```
In [1]: import numpy as np import pandas as pd import scipy.stats as sps
```

Task 4

Определить, являются ли зависимыми выборки на уровне значимости $\alpha = 0.05$

```
In [12]: import matplotlib.pyplot as plt
%matplotlib inline
```

Взглянем на наши данные

```
In [18]: plt.figure(figsize=(15,7))
  plt.scatter(data4[0], data4[1])
  plt.show()
```


In [20]: data4[0].hist()

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x110dba470>

In [21]: data4[1].hist()

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x111957c88>

In [24]: sps.probplot(data4[0], plot=plt)
 plt.show()

In [25]: sps.probplot(data4[1], plot=plt)
 plt.show()

Обе отвергаются (не будем делать поправку на множественную проверку гипотез, она все равно не поможет, слишком уж маленький p_values)

Так как выборки не являются нормальными, делать какой-то анализ на основе коэффициента корреляции Пирсона не стоит

Гипотезу о некоррелируемости нельзя отвергнуть, хотя это странно, на взгляд выборки зависимы

Попробуем применить критерий хи-квадрат на основе таблицы сопряженности

```
In [44]: plt.figure(figsize=(15,15))
   plt.scatter(data4[0], data4[1])
   plt.show()
```


In [41]: bounds = [[-1.25, 1.25],[-1.5, 1.5]]

```
In [47]: observed = np.histogram2d(data4[0], data4[1], bins=[20,10])[0]
          observed
Out[47]: array([[ 3.,
                         0.,
                               0.,
                                    0.,
                                          0.,
                                               1.,
                                                     0.,
                                                           0.,
                                                                0.,
                                                                      1.],
                         0.,
                               0.,
                                    0.,
                                          1.,
                                               2.,
                                                     0.,
                                                           0.,
                                                                0.,
                  [ 4.,
                                                                      4.1,
                    5.,
                         1.,
                               0.,
                                    0.,
                                          0.,
                                               0.,
                                                     0.,
                                                           0.,
                                                                      1.],
                                               2.,
                         0.,
                               0.,
                                    0.,
                                          1.,
                                                     0.,
                                                           0.,
                    0.,
                         1.,
                               1.,
                                    0.,
                                          1.,
                                               2.,
                                                     0.,
                                                           1.,
                                                                      0.1,
                  [ 0.,
                         0.,
                               1.,
                                    0.,
                                          0.,
                                               2.,
                                                     0.,
                                                           2.,
                                                                      0.],
                    0.,
                         0.,
                               1.,
                                    3.,
                                          2.,
                                               3.,
                                                     2.,
                                                           2.,
                                                                0.,
                                                                      0.],
                              0.,
                    0.,
                         0.,
                                    2.,
                                          0.,
                                               1.,
                                                     3.,
                                                           0.,
                                                                0.,
                                                                      0.],
                    0.,
                         0.,
                               0.,
                                    1.,
                                          4.,
                                               3.,
                                                     0.,
                                                           0.,
                                                                      0.1,
                         0.,
                                    0.,
                                          5.,
                                               4.,
                  [ 0.,
                               0.,
                                                     0.,
                                                           0.,
                                                                      0.1,
                  [ 0.,
                         0.,
                               0.,
                                    0.,
                                          4.,
                                               2.,
                                                     0.,
                                                           0.,
                  [ 0.,
                         0.,
                             0.,
                                    0.,
                                          3.,
                                               1.,
                                                     1.,
                                                           0.,
                                                                0.,
                                                                      0.],
                  [ 0.,
                         0.,
                             0.,
                                    2.,
                                          3.,
                                               1.,
                                                     2.,
                                                          0.,
                                                                0.,
                                                                      0.],
                               1.,
                                          0.,
                                               0.,
                                                                      0.],
                  [ 0.,
                         0.,
                                    1.,
                                                     3.,
                                                           0.,
                                                                0.,
                  [ 0.,
                               3.,
                         0.,
                                    0.,
                                          3.,
                                               2.,
                                                     0.,
                                                           2.,
                                                                0.,
                                                                      0.],
                  [ 0.,
                         1., 1.,
                                    0.,
                                          1.,
                                               3.,
                                                     0.,
                                                           1.,
                                                                      0.],
                  [ 0.,
                        2.,
                             0.,
                                    0.,
                                          0.,
                                               2.,
                                                     0.,
                                                           0.,
                                                                     0.1,
                        2.,
                             0.,
                                    0.,
                                          4.,
                                               1.,
                                                     0.,
                                                           0.,
                                                                2.,
                  [ 2.,
                        0., 0.,
                                    0.,
                                          0.,
                                               3.,
                                                     0.,
                                                           0.,
                                                                0.,
                                                                     2.],
                  [ 2., 0.,
                             0.,
                                    0.,
                                          0.,
                                               2.,
                                                     0.,
                                                           0.,
                                                                0.,
                                                                     0.]])
In [49]: sps.chi2_contingency(observed)[:2]
Out[49]: (311.31482457849796, 3.0612028094965011e-10)
```

