Notes on fixed-point procedure

Contents

1	Not	ations	and assumptions	1	
	Estimates				
	2.1	Useful	l elementary lemmas	2	
	2.2	Bound	dedness estimates	4	
		2.2.1	Electronic density n_e	4	
		2.2.2	Ion density n_i	4	
	2.3		nuity estimates		
		2.3.1	Electron density n_e	Ć	
		2.3.2	Ion density n_i	10	
3	Res	ults		11	

1 Notations and assumptions

We suppose that

- 1. $f_{e,b}$ is nonnegative.
- 2. $f_{e,b}(v) = f_{e,b}(-v)$ for all $v \in \mathbb{R}$.
- 3. $f_{e,b}$ is compactly supported, i.e. there exists $v^* \ge 0$ such that $f_{e,b}(v) = 0$ for all $|v| \ge v^*$.
- 4. There exists $\overline{c} \leq 0$ such that $f_{e,b}(v) \leq \overline{c}$ for all $v \in \mathbb{R}$.
- 5. There exists $\underline{c} > 0$ and $0 \leq \underline{v} < \overline{v}$ such that $f_{e,b}(v) \geq \underline{c}$ for all $v \in [-\overline{v}, -\underline{v}]$.
- 6. The function φ satisfies $\varphi(0) = \varphi'(0) = 0$.
- 7. The function φ is strongly concave, i.e. there exists $\alpha > 0$ such that $\varphi((1-\tau)x + \tau y) \geqslant (1-\tau)\varphi(x) + \tau \varphi(y) + \frac{\alpha}{2}(1-\tau)\tau |x-y|^2$ for all $(x,y,\tau) \in [0,1]^3$.
- 8. There exists $\beta > \alpha$ such that φ is $(-\beta)$ -convex, i.e. $\varphi((1-\tau)x+\tau y) \leqslant (1-\tau)\varphi(x)+\tau \varphi(y)+\frac{\beta}{2}(1-\tau)\tau |x-y|^2$ for all $(x,y,\tau)\in[0,1]^3$. Notice that in this case, $\varphi(x)\geqslant -\beta\frac{x^2}{2}$, and in particular, $\varphi(1)\geqslant -\beta$.

For the reader: notations $\underline{v}, \overline{v}$ indicates a domain on which $f_{e,b}$ is lower bounded, while v_*, v^* denote a domain on which $f_{e,b}$ is upper bounded by θ (with a global bound by \overline{c} anyway).

We use the following notations: the Liapunov functions of the electrons and the ions are

$$\mathcal{L}_e(x,v) := \frac{v^2}{2} - \frac{1}{\mu}\varphi(x). \tag{1.1}$$

$$\mathcal{L}_i(x,v) := \frac{v^2}{2} + \varphi(x). \tag{1.2}$$

For a given point $(x, v) \in [0, 1] \times \mathbb{R}^-$, we denote by (x_b, v_b) the intersection of the boundary $\{x \ge 0, v = 0\} \cup \{x = 0, v \le 0\}$ with the ion characteristic issued from (x, v). The values are given by

$$\begin{pmatrix} x_b(x,v) \\ v_b(x,v) \end{pmatrix} := \begin{pmatrix} \varphi^{-1} \left(\min\left(0, \frac{v^2}{2} + \varphi(x) \right) \right) \\ -\sqrt{\max\left(0, v^2 + 2\varphi(x)\right)} \end{pmatrix}$$
(1.3)

The satisfaction of the non-emitting boundary condition in $(x = 1, v \in \mathbb{R}_{-})$ may interfere with the value on the line $(x = 0, v \in \mathbb{R})$. In the following notes, we consider that the non-emitting boundary condition has the precedence, i.e. $f_e(x, v) = 0$ if $\mathcal{L}_e(x, v) \geqslant \mathcal{L}_e(1, 0)$, regardless of the prescribed value of $f_{e,b}$ along this line.

2 Estimates

2.1 Useful elementary lemmas

Lemma 2.1. Let $\alpha > 0$, $\overline{x} \ge 0$ and $\overline{y} \ge 0$. Then

$$\mathcal{I} := \int_{x=0}^{\overline{x}} \int_{y=0}^{\overline{y}} \frac{1}{(x^2 + \alpha y^2)^{1/2}} dy dx \leqslant 2 \frac{\sqrt{2\overline{xy}}}{\alpha^{1/4}}.$$

Demonstration By the change of variable $z = \sqrt{\alpha}y$, with $\overline{z} := \sqrt{\alpha}\overline{y}$, we have

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \int_{x=0}^{\overline{x}} \int_{z=0}^{\overline{z}} \frac{1}{(x^2 + z^2)^{1/2}} dz dx.$$

Notice that $x + z \leq \sqrt{2} (x^2 + y^2)^{1/2}$. Then,

$$\mathcal{I} \leqslant \frac{1}{\sqrt{\alpha}} \int_{x=0}^{\overline{x}} \int_{z=0}^{\overline{z}} \frac{\sqrt{2}}{x+z} dz dx = \sqrt{\frac{2}{\alpha}} \int_{x=0}^{\overline{x}} \ln\left(\frac{x+\overline{z}}{x}\right) dx = \sqrt{\frac{2}{\alpha}} \int_{x=0}^{\overline{x}} \ln\left(1+\frac{\overline{z}}{x}\right) dx.$$

Using $\ln(1+a) \leqslant \sqrt{a}$, we get

$$\mathcal{I}\leqslant\sqrt{\frac{2}{\alpha}}\int_{x=0}^{\overline{x}}\sqrt{\frac{\overline{z}}{x}}dx=\sqrt{\frac{2}{\alpha}}2\sqrt{\overline{x}\overline{z}}=2\frac{\sqrt{2\overline{x}\overline{y}}}{\alpha^{1/4}}.$$

Remark 2.1 (Exact value). Let $\overline{r} := \sqrt{\overline{x}^2 + \overline{z}^2}$. Then

$$\mathcal{I} = \overline{x} \ln \left(\frac{1 + \overline{z}/\overline{r}}{\overline{x}/\overline{r}} \right) + \overline{z} \ln \left(\frac{1 + \overline{x}/\overline{r}}{\overline{z}/\overline{r}} \right).$$

Lemma 2.2. If $a \ge 0$ and $b \ge 0$, then $|a - b| \le \sqrt{|a^2 - b^2|}$.

