# **НММҮ ЕМП**

6° εξάμηνο

Συστήματα Αναμονής Lab 3



## Προσομοίωση συστήματος Μ/Μ/1/10

(1)

Για λ=1:

| t<br>ion |
|----------|
| al       |
| al       |
| ure      |
| ure      |
| al       |
| al       |
| ure      |
| ıre      |
| al       |
| ure      |
| al       |
| ure      |
| al       |
| ıre      |
| al       |
| ure      |
| al       |
| ure      |
| al       |
| ure      |
| al       |
| al       |
| ure      |
| ure      |
| al       |
| ure      |
| al       |
| ıre      |
| al       |
| al       |
|          |

Για λ=5:

| Transition | Current state | Arrivals at   | Next       |
|------------|---------------|---------------|------------|
|            |               | current state | transition |
| 1          | 0             | 0             | arrival    |
| 2          | 1             | 0             | arrival    |
| 3          | 2             | 0             | arrival    |
| 4          | 3             | 0             | arrival    |
| 5          | 4             | 0             | departure  |
| 6          | 3             | 1             | departure  |
| 7          | 2             | 1             | arrival    |
| 8          | 3             | 1             | departure  |
| 9          | 2             | 2             | arrival    |
| 10         | 3             | 1             | departure  |
| 11         | 2             | 3             | arrival    |
| 12         | 3             | 1             | arrival    |
| 13         | 4             | 0             | departure  |
| 14         | 3             | 2             | departure  |
| 15         | 2             | 4             | departure  |
| 16         | 1             | 1             | departure  |
| 17         | 0             | 1             | arrival    |
| 18         | 1             | 1             | departure  |
| 19         | 0             | 2             | arrival    |
| 20         | 1             | 1             | departure  |
| 21         | 0             | 3             | arrival    |
| 22         | 1             | 1             | arrival    |
| 23         | 2             | 4             | departure  |
| 24         | 1             | 2             | departure  |
| 25         | 0             | 4             | arrival    |
| 26         | 1             | 2             | arrival    |
| 27         | 2             | 4             | arrival    |
| 28         | 3             | 2             | departure  |
| 29         | 2             | 5             | arrival    |
| 30         | 3             | 2             | arrival    |

Για λ=10:

| Transition | Current state | Arrivals at   | Next       |
|------------|---------------|---------------|------------|
|            |               | current state | transition |
| 1          | 0             | 0             | arrival    |
| 2          | 1             | 0             | arrival    |
| 3          | 2             | 0             | arrival    |
| 4          | 3             | 0             | arrival    |
| 5          | 4             | 0             | arrival    |
| 6          | 5             | 0             | arrival    |
| 7          | 6             | 0             | arrival    |
| 8          | 7             | 0             | departure  |
| 9          | 6             | 1             | departure  |
| 10         | 5             | 1             | arrival    |
| 11         | 6             | 1             | arrival    |
| 12         | 7             | 0             | departure  |
| 13         | 6             | 2             | arrival    |
| 14         | 7             | 0             | departure  |
| 15         | 6             | 3             | arrival    |
| 16         | 7             | 0             | arrival    |
| 17         | 8             | 0             | arrival    |
| 18         | 9             | 0             | departure  |
| 19         | 8             | 1             | arrival    |
| 20         | 9             | 0             | arrival    |
| 21         | 10            | 0             | arrival    |
| 22         | 10            | 1             | arrival    |
| 23         | 10            | 2             | arrival    |
| 24         | 10            | 3             | arrival    |
| 25         | 10            | 4             | arrival    |
| 26         | 10            | 5             | arrival    |
| 27         | 10            | 6             | departure  |
| 28         | 9             | 1             | arrival    |
| 29         | 10            | 6             | arrival    |
| 30         | 10            | 7             | arrival    |

