

SOE/391

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
4. September 2003 (04.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/073041 A1

(51) Internationale Patentklassifikation?: **G01B 9/02**,
11/24, G01N 21/47

(71) Anmelder und
(72) Erfinder: **KNÜTTEL, Alexander [DE/DE]**; Apfelstrasse
28, 69488 Birkenau (DE).

(21) Internationales Aktenzeichen: PCT/DE03/00288

(74) Anwälte: **PFEIFER, Hans-Peter usw.**; Beiertheimer
Allee 19, 76137 Karlsruhe (DE).

(22) Internationales Anmeldedatum:
1. Februar 2003 (01.02.2003)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,
SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 07 186.1 21. Februar 2002 (21.02.2002) DE

[Fortsetzung auf der nächsten Seite]

(54) Title: LOW-COHERENCE INTERFEROMETRIC DEVICE FOR LIGHT-OPTICAL SCANNING OF AN OBJECT

(54) Bezeichnung: NIEDERKOHÄRENZ-INTERFEROMETRISCHES GERÄT ZUR LICHTOPTISCHEN ABTASTUNG
EINES OBJEKTES

A1
(57) Abstract: A low-coherence interferometric device for light-optical scanning of an object (18) comprising a short-coherence interferometer (6) consisting of a short-coherence light source (7), a reference reflector (21) and a detector (25). The light (7) emitted by the light source (7) is divided into two light paths (11,12). A first part thereof is radiated onto the object as a measuring light (16) and a second part thereof is radiated onto the reference reflector (21) as a reference light (22). The measuring light (16) and the reference light (22) are combined at a beam junction (10). In order to ensure rapid scanning, a variable wavelength selection device (30) is arranged in the light path of the detection light between the beam junction (10) and the detector (25), enabling the detection light (24) to be selected according to the wavelength thereof, whereby selectively preferred light reaches the detector (25) at wavelengths corresponding to an adjustable sequence of wave numbers k for said scanning.

WO 03/073041 A1

(57) Zusammenfassung: Niederkohärenz-interferometrisches Gerät zur lichtoptischen Abtastung eines Objektes (18) mit einem Kurzkohärenz-Interferometer (6), welches eine kurzkohärente Lichtquelle (7), einen Referenzreflektor (21) und einen Detektor (25) umfaßt, wobei das von der Lichtquelle (7) ausgehende Licht auf zwei Lichtwege (11,12) aufgeteilt wird, wobei ein erster Teil als Meßlicht (16) auf das Objekt

[Fortsetzung auf der nächsten Seite]

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

gestrahl und ein zweiter Teil als Referenzlicht (22) auf den Referenzreflektor (21) gestrahl wird und das Meßlicht (16) und das Referenzlicht (22) nach Reflexion an dem Objekt (18) bzw. dem Referenzreflektor (21) an einer Strahlzusammenführung (10). Für eine schnelle Abtastung ist Lichtweg des Detektionslichts zwischen der Strahlzusammenführung (10) umüber die Stärke der Reflexion des Meßlichts in Abhängigkeit von der jeweils eingestellten Abtastposition enthält. Um eine extrem schnelle Abtastung zu ermöglichen, ist in dem Lichtweg des Detektionslichts zwische(10) und dem Detektor (25) eine variable Wellenlängenselektionseinrichtung (30) angeordnet, durch die das Detektionslicht (24) in Abhängigkeit von seiner Wellenlänge derartig selektiert wird, daß zu dem Detektor (25) selektiv bevorzugt Licht mit Wellenlängen gelangt, die einer für die Abhängigkeit vonWellenzahlen k entsprechen. Zur Variation der Abtastung einstellbaren folge von Wellenzahlen k entsprechen.

5

10

**Niederkohärenz-interferometrisches Gerät zur
lichtoptischen Abtastung eines Objektes**

15

Die Erfindung betrifft ein Niederkohärenz-interferometrisches Gerät zur lichtoptischen Abtastung eines Objektes durch Detektion der Position von lichtremittierenden Stellen, die in unterschiedlichen Abständen von dem Gerät längs einer in Abtastrichtung (d.h. in Richtung des detektierenden Lichtstrahles; "z-Richtung") verlaufenden Abtaststrecke lokalisiert sind. Nachfolgend wird dies als Low Coherence Distance Scan (LCDS) bezeichnet.

25

Derartige Geräte und die entsprechenden Verfahren werden zur Untersuchung unterschiedlicher Objekte eingesetzt. Sie ermöglichen es, mit höchster Präzision die Entfernung zu einem oder mehreren streuenden Objektpunkten zu bestimmen oder bildlich darzustellen. Wichtige Anwendungsbereiche sind die automatisierte Vermessung von Objektoberflächen und die Untersuchung des optischen Streuverhaltens innerhalb eines Objektes, wobei der letztere Anwendungsfall vor allem auf medizinischem Gebiet (Gewebediagnostik) bedeutsam ist.

Bei manchen Anwendungsfällen ist es ausreichend, das Objekt eindimensional, also nur längs einer in Strahlrichtung verlaufenden Abtaststrecke, zu untersuchen. ("Longitudinalabtastung", englisch "longitudinal scan"). In der 5 Mehrzahl der Anwendungsfälle geht es jedoch darum, durch eine zusätzliche laterale Abtastung (lateral scan) eine Information über reflektierende Strukturen in einer Abtastebene oder (dreidimensional) über eine Volumenausschnitt zu gewinnen. Diese erfordert eine zwei- bzw. 10 dreidimensionale Abtastung, die im einfachsten Fall durch ein- oder zweidimensionale laterale Verschiebung des Interferometers erreicht werden kann. Solche Verfahren ermöglichen eine mehrdimensionale Bilddarstellung und werden üblicherweise als OCT (Optical Coherence Tomography) 15 bezeichnet.

Gemeinsam ist allen LCDS-Verfahren, daß Licht einer niederkohärenten (spektral breitbandig emittierenden) Lichtquelle in zwei Lichtwege, nämlich einen Meßlichtweg, der 20 in die Probe eindringt, und einen Referenzlichtweg aufgeteilt wird und die beiden Teillichtwege vor dem Auftreffen auf einem Detektor derartig zusammengeführt werden, daß sie miteinander interferieren. Zu diesem Zweck enthält das Gerät eine Interferometer-Anordnung, die üblicherweise außer der niederkohärenten Lichtquelle einen Strahlteiler, einen Referenzreflektor und den Detektor umfaßt. Die Lichtwege zwischen diesen Elementen bilden 25 Interferometerarme. Das Licht der Lichtquelle gelangt durch einen Lichtquellenarm zu dem Strahlteiler und wird 30 dort aufgeteilt. Ein erster Lichtanteil wird als Meßlicht über einen Objektarm in Abtastrichtung auf das Objekt gestrahlt, während ein zweiter Lichtanteil als Referenzlicht über einen Reflektorarm zu dem Referenzreflektor gelangt. Beide Lichtanteile werden reflektiert (das Meß- 35 licht an lichtremittierenden Stellen (light reflecting

sites) in dem Untersuchungsobjekt, das Referenzlicht an dem Referenzreflektor) und auf dem jeweils gleichem Lichtweg (Objektarm bzw. Referenzarm) zu dem Strahlteiler zurückgeführt. Dort werden sie zusammengefaßt und als
5 Detektionslicht über einen Detektionsarm dem Detektor zugeführt.

Bei der Abtastung wird die longitudinale Abtastposition (longitudinal scan position) in rascher Folge variiert.
10 Dies geschieht üblicherweise durch Veränderung der Relation der Längen des Referenzlichtweges und des Meßlichtweges. Dadurch wird diejenige Position auf der Abtaststrecke verändert, für die die Voraussetzung für die Interferenz des Meßlichts und des Referenzlichts (nämlich,
15 daß sich die optische Weglänge beider Lichtwege maximal um die Koheränzlänge der Lichtquelle voneinander unterscheiden) erfüllt ist. Die aktuelle Abtastposition ist dabei jeweils diejenige Position auf der Abtaststrecke, für die die optische Länge des Meßlichtweges mit der op-
20 tischen Länge des Referenzlichtweges (jeweils von der Strahlteilung bis zur Strahlzusammenführung) übereinstimmt ("Kohärenzbedingung"). In der Regel wird der Referenzspiegel in Richtung des Referenzstrahles verschoben und dadurch der Referenzlichtweg verkürzt oder verlängert
25 wird.

Nähere Einzelheiten über unterschiedliche vorbekannte LCDS-Geräte sind der einschlägigen Literatur zu entnehmen. Hierzu gehören folgende Publikationen:

- 30 1) WO 95/33971
- 2) J. M. Schmitt "Compact in-line interferometer for low-coherence reflectometry", Optic Letters 1995, 419 bis 421
- 3) WO 97/27468

Die Erfindung bezieht sich speziell auf Anwendungsfälle, bei denen eine extrem schnelle Longitudinalabtastung möglich sein soll. Ein wichtiges Beispiel sind laufende Untersuchungen von Mehrschichtfolien ("Multifolien") zur 5 Produktionsüberwachung oder Qualitätskontrolle. Dabei läuft die Folie mit hoher Geschwindigkeit an einem Meßkopf vorbei und es ist laufend zu überwachen, ob eine bestimmte gewünschte Schichtstärke (von beispielsweise 100 µm) innerhalb vorbestimmter Grenzen eingehalten wird. 10 Derartige Anwendungsfälle stellen sehr hohe Anforderungen an die Abtastgeschwindigkeit. Geht man beispielsweise davon aus, daß der Durchmesser des Oberflächenpunktes ("spot") auf den sich die Untersuchung bezieht, 8 µm beträgt und die zu untersuchende Folienbahn mit einer Geschwindigkeit von 10 m/sec transportiert wird, so müßte etwa alle 0,8 µsec ein Meßwert aufgenommen werden. Hieraus errechnet sich eine Mindestabtastrate von 1,25 MHz. Bei 256 Punkten je Longitudinalabtastung resultiert hieraus eine Wiederholrate von 4,9 kHz. Derartig hohe Wiederholraten lassen sich durch Verschieben eines Spiegels nicht erreichen.

Es sind bereits eine Reihe von Vorschlägen gemacht worden, bei LCDS-Geräten eine höhere Wiederholrate zu ermöglichen. 25

In der Publikation

- 4) K.F. Kwong et al: "400-Hz mechanical scanning optical delay line", Optics Letters 1993, 558-560
- 30 wird eine optische Verzögerungsstrecke beschrieben, die im Referenzarm eines Interferometers angeordnet werden kann. Die Variation der optischen Weglänge wird dabei durch eine Kombination eines Dispersionsgitters und eines in einem engen Winkelbereich schwenkbaren Spiegels erreicht.
- 35

Eine ähnliche Anordnung wird auch in

5) US Patent 6,111,645 und

6) G. J. Tearney et al: High-speed phase- and group-delay scanning with a grating-based phase control delay

5 line", Optics Letters 1997, 1811-1813

als Bestandteil eines LCDS-Gerätes, das sich für sehr schnelle Abtastungen eignen soll, beschrieben. In diesen Publikationen wird das in dem Zitat 4) verwendete Grundprinzip dahingehend verallgemeinert, daß ein Dispersions-

10 gitter in Verbindung mit einem spektralen Phasenschieber verwendet werden soll. Es werden auch nicht-mechanische Möglichkeiten zur Realisierung eines spektralen Phasenschiebers beschrieben, insbesondere ein akusto-optischer Modulator (AOM).

15

Nachteilig bei diesen Vorschlägen ist, daß die doppelte Passage des Lichts durch die aus Spektralgitter und optischem Phasenschieber bestehende Verzögerungseinheit einen sehr hohen Justieraufwand bedingt, weil ein exakter Wiedereintritt in eine Single-Mode-Lichtleitfaser erforderlich ist. Außerdem ist mit diesem Lichtweg ein hoher Intensitätsverlust verbunden.

In den Zitaten 5) und 6) werden einleitend weitere Lö-

25 sungsversuche des vorausgehenden Standes der Technik diskutiert:

- Eine Änderung der optischen Weglänge lässt sich durch piezoelektrische Dehnung von Lichtleitfasern (piezo-electric fiber stretching) erreichen. Dies erfordert allerdings ein relativ großes Bauteil und ermöglicht keine hinreichend hohe Wiederholrate. Außerdem ist der Energiebedarf hoch.

- Der longitudinal verschiebbare Spiegel im Referenzkanal kann durch einen rotierenden Glaswürfel ersetzt

werden (vgl. auch US Patent 6,144,456). Dies führt allerdings zu einer nichtlinearen Änderung der optischen Weglänge sowie zu einer von der optischen Weglänge abhängigen Dispersion. Auch in diesem Fall können die
5 erreichbaren Wiederholraten gehobene Ansprüche nicht befriedigen.

Auf dieser Grundlage liegt der Erfindung das technische Problem zugrunde, ein interferometrisches Gerät zur Ver-
10 fügung zu stellen, das mit vertretbarem Aufwand eine ex-
trem hohe Wiederholrate der Longitudinalabtastung ermög-
licht.

Dieses Problem wird gelöst durch ein Niederkohärenz-
15 interferometrisches Gerät zur lichtoptischen Abtastung eines Objektes durch Detektion der Position von lichtre-
mittierenden Stellen, die längs einer in einer Abta-
strichtung verlaufenden Abtaststrecke lokalisiert sind mit einem Kurzkohärenz-Interferometer, welches eine kurz-
20 kohärente Lichtquelle, einen Referenzreflektor und einen Detektor umfaßt, wobei das von der Lichtquelle ausgehende Licht mittels eines Strahlteilers auf zwei Lichtwege auf-
geteilt wird, wobei ein erster Teil des Lichts als Meß-
licht auf das Objekt gestrahlt und an einer lichtremit-
25 tierenden Stelle, die sich an einer einstellbaren Ab-
tastposition auf der Abtaststrecke befindet, reflektiert wird und ein zweiter Teil des Lichts als Referenzlicht auf den Referenzreflektor gestrahlt und dort reflektiert wird, die einstellbare Abtastposition auf der Abtast-
30 strecke zur Durchführung einer Abtastung variiert wird und das Meßlicht und das Referenzlicht an einer Strahlzu-
sammenführung so zusammengeführt werden, daß das resul-
tierende Detektionslicht beim Auftreffen auf den Detektor ein Interferenzsignal erzeugt, das eine Information über
35 die Stärke der Reflexion des Meßlichts in Abhängigkeit

von der jeweils eingestellten Abtastposition enthält, die dadurch gekennzeichnet ist, daß in dem Lichtweg des Detektionslichts zwischen der Strahlzusammenführung und dem Detektor eine variable Wellenlängenselektionseinrichtung 5 angeordnet ist, durch die das Detektionslicht in Abhängigkeit von seiner Wellenlänge derartig selektiert wird, daß zu dem Detektor selektiv bevorzugt Licht mit Wellenlängen gelangt, die einer vorbestimmten Folge von Wellenzahlen k entsprechen und zur Variation der Abtastposition 10 längs der Abtaststrecke unterschiedliche Folgen der Wellenzahlen k einstellbar sind.

