6 Logistic Regression

Exercise 6.1 (Logistic Regression with a Normal Regressor)

Let Y be a binary random variable taking on its value in $\{0,1\}$ and let $p = \Pr(Y = 1)$.

Let X be a random variable such that the distribution of X given Y = j is an univariate normal distribution with mean m_j and standard-deviation σ . The pdf of X given Y = j is denoted $f_j(x)$.

- 1. Calculate the pdf $f_X(x)$ of X in function of $f_0(x)$, $f_1(x)$ and p.
- 2. Calculate Pr(Y = 1|X = x) in function of $f_0(x)$, $f_1(x)$ and p.
- 3. Show that $\Pr(Y=1|X=x)=g(a+bx)$ where $g(\cdot)$ is the logistic function and a,b are some real values depending on m_0, m_1, σ and p.

Exercise 6.2 (Logistic Regression with Gradient Ascent)

Create your own R code to generate some samples following a logistic regression model and to estimate this model from the samples. The tasks are the followings:

- 1. Create n = 1000 samples x_1, \ldots, x_n of a random variable X following a normal distribution with mean $m_0 = 0.5$ and standard deviation 1.2.
- 2. Create n samples x_{n+1}, \ldots, x_{2n} of a random variable X' following a normal distribution with mean $m_1 = 1.1$ and standard deviation 1.2.
- 3. Generate some binary (0 or 1) response samples y_1, \ldots, y_n based on the realizations x_1, \ldots, x_n of X with $\beta_0 = 0.3$ and $\beta_1 = 1.7$.

Hints: for a fixed value X=x, the probability to obtain Y=1 must satisfy $\Pr(Y=1|X=x)=P(x)$ with $P(x)=f(\beta_0+\beta_1x)$ where $f(\cdot)$ is the logistic function. The mechanism generating the response samples y_i 's is crucially important for the rest of the work.

- 4. Generate some binary (0 or 1) response samples y_{n+1}, \ldots, y_{2n} based on the realizations x_{n+1}, \ldots, x_{2n} of X' with the same parameters β_0 and β_1 .
- 5. From all the samples $(y_1, x_1), \ldots, (y_{2n}, x_{2n})$, estimate the logistic regression model by using the maximum likelihood principle and the gradient ascent algorithm as follows:
 - (a) Compute the gradient (at each step of the loop),
 - (b) Update the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ of the parameters (at each step),
 - (c) Compute the maximum likelihood function (at each step). Do not forget to verify that this cost function is increasing at each step (plot the cost as a function of the iterations and plot also the norm of the gradient as a function of the iterations).

The step γ of the gradient ascent should be tuned. You can divide the gradient by its norm to facilitate the choice of γ .

- 6. Study numerically the convergence and the quality of the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$. You can modify the step, the number n of samples, the starting point of the gradient ascent, etc.
- 7. Estimate the probabilities $\Pr_{m_0}(Y=1)$ and $\Pr_{m_1}(Y=1)$ where $\Pr_m(Y=1)$ is the probability to obtain Y=1 when the X used to generate the response Y follows the normal distribution with mean m. The estimates must be based on the samples (y_1,x_1) , ..., (y_{2n},x_{2n}) generated above.

Exercise 6.3 (Logistic Regression with GLM)

- Load the data set "bank-additional.csv". Its content is described on the web page
 https://archive.ics.uci.edu/ml/datasets/bank+marketing
 The goal is to predict the variable "y" from the subset of variables "age", "job", "marital",
 and "duration".
- 2. Prepare the dataset to use a k-fold cross-validation with k = 10.
- 3. Use the command "glm" with the option "(...,family="binomial",...)" to estimate the logistic regression model from each train dataset.
- 4. Exploit the estimated model to predict the class of each test dataset.
- 5. Estimate the false positive rate and the false negative rate for each fold of the k-fold cross-validation.
 - Hints in R: you can use the library "caret" and its function "confusionMatrix".
- 6. Plot the false positive rate and the false negative rate with respect to the fold number.