

2020 CCF 非专业级别软件能力认证第一轮

(CSP-J) 入门级 C++语言试题

认证时间: 2020年10月11日14:30~16:30

一、	单项选择题	(共 15 题,	每题 2 分,	共计 30 分;	每题有且仅有一	个正确选
项)						

• 1	在试题纸上	10 页,答题 的一律无效。 何电子设备					
一、 项)	单项选择题	〔(共 15 题,	每题 2 分,	共计 3	0分;每	题有且仅有·	一个正确选
1. 君	E内存储器。	中每个存储单	元都被赋予	一个唯一	一的序号,	称为() 。
	A. 下标	В.	地址	С.	序号	D.	编号
2. 纷	A. 将源程B. 将一种C. 将源程	要功能是(序翻译成机器 高级语言翻译 序重新组合 语言翻译成高	指令代码 成另一种高级	發语 言			
3. t	ጂ x=true, A. (x∧y C. (x∧y		=false,以	В.) ∧ z	是 ()。
		辨率为 2048 : 大的存储空间 B.		的 32 位 C.	真彩色图。 32MB	像。请问要 [》] D.	存储这张图 1 6MB
5.	冒泡排序算》 输入: 算法 Bu	去的伪代码如数组 <i>L,n</i> 」bbleSort: <i>FLAG ← r</i> while <i>FL</i> <i>k ← F</i> <i>FLAG</i> ← for j if]下: ≥ 1。输出: n //标 .AG > 1 d :LAG -1 -1	按非递 示记被交 lo do <i>j</i> +1) t	減顺序排換的最后	序的 L 。	TOND
	8		FIAG ← i	•			

CCF CSP-J 2020 第一轮 C++语言试题 第1页,共10页

	对 n A.	个数用 n	以上冒泡	排序算》 B. n -2		亨, 最少 C.		2较多少》		(n-1)。
6.	设 <i>A</i>	是 n 个	实数的数	组,考虑	想下面的:	递归算法	去:				
			the	hen return XY temp < .	ZZ (A[1n A[n] n temp	n – 1])					
ì	青问算	拿法 XY	z 的输出却	是什么?	()。						
			且的平均 且的最大值				数组的:数组的:				
	C.	A 数约	山川以八旧			υ, ρ	《 数约2000000000000000000000000000000000000	丁 (且,			
7.	Α.	插入	的特点是 删除不需要 事先估计有	移动元素			В. D.	可随机设			素 长度成正比
8.	有 1 A.	0 个顶 10	点的无向	图 至少 B. 12)条 C.		确保是一	个道 D.	E通图 11	o
9.	二进		.011 转换								
	Α.	10		В. 13		C.	11		D.	12	
10	胞胎	必须相	页并排站成 邻,则有	()	种不同排	列方法			果要: D.		两个双
11	. 下图	中所便	使用的数据	居结构是	()。						
	A.	压入 <i>A</i>	Α		B ⇒ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	B A C.	出 B ⇒ 横	Α	压入 — D.	、C ⇒ 队列	C A
12	. 独根 A.	!树的高 7	万度为1。	具有 61 B. 5	个结点的	的完全二 C.		高度为(D.		

13. 干支纪年法是中国传统的纪年方法,由 10 个天干和 12 个地支组合成 60 个天干地支。由公历年份可以根据以下公式和表格换算出对应的天干地支。

天干=(公历年份)除以10所得余数地支=(公历年份)除以12所得余数

天干	甲	\mathbb{Z}	丙	丁	戊	\Box	庚	辛	壬	癸		
	4	5	6	7	8	9	0	1	2	3		
地支	子	丑	寅	卵	辰		午	未	申	酉	戌	亥
	4	5	6	7	8	9	10	11	0	1	2	3

例如,今年是 2020 年,2020 除以 10 余数为 0,查表为"庚";2020 除以 12,余数为 4,查表为"子",所以今年是庚子年。

请问 1949 年的天干地支是()

