10. Folgerungen aus den Integralformeln

Satz 10.1 (Cauchysche Abschätzungen)

Sei $z_0 \in \mathbb{C}, r > 0, f \in H(U_r(z_0))$ und f sei auf $U_r(z_0)$ beschränkt mit $M := \sup_{U_r(z_0)} |f(z)|$.

Dann: $|f^{(n)}(z_0)| \leq \frac{Mn!}{r^n} \forall n \in \mathbb{N}_0.$

Beweis

Sei
$$0 < \rho < r, \gamma(t) := z_0 + \rho e^{it} (t \in [0, 2\pi]).$$
 9.6 $\Longrightarrow f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw.$

Für
$$w \in \text{Tr}(\gamma) : |w - z_0| = \rho$$
, also $\frac{|f(w)|}{|w - z_0|^{n+1}} \le \frac{M}{\rho^{n+1}}$

$$\stackrel{8.4}{\Longrightarrow} |f^{(n)}(z_0)| \leq \frac{n!}{2\pi} \cdot \frac{M}{\rho^{n+1}} 2\pi \rho = \frac{Mn!}{\rho^n} \stackrel{\rho \to r}{\Longrightarrow} \text{Beh.}$$

Satz 10.2 (Satz von Liouville)

Ist $f \in H(\mathbb{C})$ auf \mathbb{C} beschränkt, so ist f konstant.

Beweis

Sei
$$z_0 \in \mathbb{C}$$
 und $r > 0$. $10.1 \implies |f'(z_0)| \le \frac{M}{r}; r > 0$ beliebig.
 $\stackrel{r \to \infty}{\Longrightarrow} f'(z_0) = 0, z_0 \in \mathbb{C}$ beliebig $\implies f' = 0$ auf $\mathbb{C}.4.2 \implies \text{Beh.}$

Bemerkung: 10.2 ist in \mathbb{R} falsch. Z.B. ist $x \to \cos x$ auf \mathbb{R} beschränkt aber nicht konstant. Für $t \in \mathbb{R} : \cos(it) = \frac{1}{2}(e^{i(it)} + e^{i(-it)}) = \frac{1}{2}(e^t + e^{-t})$ = $\cosh t \to \infty (t \to \pm \infty)$

${f Hilfssatz}$

Sei $n \in \mathbb{N}.a_0, \ldots, a_n \in \mathbb{C}, a_n \neq 0$ und $p(z) := a_0 + a_1 z + \ldots + a_n z^n$. Dann ex. ein $R > 0 : |p(z)| \ge 1 \ \forall z \in \mathbb{C}$ mit |z| > R.

Beweis

Für
$$z \neq 0$$
: $\varphi(z) := \frac{|a_0|}{|z^n|} + \frac{|a_1|}{|z^{n-1}|} + \dots + \frac{|a_{n-1}|}{|z|} + |a_n|$.

$$\implies \varphi(z) \to \underbrace{|a_n|}_{\neq 0} (|z| \to \infty) \implies |p(z)| = |z|^n |\varphi(z)| \to \infty (|z| \to \infty) \implies \text{Beh.}$$

Satz 10.3 (Fundamentalsatz der Algebra)

Sei p wie in obigem Hilfssatz. Dann ex. ein $z_0 \in \mathbb{C} : p(z_0) = 0$

Beweis

Hilfssatz $\implies \exists R > 0 : |p(z)| \ge 1 \forall z \in \mathbb{C} \text{ mit } |z| > R.$ Annahme: $p(z) \neq 0 \forall z \in \mathbb{C}$. Dann $q := \frac{1}{p} \in H(\mathbb{C})$ und $|q(z)| \leq 1$ für $z \in \mathbb{C}$ mit |z| > R. q ist stetig $\implies q$ ist beschränkt auf $U_R(0) \implies q$ ist auf \mathbb{C} beschränkt. $10.2 \implies q$ ist konstant $\implies p$ ist konstant, Wid!

Satz 10.4 (Potenzreihenentwicklung)

Sei $D \subseteq \mathbb{C}$ offen, $f \in H(D), z_0 \in D$ und r > 0 so, dass $U_r(z_0) \subseteq D$. Dann:

$$(*)f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad \forall z \in U_r(z_0)$$

wobei

$$(**)a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

mit
$$\gamma(t) = z_0 + \rho e^{it}, t \in [0, 2\pi], 0 < \rho < r$$

Beweis

(**) folgt aus (*), 5.4 und 9.6. O.B.d.A.: $z_0 = 0$.

