



## Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

Patrick Blonigan, Laslo Diosady, Anirban Garai, and Scott Murman

NASA Ames Research Center

## **Adjoint Sensitivity Analysis of High Fidelity Simulations**



- Types of Sensitivity Analysis
  - Tangent: sensitivity of many objectives to one input parameter
  - Adjoint: sensitivity of one objective to many input parameters
    - Gradient-based Design Optimization
    - Error Estimation
    - Mesh Adaptation
    - Uncertainty Quantification
- Systems with unsteady flows have many important objective functions that are time averaged





## Failure of conventional sensitivity analysis for chaos





 $T + \Delta T$ 

## Failure of conventional sensitivity analysis for chaos





## Sensitivity analysis approaches for chaotic systems





1. Ensemble adjoint sensitivities for short, medium, and long time segments.



2. Fokker-Planck computed stationary density (left) and its adjoint (right).

#### 1. Ensemble Adjoint Method

- Lea et al. 2000, Eyink et al. 2004.
- 2. Fokker-Planck Methods
  - Thuburn et al. 2005., Blonigan and Wang 2014
- 3. Fluctuation-Dissipation Theorem
  - Leith 1975, Abramov and Majda 2007

#### 4. Least Squares Shadowing (LSS)

Wang, Hui, and Blonigan 2014



4. LSS reference and shadow trajectories.

## Sensitivity analysis with shadowing



#### **Conventional Objective Surface**



• Fixed initial condition for all input parameter values.

#### **Shadowing Objective Surface**



 Choose initial condition for smooth variation of objective history with input parameter.

## Sensitivity analysis with shadowing



#### In Phase Space:



#### **Shadowing Objective Surface**



 Choose initial condition for smooth variation of objective history with input parameter.

## Least squares shadowing



 Assume ergodicity, replace initial condition for u(t) with

$$\min_{u,\tau} \frac{1}{2} \int_{T_0}^{T_1} W(t) ||u(\tau(t)) - u_r(t)||^2 dt$$
s.t. 
$$\frac{du}{d\tau} = f(u; s + \delta s)$$

#### **Linearize for tangent LSS:**

$$v \equiv \frac{\partial u}{\partial s} \Rightarrow \min_{v} \frac{1}{2} \int_{T_0}^{T_1} W(t) ||v(t)||^2 dt$$

s.t. 
$$\frac{dv}{dt} = \frac{\partial f}{\partial u}v + \frac{\partial f}{\partial s} + \left(1 - \frac{d\tau}{dt}\right)f$$

s.t. 
$$\left\langle v, \frac{du}{dt} \right\rangle = 0$$

#### **Shadowing Objective Surface**



 Choose initial condition for smooth variation of objective history with input parameter.

## **Least squares shadowing for Lorenz 63**





## "Non-Intrusive" least squares shadowing



- Originally proposed by Ni et al. (AIAA 2016-4399)
- Reduces size of LSS minimization problem considerably by
  - Minimizing v(t) at K discrete checkpoints in time

$$\min_{v(t_i)} \frac{1}{2} \sum_{i=0}^{K} \|v(t_i)\|^2 \quad \text{s.t.} \quad \frac{dv}{dt} = \frac{\partial f}{\partial u}v + \frac{\partial f}{\partial s} + \eta f, \quad \left\langle v, \frac{du}{dt} \right\rangle = 0$$

Expressing v(t) in terms of homogeneous and inhomogeneous components



 $\longrightarrow$  Choose  $\alpha$  that solves the least squares problem

## **Tangent NILSS Algorithm**



- Set  $\hat{V}_0 = 0$  and  $V_0 = \mathcal{Q}_0$ , a random orthonormal matrix.
- For each segment starting with 1:
  - 1.Compute primal u(t) from  $t_{i-1}$  to  $t_i$
  - 2.Compute all m  $\tilde{v}_j(t)$  from  $\tilde{v}_j(t_{i-1}) = V_{i-1}^j$
  - **3**.Compute QR-decomposition  $\mathcal{Q}_i\mathcal{R}_i=V_i^-$ , where  $[V_i^-]^j= ilde{v}_j(t_i)$
  - 4.Set  $V_i^j=\mathcal{Q}_i^j$
  - 5.Compute  $\hat{v}(t)$  for  $\hat{v}(t_{i-1}) = \hat{V}_i$  with  $\hat{V}_i = (\mathcal{I} \mathcal{Q}_{i-1}\mathcal{Q}_{i-1}^T)\hat{v}(t_{i-1}^-)$
- Solve

$$\min \begin{vmatrix} \alpha_1 \\ \vdots \\ \alpha_K \\ \alpha_{K+1} \end{vmatrix}_2 \quad \text{s.t.} \quad \begin{bmatrix} \mathcal{R}_1 & -\mathcal{I} \\ & \ddots & \ddots \\ & & \mathcal{R}_K & -\mathcal{I} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_K \\ \alpha_{K+1} \end{bmatrix} = \begin{bmatrix} -\mathcal{Q}_1^T \hat{v}(t_1^-) \\ \vdots \\ -\mathcal{Q}_K^T \hat{v}(t_K^-) \end{bmatrix}$$

