Глубокое метамоделирование

Ю.В. Литвинов

y.litvinov@spbu.ru

13.03.2018г

О визуальных языках

- Модели неформальные или формальные
- ▶ Языки моделирования: UML, IDEFx, BPMN, SDL, ...
- Языки визуального программирования: Simulink, LabView, ...
- ► Предметно-ориентированные визуальные языки: TRIK Studio, Robolab, Node-RED, ...

© N. Medvidovic

Язык UML

- Самый известный визуальный язык
- Появился в середине 90-х
- Не язык, а набор языков
- 14 разных видов диаграмм
- Единое описание, общее "ядро" языка
- Плохо с семантикой
- Использует метамоделирование для задания синтаксиса

Метамоделирование

Уровни моделирования	Языковые средства	Пример
Предметная область	Нет	Каталог фильмов
Модель	Визуальный язык	Диаграмма классов
Метамодель	Метаязык	Метамодель диаграммы классов Класс -Име: String -Име: String - Тип: String 1 Ассоциация
Метаметамодель	Метаязык	Метамодель метаязыка Узел

Hеоднозначность толкования "instanceOf"

© J. Bezivin et al., Ontology-Based Layered Semantics for Precise OA&D Modeling, 1997

Неоднозначность толкования "instanceOf"

Собственно проблема

Ещё один пример

© C. Atkinson, Th. Kuhne, The Essence of Multilevel Metamodeling, 2001

Умножение сущностей

© C. Atkinson, Th. Kuhne, The Essence of Multilevel Metamodeling, 2001

"Пользовательский уровень", подпрограммы

9/19

Глубокое метамоделирование

- Разрешить метатипам определять структуру элементов на несколько метауровней ниже
- ▶ Clabject класс-объект, с атрибутами и полями со значениями
- ▶ Potency число, показывающее, на сколько метауровней вниз элемент может быть инстанцирован
- ▶ Level метауровень, на котором определён элемент
- Инстанцирование применимо только к элементам с potency > 0 и уменьшает potency и level на 1
- ▶ Dual fields поля, имеющие значение, и могущие быть инстанцированы
- ▶ Single fields "обычные" поля, принимающие значение, только если их potency = 0

Пример

© C. Atkinson, Th. Kuhne, The Essence of Multilevel Metamodeling, 2001

Метаметамодель для глубокого метамоделирования

© C. Atkinson, Th. Kuhne, The Essence of Multilevel Metamodeling, 2001

Ортогональное метамоделирование

© C. Atkinson, Th. Kuhne, Model-driven development: a metamodeling foundation, 2003

Пример из реальной жизни

© C. Atkinson, Th. Kuhne, Model-driven development: a metamodeling foundation, 2003

Melanee

© C. Atkinson, R. Gerbig, Flexible Deep Modeling with Melanee, 2016

WebDPF

© F. Rabbi et al. WebDPF: A web-based metamodelling and model transformation environment,

2016

REAL.NET

Корневая метамодель REAL.NET

Заключение

- UML 2.0, вышедший в 2005 году, придерживается четырёхуровневой схемы, как и UML 2.5.1
- Реализации глубокого метамоделирования начали появляться только в 2010-х, далеки от внедрения
 - ▶ MetaDepth, текстовая среда моделирования от авторов AToM³
- ► Есть и другие интересные подходы, например, Powertypes