BAB IV

GAMBARAN UMUM OBYEK PENELITIAN

4.1 Sejarah Berdirinya Bengkel

Bengkel Mantep didirikan tepatnya pada tahun 2002. Bengkel Mantep berada tepatnya di Desa Cemani. Bengkel Mantep terletak dipinggir jalan, yang strategis untuk membuka usaha.

Pertama kali membuka usaha bengkel, beliau hanya mengerjakan sendiri tanpa bantuan mekanik. Setelah beberapa bulan terdapat satu mekanik yang membantu beliau dalam memperbaiki. Dan berjalannya waktu, sekarang sudah ada tiga mekanik termasuk beliau. Sekarang bengkel Mantep selain menerima *service* motor, juga menyediakan *spart park* yang diperlukan motor.

4.2 Struktur organisasi Bengkel

4.2.1 Struktur Organisasi

Berikut struktur organisasi di Bengkel Manteb :

Gambar 4. 1. Gambar Struktur Organisasi Bengkel Mantep

4.2.2 Tugas dan Fungsi Masing – Masing Bagian

1. Kepala Mekanik

- a. Membuat perencanaan dan monitoring pelaksanaan agar tugas berjalan sesuai dengan target
- Mengevaluasi seluruh pekerjaan yang dikerjakan oleh para mekanik

2. Mekanik

- a. Menerima dan melaksanakan pekerjaan dari kepala mekanik
- Memberi pelayanan yang baik kepada konsumen, dengan memberikan penjelasan mengenai kerusakan yang terjadi
- c. Mekanik mampu berkoordinasi dengan mekanik yang lain dan dengan kepala mekanik
- d. Menjaga keamanan, kebersihan, dan kerapian sepeda motor konsumen.

4.3 Gambaran Sistem Pelayanan Bengkel

Gambaran dari sistem penerimaan pekerjaan sampai sepeda motor selesai diperbaiki yaitu :

- Pelanggan / konsumen datang membawa motor dan diterima oleh kepala mekanik maupun mekanik.
- Konsumen menyampaikan keluhan mengenai kerusakan motor kepada kepala mekanik

- Kepala mekanik memberikan tugas kepada mekanik untuk melakukan servis atau perbaikan.
- 4. Jika mekanik membutuhkan spare part maka mekanik lansung mengambil yang diperlukan.
- 5. Setelah selesai perbaikan / servis motor di *test drive* atau pengecekan.
- Setelah itu pemilik bengkel mencatat kerusakan, pergantian spare part yang selanjutnya catatan diserahkan kepada pemilik motor untuk pembayaran.

4.4 Sejarah Motor Vespa

Vespa adalah jenis motor scooter yang berasal dari Italia, dengan perusahaan yang bernama Piaggio sebagai perusahaan yang memproduksi vespa. Piaggio didirikan di Genoa, Italia pada 23 April tahun 1884 oleh Rinaldo Piaggio. Bisnis Rinaldo dimulai peralatan kapal. Tapi di akhir abad, Piaggio juga memproduksi Rel Kereta, Gerbong Kereta, body Truck, Mesin dan Kereta api. Pada Perang Dunia I, perusahaannya memproduksi Pesawat Terbang dan Kapal Laut. Pada tahun 1917 Piaggio membeli pabrik baru di Pisa dan 4 tahun kemudian Rinaldo mengambil alih sebuah pabrik kecil di Pontedera di daerah Tuscany Italia. Pabrik di Pontedera inilah yang mana menjadi Pusat produksi pesawat terbangnya (baling-baling, Mesin dan Pesawat) Selama Perang Dunia II, pabrik di Pontedera membuat P108 untuk mesin Pesawat dua penumpang dan Versi Pembom.

