

Procura e Planeamento

Projeto (2018/2019)

Número do grupo (obtido a partir do sistema Fénix): 1							
Nome: João Francisco Lopes Pirralha	Número: 78375						
Nome: Rafael Meneses Lucas Ribeiro	Número: 84758						
Classificação:							
Soma das horas gastas exclusivamente para fazer	este trabalho: 70						

Limite para entrega: dia 23h59 do dia 7 de Dezembro de 2018.

Índice

Descrição do trabalho desenvolvido	3
Modelação do problema	3
Estruturas de dados	3
Estados	3
Nós das procuras implementadas	4
Heurísticas	4
greedy-allocation-heuristic	4
fast-heuristic	4
Estratégias de corte	5
Opções tomadas	5
Ideias para obter melhores resultados	5
Resultados obtidos	
Conclusões	

Descrição do trabalho desenvolvido

Modelação do problema

Para modelar o problema usou-se um conjunto de tarefas alocadas em turnos (listas de tarefas) e outro conjunto de tarefas por alocar. De modo a tornar as operações sobre as tarefas mais eficientes, estas são apenas números que identificam a tarefa completa, no problema, que inclui toda a informação do *input*.

Um estado é composto, fundamentalmente, pelos dois conjuntos referidos. As restantes propriedades são detalhes de implementação e são explicitadas na sub-secção seguinte.

A geração dos sucessores de um estado corresponde a associar cada tarefa com cada um dos turnos existentes (se possível) e a criar um novo turno que apenas a contém. Como tal, verificar se um estado é objetivo resume-se a verificar se o conjunto de tarefas não alocadas é vazio. Dois estados são considerados iguais se o seu conjunto de tarefas alocadas for igual.

Estruturas de dados

Estados

Para modelar os estados do problema usou-se a estrutura representada pelo exemplo da Figura 1.

Figura 1: Exemplo da estrutura de dados de um estado.

Onde:

- PROBLEM contém os detalhes das tarefas. É um array de modo a facilitar o seu acesso (pois é imutável). Além disso, está também ordenado pelo tempo de início (para facilitar a penalização de sobreposições na fast-heuristic);
- ALLOCATED contém as tarefas já alocadas em turnos. Os turnos são representados como listas de tarefas de modo a optimizar a sua composição ao se poder aproveitar a lista anterior (estão representados do fim para o início). Por sua vez os turnos também são guardados numa lista, pois esta demonstrou ser a estrutura de dados primitiva (do Common Lisp) mais adequada para as mutações constantes resultantes da alocação de tarefas a turnos;
- NON-ALLOCATED contém as tarefas por alocar em turnos, sendo uma lista de tarefas, pois tal como em ALLOCATED, foi a estrutura de dados mais prática para remoções constantes;
- COST é o custo deste estado em relação ao seu predecessor;
- TOTAL COST é o custo cumulativo do estado;

- HEURISTIC é o valor da função heurística neste estado, calculada na geração, de modo a se poder obter facilmente a heurística múltiplas vezes sem perda de desempenho (por exemplo na ILDS);
- HEURISTIC-FUNCTION é a função heurística a ser usada na geração;
- HASH identifica o estado com base nos turnos em ALLOCATED, de forma a acelerar os algoritmos em procura.lisp ao ser usado para identificar estados iguais.

Nós das procuras implementadas

Para modelar os nós das procuras implementadas usou-se a estrutura representada pelo exemplo da Figura 2.

```
#S(SEARCH-NODE
:STATE #S(AFECTACAO-STATE
...)
:PREDECESSOR #S(SEARCH-NODE
...)
:F 1080)
```

Figura 2: Exemplo da estrutura de dados de um nó de procura, para as procuras implementadas.

Onde:

- STATE contém o estado correspondente ao nó;
- PREDECESSOR contém o nó antecedente, para se obter o caminho para a solução (embora não seja relevante para o projeto foi usado para depuração);
- F contém o valor de um nó (para ser usado com a RBFS, a nossa abordagem alternativa).