Im Gegensatz zu den oben erläuterten bisherigen Versuchen zur Realisierung einer extrem schnellen Longitudinalabtastung befindet sich die für die Einstellung der Abtastposition verwendete Abtasteinheit (scanning unit) im Lichtweg des Detektionslichts nach der Zusammenfassung des Referenzlichts und des Meßlichts. Die Änderung der longitudinalen Abtastposition (longitudinal scan position) 20 basiert bei der Erfindung nicht auf einer Änderung der Relation der Länge von Meß- und Referenzlichtweg, sondern auf der Auswahl einer definierten Folge ausgewählter Wellenlängen des interferierenden Detektionslichts. Diese Auswahl wird mittels der Wellenlängenselektionseinrichtung 25 so variiert, daß die den ausgewählten Wellenlängen entsprechende Folge von Wellenzahlen (" k -Profil der Wellenlängenselektionseinrichtung") jeweils mit demjenigen k -Profil des Interferometers übereinstimmt, das der jeweiligen Abtastposition entspricht. Dies wird nachfolgend 30 anhand der Figuren näher erläutert.

Das bei der Erfindung benutzte physikalische Phänomen ist als sogenannte "Müller'sche Streifen" seit langem bekannt. Gelegentlich wurde es auch bei interferometrischen

Verfahren eingesetzt. In der DE 4309056 ist die Möglichkeit beschrieben, die Entfernung streuender Punkte bzw. deren Intensitätsverteilung in Richtung des Detektionsstrahls dadurch zu bestimmen, daß das Licht mittels eines
5 Spektralapparates spektral zerlegt und das Spektrum mit einem ortsempfindlichen Photoempfänger, beispielsweise einer Photodiodenzeile, detektiert wird. In dem Dokument wird erläutert, daß mit einer solchen Anordnung die Intensitätsverteilung durch Fouriertransformation des detektierten Spektrum ermittelt werden kann. Dieses Verfahren ist für schnelle Longitudinalabtastungen ungeeignet,
10 weil der Zeitbedarf für das Auslesen der Daten der Photodiode und die Verarbeitung in Form einer Fouriertransformation viel zu hoch ist. Außerdem ist das Detektorsignal wegen der erforderlichen guten Ortsauflösung sehr schwach und deswegen das S/N (signal/noise)-Verhältnis schlecht.
15

Durch die Erfindung werden mehrere wichtige Vorteile erreicht:
20

- Eine vollständige longitudinale Abtastung kann mit einer sehr hohen Wiederholrate (10 - 100 kHz) durchgeführt werden. Für viele Anwendungszwecke, insbesondere bei der laufenden Überwachung bewegter Objekte, ist wichtig, daß die Abtastfrequenz je Abtastpunkt noch wesentlich höher (1 - 10 MHz) sein kann.
- Der Meßkopf des Gerätes kann sehr gut miniaturisiert werden, weil die Abtasteinheit im Detektionslichtweg angeordnet ist, der über Lichtleitfasern mit den übrigen Teilen des Interferometers, die in einen kompakten Meßkopf integriert werden können, verbunden werden kann.

- Die Auswertung ist nicht von phasensensitiven Informationen im Detektionslichtweg abhängig und deswegen sehr robust. Auch das Risiko, daß durch Fehljustage Signalverzerrungen entstehen können, ist verhältnismäßig gering.
5
- Die von dem Detektor erfaßte Lichtintensität ist (insbesondere im Vergleich zu der DE 4309056) hoch, weil keine ortsselektive Detektion notwendig ist.
10
- Soweit sich die Dispersion des Lichts auf dem Meßlichtweg von der Dispersion auf dem Referenzlichtweg unterscheidet, führt dies bei vorbekannten Geräten zu Signalunschärfen. Im Rahmen der Erfindung können solche Dispersionsunterschiede durch eine entsprechende Anpassung des k-Profil der Wellenlängenselektioneinrichtung ausgeglichen werden.
15

Die Erfindung wird nachfolgend anhand von in den Figuren
20 dargestellten Ausführungsbeispielen näher erläutert. Die dargestellten und beschriebenen Besonderheiten können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltungen der Erfindung zu schaffen. Es zei-
gen:
25

Fig. 1 eine Prinzipdarstellung eines erfindungsgemäßen LCDS-Gerätes,

30 Fig. 2 eine Prinzipdarstellung eines Teils einer ersten Ausführungsform einer variablen Wellenlängenselektionseinrichtung,

35 Fig. 3 eine Prinzipdarstellung eines Teils einer zweiten Ausführungsform einer Wellenlängenselektioneinrichtung,

Fig. 4 ein Diagramm zur Verdeutlichung der analogen und digitalen Selektion durch eine räumliche Lichtselektionseinrichtung,

5 Fig. 5 eine grafische Darstellung der Überlagerung zweier unterschiedlicher Wellenlängen,

10 Fig. 6 eine grafische Darstellung des k-Profiles eines Interferometers bei Reflexion des Meßlichtes an einer lichtremittierenden Stelle in einer definierten Abtastposition,

15 Fig. 7 eine Prinzipdarstellung einer ersten Ausführungsform einer mechanisch veränderlichen räumlichen Lichtselektionseinrichtung,

Fig. 8 eine Prinzipdarstellung einer zweiten Ausführungsform einer mechanisch veränderlichen räumlichen Lichtselektionseinrichtung,

20 Fig. 8a einen vergrößerten Ausschnitt aus Figur 8,

25 Fig. 9 eine Prinzipdarstellung eines Teils einer dritten Ausführungsform einer Wellenlängenselektionseinrichtung,

Fig. 10 eine Prinzipdarstellung eines Teils einer vierten Ausführungsform einer Wellenlängenselektionseinrichtung,

30 Fig. 11 eine Prinzipdarstellung eines Teils einer fünften Ausführungsform einer Wellenlängenselektionseinrichtung,

Fig. 12 eine Prinzipdarstellung eines Teils einer, sechsten Ausführungsform einer Wellenlängenselektionseinrichtung.

