Análise de Dados Longitudinais Aula 08.08.2018

José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/~jlpadilha

Sumário

Revisão para dados transversais

- Como analisar dados longitudinais
- Perspectiva histórica

Revisão para Dados Transversais

- Características
 - Informações amostrais independentes (amostra aleatória simples);
 - Uma única observação por indivíduo.
- Modelos para Dados Transversais
 - Linear-Normal: Método de Mínimos Quadrados;
 - Lineares Generalizados: Método de Máxima Verossimilhança.
- Método Máxima Verossimilhança
 - Função de Verossimilhança para os parâmetros do modelo β (média) e σ (componentes de variância);
 - Estimador de Máxima Verossimilhança (EMV);
 - Inferência: propriedades assintóticas do EMV;
 - Estatísticas: Wald, Escore e RV.

Modelos para Dados Transversais

- Resposta Contínua
 - Modelo regressão linear-normal.
 - A resposta é assumida com distribuição normal.
- Resposta Categórica/Contagem
 - Resposta binária: Modelo de regressão logística.
 - Resposta contagem: Método de regressão de Poisson.
 - Resposta categórica: Método de regressão multinomial.

Como Analisar Dados Longitudinais?

- Reduzir os valores repetidos em uma medida resumo.
 - Média ou mediana;
 - Área sob a curva ou inclinação de reta;
 - E então analisar como dados transversais.
- Ignorar a correlação entre as observações do mesmo indivíduo.
 - Usar modelos de regressão para dados transversais;
 - Estimadores dos parâmetros da média são consistentes (mas ineficientes);
 - Estimativa dos componentes de variância não são consistentes.
 No entanto, podem ser corrigidos utilizando um estimador robusto (Generalized Estimation Equations).

Como Analisar Dados Longitudinais?

- Modelo Marginal
 - Modelar separadamente a média e a estrutura de covariância.
 - Encontrar EMV ou MQG.
 - Pode encontrar dificuldades para dados desbalanceados.

4 Modelo Condicional ou de Efeitos Aleatórios

- Tratar os coeficientes como sendo aleatório para as covariáveis que mudam no tempo (por exemplo, intercepto e coeficiente do tempo);
- As diferenças entre os perfis surgem porque os coeficientes de regressão variam entre indivíduos;
- A correlação entre as medidas no mesmo indivíduo são induzidas pelos efeitos aleatórios.

5 Modelo de Transição

Útil para predição pois utiliza as respostas nos tempos anteriores.6/35

Notação para Dados Longitudinais

Notação (Estrutura Balanceada)

$$Y_i = (Y_{i1}, \ldots, Y_{in})', \quad i = 1, \ldots, N,$$

é o vetor de respostas do i-ésimo indivíduo.

- N: número de indivíduos;
- Número total de observações: Nn;
- $E(Y_i) = (E(Y_{i1}), \dots, E(Y_{in}))';$
- $\bullet \ \mu_{ij} = E(Y_{ij});$
- σ_i²: variância de Y_{ij};
- σ_{jk} : covariância entre Y_{ij} e Y_{ik} .

Estudos Transversais vs Longitudinais

Vetor de observações longitudinais para o i-ésimo indivíduo:

$$Y_i = (Y_{i1}, \ldots, Y_{in})'$$

- No tempo inicial (linha de base, j = 1) foram selecionados indivíduos com diferentes idades:
- Os indivíduos foram acompanhados longitudinalmente;
- Desta forma temos duas fontes da variação da resposta com a idade (transversal e longitudinal).

Qual é a diferença dos efeitos?

- Efeito transversal: variação entre indivíduos. Variação da resposta média em função das idades dos indivíduos medida no tempo inicial.
- Efeito longitudinal: variação intra-indivíduo. Variação da resposta média em função da idade no mesmo indivíduo.
- O efeito de idade em um estudo transversal pode estar potencialmente confundido com efeito de coorte.

Estudos Transversais vs Longitudinais

Estudo Transversal (sem intercepto): j = 1

$$Y_{i1} = \beta_T x_{i1} + \epsilon_{i1}$$
 $i = 1, \dots, N$

ou

$$E(Y_{i1}) = \beta_T x_{i1}$$
 $i = 1, ..., N$

 β_T representa a diferença da resposta média entre duas sub-populações que diferem por uma unidade em x.