Demonstration If $a \ge b$, then $|a-b| = \sqrt{(a-b)(a-b)} \le \sqrt{(a-b)(a+b)} = \sqrt{a^2-b^2}$, else |a-b| = |b-a|. \square

Lemma 2.3. Let $\alpha > 0$, $L \in \mathbb{R}$ and $0 \le a \le 1$. Suppose that $L + \alpha a^2 \ge 0$, and a > 0 if L = 0. Then

$$\mathcal{I} \coloneqq \int_{z=a}^{1} \frac{1}{(L+\alpha z^2)^{1/2}} dz \leqslant \min\left(|L|^{-1/2}, \frac{2}{\sqrt{\alpha a}}\right).$$

Demonstration If L > 0, we have

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \int_{z=a}^{1} \frac{1}{\left(1 + \left(\sqrt{\frac{\alpha}{L}}z\right)^{2}\right)^{1/2}} \frac{\sqrt{\alpha}dz}{\sqrt{L}} = \frac{1}{\alpha} \int_{w=a\sqrt{\frac{\alpha}{L}}}^{\sqrt{\frac{\alpha}{L}}} \frac{1}{\left(1 + w^{2}\right)^{1/2}} dw = \frac{1}{\sqrt{\alpha}} \left(\sinh^{-1}\left(\sqrt{\frac{\alpha}{L}}\right) - \sinh^{-1}\left(a\sqrt{\frac{\alpha}{L}}\right)\right).$$

Using the positivity of $\sinh^{-1}\left(a\sqrt{\frac{\alpha}{L}}\right)$, and the coarse estimate $\sinh^{-1}(x) \leqslant x$, we get $\mathcal{I} \leqslant L^{-1/2}$. Moreover, using that $\sinh^{-1}(x) = \log(x + \sqrt{x^2 + 1})$, we get

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \log \left(\frac{\sqrt{\frac{\alpha}{L}} + \sqrt{\frac{\alpha}{L}} + 1}{a\sqrt{\frac{\alpha}{L}} + \sqrt{a^2 \frac{\alpha}{L}} + 1} \right) = \frac{1}{\sqrt{\alpha}} \log \left(\frac{1 + \sqrt{1 + \frac{L}{\alpha}}}{a + \sqrt{a^2 + \frac{L}{\alpha}}} \right) \leqslant \frac{1}{\sqrt{\alpha}} \log \left(\frac{2 + \sqrt{\frac{L}{\alpha}}}{2a} \right) \leqslant \frac{1 + \left(\frac{L}{\alpha}\right)^{1/4}}{\sqrt{\alpha a}}.$$

I shamelessly used $\frac{1}{2} \leqslant 1$. Then $\mathcal{I} \leqslant \min\left(L^{-1/2}, \frac{1+\left(\frac{L}{\alpha}\right)^{1/4}}{\sqrt{\alpha a}}\right)$ on L > 0. But whenever $L \geqslant \alpha$, the min is attained in

its first argument: indeed, $L^{-1/2} \leqslant \frac{1}{\sqrt{\alpha a}} \leqslant \frac{1 + \left(\frac{L}{\alpha}\right)^{1/4}}{\sqrt{\alpha a}}$. Then we obtained $\mathcal{I} \leqslant \min(L^{-1/2}, \frac{2}{\sqrt{\alpha a}})$ on L > 0. If L = 0, we have

$$\int_{z=a}^{1} \frac{1}{\sqrt{\alpha}z} dz = \frac{\log(1/a)}{\sqrt{\alpha}} \frac{2}{\sqrt{\alpha a}}.$$

Finally, if L < 0, the integral becomes

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \int_{a}^{1} \frac{1}{\left(\left(\sqrt{\frac{\alpha}{|L|}}z\right)^{2} - 1\right)^{1/2}} \frac{\sqrt{\alpha}dz}{\sqrt{|L|}} = \frac{1}{\alpha} \int_{a\sqrt{\frac{\alpha}{|L|}}}^{\sqrt{\frac{\alpha}{|L|}}} \frac{1}{\left(w^{2} - 1\right)^{1/2}} dw = \frac{\cosh^{-1}\left(\sqrt{\frac{\alpha}{|L|}}\right) - \cosh^{-1}\left(a\sqrt{\frac{\alpha}{|L|}}\right)}{\sqrt{\alpha}}.$$

The expression is well-defined, since $L + \alpha a^2 \ge 0$ implies $a\sqrt{\frac{\alpha}{-L}} \ge 1$ when -L > 0. Since $\cosh^{-1}(x) \le x$, we obtain the coarse estimate $\mathcal{I} \le |L|^{-1/2}$. Using that $\cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})$, we get

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \log \left(\frac{1 + \sqrt{1 - \frac{|L|}{\alpha}}}{a + \sqrt{a^2 - \frac{|L|}{\alpha}}} \right) \leqslant \frac{1}{\sqrt{\alpha}} \log \left(\frac{2}{a} \right) \leqslant \sqrt{\frac{2}{\alpha a}} \leqslant \frac{2}{\sqrt{\alpha a}}.$$

Lemma 2.4 (MAGIC Change of variable). Let $(x(\tau), v(\tau))$ be an ion characteristic issued from $(x, w) \in [0, 1] \times \mathbb{R}_{-}$, and define $\varepsilon := \mathcal{L}_{e}(x(\tau), v(\tau))$ and $z := x(\tau)$. Then

$$d\tau \wedge dw = \frac{dz \wedge d\varepsilon}{2\left(\varepsilon + \frac{1}{\mu}\varphi(z)\right)^{1/2} \left(\varepsilon - \varphi(x) + \left(1 + \frac{1}{\mu}\right)\varphi(z)\right)^{1/2}}.$$

Demonstration We have $\varepsilon = \frac{(v(\tau))^2}{2} - \frac{1}{\mu}\varphi(z)$, so that

$$d\varepsilon = v(\tau)\dot{v}(\tau)d\tau - \frac{1}{\mu}\varphi'(z)dz = -v(\tau)\varphi'(z)d\tau - \frac{1}{\mu}\varphi'(z)dz \quad \Longrightarrow \quad d\tau = -\frac{1}{v(\tau)\varphi'(z)}d\varepsilon - \frac{1}{\mu v(\tau)}dz.$$

Moreover, $\mathcal{L}_i(x(\tau), v(\tau)) = \frac{(v(\tau))^2}{2} + \varphi(z)$, so $\left(1 + \frac{1}{\mu}\right)\varphi(z) = \mathcal{L}_i(x(\tau), v(\tau)) - \mathcal{L}_e(x(\tau), v(\tau)) = \mathcal{L}_i(x, w) - \varepsilon$ and

$$w = -\sqrt{2}\left(\varepsilon - \varphi(x) + \left(1 + \frac{1}{\mu}\right)\varphi(z)\right)^{1/2} \implies = \frac{d\varepsilon + \left(1 + \frac{1}{\mu}\right)\varphi'(z)dz}{w}.$$

