

AV04/702

REC'D 24 AUG 2004

WIPO

POT

PA 1196009

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

July 19, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 10/445,463

FILING DATE: May 27, 2003

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

L. Edele

L. EDELEN
Certifying Officer

BEST AVAILABLE COPY

05-28-03 145463 1052703
9

1052703
U.S. PTO
FILED
1052703

Attorney Docket No.: ALL-1001US
Express Mail Label No. EL022597611US

1052703
U.S. PTO
1052703

In re application of:

Peter J. Blamey, Benjamin J. Smith and Brenton R. Steele

Filed: Concurrently Herewith

For: OSCILLATION SUPPRESSION

PATENT APPLICATION TRANSMITTAL

Commissioner for Patents
MAIL STOP PATENT APPLICATIONS
P.O. Box 1450
Alexandria, VA 22313-1450

Applicant is entitled to claim small entity status under 37 CFR 1.9(d) and 1.27(c).

Description 11 pages

Claims 3 pages

Drawings

formal drawings _____ sheets
 informal drawings 5 sheets

Abstract 1 page

Sequence Listing _____ pages

Computer Readable form (CFR)

Declaration and Power of Attorney (signed)

Declaration and Power of Attorney (unsigned)

Copy of Originally executed Declaration and Power of Attorney

Assignment Recordation

Assignment

Information Disclosure Statement and _____ references

PTO 1449 sheets (in duplicate)

Preliminary Amendment (6pgs)

Application data sheet (37 CFR 1.76)

If a CONTINUING APPLICATION

Continuation Divisional Continuation-in-part

Examiner _____ Group Art Unit _____

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE SMALL ENTITY 375.00	RATE OTHER	FILING FEE TOTAL
Total Claims	20 -20 =	0	X \$ 9.00	X \$ 18.00	0
Independent Claims	2 - 3 =	0	X \$ 42.00	X \$ 84.00	0
Multiple Dependent Claims (if applicable)			+ \$ 140.00	+ \$ 280.00	0
TOTAL					\$750.00

Certificate of Express Mail

Date: May 27, 2003

Express Mail Label No.: EL022597611US

I hereby certify that this paper, along with any document or paper referred to as being attached, is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 CFR 1.10 in an envelope addressed to the Commissioner for Patents, MAIL STOP PATENT APPLICATION, P.O. Box 1450, Alexandria, VA 22313-1450.

Dynne Webb
Name of person mailing correspondence

Dynne Webb
Signature of person mailing correspondence

A check in the amount of _____ is enclosed for the filing fees.

Commissioner is hereby authorized to charge the filing fee in the amount of \$750.00 to Deposit Account No. 50-0462.

Commissioner is hereby authorized to charge any additional fees which may be required under 37 CFR 1.16 or credit any overpayment to Deposit Account No. 50-0462. A duplicate copy of this sheet is enclosed.

Dated: May 27, 2003

Marc M. Kourtakis
Maria Kourtakis
Registration No. 41,126 for
Kevin J. Dunleavy
Registration No. 32,024

Customer No. 21302
KNOBLE & YOSHIDA, LLC.
Eight Penn Center
1628 John F. Kennedy Blvd.
Suite 1350
Philadelphia, PA 19103
Telephone: (215) 599-0600
Facsimile: (215) 599-0601
e-mail: kjdunleavy@patentswise.com

PATENT APPLICATION SERIAL NO. _____

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

05/25/2003 50750031 00000053 500482 10445463
01 FC,1001 750.00 CX

PTO-1556
(5/87)

OSCILLATION SUPPRESSION

Field of the invention

The present invention relates to oscillation suppression and, more particularly, concerns a method and apparatus for suppressing oscillation in a signal identified as or suspected of containing an oscillation due to feedback. The present invention may be used in conjunction with the method and apparatus for identifying oscillation in a signal due to feedback described in applicant's copending application entitled 'Oscillation Detection' (Attorney ref. 30-517-4681).

Background of the invention

10 In this specification, where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date:

- (i) part of common general knowledge; or
- (ii) known to be relevant to an attempt to solve any problem with which this specification 15 is concerned.

Acoustic amplifiers are used in many common applications such as telephones, radios, headsets, hearing aids, and public address systems. Typically, such an application comprises a microphone or other input transducer to pick up sounds and convert them into an electrical signal, an electronic amplifier to increase the power of the electrical signal, and a speaker or 20 other output transducer to convert the amplified electrical signal back into sound.

If the input and output transducers are close enough, the output acoustic signal may be picked up by the input transducer and fed back into the amplifier with a delay, the delay being the time taken for the sound to travel from the output transducer to the input transducer (plus 25 any delay due to the electrical processing of the signal). This is 'acoustic feedback'. Electrical feedback can also occur if the electrical signal at the output is coupled back to the input, for example by inductive or capacitive coupling. Further, mechanical feedback can also occur if vibrations are transmitted from the output transducer to the input transducer via the body or case of the amplification system. Under feedback conditions, the device can then become unstable and the components begin to ring. The ringing then self-reinforces and increases in 30 intensity to drive the components into saturation. Figure 1 illustrates a feedback loop,

showing diagrammatically the components in an acoustic amplifier circuit, namely microphone 1, amplifier 2 and speaker 3, with feedback loop 4 representing the output signal feeding back to the input transducer.

All forms of feedback may result in instability or oscillation of the output signal from the amplifier under certain conditions. Oscillation and instability are undesirable because they distort the signals being amplified and can result in very loud unpleasant sounds. In the case of hearing aids, this can lead to problems both for the wearer and for those around. The conditions for oscillation are that the total gain around the loop must be greater than 1, so that the signal is fed back into the system with a greater intensity each time, and the total delay around the loop must be a whole number of periods of the oscillation frequency, so that the input and output signals add constructively. Equivalently, the total phase change around the loop must be a multiple of 2π radians for the oscillation frequency. These criteria are set out in equations 1 to 3 below.

15 Loop Gain > 1 (eq. 1)

$$\text{Loop Delay} = N \times \text{period} \quad (\text{eq. 2})$$

$$\text{Loop Phase Change} = 2N\pi \text{ radians} \quad (\text{eq. 3})$$

(where N is a positive integer)

20 Any electronic system containing a microphone and speaker in close proximity may suffer from acoustic feedback. In hearing aids, this often results in the wearer experiencing unpleasant audible effects such as loud whistling tones at certain frequencies, usually high frequencies.

The traditional procedure for increasing the stability of a hearing aid is to reduce the gain at high frequencies, as suggested in, for example, US Patent 4,689,818. This may be done by setting the maximum gain value for each frequency, or automatic high frequency (HF) gain roll-off may be used. Controlling feedback by modifying the system frequency response, however, means that the desired high-frequency response of the instrument must be sacrificed in order to maintain stability.

Efforts have been undertaken to reduce the susceptibility of hearing aids to feedback oscillation by improving the fit and insulating properties of the ear mould. Efforts have also been undertaken from an electrical standpoint, from attenuation and notch filtering , as disclosed in US Patent 4,088,835, to estimation and subtraction of the feedback signal, as 5 disclosed in US Patent 5,016,280, to frequency shifting or delaying the signal, as disclosed in US Patent 5,091,952. Many different approaches to an electrical solution with continuous monitoring of the feedback path have been documented in the relevant literature.

A technique commonly used to suppress feedback in public address systems is a frequency shift, in which the input signal is altered by a few Hertz prior to being output at the receiver. 10 This approach has not been particularly successful in hearing aids because a large frequency shift is required to achieve a significant increase in gain. In hearing aids, the distance between microphone and receiver is much smaller than in public address systems, and thus a feedback signal with only a small frequency shift may still be relatively closely in phase with the input.

Signal phase can also be altered by using a time-varying delay [1]. While this can provide 1- 15 2dB of additional useable gain, it can also result in an audible 'warbling' effect. All pass filters have also been used to modify the phase response of the feedback loop, but it can be difficult to achieve satisfactory phase at all frequencies. Methods have been proposed to push danger regions in the phase response to frequencies outside the primary audio range where suppression can be applied without loss of sound quality [2] [3]. These techniques still 20 assume that the feedback path is constant however, and no suggestion has been made that an adaptive implementation may be developed.

The most common gain altering approaches attempt to reduce the system gain only in narrow bands where feedback is likely to occur. This has been attempted with a variety of notch filter implementations [1] [4] [5]. Adaptive notch filtering has allowed 3-5 dB of additional 25 useable gain. Two of the biggest problems with notch filtering techniques have been the inability to accurately track the variations in the feedback path with a narrow band, and the effects on normal spectral content with a broader band. In addition, the notch filter can actually contribute an additional phase change to the loop and shift the frequency of oscillation as soon as it is applied.

30 Substantial increases in useable gain have been achieved by inserting an additional feedback path, based on an estimation of the real feedback path, but 180 degrees out of phase. Early

adaptive implementations of such systems performed continuous estimation of the feedback path by inserting noise signals with appropriate statistical properties at the receiver and correlating the output with the input at the microphone [1] [6]. These reported up to 10 dB of additional useable gain [7] but, since the noise 'test' signals were audible and unpleasant for most wearers, this particular technique never became particularly widespread.

More recent feedback cancellation systems of this type rely on sounds in the environment to perform their correlation [8]. To avoid artefacts and incorrect suppression of speech however, the estimation time has to be longer than in systems using unnatural sounds to perform correlation. This means that sudden changes in the feedback path can result in several seconds of whistling before successful cancellation occurs. If implemented in conjunction with another technique to handle sudden changes, this approach can allow at least 10dB of additional useable gain [9]. The benefits and limitations of such systems are discussed in [10].

Nearly all of the techniques discussed here require some knowledge of the frequency of oscillation. However, as a result of the nature of direct and multiple reflected acoustical paths between microphone and speaker (or the changing acoustic properties of the ear/earmould/hearing aid coupling with regard to hearing aids) the frequency of acoustic feedback is unpredictable and may extend over a substantial portion of the audio frequency spectrum (between 20 and 20,000 Hz). As a result, it is desirable to have a circuit that can quickly identify an oscillation and its frequency.

US Patents 4,232,192 and 4,079,199 propose systems using a phase locked loop (PLL) adapted to recognize an oscillation when it occurs. As is known, however, when the input signal falls off, a PLL tends to become unstable and to drift. The result of the drift is an undesirable periodic, acoustic noise signal.

US Patent 4,845,757 describes another oscillation recognition circuit. This circuit detects oscillations by looking for long-lasting alternating voltages having relatively large amplitude and relatively high frequency. This is problematic in many applications because it means that the signal may contain feedback oscillations for some time before they are identified by such a circuit.

There remains a need in the art to provide an improved or at least an alternative way of detecting oscillations in a signal in a reliable, effective and rapid manner, and to apply appropriate suppression to the signal upon detection.

SUMMARY OF THE INVENTION

5 The invention provides, in accordance with a first aspect, a method for suppressing oscillation in a signal identified as or suspected of containing an oscillation, the method comprising the following steps:

- converting the signal into frequency bands in the frequency domain;
- applying, for a selected period of time, a randomly changing phase to the signal in at
- 10 least one of said frequency bands; and
- reconverting the converted signal into an output waveform signal.

This method has the effect of disrupting the consistent constructive addition of the feedback signal to the input signal, providing a simple but very effective solution to the suppression problem.

15 Preferably, said selected period is divided into a series of successive time windows, and for each successive time window a newly generated random or pseudo-random phase is applied to the signal. This technique thus provides the randomly changing signal phase.

The method may be applied in combination with a method for detecting oscillation due to feedback in said signal in each of said frequency bands, a randomly changing phase applied in
20 each frequency band for which said oscillation has been detected.

The oscillation detection technique may comprise calculating, for each frequency band, the change in signal phase and/or signal amplitude from a time window to a subsequent time window, and comparing, for some or all of said frequency bands, the results of the calculation step to defined criteria to provide a measure of whether oscillation due to feedback is present
25 in the signal.

Alternatively, the oscillation detection technique may be a phase locked loop method, or may involve detection of a large sustained amplitude in a particular frequency band..

The randomly changing phase may be applied in each frequency band to a gain value to be applied to the signal.

In a preferred form, the method includes the step of, for a particular frequency band, generating a complex number with random or pseudo-random phase and amplitude 1.0 for each successive time window, and applying this complex number to the signal in that frequency band. A real gain value for said frequency band may be multiplied by said complex

5 number before the gain is applied to the signal.

In an alternative form, the method may include the step of, for a particular frequency band and in each successive time window, replacing the signal or signal gain with a signal or signal gain having equal amplitude and a random or pseudo-random phase.

The invention provides, in accordance with a second aspect, an apparatus for suppressing

10 oscillations in a signal identified as or suspected of containing an oscillation, comprising:

- means for converting the signal into frequency bands in the frequency domain;
- means for applying, for a selected period of time, a randomly changing phase to the signal in at least one of said frequency bands; and
- means for reconverting the converted signal into an output waveform signal.

15 The apparatus preferably includes means for dividing the signal into a series of successive time windows, and means for applying to the signal, for each successive time window, a newly generated random or pseudo-random phase.

Preferably, the apparatus is provided in combination with a means for detecting oscillation due to feedback in said signal in each of said frequency bands, the means for applying

20 arranged to apply a random phase in each frequency band for which said oscillation has been detected.

The means for detecting oscillation may comprise means for calculating, for each frequency band, the change in signal phase and/or signal amplitude from a time window to the next, and means for comparing, for some or all of said frequency bands, the results of the calculation

25 step to defined criteria to provide a measure of whether oscillation due to feedback is present in the signal. Alternatively, the means for oscillation detection may comprise phase locked loop circuitry, or means for detection of a large sustained amplitude in a particular frequency band.

In a preferred form, the means for applying are arranged to apply the randomly changing

30 phase in each frequency band to a gain value to be applied to the signal.

The apparatus may include means for generating a complex number with random or pseudo-random phase and amplitude 1.0 for each successive time window, and means for applying this complex number to the signal in that frequency band.

Preferably, means are included for multiplying a real gain value for said frequency band by
5 said complex number before applying the gain to the signal.

In an alternative form, the apparatus includes means for, for a particular frequency band and in each successive time window, replacing the signal or signal gain with a signal or signal gain having a random or pseudo-random phase.

The invention provides alteration of the feedback loop in a manner that disrupts the feedback
10 oscillation conditions and suppresses the oscillation without significantly affecting the system frequency response. If used with an appropriate oscillation detection technique, oscillation can be detected and suppressed very rapidly, and before audible ringing results.

The randomly changing phase is added in successive time windows over a certain length of time, for example approximately one second, to any frequency that appears to be in a state of
15 oscillation. The length of time may be preselected, or may be dynamically determined with reference to the result of oscillation detection in that frequency band. The random phase variation suppresses the oscillation by disrupting the consistent constructive addition of the feedback signal to the input signal.

It should be noted that the feedback suppression method of the invention may be used with
20 any suitable feedback detection approach.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more apparent by describing in detail a preferred non limiting embodiment with reference to the attached drawings, in which:

Fig. 1 is a block diagram schematically illustrating a feedback loop;
25 Fig. 2 is a block diagram of an apparatus according to the present invention;
Fig. 3 is a flow diagram illustrating the logic and process of feedback detection;
Fig. 4 is a flow diagram illustrating the logic and process of feedback suppression; and
Figs. 5 and 6 are block diagrams of alternative architectures of apparatus according to the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

An acoustic system 10 in accordance with the invention, such as a hearing aid, is schematically depicted in Figure 2. A microphone 11 converts an acoustic signal, such as the speech, into an analogue electrical signal proportional to the acoustic signal, which signal is then converted by an A/D converter 12 into a digital signal. The output of A/D converter 12 is connected to the input of a Discrete Fourier Transform (DFT) unit - such as a Fast Fourier Transform (FFT) unit 13 - for analysing the frequency components of the signal, and unit 14 enables analysis of 64 frequency bands across the spectrum of the signal. A suitable unit is the Toccata Plus integrated circuit designed and developed by the Dspfactory, operating with 16 kHz sampling rate and using 128 point windows of 8 millisecond duration with 50% overlap to yield 64 linearly spaced frequency bands at 125Hz intervals from 0 to 8000 Hz. Module 20 is a feedback detector arranged to monitor the phase and amplitude of the signal in each frequency band in the spectrum (adjusted if appropriate, as explained further below) during successive sampling windows at short intervals, such as successive 8 millisecond windows with 50% overlap, calculated every 4 milliseconds. The apparatus includes a counter for each frequency band, which can be incremented or reset at each successive time window.

