Package 'PALM'

December 16, 2021

```
Type Package
Title Identify Inter-, Intra-donor variations in bulk or single cell longitudinal dataset
Author Suhas Vasaikar [aut, cre],
              Aarthi Talla [aut, ctb],
              Xiaojun Li [aut, ctb]
Maintainer Suhas Vasaikar < suhas.vasaikar@alleninstitute.org>
Description PALM (Platform for Analyzing Longitudinal Multi-omics data) is a platform for analyzing Longitudinal Multi-omics data) as a platform for analyzing Longitudinal Multi-omics data are platform for analyzing data are
              ing longitudinal data from bulk as well as single cell datasets. It allows to identify inter-, intra-
              donor variations in genes over longitudinal time points. The analysis can be done on bulk expres-
              sion dataset without known celltype information or single cell with celltype/user-
              defined groups. It allows to infer stable and variable features in given donor and each cell-
              type (or user defined group). The outlier analysis can be performed to identify techini-
              cal/biological perturbed samples in donor/participant. Further, differential analysis can be per-
              formed to deciher time-wise changes in gene expression in a celtype.
Depends R (>= 3.5.0), methods, grid, graphics, stats, grDevices, ggplot2, reshape2, Complex-
              Heatmap, circlize, cowplot, pheatmap, tidyverse
Imports Seurat (>= 3.9),
              ggrepel (>= 0.9),
              pbapply (>= 1.4),
              lme4 (>= 1.1),
              ggforce (>= 0.3),
              MAST (>= 1.14),
              factoextra (>= 1.0),
              Rtsne (>= 0.15),
              knitr(>= 1.30),
              dplyr
Suggests ArchR (>= 1.0),
              rmarkdown
biocViews Data analysis, Longitudinal data, Single cell, scRNA, scATAC, Software, Visualization
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
VignetteBuilder knitr
```

2 avgExpCalc

R topics documented:

avgExpCalc	2
cvCalcBulk	3
cvCalcBulkProfile	3
cvCalcSC	4
cvprofile	5
cvSampleprofile	5
dimUMAPPlot	6
genecircosPlot	7
genePlot	8
lmeVariance	8
$multimodal View \dots \dots$	9
outlierDetect	10
outlierDetectP	11
PALM	11
p_value_for_event	13
sample_correlation	13
scatac_archr_genescore	14
sclongitudinalDEG	15
StableFeatures	16
VarFeatures	17

avgExpCalc

A avgExpCalc Function

Description

This function allows you to calculate average gene expression on long-normalized data by group defined by user

Usage

```
avgExpCalc(dataObj, assay = "RNA", group.by)
```

Arguments

dataObj scRNA object with log-normalized data

assay Single cell data Assay type ("RNA", "SCT"). Default "RNA"

group.by Calculate average expression by given group

Examples

```
##Input Expression data
#avgExpCalc(dataObj, group.by)
```

cvCalcBulk 3

cvCalcBulk	A cvCalcBulk Function	
------------	-----------------------	--

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation (CV) is calculated in Bulk data without group information. CV calculated across samples. It requires longitudinal data matrix/data frame and annotation file.

Usage

```
cvCalcBulk(
  ann,
  mat,
  meanThreshold = NULL,
  cvThreshold,
  housekeeping_genes = NULL,
  filePATH = NULL
)
```

Arguments

ann	Annotation table. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points)		
mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)		
meanThreshold	Average expression threshold to filter lowly expressed genes Default is $0.1~(\log 2~\text{scale})$		
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 5 for bulk olink data		
housekeeping_genes			
	Optional list of housekeeping genes to focus on. Default is ACTB, GAPDH		
fileName	User-defined file name, Default outputFile		
filePATH	User-defined output directory PATH Default, current directory		

 ${\tt cvCalcBulkProfile} \qquad \textit{A cvCalcBulkProfile Function}$

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation (CV) is calculated in Bulk data without group information. CV calculated across samples. It requires longitudinal data matrix/data frame and annotation file.

```
cvCalcBulkProfile(ann, mat, fileName = NULL, filePATH = NULL)
```

4 cvCalcSC

Arguments

ann	Annotation table. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points)
mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
fileName	User-defined file name, Default outputFile
filePATH	User-defined output directory PATH Default, current directory

cvCalcSC

A cvCalcSC Function

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation is calculated in single cell data. It requires longitudinal data matrix/data frame and annotation file.

