^{T-1} f_t(\mathbf{w}_{T+1})\right) + f_T(\mathbf{w}_{T+1}) \quad \text{(by def. of } \mathbf{w}_T) \\ &= \sum_{t=1}^{T} f_t(\mathbf{w}_{T+1}) \end{split}$$

Online Quadratic Optimisation:

• $S \subset \mathbb{R}^d$ is a convex set, and for every t, $f_t(\mathbf{w}) = \frac{1}{2} \|\mathbf{w} - \mathbf{z}_t\|^2$, for some $\mathbf{z}_t \in S$

Online Quadratic Optimisation:

- $S \subset \mathbb{R}^d$ is a convex set, and for every t, $f_t(\mathbf{w}) = \frac{1}{2} ||\mathbf{w} \mathbf{z}_t||^2$, for some $\mathbf{z}_t \in S$
- FTL rule: $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{i < t} \|\mathbf{w} \mathbf{z}_i\|^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} \mathbf{z}_i$

Online Quadratic Optimisation:

- $S \subset \mathbb{R}^d$ is a convex set, and for every t, $f_t(\mathbf{w}) = \frac{1}{2} \|\mathbf{w} \mathbf{z}_t\|^2$, for some $\mathbf{z}_t \in S$
- FTL rule: $\mathbf{w}_t = \mathrm{argmin}_{\mathbf{w} \in S} \sum_{i < t} \|\mathbf{w} \mathbf{z}_i\|^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} \mathbf{z}_i$
- Stability term: by standard algebraic manipulations

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) = \left(\frac{1}{t} - \frac{1}{2t^2}\right) \|\mathbf{w}_t - \mathbf{z}_t\|^2 \le \frac{\operatorname{diameter}(S)^2}{t}$$

Online Quadratic Optimisation:

- $S \subset \mathbb{R}^d$ is a convex set, and for every t, $f_t(\mathbf{w}) = \frac{1}{2} \|\mathbf{w} \mathbf{z}_t\|^2$, for some $\mathbf{z}_t \in S$
- FTL rule: $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{i < t} \|\mathbf{w} \mathbf{z}_i\|^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} \mathbf{z}_i$
- Stability term: by standard algebraic manipulations

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) = \left(\frac{1}{t} - \frac{1}{2t^2}\right) \|\mathbf{w}_t - \mathbf{z}_t\|^2 \le \frac{\operatorname{diameter}(S)^2}{t}$$

• Since $\sum_{t=1}^{T} (1/t) \leq \log(T) + 1$ we conclude:

$$\operatorname{Regret}_{T}(\mathbf{u}) \leq \operatorname{diameter}(S)^{2} (\log(T) + 1) = o(T)$$

Online Linear Optimisation:

• S = [-1, 1], and for every t, $f_t(\mathbf{w}) = wz_t$, where $z_t = 1$ if t is even and $z_t = -1$ if t is odd

Online Linear Optimisation:

- S = [-1, 1], and for every t, $f_t(\mathbf{w}) = wz_t$, where $z_t = 1$ if t is even and $z_t = -1$ if t is odd
- FTL rule: $\mathbf{w}_t = \operatorname{argmin}_{w \in S} \sum_{i < t} w z_i = \begin{cases} 1 & \text{for odd } t \\ -1 & \text{for even } t \end{cases}$

Online Linear Optimisation:

- S = [-1, 1], and for every t, $f_t(\mathbf{w}) = wz_t$, where $z_t = 1$ if t is even and $z_t = -1$ if t is odd
- FTL rule: $\mathbf{w}_t = \operatorname{argmin}_{w \in S} \sum_{i < t} w z_i = \begin{cases} 1 & \text{for odd } t \\ -1 & \text{for even } t \end{cases}$
- ullet Regret is T:

$$Regret_T(u=0) = T - 0 = T$$

Online Linear Optimisation:

