Sprawozdanie Metody Numeryczne 2 Temat 3

Przemysław Woźniakowski 2018-11-28

1 Treść zadania

Obliczanie całkek $\iint_D f(x,y) dx dy$ na obszarze:

$$D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

przez transformacje na kwadrat $[-1,1] \times [-1,1]$ i zastosowanie złożonych 2-punktowych kwadratur Gaussa-Legendre'a ze względu na każda zmienna.

2 Opis metody

Metoda polega na zamianie obszaru całkowania Dw całce $\iint_D f(x,y)\,dx\,dy$ na obszar:

$$P := \{(a, b) \in \mathbb{R}^2 : max(|a|, |b|) \le 1\}$$

Wiadomo, że: $max(|a|,|b|) = \left|\frac{a+b}{2}\right| + \left|\frac{a-b}{2}\right|$, więc

$$P := \{(a,b) \in \mathbb{R}^2 : |\frac{a+b}{2}| + |\frac{a-b}{2}| \le 1\}$$

czyli x = $\frac{a+b}{2}$ i y = $\frac{a-b}{2}$. Jakobian wynosi $\frac{1}{2}$. Dokonujemy transformacji (zmiany obszaru całkowania) na kwadrat $[-1,1]\times[-1,1]$. Następnie liczymy całkę $\iint_P \frac{1}{2} f(\frac{a+b}{2},\frac{a-b}{2})\,da\,db$ przy pomocy m-złożonych dwupunktowych kwadratur Gaussa - Legendre'a ze względu na każdą zmienną. $g(x,y)=\frac{1}{2} f(\frac{x+y}{2},\frac{x-y}{2})$

$$S(g) = \frac{H^2}{4} \sum_{j=1}^m \sum_{j=1}^m \left[g(-1+i*H + \frac{H}{2}(1-\frac{1}{\sqrt{3}}), -1+j*H + \frac{H}{2}(1-\frac{1}{\sqrt{3}}) + g(-1+i*H + \frac{H}{2}(1+\frac{1}{\sqrt{3}}), -1+j*H + \frac{H}{2}(1+\frac{1}{\sqrt{3}}) + g(-1+i*H + \frac{H}{2}(1+\frac{1}{\sqrt{3}}), -1+j*H + \frac{H}{2}(1-\frac{1}{\sqrt{3}}) + g(-1+i*H + \frac{H}{2}(1-\frac{1}{\sqrt{3}}), -1+j*H + \frac{H}{2}(1+\frac{1}{\sqrt{3}}) \right]$$

3 Warunki, założenia

Metoda liczy wartość całki dla funkcji, które posiadają skończoną wartość na przedziale $[-1,1] \times [-1,1]$.

4 Implementacja metody

Metoda została zaimplementowana w funkcji calculateintegralfun(fun,N), która znajduje wartość całki, a następnie porównuje obliczoną wartość z wartością wyznaczoną przez matlabową funkcję intval2(gdy wg. intval2 funkcja nie ma skończonej całki, rzucany jest błąd).

Przyjmuje ona dwa argumenty:

- -fun funkcję, dla której obliczana jest całka
- -N ilość przedziałów, na których stosowana jest kwadratura Gaussa Legendre'a.

Funkcja zwraca:

- -intval obliczoną wartość całki
- -err błąd

```
function [intval,err] = calculateintegral(fun,N)
f = Q(x,y) 1/2 * fun((x+y)/2,(x-y)/2);
H= 2/N;
intval =0;
for i = 0: N - 1
    for j=0:N-1
        intval = intval + f(-1+i*H + H*(1/2)*(1-1/4))
            sqrt(3)), -1+j*H + H*(1/2)*(1-1/sqrt(3)))...
                         + f(-1+i*H + H*(1/2)*(1+ 1/4)
                             sqrt(3)), -1+j*H + H*(1/2)
                             *(1+ 1/sqrt(3)))...
                         + f(-1+i*H + H*(1/2)*(1+ 1/4)
                             sqrt(3)), -1+j*H + H*(1/2)
                             *(1- 1/sqrt(3)))...
                         + f(-1+i*H + H*(1/2)*(1-1/4)
                             sqrt(3)), -1+j*H + H*(1/2)
                             *(1+ 1/sqrt(3)));
    end
    intval = intval * H/2;
end
 intval = intval * H/2;
intval2= integral2(f,-1,1,-1,1);
if isinf(intval2) == 1 || isnan(intval2) ==1
        error('Funkcja ma rozbiezna calke');
end
err=abs(intval - intval2);
end
```

5 Przykłady i wnioski

Do przebadania funkcji wykorzystałem napisane przeze mnie matlabowe GUI:

Function	Examples
f(x,y	f(x,y)=1
N=	g(x,y)
	h(x,y)
Integral	
Value of	
Error:	Calculate

Gui zawiera trzy przykładowe funkcje:

```
f(x,y) = 1
```

g(x,y) = x + 2y + 2

$$h(x,y) = tg(x+y)$$

Są to proste funkcje, których zadaniem jest pokazanie na kilku przykładach, że funkcja działa. I tak: całka z funkcji f przy N=2 wynosi: 2, a błąd wynosi 0 (co jest oczywiste gdyż jest to pole kwadratu o boku $\sqrt{2}$). Całka z funkcji g wynosi 4 z błędem 0, a całka z h wynosi 0.

Czas na ciekawsze przykłady np:

- >całka z funkcji $x^4+xy^4+x^2y^2sin(xy)$ przy N=10 wynosi 0.13333111 z błędem $-0.0222*10^{-4}$
- > całka z $cos(xy)sin(x^2)+e^x$ przy N=5 wynosi 2.49170961 z błędem 0.00002795.
- > całka z $e^{xy} + tg(x+y)xy^2$ przy N=10 wynosi 2.0429321130 1.792364752*10⁻⁵.
- > całka z $asinh(xy)+(2+x)^y$ przy N=5 wynosi 2.08242309 z błędem -0.00000055.

Oczywiście dla funkcji, które nie posiadają nieskończonej całki, funkcja zwraca błąd, zaś sama metoda zwraca złą wartość. Np dla funkcji $\frac{y}{x}$ przy N=3 funkcja zwraca przekłamaną wartość 0.111111111. Dla N=300 wartość wynosi 0.276547567773332, a dla N=301 jest to już NaN.

Sprawdźmy jeszcze jak wartość parametru N wpływa na błąd na podstawie funkcji $f(x,y)=x^{32}+x^{25}y^{34}+y^{345}$

N	błąd	wartość
1	3.565039159494225e-03	2.323057312541880e-08
2	3.439551570377335e-03	1.255108196900151e-04
4	1.798815198280996e-03	1.766247191786354e-03
8	2.982868391759970e-04	3.266775550891353e-03
16	$2.520162907029312\mathrm{e}\text{-}05$	3.539860760997057e-03
32	1.705473417179873e-06	2.520162907029312e-05

Jak widać wraz ze wzrostem N błąd maleje (co jest oczywiste). Warto jednak zauważyć, że dla mniejszych N-ów iloraz między wartością błędu dla 2N i N rożnie szybciej niż dla większych N-ów.

5.1 Wnioski i zakończenie

Wniosek z przykładów jest jeden: metoda działa, a dzięki możliwości wyboru ilości podprzedziałów, które całkujemy możemy osiągnąć naprawdę niezłą dokładność. Niestety ze względu na to, że wartość funkcji liczymy w punktach równoodległych, metoda dla funkcji o nieskończonej całce zwraca zakłamane wyniki. Aby przestrzec się przed pomyłką warto więc sprawdzić wartość uzyskaną przy pomocy funkcji matlabowej intval2. Co prawda, może to budzić pytania o sens implementowania takiej metody. Takie rozważania pozostawiam jednak czytelnikowi.