Analysis of Big Mart Sales

Group: Starry Sky

Members: 20191003063 Vicky

20191003113 Erica

20191003208 Seven

20191002869 Lawrence

20191003140 Steve

20191002895 Lotty

20191003115 Chanera

20191003023 Russell

Professor: Kanoksak Wattanachote

Content

1 Data Information	1
1.1 Dataset Introduction	3
1.2 Atrribute Information	3
1.3 Data Source	4
2 Data Preprocessing	5
3 Pig in Data Processing	8
3.1 Data import using Hadoop	8
3.2 Using pig	8
4.Hive	28
4.1 Introduction	29
4.2 Data loading	30
4.3 ETL & OLAP	33
5. Conclusion	41

1. Data Information

1.1 Dataset Introduction

The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined. The aim is to build a predictive model and predict the sales of each product at a particular outlet.

Therefore, we hope to get some useful information from the data

1.2 Atrribute Information

Attribute	Meaning	Datatype
Item_Identifier	Unique product ID	string
Item_Weight	Weight of product	float
Item_Fat_Content	Whether the product is low	string
	fat or not	
Item_Visibility	The % of total display area	float
	of all products in a store	
	allocated to the particular	
	product	
Item_Type	The category to which the	string
	product belongs	
Item_MRP	Maximum Retail Price (list	float

	price) of the product	
Outlet_Identifier	Unique store ID	string
Outlet_Establishment_Yea	The year in which store was	int
r	established	
Outlet_Location_Type	The type of city in which the	string
	store is located	
Outlet_Type	Whether the outlet is just a	string
	grocery store or some sort of	
	supermarket	
Item_Outlet_Sales	Sales of the product in the	float
	particular store. This is the	
	outcome variable to be	
	predicted.	

1.3 Data Source

Our data is from kaggle.

https://www.kaggle.com/mrmorj/big-mart-sales

2 Data Preprocessing

raw data

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	
1	ltem_ld€*	Item_W	Item_Fa⁻▼	Item_Vis ▼	Item_Ty ▼	Item_MI*	Outlet_I	Outlet_E *	Outlet_L ~	Outlet_T_	et_Sales			
2	FDA15	9.3	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Tier 1	Supermark	3735.138			
3	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Tier 3	Supermark	443.4228			
4	FDN15	17.5	Low Fat	0.01676	Meat	141.618	OUT049	1999	Tier 1	Supermark	2097.27			
5	FDX07	19.2	Regular	0	Fruits and '	182.095	OUT010	1998	Tier 3	Grocery St	732.38			
6	NCD19	8.93	Low Fat	0	Household	53.8614	OUT013	1987	Tier 3	Supermark	994.7052			
7	FDP36	10.395	Regular	0	Baking God	51.4008	OUT018	2009	Tier 3	Supermark	556.6088			
8	FDO10	13.65	Regular	0.012741	Snack Foo	57.6588	OUT013	1987	Tier 3	Supermark	343.5528			
9	FDP10		Low Fat	0.12747	Snack Foo	107.7622	OUT027	1985	Tier 3	Supermark	4022.764			
10	FDH17	16.2	Regular	0.016687	Frozen Foo	96.9726	OUT045	2002	Tier 2	Supermark	1076.599			
11	FDU28	19.2	Regular	0.09445	Frozen Foo	187.8214	OUT017	2007	Tier 2	Supermark	4710.535			
12	FDY07	11.8	Low Fat	0	Fruits and '	45.5402	OUT049	1999	Tier 1	Supermark	1516.027			
13	FDA03	18.5	Regular	0.045464	Dairy	144.1102	OUT046	1997	Tier 1	Supermark	2187.153			
14	FDX32	15.1	Regular	0.100014	Fruits and '	145.4786	OUT049	1999	Tier 1	Supermark	1589.265			
	FDS46	17.6	Regular	0.047257	Snack Foo	119.6782	OUT046	1997	Tier 1	Supermark	2145.208			
16	FDF32	16.35	Low Fat	0.068024	Fruits and '	196.4426	OUT013	1987	Tier 3	Supermark	1977.426			
	FDP49	9	Regular	0.069089	Breakfast	56.3614	OUT046	1997	Tier 1	Supermark				
	NCB42	11.8	Low Fat	0.008596	Health and	115.3492	OUT018	2009	Tier 3	Supermark	1621.889			
19	FDP49	9	Regular	0.069196	Breakfast	54.3614	OUT049	1999	Tier 1	Supermark	718.3982			
	DRI11		Low Fat		Hard Drink				Tier 3	Supermark				
	FDU02		Low Fat	0.102492		230.5352			Tier 2	Supermark				
	FDN22	18.85	Regular		Snack Foo				Tier 3	Supermark	3775.086			
	FDW12		Regular		Baking God				Tier 3	Supermark	4064.043			
	NCB30		Low Fat		Household				Tier 2	Supermark				
	FDC37		Low Fat		Baking God				Tier 1	Grocery St				
	FDR28		Regular		Frozen Foo				Tier 1	Supermark				
	NCD06		Low Fat		Household		OUT017		Tier 2	Supermark				
	FDV10		Regular		Snack Foo				Tier 2	Supermark				
	DRJ59		Low Fat		Hard Drink				Tier 3	Supermark				
	FDE51		Regular	0.161467			OUT010		Tier 3	Grocery St				
	FDC14		Regular	0.072222			OUT019		Tier 1	Grocery St				
	FDV38		Low Fat	0.170349			OUT010		Tier 3	Grocery St				
	NCS17		Low Fat		Health and		OUT018		Tier 3	Supermark				
34	FDP33	18.7	Low Fat	0	Snack Foo	256.6672	OUT018	2009	Tier 3	Supermark	3068.006			

We used Python to perform Data preprocessing. In the data preprocessing, we completed two tasks. First, we checked the missing values, and then we checked outlier, corrected outlier.

