Supplement to "A Sparse Random Projection-based Test for Overall Qualitative Treatment Effects"

Chengchun Shi, Wenbin Lu and Rui Song

In this supplementary article, we provide detailed discussion on the technical conditions, proofs of Lemma 3.1, Theorem 3.1, Theorem 3.2, Theorem 3.4 and additional simulation results. The proof of Theorem 3.3 is similar to that of Theorem 3.1 and is hence omitted.

C More on the technical conditions

In this section, we present some examples on the estimation of the contrast function to better understand Assumption (C2), (A4), (A5), (A6) and (A7).

C.1 Detailed discussion on (C2)

We consider the case where the structure parameter γ in (C1) equals 1. As commented in Section B, this assumption holds when $\tau(X)$ has a bounded density near 0.

Example 1 (B-spline methods) Assume p = 1 and X has a bounded probability density function on a closed interval. For j = 0, 1, let $\hat{h}_{j,\mathcal{I}}(\cdot)$ be the B-spline regression estimators of the conditional mean functions $h_j(\cdot)$ based on the sub-dataset $\{(X_i, Y_i)\}_{i \in \mathcal{I}, A_i = j}$. Define the estimated contrast function $\hat{\tau}_{\mathcal{I}}(\cdot) = \hat{h}_{1,\mathcal{I}}(\cdot) - \hat{h}_{0,\mathcal{I}}(\cdot)$. Then similar to Equation (8) in Zhou et al. (1998), we can show $E|\hat{\tau}_{\mathcal{I}}(X) - \tau(X)|^2 = O(|\mathcal{I}|^{-4/5})$ when $\tau(\cdot)$ is twice continuously differentiable and the number of interior knots K satisfies $K = C|\mathcal{I}|^{1/5}$ for some C > 0. Condition (C2) is thus satisfied.

Example 2 (Kernel ridge regression) For j = 0, 1, let $\hat{h}_{j,\mathcal{I}}(\cdot)$ be the kernel ridge re-

gression estimator of $h_i(\cdot)$ by minimizing,

$$\hat{h}_{j,\mathcal{I}} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \left\{ \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} I(A_i = j) \{ Y_i - h(X_i) \}^2 + \lambda ||h||_{\mathcal{H}}^2 \right\},\,$$

where $\lambda > 0$ is a regularization parameter, \mathcal{H} is a reproducing kernel Hilbert space with a reproducing kernel $K(\cdot,\cdot)$ and $\|\cdot\|_{\mathcal{H}}$ is the corresponding Hilbert norm. Assume $h_0, h_1 \in \mathcal{H}$, and the kernel K satisfies second-order polynomial eigen-decay or exponential eigen-decay. Then, with proper choice of λ , we have $E|\hat{h}_{j,\mathcal{I}}(X) - h_j(X)|^2 = O(|\mathcal{I}|^{-4/5})$ (see Equation (10)-(14) in Zhang et al., 2013). Set $\hat{\tau}_{\mathcal{I}}(x) = \hat{h}_{\mathcal{I},1}(x) - \hat{h}_{\mathcal{I},0}(x)$. It follows from Cauchy-Schwarz inequality that $E|\hat{\tau}_{\mathcal{I}}(X) - \tau(X)|^2 = O(|\mathcal{I}|^{-4/5})$. Notice that the convergence rates are independent of the dimension p. Condition (C2) therefore holds.

C.2 Detailed discussion on (A4)

Let q = 1. For simplicity, assume SX has a probability density function $q_S(\cdot)$ for any $S \in \mathcal{S}$. Further assume there exists some constant $c_0 \geq 1$ such that

$$c_0^{-1} \le q_S(\omega) \le c_0, \quad \forall L_S < \omega < U_S \text{ and } S \in \mathcal{S},$$
 (S.1)

where (L_S, U_S) is the support of q_S . This assumption holds when the joint probability density function of $X_{\mathcal{M}}$ is uniformly bounded away from 0 and ∞ for any $\mathcal{M} \subseteq \{1, 2, \ldots, p\}$ with $1 \leq |\mathcal{M}| \leq s$ where s controls the sparsity of the sketching matrix in \mathcal{S} . For example, assume s = O(1), each $X^{(j)}$ follows a uniform distribution on (L_j, U_j) with $\min_{j=1}^p (U_j - L_j) > c_*^{-1}$ and $\max_j (|U_j| + |L_j|) \leq c_*$ for some constant $c_* \geq 1$, and $X^{(1)}, X^{(2)}, \ldots, X^{(p)}$ are jointly independent. Then this assumption is automatically satisfied.

We focus on the cubic B-spline methods discussed in Section 3.3.2. Let \mathbb{Q}^S denote the matrix

$$\left(\begin{array}{cccc} \sum_{i \in \mathcal{I}} N_1^{(S)}(SX_i) N_1^{(S)}(SX_i) & \sum_{i \in \mathcal{I}} N_1^{(S)}(SX_i) N_2^{(S)}(SX_i) & \cdots & \sum_{i \in \mathcal{I}} N_1^{(S)}(SX_i) N_{K+4}^{(S)}(SX_i) \\ \sum_{i \in \mathcal{I}} N_1^{(S)}(SX_i) N_2^{(S)}(SX_i) & \sum_{i \in \mathcal{I}} N_2^{(S)}(SX_i) N_2^{(S)}(SX_i) & \cdots & \sum_{i \in \mathcal{I}} N_2^{(S)}(SX_i) N_{K+4}^{(S)}(SX_i) \\ \vdots & & \vdots & & \vdots \\ \sum_{i \in \mathcal{I}} N_1^{(S)}(SX_i) N_{K+4}^{(S)}(SX_i) & \sum_{i \in \mathcal{I}} N_2^{(S)}(SX_i) N_{K+4}^{(S)}(SX_i) & \cdots & \sum_{i \in \mathcal{I}} N_{K+4}^{(S)}(SX_i) N_{K+4}^{(S)}(SX_i) \end{array} \right).$$

Assume the interior knots are placed at equally-spaced quantiles of SX. Since $|\mathcal{I}| \geq n/2$, similar to Equation (13) in Zhou (2009) and Theorem 2 in de Boor (1973), we can show there exists some constant $c_{**} > 1$ such that

$$(2c_{**}K)^{-1}n \le c_{**}^{-1}|\mathcal{I}|K^{-1} \le \lambda_{\min}(\mathbb{EQ}^S) \le \lambda_{\max}(\mathbb{EQ}^S) \le c_{**}|\mathcal{I}|K^{-1} \le 2c_{**}K^{-1}n, \forall S \in \mathcal{S}(S.2)$$

under the condition in (S.1). The B-spline bases are uniformly bounded. Therefore, we have

$$\max_{1 \le k_1, k_2 \le K+4} \sup_{S \in \mathcal{S}} \operatorname{Var} \{ N_{k_1}^{(S)}(SX) N_{k_2}^{(S)}(SX) \} \le \max_{1 \le k_1, k_2 \le K+4} \sup_{S \in \mathcal{S}} \operatorname{E} \{ N_{k_1}^{(S)}(SX) N_{k_2}^{(S)}(SX) \}^2$$

$$= O\left(\max_{1 \le k \le K} \sup_{S \in \mathcal{S}} \{ \operatorname{E} N_k^{(S)}(SX) \}^2 \right) = O(K^{-1}). (S.3)$$

Assume $K = Cn^{1/5}$ for some constant C > 0, and $B = O(n^{\kappa_B})$ for some $\kappa_B > 0$. It follows from Bernstein's inequality (see Lemma 2.2.9, van der Vaart and Wellner, 1996) that the following event occurs with probability tending to 1,

$$\max_{\substack{b \in \{1, \dots, B\}\\1 \le k_1, k_2 \le K+4}} \left| \sum_{i \in \mathcal{I}} \left(N_{k_1}^{(S_b)}(S_b X_i) N_{k_2}^{(S_b)}(S_b X_i) - \mathbf{E} N_{k_1}^{(S_b)}(S_b X) N_{k_2}^{(S_b)}(S_b X) \right) \right| = O(n^{2/5} \sqrt{\log n}) (S.4)$$

Notice that $N_{k_1}^{(S_b)}(S_bX)N_{k_2}^{(S_b)}(S_bX) = 0$ when $|k_1 - k_2| > 4$, $\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}$ is a band matrix. Under the event defined in (S.4), we have $\|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_1 = O(n^{2/5}\sqrt{\log n})$ and $\|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_{\infty} = O(n^{2/5}\sqrt{\log n})$. As a result, we have

$$\max_{b \in \{1, \dots, B\}} \|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_2 \le \max_{b \in \{1, \dots, B\}} \sqrt{\|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_1 \|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_{\infty}} = O(n^{2/5}\sqrt{\log n}).$$

with probability tending to 1. This together with (S.2) yields

$$\min_{b \in \{1,\dots,B\}} \lambda_{\min}(\mathbb{Q}^{S_b}) \ge \bar{c}_* n^{4/5},\tag{S.5}$$

for some constant $\bar{c}_* > 0$. By (S.2), (S.4) and (S.5), we have

$$\max_{b \in \{1, \dots, B\}} \|(\mathbb{Q}^{S_b})^{-1} - (\mathbb{E}\mathbb{Q}^{S_b})^{-1}\|_2$$

$$\leq \max_{b \in \{1, \dots, B\}} \|(\mathbb{Q}^{S_b})^{-1}\|_2 \|\mathbb{Q}^{S_b} - \mathbb{E}\mathbb{Q}^{S_b}\|_2 \|(\mathbb{E}\mathbb{Q}^{S_b})^{-1}\|_2 = O(n^{-6/5}\sqrt{\log n}).$$
 (S.6)

Consider the pseudo-outcome defined in (12). The estimated propensity score function $\hat{\pi}^{\mathcal{I}}(\cdot)$ and conditional mean functions $\hat{h}_0^{\mathcal{I}}, \hat{h}_1^{\mathcal{I}}$ will converge to some $\pi^*(\cdot), h_0^*(\cdot)$ and $h_1^*(\cdot)$ respectively. Under certain regularity conditions, we can show the following event holds with probability tending to 1,

$$\max_{i \in \mathcal{I}} \left| \hat{\tau}_i^{\mathcal{I}} - \tau_i^* \right| = O(n^{-2/5} \sqrt{\log n}), \tag{S.7}$$

where

$$\tau_i^* = \left(\frac{A_i}{\pi^*(X_i)} - \frac{1 - A_i}{1 - \pi^*(X_i)}\right) Y_i + \left(\frac{A_i}{\pi^*(X_i)} - 1\right) h_1^*(X_i) - \left(\frac{1 - A_i}{1 - \pi^*(X_i)} - 1\right) h_0^*(X_i).$$

Similar to (S.4), we have by Bernstein's inequality that

$$\max_{\substack{b \in \{1, \dots, B\}\\1 < k < K + 4}} \left| \sum_{i \in \mathcal{I}} \{ N_k^{(S_b)}(S_b X_i) \tau_i^* - E N_k^{(S_b)}(S_b X_i) \tau_i^* \} \right| = O(n^{2/5} \sqrt{\log n}),$$

with probability tending to 1. By the doubly-robustness property, we have $E(\tau_i^*|X_i) = \tau(X_i)$ and hence $EN_k^{(S)}(SX_i)\tau_i^* = EN_k^{(S)}(SX)\tau(X)$. Therefore,

$$\Pr\left(\max_{\substack{b \in \{1,\dots,B\}\\1 \le k \le K+4}} \left| \sum_{i \in \mathcal{I}} \{N_k^{(S_b)}(S_b X_i) \tau_i^* - E N_k^{(S_b)}(S_b X_i) \tau(X_i) \} \right| = O(n^{2/5} \sqrt{\log n}) \right) \to 1. \quad (S.8)$$

For any $1 \le k \le K+4$, $1 \le b \le B$, $N_k^{(S_b)}(\cdot)$ has bounded support of length $O(K^{-1}) = O(n^{-1/5})$. It follows from (S.1) that

$$\sup_{S \in \mathcal{S}} \max_{k \in \{1, \dots, K\}} E|N_k^{(S)}(SX)| = O(n^{-1/5}).$$
 (S.9)

Similar to (S.4), we have by Bernstein's inequality that

$$\max_{\substack{b \in \{1, \dots, B\}\\1 \le k \le K+4}} \left| \sum_{i \in \mathcal{I}} \{ |N_k^{(S_b)}(S_b X_i)| - \mathbb{E}|N_k^{(S_b)}(S_b X_i)| \} \right| = O(n^{2/5} \sqrt{\log n}),$$

with probability tending to 1. This together with (S.9) yields

$$\max_{\substack{b \in \{1, \dots, B\}\\1 \le k \le K+4}} \sum_{i \in \mathcal{I}} |N_k^{(S_b)}(S_b X_i)| = O(n^{4/5}),$$

with probability tending to 1. By (S.7) and (S.8), we have

$$\begin{aligned} & \max_{\substack{b \in \{1, \dots, B\} \\ 1 \le k \le K + 4}} \left| \sum_{i \in \mathcal{I}} \left\{ N_k^{(S_b)}(S_b X_i) \hat{\tau}_i^{\mathcal{I}} - \mathrm{E} N_k^{(S_b)}(S_b X_i) \tau(X_i) \right\} \right| \le \max_{\substack{b \in \{1, \dots, B\} \\ 1 \le k \le K + 4}} \left(\sum_{i \in \mathcal{I}} |N_k^{(S_b)}(S_b X_i)| \right) \\ & \times \max_{i \in \mathcal{I}} \left| \hat{\tau}_i^{\mathcal{I}} - \tau_i^* \right| + \max_{\substack{b \in \{1, \dots, B\} \\ 1 \le k \le K + 4}} \left| \sum_{i \in \mathcal{I}} \left\{ N_k^{(S_b)}(S_b X_i) \tau_i^* - \mathrm{E} N_k^{(S_b)}(S_b X_i) \tau(X_i) \right\} \right| = O(n^{2/5} \sqrt{\log n}), \end{aligned}$$

with probability tending to 1. As a result, we have

$$\max_{b \in \{1, \dots, B\}} \sqrt{\sum_{k=1}^{K+4} \left(\sum_{i \in \mathcal{I}} \{ N_k^{(S_b)}(S_b X_i) \hat{\tau}_i^{\mathcal{I}} - E N_k^{(S_b)}(S_b X) \tau(X) \} \right)^2} = O\left(\sqrt{n \log n}\right), \quad (S.10)$$

with probability tending to 1. In addition, assume $\tau(\cdot)$ is uniformly bounded. Similar to (S.9), we can show $\sup_{S \in \mathcal{S}} \max_{k \in \{1,\dots,K\}} |EN_k(SX)\tau(X)| = O(n^{-1/5})$. Therefore, we have

$$\|\{EN_1(SX)\tau(X),\cdots,EN_{K+4}(SX)\tau(X)\}\|_2 = O(\sqrt{K}n^{-1/5}) = O(n^{-1/10}),$$

where the big-O term is uniform in $S \in \mathcal{S}$. This together with (S.5), (S.6) and (S.10) yields

$$\max_{b \in \{1,\dots,B\}} \|\hat{\xi}^{\mathcal{I},S_b} - \xi^{S_b}\|_{2} \tag{S.11}$$

$$\leq \max_{b \in \{1,\dots,B\}} \|(\mathbb{Q}^{S_b})^{-1} - (\mathbb{E}(\mathbb{Q}^{S_b})^{-1})\|_{2} |\mathcal{I}| \|\{\mathbb{E}N_{1}(SX)\tau(X),\dots,\mathbb{E}N_{K+4}(SX)\tau(X)\}\|_{2}$$

$$+ \max_{b \in \{1,\dots,B\}} \|(\mathbb{Q}^{S_b})^{-1}\|_{2} \sqrt{\sum_{k=1}^{K+4} \left(\sum_{i \in \mathcal{I}} \{N_{k}(S_bX_i)\hat{\tau}_{i}^{\mathcal{I}} - \mathbb{E}N_{k}(S_bX)\tau(X)\}\right)^{2}} = O(n^{-3/10}\sqrt{\log n}),$$

with probability tending to 1, where

$$\hat{\xi}^{\mathcal{I},S_b} = (\mathbb{Q}^{S_b})^{-1} \left(\sum_{i \in \mathcal{I}} N_1(S_b X_i) \hat{\tau}_i^{\mathcal{I}}, \cdots, \sum_{i \in \mathcal{I}} N_{K+4}(S_b X_i) \hat{\tau}_i^{\mathcal{I}} \right)^T,$$

$$\xi^{S_b} = (\mathbb{E}\mathbb{Q}^{S_b})^{-1} |\mathcal{I}| \{ \mathbb{E}N_1(S_b X) \tau(X), \cdots, \mathbb{E}N_{K+4} \tau(X) \}.$$

By Cauchy-Schwarz inequality, we have

$$\max_{1 \leq b \leq B} \mathbf{E} |\hat{\tau}_{\mathcal{I}}^{S_{b}}(S_{b}X) - \tau^{S_{b}}(S_{b}X)|^{2} \\
= \max_{1 \leq b \leq B} \mathbf{E} \left| \tau^{S_{b}}(S_{b}X) - \sum_{k=1}^{K+4} N_{k}^{(S_{b})}(S_{b}X) \xi_{k}^{S_{b}} + \sum_{k=1}^{K+4} N_{k}^{(S_{b})}(S_{b}X) \xi_{k}^{S_{b}} - \sum_{k=1}^{K+4} N_{k}^{(S_{b})}(S_{b}X) \xi_{k}^{\mathcal{I},S_{b}} \right|^{2} \\
\leq 2 \max_{1 \leq b \leq B} \mathbf{E} \left| \tau^{S_{b}}(S_{b}X) - \sum_{k=1}^{K+4} N_{k}^{(S_{b})}(S_{b}X) \xi_{k}^{S_{b}} \right|^{2} + 2 \max_{1 \leq b \leq B} \mathbf{E} \left| \sum_{k=1}^{K+4} N_{k}^{(S_{b})}(S_{b}X) (\hat{\xi}_{k}^{\mathcal{I},S_{b}} - \xi_{k}^{S_{b}}) \right|^{2}.$$

It follows from (S.2) and (S.11) that

$$\mathbb{I}_{2} \leq 2 \max_{1 \leq b \leq B} (\hat{\xi}^{\mathcal{I}, S_{b}} - \xi^{S_{b}})^{T} \{ \mathcal{E}(\mathbb{Q}^{S_{b}}/|\mathcal{I}|) \} (\hat{\xi}^{\mathcal{I}, S_{b}} - \xi^{S_{b}}) \\
\leq 2 \max_{1 \leq b \leq B} \lambda_{\max} \{ \mathcal{E}(\mathbb{Q}^{S_{b}}/|\mathcal{I}|) \} \|\hat{\xi}^{\mathcal{I}, S_{b}} - \xi^{S_{b}}\|_{2}^{2} = O(n^{-4/5} \log n).$$

Besides, when $\tau^{S_1}, \dots, \tau^{S_B}$ have uniformly bounded second-order derivatives (this holds when $\tau(\cdot)$ takes the form in Examples 4-6 given in Section C.4), we have $\mathbb{I}_1 = O(n^{-4/5})$ (see the proof of Equation (5) in Zhou, 2009). Therefore, (A4) holds with $r_0 = 4/5$. The condition $r_0 > (2+\gamma)/(2+2\gamma)$ in Theorem 3.4 holds as long as $\gamma > 2/3$.

