Свойства решений уравнения Лапласа, потенциалы, функция Грина

"Уравнения математической физики"

Скопинцев Артур Маркович

Формулы Грина

Пусть Ω — ограниченная область в евклидовом пространстве $\mathbb{R}^n_x = (x_1, \ldots, x_n)$, граница которой $\partial \Omega$ принадлежит классу B_1 . Пусть u(x) и v(x) — функции, принадлежащие классу $C^2(\overline{\Omega})$. Применяя формулу интегрирования по частям

$$\int_{\Omega} v \frac{\partial^2 u}{\partial x_j^2} dx = -\int_{\Omega} \frac{\partial v}{\partial x_j} \frac{\partial u}{\partial x_j} dx + \int_{\partial \Omega} v \frac{\partial u}{\partial x_j} \nu_j ds.$$
 (3.4)

 $u=(\nu_1,\dots,\nu_n)$ — единичный вектор внешней нормали к $\partial\Omega,\,ds$ означает элемент площади $\partial\Omega.$

Суммируя равенства (3.4) по j от 1 до n, получаем первую формулу Грина

$$\int_{\Omega} v \Delta u dx = -\int_{\Omega} \sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} \frac{\partial u}{\partial x_{j}} dx + \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} ds.$$
 (3.5)

Точно так же имеем

$$\int_{\Omega} u \Delta v dx = -\int_{\Omega} \sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} dx + \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} ds.$$
 (3.6)

Вычитая из равенства (3.5) равенство (3.6), получим вторую формулу Грина

$$\int_{\Omega} (v\Delta u - u\Delta v)dx = \int_{\partial\Omega} \left(v\frac{\partial u}{\partial\nu} - u\frac{\partial v}{\partial\nu}\right)ds. \tag{3.7}$$

Ниже мы увидим многочисленные применения этих формул при изучении уравнения Лапласа и уравнения Пуассона.

Фундаментальное решение

Пусть

$$|x-x^0| = \left(\sum_{j=1}^n (x_j - x_j^0)^2\right)^{\frac{1}{2}},$$

где $x^0 = (x_1^0, \dots, x_n^0)$ — точка пространства \mathbb{R}^n_x , рассматриваемая как параметр. Функция

 $E(x, x^0) = -\frac{|x - x^0|^{2-n}}{(n-2)\omega_n}$ при n > 2, (3.8)

$$E(x, x^0) = \frac{1}{2\pi} \ln|x - x^0| \quad \text{при} \quad n = 2, \tag{3.9}$$

где ω_n — площадь поверхности единичной сферы в пространстве \mathbb{R}^n_x , играет важную роль при изучении уравнения Лапласа. Положим $E(x,x^0)=\mathcal{E}(|x-x^0|)$. Легко проверить, что в области $\mathbb{R}^n_x\backslash\{x^0\}$ функция $E(x,x^0)$ является гармонической функцией, т. е.

$$\Delta E = 0, \quad \mathbb{R}_x^n \backslash \{x^0\}. \tag{3.10}$$

Действительно, если функция v(x) зависит только от $r \equiv |x-x^0|$ и удовлетворяет уравнению Лапласа при $|x-x^0| \neq 0$, то, подставляя v в уравнение (3.1), получим обыкновенное дифференциальное уравнение

$$\Delta v = \frac{d^2 v}{dr^2} + \frac{(n-1)}{r} \frac{dv}{dr} = 0.$$
 (3.11)

Легко проверить, что функция $\mathcal{E}(r)$ удовлетворяет уравнению (3.11) при $|x-x^0| \neq 0$.

Определение 1. Функция $V(x,x^0)$ называется фундаментальным решением уравнения Лапласа, если $V(x,x^0)$ является обобщенной функцией из пространства $D'(\mathbb{R}^n_x)$ и удовлетворяет уравнению

$$\Delta V = \delta(x - x^0),\tag{3.12}$$

где обобщенная функция $\delta(x)$ — функция Дирака:

$$\langle \delta, \varphi \rangle = \varphi(0), \quad \langle \delta(x - x^0), \varphi(x) \rangle = \varphi(x^0).$$

Покажем, что функция $E(x,x^0)$ является фундаментальным решением уравнения Лапласа. Так как $E(x,x^0)$ — локально суммируемая функция в \mathbb{R}^n_x , то $E(x,x^0)\in D'(\mathbb{R}^n_x)$. Проверим, что выполнено уравнение (3.12). Пусть $\varphi(x)\in D(\mathbb{R}^n_x)$. Согласно определению производной обобщенной функции

$$\langle \Delta E, \varphi \rangle = \langle E, \Delta \varphi \rangle$$
.

