Come se ne esce?

Una delle due cose andrà sacrificata...

◆Visto che alla banda non possiamo rinunciare → essenzialmente serve una rete che abbia lunghezza massima

limitata

Passiamo ora ai supereroi...

Il problema delle reti...

- ... è farle grandi!
- Ma ce ne sono molte, e diverse, ed anche reti dello stesso tipo hanno limiti...
- Ecco quindi che arrivano i supereroi alla riscossa, salvando la situazione

Colla per reti!

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Application gateway

Transport gateway

Router

Bridge, switch

Repeater, hub

Repeaters e Hubs

- Il Ripetitore, come già visto, ripete (tipicamente, amplificandolo in potenza) il segnale.
- Lo Hub (che può essere anche repeater) è l'equivalente di una connessione fisica, cioè propaga il segnale da una porta a tutte le altre

Il Bridge/Switch

E' un dispositivo di livello più alto (strato data link), e quindi interagisce con la struttura dei frame, cosa che repeaters e hubs non fanno

Il bridge/switch

- Crea una rete più grande ma a livello logico (data link) e non fisico
- In altre parole, non abbiamo più i limiti di grandezza della rete, ed abbiamo domini di collisione diversi
- Questo si ottiene ispezionando i pacchetti, e filtrando il traffico

Learning

- C'è quindi una fase in cui il bridge/switch impara la configurazione di rete, e gestisce il traffico corrispondentemente
- ◆Essendo a livello data link, controlla mittente e destinazione dei frame (→ tipicamente, i MAC address)

Hash tables

Si usa il backward learning: le hash table vengono costruite analizzando il flusso di dati e risposte, e si fa broadcasting nella fase intermedia

Timeouts...

C'è un timeout di *fading* per ovviare ai cambiamenti nella topologia di rete

Situazione simile...

Ai motori di ricerca... pensate a come funziona ad esempio Google!

Ora andiamo più in alto...

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Application gateway

Transport gateway

Router

Bridge, switch

Repeater, hub

Percorso migliore?

- Ci serve un concetto di distanza
- Una prima approssimazione è contare il numero di "hops" (balzi), cioè di stazioni incontrate nel cammino

Il flooding

- Il flooding ("alluvione") è un mezzo potentissimo per fare il routing
- L'idea: ogni pacchetto viene ritrasmesso a tutte le linee (tranne quella da cui è arrivato)

Il flooding: il male

- Cominciamo dai lati negativi: ovviamente la rete col flooding semplice verrebbe sommersa
- Occorrono quindi dei metodi per il "controllo delle acque" per così dire

Controllo del flooding

◆Una tecnica è l'hop counting: si associa un numero massimo di hop (→ un'età massima) ad ogni pacchetto, dopo i quali il pacchetto muore

Controllo del flooding

- Un'altra tecnica alternativa è il tracking: tenere traccia dei pacchetti che sono stati già trasmessi, e non ritrasmetterli
- ◆Invece di tenere tutta la lista dei pacchetti, si possono tenere liste separate per ogni router, tenendo un contatore speciale per la lista dei pacchetti O-N che sono stati già ricevuti

Il flooding: lati negativi

Lati positivi?

- A prima vista il flooding può sembrare una tecnica grossolana e di dubbia utilità
- Finchè non se ne comprendono i vantaggi

Vantaggi del flooding

◆Il flooding sceglie sempre la via migliore (!)

Vantaggi del flooding

- Ed infine, uno dei più grandi vantaggi del flooding: è robustissimo rispetto alle modifiche della rete
- In realtà, è facile dimostrare che è il più robusto sistema di routing possibile, cioè, nessun altro sistema è migliore del flooding in questo senso

Quindi...

• ... utilissimo in tutti quei casi quando il carico di rete non è molto alto, ma o c'è topologia di rete estremamente variabile, o è critico che un messaggio arrivi sempre nel minor tempo possibile...

Ad esempio, ambito militare...!

Oltre il flooding?

Gli altri sistemi si basano tutti sull'idea che si raccolga informazione globale assommando varie informazioni locali, come i mattoncini lego

Distance vector routing

- Era il routing usato dalla prima versione di Internet (ARPANET)
- L'idea è che ogni router ha una tabella di routing che contiene informazioni su quanto veloce è la connessione ad un altro router, e qual è la via migliore (tra i primi vicini) per raggiungerlo

Distance value routing

- Funziona in modo molto semplice:
- Ogni router chiede ai suoi vicini la loro tabella
- Usa poi le loro tabelle, ed il tempo che c'è voluto per averle, per costruire la sua tabella selezionando i percorsi migliori

Distance Vector Routing: esempio

Vectors received from J's four neighbors

Pro e contro Distance Vector Routing

Pro: è veloce a recepire le "buone notizie"

Contro...

Tanto questo routing si comporta bene rispetto alle "buone notizie" quanto, dualmente, si comporta male con le "cattive notizie"

Routing fase 2: il Link State Routing

Per questi problemi, il routing su Internet, dopo il **1979**, è stato sostituito da un altro algoritmo, il cosiddetto *link state routing*

Link State Routing

- Quando ha informazione completa sui suoi vicini, ogni nodo costruisce un pacchetto che contiene tutta questa informazione, più altra informazione che vedremo fra poco...
- ... e la manda a tutti gli altri (broadcast)

Link State Routing

- L'idea è quindi che ogni nodo riceverà i mattoncini lego corrispondenti alle informazioni locali di ogni altro nodo
- In tal modo, potrà ricostruire una mappa completa della rete, e quindi calcolare i percorsi migliori

Link State Routing (cont.)

Restano da sistemare varie cosette

Link State Routing

Notare la differenza con il Distance Vector Routing:

Stiamo sprecando più banda (per via del broadcasting), però, proprio come nel caso del flooding, quest'uso aggiuntivo della banda (a livello *globale*) ci permette di essere molto più robusti (evitiamo il problema della *località* presente nell'altro algoritmo)

Visione più alta: Quality of Service

- La qualità del servizio (QoS) è una serie di parametri che dettano la qualità del servizio offerto
- Nell'ambito delle reti, tipicamente la QoS è data da
 - 4 parametri principali

