SNACK: Sequence Normalized Alignment Comparison Kit –

Параметрическая метрика на множестве аминокислот с оптимизацией для высокопроизводительных вычислений

Киселев Никита Сергеевич, М05-402в 20 мая 2025 г.

1 Введение

Выравнивание биологических последовательностей является фундаментальной задачей в биоинформатике, играющей центральную роль в понимании структурных, функциональных и эволюционных взаимоотношений между белками. Точность выравнивания напрямую зависит от используемой функции расстояния между элементами последовательностей, в частности, аминокислотами. Традиционные подходы, основанные на матрицах PAM (Point Accepted Mutation) или BLOSUM (BLOcks SUbstitution Matrix), используют эмпирические данные о частоте замен аминокислот в процессе эволюции, однако они не учитывают напрямую физико-химические свойства аминокислот и часто не обладают важными математическими свойствами метрических пространств.

В настоящей работе мы представляем SNACK (Sequence Normalized Alignment Comparison Kit) — теоретически обоснованную параметрическую функцию расстояния на множестве аминокислот $\mathcal{A} = \{a_1, a_2, \dots, a_{20}\}$, которая:

1) Учитывает структурные, химические и биофизические свойства аминокислот через их представление в многомерном признаковом пространстве;

- 2) Обеспечивает согласованность с критериями оптимальности выравнивания;
- 3) Оптимизирована для высокопроизводительных вычислений с использованием GPU/MPS (Metal Performance Shaders) акселерации;
- 4) Демонстрирует превосходство над традиционными эмпирическими подходами.

Математическая формулировка предлагаемой метрики основана на параметрической квадратичной форме в пространстве признаков аминокислот. Каждая аминокислота $a_i \in \mathcal{A}$ представляется вектором признаков $\phi(a_i) \in \mathbb{R}^k$, где компоненты соответствуют таким свойствам как гидрофобность, молекулярный вес, полярность, заряд и объем. Расстояние между аминокислотами определяется как:

$$d(a_i, a_j) = (\phi(a_i) - \phi(a_j))^T M(\phi(a_i) - \phi(a_j)), \tag{1}$$

где $M \in \mathbb{R}^{k \times k}$ — положительно полуопределенная симметричная матрица, определяющая метрику в пространстве признаков. Параметры матрицы M оптимизируются с использованием градиентных методов на основе набора эталонных выравниваний из базы данных BALIBASE.

Программная реализация SNACK включает оптимизированный алгоритм Needleman-Wunsch для глобального выравнивания с использованием полученной метрики, а также оптимизации для параллельных вычислений с применением JIT-компиляции и векторизации для CPU (Numba) и вычислений на GPU (PyTorch). Результаты экспериментов показывают улучшение точности выравнивания на 2.5% по сравнению с традиционными матрицами BLOSUM и PAM, а также значительное ускорение при использовании аппаратного ускорения.

2 Теоретические основы

В данном разделе мы формализуем задачу построения метрики на множестве аминокислот и связываем её с задачей оптимального выравнивания последовательностей.

2.1 Формализация признакового пространства аминокислот

Пусть $\mathcal{A} = \{a_1, a_2, \dots, a_{20}\}$ — конечное множество стандартных аминокислот, дополненное символом пробела "—"для выравниваний. В нашем подходе каждая аминокислота представляется набором биофизических и химических характеристик, образующих признаковое пространство размерности k=5.

Отображение $\phi: \mathcal{A} \to \mathbb{R}^k$ сопоставляет каждой аминокислоте $a_i \in \mathcal{A}$ вектор признаков $\phi(a_i) = \mathbf{x}_i \in \mathbb{R}^k$, где компоненты представляют следующие свойства:

$$\mathbf{x}_i = [h_i, w_i, p_i, c_i, v_i]^T, \tag{2}$$

где h_i — индекс гидрофобности по шкале Kyte-Doolittle, w_i — нормализованная молекулярная масса, p_i — полярность, c_i — заряд при pH=7, v_i — нормализованный объем.

Выбор именно этих характеристик обусловлен их ролью в определении структурных и функциональных свойств белков. Гидрофобность и полярность влияют на пространственную организацию белка, заряд определяет электростатические взаимодействия, а молекулярная масса и объем характеризуют стерические эффекты.

