2013 学年下学期初三毕业班质量检测

数学试卷

- 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有 一项是符合题目要求的.)
- 1. 四个数 1, 0, $\frac{1}{2}$, √2中为无理数的是 ()

- A. -1 B. 0 C. $\frac{1}{2}$ D. $\sqrt{2}$

【答案】 D

- 2. 在下列运算中, 计算正确的是 ()
 - A. $(x^5)^2 = x^7$
- B. $(x-y)^2 = x^2 y^2$
- C. $x^{13} \div x^3 = x^{10}$ D. $x^3 + x^3 = x^6$

【答案】C

- 3. 如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()

MINGSHIEDU.COM 4. 式子 $\sqrt{1-x}$ 在实数范围内有意义,则 x 的取值范围是()

- A. x < 1 B. $x \ge 1$ C. $x \le 1$ D. x > 1

【答案】C

- 5. 二次函数 $y = (x-2)^2 + 1$ 的最小值是 ()
- A. 1

B. 1

C. 2

D. -2

【答案】B

- 6. 已知 x_1 , x_2 是一元二次方程 x^2 2x=0 的两根,则 x_1+x_2 的值是()
- A. 0 B. 2
- C. -2 D. 4

【答案】 B

- 7. 方程组 $\begin{cases} x y = 2 \\ 2x + y = 4 \end{cases}$ 的解是()
- A. $\begin{cases} x = 1 \\ v = 2 \end{cases}$ B. $\begin{cases} x = 3 \\ v = 1 \end{cases}$ C. $\begin{cases} x = 0 \\ v = -2 \end{cases}$ D. $\begin{cases} x = 2 \\ v = 0 \end{cases}$

【答案】D

8. 如图,在△ABC中,∠A=36°, AB=AC, AB 的垂直平分线 OD 交 AB 于点 O,交 AC 于点 D, 连接 BD, 下列结论错误的是()

A. $\angle C=2\angle A$

B. BD 平分∠ABC

 $^{\text{C.}} \quad S_{\Delta BCD} = S_{\Delta BOD}$

D. BD=BC

【答案】 C

- 9. 如图, ⊙0 的半径是 3, 点 P 是弦 AB 延长线上的一点,连接 OP,若 OP=4, ∠APO=30°, 则弦 AB 的长为(

- A. $2\sqrt{5}$ B. $\sqrt{5}$ C. $2\sqrt{13}$ D. $\sqrt{13}$

【答案】A

10. 如图,在平行四边形 ABCD中,AB=6,AD=9,∠BAD 的平分线交 BC 于 E,交 DC 的延长线于 F, BG \perp AE 于 G, BG= $4\sqrt{2}$, 则 \triangle EFC 的周长为 ()

- 二、耐心填一填(本题有6个小题,每小题3分,共18分).
- 11. 用科学记数法表示 0.0000216, 结果是 (保留两位有效数字).

【答案】 2.2×10⁻⁵

12. 分解因式: $ax^2 - 4a =$ 。

【答案】 a(x+2)(x-2)

13. 在初三基础测试中,从化某中学的小明的6科成绩分别为语文120分,英语127分,数 学 123 分, 物理 83 分, 化学 80 分, 政治 83 分, 则他的成绩的众数为 分, 中 位数是____分.

【答案】83, 101.5;

14. 关于x的一元二次方程 $kx^2-2x+1=0$ 有两个不相等的实数根,则k的取值范围是

【答案】k < 1且 $k \neq 0$;

15. 若
$$a \le 2$$
,化简 $\sqrt{(a-2)^2} + 1 =$ ______.

【答案】-a+3

16. 如图, 在正方形 ABCD 中, 边长为 2 的等边三角形 AEF 的顶点 $E \setminus F$ 分别在 BC 和 CD 上. 下列结论: ① CE=CF;

②
$$\angle \textit{AEB}$$
=75°; ③ $\textit{BE}+\textit{DF}$ = \textit{EF} ; ④ $S_{\text{四边形}\textit{ABCD}}$ = $2+\sqrt{3}$.

其中正确的序号是 . (把你认为正确的都填上)

【答案】①②④

MINGSHIEDU.COM

三、解答题(本大题共 9 小题,共 102 分.解答应写出文字说明、证明过程或演算步骤)

17. (本小题满分 9 分) 先化简,再求值:
$$\frac{x^2}{x-y} + \frac{y^2}{y-x}$$
, 其中 $x = 1 + \sqrt{3}$, $y = 1 - \sqrt{3}$.

【答案】

18. (本小题满分 9 分) 如图, M 是 \triangle ABC 的边 BC 的中点, AN 平分 \angle BAC, BN \bot AN 于点 N,

延长 BN 交 AC 于点 D, 已知 AB=10, BC=15, MN=3

明师在线 MINGSHIEDU.COM 伴您成长与您进步

明师教育-中小学课外辅导卓著机构 www.mingshiedu.com

- (1) 求证: BN=DN
- (2) 求△ABC 的周长.

【答案】

又 AN=AN

∴ △ABN≌ △ADN ……3 分

(2) 由⊿ABN≌⊿AND 知:

又M是BC的中点,

.. CD=2MN=6

∴ AC=AD+CD= 16 ······8 分

△ ABC 的周长=AB+BC+AC=10+15+16=41 ····· 9 分

19. (本小题满分 10 分)

△ABC 在平面直角坐标系 xOy 中的位置如图所示.

- (1) 作 \triangle ABC 关于原点成中心对称的 \triangle A₁B₁C₁.
- (2) 画出 \triangle ABC 绕点 B 顺时针旋转 90^{0} 所得的 $\Delta A_{2}B_{2}C_{2}$,并求出 A 点所经过的路线长。

【答案】

∴I=
$$\frac{90 \times \pi \sqrt{5}}{180} = \frac{\sqrt{5}\pi}{2}$$
.....10 分

20. (本小题满分 10 分)

交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使 $\angle CAD=30^{\circ}$, $\angle CBD=60^{\circ}$.

- (1) 求 AB 的长 (精确到 0.1 米):
- (2) 已知本路段对汽车限速为 40 千米/小时,若测得某辆汽车从 A 到 B 用时为 2 秒,这辆汽车是否超速? 说明理由.

【答案】

解: (1) 由题意得, 在 $Rt\Delta ADC$ 中,

$$AD = \frac{CD}{\tan 30^{\circ}} = \frac{21}{\frac{\sqrt{3}}{3}} = 21\sqrt{3} = 36.33, \dots 2 \text{ f}$$

第 20 题图

21. (本小题满分 12 分)

为实施"农村留守儿童关爱计划",某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:

- (1) 求该校平均每班有多少名留守儿童? 并将该条形统计图补充完整;
- (2) 某爱心人士决定从只有 2 名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率。

明师在线 MINGSHIED PRINCES HED

【答案】

·····7 分

(2)由(1)知只有2名留守儿童的班级有2个,共有4名学生,设 A_1 、 A_2 来自一个班, B_1 、 B_2 来自另一个班,画树状图如下:

或列表如下:

2	A1	A2	B1	B2
A1	7	(A2,A1)	(B1, A1)	(B2,A1)
A2	(A1, A2)	12	(B1,A2)	(B2,A2)
B1	(A1, B1)	(A2, B1)	1	(B2,B1)
B2	(A1, B2)	(A2, B2)	(B1,B2)	1

----10 分

22、(本题满分12分)

如图,一次函数 $y=\frac{1}{2}x-2$ 的图象分别交 x 轴、y 轴于 A、B,P 为 AB 上一点且 PC 为 \triangle AOB

的中位线,PC 的延长线交反比例函数 $y = \frac{k}{x}(k > 0)$ 的图象于 Q, $S_{\Delta OQC} = \frac{3}{2}$,

- (1) 求 A 点和 B 点的坐标
- (2) 求 k 的值和 Q 点的坐标

【答案】

解: (1) 设 A 点的坐标为 (a,0) , B 点坐标为 (0,

第 22 题图

a = 4, b = -24 %

$$\therefore A(4,0), B(0,-2) \qquad \cdots$$

⋯5 分

(2) 解決一:

$$\therefore k = xy = 2 \times \frac{3}{2} = 3 \qquad 12 \text{ }$$

解法二: $:: PC \neq \Delta AOB$ 的中位线 $:: PC \perp x$ 轴, 即 $QC \perp OC$

又
$$Q$$
在反比例函数 $y = \frac{k}{x}$ 的图象上,

$$\therefore 2S_{\Delta OQC} = k , \qquad \therefore k = 2 \times \frac{3}{2} = 3 \cdots 9$$

 $: PC \in \Delta AOB$ 的中位线 : C(2,0),

23、(本题满分12分)

某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用 360 元钱购买的笔记本,打折后购买的数量比打折前多 10 本.

