# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант 18

| Виконав студент | III-12 Кушнір Ганна Вікторівна      |
|-----------------|-------------------------------------|
|                 | (шифр, прізвище, ім'я, по батькові) |
|                 |                                     |
|                 |                                     |
| Перевірив       |                                     |
|                 | ( прізвище, ім'я, по батькові)      |

## Лабораторна робота 2 Дослідження алгоритмів розгалуження

**Мета** — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

### Варіант 18

 $3a\partial a 4a$ . З'ясувати, чи є вектор  $\vec{a}$ , заданий координатами  $a_1$ ,  $a_2$ ,  $a_3$ , і вектор  $\vec{b}$ , заданий координатами  $b_1$ ,  $b_2$ ,  $b_3$ , колінеарними.

- 1. Постановка задачі. Результатом розв'язку даної задачі  $\epsilon$  висновок про те, чи  $\epsilon$  вектори  $\vec{a}$  та  $\vec{b}$  колінеарними, зроблений на підставі перевірки умови колінеарності двох векторів.
- 2. Побудова математичної моделі. Складемо таблицю імен змінних.

| Змінна                                  | Тип     | Ім'я | Призначення    |
|-----------------------------------------|---------|------|----------------|
| Абсциса вектора $\vec{a}$               | Дійсний | a1   | Початкове дане |
| Ордината вектора $\vec{a}$              | Дійсний | a2   | Початкове дане |
| Апліката вектора $\vec{a}$              | Дійсний | a3   | Початкове дане |
| Абсциса вектора $\vec{\boldsymbol{b}}$  | Дійсний | b1   | Початкове дане |
| Ордината вектора $\vec{\boldsymbol{b}}$ | Дійсний | b2   | Початкове дане |
| Апліката вектора $\vec{b}$              | Дійсний | b3   | Початкове дане |
| Висновок                                | Рядок   | R    | Результат      |

Таким чином, математичне формулювання задачі зводиться до присвоєння змінній R значення «Вектори колінеарні» (R:=«Вектори колінеарні») у випадку, якщо a1/b1=a2/b2=a3/b3, або значення «Вектори не є колінеарними» (R:=«Вектори не є колінеарними»), якщо дана умова не виконується. Саме тому для побудови алгоритму розгалуження буде використано альтернативну форму оператора вибору.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію перевірки векторів на колінеарність.

### 3. Псевдокод алгоритму.

Крок 1

#### початок

Введення а1, а2, а3, b1, b2, b3

Перевірка векторів на колінеарність

Виведення R

кінець

Крок 2

#### початок

Введення а1, а2, а3, b1, b2, b3

якщо a1/b1=a2/b2 && a2/b2=a3/b3

TO

R:="Вектори колінеарні"

#### інакше

R:="Вектори не  $\epsilon$  колінеарними"

#### все якщо

Виведення R

кінець

### 4. Блок-схема алгоритму.



5. Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних:

| Блок |                                             | Дія                                                 |
|------|---------------------------------------------|-----------------------------------------------------|
|      | Початок                                     | Початок                                             |
| 1    | Введення a1=3, a2=1, a3=2, b1=6, b2=2, b3=4 | Введення a1=1, a2=2, a3=3, b1=2, b2=3, b3=4         |
| 2    | 3/6=1/2 && 1/2=2/4 - так                    | 1/2!=2/3 && 2/3!=3/4 - ні                           |
| 3    | то R:=«Вектори колінеарні»                  | то R:=«Вектори не є колінеарними»                   |
| 4    | Виведення R="Вектори колінеарні"            | Виведення $R$ ="Вектори не $\epsilon$ колінеарними" |
|      | Кінець                                      | Кінець                                              |

6. Висновки. На цій лабораторній роботі було досліджено подання керувальної дії чергування у вигляді умовної та альтернативної форм та було набуто практичних навичок їх використання під час складання програмних специфікацій.