

L3 - Electronique

3^{ème} Partie

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

3.2 Fonctions usuelles

3.3 Fonctions holomorphes

3.4 Intégration et théorème de Cauchy

3.5 Théorème des résidus

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

plan complexe

=> plan muni d'un repère orthonormal direct (O; u, v)

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

plan complexe

=> plan muni d'un repère orthonormal direct (O; u, v)

correspondance

$$- \begin{cases} \mathbb{R}^2 \to \mathbb{C} \\ (x,y) \mapsto z = x + iy \end{cases}$$
 bijection

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

plan complexe

=> plan muni d'un repère orthonormal direct (O; u, v)

correspondance

$$\left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{C} \\ (x,y) & \mapsto & z = x + iy \end{array} \right. \quad \text{bijection}$$

On confond le point M(x, y) et son affixe z = x + iy

MAS

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

Si
$$z \neq 0$$

=> représentation du nombre complexe z sous la forme module/argument $z=\rho e^{i\theta}$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

Si
$$z \neq 0$$

=> représentation du nombre complexe z sous la forme module/argument $z=\rho e^{i\theta}$

où $\rho = |z| = OM = \text{ module de } z$ et $\theta = \arg z = \text{ mesure en radians de l'angle}\left(u, \overrightarrow{OM}\right)$ définie modulo 2π

MAS

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

Si
$$z \neq 0$$

=> représentation du nombre complexe z sous la forme module/argument $z=
ho e^{i heta}$

où
$$\rho = |z| = OM = \text{module de } z$$

et $\theta = \arg z = \text{ mesure en radians de l'angle}\left(u, \overrightarrow{OM}\right)$ définie modulo 2π

$$\leftarrow$$
 à $2k\pi$ près, $k \in \mathbb{Z}$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

A toute fonction f de la variable complexe :

$$f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z = x + iy & \mapsto & f(z) = A(x,y) + iB(x,y) \end{array} \right.$$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

A toute fonction f de la variable complexe :

$$f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z = x + iy & \mapsto & f(z) = A(x,y) + iB(x,y) \end{array} \right.$$

on associe une fonction F:

$$F: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & F(x,y) = (A(x,y), B(x,y)) \end{array} \right.$$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

 \mathbb{C} est un espace vectoriel sur \mathbb{R} muni de la norme ||z|| = |z|Soient f une fonction de la variable complexe $z_0 = x_0 + iy_0$ et l deux nombres complexes

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

 $\mathbb C$ est un espace vectoriel sur $\mathbb R$ muni de la norme $\|z\|=|z|$ Soient f une fonction de la variable complexe $z_0=x_0+iy_0$ et l deux nombres complexes

Définition : limite

$$\lim_{z \longrightarrow z_0} f(z) = I \text{ ou } f(z) \underset{z \longrightarrow z_0}{\longrightarrow} I$$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

 $\mathbb C$ est un espace vectoriel sur $\mathbb R$ muni de la norme $\|z\|=|z|$ Soient f une fonction de la variable complexe $z_0=x_0+iy_0$ et l deux nombres complexes

Définition : limite

$$\lim_{z \longrightarrow z_0} f(z) = I \text{ ou } f(z) \underset{z \longrightarrow z_0}{\longrightarrow} I$$

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad |z - z_0| < \eta \Longrightarrow |f(z) - I| < \varepsilon$$

MAS

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

Définition : continuité

$$f$$
 continue en $z_0 \iff \lim_{z \longrightarrow z_0} f(z) = f(z_0)$
 $\iff A(x, y) \text{ et } B(x, y) \text{ continues en } (x_0, y_0)$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

Définition : continuité

$$f$$
 continue en $z_0 \iff \lim_{z \longrightarrow z_0} f(z) = f(z_0)$
 $\iff A(x, y) \text{ et } B(x, y) \text{ continues en } (x_0, y_0)$

Attention!

Si A(x, y) continue au point (x_0, y_0) , alors

$$\begin{cases} x \mapsto A(x, y_0) & \text{est continue en} \quad x = x_0 \\ y \mapsto A(x_0, y) & \text{est continue en} \quad y = y_0 \end{cases}$$

Mais la réciproque est fausse!

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

L'infini complexe noté ∞

l'unique nombre complexe satisfaisant les propriétés

$$\infty \times \infty = \infty, |\infty| = \infty$$

$$\infty/a = \infty, a/\infty = 0, a \times \infty = \infty$$
avec $a \in \mathbb{C}$

Partie 3 – Fonctions de la variable complexe

3.1 Généralités

L'infini complexe noté ∞

l'unique nombre complexe satisfaisant les propriétés

$$\infty \times \infty = \infty, |\infty| = \infty$$

$$\infty/a = \infty, a/\infty = 0, a \times \infty = \infty$$
avec $a \in \mathbb{C}$

Extensions des notions de limites au voisinage de l'infini

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions algébriques

Fonctions	Définition	Continuité	$T_{ m G}$ associée
$z \longmapsto z + a$	C	\mathbb{C}	Translation
$z \longmapsto a z$	C	\mathbb{C}	Similitude
$Z \longmapsto \frac{1}{z}$	C*	\mathbb{C}^*	Inversion puis symétrie Ox
$Z \longmapsto \frac{az+b}{cz+d}$	$\mathbb{C}\setminus\left\{-\frac{d}{c}\right\}$	$\mathbb{C}\setminus\left\{-\frac{d}{c}\right\}$	