Usage

```
cvCalcSC(
   ann,
   mat,
   meanThreshold = NULL,
   cvThreshold = NULL,
   housekeeping_genes = NULL,
   fileName = NULL,
   filePATH = NULL
)
```

Arguments

ann Annotation table. Table must consist column Sample (Participant sample name),

PTID (Participant), Time (longitudinal time points)

mat Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (same as annotation table Sample column)

meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2

scale)

cvThreshold Coefficient of variation threshold to select variable and stable genes Default is

10 for single cell RNA (100*SD/mean)

housekeeping_genes

Optional list of housekeeping genes to focus on. Default is ACTB, GAPDH

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

cvprofile 5

cvprofile	A cvprofile Function
CIPICITE	11 evpregue 1 uneven

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation is calculated in single cell data. It requires longitudinal data matrix/data frame and annotation file.

Usage

```
cvprofile(
  mat,
  ann,
  meanThreshold = NULL,
  housekeeping_genes = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

mat	Expression 1	matrix or c	lata frame.	Rows represents	gene/pro	oteins column r	epre-
-----	--------------	-------------	-------------	-----------------	----------	-----------------	-------

sents participant samples (same as annotation table Sample column)

ann Annotation table. Table must consist column Sample (Participant sample name),

PTID (Participant), Time (longitudinal time points)

meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2

scale)

housekeeping_genes

Optional list of housekeeping genes to focus on. Default is ACTB, GAPDH

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

cvSampleprofile A cvSampleprofile Function

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation is calculated in single cell data. It requires longitudinal data matrix/data frame and annotation file.

6 dimUMAPPlot

Usage

```
cvSampleprofile(
  mat,
  ann,
  meanThreshold = NULL,
  cvThreshold = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)

ann Annotation table. Table must consist column Sample (Participant sample name),

PTID (Participant), Time (longitudinal time points)

scale)

cvThreshold Coefficient of variation threshold to select variable and stable genes Default is

10 for single cell RNA (100*SD/mean)

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

dimUMAPPlot

A dimUMAPPlot Function

Description

This function allows you to perform UMAP visualization of gene of interest list.

Usage

```
dimUMAPPlot(
  ann,
  rnaObj = NULL,
  countMat = NULL,
  nPC = 30,
  gene_oi = NULL,
  groupName = NULL,
  plotname = NULL,
  filePATH = NULL,
  fileName = NULL)
```

Arguments

ann

Annotation table. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points), group, name of the group, group_donor (combined string using group:Sample)

7 genecircosPlot

rna0bj The seurat scRNA object in case of single cell RNA data (optional). countMat Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column), in case count matrix for expression data (optional). nPC Number of PCAs to be used for UMAP, Default is 30 gene_oi Genes of interest to explore, required groupName User-defined group name column from annotation table or seurat annotation column, required plotname User-defined output file name, required filePATH User-defined output directory PATH Default, current directory User-defined file name, Default outputFile

Examples

fileName

```
##Count/genescore matrix data
#dimUMAPPlot(ann=annotation, countMat=countData, nPC=15, gene_oi=var_gene,
#groupName="celltype", plotname="variable", filePATH=filePATH, fileName="ATAC")
##Single cell RNA data
#dimUMAPPlot(rnaObj=SeuratObj, nPC=15, gene_oi=var_gene, groupName="celltype",
#plotname="variable", filePATH=filePATH, fileName="scRNA")
```

genecircosPlot

A genecircosPlot Function

Description

This function allows you to Circos Plot for gene list of interest by group

Usage

```
genecircosPlot(
  data,
  geneList,
 groupColumn = NULL,
  groupBy = NULL,
  colorThreshold = NULL
)
```

