BioHackathon 2025 Challenge Track 1

Team 7

Source Data

Epithelial Dataset:

8 cell types

11 652 cells (after filtering)

Neurons Dataset:

2 cell types 473 cells

Data Analysis Pipeline

Batch correction (per mice)

Datasets
Integration

Datasets
Integration

Data integration

Differential Expression between 2 Cell Populations

Epithelial vs. Neuron

LR pairs across cell types

Source

"AGR2 does not bind MUC2"

Feng Zhang, Mengxian Chen, Xiaodan Liu, Xu Ji, Shenghe Li, Erhui Jin, New insights into the unfolded protein response (UPR)-anterior gradient 2 (AGR2) pathway in the regulation of intestinal barrier function in weaned piglets, Animal Nutrition, https://doi.org/10.1016/j.aninu.2023.08.007.

Circle Plot of Interactions

Global enrichment of Ligand-receptor interactions

Top enriched pathways per source→target

Conclusions: Zoom-in

Neuron-specific
 CDH1-IFGR1
 interaction
 May block
 cellular growth

E-cadherin functions as a negative regulator of the IGF1R

Elangovan A, Hooda J, Savariau L, Puthanmadhomnarayanan S, Yates ME, Chen J, Brown DD, McAuliffe PF, Oesterreich S, Atkinson JM, Lee AV. Loss of E-cadherin Induces IGF1R Activation and Reveals a Targetable Pathway in Invasive Lobular Breast Carcinoma. Mol Cancer Res. 2022 Sep 2;20(9):1405-1419. doi: 10.1158/1541-7786.MCR-22-0090. PMID: 35665642; PMCID: PMC9444924.

Conclusions: Zoom-in

- Neuron2 sends signals;
- Goblet and Paneth receive;
- Atypical interaction of Muc2 → Agr2:
 - o Arg2 is
 - in neurone-Goblet & neurone-Paneth (coexpression or new interactions?)

"AGR2 does not bind MUC2"

Feng Zhang, Mengxian Chen, Xiaodan Liu, Xu Ji, Shenghe Li, Erhui Jin, New insights into the unfolded protein response (UPR)-anterior gradient 2 (AGR2) pathway in the regulation of intestinal barrier function in weaned piglets, Animal Nutrition, https://doi.org/10.1016/j.aninu.2023.08.007.