Enrico Piaggio mengambil alih perusahan ayahnya (Rinaldo). Enrico memutuskan untuk fokuskan perhatian perusahaannya pada masalah personal Mobility yang dibutuhkan masyarakat Italia. Kemudian bergabunglah Corradino D'Ascanio, Insinyur bidang penerbangan yang berbakat yang merancang, mengkonsep dan menerbangkan Helikopter Modern Pertamanya Piaggio. D'Ascanio membuat rancangan yang simple, ekonomis, nyaman dan juga elegan. D'Ascanio memimpikan sebuah revolusi kendaraan baru. Dengan gambaran teknologi mengambil dari pesawat terbang, dia membayangkan sebuah kendaraan yang dibangun dengan sebuah "Monocoque" atau Unibody Steel Chassis. Garpu depan seperti Ban mendarat sebuah pesawat yang mana mudah untuk penggantian ban. Hasilnya sebuah design yang terinspirasi dari pesawat yang sampai saat ini berbeda dengan kendaraan yang lain. Saat melihat kendaraan itu, Enrique Piaggio berkata "Sambra Una Vespa" (terlihat seperti Tawon). Frame depan dirancang untuk melindungi pengendara dari debu jalanan. Pada Akhir 1949, telah di produksi 35000 unit dan dalam 10 tahun telah memproduksi 1 Juta unit dan pada pertengahan tahun 1950, vespa telah diproduksi di German, Great Britain, Prancis, Belgia, Spanyol dan tentu di Italia. Selama tahun 1960-an dan 1970-an Vespa menjadi simbol dari revolusi gagasan pada waktu itu. Dan cerita terus berlanjut saat ini dengan model generasi baru Vespa, mempersembahkan Vespa ET2, Vespa ET4, Vespa Granturismo dan Vespa PX150. Vespa bukan hanya sekedar Scooter tapi salah satu Icon besar orang Italia. Dan sampai saat ini masih banyak yang menggunakan motor vespa. (**Rio Apinio. 2015**).

4.5 Kelebihan dan Kekurangan Motor Vespa

4.5.1 Kelebihan Motor Vespa

Kelebihan Vespa dapat dilihat dari sisi tampilan ataupun mesinnya. Untuk segi mesin, banyak alasan yang membuat Vespa lebih unggul dari yang lain. Secara umum, mesin Vespa lebih sederhana dan tahan banting. Mesin 2-tak yang dimilikinya cukup sederhana sehingga hanya perlu waktu sebentar bagi orang untuk memahami mekanismenya. Vespa juga terkenal dengan tarikannya yang kuat dan spontan. Bukan hanya itu, karena sistem transmisi roda giginya tanpa perantara rantai, Vespa memiliki tenaga yang besar sehingga memiliki daya tanjak yang kuat. Kelebihan lainnya yang bisa didapatkan adalah sistem pendingin mesin lebih stabil. (Rio Apinio. 2015).

4.5.2 Kekurangan Motor Vespa

Di samping kelebihannya, Vespa juga memiliki kekurangan. Di antaranya adalah tidak adanya acuan standar dalam setting mesin. Misalnya dalam hal setelan angin, Vespa klasik tidak memiliki acuan standar, bahkan berbeda-beda tiap motornya. Hal yang sama berlaku untuk komponen lain seperti sistem pengapian, terutama yang masih menggunakan platina. Masalah lainnya adalah mesin cukup rumit, terutama untuk urusan kopling. Untuk mengganti kampas kopling misalnya, ban belakang harus dibuka. Sebab posisi mangkuk kopling berada di dalamnya. Tetapi, ini justru bisa jadi kesenangan tersendiri para

pecinta Vespa. Sedangkan dalam hal tampilan, karena body-nya full besi, Vespa menjadi rentan karat. Jika karat sudah banyak, maka tampilan unik Vespa pun dapat berkurang dan tidak enak dilihat. Karat pada Vespa dapat ditanggulangi dengan pengecatan. Selain itu, Vespa harus benar-benar kering setelah dicuci. Perhatikan juga kelonggaran karet, sebab biasanya sisa air akan tertinggal di karet yang telah longgar dan akhirnya menimbulkan karat. Vespa juga dapat dilengkapi dengan waterproofing agar bagian kolong tidak terlalu terkena cipratan air. (Rio Apinio. 2015).