Arguments

data Expression matrix or data frame. Rows represents gene/proteins column repre-

sents group:donor (group and donor separated by :)

geneList Genes of interest to explore

groupColumn Default 1, use 2 when columns are donor: group format Optional, User-defined groups to consider and order groupBy

colorThreshold User-defined color threshold in colorspace

8 ImeVariance

Examples

```
##Circos Plot for genes expression in a group
#geneList <- c("IL32","CCL5","TCF7","IL7R","LEF1")
#res <- genecircosPlot(data=cv_res, geneList=geneList)</pre>
```

genePlot

A genePlot Function

Description

This function allows you to perform UMAP visualization of gene of interest list.

Usage

```
genePlot(ann, data, geneName, groupName = NULL)
```

Arguments

ann Annotation table. Table must consist column Sample (Participant sample name),

PTID (Participant), Time (longitudinal time points), group, name of the group,

group_donor (combined string using group:Sample)

data Average Expression matrix or data frame. Rows represents gene/proteins col-

umn represents participant samples with group (optional).

geneName User-defined gene name

groupName User-defined group name column from annotation table

Examples

```
#plot <- genePlot(ann=annotation, data=ExpressionData, geneName="FOLR3", groupName="Time")</pre>
```

lmeVariance

A lmeVariance Function

Description

This function allows you to calculate inter-donor variation between participants over longitudinal time points. It uses linear mixed model to calculate variance contribution from each given feature list

```
lmeVariance(
  ann,
  mat,
  featureSet,
  meanThreshold = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

9 multimodalView

Arguments

Annotation table. Table must consist column Sample (Participant sample name), ann PTID (Participant), Time (longitudinal time points) Expression matrix or data frame. Rows represents gene/proteins column repremat sents participant samples (same as annotation table Sample column) Variance analysis carried out for the feature set provided such as c("PTID", featureSet "Time", "Sex") meanThreshold Average expression threshold to filter lowly expressed genes/features Default is fileName User-defined file name, Default outputFile

filePATH

User-defined output directory PATH Default, current directory

Examples

```
##Input Expression data
#filePATH <- getwd()</pre>
#lmem_res <- lmeVariance(ann=metadata, mat=datamatrix,</pre>
#featureSet=c("PTID", "Time", "Sex"),
#meanThreshold=0.1, fileName="RNA", filePATH=filePATH)
```

multimodalView

A multimodalView Function

Description

This function allows you to vizualize the multimodal view genes of interest by celltypes/ groups defined by use

Usage

```
multimodalView(
  modality1,
  modality2,
  groupBy = NULL,
  geneList,
  colorThreshold = 10,
  groupColumn = NULL,
  plotHeight = 10,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

modality1	Variation or Expression matrix/data frame. Rows represents gene/proteins column represents group:donor (group and donor separated by :)
modality2	Variation or Expression matrix/data frame. Rows represents gene/proteins column represents group:donor (group and donor separated by :)
groupBy	Optional, User-defined groups to consider and order

10 outlierDetect

geneList Genes of interest to explore

colorThreshold User-defined color threshold in colorspace

groupColumn Default 1, use 2 when columns are donor:group format

plotHeight User-defined Plot size (in)

fileName User defined filename

filePATH User-defined output directory path to save result

Examples

```
##Circos Plot for genes expression in a group
#geneList <- c("HLA-A","HLA-B","HLA-C","HLA-DRA","HLA-DPA1","HLA-DRB1")
#multimodalView(modality1=scrna_cv_res, modality2=scatac_cv_res, geneList)</pre>
```

outlierDetect

A outlierDetect Function

Description

This function allows you to perform outlier analysis on bulk data by calculating z-score. Outlier genes defined as mean/SD = |Z| > z_cutoff.

Usage

```
outlierDetect(
   ann,
   mat,
   z_cutoff = 2,
   plotWidth = 10,
   plotHeight = 5,
   groupBy = FALSE,
   fileName = NULL,
   filePATH = NULL
)
```

Arguments

ann	Annotation table. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points)
mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
z_cutoff	Z cutoff threshold to find potential outliers (Eg. z_cutoff= 2, equals to Mean/SD 2)
plotWidth	User-defined plot width, Default 10 in
plotHeight	User-defined plot height, Default 5 in
groupBy	Include groupwise outlier analysis (TRUE or FALSE). Column used for analysi is Sample_group
fileName	User-defined file name, Default outputFile
filePATH	User-defined output directory PATH Default, current directory

outlierDetectP 11

Examples

```
#filePATH <- getwd()
#outlier_res <- outlierDetect(ann=metadata, mat=datamatrix)</pre>
```

outlierDetectP

A outlierDetectP Function

Description

This function allows to identify significant abnormal event identified from outlier analysis.

Usage

```
outlierDetectP(outlier_events, z_cutoff = 2, nGenes, groupBy = "PTID")
```

Arguments

```
outlier_events Identified outlier events

z_cutoff |Z| cutoff threshold to find potential outliers (Eg. z_cutoff= 2, equals to Mean/SD 2)

nGenes | Number of background genes/features

groupBy | Column name to use for groupwise outlier analysis default is PTID (patient id)
```

Examples

```
#outlierDetectP(outlier_events, z_cutoff=2, nGenes)
```

PALM

A PALM Function

Description

This function allows you to perform analysis of longitudinal dataset. It requires longitudinal data matrix/data frame and annotation file.

```
PALM(
metadata = NULL,
data = NULL,
datatype = NULL,
omics = NULL,
featureSet = NULL,
meanThreshold = 1,
cvThreshold = 5,
NA_threshold = 0.4,
column_sep = NULL,
coding_genes = NULL,
avgGroup = NULL,
```

12 PALM

```
housekeeping_genes = c("ACTB", "GAPDH"),
group_oi = NULL,
nPC = 15,
donorThreshold = NULL,
groupThreshold = NULL,
topFeatures = 25,
method = "spearman",
clusterBy = "donor",
z_cutoff = 2,
doOutlier = FALSE,
fileName = NULL,
outputDirectory = NULL
)
```

Arguments

metadata Annotation table. Table must consist column Sample (Participant sample name),

PTID (Participant), Time (longitudinal time points)

data Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (same as annotation table Sample column). For single cell, Single cell RNA Seurat object, if datatype is single cell RNA and Single

cell ATAC genescore matrix or data frame

datatype Data input can be bulk or singlecell

omics User defined name like RNA, ATAC, Proteomics, FLOW

featureSet Variance analysis carried out on the featureSet provided such as c("PTID", "Time",

"Sex")

meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2

scale)

cvThreshold Coefficient of variation threshold to select variable and stable genes Default is

10 for single cell RNA (100*SD/mean)

NA_threshold Number of NAs in data (numeric value or NULL). Default, 40% * number of

columns.

column_sep Separator of "PTID" and "Time" in "Sample" column of Annotation table like

column_sep="W" for PTID1W1, column_sep=":" for PTID1W1:Tcell

coding_genes Selecting protein coding/user-defined gene list only

avgGroup Group label to be used to calculate average gene expression by group label

housekeeping_genes

Optional list of housekeeping genes to focus on Default is NULL

group_oi Group of interest to focus on, Default is NULL

nPC Number of PCAs to be used for UMAP, Default is 15

donorThreshold Donor threshold number to be used, Default is number of participants

groupThreshold Group label threshold number to be used, Default is (number of participants x

group labels)/2

topFeatures Number of features to be selected from each group, Default is 25

method Sample correlation analysis ("pearson", "spearman"). Default is "spearman"

clusterBy for sample correlation cluster columns by ("donor", "group")

p_value_for_event 13

```
p_value_for_event A p_value_for_event Function
```

Description

This function allows to calculate p value for identified outlier significant abnormal events