C.3 Detailed discussion on (A5)

Below, we show Assumption (9) holds when $\tau(\cdot)$ is a function of S^*X for some $S^* \in \mathcal{S}^*$.

Example 3 Assume $\tau(X) = \psi(S^*X)$ for some Lipschitz continuous function $\psi(\cdot)$ and some sketching matrix $S^* \in \mathbb{R}^{q \times p}$, we have

$$E|\tau(X) - E\{\tau(X)|SX\}|^2 = E|\psi(S^*X) - \psi(SX) + \psi(SX) - E\{\psi(S^*X)|SX\}|^2$$

$$\leq 2E|\psi(S^*X) - \psi(SX)|^2 + 2E|E[\{\psi(S^*X) - \psi(SX)\}|SX]|^2 \leq 4E|\psi(S^*X) - \psi(SX)|^2$$

$$= O\left(E||S^*X - SX||_2^2\right) = O\left(\sum_{j=1}^q (S^{(j)} - S^{*(j)})^T (EXX^T)(S^{(j)} - S^{*(j)})\right),$$

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to Jensen's inequality and the second equality follows by the Lipschitz continuity of $\psi(\cdot)$. Assume $\lambda_{\max}(EXX^T) = O(1)$. Then it is immediate to see that (9) holds.

C.4 Detailed discussion on (A6)

We assume $X \sim N(0, \Sigma)$ for some positive definite covariance matrix Σ . We further assume there exists some constant $c_0 > 1$ such that $c_0^{-1} \leq \lambda_{\min}(\Sigma) \leq \lambda_{\max}(\Sigma) \leq c_0$. Below, we show (A6) holds with $\gamma = 1$.

Example 4 (Linear contrast function) Assume $\tau(x) = a_0 S^* x + b_0$ for some $S^* \in \mathbb{R}^{1 \times p}$ and $a_0, b_0 \in \mathbb{R}$ such that $||S^*||_2 = 1$, $a_0 \neq 0$. For any sketching matrix $S \in \mathcal{S} \subseteq \mathbb{R}^{q \times p}$, it is immediate to see that $E\{\tau(X)|SX\} = a_0(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX) + b_0$. In addition,

$$E|\tau(X) - E\{\tau(X)|SX\}|^2 = a_0^2 E|S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)|^2$$
$$= a_0^2 \{S^*\Sigma (S^*)^T - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(S\Sigma S^{*T})\}.$$

Set $\varepsilon_0^2 = a_0^2/(2c_0)$. Since $\lambda_{\min}(\Sigma) \geq c_0^{-1}$, for any S such that $E|\tau(X) - E\{\tau(X)|SX\}|^2 \leq \varepsilon_0^2$, we have $a_0 \|(S\Sigma S^T)^{-1/2}(S\Sigma S^{*T})\|_2 \geq \sqrt{a_0^2 S^* \Sigma(S^*)^T - a_0^2/(2c_0)} = a_0/\sqrt{2c_0}$. Therefore, for any such S, we have $E\{\tau(X)|SX\} \sim N(b_0, \sigma^2)$ with $\sigma^2 \geq a_0^2/(2c_0)$. Therefore, the density function of $E\{\tau(X)|SX\}$ is uniformly bounded. As a result, (A6) holds with $\gamma = 1$.

Example 5 (Nonlinear contrast function I) Assume $\tau(x) = a_0(S^*x)^2 - b_0$ for some $S^* \in \mathbb{R}^{1 \times p}$ such that $||S^*||_2 = 1$ and $a_0, b_0 > 0$. Notice that for any sketching matrix $S \in \mathcal{S} \subseteq \mathbb{R}^{q \times p}$, SX is independent of $S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX$. Hence,

$$E\{\tau(X)|SX\} = a_0 E\{S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX + (S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX|SX\}^2 - b_0$$

$$= a_0 E\{S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX\}^2 + a_0 |(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)|^2 - b_0$$

$$= a_0 \{S^*\Sigma S^{*T} - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(S\Sigma S^{*T})\} + a_0 |(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)|^2 - b_0.$$

With some calculations, we have

$$E|\tau(X) - E\{\tau(X)|SX\}|^2 = 2a_0^2[(S^*\Sigma S^{*T})^2 - \{(S^*\Sigma S^T)(S^T\Sigma S)^{-1}(S\Sigma S^{*T})\}^2].$$

Set $\varepsilon_0^2 = a_0^2/c_0^2$. Since $\lambda_{\min}(\Sigma) \geq c_0^{-1}$, for any S such that $E|\tau(X) - E\{\tau(X)|SX\}|^2 \leq \varepsilon_0^2$, we have $(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(S\Sigma S^{*T}) \geq c_0^{-1}/\sqrt{2}$. For any such S, the density function of $a_0\{(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)\}^2$ is bounded. Therefore, (A6) holds with $\gamma = 1$.

Example 6 (Nonlinear contrast function II) Assume $\tau(x) = a_0 \sin(b_0 S^* x)$ for some $S^* \in \mathbb{R}^{1 \times p}$ and $a_0, b_0 \in \mathbb{R}$ such that $||S^*||_2 = 1$, $a_0 \neq 0$, $b_0 > 0$. For any sketching matrix $S \in \mathcal{S} \subseteq \mathbb{R}^{q \times p}$, SX is independent of $S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX$. Since

$$\sin(b_0 S^* X) = \sin[b_0 (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X + b_0 \{ S^* X - (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X \}]
= \sin\{b_0 (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X \} \cos[b_0 \{ S^* X - (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X \}]
+ \cos\{b_0 (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X \} \sin[b_0 \{ S^* X - (S^* \Sigma S^T) (S \Sigma S^T)^{-1} S X \}],$$

we have $E\{\sin(b_0S^*X)|SX\} = \sin\{b_0(S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX\}E\cos(b_0\kappa\mathbb{Z})$ where $\kappa^2 = S^*\Sigma S^{*T} - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(S\Sigma S^T)$ and \mathbb{Z} follows a standard normal distribution. Using integration by parts, we have

$$\frac{\partial E \cos(b_0 \kappa \mathbb{Z})}{\partial \kappa} = -b_0 E \mathbb{Z} \sin(b_0 \kappa \mathbb{Z}) = -\frac{b_0}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left(-\frac{x^2}{2}\right) \sin(b_0 \kappa x) dx$$

$$= \frac{b_0}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \sin(b_0 \kappa x) \Big|_{-\infty}^{\infty} - \frac{b_0^2 \kappa}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left(-\frac{x^2}{2}\right) \cos(b_0 \kappa x) = -b_0^2 \kappa E \cos(b_0 \kappa \mathbb{Z}).$$

Therefore, $E\cos(b_0\kappa\mathbb{Z}) = C\exp(-b_0^2\kappa^2/2)$ for some constant C > 0. Since $E\cos(b_0\kappa\mathbb{Z}) = 1$ when $\kappa = 0$, we have $E\cos(b_0\kappa\mathbb{Z}) = \exp(-b_0^2\kappa^2/2)$. Under the condition $\lambda_{\max}(\Sigma) \leq c_0$, we have $\kappa^2 \leq S^*\Sigma S^{*T} \leq c_0$. Therefore, $E\cos(b_0\kappa\mathbb{Z}) \geq c_*$ for some constant $c_* > 0$. Similarly, under the conditions on the eigenvalues of Σ , we have for any p,

$$E\sin^2(b_0S^*X) \ge \inf_{a \ge c_0^{-1/2}} E\sin^2(b_0a\mathbb{Z}) = \inf_{a \ge c_0^{-1/2}} E\{1 - \cos(2b_0a\mathbb{Z})\}/2 = \{1 - \exp(-2b_0^2c_0^{-1})\}/2 \ge \varepsilon_*,$$

for some constant $\varepsilon_* > 0$. Set $\varepsilon_0 = a_0^2 \varepsilon_* / 2$. For any sketching matrix S such that $E|\tau(X) - E\{\tau(X)|SX\}|^2 \le \varepsilon_0$, we have

$$E\sin^2\{b_0(S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX\}\{E\cos(b_0\kappa\mathbb{Z})\}^2 \ge E\sin^2(b_0S^*X) - \frac{\varepsilon_*}{2} \ge \frac{\varepsilon_*}{2}.$$

Combine this together with $E\cos(b_0\kappa\mathbb{Z}) \geq c_*$ and the fact $\sin^2(x) \leq x^2$ gives

$$E|b_0(S^*\Sigma S^T)(S\Sigma S^T)^{-1}SX|^2 = b_0^2(S^*\Sigma S^T)(S^T\Sigma S)^{-1}(S\Sigma S^{*T}) \ge \frac{\varepsilon_*}{2c_*^2}$$

For any such S, we have $E\{\tau(X)|SX\} \stackrel{d}{=} \kappa_1 \sin(\kappa_2 \mathbb{Z})$ with $\kappa_1 \geq a_0 c_*$ and $\kappa_2 \geq \sqrt{\varepsilon_*/(2c_*^2)}$.

For any sufficiently small t > 0, we have

$$Pr(|E\{\tau(X)|SX\}| \le t) \le \sum_{k=0,\pm 1,\pm 2...} Pr(|\mathbb{Z} - k\pi| \le \arcsin(t/\kappa_1)/\kappa_2) = O(t).$$

Assumption (A6) is thus satisfied.

C.5 Detailed discussion on (A7)

We revisit Example 4 and Example 5 discussed in Section C.4. Assume $X \sim N(0, \Sigma)$ for some positive definite covariance matrix Σ such that $c_0^{-1} \leq \lambda_{\min}(\Sigma) \leq \lambda_{\max}(\Sigma) \leq c_0$ for some constant $c_0 > 1$.

Example 3 (Linear contrast function). Assume $\tau(x) = a_0 S^* x + b_0$ for some $S^* \in \mathbb{R}^{1 \times p}$ and $a_0, b_0 \in \mathbb{R}$ such that $||S^*||_2 = 1$, $a_0 \neq 0$. For any sketching matrix $S \in \mathcal{S} \subseteq \mathbb{R}^{q \times p}$, we have $\mathbb{E}\{\tau(X)|SX\} = a_0(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX) + b_0$. Therefore,

$$V(d_{S^*}^{opt}) - V(d_{S}^{opt}) = \mathbb{E}(a_0 S^* X + b_0) [I(a_0 S^* X > -b_0) - I\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) > -b_0\}]$$

$$= -\mathbb{E}\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) + b_0\} I\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) > -b_0\}$$

$$- a_0 \mathbb{E}\{S^* X - (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX)\} I\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) > -b_0\}$$

$$+ \mathbb{E}(a_0 S^* X + b_0) [I(a_0 S^* X > -b_0) = \mathbb{E}(a_0 S^* X + b_0) [I(a_0 S^* X > -b_0)$$

$$- \mathbb{E}\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) + b_0\} I\{a_0 (S^* \Sigma S^T)(S \Sigma S^T)^{-1}(SX) > -b_0\}$$

$$= |a_0|(S^* \Sigma S^*)^{1/2} \{\mathbb{E}(\mathbb{Z} - r_0) I(\mathbb{Z} > r_0) - \mathbb{E}(\rho \mathbb{Z} - r_0) I(\rho \mathbb{Z} > r_0)\},$$

$$\Psi(\rho)$$

where \mathbb{Z} is a standard normal variable, $\rho = \sqrt{(S^*\Sigma S)(S\Sigma S^T)^{-1}(S\Sigma S^{*T})/(S^*\Sigma S^{*T})}$ and $r_0 = -b_0/\{|a_0|(S^*\Sigma S^{*T})^{1/2}\}.$

Case 1: $b_0 = 0$. Then we have $\Psi(\rho) = (1 - \rho) \operatorname{E} \max(\mathbb{Z}, 0) = (1 - \rho) / \sqrt{2\pi}$. For any sufficiently small $\varepsilon_0 > 0$ such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \le \varepsilon_0$, we have

$$1 - \rho \le \frac{\sqrt{2\pi}\varepsilon_0}{|a_0|(S^*\Sigma S^{*T})^{1/2}} \le \frac{\sqrt{2\pi}\varepsilon_0}{|a_0|c_0^{-1}}.$$

Case 2: $b_0 \neq 0$. With some calculations, we have

$$\frac{d\Psi(\rho)}{d\rho} = -\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r_0^2}{2\rho^2}\right).$$

The derivation of $\Psi(\cdot)$ is negative for all $0 < \rho \le 1$. As a result, we have $\Psi(\rho) \ge \Psi(1/2)$ for all $0 \le \rho \le 1/2$. In addition, $|d\Psi(\rho)/d\rho|$ is monotonically increasing as a function of ρ . For $1/2 \le \rho \le 1$, it follows from Taylor's theorem that

$$\Psi(\rho) \ge \frac{1}{\sqrt{2\pi}} \exp(-2r_0^2)(1-\rho).$$

Therefore, for any sufficiently small ε_0 such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \leq \varepsilon_0$, we have

$$1 - \rho \le \frac{\varepsilon_0 \exp(2r_0^2)\sqrt{2\pi}}{|a_0|(S^*\Sigma S^{*T})^{1/2}}.$$

As a result, for any b_0 and sufficiently small $\varepsilon_0 > 0$ such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \le \varepsilon_0$, we have $1 - \rho \le \bar{c}_* \varepsilon_0 / \{|a_0| (S^* \Sigma S^{*T})^{1/2}\}$ for some constant $\bar{c}_* > 0$. For any sketching matrix S that satisfies $1 - \sqrt{(S^* \Sigma S)(S \Sigma S^T)^{-1}(S \Sigma S^{*T})/(S^* \Sigma S^{*T})} = 1 - \rho \le \bar{c}_* \varepsilon_0 / \{|a_0|(S^* \Sigma S^{*T})^{1/2}\}$, we have

$$E|\tau(X) - E\{\tau(X)|SX\}|^2 = a_0^2 \{S^* \Sigma S^{*T} - (S^* \Sigma S)(S\Sigma S^T)^{-1}(S\Sigma S^{*T})\}$$
(S.12)
= $a_0^2 (S^* \Sigma S^{*T})(1-\rho)(1+\rho) \le 2\bar{c}_* |a_0| (S^* \Sigma S^{*T})^{1/2} \varepsilon_0 \le 2|a_0| \bar{c}_* \sqrt{c_0} \varepsilon_0.$

Hence, (A7) holds with $l_0 = 1/2$.

