Compiler Design

Fatemeh Deldar

Isfahan University of Technology

1402-1403

- The SLR method begins with LR(0) items and LR(0) automata
- Constructing an SLR-parsing table

State i is constructed from I_i . The parsing actions for state i are determined as follows:

- (a) If $[A \to \alpha \cdot a\beta]$ is in I_i and $GOTO(I_i, a) = I_j$, then set ACTION[i, a] to "shift j." Here a must be a terminal.
- (b) If $[A \to \alpha \cdot]$ is in I_i , then set ACTION[i, a] to "reduce $A \to \alpha$ " for all a in FOLLOW(A); here A may not be S'.
- (c) If $[S' \to S \cdot]$ is in I_i , then set ACTION[i, \$] to "accept."

Example

1- S→E 2- E→E+T 3- E→T 4- T→id

• Example: Parse string id+id

پشته	رشته ورودی	عمليات
0	id+id\$	sl
0id1	+id\$	r4: T→ id
OT	+id\$	goto[0,T]=2
0Т2	+id\$	r3: E→ T
0E	+id\$	goto[0,E]=3
0E3	+id\$	s4
0E3+4	id\$	s1
0E3+4id1	\$	r4: T→ id
0E3+4T	\$	goto[4,T]=5
0E3+4T5	\$	r2: E→ E+T
0E	\$	goto[0,E]=3
0E3	\$	accept

Example

$$A \rightarrow B$$

 $A \rightarrow A + B$
 $B \rightarrow a$
 $B \rightarrow (A)$

 $1-S \rightarrow A$ $2-A \rightarrow B$ $3-A \rightarrow A+B$ $4-B \rightarrow a$ $5-B \rightarrow (A)$

SLR(1)

حالت				go	to		
<u> حات</u>	a	+	action ()	\$	Α	В
0	s4		s2	2		3	1
1		r2		r2	r2		
2	s4		s2			5	1
3		s7		· · · · · · · · · · · · · · · · · · ·	accept		
4		r4		r4	r4		
5		s7		s6			
6		r5		r5	r5		
7	s4	-	s2				8
8		r3		r3	r3		

پشته	رشته ورودى	اعمال انجام شله	
0	(a+a)\$	s2	
0(2	a+a)\$	s4	
0(2a4	+a)\$	r4: B→a	
0(2B1	+a)\$	r2: A→ B	
0(2A5	+a)\$	s7	
0(2A5+7	a)\$	s4	
0(2A5+7a4)\$	r4: B→a	
0(2A5+7B8)\$	r3: A→ A + B	
0(2A5)\$	s6	
0(2A5)6	\$	$r5: B \rightarrow (A)$	
0A3	\$	accept	

- Example: Shift/Reduce Conflict
 - The grammar is not SLR(1)

$$S \rightarrow E \mid ab$$

 $E \rightarrow cEb \mid T$
 $T \rightarrow a$

- Example: Shift/Reduce Conflict
 - The grammar is not SLR(1)

 $S \rightarrow AaB \mid B$ $A \rightarrow bB \mid c$ $B \rightarrow A$

- Example: Shift/Reduce Conflict
 - The grammar is not SLR(1)

- Example: Shift/Reduce Conflict
 - The grammar is not SLR(1)

• Every SLR(1) grammar is unambiguous, but there are many unambiguous grammars that are not SLR(1)

Shift/Reduce conflict on input symbol =

$$I_0: \quad S' \to \cdot S$$

$$S \to \cdot L = R$$

$$S \to \cdot R$$

$$L \to \cdot *R$$

$$L \to \cdot *id$$

$$R \to \cdot L$$

$$I_1: S' \to S$$

$$\begin{bmatrix} I_2 \colon & S \to L \cdot = R \\ & R \to L \cdot \end{bmatrix}$$

$$I_3: S \to R$$

$$I_4$$
: $L \to *\cdot R$
 $R \to \cdot L$
 $L \to \cdot *R$
 $L \to \cdot \mathbf{id}$

$$I_5$$
: $L \to \mathbf{id}$.

$$I_6: \quad S \to L = \cdot R$$

$$R \to \cdot L$$

$$L \to \cdot *R$$

$$L \to \cdot id$$

$$I_7: L \to *R$$

$$I_8: R \to L$$

$$I_9: S \to L = R$$

Constructing LR(1) Sets of Items

```
SetOfItems CLOSURE(I) {
       repeat
               for (each item [A \to \alpha \cdot B\beta, a] in I)
                      for (each production B \to \gamma in G')
                              for (each terminal b in FIRST(\beta a))
                                      add [B \to \gamma, b] to set I;
       until no more items are added to I;
       return I;
SetOfItems GOTO(I,X) {
       initialize J to be the empty set;
       for ( each item [A \to \alpha \cdot X\beta, a] in I )
               add item [A \to \alpha X \cdot \beta, a] to set J;
       return CLOSURE(J);
```

