CPU & MEMORY ARCHITECTURE - JARED: COMPLETE SYSTEM DESIGN

This document presents the complete design of an 8086-based microcomputer system with 1MB memory, coprocessor 8087, and comprehensive I/O interfaces including diskette controller 8272 for teams of 4 members.

1. GENERAL BLOCK DIAGRAM OF THE SYSTEM

The system architecture follows a hierarchical design with the 8086 CPU as the central processing unit, supported by the 8087 coprocessor for floating-point operations. All components communicate through a unified system bus structure.

8086 MICROCOMPUTER SYSTEM - 10MHz

MAIN MEMORY (1 MBYTE)

System Bus Explanation: The 8086 provides a 20-bit address bus allowing access to 1MB of memory space. The 16-bit data bus enables efficient data transfer, while control signals coordinate memory and I/O operations. The coprocessor 8087 operates in parallel with the CPU for mathematical computations.

2. DETAILED I/O INTERFACE DIAGRAMS

2.1 INTERRUPT CONTROLLER (8259A) - Address: C0000h-C00FFh

Connected IRQ Lines:

- IRQ0: Timer (system clock)

IRQ1: KeyboardIRQ2: Serial portIRQ3: Parallel port

- IRQ4: USB controller

- IRQ5: ADC/DAC

- IRQ6: Floppy controller

- IRQ7: Printer

2.2 DMA CONTROLLER (8237) - Address: C0100h-C01FFh

DMA Channels:

- CHO: Floppy disk high-speed transfers

- CH1: USB data transfers

- CH2: Available for expansion - CH3: Available for expansion

2.3 SERIAL PORT (8251 UART) - Address: C0200h-C02FFh

Features:

- Programmable baud rates (110-9600 bps)
- Full duplex communication
- Hardware handshaking support

2.4 PARALLEL PORT (8255 PPI) - Address: C0300h-C03FFh

Configuration:

- Port A: Data output (to printer)
- Port B: Status input (from printer)
- Port C: Control signals

2.5 KEYBOARD INTERFACE (8279) - Address: C0400h-C04FFh

Features:

- 64-key matrix scanning
- Key debouncing
- FIFO buffer for key codes
- Interrupt generation on key press

2.6 DISPLAY INTERFACE (8279) - Address: C0500h-C05FFh

Features:

- 16 digits x 7 segments
- Automatic multiplexing
- Brightness control
- Hexadecimal display capability

2.7 ADC/DAC INTERFACE - Address: C0600h-C06FFh

Specifications:

- ADC: 8-bit resolution, 0-5V input range - DAC: 8-bit resolution, 0-5V output range

- Conversion time: <100μs

2.8 USB CONTROLLER + DMA - Address: C0700h-C07FFh

Features:

- USB 1.1 compatible
- DMA channel 1 for high-speed transfers
- Interrupt-driven operation

2.9 PRINTER CONTROLLER - Address: C0800h-C08FFh

Features:

- Centronics parallel interface
- Automatic paper feed control
- Ready/Busy status monitoring

2.10 FLOPPY CONTROLLER 8272 - Address: C0900h-C09FFh

Features:

- Support for 5.25" and 3.5" drives
- Double density (360KB/720KB)
- DMA channel 0 for data transfers
- Built-in formatting capability

CONNECTED PERIPHERALS

64-KEYBOARD 64 KEYS 7-SEG DISPLAY 16 DIGITS PRINTER PARALLEL

SERIAL PORT RS-232 PARALLEL PORT CENTRONICS

USB + DMA

ADC (8 bit)

DAC (8 bit)

FLOPPY 8272

3. DETAILED MEMORY MAP

The memory organization follows a structured approach with dedicated areas for different system functions. The 1MB address space is efficiently divided between RAM for user programs and data, ROM for system firmware, and I/O space for peripheral interfaces.

MEMORY MAP - 8086 SYSTEM (1 MBYTE)
Physical Addresses (20 bits) = 00000h to FFFFFh

ADDRESS	SIZE	TYPE	DESCRIPTION
00000h-003FFh 00400h-3FFFFh 40000h-7FFFFh 80000h-BFFFFh C0000h-CFFFFh D0000h-DFFFFh E0000h-F7FFFh	255KB 256KB 256KB 64KB 64KB 96KB	RAM RAM RAM RAM I/O RESERVED ROM ROM	Interrupt Vector Table User Program Area User Data Area System Buffer/Stack Peripheral Mapping Area Reserved for Video & I/O System BIOS Boot BIOS

