Profiling & Parallelization

Lecture 21

Dr. Colin Rundel

Profiling & Benchmarking

profvis demo

```
1  n = 1e6
2  d = tibble(
3     x1 = rt(n, df = 3),
4    x2 = rt(n, df = 3),
5     x3 = rt(n, df = 3),
6     x4 = rt(n, df = 3),
7     x5 = rt(n, df = 3),
8  ) |>
9     mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
```

```
1 profvis::profvis({
2  lm(y~., data=d)
3 })
```

profvis demo 2

```
profvis::profvis({
    data = data.frame(value = runif(5e4))

data$sum[1] = data$value[1]

for (i in seq(2, nrow(data))) {
    data$sum[i] = data$sum[i-1] + data$value[i]

}

}
```

```
1 profvis::profvis({
2     x = runif(5e4)
3     sum = x[1]
4     for (i in seq(2, length(x))) {
5         sum[i] = sum[i-1] + x[i]
6     }
7 })
```

Benchmarking - bench

```
1 d = tibble(
2     x = runif(10000),
3     y = runif(10000)
4 )
5
6 (b = bench::mark(
7     d[d$x > 0.5, ],
8     d[which(d$x > 0.5), ],
9     subset(d, x > 0.5),
10     filter(d, x > 0.5)
11 ))
```

```
# A tibble: 4 \times 6
 expression
                           min
                                median `itr/sec` mem_alloc `gc/sec`
 <br/><br/>ch:expr>
                      <br/><bch:tm> <bch:tm> <dbl> <bch:byt>
                                                             <dbl>
1 d[d$x > 0.5,]
                                                             42.0
                        75.8µs 90.8µs 10784. 234.56KB
2 d[which(d$x > 0.5), ]
                       78.2µs 94.8µs 10396. 268.33KB
                                                             78.2
3 subset(d, x > 0.5) 93.6\mus 116.8\mus 8267. 287.09KB
                                                             61.3
4 filter(d, x > 0.5)
                       249.4μs 285μs
                                           3457.
                                                   1.47MB
                                                              25.8
```

Larger n

```
1 d = tibble(
2     x = runif(1e6),
3     y = runif(1e6)
4 )
5
6 (b = bench::mark(
7     d[d$x > 0.5, ],
8     d[which(d$x > 0.5), ],
9     subset(d, x > 0.5),
10     filter(d, x > 0.5)
11 ))
```

```
# A tibble: 4 \times 6
 expression
                          min
                               median `itr/sec` mem_alloc `gc/sec`
                                         <dbl> <bch:byt>
 <br/><br/>ch:expr>
                     <br/><bch:tm> <bch:tm>
                                                          <dbl>
1 d[d$x > 0.5,]
                                         125.
                                                 13.3MB 54.2
                       7.54ms 7.99ms
2 d[which(d$x > 0.5), ] 9.11ms 9.35ms
                                         107. 24.8MB
                                                          112.
3 subset(d, x > 0.5) 11.61ms 12.11ms 80.9 24.8MB 91.0
4 filter(d, x > 0.5)
                        9.5ms
                                          94.8 24.8MB
                             10.37ms
                                                          105.
```

bench - relative results

```
1 summary(b, relative=TRUE)
```

```
# A tibble: 4 \times 6
 expression
                 min median `itr/sec` mem_alloc `gc/sec`
 <br/><br/>ch:expr>
                 <dbl> <dbl>
                                <dbl>
                                        <dbl>
                                               <dbl>
1 d[d$x > 0.5,]
                                                1
                         1 1.55
2 d[which(dx > 0.5), ] 1.21 1.17 1.32 1.86
                                               2.06
3 subset(d, x > 0.5) 1.54 1.52 1 1.86 1.68
4 filter(d, x > 0.5) 1.26 1.30 1.17
                                        1.86
                                               1.94
```

t.test

Imagine we have run 1000 experiments (rows), each of which collects data on 50 individuals (columns). The first 25 individuals in each experiment are assigned to group 1 and the rest to group 2.

