

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И
ПРОЦЕССЫ УПРАВЛЕНИЯ

N 3, 2008
Электроминый экспрал

Электронный журнал, per. N П2375 от 07.03.97 ISSN 1817-2172

 $http://www.neva.ru/journal \ http://www.math.spbu.ru/diffjournal/ \ e-mail: jodiff@mail.ru$

ФАЗОВЫЕ ПОТОКИ ОДНОГО СЕМЕЙСТВА КУБИЧЕСКИХ СИСТЕМ В КРУГЕ ПУАНКАРЕ. III 1

 $A. \Phi. Aндреев, И. A. Андреева^2$

Мы продолжаем начатое в частях I и II этого исследования [2,3] изучение поведения в круге Пуанкаре $\overline{\Omega}$ траекторий вещественной автономной системы дифференциальных уравнений

$$\frac{dx}{dt} = p_0 x^3 + p_1 x^2 y + p_2 x y^2 + p_3 y^3 \equiv X(x, y),
\frac{dy}{dt} = ax^2 + bxy + cy^2 \equiv Y(x, y),
(0.1)$$

где $p_0, \ldots, p_3, a, b, c \in \mathbb{R}$) — параметры, подчиненные лишь условию: формы X(x,y) и Yx,y — взаимно просты.

В части I (§1) для системы (0.1) была изучена конечная особая точка O(0,0): выявлены все возможные для нее топологические типы, указаны критерии их реализации. В части II (§§ 2–5) найдены и изучены все возможные для (0.1) бесконечно удаленные особые точки (БО-точки, т.е. особые точки, лежащие на границе Γ круга $\overline{\Omega}$.

В настоящей части III (§§ 6–10) перечисляются все существующие у системы (0.1) в круге Пуанкаре особые точки и описываются их топологические типы для любого возможного случая, характеризующегося 1) фиксированной парой $(\overline{m}, \overline{n})$, где \overline{m} и \overline{n}) — степени полиномов $P(u) \equiv X(1, u)$ и $Q(u) \equiv$

¹ Работа выполнена при частичной финансовой поддержке Совета по грантам Президента Российской Федерации по поддержке ведущих научных школ (НШ-954.2008.1) и РФФИ (08-01-00346), НИИММ им. акад. В.И.Смирнова СПбГУ.

² (c) А. Ф. Андреев, И. А. Андреева, 2008

Y(1,u) соответственно, 2) фиксированной парой (m,n), где $m \in \{0,\ldots,\overline{m}\}$ — число различных вещественных корней полинома $P(u), n \in \{0,\ldots,\overline{n}\}$ — то же самое для полинома Q(u),3) фиксированной возрастающей последовательностью всех m+n вещественных корней полиномов P,Q.

В III части мы используем понятия и обозначения, введенные в частях I, II, и полученные в них результаты, сопровождая их ссылками вида: номер части, точка, номер объекта из нее. Например, § I.1, формула (I.1.2), теорема II.3.1. В частности, считаем сохраняющим силу соглашение I.0.1, т. е. считаем, что в системе (0.1) первый ненулевой из коэффициентов p_3, \ldots, p_0 и первый ненулевой из коэффициентов c, b, a — положительны.

Как следует из теоремы II.2.1, БО-точками системы (0.1) являются: 1) особые точки системы (II.2.1) $O_0(0,0)$ и $O_i(u_i,0),\ P(u_i)=0,\ i=\overline{1,m};$ при $p_0=0$ $\exists i_0\in\{1,\ldots,m\}$: $u_{i_\circ}=0$, т.е. $O_{i_\circ}=O_0;\ 2)$ особая точка $O^0(0,0)$ системы (II.2.2); она является особой, если $p_3=0$. Здесь (II.2.1) и (II.2.2) — системы, полученные из (0.1) с помощью замен Пуанкаре $x=\frac{1}{z},\ y=\frac{u}{z}$ и $y=\frac{1}{z},\ x=\frac{v}{z}$ и замены $dt=-z^2\,d\tau$ [4, § 13].

 $A^{+\,(-)}$ -схема произвольной БО-точки O' есть слово $A_{O'}^{+\,(-)}$ из букв $N\,S$, фиксирующее порядок следования пучков типов $N,\,S\,O'$ -кривых системы (II.2.1) или (II.2.2), примыкающих к точке O' из области z>0 (z<0), при полуобходе точки O' в этой области в +- направлении по u. Ниже для A^\pm -схем любой БО-точки $O_i,\,i\in\{0,\ldots,m\}$, мы используем обозначения $A_i^{+\,(-)}:=A_{O_i}^{+\,(-)}$.

