Ball and Beam Experiment Report

姓名:王韻亭

Experiment Result

1. Calibration

(1)position

Position	-30	-10	0	10	30
Voltage	5.6	4.7	4.26	3.78	2.8
Position = $a \times Volt + b$ a=-21.445 b=90.668					

(2)Angle

$$V_0 = 3.24$$
 $V_{-10} = 2.93$
Angle = $a \times Volt + b$
 $\Rightarrow a = 32.258$ b= -104.52

2. Beam Angle Control

(1) Desired angle is 0. Please Record the Steady-error and the data in different $^{K_{p1}}$

K_{p1}	1	3	5	7	15	20
Steady-error	0.405	0.002	0.136	0.763	0.975	1.107

(2)Data Plot

$K_{p1} = 3$

$$K_{p1}=5$$

$$K_{p1} = 7$$

$$K_{p1} = 15$$

$$K_{p1}=20$$

3. BALL AND BEAM EXPERIMENT - PART I

(1) Find the parameter K_p,K_d of the control ,with different damping ratio $^\xi$ and natural frequency $^{\omega_n}$

	K_p	K_d
$\xi = 1, \omega_n = 3$	0.92	0.612
$\xi = 0.707, \omega_n = 1$	0.1	0.144
$\xi = 0.707, \omega_n = 3$	0.92	0.433
$\xi = 0.5, \omega_n = 1$	0.1	0.1
$\xi = 0.5, \omega_n = 3$	0.92	0.31

$$\begin{cases} gK_d = 2\xi\omega_n \\ gK_p = \omega_n^2 \end{cases}$$

(2) Desired position is 0 cm. Set up all the parameter and plot the performance data.

$$K_p = 0.92$$
 $K_d = 0.612$

$$K_p = 0.1 \quad K_d = 0.144$$

$$K_p = 0.92$$
 $K_d = 0.433$

$$K_p = 0.1 \ K_d = 0.1$$

$$K_p = 0.92$$
 $K_d = 0.31$

4. BALL AND BEAM EXPERIMENT - PART II

(1) Find the parameter K_p, K_d, K_i of the control ,with different damping ratio ξ and natural frequency ω_n , decay rate a

ξ	\mathcal{O}_n	а	K_p	K_{i}	K_d
1	3	10	0.574	16	0.44
0.707	3	10	0.6448	14.242	0.368
0.707	3	20	0.7577	24.242	0.395
0.5	3	20	0.7986	23	0.306

Ball And Beam Report

$$\begin{cases} K_i = 2\xi\omega_n + a \\ K_p = \frac{a\omega_n^2}{gK_i} \\ K_d = \frac{\omega_n^2 + 2a\xi\omega_n}{gK_i} \end{cases}$$

(2) Desired position is 0 cm. Set up all the parameter and plot the performance data.

$$K_p = 0.574$$
 $K_i = 16$ $K_d = 0.44$

$$K_p = 0.6448$$
 $K_i = 14.242$ $K_d = 0.368$

$$K_p = 0.7577$$
 $K_i = 24.242$ $K_d = 0.395$

$$K_p = 0.7986$$
 $K_i = 23$ $K_d = 0.3061$

Discussion

1. Why we use a Cam to drive the beam to change angle but not use motor to drive the beam to change the angle?

Ans: 因為使用凸輪可使平衡桿的轉動角度限制在一定的範圍內。

2. Explain when we were at beam angle experiment, why not we can make $e_{ss} = 0$ only with K_{p1} ?

Ans: 因為本實驗伴隨著各種誤差,而使用 K_{pl} 無法直接改善穩態響應,所以只要系統有微量的變化,都無法讓穩態誤差恆為零。

3. Explain when we were at beam angle experiment, what reason cause the different phenomena with different K_{p1} ?

Ans: K_{p_1} 是比例控制參數,可以發現增加此參數有助於系統接近到平衡點,但從圖中也可以發現太大的 K_{p_1} 會使得系統不斷的振盪,反而造成系統不穩定。

4. Do you think this system is a stable system? What is your reason?

Ans: 系統的穩定性會根據不同的控制參數而有不同的結果, 因此設計出好的控制參數,輸出的響應也會比較好,但實驗 Ball And Beam Report

上會因為導線的鬆緊、球的形狀或有無生鏽,而影響實驗的控制結果。