平成27年度修士論文

題目

サポートベクターマシンを用いた 運転シーンの分類

english title

平成 28 年 2 月 dd 日

徳島大学大学院 先端技術科学教育部 システム創生工学専攻 知能情報システム工学コース

> 学籍番号 5014370129 提出者 宮井 康次

主査	印
副査	印
副査	印

目 次

第 1 章 1.1	序論 背景と目的	1 1
1.2 第 2章	論文構成	1 2
æ 2 ∓ 2.1	背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
$\frac{2.1}{2.2}$	論文構成	$\frac{2}{2}$
2.2		
第3章	局所特徴量	3
第4章	ドライビングシミュレータデータセット	4
4.1	データ取得環境	4
第5章	提案手法	5
第6章	実験	6
6.1	交差点一時停止前,一時停止後への分類実験	6
	6.1.1 実験内容	6
	6.1.2 定義	6
	6.1.3 解析対象データ	7
	6.1.4 実験方法	12
	6.1.5 実験結果	13
6.2	道路上に自動車等が存在する状態と存在しない状態への分類実験	22
	6.2.1 実験内容	22
	6.2.2 解析対象データ	22
	6.2.3 実験方法	22
	6.2.4 実験結果	22
第7章	結論	23
謝辞		24
参老☆☆	1.	25

図目次

1.1	Kinect	1
2.1	Kinect	2
6.1	定義	6
6.2	解析対象データ	7
6.3	交差点1:一時停止前1	7
6.4	交差点1:一時停止前2	7
6.5	交差点1:一時停止前3	8
6.6	交差点1:一時停止前4	8
6.7	交差点1:一時停止後1	8
6.8	交差点1:一時停止後2	8
6.9	交差点1:一時停止後3	8
6.10	交差点1:一時停止後4	8
6.11	交差点2:一時停止前1	9
	交差点 2: 一時停止前 2	9
6.13	交差点 2: 一時停止前 3	9
6.14	交差点2:一時停止前4	9
	交差点 2: 一時停止後 1	9
	交差点 2: 一時停止後 2	9
6.17	交差点2:一時停止後3	10
	交差点 2: 一時停止後 4	10
	交差点3:一時停止前1	10
6.20	交差点3:一時停止前2	10
6.21	交差点3:一時停止前3	10
6.22	交差点3:一時停止前4	10
	交差点3:一時停止後1	11
	交差点3:一時停止後2	11
	交差点3:一時停止後3	11
	交差点3:一時停止後4	11
	· 交差点 1:一時停止後 44	13
	交差点 2: 一時停止前 100	14
6.29	交差点 2: 一時停止後 26	

6.30	交差点 3:一時停止前 24	5
6.31	交差点 3:一時停止前 94	5
6.32	交差点 3:一時停止後 88	5
6.33	交差点 1:一時停止前 62	6
6.34	交差点 1:一時停止前 64	6
6.35	交差点 1:一時停止前 66	6
6.36	交差点 1:一時停止前 68	6
6.37	交差点 1:一時停止後 70	7
6.38	交差点 2:一時停止前 84	7
6.39	交差点 2:一時停止前 96	7
6.40	交差点 2:一時停止前 98	8
6.41	交差点 2:一時停止後 2	8
6.42	交差点 2:一時停止後 4	8
6.43	交差点 2:一時停止後 12	9
6.44	交差点 2:一時停止後 96	9
6.45	交差点 3:一時停止前 94	9
6.46	交差点 3:一時停止後 2	20

表目次

6.1	行った実験 1-1	12
6.2	行った実験 1-2	12
6.3	実験結果 1-1	13
6.4	実験結果 1-2	21

第1章 序論

1.1 背景と目的

本文を書いていく. 引用するときは cite を使う [1]. cite の文字列は document.txt の参考文献の文字列と合わせる. すると自動的に番号を振ってくれる.

段落分けする場合はこのように空行を挟む.

画像を張る場合は以下のように記述する.