- S = [-1, 1], and for every t, $f_t(\mathbf{w}) = wz_t$, where $z_t = 1$ if t is even and $z_t = -1$ if t is odd
- FTL rule: $\mathbf{w}_t = \operatorname{argmin}_{w \in S} \sum_{i < t} w z_i = \begin{cases} 1 & \text{for odd } t \\ -1 & \text{for even } t \end{cases}$
- ullet Regret is T:

$$Regret_T(u=0) = T - 0 = T$$

Intuitively, FTL fails here because it is not stable

Follow The Regularized Leader (FoReL)

Follow The Regularized Leader (FoReL)

At each round, choose the \mathbf{w}_t in S that minimizes the sum of previous loss functions plus regularization:

$$\forall t, \quad \mathbf{w}_t = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$$

Analyzing FoReL

Lemma

$$\sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{u})) \le R(\mathbf{u}) - R(\mathbf{w}_1) + \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}))$$

Analyzing FoReL

Lemma

$$\sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{u})) \le R(\mathbf{u}) - R(\mathbf{w}_1) + \sum_{t=1}^{T} (f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}))$$

Proof.

Running FoReL on f_1, \ldots, f_T is equivalent to running FTL on f_0, f_1, \ldots, f_T where $f_0 = R$.

Analyzing FoReL: Regularization as Stabilization

ullet We need to make sure that $f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1})$ is small (on average)

Analyzing FoReL: Regularization as Stabilization

- We need to make sure that $f_t(\mathbf{w}_t) f_t(\mathbf{w}_{t+1})$ is small (on average)
- Lipschitzness: If f_t is L-Lipschitz (w.r.t. a norm $\|\cdot\|$) then:

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) \le L \|\mathbf{w}_t - \mathbf{w}_{t+1}\|$$

Analyzing FoReL: Regularization as Stabilization

- ullet We need to make sure that $f_t(\mathbf{w}_t) f_t(\mathbf{w}_{t+1})$ is small (on average)
- Lipschitzness: If f_t is L-Lipschitz (w.r.t. a norm $\|\cdot\|$) then:

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) \le L \|\mathbf{w}_t - \mathbf{w}_{t+1}\|$$

ullet So, it suffices that the regularizer will ensure $\|\mathbf{w}_t - \mathbf{w}_{t+1}\|$ is small

Strongly Convex Regularizers

Strongly convex function

A function f is λ -strongly convex if for all \mathbf{w}, \mathbf{u} and $\alpha \in (0,1)$ we have

$$f(\alpha \mathbf{w} + (1 - \alpha)\mathbf{u}) \le \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2.$$

Strongly Convex Regularizers

Lemma

Assume f is λ -strongly convex. Then:

- If g is convex, then f + g is λ -s.c.
- ② If f is λ -s.c. on S' and $S \subset S'$, then it is also λ -s.c. on S
- **3** If **u** is a minimizer of f, then, $\forall \mathbf{w}, f(\mathbf{w}) f(\mathbf{u}) \geq \frac{\lambda}{2} ||\mathbf{w} \mathbf{u}||^2$

Strongly Convex Regularizers

Lemma

Assume f is λ -strongly convex. Then:

- **1** If g is convex, then f + g is λ -s.c.
- ② If f is λ -s.c. on S' and $S \subset S'$, then it is also λ -s.c. on S
- **3** If \mathbf{u} is a minimizer of f, then, $\forall \mathbf{w}, f(\mathbf{w}) f(\mathbf{u}) \geq \frac{\lambda}{2} \|\mathbf{w} \mathbf{u}\|^2$

Proof of (3):

Divide the definition of strong convexity by $\boldsymbol{\alpha}$ and rearrange terms to get that

$$\frac{f(\mathbf{u} + \alpha(\mathbf{w} - \mathbf{u})) - f(\mathbf{u})}{\alpha} \le f(\mathbf{w}) - f(\mathbf{u}) - \frac{\lambda}{2}(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2.$$

Now take the limit $\alpha \to 0$.

Strongly Convex Regularizers Yield Stability

Lemma

If R is σ -strongly convex (w.r.t. $\|\cdot\|$) and f_t is L_t -Lipschitz (w.r.t. the same $\|\cdot\|$), then

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) \le L_t \|\mathbf{w}_t - \mathbf{w}_{t+1}\| \le \frac{L_t^2}{\sigma}$$

• Define $F_t(\mathbf{w}) = \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$ and note that $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} F_t(\mathbf{w})$.

