Queueing network

Tran, Van Hoai (hoai@hcmut.edu.vn)

Faculty of Computer Science & Engineering HCMC University of Technology

2022-2023/Semester 1

- 1 Example
- 2 Open and closed queueing networks
- 3 Product form networks
 - Open Jackson networks
- 4 Queueing network in practice

- 1 Example
- 2 Open and closed queueing networks
- 3 Product form networks
 - Open Jackson networks
- 4 Queueing network in practice

A computer system as 4-node queueing network

- All queues are FCFS
- Interarrival time is exponentially distributed with $\lambda = 4$ jobs/sec.
- The service time at each node is exponentially distributed with $\frac{1}{\mu_1}=0.04$ sec, $\frac{1}{\mu_2}=0.03$ sec, $\frac{1}{\mu_3}=0.06$ sec, and $\frac{1}{\mu_4}=0.05$ sec.
- The routing probabilities are $p_{12} = p_{13} = 0.5, p_{41} = p_{21} = 1, p_{31} = 0.6, p_{30} = 0.4.$

Questions

- What is the steady state probability of state (k1, k2, k3, k4) = (3,2,4,1)?
- How many jobs in CPU queue?

- 1 Example
- 2 Open and closed queueing networks
- 3 Product form networks
 - Open Jackson networks
- 4 Queueing network in practice

Open queueing network

Remarks

A system can be modelled by several networked queues in which a job departing from one queue arrives at another queue (or possibly the same queue)

Open queueing network

Remarks

A system can be modelled by several networked queues in which a job departing from one queue arrives at another queue (or possibly the same queue)

Open queueing network

A queueing network has external arrivals and departures.

Open queueing network

Remarks

A system can be modelled by several networked queues in which a job departing from one queue arrives at another queue (or possibly the same queue)

Open queueing network

A queueing network has external arrivals and departures.

- Number of jobs in system varies with time.
- Assumption: throughput = arrival rate
- Analysis goal: to characterize the distribution of number of jobs in the system.

Closed queueing network

Closed queueing network

A queueing network has no external arrivals and departures.

Closed queueing network

Closed queueing network

A queueing network has no external arrivals and departures.

- Total number of jobs in the system is constant.
- Build a closed network from open network: "Out" \rightarrow "In".
- Throughput = flow on Out-to-In link.
- Analysis goal: Given number of jobs, determine throughput.

- 1 Example
- 2 Open and closed queueing networks
- 3 Product form networks
 - Open Jackson networks
- 4 Queueing network in practice

Series networks

- $\mathbf{k} \; \mathsf{M}/\mathsf{M}/1$ queues in series.
- Each individual queue can be analyzed independently of other queues
- Utilization of server i: $\rho_i = \lambda/\mu_i$
- Probability of n_i jobs in queue i: $P_i(n_i) = (1 \rho_i)\rho_i^{n_i}$
- Joint probability of queue lengths

$$P(n_1, n_2, \ldots, n_k) = \prod_{i=1}^k P_i(n_i)$$

Series networks

- $\mathbf{k} \; \mathsf{M}/\mathsf{M}/1$ queues in series.
- Each individual queue can be analyzed independently of other queues
- Utilization of server i: $\rho_i = \lambda/\mu_i$
- Probability of n_i jobs in queue i: $P_i(n_i) = (1 \rho_i)\rho_i^{n_i}$
- Joint probability of queue lengths

$$P(n_1, n_2, \ldots, n_k) = \prod_{i=1}^k P_i(n_i)$$

⇒ **Product form network** (i.e., in which the system state probability is a product of device state probabilities).

Jackson networks (1)

Definition of Jackson network

Jackson network is an open queueing network which satisfies

- Any external arrivals to node *i* form a Poisson process.
- Service time = exponential distributed, service discipline = FCFS
- A job after finished at queue i, either moves to queue j with probability p_{ij} , or leaves the system with probability $1 \sum_{j=1}^{m} p_{ij}$.
- Utilization of all queues < 1.

Jackson networks (2)

Jackson theorem

Given a Jackson network of k M/M/1 queues with utilization ρ_i . The equilibrium state probability distribution exists and for state (n_1, n_2, \ldots, n_k) is given by the product of the individual queue equilibrium distributions as follows.

$$P(n_1, n_2, \ldots, n_k) = \prod_{i=1}^{k} [\rho_i^{n_i} (1 - \rho_i)].$$

Jackson networks (2)

Jackson theorem

Given a Jackson network of k M/M/1 queues with utilization ρ_i . The equilibrium state probability distribution exists and for state (n_1, n_2, \ldots, n_k) is given by the product of the individual queue equilibrium distributions as follows.

$$P(n_1, n_2, \ldots, n_k) = \prod_{i=1}^{\kappa} [\rho_i^{n_i} (1 - \rho_i)].$$

Remarks

- Generally, if there is any feedback in the network, the internal flows are not Poisson.
- Queues can be separable and each queue in the network behaves as an M/M/1 system. Calculation of arrival rate of each queue will be shown next.

Jackson networks (3)

Consider a Jackson network.

Define

$$a = (\alpha p_{0i})_{i=1}^k$$

in which a is arrival rate to the network/

■ Denote overall rate to node *i*

$$\lambda_i = \alpha p_{0i} + \sum_{j=1}^k \lambda_j p_{ji}, i = 1, \dots, k$$

■ Then,

$$\lambda = (I - P^T)^{-1}a$$

Jackson networks: example (1)

Arrivals
$$\alpha$$

$$p_{01}$$

$$p_{12}$$

$$p_{02}$$

$$p_{12}$$

$$p_{12}$$

$$p_{02}$$

$$p_{13}$$

$$p_{13}$$

$$p_{13}$$

$$p_{13}$$

$$p_{14}$$

$$p_{15}$$

$$p_{16}$$

$$p_{17}$$

$$p_{18}$$

$$p_{18}$$

$$p_{19}$$

Suppose

$$\alpha = 5, p_{01} = 0.5, p_{02} = 0.5, p_{03} = 0$$

 $p_{12} = 0.4, p_{13} = 0.6$

$$P = \left[\begin{array}{ccc} 0 & 0.4 & 0.6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$\mu = \begin{bmatrix} 15 \\ 12 \\ 10 \end{bmatrix}$$

 λ_i for queue *i* can be calculated as follows.

$$\lambda = (I - P^{T})^{-1} a = \begin{bmatrix} 1 & 0 & 0 \\ -0.4 & 1 & 0 \\ -0.6 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \times 5 \\ 0.5 \times 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 3.5 \\ 1.5 \end{bmatrix}$$

Jackson networks: example (2)

With λ_i and μ_i , we can calculate ρ_i

$$\rho_1 = 2.5/15$$
 $\rho_2 = 3.5/12$
 $\rho_3 = 1.5/10$

Hence the probability that there is one job at each node is

$$P(1,1,1) = \prod_{i=1}^{3} [(1-\rho_i)\rho_i^1] \approx 0.00365$$

Jackson networks: example (2)

With λ_i and μ_i , we can calculate ρ_i

$$ho_1 = 2.5/15$$
 $ho_2 = 3.5/12$
 $ho_3 = 1.5/10$

Hence the probability that there is one job at each node is

$$P(1,1,1) = \prod_{i=1}^{3} [(1-\rho_i)\rho_i^1] \approx 0.00365$$

Remarks

If there is no feedback in the network, the internal flows are Poisson.

- 1 Example
- 2 Open and closed queueing networks
- 3 Product form networks
 - Open Jackson networks
- 4 Queueing network in practice

Fog computing

https://doi.org/10.1007/s11227-022-04328-3

Journal of Supercomputing (2022)

Honeycomb.ai

A case study

The Honeycomb API service

- Receives data from customers
- Highly concurrent
- Mostly CPU-bound
- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork
- Production-scale load testing (yes! but time-consuming)
- Small experiments plus modelling

Honeycomb.ai

Location-Based food Service