

SW3516P 寄存器列表

1. 寄存器

注意 : 未定义的寄存器或 bit 不能被改写

1.1. REG 0x01: 芯片版本

Bit	Description	R/W	Default
7-2	Reserved	R	0x14
1-0	芯片版本	R	0x3

1.2. REG 0x06: 快充指示

Bit	Description	R/W	Default
7	快充协议的状态	R	0x0
	0: 未处于快充协议		
	1: 处于快充协议		
6	快充电压的状态	R	0x0
	0: 未处于快充电压		
	1: 处于快充电压		
5-4	PD 协议版本	R	0x0
	1: PD 2.0		
	2: PD 3.0		
	Others: reserved		
3-0	快充协议指示	R	0x0
	1: QC2.0		
	2: QC3.0		
	3: FCP		
	4: SCP		
	5: PD FIX		
	6: PD PPS		
	7: PE1.1		
	8: PE2.0		
	a: SFCP		
	b: AFC		
	Others: reserved		

1.3. REG 0x07: 系统状态 0

Bit	Description	R/W	Default
7-3	/	/	/
2	Buck 的开关状态	R	0x0
	0: Buck 关闭		
	1: Buck 打开		
1	端口2的开关状态	R	0x0
	0: 端口2关闭		
	1: 端口2打开		
	对于 AA 模式来说,此 bit 表示 A2 口		
	对于 AC 模式来说,此 bit 表示 A 口		
0	端口1的开关状态	R	0x0
	0: 端口1关闭		
	1: 端口1打开		
	对于 AA 模式来说,此 bit 表示 A1 口		
	对于 AC 模式来说,此 bit 表示 C 口		
	对于单A或单C模式来说,此bit表示A口或C口		

1.4. REG 0x08: 系统状态 1

Bit	Description	R/W	Default
7-4	端口设备存在状态	R	
	对于 AA 模式		
	1: 表示 A1 和 A2 没有设备		
	2: 表示只有 A1 口有设备		
	3: 表示只有 A2 口有设备		
	4: 表示 A1 口和 A2 口都有设备		
	对于 AC 模式来说		
	5: 表示 A 口和 C 口没有设备		
	6: 表示只有 C 口有设备		
	7: 表示只有 A 口有设备		
	8: 表示 A 口和 C 口都有设备		
	对于单 A 模式		
	9: 表示 A 口打开		
	对于单 C 模式		
	A:表示C口关闭		
	B: 表示 C 口打开,即有设备接入		

	特别注意,这里 A 口从没有设备判断为有设备的电流门限为高		
	于 80mA; A 口从有设备到没有设备的电流门限为低于 15mA。		
3-0	Reserved	R	0x0

1.5. REG 0x0C: 端口 1 限流值指示

Bit	Description	R/W	Default
7		/	/
6-0	ctrl_icc1[6:0]; 端口 1 限流值	R	0x0
	unit:50mA		
	Icc1 = 1000mA + ctrl_icc1 *unit;		

1.6. REG 0x0D: 端口 2 限流值指示

Bit	Description	R/W	Default
7		/	/
6-0	ctrl_icc2[6:0]; 端口 2 限流值	R	0x0
	unit:50mA		
	Icc2 = 1000mA + ctrl_icc2 *unit;		

1.7. REG 0x12: I2C 使能控制

Bit	Description	R/W	Default
7-5	I2C 写操作使能	R/W	0x0
	如果要操作寄存器 REG0xA0~D1,需要先执行如下操作:		
	1. \subseteq REG0x12 = 0x20;		
	2. 写 REG0x12 = 0x40;		
	3. \subseteq REG0x12 = 0x80;		
4-0		/	/

1.8. REG 0x13: ADC Vin 使能

Bit	Description	R/W	Default
7		/	/
6	PPS 和 SCP 协议是否上报 NTC 温度	R/W	0x0
	0: 上报 NTC 温度		
	1: 上报 45°		
5-2	/	/	/
1	输入 Vin 的 ADC 工作使能,只有在使能时, Vin 的数据才能读	R/W	0x0
	出		

