Diffraction Efficiency of a Binary Grating

MeepCon 2022 Tutorial

Ardavan Oskooi, Google

Review: Diffraction Gratings

if $\Lambda \cong \lambda$, results are polarization dependent (S or P)

two main types of gratings:
(1) *surface relief* and (2) holographic (photopolymer)

e.g., for λ = 0.5 μ m, Λ = 10.0 μ m, n = 1.0, $k_{_{V}}$ = 0, $|m|_{\rm max}$ = 20

Unit-Cell Simulation Layout

single simulation yields broadband spectral response

Three Primary Features to Review for this Calculation

(1) Broadband Oblique Source

(2) Mode Decomposition of Planewaves

(3) Super cell of a 2D Triangular Lattice

(1) Broadband Oblique Source

dispersion relation for

dispersion relation for planewave in homogeneous medium with index *n*

in Meep units,
$$c$$
 = 1:
$$\vec{k} = (k_x, k_y) = n\omega \left(cos(\theta), sin(\theta)\right)$$

if $\theta \neq 0^{\circ}$, for any frequency $\omega' \neq \omega$ of a pulsed source, the incident angle θ' is *not* the same as θ :

$$\theta$$
 = 0° is along + x direction
and θ > 0° is counter clockwise
rotation about z axis

tion ckwise
$$\theta' = \sin^{-1}\left(\frac{k_y}{n\omega'}\right)$$

(2) Mode Decomposition of Planewaves

- computing the diffraction efficiency involves calculating the *power in a* given order normalized by the input power of the source (which requires a separate run with just homogeneous medium)
- the order is specified by (1) an integer m and (2) the polarization S or P
- the power in a mode is equivalent to the squared magnitude of the complex mode coefficient which is otherwise known as the scattering (S) parameter or S-matrix element: $|\alpha_n^{\pm}|^2 = P_n^{\pm}$
- to specify a diffraction order in Meep, use a <u>DiffractedPlanewave</u> object which is passed to the <u>get_eigenmode_coefficients</u> function

(3) Super cell of a 2D Triangular Lattice

(3) Super cell of a 2D Triangular Lattice

direct and reciprocal lattice vectors
unit cell

$$\vec{a_1} = (\Lambda, 0)$$
 $\vec{b_1} = \frac{2\pi}{\Lambda} (1, -1/\sqrt{3})$ $\vec{a_2} = \left(\frac{\Lambda}{2}, \frac{\sqrt{3}}{2}\Lambda\right)$ $\vec{b_2} = \frac{2\pi}{\Lambda} (0, 2/\sqrt{3})$

$$\vec{k_{\parallel}} = m_1 \vec{b_1} + m_2 \vec{b_2}$$

super cell

$$\vec{a_1'} = (\Lambda, 0)$$
 $\vec{b_1'} = \frac{2\pi}{\Lambda}(1, 0)$ $\vec{a_2'} = (0, \sqrt{3}\Lambda)$ $\vec{b_2'} = \frac{2\pi}{\Lambda}(0, 1/\sqrt{3})$

$$\vec{k_{SC}} = n_1 \vec{b_1'} + n_2 \vec{b_2'}$$

 $\vec{k_{SC}} = \vec{k_{||}}$ yields condition for real orders:

$$n_1=m_1$$
 , $n_2=-m_1+2m_2$