Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control

- Author
 - Prashanth L.A. et al.
- Publication
 - o ICML 2016
- Related Work
 - Reinforcement Learning With Function Approximation for Traffic Signal Control
 - Prashanth L. A. & Shalabh Bhatnagar
 - IEEE T-ITS 2011
 - Threshold Tuning Using Stochastic Optimization for Graded Signal Control
 - Prashanth L. A. & Shalabh Bhatnagar
 - IEEE T-VT 2012
- Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control
 - Introduction
 - Traffic Light Control (TLC) Problem
 - CPT-value Estimation
 - Gradient-based Algo for CPT Optimization
 - Function Approximation and Boltzmann Policy
 - Experiments

Introduction

Contributions

- The first to define and investigate human-centered RL problem.
- The first to combine CPT with RL.

Human-centered RL Problem

- Agent controls a system to produce returns that are maximally aligned with the preferences of one or possibly multiple humans.
- Preferences of rational agents facing decisions with stochastic outcomes can be modeled using expected utilities.
- Here the authors use CPT to model the stochastic outcomes.

Traffic Light Control (TLC) Problem

Target

o Train the traffic light to make a better traffic system

Environment

- Road network with signalled lanes that are spread across junctions and paths
- Road users (cars)

Agent

Traffic lights

States

- Queue length (pathwise)
- Elapsed time (pathwise)

Actions

o feasible combinations of red and green

Reward

 \circ CPT-value of differential delay X (because CPT needs gains and losses), i.e., $C(X) = \sum_{i=1}^{M} \mu_i C(X_i)$ where X_i is the differential delay (calculated by the elapsed time minus a baseline which is the elapsed time of a fixed-time signal control) of i-th path, μ_i is the proportion of road users on the i-th path and M is the num of paths.

CPT-value Estimation

- ullet Convergence assumptions (eithor or) for probability weighting function $oldsymbol{w}$
 - Lipschitz continuous
 - Hölder continuous

Definition 1. (Hölder continuity) A function $f \in C([a,b])$ is said to satisfy a Hölder condition of order $\alpha \in (0,1]$ (or to be Hölder continuous of order α) if there exists H > 0, s.t.

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le H.$$

- Lipschitz continuity is the case that $\alpha = 1$.
- Locally Lipschitz
- Estimation scheme under each of the assumptions
 - \circ Under $H\ddot{o}lder$ continuity, the CPT-value can be estimatied by the discrete version.

$$\sum_{i=-m}^n \pi_i v(x_i),$$

where

$$\pi_i = egin{cases} w(p_i + \dots + p_n) - w(p_{i+1} + \dots + p_n) & 0 \le i \le n \ w(p_{-m} + \dots + p_i) - w(p_{-m} + \dots + p_{i-1}) & -m \le i < 0 \end{cases},$$

Algo:

- 1: Simulate n i.i.d. samples from the distribution of X.
- 2: Order the samples and label them as follows: $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$. Note that $u^+(X_{[1]}), \ldots, u^+(X_{[n]})$ are also in ascending order.
- 3: Let

$$\overline{\mathbb{C}}_n^+ := \sum_{i=1}^n u^+(X_{[i]}) \left(w^+ \left(\frac{n+1-i}{n} \right) - w^+ \left(\frac{n-i}{n} \right) \right).$$

- 4: Apply u^- on the sequence $\{X_{[1]}, X_{[2]}, \ldots, X_{[n]}\}$; notice that $u^-(X_{[i]})$ is in descending order since u^- is a decreasing function.
- 5: Let

$$\overline{\mathbb{C}}_n^- := \sum_{i=1}^n u^-(X_{[i]}) \left(w^- \left(\frac{i}{n} \right) - w^- \left(\frac{i-1}{n} \right) \right).$$

6: Return
$$\overline{\mathbb{C}}_n = \overline{\mathbb{C}}_n^+ - \overline{\mathbb{C}}_n^-$$
.

- Under Locally Lipschitz
 - Omitted

Gradient-based Algo for CPT Optimization

Optimization Objective (Reward)

$$\max_{\theta \in \Theta} \quad C(X^{\theta})$$

where the param vector θ with dimension d is contrained in a compact and convex real set Θ .

Gradient Estimation

- \circ It is hard to get the gradient of $C(X^{ heta})$, especially in high-dimension cases.
- SPSA (Simultaneous Perturbation Stochastic Approximation)
 - A method to solve the problem above.
 - Use stochastic perturbation to get 2 sample values and approximate the gradient. The idea is similar to $\frac{\mathrm{d}f(x)}{\mathrm{d}x} pprox \frac{f(x+\varepsilon)-f(x-\varepsilon)}{2\varepsilon}$ where ε is a number close to 0.
 - At the n-th iteration, the gradient is estimated by

$$\hat{
abla}_i C(X^ heta) = rac{ar{C}_n^{ heta_n + \delta_n \Delta_n} - ar{C}_n^{ heta_n - \delta_n \Delta_n}}{2\delta_n \Delta_n^i}$$

where $\bar{C}_n^{\theta_n}$ is the CPT-estimation calculated using the algo in *CPT-value Estimation* with m_n samples generated by param vector θ_n , δ_n tends to 0 as $n\to\infty$ (like ε above) and $\Delta_n=(\Delta_n^1,\,\cdots,\,\Delta_n^d)^{\mathsf{T}}$ where $\{\Delta_n^i\}_{i=1}^d\stackrel{\mathrm{i.i.d.}}{\sim} Rademacher$ (Rademacher distribution is 1 with half prob and -1 with half prob).

