COMTEK3,CCT3 & ESD3: ALGORITHMS Minimum Spanning Tree & Shortest Paths

Ramoni Adeogun

Associate Professor and Head of the AI for Communication Group
Wireless Communication Networks Section (WCN)

Email: ra@es.aau.dk

October, 2023

Outline

- Weighted Graphs
- Minimum Spanning Trees
 - Kruskal's algorithm
 - Prim's algorithm
- Shortest Path Algorithms
 - Bellman-Ford
 - Shortest-paths finding on DAGs
 - Dijkstra
- Summary

Minimum Spanning Tree

Spanning tree of a graph G=(V,E) is a tree T=(V',E') such that V'=V and $E'\subset E$ Example:

- Note that a graph can have many spanning trees.
- lacktriangle A minimum spanning tree, T in a weighted graph G with weight function w is a spanning tree with minimal weight,

$$T = rg\min_{T' \leq G} ig(wig(T'ig)ig), \, w(T) = \sum_{e \in T} w(e)$$

Minimum Spanning Tree

Minimum spanning trees appear in many engineering applications, e.g.,

- A network operator is planning the next generation cellular communication systems, and needs to connect the new base stations with optical cables.
 - What is the cheapest way to do this?
 - Note: Cost scales with the length of cable
- A carrier company regularly delivers packets to a number of customers.
 - What is the best route plan such that
 - an unbounded (1) number of can deliver the packets with the shortest delivery time
 - Assuming that time to drop a packet can be neglected

MST - Example

Are there other MSTs with weight equal to 37?

Is MST of a given graph, G, unique?

Cut, Cut Weight and Light Edge

• Split the vertex set V of a graph G = (V, E) into two disjoint sets:

$$V = A \cup B, A \cap B = \emptyset$$

The set of edges from A to B is called a cut and is denoted c(A, B)

For weighted graphs we define the weight of a cut, c, as:

$$w(c) = \sum_{c \in c} w(e)$$

A light weight: an edge e in acut, c, with minimum weight.

Algorithms

Greedy Algorithm

- A greedy algorithm is a step-wise optimization algorithm
 - always make the choice which seems best at the moment ignoring any future steps
- Greedy algorithms do not always find optimal solutions, but often yield good solutions.
- There are many examples of greedy algorithms for problems involving graphs
 - Prim's
 - Kruskal's
 - Dijkstra's,
 - and others

Disjoint-Set Data Structure

- Kruskal's algorithms uses a disjoint-set data structure (DSDS)
- A DSDS maintains a collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint sets
 - > Each set is identified by a representative which is a member of it
- ♦ A DSDS supports three operations:
 - \rightarrow Make-Set(x): creates new set $\{x\}$ with representative x
 - ightharpoonup Union(x,y): unites 2 sets containing x and y into a new set $S_x \cup S_y$ with a new representative
 - \rightarrow Find(x): returns the representative of the set containing x

Kruskal's Algorithm

- used to construct a minimum spanning tree in an undirected graph
- traverses all edges lightest edge first and adds them to the solution set until they no longer connect new parts of the graph
- each set contains the vertices of a tree in the current forest

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 create a single list of the edges in G.E

5 sort the list of edges into monotonically increasing order by weight w

6 for each edge (u, v) taken from the sorted list in order

7 if FIND-SET(u) \neq FIND-SET(v)

8 A = A \cup \{(u, v)\}

9 UNION(u, v)

10 return A
```


Kruskal's Algorithm

Prim's Algorithm

- used to construct a minimum spanning tree of a weighted graph
- the tree is grown from an arbitrary root until it spans the whole graph
- Each step adds a light edge which connects the current tree to an isolated vertex

Vertices not yet in the spanning tree are kept in a min-priority queue, Q, based on the key attribute.

- Attributes of a vertex:
 - ightharpoonup v. key: minimum edge weight between v and a vertex in the tree, if no edge $v. key = \infty$
 - $v.\pi$: parent in the tree

