Exercise 2.1 Prove the "homogeneous Nullstellensatz," which says if $\mathfrak{a} \subseteq S$ is a homogeneous ideal, and if $f \in S$ is a homogeneous polynomial with deg f > 0, such that f(P) = 0 for all $P \in Z(\mathfrak{a})$ in \mathbf{P}^n , then $f^q \in \mathfrak{a}$ for some q > 0.

Solution: Let \mathfrak{a} be a homogeneous ideal of $k[x_0,\ldots,x_n]$. Then in \mathbf{P}^n , we have that

$$Z(\mathfrak{a}) = \left\{ P \in \mathbf{P}^n \mid \text{For all } f \in \mathfrak{a}, f(P) = 0 \right\}$$

while in \mathbf{A}^{n+1} , we have that

$$Z'(\mathfrak{a}) = \Big\{ Q \in \mathbf{A}^{n+1} \ \bigg| \ \text{For all} \ f \in \mathfrak{a}, f(Q) = 0 \Big\}.$$

We can write a surjective map $\pi: Z'(\mathfrak{a}) \to Z(\mathfrak{a})$ sending an affine point to its projective equivalence class. In addition, for a projective point $P \in Z(\mathfrak{a})$, we can observe that $\pi^{-1}(P) \subset Z'(\mathfrak{a})$ (the elements of P's equivalence class).

Thus, if f is homogeneous with a nonzero degree and f(P) = 0 for all $P \in Z(\mathfrak{a})$, then f(Q) = 0 for all $Q \in Z'(\mathfrak{a})$. By the usual Nullstellensatz, this implies that $f^q \in \mathfrak{a}$ for some q > 0, which proves the result.

Exercise 2.2 For a homogeneous ideal $\mathfrak{a} \subseteq S$, show that the following conditions are equivalent:

- (i.) $Z(\mathfrak{a}) = \emptyset$ (the empty set);
- (ii.) $\sqrt{\mathfrak{a}} = \text{either } S \text{ or the ideal } S_+ = \bigoplus_{d>0} S_d;$
- (iii.) $\mathfrak{a} \supseteq S_d$ for some d > 0.

Solution:

- (i) \Longrightarrow (ii). Suppose $\mathfrak a$ is a homogeneous ideal and $Z(\mathfrak a)=\varnothing$. By the homogeneous Nullstellensatz, it is vacuously true that for every $f\in \oplus_{d>0}S_d$, f(P)=0 for all $P\in Z(\mathfrak a)$, and so for every such f there exists a q>0 such that $f^q\in \mathfrak a$. Therefore, $\oplus_{d>0}S_d\subseteq \sqrt{a}$. If $\mathfrak a$ contains a unit, then $\sqrt{\mathfrak a}=S$. If $\mathfrak a$ does not contain a unit, then $\sqrt{\mathfrak a}\subseteq \oplus_{d>0}S_d\Longrightarrow \oplus_{d>0}S_d=\sqrt{\mathfrak a}$.
- $(ii) \implies (iii)$. Suppose $\sqrt{a} = S$. Then this implies that $1 \in \mathfrak{a} \implies \mathfrak{a} = S$. Hence $S_d \subset \mathfrak{a}$.

Alternatively, suppose $\sqrt{a} = \bigoplus_{d>0} S_d$. Then for every $f \in \bigoplus_{d>0} S_d$, there exists a q>0 such that $f^q \in \mathfrak{a}$. In particular, there exist r_1, \ldots, r_n such that

$$x_1^{r_1},\ldots,x_n^{r_n}\in\mathfrak{a}.$$

Take $d = r_1 + \cdots + r_n$. We claim that $S_d \subset \mathfrak{a}$. To see this, note that every degree-d homogeneous polynomial is of the form

$$\sum_{k\geq 0} c_k x_1^{\alpha_1(k)} \cdots x_n^{\alpha_n(k)}$$

where only finitely many summands are nonzero and $\alpha_1(k) + \cdots + \alpha_n(k) = d$ is a sum of nonnegative integers. Since $d = r_1 + \cdots + r_n$, we know that for any summand $x_1^{\alpha_1(k)} \cdots x_n^{\alpha_n(k)}$ at least one $\alpha_i(k) \geq r_i$. Hence, the summand is in \mathfrak{a} , and so the whole sum is in \mathfrak{a} . Therefore $S_d \subseteq \mathfrak{a}$.