Then, using $v(\tau) = -\sqrt{2} \left(\varepsilon + \frac{1}{\mu} \varphi(z) \right)^{1/2}$, we get

$$d\tau \wedge dw = -\frac{1 + \frac{1}{\mu}}{wv(\tau)}d\varepsilon \wedge dz - \frac{\frac{1}{\mu}}{v(\tau)w}dz \wedge d\varepsilon = \frac{dz \wedge d\varepsilon}{v(\tau)(-w)} = \frac{dz \wedge d\varepsilon}{2\left(\varepsilon + \frac{1}{\mu}\varphi(z)\right)^{1/2}\left(\varepsilon - \varphi(x) + \left(1 + \frac{1}{\mu}\right)\varphi(z)\right)^{1/2}}.$$

Remark 2.2. Notice that $\mathcal{L}_i(x(\tau), v(\tau)) = \varepsilon + \left(1 + \frac{1}{\mu}\right)\varphi(z)$. Moreover, we have $-\frac{1}{\mu}\varphi(z) = \mathcal{L}_e(z, 0)$, and $\varphi(x) = \mathcal{L}_i(z, 0)$. Then the change of variable rewrites

$$d\tau \wedge dw = \frac{dz \wedge d\varepsilon}{2\left(\mathcal{L}_e(x(\tau), v(\tau)) - \mathcal{L}_e(z, 0)\right)^{1/2} \left(\mathcal{L}_i(x(\tau), v(\tau)) - \mathcal{L}_i(x, 0)\right)^{1/2}},$$

and is well-defined for (τ, w) such that both square roots are real.

2.2 Boundedness estimates

2.2.1 Electronic density n_e

Lemma 2.5. The electron density n_e is bounded independently of φ . More precisely,

$$n_e(x) \leqslant 2\overline{c}v^* \quad \forall x \in [0,1].$$

Demonstration Let $v \in \mathbb{R}$ such that $|v| > v_*$, with $f_{e,b}(\mathbb{R} \setminus [-v^*, v^*]) = 0$. Then

$$\mathcal{L}_e(x,v) = \frac{v^2}{2} - \frac{1}{\mu}\varphi(x) \geqslant \frac{v^2}{2} = \mathcal{L}_e(v,0) \implies f_e(x,v) = 0.$$

Then we may write for all $x \in [0, 1]$ that

$$n_e(x) = \int_{v=-v^*}^{v^*} f_e(x, v) dv \leqslant 2\overline{c}v^*.$$

2.2.2 Ion density n_i

The estimates will rely on two particular cases, the we treat independently as lemmas. For a given x, we define $g_x : [0, x] \mapsto \mathbb{R}^+$ by

$$\mathcal{L}_i(x, -g_x(y)) = \mathcal{L}_i(y, 0), \text{ i.e. } g_x(y) = (2(\varphi(y) - \varphi(x)))^{1/2}.$$

For the reader: draw y to the left of x. Then $-g_x(y)$ is the intersection of the ion characteristic ending on (y,0) with the vertical line going through x.

Lemma 2.6. Let $0 \le y < x \le 1$. We have

$$\mathcal{I} := \int_{v = -g_x(y)}^{0} \int_{z = x_b(x, v)}^{x} \frac{1}{\left(v^2 - g_x^2(z)\right)^{1/2}} dz \, dv \leqslant 2 \left(\frac{\beta}{\alpha}\right)^{1/4} (x - y).$$

Demonstration Let us first use Fubini's theorem to switch the order of integration. The lower bound $x_b(x, v) \ge z$ becomes an upper bound $v \le -g_x(z)$, and we have

$$\mathcal{I} = \int_{z=y}^{x} \int_{v=-g_x(y)}^{-g_x(z)} \frac{1}{\left(v^2 - g_x^2(z)\right)^{1/2}} dv \, dz = \int_{z=y}^{x} \int_{v=g_x(z)}^{g_x(y)} \frac{1}{\left(v^2 - g_x^2(z)\right)^{1/2}} dv \, dz.$$

With the change of variable $w = v - g_x(z)$, and using $\frac{d}{dw} \left[\sinh^{-1} \left(\sqrt{\frac{w}{a}} \right) \right] = \left(w^2 + 2aw \right)^{-1/2}$, we get

$$\mathcal{I} = \int_{z=y}^{x} \int_{w=0}^{g_x(y) - g_x(z)} \frac{1}{\left(w^2 + 2wg_x(z)\right)^{1/2}} dw \, dz = \int_{z=y}^{x} \sinh^{-1} \left(\sqrt{\frac{g_x(y) - g_x(z)}{g_x(z)}}\right) dz.$$

Using the elementary estimate $\sinh^{-1}(a) \leqslant p \, a^{1/p}$ for all $p \in \mathbb{N}^*$, and the coarse estimate $\sqrt{\frac{a-b}{b}} \leqslant \sqrt{\frac{a}{b}}$, we get

$$\mathcal{I} \leqslant \int_{z=y}^{x} p\left(\frac{g_x(y)}{g_x(z)}\right)^{1/2p} dz = \int_{z=y}^{x} p\left(\frac{\varphi(y) - \varphi(x)}{\varphi(z) - \varphi(x)}\right)^{1/4p} dz \quad \forall \, p \in \mathbb{N}^*.$$

The assumption of strong concavity yields $\varphi(z) - \varphi(x) \ge -\varphi'(z)(x-z) + \frac{\alpha}{2}|x-z|^2 \ge \frac{\alpha}{2}(x-z)^2$, so that

$$\mathcal{I} \leqslant \left(\frac{2}{\alpha}\right)^{1/4p} (\varphi(y) - \varphi(x))^{1/4p} \int_{z=y}^{x} p \frac{1}{(x-z)^{1/2p}} dz = \left(\frac{2}{\alpha}\right)^{1/4p} (\varphi(y) - \varphi(x))^{1/4p} \frac{p^2}{p-1/2} (x-y)^{1-1/2p}.$$

By the strong $(-\beta)$ -convexity, we may write $\varphi(y) - \varphi(x) \leqslant \beta \frac{(x-y)^2}{2}$, so that

$$\mathcal{I} \leqslant \left(\frac{\beta}{\alpha}\right)^{1/4p} \frac{p^2}{p-1/2} (x-y) \quad \forall p \in \mathbb{N}^*.$$

Using the coarse estimates $\sinh^{-1}(a) \leqslant a$ and $\sqrt{\frac{a-b}{b}} \leqslant \sqrt{\frac{a}{b}}$, we get

$$\mathcal{I} \leqslant \int_{z=y}^{x} \sqrt{\frac{g_x(y)}{g_x(z)}} dz = \int_{z=y}^{x} \left(\frac{\varphi(y) - \varphi(x)}{\varphi(z) - \varphi(x)}\right)^{1/4} dz.$$

The assumption of strong concavity yields $\varphi(z) - \varphi(x) \ge -\varphi'(z)(x-z) + \frac{\alpha}{2}|x-z|^2 \ge \frac{\alpha}{2}(x-z)^2$, so that

$$\mathcal{I} \leqslant \left(\frac{2}{\alpha}\right)^{1/4} \left(\varphi(y) - \varphi(x)\right)^{1/4} \int_{z=y}^{x} \frac{1}{(x-z)^{1/2}} dz = 2\left(\frac{2}{\alpha}\right)^{1/4} \left(\varphi(y) - \varphi(x)\right)^{1/4} \sqrt{x-y}.$$

By the strong $(-\beta)$ -convexity, we may write $\varphi(y) - \varphi(x) \leqslant \beta \frac{(x-y)^2}{2}$, so that

$$\mathcal{I} \leqslant 2 \left(\frac{\beta}{\alpha}\right)^{1/4} (x-y).$$

Lemma 2.7. Let $0 \le y \le x \le 1$, and $-v_0 < -g_x(y)$. We have

$$\mathcal{I} := \int_{v=-v_0}^{-g_x(y)} \int_{z=y}^{1} \frac{1}{\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} dz \, dv \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \left(v_0^2 + \beta \left(x - y\right)^2\right)^{1/4}.$$

Demonstration We first shift the v-integration from the vertical line z = x to z = y. Let w = w(v) be such that

$$\mathcal{L}_{i}(y, w(v)) = \mathcal{L}_{i}(x, v), \text{ i.e. } w(v) = -\left(v^{2} + 2\left(\varphi(x) - \varphi(y)\right)\right), \text{ and } dv = \frac{-w}{\left(w^{2} + 2\left(\varphi(y) - \varphi(x)\right)\right)^{1/2}}dw.$$

Then, defining $w_0 := (v_0^2 + 2(\varphi(x) - \varphi(y)))^{1/2}$, and noticing that $w(-g_x(y)) = 0$, we get

$$\mathcal{I} = \int_{w=-w_0}^{0} \int_{z=y}^{1} \frac{1}{\left(w^2 + 2\left(\varphi(y) - \varphi(z)\right)\right)^{1/2}} dz \frac{-w}{\left(w^2 + 2\left(\varphi(y) - \varphi(x)\right)\right)^{1/2}} dw.$$

Since $y \leqslant x$, we have $\varphi(y) \geqslant \varphi(x)$, and $\frac{-w}{\left(w^2 + 2(\varphi(y) - \varphi(x))\right)^{1/2}} \leqslant \frac{-w}{|w|} = 1$. By the strong concavity assumption, we have $\varphi(y) - \varphi(z) \geqslant -\varphi'(y)(z-y) + \frac{\alpha}{2}|z-y|^2 \geqslant \frac{\alpha}{2}(z-y)^2$, so that

$$\mathcal{I} \leqslant \int_{w=-w_0}^0 \int_{z=y}^1 \frac{1}{(w^2 + \alpha(z-y)^2)^{1/2}} dz dw = \int_{w=0}^{w_0} \int_{z=0}^{1-y} \frac{1}{(w^2 + \alpha z^2)^{1/2}} dz dw.$$

Using lemma (2.1), and the $(-\beta)$ -convexity, we conclude that

$$\mathcal{I} \leqslant 2 \frac{\sqrt{2w_0(1-y)}}{\alpha^{1/4}} = \frac{2\sqrt{2(1-y)}}{\alpha^{1/4}} \left(v_0^2 + 2\left(\varphi(x) - \varphi(y)\right) \right)^{1/4} \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \left(v_0^2 + \beta\left(x - y\right)^2 \right)^{1/4}.$$

Proposition 2.1. The density n_i is bounded. More precisely,

$$n_i(x) \leqslant 2\nu \left(2 \left(\frac{\beta}{\alpha}\right)^{1/4} + 2\sqrt{2} \left(\frac{\beta}{\alpha}\right)^{1/4} + \frac{2\sqrt{2}}{\alpha^{1/4}} \sqrt{v^*}\right) \qquad \forall x \in [0,1].$$

Figure 1: Decomposition of the integral defining n_i .

The phase space is divided by the critical characteristic (in solid black). Whenever $v \leq -g_x(0)$, the characteristics (dotted green lines) are reaching the boundary with $x_b(x, v) = 0$.

Demonstration We use the symmetry of f_i to write

$$n_i(x) = \int_{v = -\infty}^{\infty} f_i(x, v) dv = 2 \int_{v = -\infty}^{0} f_i(x_b(x, v), v_b(x, v)) dv = 2\nu \int_{v = -\infty}^{0} \int_{t = -\infty}^{0} f_e(x(t), v(t)) dt dv,$$

where $(x(t), v(t))_{t \leq 0}$ is the ion characteristic reaching $(x_b(x, v), v_b(x, v))$ at t = 0. Notice that the lower bounds are artificial, since the characteristic enters the support of f_e in finite time: we may use $v \geq -v^*$, and consider only times t for which $x(t) \in [0, 1]$.

We first reparametrize (x(t), v(t)) using the space variable. Define $z = x(t) \in [x_b, 1]$, and observe that

$$dz = \dot{x}(t)dt = v(t)dt$$
, with $\mathcal{L}_i(z, v(t)) = \mathcal{L}_i(x, v)$ \iff $v(t) = -\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}$.

Then, the density rewrites

$$n_i(x) = 2\nu \int_{v = -v^*}^0 \int_{z = x_b(x, v)}^1 \frac{f_e\left(z, -\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}\right)}{\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} \, dz dv.$$

Let us show that n_i is bounded. We use the coarse estimate $f_e \leq \bar{c}$, and decompose the integral in three:

$$n_{i}(x) \leqslant 2\nu \bar{c} \left[\underbrace{\int_{v=-g_{x}(0)}^{0} \int_{z=x_{b}(x,v)}^{x}}_{\mathcal{I}_{1}} + \underbrace{\int_{v=-g_{x}(0)}^{0} \int_{z=x}^{1}}_{\mathcal{I}_{2}} + \underbrace{\int_{v=-v^{*}}^{-g_{x}(0)} \int_{z=x_{b}(x,v)}^{1}}_{\mathcal{I}_{3}} \right] \frac{1}{\left(v^{2} + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} dz dv.$$

The corresponding domains are represented figure (3).

