CESAR School - Teoria da Computação Exercício 4 - Conceitos de Computabilidade e Linguagem Algorítmica

Prof. Ioram Sette - iss@cesar.school

27 de Setembro de 2019

- 1. Determine o valor de $\langle \varsigma \circ \zeta \circ \pi, (\varsigma \times \iota) \circ (\zeta \times \iota) \rangle$ (2) em Σ_2 .
- 2. Seja $f(x,y) = (x \times y, y)$. Qual o valor de $f^{\#}(1,3,4)$?
- 3. Sejam $f(x, y, z) = (x y, y, (((x + 1) y) y) + 1) e g(x, y) = f^{\nabla}(x + y, y, 0).$
 - (a) Qual é o valor de g(x, y) para y > 0?
 - (b) Qual é o valor de g(x,0)?
- 4. Mostre que as seguintes computações podem ser realizadas em PL-{GOTO}:
 - (a) $Z \leftarrow X/Y$; (divisão inteira, com X/0 = 0)
 - (b) $Z \leftarrow X\%Y$; (resto da divisão inteira, com X%0 = 0)

(c)
$$Z \leftarrow X = Y$$
; onde $X = Y \notin \begin{cases} 1 & \text{se } X = Y \\ 0 & \text{se } X \neq Y \end{cases}$

(d)
$$Z \leftarrow X \neq Y$$
; onde $X \neq Y \notin \begin{cases} 1 & \text{se } X \neq Y \\ 0 & \text{se } X = Y \end{cases}$

(c)
$$Z \leftarrow X = Y$$
; onde $X = Y$ é
$$\begin{cases} 1 & \text{se } X = Y \\ 0 & \text{se } X \neq Y \end{cases}$$
(d) $Z \leftarrow X \neq Y$; onde $X \neq Y$ é
$$\begin{cases} 1 & \text{se } X \neq Y \\ 0 & \text{se } X \neq Y \end{cases}$$
(e) $Z \leftarrow X < Y$; onde $X < Y$ é
$$\begin{cases} 1 & \text{se } X \neq Y \\ 0 & \text{se } X = Y \end{cases}$$
(f) $Z \leftarrow X \geqslant Y$; onde $X \geqslant Y$ é
$$\begin{cases} 1 & \text{se } X < Y \\ 0 & \text{se } X \geqslant Y \end{cases}$$

(f)
$$Z \leftarrow X \geqslant Y$$
; onde $X \geqslant Y \notin \begin{cases} 1 & \text{se } X \geqslant Y \\ 0 & \text{se } X < Y \end{cases}$

(g)
$$Z \leftarrow X > Y;$$
 onde $X > Y \neq \begin{cases} 1 & \text{se } X > Y \\ 0 & \text{se } X \leqslant Y \end{cases}$

(h)
$$Z \leftarrow X \wedge Y$$
; onde $X \wedge Y = \begin{cases} 1 & \text{se } X > 0 \text{ e } Y > 0 \\ 0 & \text{se } X = 0 \text{ ou } Y = 0 \end{cases}$

- 5. Escreva programas PL que computem as seguintes funções. Se usar macro(s), expanda-o(s).
 - (a) $f(x) = 2^x$
 - (b) $f(x) = \begin{cases} 1 & \text{se } x \text{ \'e um n\'umero primo} \ge 2 \\ 0 & \text{caso contr\'ario} \end{cases}$