Fundamentals of Deep Learning

Pontificia Universidad Católica del Perú Summer Camp en IA 2025

Review

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.

Vectors

A vector is a 1-D array of numbers:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Can be real, binary, integer, etc.
- Example notation for type and size:

Matrices

Multiplications (matrix and vector)

Matrix (Dot) Product

$$C = AB$$
.

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$

Tensors

A tensor is an array of numbers, that may have

- zero dimensions, and be a scalar
- one dimension, and be a vector
- Two dimensions, and be a matrix
- or more dimensions.

Review Scalar Derivative

У	a	x^n	$\exp(x)$	log(x)	$\sin(x)$
$\frac{dy}{dx}$	0	nx^{n-1}	$\exp(x)$	$\frac{1}{x}$	cos(x)

 α is not a function of x

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} = \frac{du}{dx}v + \frac{dv}{dx}u = \frac{dy}{du}\frac{du}{dx}$$

Derivative is the slope of the tangent line

Gradients

Chain Rule

Chain rule for scalars:

$$y = f(u), \ u = g(x)$$
 $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$

Generalize to vectors straightforwardly

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial \mathbf{x}} \qquad \frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$(1,n) \quad (1,) \quad (1,n) \quad (1,k) \quad (k,n) \quad (m,n) \quad (m,k) \quad (k,n)$$

Chain Rule

Assume
$$\mathbf{x}, \mathbf{w} \in \mathbb{R}^n$$
, $y \in \mathbb{R}$
$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$$

Compute
$$\frac{\partial z}{\partial \mathbf{w}}$$

Decompose
$$a = \langle \mathbf{x}, \mathbf{w} \rangle$$
$$b = a - y$$
$$z = b^2$$

$$\frac{\partial z}{\partial \mathbf{w}} = \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial \mathbf{w}}$$

$$= \frac{\partial b^2}{\partial b} \frac{\partial a - y}{\partial a} \frac{\partial \langle \mathbf{x}, \mathbf{w} \rangle}{\partial \mathbf{w}}$$

$$= 2b \cdot 1 \cdot \mathbf{x}^T$$

$$= 2 \left(\langle \mathbf{x}, \mathbf{w} \rangle - y \right) \mathbf{x}^T$$

Gradient Descent

Approximate Optimization

History Review

Mark I Perceptron

Frank Rosenblatt ~1958

Mark I Perceptron

The first page of Rosenblatt's article, "The Design of an Intelligent Automaton," in Research Trends, a Cornell Aeronautical Laboratory publication, Summer 1958.

Rosenblatt and the perceptron.

An image of the perceptron from Rosenblatt's "The Design of an Intelligent Automaton," Summer 1958.

Images courtesy of Cornell Chronicle (2019)

Perceptron

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_nx_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

 $o(x_1,\ldots,x_n)=-w_0$ is the **threshold**

Simpler vector notation (adding $x_0 = 1$):

$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0 \\ -1 & \text{otherwise.} \end{cases} = sgn(\mathbf{w} \cdot \mathbf{x})$$

Perceptron training rule

$$o(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x}) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Determine weights wi

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

- $t = c(\mathbf{x})$ is target value
- o is perceptron output
- η is small constant (e.g., 0.05) called *learning rate*

Adeline/Madeline

Widrow and Hoff ~1960

Adaptive Linear Neuron (Adeline)

https://www.youtube.com/watch?v=IEFRtz68m-8

Fig. 5. An example of the interconnections between cells and the response of the cells after completion of self-organization

Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.

Fukushima K. 1980

https://www.youtube.com/watch?v=Qil4kmvm2Sw

The backward pass starts by computing $\partial E/\partial y$ for each of the output units. Differentiating equation (3) for a particular case, c, and suppressing the index c gives

$$\partial E/\partial y_i = y_i - d_i \tag{4}$$

We can then apply the chain rule to compute $\partial E/\partial x_i$

$$\partial E/\partial x_i = \partial E/\partial y_i \cdot dy_i/dx_i$$

Learning representations by backpropagating errors

Rumelhart et. al., 1986

Sigmoid unit

 $\sigma(x)$ is the sigmoid function $\frac{1}{1+e^{-x}}$ (nonlinear and differentiable) Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1-\sigma(x))$

We can derive gradient descent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Cost Function

$$o_{\mathbf{x}}(\mathbf{x}) = w_0 + w_1 x_1 + \cdots + w_n x_n = \mathbf{w} \cdot \mathbf{x}$$

Let's learn w_i 's from training examples $D = \{\langle \mathbf{x}^{(k)}, t^{(k)} \rangle\}$ that minimize the sum of the squared errors

$$E[\mathbf{w}] \equiv \frac{1}{2} \sum_{k=1}^{|D|} (t^{(k)} - \mathbf{w} \cdot \mathbf{x}^{(k)})^2$$

Gradient Descent

Gradient:
$$\nabla E[\mathbf{w}] \equiv \begin{bmatrix} \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \end{bmatrix}$$

Every weight is modified by a small quantity in the opposite direction (addition or subtraction) that mostly minimizes E

Training rule:

$$\Delta \mathbf{w} = -\eta \nabla E[\mathbf{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do (each iteration is an **epoch**)
 - Input the training example to the network and compute the network outputs
 - 2 For each output unit k, compute $\delta_k = o_k(1 o_k)(t_k o_k)$
 - **3** For each hidden unit h, compute $\delta_h = o_h(1 o_h) \sum_{k \in outputs} w_{kh} \delta_k$
 - Update each network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \eta \delta_j x_{ji} \ (= w_{ji} - \eta \frac{\partial E}{\partial w_{ji}})$$

In a 2-layer networks w_{ji} are weights from the input to the hidden units and from the hidden to the output units. For i=k, $\frac{\partial E}{\partial w_{ii}}$ defined as for single layer units.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Gradient-based learning applied to document recognition

Y. Le Cun et. al, 1998

Reducing the Dimensionality of Data with Neural Networks

Hinton and Salakhutdinov 2006

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each having only one layer of feature detectors. The learned feature activations of one RBM are used as the "data" for training the next RBM in the stack. After the pretraining, the RBMs are "unrolled" to create a deep autoencoder, which is then fine-tuned using backpropagation of error derivatives.

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Classification

[Krizhevsky 2012]

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

Convolutional Neural Networks

CNN

- CNN architecture main task is the feature extraction through 2D or 3D convolutional operations.
- The simple CNN framework involves four layers: convolutional, activation, pooling, and fully connected layer.

¿Qué es una convolución?

1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0 _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

1	0	1
0	1	0
1	0	1

Kernel

4	

Convolved Feature

Convolution Layer

32x32x3 image

http://setosa.io/ev/image-kernels/

Convolution Layer

activation map

Convolution Layer

32x32x3 image

5x5x3 filter

32x32x3 image

5x5x3 filter

activation map

Un segundo filtro

Si tenemos 6 filtros, el resultado tendría la forma: 28x28x6

- padding

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

=> 5x5 output

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

7x7 output!

https://ezyang.github.io/convolution-visualizer/index.html

Pooling layer

Max Pooling

Single depth slice

4 5 6 8 3

max pool with 2x2 filters and stride 2

6	8
3	4

У

Avg Pooling

Single depth slice

4 5 6 8 3 3

avg pool with 2x2 filters and stride 2

3.25	5.25
2	2

У

Activation Function

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

max(0.1x, x)

ELU

Fully Connected Layer

32x32x3

Fully Connected Layer

input

Fully Connected Layer

Fully Connected Layer

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Keras code

```
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
model = Sequential([
    Conv2D(16, 3, activation='relu', input_shape=(28,28,1)),
        MaxPool2D(),
        Conv2D(32, 3, activation='relu'),
        MaxPool2D(),
        Flatten(),
        Dense(10, activation='softmax')
])
```

Arquitecturas conocidas

LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> **15.4%**

VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
4,00	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
40.000 (10.000 to 10.000	00 0000-10 000		pool	h SAN-COLVA CYARA	
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool		2011/2 222
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
	L .	max	pool		304,035
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		0.731 x272000	pool		
			4096		
		25.00	4096		
			1000 -max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Inception module (Keras code)


```
from tensorflow.keras.layers import Conv2D, MaxPool2D, concatenate
tower_1 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, 3, padding='same', activation='relu')(tower_1)
tower_3 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_3 = Conv2D(64, 5, padding='same', activation='relu')(tower_2)
tower_4 = MaxPool2D(3, strides=(1,1), padding='same')(input_img)
tower_4 = Conv2D(64, 1, padding='same', activation='relu')(tower_3)
output = concatenate([tower_1, tower_2, tower_3, tower_4], axis = 3)
```