Usage

```
p_value_for_event(events, tries, rate)
```

Arguments

events Identified outlier events

tries Number of background genes/features

rate probability distribution

Examples

```
#p_value_for_event(events, tries, rate)
```

```
sample\_correlation \qquad \textit{A sample\_correlation Function}
```

Description

This function allows to perform sample correlation (by group like celltype, ot by donor).

```
sample_correlation(
  data,
  column_sep = ":",
  method = "spearman",
  groupColumn = 2,
  clusterBy = "donor",
  max = 0.9,
  column_names_fontsize = 4,
  row_names_fontsize = 4,
  row_title_fontsize = 6,
  column_title_fontsize = 6,
  plotHeight = 20,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

data Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (if celltype with in donor then sample: celltype, sepa-

rated by:)

column_sep Sample and celltype seperator like (:)

method Correlation method "pearson" or "spearman"

groupColumn Data column names consists group (Donor-group) at 2nd place or 1st place(like

PTIDxGroupX, 2 or GroupXPTIDx, 1)

clusterBy Cluster correlation result by "donor" or "group". Default donor

max Maximum color limit (Default, 0.9 correlation)

column_names_fontsize

Font size of the column names, default 4

row_names_fontsize

Font size of the row names, default 4

row_title_fontsize

Font size of the row title, default 6

 $column_title_fontsize$

Font size of the column title, default 6

plotHeight Height of the plot (in), deafult 20in

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

Examples

```
#res <- sample_correlation(data=datamatrix, column_sep=":", method="spearman")</pre>
```

scatac_archr_genescore

A scatac_archr_genescore Function

Description

This function allows you to calculate genescore matrix from scATAC archR object. This function requires archR package installed and scATAC object created.

Usage

```
scatac_archr_genescore(ArchRProj, groupBy)
```

Arguments

ArchRProj archR scATAC object for input single cell ATAC longitudinal data

groupBy Group label to be used to calculate average gene expression by group label, Eg.

"celltype"

Examples

```
##Input scATAC data
#genescore <- scatac_archr_genescore(ArchRProj=proj, groupBy="celltype")</pre>
```

sclongitudinalDEG 15

sclongitudinalDEG A sc	longitudinalDEG Function
----------------------------	--------------------------

Description

This function allows you to calculate differential expressed genes in the direction of given time points (if timepoints>3 otherwise DEGs between two timepoints). A hurdle model was fit to each participant independently in order to identify participant-specific longitudinal transcriptomic changes. Genes that were expressed in at least 10% of cells per participant were considered for this analysis. The models were fit on the input normalized data, modeling the timepoints as a continuous variable within each cell type and adjusting for the batch only if any timepoints from the same participant were run across multiple batches.

Usage

```
sclongitudinalDEG(
  ann,
  dataObj,
  scassay = "RNA",
  celltypecol,
  mincellsexpressed = 0.1,
  removelnc = "TRUE",
  adjfac = "none",
  baseline = NULL,
  plotWidth = 10,
  plotHeight = 10,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

filePATH

ann	Annotation dataframe. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points)
dataObj	Single cell RNA seurat object. Seurat object should have column name Sample (same as annotation table Sample column)
scassay	Single cell assay from scRNA seurat object (Default "RNA")
celltypecol	Column of interest such as celltype to analyze DEGs in participant over time
mincellsexpress	sed
	Average expression threshold to filter lowly expressed genes/features Default is 0.1
removelnc	Remove lincRNAs, mitochondrial and ribosomal genes from analysis incldes (^RPI^MT-I^LINClorf) (TRUE/FALSE). Default is TRUE
adjfac	Factors to be adjusted for such as batch, sex
baseline	Donors (PTID) to be considered as baseline. Deafult NULL
plotWidth	User-defined plot width, Default 10 in
plotHeight	User-defined plot height, Default 10 in
fileName	User-defined file name, Default outputFile

