

East West University Department of Computer Science and Engineering Course Outline Summer 2024

Course: CSE412- Software Engineering (Section 2)

Credits and Teaching Scheme

	Theory	Laboratory	Total
Credits	3	1	4
Contact	5 Hours/Week for 8 Weeks +	4 Hours/Week	9 Hours/Week for 8 Weeks +
Hours	Final Exam in the 9 th Week	for 8 Weeks	Final Exam in the 9 th Week

Prerequisite

CSE347 Information System Analysis and Design

Instructor Information

Instructor: Nishat Tasnim Niloy

Lecturer, Department of Computer Science and Engineering

Office: Room: 368

Tel. No.: +8809666775577, Ext. 513 **E-mail**: nishat.niloy@ewubd.edu

Course Objective

The objective of this course is to learn different principles and practices of modern software engineering. It also builds an understanding of the challenges faced in the industry and their resolutions. This course enhances the skills of using different modern tools and languages to analyze, design, and evaluate a real-life complex software system. This software engineering knowledge will be needed on the CSE430 Software Testing and Quality Assurance course.

Knowledge Profile

K2 (Conceptually based mathematics, numerical analysis, statistics, and formal aspects of computer and information science): Conceptually based mathematics, numerical analysis, statistics, and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline

K3 (Theory-based engineering fundamentals): A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline

K4 (Forefront engineering specialist knowledge for practice): Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline

K5 (Engineering design): Knowledge that supports engineering design in a practice area.

K6 (Engineering practice (technology)): Knowledge of engineering practice (technology) in the practice areas in the engineering discipline

K7 (Comprehension of engineering in society): Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental, and sustainability.

K8 (**Research literature**): Engagement with selected knowledge in the research literature of the discipline

Learning Domains

Cognitive - C3: Applying, C4: Analyzing, C5: Evaluating C6: Creating

Psychomotor - P2: Manipulation, P3: Precision

Affective - A2: Responding, A3-Valuing

Program Outcomes (POs)

PO3: Design/Development of Solutions (Cognitive, Affective)

PO6: The Engineer and Society (Affective, Cognitive)

PO9: Individual Work and Teamwork (Psychomotor, Affective)

Complex Engineering Problem Solution

EP1: Depth of knowledge required

EP2: Range of conflicting requirements

EP3: Depth of analysis required

EP4: Familiarity of issues

Complex Engineering Activities

None

Course Outcomes (COs) with Mappings

After completion of this course, students will be able to:

СО	CO Description	PO	Learning Domains	Knowledge Profile	Complex Engineering Problem Solving
CO1	Apply and analyze source code	PO3	C3, C4	K2, K3, K4	-

	management and version control system, appropriate software development model for developing software projects, dependable systems, and dependability properties,				
CO2	Apply and analyze design patterns, software reuse, use and examine different software testing techniques appropriate for project planning, and estimate project costs for project evaluation.	PO6	C3, C4	K4, K5, K6	-
CO3	Select, use, and justify different software tools; demonstrate skills and write reports to design, build, and test software.	PO9	C5, C6, P2, P3, A2, A3	K5, K6, K7, K8	EP1, EP2, EP3, EP4

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic		Teaching- Learning Method	СО		_	Exam (Mark)
 3. 4. 	Plan-driven model: Software Process Models, Iterative process models, Incremental software development, Spiral model, Rapid Application Development (RAD) model, Component Assembly Model, Concurrent Development Model, Prototyping Model (Evolutionary prototyping, Throwaway prototyping, Rapid prototyping techniques) Agile Software Development, Extreme programming (XP), Scrum, Agile VS Plan-driven model Source Code Management, and version control system Dependable Systems and dependability properties (Security, Reliability, Safety) Reliability Engineering (Availability and reliability, Reliability requirements, Fault- tolerant architectures, Programming for	Lecture, Class Discussion, Discussion outside class with Instructor/ TA	CO1	20	10	Midterm Assessment Exam (30)

