p-adic motivic cohomology in arithmetic geometry

Wiestawa Niziot

Motivic cohomology

• over fields:

 \mathcal{DM}_k - the derived category of mixed motives over a field k; constructions by Levine, Voevodsky (1990's)

$$H^{i}_{\mathcal{M}}(X, \mathbf{Z}(n)) = \mathsf{Ext}^{i}_{\mathcal{M}\mathcal{M}_{k}}(\mathbf{Z}(0), h(X) \otimes \mathbf{Z}(n))$$
$$= \mathsf{Hom}_{\mathcal{D}\mathcal{M}_{k}}(\mathbf{Z}(0), \mathbf{Z}_{X}(n)[i])$$
$$\simeq H^{i}(X, \mathbf{Z}(n))$$

 $H^i(X,\mathbf{Z}(n))$ - Bloch higher Chow groups Rationally:

$$H^i_{\mathcal{M}}(X,\mathbf{Z}(n))\otimes \mathbf{Q}\simeq\operatorname{gr}^n_{\gamma}K_{2n-i}(X)\otimes \mathbf{Q}$$

- γ -graded pieces of K-theory

over Dedekind domains:

fundations are still missing; use Bloch higher Chow groups

Motivic vs arithmetic cohomologies

Zariski vs étale motivic cohomology
 Motivic cohomology can be defined both in the
 Zariski and the étale topology. The change of topology map:

$$\rho_{i,n}: H^i(X,\mathbf{Z}/m(n)) \to H^i(X_{\operatorname{\acute{e}t}},\mathbf{Z}/m(n))$$

Beilinson, Lichtenbaum, Quillen, Thomason:

 $ho_{i,n}$ is an isomorphism for large n

• Étale motivic vs arithmetic cohomologies Realizations:

étale
$$\stackrel{\sim}{\longleftarrow} H^i(X_{\operatorname{\acute{e}t}},{f Z}/m(n)) \stackrel{\sim}{\longrightarrow} {\sf syntomic}$$

$$\downarrow^{\wr} {\sf log \ de \ Rham-Witt}$$

Milnor K-theory

k - a field, char(k) = p; the Milnor K groups:

$$K_*^M(k) = T_{\mathbf{Z}}^*(k^{\times})/(x \otimes (1-x)|x \in k - \{0, 1\})$$

Milnor K_*^M/m = Galois cohomology:

• (m, p) = 1; Kummer theory:

$$K_1^M(k)/m \simeq k^*/k^{*m} \stackrel{\sim}{\to} H^1(k_{\text{\'et}}, \mu_m).$$

Cup product gives the Galois symbol map

$$K_n^M(k)/m \to H^n(k_{\text{\'et}}, \mu_m^{\otimes n}).$$

Conjecture (Bloch-Kato) The Galois symbol map is an isomorphism.

Voevodsky (2001, 2002): true for $m = 2^n$; conditionally for general m

Milnor K_*^M/m = Galois cohomology:

• $m = p^r > 0$; Bloch-Gabber-Kato:

$$\operatorname{dlog}: K_n^M(k)/p^r \stackrel{\sim}{\to} H^0(k_{\operatorname{\acute{e}t}}, \nu_r^n).$$

The (étale) logarithmic de Rham-Witt sheaf:

$$\nu_r^n = \langle x \in W_r \Omega_X^n | x = \operatorname{dlog} \overline{x}_1 \wedge \ldots \wedge \operatorname{dlog} \overline{x}_n \rangle$$
$$0 \to \nu_\cdot^n \to W \cdot \Omega_X^n \overset{F-1}{\to} W \cdot \Omega_X^n \to 0$$

Motivic cohomology

X - a separated scheme over a field;

Bloch higher Chow groups:

$$H^{i}(X, \mathbf{Z}(n)) = H^{i}(\mathbf{Z}(n)(X))$$

 $H^{i}(X, \mathbf{Z}/m(n)) = H^{i}(\mathbf{Z}(n)(X) \otimes \mathbf{Z}/m)$

 $\mathbf{Z}(n)(X) := z^n(X, 2n - *)$ is the complex:

• algebraic *r*-simplex:

$$\triangle^r \simeq \mathbf{A}^r_{\mathbf{Z}} = \operatorname{Spec} \mathbf{Z}[t_0, \dots, t_r]/(\sum t_i - 1)$$

- $z^n(X,i) \subset z^n(X \times \triangle^i)$ the free abelian group generated by irreducible codimension n subvarieties of $X \times \triangle^i$ meeting all faces properly.
- the chain complex

$$z^{n}(X,*): z^{n}(X,0) \leftarrow z^{n}(X,1) \leftarrow z^{n}(X,2) \leftarrow$$

boundaries: restrictions of cycles to faces

- $H^i(X, \mathbf{Z}(n)) = 0$ for $i > \min\{2n, n + \dim X\}$
- Beilinson-Soulé conjecture (still open):

$$H^i(X, \mathbf{Z}(n)) = 0, \quad i < 0$$

- $H^{2n}(X, \mathbf{Z}(n)) \simeq CH^n(X)$, Chow group
- for a field k, $H^n(k, \mathbf{Z}(n)) \simeq K_n^M(k)$
- localization (difficult): for $Z \stackrel{c}{\hookrightarrow} X \longleftrightarrow U$ $\to H^{i-2c}(Z, \mathbf{Z}(n-c)) \to H^i(X, \mathbf{Z}(n)) \to$ $H^i(U, \mathbf{Z}(n)) \to H^{i+1-2c}(Z, \mathbf{Z}(n-c)) \to$
- higher cycle classes (difficult):

$$c_{i,n}: H^i(X,\mathbf{Z}(n)) \to H^i(X,n)$$

needed: weak purity and homotopy property

Question How to define cycle classes into syntomic cohomology?

Étale motivic cohomology

 $X \mapsto \mathbf{Z}(n)(X) := z^n(X, 2n - *)$: sheaf in the étale topology; X separated, noetherian :

$$H^i(X, \mathbf{Z}(n)) \simeq H^i(X_{\mathsf{Zar}}, \mathbf{Z}(n))$$

• X/k - smooth, k-perfect, char(k) = p > 0, Geisser-Levine (2000):

$$H^{i+n}(X_{\mathsf{Zar}}, \mathbf{Z}/p^r(n)) \simeq H^i(X_{\mathsf{Zar}}, \nu_r^n)$$

 $H^{i+n}(X_{\mathsf{\acute{e}t}}, \mathbf{Z}/p^r(n)) \simeq H^i(X_{\mathsf{\acute{e}t}}, \nu_r^n)$

 \bullet X smooth, m invertible on X; cycle class

$$c_{i,n}^{\text{\'et}}: H^i(X_{\text{\'et}}, \mathbf{Z}/m(n)) \xrightarrow{\sim} H^i(X_{\text{\'et}}, \mu_m^{\otimes n})$$

Change of topology map:

$$ho_{i,n}: H^i(X_{\mathsf{Zar}},\mathbf{Z}/m(n)) o H^i(X_{\mathsf{\acute{e}t}},\mathbf{Z}/m(n))$$

Example

$$\rho_{2n,n} = cl^{\text{\'et}} : CH^n(X)/m \to H^{2n}(X_{\text{\'et}}, \mu_m^{\otimes n})$$

- neither injective nor surjective

Conjecture (Beilinson-Lichtenbaum)

$$\rho_{i,n}: H^i(X, \mathbf{Z}/m(n)) \xrightarrow{\sim} H^i(X_{\text{\'et}}, \mathbf{Z}/m(n)), i \leq n$$

- Suslin (2000): true for $k = \overline{k}$, $n \ge \dim X$
- Suslin-Voevodsky, Geisser-Levine (2000):

Bloch-Kato ⇔ **Beilinson-Lichtenbaum**

- use Gersten resolution to pass from fields to schemes:

$$0 \to \mathcal{H}^p(\mathbf{Z}(n)) \to \bigoplus_{x \in X^{(0)}} (i_x)_* H^p(k_x, \mathbf{Z}(n)) \to \bigoplus_{x \in X^{(1)}} (i_x)_* H^{p-1}(k_x, \mathbf{Z}(n-1)) \to \bigoplus_{x \in X^{(1)}} (i_x)_* H^{p-1}(k_x, \mathbf{Z}(n-1)) \to \emptyset$$