- Define $F_t(\mathbf{w}) = \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$ and note that $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} F_t(\mathbf{w})$.
- F_t is σ -s.c., hence

$$F_t(\mathbf{w}_{t+1}) \geq F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2$$
.

- Define $F_t(\mathbf{w}) = \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$ and note that $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} F_t(\mathbf{w})$.
- F_t is σ -s.c., hence

$$F_t(\mathbf{w}_{t+1}) \geq F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2$$
.

ullet Repeating the same argument for F_{t+1} and its minimizer \mathbf{w}_{t+1} we get

$$F_{t+1}(\mathbf{w}_t) \geq F_{t+1}(\mathbf{w}_{t+1}) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2$$
.

- Define $F_t(\mathbf{w}) = \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$ and note that $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} F_t(\mathbf{w})$.
- F_t is σ -s.c., hence

$$F_t(\mathbf{w}_{t+1}) \geq F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2$$
.

ullet Repeating the same argument for F_{t+1} and its minimizer \mathbf{w}_{t+1} we get

$$F_{t+1}(\mathbf{w}_t) \geq F_{t+1}(\mathbf{w}_{t+1}) + \frac{\sigma}{2} ||\mathbf{w}_t - \mathbf{w}_{t+1}||^2.$$

Summing up, and rearranging,

$$\sigma \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2 \le f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1})$$

- Define $F_t(\mathbf{w}) = \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$ and note that $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} F_t(\mathbf{w})$.
- F_t is σ -s.c., hence

$$F_t(\mathbf{w}_{t+1}) \geq F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2$$
.

ullet Repeating the same argument for F_{t+1} and its minimizer \mathbf{w}_{t+1} we get

$$F_{t+1}(\mathbf{w}_t) \geq F_{t+1}(\mathbf{w}_{t+1}) + \frac{\sigma}{2} ||\mathbf{w}_t - \mathbf{w}_{t+1}||^2.$$

Summing up, and rearranging,

$$\sigma \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2 \le f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1})$$

• Proof follows by combining with Lipschitzness and rearranging

Back to Online Classification

Recall:

- $\mathcal{H} = \{h_1, \dots, h_d\}, \ \mathbf{v}_t = (h_1(x_t), \dots, (h_d(x_t)), S = \{\mathbf{w} \in [0, 1]^d : \|\mathbf{w}\|_1 = 1\}$
- Randomization: $f_t(\mathbf{w}) = \frac{1}{2} (1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle)$
- Majority: $f_t(\mathbf{w}) = 1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$

Back to Online Classification

Recall:

- $\mathcal{H} = \{h_1, \dots, h_d\}, \mathbf{v}_t = (h_1(x_t), \dots, (h_d(x_t)), S = \{\mathbf{w} \in [0, 1]^d : \|\mathbf{w}\|_1 = 1\}$
- Randomization: $f_t(\mathbf{w}) = \frac{1}{2} (1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle)$
- Majority: $f_t(\mathbf{w}) = 1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$

Definition: Dual Norm Given a norm $\|\cdot\|$, its dual norm is defined as

$$\|\mathbf{v}\|_* = \max_{\mathbf{z}: \|\mathbf{z}\| \le 1} \langle \mathbf{z}, \mathbf{v} \rangle$$

Back to Online Classification

Recall:

- $\mathcal{H} = \{h_1, \dots, h_d\}, \mathbf{v}_t = (h_1(x_t), \dots, (h_d(x_t)), S = \{\mathbf{w} \in [0, 1]^d : \|\mathbf{w}\|_1 = 1\}$
- Randomization: $f_t(\mathbf{w}) = \frac{1}{2} (1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle)$
- Majority: $f_t(\mathbf{w}) = 1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$

Definition: Dual Norm Given a norm $\|\cdot\|$, its dual norm is defined as

$$\|\mathbf{v}\|_* = \max_{\mathbf{z}: \|\mathbf{z}\| \le 1} \langle \mathbf{z}, \mathbf{v} \rangle$$

