Chemie Aufschriebe

TornaxO7

6. Oktober 2020

Inhaltsverzeichnis

7 Kunststoffe				
	7.1	Staudingers Theorie der Makromoleküle		
	7.2	Thermoplaste		
	7.3	Duroplaste		
	7.4	Elastomere		
	7.5	Polymerisation		

7 Kunststoffe

7.1 Staudingers Theorie der Makromoleküle

Kunststoffe bestehen aus Makromolekülen (Polymeren), die aus Monomeren aufgebaut sind.

Eintelung der Polymere:

Umgewandelte Naturstoffe	Kunststoffe
Zelluloid	Silikone
Schießbaumwolle	PVC (Polyvenuelchlorid)
	PET
	PE
	Styropor
	PP
	PP
	PU
	Polyester
	Elastrat
	PTFE
	PS
	PVC
	Zelluloid

7.2 Thermoplaste

Eigenschaften:

- Werden beim erwärmen leicht oder schmelzen.
- Lösen sich teilweise in Aceton oder quellen (aufquellen).

Vorteile:

- Gute Verarbeitungsmöglichkeiten: Schmelzen, dann pressen, spritzen, gießen (und extruhieren: Form auspressen(?))
- Gute Wiederverwertbarkeit: Einschmelzen der sortenreinen Kunststoffe.

<u>izze:</u>			

Abbildung 1: Skizze von Thermoplaste

Erklärung:

Sie bestehen aus linearen oder wenig verzweigten Makromolekülen und beim erwärmen werden die Zwischenmolekularenkrüfte teilweise überwunden.

Die Ketten können aneinander vorbei gleiten.

Manche Lösungsmittel können sich zwischen den Ketten schieben \to Kunststoff quillt auf oder löst sich auf.

Eselsbrücke

Thermoplaste verformen sich bei hoher Temperatur.

7.3 Duroplaste

Eigenschaften:

- Zersetzen sich beim erwärmen, ohne zu schmelzen.
- unlöslich in Lösungsmitteln.
- Formbeständiger und widerstandsfähiger Kunststoff, aber:
 - Schwer recyclebar
 - schwer zu verarbeiten: Werkstücke müssen in der Form synthetisiert werden, anschließend nur mechanische Bearbeitung (Bohren, Sägen, Schleifen, Steckdosenabdeckung, etc.)

Skizze:

Abbildung 2: Dreidimensionales Netz

Erklärung:

- Duroplaste bestehen aus stark verzweigten Ketten, beim starkem erhitzen werden Atombindungen aufgebrochen → Der Stoff zersetzt sich.
- Manche Lösungsmittel schieben sich in das Netz, sodass manche Duroplaste aufquellen können.

Eselsbrücke

Duroplaste haben eine gute durability (Haltbarkeit).

7.4 Elastomere

Eigenschaften:

- Biegbar/Elastisch und ist reversible (springt zurück in seine ursprüngliche Form)
- Beim erhitzen zersetzen ohne zu schmelzen.

Skizze:

Abbildung 3: Skizze Elastomere

Erklärung:

Elastomere bestehen aus weitmaschtigen Makromolekülen. (Rest ist gleich wie Duroplaste)

Eselsbrücke

Elastomere sind elastisch.

7.5 Polymerisation

Versuch: Herstellung von Polysterol

Skizze:

Beobachtung:

- Sidet beim erhitzen (auch wenn die Flamme weggenommen wird)
- Viskosität nimmt zu
- Schäumt beim siden
- aufsteigende Dämpfe, Kondensierun im Steigrohr

<u>Definition</u>: Polymerisation

Verknüpfen kleiner Molekülen mit Doppelbindung zu einem Makromoleküle unter Verlust der Doppelbindung.

Abbildung 4: Skizze Polymerisation

$\underline{Gesamtreaktion:}$

$\underline{Reaktions mechanismus:}$

1. Bildung von Radikalen:

Es spaltet sich auf, weil die Peroxidgruppe sehr instabil ist.

2. Startreaktion

3. Kettenreaktion/Kettenwachstum:

$\underline{4.\ Kettenabbruch:}$

Verschiedene Möglickeiten, z.B. Rekombination:

Dibenzoylperoxid ist hier Starter, beziehungsweise Radikalbildner und die Zugabe von vielen Startern führt zu kürzeren Kettenlängen, da viele Ketten gestartet werden. (Die Kette von der Gesamtreaktion)

Bemerkung / Beispiele zu Polymerisation

a) Bekannte Polymerisation

bekannte Folymerisation						
Name	Monomer	Polymermolekül	Einsatzbei- spiel			
Polyethen (PE)	$\begin{array}{c} H \\ C \longrightarrow C \\ \end{array}$	$\begin{bmatrix} & H & H \\ & & \\ & & \\ & & \end{bmatrix}_n$	Plastiktüten			
Polypropen (PP)	$ \begin{array}{ c c c } & H & H \\ & & \\ & & \\ H & & \\ & & $	$\begin{bmatrix} H & CH_3 \\ & & \\ & & \\ & & \end{bmatrix}_n$	Flaschende- ckel, Brotdosen			
Polyvinyl- chlorid (PVC)	H C C)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rohrleitungen, Vinylböden, Schallplatten			
Polytetra-fluorethen (PTFE)	F C F F	$\begin{bmatrix} \overline{F} & \overline{F} \\ & \\ & \\ \underline{F} & \underline{F} \end{bmatrix}_n$	Pfannenbe- schichtung (Teflon), Funktions- kleidung (Goretex)			

b) Amorph Teilkristallin

- Amorphe Kunststoffe: Glasartig, transparent
- Teilkristalline Kunststoffe: Mechanisch Stabiler, nicht klar durchsichtig (milchig), wärmebeständig

c) Weichmacher

Kleine Moleküle die sich zwischen die Ketten einlagern können \rightarrow Mehr Abstand zwischen den Ketten \rightarrow Geringere zwischenmolekulare Kräfte zwischen den Ketten \rightarrow Bessere Verschiebbarkeit der Ketten gegeneinander \rightarrow Kunststoff wird weicher Problem:

• Weichmachermoleküle können wieder leicht aus den Ketten rausgehen: Weichmachermoleküle können schädlich sein für Mensch und Umwelt

Amorph Teilkristallin Kristalling Zunahme der Erweichungstemperatur Meschanische Stabilität / Dichte

Zunahme der Lichtdurchläsigkeit und Quellbarkeit

Beispiele: Low - Density Polyethen, PPEPP

High Density Polyethen

Abbildung 5: amorph-teilkristallin-kristallin-Eigenschaften-Pfeile

- Weichmacher wird spröder, weil der Weichmacher raus ist
- d) Monomere mit konjugierten Doppelbindungen Bespiel:

Man spricht von einer 1,4 — Verknüpfung. Es entsteht ein ungesättigtes Polymer \to Weitere Vernutzung möglich zum Elastomer oder Duroplast

06.10.2020

Das ganze ist ein Thermoplast, weil es keine Verzweigung hat. z.B. mit Styrol (Buna):

Die Verknüpfungen könnten beliebig lang sein und dadurch ist dieser Kunststoff elastisch. Je nach vernetzungsgrad bildet sich ein Elastromer oder ein Duroplast. Naturkautschuk:

Polymer von Isopren

Durch Vulkanisieren (Vernetzung durch Schwefelketten) ensteht Gummi.

e) Legosteine bestehen aus ABS (Acrylnitril — Butadienstyrol)

Butadienstyrol

Polymere, die aus verschiedenen Monomeren aufgebaut sind, nennt man Copolymere. Sie ermöglichen vielfältige Beeinflussung der Kunststoffe.