- (1) 求打折前每本笔记本的售价是多少元?
- (2) 由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6 元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方 案?

答: 打折前每本笔记本的售价为4元.6 分

(2) 设购买笔记本y件,则购买笔袋(90-y)件,.......7分

: x 为正整数,

故有三种购买方案:

方案一: 购买笔记本68本, 购买笔袋22个;

方案二: 购买笔记本69本, 购买笔袋21个;

方案三: 购买笔记本70本, 购买笔袋20个;12分

24. (本小题满分 14 分)

如图, AB 是圆O的直径, O为圆心, AD、BD 是半圆的弦, 且 $\angle PDA = \angle PBD$. 延长 PD 交圆的切线 BE 于点 E

- (1) 判断直线 PD 是否为⊙0 的切线,并说明理由;
- (2) 如果 $\angle BED = 60^{\circ}$, $PD = \sqrt{3}$, 求 PA 的长。
- (3)将线段 PD 以直线 AD 为对称轴作对称线段 DF , 点 F 正好在圆 O 上,如图 2,求证:四边形 DFBE 为菱形

解: (1) 直线 PD 为圆 O 的切线 (1 %)

证明: 连结 OD : AB 是圆 O 的直径 : $\angle ADB = 90^{\circ}$ (2分)

$$\therefore \angle ADO + \angle BDO = 90^{\circ}$$
 $\qquad \qquad \qquad \qquad \qquad \qquad \therefore \angle BDO = \angle PBD$

 $∴ ∠PDA = ∠PBD \qquad ∴ ∠BDO = ∠PDA \qquad (3 \%)$

∴ $\angle ADO + \angle PDA = 90^{\circ} \, \square \, PD \perp OD$ (4 分)

::点D在圆O上,

 \therefore 直线 PD 为圆 O 的切线. (5 分)

(2) 解: :: BE 是圆 O 的切线 $:: \angle EBA = 90^{\circ}$

 $∴ ∠BED = 60^{\circ} ∴ ∠P = 30^{\circ}$ (6 分)

 $\because PD$ 为圆 O 的切线 $\therefore \angle PDO = 90^{\circ}$

在 $Rt\Delta PDO$ 中, $\angle P = 30^{\circ}$, $PD = \sqrt{3}$

∴
$$\tan 30^\circ = \frac{OD}{PD}$$
 解得 $DO = 1$ (7 分)

$$\therefore PO = \sqrt{PD^2 + OD^2} = 2$$

(8分)

:.
$$PA = PO - AO = 2 - 1 = 1$$

(9分)

(3)

(方法一) 证明: 依题意得: $\angle ADF = \angle PDA$ $\angle DAF = \angle PAD$

$$\therefore \angle PDA = \angle PBD \quad \angle ADF = \angle ABF$$

$$\therefore \angle ADF = \angle PDA = \angle PBD = \angle ABF$$

(10分)

$$\therefore$$
 AB 是圆 *O* 的直径 ∴ ∠*ADB* = 90°

设
$$\angle PBD = x^{\circ}$$
 ,则 $\angle DAF = \angle PAD = 90^{\circ} + x^{\circ}$, $\angle DBF = 2x^{\circ}$

∵四边形
$$AFBD$$
 内接于圆 O ∴ $\angle DAF + \angle DBF = 180$ °

即
$$90^{\circ} + x + 2x = 180^{\circ}$$
 解得 $x = 30^{\circ}$

$$\therefore \angle ADF = \angle PDA = \angle PBD = \angle ABF = 30^{\circ}$$

(11分)

$$∴$$
 BE 、 ED 是圆 O 的切线 ∴ BE = DE ∠EBA = 90°

∴
$$\angle DBE = 60^{\circ}$$
 ∴ $\triangle BDE$ 是等边三角形。∴ $BD = BE = DE$

$$X : \angle FDB = \angle ADB - \angle ADF = 90^{\circ} - 30^{\circ} = 60^{\circ}$$
 $\angle DBF = 2x^{\circ} = 60^{\circ}$

$$\therefore$$
 Δ*BD* 是等边三角形。 \therefore *BD* = *DF* = *BF*

$$\therefore BD = DF = BF$$

(13分)

