## RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

### New Scheme Based On AICTE Flexible Curricula

## **Electronics & Communication Engineering V-Semester**

# Open Elective EC- 504 (A) ELECTROMAGNETIC THEORY

**Unit I** Steady Electric Field: Coulomb's Law, units, Electric field intensity, Electric flux and flux density, Gauss law, Boundary relations, concept of divergence, Curl, scalar and vector potential. electric field in dielectric and conductor, continuity equation, methods of images.

**Unit II** Magnetic field due to steady currents, force between current carrying wires, Stokes theorem, vector magnetic potential, magnetization vector and its relation to magnetic field.

Unit III Maxwell's Equation: Time varying field and displacement current, faraday's law.

**Unit IV** Wave Equation: Pointing vector, Plane electromagnetic waves in free space, dielectric medium and conducting medium, Skin depth, slepian vector.

**Unit V** Waves propagation in lossy dielectrics, plane waves in lossless dielectrics, reflection of a plane wave at normal incidence, reflection of a plane wave at oblique incidence.

## **Reference Books:**

- Elements of Engineering Electromagnetic Third Edition- N.N. Rao- Prentice Hall, India
- 2. Elements opf Electromagnetic, Second Edition- Matthew N.O. Sadiku- Saunders coll Publishing.
- 3. Fields & Waves in Communication Electronics- S.Ramo, J.R. Whinnery& T. Van Duzer- John Wiley & Sons.
- 4. Electromagnetic- J.D. Kraus-McGraw Hill
- 5. Electromagnetic Waves & Radiating Systems- E.C. Jordan & K.G. Balmain- Prentice Hall.

## RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

### New Scheme Based On AICTE Flexible Curricula

# **Electronics & Communication Engineering V-Semester**

# Open Elective EC- 504 (B) Computer System Organization

#### Unit-I

**COMPUTER BASICS AND CPU** Von Newman model, various subsystems, CPU, Memory, I/O, System Bus, CPU and Memory registers, Program Counter, Accumulator, Instruction register, Micro operations, Register Transfer Language, Instruction Fetch, decode and execution, data movement and manipulation, Instruction formats and addressing modes of basic computer.

#### Unit-II

**CONTROL UNIT ORGANIZATION** Hardwired control unit, Micro and nano programmed control unit, Control Memory, Address Sequencing, Micro Instruction formats, Micro program sequencer, Microprogramming,

**ARITHMETIC AND LOGIC UNIT** Arithmetic Processor, Addition, subtraction, multiplication and division, Floating point and decimal arithmetic and arithmetic units, design of arithmetic unit.

#### Unit-III

**INPUT OUTPUT ORGANIZATION** Modes of data transfer – program controlled, interrupt driven and direct memory access, Interrupt structures, I/O Interface, Asynchronous data transfer, I/O processor. Data transfer – Serial / parallel, synchronous/asynchronous, simplex/half duplex and full duplex.

#### **Unit-IV**

**MEMORY ORGANIZATION** Memory Maps, Memory Hierarchy, Cache Memory -Organization and mappings. Associative memory, Virtual memory, Memory Management Hardware.

## **Unit-V**

**MULTIPROCESSORS** Pipeline and Vector processing, Instruction and arithmetic pipelines, Vector and array processors, Interconnection structure and inter-processor communication.

#### Rooks

- 1. Morris Mano: Computer System Architecture, Pearson Education.
- 2. William Stallings: Computer Organization and Architecture, PHI
- 3. Carl Hamacher: Computer Organization, TMH
- 4. Tanenbaum: Structured Computer Organization, Pearson Education

## RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

### New Scheme Based On AICTE Flexible Curricula

## **Electronics & Communication Engineering V-Semester**

# Open Elective EC- 504 (C) Process Control Instrumentation

#### Unit-I

Introduction: Historical Perspective, incentives of process control, synthesis of control system. Classification and definition of process variables. Mathematical modeling: Need and application of mathematical modeling, Lumped and distributed parameters, Analogies, thermal, Electrical, and chemical systems, Modeling of CSTR, Modeling of heat exchanger, Interactive and non-interactive type of system, Dead time elements, Developing continuous time and discrete time models from process data.

## **Unit-II**

Control Modes: Definition, Characteristics and comparison of on-off, proportional, Integral, Differential, PI, PD, PID, Dynamic behavior of feedback controlled processes for different control modes, Control system quality, IAE, ISE, IATE criterion, Tuning of controllers Ziegler-Nichols, Cohen-Coon Methods, controller trouble shooting.

#### **Unit-III**

Realization of Control Modes: Realization of different control modes like P, I, D in Electric, Pneumatic, Hydraulic controllers. Use of DDC and PLC, Process monitoring, man machine interface, real time systems: RTS introduction and its characteristics.

#### **Unit-IV**

Actuators: Hydraulic, Pneumatic actuators, Solenoid, E-P converters, control valves, Types, Functions, Quick opening, Linear and equal percentage valve, Ball valves, Butterfly valves, Globe valves, Pinch valves, valve application and selection, Cavitations and flashing, Dampers and variable speed Drives.

## **Unit-V**

Advanced Controls: Introduction to advanced control system like Cascade, Feed forward, Ratio, Selective, Override, Split range and Auctioneering control, Plant wide control. Pl Diagrams: Symbols, Terminology, Case studies, a brief study of instrumentation and control relevant to industries.

### References:

- Dale Patrick, Stephen Fardo, "Industrial Process Control System".
- Shinskey F.G., "Process Control System", III Ed., McGraw Hill.
- Smith C.A. & A.B. Corripio, "Principle & Practiced Automatic Process Control", J. Willey.
- Rao M & S.Qiv, "Process Control Engg.", Gorden & Breach.
- S Levi and AK Agrawala. Real-time system design. McGraw-Hill International.
- · GeorgeStephanopoulos "Chemical Process Control" PHI, Delhi
- C.D. Johnson "Process control instrumentation technology" PHI
- Harriott- Process Control 1st ed., TMH
- Patranabis- Principles of Process Control 2nd ed., TMH