Engineering Mathematics Single Variable Calculus

DPP-01

- 1. On the interval [0, 1] the function $x^{25}(1-x)^{75}$ takes its maximum value at
 - (a) 0
- (b) 1/2
- (c) 1
- (d) 1/4
- The product of minimum value of x^x and maximum

value of $\left(\frac{1}{x}\right)^x$ is

- (a) *e*
- (c) 1
- The minimum value of the function defined by f(x) = max (x, x + 1, 2 - x) is
 - (a) 0
- (c) 1
- (d) 3/2
- The greatest and the least values of the function,

 $f(x) = 2 - \sqrt{1 + 2x + x^2}$, $x \in [-2, 1]$ are

- (a) 2, 1
- (b) 2, -1
- (c) 2, 0
- (d) None of these
- The difference between the greatest and least values of the function $f(x) = \sin 2x - x$ on $[-\pi/2, \pi/2]$ is

 - (a) $\frac{\sqrt{3} + \sqrt{2}}{2}$ (b) $\frac{\sqrt{3} + \sqrt{2}}{2} + \frac{\pi}{6}$
 - (c) $\frac{\pi}{2}$
- (d) π
- If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value of (p + q) is
 - (a) 2

- 7. If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is
 - (a) 41
- (b) 1
- (c) 17/7
- (d) 1/4
- The maximum value $x^3 3x$ in the interval [0, 2] is
 - (a) 1
- (b) 2
- (c) 0
- (d) -2
- Minimum value of $\frac{1}{3\sin\theta 4\cos\theta + 7}$ is

 - (a) $\frac{7}{12}$ (b) $\frac{5}{12}$
- 10. The number of values of x where $f(x) = \cos x + \cos \sqrt{2}x$ attains its maximum value is
 - (a) 1
- (c) 2
- (d) infinite
- 11. The greatest value of $f(x) = (x + 1)^{1/3} (x 1)^{1/3}$ in
 - [0, 1] is (a) 1
- (c) 3
- 12. if $\int_{1/t/\sqrt{t^2-1}}^{x} = \frac{\pi}{6}$, then x can be equal to
 - (a) $\frac{2}{\sqrt{3}}$ (b) $\sqrt{3}$
 - (c) 2
- (d) None of these
- 13. if $f(x) = \begin{cases} x; & x < 1 \\ x 1; & x \ge 1 \end{cases}$, then $\int_{0}^{2} x^{2} f(x) dx$ is equal to
 - (a) 1
- (b) 4/3
- (c) 5/3
- (d) 5/2

- **14.** $\int_{1}^{\pi} |1 + 2\cos x| \, dx$ equal to :
 - (a) $2\pi/3$ (b) π

 - (c) 2 (d) $\frac{\pi}{3} + 2\sqrt{3}$
- 15. The value of $\int_{-1}^{3} (|x-2|+[x]) dx$ is equal to (where [*] denotes greatest integer function)
 - (a) 7
- (b) 5
- (c) 4
- (d) 3
- **16.** If $\int_{-1}^{3/2} |x \sin \pi x| dx = \frac{k}{\pi^2}$, then the value of k is
 - (a) $3\pi + 1$ (b) $2\pi + 1$
 - (c) 1
- 17. $\int_{\log \pi \log 2}^{\log \pi} \frac{e^x}{1 \cos\left(\frac{2}{3}e^x\right)} dx \text{ is equal to}$

- (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $-\frac{1}{\sqrt{3}}$
- **18.** If $I_1 = \int_{1}^{e^2} \frac{dx}{\ln x}$ and $I_2 = \int_{1}^{2} \frac{e^x}{x} dx$, then

- **19.** $\int_{2-\log 3}^{3+\log 3} \frac{\log(4+x)}{\log(4+x) + \log(9-x)} dx$
 - (a) Cannot be evaluated
 - (b) Is equal to 5/2
 - (c) is equal to $1+2 \log 3$
 - (d) Is equal to $\frac{1}{2} + \log 3$
- **20.** $\int_{0}^{\infty} [2e^{-x}] dx$ is equal to
 - (where [*] denotes the greatest integer function)
- (b) ln 2
- (c) e^2
- (d) $2e^{-1}$

- **21.** If $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{x}}{2}$, then $\int_{0}^{\infty} e^{-ax^2} dx$ where a > 0 is
- (a) $\frac{\sqrt{\pi}}{2}$ (b) $\frac{\sqrt{\pi}}{2a}$ (c) $2\frac{\sqrt{\pi}}{a}$ (d) $\frac{1}{2}\sqrt{\frac{\pi}{a}}$
- 22. The expression $\int_{0}^{n} [x] dx$ is equal to

(where [*] and {*} denotes greatest integer function and fractional part function and $n \in N$).

