------ 15 ------ Dynamic Programming

Dynamic programming: a tabular (programming) method applied to **optimization problems**.

Divide a problem into several subproblems that are not independent (sharing subproblems). Avoid recomputing the same subproblem by solving every subproblem just once and saving the answer in a table.

- Step 1. Characterize the <u>structure</u> of an <u>optimal solution</u>. (optimal <u>substructure</u>?)
- Step 2. Recursively define the <u>value</u> of an optimal solution. (recurrence)
- Step 3. Compute the <u>value</u> of an optimal solution in a <u>bottom-up</u> fashion. * 定填表順序
- Step 4. Construct an optimal solution from the computed information. (sometimes omitted) (backtracking)

15.1 The rod-cutting problem (1-d DP)

Input:

 \underline{n} , the length of a (steel) rod $\underline{p}[i]$, the price of a rod of length i

Output: the maximum revenue r

length i	1	2	3	4	5	6	7	8	9	10	11
price $p[i]$	2	5	6	9	11	16	17	20	22	24	25

A price table

The 8 possible ways for selling a rod of length 4 ((c) is optimal, where $r^* = 10$)

Step 1. An optimal solution to an instance contains optimal solutions to sub-instances.

Example:

If (2, 1, 2, 6) is optimal for length = 11, then (1, 2, 6) is optimal for length = 9

$$\begin{array}{c}
2 & 1 & 2 & 6 \\
\hline
\end{array}$$

$$\begin{array}{c}
\text{len} = 11
\end{array}$$
optimal for length = 9

Step 2.

Let $\underline{r}[j]$ be the maximum revenue for length = j. Then

$$\underline{r[j]} = \begin{cases} 0 & \text{if } j = 0 \\ \max_{1 \le i \le j} \{ \underline{p[i]} + \underline{r[j-i]} \} & \text{if } j > 0 . \end{cases}$$

The maximum revenue r^* is r[n].

Step 3. Compute *r* and *s* (for **Step 4**)

15-3b

```
BOTTOM-UP-CUT-ROD(p, n) (bottom-up)

1 let r[0..n] and s[0..n] be new arrays

2 r[0] \leftarrow 0

3 for j \leftarrow 1 to n do // compute r[j]

4 r[j] \leftarrow -\infty

5 for i \leftarrow 1 to j do
```

for $i \leftarrow 1$ to j do

if f[j] < p[i] + f[j-i] then $f[j] \leftarrow p[i] + f[j-i]$ $f[j] \leftarrow p[i] + f[j-i]$

find best i (1st cut)

9 **return** r and s

for backtracking

• $T(n)=O(n^2)$

Example: (n = 11, j = 9)

												. • .
leng	th i	1	2	3	4	5	6	7	8	9	10	11
price	p[i]	2	5	6	9	11	16	17	20	22	24	25
										*		
i	0	1	2	3	4	5	6	7	8	9	10	11
R[i]	0	2	5	7	10	12	16	18	21	23	26	28
S[<i>i</i>]	0	1	2	1	2	1	6	1	2	1	2	1

$$p[i] \qquad r[9-i]$$

$$0 \qquad \underline{i} \qquad 9-i$$

first cut at i (1 $\leq i \leq$ 9)

$$r[9] = \max \begin{cases} p[1] + r[8], & p[2] + r[7], & p[3] + r[6] \\ p[4] + r[5], & p[5] + r[4], & p[6] + r[3] \\ p[7] + r[2], & p[8] + r[1], & p[9] + r[0] \end{cases}$$

$$= \max \begin{cases} 2 + 21, & 5 + 18, & 6 + 16 \\ 9 + 12, & 11 + 10, & 16 + 7 \\ 17 + 5, & 20 + 2, & 22 + 0 \end{cases}$$

= 23 (the first cut s[9] = 1, 2, or 6) * exercise: try to write a memoized version

Step 4. Using table s, by backtracking we obtain an optimal cutting in O(n) time.

Example: (1, 2, 2, 6) is optimal for n = 11, since s[11] = 1, s[10] = 2, s[8] = 2, and s[6] = 6.

