Short rules: one A4 cheatsheet is allowed, calculators are ok, offline, 120 minutes.

- 1. Using a large dataset Donald Trump has estimated two parameters, $\hat{a}=1,\,\hat{b}=2$ with $se(\hat{a})=0.2,\,se(\hat{b})=0.3.$ Estimators are uncorrelated.
 - (a) [6] Find the standard error of $\hat{\gamma} = \hat{a}^2 \hat{b} + \hat{b}^2 \hat{a}$.
 - (b) [4] Find the 95% confidence interval for $\gamma=a^2b+b^2a$.
- 2. The price level p_t and production q_t are endogeneous variables. Taxes a_t and income b_t are exogeneous. All variables are centered. The structural form is given by the system

$$\begin{cases} p_t = \alpha_1 q_t + \alpha_2 a_t + u_{1t} \\ q_t = \beta_1 p_t + \beta_2 b_t + u_{2t}. \end{cases}$$

The estimates of the reduced form via equation-by-equation ols:

$$\begin{cases} p_t = 2a_t + 4b_t \\ q_t = -3a_t + 2b_t. \end{cases}$$

- (a) [6] Recover the estimates of the coefficients in structural form.
- (b) [4] Describe how you will estimate the standard errors of the structural form.
- 3. The price level p_t , production q_t and interest rate r_t are endogeneous variables. Taxes a_t and income b_t are exogeneous. All variables are centered. The structural form is given by the system

$$\begin{cases} p_t = \alpha_1 q_t + \alpha_2 a_t + u_{1t} \\ q_t = \beta_1 p_t + \beta_2 b_t + u_{2t} \\ r_t = \gamma_1 p_t + \gamma_2 q_t + \gamma_3 b_t + u_{3t} \end{cases}$$

- (a) [5] Check the order condition for each equation.
- (b) [5] Check the rank condition for each equation.

- 4. The logit model was estimated: $\hat{\mathbb{P}}(y_1 = 1 \mid x_i, d_i) = F(-0.3 + 0.2x_i + 0.1d_i)$.
 - (a) [3] Forecast the odds of $y_1 = 1$ for $x_i = 1$, $d_i = 1$.
 - (b) [3] Find the partial effect of changing the value of the dummy variable d_i from zero to one for $x_i = 1$.
 - (c) [4] Find the marginal effect of changing the value of the variable x_i for $x_i = 1$ and $d_i = 1$.
- 5. The probit model was estimated using 1000 observations with 200 observations where $y_i = 1$. Standard errors are given in brackets.

$$\hat{\mathbb{P}}(y_1 = 1 \mid x_i, d_i) = F(-0.3 + 0.2 x_i + 0.1 d_i), \quad AIC = 606.$$

- (a) [3] Provide a 95% confidence interval for β_x .
- (b) [4] Find the log-likelihood of the trivial probit model, $\hat{\mathbb{P}}(y_1 = 1 \mid x_i, d_i) = F(\hat{\beta}_0)$.
- (c) [3] Compare the initial model and the trivial model using likelihood ratio test at 5% significance level.

Hint: 5% critical values are $\chi_1^2 = 3.84$, $\chi_2^2 = 5.99$, $\chi_3^2 = 7.81$, $\chi_4^2 = 9.49$.

6. (from UOL past exams) It is postulated that a reasonable demand–supply model for the wine industry in Australia would be given by:

$$Q_t = \alpha_0 + \alpha_1 P_t^w + \alpha_2 P_t^b + \alpha_3 Y_t + \alpha_4 A_t + u_t \quad \text{(demand)}$$

$$Q_t = \beta_0 + \beta_1 P_t^w + \beta_3 S_t + v_t \quad \text{(supply)}$$

where Q_t = real per capita consumption of wine, P_t^w = price of wine relative to CPI, P_t^b = price of beer relative to CPI, Y_t = real per capita disposable income, A_t = real per capita advertising expenditure, and S_t = storage cost. CPI is the Consumer Price Index.

The endogenous variables in this model are Q and P^w , and the exogenous variables are P^b , Y, A, and S. The variance of u_t and v_t are, respectively, σ_u^2 and σ_v^2 , and $\operatorname{Cov}(u_t, v_t) = \sigma_{uv} \neq 0$. The errors do not exhibit any correlation over time.

- (a) [3] Provide the reduced form for P_t^w .
- (b) [2] The OLS estimation of the demand function, based on annual data from 1955–1975 (T=20), gave the following results (all variables are in logs and figures in parentheses are t-ratios).

$$\hat{Q}_t = -23.651 + 1.158P_t^w - 0.275P_t^b + 3.212Y_t - 0.603A_t.$$

$$(-6.04) \quad (4.0) \quad (-0.45) \quad (4.5) \quad (-1.3)$$

All the coefficients except that of Y have the wrong signs. The coefficient of P^w (price elasticity of demand, α_1) not only has the wrong sign but also appears significant.

Explain why the OLS parameter estimator may give rise to these counter-intuitive results. You are expected to use your results in part (a) to support your answer.

- (c) [3] The supply equation is overidentified. Clearly explain this terminology. What distinguishes overidentification from exact identification and underidentification? Provide one set of assumptions that would render the supply equation exactly identified.
- (d) [2] Discuss how you should estimate the supply equation in light of the overidentification.