Example 4 (Nonlinear contrast function I). Assume $\tau(x) = a_0(S^*x)^2 - b_0$ for some $S^* \in \mathbb{R}^{1 \times p}$ such that $||S^*||_2 = 1$ and $a_0, b_0 > 0$. In Section C.4, we've shown

$$E\{\tau(X)|SX\} = a_0\{S^*\Sigma S^{*T} - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(S\Sigma S^{*T})\} + a_0|(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)|^2 - b_0.$$

Notice that $S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)$ is independent of SX. Thus, we have

$$V(d_S^{opt}) = \{a_0 E(S^*X)^2 - b_0\} I[E\{\tau(X)|SX\} > 0]$$

$$= [a_0 E\{(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)\}^2 - b_0] I[E\{\tau(X)|SX\} > 0]$$

$$+ a_0 E\{S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)\}^2 I[E\{\tau(X)|SX\} > 0]$$

$$+ 2a_0 E\{S^*X - (S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)\} \{(S^*\Sigma S^T)(S\Sigma S^T)^{-1}(SX)\} I[E\{\tau(X)|SX\} > 0]$$

$$= a_0 E[E\{\tau(X)|SX\} I\{E(\tau(X)|SX) > 0\}].$$

Let $r_0 = \sqrt{b_0/(a_0 S^* \Sigma S^{*T})}$ and $\rho = \sqrt{(S^* \Sigma S)(S \Sigma S^T)^{-1}(S \Sigma S^{*T})/(S^* \Sigma S^{*T})}$. Then we have

$$V(d_{S^*}^{opt}) - V(d_S^{opt}) = a_0 \operatorname{E}\tau(X) I\{\tau(X) > 0\} - a_0 \operatorname{E}[\operatorname{E}\{\tau(X)|SX\} I\{\operatorname{E}(\tau(X)|SX) > 0\}]$$

$$= a_0 (S^* \Sigma S^{*T}) \underbrace{\{\operatorname{E}(\mathbb{Z}^2 - r_0^2) I(|\mathbb{Z}| > r_0) - \operatorname{E}(1 - \rho^2 + \rho^2 \mathbb{Z}^2 - r_0^2) I(1 - \rho^2 + \rho^2 \mathbb{Z}^2 > r_0^2)\}}_{\Psi(\rho)}.$$

Case 1: $r_0 < 1$. For any ρ such that $1 - \rho^2 \ge r_0^2$, we have

$$\Psi(\rho) = \mathcal{E}(\mathbb{Z}^2 - r_0^2)I(|\mathbb{Z}| > r_0) - (1 - r_0^2) > \mathcal{E}(\mathbb{Z}^2 - r_0^2) - (1 - r_0^2) > 0.$$

For any ρ such that $1 - \rho^2 < r_0^2$, we have

$$\frac{d\Psi(\rho)}{d\rho} = 2\rho \int_{\sqrt{r_0^2 + \rho^2 - 1}/\rho}^{+\infty} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx = 2\rho \int_0^{\sqrt{r_0^2 + \rho^2 - 1}/\rho} (x^2 - 1) \exp\left(-\frac{x^2}{2}\right) d\phi dx$$

Since $r_0 < 1$, we have $\sqrt{r_0^2 + \rho^2 - 1} < \rho$ and hence $d\Psi(\rho)/d\rho$ is negative. Therefore, for any ρ such that $1 - \rho^2 \ge r_0^2/2$, we have $\Psi(\rho) \ge \Psi(\sqrt{1 - r_0^2/2})$. For any ρ such that $1 - \rho^2 < r_0^2/2$, we have

$$\frac{d\Psi(\rho)}{d\rho} \le -2\sqrt{1 - r_0^2/2} \int_0^{r_0/\sqrt{2 - r_0^2}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx.$$

Therefore, for any sufficiently small $\varepsilon_0 > 0$ such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \le \varepsilon_0$, we have

$$1 - \rho \le \frac{\varepsilon_0}{a_0(S^* \Sigma S^{*T})} \left\{ 2\sqrt{1 - r_0^2/2} \int_0^{r_0/\sqrt{2 - r_0^2}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx \right\}^{-1}.$$

Case 2: $r_0 \ge 1$. Since $r_0 \ge 1$, we have $\sqrt{r_0^2 + \rho^2 - 1}/\rho \ge 1$. Hence, the integral

$$\int_0^{\sqrt{r_0^2 + \rho^2 - 1}/\rho} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx \tag{S.14}$$

decreases as $\sqrt{r_0^2 + \rho^2 - 1}/\rho$ increases for any $\sqrt{r_0^2 + \rho^2 - 1}/\rho \ge 1$. Notice that (S.14) is equal to 0 when setting $\sqrt{r_0^2 + \rho^2 - 1}/\rho = \infty$. In view of (S.13), $d\Psi(\rho)/d\rho$ is negative for any $0 < \rho \le 1$. As a result, we have we have $\Psi(\rho) \ge \Psi(1/2)$ for any ρ such that

 $0 < \rho \le 1/2$. For any ρ such that $1/2 < \rho \le 1$, we have

$$\frac{d\Psi(\rho)}{d\rho} \le -\int_0^{\sqrt{r_0^2 + \rho^2 - 1}/\rho} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx \le -\int_0^{\sqrt{r_0^2 - 3/4}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx.$$

Therefore, for any sufficiently small $\varepsilon_0 > 0$ such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \leq \varepsilon_0$, we have

$$1 - \rho \le \frac{\varepsilon_0}{a_0(S^* \Sigma S^{*T})} \left\{ \int_0^{\sqrt{r_0^2 - 3/4}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) dx \right\}^{-1}.$$

As a result, for any $r_0 > 0$ and sufficiently small $\varepsilon_0 > 0$ such that $V(d_{S^*}^{opt}) - V(d_S^{opt}) \le \varepsilon_0$, we have $1 - \rho \le \bar{c}_* \varepsilon_0 / \{a_0(S^* \Sigma S^{*T})\}$ for some constant $\bar{c}_* > 0$. Similar to (S.12), we can show

$$E|\tau(X) - E\{\tau(X)|SX\}|^2 = O(\varepsilon_0),$$

for any such sketching matrix S. Therefore, (A7) holds with $l_0=1/2$.

D Proofs

D.1 Proof of Lemma 3.1

We first show (i) \Rightarrow (ii). Assume (i) holds. We have $\Pr(\tau(X) \ge 0) = 1$ or $\Pr(\tau(X) \le 0) = 1$. When $\Pr(\tau(X) \ge 0) = 1$, it follows from Conditions (A1)-(A3) that

$$V(d^{opt}) - V(1) = E\tau(X)I(\tau(X) > 0) - E\tau(X) = E\{-\tau(X)I(\tau(X) < 0)\} = 0.$$
 (S.1)

Similarly, when $\Pr(\tau(X) \leq 0) = 1$, we have $V(d^{opt}) = V(0)$. This verifies that $V(d^{opt}) \leq \max(V(0), V(1))$. Besides, since d^{opt} maximizes V, we have $V(d^{opt}) \geq \max(V(0), V(1))$. (ii) therefore follows.

We now show (ii) \Rightarrow (i). Assume $V(d^{opt}) = V(1)$. Then it follows from (S.1) that

$$E\{-\tau(X)I(\tau(X) < 0)\} = 0.$$

Observe that $-\tau(X)I(\tau(X) < 0)$ is nonnegative and integrable. Therefore, we have $\tau(X)I(\tau(X) < 0) = 0$, almost surely. This implies that $\Pr(\tau(X) \leq 0) = 1$. Similarly,

when $V(d^{opt}) = V(0)$, we can show $\Pr(\tau(X) \ge 0) = 1$. This completes the proof.

D.2 Proof of Theorem 3.1

It follows from Bonferroni's inequality that

$$\begin{split} \Pr(\widehat{T}_{CV} > z_{\alpha/2}) & \leq \Pr\left(\frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}})}{\max(\widehat{\sigma}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}}), \delta_{n})} > z_{\alpha/2}\right) + \Pr\left(\frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}})}{\max(\widehat{\sigma}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}}), \delta_{n})} > z_{\alpha/2}\right) \\ & \leq 2\Pr\left(\frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}}(\widehat{d}_{\mathcal{I}^{c}})}{\max(\widehat{\sigma}_{\mathcal{I}}(\widehat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2}\right), \end{split}$$

where \mathcal{I} is a random subset of $\{1,\ldots,N\}$ of size n. Hence, it suffices to show

$$\Pr\left(\frac{\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2}\right) \leq \frac{\alpha}{2}.$$

Under H_0 , we have $V(d^{opt}) = V(1)$. This implies for any treatment regime d, we have $V(d) \leq V(1)$ and hence $\widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) \leq 0$. Therefore, it suffices to show

$$\Pr\left(\frac{\sqrt{n}\{\widehat{VD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{EVD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2}\right) \le \frac{\alpha}{2}.$$
(S.2)

Given \mathcal{I} and $\{O_i\}_{i\in\mathcal{I}^c}$, the estimated treatment regime $\hat{d}_{\mathcal{I}^c}$ is fixed. Let

$$\sigma_0^2(\hat{d}_{\mathcal{I}^c}) = \text{Var}\left\{ \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \{ 1 - \hat{d}_{\mathcal{I}^c}(X) \} \mid \mathcal{I}, \{O_i\}_{i \in \mathcal{I}^c} \right\}.$$

For a given $\varepsilon > 0$, define the event $\mathcal{A} = \{\sigma_0(\hat{d}_{\mathcal{I}^c}) \geq \varepsilon \delta_n\}$. In the following, we show

$$\limsup_{n} \Pr\left(\frac{\sqrt{n}\{\widehat{VD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{EVD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2} \mid \mathcal{A}\right) \leq \frac{\alpha}{2},\tag{S.3}$$

$$\limsup_{n} \Pr\left(\frac{\sqrt{n}\{\widehat{VD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{EVD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2} \mid \mathcal{A}^{c}\right) \leq \frac{\varepsilon^{2}}{z_{\alpha/2}^{2}}.$$
 (S.4)

Combining (S.3) together with (S.4), we obtain

$$\limsup_{n} \Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2}\right) \leq \max\left(\frac{\alpha}{2}, \frac{\varepsilon^{2}}{z_{\alpha/2}^{2}}\right).$$

Since ε can be arbitrarily small, this proves (S.2).

Proof of (S.3). Define

$$\xi_i = \left(\frac{1 - A_i}{1 - \pi(X_i)} - \frac{A_i}{\pi(X_i)}\right) Y_i \{1 - \hat{d}_{\mathcal{I}^c}(X_i)\} - \operatorname{E}\left\{\left(\frac{1 - A_i}{1 - \pi(X_i)} - \frac{A_i}{\pi(X_i)}\right) Y_i \{1 - \hat{d}_{\mathcal{I}^c}(X_i)\}\right\}.$$

Notice that

$$\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} \leq \frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})} = \frac{\sqrt{n}\bar{\xi}_{\mathcal{I}}}{\sqrt{(\sum_{i \in \mathcal{I}} \xi_i^2 - n\bar{\xi}_{\mathcal{I}}^2)/(n-1)}},$$

where $\bar{\xi}_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \xi_i / |\mathcal{I}|$. Therefore, we have

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\text{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right)$$

$$\leq \Pr\left(\frac{\sqrt{n}\bar{\xi}_{\mathcal{I}}}{\sqrt{(\sum_{i \in \mathcal{I}} \xi_{i}^{2} - n\bar{\xi}_{\mathcal{I}}^{2})/(n - 1)}} > z_{\alpha/2} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right)$$

$$\leq \Pr\left(\frac{U}{\sqrt{1 - U^{2}/n}} > \sqrt{\frac{n - 1}{n}} z_{\alpha/2} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right) = \Pr\left(U > \bar{c}(\alpha, n) \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right).$$

where U is the self-normalized sum $\sqrt{n}\bar{\xi}_{\mathcal{I}}/\{\sum_{i\in\mathcal{I}}\xi_i^2/n\}$, and

$$\bar{c}(\alpha, n) = \frac{\sqrt{(n-1)/n}z_{\alpha/2}}{\sqrt{1 + (n-1)z_{\alpha/2}/n^2}}.$$

Under (A3) and the condition $E|Y|^3 = O(1)$, it follows from Theorem 7.4 in Peña et al. (2008) that

$$\Pr\left(U > \bar{c}(\alpha, n) \middle| \mathcal{I}, \{O_i\}_{i \in \mathcal{I}^c}\right) = \bar{\Phi}(c(\alpha, n)) + O\left(\frac{1}{\sqrt{n}\sigma_0^3(\hat{d}_{\mathcal{I}^c})}\right). \tag{S.6}$$

On the set $\sigma_0(\hat{d}_{\mathcal{I}^c}) \geq \varepsilon \delta_n$, it follows from (S.6) that

$$\Pr\left(U > \bar{c}(\alpha, n) \middle| \mathcal{I}, \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{A}\right) = \bar{\Phi}(c(\alpha, n)) + O(1) \left(\frac{1}{\varepsilon^3 \sqrt{n} \delta_n^3}\right).$$

By (S.5), this further implies

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2} \middle| \mathcal{I}, \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{A}\right) \leq \bar{\Phi}(c(\alpha, n)) + \frac{\bar{c}}{\varepsilon^3 \sqrt{n} \delta_n^3}, \text{ (S.7)}$$

for some constant $\bar{c} > 0$. Take the conditional expectation of \mathcal{I} , $\{O_i\}_{i \in \mathcal{I}^c}$ given the event \mathcal{A} on both sides of (S.7), we obtain

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2} \Big| \mathcal{A}\right) \leq \bar{\Phi}(c(\alpha, n)) + \frac{\bar{c}}{\varepsilon^3 \sqrt{n} \delta_n^3}.$$

Since $c(\alpha, n) \to z_{\alpha/2}$, under the condition that $\delta_n \gg n^{-1/6}$, we obtain (S.3).

Proof of (S.4). It follows from Chebyshev's inequality that

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right) \\
\leq \Pr\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\delta_{n}} > z_{\alpha/2} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right) \\
\leq \mathbb{E}\left(\frac{n\{\widehat{\mathbf{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}^{2}}{z_{\alpha/2}^{2}\delta_{n}^{2}} \middle| \mathcal{I}, \{O_{i}\}_{i \in \mathcal{I}^{c}}\right) = \frac{\sigma_{0}^{2}(\hat{d}_{\mathcal{I}^{c}})}{z_{\alpha/2}^{2}\delta_{n}^{2}}.$$

Under the event \mathcal{A}^c , we have

$$\frac{\sigma_0^2(\hat{d}_{\mathcal{I}^c})}{z_{\alpha/2}^2\delta_n^2} \le \frac{\varepsilon^2}{z_{\alpha/2}^2},$$

and hence

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2} \Big| \mathcal{I}, \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{A}^c\right) \le \frac{\varepsilon^2}{z_{\alpha/2}^2}.$$
 (S.8)

Take the conditional expectation of \mathcal{I} , $\{O_i\}_{i\in\mathcal{I}^c}$ given the event \mathcal{A}^c on both sides of (S.8), we obtain (S.4).

Assume

$$\operatorname{Var}\left\{ \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \{ 1 - \hat{d}_{\mathcal{I}_j}(X) \} \mid \{O_i\}_{i \in \mathcal{I}_j} \right\} = o_p(\delta_n),$$

for j = 1, 2. Similar to the proof of (S.4), we can show that

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2}\right) \leq \frac{\varepsilon^2}{z_{\alpha/2}^2},$$

for any $\varepsilon > 0$. Since ε can be arbitrarily small, we have

$$\Pr\left(\frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\widehat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2}\right) \to 0.$$

By Bonferroni's inequality, we obtain

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) \to 0.$$

The proof is hence completed.

D.3 Proof of Theorem 3.2

We first show under Assumptions (C1) and (C2),

$$V(\hat{d}_{\mathcal{I}}) = V(d^{opt}) + o_p(n^{-1/2}),$$
 (S.9)

for an arbitrary subset \mathcal{I} of $\{1, \ldots, N\}$ of size n. For a given $\varepsilon > 0$, it follows from Condition (C2) and Markov's inequality that

$$\Pr\left(\mathrm{E}^{X}|\hat{\tau}_{\mathcal{I}}(X) - \tau(X)|^{2} > \varepsilon n^{-(2+\gamma)/(2+2\gamma)}\right) \leq \frac{\mathrm{EE}^{X}|\hat{\tau}_{\mathcal{I}}(X) - \tau(X)|^{2}}{\varepsilon n^{-(2+\gamma)/(2+2\gamma)}} = \frac{\mathrm{E}|\hat{\tau}_{\mathcal{I}}(X) - \tau(X)|^{2}}{\varepsilon n^{-(2+\gamma)/(2+2\gamma)}} \to 0,$$

where the expectation E^X is taken with respect to X independent of the training samples $\{O_i\}_{i=1,...,N}$ and $\mathcal{I}_1,\mathcal{I}_2$. Since ε can be arbitrarily small, we have

$$E^{X}|\hat{\tau}_{\mathcal{I}_{j}}(X) - \tau(X)|^{2} = o_{p}\left(n^{-(2+\gamma)/(2+2\gamma)}\right), \tag{S.10}$$

for j = 1, 2. In view of (S.10), Under (C1) and (C2), (S.9) follows from an application of Theorem 8 in Luedtke and van der Laan (2016).

We now show $\Pr(\widehat{T}_{CV} > z_{\alpha/2}) \to 1$ when $h_n \gg n^{-1/2}$. By definition, we have

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) = \Pr\left\{ \max_{j=1,2} \left(\frac{\sqrt{n} \widehat{\text{VD}}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}})}{\max(\widehat{\sigma}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}}), \delta_{n})}, \frac{\sqrt{n} \widehat{\text{VD}}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}})}{\max(\widehat{\sigma}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}}), \delta_{n})} \right) > z_{\alpha/2} \right\}$$

$$\geq \Pr\left(\frac{\sqrt{n} \widehat{\text{VD}}_{\mathcal{I}}(\widehat{d}_{\mathcal{I}^{c}})}{\max(\widehat{\sigma}_{\mathcal{I}}(\widehat{d}_{\mathcal{I}^{c}}), \delta_{n})} > z_{\alpha/2} \right),$$

for a random subset \mathcal{I} of $\{1,\ldots,N\}$ of size n. Hence, it suffices to show

$$\Pr\left(\frac{\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} > z_{\alpha/2}\right) \to 1,$$

or equivalently

$$\Pr\left(\frac{\sqrt{n}\{-\widehat{\text{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) + \widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} \ge \frac{\sqrt{n}\widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} - z_{\alpha/2}\right) \to 0.$$
 (S.11)

It follows from (S.9) that

$$\widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) = V(\hat{d}_{\mathcal{I}^c}) - V(1) = V(\hat{d}_{\mathcal{I}^c}) - V(d^{opt}) + V(d^{opt}) - V(1) = h_n + o_p(n^{-1/2}).$$

Under the assumption $h_n \gg n^{-1/2}$, for sufficiently large n, we have $h_n + o(n^{-1/2}) \ge h_n/2$. Therefore, we have

$$\Pr\left(\frac{\sqrt{n}\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) + \widehat{\mathrm{E}}\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} \ge \frac{\sqrt{n}\widehat{\mathrm{E}}\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} - z_{\alpha/2}\right)$$

$$\le \Pr\left(\frac{\sqrt{n}\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) + \widehat{\mathrm{E}}\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\}}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} \ge \frac{\sqrt{n}h_{n}/2}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}), \delta_{n})} - z_{\alpha/2}\right) + o(1).$$

Therefore, it suffices to show

$$\Pr\left(\frac{\sqrt{n}\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) + \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\}}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} \ge \frac{\sqrt{n}h_n/2}{\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n)} - z_{\alpha/2}\right) \to 0.$$

By the dominated convergence theorem, it suffices to show

$$\Pr\left(\sqrt{n}\{\widehat{\text{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\text{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\} \ge \frac{\sqrt{n}h_n}{2} - z_{\frac{\alpha}{2}}\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n) \mid \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{I}\right) = o_p(1)(S.12)$$

