# Höhere Mathematik II

G. Herzog, Ch. Schmoeger

Sommersemester 2017

Karlsruher Institut für Technologie

# Inhaltsverzeichnis

| 12 |
|----|
|    |

## Kapitel 15

## Reelle Zahlen

Die Grundmenge der Analysis ist die Menge  $\mathbb{R}$ , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen  $\mathbb{R}$  als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von  $\mathbb{R}$  aus denen sich alle weiteren Rechenregeln herleiten lassen.

**Körperaxiome:** In  $\mathbb{R}$  sind zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar  $a, b \in \mathbb{R}$  genau ein  $a + b \in \mathbb{R}$  und genau ein  $ab \coloneqq a \cdot b \in \mathbb{R}$  zuordnen. Dabei gilt:

```
(A1) \forall a, b, c \in \mathbb{R}: a + (b + c) = (a + b) + c (Assoziativgesetz für "+")
```

(A5) 
$$\forall a, b, c \in \mathbb{R} : a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 (Assoziativgesetz für "·")

(A2) 
$$\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a \text{ (Existenz einer Null)}$$

(A6) 
$$\exists 1 \in \mathbb{R} \ \forall a \in \mathbb{R} : a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Existenz einer Eins)}$$

(A3) 
$$\forall a \in \mathbb{R} \exists -a \in \mathbb{R} : a + (-a) = 0$$
 (Inverse bzgl. "+")

(A7) 
$$\forall a \in \mathbb{R} \setminus \{0\} \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1 \text{ (Inverse bzgl. "·")}$$

$$(A4) \ \forall a,b \in \mathbb{R} : a+b=b+a$$
 (Kommutativgesetz für "+")

$$(A8) \ \forall a,b \in \mathbb{R} : a \cdot b = b \cdot a$$
 (Kommutativgesetz für "·")

(A9) 
$$\forall a, b, c \in \mathbb{R} : a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivgesetz)

Schreibweisen: Für  $a,b \in \mathbb{R}$ :  $a-b \coloneqq a+(-b)$  und für  $b \neq 0$ :  $\frac{a}{b} \coloneqq a \cdot b^{-1}$ .

**Alle** bekannten Regeln der Grundrechenarten lassen sich aus (A1)-(A9) herleiten. Diese Regeln seien von nun an bekannt.

#### Beispiele:

a) Behauptung:  $\exists_1 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a$ .

Beweis: Sei 
$$\tilde{0} \in \mathbb{R}$$
 und es gelte  $\forall a \in \mathbb{R} : a + \tilde{0} = a$ . Mit  $a = 0$  folgt:  $0 + \tilde{0} = 0$ . Mit  $a = \tilde{0}$  in (A2) folgt:  $\tilde{0} + 0 = \tilde{0}$ . Damit ist  $0 = 0 + \tilde{0} \stackrel{(A4)}{=} \tilde{0} + 0 = \tilde{0}$ .

b) Behauptung:  $\forall a \in \mathbb{R} : a \cdot 0 = 0$ .

Beweis: Sei 
$$a \in \mathbb{R}$$
 und  $b := a \cdot 0$ . Es gilt  $b \stackrel{(A2)}{=} a \cdot (0+0) \stackrel{(A9)}{=} a \cdot 0 + a \cdot 0 = b+b$ , und damit  $0 \stackrel{(A3)}{=} b + (-b) = (b+b) + (-b) \stackrel{(A1)}{=} b + (b+(-b)) = b+0 \stackrel{(A2)}{=} b$ .

**Anordnungsaxiome:** In  $\mathbb{R}$  ist eine Relation " $\leq$ " gegeben. Für diese gilt:

$$(A10) \ \forall a, b \in \mathbb{R} : a \leq b \text{ oder } b \leq a$$

(A11) 
$$a < b \text{ und } b < a \Rightarrow a = b$$

(A12) 
$$a < b \text{ und } b < c \Rightarrow a < c$$

(A13) 
$$a \le b \text{ und } c \in \mathbb{R} \Rightarrow a + c \le b + c$$

(A14) 
$$a \le b \text{ und } 0 \le c \Rightarrow ac \le bc$$

**Schreibweisen:**  $b \ge a : \iff a \le b$ ;  $a < b : \iff a \le b \text{ und } a \ne b$ ;  $b > a : \iff a < b$ .

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (Übung):

a) 
$$a < b \text{ und } 0 < c \Rightarrow ac < bc$$

b) 
$$a \le b$$
 und  $c \le 0 \Rightarrow ac \ge bc$ 

c) 
$$a \le b$$
 und  $c \le d \Rightarrow a + c \le b + d$ 

**Intervalle:** Es seien  $a, b \in \mathbb{R}$  und a < b. Wir setzen:

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) \coloneqq \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a,b] \coloneqq \{x \in \mathbb{R} : a < x \le b\} \text{ (halboffenes Intervall)}$$
 
$$[a,b) \coloneqq \{x \in \mathbb{R} : a \le x < b\} \text{ (halboffenes Intervall)}$$
 
$$[a,\infty) \coloneqq \{x \in \mathbb{R} : x \ge a\}, \ (a,\infty) \coloneqq \{x \in \mathbb{R} : x > a\}$$
 
$$(-\infty,a] \coloneqq \{x \in \mathbb{R} : x \le a\}, \ (-\infty,a) \coloneqq \{x \in \mathbb{R} : x < a\}$$
 
$$(-\infty,\infty) \coloneqq \mathbb{R}$$

## Der Betrag

Für  $a \in \mathbb{R}$  heißt  $|a| \coloneqq \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$  der **Betrag** von a. Für  $a, b \in \mathbb{R}$  heißt die Zahl |a - b| der **Abstand** von a und b.

**Beispiele:** |1| = 1, |-7| = -(-7) = 7.

**Regeln:** Für  $a, b \in \mathbb{R}$  gilt:

a) 
$$|-a| = |a|$$
 und  $|a - b| = |b - a|$ 

b)  $|a| \ge 0$ 

c) 
$$|a| = 0 \iff a = 0$$

$$\mathrm{d})\ |ab| = |a||b|$$

e) 
$$\pm a \le |a|$$

f) 
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

g) 
$$||a| - |b|| \le |a - b|$$

Beweis:

a) - e) leichte Übung.

f) Fall 1: 
$$a + b \ge 0$$
. Dann gilt:  $|a + b| = a + b \stackrel{e}{\le} |a| + |b|$ .  
Fall 2:  $a + b < 0$ . Dann gilt:  $|a + b| = -(a + b) = -a + (-b) \stackrel{e}{\le} |a| + |b|$ .

g) Es sei c := |a| - |b|. Es gilt

$$|a| = |a - b + b| \stackrel{f}{\leq} |a - b| + |b| \Rightarrow c = |a| - |b| \leq |a - b|.$$

Analog zeigt man

$$-c = |b| - |a| \le |b - a| = |a - b|.$$

Also gilt  $\pm c \le |a - b| \Rightarrow |c| \le |a - b|$ .

**Definition:** Es sei  $M \subseteq \mathbb{R}$ .

- a) M heißt nach oben beschränkt :  $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M : x \leq \gamma$ . In diesem Fall heißt  $\gamma$  eine obere Schranke (OS) von M.
- b) Ist  $\gamma$  eine obere Schranke von M und gilt  $\gamma \leq \delta$  für jede weitere obere Schranke  $\delta$  von M, so heißt  $\gamma$  das **Supremum** (oder **die kleinste obere Schranke**) von M.
- c) M heißt nach unten  $beschränkt : \iff \exists \gamma \in \mathbb{R} \ \forall x \in M : \gamma \leq x.$  In diesem Fall heißt  $\gamma$  eine untere Schranke (US) von M.
- d) Ist  $\gamma$  eine untere Schranke von M und gilt  $\gamma \geq \delta$  für jede weitere untere Schranke  $\delta$  von M, so heißt  $\gamma$  das **Infimum** (oder **die größte untere Schranke**) von M.

Bezeichnung in diesem Fall:  $\gamma = \sup M$  bzw.  $\gamma = \inf M$ .

Aus (A11) folgt: Ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup  $M \in M$  bzw. inf  $M \in M$ , so heißt sup M das **Maximum** bzw. inf M das **Minimum** von M und wird mit max M bzw. min M bezeichnet.

### Beispiele:

- a) M = (1,2). sup  $M = 2 \notin M$ , inf  $M = 1 \notin M$ . M hat kein Maximum und kein Minimum.
- b) M = (1, 2].  $\sup M = 2 \in M$ ,  $\max M = 2$ .

- c)  $M = (3, \infty)$ . M ist nicht nach oben beschränkt,  $3 = \inf M \notin M$ .
- d)  $M = (-\infty, 0]$ . M ist nach unten unbeschränkt,  $0 = \sup M = \max M$ .
- e)  $M = \emptyset$ . Jedes  $\gamma \in \mathbb{R}$  ist eine obere Schranke und eine untere Schranke von M.

#### Vollständigkeitsaxiom:

(A15) Ist  $\emptyset \neq M \subseteq \mathbb{R}$  und ist M nach oben beschränkt, so ist sup M vorhanden.

**Satz 15.1:** Ist  $\emptyset \neq M \subseteq \mathbb{R}$  und ist M nach unten beschränkt, so ist inf M vorhanden.

Beweis: In den Übungen.

**Definition:** Es sei  $M \subseteq \mathbb{R}$ . M heißt beschränkt:  $\iff M$  ist nach oben und nach unten beschränkt. Äquivalent ist:

$$\exists c \ge 0 \ \forall x \in M: \ |x| \le c.$$

Satz 15.2: Es sei  $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$ .

- a) Ist A beschränkt, so ist inf  $A \leq \sup A$ .
- b) Ist A nach oben bzw. unten beschränkt, so ist B nach oben beschränkt und  $\sup B \le \sup A$  bzw. nach unten beschränkt und  $\inf B \ge \inf A$ .
- c) A sei nach oben beschränkt und  $\gamma$  eine obere Schranke von A. Dann gilt:

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$

d) A sei nach unten beschränkt und  $\gamma$  eine untere Schranke von A. Dann gilt:

$$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

Beweis:

- a)  $A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$ . Es gilt:  $\inf A \leq x \text{ und } x \leq \sup A \Rightarrow \inf A \leq \sup A$ .
- b) Es sei  $x \in B$ . Dann:  $x \in A$ , also  $x \le \sup A$ . Also ist B oben beschränkt und  $\sup A$  ist eine obere Schranke von B. Somit ist  $\sup B \le \sup A$ . Analog falls A nach unten beschränkt ist.

c) "\(\Rightarrow\)": Es sei  $\gamma = \sup A$  und  $\varepsilon > 0$ . Dann ist  $\gamma - \varepsilon < \gamma$ . Also ist  $\gamma - \varepsilon$  keine obere Schranke von A. Es folgt:  $\exists x \in A : x > \gamma - \varepsilon$ .

"\((\sim \text{": Es sei } \tilde{\gamma} = \sup A. Dann ist  $\tilde{\gamma} \leq \gamma$ . Annahme:  $\gamma \neq \tilde{\gamma}$ . Dann ist  $\tilde{\gamma} < \gamma$ , also  $\varepsilon \coloneqq \gamma - \tilde{\gamma} > 0$ . Nach Voraussetzung gilt:  $\exists x \in A : x > \gamma - \varepsilon = \gamma - (\gamma - \tilde{\gamma}) = \tilde{\gamma}$ . Widerspruch zu  $x \leq \tilde{\gamma}$ .

d) Analog zu c).

## Natürliche Zahlen

#### **Definition:**

a) Eine Menge  $A \subseteq \mathbb{R}$  heißt **Induktionsmenge** (IM)

$$: \iff \begin{cases} 1. & 1 \in A; \\ 2. & aus \ x \in A \ folgt \ stets \ x + 1 \in A \end{cases}$$

Beispiele:  $\mathbb{R}$ ,  $[1, \infty)$ ,  $\{1\} \cup [2, \infty)$  sind Induktionsmengen.

b)  $\mathbb{N} := \{x \in \mathbb{R} : x \text{ geh\"{o}rt } zu \text{ jeder } IM \} = Durchschnitt aller Induktionsmengen.}$ Also:  $\mathbb{N} \subseteq A$  f\"{u}r jede Induktionsmenge A. Beispiele:  $1, 2, 3, 4, 17 \in \mathbb{N}$ ;  $\frac{3}{2} \notin \mathbb{N}$ .

#### Satz 15.3:

- a)  $\mathbb{N}$  ist eine Induktionsmenge.
- b) N ist nicht nach oben beschränkt.
- c) Ist  $x \in \mathbb{R}$ , so existient ein  $n \in \mathbb{N}$  mit n > x.

#### Beweis:

a) Es gilt  $1 \in A$  für jede IM A, also  $1 \in \mathbb{N}$ . Sei  $x \in \mathbb{N}$ . Dann ist  $x \in A$  für jede IM A, somit  $x + 1 \in A$  für jede IM A. Also gilt  $x + 1 \in \mathbb{N}$ .

b) Annahme:  $\mathbb{N}$  ist beschränkt. Nach (A15) existiert  $s := \sup \mathbb{N}$ . Mit 15.2 folgt:  $\exists n \in \mathbb{N} : n > s - 1$ . Nun ist n + 1 > s. Wegen  $n + 1 \in \mathbb{N}$  ist aber  $n + 1 \leq s$ , ein Widerspruch.

c) Folgt aus 15.3 b).

Satz 15.4 (Prinzip der vollständigen Induktion):

Ist  $A \subseteq \mathbb{N}$  und ist A eine Induktionsmenge, so ist  $A = \mathbb{N}$ .

Beweis: Es gilt  $A \subseteq \mathbb{N}$  (nach Voraussetzung) und  $\mathbb{N} \subseteq A$  (nach Definition), also ist  $A = \mathbb{N}$ .

## Beweisverfahren durch vollständige Induktion

Es sei A(n) eine Aussage, die für jedes  $n \in \mathbb{N}$  definiert ist. Für A(n) gelte:

$$\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{Ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch A}(n+1) \text{ wahr.} \end{cases}$$

Dann ist A(n) wahr für **jedes**  $n \in \mathbb{N}$ .

Beweis: Sei  $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$ . Dann ist  $A \subseteq \mathbb{N}$  und wegen (I), (II) ist A eine Induktionsmenge. Nach 15.4 ist  $A = \mathbb{N}$ .

**Beispiel:** Behauptung: 
$$\forall n \in \mathbb{N} : \underbrace{1 + 2 + \ldots + n = \frac{n(n+1)}{2}}_{A(n)}$$
.

Beweis: (induktiv)

I.A.: Es gilt  $1 = \frac{1(1+1)}{2}$ , A(1) ist also wahr.

I.V.: Für ein  $n \in \mathbb{N}$  sei A(n) wahr, es gelte also  $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ .

I.S.:  $n \curvearrowright n + 1$ : Es gilt:

$$1 + 2 + \ldots + n + (n+1) \stackrel{I.V.}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2}.$$

Also ist A(n+1) wahr.

**Definition:** Wir setzen:

- a)  $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ .
- b)  $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}$  (Menge der ganzen Zahlen).
- c)  $\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}$  (Menge der rationalen Zahlen).

**Satz 15.5:** Sind  $x, y \in \mathbb{R}$  und x < y, so gilt:  $\exists r \in \mathbb{Q}$ : x < r < y.

Beweis: In den Übungen.

## Einige Definitionen und Formeln

a) Ganzzahlige Potenzen.

Für  $a \in \mathbb{R}$ ,  $n \in \mathbb{N}$ :  $a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$ ,  $a^0 \coloneqq 1$ . Für  $a \in \mathbb{R} \setminus \{0\}$ ,  $n \in \mathbb{N}$ :  $a^{-n} \coloneqq \frac{1}{a^n}$ .

Es gelten die bekannten Rechenregeln.

b) Fakultäten.

$$n! := 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \ (n \in \mathbb{N}), \quad 0! := 1.$$

c) Binomialkoeffizienten (BK). Für  $n \in \mathbb{N}_0, k \in \mathbb{N}_0$  und  $k \leq n$ :

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}.$$

Es gilt (nachrechnen):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n.$$

d) Für  $a, b \in \mathbb{R}$  und  $n \in \mathbb{N}_0$  gilt:

$$a^{n+1} - b^{n+1} = (a-b) \left( a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a-b) \sum_{k=0}^n a^{n-k}b^k = (a-b) \sum_{k=0}^n a^k b^{n-k}.$$

e) Binomischer Satz. Für  $a, b \in \mathbb{R}$  und  $n \in \mathbb{N}_0$  gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Beweis: In den Übungen.

f) Bernoullische Ungleichung. Es sei  $x \in \mathbb{R}$  und  $x \ge -1$ . Dann gilt:

$$(1+x)^n > 1 + nx$$

Beweis: (induktiv)

I.A.: n = 1:  $1 + x \ge 1 + x$  ist wahr.

I.V.: Für ein  $n \in \mathbb{N}$  gelte  $(1+x)^n \ge 1 + nx$ .

I.S.:  $n \curvearrowright n+1$ : Wegen  $1+x \ge 0$  folgt aus der I.V.:

$$(1+x)^{n+1} \ge (1+nx)(1+x) = 1 + nx + x + \underbrace{nx^2}_{\ge 0}$$
$$\ge 1 + nx + x = 1 + (n+1)x.$$

**Hilfssatz 15.6:** Für  $x, y \ge 0$  und  $n \in \mathbb{N}$  gilt:  $x \le y \iff x^n \le y^n$ .

Beweis: In den Übungen.

Satz 15.7: Sei  $a \ge 0$  und  $n \in \mathbb{N}$ . Dann gibt es genau ein  $x \ge 0$  mit  $x^n = a$ . Dieses x heißt die n-te Wurzel aus a. Bezeichnung:  $x = \sqrt[n]{a}$  ( $\sqrt[n]{a} = x$ ).

Beweis: Existenz: später in  $\S7$ .

Eindeutigkeit: Es seien  $x, y \ge 0$  und  $x^n = a = y^n$ . Mit dem 15.6 folgt x = y.

## Bemerkungen:

- a) Bekannt (Schule):  $\sqrt{2} \notin \mathbb{Q}$ .
- b) Für  $a \ge 0$  ist  $\sqrt[n]{a} \ge 0$ . Bsp.:  $\sqrt{4} = 2$ ,  $\sqrt{4} \ne -2$ . Die Gleichung  $x^2 = 4$  hat zwei Lösungen: x = 2 und x = -2.

c) 
$$\forall x \in \mathbb{R} : \sqrt{x^2} = |x|.$$

## Rationale Exponenten

a) Es sei zunächst a>0 und  $r\in\mathbb{Q},\,r>0$ . Dann existieren  $m,n\in\mathbb{N}$  mit  $r=\frac{m}{n}$ . Wir wollen definieren:

$$(*) a^r \coloneqq \left(\sqrt[n]{a}\right)^m.$$

Problem: Gilt auch noch  $r = \frac{p}{q}$  mit  $p, q \in \mathbb{N}$ , gilt dann  $(\sqrt[p]{a})^m = (\sqrt[q]{a})^p$ ? Antwort: Ja (d.h. obige Definition (\*) ist sinnvoll).

Beweis: Setze  $x := (\sqrt[n]{a})^m$ ,  $y := (\sqrt[q]{a})^p$ . Dann gilt  $x, y \ge 0$  und mq = np, also

$$x^{q} = \left(\sqrt[n]{a}\right)^{mq} = \left(\sqrt[n]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^{n}\right)^{p} = a^{p}$$
$$= \left(\left(\sqrt[q]{a}\right)^{q}\right)^{p} = \left(\left(\sqrt[q]{a}\right)^{p}\right)^{q} = y^{q}.$$

Mit dem 15.6 folgt x = y.

b) Es seien  $a > 0, r \in \mathbb{Q}$  und r < 0. Wir definieren:

$$a^r \coloneqq \frac{1}{a^{-r}}.$$

Es gelten die bekannten Rechenregeln:  $a^r a^s = a^{r+s}, (a^r)^s = a^{rs}$ , etc.

## Kapitel 16

## Folgen und Konvergenz

**Definition:** Es sei X eine Menge,  $X \neq \emptyset$ . Eine Funktion  $a: \mathbb{N} \to X$  heißt eine **Folge** in X. Ist  $X = \mathbb{R}$ , so heißt a eine **reelle Folge**.

**Schreibweisen:**  $a_n$  statt a(n) (n-tes Folgenglied)

$$(a_n)$$
 oder  $(a_n)_{n=1}^{\infty}$  oder  $(a_1, a_2, \dots)$  statt  $a$ .

### Beispiele:

- a)  $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots).$
- b)  $a_{2n} := 0, a_{2n-1} := 1 \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, 0, 1, 0, \dots).$

**Bemerkung:** Ist  $p \in \mathbb{Z}$  und  $a: \{p, p+1, p+2, \dots\} \to X$  eine Funktion, so spricht man ebenfalls von einer Folge in X. Bezeichnung:  $(a_n)_{n=p}^{\infty}$ . Meistens ist p=0 oder p=1.

**Definition:** Es sei X eine Menge,  $X \neq \emptyset$ .

- a) X heißt  $abz\ddot{a}hlbar$ :  $\iff$  Es gibt eine Folge  $(a_n)$  in X mit  $X = \{a_1, a_2, a_3, \dots\}$ .
- b) X heißt  $\ddot{u}berabz\ddot{a}hlbar$ :  $\iff X$  ist nicht abzählbar.

## Beispiele:

- a) Ist X endlich, so ist X abzählbar.
- b)  $\mathbb{N}$  ist abzählbar, denn  $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$  mit  $a_n := n \ (n \in \mathbb{N})$ .
- c)  $\mathbb{Z}$  ist abzählbar, denn  $\mathbb{Z} = \{a_1, a_2, a_3, \dots\}$  mit

$$a_1 \coloneqq 0, \ a_2 \coloneqq 1, \ a_3 \coloneqq -1, \ a_4 \coloneqq 2, \ a_5 \coloneqq -2, \dots$$

also

$$a_0 := 0, \quad a_{2n} := n, \quad a_{2n+1} := -n \quad (n \in \mathbb{N}).$$



Abbildung 16.1: Zum Beweis der Abzählbarkeit von Q.

