Poper Let The a normal operator on V. Let 1, # \z \ C.

Let Me = {veV: Tv = 1/kv } for k=1, z. Then M, LMZ

Pf: Let $X_1 \in M_1$, $X_2 \in M_2$. $\begin{cases}
\langle T^*x_1 \mid X_1 \rangle = \langle X_1 \mid T \mid X_1 \rangle = \langle X_1 \mid X_1 \rangle = \langle X_2 \mid X_2 \rangle \\
\lambda_2 \langle X_1 \mid X_2 \rangle = \langle X_1 \mid T \mid X_2 \rangle = \langle T^*x_1 \mid X_2 \rangle = \langle X_1 \mid X_2 \rangle = \langle X_1 \mid X_2 \rangle \\
\leq \langle X_1 \mid X_2 \rangle = 0.
\end{cases}$

The Spectral Theorem in a finite-dimensional inner product space over C.

Let T be a normal operator on E.

Let Z = the set of eigenvalues of T. $Z \subset C$ is finite, $|\Sigma| \leq d$ in E. $Z \neq \emptyset$ if $E \neq \{0\}$.

for each $\lambda \in \Sigma$, let $M_{\lambda} = \{x \in E : T_{\lambda} = \lambda \times \}$.

Let P, be the operator of orthogonal projection from E onto Mx.

Then (a)
$$\sum_{\lambda \in \mathbb{Z}} M_{\lambda} = \mathbb{E}$$
, (b) $\sum_{\lambda \in \mathbb{Z}} P_{\lambda} = \mathbb{I}$, (c) $\sum_{\lambda \in \mathbb{Z}} \lambda P_{\lambda} = \mathbb{T}$

$$\underline{Pf}(\omega)$$
 Let $N = (\sum_{\lambda \in \Sigma} M_{\lambda})^{\perp} = \bigcap_{\lambda \in \Sigma} M_{\lambda}^{\perp}$.

Hence $T[N] \subseteq \bigcap_{x \in \Sigma} M_{\lambda}^{\perp} = N$, because $T[M_{\lambda}^{\perp}] \subseteq M_{\lambda}^{\perp} \quad \forall \lambda \in \mathbb{Z}$

Then T: N - N. Let S=T|N. Tun S is a linear operator on N.

Clerim N= {03. Suppose Not than I m & C, Iy & N, y ≠ 0 and Sy=ny.

Then Ty=my. Hence m= I and y = Mm. but N I Mm => y Ly => y=0. %

(b) Let
$$x \in E$$
. by (a), $\exists (x_x)_{\lambda \in \Sigma}$ s.t. $\forall \lambda \in \Sigma$, $x_x \in M_x$ and $\sum x_x = x$.

$$\left(\sum_{\lambda\in\mathbb{Z}}P_{\lambda}\right)X = \sum_{\lambda\in\mathbb{Z}}P_{\lambda}X = \sum_{\lambda\in\mathbb{Z}}P_{\lambda}\left(\sum_{\mu\in\mathbb{Z}}X_{\mu}\right) = \sum_{\lambda\in\mathbb{Z}}P_{\lambda}X_{\mu} = \sum_{\lambda\in\mathbb{Z}}X_{\mu} = X.$$

$$(c)\left(\sum_{\lambda\in\Sigma}\lambda P_{\lambda}\right)X=\sum_{\lambda\in\Sigma}\sum_{\lambda\in\Sigma}XP_{\lambda}X_{\lambda}=\sum_{\lambda\in\Sigma}\lambda P_{\lambda}X_{\lambda}=\sum_{\lambda\in\Sigma}\lambda X_{\lambda}=\sum_{\lambda\in\Sigma}X_{\lambda}=TX.$$

$$e^{T} = \sum_{h=0}^{\infty} \frac{T^{n}}{n!} = \sum_{n=0}^{\infty} \frac{\sum_{x \in \Sigma} x^{n} P_{x}}{n!} = \sum_{n=0}^{\infty} \sum_{x \in \Sigma} \frac{x^{n}}{n!} P_{x} = \sum_{x \in \Sigma} \left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right) P_{x} = \sum_{x \in \Sigma} e^{x} P_{x}$$

$$f(T) = \sum_{x \in \Sigma} f(x) P_x$$
 in general.

Cross products of vectors in R3.

Let
$$u$$
, $v \in \mathbb{R}^3$. $u \times v = \begin{pmatrix} \begin{vmatrix} u_1 & v_2 \\ u_3 & v_3 \\ u_4 & v_1 \end{vmatrix} \\ \begin{vmatrix} u_4 & v_1 \\ u_2 & v_3 \end{pmatrix}$ where $v = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

Thus uxv I u and uxvIv.

Let w= uxv.

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ w_2 & v_3 & w_3 \end{vmatrix} = \|w\|^2 \geqslant 0.$$

If U,V In Indp. then $\begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$ has column rank 2 So it has row rank 2 as well. So at least one pair of rows is linearly independent. thus $U \times V \neq 0$, so $||W||^2 > 0$. So $||U|| |V_1|| |V_2|| |V_3|| |V_$

So there is a continuous path in GL (3, IR) that Starts at I and ends at (u, v, w, u, v, ux v).

if u, v linearly dependent than uxv = 0.

(UXV). w is the volume of the parallelipiped

spanned by u, v, w. Hence || uxv || = the area of ramilelogram spanned by u + v.

= [u] [v] sin 0.

h=V SINO