Given $\{O_i\}_{i\in\mathcal{I}^c}$ and \mathcal{I} , the estimated treatment regime $\hat{d}_{\mathcal{I}^c}$ is fixed. Thus, conditional on $\{O_i\}_{i\in\mathcal{I}^c}$ and \mathcal{I} , it follows from the law of large numbers that,

$$\frac{1}{n} \sum_{i \in \mathcal{I}} \xi_i^2 \stackrel{P}{\to} E \xi_1^2 \text{ and } \frac{1}{n} \sum_{i \in \mathcal{I}} \xi_i \stackrel{P}{\to} 0, \tag{S.13}$$

where ξ_i is defined in the proof of Theorem 1. By (S.13), we have that conditional on

 $\{O_i\}_{i\in\mathcal{I}^c}$ and \mathcal{I} ,

$$\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) \stackrel{P}{\to} \sigma_0(\hat{d}_{\mathcal{I}^c}).$$
 (S.14)

Under (A3) and the condition $E|Y|^3 = O(1)$, we have

$$\sigma_{0}(\hat{d}_{\mathcal{I}^{c}})^{2} \leq \mathbb{E}\left\{\left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right)Y\{1 - \hat{d}_{\mathcal{I}^{c}}\}\right\}^{2} \leq \mathbb{E}\left\{\left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right)Y\right\}^{2}$$

$$\leq \left\{\mathbb{E}\left|\left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right)Y\right|^{3}\right\}^{2/3} = O(1). \tag{S.15}$$

Combining this together with (S.14) and the conditions $h_n \gg n^{-1/2}$, $\delta_n \to 0$, we obtain that

$$\Pr\left(\frac{\sqrt{n}h_n}{2} - z_{\alpha/2}\max(\hat{\sigma}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}), \delta_n) \ge \frac{\sqrt{n}h_n}{4} \mid \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{I}\right) \xrightarrow{P} 1.$$

In view of (S.12), it suffices to show

$$\Pr\left(\sqrt{n}\left\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) + \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c})\right\} \ge \frac{\sqrt{n}h_n}{4} \mid \{O_i\}_{i \in \mathcal{I}^c}, \mathcal{I}\right) = o_p(1).$$

However, this is immediate to see since

$$\Pr\left(\sqrt{n}\left\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) + \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\right\} \ge \frac{\sqrt{n}h_{n}}{4} \mid \{O_{i}\}_{i \in \mathcal{I}^{c}}, \mathcal{I}\right)$$

$$\leq \mathbb{E}\left(\frac{16n\left\{-\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) + \widehat{\mathrm{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}})\right\}^{2}}{nh_{n}^{2}} \mid \{O_{i}\}_{i \in \mathcal{I}^{c}}, \mathcal{I}\right) = \frac{16\sigma_{0}^{2}(\hat{d}_{\mathcal{I}^{c}})}{nh_{n}^{2}} = o(1),$$

where the first inequality is due to the Chebyshev's inequality and the last equality is due to (S.15) and the condition $h_n \gg n^{-1/2}$.

We now show the power of our test statistic in the regular cases where $\Pr(\tau(X) = 0) = 0$. We begin by providing an upper bound for $E^X |\hat{d}_{\mathcal{I}^c}(X) - d^{opt}(X)|$. Since $\Pr(\tau(X) = 0) = 0$, it follows from Assumption (C1) that

$$\Pr(|\tau(X)| \le t) = O(t^{\gamma}) \qquad \forall 0 < t \le \delta_0. \tag{S.16}$$

Observe that

For any $t \leq \delta_0$, it follows from (S.16) that $I_1 = O(t^{\gamma})$. Note that for any $a, b \in \mathbb{R}$, we have I(a > 0) = I(b > 0) when |a - b| > |a|. Therefore, we have

$$I_{2} \leq \mathbb{E}^{X} I(|\tau(X) - \hat{\tau}_{\mathcal{I}^{c}}(X)| > |\tau(X)|) I(|\tau(X)| > t) \leq \mathbb{E}^{X} \frac{|\tau(X) - \hat{\tau}_{\mathcal{I}^{c}}(X)|^{2}}{|\tau(X)|^{2}} I(|\tau(X)| > t)$$

$$\leq \frac{1}{t^{2}} \mathbb{E}^{X} |\tau(X) - \hat{\tau}_{\mathcal{I}^{c}}(X)|^{2} I(|\tau(X)| > t) \leq \frac{1}{t^{2}} \mathbb{E}^{X} |\tau(X) - \hat{\tau}_{\mathcal{I}^{c}}(X)|^{2},$$

where the second inequality is due to Markov's inequality.

Set
$$t = (\mathbf{E}^X | \tau(X) - \hat{\tau}_{\mathcal{I}^c}(X)|^2)^{1/(2+\gamma)}$$
, we obtain

$$I_1 + I_2 = (E^X | \tau(X) - \hat{\tau}_{\mathcal{I}^c}(X) |^2)^{\gamma/(2+\gamma)} = o_p (n^{-\gamma/(2+2\gamma)}),$$

where the last equality is due to (S.10). By (S.17), this implies

$$E^{X}|\hat{d}_{\mathcal{I}^{c}}(X) - d^{opt}(X)| = o_{p}\left(n^{-\gamma/(2+2\gamma)}\right) = o_{p}(1).$$
(S.18)

Therefore, the estimated treatment regime is consistent to d^{opt} in the regular cases.

As a result, it follows from Hölder's inequality that

$$\begin{aligned}
& E^{X,A,Y} \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \{ \hat{d}_{\mathcal{I}^{c}}(X) - d^{opt}(X) \} \right|^{2} \\
& \leq \left\{ E \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \right|^{3/2} \right\}^{2/3} \left(E^{X} \left| \hat{d}_{\mathcal{I}^{c}}(X) - d^{opt}(X) \right|^{6} \right)^{1/3} \\
& = \left\{ E \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \right|^{3/2} \right\}^{2/3} \left(E^{X} \left| \hat{d}_{\mathcal{I}^{c}}(X) - d^{opt}(X) \right| \right)^{1/3} = o_{p}(1),
\end{aligned}$$

where the last equality is due to (A3), the condition $E|Y|^3 = O(1)$ and (S.18).

Similarly, we can show

$$\begin{split} & \operatorname{E}\left\{ \operatorname{E}^{X,A,Y} \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \{ \hat{d}_{\mathcal{I}^c}(X) - d^{opt}(X) \} \right|^2 \right\}^{3/2} \\ & \leq \operatorname{E}\left\{ \operatorname{E}^{X,A,Y} \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \right|^2 \right\}^{3/2} \leq \operatorname{EE}^{X,A,Y} \left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \right|^3 \\ & = \operatorname{E}\left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y \right|^3 = O(1). \end{split}$$

This implies LHS of (S.19) is uniformly integrable. Hence, it follows from (S.19) that

$$E\left| \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right) Y\{ \hat{d}_{\mathcal{I}^c}(X) - d^{opt}(X) \} \right|^2 = o(1).$$
 (S.20)

Similarly, we can show $V(\hat{d}_{\mathcal{I}^c}) - V(d^{opt})$ is uniformly integrable and hence by (S.9),

$$\left| EV(\hat{d}_{\mathcal{I}^c}) - EV(d^{opt}) \right| = \left| E\widehat{VD}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - E\widehat{VD}_{\mathcal{I}}(d^{opt}) \right| = o(n^{-1/2}).$$
 (S.21)

Combing (S.21) with Cauchy-Schwarz inequality, we obtain that

$$\begin{aligned}
& \mathbb{E} \left| \sqrt{n} \{ \widehat{\mathbf{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{VD}}_{\mathcal{I}}(d^{opt}) \} \right|^{2} \\
& \leq 2 \mathbb{E} \left| \sqrt{n} \{ \widehat{\mathbf{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{VD}}_{\mathcal{I}}(d^{opt}) + \widehat{\mathbf{EVD}}_{\mathcal{I}}(d^{opt}) \} \right|^{2} \\
& + 2n \left| \widehat{\mathbf{EVD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^{c}}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(d^{opt}) \right|^{2} \leq \frac{2}{n} \sum_{i \in \mathcal{I}} \operatorname{Var}(\eta_{i}) + \frac{4}{n} \sum_{i \neq j} \operatorname{cov}(\eta_{i}, \eta_{j}) + o(1), (S.22)
\end{aligned}$$

where

$$\eta_i = \left(\frac{A_i}{\pi(X_i)} - \frac{1 - A_i}{1 - \pi(X_i)}\right) Y_i \{\hat{d}_{\mathcal{I}^c}(X_i) - d^{opt}(X_i)\}.$$

Notice that conditional on $\hat{d}_{\mathcal{I}^c}$, η_i and η_j are independent for $i, j \in \mathcal{I}, i \neq j$. This implies

$$\frac{4}{n}\sum_{i\neq j}\operatorname{cov}(\eta_i,\eta_j) = \frac{4}{n}\sum_{i\neq j}\operatorname{Ecov}(\eta_i,\eta_j|\hat{d}_{\mathcal{I}^c}) = 0.$$

In view of (S.20) and (S.22), we obtain

$$\mathbb{E}\left|\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{VD}}_{\mathcal{I}}(d^{opt})\}\right|^2 \leq \frac{2}{n}\sum_{i\in\mathcal{I}}\mathrm{Var}(\eta_i) + o(1) = 2\mathrm{Var}(\eta_1) + o(1) \leq 2\mathrm{E}\eta_1^2 + o(1) = o(1).$$

By Chebyshev's inequality, this implies

$$|\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}}(\hat{d}_{\mathcal{I}^c}) - \widehat{\mathrm{VD}}_{\mathcal{I}}(d^{opt})\}| \stackrel{P}{\to} 0,$$

and hence

$$|\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}_j}(\hat{d}_{\mathcal{I}_i^c}) - \widehat{\mathrm{VD}}_{\mathcal{I}_j}(d^{opt})\}| \stackrel{P}{\to} 0, \tag{S.23}$$

for j = 1, 2.

Similarly, we can show

$$\left| \frac{1}{n} \sum_{i \in \mathcal{I}_j} \left(\frac{A_i}{\pi_i} - \frac{1 - A_i}{1 - \pi_i} \right)^2 Y_i^2 \{ 1 - \hat{d}_{\mathcal{I}_j^c}(X_i) \}^2 - \frac{1}{n} \sum_{i \in \mathcal{I}_j} \left(\frac{A_i}{\pi_i} - \frac{1 - A_i}{1 - \pi_i} \right)^2 Y_i^2 \{ 1 - d^{opt}(X_i) \}^2 \right| \stackrel{P}{\to} 0,$$

which together with (S.23) implies that

$$\left| \hat{\sigma}_{\mathcal{I}_j}^2(\hat{d}_{\mathcal{I}_j^c}) - \hat{\sigma}_{\mathcal{I}_j}^2(d^{opt}) \right| \stackrel{P}{\to} 0,$$

for j = 1, 2. This immediately implies that

$$\begin{vmatrix}
\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}}) - \hat{\sigma}_{\mathcal{I}_{j}}(d^{opt}) & \leq \left(\left| \hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}}) - \hat{\sigma}_{\mathcal{I}_{j}}(d^{opt}) \right| \left| \hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}}) + \hat{\sigma}_{\mathcal{I}_{j}}(d^{opt}) \right| \right)^{1/2} \\
&= \left(\left| \hat{\sigma}_{\mathcal{I}_{j}}^{2}(\hat{d}_{\mathcal{I}_{j}^{c}}) - \hat{\sigma}_{\mathcal{I}_{j}}^{2}(d^{opt}) \right| \right)^{1/2} \xrightarrow{P} 0. \tag{S.24}$$

Similar to (S.14), we can show

$$\left|\hat{\sigma}_{\mathcal{I}_{i}}(d^{opt}) - \sigma_{0}\right| \stackrel{P}{\to} 0.$$
 (S.25)

This together with (S.24) and the condition $\liminf_n \sigma_0 > 0$ implies that there exists some constant $\bar{c} > 0$ such that

$$\Pr(\bigcup_{j=1,2}\hat{\sigma}_{\mathcal{I}_i}(\hat{d}_{\mathcal{I}_i^c}) > \bar{c}) \to 1, \qquad \Pr(\bigcup_{j=1,2}\hat{\sigma}_{\mathcal{I}_i}(d^{opt}) > \bar{c}) \to 1. \tag{S.26}$$

Since $\delta_n \to 0$, we have

$$\Pr\left(\max(\hat{\sigma}_{\mathcal{I}_j}(\hat{d}_{\mathcal{I}_j^c}), \delta_n) = \hat{\sigma}_{\mathcal{I}_j}(\hat{d}_{\mathcal{I}_i^c})\right) \to 1,$$

for j = 1, 2. This further implies

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) = \Pr\left\{\max\left(\frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_1}(\widehat{d}_{\mathcal{I}_2})}{\widehat{\sigma}_{\mathcal{I}_1}(\widehat{d}_{\mathcal{I}_2})}, \frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_2}(\widehat{d}_{\mathcal{I}_1})}{\widehat{\sigma}_{\mathcal{I}_2}(\widehat{d}_{\mathcal{I}_1})}\right) > z_{\alpha/2}\right\} + o(1). \quad (S.27)$$

Besides, under (A3) and the condition $E[Y^3] = O(1)$, we have

$$\operatorname{Var}\left(\widehat{\sqrt{n}}\operatorname{VD}_{\mathcal{I}_{j}}(d^{opt})\right) = \sigma_{0}^{2} \leq \operatorname{E}\left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right)^{2} Y^{2}$$

$$\leq \left(\operatorname{E}\left|\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right|^{3} |Y|^{3}\right)^{2/3} = O(1).$$

By Chebyshev's inequality, we obtain $\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}_j}(d^{opt}) - \widehat{\mathrm{EVD}}_{\mathcal{I}_j}(d^{opt})\} = O_p(1)$. By assumption, we have $\sqrt{n}\widehat{\mathrm{EVD}}_{\mathcal{I}_j}(d^{opt}) = \sqrt{n}h_n = O(1)$. Therefore, we obtain

$$\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}_j}(d^{opt}) = O_p(1), \tag{S.28}$$

for j = 1, 2.

It follows from (S.23), (S.24), (S.26) and (S.28) that

$$\left| \frac{\sqrt{n} \widehat{\text{VD}}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})}{\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})} - \frac{\sqrt{n} \widehat{\text{VD}}_{\mathcal{I}_{j}}(d^{opt})}{\hat{\sigma}_{\mathcal{I}_{j}}(d^{opt})} \right| \leq \left| \frac{\sqrt{n} \{\widehat{\text{VD}}_{\mathcal{I}_{j}}(d^{opt}) - \widehat{\text{VD}}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})\}}{\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})} \right| + \sqrt{n} \left| \widehat{\text{VD}}_{\mathcal{I}_{j}}(d^{opt}) \right| \left| \frac{\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}}) - \hat{\sigma}_{\mathcal{I}_{j}}(d^{opt})}{\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})\hat{\sigma}_{\mathcal{I}_{j}}(d^{opt})} \right| = o_{p}(1), \tag{S.29}$$

for j = 1, 2.

Besides, it follows from (S.25), and the conditions $\liminf_n \sigma_0 > 0$, $\sqrt{n}h_n = O(1)$ that

$$\frac{\sqrt{n}h_n}{\hat{\sigma}_{\mathcal{I}_j}(d^{opt})} - \frac{\sqrt{n}h_n}{\sigma_0} \stackrel{P}{\to} 0.$$

This together with (S.29) implies that

$$\left| \frac{\sqrt{n\widehat{\mathrm{VD}}_{\mathcal{I}_{j}}}(\hat{d}_{\mathcal{I}_{j}^{c}})}{\hat{\sigma}_{\mathcal{I}_{j}}(\hat{d}_{\mathcal{I}_{j}^{c}})} - \frac{\sqrt{n}\{\widehat{\mathrm{VD}}_{\mathcal{I}_{j}}(d^{opt}) - \widehat{\mathrm{EVD}}_{\mathcal{I}_{j}}(d^{opt})\}}{\hat{\sigma}_{\mathcal{I}_{j}}(d^{opt})} - \frac{\sqrt{n}h_{n}}{\sigma_{0}} \right| \xrightarrow{P} 0.$$
 (S.30)

For any random variables V_1, V_2, V_3, V_4 , we have

$$|\max(V_1, V_2) - \max(V_3, V_4)| = |\max(0, V_2 - V_1) - \max(0, V_4 - V_3) + V_1 - V_3|$$

$$\leq |V_1 - V_3| + |\max(0, V_2 - V_1) - \max(0, V_4 - V_3)| \leq |V_1 - V_3| + |V_2 - V_1 - V_4 + V_3|$$

$$\leq 2|V_1 - V_3| + |V_2 - V_4|.$$

Therefore, it follows from (S.29) that

$$\left| \max \left(\frac{\sqrt{n} \{\widehat{\text{VD}}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{\text{EVD}}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})} + \frac{\sqrt{n}h_{n}}{\sigma_{0}}, \frac{\sqrt{n} \{\widehat{\text{VD}}_{\mathcal{I}_{2}}(d^{opt}) - \widehat{\text{EVD}}_{\mathcal{I}_{2}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{2}}(d^{opt})} + \frac{\sqrt{n}h_{n}}{\sigma_{0}} \right) - \max \left(\frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}})}{\widehat{\sigma}_{\mathcal{I}_{1}}(\widehat{d}_{\mathcal{I}_{2}})}, \frac{\sqrt{n}\widehat{\text{VD}}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}})}{\widehat{\sigma}_{\mathcal{I}_{2}}(\widehat{d}_{\mathcal{I}_{1}})} \right) \right| \stackrel{P}{\to} 0.$$

For any $\varepsilon > 0$, this together with (S.27) gives

$$\Pr\left(\max\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})}, \frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{2}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{2}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{2}}(d^{opt})}\right) > z_{\alpha/2} - \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right) \leq \Pr(\widehat{T}_{CV} > z_{\alpha/2}) + o(1), \quad (S.31)$$

and

$$\Pr\left(\max\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})}, \frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{2}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{2}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{2}}(d^{opt})}\right) > z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right) \ge \Pr(\widehat{T}_{CV} > z_{\alpha/2}) + o(1). \quad (S.32)$$

Since $\{\mathcal{O}_i\}_{i\in\mathcal{I}_1}$ and $\{\mathcal{O}_i\}_{i\in\mathcal{I}_2}$ are independent, we have,

$$\Pr\left(\max\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})}, \frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{2}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{2}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{2}}(d^{opt})}\right)$$

$$> z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right)$$

$$= 2\Pr\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})} > z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right)$$

$$-\Pr^{2}\left(\frac{\sqrt{n}\{\widehat{\mathbf{VD}}_{\mathcal{I}}(d^{opt}) - \widehat{\mathbf{EVD}}_{\mathcal{I}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}}(d^{opt})} > z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right),$$

for a simple random sample \mathcal{I} of size n.

