germline configuration, wherein the translocus shows high expression, and is able to compete with the endogenous mouse κ locus.

- 2. (Amended) A transgenic mouse comprising as a translocus a yeast artificial chromosome (YAC) of about 410 Kb, wherein the YAC contains at least a majority of the human $V\lambda$ genes of cluster A and all the human $J\lambda$ $C\lambda$ segments in germline configuration, wherein the mouse has one or both endogenous $Ig\kappa$ alleles disrupted, and wherein the translocus shows high expression.
- 3. (Amended) A transgenic mouse comprising a 380 Kb region of the human immunoglobulin (Ig) λ light (L) chain locus in germline configuration, wherein the 380 Kb region resides on a yeast artificial chromosome (YAC) that accommodates the most proximal V (variable gene) λ cluster, wherein the 380 Kb regions has 15 V λ genes and all J λ C λ segments with the 3' region, wherein the 3' region includes a downstream enhancer.
- 4. (Amended) A transgenic mouse comprising human Ig lambda genes in which the proportion of the κ and λ light chains expressed by said transgenic mouse resembles that found in humans, and exhibits relative proportions of $\leq 60\%$ κ light chains and $\geq 40\%$ λ light chains.
 - 7. (Amended) A method for producing a transgenic mouse according to

claim 1, comprising:

- (a) introducing a Hulgλ YAC into murine embryonic stems cells; and
- (b) deriving a transgenic mouse from the cells of step (a) by blastocyte injection to form a chimeric animal and then breeding the chimeric mouse to obtain a transgenic mouse.
- 17. (Amended) The transgenic mouse according to claim 16, wherein the YAC includes a 380 Kb region of the human $Ig\lambda$ locus in authentic configuration with at least a majority of $V\lambda$ genes of cluster A, $J\lambda$ -C λ segments and a 3' enhancer.
- 18. (Amended) A transgenic mouse comprising variable, joining and constant genes of the human λ light chain locus as a transgenic locus on a yeast artificial chromosome (YAC), wherein B cells of said mouse rearrange said λ light chain genes and the mouse expresses serum immunoglobulins containing human λ light chains.
- 22. (Amended) The transgenic mouse carrying human λ light chain genes according to claim 21, wherein the second transgenic locus carries a diversity of human heavy chain constant region genes and includes μ , δ and γ genes.
- 23. (Amended) The transgenic mouse carrying human λ light chain genes and human heavy chain genes according to claim 22, wherein the heavy chain

transgenic locus carries a diversity of human heavy chain constant region genes and includes μ , δ and γ genes, wherein the heavy chain constant region genes are in authentic germline configuration.

- 25. (Amended) The transgenic mouse carrying human λ light chain genes according to claim 16, further comprising human heavy chain genes as a second transgenic locus and human κ light chain genes as a third transgenic locus, wherein the mouse expresses serum immunoglobulin molecules containing human heavy chains in combination with at least one of human κ or λ light chains.
- 26. (Amended) The transgenic mouse carrying human λ light chain genes according to claim 16, wherein expression of the endogenous mouse heavy and/or light chain loci has been prevented [through gene targeting or other means] and which expresses serum immunoglobulin containing human heavy and/or light chains, wherein the transgenic mouse is deficient in production of mouse immunoglobulin.
- 27. (Amended) A transgenic mouse carrying human λ light chain genes in which expression of the human λ locus is equal to or greater than that of a κ locus.