Formal Proof

Name: Arpit Kharbanda

Email: 500075774@stu.upes.ac.in

SAP ID: 500075774

Statements given to us in the problem are as follows:

- a. I am a human being
- b. I am good
- c. Good graders study well
- d. Humans love graders
- e. Every human does not study well

Given claim to validate: *Is every human good grader?*

Algorithm that need to be followed in order to validate the claim via **statement proving via resolution**.

- 1. Convert to first order predicate logic
- 2. Convert to conjunctive normal form
- 3. Resolution proof procedure

(i) First order predicate logic form

Natural Language form	First order predicate logic
I am a human being	Human(x)
I am good	Good(x)
Good graders study well	$Good(graders) \Longrightarrow Study(x)$
Humans love graders	Love(human,graders)
Every human does not study well	$\forall (x) \text{ Human}(x) \Rightarrow \neg \text{Study}(x)$

(ii) Conjunctive normal form

To convert to conjunctive normal form negate the FOPL and replace 'implies with' (->) with 'v'(conjunction).

First order predicate logic	Conjunctive Normal Form
Human(x)	Human(x)
Good(x)	Good(x)
$Good(graders) \Longrightarrow Study(x)$	¬Good(graders)vStudy(x)
Love(human,graders)	Love(human,graders)
$\forall (x) \text{ Human}(x) \Longrightarrow \neg \text{Study}(x)$	¬Human(x) v ¬Study(x)

(iii) Resolution proof procedure

Statement to validate: Is every human good grader? or \forall (x) Human(x) -> Good(grader) or \neg Human(x) v Good(grader) (in CNF form)

We can use the method of **proof by contradiction** to arrive to the result.

Goal statement (negation of statement to validate): Human(x) ^ ¬Good(grader)

$$\neg Good(graders) \lor Study(x)) + (\neg Human(x) \lor \neg Study(x))$$

=

¬Good(graders) v ¬Human(x) (Negating terms are cancelled)

When we combine this statement with our goal statement we find that the resulting statement is **TRUE**.

This means that if the negation of a statement has truth value TRUE or 1, its original (non-negated statement) will have truth value FALSE

Thus we can safely assume that the given statement given to validate is *FALSE*