Index of Coincidence

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

- IC (by William Friedman in 1920):
 - Give a sequence of chars, the <u>probability</u> that two randomly selected chars are <u>identical</u>
- Example: 100 chars in total, 20 a
 - Take one **a** from 100 chars, $p_1 = 20/100$
 - Take another a from 99 chars, p₂ = 19/99
 - Select two a: p₁*p₂

- N is the total number of chars
- n_a is the number of char a
- The probability that two randomly selected chars are both **a** is $\frac{n_a}{N} \cdot \frac{n_a-1}{N-1} \approx \left(\frac{n_a}{N}\right)^2$

• 26 unique chars in total

IC
$$\approx \left(\frac{n_a}{N}\right)^2 + \dots + \left(\frac{n_z}{N}\right)^2 = \sum_{i=0}^{25} \left(\frac{n_i}{N}\right)^2$$

p_i=n_i/N is known for all the 26 English chars

$$IC_{English} \approx 0.065$$

- Practice: If 26 chars uniformly distributed, IC?
 - $n_i/N = 1/26$, for all i in [0,25]

$$IC_{uni} = \sum_{i=0}^{25} \left(\frac{n_i}{N}\right)^2 = ?$$

Answer:

$$IC_{uni} = \sum_{i=0}^{25} \left(\frac{n_i}{N}\right)^2 = 26 \cdot \frac{1}{26^2} = \frac{1}{26} \approx 0.038$$

- IC can <u>automate</u> attacks on shift cipher
 - Original attacks: check "make sense" per key
 - Data is not human-readable all the time
 - Decide which key it is by checking IC

 Practice: given a sequence of 100 chars, there are 20 a, 20 b, 10 c, 10 d, 20 e, 20 f, what is IC?

IC
$$\approx \sum_{i=0}^{25} \left(\frac{n_i}{N}\right)^2$$

= $(0.2)^2 + (0.2)^2 + (0.1)^2 + (0.1)^2 + (0.2)^2 + (0.2)^2$
= $0.04 \times 4 + 0.01 \times 2$
= 0.18

IC in Shift Cipher

- Each char is shifted with (unknown) k positions
 - $j = i + k \mod 26$
 - Same frequency. a <—> E, If 10 as, then 10 Es

$$\frac{n_i}{N} = p_i = q_{i+k} = q_j = \frac{N_j}{N}$$

- Does shift cipher change IC?
 - No, order is different, but sum is same

$$IC_{English} = \sum_{i=0}^{25} \left(\frac{n_i}{N}\right)^2 = \sum_{j=0}^{25} \left(\frac{N_j}{N}\right)^2 = IC_{Shift}$$

Attack on Shift Cipher

• Compute IC_k for all k in {0, 1, ..., 25},

$$IC_k = \sum_{i=0}^{25} p_i^2 = \sum_{i=0}^{25} p_i \cdot q_{i+k}$$

- p_i is frequency in plaintext, q_{i+k} is frequency in ciphertext, if k is correct, then p_i = q_{i+k}
- If IC_k is very close to IC_{English} (0.065)
 - Then k is the key
- Otherwise, IC_k is close to IC_{uni} (0.038)

Attack on Substitution Cipher abcdefghijklmnopqrstuvwxyz EXAUNDKBMVORQCSFHYGWZLJITP

- Does substitution cipher change IC?
 - No, order is different, but sum is same

- Same IC-based attack as the one on shift cipher
 - Key space is much large, i.e., 26!
 - Compute IC_k for all k in {0, 1, ..., 26!-1}

Vigenere Cipher

- Preserve frequency, e.g. r could map to F or X
- Several independent instances of Shift Cipher
- Key is a string, e.g. gouc

```
plaintext: drmarccahy
```

key: goucgoucgo

ciphertext: JFGCXQWCNM

Key space IKI=26^t, t is the length of a key string

Step 1: Decide t, the length of the key.

- Method 1: <u>Kasishi's Method</u> (1863)
 - Look for repeated sub-strings with a length of 3 or higher in ciphertext
 - Likely were encrypted with a same sub-key
 - The distance between two sub-strings is a multiple of t.

Kasishi's Method

- An example from K&L textbook
 - "the" is a common English word
 - If key is "beads", key length is 5

Plaintext:	the	man	and	the	woman	retrieved	the	letter	from	the	post	office
Key:	bea	dsb	ead	sbe	adsbe	adsbeadsb	ead	sbeads	bead	sbe	adsb	eadsbe
Ciphertext:	ULE	PS0	ENG	LII	WREBR	RHLSMEYWE	XHH	DFXTHJ	GVOP	LII	PRKU	SFIADI

- The distance is 30 (2, 3, 5, 6, 10, 15, 30)
- Find another sub-string, if distance is 25
- Key length: t = gcd(25, 30) = 5

Decide Key Length with IC

• Step 1: Decide t, the length of the key.

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16.....

Method 2: Use IC

```
C<sub>1</sub> C<sub>1+j</sub> C<sub>1+2j</sub> C<sub>1+3j</sub>, .....
```

- If j = t, sequence is encrypted with shift cipher
- If j= t, IC_j is approximately IC_{Shift} = IC_{English}
 (0.065), otherwise it is around IC_{uni} (0.038)
- Which j is t? Compute IC with different js.