4.6 Kerusakan pada Motor Vespa dan Solusi atau perbaikan kerusakan

Berikut ini adalah penjelasan masing – masing kerusakan motor vespa dilengkapi dengan data – data mengenai gejala, penyebab dan solusi yang didapatkan dari hasil wawancara :

1. Mesin sukar distarter

a. Penyebab

- 1. Mesin banjir
- 2. Spuyer pada karburator tersumbat atau kotor
- 3. Kran bensin (*fuel cock*) tersumbat atau kotor
- 4. Pengapian terganggu
- 5. Motor starter tidak berputar

b. Solusi

 Tutup kran bensin, bukan gas (throttle) lebarlebar dan injak kick starter berulang-ulang sampai mesin hidup

- Lepaskan spuyer pada karburator, cuci dengan bensin atau minyak tanah kemudian semprot dengan angin sampai kering
- Bersihkan kran bensin dengan minyak tanah lalu keringkan
- 4. Jika busi tidak cocok maka gantilah, setel celah platina dan *timing ignition*
- Periksa kontak dengan pemegang sekering apa masih baik atau tidak, bila pemegang sekering karatan maka hilangkan dengan amplas

2. Mesin mati bila gas (throttle) dibuka

a. Penyebab

- Penyetelan putaran rendah (kecepatan "idle") pada karburator tidak tepat
- 2. Hubungan kabel tegangan tinggi ke busi longgar
- 3. Spuyer pada karburator kotor
- 4. Penyetelan saat penyalaan (ignition timing) tidak tepat

b. Solusi

- Putar sekrup pengatur gas sehingga idle lebih cepat, pada saat penyetelan idle pakai tachometer untuk memastikan kebenaran
- Periksa hubungan kabel tegangan tinggi, bila longgar maka perbaiki sambungannya

- Bersihkan spuyer pada karburator dan cuci dengan bensin atau minyak tanah lalu semprot dengan angin sampai kering
- 4. Atur piston pada posisi yang sesuai dengan sudut pengapian sehingga koil menghasilkan tegangan tinggi pada kedudukannya, bila tercapai maka jarak celah kontak platina harus diukur

3. Mesin kurang bertenaga

a. Penyebab

- 1. Terdapat mur dan baut yang kendor
- Rangkaian sistem penyalaan (ignition timing) kurang baik
- 3. Aliran bensin tidak lancar
- 4. Mesin terlalu panas
- 5. Kopling slip dan rem menahan
- 6. Tekanan kompresi mesin terlalu rendah

b. Solusi

- Periksa pengikat mur dan baut pada mesin, pada karburator, kepala silinder dan knalpot disesuaikan dengan table torsi pengencangan
- Atur piston pada posisi sesuai dengan sudut pemajuan pengapian dan putar alat penyangga koil seemikian hingga koil bertegangan tinggi tepat pada kedudukannya

- Bila aliran bensin karburator tidak ada, pemeriksaan dan perbaikan dimulai dari selang bensin sampai ke tangki, bersihkan juga kran bensin yang ada pada tangki
- 4. Campuran bahan bakar bensin pada vespa harus memakai oli
- Untuk menghasilkan daya mesin yang cukup besar, harus mempunyai gerak main lengan kopling secara tepat
- Periksa tekanan kompresi mesin dengan alat kompresi tester hingga menghasilkan kompresi yang cukup

4. Bahan bakar boros

a. Penyebab

- 1. Sistem bahan bakar rusak
- 2. Sistem penyalaan (ignition timing) rusak
- 3. Tekanan kompresi rendah
- 4. Knalpot (*muffler*) tersumbat
- 5. Kopling slip dan rem menahan
- 6. Pemakaian kendaraan tidak benar

b. Solusi

 Bila tangki bansin bocor, periksa mur yang menetapkan kran pada tangki bensin, bila longgar

- kencangkan. Bila bocor pada sambungan pipa bensin maka kencangkan pengikatnya (clip)
- 2. Atur piston agar sesuai dengan sudut pemajuan pengapian, putar alat penyangga koil sampai pada kedudukanny. Jarak celah kontak platina harus 0,3 0,5 mm. bersihkan permukaan titik kontak platina dengan kain kering, bila permukaan kontak terbakar atau kasar atau kotor oleh karbon, haluskan dengan amplas
- Bila tekanan kompresi turun dengan keausan silinder, torak atau cincin torak, maka konsumsi bensin akan boros
- Bersihkan knalpot dengan kawat yang ujungnya dibengkokkan atau kenalpot ditiup dengan angin diujung pipa setelah sebelumnya unit tersebut dibakar bagian luarnya
- 5. Bila kopling slip atau rem menahan, saat lengan kopling lepas atau rem tidak distel dengan tepat maka daya mesin tidak cukup besar untuk memutar roda dan akan menahan gerak roda
- 6. Hindari kesalahan-kesalahan pemakaian agar bahan bakar tidak boros

