Question Answering

Group 5
Natural Language Processing
INT3406 1

Thành viên trong nhóm

Nguyễn Công Thuận 180201250

Hoàng Vũ Duy Anh 18020001

Lưu Hoàng Nam 18020921

Outline

- 1. Tổng quan về Hệ thống Question Answering
- 2. DrQA
- 3. Cải tiến hệ thống
- 4. Ứng dụng cho Tiếng Việt
- 5. Demo

Tổng quan về Hệ thống Question Answering

Question Answering System

- Trả lời câu hỏi được đưa ra
- Truy vấn hoặc tìm kiểm ở trong một hệ tri thức cho trước

Closed-domain

 Trả lời câu hỏi liên quan đến một miền ứng dụng cụ thể

Open-domain

- Trả lời câu hỏi liên quan đến nhiều miền ứng dụng
- Càn một kho kiến thức rộng lớn như Wikipedia

Tập dữ liệu

- Dữ liệu chủ yếu gồm 3 thành phần cơ bản:
 - "question": câu hỏi
 - "text": đoạn văn có thể chứa câu trả lời hoặc không
 - "answer": câu trả lời

SQUAD2.0 The Stanford Question Answering Dataset

Kiến trúc Hệ thống

• 3 loại kiến trúc

- Retriever Reader
- Retriever Generator
- Generator

Retriever-Generator

Generator

2 bước thực hiện

- Xác định được các đoạn văn có thể có thông tin liên quan đến câu hỏi trong kho kiến thức được cung cấp
- Trích xuất được câu trả lời từ các đoạn thông tin nhận được

- Thành phần Retriever
 - Input: Câu hỏi
 - Output: Những đoạn văn (context) liên quan đến câu hỏi

Thành phần Retriever

- 2 cách tiếp cận
 - Cách tiếp cận truyền thống: TF IDF
 - Cách tiếp cận hiện đại: mạng nơ-ron VD: MLP, LSTM...
- Xếp hạng những đoạn văn (context) có mức độ liên quan đến câu hỏi lớn nhất

- Thành phần Reader
 - Input: Những đoạn văn (context) liên quan đến câu hỏi
 - Output: Câu trả lời
 - Sử dụng mạng nơ-ron
 - Bi-directional LSTM
 - BERT

Kiến trúc Retriever - Generator

• 2 bước thực hiện:

- Xác định được đoạn có thông tin liên quan đến câu hỏi trong kho kiến thức được cung cấp
- Sinh ra câu trả lời từ các đoạn văn liên quan, sử dụng các mạng nơ-ron như BERT, GPT...

Kiến trúc Generator

Generator

Start/End Span

DrQA

Tổng quan về Hệ thống DrQA

- Được công bố trong một <u>bài báo</u> vào năm
 2017, sau khi tập dữ liệu SQuAD ra đời
- Sử dụng kiến trúc Retriever Reader

Tổng quan về Hệ thống DrQA

- Mục tiêu: Trả lời câu hỏi thuộc dạng open-domain
- Sử dụng Wikipedia làm cơ sở tri thức

Open-domain QA

SQuAD, TREC, WebQuestions, WikiMovies

Q: How many of Warsaw's inhabitants spoke Polish in 1933?

The Free Encyclopedia

Document Retriever

Kiến trúc của DrQA

Document Retriever

- Thu hẹp phạm vi tìm kiếm từ nguồn dữ liệu Wikipedia
- Lấy ra k = 5 tài liệu liên quan nhất đến câu hỏi
- Đánh giá mức độ liên quan theo TF IDF

TF - IDF

$$tf(t,d) = \log(1 + freq(t,d))$$
$$idf(t,D) = \log \frac{|D|}{|d \in D : t \in d|}$$

 $t f i d f(t, d, D) = t f(t, d) \times i d f(t, D)$

TF - IDF

$$score(q, d) = \sum_{t \in q} t fidf(t, d)$$

Kiến trúc của DrQA

Document Reader

- Tìm ra câu trả lời trong 5 tài liệu được lấy ra
- Câu hỏi q = {q₁, q₂, ..., q₁}
 l: số token trong câu hỏi
- Đoạn văn p = {p₁, p₂, ..., p_m}
 m: số token trong đoạn văn

Kiến trúc của DrQA

Document Reader

- 3 bước chính
 - Paragraph Encoding
 - Question Encoding
 - Prediction

• Biểu diễn các token p_i dưới dạng vector đặc trưng \tilde{p}_i , gồm các thành phần

