Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$ stables par produit donc ce sont des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$.

$$\boxed{2} \ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in S_2(\mathbb{K}) \text{ et } B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in S_2(\mathbb{K}) \text{ mais } AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \notin S_2(\mathbb{K}). \text{ Par consequent } S_2(\mathbb{K}) \text{ n'est pas une sous-algèbre de } \mathcal{M}_2(\mathbb{K}).$$

$$C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in A_2(\mathbb{K}) \text{ mais } C^2 = -I_2 \notin A_2(\mathbb{K}) \text{ donc } A_2(\mathbb{K}) \text{ n'est pas une sous-algèbre de } \mathcal{M}_2(\mathbb{K}).$$

$$\boxed{\mathbf{3}} \ \mathbf{A}_n = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \in \mathbf{S}_n(\mathbb{K}) \ \text{et} \ \mathbf{B}_n = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \in \mathbf{S}_n(\mathbb{K}) \ \text{mais} \ \mathbf{A}_n \mathbf{B}_n = \begin{pmatrix} \mathbf{A} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \not\in \mathbf{S}_n(\mathbb{K}) \ \text{donc} \ \mathbf{S}_n(\mathbb{K}) \ \text{n'est pas une sous-algèbre de } \mathcal{M}_n(\mathbb{K}).$$

$$\mathbf{C}_n = \left(\begin{array}{c} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right) \in \mathbf{A}_n(\mathbb{K}) \text{ mais } \mathbf{C}_n^2 = \left(\begin{array}{c} -\mathbf{I}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right) \not\in \mathbf{A}_n(\mathbb{K}) \text{ donc } \mathbf{A}_n(\mathbb{K}) \text{ n'est pas une sous-algèbre de } \mathcal{M}_n(\mathbb{K}).$$

4 Facile.

 $\boxed{\textbf{5}} \text{ Soit } \mathcal{B} \text{ une base de E adaptée à F. Alors } u \in \mathcal{A}_{\mathrm{F}} \text{ si et seulement si } \mathrm{mat}_{\mathcal{B}}(u) \text{ est de la forme } \begin{pmatrix} \mathrm{A} & \mathrm{B} \\ 0 & \mathrm{C} \end{pmatrix} \mathrm{où} \ \mathrm{A} \in \mathcal{M}_p(\mathbb{K}), \\ \mathrm{B} \in \mathcal{M}_{p,n-p}(\mathbb{K}) \text{ et } \mathrm{C} \in \mathcal{M}_{n-p}(\mathbb{K}). \text{ Comme l'application } \mathrm{mat}_{\mathcal{B}} \text{ est un isomorphisme}, \\ \mathcal{A}_{\mathrm{F}} \text{ est isomorphe à l'espace vectoriel}$

$$\left\{ \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C} \end{array} \right), \ \mathbf{A} \in \mathcal{M}_p(\mathbb{K}), \ \mathbf{B} \in \mathcal{M}_{p,n-p}(\mathbb{K}), \ \mathbf{C} \in \mathcal{M}_{n-p}(\mathbb{K}) \right\}$$

Ainsi

$$\dim \mathcal{A}_{\mathrm{F}} = \dim \mathcal{M}_{p}(\mathbb{K}) + \dim \mathcal{M}_{p,n-p}(\mathbb{K}) + \dim \mathcal{M}_{n-p}(\mathbb{K}) = p^{2} + p(n-p) + (n-p)^{2} = n^{2} - pn + p^{2}$$

6 Remarquons que

$$n^2 - pn + p^2 = \left(p - \frac{n}{2}\right)^2 + \frac{3n^2}{4}$$

Ainsi $n^2 - pn + p^2$ est maximum quand p = 1 ou p = n - 1 et ce maximum vaut $n^2 - n + 1$.

