Misannotations and Data Sources

Amelia Harrison

Presented: April 21, 2022

What is a misannotation?

- A misannotation is an incorrect annotation
 - Can occur in any dataset at any level
- Most common type of misannotation is overprediction
 - Annotation of a protein at a level that is not supported by the data
- How do we usually annotate proteins or genes?

Misannotations are common in databases

- A <u>2009 study</u> estimated the misannotation of 37 protein families (6 superfamilies) in SwissProt, GenBank, TrEMBL, and KEGG
 - Misannotation estimates for the superfamilies ranged from 5% to 63%
 - 10 of the 37 families had misannotation rates > 80%
 - SwissProt consistently had the lowest misannotation rates
- How does SwissProt differ from the other databases?

Two types of databases or database entries

- Reviewed
 - Database entries are manually reviewed and curated by experts
 - SwissProt, NCBI RefSeq, SILVA, PDB, ChEMBL
- Unreviewed
 - Annotations provided by researchers and are not reviewed
 - TrEMBL, GenBank, KEGG

Terms used to describe protein annotations

- Biochemically characterized
 - Annotation(s) based on biochemical experiments
- Automatic annotation
 - Annotation based the result of a bioinformatic method alone
 - Usually refers to annotations based on sequence similarity
- Manual annotation
 - An annotation made by a person
 - Generally involves the use of bioinformatic tools/methods
 - Sequence similarity, HMMs, alignments, structural similarity

Another study of misannotation in a database

- Another study estimated error in Gene Ontology (GO) sequer annotations
 - o Total error was 28% 30%
 - Sequences annotated based on sequence similarity alone had a 49%
 - Sequences annotated using other methods had an error rate of 13 18%
- Remember, this does not mean that 49% of sequences are ar the wrong protein entirely
 - Most of these are overannotations

of 13 - 18%
ar
Sub-types

Example protein hierarchy

Superfamily

Family

Why are misannotation rates so high?

- The number of proteins sul since the databases were c
- Lower cost and larger out significant specified and larger out specified and larger o
 - Used to characterize all pto high

UniProt Release Number

Why else are misannotations so high?

- Individual datasets are large
 - Databases are not the only ones overwhelmed by the amount of data
- Annotating proteins can be confusing
 - Interpretation of ontologies, naming schemes, etc. is tricky for non-experts
- Trouble tracking provenance
 - Databases do not know which annotations rely on others
 - Therefore, a single misannotation can lead to many misannotations, but it's correction does not necessarily lead to many corrections
- Conflicting advice regarding annotation of sequences
 - Some recommend considering surrounding genes, others advise against it

Dangers of misannotation

- Cause researchers to draw false conclusions, or hides discoveries
- Error percolation (chains of misannotation)
 - o In a modeled database with annotations made based on sequence similarity alone, the database eventually lost all ability to differentiate proteins

A misannotation in a cyanophage

Annotation of a viral genome

- Prochlorococcus phage P-SSP7
 - dsDNA virus <u>first described in 2005</u>
 - Infects the marine cyanobacterium
 Prochlorococcus marinus
- One of the first marine virus genomes to be sequenced and annotated
 - Only 9 marine viral genomes available at the time
- Marine cyanobacteria are B₁₂ producers

Murata et al. 2017

B₁₂ synthesis

- There are only a handful of B₁₂ producers in the oceans
 - o Cyanobacteria, *Thaumarchaeota*
 - Everyone else imports B₁₂
 - Some do contain partial pathways

A B₁₂ synthesis gene in the P-SSP7 genome

- One of the protein sequences showed similarity to the gene cobS
 - Encodes an enzyme involved in B₁₂ synthesis
- Both a surprising and unsurprising discovery:
 - Unsurprising because the host cyanobacteria produces B₁₂
 - **Unsurprising** because they also found a B₁₂-dependent protein in the genome
 - Class II RNR (ribonucleotide reductase)
 - Surprising because the viral cobS was dissimilar to the cyanobacterial cobS

B₁₂ synthesis

- There are only a handful of B₁₂ producers in the oceans
 - Cyanobacteria, Thaumarchaeota
 - Everyone else imports B₁₂
 - Some do contain partial pathways
- Two B₁₂ production pathways
 - Aerobic (late cobalt insertion) pathway
 - Anaerobic (early cobalt insertion) pathway
 - Cyanobacteria use this one (cyanobacteria pre-date the oxygenated atmosphere)

Warren et al. 2002

B₁₂ pathways

cobS

- There is a gene called *cobS* in each of the B₁₂ production pathways
- They are not in any way related (not homologous) and the enzymes they encode have different functions
 - cobS in the aerobic pathway encodes a cobaltochelatase subunit
 - Catalyzes cobalt insertion
 - This is the *cobS* that showed similarity to the P-SSP7 sequence
 - cobS in the anaerobic pathway encodes cobalamin-5-phosphate synthase
 - Catalyzes the conversion of ado-GDP-cobamide to ado-cobalamin (last step)
 - This is the *cobS* present in cyanobacteria

How did the *cobS* annotation come to be?