I/O AREA DETAILS (C0000h - CFFFFh):

ADDRESS	SIZE	DEVICE
C0000h-C00FFh C0100h-C01FFh C0200h-C02FFh C0300h-C03FFh C0400h-C04FFh C0500h-C05FFh C0600h-C06FFh C0700h-C07FFh C0800h-C08FFh C0900h-C09FFh	256B 256B 256B 256B 256B 256B 256B 256B	Interrupt Controller (8259A) DMA Controller (8237) Serial Port (8251 UART) Parallel Port (8255 PPI) Matrix Keyboard (8279) 7-Segment Display (8279) ADC/DAC Interface USB Controller Printer Controller Floppy Controller (8272) Reserved for Future Expansion

RESERVED AREA DETAILS (D0000h - DFFFFh):

ADDRESS	SIZE	PURPOSE
D0000h-D7FFFh D8000h-DFFFFh		Reserved for Video Memory Reserved for Additional I/O

4. ADDRESS DECODING SYSTEM

The address decoding system uses a hierarchical approach with a main decoder (74138) that examines the four most significant address bits (A19-A16) to select between memory and I/O regions. This design provides clear separation between different system areas and allows for easy expansion.

ADDRESS DECODER - HIERARCHICAL DESIGN

RAM DECODING (00000h-BFFFFh):

- Uses A19-A18 = 00, 01, 10
- Chips: 4 x DRAM 256KB (4164 or similar)
- Configuration: 2 banks x 2 chips each
- Row/column address multiplexing

ROM DECODING (E0000h-FFFFFh):

- Uses A19-A17 = 111
- Chips: 4 x EPROM 32KB (27256)
- Direct addressing A16-A0

I/O DECODING (C0000h-DFFFFh):

- Uses A19-A17 = 110
- Secondary decoder (74138)
- A16-A12 selects specific device

ADDRESS DECODER – DETAILED PIN CONNECTIONS

PRIMARY DECODER (74138)

Address Line	74138 Input Pin
A19	A
A18	В
A17	С

74138 Output Selection:

- **Y0 (00x):** RAM Bank 0 (00000h–3FFFFh)
- **Y1 (01x):** RAM Bank 1 (40000h–7FFFFh)
- **Y2 (10x):** RAM Bank 2 (80000h-BFFFFh)
- **Y3 (110):** I/O Area (C0000h–DFFFFh)
- **Y4 (111):** ROM Area (E0000h-FFFFFh)

MEMORY BANK SELECTION

RAM Banks (A19-A18):

- 00: Bank 0 (256KB) User Program
- 01: Bank 1 (256KB) User Data
- 10: Bank 2 (256KB) System/Stack
- 11: Not used for RAM

I/O & ROM Selection (A19-A17):

110: I/O Area111: ROM Area

SECONDARY DECODER (74138 for I/O)

Input: **A16–A12** for device selection

A16-A12	Y Output	Device
00000	Y0	8259A
00001	Y1	8237 DMA
00010	Y2	8251 UART
00011	Y3	8255 PPI
00100	Y4	Keyboard
00101	Y5	Display
00110	Y6	ADC/DAC
00111	Y7	USB

5. PHYSICAL MEMORY CONFIGURATION

The physical memory implementation uses a combination of dynamic RAM for main memory and EPROM for system firmware. The DRAM configuration includes refresh circuitry to maintain data integrity, while the ROM provides non-volatile storage for BIOS and boot routines.

MEMORY CHIP CONFIGURATION

RAM - DYNAMIC DRAM CONFIGURATION:

Note: Each bank uses four 4164 DRAM chips (64K x 1 bit) to provide 256KB with 16-bit data bus width. All banks use identical chip configurations for uniformity and simplified control logic.

ROM - EPROM CONFIGURATION:

32KB	32KB	32KB
27256	27256	27256
MAIN BIOS	EXT BIOS	BOOT LOAD

MEMORY CONTROL SIGNALS:

Signal	Function
RAS CAS WE OE CS	Row Address Strobe (DRAM timing) Column Address Strobe (DRAM timing) Write Enable (active low) Output Enable (ROM/RAM read) Chip Select (from address decoder)

6. SYSTEM IMPLEMENTATION AND CODE REFERENCES

6.1 Complete System Integration

This microcomputer system, as documented and implemented by the team, fulfills all requirements for Part I-B (teams of 4 members):

• **8086 CPU** at 10 MHz with **8087 coprocessor**

- **1MB memory** (768 KB RAM + 128 KB ROM + 128 KB mapped I/O area)
- **Parallel connector** (8255 PPI)
- Serial connector (8251 UART)
- ADC and DAC interfaces for data conversion
- **16-digit seven-segment display** (8279)
- **4-key matrix keyboard** (8279)
- **USB controller with DMA** for high-speed transfers
- **Printer connector** (Centronics/parallel interface)
- **Interrupt controller** (8259A) managing I/O priorities
- **Diskette controller** (8272) for floppy disk operations
- **DMA controller** (8237) with 4 channels for peripheral and memory transfers

All system components are represented in the architectural diagrams, memory map, and explanations throughout CPU_Memory.md.

