Information Retrieval (Part VI)

[DAT640] Information Retrieval and Text Mining

Krisztian Balog University of Stavanger

October 9, 2019

Today

- Learning-to-rank
- Elasticsearch

Learning-to-rank

Recap

- Classical retrieval models
 - Vector space model, BM25, LM
- Three main components
 - Term frequency
 - How many times query terms appear in the document
 - Document length
 - Any term is expected to occur more frequently in long document; account for differences in document length
 - Document frequency
 - How often the term appears in the entire collection

Additional factors

- So far: content-based matching
- Many additional signals, e.g.,
 - Document quality
 - PageRank
 - SPAM score
 - ..
 - Implicit (click-based) feedback
 - How many times users clicked on a document given a query?
 - How many times this particular user clicked on a document given the query?
 - ...
 - o ...

Discussion

Question

How to combine all these clues for ranking?

Machine learning for IR

- We hypothesize that the probability of relevance is related to some combination of features
 - Each feature is a clue or signal that can help determine relevance
- We employ machine learning to learn an "optimal" combination of features, based on training data
 - There may be several hundred features; impossible to tune by hand
 - Training data is (item, query, relevance) triples
- Modern systems (especially on the Web) use a great number of features
 - In 2008, Google was using over 200 features¹

¹The New York Times (2008-06-03)

Some example features

- Log frequency of query word in anchor text
- Query word in color on page?
- #images on page
- #outlinks on page
- PageRank
- URL length
- URL contains "∼"?
- Page length
- ..

Simple example

 We assume that the relevance of a document is related to a linear combination of all the features:

$$\log \frac{P(R=1|q,d)}{1 - P(R=1|q,d)} = \beta_0 + \sum_{i=1}^{n} \beta_i x_i$$

- o x_i is the value of the i^{th} feature
- \circ β_i is the weight of the i^{th} feature
- This leads to the following probability of relevance:

$$P(R = 1|q, d) = \frac{1}{1 + \exp\{-\beta_0 - \sum_{i=1}^{n} \beta_i x_i\}}$$

ullet This logistic regression method gives us an estimate in [0,1]

Learning-to-Rank (LTR)

- Learn a function automatically to rank items (documents) effectively
 - o Training data: (item, query, relevance) triples
 - \circ Output: ranking function h(q,d)
- Three main groups of approaches
 - Pointwise
 - Pairwise
 - Listwise

Pointwise LTR

- Specifying whether a document is relevant (binary) or specifying a degree of relevance
 - Classification: Predict a categorical (unordered) output value (relevant or not)
 - \circ Regression: Predict an ordered or continuous output value (degree of relevance) \Leftarrow
- All the standard classification/regression algorithms can be directly used
- Note: classical retrieval models are also point-wise: score(q, d)

Pairwise LTR

- The learning function is based on a pair of items
 - o Given two documents, classify which of the two should be ranked at a higher position
 - I.e., learning relative preference
- E.g., Ranking SVM, LambdaMART, RankNet

Listwise LTR

- The ranking function is based on a ranked list of items
 - Given two ranked list of the same items, which is better?
- Directly optimizes a retrieval metric
 - Need a loss function on a list of documents
 - Can get fairly complex compared to pointwise or pairwise approaches
- Challenge is scale: huge number of potential lists
- E.g., AdaRank, ListNet

How to?

- Develop a feature set
 - The most important step!
 - Usually problem dependent
- Choose a good ranking algorithm
 - o E.g., Random Forests work well for pairwise LTR
- Training, validation, and testing
 - Similar to standard machine learning applications

Features for document retrieval

- Query features
 - Depend only on the query
- Document features
 - Depend only on the document
- Query-document features
 - Express the degree of matching between the query and the document

Query features

- Query length (number of terms)
- Sum of IDF scores of query terms in a given field (title, content, anchors, etc.)
- Total number of matching documents
- Number of named entities in the query
- ..

Document features

- Length of each document field (title, content, anchors, etc.)
- PageRank score
- Number of inlinks
- Number of outlinks
- Number of slash in URL
- Length of URL
- ..

Query-document features

- Retrieval score of a given document field (e.g., BM25, LM, TF-IDF)
- Sum of TF scores of query terms in a given document field (title, content, anchors, URL, etc)
- Retrieval score of the entire document (e.g., BM25F, MLM)
- ..

Practical considerations

- Feature normalization
- Computation cost
- Class imbalance

Feature normalization

- Feature values are often normalized to be in the [0,1] range for a given query
 - Esp. matching features that may be on different scales across queries because of query length
- Min-max normalization:

$$\tilde{x}_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

- $\circ x_1, \ldots, x_n$: original values for a given feature
- \circ \tilde{x}_i : normalized value for the i^{th} instance

Computation cost

- Implemented as a re-ranking mechanism (two-step retrieval)
 - Step 1 (initial ranking): Retrieve top-N candidate documents using a strong baseline approach (e.g., BM25)
 - Step 2 (re-ranking): Create feature vectors and re-rank these top-N candidates to arrive at the final ranking
- Document features may be computed offline
- Query and query-document features are computed online (at query time)
 - Avoid using too many expensive features!

Class imbalance

- Many more non-relevant than relevant instances
- Classifiers usually do not handle huge imbalance well
- Need to address by over- or under-sampling

Code

- Pointwise learning-to-rank using regression
- GitHub: code/LTR.ipynb

Elasticsearch

Elasticsearch

- Introduction
 - GitHub: code/elasticsearch
- Install Elasticsearch and go through the sample Jupyter notebook
 - o GitHub: code/elasticsearch/Elasticsearch.ipynb
- Exercise
 - GitHub: exercises/lecture_12/exercise_1.ipynb

Assignment 2B

Reading

- Text Data Management and Analysis (Zhai&Massung)
 - Section 10.4