

武汉大学遥感信息工程学院

激光遥感

复习整理

胡奕公

目录

第1章	绪论	1
1.1	基本概念	1
1.2	应用现状	1
1.3	LiDAR 技术特点	2
1.4	激光成像技术	2
	1.4.1 激光	2
	1.4.2 激光雷达与激光成像雷达	3
	1.4.3 激光雷达的关键技术	5
1.5	激光遥感集成系统	7
1.6	国内常见 LiDAR 系统的扫描方式	8
1.7	机载激光三维测量系统对比	10
第2章	激光及激光雷达系统	11
2.1	激光	11
	2.1.1 辐射与原子	11
	2.1.2 受激辐射放大	12
	2.1.3 激光的产生	13
2.2	激光器	13
	2.2.1 气体激光器	15
	2.2.2 固体激光器	16
	2.2.3 半导体二极管激光器	17
2.3	激光雷达系统	18
	2.3.1 激光雷达系统概述	18
	2.3.2 光束整形	20
	2.3.3 激光扫描	21
	2.3.4 信号接收的探测技术	21
2.4	激光信号的大气衰减	23
	2.4.1 大气衰减效应	24
	2.4.2 大气折射效应	25
2.5	激光雷达系统能量方程	25

第3章	机载 Li	DAR 数据获取基本原理	27
3.1	激光测	距	28
	3.1.1	测距方式	28
	3.1.2	测距精度和信噪比	30
	3.1.3	功率	32
	3.1.4	体积	33
	3.1.5	波长	33
3.2	全球定位	位系统技术	33
3.3	惯性测	量系统技术	35
	3.3.1	惯性导航系统	35
	3.3.2	IMU 与 DGPS 组合定位技术	36
3.4	高性能	二维扫描技术	36
	3.4.1	机载 LiDAR 系统四种典型的扫描方式	36
	3.4.2	扫描线形状	36
3.5	LiDAR	数据获取处理	38
	3.5.1	离线时间同步方案	38
	3.5.2	机载 LiDAR 系统对地定位方程	39
3.6	机载 Li	DAR 数据获取新技术	39
第4章	机载 Li	DAR 数据获取基本原理	41
4.1	数据获过	取重要参数	41
	4.1.1 I	LiDAR 数据获取重要参数的作用	41
	4.1.2	参数类型	41
4.2	常用商	业 LiDAR 系统	46
第 5 章	LiDAR	工程数据获取	47
5.1	LiDAR	数据获取流程	47
	5.1.1	计划准备阶段	47
	5.1.2	航飞实施阶段	52
	5.1.3	数据整理阶段	52
5.2	LiDAR	技术与同类技术对比	55

第5章 LiDAR工程数据获取

LiDAR 工程步骤 如图5.1所示。

图 5.1 LiDAR 工程步骤

LiDAR 数据获取综述 既繁琐又细致的工作,牵扯到许许多多的因素,需要很多单位和人员的支持和配合。包含了从飞行准备到航线设计,从飞行操作到数据整理,从设备运输到存储维护等方方面面与航测外业相关的作业环节。

三个阶段八个方面 如图5.2所示。

图 5.2 LiDAR 数据获取的三个阶段八个方面

5.1 LiDAR 数据获取流程

5.1.1 计划准备阶段

飞行准备

- 1. **掌握测区情况**。首先应该熟悉实地测区的地形特点和地貌特征。根据不同的地形条件选择和设计不同的飞行航线。
- 2. 选择 LiDAR 型号。国内主要有 ALS、ALTM、LiteMapper、TOPOSYS 等产品,每个产品由于性能和参数不同,因此选择不同的设备对于航摄设计来说也是不同的。
- 3. **选择飞行平台**。不同的飞机性能会对雷达系统的参数设置有不同程度的影响。主要有两个方面, 一是飞行速度,二是飞行高度。
 - 飞行速度主要影响雷达的扫描频率的设置。
 - 行高度主要影响脉冲频率的设置,进而影响点密度和精度。
- 4. 申请航飞权、协调航空飞行。流程如图5.3所示。
 - 飞行任务审批。
 - 机场协调。
 - 飞行协调。

图 5.3 申请航飞权与协调航空飞行

- 5. **制定项目任务书**。在承接航飞任务时,用户单位一般会提交"项目任务书",一般由甲方提出要求, 双方技术人员共同拟定。
 - 飞行高度
 - 飞机型号
 - 航摄分区
 - 成果坐标系
 - 野外控制点量测
- 6. 评估飞行效率。根据测区远近、飞行高度、空域申请情况来编排航飞航线顺序。

航线设计

- 1. 步骤:
 - 建立航带设计工程
 - 设置平面坐标系和高程坐标系
 - 加载 DTM 数据
 - 导入设计线位
 - 航带设计
 - 重复以上步骤,完成所有航段的航线设计

