પ્રશ્ન 1(અ) [3 ગુણ]

મોડ્યુલેશનશું છે? તેની શું જરૂર છે?

જવાબ:

મોડ્યુલેશન એ એક પ્રક્રિયા છે જેમાં માહિતી ધરાવતા મોડ્યુલેટિંગ સિગ્નલ દ્વારા ઉચ્ચ આવૃત્તિના કેરિયર સિગ્નલના એક અથવા વધુ ગુણધર્મોમાં કેરકાર કરવામાં આવે છે.

કોષ્ટક: મોડ્યુલેશનની જરૂરિયાત

કારણ	સમજૂતી
એન્ટેના સાઇઝ	એન્ટેનાના કદની જરૂરિયાતો ઘટાડે છે (λ = c/f)
મલ્ટિપ્લેક્સિંગ	ઘણા સિગ્નલોને સ્પેક્ટ્રમ શેર કરવાની મંજૂરી આપે છે
રેન્જ	ટ્રાન્સમિશન અંતર વધારે છે
ઇન્ટરફ્રેરન્સ	નોઇઝ ઇન્ટરફેરન્સ ઘટાડે છે

- વ્યવહારુ ટ્રાન્સમિશન: ઓછી આવૃત્તિના માહિતી સિગ્નલને વાયરલેસ ટ્રાન્સમિશન માટે યોગ્ય બનાવે છે
- **સિગ્નલ અલગીકરણ**: વિવિધ સિગ્નલોને એકસાથે ટ્રાન્સમિટ કરવા સક્ષમ બનાવે છે

મેમરી ટ્રીક: "RARE Messages" (Range, Antenna, Reduce interference, Enable multiplexing)

પ્રશ્ન 1(બ) [4 ગુણ]

AM અને FM ની સરખામણી કરો.

જવાબ:

કોષ્ટક: AM અને FM વચ્ચેનો તકાવત

પરિમાણ	AM (એમ્પલિટ્યૂડ મોક્યુલેશન)	FM (ફ્રિક્વન્સી મોક્યુલેશન)
બદલાતો પરિમાણ	કેરિયરની એમ્પલિટ્યૂડ	કેરિયરની આવૃત્તિ
બેન્કવિડ્થ	સાંકડી (2 × fm)	વિશાળ (2 × mf × fm)
નોઇઝ પ્રતિરક્ષા	નબળી	ਓπ
પાવર કાર્યક્ષમતા	ઓછી કાર્યક્ષમ	વધુ કાર્યક્ષમ
સર્કિટ જટિલતા	સરળ	જટિલ
ગુણવત્તા	મધ્યમ	ઉચ્ચ
ઉપયોગો	મધ્યમ વેવ બ્રોડકાસ્ટિંગ	હાઈ-ફ્રિડેલિટી બ્રોડકાસ્ટિંગ

મેમરી ટ્રીક: "BANC-QA" (Bandwidth, Amplitude/frequency, Noise, Complexity, Quality, Applications)

પ્રશ્ન 1(ક) [7 ગુણ]

AM મોક્યુલેશન વેવફોર્મ સાથે સમજાવો અને મોક્યુલેટેડ સિગ્નલ માટે વોલ્ટેજ સમીકરણ મેળવો. DSBFC AM ફ્રીક્વન્સી સ્પેક્ટ્રમ દોરો.

જવાબ:

એમ્પલિટ્યૂડ મોક્યુલેશન (AM) એ એક તકનીક છે જેમાં કેરિયર વેવની એમ્પલિટ્યૂડ મોક્યુલેટિંગ સિગ્નલની તત્કાલીન એમ્પલિટ્યૂડના પ્રમાણમાં બદલાય છે.

વોલ્ટેજ સમીકરણ:

- કેરિયર સિગ્નલ: v₁(t) = A₁ sin(ωct)
- મોક્યુલેટિંગ સિગ્નલ: v₂(t) = A₂ sin(ωmt)
- મોક્યુલેટેડ સિગ્નલ: v(t) = A₁[1 + m sin(ωmt)] sin(ωct)
- જ્યાં m = A₂/A₁ (મોક્યુલેશન ઇન્ડેક્સ)

આકૃતિ: AM વેવફોર્મ

\/

DSBFC AM નું ફિક્યન્સી સ્પેક્ટ્રમ

• **બેન્કવિડ્થ**: AM સિગ્નલની બેન્ડવિડ્થ 2 × fm છે

• **સાઇડબેન્ડ્સ**: અપર સાઇડબેન્ડ (USB) fc+fm પર અને લોઅર સાઇડબેન્ડ (LSB) fc-fm પર

• પાવર વિતરણ: કેરિયર અને બે સાઇડબેન્ડસમાં

મેમરી ટ્રીક: "CAM-SIP" (Carrier Amplitude Modified, Sidebands In Pair)

પ્રશ્ન 1(ક) OR [7 ગુણ]

AM માં કુલ પાવર માટે સમીકરણ મેળવો, DSB અને SSB માં પાવર બચતની ટકાવારીની ગણતરી કરો.

જવાબ:

AM માં કુલ પાવરનું વ્યુત્પાદન:

• AM સિંગ્નલ: $v(t) = A_1[1 + m \sin(\omega m t)] \sin(\omega c t)$

• કુલ પાવર: P = P₍carrier₎ + P₍sidebands₎

• $P_{\text{(carrier)}} = A_1^2/2$

• $P_{\text{(sidebands)}} = A_1^2 \text{m}^2/4$

કોષ્ટક: AM માં પાવર વિતરણ

ยรร	પાવર સમીકરણ	કુલ પાવરની % (m=1)
કેરિયર	$P_{(C)} = A_1^2/2$	66.67%
સાઇડબેન્ડ્સ	$P_{(S)} = A_1^2 m^2 / 4$	33.33%
ફુલ	$P_{(t)} = A_1^2 (1+m^2/2)/2$	100%

પાવર બચત:

• **DSB-SC**: 100% કેરિયર પાવર બચે (કુલ પાવરનો 66.67%)

૦ માત્ર સાઇડબેન્ડ્સ ટ્રાન્સમિટ થાય છે

- o ટકાવારી બચત = (P₍C₎/P₍t₎) × 100 = 66.67%
- SSB: 50% સાઇડબેન્ડ પાવર + 100% કેરિયર પાવર બચે
 - ૦ એક સાઇડબેન્ડ + કેરિયર દૂર કરેલ છે
 - o ટકાવારી બચત = (P_(C) + P_(S)/2)/P_(t) × 100 = 83.33%

આકૃતિ: પાવર વિતરણ

મેમરી ટ્રીક: "CAST-83" (Carrier And Sideband Transmission, 83% saved in SSB)

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો (1) AM માટે મોક્યુલેશન ઇન્ડેક્સ (2) FM માટે મોક્યુલેશન ઇન્ડેક્સ.

જવાબ:

કોષ્ટક: મોડ્યુલેશન ઇન્ડેક્સની વ્યાખ્યાઓ

પરિમાણ	AM મોક્યુલેશન ઇન્ડેક્સ	FM મોક્યુલેશન ઇન્ડેક્સ
વ્યાખ્યા	મોક્યુલેટિંગ સિગ્નલની મહત્તમ એમ્પલિટ્યૂડનો કેરિયરની મહત્તમ એમ્પલિટ્યૂડ સાથેનો ગુણોત્તર	ફ્રિક્વન્સી વિચલનનો મોડ્યુલેટિંગ ફ્રિક્વન્સી સાથેનો ગુણોત્તર
સૂત્ર	m = Am/Ac	$mf = \Delta f/fm$
મર્યાદા	0 ≤ m ≤ 1 (વિકૃતિ ટાળવા માટે)	કોઈ ચોક્કસ ઉપરી મર્યાદા નથી
અસર	એમ્પલિટ્યૂડ વેરિએશન અને પાવર વિતરણ નિયંત્રિત કરે છે	બેન્ડવિડ્થ અને સિગ્નલ ગુણવત્તા નક્કી કરે છે

- AM મોક્યુલેશન ઇન્ડેક્સ: એમ્પલિટ્યૂડ વેરિએશન અને પાવર વિતરણ નિયંત્રિત કરે છે
- FM મોક્યુલેશન ઇન્ડેક્સ: બેન્ડવિડ્થ અને સિગ્નલ ગુણવત્તા નિર્ધારિત કરે છે

મેમરી ટ્રીક: "ARM-FDM" (Amplitude Ratio for Modulation, Frequency Deviation for Modulation)

પ્રશ્ન 2(બ) [4 ગુણ]

એન્વેલપ ડિટેક્ટર માટે બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

આકૃતિ: એન્વેલપ ડિટેક્ટર

કોષ્ટક: ઘટકો અને તેમના કાર્યો

ยวร	ธเน้
ડાયોડ	AM સિગ્નલનું રેક્ટિફિકેશન કરે છે (નકારાત્મક અર્ધ-ચક્રો દૂર કરે છે)
RC ફિલ્ટર	રેક્ટિફાઇડ સિગ્નલને સ્મૂધ કરીને એન્વેલપ રિકવર કરે છે
нìs	આઉટપુટ સર્કિટ અને ઇમ્પિડન્સ મેચિંગ પ્રદાન કરે છે

- **કાર્યપ્રણાલી**: ડાયોડ માત્ર પોઝિટિવ અર્ધ-ચક્રો દરમિયાન કન્ડક્ટ કરે છે
- **સમય અચળાંક**: RC એટલું મોટું હોવું જોઈએ કે રિપલ ન આવે પરંતુ મોક્યુલેશનને અનુસરવા માટે પૂરતું નાનું હોવું જોઈએ
- **શરત**: RC >> 1/fc પરંતુ RC << 1/fm

મેમરી ટ્રીક: "DEER" (Diode Extracts Envelope Representation)

પ્રશ્ન 2(ક) [7 ગુણ]

FM રેડિયો રીસીવરનો બ્લોક ડાયાગ્રામ દોરો અને દરેક બ્લોકની કામગીરી સમજાવો.

જવાબ:

આકૃતિ: FM રેડિયો રીસીવર

કોષ્ટક: દરેક બ્લોકનાં કાર્યો

બ્લોક	รเช้
એન્ટેના	ઇલેક્ટ્રોમેગ્નેટિક તરંગો મેળવે છે
RF એમ્પ્લિફાયર	નબળા RF સિગ્નલ્સ (88-108 MHz) એમ્પ્લિફાય કરે છે
મિક્સર	RF ને IF ફ્રિક્વન્સી (10.7 MHz) માં કન્વર્ટ કરે છે
લોકલ ઓસિલેટર	મિક્સિંગ માટે ફ્રિક્વન્સી જનરેટ કરે છે (RF+10.7 MHz)
IF એમ્પ્લિફાયર	IF સિગ્નલને ફિક્સ્ડ ગેઈન સાથે એમ્પ્લિફાય કરે છે
લિમિટર	એમ્પલિટ્યૂડ વેરિએશન્સ દૂર કરે છે
FM ડિસ્ક્રિમિનેટર	ફ્રિક્વન્સી વેરિએશન્સને વોલ્ટેજમાં કન્વર્ટ કરે છે
ઓડિયો એમ્પ્લિફાયર	રિકવર્ડ ઓડિયો એમ્પ્લિફાય કરે છે
સ્પીકર	ઇલેક્ટ્રિકલ થી સાઉન્ડ વેવ્સમાં કન્વર્ટ કરે છે

- **સુપરહેટરોડાઈન પ્રિન્સિપલ**: ફિક્સ્ડ IF પર સિગ્નલ પ્રોસેસ કરવા ફ્રિક્વન્સી કન્વર્ઝન વાપરે છે
- **વિશિષ્ટ FM ફીચર**: લિમિટર ડિમોક્યુલેશન પહેલા એમ્પલિટ્યૂડમાં નોઈઝ દૂર કરે છે

મેમરી ટ્રીક: "RAMLIDASS" (RF, Amplifier, Mixer, Local oscillator, IF, Discriminator, Audio, Speaker System)

પ્રશ્ન 2(અ) OR [3 ગુણ]

ફ્રીક્વન્સી મોડ્યુલેશન અને ફેઝ મોડ્યુલેશન માટે માત્ર વેવફોર્મ દોરો.

