

#### Serie única - NFA hacia DFA

Para la resolución de esta tarea debe dejar constancia de su procedimiento y/o justificar sus respuestas:

1. (30 Puntos) Considere el autómata descrito en la figura



- ¿Es un autómata finito determinista? ¿Por qué?
- En caso NO sea un autómata finito determinista, produzca paso a paso su equivalente a DFA.

#### Solución:

- a) NO es un autómata finito determinista, existen estados que hacen transición a más de un estado con el mismo símbolo, por ejemplo q0 hace transición con b hacia q0 y también hacia q1.
- b) Buscar transiciones con  $\epsilon$  desde el estado inicial, en este caso q0, y no existen transiciones con  $\epsilon$  por tanto:

$$A = \{q0\}$$

revisamos transacciones con los elementos del alfabeto desde el estado inicial alfabeto =  $\{a,b\}$ 

move(A,a) =  $\{q0\}$  => transiciones con ( $\epsilon$ -closure)  $\{q0\}$  = A entonces



Tiempo límite: 6 días



$$move(A,b) = \{q0,q1\} => \epsilon$$
-closure  $\{q0,q1\}$ 

$$B = \{q0,q1\}$$



## Analizamos estado B

$$move(B,a) = \{q0\} => (\epsilon-closure) \{q0\} = A$$



$$move(B,b) = \{q0,q1,q2\} = \epsilon$$
-closure  $\{q0,q1,q2\}$ 

$$C = \{q0,q1,q2\}$$



Tiempo límite: 6 días



 $move(C,a) = \{q0\} => (\epsilon\text{-closure}) \{q0\} = A$ 



 $move(C,b) = \{q0,q1,q2\} = \epsilon$ -closure  $\{q0,q1,q2\} = C$ 



Identificar estados que tienen el estado de aceptación del NFA

 $A = \{q0\}$  $B = \{q0,q1\}$  $C = \{q0,q1,q2\}$ 

únicamente C contiene q2 que es el estado de aceptación en NFA.

entonces

Tiempo límite: 6 días





- 2. (70 Puntos) Considere la expresión regular (a|b)\* abb
  - Convierta la expresión regular hacia un NFA utilizando el método de Thompson
  - Convierta el NFA hacia DFA

# Solución:

# a) NFA



Tarea 1

Tiempo límite: 6 días



#### b) DFA

Buscar transiciones con  $\epsilon$  desde el estado inicial, en este caso 0, y desde 0 existen transiciones con  $\epsilon$  por tanto:

$$\{0,1,2,3,7\} = A$$

revisamos transacciones con los elementos del alfabeto desde el estado inicial alfabeto = {a,b} para A

con "a" en  $\{0,1,2,3,7\}$  podemos movernos de 2 a 4 y de 7 a 8 entonces move $(A,a) = \{4,8\}$  => transiciones con  $\varepsilon$  ( $\varepsilon$ -closure) =  $\{4,6,7,8,0,1,2,3\}$ 

 $B = \{4,6,7,8,0,1,2,3\}$ 



con "b" en  $\{0,1,2,3,7\}$  podemos movernos de 3 a 5 move $(A,b) = \{5\} \implies (\epsilon\text{-closure}) = \{5,6,7,0,1,2,3\}$ 

$$C = \{5,6,7,0,1,2,3\}$$



#### Analizamos estado B

con "a" en  $\{4,6,7,8,0,1,2,3\}$  podemos movernos de 2 a 4 y de 7 a 8 entonces move $(B,a) = \{4,8\}$  => transiciones con  $\epsilon$  ( $\epsilon$ -closure) =  $\{4,6,7,8,0,1,2,3\}$  = B

Tarea 1

Tiempo límite: 6 días





con "b" en {4,6,7,8,0,1,2,3} podemos movernos de 3 a 5 y de 8 a 9 entonces move(B,b) =  $\{5,9\}$  =>  $(\epsilon$ -closure) =  $\{5,6,7,9,0,1,2,3\}$ 

 $D = \{5,6,7,9,0,1,2,3\}$ 



### Anilisemos el estado C

con "a" en {5,6,7,0,1,2,3} podemos movernos de 2 a 4 y de 7 a 8 entonces move(C,a) = {4,8} => transiciones con ε (ε-closure) = {4,6,7,8,0,1,2,3} = B



Tarea 1

Tiempo límite: 6 días



con "b" en {5,6,7,0,1,2,3} podemos movernos de 3 a 5  $move(C,b) = \{5\} => (\epsilon-closure) = \{5,6,7,0,1,2,3\} = C$ 



## Analisemos estado D

con "a" en {5,6,7,9,0,1,2,3} podemos movernos de 2 a 4 y de 7 a 8 entonces move(D,a) =  $\{4,8\}$  => transiciones con ε (ε-closure) =  $\{4,6,7,8,0,1,2,3\}$  = B



con "b" en {5,6,7,9,0,1,2,3} podemos movernos de 3 a 5 y de 9 a 10  $move(C,b) = \{5,10\} => (\epsilon-closure) = \{5,6,7,10,0,1,2,3\}$ 

 $E = \{5,6,7,10,0,1,2,3\}$ 

siendo 10 el estado de aceptación en el NFA por tanto E también será estado de aceptación

Tiempo límite: 6 días





#### Analisemos estado E

con "a" en  $\{5,6,7,10,0,1,2,3\}$  podemos movernos de 2 a 4 y de 7 a 8 entonces move $(E,a) = \{4,8\} =>$  transiciones con  $\epsilon$  ( $\epsilon$ -closure) =  $\{4,6,7,8,0,1,2,3\} = B$ 



con "b" en  $\{5,6,7,10,0,1,2,3\}$  podemos movernos de 3 a 5 move $(E,b) = \{5\} => (\epsilon\text{-closure}) = \{5,6,7,0,1,2,3\} = C$ 

Tiempo límite: 6 días