Далее, так как $E(x, x^0)$ — локально суммируемая функция в \mathbb{R}^n_x , то

$$\langle E, \Delta \varphi \rangle = \int\limits_{\mathbb{R}^n_x} E(x, x^0) \Delta \varphi(x) dx = \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}^n_x \backslash Q^{x^0}_{\varepsilon}} E(x, x^0) \Delta \varphi(x) dx,$$

где $Q_{\varepsilon}^{x^0}$ обозначает шар радиуса ε с центром в точке $x=x^0$. Для вычисления последнего предела воспользуемся второй формулой Грина. Имеем

$$\int_{\mathbb{R}^n_x \backslash Q^{x^0}_{\epsilon}} E(x, x^0) \Delta \varphi(x) dx = \int_{\mathbb{R}^n_x \backslash Q^{x^0}_{\epsilon}} \Delta E(x, x^0) \varphi(x) dx + \int_{S^{x^0}_{\epsilon}} \left(E \frac{\partial \varphi}{\partial \nu'} - \varphi \frac{\partial E}{\partial \nu'} \right) ds,$$
(3.13)

где ν' — направление внутренней нормали к сфере радиуса ε с центром в точке x^0 , которую мы обозначили $S_\varepsilon^{x^0}$. В силу равенства (3.10)

$$\int\limits_{\mathbb{R}^n_x\setminus Q^{x^0}_{m{\epsilon}}} \Delta E(x,x^0) arphi(x) dx = 0.$$

Покажем, что последний интеграл в равенстве (3.13) стремится к $\varphi(x^0)$ при $\varepsilon \to 0$. Имеем

$$\left| \int\limits_{S_{\boldsymbol{\varepsilon}}^{\boldsymbol{x}^0}} E \frac{\partial \varphi}{\partial \nu'} ds \right| \leq |\mathcal{E}(\varepsilon)| \int\limits_{S_{\boldsymbol{\varepsilon}}^{\boldsymbol{x}^0}} \left| \frac{\partial \varphi}{\partial \nu'} \right| ds \leq |\mathcal{E}(\varepsilon)| \omega_n \varepsilon^{n-1} \max_{S_{\boldsymbol{\varepsilon}}^{\boldsymbol{x}^0}} \left| \frac{\partial \varphi}{\partial \nu'} \right| \leq C_1 \varepsilon^{n-1} |\mathcal{E}(\varepsilon)|,$$

где постоянная C_1 не зависит от ε , так как $E(x,x^0)$ постоянна на $S_{\varepsilon}^{x^0}$ и равна $\mathcal{E}(\varepsilon)$, а производные φ ограничены в $\overline{\Omega}$. Очевидно, что $\mathcal{E}(\varepsilon)\varepsilon^{n-1}\to 0$ при $\varepsilon\to 0$. Легко видеть, что

$$\lim_{arepsilon o 0} \int\limits_{S^{m{x}^0}} arphi rac{\partial E}{\partial
u'} ds = - \lim_{arepsilon o 0} rac{arepsilon^{1-n}}{\omega_n} \int\limits_{S^{m{x}^0}} arphi ds = - arphi(x^0),$$

так как $\frac{\partial E}{\partial \nu'} = -\frac{\varepsilon^{1-n}}{\omega_n}$ на сфере $S_{\varepsilon}^{x^0}$. Поэтому предел при $\varepsilon \to 0$ левой части равенства (3.13) равен $\varphi(x^0)$. Следовательно,

$$\langle \Delta E, \varphi \rangle = \langle E, \Delta \varphi \rangle = \varphi(x^0) = \langle \delta(x - x^0), \varphi(x) \rangle$$
.

Это означает, что функция $E(x,x^0)$ удовлетворяет уравнению (3.12). В случае n=3 функция $CE(x,x^0)$, где C= const, является потенциалом электростатического поля, создаваемого точечным электрическим зарядом, помещенным в точку x^0 . Кроме того, $CE(x,x^0)$ можно рассматривать как функцию, определяющую стационарное распределение температуры в \mathbb{R}^3_x при наличии точечного источника тепла в точке x^0

Представление решений через потенциалы

Пусть $u(x) \in C^2(\overline{\Omega})$ через $Q_{\varepsilon}^{x^0}$ обозначим, как и выше, шар радиуса ε с центром в точке x^0 , а через $S_{\varepsilon}^{x^0}$ обозначим сферу радиуса ε с центром в точке x^0 . Пусть $Q_{\varepsilon}^{x^0} \subset \Omega$ и $\Omega_{\varepsilon} = \Omega \backslash \overline{Q}_{\varepsilon}^{x^0}$. Применим вторую формулу Грина (3.7) к области Ω_{ε} и функциям u(x) и $E(x,x^0)$. Имеем

$$\int_{\Omega_{\epsilon}} (E\Delta u - u\Delta E) \, dx = \int_{\partial\Omega} \left(E \frac{\partial u}{\partial \nu} - u \frac{\partial E}{\partial \nu} \right) ds + \int_{S_{\epsilon}^{x^{0}}} \left(E \frac{\partial u}{\partial \nu'} - u \frac{\partial E}{\partial \nu'} \right) ds,$$
(2.14)

где ν' — направление внутренней нормали к $S_{\varepsilon}^{x^0}$. Равенство (3.14) справедливо при любых достаточно малых ε . Первый интеграл в правой части равенства (3.14) не зависит от ε . Покажем, что при $\varepsilon \to 0$ интеграл по $S_{\varepsilon}^{x^0}$ в правой части равенства (3.14) стремится к $u(x^0)$. Легко видеть, что

$$\left| \int\limits_{S_{\varepsilon}^{x^{0}}} E \frac{\partial u}{\partial \nu'} ds \right| \leq |\mathcal{E}(\varepsilon)| \omega_{n} \varepsilon^{n-1} \max_{S_{\varepsilon}^{x^{0}}} \left| \frac{\partial u}{\partial \nu'} \right| \leq C_{1} \varepsilon^{n-1} |\mathcal{E}(\varepsilon)|,$$

