Ideas for Low Celluclast Performance

13.11.2019

Basic Architecture

- Accesses different memory than CPU
- Starting thousands of threads at low costs

Memory Management

```
typedef int dtype;
   class Storage {
      public:
       explicit Storage(const std::vector<int>&);
5
6
      private:
       std::vector<int> data;
8
       dtype* _cpu_pointer;
9
       dtype* gpu pointer;
10
       void initialize gpu memory();
11
```

- Memory pool, takes ownership
- Initializes the gpu memory as copy
- two different pointer, to cpu/gpu locations

```
typedef int dtype;
   class Storage {
3
      public:
4
        explicit Storage(const std::vector<int>&);
5
       const dtype* cpu pointer const();
6
       const dtype* gpu pointer const();
       dtype* cpu pointer();
8
       dtvpe* gpu pointer();
9
10
      private:
11
       std::vector<int> data;
12
       dtype* cpu pointer;
       dtype* _gpu_pointer;
13
       void initialize_gpu_memory();
14
15
       std::string recent head;
16
       void sync to cpu();
17
       void sync to gpu();
18
   Basic accesses pointers
```

Merge

Write about CPU merge

How to spwan to many threads?

Paper that does that, show as example, the cutting approach Naiv approach: 2 Threads Cut both a and b into half,

$$A = 0000B$$
 = $1111C = ???????$?

$$A = \underbrace{00}_{\text{Thread 1}} | \underbrace{00}_{\text{Thread 2}} B = \underbrace{11}_{\text{Thread 1}} | \underbrace{11}_{\text{Thread 2}} C = \underbrace{????}_{\text{Thread 1}} | \underbrace{????}_{\text{Thread 2}}$$

$$C = \underbrace{0011}_{\text{Thread 1}} \mid \underbrace{0011}_{\text{Thread 2}}$$

Merge

How to allocated work?

Here are the merge path pictures $\,$

Comutation Procedure

- Each tread works on one part
- Thread calculates the value A_lower for itself
- Calcultes the also the B_lower (Why does that work again?)
- merges the two arrays

Problem: Slow as a Snail

show the growth rates vs std::mergesort

Reason: So much global meory access

50 Percent of the global memory traffic is caused by 3 Percent of the values

Corrobation: Cuda performance tool

Memory Hirachy of CUDA

The different memories and their sizes

show the plot of the different memories and their relative size on my card

Describe the shared memory

show the plot of the different memories and their relative size on my card

Show the results

show the plot of the different memories and their relative size on my card