

DPP - 2 (Vectors)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/43

Video Solution on YouTube:-

https://youtu.be/kmKmoOsWI5k

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/84

- Direction of unit vector of vector \vec{A} is: Q 1.
 - (a) Always in the direction of \vec{A}
 - (b) Always opposite to the direction of \vec{A}
 - (c) Always perpendicular to the direction of \hat{A}
 - (d) In any random direction.
- Which of the following is negative vector of \vec{A} = Q 2.

(a)
$$\vec{B} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$$

(b)
$$\vec{B} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

(c)
$$\vec{B} = -2\hat{\imath} - 3\hat{\jmath} - 4\hat{k}$$

(d)
$$\vec{B} = -2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}$$

Find the magnitude of vector \vec{P} Q 3. $10\hat{i} + 30\hat{j}$:

(a)
$$10\sqrt{10}$$

(b)
$$10\sqrt{20}$$

(c)
$$20\sqrt{10}$$

Represent the given vector in $\hat{\imath}$ & $\hat{\jmath}$ notation: Q 4.

(a)
$$\vec{A} = 5\hat{\imath} + 5\hat{\jmath}$$

(b)
$$\vec{A} = 5\hat{\imath} - 5\hat{\jmath}$$

$$(c) \vec{A} = 5\hat{\imath} + 5\sqrt{3}\hat{\jmath}$$

(d)
$$\vec{A} = 5\sqrt{3}\hat{\imath} + 5\hat{\jmath}$$

Find a unit vector in the direction of $\vec{P} = \hat{\imath} + \hat{\jmath}$: Q 5.

(a)
$$\hat{P} = \hat{\imath} + \hat{\jmath}$$

(b)
$$\hat{P} = \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}$$

(c)
$$\hat{P} = \hat{\imath} - \hat{\jmath}$$

(b)
$$\hat{P} = \frac{\hat{\iota}}{\sqrt{2}} + \frac{\hat{\jmath}}{\sqrt{2}}$$

(d) $\hat{P} = \frac{\hat{\iota}}{\sqrt{2}} - \frac{\hat{\jmath}}{\sqrt{2}}$

Find a vector \vec{Q} of magnitude 5 unit in the direction of $\vec{P} = 6\hat{\imath} + 8\hat{\jmath}$: Q 6.

(a)
$$\vec{Q} = 6\hat{\imath} + 8\hat{\jmath}$$

(b)
$$\vec{Q} = 3\hat{\imath} + 4\hat{\jmath}$$

(a)
$$\vec{Q} = 6\hat{i} + 8\hat{j}$$

(c) $\vec{Q} = \frac{6}{\sqrt{2}}\hat{i} + \frac{8}{\sqrt{2}}\hat{j}$

(b)
$$\vec{Q} = 3\hat{\imath} + 4\hat{\jmath}$$

(d) $\vec{Q} = \frac{3}{\sqrt{2}}\hat{\imath} + \frac{4}{\sqrt{2}}\hat{\jmath}$

hysicsaholics

- Find a vector of magnitude 3 in the direction opposite to the direction of $\vec{c} = \frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}$: Q 7.
 - (a) $\vec{P} = -\frac{1}{2}\hat{\imath} \frac{1}{2}\hat{\jmath}$
- (b) $\vec{P} = -\frac{3}{2}\hat{\imath} \frac{3}{2}\hat{\jmath}$
- (a) $\vec{P} = -\frac{1}{2}\hat{i} \frac{1}{2}\hat{j}$ (b) $\vec{P} = -\frac{3}{2}\hat{i}$ (c) $\vec{P} = -\frac{\sqrt{3}}{2}\hat{i} \frac{\sqrt{3}}{2}\hat{j}$ (d) $\vec{P} = -\frac{3}{\sqrt{2}}\hat{i} \frac{3}{\sqrt{2}}\hat{j}$
- Find the resultant vector \vec{R} , where $\vec{R} = \vec{A} + \vec{B}$, if $\vec{A} = 2\hat{\imath} + 3\hat{\jmath}$ and $\vec{B} = 4\hat{\imath} 4\hat{\jmath}$: Q 8.
 - (a) $\vec{R} = 6\hat{\imath} + 7\hat{\jmath}$

(c) $\vec{R} = 6\hat{i} - 7\hat{j}$

- (b) $\vec{R} = 6\hat{\imath} \hat{\jmath}$ (d) $\vec{P} = \hat{\imath} \hat{\jmath}$
- Find the resultant vector $\vec{R} = \vec{A} \vec{B}$, if $\vec{A} = 5\hat{\imath} 3\hat{\jmath}$ and $\vec{B} = 3\hat{\imath} + 7\hat{\jmath}$: Q9.
 - (a) $\vec{R} = 2\hat{\imath} 10\hat{\jmath}$

(b) $\vec{R} = 2\hat{\imath} - 4\hat{\jmath}$

(c) $\vec{R} = 8\hat{i} - 7\hat{j}$

- (d) $\vec{P} = 2\hat{\imath} + 4\hat{\imath}$
- Q 10. If $\vec{A} = 4\hat{\imath} 3\hat{\jmath}$ and $\vec{B} = 6\hat{\imath} + 8\hat{\jmath}$, then magnitude and direction of $\vec{A} + \vec{B}$:
 - (a) 5, $\tan^{-1}\left(\frac{3}{4}\right)$ from x axis
 - (b) $5\sqrt{5}$, $\tan^{-1}\left(\frac{1}{2}\right) from x axis$
 - (c) 10, $\tan^{-1}(5)$ from x axis
 - (d) 25, $\tan^{-1}\left(\frac{3}{4}\right)$ from x axis

Q.1 a	Q.2 d	Q.3 a	Q.4 c	Q.5 b
Q.6 b	Q.7 d	Q.8 b	Q.9 a	Q.10 b