	0: 不使能 1: 使能		
0	1	/	/

1.9. REG 0x15: PWR 强制操作使能

Bit	Description	R/W	Default
7-4	Power 寄存器强制操作使能	R/W	0x0
	如果要操作寄存器 REG0x16 需要先执行如下操作:		-
	1. 写 REG0x15 = 0x20;		
	2. 写 REG0x15 = 0x40;		
	3. 写 REG0x15 = 0 x80;		
3-0	/	1	/

1.10. REG 0x16: PWR 强制操作 0

Bit	Description	R/W	Default
7-6	Reserved	R/W	0x0
5	强制打开 2 口通路管	R/W	0x0
	0: 无影响		
	1: 强制打开 2 口通路管		
4	强制关闭 2 口通路管	R/W	0x0
	0: 无影响		
	1: 强制关闭 2 口通路管		
	对于 AC 模式来说, 2 口为 A 口		
	对于 AA 模式来说, 2 口为 A2 口		
3	强制打开1口通路管	R/W	0x0
	0: 无影响		
	1: 强制打开1口通路管		
2	强制关闭 1 口通路管	R/W	0x0
	0: 无影响		
	1: 强制关闭 1 口通路管		
	对于 AC 或 C 模式来说, 1 口为 C 口		
	对于 AA 模式来说,1 口为 A1 口		
1	强制打开 Buck 操作	R/W	0x0
	0: 无影响		
	1: 强制打开 Buck		
0	强制关闭 Buck 操作	R/W	0x0
	0: 无影响		
	1: 强制关闭 Buck		

1.11. REG 0x30: ADC Vin 数据

Bit	Description	R/W	Default
7-0	Vin 电压的高 8bit	R	0x0
	160mV/bit; (若取 12bit 时分辨率为 10mV/bit,参见 REG0x3A)		
	注意默认 Vin 的数据不能读出, 需要写 REG0x13[1]为 1.		

1.12. REG 0x31: ADC Vout 数据

Bit	Description	R/W	Default
7-0	输出电压的高 8bit	R	0x0
	96mV/bit; (若取 12bit 时分辨率为 6mV/bit, ,参见 REG0x3A)		

1.13. REG 0x33: ADC Iout1 数据

Bit	Description	R/W	Default
7-0	1口输出电流的高 8bit	R	0x0
	40mA/bit; (若取 12bit 时分辨率为 2.5mA/bit, ,参见 REG0x3A)		

1.14. REG 0x34: ADC Iout2 数据

Bit	Description	R/W	Default
7-0	2 口输出电流的高 8bit	R	0x0
	40mA/bit; (若取 12bit 时分辨率为 2.5mA/bit, ,参见 REG0x3A)		

1.15. REG 0x37: ADC NTC 电压数据

Bit	Description	R/W	Default
7-0	NTC 电阻上电压的高 8bit	R	0x0
	8mV/bit; (若取 12bit 时分辨率为 0.5mV/bit, ,参见 REG0x3A)		
	NTC 电阻的计算公式:R _{NTC} =REG0x37 * 8mV / 100uA-2kohm;		

1.16. REG 0x3A: ADC 配置

Bit	Description	R/W	Default
7-5	/	/	/
2-0	ADC 数据选择 写此寄存器之后,将对应的 ADC 数据锁存到 REG0x3B 和 REG0x3C, 防止读到的数据高低位不对应	R/W	0x0

对应关系如下:		
1: adc_vin[11:0],	10mV/bit	
2: adc_vout[11:0],	6mV/ bit	
3: adc_iout1[11:0],	2.5mA/ bit	
4: adc_iout2[11:0],	2.5mA/ bit	
6: adc_ntc[11:0],	0.5mV/bit , R_{NTC} = adc_ntc[11:0] *0.5 mV/	
100uA – 2kohm;		
Other: reserved		

1.17. REG 0x3B: ADC 数据高 8 位

Bit	Description	R/W	Default
7-0	ADC 高 8bit 数据锁存	R	0x0
	adc_data[11:04]		

