Let X be a fn: X -> R be a set and let In: X-> R be a sequence of functions. let ? be the uniform metric on R. Show that (fn) converges uniformly do f:X->/R<=> the sequence (fa) converges to fas elements of the metric space (RX P) $f \in \mathbb{R}^{\times}$ can be written as a tuple $(f^{(\alpha)})_{\alpha \in X}$ then if $f, g \in \mathbb{R}^{\times}$, $\mathcal{O}(f, g) = \sup_{\alpha \in \mathcal{X}} \{d(f^{\alpha}, g^{\alpha})\}$ $=\sup_{\alpha\in X} \{\bar{d}(f(\alpha),g(\alpha))\}$ let for be a sequence converging tot then for any E>O IN S.t d(f,(x),f(x)) CE YXEX then clearly P(fn,f) < E when n2N 3>{(x)}, (x)} [(x), f(x))] 4.5 N E 0<3 not So for any x. $d(f_n(x), f(x)) < \varepsilon < 1$ When

N > N