Számsorozatok 2.

2020. szeptember 14.

1. Példa. (ism.) $a_n = \frac{1}{n}$. A sorozat elemei: $1, \frac{1}{2}, \frac{1}{3}, \dots$

$$\begin{array}{ccc}
a_3 a_2 & a_1 \\
\hline
0 & & 1
\end{array}$$

$$a_n = \frac{1}{n}$$

Ha $\varepsilon > 0$ tetszőleges, akkor $\exists N$ küszöbindex: $a_N \in (-\varepsilon, \varepsilon)$.

Sốt
$$\forall n > N$$
-re $a_n \in (-\varepsilon, \varepsilon)$, tehát $a_n \to 0$.

2. Példa. (ism.) $a_n = \frac{(-1)^{n+1}}{n}$, a sorozat 1, $-\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{4}$, $\frac{1}{5}$...

Ekkor is $a_n \to 0$. Oszcillálva közelít 0-hoz.

3.Példa.

$$a_n = \left\{ egin{array}{ll} \displaystyle rac{1}{2n} & \mathrm{ha} & n = 2k \\ & & & \\ \displaystyle rac{1}{n} & \mathrm{ha} & n = 2k + 1 \end{array}
ight.$$

A sorozat elemei

$$a_1 = 1$$
; $a_2 = \frac{1}{4}$; $a_3 = \frac{1}{3}$; $a_4 = \frac{1}{8}$; $a_5 = \frac{1}{5}$; ...

Most is igaz, hogy $a_n \to 0$

$$a_n = \frac{n}{n+1} = 1 - \frac{1}{n+1}.$$

Ekkor $a_n - 1$ tart a 0-hoz. Így $a_n \to 1$.

Számsorozat, 5. példa

p > 0 tetszőleges. Legyen $a_n = \sqrt[n]{p}$. Ha pl p = 2 akkor:

$$a_1 = 2, \ a_2 = \sqrt{2}, \ a_3 = \sqrt[3]{2}, \dots$$
 Rajz!

- **1.** eset Ha p = 1, ekkor $a_1 = a_2 = a_3 = \ldots = 1$, így $a_n \to 1$.
- 2. eset Ha p > 1, ekkor $\sqrt[n]{p} > 1$, $\sqrt[n]{p} = 1 + h_n$, $h_n > 0$.

Így $p = (1 + h_n)^n$, és a Bernoulli egyenlőtlenséggel:

$$p = (1 + h_n)^n \ge 1 + n \cdot h_n \implies h_n \le \frac{p-1}{n} \rightarrow 0.$$

Most is $\sqrt[n]{p} \to 1$.

Számsorozat, 5. példa, folytatás

3. eset p < 1, $a_n = \sqrt[n]{p}$.

Ekkor $\frac{1}{n} > 1$, tehát a 2. esetnél leírtak miatt

$$\sqrt[n]{rac{1}{p}} o 1$$

Mivel $\sqrt[n]{\frac{1}{p}} = \frac{1}{\sqrt[n]{p}}$, ezért $\sqrt[n]{p} \to 1$.

Határérték

Definíció. Az (a_n) sorozat KONVERGENS és HATÁRÉRTÉKE A, ha

$$\forall \varepsilon >$$
 0-hoz $\exists N = N(\varepsilon)$ (küszöbindex) melyre

$$\forall n > N \implies |a_n - A| < \varepsilon.$$

Jelölés: $\lim_{n\to\infty} a_n = A$.

Következmény. Ha a sorozat határértéke A, akkor $\forall \varepsilon > 0$ -ra

- $-(A-\varepsilon,A+\varepsilon)$ -n **kívül** csak *véges sok* elem van.
- $-(A-\varepsilon,A+\varepsilon)$ -n **belül** *végtelen sok* elem van.

Egyértelmű?

Ha $\lim_{n \to \infty} a_n = A$ akkor $(A - \varepsilon, A + \varepsilon)$ -n kívül véges sok tag van.

Állítás. Ha egy sorozat konvergens, akkor a határérték egyértelmű.

Bizonyítás. Indirekt. Tfh $\exists A < B$, mint a definícióban.

Válasszuk meg az ε -t úgy, hogy $\varepsilon < \frac{B-A}{2}$ legyen.

Fejezzük be.

Divergens számsorozat

Definíció. Ha (a_n) nem konvergens, akkor DIVERGENS Többféle divergencia van.

1. típusú divergencia. $(a_n) + \infty$ -HEZ TART (divergál!), ha

$$\forall K \in \mathbb{R}$$
-hez $\exists N = N(K)$ küszöbindex, hogy

$$\forall n > N \implies a_n > K$$

Formális jelölés: $\lim_{n\to\infty} a_n = +\infty$.

" (a_n) minden határon túl nő".