1.18. REG 0x3C: ADC 数据低 4 位

Bit	Description	R/W	Default
7-4	/	/	/
3-0	ADC 低 4bit 数据锁存	R	0x0
	adc_data[03:00]		

1.19. REG 0x70: PD 命令请求

Bit	Description	R/W	Default
7	PD 命令发送使能	W/C	0x0
	MCU 通过写此 bit 为 1, 芯片将发送 REG0x70[3:0]中所定义的		
	PD 命令。		
	此 bit 自动清零		
6-4		/	/
3-0	PD命令	R/W	0x0
	1:Hardreset 命令		
	Other: reserved		

1.20. REG 0x71: PD 消息设置

Bit	Description	R/W	Default
7-5		/	/
4	PD Get Source Extend 使能	R/W	0x0
	0:不支持 Get src cap ext 消息,PD3.0 回 not supported,PD2.0 回		

	reject		
	1:支持 Get src cap ext 消息		
3	PD Get Status 使能	R/W	0x0
	0:不支持 Get status 消息,PD3.0 回 not supported,PD2.0 回 reject		
	1:支持 Get status 消息		
2	PD Vconn Swap 使能	R/W	0x0
	0:不支持 Vconn Swap 消息, PD3.0 回 not supported, PD2.0 回		
	reject		
	1:支持 Vconn Swap 消息		
1	PD Dr Swap 使能	R/W	0x0
	0:不支持 Dr swap 消息,PD3.0 回 not supported,PD2.0 回 reject		
	1:支持 Dr swap 消息		
0		R/W	0x0

1.21. REG 0x73: PD SRC CAP 命令发送

Bit	Description	R/W	Default
7	PD Source Cap 命令发送	W/C	0x0
	0:无影响		
	1:发送 Source Capability 命令		
	此 bit 自动清零		
6-0		/	/

1.22. REG 0x75: HardReset 次数设置

Bit	Description	R/W	Default
7-1		/	/
0	寄存器写 Hardreset 命令时的次数设置	R/W	0x0
	0: 3 次		
	1: 1 次		
	写寄存器发送 Hardreset 的流程为: 先写 REG0x75[0], 设置		
	Hardreset 的次数,然后写 REG0x70,发送 Hardreset。		

1.23. REG 0x76: 连接设置

Bit	Description	R/W	Default
7	禁止端口2空载检测控制	R/W	0x0
	0: 不禁止端口 2 空载检测		
	1: 禁止端口 2 空载检测		
6	禁止端口1空载检测控制	R/W	0x0
	0: 不禁止端口1空载检测		

		1	1
	1: 禁止端口1空载检测		
5-3		/	/
2	单 A 口或单 C 口模式时,5V 非快充时的限流档位配置	R/W	0x0
	0: 默认做法,根据功率和在线端口数自动设置		
	1: 配置流程为: 关闭端口快充, 设置此 bit 为 1, 再通过		
	REG0xBD[5:4]来设置限流。		
1	DPDM 短接使能	R/W	0x0
	0: 使能		
	1: 不使能,即 DPDM 断开短接,不支持 DPDM 快充		
	此功能应用在 MCU 强制关闭/打开端口电压时,需要同步不使		
	能/使能 DPDM 短接功能。		
0	强制 CC 不驱动使能	R/W	0x0
	0: 正常		
	1: 强制不驱动 CC		
	MCU 可以设置此 bit 为 1, 芯片将不驱动 CC, 使得 CC 连接断		
	开;设置此 bit 为 0 时,重新驱动 CC。		

1.24. REG 0x77: 插拔事件控制设置

Bit	Description	R/W	Default
7-4	Reserved	R/W	0x0
3	端口2拔出事件触发	R/WC	0x0
	0: 不触发端口 2 拔出事件		
	1: 触发一次端口 2 拔出事件		
	写 1 自动清 0		
2	端口1拔出事件触发	R/WC	0x0
	0: 不触发端口1拔出事件		
	1: 触发一次端口 1 拔出事件		
	写 1 自动清 0		
1	端口 2 插入事件触发	R/WC	0x0
	0: 不触发端口 2 插入事件		
	1: 触发一次端口 2 插入事件		
	写 1 自动清 0		
0	端口1插入事件触发	R/WC	0x0
	0: 不触发端口 1 插入事件		
	1: 触发一次端口 1 插入事件		
	写 1 自动清 0		

