Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{\ }\}.$

Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{}\}$.

- ullet пусть f-k-местная несамодвойственная функция
- \Rightarrow существует $ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ такой, что $f(b_1,\ldots,b_k)=f(ar{b}_1,\ldots,ar{b}_k)$

Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{\ }\}$.

- пусть f k-местная несамодвойственная функция
- \Rightarrow существует $\vec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ такой, что $f(b_1,\ldots,b_k)=f(\bar{b}_1,\ldots,\bar{b}_k)$ \bullet рассмотрим унарную функцию $\phi(x)=f(x^{b_1},\ldots,x^{b_k})$
- $\star \phi(0) = f(0^{b_1}, \dots, 0^{b_k}) = f(\bar{b}_1, \dots, \bar{b}_k) = f(b_1, \dots, b_k) = f(1^{b_1}, \dots, 1^{b_k}) = \phi(1)$
- $\Rightarrow \phi(x)$ константа

Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{\ }\}.$

- пусть f k-местная несамодвойственная функция
- \Rightarrow существует $ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ такой, что $f(b_1,\ldots,b_k)=f(ar{b}_1,\ldots,ar{b}_k)$
- ullet рассмотрим унарную функцию $\phi(x) = f(x^{b_1}, \dots, x^{b_k})$

*
$$\phi(0) = f(0^{b_1}, \dots, 0^{b_k}) = f(\bar{b}_1, \dots, \bar{b}_k) = f(b_1, \dots, b_k) = f(1^{b_1}, \dots, 1^{b_k}) = \phi(1)$$

- $\Rightarrow \phi(x)$ константа
- \star вторую константу можно записать формулой $\overline{\phi(x)}$

Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{\ }\}.$

- пусть f k-местная несамодвойственная функция
- \Rightarrow существует $ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ такой, что $f(b_1,\ldots,b_k)=f(ar{b}_1,\ldots,ar{b}_k)$
- \bullet рассмотрим унарную функцию $\phi(x) = f(x^{b_1}, \dots, x^{b_k})$

*
$$\phi(0) = f(0^{b_1}, \dots, 0^{b_k}) = f(\bar{b}_1, \dots, \bar{b}_k) = f(b_1, \dots, b_k) = f(1^{b_1}, \dots, 1^{b_k}) = \phi(1)$$

- $\Rightarrow \phi(x)$ константа
- \star вторую константу можно записать формулой $\overline{\phi(x)}$
- \star набор функций x^{b_1}, \dots, x^{b_k} , подставляемых в \hat{f} , содержит только x (при $b_i = 1$) и \bar{x} (при $b_i = 0$)
- $\Rightarrow \phi(x)$ и $\overline{\phi(x)}$ задаются формулами над $\{f,\bar{g}\}$

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$: $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$
 - ullet рассмотрим любой $(ec{a},ec{b})$ -путь в ориентированном k-мерном кубе
 - ullet т.е. в диаграмме Хассе ЧУМа $(\{0,1\}^k,\leqslant)$
 - \star так как $ec{a}\leqslantec{b}$, каждая вершина $(ec{a},ec{b})$ -пути покрывает предыдущую
 - ullet в вершине $ec{a}$ функция f принимает значение 1, а в вершине $ec{b}$ значение 0
- \Rightarrow путь содержит пару вершин (\vec{lpha}, \vec{eta}) такую, что \vec{eta} покрывает $\vec{lpha}, f(\vec{lpha}) = 1, f(\vec{eta}) = 0$

Лемма 2 (о немонотонной функции)

Пусть $f \notin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$: $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$
 - ullet рассмотрим любой $(ec{a},ec{b})$ -путь в ориентированном k-мерном кубе
 - т.е. в диаграмме Хассе ЧУМа $(\{0,1\}^k,\leqslant)$
 - \star так как $\vec{a} \leqslant \vec{b}$, каждая вершина (\vec{a}, \vec{b}) -пути покрывает предыдущую
 - ullet в вершине $ec{a}$ функция f принимает значение 1, а в вершине $ec{b}$ значение 0
- \Rightarrow путь содержит пару вершин $(\vec{\alpha}, \vec{\beta})$ такую, что $\vec{\beta}$ покрывает $\vec{\alpha}$, $f(\vec{\alpha}) = 1$, $f(\vec{\beta}) = 0$
 - \star \vec{eta} покрывает $\vec{lpha}\Rightarrow \vec{lpha}=(c_1,\ldots,c_{i-1},0,c_{i+1},\ldots,c_k),\ \vec{eta}=(c_1,\ldots,c_{i-1},1,c_{i+1},\ldots,c_k)$
 - ullet для некоторых битов c_{1}, \dots, c_{k}

