

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 2月26日

出願番号 Application Number:

特願2001-050145

[ST.10/C]:

[JP2001-050145]

出 願 人 Applicant(s):

株式会社リコー

2002年 5月14日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 0100524

【提出日】 平成13年 2月26日

【あて先】 特許庁長官殿

【国際特許分類】 G02B 6/42

【発明の名称】 光送受信システム

【請求項の数】 7

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】 関谷 卓朗

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】 桜井 彰

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】 加藤 正良

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】 古田 輝幸

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】 宮垣 一也

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

金井 健

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

和多田 篤行

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

佐藤 俊一

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

鈴木 幸栄

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

菅原 悟

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

佐藤 新治

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

株式会社リコー内

【氏名】

曳地 秀一

【特許出願人】

【識別番号】

000006747

【氏名又は名称】

株式会社リコー

【代表者】

桜井 正光

【手数料の表示】

【予納台帳番号】

003724

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光送受信システム

【特許請求の範囲】

【請求項1】 レーザチップと該レーザチップと接続され該レーザチップのレーザ光を受光する第1の光ファイバーと該第1の光ファイバーの光を伝達する送信用の第2の光ファイバーと該第2の光ファイバーの光を受光する第3の光ファイバーと該第3の光ファイバーの光を受光する受光手段よりなる光通信システムにおいて、前記レーザチップは発振波長が1.1 μ m~1.7 μ mであり、光を発生する活性層を、主たる元素がGa、In、N、Asからなる層、もしくはGa、In、Asよりなる層とし、レーザ光を得るために前記活性層の上部及び下部に設けられた反射鏡を含んだ共振器構造を有する面発光型半導体レーザ素子チップであって、前記反射鏡はそれを構成する材料層の屈折率が小/大と周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡であるとともに、前記屈折率が小の材料層はA1 $_x$ G2 $_{1-x}$ As (0<x \leq 1)とし、前記屈折率が大の材料層はA1 $_y$ G2 $_{1-y}$ As (0 \leq y<x \leq 1)とした反射鏡であり、かつ前記屈折率が小と大の材料層の間に該屈折率が小と大の間の値をとる材料層A1 $_z$ G2 $_{1-z}$ As (0 \leq y<z<x \leq 1)を設けてなる面発光型半導体レーザ素子チップを発光光源としたことを特徴とする光送受信システム。

【請求項2】 レーザチップと該レーザチップと接続され該レーザチップのレーザ光を受光する第1の光ファイバーと該第1の光ファイバーの光を伝達する送信用の第2の光ファイバーと該第2の光ファイバーの光を受光する第3の光ファイバーと該第3の光ファイバーの光を受光する受光手段よりなる光通信システムにおいて、前記レーザチップは発振波長が1.1μm~1.7μmであり、光を発生する活性層を、主たる元素がGa、In、N、Asからなる層、もしくはGa、In、Asよりなる層とし、レーザ光を得るために前記活性層の上部及び下部に設けられた反射鏡を含んだ共振器構造を有する面発光型半導体レーザ素子チップであって、前記反射鏡はそれを構成する材料の屈折率が小/大と周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡であるとともに、前記屈折率が小の材料はA1_xGa_{1-x}As(0<x≤1)とし、前記屈折

率が大の材料は $A 1_y G a_{1-y} A s$ ($0 \le y < x \le 1$) とした反射鏡であり、前記活性層と前記反射鏡の間にG a I n P b しくはG a I n P A s よりなる非発光再結合防止層を設けてなる面発光型半導体レーザ素子チップを発光光源としたことを特徴とする光送受信システム。

【請求項3】 前記レーザチップにはn個の半導体レーザ素子が形成されているとともに、前記第1の光ファイバー、第2の光ファイバー、第3の光ファイバー、第3の光ファイバーならびに受光手段をそれぞれn個ずつ有することを特徴とする請求項1、2に記載の光送受信システム。

【請求項4】 前記n個の半導体レーザ素子の発光面とn個の第1の光ファイバー群の受光面が互いに1対1に相対することを識別する手段を有することを特徴とする請求項3に記載の光送受信システム。

【請求項5】 前記n個の半導体レーザ素子の発光面とn個の第1の光ファイバー群の受光面が互いに1対1に相対するようにした位置決め/結合手段を有することを特徴とする請求項3に記載の光送受信システム。

【請求項6】 前記n個の第1、第2、第3のそれぞれの光ファイバー群の 光送出面および受光面が互いに1対1に相対することを識別する手段を有することを特徴とする請求項3に記載の光送受信システム。

【請求項7】 前記n個の第1、第2、第3のそれぞれの光ファイバー群の 光送出面および受光面が互いに1対1に相対するようにした位置決め/結合手段 を有することを特徴とする請求項3に記載の光送受信システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は光通信などに用いられる半導体レーザならびにその光通信システムに 関するものであり、中でも半導体レーザとして製作に使用する半導体基板面に対 して垂直方向に光を発するいわゆる面発光レーザを用い複数のレーザ素子を形成 して、大容量の通信を可能にした光通信システムに関するものである。

[0002]

【従来の技術】

面発光半導体レーザは、基板の表面から垂直方向にレーザ光を放射するので2次元並列集積が可能であり、更に、その出力光の広がり角が比較的狭い(10度前後)ので光ファイバとの結合が容易であるほか、素子の検査が容易であるという特徴を有している。そのため、特に、並列伝送型の光送信モジュール(光インタコネクション装置)を構成するのに適した素子として開発が盛んに行なわれている。光インタコネクション装置の当面の応用対象は、コンピュータ等の筐体間やボード間の並列接続のほか、短距離の光ファイバー通信であるが、将来の期待される応用として大規模なコンピュータ・ネットワークや長距離大容量通信の幹線系がある。

[0003]

一般に、面発光半導体レーザは、GaAs 又はGaInAs からなる活性層と、 当該活性層を上下に挟んで配置された上部の半導体分布ブラッグ反射鏡と基板側 の下部の半導体分布ブラッグ反射鏡からなる光共振器をもって構成するのが普通 であるが、端面発光型半導体レーザの場合に比較して光共振器の長さが著しく短 いため、反射鏡の反射率を極めて高い値(99%以上)に設定することによってレ ーザ発振を起こし易くする必要がある。このため、通常は、AlAs からなる低 屈折率材料とGaAs からなる高屈折率材料を1/4波長の周期で交互に積層す ることによって形成した半導体分布ブラッグ反射鏡が使用されている。

[0004]

ところで上記のように、光通信に使用されるようなレーザ波長が1. 1 μ m以上の長波長帯レーザ、例えばレーザ波長が1. 3 μ m帯や1. 5 5 μ m帯であるような長波長帯レーザは、製作基板に I n P が用いられ、活性層に I n G a A s P が用いられるが、基板の I n P の格子定数が大きく、これに整合する反射鏡材料では屈折率差が大きく取れず、従って積層数を 4 0 対以上とする必要がある。またI n P 基板上に形成される半導体レーザには、別の問題として、温度によって特性が大きく変化する点がある。そのため、温度を一定にする装置を付加して使用する必要があり、民生用等一般用に供することが困難であり、このような積層数と温度特性の問題から、実用的な長波長帯面発光半導体は、未だ実用化されるに至っていない。

[0005]

このような問題を解決するためになされた発明として、特開平9-237942号公報に開示されたものが知られている。それによると、製作基板としてGaAs基板を用い、基板側の下部上部のうち少なくとも一方の半導体分布ブラッグ反射鏡の低屈折率層に同基板と格子整合が取れるAlInPからなる半導体層を用い、さらに、下部上部のうち少なくとも一方の半導体分布ブラッグ反射鏡の高屈折率層にGaInNAsからなる半導体層を用い、従来よりも大きい屈折率差を得るようにし、少ない積層数で高反射率の半導体分布ブラッグ反射鏡を実現しようというものである。

[0006]

また、GaInNAs を活性層の材料として使用している。これは、N組成を増加させることによってバンドギャップ(禁制帯幅)を 1. 4eVから 0eVへ向かって低下させることができるので、 0. 85μ mよりも長い波長を発光する材料として用いることが可能となるからである。しかも GaAs 基板と格子整合が可能なので、GaInNAs からなる半導体層は、 1. 3μ m帯及び 1. 55μ m帯の長波長帯面発光半導体レーザのための材料として好ましい点についても言及している。