16.2 Matrix-chain multiplication (2d DP)

15-5x 15-5y

Input: $(p_0, p_1, ..., p_n)$, the dimensions of n matrices $A_1A_2...A_n$. $(A_i$ is of size $p_{i-1} \times p_i$)

Output: parenthesize $A_1A_2...A_n$ to minimize the number of scalar multiplications.

Example:
$$(p_0, p_1, p_2, p_3) = (10, 100, 5, 50)$$

 $((A_1A_2)A_3) \Rightarrow 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$ ($\sqrt{}$)
 $(A_1(A_2A_3)) \Rightarrow 100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$ (\times)

Step 1. An optimal solution to an instance contains optimal solutions to sub-instances.

last *

Example: if $((A_1(A_2A_3))((A_4(A_5A_6))A_7))$ is an optimal solution to $A_1A_2...A_7$, then

 $\frac{(A_1(A_2A_3))}{((A_4(A_5A_6))A_7)}$ is optimal to $A_1A_2A_3$, and $\frac{((A_4(A_5A_6))A_7)}{((A_4(A_5A_6))A_7)}$

Step 2.

Let m[i, j] be the minimum number of scalar multiplications for computing $A_i...A_i$. We have

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

* the best k is s[i, j]

Step 3. m[1..n, 1..n] s[1..n, 1..n] (for **Step 4**)

Matrix-Chain-Order(p)

for
$$i \leftarrow 1$$
 to n do $m[i, i] = 0 \implies l = 1$ | matrice for $l \leftarrow 2$ to n do

for $i \leftarrow 1$ to n - l + 1 do

$$i \leftarrow i + l - 1$$

find besk k (last *)

$$j \leftarrow i + l - 1$$
 find besk k (lambda)
 $m[i, j] = \infty$
for $k \leftarrow i$ to $j - 1$ do
 $q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$
if $q < m[i, j]$ then $m[i, j] \leftarrow q$
 $s[i, j] \leftarrow k$

return *m* and s

• $T(n) = O(n^3)$

Example: $(p_0, p_1, ..., p_6) = (30,35,15,5,10,20,25)$

15-7×

$$k = 2$$
 $m[2,2]+m[3,5]+p_1p_2p_5 = 0+2500+35\times15\times20 = 13000$
 $k = 3$ $m[2,3]+m[4,5]+p_1p_3p_5 = 2625+1000+35\times5\times20 = 7125$
 $k = 4$ $m[2,4]+m[5,5]+p_1p_4p_5 = 4375+0+35\times10\times20 = 11375$

Thus, we have m[2,5] = 7125 and s[2,5] = 3

15-8a

Step 4. Using table s, by backtracking we obtain $((A_1(A_2A_3))((A_4A_5)A_6))$ in O(n) time.

15.3 Elements of dynamic programming

Optimal substructure: an optimal solution to the problem contains optimal solutions to subproblems.

not independent

Overlapping subproblems: a recursive algorithm revisits the same subproblem over and over again.

15-9

Recursive-Matrix-Chain(p, i, j) if i = j then return 0

return m[i, j]

$$/m[i, j] = \infty$$
 $q_k = m[i,k] + m[k+1,j] + P_{i-1}P_kP_j$
for $k \leftarrow i$ to $j-1$ do
 $q \leftarrow \text{Recursive-Matrix-Chain}(p, i, k)$
 $+ \text{Recursive-Matrix-Chain}(p, k+1, j)$
 $+ p_{i-1}p_kp_j$
if $q < m[i, j]$ then $m[i, j] \leftarrow q$

•
$$T(n) \ge \sum_{1 \le k \le n-1} (T(k) + T(n-k) + 1)$$

 $\ge 2\sum_{1 \le i \le n-1} T(i) + n$
= $\Omega(2^n)$ (by substitution method)
(or Knuth's approach)