(1) Missing values

We can see just column "Item_Weight" has some missing value, then we don't need to build a model in this report, and the data is very useful to us, so we decide to retain this data.

(2) Outlier

After observation, we can see the column "Item_Fat_Content" has some outliers. 'low fat', 'LF' and 'Low Fat' mean the same, and 'reg' and 'Regular' mean the same. So we used Python to replace 'low fat', 'LF' into 'Low Fat' and 'reg' into 'Regular'.

Here are codes:

```
import pandas as pd
```

df = pd.read csv("ccm.csv")

df.replace('LF', 'Low Fat', inplace=True)

df.replace('reg', 'Regular', inplace=True)

df.replace('low fat', 'Low Fat', inplace=True)

df.to_csv('ccm.csv', index=False)

Before processing

After processing

3 Pig in Data Processing

3.1 Data import using Hadoop

(1) Use command 'scp' to put the csv file in the root package.

3.2 Using pig

(1) Import the csv file into pig

A = load 'ccm.csv' using PigStorage(',') as(

Item_Identifier: chararray,

Item_Weight: float,

Item Fat Content: chararray,

Item_Visibility: float,

Item Type: chararray,

Item_MRP: float,

Outlet Identifier: chararray,

Outlet_Establishment_Year: int,

Outlet Location Type: chararray,

Outlet Type: chararray,

Item Outlet Sales: float

);

```
(NCI54, 15. 2, Low Fat, 0. 0, Household, 110. 4912, OUT017, 2007, Tier 2, Supermarket Type1, 1637. 868)
(FDE22, 9. 695, Low Fat, 0. 029567217, Snack Foods, 160. 492, OUT035, 2004, Tier 2, Supermarket Type1, 4314. 334)
(FDI57, 7. 42, Regular, 0. 021695673, Seafood, 185. 3582, OUT017, 2007, Tier 2, Supermarket Type1, 3715. 164)
(FDT08, 13. 65, Low Fat, 0. 049209192, Fruits and Vegetables, 150. 005, OUT035, 2004, Tier 2, Supermarket Type1, 2247. 075)
(NCF54, 15. 35, Low Fat, 0. 035292856, Household, 124. 573, OUT018, 2009, Tier 3, Supermarket Type2, 1601. 249)
(NCK53, 11. 6, Low Fat, 0. 035757414, Health and Hygiene, 100. 0042, OUT035, 2004, Tier 2, Supermarket Type1, 2976. 126)
(NCQ42, 20. 35, Low Fat, 0. 036133464, Fruits and Vegetables, 120. 1756, OUT035, 2004, Tier 2, Supermarket Type1, 1907, 5177)
(FDW21, 5. 34, Regular, 0. 005997615, Snack Foods, 100. 4358, OUT017, 2007, Tier 2, Supermarket Type1, 1508. 037)
(NCH43, 8. 42, Low Fat, 0. 07071203, Household, 216. 4192, OUT045, 2002, Tier 2, Supermarket Type1, 3020. 0688)
(FDQ44, 20. 5, Low Fat, 0. 036133464, Fruits and Vegetables, 120. 1756, OUT035, 2004, Tier 2, Supermarket Type1, 3392. 9167)
(NCN18, Low Fat, 0. 124110736, Household, 111. 7544, OUT027, 1985, Tier 3, Supermarket Type2, 2117. 244)
(DRF37, 17. 25, Low Fat, 0. 08467618, Soft Drinks, 263. 191, OUT018, 2009, Tier 3, Supermarket Type2, 2117. 244)
(DRF37, 17. 25, Low Fat, 0. 08467618, Soft Drinks, 263. 191, OUT018, 2009, Tier 3, Supermarket Type2, 3944. 865)
(FDW31, 11. 35, Regular, 0. 04326563, Fruits and Vegetables, 199, 4742, OUT045, 2002, Tier 2, Supermarket Type1, 515. 995)
(FDW31, 11. 35, Regular, 0. 04368565, Fruits and Vegetables, 199, 4742, OUT045, 2002, Tier 2, Supermarket Type1, 2879, 2944
(FDNS8, 13. 8, Regular, 0. 04889852, Frozen Foods, 225. 591, OUT018, 2009, Tier 2, Supermarket Type1, 7182. 6504)
(FDR53, 13. 8, Regular, 0. 05686164, Snack Foods, 231. 5984, OUT035, 2004, Tier 2, Supermarket Type1, 7182. 6504)
(FDR62, 20. 7, Low Fat, 0. 048898552, Frozen Foods, 178. 8318, OUT048, 1997, T
```

(2) show the structure of A

describe A;

```
grunt> describe A;
A: {Item_Identifier: chararray,Item_Weight: float,Item_Fat_Content: chararray,Item_Visibility: float,Item_Type: chararray,
y,Item_MRP: float,Outlet_Identifier: chararray,Outlet_Establishment_Year: int,Outlet_Location_Type: chararray,Outlet_Ty;
e: chararray,Item_Outlet_Sales: float}
```

(3) Data distribution

 $B = group A by Item_Fat_Content;$

C = foreach B generate group, COUNT(A);

```
Total bytes written: 0
Spillable Memory Manager spill count: 0
Total bags proactively spilled: 0
Total records proactively spilled: 0
Total records proactively spilled: 0

Job DAG:
job_local2008290509_0001

2021-12-16 22:11:52, 911 [main] INFO org. apache. hadoop. metrics. jvm. jvmMetrics - Cannot init ssName=jobTracker, sessionId= - already initialized
2021-12-16 22:11:52, 911 [main] INFO org. apache. hadoop. metrics. jvm. jvmMetrics - Cannot init ssName=jobTracker, sessionId= - already initialized
2021-12-16 22:11:52, 912 [main] INFO org. apache. hadoop. metrics. jvm. jvmMetrics - Cannot init ssName=jobTracker, sessionId= - already initialized
2021-12-16 22:11:52, 919 [main] WARN org. apache. pig. backend. hadoop. executionengine. mapReduc countered Warning FIELD_DISCARDED_TYPE_CONVERSION_FAILED 5 time(s).
2021-12-16 22:11:52, 919 [main] INFO org. apache. pig. backend. hadoop. executionengine. mapReduc coess!
2021-12-16 22:11:52, 922 [main] WARN org. apache. pig. data. SchemaTupleBackend - SchemaTupleBa lized
2021-12-16 22:11:52, 933 [main] INFO org. apache. pig. backend. hadoop. executionengine. util. Map oprocess: 1
2021-12-16 22:11:52, 933 [main] INFO org. apache. pig. backend. hadoop. executionengine. util. Map oprocess: 1
(Low Fat, 5517)
(Regular, 3006)
```

