Решения задач.

10 класс двенадцатилетней школы.

Задача 1. Закон фильтрации Дарси.

Задание 1.

Собрав установку, показанную на рисунке, исследуйте зависимость объемного расхода воды от разности давлений над фильтром и у основания фильтра. Бумажный фильтр укладывается в пробку с отверстием, и пробка вворачивается в горловину бутылки. Постройте графи зависимости объемного расхода воды от давления жидкости.

Примечание.

Будьте аккуратны, укладывая фильтр. Вода должна просачиваться сквозь фильтр, а не мимо его. Пробку удобнее брать с отверстием среднего диаметра (4-5 мм).

Для выполнения задания 1 измеряем время вытекания одинакового объема воды (1 см по шкале) при разных давлениях. Давление, оказываемое водой, измеряем в см. Фильтр берем однослойный.

С помощью миллиметровой бумаги определим длину окружности бутылки (1 = 20 см). В таком случае объем воды, вытекающей на высоте 1 см, V = 31,83см³

Данные для отверстия диаметром 4,5 мм приведены в таблице 1 и на графике 1.

Таблица 1

Р, см	19	18	17	16	15	14	13
t, c	34	37	42,5	48	52	60	71
$1/t, c^{-1}$	2,94	2,7	2,35	2,07	1,92	1,67	1,41
$Q, cm^3/c$	0,93	0,86	0,75	0,66	0.61	0,53	0,45

Примечание. Значение $\frac{1}{t} = n \times 10^{-2}$.

<u>Вывод.</u> Из графика видно, что зависимость Q(p) линейная. Следовательно, объемный расход прямо пропорционален давлению воды.

Задание 2.

Исследуйте зависимость объемного расхода жидкости от площади фильтра.

Измеряем объемный расход воды для одинаковых фильтров (1 слой бумаги) и при одинаковых давлениях при разных площадях отверстий.

Для этого используем пробки с отверстиями разного диаметра (3,0; 3,5; 4,0; 4,5; 5,0 5,5; 6,0 мм)

Результат измерений представлен в таблице 2 и на графиках 2 и 3 Таблица 2

d, мм	3,0 мм	3,5 мм	4,0 мм	4,5 мм	5,0 мм	5,5 мм	6,0 мм
S, cm ²	0,09	0,1225	0,16	0,2025	0,25	0,3025	0,36
t, c	39,8	26,5	19,8	16	13,6	11,1	8,5
$1/t, c^{-1}$	2,5	3,77	5,05	6,25	7,3	8,98	11,7
$Q, cm^3/c$	0,8	1,2	1,6	2,0	2,34	2,86	3,92

В таблице приведены значения объемного расхода при разности давлений 19 см.

Примечание. Значение $\frac{1}{t} = n \times 10^{-2}$.

График 2

Зависимость объемного расхода воды от диаметра отверстия, заполненного фильтром.

На графике 3 приведена зависимость объемного расхода воды от площади фильтра. График 3

Вывод. Объемный расход воды прямо пропорционален площади фильтра.

Задание 3.

Изменяя число листов фильтровальной бумаги под пробкой (от 1 до 10) с отверстием, диаметр которого d=6.0 мм., измеряем расход воды при одном и том же

давлении. В нашем решении приведена зависимость времени вытекания объема воды $V=31,83~{\rm cm}^3$ для давления 19,см и для давления 18 см. Результаты приведены в таблице 3 и на графике 4.

	1	2	3	4	5	6	7	8	9	10
	Время вытекания									
19 см	8	14	21	24	29	32	40	43	52	68
18 см	21	36	46	56	78	92	106	109	144	170

Вывод. Объемный расход обратно пропорционален толщине фильтрующего слоя.

Задание 4.

По полученным данным оцените величину коэффициента фильтрации.

В работе получено, что
$$Q = k \frac{PS}{h}$$

Оценим коэффициент фильтрации
$$Q=k\,rac{PS}{L} \Rightarrow k=rac{QL}{PS}\,. \ \ kpprox 0,68rac{c_M}{c}$$

Задача 2. «Желтый ящик»

1. Самое поразительное в данном ящике, что при подключении батарейки к любым двум выводам, горит только одна лампочка. При подключении к выводам 1-3 вторая лампочка не светится потому, что силы тока не хватает, чтобы раскалить ее спираль – она шунтируется резистором.

