Kalman Filter and Particle Filter

Date: May 23, 2019

Presenting by,
Nilotpal Pramanik
IIIT Allahabad, India
Intern, Takeda Lab
(Prof. Alexander Carballo
and Prof. Kazuya Takeda)
Nagoya University, Japan

Kalman Filter

Kalman Filter

Prediction

Project the state ahead

$$X_{k+1} = AX_k + BU_k$$

Project the error covariance ahead

$$P_{k+1} = AP_kA^T + Q$$

Correction

Compute the Kalman Gain

$$K_k = P_k H^T (H P_k H^T + R)^{-1}$$

Update the estimate via measurement

$$X_k = X_k + K_k(z_k - HX_k)$$

Update the error covariance

$$P_k = (I - K_k H) P_k$$

Initialize R, P, Q once

Bayesian Filter Vs Kalman Filter

Extended Kalman Filter

	Kalman filter	EKF
state prediction	$A_t \mu_{t-1} + B_t u_t$	$g(u_t, \mu_{t-1})$
measurement prediction	$C_t \; \bar{\mu}_t$	$h(ar{\mu}_t)$

Particle Filter

Source: https://mathwork.com

Source: Probabilistic Robotics (Chapter 4) by Dieter Fox, Sebastian Thrun, and Wolfram Burgard

Particle Filter Vs Kalman Filter

References

- Probabilistic Robotics (Chapter 3 and 4) by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
- MathWorks.com
- https://medium.com/intro-to-artificial-intelligence/extended-kalman-filter-simplified-udacitys-self-driving-car-nanodegree-46d952fce7a3

Thank You!