User-defined output directory PATH Default, current directory

16 StableFeatures

Examples

```
##Input scRNA data and annotation file
#DEGres <- sclongitudinalDEG(ann=metadata, dataObj=pbmc, scassay="RNA", celltypecol="celltype")</pre>
```

StableFeatures

A StableFeatures Function

Description

This function allows you to identify stable genes in a participant across longitudinal timepoints in single cell dataset. The coefficient of variation (CV) obtained from 'cvCalcSC' function used to filter genes/features by CV threshold (cvThreshold). User can identify cvThreshold in different datasets using housekeeping genes CV distribution. The minimum expression of gene (mean-Threshold) used to remove lowly expressed genes (spike CV).

Usage

```
StableFeatures(
   ann = NULL,
   group_oi = NULL,
   meanThreshold = NULL,
   cvThreshold = NULL,
   donorThreshold = NULL,
   groupThreshold = NULL,
   topFeatures = 25,
   housekeeping_genes = NULL,
   filePATH = NULL,
   fileName = NULL
)
```

Arguments

ann A	Annotation table.	Table must consist	column Sample	e (Participa	int sample name),
-------	-------------------	--------------------	---------------	--------------	-------------------

PTID (Participant), Time (longitudinal time points)

group_oi Group of interest to focus on, Default is NULL

meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2

scale)

cvThreshold Coefficient of variation threshold to select variable and stable genes Default is

10 for single cell RNA (100*SD/mean)

donorThreshold Donor threshold number to be used, Default is number of participants

groupThreshold Group label threshold number to be used, Default is (number of participants x

group labels)/2

topFeatures Number of features to be selected from each group, Default is 25

housekeeping_genes

Optional list of housekeeping genes to focus on. Default is ACTB, GAPDH

filePATH User-defined output directory path to load the CV result obtained from cv-

CalcSC function

fileName User defined filename

VarFeatures 17

Examples

```
##Single cell RNA data
#stablegene <- StableFeatures(ann=metadata, meanThreshold=0.1, cvThreshold=10,
#donorThreshold=donorThreshold, groupThreshold=groupThreshold,
#topFeatures=25, fileName="scRNA", filePATH=filePATH)</pre>
```

VarFeatures

A VarFeatures Function

Description

This function allows you to identify variable genes in a participant across longitudinal timepoints in single cell dataset. The coefficient of variation (CV) obtained from 'cvCalcSC' function used to filter genes/features by CV threshold (cvThreshold). User can identify cvThreshold in different datasets using housekeeping genes CV distribution. The minimum expression of gene (mean-Threshold) used to remove lowly expressed genes (spike CV).

Usage

```
VarFeatures(
   ann = NULL,
   group_oi = NULL,
   meanThreshold = NULL,
   cvThreshold = NULL,
   donorThreshold = NULL,
   groupThreshold = NULL,
   topFeatures = 25,
   filePATH = NULL,
   fileName = NULL
)
```

Arguments

ann	Annotation table. Table must consist column Sample (Participant sample name), PTID (Participant), Time (longitudinal time points)
group_oi	Group of interest to focus on, Default is NULL
meanThreshold	Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale)
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA ($100*SD/mean$)
donorThreshold	Donor threshold number to be used, Default is number of participants
groupThreshold	Group label threshold number to be used, Default is (number of participants x group labels)/2 $$
topFeatures	Number of features to be selected from each group, Default is 25
filePATH	User-defined output directory path to load the CV result obtained from cv-CalcSC function
fileName	User defined filename

VarFeatures

Examples

```
#Single cell RNA data
#vargenes <- VarFeatures(ann=metadata, meanThreshold=0.1, cvThreshold=10,
#donorThreshold=donorThreshold, groupThreshold=groupThreshold,
#topFeatures=25, fileName="scRNA", filePATH="output/")</pre>
```