Министерство науки и высшего образования Российской Федерации Севастопольский государственный университет Кафедра ИС

Отчет

по лабораторной работе № 1

«Изучение интегрированной среды разработки программного обеспечения и исследование функционирования микроконтроллеров AVR»

по дисциплине

«Встроенные микропроцессорные системы»

Выполнил студент группы ИС/б-17-2-о

Горбенко К.Н.

Проверил

Чернега В.С.

Севастополь

2020

1 ЦЕЛЬ РАБОТЫ

Ознакомиться с назначением и органами управления среды разработки, исследовать процессы содержимого регистров и портов микроконтроллера в процессе отладки программы. Приобрести практические навыки программирования и отладки программ на языке Ассемблера и Си.

2 ПОСТАНОВКА ЗАДАЧИ

- 1. Изучить структуру и назначение функциональных блоков микроконтроллера.
- 2. Ознакомиться с особенностями системы команд микроконтроллеров типа AVR.
- 3. Ознакомиться со средой программирования и отладки программ типа AVR Studio 4.
- 4. Подготовить в редакторе AVR Studio ознакомительную программу на ассемблере, приведенную в приложении A п.1.
- 5. Записать в комментариях значение каждой команды.
- 6. Выполнить ассемблирование программы.
- 7. Запустить отладчик программы и исправить, при их наличии, синтаксические ошибки.
- 8. Исследовать изменение содержимых рабочих регистров, указателя стека, флагов и ячеек памяти при пошаговом выполнении программы.
- 9. Составить программу на ассемблере по следующему словесному описанию:
- Установить указатель стека на ячейку с адресом 87. Организовать цикл.
- Установить значение счетчика циклов равное 12.
- Инкрементировать регистр 18, затем 19, сложить их содержимое и перенести сумму в регистр 20.

- Сохранить значение регистра 20 в стеке, затем перенести это число из вершины стека в регистр 21.
- Вычесть из регистра 20 число 2, уменьшить счетчик циклов на единицу.
- Продолжать выполнять действия в цикле, пока счетчик не станет равным нулю.
- 10. Оформить отчет по лабораторной работе.

3 ХОД РАБОТЫ

1. Запустим AVR Studio и создадим проект (рисунок 1).

Рисунок 1 – Создание проекта

2. Напишем программу и скомпилируем её.

ATmegal6 memory use summary [bytes]:							
Segment	Begin	End	Code	Data	Used	Size	Use
[.cseg]	0x000000	0x00001c	28	0	28	16384	0.29
[.dseg]	0x000060	0x000060	0	0	0	1024	0.09
[.eseg]	0x000000	0x000000	0	0	0	512	0.0

Рисунок 2 – Результат компилирования программы

3. Выполним пошагово команды и исследуем изменение содержимых рабочих регистров, указателя стека, флагов и ячеек памяти.

Рисунок 3 – Выполнение программы

4. Напишем программу для задания 2.

include "m16def.inc" .def temp = r16

```
r16, 87
ldi
      SPL,r16
out
ldi r25, 12
rjmp init
init:
inc r18
inc r19
mov r20, r18
add r20, r19
push r20
pop r21
subi r20, 2
dec r25
breq end
rjmp init
end:
 inc r5
```

5. Выполним скомпилированную программу.

Рисунок 3 – Выполнение программы по варианту

выводы

В лабораторной работе рассмотрена среда разработки, исследованы процессы содержимого регистров и портов микроконтроллера в процессе отладки программы. Также были приобрести практические навыки программирования и отладки программ на языке Ассемблера.