જવાબ:

આકૃતિ: FM અને PM વેવફોર્મ્સ

મુખ્ય લક્ષણો:

• FM: જ્યારે મોક્યુલેટિંગ સિગ્નલ પોઝિટિવ હોય ત્યારે ફ્રિક્વન્સી વધે છે

• PM: ફેઝ એમ્પલિટ્યૂડ પરિવર્તન સાથે તરત જ શિફ્ટ થાય છે

મેમરી ટ્રીક: "FIP-PAF" (Frequency Increases with Positive signal, Phase Advances with Faster changes)

પ્રશ્ન 2(બ) OR [4 ગુણ]

રેડિયો રીસીવરની કોઈ પણ ચાર લાક્ષણિકતાઓને વ્યાખ્યાયિત કરો.

જવાબ:

કોષ્ટક: રેડિયો રીસીવરની લાક્ષણિકતાઓ

લાક્ષણિકતા	વ્યાખ્યા
સેન્સિટિવિટી	નબળા સિગ્નત્સ મેળવવાની ક્ષમતા (µV અથવા dBm માં માપવામાં આવે છે)
સિલેક્ટિવિટી	ઇચ્છિત સિગ્નલને આસપાસના ચેનલોથી અલગ કરવાની ક્ષમતા
ફિડેલિટી	મૂળ મોક્યુલેટિંગ સિગ્નલને સચોટતાથી પુનઃઉત્પન્ન કરવાની ક્ષમતા
ઈમેજ રિજેક્શન	ઈમેજ ફ્રિક્વન્સી ઇન્ટરફેરન્સને અસ્વીકાર કરવાની ક્ષમતા

વધારાની લાક્ષણિકતાઓ:

- સિગ્નલ-ટુ-નોઈઝ રેશિયો: સિગ્નલ પાવરનો નોઈઝ પાવર સાથેનો ગુણોત્તર
- બેન્ડવિડ્ય: મેળવી શકાય તેવી ફ્રિક્વન્સીઓની રેન્જ
- સ્ટેબિલિટી: ટ્યૂન કરેલી ફ્રિક્વન્સી જાળવી રાખવાની ક્ષમતા

મેમરી ટ્રીક: "SFIS-BSS" (Sensitivity, Fidelity, Image rejection, Selectivity - Better Signal Stability)

પ્રશ્ન 2(ક) OR [7 ગુણ]

AM રેડિયો રીસીવરનો બ્લોક ડાયાગ્રામ દોરો અને દરેક બ્લોકની કામગીરી સમજાવો.

જવાબ:

આકૃતિ: AM રેડિયો રીસીવર

કોષ્ટક: દરેક બ્લોકનાં કાર્યો

બ્લોક	รเช้
એન્ટેના	AM રેડિયો તરંગો પકડે છે
RF ટ્યૂનર & એમ્પ્લિફાયર	ઇચ્છિત ફ્રિક્વન્સી પસંદ કરે અને એમ્પ્લિફાય કરે છે
મિક્સર	RF સિગ્નલને IF (455 kHz) માં કન્વર્ટ કરે છે
લોકલ ઓસિલેટર	મિક્સિંગ માટે ફ્રિક્વન્સી જનરેટ કરે છે (RF+455 kHz)
IF એમ્પ્લિફાયર	ફિક્સ્ડ સિલેક્ટિવિટી સાથે IF સિગ્નલ એમ્પ્લિફાય કરે છે
ડિટેક્ટર	AM એન્વેલપમાંથી ઓડિયો રિકવર કરે છે
AGC	ઓટોમેટિક ગેઈન કંટ્રોલ પ્રદાન કરે છે
ઓડિયો એમ્પ્લિફાયર	ઓડિયો સિગ્નલ એમ્પ્લિફાય કરે છે
સ્પીકર	ઇલેક્ટ્રિકલ થી સાઉન્ડ વેવ્સમાં કન્વર્ટ કરે છે

- સુપરહેટરોડાઈન પ્રિન્સિપલ: બેટર સિલેક્ટિવિટી માટે ફ્રિક્વન્સી કન્વર્ઝન વાપરે છે
- AGC ફીડબેક લૂપ: સિગ્નલ સ્ટ્રેન્થના ફેરફાર છતાં કોન્સ્ટન્ટ આઉટપુટ જાળવે છે

ਮੇਮਰੀ ਟ੍ਰੀs: "ARMLESS" (Antenna, RF, Mixer, Local oscillator, Envelope detector, Sound System)

પ્રશ્ન 3(અ) [3 ગુણ]

Quantization વ્યાખ્યાયિત કરો. Non uniform quantization સંક્ષિપ્તમાં સમજાવો.

જવાબ:

કવોન્ટાઇઝેશન એ સતત એમ્પલિટ્યૂડ મૂલ્યોને ડિજિટલ રજૂઆત માટે ડિસ્ક્રીટ લેવલમાં કન્વર્ટ કરવાની પ્રક્રિયા છે.

