Definition: The Field of Quotients of an Integral Domain

The **field of quotients** (or field of fractions) of an integral domain D is the smallest field that contains D as a subring. It consists of elements of the form $\frac{a}{b}$, where $a,b\in D$ and $b\neq 0$, subject to the equivalence relation:

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if $ad = bc$.

The field of quotients allows division by any nonzero element of D, making it a field.

Construction

Let D be an integral domain. Define:

$$F = \left\{ rac{a}{b} \mid a,b \in D, \, b
eq 0
ight\}.$$

Addition and multiplication are defined as:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

One can verify that F satisfies the field axioms and contains D as a subring (identifying each $a \in D$ with $\frac{a}{1}$).

Non-Trivial Examples

1. Rational Numbers:

- Let D = Z, the ring of integers.
- The field of quotients of Z is Q, the field of rational numbers, where each fraction ^a/_b (with a, b ∈ Z, b ≠ 0) corresponds to a rational number.

2. Rational Function Field:

- Let D = k[x], the ring of polynomials over a field k.
- The field of quotients is k(x), the field of rational functions, consisting of fractions of polynomials $\frac{f(x)}{g(x)}$ with $f(x), g(x) \in k[x]$ and $g(x) \neq 0$.

3. Gaussian Rational Numbers:

- Let $D=\mathbb{Z}[i]$, the ring of Gaussian integers $\mathbb{Z}[i]=\{a+bi\mid a,b\in\mathbb{Z}\}.$
- The field of quotients is $\mathbb{Q}(i)$, the field of Gaussian rational numbers, which consists of all numbers of the form $\frac{a+bi}{c+di}$ (where $a,b,c,d\in\mathbb{Z}$ and $c+di\neq 0$).

4. p-adic Valuation Domains:

- Let D = Z_(p), the localization of Z at a prime p, which consists of fractions a/b where a, b ∈ Z and b is not divisible by p.
- The field of quotients is Q, since every rational number can be expressed as a fraction with denominator coprime to p.

Section 21: The Field of Quotients of an Integral Domain

Let L be a field and D a subring of L that contains the unity. The ring D is an integral domain since it has no zero divisors.

Yes, that's correct! Let's break it down step by step to understand why D is an integral domain.

Field *L*:

 \circ A field L is a commutative ring with unity (1) where every non-zero element has a multiplicative inverse. This means that for any $a\in L$ with $a\neq 0$, there exists an element $a^{-1}\in L$ such that $a\cdot a^{-1}=1$.

2. Subring D:

 \circ A subring D of L is a subset of L that is itself a ring under the operations of addition and multiplication defined in L. Since D is a subring of L, it inherits the addition and multiplication operations from L.

3. **Unity in** *D*:

 \circ The unity (1) of L is contained in D. This means that $1 \in D$, and for any $d \in D$, $1 \cdot d = d \cdot 1 = d$.

4. No Zero Divisors:

 \circ Since L is a field, it has no zero divisors. That is, if $a \cdot b = 0$ in L, then either a = 0 or b = 0. Because D is a subring of L, this property is inherited by D. Therefore, D also has no zero divisors.

5. Integral Domain:

 \circ An integral domain is a commutative ring with unity that has no zero divisors. Since D is a subring of L containing the unity and has no zero divisors, D satisfies the definition of an integral domain.

In summary, D is an integral domain because it is a commutative ring with unity (inherited from L) and it has no zero divisors (also inherited from L).

Example 1: \mathbb{Z} as a subring of \mathbb{Q}

- Field L: (1), the field of rational numbers.
- Subring D: Z, the ring of integers.
- Explanation:
 - Z is a subring of Q because it is closed under addition, subtraction, and multiplication, and it
 contains the unity 1.
 - $\circ \mathbb{Z}$ has no zero divisors: if $a \cdot b = 0$ in \mathbb{Z} , then either a = 0 or b = 0.
 - Thus, Z is an integral domain.

Example 2: $\mathbb{Z}[i]$ as a subring of \mathbb{C}

- Field L: C, the field of complex numbers.
- Subring D: Z[i], the ring of Gaussian integers (complex numbers of the form a + bi, where a, b ∈ Z).
- Explanation:
 - Z[i] is a subring of C because it is closed under addition, subtraction, and multiplication, and
 it contains the unity 1 = 1 + 0i.
 - $\mathbb{Z}[i]$ has no zero divisors: if (a+bi)(c+di)=0 in $\mathbb{Z}[i]$, then either a+bi=0 or c+di=0.
 - o Thus, $\mathbb{Z}[i]$ is an integral domain.

Example 3: $\mathbb{Z}[\sqrt{2}]$ as a subring of \mathbb{R}

- Field L: \mathbb{R} , the field of real numbers.
- Subring D: $\mathbb{Z}[\sqrt{2}]$, the ring of numbers of the form $a+b\sqrt{2}$, where $a,b\in\mathbb{Z}$.
- Explanation:
 - ∑[√2] is a subring of ℝ because it is closed under addition, subtraction, and multiplication,
 and it contains the unity 1 = 1 + 0√2.
 - $\mathbb{Z}[\sqrt{2}]$ has no zero divisors: if $(a+b\sqrt{2})(c+d\sqrt{2})=0$ in $\mathbb{Z}[\sqrt{2}]$, then either $a+b\sqrt{2}=0$ or $c+d\sqrt{2}=0$.
 - o Thus, $\mathbb{Z}[\sqrt{2}]$ is an integral domain.

