Institut de Financement du Développement du Maghreb Arabe

Concours de Recrutement de la 38ème Promotion - Banque Techniques Quantitatives

Juillet 2018

Durée : une heure et demie

Cette épreuve comporte deux pages

Aucun document n'est autorisé.

Exercice 1: (5 points: un point par question)

On propose de relier les évolutions temporelles du taux d'inflation y_t et le taux de croissance de la masse monétaire x_t sous la forme :

 $y_t = a x_t + b + \varepsilon_t$ où ε_t suit une loi normale centrée réduite (variance $\varepsilon_t = 1$) avec ε_t indépendants pour t = 1, 2, ..., T

L'estimation du modèle par les moindres carrés a fourni les résultats suivants : $\widehat{a} = 1.3$ et Variance(\widehat{a}) = 0.04

- **1-i**-Interpréter économiquement la relation et les résultats numériques précédents
- ii- La variable masse monétaire est-elle statistiquement significative ?
 Justifier votre réponse
- **2- i-** A partir des valeurs précédentes, en déduire les valeurs de $\sum_{t=1}^{T} (x_t \bar{x})^2$ et de $\sum_{t=1}^{T} (x_t \bar{x})(y_t \bar{y})$ où \bar{x} et \bar{y} sont les moyennes empiriques de x et de y
 - ii- Calculer le coefficient de détermination sachant que $\sum_{t=1}^{T} (y_t \bar{y})^2 = 4$
 - iii- Quelle Interprétation économique peut-on faire de ce dernier résultat ?

Exercice 2: (7 points: un point par question)

Considérons deux variables quantitatives X_t et Y_t observées à des périodes successives. On note RX_t et RY_t respectivement les taux de croissance entre la période t-1 et la période t de X_t et Y_t . On s'intéresse à la somme et le produit de ces deux variables : $S_t = X_t + Y_t$ et $P_t = X_t Y_t$

- **1- i-** Rappeler l'expression de RX_t en fonction de X_t et de X_{t-1} . Exprimer le rapport $\frac{X_t}{X_{t-1}}$ en fonction de RX_t
- **ii-** Quelle serait l'expression de X_t dans le cas particulier où RX_t est une constante c indépendante du temps ?
 - **2- i-** Exprimer RP_t le taux de croissance du produit P_t en fonction de RX_t et RY_t
- **ii-** Interpréter le résultat précédent si l'on considère X_t comme un prix et Y_t comme une quantité
- **iii** En déduire de la question 2-i le taux de croissance de X_t^2 en fonction de RX_t
- **3- i-** Exprimer RS_t le taux de croissance de la somme S_t en fonction de RX_t et RY_t et de, X_{t-1} et Y_{t-1}

ii- Que devient le résultat précèdent si l'on a une somme de trois variables ? Justifier vos propos.

Exercice 3: (8 points: 1.5+1.5+1+1+1+2)

Considérons une variable aléatoire ε suivant une loi normale centrée réduite et u_t une suite de variables aléatoires indépendantes centrées réduites

On pose $X_t = u_t + au_{t-1} + a^2u_{t-2} + a^3u_{t-3} + \dots$ et $Y_t = u_t + bu_{t-1} + b^2u_{t-2} + b^3u_{t-3} + \dots$ avec. a et b deux scalaires inférieurs en module à l'unité : |a| < 1 et |b| < 1 et $Z_t = (-1)^t \varepsilon$

- **1-** Calculer l'espérance mathématique de Z_t , sa variance de Z_t et les covariances de Z_t avec Z_s pour t et s entiers positifs quelconques
- **2-** Calculer l'espérance mathématique de X_t , sa variance et la covariance de X_t avec X_{t-1}
 - **3-** Calculer le coefficient de corrélation linéaire entre X_t et Y_t
 - **4- i-** Prouver que X_t s'exprime en fonction de X_{t-1} et de u_t .
 - ii- Quelle est la nature statistique du processus X_t ?
 - **5-** On pose $S_t = X_t + Y_t$. Exprimer S_t en fonction de S_{t-1} de S_{t-2} , de u_t et de u_{t-1} .

Corrigé

Corrigé Exercice 1

1- La relation traduit l'effet positif (croissant) de la masse monétaire sur l'inflation : plus de monnaie crée un effet de demande plus élevé et donc cela crée un accroissement du niveau général des prix, notamment si la production n'augmente pas dans le même rythme). L'estimation de \widehat{a} est positive et supérieure à l'unité: une augmentation de 1 % de la masse monétaire conduit à une augmentation de 1.3 %

ii- Le T de Student de
$$\hat{a}$$
 est égal à $\frac{\hat{a}}{\sqrt{Variance(\hat{a})}} = \frac{1.3}{0.2} = 6.5$ largement

supérieur à 2 . La variable masse monétaire est statistiquement significative à 95 % en tant que déterminant de l'inflation.

2- i-On a Variance
$$(\hat{a}) = \frac{1}{\sum_{(x_t - \bar{x})^2}} = 0.04$$
 ce qui donne $\sum_{(x_t - \bar{x})^2} (x_t - \bar{x})^2 = 25$

Par ailleurs,
$$\widehat{a} = \frac{\sum_{(x_t - \overline{x})(y_t - \overline{y})}}{\sqrt{\sum_{(x_t - \overline{x})^2}}} = 1.3$$
, ce qui signifie :

$$\sum (x_t - \bar{x})(y_t - \bar{y}) = \hat{a} \sqrt{\sum (x_t - \bar{x})^2} = 1.3(25) = 32.5$$

ii- Le coefficient de détermination R^2 , qui est également le carré du coefficient de corrélation linéaire $R^2=\rho^2$

Nous avons
$$\rho = \frac{\sum_{(x_t - \bar{x})(y_t - \bar{y})}' (x_t - \bar{x})^2}{\sqrt{\sum_{(x_t - \bar{x})^2}} \sqrt{\sum_{(y_t - \bar{y})^2}}} = \frac{1.3}{2} = 0.65$$
, ce qui donne

$$R^2 = \rho^2 = 0.4225$$

iii- Le coefficient de détermination \mathbb{R}^2 n'est pas élevé: d'autres variables explicatives de l'inflation doivent être incorporées dans

la relation (à l'instar du taux de change, l'augmentation salariale, etc.)

Corrigé Exercice 2

1-i-On a :
$$RX_t = \frac{X_t - X_{t-1}}{X_{t-1}}$$
 ce qui signifie que $\frac{X_t}{X_{t-1}} = 1 + RX_t$

ii- Si l'on suppose que $RX_t = c$ avec c une constante, on aurait : $\frac{X_t}{X_{t-1}} = 1 + c$ c'est à dire $X_t = (1+c)X_{t-1}$,

ce qui donne $X_t = X_0(1+c)^t$ Ainsi X_t est une fonction exponentielle $X_t = X_0(1+c)^t = X_0 \ \mathrm{e}^{t Log(1+c)}$

$$2-i-RP_t$$

$$= \frac{X_{t}Y_{t} - X_{t-1}Y_{t-1}}{X_{t-1}Y_{t-1}} = \frac{X_{t}Y_{t} - X_{t}Y_{t-1} + X_{t}Y_{t-1} - X_{t-1}Y_{t-1}}{X_{t-1}Y_{t-1}} = \frac{X_{t}}{X_{t-1}} \frac{(Y_{t} - Y_{t-1})}{Y_{t-1}} + \frac{X_{t} - X_{t-1}}{X_{t-1}}$$

$$= (1 + RX_{t})RY_{t} + RX_{t} = RX_{t} + RY_{t} + RX_{t} RY_{t}$$

ii- si l'on considère X_t comme un prix et Y_t comme une quantité, le produit $P_t = X_t Y_t$ serait une valeur.

