Steven Martel

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Example Summary

References

Deriving Steepness from F_{MSY} or F_{SPR}

Steven Martell

University of British Columbia s.martell@mail.ubc.ca

April 4, 2012

Why do we use proxies for $F_{\rm MSY}$?

- \bullet On rare occasions F_{MSY} is estimable.
 - ► Stock-recruitment data required

Steepness

Steven Martell

IVIOCIVACIOII

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Example

Summary

Why do we use proxies for $F_{\rm MSY}$?

- ullet On rare occasions F_{MSY} is estimable.
 - ► Stock-recruitment data required
- ullet F_{SPR} requires only life-history information.
 - ► Natural mortality rate, fecundity, growth, ...

Steepness

Steven Martell

IVIOLIVALIOII

Deriving F_{MSY}

Deriving h

Example

Summary

Why do we use proxies for $F_{\rm MSY}$?

- ullet On rare occasions F_{MSY} is estimable.
 - ► Stock-recruitment data required
- ullet F_{SPR} requires only life-history information.
 - ▶ Natural mortality rate, fecundity, growth, ...
 - ▶ $F_{35\%}$ can achieve $\approx 80\%$ of MSY (Clark, 1991).

Steepness

Steven Martell

Motivation

Deriving F_{MSY}

Deriving h

Example

Summary

Why do we use proxies for $F_{\rm MSY}$?

- \bullet On rare occasions F_{MSY} is estimable.
 - ► Stock-recruitment data required
- ullet F_{SPR} requires only life-history information.
 - ▶ Natural mortality rate, fecundity, growth, ...
 - ► $F_{35\%}$ can achieve $\approx 80\%$ of MSY (Clark, 1991).
 - ► F_{35%} can lead to severe depletion (Clark, 2002).

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Example

Summary

Deriving $\overline{F_{MSY}}$

 $(B_0, h) \Rightarrow (\mathsf{MSY}, \mathrm{F}_{\mathrm{MSY}})$ transition

Estimated parameters used to derived reference points

Steepness

Steven Martell

Motivation

Deriving h

Example

Summary

Deriving F_{MSY}

Charren Manhall

Motivation

Deriving h

Example

Summary

References

Given
$$\Theta = (B_0, h, M, f_a, s_a)$$
, F_{MSY} is calculated by maximizing:

$$C_e = F_e g(\Theta) \tag{1}$$

$$\frac{\partial C_e}{\partial F_e} = g(\Theta) + F_e g(\Theta) \frac{\partial g(\Theta)}{\partial F_e}$$
 (2)

Set (2) equal to 0 and numerically solve for F_e .

Deriving steepness (h) from F_{MSY}

 $(\mathsf{MSY}, \mathrm{F}_{\mathrm{MSY}}) \Rightarrow (B_0, h) \text{ transition}$

In this case estimate reference points directly.

Given $\Theta = (\mathrm{MSY}, \mathrm{F_{MSY}}, \mathrm{M}, \mathrm{f_a}, \mathrm{s_a})$, then solve the catch equation for h.

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Danislan I

Example

Summary

Deriving steepness (h) from F_{MSY}

Given $\Theta = (MSY, F_{MSY}, M, f_a, s_a)$, then solve the catch equation for h.

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Deriving

Summary

Deriving steepness (h) from \overline{F}_{MSY}

Given $\Theta = (MSY, F_{MSY}, M, f_a, s_a)$, then solve the catch equation for h.

$$C_e = F_e g(\Theta) \tag{3}$$

$$=F_{e}R_{e}\phi_{q}\tag{4}$$

 R_e is the equilibrium recruitment (includes h) ϕ_a is the yield per recruit

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving PMSY

Example

Summarv

Deriving steepness (h) from F_{MSY}

Given $\Theta = (MSY, F_{MSY}, M, f_a, s_a)$, then solve the catch equation for h.

$$C_e = F_e g(\Theta) \tag{3}$$

$$=F_{e}R_{e}\phi_{q}\tag{4}$$

 $R_{\rm e}$ is the equilibrium recruitment (includes h) ϕ_q is the yield per recruit

$$\frac{\partial C_e}{\partial F_e} = 0 = R_e \phi_q + F_e \phi_q \frac{\partial R_e}{\partial F_e} + F_e R_e \frac{\partial \phi_q}{\partial F_e}$$
 (5)

In this case there is an Analytical solution for h for Beverton-Holt & Ricker models.

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving

Example

Summary

IPHC: fixed harvest rate of 21.5%, what is the implied h?

