

| PAPER CODE | EXAMINER | DEPARTMENT                          | TEL  |
|------------|----------|-------------------------------------|------|
| CPT 107    | K.L. Man | Discrete Mathematics and Statistics | 1509 |

2021/22 SEMESTER 1 - Assessment I

**BACHELOR DEGREE - Year 2** 

**Discrete Mathematics and Statistics** 

DEADLINE: 29 October, 2021 at 5 pm

#### **INSTRUCTIONS TO CANDIDATES**

- 1. The Assessment should be done individually.
- 2. Total marks available are 100, accounting for 10% of the overall module marks.
- 3. The number in the column on the right indicates the marks for each question.
- 4. Answer all questions.
- 5. Answers should be written in English.
- 6. Relevant and clear steps should be included in your answers.
- 7. Your solutions should be submitted electronically through the Learning Mall via the submission link.
- 8. The naming of Report (in pdf) is as follows: CPT107\_StudentID\_CW1 (e.g., CPT107\_12345678\_CW1.pdf).
- 9. Answers can also be handwritten, fully and clearly scanned or photographed for submission as one single PDF document through the Learning Mall via the submission link.

PAPER CODE: CPT107/21-22/S1 Page 1 of 4



#### **Notes:**

- To obtain full marks for each question, relevant and clear steps must be included in the answers.
- Partial marks may be awarded depending on the degree of completeness and clarity.

# **QUESTION 1: Proof Techniques**

(20 marks)

(a) Use proof by *contradiction* to show that there does not exist any integers x and y such that 6x + 18y = 1.

(3 marks)

- (b) Let a be a positive real number, and the Statement S be: "if a is not rational number, then  $\sqrt[6]{a}$  is also not a rational number".
  - 1. Prove the Statement *S* by *contradiction*.
  - 2. If you think the converse of the Statement S is true, prove it. If not, give a counter-example.

(8 marks)

(c) For x, y,  $z \in \mathbb{Z}$ , use proof by *contradiction* to show the following statement:

if 
$$x^2 + y^2 = z^2$$
, then at least one of x and y is even.

(5 marks)

(d) For all integer  $m \ge 1$ , use proof by *induction* to show that:

$$2m(\frac{4m+1}{3})(m+\frac{1}{2})=(1^2+2^2+3^2+...+(2m)^2).$$

(4 marks)



# **QUESTION 2: Set Theory**

(32 marks)

- (a) Let the universal set be  $\mathbb{N}$ ,  $A = \{x \in \mathbb{N} \mid x \text{ is even and } 3 < x < 11\}$ ,  $B = \{x \in \mathbb{N} \mid x \text{ is odd and } 2 < x < 10\}$ ,  $C = \{x \in \mathbb{N} \mid x \text{ is odd and } 3 < x < 9\}$  and  $D = \{d \in \mathbb{N} \mid d^2 = 5\}$ . Find the elements of the following expressions:
  - 1.  $B \cap (A \cup D)$
  - 2.  $\sim ((B D) \cap A)$
  - 3.  $(C \cup D) \cap (B \triangle A)$
  - 4.  $(((D \cup B) \cap (A \triangle B)) \cup (B (A D))) \cap C$

(8 marks)

(b) Let X and Y be sets, then  $X \subseteq Y$  if and only if  $\sim X \subseteq \sim Y$ . If you think that it is true, prove it. Otherwise, give a counterexample to show that it is false.

(6 marks)

- (c) Prove that the following sets are equal:
  - 1.  $A \times (B \cup C) = (A \times B) \cup (A \times C)$
  - 2.  $A \times (B C) = (A \times B) (A \times C)$

(10 marks)

(d) Let X and Y be sets, and  $X \subseteq Y$  if and only if  $(Y - X) \cup X = Y$ . If you think that it is true, prove it. Otherwise, give a counterexample to show that it is false.

(8 marks)



#### **QUESTION 3: Relations**

(48 marks)

(a) Let  $A = \{a \in \mathbb{Z} \mid a \neq 0\}$  and R be the relation on the set A defined by  $R = \{(a,b) \mid a+b=2c\}$ , where  $a,b,c \in A$ . Prove or disprove that R over A is equivalence notion.

(6 marks)

(b) Let  $A = \{1,2,3,4\}$ . What is the transitive closure of the relation  $\{(1,2), (2,3), (3,4), (1,3), (1,4), (2,4)\}$  on A? Express your answer using ordered pairs.

(4 marks)

(c) If A and B are both transitive relations, then their intersection is also transitive. If you think that it is true, prove it. If not, give a counter-example.

(8 marks)

(d) Let R and S be two partial orders on a set X, and T is a relation on X such that aTb (i.e.  $a,b \in X$ ) if and only if both aRb and aSb hold. Is T also a partial order on X? Justify your answer with proofs and/or counterexamples

(7 marks)

(e) Given the partial ordering on the following set  $A = \{a, b, c, d, e\}$  as  $\{(a,a), (b,b), (c,c), (d,d), (e,e), (a,b), (a,c), (a,d), (a,e), (d,e)\}$ , draw the corresponding Hasse diagram.

(3 marks)

(f) Let A be the points in the plane  $(A = \mathbb{R} \times \mathbb{R})$ . We say two points are equivalent if they are equal distance from the origin. So  $(x, y) \otimes (w, z)$  if  $x^2 + y^2 = w^2 + z^2$ , where (x, y),  $(w, z) \in A$ . Show this is an equivalence relation on A and find the equivalent classes.

(10 marks)

(g) For all a, b  $\in \mathbb{Z}^+$ , we define a  $\odot$  b if a/b  $\in \mathbb{Z}^+$ . Prove or disprove  $\odot$  is a partial order and/or a total order on  $\mathbb{Z}^+$ .

(10 marks)

PAPER CODE: CPT107/21-22/S1 Page 4 of 4