

## INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

June 2022

Version 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

## Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

## Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

**B** Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

**CAO** Correct answer only

**CSO** Correct solution only

**AWFW** Anything which falls within

**AWRT** Anything which rounds to

**ACF** Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

**–x EE** Deduct x marks for each error

NMS No method shown

PI Possibly implied

**SCA** Substantially correct approach

**sf** Significant figure(s)

**dp** Decimal place(s)

| Q    | Answer                                                                                                          | Marks      | Comments                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|
| 44.) |                                                                                                                 |            |                                                                          |
| 1(a) | $\frac{dy}{dx} = \frac{1}{1 + (1 + x)^2} + \frac{1}{2} \left( \frac{1}{1 - \left(\frac{x}{2}\right)^2} \right)$ | M1<br>A1   | One term differentiated correctly<br>Both terms differentiated correctly |
|      |                                                                                                                 | 2          |                                                                          |
| 1(b) | $y_P \left[ = \tan^{-1} 1 + 0 \right] = \frac{\pi}{4}$                                                          | B1         |                                                                          |
|      | At $P$ , $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$                                                                  |            | Finds a value for their $\frac{dy}{dx}$ at $x = 0$                       |
|      | Gradient of normal = -1                                                                                         | М1         | and its negative reciprocal seen                                         |
|      | Equation of normal: $y - \frac{\pi}{4} = -x$                                                                    | <b>A</b> 1 | CSO<br>ACF but must be exact                                             |
|      |                                                                                                                 | 3          |                                                                          |
|      | Total                                                                                                           | 5          |                                                                          |

| Q    | Answer                                  | Marks | Comments                                                                                                |
|------|-----------------------------------------|-------|---------------------------------------------------------------------------------------------------------|
|      |                                         |       |                                                                                                         |
| 2(a) | Rotation                                | M1    | <b>M0</b> if more than one transformation.                                                              |
|      | through $60^{\circ}$ , about the z-axis | A1    | oe                                                                                                      |
|      |                                         |       | <b>SC1</b> for 'rotate' or 'rotated' or 'rotates' and $60^{\circ}$ , about the <i>z</i> -axis <b>oe</b> |
|      |                                         | 2     |                                                                                                         |
| 2(b) | z-axis                                  | B1    | $\mathbf{oe}  \mathbf{eg}  x = y = 0$                                                                   |
|      |                                         | 1     |                                                                                                         |
|      | Total                                   | 3     |                                                                                                         |

| Q    | Answer                                                                                                                                                                                                                                                                                                           | Marks      | Comments                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 3(a) | 6 = A(r+1) + B(r-1)<br>r = 1: 6 = 2A ; r = -1: 6 = -2B                                                                                                                                                                                                                                                           | M1         | 6 = A(r+1) + B(r-1) used to form either a correct equation in $A$ or $B$ or a correct pair of simultaneous equations in $A$ and $B$     |
|      | $A = 3$ ; $B = -3$ . $\frac{3}{r-1} - \frac{3}{r+1}$                                                                                                                                                                                                                                                             | <b>A</b> 1 | PI $A = 3$ ; $B = -3$                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                  | 2          |                                                                                                                                         |
| 3(b) | $\sum_{r=2}^{n} \frac{6}{(r-1)(r+1)} = \sum_{r=2}^{n} \frac{3}{r-1} - \frac{3}{r+1}$ $= (3-1) + (\frac{3}{2} - \frac{3}{4}) + (1 - \frac{3}{5}) + \dots$ $+ (\frac{3}{n-3} - \frac{3}{n-1}) + (\frac{3}{n-2} - \frac{3}{n}) + (\frac{3}{n-1} - \frac{3}{n+1})$ $= 3 + \frac{3}{2} - \frac{3}{n} - \frac{3}{n+1}$ | M1<br>A1   | Uses method of differences showing the first and last terms and at least two other terms so that a pair of values which cancel are seen |
|      | $= \frac{9n(n+1) - 6(n+1) - 6n}{2n(n+1)}$ $= \frac{9n^2 - 3n - 6}{2n(n+1)}$                                                                                                                                                                                                                                      | M1<br>A1   | Correctly writing $p + \frac{q}{n} + \frac{r}{n+1}$ as a single 'fraction' with denominator $2n(n+1)$                                   |
|      | 2( 1)                                                                                                                                                                                                                                                                                                            | 4          |                                                                                                                                         |
|      | Total                                                                                                                                                                                                                                                                                                            | 6          |                                                                                                                                         |