For each time window, the measured phase from the previous window is subtracted from the phase in the current window to calculate the change in phase at a particular frequency band. This change in phase is compared to the previous change in phase. If the values are within a defined variation (ie the change in the phase change is within the threshold) then the counter is incremented, otherwise the counter is reset. Further, the amplitude in the current window is compared with the amplitude in the previous window. If the current amplitude is less than the previous amplitude, then the counter is reset. The feedback detector is programmed to respond - by triggering feedback suppression - to the counter reaching a value M. The present invention contemplates that either the change in phase change criterion (counter reaches M_p) or the change in amplitude criterion (counter reaches M_a) may be considered for suppression triggering, or both.

The example represented in Figure 3 illustrates, for a time window, the process of detection using the change in phase change criterion. For each of the 64 bands, the state of the band is determined (30). If that band is already being suppressed (31), no calculations are performed. Otherwise, the phase is calculated (32), and the previous phase value calculated

for that band (which value has been stored – see below) is subtracted from the current phase value (33) to provide a current value of phase change. The next step (34) is to subtract the previous phase change value from the current phase change value, to output a value of change of phase change. This value is then checked (35) and (37), and if it is within a prescribed

5 threshold for phase change variation, the counter is incremented by 1 (41). The subtraction of 2π (36) and second check (37) ensure that the value of the change of phase change is checked, irrespective of whether the change has increased or decreased. If the value is not within the threshold, the counter is reset to 0 (38), the current phase and phase change value is saved (39), and the next band is selected (40).

10 If the counter has been incremented (41), a check is made to determine if it has reached a value M_p

(42), thereby indicating an oscillation has been detected (43) and flagging that band for suppression (see below). If not, the current phase and phase change values are saved (39), and the next band is selected (40). It is to be noted that the bands can be checked in parallel

15 or sequentially within each time window.

In simulations carried out by the inventors, where both criteria for detection have been employed, $M_a = M_p = 12$ gives good performance. Using $M_a = M_p$ simplifies the detection apparatus and method, as a common counter can be used. If only one criterion is to be employed in detecting feedback, the M_a or M_p value may be increased to avoid false triggering

20 of feedback suppression.

Once the counter for any frequency band exceeds the required values of M_a and/or M_p , this frequency band is deemed to be in oscillation, and an apply phase module 21 is triggered (see Figure 2). Apply phase module 21 generates a complex number with random phase and amplitude 1 for each window, and multiplies the real gain value at module 22 for the

25 frequency band by this complex number before the gain is applied to the signal via gain unit 23 to provide an adjusted spectrum 24. The loop illustrated in Figure 2 indicates that the phase of the gain multipliers depends on the apply phase unit, which depends on the feedback detector unit. Apply phase module 21 continues to apply random phase to the gain for about one second, to allow the conditions which created the feedback path to change.

30 The example represented in Figure 4 illustrates the process of suppression for a time window, appropriate for the example embodiments illustrated in Figures 5 and 6. Firstly, the state of a

selected band is checked (40), to determine whether it is flagged for suppression (41). If not, the next band is selected (47). If it is flagged for suppression, the magnitude of the signal at that band is obtained (42) and multiplied by the real part of the generated random complex number (43), the resulting new real component being saved (44). Further, the magnitude of the signal is multiplied by the corresponding imaginary part of the generated random complex number (45), and the resulting new imaginary component saved (46).

The signal passes through MPO unit (Maximum Power Output) 25 (see Figure 2), and is then reconverted into a time domain waveform by inverse FFT module 26. A D/A converter 27 then converts the digital signal to an electrical analogue signal before supplying it to the hearing aid output terminal to drive speaker 28.

It is to be noted that the ‘magnitude of the signal’ in a band referred to above in the context of Figure 4 may be the output spectrum value (for the example embodiments shown in Figures 5 and 6), or may be the gain value (for the example embodiment shown in Figure 2), and the invention may be implemented using either approach, the selection depending at least in part 15 on the hardware employed for the processing. In the alternative architectures of Figures 5 and 6 the random phase is applied to the output spectrum rather than to the gains, in both embodiments the gain values are applied to the signal by gain unit 23 before feedback detector 20. In Figure 6, MPO unit 25 is omitted, to illustrate that the invention can be implemented without it.

20 Feedback detector 20 and apply phase module 21 do not necessarily have to be applied together. An alternative form of feedback suppression, such as application of a notch filter, may be applied to a signal in which feedback oscillation has been identified by feedback detector 20. Other types of feedback suppression which might be employed include gain attenuation at the frequency band in question, applying a time varying phase change, or

25 subtraction of the signal at the frequency band in question. Similarly, an alternative form of feedback detector, such as a phase locked loop (PLL) circuit, may be employed, apply phase module 21 being used to apply a random phase to the signal in that particular frequency band once feedback has been detected.

It has been found in simulations carried out by the inventors that application of both feedback detector 20, combining the monitoring of both phase change and amplitude, along with the

application of apply phase module 21, can result in suppression of all feedback oscillation in 60-100 milliseconds.

Modifications and improvements to the invention will be readily apparent to those skilled in the art. Such modifications and improvements are intended to be within the scope of this
5 invention. For example, in accordance with the invention, the signal spectrum may be split into a plurality of discrete frequency bands, or alternatively neighbouring bands may overlap. The word 'comprising' and forms of the word 'comprising' as used in this description and in the claims does not limit the invention claimed to exclude any variants or additions

CLAIMS

1. A method for suppressing oscillation in a signal identified as or suspected of containing an oscillation, the method comprising the following steps:
 - converting the signal into frequency bands in the frequency domain;
 - 5 applying, for a selected period of time, a randomly changing phase to the signal in at least one of said frequency bands; and
 - reconverting the converted signal into an output waveform signal.
2. The method of claim 1, wherein said selected period is divided into a series of successive time windows, and for each successive time window a newly generated random or 10 pseudo-random phase is applied to the signal.
3. The method of claim 1 or 2, in combination with a method for detecting oscillation due to feedback in said signal in each of said frequency bands, a randomly changing phase applied in each frequency band for which said oscillation has been detected.
4. The method of claim 3, wherein the randomly changing phase is applied in each 15 frequency band to a gain value to be applied to the signal.
5. The method of claim 3 or 4, in which the oscillation detection technique comprises calculating, for each frequency band, the change in signal phase and/or signal amplitude from a time window to a subsequent time window, and comparing, for some or all of said frequency bands, the results of the calculation step to defined criteria to provide a measure of 20 whether oscillation due to feedback is present in the signal.
6. The method of claims 3 or 4, in which the oscillation detection technique is a phase locked loop method.
7. The method of claim 3 or 4, in which the oscillation detection technique includes detection of a large sustained amplitude in a particular frequency band.
- 25 8. The method of claim 2 or any one of claims 3 to 7 insofar as dependent on claim 2, including the step of, for a particular frequency band, generating a complex number with random or pseudo-random phase and amplitude 1.0 for each successive time window, and applying this complex number to the signal in that frequency band.

9. The method of claim 8, in which a real gain value for said frequency band is multiplied by said complex number before the gain is applied to the signal.
10. The method of claim 2 or any one of claims 3 to 7 insofar as dependent on claim 2, including the step of, for a particular frequency band and in each successive time window,
5 replacing the signal or signal gain with a signal or signal gain having equal amplitude and a random or pseudo-random phase.
11. An apparatus for suppressing oscillations in a signal identified as or suspected of containing an oscillation, comprising:
 - means for converting the signal into frequency bands in the frequency domain;
 - 10 means for applying, for a selected period of time, a randomly changing phase to the signal in at least one of said frequency bands; and
 - means for reconverting the converted signal into an output waveform signal.
12. The apparatus of claim 11, including means for dividing the signal into a series of successive time windows, and means for applying to the signal, for each successive time
15 window, a newly generated random or pseudo-random phase.
13. The apparatus of claim 11 or 12, in combination with a means for detecting oscillation due to feedback in said signal in each of said frequency bands, the means for applying arranged to apply a random phase in each frequency band for which said oscillation has been detected.
- 20 14. The apparatus of claim 13, in which the means for detecting oscillation comprises means for calculating, for each frequency band, the change in signal phase and/or signal amplitude from a time window to the next, and means for comparing, for some or all of said frequency bands, the results of the calculation step to defined criteria to provide a measure of whether oscillation due to feedback is present in the signal.
- 25 15. The apparatus of any one of claims 11 to 14, wherein the means for applying are arranged to apply the randomly changing phase in each frequency band to a gain value to be applied to the signal.
16. The apparatus of claim 13, in which the means for oscillation detection comprises phase locked loop circuitry.

17. The apparatus of claim 13, in which the means for oscillation detection comprises means for detection of a large sustained amplitude in a particular frequency band.
18. The apparatus of any one of claims 13 to 17 insofar as dependent on claim 12, including means for generating a complex number with random or pseudo-random phase and
5 amplitude 1.0 for each successive time window, and means for applying this complex number to the signal in that frequency band.
19. The apparatus of claim 18, including means for multiplying a real gain value for said frequency band by said complex number before applying the gain to the signal.
20. The apparatus of any one of claims 13 to 17 insofar as dependent on claim 12,
10 including means for, for a particular frequency band and in each successive time window, replacing the signal or signal gain with a signal or signal gain having a random or pseudo-random phase.

Abstract

The invention relates to oscillation suppression and, more particularly, concerns a method and apparatus for suppressing oscillation in a signal identified as or suspected of containing an oscillation due to feedback.

- 5 The method involves converting the signal into frequency bands in the frequency domain, applying, for a selected period of time, a randomly changing phase to the signal in at least one of said frequency bands, and reconverting the converted signal into an output waveform signal. The selected period is divided into a series of successive time windows, and for each successive time window a newly generated random or pseudo-random phase is applied to the
- 10 signal. The method can be used in combination with a method for detecting oscillation in said signal in each of the frequency bands, a randomly changing phase applied in each frequency band for which said oscillation has been detected.

The invention has particular application in hearing aid devices.

Attorney Docket No. ALL-1001US

DECLARATION AND POWER OF ATTORNEY

As below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

OSCILLATION SUPPRESSION

The specification of which

is attached hereto.
 was filed on _____ as United States Application No. _____ or
PCT International Application Number _____ and was amended on

(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate or PCT International having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Priority Not Claimed

(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>

I hereby claim the benefit under 35 U.S.C. Section 119(e) of any Untied States provisional application(s) listed below:

(Application Serial No.)	(Filing Date)
(Application Serial No.)	(Filing Date)
(Application Serial No.)	(Filing Date)

I hereby claim the benefit under 35 U.S.C. Section 120 of any United States application(s) or Section 365(c) PCT application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior Untied States or PCT International Application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the Untied States patent and Trademark Office all information known to me to be material to patentability as defined in Title 37 C.F.R. Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date:

(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

John J. Knoble, Registration No. 32,387; Ken I. Yoshida, Registration No. 37,009, Kevin J. Dunleavy, Registration No. 32, 024 and Maria Kourtakis, Registration No. 41,126 of the firm KNOBLE & YOSHIDA, LLC, Eight Penn Center, 1628 John F. Kennedy Blvd., Philadelphia, PA 19103, Telephone: (215) 599-0600, Facsimile: (215) 599-0601 (Customer No. 21,302). Please direct all correspondence and telephone calls to Kevin J. Dunleavy.

Full name of sole or first inventor		
Peter J. Blamey		Date
Sole or first inventor's signature		
Residence		
South Yarra, Victoria Australia		
Citizenship		
AU		
Post Office Address		
5/12 Kensington Road, South Yarra, Victoria 3141 Australia		

Full name of second inventor		
Benjamin J. Smith		Date
Second inventor's signature		
Residence		
Balwyn, Victoria Australia		
Citizenship		
AU		
Post Office Address		
271 Union Road, Balwyn, Victoria 3103 Australia		

Full name of third inventor		
Brenton R. Steele		Date
Third inventor's signature		
Residence		
Blackburn South, Victoria Australia		
Citizenship		
AU		
Post Office Address		
177 Blackburn South, Victoria 3130 Australia		

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

Page(s) _____ of _____ were not present
for scanning. (Document title)

Page(s) _____ of _____ were not
present
for scanning. (Document title)

Scanned copy is best available. Drawings are dark.

1/5

Fig. 1

Fig. 2

2/5

FIG 3

3/5

FIG.4

Fig. 5

Fig 6

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

**IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox**