PENGEMBANGAN SISTEM HMI SUMBER TERBUKA UNTUK PLC OMRON BERBASIS PROTOKOL FINS DENGAN VISUALISASI WEB

Oleh Denny Chrisnanda 2502124914

COMPUTER SCIENCE STUDY PROGRAM

BINUS ONLINE LEARNING UNIVERSITAS BINA NUSANTARA JAKARTA

2025

DAFTAR ISI

DAFTA	R ISI	• • • • • • • • • • • • • • • • • • • •	i						
DAFTA	R TAB	EL	iii						
DAFTA	DAFTAR GAMBAR iv								
BAB I	Penda	huluan	1						
1.1	Latar l	Belakang Masalah	1						
1.2	Rumus	san Masalah	1						
1.3	Tujuar	n dan Manfaat Penelitian	2						
	1.3.1	Tujuan Penelitian	2						
	1.3.2	Manfaat Penelitian	2						
1.4	Ruang	Lingkup Penelitian	2						
1.5	Hipote	esis Penelitian	3						
1.6	Sistem	natika Penulisan	3						
BAB II	TINJA	AUAN PUSTAKA	4						
2.1	Landa	san Teori	4						
	2.1.1	Perusahaan Manufaktur dan Kebutuhan Otomasi	4						
	2.1.2	Programmable Logic Controller (PLC)	4						
	2.1.3	Protokol Komunikasi Industri dan FINS	4						
	2.1.4	SCADA dan DAQ dalam Konteks Industri	5						
	2.1.5	HMI dan Visualisasi Data	5						
	2.1.6	Teknologi Web Modern: HTML, CSS, JavaScript, TypeScript,							
		Node.js, Angular	5						
	2.1.7	SCADA Open-Source dan Vendor Lock-In	6						
	2.1.8	Pengujian dan Validasi Sistem SCADA	7						
2.2	Peneli	tian Terdahulu	7						
	2.2.1	Implementasi SCADA Open-Source dalam Industri	7						
	2.2.2	Pemanfaatan FUXA dalam Pendidikan dan Simulasi	8						

BAB II	I METODOLOGI PENELITIAN	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	9
3.1	Jenis Penelitian	•																	ç
3.2	Metode Pengembangan Sistem																		ç
3.3	Alat dan Bahan							•											10
3.4	Tahapan Penelitian																		10
3.5	Metode Pengujian							•											10
	D DIJOTEA IZA																		11
DAFTA	R PUSTAKA	•	•	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	11

DAFTAR TABEL

3.1	Tahapan Pelaksanaan Penelitian	10
-----	--------------------------------	----

DAFTAR GAMBAR

BABI

Pendahuluan

1.1 Latar Belakang Masalah

FUXA merupakan salah satu perangkat lunak SCADA (Supervisory Control and Data Acquisition) sumber terbuka yang banyak digunakan dalam berbagai aplikasi industri. Namun, hingga saat ini FUXA belum secara resmi mendukung protokol Factory Interface Network Service (FINS) yang dikembangkan oleh Omron.

Di sisi lain, industri manufaktur yang mengandalkan *Programmable Logic Controller* (PLC) dari Omron memerlukan sistem visualisasi data secara *real-time* yang kompatibel dengan protokol komunikasi FINS. Ketiadaan dukungan ini menyebabkan keterbatasan integrasi antara sistem SCADA open-source dan perangkat keras dari Omron.

Oleh karena itu, diperlukan upaya pengembangan modul komunikasi FINS pada FUXA agar sistem SCADA ini mampu berkomunikasi secara efektif dengan PLC Omron, sehingga dapat digunakan secara luas oleh industri dan komunitas pengembang perangkat lunak terbuka.

1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana menambahkan dukungan protokol FINS pada FUXA dengan fitur yang setara dengan protokol lain seperti Modbus?
- 2. Bagaimana memastikan proses pembacaan dan penulisan data melalui protokol FINS berjalan stabil serta dapat ditampilkan dengan benar pada antarmuka pengguna (UI)?

1.3 Tujuan dan Manfaat Penelitian

1.3.1 Tujuan Penelitian

Penelitian ini bertujuan untuk mengimplementasikan dukungan protokol FINS pada FUXA, meliputi:

- Pengambilan data secara berkala (polling),
- Penulisan nilai ke PLC,
- Dukungan Data Acquisition (DAQ),
- Integrasi sistem alarm berbasis tag.

1.3.2 Manfaat Penelitian

Manfaat dari penelitian ini antara lain:

- Menyediakan solusi SCADA sumber terbuka yang kompatibel dengan PLC Omron, khususnya untuk industri kecil dan menengah.
- Memberikan kontribusi nyata dalam pengembangan perangkat lunak sumber terbuka di bidang otomasi industri.

1.4 Ruang Lingkup Penelitian

Penelitian ini memiliki ruang lingkup sebagai berikut:

- Fokus pada implementasi komunikasi FINS melalui protokol UDP/TCP.
- Penggunaan area memori standar PLC Omron seperti DM, CIO, W, dan sejenisnya.
- Pengembangan terbatas pada pembacaan dan penulisan tag serta visualisasi nilai melalui UI FUXA.
- Pengujian dilakukan menggunakan perangkat lunak analisis jaringan seperti Wireshark serta PLC fisik maupun simulator.

1.5 Hipotesis Penelitian

Hipotesis dari penelitian ini adalah:

- Jika protokol FINS berhasil diintegrasikan ke dalam FUXA, maka sistem SCADA tersebut akan mampu membaca dan menulis data dari PLC Omron secara stabil dan akurat.
- Performa polling dan DAQ yang dihasilkan akan setara dengan protokol komunikasi lain seperti Modbus.

1.6 Sistematika Penulisan

Adapun sistematika penulisan dalam laporan ini adalah sebagai berikut:

- Bab 1 Pendahuluan: berisi latar belakang, rumusan masalah, tujuan dan manfaat, ruang lingkup, hipotesis, dan sistematika penulisan.
- Bab 2 Tinjauan Referensi: membahas teori dan referensi terkait, seperti protokol FINS, FUXA, dan komunikasi industri.
- **Bab 3** Metodologi Penelitian: menjelaskan tahapan dan metode penelitian yang digunakan.
- Bab 4 Implementasi dan Pengujian: menyajikan proses integrasi FINS pada
 FUXA serta hasil pengujian.
- Bab 5 Kesimpulan dan Saran: berisi simpulan dari hasil penelitian serta rekomendasi untuk pengembangan lebih lanjut.

BAB II

TINJAUAN PUSTAKA

2.1 Landasan Teori

2.1.1 Perusahaan Manufaktur dan Kebutuhan Otomasi

Industri manufaktur modern sangat bergantung pada sistem otomasi untuk meningkatkan efisiensi produksi, konsistensi kualitas, dan pengendalian biaya. Otomasi industri melibatkan penggunaan perangkat keras seperti sensor, aktuator, dan Programmable Logic Controller (PLC) yang terhubung ke sistem kontrol dan pengawasan seperti SCADA (Supervisory Control and Data Acquisition).

Perusahaan seperti *Special Purpose Machine (SPM) Maker* sering kali merancang dan membangun mesin otomatis untuk kebutuhan spesifik di pabrik. Mesin-mesin ini biasanya menggunakan PLC dari berbagai vendor, termasuk Omron, Siemens, dan Allen-Bradley. Untuk memantau dan mengendalikan mesin secara efisien, diperlukan sistem HMI dan SCADA yang andal, fleksibel, dan mudah diintegrasikan dengan protokol komunikasi industri.

2.1.2 Programmable Logic Controller (PLC)

PLC adalah perangkat digital berbasis mikroprosesor yang dirancang untuk mengontrol proses otomatis di lingkungan industri. PLC dapat diprogram untuk menjalankan logika kontrol yang kompleks dan sangat tahan terhadap kondisi ekstrem seperti getaran, suhu tinggi, dan interferensi listrik. PLC berfungsi sebagai otak dari sistem otomasi, mengumpulkan data dari sensor dan mengontrol aktuator berdasarkan logika yang telah diprogram.

2.1.3 Protokol Komunikasi Industri dan FINS

Agar PLC dapat terhubung ke perangkat lain, diperlukan protokol komunikasi industri. Protokol ini memungkinkan transfer data secara real-time antara PLC dan SCADA. Contoh protokol yang umum digunakan antara lain Modbus, OPC UA, Profibus, EtherNet/IP, dan FINS.

FINS (Factory Interface Network Service) merupakan protokol yang dikembangkan oleh Omron untuk memungkinkan komunikasi antar perangkat di dalam jaringan otomasi industri. FINS mendukung komunikasi melalui UDP dan TCP, Kelebihan FINS antara lain:

- Kompatibel dengan semua seri PLC Omron.
- Dukungan komunikasi jarak jauh melalui pengalamatan jaringan.
- Struktur data fleksibel, seperti area CIO, DM, WR, HR.

2.1.4 SCADA dan DAQ dalam Konteks Industri

SCADA adalah sistem yang digunakan untuk mengontrol dan memonitor proses industri secara terpusat. SCADA mencakup fungsi utama seperti akuisisi data (DAQ), kontrol jarak jauh, alarm, logging historis, dan visualisasi data melalui HMI. Akuisisi data (DAQ) berperan penting dalam mengumpulkan nilai-nilai sensor dan status proses secara periodik, yang kemudian disimpan dan dianalisis untuk pengambilan keputusan.

Polling adalah metode yang digunakan oleh SCADA untuk mengambil data dari perangkat lapangan seperti PLC. Dalam polling, sistem SCADA mengirim permintaan ke PLC secara berkala dan membaca respon data yang dikirimkan kembali.

2.1.5 HMI dan Visualisasi Data

HMI (Human-Machine Interface) adalah antarmuka antara manusia dan sistem kontrol. HMI menyediakan representasi visual dari proses industri dan memungkinkan operator untuk memantau kondisi sistem dan melakukan intervensi jika diperlukan. Fitur penting dalam HMI meliputi grafik waktu nyata, pengaturan parameter, tampilan alarm, dan trend historis.

2.1.6 Teknologi Web Modern: HTML, CSS, JavaScript, TypeScript, Node.js, Angular

Perkembangan teknologi web memungkinkan sistem HMI dan SCADA dikembangkan sebagai aplikasi web lintas platform yang dapat diakses melalui browser

secara real-time. Teknologi utama yang digunakan antara lain:

- HTML (HyperText Markup Language): Bahasa standar untuk menyusun struktur dan elemen-elemen dasar halaman web.
- CSS (Cascading Style Sheets): Digunakan untuk mendesain tampilan visual halaman web, termasuk warna, tata letak, dan responsivitas antarmuka.
- JavaScript: Bahasa pemrograman inti untuk interaktivitas pada web, memungkinkan manipulasi DOM, penanganan event, dan komunikasi asynchronous melalui AJAX.
- TypeScript: Merupakan superset dari JavaScript yang dikembangkan oleh Microsoft, menyediakan fitur pengetikan statis dan pemrograman berorientasi objek yang kuat. TypeScript digunakan secara luas dalam pengembangan Angular karena meningkatkan skalabilitas, keamanan, dan maintainability kode.
- Node.js: Platform berbasis JavaScript yang berjalan di sisi server (backend).
 Node.js mendukung arsitektur non-blocking dan event-driven, sehingga sangat cocok untuk aplikasi SCADA yang membutuhkan performa tinggi dan komunikasi data real-time.
- Angular: Framework frontend modern yang dikembangkan oleh Google.
 Angular menggunakan TypeScript sebagai bahasa utamanya dan menyediakan pendekatan pengembangan berbasis komponen, dependency injection, serta routing yang efisien. Angular mempermudah pembuatan antarmuka pengguna (HMI) yang dinamis, modular, dan responsif.

Dengan kombinasi teknologi tersebut, sistem SCADA berbasis web menjadi lebih fleksibel, ringan, dan dapat diakses lintas perangkat tanpa memerlukan instalasi perangkat lunak tambahan.

2.1.7 SCADA Open-Source dan Vendor Lock-In

Salah satu tantangan dalam dunia industri adalah ketergantungan terhadap vendor atau *vendor lock-in*. Sistem SCADA komersial biasanya memiliki lisensi yang

mahal dan tertutup, membuat pengguna sulit untuk melakukan kustomisasi. Oleh karena itu, SCADA open-source seperti FUXA menjadi alternatif menarik.

FUXA adalah sistem SCADA berbasis web yang dikembangkan secara open-source. Dengan menggunakan FUXA, pengguna dapat menghindari ketergantungan vendor, menghemat biaya lisensi, serta bebas memodifikasi sistem sesuai kebutuhan spesifik industri.

2.1.8 Pengujian dan Validasi Sistem SCADA

Pengujian (testing) merupakan bagian penting dalam pengembangan sistem SCADA. Pengujian bertujuan untuk memastikan sistem dapat membaca dan menulis data secara benar, menangani kondisi ekstrem, serta menampilkan visualisasi data yang akurat. Pengujian biasanya mencakup:

- Unit testing: Memastikan setiap komponen bekerja sesuai fungsi.
- Integration testing: Memastikan komunikasi antara komponen berjalan lancar.
- **System testing**: Menguji sistem secara menyeluruh dalam kondisi nyata atau simulasi.
- Network traffic analysis: Menggunakan Wireshark atau alat sejenis untuk memantau paket FINS dalam jaringan.

2.2 Penelitian Terdahulu

2.2.1 Implementasi SCADA Open-Source dalam Industri

Beberapa studi telah membuktikan efektivitas SCADA open-source dalam dunia industri:

- **Uddin et al.** (2022) mengembangkan SCADA berbasis Node-RED dan Grafana untuk sistem reverse osmosis tenaga surya.
- Omidi et al. (2023) menggunakan SCADA open-source untuk pembangkit listrik hibrid, menekankan efisiensi energi.

- Almas dan Vanfretti (2014) menunjukkan integrasi SCADA open-source dengan PMU dan protokol DNP3.
- Rubiomedrano et al. (2023) menerapkan FUXA pada honeynet ICSNet untuk mensimulasikan serangan siber industri.

2.2.2 Pemanfaatan FUXA dalam Pendidikan dan Simulasi

FUXA juga digunakan secara luas dalam pendidikan:

- Visualisasi data sensor menggunakan MQTT dan Raspberry Pi.
- Penggunaan dalam laboratorium simulasi sistem kontrol.
- Integrasi dengan PLC simulasi dan HMI desain interaktif.

BAB III

METODOLOGI PENELITIAN

3.1 Jenis Penelitian

Jenis penelitian ini adalah penelitian rekayasa perangkat lunak (software engineering research), yang bertujuan untuk merancang, mengimplementasikan, dan mengevaluasi penambahan dukungan protokol FINS (Factory Interface Network Service) pada sistem SCADA open-source FUXA. Penelitian ini bersifat terapan dengan pendekatan kuantitatif dan kualitatif dalam menguji fungsionalitas dan performa sistem.

3.2 Metode Pengembangan Sistem

Metode yang digunakan dalam pengembangan perangkat lunak ini adalah metode iteratif dan inkremental, dengan tahapan sebagai berikut:

- Analisis Kebutuhan: Mengidentifikasi kebutuhan pengguna terhadap integrasi protokol FINS pada FUXA, termasuk dukungan konfigurasi parameter (DA1, SA1, Unit Address), polling tag, penulisan nilai ke PLC, serta fitur DAQ dan alarm.
- 2. **Perancangan Sistem:** Mendesain struktur konektor FINS di sisi server dan antarmuka pengguna di sisi client, sesuai dengan arsitektur FUXA (Node.js dan Angular).
- 3. **Implementasi:** Mengembangkan modul konektor FINS (server/runtime/devices/fins), komponen konfigurasi tag dan perangkat (Angular), serta logika polling dan penulisan data.
- 4. **Pengujian dan Evaluasi:** Melakukan pengujian fungsional, integrasi, serta monitoring paket FINS menggunakan Wireshark untuk memastikan komunikasi berjalan benar.
- 5. **Perbaikan dan Optimalisasi:** Menangani error, optimasi performa polling, memory leak (EventEmitter), serta penambahan fitur lanjutan (alarm, DAQ).

3.3 Alat dan Bahan

• Perangkat Keras: Laptop/PC, jaringan LAN, PLC Omron (atau simulator).

• Perangkat Lunak:

- FUXA (https://github.com/frangoteam/FUXA)
- Node.js, Angular CLI, Git
- Wireshark untuk sniffing paket FINS
- Visual Studio Code untuk pengembangan

• Library Tambahan:

- node-fins atau modifikasi client FINS custom
- Angular Material untuk UI komponen konfigurasi

3.4 Tahapan Penelitian

Penelitian dilakukan dalam beberapa tahap berikut:

No	Kegiatan						
1	Studi literatur tentang protokol FINS, SCADA,						
	dan arsitektur FUXA						
2	Perancangan konektor dan struktur konfigurasi						
	perangkat/tag						
3	Implementasi modul konektor dan antarmuka						
	pengguna						
4	Pengujian komunikasi, pengamatan melalui						
	Wireshark						
5	Evaluasi dan dokumentasi hasil integrasi						

Tabel 3.1: Tahapan Pelaksanaan Penelitian

3.5 Metode Pengujian

Pengujian dilakukan secara black-box dan white-box:

- Fungsional: Pengujian konfigurasi parameter, pembacaan dan penulisan tag.
- Integrasi: Validasi konektivitas antar komponen client-server.
- Monitoring: Analisis lalu lintas FINS menggunakan Wireshark.
- Stabilitas: Observasi memory leak, error event listener, dan retry mechanism.