线性代数

Bowen

October 8, 2025

Contents

1.1 基础概念		3
1.1 基础概念	 	3
1.2 性质	 	3
1.3 基础	 	3
1.3.1 完全展开式	 	3
1.3.2 余子式 & 代数余子式	 	3
1.4 定理	 	4
1.4.1 展开公式	 	4
1.4.2 乘法公式	 	4
1.5 公式	 	4
1.5.1 上 (下) 三角形	 	4
1.5.2 拉普拉斯展开式		5
1.5.3 范德蒙行列式		5
1.5.4 特征多项式		5
1.6 方阵行列式		5
1.7 克拉默法则		6
1.8 方法步骤		6
1.9 条件转换思路		7
1.10 理解		7
	 	·
2 矩阵		7
2.1 基础概念	 	7
2.2 定理	 	9
2.3 运算	 	11
2.4 公式	 	13
2.4.1 行列式	 	13
2.4.2 转置	 	13
2.4.3 伴随	 	13
2.4.4 可逆	 	14
2.4.5 秩	 	14
2.4.6 分块矩阵	 	16
2.4.7 对角矩阵		17
2.4.8 特殊矩阵 n 次方		17

	2.5	方法步骤	8
	2.6	条件转换思路	9
	2.7	理解	0
3	向量	2	2
	3.1	基本概念	2
	3.2	定理	3
	3.3	运算	4
	3.4		4
	3.5	方法步骤	4
	3.6	条件转换思路 2	5
	3.7	理解	6
4	线性	5程组	7
	4.1	 基础概念	7
	4.2		9
	4.3	运算	1
	4.4	公式	1
	4.5	方法步骤	
	4.6	条件转换思路	_
	47	理解 3	2

1 行列式

1.1 基础概念

- 1. 由 $1, 2, \ldots, n$ 组成的有序数组程伟一个 n 阶排列,通常用 j_1, j_2, \ldots, j_n 表示 n 阶排列
- 2. 一个排列中,如果一个大的数排在小的数之前,就称这两个数构成**一个逆序**, **一个排列的逆序总数称为这个排列的逆序数**,用 $\tau(j_1, j_2, \ldots, j_n)$ 表示
- 3. 如果一个排列的逆序数是偶数、则称这个排列为偶排列、否则称为奇排列

1.2 性质

- 1. 经转置行列式的值不变,即 $|A^T| = |A|$
- 2. 某行元素全为 0 ⇒ 行列式的值为 0
- 3. 两行相等 ⇒ 行列式的值为 0
- 4. 两行成比例 ⇒ 行列式的值为 0
- 5. 某行(列)有公因数 k,可把 k 提到行列式外
- 6. 两行互换, 行列式变号
- 7. 某行所有元素都是两个数的和,则可写成两个行列式之和
- 8. 某行的 k 倍加至另一行,行列式的值不变

1.3 基础

1.3.1 完全展开式

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} \mathbf{a}_{1\mathbf{j}_1} \mathbf{a}_{2\mathbf{j}_2} \dots \mathbf{a}_{n\mathbf{j}_n}$$
$$= \sum_{\sigma \in S_n} (-1)^{\tau(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$$

1.3.2 余子式 & 代数余子式

1. 在 n 阶行列式中,划去元素 a_{ij} 所在的第 i 行、第 j 列,由剩下的元素按原来的排法构成一个 (n-1) 阶行列式,称为 a_{ij} 的 **余子式**,记为 \mathbf{M}_{ij} ;称 $(-1)^{i+j}M_{ij}$ 为 a_{ij} 的代数余子式,记为 \mathbf{A}_{ii} ,即

$$A_{ij} = (-1)^{i+j} M_{ij}$$

2. 三阶行列式的代数余子式

$$A_{ij} = \begin{bmatrix} M_{11} & -M_{12} & M_{13} \\ -M_{21} & M_{22} & -M_{23} \\ M_{31} & -M_{32} & M_{33} \end{bmatrix}.$$

1.4 定理

1.4.1 展开公式

1. n 阶行列式等于它的任意一行(列)的所有元素与他们各自对应的代数余子式的乘积之和,即

$$|A| = a_{k1}A_{k1} + a_{k2}A_{k2} + \dots + a_{kn}A_{kn}(k = 1, 2, \dots, n)$$

$$= a_{1k}A_{1k} + a_{2k}A_{2k} + \dots + a_{nk}A_{nk}(k = 1, 2, \dots, n)$$
 $\exists J$

2. 任意一行(列)的所有元素与其他行的代数余子式乘积之和为0,即

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0 = 0 \quad (i \neq k \coprod i, k = 1, 2, \dots, n)$$

 $a_{1j}A_{1k} + a_{2j}A_{2k} + \dots + a_{nj}A_{nk} = 0 = 0 \quad (j \neq k \coprod j, k = 1, 2, \dots, n)$

1.4.2 乘法公式

设 A, B 都是 n 阶方阵, 则

$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

1.5 公式

1.5.1 上(下)三角形

1. 主对角线三角形

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{22} & \dots & a_{2n} \\ & \ddots & \vdots \\ & & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} \\ a_{21} & a_{22} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}$$

2. 副对角线三角形

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2,n-2} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & 0 & \dots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & a_{2n} \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & a_{n,n-1} & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-2} \dots a_{n1}$$

4

1.5.2 拉普拉斯展开式

1. 主对角线

$$\begin{vmatrix} \mathbf{A} & * \\ \mathbf{O} & \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{O} \\ * & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}|$$

2. 副对角线

$$\begin{vmatrix} * & \mathbf{A} \\ \mathbf{B} & \mathbf{O} \end{vmatrix} = \begin{vmatrix} \mathbf{O} & \mathbf{A} \\ \mathbf{B} & * \end{vmatrix} = (-1)^{mn} |\mathbf{A}| \cdot |\mathbf{B}|$$

m, n 分别是方阵 A, B 的阶数

1.5.3 范德蒙行列式

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

1.5.4 特征多项式

1. 设 $A = [a_{ij}]$ 是三阶矩阵,则 A 的特征多项式

1.6 方阵行列式

- 1. 若 $A \in n$ 阶矩阵, $A^T \in A$ 的转置矩阵 $\Rightarrow |A^T| = |A|$
- 2. 若 $A \in n$ 阶矩阵 $\Rightarrow |\mathbf{k}\mathbf{A}| = \mathbf{k}^n |A|$
- 3. 若 A, B 都是 n 阶矩阵 $\Rightarrow |AB| = |A||B|, |A^2| = |A|^2$
- 4. 若 $A \in n$ 阶矩阵 $\Rightarrow |A^*| = |A|^{n-1}$
- 5. 若 $A \in n$ 阶**可逆**矩阵 $\Rightarrow |A^{-1}| = |A|^{-1}$
- 6. 若 A 是 n 阶矩阵, $\lambda_i (i=1,2,\cdots,n)$ 是 A 的特征值 $\Rightarrow |\mathbf{A}| = \lambda_1 \lambda_2 \cdots \lambda_n$
- 7. 若 n 阶矩阵 A 与 B 相似 \Rightarrow |A| = |B|, |A + kE| = |B + kE|

7.
$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & A+B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & 0 \\ B & A-B \end{vmatrix} = |A+B| \cdot |A-B|$$

1.7 克拉默法则

设有 n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

记系数矩阵为 $\mathbf{A} = (a_{ij})_{n \times n}$,则其行列式为 $|\mathbf{A}|$ 。若 $|\mathbf{A}| \neq 0$,则方程组有唯一解,并且第 i 个未知数 x_i 可由下式求得:

$$x_i = \frac{|\mathbf{A}_i|}{|\mathbf{A}|}, \quad i = 1, 2, \dots, n$$

其中 \mathbf{A}_i 是将 \mathbf{A} 的第 i 列替换为常数列向量 $\mathbf{b} = (b_1, b_2, \dots, b_n)^T$ 后得到的矩阵,即:

$$\mathbf{A}_{i} = \begin{pmatrix} a_{11} & \dots & b_{1} & \dots & a_{1n} \\ a_{21} & \dots & b_{2} & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & b_{n} & \dots & a_{nn} \end{pmatrix}$$

