MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
3	2 pont	
Összesen:	2 pont	
2.		
9	2 pont	A 2 ⁹ válasz is elfogadható.
Összesen:	2 pont	TI 2 / Willis 2 is eye guilliter
3.		
$A \cap B = \{12; 18; 24; 30; 36\}$	2 pont	
Összesen:	2 pont	
	-	
4.		
(Mivel egy négyszög belső szögeinek összege 360°,		
a legkisebb szöget α-val jelölve:)	2 pont	
$\alpha + 2\alpha + 3\alpha + 4\alpha = 360^{\circ}.$	-	
Ebből $\alpha = 36^{\circ}$.	1 pont	
A legnagyobb szög: $(4 \cdot 36^{\circ} =) 144^{\circ}$.	1 pont	
Összesen:	4 pont	
5.		
		1 jó válasz, vagy 2 jó és
B és C	2 pont	l rossz válasz esetén
		1 pont jár.
Összesen:	2 pont	
6.		T
Terjedelem: 600 Ft	1 pont	
Módusz: 1000 Ft	1 pont	
Medián: 1200 Ft	1 pont	
Átlag: 1300 Ft	1 pont	
Összesen:	4 pont	
7		
7.		Т
$(150\ 000 \cdot 0.94 =)\ 141\ 000\ (Ft)$	2 pont	
Osszesen:	2 pont	
0		
8.		T
Például (1; 2).	2 pont	
Összesen:	2 pont	

9.		
8	2 pont	
Összesen:	2 pont	

10.		
$x_1 = 5$	1 pont	
$x_2 = 3$	1 pont	
Összesen:	2 pont	

11.		
$f\left(\frac{\pi}{2}\right) = -2$	2 pont	
Összesen:	2 pont	

12. első megoldás		
Összesen $(9 \cdot 10 \cdot 10 =) 900$ darab háromjegyű pozitív egész szám van (összes eset száma).	1 pont	
Ezek közül $9 \cdot 9 \cdot 8 = 648$ olyan, amelynek a számjegyei különbözők (kedvező esetek száma).	2 pont	
A keresett valószínűség: $\frac{648}{900}$ (= 0,72).	1 pont	
Összesen:	4 pont	

12. második megoldás		
Annak valószínűsége, hogy egy véletlenszerűen választott szám második számjegye különbözik az elsőtől: $\frac{9}{10}$.	1 pont	
Annak valószínűsége, hogy a harmadik számjegye különbözik az első kettőtől: $\frac{8}{10}$.	1 pont	
A keresett valószínűség ezek szorzata: $\frac{9}{10} \cdot \frac{8}{10} = 0,72$.	2 pont	
Összesen:	4 pont	

II. A

13. a)		
A zárójelek felbontása után: $x^2 + 8x + 16 + x^2 + 3x + 2 = 9$.	2 pont	
$2x^2 + 11x + 9 = 0$	1 pont	
$x_1 = -1, x_2 = -4,5$	2 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra való hivatkozással.	1 pont	
Összesen:	6 pont	

13. b) első megoldás		
Az első egyenletből: $y = 7 - 2x$.	1 pont	
A második egyenletbe behelyettesítve: $3x - 7 \cdot (7 - 2x) = 36$.	1 pont	
17x - 49 = 36	1 pont	
x=5	1 pont	
y = -3	1 pont	
Ellenőrzés.	1 pont	
Összesen:	6 pont	

13. b) második megoldás		
Az első egyenletet 3-mal, a másodikat 2-vel szorozva: 6x+3y=21 6x-14y=72	2 pont	Az első egyenletet 7-tel szorozva: $14x + 7y = 49$.
Az elsőből a másodikat kivonva: $17y = -51$.	1 pont	Ehhez a második egyenletet hozzáadva: $17x = 85$.
y = -3	1 pont	x = 5
Valamelyik eredeti egyenletbe behelyettesítve: $x = 5$.	1 pont	y = -3
Ellenőrzés.	1 pont	
Összesen:	6 pont	

14. a)	
<i>ABC</i> <= 70°	1 pont
D 12 C A BCT három- szögben: $\sin 70^{\circ} = \frac{m}{6}$ T T	1 pont
$AD = CT = m \approx 5,64 \text{ cm}$	1 pont

Pitagorasz-tétellel: $TB^2 + m^2 = 36$,	1 pont	$\cos 70^\circ = \frac{TB}{6}$
amiből $TB \approx 2,05$ (cm).	1 pont	
$AB \approx 12 + 2,05 = 14,05 \text{ cm}$	1 pont	
Összesen:	6 pont	