Update Gradient

• Update Rule (for the i-th component of θ):

$$heta_{n+1}^{i} = \Gamma_{i}\left(heta_{n}^{i} + \gamma_{n}\hat{
abla}_{i}C\left(X^{ heta_{n}}
ight)
ight)$$

where Γ_i is the clip operator to constrain θ in Θ and γ_n is the learning rate (also called the step size).

- Convergence Condition
 - To guarantee that we can obtain the solution after several iterations, we need

$$egin{cases} egin{dcases} \gamma_n, \ \delta_n
ightarrow 0 \ rac{1}{m_n^2} \delta_n
ightarrow 0 \ \sum\limits_n \gamma_n
ightarrow \infty \ \sum\limits_n rac{\gamma_n^2}{\delta_n^2} < \infty \end{cases} egin{array}{c} \sup_{ ext{simple choice}} \left\{ egin{array}{c} \gamma_n = rac{\gamma_0}{n} \ m_n = m_0 n^
u ext{ for } \left\{
u, \ \gamma > 0 \ \gamma > rac{
u\alpha}{2}
\end{array}
ight.$$

where α is the $H\ddot{o}lder$ order (we choose $\alpha=1$ for Lipschitz continuity).

Gradient Ascent Algo

Input: initial parameter $\theta_0 \in \Theta$ where Θ is a compact and convex subset of \mathbb{R}^d , perturbation constants $\delta_n > 0$, sample sizes $\{m_n\}$, step-sizes $\{\gamma_n\}$, operator $\Gamma : \mathbb{R}^d \to \Theta$.

for
$$n = 0, 1, 2, ...$$
 do

Generate $\{\Delta_n^i, i=1,\ldots,d\}$ using Rademacher distribution, independent of $\{\Delta_m, m=0,1,\ldots,n-1\}$.

CPT-value Estimation (Trajectory 1)

Simulate m_n samples using $(\theta_n + \delta_n \Delta_n)$.

Obtain CPT-value estimate $\overline{\mathbb{C}}_n^{\theta_n + \delta_n \Delta_n}$.

CPT-value Estimation (Trajectory 2)

Simulate m_n samples using $(\theta_n - \delta_n \Delta_n)$.

Obtain CPT-value estimate $\overline{\mathbb{C}}_n^{\theta_n-\delta_n\Delta_n}$.

Gradient Ascent

Update θ_n using the update rule above.

end for

Return θ_n .

There still remains a problem: how the m_n samples are generated, i.e., what is the distribution (policy) we use? See the next chapter.

Function Approximation and Boltzmann Policy

Function Approximation

- \circ Note that in Q-learning, the policy is dependent on the Q-table, which contains all Q(s, a) for each state s and each action a. At some state s, the agent choose the action with biggest Q value. The dimension of the Q-table is $S \times A$ where S is the num of states and A is the num of feasible actions.
- \circ In problems with high-dimension of states and actions, Q-table becomes computationally expensive. Thus, we use function approximation to approximate the Q funtion:

$$Q(s,~a)pprox heta^{\mathsf{T}}\phi_{s,~a}$$

where $\phi_{s,\,a}$ is a d-dimensional vector describing the state-action feature, e.g., d can be S+A if we construct features on each states and actions separately instead of considering their combinations.

 \circ In this paper, the authors use the following settings of state-action feature $\phi_{s,\,a}$:

State	Action	Feature
$q_i(n) < L_1 \text{ and } t_i(n) < T_1$	RED	0
	GREEN	1
$q_i(n) < L_1 \text{ and } t_i(n) \ge T_1$	RED	0.2
	GREEN	0.8
$L_1 \leq q_i(n) < L_2 \text{ and } t_i(n) < T_1$	RED	0.4
	GREEN	0.6
$L_1 \leq q_i(n) < L_2 \text{ and } t_i(n) \geq T_1$	RED	0.6
	GREEN	0.4
$q_i(n) \ge L_2$ and $t_i(n) < T_1$	RED	0.8
	GREEN	0.2
$q_i(n) \ge L_2 \text{ and } t_i(n) \ge T_1$	RED	1
	GREEN	0

where q represents the queue length, t represents the elapsed time and $L_1,\ L_2,\ T_1$ are thresholds. Now the dimension d=6A since they have shrinked the S states to be 6 states based on the thresholds.

Boltzmann Policy

- $\circ\,$ Instead of choosing action with the biggest Q value, Boltzmann policy makes the Q values to be probs under some state.
- Formula:

$$\pi_{ heta}(s,\ a) = rac{e^{ heta^{\mathsf{T}}\phi_{s,\,a}}}{\sum\limits_{a^{'}\in A(s)}e^{ heta^{\mathsf{T}}\phi_{s,\,a^{'}}}}$$

where A(s) is the feasible action set under a certain state s.

The exponential operator makes all values positive and thus can be transformed to be probs.

Experiments

• Experiment Design

- CPT
 - Use CPT-value as reward.
- EUT
 - Use value function u but do not use probability weighting function w.
- AVG
 - Use neither value function nor probability weighting function, i.e., just use the simple mean.
- o Do 100 independent tests, calculate CPT-value of these 3 algos respectively.

Results

CPT

• EUT

 Results show that CPT > EUT > AVG. I think this is obvious and even need not be tested since the final measure is CPT-value and the CPT model is trained based on that.