Le résultat précédent signifie que le taux de croissance d'une valeur est la somme de l'effet prix et de l'effet quantité avec un effet mixte qui est le produit des deux effets précédents:

iii- D'après 2-i, le taux de croissance de X_t^2 est égal à $RX_t + RX_t + RX_tRX_t = 2RX_t + (RX_t)^2$

$$\begin{aligned} \mathbf{3-i-} & RS_t = \frac{X_t + Y_t - X_{t-1} - Y_{t-1}}{X_{t-1} + Y_{t-1}} = \frac{(X_t - X_{t-1}) + (Y_t - Y_{t-1})}{X_{t-1} + Y_{t-1}} = \\ & = \frac{(X_t - X_{t-1})}{X_{t-1}} \frac{(X_{t-1})}{X_{t-1} + Y_{t-1}} + \frac{(Y_t - Y_{t-1})}{Y_{t-1}} \frac{(Y_{t-1})}{X_{t-1} + Y_{t-1}} \\ & = RX_t \frac{(X_{t-1})}{X_{t-1} + Y_{t-1}} + RY_t \frac{(Y_{t-1})}{X_{t-1} + Y_{t-1}} \quad \text{le taux de croissance est la moyenne} \\ & \text{pondérée des deux taux de croissance.} \end{aligned}$$

ii- Soit S la somme de trois variables S = X + Y + Z

D'aprés ce qui précède, on a, en groupant Y et Z:

$$RS = RX_{t} \frac{(X_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})} + R(Y_{t-1} + Z_{t-1}) \frac{(Y_{t-1} + Z_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})} =$$

$$= RX_{t} \frac{(X_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})} + (RY_{t} \frac{(Y_{t-1})}{Y_{t-1} + Z_{t-1}} + RZ_{t} \frac{(Z_{t-1})}{Y_{t-1} + Z_{t-1}}) \frac{(Y_{t-1} + Z_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})}$$

$$= RX_{t} \frac{(X_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})} + (RY_{t} \frac{(Y_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})} + RZ_{t} \frac{(Z_{t-1})}{X_{t-1} + (Y_{t-1} + Z_{t-1})})$$

Le taux de croissance de la somme est la somme pondérée des trois taux de croissance

Corrigé Exercice 3

1- $E(Z_t) = 0$; $V(Z_t) = 1$; $Cov(Z_t, Z_s) = (-1)^{t-s} = 1$ si s et t sont de même parité et $Cov(Z_t, Z_s) = (-1)^{t-s} = -1$ si s et t sont de parités différentes

2-
$$E(X_t) = 0$$
; $V(X_t) = \frac{1}{1 - a^2}$; et

$$Cov(X_t, X_{t-1}) = Cov(u_t + au_{t-1} + a^2u_{t-2} + a^3u_{t-3} + \dots; u_{t-1} + au_{t-2} + a^2u_{t-3} + \dots)$$

$$= (a + a^3 + \dots) = \frac{a}{1 - a^2}$$

3-
$$Cov(X_t, Y_t) = (1 + ab + a^2b^2 + a^3b^3 + \dots) = \frac{1}{1 - ab}$$

Le coefficient de corrélation linéaire entre X_t et Y_t est :

$$\rho = \frac{\frac{1}{1 - ab}}{\sqrt{\frac{1}{1 - a^2}} \sqrt{\frac{1}{1 - b^2}}} = \frac{\sqrt{1 - a^2} \sqrt{1 - b^2}}{1 - ab}$$
4-i- On a

$$X_t = u_t + au_{t-1} + a^2u_{t-2} + a^3u_{t-3} + \dots = u_t + a(u_{t-1} + au_{t-2} + a^2u_{t-3} + \dots) = u_t + aX_{t-1}$$
 ii- Ce processus est connu sous le nom de processus autorégressif d'ordre 1 (ou encore modèle dynamique)

5- $X_t = u_t + aX_{t-1}$. De la même manière, on a : $Y_t = u_t + bY_{t-1}$

On a
$$S_t = X_t + Y_t = \frac{u_t}{1 - aL} + \frac{u_t}{1 - bL} = \frac{u_t - bu_{t-1} + u_t - au_{t-1}}{(1 - aL)(1 - bL)}$$
 où L est

l'opérateur retard

$$(1 - aL)(1 - bL)S_t = 2u_t - bu_{t-1} - au_{t-1}$$

ou encore : $S_t = (a+b)S_{t-1} - abS_{t-2} + 2u_t - bu_{t-1} - au_{t-1}$

 S_t est un modèle ARMA(2,1).