Introduction to Mathematical Programming IE496

Quiz 1 Review

Dr. Ted Ralphs

Reading for The Quiz

• Material covered in detail in lecture.

- 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5
- Background material you should know.
 - 1.2, 1.3, 1.5
- Material you should read and be familiar with.
 - -1.6, 2.7, 3.7
- Optional material that may help your comprehension.
 - -2.8, 3.6

How to Study for The Quiz

- You should have done all the reading and understand the theorems and proofs in the sections we covered in detail.
- Review and understand the homework solutions.
- Review the lecture slides and make sure you can answer the questions that are posed.
- Go through the review slides and make sure you understand the flow of ideas and the connections among them.
- Ask questions if something is not clear.

Math Programming Models

- A mathematical model consists of:
 - Decision variables
 - Constraints
 - Objective Function
 - Parameters and Data

The general form of a *math programming model* is:

min or max
$$f(x_1, ..., x_n)$$

$$s.t. g_i(x_1, ..., x_n) \begin{cases} \leq \\ = \\ \geq \end{cases} b_i$$

We might also want the values of the variables to belong to discrete set X.

Linear Functions

ullet A *linear function* $f:\mathbb{R}^n \to \mathbb{R}$ is a weighted sum, written as

$$f(x_1, \dots, x_n) = \sum_{i=1}^n c_i x_i$$

for given coefficients c_1, \ldots, c_n .

• We can write x_1, \ldots, x_n and c_1, \ldots, c_n as vectors $x, c \in \mathbb{R}^n$ to obtain:

$$f(x) = c^T x$$

In this way, a linear function can be represented simply as a vector.

Linear Programs

• A linear program is a math program that can be written in the following form:

minimize
$$c^T x$$

s.t. $a_i^T x \ge b_i \ \forall i \in M_1$
 $a_i^T x \le b_i \ \forall i \in M_2$
 $a_i^T x = b_i \ \forall i \in M_3$
 $x_j \ge 0 \ \ \forall j \in N_1$
 $x_j \le 0 \ \ \forall j \in N_2$

• This in turn can be written equivalently as

minimize
$$c^T x$$

s.t. $Ax \ge b$

Standard Form

• To solve a linear program, we must put it in the following *standard form*:

$$min c^{T} x$$

$$s.t. \quad Ax = b$$

$$x \ge 0$$

- Eliminate free variables: Replace x_j with $x_j^+ x_j^-$, where $x_j^+, x_j^- \ge 0$.
- Eliminate inequality constraints: Given an inequality $a_i^T x \ge b_i$, we can rewrite it as:

$$a_i^T x - s_i = b_i$$
$$s_i \ge 0$$

A Little Linear Algebra Review

Definition 1. A finite collection of vectors $x_1, \ldots, x_k \in \mathbb{R}^n$ is linearly dependent if $\exists \lambda \in \mathbb{R}^k$ such that $\sum_{i=1}^k \lambda_i x^i = 0$. Otherwise, the vectors are linearly independent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^T is invertible.
- The determinant of A is nonzero.
- The rows of *A* are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system Ax = b has a unique solution.
- There exists some vector b for which the system Ax = b has a unique solution.

A Little More Linear Algebra Review

Definition 2. A nonempty subset $S \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \gamma y \in S \ \forall x, y \in S \ \text{and} \ \forall \alpha, \gamma \in \mathbb{R}$.

Definition 3. A linear combination of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^k \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$.

Definition 4. The span of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is the set of all linear combinations of those vectors.

Definition 5. Given a subspace $S \subseteq \mathbb{R}^n$, a collection of linearly independent vectors whose span is S is called a basis of S. The number of vectors in the basis is the dimension of the subspace.

Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subset T \subset \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the *column* space or the range, denoted range(A).
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number rank(A).
- Clearly, $rank(A) \leq \min\{m, n\}$. If $rank(A) = \min\{m, n\}$, then A is said have *full rank*.
- The set $\{x \in \mathbb{R}^n | Ax = 0\}$ is called the *null space* of A (denoted null(A)) and has dimension n rank(A).

Polyhedra

Definition 6. A polyhedron is a set of the form $\{x \in \mathbb{R}^n | Ax \ge b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 7. A set $S \subset \mathbb{R}^n$ is bounded if there exists a constant K such that $|x_i| < K \ \forall x \in S, \forall i \in [1, n]$.

Definition 8. Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be given.

- The set $\{x \in \mathbb{R}^n | a^T x = b\}$ is called a hyperplane.
- The set $\{x \in \mathbb{R}^n | a^T x \ge b\}$ is called a half-space.