કોષ્ટક: નોન-યુનિફોર્મ ક્વોન્ટાઇઝેશન

પાસું	વર્ણન
વ્યાખ્યા	વિવિદ્ય એમ્પલિટ્યૂડ રેન્જ માટે વિવિદ્ય સ્ટેપ સાઇઝ ફાળવવી
ફાયદો	નાના એમ્પલિટ્યૂડ સિગ્નલ્સ માટે ક્વોન્ટાઇઝેશન નોઇઝ ઘટાડે છે
અમલીકરણ	કોમ્પેન્ડિંગ (કોમ્પ્રેશન-એક્સપાન્શન) તકનીકોનો ઉપયોગ
ઉદાહરણ	ટેલિફોનીમાં વપરાતા µ-law અને A-law કોમ્પેન્ડિંગ

- કાર્યસિદ્ધાંત: ઓછા એમ્પલિટ્યૂડ માટે નાના સ્ટેપ સાઇઝ, ઉચ્ચ એમ્પલિટ્યૂડ માટે મોટા સ્ટેપ
- અસર: મજબૂત સિગ્નલ્સના ખર્ચે નબળા સિગ્નલ્સ માટે SNR સુધારે છે

મેમરી ટ્રીક: "QUEST-CS" (QUantization with Enhanced Steps - Compressing Small signals)

પ્રશ્ન 3(બ) [4 ગુણ]

Sample and Hold સર્કિટ વેવફોર્મ સાથે સમજાવો.

જવાબ:

આકૃતિ: સેમ્પલ અને હોલ્ડ સર્કિટ

આકૃતિ: સેમ્પલ અને હોલ્ડ વેવફોર્મ

સેમ્પલ અને હોલ્ડ ઓપરેશન:

- સેમ્પલિંગ મોડ: સ્વિચ બંધ થાય છે, કેપેસિટર ઇનપુટ વોલ્ટેજ પર ચાર્જ થાય છે
- હોલ્ડ મોડ: સ્વિચ ખુલે છે, કેપેસિટર વોલ્ટેજ જાળવે છે
- પરિમાણો: એક્વિઝિશન ટાઇમ, એપર્ચર ટાઇમ, હોલ્ડ ટાઇમ, ડ્રૂપ રેટ

મેમરી ટ્રીક: "CHASED" (Capacitor Holds Amplitude Samples for Extended Duration)

પ્રશ્ન 3(ક) [7 ગુણ]

સેમ્પલિંગ શું છે? સેમ્પલિંગ પ્રકારો સમજાવો.

જવાબ:

સેમ્પલિંગ એ કન્ટિન્યુઅસ-ટાઇમ સિગ્નલને નિયમિત અંતરાલે માપ લઈને ડિસ્ક્રીટ-ટાઇમ સિગ્નલમાં રૂપાંતરિત કરવાની પ્રક્રિયા છે.

કોષ્ટક: સેમ્પલિંગના પ્રકારો

язіг	વર્ણન	લક્ષણો
નેચરલ સેમ્પલિંગ	સિગ્નલને રેક્ટેન્ગ્યુલર પલ્સ સાથે ગુણાકાર કરવામાં આવે છે	પલ્સ દરમિયાન મૂળ સિગ્નલની આકૃતિ જાળવે છે
ફ્લેટ-ટોપ સેમ્પલિંગ	સેમ્પલ મૂલ્ય સેમ્પલિંગ અંતરાલ દરમિયાન અચળ રહે છે	સ્ટેરકેસ જેવો આઉટપુટ બનાવે છે
આદર્શ સેમ્પલિંગ	તાત્કાલિક નમૂનાઓ ઇમ્પલ્સ તરીકે રજૂ થાય છે	શૂન્ય પહોળાઈવાળા પલ્સ સાથે સૈદ્ધાંતિક ખ્યાલ
યુનિફોર્મ સેમ્પલિંગ	સમાન સમય અંતરાલે લેવાતા નમૂનાઓ	વ્યવહારમાં સૌથી સામાન્ય
નોન-યુનિફોર્મ સેમ્પલિંગ	બદલાતા અંતરાલે લેવાતા નમૂનાઓ	વિશેષ ઉપયોગો માટે વપરાય છે

આકૃતિ: સેમ્પલિંગ પ્રકારો

• નાયક્વિસ્ટ ક્રાઇટેરિયા: સેમ્પલિંગ ફ્રિક્વન્સી સિગ્નલમાં સર્વોચ્ચ ફ્રિક્વન્સીના ઓછામાં ઓછી બે ગણી હોવી જોઈએ

મેમરી ટ્રીક: "INFUN" (Ideal, Natural, Flat-top, Uniform, Non-uniform)

પ્રશ્ન 3(અ) OR [3 ગુણ]

Quantization પ્રક્રિયા અને તેની આવશ્યકતા સમજાવો.

જવાબ:

ક્વોન્ટાઇઝેશન પ્રક્રિયા સતત એમ્પલિટ્યૂડ મૂલ્યોને ડિજિટલ રજૂઆત માટે મર્યાદિત ડિસ્ક્રીટ લેવલમાં મેપ કરે છે.

કોષ્ટક: ક્વોન્ટાઇઝેશન પ્રક્રિયા અને આવશ્યકતા

પાસું	વર્ણન
પ્રક્રિયા	એમ્પલિટ્યૂડ રેન્જને ડિસ્ક્રીટ લેવલમાં વિભાજીત કરવી
આવશ્યકતા	એનાલોગ-ટુ-ડિજિટલ કન્વર્ઝન માટે જરૂરી
અસર	ક્વોન્ટાઇઝેશન એરર/નોઇઝ દાખલ કરે છે
પરિમાણો	સ્ટેપ સાઇઝ, લેવલની સંખ્યા (n-બિટ માટે 2 ⁿ)

- સ્ટેપ સાઇઝ ગણતરી: સ્ટેપ સાઇઝ = (Vmax Vmin)/2ⁿ
- ક્વોન્ટાઇઝેશન એરર: મહત્તમ એરર ±Q/2 છે જ્યાં Q સ્ટેપ સાઇઝ છે
- ઉપયોગો: ડિજિટલ કોમ્યુનિકેશન, ઓડિયો/વિડિઓ પ્રોસેસિંગ, ડેટા સ્ટોરેજ

મેમરી ટ્રીક: "SEND" (Step-size Establishes Noise in Digitization)

પ્રશ્ન 3(બ) OR [4 ગુણ]

સિગ્નલના નમૂના લેવા માટે Nyquist માપદંડ જણાવો અને સમજાવો.

