Ayrık İşlemsel Yapılar

Hafta 3

Prof.Dr. Nilüfer YURTAY

Cebirsel Yapılar

3.1 İşlem ve Özellikleri

3.1.1.Giriş

A boş olmayan bir küme ve

 $f : A \rightarrow A$ bir fonksiyon ise f ye A da bir birli işlem denir.

Eğer $f: A \times A \longrightarrow A$ bir fonksiyon ise f ye A da bir ikili işlem denir.

Benzer şekilde;

 $f: A \times A \times \cdots \times A \longrightarrow A$ bir fonksiyon ise f'ye A'da bir n-li işlem denir.

Örnek 3.1

Bir A kümesinin tüm alt kümelerinin ailesi P(A) olsun. A kümesinin bir X alt kümesinin tümleyeni A' olsun. Bu durumda

 $f: P(A) \rightarrow P(A)$

fonksiyonu P(A) ailesinde tanımlı bir işlemdir.bu işleme tümleme adı veriliyordu.

Örnek 3.2

 $A = \{0,1,2\}$ olsun. $f: A \times A \longrightarrow A$ fonksiyonu şöyle verilsin: $f: (0,0) \longrightarrow 0, (0,1) \longrightarrow 1, (1,2) \longrightarrow 0, (2,1) \longrightarrow 0$ Bu durumda f, A da bir ikili işlemdir.

İkili işlemleri f, g harfi yerine genelde *, \otimes , ?, \bigoplus , $, \circ$, * gibi sembollerle gösterilir. İkili işlemleri elemanların ortasına yazarak gösterilirler, örneğin bir önceki örnekte f (0,0) = 0 yerine kısaca 0f0 = 0 yazacağız. Eğer f harfi yerine * sembolu kullanılırsa bu ifade 0 *0 =0 şeklinde yazılır.

Örnek 3.3

Bir A kümesinin kuvvet kümesi P(A) üzerinde tanımlanan kesişim (\cap) ve birleşim (\cup) işlemleri birer ikili işlemdir.

$$\begin{array}{l} \cap: P(A) \times P(A) \longrightarrow P(A) \\ \cup: P(A) \times P(A) \longrightarrow P(A) \end{array}$$

Örneğin A={0,1} olarak verilsin.

 $P(A)=\{\emptyset, \{0\}, \{1\}, \{0,1\}\} \text{ dir. } (x,y) \in P(A) \text{ olduğuna göre, } (x,y) \text{ ikilisinin } \cap \text{ fonksiyonundaki görüntüsü } \cap (x,y) ya da x \cap y dir. Aşağıdaki tabloda } \cap \text{ işleminin A kümesi üzerindeki çizelgesi verilmiştir.}$

\cap	Ø	{0}	{1 }	{0,1}
Ø {0} {1} {0,1}	Ø	Ø	Ø	Ø
{0}	Ø	{0}	Ø	{0}
{1}	Ø	Ø	{1}	{1}
{0,1}	Ø	{0}	{1}	{0,1}

3.1.2 İşlemin Özellikleri

f, A'da bir ikili işlem olsun. f'yi * sembolü ile gösterelim.

Her a, $b \in A$ için a $*b \in A$ oluyorsa * işlemine kapalıdır denir. İşlemin tanımından anlaşılacağı gibi aslında bir işlem kapalı olmalıdır.

Örneğin A={0,1,2} olsun. o işlemi aşağıdaki gibi tanımlanmaktadır. Kapalı bir işlemdir.

0	0	1	2	
0	2	0	1	
1	0	1	2	
2	1	2	0	

Her a, b, c ∈ A için

$$(a * b) * c = a * (b * c)$$

önermesi doğruysa * işleminin birleşme özelliği vardır veya kısaca * işlemi birleşmelidir denir.

Örneğin tamsayıların Z kümesinde tanımlı bir * işlemi aşağıdaki gibi verilsin:

- *:ZXZ→Z
- *: $(x,y) \rightarrow x+y-xy$

Bu işlemin birleşme özelliği olup olmadığını inceleyelim:

∀x,y,z∈Z için,

- *(*(x,y),z)=*(x*y*z)=(x*y)*z=(x+y-xy)*z
 - = x+y-xy+z-(x+y-xy)z
 - = x+y-xy+z-xz-yz+xyz
 - = x+y+z-xy-xz-yz+xyz
 - = x+y+z-yz-xy-xz+xyz
 - = x+y+z-yz-x(y+z-yz)
 - =x+(y*z)-x(y*z)
 - =x*(y*z)
 - =*(x,*(y,z)) elde edilir. Bu durumda * işleminin birleşme özelliği olduğu görülür.