5. Kopling slip

a. Penyebab

- 1. Gerak main (spelling) kabel kopling tidak cukup
- 2. Plat geser (*driving plate*) aus atau terbakar

b. Solusi

- Tarik perlahan-lahan tangki kopling sampai ada tekanan dan stel gerak main kopling dengan mengendorkan mur penyetel dan putar penyetel "A" untuk menarik atau mengendorkan kabel transmisi
- Kopling harus dibongkar dan komponenkompoen tersebut harus diganti

6. Kopling menahan

- a. Penyebab
 - Tangki kopling mempunyai gerak main berlebihan
 - 2. Plat geser atau plat-plat kopling rusak

b. Solusi

- Tarik perlahan-lahan lengan kopling sampai ada tekanan dan stel gerak main kopling dengan mengendorkan mur penyetel dan puter penyetel "B" untuk menarik atau mengendorkan kabel transmisi
- Ganti dengan yang baru dan periksa bak rumah kopling bersihkan dengan bensin dan keringkan dengan angin

7. Memindahkan gigi persneling susah

a. Penyebab

- 1. Salah cara mengoperasikan pemindahan gigi
- 2. Kopling tidak lepas seluruhnya
- 3. Mekanisme pemindahan gigi rusak
- 4. Bak persneling kekurangan oli atau oli tidak cacah

b. Solusi

- Tarik tangkai seluruhnya jika masih terasa sukar, lepaskan kopling tersebut, tarik lagi lalu putar pemindahan gigi pada stang kemudi kiri
- 2. Tarik kedua kabel kopling, distel menurut spesifikasinya
- Mesin harus dibongkar, periksa bilamana pada bagian dalam mesin ada yang rusak atau aus
- Ganti oli secara periodik dan selalu cek keadaan oli, kebocoran oli secara teratur, pakai oli yang sesuai dengan spesifikasi

8. Gigi persneling loncat

a. Penyebab

- 1. Bagian-bagian unit selektor aus atau rusak
- 2. Garpu pemindah gigi bengkok atau rusak

b. Solusi

- Mesin harus dibongkar dan selektor harus diganti dengan yang baru, distel sesuai tempat kedudukannya
- Mesin harus dibongkar dan perbaiki garpu pemindah gigi yang bengkok atau pros garpu yang bengkok

9. Rem bekerja tidak normal

a. Penyebab

- 1. Stelan rem tidak tepat atau berubah
- 2. Komponen rem tidak berfungsi
- 3. Tuas rem macet

b. Solusi

- Stel rem dengan cara menyetel sekrup atau periksa brake jaw, jika tipis ganti dengan yang baru. Periksa brake drum jika kasar haluskan dengan amplas, jika cacat atau aus ganti dengan yang baru
- Bersihkan permukaan bagian yang terkena oli dengan bensin dan semprot dengan angin sampai kering, ganti oli seal dengan yang baru
- Bersihkan dengan bensin dan semprot dengan angin sampai kering lalu lumasi dengan oli jika perlu ganti dengan yang baru

10. Kemudi goyang dan suspensi berisik

a. Penyebab

- 1. Mur pengikat roda kendor
- 2. Shock absorber rusak

b. Solusi

- 1. Kencangkan mur pengikat roda yang kendor
- Bongkar komponen-komponennya untuk menghindarkan segala kemungkinan yang rusak.

4.7 Analisis Sistem

Sistem merupakan gambaran umum tentang apa yang akandikembangkan. Sistem pakar yang akan dibangun merupakan sistem yang merepresentasikan kemampuan atau keahlian seorang pakar atau orang yang berpengalaman di bidang tertentu untuk membantu user dalam mengatasi masalah yang dihadapi.

Masalah kerusakan pada motor vespa dapat dikategorikan sebagai masalah *artificial intelegent* khususnya sistem pakar karena pemecahan masalah tersebut dapat dilakukan dengan mengembangkan sistem yang dapat berperan sebagai seorang ahli. Dengan kata lain terjadi pemindahan atau proses pengolahan informasi yang bersifat membangun dan mengoperasikan basis pengetahuan yang berisi fakta beserta penalarannya. Dalam hal ini prosesnya disebut *knowledge base* yaitu penyerapan basis pengetahuan dari seorang pakar ke sebuah komputer.