| Q | Answer                                                                                      | Marks      | Comments                                                                                                         |
|---|---------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| 4 | Aux. eqn $4m^2 + 4m + 1 = 0$ $(2m+1)^2 = 0$ $m = -\frac{1}{2}$                              | M1         | Factorises or applies other valid method to the correct Aux. eqn.  PI by the correct value of <i>m</i> seen/used |
|   | $y = (A + Bx)e^{-\frac{1}{2}x}$ $x = 0  y = 4  \Rightarrow A = 4$                           | A1<br>B1ft | $(A + Bx)e^{-\frac{1}{2}x}$ oe  ft on $y = (A + Bx)e^{\pm \frac{1}{2}x}$                                         |
|   | $\frac{dy}{dx} = B e^{-\frac{1}{2}x} + (A + Bx) \left(-\frac{1}{2}e^{-\frac{1}{2}x}\right)$ | M1         | Product rule used correctly to find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$                          |
|   | $x = 0$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$ $\Rightarrow 1 = B - \frac{1}{2}A$            | <b>A</b> 1 | PI                                                                                                               |
|   | $y = (4 + 3x)e^{-\frac{1}{2}x}$                                                             | <b>A</b> 1 | ACF                                                                                                              |
|   | Total                                                                                       | 6          |                                                                                                                  |

| Q    | Answer                                                                                                                | Marks      | Comments                                                                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                       |            |                                                                                                                                                      |
| 5(a) | Integrand, $\ln x$ , is not defined at $x = 0$                                                                        | E1         | oe                                                                                                                                                   |
|      |                                                                                                                       | 1          |                                                                                                                                                      |
| 5(b) | $u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x}$ $\int \ln x  dx$ $dv = dx \Rightarrow v = x$                      | M1         | $u = \ln x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$ $\mathrm{d}v = \mathrm{d}x \Rightarrow v = x$ PI                               |
|      | $\int \ln x  \mathrm{d}x = x \ln x - \int x \left(\frac{1}{x}\right) \mathrm{d}x$                                     | <b>A</b> 1 | PI                                                                                                                                                   |
|      | $\int \ln x  \mathrm{d}x = x \ln x - x  [+c]$                                                                         | <b>A</b> 1 | Correct integration of $\ln x$                                                                                                                       |
|      | $\int_0^{e^2} \ln x  dx = \lim_{a \to 0} \int_a^{e^2} \ln x  dx$ $= e^2 \ln e^2 - e^2 - \lim_{a \to 0} (a \ln a - a)$ | M1         | Evidence of limit 0 replaced by $a$ ( <b>oe</b> ), $\lim_{a\to 0}$ seen at any stage with no remaining lim relating to $e^2$                         |
|      | $\lim_{a\to 0} (a \ln a) = 0$                                                                                         | E1         | Accept if stated in the more general format.                                                                                                         |
|      | $\int_0^{e^2} \ln x  dx = e^2 \ln e^2 - e^2 = e^2$                                                                    | <b>A</b> 1 | First 4 marks must have been scored but can be awarded even if previous <b>E1</b> not scored provided limits clearly substituted and no errors seen. |
|      |                                                                                                                       | 6          |                                                                                                                                                      |
|      | Total                                                                                                                 | 7          |                                                                                                                                                      |

| Q    | Answer                                                                                                                                                                            | Marks      | Comments                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a) | $[\mathbf{r} \times \mathbf{m} = \mathbf{n} \implies] \mathbf{n}$ is perpendicular to $\mathbf{m}$ $\mathbf{n}$ perpendicular to $\mathbf{m}$ , $\mathbf{m} \cdot \mathbf{n} = 0$ | E1         |                                                                                                                                                                          |
|      | [so $\mathbf{r}$ cannot be found such that both $\mathbf{r} \times \mathbf{m} = \mathbf{n}$ and $\mathbf{m} \cdot \mathbf{n} = 12$ are true.]                                     |            |                                                                                                                                                                          |
| 6(b) | $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 2 & p & -1 \\ -p & 4 & -7 \\ -4 & 2p & -9 \end{vmatrix}$                                                       | 2<br>M1    | oe eg $\begin{bmatrix} 2 \\ p \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -36 + 14p \\ 28 - 9p \\ -2p^2 + 16 \end{bmatrix}$ at least one term correct in the cross product |
|      | $= 2(-36+14p)-p(9p-28)-1(-2p^2+16)$                                                                                                                                               | <b>A</b> 1 | oe                                                                                                                                                                       |
|      | $= -7p^2 + 56p - 88$                                                                                                                                                              | <b>A</b> 1 | Condone at most one error up to this line of working                                                                                                                     |
|      | $-7p^{2} + 56p - 88 = 17$ $7p^{2} - 56p + 105 = 0;  7(p-5)(p-3) = 0$                                                                                                              | M1         | Equating their quadratic expression for the scalar triple product to either 17 or –17                                                                                    |
|      | or $-7p^{2} + 56p - 88 = -17$ $7p^{2} - 56p + 71 = 0; 7(p-4)^{2} = 41$                                                                                                            |            |                                                                                                                                                                          |
|      | $7(p-5)(p-3)=0 \implies p=3, p=5$                                                                                                                                                 | <b>A</b> 1 | oe                                                                                                                                                                       |
|      | $p = \frac{56 \pm \sqrt{1148}}{14}$                                                                                                                                               | <b>A</b> 1 | <b>oe</b> $p = \frac{28 \pm \sqrt{287}}{7}$ , $p = 4 \pm \frac{\sqrt{287}}{7}$ (6.4; 1.5)                                                                                |
|      |                                                                                                                                                                                   | 6          |                                                                                                                                                                          |
|      | Total                                                                                                                                                                             | 8          |                                                                                                                                                                          |

| Q    | Answer                                                                                                                 | Marks      | Comments                                                                                                                                                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a) | Ch Eqn. $\begin{vmatrix} 3-\lambda & -2 \\ 5 & p-\lambda \end{vmatrix} = 0$                                            | M1         | Seen or used                                                                                                                                                                                                                                                               |
|      | When $\lambda = 1$ , $\begin{vmatrix} 2 & -2 \\ 5 & p-1 \end{vmatrix} = 0$<br>$\Rightarrow 2p-2+10=0 \Rightarrow p=-4$ | <b>A</b> 1 | p = -4                                                                                                                                                                                                                                                                     |
|      | $(3-\lambda)(-4-\lambda)+10=0;  \lambda^2+\lambda-2=0$ $(\lambda-1)(\lambda+2)=0; \text{ other eigenvalue}=-2$         | M1         | Forms quadratic eqn                                                                                                                                                                                                                                                        |
|      | $(\lambda - 1)(\lambda + 2) = 0$ ; other eigenvalue = -2                                                               | <b>A</b> 1 | Correct other eigenvalue                                                                                                                                                                                                                                                   |
|      |                                                                                                                        | 4          |                                                                                                                                                                                                                                                                            |
| 7(b) | When $\lambda = 1$ , $3x - 2y = x$ , $5x - 4y = y$ When $\lambda = -2$ , $3x - 2y = -2x$ , $5x - 4y = -2y$             | M1         | Subst. <b>either</b> value of $\lambda$ into $\mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \text{ to form two linear}$ equations in $x$ and $y$ <b>oe PI</b> by at least one correct eigenvector provided no errors seen |
|      | When $\lambda = 1$ , $x = y$<br>Eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$                                     | <b>A</b> 1 | Eigenvector $\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , for any $\alpha \neq 0$                                                                                                                                                                                        |
|      | When $\lambda = -2$ , $5x = 2y$<br>Eigenvector $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$                                  | <b>A</b> 1 | Eigenvector $\beta \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ , for any $\beta \neq 0$                                                                                                                                                                                          |
|      |                                                                                                                        | 3          |                                                                                                                                                                                                                                                                            |
|      | Total                                                                                                                  | 7          |                                                                                                                                                                                                                                                                            |

| Q        | Answer                                                                                                                                                                                          | Marks      | Comments                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 8(a)     | $\det = k \begin{vmatrix} 3k - 2 & 4 \\ 3k & 5 \end{vmatrix} - 2 \begin{vmatrix} 2k - 2 & 4 \\ 2k + 3 & 5 \end{vmatrix} + (k - 4) \begin{vmatrix} 2k - 2 & 3k - 2 \\ 2k + 3 & 3k \end{vmatrix}$ | M1         | Correctly expanding by any row or column  oe                                                                                                    |
|          | $= k(3k-10)-2(2k-22)+(k-4)(6-11k)$ $= -8k^2 + 36k + 20$                                                                                                                                         | <b>A</b> 1 | Correct quadratic in $k$ No errors seen                                                                                                         |
|          |                                                                                                                                                                                                 | 2          |                                                                                                                                                 |
| 8(b)(i)  | $-8k^2 + 36k + 20 = 0$<br>$k = 5, -0.5$                                                                                                                                                         | M1<br>A1   | Their answer to <b>(a)</b> = 0 and an attempt to solve or $-8k^2 + pk + q = 0$ , with their $p$ and $q$ and attempt to solve Correct two values |
|          | ,                                                                                                                                                                                               | 2          |                                                                                                                                                 |
| 8(b)(ii) | k = 5, $5x + 2y + z = a$ eqn1<br>8x + 13y + 4z = b eqn2<br>13x + 15y + 5z = c eqn3                                                                                                              | B1ft       | ft their integer value for $k$ from (b)(i)  PI by later work                                                                                    |
|          | (eqn1) + (eqn2) - (eqn3)                                                                                                                                                                        | M1         | Relevant combination of arithmetical operations to eliminate $x, y$ and $z$                                                                     |
|          | $a+b-c=0 \Rightarrow b=c-a$                                                                                                                                                                     | <b>A</b> 1 | b = c - a                                                                                                                                       |
|          |                                                                                                                                                                                                 | 3          |                                                                                                                                                 |
|          | Total                                                                                                                                                                                           | 7          |                                                                                                                                                 |