7 Facile.

 $\boxed{\mathbf{8}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{appartient à } \Gamma(\mathbb{R}) \text{ mais n'est pas diagonalisable dans } \mathcal{M}_2(\mathbb{R}) \text{ car son polynôme caractéristique } X^2 + 1 \text{ n'est pas scind\'e sur } \mathbb{R}. \ \Gamma(\mathbb{R}) \text{ n'est donc pas une sous-algèbre diagonalisable de } \mathcal{M}_2(\mathbb{R}).$

9 A nouveau, le polynôme caractéristique de $K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est $X^2 + 1$, qui est scindé à racines simples sur $\mathbb C$. Il existe donc une matrice diagonale D et une matrice inversible P telles que $D = P^{-1}KP$. Soit alors $M \in \Gamma(\mathbb C)$. Il existe donc $(a,b) \in \mathbb C^2$ tel que $M = aI_2 + bK$. Alors $P^{-1}MP = aI_2 + bD$ est bien diagonale. $\Gamma(\mathbb C)$ est donc une sous-algèbre diagonalisable de $\mathcal M_2(\mathbb C)$.

1

10 Clairement, $J = J(0, 1, 0, ..., 0) = J(e_2)$. Four tout $j \in [1, n-2]$, $\varphi^2(e_i) = e_{i+2}$, $\varphi^2(e_{n-1}) = e_1$ et $\varphi^2(e_n) = e_2$. Ainsi $J^2 = I_2$ si n = 2 et $J^2 = J(0, 0, 1, 0, ..., 0) = I_2$ $J(e_3)$ si $n \ge 3$.

- | 11 | Soit $k \in [2, n-1]$. Alors
 - si $j + k \le n$, alors $\varphi^k(e_i) = e_{i+k}$;
 - si j + k > n, alors

$$\varphi^k(e_j) = \varphi^{k-n+j-1} \circ \varphi \circ \varphi^{n-j}(e_j) = \varphi^{k-n+j-1} \circ \varphi(e_n) = \varphi^{k-n-j+1}(e_1) = e_{j+k-n}$$

Ainsi $J^k = J(e_{k+1})$. De plus,

$$\forall j \in [1, n], \ \varphi^n(e_i) = \varphi^{j-1} \circ \varphi \circ \varphi^{n-j}(e_i) = \varphi^{j-1} \circ \varphi(e_n) = \varphi^{j-1}(e_1) = e_i$$

Donc $J^n = I_n$.

12 On a clairement

$$\forall (a_0, \dots, a_{n-1}) \in \mathbb{R}^n, \ J(a_0, \dots, a_{n-1}) = \sum_{k=0}^{n-1} a_k J^k$$

13 D'après la question précédente,

$$\mathcal{A} = \text{vect}(\mathbf{I}_n, \mathbf{J}, \dots, \mathbf{J}^{n-1})$$

 $\text{donc } \mathcal{A} \text{ est bien un espace vectoriel et } (\mathbf{I}_n, \mathbf{J}, \dots, \mathbf{J}^{n-1}) \text{ en est une famille génératrice}.$ De plus, si $(a_0, \dots, a_{n-1}) \in \mathbb{R}^n$ vérifie $\sum_{k=0}^{n-1} a^k \mathbf{J}^k = 0$, alors $\mathbf{J}(a_0, \dots, a_{n-1}) = 0$ et donc $(a_0, \dots, a_{n-1}) = (0, \dots, 0)$. La famille $(I_n, J, ..., J^{n-1})$ est donc libre : c'est une base de A.

14 Si M commute avec tout élément de \mathcal{A} , alors M commute avec $J \in \mathcal{A}$.

Si M commute avec J, on montre par récurrence que M commute avec toutes les puissances de J. Par bilinéarité du produit matriciel, M commute avec toutes les combinaisons linéaires de ces puissances i.e. avec tout élément de \mathcal{A} .

