Derivatives of the Trigonometric Functions

Oct 12 2011

I dentities: (x,4) = (cos 0, sin 0) Resulting identities: -Cos (-0) = cos 0 Sin(-0) = Sin 0 Cos2(0) + Sin20 = 1 Other identities:

 $Cos(\alpha+\beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)$ $Sin(\alpha+\beta) = sin(\alpha)cos(\beta) + sin(\beta)cos(\alpha)$

$$\frac{d}{dx}\sin x =$$

$$\frac{d}{dx}\sin x = \lim_{h\to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$
$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

Recall: cos(0) = 1 and sin(0) = 0

Near x = 0, $\sin(x) \approx x$:

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

Graph of $\frac{\cos(x)-1}{x}$:

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) * 0 + \cos(x) * 1$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) * 0 + \cos(x) * 1$$

$$= \cos(x)$$

$$\frac{d}{dx}\cos x =$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$
$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)(\cos(h) - 1) - \sin(x)\sin(h)}{h}$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)(\cos(h) - 1) - \sin(x)\sin(h)}{h}$$

$$= \cos(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)(\cos(h) - 1) - \sin(x)\sin(h)}{h}$$

$$= \cos(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \cos(x) * 0 - \sin(x) * 1$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)(\cos(h) - 1) - \sin(x)\sin(h)}{h}$$

$$= \cos(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \cos(x) * 0 - \sin(x) * 1$$

$$= \left[-\sin(x)\right]$$

Does it make sense?

$$y = \sin(x)$$
:

$$y = \cos(x)$$
:

$$y=-\sin(x):$$

Examples

On your own, calculate:

- 1. $\frac{d}{dx}\sin(2x)$
- $2. \ \frac{d}{dx} \sin\left(x^2 + \frac{1}{x}\right)$
- 3. $\frac{d}{dx}\cos(3x+\sqrt{x})$
- 4. $\frac{d}{dx}\sin(x)\cos(x)$
- $5. \frac{d}{dx}\sin(\cos(x^2+2))$

Examples

On your own, calculate:

$$1. \ \frac{d}{dx}\sin(2x) = 2*\sin(2x)$$

2.
$$\frac{d}{dx}\sin\left(x^2 + \frac{1}{x}\right)$$

= $\frac{d}{dx}\sin\left(x^2 + x^{-1}\right) = \left[(2x - x^{-2})\cos(x^2 + x^{-1})\right]$

3.
$$\frac{d}{dx}\cos(3x + \sqrt{x})$$

$$= \frac{d}{dx}\cos(3x + x^{1/2}) = \left[(3 + \frac{1}{2}x^{-\frac{1}{2}})(-\sin(3x + x^{1/2})) \right]$$

4.
$$\frac{d}{dx}\sin(x)\cos(x) = \sin(x)(-\sin(x)) + \cos(x)\cos(x)$$

= $\cos^2(x) - \sin^2(x) = \cos(2x)$

5.
$$\frac{d}{dx}\sin(\cos(x^2+2)) = \cos(\cos(x^2+2)) * \frac{d}{dx}(\cos(x^2+2))$$

= $\cos(\cos(x^2+2)) * (-\sin(x^2+2)) * \frac{d}{dx}(x^2+2)$
= $\cos(\cos(x^2+2)) * (-\sin(x^2+2)) * (2x)$

On your own, fill in the rest of the trig functions:

1.
$$\frac{d}{dx} \tan(x)$$

2.
$$\frac{d}{dx} \cot(x)$$

3.
$$\frac{d}{dx} \sec(x)$$

4.
$$\frac{d}{dx} \csc(x)$$

On your own, fill in the rest of the trig functions:

1.
$$\frac{d}{dx} \tan(x) = \frac{d}{dx} \frac{\sin(x)}{\cos(x)}$$

2.
$$\frac{d}{dx} \cot(x) = \frac{d}{dx} \frac{\cos(x)}{\sin(x)}$$

3.
$$\frac{d}{dx} \sec(x) = \frac{d}{dx} (\cos(x))^{-1}$$

4.
$$\frac{d}{dx}\csc(x) = \frac{d}{dx}(\sin(x))^{-1}$$

$$\frac{d}{dx} \sin(x) = \cos(x)$$

$$\frac{d}{dx} \cos(x) = -\sin(x)$$

$$\frac{d}{dx} \tan(x) = \frac{d}{dx} \left(\frac{\sin(x)}{\cos(x)} \right)$$

$$= \frac{\cos(x) \cdot (\cos(x)) - \sin(x) (-\sin(x))}{\cos^2(x)}$$

$$\frac{\cos_3(x) + \sin_3(x)}{\cos_3(x)} = \frac{\cos_3(x)}{1}$$

$$\frac{d}{dx} \cot(x) = \frac{d}{dx} \frac{\cos(x)}{\sin(x)} = \cdots$$

=
$$\frac{d}{dx} \left(\tan(x) \right)^{-1} = -\left(\tan(x) \right)^{-2}$$
. Sec²(x)

$$= -\frac{\cos_3(x)}{\sin^3(x)} \cdot \cos_3(x) = -\csc_3(x)$$

$$\frac{d}{dx} \left((os(x))^{-1} = \frac{1}{(os(x))^{2}} \cdot - sm(x) \right)$$

$$= \frac{sm(x)}{cos^{2}(x)} = sec(x) tan(x)$$

$$= \frac{sm(x)}{cos(x)} \cdot \frac{1}{cos(x)}$$
guess

d & csc(x) = - csc(x) · co+(x)

On your own, fill in the rest of the trig functions:

1.
$$\frac{d}{dx} \tan(x) = \frac{d}{dx} \frac{\sin(x)}{\cos(x)} = \sec^2(x)$$

2.
$$\frac{d}{dx} \cot(x) = \frac{d}{dx} \frac{\cos(x)}{\sin(x)} = \left[-\csc^2(x) \right]$$

3.
$$\frac{d}{dx} \sec(x) = \frac{d}{dx} (\cos(x))^{-1} = \sec(x) \tan(x)$$

4.
$$\frac{d}{dx}\csc(x) = \frac{d}{dx}(\sin(x))^{-1} = -\csc(x)\cot(x)$$

Example

Compute the derivative of

$$y = \left(x + \tan^3\left(\csc^2(17x)\right)\right)^4.$$

$$\frac{d}{dx} \left(x + \tan^{3} \left(\csc^{2} (17x) \right)^{4} \right)$$
= $4 \left(x + \tan^{3} \left(\csc^{2} (17x) \right) \right)^{3}$

* $1 + \left(3 \tan^{2} \left(\csc^{2} (17x) \right) \right)^{3}$

* $2 \csc^{2} \left(\csc^{2} (17x) \right)$

* $2 \csc(17x)$

* $(-\csc(17x) \cdot \cot(17x))$

* 17

this is all

 $\frac{d}{dx} \tan^{3} \left(\csc^{2} (17x) \right)$