

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

Setareh Ariafar, Zelda Mariet, Ehsan Elhamifar, Dana Brooks, Jennifer Dy, Jasper Snoek

Motivation

- Training neural nets expensive
- Bayesian Optimization (BO) limited hyperparameters
- Low-fidelity observations

Pros

- Increased # of explored hyperparameters via:
 - Cheap partially trained models
 - Extrapolate to fully trained models

Cons

- Adds to the randomness/noise of BO
- Challenging extrapolation

Proposed Solution

- Decrease randomness by using Information of each training example
- BO
 ← Importance Sampling (IS)

Pros

- High-fidelity observation
- More accurate models
- Less # of observations required

<u>Cons</u>

Large overhead cost challenging

Solve via **multi-task BO** over **importance sampling design**Learn when high-fidelity is worth the cost

Proposed Solution

IS-SGD [1]

Importance dist ______ Initially similar to uniform sampling & expensive

Start from uniform sampling

Track variance reduction

Switch to IS if variance reduction large

Select a random super-batch of size **B** Select mini-batches with IS from super-batch

[1] Katharopoulos & Fleuret., ICML 2018

To learn the **trade-off** parameter **B** \implies Maximize $\alpha_n(x,B)$

$$\alpha_n(x,B) = \frac{1}{\mu(c_n(x\mid B))} \Big[H(\mathbb{P}[x^*\mid B = |\mathbf{D}|, \mathcal{D}_n]) - \mathbb{E}_y \Big[H(\mathbb{P}[x^*\mid B = |\mathbf{D}|, \mathcal{D}_n \cup \{x, B, y\}]) \Big] \Big],$$

Expected training cost for x, **B**

Expected entropy reduction from training on hyperparameter x via IS-SGD routine with super-batch size **B**

Results- ResNet on CIFAR10

Improved worst-case performance

Results- ResNet on CIFAR100

Improved worst-case performance