(iii) \Longrightarrow (i). Suppose $S_d \subseteq \mathfrak{a}$ for d > 0. Then $Z(\mathfrak{a})$ must at least contain points P such that f(P) = 0 for all $f \in S_d$. This includes the polynomials x_1^d, \ldots, x_n^d . However, these n polynomials cannot all be simultaneously zero. Hence $Z(\mathfrak{a}) = \emptyset$.

Exercise 2.3

- (a) If $T_1 \subseteq T_2$ are subsets of S^h , then $Z(T_1) \supseteq Z(T_2)$.
- (b) If $Y_1 \subseteq Y_2$ are subsets of \mathbf{P}^n , then $I(Y_1) \supseteq I(Y_2)$.

1

(c) For any two subsets Y_1, Y_2 of \mathbf{P}^* , $I(Y_1 \cup Y_2) \equiv I(Y_1)$	subsets Y_1, Y_2 of \mathbf{P}^n , $I(Y_1 \cup Y_2) =$	$I(Y_1 \cup Y_2)$	of \mathbf{P}^n .	Y_1, Y_2	subsets	ny two	For an	(c)
--	--	-------------------	---------------------	------------	---------	--------	--------	-----

- (d) If $\mathfrak{a} \subseteq S$ is a homogeneous ideal with $Z(\mathfrak{a}) \neq \emptyset$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.
- (e) For any subset $Y \subseteq \mathbf{P}^n$, $Z(I(Y)) = \overline{Y}$.

Solution: I did (a) - (c), but I don't feel like TeX-ing them.

- (d) Suppose f is homogeneous and $f \in I(Z(\mathfrak{a}))$. Then f(P) = 0 for all $P \in Z(\mathfrak{a})$. By the homogeneous Nullstellensatz, we see that $f \in \sqrt{\mathfrak{a}}$.
 - Suppose $f \in \mathfrak{a}$. Then $f^q \in \mathfrak{a}$ for some q > 0. As $f^q(P) = 0$ for all $P \in Z(\mathfrak{a})$, f(P) = 0 for all $P \in Z(\mathfrak{a})$ (as k is an integral domain) and so it follows that $f \in I(Z(\mathfrak{a}))$. Our total work then shows that $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$, as desired.

(e) We first know that $Y \subset Z(I(Y))$; we show that it is the smallest closed set containing Y. Thus let Z(J) be a closed set where $Y \subset Z(J) \subset I(Z(Y))$. Then $I(Z(J)) \subset I(Y)$. Since $I(Z(J)) = \sqrt{J}$, we see that $J \subset I(Y)$. Therefore, $Z(I(Y)) \subset Z(J)$. Hence, Z(I(Y)) = Z(J), and so $Z(I(Y)) = \overline{Y}$.

Exercise 2.4

- (a) There is a one-to-one inclusion-reversing correspondence between algebraic sets in \mathbf{P}^n and homogeneous radical ideals of S not equal to S_+ given by $Y \mapsto I(Y)$ and $\mathfrak{a} \mapsto Z(\mathfrak{a})$. Note: Since S_+ does not occur in this correspondence, it is sometimes called te *irrelevant* maximal ideal of S.
- (b) An algebraic set $Y \subseteq \mathbf{P}^n$ is irreducible if and only if I(Y) is a prime ideal.
- (c) Show that \mathbf{P}^n itself is irreducible.

Solution:

Exercise 2.5

- (a) \mathbf{P}^n is a noetherian topological space.
- (b) Every algebraic set in \mathbf{P}^n can be written uniquely as a finite union of irreducible algebraic sets, no one containing another. These are called its *irreducible components*.

Solution:

2.6 If Y is a projective variety with homogeneous coordinate ring S(Y), show that $\dim S(Y) = \dim Y + 1$. [Hint: Let $\varphi_i : U_i \to \mathbf{A}^n$ be the homeomorphism of (2.2), let Y_i be the affine variety $\varphi_i(Y \cap U_i)$ and let $A(Y_i)$ be its affine coordinate ring. Show that $A(Y_i)$ can be identified with the subring of elements of degree 0 of the localized ring $S(Y)x_i$. Then show that $S(Y)_{x_i} \cong A(Y_i)[x_i, x_i^{-1}]$. Now use (1.7), (1.8A), and (Ex 1.10), and look at the transcendence degrees. Conclude also that dim $Y = \dim Y_i$ whenever Y_i is empty.]

