

Objectif Déterminer l'énergie et la puissance disponibles dans un système

L'étude suivante concerne un smartphone.

Vous serez amené à calculer l'énergie présente dans la batterie de ce téléphone ainsi que les puissances et énergies nécessaires nécessaires pour différentes utilisations de celui-ci.

1 Étude énergétique d'un iPhone X

1.1 Quelques données

Caractéristiques de la batterie :

• Technologie: Li-Ion (lithium-ion)

Capacité: C = 2717 mAh
Tension: U = 3.81 V

• Autonomie en utilisation: 275 min

Exercice

Question 1.1

Quelle solution permet de remplir la fonction « Alimenter / Stocker » dans le cas de ce smartphone?

Correction 1.1

La fonction alimenter/stocker est réalisée par la batterie du smartphone.

Question 1.2

Calculer l'énergie électrique $\omega_{\rm bat}$ que contient la batterie.

Correction 1.2

On connaît la tension de la batterie, ainsi que sa capacité. L'énergie contenue dans la batterie est

$$\omega_{\text{bat}} = U \times C = 3.81 \times 2717 \times 10^{-3} = 10.35 \,\text{Wh}$$

Question 1.3

A partir des données annoncées, calculer la puissance de ce Smartphone en utilisation

Correction 1.3

La puissance moyenne est l'énergie consommé divisée par le temps qu'il a fallu pour consommer cette énergie : $P = \frac{\omega_{\text{bat}}}{t}$

$$P_{\text{utilisation}} = \frac{10.35}{275/60} = 2.26 \text{W}$$

Question 1.4

En déduire le courant consommé en utilisation.

Correction 1.4

Connaissant la relation liant la puissance, le courant et la tension $P = U \times I$, on déduit $I = \frac{P}{II}$.

$$I_{\text{utilisation}} = \frac{2.26}{3.81} = 593 \,\text{mA}$$

Question 1.5

En supposant qu'une charge complète de la batterie doit être effectuée tous les jours, déterminer l'énergie électrique $E_{\text{tel annuel}}$ consommée par le téléphone en une année (en Wh et en J)

1

Correction 1.5

Tous les jours, le Smartphone consomme une énergie de 13.2 Wh. Il faudra le recharger 365 fois en un an.

$$E_{\text{tel annuel}} = 365 \times 10.35 = 3777 \,\text{Wh} = 3.8 \,\text{kWh}$$

Question 1.6

En supposant le rendement d'un chargeur de téléphone de η = 0.95, calculez l'énergie annuelle consommée sur le réseau par un téléphone en France.

On rappelle que $E_s = \eta \times E_e$ avec η le rendement, E_s l'énergie en **sortie** d'un système et E_e l'énergie en **entrée** d'un système.

Correction 1.6

On cherche l'énergie $E_{\rm elec}$ en entrée du chargeur (nécessaire à recharger le téléphone) en connaissant l'énergie en sortie (énergie consommée par le téléphone). On a donc $E_{\rm elec} = \frac{E_{\rm tel \, annuel}}{\eta} = 3971 \, {\rm Wh}$

Question 1.7

Calculez l'énergie perdue (énergie non-utile) annuellement pour la recharge de téléphones portables. Sous quelle forme est perdue cette énergie?

Correction 1.7

Cette énergie est perdue sous forme de chaleur. On perd $E_{perdue} = E_{elec} * (1 - \eta)$

Question 1.8

Les statistiques indiquent qu'en 2017, 73% des français de plus de 12 ans possédaient un smartphone. En supposant que tous les français ait un portable équivalent à l'iPhone X en consommation d'énergie, Calculez l'énergie totale que représente la recharge des téléphone en France, en 2017.

On suppose que 59 Millions de Français avaient plus de 12 ans en 2017.

Correction 1.8

$$E_{totale} = 59 \times 10^6 \times 0.73 \times E_{elec} = 171.2 \,\text{GWh}$$

Question 1.9

Convertissez cette dernière valeur en joules (J) et en Tep. Rappel : $1 \text{ Tep} = 4.187 \times 10^{10} \text{ J}$

Correction 1.9

En joules : On divise le résultat en Wh par 3600 En Tep : On divise le résultat en J par 4.187×10^{10}