推论 若齐次线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

- 1. 系数行列式 $|A| \neq 0$ ⇔ 方程组**只有零解**
- 2. 系数行列式 $|A|=0\Leftrightarrow$ 方程组**有非零解**

1.8 方法步骤

1. 对于**主对角线爪型**行列式,可用**主**对角线元素将其化为上(下)三角型来计算

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix}$$

2. 对于**副对角线爪型**行列式,可用**副**对角线元素将其化为**反上(下)三角型**来 计算

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 3 & 0 & 1 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

- 3. 把各行(列)均加到第一行(列)
- 4. 逐行(列)相加
- 5. 若有较多 0, 可考虑直接用行(列)展开公式
- 6. 特殊的三对角线行列式
 - (a) 三角化法: 逐行相加, 构造上下三角型
 - (b) 递推法
 - (c) 归纳法
- 7. 数学归纳法
 - 普通数学归纳法(Mathematical Induction)
 - (a) 验证 n=1 时,命题 f_n 成立;
 - (b) 假设 n = k 时,命题 f_n 成立;
 - (c) 证明 n = k + 1 时,命题 f_n 成立。
 - ・强(完全)归纳法(Strong Induction)
 - (a) 验证 n=1 和 n=2 时,命题 f_n 成立;
 - (b) 假设当 n < k 时,命题 f_n 均成立;
 - (c) 证明 n = k 时,命题 f_n 成立。

1.9 条件转换思路

1. 齐次方程组 Ax = 0 有非零解

 $\Leftrightarrow r(A) < n(其中n = 未知数的个数)$

- $\Leftrightarrow |A| = 0$
- ⇔ A的列向量组线性相关

1.10 理解

2 矩阵

2.1 基础概念

- 1. m 行 n 列表格称为 $m \times n$ 矩阵,当 m = n 时,矩阵 A 称为 n 阶矩阵或 n **阶 方阵**
- 2. 如果一个矩阵的所有元素都是0,则称这个矩阵是**零矩阵**,可简记为 $\mathbf{0}$
- 3. 如果一个方阵,所有非主对角线元素都是 0,则称这个矩阵是**对角矩阵**
- 4. 两个 $m \times n$ 型矩阵 $A = [a_{ij}]$, $B = [b_{ij}]$,如果对应的元素都相等,即 $a_{ij} = b_{ij}(i = 1, 2, ..., m; j = 1, 2, ..., n)$,则称矩阵 A = B

- 5. n 阶方阵 $A=[a_{ij}]_{n\times n}$ 的元素所构成的行列式称为 n 阶方阵 A 的行列式,记作 |A| 或 det A
- 6. 把矩阵 A 的行换成同序数的列得到一个新矩阵,称为矩阵 A 的**转置矩阵**,记作 A^T
- 7. 如果方阵 A 满足 $A^T = A$,则称 A 是**对称矩阵**,即 $a_{ij} = a_{ji}$
- 8. 如果方阵 A 满足 $A^T = -A$,则称 A 是**反对称矩阵**,即 $a_{ij} = -a_{ji}$
- 9. n 阶方阵 $A=[a_{ij}]_{n\times n}$,行列式 |A| 的每个元素 a_{ij} 的代数余子式 A_{ij} 所构成 的如下矩阵

$$A^* = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$

称为矩阵 A 的**伴随矩阵**

- 10. 伴随矩阵是余子式矩阵的转置,即 $A^* = [A_{ji}] = (A_{ij})^T$
- 11. n 阶方阵 $A = [a_{ij}]_{n \times n}$,如果存在 n 阶方阵 B 使得 AB = BA = E(单位矩阵) 成立,则称 A 是**可逆矩阵**或**非奇异矩阵**,B 是 A 的逆矩阵
- 12. 对 $m \times n$ 矩阵,下列三种变换
 - (a) 用非零常数 k 乘矩阵的某一行(列)
 - (b) 互换矩阵某两行(列)的位置
 - (c) 把某行(列)的 k 倍加至另一行(列)

称为矩阵的初等行(列)变换, 统称为矩阵的初等变换

- 13. 如果矩阵 A 经过有限次初等变换变成矩阵 B,则称矩阵 A 与矩阵 B 等价,记作 $A \cong B$
- 14. 单位矩阵经过一次初等变换等到的矩阵称为初等矩阵
 - (a) $E_i(k)$ 单位矩阵第 i 行乘以常数 k
 - (b) E_{ij} 单位矩阵互换 i, j 行
 - (c) $E_{ij}(k)$ 单位矩阵第 j 行的 k 倍加至第 i 行
- 15. 设 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T$ 。向量内积为

$$(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

16. 向量 $\alpha = (a_1, a_2, \dots, a_n)^T$ 的长度

$$||\alpha|| = \sqrt{\alpha^T \alpha} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

17. 若 $(\alpha, \beta) = 0$ 即 $a_1b_1 + a_2b_2 + \cdots + a_nb_n = 0$,则称 α 与 β 正交,记为 $\alpha \perp \beta$

- 18. 设 $A \in n$ 阶矩阵,满足 $AA^T = A^TA = E$,称 $A \in \mathbf{E}$ **正交矩阵:**
 - $\Leftrightarrow A^T = A^{-1}$
 - \Leftrightarrow A 的行(列)向量两两正交(单位向量)
 - \Leftrightarrow A 的每个行(列)向量长度均为 1
 - $\Leftrightarrow A$ 的行(列)向量平方和为 1
 - $\Leftrightarrow a_1^2 + a_2^2 + \dots + a_n^2 = 1$
 - $\Rightarrow |A|^2 = 1 \Leftrightarrow |A| = 1 \vec{\mathbf{x}}|A| = -1$
- 19. 若 A 是正交矩阵且 $A = (\alpha_1, \alpha_2, \ldots, \alpha_n)$,则:
 - (a) $\alpha_i^T \alpha_i = 1$
 - (b) $\alpha_i^T \alpha_j = 0 \ (i \neq j)$
- 20. 在 $m \times n$ 矩阵 A 中,任取 k 行与 k 列 ($k \le m, k \le n$),位于这个行与列的交叉点上的 k^2 个元素按其在原来矩阵 A 中的次序可构成一个 k 阶行列式,称其为矩阵 A 的一个 k 阶子式
- 21. 矩阵 A 的非零子式的最高阶数称为矩阵 A 的秩,记为 r(A)。零矩阵的秩规 定为 0
- 22. 矩阵秩的理解
 - (a) $r(A) = r \Leftrightarrow A$ 中有r阶子式不为0,任何r + 1阶子式(若存在)必全为0
 - (a) $r(A) < r \Leftrightarrow A$ 中每一个r阶子式全为0
 - (a) $r(A) > r \Leftrightarrow A$ 中有r阶子式不为0
 - (a) $r(A) = 0 \Leftrightarrow A = \mathbf{0}$
 - (a) $r(A) \neq \mathbf{0} \Leftrightarrow 1 < r(A) < n$
 - (a) 若 A 是 n 阶矩阵
 - $r(A) = n \Leftrightarrow |A| \neq 0 \Leftrightarrow A$ 可逆
 - $r(A) < n \Leftrightarrow |A| = 0 \Leftrightarrow A$ 不可逆
 - (b) 若 $A \in m \times n$ 阶矩阵 $\Leftrightarrow r(A) \leq min(m, n)$

2.2 定理

1. 若 A 是可逆矩阵,则矩阵 A 的逆矩阵**唯一**,记为 A^{-1}

2. n 阶矩阵 A 可逆

- $\Leftrightarrow |A| \neq 0$
- $\Leftrightarrow r(A) = n$
- ⇔ A的列(行)向量组线性无关
- $\Leftrightarrow A = P_1 P_2 \dots P_s, P_i (i = 1, 2, \dots, s)$ 是初等矩阵
- ☆ A通过初等变换能化为单位矩阵
- ⇒ A与单位矩阵等价
- ⇔ 0不是矩阵A的特征值
- \Leftrightarrow 齐次线性方程组Ax = 0只有零解

3. *n* 阶矩阵 *A*不可逆

$$\Leftrightarrow |A| = 0$$

- $\Leftrightarrow r(A) < n$
- ⇔ A的列(行)向量组线性相关
- ⇔ A无法表示为初等矩阵的乘积
- ⇔ A无法通过初等变换能化为单位矩阵
- ⇔ 0是矩阵A的特征值
- \Leftrightarrow 齐次线性方程组Ax = 0有非零解