15 Remarquons qu'en fait, $\mathcal{A} = \mathbb{R}[J]$. L'inclusion $\mathcal{A} \subset \mathbb{R}[J]$ est claire. Inversement, si l'on se donne $M \in \mathbb{R}[J]$, il existe $P \in \mathbb{R}[X]$ tel que M = P(J). Notons Q et R le quotient et le reste de la division euclidienne de P par $X^n - 1$. Alors $P = (X^n - 1)Q + R \text{ puis } P(J) = (J^n - I_n)Q(J) + R(J) = R(J) \in \mathcal{A} \text{ car deg } J \le n - 1.$ D'après le cours, $\mathcal{A} = \mathbb{R}[J]$ est alors une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

16 On développe χ_I par rapport à sa dernière colonne

$$\chi_{J} = \begin{vmatrix} X & 0 & \cdots & 0 & -1 \\ -1 & X & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & X & 0 \\ 0 & \cdots & 0 & -1 & X \end{vmatrix}$$

$$= X \begin{vmatrix} X & 0 & 0 & \cdots & 0 \\ -1 & X & \ddots & & \vdots \\ 0 & \ddots & \ddots & 0 & 0 \\ \vdots & \ddots & -1 & X & 0 \\ 0 & \cdots & 0 & -1 & X \end{vmatrix} + (-1)^{n} \begin{vmatrix} -1 & X & 0 & \cdots & 0 \\ 0 & -1 & X & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & X \\ 0 & \cdots & 0 & 0 & -1 \end{vmatrix}$$

$$= X \cdot X^{n-1} + (-1)^{n} \cdots (-1)^{n-1} = X^{n} - 1$$

17 $X^n - 1$ est scindé à racines simples dans $\mathbb C$ donc J est diagonalisable dans $\mathcal M_n(\mathbb C)$.

Si n = 2, $\chi_{J} = X^2 - 1 = (X - 1)(X + 1)$ est scindé à racines simples sur \mathbb{R} donc J est diagonalisable dans $\mathcal{M}_{2}(\mathbb{R})$. Si $n \geq 3$, $\omega = e^{\frac{2i\pi}{n}}$ est une racine non réelle de χ_J donc χ_J n'est pas scindé sur $\mathbb R$ et J n'est pas diagonalisable dans $\mathcal M_2(\mathbb R)$. 19 Les racines de χ_I sont les ω^k pour $k \in [0, n-1]$. Puisque toutes ces racines sont simples, leurs sous-espaces propres

associés sont de dimension 1. On vérifie que $U_k = \begin{bmatrix} \omega^{(n-2)k} \\ \vdots \\ \omega^k \end{bmatrix}$ est un vecteur propre de J associé à la valeur propre ω^k .

Ainsi pour tout $k \in [0, n-1], E_{\omega^k}(J) = \text{vect}(U_k)$

20 \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ qui est lui-même un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ donc \mathcal{A} est un sousespace vectoriel de $\mathcal{M}_n(\mathbb{C})$. \mathcal{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ donc est stable par produit. Ainsi \mathcal{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$.

Comme J est diagonalisable, il existe $P \in GL_n(\mathbb{C})$ et $D \in \mathcal{M}_n(\mathbb{C})$ diagonale telle que $P^{-1}JP = D$. Alors pour tout $k \in [0, n-1], P^{-1}J^kP = D^k$. Soit $A \in \mathcal{A}$. Il existe $(a_0, \dots, a_{n-1}) \in \mathbb{R}^n$ tel que $A = \sum_{k=0}^{n-1} a_k J^k$. Alors $P^{-1}AP = \sum_{k=0}^{n-1} a_k D^k$ est diagonale.

22 Avec les notations de l'énoncé, $J(a_0, \dots, a_{n-1}) = Q(J)$. Avec les notations de la question précédente, $D = \text{diag}(1, \omega, \dots, \omega^{n-1})$ donc

$$P^{-1}J(a_0, ..., a_{n-1})P = diag(Q(1), Q(\omega), ..., Q(\omega^{n-1}))$$

On en déduit que

$$\mathrm{Sp}_{\mathbb{C}}(\mathrm{J}(a_0,\ldots,a_{n-1})) = \left\{ \mathrm{Q}(1),\mathrm{Q}(\omega),\ldots,\mathrm{Q}(\omega^{n-1}) \right\}$$

