

仪器分析 --分子发光分析

Colecular Luminescence Analysis

主讲人:李大伟

13701632425 daweili@ecust.edu.cn

一、概述

方式?

1. 什么是分子发光分析?

光

是基于被测物质的基态分子吸收能量被激发到较高电子能态后,在返回基态过程中,以发射辐射 的方式释放能量,通过测量辐射光的强度对被测物质进行定量测定的一类分析方法。

- * 根据提供能量的方式分类
 - 光致发光
 - · 分子荧光分析法(molecular fluorescence analysis)
 - · 分子磷光分析法(phosphorescence analysis)
 - 化学发光
 - · 化学发光分析法(chemiluminescence analysis)

二、荧光和磷光分析基本原理

- 1. 荧光和磷光的产生
 - (1) 分子的能级与跃迁
 - 电子能级,振动能级,转动能级
 - ·基态 S_0 ,激发态 S_1

电子激发态的多重度 M=2S+1

S为电子自旋角动量量子数的代数和 全部电子自旋配对, S=0 自旋不配对时, S=1

电子自旋状态 ┩ ↓

电子激发单重态 S_1 、 S_2 …

电子激发三重态 71、 72 ...

注意:

- > 三重态能级比相应单重态能级低(洪特规则);
- > 大多数有机分子的基态处于单重态;
- $> S_0 \rightarrow T_1$ 是禁阻跃迁的,只能通过其他途径进入 T_1

分子荧光对应的能级跃迁

能量传递途径

速率大的主导

- 系间窜越,S1~T1…10⁻²-10⁻⁶s
- 内转换(快), S1~S0, T2~T1…10⁻¹¹-10⁻¹³s
- 外转换, T1~S0…10⁻²-10⁻⁵s
- 振动弛豫(快), V2~V1…10⁻¹²-10⁻¹⁴s
- ❖辐射跃迁
 - 荧光发射
 - 磷光发射

荧光的产生

分子由第一激发<mark>单重态</mark>的最低振动能级 \to 基态($S_1 \to S_0$ 跃迁),发射一定波长的<mark>荧光</mark>。寿命10⁻⁷~10⁻⁹ s。

跃迁至So的不同振转能级

 $S_0 \rightarrow$ 激发 \rightarrow 振动弛豫 \rightarrow 内转换 \rightarrow 振动弛豫 $\rightarrow S_1 \rightarrow S_0$

• 磷光的产生

分子由第一激发三重态的最低振动能级 \to 基态($T_1 \to S_0$ 跃迁),发射一定波长的磷光。寿命 $10^{-4} \sim 10 \text{ s}$ 。

电子由 S_0 进入 T_1 的可能过程: ($S_0 \rightarrow T_1$ 禁阻跃迁)

 $S_0 \rightarrow$ 激发 \rightarrow 振动弛豫 \rightarrow 内转换 \rightarrow 系间窜越 \rightarrow 振动弛豫 $\rightarrow T_1 \rightarrow S_0$

2. 激发光谱和发射光谱

激发光谱

固定发射光波长,改变入射光(激发光)波长,以发射光强度对激发光波长作图所得到的光谱。

- ❖ 不同波长的入射光具有不同的激发效率,故入射光波长会 影响激发光的光强
- * 理论上与吸收光谱一样
- (2) 发射光谱

固定激发光波长与强度,以 发射光强度对波长作图所得 到的光谱。

● 定性分析: 激发和发射光谱的作用:

● 定量分析: 选择某激发波长下的某发射波长

(3) 三维荧光光谱

多激发波长和多发射波长的荧光光谱,信息更多

吸收光谱(虚线)和发射光谱(实线)

激发和发射光谱的关系

- Stokes位移: 荧光发射波长大于激发波长
- 发射光谱的形状与激发波长无关
- 镜像规则: 发射光谱与**第一吸收带**之间呈镜像对称关系

第一吸收带 光谱

惠的荧光特征光谱 激发光谱(虚线)和发射光谱(实线)

