2015-1016 Bahar Dönemi ELEKTRONIK II

Teslim tarihi: 25.05.2016

Ödev-5

- **1.** Şekil.1'deki devre için şu parametreler verilmiştir: $V_{CC} = V_{EE} = 10 \text{ V}$, $R_2 = R_3 = 47 \text{ k}\Omega$, $R_4 = 10 \text{ k}\Omega$, $R_5 = 100 \Omega$, $R_6 = 3.9 \text{ k}\Omega$, $R_7 = 300$, $R_8 = 300$, R_8
- **a)** Giriş geriliminin kutuplaması sıfır olduğunda çıkış geriliminin de sıfır olabilmesi için R₁ direncinin değeri ne olmalıdır?
- **b**) Gerilim kazancı $\frac{v_o}{v_i}$, giriş direnci R_i ve çıkış direnci R_o 'nun değerini hesaplayınız.
- c) Girişe 1kHz frekansında, 10mV genlikli bir sinüs işareti uygulayarak giriş ve çıkış işaretini zamana bağlı olarak birlikte çizdiriniz. (kondansatör değerini 1μF olarak alabilirisiniz).
- **d)** Çıkış geriliminde herhangi bir kırpılma oluşturmadan girişe uygulanabilecek işaretin maksimum genliğini hesaplayınız.

Aktif devre parametreleri ve PSPICE/LTSPICE eşdeğerleri için aşağıdaki verileri kullanabilirsiniz:

BJT:

.model NPN_odev5 NPN

+IS = 2e - 15

+BF=300

+NF=1

- 2. Şekil 2a'daki devre için şu parametreler verilmiştir: $V_{DD}=3$ V, $V_{tn}=0.7$ V, $V_{tp}=-0.8$ V, $\mu_n C_{ox}=135$ $\mu A/V^2$ $\mu_p=\mu_n/3$, $I_{SS}=0.2$ mA, $(W/L)_n=30$, $(W/L)_p=10$. I_{SS} akım kaynağının iç direnci $R_{SS}=100$ k Ω olarak verilmektedir. Performansı arttırmak amacıyla devreye şekil 2b'de görüldüğü gibi, $I_{D5}=I_{D6}=0.4*I_{SS}$ olacak şekilde M_5 ve M_6 tranzistorları eklenmiştir. V_B gerilimi M_5 ve M_6 'nın doymada çalışmasını sağlayacak şekilde seçilmiştir.
- a) Şekil 2a'daki devre için $v_{out}/(v_{in1}-v_{in2})$ gerilim kazancı ve CMRR'yi hesaplayınız.
- **b)** Şekil 2b'deki devre için a) yapılanları tekrarlayınız.

c) a) ve b)'deki sonuçlardan yararlanarak şekil 2b'deki devrenin performansının ne şekilde arttığını belirtiniz.

3.

Transistor Parametreleri: β_F=200, V_T=25mV,V_{BE1}= V_{BE2}≈0.6V, V_{BE3}≈0.7V, 1/r_{ce}≈0

- a. Transistorların çalışma noktası akımlarını hesaplayınız.
- **b.** Devrenin v_o/v_i gerilim kazancını hesaplayınız.
- **c.** Devrenin r_i giriş direnci ve r_o çıkış direncini hesaplayınız.

e-posta ile gönderilen ödevler kabul edilmeyecektir. Soru çözümleri ayrıntılı bir şekilde verilmelidir. Kullanılan değişkenler ve birimler standart olmalıdır. Sadece sonuç içeren, çok kısa çözümler puanlandırılmayacaktır. Birimlere dikkat etmeyi unutmayınız.