

Scientific Computing II

Relaxation Methods and the Smoothing Property

Michael Bader Summer 2013

Part I

Relaxation Methods

Residual-Based Correction

The Residual Equation

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

The Residual Equation

- we consider a system of linear equations: Ax = b
- for which we compute a sequence of approximate solutions $x^{(i)}$
- the residual $r^{(i)}$ shall then be defined as:

$$r^{(i)} = b - Ax^{(i)}$$

short computation:

$$r^{(i)} = b - Ax^{(i)} = Ax - Ax^{(i)} = A(x - x^{(i)}) = Ae^{(i)}.$$

- relates the residual $r^{(i)}$ to the error $e^{(i)} := x x^{(i)}$ (note that $x = x^{(i)} + e^{(i)}$);
- we will call this equation the residual equation:

$$Ae^{(i)} = r^{(i)}$$

Residual Based Correction

Solve Ax = b using the residual equation $Ae^{(i)} = r^{(i)}$

- r (which can be computed) is an indicator for the size of the error e (which is not known).
- use residual equation to compute a *correction* to $x^{(i)}$
- basic idea: solve a modified (easier) SLE:

$$B \hat{e}^{(i)} = r^{(i)}$$
 where $B \sim A$

• use $\hat{e}^{(i)}$ as an approximation for $e^{(i)}$, and set

$$x^{(i+1)} = x^{(i)} + \hat{e}^{(i)}.$$

Relaxation

How should we choose B?

- B ~ A (B should be "similar" to A), more precisely B⁻¹ ≈ A⁻¹, or at least B⁻¹y ≈ A⁻¹y for most vectors y.
- Be = r should be easy/fast to solve

Examples:

- B = diag(A) = D_A (diagonal part of A)
 ⇒ Jacobi iteration
- B = L_A (lower triangular part of A)
 ⇒ Gauss-Seidel iteration

Jacobi Relaxation

Iteration formulas in matrix-vector notation:

1. residual notation:

$$x^{(i+1)} = x^{(i)} + D_A^{-1} r^{(i)} = x^{(i)} + D_A^{-1} (b - Ax^{(i)})$$

2. for implementation:

$$x^{(i+1)} = D_A^{-1} \left(b - (A - D_A) x^{(i)} \right)$$

for analysis:

$$x^{(i+1)} = (I - D_A^{-1}A) x^{(i)} + D_A^{-1}b =: Mx^{(i)} + Nb$$

Jacobi Relaxation – Algorithm

```
• based on: x^{(i+1)} = D_A^{-1} (b - (A - D_A)x^{(i)}) for i from 1 to n do xnew[i] := ( b[i] - sum( A[i,j]*x[j], j=1..i-1) - sum( A[i,j]*x[j], j=i+1..n) ) / A[i,i]; end do; for i from 1 to n do x[i] := xnew[i]; end do;
```

• properties:

- additional storage required (xnew)
- x, xnew can be computed in any order
- x, xnew can be computed in parallel

Gauss-Seidel Relaxation

Iteration formulas in matrix-vector notation:

1. residual notation:

$$x^{(i+1)} = x^{(i)} + L_A^{-1} r^{(i)} = x^{(i)} + L_A^{-1} (b - Ax^{(i)})$$

for implementation:

$$x^{(i+1)} = L_A^{-1} \left(b - (A - L_A) x^{(i)} \right)$$

for analysis:

$$x^{(i+1)} = (I - L_A^{-1}A) x^{(i)} + L_A^{-1}b =: Mx^{(i)} + Nb$$

Gauss-Seidel Relaxation – Algorithm

- based on: $x^{(i+1)} = L_A^{-1} (b (A L_A)x^{(i)})$
- solve $L_A x^{(i+1)} = b (A L_A) x^{(i)}$ via backwards substitution:

- properties:
 - no additional storage required
 - inherently sequential computation of x
 - usually faster convergence than Jacobi

Successive-Over-Relaxation (SOR)

- observation: Gauss-Seidel corrections are "too small"
- add an over-relaxation-factor α:

• for 2D-Poisson: optimal α (\approx 1.7) improves convergence: $\mathcal{O}(n^2) \to \mathcal{O}(n^{3/2})$

Does It Always Work?

- simple answer: no (life is not that easy . . .)
- Jacobi: matrix A needs to be diagonally dominant
- Gauß-Seidel: matrix A needs to be positive definite
- How about performance?
 - \rightarrow usually quite slow

Our next topics:

- 1. How slow are the methods exactly?
- 2. What is the underlying reason?
- 3. Is there a fix?

Part II

Smoothing Property of Relaxation Methods

The Model Problem – 1D Poisson Convergence of Relaxation Methods The Smoothing Property

The Model Problem – 1D Poisson

1D Poisson equation:

- -u''(x) = 0 on $\Omega = (0,1), u(0) = u(1) = 0$ (thus: u(x) = 0)
- discretised on a uniform grid of mesh size $h = \frac{1}{n}$
- compute approximate values $u_i \approx u(x_i)$ at grid points $x_i := jh$, with $j = 1, \dots, (n-1)$
- system matrix A_h built from 3-point stencil:

$$\frac{1}{h^2}[-1 \ 2 - 1]$$

• A_h a tridiagonal $(n-1) \times (n-1)$ -matrix

1D Poisson: Jacobi Relaxation

Iterative scheme for Jacobi relaxation:

- leads to relaxation scheme $u_j^{(i+1)} = \frac{1}{2} \left(u_{j+1}^{(i)} + u_{j-1}^{(i)} \right)$
- start with initial guess $u_i^{(0)} \neq 0$
- in this case: $e_j^{(i)} = u_j u_j^{(i)} = -u_j^{(i)}$

