The Bernstein and Nikolsky inequalities for trigonometric polynomials

Jordan Bell

January 28, 2015

1 Introduction

Let $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. For a function $f: \mathbb{T} \to \mathbb{C}$ and $\tau \in \mathbb{T}$, we define $f_{\tau}: \mathbb{T} \to \mathbb{C}$ by $f_{\tau}(t) = f(t - \tau)$. For measurable $f: \mathbb{T} \to \mathbb{C}$ and $0 < r < \infty$, write

$$\|f\|_r = \left(\frac{1}{2\pi} \int_{\mathbb{T}} |f(t)|^r dt\right)^{1/r}.$$

For $f, g \in L^1(\mathbb{T})$, write

$$(f*g)(x) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)g(x-t)dt, \qquad x \in \mathbb{T},$$

and for $f \in L^1(\mathbb{T})$, write

$$\hat{f}(k) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-ikt}dt, \qquad k \in \mathbb{Z}.$$

This note works out proofs of some inequalities involving the support of \hat{f} for $f \in L^1(\mathbb{T})$.

Let \mathscr{T}_n be the set of trigonometric polynomials of degree $\leq n$. We define the **Dirichlet kernel** $D_n : \mathbb{T} \to \mathbb{C}$ by

$$D_n(t) = \sum_{|j| \le n} e^{ijt}, \quad t \in \mathbb{T}.$$

It is straightforward to check that if $T \in \mathscr{T}_n$ then

$$D_n * T = T.$$

2 Bernstein's inequality for trigonometric polynomials

DeVore and Lorentz attribute the following inequality to Szegö. 1

¹Ronald A. DeVore and George G. Lorentz, *Constructive Approximation*, p. 97, Theorem 1.1.

Theorem 1. If $T \in \mathcal{T}_n$ and T is real valued, then for all $x \in \mathbb{T}$,

$$T'(x)^2 + n^2 T(x)^2 \le n^2 ||T||_{\infty}^2$$
.

Proof. If T=0 the result is immediate. Otherwise, take $x\in\mathbb{T}$, and for real c>1 define

$$P_c(t) = \frac{T(t+x)\operatorname{sgn} T'(x)}{c \|T\|_{\infty}}, \quad t \in \mathbb{T}.$$

 $P_c \in \mathscr{T}_n$, and satisfies

$$P'_c(0) = \frac{T'(x)\operatorname{sgn} T'(x)}{c \|T\|_{\infty}} \ge 0$$

and $||P_c||_{\infty} \leq \frac{1}{c} < 1$. Since $||P_c||_{\infty} < 1$, in particular $|P_c(0)| < 1$ and so there is some α , $|\alpha| < \frac{\pi}{2n}$, such that $\sin n\alpha = P_c(0)$. We define $S \in \mathscr{T}_n$ by

$$S(t) = \sin n(t + \alpha) - P_c(t), \qquad t \in \mathbb{T},$$

which satisfies $S(0) = \sin n\alpha - P_c(0) = 0$. For k = -n, ..., n, let $t_k = -\alpha + \frac{(2k-1)\pi}{2n}$, for which we have

$$\sin n(t_k + \alpha) = \sin \frac{(2k-1)\pi}{2} = (-1)^{k+1}.$$

Because $||P_c||_{\infty} < 1$,

$$\operatorname{sgn} S(t_k) = (-1)^{k+1},$$

so by the intermediate value theorem, for each k = -n, ..., n-1 there is some $c_k \in (t_k, t_{k+1})$ such that $S(c_k) = 0$. Because

