Gruble

I denne oppgaven skal vi komme fram til en av de mest kjente læresetningene i geometri.

Vi tar utgangspunkt i en hvilken som helst trekant $\triangle ABC$ med $\angle ACB = 90^{\circ}$. På siden AB markerer vi punktet D som er slik at CD står vinkelrett på AB. Vi har sett (opg. $\ref{eq:condition}$) at da er $\triangle ABC$, $\triangle ADC$ og $\triangle DBC$ alle sammen formlike. For å unngå drøssevis av store bokstaver sier vi videre at:

$$BC = a$$
, $AC = b$, $AB = c$, $DC = x$, $AD = c - x$

Målet vårt er nå å lage en formel som gjør at vi kan finne lengden til c hvis vi kjenner lengden til a og b.

- a) Bruk formlikheten til $\triangle ABC$ og $\triangle DBC$ til å skrive en formel som inneholder bare x, a og c.
- **b)** Bruk formlikheten til $\triangle ABC$ og $\triangle ADC$ til å skrive en formel som inneholder bare c-x,b og c.
- c) Skriv om formelen du fant i opg. a) til en formel for $c \cdot x$.
- d) Skriv om formelen du fant i opg. b) til en formel for $c^2 c \cdot x$.
- e) Erstatt $c \cdot x$ fra opg. d) med formelen du fant i oppgave c). Skriv om formelen slik at alle c-er står på én side, hvilken formel får du da?

$$\frac{x}{a} = \frac{a}{c}$$

$$\frac{c - x}{b} = \frac{b}{c}$$

$$cx = a^{2}$$

$$c^{2} - cx = b^{2}$$