11.word2vec

one-hot encoding

• Words can be represented by **one-hot** vectors:

One-Hot Encoding

Means one 1, the rest 0s

```
hotel = [ 1 0 0 0 0 0 0 0 0 0]
flower = [ 0 1 0 0 0 0 0 0 0 0]
business = [ 0 0 0 1 0 0 0 0 0]
motel = [ 0 0 0 0 0 0 0 1 0]
elephant = [ 0 0 0 0 0 0 0 0 1 1]
```

Vector dimension = number of words in vocabulary (e.g., 500,000)

How to measure word similarities?

problem

用户搜索Minhang motel时,想进行匹配,但是motel = [0000000000000]
hotel = [00000000000000]
两个向量是正交的,并没有任何关系

word emmbeding

词嵌入最粗浅的理解

o Cosine相似度衡量方向

```
o 词映射到低维连续向量(如图)
cat: (-0.065, -0.035, 0.019, -0.026, 0.085,...)
dog: (-0.019, -0.076, 0.044, 0.021,0.095,...)
table: (0.027, 0.013, 0.006, -0.023, 0.014, ...)
o 相似词映射到相似方向 -- 语义相似性被编码了
```


Projection of the embedding vectors to 2-D

Projection of the embedding vectors to 2-D

词嵌入可以做类比题

- v("国王") v("王后") ≈ v("男") v("女") o v("英国") + v("首都") ≈ v("伦敦")
- 反映出语义空间中的线性关系 o词嵌入编码了语义空间中的线性关系, 向量的不同部分对应不同的语义 o 质疑: 然而并没有什么x用? o
- 两个句子: A含"英国","首都",不含"伦敦"; B含"伦敦" o 所有词的词向量的和表示句子
- 两个句子仍会比较相似

a:b :: c:?
man:woman :: king:?

$$d = \arg\max_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$$

- Man is to Woman as King is to___?
- Good is to Best as Smart is to ?
- China is to Beijing as America is to ___?0.75

• It turns out that word2vec is good for such analogy task.

 $V_{king} - V_{man} + V_{woman} = V_{queen}$

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and Their Compositionality. NIPS, 1-9.

相似词映射到相似方向: 为什么

- 基本假设: "相似"词的邻居词分布类似 o 倒推: 两个词邻居词分布类似 → 两个词语义相近
- 猫宠物主人喂食蹭喵
- 狗宠物主人喂食咬汪
- ∨("猫")≈∨("狗")
- Apple: tree red growth design music company engineering executive
- v("apple")≈v("orange"), v("apple")≈v("microsoft")

词嵌入的优点 传统one-hot编码: "天气": (1,0,0...,0), "气候": (0,1,0,...0) 权力/的/游戏: (1,0,0,1,1,0,0, ...) 冰/与/火/之/歌: (0,1,1,0,0,1,1,...) o 维度高(几千-几万维稀疏向量),

- 数据稀疏
- 没有编码不同词之间的语义相似性
- 难以做模糊匹配

词嵌入:

- 维度低 (100 500维), 连续向量, 方便机器学习模型处理
- 无监督学习,容易获得大语料
- 天然有聚类后的效果
- 一个向量可以编码一词多义(歧义的问题需另外处理)
- 罕见词也可以学到不错的表示: "风姿绰约" ≈ "漂亮"

局限

不能表示语句中词语顺序的关系

• To understand the meaning of a sentence, the order of the words can not be ignored.

the vector space model

• The cornerstone technology in information retrieval

Term-Document Matrix

Each cell is the count of word t in document d

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

Two documents are similar if they have similar vector!

D3 = [40, 1, 30, 0, 15]

D4 = [38, 3, 25, 4, 14]

Term-Document Matrix

Each cell is the count of word t in document d

D1	D2	D3	D4	D5
0	1	40	38	1
4	5	1	3	30
1	2	30	25	2
4	6	0	4	25
8	1	15	14	1
	0 4 1	0 1 4 5 1 2 4 6	0 1 40 4 5 1 1 2 30 4 6 0	0 1 40 38 4 5 1 3 1 2 30 25 4 6 0 4

Vector of word "sakit" = [4, 6, 0, 4, 25]

Term-Document Matrix

Each cell is the count of word t in document d

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

Two words are similar if they have similar vector!

pusing = [4, 5, 1, 3, 30] sakit = [4, 6, 0, 4, 25]

缺点

- long (length |V| = 20,000 to 50,000)
- sparse (most elements are zero)
- 难以用作机器学习中的特征 (需要调整的权重更多)
- n存储显式计数可能很难推广