Komplexe Funktionen

1 Vorletzte Seite schwarze FS kopieren

2 Möbius Transformation

2.1 Bestimmen

Transformation ist gegeben mit $T(z_1) = t_1$, $T(z_2) = t_2$ und $T(z_3) = t_3$.

$$w = \frac{t_1(z-z_2)(z_3-z_1)(t_3-t_2) - t_2(z-z_1)(z_3-z_2)(t_3-t_1)}{(z-z_2)(z_3-z_1)(t_3-t_2) - (z-z_1)(z_3-z_2)(t_3-t_1)}$$

- 1. Zwei Punkte bestimmen die symmetrisch zu beiden Kreisen liegen: $(z_1 z_0)(\overline{z_2} \overline{z_0}) = R^2$ fuer alle Gleichungen $|z z_0| = R$ aufstellen, Gleichungssystem loesen
- 2. Transformation bestimmen: $T(a) = 0 \Rightarrow T_1(x) = x a$, $T(b) = \infty \Rightarrow T_2(x) = \frac{x a}{x b}$, $T(c) = d \Rightarrow T(x) = \frac{x a}{x b} \cdot e = d$ erfuellen

2.2 Kreise

Die Punkte z_0, z_1, z_2 und z_3 liegen auf einem verallgemeinerten Kreis wenn: $\frac{z_0-z_1}{z_0-z_2}: \frac{z_3-z_1}{z_3-z_2} \in R$

3 Reihen

3.1 Taylorreihen

$$f(x) = A \int_{start}^{end} \frac{1}{b - \xi} d\xi = \frac{A}{b + z_0} \int_{start}^{end} \frac{1}{1 - \frac{\xi - z_0}{b + z_0}} = A \sum_{n=0}^{\infty} \frac{1}{(b + z_0)^{n+1}} \cdot \int_{start}^{end} (\xi - z_0)^n d\xi$$

Radius: $|\xi - z_0| < |b + z_0| = r$

Siehe Aufg. 16 Anleitung Umformen, Geometrische Reihe, Integral reinziehen, Grenzen einsetzen nicht vergessen!

3.2 Laurentreihen

- 1. Bestimme Singularitaeten
- 2. Hebe Hebbare Singularitaeten
- 3. In Summe aus Hauptteilen $(\frac{a}{(z-z_k)^k})$ und Nebenteilen $(\frac{z-z_k}{a})$ umformen.

3.2.1 Singularitäten

 $\mathrm{Ringe} \to \mathrm{Pole}$

- 1. Hebbar
- 2. n-facher Pol
- 3. Wesentliche Singularität

3.3 Residuen

Berechnung ohne Laurent:

- 1. Polstelle 1. Ordnung: $Res(f, a) = \lim_{z \to a} (z a) f(z)$
- 2. Polstelle n. Ordning: $Res(f, a) = \frac{1}{(n-1)!} \lim_{z \to a} \left(\frac{d}{dz}\right)^{n-1} (z-a)^n f(z)$
- 3. $f(z) = \frac{g(z)}{h(z)}$ $g(a) \neq 0, h(a) = 0, h'(a) \neq 0 \Rightarrow Res(f, a) = \frac{g(a)}{h(a)}$

Mit Laurent: z_k seien die Singularitaeten, $Res(f, a_k)$ die dazugehoerigen Residuen wobei der 1-te Hauptteil wie folgt aussieht: $\frac{Res(f, a_k)}{z-z_0}$

1

•
$$\oint\limits_K f(z)dz = 2\pi i \sum\limits_{z_k \neq 0} Res(f,a_k)$$
 wobei $Res(f,a_k)$ im Kreis

•
$$\oint_{-\infty}^{\infty} f(z)dz = 2\pi i \sum_{z_k \neq 0} Res(f, a_k)$$
 wobei $Im(Res(f, a_k)) \geq 0$

•
$$\oint_{0}^{\infty} f(z)dz = \pi i \sum_{z_{k} \neq 0} Res(f, a_{k})$$

3.4 Partialbruchzerlegung

1. Residuen berechnen

2. Fuer alle Residuen: $f = \sum_{a} \frac{Res(f,a)}{z-a}$

4 Kreisintegrale

1. Singularitaet liegt ausserhalb des Kreises - integral ist null

2. Hebbare Singularitaet vorhanden - integral ist null

3. Nichthebbare Singularitaet im Kreis:

(a) Cauchysche Itegralformel $2\pi i \cdot f(z_0) = \int \frac{f(z)}{z-z_0} dz$

(b) Verallg. Cauchysche Integralformel

5 Funktionseigenschaften

5.1 Holomorphie

Eine Abbildung f heisst holomorph wenn sie in jedem Punkt z_0 komplex differenzierbar ist. Dabei ist f(z) = u(z) + v(z)i mit u und v reelle Funktionen.

Cauchy-Riemannsche DGL:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Holomorphie impliziert harmonie.

5.2 Harmonie

Der Realteil einer Funktion ist harmonisch wenn die Funktion holomorph ist.

Eine Funktion f = u + iv ist harmonisch wenn gilt: $f_{xx} + f_{yy} = 0$