Table A: Performance on various workload scenarios in GMQ (lower is better), where the dominant operation (insert/delete/update) occurs twice as frequently as each of the other two operations.

Data	Method		Mild Drift		Severe Drift				
Data	Wiethod	Insert-heavy	Delete-heavy	Update-heavy	Insert-heavy	Delete-heavy	Update-heavy		
	Fine-tune	3.18	3.36	4.97	3.16	3.81	5.12		
	PostgreSQL	120.24	166.94	172.68	216.78	227.56	258.96		
STATS	ALECE	18.58	17.25	20.18	30.67	26.92	32.15		
	DDUp	4.37	4.45	5.62	6.89	6.72	6.96		
	FLAIR	2.85	2.96	3.76	3.35	3.26	3.96		
	Fine-tune	1.65	1.94	2.28	6.42	7.21	7.72		
	PostgreSQL	7.96	7.68	8.45	25.15	26.89	29.93		
Tab liabt	DeepDB	29.16	28.79	29.88	39.53	36.79	42.98		
Job-light	ALECE	11.31	10.89	11.78	25.72	26.84	27.35		
	DDUp	3.53	3.87	3.96	9.08	9.76	10.18		
	FLAIR	1.68	1.59	1.92	6.26	6.58	7.21		

Table B: Performance comparison on abrupt concept drift indicated by $D_{KL} > 3$ in GMQ (lower is better).

Data	PostgreSQL	ALECE	DDUp	Fine-tune	FLAIR
STATS	176.38	12.63	6.91	5.75	4.15
Job-light	19.41	16.24	6.65	6.25	3.26

Table C: Performance comparison with common concept drift learning strategies in GMQ (lower is better), including training from scratch (Retraining, RT), Fine-tuning (FT), and Knowledge Distillation (KD).

Data	Scenario	RT	FT	KD	FLAIR
STATS	Mild Drift Severe Drift	4.97 5.59	5.35 5.02	5.79 10.95	4.49 5.47
Job-light	Mild Drift Severe Drift	3.25 8.21	2.45 8.09	4.16 10.96	2.36 7.95

Table D: Performance comparison on TPC-H benchmark dataset under concept drift, where DeepDB is omitted due to PK-FK limitation.

		Mild Drift						Severe Drift											
Data	Method	GMQ		Q-	error			P-	error		GMQ		Q-	-error			P-	error	
		GIVIQ	50%	75%	90%	95%	50%	75%	90%	95%	GWQ	50%	75%	90%	95%	50%	75%	90%	95%
	Fine-tune†	3.75	1.76	5.32	13.09	64.81	1.21	2.65	8.54	28.16	6.11	2.85	7.76	18.53	97.89	1.92	3.26	18.21	36.24
	PostgreSQL	36.15	18.63	42.27	76.18	1182.54	2.97	8.14	27.25	136.37	88.75	18.21	82.66	120.12	8725.98	3.26	5.79	71.54	119.65
TPC-H	ALECE	8.97	2.26	6.88	25.74	166.92	2.47	3.15	19.62	97.74	38.05	14.60	58.79	84.85	182.79	2.68	3.78	32.46	106.96
	DDUp	6.58	2.12	5.56	18.32	68.08	1.89	2.96	9.37	47.67	9.65	2.54	10.12	24.82	99.28	2.11	3.60	16.45	32.97
	FLAIR	3.62	1.92	5.68	12.96	60.82	1.92	2.15	8.33	22.87	<u>5.67</u>	2.46	6.72	21.66	89.32	1.97	3.16	15.21	26.60

Figure A: The architecture of FLAIR with in-context adaptation via dynamic context memory constructed from recent observed input-output pairs, enabling efficient adaptation to emerging concepts in a single feedforward pass without parameter updates.

Figure B: Sensitivity analysis of the bin number δ on model effectiveness and efficiency.

Table E: Summary and comparison of prevailing concept drift learning methods.

Category	Core Mechanism	Effectiveness	Efficiency	Representative Work
Lazy Methods	Retraining	Moderate (depends on retraining quality)	Low (due to full model retraining)	AiRStream (Machine Learning 2022) CDTMSW (Information Sciences 2022)
Incremental Methods	Incremental Model Update	Moderate (depends on update strategy)	Low (due to frequent updates)	Deltagrad (ICML 2020) ADF (Pattern Recognition 2022) AIMED (Information Systems 2023) ICICLE (ICCV 2023)
Ensemble Methods	Model Pool	Moderate (limited by model pool size)	Low (due to maintaining multiple models)	ARCUS (KDD 2022) Targeted EL (TKDE 2024) OBAL (AAAI 2024)
FLAIR	In-context Adaptation	High (context-aware)	High (no parameter updates)	-

Figure C: Decision boundaries and model performance on data classification task under concept drift.

Table G: Ablation study on latency and partial feedback in GMQ metric, where each setting is evaluated over 5 independent runs and we report the average performance.

Data	Scenario	FLAIR (Delay 5%)	FLAIR (Delay 10%)	FLAIR (Partial 5%)	FLAIR (Partial 10%)	FLAIR
STATS	Mild	4.79	5.32	4.52	4.88	4.49
SIAIS	Severe	5.62	5.92	5.53	5.61	5.47
Inh linht	Mild	2.45	2.56	2.40	2.49	2.36
Job-light	Severe	8.10	8.26	8.06	8.12	7.95

Table H: Model efficiency on various benchmark datasets.

Data	Inference Throughput (query/s)	Memory Footprint (MB)	Inference Latency (ms/query)	Storage Overhead (MB)
STATS	109.17	4.97	9.16	47.68
Job-light	121.21	5.02	8.25	47.23
TPC-H	93.28	5.11	10.82	47.72