Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Estatística

> Igor Holtrup Horrocks Rafael Buttini Salviato

Estudo de simulação em testes de hipóteses para detecção de mudança de tendência em séries temporais

Curitiba 2020

Igor Holtrup Horrocks Rafael Buttini Salviato

Estudo de simulação em testes de hipóteses para detecção de mudança de tendência em séries temporais

Trabalho de Conclusão de Curso apresentado à disciplina Laboratório B do Curso de Graduação em Estatística da Universidade Federal do Paraná, como exigência parcial para obtenção do grau de Bacharel em Estatística.

Orientador: Prof. Dr. Fernando Lucambio

Agradecimentos

Agradecemos a todas as pessoas que de alguma forma contribuíram para o trabalho. Nosso orientador, Prof. Lucambio, Professores, amigos, familiares e as nossas Vitórias: nosso sincero obrigado.

Agradecimento especial ao Cluster, a sociedade secreta de alunos de estatística da UFPR.

E também, agradecemos o fato de termos o privilégio de poder concluir este trabalho em meio à tragédia que o mundo e nosso país vivem. Lamentamos as vidas perdidas durante pandemia causada pela Sars-Cov-2.

Resumo

Em análise de regressão, quando as observações possuem algum tipo de ordenação, uma quebra estrutural é definida como sendo a mudança no vetor de coeficientes a partir de uma determinada observação. Num contexto de análise de séries temporais, essa ordenação pode ser o tempo onde cada observação foi registrada. Ainda em séries temporais, assumindo que os componentes de sazonalidade e ciclo tenham sido adequadamente estimados ou que uma série temporal seja descrita apenas pelo ruído e a tendência, a expressão que descreve o componente de tendência pode ser obtida por um modelo de regressão em que a série é a variável explicada e o tempo é a variável explicativa. Sendo assim, é possível que o fenômeno da quebra estrutural possa ocorrer no componente de tendência da série. Embora tais quebras estruturais possam não ser tão facilmente detectadas, a literatura estatística dispõe de técnicas para identificar estas quebras - dentre elas os testes de hipóteses para quebras estruturais. O presente trabalho investigou nove destes testes de hipóteses, disponibilizados pelo pacote strucchange do software R. Através de estudos de simulação foi avaliada a performance dos nove testes em diferentes cenários, nos quais foram variados o tamanho da amostra e coeficiente de determinação. Em todos os cenários foram analisados os testes em circunstâncias com e sem quebra estrutural. Considerar uma série sem quebra estrutural permitiu explorar o erro do tipo I nos variados testes e cenários. Já no contexto com quebra estrutural, através do p-valor esperado (EPV), foi investigada a capacidade de cada teste identificar a presença de quebra estrutural, considerando essas quebras no início, meio e fim da série. Como resultado, no contexto sem quebra estrutural não houve relação entre tamanho de amostra e coeficiente de determinação nos resultados do erro do tipo I. Diferentemente do contexto com quebra, no qual a capacidade dos testes identificarem presença de quebra estrutural aumenta de acordo com o aumento do tamanho da amostra e coeficiente de determinação. Além disso, o desempenho dos testes é melhor quando a quebra ocorre no meio da série. No geral, o teste aveF apresentou os melhores resultados em ambas as circunstâncias e nos diferentes cenários. E também, outro resultado importante do trabalho foi uma recomendação de testes para cada cenário com base no EPV observado a fim de estabelecer um direcionamento de escolha de testes.

Palavras-chave: Series temporais. Quebra estrutural. Testes de hipóteses.

Sumário

1	INTRODUÇÃO	. 6
2	APLICAÇÕES DE TESTES DE QUEBRA ESTRUTURAL	. 9
3	MATERIAL E MÉTODOS	. 11
3.1	Testes fornecidos pela função sctest() do pacote strucchange	. 11
3.1.1	Testes baseados em flutuação generalizada	. 12
3.1.1.1	Processo RE-CUSUM	. 13
3.1.1.2	Processo OLS-CUSUM	. 13
3.1.1.3	Processo RE-MOSUM	. 14
3.1.1.4	Processo OLS-MOSUM	. 14
3.1.1.5	Processo fluctuation	. 14
3.1.1.6	Processo ME	. 15
3.1.2	Teste baseado na distribuição F de Snedecor	. 15
3.1.2.1	Teste supF	. 16
3.1.2.2	Teste aveF	. 16
3.1.2.3	Teste expF	. 16
3.2	Estudo de simulação	. 16
3.2.1	O erro do tipo I	. 17
3.2.2	Expected P-Value (EPV)	. 18
4	RESULTADOS E DISCUSSÃO	. 20
4.1	Análise do erro do tipo I	. 20
4.1.1	Principais conclusões	. 20
4.2	Comparação entre os testes com o EPV	. 23
4.2.1	Principais conclusões	. 24
5	CONSIDERAÇÕES FINAIS	. 36
	REFERÊNCIAS	. 38
	APÊNDICES	40
	ANEXOS	43

1 Introdução

Uma sequência de variáveis aleatórias é dita série temporal, quando seus elementos são indexados por uma medida de tempo (SHUMWAY; STOFFER, 2017). Os componentes de uma série temporal, de uma maneira geral, são quatro: tendência, ciclo, sazonalidade e ruído. A tendência mede o comportamento da série a longo prazo e em torno dela comportamentos menos regulares são definidos como ciclos. A sazonalidade são padrões regulares ao longo do tempo e o ruído é o componente aleatório da série. Uma série temporal é dita ser estritamente estacionária se o comportamento probabilístico de cada coleção y_1, y_2, \ldots, y_n é idêntico, para todos h inteiro positivo, ao conjunto de deslocamentos temporais $y_{1+h}, y_{2+h}, \ldots, y_{n+h}$. Esta definição é muito forte para a maioria das aplicações. Além disso, é difícil avaliar a estacionariedade estrita de um único conjunto de dados. Utilizase uma versão mais branda que impõe condições apenas nos dois primeiros momentos da série. Uma série temporal fracamente estacionária é um processo estocástico de variância finita tal que:

- A função de média é constante e não depende do tempo.
- A função de auto-covariância depende somente da diferença do tempo.

Doravante, o termo estacionário no presente trabalho é utilizado para significar fracamente estacionário. É comum que ao redor da tendência existam oscilações, de maneira cíclica ou sazonal, e avaliar a quebra de tendência possibilita entender se certa oscilação na série pode ter alterado seu patamar e consequentemente sua tendência. Esta avaliação mostra-se importante pois os reflexos de uma quebra estrutural são a longo prazo (DIAS; JR, 2003).

Usando uma notação matricial, um modelo linear é definido da seguinte forma:

$$y_i = x_i^T \beta + e_i \qquad (i = 1, ..., n),$$
 (1.1)

sendo y_i a resposta no instante $i, x_i = (1, x_{i2}, ..., x_{ik})^T$ é um vetor de dimensão $k \times 1$ das observações das variáveis independentes onde o primeiro elemento é o intercepto, β é um vetor de coeficientes para o modelo, e o e_i é um termo de erro onde as observações são independentes e identicamente distribuídas (i.e: são iid) e seguem uma distribuição $N(0, \sigma^2)$. Quando existe a possibilidade de uma quebra estrutural no modelo, nem sempre o vetor de coeficientes β é constante no tempo. Para resolver esse problema, é proposto o seguinte modelo linear geral:

$$y_i = x_i^T \beta_i + e_i \qquad (i = 1, ..., n),$$
 (1.2)

onde no tempo i, β_i é um vetor de dimensão $k \times 1$ de coeficientes para o modelo. Isto é, o vetor β_i é estimado com base em todas as observações até o tempo i.

Considere agora, num contexto de análise de séries temporais, que uma série pode ser descrita como sendo uma combinação linear de seus componentes da seguinte forma:

$$y_i = T_i + S_i + E_i \tag{1.3}$$

onde num instante i, y_i é uma observação da variável aleatória, T_i é um componente de tendência, S_i é um componente que descreve a sazonalidade da série (e.g. componentes autorregressivos, de sazonalidade e ciclo) e E_i é o erro aleatório ou ruído branco. Usando a expressão (1.2) neste contexto, pode-se dizer que $T_i = x_i^T \beta_i$ e que $E_i = e_i$. Por fim, considerando que a estacionariedade da série foi adequadamente descrita, a série temporal pode ser descrita da seguinte forma:

$$y_i - S_i = x_i^T \beta_i + e_i \qquad (i = 1, ..., n).$$
 (1.4)

Retomando a questão da possibilidade supracitada de β_i não ser constante ao longo do tempo, um teste para detectar mudança de tendência - aqui denominado teste para mudanças (ou quebras) estruturais - tem como hipótese nula

$$H_0: \beta_i = \beta_0 \qquad (i = 1, ..., n) \qquad \text{vs} \qquad H_1: \beta_i \neq \beta_0.$$
 (1.5)

Onde β_0 é o vetor beta constante para qualquer *i*. Pode-se interpretar a hipótese nula acima como sem mudanças estruturais ao longo do tempo. Logo, tem-se como hipótese alternativa ter pelo menos uma mudança estrutural ao longo do tempo.

Com o objetivo de entender melhor o que significa o modelo em 1.2 e 1.4, bem como ilustrar uma situação onde um teste para detectar quebras estruturais se faz necessária, considere a seguir um exemplo feito a partir de uma simulação: dois conjuntos de dados constituídos de uma variável dependente y e de outra independente x apresentam vetores β_i que não são constantes ao longo do tempo. No primeiro conjunto (Figura 1), é difícil perceber a quebra estrutural de forma visível e intuitiva, enquanto que no segundo conjunto de dados (Figura 2) não. Isso posto, o propósito então de um teste para detectar quebras estruturais é que o mesmo seja capaz de detectar a quebra tanto num cenário similar ao primeiro conjunto de dados quanto num cenário similar ao segundo conjunto de dados.

Para avaliar a hipótese em (1.5) foram desenvolvidos diferentes testes. Alguns deles implementados no pacote strucchange proposto por Zeileis et al. (2002) para a linguagem R. Este pacote contempla dentre tantas funções, a função sctest() cujo propósito é realizar testes de quebras estruturais, e que compreende basicamente dois tipos de testes: testes baseados em flutuação generalizada (Re-CUSUM, OLS-CUSUM, Re-MOSUM, OLS-MOSUM, fluctuation e ME), e testes baseados na estatística F (supF, aveF e expF). Esses testes de hipótese são de grande valia para pesquisadores que lidam com séries temporais, e por isso é importante verificar qual o desempenho dos mesmos nas mais diversas situações.

Isso posto, o presente trabalho foi desenvolvido com o objetivo de investigar a performance dos diferentes testes mencionados em Zeileis et al. (2002) e implementados

Figura 1 – Primeiro conjunto de dados: quebra estrutural não tão visível

Figura 2 – Segundo conjunto de dados: quebra estrutural visível

no pacote strucchange do R por meio de técnicas estatísticas computacionais. Para tal investigação, foi definido um estudo de simulação, separado em duas partes, onde cenários foram explorados e métricas utilizadas para verificar a qualidade dos testes de detecção de mudança de tendência.

2 Aplicações de testes de quebra estrutural

Para enfatizar a importância dos testes supracitados, foram selecionados estudos nos quais houve uso destes testes.

O teste RE-CUSUM é citados nos artigos Guan et al. (2018), no qual o teste é utilizado para identificar se houve quebra estrutural na emissão de carbono relacionado a geração de energia no setor industrial na China, no período de 2000-2016; Otto e Breitung (2020), neste trabalho é afirmado que o teste RE-CUSUM sofre de baixo poder de teste e grande delay para detecção de quebra estrutural. E para corrigir isso, eles propõem um teste chamado backward-CUSUM e outro chamado stacked backward-CUSUM; Daizadeh (2020), neste trabalho foi estudado o número de aprovações e regulamentações de drogas e fármacos ao longo dos meses nos Estados Unidos da América, de Setembro de 1977 até Dezembro de 2018 e Cifuentes e Terán (2017), no qual foi investigada a hipótese de Kuznets (i.e: de que o crescimento econômico gera desigualdade econômica) na Colômbia. Para verificar a estabilidade das variáveis PIB per capta e taxa de cambio, foram utilizados testes baseados em flutuações generalizadas. Enfim, constataram que as variáveis eram estáveis ao longo do tempo.

O teste OLS-CUSUM é utilizado de forma vasta, e pode ser encontrado nos trabalhos de Bullock, Woodcock e Holden (2020), no qual foi elaborado algoritimo que combina diferentes testes para detectar quebra estrutural. O OLS-CUSUM é um deles; Stock e Watson (1996), no qual identificou quebras estruturais em variáveis macroeconômicas dos Estados Unidos da América; Devi et al. (2020), no qual investigou quebras estruturais em modelos para a tendência de precipitação e temperatura em florestas indianas; Daizadeh (2020), Cifuentes e Terán (2017) e Crede (2019), foi utilizado testes para detecção de quebras estruturais em modelos para a tendência dos preços na indústria dos mercados da Itália, Espanha e França. O objetivo foi verificar a presença de cartéis no setor industrial destes países.

Sobre os trabalhos que fazem uso do RE-MOSUM, vale citar novamente Daizadeh (2020), Cifuentes e Terán (2017) e Crede (2019).

Exemplos de uso e aplicação do teste OLS-MOSUM pode ser encontrado em Buse e Schienle (2019), no qual foi verificado quebras estruturais em modelos para a inadimplência de crédito na zona do euro; Devi et al. (2020), Daizadeh (2020) e Cifuentes e Terán (2017).

Exemplos de uso do teste fluctuation podem ser encontrados em Hansen e Johansen (1999), Para analisar a taxa de juros dos títulos do tesouro americano, os autores utilizaram o teste para verificar se havia quebra estrutural num modelo VAR cointegrado; Aruga (2016), neste estudo foi verificado o impacto do uso de gás de xisto nos EUA sob os mercados europeu e japonês. Por meio de testes de quebra estrutural, foi observado duas

mudanças de tendências em uma das variáveis investigadas.

Sobre trabalhos que fizeram uso do ME vale citar Fan e Xu (2011), neste estudo foi analisado a evolução do preço internacional do petróleo a partir do ano 2000. Por meio de testes de quebra estrutural foram delimitados três períodos distintos: mercado calmo, acumulação da bolha e crise econômica; Crede (2019).

Exemplos de trabalhos que fizeram uso do supF são: McConnell e Perez-Quiros (2000), no qual foi investigado se houve quebras estruturais no modelo que descreve a evolução do PIB americano de 1953 até 1999; Aruga (2016); Buse e Schienle (2019); Yin (2019), no qual foi elaborado um modelo para estudar a previsibilidade do prêmio de risco em ações. Tinha-se a hipótese de que a detecção de quebras estruturais seriam suficientes para explicar a baixa performance preditiva dos modelos, mas não tiveram êxito; Devi et al. (2020).

Sobre os trabalhos que fizeram uso do teste aveF, de novo, McConnell e Perez-Quiros (2000); Yin (2019); Bullock, Woodcock e Holden (2020). E por último, exemplos de trabalhos que utilizaram o expF são McConnell e Perez-Quiros (2000); Yin (2019).

3 Material e Métodos

Toda a análise foi conduzida e os dados simulados por meio do ambiente de programação R Core Team (2020) versão 4.0.2, desenvolvido em Viena (Áustria), facilitando a reprodutibilidade desta pesquisa. Na sessão "Anexos" encontra-se o código utilizado. Nesta sessão, os testes utilizados no presente estudo foram detalhados, bem como a descrição do estudo de simulação (i.e. quais variáveis foram utilizadas para desenhar cada cenário, métricas utilizadas para avaliar os testes entre si, entre outros aspectos).

3.1 Testes fornecidos pela função sctest() do pacote strucchange

O pacote *strucchange* fornece uma série de funções cujo objetivo principal é auxiliar na detecção de quebras estruturais em modelos de regressão. Dependendo da natureza do teste, pode-se gerar estatísticas ao longo das observações e visualizá-las em formas de gráfico de controle. Entretanto, o foco deste trabalho não foi em torno das funções que geram estes gráficos mas sim nas funções que geram as estatísticas de teste e verificam se existe a quebra na série ou não. Mais precisamente, o interesse do trabalho foi nos p-valores gerados por estas funções, pois estes foram utilizados para comparar a performance dos diferentes testes entre si. Em Zeileis et al. (2002), é informado como o pacote *strucchange* calcula os p-valores¹:

Para os testes CUSUM [...] há aproximações bastante boas às funções de p-valor assintóticas dadas por Zeileis (2000). Para os testes de flutuação generalizada baseado em resíduos recursivos há uma expansão de série, que é avaliada para os primeiros cem termos. Para todos os outros testes da estrutura de teste de flutuação generalizada, os p-valores são calculados pela interpolação linear a partir de valores críticos tabulados. Para o teste CUSUM recursivo [...] e para a versão baseada em OLS, respectivamente, os p-valores são aproximados das tabelas dadas por Zeileis (2001). Os valores críticos para o teste MOSUM Recursivo para níveis em [0,01; 0,2] são retirados de Chu, Hornik e Kaun (1995a), enquanto os valores críticos para os níveis em [0,01; 0,1] para o MOSUM baseado em OLS e o teste ME são dados em Chu, Hornik e Kuan (1995b); o parâmetro h é, em ambos os casos, interpolado por valores em [0,05; 0,5]. Os p-valores para o teste supF, aveF e expF são aproximados com base em Hansen (1997), que também escreveu o código original em GAUSS, e apenas portamos para o software R. A computação utiliza coeficientes simulados tabulados.

Tradução feita pelos autores.

O modelo de regressão linear exposto na equação (1.4) é o modelo utilizado na simulação. O presente estudo assumiu que a variável X é o ordenamento propriamente dito (e.g. seja este ordenamento uma medida de tempo, profundidade, comprimento, entre outros). As observações de X então, são progressões aritméticas cujo termo inicial é 1, o termo final é n e a razão é 1. Não haverá problema em generalizar os resultados para outras variáveis X's de naturezas distintas pois os testes dependem diretamente da relação entre Y e X e não da variável X propriamente dita.

Ademais, um conceito importante que permeou boa parte dos testes expostos no presente estudo é o de resíduos recursivos. Considere o resíduo de uma regressão linear descrita conforme equação (1.2), como sendo $e_i = y_i - x_i^T \beta_i$. A estimativa para a variância deste resíduo é dada por $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \hat{e}_i^2$. O resíduo recursivo, por sua vez, conforme Zeileis et al. (2002) é

$$\tilde{e}_i = \frac{y_i - x_i^T \beta_{i-1}}{\sqrt{1 + x_i^T (X_{i-1}^T X_{i-1})^{-1} x_i}}$$
(3.1)

onde X_i é a matriz com todas as observações feitas da covariável até o tempo i. A variância do resíduo recursivo é dada por $\tilde{\sigma}^2 = \frac{1}{n-k} \sum_{i=k+1}^n (\tilde{e}_i - \overline{\tilde{e}})^2$.

Os testes fornecidos pelo pacote strucchange são variados no que dizem respeito aos pressupostos, distribuições e procedimentos de inferência. Aqueles disponibilizados na função sctest() podem ser divididos em dois grupos: testes baseados em flutuação generalizada e testes baseados no processo F proposto por Chow (1960). Por conta disso, os testes utilizados neste estudo foram detalhados de acordo com estes tipos citados acima. Finalmente, vale lembrar que os testes possuem as mesmas hipótese nula e hipótese alternativa conforme exposto em (1.5).

3.1.1 Testes baseados em flutuação generalizada

Com base no modelo de regressão linear ajustado aos dados, a sctest gera um processo empírico a partir de alguns componentes da análise de regressão, a listar: resíduos do modelo (padrão ou recursivo) ou estimativas dos coeficientes β_i do modelo. Isso posto, tem-se ainda duas formas distintas de gerar este processo, utilizando um destes três componentes supracitados: a partir de somas cumulativas (CUSUM) ou de somas móveis (MOSUM) dos mesmos. A Tabela 1 mostra os diferentes tipos de teste de flutuação generalizada que esta função fornece, bem como algumas de suas características:

Nome	Cor	nponente u	tilizado	Tipo de	processo
rome	Resíduo	Resíduo	Estimativas	CUSUM	MOSUM
	padrão	recursivo	$de \beta_i$	COSOM	
Re-CUSUM		X		X	
OLS-CUSUM	X			X	
Re-MOSUM		X			X
OLS-MOSUM	X				X
fluctuation			X	X	
ME			X		X

Tabela 1 – Tipos de testes baseados em flutuação generalizada que são fornecidos pela função sctest() do pacote strucchange e suas respectivas características

Os processos utilizados para gerar cada um dos seis testes expostos na Tabela 1 é descrito nas sessões subsequentes. Dos processos que utilizam os resíduos da regressão, o Re-CUSUM (W_n) foi proposto por Brown, Durbin e Evans (1975), o OLS-CUSUM (W_n^0) por Ploberger e Krämer (1992) e os Re-MOSUM (M_n) e OLS-MOSUM (M_n^0) por Chu, Hornik e Kaun (1995a). E por fim, os processos que utilizam as estimativas de β_i , tem-se o fluctuation (Z_n) foi proposto por Ploberger, Krämer e Kontrus (1989) e o ME (Z_n^0) proposto por Chu, Hornik e Kuan (1995b).

3.1.1.1 Processo RE-CUSUM

O processo RE-CUSUM proposto por Brown, Durbin e Evans (1975) é um processo feito de somas cumulativas dos resíduos recursivos de uma regressão linear. Seja então W o resultado do RE-CUSUM, então tem-se:

$$W_n(t) = \frac{1}{\tilde{\sigma}\sqrt{\eta}} \sum_{i=k+1}^{k+\lfloor t\eta \rfloor} \tilde{e}_i \qquad (0 \le t \le 1)$$
(3.2)

onde $\eta = n - k$ é o número de resíduos recursivos e $\lfloor t\eta \rfloor$ é a parte inteira de $t\eta$.

3.1.1.2 Processo OLS-CUSUM

O processo OLS-CUSUM proposto por Ploberger e Krämer (1992) é similar ao RE-CUSUM, com uma única diferença: ao invés de utilizar resíduos recursivos, utiliza-se o resíduo de uma regressão linear. Isso posto, o processo é descrito da seguinte forma:

$$W_n^0(t) = \frac{1}{\hat{\sigma}\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} e_i \qquad (0 \le t \le 1)$$
(3.3)

onde $e_i = y_i - x_i^T \beta_i$ é o resíduo da regressão linear.

3.1.1.3 Processo RE-MOSUM

O processo RE-MOSUM proposto por Chu, Hornik e Kaun (1995a) é similar ao RE-CUSUM, com uma única diferença: a série de cada iteração não considera todas as iterações até um certo momento t. Isto é, o tamanho da série é determinada por um parâmetro $h \in (0,1)$. Por fim:

$$M_n(t|h) = \frac{1}{\tilde{\sigma}\sqrt{\eta}} \sum_{i=k+|N_n t|+1}^{k+\lfloor N_n t\rfloor + \lfloor \eta h\rfloor} \tilde{e}_i \qquad (0 \le t \le 1 - h)$$
(3.4)

onde $N_{\eta} = (\eta - \lfloor \eta h \rfloor)/(1 - h)$. Os autores também mostram que, o RE-MOSUM pode ser obtido por meio de uma relação com o RE-CUSUM conforme a expressão 3.5:

$$M_n(t|h) = W_n\left(\frac{\lfloor N_{\eta}t\rfloor + \lfloor \eta h\rfloor}{\eta}\right) - W_n\left(\frac{\lfloor N_{\eta}t\rfloor}{\eta}\right)$$
(3.5)

3.1.1.4 Processo OLS-MOSUM

O processo OLS-MOSUM proposto também por Chu, Hornik e Kaun (1995a) é similar ao RE-MOSUM, porém considerando apenas os resíduos da regressão sem transformá-los em resíduos recursivos. A equação 3.6 descreve o processo OLS-MOSUM:

$$M_n^0(t|h) = \frac{1}{\hat{\sigma}\sqrt{n}} \sum_{i=|N_nt|+1}^{\lfloor N_nt\rfloor+\lfloor \eta h\rfloor} e_i \qquad (0 \le t \le 1-h). \tag{3.6}$$

Da mesma forma que existe uma relação entre o RE-CUSUM e o RE-MOSUM, existe também uma relação entre o OLS-CUSUM e o OLS-MOSUM conforme 3.7:

$$M_n^0(t|h) = W_n^0\left(\frac{\lfloor N_\eta t \rfloor + \lfloor \eta h \rfloor}{n}\right) - W_n^0\left(\frac{\lfloor N_\eta t \rfloor}{n}\right). \tag{3.7}$$

A seguir, os dois últimos processos a serem expostos são os testes baseados em flutuação generalizada porém sem utilizar os resíduos dos modelos mas sim as estimativas dos coeficientes β_i .

3.1.1.5 Processo fluctuation

O processo *fluctuation* proposto por Ploberger, Krämer e Kontrus (1989) é dado por:

$$Z_n(t) = \frac{\sqrt{i}}{\hat{\sigma}\sqrt{n}} (X_i^T X_i)^{\frac{1}{2}} (\hat{\beta}_i - \hat{\beta}_n)$$
(3.8)

onde $i = \lfloor k + t(n-k) \rfloor$ com $t \in [0,1]$. É de se perceber que o processo fluctuation não faz uso de resíduos em seu cálculo (i.e. exceto a variância dos resíduos $\hat{\sigma}$). Ademais, este processo é como se fosse o equivalente aos processos do tipo CUSUM supracitados, no entanto para os processos estimados com base nas estimativas de β_i .

3.1.1.6 Processo *ME*

O processo $moving\ estimates$ (i.e. ME) proposto por Chu, Hornik e Kuan (1995b) é dado por:

$$Z_n^0(t) = \frac{\sqrt{\lfloor nh \rfloor}}{\hat{\sigma}\sqrt{n}} (X_{(\lfloor nt \rfloor, \lfloor nh \rfloor)}^T X_{(\lfloor nt \rfloor, \lfloor nh \rfloor)})^{\frac{1}{2}} (\hat{\beta}_{(\lfloor nt \rfloor, \lfloor nh \rfloor)} - \hat{\beta}_n)$$
(3.9)

onde $0 \ge t \ge 1 - h$. Da mesma forma que o *fluctuation*, o processo ME não faz uso de resíduos em seu cálculo (i.e. exceto a variância dos resíduos $\hat{\sigma}$). Ademais, este processo é como se fosse o equivalente aos processos do tipo MOSUM supracitados, no entanto para os processos estimados com base nas estimativas de β_i .

3.1.2 Teste baseado na distribuição F de Snedecor

Em seu trabalho, Chow (1960) propõe o uso de estatísticas de teste que seguem uma distribuição F de Snedecor para verificar quebras estruturais. Seja i_0 um possível ponto de quebra. Com isso, ajusta-se um modelo antes do ponto de quebra e outro depois, obtendo assim os seguintes vetores de coeficientes β :

$$\beta_i = \begin{cases} \beta_A & (1 \le i \le i_0) \\ \beta_B & (i_0 < i \le n) \end{cases}$$
 (3.10)

Vale ressaltar que $i_0 \in (k, n-k)$ onde k é o número de coeficientes β . A partir disto, Chow (1960) propõe a seguinte estatística de teste para verificar se um específico ponto i_0 possui quebra estrutural:

$$F_{i_0} = \frac{\hat{e}^T \hat{e} - \hat{\varepsilon}^T \hat{\varepsilon}}{\hat{\varepsilon}^T \hat{e}/(n - 2k)}$$
(3.11)

onde $\hat{\varepsilon} = (\hat{e}_A, \hat{e}_B)^T$ é um vetor com as estimativas dos resíduos formado pela concatenação dos resíduos gerados pelos coeficientes β_A para as observações de 1 até i_0 , com os resíduos gerados pelos coeficientes β_B para as observações de $i_0 + 1$ até n. E \hat{e} é o vetor de resíduos para o modelo completo.

O problema desta abordagem, reside no fato de depender de um chute inicial para i_0 . Pensando nisso, Andrews (1993) e Andrews e Ploberger (1994) propuseram métodos para aplicar a estatística de Chow (1960) em todas - ou quase todas - as possíveis observações de um modelo (i.e: um intervalo qualquer, variando de \underline{i} a \overline{i} onde $k < \underline{i} \le i \le \overline{i} < n - k$), ou seja, sem necessariamente especificar um i_0 . Isto é, correspondem ao teste ilustrado na expressão (1.5). A função sctest também é utilizada para gerar estes testes baseados na estatística de Chow (1960), e são eles: o supF proposto por Andrews (1993), o aveF e o expF, ambos propostos por Andrews e Ploberger (1994). A seguir, cada um destes testes será detalhado.

3.1.2.1 Teste supF

O teste supF proposto por Andrews (1993) consiste em extrair o supremo (i.e. o maior valor) para a estatística F de uma série e é descrito da forma que segue:

$$supF = \sup_{\underline{i} \le i \le \overline{i}} F_i \tag{3.12}$$

Aqui, a hipótese nula é rejeitada quando supF é muito alto.

3.1.2.2 Teste aveF

O teste aveF proposto por Andrews e Ploberger (1994) consiste em calcular uma média para as estatísticas F de uma série e é descrito da forma que segue:

$$aveF = \frac{1}{\overline{i} - \underline{i} + 1} \sum_{i=i}^{\overline{i}} F_i. \tag{3.13}$$

Aqui, a hipótese nula é rejeitada quando aveF é muito alta.

3.1.2.3 Teste expF

E por fim, o teste expF proposto também por Andrews e Ploberger (1994), e que de acordo com Hansen (2000) trata-se de um teste Wald exponencialmente ponderado, é descrito da forma que segue:

$$expF = \log\left(\frac{1}{\overline{i} - \underline{i} + 1} \sum_{i=\underline{i}}^{\overline{i}} exp\left(\frac{1}{2}F_i\right)\right). \tag{3.14}$$

Aqui, a hipótese nula é rejeitada quando expF é muito alta.

3.2 Estudo de simulação

O procedimento de análise e simulação deu-se por meio de métodos estatísticos computacionais: modelos lineares foram gerados por meio de algoritmos geradores de números pseudo-aleatórios e então os testes disponíveis pela função sctest() no pacote strucchange foram aplicados. De forma objetiva, o estudo de simulação alvitrou responder as seguintes perguntas:

- Sob a hipótese nula, qual teste apresenta melhor performance quanto ao erro do tipo I em cada cenário?
- Independente do nível de significância, qual teste apresenta a melhor capacidade de distinguir qual hipótese (nula ou alternativa) é a verdadeira?