14. b) első megoldás		
$D = \frac{12}{\delta}$ $A BCD \text{ háromszögben a koszinusztételt felírva:}$ $BD^2 = 12^2 + 6^2 - 2 \cdot 12 \cdot 6 \cdot \cos 110^\circ.$	1 pont	
$BD \approx 15,14 \text{ cm}$	1 pont	
A <i>BCD</i> háromszögben a szinusztételt felírva: $\frac{6}{15,14} = \frac{\sin \delta}{\sin 110^{\circ}}.$	1 pont	$\frac{12}{15,14} = \frac{\sin\beta}{\sin 110^\circ}$
$\sin \delta \approx 0.3724$	1 pont	$\sin \beta \approx 0.7448$
(Mivel $\delta < 90^{\circ}$, így) $\delta \approx 21.9^{\circ}$	1 pont	$\beta \approx 48.1^{\circ}$
$\beta = 180^{\circ} - 110^{\circ} - 21,9^{\circ} = 48,1^{\circ}$	1 pont	δ = 21,9°
Összesen:	6 pont	

14. b) második megoldás		
D S	2 pont	
ABD∢ = BDC∢, mert váltószögek.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az <i>ABD</i> háromszögben: tg $\delta = \frac{5,64}{14,05}$.	1 pont	
δ ≈ 21,9°	1 pont	
$\beta = 180^{\circ} - 110^{\circ} - 21,9^{\circ} = 48,1^{\circ}$	1 pont	$\beta = 70^{\circ} - \delta$
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó valamelyik válaszát mértékegység nélkül adja meg, akkor ezért a feladatban összesen 1 pontot veszítsen.

15. a)		
$70 = 37 \cdot \lg K + 31$	1 pont	
$\frac{39}{37} = \lg K$	1 pont	
$K = 10^{\frac{39}{37}} \approx 11,325$	2 pont	
$0,325$ év megfelel $0,325 \cdot 12 = 3,9$ hónapnak,	1 pont	
tehát kerekítve 11 éves és 4 hónapos az a kutya, amely emberévekben mérve 70 éves.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	6 pont	

15. b)		
A 8 éves kutya a második számítási módszer szerint	2 pont	
$5.5 \cdot 8 + 12 = 56$ éves emberévekben mérve, az amerikai képlet szerint pedig		
$37.19.8 + 31 \approx 64.4 \text{ éves}$	2 pont	
Ez az érték az 56-nak $\left(\frac{64,4}{56}\right)$ = 1,15-szorosa,	1 pont	
tehát 15%-kal nagyobb.	1 pont	
Összesen:	6 pont	

II. B

16. a)		
Egy betűhármas megadása az {ABE, ACD, ACE, AEF, BGH, DGH} halmazból.	2 pont	
Összesen:	2 pont	

16. b) első megoldás		
A fokszámok összege 30,	1 pont	Ezek a pontok akkor is járnak, ha a vizsgázó az
az eddig lejátszott mérkőzések száma ennek fele, azaz 15.	1 pont	ábra alapján helyesen megadja az élek számát.
Az 5 forduló alatt megrendezendő mérkőzések száma $\frac{8\cdot 5}{2} = 20.$	1 pont	
Tehát $(20 - 15 =) 5$ mérkőzés maradt el.	1 pont	
Összesen:	4 pont	

16. b) második megoldás		
Ha eddig minden mérkőzést lejátszottak volna, akkor minden fokszám 5 lenne.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az ehhez "hiányzó" fokszámok rendre: 0, 1, 2, 1, 1, 2, 2, 1.	1 pont	
Az elmaradt mérkőzések száma a hiányzó fokszámok összegének (10) a fele,	1 pont	
tehát 5 mérkőzés maradt el.	1 pont	
Összesen:	4 pont	

16. c)		
Annak a valószínűsége, hogy a játékos egy büntetőlövésből nem szerez gólt: $(1 - 0.3 =) 0.7$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kérdezett valószínűség binomiális eloszlással számolva (4-szer szerez gólt és 6-szor nem): $ \binom{10}{4} \cdot 0,3^4 \cdot 0,7^6 \approx $	2 pont	
≈ 0,200.	1 pont	
Összesen:	4 pont	