Sistem akan memberikan daftar berupa fakta-fakta yang telah disimpan dalam system berupa basis pengetahuan. Jawaban yang

diberikan pengguna akan diproses sehingga menghasilkan kesimpulan dari kerusakan yang dialami dan solusi dari kerusakan yang ada.

4.8 Basis Pengetahuan (*Knowledge Base*)

Basis pengetahuan mengandung pengetahuan untuk pemahaman, formulasi dan penyelesaian masalah. Komponen sistem pakar ini di susun atas dua elemen dasar, yaitu fakta dan aturan. Fakta merupakan informasi tentang objek dalam area permasalahan tertentu sedangkan aturan merupakan informasi tentang cara bagaimana memperoleh fakta baru dari fakta yang telah diketahui.

4.9 Pemodalan Metode Naive Bayes

Pemodelan yang dilakukan dalam penelitian ini menggunakan data training yang penulis dapat dari hasil wawancara secara langsung dengan pemilik bengkel. Berikut pemodelan yang penulis buat:

4.9.1 Data Gejala

Berikut pemodelan yang penulis buat dari data gejala, berupa kode G yang berarti data dari Gejala:

Tabel 4.1. Data Gejala

Kode Gejala	Nama gejala
G001	Mesin sukar distarter
G002	Mesin mati bila gas (throttle) dibuka
G003	Mesin kurang bertenaga
G004	Bahan bakar boros
G005	Kopling slip
G006	Kopling menahan

G007	Memindahkan gigi persneling susah
G008	Gigi persneling loncat
G009	Rem bekerja tidak normal
G010	Kemudi goyang dan suspensi berisik

4.9.2 Data Kerusakan

Berikut pemodelan yang penulis buat dari data kerusakan,berupa kode K yang berarti data dari Kerusakan:

Tabel 4.2. Tabel Kerusakan

Kode kerusakan	Nama kerusakan
K001	Mesin banjir
K002	Spuyer pada karburator tersumbat atau kotor
K003	Kran bensin (fuel cock) tersumbat atau kotor
K004	Pengapian terganggu
K005	Motor starter tidak berputar
K006	Penyetelan putaran rendah pada karburator tidak tepat
K007	Hubungan kabel tegangan tinggi ke busi longgar
K008	Spuyer pada karburator kotor
K009	Penyetelan saat penyalaan (ignition timing) tidak tepat
K010	Terdapat mur dan baut yang kendor
K011	Rangkaian sistem penyalaan (ignition timing) kurang baik
K012	Aliran bensin tidak lancer
K013	Mesin terlalu panas

K014	Kopling slip dan rem menahan
K015	Tekanan kompresi mesin terlalu rendah
K016	Sistem bahan bakar rusak
K017	Sistem penyalaan (ignition timing) rusak
K018	Tekanan kompresi rendah
K019	Knalpot (muffler) tersumbat
K020	Pemakaian kendaraan tidak benar
K021	Gerak main (spelling) kabel kopling tidak cukup
K022	Plat geser (driving plate) aus atau terbakar
K023	Tangki kopling mempunyai gerak main berlebih
K024	Plat geser atau plat-plat kopling rusak
K025	Salah mengoperasikan pemindahan gigi
K026	Kopling tidak lepas seluruhnya
K027	Mekanisme pemindahan gigi rusak
K028	Bak persneling kurang oli
K029	Garpu pemindag gigi rusak
K030	Tuas rem macet
K031	Mur pengikat roda kendor
K032	Shock absorber rusak

4.9.3 Data Solusi

Berikut pemodelan yang penulis buat dari data kerusakan, berupa kode S yang berarti data dari Kerusakan.