Visualisation of relaxation process:

1D Poisson: Gauß-Seidel Relaxation

Iterative scheme for Gauß-Seidel relaxation:

- leads to relaxation scheme $u_j^{(i+1)} = \frac{1}{2} \left(u_{j+1}^{(i)} + u_{j-1}^{(i)} \right)$
- start with initial guess $u_j^{(0)} \neq 0$
- in this case: $e_j^{(i)} = u_j u_j^{(i)} = -u_j^{(i)}$

Visualisation of relaxation process:

Convergence of Relaxation Methods

Observation (see also tutorials)

- slow convergence
- smooth error components are reduced very slowly
- high frequency error components are damped more efficiently (esp. for Gauß-Seidel relaxation)

Convergence Analysis

- remember iteration scheme: $x^{(i+1)} = Mx^{(i)} + Nb$
- derive iterative scheme for the error $e^{(i)} := x x^{(i)}$:

$$e^{(i+1)} = x - x^{(i+1)} = x - Mx^{(i)} - Nb$$

- for a consistent scheme, x is a fixpoint of the iteration equation: x = Mx Nb
- hence:

$$e^{(i+1)} = Mx + Nb - Mx^{(i)} - Nb = Me^{(i)}$$

= $Mx - Mx^{(i)} = Me^{(i)}$
 $\Rightarrow e^{(i)} = M^i e^{(0)}$.

Convergence Analysis (2)

- iteration equation for error: $e^{(i)} = M^i e^{(0)}$
- consider eigenvalues λ_i and eigenvectors v_i of iteration matrix M:

$$M\mathbf{v}_j = \lambda_j \mathbf{v}_j \quad \Rightarrow \quad M(\sum_j \alpha_j \mathbf{v}_j) = \sum_j \lambda_j \alpha_j \mathbf{v}_j$$

• write error as combination of eigenvectors: $e^{(0)} = \sum_j \alpha_j v_j$, then:

$$M^{i}e^{(0)} = M^{i}(\sum_{j} \alpha_{j} \mathbf{v}_{j}) = \sum_{j} (\lambda_{j})^{i} \alpha_{j} \mathbf{v}_{j}$$

- convergence, if all $|\lambda_j| < 1$
- speed of convergence dominated by largest λ_i

The Smoothing Property

Eigenvalues and -vectors of A_h :

- eigenvalues: $\lambda_k = \frac{4}{h^2} \sin^2(\frac{k\pi}{2n}) = \frac{4}{h^2} \sin^2(\frac{k\pi h}{2})$
- eigenvectors: $v^{(k)} = (\sin(k\pi j/n))_{j=1,\dots,n-1}$ - both for $k=1,\dots,(n-1)$

For Jacobi relaxation:

- iteration matrix $M = I D_A^{-1}A = I \frac{h^2}{2}A$
- eigenvalues of M: $\mu_k := 1 2\sin^2(\frac{k\pi h}{2})$
- $|\mu_k|$ < 1 for all k, but $|\mu_k| \approx 1$ if k = 1 or k = n-1
- $\mu_1 \in \mathcal{O}(1 h^2)$: slow convergence of smooth errors
- $\mu_{n-1} \approx -1$: "sign-flip" (but slow reduction) of "zig-zag" error components
- convergence factor determined by $\mathcal{O}(1 h^2)$

The Smoothing Property

Eigenvalues and -vectors of A_h :

- eigenvalues: $\lambda_k = \frac{4}{h^2} \sin^2(\frac{k\pi}{2n}) = \frac{4}{h^2} \sin^2(\frac{k\pi h}{2n})$
- eigenvectors: $v^{(k)} = (\sin(k\pi j/n))_{i=1}$ – both for $k = 1, \ldots, (n-1)$

For weighted Jacobi relaxation:

- iteration matrix $M = I \omega D_A^{-1} A = I \frac{h^2}{2} \omega A$
- eigenvalues of M: $1 2\omega \sin^2(\frac{k\pi h}{2})$
- $\mu_1 \in \mathcal{O}(1 h^2)$: slow convergence of smooth errors
- $\mu_{n-1} \approx 0$ for $\omega = \frac{1}{2}$; $\mu_{n-1} \approx -\frac{1}{3}$ for $\omega = \frac{2}{3}$ thus quick reduction of high-frequency errors
- convergence determined by O(1 − n⁻²) (slower than normal Jacobi due to ω)

The Smoothing Property (2)

"Fourier mode analysis"

- decompose the error $e^{(i)}$ into eigenvectors (for 1D Poisson: $\sin(k\pi x_i)$,)
- determine convergence factors for "eigenmodes"

Observation for weighted Jacobi and Gauß-Seidel:

- The high frequency part (with respect to the underlying grid) is reduced quite quickly.
- The low frequency part (w.r.t. the grid) decreases only very slowly; actually the slower, the finer the grid is.
- ⇒ "smoothing property"

The Smoothing Property (2)

"Fourier mode analysis"

- decompose the error $e^{(i)}$ into eigenvectors (for 1D Poisson: $\sin(k\pi x_i)$,)
- determine convergence factors for "eigenmodes"

Another Observation:

- the smoothest (slowest converging) component corresponds to the smallest eigenvalue of A (k = 1)
- remember residual equation: Ae = r: if $e = v^{(1)}$, then $r = \lambda_1 v^{(1)}$
- ⇒ "small residual, but large error"