Example 4: Polynomial ring $\mathbb{Q}[x]$ as a subring of $\mathbb{Q}(x)$

- Field L: Q(x), the field of rational functions (ratios of polynomials with coefficients in Q).
- Subring D: Q[x], the ring of polynomials with coefficients in Q.
- Explanation:
 - $\mathbb{Q}[x]$ is a subring of $\mathbb{Q}(x)$ because it is closed under addition, subtraction, and multiplication, and it contains the unity 1 (the constant polynomial).
 - $\mathbb{Q}[x]$ has no zero divisors: if $f(x) \cdot g(x) = 0$ in $\mathbb{Q}[x]$, then either f(x) = 0 or g(x) = 0.
 - \circ Thus, $\mathbb{Q}[x]$ is an integral domain.

Section 21: The Field of Quotients of an Integral Domain

Example 5: \mathbb{Z}_p as a subring of itself (for prime p)

- Field L: Z_p, the field of integers modulo a prime p.
- Subring D: Zp, which is trivially a subring of itself.
- Explanation:
 - \mathbb{Z}_p is a field, so it has no zero divisors: if $a \cdot b = 0$ in \mathbb{Z}_p , then either a = 0 or b = 0.
 - Thus, Z_p is an integral domain.

Example 6: $\mathbb{Z}[\sqrt{-5}]$ as a subring of \mathbb{C}

- Field L: C, the field of complex numbers.
- Subring D: Z[√-5], the ring of numbers of the form a + b√-5, where a, b ∈ Z.
- Explanation:
 - Z[√-5] is a subring of C because it is closed under addition, subtraction, and multiplication, and it contains the unity 1 = 1 + 0√-5.
 - $\mathbb{Z}[\sqrt{-5}]$ has no zero divisors: if $(a+b\sqrt{-5})(c+d\sqrt{-5})=0$ in $\mathbb{Z}[\sqrt{-5}]$, then either $a+b\sqrt{-5}=0$ or $c+d\sqrt{-5}=0$.
 - Thus, Z[√−5] is an integral domain.

Key Observations:

- In each case, D is a subring of a field L, and D contains the unity of L.
- Since L has no zero divisors, D inherits this property and is therefore an integral domain.
- These examples demonstrate how integral domains arise naturally as subrings of fields.

To show that $F=\{r+s\sqrt{2}\mid r,s\in\mathbb{Q}\}$ is a field, we need to verify that F satisfies all the field axioms. Specifically, we need to show that:

- 1. F is closed under addition and multiplication.
- 2. Addition and multiplication are associative and commutative.
- 3. There exist additive and multiplicative identities in F.
- 4. Every element in F has an additive inverse.
- 5. Every non-zero element in F has a multiplicative inverse.
- 6. Multiplication distributes over addition.

Let's go through each of these properties step by step.

1. Closure under addition and multiplication

• Addition: Let $a=r_1+s_1\sqrt{2}$ and $b=r_2+s_2\sqrt{2}$ be two elements of F. Then:

$$a + b = (r_1 + r_2) + (s_1 + s_2)\sqrt{2}$$
.

Since $r_1 + r_2$ and $s_1 + s_2$ are rational numbers (as $\mathbb Q$ is closed under addition), $a + b \in F$.

• Multiplication: Let $a = r_1 + s_1\sqrt{2}$ and $b = r_2 + s_2\sqrt{2}$ be two elements of F. Then:

$$a \cdot b = (r_1 + s_1\sqrt{2})(r_2 + s_2\sqrt{2}) = r_1r_2 + r_1s_2\sqrt{2} + r_2s_1\sqrt{2} + s_1s_2(\sqrt{2})^2$$
.

Simplifying, we get:

$$a \cdot b = (r_1r_2 + 2s_1s_2) + (r_1s_2 + r_2s_1)\sqrt{2}$$
.

Since $r_1r_2+2s_1s_2$ and $r_1s_2+r_2s_1$ are rational numbers (as $\mathbb Q$ is closed under addition and multiplication), $a\cdot b\in F$.

2. Associativity and commutativity

Addition and multiplication are associative and commutative because F is a subset of R, and
addition and multiplication in R are associative and commutative. Thus, these properties are
inherited by F.

3. Additive and multiplicative identities

- Additive identity: The additive identity is 0 = 0 + 0√2, which is in F.
- Multiplicative identity: The multiplicative identity is $1 = 1 + 0\sqrt{2}$, which is in F.

4. Additive inverses

• For any $a=r+s\sqrt{2}\in F$, the additive inverse is $-a=-r-s\sqrt{2}$. Since -r and -s are rational numbers. $-a\in F$.