```
MST-PRIM(G, w, r)
     for each vertex u \in G, V
        u.kev = \infty
        u.\pi = NIL
     r.kev = 0
     for each vertex u \in G.V
        INSERT(O, u)
     while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(O)
                                       // add u to the tree
        for each vertex v in G. Adj[u] // update keys of u's non-tree neighbors
           if v \in Q and w(u, v) < v.kev
11
               v.\pi = u
               v.key = w(u,v)
14
               DECREASE-KEY (Q, v, w(u, v))
```

Prim's Algorithm

Shortest Path Algorithms

Shortest Path Algorithms

- Many applications require finding shortest paths in a graph
 - Routing in computer networks
 - Route planning in navigation equipment
 - Finding "critical paths" in projects
- There exist many shortest path finding algorithms
 - We will study
 - Bellman-Ford Algorithm
 - Shortest paths finding in DAGs
 - Dijkstra Algorithm
 - > There are many more of such algorithms

Shortest Path Problems (SPPs)

- Single-source SPP: find a shortest path from a specified source to each vertex in a graph
- Single-destination SPP: find a shortest path from each vertex in a graph to specified destination
 - > reversal of edge direction changes this to single-source SPP
- Single-pair SPP: find the shortest u v path given u and v
- All-pairs SPP: find the shortest path from u to v for all pairs of vertices

Shortest Paths

- In a **shortest-paths problem**, we are given a weighted, directed graph G=(V,E) with weight function $w:E \to \mathbb{R}$
- lacktriangle The weight of a path $p = \langle v_0, v_1, \dots v_k \rangle$ is defined as

$$w(p) = \sum_{i=1}^{n} w(v_{i-1}, v_i)$$

 \diamond The **shortest-path weight** from u to v is then defined as

$$\delta(u,v) = egin{cases} \min\{w(p): u o v\} & ext{if there is a path from u to v} \ \infty & ext{otherwise} \end{cases}$$

• A shortest path from u to v is any path p with weight $w(p) = \delta(u, v)$

Relaxation Technique

INITIALIZE-SINGLE-SOURCE (G, s)1 **for** each vertex $v \in G$. V2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4 s.d = 0

- Relaxation
 - a. A technique used in the shortest-path finding algorithms
 - b. maintains an attribute $v.d; \ \forall v \in V$ => shortest-path estimate
 - upper bound on the weight of shortest path from s to v
- The idea
 - Initialize shortest path estimates and predecessors
 - b. check if the current shortest path to v can be improved through u and update v,d and v,π

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Example

Bellman-Ford Algorithm

- The Bellman-Ford algorithm:
 - solves the single-source SPP
 - including for cases with negative edge weights w(e) for some or all edges $e \in E$
 - \succ relaxes edges progressively until $v.\,d=\delta(s,v)$
 - returns TRUE iff the graph contains no reachable negative cycles from s
 - \triangleright Running time is O(VE)
 - But why?


```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

The Bellman-Ford Algorithm - Ex

Single-Source SSP in DAGs

- lacktriangle By relaxing the edges of a weighted DAG, G=(V,E) according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V+E)$ time
- Application
 - Finding critical paths in PERT diagrams

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u \in G. V, taken in topologically sorted order

4 for each vertex v in G. Adj[u]

5 RELAX (u, v, w)
```


Dijkstra's Algorithm

- \diamond solves the single-source shortest-paths problem on a weighted, directed graph G=(V,E) for the case in which all edge weights are **nonnegative**.
- lacktriangle maintains a set S of vertices whose shortest path weights have been determined
 - > a min-priority queue, Q, keeps track of vertices, keyed by their d values

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = \emptyset

4 for each vertex u \in G.V

5 INSERT(Q, u)

6 while Q \neq \emptyset

7 u = \text{EXTRACT-MIN}(Q)

8 S = S \cup \{u\}

9 for each vertex v in G.Adj[u]

10 RELAX(u, v, w)

11 if the call of RELAX decreased v.d

12 DECREASE-KEY(Q, v, v.d)
```

Dijkstra's algorithm

Summary

- Minimum spanning tree => spanning tree with minimal weight
- To construct minimum spanning, we can use
 - Prim's algorithm -> from graph
 - Kruskal's algorithm -> from graph
- Shortest path problems
 - single source, single destination, single-pair, all-pairs
- Shortest-paths finding
 - Bellman's algorithm
 - Dijkstra's algorithm