 $\boldsymbol{X^{(s)}}$ - points in \boldsymbol{X} of codimension \boldsymbol{s}

• V - complete dvr, mixed characteristic (0, p), perfect residue field; X/V - smooth scheme

Geisser (2004): Bloch-Kato mod $p \Rightarrow$

(1) Beilinson-Lichtenbaum mod p is true:

$$\rho_{i,n}: H^i(X, \mathbf{Z}/p^r(n)) \xrightarrow{\sim} H^i(X_{\text{\'et}}, \mathbf{Z}/p^r(n)), i \leq n$$

(2) for X proper and $i \le r < p-1$:

$$c_{i,r}^{\mathsf{syn}}: H^i(X_{\mathsf{\acute{e}t}}, \mathbf{Z}/p^n(r)) \overset{\sim}{\to} H^i(X, S_n(r))$$

- uses p-adic Hodge theory!

 $S_n(r)$ - the syntomic complex:

$$\rightarrow H^{i}(X_{n}, S_{n}(r)) \rightarrow F^{r}H^{i}_{dR}(X_{n}) \xrightarrow{1-\phi/p^{r}} H^{i}_{dR}(X_{n})$$

Algebraic K-theory

X- noetherian scheme; \mathcal{M}_X (resp. \mathcal{P}_X) – the category of coherent (resp. locally free sheaves) on X. $\mathcal{M}_X \to \mathcal{K}_X'$, $\mathcal{P}_X \to \mathcal{K}_X$: certain associated simplicial spaces.

The algebraic K and K' groups of X:

$$K_i(X) = \pi_i(\mathcal{K}_X), \quad K_i(X, \mathbf{Z}/m) = \pi_i(\mathcal{K}_X, \mathbf{Z}/m),$$

 $K_i'(X) = \pi_i(\mathcal{K}_X'), \quad K_i'(X, \mathbf{Z}/m) = \pi_i(\mathcal{K}_X', \mathbf{Z}/m)$

- $K_0(X)$ and $K_0'(X)$ are the Grothendieck groups of vector bundles and coherent sheaves
- ullet k field, $K_1^M(k) = K_1(k) = k^*$; product: $K_n^M(k) o K_n(k)$

that is an isomorphism for $n \leq 2$

• γ filtration (exterior powers of vector bundles): $F_{\gamma}^*K_*(X)$

$$\operatorname{gr}_{\gamma}^{j} K_{2j-i}(X) \otimes \mathbf{Q} \simeq H^{i}(X, \mathbf{Q}(j))$$

In fact, modulo small torsion

ullet Poincaré duality: if X is regular then

$$K_i(X) \stackrel{\sim}{\to} K_i'(X)$$

• localization (easy): for $Z \hookrightarrow X \hookleftarrow U$,

$$\rightarrow K'_{i+1}(U) \rightarrow K'_{i}(Z) \rightarrow K'_{i}(X) \rightarrow K'_{i}(U) \rightarrow$$

higher Chern classes (easy):

$$c_{i,n}:\operatorname{gr}^n_{\gamma}K_{2n-i}(X)\to H^i(X,n)$$

Needed: the cohomology of \mathbf{BGL} is the right one (which holds for most p-adic cohomologies)

Étale *K*-theory

 $X \mapsto \mathcal{K}(X), \ X \mapsto \mathcal{K}/m(X)$: presheaves of simplicial spaces. Assume X is regular.

$$K_*(X, \mathbf{Z}/m) \simeq H^{-*}(X_{\mathsf{Zar}}, \mathcal{K}/m).$$

If m is invertible on X then the étale K-theory of Dwyer-Friedlander

$$K_j^{\text{\'et}}(X, \mathbf{Z}/m) \simeq H^{-j}(X_{\text{\'et}}, \mathcal{K}/m).$$

