

## PROJET STA101

Analyse de données : méthodes descriptives

# Étude de qualité sur un échantillon de cafés

# TABLE DES MATIERES

| I. I  | NTRODUCTION                                                                   | 1       |
|-------|-------------------------------------------------------------------------------|---------|
| II. A | ANALYSES PRÉLIMINAIRES                                                        | 3       |
| Α.    | Analyse univariée et préparation des données                                  | 3       |
| В.    | Analyse bivariée                                                              | 5       |
| C.    | CHOIX DES VARIABLES ACTIVES ET ILLUSTRATIVES                                  | 7       |
| III.  | CLASSIFICATION                                                                | 8       |
| Α.    | CHOIX DE LA MÉTHODE                                                           | 8       |
| В.    | CHOIX DU NOMBRE DE CLASSES                                                    | 9       |
| C.    | Profil des classes                                                            | 10      |
| IV.   | ANALYSE FACTORIELLE                                                           | 16      |
| Α.    | CHOIX DU NOMBRE D'AXES                                                        | 16      |
| В.    | Premier plan factoriel (9,1% d'inertie)                                       | 17      |
| C.    | SECOND PLAN FACTORIEL (7,7% D'INERTIE)                                        | 20      |
| v. (  | CONCLUSION                                                                    | 22      |
| VI.   | ANNEXES                                                                       | I       |
| Α.    | Extrait du jeu de donnees                                                     | I       |
| В.    | LEXIQUE DES VARIABLES SENSORIELLES                                            | III     |
| C.    | EXPLICATION DES DEFAUTS MESURES DANS LE CAFE                                  | III     |
| D.    | Frequences des modalites des 4 variables qualitatives                         | IV      |
| E.    | BOITES A MOUSTACHE DES VARIABLES QUANTITATIVES                                | V       |
| F.    | DIAGRAMMES EN BARRE DES VARIABLES QUALITATIVES                                | VI      |
| G.    | REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS DE CORRÉLATION DE SPEARM            | an VIII |
| Н.    | REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS V DE CRAMER                         | VIII    |
| I.    | REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS ETA <sup>2</sup> ENTRE UNE VARIABLE |         |
| QU    | ALITATIVE ET UNE QUANTITATIVE                                                 | IX      |
| J.    | BOITES À MOUSTACHE DE LA VARIABLE SCORE TOTAL SUIVANT LES MODALITÉS D         | DES     |
| VAF   | RIABLES QUALITATIVES                                                          | X       |
| K.    | ACP SUR LES VARIABLES SENSORIELLES ET DEFAUTS                                 | XII     |
| L.    | TABLEAU DES VALEURS PROPRES ET DES INERTIES ASSOCIÉES                         | XV      |
| M.    | DIAGRAMMES DES VALEURS PROPRES                                                | XVI     |
| N.    | VERIFICATION MATHEMATIQUE DU NOMBRE D'AXES NON TRIVIAUX                       | XVI     |
| O.    | GRAPHES DES MODALITES DANS LES DEUX PREMIERS PLANS                            | XVII    |

## I. INTRODUCTION

Cet écrit a pour objet l'étude d'un jeu de données collectées en 2023 par le *Coffee Quality Institute* (CQI), organisation internationale à but non lucratif, qui œuvre pour améliorer la qualité du café de spécialité et la vie des personnes qui le produisent. L'une des missions du CQI est de maintenir une base de données qui sert de ressource pour les professionnels et les passionnés, et qui contient une variété d'informations sur la production, la transformation et l'évaluation sensorielle du café.

L'étude présentée dans ce document porte sur 207 individus décrits par 21 variables (extrait en <u>annexe A</u>). Un individu est défini comme étant un café produit par une ferme agricole identifiée. Parmi les variables :

- 2 portent sur le lieu de plantation et répertorient, pour chaque ferme agricole, le pays et l'altitude ;
- 5 informent sur le café récolté et les méthodes de préparation des grains, en précisant la masse produite, la variété, la couleur du fruit cueilli, la méthode de traitement utilisée pour extraire le grain du fruit (*Processing.Method*), et le taux d'humidité du grain avant torréfaction;
- 10 correspondent à l'évaluation sensorielle selon les critères : arôme, saveur, arrière-goût, acidité, corps, équilibre, uniformité, propreté de la tasse, douceur, impression générale (annexe B);
- 1 variable, appelée score total, est obtenue en sommant les 10 variables sensorielles ;
- 3 variables évaluent la présence de défauts dans une quantité définie de grains de café : nombre de défauts de catégorie 1, nombre de défauts de catégorie 2, nombre de quakers (annexe C).

On dénombre parmi ces 21 variables : 17 variables de nature quantitative, et 4 variables de nature qualitative (avec un nombre de modalités pouvant aller de 6 à 24 modalités selon la variable).

L'objectif principal de cette étude est de répondre au mieux à la problématique suivante : peut-on affirmer que certaines notes sensorielles sont corrélées avec les conditions géographiques des plantations, ou avec d'autres paramètres de production mis en place par les fermes de café ?

Dans un premier temps, l'étude débutera par une analyse univariée et bivariée. Cette partie aura pour intérêt de déterminer si un traitement préalable des données est nécessaire, et si des corrélations peuvent être déjà observées entre deux variables. A l'issue de cette partie, un choix concernant les variables actives et illustratives sera proposé pour la suite de l'étude.

Dans un second temps, une classification des cafés sera réalisée à partir des variables actives, afin de mettre en évidence l'existence de groupes de cafés similaires et les éléments de similitude des cafés d'un même groupe.

Enfin, une analyse factorielle viendra compléter l'étude pour explorer les critères sur lesquels se reposent la classification précédemment obtenue.

## II. ANALYSES PRÉLIMINAIRES

# A. ANALYSE UNIVARIÉE ET PRÉPARATION DES DONNÉES

Une première prise de contact avec les données consiste à étudier un résumé d'indicateurs statistiques (figure 2.1), étape qui permet d'observer rapidement si des variables quantitatives ne sont pas à supprimer du jeu de données, comme des doublons ou des variables constantes.

Trois suppressions peuvent être effectuées pour les raisons suivantes :

- la première colonne du jeu de données est composée des numéros des individus et ne correspond pas à une variable ;
- les variables Douceur et Propreté de la tasse sont constantes et égales à 10.

| Statistic            | N   | Min    | Pctl(25) | Median | Mean       | Pctl(75) | Max       | St. Dev.    |
|----------------------|-----|--------|----------|--------|------------|----------|-----------|-------------|
| X                    | 207 | 1      | 52.5     | 104    | 104.000    | 155.5    | 207       | 59.900      |
| Altitude             | 205 | 139    | 1,000    | 1,300  | 1,293.380  | 1,600    | 5,400     | 668.167     |
| Weight.kg            | 207 | 1      | 30       | 300    | 66,857.960 | 18,000   | 6,144,000 | 601,852.400 |
| Aroma                | 207 | 6.500  | 7.580    | 7.670  | 7.721      | 7.920    | 8.580     | 0.288       |
| Flavor               | 207 | 6.750  | 7.580    | 7.750  | 7.745      | 7.920    | 8.500     | 0.280       |
| Aftertaste           | 207 | 6.670  | 7.420    | 7.580  | 7.600      | 7.750    | 8.420     | 0.276       |
| Acidity              | 207 | 6.830  | 7.500    | 7.670  | 7.690      | 7.875    | 8.580     | 0.260       |
| Body                 | 207 | 6.830  | 7.500    | 7.670  | 7.641      | 7.750    | 8.250     | 0.233       |
| Balance              | 207 | 6.670  | 7.500    | 7.670  | 7.644      | 7.790    | 8.420     | 0.256       |
| Uniformity           | 207 | 8.670  | 10.000   | 10.000 | 9.990      | 10.000   | 10.000    | 0.103       |
| Clean.Cup            | 207 | 10     | 10       | 10     | 10.000     | 10       | 10        | 0.000       |
| Sweetness            | 207 | 10     | 10       | 10     | 10.000     | 10       | 10        | 0.000       |
| Overall              | 207 | 6.670  | 7.500    | 7.670  | 7.677      | 7.920    | 8.580     | 0.306       |
| Total.Cup.Points     | 207 | 78.000 | 82.580   | 83.750 | 83.707     | 84.830   | 89.330    | 1.730       |
| Moisture.Percentage  | 207 | 8.100  | 10.100   | 10.800 | 10.784     | 11.500   | 13.500    | 0.999       |
| Category.One.Defects | 207 | 0      | 0        | 0      | 0.135      | 0        | 5         | 0.592       |
| Quakers              | 207 | 0      | 0        | 0      | 0.691      | 1        | 12        | 1.687       |
| Category.Two.Defects | 207 | 0      | 0        | 1      | 2.251      | 3        | 16        | 2.950       |

Figure 2.1: Indicateurs statistiques des variables quantitatives.



Figure 2.2 : Tableau des valeurs manquantes dans le jeu de données.

On s'intéresse désormais à la présence de données manquantes. On constate sur la figure 2.2, qu'en plus des 2 valeurs manquantes pour la variable quantitative Altitude, il en manque 19 et 5 respectivement pour les variables qualitatives Variété et Méthode de Traitement.

Le nombre total de valeurs manquantes n'étant pas négligeable par rapport au nombre total d'individus, on ne peut pas envisager de supprimer les individus concernés (qui pourraient représenter de 9% à 12% de l'ensemble des individus), sans affecter fortement la qualité du jeu de données. Pour combler la base de données, une imputation a été effectuée. Le choix de l'analyse factorielle utilisée pour l'imputation est expliqué dans le paragraphe III.A.

Une observation que l'on peut aussi faire à partir du résumé (figure 2.1) est qu'il y a, parmi les variables quantitatives, 3 variables discrètes avec comme valeur prépondérante zéro. Une transformation logarithmique semble nécessaire pour réduire l'effet d'asymétrie et stabiliser la variance. La préparation des variables quantitatives est finalisée par une standardisation, étape nécessaire pour la suite de l'analyse car les données sont exprimées dans différentes unités.

| Statistic                | N   | Min     | Pctl(25) | Median | Mean   | Pctl(75) | Max    | St. Dev. |
|--------------------------|-----|---------|----------|--------|--------|----------|--------|----------|
|                          |     |         |          |        |        |          |        |          |
| Altitude                 | 207 | -1.738  | -0.417   | 0.063  | -0.000 | 0.454    | 6.154  | 1.000    |
| Weight.kg                | 207 | -0.111  | -0.111   | -0.111 | 0.000  | -0.081   | 10.097 | 1.000    |
| Aroma                    | 207 | -4.245  | -0.490   | -0.178 | -0.000 | 0.692    | 2.986  | 1.000    |
| Flavor                   | 207 | -3.558  | -0.589   | 0.019  | -0.000 | 0.627    | 2.701  | 1.000    |
| Aftertaste               | 207 | -3.370  | -0.652   | -0.072 | -0.000 | 0.545    | 2.973  | 1.000    |
| Acidity                  | 207 | -3.315  | -0.733   | -0.078 | -0.000 | 0.712    | 3.428  | 1.000    |
| Body                     | 207 | -3.473  | -0.604   | 0.125  | 0.000  | 0.467    | 2.608  | 1.000    |
| Balance                  | 207 | -3.800  | -0.562   | 0.101  | 0.000  | 0.569    | 3.027  | 1.000    |
| Uniformity               | 207 | -12.781 | 0.094    | 0.094  | 0.000  | 0.094    | 0.094  | 1.000    |
| 0verall                  | 207 | -3.286  | -0.577   | -0.022 | 0.000  | 0.794    | 2.948  | 1.000    |
| Total.Cup.Points         | 207 | -3.298  | -0.651   | 0.025  | 0.000  | 0.649    | 3.250  | 1.000    |
| Moisture.Percentage      | 207 | -2.688  | -0.685   | 0.016  | 0.000  | 0.717    | 2.720  | 1.000    |
| Category.One.Defects_log | 207 | -0.253  | -0.253   | -0.253 | -0.000 | -0.253   | 6.251  | 1.000    |
| Quakers_log              | 207 | -0.545  | -0.545   | -0.545 | -0.000 | 0.694    | 4.040  | 1.000    |
| Category.Two.Defects_log | 207 | -1.098  | -1.098   | -0.210 | -0.000 | 0.678    | 2.531  | 1.000    |
|                          |     |         |          |        |        |          |        |          |

Figure 2.3 : Indicateurs statistiques des variables quantitatives, centrées et réduites.