Assume for now, we have for any $|\varepsilon| \leq 1$,

$$\Pr\left(\frac{\sqrt{n}\{\widehat{VD}_{\mathcal{I}_{1}}(d^{opt}) - \widehat{EVD}_{\mathcal{I}_{1}}(d^{opt})\}}{\widehat{\sigma}_{\mathcal{I}_{1}}(d^{opt})} > z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right)$$

$$= \bar{\Phi}\left(z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_{n}}{\sigma_{0}}\right) + o(1), \tag{S.33}$$

where the little-o term is uniform in ε . In view of (S.31) and (S.32), we have

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) \le 2\bar{\Phi}\left(z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_n}{\sigma_0}\right) - \bar{\Phi}^2\left(z_{\alpha/2} + \varepsilon - \frac{\sqrt{n}h_n}{\sigma_0}\right) + o(1),$$

and

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) \ge 2\bar{\Phi}\left(z_{\alpha/2} - \varepsilon - \frac{\sqrt{n}h_n}{\sigma_0}\right) - \bar{\Phi}^2\left(z_{\alpha/2} - \varepsilon - \frac{\sqrt{n}h_n}{\sigma_0}\right) + o(1),$$

for any $0 < \varepsilon \le 1$. Let $\varepsilon \to 0$, we obtain

$$\Pr(\widehat{T}_{CV} > z_{\alpha/2}) = 2\bar{\Phi}\left(z_{\alpha/2} - \frac{\sqrt{n}h_n}{\sigma_0}\right) - \bar{\Phi}^2\left(z_{\alpha/2} - \frac{\sqrt{n}h_n}{\sigma_0}\right) + o(1).$$

This gives the asymptotic power function of \widehat{T}_{CV} . Therefore, it remains to show (S.33). Similar to (S.5), we can show LHS of (S.33) is equal to

$$\Pr(V > \bar{c}(\alpha, n, \varepsilon, h_n))$$

where V is the self-normalized sum $\sqrt{n}\bar{\zeta}_{\mathcal{I}_1}/\{\sum_{i\in\mathcal{I}_1}\zeta_i^2/n\}$ where

$$\zeta_i = \left(\frac{A_i}{\pi(X_i)} - \frac{1 - A_i}{1 - \pi(X_i)}\right) Y_i \{1 - d^{opt}(X_i)\} - \operatorname{E}\left(\frac{A_1}{\pi(X_1)} - \frac{1 - A_1}{1 - \pi(X_1)}\right) Y_1 \{1 - d^{opt}(X_1)\},$$

$$\bar{\zeta} = \sum_{i \in \mathcal{I}_1} \zeta_i^2 / n, \text{ and }$$

$$\bar{c}(\alpha, n, \varepsilon, h_n) = \frac{\sqrt{(n-1)/n}(z_{\alpha/2} + \varepsilon + \sqrt{n}h_n/\sigma_0)}{\sqrt{1 + (n-1)(z_{\alpha/2} + \varepsilon + \sqrt{n}h_n/\sigma_0)/n^2}}.$$

Under the condition $\liminf_n \sigma_0 > 0$, $\sqrt{n}h_n = O(1)$, $\bar{c}(\alpha, n, \varepsilon, h_n)$ is equivalent to $z_{\alpha/2} + \varepsilon +$

 $\sqrt{n}h_n/\sigma_0$. Moreover, it follows from Theorem 7.4 in Peña et al. (2008) that

$$\Pr(V > \bar{c}(\alpha, n, \varepsilon, h_n) \mid \mathcal{I}_1) = \bar{\Phi}(\bar{c}(\alpha, n, \varepsilon, h_n)) + O(1) \left(\frac{1}{\sqrt{n}\sigma_0^3}\right),$$

where the O(1) term is bounded by an absolute constant. Therefore, we have

$$\Pr(V > \bar{c}(\alpha, n, \varepsilon, h_n)) = \bar{\Phi}(\bar{c}(\alpha, n, \varepsilon, h_n)) + o(1) = \bar{\Phi}(z_{\alpha/2} + \varepsilon + \sqrt{n}h_n/\sigma_0) + o(1).$$

This proves (S.33). The proof is hence completed.

D.4 Proof of Theorem 3.4

Recall that $h_n^* = V(d_{S_*}^{opt}) - V(1)$. We first show

$$\Pr\left(\widehat{T}_{SRP} > z_{\alpha/2}\right) \to 1,$$

when $h_n^* \gg \max(\sqrt{\log B}/\sqrt{n} + n^{-r_0/2}\sqrt{\log n})$. By definition, it suffices to show that

$$\Pr\left(\frac{\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}_1}(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}})}{\max(\hat{\sigma}_{\mathcal{I}_1}(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}), \delta_n)} > z_{\alpha/2}\right) \to 1.$$

Similar to the proof of Theorem 3.2, it suffices to show that with probability tending to 1,

$$VD(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}) \gg \max(n^{-1/2}\sqrt{\log B}, n^{-r_0/2}\sqrt{\log n}).$$
 (S.34)

According to Algorithm 2, we generate S_1, S_2, \ldots, S_B according as S_0 . Let $\{\mathcal{I}_j^{(k)}\}_{k=1}^{\mathbb{K}}$ be a partition of \mathcal{I}_j for j=1,2, and let $\mathcal{I}_j^{(k)-}$ be the subset of \mathcal{I}_j excluding $\mathcal{I}_j^{(k)}$. For any $k=1,\ldots,\mathbb{K}$, it follows from Lemma A.2 in Chernozhukov et al. (2014) that for every t>0, we have

$$\Pr \left\{ \max_{b=1}^{B} \left| n \left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}} (\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \\
\geq 2E \left| n \left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}} (\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| + t \left| \left\{ S_{b} \right\}_{b=1}^{B}, \left\{ O_{i} \right\}_{i \in \mathcal{I}_{2}^{(k)-}} \right\} \leq \exp \left(-\frac{t^{2}}{3n\sigma^{2}} \right) \\
+ \frac{C_{0}n}{t^{3}} E \left\{ \max_{b=1}^{B} \left| \frac{A}{\pi(X)} - \frac{1-A}{1-\pi(X)} \right|^{3} |Y|^{3} \left| 1 - \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} (X) \right|^{3} \left| \left\{ S_{b} \right\}_{b=1}^{B}, \left\{ O_{i} \right\}_{i \in \mathcal{I}_{2}^{(k)-}} \right\}, \right.$$

for some universal constant $C_0 > 0$, where

$$\sigma^2 = E\left\{ \left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)} \right)^2 Y^2 \left| 1 - \hat{d}_{\mathcal{I}_2^{(k)-}}^{S_b}(X) \right|^2 | \{S_b\}_{b=1}^B, \{O_i\}_{i \in \mathcal{I}_2^{(k)-}} \right\}.$$

Under (A3) and the condition $E|Y|^3 = O(1)$, we have

$$E\left(\frac{A}{\pi(X)} - \frac{1-A}{1-\pi(X)}\right)^{2} Y^{2} \le \left\{ E\left|\frac{A}{\pi(X)} - \frac{1-A}{1-\pi(X)}\right|^{3} |Y|^{3} \right\}^{2/3} = O(1).$$

This implies

$$\sigma^2 = O(1), \tag{S.35}$$

where the big-O term is independent of $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)}}$. In addition,

$$\mathbb{E}\left\{ \max_{b=1}^{B} \left| \frac{A}{\pi(X)} - \frac{1-A}{1-\pi(X)} \right|^{3} |Y|^{3} \left| 1 - \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) \right|^{3} \left| \left\{ S_{b} \right\}_{b=1}^{B}, \left\{ O_{i} \right\}_{i \in \mathcal{I}_{2}^{(k)-}} \right\} \right. \\
\leq \mathbb{E}\left| \frac{A}{\pi(X)} - \frac{1-A}{1-\pi(X)} \right|^{3} |Y|^{3} = O(1),$$

where the big-O term is independent of $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$. Therefore, we obtain

$$\begin{split} \Pr\left\{ \max_{b=1}^{B} \left| n \left(\widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \text{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \geq 2 \mathbf{E} \left| n \left(\widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \text{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| + t \right\} \\ \leq \exp\left(-C_{1}t^{2}/n \right) + \frac{C_{2}n}{t^{3}} (\mathbf{S}.36) \end{split}$$

for some constant $C_1, C_2 > 0$.

Moreover, it follows from (S.35) and Lemma A3 in Chernozhukov et al. (2014) that

$$\mathbb{E}\left\{ \max_{b=1}^{B} \left| n\left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \mid \{S_{b}\}_{b=1}^{B}, \{O_{i}\}_{i \in \mathcal{I}_{2}^{(k)-}} \right\} \\
\leq C_{3}(\sigma\sqrt{n\log B} + \sqrt{EM^{2}}\log B) \leq C_{4}(\sqrt{n\log B} + \sqrt{EM^{2}}\log B), \tag{S.37}$$

where C_4 is some universal constant and

$$M = \max_{i \in \mathcal{I}_2^{(k)}} \max_{b=1}^{B} \left| \left(\frac{A_i}{\pi_i} - \frac{1 - A_i}{1 - \pi_i} \right) Y_i \{ 1 - \hat{d}_{\mathcal{I}_2^{(k)}}^{S_b}(X_i) \} \right|.$$

Under (A3) and the condition $E|Y|^3 = O(1)$, we have

$$EM^{2} \leq E \max_{i=1}^{n} \left| \left(\frac{A_{i}}{\pi_{i}} - \frac{1 - A_{i}}{1 - \pi_{i}} \right) Y_{i} \right|^{2} \leq E \left\{ \max_{i=1}^{n} \left| \left(\frac{A_{i}}{\pi_{i}} - \frac{1 - A_{i}}{1 - \pi_{i}} \right) Y_{i} \right|^{3} \right\}^{2/3}$$

$$\leq E \left\{ \sum_{i=1}^{n} \left| \left(\frac{A_{i}}{\pi_{i}} - \frac{1 - A_{i}}{1 - \pi_{i}} \right) Y_{i} \right|^{3} \right\}^{2/3} \leq C_{5} n^{2/3},$$

for some constant $C_5 > 0$. Combining this together with (S.37), we obtain

$$\mathbb{E}\left\{ \max_{b=1}^{B} \left| n\left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \mid \{S_{b}\}_{b=1}^{B}, \{O_{i}\}_{i \in \mathcal{I}_{2}^{(k)-}} \right\} \\
\leq C_{6}(n^{1/3}\log B + n^{1/2}\sqrt{\log B}) \leq 2C_{6}n^{1/2}\sqrt{\log B},$$

for some constant $C_6 > 0$, since $\log B = o(n^{1/3})$. Therefore, we obtain

$$\mathbb{E} \max_{b=1}^{B} \left| n \left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}} (\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \le 2C_{6} n^{1/2} \sqrt{\log B}.$$

Combining this together with (S.36), we obtain

$$\Pr\left\{ \max_{b=1}^{B} \left| n \left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}} (\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \ge 4C_{6}n^{1/2} \sqrt{\log B} + t \right\} \\
\le \exp\left(-\frac{C_{1}t^{2}}{n} \right) + \frac{C_{2}n}{t^{3}}, \tag{S.38}$$

Condition (A5) requires $B \to \infty$. Take $t = n^{1/2} \sqrt{\log B}$ in (S.38), we obtain that with probability tending to 1,

$$\max_{b=1}^{B} \left| n \left(\widehat{VD}_{\mathcal{I}_{2}^{(k)}} (\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \le C_{7} n^{1/2} \sqrt{\log B},$$

for some constant $C_7 > 0$. Define

$$\mathcal{A}_0^{(2)} = \left\{ \max_{k=1}^{\mathbb{K}} \max_{b=1}^{B} \left| n \left(\widehat{VD}_{\mathcal{I}_2^{(k)}} (\hat{d}_{\mathcal{I}_2^{(k)-}}^{S_b}) - VD(\hat{d}_{\mathcal{I}_2^{(k)-}}^{S_b}) \right) \right| \le C_7 n^{1/2} \sqrt{\log B} \right\}.$$

Since \mathbb{K} is fixed, by Bonferroni's inequality, we obtain

$$\Pr\left(\mathcal{A}_{0}^{(2)}\right) \geq \sum_{k=1}^{\mathbb{K}} \Pr\left\{ \max_{b=1}^{B} \left| n\left(\widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \text{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right) \right| \leq C_{7} n^{1/2} \sqrt{\log B} \right\} \to 1(S.39)$$

Below, we show

$$B\Pr\left\{d^{\tau}(S_0, S^*) \le c_n n^{-1/2}\right\} \to \infty,$$
 (S.40)

for some sequence $c_n \to 0$. Notice that q, s are fixed. By (9), it suffices to show

$$B\Pr\left(\sum_{j=1}^{q} \|S_0^{(j)} - S^{*(j)}\|_2^2 \le s^2 q c_n^* n^{-1}\right) \to \infty, \tag{S.41}$$

for some sequence $c_n^* \to 0$. By definition, $||S^{*(j)}||_2 = 1$, $||S^{*(j)}||_0 \le s$, $\forall j = 1, \ldots, q$. Let \mathcal{M}_j^* be the support of $S^{*(j)}$. According to Algorithm 2, we have

$$\sum_{j=1}^{q} \|S^{(j)} - S^{*(j)}\|_{2}^{2} = \sum_{j=1}^{q} \left\| \frac{g_{j}}{\|g_{j}\|_{2}} - S_{\mathcal{M}_{j}}^{*(j)} \right\|_{2}^{2} + \sum_{j=1}^{q} \|S_{\mathcal{M}_{j}^{*} \cap \mathcal{M}_{j}^{c}}^{*(j)}\|_{2}^{2}.$$

Notice that

$$\Pr\left(\bigcap_{j=1}^{q} \{\mathcal{M}_{j}^{*} \subseteq \mathcal{M}_{j}\}\right) = \frac{1}{\binom{p}{s}^{q}} \ge \frac{1}{p^{sq}}.$$
 (S.42)

Under the event defined in (S.42), we have

$$\sum_{j=1}^{q} \|S^{(j)} - S^{*(j)}\|_{2}^{2} = \sum_{j=1}^{q} \left\| \frac{g_{j}}{\|g_{j}\|_{2}} - S_{\mathcal{M}_{j}}^{*(j)} \right\|_{2}^{2}.$$
 (S.43)

The random vector $g_j/\|g_j\|_2$ follows a uniform distribution on the unit sphere. By Equation (4.11) in Fang et al. (1990), we have

$$\sum_{j=1}^{q} \left\| \frac{g_j}{\|g_j\|_2} - S_{\mathcal{M}_j}^{*(j)} \right\|_2^2 \stackrel{d}{=} \sum_{j=1}^{q} \left\| \frac{g_j}{\|g_j\|_2} - (\underbrace{0, 0, \dots, 0}_{s-1}, 1)^T \right\|_2^2.$$
 (S.44)

Consider the variable transformation:

$$\frac{g_j}{\|g_j\|_2} = \{\cos(\Theta_1), \sin(\Theta_1)\cos(\Theta_2), \cdots, \prod_{i=1}^{s-2}\sin(\Theta_i)\cos(\Theta_{s-1}), \prod_{i=1}^{s-1}\sin(\Theta_i)\}^T,$$

for $0 \le \Theta_i \le \pi, \forall 1 \le i \le s-2$ and $0 \le \Theta_{s-1} \le 2\pi$. Notice that

$$\left| \prod_{i=1}^{k-1} \sin(\Theta_i) \cos(\Theta_j) \right| \le |\cos(\Theta_j)| = \left| \sin\left(\frac{\pi}{2} - \Theta_j\right) \right| \le \left| \frac{\pi}{2} - \Theta_j \right|, \quad \forall 1 \le k \le s - 1,$$

and

$$\begin{split} \left| \prod_{i=1}^{s-1} \sin(\Theta_i) - 1 \right| &\leq \sum_{k=1}^{s-1} \left| \prod_{i=1}^k \sin(\Theta_i) - \prod_{i=1}^{j-1} \sin(\Theta_{i-1}) \right| \leq \sum_{k=1}^{s-1} \left| \sin(\Theta_k) - 1 \right| \\ &= \sum_{k=1}^{s-1} \left| \cos \left(\frac{\pi}{2} - \Theta_k \right) - 1 \right| = 2 \sum_{k=1}^{s-1} \sin^2 \left(\frac{\pi}{4} - \frac{\Theta_k}{2} \right) \leq 2 \sum_{k=1}^{s-1} \sin^2 \left| \frac{\pi}{4} - \frac{\Theta_k}{2} \right| \leq \sum_{k=1}^{s-1} \left| \frac{\pi}{2} - \Theta_k \right|. \end{split}$$

Since s is bounded, it follows from Equation (4.15) in Fang et al. (1990) that the density function of $\Theta_1, \Theta_2, \dots, \Theta_{s-1}$ around $\pi/2$ are bounded from below. In addition, these s-1 random variables are independent. By (S.44), we have

$$\Pr\left(\bigcap_{j=1}^{q} \left\{ \left\| \frac{g_{j}}{\|g_{j}\|_{2}} - S_{\mathcal{M}_{j}}^{*(j)} \right\|_{2} \le \frac{s\sqrt{c_{n}^{*}}}{\sqrt{n}} \right\} \right) = \Pr^{q}\left(\left\{ \left\| \frac{g_{j}}{\|g_{j}\|_{2}} - S_{\mathcal{M}_{j}}^{*(j)} \right\|_{2} \le \frac{s\sqrt{c_{n}^{*}}}{\sqrt{n}} \right\} \right)$$

$$\geq \Pr^{q}\left(\bigcap_{i=1}^{s-1} \left| \frac{\pi}{2} - \Theta_{i} \right| \le \frac{\sqrt{c_{n}^{*}}}{\sqrt{n}} \right) \ge \bar{c}_{**}\left(\frac{c_{n}^{*}}{n}\right)^{q(s-1)/2},$$

for some constant $\bar{c}_{**} > 0$. This together with (S.43) and (S.42) yields that

$$\Pr\left(\sum_{j=1}^{q} \|S^{(j)} - S^{*(j)}\|_{2}^{2} \le \frac{qs^{2}c_{n}^{*}}{n}\right) \ge \frac{\bar{c}_{**}c_{n}^{*q(s-1)/2}}{(p\sqrt{n})^{q(s-1)}}.$$

Therefore, it is immediate to see (S.41) holds with proper choice of c_n^* when the number of sketching matrix B satisfies $B \gg (p\sqrt{n})^{q(s-1)}$. Thus, (S.40) is also satisfied.