$$t_n - t_{-n} = \frac{(2n-1)\pi}{2n} - \frac{(-2n-1)\pi}{2n} = 2\pi,$$

it follows that if $j \neq k$ then c_j and c_k are distinct in \mathbb{T} . It is a fact that a trigonometric polynomial of degree n has $\leq 2n$ distinct roots in \mathbb{T} , so if $t \in (t_k, t_{k+1})$ and S(t) = 0, then $t = c_k$. It is the case that $t_1 = -\alpha + \frac{\pi}{2n} > 0$ and $t_0 = -\alpha - \frac{\pi}{2} < 0$, so $0 \in (t_0, t_1)$. But S(0) = 0, so $c_0 = 0$. Using $S(t_1) = 1 > 0$ and the fact that S has no zeros in $(0, t_1)$ we get a contradiction from S'(0) < 0, so $S'(0) \geq 0$. This gives

$$0 \le P'_c(0) = n \cos n\alpha - S'(0) \le n \cos n\alpha = n\sqrt{1 - \sin^2 n\alpha} = n\sqrt{1 - P_c(0)^2}.$$

Thus

$$P_c'(0) \le n\sqrt{1 - P_c(0)^2},$$

or

$$n^2 P_c(0) + P'_c(0)^2 \le n^2.$$

Because

$$P_c(0)^2 = \frac{T(x)^2}{c^2 \|T\|_{\infty}^2}, \qquad P'_c(0)^2 = \frac{T'(x)^2}{c^2 \|T\|_{\infty}^2}$$

we get

$$n^2T(x)^2 + T'(x)^2 \le c^2n^2 \|T\|_{\infty}^2$$
.

Because this is true for all c > 1,

$$n^2T(x)^2 + T'(x)^2 \le n^2 \|T\|_{\infty}^2$$

completing the proof.

Using the above we now prove Bernstein's inequality.²

Theorem 2 (Bernstein's inequality). If $T \in \mathcal{T}_n$, then

$$||T'||_{\infty} \leq n ||T||_{\infty}$$
.

Proof. There is some $x_0 \in \mathbb{T}$ such that $|T'(x_0)| = ||T'||_{\infty}$. Let $\alpha \in \mathbb{R}$ be such that $e^{i\alpha}T'(x_0) = ||T'||_{\infty}$. Define $S(x) = \operatorname{Re}(e^{i\alpha}T(x))$ for $x \in \mathbb{T}$, which satisfies $S'(x) = \operatorname{Re}(e^{i\alpha}T'(x))$ and in particular

$$S'(x_0) = \text{Re}(e^{i\alpha}T'(x_0)) = e^{i\alpha}T'(x_0) = ||T'||_{\infty}.$$

Because $S \in \mathcal{T}_n$ and S is real valued, Theorem 1 yields

$$S'(x_0)^2 + n^2 S(x_0)^2 \le n^2 \|S\|_{\infty}^2$$
.

A fortiori,

$$S'(x_0)^2 \le n^2 \|S\|_{\infty}^2$$

giving, because $S'(x_0) = ||T'||_{\infty}$ and $||S||_{\infty} \le ||T||_{\infty}$,

$$||T'||_{\infty}^2 \le n^2 ||T||_{\infty}^2$$

proving the claim.

The following is a version of Bernstein's inequality.³

Theorem 3. If $T \in \mathscr{T}_n$ and $A \subset \mathbb{T}$ is a Borel set, there is some $x_0 \in \mathbb{T}$ such that

$$\int_{A} |T'(t)| dt \le n \int_{A-x_0} |T(t)| dt.$$

²Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 98.

 $^{^3 \}rm Ronald$ A. De Vore and George G. Lorentz, $\it Constructive \, Approximation, p. 101, Theorem 2.4.$

Proof. Let $A \subset \mathbb{T}$ be a Borel set with indicator function χ_A . Define $Q : \mathbb{T} \to \mathbb{C}$ by

$$Q(x) = \int_{\mathbb{T}} \chi_A(t) T(t+x) \operatorname{sgn} T'(t) dt, \qquad x \in \mathbb{T},$$

which we can write as

$$Q(x) = \int_{\mathbb{T}} \chi_A(t) \sum_j \widehat{T}(j) e^{ij(t+x)} \operatorname{sgn} T'(t) dt$$
$$= \sum_j \widehat{T}(j) \left(\int_{\mathbb{T}} \chi_A(t) e^{ijt} \operatorname{sgn} T'(t) dt \right) e^{ijx},$$

showing that $Q \in \mathcal{T}_n$. Also,

$$Q'(x) = \int_{\mathbb{T}} \chi_A(t) T'(t+x) \operatorname{sgn} T'(t) dt, \qquad x \in \mathbb{T}.$$

Let $x_0 \in \mathbb{T}$ with $|Q(x_0)| = ||Q||_{\infty}$. Applying Theorem 2 we get

$$\|Q'\|_{\infty} \leq n \|Q\|_{\infty}$$
.