Com isso, o estudo de simulação foi separado em duas partes, de acordo com estas perguntas. Um para avaliar o erro do tipo I e outro para avaliar o expected p-value (EPV) dos testes. Em cada uma das partes foi utilizado um conjunto de parâmetros distintos. Nas subsessões a seguir, cada parte será detalhada.

3.2.1 O erro do tipo l

Para responder a primeira pergunta, foram calculados os p-valores dos testes, com os quais foi avaliado o erro do tipo I de cada teste, onde no presente trabalho é definido como sendo a proporção de rejeições da hipótese nula quando a hipótese nula é verdadeira (i.e: c=1). Formalizando em uma expressão, seja \hat{E}_I a estimativa do erro do tipo I, $I(pv_i < \alpha)$ uma função indicadora que retorna se um determinado p-valor (pv_i) é menor do que um nível de significância α estabelecido. Com isso, a estimativa do erro do tipo I é dada da seguinte forma:

$$\hat{E}_I = \frac{\sum_{i=1}^m I(pv_i < \alpha)}{m}.$$
(3.15)

Os cenários simulados foram estabelecidos de modo a investigar o real impacto que certos parâmetros podem ter sob a eficácia dos testes supracitados. No entanto, deve-se salientar que, tais parâmetros não constituem a totalidade dos fatores que podem afetar o desempenho dos testes. Isto é, o presente trabalho investiga cenários relativamente bem específicos. Os parâmetros simulados (bem como os valores utilizados) nesta parte do estudo de simulação estão listados abaixo:

- m (número de simulações para cada cenário): 10000.
- n (tamanho das amostras): 50 163 275 388 500.
- c (percentil da quebra estrutural): 1 (sem quebra estrutural).
- \mathbb{R}^2 (coeficiente de determinação): 0,2 0,5 0,7 0,85 0,95.
- Vetor de coeficientes β teórico: $\beta = \begin{bmatrix} 10 \\ \end{bmatrix}$

Sobre o parâmetro c, deve-se dizer que quando este é igual a 1, tem-se um cenário onde não há quebra estrutural no modelo simulado 2 . Com relação ao R^2 , por ser uma medida de ajuste de modelos de regressão linear, foi escolhido pois através dele é possível controlar a intensidade do ruído da variável aleatória y_i^3 . A respeito dos valores selecionados para o parâmetro n, a sequêcia corresponde a valores equidistantes entre 50 e 500. Por fim, vale lembrar que o modelo utilizado é aquele descrito em (1.4) e o vetor de covariáveis é aquele descrito no início desta sessão (i.e. o próprio ordenamento das variáveis) 4 .

² Isso se deve a forma como o parâmetro c foi estabelecido.

 $^{^3}$ Maiores detalhes sobre como foi implementado o \mathbb{R}^2 estão no Apêndice A do presente trabalho.

⁴ Para ilustrar: $y_t - S_t = t^T \beta_t + e_t$, t = 1, 2, ..., n

3.2.2 Expected P-Value (EPV)

Para responder a segunda pergunta, foi utilizado o p-valor esperado (EPV) proposto em Sackrowitz e Samuel-Cahn (1999). O EPV surge como uma proposta para lidar com várias situações da análise estatística que envolvem testes de hipóteses, dentre elas a comparação entre testes. Em Sackrowitz e Samuel-Cahn (1999) é exposto que dadas as características estocásticas dos p-valores calculados em análises estatísticas, é possível utilizar o EPV como uma medida de desempenho dos testes, principalmente nos casos onde é difícil avaliar o poder do teste. No apêndice, foi dedicado um anexo apenas para a dedução do EPV, e o seu arcabouço teórico. Abaixo, encontra-se exposto as duas métricas $(A \ e \ B)$ propostas por Sackrowitz e Samuel-Cahn (1999). Seja T^* a estatística de teste sob a hipótese nula, T a estatística de teste sob a hipótese alternativa e $I(T^* \ge T)$ uma função indicadora para quando T^* é maior ou igual a T então temos que:

$$A = \frac{\sum_{i=1}^{m} I(T_i^* \ge T_i)}{m}, e$$
 (3.16)

$$B = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I(T_i^* \ge T_j)}{m^2}.$$
 (3.17)

Isso posto, o conjunto de parâmetros utilizado para realizar esta parte do estudo é similar em muitas partes com a primeira parte da simulação e é listada da forma que segue:

- m (número de simulações para cada cenário): 3000.
- n (tamanho das amostras): 50 163 275 388 500.
- c (percentil da quebra estrutural): 1 0,25 0,5 0,75.
- \mathbb{R}^2 (coeficiente de determinação): 0,2 0,5 0,7 0,85 0,95.
- Vetor de coeficientes β teórico: antes da quebra $\underline{\beta} = [10 \quad 1]$ e depois da quebra $\underline{\beta} = [(10 \beta_2 x_c) \quad (10 + \beta_2)]$ onde x_c é o valor de x no ponto de quebra c e β_2 é uma quantia determinada pelo parâmetro s.
- s (percentual do aumento de inclinação, da primeira para a segunda reta): 5 10 15 25 50.

Para simular a quebra foi gerada uma regressão segmentada, isto é, a quebra estrutural não gera quebra na continuidade da função (mais uma vez, não há perda de generalidade para qualquer outro tipo de quebra), e a variável c é o quantil da amostra que apresenta a quebra estrutural. Apenas uma quebra foi considerada por cenário. O parâmetro s tem o propósito de influenciar o afastamento da hipótese nula, ou seja, de dizer o quão diferente são os vetores de coeficientes, antes e depois da quebra. Dado o modelo utilizado, seja θ o ângulo formado entre o eixo das abscissas e o segmento de

reta dado pelo primeiro vetor de coeficientes e seja ϕ o ângulo formado entre o eixo das abscissas e o segmento de reta dado pelo segundo vetor de coeficientes, no modelo utilizado tem-se que

$$E[Y|X] = \begin{cases} \beta_0 + \beta_1 x \\ (\beta_0 - \beta_2 x_c) + (\beta_1 + \beta_2) x \end{cases}$$

$$tan(\theta) = \beta_1 \Leftrightarrow arctan(\beta_1) = \theta$$

$$\therefore tan(\phi) = \beta_1 + \beta_2 \Leftrightarrow arctan(\beta_1 + \beta_2) = \phi$$

$$\therefore \theta s = \phi$$

$$\therefore \theta s = arctan(\beta_1 + \beta_2) \Leftrightarrow tan(\theta s) = (\beta_1 + \beta_2).$$
(3.18)

Com isso, fica explícito como o parâmetro s atua no estudo de simulação. O motivo de se gerar o afastamento da hipótese nula desta forma, foi garantir que a regressão seja segmentada e que não haja descontinuidade ao longo do modelo adotado, seguindo assim a proposta do trabalho.

4 Resultados e Discussão

Nesta sessão foram expostos os resultados do estudo de simulação. Primeiramente é descrito os resultados dos estudos com o erro do tipo I e por último é descrito os resultados dos estudos com o p-valor estimado (EPV).

4.1 Análise do erro do tipo I

De acordo com a expressão (1.5) nota-se que a hipótese nula é verdadeira quando a série possui os mesmos valores de β ao longo do tempo. Em outras palavras, H_0 é verdadeiro somente quando não há quebra estrutural na série ou parâmetro c igual a 1 no estudo de simulação.

O interesse neste caso é observar a proporção de rejeição de H_0 . Para tanto, foram aplicados os 9 diferentes testes nos cenários e foi realizada a contagem do número de vezes que o p-valor era menor que o nível de significância estabelecido. Foram testados em 3 níveis de significância: $\alpha=1\%,5\%$ e 10%. O resultado esperado é que a proporção de vezes que o p-valor é menor que o nível de significância seja próximo ao próprio nível de significância. As figuras 3, 4 e 5 representam essa proporção para os diferentes níveis de significância. O desempenho dos testes estão representados por linhas coloridas, as quais devem se aproximar da reta preta, uma vez que esta é a proporção esperada de rejeição de H_0 dado o nível de significância. No eixo x tem-se os coeficientes de determinação e no eixo y a proporção de vezes que o teste rejeitou H_0 . Os mesmos resultados também estão disponíveis nas tabelas 14, 15 e 16.

4.1.1 Principais conclusões

Independente do nível de significância, três testes se destacam. Esses são Rec-CUSUM, aveF e expF, pois apresentam proporção de rejeição muito próxima ao nível de significância adotado. Outro destaque é a indiferença da performance do teste no grid de coeficiente de determinação, as proporções permanecem estáveis para a simulação com o mesmo tamanho de amostra. A seguir, os resultados do desempenho para diferentes níveis de significância é explicitado

Desempenho dos testes para $\alpha = 1\%$

Figura 3 – Proporção de rejeição de H_0 para diferentes tamanhos de amostras e coeficientes de determinação considerando $\alpha = 1\%$.

Os testes OLS-CUSUM, Rec-MOSUM, OLS-MOSUM e ME não rejeitaram H_0 em nenhuma das vezes, ou seja, é bem provável que estejam não rejeitando casos em que H_0 é falso, aumentando assim o erro do tipo II.

Os testes fluctuation e SupF apresentaram proporção de rejeição ligeiramente maior ao nível de significância. Ao contrário do que ocorreu com os testes OLS-CUSUM, Rec-MOSUM, OLS-MOSUM e ME, neste caso o erro do tipo I aumenta e diminui o erro do tipo II. Um resultado interessante é que no teste fluctuation, para a amostra menor (n=50) o teste apresentou melhor desempenho (proporção de rejeição próxima ao nível de significância).

Por fim, os testes Rec-CUSUM e aveF a proporção de rejeição ficou próxima ao nível de significância, concluindo assim que considerando $\alpha=1\%$ estes são os testes mais indicados. Com uma ressalva, para amostras menores, o teste aveF apresentou menor estabilidade para coeficientes de determinação próximos a 0,7.

Desempenho dos testes para $\alpha = 5\%$

Figura 4 – Proporção de rejeição de H_0 para diferentes tamanhos de amostras e coeficientes de determinação considerando $\alpha = 5\%$.

Mais uma vez os testes Rec-CUSUM e aveF foram os que apresentaram taxa de rejeição mais próxima ao nível de significância. O teste expF dessa vez apresentou melhor desempenho, porém apenas a partir de n=163.

O teste ME destaca-se pela diferença de performance para os diferentes tamanho de amostra, enquanto maior a amostra, maior a proporção de rejeição de H_0 . O mesmo acontece com o teste fluctuation, mas em menor escala.

O teste SupF apresenta proporção de rejeição constante independente do tamanho da amostra e coeficiente de determinação, porém acima do nível de significância.

Por fim, os testes Rec-MOSUM e OLS-MOSUM apresentaram as proporções de rejeição abaixo do nível de significância e esta proporção é quase nula para amostras de tamanho 50. Mais uma vez o teste OLS-CUSUM apresentou 100% de não rejeição.

Desempenho dos testes para $\alpha = 10\%$

Figura 5 – Proporção de rejeição de H_0 para diferentes tamanhos de amostras e coeficientes de determinação considerando $\alpha = 10\%$.

Para este nível de significância o comportamento dos testes foi muito semelhante ao $\alpha=5\%$. Surpreende o teste OLS-CUSUM continuar não rejeitando H_0 mesmo com um nível de significância mais elevado. Ademais, os testes mais indicados continuam sendo Rec-MOSUM e OLS-MOSUM. O teste expF também possui bom desempenho com a ressalva de amostras com $n \geq 163$.

4.2 Comparação entre os testes com o EPV

Ao comparar os teste a partir do p-valor esperado, o melhor teste é aquele cujo EPV, comparado aos demais testes, é o menor. Por conta das inúmeras combinações de cenários é difícil concluir qual teste possui o melhor desempenho, tanto graficamente, quanto em tabelas. Visto isso, as Tabelas de 2 e 11 apresentam uma maneira alternativa de resumir os resultados. Nessas tabelas são expostas todas as combinações de cenários e o teste que apresentar o menor EPV para dada combinação de c, n e r^2 é marcado com "X". Em caso de empate, mais de um teste poderá ser assinalado.

Da figura 6 a 15, presentes no anexo A, representam de maneira gráfica os resultados do EPV nas diferentes métricas e cenários de n e c. Adicionalmente, estão disponíveis as Tabelas de 17 à 26 contendo os valores estimados do EPV para todos os testes em todos os cenários.

4.2.1 Principais conclusões

Diferentemente da seção anterior na qual a série não possuía quebra estrutural, na seção atual todas as simulações consideram quebras estruturais de acordo com os parâmetros c e s. Da figura 6 a 15 é possível reparar o padrão decrescente do EPV de acordo com o aumento do tamanho das amostras, coeficiente de determinação e intensidade da mudança de tendência (ou quebra estrutural).

Dado que, de acordo com Sackrowitz e Samuel-Cahn (1999) o EPV é uma variável cuja interpretação não é feita de forma isolada, isto é, um valor de EPV somente deve ser interpretado quando comparado com outro EPV. Por isso, as Tabelas de 2 à 11 foram elaboradas de modo que cada linha representasse um cenário e nas colunas que correspondem aos testes, um "X"foi assinalado assinalado para o melhor teste dentro de cada cenário (i.e: o teste que apresentou o menor valor de EPV para cada cenário está marcado com um "X"nestas tabelas). Os cenários que apresentaram mais do que um "X"é porque mais do que um teste apresentou o valor mínimo de EPV daquele cenário. Vale ressaltar que, no presente estudo, muitos EPV's apresentaram um valor muito próximo ou igual a zero, o que de certa forma pode ter enviesado ou distorcido os resultados.

Nas Tabelas de 2 à 6, na qual o EPV é estimado via métrica A, é interessante reparar que o teste aveF é melhor na grande maioria das vezes, independente do ponto de quebra, tamanho de amostra e coeficiente de determinação. Mas, principalmente, os testes de maneira geral, apresentam melhor capacidade de detectar quebras em amostras maiores ou quando o ponto de quebra é no meio da série. Já nas Tabelas de 7 à 11, na qual o EPV é estimado via métrica B, a performance dos testes tiveram um queda. No geral, os testes apresentaram ótimo desemprenho em ambas as métricas quando: os valores dos parâmetros n, s e R^2 aumentam, e o valor de c = 0, 50.

c	R^2	S	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05						X			X
0.25	0.5	0.05		**			X				
0.25	0.7	0.05	v	X							
0.25	0.85	0.05	X								X
$0.25 \\ 0.5$	$0.95 \\ 0.2$	$0.05 \\ 0.05$						X			Λ
0.5	$0.2 \\ 0.5$	0.05						Λ		X	
0.5	0.7	0.05								11	X
0.5	0.85	0.05				X					21
0.5	0.95	0.05								X	
0.75	0.2	0.05						X			
0.75	0.5	0.05				X					
0.75	0.7	0.05								X	
0.75	0.85	0.05							X		
0.75	0.95	0.05								X	
0.25	0.2	0.1						X			
0.25	0.5	0.1						X			
0.25	0.7	0.1	X	**							
0.25	0.85	0.1	37	X							
0.25	0.95	0.1	X						37		
0.5	0.2	0.1							X		v
$0.5 \\ 0.5$	$0.5 \\ 0.7$	$0.1 \\ 0.1$								X	X
$0.5 \\ 0.5$	0.7	$0.1 \\ 0.1$								Λ	X
0.5	0.85	0.1								X	11
0.75	0.33	0.1								X X	
0.75	0.5	0.1						X			
0.75	0.7	0.1				X					
0.75	0.85	0.1									\mathbf{X}
0.75	0.95	0.1								X	
0.25	0.2	0.15						X			
0.25	0.5	0.15				X					
0.25	0.7	0.15	X								
0.25	0.85	0.15			X						
0.25	0.95	0.15								X	
0.5	0.2	0.15				37					X
0.5	0.5	0.15				X				X	
0.5	0.7	$0.15 \\ 0.15$			X					Λ	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.15 \\ 0.15$			Λ					X	
0.75	0.33	0.15						X		11	
0.75	0.5	0.15		X				1			
0.75	0.7	0.15			X						
0.75	0.85	0.15									X
0.75	0.95	0.15								X	
0.25	0.2	0.25						X			
0.25	0.5	0.25				X					
0.25	0.7	0.25	X								
0.25	0.85	0.25								X	
0.25	0.95	0.25								X	
0.5	0.2	0.25								${f X} {f X}$	
0.5	0.5	0.25								X	
0.5	0.7	0.25								X X	
0.5	0.85	0.25								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.25 \\ 0.25$						X		Λ	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	0.25 0.25						Λ		X	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	0.25								Λ	X
0.75	0.85	0.25								X	41
0.75	0.95	0.25								X	
0.25	0.2	0.5								X	
0.25	0.5	0.5								X X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5								X	
0.5	0.2	0.5								X	
0.5	0.5	0.5								X X	
0.5	0.7	0.5								X	
0.5	0.85	0.5			37					X	
0.5	0.95	0.5			X					X	
0.75	0.2	0.5								X	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.5 \\ 0.5$								X X	
$0.75 \\ 0.75$	0.7	$0.5 \\ 0.5$								X	
0.75	0.95	0.5			X					21	
	5.50	5.5									

Tabela 2 – Marcação do teste com melhor desempenho - EPV pela métrica A, $n=50\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05	1000 0 0 0 0 0 111	X	juacuation	1000 11100 0111	020 1100011	1112	барт	4,01	- CIPI
0.25	0.5	0.05				X					
0.25	0.7	0.05	X								
0.25	0.85	0.05				X					
0.25	0.95	0.05								X	
0.5	0.2	0.05	X								
0.5	0.5	0.05						X			••
0.5	0.7	0.05								37	X
0.5	0.85	0.05								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.05 \\ 0.05$								X	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	0.05	X							Λ	
0.75	0.7	0.05	21								X
0.75	0.85	0.05								X	11
0.75	0.95	0.05								X	
0.25	0.2	0.1			X						
0.25	0.5	0.1	X								
0.25	0.7	0.1								X	
0.25	0.85	0.1								\mathbf{X}	
0.25	0.95	0.1								X	
0.5	0.2	0.1								X	
0.5	0.5	0.1				X				••	
0.5	0.7	0.1								X	
0.5	0.85	0.1								X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.1 \\ 0.1$						X		X	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	$0.1 \\ 0.1$						Λ	X		
$0.75 \\ 0.75$	$0.5 \\ 0.7$	0.1							Λ	X	
0.75	0.85	0.1								X	
0.75	0.95	0.1								X	
0.25	0.2	0.15	X								
0.25	0.5	0.15			X						
0.25	0.7	0.15								X	
0.25	0.85	0.15								\mathbf{X}	
0.25	0.95	0.15								X	
0.5	0.2	0.15								X	
0.5	0.5	0.15		X						37	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.15 \\ 0.15$		X						Λ	
$0.75 \\ 0.75$	0.5	0.15	X	Λ							X
0.75	0.7	0.15	Λ							X	21.
0.75	0.85	0.15								X	
0.75	0.95	0.15								X X	
0.25	0.2	0.25	X								
0.25	0.5	0.25								X	
0.25	0.7	0.25								X	
0.25	0.85	0.25								X X	
0.25	0.95	0.25								X	
0.5	0.2	0.25			X						
0.5	0.5	0.25								X	
0.5	0.7	0.25								X	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	0.25								X X	
$0.5 \\ 0.75$	0.95 0.2	$0.25 \\ 0.25$								X	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	0.25 0.25								X	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	0.25								X	
0.75	0.85	0.25								X	
0.75	0.95	0.25								X	
0.25	0.2	0.5								X X	X
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5								X	
0.5	0.2	0.5								X	
0.5	0.5	0.5								X	
0.5	0.7	0.5								X	
0.5	0.85	0.5	3.7	37	37	37	37	37	3.7	X	37
0.5	0.95	0.5	X	X	X	X	X	X	X	X	X
0.75	0.2	0.5								X X	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.5 \\ 0.5$								X	
$0.75 \\ 0.75$	0.7	$0.5 \\ 0.5$			X				X	Λ	
0.75	0.95	0.5		X	X	X	X	X	X	X	X
	-										

Tabela 3 – Marcação do teste com melhor desempenho - EPV pela métrica A, $n=163\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05			X						
0.25	0.5	0.05					v			X	
$0.25 \\ 0.25$	$0.7 \\ 0.85$	$0.05 \\ 0.05$					X			X	
0.25	0.95	0.05								X	
0.5	0.2	0.05						X			
0.5	0.5	0.05							X		
0.5	0.7	0.05		X						37	
0.5	$0.85 \\ 0.95$	$0.05 \\ 0.05$								X X	
$0.5 \\ 0.75$	0.93	0.05	X							Λ	
0.75	0.5	0.05	71	X						X	
0.75	0.7	0.05			X						
0.75	0.85	0.05								X	
0.75	0.95	0.05								X X	
$0.25 \\ 0.25$	$0.2 \\ 0.5$	$0.1 \\ 0.1$	X							Λ	
0.25	0.7	0.1	X								
0.25	0.85	0.1								X	
0.25	0.95	0.1								X	
0.5	0.2	0.1								X	
0.5	0.5	0.1								X X	
$0.5 \\ 0.5$	$0.7 \\ 0.85$	$0.1 \\ 0.1$								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1	X								
0.75	0.5	0.1								X	
0.75	0.7	0.1								X X	
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.1 \\ 0.1$								X	
0.15	0.33	0.15								X	
0.25	0.5	0.15								X	
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X X	
$0.5 \\ 0.5$	$0.2 \\ 0.5$	$0.15 \\ 0.15$								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X	
0.5	0.95	0.15								X	
0.75	0.2	0.15	X							v	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.15 \\ 0.15$								X X	
0.75	0.85	0.15								X	
0.75	0.95	0.15								X X	
0.25	0.2	0.25			X						
0.25	0.5	0.25								X	
$0.25 \\ 0.25$	$0.7 \\ 0.85$	$0.25 \\ 0.25$								X V	
0.25	0.95	0.25								X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X X X X X X	
0.5	0.7	0.25								X	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.25 \\ 0.25$		X	X					X	X
$0.5 \\ 0.75$	0.95 0.2	0.25 0.25		Λ	Λ					X X	Λ
0.75	0.5	0.25								X	
0.75	0.7	0.25								X	
0.75	0.85	0.25			**					X	**
0.75	0.95	0.25		X	X					v	X
$0.25 \\ 0.25$	$0.2 \\ 0.5$	$0.5 \\ 0.5$								X X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5	X	X	X				X	X	X
0.5	0.2	0.5								X	
0.5	0.5	0.5								X	
$0.5 \\ 0.5$	$0.7 \\ 0.85$	$0.5 \\ 0.5$		X	X	X			X	X X	X
0.5	0.95	0.5	X	X	X	X	X	X	X	X	X
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	
0.75	0.7	0.5		37	37	37			37	X	37
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.5 \\ 0.5$		X X	X X	X X	X	X	X X	X X	X X
0.10	0.30	0.0		Λ.	Λ	Λ.	Λ.	11	11	1	

Tabela 4 – Marcação do teste com melhor desempenho - EPV pela métrica A, $n=275\,$

c	R^2	S	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05			<u> </u>			X			
0.25	0.5	0.05						X			
0.25	0.7	0.05								X	
0.25	0.85	0.05								X X	
$0.25 \\ 0.5$	$0.95 \\ 0.2$	$0.05 \\ 0.05$		X						Λ	
0.5	0.5	0.05		Λ						X	
0.5	0.7	0.05								11.	X
0.5	0.85	0.05								X	
0.5	0.95	0.05								X	
0.75	0.2	0.05	X								
0.75	0.5	0.05							X		
0.75	0.7	0.05		X						X	
0.75	0.85	0.05			X					37	
0.75	0.95	0.05							X	X	
$0.25 \\ 0.25$	$0.2 \\ 0.5$	$0.1 \\ 0.1$							Λ	X	
0.25	0.5	0.1								X	
0.25	0.85	0.1								X	
0.25	0.95	0.1								X	
0.5	0.2	0.1		X							
0.5	0.5	0.1		X							
0.5	0.7	0.1								X	
0.5	0.85	0.1								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1					X				37
0.75	0.5	0.1								v	X
$0.75 \\ 0.75$	$0.7 \\ 0.85$	$0.1 \\ 0.1$								X X	
0.75	0.95	0.1								X	
0.25	0.2	0.15							X	X	
0.25	0.5	0.15								X	
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X	
0.5	0.2	0.15		X							
0.5	0.5	0.15								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	0.15		X						Λ	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	$0.15 \\ 0.15$		Λ						X	
0.75	0.7	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15								X X	
0.25	0.2	0.25			X						
0.25	0.5	0.25								X	
0.25	0.7	0.25								X	
0.25	0.85	0.25								X	
0.25	0.95	0.25								X X X X	
0.5	0.2	0.25								X X	
$0.5 \\ 0.5$	$0.5 \\ 0.7$	$0.25 \\ 0.25$								X	
0.5	0.7	0.25								X	
0.5	0.95	0.25		X	X		X		X	X	X
0.75	0.2	0.25			X					X	
0.75	0.5	0.25								X	
0.75	0.7	0.25								X	
0.75	0.85	0.25								X	
0.75	0.95	0.25		X	X					X X X	X
0.25	0.2	0.5								X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	v
$0.25 \\ 0.25$	$0.85 \\ 0.95$	$0.5 \\ 0.5$	X	X	X		X	X	X	X	X X
0.25	0.33	0.5	Λ	Λ	1		Λ	11	11	X	21
0.5	0.5	0.5								X	
0.5	0.7	0.5			X					X	X
0.5	0.85	0.5	X	X	X	X	X		X	X	X
0.5	0.95	0.5	X	X	X	X	X X	X	X	X	X
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	
0.75	0.7	0.5		37	37	37	37	37	37	X	X
$0.75 \\ 0.75$	0.85	0.5	v	X X	X	X	X X	X	X X	X	X
	0.95	0.5	X	Λ	X	X	Λ	Χ	Λ	X	X

Tabela 5 – Marcação do teste com melhor desempenho - EPV pela métrica A, $n=388\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05			,				X		
0.25	0.5	0.05			X						
0.25	0.7	0.05			X						
0.25	0.85	0.05								X	
0.25	0.95	0.05								X	
0.5	0.2	0.05			X						
0.5	0.5	0.05								X	
0.5	0.7	0.05								X	
0.5	0.85	0.05								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	0.05							X	Λ	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	$0.05 \\ 0.05$							Λ	X	
0.75	0.7	0.05								X	
0.75	0.85	0.05								X	
0.75	0.95	0.05								X	
0.25	0.2	0.1						X			
0.25	0.5	0.1								X	
0.25	0.7	0.1								X	
0.25	0.85	0.1								X	
0.25	0.95	0.1								X	
0.5	0.2	0.1							X		
0.5	0.5	0.1								X	
0.5	0.7	0.1								X	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.1 \\ 0.1$								X X	
$0.5 \\ 0.75$	0.95 0.2	0.1							X	Λ	
0.75	0.5	0.1							Λ	X	
0.75	0.7	0.1								X	
0.75	0.85	0.1								X	
0.75	0.95	0.1								X	
0.25	0.2	0.15								X	X
0.25	0.5	0.15								X	
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X	
0.5	0.2	0.15								X	
0.5	0.5	0.15								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15			v					X X	v
0.5	0.95	0.15			X				X	Λ	X
$0.75 \\ 0.75$	$0.2 \\ 0.5$	$0.15 \\ 0.15$							Λ	X	
0.75	$0.5 \\ 0.7$	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15								X	
0.25	0.2	0.25								X	
0.25	0.5	0.25								X	
0.25	0.7	0.25								X	
0.25	0.85	0.25								X	
0.25	0.95	0.25			X					X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X	
0.5	0.7	0.25								X	37
0.5	0.85	0.25	v	v	v	v	v		v	X	X
0.5	0.95	0.25	X	X	X	X	X		X	X	X
0.75	$0.2 \\ 0.5$	0.25								X X	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.25 \\ 0.25$								X	
$0.75 \\ 0.75$	0.7	0.25 0.25								Λ	X
0.75	0.95	0.25		X	X	X			X	X	X
0.25	0.2	0.5		-11	-1	-11			-1	X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	X
0.25	0.95	0.5	X	X	X	X	X	X	X	X	X
0.5	0.2	0.5								X	
0.5	0.5	0.5								X	
0.5	0.7	0.5		X	X				X	X	X
0.5	0.85	0.5	X	X	X	X	X	X	X	X	X
0.5	0.95	0.5	X	X	X	X	X	X	X	X	X
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	v
$0.75 \\ 0.75$	$0.7 \\ 0.85$	$0.5 \\ 0.5$		X	X	X	X	X	X	X X	X X
$0.75 \\ 0.75$	0.85	0.5	X	X	X	X	X	X	X	X	X
0.70	0.00	5.5	21	71	71	21	21	2 %	2 L	2 X	

Tabela 6 – Marcação do teste com melhor desempenho - EPV pela métrica A, $n=500\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05						X			
0.25	0.5	0.05	37					X			
$0.25 \\ 0.25$	$0.7 \\ 0.85$	$0.05 \\ 0.05$	X X								
0.25	0.95	0.05	Α								X
0.5	0.2	0.05						X			
0.5	0.5	0.05								X	
0.5	0.7	0.05				X					
0.5	0.85	0.05			X					v	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.05 \\ 0.05$						X		X	
0.75	$0.2 \\ 0.5$	0.05				X		1			
0.75	0.7	0.05					X				
0.75	0.85	0.05			X						
0.75	0.95	0.05								X	
0.25	0.2	0.1				v				X	
$0.25 \\ 0.25$	$0.5 \\ 0.7$	$0.1 \\ 0.1$	X			X					
0.25	0.85	0.1	A								X
0.25	0.95	0.1								X	
0.5	0.2	0.1							X		
0.5	0.5	0.1				X					
0.5	0.7	0.1			X						
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.1 \\ 0.1$			X					X	
0.75	0.95 0.2	0.1						X		Λ	
0.75	0.5	0.1						X			
0.75	0.7	0.1				X					
0.75	0.85	0.1			X						
0.75	0.95	0.1						37		X	
0.25	0.2	0.15	v					X			
$0.25 \\ 0.25$	$0.5 \\ 0.7$	$0.15 \\ 0.15$	X X								
0.25	0.85	0.15	A							X	
0.25	0.95	0.15								\mathbf{X}	
0.5	0.2	0.15						X			
0.5	0.5	0.15								X	
0.5	0.7	0.15								X	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.15 \\ 0.15$								X X	
0.75	0.93	0.15						X		Λ	
0.75	0.5	0.15								X	
0.75	0.7	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15						v		X	
$0.25 \\ 0.25$	$0.2 \\ 0.5$	$0.25 \\ 0.25$				X		X			
0.25	0.7	0.25	X			A					
0.25	0.85	0.25								X	
0.25	0.95	0.25								X	
0.5	0.2	0.25			X					**	
$0.5 \\ 0.5$	$0.5 \\ 0.7$	$0.25 \\ 0.25$								\mathbf{X} \mathbf{X}	
$0.5 \\ 0.5$	0.7	0.25 0.25								X	
0.5	0.95	0.25								X	
0.75	0.2	0.25						X			
0.75	0.5	0.25								X	
0.75	0.7	0.25								X	
0.75	0.85	0.25								X X	
$0.75 \\ 0.25$	$0.95 \\ 0.2$	$0.25 \\ 0.5$								X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5								X	
$0.5 \\ 0.5$	$0.2 \\ 0.5$	$0.5 \\ 0.5$								X X	
$0.5 \\ 0.5$	$0.5 \\ 0.7$	$0.5 \\ 0.5$								X	
0.5	0.85	0.5								X	
0.5	0.95	0.5								X	
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	
$0.75 \\ 0.75$	$0.7 \\ 0.85$	$0.5 \\ 0.5$								X X	
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.5 \\ 0.5$								X	
0.10	5.50	5.5								- 11	

