Lecture Outline (week 10)

Polynomial Regression Models

(quadratic models, Partial F tests, Type 1 SS, Residuals, Partial Correlation)

Multiple Regression Models

Models with One Qualitative and One Quantitative Variables

Polynomial Regression Models

(quadratic models, Partial F tests, Type 1 SS)

Example 1: Steriod Levels among Women age 8-25

(Problem 8 (p336) Chapter 8 (Kutner, Nachtsheim, neter, and Li (5th edition: Applied Linear Statistical Models) (program esb10p24.sas, esb10p25.sas))

Construct Scatter Plots with Independent Variables

```
FOOTNOTE "&prg";

AXIS1 LABEL=(ANGLE=90 " Steroid Level " ROTATE=0) ORDER=0 to 30 by 2;

* Defines label for y axis;

AXIS2 LABEL=( " Age in yrs" ROTATE=0) ORDER=0 to 30 by 5;

PROC GPLOT DATA=d2;

PLOT steroid*age/ vaxis=axis1 haxis=axis2;

TITLE1 "Figure 1. Scatter plot of Steroid by age ";

RUN;
```

Figure 1. Scatter plot of Steroid by age


```
DATA d2;
   SET d1;
   age2=age*age;
   RUN;

PROC SORT DATA=d2;
   BY age;
RUN;

PROC PRINT DATA=d2 (OBS=10) NOOBS;
   VAR steroid age age2;
   TITLE2 "Table 1. Example of Data for Steroids";
   RUN;
```

Table 1. Example of Data for Steroids

	•	
steroid	age	age2
1.4	8	64
5.7	8	64
9.2	9	81
11.8	9	81
3.4	9	81
10.5	10	100
14.7	11	121
10.7	12	144
18.8	12	144
21.1	13	169

Source: esb10p24.sas 3/9/2010 by ejs

Figure 2. Scatter plot of Steroid by age squared

Notes:

This scatter plot doesn't look like a straight line would provide a good fit. Still, it appears that a line would be better than a horizontal line.

This scatter plot does not account for what might be explained by a linear regression with age.

Evaluate Correlation of Steroids with age, age squared.

PROC CORR DATA=d2;
 VAR steroid age age2;
 TITLE2 "Table 3. Correlation of Steroids with other variables";
PIIN:

Table 3. Correlation of Steroids with other variables

The CORR Procedure

3 Variables: steroid age age2

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
steroid	27	17.64444	7.02963	476.40000	1.40000	27.10000
age	27	15.77778	5.50058	426.00000	8.00000	25.00000
age2	27	278.07407	181.68060	7508	64.00000	625.00000

Pearson Correlation Coefficients, N = 27Prob > |r| under HO: Rho=0

	steroid	age	age2
steroid	1.00000	0.78577 <.0001	0.71312 <.0001
age	0.78577 <.0001	1.00000	0.98943 <.0001
age2	0.71312 <.0001	0.98943 <.0001	1.00000

Source: esb10p24.sas 3/9/2010 by ejs

Notes:

There is a large correlation of age with age squared, but not a perfect correlation. When two variable are highly correlated, they are called 'colinear'. A scatter plot illustrates this.

Figure 3. Scatter plot of Age by Age Squared

Source: esb10p24.sas 3/9/2010 by ejs

Age Squared in yrs

Fit Regression Models

Model 1: $Y_i = \beta_0 + X_{1i}\beta_1 + E_i$ $X_{1i} = Age$

Model 2: with polynomial regression, only consider hierarchical models (models where the lower order polynomial terms are included). This means that we would not consider fitting a model with only a quadratic term.

Model 3: $Y_i = \beta_0 + X_{1i}\beta_1 + X_{2i}\beta_2 + E_i$ $X_{1i} = Age$ $X_{2i} = Age$ squared

Table 4. Regression of Steroids with age (Model 1) $\,$

Analysis of Variance

		···			
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	793.28051	793.28051	40.35	<.0001
Error	25	491.52616	19.66105		
Corrected Total	26	1284.80667			
Root MSE	4.43408	R-Square	0.6174		
Dependent Mean	17.64444	Adj R-Sq	0.6021		

Table 6. Regression of Steroids with age and age squared (Model 3) $\,$

Analysis of Variance

Source Model Error Corrected Total	DF 2 24 26	Sum of Squares 1046.26586 238.54081 1284.80667	Mean Square 523.13293 9.93920	F Value 52.63	Pr > F <.0001
Root MSE Dependent Mean	3.15265 17.64444	R-Square Adj R-Sq	0.8143 0.7989		

Notes:

Corrected Total Sums of squares is the same in all models.

The Adjusted R-square is largest with Model 3.

Comparing Models

Comparison of Model 3 with Model 1:

Model 1:
$$Y_i = \beta_0 + X_{1i}\beta_1 + E_i$$
 $X_{1i} = Age$

Model 1:
$$Y_i = \beta_0 + X_{1i}\beta_1 + E_i$$
 $X_{1i} = Age$
Model 3: $Y_i = \beta_0 + X_{1i}\beta_1 + X_{2i}\beta_2 + E_i$ $X_{1i} = Age$ $X_{2i} = Age$ squared

Null Hypothesis: There is no difference between Model 3 and Model 1

or
$$H_0: \beta_2 = 0$$

Alternative Hypothesis: $H_a: \beta_2 \neq 0$

To test this Hypothesis, we use a Partial F-test

Extra Sum of Squares

Define: Regression sum of Squares:

$$SSR(X_1)$$
 = sums of squares explained by including X_1

Examples:

For Model 1:
$$SSR(X_1) = 793.28$$
 df=1

For Model 3:
$$SSR(X_1, X_2) = 1046.26$$
 df=2

Extra sum of squares:

$$SSR(X_2 | X_1) = SSR(X_1, X_2) - SSR(X_1)$$

= 1046.26 - 793.28 df=2-1=1
= 252.98

Extra Mean Square: $MSR(X_2 | X_1) = 252.98/1 = 252.98$

Partial F-test:
$$F_{cal} = \frac{MSR(X_2 \mid X_1)}{MSE} = \frac{252.98}{9.939} = 25.45$$
 (denominator is MSE for Model 3)

Compare with F with 1 and 24 DF

PROC REG DATA=d2; MODEL steroid=age age2 /SS1; PLOT p.*age steroid*age/OVERLAY; TITLE2 "Table 6. Regression of Steroids with age and age squared (Model 3)"; RUN;

Table 6. Regression of Steroids with age and age squared

Dependent Variable: steroid

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	1046.26586	523.13293	52.63	<.0001
Error	24	238.54081	9.93920		
Corrected Total	26	1284.80667			
Root MSE	3.15265	R-Square	0.8143		
Dependent Mean	17.64444	Adj R-Sq	0.7989		
Coeff Var	17.86766				

Parameter Estimates

		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS
Intercept	1	-26.32541	5.88154	-4.48	0.0002	8405.81333
age	1	4.87357	0.77515	6.29	<.0001	793.28051
age2	1	-0.11840	0.02347	-5.05	<.0001	252.98535

Source: esb10p24.sas 3/9/2010 by ejs

The partial F-test is $F_{cal} = (-5.05)^2$.

Residuals

Fit Model of Steriods on Age, and Get Residuals

```
PROC REG DATA=d2;
   MODEL steroid=age ;
   OUTPUT OUT=el   p=yhat r=yresid;
   TITLE2 "Simple regression model on age";
   RUN;
PROC PRINT DATA=el (OBS=10) NOOBS;
   TITLE2 "Table 7. List of Residuals from Reg of Steroids on Age";
   RUN;
```

Table 7. List of Residuals from Reg of Steroids on Age

steroid	age	age2	yhat	yresid
27.1	23	529	24.8970	2.20304
22.1	19	361	20.8802	1.21982
21.9	25	625	26.9054	-5.00535
10.7	12	144	13.8508	-3.15082
1.4	8	64	9.8340	-8.43404
18.8	12	144	13.8508	4.94918
14.7	11	121	12.8466	1.85338
5.7	8	64	9.8340	-4.13404
18.6	17	289	18.8718	-0.27179
20.4	18	324	19.8760	0.52401