Lipschitzness: For an affine function, $f_t(\mathbf{w}) = \langle \mathbf{w}, \mathbf{z} \rangle + b$, we have

$$|f_t(\mathbf{w}) - f_t(\mathbf{w}')| = |\langle \mathbf{w} - \mathbf{w}', \mathbf{z} \rangle| \le ||\mathbf{w} - \mathbf{w}'|| \, ||\mathbf{z}||_*$$

Back to Online Classification

Recall:

- $\mathcal{H} = \{h_1, \dots, h_d\}, \mathbf{v}_t = (h_1(x_t), \dots, (h_d(x_t)), S = \{\mathbf{w} \in [0, 1]^d : \|\mathbf{w}\|_1 = 1\}$
- Randomization: $f_t(\mathbf{w}) = \frac{1}{2} (1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle)$
- Majority: $f_t(\mathbf{w}) = 1 y_t \langle \mathbf{w}, \mathbf{v}_t \rangle$

Definition: Dual Norm Given a norm $\|\cdot\|$, its dual norm is defined as

$$\|\mathbf{v}\|_* = \max_{\mathbf{z}: \|\mathbf{z}\| \le 1} \langle \mathbf{z}, \mathbf{v} \rangle$$

Lipschitzness: For an affine function, $f_t(\mathbf{w}) = \langle \mathbf{w}, \mathbf{z} \rangle + b$, we have

$$|f_t(\mathbf{w}) - f_t(\mathbf{w}')| = |\langle \mathbf{w} - \mathbf{w}', \mathbf{z} \rangle| \le ||\mathbf{w} - \mathbf{w}'|| \, ||\mathbf{z}||_*$$

How to choose $R(\mathbf{w})$?

•
$$R(\mathbf{w}) = \frac{1}{2\eta} ||\mathbf{w}||_2^2$$

- $\mathbf{e} \ R(\mathbf{w}) = \frac{1}{2n} \|\mathbf{w}\|_2^2$
- ullet Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_2$

- $P(\mathbf{w}) = \frac{1}{2n} \|\mathbf{w}\|_2^2$
- Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_2$
- For every $\mathbf{u} \in S$ we have $R(\mathbf{u}) R(\mathbf{w}_1) \le 1/(2\eta)$

- $P(\mathbf{w}) = \frac{1}{2n} \|\mathbf{w}\|_2^2$
- ullet Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_2$
- For every $\mathbf{u} \in S$ we have $R(\mathbf{u}) R(\mathbf{w}_1) \leq 1/(2\eta)$
- For every t, $\|\mathbf{v}_t\|_2 = d$

Corollary

FoReL with Euclidean regularization yields the regret bound $\frac{1}{2\eta}+\eta dT$. In particular, for $\eta=(2dT)^{-1/2}$ we obtain the regret bound $\sqrt{2dT}=o(T)$

Euclidean Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{2\eta} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{t} f_{t}(\mathbf{w}) = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{z}_{t}\|_{2}^{2}$$

Euclidean Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{2\eta} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{t} f_{t}(\mathbf{w}) = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{z}_{t}\|_{2}^{2}$$

Exercise: Show that the solution has the form: $w_{t+1,i} = [z_{t,i} - \theta]_+$

Euclidean Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in S} \frac{1}{2\eta} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{t} f_{t}(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w} \in S} \frac{1}{2} \|\mathbf{w} - \mathbf{z}_{t}\|_{2}^{2}$$

Exercise: Show that the solution has the form: $w_{t+1,i} = [z_{t,i} - \theta]_+$

Interpretation: Each hypothesis in \mathcal{H} gets an initial score of #correct -#wrong. We subtract θ from all scores and clamp at zero.

