Crime/Murder in California Cities

Tigran Manukyan, Aigerim Toleukhanova

Problem

- Predicting the number of murders in California cities, based on the different crimes committed in those cities.
- FBI
- ~6000 tuples

Task Distribution

- Linear Regression by Aigerim
- Random Forest by Tigran

Regression Analysis

Random Forest Prediction

Supervised Learning

- Data is Labeled
- Target exists
- Regression:

Predict continuous numerical values

Classification:

Predict categorical target

Working of Supervised Learning Models

Training vs Testing: K-fold Cross Validation

- Rotation estimation
- Improve model
- Avoid overfitting and underfitting
- Train and predict all objects

Linear Regression: Analysis Motivation

Correlation Plot Without Outliers

Linear Regression: ?lm or help(lm)

Dataset:
$$\{y_i,\,x_{i1},\ldots,x_{ip}\}_{i=1}^n$$

Model:

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i$$

i = 1, 2, ..., n, where ^T denotes the transpose, so that $x_i^T \beta$ is the inner product between vectors x_i and β

- Statistical model
- Estimates the linear relationship between one or more variables
- Dependent or independent variables
- β is regression coefficient
- ?lm or help(lm)

Linear Regression: Code in R

Linear Regression: Formula

- formula <- Murder ~ .
- formula <- Murder ~ Population+ Violent+ Robbery+ Burglary+Rape+ Assault+
 PropertyCrime
- formula <- Murder ~ Violent+ Robbery+ Burglary+Arson+Rape+ Assault+
 PropertyCrime+ Theft

Linear Regression: (modelLR)

Linear Regression

6288 samples 8 predictor

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 5030, 5030, 5031, 5030, 5031

Resampling results:

RMSE Rsquared MAE 9.5823687112e-13 1 6.6798655415e-13

Tuning parameter 'intercept' was held constant at a value of TRUE

Scatter plot of Arson vs Murder

Random Forest: Motivation

I like trees so it Decision Trees for me.

Random Forest > Regular Decision Tree

- Reduces Overfitting
- No Pruning (although can help)
- Better with noise

Random Forest: How It Works

Builds user defined number of Decision Trees (N):

For each split point of a decision tree

- Randomly selects a number of features (m) from data, and chooses the best attribute from the subset
- M is a number between 1 and number of features

Random Forest: How It Works

Evaluation

- Classification:
 - Chooses the output that occurs most frequently
- Regression
 - Takes the average out of all the outputs
 - o Formula:

$$\hat{y} = rac{1}{N} \sum_{i=1}^N y_i$$

 \circ Where y_i is the output of the *i*th decision tree

Random Forest: Code

```
# Define the number of folds for cross-validation
num_folds <- 5</pre>
                                                       library(randomForest)
# Set up the cross-validation scheme
ctrl <- trainControl(method = "cv", number = num_folds)</pre>
# Train Random Forest model using k-fold cross-validation
rf_model <- train(
  x = murderData[, -which(names(murderData) == "Murder")], # Predictors
  y = murderData$Murder, # Target variable
  method = "rf",
  trControl = ctrl,
  tuneGrid = expand.grid(mtry = 1:10), # Grid of mtry values to try
  ntree = 500
```

Random Forest: Tuning

Number of Trees:

- Once number of trees gets big enough it has now effect on the accuracy
- We will use 500

Random Forest: Tuning

Variables tried at each split:

- mtry is variables tried at each split
- If we compare the RMSE the best one is 5
- So 5 variables are randomly selected at each split point

```
        mtry
        RMSE
        Rsquared
        MAE
        RMSESD
        RsquaredSD
        MAESD

        1
        1.915505
        0.7758536
        1.026560
        0.2233059
        0.04396384
        0.05561283

        2
        2.1.860022
        0.7852879
        1.017678
        0.1769859
        0.03293316
        0.05169909

        3
        3.1.851209
        0.7869588
        1.019853
        0.1597497
        0.02979185
        0.05042968

        4
        4.847615
        0.7878483
        1.020679
        0.1453453
        0.02732317
        0.04734661

        5
        5.1.847082
        0.7882261
        1.022831
        0.1409833
        0.02474072
        0.04695352

        6
        1.851030
        0.7876245
        1.024002
        0.1344879
        0.02297482
        0.04550555

        7
        7.1.852954
        0.7874130
        1.026063
        0.1274865
        0.02185773
        0.04650042

        8
        1.859817
        0.7859601
        1.028236
        0.1279782
        0.02070695
        0.04456948

        9
        1.858056
        0.7867935
        1.026075
        0.1232412
        0.01875030
        0.04472329

        10
        1.854645</
```

