目次

		n-Stieltjes 積分	2
1.1	定義と]在	2
)一樣収束	
		一様収束の性質	
	1.2.2	コンパクトー様収束	3
		一様収束と積分	
	1.2.4	一様収束と導関数	3
	1.2.5	一様収束の判定法	3
第2章	参考文献		
参老文献			5

第1章

Riemann-Stieltjes 積分

Lebesgue 積分とは違って,ℝの順序構造に強く依存した,Euclid 空間上にオーダーメイドの積分が定義できる.これについての古典論を復習する.

1.1 定義と存在

定義 1.1.1. I := [a,b] を閉区間とする.

- (1) 分割 P とは , [a,b] の有限集合 $P=\{a=x_0\leqslant x_1\leqslant \cdots\leqslant x_n=b\}$ をいう .
- (2) 各分割 $P \in P([a,b])$ に対して,

$$M_i(P) := \sup_{x \in [x_{i-1}, x_i]} f(x),$$
 $m_i(P) := \inf_{x \in [x_{i-1}, x_i]} f(x) \ (i \in [n])$

とし,

$$U(P;f) := \sum_{i=1}^{n} M_i(P) \Delta x_i, \qquad L(P,f) := \sum_{i=1}^{n} m_i(P) \Delta x_i$$

とする.

$$\overline{\int_a^b} f dx := \inf_{P \in P([a,b]), |P| < \infty} U(P,f), \qquad \qquad \underline{\int_a^b} f dx = \sup_{P \in P([a,b]), |P| < \infty} L(P,f).$$

1.2 関数列の一様収束

復習する.

定義 1.2.1. $E\subset\mathbb{C}$ 上の関数列 (f_n) が一様収束するとは, $\forall_{\epsilon>0}$ $\exists_{n_0\in\mathbb{N}}$ $\forall_{n\geqslant n_0}$ $\forall_{x\in E}$ $|f_n(x)-f(x)|<\epsilon$ を満たすことをいう.

1.2.1 一様収束の性質

定理 ${\bf 1.2.2}$ (一様収束は連続性を保つ). (f_n) を $E\subset \mathbb{C}$ 上の連続関数列とし,極限 f に一様収束するとする.このとき,f は連続である.

[証明]. 任意の $x_0 \in E$ と $\epsilon > 0$ をとる.

- (1) f は (f_n) の一様収束極限だから, $\exists_{n\in\mathbb{N}}\ \forall_{x\in E}\ |f_n(x)-f(x)|<\epsilon/3$.
- (2) f_n は連続だから , $\exists_{\delta>0}\ \forall_{x\in E}\ |x-x_0|<\delta\Rightarrow |f_n(x_0)-f_n(x)|<\epsilon/3$.

以上より, 任意の $|x-x_0|<\delta$ を満たす $x\in E$ に対して,

$$|f(x)-f(x_0)| \leq |f(x)-f_n(x)|+|f_n(x)-f_n(x_0)|+|f_n(x_0)-f(x_0)|<\epsilon.$$

定理 1.2.3. $E\subset S$ を距離空間 S の部分集合とし, $x\in S$ をその集積点とする. (f_n) が f に一様収束するとき, $(\lim_{t\to x}f_n(t))_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n\to\infty}\lim_{t\to x}f_n(t)=\lim_{t\to x}\lim_{n\to\infty}f_n(t)$$

1.2.2 コンパクトー様収束

一方で、連続関数の列が連続関数に収束するとき、そのモードが一様収束であるとは限らない、

定理 1.2.4. (f_n) をコンパクト集合 K 上の連続関数の列とする.このとき,

- (1) (f_n) はある連続関数 f に各点収束する.
- (2) (f_n) は広義単調減少列である.

ならば , (f_n) は f に一様収束する .

1.2.3 一様収束と積分

定理 1.2.5.

1.2.4 一様収束と導関数

定理 **1.2.6.** [a,b] 上の可微分関数の列 (f_n) は,ある $x_0 \in [a,b]$ において各点収束するとする.導関数が定める列 (f'_n) が一様収束するならば,元の列 (f_n) も一様収束し,極限と微分が可換になる: $\forall_{x \in [a,b]} f'(x) = \lim_{n \to \infty} f'(x)$.

1.2.5 一様収束の判定法

命題 1.2.7 (一様収束の判定法). (f_n) を E 上の関数の列で , 各点収束極限 f を持つとする .

- $(1)(f_n)$ は一様収束する.
- (2) (Cauchy criterion) $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{m,n \geqslant n_0} \forall_{x \in E} |f_n(x) f_m(x)| < \epsilon$.
- (3) $||f_n f||_{\infty} \to 0$.

命題 **1.2.8** (Weierstrass M-test). 関数列 (f_n) は収束する優級数 $\{M_n\}\subset \mathbb{C}$ を持つとする: $\forall_{n\in\mathbb{N}}\ \|f_n\|_{\infty}\leqslant |M_n|,\sum_{n\in\mathbb{N}}M_n\in\mathbb{C}$. このとき,級数列 $(i=1)^nf_i$ は一様収束する.

第2章

参考文献

参考文献

[1] Walter Rudin - Principles of Mathematical Analysis