5 Das in Fig. 1 dargestellte LCDS-Gerät 1 besteht aus einem Meßkopf 2, einer Abtasteinheit 3 und einer Elektronikeinheit 4. Die Darstellung ist nicht maßstäblich und stark schematisiert. Konstruktive Einzelheiten, die für die Funktion der Erfindung unwesentlich sind, sind nicht dargestellt.
10

Der Meßkopf 2 und die Abtasteinheit 3 enthalten die optischen Bauteile eines Kurzkohärenz-Interferometers 6. Das Licht einer Lichtquelle 7 wird über ein Objektiv 8 in eine Single-Mode Lichtleitfaser eingekoppelt, die den Lichtquellenarm 9 des Interferometers 6 bildet. Das in dem Lichtquellenarm 9 transportierte Primärlicht wird mittels eines als Strahlteiler wirkenden optischen Koplplers 10 gleichmäßig als Meßlicht 16 in einen Probenarm 12 und als Referenzlicht 22 in einen Referenzarm 11 aufgeteilt, in denen der Lichttransport ebenfalls in Lichtleitfasern erfolgt. In dem Probenarm 12 wird das Meßlicht 16 in ein Objektiv 13 ausgekoppelt, das aus Linsen 14 und 15 besteht. Die Linse 15 refokussiert das Meßlicht 16, 20 das durch ein Fenster 17 in Richtung auf ein Untersuchungsobjekt 18 gestrahlt wird.
25

Sowohl in dem Probenarm 12 als auch in dem Referenzarm 11 findet eine Reflexion statt, nämlich an einer lichtremittierten Stelle 20 des Meßobjektes 18 bzw. an einem Referenzreflektor 21. Das reflektierte Meßlicht 16 und das reflektierte Referenzlicht 22 werden in dem optischen Koppler 10 wieder zusammengeführt und in einem Detektionsarm 23 als Detektionslicht 24 zu dem Detektor 25 30 35 transportiert.

Insoweit ist die Konstruktion des Interferometers 6 im wesentlichen konventionell und muß nicht näher erläutert werden. Statt der dargestellten Interferometeranordnung kann auch eine andere bekannte Gestaltung verwendet werden. Insbesondere kann statt der faseroptischen Realisierung mit einem faseroptischen Koppler 10 eine Freistrahl-
5 anordnung mit einem Freistrahl-Strahlteiler verwendet werden. Es ist auch grundsätzlich möglich, gesonderte optische Elemente einerseits als Strahlteiler für die
10 Aufteilung des Lichts und andererseits als Strahlzusammenführung zu verwenden. Bevorzugt wird jedoch für die Strahlteilung und für die Strahlzusammenführung – wie dargestellt – das gleiche optische Element 10 verwendet.

- 15 Eine Besonderheit der in dem Meßkopf 2 enthaltenen Interferometeranordnung besteht darin, daß weder der Referenzarm 11 noch der Probenarm 12 Mittel enthält, durch die die Längen beider Arme (allgemeiner gesprochen die Längen des Meßlichtweges und des Referenzlichtweges) relativ
20 zueinander verändert werden, um die longitudinale Abtastposition längs einer in Fig. 1 gestrichelt dargestellten Abtaststrecke 27 in der durch den Pfeil 28 symbolisierten Abtastrichtung zu variieren. Die für die Durchführung der Längsabtastung erforderliche Variation
25 der Abtastposition wird vielmehr mittels der Abtasteinheit 3 bewirkt, die im Lichtweg des Detektionslichts 24 zwischen der Zusammenführung des Lichts durch den optischen Koppler 10 und dem Detektor 25 angeordnet ist.
- 30 Die Abtasteinheit 3 enthält eine insgesamt mit 30 bezeichnete variable Wellenlängenselektionseinrichtung, deren wesentliche Teile in den Figuren 2 und 3 in zwei unterschiedlichen Ausführungsformen deutlicher zu erkennen sind. Im dargestellten bevorzugten Fall schließt sie
35 eine Spektralzerlegungseinrichtung 31 ein, durch die das

Detektionslicht 24 in Abhängigkeit von der Lichtwellenlänge λ räumlich zerlegt wird. Die Spektralzerlegungseinrichtung 31 wird im dargestellten Fall von einem reflektierenden Spektralgitter 32 gebildet, jedoch können auch 5 andere in Spektralapparaturen gebräuchliche optische Elemente (Transmissionsgitter, Prismen) verwendet werden.

Das von dem Spektralgitter 32 abgestrahlte spektral zerlegte Licht wird mittels eines aus zwei Objektiven 34 und 35 bestehenden optischen Abbildungssystems 36 auf eine 10 räumliche Lichtselektionseinrichtung 38 fokussiert. Das erste Objektiv 34 kollimiert das aus der Eintrittspupille 37 der Wellenlängenselektionseinrichtung 30 austretende Licht auf die Spektralzerlegungseinrichtung 31, während das zweite Objektiv 35 das aus der Spektralzerlegungseinrichtung 31 austretende Licht auf die Lichtselektionseinrichtung 38 fokussiert.

Die räumliche Lichtselektronseinrichtung 38 weist Lichtpassagebereiche 39 und Sperrbereiche 40 auf, die längs 20 einer Linie alternieren, welche vorzugsweise gerade in einer in den Figuren mit x bezeichneten Raumrichtung verläuft. In jedem Fall muß die Linie der alternierenden Lichtpassage- und Sperrbereiche 39,40 quer zu der optischen Achse A des Detektionslichts 24 verlaufen, daß das 25 durch die Spektralzerlegungseinrichtung 31 wellenlängenabhängig aufgefächerte Licht derartig längs der Linie auf die alternierenden Lichtpassage- und Sperrbereiche auftrifft, daß es mit entsprechend wellenlängenabhängig alternierender Intensität zu dem Detektor 25 weitergeleitet 30 wird.

Dies kann sowohl mit einer in Figur 2 dargestellten Transmissionsanordnung als auch mit einer in Figur 3 dargestellten Reflexionsanordnung erreicht werden. Das Detektionslicht 24 passiert die Lichtpassagebereiche 39 mit 35

im Vergleich zu den Sperrbereichen 40 geringerer Schwächung. Beispielsweise gelangt in den Figuren 2 und 3 das auf die Mitte eines Lichtpassagebereiches 39 fallende Licht mit der Wellenlänge λ_1 nahezu ungeschwächt zu dem Detektor 25, während das mittig auf einen Sperrbereich auftretende Licht mit der Wellenlänge λ_2 nahezu vollständig blockiert wird. Das zwischen einem Lichtpassagebereich und einem Sperrbereich auftreffende Licht mit der Wellenlängen λ_3 wird partiell geschwächt. Anhand von Figur 3 wird deutlich, daß die Begriffe "Lichtpassagebereich" und "Sperrbereich" nicht beschränkend im Sinne einer Transmissionsanordnung zu verstehen sind, bei der das Licht durch ein optisches Element hindurchtritt. Vielmehr kann die alternierend unterschiedliche Schwächung auch durch ein reflektierendes optisches Element bewirkt werden.

Figur 4 verdeutlicht, daß sowohl bei einer transmittierenden räumlichen Lichtselektionseinrichtung 42 gemäß Figur 2 als auch bei einer in Figur 3 dargestellten reflektierenden Lichtselektionseinrichtung 43 die Transmission T bzw. Reflexion R des Elementes in Abhängigkeit von der Position x vorzugsweise analog (insbesondere sinusförmig) variiert. Die in der Figur gestrichelt dargestellte digitale Selektion ist jedoch ebenfalls möglich. Entscheidend ist, daß zu dem Detektor 25 selektiv bevorzugt Licht entsprechend dem definierten k-Profil der Wellenlängenselektionseinrichtung 30 gelangt. Bevorzugt sollte die Differenz zwischen der minimalen Lichtschwächung der dem k-Profil entsprechenden Wellenlängen und der maximalen Lichtschwächung der dazwischenliegenden "gesperrten" Wellenlängen ("Selektionskontrast") möglichst groß sein.

- Bei den in den Figuren 1 bis 3 dargestellten Ausführungsformen der Erfindung wird die variable Selektion von Lichtwellenlängen gemäß dem k-Profil der Wellenlängenselektionseinrichtung 30 dadurch erreicht, daß bei konstanter Winkeldispersion der wellenlängenabhängigen Zerlegung des Lichts der Abstand der alternierenden Lichtpassage- und Sperrbereiche 39,40 der räumlichen Lichtselektionseinrichtung 38 variabel ist. Alternativ besteht auch die (weiter unten anhand von Figur 11 erläuterte) Möglichkeit, eine Spektralzerlegungseinrichtung 31 mit variabler Winkeldispersion in Kombination mit einer konstanten räumlichen Lichtselektionseinrichtung 38 einzusetzen. Prinzipiell könnten auch beide Elemente variabel sein.
- Als transmittierende variable räumliche Lichtselektionseinrichtung 38 (Figuren 1 und 2) kann beispielsweise eine elektrisch ansteuerbare LCD-Maske verwendet werden. Dabei ist der minimale Abstand benachbarter Transmissionsbereiche durch den doppelten Pixelabstand der Maske gegeben.
- Größere Abstände können stufenweise als Vielfaches dieses Abstandes eingestellt werden. Ein näherungsweise analoger Transmissionsverlauf lässt sich erreichen, wenn der Pixelabstand sehr viel kleiner als der kürzeste gewünschte Abstand zwischen den Transmissionsbereichen ist.
- In dieser Hinsicht besonders vorteilhaft ist eine Reflexionsanordnung der in Figur 3 dargestellten Art, bei der ein DMD (Digital Mirror Device) als variable Lichtselektionseinrichtung verwendet werden kann. Solche Mikrospiegel-Arrays werden mit sehr kleinen Pixelabständen insbesondere für Projektionssysteme hergestellt.
- Nachfolgend wird das bei der Erfindung verwendete Prinzip anhand der Figuren 5 und 6 erläutert.

Figur 5 zeigt die Überlagerung zweier am Nullpunkt in Phase schwingender Wellenzüge 45 und 46 auf einer Strecke Δz . Am Ende der Strecke Δz befinden sich die Wellenzüge wiederum in Phase, interferieren also konstruktiv. Aus 5 der Figur kann man unmittelbar entnehmen, daß zwei Wellenzüge unter den dargestellten Bedingungen konstruktiv interferieren, wenn ihre Wellenlänge ein ganzzahliger Bruchteil von Δz ist, d.h. die Bedingung $\lambda = \Delta z/n$ gilt.

10 Zur Vereinfachung wurden hier nur zwei Wellenzüge betrachtet. In der Realität findet eine Interferenz vieler benachbarter Wellenzüge statt. Unter Berücksichtigung des Zusammenhangs zwischen der Wellenzahl k und der Wellenlänge λ ($k = 2\pi/\lambda$) läßt sich die allgemeine Regel ableiten, daß über eine Strecke Δz diejenigen Wellenzüge konstruktiv miteinander interferieren, deren Wellenzahlen 15 sich um

$$(1) \quad \Delta k = 2\pi/\Delta z$$

20 unterscheiden.

Eine solche Interferenz findet auch in dem Dektektionsarm eines Interferometers statt. Der Nullpunkt, von dem aus 25 die Strecke Δz zu messen ist, wird dabei durch denjenigen Punkt des Meßlichtweges definiert, für den die optischen Weglängen des Meßlichtweges und des Referenzlichtweges gleich sind. Er wird nachfolgend als Koinzidenzpunkt (point of coincidence of optical lengths) bezeichnet. Im 30 Rahmen der Erfindung hat der Koinzidenzpunkt eine doppelte Bedeutung:

- a) Einerseits markiert er den Punkt, für den die einleitend erläuterte Kohärenzbedingung erfüllt ist. Dies

ist bei den üblichen LCDS-Geräten Grundlage der longitudinalen Abtastung.

- b) Zugleich markiert er die Position, an der Phasengleichheit des Meßlichts und des Referenzlichts für alle Wellenlängen herrscht (sofern keine Dispersionsunterschiede bestehen). Der Koinzidenzpunkt ist deshalb der Nullpunkt der erfundungsgemäßen Longitudinalabtastung, bei der sich die jeweilige Abtastposition in einer Entfernung Δz von dem Koinzidenzpunkt befindet.

Figur 6 zeigt ein aus einer solchen Überlagerung resultierendes Interferenzspektrum (auf den Maximalwert normierte Intensität in Abhängigkeit von der Wellenlänge) einer Lichtquelle mit einer Zentralwellenlänge $\lambda_0 = 800 \text{ nm}$ und einer spektralen Bandbreite $\Delta\lambda_{\text{FWHM}} = 50 \text{ nm}$ für eine Interferenzstrecke $\Delta z = 100 \mu\text{m}$.

- Experimentell kann man ein solches Spektrum beobachten, wenn man im Meßlichtstrahl eines LCDS-Gerätes gemäß Figur 1 einen Reflektor an einem Punkt der Abtaststrecke 27 anordnet, der sich in einem Abstand Δz von dem Koinzidenzpunkt des Interferometers befindet und an der Position 25 der räumlichen Lichtselektionseinrichtung 38 den Intensitätsverlauf in x-Richtung, d.h. die Abhängigkeit der Intensität von der Wellenlänge (mit einem ortsempfindlichen oder verschiebbaren Detektor) längs der Linie 55 analysiert. Diesem Spektrum im λ -Raum entspricht das k-Profil des Interferometers im k-Raum für den eingestellten Wert Δz .

Mathematisch ergibt sich aus der obigen Gleichung (1) ein unmittelbarer Zusammenhang zwischen dem Abstand der Maxima des k-Profiles und Δz . Im k-Raum sind demzufolge die

Interferenzmaxima des k-Profiles des Interferometers äquidistant, sofern keine Dispersionsunterschiede zwischen dem Meßlichtweg und dem Referenzlichtweg berücksichtigt werden müssen. Eine longitudinale Abtastposition in einem 5 Abstand Δz von dem Koinzidenzpunkt lässt sich demzufolge einstellen, indem die variable Wellenlängenselektionseinrichtung 30 auf eine äquidistante Folge der Wellenzahl k eingestellt wird, deren Abstände Δk gemäß Gleichung 1 berechnet sind. Da der Zusammenhang zwischen λ und k 10 nicht linear (sondern reziprok) ist, ist das entsprechende Spektrum im λ -Raum nicht streng äquidistant. Bei Be- trachtung eines relativ schmalbandigen Spektrums, wie es in Figur 6 dargestellt ist, ist jedoch auch die Folge der selektierten λ -Werte näherungsweise konstant.