∴
$$DE = BE = DF = BF$$
 ∴ 四边形 $DFBE$ 为菱形 (14 分)

(方法二)证明: 依题意得: $\angle ADF = \angle PDA$ $\angle APD = \angle AFD$

$$\therefore \angle PDA = \angle PBD \quad \angle ADF = \angle ABF \quad \angle DAF = \angle PAD$$

$$\therefore \angle ADF = \angle AFD = \angle PBD = \angle ABF$$

(10分)

∴
$$AD = AF$$
 $BF //PD$ (11 分)

∴ DF ⊥ PB :: BE 为切线 ∴ BE ⊥ PB :: DF / /BE (12 分)

∴四边形 DFBE 为平行四边形 (13分)

 $\because PE \setminus BE$ 为切线 ∴ BE = DE

∴四边形 *DFBE* 为菱形 (14 分)

25、(本题满分14分)

如图,已知抛物线 $y=x^2+bx+c$ 的图象与 x 轴的一个交点为 B (5, 0),另一个交点为 A,且与 y 轴交于点 C (0, 5).

- (1) 求直线 BC 与抛物线的解析式;
- (2) 若点 M 是抛物线在 x 轴下方图象上的一动点,过点 M 作 MN//y 轴交直线 BC 于点 N,求 MN 的最大值;
- (3) 在 (2) 的条件下,MN 取得最大值时,若点 P 是抛物线在 x 轴下方图象上任意一点,以 BC 为边作平行四边形 CBPQ,设平行四边形 CBPQ 的面积为 S_1 , \triangle ABN 的面积为 S_2 ,且 S_1 =6 S_2 ,求点 P 的坐标.

【答案】

解: (1) 设直线 BC 的解析式为 y = mx + n,

将 B(5,0) , C(0,5) 两点的坐标代入,

得 $\begin{cases} 5m+n=0\\ n=5 \end{cases}$,解得 $\begin{cases} m=-1\\ n=5 \end{cases}$,

MINGSHIEDU.COM 伴您成长 与您进步 O A B

将 B(5,0) , C(0,5) 两点的坐标代入 $y = x^2 + bx + c$,

得
$$\begin{cases} 25 + 5b + c = 0 \\ c = 5 \end{cases}$$
, 解得 $\begin{cases} b = -6 \\ c = 5 \end{cases}$,

所以抛物线的解析式为 $y = x^2 - 6x + 5$;4 分

(2) 设
$$M(x,x^2-6x+5)(1 < x < 5)$$
,则 $N(x,-x+5)$,------5分

(3)
$$:MN$$
 取得最大值时, $x=\frac{5}{2}$,

解方程 $x^2 - 6x + 5 = 0$), 得x = 1或5,

- A(1,0), B(5,0),
- $\therefore AB = 5 1 = 4$
- \therefore Δ*ABN* 的面积 $S_2 = \frac{1}{2} \times 4 \times \frac{5}{2} = 5$, ------10 分
- ∴平行四边形 CBPQ 的面积 $S_1 = 6S_2 = 30$.

设平行四边形 CBPQ 的边 BC 上的高为 BD,则 $BC \perp BD$ 。

$$\therefore BC = 5\sqrt{2}$$
, $\therefore BC \cdot BD = 30$, $\therefore BD = 3\sqrt{2}$. -----11 分

过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ = BC,则四边形 为平行四边形.

- $\therefore BC \perp BD$, $\angle OBC = 45^{\circ}$,

- \therefore $\angle EBD = 45^{\circ}$, $\therefore \Delta EBD$ 为等腰直角三角形, $BE = \sqrt{2}BD = 6$ -------12 分
- : B(5,0),
- $\therefore E(-1,0)$,

设直线 PQ 的解析式为 y = -x + t,

将E(-1,0)代入,得1+t=0,解得t=-1

∴直线 PQ 的解析式为 y = -x - 1.

:点P的坐标为 $P_1(2,-3)$ (与点D重合)或 $P_2(3,-4)$. ------14分

明 在线 MINGSHIEDU.COM 伴您成长与您进步