•
$$R(\mathbf{w}) = \frac{1}{\eta} \sum_{i} w_i \log(w_i)$$

- $R(\mathbf{w}) = \frac{1}{\eta} \sum_{i} w_i \log(w_i)$
- ullet Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_1$

- $R(\mathbf{w}) = \frac{1}{\eta} \sum_{i} w_i \log(w_i)$
- ullet Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_1$
- For every $\mathbf{u} \in S$ we have $R(\mathbf{u}) R(\mathbf{w}_1) \leq \log(d)/\eta$

- $R(\mathbf{w}) = \frac{1}{\eta} \sum_{i} w_i \log(w_i)$
- ullet Exercise: show that R is $(1/\eta)$ -strongly convex w.r.t. $\|\cdot\|_1$
- For every $\mathbf{u} \in S$ we have $R(\mathbf{u}) R(\mathbf{w}_1) \leq \log(d)/\eta$
- For every t, $\|\mathbf{v}_t\|_{\infty} = 1$

Corollary

FoReL with Entropic regularization yields the regret bound $\frac{\log(d)}{\eta} + \eta T$. In particular, for $\eta = (\log(d)/T)^{1/2}$ we obtain the regret bound $2\sqrt{\log(d)\,T}$

Entropic Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{\eta} \sum_{i} w_{i} \log(w_{i}) + \sum_{i=1}^{t} f_{t}(\mathbf{w})$$
$$= \underset{\mathbf{w} \in S}{\operatorname{argmin}} \sum_{i} w_{i} \log(w_{i}) - \langle \mathbf{w}, \mathbf{z}_{t} \rangle$$

Entropic Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{\eta} \sum_{i} w_{i} \log(w_{i}) + \sum_{i=1}^{t} f_{t}(\mathbf{w})$$
$$= \underset{\mathbf{w} \in S}{\operatorname{argmin}} \sum_{i} w_{i} \log(w_{i}) - \langle \mathbf{w}, \mathbf{z}_{t} \rangle$$

Exercise: Show that the solution is:

$$w_{t+1,i} = \frac{e^{z_{t,i}}}{\sum_{j} e^{z_{t,j}}}$$

Entropic Regularization — The resulting algorithm

Define $\mathbf{z}_t = a \, \eta \, \sum_{i=1}^t y_i \mathbf{v}_i$ (where a is 1 or 1/2). Then,

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \frac{1}{\eta} \sum_{i} w_{i} \log(w_{i}) + \sum_{i=1}^{t} f_{t}(\mathbf{w})$$
$$= \underset{\mathbf{w} \in S}{\operatorname{argmin}} \sum_{i} w_{i} \log(w_{i}) - \langle \mathbf{w}, \mathbf{z}_{t} \rangle$$

Exercise: Show that the solution is:

$$w_{t+1,i} = \frac{e^{z_{t,i}}}{\sum_{j} e^{z_{t,j}}}$$

Interpretation: Each hypothesis in \mathcal{H} gets a score of $\exp(\eta(\#\text{correct} - \#\text{wrong}))$. Then, we normalize the scores.

Outline

- Regret
 - Relaxing the prior knowledge
 - Cover's impossibility Result
- Online Convex Optimization
 - Convexity
 - Online Convex Optimization
 - Convexification
- Follow The (Regularized) Leader
- Online Gradient Descent and Online Mirror Descent
 - Linearization
 - Online Gradient Descent
 - Online Mirror Descent

• Recall that if f_t is convex then there is $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$ such that

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{u}) \ge f_t(\mathbf{w}_t) + \langle \mathbf{v}_t, \mathbf{u} - \mathbf{w}_t \rangle$$

ullet Recall that if f_t is convex then there is $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$ such that

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{u}) \ge f_t(\mathbf{w}_t) + \langle \mathbf{v}_t, \mathbf{u} - \mathbf{w}_t \rangle$$

• Rearranging, we obtain

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{w}_t) - f_t(\mathbf{u}) \le \langle \mathbf{v}_t, \mathbf{w}_t - \mathbf{u} \rangle$$

ullet Recall that if f_t is convex then there is $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$ such that

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{u}) \ge f_t(\mathbf{w}_t) + \langle \mathbf{v}_t, \mathbf{u} - \mathbf{w}_t \rangle$$

• Rearranging, we obtain

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{w}_t) - f_t(\mathbf{u}) \le \langle \mathbf{v}_t, \mathbf{w}_t - \mathbf{u} \rangle$$

