- (a): the total amount of the repeating units represented by the formulae (1) and (3) is 50 mol% or more of the amount of the whole repeating units,
- (b): the amount of the repeating unit represented by the formula (3) is more than 0.1 mol% and less than 9 mol% based on the total amount of the repeating units represented by the formula (1) and formula (3), and
- (c): when the absorption edge wavelength of a polymer/solely composed of a repeating unit represented by the formula (1) is represented by λ_1 (nm) and the absorption edge wavelength of a polymer solely composed of a repeating unit represented by the formula (3) is represented by λ_2 (nm), the following relation is satisfied:

$$1239/\lambda_1 \ge 1/239/\lambda_2 + 0.05$$

$$--Ar_1-\left(CR_1-CR_2\right)_n$$

in the formula, Ar_1 is a group represented by the following formula (2); R_1 and R_2 each independently represents a group selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, anyl group having 6 to 60 carbon atoms, heterocyclic compound group having 4 to 60 carbon atoms and cyano group; and n is 0 or 1,

$$---Ar_2--\left(Ar_3\right)_m-Ar_4--\left(\dots (2)\right)$$

in the formula, Ar₂ to Ar₄ each independently represents an arylene group having 6 to 60 carbon atoms contained in the main chain, or a heterocyclic compound group having 4 to 60 carbon

atoms contained in the main chain; at least one of Ar₂ to Ar₄ is a group other than a 6-membered ring, or at least one of Ar₂ to Ar₄ has a substituent other than a hydrogen atom; when a plurality of substituents are carried, they may be the same or different; adjacent rings may be mutually connected directly or via a substituent to form a ring; m is an integer from 0 to 3; wherein, Ar₂ and Ar₄ constitute a structure wherein if Ar₂ moves in parallel to the polymer main chain, it does not completely overlap Ar₄.

$$--Ar_5--\left(CR_3--CR_4-\right)_1$$
....(3)

in the formula, Ar₅ represents an arylene group having 6 to 60 carbon atoms contained in the main chain, or a heterocyclic compound group having 4 to 60 carbon atoms contained in the main chain; R₃ and R₄ each independently represents a group selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 60 carbon atoms, heterocyclic compound group having 4 to 60 carbon atoms and cyano group; 1 is 0 or 1.

- 2. (Amended) A polymeric/fluorescent substance which emits a fluorescence in solid state and having a number-average molecular weight of 10³ to 10⁸ in terms of polystyrene, wherein the substance contains each one or more of repeating units represented by the following formula (1), formula (3) and formula (4), and these repeating units are so selected as to satisfy the following conditions (d) to (f):
- (d): the amount of the repeating unit represented by the formula (1) is 10 mol% or more of the amount of the whole repeating units, and the total amount of the repeating units

represented by the formula (1), formula (3) and formula (4) is 50 mol/% or more of the amount of the whole repeating units,

- (e): the amount of the repeating unit represented by the formula (3) is more than 0.1 mol% and less than 9 mol% based on the total amount of the repeating units represented by the formula (1), formula (3) and formula (4), and
- (f): when the absorption edge wavelength of a polymer solely composed of a repeating unit represented by the formula (1) is represented by λ_1 (nm), the absorption edge wavelength of a polymer solely composed of a repeating unit represented by the formula (3) is represented by λ_2 (nm) and the absorption edge wavelength of a polymer solely composed of a repeating unit represented by the formula (4) is represented by λ_3 (nm), the following relations are satisfied:

$$1239/\lambda_1 \ge 1239/\lambda_2 + 0.05$$

$$1239/\lambda_3 \ge 1239/\lambda_2 + 0.05$$

$$-Ar_1 - \left(CR_1 = CR_2\right)_n \qquad \dots$$

in the formula, Ar_1 is a group represented by the following formula (2); R_1 and R_2 each independently represents a group selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 60 carbon atoms, heterocyclic compound group having 4 to 60 carbon atoms and cyano group; and n is 0 or 1,

$$--Ar_5-(CR_3=-CR_4)$$
.... (3)

in the formula, Ar₅ represents an arylene group having 6 to 60 carbon atoms contained in the main chain, or a heterocyclic compound group having 4 to 60 carbon atoms contained in the main chain; R₃ and R₄ each independently represents a group selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 60 carbon atoms, heterocyclic compound group having 4 to 60 carbon atoms and cyano group; 1 is 0 or 1

$$--Ar_6-\left(CR_5-CR_6\right)_k$$
 (4)

in the formula, Ar_6 is an arylene group having 6 to 60 carbon atoms contained in the main chain, or a heterocyclic compound group having 4 to 60 carbon atoms contained in the main chain; R_5 and R_6 each independently represents a group selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 60 carbon atoms, heterocyclic compound group having 4 to 60 carbon atoms and cyano group; and k is 0 or 1.