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- fonction exponentielle: définition
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- <u>fonction exponentielle</u>: définition $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ propriétés

$$e^{z}|_{z=x} = e^{x}$$

$$e^{z_{1}+z_{2}} = e^{z_{1}}e^{z_{2}}$$

$$e^{x+iy} = e^{x} (\cos y + i \sin y)$$

$$e^{-z} = \frac{1}{e^{z}}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- <u>fonction exponentielle</u>: définition $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ propriétés

$$e^{z}|_{z=x} = e^{x}$$

$$e^{z_{1}+z_{2}} = e^{z_{1}}e^{z_{2}}$$

$$e^{x+iy} = e^{x}(\cos y + i\sin y)$$

$$e^{-z} = \frac{1}{e^{z}}$$

=> mêmes relations fonctionnelles que dans $\mathbb R$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- fonctions hyperboliques:

$$\Rightarrow ch z = \frac{e^z + e^{-z}}{2}, \quad sh z = \frac{e^z - e^{-z}}{2}, \quad thz = \frac{shz}{chz}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- fonctions hyperboliques :

=>
$$ch \ z = \frac{e^z + e^{-z}}{2}$$
, $sh \ z = \frac{e^z - e^{-z}}{2}$, $thz = \frac{shz}{chz}$

- fonctions trigonométriques :

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \tan z = \frac{\sin z}{\cos z}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- propriétés :

Fonctions	Ensemble de définition	Ensemble de Continuité
exp	C	C
ch	C	C
sh	C	C
th	$\mathbb{C}\setminus\left\{i\left(\frac{\pi}{2}+k\pi\right),k\in\mathbb{Z}\right\}$	$\mathbb{C}\setminus\left\{i\left(\frac{\pi}{2}+k\pi\right),k\in\mathbb{Z}\right\}$
cos	\mathbb{C}	\mathbb{C}
sin	C	C
tan	$\mathbb{C}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$	$\mathbb{C}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions définies par des séries entières

- formules de passage :

$$\begin{cases}
\cos iz = ch z \\
\sin iz = i \text{ sh } z
\end{cases} \text{ et } \begin{cases}
ch iz = \cos z \\
\sinh iz = i \sin z \\
th iz = i \text{ tan } z
\end{cases}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

- définitions :

Une fonction f est appelée uniforme si à chaque valeur de z ne correspond qu'une seule valeur de f (z)

ex.: e^z

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

- définitions :

Une fonction f est appelée uniforme si à chaque valeur de z ne correspond qu'une seule valeur de f (z)

ex.: e^z

Une fonction f est appelée multiforme si à chaque valeur de z correspondent plusieurs valeurs de f (z)

ex.: arg z

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Pour étudier les fonctions multiformes, on les « rend uniformes » par la définition de leurs déterminations de rang k

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Pour étudier les fonctions multiformes, on les « rend uniformes » par la définition de leurs déterminations de rang k

Détermination de rang k de l'argument

$$\mathbb{C} \setminus Ox^{+} \longrightarrow]2k\pi, 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k} z$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Pour étudier les fonctions multiformes, on les « rend uniformes » par la définition de leurs déterminations de rang k

Détermination de rang k de l'argument

$$\mathbb{C} \setminus Ox^{+} \longrightarrow]2k\pi, 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k} z$$

Rq.: Le demi-axe Ox^+ est appelé l'axe de coupure Quand k=0, on parle de "détermination principale"

MAS

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction argument : détermination de rang k

$$\mathbb{C} \setminus Ox^{+} \longrightarrow]2k\pi, 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k} z$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction argument : détermination de rang k

$$\mathbb{C} \backslash Ox^{+} \longrightarrow]2k\pi, 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k} z$$

MAS

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction argument : autre définition

$$\mathbb{C}\backslash D_{\alpha} \longrightarrow]\alpha + 2k\pi, \alpha + 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k,\alpha} z$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction argument : autre définition

$$\mathbb{C}\backslash D_{\alpha} \longrightarrow]\alpha + 2k\pi, \alpha + 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k,\alpha} z$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction argument : autre définition

$$\mathbb{C}\backslash D_{\alpha} \longrightarrow]\alpha + 2k\pi, \alpha + 2(k+1)\pi[$$

$$z \longmapsto \theta = \arg_{k,\alpha} z$$

Rq.: ightharpoonup Avec cette définition, la demi-droite D_{α} d'origine O et d'angle α est la coupure

MAS

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Définitions

 Valeurs de continuité : Valeurs sur les bords supérieur et inférieur de la coupure

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Définitions

- Valeurs de continuité : Valeurs sur les bords supérieur et inférieur de la coupure
- Le point O origine de la coupure est appelé point de branchement ou point de ramification

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Remarques

► Chemins fermés entourant le point de branchement → changement de détermination

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions multiformes

Remarques

- Chemins fermés entourant le point de branchement → changement de détermination
- Chemins fermés n'entourant pas le point de branchement → pas de changement de détermination

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions puissance

Détermination de rang k de $Z \mapsto Z^{\frac{1}{n}}$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & S_k \\
z & \mapsto & z_{(k)}^{\frac{1}{n}} = |z|^{\frac{1}{n}} e^{i\frac{1}{n}\arg_k(z)} = \rho^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2k\pi}{n}}
\end{cases} \qquad \theta \in]0, 2\pi[$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions puissance

Détermination de rang k de $Z \mapsto Z^{\frac{1}{n}}$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & S_k \\
z & \mapsto & z_{(k)}^{\frac{1}{n}} = |z|^{\frac{1}{n}} e^{i\frac{1}{n}\arg_k(z)} = \rho^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2k\pi}{n}}
\end{cases}$$

$$\theta \in]0, 2\pi[$$

bijection de $\mathbb{C}\setminus Ox^+$ dans le secteur ouvert S_k délimité par les deux droites $D_{\frac{2k\pi}{n}}$ et $D_{\frac{2(k+1)\pi}{n}}$ issues de O et faisant respectivement avec Ox^+ les angles $\frac{2k\pi}{n}$ et $\frac{2(k+1)\pi}{n}$

MAS

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions puissance $Z \mapsto Z^{\frac{1}{n}}$

$$Z \mapsto Z^{\frac{1}{n}}$$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & S_k \\
z & \mapsto & z_{(k)}^{\frac{1}{n}} = |z|^{\frac{1}{n}} e^{i\frac{1}{n}\arg_k(z)} = \rho^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2k\pi}{n}}
\end{cases} \qquad \theta \in]0, 2\pi[$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonctions puissance $Z \mapsto Z^{\frac{1}{n}}$

$$Z \mapsto Z^{\frac{1}{n}}$$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & S_k \\
z & \mapsto & z_{(k)}^{\frac{1}{n}} = |z|^{\frac{1}{n}} e^{i\frac{1}{n}\arg_k(z)} = \rho^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2k\pi}{n}}
\end{cases}$$

$$\theta \in]0, 2\pi[$$

MAS

L3-Elec 2023-2024

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction logarithme

Détermination de rang k de $z \mapsto \log(z)$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & B_k \\
z = |z|e^{i\theta + i2k\pi} & \mapsto & \log_k(z) & = \ln|z| + \arg_k(z) \\
& = \ln\rho + i\theta + i2k\pi
\end{cases}$$

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction logarithme

Détermination de rang k de $z \mapsto \log(z)$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & B_k \\
z = |z|e^{i\theta + i2k\pi} & \mapsto & \log_k(z) & = \ln|z| + \arg_k(z) \\
& = \ln\rho + i\theta + i2k\pi
\end{cases}$$

MAS

Partie 3 – Fonctions de la variable complexe

3.2 Fonctions usuelles

Fonction logarithme

Détermination de rang k de $z \mapsto \log(z)$

$$\begin{cases}
\mathbb{C} \setminus Ox^+ & \to & B_k \\
z = |z|e^{i\theta + i2k\pi} & \mapsto & \log_k(z) & = \ln|z| + \arg_k(z) \\
& = \ln\rho + i\theta + i2k\pi
\end{cases}$$

Extension

▶ Fonction $z \mapsto z^{\alpha}$, $\alpha \in \mathbb{C}$ définie par $z_k^{\alpha} = e^{\alpha \log_k(z)}$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Définition:

f(z) dérivable en z_0 si et seulement si

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 existe

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Définition:

f(z) dérivable en z_0 si et seulement si

On note:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 existe

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Exemples:

Exemple 1
$$f(z) = z$$

$$\lim_{z \to z_0} \frac{z - z_0}{z - z_0} = 1, \text{ donc } f \text{ est dérivable en } z_0$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Exemples:

Exemple 1
$$f(z) = z$$

$$\lim_{z \to z_0} \frac{z - z_0}{z - z_0} = 1, \text{ donc } f \text{ est dérivable en } z_0$$
Exemple 2
$$f(z) = z^2$$

$$\lim_{z \to z_0} \frac{z^2 - z_0^2}{z - z_0} = \lim_{z \to z_0} (z + z_0) = 2z_0, \text{ donc } f \text{ est d\'erivable en } z_0$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Contre-exemple
$$g(z) = \overline{z}$$

$$\frac{\overline{z} - \overline{z_0}}{z - z_0} = \frac{(x - x_0) - i(y - y_0)}{(x - x_0) + i(y - y_0)}$$

$$= \frac{1 - i\frac{y - y_0}{x - x_0}}{1 + i\frac{y - y_0}{x - x_0}} = \frac{1 - im}{1 + im}$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Contre-exemple
$$g(z) = \overline{z}$$

$$\frac{\overline{z} - \overline{z_0}}{z - z_0} = \frac{(x - x_0) - i(y - y_0)}{(x - x_0) + i(y - y_0)}$$

$$= \frac{1 - i\frac{y - y_0}{x - x_0}}{1 + i\frac{y - y_0}{x - x_0}} = \frac{1 - im}{1 + im}$$

qui dépend de la pente m du chemin donc :

$$\lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{z - z_0}$$
 n'existe pas

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Contre-exemple
$$g(z) = \overline{z}$$

$$= \frac{(x - x_0) - i(y - y_0)}{(x - x_0) + i(y - y_0)}$$

$$= \frac{1 - i\frac{y - y_0}{x - x_0}}{1 + i\frac{y - y_0}{x - x_0}} = \frac{1 - im}{1 + im}$$

qui dépend de la pente m du chemin donc :

$$\lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{z - z_0}$$
 n'existe pas

 \Rightarrow f n'est pas dérivable en z_0

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Propriété

Une fonction de la variable complexe f est dérivable au point $z_0 = x_0 + iy_0$

<=>

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Propriété

Une fonction de la variable complexe f est dérivable au point $z_0 = x_0 + iy_0$

 \leftarrow \rightarrow P(x,y) et Q(x,y) sont différentiables au point (x_0,y_0)

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Fonctions différentiables à deux variables

Une fonction P(x,y) est différentiable au point (x_0,y_0) lorsqu'elle est définie dans un ouvert contenant ce point et que :

$$\Delta P = A(x_0, y_0) h + B(x_0, y_0) k + ||(h, k)|| \varepsilon(h, k)$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Fonctions différentiables à deux variables

