

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)		2. REPORT TYPE Technical Papers		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER <i>2303</i>	
				5e. TASK NUMBER <i>M2C8</i>	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				8. PERFORMING ORGANIZATION REPORT	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
<i>1121 033</i>					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A		19b. TELEPHONE NUMBER (include area code) (661) 275-5015

MEMORANDUM FOR PRR (Contracter/In-House Publication)

FROM: PROI (TI) (STINFO)

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0110
Fajardo and Tam, "High Resolution Infrared Absorption Spectroscopy of Molecular Dopants in Cryogenic Solid
Parahydrogen"

Poster Session HEDM CONFERENCE

1 June 1999

(Public Release)

✓ Spreadsheet
✓ DTS

Let me know which file
are right.
OK
all other paper

High Resolution Infrared Absorption Spectroscopy of Molecular Dopants in Cryogenic Solid Parahydrogen

Mario E. Fajardo and Simon Tam

US Air Force Research Laboratory, Propulsion Directorate
(AFRL/PRSP Bldg. 8451, Edwards AFB, CA 93524-7680) mario_fajardo@ple.af.mil

Premature claims of successful energy storage in cryogenic solids date back to the National Bureau of Standards' Free Radicals program. Such errors typically result from reliance on unsupplemented calorimetric data, which shed little light on the mechanism of energy storage, *i.e.*, chemical identities of the energetic species and microscopic structures within the trapping medium. Only spectroscopic measurements provide the species and structure specific information required for directed incremental progress towards higher stored energy densities.

In HEDM program funded studies, Oka and co-workers pioneered the use of high resolution spectroscopic techniques in solid parahydrogen (pH_2). Our rapid vapor deposition sample preparation technique now enables us to trap virtually any volatilizable species in solid pH_2 . We present results of high resolution infrared absorption experiments on pH_2 solids doped with isolated molecules and small clusters.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

13 PPM CH_4/pH_2 $d \approx 3\text{mm}$

st27011.8
st27011.4
st27011.2

annealed
annealing
as deposited

T=2.4K
T=4.8K
T=2.4K

resolution = 0.0075 cm⁻¹

20021121 033

OBJECTIVE

Develop infrared (IR) absorption spectroscopic diagnostics for HEDM doped cryogenic parahydrogen (pH_2) solids.

APPROACH

Collect high resolution IR spectra of pH_2 solids doped with non-energetic species: prototypical diatomic, triatomic, linear polyatomic, symmetric top, and spherical top dopant molecules.

Model data as "matrix-perturbed" gas phase spectra, if possible.

Develop new spectroscopic models in collaboration with AFRL/Edwards Theory group, as necessary.

SUMMARY

Many, but not all, molecular dopants exhibit very sharp ($\sim 0.01 \text{ cm}^{-1}$ FWHM) IR absorption lines in solid pH_2 , providing an extremely detailed window into trapping site structures and dynamics.

Model for spherical top molecules trapped in single substitutional sites in fcc and hcp solid pH_2 developed in collaboration with Prof. T. Momose of Kyoto U. is completely successful in explaining spectra of CH_4/pH_2 system. Model of trapped diatomic molecules forthcoming.

FUTURE DIRECTIONS

Develop model for dopants trapped in multi-substitutional vacancies.

Include effects of lattice relaxation via quantum Monte Carlo methods.

^{ppm}
9 PPM C₂H₂/pH₂ d≈3mm

st28034.13 annealed T=2.4K
st28034.7 annealing T=4.8K
st28034.5 as deposited T=2.4K

resolution = 0.005 cm⁻¹

ST28034.5

^{ppm}
13 PPM CO/pH₂ d≈3mm

st27017.18 annealed T=2.4K
st27017.14 annealing T=4.8K
st27017.10 as deposited T=2.4K

resolution = 0.0075 cm⁻¹

ST27017.10

$^{13}\text{C}^{16}\text{O}/\text{pH}_2$ $d \approx 3\text{mm}$

st28082.6 annealed $T=2.4\text{K}$
 st28082.4 annealing $T=4.8\text{K}$
 st28082.2 as deposited $T=2.4\text{K}$

11 PPM $^{13}\text{CO}/\text{pH}_2$ resolution = 0.005 cm^{-1}

ST28082.2

$^{13}\text{C}^{18}\text{O}/\text{pH}_2$ $d \approx 3\text{mm}$

st28085.5 annealed $T=2.4\text{K}$
 st28085.3 annealing $T=4.8\text{K}$
 st28085.1 as deposited $T=2.4\text{K}$