| Q        | Answer                                                                                                                                                      | Marks      | Comments                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|
| 9(a)     | Since coefficients are all real, complex roots occur in conjugate pairs and so the cubic equation cannot have exactly one non-real root.                    | E1         | oe                                                   |
|          |                                                                                                                                                             | 1          |                                                      |
| 9(b)(i)  | $\alpha + \beta + \gamma = -\frac{p}{2}$                                                                                                                    | M1         | Any one correct equation seen or used                |
|          | $\alpha\beta + \alpha\gamma + \beta\gamma = 2$ $\alpha\beta\gamma = 3i$                                                                                     | <b>A</b> 1 | All three correct equations seen or used             |
|          | $\alpha^{2}\beta\gamma + \alpha\beta^{2}\gamma + \alpha\beta\gamma^{2} = \alpha\beta\gamma(\alpha + \beta + \gamma)$                                        | M1         | Seen or used anywhere in the working                 |
|          | $(\alpha\beta+2)(\alpha\gamma+2)(\beta\gamma+2)$                                                                                                            |            |                                                      |
|          | $= (\alpha\beta\gamma)^{2} + 2\alpha\beta\gamma(\alpha + \beta + \gamma) + 4(\alpha\beta + \alpha\gamma + \beta\gamma) + 8$                                 |            |                                                      |
|          | $= (3i)^{2} + 2(3i)\left(-\frac{p}{2}\right) + 4(2) + 8 = 7 - 3ip$                                                                                          | <b>A</b> 1 | cso                                                  |
|          |                                                                                                                                                             | 4          |                                                      |
| 9(b)(ii) | $(\alpha\beta + 2)(\alpha\gamma + 2) + (\alpha\beta + 2)(\beta\gamma + 2)$ $+(\alpha\gamma + 2)(\beta\gamma + 2) = 3i\left(-\frac{p}{2}\right) + 4(2) + 12$ | В1         | $3i\left(-\frac{p}{2}\right) + 4(2) + 12$ or better  |
|          | Cubic eqn with roots $\alpha\beta + 2$ , $\alpha\gamma + 2$ , $\beta\gamma + 2$ is                                                                          |            |                                                      |
|          | $z^{3} - \left(\sum \alpha\right)z^{2} + \left(\sum \alpha\beta\right)z - \alpha\beta\gamma  [=0]$                                                          | M1         | Used                                                 |
|          | $z^{3} - 8z^{2} + \left(20 - \frac{3ip}{2}\right)z - \left(7 - 3ip\right) = 0$                                                                              | A1ft       | <b>ft</b> their value of <i>k</i> from <b>(b)(i)</b> |
|          |                                                                                                                                                             | 3          |                                                      |
|          | Total                                                                                                                                                       | 8          |                                                      |

| Q     | Answer                                                                                                                                                                                          | Marks      | Comments                                                                                                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10(a) | When $n = 1$ ,<br>LHS = $(\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta$<br>RHS = $\cos 1\theta + i \sin 1\theta = \cos \theta + i \sin \theta$<br>so result is true for $n = 1$ | B1         | Verifies LHS = RHS for $n = 1$ and statement 'true for $n = 1$ ' seen at any point                                                                                                                              |
|       | Assume result true for $n = k$ (*)<br>so $(\cos \theta + i \sin \theta)^{k+1} =$<br>$= (\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$                                            | М1         | Assumes true for $n = k$ and considers $(\cos \theta + i \sin \theta)^{k+1}$                                                                                                                                    |
|       | $= \cos k\theta \cos \theta - \sin k\theta \sin \theta + i \left( \sin k\theta \cos \theta + \cos k\theta \sin \theta \right)$                                                                  | <b>A</b> 1 |                                                                                                                                                                                                                 |
|       | $= \cos(k\theta + \theta) + i\sin(k\theta + \theta)$ $= \cos(k+1)\theta + i\sin(k+1)\theta$                                                                                                     | <b>A</b> 1 | Accept either form. Uses identities for $\cos(A+B)$ and $\sin(A+B)$                                                                                                                                             |
|       | Hence formula is true for $n = k + 1$ (**) and since true for $n = 1$ , formula is true for $n = 1, 2, 3$ by induction (***)                                                                    | <b>E</b> 1 | Must have (*) and (**) present. previous 4 marks scored and concluding statement (***) must clearly indicate that it relates to positive integers.                                                              |
|       |                                                                                                                                                                                                 | 5          |                                                                                                                                                                                                                 |
| 10(b) | $2(\cos 3\theta + i \sin 3\theta) = 1 - \sqrt{3} i$ $\cos 3\theta = \frac{1}{2} \text{ and } \sin 3\theta = -\frac{\sqrt{3}}{2}$                                                                | М1         | Uses result in <b>(a)</b> and equates real parts and imaginary parts <b>PI</b> $2(\cos 3\theta + i \sin 3\theta)$ or $= 2\left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right)\right)$ seen |
|       | Both eqns satisfied by solutions $3\theta = 2N\pi - \frac{\pi}{3}$                                                                                                                              | М1         | Finds the full set of general solutions for each eqn or considers signs of cos and sin to recognise that common solutions lie in the 4 <sup>th</sup> quadrant <b>PI</b>                                         |
|       | [First two positive values of $\theta$ are] $\frac{5\pi}{9}$                                                                                                                                    | <b>A1</b>  |                                                                                                                                                                                                                 |
|       | [and] $\frac{11\pi}{9}$                                                                                                                                                                         | <b>A</b> 1 |                                                                                                                                                                                                                 |
|       |                                                                                                                                                                                                 | 4          |                                                                                                                                                                                                                 |
|       | Total                                                                                                                                                                                           | 9          |                                                                                                                                                                                                                 |

