PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

SEPTIEMBRE - 2002

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

- 1°) Se consideran los planos $\pi_1 \equiv x + y + z = 0$ y $\pi_2 \equiv x y + z = 1$. Se pide:
- a) Hallar un plano π , perpendicular a ambos y que pase por el punto P(1, 2, -1).
- b) Determinar una recta r paralela a ambos pasando por el punto Q(2, 1, 1).
- c) Calcular el ángulo que forman $\pi_{\scriptscriptstyle 1} \;\; y \;\; \pi_{\scriptscriptstyle 2} \,.$
- 2°) a) Enunciar el teorema de los incrementos finitos.
- b) Una función f(x), derivable en toda la recta, verifica: f(0) = -2; f(2) = 6.
 - b_1) Aplicando el teorema anterior, probar que existe un punto c en el intervalo (0, 2) tal que f'(c)=4.
 - b_2) Si además f(x) tiene derivada continua y f'(0) = 0, probar que hay un punto en el intervalo (0, 2) en el que la derivada de f toma el valor 3.

CUESTIONES

1^a) Dadas las matrices $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$, hallar para qué valores de m la matriz B + mA no tiene inversa.

2ª) Calcular el valor de a para que el producto vectorial de los vectores $\overrightarrow{u} = (a, -a, 2)$ y $\overrightarrow{v} = (2, a, 1)$ sea proporcional al vector $\overrightarrow{w} = (1, 1, 0)$.

3a) Calcular
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{sen \ x}.$$

4^a) Calcular
$$\int \frac{x}{\sqrt{1+2x^2}} \cdot dx$$
.

PRUEBA B

PROBLEMAS

- 1°) La circunferencia $x^2 + (y+4)^2 = 25$ corta al eje OX en dos puntos P_1 y P_2 .
- a) Hallar las coordenadas de los puntos $P_1\ y\ P_2.$
- b) Hallar la ecuación de la elipse cuyos focos son P_1 y P_2 y cuyo eje mayor es igual al diámetro de la circunferencia anterior.
- 2°) La gráfica de la función $y = \cos x$ en el intervalo $\left[0, \frac{\pi}{2}\right]$ determina con los dos ejes de coordenadas un recinto que queda dividido en dos partes por la gráfica de la función $y = sen \ x$. Determinar el área de cada una de estas partes.

CUESTIONES

- 1^a) Si los determinantes de las matrices cuadradas de orden tres A y 2A son iguales, calcular el determinante de A. ¿Existe la matriz inversa de A?
- 2^a) Hallar el plano π que contiene a la recta $r = \frac{x-3}{1} = \frac{y-2}{2} = \frac{z-1}{3}$ y es paralelo a la recta $s = \begin{cases} x-y-z+2=0 \\ y-2z-1=0 \end{cases}$.
- 3ª) Dada la función $f(x) = \frac{sen \ x + sen(x+1)}{\cos x \cos(x+1)}$ en el intervalo $\left[0, \frac{\pi}{2}\right]$, demostrar, calculando su derivada, que f(x) es constante.
- 4^a) Hallar a, b, c para que la función $f(x) = x^3 + ax^2 + bx + c$ tome valor 0 para x = 1, presente un máximo relativo en x = -1 y un mínimo relativo en x = 0.
