LaPIS Diagnostic Test Workbook - Mathematics

Name : Navanitha S

Class: 7

Section : B

School : AKV Public School

Login ID : AKV160

Navanitha S's Performance Report

Score: 32/40 Percentage: 80.0%

Navanitha S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Data handling

Topics to be Improved				
Range	Finding the range			
Chance of probability	Basis of probability, Sample space in probability			

Hi,	here	in	this	video	vou	will	learn	Range
,	11010		CIII	,1400	,, 0 01	* * * * * * *	100111	

Question: 1

Answer:

The difference between highest value and lowest value is _____.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 2

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

.....

......

.....

$$\frac{51+20}{2}$$

Answer:

 $Range = _$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 3

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 4

Identify the sure events and impossible events

(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wise direction.	
(iv) Ball is square in shape.	
$\underline{Answer:}$	
Events that always occur are called (sure/ impossible) events.	
Events that cannot occur are called (sure/impossible) events.	
Here, The sun rises in the west is event. Water is colourless is event.	
Clock rotates in clock wise direction is event. Ball is square in shape is event.	_
<u>Question: 5</u>	
Probability of sure events is (greater / smaller) than probability of impossible events are greater (greater / smaller).	ents.
Answer:	
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.	
$\underline{Question: \ 6}$	
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is probability of getting a pen from his box.	the
Answer:	
Things Raju have	I
Hi, here in this video you will learn Basics of probability	1 1 1 1
Question: 7	.
Which of the following contains list of all possible outcomes.	
Probability Sample space Sure events Impossible events	
$\underline{Answer:}$	

Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs).
Therefore, contains list of possible outcomes.
Question: 8
Write the possible outcomes while spinning the given wheel.
0 10 250 100 5 25 1 500
$\underline{Answer:}$
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathfrak{T}0$, $\mathfrak{T}10$,
$Question: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,

Number system

	Ton	ics to b	ne Imp	roved					
Decimals					ocimala				
Operations on rational numbers		Multiplication and division of decimals Subtraction of rational numbers							
Positive and negative rational numbers Identification of positive rational numbers									
Hi, here in this video you Question: 10							_ _ 		
Shade 0.4 part of the given sha	pe.								
Answer: There are boxes. 0.4 can be expressed as This fraction represents So, we need to shade b Question: 11	_ parts out ooxes out of	of	_boxes.	_					
Solve the following.									
(i) 0.4 × 1.2									
(ii) 0.48×1.2									
$\underline{Answer:}$									
(i) 0.4 × 1.2 : Multiplication of 0.4 × 1. The number of digits after Total digits after decimal Count that digits from th ———.	er decimal p point in th	oint in e produ	0.4 is _ act of tw	o num	and 1.2 bers is	2 is	·	result is	

(ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
Question: 12
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
$\underline{Answer:}$
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = \underline{\hspace{1cm}}$
(iii) Place the decimal point after digits counting from the right in the quotient after division.
Then the cost of one chocolate is The cost of 15 chocolates = cost of one chocolate × = x =
Hi, here in this video you will learn Operation on rational numbers
Question: 13
Solve: $\frac{-3}{3} + \frac{1}{3}$
Answer:
Fractions with same denominators are called (like/ unlike) fractions. Fraction can be added only if they are (like/ unlike) fractions.

Question: 14

Find the addition of shaded part of box A and shaded part of box B.

 $\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 15

Find the missing values in the given figure.

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$ Therefore, result is $\underline{}$.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 16

Segregate positive and negative rational number.

......

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are ______ and negative rational numbers are ______.

Question: 17 ______ is a ______ (positive / negative / neither positive nor negative) rational number.

Answer: ______ number, -4 is a ______ number.

 $-3 \text{ is a} \underline{\hspace{1cm}} \text{number, } -4 \text{ is a} \underline{\hspace{1cm}} \text{number.}$ Division of $\frac{-3}{-4} = \overline{\hspace{1cm}} \text{ and this} \underline{\hspace{1cm}} \text{rational number.}$ (Positive / Negative / Neither positive nor negative rational number)

Question: 18

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: ______

Examples for negative rational numbers: ______

Positive rational number × Negative rational number = _____ × ____ = ____ and this is

_____ rational number

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
		- III (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Hi, here in this video you	will learn Basics of percentage	
Question: 19		
2% can be written as		
Answer:		
Percentages are numerators of f	ractions with denominator $2\% = \frac{\Box}{\Box}$	
Question: 20		
Arun attended the LaPIS test for Arun?	or 100 marks and got 75% marks. What is the	mark scored by
Answer:		
Arun attended LaPIS test for $_$	marks. He got	narks.
75 % can be written in fraction	form —	
Then the mark scored by Arun	= Total mark \times 75% = \times	=
Question: 21		
There are 25 apples in a basket apples.	in which 10 of them are rotten. Find the perce	entage of rotten
$\underline{Answer:}$		
There are apples in a b Number of rotten apples are		

Fraction form of rotten apples in a	a basket :	=
Convert it into a percent=	X	% =

Algebra

Topics to be Improved subtraction of algebraic subtraction of algebraic expressions subtraction of algebraic expressions

Hi, here in this video you will learn Subtraction on expression

Question: 22	
Find the sum of two expressions $a + b + c$ and $b + c + d$	
Answer:	
The given two expressions are and The two terms will get added only if they are (Like/ Unlike) terms. The sum of two expressions = + The answer is	

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

Question: 23

(i)	Number of boys in school $A = \underline{\hspace{1cm}}$,	
	Number of boys in school $B = \underline{\hspace{1cm}}$.	
	Total number of boys in school A and school B is + =	

(ii)	Number of boys in school $B = \underline{\hspace{1cm}}$,
	Number of girls in school $B = \underline{\hspace{1cm}}$.
	Total number of students in school B is + =

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 24

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 -2a - \underline{\hspace{1cm}}
 \end{array}$$