где постоянная C_1 не зависит от ε , и $\varepsilon^{n-1}|\mathcal{E}(\varepsilon)|\to 0$ при $\varepsilon\to 0$. Так как на $S^{x^0}_{\varepsilon}$

$$\frac{\partial E}{\partial \nu'} = \frac{\partial E}{\partial \nu} = -\frac{1}{\omega_n} \varepsilon^{1-n},$$

то

$$\lim_{\varepsilon \to 0} \left(-\int_{S_{\varepsilon}^{x^{0}}} u \frac{\partial E}{\partial \nu'} ds \right) = \lim_{\varepsilon \to 0} \frac{\varepsilon^{1-n}}{\omega_{n}} \int_{S_{\varepsilon}^{x^{0}}} u \, ds = u(x^{0}).$$

Здесь мы применили известную теорему о среднем значении для интеграла

$$\int\limits_{S^{m{x}^0}_{m{\epsilon}}}uds=\omega_nm{\epsilon}^{n-1}u(x^{m{\epsilon}}),$$

где $x^{\varepsilon} \in S_{\varepsilon}^{x^0}$, и воспользовались непрерывностью u(x) в Ω . Поэтому, переходя в равенстве (3.14) к пределу при $\varepsilon \to 0$, получим

$$u(x^{0}) = \int_{\partial\Omega} \left(u \frac{\partial E}{\partial \nu} - E \frac{\partial u}{\partial \nu} \right) ds + \int_{\Omega} E \Delta u dx.$$
 (3.15)

Если $\Delta u = 0$ в Ω , то из формулы (3.15) следует, что

$$u(x^{0}) = \int_{\partial\Omega} \left(u(x) \frac{\partial E(x, x^{0})}{\partial \nu} - E(x, x^{0}) \frac{\partial u(x)}{\partial \nu} \right) ds.$$
 (3.16)

Формула (3.16) дает представление гармонической функции из класса $C^2(\overline{\Omega})$ в любой точке x^0 области Ω через значения u(x) на $\partial\Omega$ и значения на $\partial\Omega$ ее нормальной производной $\frac{\partial u}{\partial \nu}$. Из формулы (3.16) получим много важных следствий.

Если $\Delta u = f$ в Ω , то из формулы (3.15) имеем

$$u(x^{0}) = \int_{\Omega} f(x)E(x, x^{0})dx + \int_{\partial\Omega} \left(u(x) \frac{\partial E(x, x^{0})}{\partial \nu} - E(x, x^{0}) \frac{\partial u(x)}{\partial \nu} \right) ds$$
(3.17)

для любой точки $x^0 \in \Omega$.

Потенциалы

Интеграл вида

$$u_0(x^0) = \int_{\Omega} a_0(x)|x - x^0|^{2-n} dx, \quad n > 2,$$
 (3.18)

называется объемным потенциалом или ньютоновым потенциалом с плотностью $a_0(x)$ в Ω . Интеграл вида

$$u_1(x^0) = \int_{\partial\Omega} a_1(x)|x - x^0|^{2-n} dx, \quad n > 2,$$
 (3.19)

называется потенциалом простого слоя с плотностью $a_1(x)$ на $\partial\Omega$, а интеграл вида

$$u_2(x^0) = \int_{\partial\Omega} a_2(x) \frac{\partial |x - x^0|^{2-n}}{\partial \nu} dx, \quad n > 2, \tag{3.20}$$

называется **потенциалом двойного слоя** с плотностью $a_2(x)$ на $\partial\Omega$.

В случае n=2 аналогично определятся **ньютонов**, или **логарифмический**, **потенциал** и потенциалы простого или двойного слоев. При этом в интегралах (3.18), (3.19), (3.20) нужно функцию $|x-x^0|^{2-n}$ заменить функцией $-\ln|x-x^0|$.

Из формулы (3.16) следует, что всякую гармоническую функцию из класса $C^2(\overline{\Omega})$ можно представить в виде суммы потенциала простого слоя и потенциала двойного слоя на $\partial\Omega$, плотности которых определяются значениями $\frac{\partial u}{\partial \nu}$ и u на $\partial\Omega$.

Физический смысл потенциалов (3.18)–(3.20) при n=3 и n=2 подробно разъясняется в книгах [10], [12]. Как мы уже отмечали, в случае n=3 напряженность электростатического поля, создаваемого точечным электрическим зарядом q, помещенным в точку x^0 , при соответствующем выборе единиц измерения равна градиенту функции $q|x-x^0|^{2-n}$, называемой потенциалом данного электростатического поля. Очевидно, градиент ньютонова потенциала (3.18) определяет напряженность электростатического поля в $\mathbb{R}^n_x \setminus \overline{\Omega}$, создаваемого зарядами, помещенными в область Ω , плотность которых равна $a_0(x)$. Потенциал простого слоя (3.19) является потенциалом электростатического поля в $\mathbb{R}^n_x \setminus \partial \Omega$, создаваемого электрическими зарядами, помещенными на $\partial \Omega$ с поверхностной плотностью $a_1(x)$. Градиент потенциала двойного слоя (3.20) определяет напряженность электростатического поля, создаваемого диполями, помещенными на поверхности $\partial \Omega$ с поверхностной плотностью $a_2(x)$.

