MATH 3940 Numerical Analysis for Computer Scientists

Problem Set 6: Numerical Differentiation and Integration

1. Consider the data

x	0.9	0.97	1.04
f(x)	-0.17101	-0.05733	0.08486

Find the approximations to f'(0.9), f'(0.97), f'(1.04), and f''(0.97) of order $\mathbf{O}(h^2)$.

- 2. Let $f(x) = xe^x$ and h = 0.06.
 - (a) Find f'(2) using the formula $f'(x) = \frac{f(x+h) f(x)}{h}$
 - (b) Find f''(2) using the formula $f''(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2}$
 - (c) Find the exact error for the approximation obtained in part (b).
- 3. Find the order of error in the following approximation (show your steps)

$$f''(x) = \frac{2f(x) - 5f(x - h) + 4f(x - 2h) - f(x - 3h)}{h^2}$$

- 4. Consider the integral $\int_0^1 \sin \pi x \ dx$
 - (a) Approximate the above integral using trapezoidal rule.
 - (b) Approximate the above integral using Simpson's rule.
 - (c) Approximate the above integral by Simpson's $\frac{3}{8}$ rule.
 - (d) Using the error formula find a bound for the error of Trapezoidal rule and compare this to the actual error.
- 5. Consider the integral $\int_0^4 x^2 e^{-x} dx$
 - (a) Approximate the above integral using composite Trapezoidal rule with n = 8.
 - (b) Approximate the above integral using composite Simpson's rule with n=4.