Замечание 0.2. Если $P(0) \neq 0$, то $A_0^{+(-)} = N(N)$. Это следует из таблицы II.3.1, случай k=0.

Учитывая это замечание, далее при выписывании $A^{+\,(-)}$ -схем точек O_i , $i=\overline{0,m}$, мы будем делать это лишь для точек O_i , $i=\overline{1,m}$, различая для каждой из них случаи $u_i=0$ и $u_i\neq 0$.

§ 6.
$$p_3 > 0$$
, $c > 0$.

Для системы (0.1) при этих условиях 1) $(\overline{m}, \overline{n}) = (3, 2), 2)$ $m \in \{3, 2, 1\},$ $n \in \{2, 1, 0\}$ \Rightarrow возможны девять различных пар (m, n); при любой из них система имеет конечную особую точку O(0, 0) и БО-точки $O_i(u_i, 0), i = \overline{0, m}$.

6.1. (m,n) = (3,2):

 $P(u) = p_3(u-u_1)(u-u_2)(u-u_3), u_1 < u_2 < u_3, Q(u) = c(u-q_1)(u-q_2), q_1 < q_2,$ $u_i \neq q_j \ \forall \ i,j$. Для корней u_1,u_2,u_3,q_1,q_2 , полиномов P,Q при упорядочении всех их по возрастанию возможны десять различных случаев последования. Но среди них есть четыре пары случаев-перевертышей, в каждой из которых один случай может быть сведен к другому.

Определение 6. 1. Два случая последования корней полиномов P, Q, упорядоченных по возрастанию, которые при замене в (0.1) $(t,y) \rightarrow (-t,-y)$ (при этой замене условия § 6 не нарушаются) и изменении нумераций корней $u_i, i = \overline{1,3},$ и $q_j, j = 1, 2,$ на обратные переходят друг в друга, будем называть взаимно обратными относительно данной замены.

Нетрудно убедиться в том, что из упомянутых десяти, например, следующие шесть случаев последования корней полиномов P,Q попарно независимы в смысле определения 6.1: 1) $u_1 < u_2 < u_3 < q_1 < q_2, 2$) $u_1 < q_1 < q_2 < u_2 < u_3, 3$) $u_1 < q_1 < u_2 < u_3 < q_2, 4$) $q_1 < u_1 < u_2 < u_3, 3$ $u_1 < u_1 < u_2 < u_3 < u_2, 4$) $u_1 < u_2 < u_2 < u_3, 3$ а для каждого из четырех остальных случаев существует взаимно обратный среди этих шести, к которому он и сводится указанной заменой. Поэтому далее в п. 6.1 мы рассматриваем лишь случаи 1)-6) последования корней P,Q. Для каждого из них, как следует из теорем I.1.1, II.3.1 и II.4.1, A-схема точки O и A^{\pm} -схемы точек $O_i, i = \overline{1,3}$, имеют вид, указанный в таблицах 6.1_1 и 6.1_2 .

Случай	A_O
1, 2, 3	$S^-SNS^+NS = SSNS$
4,5	S^-NNS^+SS
6	S^-SSS^+NN

Таблица 6. 1_1 . A-схемы особой точки O к п. 6.1.

Таблица 6.12. A^{\pm} -схемы БО-точек $O_i, i = \overline{1,3}$, к п. 6.1.

Слу-	$A_1^{+(-)}$		$A_2^{+(}$	$A_2^{+(-)}$		$A_3^{+(-)}$	
чай	$u_1 = 0$	$u_1 \neq 0$	$u_2 = 0$	$u_2 \neq 0$	$u_3 = 0$	$u_3 \neq 0$	
1, 2	NN(O)	$N\left(S\right)$	O(NN)	S(N)	$NN\left(O ight)$	$N\left(S\right)$	
3	$NN\left(O ight)$	$N\left(S\right)$	$NN\left(O ight)$	$N\left(S\right)$	$O\left(NN\right)$	S(N)	
4	(O) NN	$S\left(N\right)$	$NN\left(O ight)$	$N\left(S\right)$	$O\left(NN\right)$	S(N)	
5	NN(O)	$N\left(S\right)$	O(NN)	S(N)	O(NN)	S(N)	
6	NN(O)	$N\left(S\right)$	NN(O)	N(S)	$NN\left(O ight)$	$N\left(S\right)$	

Замечание 6.1. В слове A_O в таблице 6.1₁ верхний индекс -(+) при букве S или N означает следующее: ей соответствует пучок, образованный O-кривыми системы (0.1), примыкающими к точке O по направлению x=0, y<0 (x=0, y>0), а буквам без индексов, непосредственно следующим за нею, соответствуют пучки, образованные O_+ -кривыми (O_- -кривыми), т. е. O-кривыми, примыкающими к O из области x>0 (x<0).

