

Process for removing surface distributed hydrocarbons, especially oil spills
EPB 1991-12-04 0370349/EP-B1 NDN- 080-0026-4881-7

INVENTOR(S)- Augustin, Thomas, Dr. Ritterstrasse 59 D-5000 Koeln 1 DE
INVENTOR(S)- Schapel, Dietmar, Dr. Johanniterstrasse 15 D-5000 Kolin 80 DE
INVENTOR(S)- Nowak, Peter Schubertstrasse 42 D-4047 Dormagen 1 DE

PATENT ASSIGNEE(S)- BAYER AG 51368 Leverkusen DE **DESG. COUNTRIES**- DE, FR, GB, IT, NL

PATENT NUMBER- 00370349/EP-B1

PATENT APPLICATION NUMBER- 89120979.3

DATE FILED- 1989-11-11

PUBLICATION DATE- 1991-12-04

PATENT PRIORITY INFO- 3839570, 1988-11-24, DE

INTERNATIONAL PATENT CLASS- C02F00128; C09K00332

PUBLICATION- 1990-05-30; 1991-12-04, B1, Granted patent

FILING LANGUAGE- GER

PROCEDURE LANGUAGE- GER

LANGUAGE- GER

EXEMPLARY CLAIMS- 1. Process for the removal of surface-distributed hydrocarbons, characterized in that water and a polyether containing isocyanate end groups are allowed to act on the hydrocarbons and the gel containing the hydrocarbons which is formed is removed mechanically.; 2. Process according to Claim 1, characterized in that, as a polyether containing isocyanate end groups, a polyalkylene oxide of the formula (I) is used; in which; R. represents an alkyl radical having 3 to 18 C atoms; R., R., R^{(sup)4} and R^{(sup)5} are identical or different and each represent hydrogen or an alkyl radical having 1 to 20 C atoms; R^{(sup)6} represents optionally substituted alkylene having 4 to 30 C atoms, cycloalkylene having 5 to 30 C atoms or arylene having 6 to 30 C atoms.; x and y are identical or different and each represent a whole number from 5 to 200 and n represents one of the numbers 3, 4, 5 or 6.; 3. Process according to Claim 2, characterized in that in formula (I); R. represents an alkyl radical having 3 to 10.C atoms; R., R., R^{(sup)4} and R^{(sup)5} are identical or different and each represent hydrogen or an alkyl radical having 1 to 12 C atoms; R^{(sup)6} represents alkylene having 4 to 20 C atoms, which is optionally substituted with C_{(sub)1}-C_{(sub)4}-alkyl, isocyanate and/or chlorine groups, cycloalkylene having 5 to 20 C atoms or arylene having 6 to 20 C atoms or bi- or tricyclic cycloalkylene or arylene, in which the individual rings independently of one another each represent a cycloalkylene or arylene radical of this type and the individual rings are linked directly and/ or via oxygen, CH, CH_{(sub)2}, C(CH_{(sub)3})_{(sub)2} and/ or C(CH_{(sub)3}) bridges.; x and y are identical or different and each represent a whole number from 8 to 50 and; n represents one of the numbers 3, 4 or 5.; 4. Process according to Claims 1 to 3, characterized in that the polyether containing isocyanate end groups is mixed with water and allowed to act on the hydrocarbons.

DESIGNATED COUNTRY(S)- DE, FR, GB, IT, NL.