航线设计流程如图5.4所示。

2. 单脉冲和多脉冲: 同等点间距的设计要求下, 多脉冲的航飞效率大约为单脉冲的 3 倍! 多脉冲的

图 5.4 航线设计流程

优势随着地形起伏变化的上升而越加明显。

- 3. 配备数码相机的航线设计: 注意
 - 重叠度匹配
 - 数码相机航向重叠度设置和摄影基线检查
- 4. 最终航线检查与地面模拟飞行: 为了确保飞行计划的正确性。检查方法主要有三种:
 - 将飞行计划导出为 KML 格式,加载到 Google Earth 当中进行浏览。
 - 将飞行计划导出到 FCMS 飞行管理控制软件中进行检查。
 - 地面模拟飞行。
- 5. 提交航飞设计数据:完成航线设计之后,需要提交以下材料:
 - 飞行记录表
 - 领航数据表
 - 飞行文件
 - 飞行示意图文件
 - KML 文件

检校场的布设、量测

- 1. **必要性**: LiDAR 设备属于精密仪器,数据采集时要求部件之间有严格的相对位置关系。但实际工作中,系统安装时不能完全保证它们相互平行,这些偏差会在设备运输中、设备安装时或者随着时间改变。
- 2. 激光检校场选择及航线设计: IMU 和激光扫描仪的坐标系并不严格平行引起的误差;每次航飞过程中,roll、pitch、heading 等会发生变化。
 - 激光检校场布设方案
 - 校准控制场:校准 LiDAR 的相对和绝对高程。

- 校准建筑物:校准侧滚和俯仰姿态。
- 尽量远离水面(如湖、江)等低反射率的地区。
- 激光检校控制点布设方案
 - 直线控制点: 直线大路, 2km, 每隔 5m 一个, 高程精度 <5cm;
 - 零散控制点: 中心区域均匀 10-15 点, 高程精度 <2cm;
 - 所有控制点都布设在路面上, 且地物材料均匀。
 - 控制点数据的坐标系为 WGS84。
- 激光航线设计方案: 如图5.5所示。
 - 高航高:通过尖顶房屋正上方过房屋中点,垂直道路及房屋的顶角方向往返飞行各一次(EF、FE);平行于该方向飞行一次(CD);沿道路方向同向飞行一次(AB)。
 - 低航高: 十字飞行(EF,BA)。

图 5.5 激光检校场布设案例

- 3. 相机检校场选择及航线设计: 相机在安装过程中也会存在和 IMU 的视准轴不严格一致的情况, 这就需要在飞行前或飞行后进行视准轴检校。
 - 相机检校场布设方案: 从不同方向航线的数据中获取尽可能多的同名地物点,且每一个同名地物点所涉及的航片数量尽可能的多,通过对大量同名点的平差计算,求出相机视准轴与IMU之间的偏差。检校场可选择在地物比较丰富的城市地区,覆盖范围一般为 6.0 km×4.5 km。城市区域可供选择的特征点比较多,适于后续进行空三计算并寻找足够的连接点,得到较好的检校结果。
 - 相机航线设计方案:相机的焦距不同,检校飞行的航高也不同,一般飞1个高度,采用"十" 字对飞,四条航线。如图5.6所示。
 - 相机检校控制点布设方案:
 - 测区范围内均匀布设 20 个控制点,在重叠中心区布设 5~10 个控制点,在航线四个边缘区域总共布设 5~10 个控制点,精度 <5 cm。
 - 控制点选取地物特征点上。
 - 控制点数据的坐标系为 WGS84。

设备安装与测试

1. 开箱验货与货物清点。

图 5.6 相机航线设计方案

2. 设备安装步骤

- 飞机改造 (GPS 天线、底舱过渡板、底舱开孔直径与底舱厚度)。
- GPS 偏心分量测量。如图所示。

图 5.7 GPS 偏心分量测量

- 设备地面通电测试、记录。
- 温度处理。
- 数据质量检查与设备状态评估。

5.1.2 航飞实施阶段

基站架设与地面配合 地面配合分为 检校场地面配合 和测区地面配合 2。

- 1. 检校场基站架设和地面配合
 - 现场勘察
 - 检校场标识布设
 - 检校场基站布设
 - 同步观测
 - 平面检查点测量
 - 高程控制点测量
- 2. 测区基站架设和地面配合
 - 一般地区基站布设
 - 困难地区基站布设
 - 检查点测量
- 3. 基站工作注意事项