29 PPM $^{13}\text{CO}/\text{pH}_2$ resolution = 0.005 cm^{-1}

ST28085.1

^{PPM}
90 PPM H³⁵Cl/pH₂ d≈3mm

st27079.11 annealed T=2.4K
st27079.7 as deposited T=2.4K
resolution = 0.005 cm^{-1}

ST27079.7

^{PPM}
88 PPM HCl/pH₂ d≈3mm

st27061.11 annealed T=2.4K
st27061.7 as deposited T=2.4K
resolution = 0.0075 cm^{-1}

^{PPM}
94 PPM H³⁷Cl/pH₂ d≈3mm

st27103.6 annealed T=2.4K
st27103.2 as deposited T=2.4K
resolution = 0.005 cm⁻¹

ST27103.2

irreversible T dependences

88 PPM HCl/pH₂ d≈3mm
st27061.7 as deposited T=2.4K
st27061.11 annealed T=2.4K

ST27061.11

reversible T dependences

st27103.13 evaporating T≈10K
 st27103.4 annealing T=4.8K
 st27061.11 annealed T=2.4K

94 PPM H³⁷Cl

ST27103.4

gas phase HCl and (HCl)₂ transitions

$(\text{HCl})_2 \nu_2^+$ region

st27061.11 annealed T=2.4K 88 PPM HCl
 st27097.6 annealed T=2.4K 33 PPM H³⁷Cl
 st27073.17 annealed T=2.4K 30 PPM H³⁵Cl

ST27073.17

$(\text{HCl})_3$

st27061.11 annealed T=2.4K 88 PPM HCl
 st27103.6 annealed T=2.4K 94 PPM H³⁷Cl
 st27079.11 annealed T=2.4K 90 PPM H³⁵Cl

ST27103.6

$(\text{HCl})_4$

ST27103.6

ppm
~~123 PPM HF/pH₂~~ d≈3mm

st27115.15 annealed T=2.4K
 st27115.13 annealing T=4.8K
 st271215.9 as deposited T=2.4K

resolution = 0.005 cm^{-1}

$(HF)_n/pH_2$

st27133.15

sample burnoff

T~10K

268 PPM HF/pH₂

resolution = 0.1 cm^{-1}

st27133.15

HF-HCl/pH₂

st27115.15

annealed T=2.4K

st27115.13

annealing T=4.8K

st27115.9

as deposited T=2.4K

123 PPM HF/pH₂ d≈3mm

resolution = 0.005 cm^{-1}

ppm
260 PPM HBr/pH₂ d≈3mm

ST27145.5

$(\text{HBr})_2/\text{pH}_2$

st27140.9 annealed T=2.4K
 st27140.7 annealing T=4.8K
 st27140.5 as deposited T=2.4K

80 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm^{-1}

HCl-(HF, HCl, HBr)/pH₂

st27145.9 annealed T=2.4K
st27145.7 annealing T=4.8K
st27145.5 as deposited T=2.4K

260 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm⁻¹
ST27145.5

2.4 PPM CH₃F/pH₂ d≈3mm

st28060.15 annealed T=2.4K
st28060.11 annealing T=4.8K
st28060.6+7 as deposited T=2.4K

resolution = 0.005 cm⁻¹

^1H Spin Relaxation in $\text{CH}_3\text{F}/\text{pH}_2$

st28060.7 after 100 min
st28060.6 after 70 min

T=2.4K
T=2.4K

st28060.3 after 30 min
st28060.2 as deposited

T=2.4K
T=2.4K

resolution = 0.005 cm⁻¹
ST28060.2

$(\text{CH}_3\text{F})_2/\text{pH}_2$

st28044.11 annealed
st28044.7 annealing
st28044.3 as deposited

T=2.4K
T=4.8K
T=2.4K

30 PPM $\text{CH}_3\text{F}/\text{pH}_2$

resolution = 0.005 cm⁻¹

SUPPLEMENTAL MATERIALS

for the poster:

HIGH ENERGY DENSITY MATTER CONTRACTORS CONFERENCE
Cocoa Beach, FL 8-11 June 1999

High Resolution Infrared Absorption Spectroscopy of Molecular Dopants in Cryogenic Solid Parahydrogen

Mario E. Fajardo and Simon Tam

US Air Force Research Laboratory, Propulsion Directorate
(AFRL/PRSP Bldg. 8451, Edwards AFB, CA 93524-7680) mario_fajardo@ple.af.mil

Consisting of spectra of NON-ENERGETIC species trapped in solid hydrogen at low concentrations. These data encompass prototypical diatomic (CO, HCl, HF, HBr), triatomic (CO₂, N₂O, H₂O), linear polyatomic (C₂H₂), symmetric top (NH₃, CH₃F), and spherical top (CH₄) molecular dopants. The basic research activity of understanding these spectra will aid in the future characterization of HEDM cryosolid propellants.

