I. Measures

1. Motivation

Let *X* be a set and let $A \subseteq X$. We aim to develop a *meaningful* theory of integration that is

$$\int_A f$$
,

where $f: X \to \mathbb{R}$.

There are a bunch of natural question that come out here.

- (a) Which A are appropirate?
- (b) Which f are appropirate?
- (c) What does $\int_A f$ even mean?

Moreover, we want the following:

$$\mu\left(A\right) = \int_{A} 1$$

to be some meaningful idea of size/volume/measure. Some μ 's do this better than others. Here are some properties we want μ to satisfy:

- (a) $\mu(\emptyset) = 0$.
- (b) $\mu(A \cup B) = \mu(A) + \mu(B)$.
- (c) $\mu(A \cup B) \le \mu(A) + \mu(B)$.
- (d) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- (e) $\mu(X) \in [0, \infty]$.
- (f) $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mu\left(A_n\right)$.
- (g) $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right)$.

Let's take a step back. If we are going to achieve those things, we want some basics. Let D be the domain of μ – the *nonprecise measure function* handed on us. We need:

- (a) $\emptyset \in D$; and
- (b) if $A_1, A_2, \ldots \in D$, then $\bigcup_{n=1}^{\infty} A_n \in D$.

2. σ -algebras

Def'n 1.1. σ -algebra of Subsets of X

Let *X* be a set and let $A \subseteq \mathcal{P}(X)$. We say A is an *algebra*¹ of subsets of *X* if

- (a) $\emptyset \in \mathcal{A}$;
- (b) $A \in \mathcal{A}$ implies $X \setminus A \in \mathcal{A}$; and

closure under complements

closure under finite union

(c) $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$.

Moreover, we say A is a σ -algebra if it satisfies in addition

$${A_n}_{n=1}^{\infty} \subseteq \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

That is, A is closed under countable unions.

¹The word *algebra* comes from boolean algebra, one of the most universal objects in abstract math.

Question 1.1.

Are all algebra a σ -algebra?

Answer. To answer this question, we should think about:

what is preserved for finite sets but not infinite sets?

The easiest answer is *finiteness*. Let *X* be an infinite set and let

$$\mathcal{A} = \{ A \subset X : A \text{ is finite or } X \setminus A \text{ is finite} \}.$$

Then A is an algebra but not a σ -algebra.

QED

Let $A \subseteq P$ be an algebra. Then, as a corollary to Def'n 1.1,

(a) $A, B \in \mathcal{A}$ implies $X \setminus A, X \setminus B \in \mathcal{A}$, so that $A \cap B = X \setminus ((X \setminus A) \cup (X \setminus B)) \in \mathcal{A}$;

closure under closure

- (b) $X = X \setminus \emptyset \in \mathcal{A}$;
- (c) $A, B \in \mathcal{A}$ implies $A \setminus B = A \cap (X \setminus B) \in \mathcal{A}$; and

closure under set difference

(d) $A, B \in \mathcal{A}$ implies $A \triangle B \in \mathcal{A}$.

closure under symmetric set difference

Moreover, if A is a σ -algebra, then (a) holds with countable number of sets.

Proposition 1.1. Generating σ -algebra from a Collection of Subsets

Let *X* be a set and let $\mathcal{E} \subseteq \mathcal{P}(X)$. Then

$$\langle \mathcal{E} \rangle = \bigcap \{ \mathcal{A} \supseteq \mathcal{E} : \mathcal{A} \text{ is a } \sigma\text{-algebra} \}$$

is a σ -algebra.

Exercise

Def'n 1.2. σ -algebra **Generated** by \mathcal{E}

Consider Proposition 1.1. We call $\langle \mathcal{E} \rangle$ the σ -algebra *generated* by \mathcal{E} .

Def'n 1.3. **Borel** σ -algebra of a Topological Space

Let (X, τ) be a topological space. Then

Bor
$$(X) = \langle \tau \rangle$$

is called the *Borel* σ -algebra of (X, τ) .

We call elements of Bor (X) the *Borel sets*.

Def'n 1.4. Measurable Space

Let X be a set and let A be a σ -algebra of X. Then we call (X, A) a measurable space.

The elements of A are called the *measurable sets*.

3. Measures

In this course, we often work in the extend real numbers $\mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$. Here are things that we assume.

Assumption 1. Assumptions about Extended Real Numbers

For all $a \in \mathbb{R}$,

- (a) $a + \infty = \infty$;
- (b) $a \infty = -\infty$;
- (c) $\infty + \infty = \infty$; and
- (d) $-\infty \infty = -\infty$.

However, we leave the following expressions to be undefined:

- (a) $\infty \infty$;
- (b) $\frac{\infty}{\infty}$; and
- (c) 0∞ .

Def'n 1.5. Measure on a Measurable Space

Let (X, A) be a measurable space. A *measure* on (X, A) is a function $\mu : A \to [0, \infty]$ such that

- (a) $\mu(\emptyset) = 0$; and
- (b) we have

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

for every $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_n\cap A_m$ for $n\neq m$.

countable additivity

In case μ is a measure on (X, A), we call (X, A, μ) a *measure space*.

Example 1.2. Examples of Measures

Let *X* be a set.

(a) $\mu(A) = 0$ for all $A \in \mathcal{P}(X)$ is a measure on $(X, \mathcal{P}(X))$.

zero measure

- (b) $\mu(\emptyset) = 0, \mu(A) = \infty$ for all $A \in \mathcal{P}(X) \setminus \{\emptyset\}$ is a measure on $(X, \mathcal{P}(X))$.
- (c) $\mu(A) = |A|$ (where $|A| = \infty$ if A is infinite) is a measure on $(X, \mathcal{P}(X))$.

counting measure

(d) Fix $x \in X$ and define

$$\mu(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

for all $A \in \mathcal{P}(X)$. Then μ is a measure on $(X, \mathcal{P}(X))$.

point-mass measure

Proposition 1.2.

Let (X, \mathcal{A}, μ) be a measure space.

(a) For all $A, B \in \mathcal{A}$ and $A \subseteq B$, $\mu(A) \leq \mu(B)$.

monotonicity

(b) For all $A, B \in \mathcal{A}$ with $A \subseteq B$ and $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) - \mu(A)$.

excision

(c) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$.

countable subadditivity

Proof.

(a) Consider $B \setminus A$, which is measurable since A is closed under set difference. Hence we have

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$
.

(b) We have

$$\mu(A) + \mu(B \setminus A) = \mu(B)$$

as seen in (a). Since $\mu(A) < \infty$, we can freely subtract $\mu(A)$ from both sides to obtain that $\mu(B \setminus A) = \mu(B) - \mu(A)$.

(c) Let $B_1 = A_1$ and let $B_n = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ for all $n \ge 2$. Then each B_n is measurable with $B_n \subseteq A_n$ and we have

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}B_{n}\right)=\sum_{n\in\mathbb{N}}\mu\left(B_{n}\right)\leq\sum_{n\in\mathbb{N}}\mu\left(A_{n}\right).$$

QED

 $^{^{1}}$ Or, *measure* on *X* if we are lazy.

Proposition 1.3. Continuity of Measure

Let (X, \mathcal{A}, μ) be a measure space.

(a) Let $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be an ascending chain. That is,

$$A_1 \subseteq A_2 \subseteq \cdots$$
.

Then

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu\left(A_n\right).$$

continuity from below

(b) Let $\{B_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be a decending chain with $\mu(B_1)<\infty$. That is,

$$B_1 \supseteq B_2 \supseteq \cdots$$
.

Then

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu\left(B_n\right).$$

continuity from above

Proof.

(a) Let $C_1 = A_1$ and let $C_n = A_n \setminus A_{n-1} = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ for all $n \ge 2$, where the last equality follows from the ascending chain condition.

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}C_{n}\right)=\sum_{n\in\mathbb{N}}\mu\left(C_{n}\right)=\lim_{N\to\infty}\sum_{n=1}^{N}\mu\left(C_{n}\right)=\lim_{N\to\infty}\mu\left(\bigcup_{n=1}^{N}C_{n}\right)=\lim_{N\to\infty}\mu\left(A_{N}\right).$$

(b) Let $D_n = B_1 \setminus B_n$ for all $n \in \mathbb{N}$, so that $\{D_n\}_{n \in \mathbb{N}}$ is an ascending chain. Then

$$B_1 \setminus \bigcap_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} D_n,$$

so that

$$\mu\left(B_{1}\setminus\bigcap_{n\in\mathbb{N}}B_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}D_{n}\right)=\lim_{n\to\infty}\mu\left(D_{n}\right)=\lim_{n\to\infty}\mu\left(B_{1}\right)-\mu\left(B_{n}\right)=\mu\left(B_{1}\right)-\lim_{n\to\infty}\mu\left(B_{n}\right).$$

The result then follows from excision property of μ .

QED

Def'n 1.6. Finite, Probability, σ -finite, Semifinite, Complete Measure

Let (X, \mathcal{A}, μ) be a measure space. We say μ is

- (a) finite if $\mu(X) < \infty$;
- (b) a *probability* measure if $\mu(X) = 1$;
- (c) σ -finite if

$$X = \bigcup_{n=1}^{\infty} A_n$$

for some $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$;

(d) semifinite if

$$\forall A \in \mathcal{A} \left[\mu \left(A \right) \neq 0 \implies B \in \mathcal{A} \left[B \subseteq A, 0 < \mu \left(B \right) < \infty \right] \right];$$

and

(e) complete if

$$\forall A \in \mathcal{A} \left[\mu \left(A \right) = 0 \implies \forall B \subseteq A \left[B \in \mathcal{A} \right] \right].$$

Example 1.3. An Example of Non-complete Measure

Let $X = \{a, b\}$, $A = \{\emptyset, \{a, b\}\}$, $\mu = 0$. Then μ is not complete, as $\{a\} \in A$.

The goal of this section is:

given a measure space (X, μ, A) , if μ is not complete, we extend A and μ so that the result is complete.

A natural way of doing this is throw every subsets of measure-zero sets into A.

Proposition 1.4. Completion of a Measure Space

Let (X, μ, A) be a measure space. Let

$$\overline{\mathcal{A}} = \{ A \cup F : A \in \mathcal{A}, \exists N \in \mathcal{A} \left[F \subseteq N, \mu(N) = 0 \right] \}$$

and define

$$\overline{\mu}: \overline{\mathcal{A}} \to [0, \infty]$$
 $A \cup F \mapsto \mu(A)$

Then

- (a) \overline{A} is a σ -algebra;
- (b) $\overline{\mu}$ is a measure;
- (c) $\overline{\mu}|_{\mathcal{A}} = \mu$; and
- (d) $\overline{\mu}$ is complete.

Proof.

(a) Note that $\emptyset = \emptyset \cup \emptyset$ with $\emptyset \subseteq \emptyset$ where $\mu(\emptyset) = 0$. Hence $\emptyset \in \overline{\mathcal{A}}$. Let $E = A \cup F$ with $A \in \mathcal{A}, F \subseteq N \in \mathcal{A}$ where $\mu(N) = 0$. Then

$$X \setminus E = \underbrace{X \setminus (A \cup N)}_{\in \mathcal{A}} \cup \underbrace{(N \setminus (A \cup F))}_{\subseteq N} \in \overline{\mathcal{A}}.$$

Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $E_n = A_n \cup F_n$ where $F_n \subseteq N_n$ for some $n \in \mathbb{N}$. Then

$$\bigcup_{n=1}^{\infty} E_n = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} F_n\right).$$

But $\bigcup_{n=1}^{\infty} F_n \subseteq \bigcup_{n=1}^{\infty} N_n$ with $\mu\left(\bigcup_{n=1}^{\infty} N_n\right) \leq \sum_{n=1}^{\infty} \mu\left(N_n\right) = 0$. Thus $\bigcup_{n=1}^{\infty} E_n \in \overline{\mathcal{A}}$.

(b) We first check that $\overline{\mu}$ is well-defined. Let

$$E = A_1 \cup F_1 = A_2 \cup F_2$$

for some $A_1, A_2 \in \mathcal{A}$ and $F_1 \subseteq N_1, F_2 \subseteq N_2$ with $\mu(N_1) = \mu(N_2) = 0$.

Then note that

$$A_1 \cap A_2 \subseteq A_i \subseteq E \subseteq (A_1 \cup F_1) \cap (A_2 \cup F_2) \subseteq (A_1 \cap A_2) \cup N_1 \cup N_2.$$

Hence

$$\mu\left(A_{1}\cap A_{2}\right)\leq\mu\left(A_{i}\right)\leq\mu\left(E_{1}\cap E_{2}\right).$$

This means $\mu(A_i) = \mu(A_1 \cap A_2)$, so hat $\mu(E_1) = \mu(E_2)$.

Thus $\overline{\mu}$ is well-defined.