Section 21: The Field of Quotients of an Integral Domain

5. Multiplicative inverses

- For any non-zero $a=r+s\sqrt{2}\in F$, we need to find a^{-1} such that $a\cdot a^{-1}=1$.
- Let $a^{-1}=\frac{r-s\sqrt{2}}{r^2-2s^2}$. This is well-defined because $r^2-2s^2\neq 0$ (since $\sqrt{2}$ is irrational, $r^2-2s^2=0$ would imply r=s=0, but $a\neq 0$).
- Multiplying a and a^{-1} :

$$(r+s\sqrt{2})\cdot\left(rac{r-s\sqrt{2}}{r^2-2s^2}
ight)=rac{r^2-2s^2}{r^2-2s^2}=1.$$

Thus, $a^{-1} \in F$.

6. Distributivity

 Multiplication distributes over addition in F because F is a subset of R, and distributivity holds in R. Thus, this property is inherited by F.

Conclusion

Since F satisfies all the field axioms, F is a field. It is an example of a quadratic field, which is a field extension of $\mathbb Q$ obtained by adjoining a square root of a non-square integer (in this case, $\sqrt{2}$).

26.4 Lemma For [(a,b)] and [(c,d)] in F, the equations

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$

and

$$[(a,b)][(c,d)] = [(ac,bd)]$$

give well-defined operations of addition and multiplication on F.

Explanation of Well-Defined Operations in the Field of Quotients

Let D be an integral domain and F be its field of quotients. Elements of F are equivalence classes of pairs [(a,b)] where $a,b\in D$ and $b\neq 0$, subject to the equivalence relation:

$$(a, b) \sim (c, d)$$
 if and only if $ad = bc$.

The operations of addition and multiplication in F are defined as:

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)].$$

To claim that these operations are **well-defined**, we must show that if we replace (a,b) and (c,d) with equivalent pairs, the results do not change.

Proof of Well-Definedness

Addition

Suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, meaning:

$$ab' = a'b$$
, $cd' = c'd$.

We want to show:

$$(ad + bc, bd) \sim (a'd' + b'c', b'd').$$

Expanding the equivalence condition:

$$(ad + bc)b'd' = (a'd' + b'c')bd.$$

Expanding both sides:

$$adb'd' + bcb'd' = a'd'bd + b'c'bd$$
.

Since ab' = a'b and cd' = c'd, we substitute:

$$(a'bd)d' + (bcd)b' = (a'bd)d' + (bcd)b'.$$

This confirms the equality, meaning [(ad+bc,bd)]=[(a'd'+b'c',b'd')], so addition is well-defined.

Section 21: The Field of Quotients of an Integral Domain

Multiplication

Similarly, suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, so:

$$ab' = a'b$$
, $cd' = c'd$.

We need to verify:

$$(ac, bd) \sim (a'c', b'd').$$

That is:

$$(ac)b'd' = (a'c')bd.$$

Using ab' = a'b and cd' = c'd, we rewrite:

$$(ab'cd') = (a'bc'd).$$

Since multiplication in an integral domain is associative and commutative, both sides are equal, confirming multiplication is well-defined.

Non-Trivial Examples

- 1. Field of Rational Numbers $\mathbb Q$ as the Field of Quotients of $\mathbb Z$
 - Consider (2, 3) representing ²/₈ and (4, 6) representing ⁴/₆.
 - Since $2 \cdot 6 = 4 \cdot 3$, we have $(2, 3) \sim (4, 6)$.
 - Addition:

$$(2,3) + (1,2) = (2 \cdot 2 + 1 \cdot 3, 3 \cdot 2) = (4+3,6) = (7,6) \Rightarrow \frac{7}{6}$$

Multiplication:

$$(2,3) \cdot (1,2) = (2 \cdot 1, 3 \cdot 2) = (2,6) \Rightarrow \frac{2}{6} = \frac{1}{3}$$

- 2. Field of Rational Functions k(x) as the Field of Quotients of k[x]
 - Consider polynomials (x + 1, x² + 1) and (x² + 2x + 1, x³ + x).
 - The operations are performed as: $(x+1, x^2+1) + (x^2+2x+1, x^3+x) = ((x+1)(x^3+x) + (x^2+2x+1)(x^2+1), (x^2+1)(x^3+x)),$
- Gaussian Rational Numbers O(i)
 - Consider (1+i,2) and (3-i,4) in $\mathbb{Z}[i]$.
 - Their sum:

$$(1+i,2)+(3-i,4)=((1+i)\cdot 4+(3-i)\cdot 2,2\cdot 4)=(4+4i+6-2i,8)=(10+2i,8)\Rightarrow \frac{10+2i}{8}$$

Their product:

$$(1+i,2)\cdot(3-i,4)=((1+i)(3-i),2\cdot4)=(3-i+3i-i^2,8)=(4+2i,8)\Rightarrow\frac{4+2i}{8}.$$

26.5 Lemma The map $i: D \to F$ given by i(a) = [(a, 1)] is an isomorphism of D with a subring D' of F.

Proof For a and b in D, we have

$$i(a+b) = [(a+b,1)].$$

Also,

$$i(a) + i(b) = [(a, 1)] + [(b, 1)] = [(a1 + 1b, 1)] = [(a + b, 1)]$$

while

$$i(a)i(b) = [(a, 1)][(b, 1)] = [(ab, 1)],$$

so i(ab) = i(a)i(b).

It remains for us to show only that i is one-to-one. If i(a) = i(b), then

$$[(a,1)] = [(b,1)],$$

so $(a, 1) \sim (b, 1)$ giving a1 = 1b; that is,

$$a = b$$
.

Thus *i* is an isomorphism of *D* with i[D] = D', and, of course, D' is then a subdomain of *F*.

Explanation of the Isomorphism i:D o F

The function i:D o F defined by

$$i(a) = [(a,1)]$$

embeds D into F, identifying each element $a \in D$ with the fraction $\frac{a}{1}$. We need to show that i is a **ring homomorphism** and that its image forms a **subring** of F.

1. Addition Compatibility:

$$i(a) + i(c) = [(a, 1)] + [(c, 1)] = [(a \cdot 1 + c \cdot 1, 1 \cdot 1)] = [(a + c, 1)] = i(a + c).$$

This shows that addition is preserved.

2. Multiplication Compatibility:

$$i(a) \cdot i(c) = [(a,1)] \cdot [(c,1)] = [(a \cdot c, 1 \cdot 1)] = [(ac,1)] = i(ac).$$

Thus, multiplication is preserved.

3. **Injectivity**: If i(a) = i(b), then

$$[(a,1)] = [(b,1)] \implies a \cdot 1 = b \cdot 1 \implies a = b.$$

So i is injective.

Since i is an injective ring homomorphism, i(D) is a subring of F, which we call D'. This subring consists of elements [(a,1)], which are naturally identified with elements of D within F.

Section 21: The Field of Quotients of an Integral Domain

Non-Trivial Examples

Example 1: Rational Numbers as the Field of Quotients of $\mathbb Z$

Let $D=\mathbb{Z}$, the ring of integers. The field of quotients is $F=\mathbb{Q}$, the field of rational numbers.

• The embedding $i:\mathbb{Z}\to\mathbb{Q}$ is given by:

$$i(n) = [(n,1)] = \frac{n}{1} = n.$$

This maps integers to their usual representation in Q.

· Addition and multiplication are preserved:

$$i(2) + i(3) = [(2,1)] + [(3,1)] = [(2 \cdot 1 + 3 \cdot 1, 1 \cdot 1)] = [(5,1)] = i(5).$$

 $i(2) \cdot i(3) = [(2,1)] \cdot [(3,1)] = [(2 \cdot 3, 1 \cdot 1)] = [(6,1)] = i(6).$

Hence, \mathbb{Z} is isomorphic to its image D' in \mathbb{Q} .

Example 2: Rational Function Field as the Field of Quotients of $\boldsymbol{k}[\boldsymbol{x}]$

Let D=k[x], the ring of polynomials over a field k. The field of quotients is F=k(x), the field of rational functions.

• The embedding $i: k[x] \to k(x)$ is given by:

$$i(f(x)) = [(f(x), 1)] = \frac{f(x)}{1} = f(x).$$

This maps polynomials to their natural form within the field of rational functions.

· Addition and multiplication are preserved:

$$i(x^2+1)+i(x)=[(x^2+1,1)]+[(x,1)]=[(x^2+1+x,1)]=[(x^2+x+1,1)]=i(x^2+x+1).$$
 $i(x^2+1)\cdot i(x)=[(x^2+1,1)]\cdot [(x,1)]=[(x^3+x,1)]=i(x^3+x).$

Hence, k[x] is isomorphic to its image in k(x).

21.5 Theorem Any integral domain D can be enlarged to (or embedded in) a field F such that every element of F can be expressed as a quotient of two elements of D. (Such a field F is a **field of quotients of** D.)

The process of enlarging an integral domain D to a field F such that every element of F can be expressed as a quotient of two elements of D is called the **field of fractions** (or **field of quotients**) of D. This construction generalizes the way the field of rational numbers $\mathbb Q$ is constructed from the integers $\mathbb Z$.

Here are two non-trivial examples of integral domains and their fields of fractions:

Example 1: $\mathbb Z$ and $\mathbb Q$

- Integral domain D: Z, the ring of integers.
- Field of fractions $F: \mathbb{Q}$, the field of rational numbers.
- Explanation:
 - $\circ \mathbb{Z}$ is an integral domain because it is a commutative ring with unity and has no zero divisors.
 - The field of fractions of \mathbb{Z} is \mathbb{Q} , where every element of \mathbb{Q} can be written as a quotient $\frac{a}{b}$, with $a,b\in\mathbb{Z}$ and $b\neq 0$.
 - \circ For example, $rac{3}{4} \in \mathbb{Q}$ is a quotient of the integers 3 and 4.

