Distilling Image Classifiers in Object Detectors

Research paper study and discussion By Dong Yuexi, Chen Mengxuan, Zhang Hongtao, Sun Fan

Agenda

- 1. Introduction
- 2. Model Concept
- 3. Experimental Result Analysis
- 4. Significance and Impact

Introduction

Object Detection

Classification + Localization

CAT CAT

Object Detection

CAT, DOG, DUCK

Challenges:

limited memory and computation power

Existing methods:

pruning, quantization, knowledge distillation

This paper:

introduce a knowledge distillation approach for object detection

Knowledge Distillation

Limitation and Goal

Detecoer-to-Detector Distillation

Model Concept

General Pipeline for a Detector

• Framework of a detector

• Common object detector

Knowledge Distillation: Detector-to-Detector

• The student and teacher follow the same kind of detection framework

SOTA Method

Knowledge Distillation: Classifier-to-Detector

- Knowledge distillation across tasks
- From a image classification teacher to an object detection student

Knowledge Distillation: Classifier-to-Detector

• The classification branch

A loss function defined by the class probabilities of the teacher and the student.

Knowledge Distillation: Classifier-to-Detector

The localization branch

Feature level distillation strategy: Comparing the features within the predicted bounding box with those within the ground truth.

Experimental Result Analysis

Dataset

MS COCO 2017(Microsoft) Dataset

- 80 object classes
- 118k images for training
- 5k images for testing

Architecture

Teacher Model (classification)

cfg[1] blocks

cfg[2] blocks

ResNet50 (50 Layers)

cfg[0] blocks

cfg[3] blocks

Student Model 1: SSD512(vgg16) (Detection)

Single Shot Multibox Detector with VGG16 as backbone

With Distillation:

• 2.7 mAP improvement

Student Model 2: Faster RCNN (Detection)

Complete Faster R-CNN architecture

With Distillation:

• 3.9 mAP improvement

Faster RCNN (Quatered-ResNet50 Backbone)

Student Model 3: RetinaNet (Detection)

Only used in the comparison experiment

Comparison Experiment

SOTA Detector-Detector

Distillation Model: FKD

Teacher Detector

Knowledge Distillation

Student Detector

Novel Classifier-Detector Distillation Model

Teacher Classifier

Knowledge Distillation

Student Detector

Comparison Using **Compact** Student Network

Comparison Using <u>Deeper</u> Student Network

- SOTA Method Wins
- The method of this paper performs better for compact networks

Combination Is Even Better

SOTA FKD

+

Classifier-Detector Distillation

Table 2: Comparison to detector-to-detector distillation methods on the COCO2017 validation set.

Method	mAP	AP_s	AP_m	AP_l
Faster RCNN-QR50	23.3	13.1	25.0	30.7
+ FKD [43]	26.1	14.6	27.3	35.0
+ Ours	27.2	15.2	29.3	36.2
+ Ours + FKD	28.0	15.4	29.8	38.5
SSD512-VGG16	29.4	11.7	34.1	44.9
+ FKD [43]	31.2	12.6	37.4	46.2
+ Ours	32.1	13.3	36.6	47.9
+ Ours + FKD	32.6	13.5	37.6	48.3
Faster RCNN-MV2	31.9	18.5	34.4	41.0
+ FKD [43]	33.9	18.3	36.3	45.4
+ Ours	32.7	19.0	35.0	42.9
+ Ours + FKD	34.2	18.5	36.3	45.9
Faster RCNN-R50	38.4	21.5	42.1	50.3
+ KD [5]	38.7	22.0	41.9	51.0
+ FGFI [39]	39.1	22.2	42.9	51.1
+ GID [8]	40.2	22.7	44.0	53.2
+ FKD [43]	41.5	23.5	45.0	55.3
+ Ours	38.8	22.5	42.5	50.8
+ Ours + FKD	41.9	23.8	45.2	56.0
RetinaNet-R50	37.4	20.0	40.7	49.7
+ FGFI [39]	38.6	21.4	42.5	51.5
+ GID [8]	39.1	22.8	43.1	52.3
+ FKD [43]	39.6	22.7	43.3	52.5
+ Ours	37.9	20.5	41.3	50.5
+ Ours +FKD	40.7	23.1	44.7	53.8

Ablation Study (Component Study)

Observations:

- Classification distillation yields larger improvement for smaller IoU threshold
- Localization distillation yields larger improvement for Larger IoU threshold

Analysis:

- Classification distillation distills category info to student
- Localization distillation focuses on precise location

Significance and Impact

Novelty

Old

Detector-Detector
Distillation

New

Classifier-Detector
Distillation

This research showed:

- Using <u>classification</u> model as teacher in distillation
 - Works!
 - Performs better than baseline
- Improves the SOTA detector-detector distillation

Influenced Paper

1. Knowledge Distillation for 6D Pose Estimation by Keypoint Distribution Alignment

Contributions:

- Allowed compact compact network for 6D pose estimation running on embedded devices
- Powered Robotics Research
- 2. Task-Balanced Distillation for Object Detection

Contributions:

Inspired research on task-balanced distillation

Broader Impact

- 1. Resource-constrained environments:
 - a. Improve model performs in mobile devices
 - b. Greatly reduced the Training resources
- 2. Further Research:
 - a. Knowledge can be transferred not only across architectures, but also across tasks
 - Provide new knowledge distillation
 techniques for federated learning

Q&A

Acknowledgement

- Guo, S., Alvarez, J. M., & Salzmann, M. (2021). Distilling Image Classifiers in Object Detectors. Advances in Neural Information Processing Systems, 34, 1036-1047.
- Guo, S., Hu, Y., Alvarez, J. M., & Salzmann, M. (2022). Knowledge Distillation for 6D Pose Estimation by Keypoint Distribution Alignment. arXiv preprint arXiv:2205.14971.
- Tang, R., Liu, Z., Li, Y., Song, Y., Liu, H., Wang, Q., ... & Tan, J. (2022).
 Task-Balanced Distillation for Object Detection. arXiv preprint arXiv:2208.03006.

Thank You