(1) 分子产生荧光必须具备的条件

- > 具有合适的结构。能吸收激发光
- > 具有一定的荧光效率

> 共轭效应

π* → π的荧光效率高, 提高共轭度有利于增 加荧光效率并产生红 移。

化 合	物	ϕ_{F}	$\lambda_{\rm ex}/{ m nm}$	$\lambda_{ m em}/{ m nm}$
苯		0. 11	205	278
萘		0. 29	286	321
蒽		0.46	365	400

刚性平面结构

可降低分子振动,减少系间窜跃及碰撞去活的可能性。

❖ 取代基效应

芳环上如有<mark>供电基</mark>, p-π作用使共轭程度增 大,荧光增强。

取代基对苯分子荧光强度及波长的影响

吸电子基团荧光减弱:羧基、羰基或亚硝基 给电子基荧光增强:-OH、-NH₂、-CN、-OCH₃

化合物	化学式	荧光波长(nm)	荧光相对强度
苯	C_6H_6	270-312	10
甲苯	$C_6H_5CH_3$	270-320	17
丙 苯	$C_6H_5C_3H_7$	270-320	17
氟 苯	C_6H_5F	270-320	10
氯 苯	C ₆ H ₅ Cl	275-345	7
溴 苯	C ₆ H ₅ Br	290-380	5
碘 苯	C_6H_5I	_	0
酚	C ₆ H ₅ OH	285-365	18
苯 胺	$C_6H_5NH_2$	310-405	20
苯胺离子	C ₆ H ₅ NH ₃ ⁺	_	0
苄 腈	C ₆ H ₅ CN	280-360	20
硝基苯	C ₆ H ₅ NO ₂	<u> </u>	0

4. 影响荧光强度的外部因素

- ❖溶剂的影响
 - 一般荧光波长随着溶剂极性的增大而向长波方向移动
- ❖温度的影响

大多数荧光物质随着温度的增高,其荧光效率和荧光 强度降低

❖溶液pH值的影响

影响分子的电离状态,从而显著影响荧光光谱的形状和强度

* 荧光猝灭

- ▶ 荧光物质与溶剂分子或其他溶剂分子相互作用,引起 荧光强度下降或消失的现象。
- > 猝灭剂: 能引起荧光猝灭的物质
- → 动态猝灭:激发态荧光分子与猝灭剂碰撞后,发生能量转移引起猝灭
- ▶ 静态猝灭:猝灭剂与基态荧光分子形成配合物(相互作用)等引起的荧光猝灭

采用荧光进行痕量测定时要除氧

与光谱有关的干扰

▶ 散射光的影响: 瑞利散射、拉曼散射 什么是瑞利散射和拉曼散射? 改变激发光的波长能避 免其干扰,

- > 激发光照的影响: 光分解
- 內滤光作用:溶液中存在组 分吸收激发或发射光

四、荧光(磷光)分析仪

四个部分:

- 激发光源
- 样品池
- 单色器系统
- 检测器

特点

- 双单色器系统
- 直角位置检测

荧光分光光度计的结构示意图

荧光光谱仪光路图

日立 F-4500 荧光分光光度计的光学系统图 1-氙灯 (150W); 2-透镜; 3-光束分裂器; 4,11-水平夹缝; 5-激发单色器光栅; 6-参考光电管; 7-光闸; 8-样品池; 9-样品室光闸; 10-发射单色器光栅; 12-光电倍增管 (R-3788)

磷光检测附件

- 》磷光的产生:效率低,通常低温检测;固定磷光体(增加刚性)
- ▶磷光镜
 - •杜瓦瓶:盛液氮,实现磷光的低温测定
 - •室温磷光技术:固体基质、表面活性剂(胶束固定)
- > 荧光和磷光同时测定: 寿命差别
 - ,开有孔洞的转筒来实现
 - > 遮挡激发光: 测磷光
 - ▶ 开启激发光: 测荧光+磷光

四、荧光(磷光)定量分析

1. 定量依据——荧光强度

根据荧光效率的定义: $F = \varphi \cdot I_a$

根据比尔定律: $I_a = I_0 - I_t = I_0(1 - 10^{-\varepsilon bc})$

一 吸收的光强度

$$F = \varphi \cdot I_0 \cdot (1 - e^{-2.3\varepsilon bc})$$

$$e^{-2.3\varepsilon bc} = 1 - 2.3\varepsilon bc - \frac{(2.3\varepsilon bc)^2}{2!} - \frac{(2.3\varepsilon bc)^3}{3!} - \dots$$