Her a, $b \in A$ için

$$(a * b) = (b * a)$$

önermesi doğruysa * işleminin değişme özelliği vardır veya kısaca * işlemi değişmelidir denir.

Örneğin aşağıdaki çizelgede verilen ve $\{0,1,2\}$ kümesinde tanımlı olan o işleminin değişme özelliği varken, * işleminin ise yoktur:

0	0	1	2	
0	0	1	2	
1	1	0		
2	2			

*	0	1	2
0	0	1	2
1	2	0	1
2	1	2	•

Her a ∈ A için

$$a*e=a$$
 ve $e*a=a$

şartını sağlayan bir e ∈ A varsa bu elemana * işleminin birim (etkisiz) elemanı denir. Örneğin A = {e, a, b, c} kümesi üzerinde tanımlanan *. işleminin işlem tablosu aşağıdaki gibi olsun.

*	е	а	b	С
е	е	а	b	С
а	a	b	С	e
b	b	С	е	а
C	С	e	а	b

Bu tablodan e nin birim olduğu hemen anlaşılır. Ayrıca tablo köşegene göre simetrik de olduğundan, işlem değişmelidir.

* işlemi birim elemanı e olan bir işlem olsun. Eğer, bir a ∈ A için

$$a * b = e$$
 ve $b * a = e$

şartını sağlayan bir $b \in A$ varsa bu b elemanına a elemanının * işlemine göre tersi (kısaca tersi) denir ve genelde a^{-1} ile gösterilir.

Teorem

*, A da bir ikili işlem olsun. A da * işleminin etkisiz elemanı varsa tektir.

İspat: e ile e ', A nin * işlemine göre iki etkisiz elemanı olsunlar. e etkisiz elemanı olduğundan, ∀a € A için;

$$a * e = e * a = a$$

dır. Eğer a = e' alınırsa e' * e = e * e' = e' bulunur. Aynı şekilde e' etkisiz eleman olduğundan, $\forall a \in A$ için;

$$a * e' = e' * a = a$$

dır. Eğer a=e alınırsa e*e'=e'*e=e bulunur. Yukarıda elde edilen eşitlikler karşılaştırılırsa e=e' olduğu anlaşılır.

Teorem

, A da birleşmeli bir ikili işlem ((A,) bir yarı grup) ve etkisiz elemanı e olsun. Bu takdirde bir a \in A nın tersi varsa tektir.

İspat: a € A nın tersinin a₁ ile a₂ olduğunu kabul edelim. Bu takdirde,

$$a * a_1 = a_1 * a = e ve a * a_2 = a_2 * a$$

eşitlikleri sağlanır. Birleşme özelliği kullanılarak;

$$a_2*(a* a_1) = a_2*e$$

$$\rightarrow$$
 (a₂*a)* a₁ = a₂

$$\rightarrow e * a_1 = a_2$$

 \rightarrow a₁ = a₂ elde edilir.

Örnek 3.4

Z tam sayılar kümesinde a * b = max{ a, b} ile tanımlı işlemin özelliklerini inceleyiniz. \forall a,b \in Z için,

$$a * b = \max\{a, b\} = \begin{cases} a; & a \ge b \text{ ise,} \\ b; & a < b \text{ ise} \end{cases}$$

ile tanımlı işlemin değişme özelliğinin sağlandığını görmek kolaydır.

a, b, c \in Z alalım. Genelliği bozmadan, a \le b \le c kabul edebiliriz.

$$max{b,c} = c$$
, $max{a,c} = c$, $max{a,b} = b$ ve $max{b,c} = c$ olduğundan,

- a * (b*c) = a * c = c ve (a * b) * c = b * c = c eşitliklerinden birleşme özelliği sağladığı görülür.
- * işleminin, Z de birim elemanı yoktur. Gerçekten, $\forall a \in Z$ için, $a * e = max\{a, e\} = a$ olacak şekilde bir e $\in Z$ bulunamaz. Şu halde, bir elemanın tersinden de söz edemeyiz.

Örnek 3.5

Z de, a * b = a + b + ab ile tanımlı * işleminin varsa birim elemanını bulunuz. Tersi bulunamayan tam sayıları bulunuz.

 $\forall a \in Z$ için, a * e = e * a = a + e + ae = a olacak şekilde bir $e \in Z$ bulunup bulunamayacağını araştıralım. Yukarıdaki eşitlikten; e(1+a)=0 bulunur. Şu halde her a tam sayısı için, eşitlikleri sağlayan bir e tam sayısı (birim) olarak e=0 alınabilir.

Şimdi bir a tam sayısının * işlemine göre tersini araştıralım: a * x = x * a = a + x + ax = e = 0 olması için, a + (1 + a) x = 0 \rightarrow (1 + a) x = - a bulunur. Böyle bir x \in Z bulunabilmesi için, a \neq -1 olması gerekir. Bu takdirde a nın tersi, a -1 = $-\frac{\alpha}{1+\alpha}$ olur. a = -1 in ise tersi yoktur.

3.2 Cebirsel Yapılar

A boş olmayan bir küme ise A x A dan A ya bir fonksiyona. A da bir ikili işlem ve (A, *) ikilisine de bir cebirsel yapı denir.

- *, A da bir ikili işlem ve a, b ∈ A olsun. (a, b) nin * işlemi altındaki görüntüsünü a*b ile gösterelim. Fonksiyon tanımından, işlemin şu özellikleri olduğu anlaşılır:
 - ∀a, b ∈ A da bir a* b elemanı var ve
 - bu eleman tek türlü olarak belirlidir.

Bu özelliklerden birincisine işlemin kapalılığı, ikincisine de iyi tanımlılığı denir.

Örneğin $+: Z \times Z \longrightarrow Z$ ve $\cdot: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ birer ikili işlemdir. O halde (Z, +) ve (\mathbb{N}, \cdot) aynı türden sistemlerdir.

Boş olmayan bir S kümesi üzerinde tanımlanan * işleminin birleşme özelliği varsa (S, *) sistemine bir yarıgrup denir. Birim elemanı olan yarıgruplara da monoid denir. Örneğin (N, +), (N, ·), (R, +), (R⁺,·) sistemleri birer yarıgruptur.

3.2.1 Grup

G boş olmayan bir küme ve *, G'de bir ikili işlem olsun. Eğer aşağıdaki dört şart sağlanıyorsa (G, *) sistemine bir grup denir.

- i) Her a, b ∈ G için a * b ∈ G. (Kapalılık)
- ii) Her a, b, c \in G için (a * b) * c = a * (b * c). (Birleşme)
- iii) Her a ∈ G için a * e = e * a = a olacak şekilde e ∈ G vardır. (Birim eleman)
- iv) Her $a \in G$ için a * b = b * a = e olacak şekilde $b \in G$ vardır. (Ters eleman)

Bunlara ilaveten eğer

v) Her a, $b \in G$ için a *b = b *a (Değişme) özelliği varsa (G, *) sistemine bir abelyen (değişmeli) grup denir.

Örnek 3.6

Q⁺ yani pozitif rasyonel sayılar kümesi için

 $\forall x,y \in Q^+$ için xoy=(xy)/2 olarak tanımlandığına göre, (Q+,o) yapısının bir grup olup olmadığını araştıralım.

i)
$$\forall x,y \in Q^+$$
 $\Rightarrow xy \in Q^+$
 $\Rightarrow (xy)/2 \in Q^+$
 $\Rightarrow (xoy) \in Q^+$

olduğundan (Q+,o) yapısı kapalıdır.

ii)
$$\forall x,y,z \in Q^+$$
 $\Rightarrow (xoy)oz=(xy/2)oz=((xy)z/4)=(x(yz)/4)$
= $xo(yz/2)=xo(yoz)$

olduğundan o işleminin birleşme özelliği de vardır.

iii)
$$\forall x \in Q^+$$
, $xoe=x \Leftrightarrow (xe/2)=x \Leftrightarrow xe=2x \Leftrightarrow e=2$

 $\forall x \in Q^+$, xo2=(2x/2)=x olduğundan $\forall x \in Q^+$, xo2=2ox=x dir. Öyleyse Q^+ kümesinin o işlemine göre etkisiz elemanı 2'dir.

iv)
$$\forall x \in Q^+$$
, $\exists y \in Q^+$ için $xoy=2$ $\Leftrightarrow y=4/x$ dir.

 $\forall x \in Q^+$ için (4/x)ox=((4/x).x)/2=2 olduğundan $\forall x \in Q^+$ için xo(4/x)=(4/x)ox=2 dir. Öyleyse Q^+ kümesinin o işlemine göre tersi vardır ve 4/x dir.

Grup aksiyonları sağlandığından ((Q^+ ,o) yapısı bir gruptur. Bu grup için değişme özelliği olduğu da gösterilebilir. Dolayısıyıyla (Q^+ ,o) yapısı abelyen gruptur.

Teorem (G, *) bir grup olsun.

- a) G'nin birim elemanı yegânedir.
- b) Her elemanın sadece bir tane tersi vardır.
- c) Her $a \in G$ için $(a^{-1})^{-1} = a$ dır.
- d) Her a, $b \in G$ için $(a * b)^{-1} = b^{-1} * a^{-1}$ dir.

