Problem A. pr0hum and the Weekend

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

The Weekend is around the corner, and pr0hum and his friends are throwing a party because, **Happy** Weekend, for which they have invited n guests to the party numbered from 1 to n

For an unknown experiment made up just for the sake of this question, pr0hum wants to collect some data and has gathered a list of m entires of who follows whom on Instagram. For example, if one entry in the list is a b, it implies a follows b.

Before the party starts, pr0hum wants you to arrange the data so that he can later work in peace. He wants you to print n lines where the i^{th} line would contain all the people person i follows.

Input

The first line contains two integers n, m. The number of guests invited to the party and the number of entries in the list which pr0hum has.

The next m lines have two integers u, v. Implying Guest u follows Guest v.

 $2 \le n \le 10^5$

 $1 \le m \le 2 * 10^5$

 $1 \le u, v \le n$

Output

Print n lines, where the i^{th} line has all the people person i follows.

Print the People person i follows in the order given in the list of entries, i.e. if a b comes before a c then in the ath line of the output, b will come before c.

If someone follows no one print -1 for them.

Examples

standard input	standard output
10 10	4 10
2 5	5 6 3
5 6	6
1 4	-1
6 8	6 8
2 6	8
3 6	-1
1 10	9
8 9	-1
2 3	-1
5 8	
14 8	2
1 2	7
2 7	4 8
3 4	-1
6 3	7
5 7	3 8
3 8	-1
6 8	-1
11 12	-1
	-1
	12
	-1
	-1
	-1
10 7	4
6 1	8 5
1 4	-1
4 2	2 7
2 8	3
2 5	1
4 7	-1
5 3	-1
	-1
	-1
5 5	2
1 2	3
3 2	2
5 3	-1
5 4	3 4
2 3	

Problem B. The Poisoned Knife Problem

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

You and your friend have been doing the DSA Assignment this entire week, therefore, in order to take a break, you decide to play a game on the **Happy Weekend**.

The game is called **The Poisoned Knife**. In the game, your friend's character (**Let's suppose X**) has health of **h** units, your sole purpose in the game is to kill his character.

You can only attack X with a poisoned knife.

You are given an array, A where A_i denotes the time at which you are going to make a poisoned attack with the knife. For e.g., if $\mathbf{A} = [3,4,8]$, then you are going to make the knife attack at time = 3,4 and 8.

Note: Time array can be given in **random** order(not necessarily sorted).

When X is stabbed by the poisoned knife, a poison effect occurs on X, dealing 1 damage over the next k seconds (starting with the second after X was stabbed). However, if X is already poisoned, the knife will cancel the previous poison effect and apply a new one.

For example:

If k = 2, and A = [3,4,8], then,

At t = 1, damage = 0

At t = 2, damage = 0

At t = 3, damage = 1

At t = 4, damage = 1

At t = 5, damage = 1

At t = 6, damage = 0

At t = 7, damage = 0

At t = 8, damage = 1

At t = 9, damage = 1

At t >= 10, damage = 0

Therefore, total damage dealt to X = 5

Now, you have to find the **minimum value of k** such that the total damage dealt to X is greater than or equal to k.

Input

The first line contains a single integer q ($1 \le q \le 1000$) — the number of test cases.

The first line of the test case contains two integers n and h $(1 \le n \le 100; 1 \le h \le 10^{18})$ — the number of attacks and the amount of damage that needs to be dealt. The second line contains n integers $a_1, a_2, ..., a_n$ $(1 \le a_i \le 10^9)$, where a_i is the second when the i-th attack is performed.

Output

For each test case, print a single integer — the minimum value of k such that the total damage dealt to X is greater than or equal to h.

Examples

standard input	standard output
3	294
1 294	4
77	1
3 10	
2 4 10	
5 3	
1 11 21 31 41	
1	80
4 99	
21 19 2 5	
1	96
2 100	
7 3	
2	19
2 20	23
22 21	
2 40	
4 21	
5	91
3 100	49
22 31 26	40
3 100	52
45 68 17	51
3 100	
79 19 48	
3 100	
57 89 41	
3 100	
1 49 50	
1	38
5 45	
14 11 10 17 12	

Problem C. Smooth, Smoother, Smoothest

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

It is a universally accepted fact that the smoother the better.

You are given an array A of size N. You can perform the following operations on the array:

Choose an i $(1 \le i \le N)$ and set $A_i = x$ $(1 \le x \le 10^9)$.

Find the minimum number of operations needed to make the array A k-smooth.

Let's first define a k-beautiful array. An array A is k-beautiful if all its elements are equal to k. For example, [3, 3, 3, 3] is 3-beautiful.

Let |A| denote the size of the array A. An array A is called k-smooth if at least one of the following condition holds:

- |A| > 1, first half of A is k-beautiful and the second half of A is (k+1)-smooth
- |A| > 1, second half of A is k-beautiful and the first half of A is (k+1)-smooth
- |A| = 1, and A is k-beautiful

The first half of an array A is the subarray $A_1, A_2, ..., A_{(n+1)/2}$. The second half of an array A is the subarray $A_{((n+1)/2)+1}, A_{((n+1)/2)+2}, ..., A_n$. (Here n is the size of the array.)

For example, for the array [3, 6, 3, 4, 3], [3, 6, 3] is the first half, and [4, 3] is the second half.

Input

The first line contains two integers, N and k. The next line contains $A_1, A_2, ..., A_N$

$$1 \le N \le 10^5$$

$$1 \le k \le 10^5$$

$$1 \le A_i \le 10^9$$
 for all $(1 \le i \le N)$

Output

Print the minimum number of operations needed to make the array A k-smooth.

Examples

standard input	standard output
5 4	0
5 5 6 4 4	
8 1	4
3 5 1 1 1 1 2 2	

Note

In the first test case, the array A is already 4-smooth.

In the second test case, we convert the array to [1, 1, 1, 1, 3, 4, 2, 2]. This takes 4 operations and the array is now 1-smooth. The first half [1, 1, 1, 1] is 1-beautiful and the second half [3, 4, 2, 2] is 2-smooth. Then the second half of this [2, 2] is 2-beautiful and [3, 4] is 3-smooth. Finally, [3] is 3-beautiful and [4] is 4-smooth.