Using

$$Q'(0) = \int_{\mathbb{T}} \chi_A(t) T'(t) \operatorname{sgn} T'(t) dt = \int_{\mathbb{T}} \chi_A(t) |T'(t)| dt,$$

this gives

$$\int_{\mathbb{T}} \chi_A(t) |T'(t)| dt \leq n \|Q\|_{\infty}$$

$$= n|Q(t_0)|$$

$$= n \left| \int_{\mathbb{T}} \chi_A(t) T(t+x_0) \operatorname{sgn} T'(t) dt \right|$$

$$\leq n \int_{\mathbb{T}} \chi_A(t) |T(t+x_0)| dt$$

$$= n \int_{\mathbb{T}} \chi_{A-x_0}(t) |T(t)| dt.$$

Applying the above with $A=\mathbb{T}$ gives the following version of Bernstein's inequality, for the L^1 norm.

Theorem 4 (L^1 Bernstein's inequality). If $T \in \mathscr{T}_n$, then

$$||T'||_1 \le n ||T||_1$$
.

3 Nikolsky's inequality for trigonometric polynomials

DeVore and Lorentz attribute the following inequality to Sergey Nikolsky.⁴

Theorem 5 (Nikolsky's inequality). If $T \in \mathscr{T}_n$ and $0 < q \le p \le \infty$, then for $r \ge \frac{q}{2}$ an integer,

$$||T||_p \leq (2nr+1)^{\frac{1}{q}-\frac{1}{p}} ||T||_q$$
.

Proof. Let m = nr. Then $T^r \in \mathscr{T}_m$, so $T^r * D_m = T^r$, and using this and the Cauchy-Schwarz inequality we have, for $x \in \mathbb{T}$,

$$|T(x)^{r}| = \left| \frac{1}{2\pi} \int_{\mathbb{T}} T(t)^{r} D_{m}(x - t) \right|$$

$$\leq \frac{1}{2\pi} \int_{\mathbb{T}} |T(t)|^{r} |D_{m}(x - t)| dt$$

$$\leq ||T||_{\infty}^{r - \frac{q}{2}} \cdot \frac{1}{2\pi} \int_{\mathbb{T}} |T(t)|^{\frac{q}{2}} |D_{m}(x - t)| dt$$

$$\leq ||T||_{\infty}^{r - \frac{q}{2}} ||T|^{q/2}||_{2} ||D_{m}||_{2}$$

$$= ||T||_{\infty}^{r - \frac{q}{2}} ||T||_{q}^{\frac{q}{2}} ||\widehat{D}_{m}||_{\ell^{2}(\mathbb{Z})}$$

$$= \sqrt{2m + 1} ||T||_{\infty}^{r - \frac{q}{2}} ||T||_{q}^{\frac{q}{2}}.$$

Hence

$$\left\|T\right\|_{\infty}^{r} \leq \sqrt{2m+1} \left\|T\right\|_{\infty}^{r-\frac{q}{2}} \left\|T\right\|_{q}^{\frac{q}{2}},$$

thus

$$||T||_{\infty} \le (2m+1)^{\frac{1}{q}} ||T||_{q}.$$

Then, using $\|T\|_p \leq \|T\|_{\infty}^{1-\frac{q}{p}} \|T\|_p^{\frac{q}{p}}$, we have

$$||T||_{p} \le (2m+1)^{\frac{1}{q}-\frac{1}{p}} ||T||_{q}^{1-\frac{q}{p}} ||T||_{q}^{\frac{q}{p}} = (2m+1)^{\frac{1}{q}-\frac{1}{p}} ||T||_{q}.$$

