Целозначные многочлены

Функция $f: \mathbb{R} \to \mathbb{R}$ называется *целозначной*, если её значение в каждой целой точке является целым числом. Для многочлена $p \in \mathbb{R}[x]$ конечной разностью I порядка называется многочлен $\Delta_p^1(x) = p(x+1) - p(x)$. Конечные разности высших порядков задаются рекуррентными равенствами $\Delta^{n+1}p(x) = \Delta^n p(x+1) - \Delta^n p(x)$, $n \geqslant 1$.

- 1. Докажите тождество $\Delta_p^m(x) = \sum_{i=0}^m (-1)^{m-i} {m \choose i} p(x+i)$.
- 2. Докажите, что многочлен $p \in \mathbb{R}[x]$ является целозначным, если и только если он представим в виде $b_0\binom{x}{m} + b_1\binom{x}{m-1} + \ldots + b_{m-1}\binom{x}{1} + b_m$, где $b_0, b_1, \ldots, b_m \in \mathbb{Z}$.
- 3. Дробь $\frac{p(x)}{q(x)}, p, q \in \mathbb{R}[x]$ рациональна при всех $x \in \mathbb{N}$. Докажите, что она отношение двух взаимно простых многочленов из $\mathbb{Z}[x]$.
- 4. Дробь $\frac{p(x)}{q(x)}, p, q \in \mathbb{R}[x]$ принимает целые значения в бесконечном количестве точек $x \in \mathbb{N}$. Докажите, что она целозначный многочлен.
- 5. Докажите, что у целозначного многочлена множество всех простых делителей его значений в целых точках бесконечно.
- 6. Пусть p и q взаимно простые целозначные многочлены. Докажите, что существует бесконечно много простых чисел r таких, что r делит p(n) и не делит q(n) при некотором натуральном n.
- 7. Пусть p неприводимый целозначный многочлен. Докажите, что существует бесконечно много натуральных чисел n таких, что в число p(n) по крайней мере один простой делитель входит в первой степени.
- 8. Непостоянный многочлен $p \in \mathbb{Z}[x]$ таков, что для каждого $n \in \mathbb{N}$ значение p(n) является k-ой степенью целого числа. Докажите, что p является k-ой степенью многочлена с целыми коэффициентами.
- 9. Назовём многочлен P(x) бицелозначным, если числа P(k) и P'(k) целые при любом целом k. Пусть P(x) бицелозначный многочлен степени d, и пусть N_d произведение всех составных чисел, не превосходящих d (произведение пустого множества сомножителей считаем равным 1). Докажите, что старший коэффициент многочлена $N_d \cdot P(x)$ целый.
- 10. Многочлен $P \in \mathbb{Z}[x]$ удовлетворяет следующим двум условиям:
 - для каждого $a \in \mathbb{Z}$ есть ровно одно $y \in \mathbb{Z}$ такое, что P(a,y) = 0;
 - для каждого $b \in \mathbb{Z}$ есть ровно одно $x \in \mathbb{Z}$ такое, что P(x,b) = 0.
 - а) Докажите, что, если степень многочлена P(x,y) равна двум, то он делится на многочлен x-y+C либо x+y+C, где C целое число.
 - **б)** Существует ли такой многочлен P(x,y), не кратный ни одному многочлену вида x-y+C и x+y+C, где C целое число?

Целозначные многочлены

- 11. Дана целозначная функция $f: \mathbb{R} \to \mathbb{R}$. Известно, что для любого простого p существует многочлен $Q_p \in \mathbb{Z}[x]$, $\deg Q_p \leqslant 2023$, такой, что $p \mid f(n) Q_p(n)$ при всех $n \in \mathbb{Z}$. Верно ли, что существует многочлен $g \in \mathbb{Q}[x]$ такой, что g(n) = f(n) для любого целого n?
- 12. Дан целозначный многочлен p такой, что $HOД\{p(n): n \in \mathbb{N}\} = 1$. Докажите, что каждое натуральное число можно бесконечным количеством способов представить в виде $\pm p(1) \pm p(2) \pm \ldots \pm p(m)$.
- 13. Даны числа $m, n, a_1, \ldots, a_m \in \mathbb{N}$. Али и Мухамед играют в игру. На каждом ходу Али выбирает числа $b_1, \ldots, b_m \in \mathbb{N}$, после чего Мухамед выбирает число $s \in \mathbb{N}$, образует новую последовательность $\{c_i = a_i + b_{i+s}\}_{i=1}^m$ и заменяет набор $\{a_i\}$ на набор $\{c_i\}$. Если все числа полученной последовательности кратны n, то побеждает Али, иначе игра продолжается. Найдите все пары (m,n) такие, что Али может выиграть за конечное количество ходов при любом наборе a_1, \ldots, a_m .