Amostragem

Suzete E. N. Correia

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba

suzete.correia@gmail.com

Introdução

- A maioria dos sinais de tempo discreto resulta da amostragem de sinais de tempo contínuo, como fala e áudio, dados de radar e sonar, e sinais sísmicos e biológicos.
- A amostragem é o processo no qual são armazenados os valores de um sinal contínuo apenas em instantes discretos de tempo.
- Este processo é similar ao que acontece nos filmes de cinema:
 - •tiram-se fotos das cenas a intervalos regulares de tempo.
 - •estas fotos, quando apresentadas em progressão, nos dão a sensação de movimento.

Amostragem

T é o período de amostragem e f_s é a frequência de amostragem dada em Hz (amostras/s).

Amostragem Periódica

$$x[n] = x_c(nT), -\infty < n < \infty$$

Conversor
$$x_c(t) \longrightarrow C/D \longrightarrow x[n]$$

Contínuo/Discreto

T: Período de amostragem [s]

$$f_s = \frac{1}{T}$$
 Frequência de amostragem [Hz]

$$\omega_s = \frac{2\pi}{T}$$
 Frequência de amostragem [rad/s]

- A implementação de um conversor C/D é um conversor A/D Ideal.
- Vários sinais contínuos podem dar origem a um mesmo sinal amostrado, porém se um sinal for limitado em banda, e se as amostras forem tomadas suficientemente próximas em relação à frequência mais alta presente no sinal, então as amostras especificam unicamente tal sinal, e pode-se reconstruí-lo perfeitamente.

Três sinais de tempo contínuo com valores idênticos em múltiplos inteiros de T.

Amostragem

Sinal Original

Amostragem

Conversão Contínuo / Discreto

Conversão Contínuo / Discreto

- A diferença fundamental entre $x_s(t)$ e x[n] é que $x_s(t)$ é um sinal contínuo com valores zero exceto nos inteiros múltiplos de T.
- x[n], por outro lado, não possui informação explícita sobre a taxa de amostragem e é um sinal onde as regiões que não representam valores inteiros não têm valor definido

Amostragem no tempo

Trem de impulsos:
$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Sinal amostrado por trem de impulsos

$$x_{s}(t) = x_{c}(t) \cdot s(t)$$

$$x_{s}(t) = x_{c}(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT)$$

Amostragem no tempo

Amostragem com trem de impulsos.

Amostragem na frequência

Propriedades da Transformada de Fourier contínua:

Transformada do trem de impulsos é também um trem de impulsos:

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \iff S(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

Onde:
$$\omega_s = \frac{2\pi}{T}$$

Amostragem na frequência

Teorema da convolução: $\chi(t).y(t) \stackrel{F}{\longleftrightarrow} \frac{1}{2\pi} X(j\omega) * Y(j\omega)$

assim:
$$x_s(t) = x_c(t) \cdot s(t)$$

$$X_{s}(j\omega) = \frac{1}{2\pi} X_{c}(j\omega) * \left[\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_{s}) \right]$$

Logo:

$$X_{s}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\omega - k\omega_{s}))$$

Onde:
$$\omega_s = \frac{2\pi}{T}$$

Amostragem na frequência

p/ sinal x_c(t) limitado em frequência:

ws < 2wm $F_s(w)$ espectros, ou Recobrimento, ou **Efeito** *Aliasing*. Aliasing

Distorção por superposição de

Quando um sinal possui componentes acima de fs/2, estas irão interferir em outras componentes do sinal.

wm ws

-ws -wm

Teorema da Amostragem ou Teorema de Nyquist ou Teorema de Shannon

Seja um sinal $x_c(t)$ limitado em frequência tal que $X_c(j\omega)=0$ para $|\omega|>\omega_N$. Então $x_c(t)$ é unicamente determinado pelas suas amostras $x_c(nT)$, $n=0,\pm 1,\pm 2,...$ se:

$$\omega_s = \frac{2\pi}{T} \ge 2\omega_N$$

A frequência 2 f_N é conhecida como a frequência de Nyquist.