Tabela 7 – Marcação do teste com melhor desempenho - EPV pela métrica B, $n=50\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05	X		J						- 1
0.25	0.5	0.05	X								
0.25	0.7	0.05	X								
$0.25 \\ 0.25$	$0.85 \\ 0.95$	$0.05 \\ 0.05$	X							X	
0.25	0.95	0.05	X							Λ	
0.5	0.5	0.05	A					X			
0.5	0.7	0.05								X	
0.5	0.85	0.05								X	
0.5	0.95	0.05								X	
0.75	0.2	0.05	37		X						
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.05 \\ 0.05$	X							X	
$0.75 \\ 0.75$	0.7	0.05		X						Λ	
0.75	0.95	0.05		71						X	
0.25	0.2	0.1	X								
0.25	0.5	0.1	X								
0.25	0.7	0.1								X	
0.25	0.85	0.1								X	
$0.25 \\ 0.5$	$0.95 \\ 0.2$	$0.1 \\ 0.1$								X X	
0.5	$0.2 \\ 0.5$	0.1	X							Λ	
0.5	0.7	0.1								X	
0.5	0.85	0.1								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1	X								
0.75	0.5	0.1						X		37	
$0.75 \\ 0.75$	$0.7 \\ 0.85$	$0.1 \\ 0.1$								X	
$0.75 \\ 0.75$	0.85	0.1								X X	
0.25	0.2	0.15	X							21	
0.25	0.5	0.15	X								
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X	
0.5	0.2	0.15		X						37	
0.5	0.5	0.15								X X	
$0.5 \\ 0.5$	$0.7 \\ 0.85$	$0.15 \\ 0.15$								X	
0.5	0.95	0.15								X	
0.75	0.2	0.15								X	
0.75	0.5	0.15								X	
0.75	0.7	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15	v							X	
$0.25 \\ 0.25$	$0.2 \\ 0.5$	$0.25 \\ 0.25$	X							v	
0.25	$0.5 \\ 0.7$	0.25								X X	
0.25	0.85	0.25								X	
0.25	0.95	0.25								X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X X	
0.5	0.7	0.25								X	
0.5	0.85	0.25								X X	
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.25 \\ 0.25$								A Y	
$0.75 \\ 0.75$	$0.2 \\ 0.5$	0.25								X X	
0.75	0.7	0.25								X	
0.75	0.85	0.25								X	
0.75	0.95	0.25								X	
0.25	0.2	0.5								X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X X	
$0.25 \\ 0.25$	$0.85 \\ 0.95$	$0.5 \\ 0.5$								A X	
0.25	0.93	0.5								X X	
0.5	0.5	0.5								X	
0.5	0.7	0.5								X	
0.5	0.85	0.5								X	
0.5	0.95	0.5		X	X				X	X	X
0.75	0.2	0.5								X	
$0.75 \\ 0.75$	0.5	0.5								X X	
$0.75 \\ 0.75$	$0.7 \\ 0.85$	$0.5 \\ 0.5$								X	
0.75	0.95	0.5		X	X	X			X	X	X
									· ·		

Tabela 8 – Marcação do teste com melhor desempenho - EPV pela métrica B, $n=163\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05			X						
0.25	0.5	0.05		X							
0.25	0.7	0.05	X								
0.25	0.85	0.05				X					
0.25	0.95	0.05								X	
0.5	0.2	0.05								X	
0.5	0.5	0.05								X	
0.5	0.7	0.05			X						
0.5	0.85	0.05								X	
0.5	0.95	0.05								X	
0.75	0.2	0.05								X X	
0.75	0.5	0.05								X	
0.75	0.7	0.05					X				
0.75	0.85	0.05								X	
0.75	0.95	0.05								X	
0.25	0.2	0.1								X	
0.25	0.5	0.1	X								
0.25	0.7	0.1								X	
0.25	0.85	0.1								X X	
0.25	0.95	0.1								X	
0.5	0.2	0.1								X	
0.5	0.5	0.1								X	
0.5	0.7	0.1								X	
0.5	0.85	0.1								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1								X	
0.75	0.5	0.1								X	
0.75	0.7	0.1								X X	
0.75	0.85	0.1								X	
0.75	0.95	0.1								X	
0.25	0.2	0.15								X	
0.25	0.5	0.15								X	
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X	
0.5	0.2	0.15								X	
0.5	0.5	0.15								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X	
0.5	0.95	0.15								X	
0.75	0.2	0.15								X	
0.75	0.5	0.15								X	
0.75	0.7	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15								X	
0.25	0.2	0.25								X	
0.25	0.5	0.25								X	
0.25	0.7	0.25								X X	
0.25	0.85	0.25								X	
0.25	0.95	0.25								X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X	
0.5	0.7	0.25								X	
0.5	0.85	0.25								X	
0.5	0.95	0.25								X	
0.75	0.2	0.25								X	
0.75	0.5	0.25								X	
0.75	0.7	0.25								X X X	
0.75	0.85	0.25								X	
0.75	0.95	0.25								X	
0.25	0.2	0.5								X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5								X	
0.5	0.2	0.5								X X	
0.5	0.5	0.5								X	
0.5	0.7	0.5								X	
0.5	0.85	0.5			X					X	X
0.5	0.95	0.5		X	X	X	X	X	X	X	X
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	
0.75	0.7	0.5								X	
0.75	0.85	0.5								X	
0.75	0.95	0.5		X	X	X	X	X	X	X	X

Tabela 9 – Marcação do teste com melhor desempenho - EPV pela métrica B, $n=275\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05				X					
$0.25 \\ 0.25$	$0.5 \\ 0.7$	$0.05 \\ 0.05$				X				X	
0.25	0.7	0.05								X	
0.25	0.95	0.05								X	
0.5	0.2	0.05					X				
0.5	0.5	0.05		X							
0.5	0.7	0.05		X						v	
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.05 \\ 0.05$								X X	
0.75	0.33	0.05	X							Λ	
0.75	0.5	0.05				X					
0.75	0.7	0.05								\mathbf{X}	
0.75	0.85	0.05								X	
$0.75 \\ 0.25$	$0.95 \\ 0.2$	$0.05 \\ 0.1$								X X	
0.25	$0.2 \\ 0.5$	0.1								X	
0.25	0.7	0.1								X	
0.25	0.85	0.1								X	
0.25	0.95	0.1								X	
0.5	0.2	0.1								X	
$0.5 \\ 0.5$	$0.5 \\ 0.7$	$0.1 \\ 0.1$								X X	
$0.5 \\ 0.5$	0.7	$0.1 \\ 0.1$								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1								X	
0.75	0.5	0.1		X							
0.75	0.7	0.1								X	
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.1 \\ 0.1$								X X	
0.75	0.33	0.15	X							Λ	
0.25	0.5	0.15		X							
0.25	0.7	0.15								\mathbf{X}	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X X	
$0.5 \\ 0.5$	$0.2 \\ 0.5$	$0.15 \\ 0.15$								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X	
0.5	0.95	0.15								X	
0.75	0.2	0.15		X						37	
$0.75 \\ 0.75$	$0.5 \\ 0.7$	$0.15 \\ 0.15$								X X	
0.75	0.7	0.15								X	
0.75	0.95	0.15								X X	
0.25	0.2	0.25	X								
0.25	0.5	0.25								X	
0.25	0.7	0.25								X	
$0.25 \\ 0.25$	$0.85 \\ 0.95$	$0.25 \\ 0.25$								A X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X X X X X X	
0.5	0.7	0.25								X	
0.5	0.85	0.25			v					X	v
$0.5 \\ 0.75$	$0.95 \\ 0.2$	$0.25 \\ 0.25$			X					X X	X
$0.75 \\ 0.75$	$0.2 \\ 0.5$	0.25 0.25								X	
0.75	0.7	0.25								X	
0.75	0.85	0.25								X X X X	
0.75	0.95	0.25								X	
0.25	0.2	0.5								X	
$0.25 \\ 0.25$	$0.5 \\ 0.7$	$0.5 \\ 0.5$								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5		X	X				X	X	X
0.5	0.2	0.5								X	
0.5	0.5	0.5								X	
0.5	$0.7 \\ 0.85$	0.5		v	v				X	X X	\mathbf{v}
$0.5 \\ 0.5$	$0.85 \\ 0.95$	$0.5 \\ 0.5$	X	X X	X X	X	X	X	X	X	X X
0.75	0.2	0.5								X	
0.75	0.5	0.5								X	
0.75	0.7	0.5								X	
0.75	0.85	0.5		v	X X	v	v	v	X X	X X	X
0.75	0.95	0.5		X	Λ	X	X	X	Λ	Λ	X

Tabela 10 – Marcação do teste com melhor desempenho - EPV pela métrica B
, $n=388\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.2	0.05			,				X		· r
0.25	0.5	0.05		X							
0.25	0.7	0.05			X						
0.25	0.85	0.05								X	
0.25	0.95	0.05								X	
0.5	0.2	0.05							X		
0.5	0.5	0.05								X	
0.5	0.7	0.05								X	
0.5	0.85	0.05								X	
0.5	0.95	0.05								X	
0.75	0.2	0.05						X			
0.75	0.5	0.05								X	
0.75	0.7	0.05								X	
0.75	0.85	0.05								X	
0.75	0.95	0.05								X	
0.25	0.2	0.1							X		
0.25	0.5	0.1								X	
0.25	0.7	0.1								X	
0.25	0.85	0.1								X	
0.25	0.95	0.1								X	
0.5	0.2	0.1							X		
0.5	0.5	0.1								X	
0.5	0.7	0.1								X	
0.5	0.85	0.1								X	
0.5	0.95	0.1								X	
0.75	0.2	0.1						X			
0.75	0.5	0.1								X	
0.75	0.7	0.1								X	
0.75	0.85	0.1								X	
0.75	0.95	0.1								X	
0.25	0.2	0.15								X	
0.25	0.5	0.15								X	
0.25	0.7	0.15								X	
0.25	0.85	0.15								X	
0.25	0.95	0.15								X	
0.5	0.2	0.15								X	
0.5	0.5	0.15								X	
0.5	0.7	0.15								X	
0.5	0.85	0.15								X	
0.5	0.95	0.15								X	
0.75	0.2	0.15							X		
0.75	0.5	0.15								X	
0.75	0.7	0.15								X	
0.75	0.85	0.15								X	
0.75	0.95	0.15								X	
0.25	0.2	0.25								X	
0.25	0.5	0.25								X	
0.25	0.7	0.25								X	
0.25	0.85	0.25								X	
0.25	0.95	0.25								X	
0.5	0.2	0.25								X	
0.5	0.5	0.25								X	
0.5	0.7	0.25								X	
0.5	0.85	0.25								X	
0.5	0.95	0.25		X	X				X	X	X
0.75	0.2	0.25								X	
0.75	0.5	0.25								X	
0.75	0.7	0.25								X	
0.75	0.85	0.25								X	
0.75	0.95	0.25								X	
0.25	0.2	0.5								X	
0.25	0.5	0.5								X	
0.25	0.7	0.5								X	
0.25	0.85	0.5								X	
0.25	0.95	0.5	X	X	X				X	X	X
0.5	0.2	0.5								X	
0.5	0.5	0.5								X	
0.5	0.7	0.5								X	
0.5	0.85	0.5		X	X	X	X		X	X	X
0.5	0.95	0.5	X	X	X	X	X	X	X	X	X
0.75	0.2	0.5						-	-	X	
0.75	0.5	0.5								X	
0.75	0.7	0.5								X	
0.75	0.85	0.5		X	X	X	X		X	X	X
0.75	0.95	0.5		X	X	X	X	X	X	X	X
		-									

Tabela 11 – Marcação do teste com melhor desempenho - EPV pela métrica B
, $n=500\,$

Na Tabela 12 percebe-se que o teste aveF possui um desempenho muito bom, dentre todos os cenários simulados e testes comparados. É importante ressaltar que há possibilidade de empate entre os cenários, o qual ocorre quando o EPV de diferentes testes converge para um único valor mínimo 1 .

Métrica	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
A	30	38	45	26	19	29	34	275	48
В	27	23	27	19	11	21	21	296	19

Tabela 12 – Número de vezes que os testes foram marcados como melhores por métrica

E na Tabela 13, fica visível que, independente da métrica, conforme a intensidade da quebra aumentou (ou seja, quanto maior for o parâmetro s) melhor foi a performance dos testes em geral.

Métrica	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
A	0,05	6	6	6	4	2	7	5	36	6
A	0,10	6	3	1	2	1	5	5	48	4
A	0,15	4	5	5	2	0	2	2	55	5
A	$0,\!25$	3	6	11	3	2	2	3	64	9
A	0,50	11	18	22	15	14	13	19	72	24
В	0,05	10	5	6	6	3	6	2	36	1
В	0,10	6	1	3	3	0	4	3	54	1
В	0,15	5	3	0	0	0	3	1	63	0
В	$0,\!25$	3	1	3	1	0	2	1	68	2
В	0,50	3	13	15	9	8	6	14	75	15

Tabela 13 – Número de vezes que os testes foram marcados como melhores por métrica

Na próxima sessão, as conclusões e considerações finais são apresentadas.

¹ Muitas vezes, este valor mínimo foi o zero.

5 Considerações Finais

O presente trabalho investigou a capacidade de diferentes testes detectarem quebra estrutural em uma série temporal. A literatura estatística dispõe de técnicas para identificar estas quebras - dentre elas os testes de hipóteses para quebras estruturais, os quais foram utilizados. No presente estudo, a série temporal considera que os componentes de sazonalidade e ciclo tenham sido adequadamente estimados ou que uma série temporal seja descrita apenas pelo ruído e a tendência. Através de simulações de cenários com diferentes tamanhos de amosta, coeficiente de determinação e ponto de corte, foi possível investigar o melhor teste de acordo com o cada cenário.

Estes resultados são importantes visto que tais quebras estruturais não são tão facilmente detectadas. A partir dos resultados do estudo de simulação é possível decidir qual dos testes disponíveis no pacote *strucchange* do *software* R é o ideal a ser utilizado de acordo com o contexto dos dados.

No contexto sem quebra estrutural, considerando os diversos cenários analisados, não houve relação entre tamanho de amostra e coeficiente de determinação nos resultados do erro do tipo I. Os testes mais indicados nesse contexto, são aveF e Rec-MOSUM. O teste expF também possui bom desempenho com a ressalva de amostras com $n \geq 163$. Já no contexto com quebra estrutural, a capacidade dos testes identificarem presença de quebra estrutural aumenta de acordo com o aumento do tamanho da amostra, coeficiente de determinação e aumento da intensidade da quebra estrutural. Além disso, o desempenho dos testes é melhor quando a quebra ocorre no meio da série. O p-valor esperado (EPV) revelou-se uma maneira poderosa de investigar a capacidade de cada teste identificar a presença de quebra estrutural. No geral, considerando o contexto de quebra estrutural o teste aveF apresentou os melhores resultados.

O estudo de simulação permitiu a identificação dos melhores testes dentre aqueles utilizados no presente estudo. E para tanto, foi avaliado sobre a hipótese nula o teste que tem o melhor desempenho em cada cenário, e foi utilizado o erro do tipo I como métrica. Tal métrica, é considerada pelos autores a mais adequada para atender este objetivo específico. Também foi possível definir uma recomendação de testes para cada cenário com base no EPV observado a fim de estabelecer um direcionamento de escolha de testes. O EPV neste sentido, conseguiu responder a seguinte pergunta: independente do nível de significância, qual teste apresenta a melhor capacidade de distinguir qual hipótese é a verdadeira?

Concluindo, o presente trabalho explorou um contexto bem específico de séries temporais. Naturalmente, a pergunta que surge é: estes resultados permanecem iguais em outros contextos? Ou seja: quando o objetivo é verificar quebras estruturais em modelos diferentes (e.g. modelos da família SARIMA) ou em conjunto de dados que apresentem

outras características como heteroscedasticidade, dados faltantes, entre outros, os resultados seriam semelhantes aos obtidos no presente estudo? Outro ponto, diz respeito aos testes baseados em flutuação generalizada do tipo MOSUM. Existe um parâmetro h que define a janela da soma móvel que o estudo de simulação não investigou¹. Por conta disso, é interessante averiguar se ao utilizar diferentes valores de h a performance dos testes do tipo MOSUM também não é alterada.

O EPV é um número pequeno. Isso pode trazer problemas computacionais, principalmente na hora de gerar e comparar os resultados. Talvez, seja prudente aplicar no EPV alguma função como o logarítimo ou multiplicar por alguma constante para trabalhar com as suas quantidades.

O pacote *strucchange* dispõe de uma outra função, chamada *breakpoints()*, cuja finalidade é identificar pontos de quebra estrutural em um modelo. Essa função não realiza um teste de hipóteses², e portanto pode ser uma alternativa aos testes investigados no presente trabalho.

O presente trabalho adotou o valor default de h = 0, 15.

Ela gera uma matriz triangular com a soma de quadrados dos resíduos de todos os possíveis modelos ajustados com nh observações. Onde n é o tamanho da amostra e h é um parâmetro que define a largura da janela utilizada para ajustar os modelos. E então, um algoritmo de otimização é executado a fim de identificar em qual observação ocorreu a quebra.

Referências

- ANDREWS, D. W. Tests for parameter instability and structural change with unknown change point. *Econometrica: Journal of the Econometric Society*, JSTOR, p. 821–856, 1993.
- ANDREWS, D. W.; PLOBERGER, W. Optimal tests when a nuisance parameter is present only under the alternative. *Econometrica: Journal of the Econometric Society*, JSTOR, p. 1383–1414, 1994.
- ARUGA, K. The us shale gas revolution and its effect on international gas markets. Journal of Unconventional Oil and Gas Resources, Elsevier, v. 14, p. 1–5, 2016.
- BROWN, R. L.; DURBIN, J.; EVANS, J. M. Techniques for testing the constancy of regression relationships over time. *Journal of the Royal Statistical Society: Series B* (Methodological), Wiley Online Library, v. 37, n. 2, p. 149–163, 1975.
- BULLOCK, E. L.; WOODCOCK, C. E.; HOLDEN, C. E. Improved change monitoring using an ensemble of time series algorithms. *Remote Sensing of Environment*, Elsevier, v. 238, p. 111165, 2020.
- BUSE, R.; SCHIENLE, M. Measuring connectedness of euro area sovereign risk. *International Journal of Forecasting*, Elsevier, v. 35, n. 1, p. 25–44, 2019.
- CHOW, G. C. Tests of equality between sets of coefficients in two linear regressions. *Econometrica: Journal of the Econometric Society*, JSTOR, p. 591–605, 1960.
- CHU, C.-S. J.; HORNIK, K.; KAUN, C.-M. Mosum tests for parameter constancy. *Biometrika*, Oxford University Press, v. 82, n. 3, p. 603–617, 1995a.
- CHU, C.-S. J.; HORNIK, K.; KUAN, C.-M. The moving-estimates test for parameter stability. *Econometric Theory*, Cambridge University Press, v. 11, n. 4, p. 699–720, 1995b.
- CIFUENTES, J. C. A.; TERÁN, Á. M. G. Evaluación de la hipótesis de kuznets para colombia con una aproximación de series de tiempo: 1977-2005. *Apuntes del CENES*, p. 43–62, 2017.
- CREDE, C. J. A structural break cartel screen for dating and detecting collusion. *Review of Industrial Organization*, Springer, v. 54, n. 3, p. 543–574, 2019.
- DAIZADEH, I. Investigating rates of food and drug administration approvals and guidances in drug development: A structural breakpoint/cointegration timeseries analysis. *Therapeutic Innovation & Regulatory Science*, Springer, p. 1–12, 2020.
- DEVI, R. M. et al. Analyzing precipitation and temperature trends of kanha and satpura tiger reserve, central india. *Theoretical and Applied Climatology*, Springer, p. 1–16, 2020.
- DIAS, J.; JR, V. J. de C. Análise de quebra estrutural na formação bruta de capital fixo do brasil. *Revista de Economia*, v. 29, 2003.
- FAN, Y.; XU, J.-H. What has driven oil prices since 2000? a structural change perspective. *Energy Economics*, Elsevier, v. 33, n. 6, p. 1082–1094, 2011.

- GUAN, D. et al. Structural decline in china's co 2 emissions through transitions in industry and energy systems. *Nature Geoscience*, Nature Publishing Group, v. 11, n. 8, p. 551–555, 2018.
- HANSEN, B. E. Approximate asymptotic p values for structuras-change tests. *Journal of Business & Economic Statistics*, Taylor & Francis, v. 15, n. 1, p. 60–67, 1997.
- HANSEN, B. E. Testing for structural change in conditional models. *Journal of Econometrics*, Elsevier, v. 97, n. 1, p. 93–115, 2000.
- HANSEN, H.; JOHANSEN, S. Some tests for parameter constancy in cointegrated var-models. *The Econometrics Journal*, Wiley Online Library, v. 2, n. 2, p. 306–333, 1999.
- MCCONNELL, M. M.; PEREZ-QUIROS, G. Output fluctuations in the united states: What has changed since the early 1980's? *American Economic Review*, v. 90, n. 5, p. 1464–1476, 2000.
- OTTO, S.; BREITUNG, J. Backward cusum for testing and monitoring structural change. arXiv preprint arXiv:2003.02682, 2020.
- PLOBERGER, W.; KRÄMER, W. The cusum test with ols residuals. *Econometrica: Journal of the Econometric Society*, JSTOR, p. 271–285, 1992.
- PLOBERGER, W.; KRÄMER, W.; KONTRUS, K. A new test for structural stability in the linear regression model. *Journal of Econometrics*, Elsevier, v. 40, n. 2, p. 307–318, 1989.
- R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2020. Disponível em: https://www.R-project.org/.
- SACKROWITZ, H.; SAMUEL-CAHN, E. P values as random variables—expected p values. *The American Statistician*, Taylor & Francis Group, v. 53, n. 4, p. 326–331, 1999.
- SHUMWAY, R. H.; STOFFER, D. S. Time series analysis and its applications: with R examples. [S.l.]: Springer, 2017.
- STOCK, J. H.; WATSON, M. W. Evidence on structural instability in macroeconomic time series relations. *Journal of Business & Economic Statistics*, Taylor & Francis Group, v. 14, n. 1, p. 11–30, 1996.
- YIN, A. Out-of-sample equity premium prediction in the presence of structural breaks. *International Review of Financial Analysis*, Elsevier, v. 65, p. 101385, 2019.
- ZEILEIS, A. p-Werte und alternative Schranken von CUSUM-Tests. Tese (Doutorado) Master's thesis, Fachbereich Statistik, Universität Dortmund, 2000a. URL ..., 2000.
- ZEILEIS, A. p values and alternative boundaries for CUSUM tests. [S.l.], 2001.
- ZEILEIS, A. et al. strucchange: An r package for testing for structural change in linear regression models. *Journal of Statistical Software*, v. 7, n. 2, p. 1–38, 2002. Disponível em: http://www.jstatsoft.org/v07/i02/.

APÊNDICE A - Como foi possível parametrizar o coeficiente de determinação

Para simular os dados, foi utilizado a função rnorm() do pacote stats do R. E para isso, foi necessário definir um valor para o desvio padrão da variável resposta (Y), dado o valor do tempo (X). Dado que esse desvio padrão tem relação com o coeficiente de explicação R^2 , um dos desafios para a simulação foi definir como definir o R^2 do modelo para gerar os cenários. O objetivo dessa sessão é explicar como que isso foi possível.

Considere X como sendo a variável independente que explica Y, y_i como sendo a i-ésima realização da variável aleatória dependente Y, \hat{y}_i a i-ésima estimativa da variável aleatória e \overline{y} a média de y. Considere que, calcular \overline{y} utilizando \hat{y} traz o mesmo resultado que calcular \overline{y} utilizando o y propriamente dito. Ademais, seja σ_y^2 a variância de Y e σ_ε^2 a variância de ε temos então que:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \Rightarrow \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{R^{2}}$$

E como a estimativa de σ_y^2 é dada por $\hat{\sigma_y}^2 = \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1}$, temos:

$$\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1} = \hat{\sigma_y}^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}{R^2(n-1)}$$

E agora, como $E[\varepsilon]=0$ de acordo com os pressupostos da regressão linear, então um estimador possível para σ_{ε}^2 é $\hat{\sigma}_{\varepsilon}^2=\frac{\sum_{i=1}^n \varepsilon_i}{n-1}$. Com isso:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \Rightarrow \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = (1 - R^{2}) \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

E como $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ e $\hat{y}_i = \beta_0 + \beta_1 x_i$ então $y_i - \hat{y}_i = \varepsilon_i$. E com isso:

$$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-1} = (1 - R^2) \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1} :: \hat{\sigma}_{\varepsilon}^2 = \hat{\sigma}_y^2 (1 - R^2)$$

E por fim, este resultado foi utilizado para definir o \mathbb{R}^2 do modelo.

APÊNDICE B - O p-valor esperado com base em Sackrowitz e Samuel-Cahn (1999)

Os testes apresentados no presente trabalho podem ser descritos como $H_0: T \le c_{\alpha}$ vs. $H_1: T > c_{\alpha}$, onde T é uma estatística de teste e c_{α} é um valor crítico. Dado que sob a hipótese nula T tem uma distribuição de probabilidade $F_0()$, a função $F_0^{-1}()$ é a inversa de $F_0()$ de modo que

$$0 < \gamma < 1, F_0(F_0^{-1}(\gamma)) = \gamma.$$

Isso posto, o p-valor calculado (X) também pode ser descrito como sendo

$$X = 1 - F_0(T).$$

Sob H_0 , $F_0(T) \sim Unif(0,1)$. Logo, $X \sim Unif(0,1)$.

Agora, sob a hipótese alternativa (H_1) , se $T \sim F_1()$ o poder de teste (β) de tamanho α baseado em T é dado da seguinte forma:

$$\beta = P_1(X \le \alpha) = 1 - F_1(F_1^{-1}(1 - \alpha)).$$

Observe que para um teste ser significativo para uma alternativa, T sob H_1 deve ser estocasticamente maior do que T sob H_0 . Quando α assume todos os valores (i.e. o intervalo $0 < \alpha < 1$), temos a distribuição do p-valor sob a hipótese alternativa. E a partir desta distribuição, o EPV é calculado. Uma outra representação do EPV é

$$EPV = P(T* > T)$$

onde T* é a estatística de teste sob a hipótese nula e T é a estatística de teste sob a hipótese alternativa. Com base na expressão do poder do teste, quanto menor o EPV, melhor é a capacidade do teste em distinguir a hipótese nula da hipótese alternativa.

ANEXO A - Gráficos e tabelas não incorporados no texto

Figura 6 – P-valor esperado para os diferentes testes, considerando métrica A e n = 50.

Figura 7 – P-valor esperado para os diferentes testes, considerando métrica A e n = 163.

Figura 8 – P-valor esperado para os diferentes testes, considerando métrica A e n=275.

Figura 9 – P-valor esperado para os diferentes testes, considerando métrica A e n=388.

Figura 10 – P-valor esperado para os diferentes testes, considerando métrica A e n = 500.

Figura 11 – P-valor esperado para os diferentes testes, considerando métrica B e n = 50.

Figura 12 – P-valor esperado para os diferentes testes, considerando métrica B e n = 163.

Figura 13 – P-valor esperado para os diferentes testes, considerando métrica B e n=275.

Figura 14 – P-valor esperado para os diferentes testes, considerando métrica B e n=388.

Figura 15 – P-valor esperado para os diferentes testes, considerando métrica B e n = 500.

n	r2	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
50	0.2	0.00800	0.00000	0.01800	0.00000	0.00000	0.00000	0.02290	0.01420	0.02320
163	0.2	0.00870	0.00000	0.02390	0.00000	0.00000	0.00000	0.02010	0.01180	0.01480
275	0.2	0.00730	0.00000	0.02730	0.00000	0.00000	0.00000	0.01410	0.01070	0.01090
388	0.2	0.00930	0.00000	0.02670	0.00000	0.00000	0.00000	0.01810	0.01260	0.01250
500	0.2	0.00790	0.00000	0.02560	0.00000	0.00000	0.00000	0.01550	0.00990	0.00860
50	0.5	0.00670	0.00000	0.01620	0.00000	0.00000	0.00000	0.02160	0.01410	0.02140
163	0.5	0.00710	0.00000	0.02390	0.00000	0.00000	0.00000	0.01750	0.01100	0.01310
275	0.5	0.00930	0.00000	0.02560	0.00000	0.00000	0.00000	0.01550	0.00990	0.00980
388	0.5	0.01000	0.00000	0.02650	0.00000	0.00000	0.00000	0.01650	0.01010	0.01030
500	0.5	0.00820	0.00000	0.03150	0.00000	0.00000	0.00000	0.01980	0.01260	0.01250
50	0.7	0.00590	0.00000	0.01640	0.00000	0.00000	0.00000	0.02480	0.01700	0.02650
163	0.7	0.00930	0.00000	0.02260	0.00000	0.00000	0.00000	0.01420	0.01150	0.01130
275	0.7	0.00730	0.00000	0.02660	0.00000	0.00000	0.00000	0.01580	0.01000	0.01060
388	0.7	0.00920	0.00000	0.02980	0.00000	0.00000	0.00000	0.01900	0.01070	0.01260
500	0.7	0.00910	0.00000	0.02670	0.00000	0.00000	0.00000	0.01630	0.01180	0.00990
50	0.85	0.00870	0.00000	0.01440	0.00000	0.00000	0.00000	0.02160	0.01340	0.02210
163	0.85	0.00910	0.00000	0.02250	0.00000	0.00000	0.00000	0.01800	0.01240	0.01420
275	0.85	0.00710	0.00000	0.02770	0.00000	0.00000	0.00000	0.01690	0.01320	0.01180
388	0.85	0.00850	0.00000	0.03210	0.00000	0.00000	0.00000	0.01880	0.01290	0.01170
500	0.85	0.00940	0.00000	0.03090	0.00000	0.00000	0.00000	0.01720	0.01040	0.00960
50	0.95	0.00640	0.00000	0.01510	0.00000	0.00000	0.00000	0.01890	0.01370	0.02010
163	0.95	0.00800	0.00000	0.02400	0.00000	0.00000	0.00000	0.01630	0.00990	0.01190
275	0.95	0.00870	0.00000	0.02690	0.00000	0.00000	0.00000	0.01790	0.01180	0.01210
388	0.95	0.00970	0.00000	0.02400	0.00000	0.00000	0.00000	0.01600	0.00900	0.00940
500	0.95	0.00830	0.00000	0.02790	0.00000	0.00000	0.00000	0.01500	0.01170	0.01040

Tabela 14 – Resultados da proporção de rejeição de H_0 para os diferentes testes considerando $\alpha=1\%$

n	r2	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
50	0.2	0.03880	0.00000	0.06700	0.01350	0.00500	0.01180	0.07690	0.06090	0.08100
163	0.2	0.04760	0.00000	0.09290	0.03320	0.01550	0.06100	0.08080	0.05340	0.06460
275	0.2	0.04520	0.00000	0.09490	0.03370	0.01850	0.08040	0.07610	0.04870	0.05250
388	0.2	0.04500	0.00010	0.09910	0.03860	0.02140	0.09440	0.08010	0.05390	0.05910
500	0.2	0.04640	0.00010	0.10330	0.03630	0.02030	0.09490	0.08040	0.05280	0.05160
50	0.5	0.03820	0.00000	0.06730	0.01080	0.00450	0.01150	0.07740	0.05640	0.08090
163	0.5	0.03800	0.00000	0.08970	0.02960	0.01350	0.05540	0.07480	0.05050	0.05880
275	0.5	0.03910	0.00010	0.09770	0.03360	0.02000	0.07860	0.07370	0.04880	0.05200
388	0.5	0.04600	0.00010	0.09660	0.03550	0.02080	0.09030	0.07670	0.04940	0.05360
500	0.5	0.04070	0.00010	0.10860	0.03780	0.02490	0.10160	0.08540	0.05250	0.05760
50	0.7	0.03560	0.00000	0.06780	0.01300	0.00310	0.01340	0.07980	0.06050	0.08460
163	0.7	0.04390	0.00000	0.08670	0.02970	0.01360	0.05750	0.07640	0.04910	0.05770
275	0.7	0.04440	0.00000	0.09890	0.02960	0.01710	0.07520	0.07480	0.05390	0.05560
388	0.7	0.04660	0.00010	0.09960	0.04030	0.02330	0.09570	0.07900	0.05270	0.05520
500	0.7	0.04260	0.00000	0.10260	0.03760	0.02230	0.10010	0.07790	0.05010	0.05410
50	0.85	0.03710	0.00000	0.06450	0.01220	0.00440	0.01390	0.07970	0.06040	0.08270
163	0.85	0.04280	0.00000	0.08980	0.03060	0.01320	0.05640	0.07470	0.05280	0.05920
275	0.85	0.04090	0.00010	0.09690	0.03290	0.02030	0.08070	0.07920	0.05260	0.05720
388	0.85	0.04460	0.00010	0.10860	0.03840	0.02260	0.09450	0.08250	0.05430	0.05950
500	0.85	0.04460	0.00010	0.10280	0.03960	0.02600	0.10020	0.08350	0.05160	0.05420
50	0.95	0.03740	0.00000	0.06340	0.01460	0.00400	0.01320	0.07310	0.05490	0.07570
163	0.95	0.03950	0.00000	0.08920	0.02980	0.01290	0.05660	0.07660	0.05480	0.06040
275	0.95	0.04170	0.00000	0.10370	0.03350	0.01970	0.07820	0.07620	0.05080	0.05790
388	0.95	0.04250	0.00000	0.09340	0.03310	0.01910	0.08910	0.07490	0.04660	0.04800
500	0.95	0.04200	0.00000	0.10020	0.03970	0.02490	0.10340	0.07900	0.04930	0.05180

Tabela 15 – Resultados da proporção de rejeição de H_0 para os diferentes testes considerando $\alpha=5\%$

n	r2	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
50	0.2	0.07480	0.00000	0.12750	0.03280	0.01330	0.03220	0.13830	0.11000	0.14010
163	0.2	0.09040	0.00010	0.16370	0.06890	0.03790	0.11900	0.14720	0.10390	0.12170
275	0.2	0.08890	0.00040	0.17350	0.07050	0.04090	0.15350	0.14560	0.09580	0.10400
388	0.2	0.09280	0.00060	0.17200	0.08060	0.05050	0.16940	0.15590	0.09930	0.10830
500	0.2	0.08910	0.00030	0.17980	0.07920	0.04650	0.17120	0.15040	0.10090	0.10640
50	0.5	0.07610	0.00000	0.12340	0.02860	0.01300	0.03100	0.13970	0.10750	0.14390
163	0.5	0.08100	0.00050	0.15840	0.06380	0.03420	0.11010	0.14440	0.10010	0.11410
275	0.5	0.08220	0.00050	0.17270	0.06980	0.04140	0.14880	0.14720	0.09560	0.10860
388	0.5	0.09630	0.00040	0.17440	0.07440	0.04610	0.16550	0.14830	0.09480	0.10540
500	0.5	0.08700	0.00060	0.18320	0.08210	0.05360	0.18250	0.15890	0.10100	0.10940
50	0.7	0.07650	0.00000	0.12390	0.03080	0.01280	0.03480	0.13650	0.11250	0.14250
163	0.7	0.08620	0.00040	0.15440	0.06310	0.03670	0.11560	0.14100	0.10140	0.11370
275	0.7	0.08910	0.00020	0.17310	0.06450	0.04110	0.14120	0.14630	0.09850	0.10760
388	0.7	0.09310	0.00040	0.17740	0.07920	0.04870	0.16470	0.15370	0.10200	0.10950
500	0.7	0.08960	0.00030	0.18310	0.08220	0.05190	0.18090	0.15190	0.09660	0.10600
50	0.85	0.07370	0.00000	0.12590	0.03160	0.01210	0.03300	0.13900	0.11160	0.14550
163	0.85	0.08420	0.00030	0.16070	0.06510	0.03190	0.11690	0.14170	0.09980	0.11170
275	0.85	0.08440	0.00040	0.16550	0.06670	0.04400	0.14830	0.14720	0.10030	0.11240
388	0.85	0.08910	0.00070	0.18420	0.08180	0.05030	0.17400	0.15670	0.10220	0.11700
500	0.85	0.09070	0.00020	0.18040	0.08320	0.05540	0.18250	0.16310	0.10070	0.11230
50	0.95	0.07210	0.00010	0.12020	0.03170	0.01110	0.03170	0.13500	0.10450	0.13880
163	0.95	0.08200	0.00010	0.15710	0.06170	0.03610	0.11110	0.14410	0.10180	0.11900
275	0.95	0.08640	0.00040	0.17380	0.07210	0.04330	0.14420	0.15170	0.10070	0.11070
388	0.95	0.08870	0.00020	0.16770	0.07810	0.04660	0.16120	0.14620	0.09080	0.10130
500	0.95	0.08870	0.00070	0.17890	0.08190	0.05110	0.18220	0.15100	0.09650	0.10410

Tabela 16 – Resultados da proporção de rejeição de H_0 para os diferentes testes considerando $\alpha=10\%$

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.50 0.50000 0.50330 0.50933 0.5077 0.50000 0.50000 0.50500 0.05050 0.05030 0.05033 0.05077 0.05000 0.50500 0.05050 0.05031 0.05030 0.05000 0.05	c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25 0.75 0.75 0.05 0.83900 0.49300 0.59567 0.50100 0.50107 0.19500 0.95000 0.95000												
0.25 0.85 0.05 0.94900	0.25	0.50	0.05	0.51000	0.50300	0.49533	0.49467	0.49067	0.49500	0.49500	0.49600	0.49900
0.95 0.05 0.05 0.048873 0.48903 0.478070 0.47803 0.44807 0.48807 0.47807 0.17803 0.498033 0.499033 0.498033												
0.50 0.50 0.90 0.90 0.90907 0.99033 0.99033 0.94933 0.94931 0.94936 0.4983 0.94930 0.94933 0.94930 0.94933 0.94930 0.94933 0.95037 0.94900 0.94933 0.95030 0.94903 0.95033 0.94903 0.95033 0.94903 <td></td>												
1.50 0.00 0.00 0.05												
1.50 0.50 0.50 0.50 0.50607 0.5066												
0.50 0.85 0.85 0.65 0.95000 <td></td>												
0.90 0.95 0.95 0.95 0.9773 0.49800 0.449373 0.449333 0.49800 0.49833 0.49803 0.49733 0.49833 0.45903 0.19733 0.50333 0.50030 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.0000 0.0000 0.5000 0.0000 0												
0.75 0.90 0.05 0.5067 0.01033 0.99333 0.99333 0.59333 0.59030 0.59000 0.49000<												
0.70 0.70 0.70 0.70 0.70 0.70 0.50 0.50 0.505333 0.99967 0.505005 0.505030 0.505067 0.50500 0.505000 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.50500 0.48000												
0.75 0.85 0.95 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.4973 0.6553 0.19767 0.19033 </td <td></td>												
0.75 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.49 0.49600 0.51267 0.48333 0.49100 0.49503 0.51267 0.05 0.00 0.10 0.49763 0.50267 0.50300 0.50903 0.50433 0.51300 0.50503 0.51307 0.51677 0.51677 0.51670 0.51670 0.51670 0.51670 0.51670 0.5050 0.00 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50900 0.50033 0.45803 0.45807 0.45800 0.45800 0.45803 0.45803 0.45803 0.45807 0.45800 0.45803 0.45800 0.45803 0.45800 0.45803 0.45803 0.45800 0.45803 0.45803 0.45800 0.45803 0.45800 0.45803 0.45800 0.45803 0.45803 0.45800 0.45803 0.45800 0.45803 0.45800 0.45803 0.45800 0.45803 0.45803 0.45803	0.75	0.70	0.05	0.50633	0.50267	0.51133	0.50333	0.49500	0.50867	0.51533	0.49267	0.50567
0.25 0.20 0.10 0.49703 0.49300 0.49000 0.49000 0.69333 0.49007 0.49533 0.50167 0.49533 0.50167 0.49530 0.50007 0.010 0.48767 0.51167 0.51900 0.0100 0.48903 0.50067 0.50633 0.51367 0.48003 0.5007 0.47070 0.47100 0.250 0.85 0.10 0.46103 0.47607 0.47100 0.48003 0.48003 0.47070 0.47007 0.47100 0.500 0.00 0.10 0.491070 0.48033 0.48677 0.48033 0.48067 0.48033 0.48070 0.45007 0.48000 0.48000 0.48030 0.19333 0.48667 0.48633 0.48633 0.48630 0.48500 0.48500 0.48800 0	0.75	0.85	0.05	0.48867	0.49300	0.48400	0.48700	0.49800	0.51600	0.48000		0.48933
0.25 0.70 0.10 0.49737 0.50267 0.50300 0.49833 0.49807 0.50300 0.50107 0.49807 0.5033 0.51367 0.49807 0.5053 0.51367 0.25 0.55 0.10 0.48103 0.47033 0.47600 0.410167 0.48033 0.47637 0.47700 0.410167 0.48033 0.47607 0.47100 0.49033 0.48070 0.44003 0.48007 0.48033 0.48007 0.49033 0.45000 0.46077 0.48033 0.45000 0.48007 0.48033 0.45000 0.48033 0.45000 0.48007 0.48003 0.48307 0.48007 0.48003 0.48307 0.48003 0.48307 0.48003 0.48303 0.48303 0.48500												
0.25 0.70 0.10 0.48767 0.51167 0.19090 0.10100 0.19087 0.19097 0.10100 0.27007 0.41100 0.25 0.55 0.10 0.146103 0.44533 0.147607 0.149037 0.19033 0.14903 0.14907 0.41500 0.50 0.20 0.10 0.149700 0.48933 0.14867 0.149033 0.18733 0.14807 0.14503 0.50 0.70 0.10 0.15333 0.48800 0.14830 0.19933 0.18867 0.46833 0.48500 0.48533 0.49600 0.56333 0.49600 0.56333 0.49600 0.48503 0.49600 0.48503 0.49600 0.48503 <												
0.25 0.85 0.10 0.18100 0.47033 0.47600 0.19167 0.18033 0.47607 0.47100 0.50 0.20 0.10 0.16133 0.45637 0.19033 0.15600 0.1833 0.45607 0.19033 0.45607 0.19033 0.45600 0.48303 0.45800 0.48303 0.45800 0.48303 0.5000 0.48533 0.48500 0.48500 0.48503 0.48503 0.48500 0.48500 0.45533 0.48500 0.45503 0.48500 0.48500 0.45503 0.48500 0.48500 0.45503 0.45500 0.45503 0.48500 0.45503 0.48500 0.45600 0.45503 0.48500 0.48500 0.45607 0.48500 0.48500 0.45607 0.48500 0.48500 0.45607 0.48500 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 0.45600 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
0.95 0.95 0.10 0.16133 0.46730 0.46333 0.47667 0.48303 0.19676 0.29033 0.49133 0.49767 0.45004 0.50 0.70 0.10 0.19303 0.48807 0.48333 0.48873 0.48533 0.48530 0.48533 0.48867 0.48630 0.48533 0.48867 0.48533 0.48507 0.48500 0.48500 0.48500 0.48500 0.48500 0.48500 0.48500 0.48500 0.48500 0.48607 0.48500 0.48500 0.48607 0.48500 0.48607 0.48500 0.49600 0.48607 0.49600 0.48600 0.48607 0.49607 0.48130 0.49600 0.48600 0.48607 0.49600 0.48600 0.48607 0.49600 0.48600 <												
0.50 0.70 0.10 0.49700 0.49233 0.49707 0.49333 0.48807 0.18833 0.48807 0.48600 0.48600 0.48600 0.48500												
0.50 0.50 0.10 0.4790 0.48807 0.48807 0.48803 0.48733 0.48730 0.48233 0.50 0.70 0.10 0.49700 0.48767 0.48700 0.47607 0.5000 0.45600 0.45633 0.43537 0.44800 0.47500 0.47667 0.5000 0.45600 0.34560 0.344100 0.47607 0.5000 0.48607 0.34900 0.47607 0.48030 0.48333 0.49000 0.5067 0.48607 0.34900 0.5067 0.48607 0.49900 0.50733 0.49267 0.49607 0.50907 0.9000 0.5073 0.5067 0.5067 0.50007 0.9000 0.5073 0.5087 0.50907 0.48503 0.49607 0.49607 0.50007 0.50007 0.50007 0.50007 0.48503 0.49607 0.50503 0.49607 0.44803 0.47600 0.48533 0.49000 0.41676 0.4000 0.48633 0.48500 0.48607 0.48607 0.48607 0.48607 0.48607 0.48607 0.48607 0.48607 <td></td>												
0.50 0.70 0.10 0.48700 0.48700 0.48533 0.95000 0.48500 0.42500 0.42500 0.42500 0.42500 0.42507 0.9500 0.42503 0.43500 0.42503 0.43500 0.42503 0.43500 0.42500 0.42500 0.42500 0.42500 0.42500 0.42500 0.42500 0.42500 0.42500 0.42500 0.43500 0.43500 0.43500 0.43500 0.43500 0.43500 0.43500 0.43500 0.45000<												
0.95 0.95 0.10 0.56667 0.4880 0.41900 0.48967 0.4803 0.33467 0.33407 0.34900 0.5060 0.48467 0.48906 0.48906 0.48967 0.48906 0.48967 0.49900 0.50733 0.49267 0.50967 0.48567 0.5000 0.9100 0.750 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.85 0.10 0.48733 0.42033 0.41167 0.44667 0.47100 0.48633 0.41670 0.41670 0.49067 0.48833 0.44770 0.48600 0.48333 0.44780 0.44667 0.4710 0.48600 0.48410 0.44167 0.4113 0.41167 0.44667 0.4710 0.48607 0.50033 0.48700 0.48607 0.50033 0.48700 0.48603 0.50033 0.48700 0.48607 0.48603 0.48607 0.48633 0.49707 0.48633 0.49707 0.48603 0.48607 0.48607 0.48603 0.48607 </td <td></td>												
0.75 0.20 0.10 0.56667 0.49860 0.49000 0.50800 0.48467 0.49600 0.5033 0.49267 0.50967 0.48567 0.49000 0.5033 0.48767 0.50233 0.49233 0.49567 0.51233 0.5033 0.48767 0.5000 0.48767 0.5000 0.48000 0.4833 0.42303 0.41167 0.44667 0.47100 0.48600 0.44103 0.41167 0.44667 0.47100 0.48600 0.44103 0.41167 0.44667 0.47100 0.48600 0.44103 0.44113 0.41167 0.44667 0.47100 0.48633 0.48707 0.48633 0.47070 0.48633 0.48707 0.50607 0.50603 0.50833 0.48007 0.50833 0.50800 0.51300 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.50833 0.48007 0.48003 0.48003 0.48500 0.48004 0.48600 0.48004	0.50	0.85	0.10	0.48500	0.45133	0.44800	0.47500	0.47667	0.50100	0.45800	0.45233	0.44100
0.75 0.50 0.10 0.49900 0.50763 0.499267 0.50967 0.45037 0.49507 0.5000 0.9100 0.5033 0.48767 0.50233 0.42933 0.44167 0.41167 0.41167 0.44600 0.48333 0.44167 0.41167 0.44160 0.48843 0.48200 0.46333 0.41670 0.250 0.50 0.50833 0.41167 0.44667 0.47100 0.48600 0.46333 0.41670 0.50833 0.45700 0.48833 0.47000 0.48833 0.47000 0.48833 0.47000 0.48833 0.47000 0.48833 0.47000 0.48933 0.48900 0.49233 0.48500 0.48833 0.47000 0.44800 0.47867 0.48833 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49233 0.48500 0.49203 0.48500 0.49233 0.48500 0.49203 0.48500												
0.75 0.76 0.70 0.10 0.49900 0.50367 0.50033 0.48767 0.55233 0.49230 0.49360 0.46333 0.43000 0.4667 0.4833 0.48200 0.46267 0.75 0.85 0.10 0.47633 0.42033 0.41167 0.44667 0.47100 0.49600 0.44167 0.41133 0.41107 0.48607 0.47100 0.49600 0.44167 0.41133 0.41107 0.48633 0.47100 0.49600 0.47633 0.48037 0.5033 0.5080 0.5130 0.5083 0.5080 0.51300 0.50833 0.48007 0.5033 0.48037 0.5023 0.48067 0.5023 0.48067 0.47833 0.48067 0.48333 0.48067 0.47833 0.48067 0.48033 0.48007 0.47863 0.48030 0.47767 0.47833 0.48067 0.48030 0.47707 0.47803 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48067 0.48												
0.75 0.85 0.10 0.47633 0.42303 0.447300 0.49607 0.48200 0.4833 0.46207 0.25 0.20 0.15 0.59033 0.50800 0.51300 0.50833 0.50933 0.48100 0.54167 0.5223 0.50233 0.25 0.50 0.15 0.48303 0.49700 0.48833 0.47700 0.49900 0.47333 0.44857 0.58557 0.48333 0.48657 0.48657 0.48657 0.48657 0.48657 0.48657 0.48657 0.48657 0.48667 0.48667 0.48667 0.48657 0.48657 0.48657 0.48657 0.48667 0.48667 0.48667 0.48667 0.47503 0.48667 0.47503 0.48667 0.47503 0.48667 0.47503 0.48667 0.47503 0.48667 0.47503 0.48607 0.47503 0.48607 0.47503 0.48933 0.48300 0.48607 0.47503 0.48933 0.48607 0.47507 0.48633 0.48900 0.47607 0.47507 0.48607 0.47507												
0.75 0.95 0.10 0.47633 0.42033 0.41167 0.44667 0.44700 0.44960 0.44167 0.41133 0.41767 0.25 0.50 0.15 0.59033 0.49700 0.48833 0.47700 0.49900 0.47333 0.48567 0.48133 0.25 0.70 0.15 0.48937 0.50067 0.50433 0.49100 0.49933 0.45100 0.49233 0.48567 0.48667 0.25 0.85 0.15 0.41000 0.42000 0.41907 0.47853 0.46867 0.42233 0.39667 0.39700 0.50 0.20 0.15 0.5000 0.49067 0.49010 0.48533 0.48300 0.49830 0.48900 0.48567 0.50 0.70 0.15 0.49967 0.48067 0.47567 0.47567 0.48633 0.4300 0.49907 0.49010 0.49333 0.48667 0.47800 0.50 0.75 0.15 0.39333 0.42100 0.26333 0.47067 0.47800 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
0.25 0.20 0.15 0.58033 0.58000 0.51300 0.50833 0.49100 0.47307 0.58557 0.5233 0.50233 0.50233 0.50233 0.50233 0.50233 0.50233 0.50233 0.50233 0.50233 0.50033 0.48000 0.42333 0.48667 0.47833 0.48100 0.49233 0.48667 0.47833 0.48000 0.49233 0.48600 0.45767 0.47833 0.45300 0.47873 0.48600 0.48600 0.5000 0.50000 0.49267 0.49100 0.43733 0.48600 0.48600 0.5000 0.50000 0.50000 0.49267 0.49100 0.48733 0.48000 0.48600 0.476767 0.48633 0.48800 0.48507 0.47667 0.48633 0.48800 0.48807 0.47667 0.48633 0.48800 0.48607 0.47667 0.48633 0.48800 0.48607 0.47667 0.48633 0.48803 0.48803 0.48803 0.48607 0.47667 0.48807 0.48803 0.48603 0.48800 0.48607 0.47607 </td <td></td>												
0.25 0.50 0.15 0.48933 0.49700 0.48833 0.47700 0.49033 0.48433 0.48267 0.4933 0.48807 0.49233 0.48800 0.25 0.85 0.15 0.47933 0.46300 0.45767 0.47867 0.47833 0.48867 0.42233 0.38660 0.25 0.95 0.15 0.41100 0.42000 0.41900 0.43833 0.43030 0.47767 0.48637 0.49267 0.49633 0.48067 0.47267 0.49633 0.48067 0.49663 0.8506 0.70 0.15 0.49367 0.47567 0.47567 0.48633 0.48000 0.48667 0.47233 0.48067 0.48567 0.48633 0.48000 0.49067 0.47267 0.49133 0.45053 0.47367 0.47233 0.42667 0.47233 0.42667 0.47233 0.42667 0.47233 0.46670 0.47233 0.45670 0.48567 0.49067 0.48567 0.49067 0.48567 0.49067 0.48567 0.4900 0.46603 0.47667												
0.25 0.70 0.15 0.48367 0.50637 0.49100 0.49333 0.51033 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48807 0.48803 0.39667 0.39700 0.50 0.50 0.15 0.50000 0.50000 0.49100 0.49333 0.49267 0.49030 0.48100 0.48100 0.48100 0.48100 0.48100 0.48100 0.48100 0.48503 0.48633 0.48100 0.48100 0.4700 0.48033 0.49736 0.47267 0.49133 0.49667 0.42333 0.46667 0.42333 0.46667 0.42333 0.46667 0.47233 0.3050 0.55 0.15 0.48533 0.44000 0.22633 0.31433 0.34933 0.48967 0.42333 0.48667 0.42333 0.46667 0.42333 0.46670 0.42800 0.49500 0.49500 0.49500 0.45667 0.48833 0.4667 0.42800 0.49670 0.4850												
0.55 0.55 0.15 0.41100 0.42900 0.49100 0.43833 0.4530 0.47767 0.4223 0.38967 0.39070 0.50 0.55 0.50 0.15 0.50000 0.49067 0.48067 0.47567 0.48633 0.49207 0.46333 0.48900 0.48707 0.47800 0.50 0.55 0.15 0.489307 0.47533 0.47267 0.49133 0.91933 0.47307 0.46367 0.47233 0.50 0.55 0.15 0.486533 0.40300 0.39300 0.44700 0.43833 0.46567 0.42333 0.31433 0.33733 0.42667 0.42967 0.21667 0.49900 0.45500 0.49900 0.49500 0.45507 0.49900 0.49500 0.48567 0.49900 0.49500 0.48567 0.47907 0.47607 0.48833 0.47633 0.48600 0.5667 0.48333 0.47607 0.47807 0.47807 0.47807 0.47807 0.47807 0.47807 0.47800 0.49000 0.6667 0.42333 0												
0.50 0.20 0.15 0.50200 0.50000 0.49067 0.49100 0.49633 0.49267 0.49630 0.48800 0.47667 0.47567 0.47563 0.48300 0.4100 0.47667 0.47567 0.47633 0.43930 0.4100 0.47667 0.47333 0.49133 0.50333 0.46667 0.47233 0.50 0.55 0.15 0.43933 0.44000 0.38567 0.48667 0.48667 0.48667 0.48667 0.48967 0.49667 0.48967 0.48967 0.49967 0.49967 0.49967 0.49667 0.48967 0.48967 0.49900 0.47900 0.45500 0.49267 0.7500 0.15 0.49953 0.47467 0.48967 0.48900 0.48600 0.49667 0.48503 0.47900 0.48500 0.50567 0.48833 0.48667 0.47900 0.48503 0.48667 0.47900 0.48600 0.9667 0.48833 0.48667 0.47900 0.48600 0.9667 0.48833 0.43930 0.48667 0.48167 0.48167 0.48167 <td< td=""><td>0.25</td><td>0.85</td><td>0.15</td><td>0.47933</td><td>0.46300</td><td>0.45767</td><td>0.47867</td><td>0.47833</td><td>0.48867</td><td>0.46467</td><td>0.45833</td><td>0.46800</td></td<>	0.25	0.85	0.15	0.47933	0.46300	0.45767	0.47867	0.47833	0.48867	0.46467	0.45833	0.46800
0.50 0.50 0.15 0.48800 0.49067 0.47567 0.48633 0.4330 0.43767 0.47801 0.50 0.85 0.15 0.49367 0.47533 0.47670 0.49133 0.49133 0.43676 0.42333 0.33733 0.42030 0.50 0.85 0.15 0.49567 0.49600 0.48333 0.33733 0.42867 0.27967 0.21367 0.24067 0.75 0.20 0.15 0.49567 0.49667 0.48967 0.48967 0.47900 0.49500 0.4900 0.49500 0.4900 0.49500 0.49607 0.47630 0.47633 0.47633 0.47633 0.47633 0.47633 0.47633 0.47633 0.48600 0.45607 0.48807 0.48507 0.48507 0.48507 0.48500 0.48607 0.48500 0.46633 0.47200 0.48833 0.44300 0.6633 0.47200 0.48833 0.44303 0.43133 0.43507 0.5167 0.5000 0.5067 0.50200 0.5067 0.50200 0.50367 <td>0.25</td> <td></td> <td></td> <td>0.41100</td> <td></td> <td></td> <td>0.43833</td> <td></td> <td></td> <td></td> <td>0.39667</td> <td></td>	0.25			0.41100			0.43833				0.39667	
0.5 0 0.70 0.15 0.49367 0.47533 0.47267 0.49133 0.5933 0.47367 0.46367 0.47233 0.30733 0.40530 0.39300 0.39300 0.34333 0.34333 0.3433 0.34533 0.3653 0.505 0.15 0.39333 0.24100 0.22633 0.31433 0.33733 0.42867 0.24967 0.45667 0.49667 0.48967 0.48567 0.49900 0.47900 0.49900 0.47900 0.49900 0.49900 0.49900 0.49900 0.49900 0.49900 0.48500 0.48677 0.48530 0.48677 0.48637 0.48667 0.48630 0.48607 0.48667 0.43600 0.46633 0.47600 0.48667 0.48607 0.48607 0.48667 0.47967 0.48670 0.48667 0.47967 0.48607 0.48607 0.48607 0.48600 0.50667 0.47960 0.48607 0.44800 0.66633 0.48200 0.50667 0.5020 0.50367 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167												
0.50 0.85 0.15 0.46523 0.40300 0.39300 0.44700 0.43833 0.46567 0.22367 0.22607 0.50 0.95 0.15 0.39333 0.24100 0.22637 0.48667 0.43900 0.47900 0.48500 0.49267 0.75 0.50 0.15 0.49567 0.48967 0.48667 0.48600 0.50567 0.48833 0.48367 0.48537 0.75 0.70 0.15 0.505467 0.48667 0.48933 0.47663 0.48660 0.50567 0.48833 0.44367 0.48567 0.4700 0.48667 0.48667 0.43600 0.48633 0.47200 0.48833 0.44333 0.43607 0.48507 0.50667 0.43030 0.48667 0.48000 0.46633 0.47200 0.478933 0.44333 0.43300 0.33030 0.2560 0.950 0.48867 0.48800 0.50667 0.50200 0.50367 0.50167 0.50167 0.50200 0.50367 0.50200 0.50367 0.50200 0.50367 0.50												
0.50 0.95 0.15 0.39333 0.24100 0.22633 0.31433 0.33733 0.42967 0.21367 0.24667 0.75 0.20 0.15 0.49567 0.48967 0.48567 0.49900 0.47900 0.48500 0.49267 0.75 0.70 0.15 0.49533 0.47667 0.48033 0.47663 0.48600 0.49667 0.48533 0.43600 0.49667 0.48506 0.49667 0.48503 0.47367 0.48060 0.49667 0.48500 0.47667 0.47967 0.47900 0.48600 0.49667 0.48503 0.47300 0.48667 0.47900 0.48503 0.44300 0.46633 0.47200 0.48503 0.46400 0.49600 0.48607 0.48500 0.50567 0.50200 0.50367 0.50167 0.50100 0.48500 0.50567 0.50200 0.50367 0.50200 0.50367 0.50200 0.50367 0.50200 0.50367 0.50200 0.50367 0.50200 0.50367 0.50200 0.503650 0.50250 0.44500 <td></td>												
0.75 0.20 0.15 0.49567 0.48967 0.48567 0.49090 0.47090 0.48500 0.48500 0.48500 0.48503 0.47633 0.47633 0.48600 0.50567 0.48833 0.48367 0.48967 0.48967 0.48903 0.48600 0.49667 0.48500 0.48667 0.47967 0.75 0.85 0.15 0.48667 0.43600 0.46633 0.47200 0.48833 0.44433 0.43333 0.43000 0.5067 0.5067 0.33037 0.38667 0.42700 0.48800 0.50567 0.50367 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50507 0.50567 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.50167 0.48167 0.47800 0.47800 0.47833 0.48333 0.448333 0.448167												
0.75 0.50 0.15 0.49533 0.4767 0.48033 0.47633 0.48600 0.50567 0.48830 0.48867 0.447967 0.75 0.75 0.55 0.15 0.49967 0.48600 0.44800 0.46633 0.47200 0.48833 0.44433 0.43000 0.75 0.85 0.15 0.49667 0.33867 0.33867 0.36667 0.42700 0.48833 0.44433 0.43000 0.25 0.20 0.25 0.49900 0.50367 0.50167 0.50167 0.51100 0.48800 0.50367 0.50260 0.50367 0.25 0.25 0.49933 0.49600 0.49000 0.47800 0.49700 0.48800 0.50567 0.50260 0.50367 0.25 0.70 0.25 0.49007 0.44100 0.46400 0.46703 0.47533 0.48000 0.47533 0.43867 0.43200 0.47633 0.43867 0.43200 0.47633 0.48600 0.4500 0.45000 0.47533 0.43867 0.42100<												
0.75 0.70 0.15 0.50467 0.48667 0.47933 0.49300 0.48600 0.48500 0.48500 0.48500 0.43607 0.75 0.85 0.15 0.49867 0.43600 0.44800 0.46633 0.47200 0.47967 0.36100 0.33033 0.25 0.20 0.25 0.49830 0.50367 0.50167 0.51100 0.48800 0.50567 0.5020 0.50367 0.25 0.50 0.25 0.49833 0.49600 0.47300 0.47903 0.48800 0.48033 0.48233 0.48100 0.25 0.70 0.25 0.47067 0.48167 0.48433 0.47330 0.49933 0.49533 0.47533 0.48030 0.48000 0.47333 0.49633 0.47533 0.48000 0.47333 0.49633 0.447633 0.43637 0.42533 0.448700 0.44100 0.46400 0.46700 0.44733 0.43833 0.49100 0.45633 0.49930 0.45767 0.48067 0.48733 0.49933 0.47533												
0.75 0.95 0.15 0.48767 0.33867 0.33867 0.33967 0.42700 0.47907 0.36100 0.31600 0.30333 0.25 0.25 0.49300 0.50667 0.50167 0.51100 0.48800 0.48033 0.48033 0.48030 0.48033 0.48033 0.48030 0.48033 0.48030 0.48033 0.48107 0.48167 0.48433 0.47300 0.47933 0.49533 0.47533 0.48000 0.47533 0.4800 0.47533 0.48033 0.45633 0.48333 0.48167 0.48400 0.47400 0.44100 0.4600 0.46700 0.447533 0.48033 0.45633 0.33600 0.24167 0.50 0.25 0.49300 0.48767 0.48067 0.48767 0.48033 0.45633 0.33967 0.24800 0.24867 0.48067 0.48733 0.49933 0.47883 0.49067 0.47867 0.48067 0.42133 0.44033 0.49000 0.49007 0.45000 0.43867 0.50 0.25 0.42333 0.26767												
0.25 0.20 0.25 0.49300 0.50367 0.50167 0.50167 0.51100 0.48800 0.50567 0.5020 0.50367 0.25 0.50 0.25 0.49833 0.49900 0.47800 0.49700 0.48800 0.48033 0.48233 0.48107 0.25 0.70 0.25 0.47067 0.48167 0.48430 0.47030 0.49733 0.49533 0.47633 0.48800 0.48803 0.48733 0.48533 0.48100 0.47933 0.44733 0.42833 0.43167 0.50 0.25 0.33600 0.31100 0.31767 0.34767 0.48833 0.45633 0.33967 0.28400 0.29767 0.50 0.50 0.25 0.46233 0.43867 0.48867 0.48733 0.49000 0.49167 0.47567 0.49100 0.50 0.25 0.45167 0.37676 0.34067 0.42133 0.44033 0.49000 0.49000 0.49000 0.49000 0.49000 0.49000 0.49033 0.43667 0.	0.75	0.85	0.15	0.49867	0.43600	0.44800	0.46633	0.47200	0.48833	0.44433	0.43133	0.43000
0.25 0.50 0.25 0.49833 0.49600 0.49700 0.48800 0.48033 0.48233 0.48100 0.25 0.70 0.25 0.47067 0.48167 0.48433 0.47300 0.47933 0.49533 0.44733 0.48283 0.43167 0.25 0.85 0.25 0.49800 0.44100 0.4400 0.46303 0.46733 0.48283 0.43167 0.50 0.20 0.25 0.49300 0.48767 0.48067 0.48733 0.49933 0.47833 0.49167 0.49100 0.50 0.25 0.49300 0.48767 0.48067 0.48733 0.49933 0.47833 0.49167 0.47567 0.49100 0.50 0.70 0.25 0.45167 0.37767 0.38467 0.47133 0.49033 0.49000 0.40000 0.43600 0.43867 0.50 0.75 0.25 0.45033 0.26767 0.25400 0.35033 0.36333 0.349400 0.49000 0.40400 0.9900 0.49600												
0.25 0.70 0.25 0.47067 0.48167 0.48433 0.47300 0.47933 0.49533 0.47533 0.48000 0.47533 0.25 0.85 0.25 0.44700 0.44300 0.42900 0.44100 0.46400 0.46700 0.44733 0.42833 0.42833 0.42803 0.29767 0.50 0.20 0.25 0.49300 0.48767 0.48067 0.48733 0.49933 0.47833 0.49167 0.47667 0.4900 0.50 0.25 0.46233 0.43867 0.43233 0.45667 0.47167 0.48667 0.47167 0.48667 0.47167 0.48667 0.48033 0.49000 0.49000 0.49000 0.49000 0.48600 0.48867 0.50 0.75 0.45167 0.38467 0.42133 0.44033 0.49000 0.49000 0.49000 0.49000 0.49000 0.49000 0.49000 0.49000 0.49000 0.48333 0.44677 0.25400 0.5533 0.48503 0.47433 0.47567 0.45633												
0.25 0.85 0.25 0.44700 0.44300 0.42900 0.44100 0.46400 0.46700 0.44733 0.42833 0.43167 0.25 0.95 0.25 0.33600 0.31100 0.31767 0.34767 0.40833 0.45633 0.33967 0.28400 0.29767 0.50 0.25 0.49303 0.48867 0.47167 0.48667 0.47167 0.48667 0.4700 0.50 0.50 0.25 0.46233 0.43867 0.42133 0.44033 0.49000 0.40200 0.37133 0.38433 0.50 0.85 0.25 0.45167 0.37767 0.38467 0.42133 0.44033 0.49000 0.40200 0.37133 0.38433 0.50 0.95 0.25 0.49333 0.07167 0.06500 0.15133 0.18533 0.34400 0.99133 0.04567 0.25800 0.50 0.95 0.25 0.49400 0.49900 0.49900 0.48533 0.49900 0.48333 0.49900 0.48533												
0.25 0.95 0.25 0.33600 0.31100 0.31767 0.34767 0.40833 0.45633 0.33967 0.28400 0.29767 0.50 0.20 0.25 0.49300 0.48767 0.48067 0.48733 0.49933 0.47833 0.49167 0.47567 0.49100 0.50 0.25 0.46233 0.43867 0.43233 0.45467 0.47167 0.48667 0.45000 0.43867 0.50 0.70 0.25 0.45167 0.37767 0.38467 0.42133 0.44033 0.49000 0.40200 0.37133 0.38433 0.50 0.85 0.25 0.49333 0.26767 0.25400 0.35033 0.36333 0.34907 0.31500 0.24467 0.28000 0.50 0.95 0.22 0.22933 0.07167 0.06500 0.15133 0.18533 0.3400 0.09933 0.49133 0.49133 0.49133 0.49133 0.49133 0.49133 0.4967 0.45633 0.49600 0.48900 0.48900 0.4893												
0.50 0.20 0.25 0.49300 0.48767 0.48067 0.48733 0.49933 0.47833 0.47167 0.47567 0.49100 0.50 0.50 0.25 0.46233 0.43867 0.42333 0.45467 0.47167 0.48667 0.45000 0.42600 0.43867 0.50 0.75 0.25 0.45167 0.37767 0.38467 0.42133 0.44033 0.49000 0.40200 0.37133 0.38433 0.50 0.85 0.25 0.40333 0.26767 0.25400 0.35033 0.36333 0.43967 0.31500 0.24467 0.28000 0.50 0.95 0.25 0.42900 0.49900 0.49900 0.49900 0.49900 0.49900 0.49333 0.49103 0.47667 0.06533 0.75 0.70 0.25 0.48667 0.47567 0.47167 0.47467 0.48700 0.47433 0.47567 0.46133 0.49900 0.48833 0.48900 0.46433 0.43300 0.45676 0.47567 0.47167												
0.50 0.50 0.25 0.46233 0.43867 0.43233 0.45467 0.47167 0.48667 0.45000 0.42600 0.43867 0.50 0.70 0.25 0.45167 0.37767 0.38467 0.42133 0.44003 0.49000 0.42020 0.37133 0.38433 0.50 0.85 0.25 0.40333 0.26767 0.25400 0.35033 0.36333 0.43967 0.31500 0.24467 0.28000 0.50 0.95 0.25 0.22933 0.07167 0.06500 0.15133 0.18533 0.34400 0.09133 0.04667 0.6553 0.75 0.20 0.25 0.49400 0.49900 0.49900 0.48933 0.49900 0.49900 0.49900 0.49900 0.496900 0.48333 0.49767 0.46133 0.466767 0.75 0.70 0.25 0.48667 0.47567 0.47167 0.47467 0.48700 0.47433 0.47567 0.46133 0.43900 0.48833 0.48800 0.46677 0.4500												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.45167								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50	0.85	0.25	0.40333	0.26767	0.25400	0.35033	0.36333	0.43967	0.31500	0.24467	0.28000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$0.75 0.85 0.50 \qquad 0.38100 \qquad 0.06600 \qquad 0.05833 \qquad 0.13200 \qquad 0.18333 \qquad 0.32967 0.07667 0.04200 0.054000 0.05400 0.054000 0.054000 0.054000 0.054000 0.054000 0.054000 0.054000 0.054000 0.054000 0.054000 0.$												
0.75 0.95 0.50 0.18600 0.00133 0.00000 0.00333 0.02133 0.08267 0.00067 0.00100 0.00033												
	0.75	0.95	0.50	0.18600	0.00133	0.00000	0.00333	0.02133	0.08267	0.00067	0.00100	0.00033