For any x > 0, we have $1 - x \le \exp(-x)$. Given (S.40), we have

$$\Pr\left(\min_{b=1}^{B} d^{\tau}(S_{b}, S^{*}) > c_{n} n^{-1/2}\right) = \left\{\Pr\left(d^{\tau}(S_{0}, S^{*}) > c_{n} n^{-1/2}\right)\right\}^{B}$$

$$= \left[1 - \left\{\Pr\left(d^{\tau}(S_{0}, S^{*}) \leq c_{n} n^{-1/2}\right)\right\}\right]^{B} \leq \exp\left\{-B\Pr\left(d^{\tau}(S_{0}, S^{*}) \leq c_{n} n^{-1/2}\right)\right\} \to 0.$$

This implies that with probability tending to 1, we have

$$\Pr\left\{\min_{b=1}^{B} E^{X} \left| \tau^{S_{b}}(S_{b}X) - \tau^{S^{*}}(S^{*}X) \right|^{2} \le c_{n}^{2}/n \right\} \to 1.$$
 (S.45)

Notice that $c_n \to 0$, we obtain that

$$\Pr\left\{\min_{b=1}^{B} E^{X} \left| \tau^{S_{b}}(S_{b}X) - \tau^{S^{*}}(S^{*}X) \right|^{2} = o\left(n^{-1}\right) \right\} \to 1.$$
 (S.46)

Besides, for any sketching matrix S, we have

$$\begin{split} |\mathrm{VD}(d_{S^*}^{opt}) - \mathrm{VD}(d_{S}^{opt})| &= |\mathrm{E}\tau(X)\{I(\tau^{S^*}(S^*X) > 0) - I(\tau^S(SX) > 0)\}| \\ &\leq |\mathrm{E}\tau^{S^*}(S^*X)I(\tau^{S^*}(S^*X) > 0) - \mathrm{E}\tau^S(SX)I(\tau^S(SX) > 0)| \\ &\leq |\mathrm{E}\max(\tau^{S^*}(S^*X), 0) - \mathrm{E}\max(\tau^S(SX), 0)| \leq \mathrm{E}|\max(\tau^{S^*}(S^*X), 0) - \max(\tau^S(SX), 0)| \\ &\leq \mathrm{E}|\tau^{S^*}(S^*X) - \tau^S(SX)| \leq \sqrt{\mathrm{E}|\tau^{S^*}(S^*X) - \tau^S(SX)|^2}. \end{split}$$

In view of (S.46), this implies $\Pr(\mathcal{A}_1^{(2)}) \to 1$ where

$$\mathcal{A}_{1}^{(2)} = \left\{ \max_{b=1}^{B} VD(d_{S_{b}}^{opt}) - VD(d_{S^{*}}^{opt}) = o(n^{-1/2}) \right\}.$$
 (S.47)

For any $k = 1, ..., \mathbb{K}$, the number of observations in $\mathbb{I}_2^{(k)-}$, i.e, $|\mathbb{I}_2^{(k)-}|$ satisfies $|\mathbb{I}_2^{(k)-}| \ge (\mathbb{K}-1)n/\mathbb{K} \ge n/2$. Thus, it follows from Condition (A4) that

$$\Pr\left\{ \max_{b=1}^{B} E^{X} \left| \hat{\tau}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(S_{b}X) - \tau^{S_{b}}(S_{b}X) \right|^{2} = O(n^{-r_{0}} \log n) \right\} \to 1,$$

for any $1 \leq k \leq \mathbb{K}$. Since \mathbb{K} is fixed, it follows Bonferroni's inequality that

$$\Pr\left\{ \max_{k=1}^{\mathbb{K}} \max_{b=1}^{B} E^{X} \left| \hat{\tau}_{\mathcal{I}_{2}^{(k)}}^{S_{b}}(S_{b}X) - \tau^{S_{b}}(S_{b}X) \right|^{2} = O(n^{-r_{0}} \log n) \right\} \to 1.$$
 (S.48)

Notice that for any sketching matrix S, we have

$$\begin{split} \operatorname{VD}(d_S^{opt}) - \operatorname{VD}(\hat{d}_{\mathcal{I}_2^{(k)-}}^S) &= \operatorname{E}^X \tau^S(SX) \left\{ I\left(\tau^S(SX) > 0\right) - I\left(\hat{\tau}_{\mathcal{I}_2^{(k)-}}^S(SX) > 0\right) \right\} \\ &\leq \operatorname{E}^X \tau^S(SX) I\left(\left|\hat{\tau}_{\mathcal{I}_2^{(k)-}}^S(SX) - \tau^S(SX)\right| \geq \left|\tau^S(SX)\right|\right) \\ &\leq \operatorname{E}^X \left|\hat{\tau}_{\mathcal{I}_2^{(k)-}}^S(SX) - \tau^S(SX)\right| \leq \sqrt{\operatorname{E}^X \left|\hat{\tau}_{\mathcal{I}_2^{(k)-}}^S(SX) - \tau^S(SX)\right|^2}, \end{split}$$

where the first inequality is due to the fact that for any $a, b \in \mathbb{R}$, if $I(a > 0) \neq I(b > 0)$, then we have $|a - b| \geq |a|$, and the second inequality is due to Markov's inequality.

Under the event defined in (S.48), we have $\Pr(\mathcal{A}_2^{(2)}) \to 1$ where

$$\mathcal{A}_{2}^{(2)} = \left\{ \max_{k=1}^{\mathbb{K}} \max_{b=1}^{B} \left| VD(d_{S_{b}}^{opt}) - VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) \right| = O(n^{-r_{0}/2} \sqrt{\log n}) \right\}.$$
 (S.49)

Let $\hat{b} = \arg \max_{b=1}^{B} \sum_{k=1}^{\mathbb{K}} \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}})/\mathbb{K}$. We have $S_{\hat{b}} = S_{\mathcal{I}_{2}}$. With some calculation, we can show that

$$\begin{split} & \mathbb{K}\left(\mathrm{VD}(d_{S_{\mathcal{I}_{2}}^{opt}}) - \mathrm{VD}(d_{S^{*}}^{opt})\right) \\ & \geq \sum_{k=1}^{\mathbb{K}}\left(\mathrm{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}) - \mathrm{VD}(d_{S^{*}}^{opt})\right) - \mathbb{K}\underbrace{\max_{k=1}^{\mathbb{K}}\max_{b=1}^{B}\left|\mathrm{VD}(d_{S_{b}}^{opt}) - \mathrm{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}})\right|}_{I_{1}} \\ & \geq \sum_{k=1}^{\mathbb{K}}\left(\widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}) - \mathrm{VD}(d_{S^{*}}^{opt})\right) - \sum_{k=1}^{\mathbb{K}}\left(\widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}) - \mathrm{VD}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}})\right) - \mathbb{K}I_{1} \\ & \geq \max_{b=1}^{B}\sum_{k=1}^{\mathbb{K}}\left(\widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \mathrm{VD}(d_{S^{*}}^{opt})\right) - \mathbb{K}\max_{k=1}^{\mathbb{K}}\max_{b=1}^{B}\left|\widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \mathrm{VD}_{\mathcal{I}_{2}^{(k)}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}})\right| - \mathbb{K}I_{1} \\ & \geq \max_{b=1}^{B}\sum_{k=1}^{\mathbb{K}}\left(\mathrm{VD}(\hat{d}_{S_{b}}^{S_{b}}) - \mathrm{VD}(d_{S^{*}}^{opt})\right) - \mathbb{K}I_{1} - 2\mathbb{K}I_{2} - \mathbb{K}\max_{k=1}^{\mathbb{K}}\max_{b=1}^{B}\left|\widehat{\mathrm{VD}}(d_{S_{b}}^{opt}) - \mathrm{VD}(d_{S_{b}}^{opt}) - \mathrm{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}})\right|, \end{split}$$

Since $\Pr(\mathcal{A}_0^{(2)} \cap \mathcal{A}_1^{(2)} \cap \mathcal{A}_2^{(2)}) \to 1$, with probability tending to 1, we have

$$V(d_{S_{\mathcal{I}_2}}^{opt}) - V(d_{S^*}^{opt}) = O(\sqrt{\log B}/\sqrt{n} + n^{-r_0/2}\sqrt{\log n}).$$
 (S.51)

Under the given conditions, we have that $VD(d_{S^*}^{opt}) \gg n^{-r_0/2} \sqrt{\log n} + \sqrt{\log B} / \sqrt{n}$. This together with (S.51) implies that

$$\Pr\left(\mathrm{VD}(d_{S_{\mathcal{I}_2}}^{opt}) \gg n^{-r_0/2} \sqrt{\log n} + \frac{\sqrt{\log B}}{\sqrt{n}}\right) \ge \Pr\left(\mathrm{VD}(d_{S_{\mathcal{I}_2}}^{opt}) \ge \frac{1}{2} \mathrm{VD}(d_{S^*}^{opt})\right) \to 1. \text{ (S.52)}$$

In addition, similar to (S.49), we can show that

$$\Pr\left\{\max_{b=1}^{B} \left| VD(d_{S_b}^{opt}) - VD(\hat{d}_{\mathcal{I}_2}^{S_b}) \right| = O(n^{-r_0/2}\sqrt{\log n}) \right\},$$

and hence

$$\Pr\left(\left|\operatorname{VD}(d_{S_{\mathcal{I}_2}}^{opt}) - \operatorname{VD}(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}})\right| = O(n^{-r_0/2}\sqrt{\log n} + n^{-1/2}\sqrt{\log B})\right) \to 1.$$

This together with (S.52) implies (S.34).

We now derive the asymptotic distribution of our proposed test in the regular cases where $\Pr(\tau^{S^*}(S^*X) = 0) = 0, \forall S^* \in \mathcal{S}^*$. Notice that $n^{-1/2}\sqrt{\log B} \to 0, n^{-r_0}\log n \to 0$. By (S.51) and Condition (A7), we have with probability tending to 1 that

$$E^{X} \left| \tau^{S_{\mathcal{I}_{2}}}(S_{\mathcal{I}_{2}}X) - \tau^{S^{**}}(S^{**}X) \right|^{2} = o(1), \tag{S.53}$$

for some $S^{**} \in \mathcal{S}^*$. Notice that

$$VD(d_{S_{\mathcal{I}_2}}^{opt}) - VD(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}) = E^X \tau(X) \{ d_{S_{\mathcal{I}_2}}^{opt}(X) - \hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}(X) \} = E^X \tau^{S_{\mathcal{I}_2}}(S_{\mathcal{I}_2}X) \{ d_{S_{\mathcal{I}_2}}^{opt}(X) - \hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}(X) \}.$$

By Condition (A6), $\tau^{S_{\mathcal{I}_2}}$ satisfies $\Pr(0 < |\tau^{S_{\mathcal{I}_2}}(S_{\mathcal{I}_2}X)| < t) = O(t^{\gamma})$ for $0 < t \le \delta_0$, with probability tending to 1. Since $r_0 > (2+\gamma)/(2+2\gamma)$, similar to Theorem 8 in Luedtke and van der Laan (2016), we can show that

$$\Pr(\mathcal{A}_3^{(2)}) \to 1,\tag{S.54}$$

where

$$\mathcal{A}_{3}^{(2)} = \left\{ \left| VD(d_{S_{\mathcal{I}_{2}}}^{opt}) - VD(\hat{d}_{\mathcal{I}_{2}}^{S_{\mathcal{I}_{2}}}) \right| = o(n^{-1/2}) \right\}.$$

Similarly, we have

$$\Pr\left\{ \max_{k=1}^{\mathbb{K}} \left| VD(d_{S_{\mathcal{I}_2}}^{opt}) - VD(\hat{d}_{\mathcal{I}_2^{(k)-}}^{S_{\mathcal{I}_2}}) \right| = o(n^{-1/2}) \right\} \to 1.$$
 (S.55)

Combining Condition (A8) with (S.53), we obtain that with probability tending to 1,

$$\mathrm{E}^{X} \left| \hat{\tau}_{\mathcal{I}_{2}}^{S_{\mathcal{I}_{2}}}(S_{\mathcal{I}_{2}}X) - \tau^{S^{**}}(S^{**}X) \right|^{2} = o(1).$$

Under the given conditions, we have $\Pr(\tau^{S^{**}}(S^{**}X)=0)=0$. Using similar arguments in (S.17)-(S.18) in the proof of Theorem 3.2, we can show that

$$\Pr\left(\mathbb{E}^{X} \left| \hat{d}_{\mathcal{I}_{2}}^{S_{\mathcal{I}_{2}}}(X) - d_{S^{**}}^{opt}(X) \right| = o(1)\right) \to 1,$$
 (S.56)

and similarly

$$\Pr\left(\mathbb{E}^X \left| \hat{d}_{\mathcal{I}_1}^{S_{\mathcal{I}_1}}(X) - d_{S^{**}}^{opt}(X) \right| = o(1)\right) \to 1. \tag{S.57}$$

Assume for now, we've shown

$$\Pr\left(\operatorname{VD}(\hat{d}_{\mathcal{I}_{j}}^{S_{\mathcal{I}_{j}}}) - \operatorname{VD}(d_{S^{**}}^{opt}) = o(n^{-1/2})\right) \to 1, \tag{S.58}$$

for j = 1, 2. Using similar arguments in the proof of Theorem 3.2, it follows from (S.56)-(S.58) and the conditions $\sqrt{n}h_n^* = \sqrt{n}\mathrm{VD}(d_{S^{**}}^{opt}) = O(1)$, $\liminf_n \sigma_*^2 > 0$ that \widehat{T}_{SRP} is equivalent to

$$\max\left(\frac{\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}_1}(d_{S^{**}}^{opt})}{\hat{\sigma}_{\mathcal{I}_1}(d_{S^{**}}^{opt})}, \frac{\sqrt{n}\widehat{\mathrm{VD}}_{\mathcal{I}_2}(d_{S^{**}}^{opt})}{\hat{\sigma}_{\mathcal{I}_2}(d_{S^{**}}^{opt})}\right).$$

The limiting distribution therefore follows from the central limit theorem for the self-normalized sums.

It remains to show (S.58). By (S.54), it suffices to show that with probability tending to 1,

$$VD(d_{S_{\mathcal{I}_2}}^{opt}) = VD(d_{S^{**}}^{opt}) + o(n^{-1/2}).$$
(S.59)

Define b_0 to be the smallest element in $[1, \ldots, B]$ such that

$$E^{X} |\tau^{S_{b_0}}(S_{b_0}X) - \tau^{S^*}(S^*X)|^2 \le c_n^2/n.$$

Under the event defined in the LHS of (S.45), b_0 is well defined. Similar to (S.46)-(S.47), we can show that with probability tending to 1,

$$VD(d_{S_{b_0}}^{opt}) = VD(d_{S^*}^{opt}) + o(n^{-1/2}).$$
 (S.60)

In addition, similar to (S.55), we have

$$\Pr\left\{ \max_{k=1}^{\mathbb{K}} \left| VD(d_{S_{b_0}}^{opt}) - VD(\hat{d}_{\mathcal{I}_2^{(k)-}}^{S_{b_0}}) \right| = o(n^{-1/2}) \right\} \to 1.$$

This together with (S.60) yields

$$\sum_{k=1}^{\mathbb{K}} VD(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}}) = \mathbb{K}VD(d_{S^{*}}^{opt}) + o(n^{-1/2}), \tag{S.61}$$

with probability tending to 1.