#### d) Q ist abzählbar.

Durchnummerieren in Pfeilrichtung liefert:

$${x \in \mathbb{Q} : x > 0} = {a_1, a_2, a_3, \dots}.$$

Setze  $b_1 := 0, b_{2n} := a_n, b_{2n+1} := -a_n \ (n \in \mathbb{N})$ . Dann gilt:

$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}.$$

## e) $\mathbb{R}$ ist überabzählbar (Beweis in §5).

Vereinbarung: Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in  $\mathbb{R}$ . Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form  $(a_n)_{n=1}^{\infty}$ . Sie gelten sinngemäß für Folgen der Form  $(a_n)_{n=p}^{\infty}$   $(p \in \mathbb{Z})$ .

**Definition:** Es sei  $(a_n)$  eine Folge und  $M := \{a_1, a_2, \dots\}$ .

a)  $(a_n)$  heißt nach oben beschränkt :  $\iff$  M ist nach oben beschränkt. In diesem Fall:

$$\sup_{n\in\mathbb{N}} a_n := \sup_{n=1}^{\infty} a_n := \sup M.$$

b)  $(a_n)$  heißt nach unten beschränkt :  $\iff$  M ist nach unten beschränkt. In diesem Fall:

$$\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M.$$

c)  $(a_n)$  heißt **beschränkt** :  $\iff$  M ist beschränkt. Äquivalent ist:

$$\exists c \geq 0 \ \forall n \in \mathbb{N} : \ |a_n| \leq c$$

**Definition:** Es sei A(n) eine für jedes  $n \in \mathbb{N}$  definierte Aussage. A(n) gilt **für fast alle** (ffa)  $n \in \mathbb{N}$ :  $\iff \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : A(n)$  ist wahr.

**Definition:** Es sei  $a \in \mathbb{R}$  und  $\varepsilon > 0$ . Das Intervall

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

heißt  $\varepsilon$ -Umgebung von a.

**Definition:** Eine Folge  $(a_n)$  heißt konvergent

$$:\iff \exists a\in\mathbb{R}: \begin{cases} Zu\ jedem\ \varepsilon>0\ existiert\ ein\ n_0=n_0(\varepsilon)\in\mathbb{N}\ so,\\ da\beta\ f\ddot{u}r\ jedes\ n\geq n_0\ gilt\ : |a_n-a|<\varepsilon. \end{cases}$$

In diesem Fall heißt a **Grenzwert** (GW) oder **Limes** von  $(a_n)$  und man schreibt

$$a_n \to a \ (n \to \infty) \ oder \ a_n \to a \ oder \ \lim_{n \to \infty} a_n = a.$$

Ist  $(a_n)$  nicht konvergent, so heißt  $(a_n)$  divergent. Beachte:

$$a_n \to a \ (n \to \infty) \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ a_n \in U_{\varepsilon}(a)$$

$$\iff \forall \varepsilon > 0 \ gilt: \ a_n \in U_{\varepsilon}(a) \ ffa \ n \in \mathbb{N}$$

$$\iff \forall \varepsilon > 0 \ gilt: \ a_n \notin U_{\varepsilon}(a) \ f\"{u}r \ h\"{o}chstens \ endlich \ viele \ n \in \mathbb{N}$$

**Satz 16.1:** Es sei  $(a_n)$  konvergent und  $a = \lim_{n \to \infty} a_n$ . Dann gilt:

- a) Gilt auch noch  $a_n \to b$ , so ist a = b.
- b)  $(a_n)$  ist beschränkt.

Beweis:

a) Annahme  $a \neq b$ . Dann ist  $\varepsilon := \frac{|a-b|}{2} > 0$ .

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - a| < \varepsilon \text{ und } \exists n_1 \in \mathbb{N} \ \forall n \geq n_1 : |a_n - b| < \varepsilon.$$

 $N := \max\{n_0, n_1\}$ . Dann gilt:

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon.$$

Widerspruch. Also ist a = b.

b) Es sei  $\varepsilon = 1$ . Es gilt:  $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - a| < 1$ . Damit folgt:

$$\forall n \ge n_0: |a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a|.$$

Setze  $c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$ . Dann:  $\forall n \in \mathbb{N} : |a_n| \le c$ .

Beispiele:

a) Es sei  $c \in \mathbb{R}$  und  $a_n := c \ (n \in \mathbb{N})$ . Dann gilt:

$$\forall n \in \mathbb{N}: |a_n - c| = 0.$$

Also:  $a_n \to c \ (n \to \infty)$ .

b)  $a_n := \frac{1}{n} \ (n \in \mathbb{N})$ . Behauptung:  $a_n \to 0 \ (n \to \infty)$ .

Beweis: Es sei  $\varepsilon > 0$ . Es gilt:  $|a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$ . Mit 15.3 c) erhalten wir:

$$\exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon}$$

Für  $n \ge n_0$  ist damit  $n > \frac{1}{\varepsilon}$ , also  $\frac{1}{n} < \varepsilon$ . Somit ist  $|a_n - 0| < \varepsilon \ (n \ge n_0)$ .

c)  $a_n := (-1)^n \ (n \in \mathbb{N})$ . Es gilt  $|a_n| = 1 \ (n \in \mathbb{N})$ , also ist  $(a_n)$  beschränkt. Behauptung:  $(a_n)$  ist divergent.

Beweis: Für jedes  $n \in \mathbb{N}$  gilt:

$$|a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n||1 - (-1)| = 2.$$

Annahme:  $(a_n)$  konvergiert. Definiere  $a := \lim_{n \to \infty} a_n$ . Es gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \frac{1}{2}.$$

Für  $n \ge n_0$  folgt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1,$$
 ein Widerspruch.

- d)  $a_n := n \ (n \in \mathbb{N})$ .  $(a_n)$  ist nicht beschränkt. Nach 16.1 b) ist  $(a_n)$  also divergent.
- e)  $a_n := \frac{1}{\sqrt{n}} \ (n \in \mathbb{N})$ . Behauptung:  $a_n \to 0$ .

Beweis: Es sei  $\varepsilon > 0$ . Es gilt:

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{\varepsilon} \iff n > \frac{1}{\varepsilon^2}.$$

Mit 15.3 c) erhalten wir:

$$\exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}.$$

Für  $n \ge n_0$  gilt damit:  $n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon$ , also  $|a_n - 0| < \varepsilon$ .

f)  $a_n := \sqrt{n+1} - \sqrt{n} \ (n \in \mathbb{N})$ . Behauptung:  $a_n \to 0$ .

Beweis:

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ (n \in \mathbb{N})$ . Es sei  $\varepsilon > 0$ . Nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ \frac{1}{\sqrt{n}} < \varepsilon \Rightarrow \forall n \ge n_0 : \ |a_n - 0| < \varepsilon$$

Also gilt:  $a_n \to 0$ .

**Definition:** Es seien  $(a_n)$  und  $(b_n)$  Folgen und  $\alpha \in \mathbb{R}$ .

$$(a_n) \pm (b_n) \coloneqq (a_n \pm b_n); \ \alpha(a_n) \coloneqq (\alpha a_n); \ (a_n)(b_n) \coloneqq (a_n b_n)$$

Gilt  $\forall n \geq m : b_n \neq 0$ , so ist die Folge  $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$  definiert.