- A. 己亥
- B. 己丑
- C. 己卯
- D. 己酉
- **14. 10** 个三好学生名额分配到 7 个班级,每个班级至少有一个名额,一共有 () 种不同的分配方案。
 - A. 56
- В. 84
- C. **72**
- D. **504**
- **15.** 有五副不同颜色的手套(共 **10** 只手套,每副手套左右手各 **1** 只),一次性从中取 **6** 只手套,请问恰好能配成两副手套的不同取法有()种。
 - А. 30
- B. **150**
- C. **180**
- D. **120**
- 二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填V,错误填x;除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分)

```
01 #include <cstdlib>
02 #include <iostream>
03 using namespace std;
04
05 char encoder[26] = {'C', 'S', 'P', 0};
06 char decoder[26];
07
08 string st;
09
10 int main() {
    int k = 0;
11
    for (int i = 0; i < 26; ++i)
12
13
      if (encoder[i] != 0) ++k;
    for (char x = 'A'; x <= 'Z'; ++x) {
14
      bool flag = true;
15
      for (int i = 0; i < 26; ++i)
16
        if (encoder[i] == x) {
17
          flag = false;
18
19
          break;
```



```
20
        }
      if (flag) {
21
22
        encoder[k] = x;
23
        ++k;
24
       }
25
    }
    for (int i = 0; i < 26; ++i)
26
      decoder[encoder[i] - 'A'] = i + 'A';
27
28
    cin >> st;
29
    for (int i = 0; i < st.length(); ++i)
      st[i] = decoder[st[i] - 'A'];
30
31
    cout << st;</pre>
32
    return 0;
33 }
```

● 判断题

- 1) 输入的字符串应当只由大写字母组成,否则在访问数组时**可能**越界。 ()
- 2) 若输入的字符串不是空串,则输入的字符串与输出的字符串一定**不一样**。()
- 3) 将第 12 行的"i < 26"改为"i < 16",程序运行结果**不会**改变。
- 4) 将第 26 行的"i < 26"改为"i < 16",程序运行结果**不会**改变。

● 单选题

- 5) 若输出的字符串为"ABCABCABCA",则下列说法**正确**的是()。
 - A. 输入的字符串中既有 A 又有 P
 - B. 输入的字符串中既有 S 又有 B
 - C. 输入的字符串中既有 S 又有 P
 - D. 输入的字符串中既有 A 又有 B
- 6) 若输出的字符串为"CSPCSPCSPCSP",则下列说法**正确**的是()。
 - A. 输入的字符串中既有 J 又有 R
 - B. 输入的字符串中既有 P 又有 K
 - C. 输入的字符串中既有 J 又有 K
 - D. 输入的字符串中既有 P 又有 R

2.

01 #include <iostream>


```
02 using namespace std;
03
04 long long n, ans;
05 int k, len;
06 long long d[1000000];
07
08 int main() {
    cin >> n >> k;
09
    d[0] = 0;
10
11
    len = 1;
12
    ans = 0;
13
    for (long long i = 0; i < n; ++i) {
14
      ++d[0];
15
      for (int j = 0; j + 1 < len; ++j) {
        if (d[j] == k) {
16
17
          d[j] = 0;
18
          d[j + 1] += 1;
19
          ++ans;
20
        }
21
      if (d[len - 1] == k) {
22
        d[len - 1] = 0;
23
24
        d[len] = 1;
25
        ++len;
26
        ++ans;
27
28
     }
29
     cout << ans << endl;</pre>
30
    return 0;
31 }
```

假设输入的 n 是不超过 2⁶² 的正整数, k 都是不超过 10000 的正整数, 完成下面的判断题和单选题:

● 判断题

- 1) 若 k=1,则输出 ans 时, len=n。()
- 2) 若 k>1,则输出 ans 时, len 一定**小于** n。()
- 3) 若 k>1,则输出 ans 时,k^{len}一定**大于** n。()