^{ppm}
13 PPM CH₄/pH₂ d≈3mm

^{ppm}
1 PPM CO₂/pH₂ d≈3mm

^{ppm}
1 PPM N₂O/pH₂ d≈3mm

^{ppm}
4 PPM NH₃/pH₂ d≈3mm

^{ppm}
4 PPM NH₃/pH₂ d≈3mm

ST27036.8

^{ppm}
8 PPM HCl/pH₂ d≈3mm

st27055.11 annealed T=2.4K
st27055.4 as deposited T=2.4K
resolution = 0.05 cm⁻¹

reversible T dependences

88 PPM HCl
st27061.9 annealing $T=4.8\text{K}$
st27061.11 annealed $T=2.4\text{K}$

ST27061.9

$(\text{HCl})_2 \nu_2^+$ region

st27061.11 annealed $T=2.4\text{K}$ 88 PPM HCl

ST27061.11

~~494 PPM HCl/pH₂~~ ^{ppm} d≈3mm

st27067.10 annealed T=2.4K
st27067.6 as deposited T=2.4K
resolution = 0.0075 cm^{-1}

ST27067.6

~~30 PPM H³⁵Cl/pH₂~~ ^{ppm} d≈3mm

st27073.17 annealed T=2.4K
st27073.9 as deposited T=2.4K
resolution = 0.005 cm^{-1}

ST27073.9

reversible T dependences

ST27073.11

284 $\overset{\text{ppm}}{\text{PPM}}$ $\text{H}^{35}\text{Cl}/\text{pH}_2$ $d \approx 3\text{mm}$

st27085.9 annealed $T=2.4\text{K}$
st27085.5 as deposited $T=2.4\text{K}$
resolution = 0.005 cm^{-1}

ST27085.1

33 PPM H³⁷Cl/pH₂ d≈3mm

ST27097.2

HCl monomer shifts

<u>species</u>	<u>line/band</u>	<u>gas phase (cm⁻¹)</u>	<u>solid pH₂</u>	<u>gas-matrix</u>
H ³⁵ Cl	R(1)	2925.8961	2912	14
	R(0)	2906.2464	2894.2	12.1
	"Q(0)"	2885.67	2873.86	
			2873.67	12.0
			2873.46	
			2873.14	
	P(1)	2865.0977	2854.12	
			2853.58	11.5
			2852.95	
H ³⁷ Cl	R(1)	2923.7315	2910.2	13.5
	R(0)	2904.1104	2892.1	12.0
	"Q(0)"	2883.57	2871.69	
			2871.48	12.1
			2871.31	
			2870.97	
	P(1)	2863.0231	2852.07	
			2851.55	11.5
			2850.89	

$(\text{HCl})_2 \nu_2^-$ region

st27067.10 annealed T=2.4K 494 PPM HCl
st27103.6 annealed T=2.4K 94 PPM H³⁷Cl
st27079.11 annealed T=2.4K 90 PPM H³⁵Cl

ST22067.10

$(\text{HCl})_2 \nu_2^-$ region

st27061.11 annealed T=2.4K 88 PPM HCl
st27103.6 annealed T=2.4K 94 PPM H³⁷Cl
st27079.11 annealed T=2.4K 90 PPM H³⁵Cl

ST22061.11

$(\text{HCl})_2 \nu_1^+$ region

st27061.11 annealed T=2.4K 88 PPM HCl
st27103.6 annealed T=2.4K 94 PPM H^{37}Cl
st27079.11 annealed T=2.4K 90 PPM H^{35}Cl

ST22103.6

$(\text{HCl})_2 \nu_1^+$ region

st27061.11 annealed T=2.4K 88 PPM HCl
st27097.6 annealed T=2.4K 33 PPM H^{37}Cl
st27073.17 annealed T=2.4K 30 PPM H^{35}Cl

ST22103.6

$(\text{HCl})_2 \nu_1^+$ region

st27067.10 annealed T=2.4K 494 PPM HCl
 st27103.6 annealed T=2.4K 94 PPM H^{37}Cl
 st27085.9 annealed T=2.4K 284 PPM H^{35}Cl

ST27100.v

$(\text{HCl})_n$

st27067.10 annealed T=2.4K 494 PPM HCl
 st27103.6 annealed T=2.4K 94 PPM H^{37}Cl
 st27085.9 annealed T=2.4K 284 PPM H^{35}Cl