Amostragem

Aplicação	fmax	fs
Geofísica	500 Hz	1 kHz
Biomédica	1 kHz	2 kHz
Mecânica	2 kHz	4 kHz
Voz	4 kHz	8 kHz
Áudio	20 kHz	40 kHz
Vídeo	4 MHz	8 MHz

f_{max} é a máxima frequência do sinal

Amostragem (Recuperação do sinal)

- O processo de Amostragem gera uma replicação do espectro original do sinal a intevalos de fs.
- Para recuperar o sinal original, basta eliminar as réplicas. Isto pode ser feito através de um filtro passabaixas.

Reconstrução perfeita por filtragem passa-baixas ideal:

Ex.: Amostragem de um sinal cossenoidal:

a)
$$\omega_0 = \frac{\omega_s}{6}$$
, b) $\omega_0 = \frac{2\omega_s}{6}$, c) $\omega_0 = \frac{4\omega_s}{6}$ e d) $\omega_0 = \frac{5\omega_s}{6}$

Figura 7.16 Efeito do *aliasing* sobre um sinal senoidal. Para cada um dos quatro valores de ω_0 , são ilustrados: o sinal senoidal original (curva sólida), suas amostras e o sinal reconstruído (curva tracejada). (a) $\omega_0 = \omega_s/6$; (b) $\omega_0 = 2\omega_s/6$; (c) $\omega_0 = 4\omega_s/6$; (d) $\omega_0 = 5\omega_s/6$. Em (a) e (b) não ocorre *aliasing*, enquanto em (c) e (d) existe *aliasing*.

Conversão para tempo discreto

Figura 7.21 Amostragem com um trem de impulsos periódico, seguida pela conversão para uma sequência de tempo discreto: (a) sistema total; (b) $x_p(t)$ para duas taxas de amostragem. A envoltória tracejada representa $x_c(t)$; (c) a sequência de saída para duas taxas de amostragem diferentes.

Relação entre $X(\Omega)$ e $X_s(\omega)$.

Sabemos que:
$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT) \cdot \delta(t-nT)$$

Aplicando a transformada de Fourier:

$$X_s(\omega) = \sum_{n=-\infty}^{\infty} x_c(nT).e^{-j\omega.nT}$$

Como: $x[n] = x_c(nT)$

E sabendo a DTFT:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n].e^{-j\Omega.n}$$

Logo:

$$X_s(\omega) = X(\Omega)|_{\Omega = \omega T}$$

Já vimos que:
$$X_s(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\omega - k\omega_s)$$
 $\omega_s = \frac{2\pi}{T}$

Logo:

$$X(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\Omega}{T} - \frac{2\pi k}{T} \right)$$

Pode-se pensar como uma normalização da frequência Onde $\omega = \omega_s$ é normalizada em $\Omega = 2\pi$

Este efeito é diretamente relacionado com a normalização que ocorre no tempo, onde o período T é normalizado em 1 amostra.

Figura 7.22 Relação entre $X_c(j\omega)$, $X_p(j\omega)$ e $X_d(e^{j\Omega})$ para duas taxas de amostragem diferentes.

Exemplo:

$$x_c(t) = \cos(4000\pi t)$$
 Amostrado a f_s=6kHz.
T=1/6000 ω_s =12000 π

Frequência analógica ω_0 =4000 π rad/s ou f₀=2kHz amostrada a f_s=6kHz, é equivalente a frequência digital:

$$\Omega_0 = \omega_0 T = 4000\pi. \frac{1}{6000} = \frac{2\pi}{3} \ rad / amostra$$

Amostragem com retentor de ordem zero

- Na prática, pulsos estreitos de grande amplitude que representam impulsos são difíceis de serem gerados e transmitidos.
- O retentor de ordem zero (circuito Sample & Hold) retém o valor da amostra coletada do sinal de tempo contínuo por T segundos até que a nova amostra seja obtida.

Figura 7.5 Amostragem utilizando um retentor de ordem zero.

Amostragem com retentor de ordem zero

Figura 7.6 Retentor de ordem zero como amostragem por trem de impulsos seguido por um sistema LIT com um pulso retangular com a resposta impulsiva.

Amostragem com retentor de ordem zero

Figura 7.7 Cascata da representação de um retentor de ordem zero (Figura 7.6) com um filtro de reconstrução.

$$H_0(jw) = e^{-jwT/2} \left\lceil \frac{2sen(wt/2)}{w} \right\rceil$$

$$H_r(jw) = \frac{e^{-jwT/2}H(jw)}{\frac{2sen(wt/2)}{w}}$$