To show $\overline{\mu}$ is a measure, note that

$$\overline{\mu}(\emptyset) = \overline{\mu}(\emptyset \cup \emptyset) = \mu(\emptyset) = 0.$$

Say we have a collection of disjoint sets in \overline{A} , $\{E_n\}_{n=1}^{\infty} \subseteq \overline{A}$, with

$$E_n = A_n \cup F_n$$

for some $E_n \subseteq N_n$ with $\mu(N_n) = 0$. Then

$$\bigcup_{n=1}^{\infty} E_n = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \underbrace{\left(\bigcup_{n=1}^{\infty} F_n\right)}_{\subseteq \bigcup_{n=1}^{\infty} N_n}.$$

Thus

$$\overline{\mu}\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(E_n\right) = \sum_{n=1}^{\infty} \overline{\mu}\left(A_n\right),$$

so $\overline{\mu}$ is a measure.

- (c) Given $A \in \mathcal{A}$, $A = A \cup \emptyset$, so that $\overline{\mu}(A) = \mu(A)$.
- (d) Let $A \subseteq B \in \overline{A}$ with $\overline{\mu}(B) = 0$. We are going to show $A \in \overline{A}$.

We can write

$$B = E \cup F$$

for some $F \subseteq N \in \mathcal{A}$ with $\mu(N) = 0$. Then

$$\overline{\mu}\left(B\right) =\mu\left(E\right) =0.$$

Since $A \subseteq B \subseteq E \cup N$ with $\mu(E \cup N) = 0$ (complete this).

QED

Def'n 1.7. Completion of a Measure Space

Let (X, μ, A) be a measure space. We call $(X, \overline{\mu}, \overline{A})$ the *completion* of (X, μ, A) .

5. Construction of Measures

Def'n 1.8. Outer Measure on a Set

Let *X* be a nonempty set. An *outer measure* on *X* is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

- (a) $\mu^*(\emptyset) = 0$;
- (b) $A \subseteq B$ implies $\mu^*(A) \le \mu^*(B)$; and

monotonicity

(c) $\{A_n\}_{n=1}^{\infty} \mathcal{P}(X)$ implies $\mu^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.

countable subadditivity

The idea is that

outer measures are naive approaches to measure every subset of X.

We start with $\mathcal{E} \subseteq \mathcal{P}(X)$ which are *easy* to measure. We use the outer measure μ^* and \mathcal{E} to construct a measure.

Proposition 1.5. Construction of an Outer Measure

Suppose $\{\emptyset, X\} \subseteq \mathcal{E} \subseteq \mathcal{P}(X)$ and $\mu : \mathcal{E} \to [0, \infty]$ satisfies $\mu(\emptyset) = 0$. For $A \subseteq X$, define

$$\mu^*\left(A\right) = \inf \left\{ \sum_{n=1}^{\infty} \mu\left(E_n\right) : \left\{E_n\right\}_{n=1}^{\infty} \subseteq \mathcal{E}, A \subseteq \bigcup_{n=1}^{\infty} E_n \right\}.$$

Then μ^* is an outer measure on X.

Example 1.4. Lebesgue Outer Measure

Let $X = \mathbb{R}$, $\mathcal{E} = \{(a, b) : -\infty < a < b < \infty\} \cup \{\emptyset, X\}$. Define

$$\mu\left((a,b)\right) = b - a, \mu\left(X\right) = \infty.$$

Then μ^* as said in Proposition 1.5 is called the *Lebesgue outer measure*.

Proposition 1.6.

Suppose $\{\emptyset, X\} \subseteq \mathcal{E} \subseteq X$ and let $\mu : \mathcal{E} \to [0, \infty]$. If $\mu(\emptyset) = 0$, then $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \left\{ A_n \right\}_{n=1}^{\infty} \subseteq \mathcal{E}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}, \qquad \forall A \in \mathcal{E}$$

is an outer measure.

Proof. We verify few things.

- (a) Note that $\emptyset \subseteq \bigcup_{n=1}^{\infty} \emptyset$ and so $0 \le \mu^*(\emptyset) \le \sum_{n=1}^{\infty} \mu(\emptyset) = 0$.
- (b) Say $A \subseteq B \subseteq X$. Then

$$\left\{\sum_{n=1}^{\infty}\mu\left(A_{n}\right):\forall n\in\mathbb{N}\left[A_{n}\in\mathcal{E}\right],A\subseteq\bigcup_{n=1}^{\infty}A_{n}\right\}\supseteq\left\{\sum_{n=1}^{\infty}\mu\left(A_{n}\right):\forall n\in\mathbb{N}\left[A_{n}\in\mathcal{E}\right],B\subseteq\bigcup_{n=1}^{\infty}A_{n}\right\}$$

by definition. By taking infimum, we see that

$$\mu^*\left(A\right) \leq \mu^*\left(B\right).$$

(c) Say $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{P}(X)$ and consider $\bigcup_{n=1}^{\infty} A_n$. We claim that

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu^* \left(A_n \right).$$

We may assume $\sum_{n=1}^{\infty} \mu^* (A_n) < \infty$.

Let $\varepsilon > 0$ be given. For every A_i , we may find $\{E_{i,j}\}_{j=1}^{\infty} \subseteq \mathcal{E}$ such that

$$A_i \subseteq \bigcup_{n=1}^{\infty} E_{i,j}$$

and

$$\sum_{j=1}^{\infty} \mu\left(E_{i,j}\right) < \mu^*\left(A_i\right) + \frac{\varepsilon}{2^i}$$

We then have

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i,j=1}^{\infty} E_{i,j}.$$

Hence

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \stackrel{\inf}{\leq} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu \left(E_{i,j} \right) \leq \sum_{i=1}^{\infty} \mu^* \left(A_i \right) + \frac{\varepsilon}{2^i} = \left(\sum_{i=1}^{\infty} \mu^* \left(A_i \right) \right) + \varepsilon.$$

Since ε is an arbitary positive number, we see that μ^* is countably subadditive.

Def'n 1.9. μ^* -measurable Set

Let μ^* be an outer measure on X. We say $A \subseteq X$ is μ^* -measurable if

$$\mu^* (E) = \mu^* (E \cap A) + \mu^* (E \cap (X \setminus A))$$

for all $E \subseteq X$.

Let $A, E \subseteq X$.

(a) Note

$$\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap (X \setminus A)).$$

Hence it suffices to prove the reverse inequality to show that A is μ^* -measurable.

- (b) As a corollary to (a), we may assume $\mu^*(E) < \infty$ when proving A is μ^* -measurable.
- (c) When $A = \emptyset$,

$$\mu^{*}\left(E\cap\emptyset\right)+\mu^{*}\left(E\cap\left(X\setminus\emptyset\right)\right)=0+\mu^{*}\left(E\right)=\mu^{*}\left(E\right).$$

Thus \emptyset is μ^* -measurable.

(d) If *A* is μ^* -measurable, then $X \setminus A$ is also μ^* -measurable. This is direct from the definition of μ^* -measurability.

Theorem 1.7. Caratheodory

Let μ^* be an outer measure on X. Then the collection of μ^* -measurable subsets of X,

$$\mathcal{A} = \{ A \subseteq X : A \text{ is } \mu^*\text{-measurable} \},$$

is a σ -algebra.

Moreover, $\mu = \mu^*|_{\mathcal{A}}$ is a complete measure on (X, \mathcal{A}) .

Proof. Let $A, B \in \mathcal{A}$ and let $E \subseteq X$. Then

$$\mu^*\left(E\right) = \mu^*\left(E\cap A\right) + \mu^*\left(E\cap (X\setminus A)\cap B\right) + \mu^*\left(E\cap (X\setminus A)\cap (X\setminus B)\right) \qquad \text{since } A,B \text{ are } \mu^*\text{-measurable} \\ \geq \mu^*\left(E\cap (A\cup B)\right) + \mu^*\left(E\cap (X\setminus (A\cup B))\right). \qquad \text{by subadditivity of } \mu^* \text{ and de Morgan's Law}$$

Since we know the other direction of the above inequality, we see that $A \cup B \in \mathcal{A}$. Inductively, \mathcal{A} is closed under finite union, which means \mathcal{A} is an algebra on X (we know $\emptyset \in \mathcal{A}$).

Now assume $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$. For any $E \subseteq X$,

$$\mu^* (E \cap (A \cup B)) = \mu^* (E \cap (A \cup B) \cap A) + \mu^* (E \cap (A \cup B) \cap (X \setminus A)) = \mu^* (E \cap A) + \mu^* (E \cap B).$$

By taking E = X, we see that

$$\mu^* (A \cup B) = \mu^* (A) + \mu^* (B)$$

so that μ^* is finitely additive.

Assume $\{A_n\}_{n=1}^{\infty}\subseteq\mathcal{A}$, let $B_n=\bigcup_{k=1}^nA_k$, and let $A'_n=A_1\setminus\bigcup_{k=1}^{n-1}A_k$ for all $n\in\mathbb{N}$. Since \mathcal{A} is an algebra, each $A'_n,B_n\in\mathcal{A}$. Then $B_n=\bigcup_{n=1}^{\infty}A'_k$ and $B=\bigcup_{n=1}^{\infty}A_n=\bigcup_{n=1}^{\infty}A'_n$. For any $E\subseteq X$,

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap (X \setminus B_{n}))$$

$$\geq \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap (X \setminus B))$$
 by monotonicity of μ^{*}

$$= \sum_{k=1}^{n} \mu^{*}(E \cap A'_{k}) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \lim_{n \to \infty} \sum_{k=1}^{n} \mu^{*}(E \cap A'_{k}) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \mu^{*}(E \cap B) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \mu^{*}(E).$$
 by subadditivity of μ^{*}

This means $\mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap (X \setminus B))$, so $\bigcup_{n=1}^{\infty} A_n = B \in \mathcal{A}$. Hence \mathcal{A} is a σ -algebra. Assume $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ is a collection of disjoint sets in \mathcal{A} . By taking $A'_n = A_n$ for all $n \in \mathbb{N}$ and E = B, we see that

$$\mu^{*}\left(B\right) \geq \sum_{n=1}^{\infty} \mu^{*}\left(B \cap A_{n}\right) + \underbrace{\mu^{*}\left(B \cap \left(X \setminus B\right)\right)}_{=0} \geq \mu^{*}\left(B\right) \implies \mu^{*}\left(B\right) = \sum_{n=1}^{\infty} \mu^{*}\left(B \cap A_{n}\right)$$

from the series of inequalities we used for proving closure of A under countable union.

We now show that μ is complete. Let $A \subseteq X$ with $\mu^*(A) = 0$. For any $E \subseteq X$,

$$\mu^{*}\left(E\right) \leq \mu^{*}\left(E \cap A\right) + \mu^{*}\left(E \cap \left(X \setminus A\right)\right) \leq \underbrace{\mu^{*}\left(A\right)}_{=0} + \mu^{*}\left(E\right).$$

This means every set A with $\mu^*(A) = 0$ is measurable. But given any $B \in \mathcal{A}$ with $\mu(B) = 0$, we have

$$0 \le \mu^* (A) \le \mu^* (B) = \mu (B) = 0, \qquad \forall A \subseteq B,$$

so that $\mu^*(A) = 0$ and that *A* is measurable.

We can construct a measure as follows. Given $\mathcal{E} \subseteq \mathcal{P}(X)$ with $\{\emptyset, X\} \subseteq \mathcal{E}$ and $\mu : \mathcal{E} \to [0, \infty]$, we let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be an outer measure as defind in Proposition 1.6.

In general, $A = \{A \subseteq X : A \text{ is } \mu^*\text{-measurable}\}$ and $\mu^*|_{A}$ are very different from \mathcal{E}, μ . To resolve this, we introduce the following notion.

Def'n 1.10. Premeasure on an Algebra of Subsets

Let $A \subseteq \mathcal{P}(X)$ be an algebra of subsets of X. We say $\mu : A \to [0, \infty]$ is a *premeasure* on A if

- (a) $\mu(\emptyset) = 0$; and
- (b) for any $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, we have

$$\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mu\left(A_{n}\right).$$

Theorem 1.8. Constructing Measure from Premeasure I

Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra and let $\mu : \mathcal{A} \to [0, \infty]$ be a premeasure on \mathcal{A} . Let μ^* be the outer measure constructed with \mathcal{A} :

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \left\{ A_n \right\}_{n=1}^{\infty} \subseteq \mathcal{A}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}, \quad \forall A \in \mathcal{P}(X).$$

Then

- (a) $\mu^*|_{\mathcal{A}} = \mu$; and
- (b) every $A \in \mathcal{A}$ is μ^* -measurable.

Proof.

(a) We show $\mu^*|_{\mathcal{A}} = \mu$. Let $E \in \mathcal{A}$. Say

$$E\subseteq\bigcup_{n=1}^{\infty}A_n$$

where each $A_n \in \mathcal{A}$. Then by taking $A'_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$,

$$E = \bigcup_{n=1}^{\infty} (A_n \cap E) = \bigcup_{n=1}^{\infty} (A'_n \cap E).$$

But each $A'_n \cap E \in \mathcal{A}$, so that

$$\mu(E) = \sum_{n=1}^{\infty} \mu(A'_n \cap E) \le \sum_{n=1}^{\infty} \mu(A_n)$$

by the monotonicity of μ . Therefore, $\mu(E) \leq \mu^*(E)$ by taking infimum.

On the other hand, by letting $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $A_1 = E, A_2 = A_3 = \cdots = \emptyset$, we see that $\mu^*(E) \ge \mu(E)$. Hence $\mu^*|_{\mathcal{A}} = \mu$.

(b) Let $A \in \mathcal{A}$. We show A is μ^* -measurable. Let $E \subseteq X$ and let $\varepsilon > 0$ be given. We may find $\{B_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ such that $E \subseteq \bigcup_{n=1}^{\infty} B_n$ and

$$\sum_{n=1}^{\infty} \mu(B_n) < \mu^*(E) + \varepsilon.$$

Then,

$$\mu^{*}(E) + \varepsilon \geq \sum_{n=1}^{\infty} \mu(B_{n})$$

$$= \sum_{n=1}^{\infty} \mu(B_{n} \cap A) + \mu(B_{n} \cap (X \setminus A))$$

$$= \sum_{n=1}^{\infty} \mu^{*}(B_{n} \cap A) + \sum_{n=1}^{\infty} \mu^{*}(B_{n} \cap (X \setminus A))$$
by (a)
$$\geq \mu^{*}\left(\left(\bigcup_{n=1}^{\infty} B_{n}\right) \cap A\right) + \mu^{*}\left(\left(\bigcup_{n=1}^{\infty} B_{n}\right) \cap (X \setminus A)\right)$$
by subadditivity of μ^{*}

$$\geq \mu^{*}(E \cap A) + \mu^{*}(E \cap (X \setminus A)).$$
by monotonicity of μ^{*} since $E \subseteq \bigcup_{n=1}^{\infty} B_{n}$

QED

Theorem 1.9. Constructing Measure from Premeasure II

Let $A \subseteq \mathcal{P}(X)$ be an algebra and let μ^* be as in Theorem 1.8. Let $\mathcal{B} = \sigma(A)$. Then

- (a) $\overline{\mu} = \mu^*|_{\mathcal{B}}$ is a complete measure with $\overline{\mu}|_{\mathcal{A}} = \mu$.
- (b) Let ν be another measure on \mathcal{B} with $\nu|_{\mathcal{A}} = \mu$. Then $\nu \leq \overline{\mu}$. That is,

$$v(A) \leq \overline{\mu}(A), \quad \forall A \in \mathcal{B}.$$

- (c) For any $E \in \mathcal{B}$, if $\overline{\mu}(E) < \infty$, then $\nu(E) = \overline{\mu}(E)$.
- (d) If μ is σ -finite, then $\overline{\mu} = \nu$.

Proof.

(a) Let

$$C = \{A \subseteq P(X) : A \text{ is } \sigma\text{-measurable}\},$$

which is a σ -algebra. Then by Theorem 1.8, $\mathcal{A} \subseteq \mathcal{C}$, and so $\mathcal{B} \subseteq \mathcal{C}$ by minimality of \mathcal{B} . Therefore,

$$\overline{\mu} = \mu^*|_{\mathcal{B}}$$

is the restriction of $\mu^*|_{\mathcal{C}}$ to \mathcal{B} . Since $\mu^*|_{\mathcal{C}}$ is a complete measure on (X,\mathcal{C}) , it follows $\overline{\mu} = \mu^*|_{\mathcal{B}}$ is a complete measure on (X,\mathcal{B}) . Since $\mu^*|_{\mathcal{A}} = \mu$, $\overline{\mu}|_{\mathcal{A}} = \mu$ as well.

¹It suffices to note that premeasures are finitely additive, which implies monotonicity.

¹We say a premeasure is σ -finite if $X = \bigcup_{n=1}^{\infty} A_n$ for some $\{A_n\}_{n=1}^{\infty} \subseteq A$ with $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$.

(b) Let $A \in \mathcal{B}$ and let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ be such that $A \subseteq \bigcup_{n=1}^{\infty} A_n$. Since ν is a measure extending μ ,

$$\nu\left(A\right) \leq \nu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(A_{n}\right) \stackrel{\nu|_{\mathcal{A}} = \mu}{=} \sum_{n=1}^{\infty} \mu\left(A_{n}\right).$$

By recalling that μ^* is defined as the *greatest* lower bound, it follows

$$v(A) \leq \mu^*(A) = \overline{\mu}(A)$$
.

(c) Let $A \in \mathcal{B}$ with $\overline{\mu}(A) < \infty$. Let $\varepsilon > 0$ be given. We may find $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ such that $A \subseteq \bigcup_{n=1}^{\infty} A_n$ and

$$\sum_{n=1}^{\infty} \mu\left(A_{n}\right) < \overline{\mu}\left(A\right) + \varepsilon.$$

Let $B = \bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. Note that

$$v\left(B\right) = v\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{k \to \infty} v\left(\bigcup_{n=1}^{k} A_n\right) = \lim_{k \to \infty} \overline{\mu}\left(\bigcup_{n=1}^{k} A_n\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} A_n\right) = \overline{\mu}\left(B\right).$$

Moreover

$$\overline{\mu}(B) \leq \sum_{n=1}^{\infty} \mu(A_n) < \overline{\mu}(A) + \varepsilon < \infty.$$

It follows

$$\overline{\mu}(B\setminus A)<\varepsilon$$
,

so that

$$\overline{\mu}\left(A\right) \leq \overline{\mu}\left(B\right) = \nu\left(B\right) = \nu\left(A\right) + \nu\left(B \setminus A\right) \leq \nu\left(A\right) + \overline{\mu}\left(B \setminus A\right) < \nu\left(A\right) < \varepsilon.$$

Since ε was given arbitrarily, we have $\overline{\nu}(A) \leq \nu(A)$. Since the reverse inequality is given in (b), we thus conclude $\overline{\mu}(A) = \nu(A)$.

(d) Say $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ is such that $X = \bigcup_{n=1}^{\infty} A_n$ with $\mu(A_n) < \infty$. Write $A'_n = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ so that

$$X = \bigcup_{n=1}^{\infty} A'_n.$$

Therefore,

$$\overline{\mu}\left(A\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} \left(A \cap A'_{n}\right)\right) = \sum_{n=1}^{\infty} \overline{\mu}\left(A \cap A'_{n}\right) = \sum_{n=1}^{\infty} \nu\left(A \cap A'_{n}\right) = \nu\left(A\right).$$

QED

6. Lebesgue-Stieltjes Measures on \mathbb{R}

Suppose we have a measure space $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}), \mu)$, where we are working with the usual topology on \mathbb{R} . We further assume that for all compact $K \subseteq \mathbb{R}$, $\mu(K) < \infty$.

We consider

$$F: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \mu([0, x]) & x \ge 0 \\ -\mu((x, 0)) & x < 0 \end{cases}$$

Then by definition, *F* is increasing.

Let $(x_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ be a decreasing sequence with $x_n \to x \in \mathbb{R}$. In case $x \ge 0$,

$$F(x) = \mu\left(\left[0, x\right]\right) = \mu\left(\bigcap_{n=1}^{\infty} \left[0, x_n\right]\right) = \lim_{n \to \infty} \mu\left(\left[0, x_n\right]\right) = \lim_{n \to \infty} F(x_n),$$

where we are using the compactness assumption to use the continuity from above. Hence *F* is *right-continuous* on $[0, \infty)$.

Exercise 1.5.

Show that *F* is right-continuous on $(-\infty, 0)$. That is, when x < 0,

$$F(x) = \lim_{n \to \infty} F(x_n).$$

Example 1.6.

Consider the point-mass measure

$$\begin{split} \mu_0: \operatorname{Bor}\left(\mathbb{R}\right) &\to [0,\infty] \\ A &\mapsto \begin{cases} 0 & \text{if } 0 \notin A \\ 1 & \text{if } 0 \in A \end{cases} \end{split}$$

and the measure space $(\mathbb{R}, \text{Bor}(\mathbb{R}), \mu_0)$.

Then note that,

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases},$$

which is right-continuous but not left-continuous.

The goal of this section is, then:

given an increasing right-continuous $F: \mathbb{R} \to \mathbb{R}$, we make a measure μ_F on $(\mathbb{R}, \text{Bor } (\mathbb{R}))$.

That is, we are doing the converse of the motivation for this section.

The idea is to start with

$$\mu_F((a,b]) = F(b) - F(a), \quad \forall a, b \in \mathbb{R}, a < b.$$

Let \mathcal{A} be the set of finite unions of half-open intervals of the form (a, b], where $a \in [-\infty, \infty)$, $b \in (-\infty, \infty]$ (we note that when $b = \infty$, we are taking (a, ∞) instead of $(a, \infty]$, since we are working with subsets of \mathbb{R}).

We note that

$$\mathbb{R} \setminus (a, b] = (-\infty, a] \cup (b, \infty) \in \mathcal{A}$$

so that A is an algebra.

In addition, we insist

(a)
$$F(\infty) = \lim_{x \to \infty} F(x)$$
 and $F(-\infty) = \lim_{x \to -\infty} F(x)$; and

(b)
$$\mu_F(\bigcup_{k=1}^n (a_k, b_k]) = \sum_{k=1}^n F(b_k) - F(a_k)$$
.

In this way we get a fuction $\mu_F : \mathcal{A} \to [0, \infty]$.

Fact 1.10.

 μ_F is a premeasure on $(\mathbb{R}, \mathcal{A})$.

Theorem 1.11.

Consider the above setting. There is a complete measure space $(\mathbb{R}, \mathcal{B}, \overline{\mu_F})$ such that

- (a) $\overline{\mu_F}|_{\mathcal{A}} = \mu_F$; and
- (b) Bor $(\mathbb{R}) \subseteq \mathcal{B}$.

Proof. Consider μ_F^* be the outer measure constructed as in Theorem 1.8 and let \mathcal{B} be the σ -algebra of μ_F^* -measurable sets. We set $\overline{\mu_F} = \mu_F^*|_{\mathcal{B}}$. By Theorem 1.8, we know that $(\mathbb{R}, \mathcal{B}, \overline{\mu_F})$ is complete and $\overline{\mu_F}|_{\mathcal{A}} = \mu_F$.

By Theorem 1.8 again, $A \subseteq \mathcal{B}$ (which was implicit in restricting $\overline{\mu_F}$ to A). In particular, half-open intervals are \mathcal{B} , so that

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n}\right] \in \mathcal{B}$$

for all a < b in \mathbb{R} . Since \mathcal{B} has every open intervals, which generate the Borel σ -algebra on \mathbb{R} , it follows Bor $(\mathbb{R}) \subseteq \mathcal{B}$.

QED

Theorem 1.12.

When F(x) = x for all $x \in \mathbb{R}$, then

- (a) $\overline{\mu_F}$ is the Lebesgue measure; and
- (b) \mathcal{B} is the set of Lebesgue measurable sets.

Def'n 1.11. Lebesgue-Steltjes Measure

Any measure of the form $\overline{\mu_F}$ is called a *Lebesgue-Steltjes measure*.

Theorem 1.13. Regularity of Lebesgue-Steltjes Measures

Let $(\mathbb{R}, \mathcal{B}, \overline{\mu_F})$ as above and let $A \subseteq \mathbb{R}$. The following are equivalent.

- (a) $A \in \mathcal{B}$ (i.e. A is μ_F^* -measurable).
- (b) For all $\varepsilon > 0$, there is open $U \subseteq \mathbb{R}$ such that $A \subseteq U$ and $\mu_F^*(U \setminus A) < \varepsilon$.
- (c) For all $\varepsilon > 0$, there is closed $C \subseteq \mathbb{R}$ such that $C \subseteq A$ and $\mu_E^*(A \setminus C) < \varepsilon$.
- (d) There exists a G_{δ} -set¹ such that $A \subseteq G$ and $\mu_F^*(G \setminus A) = 0$.
- (e) There exists a F_{σ} -set² such that $F \subseteq A$ and $\mu_F^*(A \setminus F) = 0$.

Proof. (1) \Longrightarrow (2) Assume $A \in \mathcal{B}$ and let $\varepsilon > 0$ be given.

Case 1. Suppose A is bounded.

