Laboratorio di architettura degli elaboratori

CIRCUITI COMBINATORI Lezione 3

STRUMENTI SOFTWARE

Logisim (https://sourceforge.net/projects/circuit)

CONTATTI

- Prof. F. Fontana (<u>federico.fontana@uniud.it</u>)
- Y. De Pra (yuri.depra@uniud.it)

Correzione esercizio 2.1

- a) Progettare un circuito che, ricevuti 4 segnali binari (bit) in ingresso, stabilisca se questi rappresentano nella notazione binaria un numero primo (consideriamo 1 non primo). Il circuito restituisce in uscita 1 se l'input rappresenta un numero primo, mentre restituisce 0 in caso contrario.
- b) Progettare un circuito che riceva in ingresso un numero binario di 4 bit. Il circuito restituisce in uscita 1 se l'ingresso è una cifra decimale (ossia un valore tra 0 e 9) divisibile per 2 o per 5; restituisce 0 se l'ingresso è una cifra non divisibile né per 2 né per 5. Infine, nel caso in cui l'ingresso non rappresenti alcuna cifra decimale, l'uscita può assumere un valore arbitrario.

Esercizio 2.1a

Numeri primi: 2,3,5,7,11,13

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
1	1	1	1	0

NOTA: ogni quadrato deve avere almeno una casella non presente in altri quadrati

Circuito corrispondente

Y = A'B'C + A'BD + BC'D + B'CD

Esercizio 2.1b

2, 4, 5, 6, 8 \rightarrow 1 (divisibili per 2 o 5) 0, 1, 3, 7, 9 \rightarrow 0 10, 11, 12, 13, 14, 15 \rightarrow X (0 oppure 1)

$$Y = CD' + BC' + AD'$$

Correzione esercizio 2.2

- a) Costruire un multiplexer con 1 ingresso di controllo, e realizzarlo come modulo Logisim.
- a) Utilizzando tre multiplexer con 1 ingresso di controllo realizzare un multiplexer con 2 ingressi di controllo.

Esercizio 2.2a D Logisim: main of esercizio02.2.a File Edit Project Simulate Window Help \triangleright D D 1. 'Add circuit', scegliere il nome esercizio02.2.a main mox0 mox0 Wiring Gates 2. 'Set as Plexers Arithmetic main circuit' Memory Input/Output Base D Logisim: mox0 of esercizio02.2.a File Edit Project Simulate Window Help $A \mid \blacksquare \otimes \rhd \supset \supset$ esercizio02.2.a · 🔲 main mox0 Wiring Gates Plexers 3. Usare come Arithmetic Memory modulo Logisim Input/Output Base

Esercizio 2.2b

1. Carico il circuito precedente come libreria

n ingressi di controllo gestiscono 2ⁿ input

2. Compare nel menù ad albero

Correzione esercizio 2.3

- a) Progettare un decoder a 2 ingressi dotato di un segnale aggiuntivo di Enable. Se il segnale Enable vale 0 tutte le uscite valgono 0; se Enable vale 1 si comporta come un circuito decoder. Realizzare il circuito come modulo.
- b) Utilizzare il modulo del punto precedente per realizzare un decoder a 3 ingressi e
- c) uno a 4 ingressi.

Esercizio 2.3a -- Decoder a 2 ingressi con segnale di Enable

Α	В	output
0	0	D1
0	1	D2
1	0	D3
1	1	D4

Esercizio 2.3b -- Decoder a 3 ingressi, usando 2 decoder a 2 ingressi

A	В	С	
0	0	0	D1
0	0	1	D2
0	1	0	D3
0	1	1	D4
1	0	0	D5
1	0	1	D6
1	1	0	D7
1	1	1	D8

A è collegato al segnale di Enable dei decoder e abilita alternativamente i due decoder che si comportano in maniera identica rispetto agli input B e C

Esercizio 2.3c -- Decoder a 4 ingressi e 2⁴=16 uscite.

Ci servono 5 decoder a 2 ingressi

A e B tramite il primo decoder selezionano quale dei successivi 4 decoder è abilitato tramite i segnali di Enable. C e D entrano in ognuno dei successivi decoder, che hanno comportamento identico.

Esercizio 3.1

- a) Progettare un half-adder, ossia un circuito combinatorio che somma due bit e genera il bit risultato ed un riporto. L'half-adder va realizzato come modulo (sottocircuito) Logisim.
- b) Utilizzando 4 moduli half-adder, costruire un circuito che ricevuto in ingresso un numero binario di 4 cifre, restituisca in uscita il numero binario successivo.

Esercizio 3.2

- a) Utilizzando due moduli half-adder, progettare un full-adder, ossia un circuito combinatorio che somma due bit ed un riporto in ingresso. Il circuito genera un bit risultato ed un eventuale riporto in uscita. Realizzare il full-adder come modulo Logisim.
- b) Progettare un circuito che calcoli la somma di due numeri binari di 4 bit ciascuno.