45. A compound having the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl having 1-4 carbon atoms;

Y represents C, O, S, or N;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S or O;

R' and R" represent hydrogen or lower alkyl having 1-4 carbon atoms;

or R' or R" taken together form an oxo (keto), methano, cyclopropyl or cycloalkyl group and wherein the cyclopropyl and

cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons;

R'" and R"" represent hydrogen or lower alkyl having 1-4 carbon atoms;

 R_5 represents hydrogen or a lower alkyl having 1-4 carbons or OR_7 , but R_5 cannot be hydrogen if R_6 is hydrogen and R' and R'' taken together form an oxo or a methano;

R₆ represents hydrogen;

R₇ represents hydrogen or a lower alkyl having 1-6 carbons;

X is COOH and can originate from any C on the ring; and

n = 0-1.

46. A pharmaceutical composition for control of cellular processes regulated by retinoid compounds, Vitamin D, or thyroid hormone, comprising an effective regulating amount of a bicyclic aromatic compound, or a pharmaceutically acceptable ester, amide or salt thereof, in combination with a pharmaceutically acceptable carrier, wherein the bicyclic aromatic compound has the structural formula:

wherein:

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl having 1-4 carbon atoms;

Y represents C, O, S, or N;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N and neither R_3 or R_4 exist if Y is S or O;

R' and R" represent hydrogen or lower alkyl having 1-4 carbon atoms,

or R' or R" taken together form an oxo (keto), methano, cyclopropyl or cycloalkyl group and wherein the cyclopropyl and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons;

R'" and R"" represent hydrogen or lower alkyl having 1-4 carbon atoms;

 R_5 represents hydrogen or a lower alkyl having 1-4 carbons or OR_7 , but R_5 cannot be hydrogen if R_6 is hydrogen and R' and R'' taken together form an OR_7 or a methano;

suber N