[0007]

しかしながら、従来は 0.85 μmよりも長い波長帯の面発光半導体レーザ実現の可能性を示唆するにとどまっているだけであり、実際にはそのようなものは実現していない。これは基本的な構成は理論的にはほぼ決まってはいるものの実際に安定したレーザ発光が得られるようにするためのより具体的な構成がまだ不明だからである。

[0008]

一例を挙げると、上記のようにAlAs からなる低屈折率材料とGaAs からなる 高屈折率材料を 1/4 波長の周期で交互に積層することによって形成した半導体分布ブラッグ反射鏡を使用したものや、あるいは特開平 9-237942号公報に開示されたもののように、半導体分布ブラッグ反射鏡の低屈折率層に同基板と格子整合が取れる AlInPからなる半導体層を用いたものにおいては、レーザ

素子が全く発光しなかったり、あるいは、発光してもその発光効率が低く、実用レベルには程遠いものであった。これは、Alを含んだ材料が化学的に非常に活性であり、Alに起因する結晶欠陥が生じ易いためである。これを解決するためには、特開平8-340146号公報や特開平7-307525号公報に開示された発明のようにAlを含まないGaInNPとGaAsとから半導体分布ブラッグ反射鏡を構成する提案がある。しかしながらGaInNPとGaAsとの屈折率差はAlAsとGaAsとの屈折率差に比べて約半分であり、反射鏡の積層数を非常に多くなり製作が困難となる。

[0009]

すなわち現状では、コンピュータ・ネットワークなどで光ファイバー通信が期待されているが、それに使用できるレーザ波長が1.1μm~1.7μmの長波長帯面発光半導体レーザおよびそれを用いた通信システムが存在せず、その出現が切望されている。

[0010]

【発明が解決しようとする課題】

本発明はこのような光通信などに用いられるレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザならびにその光通信システムに関するものであり、その第1の目的は、動作電圧、発振閾値電流等を低くできる面発光型半導体レーザ素子チップを発光光源として利用した省エネルギー、低コストの光送受信システムを提案することにある。

[0011]

また第2の目的もレーザ発振波長が1.1 μ m~1.7 μ mの長波長帯面発光 半導体レーザならびにその光通信システムに関するものであり、実用的な長波長 帯面発光半導体レーザおよびこれを用いた光送受信システムを提案することにあ る。

[0012]

さらに第3の目的は、安定して使用できるレーザ発振波長が1.1μm~1. 7μmの長波長帯面発光半導体レーザ素子チップを発光光源として利用した大容量の光送受信システムを提案することにある。

[0013]

また第4の目的は、このような長波長帯面発光半導体レーザの特徴を活かした 大容量の光送受信システムの半導体レーザ素子と光ファイバー群間の接続を効率 よくできるようにすることにある。

[0014]

さらに第5の目的は、このような長波長帯面発光半導体レーザの特徴を活かした大容量の光送受信システムの半導体レーザ素子と光ファイバー群間の接続を精度よくできるようにすることにある。

[0015]

また第6の目的は、このような長波長帯面発光半導体レーザの特徴を活かした 大容量の光送受信システムの光ファイバー群間どうしの接続を効率よくできるよ うにすることにある。

[0016]

さらに第7の目的は、このような長波長帯面発光半導体レーザの特徴を活かした大容量の光送受信システムの光ファイバー群間どうしの接続を精度よくできるようにすることにある。

[0017]

【課題を解決するための手段】

本発明は前記目的を達成するために第1に、レーザチップと該レーザチップと接続され該レーザチップのレーザ光を受光する第1の光ファイバーと該第1の光ファイバーの光を伝達する送信用の第2の光ファイバーと該第2の光ファイバーの光を受光する第3の光ファイバーと該第3の光ファイバーの光を受光する受光手段よりなる光通信システムにおいて、前記レーザチップは発振波長が1.1μm~1.7μmであり、光を発生する活性層を、主たる元素がGa、In、N、Asからなる層、もしくはGa、In、Asよりなる層とし、レーザ光を得るために前記活性層の上部及び下部に設けられた反射鏡を含んだ共振器構造を有する面発光型半導体レーザ素子チップであって、前記反射鏡はそれを構成する材料層の屈折率が小/大と周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡であるとともに、前記屈折率が小の材料層はA1xGa_{1-x}As

 $(0 < x \le 1)$ とし、前記屈折率が大の材料層は $A 1_y G a_{1-y} A s$ $(0 \le y < x \le 1)$ とした反射鏡であり、かつ前記屈折率が小と大の材料層の間に該屈折率が小と大の間の値をとる材料層 $A 1_z G a_{1-z} A s$ $(0 \le y < z < x \le 1)$ を設けてなる面発光型半導体レーザ素子チップを発光光源とするようにした。

[0018]

また第2に、レーザチップと該レーザチップと接続され該レーザチップのレーザ光を受光する第1の光ファイバーと該第1の光ファイバーの光を伝達する送信用の第2の光ファイバーと該第2の光ファイバーの光を受光する第3の光ファイバーと該第3の光ファイバーと該第2の光ファイバーの光を受光する第3の光ファイバーと該第3の光ファイバーの光を受光する受光手段よりなる光通信システムにおいて、前記レーザチップは発振波長が1.1 μ m~1.7 μ mであり、光を発生する活性層を、主たる元素がGa、In、N、Asからなる層、もしくはGa、In、Asよりなる層とし、レーザ光を得るために前記活性層の上部及び下部に設けられた反射鏡を含んだ共振器構造を有する面発光型半導体レーザ素子チップであって、前記反射鏡はそれを構成する材料の屈折率が小/大と周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡であるとともに、前記屈折率が小の材料はA1 $_{\mathbf{x}}$ Ga $_{\mathbf{1-x}}$ As (0 $_{\mathbf{x}}$ x $_{\mathbf{x}}$ 1)とし、前記屈折率が大の材料はA1 $_{\mathbf{y}}$ Ga $_{\mathbf{1-y}}$ As (0 $_{\mathbf{x}}$ x $_{\mathbf{x}}$ 1)とした反射鏡であり、前記活性層と前記反射鏡の間にGaInPもしくはGaInPAsよりなる非発光再結合防止層を設けてなる面発光型半導体レーザ素子チップを発光光源とするようにした。

[0019]

さらに第3に、上記第1、第2の光送受信システムにおいて、前記レーザチップにはn個の半導体レーザ素子が形成されているとともに、前記第1の光ファイバー、第2の光ファイバー、第3の光ファイバーならびに受光手段をそれぞれn個ずつ有するようにした。

[0020]

また第4に、上記第3の光送受信システムにおいて、前記n個の半導体レーザ素子の発光面とn個の第1の光ファイバー群の受光面が互いに1対1に相対することを識別する手段を有するようにした。

[0021]

さらに第5に、上記第3の光送受信システムにおいて、前記n個の半導体レー ザ素子の発光面とn個の第1の光ファイバー群の受光面が互いに1対1に相対す るようにした位置決め/結合手段を有するようにした。

[0022]

また第6に、上記第3の光送受信システムにおいて、前記n個の第1、第2、 第3のそれぞれの光ファイバー群の光送出面および受光面が互いに1対1に相対 することを識別する手段を有するようにした。

[0023]

さらに第7に、上記第3の光送受信システムにおいて、前記n個の第1、第2、第3のそれぞれの光ファイバー群の光送出面および受光面が互いに1対1に相対するようにした位置決め/結合手段を有するようにした。

[0024]

【発明の実施の形態】

最初に本発明の光通信システムに適用される発光素子である伝送ロスの少ない レーザ発振波長が1.1 μ m~1.7 μ mの長波長帯面発光半導体レーザの1例 について図1を用いて説明する。

[0025]

前述のように、従来は本発明が適用しようとしているレーザ発振波長が1.1 μm~1.7μmの長波長帯面発光半導体レーザに関しては、その可能性の示唆 があるのみで、実現のための材料、ならびにより具体的、詳細な構成は不明であ った。本発明では、活性層としてGaInNAs等の材料を使用し、さらに具体的 な構成を明確にした。以下にそれを詳述する。