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

df = pd.read_csv("ccm.csv")

sns.countplot(y=df["Item_Type "], data=df)
plt.show()
```


Here are the codes of python:

```
import\ matplot lib. pyplot\ as\ plt
```

import seaborn as sns

import pandas as pd

data = pd.read_csv("ccm.csv")

commutes = data['Item_Outlet_Sales']

commutes.plot.hist(grid=True, bins=20, rwidth=0.9, color='#607c8e')

plt.title('Item Outlet Sales')

plt.xlabel('Item_Outlet_Sales')

plt.ylabel('Frequency')

plt.grid(axis='y', alpha=0.75)

plt.show()

Use the same way we can get the data distribution of each column. Here are other figures.

(4) Retail Price Information

1. The average MPR of each item.

We can get information about the most expensive item. The most expensive item's ID is FDR25. After filtering, we can know the item is canned goods and it only sales in two types of supermarket.

```
B = group \ A \ by \ Item\_Identifier;
C = FOREACH \ B \ GENERATE \ group, \ AVG(A.Item\_MRP);
D = order \ C \ by \ \$1 \ DESC;
E = LIMIT \ D \ 10;
dump \ E
```

Select the most expensive item — 'FDR25'.

```
B = FILTER A BY Item_Identifier == 'FDR25';
```

dump

В

```
o process: 1
(FDR25, 17. 0, Regular, 0. 14009029, Canned, 265. 1884, OUT018, 2009, Tier 3, Supermarket Type2, 6359. 7217)
(FDR25, 17. 0, Regular, 0. 13980488, Canned, 265. 7884, OUT045, 2002, Tier 2, Supermarket Type1, 3974. 826)
(FDR25, 17. 0, Regular, 0. 14031112, Canned, 265. 6884, OUT017, 2007, Tier 2, Supermarket Type1, 2649. 884)
(FDR25, 17. 0, Regular, 0. 13952193, Canned, 266. 8884, OUT046, 1997, Tier 1, Supermarket Type1, 5034. 78)
(FDR25, , Regular, 0. 1388463, Canned, 263. 7884, OUT027, 1985, Tier 3, Supermarket Type3, 1324. 942)
grunt>
```

2. The average MPR of each Item_Type.

In this part, we can get information about which type of item is more expensive. The result of analysis shown us that household goods are the most expensive in all types of item.

```
B = group A by Item_Type;
```

C = FOREACH B GENERATE group, AVG(A.Item MRP);

 $D = order\ C\ by\ \$1\ DESC;$

E = LIMITD 10;

dump E

```
SSName-JobTracker, sessionId - aiready initialized
2021-12-16 22:57:54, 722 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initialize JVM & SNAme-JobTracker, sessionId - already initialized
2021-12-16 22:57:54, 728 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initialize JVM & SNAmme-JobTracker, sessionId - already initialized
2021-12-16 22:57:54, 729 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initialize JVM & SNAmme-JobTracker, sessionId - already initialized
2021-12-16 22:57:54, 730 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initialize JVM & SNAmme-JobTracker, sessionId - already initialized
2021-12-16 22:57:54, 735 [main] WARN org. apache. pig. backend. hadoop. executionengine. mapReduceLayer. MapRecountered Warning FIELD_DISCARDED_TYPE_CONVERSION_FAILED 5 time(s).
2021-12-16 22:57:54, 735 [main] INFO org. apache. pig. backend. hadoop. executionengine. mapReduceLayer. MapRecess!
2021-12-16 22:57:54, 735 [main] WARN org. apache. pig. data. SchemaTupleBackend - SchemaTupleBackend has a: lized
2021-12-16 22:57:54, 744 [main] INFO org. apache. pig. backend. hadoop. executionengine. mapReduceLayer. MapRecess!
2021-12-16 22:57:54, 744 [main] INFO org. apache. pig. backend. hadoop. executionengine. util. MapRedUtil - Top process: 1
(Household, 149. 4247529752962)
(Dairy, 148. 49920726451705)
(Starchy Foods, 147. 83802297953014)
(Snack Foods, 146. 19493369420368)
(Fruits and Vegetables, 144. 5812345139392)
(Seafood, 141. 84178256475354)
(Breakfast, 141. 78814992037687)
(Breads, 140. 95266816340595)
(Meat, 139. 76383177488353)
```


3. The average MPR of each Item_Fat_Content.

Item_Fat_content means whether the product is low fat or not, so we can know the MPR of regular product and the MPR of low fat product are similar.

 $B = group A by Item_Fat_Content;$

C = FOREACH B GENERATE group, AVG(A.Item MRP);

 $D = order\ C\ by\ \$1\ DESC;$

E = LIMITD 10:

dump E