図 1.1 Kinect

図 oo と文中で用いる場合は ref を使用する図 2.1. 図の label と ref の文字列を合わせることで自動的に番号を振ってくれる. include graphics の./images/ファイル名を変更することで表示する画像を変更できる. 使用できる画像は [.jpg .png .eps] のみ.

1.2 論文構成

論文構成を書いていく.

第2章 関連研究

2.1 背景と目的

本文を書いていく. 引用するときは cite を使う [1]. cite の文字列は document.txt の参考文献の文字列と合わせる. すると自動的に番号を振ってくれる.

段落分けする場合はこのように空行を挟む.

画像を張る場合は以下のように記述する.

図 2.1 Kinect

図 oo と文中で用いる場合は ref を使用する図 2.1. 図の label と ref の文字列を合わせることで自動的に番号を振ってくれる. include graphics の./images/ファイル名を変更することで表示する画像を変更できる. 使用できる画像は [.jpg .png .eps] のみ.

2.2 論文構成

論文構成を書いていく.

第3章 局所特徴量

第 4 章 ドライビングシミュレータデータ セット

4.1 データ取得環境

第 5 章 提案手法

我々の研究グループでは安全運転支援システムの構築を目指す。システムの構築には運転行動の解析に加えて、ドライバが置かれている状況も併せて考える必要がある。本論文では、まずサポートベクターマシンを用いた運転シーン分類における運転シーンのBoK特徴量の有効性について検証するため、運転シーンを交差点一時停止前、一時停止後の2シーンに分類する実験を行う。次に、運転シーンを道路上に自動車等が存在する状態と存在しない状態の2シーンに分類する実験を行う。

6.1 交差点一時停止前,一時停止後への分類実験

6.1.1 実験内容

運転シーンの BoK 特徴量を用いれば、何が可能で何が不可能であるかを明確にするため、 運転シーンの 2 シーンへの分類を行う.

6.1.2 定義

見通しの悪い無信号の交差点を対象とし,交差点進入前の一時停止の標識から停止線まで を一時停止,動き出してから曲がりきるまでを一時停止後と定義する(図 6.1 参照).

図 6.1 定義

6.1.3 解析対象データ

ドライビングシミュレータデータセットの内,一周目の交差点 1,2,3 の画像を用いて実験を行う。それぞれの交差点の一時停止前,一時停止後の画像枚数を統一するため,交差点 1 はそれぞれ等間隔で 70 枚,交差点 2 は 100 枚,交差点 3 は 100 枚抜粋した画像を使用する (図 6.2 参照).

図 6.2 解析対象データ

各交差点の画像例

各交差点 1,2,3 の一時停止前,一時停止後の画像例を記す (図 6.3 から図 6.26 参照).

図 6.4 交差点 1:一時停止前 2

図 6.5 交差点 1: 一時停止前 3

図 6.6 交差点 1: 一時停止前 4

図 6.7 交差点1:一時停止後1

図 6.8 交差点1:一時停止後2

図 6.9 交差点 1: 一時停止後 3

図 6.10 交差点 1: 一時停止後 4

図 6.11 交差点 2: 一時停止前 1

図 6.12 交差点 2: 一時停止前 2

図 6.13 交差点 2: 一時停止前 3

図 6.14 交差点 2: 一時停止前 4

図 6.15 交差点 2: 一時停止後 1

図 6.16 交差点 2: 一時停止後 2

図 6.17 交差点 2: 一時停止後 3

図 6.18 交差点 2: 一時停止後 4

図 6.19 交差点 3: 一時停止前 1

図 6.20 交差点 3: 一時停止前 2

図 6.21 交差点 3: 一時停止前 3

図 6.22 交差点 3: 一時停止前 4

図 6.23 交差点 3: 一時停止後 1

図 6.24 交差点 3: 一時停止後 2

図 6.25 交差点 3: 一時停止後 3

図 6.26 交差点 3: 一時停止後 4

6.1.4 実験方法

各交差点の一時停止前,一時停止後の両画像を学習データ,テストデータとして使用した 分類実験を行う.なお,画像から BoK 特徴量を生成する際は,SIFT による Grid と SURF による Sparse の二つの方法で行う.行った実験を下の表 6.1 と表 6.2 に示す.

表 6.1 行った実験 1-1

	対象交差点	特徴量生成手法	学習データ	テストデータ
実験1	交差点1	SIFT(Grid)	各奇数番目(計70枚)	各偶数番目(計70枚)
実験2	交差点2	SIFT(Grid)	各奇数番目 (計 100 枚)	各偶数番目 (計 100 枚)
実験3	交差点3	SIFT(Grid)	各奇数番目 (計 100 枚)	各偶数番目 (計 100 枚)
実験4	交差点1	SURF(Sparse)	各奇数番目(計70枚)	各偶数番目(計70枚)
実験5	交差点2	SURF(Sparse)	各奇数番目 (計 100 枚)	各偶数番目(計100枚)
実験6	交差点3	SURF(Sparse)	各奇数番目(計100枚)	各偶数番目 (計 100 枚)

表 6.2 行った実験 1-2

	特徴量生成手法	学習データ	テストデータ
実験7	SIFT(Grid)	交差点 2(200 枚)	交差点1
		交差点 3(200 枚)	(計 140 枚)
実験8	SIFT(Grid)	交差点 1(200 枚)	交差点 2
		交差点 3(200 枚)	(計 200 枚)
実験9	SIFT(Grid)	交差点 1(140 枚)	交差点3
		交差点 2(200 枚)	(計 200 枚)
実験 10	SURF(Sparse)	交差点 2(200 枚)	交差点1
		交差点 3(200 枚)	(計 140 枚)
実験 11	SURF(Sparse)	交差点 1(200 枚)	交差点 2
		交差点 3(200 枚)	(計 200 枚)
実験 12	SURF(Sparse)	交差点 1(140 枚)	交差点3
		交差点 2(200 枚)	(計 200 枚)

6.1.5 実験結果

各実験結果を表に記す.

6.1.5.1 実験1から6結果

実験 1 から 6 までの結果を下の表 6.3 に示す。各実験とも誤識別が少なく、識別率が高かった。

衣 6.3 美駛結果 1-1			
	識別成功画像枚数	識別率	
実験1	69/70	98.57%	
実験2	98/100	98.00%	
実験3	97/100	97.00%	
実験4	65/70	92.85%	
実験5	93/100	93.00%	
実験6	98/100	98.00%	

表 6.3 実験結果 1-1

誤分類データ

実験1から実験6の各実験の中で、誤分類された画像を図6.27から図に示す。

実験1での一時停止後の誤分類シーン

実験1の中で一時停止前として誤分類された画像

図 6.27 交差点 1: 一時停止後 44

図 6.27 は一時停止後であるが一時停止前として分類された.

実験2での一時停止前の誤分類シーン

実験2の中で一時停止後として誤分類された画像

図 6.28 交差点 2: 一時停止前 100

図 6.28 は一時停止前であるが一時停止後として分類された.

実験2での一時停止後の誤分類シーン

実験2の中で一時停止前として誤分類された画像

図 6.29 交差点 2: 一時停止後 26

図 6.29 は一時停止後であるが一時停止前として分類された.

実験3での一時停止前の誤分類シーン

実験3の中で一時停止後として誤分類された画像

図 6.30 交差点 3: 一時停止前 24

図 6.31 交差点 3: 一時停止前 94

図 6.30 と図 6.45 は一時停止前であるが一時停止後として分類された.

実験3での一時停止後の誤分類シーン

実験3の中で一時停止前として誤分類された画像

図 6.32 交差点 3: 一時停止後 88

図 6.32 は一時停止後であるが一時停止前として分類された.