Conjecture (Quillen-Lichtenbaum)

$$\rho_j: K_j(X, \mathbf{Z}/m) \stackrel{\sim}{\to} K_j^{\text{\'et}}(X, \mathbf{Z}/m), j \geq \operatorname{cd}_m X_{\text{\'et}}$$

Atiyah-Hirzebruch spectral sequence

motivic cohomology $\Rightarrow K$ -theory

X/k - smooth; Bloch-Lichtenbaum, Friedlander-Suslin, Levine; Grayson-Suslin (1995-2003):

$$E_2^{s,t} = H^{s-t}(X, \mathbf{Z}/m(-t)) \Rightarrow K_{-s-t}(X, \mathbf{Z}/m)$$

• m invertible on X; Levine (1999):

$$E_2^{s,t} = H^{s-t}(X_{\text{\'et}}, \mathbf{Z}/m(-t)) \Rightarrow K_{-s-t}^{\text{\'et}}(X, \mathbf{Z}/m)$$

Degenerates at E_2 modulo small torsion \Rightarrow

$$c_{i,j}^{\text{\'et}}: \operatorname{gr}_{\gamma}^{j} K_{2j-i}^{\text{\'et}}(X,\mathbf{Z}/m) \stackrel{\sim}{\to} H^{i}(X_{\text{\'et}},\mu_{m}^{\otimes j})$$

Beilinson-Lichtenbaum \Rightarrow **Quillen-Lichtenbaum**

• k - perfect, char(k) = p > 0, **Geisser-Levine:**

$$K_n(X, \mathbf{Z}/p^r) = 0$$
 for $n > \dim X$

Application: p-adic Hodge theory (Niziol)

K - complete dvf, char = (0,p), V - ring of integers, k - perfect residue field; \overline{K} - an algebraic closure of K, G_K - its Galois group X/V - proper variety, X_K - smooth

p-adic Hodge theory:

étale:
$$H^i(X_{\overline{K}}, \mathbf{Q}_p) + G_K$$
-action

p-adic period map: \updownarrow

de Rham : $H^i_{dR}(X_K/K) + F^*$, ϕ , N

Methods:

- syntomic; Fontaine-Messing, Kato, Tsuji (1987-1998): period map = the cospecialization map on the syntomic-étale site
- almost-étale; Faltings (1989-2002)
- motivic; Niziol (1998-2006): period map = the localization map in motivic cohomology

The good reduction case

V=W - Witt vectors of k, X/V - smooth, proper, relative dimension d

Crystalline conjecture: For $i \leq r < p-1$, there exists a G_K -equivariant period isomorphism

$$H^{i}(X_{\overline{K}}, \mu_{n}^{\otimes r}) \xrightarrow{\sim} F^{r}(H^{i}_{dR}(X_{n}/V_{n}) \otimes B^{+}_{\operatorname{cr},n})^{p^{r} = \phi}$$

 $\simeq H^{i}(X_{\overline{V}}, S_{n}(r))$

• crystalline ring of periods:

$$B_{\operatorname{cr},n}^+ = H_{\operatorname{cr}}^*(\operatorname{Spec}(\overline{V}_n)/W_n); F^*, \phi, G_K$$

de Rham cohomology:

$$H_{dR}^{i}(X_{n}/V_{n}) \simeq H_{cr}^{*}(X_{0}/V_{n}), F^{*}, \phi$$

Bloch-Kato ⇒ **Crystalline** conjecture

Assume that we have syntomic cycle maps

$$H^{i}(X_{\overline{V}}, \mathbf{Z}/p^{n}(r)) \xrightarrow{j^{*}} H^{i}(X_{\overline{K}}, \mathbf{Z}/p^{n}(r))$$

$$\downarrow^{\rho_{i,r}} \qquad \qquad \downarrow^{\rho_{i,r}^{K}}$$

$$H^{i}(X_{\overline{V}, \text{\'et}}, \mathbf{Z}/p^{n}(r)) \xrightarrow{j^{*}} H^{i}(X_{\overline{K}, \text{\'et}}, \mathbf{Z}/p^{n}(r))$$

$$\downarrow^{c_{i,r}^{\text{syn}}} \qquad \qquad \downarrow^{c_{i,r}^{\text{\'et}}}$$

$$H^{i}(X_{\overline{V}}, S_{n}(r)) \xrightarrow{\alpha_{i,r}^{\text{Cr}}} H^{i}(X_{\overline{K}}, \mu_{p^{n}}^{\otimes r})$$

