10.1 Determine i in the circuit of Fig. 10.50.

Figure 10.50

For Prob. 10.1.

10.25 Solve for i_o in Fig. 10.73 using mesh analysis.

Figure 10.73

For Prob. 10.25.

10.49 Using source transformation, find *i* in the circuit of Fig. 10.94.

Figure 10.94

For Prob. 10.49.

10.58 For the circuit depicted in Fig. 10.101, find the Thevenin equivalent circuit at terminals *a-b*.

Figure 10.101

For Prob. 10.58.

10.79 For the op amp circuit in Fig. 10.122, obtain $v_o(t)$.

Figure 10.122

For Prob. 10.79.

10.89 The op amp circuit in Fig. 10.131 is called an *inductance simulator*. Show that the input impedance is given by

$$\mathbf{Z}_{\rm in} = \frac{\mathbf{V}_{\rm in}}{\mathbf{I}_{\rm in}} = j\omega L_{\rm eq}$$

where

$$L_{\rm eq} = \frac{R_1 R_3 R_4}{R_2} C$$

Figure 10.131

For Prob. 10.89.

- **10.92** The oscillator circuit in Fig. 10.134 uses an ideal op amp.
 - (a) Calculate the minimum value of R_o that will cause oscillation to occur.
 - (b) Find the frequency of oscillation.

Figure 10.134

For Prob. 10.92.