(G, *) birim elemanı e olan bir grup ve $n \in N$ olsun. Her $a \in G$ için:

a)
$$a^1 = a$$
,

b)
$$a^2 = a * a, a^3 = a * a * a, ..., a^n = a^{n-1} * a$$
 (n > 2)

c)
$$a^0 = e^{-\frac{1}{2}}$$

d)
$$a^{-n} = (a^n)^{-1}$$
 $(n > 1)$

şeklinde tanımlamalar yapılabilir. Bu tanımlar çarpımsal gösterim şekli içindir. Toplamsal gösterim şeklinde grup işlemi + ile ve bir a elemanının tersi —a ile gösterilir. Bu durumda yukardaki tanımlar

$$1 \cdot a = a$$
, $na = (n - 1)a + a$, $0 \cdot a = e$, $(-n)a = -(na)$ şeklinde verilir.

Teorem

(G,*) bir grup ve m, $n \in \mathbb{Z}$ olsun. Bu durumda her $x \in G$ için $(x^m)^n = x^{mn}$ ve $x^m * x^n = x^{m+n}$ dir.

(G, *) bir grup ve $\emptyset \neq H \subseteq G$ olsun. Eğer (H, *) yapısı bir grup ise (yani H kümesi de aynı * işlemine göre grup oluyorsa) H'ye G'nin bir altgrubu denir. Örneğin (Z, +) grubu $(\mathbb{R}, +)$ grubunun altgrubudur

Teorem

Herhangi bir alt grupta, etkisiz eleman esas gruptaki etkisiz elemana eşittir. Alt grubun kümesine ait bir elemanın grup işlemine göre tersi bu elemanın esas grupta grup işlemine göre tersine eşittir.

3.2.2 Halka

Boş olmayan bir H kümesi üzerinde + ve . ikili işlemleri tanımlansın. Eğer aşağıdaki şartlar sağlanıyorsa (H, +, $_{-}$) iki işlemli cebirsel yapısına bir halka denir.

- a) (H, +) bir abelyen gruptur.
- b) (H, .) bir yarı gruptur.
- c) . işleminin + üzerine dağılma özelliği vardır.

Örnek 3.7

H={n,y} olsun. H kümesi üzerinde + ve . işlemleri aşağıdaki çizelgelerle tanımlanmış olsun. (H,+,.) yapısı bir halkadır.

Bir (H,+,.) halkasında, H kümesinin toplama işlemine göre etkisiz elemanına halkanın sıfırı denir ve 0 veya e ile gösterilir. H'ın bir x elemanının toplama işlemine göre tersi –x ile ifade edilir.

Teorem

(H,+,.) halkasının sıfırı 0 olduğuna göre ∀x∈H için x.0=0.x=0 dır.

Teorem

(H,+,.) yapısı bir halka olsun. $\forall x \in H$ için -(-x)=x dir.

- i) $\forall x,y \in H$ için -(x+y)=(-x)+(-y) dir.
- ii) $\forall x,y \in H$ için x.(-y)=(-x).y=-(xy) dir.
- iii) ∀x,y∈H için (-x).(-y) =xy dir

Bir (H,+,.) halkasında . işleminin değişme özelliği varsa halkaya değişmeli halka denir. Benzer şekilde . işlemine göre etkisiz eleman varsa halkaya birimli halka adı verilir.

3.2.3 Cisim ve Vektör Uzayı

Değişmeli ve birimli bir (F,+,.) halkasında halkanın sıfırı hariç F nin diğer her elemanının çarpma işlemine göre tersi varsa bu halkaya cisim denir. Bu tanıma göre, aşağıdaki özelliklerin (F,+,.) yapısında sağlanması yapının cisim olması için aranacak olan şartlardır.

- a) (F, +) bir abelyen gruptur.
- b) (F-{0},...) bir abelyen gruptur.
- c) . işleminin + üzerine dağılma özelliği vardır.

Rasyonel sayılar kümesini Q ile gösterirsek (Q,+,.) halkası bir cisimdir. Reel sayılar kümesi için de (\mathbb{R} ,+,.) yapısı bir cisimdir.

Son olarak vektör uzayı için tanım ve örnek vererek bu haftaki dersimiz tamamlayalım:

(v,⊕) değişmeli grup ve (F,+,.) bir cisim olsun.

 \otimes :FxV \rightarrow V

⊗:(a,v)→a⊗v dış işlemi aşağıdaki özellikleri sağlıyorsa V'ye (F,+,.) cismi üzerinde vektör uzayı denir.

