

Dan Oneață

Bucharest CV – Reading group #3

Overview

Introduction to representation learning

Uses of representations

Types of representations learnt by deep learning

▶ Learning representations: the distinctive feature of deep learning

Numeral systems 0123456789 - ΙΤΥ ΣΟ ΤΟ ΚΑΙΤΙΚΟΙ ΤΙΚΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ ΤΙΚΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ ΤΙΚΟΙ Τ

- ▶ Learning representations: the distinctive feature of deep learning
- Representations for humans:
 - Roman versus Arabic numerals

Numeral systems
0123456789
- ΙΤΨ ΣΟ Τ V Λ Υ Ι Ι Ι Ι Ι Ι Ι Χ Χ

- ▶ Learning representations: the distinctive feature of deep learning
- Representations for humans:
 - ► Roman versus Arabic numerals
 - Models to assimilate knowledge

Numeral systems 0123456789 ITEEOTVA9 ITEETION VIT VIII IX X

- ▶ Learning representations: the distinctive feature of deep learning
- Representations for humans:
 - Roman versus Arabic numerals
 - Models to assimilate knowledge
 - Ability to learn from very few examples

Supervised learning – implicit representations

- Supervised learning implicit representations
- Unsupervised learning explicit representations

- Supervised learning implicit representations
- Unsupervised learning explicit representations
- ▶ Representations: high-level, many-to-one mapping of the input

Representation learning: A definition

A representation is a formal system which makes explicit certain entities or types of information, together with a specification of how the system does this.

(Marr, 1982)

Representation learning: A definition

A representation is a formal system which makes explicit certain entities or types of information, together with a specification of how the system does this.

(Marr, 1982)

- ▶ formal
 - representations are operated by an algorithm
 - set of symbols with rules of putting them together

Representation learning: A definition

A representation is a formal system which makes explicit certain entities or types of information, together with a specification of how the system does this.

(Marr, 1982)

- ▶ formal
 - representations are operated by an algorithm
 - set of symbols with rules of putting them together
- makes explicit certain types of information
 - usually a trade-off
 - representations are tied to a given task

Introduction to representation learning

Uses of representations

Types of representations learnt by deep learning

Greedy layer-wise unsupervised pre-training

- Greedy layer-wise unsupervised pre-training
- ► At the basis of deep learning resurgence
- Not that popular nowadays (except for NLP)

- Greedy layer-wise supervised pre-training
- ► At the basis of deep learning resurgence
- Not that popular nowadays (except for NLP)

- 1. Modelling the input distribution helps predicting the output
- 2. Initial parameters help optimization

- 1. Modelling the input distribution helps predicting the output
- 2. Initial parameters help optimization

▶ Pre-training reduces the variance of the estimation process

- ► Transfer learning or multi-task learning
 - Variations in one task are relevant with variations in the other one
 - Might share either low-level or high-level representations

- ► Transfer learning or multi-task learning
 - Variations in one task are relevant with variations in the other one
 - ► Might share either low-level or high-level representations
- Domain adaptation or concept drift
 - Mismatch of the input distributions

- ► Transfer learning or multi-task learning
 - Variations in one task are relevant with variations in the other one
 - ► Might share either low-level or high-level representations
- Domain adaptation or concept drift
 - Mismatch of the input distributions
- One-shot and zero-shot learning

- Transfer learning or multi-task learning
 - Variations in one task are relevant with variations in the other one
 - Might share either low-level or high-level representations
- Domain adaptation or concept drift
 - Mismatch of the input distributions
- One-shot and zero-shot learning
 - ▶ One-shot learning: representations capture relevant factors

- ► Transfer learning or multi-task learning
 - Variations in one task are relevant with variations in the other one
 - Might share either low-level or high-level representations
- Domain adaptation or concept drift
 - Mismatch of the input distributions
- One-shot and zero-shot learning
 - ▶ One-shot learning: representations capture relevant factors
 - Zero-shot learning: output representations to link classes

Introduction to representation learning

Uses of representations

Types of representations learnt by deep learning

Non-distributed representations

 Examples: clustering, mixture models, nearest neighbours, decision trees, etc.