Теорема о потоке тепла

Теорема (о потоке тепла). Пусть u(x) – гармоническая функция в Ω из класса $C^2(\overline{\Omega})$, $\partial\Omega \in B^1$. Тогда

$$\int_{\partial\Omega} \frac{\partial u}{\partial \nu} ds = 0. \tag{3.24}$$

Доказательство. Применим формулу Грина (3.5) для функций u(x), $v(x) \equiv 1$ в области Ω . В этом случае из равенства (3.5) вытекает соотношение (3.24).

Эта теорема имеет следующую физическую интерпретацию. Если u(x) задает стационарное распределение температуры внутри однородной изотропной среды, заполняющей объем Ω , то

$$-\int\limits_{\partial\Omega}rac{\partial u}{\partial
u}ds$$

с точностью до постоянного множителя, зависящего от выбора единиц измерения, задает поток тепла через поверхность $\partial\Omega$ в сторону нормали ν . Теорема 1 утверждает, что поток тепла через границу тела при стационарном распределении температуры равен нулю.

Пусть постоянные ρ_1 и ρ_2 таковы, что $Q_{\rho_1}^{x^0}$ и $Q_{\rho_2}^{x^0}$ содержатся в Ω и $\rho_2 > \rho_1$. Тогда, применяя соотношение (3.24) к фундаментальному решению $E(x,x_0)$ и области $Q_{\rho_2}^{x^0} \backslash Q_{\rho_1}^{x^0}$, получим, что

$$\int\limits_{S_{\rho_1}^{\boldsymbol{x^0}}} \frac{\partial E(x,x^0)}{\partial \nu} ds = \int\limits_{S_{\rho_2}^{\boldsymbol{x^0}}} \frac{\partial E(x,x^0)}{\partial \nu} ds.$$

Это означает, что количество тепла, проходящего через любую сферу с центром в точке x^0 в направлении внешней нормали при распределении температуры в $\Omega \setminus \{x^0\}$, соответствующем функции $-E(x,x^0)$, постоянно. Поэтому точку x^0 при распределении температуры $-E(x,x^0)$ можно рассматривать как источник тепла, выделяющий количество тепла, равное

 $\int\limits_{S^{m{x}^0}_{m{
ho}}}rac{\partial E}{\partial
u}ds=1.$

Теоремы о среднем значении

Теорема (о среднем значении по сфере). Пусть гармоническая в шаре $Q_R^{x^0}$ функция u(x) принадлежит классу $C^0(\overline{Q}_R^{x^0})$. Тогда

$$u(x^0) = \frac{1}{\omega_n R^{n-1}} \int_{S_R^{x^0}} u \, ds. \tag{3.25}$$

Доказательство. Пусть $\rho < R$. Тогда по формуле (3.16), взяв за область Ω шар $Q_{\rho}^{x^0}$, получаем

$$u(x^{0}) = \int_{S_{\rho}^{x^{0}}} \left(u(x) \frac{\partial E(x, x^{0})}{\partial \nu} - E(x, x^{0}) \frac{\partial u(x)}{\partial \nu} \right) ds.$$
 (3.26)

Так как на сфере $S_{\rho}^{x^0}$ функция $E(x,x^0)=\mathcal{E}(\rho)$, то в силу теоремы 14

$$\int\limits_{S_{\rho}^{x^0}} E(x,x^0) \frac{\partial u(x)}{\partial \nu} ds = \int\limits_{S_{\rho}^{x^0}} \mathcal{E}(\rho) \frac{\partial u(x)}{\partial \nu} ds = 0.$$

Поэтому, учитывая, что $\frac{\partial E}{\partial \nu} = \frac{\rho^{1-n}}{\omega_n}$ на сфере $S_\rho^{x^0}$, из (3.26) выводим, что

$$u(x^0) = \frac{1}{\omega_n \rho^{n-1}} \int_{S_a^{x^0}} u \, ds. \tag{3.27}$$

Переходя к пределу в равенстве (3.27) при $\rho \to R$, в силу непрерывности функции u(x) в замкнутом шаре $\overline{Q}_R^{x^0}$ получаем равенство (1.25).

Теорема (о среднем значении по шару). Пусть гармоническая в шаре $Q_R^{x^0}$ функция u(x) принадлежит классу $C^0(\overline{Q}_R^{x^0})$. Тогда

$$u(x^{0}) = \frac{1}{\varkappa_{n} R^{n}} \int_{Q_{R}^{x^{0}}} u(x) dx, \qquad (3.28)$$

где \varkappa_n обозначает объем шара радиуса 1 в n-мерном пространстве \mathbb{R}^n_x .

Доказательство. Умножим равенство (3.27) на $\omega_n \rho^{n-1}$ и проинтегрируем его по ρ от нуля до R. Получим

$$u(x^0)\int_0^R \omega_n \rho^{n-1} d\rho = \int_0^R \left(\int_{S_x^{0}} u ds\right) d\rho. \tag{3.29}$$

Так как

$$\int\limits_0^R \omega_n
ho^{n-1} d
ho = arkappa_n R^n, \;\; \int\limits_0^R \left(\int\limits_{S^{x^0}_{oldsymbol{
ho}}} u\,ds
ight) d
ho = \int\limits_{Q^{x^0}_R} u(x) dx,$$

то из равенства (3.29) следует утверждение теоремы.