Sei $z \in U_r(0)$ und sei R > 0 so, dass |z| < R < r;

$$\gamma_0(t) := z_0 + R \cdot e^{it} \ (t \in [0, 2\pi]).$$

Sei
$$w \in \text{Tr}(\gamma_0)$$
. Dann $\frac{|z|}{|w|} = \frac{|z|}{R} < 1$, also $\frac{f(w)}{w-z} = \frac{f(w)}{w} \cdot \frac{1}{1-\frac{z}{w}} = \sum_{n=0}^{\infty} \frac{f(w)}{w^{n+1}} z^n$.

Also
$$\int_{\gamma_0} \frac{f(w)}{w - z} dw = \int_{\gamma_0} \left(\sum_{n=0}^{\infty} \frac{f(w)}{w^{n+1}} z^n \right) dw$$

Also
$$\int_{\frac{\gamma_0}{w}} \frac{f(w)}{w - z} dw = \int_{\gamma_0} \left(\sum_{n=0}^{\infty} \frac{f(w)}{w^{n+1}} z^n \right) dw$$

$$\stackrel{\text{8.4}}{=} \sum_{n=0}^{\infty} \left(\int_{\frac{\gamma_0}{w}} \frac{f(w)}{w^{n+1}} dw \right) z^n \implies f(z) = \sum_{n=0}^{\infty} \left(\frac{f^{(n)}(0)}{n!} \right) z^n$$

Bemerkungen:

(1) 10.4 ist in \mathbb{R} falsch.

Bekannt aus der Analysis: Die Funktion

$$f(x) := \begin{cases} e^{-1/x^2} & , x \in \mathbb{R} \setminus \{0\} \\ 0 & , x = 0 \end{cases}$$

ist auf \mathbb{R} bel. oft db und $f^{(n)}(0) = 0 \,\forall n \in \mathbb{N}_0$.

Also:
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \equiv 0 \text{ auf } \mathbb{R}.$$

(2) Die Entwicklung (*) gilt in der größten offenen Kreisscheibe um z_0 , die noch ganz in Dliegt. Sei r_0 der Radius dieser Kreisscheibe (ist $D = \mathbb{C}$, so ist $r = \infty$). Sei R der KR der PR in (*). Also : $R \geq r_0$.

Satz 10.5 (Konvergenzsatz von Weierstraß)

 $D \subseteq \mathbb{C}$ sei offen, (f_n) sei eine Folge in H(D) und (f_n) konvergiere auf D lokal gleichmäßig gegen eine Funktion $f: D \to \mathbb{C}$.

- (1) $f \in H(D)$
- (2) (f'_n) konvergiere auf D lokal gleichmäßig gegen f'.

Beweis

- (1) $5.1 \Rightarrow f \in C(D)$. Sei $\Delta \subseteq D$ ein Dreieck. (f_n) konvergiere auf $\partial \Delta$ gleichmäßig $\Rightarrow \int_{\partial \Delta} f(z) dz \stackrel{8.4}{=} \lim_{n \to \infty} \int_{\partial \Delta} f_n(z) dz \stackrel{9.1}{=} 0$. $9.7 \Rightarrow f \in H(D)$.
- (2) O.B.d.A. f = 0 auf D (ansonsten betrachte $f_n f$). Sei $z_0 \in D$ und r > 0 so, daß $\overline{U_r(z_0)} \subseteq D$. Es genügt zu zeigen: (f'_n) konvergiert auf $\overline{U_{\frac{r}{2}}(z_0)}$ gleichmäßig gegen 0. $\gamma(t) := z_0 + r \cdot e^{it} (t \in [0, 2\pi])$. $M_n := \max_{w \in \text{Tr}(\gamma)} |f_n(w)|$ Vor $\Rightarrow M_n \to 0$. Sei $z \in \overline{U_{\frac{r}{2}}(z_0)}$. $f'_n(z) \stackrel{9.6}{=} \frac{1}{2\pi i} \int_{\gamma} \frac{f_n(w)}{(w-z)^2} dw$ $w \in \text{Tr}(\gamma) : |w-z| \ge \frac{r}{2} \Rightarrow \frac{|f_n(w)|}{|w-z|^2} \le \frac{4M_n}{r^2}$ $\Rightarrow |f'_n(z)| \le \frac{1}{2\pi} \frac{4M_n}{r^2} 2\pi r = \frac{4M_n}{r}$ Also: $|f'_n(z)| \le \frac{4M_n}{r} \forall z \in \overline{U_{\frac{r}{2}}(z_0)} \forall n \in \mathbb{N}$ und $M_n \to 0$.