- (a) 1/n-1
- (b) 1/n
- (c) n
- (d) n-1
- 23. Let $A = \int_0^1 \frac{e^t dt}{1+t} dt$ then $\int_{a-1}^a \frac{e^{-t}}{t-a-1} dt$ has the value
- (b) -Ae^{-a} (d) Ae^a
- (c) $-ae^{-a}$
- **24.** $\int_{0}^{\pi} xf(\sin x) dx$ is equal to
 - (a) $\pi \int_{0}^{\pi} f(\sin x) dx$
 - (b) $\frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) dx$
 - (c) $\pi \int_{0}^{\pi/2} f(\cos x) dx$
 - (d) $\pi \int_{0}^{\pi} f(\cos x) dx$
- **25.** Let $f: R \to R$ be a differentiable function having
 - f(2) = 6, $f'(2) = \left(\frac{1}{48}\right)$. Then $\lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^3}{x 2} dt$ equals
 - (a) 18
- (b) 12
- (c) 36
- (d) 24
- **26.** The value of $\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$ is
- (b) 1
- (a) 0 (c) 2
- (d) 3

27. If f(a+b-x) = f(x), then $\int_{a}^{b} x f(x) dx$ is equal to

(a) $\frac{a+b}{2} \int f(b-x) dx$

(b) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$

(c) $\frac{b-a}{2} \int_{a}^{b} f(x) dx$

(d) $\frac{a+b}{2}\int_{a}^{b}f(a+b+x)dx$

28. The value of $\lim_{x\to 0} \frac{\int_0^{x^2} \sec^2 t dt}{x \sin x}$ is

(a) 3

(b) 2

(c) 1

(d) -1

29. $\int_{\sin x}^{1} t^2 f(t) dt = 1 - \sin x \forall x \in (0, \pi/2), \text{ then } f\left(\frac{1}{\sqrt{3}}\right) \text{ is}$

(a) 3

(b) $\sqrt{3}$

(c) 1/3

(d) None of these

 $\int_{0}^{x^{2}} \cos t^{2} dt$ 30. $\lim_{x\to 0} \frac{0}{x \sin x}$ is equal to

(a) -1

(b) 1

(c) 2

(d) -2

31. If $\int_{\ln 2}^{x} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}$, then $x = \frac{\pi}{6}$

(a) 4

(b) ln 8

(c) ln 4

(d) None of these

32. $\lim_{x \to \infty} \left(\frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)^x =$

(a) 1

(c) e^2

(d) e

33. If α and β be the roots of $ax^2 + bx + c = 0$, then

 $\lim_{x \to \alpha} (1 + ax^2 + bx + c)^{\frac{1}{x - \alpha}} \text{ is}$

(a) $a(\alpha - \beta)$

(b) $\ln |a(\alpha - \beta)|$

(c) $e^{a(\alpha-\beta)}$ (d) $e^{a|\alpha-\beta|}$

34. $\lim_{x \to \pi/2} \frac{2^{-\cos x} - 1}{x(x - \pi/2)} =$

(a) $\frac{2 \ln 2}{\pi}$

(b) ln2

(c) $2/\pi$

(d) Does not exists

35. Limit $\frac{\left(1-\tan\frac{x}{2}\right)(1-\sin x)}{\left(1+\tan\frac{x}{2}\right)(\pi-2x)^3}$ is

(a) 1/16

(b) -1/16

(c) 1/32

(d) -1/32

36. $\lim_{x\to 0} (\cos mx)^{n/x^2}$

(c) $e^{-mn^2/2}$

37. $\lim_{x \to 0} \frac{(4^x - 1)^3}{\sin(\frac{x}{n}) \ln(1 + \frac{x^2}{3})} =$

(a) $9 p (\log 4)$ (b) $3 p (\log 4)^3$

(c) $12 p (\log 4)^3$ (d) $27 p (\log 4)^2$

38. Evaluate

 $\operatorname{Limit}_{n\to\infty} \left(\frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+2n}} \right)$

(b) 1/2

(d) 2

- **39.** $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x$ is equal to
 - (a) e^4 (b) e^2 (c) e^3 (d) e
- **40.** Let α and β be the distinct roots of $ax^2 + bx + c = 0$,

Then $\lim_{x\to\alpha} \frac{1-\cos(ax^2+bx+c)}{(x-\alpha)^2}$ is equal to

- (a) $\frac{1}{2}(\alpha \beta)^2$ (b) $-\frac{a^2}{2}(\alpha \beta)^2$
- (c) 0 (d) $\frac{a^2}{2}(\alpha \beta)^2$
- **41.** $\lim_{x\to 0} \left(\cot\left(\frac{\pi}{4}+x\right)\right)^{\cos cx} =$
 - (a) e^{-1}
- (b) e^2

- (c) e^{-2} (d) e^{1}
- 42. $\lim_{x \to \infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x \text{ is}$

 - (a) e (b) e^2

 - (c) 1/e (d) does not exist
- **43.** $\lim_{x\to\infty} \frac{\sin(6x^2)}{\ln\cos(2x^2-x)} =$

 - (a) 12 (b) -12

 - (c) 6 (d) -6
- **44.** $\lim_{x \to 0} \frac{e^{-x^2/2} \cos x}{x^3 \sin x} =$
 - (a) 1/4
- (b) 1/6
- (c) 1/12

(d) 1/8

Answer Key

1.	(d)
2	(c)

2. (c) 3. (d)

4. (c)

5. (d)

6. (d)

7. (a)

8. (b)

9. (c)

10. (a)

11. (b)

12. (a)

13. (c)

14. (d)

15. (a)

16. (a)

17. (a)

18. (a)

19. (d)

20. (b)

21. (d)

22. (d)

23. (b)

24. (c)

25. (a)

26. (c)

27. (b)

28. (c)

29. (a)

30. (b)

31. (c)

32. (c)

33. (c)

34. (a)

35. (c)

36. (b)

37. (b)

38. (d)

39. (a)

40. (d)

41. (c)

42. (a)

43. (b)

44. (c)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if
Telegram Link: https://t.me/mathandaptitudes

