Devoir sur table nº 1

Mathématiques

Durée : 2h. Calculatrice interdite.

- Mettre le numéro des questions.
- Justifiez vos réponses.

• ENCADREZ vos résultats.

- Utilisez des mots en français entre les assertions mathématiques.
- Numérotez les copies (pas les pages).
- Bon courage!

Question de cours

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Montrer que si f est impaire alors son graphe C_f est symétrique par rapport à l'origine O du repère.

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire à l'aide de quantificateurs les phrases suivantes.

- 1) La fonction f ne prend que des valeurs positives.
- 2) La fonction f est constante sur \mathbb{R} .
- 3) Tout réel admet un antécédent par f.
- 4) $f: \mathbb{R} \to \mathbb{R}$ n'est pas bijective.

Exercice 2. Soit f la fonction définie par $f(x) = \sin^2(x) - \cos(2x)$.

- 1) Réduire au maximum le domaine d'étude de f. On notera I ce domaine.
- 2) Expliquer comment, à partir du graphe de f sur I, en déduire le graphe sur \mathbb{R} .
- 3) Montrer que : $\forall x \in \mathbb{R}, \ f(x) = 3\sin^2(x) 1.$
- 4) Déterminer les variations de f sur I.

Exercice 3. Soit $m \in \mathbb{R}$. On considère les deux équations suivantes, d'inconnue $x \in \mathbb{R}$.

$$(E_m)$$
: $mx = \sqrt{2x+1}$ et (F_m) : $m^2x^2 - 2x - 1 = 0$.

- 1) Déterminer le domaine de résolution de (E_m) .
- 2) Montrer que (F_m) possède deux solutions : une négative qu'on note $x_1(m)$ et une positive qu'on note $x_2(m)$.
- 3) Montrer que pour tout $m \in \mathbb{R}$, on a $x_1(m) \ge -\frac{1}{2}$.

- 4) Étant donné x appartenant au domaine de résolution, l'implication " $(E_m) \Longrightarrow (F_m)$ " est-elle vraie en général? Que dire de la réciproque?
- 5) Résoudre (E_m) . On pourra éventuellement distinguer plusieurs cas.

Exercice 4. Soit f la fonction définie par $f(x) = \exp\left(\frac{1}{\ln x}\right)$.

- 1) Déterminer l'ensemble de définition \mathcal{D} de f.
- 2) Calculer la limite de f en 0 et en $+\infty$, ainsi que les limites à droite et à gauche de f en 1.
- 3) Dresser le tableau de variations de f, limites comprises.
- 4) a) Montrer que, pour tout $x \in \mathcal{D}$, $f(x) \in \mathcal{D}$.
 - b) En déduire que la fonction $f \circ f$ est définie sur \mathcal{D} et la calculer.
 - c) Montrer que f est bijective de \mathcal{D} dans \mathcal{D} et donner f^{-1} . Qu'en déduire sur la courbe représentative de f?

Exercice 5. On considère deux fonctions f et g définies par : $f(x) = e^x + \frac{1}{x}$ et $g(x) = x^2 e^x - 1$.

- 1) Étude de la fonction g.
 - a) Dresser le tableau de variations de g sur \mathbb{R} , limites comprises.
 - b) Démontrer qu'il existe un unique réel $a \in \mathbb{R}$ tel que g(a) = 0 (on ne cherchera pas à calculer sa valeur exacte).

 $Indication: on \ donne \ \ 2 < e < 3.$

- c) Démontrer que a appartient à l'intervalle $]\frac{1}{2}, 1[$.
- d) Déterminer le signe de g(x) sur \mathbb{R} .
- 2) Étude de la fonction f.
 - a) Déterminer le domaine de définition de f.
 - b) Donner le domaine de dérivabilité de f et calculer f'.
 - c) Donner les limites de f aux bornes du domaine de définition et interpréter graphiquement ces limites.
 - d) Dresser le tableau de variation de f sur son domaine de définition, limites comprises.
 - e) Démontrer que f admet un unique minimum local, dont la valeur est le nombre réel suivant :

$$m = \frac{1}{a^2} + \frac{1}{a}$$
.

- f) Justifier que $2 \leq m \leq 6$.
- g) Tracer l'allure du graphe de f. On fera apparaître les droites remarquables (tangentes, asymptotes).