Source: esb10p25.sas 3/23/2010 by ejs

Construct Residual Plots and Studentized Residuals

Studentized Residual: Fit model without the observation, calculate the residual using the observation, divide by the standard error based on fitted model. (If error is normally distributed, residuals should be between -2 and 2.)

```
FOOTNOTE "&prg";
PROC REG DATA=d2;
  MODEL steroid=age ;
  OUTPUT OUT=el p=yhat r=yresid;
  PLOT r.*age /NOMODEl NOSTAT ;
  PLOT rstudent.*age /NOMODEl NOSTAT ;
  TITLE1 "Figure 3. Residuals from Regression on Age (Model 1)";
  RUN;
FOOTNOTE ;
TITLE1 "&prg" ;
```


Figure 3. Residuals from Regression on Age (Model 1)


```
FOOTNOTE "&prg";
PROC REG DATA=d2;
MODEL steroid=age age2;
OUTPUT OUT=el p=yhat r=yresid;
PLOT rstudent.*age /NOMODEl NOSTAT;
TITLE1 "Figure 4. Residuals from Regression on Age and Age2 (Model 3)";
RUN;
FOOTNOTE;
TITLE1 "&prg";
```


Figure 4. Residuals from Regression on Age and Age2 (Model 3) $$\operatorname{Analysis}$$ of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1046.26586	523.13293	52.63	<.0001
Error	24	238.54081	9.93920		
Corrected Total	26	1284.80667			

Building Regression Models by new models for Residuals:

Fit Model of Steriods on Age, and Get Y-Residuals Fit Model of Age2 on Age, and Get X2-Residuals

Fit Model of Y-Residuals on X2-Residuals

```
PROC REG DATA=d2;
 MODEL steroid=age ;
 OUTPUT OUT=el p=yhat r=yresid;
 TITLE2 "Table 7. Simple Regression on Age (Model 1)";
 RUN;
PROC REG DATA=d2;
 MODEL age2=age ;
  OUTPUT OUT=e2 r=age2_resid;
 TITLE2 "Table 8. Simple Regression on Age (Model 1)";
 RUN;
DATA d3;
 MERGE el (KEEP=yresid age)
        e2 (KEEP=age2_resid age2);
RUN;
PROC PRINT DATA=d3 (OBS=10) NOOBS;
 VAR yresid age2_resid;
 TITLE2 "Table 8. List of residuals ";
RUN;
PROC REG DATA=d3;
 MODEL yresid=age2_resid;
 TITLE2 "Table 9. Regression of Residuals on Age Squared (like Model 3)";
 RUN;
Table 8. List of residuals
            age2
            resid
yresid
2.20304
          14.9021
1.21982
        -22.3770
-5.00535
         45.5416
-3.15082
        -10.6154
-8.43404
         40.1055
4.94918
        -10.6154
1.85338
          -0.9352
-4.13404
          40.1055
-0.27179
         -29.0166
0.52401
         -26,6968
```

Table 7. Simple Regression on Age (Model 1)

Dependent Variable: steroid

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	793.28051	793.28051	40.35	<.0001
Error	25	491.52616	19.66105		
Corrected Total	26	1284.80667			
Root MSE	4.43408	R-Square	0.6174		
Dependent Mean	17.64444	Adj R-Sq	0.6021		
Coeff Var	25 13016				

Table 9. Regression of Residuals on Age Squared (like Model 3)

Dependent Variable: yresid Residual

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	252.98535	252.98535	26.51	<.0001
Error	25	238.54081	9.54163		
Corrected Total	26	491.52616			
Root MSE	3.08895	R-Square	0.5147		
Dependent Mean	-3.8323E-15	Adj R-Sq	0.4953		
Coeff Var	-8.06026E16				
0	0/00/0010	h a d a			

Source: esb10p25.sas 3/23/2010 by ejs

Compare to Model 3:

Table 6. Residuals from Regression on Age and Age2 (Model 3)

Dependent Variable: steroid

Analysis of Variance

		Sum of	Mean		
	DF	Squares	Square	F Value	Pr > F
	2	1046.26586	523.13293	52.63	<.0001
	24	238.54081	9.93920		
Total	26	1284.80667			
	3.15265	R-Square	0.8143		
Mean	17.64444	Adj R-Sq	0.7989		
	17.86766				
		Parameter Est	imates		
	Parameter	Standard			
DF	Estimate	Error	t Value	Pr > t	Type I SS
1	-26.32541	5.88154	-4.48	0.0002	8405.81333
1	4.87357	0.77515	6.29	<.0001	793.28051
1	-0.11840	0.02347	-5.05	<.0001	252.98535
	Mean DF 1	2 24 Total 26 Mean 3.15265 Mean 17.64444 17.86766 Parameter DF Estimate 1 -26.32541 1 4.87357	DF Squares 2 1046.26586 24 238.54081 Total 26 1284.80667 Mean 17.64444 Adj R-Sq 17.86766 Parameter Est Parameter Standard DF Estimate Error 1 -26.32541 5.88154 1 4.87357 0.77515	DF Squares Square 2 1046.26586 523.13293 24 238.54081 9.93920 Total 26 1284.80667 Mean 17.64444 Adj R-Sq 0.7989 17.86766 Parameter Estimates Parameter Standard DF Estimate Error t Value 1 -26.32541 5.88154 -4.48 1 4.87357 0.77515 6.29	DF Squares Square F Value 2 1046.26586 523.13293 52.63 24 238.54081 9.93920 Total 26 1284.80667 Mean 17.64444 Adj R-Sq 0.7989 17.86766 Parameter Estimates Parameter Standard DF Estimate Error t Value Pr > t 1 -26.32541 5.88154 -4.48 0.0002 1 4.87357 0.77515 6.29 <.0001

Source: esb10p25.sas 3/23/2010 by ejs

Notes:

The accounting of the SS is the same using Tables 7 and 9, as in Table 6. The DF for the Error for Table 6 is correct- The DF in Table 9 does not account for having fit age in the model.

Correlation and Partial Correlation

```
PROC CORR DATA=d2;
   VAR steroid age age2;
   TITLE2 "Table 1. Correlation of Steroids with other variables";
RUN;
```

Table 1. Correlation of Steroids with other variables Pearson Correlation Coefficients, $N\,=\,27$

Prob > |r| under HO: Rho=0

	steroid	age	age2
steroid	1.00000	0.78577	0.71312
		<.0001	<.0001
age	0.78577	1.00000	0.98943
	<.0001		<.0001
age2	0.71312	0.98943	1.00000
	<.0001	<.0001	

Source: esb10p25.sas 3/23/2010 by ejs

Partial Correlation: Correlation of Residuals

PROC CORR DATA=d3;

VAR yresid age2_resid;

TITLE2 "Table 10. Correlation of Residuls of Y on age with age2 with age"; RUN;

Table 10. Correlation of Residuls of Y on age with age2 with age

2 Variables: yresid age2 resid

Pearson Correlation Coefficients, N = 27

Prob > |r| under HO: Rho=0

		age2_
	yresid	resid
yresid	1.00000	-0.71742
Residual		<.0001
age2_resid	-0.71742	1.00000
Residual	<.0001	

```
PROC CORR DATA=d2;
  PARTIAL age;
  VAR steroid age2;
 TITLE2 "Table 11. Partial correlation of age squared wih steroids";
 RUN;
Table 11. Partial correlation of age squared wih steroids
  1 Partial Variables:
                        age
          Variables:
                       steroid age2
Pearson Partial Correlation Coefficients, N = 27
      Prob > |r| under HO: Partial Rho=0
            steroid
                            age2
steroid
            1.00000
                      -0.71742
                         <.0001
age2
           -0.71742
                         1.00000
             <.0001
Source: esb10p25.sas 3/23/2010 by ejs
```

Notes:

Partial correlations allow you to see what variable is most highly correlated after accounting for the previous variable.

Example 2: Body Fat (Y) and its relationship to

- X1 tricepts skinfold thickness
- X2 thigh circumference
- X3 midarm circumference

What is the best model for estimating Body Fat (CH07TA01) based on these other measures? (Chapter 7 (p257) (Kutner, Nachtsheim, neter, and Li (5th edition: Applied Linear Statistical Models) (program esb10p26.sas))