```
2021-12-16 22:58:20,812 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initial ssName=JobTracker, sessionId= - already initialized 2021-12-16 22:58:20,816 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initial ssName=JobTracker, sessionId= - already initialized 2021-12-16 22:58:20,816 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initial ssName=JobTracker, sessionId= - already initialized 2021-12-16 22:58:20,816 [main] INFO org. apache. hadoop. metrics. jvm. JvmMetrics - Cannot initial ssName=JobTracker, sessionId= - already initialized 2021-12-16 22:58:20,820 [main] WARN org. apache. pig. backend. hadoop. executionengine. mapReduceLa countered Warning FIELD_DISCARDED_TYPE_CONVERSION_FAILED 5 time(s). 2021-12-16 22:58:20,820 [main] INFO org. apache. pig. backend. hadoop. executionengine. mapReduceLa coess! 2021-12-16 22:58:20,820 [main] WARN org. apache. pig. data. SchemaTupleBackend - SchemaTupleBacke 2021-12-16 22:58:20,828 [main] INFO org. apache. pig. data. SchemaTupleBackend - SchemaTupleBacke 2021-12-16 22:58:20,828 [main] INFO org. apache. hadoop. mapreduce. 1ib. input. FileInputFormat - T s : 1 2021-12-16 22:58:20,828 [main] INFO org. apache. pig. backend. hadoop. executionengine. util. MapRed o process : 1 (Regular, 141. 50425892295) (Low Fat, 140. 71409781488666)
```


4. The relationship between MPR and other attributes

Using the same way to analyze and use python to draw figures.

From the analysis results, we can know Item_Weight and Item_Visibility don't have a strong relationship with MPR. Obviously, there is a positive correlation between Item Outlet Sales and MPR.

Here are the code:

```
df = pd.read_csv("ccm.csv")
plt.scatter(df["Item_Outlet_Sales"], df["Item_MRP"], color="#607c8e")
plt.xlabel("Item_Outlet_Sales")
plt.ylabel("Item_MRP")
plt.show()
plt.scatter(df["Item_Weight"], df["Item_MRP"], color="#607c8e")
plt.xlabel("Item_Weight")
plt.ylabel("Item_MRP")
plt.show()
plt.scatter(df["Item_Visibility"], df["Item_MRP"], color="#607c8e")
plt.xlabel("Item_Visibility"], df["Item_MRP"], color="#607c8e")
plt.xlabel("Item_Visibility")
plt.ylabel("Item_MRP")
```

(5) Visibility Information

The average visibility of each item.

It can be concluded to the sales and popularity of items. In this part, we have got the average visibility of each item with pig. With these tuples, we can learn that which item would take more place in a store, and can further know that the sales and visibility are positively correlated. Finally, we can know that as the visibility increases, the popularity of items increases in turn.

```
Here are codes:
```

```
B = group A by Item Identifier;
```

 $C = foreach \ B \ generate \ group, \ AVG(A.Item \ Visibility);$

 $D = order\ C\ by\ \$1\ DESC;$

E = LIMIT D 20;

DUMPE;

```
(DRE01, 0. 2234693542122841)
(FDS12, 0. 21571473528941473)
(FDJ56, 0. 21110668778419495)
(FDC15, 0. 2084498032927513)
(NCB31, 0. 2005883939564228)
(FDR14, 0. 20018606781959533)
(FDR08, 0. 2000141739845276)
(FDV21, 0. 19986068084836006)
(FDV21, 0. 19986078875406)
(FDV27, 0. 19463762044906616)
(FDU27, 0. 19463762044906616)
(FDU27, 0. 19457554817199707)
(FDL16, 0. 19410228729248047)
(NCF42, 0. 19398878680335152)
(NCC18, 0. 19238396920263767)
(FDQ60, 0. 19150052964687347)
(FDT34, 0. 19149494168567657)
(FDD14, 0. 19124041497364044)
(FDV32, 0. 19070351123809814)
grunt>
```


The average visibility of each item.

It can be concluded to the sales and popularity of item types. It shows that in all kinds of items, people come to consume most probably for breakfast. We can tell that the first few are in high demand or inconvenient cooking in the family.

Here are codes:

 $B = group A by Item_Type;$

 $C = foreach \ B \ generate \ group, \ AVG(A.Item_Visibility);$

 $D = order\ C\ by\ \$1\ DESC;$

DUMPD;

```
(Breakfast, 0. 08572300958701155)
(Seafood, 0. 07497607974801213)
(Dairy, 0. 0724271983461307)
(Baking Goods, 0. 06916929967845158)
(Fruits and Vegetables, 0. 06851294274478183)
(Canned, 0. 06812931543706884)
(Starchy Foods, 0. 06756356396913729)
(Snack Foods, 0. 06685022279658975)
(Breads, 0. 06625509794905367)
(Frozen Foods, 0. 06564523899714489)
(Hard Drinks, 0. 06494255598512626)
(Soft Drinks, 0. 06397224776028247)
(Meat, 0. 062283811065204)
(Household, 0. 061322312902884334)
(Others, 0. 06024103182693117)
(Health and Hygiene, 0. 055215979741814615)
(Item_Type,)
grunt>
```


The average visibility of each fat content.

It is obvious that regular fat is a few more popular than low fat items. Being same as the mentioned, according to the visibility, this number of regular fat items is a little higher than the low fat, which means the number of goods prepared by merchant is different. It shows that there are more customers prefer regular fat food.

Here are codes:

B = group A by Item Fat Content;

 $C = foreach \ B \ generate \ group, \ AVG(A.Item \ Visibility);$

 $D = order\ C\ by\ \$1\ DESC;$

DUMPD;

(6)Sales Information

The sales of each outlet type

We can know that the average sales of supermarket type3 is the highest, the sum sales of type1 is the highest, and we can see grocery stores are the least profitable. So sales are related to the outlet type.

```
grunt> t = group D by Outlet_Type;
grunt> at = foreach t generate
group,AVG(D.Item_Outlet_Sales),SUM(D.Item_Outlet_Sales);
grunt> x = order at by $1 DESC;
grunt> dump x
```

(Supermarket Type3, 3694. 038558029746, 3453926. 0517578125) (Supermarket Type1, 2316. 181149360119, 1. 2917342269981384E7) (Supermarket Type2, 1995. 4987403031053, 1851822. 8310012817) (Grocery Store, 339. 828500668428, 368034. 26622390747)

The sales of each year of establishment

We can see that the sales situation was the best in 1985, the sales in 1998 was very low, and the sales situations in other years were similar.