જવાબ:

નાયક્વિસ્ટ સેમ્પલિંગ થિયરમ જણાવે છે કે બેન્ડલિમિટેડ સિગ્નલને સંપૂર્ણ રીતે પુનઃનિર્માણ કરવા માટે, સેમ્પલિંગ ફ્રિક્વન્સી સિગ્નલમાં સર્વોચ્ચ ફ્રિક્વન્સી ઘટકના ઓછામાં ઓછી બે ગણી હોવી જોઈએ.

કોષ્ટક: નાયક્વિસ્ટ માપદંડ

પરિમાણ	વર્ણન
માપદંડ	fs ≥ 2fmax
નાયક્વિસ્ટ રેટ	2fmax (લઘુત્તમ સેમ્પલિંગ ફ્રિક્વન્સી)
નાયક્વિસ્ટ ઇન્ટરવલ	1/(2fmax) (મહત્તમ સેમ્પલિંગ પીરિયડ)
એલિયાસિંગ	જ્યારે fs < 2fmax થાય ત્યારે ઉદ્ભવે છે

આકૃતિ: સેમ્પલિંગની અસરો

```
Proper Sampling (fs > 2fmax)
Original: /\/\/\\
Samples: * * * * * * *
Result: /\/\/\\
Aliasing (fs < 2fmax)
Original: /\/\/\/\/\\
Samples: * * * *
Result: /\/\ (lower frequency)</pre>
```

• અન્ડરસેમ્પલિંગના પરિણામો: એલિયાસિંગ (ફ્રિક્વન્સી ફોર્લ્ડિંગ)

• વ્યવહારિક ઉપયોગ: સેમ્પલિંગ પહેલા એન્ટી-એલિયાસિંગ ફિલ્ટર્સનો ઉપયોગ

મેમરી ટ્રીક: "TRAP-A" (Twice Rate Avoids Problematic Aliasing)

પ્રશ્ન 3(ક) OR [7 ગુણ]

PAM, PWM અને PPM વેવફોર્મ સાથે સમજાવો.

જવાબ:

કોષ્ટક: પલ્સ મોડ્યુલેશન તકનીકો

તકનીક	વર્ણન	બદલાતો પરિમાણ	ઉપયોગ
PAM	પત્સ એમ્પલિટ્યૂડ મોક્યુલેશન	પત્સની એમ્પલિટ્યૂડ	સિમ્પલ ADC સિસ્ટમ્સ
PWM	પત્સ વિડ્થ મોક્યુલેશન	પત્સની પહોળાઈ/સમયગાળો	મોટર કંટ્રોલ, પાવર રેગ્યુલેશન
PPM	પત્સ પોઝિશન મોક્યુલેશન	પત્સની સ્થિતિ/ટાઇમિંગ	હાઈ નોઇઝ ઇમ્યુનિટી સિસ્ટમ્સ

આકૃતિ: પલ્સ મોડ્યુલેશન વેવફોર્મ્સ

• PAM: સૌથી સરળ સ્વરૂપ, નોઇઝના સૌથી વધુ સંવેદનશીલ

• PWM: બેહતર નોઇઝ ઇમ્યુનિટી, સરળ જનરેશન

• PPM: શ્રેષ્ઠ નોઇઝ ઇમ્યુનિટી, ચોક્કસ ટાઇમિંગની જરૂર છે

મેમરી ટ્રીક: "AWP-PAW" (Amplitude, Width, Position - Pulse Alteration Ways)

પ્રશ્ન 4(અ) [3 ગુણ]

ડેલ્ટા મોડયુલેશન માટે સ્લોપ ઓવરલોડ અને ગ્રૅનુલરનોઈઝ એટલે શું?

જવાબ:

કોષ્ટક: ડેલ્ટા મોડ્યુલેશનમાં નોઇઝના પ્રકારો

નોઇઝ પ્રકાર	વ્યાખ્યા	કારણ	ઉપાય
સ્લોપ ઓવરલોડ નોઇઝ	જ્યારે સિગ્નલ સ્લોપ સ્ટેપ સાઇઝ ક્ષમતાને ઓળંગી જાય ત્યારે થતી ભૂલ	ઝડપી બદલાતા સિગ્નલ માટે સ્ટેપ સાઇઝ ખૂબ નાની	સ્ટેપ સાઇઝ અથવા સેમ્પલિંગ ફ્રિક્વન્સી વધારવી
ગ્રેન્યુલર નોઇઝ	ધીમી ગતિએ બદલાતા સિગ્નલોની આસપાસ સતત હંટિંગને કારણે થતી ભૂલ	ધીમી ગતિએ બદલાતા સિગ્નલો માટે સ્ટેપ સાઇઝ ખૂબ મોટી	સ્ટેપ સાઇઝ ઘટાડવી

આકૃતિ: DM નોઇઝ પ્રકારો

મેમરી ટ્રીક: "FAST-SLOW" (Fast signals cause Slope overload, SLOW signals cause Granular noise)

પ્રશ્ન 4(બ) [4 ગુણ]

TDM ફ્રેમ દોરો અને સમજાવો.

જવાબ:

આકૃતિ: TDM ફ્રેમ સ્ટ્રક્ચર

કોષ્ટક: TDM ફ્રેમ ઘટકો

ยรร	વર્ણન
ફ્રેમ સિન્ક (FS)	ફ્રેમની શરૂઆતને ચિહ્નિત કરતો પેટર્ન
ટાઇમ સ્લોટ	એક ચેનલને ફાળવેલો ભાગ
ચેનલ સેમ્પલ	યોક્કસ યેનલના ડેટા
ફ્રેમ લંબાઈ	કુલ સમયગાળો (FS + બધી ચેનલો)

- કાર્યસિદ્ધાંત: વિવિધ ચેનલોને વિવિધ ટાઇમ સ્લોટ ફાળવે છે
- સિન્કોનાઇઝેશન: યોગ્ય ડિમલ્ટિપ્લેક્સિંગ માટે આવશ્યક છે
- પ્રકારો: સિન્ક્રોનસ TDM (ફિક્સ્ડ સ્લોટ્સ) અને સ્ટેટિસ્ટિકલ TDM (ડાયનેમિક એલોકેશન)

મેમરી ટ્રીક: "FAST-Ch" (Frame And Slots for Transmitting Channels)

પ્રશ્ન 4(ક) [7 ગુણ]

PCM ટ્રાન્સમીટર અને રીસીવરના દરેક બ્લોકના કાર્યનું વર્ણન કરો, PCM સિસ્ટમનો ઉપયોગીતા, ફાયદા અને નુકસાન આપો.