4 The complementary Bernstein inequality

We define a **homogeneous Banach space** to be a linear subspace B of $L^1(\mathbb{T})$ with a norm $||f||_{L^1(\mathbb{T})} \leq ||f||_B$ with which B is a Banach space, such that if $f \in B$ and $\tau \in \mathbb{T}$ then $f_{\tau} \in B$ and $||f_{\tau}||_B = ||f||_B$, and such that if $f \in B$ then $f_{\tau} \to f$ in B as $\tau \to 0$.

 $^{^4 \}mathrm{Ronald}$ A. De Vore and George G. Lorentz, $Constructive\ Approximation,$ p. 102, Theorem 2.6.

Fejér's kernel is, for $n \geq 0$,

$$K_n(t) = \sum_{|j| \le n} \left(1 - \frac{|j|}{n+1} \right) e^{ijt} = \sum_{j \in \mathbb{Z}} \chi_n(j) \left(1 - \frac{|j|}{n+1} \right) e^{ijt} \qquad t \in \mathbb{T}.$$

One calculates that, for $t \notin 4\pi\mathbb{Z}$,

$$K_n(t) = \frac{1}{n+1} \left(\frac{\sin \frac{n+1}{2}t}{\sin \frac{1}{2}t} \right)^2.$$

Bernstein's inequality is a statement about functions whose Fourier transform is supported only on low frequencies. The following is a statement about functions whose Fourier transform is supported only on high frequencies.⁵ In particular, for $1 \leq p < \infty$, $L^p(\mathbb{T})$ is a homogeneous Banach space, and so is $C(\mathbb{T})$ with the supremum norm.

Theorem 6. Let B be a homogeneous Banach space and let m be a positive integer. Define C_m as $C_m = m + 1$ if m is even and $C_m = 12m$ if m is odd. If

$$f(t) = \sum_{|j| > n} a_j e^{ijt}, \qquad t \in \mathbb{T},$$

is m times differentiable and $f^{(m)} \in B$, then $f \in B$ and

$$||f||_B \le C_m n^{-m} ||f^{(m)}||_B$$
.

Proof. Suppose that m is even. It is a fact that if $a_j, j \in \mathbb{Z}$, is an even sequence of nonnegative real numbers such that $a_j \to 0$ as $|j| \to \infty$ and such that for each j > 0,

$$a_{j-1} + a_{j+1} - 2a_j \ge 0,$$

then there is a nonnegative function $f \in L^1(\mathbb{T})$ such that $\hat{f}(j) = a_j$ for all $j \in \mathbb{Z}$.⁶ Define

$$a_j = \begin{cases} j^{-m} & |j| \ge n \\ n^{-m} + (n-|j|)(n^{-m} - (n+1)^{-m}) & |j| \le n - 1. \end{cases}$$

It is apparent that a_j is even and tends to 0 as $|j| \to \infty$. For $1 \le j \le n-2$,

$$a_{j-1} + a_{j+1} - 2a_j = 0.$$

For j = n - 1,

$$a_{j-1} + a_{j+1} - 2a_j = n^{-m} + (n - (n-2))(n^{-m} - (n+1)^{-m}) + n^{-m}$$
$$-2(n^{-m} + (n - (n-1))(n^{-m} - (n+1)^{-m}))$$
$$= 0.$$

 $^{^5 \}rm{Yitzhak}$ Katznelson, An Introduction to Harmonic Analysis, third ed., p. 55, Theorem 8.4.

 $^{^6\}mathrm{Yitzhak}$ Katznelson, An Introduction to Harmonic Analysis, third ed., p. 24, Theorem 4.1.