- V1) $\forall a \in F \text{ ve } \forall v \in V \text{ için } a \otimes v \in V \text{ dir.}$
- V2) $\forall a,b \in F$ ve $\forall u,v \in V$ için $a \otimes (u \oplus v) = (a \otimes u) \oplus (a \otimes v)$ dir.
- V3) $\forall a,b \in F \text{ ve } \forall v \in V \text{ için } (a+b) \otimes v = (a \otimes v) + (b \otimes v) \text{ dir.}$
- V4) $\forall a,b \in F \text{ ve } \forall v \in V \text{ için } (a.b) \otimes v = a \otimes (b \otimes v) \text{ dir.}$
- V5) 1∈F ve \forall v∈V için 1 \otimes v=v dir.

(F,+,.) cismi üzerindeki V vektör uzayı, $((v,\oplus),(F,+,.),\otimes)$ biçiminde gösterilir.

Örnek olarak;

 $V=\{(x,y)| x,y \in \mathbb{R}\}$ olsun.

 $\forall (x,y),(u,v) \in V \text{ için } (x,y) \oplus (u,v) = (x+u,y+v)$

 $\forall a \in R \ \text{ve } (x,y) \in V \ \text{için } a \otimes (x,y) = (a.x,a.y) \ \text{olduğuna göre } V' \text{nin } (R,+,.) \ \text{cismi } \ddot{\text{uzerinde vektör uzayı}} \ \text{olduğu gösterilebilir.}$ Örgün eğitim saatimizde bu gösterimi gerçekleyeceğiz.

1.

o	0	1	2	
0	0	0	0	
1	0	1	2	
2	0	2		

Yukarıdaki çizelgeye göre o işlemi ile tanımlanmış olan işlem hangi kümede tanımlıdır? Bu o fonksiyonunu venn şeması ile belirtiniz.

- 2. 4 elemanlı bir küme üzerinde, kaç tane değişme özelliği olan farklı işlem tanımlanabilir?
- 3. (G, *) bir grup olsun. Her a, $b \in G$ için $(a * b)^2 = a^2 * b^2$ ise G'nin abelyen grup olup olmadığını gösterin.

Kaynaklar

F.Selçuk, N. Yurtay, N. Yumuşak, Ayrık İşlemsel Yapılar, Sakarya Kitabevi, 2005.

İ.Kara, Olasılık, Bilim Teknik Yayınevi, Eskişehir, 2000.

"Applications of Discrete Mathematics", John G. Michaels, Kenneth H. Rosen, McGraw-Hill International Edition, 1991.

"Discrete Mathematics", Paul F. Dierker and William L.Voxman, Harcourt Brace Jovanovich International Edition, 1986.

"Discrete Mathematic and Its Applications", Kenneth H. Rosen, McGraw-Hill International Editions, 5th Edition, 1999.

"Discrete Mathematics", Richard Johnson Baugh, Prentice Hall, Fifth Edition, 2001.

"Discrete Mathematics with Graph Theory", Edgar G. Goodaire, Michael M. Parmenter, Prentice Hall, 2nd Edition, 2001.

"Discrete Mathematics Using a Computer", Cordelia Hall and John O'Donnell, Springer, 2000.

"Discrete Mathematics with Combinatorics", James A. Anderson, Prentice Hall, 2000.

"Discrete and Combinatorial Mathematics", Ralph P. Grimaldi, Addison-Wesley, 1998.

"Discrete Mathematics", John A. Dossey, Albert D. Otto, Lawrence E. Spence, C. Vanden Eynden, Pearson Addison Wesley; 4th edition 2001.

[&]quot;Soyut Matematik", S.Aktaş, H. Hacısalihoğlu, Z.Özel, A. Sabuncuoğlu, Gazi Ünv. Yayınları, 1984, Ankara.

[&]quot;Applied Combinatorics", Alan Tucker, John Wiley&Sons Inc, 1994.

[&]quot;Essence of Discrete Mathematics", Neville Dean, Prentice Hall PTR, 1st Edition, 1996.

[&]quot;Mathematics: A Discrete Introduction", Edvard R. Schneiderman, Brooks Cole; 1st edition, 2000.

[&]quot;Mathematics for Computer Science", A.Arnold and I.Guessarian, Prentice Hall, 1996.

[&]quot;Theory and Problems of Discrete Mathematics", Seymour Lipschuts, Marc. L. Lipson, Shaum's Outline Series, McGraw-Hill Book Company, 1997.

[&]quot;2000 Solved Problems in Discrete Mathematics", Seymour Lipschuts, McGraw-Hill Trade, 1991.