Pour les variables qualitatives, les fréquences des modalités ont été calculées (<u>annexe D</u>). Certaines modalités rares pourraient être regroupées, mais leur nature ne permet pas que cela soit envisagé. Par exemple, il ne semble pas pertinent de regrouper Madagascar ou Myanmar avec un autre pays, sans dégrader la qualité des données.

Enfin, une analyse univariée graphique, composée de boîtes à moustaches sur les variables quantitatives continues, et de diagrammes en barre pour les variables qualitatives et quantitatives discrètes, est disponible en annexe (annexes E et E). Elle permet de remarquer que la variable Uniformité est constante sauf pour deux individus. On pourra donc considérer cette variable comme illustrative pour la suite des analyses.

#### B. ANALYSE BIVARIÉE

Dans ce paragraphe, on s'intéresse aux liaisons entre les variables deux à deux. On peut observer, dans la figure 2.4, une représentation graphique des coefficients de corrélation de Pearson. Cette figure démontre un lien linéaire entre sept des variables sensorielles deux à deux (toutes les variables sensorielles restantes sauf la variable Uniformité). On ne soulignera pas le lien avec la variable Score total, avec qui le lien est trivial puisque cette variable est construite à partir des variables sensorielles.



Figure 2.4 : Représentation graphique des coefficients de corrélation de Pearson.

De même, cette figure fait apparaître des coefficients de corrélation négatifs entre chacune de ces 7 variables sensorielles et chacune des 3 variables liées aux défauts.

On notera qu'une recherche des liaisons non linéaires, avec les coefficients de corrélation de Spearman, a été faite en <u>annexe G</u>, mais qu'elle ne fait pas apparaître d'autre liaisons particulières entre deux variables quantitatives.

Il serait intéressant d'approfondir l'étude des liaisons entre l'ensemble des variables regroupant les variables sensorielles, et celles des défauts. Cette étude est brièvement faite en annexe K, sous la forme d'une Analyse en Composantes Principales (ACP) sur les 10 variables quantitatives que l'on vient de citer. Elle met bien en lumière que les 7 variables sensorielles restantes sont fortement liées entre elles, et qu'elles sont indépendantes dans une moindre mesure des variables liées aux défauts.

On peut enfin observer des corrélations entre deux variables qualitatives (<u>annexe H</u>) et entre une variable qualitative et une variable quantitative (<u>annexe I</u>). En particulier, et dans le but de répondre à la problématique, la répartition du score total selon une des variables qualitatives est présenté ci-dessous:



Figure 2.5 : Boites à moustaches de la variable Score total suivant les modalités de la variable Méthode de Traitement.

On peut, à partir de la figure 2.5, affirmer que le score total n'est pas réparti de la même façon suivant la méthode de traitement employée sur les fruits. D'autres représentation mettant en lien le score total et les autres variables qualitatives sont disponibles en annexe J.

### C. CHOIX DES VARIABLES ACTIVES ET ILLUSTRATIVES

Au regard de cette première partie et de la problématique, il apparaît pertinent de sélectionner comme variables actives celles relatives aux conditions géographiques des plantations, ainsi qu'aux paramètres de production mis en place. Ce choix permettra d'établir une typologie des cafés fondée exclusivement sur ces éléments, sans tenir compte de leur évaluation sensorielle ni de leurs défauts. Les variables sensorielles et celles liées aux défauts seront quant à elles considérées comme illustratives, ce qui facilitera l'estimation de leurs corrélations avec la typologie obtenue.

Un résumé des variables actives et illustratives est disponible ci-dessous.

| Variables actives   | Nature       |
|---------------------|--------------|
| Country.of.Origin   | Qualitative  |
| Variety             | Qualitative  |
| Processing.Method   | Qualitative  |
| Color               | Qualitative  |
| Altitude            | Quantitative |
| Weight.kg           | Quantitative |
| Moisture.Percentage | Quantitative |

| Variables illustratives  | Nature       |
|--------------------------|--------------|
| Aroma                    | Quantitative |
| Flavor                   | Quantitative |
| Aftertaste               | Quantitative |
| Acidity                  | Quantitative |
| Body                     | Quantitative |
| Balance                  | Quantitative |
| Uniformity               | Quantitative |
| Overall                  | Quantitative |
| Total.Cup.Points         | Quantitative |
| Category.One.Defects_log | Quantitative |
| Quakers_log              | Quantitative |
| Category.Two.Defects_log | Quantitative |

Figure 2.7 : Tableaux des variables actives et illustratives, avec leur nature.

## III. CLASSIFICATION

### A. CHOIX DE LA MÉTHODE

On veut, dans cette partie, établir des classes d'individus selon les variables actives. Cette classification devra regrouper, dans une même classe, des individus relativement proches, ce qui implique une notion de distance que l'on doit définir.

On procèdera à une classification par approche tandem. Cette méthode consiste à regrouper, en utilisant la distance euclidienne, les projetés des individus dans les plans principaux obtenus à partir d'une analyse factorielle. L'intérêt de l'approche tandem est de nettoyer les données en laissant de côté les derniers axes correspondant à ce que l'on nomme « du bruit ».

Les variables actives étant à la fois qualitatives et quantitatives, l'Analyse Factorielle des Données Mixtes sera privilégiée. La métrique utilisée pour l'AFDM combine la distance euclidienne normée pour les variables quantitatives (comme en ACP normée), et la distance du khi-deux, pour les variables qualitatives (comme en ACM), pondérée pour assurer l'équilibre entre les variables de natures différentes.

On remarquera que c'est justement à partir de l'AFDM que les données manquantes ont été imputées dans la partie II.A. (\*)

La classification se fera en deux étapes : une Classification Ascendante Hiérarchique (CAH), selon le critère d'agrégation de Ward, suivie d'une consolidation par les centres mobiles.

(\*) Le logiciel R a utilisé un algorithme itératif régularisé appliqué à la matrice de corrélations (pour les variables quantitatives) concaténée avec le tableau disjonctif complet (pour les variables qualitatives). L'algorithme repose sur une initialisation des valeurs manquantes par la moyenne de la variable ou par la proportion de chaque modalité, selon la nature de la variable, puis sur deux étapes (estimation des paramètres via l'AFDM et imputation des valeurs manquantes à l'aide de la matrice ajustée) qui sont répétées jusqu'à convergence.

#### B. CHOIX DU NOMBRE DE CLASSES

La CAH permet de déterminer le nombre de classes qu'il faut choisir. Pour cela, on observe les valeurs propres obtenues par l'AFDM, et leur inerties (annexes L et M).

On constate que l'on peut conserver plus de 90% de l'inertie du nuage de données avec les 39 premiers axes. On procède donc à une CAH sur les 39 premiers axes, selon la méthode de Ward. Cette approche ascendante consiste, à chaque pas, à regrouper deux éléments (individus isolés ou classes déjà formées) en minimisant la variabilité au sein de chaque groupe (l'inertie intra-classe), et en maximisant les différences entre les groupes (inertie inter-classes)

Le diagramme des gains d'inertie (figure 3.1) indique que le premier saut d'inertie, en diminuant le nombre d'axes, est celui qui permet de passer d'une partition de 5 classes à 4 classes. On retient donc, selon ce critère, 5 classes pour la partition.



Figure 3.1 : Diagramme des gains d'inertie inter-classes.

On remarque que le nombre de classes aurait également pu être fixé à 7, pour des raisons similaires à celles mentionnées précédemment, bien que l'écart d'inertie à franchir soit légèrement moindre. Cette option a été envisagée, mais écartée, les résultats s'étant révélés moins utiles pour répondre à la problématique de l'étude.

#### C. PROFIL DES CLASSES

On procède alors à une consolidation des 5 classes obtenues par la CAH en les introduisant comme partition initiale de l'algorithme des centres mobiles. Cet algorithme calcule le centre de chaque groupe et réassigne ensuite les individus aux groupes en fonction de leur proximité avec les centres obtenus. Ce processus est répété jusqu'à ce que la répartition des individus soit stable.

Les effectifs des classes consolidées sont les suivants :

- 106 pour la classe 1, soit environ 51,2 % des individus ;
- 67 pour la classe 2, soit environ 32,4 % des individus ;
- 21 pour la classe 3, soit environ 10,1 % des individus ;
- 10 pour la classe 4, soit environ 4,8 % des individus ;
- 3 pour la classe 5, soit environ 1,4 % des individus.



Figure 3.2 : Tableaux des corrélations avec la partition.

D'après la figure 3.2, la partition obtenue est corrélée fortement avec les variables qualitatives Pays d'origine, Variété et la variable quantitative Altitude. Dans une moindre mesure, elle est aussi associée aux variables qualitatives Couleur et Méthode de Traitement, et aux variables quantitatives Taux d'humidité, Masse, Défauts de catégorie 2, Quakers, et les 6 notes sensorielles : Acidité, Impression générale, Après-goût, Arôme, Saveur et Équilibre.