- A given hyperplane forms the *boundary* of a corresponding half-space.
- A vector $a \in \mathbb{R}^n$ is *orthogonal* to the hyperplane defined by a.
- A polyhedron is the intersection of a finite number of half-spaces.

Convex Sets

Definition 9. A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in S, \lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in S$.

Definition 10. Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^k$ be given such that $\lambda^T \mathbf{1} = 1$.

- The vector $\sum_{i=1}^k \lambda_i x^i$ is said to be a convex combination of x^1, \ldots, x^k .
- The convex hull of x_1, \ldots, x_k is the set of all convex combinations of these vectors.

- The convex hull of two points is a line segment.
- A set is convex if and only if for any two points in the set, the line segment joining those two points lies entirely in the set.

Extreme Points and Vertices

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a given polyhedron.

Definition 11. A vector $x \in \mathcal{P}$ is an extreme point of \mathcal{P} if $\not\exists y, z \in \mathcal{P}, \lambda \in (0,1)$ such that $x = \lambda y + (1-\lambda)z$.

Definition 12. A vector $x \in \mathcal{P}$ is an vertex of \mathcal{P} if $\exists c \in \mathbb{R}^n$ such that $c^T x < c^T y \ \forall y \in \mathcal{P}, x \neq y$.

- These definitions are purely geometric and easy to work with.
- However, to do anything algorithmic, we need an algebraic characterization.
- Thus, we will consider the matrix defining the polyhedron (not unique!).

Binding Constraints

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$.

Definition 13. If a vector \hat{x} satisfies $a_i^T \hat{x} = b_i$, then we say the corresponding constraint is binding.

Theorem 1. Let $\hat{x} \in \mathbb{R}^n$ be given and let $I = \{i \mid a_i^T \hat{x} = b_i\}$ represent the set of constraints that are binding at \hat{x} . Then the following are equivalent:

- There exist n vectors in the set $\{a_i \mid i \in I\}$ that are linearly independent.
- The span of the vectors $\{a_i \mid i \in I\}$ is \mathbb{R}^n .
- The system of equations $a_i^T \hat{x} = b_i, i \in I$ has the unique solution \hat{x} .

If the vectors $\{a_j \mid j \in J\}$ for some $J \subseteq [1, m]$ is linearly independent, we will say that the corresponding constraints are also linearly independent.

Basic Solutions

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$ and let $\hat{x} \in \mathbb{R}^n$ be given.

Definition 14. The vector \hat{x} is a basic solution if there exist n linearly independent, binding constraints at \hat{x} .

Definition 15. If \hat{x} is a basic solution and $\hat{x} \in \mathcal{P}$, then \hat{x} is basic feasible solution.

Theorem 2. If \mathcal{P} is nonempty and $\hat{x} \in \mathcal{P}$, then the following are equivalent:

- \hat{x} is a vertex.
- ullet \hat{x} is an extreme point.
- \hat{x} is a basic feasible solution.

Basic Feasible Solutions in Standard Form

- To obtain a basic solution, we must set n-m of the variables to zero.
- We must also obtain a set of linearly independent constraints.
- Therefore, the variables we pick cannot be arbitrary.

Theorem 3. A vector $\hat{x} \in \mathbb{R}^n$ is a basic solution if and only if $A\hat{x} = b$ and there exist indices $B(1), \dots, B(m)$ such that:

- The columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent, and
- If $i \neq B(1), \ldots, B(m)$, then $\hat{x}_i = 0$.

Some Terminology

- If \hat{x} is a basic solution, then $\hat{x}_{B(1)}, \ldots, \hat{x}_{B(m)}$ are the *basic variables*.
- The columns $A_{B(1)}, \ldots, A_{B(m)}$ are called the *basic columns*.
- Since they are linearly independent, these columns form a *basis* for \mathbb{R}^m .
- A set of basic columns form a basis matrix, denoted B. So we have,

$$B = [A_{B(1)} \ A_{B(2)} \cdots A_{B(m)}], \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$

The Full Row Rank Assumption

Theorem 4. Let $\mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$ for some $A \in \mathbb{R}^{m \times n}$ with rank(A) = k. If rows $a_{i_1}^T, a_{i_2}^T, \dots, a_{i_k}^T$ are linearly independent, then

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid a_{i_1}^T x = b_{i_1}, a_{i_2}^T x = b_{i_2}, \dots, a_{i_k}^T x = b_{i_k}, x \ge 0 \}.$$

- This tells us we can eliminate any row we like from A, as long as we leave k linearly independent rows.
- ullet This allows us to always assume A has full row rank.

Degeneracy

Definition 16. A basic solution \hat{x} is called degenerate if more than n of the constraints are binding at \hat{x} .

- In a standard form polyhedron, the vector \hat{x} is degenerate if more than n-m of its components are zero.
- Note that degeneracy is not independent of representation.
- Degeneracy is important because it can cause problems in some algorithms for linear programming.
- This also gives us a glimpse of the importance of formulation in linear programming.

Optimality in Linear Programming

• For linear optimization, a finite optimal cost is equivalent to the existence of an optimal solution.

 Since any linear programming problem can be written in standard form, we can derive the following result:

Theorem 5. Consider the linear programming problem of minimizing $c^T x$ over a nonempty polyhedron. Then, either the optimal cost is $-\infty$ or there exists an optimal solution which is an extreme point.

Representation of Polyhedra

Theorem 6. A nonempty, bounded polyhedron is the convex hull of its extreme points.

Theorem 7. The convex hull of a finite set of vectors is a polyhedron.

- Graphically, these results may seem obvious, but it takes some work to prove them.
- These results are fundamental to the theory of linear optimization.

Feasible and Improving Directions

Definition 17. Let \hat{x} be an element of a polyhedron \mathcal{P} . A vector $d \in \mathbb{R}^n$ is said to be a feasible direction if there exists $\theta \in \mathbb{R}_+$ such that $\hat{x} + \theta d \in \mathcal{P}$.

Definition 18. Consider a polyhedron \mathcal{P} and the associated linear program $\min_{x \in \mathcal{P}} c^T x$ for $c \in \mathbb{R}^n$. A vector $d \in \mathbb{R}^n$ is said to be an improving direction if $c^T d < 0$.

- Once we find a feasible, improving direction, we want to move along that direction as far as possible.
- Recall that we are interested in extreme points.
- The simplex method moves between adjacent extreme points using improving directions.

Constructing Feasible Search Directions

- Consider a BFS \hat{x} , so that $\hat{x}_N = 0$.
- Any feasible direction must increase the value of at least one of the nonbasic variables.
- We will consider the *basic directions* that increase the value of exactly one of the nonbasic variables, say variable j. This means

$$d_j = 1$$
 $d_i = 0$ for every nonbasic index $i \neq j$

• In order to remain feasible, we must also have Ad = 0, which means

$$0 = Ad = \sum_{i=1}^{n} A_i d_i = \sum_{i=1}^{m} A_{B(i)} d_{B(i)} + A_j = Bd_B + A_j \Rightarrow d_B = -B^{-1} A_j$$

Constructing Improving Search Directions

- Now we know how to construct feasible search directions.
- In order to ensure they are improving, we must have $c^T d < 0$.

Definition 19. Let \hat{x} be a basic solution, let B be an associated basis matrix, and let c_B be the vector of costs of the basic variables. For each j, we define the reduced cost \bar{c}_j of variable j by

$$\bar{c}_j = c_j - c_B^T B^{-1} A_j.$$

- The reduced cost is the amount of change in the objective function per unit increase in the corresponding variable.
- The basic direction associated with variable j is improving if and only if $\bar{c}_j < 0$.

Optimality Conditions

Theorem 8. Consider a basic feasible solution \hat{x} associated with a basis matrix B and let \bar{c} be the corresponding vector of reduced costs.

- If $\bar{c} \geq 0$, then \hat{x} is optimal.
- If \hat{x} is optimal and nondegenerate, then $\bar{c} \geq 0$.

Notes:

- The condition $\bar{c} \geq 0$ implies there are no feasible improving directions.
- However, $\bar{c}_j < 0$ does not ensure the existence of an improving, feasible direction unless the current BFS is nondegenerate

.

The Step Length

• The distance we can move without becoming infeasible is the *step length*.

- We can move until one of the nonnegativity constraints is violated.
- If $d \ge 0$, then the step length is ∞ and the linear program is unbounded.
- if $d_i < 0$, then $\hat{x}_i + \theta d_i \ge 0 \Rightarrow \theta \ge -\frac{\hat{x}_i}{d_i}$.
- Therefore, we can compute the step length explicitly as

$$\theta^* = \min_{\{i|d_i<0\}} -\frac{\hat{x}_i}{d_i}$$

• Note that we need only consider the basic variables in this computation.