| Q     | Answer                                                                                                                                                                                                                                            | Marks      | Comments                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| 11(a) | $\mathbf{n} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}; \qquad \mathbf{n} = \begin{bmatrix} -5 \\ 8 \\ 6 \end{bmatrix}$                                                                        | M1         | Relevant vector product stated or used                                                                                           |
|       |                                                                                                                                                                                                                                                   | <b>A</b> 1 | Correct n                                                                                                                        |
|       | $d = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \cdot \mathbf{n} = (2)(-5) + (1)(8) + (2)(6)$                                                                                                                                                      | M1         | ft on their n                                                                                                                    |
|       | $\mathbf{r} \cdot \begin{bmatrix} -5 \\ 8 \\ 6 \end{bmatrix} = 10$                                                                                                                                                                                | <b>A</b> 1 |                                                                                                                                  |
|       |                                                                                                                                                                                                                                                   | 4          |                                                                                                                                  |
| 11(b) | $\cos \theta = \frac{\left(-5 \mathbf{i} + 8 \mathbf{j} + 6 \mathbf{k}\right) \cdot \left(-3 \mathbf{i} + \mathbf{j} + 2 \mathbf{k}\right)}{\left(\sqrt{\left(-5\right)^2 + 8^2 + 6^2}\right) \left(\sqrt{\left(-3\right)^2 + 1^2 + 2^2}\right)}$ | M1         | ft on their n                                                                                                                    |
|       | Scalar product in numerator = 35                                                                                                                                                                                                                  | B1ft       | Correct evaluation of scalar product <b>ft</b> on their <b>n</b> in <b>part (a)</b> PI by $\cos \theta = \frac{7}{\sqrt{70}}$ oe |
|       | Denominator = $\sqrt{25 + 64 + 36} \sqrt{9 + 1 + 4}$                                                                                                                                                                                              | B1ft       | Correct product of moduli ft on their $\mathbf{n}$ in $\mathbf{part}$ (a)  PI by $\cos\theta = \frac{7}{\sqrt{70}}$ oe           |
|       | $\cos\theta = \frac{7}{\sqrt{70}} \; ; \qquad \theta = 33.2^{\circ}$                                                                                                                                                                              | <b>A</b> 1 | CAO                                                                                                                              |
|       |                                                                                                                                                                                                                                                   | 4          |                                                                                                                                  |
| 11(c) | -3x + y + 2z = 5                                                                                                                                                                                                                                  | B1         |                                                                                                                                  |
|       |                                                                                                                                                                                                                                                   | 1          |                                                                                                                                  |

| Q     | Answer                                                                                                                                                                                             | Marks | Comments                                                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11(d) | $\mathbf{b} = \begin{bmatrix} -5\\8\\6 \end{bmatrix} \times \begin{bmatrix} -3\\1\\2 \end{bmatrix} = \begin{bmatrix} 16-6\\-18+10\\-5+24 \end{bmatrix} = \begin{bmatrix} 10\\-8\\19 \end{bmatrix}$ | M1 A1 | M1: At least 2 components correct ft on (a) or $10\mathbf{i} + 28\mathbf{j} - 29\mathbf{k}$ oe seen  A1: a correct b eg $\begin{bmatrix} 10 \\ -8 \\ 19 \end{bmatrix}$ |
|       | $\Pi_1: -5x + 8y + 6z = 10$ $\Pi_2: -3x + y + 2z = 5$ For common pt put eg $x=0$ and solve                                                                                                         | M1    | Valid method for finding a common point                                                                                                                                |
|       | Common pt $(0, -1, 3)$<br>$(\mathbf{r} - (-\mathbf{j} + 3\mathbf{k})) \times (10\mathbf{i} - 8\mathbf{j} + 19\mathbf{k}) = 0$                                                                      | A1    | oe likely ones $\left(-\frac{30}{19}, \frac{5}{19}, 0\right)$ , $\left(-\frac{5}{4}, 0, \frac{5}{8}\right)$ oe  Both M1's scored but must be in correct form           |
|       |                                                                                                                                                                                                    | 5     |                                                                                                                                                                        |
|       | Total                                                                                                                                                                                              | 14    |                                                                                                                                                                        |