- The researchers did not realize there are two genes named cobs
- Reason to believe that encoding cobS would increase fitness
- Cobaltochelatase subunit cobS has a very common domain
 - AAA+ ATPase (~230 amino acids)
 - Found in all organisms
 - Involved in many, diverse activities
 - Use energy from ATP to exert mechanical force

Non-specific			AAA_5		сьье_с		
hits			MDN1				
			MDN1				
			PHA022	(
			MDN1				
			AAA				
			MDN1				
			RecA-like_protease				
			нсна	3			
Superfamilies			PHA02244 sup	erfamily			
			MoxR supe	rfamily			
			P-loop_NTPase superfamily	J			
			Search for similar domain architectures	Refine search			
List of domain hits							
+ Name	Accession		Description			Interval	E-value
[+] MoxR	COG0714	MoxR-like ATPase [General function				115-320	5.81e-20
[+] AAA_5	pfam07728	AAA domain (dynein-related subfamily); This Pfam entry includes some of the AAA proteins not					2.84e-16
[+] MDN1	COG5271	Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal					1.83e-13
[+] MDN1	COG5271		lomain, involved in ribosome maturation [Translation, ribose	omal		91-288	2.61e-12
[+] PHA02244	PHA02244	ATPase-like protein				116-313	5.51e-12

92-234

119-263

168-316

105-263

269-313

120-230

119-317

3.79e-07

2.77e-06

2.84e-06

1.05e-05

7.12e-05

1.54e-04

9.67e-04

Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ...

Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ...

CbbQ/NirQ/NorQ C-terminal; This domain is found at the C-terminus of proteins of the CbbQ/NirQ ...

proteases similar to RecA; RecA-like NTPases. This family includes the NTP binding domain of ...

DNA helicase Mcm8; Mcm8 plays an important role homologous recombination repair. It forms a ...

ATPase family associated with various cellular activities (AAA); AAA family proteins often ...

The AAA+ (ATPases Associated with a wide variety of cellular Activities) superfamily ...

[+] MDN1

[+] MDN1

[+] CbbQ C

[+] MCM8

[+] RecA-like protease

[+] AAA

[+] AAA

COG5271

COG5271

cd00009

cd19481

cd17759

pfam08406

pfam00004

The misannotation has been fixed . . . right?

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
~	putative cobalt chelatase subunit CobS [Prochlorococcus phage P-SSM7]	Prochlorococcus phage P-SSM7	748	748	100%	0.0	100.00%	363	YP_004324982.1
~	CobS [Synechococcus phage S-CAM22]	Synechococcus phage S-CAM22	642	642	97%	0.0	85.27%	361	YP_009321044.1
~	putative cobalt chelatase subunit CobS [Synechococcus phage S-SM1]	Synechococcus phage S-SM1	637	637	97%	0.0	84.14%	361	YP_004323044.1
~	putative cobalt chelatase subunit CobS [Prochlorococcus phage P-RSM4]	Prochlorococcus phage P-RSM4	635	635	99%	0.0	82.50%	367	YP_004323285.1
~	putative cobalt chelatase subunit CobS [Synechococcus phage S-SSM5]	Synechococcus phage S-SSM5	630	630	97%	0.0	83.66%	357	YP_004324748.1
~	putative cobalt chelatase subunit CobS [Synechococcus phage Syn19]	Synechococcus phage Syn19	623	623	96%	0.0	82.77%	359	YP_004323970.1
~	hypothetical protein CM15mV34_1990 [Myoviridae sp.]	Myoviridae sp.	603	603	96%	0.0	80.79%	355	BCV00425.1
~	cobalamin biosynthesis protein CobS [Synechococcus phage S-IOM18]	Synechococcus phage S-IOM18	595	595	95%	0.0	81.21%	360	YP_008126444.1
~	porphyrin biosynthesis protein [Candidatus Woesearchaeota archaeon]	Candidatus Woesearchaeota archaeon	595	595	97%	0.0	78.71%	359	MAG48916.1
~	CobS [Synechococcus phage S-RIM2]	Synechococcus phage S-RIM2	594	594	95%	0.0	80.75%	356	AOO00017.1
~	cobalamin biosynthesis protein CobS [Synechococcus phage S-RIM2 R1_1999]	Synechococcus phage S-RIM2 R1_1999	592	592	95%	0.0	80.46%	356	YP_007675605.1
~	CobS [Cyanophage P-RSM1]	Cyanophage P-RSM1	592	592	97%	0.0	78.59%	356	YP_007877717.1
~	CobS [Synechococcus phage S-RIM8 A.HR1]	Synechococcus phage S-RIM8 A.HR1	592	592	95%	0.0	80.80%	358	YP_007518223.1
~	CobS [Synechococcus phage S-RIM2]	Synechococcus phage S-RIM2	591	591	95%	0.0	80.17%	356	AOO05792.1
~	hypothetical protein CM15mV36_0850 [Myoviridae sp.,]	Myoviridae sp.	591	591	97%	0.0	78.31%	356	BCV00595.1
~	CobS [Synechococcus phage S-RIM2]	Synechococcus phage S-RIM2	590	590	95%	0.0	80.46%	356	AON98946.1
~	CobS [Synechococcus phage S-RIM2]	Synechococcus phage S-RIM2	590	590	95%	0.0	80.17%	356	AOO09007.1
~	CobS [Cyanophage S-RIM50]	Cyanophage S-RIM50	590	590	95%	0.0	80.80%	358	YP_009302229.1
~	CobS [Synechococcus phage S-RIM2]	Synechococcus phage S-RIM2	590	590	95%	0.0	80.46%	356	AOO07718.1

Why did this misannotation snowball?

- 1. P-SSP7 genome was "the first of its kind" to be annotated
- 2. A "just-so story"

What can I do about misannotations?

- Check your sequences (when you can)
- Tips for annotating proteins
 - Check your annotations manually
 - Use multiple approaches to inform annotations
 - Check for active or catalytic sites
 - Check for protein domains and their order
 - Use the most recent literature
- If you see a misannotation in a database, let the database know
 - UniProt and NCBI have official means for reporting misannotations

Questions?