Memoization:

for cases when it is hard 15-10 to "bottom-up" (eg. 3-D, 4-D)

a variation of dynamic programming (top-down)

```
un-computed
  Memoized-Matrix-Chain(p)
     for i \leftarrow 1 to n do
        for j \leftarrow i to n do \underline{m}[i, j] = \infty
     return Lookup-Chain(m, p, 1, n)
  Lookup-Chain(m, p, i, j)
                                             avoid recomputing
     if m[i, j] < \infty then return m[i, j]
     if i = j then m[i, j] \leftarrow 0 save the answer
              else
                   for k \leftarrow i to j-1 do
                        q \leftarrow \text{Lookup-Chain}(m, p, i, k)
Compute
                             + Lookup-Chain(m, p, k+1, j)
    &
                             + p_{i-1}p_kp_i
  Save
                        if q < m[i, j] then m[i, j] \leftarrow q
                                             save the answer
     return m[i, i]
```

•
$$T(n) = O(n^3)$$

^{*} Try to write a memoized recursive algorithm for the rod cutting problem.

15.4 Longest common subsequence (LCS)

Subsequence: Z is a subsequence of X iff Z can be obtained from X by deleting some characters.

Common subsequence:

$$X = x_1x_2...x_7 = abcbdab$$
 $Y = y_1y_2...y_6 = bdcaba$

common sequences: ba, bca, bcba, bdab

Longest common subsequence: bcba, bdab

Step 1. Optimal substructure

15-11a

Example:
$$X[1..m] = \underbrace{abcbdab}_{X[1..n]} d$$

 $Y[1..n] = \underbrace{bdcab}_{Y[1..4]} d$

From (b, d, a, b) = LCS(X, Y), we conclude that (b, d, a) = LCS(X[1..m-2], Y[1..n-3]).

Step 2.

15-11a

Let
$$Z[1..k] = LCS(X[1..m], Y[1..n])$$
.
(1) If $x_m = y_n$, then $x_m = y_n = z_k$ and $Z[1..k-1] = LCS(X[1..m-1], Y[1..n-1])$.

(2) If
$$x_m \neq y_n$$
, then either

$$Z[1..k] = LCS(X[1..m-1], Y[1..n])$$
 or

$$Z[1..k] = LCS(X[1..m], Y[1..n-1])$$

$$X1\sim i$$
 $y1\sim$

Let c[i, j] be the length of LCS(X[1..i], Y[1..j])

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max\{c[i, j-1], c[i-1, j]\} & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

if
$$i = 0$$
 or $j = 0$
if $i, j > 0$ and $x_i = y_j$

Step 3. c[0..n, 0..n], b[0..n, 0..n] (for **Step 4**)

15-12x

6

- D
- y_j x_i

 \boldsymbol{A} 0

1 A	
-----	--

2

5 D

7 В

• Time: O(mn) Space: O(mn) (or columns)

★ • If Step 4 is omitted, c only needs two rows.

space: O(min{m,n})

Step 4. Using table b, by backtracking we obtain LCS(X, Y) = bcba in O(m + n) time.

★15.5 <u>optimal binary search trees</u> (extra class)

* Optimal polygon triangulation

Input: a convex polygon $P = (v_0, v_1, ..., v_{n-1})$

a cost function $\underline{w}(\Delta v_i v_j v_k)$

Output: an optimal triangulation

★ minimize 虛 線 總 長

• Usually, $w(\Delta v_i v_j v_k)$ is $|v_i v_j| + |v_j v_k| + |v_i v_k|$.

Step 2. Let f[i, j] be the weight of an optimal

triangulation of polygon
$$(v_{i-1}, v_i, ..., v_j)$$
.

$$t[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k \le j-1} \{t[i, k] + t[k+1, j] + w(\Delta v_{i-1} v_k v_j)\} & \text{if } i < j \end{cases}$$

* t[1, n-1] is the solution!

Step 3. Similar to Step 3 of matrix chain.

Time: $O(n^3)$ Space: $O(n^2)$

Homework: Ex. 15.2-2, 15.4-3 15.4-5, Prob. 15-3, <u>15-4, 15-5, 15-9</u>

* Every problem is worth studying!

15supp-a