Occupancy Recognition through the Smart Door System - The Design and The Failure Diagnostics

M.Tech Project Thesis of

Cynthia Josephine J

Under the guidance of

Prof. Krithi Ramamritham

The Smart Door

Smart Door Sketch

Laser Beam Sensor Circuit

- The output will be of HIGH range value (analog) if the laser is obstructed from falling on the phototransistor
- The output will be of LOW range value (analog) if the laser is falling on the phototransistor

Laser Beam Sensor – Signal Conditioning Circuit

- The circuit is to condition the input signal protecting it from interference from external voltage fluctuation.
- This is a simple two switch circuit. ie, The output will be of same value (analog) as the input

Ultrasonic Sensor Module

- To start measurement,
 - Trig of SR04 must receive a pulse of high (5V) for at least 10us,
 - this will initiate the sensor will transmit out 8 cycle of ultrasonic burst at 40kHz and
 - wait for the reflected ultrasonic burst.
- When the sensor detected ultrasonic from receiver,
 - it will set the Echo pin to high (5V) and
 - delay for a period (width) which proportion to distance.
- To obtain the distance, measure the width (Ton) of Echo pin.
 - Time = Width of Echo pulse, in uS (micro second)
 - Or you can utilize the speed of sound, which is 340m/s

Weight Mat Sensor Circuit

- Load cells use a four-wire
 Wheatstone bridge configuration
 to connect to the HX711.
- HX711 is a precision 24-bit analogto-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor.
- The HX711 uses a two-wire interface (Clock and Data) for communication

Weight Mat Sensor

Laser Beam - Trigger subsystem

- In every Arduino cycle the following is done:
 - Check if there is change of state in Laser Beam 1
 - If L1_State is High, then set A = current time
 - If L1_State is Low, then set B = current time
 - Check if there is change of state in Laser Beam 2
 - If L2_State is High, then set C = current time
 - If L2_State is Low, then set D = current time
 - Check if the laser is cut by an obstacle or by a person
 - To verify this, (B A) and (D-C) should be in certain range of values.

Laser Beam - Trigger subsystem

- Possible Entry: Laser 1 is cut first.
 - Send a signal to indicate to start the recording of the camera video feed.
 - Send a signal to start recording the height and the weight measurements.
- Possible Exit: Laser 2 is cut first.
 - Send a signal to start recording the height and the weight measurements.
- Valid Entry: Laser 1 is cut before Laser 2
 - Send a signal to stop recording the height and the weight measurements.
 - Send a signal to send the recorded the height and the weight measurements.
 - Send a signal to reset the recorded the height and the weight parameters.
 - Enable Entry_Indicator_Pin for short duration
- Valid Exit: Laser 1 is cut after Laser 2.
 - Send a signal to stop recording the height and the weight measurements.
 - Send a signal to send the recorded the height and the weight measurements.
 - Send a signal to reset the recorded the height and the weight parameters.
 - Enable Exit_Indicator_Pin for short duration

Height Weight Measurement Subsystem

- When the Signal to start measuring the height and the weight values is HIGH, start the measuring till it becomes LOW.
 - weight values Max Function
 - height values Max Function
- When the Signal to send the recorded height and weight values is HIGH, send the measured value through Serial Function
- When the Signal to **reset** the recorded height and the weight values is HIGH, set the values to zero.

Raspberry Pi: Client System

Existing Implementation:

- The Connection to the Arduino Serial Port is established
- The Connection to the Server is established
- The Connection to the Database is established
- The new session Id is inferred from the old session ID stored in the database.
- For every data got from the Arduino via Serial Port, check if it is of the format *Direction/Weight/Height*
 - If No, ignore the data received from the Arduino
 - If yes, Continue the below steps:
 - Insert the height, weight, direction, timestamp along with the Session ID in the database
 - Update the occupancy count of the people in the lab based on the entry and exit
 - Increase the session ID by 1

Raspberry Pi: Client System

Existing Implementation - Drawbacks:

- As the connections are done in the beginning, the client script will halt as soon as
 - the Arduino gets physically disconnected from the Raspberry Pi.
 - The Database service is stopped or when there is poor internet connectivity.
 - if the Server is not reachable due to the poor internet connectivity.
- The client cannot reestablish the connection and also the server cannot listen to the data from the Raspberry Pi as soon as the client Script is run again.
 - The Server Script needs to be stopped and then restarted again.
 - The client script is run to establish the connection again.
- The smart door cannot recover its function as soon as the failure conditions are met and the user has to restart the scripts.

