

1. 天才的崛起

本名沃夫岡·包立 (Wolfgang Ernst Pauli),他的中間名 Ernst 是源自於他的教父,而他的教父不是別人,正是物理學家 Ernst Mach,包立出生於 1900年4月25日,那一年普朗克為了解決黑體輻射問題,首次提出了量子化的概念,開啟了量子時代的篇章,或許是這些機緣巧合讓包立的命運注定不凡。

從中學開始,他便展現出他的與眾不同。包立就讀於維也納的一所文理中學 (Döblingen Gymnasium),學校的課業對他來說太無聊了,因此他總在上課時偷看藏在桌下的東西,不像同齡的孩子會偷看漫畫或是小說,包立在看的是由愛因斯坦所撰寫的廣義相對論。 1918 年包立以優異的成績畢業,畢業後的兩個月,年僅 18 歲的包立發表了他的第一篇關於廣義相對論的論文,同年包立拿著父親的推薦信去拜訪慕尼黑大學的索莫非 (Arnold Sommerfeld),希望能跳過學士直接成為他的博士生,索莫非礙於人情收了包立做他的學生,而包立也不負眾望的,用時僅僅三年就取得博士學位,並發表了關於電離化氫分子的量力理論。當包立在慕尼黑就讀的第二年,索莫非要求他為德國的《數學科學的百科全書》撰寫關於相對論的篇章,包立在獲得博士畢業後的兩個月交出了一篇長達 237 頁的文章,對此愛因斯坦給出了極高的評價。

「任何一個閱讀過這部偉大且成熟的作品的人都不會相信,這竟是出自一個 20 歲的年輕人之手,作者對相對論的理解、對數學的掌握、深刻的物理洞察能力、對文獻清晰完整的表達能力、對主體的批判、討論的正確性,是任何一個人都會羨慕的。」- 愛因斯坦

2. 群

畢業後,包立前往哥廷根大學 (Georg-August-Universität Göttingen) 擔任玻恩 (Max Born) 的助手,在那裡他參加了波耳關於元素週期表的演講,包立對此並不滿意,他覺得需要一個理由解釋為什麼電子不會全都填入最低能量態,包立認為反常塞曼效應 (anomalous Zeeman effect) 與此有著密切的關聯,在與波耳的交談過後,波耳邀請他前往哥本哈根,並在尼爾斯·波耳研究所 (Niels Bohr Institutet) 著手研究反常塞曼效應,1923 年包立成為漢堡大學 (University of Hamburg) 的教授,此時的他仍沒忘記研究反常塞曼效應,他認為它有著非常漂亮且簡單的規律但當時的理論卻無法解釋,為此整理並分析了大量關於原子光譜的實驗值,這一工作的難度並不亞於當年克卜勒研究行星數據所面臨的挑戰,最終他發現如果引入一個新的量子數便能很好的解釋此效應,隔年 Uhlenbeck、 Goudsmit 和 Ehrenfest 證實這個新量子數就是自旋 'spin'。

1924 年底包立閱讀了斯通納 (Edmund Clifton Stoner) 的論文, 了解到鹼金屬原子在外加磁場下,價電子的能階數目(n、1 固定) 恰好等於稀有氣體在相同次殼層的電子數目,他很快意識到,這代 表著當四個量子數都被決定時,有且僅有一顆電子能佔據此態,至 此**包立不相容原理** (Pauli exclusion principle) 正式問世,同時量子 力學開始爆炸式成長,各種理論相繼被提出,1924年德布羅意提出 物質波概念,波粒二象性開始被世人所接受,1925年海森堡、玻恩 和約爾當共同建立矩陣力學, i,\hbar 開始出現在量子理論中,包立由矩 陣力學出發,推導出了與實驗值高度吻合的氫原子光譜數值,1926 年薛丁格提出薛丁格方程式 (Schrodinger equation),波函數 (Wave function) 的概念讓大家更能理解微觀世界的運作,同年玻恩給出玻 恩定則 (Born rule),機率詮釋讓量子力學徹底打破古典物理的想像, 同年克萊恩 - 戈登方程式 (Klein-Gordon equation) 横空出世,首次將 量子力學結合相對論,量子場論也在此萌芽,1927年包立將自旋理 論 (spin-1/2) 和薛丁格方程式結合,提出了非相對論性的包立方程 式 (Pauli equation), 1928 年狄拉克給出相對論版本的狄拉克方程式 (Dirac equation),預測了正電子的存在,並在1932年由安德森(Carl David Anderson) 在宇宙射線中觀察到。

3.

看似

相比於事業上的成功,包立的感情世界出現了巨大的變化, 1927年因為父親的不忠,包立的母親選擇結束了自己 的生命,隔年他的父親就再婚,對象是一個跟包立年紀相仿的藝術 家,包立形容她是邪惡的繼母。兩年後包立退出天主教會,但確切 理由仍然未知。

順利的人生

因為工作上的關係,包立需要很常往返於柏 林,在那裡他遇見了歌舞表演者 Käthe Margarethe Deppner,包立開始與她約會,儘管她還有一個化學 家男朋友,在幾次約會過後包立就向她求婚,而女方 也欣然答應了,一切看似都往好的方向發展,殊不知 這卻是噩夢的開始, 1929 年 12 月包立和 Deppner 成 為夫妻,然而這段婚姻只維持不到一年就以離婚告 終,因為雖然他們結了婚,Deppner 卻仍忘不了她的 化學家男友,結婚的大部分時間包立都待在蘇黎世, 而 Deppner 則待在柏林,包立事後說到:「如果她找 的是一個鬥牛士我還能理解,但他只是一個平凡的化 學家 ...」,令人驚訝的是儘管生活亂成一團,包立仍 能保持出色的工作能力,1930年為了解決β衰變中的 能量、動量以及自旋角動量不守衡問題,他認為β衰 變會產生一個新的質量極小且不帶電的粒子,波耳知 道後非常排斥這個說法,並認為β衰變只有在統計意 義上才守恆,然而費米卻非常贊同,1934年費米提 出了β衰變理論,而那個粒子被費米稱為微中子,直 到 1956 年微中子才被 Frederick Reines 和 Cowan Jr 探 測到。終於在提出微中子假說後,包立出現嚴重的神 經衰弱症,他開始酗酒和抽菸,最終他的父親看不下 去了,建議他去找心理學家卡爾·榮格 (Carl Gustav Jung) 聊聊。

4. 卡爾·榮格

卡爾·榮格

是解夢方面

中爾·榮格

的專家,他

認為夢能反映出人的潛意識,一開始榮 格本人並沒有為包立治療,而是請他的 助手 Erna Rosenbaum 來記錄包立的夢, 直到包立有信心自己記錄下來,五個月 後榮格親自接手,而此時包立有300多 個已紀錄的夢需要分析。除了分析夢, 包立還坦承他有情緒不穩定、酒精成癮 以及與女性相處的問題。好在包立有著 超凡的記憶能力,最終榮格分析了包立 1300 個原型夢 (archetypal dreams), 並 要他展示自我情感,以 anima archetype 形象化,將被壓抑的情訊轉為純粹的智 力,後來榮格將包立的夢分析並被寫 入《心理學與煉金術》(Psychology and Alchemy) 一書中。1934 年包立再婚並 停止了治療,但他與榮格之間仍有書

信往來,包立因此成為榮格最好的學生,這些信後來被整理出版為《原子與原型》(Atom and Archetype)一書。榮格在包立的建議下改良了共時性 (Synchronicity) 的想法,並且和包立提出了 **Pauli–Jung conjecture**,以十分物理的方式來研究心理學。

5. 晚年生活

 $1940^{\text{年}}$,包立證明了自旋統計定理且成為普林斯頓高等研究所的客座教授,並在 1945年憑藉不相容原理獲頒諾貝爾物理獎,隨後回到蘇黎世大學研究 QED 的重整化問題,1953年當選為倫敦皇家學會會員、瑞士物理學會,美國物理學會和美國科學促進會成員。

直到死前包立都還與物理有著莫名的聯繫,1958 年包立被診斷出胰線癌,在蘇黎世的紅十字會醫院住院治療,他的病房是 137 號,剛好近似於精細結構常數 α 的倒數。1958 年 12 月包立結束了他傳奇的一生,包立絕對是絕頂聰明的,但是他過於執著在「科學理論不能脫離現象」,因而錯失許多機會,比如包立早在楊振寧之前就曾推導過楊 - 米爾斯理論 (Yang-Mills theory),不過他無法解決質量問題因此從未發表過。包立曾經感嘆道,年輕時,自認在理論物理學者間,自己的數學最好,當偉大問題來臨,他會是解決的人,沒想到當偉大問題到來,解決它們的卻是別人。