Data Communication for Deep Learning Systems

Ji Liu

Outline

- High Performance Computing (HPC)
- Systems for Deep Learning
- Problems in terms of System

Outline

- High Performance Computing (HPC)
- Systems for Deep Learning
- Problems in terms of System

Introduction of Parallelization

- SIMD: Single Instruction, Multiple Threads
- Parallelization of multiple cores
 - Open Multi-Processing (OpenMP): parallelization among different CPU cores
 - Graphics Processing Unit (GPU): parallelization among different GPU cores (Cuda)
- Parallelization of multiple computers in a cluster
 - Message Passing Interface (MPI): parallelization among different computing nodes
 - Hadoop: parallelization among different computers
 - Spark: memory based parallelization among different computers
- High Performance Computing (HPC): OpenMP, GPU and MPI

OpenMP

Architecture

Schematic of a shared memory architecture

https://www.cs.rutgers.edu/~venugopa/parallel_summer2012/openMP.html

- Number of CPU cores: 1 − 32 in a computer
 - Max speedup: 32
- Average desktop CPU speed: 3.2 GHz

GPU

- Architecture
 - Block
 - Grid
- Number of cores:
 - One card:
 - 700 4000
 - Max speedup: 4000
- Average GPU speed: 3 GHz
 - 1GHz 1.4GHz
- GPU Direct:
 - Directly send data in GF = memory to NIC

https://www.hpcwire.com/2008/09/10/compilers_and_more_gpu_architecture_and_applications/

GPU Direct

MPI

- Communication among different computing nodes
 - Master slave architecture
- Max speedup: number of computers

MPI Functions

- Synchronization: MPI_Barrier
- Broadcast:
 - Synchronization among different nodes
 - One to many:MPI_Bcast, MPI_Scatter
 - Many to one: MPI_Gather, MPI_Reduce
 - Many to many: MPI_Allgather, MPI_Allreduce
- Send: MPI_Send, Receive: MPI_Recv
 - Can be synchronized or asynchronized

MPI Library	Where?	Compilers
MVAPICH	Linux clusters	GNU, Intel, PGI, Clang
Open MPI	Linux clusters	GNU, Intel, PGI, Clang
Intel MPI	Linux clusters	Intel, GNU
IBM BG/Q MPI	BG/Q clusters	IBM, GNU
IBM Spectrum MPI	Coral Early Access and Sierra clusters	IBM, GNU, PGI, Clang

Implementations

Without RDMA:

- MPI usually exploit TCP/IP to transfer data [1]
- Other protocol can be used, e.g. SCTP [1]
- Main memory: Data in Application memory or GPU -> data in OS kernel -> data in network interface card (NIC) buffer -> network

With RDMA:

- Data in Application memory or GPU -> NIC -> network -> another NIC -> data in application memory
- GPUDirect for GPU
- Open MPI supports RDMA
- Requires hardware support and system identification
- RDMA implementation:
 - InfiniBand: sockets direct protocol (SDP)
 - iWARP (TCP/IP): internet Wide Area RDMA Protocol
 - RoCE: based on TCP (v1.5), UDP (v2) or (FCoE): Fibre Channel over Ethernet (generally for storage)

TCP/IP

- A suite of communication protocols used to interconnect network devices on the internet.
- Application layer, e.g. MPI
- Transport layer: TCP, FCoE, SDP

Network layer: IP (Ethernet), Ethertype (for

FCoE), SDP

Physical layer:

LANs, ARP

InfiniBand (IB)

- Hardware support: InfiniBand Switches, host channel adapters (HCAs), and target channel adapter (TCA)
- Communication features:
 - Data transfer without OS kernel
 - Handle network protocol of breaking a large message into packets without CPU
- Works on Network Layer and physical layer
- IPoIB (for non RDMA):
 - Send IP packets over IB
 - TCP can work on it
 - Uses CPU to generate IP sockets

Data Transfer (With RDMA) for MPI

 No/few CPU interaction and no data copy for data transfer

Data Transfer (Without RDMA) for MPI

CPU interaction and data copy for data transfer

NCCL (Data Transfer)

- Based on Cuda (parallel computing platform and API model)
- Similar to MPI (MPI functions)
- Within one machine:
 - Without data copy to main memory,
 i.e. direct memory access (DMA)
 - CUDA supports direct access only for GPUs of the same model sharing a common PCIe root hub
- Within a cluster:
 - Data copy to main member
 - RDMA, TCP/IP etc.
 - GPU Direct (V2.3)

CPU

Data Transfer (With RDMA) for NCCL

 No/few CPU interaction and no data copy for data transfer

Data Transfer (Without RDMA) for NCCL

CPU interaction and data copy for data transfer

Outline

- High Performance Computing (HPC)
- Systems for Deep Learning
- Problems in terms of System

TensorFlow

- At application layer
- Based on RPC or RDMA etc.
- MPI-enabled TensorFlow*
- Master slave architecture
- Strategies
 - Synchronized
 - Asynchronized

^{*} https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/mpi

RPC Data Transfer

CPU interaction and data copy for data transfer

Strategies in TensorFlow

- Synchronous training
 - All workers train over different slices of input data
 - Aggregate gradients at each step
 - Via all-reduce

Strategies in TensorFlow (Continue)

- Asynchronous training
 - All workers are independently training over the input data
 - Updating variables asynchronously
 - Parameter server

Stale gradient problem

Soft Synchronization Protocols

- Combination of synchronized and asynchronized training
- Resolves stale gradient problem
- Asynchronized update within one or several iterations
- Synchronization based on threshold

Horovod

- At application layer
- Simplify the development in TensorFlow
- Based on MPI, NCCL (depends on implementation) or Gloo (TCP/IP, optional: NCCL, MPI)
- Synchronous distributed training using allreduce and allgather (in Horovod and TensorFlow)

Byteps

Local communication

Lo

outY[i] = sum(inX[Y*count+i])

AllGather (in NCCL)

out[Y*count+i] = inY[i]

PS-Lite *

- Light and efficient implement of parameter server framework
- Push(keys, values): push a list of (key, value) pairs to the server nodes
- Pull(keys): pull the values from servers for a list of keys
- Wait: wait until a push or pull finished
- Works above the network layer
- Based on: IP, Supports infiniBand

Li et al. <u>Communication Efficient Distributed Machine Learning with the</u> Parameter Server. NIPS, 2014

^{*} Li et al. Scaling Distributed Machine Learning with the Parameter Server. OSDI, 2014

PS-lite Data Transfer

CPU interaction and data copy for data transfer

Outline

- High Performance Computing (HPC)
- Systems for Deep Learning
- Problems in terms of System

Problems in Terms of System

- Decentralized architecture
- Fault-tolerance?
- Check point?
- CAP? How to ensure
 - Consistence, availability and network Partition
 - Eventual consistency?