Теорема о среднем значении по шару допускает следующее обобщение, которое, как и теоремы 15 и 16, имеет важные приложения. • • •

Теорема Пусть $\varphi(\rho)$ — непрерывная функция на отрезке $0 \leqslant \rho \leqslant R$ и пусть

$$A(R) \equiv \int\limits_{Q_R^{x^0}} \varphi(|x-x^0|) dx \neq 0.$$

Тогда, если u(x) — гармоническая в шаре $Q_R^{x^0}$ функция из класса $C^0(Q_R^{x^0})$, то

$$u(x^{0}) = \frac{1}{A(R)} \int_{Q_{R}^{x^{0}}} u(x)\varphi(|x - x^{0}|) dx.$$
 (3.30)

Доказательство. Умножим равенство (3.27) на $\omega_n \rho^{n-1} \varphi(\rho)$ и проинтегрируем его по ρ от нуля до R. Имеем

$$u(x^0)\int\limits_0^R arphi(
ho)\omega_n
ho^{n-1}d
ho=\int\limits_0^R \left(\int\limits_{\mathcal{S}^{x^0}_
ho} uarphi(
ho)ds
ight)d
ho=\int\limits_{Q^{x^0}_R} u(x)arphi(|x-x^0|)dx.$$

Из последнего равенства вытекает соотношение (3.30).

Следствие 1. Пусть область $\Omega_{\varepsilon} \subset \Omega$ и расстояние от любой точки Ω_{ε} до $\partial\Omega$ больше ε . Тогда средние функции $u^h(x)$ от гармонической в Ω функции u(x) при $h < \varepsilon$ в области Ω_{ε} совпадают с функцией u(x), m. e. при любых $h < \varepsilon$ и $x^0 \in \Omega_{\varepsilon}$ справедливо равенство

$$u(x^0) = u^h(x^0) \equiv \int\limits_{Q_h^{x^0}} w_h(|x-x^0|) u(x) dx.$$

Действительно, возьмем в равенстве (3.30) за $\varphi(|x-x^0|)$ ядро усреднения $w_h(|x-x^0|)$. Согласно свойствам ядра усреднения (см. § 1.2) имеем

$$\int\limits_{Q_h^{x^0}} w_h(|x-x^0|)dx = 1.$$

Поэтому для любой точки $x^0 \in \Omega_{\varepsilon}$ и $h < \varepsilon$ из равенства (3.30) вытекает, что

 $u(x^{0}) = \int_{Q_{h}^{x^{0}}} w_{h}(|x - x^{0}|)u(x)dx = u^{h}(x^{0}).$

Пользуясь указанным выше следствием, получим теорему о бесконечной дифференцируемости гармонических функций.

Принцип максимума

Теорема Гармоническая в Ω функция u(x) имеет в каждой точке $x \in \Omega$ непрерывные производные любого порядка.

Доказательство. Функция u(x) в Ω_{ε} совпадает со средней функцией $u^h(x)$ при $h < \varepsilon$, а $u^h(x)$, как доказано в § 1.2, бесконечно дифференцируема в Ω_{ε} , а значит, и в Ω .

Утверждение теоремы 18 также легко следует из представления (3.16) гармонической функции с помощью потенциалов, так как стоящие в правой части (3.16) интегралы можно любое число раз дифференцировать под знаком интеграла по координатам точки x^0 , если $x^0 \in \Omega$.

Теорема _ (принцип максимума). Пусть гармоническая в области Ω функция u(x) принадлежит классу $C^0(\overline{\Omega})$ и пусть $M = \max_{\overline{\Omega}} u(x)$. Если $u(x^0) = M$ и $x^0 \in \Omega$, то $u \equiv M$ в Ω .

Доказательство. Пусть $Q_R^{x^0} \subset \Omega$. Предположим, что $u(x') \neq M$ для некоторой точки $x' \in Q_R^{x^0}$. Это означает, что в окрестности $Q_\rho^{x'}$ точки x' при некоторых $\rho > 0$ и $\varepsilon > 0$ выполнено неравенство $u(x) < u(x^0) - \varepsilon$. Тогда по теореме 16 имеем

$$\begin{split} u(x^0) &= \frac{1}{\varkappa_n R^n} \left(\int\limits_{Q_R^{x^0} \backslash Q_\rho^{x'}} u(x) dx + \int\limits_{Q_\rho^{x'}} u(x) dx \right) \leqslant \\ &\leqslant \frac{1}{\varkappa_n R^n} \left[M(\varkappa_n R^n - \varkappa_n \rho^n) + (M - \varepsilon) \varkappa_n \rho^n \right] \end{split}$$

и, следовательно,

$$M = u(x^0) < M - \frac{\varepsilon \rho^n}{R^n}$$
.

Полученное противоречие показывает, что u(x') = M в любой точке $x' \in Q_R^{x^0}$. Далее, соединим ломаной произвольную точку $\hat{x} \in \Omega$ с точкой x^0 и покроем ломаную конечным числом шаров $Q_{R_0}^{x^0}, Q_{R_1}^{x^1}, \dots, Q_{R_N}^{x^N}$, содержащихся в Ω и таких, что $Q_{R_N}^{x^N}$ содержит точку \hat{x} , а $x^k \in Q_{R_{k-1}}^{x^{k-1}}$, $k=1,\dots,N$. По доказанному выше получаем, что u(x)=M в каждом из этих шаров, а значит, $u(\hat{x})=M$.