	reliability, Reliability measurement)					
1.	Software Testing Basics- white box & black box testing, Integration and System Testing, Unit Testing, Code complexity analysis: Cyclomatic complexity, Halstead's complexity					
2.	Software reuse (The reuse landscape, Application frameworks, Software product lines, Application system reuse)					
3.	Design Pattern (Singleton, Factory method, Builder, Adapter, Bridge, Observer)	Do	CO2	20	10	Final Exam (30)
4.	Software Measurement and Estimation (Project cost estimation techniques, Functional Point Analysis, FP counting method for determining software cost), COCOMO cost modeling,					
5.	Software Engineering Tools, Fourth Generation Techniques (4GT)					

Laboratory Experiments and Assessment Scheme

Experiment	Teaching- Learning Method	СО	Mar Cogn e Lear Lev C5	nitiv e ning	Mar Psych oto Lear Lev P2	hom or ning	Mar Affec Lear Lev	ctive ning	CO Mark
 Group formation and selecting topics for mini project Source Code version Management tool Demonstration Mid-semester mini-project update Black box testing 	Lab Experiment and Result Analysis and Discussion with Instructor, Post-Lab Report	CO3	2	2	2	1	2	1	10

5. White box testing					
6. Design Pattern implementation					
7. Project Demonstration and presentation with VIVA					

Mini Project

Teaching-Learning Method	СО	Cogr Lear	ck of nitive ming vel C6	Psycho	rk of omotor g Levels P3	Affe Lear	ck of ctive rning vel A3	CO Mark
Group-based, moderately complex project development along with Report, VIVA, and oral presentation	CO4	4	3	2	2	2	2	15

Overall Assessment Scheme

Aggaggment Avas		CO					
Assessment Area	CO1	CO2	CO3	CO4	Total		
Class Test	05	05	-	-	10		
Midterm Assessment Exam	30	_	-	-	30		
Final Exam	-	30	_	-	30		
Laboratory Performance	-	_	10	-	10		
Assignment	-	-	05	-	05		
Mini Project with presentation and report	-	-	-	15	15		
Total	35	35	15	15	100		

Teaching Materials/Equipment

Reference books:

1. Software Engineering: A Practitioner's Approach (8th Edition) by Roger S. Pressman, Bruce Maxim

2. Sommerville, Ian. *Software engineering* (9th Edition)

Notes:

- Late report submission will suffer a penalty rate of 20% per day, up to 5 days (weekends count towards the 5 days). Report submissions that are more than 5 days late are penalized by 100%.
- STRICTLY NO COPYING from others.

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
80-100	A+	4.00	55-59	B-	2.75
75-79	A	3.75	50-54	C+	2.5
70-74	A-	3.5	45-49	С	2.25
65-69	B+	3.25	40-44	D	2
60-64	В	3.00	Below 40	F	0.00

Exam Date

Section	Class Slot	Mid Assessment	Final
4	MW	20.03.2024	05.06.2024

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, or falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offense under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student misses any exam, the student MUST get approval for a makeup exam by written application to the Chairperson through the Course Instructor within 48hoursof the exam time. Proper

supporting documents in favor of the reason for missing the exam must be presented with the application.

- For the **final exam**, there will be NO makeup exam. However, in case of **severe illness**, **death of any family member**, **any family emergency**, **or any humanitarian ground**, if a student misses the final exam, the student MUST get an approval of **Incomplete Grade** by written application to the Chairperson through the Course Instructor **within 48 hours** of the final exam time. Proper supporting documents in favor of the reason for missing the final exam must be presented with the application. **It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor**.
- All mobile phones and smart watches MUST be turned to silent mode during class and exam periods. Students cannot carry any Bluetooth device in the exam hall.
- There is **zero tolerance for cheating** in exams. Students caught with cheat sheets in their possession, whether used or not; writing on the palm, back of calculators, chairs, or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinees, etc. would be treated as cheating in the exam hall. The only penalty for cheating is **expulsion for several semesters as decided by the Disciplinary Committee of the university**.