Layer (type)	Output Shape	Param #	Connected to	3x3 convolutions	5x5 convolutions	x1 c
input (InputLayer)	(None, 112, 112, 3)	0	1X1 conve	1x1 convolutions	1x1 convolutions 3:	3х3 п
tower_2_1 (Conv2D)	(None, 112, 112, 64)	256	input[0][0]	Previous layer		
tower_3_1 (Conv2D)	(None, 112, 112, 64)	256	input[0][0]			
tower_4_1 (MaxPooling2D)	(None, 112, 112, 3)	0	input[0][0]			
tower_1_1 (Conv2D)	(None, 112, 112, 64)	256	input[0][0]			
tower_2_2 (Conv2D)	(None, 112, 112, 64)	36928	tower_2_1[0][0]			
tower_3_2 (Conv2D)	(None, 112, 112, 64)	102464	tower_3_1[0][0]			
tower_4_2 (Conv2D)	(None, 112, 112, 64)	256	tower_4_1[0][0]			
concatenate_12 (Concatenate)	(None, 112, 112, 256	0	tower_1_1[0][0] tower_2_2[0][0] tower_3_2[0][0] tower_4_2[0][0]			

concatenation

GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								2
dropout (40%)		1×1×1024	0				X.		9		
linear		1×1×1000	1				9			1000K	1M
softmax		1×1×1000	0								2

ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

28.2

ImageNet Classification top-5 error (%)

CIFAR-10 experiments


```
256-d
filters1, filters2, filters3 = filters
if K.image data format() == 'channels last':
                                                                                           1x1, 64
   bn axis = 3
                                                                                                relu
   bn axis = 1
conv name base = 'res' + str(stage) + block + ' branch'
                                                                                           3x3, 64
bn name base = 'bn' + str(stage) + block + ' branch'
                                                                                                relu
                                                                                           1x1, 256
x = Conv2D(filters1, (1, 1), name = conv name base + '2a')(input tensor)
x = BatchNormalization(axis=bn axis, name=bn name base + '2a')(x)
x = Activation('relu')(x)
                                                                                                relu
x = Conv2D(filters2, kernel size,
          padding='same', name=conv name base + '2b')(x)
x = BatchNormalization(axis=bn axis, name=bn name base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), name = conv name base + '2c')(x)
x = BatchNormalization(axis=bn axis, name=bn name base + '2c')(x)
x = layers.add([x, input tensor]) 
x = Activation('relu')(x)
return x
```

def identity block(input tensor, kernel size, filters, stage, block):

ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

ResNet [He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	-		7×7, 64, stride 2				
				3×3 max pool, stride	e 2			
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1		ave	erage pool, 1000-d fc, s	softmax			
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^{9}		

YOLO

[Redmon et al., 2016]

SqueezeNet

[landola et al., 2017]

CNN architecture	Compression Approach	Data Type	Original → Compressed Model Size	Reduction in Model Size vs. AlexNet	Top-1 ImageNet Accuracy	Top-5 ImageNet Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240\text{MB} \rightarrow 27\text{MB}$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	$240\text{MB} \rightarrow 6.9\text{MB}$	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

layer name/type	output size	filter size / stride (if not a fire layer)	depth	\$1x1 (#1x1 squeeze)	e _{1x1} (#1x1 expand)	e _{3x3} (#3x3 expand)	S _{1x1} sparsity	e _{1x1}	e _{3x3} sparsity	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3										-	-
conv1	111x111x96	7x7/2 (x96)	1				1	100% (7x7))	6bit	14,208	14,208
maxpool1	55x55x96	3x3/2	0									
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13x13x1000	1x1/1 (x1000)	1					20 % (3x3)		6bit	513,000	103,400
avgpool10	1x1x1000	13x13/1	0									
				\neg							1,248,424	421,098
	activations		pa	arameters				compress	ion info		(total)	(total)

Thank You!

Susan Palacios Salcedo
PhD Candidate,
PUCP
spalacios@pucp.edu.pe