#### Image Derivatives

LE Thanh Sach



Image model

First-order derivative

Gradient

Second-order derivative

# Chapter 3 Image Derivatives

Image Processing and Computer Vision

## LE Thanh Sach

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

#### **Overview**

LE Thanh Sach



Image model

First-order derivative

Gradient

Second-order derivative

1 Image model

2 First-order derivative

**3** Gradient

### **Image Model**

## **Image model**

- Image is a function of two variables x and y: f(x,y)
- It can seen as a surface on 2D-space.



An gray image



Mesh model of the image

**Image Derivatives** 

LE Thanh Sach



#### Image model

First-order derivative

Gradient

### Derivative of one variable

Taylor expansion for  $f(x + \Delta x)$ :

$$f(x + \Delta x) = f(x) + \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) + O(\Delta x^3)$$
(1)

## First-order derivative from Eq. (1)

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• This approximation has error  $O(\Delta x)$ 

**Image Derivatives** 

LE Thanh Sach



Image model

derivative

Gradient

#### Derivative of one variable

Taylor expansion for  $f(x - \Delta x)$ :

$$f(x - \Delta x) = f(x) - \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) - O(\Delta x^3)$$
(2)

## First-order derivative from Eq. (2)

$$f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

• This approximation has error  $O(\Delta x)$ 

**Image Derivatives** 

LE Thanh Sach



Image model

demirative

Gradient

## First-Order derivative of image

### Partial Derivatives on x

| Derivatives                                                                                | Kernel of filters                                     |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $\frac{\partial f(x,y)}{\partial x} = \frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}$             | $H_{conv} = \begin{bmatrix} 1 & -1 \end{bmatrix}$     |
| $\frac{\partial f(x,y)}{\partial x} = \frac{f(x,y) - f(x - \Delta x, y)}{\Delta x}$        | $H_{conv} = \begin{bmatrix} 1 & -1 \end{bmatrix}$     |
| $\frac{\partial f(x,y)}{\partial x} = \frac{f(x+\Delta x,y) - f(x-\Delta x,y)}{2\Delta x}$ | $H_{conv} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$ |

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

Gradient

## First-Order derivative of image

## Partial Derivatives on y

| Derivatives                                                                                | Kernel of filters                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| $\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$           | $H_{conv} = \begin{bmatrix} 1\\-1 \end{bmatrix}$    |  |  |  |  |
| $\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y) - f(x,y - \Delta y)}{\Delta y}$         | $H_{conv} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$  |  |  |  |  |
| $\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y+\Delta y) - f(x,y-\Delta y)}{2\Delta y}$ | $H_{conv} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ |  |  |  |  |

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

Gradient

## First-Order derivative of image

Other kernels for taking derivatives

|     | Name    | Deriva                                     | tive on x                                                | Derivative on y                    |     |    |                         |                                  |
|-----|---------|--------------------------------------------|----------------------------------------------------------|------------------------------------|-----|----|-------------------------|----------------------------------|
|     |         |                                            | $\left[\begin{array}{ccc} -1 & 0 & 1 \end{array}\right]$ |                                    | -1  | -1 | -1                      | ВК                               |
|     | Prewitt | $H_x =$                                    | $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$               | $H_y =$                            | 0   | 0  | 0                       | Image model                      |
|     |         |                                            | $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$               |                                    | 1   | 1  | 1                       | First-order derivative  Gradient |
|     |         | $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ |                                                          | $\begin{bmatrix} -1 \end{bmatrix}$ | -2  | -1 | Second-order derivative |                                  |
|     | Sobel   | $H_x =$                                    | $\begin{bmatrix} -2 & 0 & 2 \end{bmatrix}$               | $H_y =$                            | 0   | 0  | 0                       |                                  |
|     |         |                                            | $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$               |                                    | 1   | 2  | 1                       |                                  |
| Rol | Dahaut  | 11                                         | $\begin{bmatrix} -1 & 0 \end{bmatrix}$                   | 77                                 | 0 - | -1 |                         |                                  |
|     | Robert  | $H_x =$                                    | 0 1                                                      | $H_y =$                            | 1   | 0  |                         |                                  |

**Image Derivatives** 

LE Thanh Sach



### **Gradient**

## **Definition**

Gradient at a pixel in a image f(x,y) is a vector  $\nabla f$ . It is defined as

$$\nabla f = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

#### Shorted form

Let  $F_x$  and  $F_y$  be  $\frac{\partial f(x,y)}{\partial x}$  and  $\frac{\partial f(x,y)}{\partial y}$  respectively.  $\nabla f = \left[ \begin{array}{c} F_x \\ F_y \end{array} \right]$ 

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

#### Gradient

# BK TP.HCM

Image model

First-order derivative

#### Gradient

Second-order derivative

## Magnitude and angle of gradient vectors

Magnitude of gradient is computed by:

$$|\nabla f| = \sqrt{F_x^2 + F_y^2}$$

- Magnitude of a gradient at pixel (u,v) tells us the rate of change of intensities at (u,v)
- In other words, it tells us the edge passing (u,v) is strong or not.
- 2 Angle of gradient is computed by:

$$\theta(\nabla f) = tan^{-1}(\frac{F_y}{F_x})$$

• Angle of a gradient at pixel (u,v) tells us the orientation of edge passing (u,v)

## Second-order Derivative of one variable

Second-order differential can be approximated by

$$f''(x) \cong f'(x) - f'(x+1)$$

First-order derivatives can be approximated as

$$f'(x) \cong f(x) - f(x-1)$$
$$f'(x+1) \cong f(x+1) - f(x)$$

#### Second-order derivative

$$f''(x) \cong -f'(x-1) + 2f'(x) - f(x+1)$$

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

Gradient



Image model

First-order derivative

Gradient

- 1 Second-order derivative on x
  - Math:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = -f(x-1,y) + 2f(x,y) - f(x+1,y)$$

- Kernel:  $H_{conv} = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$
- 2 Second-order derivative on y
  - Math:

$$\frac{\partial^2 f(x,y)}{\partial y^2} = -f(x,y-1) + 2f(x,y) - f(x,y+1)$$

• Kernel: 
$$H_{conv} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

## Second-Order derivative of image

## Second-order derivative on x and y

Laplace operator:

$$\nabla^2 f = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

Math:

$$\nabla^2 f = -f(x-1,y) + 2f(x,y) - f(x+1,y) - f(x,y-1) + 2f(x,y) - f(x,y+1)$$

• Kernel: 
$$H_{conv} = \left[ egin{array}{ccc} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{array} \right]$$

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

Gradient

## Second-Order derivative of image

## Second-order derivative on x, y, and diagonals:

Extended Laplace operator:

Math:

$$\nabla^2 f = -f(x-1,y) + 2f(x,y) - f(x+1,y)$$
$$-f(x,y-1) + 2f(x,y) - f(x,y+1)$$

• Kernel: 
$$H_{conv} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

**Image Derivatives** 

LE Thanh Sach



Image model

First-order derivative

Gradient