● 单选题

```
4) 若输入的 n 等于 10<sup>15</sup>,输入的 k 为 1,则输出等于( )。
A. (10<sup>30</sup>-10<sup>15</sup>)/2 B. (10<sup>30</sup>+10<sup>15</sup>)/2 C. 1 D. 10<sup>15</sup>
```



```
5) 若输入的 n 等于 205,891,132,094,649(即 3<sup>36</sup>),输入的 k 为 3,则
      输出等于()。
    A. (3^{3\theta}-1)/2 B.
                                  C. 3<sup>30</sup>-1
                       3<sup>30</sup>
                                              D. (3^{30}+1)/2
   6) 若输入的 n 等于 100,010,002,000,090,输入的 k 为 10,则输出等
      于()。
    A. 11,112,222,444,543
                                           В.
                                               11,122,222,444,453
    C. 11,122,222,444,543
                                           D.
                                               11,112,222,444,453
3.
   01 #include <algorithm>
   02 #include <iostream>
   03 using namespace std;
   04
   05 int n;
   06 int d[50][2];
   07 int ans;
   80
   09 void dfs(int n, int sum) {
        if (n == 1) {
          ans = max(sum, ans);
   11
   12
          return;
   13
        }
        for (int i = 1; i < n; ++i) {
   14
   15
          int a = d[i - 1][0], b = d[i - 1][1];
   16
          int x = d[i][0], y = d[i][1];
          d[i - 1][0] = a + x;
   17
   18
          d[i - 1][1] = b + y;
   19
          for (int j = i; j < n - 1; ++j)
           d[j][0] = d[j + 1][0], d[j][1] = d[j + 1][1];
   20
   21
          int s = a + x + abs(b - y);
   22
          dfs(n - 1, sum + s);
   23
          for (int j = n - 1; j > i; --j)
            d[j][0] = d[j - 1][0], d[j][1] = d[j - 1][1];
   24
   25
          d[i - 1][0] = a, d[i - 1][1] = b;
          d[i][0] = x, d[i][1] = y;
   26
   27
        }
   28 }
   29
   30 int main() {
   31
        cin >> n;
   32
        for (int i = 0; i < n; ++i)
```



```
33    cin >> d[i][0];
34    for (int i = 0; i < n; ++i)
35        cin >> d[i][1];
36    ans = 0;
37    dfs(n, 0);
38    cout << ans << endl;
39    return 0;
40 }</pre>
```

假设输入的 n 是不超过 50 的正整数, d[i][0]、d[i][1]都是不超过 10000 的正整数, 完成下面的判断题和单选题:

	业i		题
•	ナリ	四)	区丛

- 1) 若输入 n 为 0, 此程序**可能**会死循环或发生运行错误。()
- 2) 若输入 n 为 20, 接下来的输入全为 0, 则输出为 0。()
- 3) 输出的数一定**不小于**输入的 d[i][0]和 d[i][1]的任意一个。()

● 单选题

- 4) 若输入的 n 为 20,接下来的输入是 20 个 9 和 20 个 0,则输出为 ()。
 - A. 1917
- B. **1908**
- C. **1881**
- D. **1890**
- 5) 若输入的 n 为 30,接下来的输入是 30 个 0 和 30 个 5,则输出为 ()。
 - A. 2020
- B. **2030**
- C. **2010**
- D. **2000**
- 6) (4分) 若输入的 n 为 15, 接下来的输入是 15 到 1, 以及 15 到 1, 则 输出为()。
 - A. **2420**
- В. 2220
- C. **2440**
- D. **2240**

三、完善程序(单选题,每小题 3分,共计 30分)

1. (质因数分解) 给出正整数 n, 请输出将 n 质因数分解的结果, 结果从小到大输出。

例如:输入 n=120,程序应该输出 2 2 2 3 5,表示 120=2×2×2×3×5。输入保证 2 \leq n \leq 10 9 。提示:先从小到大枚举变量 i,然后用 i 不停试除 n 来寻找所有的质因子。