Теорема Пусть гармоническая в Ω функция u(x) принадлежит классу $C^0(\overline{\Omega})$ и пусть $m=\min_{\overline{\Omega}}u(x)$. Если $u(x^0)=m$ и $x^0\in\Omega$, то $u\equiv m$ в Ω .

Единственность решения задачи Дирихле

Теорема Гармоническая в Ω функция u(x) из класса $C^0(\overline{\Omega})$, отличная от постоянной, при любом $x \in \Omega$ удовлетворяет неравенствам

$$\min_{\partial\Omega} u < u(x) < \max_{\partial\Omega} u. \tag{3.31}$$

Следствие 2. Решение задачи Дирихле для уравнения Лапласа единственно.

Доказательство. Из теоремы 21 вытекает, что если $\Delta u=0$ в Ω , $u\in C^0(\overline{\Omega})$ и $u|_{\partial\Omega}=0$, то $u\equiv 0$ в Ω .

Функция Грина задачи Дирихле

Пусть u(x) — решение первой краевой задачи

$$\Delta u = f$$
 B Ω , $u\Big|_{\partial\Omega} = \psi$ (3.38)

и пусть $u(x) \in C^2(\overline{\Omega}), \ \partial \Omega \in B^1$. Тогда, согласно формуле представления (3.17), имеем

$$u(x^{0}) = \int_{\Omega} f(x)E(x,x^{0})dx + \int_{\partial\Omega} \left(u(x) \frac{\partial E(x,x^{0})}{\partial \nu} - E(x,x^{0}) \frac{\partial u(x)}{\partial \nu} \right) ds.$$
(3.39)

Пусть при любой фиксированной точке $x^0 \in \Omega$ функция $g(x, x^0)$ — гармоническая функция точки x в области Ω и пусть $g(x, x^0)$ как функция x принадлежит классу $C^2(\overline{\Omega})$. Тогда по формуле Грина (3.7) имеем

$$0 = \int_{\Omega} f(x)g(x,x^{0})dx + \int_{\partial\Omega} \left(u(x) \frac{\partial g(x,x^{0})}{\partial \nu} - g(x,x^{0}) \frac{\partial u(x)}{\partial \nu} \right) ds. \quad (3.40)$$

Предположим, что функция $g(x,x^0)$ при любом $x^0 \in \Omega$ удовлетворяет условию $g(x,x^0)\left|_{\partial\Omega}=-E(x,x^0)\right|_{\partial\Omega}.$

Тогда, складывая равенства (3.39) и (3.40), получаем

$$u(x^{0}) = \int_{\Omega} \left(E(x, x^{0}) + g(x, x^{0}) \right) f(x) dx + \int_{\partial \Omega} \left(\frac{\partial E(x, x^{0})}{\partial \nu} + \frac{\partial g(x, x^{0})}{\partial \nu} \right) u(x) ds.$$

Функцию

$$G(x, x^0) = E(x, x^0) + g(x, x^0)$$

будем называть функцией Грина первой краевой задачи для уравнения Лапласа. Легко видеть, что функция Грина $G(x, x^0)$ однозначно определяется следующими свойствами:

- 1. $G(x, x^0) = E(x, x^0) + g(x, x^0)$, где $g(x, x^0)$ как функция x принадлежит классу $C^2(\overline{\Omega})$ и $\Delta g = 0$ при любом параметре $x^0 \in \Omega$.
 - **2.** $G(x, x^0) = 0$ на $\partial \Omega$ при любом параметре $x^0 \in \Omega$.

Из условий 1 и 2 следует, что $\Delta g=0$ в Ω и g=-E на $\partial\Omega$. Этими условиями функция $g(x,x^0)$ определяется однозначно, так как если существуют две функции g_1 и g_2 с этими свойствами, то $\Delta(g_1-g_2)=0$ в Ω , $g_1-g_2=0$ на $\partial\Omega$, и, согласно теореме 21, имеем $g_1-g_2\equiv 0$ в Ω .

Легко видеть, что если $G(x, x^0)$ при фиксированном $x^0 \in \Omega$ рассматривать как обобщенную функцию из $\mathcal{D}'(\Omega)$, то в Ω

$$\Delta G = \Delta E + \Delta g = \delta(x - x^0).$$

Таким образом, если в Ω существует решение u(x) первой краевой задачи (3.38), $u(x) \in C^2(\overline{\Omega})$, и для Ω существует функция Грина, то для любой $x^0 \in \Omega$

$$u(x^{0}) = \int_{\partial\Omega} \frac{\partial G(x, x^{0})}{\partial \nu} \psi(x) ds + \int_{\Omega} G(x, x^{0}) f(x) dx.$$
 (3.41)

Симметрия функции Грина

Теорема (симметрия функции Грина). Пусть $x^1 \in \Omega$ и $x^0 \in \Omega$. Тогда

 $G(x^1, x^0) = G(x^0, x^1).$

Доказательство. Применим формулу Грина (3.7) в области $\Omega_{\varepsilon} = \Omega \setminus (Q_{\varepsilon}^{x^0} \cup Q_{\varepsilon}^{x^1})$, где ε настолько мало, что $Q_{\varepsilon}^{x^0} \subset \Omega$ и $Q_{\varepsilon}^{x^1} \subset \Omega$, к функциям $u(x) = G(x, x^1)$ и $v(x) = G(x, x^0)$. Учитывая, что $\Delta u = 0$ в Ω_{ε} , $\Delta v = 0$ в Ω_{ε} , u = v = 0 на $\partial \Omega$, получим

$$\int_{S_{\epsilon}^{x^1} \cup S_{\epsilon}^{x^0}} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) ds = 0, \tag{3.42}$$

где $\nu=(\nu_1,\ldots,\nu_n)$ — направление внешней нормали в точках $S^{x^0}_{arepsilon}$ и $S^{x^1}_{arepsilon}$.

