Signals and Systems

Lecture # 5

Basic Signals

Prepared by:

Dr. Mohammed Refaey

Topics of the lecture:

➤ Discrete-Time Unit Impulse and Unit step Signals.

> Continuous-Time Unit Impulse and Unit step Signals.

The discrete-time unit Impulse Signal:

$$\delta[n] = \begin{cases} 1 & ; \quad n = 0 \\ 0 & ; \quad n \neq 0 \end{cases}$$

It is also called unit sample signal

The discrete-time shifted unit impulse Signal:

$$\delta[n-k] = \begin{cases} 1 & ; & n=k \\ 0 & ; & n \neq k \end{cases}$$

The discrete-time unit step Signal:

$$u[n] = \begin{cases} 1 & ; \quad n \ge 0 \\ 0 & ; \quad n < 0 \end{cases}$$

It is also called unit sequence signal

The discrete-time shifted unit step Signal:

$$u[n-k] = \begin{cases} 1 & ; & n \ge k \\ 0 & ; & n < k \end{cases}$$

The relationship between discrete-time unit impulse and unit step signals:

$$\delta[n] = u[n] - u[n-1]$$

$$u[n] = \sum_{m=-\infty}^{n} \mathcal{S}[m]$$

Let m = n - k OR k = n - m

$$\therefore u[n] = \sum_{k=+\infty}^{0} \mathcal{S}[n-k]$$

$$\therefore u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

The unit impulse sequence can be used to sample the value of a signal at n = 0. In particular, since $\delta[n]$ is nonzero (and equal to 1) only for n = 0, it follows that

$$x[n]\delta[n] = x[0]\delta[n] = x[0]$$

More generally, if we consider a unit impulse $\delta(n - n_0)$ at $n = n_0$, then

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0] = x[n_0]$$

The continuous-time unit step Signal:

$$u(t) = \begin{cases} 1 & ; \quad t > 0 \\ 0 & ; \quad t < 0 \end{cases}$$

As the there is no such sudden change in real practical application. So an approximation of the ideal case is usually is what is happen.

Similarly to the discrete-time case the unit continuous-time impulse signal is the differentiation of the unit step signal

$$\delta_{\Delta}(t) = \frac{d}{dt} u_{\Delta}(t)$$

Continuous approximation to the unit step, $u_{\Delta}(t)$.

The continuous-time unit impulse Signal:

$$\delta_{\Delta}(t) = \frac{d}{dt} u_{\Delta}(t)$$

Note that $\delta_{\Delta}(t)$ is a short pulse of duration Δ and unit area. As the Δ becomes smaller the $\delta_{\Delta}(t)$ becomes narrower and higher maintaining the unit area. As the Δ goes to zero the $\delta_{\Delta}(t)$

goes to ∞

$$\mathcal{S}(t) = \lim_{\Delta \to 0} \ \mathcal{S}_{\Delta}(t)$$

Then u(t) can be thought as a running integral of $\delta(t)$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

The relationship between continuous-time unit impulse and unit step signals:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Let
$$\sigma = t - \tau$$
 OR $\tau = t - \sigma$

$$u(t) = \int_{-\infty}^{0} \delta(t - \sigma)(-d\sigma)$$

$$u(t) = \int_{0}^{\infty} \delta(t - \sigma) d\sigma$$

 (\mathbf{a})

$$x_1(t) = x(t)\delta_{\Delta}(t).$$

In Figure (a) we have depicted the two time functions x(t) and $\delta_{\Delta}(t)$, and in Figure (b) we see an enlarged view of the nonzero portion of their product. By construction, $x_1(t)$ is zero outside the interval $0 \le t \le \Delta$. For Δ sufficiently small so that x(t) is approximately constant over this interval,

$$x(t)\delta_{\Delta}(t) \approx x(0)\delta_{\Delta}(t)$$
,

Since $\delta(t)$ is the limit as $\Delta \to 0$ of $\delta_{\Delta}(t)$, it follows that

$$x(t)\delta(t) = x(0)\delta(t).$$

By the same argument, we have an analogous expression for an impulse concentrated at an arbitrary point, say, t_0 . That is,

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0).$$

