CH 2 Matrix Algebra

mrevanisworking

August 3, 2020

0.1 Matrix Operations

columns are vectors in \mathbb{R}^m

$$A = \begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_1} & \cdots & \boldsymbol{a_1} \end{bmatrix}$$

Diagonal entries form the main diagonal (MD).

Diagonal Matrix (DM) is $n \times n$ MX whose nondiags are zero.

Zero Matrix (ZM) is zero for all entries

0.1.1 Sums and Scalar Multiples

MX equal if same size and cols equal.

Sum A + B is the sum of the columns. Only defined when A and B are the same size.

Scalar multiple of a matrix is scalar times cols.

0.1.2 Matrix Operations Theorem

see 95

0.1.3 Matrix Multiplication Definition

If A is $m \times n$ and B is $n \times p$ with $\boldsymbol{b_1}, \dots, \boldsymbol{b_p}$ AB is the $m \times p$ whose columns are $A\boldsymbol{b_1}, \dots, A\boldsymbol{b_p}$

$$AB = A \begin{bmatrix} \boldsymbol{b_1} & \boldsymbol{b_2} & \cdots & \boldsymbol{b_p} \end{bmatrix} = \begin{bmatrix} A\boldsymbol{b_1} & A\boldsymbol{b_2} & \cdots & A\boldsymbol{b_p} \end{bmatrix}$$

In other words, it is the MX A times the cols of B

0.1.4 Row-Column Rule for Computing AB

If AB is defined then

$$(AB)_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj}$$

Properties of Matrix Multiplication Theorem 0.1.5

Associative, distributive, scalar, identity

left-multiplied (BA), right-multiplied (AB)

 $AB \neq BA$

Cancelation laws do not apply $AB = AC \neq B = C$

if AB = 0 then cannot conclude that A = 0, B = 0 A is the identity MX

Transpose of a MX properties Theorem

switching r and c where $m \times n - > n \times m$

T is not exponent

a.
$$(A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c.
$$(rA)^T = rA^T$$

c.
$$(rA)^T = rA^T$$

d. $(AB)^T = B^TA^T$

0.2The Inverse of a Matrix

A is invertible if there is $n \times n$ MX C that

$$CA = I, AC = I$$

where I is ID MX. C is the inverse of A and unique

$$A^{-1}A = I = AA^{-1}$$

Not invertible MX is singular matrix SMX, invertible is NSMX

0.2.1Invertible Theorem

If the determinant $ad - bc \neq 0$ A invertible

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

0.2.2 Invertible Unique Solutions Theorem

If A is invertible $n \times n$ then each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

0.2.3 Properties of Invertible MX Theorem

b. if A,B are $n \times n$ invertible MX, then so it AB $(AB)^{-1} = B^{-1}A^{-1}$ c. $(A^T)^{-1} = (A^{-1})^T$

0.2.4 Elementary MX

obtained by performing one ERO on IDMX

if an ERO on an $m \times n$ A, then result is EA where $m \times m$ E is created by same row operation on I^m

All EMX are invertible. it transforms E back into I

0.2.5 Inveritble IFF Row Equivalent Theorem

A is invertible IFF A is RE to I_n ERO sequence on A reduces it to I^n

0.2.6 Algorithm for Finding A^{-1}

RR the AM

 $\begin{bmatrix} A & I \end{bmatrix}$

If A is RE to I, then

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

else A no inverse

0.3 Characterizations of Invertible MX

0.3.1 Invertible Matrix Theorem for Square MX

see proof

A is a square MX then all true or all false:

a. A is invertible

- b. A is RE to square ID MX
- c. A has n PP
- d. Ax = 0 has only TS
- e. cols of A form linearly independent set
- f. lin trans $\boldsymbol{x} \mapsto A\boldsymbol{x}$ is one-to-one
- g. Ax = b has at least one solution for each $b \in \mathbb{R}^n$
- h. the cols of A span \mathbb{R}^n
- i. the lin trans above maps $\mathbb{R}^n \mapsto \mathbb{R}^n$
- j. square MX C that CA = I
- k. square MX D that AD = I
- l. A^T is invertible

therefore if AB = I then A and B are both invertible, with $B = A^{-1}$, $A = B^{-1}$

0.3.2 Invertible Linear Transformations Theorem

ILT if T is invertible.