**Satz 16.2:** Es seien  $(a_n), (b_n), (c_n)$  und  $(\alpha_n)$  Folgen und  $a, b, \alpha \in \mathbb{R}$ . Dann gilt:

- $a) \ a_n \to a \iff |a_n a| \to 0.$
- b) Gilt  $|a_n a| \le \alpha_n$  ffa  $n \in \mathbb{N}$  und  $\alpha_n \to 0$ , so gilt  $a_n \to a$ .
- c) Es gelte  $a_n \to a$  und  $b_n \to b$ . Dann gilt:
  - (i)  $|a_n| \rightarrow |a|$ ;
  - (ii)  $a_n + b_n \rightarrow a + b$ ;
  - (iii)  $\alpha a_n \to \alpha a$ ;
  - (iv)  $a_n b_n \to ab$ ;
  - (v) ist  $a \neq 0$ , so existiert ein  $m \in \mathbb{N}$  mit:

$$a_n \neq 0 \ (n \geq m) \ und \ f\ddot{u}r \ die \ Folge \ \left(\frac{1}{a_n}\right)_{n=m}^{\infty} \ gilt: \frac{1}{a_n} \to \frac{1}{a}.$$

- d) Es gelte  $a_n \to a$ ,  $b_n \to b$  und  $a_n \le b_n$  ffa  $n \in \mathbb{N}$ . Dann ist  $a \le b$ .
- e) Es gelte  $a_n \to a$ ,  $b_n \to a$  und  $a_n \le c_n \le b_n$  ffa  $n \in \mathbb{N}$ . Dann gilt  $c_n \to a$ .

## Beispiele:

a) Es sei  $p \in \mathbb{N}$  und  $a_n := \frac{1}{n^p}$   $(n \in \mathbb{N})$ . Es gilt  $n \leq n^p$   $(n \in \mathbb{N})$ . Also:

$$0 \le a_n \le \frac{1}{n} \ (n \in \mathbb{N}) \xrightarrow{16.2 \ e} a_n \to 0.$$

b) Es sei  $a_n := \frac{5n^2 + 3n + 1}{4n^2 - n + 2}$   $(n \in \mathbb{N})$ . Es gilt:  $a_n = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \xrightarrow{16.2} \frac{5}{4}$ .

Beweis: (von 2.2)

a) Folgt aus der Definition der Konvergenz.

b) Es gilt:  $\exists m \in \mathbb{N} \ \forall n \geq m : \ |a_n - a| \leq \alpha_m$ . Sei  $\varepsilon > 0$ . Wegen  $\alpha_n \to 0$  gilt:

$$\exists n_1 \in \mathbb{N} \ \forall n \geq n_1 : \ \alpha_n < \varepsilon.$$

Setze  $n_0 := \max\{m, n_1\}$ . Für  $n \ge n_0$  gilt nun:  $|a_n - a| \le \alpha_n < \varepsilon$ .

- c) (i)  $\forall n \in \mathbb{N} : ||a_n| |a|| \stackrel{\S1}{\leq} |a_n a| \xrightarrow{a),b} |a_n| \to |a|.$ 
  - (ii) Es sei  $\varepsilon > 0$ . Es gilt:  $\exists n_1, n_2 \in \mathbb{N}$  mit

$$\forall n \ge n_1 : |a_n - a| < \frac{\varepsilon}{2} \text{ und } \forall n \ge n_2 : |b_n - b| < \frac{\varepsilon}{2}.$$

Setze  $n_0 := \max\{n_1, n_2\}$ . Für  $n \ge n_0$  erhalten wir:

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

- (iii) Übung.
- (iv) Es sei  $c_n := |a_n b_n ab|$   $(n \in \mathbb{N})$ . Wir Zeigen:  $c_n \to 0$ . Es gilt:

$$c_n = |a_n b_n - a_n b + a_n b - a b| = |a_n (b_n - b) + (a_n - a) b|$$
  

$$\leq |a_n| |b_n - b| + |b| |a_n - a|.$$

Mit 16.1 b) folgt:  $\exists c \geq 0 \ \forall n \in \mathbb{N} : |a_n| \leq c$ . Damit erhalten wir:

$$\forall n \in \mathbb{N}: \ c_n \le c|b_n - b| + |b||a_n - a| =: \alpha_n.$$

Mit c) (ii), c) (iii) und a) folgt:  $\alpha_n \to 0$ .

Also:  $|c_n - 0| = c_n \le \alpha_n \ (n \in \mathbb{N})$  und  $\alpha_n \to 0$ . Mit b) folgt nun  $c_n \to 0$ .

(v) Setze  $\varepsilon := \frac{|a|}{2}$ . Aus (i) folgt:  $|a_n| \to |a|$ . Damit gilt:

$$\exists m \in N \ \forall n \ge m: \ |a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon). = (\frac{|a|}{2}, \frac{3}{2}|a|)$$

Insbesondere ist  $|a_n| > \frac{|a|}{2} > 0$   $(n \ge m)$ , also  $a_n \ne 0$   $(n \ge m)$ . Für  $n \ge m$  gilt nun:

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n$$

Es gilt  $\alpha_n \to 0$ . Mit b) folgt  $\frac{1}{a_n} \to \frac{1}{a}$ .

d) Annahme: b < a. Setze  $\varepsilon := \frac{a-b}{2} > 0$ . Dann gilt:

$$\forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a) : \ x < y.$$

Weiter gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ b_n \in U_{\varepsilon}(b),$$

$$\exists m \in \mathbb{N} \ \forall n > m : \ a_n < b_n.$$

Setze  $m_0 := \max\{n_0, m\}$ . Für  $n \ge m_0$  ist  $a_n \le b_n < b + \varepsilon$ , also  $a_n \notin U_{\varepsilon}(a)$ . Widerspruch.

e) Es gilt:  $\exists m \in \mathbb{N} \ \forall n \geq m : \ a_n \leq c_n \leq b_n$ . Sei  $\varepsilon > 0$ . Es existieren  $n_1, n_2 \in \mathbb{N}$  mit:

$$\forall n \ge n_1: \ a - \varepsilon < a_n < a + \varepsilon,$$

$$\forall n \ge n_2 : a - \varepsilon < b_n < a + \varepsilon.$$

Setze  $n_0 := \max\{n_1, n_2, m\}$ . Für  $n \ge n_0$  gilt nun:

$$a - \varepsilon < a_n < c_n < b_n < a + \varepsilon$$

Also:  $|a_n - a| < \varepsilon \ (n \ge n_0)$ .

**Definition:** 

- a)  $(a_n)$  heißt monoton wachsend :  $\iff \forall n \in \mathbb{N} : a_n \leq a_{n+1}$ .
- b)  $(a_n)$  heißt streng monoton wachsend :  $\iff \forall n \in \mathbb{N} : a_n < a_{n+1}$ .
- c) Entsprechend definiert man monoton fallend und streng monoton fallend.
- d)  $(a_n)$  heißt [streng] monoton :  $\iff$   $(a_n)$  ist [streng] monoton wachsend oder [streng] monoton fallend.

