Supplementary Material for "Generating heterogeneous data on gene trees"

Martí Cortada Garcia, Adrià Diéguez Moscardó, Marta Casanellas

Lemma 1. Given a time-reversible Markov matrix M with stationary distribution π , let $\tilde{M} = (1-a)M + aI$. If $a \in (0,1)$, then \tilde{M} is a Markov matrix with stationary distribution π .

Proof. As the set of Markov matrices is a convex space, \tilde{M} is also a Markov matrix if $a \in (0,1)$.

The matrix M is time-reversible with stationary distribution π if and only if

$$\pi = \pi M$$
 and $D_{\pi}M = M^t D_{\pi}$, (1)

where D_{π} is the diagonal matrix with π on its diagonal elements (t denotes transpose here).

To show that these conditions hold for \tilde{M} is immediate: $\pi \tilde{M} = (1-a)\pi M + a\pi = \pi$ and $D_{\pi}\tilde{M} = (1-a)D_{\pi}M + aD_{\pi} = (1-a)M^tD_{\pi} + aD_{\pi} = ((1-a)M^t + aI)D_{\pi} = \tilde{M}^tD_{\pi}$.

Remark 2. Note that if $M = ADA^{-1}$ is an eigendecomposition of M with eigenvalues 1, λ_2 , λ_3 , and λ_4 , we have $\tilde{M}_2 = A((1-a)D + aI)A^{-1}$ and its determinant can be computed as

$$p(a) = ((1-a)\lambda_2 + a)((1-a)\lambda_3 + a)((1-a)\lambda_4 + a).$$

We compute the roots of the polynomial $p(a)-d_2$ (where $d_2 = \det(M_2)$) and choose the root a in (0,1) if exists (it may happen that the real root of this polynomial is not in this interval, and then we repeat the process in Algorithm 2 starting with another M).