Tabel 4.3. Tabel Kerusakan

Kode kerusakan	Nama kerusakan
S001	Tutup kran bensin, buka gas (throttle) lebar-lebar dan
	injak kick strarter berulang-ulang sampai mesin hidup
S002	Lepaskan spuyer pada karburator, cuci dengan bensin atau
	minyak tanah kemudian semprot dengan angin sampai
	kering
S003	Bersihkan kran bensin dengan minyak tanah lalu
	keringkan
S004	Jika busi tidak cocok maka ganti, setel celah platina dan
	timing ignition
S005	Periksa kontak dengan pemegang sekering apa masih baik
	atau tidak, bila pemegang ssekering karatan maka
	hilangkan dengan amplas
S006	Putar sekrup pengatur gas sehingga idle lebih cepat, pada
	saat penyetelan idle pakai tachometer untuk memastikan
	kebenaran
S007	Periksa hubungan kabel tegangan tinggi, bila longgar
	maka perbaiki sambungannya
S008	Atur piston pada posisi yang sesuai dengan sudut
	pengapian sehingga koil menghasilkan tegangan tinggi
	pada kedudukannya, bila tercapai maka jarak celah kontak
	platina harus diukur
S009	Periksa pengikat mur dan baut pada mesin, pada

	karburator, kepala silinder dan knalpot disesuaikan
	dengan tabel torsi pengencangan
S010	Bila aliran bensin pada karburator tidak ada, pemeriksaan
	dan perbaikan dimulai dari selang bensin sampai ke tangki
S011	Campuran bahan bakar bensin pada vespa harus memakai
	oli
S012	Untuk menghasilkan daya mesin yang cukup besar, harus
	mempunyai gerak main lengan kopling secara tepat
S013	Periksa tekanan kompresi mesin dengan alat kompresi
	tester hingga menghasilkan kompresi yang cukup
S014	Bila tangki bensin bocor, periksa mur yang menetapkan
	kran pada tangki bensin, bila longgar kencangkan. Bila
	bocor pada sambungan pipa bensin maka kencangkan
	pengikatnya (clip)
S015	Atur piston agar sesuai dengan sudut pemajuan pengapian,
	putar alat penyangga koil sampai pada kedudukannya.
	Jarak celah kontak platina harus 0,3-0,5 mm. bersihkan
	permukaan titik permukaan kontak terbakar atau kasar
	atau kotor oleh karbon, haluskan dengan amplas
S016	Bila tekanan kompresi turun dengan keausan silinder,
	torak atau cincin torak, maka konsumsi bensin akan boros
S017	Bersihkan knalpot dengan kawat yang ujungnya
	dibengkokkan atau knalpot ditiup dengan angin diujung
	pipa setelah sebelumnya unit tersebut dibakar bagian

	luarnya
S018	Bila kopling slip atau rem menahan, saat lengan kopling
	lepas atau rem tidak disetel dengan tepat maka daya mesin
	tidak cukup besar untuk memutar roda dan akan menahan
	gerak roda
S019	Agar bahan bakar tidak boros hindari kesalahan dalam
	pemakaian
S020	Tarik perlahan-lahan tangki kopling sampai ada tekanan
	dan setel gerak main kopling dengan mengendorkan mur
	penyetel dan putar penyetel "A" untuk menarik atau
	mengendorkan kabel transmisi
S021	Kopling harus dibongkar dan komponen-komponen
	tersebut harus diganti
S022	Tarik perlahan-lahan tangki kopling sampai ada tekanan
	dan setel gerak main kopling dengan mengendorkan mur
	penyetel dan putar penyetel "B" untuk menarik atau
	mengendorkan kabel transmisi
S023	Ganti dengan yang baru dan periksa bak rumah kopling
	bersihkan dengan bensin dan keringkan dengan angin
S024	Tarik tangkai seluruhnya jika masih terasa sukar lepaskan
	kopling tersebut, tarik lagi lalu putar pemindahan gigi
	pada stang kemudi kiri
S025	Tarik kedua kabel kopling, disetel menurut spesifikasinya
S026	Mesin harus dibongkar, periksa bilamana pada bagian

	dalam mesin ada yang rusak atau aus
S027	Ganti oli secara periodik dan selalu cek keadaan oli,
	kebocoran oli secara teratur, pakai oli yang sesuai dengan
	spesifikasi
S028	Mesin harus dibongkar dan perbaiki garpu pemindah gigi
	yang bengkok atau pros garpu yang bengkok
S029	Setel rem dengan cara menyetel sekrup atau periksa brake
	jaw, jika tipis ganti dengan yang baru. Periksa brake drum
	jika kasar haluskan dengan amplas, jika cacat atau aus
	ganti dengan yang baru
S030	Bersihkan permukaan bagian yang terkena oli dengan
	bensin dan semprot dengan angin sampai kering, ganti oli
	seal dengan yang baru
S031	Kencangkan mur pengikat roda yang kendor
S032	Bongkar komponen-komponennya untuk menghindarkan
	segala kemungkinan yang rusak

4.9.4 Data Training Hubungan Motor Vespa

Berikut pemodelan data training yang berhasil penulis kumpulkan dari wawancara di bengkel Mantep.