Une fonction P(x,y) est différentiable au point (x_0,y_0) lorsqu'elle est définie dans un ouvert contenant ce point et que :

$$\Delta P = A(x_0, y_0) h + B(x_0, y_0) k + ||(h, k)|| \varepsilon(h, k)$$

avec

$$\Delta P = P(x_0 + h, y_0 + k) - P(x_0, y_0)$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Fonctions différentiables à deux variables

Une fonction P(x,y) est différentiable au point (x_0,y_0) lorsqu'elle est définie dans un ouvert contenant ce point et que :

$$\Delta P = A(x_0, y_0) h + B(x_0, y_0) k + ||(h, k)|| \varepsilon(h, k)$$

avec

$$\Delta P = P(x_0 + h, y_0 + k) - P(x_0, y_0)$$

et

$$\lim_{\|(h,k)\|\to 0}\varepsilon(h,k)=0$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Propriété

Une fonction de la variable complexe f est dérivable au point $z_0 = x_0 + iy_0$

- <=> P(x,y) et Q(x,y) sont différentiables au point (x_0,y_0) et
 - les conditions de Cauchy sont vérifiées :

$$\begin{cases}
\frac{\partial P}{\partial x}(x_0, y_0) &= \frac{\partial Q}{\partial y}(x_0, y_0) \\
\frac{\partial P}{\partial y}(x_0, y_0) &= -\frac{\partial Q}{\partial x}(x_0, y_0)
\end{cases}$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation d'une fonction de la variable complexe

Remarque

La démonstration de la C.N.S. de dérivabilité permet d'obtenir

$$f'(z_0) = \frac{\partial P}{\partial x}(x_0, y_0) + i \frac{\partial Q}{\partial x}(x_0, y_0)$$

$$f'(z_0) = \frac{\partial Q}{\partial y}(x_0, y_0) - i \frac{\partial P}{\partial y}(x_0, y_0)$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Définition

On appelle fonction holomorphe sur un ouvert A de $\mathbb C$ une fonction qui est dérivable en tout point de A. Notation : $f \in \mathcal H/A$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Définition

On appelle fonction holomorphe sur un ouvert A de $\mathbb C$ une fonction qui est dérivable en tout point de A. Notation : $f \in \mathcal H/A$

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans R

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Définition

On appelle fonction holomorphe sur un ouvert A de $\mathbb C$ une fonction qui est dérivable en tout point de A. Notation : $f \in \mathcal H/A$

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans $\mathbb R$ Soient f et $g \in \mathcal H/A$

$$\blacktriangleright \lambda f + \mu g \in \mathcal{H}/A \text{ et } (\lambda f + \mu g)' = \lambda f' + \mu g'$$

•
$$fg \in \mathcal{H}/A$$
 et $(fg)' = f'g + fg'$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans $\mathbb R$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans $\mathbb R$

▶ Si $\forall z \in A, g(z) \neq 0$, alors :

$$rac{1}{g} \in \mathcal{H}/A ext{ et } \left(rac{1}{g}
ight)' = -rac{g'}{g^2}$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans $\mathbb R$

▶ Si $\forall z \in A, g(z) \neq 0$, alors :

$$rac{1}{g} \in \mathcal{H}/A ext{ et } \left(rac{1}{g}
ight)' = -rac{g'}{g^2}$$

Si $f \in \mathcal{H}/A$, $g \in \mathcal{H}/f(A)$, alors: $(g \circ f) \in \mathcal{H}/A$ et $(g \circ f)' = (g' \circ f) f'$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Propriétés

Les propriétés sont identiques à celles des fonctions dérivables dans $\mathbb R$

▶ Si $\forall z \in A, g(z) \neq 0$, alors :

$$rac{1}{g} \in \mathcal{H}/A ext{ et } \left(rac{1}{g}
ight)' = -rac{g'}{g^2}$$

- ▶ Si $f \in \mathcal{H}/A$, $g \in \mathcal{H}/f(A)$, alors : $(g \circ f) \in \mathcal{H}/A$ et $(g \circ f)' = (g' \circ f)f'$
- Si f est bijective de A sur f (A), alors :

$$f^{-1} \in \mathcal{H}/f(A)$$
 et $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions usuelles :

Fonctions algébriques

On dérive formellement par rapport à z comme pour les fonctions de la variable réelle par rapport à x:

$$(az)' = a$$

 $(z^m)' = mz^{m-1}, m \in \mathbb{Z}$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions usuelles :

Fonctions définies par des séries

Théorème de dérivation des séries entières :

La fonction $f(z) = a_0 + a_1z + ... + a_nz^n + ...$ de rayon de convergence R est holomorphe sur le disque ouvert d(O,R). Sa dérivée est la somme de la série dérivée terme à terme. Ainsi

$$(e^z)' = e^z$$

 $(chz)' = shz$
 $(\cos z)' = -\sin z$
etc ...