试补全程序。

- 01 #include <cstdio>
- 02 using namespace std;


```
03
04 int n, i;
05
06 int main() {
07
    scanf("%d", &n);
    for(i = 1; 2 <= n; i ++) {
80
09
       printf("%d ", i);
10
11
       n = n / i;
12
      }
13
    }
14
    if(4)
15
      printf("%d ", ⑤);
16
    return 0;
17 }
1) ①处应填( )
A. n - 1
                 В.
                                 C. 1
                                                D.
2) ②处应填( )
 A. n / i
                B. n / (i * i)
                                 C.
                                    i * i *
                                                 D.
3) ③处应填( )
 A. if (i * i <= n)
                              B. if (n \% i == 0)
 C. while (i * i <= n)
                               D. while (n \% i == 0)
4) ④处应填(
                     n <= 1
                             C. i + i \le n D. i \le n / i
5) ⑤处应填(
                                C. n / i
                 В.
                    i
                                               D. n
 Α.
    2
```

2. (最小区间覆盖)给出 n 个区间,第 i 个区间的左右端点是[ai, bi]。现在 要在这些区间中选出若干个,使得区间 [0, m]被所选区间的并覆盖(即每一个 0≤i≤m 都在某个所选的区间中)。保证答案存在,求所选区间个数 的最小值。

输入第一行包含两个整数 n 和 m (1 \leq n \leq 5000,1 \leq m \leq 10 9)。 接下来 n 行,每行两个整数 a_i, b_i (0 \leq a_i, b_i \leq m)。

提示: 使用贪心法解决这个问题。先用 $\theta(n^2)$ 的时间复杂度排序,然后贪心选择这些区间。

试补全程序。


```
01 #include <iostream>
03 using namespace std;
04
05 const int MAXN = 5000;
06 int n, m;
07 struct segment { int a, b; } A[MAXN];
80
09 void sort() // 排序
10 {
11
     for (int i = 0; i < n; i++)
12
      for (int j = 1; j < n; j++)
         if (1)
13
14
         {
15
          segment t = A[j];
16
17
         }
18 }
19
20 int main()
21 {
22
     cin >> n >> m;
     for (int i = 0; i < n; i++)
23
24
      cin >> A[i].a >> A[i].b;
25
     sort();
     int p = 1;
26
     for (int i = 1; i < n; i++)
27
     if (3)
28
     A[p++] = A[i];
29
30
     n = p;
31
     int ans = 0, r = 0;
     int q = 0;
32
33
     while (r < m)
34
      while (4)
35
36
        q++;
37
      (5);
38
      ans++;
39
40
     cout << ans << endl;</pre>
41
     return 0;
42 }
```


1) ①处应填()

- A. A[j].b < A[j 1].b
- B. A[j].b > A[j 1].b
- C. A[j].a < A[j-1].a D. A[j].a > A[j-1].a

2) ②处应填()

- A. A[j 1] = A[j]; A[j] = t;
- B. A[j + 1] = A[j]; A[j] = t;
- C. A[j] = A[j 1]; A[j 1] = t;
- D. A[j] = A[j + 1]; A[j + 1] = t;

3) ③处应填()

- A. A[i].b < A[p 1].b
- B. A[i].b > A[i 1].b
- C. A[i].b > A[p-1].b D. A[i].b < A[i-1].b

4) ④处应填()

- A. q + 1 < n && A[q + 1].b <= r
- B. q + 1 < n && A[q + 1].a <= r
- C. q < n & A[q].a <= r
- D. q < n && A[q].b <= r

5) ⑤处应填()

- A. r = max(r, A[q + 1].a)
- В. r = max(r, A[q].b)
- C. r = max(r, A[q + 1].b)
- D. q++