Notice that whenever $z \leq x$, we have $0 \geq 2(\varphi(x) - \varphi(z)) = -(2(\varphi(z) - \varphi(x)))^{2/2} = -g_x^2(z)$. Then, the integral \mathcal{I}_1 may be bounded using lemma (2.6) with y = 0:

$$\mathcal{I}_1 = \int_{v = -g_x(0)}^0 \int_{z = x_b(x,v)}^x \frac{1}{\left(v^2 - g_x^2(z)\right)^{1/2}} \, dz dv \leqslant 2 \left(\frac{\beta}{\alpha}\right)^{1/4} x \leqslant 2 \left(\frac{\beta}{\alpha}\right)^{1/4}.$$

We use lemma (2.7) to bound \mathcal{I}_2 and \mathcal{I}_3 . In the first case, we take y = x and $v_0 = g_x(0)$, and notice that $-g_x(x) = 0$. In the second case, we take $v_0 = v^*$ and y = 0, and notice that on $v \leq -g_x(0)$, we have $x_b(x, v) = 0$ (the velocity is low enough so that the characteristic ends on $x_b = 0$). Finally, we use that $g_x^2(0) = -2\varphi(1) \leq \beta$ to write

$$\mathcal{I}_{2} \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \left(g_{x}^{2}(0)\right)^{1/4} \leqslant 2\sqrt{2} \left(\frac{\beta}{\alpha}\right)^{1/4}, \quad \text{and} \quad \mathcal{I}_{3} \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \left(\left(v^{*}\right)^{2} + 2\varphi(x)\right)^{1/4} \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \sqrt{v^{*}}.$$

Lemma 2.8. The density n_i is uniformly bounded away from 0. More precisely,

$$n_i(x) \geqslant \frac{\sqrt{2}\nu\underline{c}(\overline{v}^2 - \underline{v}^2)}{\overline{v}\left(\frac{\overline{v}^2}{2} + \beta\right)^{1/2}} \frac{\underline{v}}{\sqrt{\beta\left(1 + \frac{1}{\mu}\right)}} \qquad \forall x \in [0, 1].$$

Demonstration By assumption, there exists a constant $\underline{c} > 0$ such that $f_{e,b}(v) \ge \underline{c} \mathbf{1}_{\{v \le |v| \le \overline{v}\}}$, which implies

$$f_e(x,v) \geqslant \underline{c} \mathbf{1}_{\{\mathcal{L}_e(0,\underline{v}) \leqslant \mathcal{L}_e(x,v) \leqslant \mathcal{L}_e(0,\overline{v})\}}.$$

Notice that we may always take $\underline{v} > 0$ as long as $\overline{v} > 0$. Let us denote $\underline{\varepsilon} := \mathcal{L}_e(0,\underline{v})$ and $\overline{\varepsilon} := \mathcal{L}_e(0,\overline{v})$. For any $x \in [0,1]$, we have

$$n_i(x) = 2\nu \int_{w \in \mathbb{R}} \int_{\tau = -\infty}^0 f_e(x(\tau), v(\tau)) d\tau dw, \text{ with } \mathcal{L}_i(x(\tau), v(\tau)) = \mathcal{L}_i(x, w).$$

Notice that for $w \in [-g_x(-\overline{v}), -g_x(0)]$, the characteristic issued from (x, w) enters the domain $\{\underline{\varepsilon} \leqslant \mathcal{L}_e \leqslant \overline{\varepsilon}\}$. We will restrict the domain of integration to

$$\mathcal{D} := \left\{ (w, \tau) \in \mathbb{R}^2 \mid \underline{\varepsilon} \leqslant \mathcal{L}_e(x(\tau), v(\tau)) \leqslant \overline{\varepsilon} \text{ and } 0 \leqslant x(\tau) \leqslant a \right\},\,$$

where (a, v_a) is the unique point such that $\mathcal{L}_e(a, v_a) = \mathcal{L}_e(0, \underline{v})$ and $\mathcal{L}_i(a, v_a) = 0$ (note that a depends on β). This (somehow coarse) estimate will give us trivial bounds when applying the change of variable of lemma (2.4), namely $z = x(\tau)$ and $\varepsilon = \mathcal{L}_e(x(\tau), v(\tau))$. Denoting by $[\tau, \overline{\tau}] \subset]-\infty, 0$] the time interval where $(x(\tau), v(\tau)) \in \mathcal{D}$, we have

$$n_i(x) \geqslant \int_{w=-g_x(-\overline{v})}^{-g_x(0)} \int_{\tau=\underline{\tau}}^{\overline{\tau}} 2\nu \underline{c} \, d\tau dw = \int_{\varepsilon=\underline{\varepsilon}}^{\overline{\varepsilon}} \int_{z=0}^{a} \frac{2\nu \underline{c}}{2\left(\varepsilon + \frac{1}{\mu}\varphi(z)\right)^{1/2} \left(\varepsilon - \varphi(x) + \left(1 + \frac{1}{\mu}\right)\varphi(z)\right)^{1/2}} \, dz d\varepsilon.$$

Using remark (2.2), we are assured that the square roots are well-defined, since

$$\varepsilon \geqslant \underline{\varepsilon} = \mathcal{L}_e(0,\underline{v}) = \mathcal{L}_e(a,v_a) \geqslant \mathcal{L}_e(a,0) \geqslant \mathcal{L}_e(z,0) = -\frac{1}{u}\varphi(z)$$
 and $\mathcal{L}_i(x(\tau),v(\tau)) = \mathcal{L}_i(x,w) \geqslant \mathcal{L}_i(x,0)$.

Using that $\varepsilon + \frac{1}{\mu}\varphi(z) \leq \overline{\varepsilon} + 0$ and $\varepsilon - \varphi(x) + \left(1 + \frac{1}{\mu}\varphi(z)\right) \leq \overline{\varepsilon} + \beta + 0$, we obtain

$$n_i(x) \geqslant 2\nu \int_{\varepsilon-\varepsilon}^{\overline{\varepsilon}} \int_{z-0}^a \frac{\underline{c}}{2\overline{\varepsilon}^{1/2} (\overline{\varepsilon} + \beta)^{1/2}} dz d\varepsilon = \frac{\nu a\underline{c}(\overline{\varepsilon} - \underline{\varepsilon})}{\overline{\varepsilon}^{1/2} (\overline{\varepsilon} + \beta)^{1/2}}.$$

Let us make explicit the dependance over β by estimating a using the $(-\beta)$ -convexity assumption: we have

$$\varphi(x) \geqslant -\beta \frac{x^2}{2} \implies \varphi^{-1}(y) \geqslant \sqrt{\frac{-2y}{\beta}}, \text{ so that } a = \varphi^{-1}\left(-\frac{\underline{v}^2}{2\left(1+\frac{1}{\mu}\right)}\right) \geqslant \frac{\underline{v}}{\sqrt{\beta\left(1+\frac{1}{\mu}\right)}}.$$

and the uniform lower bound behaves like β^{-1} when $\beta \to \infty$.

Lemma 2.9. We probably can do better, but maybe not win any exponent. Suppose that there exists $v_* > 0$ such that $f_{e,b}(v) = 0$ for all $|v| \le v_*$. Then the density f_i satisfies the uniform bound

$$f_i(x,v) \leqslant 2^{9/4} \overline{c} \sqrt{\frac{\frac{\beta}{\alpha} (1 + \frac{1}{\mu}) + 1}{v_*}} \quad \forall (x,v) \in [0,1] \times \mathbb{R}.$$

Demonstration Let $(x, v) \in [0, 1] \times \mathbb{R}_-$, and denote by $(x(t), v(t))_{t \leq 0}$ the ion characteristic going through (x, v) = (x(-T), v(-T)), with the convention $(x_b(x, v), v_b(x, v)) = (x(0), v(0))$. Owing to the positivity of f_e ,

$$f_i(x(0), v(0)) = \int_{t=-T}^0 f_e(x(t), v(t))dt + f_i(x, v) \ge f_i(x, v).$$

Figure 2: Notations for the lower bound on n_i .

The coloured area corresponds to the domain $\underline{\varepsilon} \leq \mathcal{L}_e \leq \overline{\varepsilon}$, on which we know that $f_e \geq \underline{c}$. The hatched area represents the domain \mathcal{D} . The solid black line is the critical ion characteristic.

On the other hand, we use $f_i(x,v) + f_i(x,-v) = 2f_i(x(0),v(0))$ to write $f_i(x,-v) \le 2f_i(x(0),v(0))$. This shows that it is enough to bound f_i on the boundary $\mathcal{B} := \{x \ge 0, v = 0\} \cup \{x = 0, v \le 0\}$ to obtain an uniform bound.

Let then $(x, v) \in \mathcal{B}$. By hypothesis, $f_e(x(t), v(t))$ vanishes whenever $\mathcal{L}_e(x(t), v(t)) \notin [\mathcal{L}_e(0, v_*), \mathcal{L}_e(0, v^*)]$, and is bounded by \overline{c} otherwise. Then, we may use the reparametrization by space

$$f_i(x,v) \leqslant \int_{z=a(x,v)}^1 \frac{\overline{c}}{\left(v^2 + 2\varphi(x) - 2\varphi(z)\right)^{1/2}} dz, \quad \text{with} \quad a(x,v) \coloneqq \begin{cases} \varphi^{-1}\left(\frac{\frac{v^2}{2} + \varphi(x) - \frac{v_*^2}{2}}{1 + 1/\mu}\right) & \text{if } \mathcal{L}_e(x,v) \leqslant \mathcal{L}_e(0,v_*) \\ x & \text{otherwise.} \end{cases}$$

The function a gives the smallest spatial coordinate of the characteristic $(x(t), v(t))_{t \leq 0}$ such that $f_e > 0$. Using that $\varphi(z) \leq -\alpha \frac{z^2}{2}$, we have

$$f_i(x,v) \leqslant \overline{c} \int_{z=a(x,v)}^1 \frac{1}{(v^2 + 2\varphi(x) - \alpha z^2)^{1/2}} dz \leqslant \overline{c} \min\left(\frac{1}{|v^2 + 2\varphi(x)|^{1/2}}, \frac{2}{\sqrt{\alpha a(x,v)}}\right)$$

where we used lemma (2.3) with $L := v^2 + 2\varphi(x)$.

We rely on the concavity estimate

$$\varphi(x)\geqslant (1-x)\varphi(0)+x\varphi(1)+\frac{\alpha}{2}x(1-x)\geqslant -x\beta \quad \Longrightarrow \quad -\frac{y}{\beta}\leqslant \varphi^{-1}(y)$$

to write that for (x, v) satisfying $\mathcal{L}_e(x, v) \leq \mathcal{L}_e(0, v_*)$,

$$a(x,v) = \varphi^{-1}\left(\frac{\frac{v^2}{2} + \varphi(x) - \frac{v_*^2}{2}}{1 + 1/\mu}\right) \geqslant \frac{\frac{v_*^2}{2} - (\frac{v^2}{2} + \varphi(x))}{\beta(1 + 1/\mu)}.$$

Then

$$f_i(x,v) \leqslant \overline{c} \min \left(\frac{1}{\sqrt{|X|}}, \frac{A}{\sqrt{B-X}} \right) \quad \text{with} \quad X \coloneqq \frac{v^2}{2} + \varphi(x), \quad A \coloneqq \frac{2}{\sqrt{\frac{\alpha}{\beta(1+1/\mu)}}}, \quad \text{and} \quad B \coloneqq \frac{{v_*}^2}{2}.$$

The elementary study of the function $X \to \min\left(|X|^{-1/2}, A(B-X)^{-1/2}\right)$ reveals a global maximum at $X = \frac{B}{A^2+1} < B$, and we conclude to the result.

Figure 3: Notations for the boundedness of f_i .

The coloured area corresponds to $\mathcal{L}_e(x,v) \geqslant \mathcal{L}_e(0,v_*)$. The function a(x,v) gives the point of the ion characteristic (in brown) where f_e vanishes.

2.3 Continuity estimates

2.3.1 Electron density n_e

Lemma 2.10. The electronic density n_e is continuous.

Demonstration We already know that n_e is bounded. Moreover, using the symmetry $f_e(x, v) = f_e(x, -v)$, we may write

$$n_e(x) - n_e(y) = 2\underbrace{\int_{v=0}^{v_x(y)} f_e(x, v) dv}_{=:\mathcal{I}^+} + 2\underbrace{\left(\underbrace{\int_{v=v_x(y)}^{v_x(1)} f_e(x, v) dv}_{v=v_x(y)} - \int_{v=0}^{v_y(1)} f_e(y, v) dv}_{=:\mathcal{I}^-}\right).$$

The term \mathcal{I}^+ is bounded by $\bar{c}v_x(y) = \bar{c}\left(\frac{2}{\mu}\left(\varphi(x) - \varphi(y)\right)\right)^{1/2}$, and by continuity of φ , we have $\mathcal{I}^+ \xrightarrow{y \to x} 0$. On the first integral of \mathcal{I}^- , we apply the change of variable

$$w = \left(v^2 - \frac{2}{\mu}\left(\varphi(x) - \varphi(y)\right)\right)^{1/2} \quad \Longleftrightarrow \quad dv = \frac{w}{\left(w^2 + \frac{2}{\mu}\left(\varphi(x) - \varphi(y)\right)\right)^{1/2}} dw, \quad w \in [0, v_y(1)]$$

to get

$$\mathcal{I}^{-} = \int_{w=0}^{v_{y}(1)} f_{e} \left(x, \left(w^{2} + \frac{2}{\mu} \left(\varphi(x) - \varphi(y) \right) \right)^{1/2} \right) \frac{w}{\left(w^{2} + \frac{2}{\mu} \left(\varphi(x) - \varphi(y) \right) \right)^{1/2}} dw - \int_{v=0}^{v_{y}(1)} f_{e}(y, v) dv.$$

Notice that

$$f_e\left(x, \left(w^2 + \frac{2}{\mu}\left(\varphi(x) - \varphi(y)\right)\right)^{1/2}\right) = f_{e,b}\left(\frac{w^2}{2} + \frac{1}{\mu}\left(\varphi(x) - \varphi(y)\right) - \frac{1}{\mu}\varphi(x)\right) = f_e(y, w).$$

