

Facultad de Ingeniería

Laboratorio de Fundamentos de Control(6655)

Profesor: Salcedo Ubilla María Leonor Ing.

Semestre 2019-1

Práctica No. 8

Control de temperatura

Grupo 2

Brigada: 4

Martínez López Rodrigo Adrián

Vivar Colina Pablo

Ciudad Universitaria Agosto de 2018.

Índice

1.	Resumen	1
	Introducción 2.1. NI ELVIS	1 1
3.	Objetivos	1
4.	Materiales y métodos	1
5.	Resultados	2
6.	Análisis de Resultados	3
7.	Conclusiones	3
8.	Referencias	3

1. Resumen

2. Introducción

2.1. NI ELVIS

Para crear una aplicación completa de NI ELVIS, explore otras soluciones de laboratorio para NI ELVIS.

Proporciona una experiencia de aprendizaje basada en proyectos, usando medidas en línea y diseño práctico y embebido.

El NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) es un dispositivo modular de laboratorio educativo de ingeniería desarrollado específicamente para la academia. Con este enfoque práctico, los profesores pueden ayudar a los estudiantes a aprender habilidades de ingeniería prácticas y experimentales. NI ELVIS incluye un osciloscopio, multímetro digital, generador de funciones, fuente de alimentación variable, analizador de Bode y otros instrumentos comunes de laboratorio. Puede conectar una PC al NI ELVIS usando USB y desarrollar circuitos en su protoboard desmontable. [1]

3. Objetivos

 Utilizar la herramientas de National Instruments para verificar las ecuaciones de función de transferencia

4. Materiales y métodos

■ NI Elvis

• Computadora con Suite de herramientas Texas Instruments

5. Resultados

Lecturas cada 20 segundos.	Temperatura $[{}^{o}C]$ (Tambiente = $22[{}^{o}C]$)	SST V	Voltaje de error
1	23	1.278	-3.12
2	24	1.311	-3.12
3	27	1.456	-3.12
4	32	1.610	-3.12
5	38	1.896	-3.12
6	43	2.121	-3.12
7	48	2.425	-3.12
8	53	2.798	-3.12
9	58	3.102	-3.12
10	64	3.201	-3.12
11	69	3.535	-3.12
12	73	3.644	-3.12
13	78	3.958	-3.12
14	80	4.165	-3.12

Se usa el circuito operacional con realimentacion negativa.

- 2->Entrada Inversora
- 3->Entrada no inversora
- 4->Fuente -10[V]
- 5->Vacío
- 6->Salida
- 7->Fuente +10[V]

$$\frac{1,42}{e^2 + 2,42e + 1,42} \tag{1}$$

Función de transferencia

En la figura 1 se puede pareciar el circuito que se ocupó en la experimentación.

En la figura $\ref{eq:configuración}$ se puede apreciar la configuración del generador de funciones el cual genera una señal senoidal de 100 [Hz] y con 0.25 [Vpp].

En la figura 1 se aprecia la respuesta del circuito mostrado anteriormente.

Presión [bar]	Ventrada [V]	Vsalida [V]
0	0	0
0.2	0.764	0.888
0.4	1.373	1.513
0.6	1.787	1.935
0.8	2.245	2.399
1	3.577	3.75
1.2	4.23	4.409
1.4	4.833	5.018
1.6	5.966	5.1966
1.8	7.14	7.35
2	7.35	7.57

Cuadro 1: Resulatados Presión

kc	Ti	Td
1.67	0.355	0.83
1.67	1	0.5
1.67	3	1
1.67	4	1.5
1.67	5	2

Cuadro 2: PID

Figura 1: Circuito de Amplificadores operacionales

6. Análisis de Resultados

7. Conclusiones

8. Referencias

Referencias

 $[1]\,$ National Instruments. NI Elvis, 2018.