Solution:

2.7

(a) dim $\mathbf{P}^n = n$.

(b) If $Y \subseteq \mathbf{P}^n$ is a quasi-projective variety, then $\dim Y = \dim Y$.
Solution:
2.8 A projective variety $Y \subseteq \mathbf{P}^n$ has dimension $n-1$ if and only if it is the zero set of a single irreducible homogeneous polynomial f of positive degree. Y is called a <i>hypersurface</i> in \mathbf{P}^n .
Solution:
2.9 If $Y \subseteq \mathbf{A}^n$ is an affine variety, we identify \mathbf{A}^n with an open set $U_0 \subset \mathbf{P}^n$ by the homeomorphism φ_0 . Then we can speak of \overline{Y} , the closure of Y in \mathbf{P}^n , which is called the <i>projective closure</i> of Y .
Solution:
2.10 Let $Y \subset \mathbf{P}^n$ be a nonempty algebraic set, and let $\theta \colon \mathbf{A}^{n+1} \setminus \{(0, \dots, 0\} \to \mathbf{P}^n \text{ be the map which sends the point with affine coordinates } (a_0, \dots, a_n)$ to the point with homogeneous coordinates $[a_0 : \dots : a_n]$. We define the affine cone over Y to be $C(Y) = \theta^{-1}(Y) \cup \{(0, \dots, 0)\}.$
(a) Show that $C(Y)$ is an algebraic set in \mathbf{A}^{n+1} , whose ideal is equal to $I(Y)$, considered as an ordinary ideal in $k[x_0, \dots, x_n]$.
(b) $C(Y)$ is irreducible if and only if Y is irreducible.
(c) $\dim C(Y) = \dim Y + 1$.
Sometimes we consider the projective closure $\overline{C(Y)}$ of $C(Y)$ in \mathbf{P}^{n+1} . This is called the <i>projective cone</i> over Y .
Solution:
2.11 A hypersurface defined by a linear polynomial is called a hyperplane.
(a) Show that the following two conditions are equivalent for a variety $Y \subset \mathbf{P}^n$:
(i.) $I(Y)$ can be generated by linear polynomials (ii.) Y can be written as an intersection of hyperplanes.
In this case we say that Y is a linear variety in \mathbf{P}^n .
(b) If Y is a linear variety of dimension r in \mathbf{P}^n , show that $I(Y)$ is minimally generated by $n-r$ linear polynomial
(c) Let Y, Z be linear varieties in \mathbf{P}^n , with dim $Y = r$, dim $Z = s$. If $r + s - n \ge 0$, then $Y \cap Z \ne \emptyset$. Furthermore, if $Y \cap Z \ne \emptyset$, then $Y \cap Z$ is a linear variety of dimension $\ge r + s - n$ (Think of $\mathring{\mathbf{A}}^{n+1}$ as a vector space over k , and work with its subspaces.)
Solution:

2.12 For given n, d > 0, let M_0, \ldots, M_N be all the monomials of degree d in the n+1 variables $x_0, \ldots x_n$, where $N = \binom{n+d}{n} - 1$. We define a mapping $\rho_d \colon \mathbf{P}^n \to \mathbf{P}^N$ by sending the point $P = (a_0, \ldots, a_n)$ to the point $\rho_d(P) = (M_0(a), \ldots, M_N(a))$ obtained by substituting the a_i in the monomials M_j . This is called the d-uple embedding of \mathbf{P}^n in \mathbf{P}^N . For example, if n = 1, d = 2, then N = 2, and the image Y of the 2-uple embedding of \mathbf{P}^1 in \mathbf{P}^2 is a conic.