6.2. (**m,n**) = (3,1): P(u) имеет тот же вид, что и в п. 6.1, $Q(u) = c(u-q)^2$, $u_i \neq q$, $i=\overline{1,3}$. Для корней u_1, u_2, u_3, q полиномов P,Q возможны четыре случая последования по возрастанию, которые образуют две пары случаев, взаимно обратных в смысле определения 6.1. Независимыми в этом смысле являются, например, случаи: 1) $u_1 < u_2 < u_3 < q$, и 2) $u_1 < u_2 < q < u_3$. Для каждого из них, как следует из теорем I.1.2, II.3.1 и II.4.1, схемы A_O и A_i^{\pm} , $i=\overline{1,3}$, имеют вид, указанный в следующей таблице.

Слу-		A_O						
чай	q < 0	q = 0	q > 0	$i = \overline{1,3}$				
1	S^-S^+NS	$S^-SNS^+NS = SSNS$	S^-SNS^+	табл. 6.1 ₂ , строка 1				
2	S^-NSS^+	$S^-NSS^+SN = NSSS$	S^-S^+SN	табл. 6.1 ₂ , строка 1				

Таблица 6.2. A-схемы особых точек O и O_i , $i = \overline{1,3}$, к п. 6.2.

6.3. (m,n) = (3,0): P(u) имеет тот же вид, что и в п. 6.1, Q(u) > 0 $\forall u \in \mathbb{R}$. Согласно теоремам I.1.3, II.3.1 и II.4.1 A-схемы особых точек O и O_i , $i = \overline{1,3}$, имеют вид, указанный в таблице 6.3.

Таблица 6.3. A-схемы особых точек O и O_i , $i = \overline{1,3}$, к п. 6.3.

A_O	$A_i^{+(-)}, i = \overline{1,3}$
S^-S^+	табл. 6.1_2 , строка 1

6.4. (m,n) = (2,2): $P(u) = p_3(u-u_1)^{k_1}(u-u_2)^{k_2}$, $u_1 < u_2$, a) $k_1 = 1$, $k_2 = 2$ или б) $k_1 = 2$, $k_2 = 1$; Q(u) имеет тот же вид, что и в п. 6.1, $u_i \neq q_j$ $\forall \forall i, j$.

Для корней u_1, u_2, q_1, q_2 полиномов P, Q возможны шесть различных случаев последования по возрастанию:

1) $u_1 < u_2 < q_1 < q_2$, 2) $u_1 < q_1 < q_2 < u_2$, 3) $u_1 < q_1 < u_2 < q_2$, 4) $q_1 < q_2 < u_1 < u_2$, 5) $q_1 < u_1 < q_2 < u_2$, 6) $q_1 < u_1 < u_2 < q_2$. Для каждого из них возможны подслучаи а) и б). Однако для любого из подслучаев 16)-66) существует взаимно обратный в смысле определения 6.1 среди подслучаев 1а)-6а). Поэтому мы рассматриваем здесь лишь последние. Для каждого из них согласно теоремам I.1.1, II.3.1 и II.4.1 A-схемы особых точек O и O_i , i=1,2, имеют вид, указанный в таблице 6.4.

 $A_1^{+(-)}$ $A_2^{+(-)}$ Слу- A_{O} $u_2 < 0$ $u_1 \neq 0$ $u_2 = 0$ $u_2 > 0$ чай $S^-SNS^+NS = SSNS$ N(S)NN(O)O(NS)N(N) $SN\left(O\right)$ 1, 2 $S^-SNS^+NS = SSNS$ N(S)3 NN(O)N(N)NS(O)O(SN) $S^-NSS^+SN = NSSS$ NN(O)4 N(S)O(NS)SN(O)N(N) S^-NNS^+SS O(NN)S(N)O(NS)SN(O)N(N)5 NS(O) S^-NNS^+SS O(NN)N(N)O(SN)6 S(N)