• This implies that we can define $\tilde{f}_t(\mathbf{w}) = \langle \mathbf{v}_t, \mathbf{w} \rangle$ and regret w.r.t. \tilde{f}_t upper bounds the regret w.r.t. f_t

ullet Recall that if f_t is convex then there is $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$ such that

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{u}) \ge f_t(\mathbf{w}_t) + \langle \mathbf{v}_t, \mathbf{u} - \mathbf{w}_t \rangle$$

Rearranging, we obtain

$$\forall \mathbf{u} \in S, \ f_t(\mathbf{w}_t) - f_t(\mathbf{u}) \le \langle \mathbf{v}_t, \mathbf{w}_t - \mathbf{u} \rangle$$

- This implies that we can define $\tilde{f}_t(\mathbf{w}) = \langle \mathbf{v}_t, \mathbf{w} \rangle$ and regret w.r.t. \tilde{f}_t upper bounds the regret w.r.t. f_t
- ullet The definition of $ilde{f}_t$ depends on \mathbf{w}_t , but this doesn't matter because regret is a worst-case guarantee

Online Gradient Descent

• Suppose $S = \mathbb{R}^d$

Online Gradient Descent

- Suppose $S = \mathbb{R}^d$
- Apply the linearization trick, so $\tilde{f}_t(\mathbf{w}) = \langle \mathbf{v}_t, \mathbf{w} \rangle$ for $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$

Online Gradient Descent

- $\bullet \ \, \mathsf{Suppose} \,\, S = \mathbb{R}^d$
- Apply the linearization trick, so $\tilde{f}_t(\mathbf{w}) = \langle \mathbf{v}_t, \mathbf{w} \rangle$ for $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$
- Apply FoReL with Euclidean regularization on the sequence, we have,

$$\mathbf{w}_{t+1} = -\eta \sum_{i=1}^{t} \mathbf{v}_i = \mathbf{w}_t - \eta \mathbf{v}_i$$

Analysis of Online Gradient Descent

• Since \tilde{f}_t is $\|\mathbf{v}_t\|_2$ -Lipschitz, we have,

$$\forall \mathbf{u} \in \mathbb{R}^d$$
, Regret $_T(\mathbf{u}) \le \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \eta T \mathbb{E}_t \|\mathbf{v}_t\|_2^2$

Analysis of Online Gradient Descent

ullet Since $ilde{f}_t$ is $\|\mathbf{v}_t\|_2$ -Lipschitz, we have,

$$\forall \mathbf{u} \in \mathbb{R}^d$$
, Regret_T(\mathbf{u}) $\leq \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \eta T \mathbb{E}_t \|\mathbf{v}_t\|_2^2$

• This doesn't yield a regret bound w.r.t. the entire $S=\mathbb{R}^d$. But, we can have a regret w.r.t. a bounded $U\subset S$

Analysis of Online Gradient Descent

• Since \tilde{f}_t is $\|\mathbf{v}_t\|_2$ -Lipschitz, we have,

$$\forall \mathbf{u} \in \mathbb{R}^d$$
, Regret_T(\mathbf{u}) $\leq \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \eta T \mathbb{E}_t \|\mathbf{v}_t\|_2^2$

- This doesn't yield a regret bound w.r.t. the entire $S=\mathbb{R}^d$. But, we can have a regret w.r.t. a bounded $U\subset S$
- Specifically, assuming $\mathbb{E}_t \|\mathbf{v}_t\|_2^2 \leq L^2$, and setting $\eta = \mathrm{Radius}(U)/(L\sqrt{2T})$, we obtain

$$\forall \mathbf{u} \in U, \quad \text{Regret}_T(\mathbf{u}) \leq \text{Radius}(U) L \sqrt{2T}$$

Online Mirror Descent

Online Mirror Descent

- parameter: a regularization function $R: S \to \mathbb{R}$
- initialize: $\mathbf{z}_1 = \mathbf{0}$
- for t = 1, 2, ...
 - predict $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in S} R(\mathbf{w}) \langle \mathbf{w}, \mathbf{z}_t \rangle$
 - update $\mathbf{z}_{t+1} = \mathbf{z}_t \mathbf{v}_t$ where $\mathbf{v}_t \in \partial f_t(\mathbf{w}_t)$