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$: $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$
 - ullet рассмотрим любой $(ec{a},ec{b})$ -путь в ориентированном k-мерном кубе
 - т.е. в диаграмме Хассе ЧУМа $(\{0,1\}^k,\leqslant)$
 - \star так как $ec{a}\leqslantec{b}$, каждая вершина $(ec{a},ec{b})$ -пути покрывает предыдущую
 - ullet в вершине $ec{a}$ функция f принимает значение 1, а в вершине $ec{b}$ значение 0
- \Rightarrow путь содержит пару вершин $(\vec{\alpha}, \vec{\beta})$ такую, что $\vec{\beta}$ покрывает $\vec{\alpha}$, $f(\vec{\alpha}) = 1$, $f(\vec{\beta}) = 0$
 - \star \vec{eta} покрывает $\vec{lpha}\Rightarrow \vec{lpha}=(c_1,\ldots,c_{i-1},0,c_{i+1},\ldots,c_k),\ \vec{eta}=(c_1,\ldots,c_{i-1},1,c_{i+1},\ldots,c_k)$
 - для некоторых битов $c_1, ..., c_k$
 - ullet рассмотрим унарную функцию $\phi(x) = f(c_1, \dots, c_{i-1}, x, c_{i+1}, \dots, c_k)$
- $\star \phi(0) = f(\vec{\alpha}) = 1, \ \phi(1) = f(\vec{\beta}) = 0 \Rightarrow \phi(x) = \bar{x}$

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$. $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$
 - ullet рассмотрим любой $(ec{a},ec{b})$ -путь в ориентированном k-мерном кубе
 - т.е. в диаграмме Хассе ЧУМа $(\{0,1\}^k,\leqslant)$
 - \star так как $ec{a}\leqslantec{b}$, каждая вершина $(ec{a},ec{b})$ -пути покрывает предыдущую
 - ullet в вершине $ec{a}$ функция f принимает значение 1, а в вершине $ec{b}$ значение 0
- \Rightarrow путь содержит пару вершин $(\vec{\alpha}, \vec{\beta})$ такую, что $\vec{\beta}$ покрывает $\vec{\alpha}$, $f(\vec{\alpha}) = 1$, $f(\vec{\beta}) = 0$
 - \star \vec{eta} покрывает $\vec{lpha}\Rightarrow \vec{lpha}=(c_1,\ldots,c_{i-1},0,c_{i+1},\ldots,c_k),\ \vec{eta}=(c_1,\ldots,c_{i-1},1,c_{i+1},\ldots,c_k)$
 - для некоторых битов c₁,..., c_k
 - ullet рассмотрим унарную функцию $\phi(x) = f(c_1, \dots, c_{i-1}, x, c_{i+1}, \dots, c_k)$
 - $\star \phi(0) = f(\vec{\alpha}) = 1, \ \phi(1) = f(\vec{\beta}) = 0 \Rightarrow \phi(x) = \bar{x}$
 - \star $c_1,\ldots,c_k\in\{0,1\}\Rightarrow\phi(x)$ задана формулой над $\{f,0,1\}$

Лемма 3 (о нелинейной функции)

Пусть $f \notin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{\ }\}$.

Лемма 3 (о нелинейной функции)

Пусть $f \notin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{}\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2

Лемма 3 (о нелинейной функции)

Пусть $f
otin {f L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,{}^-\}$.

- пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина $\Rightarrow h$ содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - ullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2

Лемма 3 (о нелинейной функции)

Пусть $f
otin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{}\}$.

Доказательство:

- пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина $\Rightarrow h$ содержит нелинейный одночлен
 - без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. что
- * $h(x_1, \ldots, x_k) = x_1 x_2 f_1(x_3, \ldots, x_k) + x_1 f_2(x_3, \ldots, x_k) + x_2 f_3(x_3, \ldots, x_k) + f_4(x_3, \ldots, x_k)$

3 / 3

Лемма 3 (о нелинейной функции)

Пусть $f
otin {\sf L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{}\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. что
- * $h(x_1,...,x_k) = x_1x_2f_1(x_3,...,x_k) + x_1f_2(x_3,...,x_k) + x_2f_3(x_3,...,x_k) + f_4(x_3,...,x_k)$
- $f_1(x_3,...,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - \bullet положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$

Лемма 3 (о нелинейной функции)

Пусть $f
otin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{}\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. что
- * $h(x_1,...,x_k) = x_1x_2f_1(x_3,...,x_k) + x_1f_2(x_3,...,x_k) + x_2f_3(x_3,...,x_k) + f_4(x_3,...,x_k)$
- $f_1(x_3,...,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - \bullet положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$
 - пусть $\alpha = f_2(c_3, \ldots, c_k)$, $\beta = f_3(c_3, \ldots, c_k)$, $\gamma = f_4(c_3, \ldots, c_k)$
- $\Rightarrow \psi(x_1, x_2) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$
 - ullet при k=2 функция $\psi(x_{\!f 1}\,,x_{\!f 2})$ имеет такой же вид

Лемма 3 (о нелинейной функции)

Пусть $f \notin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{}\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. что
 - * $h(x_1,...,x_k) = x_1x_2f_1(x_3,...,x_k) + x_1f_2(x_3,...,x_k) + x_2f_3(x_3,...,x_k) + f_4(x_3,...,x_k)$
 - $f_1(x_3,...,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - Φ положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$
 - пусть $\alpha = f_2(c_3, \ldots, c_k), \beta = f_3(c_3, \ldots, c_k), \gamma = f_4(c_3, \ldots, c_k)$
- $\Rightarrow \psi(x_1, x_2) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$
 - ullet при k=2 функция $\psi(\mathit{x_1}\,,\mathit{x_2})$ имеет такой же вид
- положим $\phi(x_1, x_2) = \psi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$
- $\Rightarrow \phi(x_1, x_2) = (x_1 + \beta)(x_2 + \alpha) + \alpha(x_1 + \beta) + \beta(x_2 + \alpha) + \gamma + \alpha\beta + \gamma = x_1x_2$

Лемма 3 (о нелинейной функции)

Пусть $f \notin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{\ }\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. Что
 - $\star h(x_1,\ldots,x_k) = x_1x_2f_1(x_3,\ldots,x_k) + x_1f_2(x_3,\ldots,x_k) + x_2f_3(x_3,\ldots,x_k) + f_4(x_3,\ldots,x_k)$
 - $f_1(x_3,\ldots,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - Φ положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$
 - пусть $\alpha = f_2(c_3, \ldots, c_k), \beta = f_3(c_3, \ldots, c_k), \gamma = f_4(c_3, \ldots, c_k)$
- $\Rightarrow \psi(x_1, x_2) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$
- ullet при k=2 функция $\psi(\mathit{x_1}\,,\mathit{x_2})$ имеет такой же вид
- положим $\phi(x_1, x_2) = \psi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$
- $\Rightarrow \phi(x_1, x_2) = (x_1 + \beta)(x_2 + \alpha) + \alpha(x_1 + \beta) + \beta(x_2 + \alpha) + \gamma + \alpha\beta + \gamma = x_1x_2$
- \star для получения ψ в f подставляются константы
- \star для получения ϕ в ψ подставляются сами переменные или их отрицания $(x+1=ar{x})$, и, возможно, берется отрицание итоговой формулы (при $lpha eta + \gamma = 1$)

Лемма 3 (о нелинейной функции)

Пусть $f
otin { t L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{\ }\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- ⇒ h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. Что
 - $\star h(x_1,\ldots,x_k) = x_1x_2f_1(x_3,\ldots,x_k) + x_1f_2(x_3,\ldots,x_k) + x_2f_3(x_3,\ldots,x_k) + f_4(x_3,\ldots,x_k)$
 - $f_1(x_3,\ldots,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - Φ положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$
 - ullet пусть $lpha = f_2(c_3, \dots, c_k)$, $eta = f_3(c_3, \dots, c_k)$, $\gamma = f_4(c_3, \dots, c_k)$
- $\Rightarrow \psi(x_1, x_2) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$
 - ullet при k=2 функция $\psi(\mathit{x_1}\,,\mathit{x_2})$ имеет такой же вид
- положим $\phi(x_1, x_2) = \psi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$
- $\Rightarrow \phi(x_1, x_2) = (x_1 + \beta)(x_2 + \alpha) + \alpha(x_1 + \beta) + \beta(x_2 + \alpha) + \gamma + \alpha\beta + \gamma = x_1x_2$
- \star для получения ψ в f подставляются константы
- \star для получения ϕ в ψ подставляются сами переменные или их отрицания (x+1=ar x), и, возможно, берется отрицание итоговой формулы (при $lpha eta + \gamma = 1$)
- $\Rightarrow \phi(x)$ задана формулой над $\{f,0,1,\bar{}\}$