1.1 Focus

1.1.1 Calibrate Your Camera!

<u>1.</u>

image1.jpg

image2.jpg

image3.jpg

true.jpg

2 and 3)

Object Points:

- [[[0. 0. 0.]
- [17. 0. 0.]
- [34. 0. 0.]
- [0.17.0.]
- [17. 17. 0.]
- [34. 17. 0.]]
- [[0. 0. 0.]
- [17. 0. 0.]
- [34. 0. 0.]
- [0.17.0.]
- [17. 17. 0.]
- [34. 17. 0.]]]

Points for image 1:

- [[1513. 730.]
- [1381. 753.]
- [1245. 779.]
- [1543. 851.]
- [1410. 876.]
- [1274. 906.]]

Points for image 2:

- [[1686. 913.]
- [1552. 882.]
- [1420. 847.]
- [1712. 789.]
- [1577. 754.]
- [1447. 723.]]

```
Intrinsic Camera matrix is:
[[6.34870191e+03 0.00000000e+00 2.15168434e+03]
[0.00000000e+00 7.92738128e+03 1.55219124e+03]
[0.0000000e+00 0.0000000e+00 1.0000000e+00]]
Rotation vectors are:
[array([[ 0.36269183],
    [2.79656139],
    [-0.92394646]]), array([[ 0.13166407],
    [-0.90934491],
    [-2.82029257]])]
Translation vectors are:
[array([[-80.46066623],
    [-83.09052607],
    [799.71216772]]), array([[-58.30871144],
    [-64.04030653],
    [795.26797185]])]
```

While calling function cv2.calibrateCamera(). There is a parameter in this function which requires dimensions of image. We can change the dimension as whatever we may see appropriate.

4

The cv2.calibrateCamera() function returns

Reprojection error, camera matrix, distortion coefficients, rotation and translation vectors.

The intrinsic parameters are stored in camera matrix returned by cv2.calibrateCamera() function.

1.1.2

The focal length of the camera is: 4.7mm

The information regarding pixel size is available on this site: Link

Pixel size: 0.0008 mm

Run the script find focal.py to generate the output:

Calibration Matrix:

[[5.73723022e+03 0.00000000e+00 2.44321643e+03] [0.00000000e+00 6.37053958e+03 1.50035406e+03] [0.00000000e+00 0.0000000e+00 1.00000000e+00]]

Focal Length:

fx in mm: 4.589784178965874 fy in mm: 5.0964316679911645

Focal length of camera in mm: 4.843107923478519

Average error: 0.4650070799721612

The focal length of the camera obtained is 4.84mm which very close to the real value 4.7mm

1.2.1 Tasks

- 1. The image for true.jpg is uploaded above in section 1.1.1
- 2. Increasing the number of images would lead to finding camera matrix with less error.

Original points:

```
[[1513. 730.]
```

[1381. 753.]

[1245. 779.]

[1543. 851.]

[1410. 876.]

[1274. 906.]]

Re projected points:

[[1512.9286 728.53204]

[1380.0955 753.91785]

[1245.8999 779.564]

[1543.8098 851.2643]

[1409.524 877.5919]

[1273.8441 904.19293]]

Error: 0.5706905523935953

This is the image for projected.jpg:

1.3

After running the file reproject.py with appropriate parameters:

```
Output obtained:
```

```
Rearranged points for image 1:
[[498.0, 356.0], [443.0, 359.0], [390.0, 360.0], [498.0, 415.0], [444.0, 417.0],
[392.0, 417.0]]
Rearranged points for image 2:
[[576.0, 329.0], [513.0, 330.0], [449.0, 331.0], [575.0, 396.0], [513.0, 396.0],
[450.0, 397.0]]
Intrinsic Camera matrix is:
[[666.15775864 0. 459.73255518]
[ 0.
         672.35517607 588.71569748]
[ 0.
          0.
                    1.
                          11
Rotation vectors are:
[array([[ 0.01885828],
    [-2.89892147],
    [-0.33901475]]), array([[0.02265063],
    [3.11821315],
    [0.26494777]])]
Translation vectors are:
[array([[ 2.02439555],
    [-12.18492143],
    [ 35.24644157]]), array([[ 5.49962628],
    [-12.1432845],
    [31.47012792]])]
```

Average error: 0.16500191390514374

I have mentioned the image size as (1000,1000) for calculation.