#### Classe 1 (106 cafés, 51,2 % des individus):

| \$`1`                    |                    |                  |            |             |             |              |
|--------------------------|--------------------|------------------|------------|-------------|-------------|--------------|
|                          |                    | Cla/Mod          | Mod∕Cla    | Global      | p.value     | v.test       |
| Variety=Caturra          |                    | 96.666667        | 27.3584906 | 14.492754 7 | .596615e-09 | 5.777173     |
| Country.of.Origin=Guatem | nala               | 100.000000       | 19.8113208 | 10.144928 2 | .691592e-07 | 5.143854     |
| Country.of.Origin=Colomb | oia                | 100.000000       | 17.9245283 | 9.178744 1  | .264710e-06 | 4.845221     |
| Variety=Bourbon          |                    | 90.909091        | 18.8679245 | 10.628019 4 | .593517e-05 | 4.075401     |
| Processing.Method=Washed | d / Wet            | 60.937500        | 73.5849057 | 61.835749 3 | .900060e-04 | 3.546756     |
| Variety=Catuai           |                    | 92.857143        | 12.2641509 | 6.763285 9  | .371109e-04 | 3.308757     |
| Country.of.Origin=Brazil | l                  | 100.000000       | 9.4339623  | 4.830918 9  | .979458e-04 | 3.291105     |
| Country.of.Origin=Hondur | as                 | 92.307692        | 11.3207547 | 6.280193 1  | .814369e-03 | 3.119047     |
| Country.of.Origin=Costa  | Rica               | 100.000000       | 7.5471698  | 3.864734 4  | .136447e-03 | 2.867564     |
| Country.of.Origin=Nicard | •                  | 100.000000       | 6.6037736  | 3.381643 8  | .356458e-03 | 2.637318     |
| Country.of.Origin=El Sal |                    | 100.000000       |            | 3.381643 8  | .356458e-03 | 2.637318     |
| Country.of.Origin=Tanzar | nia, United Republ | ic Of 100.000000 | 5.6603774  | 2.898551 1  | .679648e-02 | 2.391133     |
| Color=greenish           |                    | 66.666667        | 22.6415094 | 17.391304 4 | .330754e-02 | 2.020732     |
| Country.of.Origin=United | d States (Hawaii)  | 0.000000         |            |             | .625649e-02 | -2.222397    |
| Color=yellow-green       |                    | 23.529412        | 3.7735849  | 8.212560 1  | .901018e-02 | -2.345331    |
| Color=blue-green         |                    | 16.666667        | 1.8867925  | 5.797101 1  | .531542e-02 | -2.424833    |
| Country.of.Origin=Thaild | and                | 16.666667        |            | 5.797101 1  |             | -2.424833    |
| Variety=Gesha            |                    | 27.586207        | 7.5471698  | 14.009662 6 | .510617e-03 | -2.720891    |
| Country.of.Origin=Ethiop | oia                | 9.090909         |            | 5.314010 4  |             |              |
| Variety=SL34             |                    | 0.000000         |            | 3.864734 2  |             |              |
| Processing.Method=Pulped | ,                  | 23.076923        |            | 12.560386 2 |             |              |
| Variety=Ethiopian Heirlo | ooms               | 0.000000         |            | 4.347826 1  |             |              |
| Variety=Catimor          |                    | 0.000000         | 0.0000000  | 5.314010 2  | .780415e-04 | -3.634944    |
| Variety=Typica           |                    | 8.333333         |            | 17.391304 3 |             |              |
| Country.of.Origin=Taiwar | 1                  | 0.000000         | 0.0000000  | 29.468599 1 | .171017e-25 | -10.471238   |
|                          |                    |                  |            |             |             |              |
| <b>\$</b> `1`            |                    |                  |            |             |             |              |
|                          |                    | n category Ove   |            |             | ,           |              |
| Altitude                 | 5.309318           | 0.3602146 -3.1   |            | 0.782971    |             | 1.100361e-07 |
| Moisture.Percentage      | 4.406287           |                  | 26860e-15  | 0.859739    |             | 1.051577e-05 |
| Category.Two.Defects_log |                    | 0.2844235 -1.3   |            | 0.916838    |             | 2.762511e-05 |
| Quakers_log              | 3.672851           | 0.2491873 7.5    |            | 1.115583    |             | 2.398592e-04 |
| Acidity                  | -2.491941          | -0.1690676 -6.4  |            | 1.051726    | 3 0.9975816 | 1.270472e-02 |
| Total.Cup.Points         | -3.033169          | -0.2057876 2.7   | 53222e-15  | 1.060299    | 9 0.9975816 | 2.420001e-03 |
| Balance                  |                    |                  | 05166e-15  | 1.065731    | 9 0.9975816 | 2.173958e-03 |
| Aroma                    |                    | -0.2139390 -1.6  |            | 0.993857    |             | 1.614277e-03 |
| Flavor                   | -3.198523          | -0.2170062 -6.8  | 00786e-16  | 1.028430    | 2 0.9975816 | 1.381335e-03 |
| Overall                  | -3.250701          | -0.2205462 9.1   | 09192e-15  | 1.056664    | 6 0.9975816 | 1.151208e-03 |
| Aftertaste               | -3.565271          | -0.2418885 -8.5  | 68562e-15  | 1.072854    | 0 0.997581  | 3.634799e-04 |

Figure 3.3 : Tableaux de description pour les variables quantitatives et qualitatives de la classe 1.

La classe 1 est composée de cafés principalement de provenance du Guatemala, de Colombie, du Brésil et du Honduras.

Les variétés dominantes de cette classe sont les variétés Caturra, Bourbon et Catuai, et la méthode de traitement pour extraire les grains est majoritairement *Washed/Wet* (73 % de la classe contre une fréquence de 61% pour tous les individus).

Ces cafés sont issus de régions situées à une altitude haute (la moyenne de l'altitude de cette classe est plus élevée que la moyenne globale), et le taux d'humidité contenu dans les grains est plus important que ce qui est généralement observé.

Enfin, les cafés de cette classe reçoivent des scores inférieurs sur les 6 critères sensoriels (Acidité, Impression générale, Après-goût, Arôme, Saveur et Équilibre) et présentent plus de défauts de catégorie 2 et de quakers que l'ensemble des cafés.

#### Classe 2 (67 cafés, 32,4 % des individus):

| \$`2`                                   |                        |                          |                         |           |                |                                            |
|-----------------------------------------|------------------------|--------------------------|-------------------------|-----------|----------------|--------------------------------------------|
|                                         |                        | Cla/Mod                  | Mod/Cla                 | Globa     | p.value        | v.test                                     |
| Country.of.Origin=Taiwa                 | n                      | 100.000000               | 91.044776               | 29.468599 | 5.134517e-46   | 14.240518                                  |
| Variety=Typica                          |                        | 88.888889                | 47.761194               | 17.391304 | 8.707438e-15   | 7.756836                                   |
| Variety=Gesha                           |                        | 68.965517                | 29.850746               | 14.009662 | 2 1.627083e-05 | 4.310741                                   |
| Variety=SL34                            |                        | 100.000000               | 11.940299               | 3.86473   | 8.946030e-05   | 3.917532                                   |
| Processing.Method=Pulpe                 | d natural / honey      | 61.538462                | 23.880597               | 12.560386 | 1.272336e-03   | 3.222148                                   |
| Color=blue-green                        |                        | 75.000000                | 13.432836               | 5.797103  | 2.606380e-03   | 3.010710                                   |
| Country.of.Origin=Unite                 | d States (Hawaii)      | 100.000000               | 7.462687                | 2.415459  | 3.201363e-03   | 2.947711                                   |
| Country.of.Origin=Hondu                 | ras                    | 7.692308                 | 1.492537                | 6.280193  | 4.511319e-02   | -2.003597                                  |
| Country.of.Origin=Costa                 | Rica                   | 0.000000                 | 0.000000                | 3.864734  | 4.095214e-02   | -2.044014                                  |
| Variety=Blend                           |                        | 11.111111                | 2.985075                | 8.695652  | 3.952691e-02   | -2.058659                                  |
| Variety=Catuai                          |                        | 7.142857                 | 1.492537                | 6.763285  | 3.148213e-02   | -2.150925                                  |
| Variety=Ethiopian Heirl                 | ooms                   | 0.000000                 | 0.000000                | 4.347826  | 2.716423e-02   | -2.209150                                  |
| Country.of.Origin=Brazi                 | l                      | 0.000000                 | 0.000000                | 4.830918  | 3 1.797229e-02 | -2.366188                                  |
| Variety=Catimor                         |                        | 0.000000                 | 0.000000                | 5.314010  | 1.185989e-02   | -2.516286                                  |
| Country.of.Origin=Ethio                 | pia                    | 0.000000                 | 0.000000                | 5.314010  | 1.185989e-02   | -2.516286                                  |
| Processing.Method=Washe                 | d / Wet                | 25.781250                | 49.253731               | 61.835749 | 1.122479e-02   | -2.535622                                  |
| Variety=Bourbon                         |                        | 9.090909                 | 2.985075                | 10.628019 | 1.004686e-02   | -2.574212                                  |
| Country.of.Origin=Thail                 | and                    | 0.000000                 | 0.000000                | 5.797103  | 7.805744e-03   | -2.660359                                  |
| Country.of.Origin=Colom                 | bia                    | 0.000000                 | 0.000000                | 9.17874   | 3.867689e-04   | -3.548951                                  |
| Country.of.Origin=Guate                 | mala                   | 0.000000                 | 0.000000                | 10.144928 | 3 1.597418e-04 | -3.775414                                  |
| Variety=Caturra                         |                        | 3.333333                 | 1.492537                | 14.492754 | 5.150338e-05   | -4.048698                                  |
|                                         |                        |                          |                         |           |                |                                            |
| \$`2`                                   |                        |                          |                         |           |                |                                            |
| 53                                      |                        |                          |                         |           | category Over  |                                            |
| Flavor                                  | 3.927677               |                          | -6.800786e              |           |                | 975816 8.577013e-05                        |
| Aroma                                   | 3.883319               |                          | -1.699338e              |           |                | 975816 1.030403e-04                        |
| Aftertaste                              | 3.858365               |                          | -8.568562e              |           |                | 975816 1.141479e-04                        |
| Overall                                 | 3.808231               |                          | 9.109192e               |           |                | 975816 1.399647e-04                        |
| Total.Cup.Points                        | 3.372115               |                          | 2.763222e               |           |                | 975816 7.459341e-04                        |
| Balance                                 | 3.250525               |                          | 3.205166e               |           |                | 975816 1.151922e-03                        |
| Acidity                                 | 2.536237               |                          | -6.423203e              |           |                | 975816 1.120508e-02                        |
| Quakers_log<br>Category.Two.Defects_log | -5.052508              | -0.5076313<br>-0.6701610 |                         |           |                | 975816 4.360470e-07<br>975816 2.554862e-11 |
|                                         | ,                      |                          |                         |           |                | 975816 2.354862e-11<br>975816 2.389648e-11 |
| Moisture.Percentage<br>Altitude         | -6.679986<br>-8.119676 | -0.6711460<br>-0.8157933 |                         |           |                | 975816 2.389648e-11<br>975816 4.674289e-16 |
| Attitude                                | -0.1130/0              | -0.013/333               | -3.139 <del>04</del> 0e | -10       | 0.0300011 0.9  | 3/3010 4.0/42036-10                        |

Figure 3.4 : Tableaux de description pour les variables quantitatives et qualitatives de la classe 2.

La classe 2 regroupe des cafés principalement originaires de Taiwan et de Hawaï.

Les variétés majoritaires sont les variétés Typica, Gesha et SL34, et la méthode de traitement *Pulped Natural/Honey* est plus présente que dans l'ensemble des individus.

Ces cafés sont cultivés à basse altitude (l'altitude moyenne de la classe est nettement inférieure à celle de tous les individus), et le taux d'humidité contenu dans les grains est faible.

Les cafés de cette classe se distinguent par des notes modérément supérieures aux autres cafés, sur les 6 critères sensoriels (Acidité, Impression générale, Après-goût, Arôme, Saveur et Équilibre), et des défauts (de catégorie 2 et quakers) peu présents.