Decide Key Length with IC

```
QPWKA LVRXC QZIKG RBPFA EOMFL JMSDZ VDHXC XJYEB IMTRQ WNMEA
IZRVK CVKVL XNEIC FZPZC ZZHKM LVZVZ IZRRQ WDKEC HOSNY XXLSP
MYKVQ XJTDC IOMEE XDQVS RXLRL KZHOV
```

- An example from Wikipedia
 - Sequence 1 (j=1): Q P W K A L V R X C
 - Sequence 2 (j=2): Q
 W
 A
 V
 X

 - Sequence 3 (j=3): Q K V C

j	1	2	3	4	5	6	7	8	9	10
IC	0.043	0.046	0.040	0.045	0.070	0.038	0.038	0.040	0.045	0.080

Step 2: Once know key length t, it is easy!

- Divide ciphertext into <u>t sequences</u>
 - Sequence 1 c₁ c_{1+t} c_{1+2t} c_{1+3t}, is encrypted with shift cipher, attack it with IC, return a key k₁
 - Sequence 2 c₂ c_{2+t} c_{2+2t} c_{2+3t}, is encrypted with shift cipher, attack it with IC, return a key k₂
- Vigenere cipher key is k₁k₂...k_t

- Practice: Assume IC_{plain} = 0.095
- Given a sequence of ciphertexts, for j = 1, an attacker computes IC_j, j++

j	1	2	3	4	5	6	7	8	9	10
IC	0.043	0.080	0.070	0.090	0.050	0.065	0.038	0.094	0.068	0.080

• What is the key length? 4, since IC_{plain} is 0.095

- What if t is much longer (1000, 10000, 1000000)?
 - Harder to decide key length
 - Each sub-sequence is shorter, IC may not be very close to 0.065, harder to automate

This leads to some key idea in One-Time Pad

What We Learn

Designing secure cipher/encryption is hard

Ciphers	Shift	Substitution	Vigenere
Secure?	No	No	No

- What we learn from Historical Ciphers?
 - Large key size (hard to brute-force)
 - Preserve frequency (deterministic is bad idea)
 - Necessary but not sufficient

An Encryption Scheme

- $k \leftarrow \text{KeyGen}(1^l)$: a probabilistic algorithm that takes a security parameter l, and outputs a key k
- $c \leftarrow \mathsf{Enc}_k(m)$: a deterministic or probabilistic algorithm that takes a key k and a plaintext m as input, and outputs a ciphertext c
- $m \leftarrow \mathsf{Dec}_k(c)$: a deterministic algorithm that takes a key k and a ciphertext c as input, and outputs a plaintext m

Space & Random Variable

- Key space ${\mathcal K}$
- K be a <u>Random Variable</u> for keys
- Pr[K=k]: the probability of a key is k

- Message space \mathcal{M} , ciphertext space C
- M is a RV for messages, C is a RV for ciphertexts
- Pr[M=m]: the probability of a message is m
- Pr[C=c]: the probability of a ciphertext is c

- Example: message space $\mathcal{M} = \{a, b, c\}$,
 - a (0.5), b (0.4), c (0.1)
 - M is RV for the message space

RV K and RV M are independent

$$\Pr[(K=k) \cap (M=m)] = \Pr[K=k] \cdot \Pr[M=m]$$

- Example: Shift Cipher
 - Message space $\mathcal{M} = \{a, z\}, a (0.7), z (0.3),$
 - Key space $\mathcal{K} = \{0, 1, ..., 25\}$, Pr[K=k]=1/26, each
 - Ciphertext space $C = \{A, B, ..., Z\}$
- What is the probability of ciphertext is B?
 - Case 1: M=a and K=1, a + 1 = B (mod 26)
 - Case 2: M=z and K=2, z + 2 = B (mod 26)

• Case 1: *M*=**a** and *K*=1

$$\Pr[(K = 1) \cap (M = a)] = \Pr[K = 1] \cdot \Pr[M = a]$$

= $\frac{1}{26} \cdot 0.7$

• Case 2: M=z and K=2

$$\Pr[(K=2) \cap (M=z)] = \frac{1}{26} \cdot 0.3$$

Probability of C=B

$$\Pr[C = B] = \Pr[Case1] + \Pr[Case2] = \frac{1}{26}$$

- Practice: Shift Cipher
 - $\mathcal{M}=\{a, b, c\}, a (0.5), b (0.3), c (0.2)$
 - $\mathcal{K}=\{0, 1, ..., 25\}$, Pr[K=k]=1/26, each
 - What is the probability of ciphertext is F?
- Three cases: 1) M=a and K=5; 2) M=b and K=4; 3)
 M=c and K=3

$$\Pr[C = F] = 0.5 \cdot \frac{1}{26} + 0.3 \cdot \frac{1}{26} + 0.2 \cdot \frac{1}{26} = \frac{1}{26}$$

Additional Reading

Chapter 1, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition