Methods

Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning

Yuyan Wang, Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, Ed H. Chi {yuyanw,xuezhiw,alexbeutel,fprost,jilinc,edchi}@google.com

Fairness

Objective: Subgroups are treated equally.

Why: Critical for decision making in employment, education etc.

Mostly studied in single-task learning problems.

Multi-Task Learning (MTL)

Objective: Jointly learn multiple tasks.

Why: Transfer learning / regularization / model efficiency/...

Mostly only focused on optimizing accuracy across multiple tasks.

What we know:

- For single task, fairness comes at a cost of accuracy;
- MTL comes with an accuracy trade-off among tasks;

What we don't know:

- How does fairness play out in the multi-task scenario?
- How to characterize the multi-dimensional fairness-accuracy trade-off?
- Can we improve the Pareto frontier?

Fairness Implications in MTL

MTL may have larger impacts on fairness goals than on accuracy goals...

.. or **hurt** the fairness of some tasks while benefiting from its accuracy gains.

Training multiple tasks together by simply pooling the accuracy objectives may lead to unwanted fairness consequences.

	T1 Error	T1 FPR Gap	T2 Error	T2 FPR Gap
STL-T1	0.2030	0.2716		-
STL-T2	-	-	0.0784	0.0145
MTL	0.2035	0.2846	0.0783	0.0137
Difference	+0.24%	+4.78%	-0.08%	(-5.39%)

	T1 Error	T1 FPR Gap	T2 Error	T2 FPR Gap
STL-T1	0.1659	0.1200		-
STL-T2	-	-	0.1313	0.0661
MTL	0.1656	0.1205	0.1299	0.0738
Difference	-0.20%	+0.34%	-1.10%	+11.60%

STL-T1: single-task learning for Task 1; STL-T2: single-task learning for Task 2; MTL: multi-task learning with equal task weight.

Measuring Fairness in MTL

Can we efficiently summarize and visualize the multi-dimensional Pareto frontier?

Moreover, fairness/accuracy metrics could differ largely across different tasks (e.g. some tasks are intrinsically harder to learn / have more bias).

Measuring relative change over single-task learning (STL), and average across tasks:

Improving Fairness in MTL

set of negative

correlation loss [1-2]

Using FPR gap as the measure for group fairness...

 $\hat{\mathcal{L}}_{STL}(f) = \hat{\mathcal{L}}(f) + \lambda \hat{\mathcal{F}}(f|N),$

Training Data

- Baseline: Fairness loss computed on \(\bigcup_{\&} \);
- is **only** relevant to Task 2 fairness; Likewise,

closing the gap

examples (Y=0)

on **negative**

But Baseline method does not distinguish between them => A **suboptimal** use of model capacity!

MTA-F: Multi-task-aware fairness treatment

Let's address the fairness in a more targeted way:

- Head layers address fairness issues that are **specific** to
- Shared layers address fairness issues that are **common** to more than 1 tasks.

(b) Backpropagation with MTA-F: We backpropagate task-specific fairness losses $\hat{\mathcal{F}}_{t}^{head}$ to head layers, and the remaining fairness loss $\hat{\mathcal{F}}_{t}^{shared}$ to shared layers (t = 1, 2).

Datasets:

- UCI-Adult: Income > \$50k (T1), Capital Gain > 0 (T2)
- German Credit Data: Good loans (T1), Credit > 2000 (T2)
- LSAC Law School: Pass bar (T1), high GPA (T2)
- Methods:
 - Vanilla MTL: plain MTL without fairness mitigation
 - **Baseline**: Per-task fairness treatment
 - MTA-F: our proposed method
- Fairness loss: correlation loss / MMD loss / FPR gap loss
- Fairness metric: Equal Opportunity between females and males

--- Vanilla MTL Baseline --- Baseline MTA-F

(a) UCI-Adult. (b) German Credit Data. (c) LSAC Law School. Figure 2: ARFG-ARE Pareto frontier. Lower-left indicates better Pareto optimality, i.e. better overall fairness-accuracy trade-off.

1		1			
UCI-	Adult	German	n Credit	LSAC La	w School
ARFG	ARE	ARFG	ARE	ARFG	ARE
0.3444	1.1040	0.1336	0.8367	0.3497	0.9778
0.0871	1.1032	0.0999	0.8356	0.1126	0.9864
0.0437	1.0820	0.0364	0.8264	0.0310	0.9731
	ARFG 0.3444 0.0871	0.3444 1.1040 0.0871 1.1032	ARFG ARE ARFG 0.3444 1.1040 0.1336 0.0871 1.1032 0.0999	ARFG ARE ARFG ARE 0.3444 1.1040 0.1336 0.8367 0.0871 1.1032 0.0999 0.8356	ARFG ARE ARFG ARE ARFG 0.3444 1.1040 0.1336 0.8367 0.3497 0.0871 1.1032 0.0999 0.8356 0.1126

rate

Overall error

Table 3: Average relative fairness gap (ARFG) and average relative error (ARE) on UCI-Adult, German Credit Data and LSAC Law School datasets, as defined in Section 4. Lower metric values indicate better overall fairness / accuracy across all tasks.

		7 1.		1	K
				<u> </u>	
		$T_1 Err$	T_1 FPRGap	$T_2'Err$	T ₂ FPRGap
UCI- Adult	Vanilla MTL	0.1911	0.0715	0.1359	0.0091
	Baseline	0.1938	0.0186	0.1336	0.0020
	MTA-F	0.1891	0.0083	0.1319	0.0016
German Credit	Vanilla MTL	0.205	0.0150	0.220	0.0084
	Baseline	0.255	0.0879	0.180	0.0069
	MTA-F	0.200	0.0033	0.220	0.0034
LSAC	Vanilla MTL	0.1555	0.0503	0.1565	0.0004
Law School	Baseline	0.1568	0.0119	0.1580	0.0006
	MTA-F	0.1540	0.0015	0.1565	0.0004

Task 1

Task 2

Table 4: Per-task metrics for UCI-Adult, German Credit Data and LSAC Law School datasets.

References

Overall

fairness gap

- [1] Beutel et al. Fairness in recommendation ranking through pairwise comparisons. KDD 2019.
- [2] Beutel et al. Putting fairness principles into practice: Challenges, metrics, and improvements. AIES 2019. [3] Prost et al. Toward a better trade-off between performance and fairness with kernel-based distribution matching. NeurIPS 2019 "ML
- with Guarantees" workshop. [4] Feldman et al. Certifying and removing disparate impact. KDD 2015.
- [5] Menon et al. The cost of fairness in binary classification. FAccT 2018. [6] Zafar et al. Fairness Constraints: A Flexible Approach for Fair Classification. JMLR 2019.