"Best No. of variables tried at each split: 5"

Random Forest: Final Forest

```
finalForest <- train(
    x = murderData[, -which(names(murderData) == "Murder")], # Predictors
    y = murderData$Murder, # Target variable
    method = "rf",
    trControl = ctrl,
    tuneGrid = expand.grid(mtry = 5), # best mtry model
    ntree = 500
)</pre>
```

Random Forest: MISC

- Random Forest training also gives the importance of each variable as a bonus.
- For us Violent Crime was the most important
- Robbery and Assault are significantly important
- Rest not as important

rf variable importance		
	0verall	
Violent	100.0000	
Robbery	59.2716	
Assault	30.0079	
Burglary	7.8878	
PropertyCrime	5.6624	
Population	4.5514	
Theft	3.5147	
Arson	3.4622	
SQmiles	2.9727	
Years	0.1473	
Rape	0.0000	

Evaluation Metrics

- 1. Root Mean Square Error
- 2. Mean Square Error
- 3. Mean Absolute Error
- Mean Absolute Percentage Error
- 5. Confusion Matrix:
 - Sensitivity
 - Specificity
 - Balanced Accuracy

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
Actual condition	Positive (P)	True positive (TP)	False negative (FN)	
	Negative (N)	False positive (FP)	True negative (TN)	

$$ext{MAPE} = 100rac{1}{n}\sum_{t=1}^{n}\left|rac{A_t-F_t}{ullet}
ight|$$

Linear Regression: Result by summary(modelLR)

- Residual standard error: 8.0068054e-13 on 6279 degrees of freedom
 Multiple R-squared: 1, Adjusted R-squared:
- F-statistic: 2.1827389e+28 on 8 and 6279 DF, p-value: < 2.22045e-16

- Residual (differences between observed and predicted) is symmetric
- Residual Standard Error (average distance that the observed values fall from the regression line) is low
- F-statistic (measure of how well the model fits as a whole)
 - Small p-value (< 0.05) is good

Linear Regression: Result 5-fold Cross-Validation

formula <- Murder ~ Violent+ Robbery+ Burglary+ Arson+Rape+ Assault+ PropertyCrime+ Theft+ SQmiles

MAE: 0.0000000000067703531147

MSE: 6.3740991771e-25

RMSE: 0.0000000000079837955742

MAPE: 0.000035696965786 %

Accuracy: 99.99964303 %

Linear Regression: Result of Assigning Range

Accuracy: 0.82312709 vs 0.95085096

Linear Regression: Result

Random Forest: Result

MSE: 0.602320576613915

RMSE: 0.776093149444005

MAE: 0.430247166891318

R-squared: 0.965121456446335

MAPE: 19.1058273502418%

Accuracy: 80.8941726498%

Random Forest: Result

• Accuracy: 89.31%

 Results better then Linear Regression

 Better for classification models not regression

Comparing the Result

Linear Regression:

MAE: 0.0000000000067703531147

MSE: 6.3740991771e-25

RMSE: 0.0000000000079837955742

MAPE: 0.000035696965786 %

Accuracy: 99.99964303 %

Random Forest:

MAE: 0.430247166891318

MSE: 0.602320576613915

RMSE: 0.776093149444005

MAPE: 19.1058273502418%

Accuracy: **80.8941726498**%

Conclusion

- Linear Regression gave better results
- Our data was very correlated so it makes sense
- However, random forest still gave decent and could prove useful for future tests

Linear Regression

Random Forest

Future work

- Add more features such demographic characteristics:
 - Race/nationality of population
 - Income of household/person
 - Dissect Cities into Neighborhoods
 - Consider safety Index of Neighborhoods
 - School rating
- Adapt Neural Network
 - Assign weight/threshold
 - Gave priority for some attributes

Thank you! Questions?