The Matrix Calculus You Need For Deep Learning

-Terence Parr and Jeremy Howard

1. Introduction

미적분은 머신러닝, 특히 딥러닝에서 손실 함수를 최적화하는 데 많이 쓰인다.

선형대수에 관한 지식이 머신러닝을 돌리고 이러는 데에는 큰 필요가 없지만 머신러닝, 딥러닝라이브러리가 어떻게 동작하는지 잘 이해하기 위해선 필수적이다.

예를 들어, 간단한 선형 활성화 함수도 내적을 요구한다.

신경망 구조는 많은 유닛들로 구성되는데 이 유닛들은 layers라고 불리는 유닛의 다수 집합체로 편성된다. 한 층의 활성화는 다른 층의 입력 값이 되고 마지막의 활성화는 최종 output이 될 수 있다.

뉴런을 training한다는 것은 가중치와 절편을 적절히 선택하는 것이다. 손실 함수를 최소화해야 한다. 이를 위해선 확률적 경사하강법이나 Adam 알고리즘을 사용하는데 이 방법 모두 편미분을 요구한다.

2. Review: Scalar derivative rules

Rule	f(x)	Scalar derivative notation with respect to x	Example
Constant	c	0	$\frac{d}{dx}99 = 0$ $\frac{d}{dx}3x = 3$
Multiplication	cf	$c\frac{df}{dx}$	$\frac{d}{dx}3x = 3$
by constant			
Power Rule	x^n	nx^{n-1}	$\frac{d}{dx}x^3 = 3x^2$
Sum Rule	f+g	$\frac{df}{dx} + \frac{dg}{dx}$	$\frac{d}{dx}(x^2 + 3x) = 2x + 3 \frac{d}{dx}(x^2 - 3x) = 2x - 3$
Difference Rule	f-g	$\frac{df}{dx} - \frac{dg}{dx}$	$\frac{d}{dx}(x^2 - 3x) = 2x - 3$
Product Rule	fg	$f\frac{dg}{dx} + \frac{df}{dx}g$	$\frac{dx}{dx}x^2x = x^2 + x2x = 3x^2$
Chain Rule	f(g(x))	$\frac{df(u)}{du}\frac{du}{dx}$, let $u=g(x)$	$\frac{d}{dx}ln(x^2) = \frac{1}{x^2}2x = \frac{2}{x}$

3. Introduction to vector calculus and partial derivatives

$$\nabla f(x,y) = \left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right] = \left[6yx, 3x^2\right]$$

4. Matrix calculus

$$J = \begin{bmatrix} \nabla f(x,y) \\ \nabla g(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 6yx & 3x^2 \\ 2 & 8y^7 \end{bmatrix}$$

4.1 Generalization of the Jacobian

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla f_1(\mathbf{x}) \\ \nabla f_2(\mathbf{x}) \\ \dots \\ \nabla f_m(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} f_1(\mathbf{x}) \\ \frac{\partial}{\partial \mathbf{x}} f_2(\mathbf{x}) \\ \dots \\ \frac{\partial}{\partial \mathbf{x}} f_m(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(\mathbf{x}) & \frac{\partial}{\partial x_2} f_1(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_1(\mathbf{x}) \\ \frac{\partial}{\partial x_1} f_2(\mathbf{x}) & \frac{\partial}{\partial x_2} f_2(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_2(\mathbf{x}) \\ \dots & \dots & \dots & \dots \\ \frac{\partial}{\partial x_1} f_m(\mathbf{x}) & \frac{\partial}{\partial x_2} f_m(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_m(\mathbf{x}) \end{bmatrix}$$

4.2 Derivatives of vector element-wise binary operators

We can generalize the element-wise binary operations with notation $\mathbf{y} = \mathbf{f}(\mathbf{w}) \bigcirc \mathbf{g}(\mathbf{x})$ where m = n = |y| = |w| = |x|. (Reminder: |x| is the number of items in x.) The \bigcirc symbol represents any element-wise operator (such as +) and not the \circ function composition operator. Here's what equation $\mathbf{y} = \mathbf{f}(\mathbf{w}) \bigcirc \mathbf{g}(\mathbf{x})$ looks like when we zoom in to examine the scalar equations:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x}) \\ f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x}) \end{bmatrix}$$

where we write n (not m) equations vertically to emphasize the fact that the result of element-wise operators give m = n sized vector results.

Using the ideas from the last section, we can see that the general case for the Jacobian with respect to \mathbf{w} is the square matrix:

$$J_{\mathbf{w}} = \frac{\partial \mathbf{y}}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial}{\partial w_1} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) & \frac{\partial}{\partial w_2} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) & \dots & \frac{\partial}{\partial w_n} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) \\ \frac{\partial}{\partial w_1} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) & \frac{\partial}{\partial w_2} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) & \dots & \frac{\partial}{\partial w_n} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) \\ & \dots & & \dots & \\ \frac{\partial}{\partial w_1} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) & \frac{\partial}{\partial w_2} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) & \dots & \frac{\partial}{\partial w_n} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) \end{bmatrix}$$

and the Jacobian with respect to \mathbf{x} is:

$$J_{\mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial}{\partial x_1} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) & \frac{\partial}{\partial x_2} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) & \dots & \frac{\partial}{\partial x_n} (f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x})) \\ \frac{\partial}{\partial x_1} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) & \frac{\partial}{\partial x_2} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) & \dots & \frac{\partial}{\partial x_n} (f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x})) \\ & & \dots & & \\ \frac{\partial}{\partial x_1} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) & \frac{\partial}{\partial x_2} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) & \dots & \frac{\partial}{\partial x_n} (f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x})) \end{bmatrix}$$

4.3 Derivatives involving scalar expansion

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = diag\left(\dots \frac{\partial}{\partial x_i} (f_i(x_i) \bigcirc g_i(z))\dots\right)$$

4.4 Vector Sum Reduction

Let $y = sum(\mathbf{f}(\mathbf{x})) = \sum_{i=1}^{n} f_i(\mathbf{x})$. Notice we were careful here to leave the parameter as a vector \mathbf{x} because each function f_i could use all values in the vector, not just x_i . The sum is over the **results** of the function and not the parameter. The gradient $(1 \times n \text{ Jacobian})$ of vector summation is:

$$\frac{\partial y}{\partial \mathbf{x}} = \left[\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \right]
= \left[\frac{\partial}{\partial x_1} \sum_i f_i(\mathbf{x}), \frac{\partial}{\partial x_2} \sum_i f_i(\mathbf{x}), \dots, \frac{\partial}{\partial x_n} \sum_i f_i(\mathbf{x}) \right]
= \left[\sum_i \frac{\partial f_i(\mathbf{x})}{\partial x_1}, \sum_i \frac{\partial f_i(\mathbf{x})}{\partial x_2}, \dots, \sum_i \frac{\partial f_i(\mathbf{x})}{\partial x_n} \right]$$
(move derivative inside \sum)

4.5 The Chain Rules

복잡한 식을 미분식이 계산하기 편하도록 부분 표현들로 나누는 전략이다.

Forward differentiation from x to y Backward differentiation from y to x $\frac{dy}{dx} = \frac{du}{dx} \frac{dy}{du}$ $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

- 5. The gradient of neuron activation
- 6. The gradient of the neural network loss function.
- 7. Summary