Пользуясь представлением

$$u(x) = E(x, x^{1}) + g(x, x^{1}), \quad v(x) = E(x, x^{0}) + g(x, x^{0})$$

и устремляя ε к нулю в равенстве (3.42), получим, как и при доказательстве равенства (3.15), что

$$u(x^0) = v(x^1)$$

Очевидно, функция $-G(x,x^0)$ задает стационарное распределение температуры внутри Ω при условии, что на границе $\partial\Omega$ температура равна нулю, а в точке x^0 находится точечный источник тепла, выделяющий количество тепла, равное 1. Функцию $-G(x,x^0)$ можно также интерпретировать как потенциал электростатического поля в Ω , которое имеет точечный заряд, помещенный в точку x^0 , причем этот потенциал равен нулю на $\partial\Omega$.

Найти функцию Грина для области Ω означает найти такое распределение электрических зарядов вне Ω , чтобы эти заряды и заряд, помещенный в точку x^0 , принадлежащую Ω , создавали электростатическое поле с потенциалом, равным нулю на $\partial\Omega$.

Формула (3.41) позволяет получить явную формулу для решения задачи Дирихле в области Ω в тех случаях, когда удается построить функцию Грина. Таким случаем, например, является шар в пространстве \mathbb{R}^n_x .

Функция Грина для шара

Итак, пусть Q_R^0 — шар радиуса R с центром в начале координат. Нужно подобрать заряд в точке x^1 , лежащей вне шара Q_R^0 , так, чтобы потенциал, соответствующий электростатическому полю с точечными электрическими зарядами в точках x^0 и x^1 , равнялся нулю на сфере S_R^0 . Оказывается, что за x^1 нужно взять точку, симметричную x^0 относительно сферы S_R^0 .

Обозначим $\rho=|x^0|$, $\rho_1=|x^1|$, $r=|x-x^0|$, $r_1=|x-x^1|$. Точка x^1 лежит на луче, выходящем из начала координат и проходящем через точку x^0 , и $\rho\rho_1=R^2$. Проверим, что для шара Q_R^0

$$G(x,x^0) = \mathcal{E}(|x-x^0|) - \mathcal{E}\left(\frac{\rho}{R}|x-x^1|\right),$$

где, как и выше, $E(x,x^0) \equiv \mathcal{E}(|x-x^0|)$. Очевидно, $\mathcal{E}(\frac{\rho}{R}|x-x^1|) \equiv E(\frac{\rho}{R}x,\frac{\rho}{R}x^1)$ является гармонической функцией точки x при $x \neq x^1$. Поэтому нужно только проверить, что $G(x,x^0)\Big|_{\partial\Omega} = 0$ при любом $x_0 \in \Omega$.

Пусть точка O- начало координат и $x\in S^0_R$. Рассмотрим треугольники x^0Ox и x^1Ox , когда $x\in S^0_R$. Легко видеть, что эти треугольники подобны (см. рис. 3.1), так как они имеют общий угол x^1Ox , а стороны, образующие этот угол, пропорциональны в силу выбора точки x^1 из условия $\rho\rho_1=R^2$

Рис. 3.1

и поэтому

$$\frac{\rho}{R} = \frac{R}{\rho_1}$$
.

Из подобия указанных треугольников вытекает, что

$$\frac{\rho}{R} = \frac{R}{\rho_1} = \frac{r}{r_1}.$$

Отсюда следует, что $r=rac{
ho}{R}r_1$, когда $x\in S_R^{x^0}$ и

$$G(x, x^0) = \mathcal{E}(r) - \mathcal{E}(\frac{\rho}{R}r_1) = 0$$

при $x \in S_R^0$.

Согласно формуле (3.41) для гармонической функции u(x) из класса $C^2(\overline{Q}_R^0)$ такой, что $u=\psi$ на S_R^0 , при $x\in Q_R^0$ имеем

$$u(x^0) = \int_{S_R^0} \frac{\partial G(x, x^0)}{\partial \nu} \psi(x) ds. \tag{3.43}$$

Вычислим $\frac{\partial G}{\partial \nu}$ при $x \in S_R^0$ и $x^0 \in Q_R^0$. Имеем

$$\left. \frac{\partial G(x,x^0)}{\partial \nu} \right|_{S^0_R} = \mathcal{E}'(|x-x^0|) \frac{\partial |x-x^0|}{\partial \nu} - \mathcal{E}'\left(\frac{\rho}{R}|x-x^1|\right) \frac{\rho}{R} \frac{\partial |x-x^1|}{\partial \nu}.$$

