Решенная задача на тему: конечный автомат

Задание.

Автомат задан набором ($\{a,b\}$, $\{q_1,q_2,q_3,q_4,q_5\}$, Q_s , Q_f), где $\{a,b\}$ – алфавит, Q_s – множество начальных состояний (входов), Q_f – множество конечных состояний (выходов), и списком дуг с метками, определяющих допустимые переходы.

Запись (i, j, a, b) означает, что дуга (i, j), идущая из состояния q_i в состояние q_i , имеет две метки – a и b.

- 1. Построить граф автомата и найти язык L, допускаемый автоматом.
- 2. Детерминизировать автомат.
- 3. Построить графы автоматов, представляющих языки L_0 , L $\cup L_0$, L $\circ L_0$ u L^* .
- 4. Из построенных графов удалить λ -переходы.

Вход
$$Q_s = \{2\}$$
, выходы $Q_f = \{3,4\}$, дуги: $(1, 2, a)$, $(1, 5, b)$, $(2, 5, b)$, $(2, 4, a)$, $(3, 2, a, b)$, $(4, 3, b)$, $(5, 4, a)$. $L_0 = \{b^n(ab)^m a \mid n, m \ge 0\}$.

Решение.

1. Матрица и граф автомата:

Определяем язык автомата, решая систему уравнений.

Из начального состояния q_2 состояние q_1 недостижимо, поэтому состояние q_1 при решении системы рассматривать не будем.

$$\begin{cases} x_2 = ax_4 + bx_5 \\ x_3 = (a+b)x_2 + \lambda \\ x_4 = bx_3 + \lambda \\ x_5 = ax_4 \end{cases} \Rightarrow \begin{cases} x_2 = ax_4 + bax_4 \\ x_3 = (a+b)x_2 + \lambda \Rightarrow \\ x_4 = bx_3 + \lambda \end{cases} \begin{cases} x_2 = (a+ba)x_4 \\ x_3 = (a+b)x_2 + \lambda \Rightarrow \\ x_4 = bx_3 + \lambda \end{cases}$$

Задача скачана с https://www.matburo.ru/ (много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

$$\Rightarrow \begin{cases} x_2 = (a+ba)x_4 \\ x_4 = b((a+b)x_2 + \lambda) + \lambda \end{cases} \Rightarrow \begin{cases} x_2 = (a+ba)x_4 \\ x_4 = b(a+b)x_2 + b\lambda + \lambda \end{cases} \Rightarrow$$

$$x_2 = (a+ba)x_4 = (a+ba)(b(a+b)x_2 + b\lambda + \lambda) =$$

$$= (a+ba)b(a+b)x_2 + (a+ba)b\lambda + (a+ba)\lambda =$$

$$= (aba+ab^2+baba+bab^2)x_2 + (ab+bab+a+ba)\lambda =$$

$$= (aba+ab^2+baba+bab^2)^*(ab+bab+a+ba)$$

Язык L, допускаемый автоматом:

$$L = (aba + ab^2 + baba + bab^2)^* (ab + bab + a + ba)$$

- 2. Детерминизация автомата с помощью процедуры вытягивания.
- 1) $\delta(\{2\}, a) = \{4\};$ $\delta(\{2\}, b) = \{5\};$
- 2) $\delta(\{4\}, a) = \emptyset;$ $\delta(\{4\}, b)$ 3) $\delta(\{5\}, a) = \{4\};$ $\delta(\{5\}, b) = \emptyset;$ $\delta(\{4\}, b) = \{3\};$
- 4) $\delta(\{3\}, a) = \{2\};$ $\delta(\{3\}, b) = \{2\};$ 5) $\delta(\{1\}, a) = \{2\};$ $\delta(\{1\}, b) = \{5\}.$

Детерминированный автомат

3. Граф языка $L_0 = \{b^n(ab)^m a \mid n, m \ge 0\}$:

Граф $L \cup L_0$ с λ -переходами

Задача скачана с https://www.matburo.ru/ (много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

Граф $L \cup L_0$ без λ -переходов

Граф $L \circ L_0$ с λ -переходами

Задача скачана с https://www.matburo.ru/ (много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

Граф $L \circ L_0$ без λ -переходов

Граф L^* с λ -переходами

Граф L^* без λ -переходов

