Effect of noise on front propagation in reaction-diffusion equations

Zhenyao Sun

Based on ongoing work with Clayton Barnes and Leonid Mytnik

Webinar November, 2020

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation:

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + u_{t,x} (1 - u_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation:

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + u_{t,x} (1 - u_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

Fisher (1937) proposed this equation in the context of population dynamics to describe the spatial spread of an advantageous gene.

• $u_{t,x}$ – the proportion of population at time t at site x with the advantageous gene;

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation:

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + u_{t,x} (1 - u_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

Fisher (1937) proposed this equation in the context of population dynamics to describe the spatial spread of an advantageous gene.

- $u_{t,x}$ the proportion of population at time t at site x with the advantageous gene;
- $\frac{1}{2}\partial_x^2 u$ the microscopic movements of the members of the population are Brownian motions.

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation:

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \frac{u_{t,x}}{(1 - u_{t,x})}, \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

Fisher (1937) proposed this equation in the context of population dynamics to describe the spatial spread of an advantageous gene.

- $u_{t,x}$ the proportion of population at time t at site x with the advantageous gene;
- $\frac{1}{2}\partial_x^2 u$ the microscopic movements of the members of the population are Brownian motions.
- More fit members replace less fit members. Frequency of this interaction is proportional to u(1-u).

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation:

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + u_{t,x} (1 - u_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

Traveling wave solution

Kolmogorov-Petrovsky-Piskunov (1937) and Bramson (1983):

• For any $v \ge v_0 := \sqrt{2}$, there exists a function U_v on \mathbb{R} such that $(x,t) \mapsto U_v(x-vt)$ is a solution to the FKPP equation which satisfies $U_v(-\infty) = 1$, and $U_v(\infty) = 0$.

Traveling wave solution

Kolmogorov-Petrovsky-Piskunov (1937) and Bramson (1983):

- For any $v \ge v_0 := \sqrt{2}$, there exists a function U_v on \mathbb{R} such that $(x,t) \mapsto U_v(x-vt)$ is a solution to the FKPP equation which satisfies $U_v(-\infty) = 1$, and $U_v(\infty) = 0$.
- If $-\infty < \inf\{x : u_{0,x} < 1\} \le \sup\{x : u_{0,x} > 0\} < \infty$, then

$$\lim_{t \to \infty} \sup_{x \in \mathbb{R}} |u_{t,x} - \frac{\mathbf{U}_{\mathbf{v_0}}}{(x - m(t))}| = 0$$

where m(t) is some suitable centering satisfying $m(t)/t \to v_0$.

Traveling wave solution

Kolmogorov-Petrovsky-Piskunov (1937) and Bramson (1983):

- For any $v \ge v_0 := \sqrt{2}$, there exists a function U_v on \mathbb{R} such that $(x,t) \mapsto U_v(x-vt)$ is a solution to the FKPP equation which satisfies $U_v(-\infty) = 1$, and $U_v(\infty) = 0$.
- If $-\infty < \inf\{x : u_{0,x} < 1\} \le \sup\{x : u_{0,x} > 0\} < \infty$, then

$$\lim_{t \to \infty} \sup_{x \in \mathbb{R}} |u_{t,x} - U_{\mathbf{v}_0}(x - \frac{m(t)}{m(t)})| = 0$$

where m(t) is some suitable centering satisfying $m(t)/t \to v_0$.

• Bramson's correction:

$$m(t) = O(1) + \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t.$$

Mckean's duality (1975):

• Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1, independent of the others.

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1, independent of the others.
- Let the system start with one particle at position 0.

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1, independent of the others.
- Let the system start with one particle at position 0.
- Let R_t be the position of the rightmost particle at time t.

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1, independent of the others.
- Let the system start with one particle at position 0.
- Let R_t be the position of the rightmost particle at time t.
- Then $P(R_t > x) = u_{t,x}$ solves the FKPP equation.

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1, independent of the others.
- Let the system start with one particle at position 0.
- Let R_t be the position of the rightmost particle at time t.
- Then $P(R_t > x) = u_{t,x}$ solves the FKPP equation.

Therefore
$$R_t/t \to v_0 = \sqrt{2}$$
 and

$$R_t - (\sqrt{2}t - \frac{3}{2\sqrt{2}}\log t) \xrightarrow[t \to \infty]{d}$$
 some random variable.

Stochastic FKPP equation

Stochastic FKPP equation

$$\partial_t u = \frac{1}{2} \partial_x^2 u + u(1 - u) + \epsilon \sqrt{u(1 - u)} \dot{W} \tag{1}$$

where \dot{W} is a Gaussian space-time white noise.

Stochastic FKPP equation

Stochastic FKPP equation

$$\partial_t u = \frac{1}{2} \partial_x^2 u + u(1 - u) + \epsilon \sqrt{u(1 - u)} \dot{W}$$

where \dot{W} is a Gaussian space-time white noise.

We say u is a (mild) solution to (1) if for each t > 0 and $x \in \mathbb{R}$,

$$u_{t,x} = \iint_0^t G_{s,y;t,x} \left(u_{0,y} \delta_0(\mathrm{d}s) \mathrm{d}y + u_{s,y} (1 - u_{s,y}) \mathrm{d}s \mathrm{d}y + \epsilon \sqrt{u_{s,y} (1 - u_{s,y})} \dot{W}_{s,y} ds \mathrm{d}y \right)$$

almost surely where $G_{s,y;t,x}$ is the transition density for Brownian motion from time-space (s,y) to (t,x).

The outcome of interaction between fit and unfit individuals may be random. The "variance" of this interaction is proportion to $\epsilon^2 u(1-u)$. Interactions are independent at different space-time points (space-time white noise).

The outcome of interaction between fit and unfit individuals may be random. The "variance" of this interaction is proportion to $\epsilon^2 u(1-u)$. Interactions are independent at different space-time points (space-time white noise).

Shiga's duality (1988):

• Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1 independent of the others. Each pair of particles coalesce at rate ϵ^2 according to their intersection local time.

The outcome of interaction between fit and unfit individuals may be random. The "variance" of this interaction is proportion to $\epsilon^2 u(1-u)$. Interactions are independent at different space-time points (space-time white noise).

Shiga's duality (1988):

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1 independent of the others. Each pair of particles coalesce at rate ϵ^2 according to their intersection local time.
- Let the system start with one particle at 0.

The outcome of interaction between fit and unfit individuals may be random. The "variance" of this interaction is proportion to $\epsilon^2 u(1-u)$. Interactions are independent at different space-time points (space-time white noise).

Shiga's duality (1988):

- Consider a system of particles moving as independent 1-d Brownian motions. Each particle splits in two at rate 1 independent of the others. Each pair of particles coalesce at rate ϵ^2 according to their intersection local time.
- Let the system start with one particle at 0.
- Let $R^{bc}(t)$ be the position of the rightmost particle at time t, then $P(R^{bc}(t) > x) = E_{\mathbf{1}_{(-\infty,0]}}[u(t,x)]$ where u satisfies the stochastic FKPP equation.

For any $u: x \to [0, 1]$, define

$$L(u) = \inf\{x : u_x < 1\}, \quad R(u) = \sup\{x : u_x > 0\}.$$

Define $\mathcal{B}_I := \{ u \in \mathcal{B}(\mathbb{R}, [0, 1]) : -\infty < L(u) \leq R(u) < \infty \}$ and $\mathcal{C}_I := \mathcal{B}_I \cap \mathcal{C}(\mathbb{R}, [0, 1]).$

For any $u: x \to [0,1]$, define

$$L(u) = \inf\{x : u_x < 1\}, \quad R(u) = \sup\{x : u_x > 0\}.$$

Define $\mathcal{B}_I := \{u \in \mathcal{B}(\mathbb{R}, [0, 1]) : -\infty < L(u) \leq R(u) < \infty\}$ and $\mathcal{C}_I := \mathcal{B}_I \cap \mathcal{C}(\mathbb{R}, [0, 1]).$

For any $u: x \to [0, 1]$, define

$$L(u) = \inf\{x : u_x < 1\}, \quad R(u) = \sup\{x : u_x > 0\}.$$

Define $\mathcal{B}_I := \{u \in \mathcal{B}(\mathbb{R}, [0, 1]) : -\infty < L(u) \leq R(u) < \infty\}$ and $\mathcal{C}_I := \mathcal{B}_I \cap \mathcal{C}(\mathbb{R}, [0, 1]).$

Shiga (1988):

If $u_0 \in \mathcal{B}_I$ then there exists a unique in law solution $(u_{t,x})_{t \geq 0, x \in \mathbb{R}}$ to the stochastic FKPP equation.

For any $u: x \to [0, 1]$, define

$$L(u) = \inf\{x : u_x < 1\}, \quad R(u) = \sup\{x : u_x > 0\}.$$

Define $\mathcal{B}_I := \{u \in \mathcal{B}(\mathbb{R}, [0, 1]) : -\infty < L(u) \leq R(u) < \infty\}$ and $\mathcal{C}_I := \mathcal{B}_I \cap \mathcal{C}(\mathbb{R}, [0, 1]).$

Shiga (1988):

If $u_0 \in \mathcal{B}_I$ then there exists a unique in law solution $(u_{t,x})_{t \geq 0, x \in \mathbb{R}}$ to the stochastic FKPP equation.

Muller-Sowers (1995):

If $u_0 \in \mathcal{B}_I$ then almost surely for any t > 0, $u_t \in \mathcal{C}_I$. (This doesn't hold for the deterministic FKPP equation.)

Effect of small noise on the speed

Mueller-Sowers (1995):

For small enough $\epsilon > 0$, there exists a deterministic speed $V(\epsilon) \in \mathbb{R}$ such that almost surely

$$\lim_{t \to \infty} \frac{R(u_t)}{t} = V(\epsilon).$$

Effect of small noise on the speed

Mueller-Sowers (1995):

For small enough $\epsilon > 0$, there exists a deterministic speed $V(\epsilon) \in \mathbb{R}$ such that almost surely

$$\lim_{t\to\infty}\frac{R(u_t)}{t}=V(\epsilon).$$

Brunet-Derrida conjecture (1997) proved by Mueller-Mytnik-Quastel (2011):

When $\epsilon \to 0$,

$$V(\epsilon) = \sqrt{2} - \frac{\pi^2}{2|\log \epsilon|^2} + O\left(\frac{\log|\log \epsilon|}{|\log \epsilon|^3}\right)$$

Unexpected slow down

From the property of space-time white noise, one has $V(-\epsilon) = V(\epsilon)$. So $V(\epsilon)$ takes its local maximum at $\epsilon = 0$. A naive Taylor's expansion argument expects that $V^{\text{ex}}(\epsilon) \approx \sqrt{2} - c\epsilon^2$.

Unexpected slow down

From the property of space-time white noise, one has $V(-\epsilon) = V(\epsilon)$. So $V(\epsilon)$ takes its local maximum at $\epsilon = 0$. A naive Taylor's expansion argument expects that $V^{\text{ex}}(\epsilon) \approx \sqrt{2} - c\epsilon^2$.

This is much larger than the accurate estimate $V(\epsilon) \approx \sqrt{2} - \frac{\pi^2}{2|\log \epsilon|^2}$.

Unexpected slow down

From the property of space-time white noise, one has $V(-\epsilon) = V(\epsilon)$. So $V(\epsilon)$ takes its local maximum at $\epsilon = 0$. A naive Taylor's expansion argument expects that $V^{\text{ex}}(\epsilon) \approx \sqrt{2} - c\epsilon^2$.

This is much larger than the accurate estimate $V(\epsilon) \approx \sqrt{2} - \frac{\pi^2}{2|\log \epsilon|^2}$.

Effect of large noise on the speed

Conlon-Doering (2005):

For any $\epsilon > 0$, there exists a deterministic speed $V(\epsilon) \in \mathbb{R}$ such that almost surely

$$\lim_{t \to \infty} \frac{R(u_t)}{t} = V(\epsilon).$$

Effect of large noise on the speed

Conlon-Doering (2005):

For any $\epsilon > 0$, there exists a deterministic speed $V(\epsilon) \in \mathbb{R}$ such that almost surely

$$\lim_{t \to \infty} \frac{R(u_t)}{t} = V(\epsilon).$$

Conlon-Doering conjecture (2005) proved by Mueller-Mytnik-Ryzhik (2019):

$$\epsilon^2 V(\epsilon) \xrightarrow[\epsilon \to \infty]{} 1$$

Dramatic slow down

Let's define $v_{t,x} = u_{\epsilon^{-4}t,\epsilon^{-2}x}$. Then v satisfies the equation

$$\partial_t v_{t,x} = \partial_x^2 v_{t,x} + \epsilon^{-4} v_{t,x} (1 - v_{t,x}) + \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}.$$

Dramatic slow down

Let's define $v_{t,x} = u_{\epsilon^{-4}t,\epsilon^{-2}x}$. Then v satisfies the equation

$$\partial_t v_{t,x} = \partial_x^2 v_{t,x} + \epsilon^{-4} v_{t,x} (1 - v_{t,x}) + \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}.$$

Mueller-Mytnik-Ryzhik's result (2019) implies that the speed of v is of order ϵ^{-4} when ϵ is large.

Dramatic slow down

Let's define $v_{t,x} = u_{\epsilon^{-4}t,\epsilon^{-2}x}$. Then v satisfies the equation

$$\partial_t v_{t,x} = \partial_x^2 v_{t,x} + \epsilon^{-4} v_{t,x} (1 - v_{t,x}) + \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}.$$

Mueller-Mytnik-Ryzhik's result (2019) implies that the speed of v is of order ϵ^{-4} when ϵ is large.

The deterministic equation

$$\partial_t \bar{v}_{t,x} = \partial_x^2 \bar{v}_{t,x} + \epsilon^{-4} \bar{v}_{t,x} (1 - \bar{v}_{t,x}).$$

has speed of order $e^{-2} \gg e^{-4}$ when e is large.

General drift

One can consider a more general reaction term f(u) instead of u(1-u) in the reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \mathbf{f}(\mathbf{u}_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$
 (1)

and the corresponding stochastic reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \mathbf{f}(u_{t,x}) + \epsilon \sqrt{u_{t,x}(1 - u_{t,x})} \dot{W}_{t,x}, \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

General drift

One can consider a more general reaction term f(u) instead of u(1-u) in the reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \frac{f(u_{t,x})}{f(u_{t,x})}, \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$

and the corresponding stochastic reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \frac{\mathbf{f}(u_{t,x})}{\mathbf{f}(u_{t,x})} + \epsilon \sqrt{u_{t,x}(1 - u_{t,x})} \dot{W}_{t,x}, \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}.$$

If f is a C^1 function on [0,1] which satisfies the KPP condition:

$$f(0) = f(1) = 0;$$
 $0 < f(u) \le uf'(0),$ $u \in (0, 1),$

similar results mentioned above still hold. In particular, (1) has minimum speed $\sqrt{2f'(0)}$.

Non-Lipschitz drift with no noise

Question:

What if f is not Lipschitz?

Non-Lipschitz drift with no noise

Question:

What if f is not Lipschitz?

Aguirre and Escobedo (1986):

For the deterministic reaction-diffusion equation,

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + \frac{\mathbf{u}_{t,x}^p}{\mathbf{t}_{t,x}} (1 - u_{t,x}), \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$

with $p \in (0, 1)$, if $u_0 \not\equiv 0$ taking values in [0, 1], then there exists a unique solution to (1). And the solution satisfies

$$\lim_{t \to \infty} \inf_{x \in \mathbb{R}} u_{t,x} = 1,$$

which says that there is no traveling wave solution.

Non-Lipschitz drift with noise

Mueller-Mytnik-Ryzhik (2019):

For the stochastic reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + f(u_{t,x}) + \epsilon \sqrt{u_{t,x}(1 - u_{t,x})} \dot{W}_{t,x},$$

if $u_0 \in \mathcal{B}_I$ and f is continuous with $|f(u)| \leq K_f |u(1-u)|^{1/2}$, then:

• There exists a unique in law solution;

Non-Lipschitz drift with noise

Mueller-Mytnik-Ryzhik (2019):

For the stochastic reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + f(u_{t,x}) + \epsilon \sqrt{u_{t,x}(1 - u_{t,x})} \dot{W}_{t,x},$$

if $u_0 \in \mathcal{B}_I$ and f is continuous with $|f(u)| \leq K_f |u(1-u)|^{1/2}$, then:

- There exists a unique in law solution;
- Almost surely for any t > 0, $u_t \in C_I$;

Non-Lipschitz drift with noise

Mueller-Mytnik-Ryzhik (2019):

For the stochastic reaction-diffusion equation

$$\partial_t u_{t,x} = \frac{1}{2} \partial_x^2 u_{t,x} + f(u_{t,x}) + \epsilon \sqrt{u_{t,x}(1 - u_{t,x})} \dot{W}_{t,x},$$

if $u_0 \in \mathcal{B}_I$ and f is continuous with $|f(u)| \leq K_f |u(1-u)|^{1/2}$, then:

- There exists a unique in law solution;
- Almost surely for any t > 0, $u_t \in C_I$;
- The solution has finite deterministic speed

$$\lim_{t \to \infty} \frac{R(u_t)}{t} = V_{\epsilon, f} \in \mathbb{R};$$

Noise effect in the non-Lipschitz case

Question

What is the effect of the noise on the speed of stochastic reaction-diffusion equation with non-Lipschitz drift

- when the noise is large?
- when the noise is small?

Noise effect in the non-Lipschitz case

Question

What is the effect of the noise on the speed of stochastic reaction-diffusion equation with non-Lipschitz drift

- when the noise is large?
- when the noise is small?

Mueller-Mytnik-Ryzhik (2019):

If $|f(u)| \leq K_f |u(1-u)|^{\gamma}$ for some $\gamma \in (1/2,1]$, then $\lim_{\epsilon \to \infty} \epsilon^2 V_{\epsilon,f} = c_f$.

Noise effect in the non-Lipschitz case

Question

What is the effect of the noise on the speed of stochastic reaction-diffusion equation with non-Lipschitz drift

- when the noise is large?
- when the noise is small?

Mueller-Mytnik-Ryzhik (2019):

If $|f(u)| \leq K_f |u(1-u)|^{\gamma}$ for some $\gamma \in (1/2, 1]$, then $\lim_{\epsilon \to \infty} \epsilon^2 V_{\epsilon, f} = c_f$.

Barnes-Mytnik-S. (ongoing work)

If $f(u) = u^p(1-u)$ with $p \in (1/2,1)$, then there exists $0 < c < C < \infty$ and ϵ_0 such that

$$c\epsilon^{-2\frac{1-p}{1+p}} \le V_{\epsilon,f} \le C\epsilon^{-2\frac{1-p}{1+p}}, \quad \forall \epsilon \in (0,\epsilon_0).$$

Challenge:

It is hard to identify the stationary traveling wave solution. In fact, the existence of the stationary traveling wave solution is still open in the non-Lipschitz case.

Challenge:

It is hard to identify the stationary traveling wave solution. In fact, the existence of the stationary traveling wave solution is still open in the non-Lipschitz case.

Consider a deterministic equation with free moving boundary: Find solution (F, \mathbf{v}) so that $\varrho_{t,x} = F(x - \mathbf{v}t)$ satisfies

$$\begin{cases} \partial_t \varrho_{t,x} = \frac{1}{2} \partial_x^2 \varrho + \varrho^p (1 - \varrho), & x < vt, \\ \varrho_{t,x} = 0, & x \ge vt. \end{cases}$$

Challenge:

It is hard to identify the stationary traveling wave solution. In fact, the existence of the stationary traveling wave solution is still open in the non-Lipschitz case.

Consider a deterministic equation with free moving boundary: Find solution (F, \mathbf{v}) so that $\varrho_{t,x} = F(x - \mathbf{v}t)$ satisfies

$$\begin{cases} \partial_t \varrho_{t,x} = \frac{1}{2} \partial_x^2 \varrho + \varrho^p (1 - \varrho), & x < vt, \\ \varrho_{t,x} = 0, & x \ge vt. \end{cases}$$

• For any ϵ small enough, there exists a unique solution (F, \mathbf{v}) so that $F'(0-) = \epsilon^2$ and $F(-\infty) = 1$.

Challenge:

It is hard to identify the stationary traveling wave solution. In fact, the existence of the stationary traveling wave solution is still open in the non-Lipschitz case.

Consider a deterministic equation with free moving boundary: Find solution (F, \mathbf{v}) so that $\varrho_{t,x} = F(x - \mathbf{v}t)$ satisfies

$$\begin{cases} \partial_t \varrho_{t,x} = \frac{1}{2} \partial_x^2 \varrho + \varrho^p (1 - \varrho), & x < vt, \\ \varrho_{t,x} = 0, & x \ge vt. \end{cases}$$

- For any ϵ small enough, there exists a unique solution (F, \mathbf{v}) so that $F'(0-) = \epsilon^2$ and $F(-\infty) = 1$.
- It can be verified that $v = \Theta(\epsilon^{-2\frac{1-p}{1+p}})$.

Now we use this (F, v) with $F'(0-) = \epsilon^2$ to construct a stochastic equation with moving boundary:

$$\begin{cases} \partial_t v_{t,x} = \frac{1}{2} \partial_x^2 v_{t,x} + v_{t,x}^p (1 - v_{t,x}) + \epsilon \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}, & x < \mathbf{v}t, \\ v_{t,x} = 0, & x \ge \mathbf{v}t, \\ v_{0,x} = \mathbf{F}(\mathbf{x}), & x \in \mathbb{R}. \end{cases}$$

Now we use this (F, \mathbf{v}) with $F'(0-) = \epsilon^2$ to construct a stochastic equation with moving boundary:

$$\begin{cases} \partial_t v_{t,x} = \frac{1}{2} \partial_x^2 v_{t,x} + v_{t,x}^p (1 - v_{t,x}) + \epsilon \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}, & x < vt, \\ v_{t,x} = 0, & x \ge vt, \\ v_{0,x} = F(x), & x \in \mathbb{R}. \end{cases}$$

Here, the SPDE with the moving boundary condition is understood as

$$v_{t,x} = \iint_0^t G_{s,y;t,x}^{\mathsf{v}} \left(v_{0,y} \delta_0(\mathrm{d}s) \mathrm{d}y + v_{s,y}^p (1 - v_{s,y}) \mathrm{d}s \mathrm{d}y \right.$$
$$\left. + \epsilon \sqrt{v_{s,y} (1 - v_{s,y})} \dot{W}_{s,y} \right)$$

where $G^{\mathbf{v}}$ is the transition kernel of a Brownian motion killed upon entering time-space region $\{(t, x) : x \ge \mathbf{v}t\}$.

Proof strategy

• Step 1: v does not deviate from ϱ too much.

Proof strategy

- Step 1: v does not deviate from ϱ too much.
- Step 2: There is a certain way of coupling u and v together, so that u does not deviate from v too much.

Proof strategy

- Step 1: v does not deviate from ϱ too much.
- Step 2: There is a certain way of coupling u and v together, so that u does not deviate from v too much.
- Step 3: Noticing that ϱ has speed $\mathbf{v} = \Theta(\epsilon^{-2\frac{1-p}{1+p}})$, v and u also have speed of \mathbf{v} .

Proof strategy

- Step 1: v does not deviate from ϱ too much.
- Step 2: There is a certain way of coupling u and v together, so that u does not deviate from v too much.
- Step 3: Noticing that ϱ has speed $\mathbf{v} = \Theta(\epsilon^{-2\frac{1-p}{1+p}})$, v and u also have speed of \mathbf{v} .

Proof strategy

- Step 1: v does not deviate from ϱ too much.
- Step 2: There is a certain way of coupling u and v together, so that u does not deviate from v too much.
- Step 3: Noticing that ϱ has speed $\mathbf{v} = \Theta(\epsilon^{-2\frac{1-p}{1+p}})$, v and u also have speed of \mathbf{v} .

Observe that v satisfies

$$\partial_t v_{t,x} = \frac{1}{2} \partial_x^2 v_{t,x} + v_{t,x}^p (1 - v_{t,x}) + \epsilon \sqrt{v_{t,x} (1 - v_{t,x})} \dot{W}_{t,x}^v - \delta_{vt}(x) \dot{A}_t.$$

where A_t is the total mass loss at the boundary up to time t.

Given the equation for u and v, we can couple them together so that their difference w=u-v satisfies the SPDE

$$\partial_t w_{t,x} = \frac{1}{2} \partial_x^2 w_{t,x} + \frac{\mathbf{f}_{t,x}^w}{\mathbf{f}_{t,x}^w} + \epsilon \sigma_{t,x}^w \dot{W}_{t,x}^w + \delta_{vt}(x) \dot{A}_t$$

for some suitable drift term $f_{t,x}^w$ and some noise term $\sigma_{t,x}^w$.

Given the equation for u and v, we can couple them together so that their difference w=u-v satisfies the SPDE

$$\partial_t w_{t,x} = \frac{1}{2} \partial_x^2 w_{t,x} + \frac{\mathbf{f}_{t,x}^w}{\mathbf{f}_{t,x}^w} + \epsilon \sigma_{t,x}^w \dot{W}_{t,x}^w + \delta_{vt}(x) \dot{A}_t$$

for some suitable drift term $f_{t,x}^w$ and some noise term $\sigma_{t,x}^w$.

When $w_{t,x}$ takes small values, one can verify that $f_{t,x}^w \sim w_{t,x}^p$ and $\sigma_{t,x}^w \sim \sqrt{w_{t,x}}$. So basically

$$\partial_t w_{t,x} \approx \frac{1}{2} \partial_x^2 w_{t,x} + \frac{\mathbf{w}_{t,x}^p}{\mathbf{w}_{t,x}^p} + \epsilon \sqrt{\mathbf{w}_{t,x}} \dot{W}_{t,x}^v + \delta_{vt}(x) \dot{A}_t.$$

Given the equation for u and v, we can couple them together so that their difference w=u-v satisfies the SPDE

$$\partial_t w_{t,x} = \frac{1}{2} \partial_x^2 w_{t,x} + \frac{\mathbf{f}_{t,x}^w}{\mathbf{f}_{t,x}^w} + \epsilon \sigma_{t,x}^w \dot{W}_{t,x}^w + \delta_{vt}(x) \dot{A}_t$$

for some suitable drift term $f_{t,x}^w$ and some noise term $\sigma_{t,x}^w$.

When $w_{t,x}$ takes small values, one can verify that $f_{t,x}^w \sim w_{t,x}^p$ and $\sigma_{t,x}^w \sim \sqrt{w_{t,x}}$. So basically

$$\partial_t w_{t,x} \approx \frac{1}{2} \partial_x^2 w_{t,x} + \frac{\mathbf{w}_{t,x}^p}{\mathbf{v}_{t,x}} + \epsilon \sqrt{w_{t,x}} \dot{W}_{t,x}^v + \delta_{vt}(x) \dot{A}_t.$$

We want to get rid of the drift $f_{t,x}^w$ using Girsanov transformation.

Define an exponential martingale,

$$M_t^{(\epsilon)} = \exp\left\{-\iint_0^t \frac{f_{s,y}^w}{\epsilon \sigma_{s,y}} W(\mathrm{d}s\mathrm{d}y) + \frac{1}{2} \iint_0^t (\frac{f_{s,y}^w}{\epsilon \sigma_{s,y}})^2 \mathrm{d}s\mathrm{d}y\right\}$$

and a new probability Q with $dQ|_{\mathscr{F}_t} = M_t^{(\epsilon)} dP|_{\mathscr{F}_t}$.

Define an exponential martingale,

$$M_t^{(\epsilon)} = \exp\Big\{-\iint_0^t \frac{f_{s,y}^w}{\epsilon \sigma_{s,y}} W(\mathrm{d}s\mathrm{d}y) + \frac{1}{2} \iint_0^t (\frac{f_{s,y}^w}{\epsilon \sigma_{s,y}})^2 \mathrm{d}s\mathrm{d}y\Big\}$$

and a new probability Q with $dQ|_{\mathscr{F}_t} = M_t^{(\epsilon)} dP|_{\mathscr{F}_t}$.

Then under probability Q, when w is small, it basically satisfies

$$\partial_t w_{t,x} \approx \frac{1}{2} \partial_x^2 w_{t,x} + \epsilon \sqrt{w_{t,x}} \dot{W}_{t,x}^v + \delta_{vt}(x) \dot{A}_t.$$

Define an exponential martingale,

$$M_t^{(\epsilon)} = \exp\left\{-\iint_0^t \frac{f_{s,y}^w}{\epsilon \sigma_{s,y}} W(\mathrm{d}s\mathrm{d}y) + \frac{1}{2} \iint_0^t (\frac{f_{s,y}^w}{\epsilon \sigma_{s,y}})^2 \mathrm{d}s\mathrm{d}y\right\}$$

and a new probability Q with $dQ|_{\mathscr{F}_t} = M_t^{(\epsilon)} dP|_{\mathscr{F}_t}$.

Then under probability Q, when w is small, it basically satisfies

$$\partial_t w_{t,x} pprox \frac{1}{2} \partial_x^2 w_{t,x} + \epsilon \sqrt{w_{t,x}} \dot{W}_{t,x}^v + \frac{\delta_{vt}(x) \dot{A}_t}{\delta_{vt}}.$$

Now we can study w (under probability Q) since it is basically a critical super-Brownian motion with immigration.

Note that $R(w_t) - vt$ is the rightmost position of the support of w, recentered at the position of immigration source vt.

Note that $R(w_t) - vt$ is the rightmost position of the support of w, recentered at the position of immigration source vt.

Under probability Q, we have

$$\left\{\frac{R(w_t) - vt}{\sqrt{t}} : t \ge 0\right\}$$
 is tight.

(Similar result is known for critical branching random walk with immigration, Kesten (1994).)

Note that $R(w_t) - vt$ is the rightmost position of the support of w, recentered at the position of immigration source vt.

Under probability Q, we have

$$\left\{\frac{R(w_t) - vt}{\sqrt{t}} : t \ge 0\right\}$$
 is tight.

(Similar result is known for critical branching random walk with immigration, Kesten (1994).)

Therefore, under probability Q, centered at the immigration source, the propagation speed of w is

$$\frac{R(w_t) - vt}{t} \xrightarrow[t \to \infty]{\text{in probability}} 0$$

However...

• For a fixed t, the distribution of $(w_s)_{0 \le s \le t}$ under P and under Q are not "comparable".

However...

- For a fixed t, the distribution of $(w_s)_{0 \le s \le t}$ under P and under Q are not "comparable".
- Note that for a event $A \in \mathcal{F}_t$,

$$P(A) = Q[(M_t^{(\epsilon)})^{-1} \mathbf{1}_A] \le \sqrt{Q[(M_t^{(\epsilon)})^{-2}]Q(A)}$$

However...

- For a fixed t, the distribution of $(w_s)_{0 \le s \le t}$ under P and under Q are not "comparable".
- Note that for a event $A \in \mathcal{F}_t$,

$$P(A) = Q[(M_t^{(\epsilon)})^{-1} \mathbf{1}_A] \le \sqrt{Q[(M_t^{(\epsilon)})^{-2}]Q(A)}$$

• For a fixed t, $Q[(M_t^{(\epsilon)})^{-2}] \xrightarrow[\epsilon \to 0]{} \infty$.

However...

- For a fixed t, the distribution of $(w_s)_{0 \le s \le t}$ under P and under Q are not "comparable".
- Note that for a event $A \in \mathcal{F}_t$,

$$P(A) = Q[(M_t^{(\epsilon)})^{-1} \mathbf{1}_A] \le \sqrt{Q[(M_t^{(\epsilon)})^{-2}]Q(A)}$$

• For a fixed t, $Q[(M_t^{(\epsilon)})^{-2}] \xrightarrow[\epsilon \to 0]{} \infty$.

So we want to find a small time $t = T_{\epsilon}$, which allows us to compare $(w_s)_{0 \leq s \leq t}$ under P with $(w_s)_{0 \leq s \leq t}$ under Q in the sense that

$$Q[(M_t^{(\epsilon)})^{-2}] = O(1), \quad \epsilon \to 0. \quad (*)$$

A important observation

We need to choose $T_{\epsilon} \lesssim \epsilon^{4\frac{1-p}{1+p}}$ so that (*) holds.

A important observation

We need to choose $T_{\epsilon} \lesssim \epsilon^{4\frac{1-p}{1+p}}$ so that (*) holds.

Now, given time $t = T_{\epsilon} \sim \epsilon^{4\frac{1-p}{1+p}}$, under both probability Q and P, the (average) propagation speed of $(w_s)_{0 \le s \le T_{\epsilon}}$ centered by vt is

$$\frac{R(w_t) - vt}{t} \lesssim \frac{\sqrt{t}}{t} \sim 1/\sqrt{T_{\epsilon}} \sim \epsilon^{-2\frac{1-p}{1+p}} \sim v.$$

Therefore, the order of the average speed of u in time interval $[0, T_{\epsilon}]$ is equal to v.

A important observation

We need to choose $T_{\epsilon} \lesssim \epsilon^{4\frac{1-p}{1+p}}$ so that (*) holds.

Now, given time $t = T_{\epsilon} \sim \epsilon^{4\frac{1-p}{1+p}}$, under both probability Q and P, the (average) propagation speed of $(w_s)_{0 \le s \le T_{\epsilon}}$ centered by vt is

$$\frac{R(w_t) - vt}{t} \lesssim \frac{\sqrt{t}}{t} \sim 1/\sqrt{T_{\epsilon}} \sim \epsilon^{-2\frac{1-p}{1+p}} \sim v.$$

Therefore, the order of the average speed of u in time interval $[0, T_{\epsilon}]$ is equal to v.

To get the propagation speed for $t \to \infty$, we use a standard updating procedure (repeating the argument for each time interval $[nT_{\epsilon}, (n+1)T_{\epsilon}], n \in \mathbb{N}$.)

Thank you!