Таблица 6.4. A-схемы особых точек O и $O_i,\,i=1,2,\,$ к п. 6.4 (для подслучаев 1а)–6а))

6.5. (**m,n**) = (**2,1**): P(u) имеет тот же вид, что и в п. 6.4, Q(u) — тот же, что и в п. 6.2. Для корней u_1 , u_2 , q полиномов P, Q возможны три случая последования по возрастанию: 1) $u_1 < u_2 < q$, 2) $u_1 < q < u_2$, 3) $q < u_1 < u_2$. Для каждого из них, как и в п. 6.4, возможны подслучаи а) и б). Подслучаи 16)—36) — взаимно обратны в смысле определения 6.1 подслучаям 3a)—1a) соответственно. Для подслучаев же 1a)—3a) согласно теоремам I.1.2, II.3.1 и II.4.1 A-схемы особых точек O и O_i , i=1,2, имеют вид, указанный в таблице 6.5.

Случай A_O $A^{+\,(-)_i},\,i=\overline{1,2}$ 1a), 2a) табл. 6.2, строка 1 табл. 6.4, строка 1 табл. 6.4, строка 1

Таблица 6. 5. A-схемы особых точек O и $O_{1,2}$ к п. 6.5

6. 6. $(\mathbf{m},\mathbf{n})=(\mathbf{2},\mathbf{0})$: P(u) имеет тот же вид, что и в п. 6.4, Q(u) — тот же, что и в п. 6.3.

Для корней u_1, u_2 полинома P, возможны случаи а) и б). Для любого из

них согласно теоремам I.1.3, II.3.1 и II.4.1 искомые A-схемы особых точек O и O_i , i=1,2, имеют вид, указанный в таблице 6.6.

Слу-	A_O	$A_1^{+(-)}$			$A_2^{+(-)}$		
чай		$u_1 = 0$	$u_1 < 0$	$u_1 > 0$	$u_2 = 0$	$u_2 < 0$	$u_2 > 0$
a	S^-S	$NN\left(O\right)$	$N\left(S\right)$	$N\left(S\right)$	$N\left(N\right)$	$O\left(NS\right)$	$SN\left(O\right)$
б	S^-S	$N\left(N\right)$	NS(O)	$O\left(SN\right)$	NN(O)	$N\left(S\right)$	$N\left(S\right)$

Таблица 6.6. A-схемы особых точек O и $O_{1,2}$ к п. 6.6

6.7. (m,n) = (1,2): $P(u) = p_3(u-u_1)^3$ или $P(u) = p_3(u-u_1)P_1(u)$, $P_1(u) > 0 \ \forall \ u \in \mathbb{R}, \ Q(u)$ как и в п. 6.1.

Для корней u_1 , q_1 , q_2 полиномов P, Q возможны случаи последования по возрастанию: 1) $u_1 < q_1 < q_2$, 2) $q_1 < u_1 < q_2$, 3) $q_1 < q_2 < u_1$. В любом из них A-схемы особых точек O и O_1 согласно теоремам I.1.1, II.3.1 и II.4.1 имеют вид, указанный в таблице 6.7, строки 1, 2, 3.

6.8.
$$(\mathbf{m},\mathbf{n}) = (\mathbf{1},\mathbf{1})$$
: $P(u)$ как в п. 6.7, $Q(u)$ как в п. 6.2.

Для корней u_1 , q полиномов P, Q возможны случаи: 1) $u_1 < q$, 2) $q < u_1$. В этих случаях согласно теоремам I.1.2, II.3.1 и II.4.1 A-схемы особых точек O и O_1 имеют вид, указанный в таблице 6.7, строки 4 и 5.

6.9. (m,n) = (1,0): P(u) как в п. 6.7, Q(u) как в п. 6.3. Согласно теоремам I.1.3, II.3.1 и II.4.1 A-схемы особых точек O и O_1 имеют вид, указанный в таблице 6.7, строка 6.

(m,n)	Слу-	A_O	$A_1^{+(-)}$		
	чай		$u_1 = 0$	$u_1 \neq 0$	
	1	$S^-SNS^+NS = SSNS$	$NN\left(O\right)$	$N\left(S ight)$	
(1,2)	2	S^-NNS^+SS	$O\left(NN\right)$	$S\left(N\right)$	
	3	$S^-NSS^+SN = NSSS$	$NN\left(O\right)$	$N\left(S ight)$	
(1,1)	1	табл. 6.2, строка 1	$NN\left(O\right)$	$N\left(S\right)$	
	2	табл. 6.2, строка 2	$NN\left(O\right)$	$N\left(S ight)$	
(1,0)		S^-S^+	$NN\left(O\right)$	$N\left(S\right)$	

Таблица 6.7. A-схемы особых точек O и O_1 к п. 6.7–6.9.