- 23 Classique.
- **24** $r = \dim \mathcal{A}^{\perp} = \dim \mathcal{M}_n(\mathbb{R}) \dim \mathcal{A} = n^2 d.$
- 25 Evident.
- **26** Soit $N \in \mathcal{A}$ et $i \in [1, r]$. Alors

$$\forall M \in \mathcal{A}, \langle M \mid N^{\mathsf{T}} A_i \rangle = \operatorname{tr}(M^{\mathsf{T}} N^{\mathsf{T}} A_i) = \operatorname{tr}((NM)^{\mathsf{T}} A_i) = \langle NM \mid A_i \rangle = 0$$

car NM $\in \mathcal{A}$ (stabilité de \mathcal{A} par produit) et $A_i \in \mathcal{A}^{\perp}$. Ainsi $N^{\top}A_i \in \mathcal{A}^{\perp}$.

Soit $(A, B) \in \mathcal{A}^T$. Il existe donc $(M, N) \in \mathcal{A}^2$ tel que $A = M^T$ et $B = N^T$. Alors $AB = M^TN^T = (NM)^T$. Or $NM \in \mathcal{A}$ car \mathcal{A} est stable par produit. Ainsi $AB \in \mathcal{A}^T$ et \mathcal{A}^T est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

Soit $A \in \mathcal{A}^T$. Il existe donc $M \in \mathcal{A}$ tel que $A = M^T$. Pour tout $i \in [1, r]$, $AA_iX = M^TA_iX$. Or d'après la question $\overline{\mathbf{26}}, \mathbf{M}^{\mathsf{T}} \mathbf{A}_i \in \mathcal{A}^{\mathsf{T}} = \text{vect}(\mathbf{A}_1, \dots, \mathbf{A}_r)$. Ainsi $\mathbf{AA}_i \mathbf{X} \in \text{vect}(\mathbf{A}_1 \mathbf{X}, \dots, \mathbf{A}_r \mathbf{X}) = \mathbf{F}$. Comme $(\mathbf{A}_1 \mathbf{X}, \dots, \mathbf{A}_r \mathbf{X})$ engendre \mathbf{F} , \mathbf{F} est stable par l'endomorphisme canoniquement associé à A.

29 Si $r \ge n$, alors $d = n^2 - r \le r^2 - n < n^2 - n + 1$.

Supposons maintenant $r \le n-1$. On peut choisir $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A_1X \ne 0$ car $A_1 \ne 0$ en tant que vecteur d'une base. Ainsi dim $F \ge 1$. De plus, F est engendré par les r vecteurs $A_1X, ..., A_rX$ donc dim $F \le r \le n - 1$. Notons \mathcal{E} l'ensemble des endomorphismes canoniquement associés aux éléments de \mathcal{A}^T . Alors \mathcal{E} est une sous-algèbre de

 $\mathcal{L}(\mathcal{M}_{n,1}(\mathbb{R}))$ de même dimension que \mathcal{A}^{T} . De plus, $\mathcal{E} \subset \mathcal{A}_{\mathsf{F}}$ où $\mathcal{A}_{\mathsf{F}} = \{u \in \mathcal{L}(\mathcal{M}_{n,1}(\mathbb{R})) \mid u(\mathsf{F}) \subset \mathsf{F}\}$. Donc, en notant $p = \dim F$, on a d'après la question 5

$$d = \dim \mathcal{A}^{\top} = \dim \mathcal{E} \leq \dim \mathcal{A}_{\mathrm{F}} = n^2 - np + p^2$$

Mais comme $1 \le p \le n-1$, $d \le n^2 - n + 1$ d'après la question 6.

Enfin, l'ensemble des matrices de la forme $\begin{pmatrix} A & C \\ 0 \dots & \alpha \end{pmatrix}$ avec $A \in \mathcal{M}_{n-1}(\mathbb{R}), C \in \mathcal{M}_{n-1,1}(\mathbb{R})$ et $\alpha \in \mathbb{R}$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ de dimension n^2-n+1 . Ainsi la dimension maximale d'une sous-algèbre stricte de $\mathcal{M}_n(\mathbb{R})$ est bien n^2-n+1 .