 $S \rightarrow E \mid ab$ $E \rightarrow dEb \mid T$ $T \rightarrow a$

1- A→S

 $2-S \rightarrow E$

 $3-S \rightarrow ab$

 $4-E \rightarrow dEb$

 $5-E \rightarrow T$

 $6-1 \rightarrow a$

 $S \rightarrow E \mid ab$ $E \rightarrow dEb \mid T$ $T \rightarrow a$

1- A→S

 $2-S \rightarrow E$

 $3-S \rightarrow ab$

 $4-E \rightarrow dEb$

 $5-E \rightarrow T$

 $6-1 \rightarrow a$

حالات	action					goto	
حالات	a	b	d	\$	E	T	S
0	s2		s3		1	4	13
1	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1		r2			
2		s5		r6			
3	s7		s10		6	9	
4				r5			
5			<u> </u>	r3			
6		s8					
7		r6	<u></u>				
8				r4			
9		r5					
10	s7		s10		11	9	
11		s12					
12		r4					
13				accept			

STATE	A	ACTION			ТО
DIAIL	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
$\frac{2}{3}$	s6	s7			5
3	s3	s4			8
$\frac{4}{5}$	r3	r3			
			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

 $A \rightarrow BB$ $B \rightarrow bB|a$

 $0-S \rightarrow A$ $1-A \rightarrow BB$ $2-B \rightarrow bB$ $3-B \rightarrow a$

حالت	action			go	to
	b	a	\$	A	В
0	s3	s4		1	2
1			accept		
2	s6	s7			5
3	s3	s 4			8
4	r3	r3			
5			rl		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

- Example: Shift/Reduce Conflict
 - The grammar is not LR(1)

$$E \rightarrow E + E | E - E | a$$

- 1- S→E
- 2- E→E+E
- 3- E→E-E
- **4-** E→a

Constructing LALR Parsing Tables

- LALR (LookAhead LR)
- This method is often used in practice, because:
 - The tables obtained by it are considerably smaller than the canonical LR tables
 - · Most common syntactic constructs of programming languages can be expressed conveniently by an LALR grammar
- The SLR and LALR tables for a grammar always have the same number of states
- Example: For a language like C:
 - The SLR and LALR tables have typically *several hundred states*
 - The canonical LR table would typically have *several thousand states*

Constructing LALR Parsing Tables

- We look for sets of LR(1) items having the same core, and merge these sets with common cores into one set of items
- The merging of states with common cores can never produce a **shift/reduce** conflict that was not present in one of the original states, **because shift** actions depend only on the core, not the lookahead
- But it is possible that a merger will produce a reduce/reduce conflict
 - 1. Construct $C = \{I_0, I_1, \dots, I_n\}$, the collection of sets of LR(1) items.
 - 2. For each core present among the set of LR(1) items, find all sets having that core, and replace these sets by their union.

Example

$$I_{36}$$
: $C \rightarrow c \cdot C$, $c/d/\$$
 $C \rightarrow \cdot cC$, $c/d/\$$
 $C \rightarrow \cdot d$, $c/d/\$$

$$I_{47}$$
: $C \rightarrow d \cdot, c/d/\$$

$$I_{89}$$
: $C \to cC \cdot, c/d/\$$

STATE	ACTION			GC	ТО
DIAIL	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
$\frac{2}{3}$	s6	s7			5
3	s3	s4			8
4	r3	r3			
$egin{array}{c} 4 \ 5 \ 6 \end{array}$			r1		
6	s6	s7			9
7			r3		
7 8	r2	r2			
9			r2		

STATE	ACTION			GOTO	
DIAIL	c	d	\$	S	C
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

- Example: Reduce/Reduce Conflict
 - The grammar is not LALR(1)

$$\begin{cases}
[A \to c \cdot, d], [B \to c \cdot, e] \\
[A \to c \cdot, e], [B \to c \cdot, d]
\end{cases}$$

$$A \to c \cdot, d/e$$

- Example:
 - Reduce/Reduce conflict in SLR(1) automata
 - Not SLR(1)

 $S \rightarrow Aa$ $S \rightarrow Bb$ $A \rightarrow \in$ $B \rightarrow \in$ $A \rightarrow cAb$ $B \rightarrow dAa$

- Example:
 - No conflict in LR(1) automata
 - LR(1)

 $S \rightarrow Aa$ $S \rightarrow Bb$ $A \rightarrow \in$ $B \rightarrow \in$ $A \rightarrow cAb$ $B \rightarrow dAa$

- Example:
 - No conflict in LALR(1) automata
 - LALR(1)

S8:[$A \rightarrow cA.b.a$]	S11:[$A \rightarrow cA.b,b$]	S8,11:[$A \rightarrow cA.b,ab$]
S9:[$A \rightarrow cAb.,a$]	S12:[A→cAb.,b]	S9,12:[A→cAb.,ab]
S3:[$A \rightarrow c.Ab,a$]	$S10:[A\rightarrow c.Ab,b]$	$S3,10:[A\rightarrow c.Ab,ab]$
[A→.,b]	[A→.,b]	[A→.,b]
$[A\rightarrow .cAb,b]$	$[A\rightarrow .cAb,b]$	$[A\rightarrow .cAb,b]$