

MACHINE INTELLIGENCE Concept Learning

K.S.Srinivas

Department of Computer Science and Engineering

Concept Learning

Srinivas K S.

Associate Professor, Department of Computer Science

Concept Learning

- what is a concept?
- we will try to understand it practically

lesin mestelliaben fay hia gever riebulatobeclasire a might soon side basile basile became clear desire the constant of it belongs to obscur seth on get a two fines a bit long recton cept) so at econogram does not belong to the concept does not belong to the concept

Concept	Data objec
С	x
x- belongs to concept c	<u>label</u> 1
or not belongs to concept	c 0

CONCEPT? YES

Concept Learning

- what is a concept?
- we will try to understand it practically

Concept

Data object

C x

each object x is is defined by specific features to the larger which we can decide it it belongs to the lies where mapes stree combonis attributes (8 and belong) we can label any new data accordingly.....this the concept learning task

shape-oval, circular size-large, small colour-dark, light

Concept Learning

the concepts.....now: patholical policies and epit sets into 2 patholical actions with the concept sets into 2 patholical actions with a concept sets into 2 patholical actions with a concept sets into 2 patholical actions with a concept with a concept sets into 2 patholical actions and a concept with a concept sets on a concept set sets on a concept se

suppose our data is defined using d binary attributes then there are 2^d let us say it as b ,then we have 2^b concepts

Inductive bias

circular ^ dark

 $X_1 \rightarrow (1,0,1)$ $X_2 \rightarrow (0,0,1)$ the reason we call this concept is only if both of this is true for a data object then the object belongs to the concept

tions in the last blie and this part by the bulb be that the part in the constant of the part in the constant of the part in the constant of the conjunction (logical AND) of few of these basically a subset of all possible feature

0	1		
oval	circular		
small	large		
light	dark		

Inductive bias

_^ _ ^

circular ^ dark can be represented like this

circular ^ _?_ ^ dark

? means anything, that is any value there is true

since we have three attributed here we can mention our conjunctive concept something like this

- $? \land ? \land ?$ is a concept that accepts everything ,we call it accept all
- is a concept that rejects everything ,we call it reject all

Inductive bias

^

for every position we can have three value that is two among the binary value and one? also we have one concept of \emptyset so we have $(3 \times 3 \times 3)+1=28$ conjunctive concepts

if u carefully observe we had total of 256 concepts in our concept space but now we have only 28 concepts in our conjunctive concept space

i.e we have shrunk our search space this shrunk space is what we call as hypothesis space Nhesse ropered tillow ev learweil blabke a sy hreevet orre by then we voi hijbrance i Set a boo e pats of the ecoamo expets or a object with 3 binary attributes

Find S algorithm

Concept- Days on which person enjoys sports

Attributes-

Sky-sunny,rainy

Temp-warm,cold

Humidity-Normal,High

Wind- strong, weak

Water-warm, cool

Forecast-same, change

kætt bræitlidde attrædpjrsvælgærilidde sævreptids næværæhtæe ptur fæstræhgpreitblem that is Find Salgorithm

Find S algorithm

- 1. start with h=Ø
- 2. use next input $\{x,c(x)\}$
- 3. if c(x)=0, go to step 2
- 4. h <--- h ^ x (pairwise-and)
- 5. if more examples .Go to step 2
- 6. stop

Let us look at the pseudo code of this algorithm

PES UNIVERSITY ONLINE

Pairwise -and rules

$$a_h^a = \begin{cases} a_x & \text{:if } a_h = \emptyset \\ a_x & \text{:if } a_h = a_h \\ ? & \text{:if } a_h \neq a_x \\ ? & \text{:if } a_h = ? \end{cases}$$

Find S algorithm-Problem

step1: start with h=Ø

 $h=\{\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset\}$

step2: use next input $\{x,c(x)\}$

x={sunny,warm,normal,strong,warm,same} c(x)=yes==1

step3: if c(x)=0, go to step 2

step4: h <--- h ^ x (pairwise-and)</pre>

 $h_0=h_0^x$ h_o={sunny,warm,normal stre}ከ፱५គ្គ አመር

step5: if more examples ්. ප්රචල්

h(0)=sunny h(2)=normal

h(4)=warm

h(5)=same

data below

ente uvsiklabbladveealegaaninoompotealstuüb estpeapinbwyisteeapond rule
ve need to learn this concept with the training
lata bala

sky	temp	humidity	wind	water	forecast	enjoy
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	same	yes

$$a_h^a = \begin{cases} a_x & \text{:if } a_h = \emptyset \\ a_x & \text{:if } a_h = a_h \\ ? & \text{:if } a_h \neq a_x \\ ? & \text{:if } a_h = ? \end{cases}$$

Find S algorithm-Problem

PES UNIVERSITY ONLINE

step2: next input $\{x,c(x)\}$

x={sunny,warm,high,strong,warm,same}
c(x)=yes==1

step3: if c(x)=0, go to step 2

step4: h <--- h ^ x (pairwise-and)</pre>

h₀=h₀^ x h₀={sunny,warm,?,strong,warm,same}

step5: if more examples h(0)=sunny Go to step 2 h(1)=warm

h(1)=Warm h(2)=? h(3)=strong h(4)=warm h(5)=same

sky	temp	humidity	wind	water	forecast	enjoy
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	same	yes

$$a_h^{\ \ }a_x=\begin{cases} a_x & \text{:if } a_h=\emptyset\\ a_x & \text{:if } a_h=a_h\\ ? & \text{:if } a_h\neq a_x\\ ? & \text{:if } a_h=? \end{cases}$$

Find S algorithm-Problem

step2: next input $\{x,c(x)\}$

x={rainy,cold,high,strong,warm,change}
c(x)=yes==0

step3: if c(x)=0, go to step 2

sky	temp	humidity	wind	water	forecast	enjoy
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	same	yes

$$a_h^a = \begin{cases} a_x & \text{:if } a_h = \emptyset \\ a_x & \text{:if } a_h = a_h \\ ? & \text{:if } a_h \neq a_x \\ ? & \text{:if } a_h = ? \end{cases}$$

Find S algorithm-Problem

step2: next input $\{x,c(x)\}$

x={sunny,warm,high,strong,cool,same}
c(x)=yes==1

step3: if c(x)=0, go to step 2

step4: h <--- h ^ x (pairwise-and)</pre>

h₀=h₀^ x h₀={sunny,warm,?,strong,?,same}

step5: if more examples h(0)=sunny Go to step 2 h(1)=warm

step6: stop

h(0)=sunny Go to step 2 h(1)=Warm h(2)=? h(3)=strong h(4)=? h(5)=same

sky	temp	humidity	wind	water	forecast	enjoy
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	same	yes

$$a_h^a = \begin{cases} a_x & \text{:if } a_h = \emptyset \\ a_x & \text{:if } a_h = a_h \\ ? & \text{:if } a_h \neq a_x \\ ? & \text{:if } a_h = ? \end{cases}$$

Find S algorithm-prediction

C={sunny,warm,?,strong,?,same}

x={sunny,warm,high,strong,warm,same}

c(x)=1

suppressive robon envit give thotal ravining suppressive robon envit give through our concept and data give our final hypothesis as our concept that predict the label we user taken concept the two user taken concept that that is if the person will play a sport or no

Version space

a hypothesis is said to be consistent wrt to training data set if it classifies all the object of training data set to their corresponding classes

C(X)<u>X</u> $C(X_1)$ X_1 $C(X_2)$ X_2 so on....

a hypothesis is said to be consistent if $h(x_i)=C(x_i)$

at any given point let H be our hypothesis space so a version space is a subset of H but all concepts in version space VS are consistent wrt to training set

i.e $VS=\{h:h\in \mathbf{H} \text{ and } h \text{ is consistent with } D_{training}\}$ this ensures our algorithm learns only the best hypothesis

t la idadethi aingi irae le saldain irae fe sa histilortible as is sent a high protection of the contract of

newheichfiozahtbe heighth bitdong op tit bealt i fisotodbe plearned

auddresstameidigt wrong.

THANK YOU

K.S.Srinivas srinivasks@pes.edu

+91 80 2672 1983 Extn 701