Under the events defined in $\mathcal{A}_1^{(2)} \cap \mathcal{A}_2^{(2)}$, (S.55) and (S.61), we have

$$\mathbb{K}\left(\operatorname{VD}(d_{S_{\mathcal{I}_{2}}}^{opt}) - \operatorname{VD}(d_{S^{*}}^{opt})\right) \tag{S.62}$$

$$\geq \sum_{k=1}^{\mathbb{K}}\left(\operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}) - \operatorname{VD}(d_{S^{*}}^{opt})\right) - \mathbb{K}\underbrace{\max_{k=1}^{\mathbb{K}}\left|\operatorname{VD}(d_{S_{\mathcal{I}_{2}}}^{opt}) - \operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}})\right|}_{I_{3}}$$

$$\geq \sum_{k=1}^{\mathbb{K}}\left(\operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}) - \operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}})\right) - \mathbb{K}I_{3} - \mathbb{K}\underbrace{\max_{k=1}^{\mathbb{K}}\left|\operatorname{VD}(d_{S^{*}}^{opt}) - \operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}})\right|}_{I_{4}}$$

$$\geq \max_{b=1}^{B}\sum_{k=1}^{\mathbb{K}}\left(\widehat{\operatorname{VD}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) - \widehat{\operatorname{VD}}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}})\right) - \mathbb{K}I_{3} - \mathbb{K}I_{4} - 2\mathbb{K}I_{2}$$

$$\geq -\mathbb{K}I_{3} - \mathbb{K}I_{4} - 2\mathbb{K}I_{2} = O\left(\sqrt{\log B}/\sqrt{n}\right) = O(\sqrt{\log n}/\sqrt{n}),$$

where the last equality is due to the condition that $B = O(n^{\kappa_B})$ for some $\kappa_B > 0$. Since $VD(d_{S_{\tau_2}}^{opt}) \leq VD(d_{S^{**}}^{opt})$, it follows from (S.62) that $Pr(\mathcal{A}_4^{(2)}) \to 1$, where

$$\mathcal{A}_4^{(2)} = \left\{ \operatorname{VD}(d_{S_{\mathcal{I}_2}}^{opt}) = \operatorname{VD}(d_{S^{**}}^{opt}) + O(\sqrt{\log n}/\sqrt{n}) \right\}.$$

On the set $\mathcal{A}_4^{(2)}$, it follows from Condition (A7) that

$$E^{X} \left| \tau^{S_{\mathcal{I}_{2}}}(S_{\mathcal{I}_{2}}X) - \tau^{S^{**}}(S^{**}X) \right|^{2} = O\left(\frac{\log^{l_{0}/2} n}{n^{l_{0}/2}}\right).$$

By (A8) and the condition that $r_0 > (2 + \gamma)/(2 + 2\gamma)$, we obtain that with probability tending to 1,

$$\max_{k=1}^{\mathbb{K}} E^{X} \left| \hat{\tau}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}(S_{\mathcal{I}_{2}}X) - \tau^{S^{**}}(S^{**}X) \right|^{2} = O\left(\frac{\log^{l_{0}/2} n}{n^{l_{0}/2}}\right) + o\left(n^{-(2+\gamma)/(2+2\gamma)}\right).$$

Similar to (S.18), it follows the condition $\Pr(\tau^{S^{**}}(X) = 0) = 0$ that with probability tending to 1,

$$\max_{k=1}^{\mathbb{K}} E^{X} \left| \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}(X) - d_{S^{**}}^{opt}(X) \right| = o\left(n^{-\gamma/(2+2\gamma)}\right) + O\left(\frac{\log^{\kappa_{0}} n}{n^{\kappa_{0}}}\right), \tag{S.63}$$

where $\kappa_0 = l_0 \gamma / (4 + 2 \gamma)$.

Define $\phi_n = (n \log n)^{1/3}$, we have that

$$\Pr\left\{ \max_{i=1}^{n} \left| \left(\frac{A_i}{\pi(X_i)} - \frac{1 - A_i}{1 - \pi(X_i)} \right) Y_i \right| > \phi_n \right\} \leq \sum_{i=1}^{n} \Pr\left\{ \left| \left(\frac{A_1}{\pi(X_1)} - \frac{1 - A_1}{1 - \pi(X_1)} \right) Y_1 \right| > \phi_n \right\} \\
\leq n \frac{1}{\phi_n^3} \mathbb{E} \left| \left(\frac{A_1}{\pi(X_1)} - \frac{1 - A_1}{1 - \pi(X_1)} \right) Y_1 \right|^3 = o(1),$$

where the first inequality is due to Bonferroni's inequality, the second inequality is due to Markov's inequality, the last equality is due to (A3) and the condition $E|Y|^3 = O(1)$. Hence, we obtain $Pr(A_5) \to 1$, where

$$\mathcal{A}_5 = \left\{ \max_{i=1}^n \left| \left(\frac{A_i}{\pi(X_i)} - \frac{1 - A_i}{1 - \pi(X_i)} \right) Y_i \right| \le \phi_n \right\}.$$

Let $Z_i = [(1-A_i)/\{1-\pi(X_i)\} - A_i/\pi(X_i)]Y_iI(|[(1-A_i)/\{1-\pi(X_i)\} - A_i/\pi(X_i)]Y_i| \le \phi_n)$. It follows from Bernstein's inequality that conditional on $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$, for any $t_{b,k} > 0$,

$$\max_{b=1}^{B} \Pr \left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{E} Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| > t_{b,k} \right\} \\
\leq \exp \left(-\frac{t_{b,k}^{2}/2}{|\mathcal{I}_{2}^{(k)}| \sigma_{b,k}^{2} + M_{b,k} t_{b,k}/3} \right),$$

where

$$\sigma_{b,k}^{2} = \operatorname{Var}\left(Z\{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X)\} \mid S_{b}, \{O_{i}\}_{i \in \mathcal{I}_{2}^{(k)-}}\right),
M_{b,k} = \max_{i} |Z_{i}\{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i})\} - \operatorname{E}Z_{i}\{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i})\}|.$$

Similar to (S.19), we can show

$$\sigma_{b,k}^{2} \leq \operatorname{E}\left(Z^{2}\left\{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X)\right\}^{2} \mid S_{b}, \left\{O_{i}\right\}_{i \in \mathcal{I}_{2}^{(k)-}}\right)$$

$$\leq \operatorname{E}\left\{\left(\frac{A}{\pi(X)} - \frac{1 - A}{1 - \pi(X)}\right)^{2} Y^{2}\left\{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X)\right\}^{2} \mid S_{b}, \left\{O_{i}\right\}_{i \in \mathcal{I}_{2}^{(k)-}}\right\}$$

$$\leq \bar{c}\left(\operatorname{E}^{X}\left|\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X)\right|\right)^{1/3},$$

for some constant $\bar{c} > 0$.

Besides, by the definition of Z_i , we have $|M_{b,k}| \leq \max_i |Z_i| + \operatorname{E} \max_i |Z_i| \leq 2\phi_n$. Therefore, we obtain that conditional on $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$,

$$\max_{b=1}^{B} \Pr\left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(S_{b}X_{i}) - d_{S^{**}}^{opt}(S^{**}X_{i}) \} - \operatorname{E}Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| > t_{b,k} \right\} \\
\leq \exp\left(-\frac{t_{b,k}^{2}/2}{\bar{c}n(\mathbb{K}-1) \left(\operatorname{E}^{X} \left| \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X) \right| \right)^{1/3} / \mathbb{K} + 2\phi_{n}t_{b,k}/3 \right).$$

Let

$$t_{b,k} = 4 \max \left[\left\{ \mathbb{E}^{X} \left| \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X) - d_{S^{**}}^{opt}(X) \right| \right\}^{1/6} \sqrt{\bar{c}n(\mathbb{K} - 1)(\log B)/\mathbb{K}}, 4\phi_{n}(\log B)/3 \right].$$

We have that

$$t_{b,k}^2/2 \ge 8 \log B \times \bar{c}n(\mathbb{K} - 1) \left(\mathbb{E}^X \left| \hat{d}_{\mathcal{I}_2^{(k)}}^{S_b}(X) - d_{S^{**}}^{opt}(X) \right| \right)^{1/3} / \mathbb{K},$$

 $t_{b,k}^2/2 \ge 4 \log B \times 2\phi_n t_{b,k}/3.$

Therefore,

$$\frac{t_{b,k}^2/2}{\bar{c}n(\mathbb{K}-1)E^X \left| \hat{d}_{\mathcal{I}_2^{(k)-}}^{S_b}(X) - d_{S^{**}}^{opt}(X) \right| / \mathbb{K} + 2\phi_n t_{b,k}/3} \ge 2\log B.$$

Therefore, we have that conditional on $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$,

$$\max_{b=1}^{B} \Pr \left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{E} Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| > t_{b,k} \right\} \\
\leq \exp\left(-2\log B \right) = \frac{1}{B^{2}}.$$

It follows from Bonferroni's inequality that conditional on $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$,

$$\Pr\left[\bigcup_{b=1}^{B} \left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{E}Z_{i} \{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| > t_{b,k} \right\} \right] \\
\leq B \max_{b=1}^{B} \Pr\left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{E}Z_{i} \{\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| > t_{b,k} \right\} \\
\leq \frac{1}{B} \to 0.$$

Since the probability bound 1/B is independent of $\{S_b\}_{b=1}^B$ and $\{O_i\}_{i\in\mathcal{I}_2^{(k)-}}$. The above inequality also holds marginally. Note that \mathbb{K} is fixed. By Bonferroni's inequality, we obtain that $\Pr(\mathcal{A}_6^{(2)}) \to 1$, where

$$\mathcal{A}_{6}^{(2)} = \bigcap_{b=1}^{B} \bigcap_{k=1}^{\mathbb{K}} \left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \mathrm{E}Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} \right) \right| \leq t_{b,k} \right\}.$$

It follows from Markov's inequality and the definition of ϕ_n that

$$\begin{aligned} & \left| \operatorname{E} Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) + \operatorname{VD}(d_{S^{**}}^{opt}) \right| \\ & \leq & \operatorname{E} \left| \left(\frac{A_{i}}{\pi(X_{i})} - \frac{1 - A_{i}}{1 - \pi(X_{i})} \right) Y_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} I \left\{ \left| \left(\frac{A_{i}}{\pi(X_{i})} - \frac{1 - A_{i}}{1 - \pi(X_{i})} \right) Y_{i} \right| > \phi_{n} \right\} \right| \\ & \leq & \operatorname{E} \left| \left(\frac{A_{i}}{\pi(X_{i})} - \frac{1 - A_{i}}{1 - \pi(X_{i})} \right) Y_{i} \right| I \left\{ \left| \left(\frac{A_{i}}{\pi(X_{i})} - \frac{1 - A_{i}}{1 - \pi(X_{i})} \right) Y_{i} \right| > \phi_{n} \right\} \\ & \leq & \frac{1}{\phi_{n}^{2}} \operatorname{E} \left| \left(\frac{A_{i}}{\pi(X_{i})} - \frac{1 - A_{i}}{1 - \pi(X_{i})} \right) Y_{i} \right|^{3} = o(n^{-1/2}). \end{aligned}$$

Since $\Pr(\mathcal{A}_6^{(2)}) \to 1$, we obtain $\Pr(\mathcal{A}_7^{(2)}) \to 1$, where

$$\mathcal{A}_{7}^{(2)} = \bigcap_{b=1}^{B} \bigcap_{k=1}^{\mathbb{K}} \left\{ \left| \sum_{i \in \mathcal{I}_{2}^{(k)}} \left(Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} - \operatorname{VD}(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}) + \operatorname{VD}(d_{S^{**}}^{opt}) \right) \right| \leq t_{b,k} + o(\sqrt{n}) \right\}.$$

Under the event defined in \mathcal{A}_5 , we have that $Z_i = [(1-A_i)/\{1-\pi(X_i)\}-A_i/\pi(X_i)]Y_iI(|[(1-\pi(X_i))]-A_i/\pi(X_i)$

 $A_i)/\{1-\pi(X_i)\}-A_i/\pi(X_i)]Y_i$ and hence

$$\sum_{i \in \mathcal{I}_{2}^{(k)}} Z_{i} \{ \hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}}(X_{i}) - d_{S^{**}}^{opt}(X_{i}) \} = \frac{n}{\mathbb{K}} \left\{ \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} \right) - \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{**}}^{opt} \right) \right\}.$$

Therefore, with probability tending to 1, we have that for any $b=1,\ldots,B$ and $k=1,\ldots,\mathbb{K},$

$$\left| \frac{n}{\mathbb{K}} \left\{ \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} \right) - \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{**}}^{opt} \right) - \mathrm{VD} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} \right) + \mathrm{VD} \left(d_{S^{**}}^{opt} \right) \right\} \right| \leq t_{b,k} + o(1)\sqrt{n},$$

and hence,

$$\left| n \sum_{k=1}^{\mathbb{K}} \left\{ \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} \right) - \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{**}}^{opt} \right) - \mathrm{VD} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b}} \right) + \mathrm{VD} \left(d_{S^{**}}^{opt} \right) \right\} \right| \leq \mathbb{K} \sum_{k} t_{b,k} + o(1) \sqrt{n},$$

for $b=1,\ldots,B$. Define the above event to be $\mathcal{A}_8^{(2)}$. When it holds, we have

$$\left| n \sum_{k=1}^{\mathbb{K}} \left\{ \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) - \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{**}}^{opt} \right) - \mathrm{VD} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) + \mathrm{VD} \left(d_{S^{**}}^{opt} \right) \right\} \right| \leq \mathbb{K} \sum_{k} t_{\hat{b},k} + o(\sqrt{n}).$$

It follows from (S.63) and the condition $B = O(n^{\kappa_B})$ that we have with probability tending to 1,

$$\max_{k} |t_{\hat{b},k}| / \sqrt{n} = o\left(n^{-\gamma/(12+12\gamma)} \sqrt{\log n}\right) + O\left(n^{-\kappa_0/6} \log^{\kappa_0/6+1/2} n\right) + O\left(\frac{\phi_n \log n}{\sqrt{n}}\right).$$

Notice that the above expression is o(1). Therefore, we obtain that with probability tending to 1,

$$\left| n \sum_{k=1}^{\mathbb{K}} \left\{ \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) - \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{**}}^{opt} \right) - \text{VD} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) + \text{VD} \left(d_{S^{**}}^{opt} \right) \right\} \right| = o(\sqrt{n}). \text{ (S.64)}$$

Recall that b_0 is the smallest element in [1, ..., B] such that

$$E^{X} \left| \tau^{S_{b_0}}(S_{b_0}X) - \tau^{S^*}(S^*X) \right|^2 \le c_n^2/n.$$

Similar to (S.64), we can show that with probability tending to 1,

$$n\sum_{k=1}^{\mathbb{K}} \left\{ \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}} \right) - \widehat{\mathrm{VD}}_{\mathcal{I}_{2}^{(k)}} \left(d_{S^{*}}^{opt} \right) - \mathrm{VD} \left(\widehat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}} \right) + \mathrm{VD} \left(d_{S^{*}}^{opt} \right) \right\} = o(\sqrt{n}).$$

By $\Pr(\tau^{S^*}(S^*X) = 0) = 0$, $\Pr(\tau^{S^{**}}(S^{**}X) = 0) = 0$ and (7), we have with probability tending to 1 that $d_{S^{**}}^{opt}(X) = d_{S^*}^{opt}(X)$, and hence

$$\Pr\left(\widehat{\mathrm{VD}}_{\mathcal{I}_2^{(k)}}(d_{S^*}^{opt}) = \widehat{\mathrm{VD}}_{\mathcal{I}_2^{(k)}}(d_{S^{**}}^{opt})\right) = 1.$$

Therefore, with probability tending to 1, we have

$$n\sum_{k=1}^{\mathbb{K}} \left\{ \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}} \right) - \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) - \text{VD} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}} \right) + \text{VD} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right) \right\} = o(\sqrt{n}).$$

By definition, we have

$$n \sum_{k=1}^{\mathbb{K}} \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}} \right) \leq n \sum_{k=1}^{\mathbb{K}} \widehat{\text{VD}}_{\mathcal{I}_{2}^{(k)}} \left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}} \right).$$

Therefore, we obtain that with probability tending to 1,

$$n\sum_{k=1}^{\mathbb{K}} \operatorname{VD}\left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{b_{0}}}\right) \leq n\sum_{k=1}^{\mathbb{K}} \operatorname{VD}\left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}\right) + o(\sqrt{n}),$$

which together with (S.61) implies that with probability tending to 1, we have

$$n\mathbb{K}VD\left(d_{S^*}^{opt}\right) \le n\sum_{k=1}^{\mathbb{K}}VD\left(\hat{d}_{\mathcal{I}_{2}^{(k)-}}^{S_{\mathcal{I}_{2}}}\right) + o(\sqrt{n}).$$
 (S.65)

Under the events defined in (S.55) and (S.65), we have that,

$$\operatorname{VD}\left(d_{S^*}^{opt}\right) \le \operatorname{VD}\left(d_{S_{\mathcal{I}_2}}^{opt}\right) + o(\sqrt{n}).$$

Since VD $(d_{S^*}^{opt}) \ge \text{VD}(d_{S_{\mathcal{I}_2}}^{opt})$, this implies that with probability tending to 1,

$$\operatorname{VD}\left(d_{S^*}^{opt}\right) = \operatorname{VD}\left(d_{S_{\mathcal{I}_2}}^{opt}\right) + o(\sqrt{n}).$$

Now, it follows from (S.54) that

$$\Pr\left\{\mathrm{VD}\left(d_{S^*}^{opt}\right)=\mathrm{VD}\left(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}\right)+o(\sqrt{n})\right\}\to 1,$$

and hence

$$\Pr\left\{\mathrm{VD}\left(d_{S^{**}}^{opt}\right) = \mathrm{VD}\left(\hat{d}_{\mathcal{I}_2}^{S_{\mathcal{I}_2}}\right) + o(\sqrt{n})\right\} \to 1,$$

Similarly, we can show that

$$\Pr\left\{\mathrm{VD}\left(d_{S^{**}}^{opt}\right)=\mathrm{VD}\left(\hat{d}_{\mathcal{I}_{1}}^{S_{\mathcal{I}_{1}}}\right)+o(\sqrt{n})\right\}\rightarrow1.$$

This proves (S.58). The proof is thus completed.

E Additional simulation results

E.1 Dependent covariates

Table S.1: Rejection probabilities (%) of the sparse random projection-based test, dense random projection-based test, penalized least square-based test, step-wise selection-based test and the supremumtype test based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios 1 and 2 where $X \sim N(0, \{0.5^{|i-j|}\}_{i,j=1,...,p})$.