飞行操作与数据采集

- 1. **GPS** 星历预测: LiDAR 在空中工作时,需要实时锁定卫星接收 GPS 信号,并且卫星星座分布的几何强度直接决定着卫星测距的误差。在实际飞行之前,需要对当天点位的三维精度因子 (PDOP)进行预测。有些商用软件 (GrafNav) 可以通过网络下载卫星星历预报数据来计算出某天某一时刻的 PDOP 值以及卫星数目。
- 2. 地面通电测试与准备工作
- 3. 飞行质量要求如图5.8所示。
 - 8 字飞行
 - 地面静态观测
 - 盘旋转弯坡度要求
 - 飞行姿态要求
 - 飞行速度要求
- 4. **飞行作业和设备空中操作**:空中操作是固定而且单一的,高级的激光雷达设备在使用操作上往往十分简单,用户只需进行触动几个按钮就可以完成整个航飞任务,其他所有工作都让计算机来监视完成。
- 5. 激光扫描测量
- 6. GPS/IMU 定位定向测量
- 7. 数码相机拍摄
- 8. 空中异常情况及处理

5.1.3 数据整理阶段

数据检查与质量控制

¹检校场地面配合是针对检校场开展工作,包括现场确认、检校场标识布设与测量、基站布设与配合观测、控制点测量等方面的工作。

²测区地面配合主要包括基站选择与配合观测、野外检查点观测等。

图 5.8 飞行质量要求

- 1. 数据整理归档
- 2. 日志文件
- 3. 数据质量检查
 - GPS/IMU 数据解压
 - 导航文件精度指标
 - 激光数据检查
 - 影像数据检查
- 4. 补飞和重飞

数据预处理

- 1. 目的:
 - 三维坐标解算
 - 坐标转换
 - 文件生成
- 2. 数据预处理流程:如图5.9所示。

图 5.9 数据预处理流程

- 3. **SBET** (Smoothed Best Estimated Trajectory) 航迹文件处理: GPS 差分处理 (GPS 数据 + 基站数据)。每条航带一个航迹文件,处理软件 POSProc。
- 4. 位置内插。如图所示。

图 5.10 位置内插

- 5. "*.LAS" 文件——ALS Post Processor
 - 解算每个目标点的三维坐标;
 - 每条航带生成一个二进制格式的 LAS 文件;
 - 存储格式为 lat/lon/el/intensity data 或者 northing/easting/el/intensity in user-selected projection;
 - 记录顺序:shot-by shot, return by return。
- 6. 生成 "quick-look edge-of-coverage" 高程图 (*.TIF)

调整航带间点云不一致 如图5.11所示。

图 5.11 调整航带间点云不一致

坐标变换 由 WGS84 坐标系大地坐标变换为地方局部坐标系坐标。

- 投影变换
 - Gauss 投影
 - UTM 投影
 - Mercator 投影
 - Lambert 投影
 - Albers 投影
- 椭球变换
 - 七参数法(包括布尔莎模型、一步法模型、海尔曼特等),即 X 平移, Y 平移, Z 平移, X 旋转, Y 旋转, Z 旋转, 尺度变化 K。
 - 三参数(莫洛登斯基模型),即 X 平移,Y 平移,Z 平移,而将 X 旋转,Y 旋转,Z 旋转,尺度变化 K 视为 0,所以三参数只是七参数的一种特例。

文件生成

- 1. LAS 格式: 美国摄影测量与遥感协会提出 Lidar Data Exchange Format Standard (LDEFS) 1.0 标准。
 - 公共数据块 (Public Header Block): 公共数据块的大小是 227 bytes,记录了关于该文件的一些基本信息,如:文件标识、飞行时间、回波个数、坐标范围等等,详细描述了关于 las 数据采集的信息。
 - 变长数据记录 (Variable length Records)。
 - 点数据块 (Point data)。
 - 变长的波形记录 (1.3 格式)。
- 2. **ASC** 栅格格式: 一些公司采用了栅格文件格式作为 Lidar 的数据格式。例如,采用 ArcInfo Grid 格式的数据作为通用格式。
 - 头部信息:
 - ncols 行数
 - nrows 列数
 - xllcenter 中心点 x 坐标
 - yllcenter 中心点 y 坐标
 - cellsize 采样间距
 - NODATA_value -9999.000000(无效数据)
 - 数据信息:记录具体的信息数据。
- 3. **自定义 TXT 格式**: 这种格式直接以文本的方式记录 LiDAR 数据,每一行记录一束激光的回波数据,以不同的列记录不同属性的数据,一般会在数据中加以说明。

点云数据特点 LiDAR 激光脚点的分布是按照时间序列进行采样和存储的,其在地面上的分布不是规则的,其空间分布呈现为离散的数据"点云"(Points Cloud)。如图5.12所示。

图 5.12 点云数据特点

5.2 LiDAR 技术与同类技术对比