 (a_n) $-\infty$ -HEZ TART (divergál), ha $\forall K$ -hoz $\exists N$ küszöbindex,

$$\forall n > N \implies a_n < K$$

Jele
$$\lim_{n\to\infty} a_n = -\infty$$
.

2. típusú divergencia. (a_n) elemei TÖBB PONT KÖRÜL TORLÓDNAK.

Például
$$a_n = (-1)^n$$
. A sorozat elemei: -1 ; 1 ; -1 ; 1 ; -1 ; 1 ;

Nyilván nem konvergens.

3. típusú divergencia. Bármi más.

Számsorozat határérték. Általános definíció.

Definíció. $\lim_{n\to\infty} a_n = A$, ha A-nak $\forall U$ környezetéhez $\exists N = N(U)$ küszöbindex, melyre

$$\forall n > N \implies a_n \in U.$$

Ez a definíció alkalmazható $A \in \mathbb{R}$ vagy $A = \pm \infty$ esetén is.

Véges A mellett egy környezet $U = (A - \varepsilon, A + \varepsilon)$,

$$\text{igy} \qquad a_n \in U \quad \Longleftrightarrow \quad |a_n - A| < \varepsilon.$$

 $A = \pm \infty$ környezetei mi lehet?

Válasz.

Ha $A = +\infty$ akkor ennek a környezetei: $U = (K, \infty)$.

Ekkor
$$a_n \in U \iff a_n > K$$
.

Megjegyzés. Konvergens sorozatból akárhány elemet elhagyunk, az konvergens marad,

és ugyanahhoz a számhoz fog tartani, mint az eredeti.

Példa. Ilyen sorozat lehet $b_n = a_{2n}$

vagy $b_n = a_{n+100}$.

Konvergencia és korlátosság

Állítás. Ha (a_n) konvergens, akkor korlátos.

Bizonyítás. Tfh. (a_n) konvergens, $\lim_{n\to\infty} a_n = A$.

Ekkor $\varepsilon = 1$ -hez is $\exists N$, hogy ha

$$n > N \quad \Longrightarrow \quad |a_n - A| < 1, \quad \Longrightarrow \quad A - 1 < a_n < A + 1.$$

Legyenek $m := \min\{a_n : n < N\}$ és $M := \max\{a_n : n < N\}$,

továbbá
$$k := \min\{m, A-1\}$$
, $K = \max\{M, A+1\}$.

$$\Longrightarrow \forall n \in \mathbb{N} : k \leq a_n \leq K.$$

Állítás. Ha (a_n) konvergens, akkor korlátos.

Fordítva?

Például az $a_n = (-1)^n$ sorozat korlátos, de nem konvergens.

 $\mbox{konvergencia} \Rrightarrow \mbox{korlátosság}$ $\mbox{korlátosság} \not\Rrightarrow \mbox{konvergencia}$

- 1. Állítás. Ha $(a_n) \nearrow \text{ \'es fel\"ulr\'ol korl\'atos}$, akkor konvergens.
- **2.** Állítás. Ha $(a_n) \searrow \acute{e}s$ alulról korlátos, akkor konvergens.

Bizonyítás. 1. \iff 2.

1. részt látjuk be. Tfh $(a_n) \nearrow \acute{e}s$ felülről korlátos

Legyen $H = \{a_n : n \in \mathbb{N}\}.$

$$H \neq \emptyset$$
 felülről korlátos, $\Longrightarrow \exists \sup(H) =: A$.

$$\implies \forall \varepsilon > 0$$
-ra $A - \varepsilon$ nem felső korlát.

$$\implies$$
 létezik H -ban $a_N > A - \varepsilon$.

Monotonitás
$$\Longrightarrow a_n \ge a_N$$
 ha $n > N$

ezért
$$a_n > A - \varepsilon$$
.

Mivel
$$a_n \leq A = \sup(H) \forall n$$
-re:

$$\underline{A-\varepsilon} < a_n \le A < \underline{A+\varepsilon}$$
 ha $n > N$.

FONTOS példa.
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

Mit várunk? Tipp?

Gyakorlatokon lesz:
$$(1+\frac{1}{n})^n<(1+\frac{1}{n+1})^{n+1},$$
 és hogy $(1+\frac{1}{n})^n<4 \ \forall n\in {\rm I\! N}.$

Ez azt jelenti, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

monoton növő és felülről korlátos. \Longrightarrow (a_n) konvergens.

Definíció. Az *e* - EULER-FÉLE SZÁM:

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n, \qquad e \approx 2,718281...$$

A határérték alaptulajdonságai

Állítás. Tfh
$$(a_n)$$
 és (b_n) konvergens, $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.