30 Si n = 1, alors toute matrice nilpotente est nulle (son indice de nilpotence vaut nécessairement 1). Ainsi $\mathcal{A} = \{0\}$ est trivialement trigonalisable.

© Laurent Garcin MP Dumont d'Urville

Supposons que les seuls sous-espaces de E stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E. Alors $\mathcal{A} = \mathcal{L}(E)$ d'après le théorème de Burnside. Ceci n'est pas possible car \mathcal{A} ne contient que des éléments nilpotents. On en déduit qu'il existe un sous-espace vectoriel V de E distinct de $\{0\}$ et E stable par tous les éléments de \mathcal{A} .

32 Il suffit de choisir une base de E adaptée à V.

Comme l'application $\operatorname{mat}_{\mathcal{B}}$ est linéaire, les applications $u \in \mathcal{L}(E) \mapsto A(u)$ et $u \in \mathcal{L}(E) \mapsto D(u)$ le sont également. On en déduit que $\{A(u) \mid u \in \mathcal{A}\}$ et $\{D(u) \mid u \in \mathcal{A}\}$ sont des sous-espaces vectoriels respectifs de $\mathcal{M}_r(\mathbb{C})$ et $\mathcal{M}_s(\mathbb{C})$. Soit $(u, v) \in \mathcal{L}(E)^2$. Alors

$$\begin{pmatrix} \mathsf{A}(u \circ v) & \mathsf{B}(u \circ v) \\ 0 & \mathsf{D}(u \circ v) \end{pmatrix} = \mathsf{mat}_{\mathcal{B}}(u \circ v) = \mathsf{mat}_{\mathcal{B}}(u) \, \mathsf{mat}_{\mathcal{B}}(v) = \begin{pmatrix} \mathsf{A}(u) & \mathsf{B}(u) \\ 0 & \mathsf{D}(u) \end{pmatrix} \begin{pmatrix} \mathsf{A}(v) & \mathsf{B}(v) \\ 0 & \mathsf{D}(v) \end{pmatrix} = \begin{pmatrix} \mathsf{A}(u)\mathsf{A}(v) & \bigstar \\ 0 & \mathsf{D}(u)\mathsf{D}(v) \end{pmatrix}$$

Ainsi $A(u \circ v) = A(u)A(v)$ et $D(u \circ v) = D(u)D(v)$. Ceci prouve que $\{A(u) \mid u \in A\}$ et $\{D(u) \mid u \in A\}$ sont stables par produit : ce sont donc des sous-algèbres respectives de $\mathcal{M}_r(\mathbb{C})$ et $\mathcal{M}_s(\mathbb{C})$.

Soit $u \in \mathcal{A}$. Alors u est nilpotent i.e. il existe $p \in \mathbb{N}$ tel que $u^p = 0$. D'après ce qui précède, $A(u)^p = A(u^p) = A(0) = 0$ et $D(u)^p = D(u)^p = D(0) = 0$ donc tous les éléments de $\{A(u) \mid u \in \mathcal{A}\}$ et $\{D(u) \mid u \in \mathcal{A}\}$ sont nilpotents.

Comme $1 \le r \le n-1$ et $1 \le s \le n-1$, on peut appliquer l'hypothèse de récurrence aux sous-algèbres $\{A(u) \mid u \in A\}$ et $\{D(u) \mid u \in A\}$. Il existe donc $P \in GL_r(\mathbb{C})$ et $Q \in GL_s(\mathbb{C})$ telles que pour tout $u \in A$, $P^{-1}A(u)P$ et $Q^{-1}D(u)Q$ soient

