MATH2033 Mathematical Analysis (2021 Spring) Problem Set 4

Problem 1

Find the supremum and infimum, if exists as a number, for the following sets

- (a) $A = \{e^{-x} | x \in (0,1) \cap \mathbb{Q}\}.$
- **(b)** $B = \left\{\cos\frac{1}{n} | n \in \mathbb{N}\right\}$ (\circlearrowleft Hint: The function $\cos x$ is decreasing over $\left[0, \frac{\pi}{2}\right]$)
- (c) $C = \left\{1 \frac{(-1)^n}{n} | n \in \mathbb{N}\right\}$

Problem 2

Find the supremum and infimum, if exists as a number, for the following sets

- (a) (A bit harder) $D = \left\{ \frac{1}{n} \frac{1}{m} | m \in \mathbb{N}, n \in \mathbb{N} \right\}$
- **(b)** (A bit harder) $E = \{a + b | a \in (0,1) \cap \mathbb{Q}, b \in (1,2) \setminus \mathbb{Q}\}.$

Problem 3

We let S be a bounded subset in \mathbb{R} and let $S_0 \subseteq S$ be a subset of S_0

- (a) Show that the supremum and infimum of S_0 exist and satisfy $\inf S_0 \ge \inf S$ and $\sup S_0 \le \sup S$.
- **(b)** Suppose that $S_0 \subset S$ (i.e. S_0 is proper subset of S), is it always true that $\inf S_0 > \inf S$ and $\sup S_0 < \sup S$? Explain your answer.

Problem 4

Prove the following statements using Archimedean property.

- (a) We let $I_n = \left[0, \frac{1}{n}\right]$ for every $n \in \mathbb{N}$. If x > 0, prove that $x \notin \bigcap_{n=1}^{\infty} I_n$.
- **(b)** We let $J_n = \left(0, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, prove that $\bigcap_{n=1}^{\infty} J_n = \phi$.
- (c) We let $K_n = [n, \infty)$ for every $n \in \mathbb{N}$, prove that $\bigcap_{n=1}^{\infty} K_n = \phi$

Problem 5

We let X be a non-empty set. We let $f, g: X \to \mathbb{R}$ be two functions which the ranges f(X) and g(X) are both bounded.

- (a) Show that $\sup\{f(x)+g(x)|x\in X\}\leq \sup\{f(x)|x\in X\}+\sup\{g(x)|x\in X\}$. Provide an example which the strict inequality holds.
- **(b)** Show that $\inf\{f(x) + g(x) | x \in X\} \ge \inf\{f(x) | x \in X\} + \inf\{g(x) | x \in X\}$. Provide an example which the strict inequality holds.

Problem 6

We let X and Y be two non-empty sets. We let $h: X \times Y \to \mathbb{R}$ be a function which $h(X \times Y)$ is bounded (*Note: Here, h = h(x, y) is a function of two variables where $x \in X$ and $y \in Y$.)

We define two functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ to be

$$f(x) = \sup\{h(x,y)|y \in Y\} \quad and \quad g(y) = \sup\{h(x,y)|x \in X\}.$$

- (a) Suppose that h(x, y) = 2x + y and X = Y = [0,1], compute f(x) and g(y).
- (b) (Independent of (a)) Prove that

$$\sup\{g(y)|y\in Y\} \le \inf\{f(x)|x\in X\}.$$

(c) (Independent of (a)) Prove that

$$\sup\{h(x,y)|x \in X, y \in Y\} = \sup\{f(x)|x \in X\} = \sup\{g(y)|y \in Y\}.$$

(*Note: The above equation is known as principle of the iterated supremum. The principle suggests that the supremum of a function h(x, y) can be found through the following two steps procedure:

- For each $x \in X$, we first find the supremum ("maximum") of h(x, y) over all possible of y and call this maximum be f(x).
- Given f(x) obtained, we find the final supremum by finding the supremum of f(x) over all possible values of X.

Problem 7 (A bit harder)

We consider the nested interval theorem (see Theorem 6 of Lecture Note 4) as follows:

Nested Interval Theorem

We let $\{I_n = [a_n, b_n] | n \in \mathbb{N}\}$ be a set of closed intervals such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. Then $\bigcap_{n=1}^{\infty}I_n=[a,b]$, where $a=\sup\{a_n|n\in\mathbb{N}\}$ and $b=\inf\{b_n|n\in\mathbb{N}\}$.

Suppose that $\inf\{b_n - a_n | n \in \mathbb{N}\} = 0$, prove that $\bigcap_{n=1}^{\infty} I_n$ contains a single element.

(\bigcirc Hint: It suffices to argue that a=b. This can be done by first showing $0 \le b-a < \varepsilon$ for any $\varepsilon > 0$ and conclude that a = b using infinitesimal property.)

Problem 8

(a) Using mathematical induction, prove that

$$\cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{\cos\left(\frac{n+1}{2}\theta\right)\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}$$

for all positive integer n. Here, $\theta \neq k\pi$ for any $k \in \mathbb{Z}$.

(b) We let a_0 , a_1 , a_2 , ... be a sequence of real numbers defined by

$$a_0 = \sqrt{2}$$
, $a_n = \sqrt{2 + a_{n-1}}$ for $n = 1, 2, ...$

Using mathematical induction, prove that

$$a_n = 2\cos\frac{\pi}{2^{n+2}}$$

for all n = 0,1,2,...

(c) We let $A=\begin{pmatrix}2&3\\0&1\end{pmatrix}$. Using mathematical induction, prove that $A^n=\begin{pmatrix}2^n&3(2^n-1)\\0&1\end{pmatrix}$

$$A^n = \begin{pmatrix} 2^n & 3(2^n - 1) \\ 0 & 1 \end{pmatrix}$$

for any positive integer n.

Problem 9

Using mathematical induction, prove that

- (a) $(1+x)^n \ge 1 + nx$ for any positive integer n, where $x \ge -1$ is real number.
- **(b)** $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} 1)$ for all positive integer n.

Problem 10

We let P(n) be a statement which depends on the positive integer n. The second principle of mathematical induction states that P(n) is true for all positive integer n if all of the following conditions hold:

- P(1) and P(2) are true
- If P(k) and P(k+1) are true for some integer k, then P(k+2) is also true.
- (a) Prove the principle using well-ordering principle.
- **(b)** Using the second principle of mathematical induction, prove the following statement: We let $a_0, a_1, a_2, ...$ be a sequence of real numbers defined by

$$a_1=1, \qquad a_2=7, \qquad a_{n+2}-4a_{n+1}+3a_n=0 \quad for \ n=1,2,3,\dots$$
 Then $a_n=3^n-2$ for all $n\in\mathbb{N}.$