Example 2: $\mathbb{Q}[x]$ and $\mathbb{Q}(x)$

- Integral domain $D: \mathbb{Q}[x]$, the ring of polynomials with coefficients in \mathbb{Q} .
- Field of fractions $F: \mathbb{Q}(x)$, the field of rational functions with coefficients in \mathbb{Q} .
- Explanation:
 - $\circ \mathbb{Q}[x]$ is an integral domain because it is a commutative ring with unity and has no zero divisors (the product of two non-zero polynomials is non-zero).
 - The field of fractions of $\mathbb{Q}[x]$ is $\mathbb{Q}(x)$, where every element of $\mathbb{Q}(x)$ can be written as a quotient $\frac{f(x)}{g(x)}$, with $f(x), g(x) \in \mathbb{Q}[x]$ and $g(x) \neq 0$.
 - \circ For example, $rac{x^2+1}{x-3}\in \mathbb{Q}(x)$ is a quotient of the polynomials x^2+1 and x-3.

Section 21: The Field of Quotients of an Integral Domain

Example 3: $\mathbb{Z}[i]$ and $\mathbb{Q}(i)$

- Integral domain D: $\mathbb{Z}[i]$, the ring of Gaussian integers (complex numbers of the form a+bi, where $a,b\in\mathbb{Z}$).
- Field of fractions $F: \mathbb{Q}(i)$, the field of Gaussian rationals (complex numbers of the form $\frac{a+bi}{c+di}$, where $a,b,c,d\in\mathbb{Z}$ and $c+di\neq 0$).
- Explanation:
 - $\circ \ \mathbb{Z}[i]$ is an integral domain because it is a commutative ring with unity and has no zero divisors.
 - \circ The field of fractions of $\mathbb{Z}[i]$ is $\mathbb{Q}(i)$, where every element of $\mathbb{Q}(i)$ can be written as a quotient $\frac{a+bi}{c+di}$, with $a+bi, c+di \in \mathbb{Z}[i]$ and $c+di \neq 0$.
 - \circ For example, $rac{1+2i}{3-4i}\in\mathbb{Q}(i)$ is a quotient of the Gaussian integers 1+2i and 3-4i.

Key Observations:

- 1. In each case, the field of fractions F is constructed by taking all possible quotients $\frac{a}{b}$, where $a,b\in D$ and $b\neq 0$.
- 2. The field of fractions is the smallest field containing D, and it generalizes the construction of \mathbb{Q} from \mathbb{Z} .
- These examples demonstrate how integral domains can be embedded into fields, allowing division by non-zero elements.

General Construction of the Field of Fractions

Given an integral domain D, the field of fractions F is constructed as follows:

- 1. Define the set F as the set of equivalence classes of pairs (a,b), where $a,b\in D$ and $b\neq 0$. Two pairs (a,b) and (c,d) are equivalent if ad=bc.
- 2. Define addition and multiplication on F by:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

3. Verify that F satisfies all the field axioms.

This construction ensures that F is a field containing D, and every element of F can be expressed as a quotient of two elements of D.

21.4 Lemma The map $i: D \to F$ given by i(a) = [(a, 1)] is an isomorphism of D with a subring of F.

Yes, the function $i:D\to F$ in the construction of the **field of quotients** is **always** given by:

$$i(a)=[(a,1)]=\frac{a}{1}.$$

Why is this the Standard Definition?

- 1. Natural Inclusion:
 - The field of quotients F consists of elements of the form $[(a,b)]=\frac{a}{b}$ for $a,b\in D,b\neq 0$.
 - To embed D inside F, we identify each element $a \in D$ with the fraction $\frac{a}{1}$, which belongs to F.

2. Ring Homomorphism Properties:

Addition:

$$i(a) + i(c) = [(a,1)] + [(c,1)] = [(a \cdot 1 + c \cdot 1, 1 \cdot 1)] = [(a+c,1)] = i(a+c).$$

Multiplication:

$$i(a) \cdot i(c) = [(a,1)] \cdot [(c,1)] = [(a \cdot c, 1 \cdot 1)] = [(ac,1)] = i(ac).$$

• **Injectivity**: If i(a) = i(b), then:

$$[(a,1)] = [(b,1)] \Rightarrow a \cdot 1 = b \cdot 1 \Rightarrow a = b.$$

This proves i is injective.

3. Subring Formation:

• The image i(D) is a subring of F, consisting of elements of the form [(a,1)]=a/1, which behave just like the elements of D under addition and multiplication.

Alternative Definitions?

In some contexts, the map i could be written differently (e.g., using a different notation for equivalence classes), but it always represents the same concept: identifying elements of D with their natural form in F.

Thus, the definition:

$$i(a)=[(a,1)]=\frac{a}{1}$$

is the canonical choice in the construction of the field of quotients.

Section 21: The Field of Quotients of an Integral Domain

21.5 Theorem Any integral domain D can be enlarged to (or embedded in) a field F such that every element of F can be expressed as a quotient of two elements of D. (Such a field F is a **field of quotients of** D.)

Statement Explanation

Any integral domain D can be **embedded** into a field F such that every element of F is a quotient of two elements of D. This means that F consists of elements of the form:

$$rac{a}{b}, \quad ext{where } a,b \in D, \, b
eq 0.$$

This construction ensures that division is well-defined, allowing us to create a field from any integral domain.

Example 1: The Rational Numbers $\mathbb Q$ as the Field of Quotients of $\mathbb Z$

Step 1: Integral Domain D

Consider $D = \mathbb{Z}$, the ring of integers. It is an integral domain since it has no zero divisors.

Step 2: Constructing the Field of Quotients ${\cal F}$

The field of quotients of \mathbb{Z} is \mathbb{Q} , the field of rational numbers. Every rational number can be written as:

$$\frac{a}{b}$$
, where $a,b\in\mathbb{Z},\,b
eq0$.

This satisfies the definition of a field of quotients.

Step 3: Verification

- The map $i:\mathbb{Z} o\mathbb{Q}$ given by $i(a)=rac{a}{1}$ embeds \mathbb{Z} into \mathbb{Q} .
- Addition and multiplication in Q follow naturally from integer operations.

Example 2: The Rational Function Field k(x) as the Field of Quotients of k[x]

Step 1: Integral Domain D

Consider D=k[x], the ring of polynomials in one variable x over a field k. It is an integral domain because it has no zero divisors.

Step 2: Constructing the Field of Quotients F

The field of quotients of k[x] is the field of rational functions:

$$k(x) = \left\{rac{f(x)}{g(x)} \mid f(x), g(x) \in k[x], \, g(x)
eq 0
ight\}.$$

This field consists of fractions of polynomials, analogous to how $\mathbb Q$ consists of fractions of integers.

Step 3: Verification

- The embedding i:k[x] o k(x) is given by $i(f(x))=rac{f(x)}{1}$, which preserves structure.
- · Addition and multiplication follow the usual fraction rules:

$$\frac{f(x)}{g(x)} + \frac{h(x)}{k(x)} = \frac{f(x)k(x) + h(x)g(x)}{g(x)k(x)}$$
$$\frac{f(x)}{g(x)} \cdot \frac{h(x)}{k(x)} = \frac{f(x)h(x)}{g(x)k(x)}$$

• Every element in k(x) is a quotient of two elements from k[x], confirming that k(x) is the field of quotients of k[x].

Conclusion

In both examples:

- 1. The integral domain D is embedded in a field F.
- 2. Every element of F can be written as a quotient of elements from D.
- 3. F satisfies the field properties while preserving the structure of D.

Thus, these illustrate how any integral domain can be extended to a field of quotients.

Section 21: The Field of Quotients of an Integral Domain

21.6 Theorem Let F be a field of quotients of D and let L be any field containing D. Then there exists a map $\psi : F \to L$ that gives an isomorphism of F with a subfield of L such that $\psi(a) = a$ for $a \in D$.

Explanation of the Claims

Let F be a **field of quotients** of an integral domain D, and let L be any field containing D. The claim states that:

- 1. There exists a map $\psi: F \to L$ that is an **isomorphism** onto a subfield of L.
- 2. The map satisfies $\psi(a) = a$ for all $a \in D$.
- 3. Any field that contains D necessarily contains a **subfield** isomorphic to F.
- 4. Any two fields of quotients of D are **isomorphic**, meaning the field of quotients of D is unique up to isomorphism.

Proof Sketch of the Claims

- Since F is a field of quotients, every element of F is of the form $\frac{a}{b}$ with $a, b \in D, b \neq 0$.
- Define a function $\psi: F \to L$ by:

$$\psi\left(\frac{a}{b}\right) = \frac{a}{b}$$
 (interpreting the fraction in L)

- This function is well-defined because L contains D and allows division by nonzero elements of D.
- ψ preserves addition and multiplication:

$$\psi\left(\frac{a}{b} + \frac{c}{d}\right) = \psi\left(\frac{ad + bc}{bd}\right) = \frac{ad + bc}{bd} = \psi\left(\frac{a}{b}\right) + \psi\left(\frac{c}{d}\right).$$

$$\psi\left(\frac{a}{b} \cdot \frac{c}{d}\right) = \psi\left(\frac{ac}{bd}\right) = \frac{ac}{bd} = \psi\left(\frac{a}{b}\right) \cdot \psi\left(\frac{c}{d}\right).$$

- ψ is injective because if $\psi(a/b) = \psi(c/d)$, then a/b = c/d in F, meaning a/b and c/d were already the same element.
- ψ is an isomorphism onto its image, making $\psi(F)$ a subfield of L.
- This shows that every field L containing D must also contain a subfield isomorphic to F.
- Since F is unique up to isomorphism, any two fields of quotients of D must be isomorphic.

Three Non-Trivial Examples

Example 1: The Field of Rational Numbers in ${\mathbb R}$

- Let $D=\mathbb{Z}$, whose field of quotients is $F=\mathbb{Q}$
- The real numbers $L = \mathbb{R}$ contain \mathbb{Q} .
- The identity function $\psi:\mathbb{Q}\to\mathbb{R}$ given by $\psi(q)=q$ is an **isomorphism** of \mathbb{Q} onto a subfield of \mathbb{R}
- This shows that any field (like \mathbb{R}) that contains \mathbb{Z} also contains a subfield isomorphic to \mathbb{Q} .