Theorem: T is invertible IFF A is invertible MX. meaning the LT S is $S(\boldsymbol{x}) = A^{-1}\boldsymbol{x}$ is a unique fxn

ill-conditioned matrix: invMX that can become similar if some entries changed. condition number: larger the num, closer MX is to being singular.

0.4 Partitioned Matricies

PMX: subMX in MX

0.4.1 PMX Operations

if A, B same sizes then block by block addition/scalar mult

A and B are conformable for block multiplication if can separate blocks into a defined MX multiplication.

0.4.2 Column-Row Expansion of AB Theorem

if $m \times n, n \times p$

$$AB = [col_1(A) \cdots col_n(A)][:row_n(B)]$$

$$AB = col_1(A)row_1(B) \cdots$$

0.4.3 Inverse of PMX

SEE EXAMPLES

A block diagonal MX (BDMX) is a PMX with no blocks off the main diagonal of blocks

BDMX is invertible IFF each block on diagonal is invertible.

0.5 Matrix Factorizations

0.5.1 LU Factorization

L is mxm lower triangular MX with 1's on diag

U is mxn echelon form of A.

L is invertible and the unit lower triagnular matrix (ULTM)

A = LU where $A\mathbf{x} = \mathbf{b}$ and

 $L\mathbf{y} = \mathbf{b}$

Ux = y to solve for L and U

0.5.2 LU Factorization Algorithm

- 1. Reduce A to EFM by RRO
- 2. Place entries L such that same sequence of RO reduces L to I SEE EXAMPLE 2

RO that create zeros in first col of A create them in L as well.

0.6 The Leontirf Input-Output Model

APPLICATION SO SKIP

0.7 Applications to Computer Graphics

APPLICATION SO LATER (THIS ONE IS IMPORTANT)

0.8 Subspaces of \mathbb{R}^n

A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties

a. The **0** is in H

b. For each \boldsymbol{u} in H and scalar c, the vec $c\boldsymbol{u}$ is in H

Meaning: a subSpace is closed under addition and scalar mult.

note: line L not through the origin is not a subspace (doesn't contain origin) **0** is zero subspace

0.8.1 Column Space and Null Space

DEF: col space of A is the set Col A of all LC of the cols of A DEF: null space of A is the set Nul A of all solutions of Ax = 0

0.8.2 Null space in \mathbb{R}^n Theorem

null space of mxn A is SBS of \mathbb{R}^n . SS of $A\mathbf{x} = \mathbf{0}$ of m HLE in n unknowns is a SBS of \mathbb{R}^n \mathbf{v} is Nul A if $A\mathbf{v}$ is $\mathbf{0}$ Nul is defined implicitly. Col is defined explicitly.

0.8.3 Basis for a SBS

DEF: a basis for SBS H of \mathbb{R}^n is a LI set in H that spans H Standard Basis Vectors is the set of vectors with a 1 entry and the rest zeros (Think $\hat{i}, \hat{j}, \hat{k}$)

SEE EXAMPLES

Theorem: The pivot cols of A form a basis for col space of A

0.9 Dimension and Rank

0.9.1 Coordinate Vector Definition

set $\mathcal{B} = \{b_1, \dots, b_p\}$ is a basis for SBS H. For each x in H, the coordinates of x relative to the basis \mathcal{B} are weights ... c_p such that $x = \dots c_p b_p$ and vec in \mathbb{R}^p

$$[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is the coordinate vector of x relative to B or \mathcal{B} -coordinate vector of \boldsymbol{x} H is isomorphic to \mathbb{R}^2 when it is 1-1 (preserves LC)

0.9.2 DEF:The Dimension of a Subspace

dimension of NZ SBS H, dim H, is num of vec in any basis for H dimension of ZSBS is zero. \mathbb{R}^n has dimension n.

0.9.3 Rank

rank of A, rank A, is the dimension of col space of A pivot col of A form basis for Col A -; rank of A is num of pivot col in A

0.9.4 Rank Theorem

If A has n cols, then rankA + dim NulA = n

0.9.5 Basis Theorem

Let H be p-dim SBS of \mathbb{R}^n Any LI set of p ele in H is a basis for H. Any set of p ele of H that spans H is a basis for H

0.9.6 Invertible Matrix Theorem for Rank!!!!!

A is nxn then all true if invertible

- m. the cols form a basis of \mathbb{R}^n
- n. Col $A = \mathbb{R}^n$
- o. dim Col A = n
- p. rank A = n
- q. Nul $A = \{0\}$
- r. dim Nul A=0