Review of the CEC14 Computationally Expensive Optimization Competition Qin Chen

Outline

- Introduction
- Test functions
- Ranking method and final scores
- Analysis and comparison

Introduction

- Part of Real-Parameter Numerical Optimization Competition
- Single Objective
- Computationally expensive
- Test functions
 - 8 test functions
 - 24 problems
 - 3 dimensions: 10, 20, 30
- Participations
 - Validate results: 6

Introduction

Participants

Algorithm	Author	Paper
WA	Md Asafuddoula Tapabrata Ray	An Approach to Solve Computationally Expensive Optimization Problems of CEC-2014 Without Approximation
SA-DE-DPS	Saber M. Elsayed T. Ray Ruhul A. Sarker	A Surrogate-assisted Differential Evolution algorithm with Dynamic Parameters Selection for Solving Expensive Optimization Problems
HSBA	Hemant Kumar Singh Amitay Isaacs Tapabrata Ray	A Hybrid Surrogate based Algorithm (HSBA) to Solve Computationally Expensive Optimization Problems
GCO	Subhodip Biswas Mohammad A. Eita Swagatam Das Athanasios V. Vasilakos	Evaluating the performance of Group Counselling Optimizer on CEC 2014 problems for Computational Expensive Optimization
MVMO	István Erlich José L. Rueda Sebastian Wildenhues	Solving the IEEE-CEC 2014 Expensive Optimization Test Problems by Using Single-Particle MVMO
SOMODS	Tipaluck Krityakierne Juliane Müller Christine A. Shoemaker	SO-MODS: Optimization for High Dimensional Computationally Expensive Multi-Modal Functions with Surrogate Search

Test functions

Function	Properties		
Shifted Sphere	unimodal	Unimodal	
Shifted Ellipsoid	unimodal		
Shifted Rotated Ellipsoid	unimodal		
Shifted Step	unimodal, discontinuous		
Shifted Ackley	multimodal	Typical multimodal	
Shifted Griewank	multimodal, landscape smoother with higher dimensionality		
Shifted Rotated Rosenbrock	multimodal, non-separable, narrow search valley	Very complex multimodal	
Shifted Rotated Rastrigin	multimodal, rugged landscapes	very complex multimodal	

Final Scores

• Ranking method:

Total score =
$$\sum_{i=1}^{24} score_i$$
 (using mean value) + $\sum_{i=1}^{24} score_i$ (using median value)

Rank#	Algorithm	Total Score
1	MVMO	318
2	SOMODS	249
3	Without-Approx	222
4	SA-DE-DPS	207
5	HSBA	144
6	GCO	81

Analysis and comparison

#	Function	D	MVMO	SOMODS	WA	SA-DE-DPS	HSBA	GCO
1	Shifted Sphere	10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.139E+01
2		20	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.138E+01
3		30	0.000E+00	9.342E-05	0.000E+00	0.000E+00	0.000E+00	7.774E+00
4	Shifted Ellipsoid	10	0.000E+00	5.235E-07	0.000E+00	0.000E+00	9.210E-08	3.233E+01
5		20	0.000E+00	1.024E-02	0.000E+00	3.007E-01	1.114E-01	8.918E+01
6		30	2.647E-02	3.278E-01	3.900E-06	1.249E+01	6.867E+00	1.644E+02
7	Shifted Rotated Ellipsoid	10	0.000E+00	2.145E-03	0.000E+00	0.000E+00	1.020E-07	8.246E+01
8		20	0.000E+00	2.296E-03	0.000E+00	5.700E-02	2.658E-01	1.386E+02
9	Linpsoid	30	8.849E-01	2.024E+01	2.115E-03	1.923E+01	1.451E+01	7.184E+02
10	Shifted Step	10	2.650E+00	0.000E+00	2.450E+00	9.000E-01	1.705E+01	9.250E+00
11		20	6.550E+00	0.000E+00	5.305E+01	1.030E+01	1.207E+02	8.200E+00
12		30	1.270E+01	0.000E+00	1.642E+02	8.643E+02	3.071E+02	7.350E+00
13		10	4.919E+00	1.156E-01	1.034E+01	1.278E+01	7.816E+00	6.176E+00
14	Shifted Ackley	20	7.935E+00	9.389E-05	1.250E+01	1.276E+01	9.465E+00	4.36oE+oo
15		30	7.918E+00	2.418E-04	1.497E+01	1.177E+01	1.067E+01	4.041E+00
16		10	4.397E-01	1.538E-02	1.406E-01	3.450E-02	5.808E-02	1.993E+00
17	Shifted Griewank	20	0.000E+00	3.761E-03	4.668E-03	0.000E+00	7.000E-07	1.841E+00
18		30	0.000E+00	1.095E-02	2.864E-02	0.000E+00	3.140E-07	1.824E+00
19	Shifted Rotated	10	1.074E+00	1.043E+01	3.590E+00	3.146E+00	3.788E+00	8.842E+01
20	Rosenbrock	20	1.073E+01	1.790E+01	1.388E+01	2.028E+01	2.403E+01	1.097E+02
21		30	3.440E+01	3.66oE+01	2.980E+01	2.869E+01	3.329E+01	2.374E+02
22	Shifted Rotated	10	2.617E+01	2.701E+01	6.953E+01	1.975E+01	3.647E+01	4.649E+01
23		20	4.253E+01	5.975E+01	1.400E+02	4.831E+01	3.440E+01	7.676E+01
24	Rastrigin	30	8.493E+01	1.095E+02	3.065E+02	1.026E+02	1.021E+02	1.781E+02

Mean Value (green: <1e-2; red: >1e-2,best of all methods)

Analysis and comparison

- Top 3 methods: MVMO, SOMODS, and WA [we may change according to new results]
 - MVMO and WA do not use surrogate model(s)
 - SOMODS uses surrogate model
- Some interesting finds
 - SOMODS obtains excellent results on Step function
 - MVMO and SA-DE-DPS obtains the global optimum and outperform other methods with higher dimensional Griewank problems

Summary for unimodal problems

 Methods obtaining best results for ALL unimodal continuous problems: MVMO, WA

 Methods obtaining good result for unimodal discrete problem (step problem): SOMODS

Summary for typical multimodal problems

- Methods obtaining best results for ALL typical multimodal problems: SOMODS
- All methods with surrogate modeling obtaining good results for 2od, 3od Griewank problems: SA-DE-DPS, HSBA, SOMODS

Very complex multimodal problems (narrow long valley, rugged landscapes)

Summary for very complex multimodal problems

No method can obtain good results for such problems.

Presentations

A Surrogate-Assisted Differential Evolution Algorithm with Dynamic Parameters Selection for Solving Expensive Optimization Problems

Saber Elsayed, Tapabrata Ray and Ruhul Sarker

A Hybrid Surrogate Based Algorithm (HSBA) to Solve Computationally Expensive Optimization Problems

Hemant Singh, Amitay Isaacs and Tapabrata Ray

Evaluating the Performance of Group Counseling Optimizer on CEC 2014 Problems for Computational Expensive Optimization

Subhodip Biswas, Mohammad A. Eita, Swagatam Das and Athanasios V. Vasilakos

Solving the IEEE-CEC 2014 Expensive Optimization Test Problems by Using Single-Particle MVMO Istvan Erlich, Jose L. Rueda and Sebastian Wildenhues

SO-MODS: Optimization for High Dimensional Computationally Expensive Multi-Modal Functions with Surrogate Search

Tipaluck Krityakierne, Juliane Mueller and Christine Shoemaker