Mathematics of Reinforcement Learning

Exercise Class 8

Exercise 1. Let $\gamma < 1$, π an arbitrary policy and define an operator T^{π} acting on functions $w: S \to \mathbb{R}$ by

$$T^{\pi}[w](s) \coloneqq \sum_{s' \in S, a \in A} \left[r(s, a) + \gamma w(s') \right] \pi(a \mid s) p(s' \mid s, a), \quad \text{for } s \in S.$$

Show that T^{π} has a unique fixed point $W \colon S \to \mathbb{R}$, that is, $W(s) = T^{\pi}[W](s)$ for all $s \in S$.

Exercise 2. Let $M=(S,A,D,p,r,\gamma)$ be a Markov Decision Model, with $\gamma<1$. Show that there exists a Markov Decision Model $\tilde{M}=(S,A,D,\tilde{p},\tilde{r},\gamma)$ such that

$$\sup_{\pi\in\Pi^{\bar{M}}} V^{\pi}(s) = \sup_{\pi\in\Pi^{\bar{M}}} V^{\pi}(s), \quad \text{for all } s\in S, \quad \text{ Also works for ϵ-greedy?}$$

where Π^M and $\Pi^{\tilde{M}}$ denote the set of all policies in the Markov Decision Models M and \tilde{M} .

Hints: Start by defining a new transition probability function \tilde{p} that incorporates the ε -softness into the new MDM and adjust the reward function. Show that there exists a transformation of the policies such that the value function remains invariant with respect to these changes. For the last point, use the results of exercise 1.

Definition 1 (ε -soft optimal). An ε -soft policy π^* is called ε -soft optimal if

$$V^{\pi^*}(s) = \sup_{\pi \in \operatorname{soft}} V^{\pi}(s) =: \tilde{V}^*(s), \text{ for all } s \in S.$$

Exercise 3. Let $\gamma < 1$ and π_0 be an arbitrary ε -soft policy and $\{\pi_n\}_{n \in \mathbb{N}} \subseteq \Pi$ be a sequence of ε -soft policies, where π_n is chosen to be ε -greedy with respect to $Q^{\pi_{n-1}}$, for all n > 0. Show that for some $N \in \mathbb{N}$, for all $m \geq N$, the policy π_m is ε -soft optimal.

Hint: Use exercise 2.