4. $A \stackrel{\sim}{=} B$

- $\Leftrightarrow r(A) = r(B)$
- *⇔ A*通过初等变换能化为*B*
- \Rightarrow |A| = 0 \Leftrightarrow |B| = 0, |A| ≠ 0 \Leftrightarrow |B| ≠ 0.即A B的行列式同时为 0 或同时不为 0
- 5. 若 $A \in \mathbb{R}$ 阶矩阵,且满足 AB = E,则必有 BA = E
- 6. 用初等矩阵 P 左 (右) 乘矩阵 A,其结果 PA(AP) 就是对矩阵 A 作一次相应的初等行 (列) 变换 \Rightarrow **左乘行变换,右乘列变换**
- 6. 初等矩阵均可逆,其逆矩阵是同类型的初等矩阵,即

倍乘 $E_i^{-1}(k) = E_i(1/k)$ 第 i 行(或列)乘以非零常数 k 的逆矩阵是第 i 行(或列)乘以 1/k

互换 $E_{ij}^{-1}=E_{ij}$ 交换第 i 行(或列)和第 j 行(或列)的<mark>逆矩阵是其本身</mark>

倍加 $E_{ij}^{-1}(k)=E_{ij}(-k)$ 第 i 行(或列)加上 k 倍第 j 行(或列)的逆矩阵是第 i 行(或列)加上 -k 倍第 j 行(或列)

- 7. 矩阵 $A \ni B$ **等价**的充分必要条件是存在可逆矩阵 $P \ni Q$,使 PAQ = B
- 8. 秩 r(A) = A的列秩 = A的行秩
- 9. 矩阵经初等变换后秩不变

2.3 运算

- 1. 设 $A = [a_{ij}]$, $B = [b_{ij}]$ 是两个 $m \times n$ 矩阵, 则 $m \times n$ 矩阵 $C = [c_{ij}] = [a_{ij} + b_{ij}]$ 称为矩阵 $A \subseteq B$ 的和,记作 A + B = C
- 2. 设 $A = [a_{ij}]$ 是 $m \times n$ 矩阵, k 是一个常数, 则 $m \times n$ 矩阵 $[ka_{ij}]$ 称为数 k 与 矩阵 A 的**数乘**, 记作 kA
- 3. 设 A, B, C, \mathbf{O} 都是 $m \times n$ 矩阵, k, l 是常数, 则矩阵的加法和数乘运算满足:
 - (a) A + B = B + A
 - (b) (A+B)+C=A+(B+C)
 - (c) A + O = A
 - (d) $A + (-A) = \mathbf{0}$
 - (e) 1A = A
 - (f) k(lA) = (kl)A
 - (g) $(kA)^n = k^n A^n$
 - (h) k(A + B) = kA + kB
 - (i) (k+l)A = kA + lA
- 4. 设 $A=[a_{ij}]$ 是 $m\times n$ 矩阵, $B=[b_{ij}]$ 是 $n\times s$ 矩阵,那么 $m\times s$ 矩阵 $C=[c_{ij}]$,其中

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} = \sum$$
 第 i 行 \times 第 j 列

称为 A 与 B 的**乘积**,记作 C = AB

- 5. 矩阵乘法有下列法则:
 - (a) A(BC) = (AB)C
 - (b) A(B+C) = AB + AC
 - (c) (A+B)C = AC + BC
 - (d) (kA)(lB) = klAB
 - (e) AE = EA = A
 - (f) OA = AO = O
- 6. 设 $A \in n$ 阶矩阵, k 是正整数,
 - (a) A 的 k 次方幂 $A^k = A \cdot A \dots A(k \uparrow A)$
 - (b) $A^0 = E$
 - (c) $A^k \cdot A^l = A^{k+l}$
 - (d) $(A^k)^l = A^{kl}$

7.

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} + \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 \\ A_3 + B_3 & A_4 + B_4 \end{bmatrix}$$

8.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X & Y \\ Z & W \end{bmatrix} = \begin{bmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{bmatrix}$$

9.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$$

10.
$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2$$

11.
$$(A + E)^2 = A^2 + 2A + E$$

(a)
$$E - A^3 = (E - A)(E + A + A^2)$$

(b)
$$E + A^3 = (E + A)(E - A + A^2)$$

(c)
$$AB - 2B - 4A = 0 \Leftrightarrow (A - 2E)(B - 4E) = 8E$$

12. 设 α 和 β 都是列向量,则

- (a) 列向量·行向量: $\alpha \beta^T = (\beta \alpha^T)^T$,两者都是 n 阶矩阵(互为转置)
- (b) 行向量·列向量: $\alpha^T \beta = \beta^T \alpha$ 是一个数

(c)

$$\alpha \alpha^{T} = \begin{bmatrix} a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} & \dots & a_{1}a_{n} \\ a_{1}a_{2} & a_{2}^{2} & a_{2}a_{3} & \dots & a_{2}a_{n} \\ a_{1}a_{3} & a_{2}a_{3} & a_{3}^{2} & \dots & a_{3}a_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1}a_{n} & a_{2}a_{n} & a_{3}a_{n} & \dots & a_{n}^{2} \end{bmatrix}$$
(对称矩阵)

- (d) $r(\alpha \alpha^T) = 1$
- (e) $\alpha \alpha^T$ 特征值是 $||\alpha||^2, 0, 0, \dots, 0 (n-1 \uparrow)$

(f)

$$\alpha^T \alpha = a_1^2 + a_2^2 + \dots + a_n^2 = \sum_{k=1}^n a_k^2$$
 (平方和)

13. 向量

•
$$(\alpha, \beta) = (\beta, \alpha)$$

•
$$(k\alpha, \beta) = (\alpha, k\beta) = k(\alpha, \beta)$$

•
$$(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$

•
$$(\alpha, \beta + \gamma) = (\alpha, \beta) + (\alpha, \gamma)$$

•
$$(\alpha, \alpha) \ge 0$$

2.4 公式

2.4.1 行列式

- 1. $|A^T| = |A|$
- $2. |kA| = k^n |A|$
- 3. |AB| = |A||B|, $|A^2| = |A|^2$
- 4. $|A^*| = |A|^{n-1}$
- 5. $|A^{-1}| = |A|^{-1}$

2.4.2 转置

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- 3. $(A B)^T = A^T B^T$
- 4. $(kA)^T = kA^T$
- $5. (AB)^T = B^T A^T$
- 6. $(E+A)^T = E + A^T$

2.4.3 伴随

- 1. $(A^*)^{-1} = (A^{-1})^* = \frac{1}{|A|}A$
- 2. $AA^* = A^*A = |A|E$
- 3. $A^* = |A|A^{-1}$
- 4. A 可逆有 $|A^*| = |A|^{n-1}$
- 5. $(AB)^* = B^*A^*$
- 6. $(A^*)^T = (A^T)^*$
- 7. $(kA)^* = k^{n-1}A^*$
- 8. $(A^*)^* = |A|^{n-2}A$
 - (a) 若 A 不可逆 (|A| = 0),则
 - i. 且 $n \ge 3$ 时, $(A^*)^* = O$
 - ii. 且 n=2 时, $(A^*)^*=A$

9.

$$r(A^*) = egin{cases} n, & \mathbf{y} & \mathbf{x} &$$

10. 设
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
(二阶矩阵),则 $A^* = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ 。**主对调,副变号**

2.4.4 可逆

1.
$$(A^{-1})^{-1} = A$$

2.
$$(kA)^{-1} = \frac{1}{k}A^{-1}(k \neq 0)$$

3.
$$(AB)^{-1} = B^{-1}A^{-1}$$

4.
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

5.
$$(A^n)^{-1} = (A^{-1})^n$$

6.
$$(A^{-1})^T = (A^T)^{-1}$$

7.
$$A^{-1} = \frac{1}{|A|}A^*$$

8.
$$|A^{-1}| = \frac{1}{|A|} \Rightarrow |P^{-1}||P| = 1$$

9.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

10.

$$\begin{bmatrix} & a \\ b & \end{bmatrix}^{-1} = \begin{bmatrix} & \frac{1}{c} \\ \frac{1}{b} & \end{bmatrix}$$