```
grunt> esy = group D by Outlet_Establishment_Year;

grunt> aesy = foreach esy generate group, AVG(D.Item_Outlet_Sales),

SUM(D.Item_Outlet_Sales);

grunt> x = order aesy by $1 DESC;

grunt> dump x
```

```
(1985, 2483. 6774747513455, 3633620. 1455612183)
(2004, 2438. 8418682713664, 2268122. 9374923706)
(1999, 2348. 354635341193, 2183969. 8108673096)
(2007, 2340. 675265334852, 2167465. 2957000732)
(1987, 2298. 9952554252527, 2142663. 5780563354)
(1997, 2277. 844268405053, 2118395. 169616699)
(2002, 2192. 3847989758838, 2036725. 4782485962)
(2009, 1995. 4987403031053, 1851822. 8310012817)
(1998, 339. 351662018922, 188340. 1724205017)
```


The sales of each location type

The average sales of Tier2 is the highest, the sum sales of Tier3 is the highest, but the sales of Tier1 are much worse than others. So sales are related to the location type.

grunt> loc = group D by Outlet_Location_Type; grunt> aloc = foreach loc generate group, AVG(D.Item_Outlet_Sales), SUM(D.Item_Outlet_Sales);

 $grunt > x = order \ aloc \ by \ 1DESC;$

grunt> dump x

```
(Tier 2,2323.9905606610555,6472313.71144104)

(Tier 3,2279.6276517122183,7636752.633235931)

(Tier 1,1876.9091600868571,4482059.074287415)

(Outlet_Location_Type,,)

grunt>
```


4 Pig in Data Processing

· Business Intelligence(BI):

Simply, BI is often understood as a tool to turn existing data in the enterprise into knowledge to help the business make informed business.

· OLAP(On-Line Analytical Processing):

OLPA is the main application of data warehouse systems, support complex analysis operations, focusing on decision support, and provides intuitive to understand the results of the query.

4.1 Introduction

We have two datasets: item.csv and sales.csv.

The datasets item has three columns:

Item Identifier (Unique product ID),

Item_Type (The category to which the product belongs)

Item_Weight (Weight of product).

The datasets sales has five columns:

Item_Identifier (Unique product ID)

Outlet Identifier (unique store ID)

Outlet_Location_Type (the type of city in which the store is located)

Outlet_Type (the type of the outlet)

Item Outlet Sales (Sales of the product in the particular store)

Item.csv

4	Α	В	C	D	E	F	G	Н	1	J	K	L
1	Item_Identifier	Item_Type	Item_Weight									
2	NCZ54	Household	14. 65									
3	NCZ53	Health and Hygiene	9. 6									
4	NCZ42	Household	10. 5									
5	NCZ41	Health and Hygiene	19.85									
6	NCZ30	Household	6. 59									
7	NCZ29	Health and Hygiene	15									
8	NCZ18	Household	7. 825									
9	NCZ17	Health and Hygiene										
10	NCZ06	Household										
11	NCZ05	Health and Hygiene	8. 485									
12	NCY54	Household	8. 43									
13	NCY53	Health and Hygiene	20									
14	NCY42	Household	6. 38									
15	NCY41	Health and Hygiene	16. 75									
16	NCY30	Household	20. 25									
17	NCY29	Health and Hygiene	13. 65									
	NCY18	Household	7. 285									
19	NCY17	Health and Hygiene	18. 2									
20	NCY06	Household	15. 25									
21	NCY05	Health and Hygiene	13. 5									
22	NCX54	Household	9. 195									
23	NCX53	Health and Hygiene	20. 1									
	NCX42	Household										
	NCX41	Health and Hygiene	19									
26	NCX30	Household										
	NCX29	Health and Hygiene	10									
28	NCX18	Household	14. 15									
29	NCX17	Health and Hygiene	21. 25									
30	NCX06	Household										
<	< > > ite	m +					1					→

Sales.csv

4	A	В	C	D	E	F	G	H	1	=
1	Item_Identifier	Outlet_Identifier	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales					
2	DRA12	OUT010	Tier 3	Grocery Store	283. 6308					
3	DRA24	OUT010	Tier 3	Grocery Store	327. 5736					
4	DRA59	OUT010	Tier 3	Grocery Store	185. 0924					
5	DRB13	OUT010	Tier 3	Grocery Store	948. 765					
6	DRB25	OUT010	Tier 3	Grocery Store	214. 3876					
7	DRB48	OUT010	Tier 3	Grocery Store	157. 1288					
8	DRC25	OUT010	Tier 3	Grocery Store	171. 7764					
9	DRC27	OUT010	Tier 3	Grocery Store	245. 6802					
10	DRD15	OUT010	Tier 3	Grocery Store	697. 0926					
11	DRD24	OUT010	Tier 3	Grocery Store	141. 8154					
12	DRD25	OUT010	Tier 3	Grocery Store	452.744					
13	DRD37	OUT010	Tier 3	Grocery Store	186. 424					
14	DRE01	OUT010	Tier 3	Grocery Store	484. 7024					
15	DRE03	OUT010	Tier 3	Grocery Store	47. 2718					
16	DRE27	OUT010	Tier 3	Grocery Store	195. 7452					
17	DRE49	OUT010	Tier 3	Grocery Store	151. 8024					
18	DRF03	OUT010	Tier 3	Grocery Store	81. 2276					
19	DRF23	OUT010	Tier 3	Grocery Store	174. 4396					
20	DRF36	OUT010	Tier 3	Grocery Store	191. 0846					
21	DRG03	OUT010	Tier 3	Grocery Store	307. 5996					
22	DRG11	OUT010	Tier 3	Grocery Store	107. 8596					
23	DRG49	OUT010	Tier 3	Grocery Store	488. 6972					
24	DRG51	OUT010	Tier 3	Grocery Store	657. 8104					
25	DRH03	OUT010	Tier 3	Grocery Store	93. 212					
26	DRH25	OUT010	Tier 3	Grocery Store	51. 9324					
27	DRH59	OUT010	Tier 3	Grocery Store	73. 238					
28	DRI01	OUT010	Tier 3	Grocery Store	517. 3266					
29	DRI11	OUT010	Tier 3	Grocery Store	115. 1834					
30	DRI25	OUT010	Tier 3	Grocery Store	165, 7842					-
K	< > > sales	+			← ()	1

4.2 Data loading

(1) Create database and table create database big_mart_sale;

```
create table Item (

itemID varchar(5),

itemType varchar(30),

itemWeight float,

primary key (itemID)

)

row format delimited fields terminated by ','

TBLPROPERTIES ('skip.header.line.count'='1');
```

```
create table shopSales (

itemID varchar(10) primary key,

shopID varchar(10) primary key,

shopLocation varchar(10),

shopType varchar(20),

itemSales float

)

row format delimited fields terminated by ','

TBLPROPERTIES ('skip.header.line.count'='1');
```

```
hive> show databases;
OK
default
finance
financials_ip
human_resources
jacob
practiceip
sales
school
Time taken: 0.427 seconds, Fetched: 8 row(s)
hive> create table Item (
    > itemID varchar(5),
    > itemType varchar(30),
    > itemWeight float
    > row format delimited fields terminated by ',
    > TBLPROPERTIES ('skip. header. line. count'='1');
Time taken: 1.299 seconds
```

(2) Load from hdfs

Use command:

load data local inpath 'item.csv' overwrite into table Item;

load data local inpath 'sales.csv' overwrite into table shopSales;

Then use command:

select * from item;

select * from shopsales;

We can see the data.

```
hive> select * from Item:
OK
NCZ54
                          14.65
        Household
NCZ53
                                  9.6
        Health and Hygiene
NCZ42
        Household
                          10.5
        Health and Hygiene
                                  19.85
NCZ41
                         6.59
NCZ30
        Household
        Health and Hygiene
NCZ29
                                  15.0
NCZ18
                          7.825
        Household
NCZ17
        Health and Hygiene
                                  NULL
NCZ06
        Household
                          NULL
NCZ05
        Health and Hygiene
                                  8.485
NCY54
        Household
                          8.43
NCY53
                                  20.0
        Health and Hygiene
                         6.38
NCY42
        Household
                                  16.75
        Health and Hygiene
```

```
hive> select * from shopsales;
OK
DRA12
        OUT010
                 Tier 3
                          Grocery Store
                                            283.6308
DRA24
                          Grocery Store
                                            327.5736
        OUT010
                 Tier 3
DRA59
                 Tier
                       3
                          Grocery Store
                                            185.0924
        OUT010
                 Tier 3
                                            948.765
DRB13
        OUT010
                          Grocery Store
DRB25
                 Tier 3
                                            214.3876
        OUT010
                          Grocery Store
                                            157. 1288
DRB48
        OUT010
                 Tier 3
                          Grocery Store
                                            171.7764
DRC25
        OUT010
                 Tier 3
                          Grocery Store
                          Grocery Store
DRC27
        OUT010
                 Tier 3
                                            245.6802
DRD15
        OUT010
                 Tier 3
                          Grocery Store
                                            697.0926
                          Grocery Store
Grocery Store
DRD24
                 Tier
                                            141.8154
        OUT010
                 Tier 3
                                            452.744
DRD25
                                            186. 424
DRD37
                 Tier 3
                          Grocery Store
        OUT010
DRE01
                 Tier 3
                                            484.7024
        OUT010
                          Grocery Store
DRE03
        OUT010
                          Grocery Store
                                            47. 2718
DRE27
        OUT010
                 Tier 3
                                            195. 7452
                          Grocery Store
DRE49
                          Grocery Store
```

4.3 ETL & OLAP

(1) Join Tables

select * from shopSales S LEFT JOIN Item I on S.itemID = I.itemID

limit 20;

	VEDITOR		TATUC	TOTAL	COMPLETED	DUNNTN	DEND	THE F	ATLED	
	VERTICES	5	TATUS	TOTAL	COMPLETED	RUNNING	G PENDI	.NG F	AILED	KILLED
Map 1 .		. SUCC	EEDED	1	1	(9	0	0	0
				1	1	(9	0	0	0
VERTICE	S: 02/02	[=====	=====	======	:=====>>]	100% E	ELAPSED	TIME:	5.09	5
OK										
DRA12	OUT010	Tier 3	Groce	ry Store	283.630	8	DRA12	Sof	t Drin	ks 11.6
DRA24	OUT010	Tier 3	Groce	ry Store	327.573	6	DRA24	Sof	t Drin	ks 19.35
DRA59	OUT010	Tier 3	Groce	ry Store	185.092	4	DRA59	Sof	t Drin	ks 8.27
DRB13	OUT010	Tier 3	Groce	ry Store	948.765	DRB13	Soft [)rinks	6	. 115
DRB25	OUT010	Tier 3	Groce	ry Store	214.387	6	DRB25	Sof	t Drin	ks 12.3
DRB48	OUT010	Tier 3	Groce	ry Store	157.128	8	DRB48	Sof	t Drin	ks 16.75
DRC25	OUT010	Tier 3	Groce	ry Store	171.776	4	DRC25	Sof	t Drin	ks NULL
DRC27	OUT010	Tier 3	Groce	ry Store	245.680	2	DRC27	Dai	ry 13	3.8
DRD15	OUT010	Tier 3	Groce	ry Store	697.092	6	DRD15	Dai	ry 10	0.6
DRD24	OUT010	Tier 3	Groce	ry Store	141.815	4	DRD24	Sof	t Drin	ks 13.85
DRD25	OUT010	Tier 3	Groce	ry Store	452.744	DRD25	Soft [rinks)	6	. 135

(2) Use select

Use select to get the total sales of each category of goods in each shop:

select S.shopID, I.itemType, SUM(S.itemSales) as Totalsales

from shopSales S left join Item I

on S.itemID = I.itemID

group by S.shopID,I.itemType

order by S.shopID,totalsales desc;

```
0UT010
        Snack Foods
                        25942.8970413208
                        25550.074977874756
        Household
        Fruits and Vegetables
                                 24548.045932769775
        Frozen Foods
                        17942.644207000732
        Dairy
                15307.40775680542
        Meat
                13580.98843383789
        Health and Hygiene
                                 13570.33561706543
        Baking Goods
                        10693.413833618164
        Soft Drinks
                        9441.04405593872
        Canned
                9019.592632293701
        Breads
                7657.365753173828
        Breakfast
                        4081.353977203369
        Hard Drinks
                        4067.3721771240234
        Others
                3256.4278106689453
        Starchy Foods
                        2733.774833679199
        Seafood 947.4333801269531
        Fruits and Vegetables
                                 341526.77030944824
        Snack Foods
                        309246.12322998047
```

The sales of snack foods in shop OUT010 is the highest.

(3) With Rollup

```
select S.shopID, I.itemType, SUM(S.itemSales) as Totalsales
from shopSales S LEFT JOIN Item I

on S.itemID = I.itemID
group by S.shopID,I.itemType with rollup
order by S.shopID,I.itemType;
```

from this command ,we can see the totalsales of each itemType each shop:

```
Reducer 3
0K
NULL
        NULL
                1.8591125418964386E7
                188340.1724205017
0UT010
        NULL
        Baking Goods
                         10693.413833618164
                7657.365753173828
        Breads
                         4081.353977203369
        Breakfast
        Canned
                9019.592632293701
        Dairv
                15307.40775680542
                         17942.644207000732
        Frozen Foods
```

There are the null value in the result.

This is the hierarchical aggregation with shopID dimension. And line2 mean the total sales of all categroy in shop OUT010. If we change the position of group by, such as:

select S.shopID, I.itemType, SUM(S.itemSales) as Totolsales

from shopSales S LEFT JOIN Item I

on S.itemID = I.itemID

group by I.itemType,S.shopID with rollup

order by I.itemType,Totolsales;

```
0K
NULL
        NULL
                1.8591125418964386E7
OUT010
                         10693.413833618164
        Baking Goods
0UT019
        Baking Goods
                         14133.602420806885
0UT018
        Baking Goods
                         121065.07678222656
0UT035
        Baking Goods
                         135005.5966796875
0UT049
        Baking Goods
                         139263.38864135742
0UT017
        Baking Goods
                         147731.0330810547
0UT013
        Baking Goods
                         149715.7827911377
0UT045
        Baking Goods
                         150368.93258666992
0UT046
        Baking Goods
                         173376.31796264648
0UT027
        Baking Goods
                         224172.1954345703
        Baking Goods
                         1265525.3402137756
011019
        Breads
                4947.559829711914
OUT010
                7657.365753173828
        Breads
```

This is the hierarchical aggregation with itemType dimension. And this line mean the total sales of baking goods in all the shop.

Order the data by the totalsales and get the result: we can see the Fruits and Vegetables are the best sell.

```
0K
NULL
        NULL
                 1.8591125418964386E7
NULL
        Fruits and Vegetables
                                  2820059.816970825
NULL
        Snack Foods
                         2732786.0907707214
NULL
        Household
                         2055493.714225769
NULL
                         1825734.7905921936
        Frozen Foods
NULL
        Dairy
                 1522594.0512428284
NULL
        Canned
                 1444151.4954719543
NULL
                         1265525.3402137756
        Baking Goods
                                  1045200.1383476257
NULL
        Health and Hygiene
                 917565.6110153198
NULL
        Meat
                         892897.7237052917
NULL
        Soft Drinks
0UT027
        Fruits and Vegetables
                                  576028.1889038086
```

Rollup other dimension to get the different result, such as:

the totalsales of each item each shop:

select I.itemID, S.shopID, SUM(S.itemSales) as Totolsales

from shopSales S LEFT JOIN Item I

on S.itemID = I.itemID

group by I.itemID,S.shopID with rollup

order by I.itemID,Totolsales;

UN		
NULL	NULL	1.8591125418964386E7
DRA12	OUT010	283.63079833984375
DRA12	0UT018	850.8923950195312
DRA12	0UT035	992.7078247070312
DRA12	0UT017	2552.67724609375
DRA12	0UT013	2552.67724609375
DRA12	0UT045	3829.015869140625
DRA12	NULL	11061.601379394531
DRA24	OUT010	327.5736083984375
DRA24	0UT019	491.36041259765625
DRA24	0UT049	982.7208251953125
DRA24	0UT017	1146.507568359375
DRA24	0UT035	3439.522705078125
DRA24	0UT013	4422.24365234375
DRA24	0UT027	4913.60400390625
DRA24	NULL	15723.532775878906

Information: The item 'DRA14' is best sell in shop 'OUT045' and the item 'DRA24' is best sell in shop 'OUT027'.

Use the where satement to get the detail that you want to know, such as "where shopID=?" or "where itemID =?"

the totalsales of each item each itemType:

select i.itemType,I.itemID, SUM(S.itemSales) as Totolsales

from shopSales S LEFT JOIN Item I

on S.itemID = I.itemID

group by I.itemType,I.itemID with rollup

order by I.itemType,Totolsales desc;

NULL NU	JLL 1.859	91125418964386E7
Baking Goo	ods NULL	1265525.3402137756
Baking Goo	ods FDU12	2 29793.21856689453
Baking Goo	ods FDL24	26038.7724609375
Baking Goo	ods FDJ48	3 25936.238845825195
Baking Goo	ods FDB37	7 25717.8564453125
Baking Goo	ods FDX36	25429.565185546875
Baking Goo	ods FDV60	24158.552673339844
Baking Goo	ods FDE36	24076.65966796875
Baking Goo	ods FDT12	2 23247.738372802734
Baking Goo	ods FDG60	22967.436279296875
Baking Goo	ods FDP48	3 22337.58984375
Baking Goo	ods FDN60	19966.010162353516
Baking Goo	ods FDZ23	3 19947.368103027344
Baking Goo	ods FDQ24	19630.447052001953
Baking Goo	ods FD012	2 18791.538818359375
Baking Goo	ods FDX11	18721.630249023438
Baking Goo	ods FDH60	18659.044891357422

UK		
NULL NU	ILL 27327	86.0907707214
Snack Food	s NULL	2732786.0907707214
Snack Food	ls FDT21	31873.177307128906
Snack Food	ls FDN58	31279.283203125
Snack Food	ls FDL58	30584.188903808594
Snack Food	ls FDV57	28223.262084960938
Snack Food	ls FDX58	27830.440002441406
Snack Food	ls FDW34	26974.887268066406
Snack Food	ls FDL57	26866.36181640625
Snack Food	ls FDP33	26845.056121826172
Snack Food	ls FDC46	26557.43051147461
Snack Food	ls FDI22	26550.772399902344
Snack Food	ls FDF22	25860.337768554688
Snack Food	ls FDJ21	25225.16455078125
Snack Food	ls FDL34	25124.628662109375
Snack Food	ls FDV45	24971.494995117188
Snack Food	ls FDR34	24735.80224609375
Snack Food	ls FD009	24721.153930664062

Information:in all baking goods, the item 'FDU12' is best sell. And in all snack foods, the item 'FDT21' is best sell.

(4) Cube

Cube can query multiple dimensions of hive. With cube, You don't have to write a lot of select statements and union them.

When building the data cube. For instance, dicing to face the data cube of shopID, itemType and itemID.

select S.shopID,I.itemType,I.itemID, SUM(S.itemSales) as Totolsales from shopSales S LEFT JOIN Item I on S.itemID = I.itemID group by S.shopID,I.itemType,I.itemID with cube;

0UT049	Seafood	NULL	11827.271102905273
0UT049	Seafood	FDG21	2247.074951171875
0UT049	Seafood	FDG33	3263.751708984375
0UT049	Seafood	FDH09	473.3837890625
0UT049	Seafood	FDH21	1267.6832275390625
0UT049	Seafood	FDI09	2396.8798828125
0UT049	Seafood	FDI57	1970.7679443359375
0UT049	Seafood	FDJ45	207.72959899902344
0UT049	NULL	NCL30	2173.171142578125
0UT049	NULL	NCL31	5296.43896484375
0UT049	NULL	NCL41	311.5943908691406
0UT049	NULL	NCL42	5635.3310546875
0UT049	NULL	NCM05	3964.839111328125
0UT049	NULL	NCM06	1853.587158203125
0UT049	NULL	NCM07	1006.6895751953125
0UT049	NULL	NCM18	1114.5491943359375
0UT049	NULL	NCM26	2450.14404296875
0UT049	NULL	NCM30	784.3123779296875
NULL	NULL	FDT46	3997.463165283203
NULL	NULL	FDT47	6707.2691650390625
NULL	NULL	FDT48	18451.98126220703
NULL	NULL	FDT49	13102.944274902344
NULL	NULL	FDT50	7957.6416015625
NULL	NULL	FDT51	2348.9424438476562
NULL	NULL	FDT52	17151.008056640625
NULL	NULL	FDT55	26982.876708984375
NULL	NULL	FDT56	4170.571197509766
NULL	NULL	FDT57	20384.132843017578

```
Breads
                 NULL
                          553237.1875305176
NULL
                 FDN23
                          17127.0390625
        Breads
NULL
                 FD011
                          17430.644454956055
        Breads
NULL
        Breads
                 FD023
                          10872.513916015625
                 FDP11
                          20029.926818847656
NULL
        Breads
        Breads
                 FDP23
                          18288.194702148438
NULL
        Breads
                 FDP59
                          6958.94157409668
                 FDQ11
                          13877.935089111328
        Breads
                 FDQ23
                          8612.7890625
NULL
        Breads
```

Selecting slices of the data cube to answer the OLAP query:

It only focuses on some dimensions, For instance: itemID = 'FDR12', the totalsales of item 'FDR12' in each shop then slicing to select the itemID = 'FDR12'.

select * from

order by a. Totalsales desc;

(select S.shopID,I.itemType,I.itemID, SUM(S.itemSales) as Totalsales from shopSales S LEFT JOIN Item I on S.itemID = I.itemID group by S.shopID,I.itemType,I.itemID with cube) a where a.itemID = 'FDR12'

Or the totalsales of each item of 'Fruits and vegetables' in each shop then slicing to select the itemType = "Fruits and vegetables".

```
· apply UNION command together with ROLLUP command for cube
view
It equal to:
select S.shopID,I.itemType,I.itemID, SUM(S.itemSales) as Totolsales
from shopSales S LEFT JOIN Item I
on S.itemID = I.itemID
group by S.shopID,I.itemType,I.itemID with rollup;
UNION
select Null,I.itemType,I.itemID, SUM(S.itemSales) as Totolsales
from shopSales S LEFT JOIN Item I
on S.itemID = I.itemID
group by I.itemType,I.itemID with rollup;
UNION
select S.shopID, Null, I.itemID, SUM(S.itemSales) as Totolsales
from shopSales S LEFT JOIN Item I
on S.itemID = I.itemID
group by S.shopID,I.itemID with rollup;
```

5. Conclusion

According to query, we can know which kind of goods in the same type sell better and the best-selling goods in various stores and so on.

So we can selectively increase the amount of hot goods in the store and

select the best-sell good of the same type when purchasing.