実験4での一時停止前の誤分類シーン

]

実験4の中で一時停止後として誤分類された画像

図 6.33 交差点 1: 一時停止前 62

図 6.34 交差点1:一時停止前64

図 6.36 交差点1:一時停止前68

図 6.37 交差点 1: 一時停止後 70

図 6.33 から図 6.37 は一時停止前であるが一時停止後として分類された.

実験5での一時停止前の誤分類シーン

実験2の中で一時停止後として誤分類された画像

図 6.38 交差点 2: 一時停止前 84

図 6.39 交差点 2: 一時停止前 96

図 6.40 交差点 2: 一時停止前 98

図 6.38 から図 6.40 は一時停止前であるが一時停止後として分類された.

実験5での一時停止後の誤分類シーン

実験2の中で一時停止前として誤分類された画像

図 6.42 交差点 2: 一時停止後 4

図 6.43 交差点 2: 一時停止後 12

図 6.44 交差点 2: 一時停止後 96

図 6.41 から図 6.44 は一時停止後であるが一時停止前として分類された.

実験6での一時停止前の誤分類シーン

実験6の中で一時停止後として誤分類された画像

図 6.45 交差点 3: 一時停止前 94

図 6.45 は一時停止前であるが一時停止後として分類された.

実験6での一時停止後の誤分類シーン

実験6の中で一時停止前として誤分類された画像

図 6.46 交差点 3: 一時停止後 2

図 6.46 は一時停止後であるが一時停止前として分類された.

考察 (実験1から6)

実験1から6では、各交差点1から3のシーンに対してBoK特徴量とサポートベクターマシンを用いて一時停止前と一時停止後の2シーン分類を行った。識別率は全て90%を越え、最も高い実験結果では98.57%で後分類シーン枚数が一枚という結果となった。後分類されたシーンの多くは連続したシーンでかつ、一時停止前と一時停止後のシーンの境界部分であった。これは視覚的にも似ているシーンであるため分類は困難であると考える。シーンの境界部分ではなかった誤分類シーンは道路上に存在する白線や家、木々、電柱等の特徴量の影響を受け、誤分類されたと考えられる。識別率が全体的に高い結果となった理由としては学習データとテストデータで用いたシーンが同じ交差点内のものであったためと考えられる。

6.1.5.2 実験7から12結果

実験7から12までの結果を下の表6.4に示す.

識別成功画像枚数 識別率 平均識別率 実験7 96/14068.57%実験8 100/200 50.00%57.69% 実験9 109/20054.50%実験 10 86/140 61.42%実験 11 124/20062.00%63.64%実験 12 135/20067.50%

表 6.4 実験結果 1-2

考察 (実験7から12)

実験7から12では、実験1から6と同様に各交差点1から3のシーンに対してBoK特徴量とサポートベクターマシンを用いて一時停止前と一時停止後の2シーン分類を行ったが、学習データとテストデータで用いるシーンは別々の交差点のシーンを用いた。その結果、識別率は実験1から6と比較して全体的に悪くなった。この事から、各交差点1から3のシーンから生成したBoK特徴量はあらゆるシーンに有効な特徴量ではなく、各交差点シーンに対応した特徴量である事が分かった。ドライバの運転支援システムを想定し、この手法で高い識別率を維持する場合は膨大な学習データを必要とするため実用的ではない。あらゆるシーンに有効な特徴量を見つけ出す必要があると考えられる。

6.2 道路上に自動車等が存在する状態と存在しない状態への分類実験

- 6.2.1 実験内容
- 6.2.2 解析対象データ

論文構成を書いていく.

- 6.2.3 実験方法
- 6.2.4 実験結果

第7章 結論

結論をしっかりかく

謝辞

本研究を進めるにあたり、絶えず御指導、御教授くださいました福見稔教授、柏原考爾准教授、伊藤桃代助教、伊藤伸一助教に深く感謝すると共に厚く御礼申し上げます。また、貴重な御意見、提案を頂いた B5 研究室の皆様に深く感謝いたします。

参考文献

 $[1]\,$ name
1, name
2, "paper title", confarence Name