2.4.5 秩

1.
$$r(A) = r(A^T) = r(A^T A) = r(AA^T)$$

2. 当
$$k \neq 0$$
 时, $r(kA) = r(A)$

3.
$$r(A+B) \le r(A,B) \le r(A) + r(B)$$

4. $A \neq m \times n$ 矩阵, $B \neq n \times s$ 矩阵,则

(a)
$$r(AB) \le r(A)$$
并且 $r(AB) \le r(B)$,即 $r(AB) \le \min(r(A), r(B))$

(b)
$$r(A) + r(B) - n \le r(AB)$$

(c)
$$r(A, AB) = r(A)$$
详见理解 1

(d)
$$r(B, BA) = r(B)$$

- (e) 且 AB = O,则
 - i. $r(A) + r(B) \le n$
 - ii. B 的列向量是齐次方程组 Ax = 0 的解
 - 按列分块,有

$$B = [b_1, b_2, \dots, b_s], AB = A[b_1, b_2, \dots, b_s] = [Ab_1, Ab_2, \dots, Ab_s] = [0, 0, \dots, 0]$$

因此

$$Ab_i = 0, \quad i = 1, 2, \dots, s.$$

- (f) 且 AB = C,则
 - i. 矩阵 C(AB) 的行向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 可由 B 的行向量 $\beta_1, \beta_2, \ldots, \beta_n$ 线性表出
 - 对 *B*, *C* 按列分块,有

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

即

$$\begin{cases} a_{11}\beta_1 + \dots + a_{1n}\beta_n &= \alpha_1, \\ a_{21}\beta_1 + \dots + a_{2n}\beta_n &= \alpha_2, \\ \vdots & & \\ a_{n1}\beta_1 + \dots + a_{nn}\beta_n &= \alpha_n \end{cases}$$

- ii. 矩阵 C(AB) 的列向量可由 A 的列向量线性表出
- 5. 若 A 可逆,则 r(AB) = r(B) = r(BA)
- 6. 若 A 列满秩,则 r(AB) = r(B)
- 7. 若 A 行满秩,则 r(AB) = r(A)
- 8. $A \neq m \times n$ 矩阵, $B \neq n \times s$ 矩阵, $C \neq s \times t$ 矩阵, 则

$$r(AB) + r(BC) \le r(ABC) + r(B)$$

9.

$$r\begin{bmatrix} A & O \\ O & B \end{bmatrix} = r\begin{bmatrix} O & A \\ B & O \end{bmatrix} = r(A) + r(B)$$

10.

$$r\begin{bmatrix} A & O \\ C & B \end{bmatrix} \ge r(A) + r(B)$$

- 11. 若 $A \sim B$,则
 - (a) r(A) = r(B)

(b)
$$r(A + kE) = r(B + kE)$$

2.4.6 分块矩阵

1. 若 B, C 分别是 m 阶与 n 阶矩阵, 则

$$\begin{bmatrix} B & O \\ O & C \end{bmatrix}^n = \begin{bmatrix} B^n & O \\ O & C^n \end{bmatrix}$$

2. 若 B, C 分别是 m 阶与 n 阶**可逆**矩阵,则

(a)
$$\begin{bmatrix} B & O \\ O & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & O \\ O & C^{-1} \end{bmatrix}$$

(b)
$$\begin{bmatrix} O & B \\ C & O \end{bmatrix}^{-1} = \begin{bmatrix} O & C^{-1} \\ B^{-1} & O \end{bmatrix}$$

3. 若 B, C 分别是 m 阶与 n 阶**可逆**矩阵,则

(a)
$$\begin{bmatrix} B & Z \\ O & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & -B^{-1}ZC^{-1} \\ O & C^{-1} \end{bmatrix}$$

(b)
$$\begin{bmatrix} B & O \\ Z & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & O \\ -C^{-1}ZB^{-1} & C^{-1} \end{bmatrix}$$

(c)
$$\begin{bmatrix} Z & B \\ C & O \end{bmatrix}^{-1} = \begin{bmatrix} O & C^{-1} \\ B^{-1} & -B^{-1}ZC^{-1} \end{bmatrix}$$

(d)
$$\begin{bmatrix} O & B \\ C & Z \end{bmatrix}^{-1} = \begin{bmatrix} -C^{-1}ZB^{-1} & C^{-1} \\ B^{-1} & O \end{bmatrix}$$

4. 若 B, C 分别是 m 阶与 n 阶**可逆**矩阵,则

(a)
$$\begin{bmatrix} B & O \\ O & C \end{bmatrix}^* = \begin{bmatrix} |C|B^* & O \\ O & |B|C^* \end{bmatrix}$$

(b)
$$\begin{bmatrix} O & B \\ C & O \end{bmatrix}^* = (-1)^{mn} \begin{bmatrix} O & |B|C^* \\ |C|B^* & O \end{bmatrix}$$

(c)
$$\begin{bmatrix} B & Z \\ O & C \end{bmatrix}^* = \begin{bmatrix} |C|B^* & -B^*ZC^* \\ O & |B|C^* \end{bmatrix}$$

(d)
$$\begin{bmatrix} B & O \\ Z & C \end{bmatrix}^* = \begin{bmatrix} |C|B^* & O \\ -C^*ZB^* & |B|C^* \end{bmatrix}$$

(e)
$$\begin{bmatrix} Z & B \\ C & O \end{bmatrix}^* = (-1)^{mn} \begin{bmatrix} O & |B|C^* \\ |C|B^* & -B^*ZC^* \end{bmatrix}$$

(f)
$$\begin{bmatrix} O & B \\ C & Z \end{bmatrix}^* = (-1)^{mn} \begin{bmatrix} -C^*ZB^* & |B|C^* \\ |C|B^* & O \end{bmatrix}$$

2.4.7 对角矩阵

1.
$$\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$$

2.
$$\begin{bmatrix} b_1 & & \\ & b_2 & \\ & & b_2 \end{bmatrix} \begin{bmatrix} a_1 & & \\ & a_2 & \\ & & a_2 \end{bmatrix} = \begin{bmatrix} b_1 a_1 & & \\ & b_2 a_2 & \\ & & b_2 a_2 \end{bmatrix}$$

3.
$$\begin{bmatrix} a_1 & & \\ & a_2 & \\ & & a_3 \end{bmatrix}^n = \begin{bmatrix} a_1^n & & \\ & a_2^n & \\ & & a_3^n \end{bmatrix}$$

4.
$$\begin{bmatrix} a_1 & & \\ & a_2 & \\ & & a_3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{a_1} & & \\ & \frac{1}{a_2} & \\ & & \frac{1}{a_3} \end{bmatrix}$$

2.4.8 特殊矩阵 n 次方

- 1. 若 r(A) = 1,则
 - (a) A 可分解为一个列向量与一个行向量的乘积
 - (b) $A^2 = lA \not = l + a_{11} + a_{22} + \dots + a_{nn}$
 - (c) $A^n = l^{n-1}A \not = n + l = \sum a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$
- 2. 设 A 为 $n \times n$ 上三角矩阵, 主对角线为 0

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ 0 & 0 & 0 & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

则:

$$A^{2} = \begin{bmatrix} 0 & 0 & b_{13} & \dots & b_{1n} \\ 0 & 0 & 0 & \dots & b_{2n} \\ 0 & 0 & 0 & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad A^{3} = \begin{bmatrix} 0 & 0 & 0 & c_{14} & \dots & c_{1n} \\ 0 & 0 & 0 & 0 & \dots & c_{2n} \\ 0 & 0 & 0 & 0 & \dots & c_{3n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$A^n = 0, \quad A^k = 0 \; \exists k > n$$

- 3. 若 $B = P^{-1}AP$,则 $B^2 = P^{-1}A^2P$,即
 - (a) $B^{n} = P^{-1}A^{n}P$
 - (b) $A^n = PB^nP^{-1}$

