Análise Preditiva de Partidas de Futebol: Modelagem da Diferença de Gols

Relatório Completo para Apresentação

1. Introdução e Objetivo

Este projeto visa desenvolver um modelo preditivo para prever a diferença de gols em partidas de futebol (time mandante – time visitante) utilizando estatísticas de jogo como posse de bola, chutes a gol e formações táticas. O objetivo principal é explorar diferentes algoritmos de regressão para entender quais fatores têm maior influência no resultado das partidas.

2. Conjunto de Dados e Preparação

Base de dados: A análise utiliza um dataset campeonatos contendo estatísticas detalhadas de 4.161 partidas de futebol.

Variável alvo:

- Diferenca_Gols = Gols do Time 1 Gols do Time 2
- Resultado categórico: O (vitória Time 2), 1 (empate), 2 (vitória Time 1)

Características do dataset:

- A diferença de gols apresenta média de 0.34
- Distribuição assimétrica positiva (favorecendo o time mandante)
- 1.886 vitórias do Time 1 (45.3%)
- 994 empates (23.9%)
- 1.281 vitórias do Time 2 (30.8%)

3. Engenharia de Features

Features derivadas criadas:

- Diff_Chutes_Gol: Diferença em chutes a gol
- Diff_Posse: Diferença na posse de bola (%)
- Diff_Escanteios: Diferença em escanteios
- Diff_Faltas: Diferença em faltas
- Eficiencia_Ofensiva: Razão entre chutes a gol e total de chutes para cada equipe
- Diff_Eficiencia_Ofensiva: Diferença na eficiência ofensiva

Tratamento de variáveis categóricas:

- Codificação one-hot para formações táticas (Position 1, Position 2)
- Resultou em 74 features totais após processamento

4. Metodologia

Pré-processamento:

Divisão treino-teste (80%-20%)

Escalonamento das variáveis numéricas (StandardScaler)

Seleção de features (SelectKBest com f_regression)

Features mais relevantes identificadas:

Diferença de chutes a gol (Diff_Chutes_Gol)

Chutes a gol do Time 1

Diferença na eficiência ofensiva

Chutes a gol do Time 2

Eficiência ofensiva dos times

Modelos implementados:

Regressão Linear

Ridge Regression

Lasso Regression

ElasticNet

Support Vector Regression (SVR)

Random Forest

Gradient Boosting

5. Resultados e Comparação de Modelos

Comparação de modelos (ordenado por R²):

	r2	rmse	mae	evs
ElasticNe t	0.237622	1.434844	1.151170	0.237638
Lasso	0.235444	1.436892	1.151208	0.235508
Ridge	0.232638	1.439527	1.156827	0.232645
Regressã o Linear	0.232632	1.439533	1.156839	0.232639
Gradient Boosting	0.192352	1.476831	1.177913	0.192430
Random Forest	0.183225	1.485152	1.187725	0.183417
SVR	0.080803	1.575520	1.263256	0.080837

6. Análise dos Resultados

Principais observações:

- Modelos lineares regularizados (ElasticNet e Lasso) apresentaram melhor performance
- O melhor modelo (ElasticNet) conseguiu explicar apenas ~24% da variância na diferença de gols
- Os erros médios absolutos ficaram em torno de 1.15 gols
- SVR teve desempenho significativamente inferior aos demais modelos

Limitações identificadas:

- R² relativamente baixo indica que há fatores importantes não capturados pelo modelo
- Alto valor de MAPE (~82%) sugere dificuldade na predição precisa da diferença de gols

7. Conclusões e Próximos Passos

Conclusões:

- A diferença de chutes a gol é o preditor mais importante para a diferença no placar
- Modelos com regularização apresentaram melhor desempenho, sugerindo a presença de multicolinearidade
- Prever o resultado exato de partidas de futebol é desafiador (R² de 0.24)

Próximos passos:

- Explorar features adicionais (histórico de confrontos, forma recente, fatores climáticos)
- Testar abordagens de ensemble e modelos mais complexos
- Considerar modelos específicos para previsão categórica (vitória/empate/derrota)
- Implementar análise temporal para capturar tendências de desempenho das equipes

8. Implementação Técnica

O projeto foi desenvolvido em Python utilizando bibliotecas como scikit-learn 1.6.1, pandas, numpy e seaborn. A avaliação dos modelos utilizou validação cruzada e métricas diversificadas para garantir análise robusta dos resultados.