§ 7.
$$p_3 = 0$$
, $p_2 > 0$, $c > 0$.

Для системы (0.1) при указанных условиях 1) $(\overline{m}, \overline{n}) = (2, 2), 2)m, n \in \{2, 1, 0\} \Rightarrow$ возможны девять различных пар $\{m, n\}$; при любой из них система (0.1) имеет особые точки: $O, O_i, i = \overline{0, m}$, и O^0 .

Замечание 7.0. При условиях § 7 $A_{O^0}^{+(-)} = S(N)$. Это следует из таблицы II.5.1, строка 1.

Учитывая замечания 0.2 и 7.0, мы в §7 для каждой пары (m,n) будем выписывать лишь A-схемы особых точек O и $O_i, i = \overline{1,m}$.

7.1. (m,n) = (2,2):
$$P(u) = p_2(u-u_1)(u-u_2), u_1 < u_2, Q(u)$$
 как в п. 6.1, $u_i \neq q_j, i, j \in \{1,2\}.$

Для корней u_1, u_2, q_1, q_2 полиномов P, Q возможны шесть различных случаев последования по возрастанию. Среди них есть две пары случаев взаимно обратных в смысле следующего определения.

Определение 7.1. Получается из определения 6.1, если использовать в нем вместо замены $(t,y) \to (-t,-y)$ замену $x \to -x$ (относительно которой услович § 7 инвариантны).

Нетрудно убедиться в том, что следующие случаи последования корней полиномов P, Q попарно независимы в смысле определения $7.1:1) u_1 < u_2 < 0.1:1$

 $q_1 < q_2, \ 2$) $u_1 < q_1 < q_2 < u_2, \ 3$) $u_1 < q_1 < u_2 < q_2, \ 4$) $q_1 < u_1 < u_2 < q_2.$ Для каждого из них согласно теоремам І.1.1, ІІ.3.1 и ІІ.4.1 A-схема точки O и A^{\pm} -схемы точек $O_i, \ i=1,2,$ имеют вид, указанный в таблице 7.1.

Случай	A_O	$A_1^{+(-)}$		$A_2^{+(-)}$	
		$u_1 = 0$	$u_1 \neq 0$	$u_2 = 0$	$u_2 \neq 0$
1	$S^-SNS^+NS = SSNS$	O(NN)	S(N)	$NN\left(O ight)$	$N\left(S\right)$
2	$S^-NSS^+SN = NSSS$	O(NN)	S(N)	$NN\left(O ight)$	$N\left(S\right)$
3	S^-NNS^+SS	O(NN)	S(N)	$O\left(NN\right)$	S(N)
4	$S^{-}SNS^{+}NS = SSNS$	NN(O)	$N\left(S\right)$	O(NN)	S(N)

Таблица 7.1. A-схемы особых точек O и $O_i, i = 1, 2, \kappa$ п. 7.1.

- 7.2. (m,n) = (2,1): P(u) как в п. 7.1, Q(u) как в п. 6.2, $u_i \neq q$, i=1,2. Для корней u_1 , u_2 , q полиномов P, Q возможны три случая последования по возрастанию: 1) $u_1 < u_2 < q$, 2) $u_1 < q < u_2$, 3) $q < u_1 < u_2$. Для любого из них из них согласно теоремам I.1.2, II.3.1 и II.4.1 A-схемы точек O и $O_{1,2}$ имеют вид, указанный в таблице 7.2, строки 1,2.
- 7.3. (m,n) = (2,0): P(u) как в п. 7.1, Q(u) как в п. 6.3. Как следует из теорем І.1.3, ІІ.3.1 и ІІ.4.1, A-схемы особых точек O и $O_{1,2}$ имеют вид, указанный в таблице 7.2, строка 3.

