HAI711I — **TD**s

Ivan Lejeune

 $10 \ {\rm octobre} \ 2025$

Table des matiè	res	5												
TD1 — Généralités														2

TD1 — Généralités

Exercice 1 Soirée chez Ramsey.

On considère un ensemble de six personnes. Montrer que au moins trois personnes se connaissent deux-à-deux ou que au moins trois personnes ne se connaissent pas deux-à-deux. Est-ce vrai pour un ensemble de cinq personnes?

Solution

Soit G = (V, E) un graphe à six sommets. On veut montrer que G contient K_3 ou $\overline{K_3}$. Considérons $x \in V$ un sommet de G et procédons par disjonction de cas en fonction du degré de x:

• Si $\deg(x) \geq 3$, on note s_1, s_2, s_3 trois voisins de x. Si $(s_1, s_2) \in E$ alors x, s_1, s_2 forment K_3 .

De manière similaire, si $(s_1, s_3) \in E$ ou $(s_2, s_3) \in E$ alors K_3 est formé. Si il n'existe pas d'arête entre s_1, s_2, s_3 alors $\overline{K_3}$ est formé.

Ainsi, si $deg(x) \ge 3$ alors G contient K_3 ou $\overline{K_3}$.

• Si $\deg(x) \leq 2$, on note $s_1, s_2, s_3 \in V$ trois sommets de G qui ne sont pas voisins de x. Si $(s_1, s_2) \notin E$ alors x, s_1, s_2 forment $\overline{K_3}$.

De manière similaire, si $(s_1, s_3) \notin E$ ou $(s_2, s_3) \notin E$ alors $\overline{K_3}$ est formé. Si il existe une arête entre chacun des sommets s_1, s_2, s_3 alors K_3 est formé.

Ainsi, si $deg(x) \le 2$ alors G contient K_3 ou $\overline{K_3}$.

Donc pour un ensemble de six personnes, au moins trois personnes se connaissent deux-à-deux ou au moins trois personnes ne se connaissent pas deux-à-deux.

Pour un ensemble de cinq personnes, le graphe G à cinq sommets ci-dessous ne contient ni K_3 ni $\overline{K_3}$:

Exercice 2 Hyperparcours.

Soit d un entier positif non nul. L'hypercube Q_d est le graphe dont l'ensemble des sommets est l'ensemble des d-uplets x_1, \ldots, x_d de 0 et de 1, deux d-uplets étant adjacents s'ils diffèrent sur une seule entrée.

- 1. Dessiner Q_d pour d = 1, 2, 3, 4.
- 2. Calculer un parcours en largeur de Q_3 de racine 000. En cas de choix entre plusieurs sommets pour entrer dans la file, on choisira celui de valeur (en binaire) minimale.
- 3. Effectuer de même un parcours en profondeur de Q_3 . Cette fois, il n'y a pas de consigne en cas de choix, mais on essayera d'obtenir un arbre de parcours qui ne soit pas un chemin.

Solution.

1. On a les hypercubes suivants :

FIGURE 1 – Hypercube Q_1

FIGURE 2 – Hypercube Q_2

FIGURE 3 – Hypercube Q_3

FIGURE 4 – Hypercube Q_4 Noeuds non précisés pour la clareté

Exercice 3 Convexité.

Solution.

A remplir

Exercice 4 Convexité.

Solution.

A remplir

Exercice 5 Convexité.

Solution.

A remplir

Exercice 6 Convexité.

Solution.

A remplir

Exercice 7 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$

Exercice 8 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$

Exercice 9 Convexité.

Solution.

A remplir

Exercice 10 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$

Exercice 11 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$