| Q         | Answer                                                                                                                                                                                             | Marks      | Comments                                                                                                                                                                                               |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12(a)(i)  | eg $y = 2x + 2\ln(\sec x)$<br>or $\frac{dy}{dx} = \frac{2e^{2x}}{e^{2x}(1 + \tan^2 x)}(1 + \tan^2 x + \tan x \sec^2 x)$<br>$\frac{dy}{dx} = 2 + 2\left(\frac{1}{\sec^2 x}\right)(\sec^2 x \tan x)$ | <b>M</b> 1 | Writing <i>y</i> in an appropriate simplified form using log laws correctly or directly finding a correct unsimplified expression for the derivative  Must see a relevant intermediate line of working |
|           | $=2(1+\tan x)$                                                                                                                                                                                     | <b>A</b> 1 | AG                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                    | 2          |                                                                                                                                                                                                        |
| 12(a)(ii) | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\sec^2 x$                                                                                                                                                 | В1         |                                                                                                                                                                                                        |
|           | $\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = (4\sec x)\sec x \tan x$                                                                                                                                    | M1         | $k \sec^2 x \tan x$ <b>oe</b>                                                                                                                                                                          |
|           | $\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = \left(4\sec^4 x\right) + 8\sec^2 x \tan^2 x$                                                                                                               | <b>A</b> 1 | ACF                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                    | 3          |                                                                                                                                                                                                        |
| 12(b)     | When $x = 0$ : $y = 0$ , $\frac{\mathrm{d}y}{\mathrm{d}x} = 2$                                                                                                                                     | В1         | PI by seeing 0 as the first term in the Maclaurin series and use of 2 in the second term of the Maclaurin series                                                                                       |
|           | $\[ \frac{d^2 y}{dx^2} = 2,  \frac{d^3 y}{dx^3} = 0,  \frac{d^4 y}{dx^4} = 4 \]$                                                                                                                   |            |                                                                                                                                                                                                        |
|           | Maclaurin series: $\ln \left[ e^{2x} \left( 1 + \tan^2 x \right) \right]$                                                                                                                          |            |                                                                                                                                                                                                        |
|           | $= 0 + 2x + \frac{2}{2!}x^2 + 0x^3 + \frac{4}{4!}x^4$                                                                                                                                              | М1         | ft their derivatives                                                                                                                                                                                   |
|           | $\ln\left[e^{2x}\left(1+\tan^2 x\right)\right] = 2x + x^2 + \frac{1}{6}x^4$                                                                                                                        | <b>A</b> 1 | AG<br>Be convinced                                                                                                                                                                                     |
|           |                                                                                                                                                                                                    | 3          |                                                                                                                                                                                                        |

| Q     | Answer                                                                                                                   | Marks      | Comments                                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|
| 12(c) | $x\sin x = x^2 - \frac{1}{6}x^4 + \dots$                                                                                 | B1         | ое                                                                                       |
|       | $2\ln(\cos x) = \ln(\cos^2 x)$ $= -\ln(\sec^2 x) = -x^2 - \frac{x^4}{6}$                                                 | M1         | Valid method to find the correct first two non-zero terms in expansion of $2\ln(\cos x)$ |
|       | $\lim_{x \to 0} \left[ \frac{2\ln(\cos x) + x\sin x}{2\sqrt{(x^8 + x^{10})}} \right]$                                    |            |                                                                                          |
|       | $= \lim_{x \to 0} \left[ \frac{-\frac{x^4}{3} + O(x^6)}{2x^4 \sqrt{(1+x^2)}} \right]$                                    |            |                                                                                          |
|       | $= \lim_{x \to 0} \left[ \frac{-\frac{1}{3} + O\left(x^2\right)}{2\sqrt{\left(1 + x^2\right)}} \right] $ so limit exists | М1         | In place of $O(x^2)$ we may see terms in $x^2$ and higher powers of $x$                  |
|       | $= -\frac{1}{6}$                                                                                                         | <b>A</b> 1 | cso                                                                                      |
|       |                                                                                                                          | 4          |                                                                                          |
|       | Total                                                                                                                    | 12         |                                                                                          |