1.25. REG 0xA6:电压偏移设置

Bit	Description	R/W	Default
-----	-------------	-----	---------

7-4	Reserved	R/W	0xF
	注意不能修改默认值		
3	输出电压固定 80mV Offset 设置	R/W	0x1
	0:不使能 80mV offset;		
	1: 使能 80mV offset;		
2	输出电压固定 40mV Offset 设置	R/W	0x1
	0:使能 40mV offset;		
	1:不使能 40mV offset;		
1-0	Reserved	R/W	0x3
	注意不能修改默认值		

1.26. REG 0xAA: 快充配置 0

Bit	Description	R/W	Default
7	Reserved	R/W	0x0
	注意不能修改默认值		
6	QC3.0 使能	R/W	0x1
	0: 不使能		
	1: 使能		
5-0	Reserved	R/W	0x3E
	注意不能修改默认值		

1.27. REG 0xAB: 端口模式配置

Bit	Description	R/W	Default
7	线补使能	R/W	0x1
	0: 不使能		
	1: 使能,即打开线补		
6-4	Reserved	R/W	0x7
	注意不能修改默认值		
3-2	芯片端口设置	R/W	0x3
	0: 单A口		
	1: 双 A 口		
	2: 单 C 口		
	3: C+A □		
1-0	Reserved	R/W	0x3
	注意不能修改默认值		

1.28. REG 0xAD: 快充配置 1

Bit	Description	R/W	Default

7-3	Reserved	R/W	0x1F
	注意不能修改默认值		
2	三星 1.2V 模式使能	R/W	0x1
	0: 不使能		
	1: 使能		
1-0	Reserved	R/W	0x2
	注意不能修改默认值		

1.29. REG 0xAF: VID 配置 0

Bit	Description	R/W	Default
7-0	PD 认证里面的 Vendor ID 配置 VID[15:8]	R/W	0xFF

1.30. REG 0xB0: PD 配置 0

Bit	Description	R/W	Default
7	Fixed 5V PDO 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		
	当此 bit 为 0 时,广播的电流由 REG0xB0[6:0]决定,否则会根		
	据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0]		
	决定)		
6-0	Fixed 5V PDO 电流	R/W	0x7F
	50mA/bit		
	注意广播大于 3A 的电流时,需要是 emarker 线且		
	REG0xB7[1]=0;		
	修改电流后,需要重新插拔或写 src cap 命令生效		
	(REG0x73=0x80)		

1.31. REG 0xB1: PD 配置 1

Bit	Description	R/W	Default
7	Fixed 9V PDO 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		
	当此 bit 为 0 时,广播的电流由 REG0xB1[6:0]决定,否则会根		
	据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0]		
	决定)		
6-0	Fixed 9V PDO 电流	R/W	0x7F
	50mA/bit		

1.32. REG 0xB2: PD 配置 2

Bit	Description	R/W	Default
7	Fixed 12V PDO 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		
	当此 bit 为 0 时,广播的电流由 REG0xB2[6:0]决定,否则会根		
	据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0]		
	决定)		
6-0	Fixed 12V PDO 电流	R/W	0x7F
	50mA/bit		

1.33. REG 0xB3: PD 配置 3

Bit	Description	R/W	Default
7	Fixed 15V PDO 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		
	当此 bit 为 0 时,广播的电流由 REG0xB3[6:0]决定,否则会根		
	据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0]		
	决定)		
6-0	Fixed 15V PDO 电流	R/W	0x7F
	50mA/bit		

1.34. REG 0xB4: PD 配置 4

Bit	Description	R/W	Default
7	Reserved	R/W	0x1
6-0	Fixed 20V PDO 电流	R/W	0x3C
	50mA/bit		
	注意通过此电流可以配置 PD 的最大功率.		
	当 REG0xB7[1]=0 时, 电流的变化都需要写 src cap 命令才会重		
	新广播		

1.35. REG 0xB5: PD 配置 5

Bit	Description	R/W	Default
7	PPS0 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		

	当此 bit 为 0 时,广播的电流由 REG0xB5[6:0]决定,否则会根据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0] 决定)		
6-0	PPS0 电流	R/W	0x7F
	50mA/bit		

1.36. REG 0xB6: PD 配置 6

Bit	Description	R/W	Default
7	PPS1 电流设置使能	R/W	0x1
	0: 使能		
	1: 不使能		
	当此 bit 为 0 时,广播的电流由 REG0xB6[6:0]决定,否则会根		
	据最大功率自动配置(最大功率由 20V PDO 电流 REG0xB4[6:0]		
	决定)		
6-0	PPS1 电流	R/W	0x7F
	50mA/bit		

1.37. REG 0xB7: PD 配置 7

Bit	Description	R/W	Default
7	PPS1 使能	R/W	0x1
	0: 不使能		
	1: 使能		
	PPS1 voltage: 3.3V~REG0xBE[5:4]V		
	注意 PD 配置的最大功率大于 60W 时, PPS1 将不会广播		
	PPS1 的最高电压需要大于 PPS0 的最高电压,否则 PPS1 不会广		
	播;		
	注意修改此 bit 后,需要重新插拔或写 src cap 命令才会生效		
6	PPS0 使能	R/W	0x1
	0: 不使能		
	1: 使能		
	PPS0 voltage: 3.3V~REG0xBE[1:0]V		
	注意修改此 bit 后,需要重新插拔或写 src cap 命令才会生效		
5	PD 20V PDO 使能	R/W	0x1
	0: 不使能		
	1: 使能		
4	PD 15V PDO 使能	R/W	0x1
	0: 不使能		
	1: 使能		
3	PD 12V PDO 使能	R/W	0x1

	0: 不使能		
	1: 使能		
2	PD 9V PDO 使能	R/W	0x1
	0: 不使能		
	1: 使能		
1	PD 读 Emarker 使能	R/W	0x1
	0: 使能		
	1: 不使能		
	注意功率 60W 以下时,由此 bit 控制是否读 emarker; 大于		
	60W, 都会读 emarker;		
0	PD3.0 使能	R/W	0x1
	0: PD2.0		
	1: PD3.0		

1.38. REG 0xB8: PD 配置 8

Bit	Description	R/W	Default
7-6	Reserved	R/W	0x3
	注意不要修改此值		
5	PD 5V/2A PDO 广播使能	R/W	0x1
	0: 使能		
	1: 不使能		
	在广播 5V/3A,设备请求 5V PDO 后,将重新广播 5V/2A PDO		
4	PD 65W~70W 是否需检测 emarker	R/W	0x1
	0: 不检测 Emarker		
	1: 检测 Emarker;		
3	PPS 后出现 Hardreset,是否自动禁止 PPS	R/W	0x0
	0: 禁止 PPS,重新广播 PDO		
	1: 不禁止 PPS		
2	PD Discovery Identity 响应使能	R/W	0x0
	0: 不使能, PD2.0 时只回复 GoodCRC, PD3.0 时回复 not support		
	1: 使能,响应 Discovery Identiy 命令,VID 由{REG0xAF,		
	REG0xBF}决定,XID,PID 等信息均为 0。		
1-0	Reserved	R/W	0x3
	注意不要修改此值		