Satz 16.3 (Monotoniekriterium):

a) Die Folge  $(a_n)$  sei monoton wachsend und nach oben beschränkt. Dann ist  $(a_n)$  konvergent und

$$\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

b) Die Folge  $(a_n)$  sei monoton fallend und nach unten beschränkt. Dann ist  $(a_n)$  konvergent und

$$\lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

Beweis: Setze  $a := \sup_{n \in \mathbb{N}} a_n$ . Es sei  $\varepsilon > 0$ . Dann ist  $a - \varepsilon$  keine obere Schranke von  $\{a_n : n \in \mathbb{N}\}$ . Also existiert ein  $n_0 \in \mathbb{N}$  mit  $a_{n_0} > a - \varepsilon$ . Für  $n \ge n_0$  gilt:

$$a - \varepsilon < a_{n_0} \le a_n \le a < a + \varepsilon$$

also 
$$|a_n - a| < \varepsilon \ (n \ge n_0)$$
.

Beispiel:  $a_1 := \sqrt[3]{6}$ ,  $a_{n+1} := \sqrt[3]{6 + a_n}$   $(n \ge 1)$ .

Behauptung:  $\forall n \in \mathbb{N} : 0 < a_n < 2 \text{ und } a_{n+1} > a_n.$ 

Beweis: (induktiv)

I.A.: n = 1.

$$0 < a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} > \sqrt[3]{6} = a_1.$$

I.V.: Es sei  $n \in \mathbb{N}$  und  $0 < a_n < 2$  und  $a_{n+1} > a_n$ .

I.S. n 
ightharpoonup n+1: Es gilt  $a_{n+1}=\sqrt[3]{6+a_n}>_{I.V.}0$ . Weiter ist

$$a_{n+1} = \sqrt[3]{6+a_n} <_{I.V.} \sqrt[3]{6+2} = 2; \quad a_{n+2} = \sqrt[3]{6+a_{n+1}} >_{I.V.} \sqrt[3]{6+a_n} = a_{n+1}.$$

Also ist  $(a_n)$  nach oben beschränkt und monoton wachsend. Nach 16.3 ist  $(a_n)$  konvergent. Setze  $a := \lim a_n$ . Es gilt  $a_n \ge 0$   $(n \in \mathbb{N})$ , also  $a \ge 0$ . Weiter ist

$$a_{n+1}^3 = 6 + a_n \quad (n \in \mathbb{N}).$$

Mit 16.2 folgt  $a^3 = 6 + a \Rightarrow 0 = a^3 - a - 6 = (a - 2)(\underbrace{a^2 + 2a + 3}_{>3})$ . Also ist a = 2.

#### Wichtige Beispiele:

Vorbemerkung: Es seien  $x, y \ge 0$  und  $p \in \mathbb{N}$ : Es ist (vgl. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|.$$

**Beispiel 16.4:** Es sei  $(a_n)$  eine konvergente Folge in  $[0, \infty)$  mit Grenzwert a (bea.  $a \ge 0$ ) und  $p \in \mathbb{N}$ . Dann gilt  $\sqrt[p]{a_n} \to \sqrt[p]{a}$ .

Beweis:

Fall 1: a = 0. Es sei  $\varepsilon > 0$ . Dann gilt:  $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \ 0 \leq a_n < \varepsilon^p$ . Daraus folgt:

$$\forall n > n_0: \ 0 < \sqrt[p]{a_n} < \varepsilon.$$

Also gilt:  $\sqrt[p]{a_n} \to 0 = \sqrt[p]{a}$ .

Fall 2:  $a \neq 0$ . Dann gilt:

$$|a_n - a| = |(\underbrace{\sqrt[p]{a_n}})^p - (\underbrace{\sqrt[p]{a}})^p| = |x^p - y^p|$$

$$\geq_{s.o.} \underbrace{y^{p-1}}_{:=c} |x - y| = c|\sqrt[p]{a_n} - \sqrt[p]{a}|, \quad c > 0.$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n$$
. Es gilt  $\alpha_n \to 0$ , also  $\sqrt[p]{a_n} \to \sqrt[p]{a}$ .

**Beispiel 16.5:** Für  $x \in \mathbb{R}$  gilt:  $(x^n)$  ist konvergent  $\iff x \in (-1,1]$ . In diesem Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beweis:

Fall 1: x = 0. Dann gilt  $x^n \to 0$ . Fall 2: x = 1. Dann gilt  $x^n \to 1$ .

Fall 3: x = -1. Dann ist  $(x^n) = ((-1)^n)$  divergent.

Fall 4: |x| > 1. Dann gibt es ein  $\delta > 0$  mit  $|x| = 1 + \delta$ . Damit gilt:

$$|x^n| = |x|^n = (1+\delta)^n \ge 1 + n\delta \ge n\delta \quad (n \in \mathbb{N}).$$

Also ist  $(x^n)$  nicht beschränkt und somit divergent.

Fall 5: 0 < |x| < 1. Dann ist  $\frac{1}{|x|} > 1$  und es gibt ein  $\eta > 0$  mit  $\frac{1}{|x|} = 1 + \eta$ . Damit gilt:

$$\left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta \quad (n \in \mathbb{N}).$$

Also ist

$$|x^n| \le \frac{1}{n\eta} \quad (n \in \mathbb{N}).$$

Damit folgt  $x^n \to 0$ .

**Beispiel 16.6:** Es sei  $x \in \mathbb{R}$  und  $s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k \ (n \in \mathbb{N}_0)$ .

Fall 1: x = 1. Dann ist  $s_n = n + 1$ ,  $(s_n)$  ist also divergent.

Fall 2:  $x \neq 1$ . Dann ist  $s_n = \frac{1-x^{n+1}}{1-x}$ . Aus 16.5 folgt:

$$(s_n)$$
 ist konvergent  $\iff$   $|x| < 1$ .

In diesem Fall gilt:  $\lim_{n\to\infty} s_n = \frac{1}{1-x}$ .

**Beispiel 16.7:** Behauptung: Es gilt  $\sqrt[n]{n} \to 1$ .

Beweis: Es ist  $\sqrt[n]{n} \ge 1$   $(n \in \mathbb{N})$ , also  $a_n := \sqrt[n]{n} - 1 \ge 0$   $(n \in \mathbb{N})$ . Wir zeigen:  $a_n \to 0$ . Für jedes  $n \ge 2$  gilt:

$$n = \left(\sqrt[n]{n}\right)^n = (a_n + 1)^n \stackrel{\S 1}{=} \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2$$

Es folgt (bea.  $a_n \ge 0$ )

$$\forall n \ge 2: \ 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}}.$$

Also gilt  $a_n \to 0$ .

**Beispiel 16.8:** Es sei c > 0. Behauptung: Es gilt  $\sqrt[n]{c} \to 1$ .

Beweis: Fall 1:  $c \geq 1$ . Dann gilt:  $\exists m \in \mathbb{N} : 1 \leq c \leq m$ . Daraus folgt:

$$1 \le c \le n \ (n \ge m) \implies 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \ (n \ge m).$$

Mit 2.7 folgt die Behauptung.

Fall 2: 0 < c < 1. Dann ist  $\frac{1}{c} > 1$ . Also gilt

$$\sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall1} 1 \quad (n \to \infty).$$

**Beispiel 16.9:** Es sei  $a_n := \left(1 + \frac{1}{n}\right)^n$ ,  $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$   $(n \in \mathbb{N})$ . Behauptung:  $(a_n)$  und  $(b_n)$  sind konvergent und  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ .

Beweis: In der großen Übungen wird gezeigt:  $\forall n \in \mathbb{N} : 2 \leq a_n < a_{n+1} < 3$ . Nach 16.3 ist  $(a_n)$  also konvergent;  $a := \lim_{n \to \infty} a_n$ .

Weiter ist  $b_n > 0$  und  $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$   $(n \in \mathbb{N})$ . Also ist  $(b_n)$  monoton wachsend. Für jedes n > 3 gilt:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 3}}_{<\left(\frac{1}{2}\right)^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<\left(\frac{1}{2}\right)^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<\left(\frac{1}{2}\right)^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3.$$

Nach 16.3 ist  $(b_n)$  konvergent;  $b := \lim_{n \to \infty} b_n$ .

Weiter gilt für jedes  $n \geq 2$ :

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} \stackrel{\S 1}{=} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right)}_{<1} \underbrace{\left(1 - \frac{2}{n}\right)}_{<1} \cdot \dots \cdot \underbrace{\left(1 - \frac{k-1}{n}\right)}_{<1} \underbrace{\left(1 - \frac{1}{n}\right)}_{<1} \cdot \dots \cdot \underbrace{\left(1 - \frac{k-1}{n}\right)}_{<1} \underbrace{\left(1 - \frac{1}{n}\right)}_{<1} \cdot \dots \cdot \underbrace{\left(1 - \frac{k-1}{n}\right)}_{<1} \cdot \dots \cdot \underbrace{\left(1 - \frac{k-$$

Also gilt  $a_n \leq b_n \ (n \geq 2)$  und damit folgt  $a \leq b$ .

Weiter sei  $j \in \mathbb{N}$ ,  $j \geq 2$  (zunächst fest). Für jedes  $n \in \mathbb{N}$  mit  $n \geq j$  gilt:

$$a_n \stackrel{s.o.}{=} 1 + 1 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^j \frac{1}{k!} \underbrace{(1 - \frac{1}{n})}_{\to 1} \underbrace{(1 - \frac{2}{n})}_{\to 1} \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}$$

$$\to 1 + 1 + \sum_{k=2}^j \frac{1}{k!} = b_j \quad (n \to \infty).$$

Also gilt  $a \ge b_j$  für jedes  $j \ge 2$ . Wegen  $b_j \to b$   $(j \to \infty)$  folgt  $a \ge b$ .

Übung: Es gilt: 2 < a = b < 3.

**Definition:** Die gemeinsame Grenzwert der Folgen in 16.9

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!}$$

heißt **Eulersche Zahl**  $(e \approx 2,718...)$ .

**Definition:** Es sei  $(a_n)$  eine Folge und  $(n_1, n_2, n_3, ...)$  eine Folge in  $\mathbb{N}$  mit  $n_1 < n_2 < n_3 < ...$  Für  $k \in \mathbb{N}$  setze

$$b_k := a_{n_k}$$

also  $b_1 = a_{n_1}, b_2 = a_{n_2}, b_3 = a_{n_3}, \dots$ Dann heißt  $(b_k) = (a_{n_k})$  eine **Teilfolge** (TF) von  $(a_n)$ .

### Beispiele:

- a)  $(a_2, a_4, a_6, ...)$  ist eine Teilfolge von  $(a_n)$ ; hier:  $n_k = 2k$ .
- b)  $(a_1, a_4, a_9, ...)$  ist eine Teilfolge von  $(a_n)$ ; hier:  $n_k = k^2$ .
- c)  $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, \dots)$  ist keine Teilfolge von  $(a_n)$ .

**Definition:** Es sei  $(a_n)$  eine Folge. Eine Zahl  $\alpha \in \mathbb{R}$  heißt ein **Häufungswert** (HW) von  $(a_n)$ , wenn eine Teilfolge  $(a_{n_k})$  von  $(a_n)$  existiert mit  $a_{n_k} \to \alpha$   $(k \to \infty)$ . Weiter sei

$$H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein H\"{a}ufungswert von } (a_n) \}.$$

**Satz 16.10:** *Es gilt:* 

$$\alpha \in H(a_n) \iff \forall \varepsilon > 0 : \ a_n \in U_{\varepsilon}(\alpha) \ \text{für unendlich viele } n \in \mathbb{N}.$$

Beweis:

"⇒": Es sei  $(a_{n_k})$  eine Teilfolge mit  $a_{n_k} \to \alpha$  und es sei  $\varepsilon > 0$ . Dann existiert ein  $k_0 \in \mathbb{N}$  mit  $a_{n_k} \in U_{\varepsilon}(\alpha)$  für  $k \geq k_0$ .

"⇐": Es gilt:

 $\exists n_1 \in \mathbb{N} : a_{n_1} \in U_1(\alpha),$ 

 $\exists n_2 \in \mathbb{N} : a_{n_2} \in U_{\frac{1}{2}}(\alpha) \text{ und } n_2 > n_1,$ 

 $\exists n_3 \in \mathbb{N} : a_{n_3} \in \overline{U_{\frac{1}{2}}}(\alpha) \text{ und } n_3 > n_2, \text{ etc...}$ 

So entsteht eine Teilfolge  $(a_{n_k})$  von  $(a_n)$  mit  $a_{n_k} \in U_{\frac{1}{h}}(\alpha)$   $(k \in \mathbb{N})$ . Also gilt:  $a_{n_k} \to \alpha$ .  $\square$ 

#### Beispiele:

- a)  $a_n = (-1)^n \ (n \in \mathbb{N})$ . Es gilt:  $a_{2k} \to 1, a_{2k+1} \to -1$ , also  $1, -1 \in H(a_n)$ . Es sei  $\alpha \in \mathbb{R} \setminus \{-1, 1\}$ . Wähle  $\varepsilon > 0$  so, daß  $1, -1 \notin U_{\varepsilon}(\alpha)$ . Dann gilt  $a_n \in U_{\varepsilon}(\alpha)$  für kein  $n \in \mathbb{N}$ . Nach 16.10 ist  $\alpha \notin H(a_n)$ . Fazit:  $H(a_n) = \{1, -1\}$ .
- b)  $a_n = n \ (n \in \mathbb{N})$ .. Ist  $\alpha \in \mathbb{R}$  und  $\varepsilon > 0$ , so gilt:  $a_n \in U_{\varepsilon}(\alpha)$  für höchstens endlich viele n, also  $\alpha \notin H(a_n)$ . Fazit:  $H(a_n) = \emptyset$ .
- c)  $\mathbb{Q}$  ist abzählbar. Es sei  $(a_n)$  eine Folge mit  $\mathbb{Q} = \{a_n : n \in \mathbb{N}\}$ . Es sei  $\alpha \in \mathbb{R}$  und  $\varepsilon > 0$ . Nach 15.5 enthält  $U_{\varepsilon}(\alpha) = (\alpha \varepsilon, \alpha + \varepsilon)$  unendlich viele verschiedene rationale Zahlen. Nach 16.10 folgt  $\alpha \in H(a_n)$ . Fazit:  $H(a_n) = \mathbb{R}$ .

**Folgerung:** Ist  $x \in \mathbb{R}$ , so existieren Folgen  $(r_n)$  in  $\mathbb{Q}$  mit  $r_n \to x$ .

**Satz 16.11:** Die Folge  $(a_n)$  sei konvergent,  $a := \lim_{n \to \infty} a_n$  und  $(a_{n_k})$  eine Teilfolge von  $(a_n)$ . Dann gilt:

$$a_{n_k} \to a \quad (k \to \infty)$$

Insbesondere gilt:  $H(a_n) = \{\lim_{n \to \infty} a_n\}.$ 

Beweis: Es sei  $\varepsilon > 0$ . Dann ist  $a_n \in U_{\varepsilon}(a)$  ffa  $n \in \mathbb{N}$ , also auch  $a_{n_k} \in U_{\varepsilon}(a)$  ffa  $k \in \mathbb{N}$ . Somit gilt  $a_{n_k} \to \alpha$ .