2.2 Параметрическая метрика в пространстве аминокислот

Для любых $a_i, a_j \in \mathcal{A}$ функция расстояния $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}_{\geq 0}$ определяется как:

$$d(a_i, a_j; M) = (\phi(a_i) - \phi(a_j))^T M(\phi(a_i) - \phi(a_j))$$
(3)

$$= \Delta_{ij}^T M \Delta_{ij}, \tag{4}$$

где $\Delta_{ij} = \mathbf{x}_i - \mathbf{x}_j$ — разность признаковых векторов, а $M \in \mathbb{R}^{k \times k}$ — симметричная положительно полуопределенная матрица параметров метрики.

Использование квадратичной формы с матрицей M позволяет учесть взаимозависимости между различными характеристиками аминокислот. Так, связь между полярностью и гидрофобностью отражается в соответствующих недиагональных элементах матрицы M.

Для функции d можно выделить следующие важные свойства: При $M \succeq 0$ (положительная полуопределённость) функция d обладает следующими свойствами:

- 1. $d(a_i, a_i) \geq 0$ для всех $a_i, a_i \in \mathcal{A}$ (неотрицательность)
- 2. $d(a_i, a_i) = 0$ для всех $a_i \in \mathcal{A}$ (рефлексивность)
- 3. $d(a_i, a_j) = d(a_j, a_i)$ для всех $a_i, a_j \in \mathcal{A}$ (симметричность)

Для обеспечения всех свойств метрического пространства, включая неравенство треугольника, необходимы дополнительные ограничения на матрицу M.

2.3 Целевая функция для оптимизации параметров метрики

Основной задачей является определение оптимальной матрицы параметров M, обеспечивающей наилучшее соответствие выравниваний, полученных с использованием метрики d, с эталонными выравниваниями.

Определим составную целевую функцию как:

$$\mathcal{L}(M) = \underbrace{\mathcal{L}_{\text{align}}(M)}_{\text{Ошибка выравнивания}} + \underbrace{\lambda_1 \cdot \mathcal{L}_{\text{asym}}(M)}_{\text{Асимметрия}} + \underbrace{\lambda_2 \cdot \mathcal{L}_{\text{triangle}}(M)}_{\text{Нарушение неравенства треугольника}},$$
(5)

где $\lambda_1, \lambda_2 \ge 0$ — коэффициенты регуляризации, балансирующие влияние различных компонентов.

$\mathbf{2.3.1}$ Компонент ошибки выравнивания $\mathcal{L}_{\mathbf{align}}(M)$

Пусть имеется набор эталонных данных $\mathcal{D}=\{(S_1^{(n)},S_2^{(n)},A_{\mathrm{ref}}^{(n)})\}_{n=1}^N$, где $S_1^{(n)},S_2^{(n)}$ — пары последовательностей, а $A_{\mathrm{ref}}^{(n)}$ — их эталонные выравнивания

Для заданной матрицы M и соответствующей функции расстояния d_M , алгоритм выравнивания (в нашем случае — модифицированный Needleman—Wunsch) порождает выравнивание $A_M^{(n)}$ для каждой пары последовательностей. Функция потерь определяется как:

$$\mathcal{L}_{\text{align}}(M) = \frac{1}{N} \sum_{n=1}^{N} \left(1 - \frac{|A_M^{(n)} \cap A_{\text{ref}}^{(n)}|}{|A_{\text{ref}}^{(n)}|} \right), \tag{6}$$

где $|A_M^{(n)} \cap A_{\mathrm{ref}}^{(n)}|$ — количество совпадающих пар в выравниваниях.

2.3.2 Регуляризация симметричности $\mathcal{L}_{\mathbf{asym}}(M)$

Хотя по построению матрица M симметрична, для численной устойчивости и явной регуляризации вводим дополнительный штраф за асимметрию:

$$\mathcal{L}_{\text{asym}}(M) = \sum_{i=1}^{20} \sum_{j=i+1}^{20} |d(a_i, a_j; M) - d(a_j, a_i; M)|.$$
 (7)

Данный компонент должен обращаться в ноль для корректно параметризованной метрики, но помогает стабилизировать обучение.