Example 2: The Field of Rational Functions in $\mathbb{C}(x)$

- Let $D=\mathbb{C}[x]$, the ring of polynomials over \mathbb{C} .
- The field of quotients of $\mathbb{C}[x]$ is $F = \mathbb{C}(x)$, the field of rational functions.
- The field $L=\mathbb{C}((x))$, the field of **formal Laurent series**, contains $\mathbb{C}(x)$.
- The function $\psi: \mathbb{C}(x) \to \mathbb{C}((x))$ defined by $\psi(f(x)/g(x)) = f(x)/g(x)$ is an isomorphism of $\mathbb{C}(x)$ onto a subfield of $\mathbb{C}((x))$.

Example 3: The p-adic Numbers in \mathbb{Q}_p

- Let $D = \mathbb{Z}_{(p)}$, the **localization** of \mathbb{Z} at a prime p (elements are fractions with denominators not divisible by p).
- The field of quotients of $\mathbb{Z}_{(p)}$ is $F=\mathbb{Q}$.
- The p-adic numbers Q_p contain Q.
- The identity map $\psi: \mathbb{Q} \to \mathbb{Q}_p$ is an **isomorphism** onto a subfield of \mathbb{Q}_p .

Conclusion

- Every field containing an integral domain D contains a subfield isomorphic to its field of quotients.
- 2. The field of quotients F is **unique up to isomorphism**, meaning any two fields of quotients of D are isomorphic.
- 3. The examples illustrate this for rational numbers, rational functions, and p-adic numbers, showing the generality of this result.

Section 21: The Field of Quotients of an Integral Domain

Explanation of Example 2: Rational Function Field in the Field of Formal Laurent Series

Step 1: Define the Integral Domain ${\cal D}$

Let $D=\mathbb{C}[x]$, the ring of polynomials in one variable x over the complex numbers \mathbb{C} . This ring is an **integral domain** because it has no zero divisors.

Step 2: Define the Field of Quotients ${\cal F}$

The field of quotients of $\mathbb{C}[x]$ is the field of rational functions:

$$F=\mathbb{C}(x)=\left\{rac{f(x)}{g(x)}\mid f(x),g(x)\in\mathbb{C}[x],\,g(x)
eq 0
ight\}.$$

This field consists of ratios of polynomials, analogous to how $\mathbb Q$ consists of ratios of integers.

Step 3: Define the Larger Field ${\cal L}$

The field $L = \mathbb{C}((x))$ is the field of **formal Laurent series**, which consists of infinite series of the form:

$$\sum_{n=-N}^{\infty} a_n x^n, \quad ext{where } a_n \in \mathbb{C} ext{ and } N \in \mathbb{Z}.$$

This field allows terms with negative exponents (unlike power series $\mathbb{C}[[x]]$, which only allow nonnegative exponents).

Step 4: Show the Isomorphism

There is an obvious embedding $\psi:\mathbb{C}(x)\to\mathbb{C}((x))$ given by:

$$\psi\left(rac{f(x)}{g(x)}
ight)=f(x)g(x)^{-1},$$

where $g(x)^{-1}$ is expanded as a Laurent series if necessary.

For example, consider:

$$rac{1}{1-x}\in \mathbb{C}(x).$$

In $\mathbb{C}((x))$, we recognize that:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$$

Thus, ψ preserves addition and multiplication, and it is injective because distinct rational functions remain distinct in $\mathbb{C}((x))$. This shows $\mathbb{C}(x)$ embeds as a **subfield** of $\mathbb{C}((x))$.

Explanation of Example 3: Localization of $\mathbb Z$ at a Prime p and p-adic Numbers

Step 1: Define the Integral Domain D

The localization of \mathbb{Z} at a prime p is the ring:

$$D=\mathbb{Z}_{(p)}=\left\{rac{a}{b}\mid a,b\in\mathbb{Z}, b ext{ is not divisible by } p
ight\}.$$

This ring consists of rational numbers with denominators **coprime to** p.

Step 2: Define the Field of Quotients ${\cal F}$

The field of quotients of $\mathbb{Z}_{(p)}$ is simply the field of rational numbers:

$$F=\mathbb{Q}.$$

Every rational number $\frac{a}{b}$ with $a,b\in\mathbb{Z},b\neq0$ can be written as a fraction where the denominator is not divisible by p, making \mathbb{O} the field of quotients.

Step 3: Define the Larger Field ${\cal L}$

The p-adic numbers \mathbb{Q}_p are a completion of \mathbb{Q} with respect to the p-adic valuation.

• The *p*-adic norm $|\cdot|_p$ is defined by:

$$|p^ka/b|_p=p^{-k},\quad ext{where }p\nmid a,b.$$

• The field \mathbb{Q}_p is obtained as the **completion** of \mathbb{Q} with respect to this norm, analogous to how \mathbb{R} is the completion of \mathbb{Q} with respect to the usual absolute value norm.

Step 4: Show the Isomorphism

There is a natural embedding $\psi:\mathbb{Q}\to\mathbb{Q}_p$ given by:

$$\psi(q) = q$$
.