Scenario 1		VD	VD = 0 VD = 30%		VD =	$\mathrm{VD} = 50\%$		$\mathrm{VD} = 70\%$	
		α level		α level		α level		α level	
	p	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
\widehat{T}_{SRP}^{dr}	50	0.2(0.2)	0.2(0.2)	9.4(1.3)	18(1.7)	39.4(2.2)	50.8(2.2)	63.4(2.2)	73.2(2)
	100	0(0)	0(0)	7(1.1)	16.2(1.6)	37.2(2.2)	51.2(2.2)	64(2.1)	74.2(2)
\widehat{T}_{RP}^{dr}	50	0(0)	0(0)	0(0)	0.2(0.2)	0(0)	0.4(0.3)	0.2(0.2)	1.4(0.5)
I_{RP}^{m}	100	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0.8(0.4)
\widehat{T}_{PLS}	50	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
I_{PLS}	100	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
\widehat{T}_{VS}	50	0(0)	0(0)	0.4(0.3)	1(0.4)	2.4(0.7)	5.4(1)	5.6(1)	12.2(1.5)
I_{VS}	100	0(0)	0(0)	0.2(0.2)	0.6(0.3)	1.2(0.5)	3.2(0.8)	4.2(0.9)	9.4(1.3)
\widehat{T}_{DL}	50	4.8(1)	14.6(1.6)	4.8(1)	14.2(1.6)	5.4(1)	14.6(1.6)	5.6(1)	15.2(1.6)
I_{DL}	100	5.2(1)	20.6(1.8)	6.6(1.1)	20.4(1.8)	7(1.1)	21(1.8)	7.6(1.2)	20.2(1.8)
Scenario 2		VD = 0		VD = 30%		VD = 50%		VD = 70%	
		α level		α level		α level		α level	
	p	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
\widehat{T}_{SRP}^{dr}	50	1(0.4)	5.4(1)	32.8(2.1)	46(2.2)	61(2.2)	71.4(2)	67(2.1)	76.8(1.9)
I_{SRP}	100	0.8(0.4)	5.8(1)	26.2(2)	37(2.2)	54.8(2.2)	64.2(2.1)	61.6(2.2)	71.2(2)
$\widehat{T}dr$	50	1(0.4)	5.6(1)	1(0.4)	5.6(1)	1.4(0.5)	7(1.1)	1.8(0.6)	6(1.1)
\widehat{T}_{RP}^{dr}	100	0.8(0.4)	5.6(1)	0.8(0.4)	6.6(1.1)	0.8(0.4)	6.4(1.1)	0.8(0.4)	5(1)
\widehat{T}_{PLS}	50	1(0.4)	4.8(1)	2(0.6)	6(1.1)	1.6(0.6)	7(1.1)	1.6(0.6)	7.4(1.2)
	100	1.6(0.6)	6.8(1.1)	1.8(0.6)	7.2(1.2)	2.6(0.7)	6.6(1.1)	2.4(0.7)	7(1.1)
\widehat{T}_{VS}	50	1.8(0.6)	6.8(1.1)	1(0.4)	7.2(1.2)	0.8(0.4)	6.6(1.1)	1.2(0.5)	6.2(1.1)
	100	0.8(0.4)	5(1)	1.4(0.5)	5.6(1)	1.0(0.4)	4.2(0.9)	0.2(0.2)	4.6(0.9)
\widehat{T}_{DL}	50	0.8(0.4)	4.8(1)	4.2(0.9)	12.8(1.5)	5.2(1)	14.8(1.6)	5.4(1)	14.4(1.6)
	100	0.8(0.4)	4.4(0.9)	4.2(0.9)	15.2(1.6)	5.8(1)	17.8(1.7)	7.2(1.2)	18.2(1.7)

In this section, we examine the performance of the proposed test under the setting where covariates are dependent. Reported in Table S.1 and S.2 are the rejection probabilities of \widehat{T}_{SRP}^{dr} , \widehat{T}_{RP}^{dr} , \widehat{T}_{PLS} , \widehat{T}_{VS} and \widehat{T}_{DL} where $X \sim N(0, \{0.5^{|i-j|}\}_{i,j=1,\dots,p})$. Similar to the results reported in Table 1 and Table S.2, our proposed test in much more powerful than other competing tests under Scenarios 1 and 2 where the OITR is sparse and nonlinear. In Scenario 3 where the OITR is sparse and linear, the rejection probabilities of our test are slightly smaller than when compared to \widehat{T}_{PLS} , \widehat{T}_{DL} and \widehat{T}_{VS} , but are much larger than those of \widehat{T}_{RP}^{dr} . In the last scenario, the rejection probabilities of \widehat{T}_{DL} are much smaller than other test statistics. Our proposed test achieves the greatest power in nearly all settings.

Table S.2: Rejection probabilities (%) of the sparse random projection-based test, dense random projection-based test, penalized least square-based test, step-wise selection-based test and the supremumtype test based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios 3 and 4 where $X \sim N(0, \{0.5^{|i-j|}\}_{i,j=1,...,p})$.

Scenario 3		VD=30%		$\mathrm{VD} = 50\%$		$\mathrm{VD} = 70\%$	
		α level		α level		α level	
	p	0.01	0.05	0.01	0.05	0.01	0.05
$\widehat{T}dr$	50	79.8(1.8)	94(1.1)	95.4(0.9)	99.4(0.3)	98.2(0.6)	99.8(0.2)
\widehat{T}^{dr}_{SRP}	100	74(2)	92(1.2)	94.4(1)	98.8(0.5)	97.6(0.7)	99.6(0.3)
\widehat{T}_{RP}^{dr}	50	31.8(2.1)	60(2.2)	48.8(2.2)	77.2(1.9)	55.2(2.2)	84.2(1.6)
I_{RP}	100	12.8(1.5)	34.6(2.1)	27.8(2)	54.6(2.2)	29.8(2)	63.8(2.1)
\widehat{T}_{PLS}	50	92(1.2)	98.2(0.6)	97.8(0.7)	100(0)	99(0.4)	100(0)
I_{PLS}	100	92.4(1.2)	98.8(0.5)	98(0.6)	100(0)	99(0.4)	100(0)
\widehat{T}_{VS}	50	86.2(1.5)	97.6(0.7)	98.2(0.6)	99.8(0.2)	99.2(0.4)	100(0)
IVS	100	81(1.8)	96.2(0.9)	96(0.9)	99.8(0.2)	98.4(0.6)	99.8(0.2)
\widehat{T}_{DL}	50	97.4(0.7)	100(0)	99.8(0.2)	100(0)	100(0)	100(0)
I_{DL}	100	98.4(0.6)	100(0)	99.6(0.3)	100(0)	99.6(0.3)	100(0)
Scenario 4		VD = 30%		VD = 50%		VD = 70%	
		α level		α level		α level	
	p	0.01	0.05	0.01	0.05	0.01	0.05
$\widehat{\pi}dr$	50	66.2(2.1)	89.4(1.4)	87.8(1.5)	98.4(0.6)	94(1.1)	99.2(0.4)
\widehat{T}^{dr}_{SRP}	100	59.6(2.2)	85.8(1.6)	87.4(1.5)	98.4(0.6)	94.6(1)	99.6(0.3)
$\widehat{T}dr$	50	44.8(2.2)	75.8(1.9)	60.4(2.2)	84.4(1.6)	68.4(2.1)	90(1.3)
\widehat{T}_{RP}^{dr}	100	42.4(2.2)	74.4(2)	57.6(2.2)	82.6(1.7)	62.4(2.2)	87.6(1.5)
\widehat{T}_{PLS}^{dr}	50	54.6(2.2)	80.2(1.8)	67.4(2.1)	86.4(1.5)	72.4(2)	92(1.2)
I_{PLS}	100	71.6(2)	89.8(1.4)	64(2.1)	88.4(1.4)	71.6(2)	89.8(1.4)
\widehat{T}_{VS}^{dr}	50	61(2.2)	84(1.6)	73.4(2)	93.4(1.1)	76.2(1.9)	92.2(1.2)
I_{VS}	100	50.6(2.2)	80.4(1.8)	65.2(2.1)	89.6(1.4)	66.8(2.1)	89.2(1.4)
\widehat{T}_{DL}^{dr}	50	3(0.8)	11.6(1.4)	4.2(0.9)	14(1.6)	4.6(0.9)	12(1.5)
^{1}DL	100	3.6(0.8)	11.8(1.4)	4(0.9)	12.8(1.5)	3.6(0.8)	13.8(1.5)

E.2 Choice of q

In this section, we examine the finite sample performance of the proposed test with different choices of the projected dimension q. We use the same model described in Section 4.1, i.e,

$$Y = 1 + (X^{(1)} - X^{(2)})/2 + A\tau(X) + e,$$

where $X \sim N(0, I_p)$, $A \sim \text{Binom}(1, 0.5)$ and $e \sim N(0, 0.5^2)$. We set q = 50 and N = 600. Consider the following three scenarios. In the first scenario, we set

$$\tau(X) = \delta \left\{ \left(\frac{X^{(1)} + X^{(2)}}{\sqrt{2}} \right)^2 - \left(\frac{X^{(3)} + X^{(4)}}{\sqrt{2}} \right)^2 \right\} \left(\frac{\sum_{j=5}^9 X^{(j)}}{\sqrt{5}} \right)^2,$$

for some $\delta \geq 0$. In the last two scenarios, we set

$$\tau(X) = \delta\left(\frac{\sum_{j=1}^{m} X^{(j)}}{\sqrt{m}}\right) \left(\frac{\sum_{j=m+1}^{m+5} X^{(j)}}{\sqrt{5}}\right)^{2},$$

for some $\delta \geq 0$ and some positive integer m. More specifically, we set m=15 in Scenario 2 and m=30 in Scenario 3. Notice that the total number of variables involved in the OITR under Scenarios 1, 2 and 3 equals 4, 15 and 30, respectively.

As in Section 4.1, the parameter δ controls the degree of overall qualitative treatment effects. When $\delta = 0$, the null hypothesis holds. Otherwise, the alternative holds. In each scenario, we consider four cases by setting $VD(d^{opt}) = 0, 0.3, 0.5$ and 0.7. In all three scenarios, the settings for $VD(d^{opt}) = 0$ are the same. Hence, in Scenarios 2 and 3, we only report the simulation results for $VD(d^{opt}) = 0.3, 0.5$ and 0.7.

We further consider four settings, corresponding to four choices of q. In the first three settings, we set q = 1, 2 and 3, respectively. In the last setting, we adaptively choose q when sampling $S_{\mathcal{I}_j}$. Specifically, for $b = 1, \ldots, B$, we first sample q uniformly from the set $\{1, \ldots, Q\}$, then sample s according as the random variable $s_0 = 2 + \text{Binom}(p-2, 2/(p-2))$, and finally sample S_b according to Step 3 of Algorithm 2. We then output the sparse sketching matrix that maximizes the estimated value difference function. For completeness, we summarize the whole procedure for generating sparse sketching matrix in Algorithm 3. Here, in Step 2(i) of Algorithm 3, we set Q = 3. In all four settings, we set $B = 5 \times 10^5$ and estimate the projected contrast function as described in Section 3.3.2 and Section 4.1.

Results are reported in Table S.3 and S.4. It can be seen that the type-I error rates of all the four test statistics are well controlled. The powers of our tests vary across different choices of q. In Scenario 1 where the OITR involves 4 variables, the test with q = 1 is much powerful than those with q = 2 and 3. In Scenarios 2 and 3 where more than 15 variables are involved in the OITR, the rejection probabilities of the tests with q = 2 and 3 are much larger than those with q = 1.

In addition, the proposed adaptive method performs no worse than any fixed choice of q. In Scenarios 2 and 3, the test with adaptively chosen q achieves the greatest power in nearly all cases. In Scenario 1, when VD = 0.3 and 0.5, the adaptive test has comparable

performance with the test with q=2. When VD=0.7, it achieves greater power when compared to the tests with q=2 and 3.

Table S.3: Rejection probabilities (%) of the sparse random projection-based test with different choices of q, with standard errors in parenthesis, under Scenario 1.

	VD = 0		$\mathrm{VD} = 30\%$		$\mathrm{VD} = 50\%$		$\mathrm{VD} = 70\%$	
α level	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
q=1	0.4(0.3)	4.8(1)	16.4(1.7)	33.8(2.1)	31.6(2.1)	57(2.2)	45.6(2.2)	72.2(2)
q = 2	0.8(0.4)	2.8(0.7)	9(1.3)	23(1.9)	22(1.9)	44.8(2.2)	29.6(2)	57.6(2.2)
q = 3	0.6(0.3)	5(1)	7.8(1.2)	19.2(1.8)	15.2(1.6)	36.2(2.1)	24.4(1.9)	47.4(2.2)
adaptive q	0.2(0.2)	3.6(0.8)	8.8(1.3)	21.6(1.8)	23.8(1.9)	43(2.2)	35.4(2.1)	62.2(2.2)

Table S.4: Rejection probabilities (%) of the sparse random projection-based test with different choices of q, with standard errors in parenthesis, under Scenarios 2 and 3.

	$\mathrm{VD} = 30\%$		VD =	= 50%	$\mathrm{VD} = 70\%$					
α level	0.01	0.05	0.01	0.05	0.01	0.05				
Scenario 2										
q=1	11.2(1.4)	25.8(2)	19.4(1.8)	45.6(2.2)	26(2)	53.4(2.2)				
q = 2	15.6(1.6)	29.4(2)	23.8(1.9)	51.8(2.2)	30.6(2.1)	59(2.2)				
q = 3	14.6(1.6)	34.2(2.1)	21.8(1.8)	47.2(2.2)	30.4(2.1)	56.4(2.2)				
adaptive q	14.6(1.6)	35.6(2.1)	20.6(1.8)	50.6(2.2)	31(2.1)	60.2(2.2)				
Scenario 3										
α level	0.01	0.05	0.01	0.05	0.01	0.05				
q=1	5.4(1)	16.8(1.7)	9.4(1.3)	26.2(2)	9.6(1.3)	27.6(2)				
q = 2	6(1.1)	25.8(2)	12.6(1.5)	33.6(2.1)	15.2(1.6)	36.2(2.1)				
q = 3	8.2(1.2)	21.4(1.8)	12.2(1.5)	37.8(2.2)	15.4(1.6)	40.2(2.2)				
adaptive q	8.2(1.2)	$26.6(2)^{'}$	13.2(1.5)	33.8(2.1)	17(1.7)	36.6(2.2)				

References

Chernozhukov, V., D. Chetverikov, and K. Kato (2014). Testing many moment inequalities. arXiv preprint arXiv:1312.7614.

de Boor, C. (1973). The quasi-interpolant as a tool in elementary polynomial spline theory.

Fang, K. T., S. Kotz, and K. W. Ng (1990). Symmetric multivariate and related distributions, Volume 36 of Monographs on Statistics and Applied Probability. Chapman and Hall, Ltd., London.

- **Algorithm 3.** Generate data-dependent sparse random sketching matrix with adaptively chosen q.
 - 1. Input observations $\{O_i\}_{i\in\mathcal{I}}$, integers B, and $\mathbb{K}\geq 2$.
 - 2. Generate i.i.d matrices S_1, S_2, \ldots, S_B according as S_0 whose distribution is described as follows.
 - (i) Uniformly sample q from the set $\{1, \ldots, Q\}$.
 - (ii) Sample s according as the random variable 2 + Binom(p-2, 2/(p-2)).
 - (iii) For j = 1, ..., q,
 - (iii.1) Independently select a simple random sample \mathcal{M}_i of size s from $\{1,\ldots,p\}$;
 - (iii.2) Independently generate a Gaussian random vector $g_j \sim N(0, I_s)$;
 - (iii.3) Set $S_{0,\mathcal{M}_i^c}^{(j)} = 0$ and $S_{0,\mathcal{M}_j}^{(j)} = g_j / \|g_j\|_2$.
 - 3. Randomly divide \mathcal{I} into \mathbb{K} subsets $\{\mathcal{I}^{(k)}\}_{k=1}^{\mathbb{K}}$ of equal sizes. Let $\mathcal{I}^{(k)-} = \mathcal{I} \cap (\mathcal{I}^{(k)})^c$.
 - 4. For $b = 1, \ldots, B$,
 - (i) For $k = 1, ..., \mathbb{K}$,
 - (i.1) Obtain the estimator $\hat{\tau}_{\mathcal{I}^{(k)-}}^{S_b}$ and $\hat{d}_{\mathcal{I}^{(k)-}}^{S_b}(x) = I\{\hat{\tau}_{\mathcal{I}^{(k)-}}^{S_b}(S_bx) > 0\};$
 - (i.2) Evaluate the value difference $\widehat{\mathrm{VD}}_{\mathcal{I}^{(k)}}(\hat{d}_{\mathcal{I}^{(k)-}}^{S_b})$.
 - (ii) Obtain the cross-validated estimator $\widehat{\text{VD}}_{CV}^{S_b^{(i)}} = \sum_k \widehat{\text{VD}}_{\mathcal{I}^{(k)}}(\hat{d}_{\mathcal{I}^{(k)-}}^{S_b})/\mathbb{K}$. 5. Output $S_{\hat{b}}$, where $\hat{b} = \arg\max_{b=1}^B \widehat{\text{VD}}_{CV}^{S_b}$.
- Luedtke, A. R. and M. J. van der Laan (2016). Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. Ann. Statist. 44(2), 713–742.
- Peña, V. H., T. L. Lai, and Q.-M. Shao (2008). Self-normalized processes: Limit theory and Statistical Applications. Springer Science and Business Media.
- van der Vaart, A. W. and J. A. Wellner (1996). Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics.
- Zhang, Y., J. Duchi, and M. Wainwright (2013). Divide and conquer kernel ridge regression. In Conference on Learning Theory, pp. 592–617.
- Zhou, S. (2009). Restricted eigenvalue conditions on subgaussian random matrices. arXiv: 0912.4045.
- Zhou, S., X. Shen, and D. A. Wolfe (1998). Local asymptotics for regression splines and confidence regions. Ann. Statist. 26(5), 1760–1782.