Tabela 17 – EPV pela métrica A
, $n=50\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.50600	0.49367	0.50433	0.50600	0.50900	0.50067	0.51733	0.50167	0.50467
0.25	0.50	0.05	0.48767	0.50367	0.49967	0.47967	0.50533	0.50500	0.49000	0.49933	0.49533
0.25	0.70	0.05	0.47467	0.49367	0.49300	0.49967	0.49233	0.50467	0.49300	0.48933	0.49267
0.25	0.85	0.05	0.48467	0.48267	0.49300	0.48233	0.49367	0.49567	0.49433	0.48767	0.48400
0.25	0.95	0.05	0.47633	0.45700	0.46633	0.47067	0.47867	0.49000	0.48500	0.45433	0.46133
0.50	0.20	0.05	0.49633	0.49933	0.49667	0.50167	0.50567	0.51333	0.52467	0.51233	0.51500
0.50	0.50	0.05	0.49500	0.49900	0.50300	0.51100	0.49900	0.49233	0.51233	0.50833	0.51533
0.50	0.70	0.05	0.48567	0.48233	0.47433	0.48433	0.48733	0.49667	0.47433	0.47200	0.47067
0.50	0.85	0.05	0.48233	0.45200	0.45967	0.47733	0.47733	0.50133	0.47600	0.45000	0.45733
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.05 \\ 0.05$	0.46700 0.51533	0.39200 0.50133	0.38367 0.49733	0.44400 0.50533	0.43433 0.50400	0.47233 0.49733	0.41933 0.50733	0.36833 0.49633	0.38633 0.49767
0.75	0.20	0.05	0.49267	0.50667	0.49755	0.51333	0.51133	0.49733	0.50233	0.49035 0.50667	0.49767
0.75	0.70	0.05	0.49133	0.48267	0.47833	0.50100	0.48733	0.50167	0.48933	0.47433	0.47167
0.75	0.85	0.05	0.49100	0.49167	0.49233	0.48700	0.48367	0.50567	0.48767	0.47567	0.48033
0.75	0.95	0.05	0.50333	0.45667	0.46067	0.48667	0.48633	0.49433	0.46567	0.44133	0.45667
0.25	0.20	0.10	0.50000	0.51033	0.49867	0.50800	0.51933	0.49933	0.51467	0.50167	0.51000
0.25	0.50	0.10	0.48800	0.50000	0.50733	0.50867	0.50667	0.49633	0.50833	0.49600	0.50633
0.25	0.70	0.10	0.46067	0.47000	0.46833	0.47333	0.47733	0.48533	0.47300	0.45800	0.46067
0.25	0.85	0.10	0.46267	0.46300	0.46367	0.45967	0.47667	0.49200	0.47667	0.45300	0.46133
0.25	0.95	0.10	0.38933	0.34967	0.34300	0.39100	0.42200	0.45133	0.37700	0.32633	0.34267
0.50	0.20	0.10	0.50900	0.49800	0.50433	0.50400	0.50467	0.50767	0.52733	0.49500	0.51400
0.50	0.50	0.10	0.48000	0.47833	0.48867	0.47667	0.50133	0.48200	0.48400	0.48567 0.41967	0.48133
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.47900 0.45900	$0.43500 \\ 0.36133$	0.43667 0.36400	0.45667 0.41300	0.46233 0.42167	$0.47900 \\ 0.47000$	0.44467 0.40167	0.41907	0.42533 0.35767
0.50	0.95	0.10	0.35667	0.18000	0.30400 0.16533	0.28267	0.42107	0.38733	0.40107 0.21967	0.34033 0.14267	0.16800
0.75	0.20	0.10	0.50400	0.50700	0.51033	0.50567	0.51167	0.48767	0.51600	0.50467	0.50800
0.75	0.50	0.10	0.50233	0.50233	0.49767	0.52167	0.51000	0.49333	0.49200	0.50800	0.50400
0.75	0.70	0.10	0.47967	0.47167	0.47300	0.46567	0.48200	0.49200	0.46400	0.45500	0.45767
0.75	0.85	0.10	0.47567	0.45233	0.45500	0.46933	0.47333	0.49900	0.46067	0.43700	0.44367
0.75	0.95	0.10	0.46600	0.32300	0.31500	0.40733	0.38333	0.46000	0.33133	0.28900	0.30067
0.25	0.20	0.15	0.49167	0.50600	0.50567	0.50300	0.50767	0.49233	0.51200	0.50333	0.50067
0.25	0.50	0.15	0.48200	0.48433	0.47600	0.48400	0.49200	0.48467	0.47933	0.49100	0.48367
0.25	0.70	0.15	0.45433	0.46000	0.46367	0.46900	0.47700	0.49433	0.46000	0.44400	0.45133
0.25	0.85	0.15	0.40333	0.40667	0.40733	0.41600	0.45000	0.46933	0.42200	0.38267	0.39433
0.25	0.95	0.15	0.28833	0.23500	0.23633	0.30900	0.35200	0.40700	0.25900	0.20233	0.22000
$0.50 \\ 0.50$	$0.20 \\ 0.50$	$0.15 \\ 0.15$	0.48133 0.48567	0.48167 0.43233	$0.48100 \\ 0.44600$	0.49667 0.47567	0.50633 0.48467	0.49167 0.49800	0.48633 0.45967	0.47233 0.43900	0.47833 0.44900
0.50	0.70	0.15	0.43200	0.35567	0.35867	0.42500	0.42133	0.49500 0.47567	0.45907 0.39167	0.43900 0.34400	0.36033
0.50	0.85	0.15	0.38433	0.22633	0.21333	0.32167	0.31800	0.41067	0.27433	0.19367	0.21867
0.50	0.95	0.15	0.20700	0.04667	0.03933	0.11967	0.12867	0.27000	0.06433	0.02567	0.04067
0.75	0.20	0.15	0.50300	0.49167	0.49933	0.52033	0.50633	0.51533	0.51167	0.50033	0.50667
0.75	0.50	0.15	0.48500	0.48667	0.49333	0.49233	0.49067	0.49800	0.49100	0.48567	0.48500
0.75	0.70	0.15	0.47467	0.43267	0.43733	0.45933	0.46367	0.48433	0.43567	0.41767	0.42400
0.75	0.85	0.15	0.47300	0.36300	0.35567	0.41700	0.40900	0.47533	0.38567	0.34000	0.34500
0.75	0.95	0.15	0.43433	0.15767	0.15167	0.26433	0.28233	0.38167	0.19433	0.12667	0.15033
0.25	0.20	0.25	0.48633	0.50400	0.50300	0.49600	0.49633	0.48767	0.51133	0.49467	0.49833
0.25	0.50	0.25	0.47767	0.47400	0.47200	0.47500	0.50867	0.50467	0.48833	0.46267	0.47133
0.25	$0.70 \\ 0.85$	$0.25 \\ 0.25$	0.40333	0.39667	0.39200	0.43033	0.44333	0.45700	0.41067	0.38600	0.39133
$0.25 \\ 0.25$	0.85	0.25 0.25	0.32400 0.11933	0.29233 0.07900	0.29333 0.08300	0.33333 0.14267	0.36767 0.18367	0.44333 0.30300	0.31733 0.09500	0.25700 0.05933	$0.27500 \\ 0.06167$
0.50	0.20	0.25	0.47500	0.46900	0.46733	0.48200	0.49867	0.49100	0.49367	0.46900	0.48167
0.50	0.50	0.25	0.44367	0.34567	0.35033	0.41000	0.41567	0.45667	0.37200	0.32633	0.34500
0.50	0.70	0.25	0.37033	0.23567	0.22233	0.31567	0.32333	0.40367	0.28000	0.20567	0.23300
0.50	0.85	0.25	0.24333	0.07167	0.06233	0.14933	0.15733	0.29800	0.09567	0.04967	0.06533
0.50	0.95	0.25	0.03767	0.00233	0.00100	0.00867	0.01533	0.06267	0.00200	0.00067	0.00133
0.75	0.20	0.25	0.50200	0.48800	0.49300	0.51800	0.49033	0.49567	0.49933	0.48533	0.49000
0.75	0.50	0.25	0.48133	0.42200	0.41833	0.46467	0.45333	0.47100	0.42900	0.40467	0.41467
0.75	0.70	0.25	0.46700	0.31333	0.31333	0.38367	0.38467	0.44633	0.34033	0.29633	0.30533
0.75	0.85	0.25	0.43667	0.17833	0.17433	0.26633	0.29167	0.39000	0.21033	0.14633	0.15967
0.75	0.95	0.25	0.28967	0.01233	0.00867	0.04200	0.07167	0.18667	0.01867	0.00567	0.00967
0.25	0.20	0.50	0.46833	0.46900	0.47767	0.48800	0.49433	0.50500	0.49700	0.46633	0.46633
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.50 \\ 0.50$	0.38433 0.28533	0.37733 0.24400	0.38367 0.24433	0.41100 0.31300	0.44267 0.33967	0.46800 0.39400	0.38867 0.26900	0.35400 0.21700	$0.36500 \\ 0.22767$
0.25 0.25	0.70	0.50	0.28533	0.24400	0.24433 0.08567	0.31300	0.33967	0.39400 0.28367	0.26900 0.09133	0.21700 0.05733	0.22767
0.25	0.95	0.50	0.00433	0.00133	0.00067	0.00800	0.19133	0.25567	0.09133	0.00033	0.00067
0.50	0.20	0.50	0.44800	0.33800	0.34133	0.41467	0.39867	0.45667	0.38133	0.32400	0.35100
0.50	0.50	0.50	0.28467	0.12133	0.11300	0.22133	0.22033	0.35767	0.15467	0.09533	0.11200
0.50	0.70	0.50	0.12867	0.01433	0.01433	0.06167	0.07033	0.17933	0.02733	0.00767	0.01433
0.50	0.85	0.50	0.01567	0.00033	0.00033	0.00267	0.00567	0.03400	0.00033	0.00000	0.00033
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.47933	0.38067	0.37067	0.43600	0.43567	0.47600	0.41333	0.36067	0.37200
0.75	0.50	0.50	0.42467	0.17000	0.16400	0.28667	0.28867	0.38900	0.19633	0.12333	0.14467
0.75	0.70	0.50	0.33267	0.02600	0.02433	0.07567	0.11967	0.23267	0.03767	0.01767	0.02067
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.50 \\ 0.50$	0.16567 0.01800	0.00167 0.00000	0.00067 0.00000	0.00333 0.00000	0.01600 0.00000	0.05600 0.00000	0.00067 0.00000	0.00100 0.00000	0.00100 0.00000
0.10	0.90	0.00	0.01000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 18 – EPV pela métrica A
, $n=163\,$

	D9		D Grigins	OT a creative	<i>a</i> ,	D. MOGUE	OLG MOGUES	ME	-	-	
$\frac{c}{0.25}$	$\frac{R^2}{0.20}$	0.05	0.48900	OLS-CUSUM 0.49900	fluctuation 0.48800	0.49967	OLS-MOSUM 0.51300	ME 0.49233	supF 0.50200	aveF 0.50067	$\frac{\text{expF}}{0.50300}$
0.25	0.50	0.05	0.49600	0.50167	0.49233	0.50300	0.49333	0.49233 0.50000	0.50200 0.51400	0.48733	0.50360 0.50267
0.25	0.70	0.05	0.50300	0.49500	0.49633	0.50267	0.48967	0.50400	0.49600	0.49067	0.49100
0.25	0.85	0.05	0.47067	0.48633	0.46867	0.46600	0.47633	0.48900	0.46633	0.45667	0.46167
0.25	0.95	0.05	0.42767	0.42833	0.43700	0.43767	0.44800	0.47233	0.42933	0.40933	0.41133
0.50	0.20	0.05	0.49433	0.50800	0.50433	0.52100	0.49533	0.49400	0.50767	0.49567	0.49800
0.50	0.50	0.05	0.48933	0.48267	0.48167	0.49267	0.49333	0.48733	0.48100	0.48167	0.48267
0.50	0.70	0.05	0.48533	0.46567	0.46800	0.48433	0.47467	0.48800	0.48133	0.46933	0.47033
$0.50 \\ 0.50$	$0.85 \\ 0.95$	$0.05 \\ 0.05$	0.46600 0.42833	0.42933 0.31367	0.42400 0.30633	0.45433 0.38300	0.46067 0.38500	0.48133 0.44833	0.44367 0.35433	0.42033 0.29667	0.42467 0.31600
0.75	0.93	0.05	0.42833	0.50467	0.50533	0.50733	0.49967	0.44633 0.49767	0.53433 0.51133	0.49500	0.51000 0.50267
0.75	0.50	0.05	0.50267	0.49633	0.49833	0.50167	0.50233	0.51000	0.50967	0.49633	0.50433
0.75	0.70	0.05	0.49433	0.48967	0.48567	0.49800	0.48600	0.49600	0.49600	0.50367	0.49567
0.75	0.85	0.05	0.49633	0.46200	0.46633	0.47900	0.47300	0.49400	0.46267	0.45667	0.45900
0.75	0.95	0.05	0.47667	0.42100	0.41933	0.45033	0.45367	0.47900	0.43300	0.40767	0.41333
0.25	0.20	0.10	0.50300	0.49300	0.49167	0.51100	0.50267	0.51000	0.50167	0.49133	0.49967
0.25	0.50	0.10	0.49533	0.50300	0.49867	0.50667	0.50700	0.49700	0.50533	0.50067	0.50467
$0.25 \\ 0.25$	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.45667	0.47033 0.41967	0.46433 0.41967	0.46633	0.47400	0.48000	0.47033	0.45733 0.39933	0.45933 0.40633
0.25	0.85	0.10	0.43067 0.32933	0.41967	0.41967 0.28067	0.42767 0.32167	0.45333 0.36567	0.46533 0.42667	0.42233 0.29867	0.39933	0.40055 0.25900
0.50	0.20	0.10	0.49600	0.48133	0.48433	0.49800	0.49667	0.42007	0.49600	0.24000 0.47133	0.48467
0.50	0.50	0.10	0.47767	0.46267	0.45967	0.47500	0.46667	0.49300	0.47667	0.45100	0.46267
0.50	0.70	0.10	0.46267	0.39600	0.39433	0.43800	0.42433	0.48133	0.41167	0.37833	0.39267
0.50	0.85	0.10	0.40133	0.28500	0.27067	0.35533	0.36033	0.43167	0.32033	0.25700	0.27733
0.50	0.95	0.10	0.25500	0.07567	0.06533	0.16600	0.17100	0.29767	0.11100	0.04967	0.06600
0.75	0.20	0.10	0.48700	0.50200	0.49433	0.49333	0.50300	0.49600	0.50000	0.49133	0.49500
0.75	0.50	0.10	0.50633	0.48000	0.47100	0.49367	0.48033	0.48767	0.48567	0.46433	0.47267
$0.75 \\ 0.75$	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.49367 0.46900	0.45733 0.40067	0.44967 0.39367	0.47533 0.44367	0.47967 0.44267	0.50100 0.45833	$0.46100 \\ 0.41967$	0.44333 0.37833	0.45333 0.39000
0.75	0.85	0.10	0.43633	0.40067	0.39367 0.23267	0.33133	0.44267	0.43633	0.41907 0.26733	0.20267	0.39000 0.22400
0.25	0.20	0.15	0.49767	0.49967	0.50167	0.51200	0.50067	0.50433	0.51200	0.49600	0.49633
0.25	0.50	0.15	0.47200	0.47300	0.48167	0.47000	0.47867	0.50300	0.47433	0.46900	0.46967
0.25	0.70	0.15	0.43933	0.44133	0.43033	0.44700	0.45300	0.48333	0.44333	0.42167	0.42467
0.25	0.85	0.15	0.36800	0.34467	0.33567	0.36533	0.40133	0.45067	0.35400	0.30933	0.32867
0.25	0.95	0.15	0.17900	0.14333	0.14367	0.20567	0.25533	0.35000	0.16833	0.11267	0.12933
0.50	0.20	0.15	0.48200	0.47467	0.47633	0.49900	0.49267	0.50300	0.48700	0.46600	0.47300
0.50	0.50	0.15	0.46067	0.39733	0.38567	0.42867	0.43333	0.47500	0.42600	0.38300	0.40033
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.15 \\ 0.15$	0.41767 0.31400	0.29933 0.13200	0.28800 0.12333	$0.38000 \\ 0.23100$	0.36867 0.23300	0.43800 0.36200	$0.34000 \\ 0.17267$	0.27033 0.10600	0.28933 0.12500
0.50	0.95	0.15	0.11000	0.13200	0.12333 0.00967	0.23100	0.25360	0.30200 0.14267	0.17207	0.10000	0.12500
0.75	0.20	0.15	0.48667	0.49267	0.48833	0.51367	0.49567	0.50667	0.49767	0.49300	0.49467
0.75	0.50	0.15	0.49067	0.45600	0.46133	0.49733	0.48233	0.48767	0.47267	0.45467	0.46633
0.75	0.70	0.15	0.48933	0.39933	0.40233	0.45833	0.43867	0.48000	0.40700	0.36700	0.37533
0.75	0.85	0.15	0.46033	0.29100	0.27400	0.36367	0.36767	0.43167	0.30833	0.25167	0.26967
0.75	0.95	0.15	0.36367	0.07933	0.06867	0.16100	0.18900	0.30267	0.10567	0.05433	0.06300
0.25	0.20	0.25	0.48933	0.48467	0.47667	0.49533	0.49100	0.47867	0.50333	0.48700	0.48633 0.42200
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.43133 0.37300	0.42667 0.34433	0.42000 0.33900	$0.44000 \\ 0.37933$	0.46333 0.39100	0.48300 0.44833	0.44133 0.36100	0.41867 0.31433	0.42200 0.32400
0.25	0.85	0.25	0.23200	0.17967	0.18567	0.25033	0.29300	0.36700	0.20867	0.15367	0.16467
0.25	0.95	0.25	0.03900	0.02167	0.02400	0.06233	0.08533	0.18033	0.03033	0.01300	0.02033
0.50	0.20	0.25	0.47500	0.42967	0.42600	0.46167	0.45833	0.47967	0.44333	0.41367	0.41700
0.50	0.50	0.25	0.41133	0.26800	0.25433	0.35733	0.34000	0.41433	0.31533	0.23767	0.26467
0.50	0.70	0.25	0.30433	0.12567	0.11433	0.21733	0.21800	0.34033	0.16600	0.09400	0.11267
0.50	0.85	0.25	0.14100	0.01867	0.01500	0.06267	0.06667	0.17867	0.02833	0.00833	0.01067
0.50	0.95	0.25	0.00567	0.00000	0.00000	0.00067	0.00100	0.00933	0.00033	0.00000	0.00000
$0.75 \\ 0.75$	$0.20 \\ 0.50$	$0.25 \\ 0.25$	0.48500 0.48767	0.47700 0.37067	0.47733 0.36533	$0.49700 \\ 0.42500$	0.48700 0.41933	0.49800 0.45900	0.48467 0.38067	0.46067 0.35167	$0.47000 \\ 0.35967$
0.75	0.70	0.25	0.44633	0.25367	0.30555 0.25000	0.42500	0.41933	0.43900 0.42733	0.27733	0.33107	0.33507 0.23500
0.75	0.85	0.25	0.37267	0.08833	0.07667	0.15233	0.18967	0.32633	0.10367	0.05800	0.06533
0.75	0.95	0.25	0.16833	0.00067	0.00067	0.00267	0.01833	0.05633	0.00167	0.00100	0.00067
0.25	0.20	0.50	0.44867	0.43367	0.42533	0.45567	0.46000	0.47133	0.45033	0.41133	0.42333
0.25	0.50	0.50	0.34433	0.30967	0.30233	0.34200	0.38833	0.41733	0.33133	0.26633	0.28733
0.25	0.70	0.50	0.18367	0.13467	0.13467	0.19233	0.23233	0.33000	0.15700	0.10600	0.11567
0.25	0.85	0.50	0.03533	0.01833	0.02167	0.06067	0.08067	0.16967	0.02400	0.01333	0.01400
0.25	0.95	0.50	0.00000	0.00000	0.00000	0.00033	0.00067	0.00633	0.00000	0.00000	0.00000
$0.50 \\ 0.50$	$0.20 \\ 0.50$	$0.50 \\ 0.50$	0.41867 0.19000	0.27867 0.03967	0.26100 0.03533	0.36667 0.10467	0.36033 0.11700	0.44167 0.23900	0.33033 0.05733	0.24433 0.02200	0.27500 0.03267
0.50	0.70	0.50	0.05167	0.00200	0.00300	0.10467	0.11700	0.25900 0.07467	0.00333	0.02200 0.00067	0.03207 0.00133
0.50	0.85	0.50	0.00133	0.00200	0.00000	0.00000	0.00033	0.00267	0.00000	0.00000	0.00100
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.47167	0.31867	0.31767	0.40000	0.39133	0.43900	0.34200	0.27700	0.30100
0.75	0.50	0.50	0.36967	0.07867	0.06633	0.15667	0.18200	0.29200	0.09200	0.06100	0.06767
0.75	0.70	0.50	0.23133	0.00367	0.00400	0.01400	0.03933	0.10933	0.00600	0.00300	0.00467
0.75	0.85	0.50	0.06600	0.00000	0.00000	0.00000	0.00233	0.00567	0.00000	0.00000	0.00000
0.75	0.95	0.50	0.00133	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 19 – EPV pela métrica A
, $n=275\,$

C 0.05	R^2	S	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
$0.25 \\ 0.25$	$0.20 \\ 0.50$	$0.05 \\ 0.05$	0.50433 0.49900	0.50500 0.50900	0.51333 0.51133	0.49767 0.50233	0.50767 0.51367	0.49567 0.49600	0.51833 0.50367	0.50500 0.50700	0.51433 0.50867
0.25	0.70	0.05	0.48467	0.47767	0.48000	0.48600	0.49267	0.48000	0.48100	0.47633	0.47767
0.25	0.85	0.05	0.48767	0.46733	0.46500	0.47433	0.48567	0.49633	0.47367	0.46333	0.47067
0.25	0.95	0.05	0.43000	0.40467	0.39600	0.42300	0.44467	0.47800	0.41567	0.38433	0.39900
0.50	0.20	0.05	0.50233	0.48933	0.50067	0.50867	0.49633	0.50633	0.50733	0.49400	0.50333
0.50	0.50	0.05	0.49767	0.49000	0.48733	0.48400	0.49100	0.49467	0.50267	0.48367	0.49233
0.50	0.70	0.05	0.48467	0.44800	0.44967	0.46867	0.46167	0.47300	0.45867	0.44867	0.44633
0.50	0.85	0.05	0.47100	0.42033	0.41900	0.43933	0.45133	0.47333	0.44300	0.39467	0.42000
0.50	0.95	0.05	0.41800	0.26467	0.25233	0.34700	0.34700	0.43433	0.28967	0.23267	0.25500
$0.75 \\ 0.75$	$0.20 \\ 0.50$	$0.05 \\ 0.05$	0.50300 0.50767	0.51300 0.49233	0.51700 0.50500	0.50967 0.48933	0.50833 0.48733	0.50767 0.51000	0.51500 0.48500	0.50733 0.50800	0.51567 0.50100
0.75	0.70	0.05	0.49933	0.46467	0.30300 0.47300	0.48033	0.48100	0.49433	0.48300 0.47333	0.46467	0.46833
0.75	0.85	0.05	0.50067	0.47300	0.46167	0.49300	0.48033	0.47933	0.47500	0.46400	0.47067
0.75	0.95	0.05	0.49567	0.38467	0.37500	0.41667	0.42933	0.47633	0.40733	0.36500	0.37600
0.25	0.20	0.10	0.49500	0.49467	0.49233	0.49367	0.48633	0.49600	0.48433	0.48867	0.49000
0.25	0.50	0.10	0.51533	0.50100	0.50000	0.49800	0.49867	0.51367	0.49467	0.49200	0.49400
0.25	0.70	0.10	0.47200	0.44067	0.43800	0.45633	0.46833	0.48467	0.45733	0.42767	0.43367
0.25	0.85	0.10	0.42600	0.39400	0.39367	0.43167	0.43700	0.46867	0.41500	0.36967	0.38433
0.25	0.95	0.10	0.26033	0.21900	0.21467	0.27133	0.31633	0.39267	0.24367	0.18533	0.19700
0.50	0.20	0.10	0.49467	0.47067	0.48000	0.49033	0.49633	0.49300	0.48867	0.48100	0.48000
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.10 \\ 0.10$	0.48900 0.43567	0.44000 0.34533	0.44067 0.33900	0.46767 0.41800	0.47233 0.40600	$0.49700 \\ 0.46733$	0.44967 0.36967	0.44767 0.33167	0.45800 0.34233
0.50	0.70	0.10	0.39200	0.23767	0.23033	0.32767	0.32600	0.39867	0.28500	0.20200	0.34233 0.23300
0.50	0.95	0.10	0.20100	0.03900	0.03767	0.10633	0.11967	0.23333	0.06133	0.02467	0.03333
0.75	0.20	0.10	0.49267	0.48967	0.49000	0.49767	0.48367	0.49767	0.49733	0.48900	0.48967
0.75	0.50	0.10	0.51733	0.47433	0.47200	0.47833	0.48867	0.50867	0.48300	0.47633	0.46833
0.75	0.70	0.10	0.50500	0.43900	0.43567	0.46800	0.46867	0.47433	0.44400	0.41933	0.42267
0.75	0.85	0.10	0.48867	0.37200	0.36200	0.42967	0.40667	0.46200	0.37400	0.33633	0.35000
0.75	0.95	0.10	0.42700	0.17433	0.15400	0.26333	0.27533	0.37200	0.18700	0.13033	0.14400
0.25	0.20	0.15	0.49467	0.49600	0.49267	0.49767	0.49500	0.49633	0.49133	0.49133	0.49533
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.15 \\ 0.15$	0.47800 0.41767	0.46600 0.39233	0.46833 0.40267	0.46933 0.44633	0.48067 0.44333	0.49667 0.47267	0.47867 0.40833	0.46533 0.38367	0.47267 0.38533
0.25	0.70	0.15	0.34167	0.29933	0.29733	0.34867	0.37867	0.42100	0.40033 0.33867	0.26867	0.38363 0.28267
0.25	0.95	0.15	0.12700	0.08167	0.08433	0.14200	0.18533	0.29467	0.10233	0.05767	0.07067
0.50	0.20	0.15	0.48667	0.45167	0.46067	0.48333	0.46333	0.48167	0.47933	0.45567	0.46467
0.50	0.50	0.15	0.46667	0.37667	0.36900	0.40733	0.41533	0.46833	0.39933	0.36167	0.37533
0.50	0.70	0.15	0.39600	0.23333	0.22733	0.32900	0.32567	0.41000	0.26500	0.20700	0.22700
0.50	0.85	0.15	0.26667	0.09367	0.08233	0.17867	0.18567	0.31300	0.13000	0.06800	0.08967
0.50	0.95	0.15	0.04400	0.00233	0.00167	0.01700	0.01867	0.07433	0.00200	0.00033	0.00100
0.75	0.20	0.15	0.50100	0.47733	0.48300	0.48467	0.48667	0.48633	0.48033	0.48433	0.48067
$0.75 \\ 0.75$	$0.50 \\ 0.70$	$0.15 \\ 0.15$	0.50367 0.49433	0.44067 0.35367	0.45400 0.34800	0.46200 0.41967	0.47467 0.41300	0.49300 0.47400	0.45467 0.38267	$0.43800 \\ 0.33000$	0.44167 0.34867
0.75	0.70	0.15	0.44067	0.33307	0.34600 0.22533	0.32900	0.41300	0.40633	0.36207	0.33000 0.19567	0.34867
0.75	0.95	0.15	0.32967	0.03333	0.03333	0.08767	0.12100	0.23000	0.04167	0.02400	0.02533
0.25	0.20	0.25	0.47467	0.47800	0.46600	0.47267	0.47633	0.47833	0.48200	0.46700	0.47267
0.25	0.50	0.25	0.41733	0.40233	0.40500	0.42267	0.45367	0.47567	0.41467	0.38033	0.39467
0.25	0.70	0.25	0.32167	0.28167	0.28067	0.33567	0.36133	0.42467	0.30233	0.25467	0.27033
0.25	0.85	0.25	0.17500	0.12767	0.13133	0.19267	0.23500	0.32900	0.16067	0.09200	0.10933
0.25	0.95	0.25	0.00933	0.00600	0.00800	0.02533	0.04067	0.09400	0.00767	0.00333	0.00500
0.50	0.20	0.25	0.45967	0.38967	0.39300	0.42833	0.42367 0.31667	0.46833	0.40933	0.38100	0.39233
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.39800 0.23867	0.22267 0.06267	0.20467 0.05200	0.30833 0.14700	0.31667 0.15533	0.41933 0.28367	0.26767 0.09533	0.18267 0.04367	0.21500 0.05867
0.50	0.70	0.25	0.23867	0.00267	0.00233	0.02267	0.13333	0.28507	0.09333	0.04307	0.00300
0.50	0.95	0.25	0.00067	0.00000	0.00299	0.00033	0.00000	0.00067	0.00000	0.00100	0.00000
0.75	0.20	0.25	0.50100	0.46167	0.46067	0.47167	0.49133	0.49000	0.47533	0.46067	0.47200
0.75	0.50	0.25	0.48533	0.34367	0.33300	0.40233	0.40567	0.46967	0.36200	0.31100	0.32367
0.75	0.70	0.25	0.43533	0.17167	0.16767	0.27133	0.28600	0.37567	0.20733	0.14500	0.15667
0.75	0.85	0.25	0.33867	0.04267	0.03667	0.09233	0.12167	0.24800	0.05533	0.03100	0.03633
0.75	0.95	0.25	0.09967	0.00000	0.00000	0.00067	0.00433	0.01700	0.00033	0.00000	0.00000
0.25	0.20	0.50	0.42467	0.40533	0.40467	0.43900	0.45333	0.47800	0.41867	0.37900	0.39233
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.50 \\ 0.50$	0.27233 0.12633	0.23267 0.06200	0.22933 0.06833	0.28467 0.12767	0.32533 0.17267	0.40467 0.25900	0.25700 0.08633	0.19333 0.04633	0.21333 0.05600
0.25 0.25	0.70	0.50	0.12633	0.00433	0.00833	0.12767	0.17267	0.25900 0.09300	0.08633	0.04633 0.00433	0.03600 0.00400
0.25	0.95	0.50	0.00000	0.00000	0.00300	0.00033	0.00000	0.00000	0.00000	0.00433	0.00400
0.50	0.20	0.50	0.37200	0.19167	0.17467	0.28833	0.28767	0.38667	0.23967	0.15967	0.18467
0.50	0.50	0.50	0.13133	0.01367	0.00867	0.04767	0.06500	0.16033	0.02367	0.00533	0.00967
0.50	0.70	0.50	0.01867	0.00033	0.00000	0.00167	0.00267	0.02133	0.00033	0.00000	0.00000
0.50	0.85	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00067	0.00000	0.00000	0.00000
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.45300	0.25733	0.25800	0.34500	0.33967	0.41533	0.27933	0.22333	0.24300
$0.75 \\ 0.75$	$0.50 \\ 0.70$	$0.50 \\ 0.50$	0.33600 0.15833	0.03633 0.00067	0.03067 0.00067	0.08467 0.00100	0.12033 0.01167	0.23367 0.04867	0.04933 0.00033	0.02367 0.00000	0.02867 0.00000
0.75	0.70	0.50	0.13833	0.00007	0.00007	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 20 – EPV pela métrica A
, $n=388\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.51400	0.49400	0.50200	0.49600	0.49567	0.51633	0.48933	0.49733	0.49367
0.25	0.50	0.05	0.49967	0.49033	0.48100	0.50233	0.49867	0.49800	0.49367	0.48467	0.49167
0.25	0.70	0.05	0.48733	0.47700	0.46767	0.47600	0.48733	0.48467	0.47600	0.47800	0.46867
0.25	0.85	0.05	0.46833	0.46733	0.47433	0.48133	0.49567	0.49800	0.47100	0.46567	0.47300
0.25	0.95	0.05	0.40200	0.37833	0.37600	0.40667	0.43600	0.46300	0.39600	0.35733	0.37300
0.50	0.20	0.05	0.52433	0.50900	0.50500	0.50833	0.51200	0.51167	0.50533	0.51500	0.50967
0.50	0.50	0.05	0.49767	0.46533	0.46567	0.47700	0.47333	0.50433	0.48067	0.46233	0.46867
0.50	0.70	0.05	0.48833	0.45267	0.44600	0.46067	0.44867	0.47800	0.47067	0.44367	0.45100
0.50	0.85	0.05	0.45933	0.38733	0.38933	0.43467	0.43333	0.46433	0.42200	0.37233	0.38567
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.05 \\ 0.05$	0.38133 0.50767	0.21800 0.50867	0.20533 0.51067	0.29600 0.50900	0.30867 0.51900	$0.42000 \\ 0.50167$	0.25267 0.49967	0.18433 0.51000	0.20567 0.50100
0.75	0.20	0.05	0.50500	0.47133	0.31067 0.47267	0.48267	0.48000	0.48833	0.49907 0.48200	0.31000 0.46833	0.30100 0.47267
0.75	0.70	0.05	0.48900	0.48267	0.48433	0.48500	0.46967	0.49667	0.47400	0.46867	0.47600
0.75	0.85	0.05	0.48167	0.45067	0.44533	0.46333	0.46467	0.46767	0.46367	0.43267	0.44367
0.75	0.95	0.05	0.46600	0.36033	0.35000	0.42333	0.41467	0.46467	0.37367	0.33300	0.34633
0.25	0.20	0.10	0.50200	0.50467	0.50833	0.50600	0.50367	0.48367	0.48500	0.50133	0.49233
0.25	0.50	0.10	0.47067	0.46500	0.46167	0.47633	0.46533	0.49367	0.47167	0.44833	0.45700
0.25	0.70	0.10	0.46733	0.44033	0.44333	0.46700	0.45500	0.47133	0.45667	0.42367	0.43067
0.25	0.85	0.10	0.39033	0.35500	0.35167	0.40000	0.42567	0.45467	0.38100	0.33167	0.34267
0.25	0.95	0.10	0.22567	0.15667	0.15367	0.22733	0.27167	0.35800	0.18833	0.12033	0.13633
0.50	0.20	0.10	0.48967	0.47567	0.48267	0.48200	0.47967	0.48600	0.46633	0.47900	0.47733
0.50	0.50	0.10	0.48600	0.41967	0.41233	0.44900	0.46100	0.48167	0.44933	0.40433	0.41267
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.43500 0.35433	0.32067 0.18833	0.31500 0.18033	0.38567 0.26667	0.39100 0.28133	0.45233 0.36733	0.36267 0.23200	0.30400 0.15533	0.32267 0.17800
0.50	0.95	0.10	0.33433	0.18833	0.13033	0.26667	0.28133	0.30733	0.23200 0.02733	0.13333 0.01000	0.17300
0.75	0.20	0.10	0.49700	0.51167	0.50867	0.50133	0.50333	0.18333	0.48900	0.51033	0.50033
0.75	0.50	0.10	0.49200	0.45400	0.46033	0.47800	0.47600	0.48567	0.46700	0.44067	0.44267
0.75	0.70	0.10	0.48500	0.42167	0.41767	0.45700	0.44500	0.48500	0.44167	0.39900	0.41300
0.75	0.85	0.10	0.46500	0.34600	0.33867	0.40033	0.40433	0.45567	0.36400	0.30433	0.32267
0.75	0.95	0.10	0.41000	0.13333	0.12367	0.22767	0.24000	0.35200	0.16200	0.10400	0.11300
0.25	0.20	0.15	0.50000	0.49267	0.49333	0.48900	0.49267	0.49300	0.48833	0.47833	0.47833
0.25	0.50	0.15	0.45167	0.43967	0.44000	0.44700	0.45800	0.48467	0.46067	0.42633	0.43133
0.25	0.70	0.15	0.40967	0.36800	0.37033	0.41300	0.42300	0.45733	0.39300	0.35267	0.35600
0.25	0.85	0.15	0.29133	0.24867	0.25233	0.30467	0.34133	0.40167	0.27333	0.22033	0.22833
0.25	0.95	0.15	0.08233	0.04567	0.05300	0.10167	0.13100	0.23133	0.05900	0.03300	0.03833
$0.50 \\ 0.50$	$0.20 \\ 0.50$	$0.15 \\ 0.15$	0.50433 0.44433	0.46633 0.33433	0.46967 0.32800	0.48933 0.40167	0.49267 0.39600	0.49533 0.45567	0.47667 0.38033	0.46200 0.31033	0.47067 0.33300
0.50	0.70	0.15	0.37300	0.19367	0.32800 0.17967	0.30833	0.28133	0.45507 0.39967	0.23633	0.31033 0.15333	0.33300 0.18267
0.50	0.85	0.15	0.21800	0.05533	0.05333	0.12333	0.13600	0.27133	0.08667	0.10333	0.05267
0.50	0.95	0.15	0.02300	0.00033	0.00000	0.00433	0.00633	0.02800	0.00033	0.00000	0.00000
0.75	0.20	0.15	0.50900	0.49333	0.49833	0.50100	0.50633	0.50600	0.49200	0.49800	0.49367
0.75	0.50	0.15	0.49667	0.42133	0.42400	0.46933	0.46300	0.48167	0.43633	0.40400	0.41767
0.75	0.70	0.15	0.48700	0.34500	0.33833	0.41333	0.39967	0.44900	0.36967	0.30967	0.32733
0.75	0.85	0.15	0.42967	0.18967	0.18133	0.28867	0.29000	0.37233	0.20933	0.15500	0.17233
0.75	0.95	0.15	0.27967	0.01633	0.01233	0.04567	0.07100	0.18367	0.02600	0.00900	0.01100
0.25	0.20	0.25	0.48067	0.48167	0.48500	0.49167	0.48900	0.48933	0.48033	0.46900	0.47900
0.25	0.50	0.25	0.38567	0.35700	0.35767	0.40200	0.41400	0.44800	0.37733	0.33200	0.34633
0.25	$0.70 \\ 0.85$	$0.25 \\ 0.25$	0.29467	0.23933	0.23933	0.29467	0.32900	0.39700	0.26867	0.20767	0.22433
$0.25 \\ 0.25$	0.85	0.25	0.12100 0.00300	0.08033 0.00100	0.08267 0.00033	0.14867 0.00900	0.18767 0.01500	$0.27700 \\ 0.04100$	0.09767 0.00100	0.05500 0.00033	0.06133 0.00067
0.50	0.20	0.25	0.47100	0.38700	0.38367	0.43533	0.42933	0.47000	0.41200	0.37433	0.38767
0.50	0.50	0.25	0.34867	0.15400	0.15000	0.25667	0.24500	0.36733	0.20033	0.12167	0.14533
0.50	0.70	0.25	0.20067	0.03367	0.03433	0.10567	0.10400	0.23100	0.05433	0.02200	0.03333
0.50	0.85	0.25	0.03600	0.00200	0.00133	0.00833	0.01100	0.05600	0.00167	0.00100	0.00100
0.50	0.95	0.25	0.00000	0.00000	0.00000	0.00000	0.00000	0.00033	0.00000	0.00000	0.00000
0.75	0.20	0.25	0.50300	0.44733	0.44967	0.48267	0.48067	0.49433	0.44567	0.43233	0.43633
0.75	0.50	0.25	0.46167	0.28033	0.27967	0.36733	0.36667	0.42867	0.31900	0.24700	0.27400
0.75	0.70	0.25	0.42367	0.12733	0.12700	0.23200	0.22900	0.35067	0.15667	0.09733	0.11133
0.75	0.85	0.25	0.28333	0.02267	0.01733	0.04867	0.08333	0.17633	0.02900	0.01500	0.01467
0.75	0.95	0.25	0.06767	0.00000	0.00000	0.00000	0.00133	0.00633	0.00000	0.00000	0.00000
0.25	0.20	0.50	0.42500	0.40367	0.40467	0.43167	0.44233	0.46967 0.37233	0.40567	0.38167	0.39100
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.50 \\ 0.50$	0.22767 0.08267	0.17500 0.03767	0.16400 0.04400	0.24933 0.09467	0.27600 0.12367	0.37233	0.20867 0.05333	0.14067 0.02667	0.15700 0.03033
0.25	0.70	0.50	0.00367	0.00133	0.04400	0.00933	0.12367	0.20500	0.00233	0.02007	0.00067
0.25	0.95	0.50	0.00000	0.00133	0.00100	0.00000	0.00000	0.00000	0.00233	0.00000	0.00007
0.50	0.20	0.50	0.33533	0.16000	0.15333	0.26267	0.26333	0.37233	0.20100	0.13067	0.15067
0.50	0.50	0.50	0.08433	0.00533	0.00433	0.02967	0.03133	0.10800	0.00733	0.00200	0.00367
0.50	0.70	0.50	0.00667	0.00000	0.00000	0.00033	0.00133	0.01167	0.00000	0.00000	0.00000
0.50	0.85	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.45267	0.22267	0.21600	0.32767	0.31733	0.41133	0.25233	0.18433	0.20833
0.75	0.50	0.50	0.26600	0.01300	0.01233	0.04267	0.06567	0.16700	0.02267	0.00600	0.00967
0.75	0.70	0.50	0.10667	0.00033	0.00067	0.00067	0.00467	0.02067	0.00033	0.00000	0.00000
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.50 \\ 0.50$	0.00867 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000
0.10	0.90	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 21 – EPV pela métrica A
, $n=500\,$

	F-0		D 0250555	0.00	a	D 1100000	0.0000000000000000000000000000000000000				
$\frac{c}{0.25}$	$\frac{R^2}{0.20}$	s 0.05	0.50670	0LS-CUSUM 0.50709	fluctuation 0.50560	0.49885	OLS-MOSUM 0.50801	ME 0.49844	supF 0.50136	aveF 0.50102	$\frac{\text{expF}}{0.50002}$
0.25	0.20	0.05	0.49723	0.50184	0.30300 0.49958	0.49320	0.49889	0.49844 0.49145	0.30130 0.49910	0.30102 0.49950	0.30002 0.49663
0.25	0.70	0.05	0.49621	0.50369	0.50231	0.50056	0.50845	0.50834	0.50527	0.50406	0.50481
0.25	0.85	0.05	0.49201	0.50523	0.49976	0.50110	0.50374	0.50728	0.49799	0.50081	0.49983
0.25	0.95	0.05	0.48657	0.47907	0.48056	0.47386	0.48965	0.48917	0.47804	0.47611	0.47351
0.50	0.20	0.05	0.50493	0.50405	0.49503	0.50013	0.50495	0.49051	0.50429	0.49845	0.50006
0.50	0.50	0.05	0.49548	0.49393	0.49341	0.49181	0.49458	0.49564	0.49389	0.48924	0.48966
0.50	0.70	0.05	0.49785	0.49926	0.49970	0.49377	0.50332	0.50092	0.49719	0.49809	0.49846
0.50	0.85	0.05	0.49912	0.49084	0.48467	0.49450	0.49330	0.49068	0.49215	0.49075	0.49154
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.05 \\ 0.05$	0.47834 0.50109	0.45605 0.50093	0.45653 0.49550	0.46901 0.49565	0.47125 0.50082	0.49165 0.48516	0.46525 0.49737	0.44283 0.49724	0.45019 0.49827
0.75	0.50	0.05	0.50574	0.50494	0.49550 0.50221	0.49303 0.49277	0.50471	0.49687	0.49131	0.49724 0.50257	0.49921
0.75	0.70	0.05	0.50700	0.50239	0.50221	0.50376	0.49944	0.50891	0.50400	0.50100	0.50147
0.75	0.85	0.05	0.49370	0.49256	0.48420	0.48720	0.49473	0.50836	0.48783	0.48615	0.48686
0.75	0.95	0.05	0.49761	0.48319	0.48140	0.49138	0.49423	0.50445	0.48891	0.47922	0.48033
0.25	0.20	0.10	0.49702	0.49936	0.49724	0.50039	0.50869	0.49026	0.49523	0.48978	0.49215
0.25	0.50	0.10	0.50201	0.49631	0.49171	0.48668	0.49556	0.49053	0.49702	0.49656	0.49553
0.25	0.70	0.10	0.49408	0.50674	0.50563	0.49566	0.50020	0.49715	0.50218	0.50436	0.50351
$0.25 \\ 0.25$	$0.85 \\ 0.95$	$0.10 \\ 0.10$	0.48133 0.45777	0.47546 0.46495	0.47283 0.46719	0.47745 0.46362	0.48120 0.48539	0.48397 0.49208	0.47252 0.47347	0.47237 0.45745	0.47086 0.46172
0.25 0.50	0.95	0.10	0.49181	0.49797	0.40719	0.49499	0.49913	0.49208 0.49257	0.47547	0.49743 0.49623	0.40172 0.49245
0.50	0.50	0.10	0.50146	0.49164	0.48623	0.48578	0.49133	0.49069	0.49105	0.48851	0.48804
0.50	0.70	0.10	0.49740	0.48518	0.48459	0.48827	0.48678	0.49213	0.48816	0.48540	0.48602
0.50	0.85	0.10	0.48763	0.44834	0.44247	0.47164	0.47746	0.49352	0.46072	0.44405	0.45095
0.50	0.95	0.10	0.45094	0.35436	0.34817	0.41175	0.42811	0.47648	0.38386	0.33792	0.35489
0.75	0.20	0.10	0.49961	0.49674	0.49044	0.49503	0.50436	0.48662	0.49509	0.48685	0.48930
0.75	0.50	0.10	0.49767	0.50380	0.50499	0.49595	0.50107	0.48824	0.50067	0.50032	0.49731
0.75	0.70	0.10	0.50359	0.50001	0.50103	0.49575	0.50026	0.49734	0.49770	0.50330	0.50095
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.10 \\ 0.10$	0.49798 0.47821	0.47339 0.41542	0.46798 0.41542	0.48107 0.45325	0.48588 0.46480	0.48497 0.49176	0.47427 0.43105	0.47128 0.40199	0.47093 0.41205
0.75	0.93	0.10	0.50453	0.41542	0.41542 0.50012	0.45525	0.40480	0.49170	0.45105 0.50286	0.40199 0.50136	0.41205 0.50215
0.25	0.50	0.15	0.48295	0.49534	0.49221	0.48482	0.49475	0.48452	0.48979	0.48989	0.48536
0.25	0.70	0.15	0.48625	0.49896	0.50017	0.49035	0.49373	0.50626	0.49596	0.49521	0.49612
0.25	0.85	0.15	0.47799	0.46590	0.46295	0.47292	0.47804	0.48968	0.46604	0.45843	0.45972
0.25	0.95	0.15	0.42392	0.41530	0.41057	0.42372	0.45839	0.47224	0.42230	0.39731	0.40469
0.50	0.20	0.15	0.50325	0.49563	0.49420	0.49367	0.49850	0.48678	0.49393	0.48747	0.48914
0.50	0.50	0.15	0.48234	0.47937	0.47729	0.47728	0.49203	0.48700	0.47918	0.47296	0.47354
0.50	0.70	0.15	0.48944	0.47261 0.40193	0.46756	0.48825	0.48763 0.43749	0.49764	0.47537	0.46470 0.39063	0.46972
$0.50 \\ 0.50$	$0.85 \\ 0.95$	$0.15 \\ 0.15$	0.46448 0.38576	0.40193 0.23857	0.39854 0.22761	0.44244 0.32154	0.43749	0.46761 0.43105	0.41862 0.27970	0.39063 0.21078	0.40186 0.23720
0.75	0.20	0.15	0.50349	0.49411	0.48749	0.48992	0.49771	0.48335	0.49186	0.49018	0.49024
0.75	0.50	0.15	0.49536	0.48468	0.48362	0.48011	0.49024	0.50204	0.48720	0.47993	0.48078
0.75	0.70	0.15	0.50375	0.48353	0.48420	0.48548	0.48314	0.49623	0.48355	0.48067	0.48182
0.75	0.85	0.15	0.49371	0.43972	0.43453	0.46794	0.46600	0.49187	0.44545	0.43091	0.43512
0.75	0.95	0.15	0.47493	0.33636	0.33655	0.40656	0.42324	0.48128	0.36355	0.31500	0.33191
0.25	0.20	0.25	0.49915	0.50295	0.49812	0.49684	0.50755	0.49231	0.49955	0.49260	0.49589
$0.25 \\ 0.25$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.49535 0.47277	0.49432 0.47694	0.49579 0.48002	0.48079 0.47285	0.49805 0.48286	0.48698 0.49813	0.49318 0.47788	0.48955 0.47346	0.48922 0.47439
0.25	0.70	0.25	0.43543	0.44126	0.43002 0.43333	0.47283	0.46564	0.48096	0.44210	0.47340 0.42472	0.47439 0.43215
0.25	0.95	0.25	0.33158	0.31683	0.31555	0.34073	0.40032	0.45540	0.32938	0.28437	0.49210 0.29792
0.50	0.20	0.25	0.49374	0.48342	0.47635	0.48578	0.49403	0.48457	0.48492	0.47895	0.48141
0.50	0.50	0.25	0.46921	0.44080	0.43636	0.45576	0.46693	0.48519	0.44939	0.43110	0.43746
0.50	0.70	0.25	0.45542	0.38752	0.38904	0.42436	0.43703	0.48496	0.40642	0.37394	0.38777
0.50	0.85	0.25	0.40635	0.27392	0.26308	0.35589	0.36380	0.43913	0.31445	0.24902	0.27689
0.50	0.95	0.25	0.23359	0.07186	0.06074	0.15030	0.18302	0.33737	0.09493	0.04560	0.06483
0.75	0.20	0.25	0.50063 0.49125	0.49834 0.47536	0.49390 0.47379	0.50148 0.48048	0.50394 0.47964	0.48671 0.48512	0.49789 0.47782	0.49609 0.46525	0.49671 0.46758
$0.75 \\ 0.75$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.49125 0.48903	0.44832	0.47379	0.48048	0.47984	0.48512 0.49990	0.47782 0.45853	0.46525 0.43548	0.46758 0.44432
0.75	0.85	0.25	0.47748	0.35716	0.35016	0.41767	0.42405	0.46897	0.37179	0.33444	0.34948
0.75	0.95	0.25	0.42990	0.15295	0.14447	0.25005	0.28211	0.40923	0.18043	0.11769	0.13994
0.25	0.20	0.50	0.49764	0.48702	0.48164	0.49048	0.49529	0.48275	0.48714	0.47665	0.48069
0.25	0.50	0.50	0.46484	0.47484	0.47065	0.46771	0.48884	0.48603	0.47009	0.46009	0.46190
0.25	0.70	0.50	0.42510	0.41607	0.41658	0.43133	0.45331	0.48418	0.42605	0.39967	0.40912
0.25	0.85	0.50	0.33411	0.31606	0.31239	0.35412	0.40710	0.45907	0.33307	0.28258	0.30057
0.25	0.95	0.50	0.13144	0.11048	0.11700	0.15735	0.25071	0.35396	0.12683	0.08000	0.09457
0.50	0.20	0.50	0.48602	0.44864	0.44581	0.47001	0.48637	0.48770	0.45863	0.44057	0.44934
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.50 \\ 0.50$	0.42464 0.34728	0.31757 0.17909	0.30805 0.17075	0.38446 0.27492	0.40147 0.29671	0.46733 0.41682	0.35479 0.22012	0.29298 0.14851	0.31729 0.17826
0.50	0.70	0.50	0.20258	0.05030	0.17075	0.12196	0.25677	0.41032 0.30879	0.22012	0.14851 0.02875	0.17820
0.50	0.95	0.50	0.02865	0.00106	0.00034	0.00621	0.02132	0.09991	0.00057	0.00007	0.00031
0.75	0.20	0.50	0.49983	0.46432	0.45725	0.47654	0.48964	0.48305	0.46216	0.44687	0.45221
0.75	0.50	0.50	0.47243	0.35296	0.34938	0.40291	0.41536	0.46667	0.36749	0.32377	0.33853
0.75	0.70	0.50	0.46137	0.21892	0.21161	0.31230	0.33097	0.43715	0.24081	0.17891	0.20257
0.75	0.85	0.50	0.38209	0.06405	0.05599	0.13855	0.19167	0.33412	0.07867	0.04186	0.05515
0.75	0.95	0.50	0.19168	0.00099	0.00046	0.00291	0.02367	0.08548	0.00081	0.00021	0.00044