The function $j \mapsto j^{-m}$ is convex on $\{n, n+1, \ldots\}$, as $m \ge 1$, so for $j \ge n$ we have $a_{j-1} + a_{j+1} - 2a_j \ge 0$. Therefore, there is some nonnegative $\phi_{m,n} \in L^1(\mathbb{T})$ such that

$$\widehat{\phi_{m,n}}(j) = a_j, \quad j \in \mathbb{Z}.$$

Because $\phi_{m,n}$ is nonnegative, and using $n^{-m} - (n+1)^{-m} < \frac{m}{n} n^{-m}$,

$$\|\phi_{m,n}\|_1 = \widehat{\phi_{m,n}}(0) = n^{-m} + n(n^{-m} - (n+1)^{-m}) < (m+1)n^{-m}.$$

Define $d\mu_{m,n}(t) = \frac{1}{2\pi}\phi_{m,n}(t)dt$. For $|j| \ge n$,

$$\widehat{f^{(m)} * \mu_{m,n}}(j) = \widehat{f^{(m)}}(j)\widehat{\mu_{m,n}}(j)$$

$$= (ij)^m \widehat{f}(j)\widehat{\phi_{m,n}}(j)$$

$$= (ij)^m \widehat{f}(j) \cdot |j|^{-m}$$

$$= i^m \widehat{f}(j).$$

For |j| < n, since $\hat{f}(j) = 0$ we have

$$\widehat{f^{(m)} * \mu_{m,n}}(j) = (ij)^m \widehat{f}(j)\widehat{\phi_{m,n}}(j) = 0 = i^m \widehat{f}(j),$$

so for all $j \in \mathbb{Z}$,

$$\widehat{f^{(m)} * \mu_{m,n}}(j) = i^m \widehat{f}(j).$$

This implies that $f^{(m)} * \mu_{m,n} = i^m f$, which in particular tells us that $f \in B$. Then,

$$\begin{split} \|f\|_{B} &= \|i^{m} f\|_{B} \\ &= \left\| f^{(m)} * \mu_{m,n} \right\|_{B} \\ &\leq \left\| f^{(m)} \right\|_{B} \|\mu_{m,n}\|_{M(\mathbb{T})} \\ &= \left\| \phi_{m,n} \right\|_{1} \left\| f^{(m)} \right\|_{B} \\ &\leq (m+1) n^{-m} \left\| f^{(m)} \right\|_{B}. \end{split}$$

This shows what we want in the case that m is even, with $C_m = m + 1$. Suppose that m is odd. For l a positive integer, define $\psi_l : \mathbb{T} \to \mathbb{C}$ by

$$\psi_l(t) = \left(e^{2lit} + \frac{1}{2}e^{3lit}\right)K_{l-1}(t), \qquad t \in \mathbb{T}.$$

There is a unique l_n such that $n \in \{2l_n, 2l_n + 1\}$. For $k \geq 0$ an integer, define $\Psi_{n,k} : \mathbb{T} \to \mathbb{C}$ by

$$\Psi_{n,k}(t) = \psi_{l_n 2^k}(t), \qquad t \in \mathbb{T}.$$

 $\Psi_{n,k}$ satisfies

$$\|\Psi_{n,k}\|_1 \le \frac{3}{2} \|K_{k-1}\|_1 = \frac{3}{2} \cdot \frac{1}{2\pi} \int_{\mathbb{T}} |K_{k-1}(t)| dt = \frac{3}{2} \cdot \frac{1}{2\pi} \int_{\mathbb{T}} K_{k-1}(t) dt = \frac{3}{2}.$$

On the one hand, for $j \leq 0$, from the definition of ψ_l we have $\widehat{\Psi_{n,k}}(j) = 0$, hence $\sum_{k=0}^{\infty} \widehat{\Psi_{n,k}}(j) = 0$. On the other hand, for $j \geq n$ we assert that

$$\sum_{k=0}^{\infty} \widehat{\Psi_{n,k}}(j) = 1.$$

We define $\Phi_n : \mathbb{T} \to \mathbb{C}$ by

$$\Phi_n(t) = \sum_{k=0}^{\infty} (\Psi_{n,k} * \phi_{1,n2^k})(t), \qquad t \in \mathbb{T}.$$