Online Mirror Descent is FoReL + the linearization trick (so we don't need to analyze Online Mirror Descent)

Example I: Online Gradient Descent

- $S = \mathbb{R}^d$, $R(\mathbf{w}) = \frac{1}{2\eta} \|\mathbf{w}\|_2^2$
- $\mathbf{w}_t = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2\eta} ||\mathbf{w}||_2^2 \langle \mathbf{w}, \mathbf{z}_t \rangle = \eta \mathbf{z}_t = \mathbf{w}_{t-1} \eta \mathbf{v}_{t-1}$

Example II: Online Gradient Descent with Lazy Projections

- $S \subset \mathbb{R}^d$, $R(\mathbf{w}) = \frac{1}{2n} \|\mathbf{w}\|_2^2$
- \mathbf{w}_t is the projection of $\eta \mathbf{z}_t$ on S:

$$\mathbf{w}_t = \operatorname*{argmin}_{\mathbf{w} \in S} \frac{1}{2\eta} \|\mathbf{w}\|_2^2 - \langle \mathbf{w}, \mathbf{z}_t \rangle = \operatorname*{argmin}_{\mathbf{w} \in S} \frac{1}{2} \|\mathbf{w} - \eta \mathbf{z}_t\|_2^2$$

Example III: Normalized Exponentiated Gradient Descent

- $S \subset \{\mathbf{w} \in [0,1]^d : \|\mathbf{w}\|_1 = 1\}$, $R(\mathbf{w}) = \frac{1}{\eta} \sum_i w_i \log(w_i)$
- Exercise: show that $\mathbf{w}_1 = (1/d, \dots, 1/d)$ and for $t \ge 1$:

$$\forall i, \ w_{t+1,i} = \frac{w_{t,i}e^{-\eta v_{t,i}}}{\sum_{j} w_{t,j}e^{-\eta v_{t,j}}}$$

 $\bullet \ \, \mathsf{Recall the class of \ Halfspaces:} \ \, \mathcal{H} = \{\mathbf{x} \mapsto \mathrm{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) : \mathbf{w} \in \mathbb{R}^d\}$

- $\bullet \ \, \mathsf{Recall the class of \ Halfspaces:} \ \, \mathcal{H} = \{\mathbf{x} \mapsto \mathrm{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) : \mathbf{w} \in \mathbb{R}^d\}$
- Realizability: Suppose that there exists ${\bf u}$ s.t. $y_t\langle {\bf u},{\bf x}_t\rangle \geq 1$ for all t

- $\bullet \ \, \mathsf{Recall the class of \ Halfspaces:} \ \, \mathcal{H} = \{\mathbf{x} \mapsto \mathrm{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) : \mathbf{w} \in \mathbb{R}^d\}$
- Realizability: Suppose that there exists \mathbf{u} s.t. $y_t\langle \mathbf{u}, \mathbf{x}_t \rangle \geq 1$ for all t
- The Perceptron starts with $\mathbf{w}_1 = 0$ and update

$$\mathbf{w}_{t+1} = \mathbf{w}_t + 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] \ y_t \ \mathbf{x}_t$$

- $\bullet \ \, \mathsf{Recall the class of \ Halfspaces:} \ \, \mathcal{H} = \{\mathbf{x} \mapsto \mathrm{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) : \mathbf{w} \in \mathbb{R}^d\}$
- Realizability: Suppose that there exists \mathbf{u} s.t. $y_t\langle \mathbf{u}, \mathbf{x}_t \rangle \geq 1$ for all t
- The Perceptron starts with $\mathbf{w}_1 = 0$ and update

$$\mathbf{w}_{t+1} = \mathbf{w}_t + 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] \ y_t \ \mathbf{x}_t$$

ullet Theorem: The Perceptron makes at most $\|\mathbf{u}\|_2^2 \max_t \|\mathbf{x}_t\|^2$ mistakes

• Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 - y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i < t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

• Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is
- Let $\mathbf{v}_t = \nabla f_t(\mathbf{w}_t)$, denote $M = |\{t \in [T] : y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0\}|$, and $R = \max_t ||\mathbf{x}_t||_2$.