| Q     | Answer                                                                                                                        | Marks      | Comments                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|
| 13(a) | $1 + \sinh^2 \theta = 1 + \left[ \frac{1}{2} \left( e^{\theta} - e^{-\theta} \right) \right]^2$                               | B1         | Writing sinh or cosh correctly in terms of exponentials                                                        |
|       | $1 + \sinh^2 \theta = 1 + \frac{1}{4} \left( e^{2\theta} - 2 + e^{-2\theta} \right)$                                          | M1         | Correct expansion of either $\left(e^{\theta}-e^{-\theta}\right)^2$ or $\left(e^{\theta}+e^{-\theta}\right)^2$ |
|       | $= \frac{1}{4} \left( 4 + e^{2\theta} - 2 + e^{-2\theta} \right) = \frac{1}{4} \left( e^{2\theta} + 2 + e^{-2\theta} \right)$ |            |                                                                                                                |
|       | $= \left[\frac{1}{2}\left(e^{\theta} + e^{-\theta}\right)\right]^2 = \cosh^2 \theta$                                          | <b>A</b> 1 | AG<br>Be convinced                                                                                             |
|       |                                                                                                                               | 3          |                                                                                                                |
|       |                                                                                                                               |            |                                                                                                                |
| 13(b) | I.F. is $\exp\left(\int \frac{x}{(1+x^2)} \left[ dx \right] \right)$                                                          | M1         | I.F. identified and integration attempted                                                                      |
|       | $=\mathrm{e}^{\frac{1}{2}\ln\left(1+x^2\right)}$                                                                              | <b>A1</b>  |                                                                                                                |
|       | $=\sqrt{1+x^2}$                                                                                                               | <b>A</b> 1 |                                                                                                                |
|       | $y \sqrt{1+x^2} = \int 2\sqrt{1+x^2} \left[ dx \right]$                                                                       | <b>A1</b>  |                                                                                                                |
|       | Let $x = \sinh \theta$                                                                                                        | M1         | Relevant substitution used                                                                                     |
|       | $\int 2\sqrt{1+x^2} \left[ dx \right] = \int 2\sqrt{1+\sinh^2 \theta} \cosh \theta \ d\theta$                                 | <b>A1</b>  |                                                                                                                |
|       | $= \int 2\cosh^2\theta \ d\theta$                                                                                             | m1         | Identity in (a) used                                                                                           |
|       | $= \int (1 + \cosh 2\theta) d\theta$                                                                                          | m1         | Identity $\cosh 2\theta = 2\cosh^2 \theta - 1$ used                                                            |
|       | $= \theta + 0.5 \sinh 2\theta  [+A]$                                                                                          | <b>A</b> 1 |                                                                                                                |
|       | $= \theta + \sinh\theta \cosh\theta  [+A]$                                                                                    |            |                                                                                                                |
|       | $= \sinh^{-1} x + x\sqrt{1 + x^2}  [+A]$                                                                                      | <b>A</b> 1 | oe                                                                                                             |
|       | $y = \frac{\sinh^{-1} x + x\sqrt{1 + x^2} + A}{\sqrt{1 + x^2}}$                                                               | <b>A</b> 1 | ACF                                                                                                            |
|       |                                                                                                                               | 11         |                                                                                                                |
|       | Total                                                                                                                         | 14         |                                                                                                                |

| Q            | Answer                                                                                            | Marks      | Comments                                                                                                |
|--------------|---------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|
| 13(b)<br>ALT | I.F. is $\exp\left(\int \frac{x}{\left(1+x^2\right)} \left[dx\right]\right)$                      | M1         | I.F. identified and integration attempted                                                               |
|              | $= e^{\frac{1}{2}\ln\left(1+x^2\right)}$                                                          | <b>A</b> 1 |                                                                                                         |
|              | $=\sqrt{1+x^2}$                                                                                   | <b>A</b> 1 |                                                                                                         |
|              | $y \sqrt{1+x^2} = \int 2\sqrt{1+x^2} \left[ dx \right]$                                           | <b>A</b> 1 |                                                                                                         |
|              | $\int \sqrt{x^2 + 1}  dx = x \sqrt{x^2 + 1} - \int x \frac{x}{\sqrt{x^2 + 1}}  dx$                | M1 A1      | <b>M1</b> : Use of integration by parts with $u = \sqrt{x^2 + 1}$ and $dv = dx$ <b>A1</b> : All correct |
|              | $\int \sqrt{x^2 + 1}  dx = x \sqrt{x^2 + 1} - \int \sqrt{x^2 + 1} - \frac{1}{\sqrt{x^2 + 1}}  dx$ | m1         | Use of $\frac{x^2}{\sqrt{x^2+1}} = \sqrt{x^2+1} - \frac{1}{\sqrt{x^2+1}}$                               |
|              | $2\int \sqrt{x^2 + 1}  dx = x\sqrt{x^2 + 1} + \int \frac{1}{\sqrt{x^2 + 1}}  dx$                  | m1         |                                                                                                         |
|              | $2\int \sqrt{x^2 + 1}  dx = x\sqrt{x^2 + 1} + \sinh^{-1} x  [+A]$                                 | <b>A</b> 1 |                                                                                                         |
|              | $y \sqrt{1+x^2} = x\sqrt{x^2+1} + \sinh^{-1}x$ [+A]                                               | <b>A</b> 1 | oe                                                                                                      |
|              | $y = \frac{\sinh^{-1} x + x\sqrt{1 + x^2} + A}{\sqrt{1 + x^2}}$                                   | <b>A</b> 1 | ACF                                                                                                     |
|              |                                                                                                   | 11         |                                                                                                         |

