Improving Distantly-Supervised Neural Relation Extraction using Side Information

<u>Shikhar Vashishth</u>, Rishabh Joshi, Sai S. Prayaga, Chiranjib Bhattacharyya, and Partha Talukdar

Indian Institute of Science, Bangalore

Relation Extraction (RE)

• **Definition:** Task of identifying relation between entities in text.

- Example: Google was founded in the state of California in 1998.
 - Founding-year (Google, 1998)
 - Founding-location (Google, California)

Applications: Question answering, Web search, KB Population...

Traditional RE

- Hand-built patterns and Bootstrapping method
 - Hearst patterns, Snowball (2000) ...
- **Supervised** approaches:
 - Relation detection: True/False
 - Relation classification: employee-of/located-in/...
- Disadvantages:
 - Suffers from lack of annotated data

Distant Supervision (DS)

- Alleviates the problem of lack of annotated data.
- Distant Supervision (DS) assumption: [Mintz et al., 2009]
 "If two entities have a relationship in a KB, then all sentences mentioning the entities express the same relation"

Multi-instance Multi-label (MIML)

- DS might lead to Noisy labelled data
- MIML: Relaxed DS assumption [Riedel et al. 2010; Surdeanu et al., 2012]
 - Does not transform DS to traditional supervised RE (sentence-level).
 - Allows multiple relations to hold between entities
 - If a relation holds between entities then at least one sentence must support it

Neural Networks for DS

- Earlier techniques utilized hand-crafted NLP features which can be expensive and limiting.
- Using NN for feature extraction helps.
- PCNN (Piecewise Convolution NN) [Zeng et a., 2014]
 - Adapts CNNs for extracting sentence features.
- PCNN+Attention [Lin et al., 2016]
 - Uses attention mechanism for aggregating information.

Motivation

- KGs contain information which can improve RE
 - Limiting supervision from KG to dataset creation

- Dependency tree based features have been found relevant for RE [Mintz et al. 2009]
 - Instead of defining hand-crafted features can employ Graph Convolutional Networks (GCNs).

Graph Convolutional Networks (GCN)

Generalization of CNNs over Graphs.

$$h_v = f\left(\sum_{u \in \mathcal{N}(v)} \left(Wx_u + b
ight)
ight), \;\; orall v \in \mathcal{V}$$
 [Kipf et al., 2016]

Contributions

- Propose RESIDE, a novel method which utilizes additional supervision from KB in a principled manner for improving distant supervised RE.
- RESIDE uses GCNs for modeling syntactic information and performs competitively even with limited side information.

RESIDE

RESIDE: Side Information

- Entity Type Information:
 - All relations are constrained by the entity types
 - \circ president_of(X, Y) => X = Person Y = Country
 - Several KGs like Freebase, Wikidata provide entity type info.
 - Not suitable as hard constraints
 - Not available at right granularity or are noisy
 - Requires manual effort for each relation

RESIDE: Side Information

- Relation Alias Information:
 - **Utilize relation aliases** provided by KGs.
 - Extract relation phrases between target entities using OpenIE and dependency parse
 - Link extracted phrases to closest relations using aliases from KG

RESIDE: Architecture

Syntactic Sentence Encoding

Instance Set Aggregation

Experiments

- Datasets:
 - RiedelNYT: [Riedel et al., 2010]
 - Constructed by aligning Freebase relations with NYT corpus
 - Contains 53 relations
 - GIDS (Google IISc Distant Supervision): [Jat et al., 2018]
 - Constructed by extending Google RE corpus
 - Assures at-least-one assumption of MIML paradigm

Results:

Comparison of Precision Recall curves

RESIDE achieves **higher precision** over the **entire recall range**.

Ablation Study:

- Comparison of different ablated version of RESIDE
 - Cumulatively removing different side information
 - Side information helps improve performance.

Effect of Relation Alias Information

Performance on different settings:

- o **None:** Relation aliases not available
- One: Name of relations used as aliases
- One+PPDB: Relation names
 extended using Paraphrase Database
- All: Relation aliases from KG

RESIDE performs comparable with limited side information.

Conclusion

Additional supervision from KG improves Relation Extraction

Syntactic features can be efficiently utilized using Graph
 Convolutional Networks (GCNs)

 We propose RESIDE, a novel NN based model which utilizes the above two ideas for outperforming existing methods.

Questions?

Contact email: shikhar@iisc.ac.in

Source code and data are available github.com/malllabiisc/RESIDE

References

- 1. Vashishth, Shikhar, et al. "Reside: Improving distantly-supervised neural relation extraction using side information." *arXiv preprint arXiv:1812.04361* (2018).
- 2. Lin, Yankai, et al. "Neural relation extraction with selective attention over instances." *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).* Vol. 1. 2016.
- 3. Zeng, Daojian, et al. "Distant supervision for relation extraction via piecewise convolutional neural networks." *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.* 2015.
- 4. Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information." *Proceedings of the 2018 World Wide Web Conference on World Wide Web*. International World Wide Web Conferences Steering Committee, 2018.
- 5. Jat, Sharmistha, Siddhesh Khandelwal, and Partha Talukdar. "Improving distantly supervised relation extraction using word and entity based attention." *arXiv preprint arXiv:1804.06987*(2018).