MA0301 ELEMENTARY DISCRETE MATHEMATICS **SPRING 2017**

1. Homework Set 9 – Solutions

Exercise 1. Find the number of distinct permutations of the sequence of letter:

- a) THOSE, b) UNUSUAL, c) SOCIOLOGICAL,
- $d) \; S \; A \; N \; N \; S \; Y \; N \; L \; I \; G \; H \; E \; T \; S \; T \; E \; T \; T \; H \; E \; T \; S \; F \; U \; N \; K \; S \; J \; O \; N \; E \; N \; E$

Solution 1. a) $\frac{5!}{1!1!1!1!1!} = 5! = 120$

- b) $\frac{7!}{3!} = 840$ c) $\frac{12!}{3!2!2!2!}$ d) $\frac{33!}{5!6!2!5!5!}$

Exercise 2. Consider the two permutations:

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 5 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix}$$

Calculate the permutations i) $a \circ b$, ii) $b \circ a$ and iii) find the inverses a^{-1} and b^{-1} .

Solution 2.

$$b \circ a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 2 & 4 \end{pmatrix} \qquad a \circ b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 4 & 3 \end{pmatrix}$$

$$a^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 3 & 4 & 2 \end{pmatrix} \qquad b^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 2 & 4 & 3 \end{pmatrix}$$

Exercise 3. Grimaldi's book (5. ed., Exercises 6.1, page 317): solve Ex. 1

Solution 3. a) $5^2 = 25$

- b) $5^3 = 125$
- c) $1+5+5^2+5^3+5^4+5^5$

Exercise 4. Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 5

Solution 4. There are $5 + 5^2 + 5^3 + 5^4$ words with prefix xy in A.

Exercise 5. Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 18

Solution 5. Should be clear.

Exercise 6. Grimaldi's book (5. ed., Exercises 6.2, page 324): solve Ex. 3

Solution 6. a) 010110

Date: March 13, 2017.

b)

(Missing an arrow a, 1 from s_2 to s_1 .)

Exercise 7. Grimaldi's book (5. ed., Exercises 6.3, page 332): solve Ex. 8

<u>Solution</u> 7. The input sequences 110 or 111 (among others) bring you from s_2 to s_5 .

2. Classroom Set 9 – Solutions

Exercise 8. Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 9

Solution 8. a) $x \in AC$ implies that x = ac for $a \in A$ and $c \in C$. This implies that $x \in BD$ since $A \subset B$ and $C \subset D$.

b) Assume that $A\emptyset \neq \emptyset$. Let $x \in A\emptyset$. This implies that x = ae for $a \in A$ and $e \in \emptyset$. The latter is not possible, and therefore $A\emptyset = \emptyset$. An analog argument applies to $\emptyset A = \emptyset$.

Exercise 9. Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 17

Solution 9. Induction implies that $A = A^n$ for all positive integers n. This implies that $A = A^+$. We can show that $A = A^2$ implies that $\lambda \in A$ (see Ex. 6.1, Ex. 15), and therefore $A = A^*$.

Exercise 10. Grimaldi's book (5. ed., Exercises 6.2, page 325): solve Ex. 5

Solution 10. a) 010000, s_2

b) starting at s_1 : 100000, s_2 ; starting at s_2 : 000000, s_2 ; starting at s_3 : 110010, s_2 c)

	ν		ω	
	0	1	0	1
s_0	s_0	s_1	0	0
s_1	s_1	s_2	1	1
s_2	s_2	s_2	0	0
s_3	s_0	s_3	0	1
s_4	s_2	s_3	0	1

- $d) s_1$
- e) The unique input string is: x = 101

Exercise 11. Grimaldi's book (5. ed., Exercises 6.2, page 325): solve Ex. 9

Solution 11. b) x = 1111 or x = 0000

- c) $A = \{111\}\{1\}^* \cup \{000\}\{0\}^* \subset \{0,1\}^*$
- d) $A = \{11111\}\{1\}^* \cup \{00000\}\{0\}^* \subset \{0,1\}^*$

	ν		ω	
	0	1	0	1
s_0	s_4	s_1	0	0
s_1	s_3	s_2	0	0
s_2	s_3	s_2	0	1
s_3	s_3	s_3	0	0
s_4	s_5	s_3	0	0
s_5	s_5	s_3	1	0

Exercise 12. Grimaldi's book (5. ed., Exercises 6.3, page 332): solve Ex. 5

Solution 12. a)

- b) 111 \longrightarrow 011; 1010 \longrightarrow 0101; 00011 \longrightarrow 00001
- c) The machine is a *unit delay*, i.e., for an input with n symbols it produces an output which starts with zero and then it copies the first n-1 symbols of the input.
 - d) It operates the same way with two states.

Exercise 13. Grimaldi's book (5. ed., Exercises 6.3, page 332): solve Ex. 7

Solution 13. a) transient states: s_0 , s_1 ; sink state: s_4 ; submachines: $\{s_1, s_2, s_3, s_4, s_5\}$, $\{s_2, s_3, s_5\}$, $\{s_2, s_3, s_4, s_5\}$; strongly connected submachines: $\{s_4\}$, $\{s_2, s_3, s_5\}$.

- b) transient states: s_2 , s_3 ; sink state: s_4 ; submachine: $\{s_0, s_1, s_3, s_4\}$, $\{s_4\}$, $\{s_0, s_1\}$; strongly connected submachines: $\{s_4\}$, $\{s_0, s_1\}$.
- c) transient states: none; sink state: s_6 ; submachine: $\{s_2, s_3, s_4, s_5, s_6\}$, $\{s_6\}$, $\{s_3, s_4, s_5, s_6\}$; strongly connected submachines: $\{s_6\}$.