Departamento de Matemática	Resolução	Universidade do Minho	
Álgebra		exame de recurso – primeira parte – 4 fev 2021	
Lic. em Ciências de Computação/Lic. em Matemática - 2º ano	duração: duas horas		
Nome			
Curso		Número	

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Declaração de Honra: "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova recorrendo apenas aos elementos de consulta autorizados, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual"

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1	. O conjunto dos números inteiros módulo 6 é um grupo quando consideramos a adição usual nele definida.	V⊠ F□
1	. O conjunto dos números naturais é um grupo quando consideramos a adição usual nele definida.	V□ F⊠
1	. O conjunto dos números inteiros é um grupo quando consideramos a adição usual nele definida.	V⊠F□
1	. O conjunto dos números inteiros é um grupo quando consideramos a multiplicação usual nele definida.	V□ F⊠
2	. Se * é uma operação binária não associativa num conjunto S , então $a*(b*c) \neq (a*b)*c$, para todos $a,b,c \in S$.	V□ F⊠
2	. Se * é uma operação binária associativa num conjunto S , então $(a*b)*(c*d)=a*(b*c)*d$, para todos $a,b,c,d\in S$.	V⊠ F□
2	. Se * é uma operação binária comutativa num conjunto S , então $a*(b*c)=(a*b)*c$, para todos $a,b,c\in S$.	V□ F⊠
2	. Se * é uma operação binária comutativa num conjunto S , então $a*(b*c)=(b*c)*a$, para todos $a,b,c\in S$.	V⊠F□
3	. Existe um conjunto finito A tal que $(A,*)$ é grupo, para qualquer operação binária $*$ definida em A .	V⊠ F□
3	. Existe um conjunto infinito A tal que $(A, *)$ é grupo, para qualquer operação binária $*$ definida em A .	V□ F⊠
3	. Existe um conjunto A tal que (A,st) é grupo, para qualquer operação binária st definida em A .	V⊠ F□
3	. Existe um conjunto A não vazio tal que $(A, *)$ é grupo, para qualquer operação binária $*$ definida em A .	V⊠ F□
4	. Para H ser subgrupo de um grupo G é suficiente que $H\subseteq G$.	V□ F⊠
4	. Um subgrupo pode ser definido como um subconjunto de um grupo.	V□ F⊠
4	. É condição necessária para H ser subgrupo de um grupo G que $H\subseteq G$.	V⊠F□
4	. Para H ser subgrupo de um grupo G é necessário que $H\subseteq G$.	V⊠ F□
5	. Sejam G grupo e $H, K \subseteq G$. Se $K < G$ e $H \subseteq K$ então $H < G$.	V□ F⊠
5	. Sejam G grupo e $H, K \subseteq G$. Se $H < G$ e $H \subseteq K$ então $K < G$.	V□ F⊠
5	. Sejam G grupo e $H, K \subseteq G$. Se $H < G$ e $H \subseteq K$ então $H \cup K < G$.	V□ F⊠
5	. Sejam G grupo e $H, K \subseteq G$. Se $H \cup K < G$ então $H < G$ ou $K < G$.	V□F⊠

6. Um grupo cujos subgrupos próprios são abelianos é abeliano.

6. Existem grupos não abelianos nos quais todos os subgrupos próprios são abelianos. V⊠ F□

V□ F⊠

- V⊠ F□ 6. Um grupo cujos subgrupos são abelianos é abeliano.
- 6. Todos os subgrupos não triviais de um grupo não abeliano são não abelianos. V□ F⊠
- 7. Se G é grupo, então, $G/\{1_G\} = \{\{a\} : a \in G\}$ V⊠ F□
- 7. Se G é grupo, então, $G/G = \{1_G\}$ V F⊠
- 7. Se G é grupo, então, $G/\{1_G\}=G$. V□ F⊠
- 7. Se G é grupo, então, $G/G = \{G\}$ V⊠ F□
- 8. Se G é grupo, |G|=6, H < G e |H|=2, então, $H \lhd G$. $V \square F \boxtimes$
- 8. Se G é grupo, |G| = 12, H < G e |H| = 6, então, $H \triangleleft G$. V⊠ F□
- 8. Se G é grupo, |G|=10, H < G e |H|=5, então, $H \lhd G$. V⊠ F□
- 8. Se G é grupo, |G|=6, H < G e |H|=3, então, $H \lhd G$. V⊠ F□
- 9. Sejam ${\cal G}$ o grupo multiplicativo das matrizes invertíveis de ordem 2 e $H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & -a \end{array} \right] : a \in \mathbb{R} \backslash \{0\} \right\}. \text{ Então, } H \lhd G.$ V□ F⊠
- 9. Sejam G o grupo multiplicativo das matrizes invertíveis de ordem 2 e $H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & -a \end{array} \right] : a \in \mathbb{R}^+ \right\} . \text{ Então, } H \lhd G.$ V□ F⊠
- 9. Sejam G o grupo multiplicativo das matrizes invertíveis de ordem 2 e $H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right] : a \in \mathbb{R}^+ \right\} . \text{ Então, } H \lhd G.$ V⊠ F□
- 9. Sejam G o grupo multiplicativo das matrizes invertíveis de ordem 2 e $H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right] : a \in \mathbb{R} \backslash \{0\} \right\}. \text{ Então, } H \lhd G.$ V⊠ F□
- 10. O grupo aditivo \mathbb{R}/\mathbb{Z} admite exatamente dois subgrupos. V□ F⊠
- 10. Todos os subgrupos do grupo aditivo \mathbb{R}/\mathbb{Z} são abelianos. V⊠ F□
- 10. O grupo aditivo \mathbb{R}/\mathbb{Z} admite um subgrupo não abeliano. V□ F⊠
- 10. O grupo adtivo \mathbb{R}/\mathbb{Z} admite uma infinidade de subgrupos. V⊠ F□
- 11. Todos os subgrupos do grupo $\mathbb{Z}_6 \times \mathbb{Z}_8$ são normais. V⊠ F□
- 11. Todos os subgrupos do grupo $\mathbb{Z}_4 \times \mathbb{Z}_8$ são normais. V⊠ F□
- 11. Todos os subgrupos do grupo $\mathbb{Z}_5 \times \mathbb{Z}_7$ são normais. V⊠ F□
- V⊠ F□ 11. Todos os subgrupos do grupo $\mathbb{Z}_2 \times \mathbb{Z}_3$ são normais.
- 12. O grupo $2\mathbb{Z}/6\mathbb{Z}$ tem ordem 12. V□ F⊠
- 12. O grupo $6\mathbb{Z}/12\mathbb{Z}$ tem 2 elementos. V⊠ F□
- 12. O grupo $6\mathbb{Z}/18\mathbb{Z}$ tem uma infinidade de elementos. V□ F⊠
- 12. O grupo $3\mathbb{Z}/6\mathbb{Z}$ tem ordem 2. V⊠ F□ 13. Se G é um grupo e $a \in G$ tem ordem 6, então, $o(a^2) = 3$. V⊠ F□
- 13. Se G é um grupo e $a \in G$ tem ordem 8, então, $o(a^{10}) = 4$. V⊠ F□
- 13. Se G é um grupo e $a \in G$ tem ordem 6, então, $o(a^5) = 6$. V⊠ F□
- 13. Se G é um grupo e $a \in G$ tem ordem 8, então, $o(a^{10}) = 5$. V□ F⊠

14. Todo os endomorfismos num grupo G são aplicações injetivas. V□ F⊠ 14. Seja G um grupo. O conjunto dos endomorfismos em G é um grupo para a composição usual de funções. $V \square F \boxtimes$ 14. Seja G um grupo. O conjunto dos automorfismos em G é um grupo para a composição usual de funções. $V \boxtimes F \square$ 14. Se $\varphi:G\to G$ é um endomorfismo de grupos, então, φ é sobrejetiva. V□ F⊠ 15. Existe um morfismo de grupos entre um grupo de 6 elementos e um grupo de 25 elementos. V⊠ F□ V□ F⊠ 15. Existe um morfismo de grupos não nulo entre um grupo de 6 elementos e um grupo de 25 elementos. 15. Existe um morfismo de grupos entre um grupo de 6 elementos e um grupo de 10 elementos. V⊠ F□ 15. Existe um morfismo de grupos não nulo entre um grupo de 6 elementos e um grupo de 10 elementos. $V \boxtimes F \square$ 16. O grupo quociente de um grupo cíclico é um grupo cíclico. V⊠ F□ 16. O grupo quociente de um grupo cíclico pode não ser um grupo cíclico. $V \square F \boxtimes$ $V \boxtimes F \square$ 16. O grupo quociente de um grupo que não é cíclico pode ser um grupo cíclico. 16. O grupo quociente de um grupo que não é cíclico não é um grupo cíclico. $V \square F \boxtimes$ 17. Sejam G e H grupos cíclicos de ordens 6 e 8, respetivamente. Então $G \times H$ é um grupo cíclico. $V \square F \boxtimes$ 17. Sejam G e H grupos tais que $G = \langle x \rangle$ e $H = \langle y \rangle$. Então $G \times H = \langle (x,y) \rangle$. $V \square F \boxtimes$ 17. Sejam G e H grupos cíclicos de ordens 7 e 6, respetivamente. Então $G \times H$ é um grupo cíclico. $V \boxtimes F \square$ 17. Existem grupos cíclicos G e H tais que $G \times H$ é cíclico. V⊠ F□

Em cada uma das questões seguintes, assinale a opção correta:

18.	Sabendo que $\varphi: \mathbb{Z}_m \to Z_r$	$_{\imath}$ é um mortismo de	grupos e $o($	$(\varphi([3]_m)) = 4$	1, podemos ter	
				$\Box m = \\ \Box m =$		
18.	Sabendo que $arphi: \mathbb{Z}_m o Z_r$	$_{\imath}$ é um morfismo de	grupos e o	$(\varphi([3]_m)) = 4$	1, podemos ter	
				$\boxtimes m = \square$		
18.	Sabendo que $arphi: \mathbb{Z}_m o Z_r$	$_{\imath}$ é um morfismo de	grupos e o	$(\varphi([4]_m)) = 3$	3, podemos ter	
				$ \boxtimes m = 1 $ $ \square m = 1 $		
19.	O grupo \mathbb{Z}_{20} é gerado por	$\square [2]_{20}$	$\Box [15]_{20}$	$\Box [12]_{20}$	⊠ [9] ₂₀	
19.	O grupo \mathbb{Z}_{14} é gerado por	$\square [2]_{14}$	$\square [7]_{14}$	\boxtimes [3] ₁₄	$\Box [10]_{14}$	
19.	O grupo \mathbb{Z}_{20} é gerado por	$\square [2]_{20}$	$\Box [14]_{20}$	$\Box [15]_{20}$	⊠ [7] ₂₀	
19.	O grupo \mathbb{Z}_{14} é gerado por	$\square [2]_{14}$	$\square \ [12]_{14}$	$\boxtimes [9]_{14}$	$\square [8]_{14}$	
20.	Sejam G um grupo, $K < 0$	$G \in H \lhd G$. Então				
		$\Box \ H \cap K \lhd G$ $\Box \ \{kH : k \in K\}$	$\} \lhd G/H$	$igtriangleq HF$ $\Box \{kI$	K < G $H: k \in K\} < G$	
20.	Sejam G um grupo, $H < 0$	$G \in K \triangleleft G$. Então				
		$\Box \ H \cap K \lhd G$ $\Box \ \{hK : h \in H\}$	$\} \lhd G/K$	$igtriangledown HF$ $\Box \{hI$	X < G $X : h \in H\} < G$	
21.	Sejam $G_1 = < x >$ e $G_2 =$ que $ H = 6$, podemos ter	< y > grupos cíclic	cos de orden	n 8 e 12, resp	etivamente. Sabendo	que $H < G_1 imes G_2$ é ta
		$\boxtimes H = \langle a^4 \rangle \times$ $\Box H = \langle (a^2, b^3)$	$< b^4 >$	$\Box H = \\ \Box H =$	$< a^2 > \times < b^3 >$ $< (a^4, b^6) >$	
21.	Sejam $G_1=< a>$ e $G_2=$ que $ H =10$, podemos te		os de ordem	ı 6 e 15, resp	etivamente. Sabendo	que $H < G_2 imes G_1$ é ta
				$\Box H = < b^2 > \times < a^5 >$ $\Box H = < (a^3, b^3) >$		
21.	Sejam $G_1=< a>$ e $G_2=$ que $ H =10$, podemos te		os de ordem	ı 6 e 15, resp	etivamente. Sabendo	que $H < G_1 imes G_2$ é ta
		$ \boxtimes H = <(a^3, b) $ $ \Box H = <(a^2, a^3) $	a^{3}) > a^{5}) >	$\Box H = <$ $\Box H = <$	$a^2 > \times < b^5 >$ $(a^5, b^2) >$	
22.	Sejam G um grupo de orde	em 15 e $a \in G \backslash \{1_G$	$\{a^{t}\}$ tal que a^{t}	$5 = a^{11}$. Enta	ňο,	

 $\square \ o(a) = 1$ $\square \ o(a) = 6$ $\square \ o(a) = 3$ $\square \ o(a) = 2$

$\square \ o(a) = 1 \qquad \square \ o(a) = 6 \qquad \square \ o(a) = 3 \qquad \boxtimes o(a) = 2$
23. Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=5$ e $o(b)=6$, então,
23. Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=4$ e $o(b)=10$, então,
23. Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=10$ e $o(b)=15$, então,
23. Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=4$ e $o(b)=6$, então,
$\Box o(ab) = 24$ $\Box o(ab) = 10$ $\Box o(ab) = 1$ $\Box o(ab) = 2$
24. Sejam G um grupo finito e $f:\mathbb{Z} \to G$ um epimorfismo de grupos tal que $\mathrm{Nuc} f = 5\mathbb{Z}$. Então,
$igtimes G = 5$ $\Box G > 5$ $\Box G < 5$
24. Sejam G um grupo finito e $f:\mathbb{Z} \to G$ um epimorfismo de grupos tal que $\mathrm{Nuc} f = 4\mathbb{Z}$. Então,
$\boxtimes G = 4$ $\Box G > 4$ $\Box G < 4$
24. Sejam G um grupo finito e $f:\mathbb{Z} \to G$ um epimorfismo de grupos tal que $\mathrm{Nuc} f = 3\mathbb{Z}$. Então,
$\boxtimes G = 3$ $\square G > 3$ $\square G < 3$
25. Seja $\varphi:\mathbb{Z}\to\mathbb{Z}_8 imes\mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x)=([6x]_8,[3x]_4)$, para todo o $x\in\mathbb{Z}$. Então
$ \Box \operatorname{Nuc}\varphi = \{0\} \qquad \Box \operatorname{Nuc}\varphi = 2\mathbb{Z} $ $ \boxtimes \operatorname{Nuc}\varphi = 4\mathbb{Z} \qquad \Box \operatorname{Nuc}\varphi = \mathbb{Z} $
25. Seja $\varphi:\mathbb{Z}\to\mathbb{Z}_6\times\mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x)=([4x]_6,[2x]_4)$, para todo o $x\in\mathbb{Z}$. Então
$ \Box \operatorname{Nuc}\varphi = \{0\} \qquad \qquad \boxtimes \operatorname{Nuc}\varphi = 6\mathbb{Z} $ $ \Box \operatorname{Nuc}\varphi = 12\mathbb{Z} \qquad \qquad \Box \operatorname{Nuc}\varphi = \mathbb{Z} $
25. Seja $\varphi: \mathbb{Z} \to \mathbb{Z}_8 \times \mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x) = ([4x]_8, [7x]_4)$, para todo o $x \in \mathbb{Z}$. Então
$ \Box \operatorname{Nuc}\varphi = \{0\} \qquad \Box \operatorname{Nuc}\varphi = 2\mathbb{Z} $ $ \boxtimes \operatorname{Nuc}\varphi = 4\mathbb{Z} \qquad \Box \operatorname{Nuc}\varphi = \mathbb{Z} $
25. Seja $\varphi:\mathbb{Z}\to\mathbb{Z}_8 imes\mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x)=([4x]_8,[2x]_4)$, para todo o $x\in\mathbb{Z}$. Então
$\square \operatorname{Nuc}\varphi = \{0\} \qquad \qquad \square \operatorname{Nuc}\varphi = 2\mathbb{Z}$ $\square \operatorname{Nuc}\varphi = 4\mathbb{Z} \qquad \qquad \square \operatorname{Nuc}\varphi = \mathbb{Z}$

22. Sejam G um grupo de ordem 10 e $a \in G \backslash \{1_G\}$ tal que $a^5 = a^{11}$. Então,