CMIP6 Model Documentation

Institute: IPSL

Model: IPSL-CM6A-LR

Topic: ocean

Doc. Generated: 2020-04-08
Doc. Seeded From: Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	13
4	Advection	16
5	Lateral Physics	19
6	Vertical Physics	24
7	Uplow Boundaries	29
8	Boundary Forcing	31

1 Key Properties

Ocean key properties

1.1.1 Top level properties

Ocean key properties

1.1.1.1 Name *

Name of ocean model code

NEMO: Nucleus for European Modelling of the Ocean version 3.2 (OPZ)

1.1.1.2 Keywords *

Keywords associated with ocean model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of ocean model.

The ocean and sea-ice component is based on NEMOv3.2 (Nucleus for European Modelling of the Ocean, Madec, 2008), which includes OPA for the dynamics of the ocean, PISCES for ocean biochemistry, and LIM for sea-ice dynamics and thermodynamics. The configuration is ORCA2 (Madec and Imbard, 1996) which is a tri-polar global grid and its associated physics. South of 40N, the grid is an isotropic Mercator with a nominal resolution of 2. A latitudinal grid refinement of 1/2 is used in the tropics. North of 40N, the grid is no more Mercator and quasi-isotropic, the North Pole singularity being mapped onto a line between points in Canada and Siberia. In the vertical, 31 depth levels are used (from 10m thick near the surface to 500m thick at 5000m)._x000D_ _x000D_ NEMOv3.2 uses a partial step formulation (Barnier et al, 2006), which ensures a better representation of bottom bathymetry and thus stream flow and friction at the bottom of the ocean. Advection of temperature and salinity is done using a total variance dissipation scheme (Lvy et al, 2001; Cravatte et al, 2007). In the momentum equation, an energy and enstrophy conserving scheme is used (Arakawa and Lamb, 1981; Le Sommer et al, 2009). The mixed layer dynamics is parameterized using the Turbulent Kinetic Energy (TKE) closure scheme of Blanke and Delecluse (1993) improved by Madec (2008). The improvements include a double diffusion process (Merryfield et al, 1999), Langmuir cells (Axell, 2002) and the contribution of surface wave breaking (Mellor and Blumberg, 2004; Burchard and Rennau, 2008). A parametrization of bottom intensified tidal-driven mixing similar to Simmons et al (2004) is used in combination with a specific tidal mixing parametrization in the Indonesian area (Koch-Larrouy et al, 2007, 2010). NEMOv3.2 also includes prognostic interaction between incoming shortwave radiation into the ocean and the phytoplankton (Lengaigne et al, 2009)._x000D_ _x000D_ The horizontal eddy viscosity coefficient (ahm) value is 4.104 m2.s1 and the lateral eddy diffusivity coefficient (aht) value is 103 m2.s1. ahm reduces to aht in the tropics, except along western boundaries. The tracer diffusion is along isoneutral surfaces. A Gent and Mcwilliams (1990) term is applied in the advective formulation. Its coefficient is calculated from the local growth rate of baroclinic instability. It decreases in the 20S-20N band, and vanishes at the Equator. At the ocean floor, there is a linear bottom friction with a coefficient of 4.104, and a background bottom turbulent kinetic energy of 2.5 103 m2.s2. The model has a Beckmann and Dscher (1997) diffusive bottom boundary layer scheme with a value of 104 m2.s1. A spatially varying geothermal flux is applied at the bottom of the ocean (Emile-Geay and Madec, 2009), with a global mean value of 86.4 mW.m2.