Так как $r=\frac{\rho}{R}r_1$ при $x\in S_R^0$, то $\mathcal{E}'(|x-x^0|)=\mathcal{E}'(\frac{\rho}{R}|x-x^1|)$ и поэтому на S_R^0

$$\frac{\partial G(x,x^0)}{\partial \nu} = \mathcal{E}'(|x-x^0|) \left[\frac{\partial |x-x^0|}{\partial \nu} - \frac{\rho}{R} \frac{\partial |x-x^1|}{\partial \nu} \right].$$

Очевидно, производная $\frac{\partial |x-x^0|}{\partial \nu}$ в точке x равна косинусу угла β_0 между направлением внешней нормали ν к S_R^0 в точке x и направлением x^0x , так как производная от $|x-x^0|$ в точке x по направлению, ортогональному к x^0x , равна нулю. Точно так же получаем, что $\frac{\partial |x-x^1|}{\partial \nu}$ равна косинусу угла β_1 между направлением внешней нормали ν к S_R^0 в точке x и направлением x^1x . Из треугольников x^0Ox и x^1Ox находим, что

$$\rho^{2} = R^{2} + r^{2} - 2Rr\cos\beta_{0},$$

$$\rho_{1}^{2} = R^{2} + r_{1}^{2} - 2Rr_{1}\cos\beta_{1}.$$

Поэтому при $x \in S_R^0$

$$\frac{\partial G(x, x^0)}{\partial \nu} = \mathcal{E}'(r) \left[\frac{R^2 + r^2 - \rho^2}{2Rr} - \frac{\rho (R^2 + r_1^2 - \rho_1^2)}{2R^2 r_1} \right].$$

Подставляя в эту формулу $r_1 = \frac{R}{\rho} r$, $\rho_1 = \frac{R^2}{\rho}$, получим

$$\left. \frac{\partial G(x, x^0)}{\partial \nu} \right|_{S_R^0} = \mathcal{E}'(r) \frac{(R^2 - \rho^2)}{Rr}.$$

Легко видеть, что $\mathcal{E}'(r) = \frac{1}{\omega_n R} r^{1-n}$. Поэтому при $x \in S_R^0$

$$\frac{\partial G(x, x^0)}{\partial \nu} \bigg|_{S_R^0} = \frac{1}{\omega_n R} \frac{R^2 - \rho^2}{r^n}.$$

Итак, формулу (3.43) можно записать в виде

$$u(x^{0}) = \frac{1}{\omega_{n}R} \int_{S_{R}^{0}} \frac{R^{2} - \rho^{2}}{r^{n}} \psi(x) ds.$$
 (3.44)

Интеграл Пуассона, неравенство Харнака

Обозначим через γ угол между направлениями Ox^0 и Ox. Тогда формулу (3.44) можно представить в виде

$$u(x^{0}) = \frac{R^{2} - \rho^{2}}{\omega_{n}R} \int_{S_{R}^{0}} \frac{1}{(R^{2} + \rho^{2} - 2R\rho\cos\gamma)^{\frac{n}{2}}} \psi(x)ds.$$
 (3.45)

Выражение, стоящее в правой части равенства (3.45), называется интегралом Пуассона. Мы получили представление решения задачи Дирихле

$$\Delta u = 0 \text{ B } Q_R^0, \quad u \Big|_{S_R^0} = \psi$$
 (3.46)

через интеграл Пуассона, предполагая, что это решение u(x) существует и принадлежит классу $C^2(\overline{Q}_R^0)$.

Теорема (неравенство Харнака). Пусть гармоническая в шаре Q_R^0 функция u(x) принадлежит классу $C^0(\overline{Q}_R^0)$ и $u(x) \geqslant 0$ в Q_R^0 . Тогда для любой точки $x^0 \in Q_R^0$ справедливы неравенства:

$$\frac{R^{n-2}(R-\rho)}{(R+\rho)^{n-1}}u(0) \leqslant u(x^0) \leqslant \frac{R^{n-2}(R+\rho)}{(R-\rho)^{n-1}}u(0),\tag{3.49}$$

где u(0) — значение u(x) в центре шара Q_R^0 , $\rho = |x^0|$.

Доказательство. В силу единственности решения задачи Дирихле функция u(x) по доказанному выше представляется в виде интеграла Пуассона (3.44):

$$u(x^{0}) = \frac{1}{\omega_{n}R} \int_{S_{R}^{0}} \frac{R^{2} - \rho^{2}}{r^{n}} \psi ds, \quad x^{0} \in Q_{R}^{0}.$$

Из треугольника xOx^0 (рис. 3.1) получаем, что

$$R - \rho \leqslant r \leqslant R + \rho$$
,

и, следовательно,

$$\frac{R^2 - \rho^2}{(R+\rho)^n} \leqslant \frac{R^2 - \rho^2}{r^n} \leqslant \frac{R^2 - \rho^2}{(R-\rho)^n}.$$

Поэтому при $u \geqslant 0$

$$\frac{1}{\omega_n R} \frac{(R-\rho)}{(R+\rho)^{n-1}} \int_{S_R^0} u \, ds \leqslant u(x^0) \leqslant \frac{1}{\omega_n R} \frac{(R+\rho)}{(R-\rho)^{n-1}} \int_{S_R^0} u \, ds.$$

Применяя теорему о среднем значении по сфере, получим неравенства (3.49).