Name:	
VIP ID:	

- Write your name and your VIP ID in the space provided above.
- The test has six (6) pages, including this one and the table of Laplace transforms at the end.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.

Page	Max	Points
2	40	
3	20	
4	20	
5	20	
Total	100	

Problem 1 (40 pts—10 pts each). Find the Laplace transform of the following functions:

(a)
$$f(x) = 3x^2 - 4x + 7$$

$$F(s) = \begin{pmatrix} s \\ s \end{pmatrix}$$

(b)
$$f(x) = 2e^{3x} - 8e^{-7x} + \cos(\pi x)$$

$$F(s) = \tag{s > 1}$$

(c)
$$f(x) = 3x^2 \sin(5x)$$

$$F(s) = \tag{s > 1}$$

(d)
$$f(x) = 6xe^{-x}\sin x$$

$$F(s) = \boxed{ (s >)}$$

Problem 2 (20 pts—10 pts each). Find the inverse Laplace transform of the following functions in the given domains.

(a)
$$F(s) = \frac{2s-3}{s^2-2s-15}$$
, $(s > 5)$

$$f(x) =$$

(b)
$$F(s) = \frac{s-3}{(s-3)^2+16}$$
, $(s>3)$

$$f(x) =$$

Problem 3 (20 pts). Use the definition of the Laplace transform to find that

$$\mathcal{L}{4\sin 3x} = \frac{12}{s^2 + 9} \text{ for } s > 0.$$

Problem 4 (20 pts). Use techniques based on the Laplace transform to solve the initial value problem y'' + 3y' + 2y = x that satisfies y(0) = 0, y'(0) = 2.

f(x)	$\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x) dx$				
1	$\frac{1}{s}$	s > 0	$cf(x)\pm g(x)$	$cF(s) \pm G(s)$	s > max(a, b)
x^n	$\frac{n!}{s^{n+1}}$	s > 0	$e^{\alpha x}f(x)$	$F(s-\alpha)$	$s > a + \alpha$
$e^{\alpha x}$	$\frac{1}{s-\alpha}$	$s > \alpha$	$x^n f(x)$	$(-1)^n F^{(n)}(s)$	s > a
$\sin \beta x$	$\frac{\beta}{s^2 + \beta^2}$	s > 0	f'(x)	sF(s) - f(0)	
$\cos \beta x$	$\frac{s}{s^2 + \beta^2}$	s > 0	f''(x)	$s^2 F(s) - sf(0) - f'(0)$	