Se x é a idade, representa o aumento (diminuição) na média de Y para cada incremento de um ano na idade.

Estudos Transversais vs Longitudinais

Estudo Longitudinal: a resposta média aumenta linearmente com mudanças na idade no mesmo indivíduo:

$$E(Y_{ij}-Y_{i1})=\beta_L(x_{ij}-x_{i1}),$$

 β_L representa a mudança esperada em Y para a mudança em uma unidade em x.

Modelo Linear com componentes transversais e longitudinais

$$E(Y_{ij}) = \beta_T x_{i1} + \beta_L (x_{ij} - x_{i1}).$$

Obs.: É necessário assumir $\beta_L = \beta_T$ para estimar mudança da resposta no tempo em estudos transversais (não existe efeito coorte nem de período).

Exemplo: Transversais vs Longitudinais// Fitzmaurice e outros (2011, pag. 253)

- Três coortes de crianças com idades iniciais: 5, 6 e 7 anos.
- A resposta foi medida na linha de base e seguida por três anos.
- Suponha que o efeito transversal é linear:

$$E(Y_{i1}) = 0,75 x idade_{i1}$$

e que esta relação também vale para j = 2, 3, 4.

 Suponha que a resposta média também cresce linearmente com as mudanças na idade em cada coorte. Ou seja

$$E(Y_{ij} - Y_{i1}) = 0,25 x (idade_{ij} - idade_{i1})$$

Exemplo: Estudos Transversais vs Longitudinais

Figura: Resposta Média: transversal vs longitudinal. Transversal: 5,6 e 7 anos. Longitudinal: seguimento por 3 anos. $\beta_T = 0,75$ e $\beta_L = 0,25$.

Exemplo: Estudos Transversais vs Longitudinais

- Diferença grande entre os efeitos transversal (linha pontilhada) e longitudinal (linha sólida).
- Efeito de coorte introduz vício na estimativa transversal quando o efeito longitudinal é ignorado.
- Neste caso o efeito medido é uma combinação ponderada entre β_L e β_T. Ou seja,

$$\hat{\beta} = (1 - w)\hat{\beta}_L + w\hat{\beta}_T$$

em que *w* depende da proporção de variabilidade (intra e entre indivíduos) e correlação entre as observações intra indivíduo.

Consequências de Ignorar a Correlação em Dados Longitudinais

Considere o caso mais simples em que existem somente duas medidas repetidas, digamos nos tempos 1 e 2. O objetivo principal do estudo é determinar se existe mudança da média ao longo do tempo. Ou seja

$$\delta = \mu_1 - \mu_2.$$

Uma estimativa natural para δ é a diferença das médias. Ou seja

$$\widehat{\delta} = \widehat{\mu}_1 - \widehat{\mu}_2.$$

A variância de $\hat{\delta}$ é

$$Var(\widehat{\delta}) = \frac{1}{N}(\sigma_1^2 + \sigma_2^2 - 2\sigma_{12})$$

Consequências de Ignorar a Correlação em Dados Longitudinais

Usualmente dados longitudinais têm correlação positiva. Ou seja

$$\sigma_{12} > 0$$

isto significa que a estatística a ser utilizada tem menor variância do que aquela com dados independentes.

Outras vantagens:

- pareamento controla por fatores de confusão;
- evita efeito coorte.

Exemplo simples: Duas Medidas por Indivíduo

Deseja-se verificar a eficácia de uma certa droga para reduzir a pressão arterial. 100 pacientes hipertensos participaram do estudo. A pressão sistólica foi medida no início (tempo 1) do estudo e 30 dias após os pacientes terem sido submetidos a droga de interesse (tempo 2) n=2. Então

$$\delta = \mu_1 - \mu_2.$$

O interesse é então testar a hipótese:

$$H_0: \delta = 0$$

Teste para H₀

Teste-t pareado

$$d_i = y_{i1} - y_{12}$$
 $i = 1, ..., n$.

A estatística é:

$$t = \frac{\overline{d}}{s/\sqrt{n}}$$

que sob H_0 , tem uma distribuição t com n-1 graus de liberdade.

Extensão para n(>2) grupos

Como fazer a comparação para mais de dois grupos?

Exemplos:

- (Dados Longitudinais) A pressão sistólica foi medida, para cada paciente, no tempo inicial (0), após 30 e 60 dias da aplicação da droga.
- (Medidas Repetidas) Três tratamentos foram aplicados de forma aleatória na mesma unidade amostral.

Extensão para n(>2) grupos

Interesse é testar a seguinte hipótese:

$$\mu_1 = \mu_2 = \ldots = \mu_n$$
.

- Identificar os grupos diferentes se H_0 for rejeitada.
- Típica situação de planejamento e experimentos.

Perspectiva Histórica

ANOVA para medidas repetidas;

2 MANOVA: análise de variância multivariada.

Análise de Variância

- É uma técnica pela qual a variabilidade total de um conjunto de dados é separada em vários componentes.
- Usualmente, cada um desses componentes de variação está associada a uma fonte específica de variação.
- Em qualquer tipo de experimento é de interesse conhecer a magnitude das contribuições de cada uma dessas fontes para a variação total.

Planejamento de Experimentos - Caso Simples

Objetivo: Comparar a resposta média em cada tempo.

$$\mathbf{Y}_{ij} = \mu + \alpha_i + \tau_j + \varepsilon_{ij},$$

em que, $\varepsilon_{ij} \sim N(0, \sigma^2)$.

No nosso caso:

- Os blocos são os indivíduos.
- α_i : o efeito do bloco (indivíduo), $i = 1, \dots, N$
- α_i : pode ser tratado como efeito fixo ou aleatório. Neste último caso,

$$\alpha_i \sim N(0, \sigma_{\alpha}^2)$$

- Os tratamentos são os próprios tempos.
- τ_i : O efeito do tratamento (tempo), $j = 1, \dots, n$

Tabela de Análise de Variância - ANOVA

Fonte	SQ	GL	QM	F
Trt. (Tempo)	SQ_{Trat}	<i>n</i> − 1	$SQ_{Trat}/(n-1)$	QM_{Trat}/QM_{Res}
Bloco (Ind.)	SQ_{Bloc}	<i>N</i> − 1	$SQ_{Bloc}/(N-1)$	QM_{Bloc}/QM_{Res}
Erro	SQ _{Res}	(n-1)(N-1)	$SQ_{Res}/(n-1)(N-1)$	
Total	SQ _{Total}	<i>Nn</i> – 1	$SQ_{Total}/(Nn-1)$	

Obs.: Esta tabela ANOVA vale para os dois casos (α fixo e aleatório).

Análise de Variância

$$SQ_{Total} = \sum_{i=1}^{N} \sum_{j=1}^{n} (y_{ij} - \bar{y})^2 \qquad \bar{y} = \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{y_{ij}}{Nn}$$

$$SQ_{Tratamento} = N \sum_{j=1}^{n} (\bar{y}_j - \bar{y})^2 \qquad \bar{y}_j = \sum_{i=1}^{N} \frac{y_{ij}}{N}$$

$$SQ_{Bloco} = n \sum_{i=1}^{N} (\bar{y}_i - \bar{y})^2 \qquad \bar{y}_i = \sum_{j=1}^{n} \frac{y_{ij}}{n}$$

$$Sob \ H_0: \alpha_1 = \dots = \alpha_n,$$

$$F = \frac{QM_{Trat}}{QM_{Res}} \sim F_{(n-1),(n-1)(N-1)}$$

Resumo

- Podemos utilizar este desenho para testar a igualdade de mais de duas médias.
- O teste F vale se $Cov(Y_i) = Var((Y_{i1}, ..., Y_{in})') = \Sigma$ em que Σ tem a forma **simétria composta ou esférica**.

$$\Sigma = \sigma^2 \left[\begin{array}{cccc} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{array} \right]$$

em que,
$$\rho = \frac{Cov(y_{ij}, y_{ij'})}{\sigma^2}$$
.

Teste: Simetria Composta

Teste de Esfericidade (Teste de Mauchly)

 H_0 : Σ é esférica vs H_1 : Σ não é esférica;

Teste da Razão de Verossimilhança

Estatística Teste:

$$W = det(S) \left(\frac{n+1}{traço(S)}\right)^{n+1},$$

em que, (1) S: matriz de covariância amostral e (2) sob H_0 , W tem assintoticamente uma distribuição qui-quadrado com $\frac{n(n-1)}{2} - 1$ graus de liberdade.

Obs.: H_0 significa: mesma variância para todos os tempos e mesma correlação entre os diferentes tempos.

Proposta de Solução

- Se n\(\tilde{a}\)o rejeito \(H_0\), use o teste F e as compara\(\tilde{c}\)oes m\(\tilde{u}\)ltiplas usuais;
- Se rejeito H₀: corrigir os g.l. e usar a Estatística F. Ou seja, utilize a mesma estatística teste F e sob H₀, comparar com uma distribuição F com os seguintes graus de liberdade:
 - numerador : $\varepsilon(n-1)$
 - denominador : $\varepsilon[(n-1)(N-1)]$

Exitem duas propostas de correção (estimar ε):

- Greenhouse-Geisser (GG)
- 4 Huynh-Feld (HF)

Limitações - ANOVA

- Não se aplica em situações desbalanceadas;
- Usualmente a correlação tende a diminuir à medida que aumentamos a distância temporal;
- Difícil (impossível?) ser utilizado na presença de covariáveis contínuas.
- Resposta com distribuição Normal.

Razões Históricas - Planejamento de Experimentos

- A matriz de simetria composta tem uma justificativa em termos da aleatorização em Planejamento de Experimentos.
- Usualmente, não tem a dimensão temporal e, simplesmente, medidas repetidas.
- Secilidade computacional em termos históricos. Basta uma calculadora para construir a ANOVA.

Teste de Friedman (Não Paramétrico)

- É uma alternativa para a ANOVA, quando a suposição de normalidade, igualdade de variâncias ou esfericidade, não for valida.
- Use os postos dos dados ao invés de seus valores observados para obter a estatística de teste.
- Hipóteses:

*H*₀ : Os grupos possuem a mesma locação

H₁ : existe pelo menos uma diferença na locação

Teste de Friedman (Não Paramétrico)

- Encontrar os postos para cada bloco (indivíduo) R_{ij};
- Sob a hipótese de não haver diferença entre os tratamentos (tempos), todas as possíveis ordens (n!) devem ser igualmente prováveis.
- Estatística Teste

$$Q = \frac{12N}{n(n+1)} \sum_{j=1}^{n} (R_j - 0, 5(n+1))^2$$

em que
$$R_j = \sum_{i=1}^N R_{ij}/N$$
.

Sob H_0 , tem a dist. tabelada de Friedman.

MANOVA - Análise Multivariada

- O foco é a resposta multivariada.
- Usualmente para respostas de diferentes naturezas.

MANOVA: é uma ANOVA multivariada para n-1 diferenças entre os tempos subsequentes. A ideia básica é obter um novo conjunto de variáveis baseado em combinação linear das originais.

 T^2 de Hotelling é o teste multivariado mais conhecido baseado na normal multivariada. Pode-se dizer que é o teste-t multivariado.

MANOVA tem, essencialmente, as mesmas limitações da ANOVA em relação à dados longitudinais e medidas repetidas.

Modelagem para Dados Longitudinais - Resposta Bivariada.

$$y_i \sim N_2(X_i\beta,\Omega)$$
 $i = 1 \dots N$.

Modelando as Médias

$$E(Y_{i1}) = \beta_0$$

$$E(Y_{i2}) = \beta_0 + \delta$$

ou em termos do modelo

$$Y_{ij}=\beta_0+\delta \textit{Ig}_j+\epsilon_{ij} \ \ i=1,\ldots,N; j=1,2$$
 em que $\textit{Ig}_i=1$, se $j=2$ e $\textit{Ig}_i=0$, se $j=1$.

34/35

Modelagem via Dados Longitudinais

E podemos tomar uma forma geral para a matriz de covariância Σ . Ou seja,

$$\epsilon_{ij} \sim N(0, \sigma_j^2), j = 1, 2;$$
 $Cov(\epsilon_{i1}, \epsilon_{i2}) = \sigma_{12}.$

Interesse em testar $\delta = 0$.

Este é o **modelo marginal**, bastante utilizado em Dados Longitudinais.