15 Wie bereits mehrfach erwähnt, setzen die vorstehenden Überlegungen voraus, daß keine Dispersion berücksichtigt werden muß, daß also die Abhängigkeit des Brechungsindex von der Wellenlänge in dem Meßlichtweg und in dem Refe- 20 renzlichtweg übereinstimmt. Da bei den gebräuchlichen LCDS-Geräten die Schärfe des Abtastsignals von Disper- sionsunterschieden negativ beeinflußt wird, werden übli- cherweise erhebliche Anstrengungen unternommen, durch geeignete Auswahl der Lichtleitmedien eine möglichst 25 weitgehende Angleichung der Dispersion beider Lichtwege zu erreichen. Im Rahmen der vorliegenden Erfindung ist es hingegen möglich, Dispersionsunterschiede zwischen dem Lichtweg des Meßlichts 16 und dem Lichtweg des Referenz- lichts 22 auf einfache Weise dadurch auszugleichen, daß 30 die Folge der Wellenzahlen k die von der Längenwellense- lektionseinrichtung 30 selektiert werden, derartig von einer äquidistanten Folge abweicht, daß der Dispersions- unterschied ausgeglichen wird. Mit anderen Worten wird 35 das k-Profil der Wellenlängenselektionseinrichtung an das unter Berücksichtigung der Dispersion nicht äquidistante

k-Profil des Interferometers angeglichen. Experimentell kann dies auf relativ einfache Weise dadurch geschehen, daß man auf der vorgesehenen Abtaststrecke 27 einen Reflektor nacheinander in unterschiedliche Abtastpositionen bringt und, beispielsweise wie oben beschrieben, das resultierende Spektrum im Detektionslichtweg des Interferometers mißt. Auf diese Weise erhält man für jede Abtastposition in dem vorgesehenen Δz -Bereich ein k-Profil des Interferometers. Die gleichen k-Profile werden zur Durchführung der Abtastung auch in der Wellenlängenselektionseinrichtung 30 eingestellt und zur Durchführung einer Longitudinalabtastung durchvariiert.

Nach Passage der Wellenlängenselektionseinrichtung 30 trifft das selektierte Licht 24 auf die lichtempfindliche Oberfläche eines Detektors 25. Der Detektor 25 ist nicht ortsselektiv, d.h. er wandelt die gesamte auf ihn auftreffende Lichtintensität in ein elektrisches Signal um, das an die Elektronikeinheit 4 weitergeleitet und dort ausgewertet wird. Bei der in den Figuren 1 bis 3 dargestellten bevorzugten Ausführungsform ist dem Detektor 25 jeweils eine Kondensorlinse 48 vorgelagert, die als lichtsammelndes Element 49 wirkt. Dadurch kann das gesamte durch die Wellenlängenselektionseinrichtung 30 hindurchtretende Licht mit einer vergleichsweise kleinen Detektorfläche erfaßt werden.

In der Elektronikeinheit 4 wird die Intensität des von dem Detektor 25 erfaßten Lichts in Abhängigkeit von der Einstellung des k-Profiles der Wellenlängenselektionseinrichtung 30 mittels einer Auswerteeinheit 50 erfaßt. Dabei ist jedem k-Profil der entsprechende Wert der Abtastposition Δz zugeordnet. Die Intensität des gemessenen Signals nach Abzug einer Grundlinie (d.h. die Abweichung der Intensität von dem Grundliniensignal) entspricht der Stärke

der Reflexion an der jeweils eingestellten Abtastposition.

Obwohl die Abtastung nicht auf einer Veränderung der Relation der optischen Weglängen des Meßlichtweges (gemessen bis zu dem Koinzidenzpunkt) und des Referenzlichtweges basiert, bedeutet dies nicht, daß die Position des Referenzreflektors 21 im Referenzlichtweg apparativ fixiert sein muß. Vielmehr kann es zum Zwecke der Justierung der Apparatur vorteilhaft sein, diese Position einstellbar zu machen. Während der Abtastung bleibt die Länge des Referenzlichtweges jedoch konstant.

In den Figuren 7 und 8 sind zwei unterschiedliche Ausführungsformen einer mechanisch veränderlichen Lichtselektionsseinrichtung 38 dargestellt, denen gemeinsam ist, daß auf einer drehbaren Scheibe 54 bzw. 56 streifenförmige Lichtpassage- und Sperrbereiche 39,40 vorgesehen sind, die so verlaufen, daß sich ihr längs einer über die Scheibenoberfläche verlaufenden Linie 55 gemessener Streifenabstand bei der Drehung der Scheibe ändert. Die Lichtpassage- und Sperrbereiche können beispielsweise durch photolithographische Bearbeitung von metallisierten Glasplatten in beliebiger Form erzeugt werden.

Bei der in Figur 7 dargestellten Scheibe 54 laufen die Lichtpassagebereiche 39,40 gerade und parallel. Die hinsichtlich der Wellenlängenselektion wirksame Linie 55 (d.h. die Linie, auf die das Spektrum der Spektralzerlegungseinrichtung abgebildet wird) verläuft so, daß sich der effektive Abstand der Bereiche 39,40 bei der Drehung der Scheibe 54 ändert.

Bei der in den Figuren 8 und 8a dargestellten Ausführungsform verlaufen die Lichtpassage- und Sperrbereiche

39,40 am Rand der Scheibe 56 jeweils abschnittsweise über eine Länge l dergestalt aufeinander zu, daß ihr Abstand bezogen auf die Linie 55, auf die das Spektrum projiziert wird, während der Drehung innerhalb des Abschnittes 57 jeweils abnimmt. Während des Durchlaufs eines Abschnitts 57 findet jeweils ein vollständiger Abtastvorgang statt, so daß eine sehr hohe Abtastgeschwindigkeit erreicht wird. Beispielsweise lassen sich mit einer Rotation von 100 Umdrehungen pro Sekunde und 100 Abschnitten 57 (mit jeweils replizierten Strukturen) Wiederholraten von 10 kHz erzielen. Da die Linienstruktur der Bereiche 39,40 beliebig gekrümmmt sein kann, ist eine Anpassung der Lichtselektion an Dispersionsunterschiede im Meß- und Referenzlichtweg möglich.

15 Im Zusammenhang mit den Figuren 2 und 3 wurde bereits die Möglichkeit beschrieben, für die räumliche Lichtselektionseinrichtung 38 ein optisches Element (LCD, DMD) zu verwenden, dessen Transmission oder Reflexion in unterschiedlichen Teilbereichen einer Fläche selektiv elektro-nisch einstellbar ist. Ein weiteres Beispiel für dieses allgemeine Prinzip zeigt Figur 9. Dabei wird das von der Spektralzerlegungseinrichtung 31 kommende Detektionslicht 24 auf die Oberfläche eines AOM (Acousto-Optical Modula-tor) fokussiert. In dem AOM werden durchlaufende Schall-wellen erzeugt. Die resultierenden Schwingungen in dem (beispielsweise aus TeO₂ bestehenden) Kristall führen dazu, daß unter einem der Beugung erster Ordnung entspre-chenden Winkel eine räumliche Lichtselektion stattfindet. 20 Der Detektor 25 und die Kondensorlinse 48 sind unter die-sem Beugungswinkel zu der optischen Achse des auf den AOM 59 auftreffenden Lichts angeordnet. Im Gegensatz zu den zuvor beschriebenen Ausführungsformen sind die Lichtspas-sage- und Sperrbereiche 39,40 der von dem AOM 59 gebilde-nen räumlichen Lichtselektionseinrichtung 38 auf deren 25

Fläche nicht stationär, sondern laufen ständig in x-Richtung durch. Die Funktion der Erfindung wird hierdurch jedoch nicht beeinträchtigt.

5 Figur 10 verdeutlicht, daß die in der Abtasteinheit 30 erforderliche optische Abbildung nicht notwendigerweise mittels zusätzlicher Bauelemente bewirkt werden muß. Beispielsweise kann als Spektralzerlegungseinrichtung 31 ein gekrümmtes Spektralgitter 60 zu verwenden, durch das nicht nur die spektrale Zerlegung, sondern die Kollimation 10 des aus der Eintrittspupille 37 austretenden Lichts auf die räumliche Lichtselektionseinrichtung 38 bewirkt wird.

15 Wie bereits erwähnt, verdeutlicht Figur 11 eine alternative Ausführungsform der variablen Wellenlängenselektionseinrichtung 30, bei der eine Spektralzerlegungseinrichtung 31 mit variabler Spreizung in Kombination mit einer konstanten räumlichen Lichtselektionseinrichtung 38 verwendet wird. In diesem Fall wird das Detektionslicht 20 nach dem Austritt aus der Eintrittspupille 37 und Kollimation durch das Objektiv 34 durch einen AOBD (Acousto-Optic Beam Deflector) spektral zerlegt. Der AOBD bildet ein variables Spektralgitter, dessen Gitterabstand von 25 der angelegten elektrischen Frequenz abhängig ist. Die resultierenden Spektralanteile werden mittels des zweiten Objektivs 35 auf eine konstante räumliche Lichtselektionseinrichtung 38 fokussiert.

30 Figur 12 zeigt eine variable Wellenlängenselektionseinrichtung 30, die sich von den zuvor beschriebenen Ausführungsformen insofern grundsätzlich unterscheidet, als sie nicht auf der Kombination einer Spektralzerlegungseinrichtung mit einer räumlichen Selektionseinrichtung basiert. Das aus dem Detektionslichtleiter 23 austretende 35

Detektionslicht 24 wird dabei in einen Lichtleiter 64 mit teilreflektierenden Endflächen eingekoppelt, dessen Brechungsindex abhängig von der elektrischen Feldstärke ist. Der Lichtleiter 64 ist von zwei Elektroden 65, 66 umgeben, 5 an die eine variable Spannung V angelegt werden kann, um die elektrische Feldstärke in dem Lichtleiter 64 zu variieren. Aufgrund des Fabry-Perot-Effektes resultiert die mit der Änderung der elektrischen Feldstärke verbundene Änderung des Brechungsindex in dem Lichtleiter 64 in einer Änderung des optischen Lichtweges, die wiederum durch 10 Interferenzen eine Lichtwellenselektion bewirkt.

5

Ansprüche

1. Niederkohärenz-interferometrisches Gerät zur lichtoptischen Abtastung eines Objektes (18) durch Detektion der Position von lichtremittierenden Stellen (20), die längs einer in einer Abtastrichtung (28) verlaufenden Abtaststrecke (27) lokalisiert sind mit einem Kurzkohärenz-Interferometer (6), welches eine kurzkohärente Lichtquelle (7), einen Referenzreflektor (21) und einen Detektor (25) umfaßt, wobei
 - das von der Lichtquelle (7) ausgehende Licht mittels eines Strahlteilers (10) auf zwei Lichtwege (11,12) aufgeteilt wird, wobei ein erster Teil des Lichts als Meßlicht (16) auf das Objekt gestrahlt und an einer lichtremittierenden Stelle (20), die sich an einer einstellbaren Abtastposition auf der Abtaststrecke (27) befindet, reflektiert wird und ein zweiter Teil des Lichts als Referenzlicht (22) auf den Referenzreflektor (21) gestrahlt und dort reflektiert wird,
 - die einstellbare Abtastposition auf der Abtaststrecke (27) zur Durchführung einer Abtastung variiert wird und
 - das Meßlicht (16) und das Referenzlicht (22) an einer Strahlzusammenführung (10) so zusammengeführt werden, daß das resultierende Detektionslicht (24) beim Auftreffen auf den Detektor ein Interferenzsignal erzeugt, das eine Information über die Stärke der Reflexion des Meßlichts in

Abhängigkeit von der jeweils eingestellten Abtastposition enthält,

dadurch gekennzeichnet, daß

in dem Lichtweg des Detektionslichts zwischen der Strahlzusammenführung (10) und dem Detektor (25) eine variable Wellenlängenselektionseinrichtung (30) angeordnet ist, durch die das Detektionslicht (24) in Abhängigkeit von seiner Wellenlänge derartig selektiert wird, daß zu dem Detektor (25) selektiv bevorzugt Licht mit Wellenlängen gelangt, die einer vorbestimmten Folge von Wellenzahlen k entsprechen und zur Variation der Abtastposition längs der Abtaststrecke (27) unterschiedliche Folgen der Wellenzahlen k einstellbar sind.

15

2. Gerät nach Anspruch 1, **dadurch gekennzeichnet, daß** die Dispersion in den Lichtwegen des Meßlichts (16) und des Referenzlichts (22) im Spektralbereich der Lichtquelle (7) im wesentlichen übereinstimmt und die Folge der Wellenzahlen k äquidistant ist.

20

3. Gerät nach Anspruch 1, **dadurch gekennzeichnet, daß** sich die Dispersion in dem Lichtweg des Meßlichts (16) von der Dispersion in dem Lichtweg des Referenzlichts (22) im Spektralbereich der Lichtquelle (7) unterscheidet und die Folge der Wellenzahlen k derartig von einer äquidistanten Folge abweicht, daß der Dispersionsunterschied ausgeglichen wird.

25

4. Gerät nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** die variable Wellenlängenselektionseinrichtung (30) eine Spektralzerlegungseinrichtung (31) einschließt, durch die das Detektionslicht (24) in Abhängigkeit

- von der Wellenlänge des Detektionslichts (24) räumlich zerlegt wird,
- 5 eine räumliche Lichtselektionseinrichtung (38) mit längs einer Linie alternierenden Lichtpassagebereichen (39) mit geringerer Lichtschwächung und Sperrbereichen (40) mit höherer Lichtschwächung einschließt, wobei das Detektionslicht (24) die Lichtpassagebereiche (39) mit im Vergleich zu den Sperrbereichen (40) geringerer Schwächung passiert, und
- 10 ein optisches Abbildungssystem (34,35) einschließt, durch das das von der Spektralzerlegungseinrichtung (31) abgestrahlte Licht auf die räumliche Lichtselektionseinrichtung (38) fokussiert wird,
- wobei die Spreizung der wellenlängenabhängigen Zerle-
15 gung des Detektionslichts (24) durch die Spektralzer- legungseinrichtung (31) und der Abstand der alternie- renden Durchlaß- und Sperrbereiche (39,40) der Licht- selektionseinrichtung (38) zur Einstellung der Folge von Wellenzahlen k relativ zueinander variabel sind.
- 20
5. Gerät nach Anspruch 4, dadurch gekennzeichnet, daß die Winkeldispersion der wellenlängenabhängigen Zerlegung des Lichts durch die Spektralzerlegungseinrichtung (31) konstant und der Abstand der alternierenden Lichtpassage- und Sperrbereiche (39,40) der Lichtselektionseinrichtung (38) variabel ist.
- 25
6. Gerät nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Spektralzerlegungseinrichtung (31) ein optisches Gitter (32) einschließt.
- 30

7. Gerät nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß mindestens ein optisches Element (60) des optischen Abbildungssystems (36) zugleich Bestandteil der Spektralzerlegungseinheit (31) ist.
5
8. Gerät nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die räumliche Lichtselektionseinrichtung ein reflektierendes optisches Element (43) aufweist, auf das das Detektionslicht (24) eingestrahlt wird und das in den Lichtpassagebereichen (39) und in den Sperrbereichen (49) selektiv unterschiedlich reflektiert.
10
9. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lichtselektionseinrichtung (38) eine drehbare Scheibe (54,56) mit streifenförmigen Lichtpassage- und Sperrbereichen (39,40) aufweist, die so verlaufen, daß sich ihr längs einer über die Scheibenoberfläche verlaufende Linie (55) gemessener Streifenabstand bei der Drehung der Scheibe (54,55) ändert.
15
10. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die räumliche Lichtselektionseinrichtung (38) ein optisches Element (42,43,59) einschließt, dessen Reflexion oder Transmission in unterschiedlichen Teilbereichen einer Fläche selektiv elektronisch einstellbar ist.
25
- 30 11. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in dem Lichtweg des Detektionslichts (24) zwischen der Lichtselektionseinrichtung (38) und dem Detektor (25) ein lichtsammelndes optisches Element (49) angeordnet ist, um das

Detektionslicht (24) auf den Detektor (25) zu komprimieren.

1 / 6

Fig. 1

2 / 6

Fig. 2**Fig. 3****Fig. 4**

Fig. 5

Fig. 6

4 / 6

Fig. 7**Fig. 8****Fig. 8a**

REST AVAILABLE COPY

5 / 6

Fig. 9**Fig. 10**

6 / 6

Fig. 11**Fig. 12**

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/DE 03/00288

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01B9/02 G01B11/24 G01N21/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01B G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, COMPENDEX, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 111 645 A (TEARNEY GUILLERMO ET AL) 29 August 2000 (2000-08-29) cited in the application abstract; figures 1A,1B,2-4 column 5, line 11 -column 6, line 46	1-11
A	US 6 144 456 A (CHAVANNE PHILIPPE ET AL) 7 November 2000 (2000-11-07) cited in the application abstract; figures 1-4 column 4, line 7 -column 7, line 31	1-11

Further documents are listed in continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

24 June 2003

Date of mailing of the International search report

03/07/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Beyfuß, M

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/DE 03/00288

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KWONG K F: "400-HZ MECHANICAL SCANNING OPTICAL DELAY LINE" OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 18, no. 7, 1 April 1993 (1993-04-01), pages 558-560, XP000367984 ISSN: 0146-9592 cited in the application the whole document -----	1-11
A	DE 100 33 189 C (KNUETTEL ALEXANDER) 6 September 2001 (2001-09-06) abstract; figures 1-6 column 5, line 34 -column 8, line 43 -----	1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/DE 03/00288

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 6111645	A	29-08-2000	US	6134003 A	17-10-2000
			US	5748598 A	05-05-1998
			US	5784352 A	21-07-1998
			US	5459570 A	17-10-1995
			US	6282011 B1	28-08-2001
			US	2001036002 A1	01-11-2001
			AU	1977597 A	16-09-1997
			EP	0883793 A1	16-12-1998
			JP	2000503237 T	21-03-2000
			JP	2002214127 A	31-07-2002
			US	6485413 B1	26-11-2002
			WO	9732182 A1	04-09-1997
			US	6160826 A	12-12-2000
			US	6564087 B1	13-05-2003
			US	6501551 B1	31-12-2002
			US	5956355 A	21-09-1999
			WO	9723870 A1	03-07-1997
			WO	9533970 A1	14-12-1995
			DE	69227902 D1	28-01-1999
			DE	69227902 T2	17-06-1999
			EP	0581871 A1	09-02-1994
			JP	6511312 T	15-12-1994
			WO	9219930 A1	12-11-1992
			US	5465147 A	07-11-1995
			US	5321501 A	14-06-1994
			EP	0981733 A1	01-03-2000
			JP	2001527659 T	25-12-2001
			WO	9852021 A1	19-11-1998
US 6144456	A	07-11-2000	AT	225929 T	15-10-2002
			WO	9635100 A1	07-11-1996
			DE	59609787 D1	14-11-2002
			EP	0877913 A1	18-11-1998
DE 10033189	C	06-09-2001	DE	10033189 C1	06-09-2001
			AU	7836401 A	21-01-2002
			WO	0204884 A1	17-01-2002
			EP	1301751 A1	16-04-2003

INTERNATIONALER RECHERCHENBERICHT

Inte des Aktenzeichen
PCT/DE 03/00288

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G01B9/02 G01B11/24 G01N21/47

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G01B G01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, COMPENDEX, PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 6 111 645 A (TEARNEY GUILLERMO ET AL) 29. August 2000 (2000-08-29) in der Anmeldung erwähnt Zusammenfassung; Abbildungen 1A,1B,2-4 Spalte 5, Zeile 11 -Spalte 6, Zeile 46	1-11
A	US 6 144 456 A (CHAVANNE PHILIPPE ET AL) 7. November 2000 (2000-11-07) in der Anmeldung erwähnt Zusammenfassung; Abbildungen 1-4 Spalte 4, Zeile 7 -Spalte 7, Zeile 31	1-11
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (Wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

24. Juni 2003

Absendedatum des Internationalen Rechercheberichts

03/07/2003

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Beyfuß, M

INTERNATIONALER RECHERCHENBERICHT

Int. Aktenzeichen
PCT/DE 03/00288

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	KWONG K F: "400-HZ MECHANICAL SCANNING OPTICAL DELAY LINE" OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, Bd. 18, Nr. 7, 1. April 1993 (1993-04-01), Seiten 558-560, XP000367984 ISSN: 0146-9592 in der Anmeldung erwähnt das ganze Dokument ----	1-11
A	DE 100 33 189 C (KNUETTEL ALEXANDER) 6. September 2001 (2001-09-06) Zusammenfassung; Abbildungen 1-6 Spalte 5, Zeile 34 -Spalte 8, Zeile 43 ----	1-11

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int'l	Ihre Aktenzeichen
PCT/DE 03/00288	

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 6111645	A	29-08-2000	US	6134003 A	17-10-2000
			US	5748598 A	05-05-1998
			US	5784352 A	21-07-1998
			US	5459570 A	17-10-1995
			US	6282011 B1	28-08-2001
			US	2001036002 A1	01-11-2001
			AU	1977597 A	16-09-1997
			EP	0883793 A1	16-12-1998
			JP	2000503237 T	21-03-2000
			JP	2002214127 A	31-07-2002
			US	6485413 B1	26-11-2002
			WO	9732182 A1	04-09-1997
			US	6160826 A	12-12-2000
			US	6564087 B1	13-05-2003
			US	6501551 B1	31-12-2002
			US	5956355 A	21-09-1999
			WO	9723870 A1	03-07-1997
			WO	9533970 A1	14-12-1995
			DE	69227902 D1	28-01-1999
			DE	69227902 T2	17-06-1999
			EP	0581871 A1	09-02-1994
			JP	6511312 T	15-12-1994
			WO	9219930 A1	12-11-1992
			US	5465147 A	07-11-1995
			US	5321501 A	14-06-1994
			EP	0981733 A1	01-03-2000
			JP	2001527659 T	25-12-2001
			WO	9852021 A1	19-11-1998
US 6144456	A	07-11-2000	AT	225929 T	15-10-2002
			WO	9635100 A1	07-11-1996
			DE	59609787 D1	14-11-2002
			EP	0877913 A1	18-11-1998
DE 10033189	C	06-09-2001	DE	10033189 C1	06-09-2001
			AU	7836401 A	21-01-2002
			WO	0204884 A1	17-01-2002
			EP	1301751 A1	16-04-2003