

Sommaire

- o Problématique
- ° Cleaning
- Feature Engineering
- Exploration
- o Modélisations du problème
- o Choix du modèle
- ° Simulation de maintenance du modèle

I. Problématique

- Olist: entreprise brésilienne de vente en ligne
- °Segmentation des clients
 - o Comprendre les différents types d'utilisateurs
 - o Utilisation facile pour les équipes marketing
- ° Contrat de maintenance de la segmentation
- °Mise à disposition d'une base de données anonymisée

II. Cleaning

- o Union des jeux de données
- Valeurs manquantes
 - Implémentation par valeur moyenne et valeur la plus fréquente
 - ° Suppression de variables
- Doublons
 - o Lignes identiques
 - o Commandes identiques
- Outliers
 - ° Quantités non négatives

III. Feature Engineering

delivery_time	estimated_delivery_time
8 days 19:30:00	19 days 08:54:25
16 days 15:52:55	24 days 03:11:36
26 days 01:51:06	24 days 07:52:15
14 days 23:57:47	27 days 07:53:22
11 days 11:04:18	16 days 14:08:30

- o Création de nouvelles variables
 - ° Temps de livraison moyen
 - Nombre totale de commandes
 - o Somme totale dépensée
 - o Somme moyenne d'une commande
 - Note moyenne
 - o Nombre moyen de paiements
 - o Dernière date de commande
 - o Catégorie de produit la plus fréquente
 - o Quantité moyenne de photos
- o Traduction des catégories

IV. Exploration des données

- Analyse Univariée
- Analyse Bivariée
 - o Corrélation de variables
- Réduction dimensionnelle
 - ACP
 - T-SNE
 - Visualisation des clusters

V. Modélisations du problème

Modèles utilisés

- Méthodes traditionnelles
 - RFM
 - o Loi de Pareto
- o Méthodes de clustering
 - K-Means
 - DBSCAN
 - Agglomerative Clustering

Démarche de modélisation

- o Optimisation des hyperparamètres
- o Proportions des clusters
- Visualisation des clusters
- o Boxplot des features par cluster
- Caractérisation des clusters

Optimisation hyperparamètre

Proportion clusters

Visualisation clusters

Boxplot features

Caractérisation clusters

VI. Choix du modèle

- o Importance du temps de calcul
- o Clusters utilisables pour le problème métier
- o Choix du K-Means avec 6 clusters

	-Means 4 clusters	K-Means 6 clusters	K-Means 8 clusters	DBSCAN eps=0.3	DBSCAN eps=0.2	Agglomerative Clustering 6 clusters	Agglomerative Clustering 5 clusters
Score de Silhouette	0.547565	0.386366	0.390223	0.162327	0.090754	0.342169	0.333536
Score Davies Bouldin	0.804298	0.852013	0.820280	1.665363	1.775293	0.888254	0.974400
Temps de Calcul	0.939960	1.363340	1.889955	29.487150	15.057859	35.943649	39.912353

Clusters	Description	Nom	Proportion
Cluster 0	- Très contents - Dépenses dans la moyenne - Délais de livraison plus longs que la moyenne	Prometteurs	22%
Cluster 1	- Pas contents - Dépenses dans la moyenne - Délais de livraison très longs	Mécontents	5%
Cluster 2	- Contents - Beaucoup de commandes - Dépenses plus faibles que la moyenne - Délais de livraison dans la moyenne	Fidèles	3%
Cluster 3	- Pas contents - Dépenses plus faibles que la moyenne - Délais de livraison courts	Râleurs	15%
Cluster 4	- Contents - Dépenses très élevées - Délais de livraison dans la moyenne	Dépensiers	2%
Cluster 5	- Très contents - Dépenses plus faibles que la moyenne - Délais de livraison très rapides	Lambdas	53%

VII. Simulation de maintenance du modèle

- Evolution mensuelle des proportions des clusters
- Calcul du score ARI après1,3,6,9 et 12mois
- Maintenance souhaitable après 6 mois