On dérive par rapport à z comme on dérive dans R par rapport à x

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

Dérivée de log_k z

$$Z = \log_k(z) = \ln \rho + i\theta + 2ik\pi$$

définie de $\mathbb{C} \setminus Ox^+$ dans B_k

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

Dérivée de log_k z

$$Z = \log_k(z) = \ln \rho + i\theta + 2ik\pi$$

définie de $\mathbb{C} \setminus Ox^+$ dans B_k

On rappelle que $\exp(\log_k(z)) = z$

dérivation par la formule de la fonction réciproque

$$z = f(Z) \Longrightarrow z' = f'(Z)$$
 $Z = f^{-1}(z) \Longrightarrow Z' = \frac{1}{f'(f^{-1}(z))}$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

Dérivée de log_k z

$$Z = \log_k(z) = \ln \rho + i\theta + 2ik\pi$$

définie de $\mathbb{C} \setminus Ox^+$ dans B_k

On rappelle que $\exp(\log_k(z)) = z$

dérivation par la formule de la fonction réciproque

$$z = f(Z) \Longrightarrow z' = f'(Z)$$

Donc:

$$Z = f^{-1}(z) \Longrightarrow Z' = \frac{1}{f'(f^{-1}(z))}$$

$$z = \exp(Z) \Longrightarrow z' = \exp(Z)$$

$$z = \exp(Z) \Longrightarrow z' = \exp(Z)$$
 $Z = \log_k(z) \Longrightarrow Z' = \frac{1}{\exp(\log_k(z))} = \frac{1}{z}$

L3-Elec 2023-2024

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

▶ Dérivée de $z_{(k)}^{\alpha}$, $\alpha \in \mathbb{C}$

$$z_{(k)}^{\alpha} = \exp\left(\alpha \log_k(z)\right)$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

▶ Dérivée de $z_{(k)}^{\alpha}$, $\alpha \in \mathbb{C}$

$$z_{(k)}^{\alpha} = \exp(\alpha \log_k(z))$$

On obtient par dérivée des fonctions composées :

$$\left[z_{(k)}^{\alpha}\right]' = \left[\alpha \left[\log_k(z)\right]\right]' \exp\left[\alpha \log_k(z)\right]$$

Partie 3 – Fonctions de la variable complexe

3.3 Fonctions holomorphes

Dérivation des fonctions multiformes :

▶ Dérivée de $z_{(k)}^{\alpha}$, $\alpha \in \mathbb{C}$

$$z_{(k)}^{\alpha} = \exp\left(\alpha \log_k(z)\right)$$

On obtient par dérivée des fonctions composées :

$$\left[z_{(k)}^{\alpha}\right]' = \left[\alpha \left[\log_k(z)\right]\right]' \exp\left[\alpha \log_k(z)\right]$$

Donc:

$$\left[z_{(k)}^{\alpha}\right]' = \frac{\alpha}{z} z_{(k)}^{\alpha}$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Généralités

Un **chemin** de \mathbb{C} est une application continue $\gamma:[a,b]\to\mathbb{C}$

[a,b] étant un intervalle de $\mathbb R$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Généralités

Un **chemin** de \mathbb{C} est une application continue $\gamma:[a,b]\to\mathbb{C}$

[a,b] étant un intervalle de $\mathbb R$

Si $\gamma(a) = \gamma(b)$, γ s'appelle un **lacet**

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Généralités

Un **chemin** de \mathbb{C} est une application continue $\gamma:[a,b]\to\mathbb{C}$

[a,b] étant un intervalle de $\mathbb R$

- Si $\gamma(a) = \gamma(b)$, γ s'appelle un **lacet**
- ▶ γ est C^1 par morceaux si $\gamma'(t)$ existe et est continue sur les intervalles de \mathbb{R} de la forme $[t_{j-1}, t_j]$ avec $t_0 = a < t_1 < ... < t_n = b$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Soit f(z) définie sur un chemin C^1 par morceaux γ

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Soit f(z) définie sur un chemin C^1 par morceaux γ

Soit la subdivision $\bigcup_{k=1}^{"}\widehat{z_{k-1}z_{k}}$ de ce chemin avec $\xi_{k} \in \widehat{z_{k-1}z_{k}}$,

 $z_k = \gamma(t_k)$, $z_0 = \gamma(a)$ et $z_n = \gamma(b)$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Soit f(z) définie sur un chemin C^1 par morceaux γ

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Avec les notations suivantes

$$z_k = x_k + iy_k$$

$$z_k - z_{k-1} = \Delta x_k + i\Delta y_k$$

$$\xi_k = a_k + ib_k$$

$$f(\xi_k) = P(a_k, b_k) + iQ(a_k, b_k)$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Avec les notations suivantes

$$z_k = x_k + iy_k$$

$$z_k - z_{k-1} = \Delta x_k + i\Delta y_k$$

$$\xi_k = a_k + ib_k$$

$$f(\xi_k) = P(a_k, b_k) + iQ(a_k, b_k)$$

on obtient

$$\int_{\gamma} f(z)dz = \lim_{n \to \infty} \sum_{k=1}^{n} P(a_k, b_k) \Delta x_k - Q(a_k, b_k) \Delta y_k$$
$$+ i \lim_{n \to +\infty} \sum_{k=1}^{n} Q(a_k, b_k) \Delta x_k + P(a_k, b_k) \Delta y_k$$

avec
$$\max_{k} |\Delta x_k| \to 0$$
 et $\max_{k} |\Delta y_k| \to 0$. D'où

$$\int_{\gamma} f(z)dz = \int_{\gamma} (Pdx - Qdy) + i \int_{\gamma} (Qdx + Pdy)$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Avec les notations suivantes

$$z_k = x_k + iy_k$$

$$z_k - z_{k-1} = \Delta x_k + i\Delta y_k$$

$$\xi_k = a_k + ib_k$$

$$f(\xi_k) = P(a_k, b_k) + iQ(a_k, b_k)$$

on obtient

$$\int_{\gamma} f(z)dz = \lim_{n \to \infty} \sum_{k=1}^{n} P(a_k, b_k) \Delta x_k - Q(a_k, b_k) \Delta y_k$$
$$+ i \lim_{n \to +\infty} \sum_{k=1}^{n} Q(a_k, b_k) \Delta x_k + P(a_k, b_k) \Delta y_k$$

avec
$$\max_{k} |\Delta x_k| \to 0$$
 et $\max_{k} |\Delta y_k| \to 0$. D'où

$$\int_{\gamma} f(z)dz = \int_{\gamma} (Pdx - Qdy) + i \int_{\gamma} (Qdx + Pdy)$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Conditions suffisantes d'existence

P et Q continues sur γ ou f continue sur γ

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Conditions suffisantes d'existence

P et Q continues sur γ ou f continue sur γ

Calcul pratique : γ paramétré

 $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégrales curvilignes complexes

Conditions suffisantes d'existence

Calcul pratique : γ paramétré

P et Q continues sur γ ou f continue sur γ

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Chemins usuels

- Segment de droite parallèle à l'axe des abscisses, $z = x + iy_0$, $x \in [x_1, x_2]$
- Segment de droite parallèle à l'axe des ordonnées, $z = x_0 + iy$, $y \in [y_1, y_2]$
- Arc de cercle de rayon R_0 $z = R_0 e^{i\theta}, \ \theta \in [\theta_1, \theta_2]$
- Segment de droite passant par l'origine $z = \rho e^{i\theta_0}$, $\rho \in [\rho_1, \rho_2]$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Propriétés élémentaires de l'intégrale

a) Linéarité

$$\int_{\gamma} (\lambda f(z) + \mu g(z)) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Propriétés élémentaires de l'intégrale

a) Linéarité

$$\int_{\gamma} (\lambda f(z) + \mu g(z)) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz$$

b) Sens de parcours du chemin γ

$$\int_{\gamma^{-}} f(z)dz = -\int_{\gamma^{+}} f(z)dz$$

 $\gamma^- = \gamma^+$ parcouru en sens inverse

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Propriétés élémentaires de l'intégrale

a) Linéarité

$$\int_{\gamma} (\lambda f(z) + \mu g(z)) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz$$

b) Sens de parcours du chemin γ

$$\int_{\gamma^{-}} f(z)dz = -\int_{\gamma^{+}} f(z)dz$$

 $\gamma^- = \gamma^+$ parcouru en sens inverse

c) Intégrale d'une constante f(z) = K

$$\sum_{k=1}^{n} f(z_k)(z_k - z_{k-1}) = K(z_n - z_0) = K(b - a)$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

1er Lemme de Jordan:

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

1er Lemme de Jordan:

Hypothèses

 $C_r(a, r)$ arc de cercle de centre a et de rayon r $\lim_{r\to 0(\text{ resp. }\infty)}\sup_{C_r}|(z-a)f(z)|=0$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

1er Lemme de Jordan:

Hypothèses

$$C_r(a, r)$$
 arc de cercle de centre a et de rayon r $\lim_{r\to 0(\text{ resp. }\infty)}\sup_{C_r}|(z-a)f(z)|=0$

Conclusion

$$\lim_{r\to 0(\text{ resp. }\infty)}\int_{C_r}f(z)dz=0$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

1er Lemme de Jordan:

Preuve

$$\left| \int_{C_r} f(z) dz \right| = \left| \int_{\alpha}^{\beta} f(a + re^{i\theta}) rie^{i\theta} d\theta \right|$$

$$\leq \int_{\alpha}^{\beta} \left| rf(a + re^{i\theta}) \right| d\theta$$

$$\leq (\beta - \alpha) \sup_{C_r} \left| (z - a) f(z) \right|$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

2ème Lemme de Jordan:

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

2ème Lemme de Jordan:

Hypothèse

$$\lim_{\infty} \sup_{C_r} |f(z)| = 0$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

2ème Lemme de Jordan:

Hypothèse

$$\lim_{\infty} \sup_{C_r} |f(z)| = 0$$

Conclusions

$$\lim_{\infty} \int_{C_r} e^{imz} f(z) dz = 0 \qquad \text{pour } m > 0 \text{ et } C_r = C_r^+$$

$$\lim_{\infty} \int_{C_r} e^{imz} f(z) dz = 0 \qquad \text{pour } m < 0 \text{ et } C_r = C_r^-$$

$$\lim_{\infty} \int_{C_r} e^{mz} f(z) dz = 0 \qquad \text{pour } m < 0 \text{ et } C_r = C_r^d$$

$$\lim_{\infty} \int_{C_r} e^{mz} f(z) dz = 0 \qquad \text{pour } m > 0 \text{ et } C_r = C_r^g$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

2ème Lemme de Jordan:

Preuve:

$$|I_r| = \left| \int_{C_r} e^{imz} f(z) dz \right| = \left| \int_0^{\pi} e^{imre^{i\theta}} f(re^{i\theta}) ire^{i\theta} d\theta \right|$$

$$\leq 2r \sup_{C_r} |f(z)| \int_0^{\frac{\pi}{2}} e^{-mr\sin\theta} d\theta$$

$$\leq \sup_{C_r} |f(z)| \frac{\pi}{m} (1 - e^{-mr}) \left(\operatorname{car} \sin\theta \geqslant \frac{2\theta}{\pi} \right)$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégration des fonctions holomorphes

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégration des fonctions holomorphes

Hypothèses

f holomorphe sur Ω ouvert non vide de $\mathbb C$ Soit $D\subset \Omega$ un domaine simplement connexe de contour C

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégration des fonctions holomorphes

Hypothèses

f holomorphe sur Ω ouvert non vide de $\mathbb C$ Soit $D\subset \Omega$ un domaine simplement connexe de contour C

Conclusion

$$\int_C f(z)dz = 0$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Intégration des fonctions holomorphes

Preuve : utiliser la formule de Green Riemann

$$\int_{C^{+}} A dx + B dy = \int \int_{D} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx dy$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

a) Définition de $\int_a^b f(z)dz$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

a) Définition de $\int_a^b f(z)dz$

Soient deux points a et b de DSoient γ_1, γ_2 deux chemins inclus dans D d'origine a et d'extrémité b. Alors

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

a) Définition de $\int_a^b f(z)dz$

Soient deux points a et b de DSoient γ_1, γ_2 deux chemins inclus dans D d'origine a et d'extrémité b. Alors

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz = \int_a^b f(z)dz$$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

b) Définition de
$$F_{z_0}(u) = \int_{z_0}^u f(z) dz$$
, $u \in \mathbb{C}$

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

b) Définition de
$$F_{z_0}(u) = \int_{z_0}^u f(z) dz$$
, $u \in \mathbb{C}$

 $F_{z_0}(u)$ est indépendante du chemin joignant z_0 et u inclu dans D

Partie 3 – Fonctions de la variable complexe

3.4 Intégration et théorème de Cauchy

Application

Soit f holomorphe sur un domaine simplement connexe D

b) Définition de
$$F_{z_0}(u) = \int_{z_0}^u f(z) dz$$
, $u \in \mathbb{C}$

 $F_{z_0}(u)$ est indépendante du chemin joignant z_0 et u inclu dans D

$$F_{z_0}(u)$$
 est une primitive de $f(z)$ telle que $F'_{z_0}(u) = f(u)$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

- => outil puissant pour évaluer des intégrales curvilignes de fonctions holomorphes sur des courbes fermées
- => peut aussi bien être utilisé pour calculer des intégrales de fonctions réelles ainsi que la somme de certaines séries

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Théorème pour un domaine borné D

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Théorème pour un domaine borné D

Hypothèses

f holomorphe sur $\Omega \setminus \bigcup_{j} z_{j}$, Ω ouvert non vide de \mathbb{C}

zi points singuliers isolés de f

 $D \subset \Omega$ domaine simplement connexe de contour ∂D inclus dans Ω

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Théorème pour un domaine borné D

Hypothèses

f holomorphe sur $\Omega \setminus \bigcup_{j} z_{j}$, Ω ouvert non vide de \mathbb{C}

zi points singuliers isolés de f

 $D\subset\Omega$ domaine simplement connexe de contour ∂D inclus dans Ω

Conclusion

$$\int_{\partial D^+} f(z)dz = 2i\pi \sum_{z_j \in D} \operatorname{res} f(z_j)$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Théorème pour un domaine borné D

Hypothèses

f holomorphe sur $\Omega \setminus \bigcup_{j} z_{j}$, Ω ouvert non vide de \mathbb{C}

zi points singuliers isolés de f

 $D\subset\Omega$ domaine simplement connexe de contour ∂D inclus dans Ω

Conclusion

$$\int_{\partial D^+} f(z)dz = 2i\pi \sum_{z_j \in D} \operatorname{res} f(z_j)$$

avec (définition de res $f(z_j)$):

$$\operatorname{res} f(z_j) = \lim_{r \to 0} \frac{1}{2i\pi} \int_{C^+(z_j,r)} f(z) dz$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Point singulier isolé (psi)

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Point singulier isolé (psi)

 z_j est un psi de f(z) si et seulement si $\exists r > 0$ tel que f est holomorphe sur $d(z_j, r) \setminus \{z_j\}$, $d(z_j, r)$ désignant le disque de centre z_i et de rayon r

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

Si z_j est un psi, on admet que f possède un développement dit développement de Laurent dans $d(z_i, r) \setminus \{z_i\}$:

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z-z_j)^n} + \sum_{n=0}^{\infty} a_n (z-z_j)^n$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

Si z_j est un psi, on admet que f possède un développement dit développement de Laurent dans $d(z_j, r) \setminus \{z_i\}$:

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z-z_j)^n} + \sum_{n=0}^{\infty} a_n (z-z_j)^n$$

On en déduit alors :

$$\int_{C^{+}(z_{j},r)} f(z)dz = \sum_{n=1}^{\infty} \int_{C^{+}} \frac{b_{n}}{(z-z_{j})^{n}} dz + \sum_{n=0}^{\infty} \int_{C^{+}} a_{n}(z-z_{j})^{n} dz$$

MAS

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

On pose $z - z_j = re^{i\theta}$ et on obtient

$$\sum_{n=1}^{\infty} \int_{0}^{2\pi} \frac{b_{n} i d\theta}{r^{n-1} e^{i(n-1)\theta}} + i \sum_{n=0}^{\infty} \int_{0}^{2\pi} a_{n} r^{n+1} e^{i(n+1)\theta} d\theta$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

On pose $z - z_j = re^{i\theta}$ et on obtient

$$\sum_{n=1}^{\infty} \int_{0}^{2\pi} \frac{b_{n} i d\theta}{r^{n-1} e^{i(n-1)\theta}} + i \sum_{n=0}^{\infty} \int_{0}^{2\pi} a_{n} r^{n+1} e^{i(n+1)\theta} d\theta$$

Toutes les intégrales sont nulles sauf :

$$\int_0^{2\pi} \frac{b_n i d\theta}{r^{n-1} e^{i(n-1)\theta}} \text{ avec } n = 1$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

Donc:

$$\int_{C^{+}(z_{i},r)} f(z)dz = \int_{0}^{2\pi} b_{1}id\theta = 2i\pi b_{1}$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul du résidu à l'aide du développement de Laurent

Donc:

$$\int_{C^+(z_i,r)} f(z)dz = \int_0^{2\pi} b_1 i d\theta = 2i\pi b_1$$

Conclusion : $res f(z_j)$ est le coefficient du terme en $\frac{1}{z-z_j}$ de la partie principale du dévt de Laurent de f

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul des résidus pour un pôle d'ordre p

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul des résidus pour un pôle d'ordre p

On effectue le développement de Taylor de $\varphi(z) = (z - z_j)^p f(z)$ qui est holomorphe sur $V(z_i)$

$$\varphi(z) = \varphi(z_j) + ... + \frac{(z - z_j)^{p-1}}{(p-1)!} \varphi_{(z_j)}^{(p-1)} + ...$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul des résidus pour un pôle d'ordre p

On effectue le développement de Taylor de $\varphi(z) = (z - z_j)^p f(z)$ qui est holomorphe sur $V(z_i)$

$$\varphi(z) = \varphi(z_j) + ... + \frac{(z-z_j)^{p-1}}{(p-1)!} \varphi_{(z_j)}^{(p-1)} + ...$$

d'où le développement de Laurent de f :

$$f(z) = \frac{\varphi(z_j)}{(z - z_j)^p} + \dots + \frac{\varphi_{(z_j)}^{(p-1)}}{(p-1)!(z - z_j)} + \dots$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul des résidus pour un pôle d'ordre p

On effectue le développement de Taylor de $\varphi(z) = (z - z_j)^p f(z)$ qui est holomorphe sur $V(z_i)$

$$\varphi(z) = \varphi(z_j) + ... + \frac{(z-z_j)^{p-1}}{(p-1)!} \varphi_{(z_j)}^{(p-1)} + ...$$

d'où le développement de Laurent de f :

$$f(z) = \frac{\varphi(z_j)}{(z - z_j)^p} + \dots + \frac{\varphi_{(z_j)}^{(p-1)}}{(p-1)!(z - z_j)} + \dots$$

donc

$$\operatorname{res} f(z_j) = \frac{1}{(p-1)!} \varphi_{(z_j)}^{(p-1)} = \frac{1}{(p-1)!} \frac{d^{p-1}}{dz^{p-1}} \left[(z-z_j)^p f(z) \right]_{z=z_j}$$

MAS

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Calcul des résidus pour un pôle d'ordre p

En pratique:

- pour p > 2, on effectue le développement de Laurent,
- ▶ pour p = 2, on peut utiliser res $f(z_j) = \frac{d}{dz}(z z_j)^2 f(z)|_{z=z_i}$,
- ▶ pour p = 1, on a res $f(z_j) = \lim_{z \to z_i} (z z_j) f(z)$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Cas particulier intéressant : z_j pôle d'ordre 1, $f(z) = \frac{P(z)}{Q(z)}$, $P(z_j) \neq 0$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Cas particulier intéressant : z_j pôle d'ordre 1, $f(z) = \frac{P(z)}{Q(z)}$, $P(z_j) \neq 0$

On développe Q(z):

$$Q(z) = 0 + (z - z_j)Q'(z_j) + \frac{(z - z_j)^2}{2!}Q''(z_j) + \dots$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Cas particulier intéressant : z_j pôle d'ordre 1, $f(z) = \frac{P(z)}{Q(z)}$, $P(z_j) \neq 0$

On développe Q(z):

$$Q(z) = 0 + (z - z_j)Q'(z_j) + \frac{(z - z_j)^2}{2!}Q''(z_j) + \dots$$

donc

$$\lim_{z\to z_j}(z-z_j)f(z)=\frac{P(z_j)}{Q'(z_j)}$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Cas particulier intéressant : z_j pôle d'ordre 1, $f(z) = \frac{P(z)}{Q(z)}$, $P(z_j) \neq 0$

On développe Q(z):

$$Q(z) = 0 + (z - z_j)Q'(z_j) + \frac{(z - z_j)^2}{2!}Q''(z_j) + \dots$$

donc

$$\lim_{z\to z_j}(z-z_j)f(z)=\frac{P(z_j)}{Q'(z_j)}$$

Cette formule est intéressante pour certains calculs de résidus comme celui de $f(z) = \frac{1}{\sin z}$ en z = 0. En effet :

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Cas particulier intéressant : z_j pôle d'ordre 1, $f(z) = \frac{P(z)}{Q(z)}$, $P(z_j) \neq 0$

On développe Q(z):

$$Q(z) = 0 + (z - z_j)Q'(z_j) + \frac{(z - z_j)^2}{2!}Q''(z_j) + \dots$$

donc

$$\lim_{z\to z_j}(z-z_j)f(z)=\frac{P(z_j)}{Q'(z_j)}$$

Cette formule est intéressante pour certains calculs de résidus comme celui de $f(z) = \frac{1}{\sin z}$ en z = 0. En effet :

res
$$f(0) = \frac{P(0)}{Q'(0)} = \frac{1}{\cos 0} = 1$$

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Application au calcul intégral

Intégrales du type I :
$$I = \int_{-\infty}^{\infty} f(x) dx$$

Le plus souvent, on prend f(z) et le contour est constitué d'une partie rectiligne qui donne I et de parties circulaires qui ferment le contour

Partie 3 – Fonctions de la variable complexe

3.5 Théorème des résidus

Application au calcul intégral

Intégrales trigonométriques

$$I = \int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$$

où R est une fraction rationnelle. On pose $z=e^{i\theta}$ et on exprime $\cos\theta$ et $\sin\theta$ en fonction de z

On se ramène alors au calcul d'une intégrale sur le cercle unité