Then $A \subseteq (a, b]$ and $\overline{\mu_F}(A) \leq F(b) - F(a) < \infty$. We may find $\{(a_n, b_n]\}_{n=1}^{\infty}$ such that

$$B = \bigcup_{n=1}^{\infty} (a_n, b_n]$$

contains A and

$$\overline{\mu_F}(B) < \overline{\mu_F}(A) + \frac{\varepsilon}{2}.$$

Now, choose $c_n > b_n$ such that

$$F(c_n) < F(b_n) + \frac{\varepsilon}{2^{n+1}}$$

by the right-continuity of *F*. Let $U = \bigcup_{n=1}^{\infty} (a_n, c_n)$. Since $A \in \mathcal{B}$, we have

$$\overline{\mu_F}(B) = \overline{\mu_F}(A) + \overline{\mu_F}(B \setminus A)$$

by Caratheodory measurability condition (Def'n 1.9). So by excision,

$$\overline{\mu_F}(B\setminus A) = \overline{\mu_F}(B) - \overline{\mu_F}(A) < \frac{\varepsilon}{2}.$$

¹A set is G_{δ} if it is a countable intersection of open sets.

²A set is F_{σ} if it is a countable union of closed sets.

Hence

$$\overline{\mu_F}(U\setminus A) \leq \overline{\mu_F}(U\setminus B) + \overline{\mu_F}(B\setminus A) < \overline{\mu_F}\left(\bigcup_{n=1}^{\infty} (b_n, c_n)\right) + \frac{\varepsilon}{2} \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} + \frac{\varepsilon}{2} = \varepsilon.$$

(End of Case 1)

Case 2. Let $A \in \mathcal{B}$ and consider $A_n = A \cap [-n, n]$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$ be given and choose open U_n such that $A_n \subseteq U_n$ and

$$\mu_F^*\left(U_n\setminus A_n
ight)<rac{arepsilon}{2^n}$$

for all $n \in \mathbb{N}$. Consider $U = \bigcup_{n=1}^{\infty} U_n$. Then $A = \bigcup_{n=1}^{\infty} A_n \subseteq U$ and

$$\mu_F^*\left(U\setminus A\right) \leq \mu_F^*\left(\bigcup_{n=1}^{\infty}\left(U_n\setminus A_n\right)\right) \leq \sum_{n=1}^{\infty}\mu_F^*\left(U_n\setminus A_n\right) < \sum_{n=1}^{\infty}\frac{\varepsilon}{2^n} = \varepsilon.$$

(End of Case 2)

(2) \Longrightarrow (4) For every $n \in \mathbb{N}$, find open $U_n \subseteq \mathbb{R}$ containing A such that

$$\mu_F^*(U_n\setminus A)<\frac{1}{n}.$$

Take

$$G=\bigcap_{n=1}^{\infty}U_n.$$

Then $A \subseteq G$ and

$$\mu_F^*(G \setminus A) \le \mu_F^*(U_n \setminus A) < \frac{1}{n}$$

for all $n \in \mathbb{N}$. Thus $\mu_F^*(G \setminus A) = 0$.

(4) \Longrightarrow (1) Take a G_{δ} -set $G \subseteq \mathbb{R}$ containing A with μ^* ($G \setminus A$) = 0. In particular, we have that $G \setminus A \in \mathcal{B}$. Since every open set is in \mathcal{B} and \mathcal{B} is closed under countable intersection, $G \in \mathcal{B}$ as a countable intersection of open sets, and

$$A = G \setminus (G \setminus A) \in \mathcal{B}$$
.

 $(1) \Longrightarrow (3)$ Let $A \in \mathcal{B}$ and let $\varepsilon > 0$. Since $X \setminus A \in \mathcal{B}$, we may find open $U \supseteq X \setminus A$ such that

$$\mu_F^*(U\setminus (X\setminus A))<\varepsilon.$$

Letting $C = X \setminus U$, $C \subseteq A$ and

$$\mu_F^*(A \setminus C) = \mu_F^*(U \setminus (X \setminus A)) < \varepsilon.$$

 $(3) \Longrightarrow (5)$ Choose $C_n \subseteq A$ such that

$$\mu_F^*(A \setminus C_n) < \frac{1}{n}$$

for all $n \in \mathbb{N}$ and let

$$K=\bigcup_{n=1}^{\infty}C_{n}.$$

(5) \Longrightarrow (1) Let K be a F_{σ} -set contained in A with $\mu_F^*(A \setminus F) = 0$. Then we observe that $A = (A \setminus F) \cup F \in \mathcal{B}$.

¹See the proof of Theorem 1.7, Caratheodory theorem.

II. Measurable Functions

1. Measurable Functions

Let (X, A), (Y, B) be measurable spaces. We care about functions $f: X \to Y$ which relay information about the measurable spaces.

Def'n 2.1. Measurable Function

Let (X, A), (Y, B) be measurable spaces. We say $f: X \to Y$ is *measurable* if

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \in \mathcal{A}, \quad \forall B \in \mathcal{B}.$$

Before we proceed, here is a convention that we are going to use. Let \mathbb{F} be \mathbb{R} or \mathbb{C} and let (X, A). We say

$$f: X \to Y$$
 is measurable $\iff f$ is measurable with respect to (X, \mathcal{A}) , $(\mathbb{F}, \text{Bor } (\mathbb{F}))$.

By Assignment 1, we see that

$$f: X \to Y$$
 is measurable \iff for all open $B, f^{-1}(B) \in \mathcal{A}$,

since Bor (\mathbb{F}) is generated by open subsets of \mathbb{F} . In case $\mathbb{F} = \mathbb{R}$, we can replace B with open interval, since every open subset of \mathbb{R} is a countable union of open intervals.

Recall the following trick for analysis. Let a < b in \mathbb{R} . Then

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right)$$

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n} \right)$$

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right).$$

$$(a,\infty) = \bigcup_{n=1}^{\infty} (a, a + n)$$

$$(a,b] = (-\infty, b] \cap (a,\infty)$$

$$\vdots$$

That is, all interval types independently generate Bor (\mathbb{R}) .

Proposition 2.1.

Let (X, A) be a measurable space and let $f: X \to \mathbb{R}$. The following are equivalent.

- (a) f is measurable.
- (b) For all $\alpha \in \mathbb{R}$, $f^{-1}((\alpha, \infty)) \in \mathcal{A}$.
- (c) For all $\alpha \in \mathbb{R}$, $f^{-1}([\alpha, \infty)) \in \mathcal{A}$.
- (d) For all $\alpha \in \mathbb{R}$, $f^{-1}((-\infty, \alpha)) \in \mathcal{A}$.
- (e) For all $\alpha \in \mathbb{R}$, $f^{-1}((-\infty, \alpha]) \in \mathcal{A}$.

Proposition 2.2.

Let (X, A) be a measurable space and let $f: X \to \mathbb{C}$. The following are equivalent. Then

f is measurable \iff Re $\circ f$ and Im $\circ f$ are measurable.

Proof Sketch. (\iff) Every open $U \subseteq \mathbb{C}$ can be written as a countable union of open rectangles $(a, b) \times (c, d)$. Then

$$f^{-1}((a,b)\times(c,d)) = (\text{Re}\circ f)^{-1}((a,b))\cap (\text{Im}\circ f)^{-1}((c,d)).$$

 (\Longrightarrow) Note that

$$(\text{Re } \circ f)^{-1}((a,b)) = f^{-1}(V)$$

where

$$V = \{x + iy : a < x < b\}.$$

Similarly,

$$(\operatorname{Im} \circ f)^{-1}((c,d)) = f^{-1}(H)$$

where

$$H = \{x + iy : c < y < d\}.$$

QED

Proposition 2.3.

Let (X, τ) be a topological space. If $f: X \to \mathbb{F}$ is continuous, then f is measurable.

Proof. It suffices to check that $f^{-1}(U) \in \text{Bor}(X)$ for all open $U \subseteq \mathbb{F}$, which is guaranteed by the continuity of f.

QED

Proposition 2.4.

Let (X, A) be a measurable space and let $f, g : X \to \mathbb{F}$ be measurable.

- (a) For any $\lambda \in \mathbb{F}$, $\lambda f + g$ is measurable.
- (b) fg is measurable.
- (c) If $g(x) \neq 0$ for all $x \in X$, then $\frac{1}{g}$ is measurable.

Proof. By considering Proposition 2.2, we assume $\mathbb{F} = \mathbb{R}$.

(a) Suppose $\lambda > 0$. Then given $\alpha \in \mathbb{R}$,

$$(\lambda f)^{-1}((\alpha,\infty)) = \{x \in X : \lambda f(x) > \alpha\} = \left\{x \in X : f(x) > \frac{\alpha}{\lambda}\right\} = f^{-1}\left(\left(\frac{\alpha}{\lambda},\infty\right)\right),$$

which is measurable.

In case $\lambda < 0$,

$$(\lambda f)^{-1}((\alpha,\infty)) = f^{-1}\left(\left(-\infty,\frac{\alpha}{\lambda}\right)\right)$$

is measurable.

When $\lambda = 0$, λf is the constant 0 function, which is trivially measurable.

Let $\alpha \in \mathbb{R}$. Then

$$\begin{split} (f+g)^{-1}\left((\alpha,\infty)\right) &= \{x \in X : f(x) + g(x) > \alpha\} = \{x \in X : f(x) > \alpha - g(x)\} \\ &= \bigcup_{q \in \mathbb{Q}} \left(\{x \in X : f(x) > q\} \cap \{x \in X : g(x) > \alpha - q\} \right) = \bigcup_{q \in \mathbb{Q}} \left(f^{-1}\left((q,\infty)\right) \cap g^{-1}\left(\alpha - q,\infty\right) \right), \end{split}$$

which is measurable as a countable union of measurable sets.

(b) Note

$$(f+g)^2 = f^2 + 2fg + g^2.$$

Hence it suffices to show that f^2 is measurable. Let $\alpha \in \mathbb{R}$.

Suppose $\alpha \geq 0$. Then

$$f^{-1}((\alpha,\infty)) = \left\{ x \in X : f(x)^2 > \alpha \right\} = \left\{ x \in X : f(x) > \sqrt{\alpha} \right\} \cup \left\{ x \in X : f(x) < -\sqrt{\alpha} \right\}$$
$$= f^{-1}\left(\left(\sqrt{\alpha}, \infty\right)\right) \cup f^{-1}\left(\left(-\infty, -\sqrt{\alpha}\right)\right)$$

is a union of measurable of measurable sets.

If $\alpha < \infty$, then

$$\left(f^{2}\right)^{-1}\left(\left(\alpha,\infty\right)\right) = \left\{x \in X : f(x)^{2} > \alpha\right\} = X$$

is measurable.

(c) Let $\alpha \in \mathbb{R}$. Suppose $\alpha > 0$. Then

$$\left(\frac{1}{g}\right)^{-1}((-\infty,\alpha)) = \left\{x \in X : \frac{1}{g(x)} < \alpha\right\} = \left\{x \in X : g(x) > \frac{1}{\alpha}\right\} \cup \left\{x \in X : g(x) < 0\right\}$$
$$= g^{-1}\left(\left(\frac{1}{\alpha}, \infty\right)\right) \cup g^{-1}((-\infty, 0)).$$

The cases where $\alpha < 0, \alpha = 0$ are similar.

QED

Notation 2.2. $\overline{\mathbb{R}}$

We write $\overline{\mathbb{R}}$ to denote

$$\overline{\mathbb{R}} = [-\infty, \infty]$$
 .

Def'n 2.3. **Borel** σ -algebra of Subsets of $\overline{\mathbb{R}}$

We define the *Borel* σ -algebra of subsets of $\overline{\mathbb{R}}$, denoted as Bor $(\overline{\mathbb{R}})$, by

$$\mathrm{Bor}\left(\overline{\mathbb{R}}\right) = \left\{ A \subseteq \overline{\mathbb{R}} : A \cap \mathbb{R} \in \mathrm{Bor}\left(\mathbb{R}\right) \right\}.$$

To show that Bor $(\overline{\mathbb{R}})$ is *really Borel*, we consider the following metric on $\overline{\mathbb{R}}$. Define

$$d: \overline{\mathbb{R}}^2 \to [0, \infty)$$

 $(x, y) \mapsto |\arctan(x) - \arctan(y)|,$

where $\arctan(-\infty) = -\frac{\pi}{2}$, $\arctan(\infty) = \frac{\pi}{2}$.

Exercise 2.1. -

Show that Bor $(\overline{\mathbb{R}})$ is generated by the open subsets of $(\overline{\mathbb{R}}, d)$.

Bor $(\overline{\mathbb{R}})$ is (independently) generated by intervals of the form $(\alpha, \infty]$, $[-\infty, \alpha)$.

Proposition 2.5.

Let $(f_n)_{\mathbb{R}}^{\infty}$ be a sequence of measurable functions from X to \mathbb{R} .

