Math2033 TA note 9

Yang Yunfei, Chen Yipei, Liu Ping April 7, 2019

1 CONTINUITY

Example 1. (a) Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{Q}$. (b) Find all strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

Solution: (a) The function f(x) = cx with $c \in \mathbb{R}$ satisfies the requirement. We show that all functions we want to find have this form.

Observe that f(0) = f(0) + f(0) and f(x) + f(-x) = f(0). So f(0) = 0 and f(-x) = f(x). By mathematical induction, we can show that f(nx) = nf(x) for any $n \in \mathbb{Z}$. If we take $x = \frac{1}{n}$, then $f(1) = nf(\frac{1}{n})$ i.e. $f(\frac{1}{n}) = \frac{1}{n}f(1)$. Therefore, for any $x \in \mathbb{Q}$, x = p/q for some $p, q \in \mathbb{Z}$ and we have

$$f(x) = f(\frac{p}{q}) = pf(\frac{1}{q}) = \frac{p}{q}f(1) = f(1)x.$$

So f have the form f(x) = cx with $c = f(1) \in \mathbb{R}$.

(b) Since f satisfies the condition in (a), f(x) = f(1)x for $x \in \mathbb{Q}$. For any $x \in \mathbb{R}$, there exist $a_n, b_n \in \mathbb{Q}$ such that $a_n \le x \le b_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x$. Since f is strictly increasing, f(1) > 0, and

$$a_n f(1) = f(a_n) \le f(x) \le f(b_n) = b_n f(1)$$
.

Taking limit, we have f(x) = f(1)x. So the function f must have the form f(x) = cx with c = f(1) > 0.

Example 2. f is differentiable and $\lim_{x\to 0} f'(x)$ exists, prove that f' is continuous at 0.

Solution: Denote $\lim_{x\to 0} f'(x) = L$. We suppose f'(0) = a < L, and for suitable $\epsilon > 0$ such that

$$a < L - \epsilon < L$$

by $\lim_{x\to 0} f'(x) = L$, there $\exists \delta > 0, \forall 0 < |x| \le \delta, |f'(x) - L| < \epsilon$. That is in the region $0 < |x| \le \delta$,

$$|f'(x)| > L - \epsilon$$
.

For *b* such that $a < b < L - \epsilon$, we define

$$g(x) = f(x) - bx$$
.

g is continuous and differentiable, g can attain its minimum value in $[0,\delta]$. By g'(0)=a-b<0, $g'(\delta)>L-\varepsilon-b>0$, we see g cannot attain the minimum value at boundary. It attains minimum value in $(0,\delta)$. Then $g'(\xi)=0$ for some $\xi\in(0,\delta)$. Because $0<|x|\le\delta,|f'(x)|>L-\varepsilon$, this contradicts to $f'(\xi)=b< L-\varepsilon$. So the assumption is false. In the same fashion, we can prove f'(0) can not large than L. So f'(0)=L and f' is continuous at 0.

Example 3. Suppose $f, g : [1,2] \rightarrow [3,4]$ are continuous functions and also $\{g(x) : x \in [1,2]\} = [3,4]$. Show that there is $c \in [1,2]$ such that f(c) = g(c).

Solution: Since $\{g(x): x \in [1,2]\} = [3,4]$, there are $x_0, x_1 \in [1,2]$ such that $g(x_0) = 3$ and $g(x_1) = 4$. Further, since $f: [1,2] \to [3,4]$, we have $(f-g)(x_0) = f(x_0) - 3 \ge 0$ and $(f-g)(x_1) = f(x_1) - 4 \le 0$. Since f-g is continuous on [1,2], by intermediate value theorem, there is c between x_0, x_1 and hence $c \in [1,2]$ such that (f-g)(c) = 0, i.e., f(c) = g(c).

Example 4 (Equivalent definition of Differentibility). f is differentiable at $x_0 \iff f(x_0+h) = f(x_0) + f'(x_0)h + R(x_0,h)$ with $\lim_{h\to 0} \frac{R(x_0,h)}{h} = 0$.

Solution: By definition, f is differentiable at $x_0 \iff \forall \epsilon > 0, \exists \delta > 0$, such that $0 < |h| < \delta$,

$$\left|\frac{f(x_0+h)-f(x_0)}{h}-f'(x_0)\right|<\epsilon$$

 $\iff \forall \epsilon > 0, \exists \delta > 0$, such that $0 < |h| < \delta$,

$$|\frac{R(x_0,h)}{h}| = |\frac{f(x_0+h) - f(x_0) - f'(x_0)h}{h}| < \epsilon$$

 $\iff f(x_0 + h) = f(x_0) + f'(x_0)h + R(x_0, h) \text{ with } \lim_{h \to 0} \frac{R(x_0, h)}{h} = 0.$