исследуемая

Для определения соответствия между выводами необходимо объединять выводы и определить при каком подключении

начинают светиться обе лампочки. Это произойдет, если батарейка подключена к выводам 2 и соединенным вместе 1 и 3. Таким образом можно определить центральный вывод 2. Чтобы различить выводы 1 и 3 необходимо использовать амперметр – при подключении к батарейке выводов 2 и 3 сила тока будет больше, чем при подключении к выводам 1 и 2. Схема собрана таким образом, что «А»= 2; «В»=1; «С»=3.

2. Реально провести измерения по предложенной схеме, только подключая к измерительному устройству выводы 2 и 3, в этом случае измеряется вольтамперная характеристика лампочки и параллельно подключенного резистора; а также 2 и соединенных выводов 1 и 3 – в этом случае измеряется вольтамперная характеристика параллельно соединенных двух лампочек и резистора. При подключении одной лампочки (выводы 1,2) изменения напряжения при размыкании ключа К₁ незначительны (не более одного деления).

Сопротивление части резистора, к которому подключается исследуемая цепь

$$R_1 = R_0 \frac{U_{10}}{U_{00}},\tag{1}$$

Сила тока в исследуемой цепи рассчитывается по формуле

$$I = \frac{V_0 - V_1}{R_2} - \frac{V_1}{R_1} \,. \tag{3}$$

Результаты измерений и расчетов при подключении выводов 2 и 3, приведены в таблице 1.

Таблица 1.

сопротивление второй части

U ₁ , B	<i>U</i> ₀ , B	U ₁₀ , B	U ₀₀ , B	R ₁ , Ом	R ₂ , Ом	I, A
0,40	4,00	0,55	4,00	0,89	5,61	0,19
0,60	4,00	0,85	4,00	1,38	5,12	0,23
0,80	4,00	1,20	4,00	1,95	4,55	0,29
1,00	4,00	1,60	4,00	2,60	3,90	0,38
1,20	4,00	1,90	4,00	3,09	3,41	0,43
1,40	4,00	2,15	4,00	3,49	3,01	0,46
1,60	4,00	2,45	4,00	3,98	2,52	0,55
1,80	3,95	2,70	4,00	4,39	2,11	0,61
2,00	3,85	2,95	4,00	4,79	1,71	0,67
2,20	3,50	3,30	4,00	5,36	1,14	0,73

При подключении выводов 2 и соединенных 1 и 3 получаются следующие результаты.

Таблица 2.

U ₁ , B	U ₀ , B	U ₁₀ , B	U ₀₀ , B	R ₁ , Ом	R ₂ , Ом	I, A
0,40	4,00	0,60	4,00	0,98	5,53	0,24
0,60	4,00	0,95	4,00	1,54	4,96	0,30
0,80	4,00	1,35	4,00	2,19	4,31	0,38
1,00	4,00	1,70	4,00	2,76	3,74	0,44
1,20	4,00	2,00	4,00	3,25	3,25	0,49
1,40	3,95	2,30	4,00	3,74	2,76	0,55
1,60	3,95	2,60	4,00	4,23	2,28	0,65
1,80	3,85	2,85	4,00	4,63	1,87	0,71
2,00	3,25	3,35	4,00	5,44	1,06	0,82

При заданном напряжении на входе исследуемой цепи силы токов определяются по формулам:

в первом случае

$$I_1 = I_{mann} + I_R, \tag{4}$$

во втором

$$I_2 = 2I_{\text{namn.}} + I_R, \tag{5}$$

Из этих формул следует, что силы токов через лампочку и резистор могут быть пересчитаны следующим образом:

$$I_{namn.} = I_2 - I_1 I_R = 2I_1 - I_2$$
 (6)

Результаты расчетов приведены на графиках.

Как видно точность измерений не высока, но, тем не менее, зависимость между токов и напряжением на резисторе может быть признана пропорциональной. По наклону графика определяется сопротивление резистора $R = 3.9 \, Om$. Отметим, что точное значения сопротивления равно $R = 3.6 \, Om$.

Дополнение.

Точность измерений можно сделать существенно выше, используя для измерений числовой мультиметр. Графики, построенные по измерениям с помощью мультиметра, показаны ниже.

10 класс (11-летняя школа).

Задание 1. «Скольжение диска»

Теоретическое введение

Если на тело действуют силы трения скольжения и вязкого трения, то по второму закону Ньютона оно приобретает ускорение

$$ma = -\mu mg - \beta v,\tag{1}$$

$$v' = -\frac{\beta}{m}(v + \frac{\mu mg}{\beta}),\tag{2}$$

Решением такого уравнения будет экспоненциальная функция

$$v + \frac{\mu mg}{\beta} = Ce^{\frac{\beta}{m}t},\tag{3}$$

где постоянная C определяется из начальных условий $v(0) = v_0$, откуда $C = v_0 + \frac{\mu mg}{\beta}$.

Итого, зависимость скорости от времени

$$v(t) = (v_0 + \frac{\mu mg}{\beta})e^{-\frac{\beta}{m}t} - \frac{\mu mg}{\beta}.$$
 (4)

Движение будет происходить до времени t^* , пока скорость не станет раной нулю:

$$(v_0 + \frac{\mu mg}{\beta})e^{-\frac{\beta}{m}t^*} - \frac{\mu mg}{\beta} = 0,$$
 (5)

$$t^* = \frac{m}{\beta} \ln(1 + \frac{\beta v_0}{\mu mg}). \tag{6}$$

За это время тело пройдет путь

$$s = \int_{0}^{t^{*}} v(t)dt = \int_{0}^{t^{*}} (v_{0} + \frac{\mu mg}{\beta}) e^{-\frac{\beta}{m}t} - \frac{\mu mg}{\beta} dt = \frac{m}{\beta} (v_{0} + \frac{\mu mg}{\beta}) \left(1 - e^{-\frac{\beta}{m}t^{*}}\right) - \frac{\mu mg}{\beta} t^{*} = \frac{m}{\beta} v_{0} \left(1 - \frac{\mu mg}{\beta v_{0}} \ln(1 + \frac{\beta v_{0}}{\mu mg})\right).$$
(7)

При малых значениях параметра ξ справедлива приближенная формула

$$\ln(1+\xi) \approx \xi - \frac{\xi^2}{2} + \frac{\xi^3}{3}$$
 (8)

Соответственно, при малых значениях $\frac{\beta v_0}{\mu mg}$ формула (7) превращается в

$$s \approx \frac{m}{\beta} v_0 \left(1 - \frac{\mu mg}{\beta v_0} \left(\frac{\beta v_0}{\mu mg} - \frac{1}{2} \left(\frac{\beta v_0}{\mu mg} \right)^2 + \frac{1}{3} \left(\frac{\beta v_0}{\mu mg} \right)^3 \right) \right) = \frac{1}{2} \frac{v_0^2}{\mu g} - \frac{1}{3} \frac{\beta v_0^3}{\mu^2 mg^2}$$
(9)

Относительная погрешность использования формулы (8) на превышает 5% при ξ < 0, 7.

1) Для определения массы компакт диска воспользуемся линейкой, лежащей на лапке, закрепленной в штативе, как рычажными весами. С одной стороны подвесим компакт-

диск на нити, а с другой – груз известной массы. Уравновесим систему.

В состоянии равновесия отношение плеч грузов будет равно обратному отношению масс

$$\frac{m}{M} = \frac{L}{l}. (10)$$

Отсюда

$$m = M \frac{L}{I}. (11)$$

В результате измерений получены следующие величины

$$M = 100 \pm 0,5$$
2; $L = 23 \pm 1$ mm; $l = 150 \pm 1$ mm.

Масса компакт-диска равна m = 15, 32, относительная погрешность измерений $\varepsilon_{m}=\sqrt{\varepsilon_{M}^{2}+\varepsilon_{L}^{2}+\varepsilon_{l}^{2}}=0,04$, абсолютная погрешность $\Delta m=m\varepsilon_{m}=0,7$ г.

Масса CD равна $m = (15, 3 \pm 0, 7)$ г

2) Рассмотрим соударение тел. Пусть скорости тел M и m после соударения равны V^* и v соответственно. Поскольку соударение абсолютно упругое, выполняются

законы сохранения импульса и энергии

$$MV = MV^* + mv, (12)$$

$$MV^2 = MV^{*2} + mv^2. (13)$$

отсюда нетрудно получить для скорости тела т

$$v = \frac{2M}{M+m}V. (14)$$

Для используемого компакт-диска и груза коэффициент $\alpha = \frac{2M}{M+m} = 1,73.$ Относительная погрешность $arepsilon_{lpha} = \sqrt{arepsilon_{2M}^2 + arepsilon_{M+m}^2} pprox 0,01$. Абсолютная погрешность равна $\Delta \alpha = \alpha \varepsilon_a \approx 0.02$.

Коэффициент передачи скорости равен $\alpha = 1,73 \pm 0,02$.

3) Расстояние X измеряется линейкой, прикрепленной к нижней стороне парты скотчем. Для увеличения точности измерений X груз необходимо отпускать, когда он

находится в вертикальном положении.

Измерения смещения компакт-диска по миллиметровой бумаге производятся при помощи самой миллиметровой бумаги.

Результаты измерений пройденного пути от начального отклонения груза X приведены в Таблице 1. По результатам измерений построен график s(X).

При смещении груза из положения равновесия на расстояние X по горизонтали, он поднимается на высоту

$$H = R - \sqrt{R^2 - X^2},\tag{15}$$

где R – расстояние от точки подвеса до центра масс груза.

При подходе к диску его скорость можно найти из закона сохранения энергии

$$V = \sqrt{2gH} = \sqrt{2g(R - \sqrt{R^2 - X^2})}.$$
 (16)

Начальная скорость движения компакт-диска

$$v_0 = \alpha V = \alpha \sqrt{2g(R - \sqrt{R^2 - X^2})}.$$
 (17)

Расстояние от точки крепления нити к лапке штатива до центра масс грузика было равно R = 710 мм.

По измеренным данным и формуле (17) необходимо определить начальную скорость диска $v_{\rm o}$.

Таблица 1

Таолица	1		
X , mm	v_0 , m/c	S, MM	s/v_0^2 ,
			$\mathbf{M} \mathbf{M} \cdot \mathbf{c}^2 / \mathbf{M}^2$
20	0.074	6	1055
30	0.111	8	643
40	0.149	10	437
50	0.186	12	313
60	0.223	13	254
70	0.261	15	221
80	0.298	21	233
90	0.335	24	217
100	0.373	32	230
110	0.410	37	217
120	0.448	40	198
130	0.485	46	197
140	0.523	47	173
150	0.561	50	158
160	0.599	53	149
170	0.637	54	133
190	0.713	56	110
200	0.751	58	102
210	0.789	60	96.8
220	0.828	62	89.9
230	0.867	64	84.7

Зависимость пройденного пути от начальной скорости диска описывается формулой (9). Для определения коэффициента трения скольжения μ и вязкого трения β необходимо

эту зависимость линеаризовать и построить график зависимости $\frac{s}{v_0^2}$ от v_0 (табл. 1).

Данная зависимость – убывающая линейная

$$\frac{s}{v_0^2} = A - Bv_0,\tag{18}$$

где
$$A = \frac{1}{2\mu g}$$
, $B = \frac{1}{3} \frac{\beta}{\mu^2 m g^2}$.

Коэффициент A определяется по точке пересечения графика с вертикальной осью, а коэффициент B - по тангенсу угла наклона графика к горизонтальной оси. Альтернативный способ определения A и B - по МНК.

Поскольку и расстояние s, и X, и, соответственно, v_0 , определены с погрешностями, то при делении малых «погрешных» значений друг на друга, результат может получиться абсолютно неверным. Именно поэтому при построении графика зависимости $\frac{s}{v_0^2}$ от v_0 и

определении коэффициентов A и B необходимо брать лишь точки, соответствующие смещению диска больше 10 мм.

Коэффициент A = 0.11 c^2/M , а B = 0.057 c^3/M^2 . Отсюда

$$\mu = \frac{1}{2gA} = 0,46,\tag{19}$$

$$\beta = 3\mu^2 mg^2 B = 0{,}053 \text{ kg/c}.$$
 (20)

Формула (9) применима только для малых значений $\frac{\beta v_0}{\mu mg}$ < 0,7 , поэтому необходимо

проверить малость этого выражения. Максимальное значение начальной скорости диска, для которой погрешность формулы не превышает 5%, равно $v_{\rm max}=0.7\,\mu mg\,/\,\beta=0.91 m/\,c$. Как видно из таблицы 1, в эксперименте скорость диска не превышает этого значения. Иначе точки, соответствующие скоростям, большим максимально допустимой, необходимо было бы отбросить при определении коэффициентов A и B.

Задание 2. «Закон электромагнитной индукции»

- 1. Измерение периода колебаний проводится обычным способом и дает значение $T=1.74\,c$.
- 2. Зарядив конденсатор, проводим измерения зависимости силы напряжения от времени. Результаты измерений представлены в таблице 1 и на графиках (второй в логарифмическом

масштабе).

Таблица 1.

Таблица	1.	
<i>t</i> , <i>c</i>	<i>U, мВ</i>	ln U
0	1900	7,55
5	1630	7,40
10	1470	7,29
15	1340	7,20
20	1230	7,11
25	1100	7,00
30	1010	6,92
35	960	6,87
40	890	6,79
45	820	6,71
50	760	6,63
55	710	6,57
60	650	6,48
65	600	6,40
70	560	6,33
75	510	6,23
80	480	6,17
85	440	6,09
90	400	5,99
95	380	5,94
100	350	5,86
105	320	5,77
110	300	5,70
115	280	5,63
120	250	5,52

Определенное по методу наименьших квадратов значение времени разрядки равно

$$\tau = (62, 4 \pm 1, 5)c. \tag{1}$$

Сопротивление мультиметра рассчитывается по формуле

$$R_V = \frac{\tau}{C} = (1,25 \pm 0,05)MO_M$$
 (2)

Примечание.

Время разрядки может быть определено и без использования логарифмического масштаба (все-таки 10 класс). Для этого можно построить зависимость скорости изменения напряжения $\frac{\Delta U}{\Delta t}$ от напряжения на конденсаторе. Эта зависимость описывается приближенным уравнением

$$\frac{\Delta U}{\Delta t} = -\frac{1}{\tau}U\tag{3}$$

и является линейной. Значение времени, определенное по этой зависимости оказывается равным $\tau \approx 55c$ с существенно большей погрешностью.

3. Измерения временной зависимости напряжения на конденсаторе при его разрядке через диод и катушку телефона проводятся аналогично, результаты этих измерений приведены в таблице 2 и на графике.

Таблица 2

Таблица	4.		
<i>t</i> , <i>c</i>	<i>U, мВ</i>	lnU	τ,c
0	1900	7,55	
5	1660	7,41	37,0
10	1470	7,29	41,1
15	1330	7,19	50,0
20	1170	7,06	39,0
25	1030	6,94	39,2
30	915	6,82	42,2
35	800	6,68	37,2
40	700	6,55	37,4
45	600	6,40	32,4
50	505	6,22	29,0
55	430	6,06	31,1
60	360	5,89	28,1
65	295	5,69	25,1
70	230	5,44	20,1
75	170	5,14	16,5
80	120	4,79	14,4

Хорошо заметно, что сопротивление диода (следовательно, и время разряда) не является постоянным, а зависит от приложенного напряжения. Поэтому следует построить зависимость времени разрядки от напряжения на конденсаторе. Эта зависимость может быть рассчитана на основании уравнения (3), из которого следует, что

$$\tau = -U \frac{\Delta t}{\Delta U}.$$

График этой зависимости показан на рисунке. Отметим, что и в этом случае время разрядки (около 30 с) значительно превышает период колебаний.

4. Результаты измерений зависимости максимального напряжения на конденсаторе от амплитуды колебаний приведены в таблице 3 и на графике. Таблица 3.

- 0.00								
А, см	40	35	30	25	20	15	10	5
U_1 , MB	480	430	381	325	261	167	119	45
U_2 , mB	485	427	380	326	252	164	123	49
U_3 , MB	482	424	373	329	254	169	120	53
U_{cp} , MB	482,3	427,0	378,0	326,7	255,7	166,7	120,7	49,0

Полученная зависимость близка к линейной.

5. При прохождении магнита над катушкой в ней индуцируется ЭДС, величина которой определяется законом М. Фарадея

$$|E| = \frac{\Delta\Phi}{\Delta t} \,. \tag{4}$$

Эта ЭДС подзаряжает конденсатор, который разряжается в тот промежуток времени, когда магнит не проходит над катушкой.

Схематическая зависимость напряжения на конденсаторе времени показана на рисунке. В течение промежутка времени (магнит проходит над катушкой) напряжение конденсаторе возрастает от некоторого значения U_1 до максимального $U_{\rm max}$. Процесс зарядки описывается уравнением

$$C\frac{\Delta U}{\Delta t} = \frac{E - U}{R} = \frac{1}{R} \frac{\Delta \Phi}{\Delta t} - \frac{U}{R}.$$
 (5)

Учитывая малость времени t_1 по сравнению со временем разрядки, можно записать

$$U_{\text{max}} = U_1 + \frac{\Phi_0}{R_0 C} - \frac{U_1}{R_0 C} t_1 \tag{6}$$

Здесь в качестве сопротивления цепи следует брать сопротивление катушки, так как во время зарядки диод открыт, и его сопротивлением можно пренебречь. Величина

$$R_0 C = 1.2 \cdot 10^3 \, O_{\mathcal{M}} \cdot 50 \cdot 10^{-6} \, \Phi = 6.0 \cdot 10^{-2} \, c \,, \tag{7}$$

больше чем время прохождения магнита над катушкой (которое меньше, чем одна сотая периода колебаний).

За промежуток времени $t_2 \approx \frac{T}{2}$ примерно равный половине периода колебаний конденсатор разряжается через закрытый диод. Процесс разрядки описывается уравнением

$$C\frac{\Delta U}{\Delta t} = -\frac{U}{R},\tag{8}$$

из которого можно получить приближенное соотношение

$$U_1 = U_{\text{max}} \left(1 - \frac{t_2}{RC} \right). \tag{9}$$

Из формул (6)-(9) следует

$$U_{\text{max}} = \frac{\Phi_0}{R_0 C} \left(\frac{t_1}{R_0 C} + \frac{t_2}{R C} \right)^{-1}.$$
 (10)

Определим время прохождения магнита над катушкой (точнее над половиной катушки) из закона движения маятника. Так как размер катушки и магнита значительно меньше амплитуды колебаний, то это время оценивается формулой

$$t_1 = \frac{\Delta l}{v_{\text{max}}},\tag{11}$$

где Δl сумма диаметра магнита радиуса катушки (в наших экспериментах $\Delta l \approx 3\,cM$), а максимальная скорость может быть найдена из закона сохранения энергии

$$\frac{v_{\text{max}}^2}{2} = \frac{\omega^2 A^2}{2} \,, \tag{12}$$

где $\omega = \frac{2\pi}{T}$ - круговая частота колебаний маятника. Таким образом, мы получаем,

$$t_1 = \frac{\Delta l}{v_{\text{max}}} = \frac{T}{2\pi} \frac{\Delta l}{A} \,. \tag{13}$$

Оценим численные значения слагаемых в формуле (10)

$$\frac{t_1}{R_0 C} \approx \frac{T}{2\pi} \frac{\Delta l}{A} \frac{1}{R_0 C} \approx 0.5,$$

$$\frac{t_2}{RC} = \frac{T}{2RC} \approx 0.03.$$

Второе слагаемое более чем на порядок меньше первого, поэтому в первом приближении им можно пренебречь. В итоге максимальное напряжение на конденсаторе примерно оказывается равным среднему значению ЭДС

$$U_{\text{max}} \approx \frac{\Phi_0}{t_1} = \Phi_0 \frac{2\pi}{T\Delta l} A \tag{14}$$

и пропорциональным амплитуде колебаний, что неплохо подтверждается экспериментом. Коэффициент пропорциональности в формуле (14) может быть определен из наклона графика зависимости напряжения от амплитуды колебаний и равен

$$K = \frac{\Delta U_{\text{max}}}{\Delta A} = 12,5 \cdot 10^{-3} \frac{B}{c_M}.$$

Теперь с его помощью можно оценить максимальный магнитный поток, котрый создает магнит в катушке

$$\Phi_0 \approx K \frac{T\Delta l}{2\pi} \approx 1 \cdot 10^{-2} B\delta$$
.

Задание 2. «Насыщенный пар»

Зависимость высоты столба газа в трубке от температуры представлена в таблице 1 и на графике (в последнем столбце даны значения высоты уровня воды в широкой трубке).

Таблица	1.		
t, C	<i>T, K</i>	h, см	Н, см
88	361	56,6	4,8
86	359	53,9	5
84	357	51,2	5,4
82	355	48,5	5,7
80	353	46,5	6,1
78	351	44,4	6,4
76	349	42,3	6,7
74	347	40,5	7
72	345	39	7,2
70	343	37,7	7,5
68	341	36,2	7,8
66	339	35,2	8
64	337	34,2	8,1
62	335	33,3	8,2
60	333	32,7	8,4
58	331	31,9	8,5
56	329	31,4	8,6
54	327	30,8	8,7
50	323	30	1,2
48	321	29,5	1,3
45	318	28,7	1,5
42	315	28	1,6
40	313	27,6	1,8
35	308	27	4,2
34	307	26,8	4,1
32	305	26,4	3,8
29	302	26	4,8
26	299	25,6	5,8
23	296	25,2	5,6

Прекрасно видно, что данная зависимость не линейна, следовательно, влияние давления насыщенных паров воды в трубке существенно. Заметим, что во всех случаях можно пренебречь гидростатическим давлением столба воды по сравнению с атмосферным давлением.

2. В указанном диапазоне «низких» температур данная зависимость близка к линейной.

Поэтому, если не учитывать влияние паров, то зависимость объема воздуха от температуры описывается уравнением

$$h = h_0 (1 + \alpha t). \tag{1}$$

Тогда значение абсолютного нуля температур оценивается как $t_0 = -\alpha^{-1}$. По данным измерений это значение равно $t_0 = -\alpha^{-1} \approx -145^{\circ}C$, что весьма далеко от табличного значения. Следовательно, и в этом диапазоне давление паров воды существенно.

3. Для проверки справедливости уравнения Клапейрона-Клаузиуса необходимо из общего давления газов в трубке вычесть давление сухого воздуха. Сухой воздух подчиняется уравнению состояния идеального газа, поэтому для него можно записать

$$\frac{Ph}{T} = \frac{P_0 h_0}{T_0} \tag{2}$$

где h_0 высота столба, которого бы занимал сухой воздух при температуре T_0 . По прежнему, полагая атмосферное давление значительно большим гидростатического, можно записать

$$P_0 = P_0 \frac{h_0}{T_0} \frac{T}{h} + P_{napa}, \tag{3}$$

Откуда следует, что давление водяного пара можно рассчитать по формуле

$$P_{napa} = P_0 \left(1 - \frac{h_0}{T_0} \frac{T}{h} \right), \tag{4}$$

Расчет давления водяного пара по этой формуле приводит к следующему графику логарифма давления водяного пара от величины, обратной абсолютной температуре (что требует уравнение Клапейрона – Клаузиуса.

Этот график подтверждает справедливость данного уравнения и доказывает, что в данном эксперименте действительно основной вклад вносит давление насыщенного пара. Найденное по данной зависимости значение удельной теплоты испарения воды

$$q=2,3\cdot 10^6\,\frac{\partial\mathcal{H}}{\kappa e}\,,$$

очень близко к табличному значению.