Taylor Larrechea Dr. Cours PHYS 252 HW 4

Problem 1

Bin

	After	(-9,-7)	(-7,-5)	(-5,-3)	(-3,1)	(-1,1)	(1,3)	(3,5)	(5,7)	(7,9)
	5 trials									
(6)	10 trials	0	1	a	2	3	ı	1	0	0
(6)	50 trials	1	3	7	8	10	9	Ь	4	Ω

$$\frac{1}{2} = 0.1 \quad \frac{2}{5.0} = 0.5$$

$$\frac{1}{10.2} = 0.05$$

$$\frac{2}{10.2} = 0.1$$

$$\frac{3}{10.2} = 0.1$$

$$\frac{1}{50 \cdot 2} = 0.01 \qquad \frac{3}{50 \cdot 2} = 0.03$$

$$\frac{7}{50 \cdot 2} = 0.07 \qquad \frac{8}{50 \cdot 2} = 0.08$$

$$\frac{10}{50 \cdot 2} = 0.1 \qquad \frac{9}{50 \cdot 2} = 0.09$$

$$\frac{6}{50 \cdot 2} = 0.06 \qquad \frac{4}{50 \cdot 2} = 0.04$$

$$\frac{2}{50 \cdot 2} = 0.02$$

Problem 2

fix)

Rough Sketch

$$f(t) = \frac{1}{7}e^{-t/7}$$

40

50

b.)
$$f(t) = \frac{1}{T}e^{-t/T}$$

$$\int_{0}^{\infty} f(t) dt = 1$$

$$\int_{0}^{-t/T} |e^{-t/T}| \int_{0}^{\infty} f(t) dt = 1$$

$$\lim_{t \to \infty} e^{-t/T} = 0$$

t(5)

From the above work, we can say

$$\int_{0}^{\infty} f(t) dt = \lim_{t \to \infty} -e^{-t} - (-e^{-t}) \Big|_{0}$$

$$\int_{0}^{\infty} f(t) dt = 1$$

$$\int_{-\infty}^{\infty} f(t) = 1$$

C.)
$$\bar{t} = \int_{-\infty}^{\infty} t f(t) dt$$
 $f(t) = \frac{1}{2} e^{-\frac{t}{2}}$

$$\begin{aligned}
\bar{t} &= \int_{0}^{\infty} \frac{t}{\gamma} e^{-t\zeta_{1}} dt & w - \int_{0}^{\infty} du & u = t dv = e^{-t\zeta_{1}} \\
&= \frac{1}{\gamma} \int_{0}^{\infty} t e^{-t\zeta_{1}} dt \\
&= \frac{1}{\gamma} \left(-\gamma_{1} e^{-t\zeta_{1}} - \int_{0}^{-\gamma_{1}} e^{-t\zeta_{1}} dt \right) \\
&= \frac{1}{\gamma} \left(-\gamma_{1} e^{-t\zeta_{1}} + \gamma \int_{0}^{-\gamma_{1}} e^{-t\zeta_{1}} dt \right) \\
&= \frac{1}{\gamma} \left(-\gamma_{1} e^{-t\zeta_{1}} + \gamma \left(-\gamma_{2} e^{-t\zeta_{1}} \right) e^{-t\zeta_{1}} \right) \\
&= \frac{1}{\gamma} \left(-\gamma_{1} e^{-t\zeta_{1}} - \gamma_{2} e^{-t\zeta_{1}} e^{-t\zeta_{1}} \right) \\
&= \frac{1}{\gamma} \left((0 - 0) - \gamma_{1} (0 - 1) \right) \\
&= \frac{1}{\gamma} \left(\gamma_{1}^{2} \right) \\
&= \gamma
\end{aligned}$$

e.) It shifts the peak of the curve, from its original position, "o", to be centered on its new position, "a". Xo changes position of curve.

-1

-3

-2

0.01

0

1

2

f.) The curve of the distribution flatters as it gets bigger. Or changes the curve of the curve.

Problem 4
$$f(x) = K \cdot e^{-x^2}$$

$$\ln(k) = \frac{-x^3}{20x^2}$$

$$-26x^{2}L(k) = x^{2}$$

$$6x^{2}2L(2) = x^{2}$$

$$x = \sigma_x \sqrt{2h(z)}$$

 $x = 1.17 \sigma_x$

FWHM

$$F \omega H M = 2 H \omega H M$$

= 2(1.17 σ_x)
= 2.34 σ_x

Problem 5

a.) with the aide of xcel, the mean of this data get was,

b.) With the aid of excel, the averages of the ten data sets are,

Data set of (3)	Average
1	8.140
2	8.147
3	8,180
4	8,180
5	8.187
6	8.137
7	8.093
8	8.110
9	8.177
61	8.143

C.) Expected SDEV,

SDEV:
$$\vec{O}_{x} = \frac{\vec{O}_{x}}{\sqrt{10}} = \frac{0.039}{\sqrt{10}} = 0.0123$$

Expected: 0.012 Excel: 0.010

with excel: 0.0099 ~ 0.010

