WikipediA

Mixed volume

In <u>mathematics</u>, more specifically, in <u>convex geometry</u>, the **mixed volume** is a way to associate a non-negative number to an r-tuple of <u>convex bodies</u> in n-dimensional space. This number depends on the size and shape of the bodies and on their relative orientation to each other.

Contents

Definition

Properties

Quermassintegrals

Intrinsic volumes

Hadwiger's characterization theorem

Notes

External links

Definition

Let K_1, K_2, \ldots, K_r be convex bodies in \mathbb{R}^n and consider the function

$$f(\lambda_1,\ldots,\lambda_r)=\operatorname{Vol}_n(\lambda_1K_1+\cdots+\lambda_rK_r), \qquad \lambda_i\geq 0,$$

where Vol_n stands for the n-dimensional volume and its argument is the $\operatorname{\underline{Minkowski\ sum}}$ of the scaled convex bodies K_i . One can show that f is a $\operatorname{\underline{homogeneous\ polynomial}}$ of degree n, therefore it can be written as

$$f(\lambda_1,\ldots,\lambda_r) = \sum_{j_1,\ldots,j_n=1}^r V(K_{j_1},\ldots,K_{j_n}) \lambda_{j_1} \cdots \lambda_{j_n},$$

where the functions V are symmetric. For a particular index function $j \in \{1, \ldots, r\}^n$, the coefficient $V(K_{j_1}, \ldots, K_{j_n})$ is called the mixed volume of K_{j_1}, \ldots, K_{j_n} .

Properties

- The mixed volume is uniquely determined by the following three properties:
- 1. $V(K,\ldots,K)=\operatorname{Vol}_n(K)$;
- 2. $\emph{\textbf{V}}$ is symmetric in its arguments;
- 3. V is multilinear: $V(\lambda K+\lambda'K',K_2,\ldots,K_n)=\lambda V(K,K_2,\ldots,K_n)+\lambda'V(K',K_2,\ldots,K_n)$ for $\lambda,\lambda'\geq 0$.

- The mixed volume is non-negative and monotonically increasing in each variable: $V(K_1, K_2, ..., K_n) \leq V(K'_1, K_2, ..., K_n)$ for $K_1 \subseteq K'_1$.
- The Alexandrov–Fenchel inequality, discovered by <u>Aleksandr Danilovich Aleksandrov</u> and <u>Werner Fenchel</u>:

$$V(K_1,K_2,K_3,\ldots,K_n) \geq \sqrt{V(K_1,K_1,K_3,\ldots,K_n)V(K_2,K_2,K_3,\ldots,K_n)}.$$

Numerous geometric inequalities, such as the <u>Brunn–Minkowski inequality</u> for convex bodies and Minkowski's first inequality, are special cases of the Alexandrov–Fenchel inequality.

Quermassintegrals

Let $K \subset \mathbb{R}^n$ be a convex body and let $B = B_n \subset \mathbb{R}^n$ be the Euclidean ball of unit radius. The mixed volume

$$W_j(K) = V(\overbrace{K,K,\ldots,K}^{n-j ext{ times}}, \overbrace{B,B,\ldots,B}^{j ext{ times}})$$

is called the *j*-th **quermassintegral** of K.^[1]

The definition of mixed volume yields the **Steiner formula** (named after Jakob Steiner):

$$\operatorname{Vol}_n(K+tB) = \sum_{j=0}^n inom{n}{j} W_j(K) t^j.$$

Intrinsic volumes

The j-th **intrinsic volume** of K is a different normalization of the quermassintegral, defined by

$$V_j(K) = inom{n}{j} rac{W_{n-j}(K)}{\kappa_{n-j}},$$
 or in other words $\operatorname{Vol}_n(K+tB) = \sum_{j=0}^n V_j(K) \operatorname{Vol}_{n-j}(tB_{n-j}).$

where $\kappa_{n-j} = \operatorname{Vol}_{n-j}(B_{n-j})$ is the volume of the (n-j)-dimensional unit ball.

Hadwiger's characterization theorem

Hadwiger's theorem asserts that every <u>valuation</u> on convex bodies in \mathbb{R}^n that is continuous and invariant under rigid motions of \mathbb{R}^n is a linear combination of the quermassintegrals (or, equivalently, of the intrinsic volumes). [2]

Notes

1. McMullen, P. (1991). "Inequalities between intrinsic volumes" (https://doi.org/10.1007%2Fbf01299 276). Monatsh. Math. 111 (1): 47–53. doi:10.1007/bf01299276 (https://doi.org/10.1007%2Fbf01299276). MR 1089383 (https://www.ams.org/mathscinet-getitem?mr=1089383).

2. Klain, D.A. (1995). "A short proof of Hadwiger's characterization theorem". *Mathematika*. **42** (2): 329–339. doi:10.1112/s0025579300014625 (https://doi.org/10.1112%2Fs0025579300014625). MR 1376731 (https://www.ams.org/mathscinet-getitem?mr=1376731).

External links

Burago, Yu.D. (2001) [1994], "Mixed volume theory" (https://www.encyclopediaofmath.org/index.php?title=Mixed_volume_theory), *Encyclopedia of Mathematics*, EMS Press

Retrieved from "https://en.wikipedia.org/w/index.php?title=Mixed_volume&oldid=1021587635"

This page was last edited on 5 May 2021, at 15:07 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.