T:61-444576307 | E: russelljarvis@protonmail.com

GitHub https://github.com/russelljjarvis
LinkedIn https://www.linkedin.com/in/russell-jarvis-02433a30
Orcid http://orcid.org/0000-0003-0281-2849
Open Science Foundation https://osf.io/xvjsd/

EDUCATION

2020 Doctor of Philosophy, Interdisciplinary Neuroscience, Arizona State University, Tempe, USA

Focus: Neuroinformatics, Computational Neuroscience, HPC

Title: Towards Neuronal Deep Fakes: Data Driven Optimization of Reduced Neuronal Models

2015 Masters of Biomedical Engineering, La Trobe University, Melbourne, Australia

Focus: Embedded Programming, Scientific Programming, Model Simulation Thesis: Information Flow in a Digitally Reconstructed Neural Network

2014 Bachelor of Electronic Engineering, La Trobe University, Melbourne, Australia

Focus: Analog electronics, Digital Electronics, Embedded Programming, Circuit Simulation

Thesis: A CA1 Hippocampal Micro Circuit

SUMMARY

I recently completed a PhD in Interdisciplinary Neuroscience and I am looking for postdoctoral employment. I am especially interested in working on projects relating to Neuromorphic Hardware, where I can use my skills in High Performance Computing, data visualization, and dashboard application development. Ultimately, I hope to become an established research scientist at an Australian university.

RELEVANT WORK EXPERIENCE

2021-June Software consultancy

Software consultancy I made interactive visualisations of odor2action academic social

network data using python tools streamlit plotly and holoviews.

2016-2020 Research Assistant, Arizona State University, Tempe, USA

In this role, I developed a parallel genetic algorithm interface to the research software NeuronUnit. I also developed, and continue to maintain, a simulator backend for NeuroUnit.

2016 Research Internship, IBM Research, Melbourne, Australia

I performed scientific programming, simulation, and parallel model optimization. Specifically,

I developed a genetic algorithm to find unknown neural conductance values using NEURON+Python in single compartment neuronal models.

2015 Research Internship, Okinawa Institute of Science and Technology, Okinawa, Japan

For this project, I developed software for neuron model description language NineML. I designed and implemented a Kinetics extension for NineML. I also ported scripts for automated parameter fitting of neuronal models to run on a new HPC cluster at

OIST.

TEACHING EXPERIENCE

2012

Laboratory Instructor Neuro Engineering, La Trobe University, Melbourne, Australia In this role I assisted students with programming and quantitative neuron physiology problems using the NEURON simulator.

SPECIFIC SKILLS

- Scientific Programming in Languages: Python, Julia.
- Strong mathematics and statistical skills: mathematical neuroscience (e.g. differential equations, partial differential equations); statistical machine learning statistical modeling.
- Fast Numeric Simulation using LLVM technologies Python Numba JIT, Julia and CUDA.
- Natural Language Processing, numerical simulation, genetic algorithm optimization.
- Interactive and static Data Visualization embedded inside interactive dashboard applications.
- LaTeX typesetting

OTHER TRAINING

2015 University of Melbourne Research Bazaar

Short intensive Workshop on D3/Java Script Data Visualization

2011 Erasmus Student Exchange Program, Linkoping University, Sweden

Medical Imaging Informatics and Data Compression

PUBLICATIONS

Peer Reviewed Publications

Gerkin, R. C., Jarvis, R. J., & Crook, S. M. (2018). Towards systematic, data-driven validation of a collaborative, multi-scale model of *Caenorhabditis elegans*. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373(1758), 20170381.

Final Stages of Preparation:

Jarvis, R.J. & McGurrin P. (2021) Interactive Exploration in the Readability of Research Authors. *Journal of Open Source Software*

Gerkin, R. C., Birgiolas, J., Jarvis, R. J., Omar, C., & Crook, S. M. (2019). NeuronUnit: A package for data-driven validation of neuron models using SciUnit. *bioRxiv*, 665331. Prepared for *Nature*

Conference Abstracts:

- Jarvis, R. J., Gerkin, R. C., & Crook, S. M. (2017). Parallel model optimization against experimental neuron physiology data with DEAP and NeuronUnit. Frontiers in Neuroinformatics Conference Abstract: 10th INCF Congress of Neuroinformatics.
- Gerkin, R. C., Jarvis, R. J., & Crook, S. M. (2018) Multiscale model validation with SciUnit. BMC Neuroscience.
- Birgiolas, J., Haynes, V., Jarvis, R.J., Gerkin, R., Crook, S.M. (2019), NeuroML-DB: A model sharing resource that promotes rapid selection and reuse. *International Neuroinformatics Coordinating Facility Congress*

RUSSELL JARVIS, PhD

DATA DRIVEN DASHBOARD APPLICATIONS

I have worked on a number of projects that involved the development of data driven dashboard applications. The following are two examples:

A Coauthor Network Visualizer builds and display networks for arbitrary research authors.

https://share.streamlit.io/mcgurrgurr/scienceaccess/app.py

An application that queries and displays the readability of any chosen author of interest against the readability of many pre-established science publications.

PRESENTATIONS

- Jarvis, R.J., A better file format for representing neuron morphology, 2015, Okinawa Institute of Science and Technology Seminar, Okinawa, Japan
- Jarvis, R., Crook, S.M., Gerkin, R.C., Parallel Model Optimization against Experimental Data with NeuronUnit, 2017 INCF Neuroinformatics Congress, Kuala Lumpur, Malaysia
- Jarvis, R., Crook, S.M., Gerkin, R.C., Model validation and optimization, Mathematical Biology Seminar, School of Mathematical and Statistical Sciences, Arizona State University, 2018.

MACHINE LEARNING EXPERIENCE

Besides my PhD thesis which was about using Parallel Genetic Algorithms to solve multi-objective optimisation. I have undertaken the following recent machine learning training units at Arizona State University: Statistical Machine Learning STP 598, Mathematical Neuroscience APM 531, Data Analysis in Neuroscience NEU 591.

REFERENCES

PhD

Professor James Abbas Center for Adaptive Neural Systems School of Biological and Health Systems Engineering Arizona State University

Email: Jimmy.Abbas@asu.edu

Professor Yi Zhou Director, Laboratory of Auditory Computation and Neurophysiology Associate Professor College of Health Solutions Arizona State University

Email: yizhou@asu.edu

Private Consulting Work: Data Visualization and Application Developer

Dr Daniel Knight Program Assessment and Research Associate Design Center Colorado, 426 UCB College of Engineering and Applied Science University of Colorado Boulder C: 720-325-3743

Email: knightdw@colorado.edu