Pmat - praca domowa z dnia 27.11.2023

Gracjan Barski, album: 448189

November 30, 2023

Zadanie 263:

a) Chcemy aby r^{\exists} była przechodnia. Weźmy jako r relację pełną na \mathbb{N} (czyli każdy element z \mathbb{N} jest w relacji z elementem każdym z \mathbb{N}). Zapiszmy formalnie:

$$r = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \in \mathbb{N} \land y \in \mathbb{N}\}\$$

Z ćwiczeń wiemy, że faktycznie taka relacja jest przechodnia. Pokażmy że wtedy relacja r^{\exists} jest przechodnia.

Weźmy dowolne zbiory $X,Y,Z\in\mathcal{P}(\mathbb{N})$ takie że $(X,Y)\in r^{\exists}$ oraz $(Y,Z)\in r^{\exists}$. Wtedy z definicji mamy:

$$\exists_{x_0 \in X} \ y_0 \in Y} \ (x_0, y_0) \in r$$

$$\exists_{y_1 \in Y} \ z_0 \in Z} \ (y_1, z_0) \in r$$

Ale z tego że relacja r jest pełna, to mamy również $(x_0, z_0) \in r$ więc z definicji r^{\exists} mamy $(X, Z) \in r^{\exists}$

b) Chcemy aby r^{\exists} była nieprzechodnia. Weźmy jako r relację $\mathbf{1}_{\mathbb{N}}$. Z ćwiczeń wiemy, że faktycznie taka relacja jest przechodnia. Teraz aby pokazać, że r^{\exists} nieprzechodnia można wziąc taki przykład:

$$(\{1\},\{1,2\}) \in r^{\exists} \land (\{1,2\},\{2,3\}) \in r^{\exists}$$

ale

$$(\{1\}, \{2, 3\}) \notin r^{\exists}$$

bo $(1,2) \not \in r$ oraz $(1,3) \not \in r.$ Więc r^\exists nie
przechodnia.