Programme de colle - Semaine 13

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

- Transformation affine d'une v.a.r. uniforme

On demandera à l'étudiant de démontrer l'une des implications suivantes.

1.
$$X \hookrightarrow \mathcal{U}([0,1]) \Leftrightarrow Y = (b-a)X + a \hookrightarrow \mathcal{U}([a,b])$$

2.
$$X \hookrightarrow \mathcal{U}([a,b]) \quad \Leftrightarrow \quad Y = \frac{1}{b-a}(X-a) \hookrightarrow \mathcal{U}([0,1])$$

Démonstration.

• Notons $h: x \mapsto (b-a)x + a$, de telle sorte que Y = h(X). Comme $X \hookrightarrow \mathcal{U}([0,1])$, alors $X(\Omega) = [0,1]$. On en déduit :

$$Y(\Omega) = (h(X))(\Omega) = h(X(\Omega))$$

$$= h([0,1])$$

$$= [h(0), h(1)]$$

$$= [a,b]$$

$$(car h est continue et strictement croissante sur [0,1])$$

Donc: $Y(\Omega) = [a, b]$.

- Déterminons la fonction de répartition de Y, F_Y .
 - × Soit x < a, alors $[Y \leqslant x] = \varnothing$ car $Y(\Omega) = [a,b].$ Ainsi :

$$F_Y(x) = \mathbb{P}([Y \leqslant x]) = \mathbb{P}(\varnothing) = 0$$

× Soit x > b, alors $[Y \leqslant x] = \Omega$ car $Y(\Omega) = [a, b]$. Ainsi :

$$F_Y(x) = \mathbb{P}([Y \leqslant x]) = \mathbb{P}(\Omega) = 1$$

 \times Soit $x \in [a, b]$.

$$F_Y(x) = \mathbb{P}([Y \leqslant x]) = \mathbb{P}([(b-a)X + a \leqslant x])$$

$$= \mathbb{P}\left(\left[X \leqslant \frac{x-a}{b-a}\right]\right) = F_X\left(\frac{x-a}{b-a}\right)$$

$$= \frac{x-a}{b-a} \qquad (par \ definition \ de \ F_X \ et \ car \ \frac{x-a}{b-a} \in [0,1])$$

On reconnaît la fonction de répartition de la loi $\mathcal{U}([a,b])$. Comme la fonction de répartition caractérise la loi, on en déduit que $Y \hookrightarrow \mathcal{U}([a,b])$.

- Méthode d'inversion pour la loi exponentielle

Soit $\lambda \in]0, +\infty[$.

$$X \hookrightarrow \mathcal{U}([0,1[) \Rightarrow Y = -\frac{1}{\lambda} \ln(1-X) \hookrightarrow \mathcal{E}(\lambda)$$

 $D\'{e}monstration.$

• Notons $h: x \mapsto -\frac{1}{\lambda} \ln(1-x)$, de telle sorte que Y = h(X). Comme $X \hookrightarrow \mathcal{U}([0,1])$, alors $X(\Omega) = [0,1[$. On en déduit :

$$\begin{array}{lll} Y(\Omega) & = & \Big(h(X)\Big)(\Omega) & = & h\Big(X(\Omega)\Big) \\ \\ & = & h(]0,1[) \\ \\ & = & \Big] \lim_{x\to 0} \, h(0), \lim_{x\to 1} \, h(x) \Big[& \begin{array}{c} & (car \, h \, \, est \, continue \, \, et \, strictement \, \\ & croissante \, sur \,]0,1[\, (*)) \\ \\ & = & [0,+\infty[\end{array} \end{array}$$

Ainsi : $Y(\Omega) =]0, +\infty[$.

On peut démontrer (*) par une rapide étude de fonction :

 \times la fonction h est dérivable (donc continue) sur]0,1[en tant que composée de fonctions dérivables.

 \times soit $x \in]0,1[$.

$$h'(x) = -\frac{1}{\lambda} \left(-\frac{1}{1-x} \right) = \frac{1}{\lambda(1-x)} > 0$$

Donc la fonction h est strictement croissante sur]0,1[.

• Déterminons la fonction de répartition de Y.

× Soit
$$y \leq 0$$
, alors $[Y \leq x] = \emptyset$ car $Y(\Omega) = [0, +\infty[$. Donc :

$$F_Y(y) = \mathbb{P}([Y \leqslant y]) = \mathbb{P}(\emptyset) = 0$$

 \times Soit $y \in]0, +\infty[$.

$$F_Y(y) = \mathbb{P}([Y \leqslant y])$$

$$= \mathbb{P}\left(\left[-\frac{1}{\lambda}\ln(1-X) \leqslant y\right]\right)$$

$$= \mathbb{P}([\ln(1-X) \geqslant -\lambda y]) \qquad (car - \lambda < 0)$$

$$= \mathbb{P}\left([1-X \geqslant e^{-\lambda y}]\right) \qquad (car \ la \ fonction \ exp \ est \ strictement \ croissante \ sur \ \mathbb{R}\right)$$

$$= \mathbb{P}\left([X \leqslant 1 - e^{-\lambda y}]\right)$$

$$= F_X\left(1 - e^{-\lambda y}\right)$$

Or on a les équivalences suivantes :

$$0 < y \iff 0 > -\lambda > -\lambda y \qquad (car - \lambda < 0)$$

$$\Leftrightarrow 1 = e^{0} > e^{-\lambda y} > 0 \qquad (car \ la \ fonction \ exp \ est \ strictement \ croissante \ sur \ \mathbb{R})$$

$$\Leftrightarrow 0 < 1 - e^{-\lambda y} < 1$$

De plus, comme
$$X \hookrightarrow \mathcal{U}([0,1]) : F_X : u \mapsto \begin{cases} 0 & \text{si } u \leq 0 \\ u & \text{si } u \in [0,1[] \\ 1 & \text{si } u \geq 1 \end{cases}$$

donc $F_X (1 - e^{-\lambda y}) = 1 - e^{-\lambda y}$.

Finalement: $F_Y: y \mapsto \begin{cases} 0 & \text{si } y \leq 0 \\ 1 - e^{-\lambda y} & \text{si } y > 0 \end{cases}$

On reconnaît la fonction de répartition de la loi exponentielle de paramètre λ . Or la fonction de répartition caractérise la loi d'une v.a.r., donc $Y \hookrightarrow \mathcal{E}(\lambda)$.

- Propriétés de Φ , où Φ est la fonction de répartition d'une loi $\mathcal{N}\left(0,1\right)$
 - $\phi(0) = \mathbb{P}([X \leqslant 0]) = \frac{1}{2}$
 - Pour tout $x \in \mathbb{R}$:

$$\phi(-x) = 1 - \phi(x)$$

• Pour tout $x \in \mathbb{R}$:

$$\mathbb{P}([|X| \leqslant x]) = 2\phi(x) - 1$$

Démonstration.

• Comme φ est une densité, $\int_{-\infty}^{+\infty} \varphi(t) dt$ converge. De plus :

$$\int_{-\infty}^{+\infty} \varphi(t) dt = 2 \int_{-\infty}^{0} \varphi(t) dt \quad (car \varphi \text{ est paire})$$
$$= 2 \varphi(0)$$
$$= 2 \mathbb{P}([X \leq 0])$$

• Soit $x \in \mathbb{R}$.

$$\phi(-x) = \int_{-\infty}^{-x} \varphi(t) \ dt$$

On effectue alors le changement de variable $u = \psi(t)$, avec la fonction ψ de classe \mathcal{C}^1 définie par $\psi: t \mapsto -t$.

$$\begin{vmatrix} u = -t \\ \hookrightarrow du = -dt & \text{et} & dt = -du \\ \bullet & t = -\infty \Rightarrow u = +\infty \\ \bullet & t = -x \Rightarrow u = x \end{vmatrix}$$

On a donc:

$$\int_{-\infty}^{-x} \varphi(t) dt = \int_{x}^{+\infty} \varphi(-u) du$$

$$= \int_{x}^{+\infty} \varphi(u) du \qquad (car \varphi \text{ est paire})$$

$$= \int_{-\infty}^{+\infty} \varphi(u) du - \int_{-\infty}^{x} \varphi(u) du$$

$$= 1 - \phi(x)$$

• Soit $x \in \mathbb{R}$.

$$\mathbb{P}([|X| \leqslant x]) = \mathbb{P}([-x \leqslant X \leqslant x])$$

$$= \phi(x) - \phi(-x)$$

$$= \phi(x) - (1 - \phi(x))$$

$$= 2\phi(x) - 1$$

Connaissances exigibles

- Définition v.a. à densité, caractérisation fonction de répartition (fdr) et densité de probabilité, lien entre fdr et densité
- Formules de calcul de $\mathbb{P}([a \leq X \leq b])$ et autres, pour X une v.a. à densité
- Définition, linéarité et croissance de l'espérance d'une v.a. à densité
- Théorème de transfert
- Moments d'ordre r
- Définitions et propriétés de la variance et de l'écart-type
- Définition indépendance de deux v.a., lemme des coalitions, $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ et $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ si X et Y sont indépendantes
- Ensemble image, densité, fonction de répartition, espérance, variance, graphes : loi uniforme, loi exponentielle, lois normales
- Transformation affine d'une loi uniforme
- Propriétés de la fonction de répartition Φ d'une loi $\mathcal{N}\left(0,1\right)$
- Transformée affine d'une loi gaussienne
- Lecture de la table de la loi $\mathcal{N}\left(0,1\right)$