- (a) $\sup_{n\in\mathbb{N}} f_n$ is measurable.
- (b) $\inf_{n\in\mathbb{N}} f_n$ is measurable.
- (c) $\limsup_{n\in\mathbb{N}} f_n$ is measurable.

(d) $\lim \inf_{n \in \mathbb{N}} f_n$ is measurable.

Proof.

(a) Note that, given $\alpha \in \mathbb{R}$,

$$\left(\sup_{n\in\mathbb{N}}f_n\right)^{-1}\left((\alpha,\infty]\right)=\left\{x\in X:\sup_{n\in\mathbb{N}}f_n\left(x\right)>\alpha\right\}=\bigcup_{n\in\mathbb{N}}\left\{x\in X:f_n\left(x\right)>\alpha\right\}=\bigcup_{n\in\mathbb{N}}f_n^{-1}\left((\alpha,\infty)\right).$$

- (b) It suffices to note that $\inf_{n\in\mathbb{N}} f_n = -\sup_{n\in\mathbb{N}} (-f_n)$.
- (c) Recall that

$$\limsup_{n\in\mathbb{N}} f_n = \lim_{n\to\infty} \sup_{k\geq n} f_k = \inf_{n\in\mathbb{N}} \sup_{k\geq n} f_k.$$

Hence by (a), (b), $\limsup_{n \in \mathbb{N}} f_n$ is measurable.

(d) Similar to (c),

$$\liminf_{n\in\mathbb{N}}f_n=\sup_{n\in\mathbb{N}}\inf_{k\geq n}f_k.$$

Hence $\liminf_{n\in\mathbb{N}} f_n$ is measurable.

QED

Corollary 2.5.1.

Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions from X to \mathbb{R} . If $f_n \to x$ pointwise, then f is measurable.

Proof. Note that

$$f_n \to x \iff \liminf_{n \in \mathbb{N}} f_n = \limsup_{n \in \mathbb{N}} f_n = \lim_{n \to \infty} f_n.$$

QED

Let (X, A) be a measurable space. Then given measurable $f: X \to \mathbb{F}$ and continuous $g: \mathbb{F} \to \mathbb{F}$, $g \circ f$ is measurable, as for any open $U \subseteq \mathbb{F}$,

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)),$$

where $g^{-1}(U)$ is open.

In particular, this gives alternative proofs that f^2 , $\frac{1}{f}$, Re $\circ f$, Im $\circ f$ are measurable. Moreover, |f| is measurable.

Def'n 2.4. μ -almost Everywhere Predicate

Let (X, \mathcal{A}, μ) be a measure space and let P be a predicate on X. We say P is true μ -almost everywhere (or μ -ae) if there exists $N \in \mathcal{A}$ with $\mu(N) = 0$ such that P(x) is true for all $x \in X \setminus N$.

Note that the definition of μ -almost everywhere does not say that

$$N = \{x \in X : P(x) \text{ is false}\}\$$

is measurable. But in case μ is complete, N is measurable with $\mu(N) = 0$.

Proposition 2.6.

Let (X, \mathcal{A}, μ) be a complete measure space and let $f: X \to \mathbb{F}$ be measurable. Suppose that $g: X \to \mathbb{F}$ is such that $f = g \mu$ -ae. Then g is measurable.

Proof. Let $N \in \mathcal{A}$ be such that $\mu(N) = 0$ with f = g on $X \setminus N$. Then given any measurable $U \subseteq \mathbb{R}$,

$$g^{-1}\left(U\right)=\left(g^{-1}\left(U\right)\cap N\right)\cup\left(g^{-1}\left(U\right)\setminus N\right).$$

Note that $g^{-1}(U) \cap N \subseteq N$ so has measure 0, which means $g^{-1}(U) \cap N \in \mathcal{A}$ by the completeness of μ . Moreover, f = g on $X \setminus N$ so that $g^{-1}(U) \setminus N = f^{-1}(U) \setminus N$, which is measurable. Thus $g^{-1}(U)$ is measurable, as required.

QED

2. Simple Approximation

Def'n 2.5. Characteristic Function of a Subset

Let *X* be a set and let $A \subseteq X$. The *characteristic function* of *A*, denoted as χ_A , is defined as

$$\begin{split} \chi_A: X &\to \mathbb{R} \\ x &\mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \end{split}$$

Note that, given $A \subseteq X$,

 χ_A is measurable \iff A is measurable.

Def'n 2.6. Simple Function

Let (X, A) be a measurable space. We say $\varphi : X \to \mathbb{F}$ is *simple* if

$$\varphi = \sum_{k=1}^{n} a_k \chi_{A_k}$$

where $a_1, \ldots, a_n \in \mathbb{F}$ and $A_1, \ldots, A_n \in \mathcal{A}$ are pairwise disjoint.

Let (X, A) be a measurable space and let $\varphi : X \to \mathbb{F}$. Then

 φ is simple $\iff \varphi$ is measurable and $\varphi(X)$ is finite.

To see the reverse direction, suppose φ is measurable and $\varphi(X)$ is finite, say

$$\varphi(X) = \{a_k\}_{k=1}^n.$$

Then each $A_k = \varphi^{-1}(\{a_k\})$ is measurable and $\varphi = \sum_{k=1}^n a_k \chi_{a_k}$.

The goal of this subsection is to show

 $f: X \to \mathbb{R}$ is measurable $\iff f$ is a pointwise limit of simple functions.

Proposition 2.7.

Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$ be measurable and bounded. Then for all $\varepsilon > 0$, there are simple $\varphi_{\varepsilon}, \psi_{\varepsilon}: X \to \mathbb{R}$ such that

- (a) $\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$; and
- (b) $0 \le \psi_{\varepsilon} \varphi_{\varepsilon} < \varepsilon$.

Proof. Let $\varepsilon > 0$. Say $f(X) \subseteq [a, b)$. Let y_0, \ldots, y_n be given such that

$$a = y_0 < y_1 < \cdots < y_n = b,$$

where each $y_k - y_{k-1} < \varepsilon$. Let $I_k = [y_{k-1}, y_k)$. Then each $A_k = f^{-1}(I_k)$ is measurable. Define

$$\varphi = \sum_{k=1}^{n} y_{k-1} \chi_{A_k}, \psi = \sum_{k=1}^{n} y_k \chi_{A_k}.$$

Then for any $x \in X$, we have $x \in I_k$ for some k, so that $\varphi(x) = y_{k-1} \le f(x) \le y_k = \psi(x)$. Moreover,

$$0 < \psi(x) - \varphi(x) = y_k - y_{k-1} < \varepsilon.$$

Theorem 2.8. Simple Approximation

Let (X, A) be a measure space and let $f: X \to \mathbb{R}$. Then

f is measurable \iff there are simple $\varphi_1, \varphi_2, \ldots : X \to \mathbb{R}$ with $\varphi_n \to f$ pointwise and $|\varphi_n| \le f$ for all $n \in \mathbb{N}$.

Proof. (\iff) Recall that pointwise limit of measurable functions is measurable, where each φ_n is measurable. (\implies) We split into few cases.

Case 1. Suppose $f \ge 0$.

Let

$$A_n = \{x \in X : f(x) \le n\}.$$

Note that

$$\mathcal{A}' = \{B \cap A_n : B \in \mathcal{A}\}$$

is a σ -algebra of subsets of A_n . Then (A_n, \mathcal{A}') is a measurable space and $f|_{A_n}$ is measurable, since

$$(f|_{A_n})^{-1}(U) = f^{-1}(U) \cap A_n \in \mathcal{A}'$$

for all measurable $U \subseteq \mathbb{R}$. Moreover, by definition $f|_{A_n}$ is bounded.

Hence by Proposition 2.7, we can find simple $\varphi_m, \psi_m : A_n \to \mathbb{R}, m \in \mathbb{N}$, such that

$$0 \le \varphi_m \le f \le \psi_m$$

and

$$0 \le \psi_m - \varphi_m < \frac{1}{m}$$

for all $m \in \mathbb{N}$ on A_n .

Extend $\varphi_m(x) = n$ for all $x \in X \setminus A_n$, so that $\varphi_m \leq f$ on X.

Now fix $x \in X$. Then $x \in A_N$ for some N, and so

$$0 \le f(x) - \varphi_N(x) \le \psi_N(x) - \varphi_N(x) < \frac{1}{N}.$$

This means given any $\varepsilon > 0$ we can take N' > N so that $\frac{1}{N'} < \varepsilon$, which means for all $m \ge N'$,

$$0 \le f(x) - \varphi_m(x) < \frac{1}{N'} < \varepsilon.$$

Thus $\varphi_m \to f$ pointwise.

(End of Case 1)

Case 2. Consider the general case on f. That is, we only assume that f is measurable.

Let

$$A = \{x \in X : f(x) \ge 0\} \in \mathcal{A}$$

$$B = \{x \in X : f(x) < 0\} \in \mathcal{A}$$

and let $g = f\chi_A$, $h = -f\chi_B$, so that both $g, h \ge 0$. By Case 1, there exist $(\varphi_n)_{n=1}^{\infty}$, $(\psi_n)_{n=1}^{\infty}$ such that $\varphi_n \nearrow g$ and $\psi_n \nearrow h$ pointwise as $n \to \infty$. Then f = g - h so that $\varphi_n - \psi_n \to g - h = f$ pointwise. Moreover,

$$|\varphi_n - \psi_n| \le |\varphi_n| + |\psi_n| = \varphi_n + \psi_n \le g + h = |f|.$$

(End of Case 2)

Note that in the proof, we know that, given a fixed $n \in \mathbb{N}$, we have

$$0 \le f - \varphi_m \le \frac{1}{m}$$

on A_n . That is,

$$0 \le f(x) - \varphi_m(x) \le \frac{1}{m}, \quad \forall x \in A_n,$$

so that $\varphi_m \to f$ uniformly as $m \to \infty$ on A_n .

Suppose that $f \ge 0$ is measurable and that

$$0 \le \varphi_n \le f, \quad \forall n \in \mathbb{N}$$

with $\varphi_n \to f$ pointwise. Then by taking $\psi_n = \max \big\{ \varphi_1, \dots, \varphi_n \big\}$, φ_n is still simple. Then

$$0 \le \psi_n \le f, \qquad \forall n \in \mathbb{N}$$

as well, so that $\psi_n \nearrow f$ pointwise as $n \to \infty$.

3. Two Theorems

We are going to prove two useful theorems in measure theory in this subsection.

Lemma 2.9. -

Let (X, \mathcal{A}, μ) be a finite measure space and let $(f_n)_{n=1}^{\infty} \in (\mathbb{R}^X)^{\mathbb{N}}$ be a sequence of measurable functions such that $f_n \to f$ pointwise for some measurable $f: X \to \mathbb{R}$. Then for every $\alpha, \beta > 0$, there exist $B \in \mathcal{A}, N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \alpha, \quad \forall x \in B, n \ge N$$

and

$$\mu(X \setminus B) < \beta.$$

Proof Sketch. Let

$$A_{n} = \left\{ x \in X : \forall k \geq n \left[f_{k}\left(x\right) - f(x) < \alpha \right] \right\}, \qquad \forall n \in \mathbb{N}.$$

Then

$$A_n = \bigcap_{k \ge n} |f_k - f|^{-1} \left(\left(-\infty, \alpha \right) \right),$$

which is measurable. Since $f_n \to f$ pointwise, we have

$$X = \bigcup_{n=1}^{\infty} A_n.$$

We also have an increasing chain

$$A_1 \subseteq A_2 \subseteq \cdots$$
,

so that

$$\lim_{n\to\infty}\mu\left(A_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\mu\left(X\right)<\infty$$

by the continuity from below. Hence we may find $N \in \mathbb{N}$ such that

$$\mu(X) - \mu(A_n) < \beta, \quad \forall n \geq N.$$

Since $\mu(X) < \infty$, each $\mu(A_n) < \infty$ as well, so that

$$\mu(X \setminus A_n) < \beta, \quad \forall n \geq N.$$

By taking $B = A_N$, we are done.

Theorem 2.10. Egoroff

Let (X, \mathcal{A}, μ) be a finite measure space and let $(f_n)_{n=1}^{\infty} \in (\mathbb{R}^X)^{\mathbb{N}}$ be a sequence of measurable functions such that $f_n \to f$ pointwise for some measurable $f: X \to \mathbb{R}$. Then for all $\varepsilon > 0$ there exists $A \in \mathcal{A}$ such that

- (a) $f_n \rightarrow f$ uniformly on A; and
- (b) $\mu(X \setminus A) < \varepsilon$.