2.3.3 Регуляризация неравенства треугольника $\mathcal{L}_{\mathbf{triangle}}(M)$

Для обеспечения свойства метрического пространства, функция расстояния должна удовлетворять неравенству треугольника:

$$d(a_i, a_k; M) \le d(a_i, a_j; M) + d(a_j, a_k; M), \quad \forall a_i, a_j, a_k \in \mathcal{A}$$
 (8)

Мы вводим штраф за нарушение этого неравенства:

$$\mathcal{L}_{\text{triangle}}(M) = \sum_{i=1}^{20} \sum_{j=1}^{20} \sum_{k=1}^{20} \max(0, d(a_i, a_j; M) + d(a_j, a_k; M) - d(a_i, a_k; M))^2.$$
(9)

2.4 Задача оптимизации

Итоговая задача оптимизации формулируется как:

$$M^* = \arg\min_{M \succeq 0} \mathcal{L}(M) = \arg\min_{M \succeq 0} \left\{ \mathcal{L}_{\text{align}}(M) + \lambda_1 \mathcal{L}_{\text{asym}}(M) + \lambda_2 \mathcal{L}_{\text{triangle}}(M) \right\},$$
(10)

где условие $M\succeq 0$ означает, что матрица M должна быть положительно полуопределенной.

Эта задача решается с использованием стохастических градиентных методов оптимизации с соответствующими проекциями на множество положительно полуопределенных матриц.

3 Алгоритм выравнивания и его оптимизация

3.1 Алгоритм Needleman-Wunsch с параметрической метрикой

Для выравнивания последовательностей с использованием разработанной метрики мы применяем модифицированный алгоритм Needleman-Wunsch, который является классическим подходом к глобальному выравниванию последовательностей. Основное отличие нашей реализации состоит в использовании параметрической метрики $d(a_i, a_j; M)$ в качестве штрафа за замену.

3.2 Оптимизация производительности алгоритма

Для повышения производительности выравнивания, особенно при работе с большими наборами последовательностей или при выполнении процессов обучения, мы применяем несколько ключевых оптимизаций.

3.2.1 Кэширование метрических значений

Вычисление значений метрики $d(a_i, a_j)$ может быть вычислительно затратным, так как включает вычисление признаковых векторов и матричные операции. Для ускорения мы используем технику кэширования, которая сохраняет уже вычисленные значения метрики:

$$d_{cached}(a_i, a_j) = \begin{cases} cache[(a_i, a_j)], & \text{если } (a_i, a_j) \in cache \\ compute_and_store(a_i, a_j), & \text{иначе} \end{cases}$$
(11)

Для реализации кэширования в Python мы используем декоратор '@lru_cache' из стандартной библиотеки 'functools'.

3.2.2 JIT-компиляция с Numba

Для дальнейшего ускорения алгоритма выравнивания мы применяем JIT-компиляцию с использованием библиотеки Numba. Это позволяет преобразовать интерпретируемый код Python в оптимизированный машинный код, что особенно эффективно для циклов и численных вычислений:

3.2.3 Векторизация с NumPy

В случаях, когда Numba недоступна, мы используем векторизованные операции NumPy для эффективной обработки матрицы динамического программирования. Это позволяет заменить явные циклы более эффективными векторными операциями, которые выполняются на низком уровне с использованием оптимизированных библиотек линейной алгебры:

```
def _nw_numpy(seq1, seq2, metric_values):
    """NumPy implementation of Needleman-Wunsch"""
    # Matrix initialization and filling with vectorized
    NumPy operations
# ...
```

3.2.4 Аппаратное ускорение для GPU/MPS

Для максимальной производительности на современном оборудовании мы реализовали поддержку GPU-вычислений через PyTorch. Система

автоматически определяет доступные аппаратные ускорители (CUDA для NVIDIA GPU или MPS для Apple Silicon) и адаптирует вычисления:

```
def get_device():
    """Determine the best available device for PyTorch"""
    if torch.cuda.is_available():
        return torch.device("cuda")
    elif hasattr(torch.backends, "mps") and torch.
    backends.mps.is_available():
        return torch.device("mps") # Apple Silicon GPU
    else:
        return torch.device("cpu")
```

3.2.5 Предварительное вычисление признаковых векторов

Для ускорения доступа к признаковым векторам аминокислот мы предварительно вычисляем их для всех стандартных аминокислот при инипиализации:

```
def _precompute_features(self):
    """Pre-compute feature vectors for all standard amino
    acids"""
    for aa in self.amino_acids:
        self._compute_features(aa)
```

3.2.6 Батч-обработка для эффективного обучения

При обучении модели мы группируем последовательности сходной длины в мини-батчи для более эффективного использования параллельных вычислений и минимизации накладных расходов на передачу данных между CPU и GPU:

```
# Sort by sequence length for more efficient batch
    processing
alignment_data.sort(key=lambda pair: (len(pair[0]), len(
    pair[1])))

# Process data in batches
for i in range(0, len(alignment_data), batch_size):
    batch = alignment_data[i:i+batch_size]
```

4 Архитектура библиотеки SNACK

SNACK (Sequence Normalized Alignment Comparison Kit) представляет собой модульную библиотеку на языке Python, оптимизированную для высокопроизводительных вычислений и обеспечивающую гибкую работу с метриками выравнивания последовательностей. Основная структура библиотеки представлена на следующих компонентах:

4.1 Модульная организация

Библиотека организована в несколько взаимосвязанных модулей, каждый из которых отвечает за определенный функциональный аспект:

- **features.py** модуль для работы с признаковым пространством аминокислот, включая нормализацию и кэширование признаков;
- **metric.py** реализация параметрической метрики и функций потерь для оптимизации;
- alignment.py оптимизированные алгоритмы выравнивания с поддержкой Numba и NumPy;
- data.py функции для загрузки и предобработки данных из форматов MSF (BALIBASE);
- **train.py** процессы обучения с поддержкой аппаратного ускорения.

4.2 Интеграция с экосистемой научного Python

SNACK интегрируется с основными библиотеками научного Python:

- **PyTorch** используется для дифференцируемых вычислений, оптимизации матричных параметров и работы с GPU;
- NumPy обеспечивает векторизованные операции для эффективной работы с матрицами;

- Numba применяется для JIT-компиляции критичных к производительности участков кода;
- Matplotlib и Seaborn используются для визуализации результатов в интерактивных блокнотах.

4.3 Основные классы и интерфейсы

Ключевыми компонентами программной архитектуры являются:

1. **FeatureSpace** — класс для работы с признаковыми представлениями аминокислот:

```
class FeatureSpace:
    def __init__(self, device=None):
        self.feature_dim = 5
        self.device = device
        self._feature_cache = {}
        self.amino_acids = "ACDEFGHIKLMNPQRSTVWY-"
        # Bio-characteristics initialization...

def get_features(self, amino_acid):
    # Feature vector with caching
```

2. Snack — основной класс для параметрической метрики, наследуемый от torch.nn.Module:

```
class Snack(nn.Module):
    def __init__(self, feature_space, lambda1=1.0,
    lambda2=1.0):
        super().__init__()
        self.feature_space = feature_space
        self.lambda1 = lambda1 # assymetry weight
        self.lambda2 = lambda2 # triangle inequality
        weight
        self.M = nn.Parameter(torch.eye(self.feature_space.feature_dim))
        self._features_cache = {}

def __call__(self, i, j):
    # calculate distance between acids
```

```
def total_loss(self, alignment_data):
# total loss for optimization
```

3. **needleman_wunsch** — оптимизированная функция для выравнивания последовательностей:

```
def needleman_wunsch(seq1, seq2, metric_func):
     # Optimized alignment with cache
```

4.4 Оптимизация производительности

Для обеспечения высокой производительности в SNACK реализованы:

- 1. Многоуровневое кэширование признаковых векторов и метрических значений;
- 2. Автоматическое определение и использование GPU/MPS акселерации;
- 3. Адаптивная стратегия объединения последовательностей в пакеты по длине;
- 4. Оптимизированные пути исполнения в зависимости от доступных библиотек.

5 Экспериментальное исследование

5.1 Сравнение методов выравнивания

Мы провели сравнительное исследование параметрической метрики SNACK с традиционными матричными подходами (BLOSUM62 и PAM250) на эталонных данных BALIBASE.

5.1.1 Данные и протокол эксперимента

В эксперименте использовались 218 эталонных выравниваний из набора BALIBASE 3.0, разделенных на пять категорий по сложности. Для обучения модели использовалось 80% данных, а оставшиеся 20% составили тестовую выборку.

Для каждого метода мы выполняли глобальное выравнивание всех пар последовательностей и оценивали точность выравнивания по сравнению с эталонным, используя метрику SPS (Sum-of-Pairs Score):

$$SPS = \frac{\text{количество корректно выровненных пар}}{\text{общее количество пар в эталонном выравнивании}}$$
 (12)

5.1.2 Результаты выравнивания

Результаты сравнения точности выравнивания представлены в таблице:

Категория	BLOSUM62	PAM250	SNACK
Ref1 (V1)	0.814	0.805	0.842
Ref1 (V2)	0.795	0.783	0.821
Ref2	0.752	0.741	0.773
Ref3	0.687	0.679	0.703
Ref4	0.731	0.723	0.751
Ref5	0.697	0.685	0.729
Среднее	0.746	0.736	0.770

Таблица 1: Сравнение точности выравнивания (SPS) для различных методов

Предложенная параметрическая метрика SNACK демонстрирует повышение точности выравнивания в среднем на 2.4-3.4% по сравнению с традиционными подходами. Наибольшее преимущество наблюдается для сложных выравниваний с низкой идентичностью последовательностей и значительными структурными особенностями.

5.2 Анализ производительности

Мы провели исследование производительности различных реализаций алгоритма выравнивания на последовательностях разной длины. В эксперименте сравнивались:

- 1. Базовая реализация алгоритма Needleman-Wunsch;
- 2. Оптимизированная NumPy-реализация;

- 3. JIT-компилированная реализация с Numba;
- 4. GPU-ускоренная реализация с использованием CUDA или MPS.

5.2.1 Результаты сравнения производительности

Длина послед.	Базовый	NumPy	Numba	CUDA	MPS
100	42 мс	12 мс	5 мс	3 мс	4 мс
500	$980 \mathrm{mc}$	$243 {\rm MC}$	63 MC	18 мс	24 MC
1000	$4.2 \mathrm{\ c}$	$0.96~\mathrm{c}$	$0.25 \ c$	0.06 c	0.08 c
2000	$17.8 \mathrm{\ c}$	$3.8 \mathrm{\ c}$	$0.97~\mathrm{c}$	0.22 c	0.29 c
5000	$112~\mathrm{c}$	23.7 c	6.1 c	$1.4 \mathrm{c}$	$1.7 \mathrm{\ c}$

Таблица 2: Время выполнения алгоритма выравнивания для последовательностей различной длины

Результаты показывают, что использование JIT-компиляции с Numba позволяет ускорить выравнивание в 16-18 раз по сравнению с базовой реализацией. Применение GPU-акселерации с CUDA обеспечивает дополнительное ускорение в 4-5 раз по сравнению с Numba и в 70-80 раз по сравнению с базовой версией.

Использование Metal Performance Shaders (MPS) на устройствах с Apple Silicon показывает немного более низкую производительность по сравнению с CUDA, но все равно обеспечивает значительное ускорение — в 60-65 раз по сравнению с базовой версией алгоритма.

6 Заключение

В данной работе мы представили SNACK — библиотеку для выравнивания последовательностей, основанную на параметрической метрике, обучаемой из данных. Основные результаты работы:

1. Разработана математически обоснованная параметрическая метрика на множестве аминокислот, использующая их биохимические и физические свойства. Метрика обеспечивает более точное выравнивание по сравнению с традиционными подходами.

- 2. Предложен подход к оптимизации параметров метрики с учетом требований выравнивания, симметричности и неравенства треугольника, что обеспечивает хорошие теоретические свойства и практическую применимость.
- 3. Реализованы высокопроизводительные алгоритмы для вычисления метрики и выравнивания последовательностей, с использованием многоуровневого кэширования, JIT-компиляции и аппаратного ускорения.
- 4. Экспериментально показано превосходство предложенного подхода над традиционными матрицами замен как по точности выравнивания (на 2.4-3.4%), так и по вычислительной эффективности.

SNACK предоставляет гибкую основу для дальнейших исследований в области выравнивания последовательностей и может быть расширен для решения других задач биоинформатики, таких как множественное выравнивание, филогенетический анализ и структурное предсказание.