#### Classe 3 (21 cafés, 10,1 % des individus):

```
$`3`
                                          Cla/Mod Mod/Cla
                                                                    Global
                                                                                   p.value
Variety=Catimor
                                      100.00000 52.38095 5.314010 6.170230e-13 7.196667

        Country.of.Origin=Thailand
        83.33333 47.61905
        5.797101 6.640678e-10
        6.174420

        Country.of.Origin=Vietnam
        100.00000 19.04762
        1.932367 8.054782e-05
        3.942764

        Variety=Java
        100.00000 14.28571
        1.449275 9.128753e-04
        3.316087

        Country.of.Origin=Laos
        100.00000 14.28571
        1.449275 9.128753e-04
        3.316087

Country.of.Origin=Indonesia 100.00000 14.28571 1.449275 9.128753e-04 3.316087
Color=yellowish
                                        40.00000 19.04762 4.830918 1.235264e-02
                                        27.77778 23.80952 8.695652 2.795394e-02 2.197932
Variety=Blend
Processing.Method=Semi Washed 66.66667 9.52381 1.449275 2.863546e-02 2.188469
Variety=Gesha
                                         0.00000 0.00000 14.009662 3.516293e-02 -2.106477
Variety=Caturra
                                         0.00000 0.00000 14.492754 3.101450e-02 -2.156887
Processing.Method=Washed / Wet 6.25000 38.09524 61.835749 2.312875e-02 -2.271301
Color=greenish
                                         0.00000 0.00000 17.391304 1.436832e-02 -2.447921
Country.of.Origin=Taiwan
                                          0.00000 0.00000 29.468599 4.128405e-04 -3.531737
$'3'
                             v.test Mean in category Overall mean sd in category Overall sd
Moisture.Percentage 2.454211 0.5076607 3.126860e-15 0.8855271 0.9975816 0.01411941
                        -1.970764
                                             -0.4076582 -1.699338e-14
                                                                                 0.9887083 0.9975816 0.04875091
                         -1.986062
                                            -0.4108227 9.109192e-15
-0.4708663 -6.423203e-15
                                                                                 1.0366719 0.9975816 0.04702644
Overall
Acidity
                         -2.276334
                                                                                  0.9948488 0.9975816 0.02282603
```

Figure 3.5 : Tableaux de description pour les variables quantitatives et qualitatives de la classe 3.

La classe 3 regroupe des cafés principalement originaires de la Thaïlande, du Vietnam, du Laos et d'Indonesie.

La variété majoritaire est Catimor, avec la présence de la variété Java qui se trouve exclusivement dans cette classe. La méthode de traitement *Semi/Washed* est plus présente dans cette classe que dans l'ensemble des individus.

Le taux d'humidité dans ces cafés est plus important que dans l'ensemble des individus.

Les cafés de cette classe présentent enfin des notes inférieures aux autres cafés, sur les 3 critères sensoriels : Acidité, Impression générale et Arôme.

#### Classe 4 (10 cafés, 4,8 % des individus):

```
Cla/Mod Mod/Cla
                                                 Global
                                                             p.value
                                                                        v.test
Country.of.Origin=Ethiopia
                            90 90909
                                          100 5.314010 3.446215e-16 8.156588
Variety=Ethiopian Heirlooms 100.00000
                                          90 4.347826 6.203187e-15 7.799746
Color=yellow-green
                             17.64706
                                           30 8.212560 4.358511e-02 2.018059
Country.of.Origin=Taiwan
                              0.00000
                                           0 29.468599 2.772401e-02 -2.201170
$`4`
                          v.test Mean in category
                                                  Overall mean sd in category Overall sd
                                                                                             p.value
Weight.kg
                                       1.9475275 3.016910e-17
                                                                   4.0749508 0.9975816 2.736810e-10
                        6.312998
Acidity
                        3.881084
                                       1.1972945 -6.423203e-15
                                                                   0.6358599 0.9975816 1.039919e-04
Altitude
                        3.246990
                                       1.0016798 -3.159040e-16
                                                                   0.3034326 0.9975816 1.166323e-03
Quakers_log
                        3.122421
                                       0.9632508 7.562389e-17
                                                                   0.9899251
                                                                              0.9975816 1.793704e-03
Category.Two.Defects_log 2.724986
                                       0.8406441 -1.327441e-16
                                                                   0.8961830
                                                                              0.9975816 6.430430e-03
                        2.569394
                                       0.7926450 1.485661e-14
                                                                   0.8060520 0.9975816 1.018764e-02
Total.Cup.Points
                        2.140084
                                       0.6602050 2.763222e-15
                                                                   0.5265350 0.9975816 3.234796e-02
```

Figure 3.6 : Tableaux de description pour les variables quantitatives et qualitatives de la classe 4.

La classe 4 regroupe des cafés exclusivement originaires d'Éthiopie, appartenant en majorité à la variété Ethiopian Heirlooms, et cultivés à très haute altitude.

Ces cafés se distinguent par une quantité produite importante.

Ils présentent plus de défauts de catégorie 2 et de quakers, mais obtiennent des notes nettement supérieures en Acidité et en Corps, ce qui en font des cafés avec de très bons scores totaux.

#### Classe 5 (3 cafés, 1.4 % des individus):

```
$`5`
Cla/Mod Mod/Cla Global p.value v.test
Variety=SL14 100 100 1.449275 6.863724e-07 4.96518
Country.of.Origin=Uganda 100 100 1.449275 6.863724e-07 4.96518
```

Figure 3.7 : Tableau de description pour les variables qualitatives de la classe 5.

|     |       |        |            |         |        |         |         |            | Category. |          | Category. |
|-----|-------|--------|------------|---------|--------|---------|---------|------------|-----------|----------|-----------|
|     |       |        |            |         |        |         |         | Total.Cup. | One.Defe  | Quakers_ | Two.Defec |
| ID  | Aroma | Flavor | Aftertaste | Acidity | Body   | Balance | Overall | Points     | cts_log   | log      | ts_log    |
| 44  | 0,970 | 0,627  | 0,545      | 0,230   | 0,467  | 1,077   | 0,794   | 0,747      | -0,253    | -0,545   | -0,210    |
| 119 | 0,101 | 0,019  | -0,362     | -0,733  | -0,261 | -0,250  | 0,239   | -0,166     | -0,253    | -0,545   | 0,678     |
| 121 | 0,101 | -0,267 | -0,072     | -0,733  | 0,125  | -0,562  | -0,022  | -0,218     | -0,253    | -0,545   | 1,197     |

Figure 3.8 : Tableau des notes sensorielles et défauts des individus de la classe 5.

La classe 5 est composée des cafés d'Ouganda, exclusivement de la variété SL14. Les 3 cafés qui composent cette classe (individus 44, 119 et 121 dans la figure 3.8) obtiennent un score dans la moyenne haute en arôme, et ne présentent aucun quaker.

#### Bilan de la classification:

Sur la base des observations que l'on vient de faire, on peut constater que même si la partition n'a pas été faite à partir des notes sensorielles et des variables liées aux défauts, des liens entre ces variables et les classes obtenues peuvent être établis.

L'observation de ces classes, dans les premiers plans de l'analyse factorielle, pourra apporter des détails à propos des critères sur lesquels se reposent ces regroupements.

## IV. ANALYSE FACTORIELLE

Comme expliqué dans la partie III.A, le choix de l'analyse factorielle s'est porté sur l'AFDM. Cette analyse permet de visualiser les individus dans les plans principaux à partir de variables à la fois quantitatives et qualitatives. Comme expliqué dans <u>l'annexe N</u>, le nombre d'axes non triviaux est conséquent et s'élève à 57. Il en résulte que les inerties des premiers axes sont faibles (contrairement aux inerties obtenues par l'ACP), et que l'interprétation des axes devra être consolidée par l'observation des données brutes.

#### A. CHOIX DU NOMBRE D'AXES



Figure 4.1 : Graphique représentant l'erreur de validation croisée en fonction du nombre d'axes.

La validation croisée est utilisée ici pour obtenir le nombre d'axes factoriels. Cette technique consiste à diviser les données en deux parties : une partie d'entraînement qui sert à construire le modèle, et une partie de test qui permet d'évaluer la qualité du modèle.

A l'issue de 40 simulations, l'erreur mesurée entre le modèle et les valeurs de test est représentée en figure 4.1. Sur ce graphique, l'erreur est minimale pour 4 axes. Ces 4 axes représentent environ 17% d'inertie cumulée (annexe I).

### B. PREMIER PLAN FACTORIEL (9,1% D'INERTIE)





Figure 4.2 : Graphe des variables qui contribuent le plus.

Figure 4.3 : Cercle des corrélations des variables quantitatives.



Figure 4.4: Graphe des individus dans le premier plan factoriel.

#### 1ère dimension:



Figure 4.5: Graphe des centres des classes.

|          | Co      | ord     | Contrib |        |  |
|----------|---------|---------|---------|--------|--|
| Individu | Dim.1   | Dim.2   | Dim.1   | Dim.2  |  |
| 1        | 3.1686  | 2.4303  | 1.7373  | 1.1939 |  |
| 3        | 0.3878  | 6.5646  | 0.026   | 8.7106 |  |
| 34       | 2.4593  | -2.8035 | 1.0466  | 1.5887 |  |
| 35       | 3.2729  | -1.6047 | 1.8536  | 0.5205 |  |
| 36       | 3.7468  | -5.431  | 2.4291  | 5.9621 |  |
| 68       | 0.1107  | 4.2467  | 0.0021  | 3.6453 |  |
| 80       | 0.0799  | 4.3033  | 0.0011  | 3.7431 |  |
| 101      | 3.1945  | -2.2996 | 1.7658  | 1.0689 |  |
| 117      | 4.0823  | -5.1934 | 2.8837  | 5.4518 |  |
| 137      | 0.4441  | 4.9721  | 0.0341  | 4.997  |  |
| 141      | -3.9311 | -0.8162 | 2.674   | 0.1347 |  |
| 174      | -3.4039 | -1.4032 | 2.0049  | 0.398  |  |
| 190      | -3.4585 | -1.0375 | 2.0697  | 0.2176 |  |

Figure 4.6 : Tableau des coordonnées et contributions des individus contribuant le plus sur les 2 premiers axes.

| \$quanti           |         |             |         |
|--------------------|---------|-------------|---------|
|                    |         | correlation | p.value |
| Altitude           |         | 0.748       | 0.000   |
| Moisture.Percentag | ge      | 0.558       | 0.000   |
| Category.Two.Defe  | cts_log | 0.417       | 0.000   |
| Quakers_log        |         | 0.343       | 0.000   |
| Weight.kg          |         | 0.238       | 0.001   |
| Body               |         | 0.139       | 0.046   |
| \$quali            |         |             |         |
|                    | R2      | p.value     |         |
| Country.of.Origin  | 0.862   | 0.000       |         |
| classe             | 0.755   | 0.000       |         |
| Variety            | 0.749   | 0.000       |         |
| Processing.Method  | 0.184   | 0.000       |         |
| Color              | 0.068   | 0.027       |         |
|                    |         |             |         |
|                    |         |             |         |

|                                          | Estimate | p.value |
|------------------------------------------|----------|---------|
| classe=1                                 | 0.007    | 0.000   |
| Country.of.Origin=Ethiopia               | 2.343    | 0.000   |
| Variety=Ethiopian Heirlooms              | 2.768    | 0.000   |
| classe=4                                 | 2.158    | 0.000   |
| Country.of.Origin=Colombia               | 1.355    | 0.000   |
| Variety=Caturra                          | 0.985    | 0.000   |
| Processing.Method=Washed / Wet           | 0.226    | 0.000   |
| Country.of.Origin=Guatemala              | 0.550    | 0.001   |
| Processing.Method=Anaerobic              | 2.307    | 0.033   |
| Variety=Castillo                         | 2.141    | 0.033   |
| Variety=Bourbon                          | 0.334    | 0.036   |
| Color=greenish                           | 0.669    | 0.043   |
| Country.of.Origin=Peru                   | 1.126    | 0.043   |
| Processing.Method=Natural / Dry          | -0.645   | 0.039   |
| Variety=Gesha                            | -1.162   | 0.006   |
| Variety=SL34                             | -1.969   | 0.006   |
| Color=blue-green                         | -1.204   | 0.004   |
| Processing.Method=Pulped natural / honey | -1.734   | 0.000   |
| Variety=Typica                           | -2.685   | 0.000   |
| Country.of.Origin=Taiwan                 | -2.593   | 0.000   |
| classe=2                                 | -2.791   | 0.000   |

Figure 4.7 : Description de l'axe 1 par les variables quantitatives et qualitatives.

