Restriction: DC: Direct Current Circuits to the course

Pumping the Charges:

Capacitors are OK but very limited.

-> Charge Pump: EMF device EMF: E L'"Electromotive Force" (outdated definition)

previously (up until now) Electric field produced forces that moved the charge corriers

the motion of charge corriers in terms of now:

Required Energy

an EMF device supplies

the energy for the motion

via the work ofit exerts.

A common EMF device : BATTERY

most influences our lives : electric generator

solar cells

fuel cells

also living things (electric eels,

human beings ("matrix")

motion of positive charge carriers opposite of the E field between the terminals (inside the EMF device)

- Thus there must be somE source of energy within the device.

Energy Source: Chenacol: battery, fuel cell

Mechanical: Electric generator

Also, even temperature differences (thermopiles, sun)

in dt time, day charge passes through a cross-section a-a' dw to move day

E = $\frac{dW}{dq}$ Work per unit charge that the device does to move charges from low potential terminal to the high potential terminal

 $[18] = \frac{7}{c} = \text{Volt}$

Ideal ENF: The potential difference between the terminals is equal to the emf of the device.

(e.g., a 12V battery always supplies a potential difference of 12V, always)

Real life: The EMF device has an internal Resistance

V ferminals = 2)

When the EMF device is connected, the device transfers energy to the charge carriers passing through it.

Calculating the current in a single-loop circuit

i.) via Energy Conservation:

EBJa Sk lower pot

P=i2R -> in a time interval dt, an amount of energy izedt will appear in the resistor as thermal energy.

> dq=idt will have moved through battery B dw=Edq=Eidt

$$\mathcal{E} = iR \longrightarrow \left[\hat{i} = \frac{\ell}{R} \right]$$

ii.) via Potential:

The sum of the charges in potential encountered in a complete traversal of any loop of a current must be zero :: Kirchhoff's toop Rule

the potential at a: Va when we pass the battery, the change in the potential = & R: V=iR : it must decrease since we are moving from higher to lover potential

→ Va+ E-iR = Va (analogy with heights) (1) (2) (3)

Resistance Rule: For a move through a resistance in a direction same as the current, the change in the potential is: -iR (opposite direction of the current: ir)

EMF Rule: FOR a move through an ideal emf device in the same direction of the emf arrow, the change in the potential is & (for the opposite direction: - 8)

Other Single-loop Circuits

Internal Resistance

$$\begin{cases}
\mathcal{E} - i \mathbf{r} - i \mathbf{R} = 0 \\
i = \frac{\mathcal{E}}{\mathbf{R} + \mathbf{r}} \left(\rightarrow \mathbf{r} \rightarrow 0 : i = \frac{\mathcal{E}}{\mathbf{R}} \right)
\end{cases}$$

Resistances in Series

The resistances in series have the identical current in the Sum of potential differences across the resistances is equal to the applied potential difference of V

Potential Difference Between two points

$$\begin{cases} \frac{i}{b} \\ \frac{1}{2} = 2R \end{cases} \qquad \begin{cases} V_{a} + \mathcal{E} - ir = V_{b} \\ V_{b} - V_{a} = \mathcal{E} - ir \end{cases}$$

$$i = \frac{\mathcal{E}}{R+r} \rightarrow V_b - V_Q = \mathcal{E} - \frac{\mathcal{E}}{R+r} r = \frac{\mathcal{E}}{R+r} R$$

Suppose we more countre-clocherse:

$$V_b-V_a=iR=\frac{e}{e+r}R$$

* Potential Difference Across a Real Battery

({=12V, r=21, R=41) -> } = 12V but V=8V

() note that the result depends on the value of the current through the battery.

different circuit -> different aurrent => different V

* Grounding a circuit

In both cases

Power, Potential and EMF

the net rate of energy transfer from the emf device to charge

Carriers

a.) Current in the circuit?

6.) Potential Tiff between the terminals of Battery 1?

 $V_a - V_b = -ir$, $+ \xi_1 = \dots = 3.84 V \approx \frac{3.8 V}{4} > 0$ the enf of the battery.

Example

a.) What value must R have if the current in the circuit is the A? E1=2V, E=3V, V1=r2=31

$$\lambda = \frac{\ell_2 - \ell_1}{r_1 + r_2 + R} \longrightarrow R = \frac{\ell_2 - \ell_1}{i} - r_1 - r_2 = \dots = 9.9 \times 10^3 \Omega$$

b) What is the rate at which thermal energy appears in R?

- c.) Rate of Energy Lost to therenal Energy in R? P= 12R = 23.98W = 24W
- d.) Rate of energy Lost in each section of wine? P= 12 Ruise = 4.3 mW

MULTILOOP CIRCUITS

d: i,+i3=i2

The sum of currents entering any Junction must be equal to the sum of currents leaving that junction.

KIRCHHOFF'S JUNCTION RULE

-> Conservation of charge for a steady Flow.

3 egns, 3 unknowns

$$\begin{pmatrix} 4 & -1 & 1 \\ R_1 & 0 & -R_3 \\ 0 & -R_2 & -R_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \ell_1 \\ \ell_2 \end{pmatrix}$$

RESISTANCES IN PARALLEL

All of the Resistances have the same potential difference V

$$\dot{\lambda}_1 = \frac{V}{R_1}$$
, $\dot{\lambda}_2 = \frac{V}{R_2}$, $\dot{\lambda}_3 = \frac{V}{R_3}$

$$i = i_1 + i_2 + i_3 = V\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)$$

$$i = \frac{V}{Req}$$

$$\Rightarrow \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

2R: Reg =
$$\frac{R_1R_2}{R_1+R_2}$$
; $\frac{1}{R_{eq}} = \frac{2}{J=1} \frac{1}{R_2}$ (n resistances in parallel)

The Voltmeter & Ampermeter

RA of the amperopeter most the very much smaller. Ry of the voltmeter must be very whilm harger.

A, V, S -> multimeter

RC Circuits

Time Vorying Current

Charging: E-iR-9 =0

potential difference | negative because the capacitor's top across capacitor | plake is at a higher

potential than the Lower -> there is a drop as we more down.

i = dq : the charge on the capacitor increases as the current is flowing with time.

$$i = \frac{dq}{dt} = \frac{\varepsilon}{R} \frac{\varepsilon^{\frac{1}{R}c}}{R}$$

$$i_0 = \frac{\mathcal{E}}{R}$$
, $i_{+\infty} = 0$

$$i_0 = \frac{\mathcal{E}}{R}$$
, $i_{+\infty} = 0$
 $q = CV_c \rightarrow V_c = \frac{q}{c} = \mathcal{E}\left(1 - e^{-t/Rc}\right)$ $\downarrow +\infty$ $V_c = \mathcal{E}$

The time constant

$$t = T = RC$$
: $q = CE(1 - e') = 0.63CE$

greater T, greater charging time

Discharging a capacitor

Switch S:b

$$\Rightarrow R \frac{dq}{dt} + \frac{q}{c} = 0 \Rightarrow q = q_0 e^{-t/Rc}$$

$$CV_0$$

$$i = \frac{dq}{dt} = -\left(\frac{q_o}{Rc}\right)e^{-t/Rc}$$
 (discharging)
charge is decreasing

$$R \frac{dq}{dt} + \frac{q}{c} = \ell \qquad \frac{dq}{dt} + \frac{q}{Rc} = \frac{\ell}{R}$$

In order to have the Lamp flashes two times per second, what s'Hould the value of R be?

$$V_{L} = \mathcal{E} \left(1 - e^{-t/Rc} \right)$$

$$R = \frac{t^{0.55}}{c \ln \left(\frac{\varepsilon}{(\varepsilon - V_{L})} \right)} = \dots = 2.35 \times 10^{6} \Omega$$

$$\frac{V_{L}}{\varepsilon} = 1 - e^{-t/Rc}$$

$$1 - \frac{V_{L}}{\varepsilon} = e^{-t/Rc}$$

$$- \frac{V_{L}}{\varepsilon} = \ln \left(\frac{\varepsilon - V_{L}}{\varepsilon} \right)$$

$$\frac{V_{L}}{\varepsilon} = \ln \left(\frac{\varepsilon}{\varepsilon - V_{L}} \right)$$

$$R = \frac{t}{\varepsilon \ln \left(\frac{\varepsilon}{\varepsilon - V_{L}} \right)}$$