ST27100.v

$(\text{HCl})_3$

st27061.11 annealed T=2.4K 88 PPM HCl
 st27097.6 annealed T=2.4K 33 PPM H^{37}Cl
 st27073.17 annealed T=2.4K 30 PPM H^{35}Cl

ST27061.11

$\nu_3 \text{ CO}_2/(\text{HCl})_n$ clusters

st27061.11 annealed T=2.4K 88 PPM HCl
 st27097.6 annealed T=2.4K 33 PPM H^{37}Cl
 st27073.17 annealed T=2.4K 30 PPM H^{35}Cl

ν_3 CO₂/(HCl)_n clusters

st27067.10 annealed T=2.4K 494 PPM HCl
 st27103.6 annealed T=2.4K 94 PPM H³⁷Cl
 st27085.9 annealed T=2.4K 284 PPM H³⁵Cl

ST27103.6

HF-HCl/pH₂

st27115.15 annealed T=2.4K
 st27115.13 annealing T=4.8K
 st27115.9 as deposited T=2.4K

123 PPM HF/pH₂ d≈3mm

resolution = 0.005 cm^{-1}

$\text{CO}_2\text{-HF/pH}_2$

st27115.15 annealed $T=2.4\text{K}$
 st27115.13 annealing $T=4.8\text{K}$
 st27115.9 as deposited $T=2.4\text{K}$

123 PPM HF/pH₂ $d \approx 3\text{mm}$

resolution = 0.005 cm^{-1}
 ST27115.9

27 $\overset{\text{ppm}}{\text{HF/pH}_2}$ $d \approx 3\text{mm}$

st27121.9 annealed $T=2.4\text{K}$
 st27121.7 annealing $T=4.8\text{K}$
 st27121.5 as deposited $T=2.4\text{K}$

resolution = 0.005 cm^{-1}

HF-HCl/pH₂

st27121.9 annealed $T=2.4\text{K}$
 st27121.7 annealing $T=4.8\text{K}$
 st27121.5 as deposited $T=2.4\text{K}$

27 PPM HF/pH₂ $d \approx 3\text{mm}$

resolution = 0.005 cm^{-1}

ST27121.5

91 ^{ppm} PPM HF/pH₂ $d \approx 3\text{mm}$

st27127.9 annealed $T=2.4\text{K}$
 st27127.7 annealing $T=4.8\text{K}$
 st27127.5 as deposited $T=2.4\text{K}$

resolution = 0.005 cm^{-1}

HF-HCl/pH₂

^{ppm}
268 PPM HF/pH₂ $d \approx 3\text{mm}$

HF-HCl/pH₂

st27133.9 annealed T=2.4K
st27133.7 annealing T=4.8K
st27133.5 as deposited T=2.4K

268 PPM HF/pH₂ d≈3mm

resolution = 0.005 cm⁻¹
ST27133.5

80 PPM HBr/pH₂ d≈3mm

st27140.9 annealed T=2.4K
st27140.7 annealing T=4.8K
st27140.5 as deposited T=2.4K

resolution = 0.005 cm⁻¹

HF-(HF, HCl, HBr)/pH₂

st27140.9 annealed T=2.4K
st27140.7 annealing T=4.8K
st27140.5 as deposited T=2.4K

80 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm^{-1}
ST27140.5

HCl-HBr/pH₂

st27140.9 annealed T=2.4K
st27140.7 annealing T=4.8K
st27140.5 as deposited T=2.4K

80 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm^{-1}
ST27140.5

HCl-(HF, HCl, HBr)/pH₂

st27140.9 annealed $T=2.4\text{K}$
st27140.7 annealing $T=4.8\text{K}$
st27140.5 as deposited $T=2.4\text{K}$

80 PPM HBr/pH₂ $d \approx 3\text{mm}$

resolution = 0.005 cm^{-1}
ST27140.5

HCl-(HF, HCl, HBr)/pH₂

st27145.9 annealed $T=2.4\text{K}$
st27145.7 annealing $T=4.8\text{K}$
st27145.5 as deposited $T=2.4\text{K}$

260 PPM HBr/pH₂ $d \approx 3\text{mm}$

resolution = 0.005 cm^{-1}

HCl-HBr/pH₂

st27145.9
st27145.7
st27145.5

annealed T=2.4K
annealing T=4.8K
as deposited T=2.4K

260 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm⁻¹
ST27145.5

HF-(HF, HCl, HBr)/pH₂

st27145.9
st27145.7
st27145.5

annealed T=2.4K
annealing T=4.8K
as deposited T=2.4K

260 PPM HBr/pH₂ d≈3mm

resolution = 0.005 cm⁻¹
ST27145.5

645 HBr/pH₂ d≈3mm

ST28003.5

HCl(HBr)_n/pH₂

st28003.9 annealed T=2.4K
st28003.7 annealing T=4.8K
st28003.5 as deposited T=2.4K