Tabela 22 – EPV pela métrica B
, $n=50\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.49799	0.50328	0.50590	0.50969	0.50862	0.50913	0.51808	0.50272	0.50891
0.25	0.50	0.05	0.48379	0.50150	0.50084	0.49630	0.50332	0.49943	0.49537	0.50110	0.50143
0.25	0.70	0.05	0.47875	0.49404	0.49350	0.49280	0.48927	0.49317	0.49437	0.49208	0.49260
0.25	0.85	0.05	0.48183	0.48397	0.48979	0.48505	0.48926	0.49920	0.49049	0.48490	0.48551
0.25	0.95	0.05	0.47145	0.46530	0.46436	0.47498	0.48064	0.49468	0.47520	0.45891	0.46464
0.50	0.20	0.05	0.49273	0.50975	0.50696	0.50211	0.50977	0.51183	0.51794	0.51077	0.51340
0.50	0.50	0.05	0.50218	0.50188	0.50368	0.50592	0.50181	0.49320	0.50704	0.50762	0.50924
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.05 \\ 0.05$	0.47816 0.48798	0.47437 0.46064	0.47053 0.46286	0.48236 0.48113	0.48175 0.47579	0.49317 0.49813	0.48140 0.47291	0.46716 0.45361	0.47294 0.46021
0.50	0.95	0.05	0.46510	0.38686	0.40280 0.37891	0.43594	0.47579	0.49813 0.47165	0.41291 0.41536	0.45301 0.37039	0.40021 0.38715
0.75	0.20	0.05	0.50859	0.49780	0.49651	0.50304	0.49998	0.49873	0.51374	0.50144	0.50453
0.75	0.50	0.05	0.48853	0.50750	0.50811	0.50689	0.51158	0.49848	0.50629	0.51083	0.50840
0.75	0.70	0.05	0.48636	0.48924	0.48705	0.49760	0.48882	0.49512	0.49054	0.48455	0.48544
0.75	0.85	0.05	0.49220	0.48374	0.48676	0.48528	0.48645	0.50542	0.48783	0.48462	0.48498
0.75	0.95	0.05	0.49580	0.45121	0.44912	0.48699	0.48478	0.49333	0.46793	0.44231	0.45166
0.25	0.20	0.10	0.49159	0.50385	0.50326	0.50674	0.51402	0.50259	0.51855	0.50787	0.51260
0.25	0.50	0.10	0.48235	0.50395	0.50557	0.50791	0.51307	0.50518	0.50723	0.50243	0.50580
0.25	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.46976	0.47133 0.46122	0.46732	0.47578	0.47974 0.48423	0.48218 0.49395	0.46877 0.47184	0.46327 0.45209	0.46605 0.45845
$0.25 \\ 0.25$	0.85	0.10	0.45802 0.38873	0.46122	0.46403 0.35198	0.46644 0.39481	0.46425 0.41452	0.49595 0.45474	0.47184 0.37977	0.45209 0.32863	0.45645 0.34543
0.50	0.20	0.10	0.50493	0.50093	0.50276	0.51003	0.51047	0.40474	0.52177	0.32803	0.50948
0.50	0.50	0.10	0.47643	0.48207	0.48036	0.49012	0.49846	0.49706	0.48568	0.48174	0.48486
0.50	0.70	0.10	0.47211	0.43188	0.43027	0.46013	0.45356	0.47700	0.44421	0.42194	0.42973
0.50	0.85	0.10	0.45853	0.36388	0.36107	0.42162	0.41797	0.47372	0.40346	0.34304	0.36208
0.50	0.95	0.10	0.35495	0.17634	0.16166	0.27318	0.27862	0.38919	0.22157	0.14058	0.16691
0.75	0.20	0.10	0.49993	0.50790	0.50805	0.50897	0.51602	0.50364	0.51870	0.50587	0.51148
0.75	0.50	0.10	0.50348	0.50007	0.50186	0.51353	0.50828	0.49044	0.49865	0.50506	0.50315
0.75	0.70	0.10	0.47915	0.46637	0.46662	0.47276	0.47502	0.48970	0.46569	0.45724	0.45921
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.10 \\ 0.10$	0.48245 0.47009	0.44088 0.31863	0.44297 0.31279	0.47098 0.40181	0.46856 0.38890	0.49175 0.45328	0.45536 0.33926	0.42928 0.28421	0.43456 0.30057
$0.75 \\ 0.25$	0.95	0.10 0.15	0.47009	0.49734	0.31279 0.49954	0.50330	0.50299	0.49528 0.49561	0.53920 0.51345	0.28421 0.50171	0.50556
0.25	0.50	0.15	0.47437	0.48510	0.48478	0.49157	0.49322	0.48867	0.48258	0.48319	0.48332
0.25	0.70	0.15	0.45045	0.45732	0.45565	0.46634	0.47748	0.49033	0.46425	0.44732	0.45306
0.25	0.85	0.15	0.41703	0.40264	0.40532	0.42072	0.45127	0.47316	0.42009	0.38901	0.39724
0.25	0.95	0.15	0.29466	0.24261	0.23985	0.30731	0.34293	0.41148	0.26831	0.20659	0.22464
0.50	0.20	0.15	0.48774	0.47927	0.48016	0.49786	0.49939	0.49566	0.49364	0.47958	0.48477
0.50	0.50	0.15	0.47458	0.44331	0.44529	0.47204	0.47752	0.48875	0.45767	0.43907	0.44753
0.50	0.70	0.15	0.43677	0.36612	0.36128	0.42038	0.41978	0.46661	0.39455	0.34475	0.36209
0.50	0.85	0.15	0.37907	0.23348	0.22762	0.32221	0.32745	0.42565	0.28103	0.20546	0.23062
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.15 \\ 0.15$	0.21043 0.49946	0.04967 0.49867	0.04137 0.49655	0.12249 0.51021	0.13065 0.51065	0.26614 0.50640	0.07063 0.50968	0.02786 0.49269	0.04156 0.49939
0.75	0.50	0.15	0.49242	0.48462	0.48427	0.49395	0.48910	0.50156	0.48362	0.43203 0.47892	0.48057
0.75	0.70	0.15	0.47009	0.43635	0.43581	0.46892	0.46009	0.48532	0.44650	0.42585	0.43152
0.75	0.85	0.15	0.47158	0.35920	0.35876	0.41930	0.41216	0.47046	0.37722	0.33485	0.34528
0.75	0.95	0.15	0.43855	0.16248	0.15418	0.27504	0.27809	0.38515	0.19392	0.12815	0.14698
0.25	0.20	0.25	0.48563	0.49585	0.49313	0.49997	0.50313	0.49476	0.50981	0.49171	0.49884
0.25	0.50	0.25	0.46526	0.47462	0.47193	0.48191	0.50038	0.50526	0.48444	0.46367	0.47268
0.25	0.70	0.25	0.41076	0.40212	0.40007	0.42666	0.44270	0.46941	0.41696	0.38372	0.39368
0.25	0.85	0.25	0.32897	0.29016	0.29362	0.33793	0.37563	0.43618	0.31724	0.26001	0.27519
$0.25 \\ 0.50$	$0.95 \\ 0.20$	$0.25 \\ 0.25$	0.11935 0.48901	0.08312 0.47211	0.08398 0.47015	0.14131 0.48915	0.18378 0.49396	0.29548 0.49597	0.09762 0.49274	0.05779 0.46673	0.06717 0.47719
0.50	0.50	0.25	0.44092	0.34764	0.34114	0.41520	0.41099	0.46111	0.38062	0.33061	0.35095
0.50	0.70	0.25	0.38165	0.22861	0.21843	0.31920	0.31784	0.40789	0.36002 0.27307	0.19602	0.22327
0.50	0.85	0.25	0.23620	0.07209	0.06289	0.15049	0.15946	0.29646	0.09820	0.04803	0.06329
0.50	0.95	0.25	0.03618	0.00159	0.00098	0.00951	0.01498	0.06417	0.00174	0.00030	0.00075
0.75	0.20	0.25	0.49274	0.48672	0.48480	0.50824	0.49526	0.49743	0.49872	0.47587	0.48456
0.75	0.50	0.25	0.47831	0.41956	0.41742	0.46360	0.45646	0.47472	0.43261	0.40542	0.41453
0.75	0.70	0.25	0.45667	0.31692	0.31341	0.38978	0.38429	0.44678	0.34069	0.29155	0.30555
0.75	0.85	0.25	0.43273 0.28612	0.17829	0.17274	0.27151	0.28679	0.39534	0.20875	0.14456	0.16081 0.01067
$0.75 \\ 0.25$	$0.95 \\ 0.20$	$0.25 \\ 0.50$	0.46734	0.01548 0.47061	0.01212 0.46853	0.03962 0.48376	0.07593 0.48961	0.18137 0.49737	0.02025 0.49150	0.00786 0.45976	0.01067
0.25	0.50	0.50	0.38773	0.37306	0.40003 0.37313	0.40142	0.43267	0.46169	0.49130 0.39217	0.35195	0.36538
0.25	0.70	0.50	0.28316	0.24448	0.24464	0.29906	0.34311	0.40740	0.26570	0.20831	0.22467
0.25	0.85	0.50	0.11474	0.07730	0.08204	0.13679	0.18756	0.28777	0.09446	0.05450	0.06326
0.25	0.95	0.50	0.00412	0.00129	0.00180	0.01146	0.01903	0.05913	0.00128	0.00049	0.00058
0.50	0.20	0.50	0.44308	0.33973	0.33711	0.41463	0.40175	0.45572	0.37855	0.32124	0.34294
0.50	0.50	0.50	0.29863	0.12299	0.11150	0.22368	0.22867	0.35165	0.16106	0.09126	0.11553
0.50	0.70	0.50	0.12268	0.01589	0.01220	0.05673	0.06904	0.17694	0.02511	0.00624	0.01130
0.50	0.85	0.50	0.01698	0.00051	0.00021	0.00311	0.00637	0.03738	0.00034	0.00002	0.00010
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.50 \\ 0.50$	0.00004 0.48355	0.00000 0.38388	0.00000 0.38296	0.00000 0.44067	0.00005 0.43716	0.00008 0.47263	0.00000 0.41000	0.00000 0.36345	0.00000 0.37708
0.75	0.20 0.50	0.50	0.48355	0.38388	0.38290 0.16314	0.44067	0.43716	0.47203	0.41000 0.19777	0.30345 0.13550	0.37708 0.15377
0.75	0.70	0.50	0.32339	0.10990	0.10314	0.2766	0.28492	0.38700 0.22825	0.19777	0.13350 0.01959	0.13377 0.02474
0.75	0.85	0.50	0.16144	0.00099	0.00064	0.00290	0.01523	0.05745	0.00117	0.00029	0.00045
0.75	0.95	0.50	0.01680	0.00000	0.00000	0.00000	0.00004	0.00003	0.00000	0.00000	0.00000

Tabela 23 – EPV pela métrica B
, $n=163\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.49456	0.49821	0.49148	0.50477	0.50707	0.49156	0.50320	0.49380	0.49609
0.25	0.50	0.05	0.49690	0.49388	0.49445	0.49698	0.49469	0.50487	0.49809	0.49460	0.49681
0.25	0.70	0.05	0.49088	0.49359	0.49393	0.49922	0.49138	0.49820	0.49297	0.49272	0.49215
0.25	0.85	0.05	0.46408	0.47641	0.47118	0.46017	0.48165	0.49317	0.47179	0.46415	0.46366
0.25	0.95	0.05	0.43331	0.43047	0.43316	0.43587	0.45097	0.48029	0.43480	0.41363	0.42042
0.50	0.20	0.05	0.49931	0.49963	0.49971	0.51181	0.50129	0.50019	0.51008	0.49235	0.49654
0.50	0.50	0.05	0.49340	0.48920	0.48791	0.49641	0.48995	0.49568	0.49455	0.48538	0.48868
0.50	0.70	0.05	0.48318	0.46849	0.46616	0.48082	0.47415	0.49657	0.47680	0.46659	0.47057
0.50	0.85	0.05	0.46615	0.43387	0.42968	0.45150	0.45836	0.48295	0.44115	0.42182	0.42725
0.50	0.95	0.05	0.42263	0.31817	0.31126	0.38443	0.38495	0.45104	0.35327	0.29393	0.31586
$0.75 \\ 0.75$	$0.20 \\ 0.50$	$0.05 \\ 0.05$	0.50375 0.50140	0.50010 0.49705	0.49591 0.49583	0.50980 0.50294	0.50369 0.49999	0.50037 0.51206	0.50521 0.50025	0.49555 0.49326	0.49793 0.49824
0.75	0.70	0.05	0.49498	0.49703	0.49063	0.30294 0.49512	0.48599	0.31200 0.49555	0.30025 0.48917	0.49520 0.49132	0.49624 0.49026
0.75	0.70	0.05	0.49434	0.47400	0.47118	0.48172	0.48064	0.49458	0.43317 0.47350	0.49152 0.46554	0.45020 0.46716
0.75	0.95	0.05	0.47702	0.42420	0.42497	0.45443	0.45316	0.48406	0.43732	0.40687	0.41681
0.25	0.20	0.10	0.49970	0.49745	0.49602	0.50737	0.50505	0.50252	0.50648	0.49380	0.49905
0.25	0.50	0.10	0.49829	0.50128	0.49967	0.50185	0.49950	0.50326	0.50224	0.49923	0.50099
0.25	0.70	0.10	0.46766	0.45989	0.45914	0.47068	0.47355	0.48369	0.46484	0.45790	0.45884
0.25	0.85	0.10	0.43191	0.41570	0.41151	0.42458	0.44839	0.46930	0.42377	0.39629	0.40205
0.25	0.95	0.10	0.31737	0.28085	0.28181	0.32794	0.36167	0.42128	0.30031	0.24750	0.26244
0.50	0.20	0.10	0.49347	0.48244	0.48184	0.49932	0.49587	0.49536	0.49797	0.47719	0.48459
0.50	0.50	0.10	0.48656	0.45684	0.45348	0.47434	0.47016	0.49273	0.46798	0.44657	0.45532
0.50	0.70	0.10	0.46504	0.39538	0.39234	0.43982	0.42676	0.47456	0.41702	0.38208	0.39391
0.50	0.85	0.10	0.40768	0.28648	0.27785	0.35783	0.35934	0.43696	0.32209	0.25868	0.27812
0.50	0.95	0.10	0.25098	0.07530	0.06538	0.15780	0.16481	0.29293	0.10491	0.04981	0.06728
0.75	$0.20 \\ 0.50$	$0.10 \\ 0.10$	0.48779 0.49922	0.49206 0.47933	0.48448 0.47759	0.49606 0.49232	0.49903 0.48722	0.49536 0.49238	0.49597 0.48310	0.48318 0.47419	0.48662 0.47873
$0.75 \\ 0.75$	0.70	0.10	0.48856	0.45594	0.47739	0.49232 0.48322	0.47786	0.49238 0.49734	0.46237	0.47419 0.44752	0.41818
0.75	0.70	0.10	0.47604	0.39977	0.45074	0.44171	0.44698	0.49734 0.47034	0.40237 0.41403	0.44752 0.37691	0.49550 0.38581
0.75	0.95	0.10	0.43966	0.23312	0.22653	0.32740	0.33021	0.42029	0.26366	0.20274	0.21996
0.25	0.20	0.15	0.49944	0.50463	0.50046	0.50605	0.50204	0.50230	0.50727	0.49868	0.50141
0.25	0.50	0.15	0.47695	0.47954	0.47985	0.48502	0.48733	0.49851	0.48183	0.47295	0.47777
0.25	0.70	0.15	0.44300	0.43031	0.42419	0.44674	0.45358	0.47869	0.43692	0.41671	0.42339
0.25	0.85	0.15	0.36180	0.33758	0.33533	0.36504	0.39948	0.44677	0.35234	0.30505	0.31760
0.25	0.95	0.15	0.18379	0.14015	0.14512	0.21180	0.25842	0.35432	0.16687	0.10983	0.12514
0.50	0.20	0.15	0.47994	0.48004	0.47204	0.49364	0.49385	0.49917	0.49080	0.46453	0.47276
0.50	0.50	0.15	0.46367	0.40444	0.39686	0.44242	0.43805	0.47514	0.42420	0.38610	0.40076
0.50	0.70	0.15	0.42421	0.29965	0.29275	0.37916	0.36831	0.44501	0.33900	0.27593	0.29740
0.50	0.85	0.15	0.31455	0.13791	0.12651	0.23145	0.23397	0.36178	0.17485	0.10554	0.12643
0.50	0.95	0.15	0.10284	0.01169	0.00863	0.04114	0.04941	0.14622	0.01759	0.00468	0.00826
0.75	0.20	0.15	0.49832	0.49819	0.49109	0.51101	0.49771	0.51035	0.50247	0.48842	0.49224
$0.75 \\ 0.75$	0.50	0.15	0.49198	0.45849	0.45829 0.40045	0.48281 0.45224	0.47828 0.43903	0.49058 0.47254	0.46617 0.41754	0.45126 0.38120	0.45753
0.75	$0.70 \\ 0.85$	$0.15 \\ 0.15$	0.48031 0.45706	0.40260 0.28869	0.40045 0.28172	0.36343	0.45905	0.47234 0.43813	0.41754 0.31154	0.36120 0.25603	0.39310 0.26970
0.75	0.95	0.15	0.36716	0.08025	0.23172	0.15058	0.18718	0.43013 0.31120	0.09971	0.25650	0.26570
0.25	0.20	0.25	0.48385	0.48238	0.48133	0.49135	0.49467	0.48438	0.49316	0.47630	0.48221
0.25	0.50	0.25	0.43690	0.43068	0.42613	0.44168	0.45953	0.48905	0.44049	0.41662	0.42443
0.25	0.70	0.25	0.36507	0.34167	0.34102	0.37752	0.39174	0.45137	0.35974	0.31479	0.32735
0.25	0.85	0.25	0.23461	0.18549	0.18559	0.24944	0.29603	0.36836	0.21170	0.15263	0.16576
0.25	0.95	0.25	0.03966	0.01960	0.02139	0.06082	0.08868	0.17259	0.02761	0.01178	0.01487
0.50	0.20	0.25	0.46639	0.42682	0.42310	0.46576	0.46652	0.49008	0.45277	0.41005	0.42524
0.50	0.50	0.25	0.41361	0.26523	0.25495	0.35698	0.34613	0.42567	0.31062	0.23915	0.26379
0.50	0.70	0.25	0.30404	0.12484	0.11548	0.21706	0.21445	0.34040	0.16320	0.09580	0.11769
0.50	0.85	0.25	0.13356	0.01972	0.01508	0.06244	0.06557	0.17855	0.02853	0.00968	0.01483
0.50	0.95	0.25	0.00459	0.00003	0.00001	0.00048	0.00122	0.00909	0.00004	0.00000	0.00001
0.75	0.20	0.25	0.48791	0.47688	0.47269	0.49723	0.49035 0.42130	0.49815	0.48383	0.45847	0.46660
$0.75 \\ 0.75$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.48172 0.44692	0.36602 0.25075	0.36186 0.24605	0.42638 0.33889	0.42130 0.33724	0.46242 0.42310	0.38577 0.27829	0.34365 0.21945	0.35633 0.23529
0.75	0.70	0.25	0.44092 0.37170	0.25075	0.24003	0.35660	0.33724	0.42510 0.32032	0.27829	0.21945 0.06163	0.23329 0.07119
0.75	0.95	0.25	0.16792	0.00122	0.00092	0.00366	0.13144	0.05944	0.10338	0.00103	0.00058
0.25	0.20	0.50	0.45946	0.43854	0.43290	0.46391	0.47013	0.47641	0.45428	0.42179	0.43138
0.25	0.50	0.50	0.33577	0.30156	0.29711	0.34470	0.38370	0.43209	0.32867	0.26844	0.28731
0.25	0.70	0.50	0.18437	0.13035	0.13223	0.19917	0.23703	0.32609	0.15557	0.10490	0.11672
0.25	0.85	0.50	0.03934	0.01777	0.02067	0.05809	0.08359	0.16776	0.02415	0.01116	0.01299
0.25	0.95	0.50	0.00017	0.00001	0.00002	0.00083	0.00089	0.00648	0.00001	0.00000	0.00000
0.50	0.20	0.50	0.41272	0.27918	0.26267	0.36903	0.35924	0.43759	0.32484	0.24517	0.27151
0.50	0.50	0.50	0.19979	0.04211	0.03636	0.10971	0.11586	0.24156	0.06160	0.02510	0.03590
0.50	0.70	0.50	0.05047	0.00243	0.00162	0.01419	0.01815	0.07797	0.00314	0.00059	0.00118
0.50	0.85	0.50	0.00129	0.00000	0.00000	0.00006	0.00013	0.00318	0.00000	0.00000	0.00000
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.47126	0.31737	0.30756	0.39930	0.39720	0.44744	0.34278	0.28066	0.29734
0.75	0.50	0.50	0.37598	0.07478	0.06669	0.14530	0.17540	0.29541	0.09265	0.05421	0.06265
0.75	0.70	0.50	0.23019	0.00660	0.00547	0.01710	0.04031	0.11737	0.00814	0.00337	0.00407
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.50 \\ 0.50$	0.06621 0.00115	0.00001 0.00000	0.00001 0.00000	0.00005 0.00000	0.00080 0.00000	0.00665 0.00000	0.00003 0.00000	0.00000 0.00000	0.00001 0.00000
0.70	0.00	0.00	0.00110	0.00000	0.00000	5.00000	0.00000	0.00000	0.00000	0.00000	

Tabela 24 – EPV pela métrica B
, $n=275\,$

	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.50433	0.50500	0.51333	0.49767	0.50767	0.49567	0.51833	0.50500	0.51433
0.25	0.50	0.05	0.49900	0.50900	0.51133	0.50233	0.51367	0.49600	0.50367	0.50700	0.50867
0.25	0.70	0.05	0.48467	0.47767	0.48000	0.48600	0.49267	0.48000	0.48100	0.47633	0.47767
0.25	0.85	0.05	0.48767	0.46733	0.46500	0.47433	0.48567	0.49633	0.47367	0.46333	0.47067
0.25	0.95	0.05	0.43000	0.40467	0.39600	0.42300	0.44467	0.47800	0.41567	0.38433	0.39900
0.50	0.20	0.05	0.50233	0.48933	0.50067	0.50867	0.49633	0.50633	0.50733	0.49400	0.50333
0.50	0.50	0.05	0.49767	0.49000	0.48733	0.48400	0.49100	0.49467	0.50267	0.48367	0.49233
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.05 \\ 0.05$	0.48467 0.47100	0.44800 0.42033	0.44967 0.41900	0.46867 0.43933	0.46167 0.45133	0.47300 0.47333	0.45867 0.44300	0.44867 0.39467	0.44633 0.42000
0.50	0.95	0.05	0.41800	0.42033	0.41900 0.25233	0.45955	0.43133	0.43433	0.44500 0.28967	0.39467 0.23267	0.42000 0.25500
0.75	0.20	0.05	0.50300	0.51300	0.51700	0.50967	0.50833	0.43433 0.50767	0.51500	0.50733	0.51567
0.75	0.50	0.05	0.50767	0.49233	0.50500	0.48933	0.48733	0.51000	0.48500	0.50800	0.50100
0.75	0.70	0.05	0.49933	0.46467	0.47300	0.48033	0.48100	0.49433	0.47333	0.46467	0.46833
0.75	0.85	0.05	0.50067	0.47300	0.46167	0.49300	0.48033	0.47933	0.47500	0.46400	0.47067
0.75	0.95	0.05	0.49567	0.38467	0.37500	0.41667	0.42933	0.47633	0.40733	0.36500	0.37600
0.25	0.20	0.10	0.49500	0.49467	0.49233	0.49367	0.48633	0.49600	0.48433	0.48867	0.49000
0.25	0.50	0.10	0.51533	0.50100	0.50000	0.49800	0.49867	0.51367	0.49467	0.49200	0.49400
0.25	0.70	0.10	0.47200	0.44067	0.43800	0.45633	0.46833	0.48467	0.45733	0.42767	0.43367
0.25	0.85	0.10	0.42600	0.39400	0.39367	0.43167	0.43700	0.46867	0.41500	0.36967	0.38433
0.25	0.95	0.10	0.26033	0.21900	0.21467	0.27133	0.31633	0.39267	0.24367	0.18533	0.19700
0.50	0.20	0.10	0.49467	0.47067	0.48000	0.49033	0.49633	0.49300	0.48867	0.48100	0.48000
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.10 \\ 0.10$	0.48900 0.43567	0.44000 0.34533	0.44067 0.33900	0.46767 0.41800	0.47233 0.40600	$0.49700 \\ 0.46733$	0.44967 0.36967	0.44767 0.33167	0.45800 0.34233
0.50	0.70	0.10	0.39200	0.23767	0.23033	0.32767	0.32600	0.40733	0.28500	0.20200	0.34233 0.23300
0.50	0.95	0.10	0.20100	0.03900	0.23033	0.10633	0.11967	0.23333	0.26500	0.20200	0.23300
0.75	0.20	0.10	0.49267	0.48967	0.49000	0.49767	0.48367	0.49767	0.49733	0.48900	0.48967
0.75	0.50	0.10	0.51733	0.47433	0.47200	0.47833	0.48867	0.50867	0.48300	0.47633	0.46833
0.75	0.70	0.10	0.50500	0.43900	0.43567	0.46800	0.46867	0.47433	0.44400	0.41933	0.42267
0.75	0.85	0.10	0.48867	0.37200	0.36200	0.42967	0.40667	0.46200	0.37400	0.33633	0.35000
0.75	0.95	0.10	0.42700	0.17433	0.15400	0.26333	0.27533	0.37200	0.18700	0.13033	0.14400
0.25	0.20	0.15	0.49467	0.49600	0.49267	0.49767	0.49500	0.49633	0.49133	0.49133	0.49533
0.25	0.50	0.15	0.47800	0.46600	0.46833	0.46933	0.48067	0.49667	0.47867	0.46533	0.47267
0.25	0.70	0.15	0.41767	0.39233	0.40267	0.44633	0.44333	0.47267	0.40833	0.38367	0.38533
0.25	0.85	0.15	0.34167	0.29933	0.29733	0.34867	0.37867	0.42100	0.33867	0.26867	0.28267
0.25	0.95	0.15	0.12700	0.08167	0.08433	0.14200	0.18533	0.29467	0.10233	0.05767	0.07067
0.50	0.20	0.15	0.48667	0.45167	0.46067	0.48333	0.46333	0.48167	0.47933	0.45567	0.46467
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.15 \\ 0.15$	0.46667 0.39600	0.37667 0.23333	0.36900 0.22733	0.40733 0.32900	0.41533 0.32567	0.46833 0.41000	0.39933 0.26500	0.36167 0.20700	0.37533 0.22700
0.50	0.70	0.15	0.26667	0.2333	0.22733	0.17867	0.32567	0.41000	0.20300	0.20700	0.22700
0.50	0.95	0.15	0.04400	0.00233	0.00255	0.01700	0.01867	0.07433	0.00200	0.00033	0.00307
0.75	0.20	0.15	0.50100	0.47733	0.48300	0.48467	0.48667	0.48633	0.48033	0.48433	0.48067
0.75	0.50	0.15	0.50367	0.44067	0.45400	0.46200	0.47467	0.49300	0.45467	0.43800	0.44167
0.75	0.70	0.15	0.49433	0.35367	0.34800	0.41967	0.41300	0.47400	0.38267	0.33000	0.34867
0.75	0.85	0.15	0.44067	0.22300	0.22533	0.32900	0.32700	0.40633	0.26000	0.19567	0.21067
0.75	0.95	0.15	0.32967	0.03333	0.03333	0.08767	0.12100	0.23000	0.04167	0.02400	0.02533
0.25	0.20	0.25	0.47467	0.47800	0.46600	0.47267	0.47633	0.47833	0.48200	0.46700	0.47267
0.25	0.50	0.25	0.41733	0.40233	0.40500	0.42267	0.45367	0.47567	0.41467	0.38033	0.39467
0.25	0.70	0.25	0.32167	0.28167	0.28067	0.33567	0.36133	0.42467	0.30233	0.25467	0.27033
0.25	0.85	0.25	0.17500	0.12767	0.13133	0.19267	0.23500	0.32900	0.16067	0.09200	0.10933
0.25	0.95	0.25	0.00933	0.00600	0.00800	0.02533	0.04067	0.09400	0.00767	0.00333	0.00500
0.50	0.20	0.25	0.45967	0.38967	0.39300	0.42833	0.42367	0.46833	0.40933	0.38100	0.39233
$0.50 \\ 0.50$	$0.50 \\ 0.70$	$0.25 \\ 0.25$	0.39800 0.23867	0.22267 0.06267	0.20467 0.05200	0.30833 0.14700	0.31667 0.15533	0.41933 0.28367	0.26767 0.09533	0.18267 0.04367	0.21500 0.05867
0.50	0.70	0.25	0.23867	0.06267	0.05200 0.00233	0.14700 0.02267	0.15533	0.28367 0.10500	0.09533	0.04367 0.00133	0.00300
0.50	0.95	0.25	0.00067	0.00407	0.00233	0.00233	0.00000	0.10300	0.00000	0.00133	0.00000
0.75	0.20	0.25	0.50100	0.46167	0.46067	0.47167	0.49133	0.49000	0.47533	0.46067	0.47200
0.75	0.50	0.25	0.48533	0.34367	0.33300	0.40233	0.40567	0.46967	0.36200	0.31100	0.32367
0.75	0.70	0.25	0.43533	0.17167	0.16767	0.27133	0.28600	0.37567	0.20733	0.14500	0.15667
0.75	0.85	0.25	0.33867	0.04267	0.03667	0.09233	0.12167	0.24800	0.05533	0.03100	0.03633
0.75	0.95	0.25	0.09967	0.00000	0.00000	0.00067	0.00433	0.01700	0.00033	0.00000	0.00000
0.25	0.20	0.50	0.42467	0.40533	0.40467	0.43900	0.45333	0.47800	0.41867	0.37900	0.39233
0.25	0.50	0.50	0.27233	0.23267	0.22933	0.28467	0.32533	0.40467	0.25700	0.19333	0.21333
0.25	0.70	0.50	0.12633	0.06200	0.06833	0.12767	0.17267	0.25900	0.08633	0.04633	0.05600
0.25	0.85	0.50	0.01300	0.00433	0.00900	0.02567	0.03767	0.09300	0.00667	0.00433	0.00400
0.25	0.95	0.50	0.00000	0.00000	0.00000	0.00033	0.00000	0.00000	0.00000	0.00000	0.00000
0.50	0.20	0.50	0.37200	0.19167	0.17467	0.28833	0.28767	0.38667	0.23967	0.15967	0.18467
0.50	0.50	0.50	0.13133	0.01367	0.00867	0.04767	0.06500	0.16033	0.02367	0.00533	0.00967
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.50 \\ 0.50$	0.01867 0.00000	0.00033 0.00000	0.00000 0.00000	0.00167 0.00000	0.00267 0.00000	0.02133 0.00067	0.00033 0.00000	0.00000 0.00000	0.00000 0.00000
0.50	0.85	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00007	0.00000	0.00000	0.00000
0.50 0.75	0.95 0.20	0.50	0.45300	0.00000 0.25733	0.00000 0.25800	0.34500	0.33967	0.00000 0.41533	0.00000 0.27933	0.00000 0.22333	0.00000 0.24300
0.75	0.50	0.50	0.33600	0.23733	0.23860	0.08467	0.12033	0.41535 0.23367	0.27933	0.22333 0.02367	0.24300 0.02867
0.75	0.70	0.50	0.15833	0.00067	0.00067	0.00100	0.01167	0.04867	0.00033	0.00000	0.00000
0.75	0.85	0.50	0.02367	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 25 – EPV pela métrica B, $n=388\,$

c	R^2	s	Rec-CUSUM	OLS-CUSUM	fluctuation	Rec-MOSUM	OLS-MOSUM	ME	supF	aveF	expF
0.25	0.20	0.05	0.51400	0.49400	0.50200	0.49600	0.49567	0.51633	0.48933	0.49733	0.49367
0.25	0.50	0.05	0.49967	0.49033	0.48100	0.50233	0.49867	0.49800	0.49367	0.48467	0.49167
0.25	0.70	0.05	0.48733	0.47700	0.46767	0.47600	0.48733	0.48467	0.47600	0.47800	0.46867
0.25	0.85	0.05	0.46833	0.46733	0.47433	0.48133	0.49567	0.49800	0.47100	0.46567	0.47300
0.25	0.95	0.05	0.40200	0.37833	0.37600	0.40667	0.43600	0.46300	0.39600	0.35733	0.37300
0.50	0.20	0.05	0.52433	0.50900	0.50500	0.50833	0.51200	0.51167	0.50533	0.51500	0.50967
0.50	0.50	0.05	0.49767	0.46533	0.46567	0.47700	0.47333	0.50433	0.48067	0.46233	0.46867
0.50	0.70	0.05	0.48833	0.45267	0.44600	0.46067	0.44867	0.47800	0.47067	0.44367	0.45100
0.50	0.85	0.05	0.45933	0.38733	0.38933	0.43467	0.43333	0.46433	0.42200	0.37233	0.38567
$0.50 \\ 0.75$	$0.95 \\ 0.20$	$0.05 \\ 0.05$	0.38133 0.50767	0.21800 0.50867	0.20533 0.51067	0.29600 0.50900	0.30867 0.51900	$0.42000 \\ 0.50167$	0.25267 0.49967	0.18433 0.51000	0.20567 0.50100
0.75	0.50	0.05	0.50500	0.47133	0.31007 0.47267	0.48267	0.48000	0.48833	0.48200	0.46833	0.30100 0.47267
0.75	0.70	0.05	0.48900	0.48267	0.48433	0.48500	0.46967	0.49667	0.47400	0.46867	0.47600
0.75	0.85	0.05	0.48167	0.45067	0.44533	0.46333	0.46467	0.46767	0.46367	0.43267	0.44367
0.75	0.95	0.05	0.46600	0.36033	0.35000	0.42333	0.41467	0.46467	0.37367	0.33300	0.34633
0.25	0.20	0.10	0.50200	0.50467	0.50833	0.50600	0.50367	0.48367	0.48500	0.50133	0.49233
0.25	0.50	0.10	0.47067	0.46500	0.46167	0.47633	0.46533	0.49367	0.47167	0.44833	0.45700
0.25	0.70	0.10	0.46733	0.44033	0.44333	0.46700	0.45500	0.47133	0.45667	0.42367	0.43067
0.25	0.85	0.10	0.39033	0.35500	0.35167	0.40000	0.42567	0.45467	0.38100	0.33167	0.34267
0.25	0.95	0.10	0.22567	0.15667	0.15367	0.22733	0.27167	0.35800	0.18833	0.12033	0.13633
0.50	0.20	0.10	0.48967	0.47567	0.48267	0.48200	0.47967	0.48600	0.46633	0.47900	0.47733
0.50	0.50	0.10	0.48600	0.41967	0.41233	0.44900	0.46100	0.48167	0.44933	0.40433	0.41267
$0.50 \\ 0.50$	$0.70 \\ 0.85$	$0.10 \\ 0.10$	0.43500 0.35433	0.32067 0.18833	0.31500 0.18033	0.38567 0.26667	0.39100 0.28133	0.45233 0.36733	0.36267 0.23200	0.30400 0.15533	0.32267 0.17800
0.50	0.95	0.10	0.33433	0.18833	0.13033	0.26667	0.28133	0.30733	0.23200 0.02733	0.13333	0.17300
0.75	0.20	0.10	0.49700	0.51167	0.50867	0.50133	0.50333	0.18333	0.48900	0.51033	0.50033
0.75	0.50	0.10	0.49200	0.45400	0.46033	0.47800	0.47600	0.48567	0.46700	0.44067	0.44267
0.75	0.70	0.10	0.48500	0.42167	0.41767	0.45700	0.44500	0.48500	0.44167	0.39900	0.41300
0.75	0.85	0.10	0.46500	0.34600	0.33867	0.40033	0.40433	0.45567	0.36400	0.30433	0.32267
0.75	0.95	0.10	0.41000	0.13333	0.12367	0.22767	0.24000	0.35200	0.16200	0.10400	0.11300
0.25	0.20	0.15	0.50000	0.49267	0.49333	0.48900	0.49267	0.49300	0.48833	0.47833	0.47833
0.25	0.50	0.15	0.45167	0.43967	0.44000	0.44700	0.45800	0.48467	0.46067	0.42633	0.43133
0.25	0.70	0.15	0.40967	0.36800	0.37033	0.41300	0.42300	0.45733	0.39300	0.35267	0.35600
0.25	0.85	0.15	0.29133	0.24867	0.25233	0.30467	0.34133	0.40167	0.27333	0.22033	0.22833
0.25	0.95	0.15	0.08233	0.04567	0.05300	0.10167	0.13100	0.23133	0.05900	0.03300	0.03833
$0.50 \\ 0.50$	$0.20 \\ 0.50$	$0.15 \\ 0.15$	0.50433 0.44433	0.46633 0.33433	0.46967 0.32800	0.48933 0.40167	0.49267 0.39600	0.49533 0.45567	0.47667 0.38033	0.46200 0.31033	0.47067 0.33300
0.50	0.70	0.15	0.37300	0.19367	0.32800 0.17967	0.30833	0.28133	0.45507 0.39967	0.23633	0.31033 0.15333	0.33300 0.18267
0.50	0.85	0.15	0.21800	0.05533	0.05333	0.12333	0.13600	0.27133	0.08667	0.13333	0.05267
0.50	0.95	0.15	0.02300	0.00033	0.00000	0.00433	0.00633	0.02800	0.00033	0.00000	0.00000
0.75	0.20	0.15	0.50900	0.49333	0.49833	0.50100	0.50633	0.50600	0.49200	0.49800	0.49367
0.75	0.50	0.15	0.49667	0.42133	0.42400	0.46933	0.46300	0.48167	0.43633	0.40400	0.41767
0.75	0.70	0.15	0.48700	0.34500	0.33833	0.41333	0.39967	0.44900	0.36967	0.30967	0.32733
0.75	0.85	0.15	0.42967	0.18967	0.18133	0.28867	0.29000	0.37233	0.20933	0.15500	0.17233
0.75	0.95	0.15	0.27967	0.01633	0.01233	0.04567	0.07100	0.18367	0.02600	0.00900	0.01100
0.25	0.20	0.25	0.48067	0.48167	0.48500	0.49167	0.48900	0.48933	0.48033	0.46900	0.47900
0.25	0.50	0.25	0.38567	0.35700	0.35767	0.40200	0.41400	0.44800	0.37733	0.33200	0.34633
0.25	$0.70 \\ 0.85$	$0.25 \\ 0.25$	0.29467	0.23933	0.23933	0.29467	0.32900	0.39700	0.26867	0.20767	0.22433
$0.25 \\ 0.25$	0.85	0.25	0.12100 0.00300	0.08033 0.00100	0.08267 0.00033	0.14867 0.00900	0.18767 0.01500	$0.27700 \\ 0.04100$	0.09767 0.00100	0.05500 0.00033	0.06133 0.00067
0.50	0.20	0.25	0.47100	0.38700	0.38367	0.43533	0.42933	0.47000	0.41200	0.37433	0.38767
0.50	0.50	0.25	0.34867	0.15400	0.15000	0.25667	0.24500	0.36733	0.20033	0.12167	0.14533
0.50	0.70	0.25	0.20067	0.03367	0.03433	0.10567	0.10400	0.23100	0.05433	0.02200	0.03333
0.50	0.85	0.25	0.03600	0.00200	0.00133	0.00833	0.01100	0.05600	0.00167	0.00100	0.00100
0.50	0.95	0.25	0.00000	0.00000	0.00000	0.00000	0.00000	0.00033	0.00000	0.00000	0.00000
0.75	0.20	0.25	0.50300	0.44733	0.44967	0.48267	0.48067	0.49433	0.44567	0.43233	0.43633
0.75	0.50	0.25	0.46167	0.28033	0.27967	0.36733	0.36667	0.42867	0.31900	0.24700	0.27400
0.75	0.70	0.25	0.42367	0.12733	0.12700	0.23200	0.22900	0.35067	0.15667	0.09733	0.11133
0.75	0.85	0.25	0.28333	0.02267	0.01733	0.04867	0.08333	0.17633	0.02900	0.01500	0.01467
0.75	0.95	0.25	0.06767	0.00000	0.00000	0.00000	0.00133	0.00633	0.00000	0.00000	0.00000
$0.25 \\ 0.25$	$0.20 \\ 0.50$	$0.50 \\ 0.50$	0.42500 0.22767	0.40367 0.17500	0.40467 0.16400	0.43167 0.24933	0.44233 0.27600	0.46967 0.37233	0.40567 0.20867	0.38167 0.14067	$0.39100 \\ 0.15700$
0.25	0.70	0.50	0.08267	0.17500	0.10400	0.24933	0.12367	0.20800	0.20307	0.14007 0.02667	0.13700
0.25	0.70	0.50	0.00367	0.00133	0.04400	0.00933	0.12367	0.20500	0.00333	0.02007	0.00067
0.25	0.95	0.50	0.00000	0.00133	0.00100	0.00000	0.00000	0.00000	0.00233	0.00000	0.00000
0.50	0.20	0.50	0.33533	0.16000	0.15333	0.26267	0.26333	0.37233	0.20100	0.13067	0.15067
0.50	0.50	0.50	0.08433	0.00533	0.00433	0.02967	0.03133	0.10800	0.00733	0.00200	0.00367
0.50	0.70	0.50	0.00667	0.00000	0.00000	0.00033	0.00133	0.01167	0.00000	0.00000	0.00000
0.50	0.85	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.50	0.95	0.50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.75	0.20	0.50	0.45267	0.22267	0.21600	0.32767	0.31733	0.41133	0.25233	0.18433	0.20833
0.75	0.50	0.50	0.26600	0.01300	0.01233	0.04267	0.06567	0.16700	0.02267	0.00600	0.00967
0.75	0.70	0.50	0.10667	0.00033	0.00067	0.00067	0.00467	0.02067	0.00033	0.00000	0.00000
$0.75 \\ 0.75$	$0.85 \\ 0.95$	$0.50 \\ 0.50$	0.00867 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000
0.10	0.90	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tabela 26 – EPV pela métrica B, $n=500\,$

ANEXO B - Código utilizado

```
#
          | Se você está usando o RStudio,
          | dê um Alt+O para ocultar as seções |
          | e um Shift+Alt+O para expandir-las |
          | Os códigos aqui expostos constam
          | apenas o que foi utilizado para
          | gerar os dados. Caso @ leitor@
          | queira ter acesso aos códigos
          | utilizados para gerar as vizuali-
          | zações, podem fazer isso acessando:|
          | *************
          https://github.com/rafoonico/TCC-TimeSeries
# Github dos autores: rafoonico; IgorHorrocks
# 0) Exemplo utilizado na introdução -----
# Primeira situacao: quebra não tão visível
n = 100
t = seq(1,n)
```

```
# Antes da quebra: vetor de coeficientes é [1 0].
# Depois da quebra, vetor de coeficientes é [1 1].
beta = matrix(c(rep(1,n), c(rep(0,n/2), rep(1,n/2))), ncol=2)
x = matrix(c(rep(1,n),t/n), ncol=2)
set.seed(123); e = rnorm(n)
y = e
for(i in 1:n) y[i] = x[i,]%*\%beta[i,]+e[i]
par(mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(t,y, col=c(rep("red",n/2),rep("blue",n/2)), pch=19)
# Segunda situacao: quebra visível
# Antes da quebra: vetor de coeficientes é [1 0].
# Depois da quebra, vetor de coeficientes é [1 10].
beta_2=matrix(c(rep(1,n), c(rep(0,n/2), rep(10,n/2))), ncol=2)
y = e
for(i in 1:n) y[i] = x[i,]%*%beta_2[i,]+e[i]
par(mar=c(3,3,1,1),mgp=c(1.6,.6,0))
plot(t,y, col=c(rep("red",n/2),rep("blue",n/2)), pch=19)
```

```
# 1) Montando o esqueleto do trabalho (versão oficial)-----
# O objetivo dessa sessão é montar um primeiro
# esqueleto para o trabalho, validar e se estiver
# tudo ok, montar o TCC
rm(list=ls())
library(strucchange)
library(magrittr)
# 1 Passo: uma função que gera dados. Tem que gerar duas
# variáveis uma x que é uma sequência de números, e um y
# que é uma var normal onde a média é y=beta0+beta1x.
# Parâmetros:
# m <- número de simulações para cada cenário.
# n <- tamanho da amostra.
# c <- quantil onde terá a quebra de tendência da amostra. Um número entre 0 e 1.
# Aí multiplica pelo "n", arredonda para baixo e temos a posição da quebra.
# r_2 <- Coef de determinacao. Assim controlamos o quão forte é a relação entre
# "x" e "v".
# beta0, beta1 e beta2: parâmetros da relação entre y e x.
geradora amostra <- function(m,n,c,r quad,beta0,beta1,beta2){</pre>
```

```
# No final das contas, o argumento "beta2" não foi necessário...
      # Calculando numero de núcleos
 no cores <- parallel::detectCores() - 1</pre>
 # Iniciando cluster
  cl <- parallel::makeCluster(no_cores)</pre>
 x <- 1:n
 x_c <- x[floor(c*n)]
 y_estimado <- beta0+beta1*x+beta2*ifelse(x<=x_c,0,x-x_c)</pre>
  desvpad_y <- sqrt(sum((y_estimado-mean(y_estimado))^2)/(r_quad*n))</pre>
 retorno <- parallel::parLapply(cl,</pre>
                                   vector(mode="list",
                                          length = m),
                                   function(z){
                                     y <- rnorm(n,mean=y_estimado,
                                                 sd=desvpad_y*sqrt(1-r_quad))
                                     return(data.frame(x,y))
                                   })
 parallel::stopCluster(cl)
 return(retorno)
```

```
}
# Aqui, é para os cenários com quebra
geradora amostra2 <- function(m,n,c,r quad,b0,b1,incl){</pre>
 # Cria marcação do ponto de corte
 x = 1:n
 x_c <- x[floor(c*n)]
  if(c!=1){
    # criando a nova reta a partir do ângulo da primeira
    alpha1 = rCAT::rad2deg(atan(b1))
    if(incl*alpha1 >= 90 | incl*alpha1 <= -90 ){
      stop("Inclinação muito acentuada -> novo angulo maior que 90°")
    alpha2 = rCAT::deg2rad(incl*alpha1) # Novo ângulo com
                                        # efeito da inclinação desejada
    b1_new = tan(alpha2) # Valor do coeficiente angular da nova reta
    b2 = b1_new - b1 # Ajuste no valor do coeficiente angular para
                     # obter y_estimado depois da quebra
  }else{
    b2=0
```

```
\#b0 \text{ new} = b0 - b2*x c
 y estimado \leftarrow b0 + b1*x + b2*ifelse(x<=x c,0,x-x c)
  desvpad y <- sqrt(sum((y estimado-mean(y estimado))^2)/(r quad*n))</pre>
 retorno <- lapply(vector(mode="list",</pre>
                                          length = m),
                                  function(z){
                                    y <- rnorm(n,mean=y estimado,sd=desvpad y*sqrt(1-r quad))
                                    return(data.frame(x,y))
                                  })
 return(retorno)
}
# 2 Passo: uma função que calcula o "sctest()" para calcular todos os testes e
# puxar o p-valor usando o "sctest()$p.value".
testes <- function(valores_x_e_y, saida="pvalor"){</pre>
  if(saida=="pvalor"){
    result <- data.frame(sctest(y~x,type="Rec-CUSUM",data=valores_x_e_y)$p.value,
                          sctest(y~x,type="OLS-CUSUM",data=valores x e y)$p.value,
                          sctest(y~x,type="fluctuation",data=valores x e y)$p.value,
                          sctest(y~x,type="Rec-MOSUM",data=valores x e y,h=0.15)$p.value,
                          sctest(y~x,type="OLS-MOSUM",data=valores x e y,h=0.15)$p.value,
```

```
sctest(y~x,type="ME",data=valores x e y,h=0.15)$p.value,
                          sctest(y~x,type="supF",data=valores x e y)$p.value,
                          sctest(y~x,type="aveF",data=valores x e y)$p.value,
                          sctest(y~x,type="expF",data=valores x e y)$p.value)
    names(result) <- c("Rec-CUSUM", "OLS-CUSUM", "fluctuation",</pre>
                        "Rec-MOSUM", "OLS-MOSUM", "ME",
                        "supF", "aveF", "expF")
  }else if(saida=="T"){
    result <- data.frame(sctest(y~x,type="Rec-CUSUM",data=valores x e y)$statistic,
                          sctest(y~x,type="OLS-CUSUM",data=valores x e y)$statistic,
                          sctest(y~x,type="fluctuation",data=valores x e y)$statistic,
                          sctest(y~x,type="Rec-MOSUM",data=valores x e y,h=0.15)$statistic,
                          sctest(y~x,type="OLS-MOSUM",data=valores x e y,h=0.15)$statistic,
                          sctest(y~x,type="ME",data=valores_x_e_y,h=0.15)$statistic,
                          sctest(y~x,type="supF",data=valores x e y)$statistic,
                          sctest(y~x,type="aveF",data=valores x e y)$statistic,
                          sctest(y~x,type="expF",data=valores x e y)$statistic)
    names(result) <- c("Rec-CUSUM", "OLS-CUSUM", "fluctuation",</pre>
                       "Rec-MOSUM", "OLS-MOSUM", "ME",
                       "supF", "aveF", "expF")
  }
  return(result)
# 3 Passo: uma função que faz a simulação. Pega os parâmetros,
```

}

```
# faz o grid, gera as amostras, calcula os testes e obtêm
# as taxas de rejeições da hipótese nula. E também, soltem uma amostra
# de pelo menos dois cenários só para conferir a distribuição dos p-valores.
simuladora <- function(m,n,c,r quad,beta0=10,beta1=5,beta2=7){</pre>
 # No final das contas, esta função foi utilizada apenas para
 # o estudo do erro do tipo I
 param <- expand.grid("n"=n,</pre>
                        "c"=c,
                        "r2"=r quad)
  amostras <- apply(param, 1, function(x){geradora_amostra(m=m,</pre>
                                                             n=x[1],
                                                              c=x[2],
                                                             r_quad=x[3],
                                                              beta0=beta0,
                                                              beta1=beta1,
                                                              beta2=beta2)})
  testes_1 <- lapply(amostras,</pre>
                     function(y){
                        do.call(rbind.data.frame,
                                lapply(y,testes))
 ) %>% lapply(function(x){
    t(apply(x,2,function(z)\{mean(ifelse(z<0.01,1,0))\}))
```

```
})
testes 5 <- lapply(amostras,
                    function(y){
                      do.call(rbind.data.frame,
                              lapply(y,testes))
) %>% lapply(function(x){
  t(apply(x,2,function(z)\{mean(ifelse(z<0.05,1,0))\}))
})
testes_10 <- lapply(amostras,</pre>
                     function(y){
                       do.call(rbind.data.frame,
                               lapply(y,testes))
) %>% lapply(function(x){
  t(apply(x,2,function(z){mean(ifelse(z<0.10,1,0))}))</pre>
})
# Amostra de p-valores
indices_amostra_dist <- c(data.frame("index"=1:nrow(param),</pre>
                                       param)[(param$n==min(param$n) &
                                                 param$c==min(param$c) &
```

```
param$r2==min(param$r2)),1],
                           data.frame("index"=1:nrow(param),
                                      param)[(param$n==max(param$n) &
                                                param$c==max(param$c) &
                                                param$r2==max(param$r2)),1])
amostra_dist1 <- do.call(rbind.data.frame,</pre>
                          lapply(amostras[[indices_amostra_dist[1]]],
                                 testes))
amostra_dist2 <- do.call(rbind.data.frame,</pre>
                          lapply(amostras[[indices_amostra_dist[2]]],
                                 testes))
return(list("Nível de significância 0,01" = cbind(param,
                                                    do.call(rbind.data.frame, testes 1)),
            "Nível de significância 0,05" = cbind(param,
                                                    do.call(rbind.data.frame,testes_5)),
            "Nível de significância 0,10" = cbind(param,
                                                    do.call(rbind.data.frame,testes_10)),
            "primeira amostra"=list(indices_amostra_dist[[1]],
                                     amostra_dist1),
            "segunda amostra"=list(indices_amostra_dist[[2]],
                                    amostra_dist2)))
```

}

```
# 2) Realizando o estudo do erro do tipo I -----
resultado <- simuladora(m = 10000,
                       n = c(50, 163, 275, 388, 500),
                       c = 1, \#c(0.25, 0.5, 0.75, 1),
                       r \text{ quad} = c(0.2, 0.5, 0.7, 0.85, 0.95))
saveRDS(resultado, "resultado.RData")
# 3) Realizando o estudo do Estimated P-Value (EPV) ------
# Primeiro, gerar amostra sob HO para usar como argumento na função
gerar h0 <- function(m,n,r quad,beta0,beta1){</pre>
 param <- expand.grid("n"=n,</pre>
                      "r2"=r_quad)
  #1) Gerar as amostras c=1
  #m,n,c,r_quad,beta0,beta1,beta2
  amostras_H0 <- apply(param, 1, function(x){geradora_amostra(m=m,</pre>
                                                             n=x[1],
                                                             c=1,
```

```
r_quad=x[2],
                                                                 beta0=beta0,
                                                                 beta1=beta1,
                                                                 beta2=7)}
                                                  # Vai um número qualquer
                                                  # nesse beta2
  ) %>% lapply(function(y){
    do.call(rbind.data.frame,
            lapply(y,
                   function(w){
                      testes(w,saida="T")
            )
 })
  return(amostras_H0)
}
# Depois, a função propriamente dita
gerar_EPV <- function(m,n,c,r_quad,b0,b1,incl,amostras_H0){</pre>
 param <- expand.grid("n"=n,</pre>
                        "r2"=r_quad,
                        "incl"=incl)
```

```
c <- c[c!=1]
# agora, é criar o loop
resultados_brutos <- sapply(c,</pre>
                             function(w){
                               amostras <- apply(param,</pre>
                                                  function(x){geradora_amostra2(m=m,
                                                                                  n=x[1],
                                                                                  c=w,
                                                                                  r_quad=x[2],
                                                                                  b0=beta0,
                                                                                  b1=beta1,
                                                                                  incl=x[3])}
                               ) %>% lapply(function(y){
                                 do.call(rbind.data.frame,
                                          lapply(y,
                                                 function(z){
                                                   testes(z,saida="T")
                                                 }
                               })
```

```
nome_testes <- names(amostras[[1]])</pre>
A <- vector(mode="list",length = nrow(param))
B <- vector(mode="list",length = nrow(param))</pre>
for(i in 1:nrow(param)){
  a <- vector(mode="list",length = ncol(amostras[[1]]))</pre>
  b <- vector(mode="list",length = ncol(amostras[[1]]))</pre>
  for(j in 1:ncol(amostras[[1]])){
    \verb"outA <- sum((amostras_H0[[i]][,j]>=amostras[[i]][,j])*1)/m
    a[[j]] <- format(outA,20)</pre>
    ingrediente_B <- expand.grid(amostras_H0[[i]][,j],</pre>
                                    amostras[[i]][,j])
    outB <- sum((ingrediente B[,1]>=ingrediente B[,2])*1)/(m^2)
    b[[j]] <- format(outB,</pre>
                       20)
    rm(ingrediente_B)
  A[[i]] <- do.call(cbind.data.frame,a)
  names(A[[i]]) <- nome_testes</pre>
  B[[i]] <- do.call(cbind.data.frame,b)</pre>
  names(B[[i]]) <- nome testes</pre>
```

```
rm(a,b)
                               }
                               # Fazendo um pré-tratamento nos resultados
                               A <- do.call(rbind.data.frame,A)
                               B <- do.call(rbind.data.frame,B)</pre>
                               return(list("Parametro C"=w,
                                           "Métrica A"=A,
                                           "Métrica B"=B))
                             })
# 3) Dá a limpeza final e retornar os dados
TabelaA <- do.call(rbind.data.frame,</pre>
                   apply(data.frame(seq(1,length(c)*3,3)),1,
                          # Foi meio confuso... mas o lance de 3 em 3 é
                          # ref a lista dos dados brutos (que é param C,
                          # metrica A e netrica B). Nao tem a ver com o df "param".
                          function(x){
                            return(data.frame("c"=rep(resultados_brutos[[x]],
                                                      times=nrow(param)),
                                               param,
```

```
resultados_brutos[[x+1]]))
                            }))
  TabelaB <- do.call(rbind.data.frame,</pre>
                      apply(data.frame(seq(1,length(c)*3,3)),1,
                            function(x){
                              return(data.frame("c"=rep(resultados_brutos[[x]],
                                                         times=nrow(param)),
                                                 param,
                                                 resultados_brutos[[x+2]]))
                            }))
  return(list("EPV Método A"=TabelaA,
              "EPV Método B"=TabelaB))
}
# E terceiro: realizar a simulação
m = 3000
n = c(50, 163, 275, 388, 500)
c = c(0.25, 0.5, 0.75)
r_quad = c(0.2, 0.5, 0.7, 0.85, 0.95)
beta0=10
beta1=1
incl=c(0.05,0.10,0.15,0.25,0.50)
primeiro for <- expand.grid(n,r quad, KEEP.OUT.ATTRS = TRUE,</pre>
```

```
stringsAsFactors = TRUE)
segundo for <- expand.grid(c,incl, KEEP.OUT.ATTRS = TRUE,</pre>
                            stringsAsFactors = TRUE)
for(i in 1:nrow(primeiro_for)){ # Desliguei sem querer
  sim_h0 <- gerar_h0(m,primeiro_for[i,1],primeiro_for[i,2],beta0,beta1)</pre>
  for(j in 1:nrow(segundo_for)){
    epv <- gerar_EPV(m,</pre>
                      primeiro_for[i,1],
                      segundo_for[j,1],
                      primeiro_for[i,2],
                      beta0,
                      beta1,
                      segundo_for[j,2],
                      sim h0)
    saveRDS(epv,paste(c("resultado epv",primeiro for[i,],
                         segundo for[j,],".RData"),collapse=" "))
    rm(epv)
  rm(sim_h0)
}
```