Renaming w in v, we obtain the (clearly nonpositive) expression

$$\mathcal{I}^{-} = \int_{v=0}^{v_{y}(1)} f_{e}(y, v) \left(\frac{v}{\left(v^{2} + \frac{2}{\mu} \left(\varphi(x) - \varphi(y)\right)\right)^{1/2}} - 1 \right) dv \geqslant \overline{c} \int_{v=0}^{v_{y}(1)} \left(\frac{v}{\left(v^{2} + \frac{2}{\mu} \left(\varphi(x) - \varphi(y)\right)\right)^{1/2}} - 1 \right) dv$$

$$= \overline{c} \left(\left(v_{y}(1)^{2} + \frac{2}{\mu} \left(\underbrace{\varphi(x) - \varphi(y)}_{\geqslant 0} \right) \right)^{1/2} - \left(\frac{2}{\mu} \left(\varphi(x) - \varphi(y)\right) \right)^{1/2} - v_{y}(1) \right) \geqslant -\overline{c} \left(\frac{2}{\mu} \left(\varphi(x) - \varphi(y)\right) \right)^{1/2}$$

and this shows that $\mathcal{I}^- \longrightarrow_{y \to x} 0$.

Lemma 2.11. Let n_e^{φ} and n_e^{ψ} be the electron densities generated by potentials φ and ψ satisfying the assumptions. Then

1. If $f_{e,b}$ is Lipschitz-continuous with constant $[f_{e,b}]$, then

$$|n_e^{\varphi}(x) - n_e^{\psi}(x)| \le 2[f_{e,b}]v^*\sqrt{\frac{2}{\mu}}|\varphi(x) - \psi(x)|^{1/2} \quad \forall (x,y) \in [0,1]^2.$$

2. If there exists a constant $[f_{e,b}]$ such that $|f_{e,b}(x)-f_{e,b}(y)| \leq |f_{e,b}||x^2-y^2|$ (or equivalently, $x \to f_{e,b}(\sqrt{x})$ is a lipschitz function, as for instance e^{-x^2}), then

$$|n_e^{\varphi}(x) - n_e^{\psi}(x)| \leqslant \frac{4v^*[f_{e,b}]_2}{\mu} |\varphi(x) - \psi(x)| \quad \forall (x,y) \in [0,1]^2.$$

Demonstration We have

$$\left| n_e^{\varphi}(x) - n_e^{\psi}(x) \right| \leqslant 2 \int_{v=0}^{v^*} \left| f_e^{\varphi}(x,v) - f_e^{\psi}(x,v) \right| dv = 2 \int_{v=0}^{v^*} \left| f_{e,b} \left(\left(v^2 - \frac{2}{\mu} \varphi(x) \right)^{1/2} \right) - f_{e,b} \left(\left(v^2 - \frac{2}{\mu} \psi(x) \right)^{1/2} \right) \right| dv.$$

Then, if $f_{e,b}$ is Lipschitz with constant $[f_{e,b}]$, we obtain

$$\left| n_e^{\varphi}(x) - n_e^{\psi}(x) \right| \leqslant 2[f_{e,b}] \int_{v=0}^{v^*} \left| \left(v^2 - \frac{2}{\mu} \varphi(x) \right)^{1/2} - \left(v^2 - \frac{2}{\mu} \psi(x) \right)^{1/2} \right| dv.$$

Using lemma (2.2) yields

$$\left| n_e^{\varphi}(x) - n_e^{\psi}(x) \right| \leqslant 2[f_{e,b}] \int_{v=0}^{v^*} \left| -\frac{2}{\mu} \varphi(x) + \frac{2}{\mu} \psi(x) \right|^{1/2} dv = 2[f_{e,b}] v^* \sqrt{\frac{2}{\mu}} \left| \varphi(x) - \psi(x) \right|^{1/2}.$$

If $f_{e,b}(\sqrt{\cdot})$ is Lipschitz with constant $[f_{e,b}]_2$, we may directly write

$$\left| n_e^{\varphi}(x) - n_e^{\psi}(x) \right| \le 2v^* [f_{e,b}]_2 \frac{2}{\mu} \left| \varphi(x) - \psi(x) \right|.$$

2.3.2 Ion density n_i

Proposition 2.2. The density n_i is continuous.

Demonstration Let $0 \le y < x \le 1$. For convenience, we represent $n_i(x)$ (resp. $n_i(y)$) as an integral with the artificial lower bound $-g_x(-v^*) \le -v^*$ (resp. $-g_y(-v^*)$). Then

$$n_{i}(x) - n_{i}(y) = 2 \int_{v = -g_{x}(-v^{*})}^{0} f_{i}(x_{b}(x, v), v_{b}(x, v)) dv - 2 \int_{v = -g_{y}(-v^{*})}^{0} f_{i}(x_{b}(y, v), v_{b}(y, v)) dv$$

$$= 2 \left[\int_{v = -g_{x}(-v^{*})}^{-g_{x}(y)} f_{i}(x_{b}(x, v), v_{b}(x, v)) dv - \int_{v = -g_{y}(-v^{*})}^{0} f_{i}(x_{b}(y, v), v_{b}(y, v)) dv \right]$$

$$=: \mathcal{I}^{-}$$

$$+ 2 \underbrace{\int_{v = -g_{x}(y)}^{0} f_{i}(x_{b}(x, v), v_{b}(x, v)) dv}_{=: \mathcal{I}^{+}}.$$

$$(2.1)$$

The term \mathcal{I}^+ is clearly nonnegative, and may be addressed using our lemmas. Indeed, using the integral representation of $f_i(x_b, v_b)$ and the reparametrization by a space variable z, we have

$$\begin{split} \mathcal{I}^{+} &= \int_{v=-g_{x}(y)}^{0} \left[\int_{z=x_{b}(x,v)}^{x} + \int_{z=x}^{1} \frac{f_{e}(z, -\left(v^{2}+2\left(\varphi(x)-\varphi(z)\right)\right)^{1/2})}{\left(v^{2}+2\left(\varphi(x)-\varphi(z)\right)\right)^{1/2}} \, dz dv \right. \\ &\leqslant \overline{c} \int_{v=-g_{x}(y)}^{0} \int_{z=x_{b}(x,v)}^{x} \frac{1}{\left(v^{2}-g_{x}^{2}(z)\right)^{1/2}} \, dz dv + \overline{c} \int_{v=-g_{x}(y)}^{0} \int_{z=x}^{1} \frac{1}{\left(v^{2}+2\left(\varphi(x)-\varphi(z)\right)\right)^{1/2}} \, dz dv \\ &\leqslant \overline{c} \left(2\sqrt{\frac{2}{\alpha}} \left(\varphi(y)-\varphi(x)\right)^{1/4} \sqrt{x-y} + \frac{2\sqrt{2}}{\alpha^{1/4}} \left(2\left(\varphi(y)-\varphi(x)\right)\right)^{1/2}\right), \end{split}$$

where we used lemma (2.6) for the first term, and lemma (2.7) for the second term (with y = x and $v_0 = -g_x(y)$ under the notations of the lemma). Since φ is continuous, we deduce that $\mathcal{I}^+ \underset{y \to x}{\longrightarrow} 0$. Taking the extreme case y = 0 and x = 1, we obtain that

$$\mathcal{I}^{+} \leqslant \overline{c} \left(2\sqrt{\frac{2}{\alpha}} \left(-\varphi(1) \right)^{1/4} + \frac{2\sqrt{2}}{\alpha^{1/4}} \left(-2\varphi(1) \right)^{1/2} \right) \eqqcolon K.$$

Let us now focus on \mathcal{I}^- . On the first integral, we make the change of variable

$$w = -(v^2 + 2(\varphi(x) - \varphi(y)))^{1/2}$$
 $v = -(w^2 + 2(\varphi(y) - \varphi(x)))^{1/2}$

Since $\mathcal{L}_i(x,v) = \mathcal{L}_i(y,w)$, this yields $x_b(x,v) = x_b(y,w)$ and $v_b(x,v) = v_b(y,w)$. The bounds $v \in [-g_x(-v^*), -g_x(y)]$ are exactly transported to $w \in [-g_y(-v^*), 0]$. Renaming w in v, we get

$$\mathcal{I}^{-} = \int_{v=-g_{y}(-v^{*})}^{0} f_{i}(x_{b}(y,v), v_{b}(y,v)) \left(\frac{-v}{(v^{2}+2(\varphi(y)-\varphi(x)))^{1/2}}-1\right) dv.$$

Since $\varphi(y) \geqslant \varphi(x)$, the factor of f_i is nonpositive, and so is \mathcal{I}^- . Moreover,

$$n_i(x) - n_i(y) = 2\mathcal{I}^- + 2\mathcal{I}^+ \leqslant 2\mathcal{I}^- + 2K \quad \Longleftrightarrow \quad \mathcal{I}^- = -K + n_i(x) - n_i(y) \geqslant -K - |n_i|_{\infty}$$

and \mathcal{I}^- is bounded. The function $\frac{-v}{\left(v^2+2(\varphi(y)-\varphi(x))\right)^{1/2}}-1$ converges pointwise to 0 when $x\to y$ and f_i is almost everywhere finite, and by Lebesgue's dominated convergence, $\mathcal{I}^- \underset{x\to y}{\longrightarrow} 0$. Then n_i is continuous.

3 Results

Let $0 < \alpha \leq \beta$, and define the following convex set:

$$\mathcal{K} \coloneqq \left\{ \varphi \in \mathcal{C}^1([0,1],\mathbb{R}) \quad | \quad \varphi(0) = \varphi'(0) = 0, \quad \varphi \ \alpha - \text{concave et } (-\beta) - \text{convex.} \right\}.$$

Both variation conditions rewrite

$$\forall (x,y,\gamma) \in [0,1]^3, \quad \begin{cases} \varphi((1-\gamma)x+\gamma y) \geqslant (1-\gamma)\varphi(x)+\gamma \varphi(y)+\frac{\alpha}{2}\gamma(1-\gamma)|x-y|^2, \\ \varphi((1-\gamma)x+\gamma y) \leqslant (1-\gamma)\varphi(x)+\gamma \varphi(y)+\frac{\beta}{2}\gamma(1-\gamma)|x-y|^2. \end{cases}$$

In the case $\varphi \in \mathcal{C}^2$, it is equivalent to $\varphi'' \in [-\beta, -\alpha]$.

Lemma 3.1. K is closed for the topology induced by the sup-norm $|\cdot|_{\infty} := \max_{[0,1]} |\cdot|$.

Demonstration Since $\mathcal{K} \subset \mathcal{C}^0([0,1],\mathbb{R})$, we know that any Cauchy sequence $(\varphi_n)_n \subset \mathcal{K}$ admits a limit $\varphi \in \mathcal{C}([0,1],\mathbb{R})$. The pointwise condition $\varphi_n(0) = 0$ and the pointwise grows conditions are preserved when $n \to \infty$. Since the family of continuous fonctions $(\varphi'_n)_n$ is equilipschitz, we may use Arzelà-Ascoli to extract an uniformly converging subsequence $\varphi'_{n_k} \to \varphi'_{\infty}$. Using that for all $(x,y) \in [0,1]$,

$$\left|\varphi(y) - \varphi(x) - \int_{x}^{y} \varphi'_{\infty}(z)dz\right| \leq |\varphi(y) - \varphi_{n}(y)| + |\varphi(x) - \varphi_{n}(x)| + \int_{x}^{y} |\varphi'_{\infty}(z) - \varphi'_{n}(z)|dz \underset{n \to \infty}{\longrightarrow} 0,$$

we get that φ'_{∞} is the (continuous) derivative of φ . Finally, the uniform convergence $\varphi'_{n_k} \to \varphi'_{\infty}$ gives $\varphi'(0) = 0$. \square We define an operator $F : \mathcal{K} \mapsto \mathcal{C}^2([0,1],\mathbb{R})$ by the solution of the Poisson problem

$$-\lambda^2 F'' = n_i[\varphi] - n_e[\varphi],$$

where n_i and n_e are the ion and electron densities obtained with the characteristics induced by φ .

Stability The function F is solution to a Poisson problem with bounded continuous source term, so it enjoys C^2 regularity. The boundary condition $F_{\varphi}(0) = F'_{\varphi}(0) = 0$ are satisfied by construction. We turn to the stability of the variation estimates: owing to the boundedness of n_i and n_e stated above, we have

$$\begin{cases}
-F''(x) \geqslant \frac{\kappa_1}{\sqrt{\beta}(\kappa_2 + \beta)^{1/2}} - \kappa_3, \\
-F''(x) \leqslant \frac{\kappa_4}{\rho_1^{1/4}} \left(\beta^{1/4} + \kappa_5\right)
\end{cases}$$

where

$$\kappa_1 := \frac{\nu\sqrt{2}\underline{c}(\overline{v}^2 - \underline{v}^2)\underline{v}}{\lambda^2\overline{v}\sqrt{1 + \frac{1}{\mu}}}, \quad \kappa_2 := \frac{\overline{v}^2}{2}, \quad \kappa_3 := \frac{2\overline{c}v^*}{\lambda^2}, \quad \kappa_4 := \frac{4\nu(1 + \sqrt{2})}{\lambda^2}, \quad \kappa_5 := 4\sqrt{2v^*}.$$

A sufficient condition for the stability $F(\mathcal{K}) \subset \mathcal{K}$ is to obtain $\alpha \leqslant -F'' \leqslant \beta$. We may not always have a solution (α, β) ... It depends on the coefficients.