Distribution representations

 Examples: multi-clustering, attribute scores, sparse models, RBM, PCA, etc.

Non-distributed representations

- Examples: clustering, mixture models, nearest neighbours, decision trees, etc.
- Number of regions grows linearly with number of parameters or number of samples

Distribution representations

- Examples: multi-clustering, attribute scores, sparse models, RBM, PCA, etc.
- Number of regions grows exponentially with number of parameters

Non-distributed representations

- Examples: clustering, mixture models, nearest neighbours, decision trees, etc.
- Number of regions grows linearly with number of parameters or number of samples
- Cannot generalize to new regions

Distribution representations

- Examples: multi-clustering, attribute scores, sparse models, RBM, PCA, etc.
- Number of regions grows exponentially with number of parameters
- Can generalize to new regions

- ▶ Directions in representations space capture factors of variations
- ▶ Allows generalization to new configurations of features

Hierarchical representations

- ▶ Multi-layer perceptrons (MLP) are universal approximators
 - MLP can learn a wide variety of interesting functions
 - Doesn't touch on the learnability of the parameters

Hierarchical representations

- Multi-layer perceptrons (MLP) are universal approximators
 - ▶ MLP can learn a wide variety of interesting functions
 - Doesn't touch on the learnability of the parameters
- ▶ Deep learning offers statistical efficiency: some functions compactly represented with k layers may require exponential size with k-1 layers

Hierarchical representations

- Multi-layer perceptrons (MLP) are universal approximators
 - ▶ MLP can learn a wide variety of interesting functions
 - Doesn't touch on the learnability of the parameters
- ▶ Deep learning offers statistical efficiency: some functions compactly represented with k layers may require exponential size with k-1 layers
- ▶ Intuitively hierarchal representations allow reuse

- ▶ Priors are important for learning good representations
- ► An long list is given in the book (Goodfellow et al., 2016):

- ▶ Priors are important for learning good representations
- ▶ An long list is given in the book (Goodfellow et al., 2016):
 - ► Smoothness: $f(\mathbf{x} + \epsilon \mathbf{d}) \approx f(\mathbf{d})$

- Priors are important for learning good representations
- ▶ An long list is given in the book (Goodfellow et al., 2016):
 - ► Smoothness: $f(\mathbf{x} + \epsilon \mathbf{d}) \approx f(\mathbf{d})$
 - Depth: concepts can be defined hierarchically

- Priors are important for learning good representations
- ▶ An long list is given in the book (Goodfellow et al., 2016):
 - ▶ Smoothness: $f(\mathbf{x} + \epsilon \mathbf{d}) \approx f(\mathbf{d})$
 - Depth: concepts can be defined hierarchically
 - Explanatory factors: data is generated by multiple underlying explanatory factors

- Priors are important for learning good representations
- ▶ An long list is given in the book (Goodfellow et al., 2016):
 - ▶ Smoothness: $f(\mathbf{x} + \epsilon \mathbf{d}) \approx f(\mathbf{d})$
 - ▶ Depth: concepts can be defined hierarchically
 - Explanatory factors: data is generated by multiple underlying explanatory factors
 - Shared factors across tasks

- Priors are important for learning good representations
- ► An long list is given in the book (Goodfellow et al., 2016):
 - ▶ Smoothness: $f(\mathbf{x} + \epsilon \mathbf{d}) \approx f(\mathbf{d})$
 - Depth: concepts can be defined hierarchically
 - Explanatory factors: data is generated by multiple underlying explanatory factors
 - Shared factors across tasks
 - Sparsity: not all features are relevant to describing the input

Further resources

- ➤ Y. Bengio's talks and tutorials http://www.iro.umontreal.ca/~bengioy/talks/ deep-learning-gss2012.html
- Y. Bengio. Learning Deep Architectures for AI (Bengio, 2009)
- Y. Bengio. Representation learning: A review and new perspectives (Bengio et al., 2013)
- Representation Learning workshop (27/03 31/03, 2017) https://simons.berkeley.edu/workshops/schedule/3750

References

- Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127.
- Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):1798–1828.
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep Learning*. MIT Press. http://www.deeplearningbook.org.
- Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt and Co., Inc., New York, NY, USA.