2.5 方法步骤

- 1. 已知矩阵 A,若下三角可逆矩阵 P 和上三角可逆矩阵 Q,使得 PAQ 为对角矩阵,求 P,Q
 - (a) 标准型: 对角矩阵是特征值
 - (b) **初等行变换**: 对 A 做初等**行变换**化为上三角矩阵 B([A|E]->[B|P]) 得到 P,再对 B 做**列变换**或 B^{T} 作**行变换**化为对角矩阵 $\Lambda([B^{T}|E]->[\Lambda|Q])$ 得到 Q
- 2. 由 A* 求 A
 - (a) $|A^*|$
 - (b) $|A^*| = |A|^{n-1} \Rightarrow |A|$
 - (b) $AA^* = |A|E \Rightarrow A = |A|(A^*)^{-1}$
- 3. 秩求法
 - $|A| \neq 0 \Leftrightarrow r(A) = n$
 - $|A| = 0 \Leftrightarrow r(A) < n$
 - 初等行变换矩阵秩不变
 - 找不为 0 的子式 < r(A)
 - AB 相似 $\Rightarrow r(A) = r(B)$
- 4. 求特殊矩阵的 n 次方
 - 分块

 - $P^{-1}AP = B \Rightarrow A^n = PB^nP^{-1}$, $B^n = P^{-1}A^nP$
 - 观察多少次幂之后是 0, 之后的都是 0
 - 对角矩阵的 n 次方
- 5. 求伴随矩阵 A*
 - 定义
 - $A^* = |A|A^{-1}$
- 6. 求可逆矩阵

- 求代数余子式 $A_{ij} = (-1)^{i+j} M_{ij}$, $(kA)^{-1} = \frac{1}{k} A^{-1} (k \neq 0)$
- 用初等行变换

$$(A\ E)\ \stackrel{\text{由上往下}}{\longrightarrow} \cdots \longrightarrow (\textbf{上三角}...)\ \stackrel{\text{由下往L}}{\longrightarrow} (*)\ \stackrel{\ \ \ \ \ \ \ }{\longrightarrow} \ \longrightarrow (E\ A^{-1})$$

• 分块

$$\begin{bmatrix} B & O \\ O & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & O \\ O & C^{-1} \end{bmatrix},$$
$$\begin{bmatrix} O & B \\ C & O \end{bmatrix}^{-1} = \begin{bmatrix} O & C^{-1} \\ B^{-1} & O \end{bmatrix}.$$

2.6 条件转换思路

- 1. 设 $\mathbf{A} \stackrel{\cdot}{=} m \times n$ 矩阵, $\mathbf{B} \stackrel{\cdot}{=} n \times s$ 矩阵, $\mathbf{\ddot{A}} \mathbf{B} = \mathbf{O}$, 则
 - (a) **B** 的列向量是齐次方程组 $\mathbf{A}\mathbf{x} = 0$ 的解
 - (b) $r(\mathbf{A}) + r(\mathbf{B}) \le n$
 - (c) 若 A 和 B 为方阵,则 |A| = 0 或 |B| = 0
 - (d) 且 A B 非零,则

$$\Rightarrow \ r(A) < n \underline{\boxminus} r(B) < n$$

⇒ A列向量线性相关

⇒ B行向量线性相关

2. 若 $a_{ij} + A_{ij} = 0$ 则:

$$A_{ij} = -a_{ij}$$

$$A^* = (A_{ij})^T = (-a_{ij})^T = -(a_{ij})^T = -A^T$$

- 3. 若 $A^* = A^T$,则 $A_{ij} = a_{ij}$
- 4. 矩阵 A 经过若干次初等**行变换**得到矩阵 B,则
 - (a) Ax = 0 与 Bx = 0 同解
 - (b) $A \stackrel{\sim}{=} B, B = PA$
 - (c) r(A) = r(B)
- 5. 矩阵 A 经过若干次初等**列变换**得到矩阵 B . 则
 - (a) $A \stackrel{\sim}{=} B, B = AQ$
 - (b) r(A) = r(B)
- 6. $A^* \neq 0 \Rightarrow r(A) \geq n 1(A$ 中至少有一个n 1阶子式不为 0)

7. 若 A, B, C 为 n 阶矩阵,且 ABC = E,则

$$\Rightarrow |A||B||C| = 1$$

 $\Rightarrow ABC$ 均可逆
 $\Rightarrow BC = A^{-1} \Rightarrow BCA = E$
 $\Rightarrow AB = C^{-1} \Rightarrow CAB = E$

- 8. $r(A+AB) \Rightarrow$ 加法, 找可逆, 若A可逆, 则r(AB) = r(B)
- 9. 设A为 $m \times n$ 矩阵, r(A)为秩
 - 基本定义: 秩 = 列向量或行向量的最大线性无关个数
 - 行列式: 方阵 A 满秩 $\Leftrightarrow |A| \neq 0 \Leftrightarrow A$ 可逆
 - 线性相关性:
 - 列满秩 ⇒ 列向量线性无关
 - 行满秩 ⇒ 行向量线性无关
 - 齐次方程: Ax = 0
 - 唯一解 $\Leftrightarrow r(A) = n$
 - 非零解 $\Leftrightarrow r(A) < n$, 解空间维数 n r(A)
 - 矩阵运算:
 - $-r(AB) \le \min(r(A), r(B))$
 - $r(A+B) \le r(A) + r(B)$
 - **逆矩阵**: 列满秩 → 左逆, 行满秩 → 右逆; 方阵满秩 → 可逆
 - **特征值**: 方阵秩 < n \Rightarrow 0 是特征值; 方阵满秩 \Rightarrow 0 不是特征值
- 10. A 为 n 阶矩阵,A 各行元素之和都为 0,则
 - 列向量都是 $1 \neq Ax = 0$ 的解
 - A 的行向量线性相关
 - r(A) < n

2.7 理解

- 1. 设 A, B 为 n 阶矩阵,记 (XY) 表示分块矩阵,则 r(A, AB) == r(A)
 - (a) 记 AB = C, 对 A, C 按列分块有

$$[\alpha_1, \alpha_2, \dots, \alpha_n] \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} = [\beta_1, \beta_2, \dots, \beta_n]$$

即 $\beta_1, \beta_2, \dots, \beta_n$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出,矩阵的秩就是列向量组的秩,故

$$r(A, AB) = r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_n) = r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(A)$$

2. $A \neq m \times n$ 矩阵, $B \neq n \times m$ 矩阵, $E \rightarrow m$ 阶单位矩阵, 若 AB = E, $\mathbb{D}_{r}(A) = m, r(B) = m$

解析

已知 $AB = E_m$,则

$$\therefore AB = E_m \Rightarrow r(AB) = r(E_m) = m,$$

又因为

$$r(AB) \le \min\{r(A), r(B)\}, \quad r(A) \le m, \ r(B) \le m,$$

$$\therefore r(A) = m, \quad r(B) = m.$$

3. 矩阵相乘⇔ 两个数的积相加

3. 秩

- (a) 给定一个矩阵 A, 它的秩就是矩阵中**线性无关的行(或列)的最大个数**
- (b) 秩 == 矩阵所包含的"独立信息量"
- (c) Case: 如果你有 10 行数据,但其中 5 行其实是由另外 5 行"复制"或"线性组合"出来的,那么这些重复的信息是"冗余的",真正"独立"的信息只有 5 行 \Rightarrow r(A) = 5
- (c) 解线性方程组: 判断方程有没有解、是不是唯一解
 - i. 方程 Ax = b 有解 $\Leftrightarrow r(A) = r(A|b) = r(\bar{A})$
 - i. 唯一解 $\Leftrightarrow r(A) = r(\bar{A}) =$ 变量数
 - i. 多解 $\Leftrightarrow r(A) = r(\bar{A}) <$ 变量数
- (d) 判断向量独立性: 度量"向量空间中有多少个独立方向"
 - i. 如果列向量组成的矩阵 $r(A) = 列数 \Rightarrow$ 向量组线性无关
 - i. 否则线性相关
- (e) 维度的桥梁: 刻画了"变换的本质效果"
 - i. 秩本质上就是矩阵对应线性映射的像空间(列空间)的维数
 - ii. 这告诉我们,线性变换把空间压缩到了几维。
 - iii. Case: 3×3 矩阵 A
 - $r(A) = 3 \Rightarrow$ 保留三维空间的全部信息(可能只是旋转或缩放)

 - $r(A) = 1 \Rightarrow$ 压缩成一条直线
 - $r(A) = 0 \Rightarrow$ 全部压缩成原点
- (f) 与行列式、可逆性关系: 可逆性的根本判据
 - i. 如果 n 阶矩阵 A, r(A) = n, 那么 A 可逆, $|A| \neq 0$
 - ii. 如果 r(A) < n,矩阵 A 不可逆

3 向量

3.1 基本概念

- 1. n 个数 a_1, a_2, \ldots, a_n 所组成的有序数组 $\alpha = (a_1, a_2, \ldots, a_n)^T$ 或 $\alpha = (a_1, a_2, \ldots, a_n)$ 称为 n 维向量,其中 a_1, a_2, \ldots, a_n 称为向量 α 的分量(或坐标),前一个表示式称为列向量,后者称为行向量
- 2. 对 n 维向量 $\alpha_1, \alpha_2, \ldots, \alpha_s$, 如果存在不全为零的数 k, 使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

则称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关,否则,称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关

- (a) 有零向量
- (b) 两向量成比例
- (c) $n+1 \uparrow n$ 维向量
- 3. 向量组 $\alpha_1 = (a_{11}, a_{21}, \dots, a_{r1})^T, \alpha_2 = (a_{12}, a_{22}, \dots, a_{r2})^T, \dots, \alpha_m = (a_{1m}, a_{2m}, \dots, a_{rm})^T$ 及向量组 $\widetilde{\alpha_1} = (a_{11}, a_{21}, \dots, a_{s1})^T, \widetilde{\alpha_2} = (a_{12}, a_{22}, \dots, a_{s2})^T, \dots, \widetilde{\alpha_m} = (a_{1m}, a_{2m}, \dots, a_{sm})^T$,其中 $s \leq r$,则称 $\widetilde{\alpha_1}, \widetilde{\alpha_2}, \dots, \widetilde{\alpha_m}$ 为向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 的延伸组 (或称 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是 $\widetilde{\alpha_1}, \widetilde{\alpha_2}, \dots, \widetilde{\alpha_m}$ 的缩短组
- 4. 对 n 维向量 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 和 β ,若存在实数 k_1, k_2, \ldots, k_n ,使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = \beta$$

则称 β 是 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的线性组合,或者说 β 可由 $\alpha_1, \alpha_2, \ldots, \alpha_s$ **线性表出** (示)

- 5. 设有两个 n 维向量组 $(I)\alpha_1,\alpha_2,\ldots,\alpha_s;(II)\beta_1,\beta_2,\ldots,\beta_t$,如果 (I) 中每个向量 $\alpha_i(i=1,2,\ldots,s)$ 都可由 (II) 中的向量 $\beta_1,\beta_2,\ldots,\beta_t$ 线性表出,则称向量组 (I) 可由向量组 (II) 线性表出
- 6. 如果 (I)(II) 这两个向量组可以互相线性表出,则称这两个**向量组等价**
- 7. 在向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 中,若存在 r 个向量 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}$ 线性相关,再加进任一向量 $a_j (j=1,2,\ldots,)$,向量组 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}, \alpha_j$ 就线性相关,则称 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}$ 是向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的一个**极大线性无关组**
 - 极大线性无关组可以表示向量组中任一向量
 - 极大线性无关组不唯一,但其内的向量个数一致,即向量组的秩
- 8. 向量组 $\alpha_1,\alpha_2,\ldots,\alpha_s$ 的极大线性无关组中所含向量的个数 r 称为这个向量组的秩
 - $r(\alpha_1, \alpha_2, \dots, \alpha_{n-1}) < r(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n)$
 - $r(\alpha_1, \alpha_2, \dots, \alpha_n) \leq n$
- 9. 初等行变换不会改变列向量组的线性相关性,也不会改变它们之间的线性组合系数
- 10. 线性表示具有传递性

3.2 定理

- 1. 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关
 - \Leftrightarrow 其次线性方程组 $[\alpha_1, \alpha_2, \dots, \alpha_s][x_1, x_2, \dots, x_n]^T = 0$ 有非零解
 - \Leftrightarrow 向量组的秩 $r(\alpha_1, \alpha_2, \dots, \alpha_s) < s, s$ 表示未知数的个数或向量个数
 - \Leftrightarrow 若向量组是**方阵** $(n \cap n \text{ 维向量})$, 则 $|\alpha_1, \alpha_2, \dots, \alpha_n| = 0$
- 2. 向量组的秩 $r(\alpha_1, \alpha_2, \dots, \alpha_s) = s \Leftrightarrow \alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关
- 3. n+1 个 n 维向量一定线性相关
- 4. 任何部分组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 相关 \Rightarrow 整体组 $\alpha_1, \alpha_2, \dots, \alpha_r, \dots \alpha_s$ 相关
- 5. 整体组 $\alpha_1, \alpha_2, \dots, \alpha_r, \dots \alpha_s$ 无关 \Rightarrow 部分组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 无关
- 6. $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关 \Rightarrow 延伸组 $\widetilde{\alpha_1}, \widetilde{\alpha_2}, \ldots, \widetilde{\alpha_n}$ 线性无关
- 7. $\widetilde{\alpha}_1, \widetilde{\alpha}_2, \dots, \widetilde{\alpha}_n$ 线性相关 ⇒ 缩短组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关
- 8. 向量 β 可由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出
 - \Leftrightarrow 非齐次线性方程组 $[\alpha_1, \alpha_2, \dots, \alpha_s][\alpha_1, \alpha_2, \dots, \alpha_s]^T = \beta$ 有解
 - $\Leftrightarrow \Re r[\alpha_1, \alpha_2, \dots, \alpha_s] = r[\alpha_1, \alpha_2, \dots, \alpha_s, \beta]$
- 9. 如果 $\alpha_1, \alpha_2, \dots, \alpha_s (s \ge 2)$ 线性相关,则其中**必有一个向量**可用其余向量线性表出;反之,若有一个向量可用其余的 s-1 个向量线性表出,则这 s 个向量必线性相关
- 10. 如果 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \ldots, \alpha_s, \beta$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出,且表示法唯一
- 11. 如果 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由向量组 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表出,且 s > t,那么 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关。即**如果多数向量能用少数向量线性表出,那么 多数向量一定线性相关**
- 12. 如果 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关,且它可由可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表出,则 s < t
- 13. 设 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表出,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t)$
- 14. 如果 (I)(II) 是两个等价的向量组,则 r(I) = r(II)
- 15. 如果 r(A) = r,则 A 中有 r 个线性无关的列向量,而其他列向量都是这 r 个线性无关列向量的线性组合,也就是 r(A) = A 的列秩
- 16. 一般地, r(A) = A的列秩 = A的行秩
- 17. $A \in m \times n$ 矩阵,则 Ax = 0 的解向量组的秩为 $\mathbf{n} \mathbf{r}(\mathbf{A})$

3.3 运算

- 1. 设 n 维向量 $\alpha = (a_1, a_2, \dots, a_n)^T, \beta = (b_1, b_2, \dots, b_n)^T$,则
 - (a) $\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)^T$
 - (b) $k\alpha = (ka_1, ka_2, ..., ka_n)^T$
 - (c) $0\alpha = 0$
 - (d) $(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$
 - (e) $\alpha + \beta = \beta + \alpha$
 - (f) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
 - (g) $\alpha + 0 = \alpha$
 - (h) $\alpha + (-\alpha) = 0$
 - (i) $1\alpha = \alpha$
 - (j) $k(l\alpha) = (kl)\alpha$
 - (k) $k(\alpha + \beta) = k\alpha + k\beta$
 - (1) $(k+l)\alpha = k\alpha + l\alpha$

3.4 公式

3.5 方法步骤

- 1. 判断多个向量是否线性相关
 - 含有零向量 0 ⇒ 线性相关
 - 两个向量成比例 ⇒ 线性相关
 - 存在关系 $\alpha_1 + \alpha_2 = \alpha_3$ (定义) \Rightarrow 线性相关
- 2. 线性无关的判定与证明: 若向量的坐标没有给出,通常用**定义法**或 **秩的理论** 或 **反证法**
 - (a) **定义法**证 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关
 - i. 设 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$
 - ii. ⇒恒等变形 (同乘: 看条件 + 构造条件或重组)
 - ii. $k_1 = 0, k_2 = 0, \dots, k_s = 0$
 - (b) **秩**证 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关
 - i. $\Leftrightarrow [\alpha_1, \alpha_2, \dots, \alpha_s][x_1, x_2, \dots, x_s]^T = 0$ 只有零解
 - ii. \Leftrightarrow 秩r($\alpha_1, \alpha_2, \ldots, \alpha_s$) = s
 - r(A) = A的列秩 = A的行秩
 - $r(AB) \le r(A) \coprod r(AB) \le r(B)$
 - 若 A 可逆,则 r(AB) = r(BA) = r(B)
 - 若 A 是 $m \times n$ 矩阵,且 r(A) = n,则 r(AB) = r(B)

- 若 A 是 $m \times n$ 矩阵, B 是 $n \times s$ 矩阵, 且 $AB = \mathbf{O}$, 则 $r(A) + r(B) \le n$
- (c) 反证法
- (d) 线性方程组 Ax = 0
 - 只有零解⇔ 线性无关
 - 有非零解⇔ 线性相关
- (e) 若是 $n \cap n$ 维向量
 - $|\alpha_1, \alpha_2, \dots, \alpha_n| = 0 \Leftrightarrow$ 相关
 - $|\alpha_1, \alpha_2, \dots, \alpha_n| \neq 0 \Leftrightarrow \mathbb{A}$
- 3. 判断能否线性表出
 - (a) 若向量坐标具体 ⇒ 非齐次线性方程组是否有解
 - 有解 ⇒ 能线性表出
 - 无解 ⇒ 不能线性表出
 - (b) 若向量坐标没有 ⇒ 线性相关或秩
 - $r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta) \Rightarrow$ 线性表出
 - $r(\alpha_1, \alpha_2, \dots, \alpha_n) \neq r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta) \Rightarrow$ 不能线性表出
 - 线性相关
- 4. 求向量组的秩
 - 设向量组 $(\alpha_1,\alpha_2,\ldots,\alpha_s)$ 的矩阵为 $A=[\alpha_1,\alpha_2,\ldots,\alpha_s]$ 对 A 作初等行变 换得到行最简形矩阵 A',则

$$r(A') = r(A) =$$
 向量组 $(\alpha_1, \alpha_2, \dots, \alpha_s)$ 的秩

• 若存在 r 阶子式不为零,则 r 为矩阵的秩,对应的 r 个向量构成一组最大线性无关组

3.6 条件转换思路

- 1. 向量组(I)(II)等价
 - \Leftrightarrow (I)可由(II)线性表出且(II)可由(I)线性表出
 - $\Leftrightarrow r(I) = r(II) = r(I, II)$
 - $\Leftrightarrow r(I) = r(II)$ 且(I)可由(II)线性表出
- 2. $\alpha_1, \alpha_2, \alpha_3$ 可以表示任意一个三维向量
 - ⇔ 三者线性无关
 - ⇔ 三者是一组基底
 - $\Leftrightarrow (a,b,c)^T$ 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示

- 3. 如果 $\gamma = (a, b, c)^T$ (任意向量) 不能由 $(\alpha_1, \alpha_2, \alpha_3)$ 线性表出
 - $\Leftrightarrow \alpha_1, \alpha_2, \alpha_3$ 不可表示任意一个三维向量
 - $\Leftrightarrow \alpha_1, \alpha_2, \alpha_3$ 线性相关
 - $\Leftrightarrow |\alpha_1, \alpha_2, \alpha_3| = 0$
- $4. \alpha_1, \alpha_2, \alpha_3$ 如果线性相关 ⇒ 构成一个平面或一条直线
- 5. $\alpha_1, \alpha_2, \alpha_3$ 线性无关, β_1 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, β_2 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,则
 - (a) $\alpha_1, \alpha_2, \alpha_3, \beta_1$ 线性相关
 - (b) $\alpha_1, \alpha_2, \alpha_3, \beta_2$ 线性无关
 - (c) 对于任意实数 k, 有 $\alpha_1, \alpha_2, \alpha_3, k\beta_1 + \beta_2$ 线性无关
 - (d) 对于任意实数 k, $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$
 - $k=0 \Rightarrow$ 相关
 - $k \neq 0 \Rightarrow$ 无关
- 6. 向量组 $\alpha_1, \alpha_2, \alpha_3$ 可由向量组 $\beta_1, \beta_2, \beta_3$ 线性表示 \Rightarrow $\mathbf{r}(\alpha_1, \alpha_2, \alpha_3) \leq r(\beta_1, \beta_2, \beta_3)$
- 7. β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,且表示法不唯一
 - $\Leftrightarrow Ax = \beta$ 有无穷多解
 - $\Leftrightarrow r(\alpha_1, \alpha_2, \alpha_3) = r(\alpha_1, \alpha_2, \alpha_3, \beta) < 3$
 - $\Rightarrow \alpha_1, \alpha_2, \alpha_3$ 线性相关
- 8. $r(\alpha_1, \alpha_2, \dots, \alpha_n) \neq r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta)$
 - $\Leftrightarrow Ax = \beta$ 无解
 - $\Rightarrow \beta$ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出

3.7 理解

- 1. 线性相关无关 \Rightarrow Ax = 0齐次方程组非零解的问题
- 2. 线性表示 $\Rightarrow Ax = \beta(\mathbf{其} \mathbf{p} A = [\alpha_1, \alpha_2, \dots, \alpha_n])$ 非齐次方程组解的问题
 - 非齐次方程组的解向量 x 即为线性表示的系数
 - 对于 n 维向量,有 n 个方程,未知数个数等于向量个数
 - 根据秩的不同,线性表示有三种情况:
 - (a) 唯一表示: $r(A) = r(A, \beta) = n$, $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 向量组线性无关
 - (b) 无穷多表示: $r(A) = r(A, \beta) < n$, $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 向量组线性相关
 - (c) **无表示:** $r(A) < r(A, \beta)$, β 不能由 $(\alpha_1, \ldots, \alpha_n)$ 线性表示

4 线性方程组

4.1 基础概念

1. 方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

称为 n 个未知数 m 个方程的**非齐次线性方程组**。用矩阵表示为: $\mathbf{A}\mathbf{x} = \mathbf{b}$ 其中 $x = (x_1, x_2, \dots, x_n)^T, b = (b_1, b_2, \dots, b_n)^T$,

2. 如果 $b_i = 0 (\forall i = 1, 2, ..., m)$,则称方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

为**齐次线性方程组**

- 3. 若用一组数 c_1, c_2, \ldots, c_n 分别代替方程组中的 x_1, x_2, \ldots, x_n ,使 m 个等式都成立,则称有序数组 (c_1, c_2, \ldots, c_n) 是方程组的一组解。解方程组就是要找出方程组的全部解
- 4. 非齐次线性方程组的全体系数及常数项所构成的矩阵

$$\bar{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

称为非齐次线性方程组的**增广矩阵**,而由全体系数组成的矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

称为非齐次线性方程组的**系数矩阵**

- 5. 如果两个方程组有相同的解集合,则称它们是**同解方程组**
- 6. 下列三种变换称为线性方程组的初等变换
 - (a) 用一个非零常数乘方程的两边

- (b) 把某方程的 k 倍加到另一方程上
- (c) 互换两个方程的位置

线性方程组经初等变换华为阶梯形方程组后,每个方程中的第一个未知量<mark>通</mark>常称为**主变量**,其余的未知量称为**自由变**量

- 7. 选择自由变量准则: 去掉自由变量后主变量行列式不能为 0
- 8. 向量组 $\eta_1, \eta_2, \dots, \eta_n$ 称为齐次线性方程组 Ax = 0 的基础解系,如果
 - (a) $\eta_1, \eta_2, ..., \eta_n$ 是 Ax = 0 的解
 - (b) $\eta_1, \eta_2, ..., \eta_n$ 线性无关
 - (c) Ax = 0 的任一解都有由 $\eta_1, \eta_2, \dots, \eta_n$ 线性表出
 - (d) 解向量个数
- = 无关解个数
- = 自由变量个数
- = t = n r(A),其中n = A的列向量个数
- 9. 如果 $\eta_1, \eta_2, \ldots, \eta_n$ 是齐次线性方程组 Ax = 0 的一组基础解系,那么对任意常数 c_1, c_2, \ldots, c_n ,

$$c_1\eta_1+c_2\eta_2+\cdots+c_t\eta_t$$

是齐次线性方程组 Ax = 0 的**通解**

- 10. Ax = 0 的基础解系是不唯一的
- 11. 对于方程组 (I) 和 (II),如果 α 既是方程组 (I) 的解,也是方程组 (II) 的解,则 称 α 是方程组 (I) 和 (II) 的**公共解**
- 12. 对于方程组 (I) 和 (II),如果 α 是方程组 (I) 的解,则 α 必是 (II) 的解;反过来,如果 α 是方程组 (II) 的解,则 α 必是 (I) 的解,则称 (I) 和 (II) **同解**
- 13. Ax = 0 与 Bx = 0 同解

$$\Leftrightarrow r(A) = r(B) \mathbf{1} Ax = 0$$
 的解全是 $Bx = 0$ 的解

$$\Leftrightarrow r(A) = r(B) = r\left(\begin{bmatrix} A \\ B \end{bmatrix}\right)$$

- ⇔ 矩阵A和B的行向量组等价
- 14. 矩阵乘法一般没有交换律,若 AB = BA,就称 A = BA

4.2 定理

- 1. 线性方程组的初等行变化把线性方程组变成与它同解的方程组
- 2. 设 n 元非齐次线性方程组,对它的增广矩阵施行高斯消元法,得到阶梯形矩阵

$$\bar{A} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1r} & \cdots & a_{1n} & d_1 \\ & c_{22} & \cdots & c_{2r} & \cdots & a_{2n} & d_2 \\ & & \ddots & \vdots & & \vdots & \vdots \\ & & c_{rr} & \cdots & a_{rn} & d_r \\ & & 0 & \cdots & 0 & d_{r+1} \\ & & & \ddots & \vdots & \vdots \\ & & & 0 & 0 \end{bmatrix}.$$

- (a) 如果 $d_{r+1} \neq 0$,方程组**无解**
- (b) 如果 $d_{r+1} = 0$,方程组**有解**,并且
 - i. 当 r = n 时有唯一解
 - ii. 当 r < n 时有无穷多解
- 3. 齐次线性方程组只有零解(唯一解)

$$\Leftrightarrow r(A) = n$$

4. 齐次线性方程组有非零解(有无穷多解)

$$\Leftrightarrow r(A) < n$$

⇔ A的列向量线性无关

$$\Leftrightarrow \ \exists m=n, \mathbf{M}|A|=0$$

- 5. 当 m < n(即方程的个数 < 未知数的个数) 时,齐次线性方程组必有**非零解 (有无穷多解)**
- 6. 设齐次线性方程组系数矩阵的秩 r(A) = r < n,则 Ax = 0 的基础解系由 n r(A) 个线性无关的解向量所构成
- 7. **有解判定定理**: 非齐次线性方程组 Ax = b 的解的充分必要条件是其系数矩阵和增广矩阵的秩相等,即 $\mathbf{r}(\mathbf{A}) = \mathbf{r}(\overline{\mathbf{A}})$:

若
$$r(A) = r(\bar{A}) = n$$

⇒ 方程组有唯一解

若
$$r(A) = r(\bar{A}) < n$$

⇒ 方程组有无穷解

方程组有解

$$\Leftrightarrow A$$
的行向量组线性无关
原因: $r(A) \le r(\bar{A}) \le m \Rightarrow r(A) = r(\bar{A}) = m$

$$\oint \Leftrightarrow \mathbf{r}(\mathbf{A}) + \mathbf{1} = \mathbf{r}(\overline{\mathbf{A}})$$

非齐次线性方程组Ax = b无解

 $\Leftrightarrow b$ 不能由A的列向量线性表出

$$\Rightarrow |A| = 0$$

8. 解的性质

- (a) 如果 η_1, η_2 是齐次线性方程组 Ax = 0 的两个解,那么其线性组合仍是该齐次线性方程组 Ax = 0 的解
- (b) 如果 α , β 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的两个解,则 $\alpha \beta$ 是导出组 Ax = 0 的解

$$\Leftrightarrow r(A) = r(\overline{A}) < n$$

 $\Leftrightarrow Ax = 0$ 有无穷多解

- (c) 如果 α 是齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, η 是导出组 Ax = 0 的解,则 $\alpha + \eta$ 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解
- (d) 使用 最小公约数 构造解:

 $\alpha_1 + \alpha_2$ 是两个解, $\alpha_2 + 2\alpha_3$ 是三个解,

故可构造:

$$3(\alpha_1 + \alpha_2) - 2(\alpha_2 + 2\alpha_3)$$

- (e) 若 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解
 - i. 且 $k_1 + k_2 + \cdots + k_t = 1 \Leftrightarrow k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_t \alpha_t$ 仍是 $Ax = \mathbf{b}$ 的解 ii. 且 $k_1 + k_2 + \cdots + k_t = 0 \Leftrightarrow k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_t \alpha_t$ 仍是 $Ax = \mathbf{0}$ 的解
- 9. **解的结构**: 对非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$,若 $r(A) = r(\bar{A}) = r$,且已知 $\eta_1, \eta_2, \dots, \eta_{n-r}$ 是导出组 Ax = 0 的基础解系, ζ_0 是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的每个已知解,则 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解为

$$\zeta_0 + c_1 \eta_1 + c_2 \eta_2 + \cdots + c_{n-r} \eta_{n-r}$$

其中 $c_1, c_2, \ldots, c_{n-r}$ 为任意常数

10. 通解表示为:

通解 = 特解 +
$$k_1$$
解向量 $_1 + k_2$ 解向量 $_2 + \dots$
= 特解 + 齐次方程 $Ax = 0$ 的通解

特解构造方法:

特解 = 令自由变量为 0, 主元为常数项 特解 \leftarrow 通过单个b 构造, 即除/减(n+1) 个解 -n 个解)

齐次方程 Ax = 0 的通解:

通解 = 自由变量列的相反数 通解 = $\alpha - \beta$ 或通过最小公倍数 法构造

- 4.3 运算
- 4.4 公式
- 4.5 方法步骤
 - 1. $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解 $\Leftrightarrow r(A) = r(\bar{A})$
 - (a) 判断何时 a = 0

若 a=0 则有可能无解

i. ∀a 均有解

ii. 若 $b \neq 0$ 必无解

(b) Case:

$$\left[\begin{array}{cc|c}
1 & -1 & a & 2 \\
 & \underline{a-1} & a+2 & -3 \\
 & \underline{2a+6} & a-9
\end{array} \right]$$

从下向上依次检查与 0 的关系

- i. 先看 2a + 6 = 0
- ii. 再看 a 1 = 0

唯一解
$$\Leftrightarrow r(A) = r(\bar{A}) = n$$
 $\Leftrightarrow a \neq 1 \ \underline{\square} a \neq -3$
无穷解 $\Leftrightarrow r(A) = r(\bar{A}) < n$ $\Leftrightarrow a = 1$
无解 $\Leftrightarrow r(A) + 1 = r(\bar{A})$ $\Leftrightarrow a = -3$

2. 证明 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是 Ax = 0 的基础解系,需要

- (a) 验证 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是 Ax = 0 的解
- (b) 证明 $\alpha_1, \alpha_2, \ldots, \alpha_t$ 线性无关
- (c) t = n r(A)
- 3. 非齐次线性方程组求解方法
 - (a) 对增广矩阵作初等行变换化为阶梯形矩阵
 - (b) 求导出组的几个基础解系
 - (c) 求方程组的一个特解(为简捷,可令自由变量全为0)
 - (d) 按解的结构写出通解
 - (e) 注: 当方程组中含有参数时,分析讨论要严谨不要丢情况
- 4. 公共解处理方法 (例 4.16)
 - (a) (I)(II) 联立求解
 - (b) 通过(I)与(II)各自的通解,寻找非零公共解
 - (c) 把 (I) 的通解带入 (II) 中,如果仍是解,寻找 k_1, k_2 所对应满足的关系式而求出公共解
- 5. 证明两方程同解
 - (a) 定义
 - (b) r(A) = r(B) 且 Ax = 0 的解全是 Bx = 0 的解

4.6 条件转换思路

- 1. 抽象方程组 (例 4.9)
 - (a) 解的结构
 - (b) 解的性质
 - (c) 秩

4.7 理解