3b - Hypothesis testing

Hypothesis

- Hypothesis statement yet to be (dis)proven
- Hypothesis Test test to (dis)prove hypothesis
- **Null Hypothesis** (H_0) Base hypothesis, assumed to be true
- Alternative Hypothesis (H_1,H_a) Conclusion of H_0 is rejected

Elements of testing procedure

- Test statistic value that is calculated from sample
- ullet Region of Acceptance region of values supporting H_0
- ullet Critical Region / Region of rejection region of values rejecting H_0
- Significance level probability of falsely rejecting H_0

Testing procedure

- 1. Formulate H_0 and H_1
- 2. Determine significance level (α)
- 3. Calculate test statistic
- 4. Determine critical region / probability value
- 5. Draw conclusions

Probability Value

p-value = probability under H_0 to obtain value for the test statistic that is at least as extreme as observed value

- $p < lpha \implies {\sf reject}\ H_0$
- $p>lpha \implies$ accept H_0

Critical Region

 $\begin{cal} \textbf{Critical region} = \textbf{collection of all values of test statistic for which we can reject } H_0 \\ \end{cal}$

Right-tailed testing

look for value g for which $\mathcal{P}(M>g)=lpha$

determine z_{lpha} for which $\mathcal{P}(Z>z_{lpha})=lpha$, so:

$$g = \mu + z_{lpha} \cdot rac{\sigma}{\sqrt{n}}$$

left of g: accept, right of g: reject

In python

$$lpha=0.05 \implies z_lpha=1.645$$
 ($z_lpha={
m stats.norm.isf(1-0.95)}$)

Left-tailed testing

$$g = \mu - z_lpha \cdot rac{\sigma}{\sqrt{n}}$$

Two-tailed testing

$$g = \mu \pm z_{lpha} \cdot rac{\sigma}{\sqrt{n}}$$

Summary of testing procedures

Goal	Test regarding the value of the population mean μ using a sample of n independent values		
Prerequisite	De population has a random distribution, n is sufficiently large		
Test Type	Two-tailed	Left-tailed	Right-tailed
H ₀ H ₁ Critical Region Test statistic	$\mu = \mu_0$ $\mu \neq \mu_0$ $ \overline{x} > g$	$\mu = \mu_0$ $\mu < \mu_0$ $\overline{x} < -g$ $z = \frac{\overline{x} - g}{\sqrt{x}}$	$\mu = \mu_0$ $\mu > \mu_0$ $\overline{x} > g$

Requirements for z-test

- Sample is random
- $\bullet \ \ \text{Sample size} \geq 30$
- test statistic $\sim Nor$
- stadard deviation of population, σ , is known

Student's t-test

Requirements

- sample is random (?)
- variable is normally distributed

Test

Critical value g is:

$$g = \mu \pm t \cdot rac{s}{\sqrt{n}}$$

- ullet t = derived from student's t-distr. based on number of degrees of freedom, n-1
 - t = t.isf() in python

apart from t, procedure is identical to z-test

Errors in Hypothesis Tests

	Reality		
Conclusion	H ₀ True	H ₁ True	
H_0 not rejected H_0 rejected	Correct inference Type I error (false positive)	Type II error (false negative) Correct inference	

P(type I error) = α (= significance level) P(type II error) = β Calculating β is **not** trivial, but if $\alpha \searrow$ then $\beta \nearrow$