

### Common Lines Implied Clustering

Donovan Webb

eBIC/University of Bath

March 23rd, 2020



- - 1 Single Lines
  - 2 Finding Common Lines
  - 3 Clustering
  - 4 Reconstruction
  - 5 Full Pipeline

Single Lines

Single Lines

•0000





Single Lines









Single Lines









Single Lines





Single Lines





### Common Lines

Single Lines

00000



Two projections of the same 3D volume share at least one common line in the Radon transform





Single Lines

00000



#### What about two different 3D volumes?





### Finding the common line between two sinograms





### Finding the common line between two sinograms



But what about N sinograms?

# Sinogram Cross Correlation



#### Finding the common line between two sinograms



But what about N sinograms? What about N sinograms from a heterogenous dataset?













Slow.



Slow. Exhaustive.

### CLIC Pipeline



Slow. Exhaustive. Doesn't handle noise well.



### Find features - Reduce noise Linear (PCA)





Find features - Reduce noise Linear (PCA)

















But how do we assign clusters?

Clustering



Ground truth: Good seperatation between two classes - but discontinuous







Just a model left!

Reconstruction



**Common line gives axis of rotation.** Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)



Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987

Single Lines



**Common line gives axis of rotation.** Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)



Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987



**Common line gives axis of rotation.** Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)



Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987

Donovan Webb eBIC/University of Bath

# Eigenvector Relaxation



Aim: Given all common lines c for projections P, assign Rotation matrices R for each P to give greatest consensus volume.







$$\max \sum_{i \neq j} R_i c_{ij} \cdot \overset{cij}{R_j} \overset{=}{c_{ji}} \overset{(co)}{(2)}$$

Maths\*! Make large  $(2N \times 2N)$  symmetric matrix S. Can recover R for each P from top 3 eigenvectors of S that maximise (2)!



Full Pipeline

A full pipeline of the procedure. 2d projs ¿ 2d sins ¿ 1d lines ¿ TSNE ¿ agglo ¿ clusters ¿ split into sep datasets ¿ find common lines ¿ eigenvector relaxation ¿ Models

Single Lines