Les résultats obtenus et présentés dans les figures 4.2, 4.3 et 4.7 montrent que les variables qui contribuent le plus à l'axe 1 sont les variables Altitude, Pays d'origine, et Variété, et celles qui contribuent d'une façon plus modérée sont les variables Taux d'humidité, Défauts de catégorie 2 et Quakers.

\$category

D'après les figures 4.5 et 4.7, et les descriptions de la classe 4, les modalités positivement associées à l'axe 1 sont : les pays Éthiopie, Colombie et Guatemala, les variétés Ethiopian Heirlooms et Caturra, une altitude élevée, et un taux d'humidité et de défauts (catégories 2 et quakers) plus élevés que pour l'ensemble des cafés.

De même, en exploitant les figures 4.5 et 4.7, et les descriptions de la classe 2, on peut affirmer que les modalités négativement associées à l'axe 1 sont : le pays Taiwan, la variété Typica, une altitude basse et très peu de défauts (de catégorie 2 ou quakers).

On peut vérifier cette interprétation avec des individus (<u>annexe A</u>) aux fortes coordonnées (figure 4.4 et 4.6). Par exemple, l'individu 141 est bien issu de Taiwan, cultivé à basse altitude et de variété Typica, sans aucun défaut, alors que les individus 48 et 35, qui sont à l'opposé du 141 sur l'axe 1, sont bien des cafés d'Éthiopie ou du Guatemala, cultivés à haute altitude et de la variété Ethiopian Heirlooms et Catuai, avec des défauts (de catégorie 2 et quakers).

#### 2e dimension:

|                    |            |           | \$category                    |          |         |                                 |        |       |
|--------------------|------------|-----------|-------------------------------|----------|---------|---------------------------------|--------|-------|
| \$quanti           |            |           |                               | Estimate | p.value |                                 |        |       |
|                    | correlatio | n p.value | classe=3                      | 3.406    | 0.000   | Variety=Castillo                | 1.757  | 0.037 |
| Moisture.Percentag | je 0.36    | 6 0.000   | Variety=Catimor               | 2.693    | 0.000   | Variety=Pacamara                | 1.667  | 0.046 |
| Aftertaste         | -0.13      | 8 0.047   | Processing.Method=Semi Washed | 3.328    | 0.000   | classe=5                        | -1.552 | 0.025 |
| Body               | -0.14      | 3 0.039   | Country.of.Origin=Laos        | 4.494    | 0.000   | Variety=SL14                    | -2.501 | 0.025 |
| Total.Cup.Points   | -0.16      | 3 0.019   | Color=brownish                | 1.750    | 0.000   | Country.of.Origin=Uganda        | -2.438 | 0.025 |
| Acidity            | -0.17      | 8 0.010   | Color=yellowish               | 1.712    | 0.000   | Color=green                     | -0.899 | 0.007 |
| Overall            | -0.18      | 4 0.008   | Country.of.Origin=Vietnam     | 2.874    | 0.000   | Country.of.Origin=Taiwan        | -0.956 | 0.002 |
| Weight.kg          | -0.33      | 9 0.000   | Country.of.Origin=Thailand    | 1.366    | 0.000   | Variety=Typica                  | -1.244 | 0.002 |
|                    |            |           | Country.of.Origin=Indonesia   | 3.240    | 0.000   | classe=2                        | -0.096 | 0.001 |
| \$quali            |            |           | Variety=Java                  | 3.121    | 0.000   | Processing.Method=Natural / Dry | -0.881 | 0.000 |
|                    | R2 p.valu  | e         | Variety=Mundo Novo            | 2.342    | 0.000   | Color=greenish                  | -1.546 | 0.000 |
| Country.of.Origin  | 0.771      | 0         | Country.of.Origin=Brazil      | 1.302    | 0.000   | Country.of.Origin=Ethiopia      | -2.965 | 0.000 |
| Variety            | 0.737      | 0         | Variety=Blend                 | 0.655    | 0.001   | classe=4                        | -2.256 | 0.000 |
| classe             | 0.584      | 0         | Color=bluish-areen            | 0.228    | 0.009   | Variety=Ethiopian Heirlooms     | -3.440 | 0.000 |
| Color              | 0.332      | 0         | Processing.Method=Anaerobic   | 1.016    | 0.015   | Processing.Method=Washed / Wet  | -2.131 | 0.000 |
| Processing.Method  | 0.301      | 0         | Country.of.Origin=El Salvador | 0.893    | 0.020   |                                 |        |       |

Figure 4.8 : Tableau de description de l'axe 2 par variables quantitatives et qualitatives.

Les résultats obtenus et présentés dans les figures 4.2, 4.3 et 4.8 montrent que les variables qui contribuent le plus à l'axe 2 sont les variables Pays d'origine, et Variété, et d'une façon plus modérée, les variables Méthode de Traitement, Couleur, Masse produite et Taux d'humidité.

D'après la figure 4.8, les cafés observés en haut de l'axe sont des cafés issus d'Asie du Sud-Est (Laos, Indonésie, Vietnam), de couleur brunâtre ou jaunâtre, souvent traités par une méthode de traitement *Semi Washed*, de variétés Catimor, Java ou Mundo Novo, et produits en petite quantité, tandis que les cafés observés le plus en bas sont des cafés provenant d'Ethiopie et de variété Typica ou Ethiopian Heirlooms, de couleur verte/verdâtre, traités par la méthode *Washed/Wet*, et produits en grande quantité.

On retrouve ces observations avec les classes : la classe 3 se situant en haut de l'axe, et la classe 4 en bas.

Cette interprétation peut être validée par les individus 137 et 36, choisis pour leurs oppositions et leurs contributions (figure 4.4 et 4.6). On constate tout de même les limites de cette interprétation en observant des individus à coordonnées plus modérées, ayant pourtant des coordonnées opposées sur l'axe 2, et qui n'ont pas les critères précisés dans ce paragraphe (voir les individus 1 et 101). Cela est dû à la faible inertie de la seconde composante (environ 4%).

### C. SECOND PLAN FACTORIEL (7,7% D'INERTIE)



Graph of the quantitative variables

1.0

Category.Two.Defects\_log
Category.One.Defects\_log
Aftertaste
Acidity

-0.5

-1.0

-0.5

0.0

0.5

1.0

Dim 3 (3.98%)

Figure 4.9 : Graphe des variables aux plus fortes contributions

Figure 4.10 : Cercle des corrélations des variables aux plus fortes coordonnées



Figure 4.11 : Représentations graphiques des individus et des centres des classes dans le premier plan factoriel

Figure 4.12 : Tableau des coordonnées et contributions des individus contribuant le plus sur les axes 3 et 4.

|          | Co      | ord     | Contrib |        |  |
|----------|---------|---------|---------|--------|--|
| Individu | Dim.3   | Dim.4   | Dim.3   | Dim.4  |  |
| 1        | -2.079  | -4.1967 | 0.9197  | 4.0235 |  |
| 24       | -1.199  | -3.1828 | 0.3059  | 2.3143 |  |
| 35       | 5.1826  | 1.0093  | 5.7155  | 0.2327 |  |
| 36       | 7.1365  | 0.7738  | 10.8376 | 0.1368 |  |
| 44       | -4.1946 | 5.5423  | 3.744   | 7.0174 |  |
| 77       | 5.2081  | 1.1367  | 5.7718  | 0.2952 |  |
| 117      | 7.1136  | 0.6821  | 10.768  | 0.1063 |  |
| 119      | -4.1692 | 5.6054  | 3.6988  | 7.1781 |  |
| 121      | -4.1969 | 5.5331  | 3.7481  | 6.9942 |  |
| 132      | -0.6994 | -3.381  | 0.1041  | 2.6115 |  |

| \$quanti       |              |       | \$category                      |          |         |                                |        |       |
|----------------|--------------|-------|---------------------------------|----------|---------|--------------------------------|--------|-------|
| corr           | elation p.va | lue   | I                               | Estimate | p.value |                                |        |       |
| Weight.kg      | 0.466 0.     | 000   | classe=4                        | 4.500    | 0.000   |                                |        |       |
| Acidity        | 0.193 0.     | 005   | Country.of.Origin=Ethiopia      | 4.591    | 0.000   | Variety=Catuai                 | -0.997 | 0.004 |
|                |              |       | Variety=Ethiopian Heirlooms     | 4.945    | 0.000   | Country.of.Origin=Colombia     | -0.818 | 0.002 |
| \$quali        |              |       | Processing.Method=Natural / Dry | 0.977    | 0.000   | Country.of.Origin=Honduras     | -1.157 | 0.001 |
|                | R2 p.        | value | Color=yellow-green              | 1.199    | 0.000   | Color=green                    | -0.862 | 0.000 |
| Country.of.Ori | gin 0.828    | 0     | Country.of.Origin=Brazil        | 1.404    | 0.009   | classe=5                       | -4.367 | 0.000 |
| Variety        | 0.808        | 0     | classe=3                        | 0.604    | 0.012   | Variety=SL14                   | -4.079 | 0.000 |
| classe         | 0.712        | 0     | Varietv=Mundo Novo              | 1.746    | 0.028   | Country.of.Origin=Uganda       | -3.991 | 0.000 |
| Processing.Met | hod 0.249    | 0     | Country.of.Origin=Taiwan        | 0.550    | 0.029   | Variety=Caturra                | -1.259 | 0.000 |
| Color          | 0.166        | 0     | Country.of.Origin=Guatemala     | -0.566   | 0.014   | classe=1                       | -0.831 | 0.000 |
|                |              |       | Country.of.Origin=Costa Rica    | -1.140   | 0.010   | Processing.Method=Washed / Wet | -0.741 | 0.000 |

Figure 4.13: Description de l'axe 3 par les variables quantitatives et qualitatives.

Sur ce second plan, on n'observe pas de séparation des classes 1, 2 et 3. L'axe 3 porte sur les variables Pays d'origine et Variétés, plus modérément sur la variable Masse produite, et légèrement sur les variables Acidité, Couleur et Méthode de Traitement. Il oppose la classe 4 et la classe 5:

- on retrouve à droite des cafés d'Éthiopie, de variété Ethiopian Heirlooms, et avec une acidité plus marquée et une masse produite plus importante ;
- et à gauche des cafés d'Ouganda de variété SL14.

L'axe 4 positionne en haut des cafés d'Ouganda (individu 44, 119 et 121), tous de variété SL14, traités par la méthode *Washed/Wet*, de couleur verte ; et en bas des cafés de Colombie, de variété Blend ou Castillo, et traités par la méthode *Anaerobic* (individus 1, 24 et 132).

