

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.БАУМАНА

(национальный исследовательский университет)»

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа № 2

«Аппроксимация методом наименьших квадратов.

Двухпараметрические модели»

по дисциплине «Численные методы»

Вариант 10

Работу выполнил

студент группы ИУ9-62Б

Жук Дмитрий

Цель работы

Целью данной работы является изучение создания аппроксимирующей функции на основе априорных данных о ней, а также оценка ошибки с помощью среднеквадратичного отклонения.

Задание

- 1. Построить графики таблично заданной функции и функции z(x).
- 2. Найти значение $x_a, x_g, x_h, y_a, y_g, y_h, z(x_a), z(x_g), z(x_h), \delta_1, ..., \delta_9,$ $\delta_k = \min \delta_i.$
- 3. Составить систему уравнений для определения a и b и решить её.
- 4. Найти среднеквадратичное отклонение Δ.

Индивидуальный вариант

$$n = 8$$

i	0	1	2	3	4	5	6	7	8
x_i	1	1,5	2	2,5	3	3,5	4	4,5	5
y_i	1,32	1,81	2,58	2,88	3,88	4,29	4,58	5,00	4,14

Реализация

1. Использовался сайт <u>GeoGebra</u>, для изображения на координатной плоскости заданные точки (x_i, y_i) , i = 0, ..., n и проведения гладкой монотонной кривой, аппроксимирующей зависимость (рисунок 1).

Рисунок 1 – заданные точки и получившийся график в GeoGebra

2. Используя Excel (рисунок 2) и GeoGebra (рисунок 1), вычислили значения величин $x_a=\frac{x_0+x_n}{2},\,x_g=\sqrt{x_0x_n},\,x_h=\frac{2}{\frac{1}{x_0}+\frac{1}{x_n}},\,y_a=\frac{y_0+y_n}{2},\,y_g=\sqrt{y_0y_n},$ $y_h=\frac{2}{\frac{1}{y_0}+\frac{1}{y_n}},\,\,z(x_a),\,\,z(x_g),\,\,z(x_h).$ Так же вычислили значения следующих

величин:

$\delta_1 = z(x_a) - y_a ,$	$\delta_2 = z(x_g) - y_g ,$	$\delta_3 = \big z(x_a) - y_g \big ,$
$\delta_4 = z(x_g) - y_a ,$	$\delta_5 = z(x_h) - y_a ,$	$\delta_6 = z(x_a) - y_h ,$
$\delta_7 = z(x_h) - y_h ,$	$\delta_8 = \big z(x_h) - y_g \big ,$	$\delta_9 = \left z(x_g) - y_h \right $

и была выбрана наименьшая из них. По рисунку 2 – это $\delta_7 \;\Rightarrow\; k=7.$

/					
8	2.	i	x_i	y_i	
9		0	1	1,32	
10		n	5	4,14	
11					
12		*	x_*	y_*	z(x_*)
13		а	3,00000	2,73000	3,42327
14		g	2,23607	2,33769	2,66363
15		h	1,66667	2,00176	1,99522
16					
17		į 🔻	δ_i √1	ans	
18		7	0,0065350	min	
19		4	0,0663687		
20		2	0,3259401		
21		8	0,3424679		
22		9	0,6618731		
23		1	0,6932726		
24		5	0,7347768		
25		3	1,0855814		
26		6	1,4215144	max	
27					

Рисунок 2 — расчеты δ в Excel

3. Для определения коэффициентов a и b произвели переход к обратным величинам:

$$\frac{1}{z_7(x)} = \frac{ax+b}{x} = a + \frac{b}{x}$$

Минимизация величины:

$$F(a,b) = \sum_{i=0}^{n} \left(a + \frac{b}{x_i} - \frac{1}{y_i} \right)^2$$

$$\frac{\partial F}{\partial a} = \left(\sum_{i=0}^{n} \left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)^2\right)_a' = \sum_{i=0}^{n} \left[2\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)_a'\right]$$

$$= 2\sum_{i=0}^{n} \left[\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)(1 + 0 - 0)\right] = 2\sum_{i=0}^{n} \left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)$$

$$\frac{\partial F}{\partial b} = \left(\sum_{i=0}^{n} \left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)^2\right)_b' = \sum_{i=0}^{n} \left[2\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)_b'\right]$$

$$= 2\sum_{i=0}^{n} \left[\left(a + \frac{b}{x_i} - \frac{1}{y_i}\right)\left(0 + \frac{1}{x_i} - 0\right)\right] = 2\sum_{i=0}^{n} \left(\frac{a}{x_i} + \frac{b}{x_i^2} - \frac{1}{x_i y_i}\right)$$

$$\begin{cases} \frac{\partial F}{\partial a} = 0 \\ \frac{\partial F}{\partial b} = 0 \end{cases} \Rightarrow \begin{vmatrix} \tilde{x}_i = \frac{1}{x_i} \\ \tilde{y}_i = \frac{1}{y_i} \end{vmatrix} \Rightarrow \begin{cases} 2\sum_{i=0}^{n} (a + b\tilde{x}_i - \tilde{y}_i) = 0 \\ 2\sum_{i=0}^{n} (a + b\tilde{x}_i - \tilde{y}_i) = 0 \end{cases}$$

$$2\sum_{i=0}^{n} (a + b\tilde{x}_i - \tilde{y}_i) = 0$$

$$\Rightarrow \begin{cases} an + b\sum_{i=0}^{n} \tilde{x}_i = \sum_{i=0}^{n} \tilde{y}_i \\ a\sum_{i=0}^{n} \tilde{x}_i + b\sum_{i=0}^{n} \tilde{x}_i = \sum_{i=0}^{n} \tilde{x}_i \tilde{y}_i \end{cases}$$

$$\Rightarrow \begin{cases} a = \frac{b\sum_{i=0}^{n} \tilde{x}_i - \sum_{i=0}^{n} \tilde{x}_i * \sum_{i=0}^{n} \tilde{y}_i}{n} \\ b = \frac{n\sum_{i=0}^{n} \tilde{x}_i - \sum_{i=0}^{n} \tilde{x}_i * \sum_{i=0}^{n} \tilde{x}_i * \sum_{i=0}^{n} \tilde{y}_i}{n} \end{cases}$$

Произвели вычисления в Excel (рисунок 3) и получили значения a и b. Так же построили получившуюся функцию $z_7(x)$ в GeoGebra (рисунок 4).

28	3. Реализуем	١δ_7:										
29												
30	i		0	1	2	3	4	5	6	7	8	
31	<u>χ_</u> i	= 1/x_i	1	0,666667	0,5	0,4	0,333333	0,285714	0,25	0,2222222	0,2	
32	у_ i	i = 1/y_i	0,7575758	0,552486	0,3875969	0,347222	0,257732	0,2331	0,218341	0,2	0,2415459	
33												
34	*		Σ[i=0,n](*)									
35	1/χ	∟i	3,8579365									
36	1/y	/_i	3,1955998									
37	1/χ	_i^2	2,1990709									
38	1/(χ_i*y_i)	1,7584367									
39		_										
40	h	$-n\Sigma \chi$	$\chi y - \Sigma \chi * $ $\chi^2 - \Sigma \chi * $	Σy _	0.641	006421241	112					
41	В	$-\frac{1}{n\Sigma}$	$\gamma^2 - \Sigma \gamma *$	Σ_{χ}	0,641986431341112							
42												
43		a –	$\Sigma y - b *$	Σχ _	0.000	057100001	747					
44		a =	\overline{n}	_	0,089	857109091	./4/					
45												

Рисунок 3 — расчеты a и b в Excel

Рисунок 4 – график аппроксимированной функции в GeoGebra

4. С помощью Excel, вычислили значения известных точек в $z_7(x_i)$ i=0,...,n и нашли среднеквадратичное отклонение Δ (рисунок 5).

46	1. Среднеквадратическое отклонение											
47												
48		i	0	1	2	3	4	5	6	7	8	
49		z_7(x_i)	1,3664123	1,931068	2,4339764	2,88474	3,29107	3,659226	3,994349	4,30069125	4,5818092	
50												
51		Δ	0,4756689									
52												

Рисунок 5 – расчеты ∆ в Excel

Вывод

В ходе лабораторной работы был изучен способ создания аппроксимирующей функции на основе априорных данных о ней. Предполагаемая и получившаяся функция различаются, однако достаточно схожи. Среднеквадратичное отклонение позволяет оценить размер, получившийся ошибки.