| Q         | Answer                                                                                                                                                                                  | Marks      | Comments                                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14(a)     | $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \mathrm{e}^{0.5\theta}\cos\theta - 2\mathrm{e}^{0.5\theta}\sin\theta$                                                                           | M1         | Product rule used at least once                                                                                                                                   |
|           | $\frac{\mathrm{d}y}{\mathrm{d}\theta} = \mathrm{e}^{0.5\theta} \sin\theta + 2\mathrm{e}^{0.5\theta} \cos\theta$                                                                         | <b>A</b> 1 | Derivative of <i>x</i> or derivative of <i>y</i> correct                                                                                                          |
|           | $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2$ $= \left(e^{0.5\theta}\right)^2 \left(5\cos^2\theta + 5\sin^2\theta\right)$ | M1         | Finding an expression for $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 \text{ in terms of } \theta$ |
|           | $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \left(e^{0.5\theta}\right)^2 (5)$                                          | <b>A</b> 1 | $5(e^{0.5	heta})^2$ seen or used                                                                                                                                  |
|           | $PQ = \int_0^{\pi} \sqrt{5} e^{0.5\theta} d\theta$                                                                                                                                      | M1         | $\int_0^\pi \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \ \mathrm{d}\theta \ \text{used}$    |
|           | $=2\sqrt{5}\left[e^{0.5\theta}\right]_0^{\pi}$                                                                                                                                          | <b>A</b> 1 | Correct integration of $k e^{0.5\theta}$                                                                                                                          |
|           | $=2\sqrt{5}\left(e^{\frac{\pi}{2}}-1\right)$                                                                                                                                            | <b>A</b> 1 | ACF but must be exact                                                                                                                                             |
|           |                                                                                                                                                                                         | 7          |                                                                                                                                                                   |
| 14(b)(i)  |                                                                                                                                                                                         | B1         | Part of a spiral with distance of curve from $O$ increasing as $\theta$ increases                                                                                 |
| 14(0)(1)  | E O 1 Initial line                                                                                                                                                                      | В1         | Gradients of spiral at D and E being non-negative <b>and</b> indication that D is 1 on the initial line and E is the other end pt                                 |
|           |                                                                                                                                                                                         | 2          |                                                                                                                                                                   |
| 14(b)(ii) | polar eqn of $C_1$ is $r = 2e^{0.5\theta}$                                                                                                                                              | M1 A1      | <b>M1</b> : $x = r\cos\theta$ , $y = r\sin\theta$ or $x^2 + y^2 = r^2$ used<br><b>A1</b> : Correct polar eqn of $C_1$ seen or used                                |
|           | [Area = ] $\frac{1}{2} \int_{0}^{\pi} (2e^{0.5\theta})^{2} d\theta - \frac{1}{2} \int_{0}^{\pi} (2e^{0.5\theta} - 1)^{2} d\theta$                                                       | M1         | Condone subtraction in reverse order                                                                                                                              |
|           | $= \frac{1}{2} \int_0^{\pi} (4e^{0.5\theta} - 1) d\theta = \frac{1}{2} \left[ 8e^{0.5\theta} - \theta \right]_0^{\pi}$                                                                  | <b>A</b> 1 | $\frac{1}{2} \left[ 8e^{0.5\theta} - \theta \right]_0^{\pi}  \text{or}  \frac{1}{2} \left[ -8e^{0.5\theta} + \theta \right]_0^{\pi}$                              |
|           | Area = $\frac{1}{2} \left( 8 e^{\frac{\pi}{2}} - 8 - \pi \right)$                                                                                                                       | <b>A</b> 1 | CAO                                                                                                                                                               |
|           |                                                                                                                                                                                         | 5          |                                                                                                                                                                   |

| Q                | Answer                                                                                                                     | Marks      | Comments |
|------------------|----------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 14(b)(ii)<br>ALT | [Area under $C_1 = \int_{-2e^{\frac{\pi}{2}}}^2 y  dx$                                                                     |            |          |
|                  | $\int_{[\pi]}^{[0]} 2e^{0.5\theta} \sin \theta \Big( e^{0.5\theta} \cos \theta - 2e^{0.5\theta} \sin \theta \Big) d\theta$ | M1         |          |
|                  | $\int_{[\pi]}^{[0]} e^{\theta} \left( \sin 2\theta + 2\cos 2\theta - 2 \right) d\theta$                                    |            |          |
|                  | $= \int_{[\pi]}^{[0]} d(e^{\theta} \sin 2\theta - 2e^{\theta})$                                                            |            |          |
|                  | $= \left[ e^{\theta} \sin 2\theta - 2e^{\theta} \right]_{[\pi]}^{[0]}$                                                     | <b>A</b> 1 |          |
|                  | [Area under $C_2 = \frac{1}{2} \int_0^{\pi} (2e^{0.5\theta} - 1)^2 d\theta$                                                | <b>M</b> 1 |          |
|                  | $=\frac{1}{2}\Big(\Big(4e^{\pi}-8e^{\frac{\pi}{2}}+\pi\Big)-\Big(4-8+0\Big)\Big)$                                          | <b>A</b> 1 |          |
|                  | Area = $\left(-2 + 2e^{\pi}\right) - \frac{1}{2}\left(4e^{\pi} - 8e^{\frac{\pi}{2}} + \pi + 4\right)$                      |            |          |
|                  | $= \frac{1}{2} \Big( 8 e^{\frac{\pi}{2}} - 8 - \pi \Big)$                                                                  | <b>A</b> 1 | CAO      |
|                  |                                                                                                                            | 5          |          |
|                  | Total                                                                                                                      | 14         |          |