ASSIGNMENT II- Solutions

1. Consider a pipelined processor with 5 stages. It has a total evaluation time of 6 clock cycles. All successor stages must be used after each clock cycle. Draw the state transition diagram showing all possible transitions.

Ans: Reservation Table:

	1	2	3	4	5	6
S1			Χ			Χ
S2		Χ		Χ	Χ	
S3			Χ		Χ	Χ
S3 S4 S5	Χ			Χ		Χ
S5		Χ			Χ	

Initial collision vector: 10111

Forbidden Latencies: 5, 3, 2, 1 State transition diagram:

> Node A: C4: 00001 10111

2. Consider the following reservation table. Find the all the greedy cycles and show all the steps clearly.

Permissible Latencies: 6, 4

	1	2	3	4	5	6	7
Α	Χ			Χ			Х
В			Χ				
С		Х			Х		
D		Х				Χ	

Ans:

Forbidden Latencies: 6, 4, 3 Permissible Latencies: 7, 5, 2, 1 Initial collision vector: 101100

Node A:	C7: 000000	Node C:	C5: 000001	Greedy Cycle
C1: 010110	101100	C5: 000001	101100	(2*, 5*)
101100		101100		(1*,1*,7*)
	101100		101101	
111110		101100		
	Node B:		C7: 000000	
C2: 001011	C5: 011111	C7: 000000	101100	
101100	101100	101100		
			101100	
101111	111111	101100		
		Node D:	Node E:	
C5: 000001	C7: 000000	C2: 001011	C7: 000000	
101100	101100	101100	101100	
101101	101100	101100	101100	

3. Complete the state transition diagram and find all simple cycles, latency cycles and greedy cycles.

Node A:	Node B:	Node D:	Node E:	Node F:	Node H:
C1: 010010	C1: 011011	C1: 010011	C2: 001001	C7: 000000	C5: 000001
100100	100100	100100	100100	100100	100100
110110 (B)	111111 (F)	110111 (I)	101101	100100	100101
C2: 001001	C4: 000011	C4: 000010	C4: 000010	Node G:	C7: 000000
100100	100100	100100	100100	C4: 000010 100100	100100
101101 (C)	100111 (G)	100110	100110	100110	100100
C4: 000010	C7: 000000	C7: 000001	C5: 000001	100110	Node I:
100100	100100	100100	100100	C5: 000001 100100	C4: 000011 100100
100110 (D)	100100	100101	100101	100101	100111
C5: 000001	Node C:	C7: 000000	C7: 000000	100101	100111
100100	C2: 001011 100100	100100	100100	C7: 000000 100100	C7: 000000 100100
100101 (E)		100100	100100		
, ,	101111 (H)			100100	100100
C7: 000000					
100100	C5: 000001				
100100	100100				
100100	100101				
	C7: 000000				
	100100				
	100100				
Simple Cycles: w	rito all the eveles				
•	vrite all the cycles				
	write all the cycles	3			
	111 3112 2, 3100			1	ı

4. Consider the following pipeline reservation table. What will the maximum throughput of this pipeline if τ =30 ns.

Node A:	Node B:	Greedy Cycle:
C1: 01110	C1:01111	(1,1,6) = 2.667-> MAL
11100	11100	
		Maximum Throughput:
11110	11111	$\frac{1}{\tau} \times \frac{1}{MAL} = \frac{1}{30 \times 10^{-9}} \times \frac{1}{2.667}$
C2: 00111	C6: 00000	
11100	11100	
11111	11100	= 12.49 MIPS
	Node C:	
C6: 00000	C6: 00000	
11100	11100	
11100	11100	

5. Three functional pipelines are characterized by the following reservation tables. Using these three pipelines a composite pipeline is formed. Each task going through this composite pipeline in the following order: f1 first, f2 and f3 next, f1 again and then the output is obtained. Draw the reservation table for the composite pipeline and determine the MAL associated with the shortest greedy cycle.

	1	2	3	4
T1	Χ			Χ
T2		Χ		
Т3			Х	

	1	2	3	4
U1	Х		Χ	
U2				Х
U3		Х		

	1	2	3	4	5	6	7	8	9	10	11	12
S1	Χ								Х			
S2		Χ								Х		
S3			Χ	Х							Х	Х
T1					Х			Х				
T2						Χ						
Т3							Χ					
U1					Х		Χ					
U2								Х				
U3						Χ						

Node A:	Node B:		Greedy Cycle
C4: 000011100	C6: 000000111	C10: 000000000	(4*, 6*) = 5
111000111	111000111	111000111	(5*) = 5
111011111	111000111	111000111	MAL associated with shortest greedy cycle is 5
C5: 000001110	C10: 000000000		
111000111	111000111		
111001111	111000111		
	Node C:		
C6: 000000111	C5: 000001110		
111000111	111000111		
111000111	111001111		
C10: 00000000	C6: 000000111		
111000111	111000111		
111000111	111000111		

6. Find the sum of the numbers given below using an array of 16 PEs. Write the algorithm and the masking scheme for the same.

12 23 21 43 21 13 15 4 6 10

Since n=10, it requires $\lceil \log_2 10 \rceil$ steps i.e., 4 steps to find the sum

PE0	12	12	12	12	12
PE1	23	23+12=35	35	35	35
PE2	21	21+23=44	44+12=56	56	56
PE3	43	43+21=64	64+35=99	99	99
PE4	21	21+43=64	64+44=108	108+12=120	120
PE5	13	13+21=34	34+64=98	98+35=133	133
PE6	15	15+13=28	28+64=92	92+56=148	148
PE7	4	4+15=19	19+34=53	53+99=152	152
PE8	6	6+4=10	10+28=38	38+108=146	146+12=158
PE9	10	10+6=16	16+19=35	35+98=133	133+35= 168
PE10					
PE11					
PE12					
PE13					
PE14					
PE15					
		Step1	Step2	Step3	Step4

Algorithm with masking scheme:

Step 1:	Step 2:		Step 3:		Step 4:		
Ai→Ri i=08	Ai → Ri	i=07	Ai → Ri	i=05	Ai → Ri	i=01	
Ri→Ri+1 i=08	Ri→Ri+2	i=07	Ri→Ri+1	i=05	Ri→Ri+1	i=01	
Ai+Ri→Ai i=19	Ai+Ri→Ai	i=29	Ai+Ri→Ai	i=49	Ai+Ri → Ai	i=89	
Masking Scheme:			•		•		
During Data Routing:			During Add	lition:			
Step 1: PE9, PE10, PE11, F	E12, PE13, P	E14, PE15	Step 1: PE0	, PE10, PE11, P	E12, PE13, PI	E14, PE15	
Step 2: PE8, PE9, PE10, PE	11, PE12, PE	13, PE14,	Step 2: PE0, PE1, PE10, PE11, PE12, PE13, PE14,				
PE15			PE15				
Step 3: PE6, PE7, PE8, PE9	, PE10, PE11	, PE12, PE13,	Step 3: PE0, PE1, PE2, PE3, PE10, PE11, PE12, PE13,				
PE14, PE15			PE14, PE15				
Step 4: PE2, PE3, PE4, PE5		E 8, PE9,	Step 4:PE0, PE1, PE2, PE3, PE4, PE5, PE6, PE7, PE10,				
PE10, PE11, PE12, PE13, F	PE14, PE15		PE11, PE12	, PE13, PE14, P	E15		