• Compute sensitivity to s with  $\alpha_i$ 's and segment sensitivity contributions  $g_i$  and  $h_i$ 

$$\frac{d\bar{J}}{ds} = \frac{1}{t_K - t_0} \sum_{i=1}^K \left( \mathbf{g_i}^T \alpha_i + \mathbf{h_i} \right) + \frac{\partial \bar{J}}{\partial s}$$

## **Adjoint NILSS Algorithm**



- Set  $V_0 = \mathcal{Q}_0$  , a random orthonormal matrix.
- For each segment starting with 1:
  - 1.Compute primal u(t) from  $t_{i-1}$  to  $t_i$
  - 2.Compute all m  $\tilde{v}_j(t)$  from  $\tilde{v}_j(t_{i-1}) = V_{i-1}^j$
  - 3.Compute QR-decomposition  $\mathcal{Q}_i \mathcal{R}_i = V_i^-$ , where  $[V_i^-]^j = \tilde{v}_j(t_i)$
  - 4.Set  $V_i^j=\mathcal{Q}_i^j$
- Solve the minimization problem

• Set  $w(t_K^+) = 0$ . For each segment starting with K solve the adjoint equation backwards from  $t_i$  to  $t_{i-1}$ , where the matrix  $P_{t_i}$  and vector  $x_i$  are related to  $\tau(t)$ .

$$-\frac{dw}{dt} = \left[\frac{\partial f}{\partial u}\right]^T w + \frac{1}{t_K - t_0} \frac{\partial J}{\partial u} \qquad w(t_i^-) = P_{t_i} \left( (\mathcal{I} - \mathcal{Q}_i \mathcal{Q}_i^T) w(t_i^+) - \mathcal{Q}_i \psi_i \right) + x_i$$

Compute sensitivities with

$$\frac{d\bar{J}}{ds} = \int_{t_0}^{t_K} \frac{\partial f}{\partial s} \bigg|_{t} w(t) dt + \frac{\partial \bar{J}}{\partial s}$$

## **NILSS** computational cost



- 1 cost unit = primal solution for a single segment
- Cost of Adjoint NILSS: ~(m+3)K units
  - Primal on K segments costs K units
  - m tangent solutions cost ~mK units
  - K QR-decompositions:
    - Parallel TSQR: 2N<sub>DOF</sub>m<sup>2</sup>/P + 2m<sup>3</sup>/3 flops
  - Minimization Problem
    - Usually a relatively small cost
  - Adjoint on K segments costs ~2K units
    - File I/O could drive compute time
- m is at least the number of positive Lyapunov exponents.
  - Re<sub> $\tau$ </sub>=180 channel flow, m  $\approx$  1,500
  - T106C turbine blade, m ≈ 400



Channel flow: Vorticity magnitude isosurfaces colored by streamwise velocity



Turbine blade: Vorticity magnitude isocontours colored by mach number

#### **Minimum Turbulent Flow Unit**



- Smallest channel that can sustain turbulent flow (Jimenez and Moin, 1991).
  - Very good agreement with turbulent channel statistics below y<sup>+</sup>=40
- Current study replicates a case in the original paper
  - Re=3000, Re $_{\tau}$ =140
  - Channel size=πh×2h×0.34πh
- Flow Solver: eddy
  - Discontinuous Galerkin Spectral Element Method (DGSEM) framework
  - Space-time DG discretization
  - Entropy stable flux of Ismail and Roe
- Mesh: 32x128x16 Degrees of Freedom
- Roughly 150 positive Lyapunov exponents





## **NI-LSS Sensitivity**







- NI-LSS run with 160 modes
- Objective function is volume-integrated kinetic energy
- Sensitivity to Re<sub>τ</sub> computed
- Slow convergence of sensitivity due to long time scales present in flow unit

### **NI-LSS Adjoint**



- Shadowing adjoint does not exhibit exponential growth
- Adjoint provides physical insights
  - Largest adjoint magnitudes occur before "blooming" of turbulence indicated by wall shear stress τ.

#### Turbulence "Blooming"



Q-Criterion isosurfaces colored by x-momentum



## Flow Unit Adjoint Field





 Integrated kinetic energy adjoint shows when and where flow is most susceptible to flow instabilities

## **Adjoint Field and Z-vorticity**





 Time-averaged, volume-integrated kinetic energy is sensitive to perturbations in the sheets of Z-vorticity being transported away from the walls.

## **Optimal Perturbation for Transition**



Streamwise velocity magnitude contours for a flow perturbation optimized to increase the kinetic energy of Re=610 flow over a flat plate (Cherubini et al. 2010, JFM):



Solid lines: domain length = 400 units Dotted lines: domain length = 800 units Adjoint X-momentum field for flow unit prior to turbulence "blooming":



Contour lines: X-momentum adjoint Color map: Z-vorticity

X-momentum perturbations suggested by the adjoint are similar to the optimal velocity perturbations computed by Cherubini et al.