1.39. REG 0xB9: 快充配置 2

Bit	Description	R/W	Default
7	1 口快充使能	R/W	0x1
	0: 不使能		

	1: 使能		
	对于 AC 模式来说, 1 口为 C 口;		
	对于 AA 模式来说, 1 口为 A1 口;		
	对于单 C 和单 A 模式时,都为 1 口;		
6	2 口快充使能	R/W	0x1
	0: 不使能		
	1: 使能		
	对于 AC 模式来说, 2 口为 A 口;		
	对于 AA 模式来说, 2 口为 A2 口;		
5	PD 协议使能	R/W	0x1
	0: 不使能	K	
	1: 使能		
4	QC 协议使能	R/W	0x1
	0: 不使能		
	1: 使能		
3	FCP 协议使能	R/W	0x1
	0: 不使能		
	1: 使能		
2	SCP 协议使能	R/W	0x1
	0: 不使能		
	1: 使能		
	注意该 bit 为 SCP 总开关,当 REG 0xB9[2]=1 时,低压 SCP 使能,		
	高压 SCP 的使能参见 REG0xC5[2]		
1	Reserved	R/W	0x0
	注意不要修改此值		
0	PE 协议使能	R/W	0x1
	0: 不使能		
	1: 使能		

1.40. REG 0xBA: 快充配置 3

Bit	Description	R/W	Default
7	Reserved	R/W	0x1
	注意不要修改默认值		
6	AFC 协议使能	R/W	0x1
	0: 不使能		
	1: 使能		
5-4	Reserved	R/W	0x3
	注意不要修改默认值		
3-2	最高输出电压(除 PD 以外的协议)	R/W	0x3
	0: 9V		
	1: 12V		

	2/3: 20V 注意: QC3.0 20V 输出还可以通过 REG0xD3[7]打开;		
	在总: QC3.0 20 V 相由还可以通过 REGUXD3[7]11 /7;		
1-0	Reserved	R/W	0x3
	注意此 bit 不能被改写		

1.41. REG 0xBC: 快充配置 4

Bit	Description	R/W	Default
7-4	Reserved	R/W	0x7
3	C 口空载检测使能 0: 不使能 1: 使能	R/W	0x0
2-0	Reserved	R/W	0x5

1.42. REG 0xBD: 限流配置 0

Bit	Description	R/W	Default
7	Reserved	R/W	0x0
6	单口转双口时, DPDM 是否有效	R/W	0x1
	0: 无效,即单口转双口时, DPDM 不支持苹果 2.4A 和三星 2A		
	模式		
	1: 有效,即单口转双口时, DPDM 支持苹果 2.4A 和三星 2A 模		
	式		
	特别注意,此 bit 设置为 0 时, Type-C Rp 将设置为 1.5A		
5-4	双口同时打开时的1口限流值	R/W	0x3
	0: 2.6A		
	1: 2.2A		
	2: 1.7A		
	3: 3.2A		
	注意 2 口的限流参见 REG0xC4[4], 当 REG0xC4[4]=1 时, 2 口		
	限流也由 REG0xBD[5:4]决定		
3-0	Reserved	R/W	0xE

1.43. REG 0xBE: PD 配置 9

Bit	Description	R/W	Default
7	PPS1 的最高电压设置使能,参见 REG0xBE[5:4]	R/W	0x1
	0: 使能		
	1: 不使能		
6	PPS1 功率限制使能	R/W	0x1
	0:最高电压乘电流小于最大功率设置为 0,即 CC 模式;		

	1: 最高电压乘电流大于最大功率设置为1,即恒功率模式;		
5-4	PPS1 最高电压设置	R/W	0x3
	0: 5.9V		
	1: 11V		
	2: 16V		
	3: 21V		
3	PPS0 的最高电压设置使能, 参见 REG0xBE[1:0]	R/W	0x1
	0: 使能		
	1: 不使能		
2	PPS0 功率限制使能	R/W	0x1
	0: 最高电压乘电流小于最大功率设置为 0, 即 CC 模式;		
	1: 最高电压乘电流大于最大功率设置为1,即恒功率模式;		
1-0	PPS0 最高电压设置	R/W	0x3
	0: 5.9V		
	1: 11V		
	2: 16V		
	3: 21V		

1.44. REG 0xBF: VID 配置 1

Bit	Description	R/W	Default
7-0	PD 认证里面的 Vendor ID 配置 VID[7:0]	R/W	0xFF

1.45. REG 0xC4: 限流配置 1

Bit	Description	R/W	Default
7-5	Reserved	R/W	0x4
4	双口在线时2口独立限流使能	R/W	0x1
	0: 使能,由 REG0xC4[3:2]决定		
	1: 不使能,由 REG0xBD[5:4]决定,即和 1 口一样		
3-2	双口同时打开时的 2 口限流值	R/W	0x3
	0: 2.6A		
	1: 2.2A		
	2: 1.7A		
	3: 3.2A		
1-0	限流值的固定 Offset 设置	R/W	0x3
	0: 150mA		
	1: 450mA		
	2: 600mA		
	3: 300mA		

1.46. REG 0xC5: 快充配置 5

Bit	Description	R/W	Default
7-5	Reserved	R/W	0x7
4	Type-C 的 Power Level 设置	R/W	0x1
	0: 1.5A		
	1: 3.0A		
3	Reserved	R/W	0x1
2	SCP 高压协议使能	R/W	0x1
	0: 不使能		
	1: 使能		
	注意 SCP 高压使能的前提需要让 REG 0xB9[2]=1		
1-0	Reserved	R/W	0x1

1.47. REG 0xCF: 快充配置 6

Bit	Description	R/W	Default
7-1	Reserved	R/W	0x7F
0	PDO 电压与 Vin 电压联动	R/W	0x1
	0: 不使能,即 PDO 广播的最高电压与 Vin 电压不相关		
	1: 使能, PDO 广播的最高电压与 Vin 电压相关		

1.48. REG 0xD2: 快充配置 7

Bit	Description	R/W	Default
7	Reserved	R/W	0x1
6	进入 PD 协议后是否响应 SCP/FCP/AFC 协议	R/W	0x1
	0: 不响应		
	1:响应,即进入PD协议后,还响应SCP/FCP/AFC协议请求		
5-3	Reserved	R/W	0x7
2	非 PD 协议单独设置功率使能	R/W	0x1
	0: 使能		
	1: 不使能, 即非 PD 协议的功率与 PD 协议一致		
1-0	非 PD 协议功率设置	R/W	0x3
	0: 60W		
	1: 45W		
	2: 30W		
	3: 18W		
	注意需要先设置 REG0xD2[2]为 0,使能非 PD 协议功率设置使		
	能		

1.49. REG 0xD3: 快充配置 8

Bit	Description	R/W	Default
7	QC3.0 20V 使能	R/W	0x1
	0: 使能,即 QC3.0 支持 20V 输出		
	1: 不使能		
	注意与 REG0xBA[3:2]的关系。对于 QC3.0 来说,		
	REG0xBA[3:2]设置支持 20V,或 REG0xD3[7]支持 20V 时,		
	QC3.0 最高电压为 20V。		
6	低压 SCP 协议使能	R/W	0x1
	0: 不使能		
	1: 使能,即支持低压 SCP		
	注意低压 SCP 协议使能的前提需要让 REG 0xB9[2]=1		
5-4	SCP 协议最大限流设置	R/W	0x3
	0: 2A		
	1: 4A		
	2: 5A		
	3: 无限流		
3-0	Reserved	R/W	0xF

2. 版本历史

版本	日期	详细说明
V1.0	2022.4.1	初始版本;
V1.1	2022.7.17	更新文档模板
V1.2	2022.7.25	修改 REGOxAB,删除端口配置
V1.3	2022.8.8	修改 REGOxB9[2]的定义,删除 REGOxBC[7]
V1.4	2022.10.8	开放端口配置;修正 NTC 电阻计算
V1.5	2022.12.22	调整格式和部分描述
V2.0	2023.2.23	1. 增加 REGOx16[5:2], 强制开关通路管;
		2. 针对芯片版本 D,增加部分功能 REGOxD2~D3;
V2.1	2023.6.16	1. 修改 REGOxBE 中 PPS 功率限制使能的描述;
V2.2	2023.10.22	1. 增加 REG0x76[7:6];
		2. 增加 REG0x77[3:0];
		3. 针对芯片版本 F;

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且不 另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。