Query enumeration on sparse graphs Barbizon 2016

Alexandre Vigny

June 7, 2016

About me

- Alexandre Vigny
- I started my Ph.D in October 2015
- My advisors are :
 - Arnaud Durand (IMJ-PRG, Paris 7)
 - Luc Segoufin (LSV, ENS Cachan)

Introduction

- Query q
- Database D
- Compute q(D)

small

huge

gigantic

Examples:

query q

 $q(x,y) := \exists z (B(x) \land$ $E(x,z) \wedge \neg E(y,z)$

database D

6 9 solutions q(D)

- $\{(1,2)(1,3)(1,4)$ $(1,6)(1,7)\cdots$ (3,1)(3,2)(3,4)
- $(3,6)(3,7)\cdots$ • • • }

Enumeration

Input:
$$||D|| := n \& ||q|| := k (k \ll n)$$

Goal: output solutions one by one

• STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

STEP 2 : Enumeration

Enumerate the solutions : Index $I \longrightarrow \overline{x_1} \; , \; \overline{x_2} \; , \; \overline{x_3} \; , \; \overline{x_4} \; , \; \cdots$

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing $(CD \circ Lin)$

Example

Database
$$D:=\langle\{1,\cdots,n\};E\rangle$$
 $\|D\|=|E|$ $(E\subseteq D\times D)$ Query $q(x,y):=\neg E(x,y)$

Enumeration VS Model-Checking

Model-Checking : Is there a solution ? Yes / No

Constant-delay Enumeration : First solution computed in time O(n)

Constant-delay Enumeration ⇒ Linear Model-Checking

Under some complexity hypothesis, the Model-Checking is not doable in polynomial time.

Restricted databases or/and queries

Bonded degree, planar · · · | MSO, quantifier free · · ·

Nowhere-dense

First Order

Classes of graphs closed under taking sub-graphs

Classes of graphs closed under taking sub-graphs

Classes of graphs closed under taking sub-graphs

First results

Theorem 1

The enumeration of **quantifier free** first-order queries over **nowhere dense** class of graphs is in $CD \circ Lin$.

Theorem 2

The enumeration of **first-order** queries over class of graphs with **locally bounded expansion** is in $CD \circ Lin$.

Future work

• Generalize the Nowhere-Dense case.

• Enumeration with update.

Thank you!