We calculate the Fourier coefficients of Φ_n . For $j \geq n$,

$$\widehat{\Phi_n}(j) = \sum_{k=0}^\infty \widehat{\Phi_{n,k}}(j) \widehat{\phi_{1,n2^k}}(j) = \frac{1}{j} \sum_{k=0}^\infty \widehat{\Phi_{n,k}}(j) = \frac{1}{j}.$$

As well,

$$\|\Phi_n\|_1 \le \sum_{k=0}^{\infty} \|\Psi_{n,k} * \phi_{1,n2^k}\|_1 \le \sum_{k=0}^{\infty} \|\Psi_{n,k}\|_1 \|\phi_{1,n2^k}\|_1 \le \frac{3}{2} \sum_{k=0}^{\infty} 2(n2^k)^{-1} = \frac{6}{n}$$

We now define

$$d\mu_{1,n}(t) = \frac{1}{2\pi} (\Phi_n(t) - \Phi_n(-t)) dt,$$

which satisfies for $|j| \geq n$,

$$\widehat{\mu_{1,n}}(j) = \widehat{\Phi_n}(j) - \widehat{\Phi_n}(-j) = \frac{1}{j}$$

and hence

$$\widehat{f'*\mu_{1,n}}(j) = \widehat{f'}(j)\widehat{\mu_{1,n}}(j) = ij\widehat{f}(j) \cdot \frac{1}{i} = i\widehat{f}(j).$$

Because $\hat{f}(j) = 0$ for |j| < n, $\widehat{f' * \mu_{1,n}}(j) = 0$ for |j| < n, it follows that for any $j \in \mathbb{Z}$,

$$\widehat{f'*\mu_{1,n}}(j)=i\widehat{f}(j),$$

and therefore,

$$f' * \mu_{1,n} = if.$$

Then

$$||f||_{B} = ||if||_{B} = ||f' * \mu_{1,n}||_{B} \le ||\mu_{1,n}||_{M(\mathbb{T})} ||f'||_{B} \le 2 ||\Phi_{n}||_{1} ||f'||_{B} \le \frac{12}{n} ||f'||_{B}.$$

That is, with $C_1 = 12$ we have

$$||f||_B \le 12n^{-1} ||f'||_B$$
.

For $m = 2\nu + 1$, we define

$$\mu_{m,n} = \mu_{1,n} * \mu_{2\nu,n},$$

for which we have, for $|j| \ge n$,

$$\widehat{f^{(m)} * \mu_{m,n}}(j) = (ij)^m \widehat{f}(j) \widehat{\mu_{1,n}}(j) \widehat{\mu_{2\nu,n}}(j) = (ij)^m \widehat{f}(j) \cdot \frac{1}{j} \cdot j^{-2\nu} = i^m \widehat{f}(j).$$

It follows that

$$f^{(m)} * \mu_{m,n} = i^m f,$$

whence

$$\begin{split} \|f\|_{B} &= \|i^{m}f\|_{B} \\ &= \left\|f^{(m)} * \mu_{m,n}\right\|_{B} \\ &\leq \left\|\mu_{m,n}\right\|_{M(\mathbb{T})} \left\|f^{(m)}\right\|_{B} \\ &\leq \left\|\mu_{1,n}\right\|_{M(\mathbb{T})} \left\|\mu_{2\nu,n}\right\|_{M(\mathbb{T})} \left\|f^{(m)}\right\|_{B} \\ &\leq \frac{12}{n} \cdot (2\nu + 1)n^{-2\nu} \left\|f^{(m)}\right\|_{B} \\ &= 12mn^{-m} \left\|f^{(m)}\right\|_{B}. \end{split}$$

That is, with $C_m = 12m$, we have

$$||f||_B \le C_m n^{-m} \left| |f^{(m)}| \right|_B,$$

completing the proof.