Maxwell's Equations (Guassian)	Maxwell's Equations (SI)
Electrodynamics	Electrodynamics
Gaussian Integrals	Stirling's Approximation
General Math	General Math
Adiabatic Process	Adiabatic Properties of Ideal Gas
Thermodynamics	Thermodynamics
Bose-Einstein Distribution	Carnot Efficiency
Thermodynamics	Thermodynamics

Carnot Cycle

THERMODYNAMICS THERMODYNAMICS

Equipartition Theorem

$$\begin{split} \vec{\nabla} \cdot \vec{D} &= \rho_f \\ \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} &= 0 \\ \vec{\nabla} \times \vec{H} &= \frac{\partial \vec{D}}{\partial t} + \vec{J}_f \end{split}$$

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho_f \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{D}}{\partial t} + 4\pi \vec{J}_f \right)$$

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \qquad I_n(x) = \int_0^\infty x^n e^{-ax^2} dx = \begin{cases} \frac{1}{2} \sqrt{\frac{\pi}{a^{m+1}}} \frac{(2m)!}{4^m m!} & n = 2m \\ \frac{1}{2} \frac{1}{a^{k+1}} k! & n = 2k+1 \end{cases}$$

$$\ln n! \approx n \ln n - n \qquad I_0(x) = \frac{1}{2} \sqrt{\frac{\pi}{a}} \qquad I_1(x) = \frac{1}{2a}$$

$$I_2(x) = \frac{1}{4a} \sqrt{\frac{\pi}{a}} \qquad I_3(x) = \frac{1}{2a^2}$$

$$T_1 V_1^{\gamma - 1} = \text{const}$$

 $T_1^{\gamma/(1 - \gamma)} P_1 = \text{const}$
 $P_1 V_1^{\gamma} = \text{const}$

Also called *isentropic*. $\Delta S = 0$ in the process. Use the thermodynamic identity at constant volume and a systems internal energy equation to derive properties about the entropy of the system.

$$\eta = 1 - \frac{T_l}{T_h} \qquad \qquad f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} - 1}$$

A classical gas's energy gains $\frac{1}{2}k_BT$ for each degree of freedom. An ideal monotomic gas has $U=\frac{3}{2}k_BT$ from three translational degrees of freedom, while an ideal diatomic gas has $U=\frac{5}{2}k_BT$ from an additional two degrees of rotational freedom.

Characterized by alternating stages of isothermal and isentropic expansion and compression. Work done is

$$W = (T_h - T_l) (S_H - S_L)$$

where T_l and T_h are the low and high temperatures reached during the cycle and S_L and S_H are the low and high entropies of the working substance.

Fermi Gasses

Fermi-Dirac Distribution

THERMODYNAMICS

THERMODYNAMICS

Gibbs Free Energy

Helmholtz Free Energy

THERMODYNAMICS

THERMODYNAMICS

Ideal Gasses

Ideal Gas (RMS Average Speed)

THERMODYNAMICS

THERMODYNAMICS

Ideal Monoatomic Gas

Maxwell Speed Distribution

Thermodynamics

THERMODYNAMICS

Partition Function

Photon Gasses

THERMODYNAMICS

THERMODYNAMICS

$$f\left(\varepsilon\right) = \frac{1}{e^{\left(\varepsilon - \mu\right)/k_{B}T} + 1}$$

- 1. High kinetic energy
- 2. Low heat capacity
- 3. Low magnetic susceptibility
- 4. Low interparticle collision rate
- 5. High pressure

Acts as effective energy in isothermal changes of volume.

$$F \equiv U - TS$$
$$dF = dU - SdT$$

$$G \equiv U + PV - TS$$

Derived by considering a single particle. For translation in three dimensions $KE=\frac{3}{2}k_BT$ and also $KE=\frac{1}{2}mv^2$ so that when combined,

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v = \sqrt{\frac{3k_BT}{m}}$$

$$PV = nRT$$

$$PV = Nk_BT$$

$$Z_N = \frac{Z_1^N}{N!}$$

$$f\left(v\right) = \sqrt{\left(\frac{m}{2\pi k_B T}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

$$v_{\rm rms} = \sqrt{\frac{3k_BT}{m}}$$
 $\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$

$$C_V = \frac{3}{2}Nk_B \qquad C_P = \frac{5}{2}Nk_B$$

$$U = \frac{3}{2}Nk_BT \qquad \gamma = \frac{5}{3}$$

$$U = \sigma_b V T^4$$

$$P = \frac{1}{3} \sigma_b V T^4$$

$$\mu = 0$$

$$Z = \sum_n e^{-\varepsilon_n/k_B T}$$

$$U = k_B T^2 \frac{\partial \ln Z}{\partial T} \qquad F = -k_B T \ln Z$$

Planck Distribution function	Planck Spectral Density (frequency)
Thermodynamics	Thermodynamics
Radiant Energy Flux (blackbody)	Stefan-Boltzmann Law (energy density)
Thermodynamics	Thermodynamics
Thermodynamic Identity	
Thermodynamics	

$$u_{\omega} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/k_B T} - 1}$$

$$\langle s \rangle = \frac{1}{e^{\hbar \omega / k_B T} - 1}$$

$$\frac{U}{V} = u = \frac{\pi^2 k_B^3}{15\hbar^3 c^3} T^4$$
$$u = \sigma_B T^4$$
$$u = \frac{4}{c} J_u$$

$$J_u = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4$$

$$J_u = \frac{c}{4} u$$

$$dU = TdS - PdV + \mu dN$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = T \left(\frac{\partial S}{\partial T}\right)_V \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S$$