Least Squares and SVD

Sources:

Matrix Methods for Computational Modeling and Data Analytics author: Mark Embree, Virginia Tech

A solution of the linear system

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

can be found if \mathbf{b} is in the column space of \mathbf{A} . Or expressed otherwise:

$$\mathbf{b} \in R(\mathbf{A})$$

For the more general case $\mathbf{b} \notin R(\mathbf{A})$ we are interested in a solution which minimises $||\mathbf{b} - \mathbf{A}\mathbf{x}||$.

The vector space \mathbb{R}^m of which \mathbf{b} is a vector is the sum of column space $R(\mathbf{A})$ and left null space $N(\mathbf{A}^T)$.

$$\mathbb{R}^m = R(\mathbf{A}) \oplus N(\mathbf{A}^T)$$

This allows us to decompose vector \mathbf{b} into a part \mathbf{b}_R in $R(\mathbf{A})$ and a orthogonal part \mathbf{b}_N in $N(\mathbf{A}^T)$.

$$\mathbf{b} = \mathbf{b}_R + \mathbf{b}_N$$

With these notation the linear system can be formulated in terms of these vectors:

$$\mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{b}_R + \mathbf{b}_N - \mathbf{A}\mathbf{x} = (\mathbf{b}_R - \mathbf{A}\mathbf{x}) + \mathbf{b}_N$$

The quadratic norm is computed:

$$||\mathbf{b} - \mathbf{A}\mathbf{x}||^2 = ((\mathbf{b}_R - \mathbf{A}\mathbf{x}) + \mathbf{b}_N)^T \cdot ((\mathbf{b}_R - \mathbf{A}\mathbf{x}) + \mathbf{b}_N)$$
 (1)

$$= ||\mathbf{b}_R - \mathbf{A}\mathbf{x}||^2 + ||\mathbf{b}_N||^2 - 2\underbrace{(\mathbf{b}_R - \mathbf{A}\mathbf{x})^T \cdot \mathbf{b}_N}_{orthogornality}$$
(2)

 $=\left|\left|\mathbf{b}_{R}-\mathbf{A}\mathbf{x}\right|\right|^{2}+\left|\left|\mathbf{b}_{N}\right|\right|^{2}\tag{3}$

Minimising $||\mathbf{b} - \mathbf{A}\mathbf{x}||$ is then equivalent to minimise $||\mathbf{b}_R - \mathbf{A}\mathbf{x}||$. And this is equivalent to find the solution of

$$\mathbf{A}\mathbf{x} = \mathbf{b}_{R}$$

For the general case of a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we multiply $\mathbf{b} - \mathbf{A}\mathbf{x}$ by \mathbf{A}^T :

$$\mathbf{A}^T \cdot (\mathbf{b} - \mathbf{A}\mathbf{x}) = \mathbf{A}^T \cdot \mathbf{b} - \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \cdot \mathbf{b}_R + \underbrace{\mathbf{A}^T \cdot \mathbf{b}_N}_{0} - \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \cdot \mathbf{b}_R - \mathbf{A}^T \mathbf{A}\mathbf{x}$$

$$\mathbf{A}^T \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

so there is no need to obtain \mathbf{b}_R explicitely. If the inverse $\left(\mathbf{A}^T\mathbf{A}\right)^{-1}$ exists the solution vector \mathbf{x} is just:

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \cdot \mathbf{A}^T \cdot \mathbf{b}$$

In many text on linear algebra the matrix

$$\mathbf{A}^+ = \left(\mathbf{A}^T\mathbf{A}
ight)^{-1} \cdot \mathbf{A}^T$$

is referred to an pseudoinverse of A.

With the reduced SVD an alternate expression for the pseudoinverse is computed.

$$\mathbf{A} = \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^T = \sum_{j=1}^r \sigma_j \cdot \mathbf{u}_j \cdot \mathbf{v}_j^T$$

$$\mathbf{A}^{+} = \left(\left(\mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{T} \right)^{T} \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{T} \right)^{-1} \cdot \left(\mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{T} \right)^{T}$$
(4)

$$= \left(\mathbf{V} \cdot \mathbf{\Sigma} \cdot \mathbf{U}^T \cdot \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^T \right)^{-1} \cdot \mathbf{V} \cdot \mathbf{\Sigma} \cdot \mathbf{U}^T$$
 (5)

$$= \left(\mathbf{V} \cdot \mathbf{\Sigma} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^T\right)^{-1} \cdot \mathbf{V} \cdot \mathbf{\Sigma} \cdot \mathbf{U}^T \tag{6}$$

$$= \mathbf{V} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{V}^{-1} \cdot \mathbf{V} \cdot \mathbf{\Sigma} \cdot \mathbf{U}^{T}$$
(7)

$$= \mathbf{V} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{\Sigma} \cdot \mathbf{U}^{T}$$
(8)

$$= \mathbf{V} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{U}^{T} = \sum_{j=1}^{r} \frac{1}{\sigma_{j}} \cdot \mathbf{v} \cdot \mathbf{u}_{j}^{T}$$
(9)

Note that deriving this expression we have utilised several properties of matrices ${\bf U}$ and ${\bf V}$:

- 1. Since \mathbf{U} is orthogonal $\mathbf{U}^T\mathbf{U} = \mathbf{I}$
- 2. Since ${f V}$ is orthogonal and square it has an inverse matrix ${f V}^{-1}={f V}^T$