Tabel 4.4. Data Training motor vespa.

Kode Gejala									Kode	
G001	G002	G003	G004	G005	G006	G007	G008	G009	G010	Kerusa
										kan
										Kaii

√ 										K001
$\sqrt{}$										K001
V										K002
1										K003
V		V							V	K004
V		V							V	K004
V					V				V	K005
					V				V	K005
					V				V	K005
	V								V	K006
				V					V	K006
	V	1								K007
	1	V								K007
	V	1							V	K007
				Kode	Gejala					Kode
G001	G002	G003	G004	G005	G006	G007	G008	G009	G010	keusak
										an
	1	1								K008
	1									K008
	V	V			V					K009
				1	1	1	1	1	•	1

				V		1	√		K010
	V					1	√		K010
V	V			1	1				K011
V	V	V			1				K011
V	V	V			V				K011
√					1				K011
√	V			V	V			1	K011
√			1	V			1		K012
V			1	V					K012
			1	V			1		K012
		V							K013
	V	V	V						K014
√	V	V	1						K014
V	V	V		V				1	K014
√			1	V					K015
			1	V					K015
			V	V					K016
			V	V				1	K016
			V	V				1	K017
			V					1	K017
			V					1	K018
			V						K019

				$\sqrt{}$						K020
				V					V	K020
	√	√			√	√				K021
	√	√		√		V	√			K021
					V	V			V	K022
	1	V			V				V	K022
	V	V			V					K022
					V	V	V	V		K023
						V	√	V		K023
	V		V		V	√			V	K024
				Kode	Gejala					Kode
G001	G002									keusak
	LG002	G003	G004	G005	G006	G007	G008	G009	G010	
2302	G002	G003	G004	G005	G006	G007	G008	G009	G010	an
	\(\sqrt{G002} \)	G003	G004	G005	G006	G007 √	G008	G009	G010 √	an K024
		G003	G004	G005	G006		G008	G009		
	V	G003 √	G004	G005	G006		G008	G009	V	K024
	√ √		G004	G005	G006	V	G008	G009	V	K024
	√ √		G004	G005	G006	√ √	G008	G009	√ √	K024 K024
	√ √ √	√	G004 √	G005	G006 √	√ √	G008	G009	√ √	K024 K024 K024
	√ √ √	√ √		G005		\ \ \ \	G008	G009	√ √	K024 K024 K024 K025
	√ √ √	√ √ √		G005	√ V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	G008 √	G009 √	√ √	K024 K024 K024 K025 K025

V	V	1			V	V				K028
V	V	V				V				K028
1		V			1	1			1	K028
				V			V	1		K029
				V			V			K029
	V	V	V						V	K030
1	1	V	V							K030
1		V							1	K031
V		V								K031
	V			V					V	K032
				V					V	K032
				V					1	K032

4.10 Pehitungan Naive Bayes

Penghitungan *naïve bayes* dilakukan dengan menghitung kemungkinan baru dengan mencari dan memasukan data training (data kerusakan dan data gejala) untuk di masukan kedalam perhitungan naïvebayes sehingga memunculkan sebuah probabilitas (kemungkinan) untuk perbandingan data baru yang di masukan.

Dari Tabel 4.4 diatas dapat dihitung dengan metode naïve bayes adalah sebagai berikut :

1. Pertama mencari *likelihood* (nilai yang di gunakan untuk mencari kemungkinan atau *probability*).

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

Keterangan:

- a. P(Ci|X): peluang dokumen X kategori Ci.
- b. P(X|Ci): Peluang pada kategori Ci, dimana kata pada dokumen X muncul pada kategori tersebut.
- c. P(Ci): peluang dari kategori yang diberikan ,
 dibandingkan dengan kategori kategori
 lainnya yang dianalisa.
- d. P(X): peluang dari dokumen tersebut secara spesifik. Pada pengembangannya, P(X) dapat dihilangkan karena nilainya tetap, sehingga saat dibandingkan dengan tiap kategori, ini ini dapat dihapus.