1.1.1.4 Model Family *			
Type of o	cean model.		
\boxtimes	OGCM		
	Slab ocean		
	Mixed layer ocean		
	Other - please specify:		
1.1.1.5	Basic Approximations *		
Basic app	roximations made in the ocean.		
\boxtimes	Primitive equations		
	Non-hydrostatic		
\boxtimes	Boussinesq		
	Other - please specify:		
	Prognostic Variables * ognostic variables in the ocean component.		
\boxtimes	Potential temperature		
	Conservative temperature		
\boxtimes	Salinity		
\boxtimes	U-velocity		
\boxtimes	V-velocity		
	W-velocity		
	SSH - Sea Surface Height		
	Other - please specify:		
1.2.1 \$	Seawater Properties		
Physical	properties of seawater in ocean		
1.2.1.1	Eos Type *		
Type of E	COS for sea water		
Selec	t SINGLE option:		
	Linear		
	Wright, 1997		

	Mc Dougall et al.
	Jackett et al. 2006
	TEOS 2010
	Other - please specify:
1.2.1.2	Eos Functional Temp *
Temperate	ure used in EOS for sea water
Selec	t SINGLE option:
	Potential temperature
	Conservative temperature
1.2.1.3	Eos Functional Salt *
Salinity u	sed in EOS for sea water
Selec	t SINGLE option:
	Practical salinity Sp
	Absolute salinity Sa
1.2.1.4	Eos Functional Depth *
Depth or	pressure used in EOS for sea water?
Selec	t SINGLE option:
	Pressure (dbars)
	Depth (meters)
1.2.1.5	Ocean Freezing Point *
Equation	used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
	TEOS 2010
	Other - please specify:
1.2.1.6	Ocean Specific Heat *
	eat in ocean (cpocean) in $J/(kg \ K)$
Enter	FLOAT value:

1.2.1.7 Ocean Reference Density *

Boussinesq reference density (rhozero) in kg / m3

Enter FLOAT value:

1.3.1 Bathymetry

Properties of bathymetry in ocean

Froperties of outlymetry in ocean	
1.3.1.1 Reference Dates *	
Reference date of bathymetry	
Present day	
21000 years BP	
6000 years BP	
LGM - Last Glacial Maximum	
Pliocene	
Other - please specify:	
1.3.1.2 Type * Is the bathymetry fixed in time in the ocean? True	
1.3.1.3 Ocean Smoothing *	
Describe any smoothing or hand editing of bathymetry in Enter TEXT:	і осеан
1.3.1.4 Source *	
Describe source of bathymetry in ocean	
Enter TEXT:	
1.4.1 Nonoceanic Waters	
Non oceanic waters treatement in ocean	
1.4.1.1 Isolated Seas	
Describe if/how isolated seas is performed	
Yes	

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

Kz increase near river mouth (top 20 m)

1.5.1 Software Properties

Software properties of ocean code

1.5.1.1 Repository

Location of code for this component.

Enter TEXT:

1.5.1.2 Code Version

Code version identifier.

Enter TEXT:

1.5.1.3 Code Languages

 $Code\ language(s).$

Enter COMMA SEPARATED list:

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

1.6.1.2 Canonical Horizontal Resolution *

 $Expression\ quoted\ for\ gross\ comparisons\ of\ resolution,\ eg.\ 50km\ or\ 0.1\ degrees\ etc.$

Enter TEXT:

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

Enter TEXT:

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

Enter INTEGER value:

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

Enter INTEGER value:

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

Select either TRUE or FALSE:

______ True ______ False

1.6.1.7 Thickness Level 1 *

Thickness of first surface ocean level (in meters)

Enter FLOAT value:

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component

Enter COMMA SEPARATED list:

1	.7.	1	1	T_{Y}	on	Ы	T.	ſι	tr	ice	T	Tec	Ы
	- 1 -	. т.	.4		en	u	- Ιν		:	11.5	•	150	- 1

 $List\ observed\ trend\ metrics\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

☐ True ☐ False

1.8.1 Conservation
Conservation in the ocean component
1.8.1.1 Description *
Brief description of conservation methodology
Enter TEXT:
1.8.1.2 Scheme *
Properties conserved in the ocean by the numerical schemes
Select MULTIPLE options:
Energy
Enstrophy
☐ Salt
☐ Volume of ocean
Momentum
Other - please specify:
1.8.1.3 Consistency Properties
$Any\ additional\ consistency\ properties\ (energy\ conversion,\ pressure\ gradient\ discretisation,\)?$
Enter COMMA SEPARATED list:
1.8.1.4 Corrected Conserved Prognostic Variables
Set of variables which are conserved by *more* than the numerical scheme alone.
Enter COMMA SEPARATED list:
1.8.1.5 Was Flux Correction Used
Does conservation involve flux correction ?
Select either TRUE or FALSE:

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ ocean\ model.$

Enter TEXT:

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean

Select SINGLE option:				
	Z-coordinate			
	Z*-coordinate			
	S-coordinate			
	Isopycnic - sigma 0 - Density referenced to the surface			
	Isopycnic - sigma 2 - Density referenced to 2000 m $$			
	Isopycnic - sigma 4 - Density referenced to 4000 m $$			
	Isopycnic - other - Other density-based coordinate			
	Hybrid / $Z+S$			
	Hybrid / Z+isopycnic			
	Hybrid / other			
	Pressure referenced (P)			
	P*			
	Z**			

	Other - please specify:
2.1.2.2	Partial Steps *
Using pa	rtial steps with Z or Z^* vertical coordinate in ocean \S
Sele	ct either TRUE or FALSE:
	True False
2.1.3	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
Sele	ct SINGLE option:
	Lat-lon
	Rotated north pole
	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
Sele	ct SINGLE option:
	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizont	al discretisation scheme in ocean
Sele	ct SINGLE option:
	Finite difference
	Finite volumes
	Finite elements

Unstructured grid
Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

Commonly used name for the timestepping framework in ocean model.

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3 Diurnal Cycle *

 $Diurnal\ cycle\ type$

Select SINGLE option:				
	None - No diurnal cycle in ocean			
	Via coupling - Diurnal cycle via coupling frequency			
	Specific treatment - Specific treament			
	Other - please specify:			

3.2.1 Tracers

 $Properties \ of \ tracers \ time \ stepping \ in \ ocean$

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

$\label{lem:leap-frog} \mbox{Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter}$
Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler
Predictor-corrector - Predictor-corrector scheme
Runge-Kutta 2 - Runge-Kutta 2 scheme
AM3-LF - AM3-LF such as used in ROMS
Forward-backward - Forward-backward scheme
Forward operator - Forward operator scheme

	Other - please specify:
3.2.1.2	Γime Step *
Tracers tin	me step (in seconds)
Enter	INTEGER value:
3.3.1 E	Baroclinic Dynamics
Baroclin	ic dynamics in ocean
3.3.1.1	Гуре *
Baroclinic	dynamics type
Select	single option:
	Preconditioned conjugate gradient
	Sub cyling - Sub cycling relative to tracers
	Other - please specify:
3.3.1.2	Scheme *
Baroclinic	dynamics scheme
Select	t SINGLE option:
	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ - \mbox{Leap-frog scheme with Asselin filter}$
	$\label{eq:Leap-frog} \mbox{Leap-frog scheme with Periodic Euler} \mbox{ - Leap-frog scheme with Periodic Euler}$
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
	${\bf Forward\text{-}backward\ -\ Forward\text{-}backward\ scheme}$
	Forward operator - Forward operator scheme
	Other - please specify:
22197	Timo Stop
	$oxed{\Gamma}_{ ext{ime Step}}$ $time\ step\ (in\ seconds)$

Enter INTEGER value:

3.4.1 Barotropic

 $Barotropic\ time\ stepping\ in\ ocean$

3.4.1.1 Splitting *

 $Time\ splitting\ method$

Select SINGLE option: None Split explicit Implicit Other - please specify:

3.4.1.2 Time Step

 $Barotropic\ time\ step\ (in\ seconds)$

Enter INTEGER value:

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

 $Details\ of\ vertical\ time\ stepping\ in\ ocean$

Enter TEXT:

4 Advection Ocean advection 4.1.1 Top level properties $Ocean\ advection$ 4.1.1.1 Name Commonly used name for the advection in ocean model. 4.1.1.2 Overview Overview of ocean advection in ocean model. Enter TEXT: 4.2.1 Momentum Properties of lateral momentum advection scheme in ocean 4.2.1.1 Type * Type of lateral momentum advection scheme in ocean Flux form \boxtimes Vector form 4.2.1.2 Scheme Name * $Name\ of\ ocean\ momentum\ advection\ scheme$

Select either TRUE or FALSE: True

4.2.1.3 ALE

4.3.1 Lateral Tracers

Properties of lateral tracer advection scheme in ocean

☐ False

Energy and Enstrophy conserving second order centered

Using ALE for vertical advection? (if vertical coordinates are sigma)

Order of lateral tracer advection scheme in ocean
Enter INTEGER value:
4.3.1.2 Flux Limiter *
Monotonic flux limiter for lateral tracer advection scheme in ocean ?
True
4.3.1.3 Effective Order *
Effective order of limited lateral tracer advection scheme in ocean
Enter FLOAT value:
4.3.1.4 Name *
$Descriptive\ text\ for\ lateral\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER,)$
Total Variance Dissipation (TVD)
4.3.1.5 Passive Tracers
Passive tracers advected
Select MULTIPLE options:
☐ Ideal age
CFC 11
CFC 12
SF6
Other - please specify:
4.3.1.6 Passive Tracers Advection
Is advection of passive tracers different than active ? if so, describe.
Enter TEXT:
4.4.1 Vertical Tracers
Properties of vertical tracer advection scheme in ocean
•
4.4.1.1 Name *
$Descriptive\ text\ for\ vertical\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER, \dots PRATHER, not be a substitution of the property of$
TVD

4.3.1.1 Order *

4.4.1.2 Flux Lim	iter *
Monotonic flux limiter	for vertical tracer advection scheme in ocean ?
Select either TF	tUE or FALSE:
True	☐ False

5 Lateral Physics

Ocean lateral physics

5.	1.1	Top	level	pro	perties

Ocean lateral physics

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of ocean lateral physics in ocean model.

Enter TEXT:

5.1.1.3 Scheme *

 ${\it Type~of~transient~eddy~representation~in~ocean}$

Select	Select SINGLE option:		
	None - No transient eddies in ocean		
	Eddy active - Full resolution of eddies		
	Eddy admitting - Some eddy activity permitted by resolution		

5.1.2 Operator

Properties of lateral physics operator for momentum in ocean

5.1.2.1 Direction *

 $Direction\ of\ lateral\ physics\ momentum\ scheme\ in\ the\ ocean$

\boxtimes	Horizontal
	Isopycnal
	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5.1.2.2	Order *
Order of	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretise	ation of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
$5.1.3 \; 1$	Eddy Viscosity Coeff
Properti	ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
Lateral pi	hysics momentum eddy viscosity coeff type in the ocean
	Constant
\boxtimes	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If constar	nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
Ente	r INTEGER value:
5133	Variable Coefficient
	variance Coemicians varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Latit	ude, Longitude
5.1.3.4	Coeff Background *
	background eddy viscosity coeff in lateral physics momentum scheme (give values in $m2/s$)
4000	0 poleward of 20N/S decreasing to 2000 N/m2/s at equator

5.1.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy viscosity coeff in lateral physics momentum scheme?
Selec	t either TRUE or FALSE:
	True
5.2.1	Tracers
Propertie	es of lateral physics for tracers in ocean
5.2.1.1	Mesoscale Closure *
Is there a	mesoscale closure in the lateral physics tracers scheme?
	True
	Submesoscale Mixing * submesoscale mixing parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?
	t either TRUE or FALSE:
	True
	Operator es of lateral physics operator for tracers in ocean
5.2.2.1	Direction *
	of lateral physics tracers scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:
5.2.2.2	Order *
	lateral physics tracers scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:

5.2.2.3	Discretisation *
Discretisa	tion of lateral physics tracers scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3 I	Eddy Diffusity Coeff
Properti	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Type *
Lateral ph	sysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constan	t, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)
2000	
5.2.3.3	Variable Coefficient
If space-v	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Enter	TEXT:
5.2.3.4	Coeff Background *
Describe l	background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)
2000	
5.2.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
Selec	t either TRUE or FALSE:
	True

5.2.4 Eddy Induced Velocity

 $Properties \ of \ eddy \ induced \ velocity \ (EIV) \ in \ lateral \ physics \ tracers \ scheme \ in \ the \ ocean$

5.2.4.1 Type *
Type of EIV in lateral physics tracers in the ocean
GM - Gent and McWilliams
Other - please specify:
5.2.4.2 Constant Val
If EIV scheme for tracers is constant, specify coefficient value (M2/s) $$
Enter INTEGER value:
5.2.4.3 Flux Type *
Type of EIV flux (advective or skew)
Advective flux
5.2.4.4 Added Diffusivity *
${\it Type~of~EIV~added~diffusivity~(constant,~flow~dependent~or~none)}$
Enter TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.1.1 Top level properties

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

 ${f Enter\ TEXT}:$

6.1.1.2 Overview

Overview of ocean vertical physics in ocean model.

[For Metafor gang: Tidal mixing answers not relevant (to review)]_x000D_ Bottom intensified tidal mixing (Simmons al. 2004)_x000D_ Specific treatment of tidal mixing in Indonesians seas (Koch Larrouy et al. 2007)

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is there Langmuir cells mixing in upper ocean?

Select either	TRUE or	FALSE:
True		False

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

	Constant value
\square	Turbulent closure - TKE
	Turbulent closure - TKE
Ш	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP

Richardson number dependent - KT

Type of boundary layer mixing for tracers in ocean

	Closure Order
	t BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)
Enter	FLOAT value:
6.1.3.3 C	Constant
If constant	$BL\ mixing\ of\ tracers,\ specific\ coefficient\ (m2/s)$
Enter	INTEGER value:
6.1.3.4 E	Background *
Background	d BL mixing of tracers coefficient, (schema and value in m2/s - may by none)
1.e-5 r	m n2/s
6.1.4 N	Iomentum
	s of boundary layer (BL) mixing on momentum in the ocean
6.1.4.1 T	
	andary layer mixing for momentum in ocean
	Constant value
	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - PP Richardson number dependent - KT

If turbulent BL mixing of momentum, specific order of closure $(0,\ 1,\ 2.5,\ 3)$

Enter FLOAT value:

6.1.4.3 Constant			
If constant BL mixing of momentum, specific coefficient $(m2/s)$			
Enter INTEGER value:			
6.1.4.4 Background *			
Background BL mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)			
1.e-4 m2/s			
6.1.5 Details			
Properties of interior mixing in the ocean			
6.1.5.1 Convection Type *			
Type of vertical convection in ocean			
Non-penetrative convective adjustment			
Enhanced vertical diffusion			
☐ Included in turbulence closure			
Other - please specify:			
Caramida Indoned Minima *			
6.1.5.2 Tide Induced Mixing * Describe how tide induced mixing is modelled (barotropic, baroclinic, none)			
Baroclinic tides			
Barocinic tides			
6.1.5.3 Double Diffusion *			
Is there double diffusion			
Select either TRUE or FALSE:			
☐ True ☐ False			
6.1.5.4 Shoar Miving *			
6.1.5.4 Shear Mixing * Is interior shear mixing explicitly parameterised ?			
Select either TRUE or FALSE:			
True False			

6.1.6 Tracers

Properties of interior mixing on tracers in the ocean

6.1.6.1	Type *
Type of in	nterior mixing for tracers in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.6.2	Constant
If constar	at interior mixing of tracers, specific coefficient $(m2/s)$
Ente	r INTEGER value:
6.1.6.3	Profile *
Is the bac	kground interior mixing using a vertical profile for tracers (i.e is NOT constant)?
Selec	t either TRUE or FALSE:
	True False
	Background *
Backgrou	nd interior mixing of tracers coefficient, (schema and value in m2/s - may by none)
1.e-5	m2/s
6.1.7 I	Momentum
Properti	es of interior mixing on momentum in the ocean
6.1.7.1	Type *
Type of in	nterior mixing for momentum in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada

Ш	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
	$egin{array}{c} {f Constant} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ mixi$
Ente	r INTEGER value:
6.1.7.3	Profile *
Is the bac	kground interior mixing using a vertical profile for momentum (i.e is NOT constant)?
Ente	r TEXT:
6.1.7.4	Background *
Backgrou	nd interior mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)
Ente	r TEXT:

7 Uplow Boundaries Ocean upper / lower boundaries 7.1.1 Top level properties Ocean upper / lower boundaries

7.1.1.1 Name

Commonly used name for the uplow boundaries in ocean model.

Enter TEXT:

7.1.1.2 Overview

 $Overview\ of\ ocean\ upper\ /\ lower\ boundaries\ in\ ocean\ model.$

Enter TEXT:

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surface scheme in ocean

Linear implicit

Linear filtered

Linear semi-explicit

Non-linear implicit

Non-linear filtered

Non-linear semi-explicit

Fully explicit

Other - please specify:

7.2.1.2 Embeded Seaice *

Is the sea-ice embeded in the ocean model (instead of levitating)?

Select either TRUE or FALSE:

True False

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *
Overview of bottom boundary layer in ocean
Enter TEXT:
7.3.1.2 Type Of Bbl *
Type of bottom boundary layer in ocean
Diffusive
☐ Acvective
Other - please specify:
7.3.1.3 Lateral Mixing Coef
If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)
10000
7.3.1.4 Sill Overflow *
Describe any specific treatment of sill overflows
Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

 $Describe\ how\ surface\ pressure\ is\ transmitted\ to\ ocean\ (via\ sea-ice,\ nothing\ specific,...)$

Enter TEXT:

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

No

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Enter TEXT:

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

Enter TEXT:

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Enter TEXT:

8.1.1.8 Geothermal Heating	*
----------------------------	---

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

Spatial varying

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean				
8.1.2.1	Type *			
Type of m	comentum bottom friction in ocean			
\boxtimes	Linear			
	Non-linear			
	Non-linear (drag function of speed of tides)			
	Constant drag coefficient			
	None			
	Other - please specify:			
8.1.3 Lateral Friction				
Propertie	es of momentum lateral friction in ocean			
8.1.3.1	Type *			
Type of m	comentum lateral friction in ocean			
	None			
	Free-slip			
\boxtimes	No-slip			
	Other - please specify:			
8.1.4 Sunlight Penetration				
1 roperus	es of sunlight penetration scheme in ocean			
8.1.4.1	Scheme *			
Type of su	unlight penetration scheme in ocean			
	1 extinction depth			
	2 extinction depth			
\boxtimes	3 extinction depth			
	Other - please specify:			

8.1.4.2 Ocean	Colour *
Is the ocean sunlig	th penetration scheme ocean colour dependent?
True	☐ False
	tion Depth Description
Describe extinction	ns depths for sunlight penetration scheme (if applicable).
Enter TEXT	':
8.1.4.4 Extinc	tion Depths
List extinctions de	epths for sunlight penetration scheme (if applicable).
Enter COM	MA SEPARATED list:
8.1.5 Fresh	Water Forcing
	erface fresh water forcing in ocean
8.1.5.1 From .	Atmopshere *
Type of surface fre	esh water forcing from atmos in ocean
Select SING	LE option:
Freshwa	ater flux
☐ Virtual	salt flux
Other -	please specify:
8.1.5.2 From S	Sea Ice *
Type of surface fre	esh water forcing from sea-ice in ocean
Select SING	LE option:
Freshwa	ater flux
☐ Virtual	salt flux
☐ Real sa	lt flux
Other -	please specify:
8.1.5.3 Forced	Mode Restoring *
Type of surface sa	linity restoring in forced mode (OMIP)

Enter TEXT: