МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт информационных технологий и технологического образования Кафедра компьютерных технологий и электронного обучения

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине: «Физика полупроводников» "Исследование зависимости сопротивления полупроводников от температуры"

Руководитель:
профессор, доктор физмат. наук
Аванесян Вачаган Тигранович
Подпись
Автор работы студент 2 курса
2 группы 1 подгруппы
Стецук Максим Николаевич
Подпись

Санкт-Петербург 2022 год

Теоретические сведения

Термистр — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Самым характерным признаком полупроводников является сильный рост проводимости при увеличении температуры, а как следствие падение сопротивление (сопротивление и проводимость – обратные величины).

С ростом температуры происходит увеличение степени ионизации примесных атомов, приводя к увеличению концентрации носителей заряда.

В полупроводниковом кристалле между атомами в соседних узлах кристаллической решетки существует ковалентная связь, т.е. они связаны общими электронными парами. Для того чтобы электрон мог выйти из связи, и образовалась электронно-дырочная пара, атом должен получить энергию ε_a , называемую энергией активации.

Энергия активации – минимальное количество энергии, которое должны получить электроны донорной примеси, для того чтобы попасть в зону проводимости.

Донорная примесь – вещество с большей валентностью, чем у кристалла полупроводника.

Зависимость проводимости полупроводника с ростом температуры определяется по закону (уменьшением сопротивления):

$$R(T) = R_0 \exp(\epsilon_a / 2kT)$$

R – сопротивление

Т – температура в кельвинах.

 ε_a – энергия активации.

k – постоянная Больцмана.

$$k = 1.38 * 10^{-23} \, \text{Дж}/K$$

Прологарифмировав обе части данного равенства можно получить такое выражение: $\ln (R/Ro) = (\epsilon_a/2k)(1/T)$.

$$ln R = ln Ro + (\varepsilon_a / 2k)(1/T)$$

Данное выражение является линейной зависимостью величины ln R от величины 1/T, обратной абсолютной температуре.

Если по оси ординат откладывать натуральный логарифм численного значения сопротивления (значение сопротивления в логарифмическом масштабе), а по оси абсцисс откладывать величину, обратную абсолютной

температуре, то функциональная зависимость будет изображаться прямой линией с угловым коэффициентом, равным (ϵ_a / 2k).

Результаты проведённого эксперимента

T 00	5.50	5.0	- ·	4 /-	
T, ºC	R ГОм	R Om	Т, К	1/T	InR
23,9	20,7	20700000000	296,9	0,003368	23,7534
24,1	19,6	19600000000	297,1	0,003366	23,6988
24,4	17,5	17500000000	297,4	0,003362	23,58547
24,7	16,9	16900000000	297,7	0,003359	23,55058
24,9	16,4	16400000000	297,9	0,003357	23,52055
25,1	15,9	15900000000	298,1	0,003355	23,48958
25,4	15,3	15300000000	298,4	0,003351	23,45112
25,5	14,9	14900000000	298,5	0,00335	23,42463
26	12,8	12800000000	299	0,003344	23,27271
26,8	10,6	10600000000	299,8	0,003336	23,08412
27	8,8	8800000000	300	0,003333	22,89802
27,6	8,3	8300000000	300,6	0,003327	22,83952
28,5	7,4	7400000000	301,5	0,003317	22,72475
29,1	7,2	7200000000	302,1	0,00331	22,69735
29,4	6,5	6500000000	302,4	0,003307	22,59507
30	6,2	6200000000	303	0,0033	22,54782
30,4	5,9	5900000000	303,4	0,003296	22,49822
31,2	5,6	5600000000	304,2	0,003287	22,44603
31,5	5,3	5300000000	304,5	0,003284	22,39097
32,4	4,9	4900000000	305,4	0,003274	22,3125
32,8	4,7	4700000000	305,8	0,00327	22,27083
33,8	4,6	4600000000	306,8	0,003259	22,24932
34,8	4,55	4550000000	307,8	0,003249	22,23839
35,4	4,25	4250000000	308,4	0,003243	22,17018
36,1	4,1	4100000000	309,1	0,003235	22,13425
36,7	3,9	3900000000	309,7	0,003229	22,08424
37,5	3,6	3600000000	310,5	0,003221	22,0042
38,3	3,5	3500000000	311,3	0,003212	21,97603
39,1	3,2	3200000000	312,1	0,003204	21,88642

Таблица 1 (сводная таблица результатов измерений)

График 1 (логарифмическая зависимость сопротивления от величины обратной температуре)

Пояснение: т.к. график зависимости lnR(1/T) имеет вид прямой, то можно сделать вывод, что зависимость R(T) является экспоненциальной зависимостью.

График 2 (Зависимость сопротивления от температуры)

Данный экспериментальный график наглядно показывает экспоненциальную зависимость сопротивления от температуры в полупроводнике.

Нахождение энергии активации (ε_a)

После логарифмирования экспоненциальной зависимости R(T), мы получили зависимость lnR(1/T):

$$ln R = ln Ro + (\varepsilon_a / 2k)(1/T)$$

Т.к. данная зависимость является линейной зависимостью, то множитель $(\epsilon_a \ / \ 2k \)$ является угловым коэффициентом прямой изображённой на графике.

Возьмём 2 точки на графике:

$$lnR1 = 22,0042$$
 и $\frac{1}{T1} = 0,003221$ $lnR2 = 23,08412$ и $\frac{1}{T2} = 0,003336$

Тогда угловой коэффициент:

$$tg\alpha = \frac{23,08412 - 22,0042}{0,003336 - 0,003221} = \frac{1,07992}{0,000115} \approx \frac{1,1}{1,2*10^{-4}} \approx 10^4$$

$$\varepsilon_{a} = tg\alpha * 2k = 10^4 * 2*1,38*10^{-23} = 2,76*10^{-19} \text{дЖ}$$

Т.к. 1дЖ $\sim 6.25 * 10^{18}$ эВ, то получаем:

$$ε_a \approx 2,76*10^{-19}*6,25*10^{18} = 17,25*10^{-1} = 1,725$$
 эB
$$ε_a \sim \textbf{1,725} \ \textbf{3B}$$

Вывод: В ходе лабораторной работы мы на практике изучили зависимость сопротивления от температуры в полупроводнике. Были построены графики таких зависимостей как: зависимость сопротивления от температуры и логарифмическая зависимость сопротивления от величины обратной температуре. А также проведя расчеты по одному из графиков, было получено значение энергии активации атомов примеси данного полупроводникового материала.