对于稀溶液: $F = 2.3 \varphi I_0 \varepsilon bc$ 荧光定量关系式! $\varepsilon bc < 0.05$

2. 线性关系偏离的原因

- 内滤效应:溶液中杂质(增多)及前部溶液对入射 光吸收,使激发光(溶液中后部)强度降低
- 浓溶液: 发生溶质间相互作用,碰撞去活概率增大
- 自吸收: 荧光发射波长与化合物的吸收波长有重叠

3. 定量方法

- 标准曲线法
- 单点校正

1. 荧光分析法的特点

- 试样用量少
- 选择性高
- 信息量丰富
- 可直接检测的分子较少

(1) 定量分析

- 适用于微量及痕量无机离子、有机化合物及生物分子的定量分析
- 多通过间接方法实现,如荧光猝灭法、荧光探针
- 相对于UV-Vis,定量测定的应用范围小
- 磷光分析法适合于微量及痕量的稠环芳烃、农药、生物碱、激素的分析、药物分析和临床分析。

表 某些有机化合物的荧光测定法

待 測 物	试 剂	激发光波长 nm	<u> 荧光波长</u> nm	测定范围 c/(μg・cm ⁻³)
丙三醇	苯胺	紫外	蓝色	0.1~2
糠 醛	蒽酮	465	505	1.5 ~ 15
蒽		365	400	0~5
苯基水杨酸酯	N, N'-二甲基甲酰胺 (KOH)	366	410	3×10 ⁻⁸ ~5×10 ⁻⁶ mol·dm
1-萘酚	0.1 mol • dm ⁻³ NaOH	紫外	500	
四氧嘧啶(阿脲)	苯二胺	紫外(365)	485	10-10
维生素 A	无水乙醇	345	490	0 ~ 20
氨基酸	氧化酶等	315	425	0.01 ~ 50
蛋白质	曙红丫	紫外	540	0.06 ~ 6
腎上腺素	乙二胺	420	525	0.001~ 0.02
抓基丁胺	邻苯二醛	365	470	0.05 ~ 5
玻璃酸酶	3-乙酰氧基吲哚	395	470	0.001 ~ 0.033
青霉素	α-甲氧基-6-氯-9-(β-氨 乙基)-氨基氮杂蒽	420	500	0.0625 ~ 0.625

	表:	某些无机物	的荧光	測定法	1.5
离子	试 剂	λ/	nm	检出限/μg·cm ⁻³	干 扰
1 Ped 1	P) //#	吸收	荧 光		
Al³*	石榴茜素 R OH HO N—N—N—SO ₃ N	470	500	0.007	Be, Co, Cr, Cu, F ⁻ , NO ₃ , Ni, PO ₄ ¹⁻ , Th, Zr
F-	石榴茜素 R-Al配合物 (熄灭)	470	500	0.001	Be,Co,Cr,Cu,Fe,Ni, PO ₄ -,Th,Zr
B ₄ O ₇ ²⁻	二苯乙醇酮 O OH O	370	450	0.04	Be, Sb
Cd2*	2-(邻-羟基苯)-间氮杂氧	365	蓝色	2	NH,
Li*	8-羟基喹啉 OH (Al. Be 等)	370	580	0.2	Mg
Sn ⁴⁺	黄酮醇 (Zr·Sn) OH	400	470	0.008	F-,PO4-,Zr.
Zn2+	二苯乙醇酮	_	绿色	10	Be, B, Sb, 显色离子