Steepness

Steven Martell

Motivation

Deriving F_{MSY}

Deriving h

Summary

IPHC: fixed harvest rate of 21.5%, what is the implied h?

Figure: Pacific halibut life-history & selectivity.

Steepness

Steven Martell

Motivation

Deriving F_{MSY}

Deriving h

Summarv

IPHC: fixed harvest rate of 21.5%, what is the implied h?

Figure: Yield, depletion, SPR and YPR for Pacific halibut.

Steepness

Steven Martell

Motivation

Deriving F_{MSY}

Deriving h

Example

Summary

IPHC: fixed harvest rate of 21.5%, what is the implied h?

Figure: Steepness (h=0.5997) for the assumed ${
m F_{MSY}}{=}0.215$.

Steepness

Steven Martell

Motivation

Deriving F_{MSY}

Deriving h

Summary

Relationship between $\mathrm{F}_{\mathrm{MSY}}$ and h

Figure: Exponential increase in $\mathrm{F}_{\mathrm{MSY}}$ with increasing h

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Summary

Relationship between $F_{ m MSY}$ and h

Figure: Relationship between h and other population parameters.

Steepness

Motivation

Deriving F_{MSY}

Deriving h

Example

Summary

Deriving implied priors for steepness

Steven Marte

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Summary

References

Figure: Prior densities for $F_{\rm MSY}\textsc{,}$ natural mortality, growth, imply

. . .

Deriving implied priors for steepness

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Summary

References

Figure: Prior density for steepness.

- ullet F_{MSY} proxy implies steepness is known.
 - ► Use F_{MSY} ⇒ h transition in assessment models for consistency.
 - ► Alternative: fix *h*, which may be inconsistent with proxy.

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Summary

- ullet F_{MSY} proxy implies steepness is known.
 - ► Use F_{MSY} ⇒ h transition in assessment models for consistency.
 - ► Alternative: fix h, which may be inconsistent with proxy.
- Steepness is confounded with other key population parameters/reference points.

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Example

- ullet F_{MSY} proxy implies steepness is known.
 - ► Use F_{MSY} ⇒ h transition in assessment models for consistency.
 - ► Alternative: fix *h*, which may be inconsistent with proxy.
- Steepness is confounded with other key population parameters/reference points.
- Choice of F_{MSY} proxy implies prior density for h.

Steepness

Steven Martel

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Example

- ullet F_{MSY} proxy implies steepness is known.
 - ► Use F_{MSY} ⇒ h transition in assessment models for consistency.
 - ► Alternative: fix h, which may be inconsistent with proxy.
- Steepness is confounded with other key population parameters/reference points.
- ullet Choice of F_{MSY} proxy implies prior density for h.
- Parametrize with (F_{MSY} , MSY) instead of (B_0 , h) (Martell et al., 2008).

Steepness

Steven Marte

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Example

- ullet F_{MSY} proxy implies steepness is known.
 - ► Use F_{MSY} ⇒ h transition in assessment models for consistency.
 - ightharpoonup Alternative: fix h, which may be inconsistent with proxy.
- Steepness is confounded with other key population parameters/reference points.
- ullet Choice of ${
 m F}_{
 m MSY}$ proxy implies prior density for h.
- Parametrize with (F_{MSY}, MSY) instead of (B_0, h) (Martell et al., 2008).
- Not to be used with Hierarchical models for generating Posterior predictive distributions.
 - ▶ Definition of a recruit is a vulnerable fish of any age.

Steepness

Steven Marte

Motivation

Deriving $\mathrm{F}_{\mathrm{MSY}}$

Deriving h

Example

References

Clark, W. (1991). Groundfish exploitation rates based on life history parameters. *Canadian Journal of Fisheries and Aquatic Sciences*, 48(5), 734–750.

Clark, W. (2002). F 35% revisited ten years later. North American Journal of Fisheries Management, 22(1), 251–257.

Martell, S. J. D., Pine, W. E., & Walters, C. J. (2008). Parameterizing age-structured models from a fisheries management perspective. *Can. J. Fish. Aquat. Sci.*, *65*, 1586–1600.

Rcode for .fmsy2h available from me.

Steepness

Steven Marte

Motivation

Deriving F_{MSY}

Deriving h

Example Summary

Acknowledgements

Steepness

Steven Martel

Motivation

Deriving F_{MSY}

Deriving h

Example

Summary

References

IPHC for office space.

Swedish Medical Center for pain relief.