Таблица 7.2.	A-схемы	особых	точек	<i>O</i> 1	и $O_{1,2}$ к	$\Pi\Pi.7.2, 7.3.$
--------------	---------	--------	-------	------------	---------------	--------------------

(m,n)	Случай	A_O	$A_1^{+(-)}$		$A_O = A_1^{+(-)} = A_2^{+(-)}$		-)
			$u_1 = 0$	$u_1 \neq 0$	$u_2 = 0$	$u_2 \neq 0$	
(2,1)	1,3	табл. 6.2, случай 1	$O\left(NN\right)$	$S\left(N\right)$	$NN\left(O\right)$	$N\left(S\right)$	
	2	табл. 6.2, случай 2	O(NN)	S(N)	$NN\left(O\right)$	$N\left(S ight)$	
(2,0)		S^-S^+	$O\left(NN\right)$	$S\left(N ight)$	$NN\left(O\right)$	$N\left(S ight)$	

- 7.4. (m,n) = (1,2): $P(u) = p_2(u-u_1)^2$, Q(u) имеет тот же вид, что и п. 6.1, $u_1 \neq q_1$, q_2 . Для корней u_1 , q_1 , q_2 полиномов P, Q возможны случаи последования по возрастанию: 1) $u_1 < q_1 < q_2$, 2) $q_1 < u_1 < q_2$, 3) $q_1 < q_2 < u_2$. Для каждого, как следует из теорем I.1.1, II.3.1 и II.4.1 A-схемы особых точек O и O_1 имеют вид, указанный в таблице 7.3, строки 1,2.
- **7.5.** (**m,n**) = (**1,1**): P(u) как в п. 7.4, Q(u) как в пп. 6.2, $u_1 \neq q$. Для корней u_1 , q полиномов P, Q возможны случаи: 1) $u_1 < q$, 2) $q < u_1$. Для любого из них, как следует из теорем I.1.2, II.3.1 и II.4.1, A-схемы точек O и O_1 имеют вид, указанный в таблице 7.3, строка 3.
- 7. 6. (m,n) = (1,0): P(u) как в п. 7.4, Q(u) как в пп. 6.3. Из теорем I.1.2, II.3.1 и II.4.1 следует, что A-схемы особых точек O и O_1 имеют вид, указанный в таблице 7.3, строка 4.

(m,n)	Слу-	A_O	$A_1^{+(-)}$		
	чай		$u_1 = 0$	$u_1 < 0$	$u_1 > 0$
$\boxed{(1,2)}$	1,3	табл. 6.7, строка 1	$N\left(N\right)$	$O\left(NS\right)$	$SN\left(O\right)$
	2	табл. 6.7, строка 1	N(N)	NS(O)	$O\left(SN\right)$
(1,1)	1,2	табл. 6.2, строка 1	$N\left(N\right)$	$O\left(NS\right)$	$SN\left(O\right)$
(1,0)		S^-S^+	N(N)	$O\left(NS\right)$	SN(O)

Таблица 7.3. A-схемы особых точек O и O_1 к пп. 7.4–7.6.

7.7. (m,n) = (0,2), (0,1) или (0,0): $P(u) > 0 \ \forall u \in \mathbb{R}$, Q(u) как в п. 6.1, 6.2 или 6.3 соответственно. $\forall (m,n)$ система (0.1) имеет особые точки O, O_0 и O^0 . Согласно теоремам I.1.1 – I.1.3 A-схемы особой точки O имеют вид, указанный в таблице 7.4. A^{\pm} -схемы БО-точек O_0 и O^0 даны в замечаниях 0.2 и 7.0.

(m,n) A_O (0,2) $S^-SNS^+NS = SSNS$ (0,1) табл. 6.2, случай 1 (0,0) S^-S^+

Таблица 7.4. A-схемы особой точки O к п. 7.7.

$$\S 8. \ p_3 > 0, \ c = 0, \ b > 0.$$

При указанных условиях 1) $(\overline{m}, \overline{n}) = (3,1), 2)m \in \{3,2,1\}, n = 1 \Rightarrow$ возможны три различные пары (m,n); для любой из них система (0.1) имеет особые точки O и O_i , $i = \overline{0,m}$. Выпишем их A-схемы (с учетом замечания 0.2).

8.1. (**m,n**) = (**3,1**): P(u) как п. 6.1, Q(u) = b(u-q), $u_i \neq q$, $i = \overline{1,3}$. Для корней u_1, u_2, u_3, q полиномов P, Q возможны четыре случая последования по возрастанию: 1) $u_1 < u_2 < u_3 < q$, 2) $u_1 < u_2 < q < u_3$, 3) $u_1 < q < u_2 < u_3$ и 4) $q < u_1 < u_2 < u_3$. В каждом из них согласно теоремам I.1.4, II.3.1 и II.4.1 A-схемы особых точек O и $O_i, i = \overline{1,3}$, имеют вид, указанный в таблице 8.1.