Pour cette interprétation des axes, on aurait aussi pu utiliser d'autres graphiques comme celui des centres des individus prenant la même modalité. Ces graphiques sont disponibles en annexe O, et sont en adéquation avec les descriptions des axes faites précédemment.

Finalement, l'analyse factorielle permet de mettre en évidence les corrélations et les oppositions entre des individus dans les dimensions principales, et pose le cadre permettant d'obtenir les regroupements vus dans la partie III.C. Cette analyse fournit une vision globale et structurelle des données, tandis que la classification permet une interprétation plus ciblée et utile pour cette étude.

## V. CONCLUSION

La classification par une approche tandem basée sur l'AFDM permet d'identifier cinq groupes de cafés, définis en fonction de leurs conditions géographiques et des paramètres de production appliqués. Les profils des classes obtenues, en lien avec les notes sensorielles et les défauts, sont les suivants :

#### - Cafés d'Amérique du Sud:

Cultivés à haute altitude, issus des variétés Caturra, Bourbon, Catuai, et traités par la méthode *Washed/Wet*, ces cafés ont des scores faibles pour la plupart des critères sensoriels et présentent davantage de défauts ;

#### - Cafés de Taiwan et de Hawaï:

Cultivés à basse altitude, avec un faible taux d'humidité, issus des variété Typica, Gesha ou SL34, et traités par la méthode *Pulped Natural/Honey*, ces cafés se distinguent par de bonnes notes sensorielles sur la plupart des critères et un nombre faible de défauts ;

#### - Cafés d'Asie du Sud-Est:

Issus en majorité de la variété Catimor, ces cafés présentent plus d'humidité, et ont des scores faibles en Acidité, Impression générale et en Corps;

#### - Cafés d'Éthiopie:

Cultivés à très haute altitude, issus de la variété Ethiopian Heirlooms, et bien qu'affichant davantage de défauts, ces cafés obtiennent d'excellents scores, surtout en Acidité et en Corps;

#### - Cafés d'Ouganda:

Issus de la variété SL14, ces cafés sont exempts de défauts de type quakers, et obtiennent une note supérieure à la moyenne en Arôme, bien qu'ils ne se démarquent pas sur les autres critères sensoriels.

A l'aide de ces observations, on peut donc répondre à la problématique : les critères géographiques, la variété et les méthodes de traitement, sont bien liés aux qualités sensorielles et aux défauts des cafés.

Ces résultats peuvent offrir des pistes stratégiques commerciales, comme mettre en avant l'origine des cafés afin de valoriser leurs spécificités gustatives, ou encore dédier certains cafés à des gammes spécifiques en fonction de leur provenance.

#### **REMERCIEMENTS**

« Je tiens à remercier les professeurs, V incent Audigier et Mouhamoudou Ndao, pour la clarté et la rigueur des cours et travaux dirigés, ainsi que pour leurs remarques constructives qui ont grandement contribué à la réalisation de ce projet. »

Valérie Plusquellec

#### **REFERENCES**

Cours et TD de l'UE STA101, CNAM Vincent Audigier et Mouhamadou Ndao

R pour la statistique et la science des données Sous la direction de François Husson, 2018

Analyse de données avec R François Husson, Sébastien Lê, Jérôme Pagès, 2009

The World Atlas of coffee from beans to brewing – coffees explored, explained and enjoyed James Hoffmann, 2014

A System to Assess Coffee Value: Understanding the SCA's Coffee Value Assessment The Specialty Coffee Association, 2024

#### Source de la banque de données :

https://github.com/fatih-boyar/coffee-quality-data-CQI/tree/main?tab=readme-ov-file

# VI. ANNEXES

## A. EXTRAIT DU JEU DE DONNEES

| ID  | Country of<br>Origin | Altitude | Weight.kg | Variety             | Processing Method      | Moisture<br>Percentage | Color        |
|-----|----------------------|----------|-----------|---------------------|------------------------|------------------------|--------------|
| 1   | Colombia             | 1815     | 35        | Castillo            | Anaerobic              | 11.8                   | green        |
| 2   | Taiwan               | 1200     | 80        | Gesha               | Washed / Wet           | 10.5                   | blue-green   |
| 3   | Laos                 | 1300     | 475       | Java                | Semi Washed            | 10.4                   | yellowish    |
| 11  | Ethiopia             | 2000     | 300       | Ethiopian Heirlooms | Natural / Dry          | 11.8                   | greenish     |
| 17  | Ethiopia             | 2000     | 40        | Blend               | Washed / Wet           | 11.3                   | green        |
| 24  | Colombia             | 1350     | 30        | Castillo            |                        | 11.3                   | brownish     |
| 35  | Ethiopia             | 2250     | 19200     | Ethiopian Heirlooms | Natural / Dry          | 12.3                   | yellow-green |
| 36  | Ethiopia             | 1700     | 6144000   | Ethiopian Heirlooms | Washed / Wet           | 9.4                    | greenish     |
| 41  | Taiwan               | 400      | 10        | Typica              | Natural / Dry          | 10                     | brownish     |
| 44  | Uganda               | 1905     | 19200     | SL14                | Washed / Wet           | 11                     | green        |
| 48  | Guatemala            | 4700     | 18960     | Catuai              | Washed / Wet           | 11.3                   | green        |
| 52  | Indonesia            | 1200     | 19200     | Catimor             |                        | 11.9                   | bluish-green |
| 68  | Vietnam              | 650      | 15        | Catimor             | Natural / Dry          | 11.6                   | brownish     |
| 77  | Ethiopia             | 2361     | 19200     | Ethiopian Heirlooms | Natural / Dry          | 11                     | yellow-green |
| 80  | Indonesia            | 1300     | 60        | Blend               | Semi Washed            | 11.5                   | blue-green   |
| 91  | Ethiopia             | 1800     | 18000     | Ethiopian Heirlooms | Washed / Wet           | 11.3                   | green        |
| 97  | Thailand             | 1350     | 30        | Catimor             | Natural / Dry          | 11.6                   | yellowish    |
| 101 | Ethiopia             | 2000     | 6000      | Ethiopian Heirlooms | Washed / Wet           | 12                     | green        |
| 105 | Mexico               | 1200     | 18000     | Sarchimor           | Washed / Wet           | 11.7                   | green        |
| 117 | Ethiopia             | 1700     | 6144000   | Ethiopian Heirlooms | Washed / Wet           | 10.4                   | greenish     |
| 119 | Uganda               | 1650     | 9000      | SL14                | Washed / Wet           | 10.1                   | green        |
| 120 | Taiwan               | 1100     | 40        | Blend               | Washed / Wet           | 10.1                   | blue-green   |
| 121 | Uganda               | 1905     | 19200     | SL14                | Washed / Wet           | 11.1                   | green        |
| 126 | Costa Rica           | 1850     | 22080     | Caturra             | Washed / Wet           | 10                     | green        |
| 132 | Colombia             | 1390     | 24        | Blend               | Anaerobic              | 10.9                   | brownish     |
| 137 | Laos                 | 1250     | 1560      | Catimor             | Natural / Dry          | 11.8                   | brownish     |
| 141 | Taiwan               | 275      | 12        | Typica              | Pulped natural / honey | 8.9                    | blue-green   |
| 174 | Taiwan               | 460      | 60        |                     | Pulped natural / honey | 8.1                    | greenish     |
| 190 | Taiwan               | 435      | 8         |                     | Pulped natural / honey | 8.5                    | green        |
| 206 | El Salvador          | 1200     | 2         | Maragogype          | Natural / Dry          | 11                     | bluish-green |
| 207 | Brazil               | 975      | 36000     | Mundo Novo          | Semi Washed            | 11.3                   | green        |

| ID  | Aroma | Flavor | Aftertaste | Acidity | Body | Balance | Uniformity | Clean<br>Cup | Sweetness | Overall | Total Cup<br>Points | Category<br>One Defects | Quakers | Category<br>Two Defects |
|-----|-------|--------|------------|---------|------|---------|------------|--------------|-----------|---------|---------------------|-------------------------|---------|-------------------------|
| 1   | 8.58  | 8.5    | 8.42       | 8.58    | 8.25 | 8.42    | 10.0       | 10.0         | 10.0      | 8.58    | 89.33               | 0                       | 0       | 3                       |
| 2   | 8.5   | 8.5    | 7.92       | 8.0     | 7.92 | 8.25    | 10.0       | 10.0         | 10.0      | 8.5     | 87.58               | 0                       | 0       | 0                       |
| 3   | 8.33  | 8.42   | 8.08       | 8.17    | 7.92 | 8.17    | 10.0       | 10.0         | 10.0      | 8.33    | 87.42               | 0                       | 0       | 2                       |
| 11  | 8.08  | 8.25   | 8.0        | 8.08    | 7.92 | 7.92    | 10.0       | 10.0         | 10.0      | 8.0     | 86.25               | 0                       | 1       | 1                       |
| 17  | 8.17  | 8.08   | 7.92       | 8.17    | 7.75 | 7.92    | 10.0       | 10.0         | 10.0      | 8.08    | 86.08               | 0                       | 2       | 2                       |
| 24  | 8.08  | 8.0    | 7.83       | 8.17    | 7.75 | 7.83    | 10.0       | 10           | 10        | 8.0     | 85.67               | 0                       | 0       | 2                       |
| 35  | 8.0   | 8.08   | 8.0        | 8.0     | 7.67 | 7.75    | 10.0       | 10.0         | 10.0      | 7.83    | 85.33               | 0                       | 3       | 4                       |
| 36  | 7.92  | 7.75   | 7.83       | 8.17    | 8.0  | 7.75    | 10.0       | 10.0         | 10.0      | 7.83    | 85.25               | 0                       | 1       | 1                       |
| 41  | 8.0   | 7.92   | 7.83       | 7.92    | 7.75 | 7.75    | 10.0       | 10.0         | 10.0      | 7.92    | 85.08               | 0                       | 0       | 0                       |
| 44  | 8.0   | 7.92   | 7.75       | 7.75    | 7.75 | 7.92    | 10.0       | 10           | 10        | 7.92    | 85.0                | 0                       | 0       | 1                       |
| 48  | 7.67  | 8.0    | 7.75       | 7.92    | 8.0  | 7.83    | 10.0       | 10.0         | 10.0      | 7.83    | 85.0                | 0                       | 0       | 4                       |
| 52  | 7.83  | 7.92   | 7.75       | 7.83    | 7.83 | 7.83    | 10.0       | 10.0         | 10.0      | 7.83    | 84.83               | 0                       | 3       | 2                       |
| 68  | 8.0   | 7.83   | 7.75       | 7.67    | 7.58 | 7.83    | 10.0       | 10.0         | 10.0      | 7.92    | 84.58               | 0                       | 0       | 0                       |
| 77  | 7.83  | 7.75   | 7.58       | 7.92    | 8.0  | 7.5     | 10.0       | 10.0         | 10.0      | 7.75    | 84.33               | 0                       | 5       | 4                       |
| 80  | 7.67  | 7.67   | 7.83       | 7.83    | 7.67 | 7.75    | 10.0       | 10.0         | 10.0      | 7.83    | 84.25               | 0                       | 1       | 1                       |
| 91  | 8.0   | 7.75   | 7.5        | 7.67    | 7.67 | 7.67    | 10.0       | 10.0         | 10.0      | 7.75    | 84.0                | 1                       | 1       | 1                       |
| 97  | 7.75  | 7.67   | 7.58       | 7.75    | 7.75 | 7.67    | 10.0       | 10.0         | 10.0      | 7.75    | 83.92               | 0                       | 0       | 3                       |
| 101 | 7.83  | 7.67   | 7.5        | 7.92    | 7.5  | 7.67    | 10.0       | 10.0         | 10.0      | 7.75    | 83.83               | 0                       | 0       | 12                      |
| 105 | 7.67  | 7.67   | 7.58       | 7.67    | 7.83 | 7.58    | 10.0       | 10.0         | 10.0      | 7.75    | 83.75               | 4                       | 0       | 12                      |
| 117 | 7.42  | 7.42   | 7.42       | 8.0     | 7.92 | 7.67    | 10.0       | 10.0         | 10.0      | 7.67    | 83.5                | 0                       | 1       | 11                      |
| 119 | 7.75  | 7.75   | 7.5        | 7.5     | 7.58 | 7.58    | 10.0       | 10.0         | 10.0      | 7.75    | 83.42               | 0                       | 0       | 3                       |
| 120 | 7.75  | 7.92   | 7.67       | 7.92    | 7.75 | 7.83    | 8.67       | 10.0         | 10.0      | 7.92    | 83.42               | 0                       | 0       | 0                       |
| 121 | 7.75  | 7.67   | 7.58       | 7.5     | 7.67 | 7.5     | 10.0       | 10.0         | 10.0      | 7.67    | 83.33               | 0                       | 0       | 5                       |
| 126 | 7.58  | 7.75   | 7.42       | 7.67    | 7.5  | 7.75    | 10.0       | 10.0         | 10.0      | 7.67    | 83.33               | 0                       | 0       | 3                       |
| 132 | 7.67  | 7.67   | 7.58       | 7.67    | 7.58 | 7.58    | 10.0       | 10.0         | 10.0      | 7.5     | 83.25               | 0                       | 0       | 2                       |
| 137 | 7.67  | 7.75   | 7.33       | 7.67    | 7.58 | 7.5     | 10.0       | 10.0         | 10.0      | 7.58    | 83.08               | 0                       | 0       | 7                       |
| 141 | 7.5   | 7.67   | 7.58       | 7.58    | 7.5  | 7.5     | 10.0       | 10.0         | 10.0      | 7.58    | 82.92               | 0                       | 0       | 0                       |
| 174 | 7.33  | 7.42   | 7.42       | 7.5     | 7.42 | 7.5     | 10.0       | 10.0         | 10.0      | 7.5     | 82.08               | 0                       | 0       | 3                       |
| 190 | 7.33  | 7.5    | 7.42       | 7.33    | 7.33 | 7.25    | 10.0       | 10.0         | 10.0      | 7.33    | 81.5                | 0                       | 0       | 0                       |
| 206 | 6.5   | 6.75   | 6.75       | 7.17    | 7.08 | 7.0     | 10.0       | 10.0         | 10.0      | 6.83    | 78.08               | 0                       | 12      | 13                      |
| 207 | 7.25  | 7.08   | 6.67       | 6.83    | 6.83 | 6.67    | 10.0       | 10.0         | 10.0      | 6.67    | 78.0                | 0                       | 0       | 1                       |