На уровне значимости $\alpha = 0.05$ мы можем отвернуть гипотезу некоррелируемости!

Task 5

Проверить на независимость методами корреляционного анализа выборки, и проверить независимость в совокупности, еслм какие-то будут зависимы, то указать эти пары

```
In [56]: data5 = pd.read_csv('./flare.data1.csv', sep=' ', header=None)
    data5 = data5[data5.columns[:10]]
    data5.head()
```

Out[56]:

	0	1	2	3	4	5	6	7	8	9
0	С	S	0	1	2	1	1	2	1	2
1	D	S	0	1	3	1	1	2	1	2
2	С	S	0	1	3	1	1	2	1	1
3	D	S	0	1	3	1	1	2	1	2
4	D	Α	0	1	3	1	1	2	1	2

```
In [62]: set(data5[1])
Out[62]: {'A', 'H', 'K', 'R', 'S', 'X'}
In [58]: set(data5[0])
Out[58]: {'B', 'C', 'D', 'E', 'F', 'H'}
In [60]: set(data5[2])
Out[60]: {'C', 'I', 'O', 'X'}
```

попарно первые три столбца пересекаются по 1 букве

```
In [63]: data5.corr(method='pearson')
```

Out[63]:

	3	4	5	6	7	8	9
3	1.000000	-0.072487	0.536675	0.230220	0.094830	0.312150	0.083329
4	-0.072487	1.000000	-0.141088	-0.126453	0.006070	0.019573	-0.031164
5	0.536675	-0.141088	1.000000	0.230507	0.076799	0.264148	0.112042
6	0.230220	-0.126453	0.230507	1.000000	0.180021	0.182669	0.300203
7	0.094830	0.006070	0.076799	0.180021	1.000000	0.039904	-0.101861
8	0.312150	0.019573	0.264148	0.182669	0.039904	1.000000	0.096333
9	0.083329	-0.031164	0.112042	0.300203	-0.101861	0.096333	1.000000

In [64]: data5.corr(method='spearman')

Out[64]:

	3	4	5	6	7	8	9
3	1.000000	-0.085252	0.536675	0.230220	0.094830	0.312150	0.083329
4	-0.085252	1.000000	-0.154748	-0.126619	0.019333	0.012828	-0.032015
5	0.536675	-0.154748	1.000000	0.230507	0.076799	0.264148	0.112042
6	0.230220	-0.126619	0.230507	1.000000	0.180021	0.182669	0.300203
7	0.094830	0.019333	0.076799	0.180021	1.000000	0.039904	-0.101861
8	0.312150	0.012828	0.264148	0.182669	0.039904	1.000000	0.096333
9	0.083329	-0.032015	0.112042	0.300203	-0.101861	0.096333	1.000000

In [66]: data5.corr(method='kendall')

Out[66]:

	3	4	5	6	7	8	9
3	1.000000	-0.083316	0.536675	0.230220	0.094830	0.312150	0.083329
4	-0.083316	1.000000	-0.151235	-0.123744	0.018894	0.012537	-0.031288
5	0.536675	-0.151235	1.000000	0.230507	0.076799	0.264148	0.112042
6	0.230220	-0.123744	0.230507	1.000000	0.180021	0.182669	0.300203
7	0.094830	0.018894	0.076799	0.180021	1.000000	0.039904	-0.101861
8	0.312150	0.012537	0.264148	0.182669	0.039904	1.000000	0.096333
9	0.083329	-0.031288	0.112042	0.300203	-0.101861	0.096333	1.000000

In [67]: data5[[0,1,2]]

Out[67]:

	0	1	2
0	С	S	0
1	D	S	0
2	С	S	0
3	D	S	0
4	D	Α	0
5	D	Α	0
6	D	Α	0
7	D	Α	0
8	D	K	0
9	С	R	0
10	В	Χ	0

11	D	S	0
12	С	Η	ı
13	D	R	0
14	В	Х	0
15	В	Х	0
16	D	K	ı
17	D	S	0
18	D	R	0
19	С	Α	ı
20	С	S	0
21	В	Χ	0
22	F	K	I
23	В	Х	0
24	Н	R	Χ
25	В	Χ	l
26	С	R	l
27	В	Χ	0
28	В	Χ	0
29	D	Α	I
293	Н	S	Χ
294	D	K	С
295	Н	S	Χ
296	Ε	S	I
297	Н	S	Χ
298	F	S	0
299	Ε	S	0
300	Н	S	Χ
301	D	K	С
302	Н	S	Χ
303	С	S	0
304	В	Χ	0
305	В	Χ	0
306	Н	S	Χ

			ı
307	Η	S	Χ
308	Ε	Α	0
309	Н	S	Χ
310	D	K	O
311	Ι	S	Χ
312	C	Α	0
313	D	Α	0
314	D	S	0
315	C	S	0
316	Ι	S	Χ
317	D	K	О
318	С	R	0
319	D	R	0
320	Е	Α	0
321	С	R	0
322	Е	K	С

323 rows × 3 columns

In [82]: sps.spearmanr(data5[0], data5[2])

/usr/local/lib/python3.5/site-packages/scipy/stats/stats.py:249: R untimeWarning: The input array could not be properly checked for n an values. nan values will be ignored.

"values. nan values will be ignored.", RuntimeWarning)

Out[82]: SpearmanrResult(correlation=0.33167714228225231, pvalue=9.85589226 63577165e-10)

In [83]: import seaborn as sns

```
5
                                                  6
                                                            7
                                                                       8
                                                                                  9
           count | 323.000000 | 323.000000 | 323.000000 | 323.000000 | 323.000000 | 323.000000
                                                                                  32
                                                                                  1.
           mean | 1.139319
                            2.486068
                                       1.191950
                                                  1.368421
                                                             1.947368
                                                                       1.027864
                 0.346816
                            0.601983
                                       0.590029
                                                  0.483125
                                                             0.223643
                                                                       0.164838
                                                                                  0.4
           std
                  1.000000
                            1.000000
                                       1.000000
                                                  1.000000
                                                             1.000000
                                                                       1.000000
                                                                                  1.0
           min
                                                                                  2.0
           25%
                 1.000000
                            2.000000
                                       1.000000
                                                            2.000000
                                                                       1.000000
                                                  1.000000
           50%
                                                                                  2.1
                 1.000000
                            3.000000
                                       1.000000
                                                  1.000000
                                                            2.000000
                                                                       1.000000
           75%
                 1.000000
                            3.000000
                                                            2.000000
                                                                                  2.1
                                       1.000000
                                                  2.000000
                                                                       1.000000
                 2.000000
                            3.000000
                                       3.000000
                                                  2.000000
                                                            2.000000
                                                                       2.000000
                                                                                  2.1
           max
In [105]: sps.kendalltau(data5[[0,1]])
           TypeError
                                                        Traceback (most recent c
           all last)
           <ipython-input-105-5d720eabc405> in <module>()
           ---> 1 sps.kendalltau(data5[[0,1]])
           TypeError: kendalltau() missing 1 required positional argument: 'y
In [104]: from itertools import combinations
           from tqdm import tqdm
In [148]: correlations = [sps.spearmanr, sps.kendalltau]
           p vals = []
           for comb in tqdm(combinations(data5, 2)):
               to push = []
               x = data5[comb[0]]
               y = data5[comb[1]]
               for corr in correlations:
                    to push.append(corr(x, y)[1])
               p vals.append(to push)
           p vals = np.array(p vals)
           0it [00:00, ?it/s]/usr/local/lib/python3.5/site-packages/scipy/sta
           ts/stats.py:249: RuntimeWarning: The input array could not be prop
           erly checked for nan values. nan values will be ignored.
             "values. nan values will be ignored.", RuntimeWarning)
           45it [00:00, 448.55it/s]
In [149]: from statsmodels.sandbox.stats.multicomp import multipletests
In [193]: results = multipletests(p vals.ravel(), method='holm')
```

In [85]: data5.describe()

Out[85]:

Посмотрим на результаты, если в строке есть хотя бы один True, то гипотезу отвергаем. Выведем те пары, для которых мы отвергаем некоррелируемость

```
In [187]: results[0].reshape(len(results[0]) / 2, 2)
          /usr/local/lib/python3.5/site-packages/ipykernel/ main .py:1: Vi
          sibleDeprecationWarning: using a non-integer number instead of an
          integer will result in an error in the future
            if __name__ == '__main__':
Out[187]: array([[ True, True],
                 [ True, True],
                 [False, False],
                 [False, False],
                 [False, False],
                 [ True, True],
                 [ True, True],
                 [False, False],
                 [ True, True],
                 [ True, True],
                 [False, False],
                 [False, False],
                 [False, False],
                 [ True, True],
                 [False, False],
                 [False, False],
                 [ True, True],
                 [False, False],
                 [False, False],
                 [ True, True],
                 [ True, True],
                 [False, False],
                 [ True, True],
                 [False, False],
                 [False, True],
                 [False, True],
                 [False, False],
                 [False, False],
                 [False, False],
                 [ True, True],
                 [False, False],
                 [ True, True],
                 [False, False],
                 [False, True],
                 [ True, True],
                 [ True, True],
                 [False, False],
                 [False, False],
                 [False, False]], dtype=bool)
```

```
) / 2, 2), axis=1))
          rejected indices = rejected indices[0]
          rejected indices
          /usr/local/lib/python3.5/site-packages/ipykernel/__main__.py:1: Vi
          sibleDeprecationWarning: using a non-integer number instead of an
          integer will result in an error in the future
            if __name__ == '__main__':
Out[189]: array([ 0, 1, 5, 6, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, 25,
          26, 28,
                 30, 31, 35, 37, 39, 40, 41])
Выведем пары столбцов, которые мы считаем зависимыми
In [191]: len(np.array(list(combinations(data5, 2)))[rejected_indices])
Out[191]: 24
In [192]: np.array(list(combinations(data5, 2)))[rejected indices]
Out[192]: array([[0, 1],
                  [0, 2],
                  [0, 6],
                  [0, 7],
                  [0, 9],
                  [1, 2],
                  [1, 6],
                  [1, 9],
                  [2, 3],
                  [2, 4],
                  [2, 5],
                  [2, 6],
                  [2, 7],
                  [2, 8],
                  [3, 5],
                  [3, 6],
                  [3, 8],
                  [4, 5],
                  [4, 6],
                  [5, 6],
                  [5, 8],
                  [6, 7],
                  [6, 8],
```

In [189]: rejected indices = np.where(np.any(results[0].reshape(len(results[0]))

Наши выборки не являются независимыми в совокупности

[6, 9]])

Task 6

проверить с помощью корреляционного анализа, является ли выборка из многмоерного нормального

```
In [303]: column_names = ['Water', 'SP', 'Fine Aggr.', 'SLUMP(cm)', 'FLOW(cm)
    ', 'Compressive Strength (28-day)(Mpa)']
In [304]: data6 = pd.read_csv('./slump_test.data.csv')
In [305]: data6 = data6[column_names]
    data6.head()
```

Out[305]:

	Water	SP	Fine Aggr.	SLUMP(cm)	FLOW(cm)	Compressive Strength (28-day) (Mpa)
0	210.0	9.0	680.0	23.0	62.0	34.99
1	180.0	12.0	746.0	0.0	20.0	41.14
2	179.0	16.0	743.0	1.0	20.0	41.81
3	179.0	19.0	741.0	3.0	21.5	42.08
4	220.0	10.0	658.0	20.0	64.0	26.82

```
In [306]: from sklearn.cross_validation import train_test_split
In [319]: X_train, X_test = train_test_split(data6)
```

Найдем коэффициенты корреляции(Пирсона) на тренировочной выборке

In [320]: corr_table = X_train.corr()
 corr_table

Out[320]:

	Water	SP	Fine Aggr.	SLUMP(cm)	FLOW(cm)	Compressiv Strength (28 day)(Mpa)
Water	1.000000	-0.068059	0.202383	0.436486	0.583513	-0.360782
SP	-0.068059	1.000000	0.004456	-0.174267	-0.102376	-0.064969
Fine Aggr.	0.202383	0.004456	1.000000	0.256759	0.281061	-0.221715
SLUMP(cm)	0.436486	-0.174267	0.256759	1.000000	0.917538	-0.263382
FLOW(cm)	0.583513	-0.102376	0.281061	0.917538	1.000000	-0.211296
Compressive Strength (28- day)(Mpa)	-0.360782	-0.064969	-0.221715	-0.263382	-0.211296	1.000000

In [321]: means_vector = X_train.mean(axis=0)
means_vector

Out[321]: Water 196.172727 SP 8.500000 Fine Aggr. 745.984416 SLUMP(cm) 17.448052 FLOW(cm) 48.349351 Compressive Strength (28-day)(Mpa) 36.717273

dtype: float64

In [322]: X_train.describe()

Out[322]:

	Water	SP	Fine Aggr.	SLUMP(cm)	FLOW(cm)	Compressive Strength (28- day)(Mpa)
count	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000
mean	196.172727	8.500000	745.984416	17.448052	48.349351	36.717273
std	20.036799	2.843876	65.883917	9.181587	17.666215	7.982459
min	160.000000	4.400000	640.600000	0.000000	20.000000	18.520000
25%	180.000000	6.000000	691.000000	14.500000	31.000000	30.970000
50%	196.000000	8.000000	747.000000	21.500000	53.000000	36.190000
75%	209.000000	10.000000	790.000000	24.000000	62.000000	41.540000
max	240.000000	19.000000	902.000000	29.000000	78.000000	58.530000

In [323]: X_train.hist()

In [324]: X test.hist()

Out[324]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1112d80 b8>, <matplotlib.axes. subplots.AxesSubplot object at 0x112d174</pre> e^{0}], [<matplotlib.axes. subplots.AxesSubplot object at 0x112d5e9 40>,<matplotlib.axes._subplots.AxesSubplot object at 0x112da12</pre> 78>], [<matplotlib.axes._subplots.AxesSubplot object at 0x112dee4 a8>, <matplotlib.axes. subplots.AxesSubplot object at 0x112e26c</pre> f8>]], dtype=object)

stds = X train.std().values In [377]: stds Out[377]: array([20.03679928, 2.84387615, 65.88391718, 9.18158713, 17.66621533,

7.9824585])

In [378]: corr_table

Out[378]:

	Water	SP	Fine Aggr.	SLUMP(cm)	FLOW(cm)	Compressiv Strength (28 day)(Mpa)
Water	1.000000	-0.068059	0.202383	0.436486	0.583513	-0.360782
SP	-0.068059	1.000000	0.004456	-0.174267	-0.102376	-0.064969
Fine Aggr.	0.202383	0.004456	1.000000	0.256759	0.281061	-0.221715
SLUMP(cm)	0.436486	-0.174267	0.256759	1.000000	0.917538	-0.263382
FLOW(cm)	0.583513	-0.102376	0.281061	0.917538	1.000000	-0.211296
Compressive Strength (28- day)(Mpa)	-0.360782	-0.064969	-0.221715	-0.263382	-0.211296	1.000000

```
In [379]: from copy import deepcopy
```

```
In [380]: covariation_matrix = deepcopy(corr_table.values)
```

```
In [381]: for i in range(len(covariation_matrix)):
    for j in range(len(covariation_matrix[i])):
        covariation_matrix[i][j] *= stds[i] * stds[j]
```

```
In [382]: covariation_matrix.shape
```

Out[382]: (6, 6)

In [383]: pd.DataFrame(covariation_matrix)

Out[383]:

	0	1	2	3	4	5
0	401.473325	-3.878158	267.166148	80.300209	206.548732	-57.704536
1	-3.878158	8.087632	0.834868	-4.550329	-5.143421	-1.474868
2	267.166148	0.834868	4340.690543	155.318259	327.132490	-116.603293
3	80.300209	-4.550329	155.318259	84.301542	148.828255	-19.303729
4	206.548732	-5.143421	327.132490	148.828255	312.095164	-29.796903
5	-57.704536	-1.474868	-116.603293	-19.303729	-29.796903	63.719644

```
In [384]: X_test.shape
```

Out[384]: (26, 6)

```
In [388]: number_of_samples = int(1e5)
```

```
In [389]: random_multipliers = sps.cauchy.rvs(size=(number_of_samples, 6))
In [390]: new_samples = X_test.values.dot(random_multipliers.T).T
```

Избавимся от константных выборок, если есть, ведь на них тест на нормальность проводивть смысла вооще нет

```
In [413]: new_samples = new_samples[new_samples.std(axis=1) != 0]
```

Теперь мы получили 10000 выборки по 26 элементов, каждая из которых должна быть из нормального распределения, при справедливости нулевой гипотезы(то что наша исходная выборка из многомерного нормального распределения)

```
In [391]: sps.probplot(new_samples[18], plot=plt)
Out[391]: ((array([-1.93807102, -1.52350933, -1.27167259, -1.08178602, -0.92
          453898,
                   -0.78737238, -0.66363796, -0.54932825, -0.44179391, -0.33
          915032,
                   -0.23996855, -0.143098 , -0.04755496, 0.04755496, 0.14
          3098 ,
                    0.23996855, 0.33915032, 0.44179391, 0.54932825,
                                                                       0.66
          363796,
                    0.78737238, 0.92453898, 1.08178602, 1.27167259,
                                                                       1.52
          350933,
                    1.93807102]),
            array([ 4069.72848272, 4086.98446012, 4111.46440722,
                                                                   4113.008
          9597 ,
                    4194.85812742, 4261.19450195, 4271.82513478,
                                                                   4273.931
          03601,
                    4296.74518297, 4311.61875538, 4360.08804481,
                                                                   4439.153
          82796,
                    4504.15084129, 4524.4625237, 4528.43905758,
                                                                  4550.649
          79899,
                    4635.1982552 , 4668.45093399, 4745.58135896,
                                                                  4766.885
          67659,
                    4785.90250441, 4873.4199812 , 4931.37323025, 4960.999
          4413 ,
                    5000.24900725, 5172.03195659])),
           (324.9156998222258, 4516.8613649359822, 0.98308595009629596))
```



```
In [392]: sps.shapiro(new_samples[18])
Out[392]: (0.9531509876251221, 0.27451419830322266)
```

Так как мы всегда домножали на известный нам вектор v, то получив новые случайные величины, мы знаем их распределение: $\mathrm{N}(v)$

Запишем в массив параметры нормальных распределений для каждой из 1234 выборок

```
In [393]: random_multipliers.shape
Out[393]: (100000, 6)
In [394]: new_means = random_multipliers.dot(means_vector)
```

```
In [395]: covariation matrix
Out[395]: array([[
                   4.01473325e+02,
                                    -3.87815789e+00,
                                                       2.67166148e+02,
                    8.03002093e+01,
                                     2.06548732e+02, -5.77045359e+01],
                 [ -3.87815789e+00,
                                     8.08763158e+00,
                                                       8.34868421e-01,
                   -4.55032895e+00,
                                    -5.14342105e+00, -1.47486842e+00],
                 [ 2.67166148e+02,
                                     8.34868421e-01,
                                                       4.34069054e+03,
                                     3.27132490e+02, -1.16603293e+02],
                    1.55318259e+02,
                 [ 8.03002093e+01,
                                    -4.55032895e+00,
                                                       1.55318259e+02,
                    8.43015422e+01,
                                     1.48828255e+02, -1.93037291e+01],
                 [ 2.06548732e+02,
                                    -5.14342105e+00,
                                                      3.27132490e+02,
                    1.48828255e+02,
                                     3.12095164e+02, -2.97969031e+011,
                                    -1.47486842e+00,
                 [ -5.77045359e+01,
                                                      -1.16603293e+02,
                   -1.93037291e+01,
                                    -2.97969031e+01,
                                                       6.37196438e+01]])
```

Чекнем, что матрица ковариация неотрицательно определенная квадратичная форма, если следующая ячейка не падает с ошибкой, то все ок)

А теперь возбмем и сделаем множественную проверку гипотез (для всех выборок проверим равенство нормальному распределению с новыми параметрами) выберем процедуру, контролирующую FWER на уровне 0.05, причем, так как мы домножали всегда на рандомный вектор, то все получившиеся выборки независимы, а значит и статистики от них юудут независимыми и мы можем применить метод Холма-Шидака, он будет самым мощным среди остальных вариантов

Получается, что ни одна из гипотез о нормальности не отвергается и контролируя FWER на уровне 0.05 мы не можем отвергнуть гипотезу о том, что наша выборка из многомерного нормального распределения. Так как мы проверили одно из эквивалентных определений многомерного нормального распределения:(что произвольная лин комбинация компонент вектора - норм. с.в. или константа)

```
In [ ]:
```