Memory

- Address n bits, 2^n locations in memory
- Memory stores m bits, m * 2ⁿ storage

RAM

- · fast, limited, volatile, no program code
 - SRAM (static retains value as long as have power)
 - o DRAM (dynamic capacitor; slowly lose info unless refreshed)

MOSFET

- 3 terminals: Source, Gate, Drain
 - \circ Gate voltage $>V_{tr}$ Source connected to Drain
 - \circ Gate voltage $\leq V_t$, transistor is open switch

SRAM Cell

- 2 inverters connected in a loop
 - 2 access transistors control reading and writing the cell
 - WL is enable
 - READ WL = 1, data in cell will appear on bitline BL
 - WRITE WL = 1, drive BL and \overline{BL} to strong values, when WL \rightarrow 0, value retained

SRAM Organization

- SRAM with 8 locations, 6 bits each
- 3 bit address one-hot decoded to 8 bit values
 - o 1 wordline is selected
- Drivers (top) push current on BL and NBL

sense amplifier at bottom boosts weak current from each cell

Static RAM (SRAM)

DRAM

- stores value using 1C
 - o sufficient charge = 1, else 0
 - 1 access transistor
- WRITE set BL to Vdd/GND, activate WL charge/discharge the capacitor
- READ pre-charge BL to Vdd/2 and activate WL
 - o if C stored Vdd, BL voltage increase
 - o If C stored GND, BL voltage decrease
 - o sense amplifier boosts this small difference

DRAM READ

- destructive
 - o needs write back after read
- DRAM needs recharge (cells lose charge overtime)
 - o DRAM self refresh re-write values to capacitors so they don't lose all their charge
 - o few ms
- additional circuitry for self refresh and writing back read values
- 20x denser than SRAM but 10x slower

ROM

- meant for program code shouldn't change once dev in use
 - used to be program once by manufacturer and cannot change

Flash Cell

- FGFET (floating-gate transistor)
 - o like MOSFET, but with 2 gates
- · floating gate layer is electrically insulated
 - $\circ\;$ any electron on this gate are trapped; charge takes month to leak
- · floating gate blocks usual FET operation
 - $\circ~$ if charge exists on FG, prevents current flow from Src to Drain even if control gate voltage $>V_t$

- A charged floating gate (electrons trapped) represents one binary state (typically a "0")
- An uncharged floating gate represents the other state (typically a "1")
- READ
 - set both Src and Gate to Vdd/1
 - no charge on FG, regular MOSFET and read 1
 - yes charge on FG, read 0 at drain
 - cells with charge store 0
- Changing val of cell
 - to drain a charged cell (i.e. change a 0 to a 1), need to erase the cell
 - process is slow

Flash Blocks & Wearout

- to speed up erasing, cells are grouped into blocks, erased together
 - block size 8KB ~ 256KB
 - when we do write, single bit 0→1, we must erase the entire block and write it all again ??????
- flash memory suffers from wearout if used too much
 - o write to a cell too many times, it no longer stores charge

NAND NOR Flash

- 2 ways to arrange FGFET
 - o connect in parallel NOR flash
 - supports fast read, slow writes
 - byte-granularity accesses
 - good for code (supports execute in place)
 - o connect in series NAND flash
 - slow reads, fast writes

- higher density than NOR
- better for storage (USB drives)

	NOR	NAND				
Read	0.1 uS	30 uS				
Erase	500 ms	3.5 ms				
Block size	64KB to 256KB	8KB to 32KB				
Bad blocks	0%	~1-2%				
Capacity	64MB - 2GB	1GB - 16GB				
Cost	\$\$	\$				
Erase cycles	10 ⁴ - 10 ⁵	10 ⁵ - 10 ⁶				

Other ROM

- non volatile memory
 - $\circ~$ for roelectric ram, magnestoresistive RAM, PCM...

Memory	Location	Latency	Small	Medium	Large
SRAM	On-chip	1 – 10 ns			
NOR Flash	On-chip	100 ns	1 KB – 256 KB	256 KB – 1 MB	1 MB – 16 MB
NOR Flash	Off-chip	250 ns			
NAND Flash	Off-chip	10,000 ns	2 MB – 16 MB	16 MB - 256 MB	256 MB – 64 GB
DRAM	Off-chip	100 ns	-	32 MB – 1 GB	1 GB – 16 GB