Слу-	A_O	$A_1^{+(-)}$		$A_2^{+(}$	-)	$A_3^{+(-)}$	
Чаи		$u_i = 0$	$u_1 \neq 0$	$u_2 = 0$	$u_2 \neq 0$	$u_3 = 0$	$u_3 \neq 0$
1	NS^+S^+S	O(NN)	$S\left(N\right)$	NN(O)	N (S)	$O\left(NN\right)$	S(N)
2	SS^+S^+N	$O\left(NN\right)$	$S\left(N\right)$	$NN\left(O\right)$	$N\left(S\right)$	$NN\left(O\right)$	$N\left(S\right)$
3	NS^+S^+S	$O\left(NN\right)$	$S\left(N\right)$	$O\left(NN\right)$	$S\left(N\right)$	$NN\left(O\right)$	$N\left(S\right)$
4	SS^+S^+N	$NN\left(O\right)$	$N\left(S\right)$	O(NN)	S(N)	$NN\left(O\right)$	$N\left(S\right)$

Таблица 8.1. A-схемы особых точек O и $O_i,\,i=\overline{1,3},$ к п. 8.1.

8. 2. (m,n) = (2,1): P(u) как п. 6.4, Q(u) как п. 8.1. Для корней u_1 , u_2 , q полиномов P, Q возможны те же случаи последования 1)–3), что и в п. 6.5, а для каждого из них те же подслучаи а) и б). Как следует из теорем I.1.4, II.3.1 и II.4.1, A-схемы особых точек O и O_i , i=1,2, для каждого из подслучаев 1а)–3а) имеют вид, указанный в таблице 8.2.а, а для каждого из подслучаев 16)–3б) — вид, указанный в таблице 8.2.б.

Таблица 8.2.а. A-схемы особых точек O и $O_{1,2}$ к п. 8.2.

Под-	A_O	$A_1^{+(-)}$		$A_2^{+(-)}$		
случай		$u_1 = 0$	$u_1 \neq 0$	$u_2 = 0$	$u_2 < 0$	$u_2 > 0$
1a)	NS^+S^+S	O(NN)	$S\left(N\right)$	$N\left(N ight)$	NS(O)	$O\left(SN\right)$
2a)	NS^+S^+S	$O\left(NN\right)$	$S\left(N\right)$	N(N)	$O\left(NS\right)$	$SN\left(O\right)$
3a)	SS^+S^+N	NN(O)	$N\left(S\right)$	$N\left(N\right)$	$O\left(NS\right)$	$SN\left(O ight)$

Под-	A_O	$A_1^{+(-)}$			$A_2^{+(-)}$	
случай		$u_1 = 0$	$u_1 < 0$	$u_1 > 0$	$u_2 = 0$	$u_2 \neq 0$
16)	NS^+S^+S	$N\left(N ight)$	O(NS)	$SN\left(O\right)$	O(NN)	S(N)
26)	SS^+S^+N	N(N)	$O\left(NS\right)$	$SN\left(O\right)$	NN(O)	$N\left(S ight)$
36)	SS^+S^+N	$N\left(N\right)$	$NS\left(O\right)$	$O\left(SN\right)$	$NN\left(O\right)$	$N\left(S\right)$

Таблица 8.2.б. A-схемы особых точек O и $O_{1,2}$ к п. 8.2.

8.3. (**m,n**) = (**1,1**): P(u) как п. 6.7, Q(u) как п. 8.1. Для корней u_1 , q полиномов P, Q возможны случаи: 1) $u_1 < q$, 2) $q < u_1$. Как следует их теорем I.1.4, II.3.1 и II.4.1, A-схемы точек O и O_1 в случае 1) имеют вид, указанный в таблице 8.2.а, строка 1, а в случае 2) — вид, указанный там же, строка 3.

$$\S 9. \ p_3 > 0, \ c = b = 0, \ a > 0.$$

Для системы (0.1) при указанных условиях 1) $(\overline{m}, \overline{n}) = (3,0); 2)$ $m \in \{3,2,1\}, n=0 \Rightarrow$ возможны три различные пары (m,n); при любой из них система имеет особые точки: O и $O_i, i=\overline{0,m}$. Выпишем их A-схемы, учитывая при этом замечение 0.2.