- Biểu diễn các token p_i dưới dạng vector đặc trưng \tilde{p}_i , gồm các thành phần
 - Word embedding
 - Sử dụng Glove word embedding

$$f_{emb}(p_i) = E(p_i)$$

- Biểu diễn các token p_i dưới dạng vector đặc trưng \tilde{p}_i , gồm các thành phần
 - Exact match
 - Sử dụng 3 binary feature để kiểm tra mức độ khớp

$$f_{exact_match}(p_i) = \Pi(p_i \in q)$$

- Biểu diễn các token p_i dưới dạng vector đặc trưng \tilde{p}_i , gồm các thành phần
 - Đặc trưng của token
 - Part-Of-Speech, Name Entity Recognition, Term Frequency

$$f_{token}(p_i) = (POS(p_i), NER(p_i), TF(p_i))$$

- Biểu diễn các token p_i dưới dạng vector đặc trưng \tilde{p}_i , gồm các thành phần
 - Aligned question embedding

$$f_{align}(p_i) = \sum_j a_{i_j} E(q_j)$$

$$a_{i_j} = \frac{exp(\alpha(E(p_i)) \cdot \alpha(E(q_j)))}{\sum_{j'} exp(\alpha(E(p_i)) \cdot \alpha(E(q_{j'})))}$$

• Tập vector đặc trưng $\tilde{p}_1, \ \tilde{p}_2, \ldots, \ \tilde{p}_m$ sẽ được đưa qua RNN

$$\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_m\}=RNN(\{\tilde{p}_1,\tilde{p}_2,\ldots,\tilde{p}_m\})$$

Mã hoá thông tin của đoạn văn

Question Encoding

Vector q được biểu diễn

$$\mathbf{q} = \sum b_j \times q_j$$

$$b_j = softmax(w^T E(q_j))$$

Prediction

Tính toán xác suất vị trí bắt đầu và kết thúc

$$P_{start}(i) \propto exp(\mathbf{p}_i \mathbf{W}_s \mathbf{q})$$

$$P_{end}(i) \propto exp(\mathbf{p}_i \mathbf{W}_e \mathbf{q})$$

Cải tiến hệ thống

- Document Reader
 - Các mô hình BERT
 - Transformer architecture
 - Deeply bidirectional

- Document Retriever
 - o TF-IDF
- Document Reader
 - Các mô hình BERT
 - DistilBERT
 - MobileBERT
 - ALBERT

Model		F1	Latency
DrQA (Chen et al., 2017)	29.5		$\sim 0.5 s$
DrQA retriever + DistilBERT-base (n_docs=5)	31.0	35.2	2.58s
n_docs=4	31.9	36.9	$2.07\mathrm{s}$
n_docs=3	31.6	35.5	1.53s
n_docs=2	30.3	35.1	1.03s
DrQA retriever + MobileBERT	32.0	37.5	2.35s
DrQA retriever + AlBERT	-	-	8-

Document Retriever

BM25 Retriever trong Anserini

$$score(D,Q) = \sum_{i=1}^{n} IDF(q_i, D) \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

IDF
$$(q_i, D) = \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5}$$

 $n(q_i)$ số lượng văn bản chứa từ q_i tần suất xuất hiện từ q_i trong văn bản D số lượng từ có trong văn bản D

số lượng văn bản có trong ngữ liệu

avgdl độ dài trung bình của các văn bản

 k_I tham số tự chọn, thường là 2

N

b tham số tự chọn, thường là 0.75

- Document Retriever
 - BM25 Retriever
- Document Reader
 - Mô hình BERT

BERTserini

Model	EM	F1	R
BERTserini (Article, $k = 5$)	19.1	25.9	63.1
BERTserini (Paragraph, $k = 29$)	36.6	44.0	75.0
BERTserini (Sentence, $k = 78$)	34.0	41.0	67.5
BERTserini (Paragraph, $k = 100$)	38.6	46.1	85.8

Dataset	EM	F ₁
Open SQuAD-dev (Paragraph, k = 30)	37.3	43.9

Re-rank docs with BERT, Dense retrieval...

Úng dụng cho Tiếng Việt

Dữ liệu Tiếng Việt

- SQuAD-translate: ~100k
- **vi-wiki**: 710
- XQuAD: 1000+, 10 ngôn ngữ
- MLQA: 6000+, 7 ngôn ngữ
- **UIT-ViQuAD**: 23000+

Mô hình thử nghiệm

- ALBERT-vi
- PhoBERT
- XLM-RoBERTa hiện đang là SOTA
 - Pretrained trên 2.5TB dữ liệu, 100 ngôn ngữ, vocab~250k
 - Cross-lingual transfer, zero-shot

Dữ liệu huấn luyện	Mô hình	Tham số	Throughput	vi-wiki-test	MLQA-dev
	BERT-base [24]	110M	-	43.2 / 65.9	-
SQuAD-translate	ALBERT-vi-base	12M	12.2/s	32.4 / 48.8	26.2 / 42.1
$(\sim 100 \text{k pairs})$	PhoBERT-base	135M	$17.6/\mathrm{s}$	45.0 / 63.6	37.6 / 57.2
	XLM-R-base	270M	$15.1/\mathrm{s}$	45.9 / 65.5	40.9 / 59.8
MLQA + XQuAD	XLM-R-base	270M	$15.1/\mathrm{s}$	52.3 / 67.0	44.4 / 64.5
$(\sim 7000 \text{ pairs})$	XLM-R-large	550M	4.9/s	60.4 / 73.9	51.1 / 70.4

XLM-RoBERTa

An experiment by UIT NLP research group in the UIT-ViQuAD paper

Number of samples

Demo

Thanks for listening!