Первая половина лекции не была записана

Некоторые разложения по Тейлору:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

Лемма 1. $e^2 - upp$.

Proof.
$$e^2 = \frac{2k}{n}$$

 $ne = 2ke^{-1}$
 $n(2k-1)!e = (2k)!e^{-1}$

Лемма 2. Метод Ньютона

$$f:\langle a,b
angle
ightarrow\mathbb{R}-$$
 дважды дифф.
$$m:=\inf_{\langle a,b
angle}|f'|>0$$
 $M:=\sup|f''|$ $\xi\in(a,b):f(\xi)=0$ $x_1\in(a,b):|x_1-\xi|\frac{M}{2m}<1$

Рассмотрим последовательность $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Тогда $\exists \lim x_n = \xi$ и при этом!. Кроме того, оно очень быстро сходится.

$$|x_n - \xi| \le \left(\frac{M}{2m}|x_1 - \xi|\right)^{2n}$$

$$x_{n+1} - \xi = x_n - \xi - \frac{f(x_n)}{f'(x_n)} = \frac{(x_n - \xi)f'(x_n) - f(x_n)}{f'(x_n)}$$

$$|x_{n+1} - \xi| = \frac{|f(x_n) + f'(x_n)(\xi - x_n)|}{|f'(x_n)|} = \frac{\frac{1}{2}|f''(c)||\xi - x_n|^2}{|f'(x_n)|} \le \frac{2M}{m}|\xi - x_n|^2$$

Теорема 1. О разложении рациональной дроби на простейшие.

$$P(x),Q(x)$$
 — многочлен $\deg P<\deg Q=n$ $Q(x)=(x-a_1)^{k_1}\dots(x-a_m)^{k_m}\quad (k_1+\dots+k_m=n;a_i
eq a_j)$ Тогда \exists

$$\frac{P(x)}{Q(x)} = \left(\frac{A_1}{(x-a_1)} + \frac{A_2}{(x-a_1)^2} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) + \left(\frac{B_1}{(x-a_2)} + \frac{B_2}{(x-a_2)^2} + \dots + \frac{B_{k_2}}{(x-a_2)^{k_2}}\right) + \dots + \left(\frac{C_1}{(x-a_m)} + \frac{C_2}{(x-a_m)^2} + \dots + \frac{C_{k_m}}{(x-a_m)^{k_m}}\right)$$

M3137y2019 December 23, 2019

$$\frac{P(x)}{(x-a_1)^{k_1}\dots(x-a_m)^{k_m}} = \frac{1}{(x-a_1)^{k_1}}\frac{P(x)}{(x-a_2)^{k_2}\dots(x-a_m)^{k_m}} =$$

$$= \frac{1}{(x-a_1)^{k_1}}(A_{k_1} + A_{k_1+1}(x-a_1) + A_{k_1-2}(x-a_1)^2 + \dots + A_1(x-a_1)^{k_1} + o((x-a_1)^{k_1}))$$

$$\frac{P}{Q} - \left(\frac{A_1}{x-a_1} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) = \frac{o((x-a_1)^{k_1})}{(x-a_1)^{k_1}}$$

$$\frac{P}{Q} - (\Pi p. \text{ часть}) = \text{ знам. сократится} \Rightarrow \text{ многочлен} \equiv 0$$

M3137y2019 December 23, 2019