Высшая школа экономики. Факультет математики. Итоговая государственная аттестация.

21 февраля 2020 г.

0.1 Числовые последовательности, пределы, предельные точки, критерий Коши сходимости последовательности.

Определение. Функция $f: \mathbb{N} \to X$, областью определения которой является все множество натуральных чисел называется *последовательностью* элементов множества X. Значение f(n) будем обозначать как a_n , а саму последовательность как $\{a_n\}, a_n \in X$.

Определение. Число A называется *пределом* последовательности $\{a_n\}, a_n \in \mathbb{R}$, если для любого $\varepsilon > 0$ найдется такой номер N, что для любого k > N выполнено :

$$|a_k - A| < \varepsilon$$
.

Обозначение : $a_n \to A$ или $\lim_{n \to \infty} a_n = A$.

Определение. Число A называется npedenom последовательности $\{a_n\}, a_n \in \mathbb{R}$, если для любого $\varepsilon > 0$ найдется такой номер N, что для любого k > N выполнено :

$$|a_k - A| < \varepsilon$$
.

Предложение 1 (Свойства пределов последовательностей). Пусть $\{a_n\}$ и $\{b_n\}$ — две числовые последовательности. Тогда:

- Предел последовательости единственнен, если он существует; Если кроме того, если $a_n \to a$ и $b_n \to b$ то:
- Для любого чила с выполнено $\lim_{n\to\infty}(a_n+)=a+u\lim_{n\to\infty}(a_n)=a;$
- $\lim_{n \to \infty} (a_n + b_n) = a + b;$
- $\lim_{n\to\infty} (a_n b_n) = ab;$
- Если $a \neq 0$ и $a_n \neq 0$ для всех n, то $\frac{1}{a_n} \rightarrow \frac{1}{a}$.

Теорема 1 (Больцано Вейерштрасс). Любая ограниченная последовательность имеет по крайней мере одну предельную точку.

Определение. Последовательность $\{a_n\}$ называется фундаментальной (последовательностью Коши), если для любого $\varepsilon > 0$ существует такой номер N, что для любых номеров n, m > N выполнено: $|a_n - a_m| < \varepsilon$.

Теорема 2 (критерий Коши). Последовательность действительных чисел $\{x_n\}$ имеет предел тогда и только тогда, когда она является фундаментальной.

Доказательство. Если $a_n \to a$, то для $\varepsilon > 0$ выберем такой номер N, что для всех номеров m > N выполнено $|a_m - a| < \frac{\varepsilon}{2}$. Тогда для любых номеров k, l > N верно:

$$|a_k - a_l| \leqslant |a_k - a| + |a - a_l| < \varepsilon,$$

то есть последовательность $\{a_n\}$ — фундаментальна.

Пусть наоборот $\{a_n\}$ — фундаментальная последовательность. Для фикированного ε найдем такой номер N, что для каждого k>N верно $|a_N-a_k|<\varepsilon$. Тогда для каждого n и k>N верно

$$a_N - \varepsilon < a_k < a_N + \varepsilon$$
.

Поэтому последовательность $\{a_n\}$ ограничена, так как ограничен ее бесконечный "хвост".

Теперь можно воспользоваться Теоремой Больцано-Вейерштрасса, найти предельную точку у $\{a_n\}$ и доказать, что найденная предельная точка и является пределом последовательности. Но мы сделаем иначе: воспользуемя принципом вложенных отрезков.

Обозначим $l_n = \inf_{k \geqslant n} a_k$ и $u_n = \inf_{k \geqslant n} a_k$. Ясно, что для любого n верно $l_n \leqslant l_{n+1} \leqslant \leqslant u_{n+1} \leqslant u_n$. Таким образом, $\{[l_n, u_n]\}$ — система вложенных отрезков, а значит имеет по крайней мере одну общую точку. Кроме того, для любого ε и подходящего номера N верно:

$$a_N - \varepsilon \leqslant l_N \leqslant u_N \leqslant a_N + \varepsilon$$
.

А значит $\lim_{n\to\infty}u_n-l_n=0$, по лемме о двух сжимающих последовательностях. Тем самым у системы $\{[l_n,u_n]\}$ есть ровно одна общая точка. Докажем, что она и является пределом последовательности. Пусть $A=\bigcap_{n=1}^{\infty}[l_n,u_n]$. Тогда для любого $\varepsilon>0$ существует такое N, что $u_N-l_N<\varepsilon$. Тогда для любого k>N верно $|A-a_k|\leqslant u_N-l_N<\varepsilon$, так как $A,a_k\in[l_N,u_N]$. То есть $a_n\to A$ при $n\to\infty$.

0.2 Предел функции, непрерывность, теорема о промежуточном значении непрерывной функции, равномерная непрерывность непрерывной функции на отрезке.

Пусть $f \colon E \to \mathbb{R}$ — вещественнозначная функция определённая на некотором подмножестве вещественных чисел $E \subseteq \mathbb{R}$. Будем считать, что $E = \mathbb{R}$, если не сказано иного.

