CS2105 Introduction to Computer Networks

Lecture 1 Introduction

13 Aug 2018

Learning Outcomes

At the end of this class, you should:

- Know the basic terms, including host, packet, protocol, throughput, store-and-forward, and autonomous system.
- Know about the logical (the five layers) and physical architecture (as a network of ASes) of the Internet.
- Know the pros and cons of packet switching and circuit switching.
- Know the different components of end-to-end delay and their relations to bandwidth, packet size, distance, propagation speed, and queue size.

Pre-Lecture Quiz

https://goo.gl/oyZ2ey

Lecture 1: Roadmap

1.1 What is the Internet?

- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Why the Internet?

- US Department of Defense
 - Maintain communication during a nuclear war
 - Reliable redundancy
- APRANET
 - One of many early networks

- Why the Internet?
- What is the Internet?

Internet # World Wide Web

Just one of the many services that runs over the Internet rdp ssh email ntp **WWW** Internet

a alamy stock photo

ERP014 www.alamy.com

The Internet is a network of connected computing devices

In other words

- It is infrastructure that connects hosts/end systems together
 - Allows hosts to communicate with each other
- Network edge
 - End hosts, servers, etc.
- Network core
 - ISPs, Routers, etc.

- Why the Internet?
- What is the Internet?
- How the Internet is organised?

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Hosts/End Systems

Internet Domain Survey Host Count

Source: Internet Systems Consortium (www.isc.org)

Hosts run network applications

Examples

Web: browsers ↔ web servers

WoW: clients ↔ game servers

VoIP: IP phones ↔ PBX servers

BitTorrent: peers ↔ trackers

BitCoin: miners ↔ exchange

Applications communicate using protocols

Protocols define the:

- format and order of messages exchanged among network entities, and
- 2. actions taken upon receiving or sending the messages

Some Examples

HTTP, FTP, SMTP, TCP, RTP

Access Networks

- Hosts access the Internet through access network.
 - Residential access networks
 - Institutional access networks (school, company)
 - Mobile access networks

Home Networks

Enterprise Access Networks

- Typically used in companies, universities, etc.
 - 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
 - Today, hosts typically connect to Ethernet switch

Wireless Access Networks

- Wireless access network connects hosts to router
 - via base station aka "access point"
- Wireless LANs
 - within building (100 ft)
 - 802.11b/g/n/ac (Wi-Fi)

- Wide-area wireless access
 - 3G, 4G
 - provided by telco (cellular) operator, 10's km

Physical Media

- Hosts connect to the access network over different physical media (cable).
 - Guided media:
 - signals propagate in solid media, e.g. fiber
 - Unguided media:
 - signals propagate freely, e.g., Wi-Fi, cellular

Unshielded twisted pair

Coaxial cable

Fiber optics

Radio waves

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

The Network Core

A mesh of interconnected routers

- The fundamental question: how is data transmitted through the network?
 - 1. Circuit switching
 - 2. Packet switching

Circuit Switching

Circuit Switching

Circuit Switching

End-end resources allocated to and reserved for "call" between source & dest:

- call setup required
- circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks
- divide link bandwidth into "pieces"
 - frequency division
 - time division

In above diagram, each link has four circuits. A "call" gets 2nd circuit in top link and 1st circuit in right link.

Packet Switching

Packet Switching

Packet Switching

- Host sending function:
 - breaks application
 message into smaller
 chunks, known as
 packets, of length L bits
 - transmits packets onto the link at transmission rate R
 - link transmission rate is aka link capacity or link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Packet-switching: store-and-forward

- Packets are passed from one router to the next, across links on path from source to destination.
- Store and forward: entire packet must arrive at a router before it can be transmitted on the next link.

End-to-end delay = 2*L/R (assuming no other delay)

Routing and Addressing

- Routers determine source-destination route taken by packets.
 - Routing algorithms
- Addressing: each packet needs to carry source and destination information

Which is more efficient?

Circuit Switching

- Setup/teardown required
- Resources are reserved
- Service is guaranteed

Packet Switching

- No setup/teardown required
- Resources shared on demand
- Best effort service

What does the Internet use?

The Internet is a packet switching network

Packet Switching

- The Internet is a packet switching network
- User A, B ... 's packets share network resources
- Resources are used on demand
- Excessive congestion is possible

- Who owns the Internet?
- Who owns the core?
- How do you access the Internet?

Internet Service Providers "Tier 3"

 How should access ISPs connect to each other?

Connect each access ISP to a Global ISP

 If one Global ISP is a viable business, there will be competitors

 Regional networks may arise as middlemen to connect access net to ISPs

- Content providers like Google or Akamai might even run their own network
 - to bring services content closer to users

The Internet is a network of networks

Network of Networks

- Hosts connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Therefore, the Internet is a "network-ofnetworks", organized into autonomous systems (AS), each is owned by an organization.

CAIDA's IPv4 AS Core AS-level INTERNET GRAPH

copyright © 2000 UC Regents. all rights reserved.

CAIDA's IPv4 AS Core AS-level Internet Graph

Copyright © 2014 UC Regents. All rights reserved.

Internet structure

- at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Who Runs the Internet?

- IP address & Internet Naming administered by Network Information Centre (NIC)
 - Refer to: www.sgnic.net.sg; www.apnic.org
- The Internet Society (ISOC) Provides leadership in Internet related standards, education, and policy around the world.
- The Internet Architecture Board (IAB) Authority to issue and update technical standards regarding Internet protocols.
- Internet Engineering Task Force (IETF) Protocol engineering, development and standardization arm of the IAB.
 - Internet standards are published as RFCs (Request For Comments)
 - Refer to: www.ietf.org; for RFCs: http://www.ietf.org/rfc.html

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Recall: Packet Switching Network

To send a packet in a packet switching network,

- Sender transmit a packet onto the link as a sequence of bits.
- Bits are propagated to the next node (e.g. a router) on the link.
- Router stores, processes and forwards the packet to the next link.
- Steps 2 & 3 repeat till the packet arrives at the receiver.

How does loss occur?

- Packets queue in router buffers
 - wait for turn to be sent out one by one

Q: What if packet arrival rate exceeds departure rate?

Packet Loss

- Queue (aka buffer) of a router has finite capacity.
- Packet arriving to full queue will be dropped (aka lost).
- Lost packet may be retransmitted by previous node, by source host, or not at all.

Four Sources of Packet Delay

d_{proc} : processing delay

- check bit errors
- determine output link
- typically < msec

d_{queue}: queuing delay

- time waiting in the queue for transmission
- depends on congestion level of router

Four Sources of Packet Delay

d_{trans}: transmission delay

- L: packet length (bits)
- R: link bandwidth (bps)
- $extbf{d}_{trans} = L/R$

d_{prop} : propagation delay

- d: length of physical link
- s: propagation speed in medium (~2x10⁸ m/sec)

Four Sources of Packet Delay

End-to-end Packet Delay

- End-to-end packet delay is the time taken for a packet to travel from source to destination. It consists of:
 - transmission delay
 - propagation delay
 - processing delay
 - queueing delay

traceroute program displays the route (path) from source to destination and measures the delay from source to each router along the end-end Internet path.

Throughput

- Throughput: how many bits can be transmitted per unit time.
 - Throughput is measured for end-to-end communication.
 - Link capacity (bandwidth) is meant for a specific link.

Metric Units

• 1 byte = 8 bits

Ехр.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

The principal metric prefixes

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Internet: A Service View

Internet: A Service View

- The Internet supports various kinds of network applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- Network applications exchange messages and communicate among peers according to protocols.

Layering

A common CS trick to deal with large and complex systems

What's a Protocol?

a human protocol and a computer network protocol:

Protocols define format and order of messages exchanged and the actions taken after messages are sent or received.

Protocol "Layers"

- Protocols in the Internet are logically organized into "layers" according to their purposes.
 - Each layer provides a service
 - Simple interfaces between layers
 - Hide details from each other
- Layering is a common CS trick to deal with large and complex systems.
 - Explicit structure allows identification, relationship of complex system's pieces
 - Modularization eases maintenance, updating of system
 - E.g. change of implementation of one layer's service is transparent to rest of system

India Post

Application

Transport

Network

Link

Physical

Application

Applications treat the Internet as a black box

Transport

process-to-process data transfer

Network

routing of datagrams from host to host

Link

data transfer between neighbouring network elements

Physical

bits on the wire/air

Example

ISO/OSI reference model

- Theoretical model not in use
- Two additional layers not present in Internet Protocol Stack
 - presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
 - session: synchronization, checkpointing, recovery of data exchange

application presentation session transport network link physical

Lecture 1: Summary

- Internet overview
- Network edge, core, access network
 - packet-switching vs circuit-switching
 - Internet structure
- Performance:
 - loss
 - delay
 - throughput
- What's a protocol?
- Layering, service models

You now have:

- Context, overview, "feel" of networking
- More depth, detail to follow!

Next Week Application Layer