#### B. LEXIQUE DES VARIABLES SENSORIELLES

**Arôme** – *Aroma* : perception olfactive du café infusé à deux moments.

**Saveur – Flavor**: perception issue à la fois du goût et de la composante olfactive lorsque le café est en bouche.

**Arrière-goût** – *Aftertaste* : perception issue du goût et de la composante olfactive après avoir avalé ou recraché le café.

**Acidité** – *Acidity* : perception du goût acide provoqué par l'infusion, qui peut varier en intensité et en caractère.

**Corps –** *Body* : perception de l'épaisseur ou de la viscosité du café en bouche.

Équilibre - Balance : perception de l'harmonisation des différentes composantes aromatiques.

Uniformité – Uniformity: perception de la cohérence du café d'une tasse à l'autre.

**Propreté de la tasse – Clean Cup**: perception de l'absence de tout défaut ou arrière-goût indésirable, comme l'acidité excessive, le goût moisi ou rassis.

**Douceur – Sweetness** : perception d'une qualité telle que caramel, fruitée ou florale.

Impression générale – *Overall*: perception générale de la qualité, y compris les aspects non couverts dans les autres sections, comme les préférences personnelles.

#### C. EXPLICATION DES DEFAUTS MESURES DANS LE CAFE

Quackers: grains non mûrs.

Défaut de catégorie 1: grains complètement noirs ou fermentés, gousses/cerises, et bâtons ou pierres de taille grande ou moyenne.

Défaut de catégorie 2 : coques/enveloppes, grains cassés ou ébréchés, dommages causés par des insectes, grains partiellement noirs ou fermentés, grains en coque, petits bâtons ou petites pierres, et dommages causés par l'eau.

**<u>NB</u>**: pour un échantillon de 350 grammes de grains, le café de spécialité ne doit présenter aucun défaut de catégorie 1 et un maximum de cinq défauts de catégorie 2.

# D. FREQUENCES DES MODALITES DES 4 VARIABLES QUALITATIVES

| \$Country.of.Origin          |    |      |      |  |
|------------------------------|----|------|------|--|
|                              | n  | %    | val% |  |
| Brazil                       | 10 | 4.8  | 4.8  |  |
| Colombia                     | 19 | 9.2  | 9.2  |  |
| Costa Rica                   | 8  | 3.9  | 3.9  |  |
| El Salvador                  | 7  | 3.4  | 3.4  |  |
| Ethiopia                     | 11 | 5.3  | 5.3  |  |
| Guatemala                    | 21 | 10.1 | 10.1 |  |
| Honduras                     | 13 | 6.3  | 6.3  |  |
| Indonesia                    | 3  | 1.4  | 1.4  |  |
| Kenya                        | 2  | 1.0  | 1.0  |  |
| Laos                         | 3  | 1.4  | 1.4  |  |
| Madagascar                   | 1  | 0.5  | 0.5  |  |
| Mexico                       | 4  | 1.9  | 1.9  |  |
| Myanmar                      | 1  | 0.5  | 0.5  |  |
| Nicaragua                    | 7  | 3.4  | 3.4  |  |
| Panama                       | 2  | 1.0  | 1.0  |  |
| Peru                         | 4  | 1.9  | 1.9  |  |
| Taiwan                       | 61 | 29.5 | 29.5 |  |
| Tanzania, United Republic Of | 6  | 2.9  | 2.9  |  |
| Thailand                     | 12 | 5.8  | 5.8  |  |
| Uganda                       | 3  | 1.4  | 1.4  |  |
| United States (Hawaii)       | 5  | 2.4  | 2.4  |  |
| Vietnam                      | 4  | 1.9  | 1.9  |  |
|                              |    |      |      |  |

| \$Processing. | .Method |
|---------------|---------|
|---------------|---------|

|                        | n   | %    | val% |
|------------------------|-----|------|------|
| Anaerobic              | 2   | 1.0  | 1.0  |
| Natural / Dry          | 48  | 23.2 | 23.2 |
| Pulped natural / honey | 26  | 12.6 | 12.6 |
| Semi Washed            | 3   | 1.4  | 1.4  |
| Washed / Wet           | 128 | 61.8 | 61.8 |

#### \$Color

|              | n   | 76   | val% |
|--------------|-----|------|------|
| blue-green   | 12  | 5.8  | 5.8  |
| bluish-green | 21  | 10.1 | 10.1 |
| brownish     | 10  | 4.8  | 4.8  |
| green        | 101 | 48.8 | 48.8 |
| greenish     | 36  | 17.4 | 17.4 |
| yellow-green | 17  | 8.2  | 8.2  |
| yellowish    | 10  | 4.8  | 4.8  |
|              |     |      |      |

### \$Variety

|                     | n  | %    | val% |
|---------------------|----|------|------|
| Blend               | 18 | 8.7  | 8.7  |
| Bourbon             | 22 | 10.6 | 10.6 |
| Castillo            | 2  | 1.0  | 1.0  |
| Catimor             | 11 | 5.3  | 5.3  |
| Catrenic            | 1  | 0.5  | 0.5  |
| Catuai              | 14 | 6.8  | 6.8  |
| Caturra             | 30 | 14.5 | 14.5 |
| Ethiopian Heirlooms | 9  | 4.3  | 4.3  |
| Gayo                | 1  | 0.5  | 0.5  |
| Gesha               | 29 | 14.0 | 14.0 |
| Java                | 3  | 1.4  | 1.4  |
| Lempira             | 1  | 0.5  | 0.5  |
| Maragogype          | 2  | 1.0  | 1.0  |
| Mundo Novo          | 4  | 1.9  | 1.9  |
| Pacamara            | 2  | 1.0  | 1.0  |
| Pacas               | 1  | 0.5  | 0.5  |
| Parainema           | 2  | 1.0  | 1.0  |
| Santander           | 1  | 0.5  | 0.5  |
| Sarchimor           | 2  | 1.0  | 1.0  |
| SHG                 | 3  | 1.4  | 1.4  |
| SL14                | 3  | 1.4  | 1.4  |
| SL28                | 2  | 1.0  | 1.0  |
| SL34                | 8  | 3.9  | 3.9  |
| Typica              | 36 | 17.4 | 17.4 |

# E. BOITES A MOUSTACHE DES VARIABLES QUANTITATIVES





# F. DIAGRAMMES EN BARRE DES VARIABLES QUALITATIVES







### G. REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS DE CORRÉLATION DE SPEARMAN



### H. REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS V DE CRAMER



## I. REPRÉSENTATION GRAPHIQUE DES COEFFICIENTS ETA<sup>2</sup> ENTRE UNE VARIABLE QUALITATIVE ET UNE QUANTITATIVE.



## J. BOITES À MOUSTACHE DE LA VARIABLE SCORE TOTAL SUIVANT LES MODALITÉS DES VARIABLES QUALITATIVES.







#### K. ACP SUR LES VARIABLES SENSORIELLES ET DEFAUTS

Figure K.1: Tableau des valeurs propres et des inerties associées

|         | eigenvalue | percentage of variance | cumulative | percentage | of | variance  |
|---------|------------|------------------------|------------|------------|----|-----------|
| comp 1  | 6.02056195 | 60.2056195             |            |            |    | 60.20562  |
| comp 2  | 1.30399458 | 13.0399458             |            |            |    | 73.24557  |
| comp 3  | 1.01029297 | 10.1029297             |            |            |    | 83.34849  |
| comp 4  | 0.54441767 | 5.4441767              |            |            |    | 88.79267  |
| comp 5  | 0.38466113 | 3.8466113              |            |            |    | 92.63928  |
| comp 6  | 0.19737920 | 1.9737920              |            |            |    | 94.61308  |
| comp 7  | 0.19042828 | 1.9042828              |            |            |    | 96.51736  |
| comp 8  | 0.13491544 | 1.3491544              |            |            |    | 97.86651  |
| comp 9  | 0.12039006 | 1.2039006              |            |            |    | 99.07041  |
| comp 10 | 0.09295871 | 0.9295871              |            |            | 1  | 100.00000 |

Figure K.2 : Valeurs propres associées à chaque dimension



#### Interprétation:

D'après la règle de Kaiser, on conserve 3 composantes (figure K.1), ce qui est confirmé par la présence d'un coude entre la 3<sup>e</sup> et la 4<sup>e</sup> composante (figure K.2).