Определение. Число a называется npedenom функции f в точке x_0 , если для любого $\varepsilon > 0$ можно выбрать такое $\delta > 0$, что для любой точки $x \neq x_0$ из неравенства $|x_0 - x| < \delta$ следует неравенство $|a - f(x)| < \varepsilon$. Обозначение: $\lim_{x \to x_0} f(x) = a$.

Неформально говоря, для заранее выбранного ε все точки δ -близкие к x_0 (кроме, возможно, x_0) переходят под действием f в точки ε -близкие к a. Или формулировки в одну строчку:

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in E : (0 \neq |x - a| < \delta) \Rightarrow |f(x) - a| < \varepsilon).$$

Предложение 2. Следующие утверждения эквивалентны:

• Число а является пределом функции f в точке x_0 .

• Для любой последовательности $x_n \to x_0$, в которой не содержится элементов, равных x_0 , верно, что $f(x_n) \to a$.

Доказательство. Omitted.

Предложение 3. Пусть $f, g - \partial se$ функции, причем $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = b$.

- $\bullet \lim_{x \to x_0} f(x) + g(x) = a + b$
- $\lim_{x \to x_0} f(x)g(x) = ab$
- $\lim_{x \to x_0} f(x)/g(x) = a/b$, ecau $b \neq 0$.

Доказательство. Эти свойства моментально следуют из соответствующих свойств пределов последовательностей. \Box

Определение. Функция f называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$.

Определение. Функция f называется henpepubhoù, если она непрерывна в каждой точке своей области определения.

Теорема 3 (О промежуточном значении). Если функция f непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, то существует такая точка $x_0 \in [a.b]$, что $f(x_0) = 0$.

Доказательство. Без умаления общности можно считать, что f(a) > 0 и f(b) < 0. Постоим последовательности $\{a_n\}, \{b_n\}$ следующим образом. Положим $a_1 = a, b_1 = b$. Для каждого натурального k рассмотрим точку $c_k = \frac{a_k + b_k}{2}$. Если $f(c_k) > 0$, положим $a_{k+1} = c_k, b_{k+1} = b_k$, если $f(c_k) < 0$, то $a_{k+1} = a_k, b_{k+1} = c_k$, если же $f(c_k) = 0$, то доказательство уже завершено.

Таким образом мы получаем последовательность вложенных сжимающихся отрезков: для любого натурального k выполнено $[a_{k+1},b_{k+1}]\subsetneq [a_k,b_k]$ и при этом $(b_n-a_n)\to 0$ при $n\to\infty$. Тем самым у них есть ровно одна общая точка: $x_0=\bigcap_{n=1}^\infty [a_n,b_n]$. Осталось проверить, что $f(x_0)=0$. Несложно заметить (по теореме Вейерштрасса), что $a_n\to x_0$ и $b_n\to x_0$ при $n\to\infty$. Так как функция f непрерывна на отрезке [a,b], то у нее существует предел в точке x_0 и совпадает со значением самой функции в x_0 . Поэтому $f(a_n)\to f(x_0)$ и $f(b_n)\to f(x_0)$ при $n\to\infty$. Но для всех k выполнено $f(a_k)>0$ и $f(b_k)<0$, откуда $f(x_0)\geqslant 0$ и $f(x_0)\leqslant 0$. А значит $f(x_0)=0$.

Определение. Функция f называется равномерно непрерывной на области $D \subseteq \mathbb{R}$, если для всякого $\varepsilon > 0$ можно выбрать такое $\delta > 0$, что для любых двух точек $x, y \in D$ из неравенства $|x - y| < \delta$ следует неравенство $|f(x) - f(y)| < \varepsilon$.

Теорема 4. Если функция f непрерывна на отрезке, то она равномерно непрерывна на нем.

Доказательство. Предположим, что функция f не равномерно непрерывна на отрезке [a,b]. Тогда существует такой $\varepsilon_0>0$, что для любого натурального k существуют такие x_k,y_k , что $|x_k-y_k|<\frac{1}{k}$ и $|f(x_k)-f(y_k)|>\varepsilon_0$. Тогда из последовательности $\{x_k\}$ можно выбрать сходящуюся подпоследовательность $x_{k_j}\to x_0$. Так как $|x_{k_j}-y_{k_j}|\to 0$ то и $y_{k_j}\to x_0$. Тогда, в силу непрерывности функции f последовательности ее значений в точках последовательностей $\{x_{k_j}\}$ и $\{y_{k_j}\}$ сходятся: $f(x_{k_j})\to f(x_0)$ и $f(y_{k_j})\to f(x_0)$. Но это противоречит неравенству $|f(x_k)-f(y_k)|>\varepsilon_0$.

- 0.3 Сходимость числовых рядов. Свойства абсолютно сходящихся рядов (сходимость абсолютно сходящегося ряда, престановка членов). Признаки сходимости Д' Аламбера и Коши. Условно сходящиеся ряды.
- 0.4 Числовые последовательности, пределы, предельные точки, критерий Коши сходимости последовательности.
- 0.5 парам-пам-пам