统计学习理论与方法

博士生课程

Lecturer: Liqing Zhang

Dept. Computer Science & Engineering, Shanghai Jiao Tong University

Textbooks and References

 Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2017, Springer-Verlag

- Other References
- Simon J.D. Prince, Understanding Deep Learning, 2023, MIT Press
- Roman Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, 2018, Cambridge University Press

人工智能与统计学习

- Problem: Insuffient Number of Samples
 - Uncertainty / Ergodicity
- Model Complexity and Generalization
 - Measure and Regularization
- Model Learning and Model Selection
 - Error bound Estimation
 - Convergence Rate
- Modern Topics
 - Common Knowledge
 - Concept and Attributes
 - Causal Inference
 - Data driven → Data generation
 -

Contents of the Course

- Introduction
- Overview of Supervised Learning
- Linear Method for Regression and Classification
- Basis Expansions and Regularization
- Kernel Methods
- Model Selections and Inference
- Support Vector Machine
- Latent Variable Model and Variational Approximation
- Unsupervised Learning
- Deep Learning and Universal Approximation
- Generative Model and Diffusion Model

研究现状与发展趋势

◆ 未来趋势: Data-Driven Deep learning Approach ⊏

LLM based Generative AI

- Face Recognition
- Object Recognition
- Medical Diagnosis
-

核心模型: CNN Core

- Image / Text Generation
- Chat Robots
- Software Development

. . . .

核心模型: Transformer / Diffusion Model

当前AI挑战与局限性: AI Systems lack of solid verification (unexplainability), Weak OOD generalization (long-tailed distribution); AI generative System: Hard-controlability、'Hallucinations'

- ・科学问题:
 - Semantic Representation for Multi-modal Information
 - Controllable AI generative systems
 - How to embed common knowledge to help AI Systems predict rationally?

AI 挑战: 可验证性 / 可解释性

维数灾难问题: CNN mapping images into embedding vectors, without expressing any semantic structures

高维空间数据分布特性

问题 1: 高位空间中单位球和单位立方 体哪个体积大?

问题 2: 高维空间中高斯分布的数据主要 集中在均值附近吗?

内圈 n=20; 外圈 n=200, 半径 $r = \sqrt{n-1}$

挑战问题: GPT models

The Vision Transformer

- Split an image into patches (fixed sizes)
- Each patch is mapped to a lower dimensional vector via a learned linear transformation
- Feed the sequence as an input to a SOTA transformer encoder

Applications in Statistical Learning

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack.
- Identify the risk factors for prostate cancer, based on clinical and demographic variables.
- Predict the price of a stock in 6 months from now, on the basis of company performance measures and economic data.
- Object recognition such as Human Face / ZIP code / plate numbers, from a digitized image.
- Latest applications of AI, such as Automatic driving, COVID19 diagnosis and treatment
- Image generation: Product Advertising / Virtual Clothes Try-on

ML: COVID19 Risk Prediction

ML: Auto Vehicle Navigation

Statistical Learning 11

Protein Folding

Statistical Learning 12

EX. Pattern Classification

Objective: To recognize horses in images

◆ Procedure: Feature → Classifier Training → Cross Validation

Failure Case: Wrong features

Non Horse

Statistical Learning 14

为什么深度学习模型泛化能力差?

□ 为什么深度学习模型容易被欺骗?

Heaven D. Why deep-learning Als are so easy to fool[J]. Nature, 2019

□ 为什么自动驾驶老是出事?

