INTRODUCTION TO MACHINE LEARNING IN R

Amit Sharma

Sr Director

Architecture and Data Science (ADP)

About me

- BTech from NIT, Rourkela
 - Electronics and Instrumentation Engineering
- 17+ years of experience in Product Development
- Java/JEE Design and Architecture
- Data Science
- Speaker in many forums
 - NASSCOM
 - Institute of Product Leadership
 - 7innov

amit_sharma_hyd

Amit Sharama (ADP)

Amit.Sharma.Hyd@gmail.com

Data Scientist

What is Machine Learning

- Field of Artificial Intelligence
- Evolved from Pattern Recognition
- Overlaps with Computational Statistics

Types of Machine Learning

- Classification
- Regression
- Optimization

Supervised

- Clustering
- Association
- Dimensionality reduction

Unsupervised

- Recommenders
- Collaborative Filtering

Reinforcement

Linear Regression

$$y_i = eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^{\mathrm{T}} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear regression.svg

Classification - Linear

• Which is a better classifier – A or B

Logistic Regression

$$F(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Classification – Non-Linear

How would you separate the red from blue dots

Decision Tree

https://upload.wikimedia.org/wikipedia/commons/f/f3/CART tree titanic survivors.png

Similarity based

K-nearest neighbors

Bayesian

$$\mathbf{posterior} = \frac{\mathbf{prior} \times \mathbf{likelihood}}{\mathbf{evidence}}$$

$$\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i|C_k).$$

Support Vector Machines

Mapping data to a higher dimension for linear classification

Time Series Analysis

Actual Forecast Error Bounds (95% Confidence) Time

Decomposition of additive time series

http://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html

Genetic Algorithm

- Goodness measure
- Cross
- Mutate

Neural Networks

http://www.texample.net/media/tikz/examples/PNG/neural-network.png

Bias and Variance

High bias (underfit)

"Just right"

Validating models

- Linear
 - R-sq
 - P-value
 - Confidence Interval
- Classification
 - Confusion Matrix
 - Sensitivity/Recall
 - Specificity

Confusion Matrix

		CONDITION determined by "Gold Standard"	
	TOTAL POPULATION	CONDITION POS	CONDITION NEG
TEST OUT- COME	TEST POS	True Pos TP	<i>Type I Error</i> False Pos FP
	TEST NEG	<i>Type II Error</i> False Neg FN	True Neg TN

ROC Curve

Model Goodness

- Simpler one wins
- Explicability
- Actionability

Visualization

- Clarity of message/story
- Simplicity
- Truthful/Integrity (Not Misleading)

https://www.perceptualedge.com/example19.php