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is
- Let $\mathbf{v}_t = \nabla f_t(\mathbf{w}_t)$, denote $M = |\{t \in [T] : y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0\}|$, and $R = \max_t ||\mathbf{x}_t||_2$.
- Exercise: conclude the proof by relying on the following regret bound for Online Gradient Descent (we proved a slightly worse regret bound, but this one is also true):

$$\operatorname{Regret}_{T}(\mathbf{u}) \leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \frac{1}{2} \eta T \mathbb{E}_{t} \|\mathbf{v}_{t}\|_{2}^{2}$$

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is
- Let $\mathbf{v}_t = \nabla f_t(\mathbf{w}_t)$, denote $M = |\{t \in [T] : y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0\}|$, and $R = \max_t ||\mathbf{x}_t||_2$.
- Exercise: conclude the proof by relying on the following regret bound for Online Gradient Descent (we proved a slightly worse regret bound, but this one is also true):

$$\operatorname{Regret}_{T}(\mathbf{u}) \leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \frac{1}{2} \eta T \mathbb{E}_{t} \|\mathbf{v}_{t}\|_{2}^{2}$$

Hints:

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is
- Let $\mathbf{v}_t = \nabla f_t(\mathbf{w}_t)$, denote $M = |\{t \in [T] : y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0\}|$, and $R = \max_t ||\mathbf{x}_t||_2$.
- Exercise: conclude the proof by relying on the following regret bound for Online Gradient Descent (we proved a slightly worse regret bound, but this one is also true):

$$\operatorname{Regret}_{T}(\mathbf{u}) \leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \frac{1}{2} \eta T \mathbb{E}_{t} \|\mathbf{v}_{t}\|_{2}^{2}$$

- Hints:
 - Show that $T \mathbb{E}_t \|\mathbf{v}_t\|_2^2 \leq M R^2$

- Define: $f_t(\mathbf{w}) = \mathbb{1}[y_t\langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0] \ (1 y_t\langle \mathbf{w}, \mathbf{x}_t \rangle)$
- Exercise: Show that for Online Gradient Descent we have

$$\mathbf{w}_{t+1} = \eta \sum_{i \le t} 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_i \mathbf{x}_i = \mathbf{w}_t + \eta 1[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \le 0] y_t \mathbf{x}_t$$

- Exercise: show that the algorithm makes the same number of mistake no matter what the value of η is
- Let $\mathbf{v}_t = \nabla f_t(\mathbf{w}_t)$, denote $M = |\{t \in [T] : y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \leq 0\}|$, and $R = \max_t \|\mathbf{x}_t\|_2$.
- Exercise: conclude the proof by relying on the following regret bound for Online Gradient Descent (we proved a slightly worse regret bound, but this one is also true):

$$\operatorname{Regret}_{T}(\mathbf{u}) \leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \frac{1}{2} \eta T \mathbb{E}_{t} \|\mathbf{v}_{t}\|_{2}^{2}$$

- Hints:
 - Show that $T \mathbb{E}_t \|\mathbf{v}_t\|_2^2 \leq M R^2$
 - Observe that $\operatorname{Regret}_T(\mathbf{u}) \geq M$

Exercises

- Solve the exercises on Page 16
- Solve the exercise on Page 40
- Solve the exercise on Page 41
- Solve the exercise on Page 42. Hint:
 - ullet Show that a function is λ -strongly convex iff for every ${f w}$ we have

$$\forall \mathbf{z} \in \partial f(\mathbf{w}), \quad \forall \mathbf{u}, \quad f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \mathbf{z}, \mathbf{u} - \mathbf{w} \rangle + \frac{\lambda}{2} \|\mathbf{u} - \mathbf{w}\|^2$$

- Prove that if R is twice differentiable then a sufficient condition for strong convexity is that $\langle \nabla^2 R(\mathbf{w})\mathbf{x}, \mathbf{x} \rangle \geq \lambda \|\mathbf{x}\|^2$
- Solve the exercise on Page 43
- Solve the exercise on Page 51
- Solve the exercises on Page 53