Raspberry Pi: Client System

Updated Implementation:

- The Connection to the Arduino Serial Port is established.
- For every data got from the Arduino via Serial Port
 - Check if the data is of the format R/X. If yes,
 - Establish connection to the database and get the latest session ID and close the connection
 - Connect to the Server and send a message of format SessionID/R. This will make the server to start image processing
 - Check if the data is of the format *Direction/Weight/Height*. If yes,
 - Establish Connection to the Database and do the following and close the connection:
 - Insert the height, weight, direction, timestamp along with the Session ID in the database
 - Update the occupancy count of the people in the lab based on the entry and exit.
 - Connect to the Server and send a message of format SessionID/E. This will make the server to do prediction based on the Height & the weight
 - If the data is not in the above formats, then ignore the data.
- Check if the established connection to the arduino is not broken. If the connection is broken, reconnect it.

Prediction Processing Server

- There are 2 scripts doing the process of predicting the person entering the room.
 - Prediction of Person based on Height and Weight
 - Prediction of Person based on Face Recognition
- In both the cases, the server establishes the connection with the client (Raspberry Pi) waiting for the signal to any one of the above tasks.

Prediction Processing Server –Height and Weight

- Already implemented previously.
- Random Forest Classifier.
- When the person exits the room, only the prediction based on height and weight happens.
- Whereas, when the person enters the lab, the top three prediction results
 - Identity
 - Probability

are being stored in the database and then used in the further calculation.

- Start the camera and record the camera feed video in the grayscale as the video processing of one channel (grayscale) is easier and robust than maintain 3 channels (RGB).
- For every frame in the camera video feed, do the following:
 - Detect if there is any face present in that frame.
 - If the face is detected, then recognize the face in that frame using LPBH(Local Binary Patterns Histograms) Algorithm
 - Get the following parameters of that frame.
 - Area of the face
 - Identity of the person recognized.
 - Confidence of the predicted identity
 - Frame Number in the Camera Video Feed

 Aggregate the result of each of the image processed frame of the camera video feed being recorded.

For each identity,

- Sum up the Confidence Factor
- Count the number of frames that shows this same identity.
- The minimum (smallest) frame number which shows this identity.
- The maximum (largest) frame number which shows this identity.
- Click the picture of dimension specified by
 - Pic_Frame_Top*
 - Pic_Frame_Bottom*
 - Pic_Frame_Left*
 - Pic_Frame_Right*

once at the time specified by the parameter Take_CamShot*

 Calculate the total frames with face detected in the Camera Video Feed being recorded.

- Quit recording the video when any one of the following happens:
 - Person moves out of the frame. The following parameters represents the threshold of the Frame in Pixel X direction:
 - Frame In Left*
 - Frame_In_Right*
 - Person reaches too close to the camera. Closer the person, Larger the area of the face detected. Area should not exceed the parameter Max_Face_Frame_Area*
 - Time of recording has reached the threshold limit.
 - The parameter Time_Out* gives the threshold limit of recording time.
 - Even after the time of recording has reached its limit, some extra time is given in terms of number of steps(loops)
 Time_Out_Tolerance* representing the number of loop cycles allowed after timeout

- Now calculate and record the following parameters for the entire Camera Video Feed Recorded:
 - Identity
 - Confidence Factor
 - No of Frames
 - Minimum Frame Number
 - Maximum Frame Number
- Store only the top 3 results based on the confidence factor.

Integration of two Modules

- When the person enters the room, the prediction results depends upon the video recorded by camera as well as the height and weight sensed by existing Smart Door.
- The following Parameters are got from the above 2 algorithms
 - Identity
 - Probability based on Height and Weight
 - Confidence Factor
 - No of Frames
 - Minimum Frame Number
 - Maximum Frame Number

Diagnostics of prediction algorithms' failures

The diagnostics of the two server prediction scripts should be done to verify the following situations:

- Check if the database service is up and there is a proper connection to the database.
- Check if the PKL file of the height and weight prediction classifier exists or not.
- Check if the face detector XML exists or not.
- Check if the face recognizer YML file exists or not.
- Check if the Rpi is working and is reachable.

Training of the data

- The training of the height and the weight is done by making the user pass through the door for more number of times.
- The Training of face database is done through extraction of images from the video showing various user expression and head tilts.

Future Works

- Confidence Factor could be given weightage according to the parameter
 Frame Number instead of considering them as two individual parameters.
 - Confidence Factor * Frame Number * Weightage_Factor, making a new nonlinear parameter.
 - This could be done after we collect sufficient number of data of people entering the door.
- There could be an *automatic training* of the data (height and weight or Images) once certain conditions are met.
 - These conditions could be as simple as the time interval or
 - could be more hidden factor which could be inferred through the neural network.
 - This automatic scheduling saves the system from faults caused by user intervention.

Thank You