9.1.
$$(\mathbf{m},\mathbf{n}) = (3,0)$$
: $P(u)$ как п. 6.1, $Q(u) \equiv a > 0 \ \forall u$.

9.2. (m,n) = (2,0):
$$P(u)$$
 как п. 6.4, $Q(u) \equiv a > 0$.

9.3.
$$(\mathbf{m},\mathbf{n}) = (\mathbf{1},\mathbf{0})$$
. $P(u)$ как п. 6.7, $Q(u) \equiv a > 0$.

Как следует из теорем I.1.5, II.3.1 и II.4.1, для любого из этих случаев A-схемы особых точек O и O_i , $i=\overline{1,m}$, имеют вид, указанный в таблице 9.1.

(m,n)	Слу- чай	A_O	$A_i^{+(-)}, i = \overline{1, m},$
(3,0)		S^-S^+	табл. 6.1 ₂ , строка 1
(2,0)	a б	S^-S^+ S^-S^+	табл. 8.2.а, строка 3 табл. 8.2.б, строка 3
(1,0)		S^-S^+	табл. 6.7, строка 1

Таблица 9.1. A-схемы особых точек O и O_i , $i=\overline{1,m}$, к §.9.

$$\S\,10.\,\,p_3=p_2=0,,\,p_1>0,\,c>0.$$

Для системы (0.1) при этих условиях 1) $(\overline{m}, \overline{n}) = (1,2)$; 2) $m = 1, n \in \{2,1,0\}$ \Rightarrow возможны три различные пары (m,n); при любой из них система имеет особые точки: $O, O_i, i = 0, 1, O^0$. A^\pm -схемы точки O_0 в случае $O_1 \neq O_0$ доставляет замечание $0.2, A^\pm$ -схемы точки O^0 — следующее замечание.

Замечание 10.1. При условиях § 10 $A_{O^0}^{+(-)}=S_0^+N\,(NS_0^-),$ где $S^{+(-)}:$ $v=0,\,z>0$ $(v=0,\,z<0).$

10.1.
$$(\mathbf{m},\mathbf{n}) = (\mathbf{1},\mathbf{2})$$
: $P(u) = p_1(u - u_1), Q(u)$ как в п. 6.1.

10.2. (m,n) = (1,1):
$$P(u) = p_1(u - u_1), Q(u)$$
 как в п. 6.2.

10.3.
$$(\mathbf{m},\mathbf{n}) = (\mathbf{1},\mathbf{0})$$
: $P(u) = p_1(u - u_1)$, $Q(u)$ как в п. 6.3.

Для этих случае справедливо сказанное соответственно в пп. 6.7–6.9. A-схемы особых точек O и O_1 имеют вид, указанный в таблице 6.7.

Цель данной статьи, сформулированная во введении, достигнута. Используя аккумулированную здесь информацию, можно для любой заданной системы вида (0.1) построить ее глобальнай (в круге Пуанкаре $\overline{\Omega}$) фазовый портрет и, в частности, выяснить для нее разбиение круга $\overline{\Omega}$ на элементарные инвариантные ячейки (с одним источником и с одним стоком каждая).

Литература

1. Андреев А.Ф. Введение в локальную качественную теорию диффе-

ренциальных уравнений. СПб.: Изд. С.-Петербург. ун-та, 2003. 160 с.

- 2. Андреев А. Ф., Андреева И. А. Фазовые потоки одного семейства кубических систем в круге Пуанкаре. І // Дифференциальные уравнения и процессы управления. Электронный журнал. 2007, N 4. С. 17–26.
- 3. Андреев А. Ф., Андреева И. А. Фазовые потоки одного семейства кубических систем в круге Пуанкаре. II // Дифференциальные уравнения и процессы управления. Электронный журнал. 2008, N 1. C. 1–10.
- 4. Андронов А.А. и др. Качественная теория динамических систем второго порядка. М.: Наука, 1966. 568 с.

Андреев Алексей Федорович — профессор кафедры дифференциальных уравнений математико-механического факультета Санкт-Петербургского государственного университета;

Дом. телефон: 271-64-27

раб. телефон: 428-69-59, местн. 3059

Андреева Ирина Алексеевна — доцент кафедры высшей математики Санкт-Петербургского государственного политехнического университета;

Дом. телефон: 271-64-27

E-mail: irandr@inbox.ru