This map preserves arithmetic structure and is injective since $\mathbb Q$ is dense in $\mathbb Q_p$. Therefore, ψ is an **isomorphism onto its image**, meaning $\mathbb Q$ embeds as a subfield of $\mathbb Q_p$.

Conclusion

- 1. Example 2: $\mathbb{C}(x) \subseteq \mathbb{C}((x))$
 - $\mathbb{C}(x)$ (rational functions) embeds in $\mathbb{C}((x))$ (formal Laurent series) because rational functions can be expanded as Laurent series.
- 2. Example 3: $\mathbb{Q} \subseteq \mathbb{Q}_p$
 - \mathbb{Q} embeds in \mathbb{Q}_p (the field of p-adic numbers) via the identity map since \mathbb{Q} is dense in \mathbb{Q}_p .

Both cases demonstrate how any field containing an integral domain also contains a **subfield** isomorphic to its field of quotients, supporting the claim that all fields of quotients of D are unique up to isomorphism.

Section 21: The Field of Quotients of an Integral Domain

21.8 Corollary Every field L containing an integral domain D contains a field of quotients of D.

Three Non-Trivial Examples

Example 1: The Rational Numbers $\mathbb Q$ as the Field of Quotients of $\mathbb Z$, Embedded in $\mathbb R$

- Integral domain: $D=\mathbb{Z}$ (the ring of integers).
- Field of quotients: $F=\mathbb{Q}$ (the field of rational numbers).
- Larger field: $L=\mathbb{R}$ (the field of real numbers).

Verification:

- Every rational number $rac{a}{b}$ (with $a,b\in\mathbb{Z},b
 eq 0$) belongs to \mathbb{R} .
- ullet The map $\psi:\mathbb{Q} o\mathbb{R}$ given by $\psi(q)=q$ is an injective homomorphism
- This shows that $\mathbb Q$ is a **subfield** of $\mathbb R$, and any field containing $\mathbb Z$ (like $\mathbb R$ or $\mathbb C$) also contains a subfield **isomorphic to** $\mathbb O$.

Uniqueness:

• Any field of quotients of $\mathbb Z$ must be isomorphic to $\mathbb Q$, so the construction of $\mathbb Q$ is unique up to isomorphism.

Example 2: The Rational Function Field k(x) as the Field of Quotients of k[x], Embedded in k((x))

- Integral domain: D = k[x] (the ring of polynomials over a field k)
- Field of quotients: F = k(x) (the field of rational functions, i.e., quotients of polynomials).
- Larger field: L=k((x)) (the field of formal Laurent series, which allows negative powers of x).

Verification:

- Every rational function f(x)/g(x) belongs to k((x)) because Laurent series can express rational functions.
- The map $\psi: k(x) \to k((x))$ given by:

$$\psi\left(rac{f(x)}{g(x)}
ight) = f(x)g(x)^{-1}$$

is **injective**, meaning k(x) is embedded as a **subfield** of k((x)).

• Since any field containing k[x] must also contain all fractions f(x)/g(x), any such field contains a subfield isomorphic to k(x).

Uniqueness:

• Any field of quotients of k[x] must be isomorphic to k(x), confirming the uniqueness.

21.8 Corollary Every field L containing an integral domain D contains a field of quotients of D.

Example 3: The Field of p-adic Numbers \mathbb{Q}_p as an Extension of the Field of Quotients of $\mathbb{Z}_{(p)}$

- Integral domain: $D=\mathbb{Z}_{(p)}$, the localization of \mathbb{Z} at p, meaning it consists of fractions $\frac{a}{b}$ where $a,b\in\mathbb{Z}$ and b is not divisible by p.
- Field of quotients: $F=\mathbb{Q}$, since every rational number can be written as a fraction with denominator coprime to p.
- Larger field: $L=\mathbb{Q}_p$, the p-adic numbers, which is a completion of \mathbb{Q} with respect to the p-adic norm.

Verification:

- Every element of $\mathbb Q$ is naturally in $\mathbb Q_p$ because the p-adic numbers extend the rational numbers.
- The map $\psi:\mathbb{Q} o\mathbb{Q}_p$ given by $\psi(q)=q$ is injective, showing \mathbb{Q} is a subfield of \mathbb{Q}_p .
- Since any field containing $\mathbb{Z}_{(p)}$ must contain all fractions a/b, it contains a subfield isomorphic to \mathbb{Q} .

Uniqueness:

• Any field of quotients of $\mathbb{Z}_{(p)}$ must be isomorphic to \mathbb{Q} , confirming that \mathbb{Q} is the unique fraction field.

Conclusion

- 1. Every field L that contains D necessarily contains a subfield isomorphic to the field of quotients F.
- 2. Any two fields of quotients of D are isomorphic.
- 3. Examples demonstrate this general principle:
 - $\mathbb{Q} \subseteq \mathbb{R}$ (Rational numbers inside real numbers).
 - $k(x) \subseteq k((x))$ (Rational functions inside Laurent series).
 - $\mathbb{Q} \subseteq \mathbb{Q}_p$ (Rationals inside p-adic numbers).

This confirms that the field of quotients of D is always uniquely determined up to isomorphism and embeds naturally in any larger field containing D.