- 1. $\forall c \in \mathbb{R}$ esetén $\lim_{n \to \infty} ca_n = cA$.
- 2. $(a_n + b_n)$ is konvergens, és $\lim_{n \to \infty} (a_n + b_n) = A + B$.
- 3. (a_nb_n) is konvergens, és $\lim_{n\to\infty}(a_nb_n)=AB$.

Bizonyítás. "
$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$
"

Legyen $\varepsilon > 0$ tetszőleges.

Vajon
$$|ca_n - cA| < \varepsilon \quad \forall n \ge N$$
?

Ha c = 0, akkor triviális. $\sqrt{.}$

Tfh $c \neq 0$. Akkor $\frac{\varepsilon}{|c|}$ -hoz $\exists N$, melyre

$$|a_n - A| < \frac{\varepsilon}{|c|} \quad \forall n > N.$$

Ezért ha n > N:

$$|ca_n - cA| = |c| |a_n - A| < |c| \frac{\varepsilon}{|c|} = \varepsilon.$$

Bizonyítás. " $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$ "

 $\forall \varepsilon > 0$ -hoz $\exists N_1$, hogy

$$|a_n-A|<rac{arepsilon}{2}\quad \forall n\geq N_1.$$

Továbbá ∃N₂, hogy

$$|b_n-B|<rac{arepsilon}{2}\quad \forall n\geq N_2.$$

Legyen $N := \max(N_1, N_2)$.

Ha $n \geq N$, akkor

$$|a_n+b_n-(A+B)| \leq |a_n-A|+|b_n-B| < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

A határérték alaptulajdonságai, folytatás

Tfh
$$(a_n)$$
 és (b_n) konvergens, $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.

- 4. Ekkor $\lim_{n\to\infty} |a_n| = |A|$.
- 5. Tfh. $A \neq 0$ és $a_n \neq 0$. Ekkor $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{A}$.
- 5*. Az előző feltételekkel $\lim_{n\to\infty} \frac{b_n}{a_n} = \frac{B}{A}$.

5.-ben feltétel enyhítés?

Bizonyítás. "
$$\lim_{n\to\infty} |a_n| = \left| \lim_{n\to\infty} a_n \right|$$
"

A háromszög-egyenlőtlenség alapján

$$||a_n|-|A||\leq |a_n-A|.$$

Legyen $\varepsilon > 0$ tetszőleges.

Ekkor van olyan N, hogy minden $n \ge N$ esetén

$$|a_n - A| < \varepsilon$$
,

és emiatt

$$||a_n|-|A||\leq \varepsilon.$$
 $\sqrt{ }$

Rész-sorozatok

Definíció. INDEX-SOROZAT: $k \mapsto n_k$ hozzárendelés.

$$\forall k \in \mathbb{N} \longrightarrow n_k \text{ index: } n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$$

Definíció. Adott (a_n) sorozat. A RÉSZ-SOROZAT elemei

$$a_{n_1}, a_{n_2}, a_{n_3}, \ldots$$

P'elda. (a_{2n}) rész-sorozat elemei: a_2 , a_4 , a_6 , ...

Bolzano-Weierstrass tétel.

Tétel. Minden *korlátos* (a_n) sorozatnak van *konvergens részsorozata*.

Példa. $a_n = (-1)^n$. Korlátos. De NEM KONVERGENS. Részsorozat, ami konvergens?

Lemma a bizonyításhoz

Lemma. Minden sorozatnak van monoton részsorozata.

Bizonyítás. Az a_n elem CSÚCS, ha

$$a_n \ge a_m \quad \forall m > n$$
, azaz...

1. eset. Végtelen sok csúcs van, ezek indexei

$$n_1 < n_2 < n_3 < \dots$$

$$\implies$$
 $(a_{n_k}) \searrow \sqrt{.}$ részsorozat monoton $(?)$ fogyó.

2. eset. Véges sok csúcs van. Az utolsó csúcs indexe n.

(Ha nincs csúcs, akkor (?)
$$n = 0$$
.)

$$n_1 := n + 1$$
. \implies a_{n_1} nem csúcs, $\implies \exists n_2 > n_1$, $a_{n_2} > a_{n_1}$.

Stb. a_{n_2} nem csúcs, ezért $\exists a_{n_3}$, melyre $n_3 > n_2$ és $a_{n_3} > a_{n_2}$.

$$\implies \exists (a_{n_k}) \nearrow$$
.

Bolzano-Weierstrass tétel. Bizonyítás

Tétel. Minden korlátos (a_n) sorozatnak van konvergens részsorozata.

Bizonyítás.

- 1. A Lemma szerint $\exists (a_{n_k}) \ monoton$ részsorozat.
- 2. (a_{n_k}) részsorozat is *korlátos*.
- 3. (a_{n_k}) monoton és korlátos \Longrightarrow konvergens.