6.2 Programming and Code Files

The complete system initialization, memory management, and driver logic is provided across the following files:

Assembly Code: CPU_Memory.asm * System initialization routines and structure (with documented procedure stubs) * Segment and stack configuration * Memory and coprocessor test pattern setup * Team base address definitions for all peripherals

Pseudocode Documentation: CPU_Memory_pseudocode.md * Step-by-step pseudocode for system and memory initialization * Coprocessor (8087) initialization and test routines * Memory bank configuration and ROM verification * Address mapping and coordination between team members * Standard memory read/write/copy routines

For a full overview of architecture and interface details, refer to the block diagrams, memory map, and explanations throughout CPU Memory.md.

6.3 Team Address Coordination

To enable clear collaboration and avoid address conflicts, the I/O address space is explicitly partitioned for each team member as follows:

Team			Allocated
Member	Devices	Address Range(s)	Size
Person 2	Keyboard, Display, Printer	C0400h-C05FFh, C0800h- C08FFh	512 B
Person 3	Interrupts, Serial, Parallel, USB + DMA	C0000h-C03FFh, C0700h- C07FFh	1280 B
Person 4	ADC/DAC, Floppy Controller (8272)	C0600h-C06FFh, C0900h- C09FFh	512 B

Note: All assignments match the memory map and decoding diagrams; see the I/O details in Section 2 and the pseudocode address table for further reference.

6.4 System Specifications Summary

• **CPU:** Intel 8086 @ 10 MHz

• **Coprocessor:** Intel 8087 (floating-point)

• **Total Memory:** 1 MB (768 KB RAM, 128 KB ROM, 128 KB I/O mapped)

Main Peripherals: 8255 PPI (parallel), 8251 UART (serial), 8259A (interrupt),
 8237 (DMA), 8279 (display/keyboard), ADC 0804, DAC 0808, USB interface, printer,
 8272 floppy controller

• **DMA Channels:** 4 (8237)

• Interrupt Levels: 8 (8259A)

• **Storage:** 8272 floppy disk controller (5.25"/3.5" drives, double density)

• **User I/O:** 64-key keyboard, 16-digit 7-segment display

• **Analog I/O:** 8-bit ADC and DAC

 Modern Expansion: USB with DMA support ## 7. 8086/8087 PHYSICAL INTEGRATION

7.1 Signal Connections and Bus Sharing

8086,	/8087 PHYSICAL (CONNECTIONS
8086 Signal	8087 Signal	Function
TEST/ QS0,QS1 S0-S2 CLK READY RQ/GT0	BUSY/ QS0,QS1 S0-S2 CLK READY REQUEST	Coprocessor Status Queue Status Bus Cycle Status 10MHz System Clock Wait State Control Bus Request/Grant

7.2 Bus Arbitration and Timing

Bus Control

- 8087 monitors all bus cycles through status lines
- Uses RQ/GT protocol for bus access
- Maintains instruction synchronization via queue status

2. Clock Synchronization

- Both processors share 10MHz clock
- CLK signal distributed with minimal skew
- Maximum 100ns cycle time at full speed

3. Wait State Generation

- System can insert wait states via READY signal
- Typical memory cycle: 4 clock periods
- Wait states added for slower peripherals

7.3 Memory Access Timing (10MHz Operation)

Basic Read/Write Cycle Timing Diagram:

Timing Notes: - **T1-T4:** Standard bus cycle states. - **Tw:** Optional wait state inserted if READY is not asserted. - **ALE:** Address Latch Enable pulse at start of cycle. - **A19-A0:** Address lines valid after ALE. - **CS, RD:** Chip Select and Read/Write signals active low during access. - **DATA:** Data lines valid during T3/Tw. - **READY:** If low, CPU inserts wait state(s) (Tw) before completing cycle.

Note: The timing diagram shows a typical memory access with one wait state (Tw). The system can operate at 10MHz with proper wait state insertion for different memory and I/O devices.