[0026]

本発明では、面方位(100)のn-GaAs基板上に、それぞれの媒質内における発振波長 λ の1/4倍の厚さ($\lambda/4$ の厚さ)で $n-A1_xGa_{1-x}As$ (x=1.0)(低屈折率層~屈折率小の層)と $n-A1_yGa_{1-y}As$ (y=0)(高屈折率層~屈折率大の層)を交互に35周期積層したn-半導体分布ブラッグ反射鏡(A1As/GaAs下部半導体分布ブラッグ反射鏡)を形成し、その上に $\lambda/$

4 の厚さの $n-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0.5、y=1) 層を積層した。 この例では $n-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0.5、y=1) 層も下部反射鏡の一部であり低屈折率層(屈折率小の層)となっている。

[0027]

そしてその上にアンドープ下部GaAsスペーサ層と、3層の $Ga_xIn_{1-x}As$ s量子井戸層である活性層(量子井戸活性層)とGaAsバリア層(20nm)からなる多重量子井戸活性層と、アンドープ上部GaAsスペーサ層とが積層されて、媒質内における発振波長 λ の1波長分の厚さ(λ の厚さ)の共振器を形成している。

[0028]

さらにその上に、C(炭素)ドープの $p-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0. 5、y=1)層とZnドープ $p-A1_xGa_{1-x}As$ (x=0)をそれぞれの媒質内における発振波長 λ の1/4倍の厚さで交互に積層した周期構造(1周期)を積層し、その上にCドープの $p-A1_xGa_{1-x}As$ (x=0. 9)とZnドープ $p-A1_xGa_{1-x}As$ (x=0)をそれぞれの媒質内における発振波長 λ の1/4倍の厚さで交互に積層した周期構造(25周期)とからなる半導体分布ブラッグ反射鏡($A1_{0.9}Ga_{0.1}As/GaAs$ 上部半導体分布ブラッグ反射鏡)を形成している。この例では $p-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0. 5、y=1)層も上部反射鏡の一部であり、低屈折率層(屈折率小の層)となっている。

[0029]

なおここで、上部/下部反射鏡ともそれぞれ低屈折率層(屈折率小の層)/高屈折率層(屈折率大の層)を交互に積層して形成するが、本発明ではこれらの間に、屈折率が小と大の間の値をとる材料層 $A1_z$ Ga_{1-z} As Olegaptices y < z < x ≤ 1)を設けている。図 <math>2 は、低屈折率層(屈折率小の層)と高屈折率層(屈折率大の層)の間に、屈折率が小と大の間の値をとる材料層 $A1_z$ Ga_{1-z} As Olegaptices y < z < x ≤ 1)を設けた半導体分布ブラッグ反射鏡の一部を示したものである(図 1 では図が複雑になるので図示することを省略している)。

[0030]

従来レーザ波長が0.85μm帯の半導体レーザに関して、このような材料層

を設けることも検討はされているが、まだ検討段階であり、その材料、あるいはその厚さなどまで詳細には検討されていない。また本発明のようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザに関しては全く検討されていない。その理由はこの分野(レーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザ)が新しい分野であり、まだほとんど研究が進んでいないからである。

[0031]

本発明者はいち早くこの分野(レーザ発振波長が1. $1 \mu m \sim 1$. $7 \mu m$ の長波長帯面発光半導体レーザおよびそれを用いた光通信)の有用性に気付き、それを実現するために鋭意検討を行った。

[0032]

このような材料層は形成時にガス流量をコントロールするなどして、そのA1 組成を連続的もしくは段階的に変えるようにしてその材料層の屈折率が連続的も しくは段階的に変化するようにして形成する。

[0033]

より具体的には、 $A1_zGa_{1-z}As$ ($0 \le y < z < x \le 1$) 層のzの値を0から1. 0まで変わるように、つまり $GaAs \sim A1GaAs \sim A1As$ という具合にA1とGaの比率が徐々に変わるようにして形成する。これは前述のように層形成時にガス流量をコントロールすることによって作成される。また、A1とGaの比率が前述のように連続的に変わるようにして形成しても良いし、段階的にその比率が変わるようにしても同等の効果がある。

[0034]

このような材料層を設ける理由は、半導体分布ブラッグ反射鏡の持つ問題点の一つであるpー半導体分布ブラッグ反射鏡の電気抵抗が高いという課題を解決するためである。これは半導体分布ブラッグ反射鏡を構成する2種類の半導体層の界面に生じるヘテロ障壁が原因であるが、本発明のように低屈折率層と高屈折率層の界面に一方の組成から他方の組成へ次第にA1組成が変化するようにして、屈折率も変化させることによってヘテロ障壁の発生を抑制することが可能である

[0035]

またこのような屈折率が小と大の間の値をとる材料層 $A1_zGa_{1-z}As$ ($0 \le y < z < x \le 1$) は本発明のようなレーザ発振波長が $1.1\mu m \sim 1.7\mu m$ の長波長帯面発光半導体レーザの場合、 $5nm \sim 50nm$ の厚さとするのが良く、これより薄いと抵抗が大となり電流が流れにくく、素子が発熱したり、駆動エネルギーが高くなるという不具合がある。また厚いと抵抗が小となり、素子の発熱や、駆動エネルギーの面で有利になるが、今度は反射率がとれないという不具合があり、前述のように最適の範囲($5nm \sim 50nm$ の厚さ)を選ぶ必要がある

[0036]

なお、前述のように従来のレーザ波長が0.85μm帯の半導体レーザに関してこのような材料層を設けることも検討されているが、本発明のようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザの場合は、より効果的である。なぜなら、例えば同等の反射率(例えば99.5%以上)を得るためには、0.85μm帯よりも1.1μm帯~1.7μm帯の場合、このような材料層を約2倍程度にすることができるので、半導体分布ブラッグ反射鏡の抵抗値を低減させることができ、動作電圧、発振閾値電流等が低くなり、レーザ素子の発熱防止ならびに安定発振、少エネルギー駆動の面で有利となる。

[0037]

つまり半導体分布ブラッグ反射鏡にこのような材料層を設けることは、本発明 のようなレーザ発振波長が1.1 μ m~1.7 μ mの長波長帯面発光半導体レー ザの場合に特に効果的な工夫といえる。

[0038]

なお効果的な反射率を得るためのより詳細な検討結果の一例を挙げると、例えば 1.3μ m帯面発光型レーザ素子では、 $A1_x$ Ga_{1-x} As (x=1.0) (低屈折率層~屈折率小の層)と $A1_y$ Ga_{1-y} As (y=0) (高屈折率層~屈折率大の層)を 20 周期積層した場合においては、半導体分布ブラッグ反射鏡の反射率が 99.7% 以下となる $A1_z$ Ga_{1-z} As $(0 \le y < z < x \le 1)$ 層の厚さは 30 n m である。また、反射率が 99.5% 以上となる波長帯域は 53 n m であ

り、反射率を99.5%以上と設計した場合、±2%の膜厚制御ができればよい。そこでこれと同等およびこれより薄い、10nm、20nm、30nmのものを試作したところ、反射率を実用上問題のない程度に保つことができ、半導体分布ブラッグ反射鏡の抵抗値を低減させることができた1.3μm帯面発光型レーザ素子を実現、レーザ発振に成功した。なお試作したレーザ素子の他の構成は後述のとおりである。

[0039]

なお多層膜反射鏡においては設計波長(膜厚制御が完全にできたとして)を含んで反射率の高い帯域がある。高反射率の帯域(反射率が狙いの波長に対して必要値以上である領域を含む)と呼ぶ。設計波長の反射率が最も高く、波長が離れるにしたがってごくわずかずつ低下している領域である。これはある領域から急激に低下する。そして狙いの波長に対して必要な反射率以上となるように、本来、多層膜反射鏡の膜厚を原子層レベルで完全に制御する必要がある。しかし実際には±1%程度の膜厚誤差は生じるので狙いの波長と最も反射率の高い波長はずれてしまう。例えば狙いの波長が1.3μmの場合、膜厚制御が1%ずれたとき、最も反射率の高い波長は13nmずれてしまう。よってこの高反射率の帯域(ここでは反射率が狙いの波長に対して必要値以上である領域)は広い方が望ましい。しかし中間層を厚くするとこの帯域が狭くなる傾向にある。

[0040]

このように本発明のようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザにおいて、このような半導体分布ブラッグ反射鏡の構成を工夫、最適化することにより、反射率を高く維持したまま抵抗値を低減させることができるので、動作電圧、発振閾値電流等を低くでき、レーザ素子の発熱防止ならびに安定発振、少エネルギー駆動が可能となる。

[0041]

再び図1に戻り、最上部の、 $p-A1_xGa_{1-x}As(x=0)$ 層は、電極とコンタクトを取るためのコンタクト層(p-コンタクト層)としての役割も持っている。

[0042]

ここで、量子井戸活性層のIn組成xは39% (Ga0.61In0.39As) とした。また量子井戸活性層の厚さは7nmとした。なお量子井戸活性層は、GaAs基板に対して約2.8%の圧縮歪を有していた。

[0043]

またこの面発光型半導体レーザ全体の成長方法はMOCVD法で行った。この場合、格子緩和は見られなかった。半導体レーザの各層を構成する原料には、TMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)、TMI(トリメチルインジウム)、AsH₃(アルシン)、PH₃(フォスフィン)を用いた。また、キャリアガスにはH₂を用いた。図1に示した素子の活性層(量子井戸活性層)のように歪が大きい場合は、非平衡となる低温成長が好ましい。ここでは、GaInAs層(量子井戸活性層)は550℃で成長させている。ここで使用したMOCVD法は過飽和度が高く高歪活性層の結晶成長に適している。またMBE法のような高真空を必要とせず、原料ガスの供給流量や供給時間を制御すれば良いので量産性にも優れている。

[0044]

またこの例では、電流経路外の部分をプロトン (H⁺) 照射によって絶縁層 (高抵抗部)を作って、電流狭さく部を形成した。

[0045]

そしてこの例では、上部反射鏡の最上部の層であり上部反射鏡一部となっている p ーコンタクト層上に光出射部を除いて p 側電極を形成し、基板の裏面に n 側電極を形成した。

[0046]

この例では、上下反射鏡に挟まれた、キャリアが注入され再結合する活性領域(本実施例では上部及び下部スペーサ層と多重量子井戸活性層とからなる共振器)において、活性領域内にはA1を含んだ材料(III 族に占める割合が1%以上)を用いず、さらに、下部及び上部反射鏡の低屈折率層の最も活性層に近い層を $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y< ≤ 1)の非発光再結合防止層としている。キャリアは、活性層に最も近くワイドギャップである上部及び下部反射鏡の低屈折率層間に閉じ込められるので、活性領域のみをA1を含まない層(II

I 族に占める割合が1%以下)で構成しても活性領域に接する反射鏡の低屈折率層(ワイドギャップ層)にA1を含んだ構造としたのでは、キャリアが注入され再結合する時、この界面で非発光再結合が生じ発光効率は低下してしまう。よって活性領域はA1を含まない層で構成することが望ましい。

[0047]

またこの $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \le 1) 層よりなる非発 光再結合防止層は、その格子定数がGaAs基板よりも小さく、引張り歪を有し ている。

[0048]

エピタキシャル成長では下地の情報を反映して成長するので基板表面に欠陥があると成長層へ這い上がっていく。しかし歪層があるとそのような欠陥の這い上がりが抑えられ効果があることが知られている。

[0049]

上記欠陥が活性層に達すると発光効率を低減させてしまう。また、歪を有する 活性層では臨界膜厚が低減し必要な厚さの層を成長できないなどの問題が生じる 。特に活性層の圧縮歪量が例えば2%以上と大きい場合や、歪層の厚さ臨界膜厚 より厚く成長する場合、低温成長などの非平衡成長を行っても欠陥の存在で成長 できないなど、特に問題となる。歪層があるとそのような欠陥の這い上がりが抑 えられるので、発光効率を改善したり、活性層の圧縮歪量が例えば2%以上の層 を成長できたり、歪層の厚さを臨界膜厚より厚く成長することが可能となる。

[0050]

この $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \leq 1) 層は活性領域に接しており活性領域にキャリアを閉じ込める役割も持っているが、 $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \leq 1) 層は格子定数が小さくなるほどバンドギャップエネルギーを大きく取り得る。例えば $Ga_xIn_{1-x}P$ (y=1の場合)の場合、xが大きくなり $Ga_xIn_{1-x}P$ (y=10) の場合、xが大きくなり $Ga_xIn_{1-x}P$ (y=10) に近づくと格子定数が大きくなり、バンドギャップは大きくなる。バンドギャップE g は、直接遷移でE g (Γ) =1.351+0.643 x + 0.786 x 2、間接遷移でE g (X) =2.24+0.02 x と与えられている。よって活性領域と $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \leq 1) 層のヘテロ障壁は大

きくなるのでキャリア閉じ込めが良好となり、しきい値電流低減、温度特性改善などの効果がある。

[0051]

さらにこの $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \le 1) 層よりなる非発光再結合防止層は、その格子定数がGaAs基板よりも大きく、圧縮歪を有しており、かつ前記活性層の格子定数が前記 $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \le 1) 層よりも大きく圧縮歪を有している。

[0052]

またこの $Ga_xIn_{1-x}P_yAs_{1-y}$ $(0 < x < 1 、 0 < y \le 1)$ 層の歪の方向が活性層と同じ方向なので、活性層が感じる実質的な圧縮歪量を低減する方向に働く。歪が大きいほど外的要因の影響を受けやすいので、活性層の圧縮歪量が例えば 2%以上と大きい場合や、臨界膜厚を超えた場合に特に有効である。

[0053]

例えば発振波長が1.3μm帯の面発光型レーザはGaAs基板上に形成するのが好ましく、共振器には半導体多層膜反射鏡を用いる場合が多く、トータル厚さが5~8μmで50~80層の半導体層を活性層成長前に成長する必要がある。(一方、端面発光型レーザの場合、活性層成長前のトータル厚さは2μm程度で3層程度の半導体層を成長するだけで良い。)この場合、高品質のGaAs基板を用いてもさまざまな原因(一度発生した欠陥は基本的には結晶成長方向に這い上がるし、ヘテロ界面での欠陥発生などがある)でGaAs基板表面の欠陥密度に比べて活性層成長直前の表面の欠陥密度はどうしても増えてしまう。活性層成長以前に、歪層の挿入や、活性層が感じる実質的な圧縮歪量が低減すると、活性層成長直前の表面にある欠陥の影響を低減できるようになる。

[0054]

この例では、活性領域内及び反射鏡と活性領域との界面にA1を含まない構成 としたので、キャリア注入時にA1に起因していた結晶欠陥が原因となる非発光 再結合がなくなり、非発光再結合が低減した。

[0055]

前述のように、反射鏡と活性領域との界面にAlを含まない構成とする、すな

わち非発光再結合防止層を設けることを、上下反射鏡ともに適用することが好ましいが、一方の反射鏡に適用するだけでも効果がある。またこの例では、上下反射鏡とも半導体分布ブラッグ反射鏡としたが、一方の反射鏡を半導体分布ブラッグ反射鏡とし、他方の反射鏡を誘電体反射鏡としても良い。また前述の例では、反射鏡低屈折率層の最も活性層に近い層のみを $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0<y \leq 1)の非発光再結合防止層としているが、複数層の $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<2、 P_yAs_{1-y} (0<x<1、0<y \leq 1)を非発光再結合防止層としても良い。

[0056]

さらにこの例では、GaAs 基板と活性層との間の下部反射鏡にこの考えを適用し、活性層の成長時に問題となる、A1 に起因する結晶欠陥の活性層への這い上がりによる悪影響が押さえられ、活性層を高品質に結晶成長することができる。これらにより、発光効率は高く、信頼性は実用上十分な面発光型半導体レーザが得られた。また、半導体分布ブラッグ反射鏡の低屈折率層のすべてではなく、少なくとも活性領域に最も近い部分をA1 を含まない $Ga_xIn_{1-x}P_yAs_{1-y}$ (0 < x < 1、 $0 < y \le 1$) 層としただけなので、反射鏡の積層数を特に増加させることなく、上記効果を得ることができている。

[0057]

このようにして製作した面発光型半導体レーザの発振波長は約1. $2 \mu m$ であった。GaAs基板上のGaInAsは、In組成の増加で長波長化するが歪み量の増加をともない、従来1. $1 \mu m$ までが長波長化の限界と考えられていた(文献「IEEE Photonics. Technol. Lett. Vol. 9 (1997) pp. 1319-1321」参照)。

[0058]

しかしながら今回発明者が製作したように、600℃以下の低温成長などの非平衡度の高い成長法により高歪のGaInAs量子井戸活性層を従来より厚くコヒーレント成長することが可能となり、波長は1.2μmまで到達できた。なおこの波長はSi半導体基板に対して透明である。従ってSi基板上に電子素子と光素子を集積した回路チップにおいてSi基板を通した光伝送が可能となる。

[0059]

以上の説明より明らかなようにIn組成が大きい高圧縮歪のGaInAsを活性層に用いることにより、GaAs基板上に長波長帯の面発光型半導体レーザを形成できることがわかった。

[0060]

なお前述のように、このような面発光型半導体レーザは、MOCVD法で成長させることができるが、MBE法等の他の成長方法を用いることもできる。また活性層の積層構造として、3重量子井戸構造(TQW)の例を示したが、他の井戸数の量子井戸を用いた構造(SQW、MQW)等を用いることもできる。

[0061]

レーザの構造も他の構造にしてもかまわない。また共振器長は λ の厚さとしたが λ / 2 の整数倍とすることができる。望ましくは λ の整数倍である。また半導体基板として G a A s を用いた例を示したが、 I n P などの他の半導体基板を用いた場合でも上記の考え方を適用できる。反射鏡の周期は他の周期でも良い。

[0062]

なおこの例では活性層として、主たる元素がGa、In、Asよりなる層、すなわち $Ga_xIn_{1-x}As$ (GaInAs活性層)の例を示したが、より長波長のレーザ発振を行うためには、Nを添加し主たる元素がGa、In、N、Asからなる層(GaInNAs活性層)とすればよい。

[0063]

実際にGaInNAs活性層の組成を変えることにより、1.3μm帯、1.55μm帯のそれぞれにおいて、レーザ発振を行うことが可能であった。組成を検討することにより、さらに長波長の例えば1.7μm帯の面発光レーザも可能となる。

[0064]

また、活性層にGaAsSbを用いてもGaAs基板上に 1.3μ m帯面発光レーザを実現できる。このように波長 1.1μ m \sim 1. 7μ mの半導体レーザは従来適した材料がなかったが、活性層に高歪のGaInAs、GaInNAs、GaAsSbを用い、かつ、非発光再結合防止層を設けることにより、従来安定発振が困難であった波長 1.1μ m \sim 1. 7μ m帯の長波長領域において、高性

能な面発光レーザを実現できるようになった。

[0065]

次に本発明の光送受信システムに適用される発光素子である長波長帯面発光型 半導体レーザの他の構成について、図3を用いて説明する。

[0066]

この場合も図1の場合と同様に面方位(100)のn-GaAs基板を使用している。それぞれの媒質内における発振波長 λ の1/4倍の厚さ(λ /4の厚さ)で $n-A1_xGa_{1-x}As$ (x=0. 9)と $n-A1_xGa_{1-x}As$ (x=0)を交互に35周期積層したn-半導体分布ブラッグ反射鏡($\lambda I_{0.9}Ga_{0.1}As/GaAs$ 下部反射鏡)を形成し、その上に λ /4の厚さの $n-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0. 5、y=1)層を積層した。この例では $n-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0. 5、y=1)層も下部反射鏡の一部であり低屈折率層となっている。

[0067]

そしてその上に、アンドープ下部GaAsスペーサ層と、3層の $Ga_xIn_{1-x}N_yAs_{1-y}$ 量子井戸層である活性層(量子井戸活性層)とGaAsバリア層(15nm)から構成される多重量子井戸活性層(この例では3重量子井戸(TQW))と、アンドープ上部GaAsスペーサ層とが積層されて、媒質内における発振波長の1波長分の厚さ(λ の厚さ)の共振器を形成している。

[0068]

さらにその上に、p-半導体分布ブラッグ反射鏡(上部反射鏡)が形成されている。

[0069]

上部反射鏡は、被選択酸化層となるA 1 A s 層を、G a I n P 層とA 1 G a A s 層で挟んだ $3\lambda/4$ の厚さの低屈折率層(厚さが($\lambda/4-15$ n m)のC ドープ p - G a $_{\mathbf{x}}$ I n $_{\mathbf{1-x}}$ P $_{\mathbf{y}}$ A s $_{\mathbf{1-y}}$ ($\mathbf{x}=0.5$ 、 $\mathbf{y}=1$) 層、C ドープ p - A 1 $_{\mathbf{z}}$ G a $_{\mathbf{1-z}}$ A s ($\mathbf{z}=1$) 被選択酸化層(厚さ 3 O n m)、厚さが(2 $\lambda/4-1$ 5 n m)のC ドープ p - A 1 $_{\mathbf{x}}$ G a $_{\mathbf{1-x}}$ A s 層($\mathbf{x}=0.9$))と、厚さが $\lambda/4$ の G a A s 層($\mathbf{1}$ 周期)と、C ドープ の p - A 1 $_{\mathbf{x}}$ G a $_{\mathbf{1-x}}$ A s 層($\mathbf{x}=0.9$)と \mathbf{y} と \mathbf{y} D \mathbf{y} と \mathbf{y} D \mathbf{y} と \mathbf{y} D \mathbf{y} C \mathbf{y} D \mathbf{y} E \mathbf{y} D \mathbf{y} C \mathbf{y} D \mathbf{y} E \mathbf{y} C \mathbf{y} D \mathbf{y} C \mathbf{y} D \mathbf{y} E \mathbf{y} D \mathbf{y} C \mathbf{y} D \mathbf{y} D \mathbf{y} E \mathbf{y} D \mathbf{y} D \mathbf{y} D \mathbf{y} E \mathbf{y} D \mathbf{y} D \mathbf{y} D \mathbf{y} D \mathbf{y} E \mathbf{y} D \mathbf{y} D

/4倍の厚さで交互に積層した周期構造(22周期)とから構成されている半導体分布ブラッグ反射鏡($A1_{0.9}$ Ga $_{0.1}$ As/GaAs上部反射鏡)である。

[0070]

なおこの例においても、図3では複雑になるので図示することは省略しているが、半導体分布ブラッグ反射鏡の構造は、図2に示したような低屈折率層(屈折率小の層)と髙屈折率層(屈折率大の層)の間に、屈折率が小と大の間の値をとる材料層 $A1_z$ G $a_{1-z}A$ s (0 \leq y<z<x \leq 1) を設けたものである。

[0071]

そして、最上部の、 $p-A1_xGa_{1-x}As(x=0)$ 層は、電極とコンタクトを取るためのコンタクト層(p-コンタクト層)としての役割も持たせている。

[0072]

ここで量子井戸活性層のIn組成xは3.7%、N(窒素)組成は0.5%とした。また量子井戸活性層の厚さは7nmとした。

[0073]

またこの面発光型半導体レーザの成長方法はMOCVD法で行った。半導体レーザの各層を構成する原料には、TMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)、TMI(トリメチルインジウム)、AsH₃(アルシン)、PH₃(フォスフィン)、そして窒素の原料にはDMHy(ジメチルヒドラジン)を用いた。DMHyは低温で分解するので600℃以下のような低温成長に適しており、特に低温成長の必要な歪みの大きい量子井戸層を成長する場合に好ましい。なおキャリアガスにはH₂を用いた。

[0074]

またこの例では、GaInNAs層(量子井戸活性層)は540℃で成長した。MOCVD法は過飽和度が高くNと他のV族を同時に含んだ材料の結晶成長に適している。またMBE法のような高真空を必要とせず、原料ガスの供給流量や供給時間を制御すれば良いので量産性にも優れている。

[0075]

さらにこの例では、所定の大きさのメサ部分を $p-Ga_xIn_{1-x}P_yAs_{1-y}$ (x=0.5、y=1)層に達するまで、 $p-Al_zGa_{1-z}As$ (z=1)被選択

酸化層の側面を露出させて形成し、側面の現れた $A1_zGa_{1-z}As(z=1)$ 層を水蒸気で側面から酸化して $A1_xO_y$ 電流狭さく層を形成している。

[0076]

最後にポリイミド(絶縁膜)でメサエッチングで除去した部分を埋め込んで平 坦化し、上部反射鏡上のポリイミドを除去し、p-コンタクト層上に光出射部を 除いてp側電極を形成し、GaAs基板の裏面にn側電極を形成した。

[0077]

この例においては、被選択酸化層の下部に上部反射鏡の一部として $Ga_xIn_1-x^PyAs_{1-y}$ (0< x<1、 $0< y\le 1$) 層が挿入している。例えばウェットエッチングの場合では、硫酸系エッチャントを用いれば、A1GaAs系に対してGaInPAs系はエッチング停止層として用いることができるため、 $Ga_xIn_{1-x}P_yAs_{1-y}$ (0< x<1、 $0< y\le 1$) 層が挿入されていることで、選択酸化のためのメサエッチングの高さを厳密に制御できる。このため、均一性、再現性を高められ、低コスト化が図れる。

[0078]

またこの例の面発光型半導体レーザ(素子)を一次元または二次元に集積した場合、素子製作時における制御性が良好になることにより、アレイ内の各素子の素子特性の均一性、再現性も極めて良好になるという効果がある。

[0079]

なおこの例では、エッチングストップ層を兼ねる $Ga_xIn_{1-x}P_yAs_{1-y}$ (0<x<1、0 $<y\leq1$)層を上部反射鏡側に設けたが、下部反射鏡側に設けても良い。

[0080]

またこの例においても、上下反射鏡に挟まれた、キャリアが注入され再結合する活性領域(本実施例では上部及び下部スペーサ層と多重量子井戸活性層とからなる共振器)において、活性領域内にはA1を含んだ材料を用いず、さらに下部及び上部反射鏡の低屈折率層の最も活性層に近い層を $Ga_xIn_{1-x}P_yAs_{1-y}$ (0 < x < 1、 $0 < y \le 1$)の非発光再結合防止層としている。つまりこの例では、活性領域内及び反射鏡と活性領域との界面に、A1を含まない構成としている

ので、キャリア注入時に、A1に起因していた結晶欠陥が原因となる非発光再結合を低減させることができる。

[0081]

なお反射鏡と活性領域との界面にA1を含まない構成を、この例のように上下 反射鏡に適用することが好ましいが、いずれか一方の反射鏡に適用するだけでも 効果がある。またこの例では、上下反射鏡とも半導体分布ブラッグ反射鏡とした が、一方の反射鏡を半導体分布ブラッグ反射鏡とし、他方の反射鏡を誘電体反射 鏡としても良い。

[0082]

さらにこの例でも、G a A s 基板と活性層との間の下部反射鏡に図1の例の場合と同様の考えを適用したので、活性層の成長時に問題となるA1に起因する結晶欠陥の活性層への違い上がりによる悪影響が押さえられ、活性層を高品質に結晶成長することができる。

[0083]

なお、このような非発光再結合防止層は、図1、図3のいずれの構成において も半導体分布ブラッグ反射鏡の一部を構成するので、その厚さは、媒質内におけ る発振波長えの1/4倍の厚さ(λ/4の厚さ)としている。あるいはそれを複 数層も設けても良い。

[0084]

以上の説明より明らかなように、このような構成により、発光効率は高く、信頼性は実用上十分な面発光型半導体レーザが得られた。また、半導体分布ブラッグ反射鏡の低屈折率層のすべてではなく、少なくとも活性領域に最も近い部分をA1を含まない $Ga_xIn_{1-x}P_yAs_{1-y}$ (0 < x < 1 、0 < y ≤ 1) の非発光再結合防止層としただけなので、反射鏡の積層数を特に増加させることなく、上記効果を得ることができた。

[0085]

またこのような構成にしても、ポリイミドの埋め込みは容易であるので、配線 (この例ではp側電極)が段切れしにくく、素子の信頼性は高いものが得られる [0086]

このように製作した面発光型半導体レーザの発振波長は約1. 3μmであった

[0087]

この例では、主たる元素がGa、In、N、Asからなる層を活性層に用いた(GaInNAs活性層)ので、GaAs基板上に長波長帯の面発光型半導体レーザを形成できた。またAlとAsを主成分とした被選択酸化層の選択酸化により電流狭さくを行ったので、しきい値電流は低かった。

[0088]

被選択酸化層を選択酸化したA1酸化膜からなる電流狭さく層を用いた電流狭さく構造によると、電流狭さく層を活性層に近づけて形成することで電流の広がりを抑えられ、大気に触れない微小領域に効率良くキャリアを閉じ込めることができる。更に酸化してA1酸化膜となることで屈折率が小さくなり凸レンズの効果でキャリアの閉じ込められた微小領域に効率良く光を閉じ込めることができ、極めて効率が良くなり、しきい値電流は低減できる。また容易に電流狭さく構造を形成できることから、製造コストを低減できる。

[0089]

以上の説明から明らかなように図3のような構成においても図1の場合と同様に、1.3 μ m帯の面発光型半導体レーザを実現でき、しかも低消費電力で低コストの素子が得られる。

[0090]

なお、図3の面発光型半導体レーザも図1の場合と同様にMOCVD法で成長させることができるが、MBE法等の他の成長方法を用いることもできる。また窒素の原料に、DMHyを用いたが、活性化した窒素やNH₃等他の窒素化合物を用いることもできる。

[0091]

さらに活性層の積層構造として3重量子井戸構造(TQW)の例を示したが、 他の井戸数の量子井戸を用いた構造(SQW、DQW、MQW)等を用いること もできる。レーザの構造も他の構造にしてもかまわない。

[0092]

また図3の面発光型半導体レーザにおいて、GaInNAs活性層の組成を変えることで、1.55μm帯、更にはもっと長波長の1.7μm帯の面発光型半導体レーザも可能となる。GaInNAs活性層にT1、Sb、Pなど他のIIIーV族元素が含まれていてもかまわない。また活性層にGaAsSbを用いても、GaAs基板上に1.3μm帯の面発光型半導体レーザを実現できる。

[0093]

なお活性層にGaInAsを用いた場合、従来 1.1μ mまでが長波長化の限界と考えられていたが、600 C以下の低温成長により高歪のGaInAs 量子井戸活性層を従来よりも厚く成長することが可能となり、波長は 1.2μ mまで到達できる。このように、波長 1.1μ m~ 1.7μ mの半導体レーザは従来適した材料がなかったが、活性層に高歪のGaInAs、GaInNAs、GaAsSbehn、かつ非発光再結合防止層を設けることにより、従来安定発振が困難であった波長 1.1μ m~ 1.7μ m帯の長波長領域において、高性能な面発光レーザを実現できるようになり、光通信システムへの応用ができるようになった。

[0094]

図4はこのような長波長帯面発光半導体レーザ素子を、面方位(100)の n - G a A s ウエハに多数のチップとして形成した例、ならびにレーザ素子チップを示したものである。ここで示したレーザ素子チップには、1~n個のレーザ素子が形成されているが、その個数 n はその用途に応じて、数ならびに配列方法が決められる。

[0095]

図5はレーザ発振波長が1.1μm帯~1.7μm帯の長波長帯面発光半導体 レーザを用いた通信システムの一例である。従来よりレーザ発振波長が0.85 μm帯では光通信システムが検討されていたが、光ファイバーの伝送ロスが大き くて実用的ではなかった。また伝送ロスが小さい実用的な長波長帯においては安 定したレーザ素子ができなかったが、本発明では前述のように半導体分布ブラッ グ反射鏡の工夫、あるいは非発光再結合防止層を設けるような工夫により、レー ザ発振波長が1. 1 μ m帯~1. 7 μ m帯の面発光型半導体レーザを省エネルギー、低発熱、安定駆動ができるようになり、実用的な長波長帯光通信システムが可能となった。

[0096]

この例は、上記のような長波長帯面発光型半導体レーザLDチップとそのレーザ素子発光部から出たレーザ光を受光しそれを送信するための伝送経路として作用する第1の光ファイバーFG1と、この第1の光ファイバーFG1から出たレーザ光を受光しそれを送信するための伝送経路として作用する第2の光ファイバーFG2と、この第2の光ファイバーFG2から出たレーザ光を受光しそれを送信するための伝送経路として作用する第3の光ファイバーFG3と、この第3の光ファイバーFG3から出たレーザ光を受光するための光ディテクタ部を有するフォトダイオードチップとからなっている。

[0097]

そして、半導体レーザLDチップと第1の光ファイバーFG1との間にはLDーFG1接続モジュールMG1があり、両者を光カップリングさせている。また同様に各光ファイバー間、光ファイバーとフォトダイオードチップ間にも同様に、FG1ーFG2接続モジュールMG2、FG2ーFG3接続モジュールMG3、FG3ーフォトダイオード接続モジュールMG4が間に入り光カップリングさせている。

[0098]

図6は、上記図5のシステムを上に、そしてその下に上記図5のシステムを上左右反対にしたものをならべて示したシステムであり、それにより双方向の光送受信システムを構成したものである。図6の下の部分は、向かって右から順に、面発光型半導体レーザLDチップとそのレーザ素子発光部から出たレーザ光を受光しそれを送信するための伝送経路として作用する第3の光ファイバーFR3と、この第3の光ファイバーFR3から出たレーザ光を受光しそれを送信するための伝送経路として作用する第2の光ファイバーFR2と、この第2の光ファイバーFR2から出たレーザ光を受光しそれを送信するための伝送経路として作用する第1の光ファイバーFR1から出たレーザ

光を受光するための光ディテクタ部を有するフォトダイオードチップとからなっている。

[0099]

そして、半導体レーザLDチップと第3の光ファイバーFR3との間にはFR3-LD接続モジュールMR4があり、両者を光カップリングさせている。また同様に各光ファイバー間、光ファイバーとフォトダイオードチップ間にも同様に、FR2-FR3接続モジュールMR3、FR1-FR2接続モジュールMR2、フォトダイオードーFR1接続モジュールMR1が間に入り光カップリングさせている。

[0100]

なお、光ファイバーや接続モジュールに付けたFG1、MG1、あるいは、FR1、MR1等のG、Rはそれぞれ光の送信方向を考慮し、Go、Returnの頭文字を付けたものである。

[0101]

図7は、図5に示したシングルLDによる通信システムを複数個(n個)にしたシステムの例である。すなわち1つの半導体レーザLDチップに複数個(この例では5個)のレーザ素子発光部が設けられた例であり、この複数個に対応して、第1、第2、第3の光ファイバー群もそれぞれ複数本の光ファイバーとしたものである。またそれに対応して、フォトダイオードチップも複数個の光ディテクタ部としている。本発明では面発光型半導体レーザLDチップを利用しているので、このように1つの半導体レーザLDチップに複数個のレーザ素子発光部を設けることは容易であり、レーザ素子発光部を複数個(n個)とすることにより、簡単に大容量の通信システムが実現できる。

[0102]

なお図示しないが、このような複数本のファイバーを用いた大容量の通信システムも、上記図6に示した双方向の光送受信システムの考え方を取り入れ、複数本のファイバーを用いた双方向の大容量光送受信システムも本発明の範疇にはいるものである。

[0103]

次に本発明の他の特徴について説明する。図8は、図7の左側部すなわち面発 光型半導体レーザLDチップと第1の光ファイバー群MFG1とそれらを光カッ プリングさせるためのLD-MFG1接続モジュールMG1を示している。なお LD-MFG1接続モジュールMG1は概念的に長方形点線で示している。この 概念的長方形点線部分のより具体的構成について、図9~図12を用いて説明す る。

[0104]

図9と図10はそれぞれ面発光型半導体レーザLDチップと第1の光ファイバー群MFG1とを光カップリングさせる前の状態(図9)と光カップリングさせるた後の状態(図10)を示している。すなわち、図8で概念的長方形点線部分で示したLD-MFG1接続モジュールMG1は具体的には、LDチップホルダーとファイバーホルダーの組合せからなるものである。そして両者は、図9に示した矢印のように挿入することにより、レーザ素子発光面と光ファイバーの端面(受光面)が互いに1対1に相対するように配置され光カップリングができる状態になる。つまりLDチップホルダーとファイバーホルダーが結合される。

[0105]

その際本発明では、レーザ素子発光面と光ファイバーの端面(受光面)が左右あるいは上下の方向において間違わずに互いに1対1に相対するようにするための位置、方向を識別するための手段を有している。図では、LDチップホルダーとファイバーホルダーのそれぞれに、矢印のマークを入れた例を示したが、このような識別手段を設けることにより、本発明のような光送受信システムを構築する際、半導体レーザ素子と光ファイバー群間の接続持に瞬時に互いの方向などを間違えることなく認識、接続ができるので、効率よくを行うことができる。

[0106]

なおこのような簡単な手段によって良好な接続ができるのは、本発明に使用される光源が、従来よりある端面発光型半導体レーザLDチップではなく、前述のような面発光型半導体レーザLDチップを用いているからである。従来よりある端面発光型半導体レーザの場合、その光の出射角は30°~40°と大きく、その発光部と光ファイバー端面との高精度な位置合せ(発光中心とファイバーのコ

ア部との中心軸合せ)が難しく、そのアセンブリに多くの時間、コストをかける必要があった。しかしながら、本発明の光源に使用するレーザ発振波長が1.1 μ m帯~1.7 μ m帯の面発光型半導体レーザは、その光の出射角は8°~10°と小さく、その発光部と光ファイバー端面との高精度な位置合せ(発光中心とファイバーのコア部との中心軸合せ)が簡単にできるという従来にはなかったメリットがある。

[0107]

よって前述のような半導体レーザ素子と光ファイバー群間の接続も難しい微調整を必要とすることなくワンタッチでできるため、このように識別手段さえ設けておけば、あとは調整なしで、両者をはめ込むだけで、高精度接続が実現できる

[0108]

なおこの識別手段は、このような視認できる矢印のマークに限定されるものではなく、色の違いを利用するようなものでもよい。さらに必ずしも視認できるものに限定されるものではなく、形状の凹凸などを利用して、触覚により認識できるようなものであってもよい。なおこのような触覚により認識できるようなものとすると、暗闇とか夜間に工事を行う場合であっても簡単に認識できるというメリットがある。

[0109]

図11と図12は、LDチップホルダーとファイバーホルダーの組合せからなるLD-MFG1接続モジュールMG1の他の例である。この例の場合も、図9、図10に示した場合と同様に、LDチップホルダーとファイバーホルダーのそれぞれに識別手段を設けているが、それに加えて、両者が精度良く位置決め、結合できるような工夫もなされている。この例では、LDチップホルダーのA部とB部の端面において両者が固定されることにより、図の左右方向に精度良く位置決め、結合させることができる。

[0110]

次に本発明の他の特徴について説明する。図9~図12に示した識別手段、位置決め/結合手段は、面発光型半導体レーザLDチップと第1の光ファイバー群

MFG1とを光カップリングさせるLD-MFG1接続モジュールMG1に関するものである。しかし本発明のこの考え方は、面発光型半導体レーザLDチップと第1の光ファイバー群MFG1とを光カップリングさせるLD-MFG1接続モジュールMG1のみに適用されるものではなく、第1の光ファイバー群MFG1と第2の光ファイバー群MFG2とを光カップリングさせるMFG1-MFG2接続モジュールMG2にも適用できる。図13はその例を示したものである。

[0111]

この場合も、第1の光ファイバー群MFG1の端面(光送信面)と第2の光ファイバー群MFG2の端面(受光面)が左右あるいは上下の方向において間違わずに互いに1対1に相対するようにするための位置、方向を識別するための手段を有している。図では、上記図9~図12の例と同様に第1のファイバー群ホルダーと第2のファイバーホルダーのそれぞれに、矢印のマークを入れた例を示した。このような識別手段を設けることにより、本発明のような光送受信システムを構築する際、第1の光ファイバー群と第2の光ファイバー群間の接続持に瞬時に互いの方向などを間違えることなく認識、接続ができるので、効率よくを行うことができる。

[0112]

なおこの識別手段は、上記図9~図12の例と同様に、このような視認できる 矢印のマークに限定されるものではなく、色の違いを利用するようなものでもよ い。さらに必ずしも視認できるものに限定されるものではなく、形状の凹凸など を利用して、触覚により認識できるようなものであってもよい。またこのような 触覚により認識できるようなものとすると、暗闇とか夜間に工事を行う場合であ っても簡単に認識できるというメリットがある。

[0113]

さらに、この場合(図13)も第1のファイバー群ホルダーと第2のファイバーホルダーのそれぞれに識別手段を設けるのみならず、それに加えて、両者が精度良く位置決め、結合できるような工夫もなされている。すなわち、図13では、その一例として、第1のファイバー群ホルダーのA部と第2のファイバーホルダーのB部において、両者の端面が互いに面接触し、その部分がストッパーとな

[0114]

さらにこのような関係(識別手段、位置決め/結合手段)は、第2の光ファイバー群MFG2と第3の光ファイバー群MFG3およびそれらを光カップリングさせるMFG2ーMFG3接続モジュールMG3においても、また第3の光ファイバー群MFG3とフォトダイオードチップおよびそれらを光カップリングさせるMFG3ーフォトダイオード接続モジュールMG4においても同様に適用され、本発明のような光送受信システムを構築する際、互いの光ファイバー群間、あるいはフォトダイオードチップ間との接続持に瞬時に互いの方向などを間違えることなく認識、接続ができ、さらに精度良く位置決め、結合させることができる

[0115]

【発明の効果】

請求項1に対応した効果

コンピュータ・ネットワーク、長距離大容量通信の幹線系など光ファイバー通信が期待されているレーザ発振波長が1.1 μ m帯~1.7 μ m帯の分野において、動作電圧、発振閾値電流等を低くでき、レーザ素子の発熱も少なく安定した発振ができる面発光型半導体レーザおよびそれを用いた通信システムが存在しなかったが、本発明のように半導体分布ブラッグ反射鏡を工夫することにより、動作電圧、発振閾値電流等を低くでき、レーザ素子の発熱も少なく安定した発振ができ、また低コストで実用的な光通信システムが実現できた。

[0116]

すなわち、従来このような用途に使用できるレーザ発振波長が1.1 μ m帯~1.7 μ m帯の長波長帯面発光半導体レーザが存在しなかったが、本発明のように半導体分布ブラッグ反射鏡を工夫した面発光型半導体レーザ素子チップにより、動作電圧、発振閾値電流等を低くでき、発熱も少ない省エネルギー、低コストの安定した光送受信システム実現できた。

[0117]

請求項2に対応した効果

[0118]

すなわち、従来このような用途に使用できるレーザ発振波長が1.1 μ m帯~1.7 μ m帯の長波長帯面発光半導体レーザが存在しなかったが、本発明のように非発光再結合防止層を設けた面発光型半導体レーザ素子チップにより、半導体分布ブラッグ反射鏡構成材料のA1に起因する結晶欠陥、発光効率低下をなくすことが可能となり、安定したレーザ発振を行うことが可能な長波長帯面発光半導体レーザが実現し、実用的な光送受信システムが実現できた。

[0119]

請求項3に対応した効果

このような光送受信システムにおいて、レーザ発振波長が1.1 μ m~1.7 μ mの長波長帯面発光半導体レーザの特徴を活かして、チップ上に複数のレーザ発振素子を形成し、それに対応して複数の光ファイバーを接続させた光送受信システムとしたので、大容量、かつ高速のデータ送受信が可能となる光送受信システムを実現できた。

[0120]

請求項4に対応した効果

このようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザの特徴を活かして、チップ上に複数のレーザ発振素子を形成し、それに対応して複数の光ファイバーを接続させた大容量の光送受信システムにおいて、複数個の半導体レーザ素子の発光面と複数個の第1の光ファイバー群の受光面が互いに1対1に相対することを識別する手段を有するようにしたので、半導体レーザ素子と光ファイバー群間の接続を効率よくできるようになり、このようなシステムを構築する際の工事が手際よく行えるようになった。

請求項5に対応した効果

このようなレーザ発振波長が1.1 μ m~1.7 μ mの長波長帯面発光半導体 レーザの特徴を活かして、チップ上に複数のレーザ発振素子を形成し、それに対応して複数の光ファイバーを接続させた大容量の光送受信システムにおいて、複数個の半導体レーザ素子の発光面と複数個の第1の光ファイバー群の受光面が互いに1対1に相対するようにした位置決め/結合手段を有するようにしたので、半導体レーザ素子と光ファイバー間の接続を高精度にできるようになり、このようなシステムが長期にわたり安定して稼動できるようになった。

[0122]

請求項6に対応した効果

このようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体 レーザの特徴を活かして、チップ上に複数のレーザ発振素子を形成し、それに対 応して複数の光ファイバーを接続させた大容量の光送受信システムにおいて、そ れぞれの光ファイバー群の光送出面および受光面が互いに1対1に相対すること を識別する手段を有するようにしたので、光ファイバー間どうしの接続を効率よ くできるようになり、このようなシステムを構築する際の工事が手際よく行える ようになった。

[0123]

請求項7に対応した効果

このようなレーザ発振波長が1.1μm~1.7μmの長波長帯面発光半導体レーザの特徴を活かして、チップ上に複数のレーザ発振素子を形成し、それに対応して複数の光ファイバーを接続させた大容量の光送受信システムにおいて、それぞれの光ファイバー群の光送出面および受光面が互いに1対1に相対するようにした位置決め/結合手段を有するようにしたので、光ファイバー間どうしの接続を高精度にできるようになり、このようなシステムが長期にわたり安定して稼動できるようになった。

【図面の簡単な説明】

【図1】

本発明の一実施形態に係る長波長帯面発光半導体レーザの素子部断面図である

【図2】

本発明の一実施形態に係る長波長帯面発光半導体レーザの半導体分布ブラッグ 反射鏡の構成の部分断面図である。

【図3】

本発明の一実施形態に係る長波長帯面発光半導体レーザの他の構成の素子部断面図である。

【図4】

本発明の一実施形態に係る長波長帯面発光半導体レーザ素子を形成したウエハ 基板ならびにレーザ素子チップを示す平面図である。

【図5】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムの例である。

【図6】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムの双方向システムを示すものである。

【図7】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムで、複数のファイバー群を利用した大容量光通信システムの例である。

【図8】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムの面発光型半導体レーザLDチップと第1の光ファイバー群MFG1とそれらを光カップリングさせるためのLD-MFG1接続モジュールMG1を示した図である。

【図9】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムのLD-MFG1接続モジュールMG1の構造を説明する図(カップリング前)である。

【図10】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムのLD-MFG1接続モジュールMG1の構造を説明する図(カップリング時)である。

【図11】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムのLD-MFG1接続モジュールMG1の他の構造を説明する図(カップリング前)である。

【図12】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムのLD-MFG1接続モジュールMG1の他の構造を説明する図(カップリング後)である。

【図13】

本発明の一実施形態に係る長波長帯面発光半導体レーザおよび接続する光通信システムのMFG1-MFG2接続モジュールMG2の構造を説明する図(カップリング後)である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】

要約書

【要約】

【課題】 動作電圧、発振閾値電流等を低くできる面発光型半導体レーザ素子チップを発光光源として利用した省エネルギー、低コストの光送受信システムを提供する。

【解決手段】 構成する材料層の屈折率が小/大と周期的に変化し入射光を光波 干渉によって反射する半導体分布ブラッグ反射鏡を採用し、屈折率が小の材料層 は $A1 \times Ga1 - x As (0 < x \le 1)$ とし、前記屈折率が大の材料層はA1 $y Ga1 - y As (0 \le y < x \le 1)$ とした反射鏡であり、かつ前記屈折率が小と大の材料層の間に該屈折率が小と大の間の値をとる材料層 $A1z Ga1 - z As (0 \le y < z < x \le 1)$ を設けてなる面発光型半導体レーザ素子チップを発光光源とする。

【選択図】

図 1

出願人履歴情報

識別番号

[000006747]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

東京都大田区中馬込1丁目3番6号

氏 名

株式会社リコー