#### **Conclusions and Future Work**



- Conventional sensitivity analysis fails for chaotic dynamical systems such as scaleresolving turbulent flow simulations
- Shadowing-based sensitivity analysis is a promising approach for chaotic systems
- Non-Intrusive LSS can compute useful sensitivities
  - Cost scales with the number of positive Lyapunov exponents
- Shadowing adjoint provides valuable physical insights into turbulent flows
- Next Steps:
  - Shadowing for other canonical turbulent flows including axis-symmetric jets
  - Explore approaches to reduce cost of NILSS
  - Study other shadowing algorithms such as multiple shooting shadowing

## **Acknowledgments**





#### **Scott Murman**

**NASA** Ames

Nicholas Burgess Laslo Diosady Anirban Garai

Science & Technology Corp.

## Dirk Ekelschot Corentin Carton De Wiart

NASA/USRA NPP

This research was sponsored by NASA's Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics Concepts Program under the Aeronautics Research Mission Directorate.

## **Lyapunov Analysis**



Phase Space for system  $\frac{du}{dt} = f(u;s)$ :



#### **Exponent signs indicate long-time dynamics:**







Zero, Negative

Positive, Zero, Negative

Positive Lyapunov exponents responsible for the butterfly effect

## The Shadowing Lemma





Consider a system governed by

$$\frac{du}{dt} = f(u;s)$$

For any  $\delta>0$  there exists  $\epsilon>0$ , such that for every " $\epsilon$ -pseudo-solution" u satisfying  $\|d\mathbf{u}/d\mathbf{t}-f(\mathbf{u})\|<\epsilon$ , there exists a true solution **u** satisfying  $d\mathbf{u}/d\mathbf{t}-f(\mathbf{u})=0$  under a time transformation  $\tau(t)$ , such that  $\|\mathbf{u}(\tau)-\mathbf{u}(t)\|<\delta$ ,  $|1-d\tau/dt|<\delta$ 

#### **Time Transformation**





Time transformation is required to keep the trajectories close in phase space for all time

#### **Additional NILSS Definitions**



Tangent:

$$\frac{d\tilde{v}_j}{dt} = \frac{\partial f}{\partial u}\tilde{v}_j, \quad \tilde{v}_j(t_i) = V_i^j$$

$$\frac{d\hat{v}}{dt} = \frac{\partial f}{\partial u}\hat{v} + \frac{\partial f}{\partial s} + \eta f, \quad \hat{v}(t_i) = \hat{V}_i$$

Sensitivity: 
$$\frac{d\overline{J}}{ds} = \frac{1}{t_K - t_0} \sum_{i=1}^K \left( \mathbf{g_i}^T \alpha_i + \mathbf{h_i} \right) + \frac{\partial \overline{J}}{\partial s}$$

Adjoint:

$$-\frac{dw}{dt} = \left[\frac{\partial f}{\partial u}\right]^T w + \frac{1}{t_K - t_0} \frac{\partial J}{\partial u} \qquad w(t_i^-) = P_{t_i} \left( (\mathcal{I} - \mathcal{Q}_i \mathcal{Q}_i^T) w(t_i^+) - \mathcal{Q}_i \psi_i \right) + x_i$$

Sensitivity: 
$$\frac{d\bar{J}}{ds} = \int_{t_0}^{t_K} \frac{\partial f}{\partial s} \bigg|_{t} w(t) \ dt + \frac{\partial \bar{J}}{\partial s}$$

Definitions:

$$g_{i} = \frac{1}{t_{K} - t_{0}} \int_{t_{i-1}}^{t_{i}} \frac{\partial J}{\partial u} \Big|_{t} V(t) dt + x_{i}^{T} V_{i}^{-} \qquad h_{i} = \frac{1}{t_{K} - t_{0}} \int_{t_{i-1}}^{t_{i}} \frac{\partial J}{\partial u} \Big|_{t} \hat{v}(t) dt + x_{i}^{T} \hat{v}(t_{i}^{-})$$

$$x_{i} = \frac{1}{t_{K} - t_{0}} (\bar{J} - J(u(t_{i}))) \frac{f(u(t_{i}); s)}{\|f(u(t_{i}); s)\|_{2}^{2}} \qquad P_{t_{i}} = \mathcal{I} - f(u(t_{i}); s) \frac{f(u(t_{i}); s)^{T}}{\|f(u(t_{i}); s)\|_{2}^{2}}$$







# Development of a compressible entropy-stable high-order space-time discontinuous Galerkin spectral element method (DGSEM) framework

- DGSEM to efficiently reach spectral limit both in space and time (N ≥ 8)
  - Less discretization errors and efficiency
  - Better match for current/future hardware
  - Low dependance on mesh quality
  - h-p adaptation
- Entropy-stable formulation
  - Entropy variables
  - Space-time DG discretization
  - Entropy stable flux of Ismail and Roe
  - "Exact" quadrature using local de-aliasing





## Flow Unit Adjoint Field





Contour lines: X-momentum adjoint Color map: X-mometum

 Adjoint for integrated kinetic energy shows when and where flow is most susceptible to flow instabilities