(FILE 'HOME' ENTERED AT 13:36:32 ON 21 JAN 2004)

	FILE	'MEDLINE, BIOSIS, CAPLUS' ENTERED AT 13:40:25 ON 21 JAN 2004
L1		O S RAVEN/AU
L2		7 S DAVIS/AU
L3		0 S RAVEN/AU
L4		0 S WICTOME/AU
L5		1 S THERMOSTABLE KINASE]
L6		1 S THERMOSTABLE KINASE
L7		889 S THERMOSTABLE ENZYME
L8		37 S L7 AND ATP
L9		20 DUP REMOV L8 (17 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 13:48:03 ON 21 JAN 2004

=>

L Number	Hits	Search Text	DB	Time stamp
1	581	(436/175).CCLS.	USPAT;	2004/01/21 17:53
			US-PGPUB;	
			EPO; JPO;	
			DERWENT	1
3.	4	(((436/175).CCLS.) and kinase) and heat	USPAT;	2004/01/21 17:53
			US-PGPUB;	
1			EPO; JPO;	
			DERWENT	
4	1	((((436/175).CCLS.) and kinase) and heat)	USPAT;	2004/01/21 17:54
		and 'ADP'	US-PGPUB;	
			EPO; JPO;	
	1		DERWENT	
2	23	((436/175).CCLS.) and kinase	USPAT;	2004/01/21 17:55
			US-PGPUB;	
			EPO; JPO;	
1 .			DERWENT	

Page 1

L Number	Hits	Search Text	DB	Time stamp
1	2899	heat same kinase	USPAT;	2004/01/21 15:34
			US-PGPUB;	
			EPO; JPO;	1
			DERWENT	. 1
2	1382	(heat same kinase) same enzyme\$1	USPAT;	2004/01/21 15:35
		<u> </u>	US-PGPUB;	1
			EPO; JPO;	1
			DERWENT	
3	51	((heat same kinase) same enzyme\$1) same	USPAT;	2004/01/21 15:36
		'ADP'	US-PGPUB;	
			EPO; JPO;	
			DERWENT	

* (**	•	1.	
•	٠.	* l';	•

L Number	Hits	Search Text	DB	Time stamp
1	390579	heat same resistance	USPAT;	2004/01/21 11:05
			US-PGPUB;	
			EPO; JPO;	
			DERWENT	
2	193101	heat ADJ resistance	USPAT;	2004/01/21 11:05
			US-PGPUB;	
			EPO; JPO;	
			DERWENT	
3	16	(heat ADJ resistance) SAME kinase	USPAT;	2004/01/21 11:08
-		,	US-PGPUB;	
			EPO; JPO;	
			DERWENT	

Search History 1/21/04 11:17:18 AM Page 1 C:\APPS\east\workspaces\default.wsp

mixture of normal PK and a functionally abnormal isoenzyme, the latter differing between the parents. The 2 children suffer from hereditary hemolytic anemia. Their PK must be a combination of the mutant paternal and maternal isoenzymes, and their activities are reduced to about 30%. These enzymes are characterized by an increased affinity for PEP and a decreased affinity for ADP, a Hill coefficient of about 1 (indicating lack of cooperativity due to a loss of its allosteric properties), a decreased overall catalytic activity, and a higher resistance to heat denaturation. Further differences are observed in the sodium dodecyl sulfate-gel electrophoresis between the 2 patients' enzymes. From the enzymological point of view it is impossible to characterize true PK variants in such double heterozygous cases which contain a combination of 2 different isoenzymes. The cause of chronic hemolysis appears to depend mainly on the loss of the allosteric properties, i.e., the lack of enzyme cooperativity.

```
ANSWER 25 OF 25
                         MEDLINE on STN
1.6
AN
     77042308
                  MEDLINE
     77042308
DN
              PubMed ID: 10737
     Calcium uptake by subcellular fractions of human umbilical artery.
TI
ΑU
     Clyman R I; Manganiello V C; Lovell-Smith C J; Vaughan M
     AMERICAN JOURNAL OF PHYSIOLOGY, (1976 Oct) 231 (4) 1074-81.
SO
     Journal code: 0370511. ISSN: 0002-9513.
CY
     United States
     Journal; Article; (JOURNAL ARTICLE)
DT
LA
     English
FS
     Priority Journals
     197612
EΜ
     Entered STN: 19900313
ED
     Last Updated on STN: 19950206
     Entered Medline: 19761230
```

AB Two different mechanisms for the active accumulation of Ca2+ by subcellular fractions of human umbilical artery are described. One, located in the mitochondrial fraction, was induced by exogenous ATP or respiratory substrates (ADP and succinate) and was inhibited by azide. The other, located in the microsomal fraction, was induced by ATP and potentiated by oxalate, but not inhibited by azide. Increasing ATP concentrations up to 4-5 mM increased microsomal Ca2+ accumulation, whereas increasing ATP concentration above 2-3 mM caused inhibition of mitochondrial Ca2+ uptake. Although changing pH from 7.4 to 7.2 had no effect on mitochondrial Ca2+ accumulation, it doubled microsomal uptake. Neither adenosine 3',5'-monophosphate nor guanosine 3',5'-monophosphate in the presence or absence of protein kinase and kinase modulator affected Ca2+ uptake by or phosphorylation of the subcellular fractions. Partially purified protein kinases from umbilical and beef skeletal muscle contained a component(s) distinguishable from the kinase on the basis of its heat stability that enhanced ATP-induced Ca2+ uptake by mitochondrial fractions from the umbilical artery. It is suggested that alterations in Ca2+ sequestration induced by changes in ATP concentration and intracellular pH in mitochondrial and microsomal fractions, respectively, could play a role in the control of arterial patency and closure with changes in PO2.

=> dis his

(FILE 'HOME' ENTERED AT 11:51:11 ON 21 JAN 2004)

FILE 'MEDLINE, BIOSIS, CAPLUS' ENTERED AT 11:51:25 ON 21 JAN 2004 O S HEAT RESISTANCE KINASE

L1 L2169161 S HEAT AND RESISTANCE

729 S L2 AND KINASE L3

139073 S ADP L4

35 S L4 AND L3 L5