Ex1

Nadav Menirav

May 2024

Prove / Disprove:

1.
$$2^{\sqrt{\log(n)}} \in \Theta(n)$$

Disproof:

$$\lim_{n \to \infty} \frac{2^{\sqrt{\log n}}}{n} = \lim_{n \to \infty} \frac{2^{\sqrt{\log n}}}{2^{\log n}} = \lim_{n \to \infty} 2^{\sqrt{\log n} - \log n}$$

But we know that $\lim_{n \to \infty} \sqrt{\log n} - \log n = \lim_{n \to \infty} \sqrt{\log n} \cdot \left(1 - \sqrt{\log n}\right) \longrightarrow -\infty$ (because $\sqrt{\log n} \longrightarrow \infty$ and $\left(1 - \sqrt{\log n}\right) \longrightarrow -\infty$)

So overall we got $\lim_{n\to\infty} 2^{\sqrt{\log n} - \log n} = 0$ therefore $\lim_{n\to\infty} \frac{2^{\sqrt{\log n}}}{n} = 0$

And because of that (according to the lecture), $2^{\sqrt{\log(n)}} \notin \Theta(n)$

$$2. \ 2^{\sqrt{\log(n)}} \in \omega\left(\log^{10} n\right)$$

Proof:

$$\lim_{n\to\infty}\frac{2^{\sqrt{\log n}}}{\log^{10}n}=\lim_{n\to\infty}\frac{2^{\sqrt{\log n}}}{2^{\log(\log^{10}n)}}=\lim_{n\to\infty}2^{\sqrt{\log n}-\log(\log^{10}n)}\lim_{n\to\infty}2^{\sqrt{\log n}-10\log(\log n)}$$

But we also know that
$$\lim_{n \to \infty} \sqrt{\log n} - 10 \log(\log n) = \lim_{n \to \infty} \sqrt{\log n} \left(1 - \frac{10 \log(\log n)}{\sqrt{\log n}}\right)$$

But we also know that
$$\lim_{n\to\infty} \sqrt{\log n} - 10\log(\log n) = \lim_{n\to\infty} \sqrt{\log n} \left(1 - \frac{10\log(\log n)}{\sqrt{\log n}}\right)$$

We can also see that $\lim_{n\to\infty} \frac{10\log(\log n)}{\sqrt{\log n}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{\log n}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}} = \lim_{n\to\infty} \frac{10 \cdot \frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}{\frac{1}{n\ln 2} \cdot \frac{1}{2\sqrt{\log n}}}$

$$\lim_{n \to \infty} \frac{20\sqrt{\log n}}{\log n} = \lim_{n \to \infty} \frac{20}{\sqrt{\log n}} = 0$$

Therefore
$$\lim_{n \to \infty} \frac{2^{\sqrt{\log n}}}{\log^{10} n} = \lim_{n \to \infty} \sqrt{\log n} \left(1 - \frac{10 \log(\log n)}{\sqrt{\log n}}\right) = \lim_{n \to \infty} \sqrt{\log n} = \infty$$
 And according to the Tirgul, we can say that $2^{\sqrt{\log(n)}} \in \omega\left(\log^{10} n\right)$

3. $\frac{n}{2}\log\frac{n}{2} \in \Omega(n\log n)$

Proof:

$$\lim_{n\to\infty}\frac{\frac{n}{2}\log\frac{n}{2}}{n\log n}=\frac{1}{2}\lim_{n\to\infty}\frac{\log\frac{n}{2}}{\log n}=\frac{1}{(\text{L'Hôpital's rule})}\frac{1}{2}\lim_{n\to\infty}\frac{\frac{1}{2}\cdot\frac{2}{n}}{\frac{1}{n}}=\frac{1}{2}\lim_{n\to\infty}\frac{\frac{1}{n}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{1}{\frac{1}{n}}=\lim_{n\to\infty}\frac{$$

2 Let f, g be two positive functions. Prove/Disprove:

1. if f and g are monotonic, then $f \in O(g)$ or $g \in O(f)$ Disproof:

Let f, g be the following:

$$f(n) = \begin{cases} n^n, & \text{if n is even} \\ (n-1)^{n-1}, & \text{if n is odd} \end{cases} g(n) = \begin{cases} n^n, & \text{if n is odd} \\ (n-1)^{n-1}, & \text{if n is even} \end{cases}$$

We will start by proving that $f \notin O(g)$. Suppose there are $c \in \mathbb{R}$, $N_0 \in \mathbb{N}$ which for every $n > N_0$, $f(n) \leq c \cdot g(n)$. Let $n_1 > 0$ be an even integer. $f(n) = n_1^{n_1} \leq c \cdot g(n_1) = (n_1 - 1)^{n_1 - 1}$. Contradiction! there is not a real positive number c which applies for the above statements for every even integer that is bigger than N_0 .

We will now prove that $g \notin O(f)$. Suppose there are $\tilde{c} \in \mathbb{R}$, $\tilde{N}_0 \in \mathbb{N}$ which for every $n > \tilde{N}_0$, $g(n) \leq \tilde{c} \cdot f(n)$. Let $n_0 > \tilde{N}_0$ be an odd integer. $g(n_0) = n_0^{n_0} \leq c \cdot f(n_0) = (n_0 - 1)^{n_0 - 1}$ Contradiction! As we just saw, there is not a real number c which is suitable for that.

2. $\Theta(max(f(n),g(n))) = \Theta(f(n)+g(n))$ Proof:

 \subseteq

Let $\varphi(n)$ be in $\Theta(\max(f(n),g(n)))$.

That means that there are $c_1, c_2, N_0 \geq 0$ that for every $n > N_0$: $c_1 \cdot max(f(n), g(n)) \leq \varphi(n) \leq c_2 \cdot max(f(n), g(n))$ And because of that we see that $\varphi(n) \leq c_2 \cdot (f(n) + g(n))$. So that is why $\varphi(n) \in O(f(n) + g(n))$. But we also know that $c_1 \cdot max(f(n), g(n)) \leq \varphi(n)$ for every integer from a certain point. So $\frac{c_1}{2} \cdot 2 \cdot max(f(n), g(n)) \leq \varphi(n)$. That is why $\frac{c_1}{2} \cdot (f(n) + g(n)) \leq \varphi(n)$ and $\varphi(n) \in \Omega(f(n) + g(n))$. Overall we got $\varphi(n) \in \Theta(f(n) + g(n))$.

 \supset

Let $\psi(n)$ be in $\Theta(f(n)+g(n))$. That means that there are $c_3, c_4, N_1>0$ That make for every $n>N_1, c_3(f(n)+g(n))\leq \psi(n)\leq c_4(f(n)+g(n))$. hence $\psi(n)\leq c_4(f(n)+g(n))\leq c_4(\max(f(n),g(n))+\max(f(n),g(n)))\Rightarrow \psi(n)\leq \frac{c_4}{2}\cdot\max(f(n),g(n))$ That is why $\varphi(n)\in O(\max(f(n),g(n)))$. Let's look at $c_3(f(n)+g(n))\leq \psi(n)$. We can say that $\psi(n)\geq c_3(f(n)+g(n))\geq c_3\cdot\max(f(n),g(n))$. So we also got $\psi(n)\in\Omega(\max(f(n),g(n)))$. Overall, $\psi(n)\in\Theta(\max(f(n),g(n)))$.

3. If $f(n) \in \Theta(g(n))$ So $\omega(f(n)) = \omega(g(n))$ **Proof:**

Let $\psi(n)$ be in $\omega(f(n))$.

That means that for every $c \in \mathbb{R} \geq 0$ there is $N_0 \in \mathbb{N}$ which makes for every $n > N_0$, $\psi(n) \geq c \cdot f(n)$. But we know that $f(n) \in \omega(g(n))$. That means that there is $c_1 \in \mathbb{R} \geq 0$ such that $f(n) \geq c_1 \cdot g(n)$. Hence we get $\psi(n) \geq c \cdot c_1 \cdot g(n)$. But c can be every single positive real number, so $c \cdot c_1$ can be every single positive real number, and that proves $\psi(n) \in \omega(g(n))$ i.e $\omega(f(n)) \subseteq \omega(g(n))$.

Because $f(n) \in \Theta(g(n))$, we can also say $g(n) \in \Theta(f(n))$ (By moving the constants to the other side of the equation).

Without any loss of generality, we can state that $\omega(g(n)) \subseteq \omega(f(n))$. By two-directional inclusion, $\omega(g(n)) = \omega(f(n))$.

3 Determine the runtime of the code, find Θ :

1. The outside loop runs n-1 times. The inside one runs $\log_i n$ for every iteration of the outside loop. Overall the runtime is $T(n) = \sum_{i=2}^n \log_i n$. $T(n) \le 1$

$$\begin{split} \sum_{i=2}^{\sqrt{n}} \log_i n + \sum_{i=\sqrt{n}+1}^n \log_i n & \leq \\ \sqrt{n} \cdot \log_2 n + (n-\sqrt{n}) \cdot \log_{\sqrt{n}} n & < \\ \log_2 n < \sqrt{n} \text{ for every n from a certain point} \\ \sqrt{n} \cdot \sqrt{n} + \left(n-\sqrt{n}\right) \cdot 2 &= n+2n-2\sqrt{n} < 3n. \end{split}$$

On the other hand, T(n) \geq If the base of the log is lower, the outcome is bigger $(n-1)\cdot \log_n n = n-1$ \geq for every n>1 $\frac{1}{2}n$.

To conclude, we know that $\frac{1}{2}n \leq T(n) \leq 3n$ for every n from a certain point, therefore $T(n) \in \Theta(n)$

2. $T(n) = \sum_{i=1}^{n^2} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n^2} \sum_{j=1}^{i} j = \sum_{i=1}^{n^2} \frac{i(i+1)}{2} = \frac{1}{2} \sum_{i=1}^{n^2} i^2 + \frac{1}{2} \sum_{i=1}^{n^2} i = \frac{1}{2} \cdot \frac{n^2 (n^2+1) (2n^2+1)}{6} + \frac{1}{2} \cdot \frac{n^2 (n^2+1)}{2} = \frac{n^6 + 3n^4 + 2n^2}{6} \le \frac{n^6 + 3n^6 + 2n^6}{6}$ $= n^6$

But also $\frac{n^6+3n^4+2n^2}{6} \ge \frac{n^6}{6}$ So overall we got $\frac{n^6}{6} \le T(n) \le n^6$

Therefore by definition, $T(n) \in \Theta(n^6)$

4