HW 11

Аргунов Данил

2. Грамматика $S \to aSbbb|aaaSbb|c$ задаёт язык $L = \{a^{n+3m} \ c \ b^{4n+2m}\}$, где $n, m \in \mathbb{Z}, n, m \geqslant aSbbb|c$ 0 - количество применений первого и второго правил соответственно.

Очевидно, что порядок применения правил неважен.

Значит можно переписать нашу грамматику в такой вид:

 $S \to aSbbbb|T$

 $T \rightarrow aaaSbb|c$

Это однозначная грамматика, потому что по количеству а и в мы можем восстановить количество применений первого и второго правил. Почему так?

Пусть $w = a^n c b^m$ и мы применили x раз первое правило и y раз второе.

Тогда:

x + 3y = n

4x + 2y = m

Эта система имеет единственное решение:

$$x = \frac{(3m-2n)}{10}, y = \frac{(4n-m)}{10}$$

Значит дерево вывода задаётся однозначно.

3. $F \to \varepsilon |aFaFbF|$

Заметим, что каждый раз, когда мы используем какое-нибудь правило и получаем новую букву b, слева от неё мы получаем две буквы a. Поэтому на любом префиксе букв a хотя бы в 2 раза больше чем букв b. А так как мы всегда добавляем ровно 1 b и 2 a, то суммарно в строке букв b ровно треть.

4. Рассмотрим грамматику:

 $K \to aM|cM$

 $M \to aK|bK|\varepsilon$

Нетерминалы чередуются, K допускает только буквы a и c, а M только буквы a и b. Также все слова нечетной длины.

Слова будут вида: $(a|c)(a|b)(a|c)(a|b)\dots(a|c)$

To есть в грамматике $F \to a|bF|cFF$ нам нужно чередовать правила bF и cFF так, чтобы не оказалось две буквы b или две буквы c подряд и в слове было нечётное количество букв.

В итоге получаем такое:

 $C_1 \rightarrow a|cB_2B_2|cB_1C_1$

 $C_2 \to cB_2C_1$

 $B_1 \to a|bC_2$

 $B_2 \to bC_1$

Небольшое пояснение. Очевидно, что любой другой переход в первом правиле не может быть, потому что возникнет bb или cc. А другие переходы отвечают за четность длины $(B_1, C_1$ - нечетная, B_2, C_2 - четная) и начинаются либо с b, либо с c.

1