Physical Cosmology Homework 2 - FLRW, age and distance

Dandan Xu, dandanxu@tsinghua.edu.cn

2024, Oct

1. Assuming the Minkowski metric $g_{\mu\nu} = \eta_{\mu\nu}$ with convention $\eta_{00} = -1$, and a perfect fluid has an energy momentum tensor $T^{\mu\nu}$ taking the form

$$\begin{pmatrix}
\rho & 0 & 0 & 0 \\
0 & P & 0 & 0 \\
0 & 0 & P & 0 \\
0 & 0 & 0 & P
\end{pmatrix}$$

where ρ and $P=w\rho$ are the density and pressure of the fluid. For non-relativistic matter, radiation and dark energy, w=0, 1/3, -1, respectively. Please calculate $T\equiv g_{\mu\nu}T^{\mu\nu}$ and $S_{00}=T_{00}-1/2g_{00}T$ for the three species.

- 2. Assuming a flat space geometry (K=0), the FLRW metric takes the form: $d\tau^2 = dt^2 a^2(t)(dx^2 + dy^2 + dz^2)$. Please calculate all the components of the Christoffel connection $\Gamma^{\alpha}_{\mu\nu}$, show that: $\Gamma^0_{ij} = a\dot{a}\delta_{ij}$, $\Gamma^i_{0j} = \dot{a}/a\delta_{ij}$, $\Gamma^i_{jl} = 0$, and $R_{00} = 3\ddot{a}/a$, $R_{ij} = -(a\ddot{a} + 2\dot{a}^2)\delta_{ij}$.
- 3. The Friedmann equation derived from the GR field equation ultimately determines the evolution of the scale factor a(t). Now let us assume the universe is dominated by a single component i below in a flat space geometry (K=0). Through the Friedmann equation $(\dot{a}/a)^2 = 8\pi G/3\rho_i(a)$ and local energy conservation $\dot{\rho}_i + 3\dot{a}/a(1+w_i)\rho_i = 0$, work out the time dependence of a(t), the particle horizon distance $D_h(t)$ at a(t), and the age of the Universe today t_0 , show that:
- (1) Non-relativistic matter: $a(t) \propto t^{2/3}$, $D_{\rm h}^{\rm m}(t) = 2c/H = 3ct$, $t_0 = 2/(3H_0)$;
- (2) Radiation: $a(t) \propto t^{1/2}$, $D_{\rm h}^{\rm rad}(t) = c/H = 2ct$, $t_0 = 1/(2H_0)$;
- (3) Dark energy (cosmological constant): $a(t) \propto \exp(H_0 t)$; where c is the speed of light, H_0 is the Hubble constant today.

- 4. Assuming $\Omega_{\rm rad,0} = 8 \times 10^{-5}$, $\Omega_{\rm m,0} = 0.25 \Omega_{\rm rad,0}$, $\Omega_{\Lambda,0} = 1 \Omega_{\rm m,0}$,
- $H_0 = 70 \,\mathrm{km/s/Mpc}$, using numerical integration to calculate:
- (1) Redshift and age of the universe when $\rho_{\text{matter}} = \rho_{\text{rad}}$.
- (2) Redshift and age of the universe when $\rho_{\text{matter}} = \rho_{\Lambda}$.
- (3.1) Age of the universe when z = 30 and z = 20 (first stars form);
- (3.2) Age of the universe when z = 6 (time about reionization);
- (3.3) Age of the universe when z = 2 ("cosmic noon");
- (3.4) Age of the universe when z = 1, was the Sun born by then?
- (3.5) Age of the universe when z = 0.1, had dinosaurs come to exist?