Magnets -> Fridge Magnets to CD&DVD, hardstiles,
speakers, security alarms

What Produces a magnetic field?

electric charge
$$\rightarrow \vec{\epsilon}$$

Magnetic charge $\stackrel{?}{\rightarrow} \vec{B}$

Unagnetic monopoles?

How:

ii) By means of elementary particles such as electrons

iii) Thy means of elementary particles such as electrons

iii) and make a permanent

magnete.

Definition of
$$\vec{B}$$

$$\vec{E} = \frac{\vec{f_E}}{9} \text{ Measured force}$$

Since we have not yet found a magnetic Monopole, we can't do it like that.

-> For exerted on a moving electronically charged test particle.

$$|\vec{F}_{\mathcal{G}}| \propto \sqrt{s_{in}}$$

 $\vec{F}_{\mathcal{G}} \perp \vec{\varphi} \Rightarrow B = \frac{F_{\mathcal{B}}}{|q| \nu}$
 $\vec{F}_{\mathcal{B}} = q \vec{\varphi} \times \vec{B}$
 $|\vec{F}_{\mathcal{G}}| = |q| \sqrt{B} S_{\mathcal{W}}$ Gangle Between $\vec{\varphi}$ and \vec{B}

⇒ Right hand Rule: Tip of the fingers point in the if direction,

palm is turned in the direction of B

→ Thumb points the Force due to if x B

(if q<0 → opposite direction)

Fig is always perpendicular to \$\vec{y}\$ and \$\vec{g}\$

Fig never has a component parallel to \$\vec{y}\$

If can not change a particle's speed \$\vec{y}\$

(kinetic energy)

but only the direction of \$\vec{y}\$.

$$[B] = \frac{N}{Cm/s} = 1 \text{ Tesh} = 1T$$

Surface of a neutron star 108 T a neutron star 1.5T.

Near big electronagnet 1.5T.

Near small electron 102 T magnet

Earth's Surface 109 T

Space 100 T

Smallest value 109 T

Smallest value 109 T

Shielded Rasm

Magnetic Field Lines

- 1) The Direction of the tangent to a magnetic field line at any point gives the direction of is at that point.
- 2) Spacing: denser lines -> stronger B.

The lines leavE from one enD (north pole: N) and enter from the other (south pole: S)

- magnetic dipole + magnetic dipole two poles

Opposite Poles attract each other Like poles RepEL eart other

But we already call S as North Pole
So "geomagnetic yorth pole"

Example: B (=1.2mT) upward

proton K.E. = K = 5.3 MeV South to north mp=1.67×1027 kg, FB=?

$$\alpha = \frac{F_3}{m} = 3.7 \times 10^2 \, \text{m/s}^2$$

(E-+W) opposite director.

(out of the page)

(into the page)

CROSSED FIELDS: DISCOVERY OF ELECTRON

When B and E is adjusted such that they cancel each other:

191E = 1910B Sm (90) = 1910B

$$9 = \frac{E}{B} 2$$

$$9 + 2 : \frac{M}{|q|} = \frac{B^2 L^2}{27E}$$
Measurable

CROSSED FIELDS: THE HALL EFFECT

1879 Edwin Hall (24 years 010)

Potential Difference Setup Across a moving Conductor

metal moving in positive y direction,

constant v=4.0m/

a.) Which cube face is at a lower effective potential? and which is at a higher potential?

9<0 FB=- 2 direction

b.) what is the potential Difference?

FE = qE (q<0 -> FE: rightwords)

Eventually: FB = FE

FB = 191 4B Smp = 90°