Zadanie 1.

Niech X_1, X_2, X_3, X_4 będą niezależnymi zmiennymi losowymi o tym samym rozkładzie z gęstością

$$f(x) = \begin{cases} \frac{2}{x^3} & gdy \ x > 1 \\ 0 & gdy \ x \le 1 \end{cases}.$$

Obliczyć $E\!\!\left(\!\frac{\min\{\!X_{\!1},\!X_{\!2},\!X_{\!3},\!X_{\!4}\}\!}{\max\{\!X_{\!1},\!X_{\!2},\!X_{\!3},\!X_{\!4}\}\!}\!\right)$

- (A) $\frac{16}{45}$
- (B) $\frac{128}{245}$
- (C) $\frac{8}{35}$
- (D) $\frac{5}{16}$
- (E) $\frac{16}{35}$

Zadanie 2.

Niech $X_0, X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie wykładniczym z wartością oczekiwaną równą 1.

Niech N będzie zmienną losową o rozkładzie Poissona z wartością oczekiwaną $EN=\lambda$, niezależną od zmiennych $X_0,X_1,X_2,\ldots,X_n,\ldots$

Niech

$$M_N = \min\{X_0, X_1, X_2, \dots, X_N\}.$$

Wyznaczyć $Cov(M_N, N)$.

(A)
$$1 - \frac{\lambda + 1}{\lambda} \left(1 - e^{-\lambda} \right)$$

(B)
$$1 - \frac{1}{\lambda} \left(1 - e^{-\lambda} \right)$$

- (C)
- (D) $-\frac{1}{\lambda}(1-e^{-\lambda})$
- (E) $e^{-\lambda} \frac{1}{\lambda}$

Zadanie 3.

Niech $N, X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi, przy czym zmienna losowa N ma rozkład geometryczny

$$P(N = n) = (1 - q)q^n$$
 dla $n = 0,1,2,...$,

gdzie $q \in (0,1)$ jest ustaloną liczbą, a $X_1, X_2, \dots, X_n, \dots$ są zmiennymi losowymi o tym samym rozkładzie wykładniczym z wartością oczekiwaną $\frac{1}{\lambda}$. Niech

$$S = \begin{cases} X_1 + X_2 + \ldots + X_N & \text{gdy } N > 0 \\ 0 & \text{gdy } N = 0 \end{cases}.$$
 Wyznaczyć prawdopodobieństwo $P(S \le x)$, gdy $x \ge 0$.

(A)
$$1-2q\frac{e^{-\lambda(1-q)x}}{e^{-\lambda(1-q)x}+1}$$

(B)
$$1 - (1 - q)e^{-\lambda(1-q)x}$$

(C)
$$1-qe^{-\lambda(1-q)x}$$

(D)
$$1 - qe^{-\lambda qx}$$

(E)
$$1 - \frac{q}{1 + \lambda(1 - q)x}$$

Zadanie 4.

W urnie znajduje się trzydzieści kul, na każdej narysowana jest litera i cyfra. Mamy

- 10 kul oznaczonych X1
- 8 kul oznaczonych Y1
- 8 kul oznaczonych X2
- 4 kule oznaczone Y2.

Losujemy bez zwracania 15 kul. Niech N_X określa liczbę kul oznaczonych literą X wśród kul wylosowanych, a N_2 liczbę kul z cyfrą 2 wśród kul wylosowanych. Obliczyć $E(N_X \mid N_2)$.

(A)
$$8 - \frac{5}{36} N_2$$

(B)
$$\frac{1}{3} \left(25 - \frac{1}{3} N_2 \right)$$

(C)
$$\frac{1}{3} \left(25 + \frac{1}{3} N_2 \right)$$

(D)
$$\frac{1}{3}(25 + N_2)$$

(E)
$$8 + \frac{5}{36}N_2$$

Zadanie 5.

Zmienne losowe $X_1,...,X_n,...$ są warunkowo niezależne przy danej wartości $\theta \in (0,1)$ i mają rozkład prawdopodobieństwa

$$P(X_i = 1 | \theta) = \theta = 1 - P(X_i = 0 | \theta).$$

Zmienna losowa θ ma rozkład beta określony na przedziale (0,1) o gęstości $f(\theta) = 12\theta^2(1-\theta).$

Niech
$$S_n = \sum_{i=1}^n X_i$$
. Obliczyć $P(S_8 > 0 \mid S_6 = 0)$.

- (A) $\frac{5}{11}$
- (B) $\frac{4}{5}$
- (C) $\frac{1}{2}$
- (D) $\frac{3}{4}$
- (E) $\frac{7}{11}$

Zadanie 6.

Wykonujemy n rzutów kością do gry i weryfikujemy hipotezę H_0 mówiącą, że kość jest rzetelna - tzn. że każda liczba oczek pojawia się z jednakowym prawdopodobieństwem równym $\frac{1}{6}$. Standardowy test χ^2 na poziomie istotności 0.01 odrzuca hipotezę zerową, jeśli obliczona wartość statystyki χ^2 przekracza 15.0863 (kwantyl rzędu 0.99 rozkładu χ^2 z pięcioma stopniami swobody). Przypuśćmy, że wykonaliśmy tylko n=6 rzutów. Jest to zbyt mało, żeby asymptotyczne przybliżenie rozkładu χ^2 było zadowalające. Faktyczny rozmiar testu: "odrzucamy H_0 , jeśli wartość statystyki χ^2 przekroczy 15.0863" wynosi:

- (A) $\frac{1}{6^5}$
- (B) $\frac{5}{6^5}$
- (C) $\frac{31}{6^6}$
- (D) $\frac{31}{6^5}$
- (E) $\frac{1}{6^4}$

Zadanie 7.

Zakładamy, że zależność czynnika Y od czynnika x (nielosowego) opisuje model regresji liniowej $Y_i = \beta x_i + \varepsilon_i$. Obserwujemy 5 elementową próbkę, w której $x_i = i$ dla $i = 1, 2, \dots, 5$. Zmienne losowe Y_1, Y_2, \dots, Y_5 są niezależne i błędy mają rozkłady normalne o wartości oczekiwanej 0, przy czym $Var\varepsilon_i = i\sigma^2$, gdy $i = 1, 2, \dots, 5$. Wyznaczono estymator $\hat{\beta}$ parametru β wykorzystując ważoną metodę najmniejszych kwadratów, to znaczy minimalizując sumę $\sum_{i=1}^5 \frac{(Y_i - \beta x_i)^2}{Var\varepsilon_i}$. Wyznaczyć stałą z tak, aby $P(|\hat{\beta} - \beta| < z\sigma) = 0.95$.

- (A) 1.96
- (B) 7.59
- (C) 3.96
- (D) 0.51
- (E) 0.42

Zadanie 8.

Niech $X_1, X_2, ..., X_6$ będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale $(0,\theta)$, gdzie $\theta > 0$ jest nieznanym parametrem. Zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy $H_0: \theta = 1$ przy alternatywie $H_1: \theta \neq 1$ na poziomie istotności 0.125. Obszar krytyczny tego testu jest równy

(A)
$$\left\{ \max\{X_1, X_2, ..., X_6\} \in \left(0, \frac{\sqrt{2}}{2}\right) \cup \left(\sqrt{2}, +\infty\right) \right\}$$

(B)
$$\left\{ \max\{X_1, X_2, \dots, X_6\} \in \left(0, \frac{\sqrt{2}}{2}\right) \cup (1, +\infty) \right\}$$

(C)
$$\left\{ \max \left\{ X_1, X_2, \dots, X_6 \right\} \in \left(0, \frac{\sqrt{2}}{2} \right) \cup \left(1 + \frac{\sqrt{2}}{2}, +\infty \right) \right\}$$

(D)
$$\left\{ \max\{X_1, X_2, ..., X_6\} \in \left(\sqrt[6]{\frac{7}{8}}, +\infty\right) \right\}$$

(E)
$$\left\{ \max\{X_1, X_2, ..., X_6\} \in \left(1 - \frac{\sqrt{2}}{2}, +\infty\right) \right\}$$

Zadanie 9.

Niech $X_1, X_2, ..., X_n$ będzie próbką z rozkładu wykładniczego o gęstości określonej dla x > 0 wzorem:

$$f(x) = \lambda \exp(-\lambda x)$$
.

Nie obserwujemy dokładnych wartości zmiennych X_i , tylko wartości zaokrąglone w górę do najbliższej liczby całkowitej. Innymi słowy, dane są wartości zmiennych losowych $Z_1, Z_2, ..., Z_n$, gdzie

$$Z_i = [X_i].$$

(symbol $\lceil a \rceil$ oznacza najmniejszą liczbą całkowitą k taką, że $a \le k$).

Niech
$$S = \sum_{i=1}^{n} Z_i$$
.

Oblicz estymator największej wiarogodności $\hat{\lambda}$ nieznanego parametru λ oparty na obserwacjach $Z_1,Z_2,...,Z_n$.

(A)
$$\hat{\lambda} = \ln\left(\frac{S}{n} - 1\right)$$

(B)
$$\hat{\lambda} = \frac{n}{S}$$

(C)
$$\hat{\lambda} = \left\lceil \frac{n}{S} \right\rceil$$

(D)
$$\hat{\lambda} = \frac{S}{n}$$

(E)
$$\hat{\lambda} = -\ln\left(1 - \frac{n}{S}\right)$$

Zadanie 10.

Załóżmy, że $W_1, W_2, ..., W_n, ...$ jest ciągiem zmiennych losowych takim, że

• zmienna W_1 ma gęstość Pareto: dla $w_1 > 0$

$$f(w_1) = \frac{4}{(1+w_1)^5}$$

• warunkowo, dla danych $W_1, W_2, ..., W_n$, zmienna W_{n+1} ma gęstość Pareto: dla $W_{n+1} > 0$

$$f(w_{n+1} \mid w_1, ..., w_n) = \begin{cases} \frac{4}{(1+w_{n+1})^5} & gdy \ w_n \le 1; \\ \frac{3}{(1+w_{n+1})^4} & gdy \ w_n > 1;. \end{cases}$$

Wyznaczyć $\lim_{n\to\infty} E(W_n)$.

$$(A) \quad \lim_{n\to\infty} E(W_n) = \frac{22}{45}$$

(B)
$$\lim_{n\to\infty} E(W_n) = \frac{31}{90}$$

(C)
$$\lim_{n\to\infty} E(W_n) = \frac{11}{32}$$

(D)
$$\lim_{n\to\infty} E(W_n) = \frac{47}{96}$$

(E)
$$\lim_{n\to\infty} E(W_n) = \frac{23}{90}$$

Egzamin dla Aktuariuszy z 8 października 2007 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko : K L U C Z	ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	A	
3	C	
4	C	
5	A	
6	D	
7	D	
8	В	
9	Е	
10	В	
_		

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.