16. d) első megoldás		
$1 \text{ m}^3 = 1\ 000\ 000\ \text{cm}^3$	1 pont	Ez a pont akkor is jár, ha a vizsgázó méterben he- lyesen számol, és méter- ben adja meg a választ.
A szabványos korong sugara: $r = 3.81$ (cm).	1 pont	
A szabványos korong térfogata: $V = 3.81^2 \cdot \pi \cdot 2.54 \approx 115.8 \text{ (cm}^3\text{)}.$	1 pont	Ha a hasonlóság aránya k , akkor a nagyméretű korong térfogata: $V = (3.81 \cdot k)^2 \cdot \pi \cdot (2.54 \cdot k)$
A <i>k</i> -szorosra nagyított korong térfogata az eredetinek k^3 -szorosa: 1 000 000 = 115,8 · k^3 .	1 pont	
Ebből $k \approx \sqrt[3]{8636} \approx 20,5.$	1 pont	
A nagyméretű korong magassága: (20,5 · 2,54 ≈) 52 cm,	1 pont	
alapkörének átmérője pedig: $(20,5 \cdot 7,62 \approx) 156$ cm.	1 pont	
Összesen:	7 pont	

16. d) második megoldás		
A feladat szövege alapján (a szabványos és a nagy- méretű korong esetében is) az alapkör <i>r</i> sugarára, <i>d</i> átmérőjére és a korong <i>m</i> magasságára egyaránt	1 pont	
2r = d = 3m teljesül.		
Azaz (mindkét korong esetében) $m = \frac{2}{3}r$.	1 pont	
Ha a nagyméretű korong sugarát (méterben mérve) R jelöli, akkor a feladat szövege alapján: $R^2\pi \cdot \frac{2}{3}R = 1$.	1 pont	
Ebből $R \approx \sqrt[3]{0,4775} \approx 0,78$ (m).	2 pont	
A nagyméretű korong alapkörének átmérője: $(2 \cdot 0.78 =) 1.56 \text{ m},$	1 pont	
magassága pedig: $\left(\frac{2}{3} \cdot 0.78 = 0.52 \text{ m.}\right)$	1 pont	
Összesen:	7 pont	

17. a) első megoldás		
A feladat szövege alapján megoldandó a következő		
egyenletrendszer: $m+b=200$ $21m+b=5200$	2 pont	
21m + b = 5200		
A második egyenletből az elsőt kivonva:	1 pont	
20m = 5000.	1 point	
Az egyenletrendszer megoldása: $m = 250$	1 pont	
és $b = -50$.	1 nont	
(Tehát a hozzárendelési szabály: $x \mapsto 250x - 50$.)	1 pont	
Összesen:	5 pont	

17. a) második megoldás		
A kérdéses lineáris függvény grafikonjának meredek-		
ségére: $m = \frac{5200 - 200}{21 - 1} =$	2 pont	
21-1		
= 250.	1 pont	
200 = 250 + b	1 pont	$5200 = 21 \cdot 250 + b$
Ebből $b = -50$.	1 nont	
(Tehát a hozzárendelési szabály: $x \mapsto 250x - 50$.)	1 pont	
Összesen:	5 pont	

17. b)		
Számtani sorozat esetén ($a_1 = 200$, $a_{21} = 5200$):		
$S_{21} = \frac{(200 + 5200) \cdot 21}{2} =$	2 pont	
= 56 700 métert úszna Anna a teljes felkészülés alatt.	1 pont	
Mértani sorozat esetén ($b_1 = 200, b_{21} = 5200$):	1 nont	
$5200 = 200 \cdot q^{20}.$	1 pont	
$q^{20} = 26$	1 pont	
$q \approx 1,177$	1 pont	
$S_{21} = 200 \cdot \frac{1,177^{21} - 1}{1,177 - 1} \approx$	1 pont	
pprox 33500 métert úszna Anna.	1 pont	
Összesen:	8 pont	

17. c) első megoldás		
A résztvevők száma legyen <i>n</i> , ekkor a nők száma 0,36 <i>n</i> , a férfiak száma 0,64 <i>n</i> .	1 pont	
Az életkorok összege $0.36n \cdot 35 + 0.64n \cdot 38 = 36.92n$,	2 pont	
	1 pont	
Összesen:	4 pont	

17. c) második megoldás		
A résztvevők 0,36 része nő, 0,64 része férfi.	1 pont	
Súlyozott átlaggal számolva: $0.36 \cdot 35 + 0.64 \cdot 38 \approx$	2 pont	
\approx 37 év az összes induló átlagéletkora.	1 pont	
Összesen:	4 pont	

18. a)		
$5 \cdot 2 = 10$ olyan egyenes van, amely illeszkedik az A, B, C, D, E pontok valamelyikére, illetve az F, G pontok valamelyikére.	2 pont	
Az A, B, C, D, E pontokra, valamint az F és G pontokra is illeszkedik 1-1 egyenes, összesen tehát 12 megfelelő egyenes van.	1 pont	
Összesen:	3 pont	

18. b) első megoldás		
A három kiválasztott pont akkor alkot háromszöget,		Ez a pont akkor is jár, ha
ha nem esnek egy egyenesre. (Az A, B, C, D, E pon-	1 pont	ez a gondolat csak a meg-
tok közül vagy 2-t választunk, vagy 1-et.)		oldásból derül ki.
Az A, B, C, D, E pontok közül 2-t $\binom{5}{2}$ = 10-félekép-	1 pont	
pen választhatunk ki,		
és ezekhez a harmadik csúcsot 2-féleképpen (F és G		
közül) választhatjuk ki. Ebben az esetben tehát 20	1 pont	
különböző háromszög van.		
Az A, B, C, D, E pontok közül 1-et 5-féleképpen vá-		
laszthatunk ki, és ezt kötjük össze <i>F</i> -fel és <i>G</i> -vel.	1 pont	
Ebben az esetben tehát 5 különböző háromszög van.		
Így összesen $20 + 5 = 25$ háromszög létezik.	1 pont	
Összesen:	5 pont	

18. b) második megoldás		
(Komplementer összeszámolást alkalmazunk.) A 7 pont közül 3-at $\binom{7}{3}$ = 35-féleképpen választha-	2 pont	
tunk ki,		
de ezek közül az egy egyenesre illeszkedő		
$\binom{5}{3} = 10 \text{ darab ponthármas nem alkot háromszöget.}$	2 pont	
Így összesen $35 - 10 = 25$ háromszög létezik.	1 pont	
Összesen:	5 pont	

Osszesen: 5 pont

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha rendezetten felsorolja a lehetséges háromszögeket, és ez alapján helyesen válaszol.

18. c) első megoldás		
$\left \overrightarrow{LK} \right = \left(\sqrt{(-2)^2 + 4^2} \right) = \sqrt{20}$	1 pont	
$\left \overrightarrow{LM} \right = (\sqrt{4^2 + 2^2} =) \sqrt{20}$	1 pont	
$\left \overrightarrow{KM} \right = \left(\sqrt{6^2 + (-2)^2} \right) = \sqrt{40}$	1 pont	
$\sqrt{20}^2 + \sqrt{20}^2 = \sqrt{40}^2$, tehát (a Pitagorasz-tétel megfordítása miatt) az <i>L</i> -nél valóban derékszög van.	1 pont	
Összesen:	4 pont	

18. c) második megoldás		
$\overrightarrow{LK} = (-2; 4)$	1 pont	
$\overrightarrow{LM} = (4; 2)$	1 pont	
Az \overrightarrow{LK} vektor az \overrightarrow{LM} vektor 90°-os elforgatottja,	1 pont	Skaláris szorzatuk: $-2 \cdot 4 + 4 \cdot 2 = 0$.
tehát L-nél valóban derékszög van.	1 pont	
Összesen:	4 pont	

18. c) harmadik megoldás		
A KL egyenes meredeksége: $\frac{1-5}{1-(-1)} = -2$.	1 pont	
Az <i>LM</i> egyenes meredeksége: $\frac{3-1}{5-1} = \frac{1}{2}$.	1 pont	
Ezek szorzata –1,	1 pont	
tehát az egyenesek merőlegesek (így <i>L</i> -nél valóban derékszög van).	1 pont	
Összesen:	4 pont	

18. d)		
(A Thalész-tétel, illetve a megfordítása miatt) derékszögű háromszögben a körülírt kör középpontja az átfogó felezőpontja, sugara pedig az átfogó fele.	1 pont	
Az átfogó felezőpontja: $F_{KM} = (2; 4)$.	1 pont	
$r = \frac{KM}{2} = \frac{\sqrt{6^2 + (-2)^2}}{2} = \frac{\sqrt{40}}{2} = \sqrt{10}$	1 pont	
A körülírt kör egyenlete: $(x-2)^2 + (y-4)^2 = 10$.	2 pont	
Összesen:	5 pont	

Megjegyzés: A KM oldal felezőmerőlegesének egyenlete: y = 3x - 2, a KL oldalé: y = 0.5x + 3, az LM oldalé: y = -2x + 8.