**Definition:** Es sei  $(a_n)$  eine Folge und  $m \in \mathbb{N}$ .

 $m \text{ heißt } \mathbf{niedrig} \text{ (für } (a_n)) : \iff \forall n \geq m : \ a_n \geq a_m.$ 

Bemerkung: Es gilt also:

 $m \in \mathbb{N}$  ist nicht niedrig  $\iff \exists n \geq m : a_n < a_m \Rightarrow \exists n > m : a_n < a_m$ .

**Hilfssatz 16.12:** Es sei  $(a_n)$  eine Folge. Dann enthält  $(a_n)$  eine monotone Teilfolge.

Beweis:

Fall 1: Es existieren höchstens endlich viele niedrige Indizes. Also existiert  $n_1 \in \mathbb{N}$  so, daß jedes  $n \geq n_1$  nicht niedrig ist.

 $n_1$  nicht niedrig  $\Rightarrow \exists n_2 > n_1 : a_{n_2} < a_{n_1}$ 

 $n_2$  nicht niedrig  $\Rightarrow \exists n_3 > n_2 : a_{n_3} < a_{n_2}$ 

etc...

Wir erhalten so eine streng monoton fallende Teilfolge  $(a_{n_k})$  von  $(a_n)$ .

Fall 2: Es existieren unendlich viele niedrige Indizes  $n_1, n_2, n_3 \dots$  O.B.d.A. sei  $n_1 < n_2 < n_3, \dots$ 

 $n_1$  ist niedrig und  $n_2 > n_1 \Rightarrow a_{n_2} \geq a_{n_1}$ ,

 $n_2$  ist niedrig und  $n_3 > n_2 \Rightarrow a_{n_3} \geq a_{n_2}$ ,

etc...

Wir erhalten so eine monoton wachsende Teilfolge  $(a_{n_k})$  von  $(a_n)$ .

### Satz 16.13 (Bolzano-Weierstraß):

Die Folge  $(a_n)$  sei beschränkt. Dann gilt:  $H(a_n) \neq \emptyset$ . Also enthält  $(a_n)$  eine konvergente Teilfolge.

Beweis: Es gilt:  $\exists c \geq 0 \ \forall n \in \mathbb{N} : |a_n| \leq c$ . Nach 16.12 enthält  $(a_n)$  eine monotone Teilfolge  $(a_{n_k})$ . Wegen  $|a_{n_k}| \leq c \ (k \in \mathbb{N})$  ist  $(a_{n_k})$  auch beschränkt.

Nach 16.3 ist 
$$(a_{n_k})$$
 konvergent. Damit ist  $\lim_{k\to\infty} a_{n_k} \in H(a_n)$ .

**Satz 16.14:** Die Folge  $(a_n)$  sei beschränkt (nach 16.13 gilt damit  $H(a_n) \neq \emptyset$ ). Es gilt:

- a)  $H(a_n)$  ist beschränkt.
- b)  $\sup H(a_n), \inf H(a_n) \in H(a_n);$  es existieren also  $\max H(a_n)$  und  $\min H(a_n).$

Beweis:

a) Es gilt:  $\exists c \geq 0 \ \forall n \in \mathbb{N} : \ |a_n| \leq c$ . Sei  $\alpha \in H(a_n)$ . Es existiert eine Teilfolge  $(a_{n_k})$  von  $(a_n)$  mit  $a_{n_k} \to \alpha \ (k \to \infty)$ . Es ist  $|a_{n_k}| \leq c \ (k \in \mathbb{N})$ , also  $|\alpha| \leq c$ . Somit gilt

$$\forall \alpha \in H(a_n) : |\alpha| \le c.$$

b) ohne Beweis.

**Definition:** Die Folge  $(a_n)$  sei beschränkt.

a) Die Zahl

$$\limsup_{n\to\infty} a_n := \overline{\lim}_{n\to\infty} a_n := \max H(a_n)$$

heißt Limes superior oder oberer Limes von  $(a_n)$ .

b) Die Zahl

$$\liminf_{n \to \infty} a_n := \underline{\lim}_{n \to \infty} a_n := \min H(a_n)$$

heißt Limes inferior oder unterer Limes von  $(a_n)$ .

**Satz 16.15:** Die Folge  $(a_n)$  sei beschränkt. Dann gilt:

- a)  $\forall \alpha \in H(a_n)$ :  $\liminf_{n \to \infty} a_n \le \alpha \le \limsup_{n \to \infty} a_n$ .
- b) Ist  $(a_n)$  konvergent, so ist  $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \lim_{n\to\infty} a_n$ .
- c)  $\forall \alpha \geq 0$ :  $\limsup_{n \to \infty} (\alpha a_n) = \alpha \limsup_{n \to \infty} a_n$ .
- d)  $\limsup_{n\to\infty} (-a_n) = -\liminf_{n\to\infty} a_n$ .

Beweis: a) ist klar, b) folgt aus 16.11, c) und d) Übung.

**Vorbemerkung:** Die Folge  $(a_n)$  sei konvergent und  $\lim_{n\to\infty} a_n =: a$ . Es sei  $\varepsilon > 0$ . Dann gilt:

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \frac{\varepsilon}{2}.$$

Für  $n, m \ge n_0$  gilt damit:

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Die Folge  $(a_n)$  hat also die folgende Eigenschaft:

(c) 
$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : \ |a_n - a_m| < \varepsilon.$$

Äquivalent ist:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ \forall k \in \mathbb{N} : |a_n - a_{n+k}| < \varepsilon.$$

**Definition:** Eine Folge  $(a_n)$  heißt eine Cauchyfolge (CF)

$$:\iff (a_n) \ hat \ die \ Eigenschaft \ (c).$$

# Stichwortverzeichnis

| abzählbar, 12                                        | Limes inferior, 26                                     |
|------------------------------------------------------|--------------------------------------------------------|
| Axiome                                               | Limes superior, 26                                     |
| Anordnungs-, 3<br>Körper-, 2<br>Vollständigkeits-, 6 | monoton, 19 fallend, 19 streng fallend, 19             |
| Bernoullische Ungleichung, 9                         | streng wachsend, 19                                    |
| beschränkt, 6                                        | wachsend, 19                                           |
| Folge, 13                                            | Monotoniekriterium, 19                                 |
| Menge, 5                                             | Natürliche Zahlen, 7                                   |
| Betrag, 4                                            | niedrig, 25                                            |
| Binomialkoeffizient, 9                               | medilg, 20                                             |
| Binomischer Satz, 9                                  | oberer Limes, 26                                       |
| Cauchyfolge, 27                                      | rationale Zahlen, 9                                    |
| divergent, 14                                        | Satz                                                   |
| Eulersche Zahl, 24                                   | Bolzano-Weierstraß, 26<br>Schranke, 5                  |
| für fast alle, 14                                    | Supremum, 5                                            |
| Fakultät, 9                                          | T 116.1                                                |
| Folge, 12                                            | Teilfolge, 24                                          |
| ganze Zahlen, 9<br>Grenzwert, 14                     | überabzählbar, 12<br>Umgebung, 14<br>unterer Limes, 26 |
| Induktionsmenge, 7                                   |                                                        |
| Infimum, 5                                           | vollständige Induktion, 8                              |
| Intervalle, 3                                        | Wurzeln, 10                                            |
| konvergent, 14                                       |                                                        |
| Limes, 14                                            |                                                        |