### Για λ=1:





Average number of customers: 0.250437 Probability of rejecting a customer: 0

Average waiting time: 0.250437

#### Για λ=5:





Average number of customers: 4.96927

Probability of rejecting a customer: 0.0899782

Average waiting time: 1.09212

#### Για λ=10:



60 transitions in thousands

Average number of customers: 8.98739

Probability of rejecting a customer: 0.494595

Average waiting time: 1.77825

- (3) Όσο πιο κοντά στο 1 είναι ο λόγος λ/μ, τόσο περισσότερο αργεί να συγκλίνει η προσομοίωση. Τρέχοντας την προσομοίωση πολλές φορές, παρατηρούμε ότι για λ=1 ή 10 τις περισσότερες φορές συγκλίνει μετά από τουλάχιστον 50000 μεταβάσεις, οπότε μπορούμε να τις αγνοήσουμε. Για λ=5 όμως αργεί περισσότερο να συγκλίνει οπότε μπορούμε να αγνοήσουμε τις πρώτες 150000 μεταβάσεις.
- (4) Το μ το χρησιμοποιούμε μόνο κατά τον υπολογισμό του threshold. Οπότε ορίζουμε πλέον το threshold μέσα στο while loop ως εξής:

```
threshold = lambda(n) / (lambda(n) + current state+1);
```

#### Κώδικας

```
% M/M/1/10  simulation.
clc;
clear all;
close all;
rand("seed",10);
lambda = [1 5 10];
mu = 5;
for n=1:3
  threshold = lambda(n)/(lambda(n) + mu); % the threshold used to
calculate probabilities
  transitions = 0; % holds the transitions of the simulation in
transitions steps
  arrivals=zeros(1,11);
  total arrivals = 0; % to measure the total number of arrivals
  current state = 0; % holds the current state of the system
  previous mean clients = 0; % will help in the convergence test
  index = \overline{0};
  to plot=zeros(1,1000);
  % for debugging
## tracestate=zeros(1,30);
## tracearrdep=zeros(1,30);
## tracearrivals=zeros(1,30);
  while transitions >= 0
    %threshold = lambda(n)/(lambda(n) + current state+1);
    transitions = transitions + 1; % one more transitions step
    % for debugging
## if transitions<=30</pre>
##
       tracestate(transitions) = current state;
```

```
tracearrivals(transitions) = arrivals(current state+1);
##
     endif
    if mod(transitions,1000) == 0 % check for convergence every 1000
transitions steps
      index = index + 1;
      for i=1:1:length(arrivals)
          P(i) = arrivals(i)/total arrivals; % calculate the
probability of every state in the system
      endfor
      mean clients = 0; % calculate the mean number of clients in the
system
      for i=1:1:length(arrivals)
         mean clients = mean clients + (i-1).*P(i);
      endfor
      to plot(index) = mean clients;
      if abs(mean clients - previous mean clients) < 0.00001 ||</pre>
transitions > 1000000 % convergence test
      break;
      endif
     previous mean clients = mean clients;
   endif
   random number = rand(1); % generate a random number (Uniform
distribution)
   if current state == 0 || random number < threshold % arrival</pre>
     % for debugging
      if transitions<=30
##
       tracearrdep(transitions)=1;
##
      endif
     total arrivals = total arrivals + 1;
     arrivals(current state + 1) = arrivals(current state + 1) + 1; %
increase the number of arrivals in the current state
     if current state<10</pre>
        current_state = current state + 1;
     endif
   else % departure
     %for debugging
##
     if transitions<=30
##
       tracearrdep(transitions)=2;
     endif
##
     if current state != 0 % no departure from an empty system
        current state = current state - 1;
```

```
endif
   endif
  endwhile
 printf('For lambda=%d\n',lambda(n));
 printf('Ergodic Probabilities\n');
 for i=1:1:length(arrivals)
  disp(P(i));
 endfor
 printf('\n');
 printf('Average number of customers: %d\n', mean clients);
 printf('Probability of rejecting a customer: %d\n',P(11));
 throughput=lambda(n) *(1-P(11));
 printf('Average waiting time: %d\n\n', mean clients/throughput);
## printf('First 30 states');
## disp(tracestate);
## printf('\n');
## printf('Arrivals at current state');
## disp(tracearrivals);
## printf('\n');
## printf('Next is arrival(1) or departure(2)')
## disp(tracearrdep);
## printf('\n');
 figure(1);
 plot(to plot(1:index), "r", "linewidth", 1.3);
 title ("Average number of clients in the M/M/1/10 queue:
Convergence");
 xlabel("transitions in thousands");
 ylabel("Average number of clients");
  figure(2);
 bar(0:10,P,'r',0.4);
 title("Probabilities")
  %pause(2);
endfor
```