The Tableau Method

- This is the standard method for solving LPs by hand.
- We update the matrix $B^{-1}[b|A]$ as we go.
- To do this, we use elementary row operations.
- In addition, we also keep track of the reduced costs in row "zero".
- This gives us all the data we need at each iteration.

What the Tableau Looks Like

• The tableau looks like this

$$\begin{array}{c|c} -c_B^T B^{-1} b & c^T - c_B^T B^{-1} A \\ \hline B^{-1} b & B^{-1} A \\ \end{array}$$

• In more detail, this is

$-c_B^T x_B$	$ar{c}_1$	• • •	\bar{c}_n
$x_{B(1)}$:	$B^{-1}A_1$		$B^{-1}A_m$
$x_{B(m)}$			$D - A_n$

Implementing the Tableau Method

- 1. Start with the tableau associated with a specified BFS and associated basis B.
- 2. Examine the reduced costs in row zero and select a *pivot column* with $\bar{c}_j < 0$ if there is one. Otherwise, the current BFS is optimal.
- 3. Consider $u = b^{-1}A_j$, the *j*th column of the tableau. If no component of u is positive, then the LP is unbounded.
- 4. Otherwise, compute the step size using the minimum ratio rule and determine the *pivot row*.
- 5. Scale the pivot row so that the *pivot element* becomes zero.
- 6. Add a constant multiple of the pivot row to each other row of the tableau so that all other elements of the pivot column become zero.
- 7. Go to Step 2.

The Revised Simplex Method

The revised simplex method is used in practice and is almost identical to the tableau method except that we only update B^{-1} .

- 1. Start with a specified BFS \hat{x} and the associated basis inverse B^{-1} .
- 2. Compute $p^T = c_B^T B^{-1}$ and the reduced costs $\bar{c}_j = c_j p^T A_j$.
- 3. If $\bar{c} \geq 0$, then the current solution is optimal.
- 4. Select the entering variable j and compute $u = B^{-1}A_j$.
- 5. If $u \leq 0$, then the LP is unbounded.
- 6. Determine the step size $\theta^* = \min_{\{i|u_i>0\}} \frac{\hat{x}_i}{u_i}$.
- 7. Determine the new solution and the leaving variable i.
- 8. Update B^{-1} .
- 9. Go to Step 1.

Pivot Selection

- The process of removing one variable and replacing from the basis and replacing it with another is called *pivoting*.
- We have the freedom to choose the leaving variable from among a list of candidates.
- How do we make this choice?
- The reduced cost tells us the cost in the objective function for each unit of change in the given variable.
- Intuitively, c_j is the cost for the change in the variable itself and $-c_B^T B^{-1} A_j$ is the cost of the compensating change in the other variables.
- This leads to the following possible rules:
 - Choose the column with the most negative reduced cost.
 - Choose the column for which $\theta^*|\bar{c}_i|$ is largest.

Obtaining an Initial Basic Feasible Solution

- If the origin is feasible, then finding an initial BFS is easy.
- Suppose we are given an LP $\min\{c^TX|Ax=b,x\geq 0\}$ already in standard form where the origin is not feasible.
- To obtain an initial BFS, solve the following auxiliary LP.

$$min \sum_{i=1}^{m} y_i$$

$$s.t. \quad Ax + y = b$$

$$x \ge 0$$

$$y \ge 0$$

- If the optimal value for this problem is zero, then we obtain a feasible solution.
- Otherwise, the original problem was infeasible.
- This is usually called the *Phase I LP*.

Two-phase Simplex and the Big M method

- In the above method, we first solve the Phase I LP to obtain a BFS.
- Using that BFS, we start Phase II, which is solving the original problem.
- Another approach is to combine Phase I and Phase II.
- In this approach, we add the artificial variables and then change the objective function to

$$\sum_{j=1}^{n} c_{j} x_{j} + M \sum_{i=1}^{m} y_{i}$$

- ullet M has to be large enough to force the artificial variables to zero.
- If the optimal solution has any artificial variables at nonzero level, then the original problem was infeasible.
- Otherwise, we obtain an optimal solution.
- In practice, two-phase simplex is usually used.

Computational Efficiency of the Simplex Method

- The efficiency of the method depends on the number of iterations.
- The number of iterations depends on how many extreme points are visited.
- It is easy to construct an example where there are 2^n extreme points and all of them are visited.
- This means in the worst case, the simplex method requires an exponential number of iterations.
- No matter how well the method performs in practice, we are limited by the diameter of the polyhedron.
- Not much is known about the diameter of complex polyhedra.
- All things considered, the simplex method performs very well in practice.