Proof. Let $\varepsilon > 0$ be given. For all $n \in \mathbb{N}$, we may find $A_n \in \mathcal{A}$ and $N_n \in \mathbb{N}$ such that

$$\forall x \in A_n, k \ge N_n \left[|f_k(x) - f(x)| < \frac{1}{n} \right]$$

and

$$\mu\left(X\setminus A_n\right)<\frac{\varepsilon}{2^n}.$$

Let

$$A = \bigcap_{n=1}^{\infty} A_n.$$

Given any $\varepsilon' > 0$, by taking $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon'$, we have, for all $k \ge N_n$ and $x \in A$,

$$|f_k(x) - f(x)| < \frac{1}{n} < \varepsilon'.$$

Hence $f_k \to f$ uniformly on A. Finally,

$$\mu\left(X\setminus A\right) = \mu\left(\bigcup_{n=1}^{\infty}\left(X\setminus A_{n}\right)\right) \leq \sum_{n=1}^{\infty}\mu\left(X\setminus A_{n}\right) < \sum_{n=1}^{\infty}\frac{\varepsilon}{2^{n}} = \varepsilon.$$

QED

Let m be the Lebesgue measure on \mathbb{R} and let $A \subseteq \mathbb{R}$ with $m(A) < \infty$. Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions from A to \mathbb{R} that converges to $f: A \to \mathbb{R}$. Then by Egoroff's theorem, for every $\varepsilon > 0$, there is $B \subseteq A$ such that

 $f_n \rightarrow f$ uniformly on B

and

$$m(A\setminus B)<\frac{\varepsilon}{2}.$$

Then we can find a closed subset $C \subseteq B$ with

$$m(B\setminus C)<\frac{\varepsilon}{2}$$

by the regularity of Lebesgue measure. Then

$$f_n \to f$$
 uniformly on C

and

$$m(A \setminus C) = m(A \setminus B) + m(B \setminus C) < \varepsilon.$$

Hence for the Lebesgue measure (in fact, any Lebesgue-Steltjes measure), we can assume that $f_n \to f$ uniformly on a closed set with arbitrarily small difference.

Lemma 2.11.

Let $A \subseteq \mathbb{R}$ be Lebesgue measurable and let $\varphi : A \to \mathbb{R}$ be Lebesgue-simple. Then for all $\varepsilon > 0$, there exists closed $C \subseteq \mathbb{R}$ and a continuous $g : \mathbb{R} \to \mathbb{R}$ such that

- (a) $C \subseteq A$;
- (b) $\varphi = g$ on C; and
- (c) $m(A \setminus C) < \varepsilon$.

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i},$$

where each $a_i \neq 0$ and $A_i = \varphi^{-1}(\{a_i\})$. Let $A_0 = \varphi^{-1}(\{0\})$. We also insist that $a_i \neq a_j$ for $i \neq j$. Then

$$A = \bigcup_{i=0}^{n} A_i.$$

Let $\varepsilon > 0$ be given. For each i, let C_i be a closed such that $C_i \subseteq A_i$ and

$$m(A_i \setminus C_i) < \frac{\varepsilon}{n+1}$$

by regularity of Lebesgue measure. Let

$$C = \bigcup_{i=0}^{n} C_i,$$

which is closed. Since φ is continuous on each C_i and $C_i \cap C_j = \emptyset$, φ is continuous on C. Then there is continuous $g : \mathbb{R} \to \mathbb{R}$ that extends $\varphi : C \to \mathbb{R}$. Finally,

$$m(A \setminus C) = m\left(\bigcup_{i=0}^{n} A_i \setminus C_i\right) = \sum_{i=0}^{n} m(A_i \setminus C_i) < \varepsilon.$$

QED

Theorem 2.12. Lusin

Let $f: A \to \mathbb{R}$ be Lebesgue measurable. Then for all $\varepsilon > 0$, there exists continuous $g: \mathbb{R} \to \mathbb{R}$ and closed $C \subseteq \mathbb{R}$ such that

- (a) $C \subseteq A$;
- (b) f = g on C; and
- (c) $m(A \setminus C) < \varepsilon$.

Proof. We split the proof into two cases. Let $\varepsilon > 0$ be given.

Case 1. Suppose $m(A) < \infty$.

Let $(\varphi_n)_{n=1}^{\infty}$ be a sequence of simple functions such that $\varphi_n \to f$ pointwise by simple approximation. For each $n \in \mathbb{N}$, let $C_n \subseteq \mathbb{R}$ be closed and $g_n : \mathbb{R} \to \mathbb{R}$ be continuous such that $\varphi_n = g_n$ on C_n and

$$m(A\setminus C_n)<\frac{\varepsilon}{2^{n+1}}.$$

By Egoroff, let C_0 be the closed set such that

 $\varphi_n \to f$ uniformly on C_0

and

$$m(A \setminus C_0) < \frac{\varepsilon}{2}.$$

Let

$$C=\bigcap_{n=0}^{\infty}C_{n}.$$

Then,

 $g_n = \varphi_n \rightarrow f$ uniformly on C.

In particular, f is continuous on C. This means we can extend $f|_C$ to continuous $g: \mathbb{R} \to \mathbb{R}$. Finally,

$$m\left(A\setminus C\right)=m\left(A\setminus\bigcap_{n=0}^{\infty}C_{n}\right)=m\left(\bigcup_{n=0}^{\infty}\left(A\setminus C_{n}\right)\right)\leq m\left(A\setminus C_{0}\right)+\sum_{n=1}^{\infty}m\left(A\setminus C_{n}\right)<\varepsilon.$$

(End of Case 1)

Case 2. Suppose $m(A) < \infty$.

This is left as an exercise.

(End of Case 2)

QED

III. Integration

1. Nonnegative Measurable Functions

Def'n 3.1. Integral of a Nonnegative Simple Function

Let (X, \mathcal{A}, μ) be a measure space and let

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i} : X \to [0, \infty]$$

be simple. We define the *integral* of φ , denoted as $\int \varphi d\mu$, by

$$\int \varphi d\mu = \sum_{i=1}^{n} a_{i}\mu \left(A_{i}\right).^{1}$$

Proposition 3.1.

Let $\varphi: X \to [0, \infty]$ be simple. Then $\int \varphi d\mu$ is well-defined.

Proof Sketch. Say

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i} = \sum_{j=1}^m b_j \chi_{F_j}.$$

Suppose that $\varphi(X) = \{c_1, \dots, c_p\}$ and let

$$A_k = \varphi^{-1}(\{c_k\}), \qquad \forall k \in \{1, \dots, p\}.$$

Then

$$\sum_{i=1}^{n} a_{i} \mu(E_{i}) = \sum_{k=1}^{p} c_{k} \sum_{i:a_{i}=c_{k}} \mu(E_{i}) = \sum_{k=1}^{p} c_{k} \mu\left(\bigcup_{i:a_{i}=c_{k}} E_{i}\right) = \sum_{k=1}^{p} c_{k} \mu(A_{k}).$$

By symmetry, $\sum_{j=1}^{m} b_{j} \chi_{F_{j}} = \sum_{k=1}^{p} c_{k} \mu (A_{k})$. Thus $\int \varphi d\mu$ is well-defined.

QED

Proposition 3.2.

Let $\varphi, \psi: X \to [0, \infty]$ be simple.

(a) If $\alpha \geq 0$, then

$$\int \alpha \varphi d\mu = \alpha \int \varphi d\mu.$$

(b)

$$\int \varphi + \psi d\mu = \int \varphi d\mu + \int \psi d\mu.$$

(c) $\varphi \leq \psi \implies \int \varphi d\mu \leq \int \psi d\mu$.

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i}, \psi = \sum_{j=1}^m b_j \chi_{F_j}$$

¹For this, we use the convention $0\infty = \infty 0 = 0$.

and let $a_0 = b_0 = 0$, with $E_0 = X \setminus \bigcup_{i=1}^n E_i$, $F_0 = X \setminus \bigcup_{j=1}^m F_j$. This means

$$\varphi = \sum_{i=0}^n a_i \chi_{E_i}, \psi = \sum_{j=0}^m b_j \chi_{F_j}$$

as well.

(a) Note that

$$\int \alpha \varphi d\mu = \sum_{i=1}^{n} \alpha a_{i} \mu \left(A_{i} \right) = \alpha \sum_{i=1}^{n} a_{i} \mu \left(A_{i} \right) = \alpha \int \varphi d\mu.$$

(b) For all $i \in \{0, ..., n\}$, $j \in \{0, ..., n\}$, let

$$A_{i,j} = E_i \cap F_j$$
.

Then it follows that

$$\varphi = \sum_{i=0}^n \sum_{j=0}^m a_i \chi_{A_{i,j}}$$

and

$$\psi = \sum_{i=0}^{m} \sum_{j=0}^{n} b_j \chi_{A_{i,j}}.$$

Thus

$$\int \varphi + \psi d\mu = \sum_{i=0}^{n} \sum_{j=0}^{m} \left(a_i + b_j \right) \mu \left(A_{i,j} \right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i \mu \left(A_{i,j} \right) + \sum_{j=0}^{m} \sum_{i=0}^{n} b_j \mu \left(A_{i,j} \right) = \int \varphi d\mu + \int \psi d\mu.$$

(c) Given $i \in \{0, ..., n\}$, $j \in \{0, ..., m\}$, if $A_{i,j} \neq \emptyset$, then $a_i \leq b_j$. Otherwise, $\mu\left(A_{i,j}\right) = 0$. This means

$$a_i \mu\left(A_{i,j}\right) \leq b_j \mu\left(A_{i,j}\right), \qquad \forall i \in \left\{0,\ldots,n\right\}, j \in \left\{0,\ldots,m\right\},$$

so that

$$\int \varphi d\mu = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{i}\mu\left(A_{i,j}\right) \leq \sum_{j=0}^{m} \sum_{i=0}^{n} b_{j}\mu\left(A_{i,j}\right) = \int \psi d\mu.$$

— QED

Def'n 3.2. Integral of a Nonnegative Simple Function over a Measurable Subset

Let $\varphi: X \to [0, \infty]$ be simple and let $A \in \mathcal{A}$. We define the *integral* of φ over A, denoted as $\int_A \varphi d\mu$, by

$$\int_A \varphi d\mu = \int \varphi \chi_A d\mu.$$

Proposition 3.3.

Let $\varphi: X \to [0,\infty]$ be simple. Define $\nu: \mathcal{A} \to [0,\infty]$ by

$$v(A) = \int_{A} \varphi d\mu.$$

Then ν is a measure on (X, A).

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i}.$$

We have

$$v\left(\emptyset\right) = \int \chi_{\emptyset} \varphi d\mu = 0.$$

Let $\{A_m\}_{m=1}^{\infty} \subseteq \mathcal{A}$ be a collection of disjoint sets and $A = \bigcup_{m=1}^{\infty} A_m$. Then

$$v(A) = \int_{A} \varphi d\mu = \int \varphi \chi_{A} d\mu = \int \sum_{i=1}^{n} a_{i} \chi_{E_{i}} \chi_{A} d\mu = \int \sum_{i=1}^{n} a_{i} \chi_{E_{i} \cap A} d\mu = \sum_{i=1}^{n} a_{i} \mu \left(\bigcup_{m=1}^{\infty} (E_{i} \cap A_{m}) \right)$$

$$= \sum_{i=1}^{n} a_{i} \sum_{m=1}^{\infty} \mu \left(E_{i} \cap A_{m} \right) = \sum_{m=1}^{\infty} \sum_{i=1}^{n} a_{i} \mu \left(E_{i} \cap A_{m} \right) = \sum_{m=1}^{\infty} \int_{A_{m}} \varphi d\mu = \sum_{m=1}^{\infty} v \left(A_{m} \right).$$

QED

Notation 3.3. L⁺ (X, \mathcal{A}, μ)

We write L⁺ (X, A, μ), or simply L⁺ when (X, A, μ) is understood, to mean

$$\mathrm{L}^+\left(X,\mathcal{A},\mu\right)=\left\{f\colon X\to [0,\infty]: f \text{ is measurable}\right\}.$$

Def'n 3.4. Integral of a L⁺-function

Let $f \in L^+$. We define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \sup \left\{ \int \varphi d\mu : \varphi : [0,\infty] o X, arphi \leq f, arphi ext{ is simple}
ight\}.$$

If $A \in \mathcal{A}$, we define the *integral* of f over A, denoted as $\int_A f d\mu$, by

$$\int_{A} f d\mu = \int f \chi_{A} d\mu.$$

Proposition 3.4.

Let $f, g \in L^+$.

(a) If $\alpha \geq 0$, then

$$\int \alpha f d\mu = \alpha \int f d\mu.$$

(b) If $f \le g$, then

$$\int f d\mu \leq \int g d\mu.$$

Proof.

(a) This is trivial when $\alpha = 0$. For $\alpha > 0$,

$$\begin{split} \{\varphi: X \to [0,\infty]: \varphi \leq \alpha f, \varphi \text{ is simple}\} &= \left\{\varphi: X \to [0,\infty]: \frac{1}{\alpha} \varphi \leq f, \varphi \text{ is simple}\right\} \\ &= \left\{\alpha \psi: \psi: X \to [0,\infty] \right., \psi \leq f, \psi \text{ is simple}\} \,. \end{split}$$

By taking sup, we have the desired equality.

(b) It suffices to note

$$\{\varphi: X \to [0,\infty]: \varphi \le f, \varphi \text{ is simple}\} \subseteq \{\psi: X \to [0,\infty]: \psi \le g, \psi \text{ is simple}\}.$$

QED

We are leaving (a one-liner!) proof of $\int f + g d\mu = \int f d\mu + \int g d\mu$ for later.

Lemma 3.5.

Let $\varphi: X \to [0,\infty]$ be simple and let $(A_n)_{n=1}^\infty \in \mathcal{A}^\mathbb{N}$ be an ascending chain with $X = \bigcup_{n=1}^\infty A_n$. Then

$$\lim_{n\to\infty}\int_{A_n}\varphi d\mu=\int\varphi d\mu.$$

Proof. Recall that $v : A \to [0, \infty]$ by

$$v(A) = \int_{A} \varphi d\mu, \quad \forall A \in \mathcal{A}$$

is a measure. Hence by the continuity from below,

$$\lim_{n\to\infty}\int_{A_n}\varphi d\mu=\lim_{n\to\infty}\nu\left(A_n\right)=\nu\left(\bigcup_{n=1}^\infty A_n\right)=\nu\left(X\right)=\int\varphi d\mu.$$

QED

Theorem 3.6. Monotone Convergence Theorem (MCT) Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ be an increasing sequence and define $f \in L^+$ by

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \forall x \in X.$$

Then

$$\lim_{n\to\infty}\int f_n d\mu=\int f d\mu.$$

For every $x \in X$, $(f_n(x))_{n=1}^{\infty}$ is an increasing sequence. Hence by the MCT for sequences, $\lim_{n\to\infty} f_n(x)$ converges in $[0,\infty]$. Define

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \forall x \in X.$$

In fact, MCT for sequences tells us that

$$f(x) = \sup_{n \in \mathbb{N}} f_n(x), \quad \forall x \in X,$$

so that

$$f_1 \leq f_2 \leq \cdots \leq f$$
.

This means

$$\int f_1 d\mu \le \int f_2 d\mu \le \cdots \le \int f d\mu$$

using monotonicity of integral, so that

$$\lim_{n\to\infty}\int f_n d\mu = \sup_{n\in\mathbb{N}}\int f_n d\mu \leq \int f d\mu.$$

Let $\varphi: X \to [0, \infty]$ be a simple function with $\varphi \leq f$. Let $\varepsilon \in (0, 1)$ and let

$$A_{n} = \left\{ x \in X : (1 - \varepsilon) \varphi(x) \le f_{n}(x) \right\}, \qquad \forall n \in \mathbb{N}.$$

Then

$$A_1 \subseteq A_2 \subseteq \cdots$$

and

$$X = \bigcup_{n=1}^{\infty} A_n,$$

since $f_n\left(x\right) \to f(x)$ means there must be $N \in \mathbb{N}$ such that $(1-\varepsilon) \varphi\left(x\right) \le f_n\left(x\right)$, as $(1-\varepsilon) \varphi\left(x\right) < \varphi\left(x\right) \le f(x)$. This means

$$(1-\varepsilon)\int \varphi d\mu = \int \left(1-\varepsilon\right)\varphi d\mu = \lim_{n\to\infty}\int_{A_n}\left(1-\varepsilon\right)\varphi d\mu \leq \lim_{n\to\infty}\int_{A_n}f_n d\mu \leq \lim_{n\to\infty}\int f_n d\mu.$$

Since the choice of ε was arbitrary, we conclude

$$\int \varphi d\mu \leq \lim_{n\to\infty} \int f_n d\mu.$$

But $\int f d\mu$ is the supremum of such φ , so it follows that

$$\int f d\mu \leq \lim_{n\to\infty} \int f_n d\mu,$$

as required.

Proposition 3.7.

Let $f, g \in L^+$. Then

$$\int f + g d\mu = \int f d\mu + \int g d\mu.$$

Proof. By simple approximation, we can find increasing sequence of simple functions $(\varphi_n)_{n=1}^{\infty}$, $(\psi_n)_{n=1}^{\infty}$ such that $\varphi_n \nearrow f$, $\psi_n \nearrow f$ g pointwise. Thus by the MCT,

$$\int f + g d\mu = \lim_{n \to \infty} \int \varphi_n + \psi_n d\mu = \lim_{n \to \infty} \int \varphi_n d\mu + \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

QED

QED

Proposition 3.8. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$. Then

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

Proof. Note that $\left(\sum_{n=1}^k f_n\right)_{k=1}^{\infty} \in L^{+\mathbb{N}}$ is increasing, so that

$$\int \sum_{n=1}^{\infty} f_n d\mu = \int \lim_{k \to \infty} \sum_{n=1}^{k} f_n d\mu = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n d\mu = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

QED

Proposition 3.9.

Let $f \in L^+$. Then

$$\nu: \mathcal{A} \to [0, \infty]$$

$$A \mapsto \int_A f d\mu$$

is a measure.

Proof. Clearly $v(\emptyset) = \int_{\emptyset} f d\mu = 0$. Write $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ be a collection of disjoint sets and let $A = \bigcup_{n=1}^{\infty} A_n$. Then

$$v\left(A\right) = \int f\chi_{A}d\mu = \int \sum_{n=1}^{\infty} f\chi_{A_{n}}d\mu = \sum_{n=1}^{\infty} \int_{A_{n}} fd\mu = \sum_{n=1}^{\infty} v\left(A\right).$$

QED

Lemma 3.10.

Let $f \in L^+$. Then

$$\int f d\mu = 0 \iff f = 0 \text{ μ-ae.}$$

Proof. (\iff) Suppose f = 0 μ -ae. Let $\varphi : X \to [0, \infty]$ be simple with $\varphi \leq f$, say

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i}.$$

Then $\varphi = 0$ ae. This means each $a_i > 0$ implies $\mu(A_i) = 0$. Thus

$$\int \varphi d\mu = 0$$

so that

$$\int f d\mu = 0.$$

 (\Longrightarrow) Suppose $\int f d\mu = 0$. Let

$$A = \{x \in X : f(x) > 0\}$$

and let

$$A_n = \left\{ x \in X : f(x) \ge \frac{1}{n} \right\}, \quad \forall n \in \mathbb{N}.$$

Then

$$A_1 \subseteq A_2 \subseteq \cdots$$

with

$$\bigcup_{n=1}^{\infty} A_n = A.$$

Therefore

$$\mu\left(A\right) = \lim_{n \to \infty} \mu\left(A_n\right)$$

and

$$0=\int fd\mu\geq\intrac{1}{n}\chi_{A_{n}}d\mu=rac{1}{n}\mu\left(A_{n}
ight),$$

so that each $\mu(A_n) = 0$. Thus $\mu(A) = 0$, as required.

Proposition 3.11.

Let $f \in L^+$ and let $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$. Then

$$\int_{A \cup B} f d\mu = \int_{A} f d\mu + \int_{B} f d\mu.$$

Proof. Note that

$$\int_{A\cup B} f d\mu = \int f(\chi_A + \chi_B) d\mu = \int f \chi_A d\mu + \int f \chi_B d\mu = \int_A f d\mu + \int_B f d\mu.$$

QED

QED

Proposition 3.12.

Let $f \in L^+$ and let $A \in \mathcal{A}$ with $\mu(A) = 0$. Then

$$\int_A f d\mu = 0.$$

Proof. Note that $f\chi_A = 0$ μ -ae.

QED

Proposition 3.13. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ be such that

$$f_n \leq f_{n+1} \mu$$
-ae, $\forall n \in \mathbb{N}$

and let $f \in L^{+\mathbb{N}}$ be such that

 $\lim_{n\to\infty} f_n = f \text{ pointwise } \mu\text{-ae.}$

Then

$$\lim_{n\to\infty}\int f_n d\mu=\int f d\mu.$$

Proof. Let

$$A_n = \{x \in X : f_n(x) > f_{n+1}(x)\}$$

and let

$$A_{0} = \left\{ x \in X : \lim_{n \to \infty} f_{n}(x) \neq f(x) \right\}.$$

Then $\mu(A_n) = 0$ for all $n \in \mathbb{N} \cup \{0\}$. Let $A = \bigcup_{n=0}^{\infty} A_n$, so that $\mu(A) = 0$ as well. We have

$$f_n \chi_{X \setminus A} \le f_{n+1} \chi_{X \setminus A}, \quad \forall n \in \mathbb{N}$$

and

$$f_n \chi_{X \setminus A} \to f \chi_{X \setminus A}$$
 pointwise.

By the MCT,

$$\int_{X\setminus A} f_n d\mu \to \int_{X\setminus A} f d\mu.$$

The result then follows from Proposition 3.11 and 3.12.

QED

Theorem 3.14. Fatou's Lemma

Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$. Then

$$\int \liminf_{n\to\infty} f_n d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

Proof. Let

$$g_n = \inf_{k > n} f_k$$
.

Then $(g_n)_{n=1}^{\infty}$ is an increasing sequence in L⁺ such that

$$\lim_{n\to\infty}g_n=\liminf_{n\to\infty}f_n$$

pointwise. By the monotone convergence theorem,

$$\int \liminf_{n\to\infty} f_n d\mu = \int \lim_{n\to\infty} g_n d\mu = \lim_{n\to\infty} \int g_n d\mu = \liminf_{n\to\infty} \int g_n d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

QED

Corollary 3.14.1. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ such that $f_n \to f$ pointwise for some $f \in L^+$. Then

$$\int f d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

3. General Integration

Def'n 3.5. Integrable Complex-valued Function

Let $f: X \to \mathbb{C}$ be measurable. We say f is *integrable* if

$$\int |f|\,d\mu<\infty.$$

In case $f: X \to \mathbb{R}$ is integrable, we consider the *positive part* f^+ and *negative part* f^- of f defined as

$$f^+ = \max\{f, 0\},$$

 $f^- = -\min\{f, 0\}.$

Note that both f^+, f^- are nonnegative and we define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

Let $f: X \to \mathbb{C}$ be integrable. Then we define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \int \operatorname{Re} \circ f d\mu + i \int \operatorname{Im} \circ f d\mu.^{2}$$

In case $f: X \to \mathbb{C}$ is measurable, we define

$$||f||_1 = \int |f| \, d\mu.$$

Notation 3.6. $L^1(X, \mathcal{A}, \mu)$

We define

$$L^{1}\left(X,\mathcal{A},\mu\right)=\left\{ f\colon X\to\mathbb{C}:f\text{ is measurable and }\left\Vert f\right\Vert _{1}<\infty\right\} .$$

We shall write L^1 when (X, \mathcal{A}, μ) are understood.

We state few results without proof.

Proposition 3.15. Linearity

Let $f, g \in L^1$ and $\alpha \in \mathbb{C}$. Then $\alpha f + g \in L^1$ with

$$\int \alpha f + g d\mu = \alpha \int f d\mu + \int g d\mu.$$

Proposition 3.16. Monotonicity

Let $f, g \in L^1$ be real-valued functions. If $f \leq g$, then

$$\int f d\mu \leq \int g d\mu.$$

Def'n 3.7. Integral over a Measurable Set

Let $f \in L^1$. For $A \in \mathcal{A}$, we define the *integral* of f over A, denoted as $\int_A f d\mu$, by

$$\int_{A} f d\mu = \int f \chi_{A} d\mu.$$

Note that $f = f^+ - f^-$ and $|f| = f^+ + f^-$. Hence $f^+, f^- \le |f|$ so that both $\int f^+ d\mu$, $\int f^- d\mu$ are finite. Observe that $|\text{Re} \circ f|$, $|\text{Im} \circ f| \le |f|$, so that $|\text{Re} \circ f|$, $|\text{Im} \circ f|$ are integrable.

Proposition 3.17.

Let $f \in L^1$ and let $A, B \in A$ be disjoint. Then

$$\int_{A\cup B} f d\mu = \int_A f d\mu + \int_B f d\mu.$$

The following proposition is surprisingly non-trivial.

Proposition 3.18.

Let $f \in L^1$. Then

$$\left|\int f d\mu\right| \leq \int |f| \, d\mu.$$

The case when *f* is real-valued is trivial:

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| \le \int f^+ d\mu + \int f^- d\mu = \int f^+ + f^- d\mu = \int |f| d\mu.$$

Let

$$z=\int f d\mu$$
.

