

## 104-1-Buzzer-PCB-Design-v1-AP-2021-08-24.odp

**CTI One Corporation** 

Version: 1.0
Date: Aug 10, 2021
Project Lead: Harry Li, Ph.D.

Team members: Aniket Phatak

Company confidential

## Buzzer PCB Design Objectives

- 1. To provide functionality to the exiting Tx2 board and/or NANO board to allow the board provide the buzzer sound when triggered by the software driver and user program;
- 2. To realize an easy mounting by a plug-and-play PCB board to allow it fit into the exiting connectors of Tx2 and/or NANO;
- 3. To make sure mechanical locking mechanism is adopted to give a fail-proof secure connection;
- 4, To allow both audible and visual alarm signals to be easily detected by the user and the system operators.

## The PCB Design Specifications

- 1. PWM pin of the J2 connector from Tx2 board, or PWM pin of J??? connector of NANO board is connected to a buzzer device, so when PWM output signal is activated, the buzzer will be driven to produce the buzzer sound; The audible sound should reach ??? dB at ??? Khz frequency.
- 2. The current output from PWM pin should be regulated in the range of 4 mA 15 mA maximum;
- 3. The red LED should be lighted up when the PWM output signal is activated and this LED should be visible with ??? Lums.

#### Connector Identification for Tx2 and/or NANO

Provide connector of Tx2 board photo here (with URL)

Provide connector of NANO board photo here (with URL)

Provide Tx2 pin connectivity table here (with URL)

Provide NANO pin connectivity table here (with URL)

### NANO Board 40-Pin Connector (Header) Pins

https://elinux.org/Jetson\_Nano#Carriers

Provide connector of NANO board photo here (with URL)

Provide NANO pin connectivity table here (with URL)



40-pin Header - (3x) I2C, (2x) SPI, UART, I2S, GPIOs

### Tx2 Board 40-Pin Connector (Header) Pins

https://elinux.org/Jetson\_Nano#Carriers

Provide connector of Tx2 board photo here (with URL)

Provide pin connectivity table here (with URL)

#### J44 Serial NANO J41 Pin Out J38 PoE Developer Board J40 **Buttons** Serial TXD RXD N/A RTS GND J13 J41 Camera Expansion PC J48 • • Serial 3.3V, 115200 8N1 DC Jumper :: **Buttons** DIS (disable auto power-on) **PWR LED** RST (system reset) FRC (board recovery mode) ON (power on) DisplayPort Fan Micro USB and HDMI USB 3.0 x 4 GigEth 5V DC PWR or PWM 5V (2.1mm ID, TACH GND **USB** Device

Positive Center)

**Pinouts** 

|                                                                                  | Alt Function | Linux(BCM) | Board Label |    |    | Board Label | Linux(BCM) | Alt Function |
|----------------------------------------------------------------------------------|--------------|------------|-------------|----|----|-------------|------------|--------------|
| NANO J41                                                                         | DAP4_DOUT    | 78(21)     | D21         | 40 | 39 | GND         |            |              |
| IVAIVO J41                                                                       | DAP4_DIN     | 77(20)     | D20         | 38 | 37 | D26         | 12(26)     | SPI2_MOSI    |
| Pin Out                                                                          | UART2_CTS    | 51(16)     | D16         | 36 | 35 | D19         | 76(19)     | DAP4_FS      |
|                                                                                  |              |            | GND         | 34 | 33 | D13         | 38(13)     | GPIO_PE6     |
| https://www.element14.com/<br>community/community/<br>designcenter/single-board- | LCD_BL_PWM   | 168(12)    | D12         | 32 | 31 | D6          | 200(6)     | GPIO_PZ0     |
|                                                                                  |              |            | GND         | 30 | 29 | D5          | 149(5)     | CAM_AF_EN    |
| computers/blog/2019/05/21/nvidia-<br>jetson-nano-developer-kit-pinout-           |              |            | D1/ID_SC    | 28 | 27 | DO/ID_SD    |            |              |
| and-diagrams                                                                     | SPI1_CS1     | 20(7)      | D7          | 26 | 25 | GND         |            |              |
|                                                                                  | SPI1_CSO     | 19(8)      | D8          | 24 | 23 | D11         | 18(11)     | SPI1_SCK     |
|                                                                                  | SPI2_MISO    | 13(25)     | D25         | 22 | 21 | D9          | 17(9)      | SPI1_MISO    |
|                                                                                  |              |            | GND         | 20 | 19 | D10         | 16(10)     | SPI1_MOSI    |
|                                                                                  | SPI2_CS0     | 15(24)     | D24         | 18 | 17 | 3.3V        |            |              |
|                                                                                  | SPI2_CS1     | 232(23)    | D23         | 16 | 15 | D22         | 194(22)    | LCD_TE       |
|                                                                                  |              |            | GND         | 14 | 13 | D27         | 14(27)     | SPI2_SCK     |
|                                                                                  | DAP4_SCLK    | 79(18)     | D18         | 12 | 11 | D17         | 50(17)     | UART2_RTS    |
|                                                                                  |              |            | PVD/D15     | 10 | 0  | CND         |            |              |

|                | CCD_DC_F VVIVI | 100(12) | 012      | 32 | -  | 20       | 200(0)  | GF10_F20   |
|----------------|----------------|---------|----------|----|----|----------|---------|------------|
|                |                |         | GND      | 30 | 29 | D5       | 149(5)  | CAM_AF_EN  |
| vidia-<br>out- |                |         | D1/ID_SC | 28 | 27 | DO/ID_SD |         |            |
|                | SPI1_CS1       | 20(7)   | D7       | 26 | 25 | GND      |         |            |
|                | SPI1_CS0       | 19(8)   | D8       | 24 | 23 | D11      | 18(11)  | SPI1_SCK   |
|                | SPI2_MISO      | 13(25)  | D25      | 22 | 21 | D9       | 17(9)   | SPI1_MISO  |
|                |                |         | GND      | 20 | 19 | D10      | 16(10)  | SPI1_MOSI  |
|                | SPI2_CS0       | 15(24)  | D24      | 18 | 17 | 3.3V     |         |            |
|                | SPI2_CS1       | 232(23) | D23      | 16 | 15 | D22      | 194(22) | LCD_TE     |
|                |                |         | GND      | 14 | 13 | D27      | 14(27)  | SPI2_SCK   |
|                | DAP4_SCLK      | 79(18)  | D18      | 12 | 11 | D17      | 50(17)  | UART2_RTS  |
|                |                |         | RXD/D15  | 10 | 9  | GND      |         |            |
|                |                |         | TXD/D14  | 8  | 7  | D4       | 216(4)  | AUDIO_MCLK |
|                |                |         | GND      | 6  | 5  | SCL/D3   |         |            |
|                |                |         | 5V       | 4  | 3  | SDA/D2   |         |            |
|                |                |         | 5V       | 2  | 1  | 3.3V     |         |            |
|                |                |         |          |    |    |          |         |            |

## NANO 3D CAD Design



### Appendix NANO Getting Started with SD Card

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

Setup your devkit and format the MicroSD card, a computer with Internet connection and the ability to flash your microSD card is also required.

Step 1. Write Image to the microSD Card. You'll need a computer with Internet connection and the ability to read and write SD cards, either via a built-in SD card slot or adapter. Download the Jetson Nano Developer Kit SD Card Image from Nividia developer site, Write the image to your microSD card by following the instructions from NVDA developer site.

Step 2. Setup and First Boot by either 1) with display, keyboard and mouse attached to NANO, or 2) in "headless mode" via connection from your host computer.



## Buzzer PCB Design for Nvidia TX2

#### **TMB12A05**

Specifications: https://osoyoo.com/2017/05/05/buzzer-5v-breadboard-friendlytmb12a05/Datasheet: https://www.quick-teck.co.uk/Management/EEUploadFile/1420788438.pdf

12MM round speaker that operates in audible 2Khz range





#### **TECHNICAL DETAILS**

- Sound-making Type : Continuous Sound;
- Rated Voltage : DC 5V
- OPERATING VOLTAGE: DC 4~7V
- Body Size(Terminalnot included): 12 x 9.5mm / 0.47"x 0.37"(D\*T);
- TerminalPitch: 7.6mm / 0.29":
- Sound Output : ≥85dB
- External Material : Plastic;
- Frequency: 2300+/-300Hz
- Current: : 30mA;
- Operating Temprature: -20~+85°C
- Color : Black
- Weight: 8g
- DIMENSION:(UNIT:mm)

## Schematic Design

Buzzer Design



# Design Specs

| # | Part Name            | Part Number/Value |
|---|----------------------|-------------------|
| 1 | Green LED            | 0805 SMD          |
| 2 | Buzzer audio speaker | SQ601-BP          |
| 3 | Resister             | 1K ohm            |