Digital music interface for motor rehabilitation: a motion capture and machine learning approach

Raquel Lucena Peris

Supervisor: Rafael Ramírez Menéndez

July 2023

Sound Music & Technology - MTG

upf. Introduction STROKE

Interruption of blood flow Nerve cells die Function may be changed

Affect the quality of life and social participation

Introduction MUSIC THERAPY

Utilizes music, rhythm, and beat to improve patient's neurological function and mood. Singing, playing or moving (strong sense of rhythm) or listening (preferences)

- 1. <u>Physical intervention</u>: physical strength, balance, movement, coordination and motor recovery
- 2. Stimulate communication: (Aphasia) speech stimulation and improve pronunciation
- 3. Cognitive Stimulations: improve attention, memory problem, depression or anxiety

Introduction MUSIC, TECHNOLOGY & STROKE

- Time with a music therapist is limited
- Importance to continue with music therapy at home
- Fun and motivating way to practice repetitions of activities that stimulate muscles.
- The more you practice, the better you will get.

Products

<u>MusicGlove</u>, <u>GenVirtual</u> and <u>DrumsApp</u> uses movements synchronized with music to improve one concret area function rehabilitation.

Not adaptive to gestures or body parts

upf. Introduction: MOTIVATION

- Stroke affect patient's quality life.
- Limited number of professionals, computer assisted care helps
- Speed up routine procedures
- Digital music technologies:
 - low-cost and flexible approach for home practice.
 - gamification music technique to motivate and commit people with rehabilitation exercises
- Traditional instrument is difficult to play, the digital interface can be a good.
- Recovery motor function as music has a great impact in rehabilitation as auditory cortex is connected to the motor cortex

upf. Introduction: OBJECTIVES

- Works in Real-Time
- Personalized Interface
- Learns in Real-Time the user capabilities by Machine Learning
- Has a validation method

upf.

Introduction: RESEARCH QUESTION

- Is the combination of music and artificial intelligence useful for stroke rehabilitation?
 - Utility, profitability and advantages
 - Engaging
- Is the artificial intelligence digital music interface comparable to a musical instrument while doing stroke rehabilitation?
 - Mapping between gesture and sounds
 - Autonomy and independence
 - Allow expressiveness

u*pf*.

Methodology: MATERIALS

HARDWARE

- Computer and webcam
- Loudspeaker
- Mouse or touchscreen

SOFTWARE

- Python
- Processing
- Wekinator
- Sounds
- Questionnaires

upf. Methodology: PIPELINE

Methodology: TRAINING DATA

Wekinator ML Algorithm

Python Executable

Methodology: REAL-TIME TEST

Methodology: PROCESSING INTERFACE

Methodology: PYTHON and MODELS

MediaPipe: Google Hands (42) and Face (468) Landmark

3D landmarks in Real-Time

Movenet:

detection

TensorFlow 17 keypoints (x, y, p)

Python order

- Download and import the packages
- **Initialize Models**
- Set the port were keypoints are send as OSC messages
- Open Camera
- Processing frame videos
- **Extract keypoints**
- Send to Wekinator

Methodology: WEKINATOR and ML

- Set project parameters
- Record each class
- Train: KNN
- **Run** (Real Time Output)

Methodology: PROCESSING and SOUNDS

Library of sounds

• 3 Audio Drums

Sounds created

Using Sine Signal and Changing Frequency

Not two consecutive sounds of the same class

To avoid sound misclassified gestures, a time difference between sounds is set

upf. Methodology: SESSIONS

Healthy-Participants

- 5' explain system and train classes
- 3' 2-classes test
- 3' 3-classes test
- 2' User's form

Stroke Patients: Centre Fòrum - Parc de Salut Mar

First session

- 10-15' explain system and train classes
- 10-15' real time rehabilitation
- 2' Music Therapist and PhysioTherapist form

Other Sessions

- 5' open all the system
- 5' training more data if needed
- 20' Exercises and pause
- 2' PhysioTherapist form

upf. Methodology: QUESTIONNAIRES

Healthy participants

Compare traditional music instrument with digital music interface

Physiotherapist

- Fugl-Meyer Assessment (<u>FMA</u>) to assess motor functioning.
- Free answers to other exercices

Music Therapist

• Study the understability and the utility of the interface

Methodology: Python vs. Processing

PYTHON	PROCESSING
Only 1 program language 🕏	2 program language 😵 Wekinator
Easier to train for users 🗸	More tricky to train 😵
Difficult to add new training data	Easier to add new training data
Difficult to code 😝	Easier to code
Simple interface 😵	Better visual designed onterface
Huge Delay 0.3s	Slight Delay 0.05s
More space needed (all images are saved)	Less data saved 🗸

Results: ML ALGORITHMS PYTHON TESTING

MoveNet						
Classes considered	SVM	KNN	Decision Tree	AdaBoost	Naive Bayes	
2	0.68	0.98	0.9	0.92	0.96	
8	0.125	1	0.75	0.625	0.94	
Hand MediaPipe						
2	0.77	1	0.9	0.92	1	
10	0.36	1	0.92	0.68	1	

3

Count of Records

3

Count of Records

0

Results: HEALTHY PARTICIPANTS (12)

Yes

ė

Comparison of tireness in digital vs traditional instruments Music education received

Comparison of rhythmic vs note accompaniament preferences Music education received

Degree of synchronization between gesture and sound Music education received

Training dig. vs trad.

No

Sync. gesture & sound

Comparison of keeping tempo in digital vs traditional instruments Music education received

Expresiveness controled by the music output

Results: MUSIC THERAPISTS (4)

How well did the system allow the user to express his musical intentions? If there had been errors in the performance, would they have been noticeable?

Results: DEMO Centre Fòrum - Parc de Salut Mar

Results: PATIENTS (2)

	PATIENT 1	PATIENT 2
Session 1	Extension of arms & shoulders: from center to back of the head. Pain when goes down to the neck. Rod of 200g of weight Exercise well and with repetition	Raise the arm from the rest position to above the head, keeping it straight at all times. Performs exercise well. Gets tired in each turn Stop few seconds and control breathing
Session 2		Same exercise Improvement in resistance on the movement Better synchronization with piano

Discussion: INTERFACE

Less tiring
Less practice needed
Clear available inputs
Clearity bt parameters and gestures
Rhythmic accompaniment

Difficult keeping tempo
Less expressiveness
Noticeable errors

Discussion: LIMITATIONS

Lack of another PC

Very few patients

No professional aid

Wekinator accuracy

Discussion: FUTURE WORK

Complete the study

- Large-Scale clinical trials are needed:
 - 3 more sessions expected
- Control vs. experimental group

Improving cognitive and rehabilitation game

- Not random sequence
- Known melodies sequences

Avoid delay.

- Frame Camera
- Explore other language programs
 - C++

Improve sync. and accuracy

- Change Wekinator for Python
- Train, Validation & Test

Conclusion: OBJECTS REVIEW

- Works in Real-Time
- Personalized Interface
- Learns in Real-Time the user capabilities by Machine Learning

Has a validation method 🔀

upf.

Conclusion: RESEARCH QUESTION

• Is the combination of music and artificial intelligence useful for stroke rehabilitation?

YES: autonomy and learns how to structure the movements

But: Longer period of time, delay, misclassification

- Is the artificial intelligence digital music interface comparable to a musical instrument while doing stroke rehabilitation?
 - More or less.
 - + Less tired and easy to play.
 - No expressiveness and difficult tempo