645 HBr/pH₂ d≈3mm

resolution = 0.005 cm⁻¹

ST28003.5

$\text{CO}_2(\text{HBr})_n/\text{pH}_2$

st28003.9 annealed $T=2.4\text{K}$
 st28003.7 annealing $T=4.8\text{K}$
 st28003.5 as deposited $T=2.4\text{K}$ 645 HBr/pH₂ d≈3mm resolution = 0.005 cm^{-1} ST28003.5

$(\text{HBr})_2/\text{pH}_2$

st28003.9 annealed $T=2.4\text{K}$
 st28003.7 annealing $T=4.8\text{K}$
 st28003.5 as deposited $T=2.4\text{K}$ 645 HBr/pH₂ d≈3mm resolution = 0.005 cm^{-1} ST28003.5

^{ppm}
15 PPM H₂O/pH₂ d≈3mm

ST28010.2

^{ppm}
15 PPM H₂O/pH₂ d≈3mm

ST28010.2

^{ppm}
45 PPM H₂O/pH₂ d≈3mm

st28014.6 annealed T=2.4K
st28014.4 annealing T=4.8K
st28014.2 as deposited T=2.4K

resolution = 0.005 cm^{-1}

ST28014.2

^{ppm}
45 PPM H₂O/pH₂ d≈3mm

st28014.6 annealed T=2.4K
st28014.4 annealing T=4.8K
st28014.2 as deposited T=2.4K

resolution = 0.005 cm^{-1}

ST28014.2

^{ppm}
138 PPM H₂O/pH₂ d≈3mm

ST28018.2

^{ppm}
138 PPM H₂O/pH₂ d≈3mm

resolution = 0.005 cm^{-1}

ST28018.2

H_2O clusters in pH₂

st28018.6 annealed T=2.4K 138 PPM $\text{H}_2\text{O}/\text{pH}_2$
 st28014.6 annealed T=2.4K 45 PPM $\text{H}_2\text{O}/\text{pH}_2$
 st28010.6 annealed T=2.4K 15 PPM $\text{H}_2\text{O}/\text{pH}_2$

resolution = 0.005 cm^{-1}

ST28010.6

56 PPM CH_4/pH_2 d≈0.7mm

st28022.20 annealed T=2.4K
 st28022.19 annealing T=4.8K
 st28022.18 as deposited T=2.4K

resolution = 0.005 cm^{-1}

^{ppm}
200 PPM CH₄/pH₂ d≈0.2mm

st28026.21

annealed T=2.4K

st28026.20

annealing T=4.8K

st28026.19

as deposited T=2.4K

resolution = 0.005 cm⁻¹

ST28026.19

^{ppm}
550 PPM CH₄/pH₂ d≈0.05mm

st28030.14

annealed T=2.4K

st28030.13

annealing T=4.8K

st28030.12

as deposited T=2.4K

resolution = 0.005 cm⁻¹

ST28030.12

$(CH_3F)_2/pH_2$

$(CH_3F)_2/pH_2$

~~ppm~~
6 PPM CH₃F/pH₂ d≈3mm

ST28052.2

~~ppm~~
33 PPM CH₃F/oD₂ d≈2mm

ST28073.3

^{ppm}
93 PPM HCl/oD₂ d≈2mm

st28079.7 2nd flash annealing T=2.4K st28079.3 annealing T=4.8K
 st28079.5 flash annealed to 10K T=2.4K st28079.1 as deposited T=2.4K resolution = 0.005 cm^{-1}

ST28079.1

HCl/pH₂ vs. HCl/oD₂

st28079.7 annealed T=2.4K 93 PPM HCl/oD₂ (≈98%)
 st27061.11 annealed T=2.4K 88 PPM HCl/pH₂ (99.99+%)

ST27061.11

$(HCl)_3/pH_2$ & $(HCl)_3/oD_2$

st28079.7 annealed T=2.4K 93 PPM HCl/oD₂ (~98%)
 st27061.11 annealed T=2.4K 88 PPM HCl/pH₂ (99.99+%)

ST27061.11

$^{13}\text{C}^{18}\text{O}/pH_2$ d≈3mm

st28082.6 annealed T=2.4K
 st28082.4 annealing T=4.8K
 st28082.2 as deposited T=2.4K

11 PPM $^{13}\text{CO}/pH_2$ resolution = 0.005 cm^{-1}

ST28082.2