

Analysing Discretization Methods for Single-Cell RNA-Sequencing Data when Inferring Gene Regulatory Networks via Cartesian Genetic Programming

José Eduardo H. da Silva¹, Heder S. Bernardino¹, Itamar L. de Oliveira¹, Alex B. Vieira¹, Helio J.C. Barbosa^{1,2}

¹Universidade Federal de Juiz de Fora Juiz de Fora, Brazil jehenriques@ice.ufjf.br, heder@ice.ufjf.br, alex.borges@ice.ufjf.br, itamar.leite@ice.ufjf.br ²Laboratório Nacional de Computação Científica Petrópolis, Brazil hcbm@lncc.br

1 Introduction

This supplementary material presents additional results that were obtained by Cartesian Genetic Programming (CGP) when using several discretization approaches. Section 2 presents the comparison of the use of spline for smooth the data. This additional content is organized as follows: In Section 3, the parameter analysis for Top%X and Max -X%Max are performed.

2 Spline Analysis

Empty boxplots means that CGP did not found a feasible solution for that configuration.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

CILAMCE 2021-PANACM 2021

3 Parameter Analysis

In this seciton we perform the parameter analysis of Max -X%Max and Top%X approaches. The Max - X%Max parameter are analyzed in [50%, 54%, 60%], once 54% is the reference parameter [1]. When considering Top%X, we performed experiments considering [25%, ..., 60%].

3.1 Max -X% Max

Figure 31. Results for problem VSC with and without Spline, considering AUPRC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 32. Results for problem VSC with and without Spline, considering AUPRC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 33. Results for problem VSC with and without Spline, considering AUPRC and 70% dropout with parameters in range [50%, 54%, 60%].

Figure 34. Results for problem mCAD with and without Spline, considering AUPRC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 35. Results for problem mCAD with and without Spline, considering AUPRC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 36. Results for problem mCAD with and without Spline, considering AUPRC and 70% dropout with parameters in range [50%, 54%, 60%].

Figure 37. Results for problem HSC with and without Spline, considering AUPRC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 38. Results for problem HSC with and without Spline, considering AUPRC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 39. Results for problem HSC with and without Spline, considering AUPRC and 70% dropout with parameters in range [50%, 54%, 60%].

Figure 40. Results for problem VSC with and without Spline, considering AUROC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 41. Results for problem VSC with and without Spline, considering AUROC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 42. Results for problem VSC with and without Spline, considering AUROC and 70% dropout with parameters in range [50%, 54%, 60%].

Figure 43. Results for problem mCAD with and without Spline, considering AUROC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 44. Results for problem mCAD with and without Spline, considering AUROC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 45. Results for problem mCAD with and without Spline, considering AUROC and 70% dropout with parameters in range [50%, 54%, 60%].

Figure 46. Results for problem HSC with and without Spline, considering AUROC and 0% dropout with parameters in range [50%, 54%, 60%].

Figure 47. Results for problem HSC with and without Spline, considering AUROC and 50% dropout with parameters in range [50%, 54%, 60%].

Figure 48. Results for problem HSC with and without Spline, considering AUROC and 70% dropout with parameters in range [50%, 54%, 60%].

2 2	T 07 X7	
• /	Top%X	

Figure 49. Results for problem VSC with and without Spline, considering AUPRC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 50. Results for problem VSC with and without Spline, considering AUPRC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 51. Results for problem VSC with and without Spline, considering AUPRC and 70% dropout with parameters in range [25%, ..., 60%].

Figure 52. Results for problem mCAD with and without Spline, considering AUPRC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 53. Results for problem mCAD with and without Spline, considering AUPRC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 54. Results for problem mCAD with and without Spline, considering AUPRC and 70% dropout with parameters in range [25%, ..., 60%].

Figure 55. Results for problem HSC with and without Spline, considering AUPRC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 56. Results for problem HSC with and without Spline, considering AUPRC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 57. Results for problem HSC with and without Spline, considering AUPRC and 70% dropout with parameters in range [25%, ..., 60%].

Figure 58. Results for problem VSC with and without Spline, considering AUROC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 59. Results for problem VSC with and without Spline, considering AUROC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 60. Results for problem VSC with and without Spline, considering AUROC and 70% dropout with parameters in range [25%, ..., 60%].

Figure 61. Results for problem mCAD with and without Spline, considering AUROC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 62. Results for problem mCAD with and without Spline, considering AUROC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 63. Results for problem mCAD with and without Spline, considering AUROC and 70% dropout with parameters in range [25%, ..., 60%].

Figure 64. Results for problem HSC with and without Spline, considering AUROC and 0% dropout with parameters in range [25%, ..., 60%].

Figure 65. Results for problem HSC with and without Spline, considering AUROC and 50% dropout with parameters in range [25%, ..., 60%].

Figure 66. Results for problem HSC with and without Spline, considering AUROC and 70% dropout with parameters in range [25%, ..., 60%].

References

[1] S. C. Madeira and A. L. Oliveira. An evaluation of discretization methods for non-supervised analysis of time-series gene expression data. INESC-ID Technical Report, vol. 42, pp. 2005, 2005.