Les 3 premiers axes cumulent 83% de l'inertie du nuage, ce qui est relativement satisfaisant pour un nombre total de 10 variables.

Figure K.3: Graphe des individus sur le premier plan



Figure K.4: Graphe des variables sur le premier plan



#### Interprétation:

On remarque que sur le premier axe, qui rassemble plus de 60% de l'inertie totale, les 7 variables sensorielles sont bien représentées et peuvent être considérées comme liées linéairement.

On observe aussi que dans le plan qui rassemble plus de 73% de l'inertie totale, les variables *Category.Two.Defects* et *Quakers* sont relativement bien représentées et sont indépendantes des variables sensorielles dans ce plan.

Figure K.5: Graphe des individus pour la 3<sup>e</sup> composante



Figure K.6: Graphe des variables pour la 3° composante



#### Interprétation:

La 3° composante est fortement liée à la variable *Category.One.Defects* et dans ce plan qui rassemble plus de 70% de l'inertie, cette variable est indépendante des variables sensorielles.

# L. TABLEAU DES VALEURS PROPRES ET DES INERTIES ASSOCIÉES

| comp 1         2.792         4.898         4.898           comp 2         2.39         4.193         9.091           comp 3         2.27         3.983         13.074           comp 4         2.115         3.71         16.784           comp 5         1.97         3.456         20.24           comp 6         1.899         3.332         23.572           comp 7         26.849         20.24           comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19                                                                            |         | eigenvalue | percentage of variance | cumulative percentage of variance |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------------------|-----------------------------------|
| comp 3         2.27         3.983         13.074           comp 4         2.115         3.71         16.784           comp 5         1.97         3.456         20.24           comp 6         1.899         3.332         23.572           comp 7         1.868         3.277         26.849           comp 9         1.742         3.056         33.14           comp 9 1         1.676         2.94         36.08           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218                                                                             | comp 1  | 2.792      | 4.898                  | 4.898                             |
| comp 4         2.115         3.71         16.784           comp 5         1.97         3.456         20.24           comp 6         1.899         3.332         23.572           comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.014         1.999         65.19 <tr< td=""><td>comp 2</td><td>2.39</td><td>4.193</td><td>9.091</td></tr<> | comp 2  | 2.39       | 4.193                  | 9.091                             |
| comp 5         1.97         3.456         20.24           comp 6         1.899         3.332         23.572           comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 9         1.742         3.056         33.14           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.053         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.084         1.901         67.091 <t< td=""><td>comp 3</td><td>2.27</td><td>3.983</td><td>13.074</td></t<> | comp 3  | 2.27       | 3.983                  | 13.074                            |
| comp 6         1.899         3.332         23.572           comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 9         1.676         2.94         36.08           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091      <                                                                  | comp 4  | 2.115      | 3.71                   | 16.784                            |
| comp 6         1.899         3.332         23.572           comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 9 1         1.676         2.94         36.08           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091                                                                       | comp 5  | 1.97       | 3.456                  | 20.24                             |
| comp 7         1.868         3.277         26.849           comp 8         1.844         3.235         30.084           comp 9         1.742         3.056         33.14           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947                                                                       | _       | 1.899      | 3.332                  | 23.572                            |
| comp 8         1.844         3.235         30.084           comp 9         1.742         3.056         33.14           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752                                                                      |         | 1.868      | 3.277                  | 26.849                            |
| comp 9         1.742         3.056         33.14           comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543                                                                     | _       | 1.844      | 3.235                  | 30.084                            |
| comp 10         1.676         2.94         36.08           comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 18         1.297         2.276         57.082           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.758         74.301                                                                   | comp 9  | 1.742      | 3.056                  | 33.14                             |
| comp 11         1.648         2.892         38.972           comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.758         74.301           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023 <td>_</td> <td></td> <td>2.94</td> <td>36.08</td>               | _       |            | 2.94                   | 36.08                             |
| comp 12         1.623         2.848         41.82           comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023 <td></td> <td>1.648</td> <td>2.892</td> <td>38.972</td>          |         | 1.648      | 2.892                  | 38.972                            |
| comp 13         1.605         2.816         44.636           comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.522         76.023           comp 30         0.859         1.508         79.122 <td></td> <td>1.623</td> <td>2.848</td> <td>41.82</td>          |         | 1.623      | 2.848                  | 41.82                             |
| comp 14         1.562         2.741         47.377           comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122 <td></td> <td>1.605</td> <td>2.816</td> <td>44.636</td>         |         | 1.605      | 2.816                  | 44.636                            |
| comp 15         1.439         2.524         49.901           comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 20         1.147         2.012         63.23           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996 <td></td> <td></td> <td>2.741</td> <td>47.377</td>               |         |            | 2.741                  | 47.377                            |
| comp 16         1.411         2.475         52.376           comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 21         1.147         2.091         65.19           comp 23         1.084         1.901         67.091           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376 <td>-</td> <td></td> <td></td> <td></td>                         | -       |            |                        |                                   |
| comp 17         1.385         2.43         54.806           comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 24         1.029         1.806         70.752           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026 <td></td> <td></td> <td></td> <td></td>                          |         |            |                        |                                   |
| comp 18         1.297         2.276         57.082           comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721 <td></td> <td></td> <td></td> <td></td>                         |         |            |                        |                                   |
| comp 19         1.187         2.083         59.165           comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 37         0.65         1.141         88.399 <td></td> <td></td> <td></td> <td></td>                          |         |            |                        |                                   |
| comp 20         1.17         2.053         61.218           comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.345         84.721           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259 </td <td>-</td> <td>1.187</td> <td>2.083</td> <td>59.165</td>  | -       | 1.187      | 2.083                  | 59.165                            |
| comp 21         1.147         2.012         63.23           comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463 <td></td> <td>1.17</td> <td>2.053</td> <td>61.218</td>          |         | 1.17       | 2.053                  | 61.218                            |
| comp 22         1.117         1.959         65.19           comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 40         0.566         0.992         91.466 </td <td></td> <td>1.147</td> <td>2.012</td> <td>63.23</td>    |         | 1.147      | 2.012                  | 63.23                             |
| comp 23         1.084         1.901         67.091           comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466     <                                                         |         |            | 1.959                  | 65.19                             |
| comp 24         1.058         1.856         68.947           comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387     <                                                         |         | 1.084      | 1.901                  | 67.091                            |
| comp 25         1.029         1.806         70.752           comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 43         0.472         0.827         94.075     <                                                         |         |            |                        | 68.947                            |
| comp 26         1.021         1.791         72.543           comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075     <                                                         | -       |            | 1.806                  | 70.752                            |
| comp 27         1.002         1.758         74.301           comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858     <                                                         |         | 1.021      | 1.791                  | 72.543                            |
| comp 28         0.981         1.722         76.023           comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555     <                                                         |         | 1.002      | 1.758                  | 74.301                            |
| comp 29         0.908         1.592         77.615           comp 30         0.859         1.508         79.122           comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216     <                                                         |         | 0.981      | 1.722                  | 76.023                            |
| comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                         | _       | 0.908      | 1.592                  | 77.615                            |
| comp 31         0.827         1.45         80.573           comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                         | comp 30 | 0.859      | 1.508                  | 79.122                            |
| comp 32         0.811         1.423         81.996           comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                     |         | 0.827      | 1.45                   | 80.573                            |
| comp 33         0.787         1.38         83.376           comp 34         0.767         1.345         84.721           comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                  | _       | 0.811      | 1.423                  | 81.996                            |
| comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                                                                                                                                           | _       | 0.787      | 1.38                   | 83.376                            |
| comp 35         0.744         1.305         86.026           comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                                                                                                                                           | comp 34 | 0.767      | 1.345                  | 84.721                            |
| comp 36         0.703         1.233         87.259           comp 37         0.65         1.141         88.399           comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 0.744      | 1.305                  | 86.026                            |
| comp 37       0.65       1.141       88.399         comp 38       0.606       1.063       89.463         comp 39       0.576       1.011       90.473         comp 40       0.566       0.992       91.466         comp 41       0.525       0.921       92.387         comp 42       0.491       0.861       93.247         comp 43       0.472       0.827       94.075         comp 44       0.447       0.784       94.858         comp 45       0.397       0.696       95.555         comp 46       0.377       0.661       96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |            |                        |                                   |
| comp 38         0.606         1.063         89.463           comp 39         0.576         1.011         90.473           comp 40         0.566         0.992         91.466           comp 41         0.525         0.921         92.387           comp 42         0.491         0.861         93.247           comp 43         0.472         0.827         94.075           comp 44         0.447         0.784         94.858           comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |            |                        |                                   |
| comp 39     0.576     1.011     90.473       comp 40     0.566     0.992     91.466       comp 41     0.525     0.921     92.387       comp 42     0.491     0.861     93.247       comp 43     0.472     0.827     94.075       comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |            |                        |                                   |
| comp 40     0.566     0.992     91.466       comp 41     0.525     0.921     92.387       comp 42     0.491     0.861     93.247       comp 43     0.472     0.827     94.075       comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |            | 1.011                  |                                   |
| comp 41     0.525     0.921     92.387       comp 42     0.491     0.861     93.247       comp 43     0.472     0.827     94.075       comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |            |                        | 91.466                            |
| comp 42     0.491     0.861     93.247       comp 43     0.472     0.827     94.075       comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |            | 0.921                  |                                   |
| comp 43     0.472     0.827     94.075       comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _       |            |                        |                                   |
| comp 44     0.447     0.784     94.858       comp 45     0.397     0.696     95.555       comp 46     0.377     0.661     96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |            |                        |                                   |
| comp 45         0.397         0.696         95.555           comp 46         0.377         0.661         96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -       |            |                        |                                   |
| comp 46 0.377 0.661 96.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |            |                        |                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |            |                        |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | comp 47 |            |                        |                                   |

| comp 48 | 0.331 | 0.58  | 97.421 |
|---------|-------|-------|--------|
| comp 49 | 0.303 | 0.531 | 97.952 |
| comp 50 | 0.26  | 0.457 | 98.409 |
| comp 51 | 0.223 | 0.391 | 98.8   |
| comp 52 | 0.198 | 0.348 | 99.148 |
| comp 53 | 0.162 | 0.284 | 99.433 |
| comp 54 | 0.144 | 0.252 | 99.685 |
| comp 55 | 0.092 | 0.162 | 99.846 |
| comp 56 | 0.088 | 0.154 | 100    |
| comp 57 | 0     | 0     | 100    |

#### M. DIAGRAMMES DES VALEURS PROPRES.



# N. VERIFICATION MATHEMATIQUE DU NOMBRE D'AXES NON TRIVIAUX

Le nombre de variables quantitatives considérées est de 3.

Le nombre de variables qualitatives considérées est de 4, avec 22, 24, 5 et 7 modalités.

Le nombre d'axes non triviaux est égal au nombre total de colonnes dans la matrice composée des trois variables quantitatives et du tableau de Burt, auquel on enlève une modalité par variable qualitative : 3 + 22 + 24 + 5 + 7 - 4 = 57.

57 est bien le nombre d'axes obtenus dans les annexes I et J.

# O. GRAPHES DES MODALITES DANS LES DEUX PREMIERS PLANS