- the key point: j^* is an isomorphism: by localization, the kernel and cokernel are controlled by $H^i(X_{\overline{k}}, \mathbf{Z}/p^n(r))$, which is killed by totally ramified extensions of V of degree p^n
- ullet $ho_{i,r}^K$ is an isomorphism for $r \geq i$: by Beilinson-Lichtenbaum
- \bullet define the map $\alpha_{i,r}^{\operatorname{Cr}}$ to make this diagram commute.
- Notice: all the maps in the above diagram are isomorphisms.

Suslin ⇒ Crystalline conjecture

$$\begin{array}{cccc} \operatorname{gr}^r_{\gamma} K_{2r-i}(X_{\overline{V}},\mathbf{Z}/p^n) & \xrightarrow{\sim} & \operatorname{gr}^r_{\gamma} K_{2r-i}(X_{\overline{K}},\mathbf{Z}/p^n) \\ & & & & & & & & \\ \downarrow^{\rho_{2r-i}} & & & & & & & \\ \operatorname{gr}^r_{\gamma} K^{\operatorname{\acute{e}t}}_{2r-i}(X_{\overline{V}},\mathbf{Z}/p^n) & \xrightarrow{j^*} & \operatorname{gr}^r_{\gamma} K^{\operatorname{\acute{e}t}}_{2r-i}(X_{\overline{K}},\mathbf{Z}/p^n) \\ & & & & & & & \\ \downarrow^{c^{\operatorname{syn}}_{i,r}} & & & & & & \\ H^i(X_{\overline{V}},S_n(r)) & \xleftarrow{\alpha^{\operatorname{cr}}_{i,r}} & H^i(X_{\overline{K}},\mu^{\otimes r}_{p^n}). \end{array}$$

- the key point: j^* is an isomorphism (as before)
- $ullet
 ho_{2r-i}^K$ is an isomorphism modulo small torsion for $2r-i \geq 2d$: by Suslin
- $ullet c_{i,r}^{ ext{\'et}}$ is an isomorphism modulo small torsion: by the Atiyah-Hirzebruch spectral sequence
- ullet define $lpha_{i,r}^{\operatorname{cr}}$ to make this diagram commute

The semistable reduction case

 X^{\times}/V^{\times} - proper, semistable reduction, no multiplicities (more generally: log-smooth=toroidal)

Semistable conjecture There exists

 $\alpha_{st}: H^*(X_{\overline{K}}, \mathbf{Q}_p) \otimes_{\mathbf{Q}_p} B_{\mathsf{st}} \simeq H^*_{\mathsf{cr}}(X_0^{\times}/W^0) \otimes_W B_{\mathsf{st}}$ preserving G_K -action, N, F^* , ϕ

- \bullet the period ring $B_{\rm st}$: G_K , ϕ , N, F^*
- $H^*_{\text{cr}}(X_0^{\times}/W^0)[1/p]$ (analogue of limit Hodge structures); ϕ , N, F^* :

$$K \otimes_W H^*_{\operatorname{cr}}(X_0^{\times}/W^0) \simeq H^*_{dR}(X_K/K)$$

Corollary

$$H^*(X_{\overline{K}}, \mathbf{Q}_p) \simeq F^0(H_{\mathsf{cr}}^*(X_0^{\times}/W^0) \otimes B_{\mathsf{st}})^{N=0,\phi=1}$$

Have: for $i \leq r$

$$F^{r}(H_{\operatorname{cr}}^{i}(X_{0}^{\times}/W^{0})\otimes B_{\operatorname{st}})^{N=0,\phi=p^{r}}$$

$$\simeq H^{i}(X_{\overline{V}}^{\times}, S_{\mathbf{Q}_{p}}(r))$$

 $H^i(X_{\overline{V}}^{ imes}, S_{{f Q}_p}(r))$ - log-syntomic cohomology

Semistable period maps: for r large enough a compatible family

$$\alpha_{i,r}^n: H^i(X_{\overline{K}}, \mu_{p^n}^{\otimes r}) \to H^i(X_{\overline{V}}^{\times}, S_n(r))$$

Main difficulty: the model $X_{\overline{V}}$ is in general singular

- higher Chow groups behave badly
- ullet the localization map j^* in K-theory is difficult to understand

Solution:

- \bullet each $X_{V'}^{\times}$, finite extension V'/V , can be desingularized by a log-blow-up $Y^{\times} \to X_{V'}^{\times}$, Y regular
- log-blow-up does not change the log-syntomic cohomology, so to define the maps $\alpha^n_{i,r}$ we can work with the regular models Y^{\times}

Suslin ⇒ Semistable conjecture

$$\operatorname{gr}_{\gamma}^{r} K_{2r-i}(Y, \mathbf{Z}/p^{n}) \xrightarrow{\sim} \operatorname{gr}_{\gamma}^{r} K_{2r-i}(Y_{K}, \mathbf{Z}/p^{n})$$

$$\downarrow c_{i,r}^{\operatorname{syn}} \rho_{2r-i} \qquad \qquad \downarrow \downarrow c_{i,r}^{\operatorname{\acute{e}t}} \rho_{2r-i}$$

$$H^{i}(Y^{\times}, S_{n}(r)) \xrightarrow{\alpha_{i,r}^{n}} H^{i}(Y_{K}, \mu_{p^{n}}^{\otimes r}).$$

• the key point: j^* is an isomorphism for 2r - i > d + 1: use the localization sequence

$$\to K'_j(Y_k, \mathbf{Z}/p^n) \to K'_j(Y, \mathbf{Z}/p^n) \xrightarrow{j^*} K'_j(Y_K, \mathbf{Z}/p^n)$$
 and Geisser-Levine: $K'_j(Y_k, \mathbf{Z}/p^n) = 0$ for $j > d$

Corollary (Niziol, 2006): there exists a unique period map

$$\alpha_{i,r}^{st}: H^i(X_{\overline{K}}, \mathbf{Q}_p(r)) \to H^i(X_{\overline{V}}^{\times}, S_{\mathbf{Q}_p}(r))$$

compatible with the étale and syntomic higher Chern classes. In particular, the syntomic, almost étale and motivic period maps are equal.

Ideal picture

Not yet in existence!

$$H^{i}(Y^{\times}, \mathbf{Z}/p^{n}(r)) \xrightarrow{j^{*}} H^{i}(Y_{K}, \mathbf{Z}/p^{n}(r))$$

$$\downarrow^{\rho_{i,r}} \qquad \qquad \downarrow^{\rho_{i,r}^{K}}$$
 $H^{i}(Y_{\text{\'et}}^{\times}, \mathbf{Z}/p^{n}(r)) \xrightarrow{j^{*}} H^{i}(Y_{K,\text{\'et}}, \mathbf{Z}/p^{n}(r))$

$$\downarrow^{c_{i,r}^{\text{syn}}} \qquad \qquad \downarrow^{c_{i,r}^{\text{\'et}}}$$
 $H^{i}(Y^{\times}, S_{n}(r)) \xrightarrow{\alpha_{i,r}^{n}} H^{i}(Y, \mu_{p^{n}}^{\otimes r})$

Question Can we define limit motivic cohomology $H^i(Y^{\times}, \mathbf{Z}/p^n(r))$ such that

- ullet the localization map j^* is an isomorphism
- ullet the change of topology map $ho_{i,r}$ is an isomorphism for r>i
- \bullet the log-syntomic cycle classes $c_{i,r}^{\rm syn}$ are isomorphisms for $p-1>r\geq i$

Recent work: Levine (2005), Ayoub, Niziol (2006)