Heurísticas

Não se descobriu nenhuma heurística que se conseguisse aproximar significativamente da solução ótima (nenhuma das heurísticas é admissível), nem nenhuma heurística com desempenho médio mas cálculo rápido. No entanto, desenvolveram-se as seguintes duas heurísticas:

greedy-allocation-heuristic

A greedy-allocation-heuristic aloca gananciosamente as tarefas que faltam ao turno que minimizar a sua duração (com a nova tarefa adicionada e ignorando a restrição 3). No fim calcula a duração dos turnos que alocou (agora com a restrição 3), e como o custo total já está incluído nos turnos originais do estado, subtrai o custo total do estado. A subtração do custo total faz com que as procuras que a usam se tornem procuras gananciosas. Apesar disso, tem resultados relativamente bons, sendo a melhor heurística descoberta e robusta em diferentes problemas. No entanto, o seu cálculo é relativamente lento, não conseguindo terminar o problema 4 (dos problemas de exemplo fornecidos) nas condições requeridas (menos de 5 minutos num computador comum).

fast-heuristic

A fast-heuristic é uma heurística simples que consiste em somar as durações das tarefas não alocadas. Além disso, de modo a incentivar a alocação de tarefas em conflito primeiro (pois correspondem a diferentes turnos, o que faz o custo aumentar mais cedo), soma adicionalmente os períodos de sobreposição de duas tarefas adjacentes (que têm de estar ordenadas por tempo de início). Este resultado é posteriormente multiplicado por um número arbitrário, de modo a convergir rapidamente para uma solução. Esta foi a primeira heurística desenvolvida no projeto, e embora se tenham desenvolvido heurísticas adicionais, as restantes apresentavam problemas de robustez em vários problemas, tendo por vezes um bom desempenho e por outras desempenho pior do que esta heurística simples. Devido à sua rapidez, é usada para problemas maiores (entre 257 a 768 tarefas).

Estratégias de corte

Foi implementada uma estratégia de corte simples que consiste em apenas guardar os melhores sucessores de cada nó, de modo a evitar uma ordenação de todos os sucessores em memória antes de os descartar, que em muitas situações era o suficiente para ficar sem memória disponível. Um sucessor gerado é mantido se o seu valor (custo + heurística) for menor do que a soma do valor do melhor sucessor (até essa altura) mais uma fração da diferença entre o pior e o melhor. Essa fração foi determinada como 1/16 para problemas até 512 tarefas e como 1/32 para problemas maiores. Esta estratégia de corte não é usada para a sondagem iterativa (e outras procuras não-informadas que foram testadas). A qualidade das soluções não pareceu ser afetada nos testes desempenhados.

Opções tomadas

Para a verificação de algumas restrições usou-se uma abordagem implícita, onde não são adicionadas pseudo-tarefas correspondentes a viagens, almoços ou pausas (os seus tempos são contabilizados conforme a verificação de condições). Esta abordagem tem a vantagem de causar um menor número de sucessores.

Para a ILDS funcionar em casos não binários, decidiu-se tomar uma abordagem onde o número de discrepâncias é decrementado em uma unidade até ser 0, pois pareceu ser uma extensão intuitiva do algoritmo original. Além disso, adiciona-se o custo total à heurística, pois tem melhores resultados do que a heurística apenas — pode-se inclusivamente considerar a junção dos custos como variantes dessas heurísticas. Por fim, decidiu-se apenas parar a ILDS após um certo período de tempo e não imediatamente a seguir à primeira solução encontrada, de modo a tentar encontrar soluções potencialmente melhores.

Para a melhor abordagem combinaram-se várias estratégias, de forma a garantir melhor qualidade da solução dentro das limitações computacionais. Usou-se o critério de que a procura tinha de terminar em menos de 3 minutos nas máquinas do grupo (exceto procuras de tempo limitado) e que tinha de correr com menos de 192MiB de memória no SBCL (para dar uma margem de segurança em relação à implementação que será usada pelo professor). Criaram-se vários perfis com base nos problemas de teste fornecidos:

- Até 192 tarefas: A*, greedy-allocation-heuristic, fração no corte de 1/16;
- De 193 a 256 tarefas: ILDS, greedy-allocation-heuristic, fração no corte de 1/16;
- De 257 a 512 tarefas: A*, fast-heuristic, fração no corte de 1/16;
- De 513 a 768 tarefas: ILDS, fast-heuristic, fração no corte de 1/32;
- Mais de 768 tarefas: Sondagem Iterativa.