triangulaires supérieures. En posant $\mathbf{R} = \begin{pmatrix} \mathbf{P} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{pmatrix}, \ \mathbf{R} \in \mathrm{GL}_n(\mathbb{C}) \ \mathrm{et} \ \mathbf{R}^{-1} = \begin{pmatrix} \mathbf{P}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{-1} \end{pmatrix}.$ Alors pour tout $u \in \mathcal{A}$,

$$\mathbf{R}^{-1} \operatorname{mat}_{\mathcal{B}}(u) \, \mathbf{R} = \begin{pmatrix} \mathbf{P}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{A}(u) & \mathbf{B}(u) \\ \mathbf{0} & \mathbf{D}(u) \end{pmatrix} \begin{pmatrix} \mathbf{P} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{pmatrix} = \begin{pmatrix} \mathbf{P}^{-1} \mathbf{A}(u) \mathbf{P} & \bigstar \\ \mathbf{0} & \mathbf{P}^{-1} \mathbf{D}(u) \mathbf{P} \end{pmatrix}$$

donc R^{-1} mat_B(u) R est triangulaire supérieure : l'algèbre \mathcal{A} est donc trigonalisable. On conclut alors par récurrence.

35 Soit $u \in \mathcal{A}$. Comme u est nilpotente, sa seule valeur propre est 0. La seule valeur propre de la matrice triangulaire supérieure R^{-1} mat $_{\mathcal{B}}(u)$ R est donc également 0. La diagonale de cette matrice est donc nulle i.e. R^{-1} mat $_{\mathcal{B}}(u)$ $R \in T_n^+(\mathbb{C})$. Si on note \mathcal{B}' la base de E telle que $R = \operatorname{mat}_{\mathcal{B}}(\mathcal{B}')$, alors la matrice de tout élément de \mathcal{A} dans la base \mathcal{B}' appartient à $\mathcal{T}_n^+(\mathbb{K})$.

Considérons comme suggéré le sous-espace vectoriel $F = \{u(x) \mid u \in \mathcal{A}\}$. Comme \mathcal{A} est une sous-algèbre de $\mathcal{L}(E)$, F est stable par tous les éléments de \mathcal{A} . Comme \mathcal{A} est irréductible, $F = \{0\}$ ou F = E.

Supposons que $F = \{0\}$. Alors $u(x) = 0_E$ pour tout $u \in \mathcal{A}$. Ainsi vect(x) est stable par tout élément de \mathcal{A} . Comme $x \neq 0$, $\text{vect}(x) \neq \{0\}$ et comme dim $E \geq 2$, $\text{vect}(x) \neq E$ puisque dim vect(x) = 1. Ceci n'est pas possible car \mathcal{A} est irréductible. Ainsi F = E. Il donc existe $u \in \mathcal{A}$ tel que u(x) = y.

Comme $\operatorname{rg}(v) \ge 2$, il existe $(x, y) \in E^2$ tel que (v(x), v(y)) est libre. En particulier, $v(x) \ne 0$ et d'après la question précédente, il existe $u \in \mathcal{A}$ tel que $u \circ v(x) = y$.

Im v est clairement stable par $v \circ u$ donc $v \circ u$ induit un endomorphisme w de Im v. Comme Im v est un \mathbb{C} -espace vectoriel, w admet au moins une valeur propre λ . Ainsi $\operatorname{rg}(w - \lambda \operatorname{Id}_{\operatorname{Im} v}) < \dim \operatorname{Im} v = \operatorname{rg}(v)$. Or

$$\operatorname{Im}(w - \lambda \operatorname{Id}_{\operatorname{Im} v}) = (w - \lambda \operatorname{Id}_{\operatorname{Im} v})(\operatorname{Im} v) = \operatorname{Im}(v \circ u \circ v - \lambda v)$$

donc

$$rg(v \circ u \circ v - \lambda v) = rg(w - \lambda Id_{Im v}) < rg(v)$$

Enfin, $v \circ u \circ v(x) - \lambda v(x) = v(y) - \lambda v(x) \neq 0$ car (v(x), v(y)) est libre. Ainsi $rg(v \circ u \circ v - \lambda v) > 0$.

38 Soit v un élément non nul de A de rang minimal. Supposons que rg(v) ≥ 2. En choisissant u et λ comme dans la question précédente, v ∘ u ∘ v - λv n'est pas nul (son rang est strictement positif) et rg(v ∘ u ∘ v - λv) < rg(v). Mais comme A est une sous-algèbre de L(E), v ∘ u ∘ v - λv ∈ A. Ceci contredit la minimalité du rang de v. Ainsi rg(v) ≤ 1 mais comme v ≠ 0, rg(v) = 1.

Soit $i \in [1, n]$. Comme $u_0(\varepsilon_1) \neq 0$, il existe $v_i \in \mathcal{A}$ tel que $v_i(u_0(\varepsilon_1)) = \varepsilon_i$ d'après la question **36**. On pose alors $u_i = v_i \circ u_0$. Comme $u_i(\varepsilon_k) = 0$ pour tout $k \in [2, n]$ et $u_i(\varepsilon_1) = \varepsilon_i \neq 0$, $\operatorname{rg}(u_i) = 1$. De plus, $u_i \in \mathcal{A}$ car $(u_i, u_0) \in \mathcal{A}^2$ et \mathcal{A} est stable par composition.

© Laurent Garcin MP Dumont d'Urville

40 Dans ce qui suit, on note $(\varepsilon_1^*, \dots, \varepsilon_n^*)$ la base duale de $(\varepsilon_1, \dots, \varepsilon_n)$. Soit $j \in [1, n]$. Posons

$$F = \{x \in E, \ \forall u \in \mathcal{A}, \ \varepsilon_1^*(u(x)) = 0\}$$

Alors F est un sous-espace vectoriel de E stable par \mathcal{A} . Comme \mathcal{A} est irréductible, $F = \{0\}$ ou F = E. Supposons que F = E. Alors Ker ε_1^* est un sous-espace strict de E stable par tout élément de \mathcal{A} , ce qui est exclu. Ainsi $F = \{0\}$. Notons $\varphi_i : u \in \mathcal{A} \mapsto \varepsilon_1^*(u(\varepsilon_i))$ pour $i \in [1,n]$. Montrons que $(\varphi_1,\ldots,\varphi_n)$ est libre. Soit $(x_1,\ldots,x_n) \in \mathbb{C}^n$ tel que $\sum_{i=1}^n x_i \varphi_i = 0$. Alors pour tout $u \in \mathcal{A}$, $\varepsilon_1^* \circ u(\sum_{i=1}^n x_i \varepsilon_i) = 0$ donc $\sum_{i=1}^n x_i \varepsilon_i \in F = \{0\}$. Ainsi $(x_1,\ldots,x_n) = (0,\ldots,0)$ car $(\varepsilon_1,\ldots,\varepsilon_n)$ est libre. Notons $\Psi : u \in \mathcal{A} \mapsto (\varphi_1(u),\ldots,\varphi_n(u))$. Alors $\operatorname{rg} \Psi = \operatorname{rg}(\varphi_1,\ldots,\varphi_n) = n$ (raisonner matriciellement au besoin). Ainsi Ψ est surjective. Notamment, il existe $w_j \in \mathcal{A}$ tel que $\Psi(w_j) = e_j$ où (e_1,\ldots,e_n) désigne la base canonique de \mathbb{C}^n . Ceci signifie que $\varepsilon_1^*(w_j(\varepsilon_i)) = \delta_{i,j}$. Posons $f_{i,j} = u_i \circ w_j \in \mathcal{A}$. Alors $f_{i,j}(\varepsilon_j) = \varepsilon_i$ et $f_{i,j}(\varepsilon_k) = 0$ pour $k \neq j$. On vérifie que la famille $(f_{i,j})_{1 \leq i,j \leq n}$ est une famille libre de n^2 éléments de $\mathcal{L}(E)$. C'est donc une base de $\mathcal{L}(E)$ formée d'éléments de \mathcal{A} . Ainsi $\mathcal{A} = \mathcal{L}(E)$.