

FIG. 1

FIG. 2

FIG. 3

Heterozygous: A and C alleles.

FIG. 4

PCR/ LDR : Nearby alleles

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase.♦

2. Perform LDR using allele-specific LDR primers and thermostable ligase.●
Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

Heterozygous: A and C alleles.

Heterozygous: G,C, and T alleles.

PCR/ LDR : Insertions and Deletions

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase. ♦

2. Perform LDR using allele-specific LDR primers and thermostable ligase. ●
Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

Heterozygous: A5 and A7 alleles.

Heterozygous: (CA)5 and (CA)3 alleles.

FIG. 6

PCR/ LDR : Adjacent alleles, cancer detection

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase. ♦

2. Perform LDR using allele-specific LDR primers and thermostable ligase. ●
Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

FIG. 7

PCR/ LDR : Nearby alleles

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase. ♦

2. Perform LDR using allele-specific LDR primers and thermostable ligase. ●
Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

FIG. 8

9/34

PCR/ LDR : Adjacent and Nearby alleles

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase.

2. Perform LDR using allele-specific LDR primers and thermostable ligase. ● Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

Heterozygous: Gly and Glu alleles.

Heterozygous: Arg and Trp alleles.

FIG. 9

10/34

PCR/ LDR : All alleles of a single codon

1. PCR amplify region(s) containing mutations using primers, dNTPs and *Taq* polymerase.

2. Perform LDR using allele-specific LDR primers and thermostable ligase. ● Allele specific oligonucleotides ligate to common oligonucleotides only when there is perfect complementarity at the junction.

3. Capture fluorescent products on addressable array and quantify each allele.

Heterozygous: Gin and His alleles.

FIG. 10

W = protecting group, e.g. Boc, Fmoc

Z = activating group, e.g. imidazole (Im), *p*-nitrophenol (OPnp), hydroxysuccinimide (OSu), pentafluorophenol (OPfp)

PEG = oligo or poly(ethylene glycol), backbone $(CH_2CH_2O)_n$, $n = 6$ to 200
(can also be grown by anionic polymerization with O^-)

WSC = water soluble carbodiimide

Functional group transformations/activation (as needed), $X \rightarrow X^*$, $Y \rightarrow Y^*$

Covalent linkage, $X^* + Y^*$

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 14A**FIG. 14B****FIG. 14C****FIG. 14D****FIG. 14E**

FIG. 15A

1st addition of unique 24mers.

FIG. 15B

2nd addition of unique 24mers.

FIG. 15C

3rd addition of unique 24mers.

FIG. 15D

4th addition of unique 24mers.

FIG. 15E

FIG. 16A**FIG. 16B****FIG. 16C**

		2ND TWO BASES															
		TT	TC	TG	TA	CT	CC	CG	CA	GT	GC	GG	GA	AT	AC	AG	AA
1ST TWO BASES	TT												TTGA 6				
TC			TCTG 1			30'	TCCC 3			TCGT 5							6'
TG		TGTC 2			36'			TCCG 4						TGAT 7		11'	
TA							18'		TACA 36			33'					
CT	32'		CTTG 9						CTCA 11	CTGT 13							8'
CC			CCTA 33								29'		CCAT 15				
CG	CGTT 10			12'						4'				28'		CGAA 16	
CA		34'			25'			CAGC 12			CAGC 14			1'		9'	
GT	CGTT 17			14'			GTCT 19	24'			GTGC 22			31'			
GC														22'		GCAA 23	
GG		20'			GGTA 18	35'						3'		GGAC 24			
GA					GATG 34			GACC 20		2'	GAGT 21						
AT								ATCG 28		7'		15'		ATAC 31			
AC		21'					ACCT 27					5'				13'	
AG					AGTG 25			AGCC 35			27'		ACGG 29	5'	AGCA 30	19'	
AA		AATC 26							10'		17'				AAAG 32		

FIG. 17

18/34

1st Tetramer addition
(columns)

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

FIG. 18A

2nd Tetramer addition
(rows)

6	6	6	6	6
5	5	5	5	5
4	4	4	4	4
3	3	3	3	3
2	2	2	2	2

FIG. 18B

3rd Tetramer addition
(columns)

3	4	5	6	1
3	4	5	6	1
3	4	5	6	1
3	4	5	6	1
3	4	5	6	1

FIG. 18C

4th Tetramer addition
(rows)

2	2	2	2	2
1	1	1	1	1
6	6	6	6	6
5	5	5	5	5
4	4	4	4	4

FIG. 18D

5th Tetramer addition
(columns)

6	1	2	3	4
6	1	2	3	4
6	1	2	3	4
6	1	2	3	4
6	1	2	3	4

FIG. 18E

6th Tetramer addition
(rows)

3	3	3	3	3
2	2	2	2	2
1	1	1	1	1
6	6	6	6	6
5	5	5	5	5

FIG. 18F

Addressable array with full length PNA 24mers

1-6-3-2-6-3	2-6-4-2-1-3	3-6-5-2-2-3	4-6-6-2-3-3	5-6-1-2-4-3	
1-5-3-1-6-2	2-5-4-1-1-2	3-5-5-1-2-2	4-5-6-1-3-2	5-5-1-1-4-2	
1-4-3-6-6-1	2-4-4-6-1-1	3-4-5-6-2-1	4-4-6-6-3-1	5-4-1-6-4-1	
1-3-3-5-6-6	2-3-4-5-1-6	3-3-5-5-2-6	4-3-6-5-3-6	5-3-1-5-4-6	
1-2-3-4-6-5	2-2-4-4-1-5	3-2-5-4-2-5	4-2-6-4-3-5	5-2-1-4-4-5	

FIG. 18G

FIG. 19A***FIG. 19B******FIG. 19C******FIG. 19D******FIG. 19E***

FIG. 20A

1st Tetramer additions (columns)

FIG. 20B

2nd Tetramer additions (rows)

FIG. 20C

21/34

FIG. 21A

FIG. 21B

FIG. 21C

FIG. 21D

FIG. 21E

FIG. 21F

FIG. 22A**FIG. 22C****FIG. 22B**

FIG. 23A

1st Tetramer additions
(columns)

FIG. 23B

2nd Tetramer additions
(rows)

Unique PNA 24mer Zip
Code: 5-6-1-2-4-3.

FIG. 23C

→**24B** FIG. 24A

FIG. 24C

FIG. 24B

25/34

FIG. 25B

FIG. 25C

6 INPUTS AND 5 OUTPUTS

26/34

FIG. 26A

FIG. 26B

FIG. 26C

FIG. 26D

FIG. 27

28/34

-COOH; PROBE 12

-COOH; PROBE 14

-NH₂; PROBE 12

-NH₂; PROBE 14

FIG. 28

29/34

2% EGDMA

2% HDDMA

4% EGDMA

FIG. 29

109260-02641660

30/34

FIG. 30

31/34

FIG. 31

32/34

FIG. 32

33/34

FIG. 33

34/34

FIG. 34