SURVIVAL ANALYSIS - NCDB

Kelvin Ofori-Minta University of Texas at El Paso (UTEP)

July 05, 2022

Contents

1	1.1 Partition Data	4
2	COXPH model for predictors of mortality - ALL DATA	5
3	format results of cox model	7
4	Predicting Risks scores and Hazard Ratio from COX PH Model 4.1 Distribution of Riskscores	10
5	Hazard Ratios	12
6	Scatterplots of Riskscores vs Hazard Ratios	14
7	Riskscores from Est.PH	16
8	Est.PH {survC1} - Derivation of a risk score by a Cox proportioal hazard model 8.1 Obtain Risk scores from the best predictors of mortality	

1 Loading Data and Preparations

```
lung$Chemo<-factor(lung$Chemo,</pre>
                      levels=c("No Chemo", "Chemo"),
                      labels=c("No Chemo", "Chemo"))
lung$AGE_cat<-factor(lung$AGE_cat,</pre>
                      levels = c("50-60", "60-70", "70-80", "Above 80", "Below 50"),
                      labels = c("50-60", "60-70", "70-80", "Above 80", "Below 50"))
lung$SEX<-factor(lung$SEX,</pre>
                    levels=c("Female", "Male"),
                    labels=c("Female", "Male"))
lung$CDCC_TOTAL_BEST<-factor(lung$CDCC_TOTAL_BEST,</pre>
                               levels = c("0","1","2","3"),
                               labels = c("0","1","2","3"))
lung$TUMOR_SIZE_cat<-factor(lung$TUMOR_SIZE_cat,</pre>
                              levels=c("<=1cm","1cm-2cm","2cm-3cm","3cm-4cm","4cm-5cm"),</pre>
                              labels=c("<=1cm","1cm-2cm","2cm-3cm","3cm-4cm","4cm-5cm"))</pre>
lung$GRADE<-factor(lung$GRADE,</pre>
                    levels=c("Moderately differentiated", "Poorly differentiated", "Undifferentiated")
                    labels=c("Moderately differentiated", "Poorly differentiated", "Undifferentiated")
lung$Pathology<-factor(lung$Pathology,</pre>
                        levels = c("Adenocarcinoma", "Other", "Squamous"),
                        labels = c("Adenocarcinoma", "Other", "Squamous"))
lung$Visceral_Pleural_Invasion<-factor(lung$Visceral_Pleural_Invasion,</pre>
                                          levels = c("Other", "Present"),
                                         labels = c("Other", "Present"))
lung$LYMPH_VASCULAR_INVASION2<-factor(lung$LYMPH_VASCULAR_INVASION2,</pre>
                                         levels=c("Absent", "Present", "Unknown"),
                                         labels=c("Absent", "Present", "Unknown"))
lung$Margins<-factor(lung$Margins,</pre>
                      levels = c("Other", "Positive", "Zero"),
                      labels = c("Other", "Positive", "Zero"))
lung$Lymph_Nodes_Sampled<-factor(lung$Lymph_Nodes_Sampled,</pre>
                                   levels = c("<10",">=10", "Unknown"),
                                   labels = c("<10",">=10", "Unknown"))
```

1.1 Partition Data

```
require(caTools)
set.seed(1)
split = sample.split(lung$DX_LASTCONTACT_DEATH_MONTHS, SplitRatio = 0.85)
train=subset(lung, split==T)
test=subset(lung, split==F)
```

2 COXPH model for predictors of mortality - ALL DATA

```
library("survival")
# library("survminer")
lung$Chemo=relevel(as.factor(lung$Chemo), ref="No Chemo")
cox_fit1 <- coxph(Surv(DX_LASTCONTACT_DEATH_MONTHS,PUF_VITAL_STATUS) ~ Chemo +</pre>
                      AGE_cat+
                      SEX +
                      CDCC_TOTAL_BEST +
                      TUMOR_SIZE_cat +
                      GRADE +
                      Visceral_Pleural_Invasion+
                      LYMPH_VASCULAR_INVASION2+
                      Margins +
                      Lymph_Nodes_Sampled +
                      Excision_less_than1,
                    data = lung)
cox_fit1$coefficients #odds
```

```
##
                          ChemoChemo
                                                          AGE_cat60-70
##
                       -0.0328323599
                                                         -0.0427297280
##
                        AGE cat70-80
                                                       AGE catAbove 80
                       -0.0325108982
                                                         -0.0430062924
##
##
                    AGE_catBelow 50
                                                                SEXMale
##
                       -0.0909712523
                                                          -0.0510721635
##
                    CDCC_TOTAL_BEST1
                                                      CDCC_TOTAL_BEST2
##
                       -0.0021252500
                                                          -0.0085577321
                   CDCC_TOTAL_BEST3
                                                 TUMOR_SIZE_cat1cm-2cm
##
##
                        0.0285513604
                                                          -0.0839515534
                                                 TUMOR_SIZE_cat3cm-4cm
              TUMOR_SIZE_cat2cm-3cm
##
##
                       -0.1181348822
                                                          -0.0801962360
##
              TUMOR_SIZE_cat4cm-5cm
                                            GRADEPoorly differentiated
                       -0.0791002404
##
                                                         -0.0002581338
              GRADEUndifferentiated
                                                          GRADEUnknown
##
##
                        0.0907022956
                                                          0.0039056293
           GRADEWell differentiated Visceral_Pleural_InvasionPresent
##
                       -0.0500901193
                                                          0.0572583599
##
    LYMPH_VASCULAR_INVASION2Present
                                      LYMPH_VASCULAR_INVASION2Unknown
##
##
                       -0.0234197701
                                                         -0.1408796161
##
                    MarginsPositive
                                                            MarginsZero
##
                        0.0570926793
                                                          0.1810093997
            Lymph_Nodes_Sampled>=10
                                            Lymph_Nodes_SampledUnknown
##
                        0.0522284067
                                                          -0.2228574697
##
            Excision_less_than1TRUE
##
                       -0.0199985495
##
```

```
exp(cox_fit1$coefficients) #HR
##
                          ChemoChemo
                                                           AGE_cat60-70
##
                           0.9677008
                                                              0.9581703
##
                        AGE_cat70-80
                                                        AGE_catAbove 80
##
                           0.9680119
                                                              0.9579054
                     AGE_catBelow 50
##
                                                                SEXMale
##
                           0.9130440
                                                              0.9502101
##
                    CDCC_TOTAL_BEST1
                                                      CDCC_TOTAL_BEST2
                           0.9978770
##
                                                              0.9914788
##
                    CDCC_TOTAL_BEST3
                                                 TUMOR_SIZE_cat1cm-2cm
##
                           1.0289629
                                                              0.9194758
##
              TUMOR_SIZE_cat2cm-3cm
                                                 TUMOR_SIZE_cat3cm-4cm
##
                           0.8885762
                                                              0.9229352
              TUMOR_SIZE_cat4cm-5cm
                                            GRADEPoorly differentiated
##
##
                           0.9239473
                                                              0.9997419
##
              GRADEUndifferentiated
                                                           GRADEUnknown
##
                           1.0949430
                                                              1.0039133
##
           GRADEWell differentiated Visceral_Pleural_InvasionPresent
##
                                                              1.0589294
                           0.9511437
##
    LYMPH_VASCULAR_INVASION2Present
                                       LYMPH_VASCULAR_INVASION2Unknown
                                                              0.8685939
##
                           0.9768523
##
                     MarginsPositive
                                                            MarginsZero
##
                           1.0587539
                                                              1.1984264
##
            Lymph_Nodes_Sampled>=10
                                            Lymph_Nodes_SampledUnknown
##
                           1.0536164
                                                              0.8002289
##
            Excision_less_than1TRUE
##
                           0.9802001
# lung$Chemo=relevel(as.factor(lung$Chemo), ref="No Chemo")
  cox_fit11 <- coxph(Surv(DX_LASTCONTACT_DEATH_MONTHS, PUF_VITAL_STATUS) ~</pre>
#
                         AGE\_cat+
#
                         SEX +
#
                         CDCC_TOTAL_BEST +
#
                         TUMOR\_SIZE\_cat +
#
                         GRADE +
#
                         Visceral_Pleural_Invasion+
#
                         LYMPH_VASCULAR_INVASION2+
#
                         Marqins +
#
                         Lymph_Nodes_Sampled +
#
                         Excision_less_than1,
#
                       data = lung)
#
# cox_fit11$coefficients #odds
# exp(cox_fit11$coefficients) #HR
```

3 format results of cox model

term	estimate	std.error	statistic	p.value
ChemoChemo	0.9677008	0.0296857	-1.1059996	0.2687267
AGE_cat60-70	0.9581703	0.0312769	-1.3661761	0.1718837
AGE_cat70-80	0.9680119	0.0316406	-1.0275044	0.3041830
AGE_catAbove 80	0.9579054	0.0464372	-0.9261165	0.3543854
AGE_catBelow 50	0.9130440	0.0736842	-1.2346094	0.2169759
SEXMale	0.9502101	0.0218628	-2.3360333	0.0194895
CDCC_TOTAL_BEST1	0.9978770	0.0255017	-0.0833377	0.9335830
CDCC_TOTAL_BEST2	0.9914788	0.0361173	-0.2369425	0.8127014
CDCC_TOTAL_BEST3	1.0289629	0.0424419	0.6727165	0.5011277
TUMOR_SIZE_cat1cm-2cm	0.9194758	0.0911452	-0.9210746	0.3570115
TUMOR_SIZE_cat2cm-3cm	0.8885762	0.0919570	-1.2846749	0.1989059
TUMOR_SIZE_cat3cm-4cm	0.9229352	0.0937552	-0.8553788	0.3923415
TUMOR_SIZE_cat4cm-5cm	0.9239473	0.0952241	-0.8306742	0.4061577
GRADEPoorly differentiated	0.9997419	0.0252995	-0.0102031	0.9918592
GRADEUndifferentiated	1.0949430	0.1025368	0.8845825	0.3763818
GRADEUnknown	1.0039133	0.0381754	0.1023075	0.9185126
GRADEWell differentiated	0.9511437	0.0339343	-1.4760914	0.1399194
Visceral_Pleural_InvasionPresent	1.0589294	0.0362535	1.5793890	0.1142468
LYMPH_VASCULAR_INVASION2Present	0.9768523	0.0300965	-0.7781551	0.4364776
LYMPH_VASCULAR_INVASION2Unknown	0.8685939	0.0465820	-3.0243343	0.0024918
MarginsPositive	1.0587539	0.1968533	0.2900265	0.7717959
MarginsZero	1.1984264	0.1782101	1.0157079	0.3097685
Lymph_Nodes_Sampled>=10	1.0536164	0.0224537	2.3260485	0.0200160
Lymph_Nodes_SampledUnknown	0.8002289	0.0590297	-3.7753459	0.0001598
Excision_less_than1TRUE	0.9802001	0.0344942	-0.5797649	0.5620732

```
cox_fit1 %>%
  gtsummary::tbl_regression(exp=TRUE)
```

Characteristic	**HR**	**95% CI**	**p-value**
Chemo			
No Chemo			
Chemo	0.97	0.91, 1.03	0.3
AGE_cat			
50-60			
60-70	0.96	0.90, 1.02	0.2
70-80	0.97	0.91, 1.03	0.3
Above 80	0.96	0.87, 1.05	0.4
Below 50	0.91	0.79, 1.05	0.2
SEX			
Female			
Male	0.95	0.91, 0.99	0.019
CDCC_TOTAL_BEST			
0			
1	1.00	0.95, 1.05	>0.9
2	0.99	0.92, 1.06	0.8
3	1.03	0.95, 1.12	0.5
TUMOR_SIZE_cat			
<=1cm			
1cm-2cm	0.92	0.77, 1.10	0.4
2cm-3cm	0.89	0.74, 1.06	0.2
3cm-4cm	0.92	0.77, 1.11	0.4
4cm-5cm	0.92	0.77, 1.11	0.4
GRADE			
Moderately differentiated			
Poorly differentiated	1.00	0.95, 1.05	>0.9
Undifferentiated	1.09	0.90, 1.34	0.4
Unknown	1.00	0.93, 1.08	>0.9
Well differentiated	0.95	0.89, 1.02	0.14
Visceral_Pleural_Invasion			
Other			
Present	1.06	0.99, 1.14	0.11
LYMPH_VASCULAR_INVASION2			
Absent			
Present	0.98	0.92, 1.04	0.4
Unknown	0.87	0.79, 0.95	0.002
Margins			
Other			
Positive	1.06	0.72, 1.56	0.8
Zero	1.20	0.85, 1.70	0.3
Lymph_Nodes_Sampled			
<10			
>=10	1.05	1.01, 1.10	0.020
Unknown	0.80	0.71, 0.90	< 0.001
Excision_less_than1			
FALSE			
TRUE	0.98	0.92, 1.05	0.6
	0		

4 Predicting Risks scores and Hazard Ratio from COX PH Model

4.1 Distribution of Riskscores

```
require(ggplot2)
riskscore1_all=predict(cox_fit1, type="risk") #the risk score exp(lp)
hist(riskscore1_all, xlim = c(0,2), xlab = "Riskscores")
```

Histogram of riskscore1_all


```
#Density plot of riskscores
# TRAIN_RISK <- data.frame(rs=riskscore1_train)
# TEST_RISK <- data.frame(rs=riskscore1_test)
ALL_DATA <- data.frame(Riskscores=riskscore1_all)

# TRAIN_RISK$type<-'train'
# TEST_RISK$type<-'test'
ALL_DATA$data<-'Full Data'
ggplot(ALL_DATA, aes(Riskscores, fill=data)) + geom_density(alpha = 0.5)</pre>
```



```
# ggplot(TEST_RISK, aes(rs, fill=type)) + geom_density(alpha = 0.2)
# ggplot(TRAIN_RISK, aes(rs, fill=type)) + geom_density(alpha = 0.2)
#
# datlen<-rbind(TRAIN_RISK, TEST_RISK, ALL_DATA)
# ggplot(datlen, aes(rs, fill=type)) + geom_density(alpha = 0.2)</pre>
```

5 Hazard Ratios

```
lphr3=predict(cox_fit1, type="lp") #predicted hazard ratio

# hist(lphr3, xlim = c(0,2), xlab = "HR")
# hist(1-lphr3, xlim = c(0,2), xlab = "HR")
range(lphr3)

## [1] -0.526645  0.298877
range(1-lphr3)

## [1] 0.701123  1.526645

ALLDATA <- data.frame(Hazard_Ratios=lphr3)
ALLDATA$data<-'Full Data'
ggplot(ALLDATA, aes(Hazard_Ratios, fill=data)) + geom_density(alpha = 0.5)</pre>
```



```
ALLDATA <- data.frame(Hazard_Ratios1=1-lphr3)
ALLDATA$data<-'Full Data'
ggplot(ALLDATA, aes(Hazard_Ratios1, fill=data)) + geom_density(alpha = 0.5)
```


6 Scatterplots of Riskscores vs Hazard Ratios

Comment

 $\label{eq:conditions} A\ positive\ HR\ indicates\ worse\ conditions/prognosis,\ while\ a\ negative\ coefficient\ indicates\ a\ better\ condition/prognosis.$

Riskscores > 1 corresponds to increased hazards of mortality with multiple HRF. Riskscores < 1 corresponds to decreased hazards of mortality with multiple HRF, thus a survival benefit from chemotherapy.

The threshold for survival benefit is experienced when the risk score is < 1 at which point the hazards of mortality is decreased.

Hazard Ratio vs RiskScores

Subtracting HR from 1 gives reverse scale of HR reads, where lower HR indicates worse conditions, higher HR indicates better prognosis

As risk score increases, the hazard ratio gets worse (bad prognosis). A survival benefit from adjuvant chemotherapy is realised when the risk score is < 1 at which point the hazard ratio of mortality appears to be better.

- 7 Riskscores from Est.PH
- 8 Est.PH {survC1} Derivation of a risk score by a Cox proportioal hazard model
- 8.1 Obtain Risk scores from the best predictors of mortality

```
#Provides risk score by fitting data to a Cox's proportional hazards model with a given set of
# Input data. The 1st column should be time-to-event, and the 2nd column is event indicator (1
#OUTPUT
# beta = Estimates for regression coefficient in the Cox model
# var = Variance-Covariance matrix for the beta above
# rs = Risk score of each individual
      = coxph object with the fitted model
# ft
library(survC1)
## Warning: package 'survC1' was built under R version 4.0.5
train1=lung[,c(1:2)] #time & status
train2 =lung[, c(3:15)] # other covariates
#convert other sub levels in all categorical covariates to integer
p = data.frame(lapply(train2, as.integer))
#combine numeric time & status with the numeric covariates
train_data = data.frame(cbind(train1,p))
#Make sure distribution of variables are not distorted after conversion
require(inspectdf)
## Loading required package: inspectdf
## Warning: package 'inspectdf' was built under R version 4.0.5
show_plot(inspect_cat(train)) # inspect categorical columns
```

Frequency of categorical levels in df::train Gray segments are missing values

show_plot(inspect_num(train)) #inspect numeric columns

Histograms of numeric columns in df::train

show_plot(inspect_num(train_data)) #inspect numeric columns

Histograms of numeric columns in df::train_data

#obtain risk scores for each individual
rsmodel=Est.PH(train_data)

riskscores=rsmodel\$rs

hist(riskscores)

Histogram of riskscores

hist(1-riskscores)

Histogram of 1 - riskscores

#riskscores1 = 1 - riskscores #obtain hazard rates didnt work with this approach coef=rsmodel\$beta exp(coef) ## covsChemo covsAGE ## 0.9772929 1.0010946 covsAGE_cat covsSEX ## ## 0.9791978 0.9486315 covsCDCC_TOTAL_BEST covsTUMOR_SIZE_cat ## ## 1.0025016 1.0005138 ## covsGRADE covsPathology ## 0.9915676 1.0041478 ## covsVisceral_Pleural_Invasion covsLYMPH_VASCULAR_INVASION2 ## 1.0490644 0.9495022 covsLymph_Nodes_Sampled ## covsMargins ## 1.1256563 0.9935250 ## covsExcision_less_than1 ## 0.9654898 hist(sqrt(riskscores))

Warning in sqrt(riskscores): NaNs produced

Histogram of sqrt(riskscores)

