Lesson 29 Boardsheet

Kevin Cummiskey 4/8/2020

Review

Last class, we discussed Linear Weights models. Linear Weights models attempt to estimate BattingRuns for each player using individual performance. What are *BattingRuns*?

battingruns = # of runs produced above the average batter.

How do we obtain weights in the model?

1B average (no value)

data-retroshert event elata
planjid run-value

What are some limitations of the Linear Weights models?

Doesn't directly answer question "How many runs did this player create?"

Runs Created

In the late 1970s, Bill James developed a series of statistics called Runs Created (RC). These statistics have the common form:

$$RC = \frac{A \times B}{C}$$

where A quantifies how often the player/team gets on base, B quantifies how they advance on base, and C represents the opportunities. The simplest version of RC is:

$$RC_{\text{basic}} = \frac{\overbrace{(H + BB) \times TB}^{3}}{AB + BB}$$

"Rune Created"

Let's see how well RC_{basic} predicts actual runs scored for teams in the 2018 season.

library(Lahman)

library(tidyverse)

library(ggrepel)

library(plotly)

```
library(knitr)
Teams %>%
  filter(yearID == 2018) %>%
  mutate(X1B = H - X2B - X3B - HR;
         TB = X1B + 2*X2B + 3*X3B + 4*HR
         RCbasic = ((H + BB)*TB)/(AB + BB)) \rightarrow teams.2018
teams.2018 %>%
  ggplot(aes(x = RCbasic, y = R, label = teamID)) +
  geom point() +
  geom_text_repel()
                                                                                         BOS
                                                                              NYA
    800 -
 \alpha
   700 -
    600
                600
                                             700
                                                                          800
                                               RCbasic
```

Is RC_{basic} a good model for runs? What makes it a good model?

· Simple

(H+BB) ×TB
(H+AB)

A nice feature of RC is a team's RC is very close to the sum of its individual players. Therefore, we can use RC to assign credit to players for a certain proportion of their team's runs.

```
Batting %>%

filter(yearID == 2018) %>%

mutate(X1B = H - X2B - X3B - HR,

TB = X1B + 2*X2B + 3*X3B + 4*HR,

RCbasic = ((H + BB)*TB)/(AB + BB)) %>%

left_join(select(Master,playerID, nameLast, nameFirst)) %>%

mutate(name = paste(nameFirst, nameLast, sep = " ")) -> batting.2018.all

batting.2018.all %>%

group_by(teamID) %>%

summarize(RCbasic.summed = sum(RCbasic, na.rm = TRUE)) %>%
```

```
right_join(teams.2018) -> teams.2018
teams.2018 %>%
  ggplot(aes(x = RCbasic, y = RCbasic.summed)) +
  geom point() +
  labs(x = "RC from team statistics",
       y = "RC summed over individual players",
       title = "Team RC and RC summed over players is very close")
```

Team RC and RC summed over players is very close


```
batting.2018.all %>%
  left_join(select(teams.2018, teamID, RCbasic.summed)) %>%
  group_by(teamID) %>%
  mutate(RC.team.perc = RCbasic/RCbasic.summed) %>%
  arrange(-RC.team.perc) -> batting.2018.all
batting.2018.all %>%
  select(name, teamID, R, RC.team.perc) %>%
  head(10) %>%
  kable(digits = 2,
        caption = "Highest Percentage of Team's Runs Scored - 2018")
```

Table 1: Highest Percentage of Team's Runs Scored - 2018

ID R	RC.team.perc
	1
101	0.19
95	0.18
118	0.18
88	0.17
129	0.16
111	0.16
105	0.16
104	0.16
	95 118 88 129 111 105

RC.team.perLz

RC player

RZ +oan

todays leason

name	teamID	R	RC.team.perc
Freddie Freeman	ATL	94	0.15
Whit Merrifield	KCA	88	0.15

Let's see how RunsCreated compares to BattingRuns from the Linear Weights model.

```
read_csv(file = "data/batting_2018.csv") -> batting.2018
#add runs created to data frame from last class
                                                                last lesson
batting.2018.all %>%
  group_by(playerID) %>%
  summarize(RCbasic = sum(RCbasic, na.rm = TRUE)) %>%
  right_join(batting.2018) -> batting.2018
p1 <- batting.2018 %>%
  ggplot(aes(x = batting.runs,
             y = RCbasic,
             label = name)) +
  geom_point() +
  labs(x = "Batting Runs (Linear Weights Model",
       y = "Runs Created - Basic",
       title = "Linear Weights vs. Runs Created")
p1
```

Linear Weights vs. Runs Created

#ggplotly(p1)

Why might we prefer one model to the other?

- · Linear Weights routed in defensible methods · Runs Created simpler, easier to ealin lade

How can we improve upon the basic version of Runs Created?

Runs Greated Tech caught steading

H+BB) TB

H+AB