[표 3.3.4] CFT 단면의 설계기준별 강성 기준

	기존방법	CFT설계지침(강구조학회) 강구조설계기준(ASD)	강구조설계기준(LRFD) EC4
강성	$= E_s A_s + E_c A_c$ $I = E_s I_s + E_c I_c$	$EA = E_s A_s + 0.4 E_c A_c$ $EI = E_s I_s + 0.4 E_c \left(I_s \frac{A_c}{A_s} \right)$	$EA = E_s A_s + 0.4 E_c A_c$ $EI = E_s I_s + C_3 E_c I_c,$ $C_3 = 0.6 \sim 0.9$

휨에 대한 유효강성을 아래 식과 같은 형태로 통일하고 실험에 적용된 제원을 이용하여 콘크리트 단면의 영향계수 c를 산정한 결과는 아래와 같다.

[표 3.3.5] CFT말뚝 시제품의 재료 및 단면 제원

검토 단면 SKK 400 fc=42.1MPa	구분	E (MPa)	A (mm ²)	l (mm ⁴)
	Steel	210,000	18,700	575×106
12 484 12 506	Concrete	29,570	184,000	2,694×106

[표 3.3.6] 각 설계기준에 의한 CFT말뚝의 단면 영향계수

구분	산식	С	비고
재료역학(기존방법)	_	1.00	상한계
CFT설계지침(강구조학회) 강구조설계기준(ASD)	$c = \left(0.4I_s \frac{A_c}{A_s}\right) I_c$	0.84	
강구조설계기준(LRFD)	$c = 0.6 + \left(\frac{A_s}{A_c + A_s}\right) \le 0.9$	0.78	
EC4	탄성 : $K_{\!e}$	0.60	
EC4	장기변형해석 : $K_0 \cdot K_e$	0.45	
Roeder et al.	$c = 0.5 + \frac{P}{P_0} + \frac{A_s}{A_c + A_s} \le 0.9$	0.24	
콘크리트 단면 무시	-	0.00	하한계

계측 모멘트-곡률 곡선에 한국강구조학회의 「콘크리트충전 강관구조설계 및 시공지침」,「허용응력설계법에 의한 강구조설계기준」에 의한 영향계수 c=0.84부터 Roeder et al.에 의한 c=0.24에 이르기까지의 휨 강성을 실험 및 해석 결과와 중첩하여 나타내었다.

그림에서 보듯이 EC4에 의한 탄성 상태 휨 강성은 실험체의 변형거동을 가장 유사하