Automatic Driving

- Baidu Automatic Driving Demo (2017)
- → Tesla Car Accident (2019)

Statistical Learning 16

Function Estimation Model

- Generator (G) generates observations x (typically in \mathbb{R}^n), independently drawn from some fixed distribution F(x)
- Supervisor (S) labels each input x with an output value y according to some fixed distribution F(y|x)
- Learning Machine (LM) "learns" from an i.i.d. sample of (x,y)-pairs output from G and S, by choosing a function that best approximates S from a parameterised function class $f(x,\alpha)$, where α is in Λ the parameter set

Function Estimation Model

• **Key concepts:** F(x,y), an i.i.d. k-sample on F, functions $f(x,\alpha)$ and the equivalent representation of each f using its index α

The Problem of Risk Minimization

The loss functional (L, Q)

the error of a given function on a given example

$$L:(x, y, f_{\alpha}) \mapsto L(y, f(x, \alpha))$$

$$Q:(z, \alpha) \mapsto L(z_{y}, f(z_{x}, \alpha))$$

◆ The risk functional (R)

- the expected loss of a given function on an example drawn from F(x,y)
- the (usual concept of) generalisation error of a given function

$$R(\alpha) = \int Q(z, \alpha) dF(z)$$

The Problem of Risk Minimization

Three Main Learning Problems

– Pattern Recognition:

$$y \in \{0,1\} \text{ and } L(y, f(x, \alpha)) = \mathbf{1}[y = f(x, \alpha)]$$

– Regression Estimation:

$$y \in \Re$$
 and $L(y, f(x, \alpha)) = (y - f(x, \alpha))^2$

– Density Estimation:

$$y \in [0,1]$$
 and $L(p(x,\alpha)) = -\log p(x,\alpha)$

General Formulation

The Goal of Learning

- Given an i.i.d. k-sample z_1, \ldots, z_k drawn from a fixed distribution F(z)
- For a function class' loss functionals $Q(z, \alpha)$, with α in Λ
- We wish to minimise the risk, finding a value α^* such that

$$\alpha^* = \arg\min_{\alpha \in \Lambda} R(\alpha)$$

– where

$$R(\alpha) = \int Q(z, \alpha) dF(z)$$

General Formulation

The Empirical Risk Minimization (ERM)

— Define the empirical risk (sample/training error):

$$R_{\text{emp}}(\alpha) = \frac{1}{k} \sum_{i=1}^{k} Q(z_i, \alpha)$$

Define the empirical risk minimiser:

$$\alpha_k = \arg\min_{\alpha \in \Lambda} R_{\rm emp}(\alpha)$$

- ERM approximates $Q(z,\alpha^*)$ with $Q(z,\alpha_k)$, the $R_{\rm emp}$ minimiser...that is ERM approximates α^* with α_k
- Least-squares and Maximum-likelihood are realisations of ERM

Four Issues of Learning Theory

1. Theory of consistency of learning processes

 What are (necessary and sufficient) conditions for consistency (convergence of R_{emp} to R) of a learning process based on the ERM Principle?

2. The rate of convergence of learning processes

How fast is the rate of convergence of a learning process?

3. Generalization ability of learning processes

How can one control the rate of convergence (the generalization ability) of a learning process?

4. Constructing learning algorithms (i.e. the SVM)

How can one construct algorithms that can control the generalization ability?

Types of learning

- Supervised learning
 - Given a category label for each pattern in a training set.
 - Such as Face Recognition, Text Classification,
- Unsupervised learning
 - Data Clustering, Data Quantization, Dimensional Reduction,
- Reinforcement learning
 - Multi-Agents, Robots, Automatic Driving
- Semi- / Weakly /self- supervised learning

Course Web

https://oc.sjtu.edu.cn/courses/ 58141

- Teaching Assistant:
 - 王剑挺 glory1229@sjtu.edu.cn
- * 成绩构成
 - 作业20%; 课程设计 30%; 期末考试 50%

Statistical Learning 25

讨论题

为什么图像加噪后容易被误分为其他物体?可能有哪些技术路线解决该问题?

在交通拥挤期间,萝卜快跑为什么会出现停着不走, 且不听交警指挥?需要我们解决关键技术是什么?

第一次作业

- ◆ 请通过测试大模型,指出大模型在回答问题/图像生成中存在的问题,写一份简易的调研报告,指出可能是什么原因,其科学问题是什么?
- ◆ 提交报告要求:字数要求>1000字,包括:测试系统、测试问题,出现不合理问题是什么?针对该问题,凝练进一步研究的科学问题。