જવાબ:

આકૃતિ: PCM સિસ્ટમ

કોષ્ટક: PCM બ્લોક કાર્યો

બ્લોક	કાર્ય
સેમ્પલર	એનાલોગ સિગ્નલને PAM સિગ્નલમાં રૂપાંતરિત કરે છે
ક્વોન્ટાઇઝર	સેમ્પલ્સને ડિસ્ક્રીટ લેવલ ફાળવે છે
એન્કોડર	ક્વોન્ટાઇઝ્ડ લેવલને બાઇનરી કોડમાં રૂપાંતરિત કરે છે
લાઇન કોડર	બાઇનરીને ટ્રાન્સમિશન ફોર્મેટમાં કન્વર્ટ કરે છે
લાઇન ડિકોડર	મળેલા સિગ્નલમાંથી બાઇનરી પુનઃપ્રાપ્ત કરે છે
ડિકોડર	બાઇનરીને ક્વોન્ટાઇઝ્ડ લેવલમાં પાછું કન્વર્ટ કરે છે
રિકન્સ્ટ્રક્શન ફિલ્ટર	ડિકોડેડ આઉટપુટને એનાલોગ સિગ્નલમાં સ્મૂધ કરે છે

એપ્લિકેશન્સ, ફાયદા અને ગેરફાયદા:

કોષ્ટક: PCM સિસ્ટમની લાક્ષણિકતાઓ

શ્રેણી	વર્ણન
એપ્લિકેશન્સ	ટેલિફોન સિસ્ટમ, CD ઓડિયો, ડિજિટલ TV, મોબાઇલ કોમ્યુનિકેશન
ફાયદા	નોઇઝથી સુરક્ષિત, સિગ્નલ રિજનરેશન શક્ય, ડિજિટલ સિસ્ટમ સાથે સુસંગત
ગેરફાયદા	વધુ બેન્ડવિડ્થની જરૂર, વધુ જટિલતા, ક્વોન્ટાઇઝેશન નોઇઝ

મેમરી ટ્રીક: "SEQUEL-DR" (Sample, Quantize, Encode - Line code, Decode, Reconstruct)

પ્રશ્ન 4(અ) OR [3 ગુણ]

DM અને ADM મોક્યુલેશન વચ્ચે તફાવત આપો.

જવાબ:

કોષ્ટક: DM અને ADM વચ્ચેની તુલના

પરિમાણ	ડેલ્ટા મોક્યુલેશન (DM)	એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન (ADM)
સ્ટેપ સાઇઝ	ફ िક ्स	વેરિએબલ (સિગ્નલ સ્લોપને અનુકૂળ)
ટ્રેકિંગ ક્ષમતા	મર્યાદિત	બેહતર સિગ્નલ ટ્રેકિંગ
નોઇઝ પરફોર્મન્સ	સ્લોપ ઓવરલોડ અને ગ્રેન્યુલર નોઇઝથી પીડાય છે	ઓછી નોઇઝ સમસ્યાઓ
જટિલતા	સરળ	વધુ જટિલ

આકૃતિ: DM વિરુદ્ધ ADM ટ્રેકિંગ

મેમરી ટ્રીક: "FAST-VAR" (Fixed And Simple Tracking vs Variable Adaptive Response)

પ્રશ્ન 4(બ) OR [4 ગુણ]

મૂળભૂત PCM-TDM સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

આકૃતિ: PCM-TDM સિસ્ટમ

કોષ્ટક: PCM-TDM સિસ્ટમ ઘટકો

ยรร	รเน้
લો-પાસ ફિલ્ટર	ઇનપુટ સિગ્નલોની બેન્ડવિડ્થ મર્યાદિત કરે છે
મલ્ટિપ્લેક્સર	ટાઇમ સ્લોટમાં ઘણા સિગ્નલો જોડે છે
PCM એન્કોડર	ડિજિટલમાં રૂપાંતરિત કરે છે (સેમ્પલ, ક્વોન્ટાઇઝ, એન્કોડ)
ટ્રાન્સમિશન ચેનલ	ડિજિટાઇઝ્ડ, મલ્ટિપ્લેક્સ્ડ સિગ્નલ વહન કરે છે
PCM (Saise	ક્વોન્ટાઇઝ્ડ સેમ્પલ્સ પુનઃનિર્માણ કરે છે
ડિમલ્ટિપ્લેક્સર	ટાઇમ સ્લોટમાંથી ચેનલો અલગ કરે છે

- કાર્યસિદ્ધાંત: ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગને પલ્સ કોડ મોક્યુલેશન સાથે જોડે છે
- એપ્લિકેશન્સ: ડિજિટલ ટેલિફોની, ડિજિટલ ઓડિયો બ્રોડકાસ્ટિંગ, કોમ્યુનિકેશન નેટવર્ક્સ

મેમરી ટ્રીક: "FLIMPED" (Filter, Limit, Multiplex, PCM Encode, Decode)

પ્રશ્ન 4(ક) OR [7 ગુણ]

DPCM મોડ્યુલેટરને સમીકરણ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ડિફરેન્શિયલ પત્સ કોડ મોક્યુલેશન (DPCM) વર્તમાન સેમ્પલ અને અગાઉના સેમ્પલ્સના આધારે અનુમાનિત મૂલ્ય વચ્ચેના તફાવતને એન્કોડ કરે છે.