Contoh Kasus:

Menghitung Gejala G002, G004, G007 dengan pendekatan jenis kerusakan K011, K024, K025.

 Pertama mencari Klasifikasi dari setiap gejala dan kerusakan G002, G004, G007 dengan dengan klasifikasi kerusakan sebanyak 3 yang didapat dari data training pada table 5.4 yaitu K011,K024,K025.

Tabel 4.5. Klasifikasi Kerusakan

	Gejala	Klasifikasi			
G002	G004	G007			
Ya	Tidak	Ya	K011		
Ya	Ya	Ya	K011		
Ya	Ya	Ya	K011		
Ya	Tidak	Ya	K011		
Ya	Tidak	Ya	K011		
Ya	Ya	Ya	K024		
Ya	Tidak	Ya	K024		
Ya	Tidak	tidak	K024		
Ya	Tidak	Ya	K024		
Tidak	Tidak	Ya	K025		
Ya	Tidak	Ya	K025		
Ya	Ya	Ya	K025		
Tidak	Tidak	Ya	K025		

1. Menghitung klasifikasi dari tiap kerusakan

a. Klasifikasi dari K011 dari data tabel 5.5 yaitu :

K011: Ya pada G002 untuk K011 = 5/5 = 1

K011 : Tidak pada G002 untuk K11 = 0

K011: Ya pada G004 untuk K024 = 2/5 = 0,4

K011: Tidak pada G004 untuk K11 = 3/5 = 0,6

K011: Ya pada G007 untuk K024 = 5/5 = 1

K011: Tidak pada G007 untuk K11 = 3/5 = 0

b. Klasifikasi dari K024 dari tabel 5.5 yaitu :

K024 : Ya pada G002 untuk K024 = 4/4 =1

K024: Tidak pada G002 untuk K11 = 0

K024: Ya pada G004 untuk K024 = 1/4 = 0.25

K024: Tidak pada G04 untuk K11 = 3/4 = 0.75

K024: Ya pada G007 untuk K024 = 3/4 = 0.75

K024: Tidak pada G007 untuk K11 = 1/4 = 0.25

c. Klasifikasi dari K025 dari tabel 5.5 yaitu :

K025: Ya pada G002 untuk K024 = 2/4 = 0.5

K025: Tidak pada G002 untuk K11 = 2/4 = 0.5

K025: Ya pada G004 untuk K024 = 1/4 = 0.25

K025: Tidak pada G04 untuk K11 = 3/4 = 0.75

K025 : Ya pada G007 untuk K024 = 1 = 1

K025 : Tidak pada G007 untuk K11 = 0

2. Menghitung *likelihood* dengan rumus:

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

Menghitung likelihood Ya K011, K024, K025 dengan jumlah data masing – masing sebanyak

5/12, 4/12, 3/12, berikut perhitungannya:

$$K011 = 1 * 0,4 * 1 * 5/13 = 0,153846154$$

$$K024 = 1 * 0.25 * 0.75 * 4/13 = 0.057692308$$

$$K025 = 0.5 * 0.23 * 1 * 4/13 = 0.038461538$$

3. Setelah di dapatkan nilai *likelihood*, kemudian mencari *Probability* K011, K024, K025 untuk membandingkan kemungkinan mana yang lebih besar dengan rumus :

$$posterior = \frac{likelihood \times prior \ probability}{evidence}$$

$$K011 = \frac{0,153846154}{(0,153846154 + 0,057692308 + 0,038461538)}$$

$$= \frac{0,153846154}{0,25}$$

$$= 0,615384615 \times 100 \% = 61,5 \%$$

$$K024 = \frac{0,057692308}{(0,153846154 + 0,057692308 + 0,038461538)}$$

$$= \frac{0,057692308}{0,25}$$

$$= 0,230769231 \times 100 \% = 23,1 \%$$

$$K025 = \frac{0,038461538}{(0,153846154 + 0,057692308 + 0,038461538)}$$

$$= \frac{0,038461538}{0,25}$$

$$= 0,153846154 \times 100 \% = 15,4 \%$$

Jadi kemungkinan terjadi dari kode kerusakan K011, K024, K025 adalah terjadi pada kode kerusakan K011 dengan jumlah **61,5** % yaitu kerusakan pada nosel yang diketahui dari 3 gejala yaitu G002, G004, G007.