Write

$$z = re^{i\theta}$$

in polar form, so that r = |z|. Therefore,

$$\left| \int f d\mu \right| = r = e^{-i\theta} z = \int e^{-i\theta} f d\mu = \operatorname{Re} \int e^{-i\theta} f d\mu = \int \underbrace{\operatorname{Re} \circ e^{-i\theta} f}_{=g} d\mu \le \int |g| d\mu \le \int |f| d\mu.$$

QED

Theorem 3.19. Lebesgue Dominated Convergence Theorem (LDCT) — Let $(f_n)_{n=1}^{\infty} \in (L^1)^{\mathbb{N}}$ and let $g \in L^1$. If $f_n \to f$ pointwise for some $f: X \to \mathbb{C}$ and $|f_n| \le g$ for all $n \in \mathbb{N}$, then $f \in L^1$ with

$$\int \lim_{n\to\infty} f_n d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

Proof. Case 1. Suppose f, g, f_n are real-valued.

Since $|f| \le g$ by taking limits as $n \to \infty$,

$$\int |f|\,d\mu \le \int gd\mu < \infty.$$

Hence $f \in L^1$. Then

$$\int g + f d\mu \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} \int g + f_n d\mu = \int g d\mu + \liminf_{n \to \infty} \int f_n d\mu.$$

Similarly,

$$\int g - f d\mu \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} \int g - f_n d\mu = \int g d\mu - \limsup_{n \to \infty} \int f_n d\mu.$$

(End of Case 1)

QED

4. Spaces of Integrable Functions

Proposition 3.20.

 $L^1(X, \mathcal{A}, \mu)$ is a Banach space.

Here are some ideas for the proof.

Suppose that V is a normed linear space and let $(a_n)_{n=1}^{\infty} \in V^n$ be Cauchy. Then we know

there is a subsequence $(a_{n_k})_{k=1}^{\infty}$ such that $a_{n_k} \to a \in V \implies a_n \to a$.

Let $(f_n)_{n=1}^{\infty} \in L^1(X, \mathcal{A}, \mu)^{\mathbb{N}}$ be Cauchy. Then

$$|\operatorname{Re} \circ f_n - \operatorname{Re} \circ f_m|^2 \le |\operatorname{Re} \circ f_n - \operatorname{Re} \circ f_m|^2 + |\operatorname{Im} \circ f_n - \operatorname{Im} \circ f_m| = |f_n - f_m|^2$$

so that

$$|\operatorname{Re} \circ f_n - \operatorname{Re} \circ f_m| \le |f_n - f_m|$$
.

Hence by monotonicity,

$$\|\operatorname{Re}\circ f_n-\operatorname{Re}\circ f_m\|_1\leq \|f_n-f_m\|_1$$
,

which means $(\text{Re } \circ f_n)_{n=1}^{\infty}$ is Cauchy. Similarly, $(\text{Im } \circ f_n)_{n=1}^{\infty}$ is also Cauchy.

Proof of Proposition 3.20

Let $(f_n)_{n=1}^{\infty} \in L^1(X, \mathcal{A}, \mu)$ be Cauchy. Assume each f_n is real-valued without loss of generality. For all $k \in \mathbb{N}$, there is $n_k \in \mathbb{N}$ such that

$$\|f_n - f_m\|_1 < \frac{1}{2^k}, \quad \forall n, m \ge n_k.$$

Without loss of generality assume $(n_k)_{k=1}^{\infty}$ is increasing. Let

$$\hat{g} = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|.$$

By the MCT,

$$\int \hat{g} d\mu = \int |f_{n_1}| d\mu + \sum_{k=1}^{\infty} \int |f_{n_{k+1}} - f_{n_k}| d\mu = ||f_{n_1}||_1 + \sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}||_1 = ||f_{n_1}||_1 + 1 < \infty.$$

This means \hat{g} is finite almost everywhere – that is, there is $N \in \mathcal{A}$ such that $\hat{g}|_{X \setminus N}$ is finite and $\mu(N) = 0$. Hence define $g: X \to \mathbb{R}$ by

$$g(x) = \begin{cases} \hat{g}(x) & \text{if } x \in X \setminus N \\ 0 & \text{if } x \in N \end{cases}, \quad \forall x \in X.$$

Let $f: X \to \mathbb{R}$ by

$$f(x) = \begin{cases} f_{n_1}(x) + \sum_{k=1}^{\infty} f_{n_{k+1}}(x) - f_{n_k}(x) & \text{if } x \in X \setminus N \\ 0 & \text{if } x \in N \end{cases}, \quad \forall x \in X.$$

Then $f_{n_k} \to f$ pointwise almost everywhere and we have that $|f| \le g$. Then by the LDCT,

$$f\in L^{1}\left(X,\mathcal{A},\mu\right) .$$

Moreover,

$$|f_{n_k}| \leq |f_{n_1}| + \sum_{j=1}^{k-1} |f_{n_{j+1}} - f_{n_j}| \stackrel{\mathrm{ae}}{\leq} g, \qquad \forall k \in \mathbb{N}.$$

Finally,

$$|f-f_{n_k}|\leq 2g, \qquad \forall k\in\mathbb{N},$$

so by the LDCT,

$$\|f-f_{n_k}\|_1 = \int |f-f_{n_k}| d\mu \to 0.$$

- QED

IV. Product Measures

1. Product Measures

Def'n 4.1. Measurable Rectangle

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces. For every $A \in \mathcal{A}$, $B \in \mathcal{B}$, we call $A \times B$ a *measurable rectangle*.

Lemma 4.1. —

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces and let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a collection of measurable rectangles that are pairwise disjoint. Also assume that

$$\bigcup_{k=1}^{\infty} A_k \times B_k = A \times B$$

for some $A \in \mathcal{A}, B \in \mathcal{B}$. Then

$$\mu(A) \nu(B) = \sum_{k=1}^{\infty} \mu(A_k) \nu(B_k).$$

Proof. Fix $x \in A$. For all $y \in B$, there exists a unique $k \in \mathbb{N}$ such that $(x, y) \in A_k \times B_k$. Hence

$$B = \bigcup_{k \in \mathbb{N}: x \in A_k} B_k$$

This means

$$\mu\left(B\right) = \sum_{k \in \mathbb{N}: x \in A_k} \mu\left(B_k\right),\,$$

so that

$$v(B) \chi_A(x) = \sum_{k=1}^{\infty} v(B_k) \chi_{A_k}, \quad \forall x \in X.$$

By MCT,

$$v(B) \mu(A) - \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} v(B_k) \mu(A_k).$$

QED

Let

$$\mathcal{R} = \left\{ \bigcup_{k=1}^{n} A_k \times B_k : n \geq 0, \forall k \in \{1, \dots, n\} \left[A_k \in \mathcal{A}, B_k \in \mathcal{B} \right] \right\}.$$

Proposition 4.2.

Let

$$\lambda: \mathcal{R} \to [0, \infty]$$

$$\bigcup_{k=1}^{n} A_k \times B_k \mapsto \sum_{k=1}^{n} \mu(A_k) v(B_k).$$

Then λ is a premeasure.

 $^{^{1}}$ We are using the convention $0\infty = 0$.

By Caratheodory, there is a complete measure

$$(X \times Y, \overline{\mathcal{A} \times \mathcal{B}}, \mu \times \nu)$$

on $X \times Y$ such that

$$\mathcal{A} \times \mathcal{B} \subseteq \overline{\mathcal{A} \times \mathcal{B}} = \left\{ A \times B \in \mathcal{A} \times \mathcal{B} : A \times B \text{ is } \lambda^*\text{-measurable} \right\}.$$

and

$$(\mu \times \nu) (A \times B) = \mu (A) \nu (B), \qquad \forall A \in \mathcal{A}, B \in \mathcal{B}.$$

Def'n 4.2. **Product Measure**

Consider the above setting. We call $\mu \times \nu$ the *product measure* on $\mathcal{A} \times \mathcal{B}$.

2. Product Integration

Theorem 4.3. Fubini

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be complete measure spaces. If $f \in L^1(X \times Y, \overline{\mathcal{A} \times \mathcal{B}}, \mu \times \nu)$, then

(a) For all $x \in X$, let

$$f_x: Y \to \mathbb{F}$$
$$y \mapsto f(x, y).$$

Then $f_x \in L^1(Y, \mathcal{B}, \nu)$ for almost all x.

(b) For all $y \in Y$, let

$$f^{y}: X \to \mathbb{F}$$
$$x \mapsto f(x, y).$$

Then $f^{y} \in L^{1}(X, \mathcal{A}, \mu)$ for almost all y.

(c) Let

$$F: X \to \mathbb{F}$$
$$x \mapsto \int f_x dv$$

Then $F \in L^1(X, \mathcal{A}, \nu)$.

(d) Let

$$G: X \to \mathbb{F}$$
$$y \mapsto \int f^y d\mu$$

Then $G \in L^1(X, \mathcal{A}, \nu)$.

(e) We have

$$\int_{X\times Y} fd(\mu \times \nu) = \int_X \int_Y f(x,y) \, d\nu d\mu = \int_Y \int_X f(x,y) \, d\mu d\nu.$$

Given $E \subseteq X \times Y$, let us write write

$$E_x = \{ y \in Y : (x, y) \in E \}, \quad \forall x \in X$$

and

$$E^{y} = \{x \in X : (x, y) \in E\}, \qquad \forall y \in Y.$$

Lemma 4.4.

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces and let

$$\mathcal{R} = \left\{ \bigcup_{k=1}^{n} A_k \times B_k : n \geq 0, \forall k \in \{1, \dots, n\} \left[A_k \in \mathcal{A}, B_k \in \mathcal{B} \right] \right\}.$$

Let $E \in \mathcal{R}_{\sigma\delta}$ with $(\mu \times \nu)$ $(E) < \infty$. Then

- (a) $g: X \to \mathbb{R}$ by $g(x) = v(E_x)$ for all $x \in X$ is μ -measurable;
- (b) $g \in L^+ \cap L^1$; and
- (c) $\int g d\mu = (\mu \times \nu) (E)$.

Proof.

Case 1. Suppose $E = A \times B$ for some $A \in A, B \in B$.

Then

$$E_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases} \in \mathcal{B}, \qquad \forall x \in X$$

Now

$$g(x) = v(E_x) = v(B) \chi_A(x), \quad \forall x \in X$$

so that *g* is a nonnegative measurable function, with

$$\int g d\mu = \int v(B) \chi_A d\mu = v(B) \mu(A) = (\mu \times \nu)(E) < \infty,$$

as needed.

(End of Case 1)

Case 2. Consider $E = \bigcup_{i=1}^{\infty} A_i \times B_i$ for some $A_1, \ldots \in \mathcal{A}, B_1, \ldots \in \mathcal{B}$.

Without loss of generality, we may assume that the union is disjoint, since intersection of rectangles is still a rectangle.

Define $g_i = v\left(B_i\right) \chi_{A_i}$ for all $i \in \mathbb{N}$. Then

$$g = \sum_{i=1}^{\infty} g_i$$

so that g is μ -measurable. Moreover, every $E_x = \bigcup_{i=1}^{\infty} (A_i \times B_i)_x$ is measurable.

Then by the MCT,

$$\int g d\mu = \sum_{i=1}^{\infty} \int g_i d\mu = \sum_{i=1}^{\infty} \mu(A_i) \nu(B_i) = \sum_{i=1}^{\infty} (\mu \times \nu) (A_i \times B_i) = (\mu \times \nu) (E) < \infty.$$

(End of Case 2)

Case 3. Consider $E = \bigcap_{n=1}^{\infty} E_n$, where each $E_n \in \mathcal{R}_{\sigma}$.

Without loss of generality, we may assume

$$E_1 \supset E_2 \supset \cdots$$
.

Moreover, we may also assume that

$$(\mu \times \nu)(E_1) < \infty$$
,

since $(\mu \times \nu)(E) < \infty$.

Then we have that

$$E_x = \bigcap_{n=1}^{\infty} \left(E_n \right)_x$$

and

$$(E_1)_x \supseteq (E_2)_x \supseteq \cdots,$$

so

$$\lim_{n\to\infty}\nu\left(\left(E_n\right)_x\right)=\nu\left(E\right)$$

and

$$\lim_{n\to\infty} (\mu\times\nu)(E_n) = (\mu\times\nu)(E).$$

Let

$$g_n: X \to \mathbb{R}$$

 $x \mapsto v\left(\left(E_n\right)_x\right), \qquad \forall n \in \mathbb{N}.$

Then $0 \ge g$ and $g_n \searrow g$ pointwise with

$$\int g_1 d\nu = (\mu \times \nu) (E_1) < \infty,$$

so by the LDCT,

$$\int g d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim_{n \to \infty} (\mu \times \nu) (E_n) = (\mu \times \nu) (E).$$

(End of Case 3)

- QED

V. Differentiation

VI. L^p Spaces

VII. Application on Probability Theory