(a) Let $\theta: k[y_0, \ldots, y_N] \to k[x_0, \ldots, x_n]$ be the homorphism defined by sending y_i to M_i , and let \mathfrak{a} be the kernel θ . Then \mathfrak{a} is homogeneous prime ideal, and so $Z(\mathfrak{a})$ is a projective variety in \mathbf{P}^N .
(b) Show that the image of ρ_d is exactly $Z(\mathfrak{a})$.
(c) Now show that ρ_d is a homeomorphism of \mathbf{P}^n onto the projective variety $Z(\mathfrak{a})$.
(d) Show that the twisted cubic curve in \mathbf{P}^3 (Ex. 2.9) is equal to the 3-uple embedding of \mathbf{P}^1 in \mathbf{P}^3 , for suitable choice of coordinates.
Solution:
2.13 Let Y be the image of the 2-uple embedding of \mathbf{P}^2 in \mathbf{P}^5 . This is the <i>Veronese surface</i> . If $Z \subseteq Y$ is a close curve (a <i>curve</i> is a variety of dimension 1), show that there exists a hypersurface $V \subseteq \mathbf{P}^5$ such that $V \cap Y = Z$.
Solution:
2.14 Let $\psi \colon \mathbf{P}^r \times \mathbf{P}^s \to \mathbf{P}^N$ be the map defined by sending the ordered pair $(a_0, \dots, a_r) \times (b_0, \dots, b_s)$ to $(\dots, a_i b_j, \dots)$ in lexicographic order, where $N = rs + r + s$. Note that ψ is well-defined and injective. It is called the <i>Segre embedding</i> Show that the image of ψ is a subvariety of \mathbf{P}^N .
Solution:
2.15 Consider the surface Q (a surface is variety of dimension 2) in \mathbf{P}^3 defined by the equation $xy - zw = 0$.
(a) Show that Q is equal to the Segre embedding of $\mathbf{P}^1 \times \mathbf{P}^1$ in \mathbf{P}^3 , for suitable choice of coordinates.
(b) Show that Q contains two families of lines (a <i>line</i> is a linear variety of dimension 1) $\{L_t\}$, $\{M_t\}$, each parametrize by $t \in \mathbf{P}^1$, with the properties that if $L_t \neq L_u$, then $L_t \cap L_u = \emptyset$; if $M_t \neq M_u$, $M_t \cap M_u = \emptyset$, and for a $t, u, L_t \cap M_u = \emptyset$ one point.
(c) Show that Q contains other curves besides these lines, and deduce that the Zariski topology on Q is not homeomorphic via ψ to the product topology on $\mathbf{P}^1 \times \mathbf{P}^1$ (where each \mathbf{P}^1 has its Zariski topology).
Solution:
$\overline{2.16}$
(a) The intersection of two varieties need not be a variety. For example, let Q_1 and Q_2 be the quadric surfaces in \mathbf{P} given by the equations $x^2 - yw = 0$ and $xy - zw = 0$, respectively. Show that $Q_1 \cap Q_2$ is the union of a twiste cubic curve and a line.
(b) Even if the intersection of two varieties is a variety, the ideal of the intersection may not be the sum of the ideals. For example, let C be the conic in \mathbf{P}^2 given by the equation $x^2 - yz = 0$. Let L be the line given by $y = 0$. Show that $C \cap L$ consists of one point P , but that $I(C) + I(L) \neq I(P)$.
Solution:
2.17 A variety Y of dimension r in \mathbf{P}^n is a <i>(strict) complete intersection</i> if $I(Y)$ can be generated by $n-r$ elements

Y is a set-theoretic complete intersection if Y can be written as the intersection of n-r hypersurfaces.

- (a) Let Y be a variety in \mathbf{P}^n , let $Y = Z(\mathfrak{a})$; and suppose that \mathfrak{a} can be generated by q elements. Then show that $\dim Y \geq n q$.
- (b) Show that a strict complete intersection is a set-theoretic complete intersection.
- (c) The converse of (b) is false. For example let Y be the twisted cubic curve in \mathbf{P}^3 (Ex. 2.9). Show that I(Y) cannot be generated by two elements. On the other hand, find hypersurfaces H_1, H_2 of degrees 2, 3 respectively, such that $Y = H_1 \cap H_2$.
- (d) It is an unsolved problem whether every closed irreducible curve in \mathbf{P}^3 is a set-theoretic intersection of two surfaces.

Solution: