

数据库专题训练

数据库新型检索技术

大作业 互联网出行

助教 多浩达 lihaoda 9@163. com

- 互联网拼车情景设定:
 - -给定10万出租车
 - 当时经纬度
 - 乘客上限 4个
 - 车上乘客终点
 - -给定1个查询——乘客当前位置
 - 找到最合适的5个车(不超过上限)
 - 出租车绕路不超过10km
 - 出租车离乘客不超过10km
 - -请自行选择编程语言、框架,实现程序完成上述情景下的查询

- 为了简化问题,我们假设:
 - 乘客:
 - 乘客均独自一人,仅占用车上一个位置,有一个终点
 - 不考虑乘客下车后空出来的位置
 - -出租车:
 - 所有出租车上均有4个位置
 - 出租车接单后将立刻去接乘客,而不会先运送车上乘客
 - 出租车将沿最短路径前进,不考虑拥堵、掉头等情况
 - 路网:
 - 出租车和待接乘客都位于路网节点上,不会处于边(道路)中间

- 绕路定义:
 - 假定当前车上有k个乘客,依次送达目的地所需路程为D1,出租车接乘客上车所需路程为D2,接到乘客后将所有k+1个乘客送达目的地所需路程为D3;待接乘客位置到自己目的地的最短路距离为D4。
 - 车上乘客绕路: D2+D3-D1
 - 待接乘客绕路: D3-D4
 - 要求上述两个绕路距离均不能超过10km

2019/4/14

• 数据说明

- 路网数据
 - road.cnode
 - 每行代表一个节点的位置,包含3个数字,分别为节点编号、经 度、纬度,以空格分隔
 - road.nedge
 - 第一行2个数字,分别表示节点数、边数。
 - 接下来每行代表一条边,包含3个数组,前两个为节点编号,最后一个为道路长度,以空格分隔。
 - 所有边均为无向边,可双向通行。

- 数据说明
 - 出租车数据
 - car.txt
 - 每行代表一辆出租车,以空格分隔包含3+k条数据,分别为出租车编号、车上乘客数目、出租车位置、乘客目的地位置
 - 出租车位置和乘客目的地位置均以逗号分隔,含有3个数字,分别表示经度、纬度、路网上的节点编号

问题简化

- 出于简化问题考虑,各位同学可以不使用路网,仅使用经纬度坐标,依据欧式距离来完成大作业
 - 若不使用路网,则绕路距离、出租车与乘客距离均以欧式距离来计算
 - 若使用路网,则绕路距离、出租车与乘客距离均以 路网上的最短路径距离计算
 - 可以使用第三方寻路算法库,比如 https://github.com/TsinghuaDatabaseGroup/GTree

评分标准

- ▶ 输入一个乘客位置,在可以忍受的时间内(5-10秒),返回不超过5个有空位的出租车。所有返回的出租车与乘客距离不超过10km,若没有合适的出租车,则返回空列表【60%】
- ➤ 返回的所有出租车的绕路距离不超过10km【20%】
- ▶ 提供一个UI界面方便输入输出的交互,包括设定、显示乘客位置,显示返回的出租车位置、车上乘客目的地等。建议借助一些第三方资源完成。(比如百度地图什么的)【10%】
- ▶ 使用路网数据完成大作业。【10%】
- ▶ 加分项:返回结果中包含建议的车辆行进路线、乘客送达顺序,结果合理并显示在UI中。【10%】
- ▶ 加分项: 自行实现路网寻路算法。【10%】

提交方式

- ▶ 在网络学堂提交书面材料,包括:
 - > 源代码
 - ▶ 程序编译/运行说明
 - ▶ 说明程序如何编译、如何运行、数据文件如何存放等等。
 - > 大作业设计说明/报告
 - ▶ 说明大作业的程序设计框架、算法、使用过的第三方库等。
- ▶ 现场演示:
 - > 为助教现场展示大作业中所实现的各个功能

2019/4/14

截止日期

- ▶书面材料
 - ▶ 第十五周周末,6月7日
 - > 以网络学堂为准
- ▶现场演示
 - ▶ 时间(暂定)
 - ▶ 第十四周 周四、周五(5月30日、5月31日)
 - ▶ 下午2点-5点
 - > 地点
 - ▶ 东主楼 10区204
- > 如有变动,将及时在网络学堂发布通知
- ▶ 如有同学无法在这段时间来检查,可以给助教发邮件预约时间

Thanks, Questions?