Para a abordagem alternativa implementou-se a RBFS – originalmente tencionava-se implementar o SMA*, o que não conseguimos realizar. A RBFS foi a melhor alternativa mais simples encontrada.

Ideias para obter melhores resultados

O principal fator para obter melhores resultados seria uma heurística com melhor qualidade e rapidez de cálculo, que infelizmente não se conseguiu desenvolver. No entanto acreditamos que existe uma heurística melhor com uma ideia semelhante à da <code>greedy-allocation-heuristic</code>, talvez até mesmo admissível, ordenando os turnos e as tarefas de modo a não ser necessária complexidade quadrática. No entanto todas as variações tentadas nesta heurística resultaram no seu não funcionamento.

Para obter melhores resultados tendo em conta a memória limitada seria interessante implementar o SMA*, que era intuito original para a abordagem alternativa. A sua implementação é complicada pelo que se implementou antes a RBFS, que sofre de usar pouca memória e por isso tem um desempenho pior que o SMA*.

Resultados obtidos

Para medir o desempenho das várias procuras testaram-se todas as procuras implementadas no ficheiro procura.lisp fornecido, mais as que se implementaram (Sondagem Iterativa, ILDS e RBFS para a abordagem alternativa). Os resultados obtidos podem ser observados nas tabelas 1 a 6 (células por preencher significam que não terminou em tempo útil ou que esgotou a memória disponível):

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
largura	1800	5	0	61	170	2,79
profundidade	1800	5	0	5	15	3
profundidad e-iterativa	1800	5	0	168	575	3,42
ida*	1080	3	0	5	11	2,2
a*.melhor .heuristica	1080	3	0	5	21	4,2
a*.melhor .heuristica .alternativa	1080	3	0	12	30	2,5
sondagem .iterativa	1080	3	4384	3010422	9062104	3,01
ILDS	1080	3	5000	92733126	216	0
abordagem .alternativa	1080	3	0	6	11	1,83

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
largura	-	-	-	-	-	
profundidade	29520	82	8	82	3403	41,5
profundidad e-iterativa	-	-	-	-	-	-
ida*	9808	25	600	82	1381	16,84
a*.melhor .heuristica	9740	25	1328	82	3334	40,66
a*.melhor .heuristica .alternativa	12778	32	32	237	1309	5,52
sondagem .iterativa	15005	39	4032	35607	2902784	81,52
ILDS	9661	25	5228	2440	24370	9,99
abordagem .alternativa	9808	25	576	83	1381	16,64

(5 tarefas).

Tabela 1: Resultados do problema do enunciado Tabela 2: Resultados do problema de teste 1 (82 tarefas).

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
largura	-	-	-	-	-	-
profundidade	58320	162	84	162	13203	81,5
profundidad e-iterativa	-	-	-	-	-	-
ida*	22720	56	4968	162	4324	26,69
a*.melhor .heuristica	22478	55	32692	162	11559	71,35
a*.melhor .heuristica .alternativa	27987	69	200	536	3637	6,79
sondagem .iterativa	30853	77	4280	11410	1921445	168,4
ILDS	22573	55	5820	163	5273	32,35
abordagem .alternativa	22720	56	4956	163	4324	26,53

	Custo da	Número de	Tempo de	Expansões	Gerações	Fator médio
	solução	turnos da solução	Tempo de procura (ms)	Expansoes	Gerações	de ramificação
largura	-	-	-	-	-	-
profundidade	87840	244	340	244	29890	122,5
profundidad e-iterativa	-	-	-	-	-	-
ida*	35742	86	21440	244	11941	48,94
a*.melhor .heuristica	35012	85	185028	244	35410	145,12
a*.melhor .heuristica .alternativa	40498	96	600	250	5329	21,32
sondagem .iterativa	49290	125	4856	6125	1498301	244,62
ILDS	35141	85	22932	245	11617	47,42
abordagem .alternativa	35742	86	21140	245	11941	48,74

Tabela 3: Resultados do problema de teste 2 (162 tarefas).

Tabela 4: Resultados do problema de teste 3 (244 tarefas).

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
largura	-	-	-	-	-	-
profundidade	-	-	-	-	-	-
profundidad e-iterativa	-	-	-	-	-	-
ida*	-	-	-	-	-	-
a*.melhor .heuristica	-	-	-	-	-	-
a*.melhor .heuristica .alternativa	77607	188	4136	487	18941	38,89
sondagem .iterativa	95801	239	5336	1892	925326	489,07
ILDS	-	-	-	-	-	-
abordagem .alternativa	-	-	-	-	-	-

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
largura	-	-	-	-	-	-
profundidade	-	-	-	-	-	-
profundidad e-iterativa	-	-	-	-	-	-
ida*	-	-	-	-	-	-
a*.melhor .heuristica	-	-	-	-	-	-
a*.melhor .heuristica .alternativa	-	-	-	-	-	-
sondagem .iterativa	136033	334	4696	694	537033	773,82
ILDS	-	-	-	-	-	-
abordagem .alternativa	-	-	-	-	-	-

Tabela 5: Resultados do problema de teste 4 (472 tarefas).

Tabela 6: Resultados do problema de teste 5 (693 tarefas).

Como se pode observar nas tabelas 1 e 2, a **procura em largura primeiro** e a **procura em profundidade iterativa** apenas conseguiram resolver o problema do enunciado, pelo que são desadequadas para o projeto.

A **procura em profundidade primeiro** conseguiu resolver até ao terceiro problema (tabela 4), limitandose a retornar a solução trivial correspondente a uma tarefa por turno. Não conseguiu resolver o problema 4 (tabela 5) pois não foram usadas estratégias de corte para as procuras não informadas e a memória foi esgotada.

O **A*, IDA*, ILDS e RBFS** ("abordagem.alternativa"), usando a greedy-allocation-heuristic, conseguiram resolver até ao problema 3 com soluções semelhantes, mas não conseguiram encontrar uma solução em tempo útil no problema 4. O **A***, usando a fast-heuristic, resolveu até ao problema 4, ficando sem memória no problema 5 (tabela 6). Por fim a **Sondagem Iterativa** resolveu todos os problemas, produzindo, no entanto, apenas soluções com um número de turnos igual a aproximadamente metade do número de tarefas.

Pode-se observar que até ao problema 3 o A^* obtém as melhores soluções, mas nos seguintes excede o limite de tempo. Em alternativa ao A^* , a **ILDS** aparenta obter soluções ligeiramente melhores que o IDA* e RBFS (a utilização de heurísticas não admissíveis produz efeitos diferentes conforme a procura, mesmo que esta pudesse garantir a solução ótima $-A^*$, IDA* e RBFS). Escolheu-se por isso usar o A^* e a **ILDS** na "melhor.abordagem".

Com base nos resultados obtidos nas tabelas 1 a 6 e conforme descrito na subsecção "Opções tomadas", implementou-se uma estratégia para "melhor.abordagem" **híbrida** que obteve os resultados da tabela 7:

	Custo da solução	Número de turnos da solução	Tempo de procura (ms)	Expansões	Gerações	Fator médio de ramificação
Enunciado	1080	3	0	5	21	4,2
Problema 1	9740	25	1300	82	3334	40,66
Problema 2	22478	55	31736	162	11559	71,35
Problema 3	35141	85	22716	245	11617	47,42
Problema 4	77607	188	4156	487	18941	38.89
Problema 5	113086	269	12792	694	16254	23,42

Tabela 7: Resultados da estratégia "melhor.abordagem".

Conclusões

Dos vários tópicos necessários para a completude do projeto, um aspeto não foi cumprido: não se conseguiram implementar heurísticas de grande qualidade. As que se conseguiram implementar não produzem soluções ótimas nem aproximadamente ótimas. Esse facto em conjunção com parecerem muito simples não representa o tempo que foi despendido a pensar, implementar e testar múltiplas heurísticas.

Outro aspeto que não era especificamente requerido para o projeto mas que era do nosso interesse seria a implementação do algoritmo SMA* para a "abordagem.alternativa", o que não conseguimos fazer.