表 某些稠环芳烃室温磷光分析					
化 合 物	λ _{ex} /nm	$\lambda_{\rm cm}/{\rm nm}$	重原子	检出限/ng	
吖啶	360	640	Pb(OAc) ₂	0.4	
苯并(a)芘	395	698	$Pb(OAc)_2$	0.5	
苯并(e)花	335	545	Csl	0 .01	
2,3- 苯并芴	343	505	NaI	0.028	
咔唑	296	415	Csl	0,005	
薊	330	518	NaI	0 .03	
1,2,3,4- 二苯并及	295	567	CsI	0 .08	
1,2,5,6- 二苯并蒽	305	555	Nal	0 .005	
13H- 二苯并(a、i)叫	唑 295	475	Nal	0.002	
壶蔥	365	545	Pb(OAc) ₂	0 .05	
芴	270	428	CsI	0 .2	
1- 萘酚	310	530	Nal	0,03	
芘	343	595	$Pb(OAc)_2$	0.1	

	表 磷光分析	斤实例
测定物质	试 样	測定范围 / μg·mL ⁻¹
乙酰水杨酸 (阿司匹灵)	血清或血浆	10 — 1000
普鲁卡因	血液	0.030 — 30
柯卡因	血或尿	0.030 — 3.0
苯巴比妥	цп	10 — 1000
阿托品	尿	8 80
氯普鲁麻金盐酸盐	цп	0.10 — 10.0
对硝基苯酚	尿	0.0028 — 1.40
犬尿烯酸	尿	10 — 200

(2) 联用技术的检测器

高效液相色谱、毛细管电泳的检测器。微型化分析方法如基因芯片、微流控芯片的检测手段。

(3) 分子结构性能测定

为分子结构及分子间相互作用的研究提供有用的信息。

3. 荧光分析技术进展

- ❖ 同步荧光光谱
- * 三维荧光光谱
- * 激光诱导荧光光谱分析法
- ❖ 共聚焦荧光显微镜
- * 时间分辨荧光分析法

激光扫描共聚焦荧光显微镜

细胞成像

- 荧光标记物
- ·3D成像
- •可视化
- ·应用:肿瘤边界、 药物作用位点等

六、化学发光分析简介

1. 化学发光分析的原理

在化学反应过程中,某些化合物接受能量而被激发,从 激发态返回基态时,发射出一定波长的光。与对应分子 的荧光光谱,或磷光光谱很相似。

2. 化学发光的分类

❖直接化学反应发光

$$A + B \rightarrow C^* + D$$

 $C^* \rightarrow C + hv$

$$C^* \rightarrow C + IR$$

❖例:

$$NO + O_3 \rightarrow NO_2^* + O_2$$

 $NO_2^* \rightarrow NO_2 + hv$

❖ 间接化学反应发光

$$A + B \longrightarrow C^* + D$$

$$C^* + F \longrightarrow F^* + C$$

$$F^* \longrightarrow F + hv$$

$$\begin{array}{c|c}
O - O \\
C - C \\
O
\end{array}$$

$$\begin{array}{c|c}
O - O \\
\hline
C - C \\
O
\end{array}$$

$$\begin{array}{c|c}
F^{\dagger} \\
\hline
\end{array}$$

$$\begin{bmatrix} O - O \\ \overline{\cdot} & | \\ C - C \\ O \end{bmatrix} \xrightarrow{F^{+}} F^{*} + 2CO_{2}$$

$$F^* \longrightarrow F + hv$$

3. 对化学发光反应的要求

- ❖ 反应必须提供足够的能量;多为氧化还原反应
- * 吸收了化学能的分子,必须能释放出光子转移能量

常用的发光体系: 鲁米诺及其衍生物、光泽精、洛粉碱等

3. 化学发光分析的仪器流程

发光反应室

光检测器

信号放大器

显示与记录

仪器结构简单, 无需光源!

化学发光法测定阿替洛尔的流动注射装置流程图

4. 化学发光分析的特点与应用

(1) 特点

- 灵敏度高
- 选择性好
- 仪器设备简单
- 应用还不够广泛
- 发光反应效率低(大大低于生物发光)

(2)应用

痕量无机离子、生物分子的测定(法医血迹测定)

例1:

葡萄糖 $+ O_2 + H_2O$ $\xrightarrow{\hat{\mathbf{m}}\hat{\mathbf{a}}\hat{\mathbf{m}}\hat{\mathbf{a}}\hat{\mathbf{m}}}$ 葡萄糖酸 $+ H_2O_2$

通过测定生成的H₂O₂,确定氨基酸、葡萄糖含量。

课程讲授 结束