સમીકરણ:

- એરર સિગ્નલ: e(n) = x(n) x̂(n)
- જ્યાં x(n) વર્તમાન સેમ્પલ છે, x̂(n) અનુમાનિત સેમ્પલ છે
- અનુમાન: x̂(n) = Σ(a; × x(n-i))
- ટ્રાન્સમિટેડ સિગ્નલ: DPCM આઉટપુટ = Q[e(n)]

આકૃતિ: DPCM મોક્યુલેટર

આકૃતિ: DPCM વેવફોર્મ

કોષ્ટક: DPCM લાક્ષણિકતાઓ

ફીચર	นต์า
ફાયદો	ઘટાડેલો બિટ રેટ (PCMની તુલનામાં 30-50%)
અનુમાન	વર્તમાન અનુમાન માટે અગાઉના સેમ્પલ(સ)નો ઉપયોગ
જટિલતા	PCM કરતાં વધુ પરંતુ ADPCM કરતાં ઓછી
એપ્લિકેશન	સ્પીય કોડિંગ, ઇમેજ કોમ્પ્રેશન

મેમરી ટ્રીક: "PQED" (Predict, Quantize Error, Encode Difference)

પ્રશ્ન 5(અ) [3 ગુણ]

એન્ટેના, રેડિયેશનપેટર્ન અને ધ્રુવીકરણ વ્યાખ્યાયિત કરો.

જવાબ:

કોષ્ટક: એન્ટેનાની વ્યાખ્યાઓ

કાલ્દ	વ્યાખ્યા
એન્ટેના	એક ઉપકરણ જે ઇલેક્ટ્રિકલ ઊર્જાને ઇલેક્ટ્રોમેગ્નેટિક તરંગમાં અને તેનાથી વિપરીત રૂપાંતરિત કરે છે
રેડિયેશન પેટર્ન	અવકાશ કોઓર્ડિનેટ્સના ફંકશન તરીકે એન્ટેનાના રેડિયેશન ગુણધર્મોનું ગ્રાફિકલ રજૂઆત
ધ્રુવીકરણ	એન્ટેના દ્વારા રેડિયેટ કરાયેલા ઇલેક્ટ્રોમેગ્નેટિક તરંગના ઇલેક્ટ્રિક ફીલ્ડ વેક્ટરની ઓરિએન્ટેશન

ધ્રુવીકરણના પ્રકારો:

• **લિનિયર**: ઇલેક્ટ્રિક ફીલ્ડ એક દિશામાં આંદોલિત થાય છે (વર્ટિકલ, હોરિઝોન્ટલ)

• સર્ક્યુલર: ઇલેક્ટ્રિક ફીલ્ડ અયળ એમ્પલિટ્યૂડ સાથે ફરે છે (RHCP, LHCP)

• ઇલિપ્ટિકલ: ઇલેક્ટ્રિક ફીલ્ડ બદલાતી એમ્પલિટ્યૂડ સાથે ફરે છે

મેમરી ટ્રીક: "WAVE-PRO" (Wireless Antenna Validates Electromagnetic Propagation, Radiation, Orientation)

પ્રશ્ન 5(બ) [4 ગુણ]

માઇક્રોસ્ટ્રીપ એન્ટેના સ્ક્રેચ સાથે સમજાવો.

જવાબ:

આકૃતિ: માઇક્રોસ્ટ્રીપ પેચ એન્ટેના

કોષ્ટક: માઇક્રોસ્ટ્રીપ એન્ટેના ઘટકો

ยะร	รเน้
પેચ	રેડિયેટિંગ એલિમેન્ટ (સામાન્ય રીતે કોપર)
સબસ્ટ્રેટ	પેચ અને ગ્રાઉન્ડ વચ્ચેનું ડાઇલેક્ટ્રિક મટિરિયલ
ગ્રાઉન્ડ પ્લેન	તળિયે મેટલ લેયર
ફીડ પોઇન્ટ	સિગ્નલ માટે કનેક્શન પોઇન્ટ

- **કાર્યસિદ્ધાંત**: ધારો પર ફ્રિન્જિંગ ફીલ્ફ્સ રેડિએશન ઉત્પન્ન કરે છે
- **ફાયદા**: લો પ્રોફાઇલ, હળવું વજન, સરળ ફેબ્રિકેશન, PCB સાથે સુસંગત
- **એપ્લિકેશન્સ**: મોબાઇલ ડિવાઇસ, સેટેલાઇટ, એરક્રાફ્ટ, RFID ટેગ્સ

ਮੇਮરੀ ਟ੍ਰੀs: "SPGF" (Substrate, Patch, Ground, Feed)

પ્રશ્ન 5(ક) [7 ગુણ]

ડેલ્ટા મોડ્યુલેશન જરૂરી સ્કેચ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ડેલ્ટા મોડ્યુલેશન (DM) એ ડિફરેન્શિયલ પલ્સ કોડ મોડ્યુલેશનનું સૌથી સરળ સ્વરૂપ છે જ્યાં ક્રમિક સેમ્પલ્સ વચ્ચેનો તફાવત એક બિટમાં એન્કોડ થાય છે.

આકૃતિ: ડેલ્ટા મોક્યુલેટર

આકૃતિ: ડેલ્ટા મોક્યુલેશન વેવફોર્મ

કોષ્ટક: ડેલ્ટા મોડ્યુલેશન લાક્ષણિકતાઓ

લાક્ષણિકતા	นย์า
બિટ રેટ	પ્રતિ સેમ્પલ 1 બિટ
સ્ટેપ સાઇઝ	ફિક્સ્ડ (મુખ્ય મર્યાદા)
સ્લોપ ઓવરલોડ	જ્યારે સિગ્નલ સ્ટેપ સાઇઝ ટ્રેક કરી શકે તેના કરતાં ઝડપથી બદલાય ત્યારે
ગ્રેન્યુલર નોઇઝ	દ્યીમી ગતિએ બદલાતા સિગ્નલમાં (સતત હંટિંગ)
ફાયદા	સરળતા, ઓછો બિટ રેટ
ગેરફાયદા	મર્યાદિત ડાયનેમિક રેન્જ, નોઇઝ સમસ્યાઓ

મેમરી ટ્રીક: "SIGN-UP" (SInGle bit, Next step Up or down, Predict)

પ્રશ્ન 5(અ) OR [3 ગુણ]

સ્માર્ટ એન્ટેના શું છે? સ્માર્ટ એન્ટેના એપ્લિકેશન આપો.

