CSE6740 09/08/2025 Notes

Name: Junbo Zou GTID: 904145436

September 8, 2025

1 EM (Expectation–Maximization) Algorithm

Initialize parameters $\{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$. Then:

E-step. Compute the responsibilities

$$\tau_{ik} = p(z_i = k \mid x_i, \theta) = \frac{\pi_k \, \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} \, \mathcal{N}(x_i \mid \mu_{k'}, \Sigma_{k'})}, \quad i = 1, \dots, n, \quad k = 1, \dots, K.$$

M-step. Update parameters

$$\pi_k = \frac{1}{n} \sum_{i=1}^n \tau_{ik}, \qquad \mu_k = \frac{\sum_{i=1}^n \tau_{ik} x_i}{\sum_{i=1}^n \tau_{ik}}, \qquad \Sigma_k = \frac{\sum_{i=1}^n \tau_{ik} (x_i - \mu_k)(x_i - \mu_k)^\top}{\sum_{i=1}^n \tau_{ik}}.$$

Log-likelihood. EM maximizes the data log-likelihood

$$\ell(\theta; \mathcal{D}) = \log \prod_{i=1}^{n} \sum_{z_i=1}^{K} p(x_i, z_i \mid \theta).$$

Variational interpretation.

E-step:
$$\ell(\theta; \mathcal{D}) \geq \ell(\theta, \mathcal{D}; q) = \mathbb{E}_{z_{1:n} \sim q} \left[\log \prod_{i=1}^{n} p(x_i, z_i \mid \theta) \right] + H(q), \qquad H(q) = -\mathbb{E}_q[\log q],$$

M-step: $\theta^{(t+1)} = \arg \max_{\theta} \ \ell(\theta, \mathcal{D}; q).$

2 Convex / Concave Functions and Jensen's Inequality

2.1 Convex Sets

A set $A \subseteq \mathbb{R}^n$ is convex if

$$\forall x, y \in A, \ 0 \le \alpha \le 1 \implies \alpha x + (1 - \alpha)y \in A.$$

Figure 1: Left: a convex set A (every chord lies inside). Right: a non-convex set B (some chords exit the set).

A set C is a convex cone if

$$\forall x_1, x_2 \in C, \ \theta_1, \theta_2 \ge 0 \quad \Rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in C.$$

Figure 2: Any convex combination $\alpha x + (1 - \alpha)y$ with $\alpha \in [0, 1]$ lies on the segment [x, y].

A hyperplane has the form

$$\{ x \in \mathbb{R}^n \mid a^{\top} x - x_0 = 0, \ a \neq 0 \}.$$

A halfspace is

$$\{x \in \mathbb{R}^n \mid a^{\top} x - x_0 \le 0, \ a \ne 0\}.$$

Figure 3: A hyperplane splits \mathbb{R}^n into two convex halfspaces.

A Euclidean ball is

$$B(x_c, r) = \{ x \in \mathbb{R}^n \mid ||x - x_c||_2 \le r \}.$$

Figure 4: Both balls and ellipsoids are convex sets; ellipsoid axes relate to $P = Q\Lambda Q^{\top}$.

An ellipsoid is

$$E = \{ x \in \mathbb{R}^n \mid (x - x_c)^\top P^{-1} (x - x_c) \le 1 \}, \quad P \succ 0.$$

If $P = Q\Lambda Q^{\top}$ with $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then the principal directions are columns of Q, and semi-axis lengths are $\sqrt{\lambda_j}$.

A polyhedron is the intersection of finitely many halfspaces/hyperplanes:

$$P = \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_j, \ j = 1, \dots, m; \ c_k^\top x = d_k, \ k = 1, \dots, p \}.$$

Figure 5: A polyhedron $P = \{x \mid Ax \leq b, Cx = d\}$ is an intersection of finitely many halfspaces/hyperplanes.

2.2 Convex / Concave Functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y, \ 0 \le \theta \le 1.$$

It is concave if the inequality is reversed.

Figure 6: A convex exponential: for any x_1, x_2 and $\theta \in [0, 1]$, $f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$.

2.3 Conditions for Convexity

First-order condition (differentiable):

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y \in \text{dom}(f).$$

Second-order condition (twice differentiable):

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \text{dom}(f).$$

Example. Quadratic form $f(x) = \frac{1}{2}x^{T}Ax$ is convex iff $A \succeq 0$.

2.4 Jensen's Inequality

For concave f:

$$f\left(\sum_{i=1}^{m} a_i x_i\right) \ge \sum_{i=1}^{m} a_i f(x_i), \quad a_i \ge 0, \quad \sum_{i=1}^{m} a_i = 1.$$

In expectation form:

$$f(\mathbb{E}[X]) \ge \mathbb{E}[f(X)].$$

3 Expectation Step Solution

Let $x \in \mathbb{R}^d$ and a discrete latent $z \in \{1, \dots, K\}$. For a single observation,

$$\ell(\theta; x) = \log \sum_{z=1}^{K} p(x, z \mid \theta) = \log \sum_{z=1}^{K} q(z) \frac{p(x, z \mid \theta)}{q(z)}$$
$$\geq \sum_{z=1}^{K} q(z) \log \frac{p(x, z \mid \theta)}{q(z)} = \mathbb{E}_{z \sim q} \left[\log p(x, z \mid \theta)\right] + H(q),$$

where $H(q) = -\sum_{z} q(z) \log q(z)$ and the inequality is Jensen's (concave log). For a dataset $D = \{x_i\}_{i=1}^n$, we have

$$\ell(\theta; D) \ge \sum_{i=1}^{n} \left(\mathbb{E}_{z_i \sim q_i} [\log p(x_i, z_i \mid \theta)] + H(q_i) \right)$$
$$= \mathbb{E}_{q(z_{1:n})} \left[\log \prod_{i=1}^{n} p(x_i, z_i \mid \theta) \right] + H(q) \equiv \mathcal{L}(\theta, D; q).$$

E-step (tightness of the bound). Choose $q_i(z=k) = p(z_i=k \mid x_i, \theta) \equiv \tau_i^k$. Then

$$\frac{p(x,z\mid\theta)}{q(z)} = \frac{p(z,x\mid\theta)}{p(z\mid x,\theta)} = p(x\mid\theta),$$

which is independent of z, so the inequality becomes equality and $\mathcal{L}(\theta, D; q) = \ell(\theta; D)$ at the chosen q.

E-step (computing the expectation). For GMM, $p(x_i, z_i = k \mid \theta) = \pi_k \mathcal{N}(x_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$. With $\tau_i^k = p(z_i = k \mid x_i, \theta)$,

$$\mathcal{L}(\theta; D, q) = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_i^k \log(\pi_k \mathcal{N}(x_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)) + H(q)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_i^k \left[\log \pi_k - \frac{1}{2}(x_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1}(x_i - \boldsymbol{\mu}_k) - \frac{1}{2} \operatorname{logdet} \boldsymbol{\Sigma}_k - c\right] + H(q),$$

where $c = \frac{d}{2} \log(2\pi)$ is constant w.r.t. θ .

M-step (maximize \mathcal{L} w.r.t. θ). Maximizing over $\{\pi_k\}$ with $\sum_k \pi_k = 1$ gives

$$\pi_k^{\text{new}} = \frac{1}{n} \sum_{i=1}^n \tau_i^k$$

and maximizing over $\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$ yields the weighted MLEs

$$\boldsymbol{\mu}_k^{\text{new}} = \frac{\sum_{i=1}^n \tau_i^k x_i}{\sum_{i=1}^n \tau_i^k}, \qquad \boldsymbol{\Sigma}_k^{\text{new}} = \frac{\sum_{i=1}^n \tau_i^k \left(x_i - \boldsymbol{\mu}_k^{\text{new}}\right) \left(x_i - \boldsymbol{\mu}_k^{\text{new}}\right)^\top}{\sum_{i=1}^n \tau_i^k}.$$

EM updates (for completeness). With current parameters θ ,

E-step:
$$\tau_i^k = \frac{\pi_k \, \mathcal{N}(x_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k'=1}^K \pi_{k'} \, \mathcal{N}(x_i \mid \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'})}, \qquad i = 1, \dots, n; \ k = 1, \dots, K,$$

$$\textbf{M-step:} \quad \pi_k^{\text{new}} = \frac{1}{n} \sum_i \tau_i^k, \quad \boldsymbol{\mu}_k^{\text{new}} = \frac{\sum_i \tau_i^k \, x_i}{\sum_i \tau_i^k}, \quad \boldsymbol{\Sigma}_k^{\text{new}} = \frac{\sum_i \tau_i^k (x_i - \boldsymbol{\mu}_k^{\text{new}}) (x_i - \boldsymbol{\mu}_k^{\text{new}})^\top}{\sum_i \tau_i^k}.$$

Repeat E/M until convergence (the data log-likelihood is non-decreasing).