CS 522: Data Structures and Algorithms II Extra Credit 1

Dustin Ingram

February 12, 2013

1. **17-1 Solution:**

(a) The bit-reversal permutation algorithm:

Bit-Reversal-Permutation(A)

for $i \in 0 \dots n-1$ do if $rev_k(i) > i$ then $swap(A[i], A[rev_k(i)]$

- (b) This is nearly identical to a binary counter. The BIT-REVERSED-INCREMENT procedure simply flips every bit that is zero to a one and vice versa. The amortized analysis is the same and allows for the bit-reversal permutation of an n-element array in O(n) time.
- (c) Yes, it is possible, and is again similar to the binary counter. We would use the accounting method to make every shift "pay forward" for a future, larger shift.

2. **26-3 Solution:**

- (a) Because the cut (S,T) is a finite capacity cut, only edges of the form $s \to A_i$ and $J_i \to t$ cross the cut, and since none of these edges can be infinite (a job cannot have infinite revenue or infinite cost), then if $J_i \in T$ then $A_k \in T$ for each $A_k \in R_i$.
- (b) The maximum net revenue, where c_G is the capacity of the minimum cut of G and corresponds to the cost per expert, is:

$$\left(\sum_{i=1}^{m} p_i\right) - c_G$$

(c) We will use a MAX-FLOW algorithm to find the maximum flow of the described flow network G. For every edge (s, A_i) which the algorithm selects, we hire expert A_i and for every edge (J_i, t) which

the algorithm selects, we accept job J_i . If we use the optimal maxflow algorithm, the complexity is $O(E \cdot f)$, where E is the number of edges, and f is the max flow. In this case, the maximum number of edges is:

$$E=m+mn+n$$

Here, f = r. Thus the complexity of this algorithm is:

O(mnr)