જવાબ:

સ્માર્ટ એન્ટેના એ એક એડેપ્ટિવ એરે સિસ્ટમ છે જે કોમ્યુનિકેશન પરફોર્મન્સ વધારવા માટે ડિજિટલ સિગ્નલ પ્રોસેસિંગ એલ્ગોરિધમનો ઉપયોગ કરીને ડાયનેમિક રીતે તેની રેડિએશન પેટર્ન એડજસ્ટ કરે છે.

કોષ્ટક: સ્માર્ટ એન્ટેના એપ્લિકેશન્સ

એપ્લિકેશન	ફાયદો
સેલ્યુલર બેઝ સ્ટેશન્સ	વદ્યેલી ક્ષમતા અને કવરેજ
વાયરલેસ LAN	સુધારેલું થ્રૂપુટ અને ઘટેલું ઇન્ટરફેરન્સ
સેટેલાઇટ કોમ્યુનિકેશન્સ	બેહતર સિગ્નલ ક્વોલિટી અને પાવર કાર્યક્ષમતા
મિલિટરી કોમ્યુનિકેશન્સ	વધેલી સુરક્ષા અને જામ રેસિસ્ટન્સ
IoT નેટવર્ક્સ	વિસ્તારિત બેટરી લાઇફ, સુધારેલી કનેક્ટિવિટી

• **કાર્યસિદ્ધાંત**: ઇચ્છિત યુઝર્સ તરફ સિગ્નલ એનર્જી ફોકસ કરવા બીમફોર્મિંગનો ઉપયોગ કરે છે

• પ્રકારો: સ્વિચ્ડ બીમ સિસ્ટમ્સ અને એડેપ્ટિવ એરે સિસ્ટમ્સ

મેમરી ટ્રીક: "SWIM-CM" (Smart Wireless In Mobile-Cellular-Military)

પ્રશ્ન 5(બ) OR [4 ગુણ]

પેરાબોલિક રિફ્લેક્ટર એન્ટેના સ્કેચ સાથે સમજાવો.

જવાબ:

આકૃતિ: પેરાબોલિક રિફ્લેક્ટર એન્ટેના

કોષ્ટક: પેરાબોલિક રિફ્લેક્ટર ઘટકો

ยรร	รเช้
પેરાબોલિક ડિશ	સિગ્નલ્સને પરાવર્તિત અને કેન્દ્રિત કરે છે
ફીડ હોર્ન	ફ્રોકલ પોઇન્ટ પર સિગ્નલ્સને રેડિયેટ/રિસીવ કરે છે
સપોર્ટિંગ સ્ટ્રક્ચર	જ્યોમેટ્રી અને સ્થિરતા જાળવે છે
વેવગાઇડ	ફ્રીડ હોર્નને ટ્રાન્સમિટર/રિસીવર સાથે જોડે છે

• કાર્યસિદ્ધાંત: આવતા સમાંતર કિરણો ફોકલ પોઇન્ટ પર પરાવર્તિત થાય છે

- લાક્ષણિકતાઓ: ઉચ્ચ ગેઇન, દિશાત્મકતા, સાંકડી બીમવિડ્થ
- એપ્લિકેશન્સ: સેટેલાઇટ કોમ્યુનિકેશન, રેડિયો એસ્ટ્રોનોમી, રડાર, માઇક્રોવેવ લિંક્સ

મેમરી ટ્રીક: "PFGH" (Parabolic Focus Gives High-gain)

પ્રશ્ન 5(ક) OR [7 ગુણ]

એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન જરૂરી સ્કેચ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન (ADM) ઇનપુટ સિગ્નલની લાક્ષણિકતાઓ અનુસાર સ્ટેપ સાઇઝને ડાયનેમિક રીતે એડજસ્ટ કરીને સ્ટાન્ડર્ડ DMમાં સુધારો કરે છે.

આકૃતિ: એડેપ્ટિવ ડેલ્ટા મોક્યુલેટર

આકૃતિ: ADM વેવફોર્મ

કોષ્ટક: ADM લાક્ષણિકતાઓ

પાસું	વર્ણન
સ્ટેપ સાઇઝ	વેરિએબલ (સિગ્નલ સ્લોપને અનુકૂળ)
કંટ્રોલ લોજિક	ક્રમિક સમાન બિટ્સ માટે સ્ટેપ સાઇઝ વધારે છે
ફાયદા	ઘટાડેલ સ્લોપ ઓવરલોડ અને ગ્રેન્યુલર નોઇઝ
ગેરફાયદા	DM કરતાં વધુ જટિલ
એપ્લિકેશન્સ	સ્પીચ કોડિંગ, ટેલિમેટ્રી, ડિજિટલ ટેલિફોની
પરફોર્મન્સ	સમાન બિટ રેટ પર DM કરતાં વધુ સારું SNR

- **સ્ટેપ સાઇઝ એડજસ્ટમેન્ટ**: $\mu(n) = \mu(n-1) \times K જો ક્રમિક બિટ્સ સમાન હોય$
- **સ્ટેપ સાઇઝ એડજસ્ટમેન્ટ**: $\mu(n) = \mu(n-1) / K જો ક્રમિક બિટ્સ બદલાય$

મેમરી ટ્રીક: "ADVISED" (ADaptive Variable Increment Step for Enhanced Delta modulation)