

permutation matrix: unit matrix w/ row exchanges
 det(Inxn):1

 ALL THESE PROPERTIES ALSO
 APPLY TO THE COLUMN
 det(Perm (n)) ⇒ (-1)ⁿ

 no. of row exchanges
 det is a linear function of each row separately
 fta th = t | a b | (t=0 ⇒ 0 row ⇒ det=0)
 c d | c d |

· subtracting a multiple of a row from another doesn't change the det

A is $\Delta \Rightarrow |A| = \text{product of diagonal elements}$ A is diagonal $\Rightarrow |A| = 0$ A+u (upper Δ) \Rightarrow u has a zero row, |A| = |u| = 0

A is invertible => U has pirote on dig => |U|= product of non-zero elements

|A| = ±|U| (row exchanges)

-
$$\begin{vmatrix} a & b \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix}$$
 $\begin{vmatrix} c & d \end{vmatrix} = \begin{vmatrix} ad - a(c)b \end{vmatrix}$
= $ad - bc$

- $\begin{vmatrix} AB \end{vmatrix} = |A||B|$

proof 1 Let $D(A) = |AB|/|B|$ if $D(A)$ satisfies rules 1,2,3, then it is a determinant

rule 1: det of I

if $A = I$, $D(A) = |B|/|B| = 1$

rule 2: sign reversal

2 rows of A are exchanged \Rightarrow same two rows of $|AB|$

are exchanged $\Rightarrow |AB|$ changes sign $\Rightarrow D(A)$ changes

IABL is multiplied by
$$t \Rightarrow D(A)$$
 is multiple of row of A is added to 1 now of A' \Rightarrow I now AB is added to A'B \Rightarrow determinants add \Rightarrow dividing by $|B|$, ratios add

Case 1 $|B| = 0 \Rightarrow B$ is singular $\Rightarrow AB$ is singular $|AB| = 0 \iff \downarrow$

|A||B|=0 : |B|=0 $\overrightarrow{B}\overrightarrow{x}=0$ has ∞ soln $(\overrightarrow{x}\neq 0)$

Case 2 $|B| \neq 0$ B is $inv \rightarrow B\vec{x} = 0$ has trivial soln $\rightarrow AB$ is inv.

be proved

i) row x constant $\leftarrow E_1$ K \neq 0

before a

ii) interchange 2 rows \leftarrow Ez

theorem

iii) add a multiple of one row to another \leftarrow Ez

153A = IAI = IF3||A| proves that del |EA| = |EA|

IAB | = | En En-1 ... EI IB | = | Al [B]

B is inv >> B can be obtained from A by some EROS

something Lemma: for elementary matrix E, |EA| = |E||A]

proof EROS

proved | | E_1 | = k | I | = k

 $|E_2| = |I| = 1$

| E.A | = | E. | | A | = K | A | | E, A| = - |A| = |E2||A| nontrivial

.. AB is not inv.

pmof 2

that has to

(an be

THIS PROOF WONT COME IN THE FINAL EXAM

geometric interpretation A is a 2×2 matnx, area of parallelogram described by the column of A is IAI. If A is a 3×3 matrix, the volume of the parallelopiped determined by theorem 3. the columns of A is IAI | a o | = | ad | = area of rul bosof. absolute value more general matrix $A : [\vec{a}_1 \vec{a}_2]_{2\times 2}$ ques: can we change A into a diagonal matrix w/ no change in the area of the associated llgram can! - by Dexchanging 2 columns, @ adding a multiple of one column to another ② assume $a_2 \neq ca$, a_2 , $a_1 \neq 0$ then area of 11g a,, az = area of 11g a,, az+ca, az, azt (a₁ have the same I distance to A
a, ca, : (basex height) is the Same

unear transformations "how does the area of the transformed set compare with

that of the original" theorem 3.2 Let $T: R^2 \rightarrow R^2$ be the linear transformation determined by A. If S is a light in R², area of T(s) = abs(IAI) x area of s

if R3 → R3 area → volume proof consider the 2x2 case, A = [a, a,]

a lig at the origin in R^2 det by vectors b_1, b_2 has the form $S = \{ s_1b_1 + s_2b_2 : 0 \leqslant s_1 \leqslant 1, 0 \leqslant s_2 \leqslant 1 \}$

 $T(s_1b_1 + s_2b_2) = s_1T(b_1) + s_2T(b_2) = s_1Ab_1 + s_2Ab_2$ llamat origin

: T(S) is the light determined by columns of $[Ab_1 Ab_2] = AB$ where $B = [b_1 b_2]$ area T(s) = abs(|AB|) = abs(|A|) abs(|B|) = abs((A|)(area of S)

general case any ligm: p+S → ligm at origin vector T(p+S) = f(p) + T(s)area of T(p+S) = area(T(p) + T(s))

= area (T(s)) < translation doesn't affect = abs(IAI) (area of s)

= obs (IA)) (area of pts)

of points lecture quest. Now | Dec 22: of E is the elementary matrix which adds 3 two row 1 to row 2, then E adds 9 times row 1 to T/F. 1(A)(iii) fabe E2 = E(E) add 3x, add 3xa + 3x1 + 3x1 = a + 6x

P.T.

theorem 3.2 is applicable + shapes since its just a set

$$A^{m} = 0$$

$$I = (1 - A) (I + A + A^{2} + + A^{m-1})$$

$$A^{m-1} = A^{m-1}$$

⇒ I - A is inv

I-A → ERDS → I

→ A is not singular.

I - A is inv $\Rightarrow A$ is inv