The goal is to calculate the t-statistic for each experiment comparing group 1 to group 2.

```
m = 1000
 2 n = 50
   X = matrix(
     rnorm(m * n, mean = 10, sd = 3),
     ncol = m
 6
   ) |>
     as.data.frame() |>
     set_names(paste0("exp", seq_len(m))) |>
     mutate(
 9
10
       ind = seg len(n).
11
       group = rep(1:2, each = n/2)
12
     ) |>
13
     as tibble() |>
14
     relocate(ind, group)
```

```
1 X
# A tibble: 50 × 1,002
    ind group exp1 exp2 exp3 exp4 exp5
exp6
  <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
<dbl>
      1
            1 2.83 7.90 8.39 10.5 11.5
1
11.5
                     8.59 11.8
2
      2
            1 14.5
                                9.75 9.34
4.43
      3
3
            1 8.74 6.79 7.33 8.43 7.66
11.5
4
      4
            1 13.1
                     5.51 6.39 9.67 8.55
16.3
 5
      5
            1 4.51 13.1 13.4
                                4.57 2.89
10.4
6
      6
            1 11.3
                     5.18 12.2
                                5.59 10.7
12.2
 7
      7
              0 65 0 50 5 00 11 0
```

Implementations

0.037

0.000

0.037

```
1 ttest formula = function(X, m) {
    for(i in 1:m) t.test(X[[2+i]] \sim X$group)$stat
3
4 system.time(ttest_formula(X,m))
user system elapsed
0.143 0.005 0.148
1 ttest_for = function(X, m) {
    for(i in 1:m) t.test(X[[2+i]][X$group == 1], X[[2+i]][X$group == 2])$stat
3
4 system.time(ttest_for(X,m))
 user system elapsed
0.044 0.000 0.044
 ttest apply = function(X) {
   f = function(x, q) {
     t.test(x[q==1], x[q==2])$stat
    }
4
    apply(X[,-(1:2)], 2, f, X$group)
  system.time(ttest apply(X))
      system elapsed
user
```

Implementations (cont.)

```
ttest_hand_calc = function(X) {
     f = function(x, grp) {
       t_stat = function(x) {
 3
         m = mean(x)
 4
         n = length(x)
         var = sum((x - m) ^ 2) / (n - 1)
 6
         list(m = m, n = n, var = var)
 8
 9
       }
10
11
       g1 = t_stat(x[grp == 1])
       g2 = t_stat(x[grp == 2])
12
13
14
       se\_total = sqrt(g1$var / g1$n + g2$var / g2$n)
15
       (q1$m - q2$m) / se total
16
17
18
       apply(X[,-(1:2)], 2, f, X$group)
19 }
20 system.time(ttest_hand_calc(X))
```

```
user system elapsed 0.010 0.000 0.011
```

Comparison

```
bench::mark(
ttest_formula(X, m),
ttest_for(X, m),
ttest_apply(X),
ttest_hand_calc(X),
check=FALSE
)
```

Warning: Some expressions had a GC in every iteration; so filtering is disabled.

```
# A tibble: 4 \times 6
 expression
                          min
                                median `itr/sec` mem alloc `gc/sec`
 <br/><br/>ch:expr>
                     <br/><br/>bch:tm> <br/>bch:tm>
                                          <dbl> <br/> <br/>dbl> <br/> <br/>
                                                             <dbl>
1 ttest formula(X, m) 137.04ms 139.3ms
                                       7.14
                                                   8.24MB
                                                             14.3
2 ttest_for(X, m) 46.77ms 53.69ms 19.1 1.91MB
                                                             15.3
3 ttest_apply(X) 39.74ms 45.43ms
                                       21.9 3.48MB
                                                             14.0
4 ttest hand calc(X) 6.35ms 6.66ms
                                         127.
                                                   3.44MB
                                                              15.8
```

Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:
 - detectCores
 - pvec
 - mclapply
 - mcparallel&mccollect

detectCores

Surprisingly, detects the number of cores of the current system.

1 detectCores()

[1] 14

pvec

Parallelization of a vectorized function call

```
1 system.time(pvec(1:1e7, sqrt, mc.cores = 1))
 user system elapsed
0.011 0.007 0.018
1 system.time(pvec(1:1e7, sqrt, mc.cores = 4))
 user system elapsed
0.211 0.876 1.005
1 system.time(pvec(1:1e7, sqrt, mc.cores = 8))
 user system elapsed
0.087 0.842 0.816
1 system.time(sqrt(1:1e7))
 user system elapsed
0.012 0.012 0.026
```

pvec - bench::system_time

```
bench::system_time(pvec(1:1e7, sqrt, mc.cores = 1))
process real
22.1ms 21.9ms
 1 bench::system_time(pvec(1:1e7, sqrt, mc.cores = 4))
       real
process
 482ms 802ms
 1 bench::system_time(pvec(1:1e7, sqrt, mc.cores = 8))
         real
process
 551ms 835ms
```

```
1 bench::system_time(Sys.sleep(.5))
process real
80µs 497ms

1 system.time(Sys.sleep(.5))

user system elapsed
0.000 0.000 0.505
```

Cores by size

```
1 cores = c(1,4,6,8,10)
2 \text{ order} = 6:8
 3 f = function(x,y) {
     system.time(
     pvec(1:(10^y), sqrt, mc.cores = x)
     ) [3]
 6
 8
   res = map(
10
     cores,
     function(x) {
11
         map\_dbl(order, f, x = x)
12
13
14
15
     do.call(rbind, args = _)
16
   rownames(res) = paste0(cores," cores")
   colnames(res) = paste0("10^",order)
```

1 res

```
10^6 10^7 10^8
1 cores 0.003 0.026 0.348
4 cores 0.093 0.736 8.363
6 cores 0.085 0.762 7.685
8 cores 0.105 0.760 7.987
10 cores 0.117 0.785 7.915
```

mclapply

implements a parallelized version of lapply

```
1 system.time(rnorm(1e7))
      system elapsed
user
0.158
       0.004
               0.161
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 2)))
user system elapsed
0.202
       0.770
               0.851
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 4)))
       system elapsed
user
       0.744 0.764
0.206
  system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 8)))
user system elapsed
       0.799 0.778
0.212
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 10)))
user system elapsed
       0.794
               0.768
0.210
```

mcparallel

Asynchronously evaluation of an R expression in a separate process

```
1 m = mcparallel(rnorm(1e6))
 2 n = mcparallel(rbeta(1e6,1,1))
 3 o = mcparallel(rgamma(1e6,1,1))
 1 str(m)
List of 2
 $ pid: int 33195
 $ fd: int [1:2] 5 8
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
 1 \operatorname{str}(n)
List of 2
 $ pid: int 33196
 $ fd : int [1:2] 6 10
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
```

mccollect

Checks mcparallel objects for completion

```
1 str(mccollect(list(m,n,o)))
List of 3
$ 33195: num [1:1000000] 0.12 0.987 -0.498 -1.111 -1.084 ...
$ 33196: num [1:1000000] 0.997 0.082 0.139 0.198 0.649 ...
$ 33197: num [1:1000000] 0.594 0.291 1.73 1.022 0.347 ...
```

mccollect - waiting

```
1 p = mcparallel(mean(rnorm(1e5)))
  1 mccollect(p, wait = FALSE, 10)
$`33198`
[1] 0.002961617
  1 mccollect(p, wait = FALSE)
Warning in selectChildren(jobs, timeout): cannot wait for child 33198
as it does not exist
NULL
  1 mccollect(p, wait = FALSE)
Warning in selectChildren(jobs, timeout): cannot wait for child 33198
as it does not exist
NULL
```

doMC & foreach

doMC & foreach

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).

- Core functions:
 - registerDoMC
 - foreach, %dopar%, %do%

registerDoMC

Primarily used to set the number of cores used by foreach, by default uses options ("cores") or half the number of cores found by detectCores from the parallel package.

```
1 options("cores")

$cores
NULL

1 detectCores()

[1] 14

1 getDoParWorkers()

[1] 1

1 registerDoMC(4)
2 getDoParWorkers()

[1] 4
```

Sta 323 - Spring 2025

foreach

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with %do% or %dopar% for single or multicore execution.

```
1 for(i in 1:10) {
                                                 foreach(i = 1:5) %do% {
    sqrt(i)
                                                    sqrt(i)
3 }
                                             [[1]]
                                             [1] 1
                                             [[2]]
                                             [1] 1.414214
                                             [[3]]
                                             [1] 1.732051
                                             [[4]]
                                             [1] 2
                                             [[5]]
                                             [1] 2.236068
```

foreach - iterators

foreach can iterate across more than one value, but it doesn't do length coercion

```
1 foreach(i = 1:5, j = 1:5) %do% {
                                               1 foreach(i = 1:5, j = 1:2) %do% {
      sqrt(i^2+j^2)
                                                    sqrt(i^2+j^2)
 3 }
[[1]]
                                              [[1]]
[1] 1.414214
                                              [1] 1.414214
[[2]]
                                              [[2]]
[1] 2.828427
                                              [1] 2.828427
[[3]]
[1] 4.242641
[[4]]
[1] 5.656854
[[5]]
[1] 7.071068
```

foreach - combining results

[1] 8.382332

```
1 foreach(i = 1:5, .combine='c') %do% {
     sqrt(i)
 3 }
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
 1 foreach(i = 1:5, .combine='cbind') %do% {
     sqrt(i)
 3 }
    result.1 result.2 result.3 result.4 result.5
[1,]
           1 1.414214 1.732051 2 2.236068
 1 foreach(i = 1:5, .combine='+') %do% {
     sqrt(i)
 3 }
```

foreach - parallelization

Swapping out %do% for %dopar% will use the parallel backend.

```
1 registerDoMC(4)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.124 0.035
               0.080
1 registerDoMC(8)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.149
       0.044
               0.061
1 registerDoMC(10)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
       0.050
0.186
               0.050
```


furrr / future

```
1 system.time( purrr::map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
        0.000
0.000
               3.012
1 system.time( furrr::future_map(c(1,1,1), Sys.sleep) )
 user system elapsed
       0.008 3.074
0.032
1 future::plan(future::multisession) # See also future::multicore
2 system.time( furrr::future_map(c(1,1,1), Sys.sleep) )
 user system elapsed
0.188
       0.007
              1.314
```

Example - Bootstraping

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.

```
1 set.seed(3212016)
2 d = data.frame(x = 1:120) |>
3         mutate(y = sin(2*pi*x/120) + runif(length(x),-1,1))
4
5 l = loess(y ~ x, data=d)
6 p = predict(l, se=TRUE)
7
8 d = d |> mutate(
9     pred_y = p$fit,
10     pred_y_se = p$se.fit
11 )
```

```
1 ggplot(d, aes(x,y)) +
2    geom_point(color="gray50") +
3    geom_ribbon(
4    aes(ymin = pred_y - 1.96 * pred_y_se,
5         ymax = pred_y + 1.96 * pred_y_se),
6    fill="red", alpha=0.25
7    ) +
8    geom_line(aes(y=pred_y)) +
9    theme_bw()
```


Bootstraping Demo

What to use when?

Optimal use of parallelization / multiple cores is hard, there isn't one best solution

- Don't underestimate the overhead cost
- Experimentation is key
- Measure it or it didn't happen
- Be aware of the trade off between developer time and run time

BLAS and **LAPACK**

Statistics and Linear Algebra

An awful lot of statistics is at its core linear algebra.

For example:

• Linear regession models, find

$$\beta = (X^T X)^{-1} X^T y$$

- Principle component analysis
 - Find T = XW where W is a matrix whose columns are the eigenvectors of X^TX .
 - Often solved via SVD Let $X = U\Sigma W^T$ then $T = U\Sigma$.

Numerical Linear Algebra

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.

- Numerical linear algebra ≠ mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
 - Designing and implementing these algorithms is hard
- Don't reinvent the wheel common core linear algebra tools (well defined API)

BLAS and LAPACK

Low level algorithms for common linear algebra operations

BLAS

- Basic Linear Algebra Subprograms
- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK

- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions
- Origins go back to 1992, mostly Fortran (expanded on LINPACK, EISPACK)

Modern variants?

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated

- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:

- ATLAS Automatically Tuned Linear Algebra Software
- OpenBLAS fork of GotoBLAS from TACC at UTexas
- Intel MKL Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma GPU libraries from Nvidia and UTK respectively
- Accelerate / vecLib Apple's framework for GPU and multicore computing

OpenBLAS Matrix Multiply Performance

```
x=matrix(runif(5000^2),ncol=5000)
   sizes = c(100,500,1000,2000,3000,4000,5000)
   cores = c(1,2,4,8,16)
 5
   sapply(
     cores,
     function(n_cores) {
       flexiblas::flexiblas_set_num_threads(n_cores)
 9
10
       sapply(
11
         sizes,
12
         function(s) {
           y = x[1:s,1:s]
13
           system.time(y %*% y)[3]
14
15
16
17
18 )
```

n	1 core	2 cores	4 cores	8 cores	16 cores
100	0.000	0.000	0.000	0.000	0.000
500	0.004	0.003	0.002	0.002	0.004
1000	0.028	0.016	0.010	0.007	0.009
2000	0.207	0.110	0.058	0.035	0.039
3000	0.679	0.352	0.183	0.103	0.081
4000	1.587	0.816	0.418	0.227	0.145
5000	3.104	1.583	0.807	0.453	0.266

Matrix Multiply of (n x n) matrices

Matrix Multiply of (n x n) matrices

