Wall's Aneovers on h-cooperaisms & 4-manifolds

Leetwad by Pongchery Li

Based on Wall's two papers in 1964.

[1] Diffeomorphisms of 4-manifolds
[2] On Simply-connected 4-mfds

· Convertion: Mi here always means simply-connected, classed, oriented, smooth 4-mfds. Review. 1. Freedman's topological 4 dlm h-cobordism thm. Let (W, M, M2) be an habordism of simply connected mitals. Then $W \cong M_1 \times [0,1]$.

homeomorphic In general, W= Mix 10,1] because we annot embed of into M4, or equivalently, we annot eliminate self-intersections of immersed Whitney disks (z-handles). 2. Intersection form. Qui: H2MxH2M>Z O(X,B) -> X*(B), X*= the PD of X, X=X*N[M], cap product.

D(X,B) -> Sx. Sp = the intersection number of the embedded surfaces Sx, Sp. TIM=HIM $Q_{M}: H_{N} \times H_{N} \longrightarrow Z$ 20 0000000

Let {ei] in be a basis of H2(M), aij = (eiuej)[M]. Then Qn > [aij] nxn, Which is still denoted by an

Basic Properties:

1 bilinear, Symmotric & Unimodular.

the motivian is nonsingular, det am=#1. or equivalently, H2M => Hom (H2M, Z) $\chi \mapsto Q_{\chi} = Q_{M}(\chi, -)$

@ Qm =-Qm, Qm#n= QmBQn

2 rank Qn=dim HzM = bz(M)

signature o(m)= sign Qu = bz(M; R)- bz (M; R)

. On can alwayste diagranalizable over \mathbb{R} or $\mathbb{Q} \longrightarrow \mathbb{Q}_{\mathsf{m}}(\mathbb{R}) = \mathrm{diag}\{\lambda_1, -\lambda_n\}$ bz (M;R)=the number of positive entries amough, - in

 $\mathcal{L}(\underline{\mathsf{M}}) = -\mathcal{Q}(\underline{\mathsf{M}})$, $\mathcal{L}(\underline{\mathsf{M}} + \underline{\mathsf{M}}) = \mathcal{L}(\underline{\mathsf{M}}) + \mathcal{L}(\underline{\mathsf{M}})$

@ Parity (even or odd)

Qu is called even if Qu(e; ei)=aii are all even. Que is called add if I deH st. Que(d,d) is add.

Transples $Q_{G^2}=[1]$ $Q_{S^2xS^2}=[1]$ Q_{S $S^2 \rightarrow S^2 \times S^2$ S^2 bundle over S^2 [S; BSO(3)] $\simeq T_1 \times SO(3) \cong T_2$.

[, 1] is not diagonalizable over Z.

Thus (Donaldson, 1783) If a unimodular quadratic form Q is definite,

Then Q is diagonalizable over Z.

3. Milnor, Whitehread Thm . Quiz Quiz Anny My My homotopic agui.

4. Thm. MI~ cob Mz, i.e. [m]=[m] = [m] = [m] = G(m)= G(m)

Cor. \forall [M] \in Ω_4 , we have [M]=[#k Ω_p^2] or [M]=[#l Ω_p^2]. that is, $\Omega_4 = \mathbb{Z} \mathbb{C}(p^2)$.

Recall that $\Omega_0 = \mathbb{Z}$, $\Omega_1 = \Omega_2 = 0$: $S' = \partial D^2$, $\Sigma_g = \partial M_g$ the connected sum of g said torus. $\Omega_s = 0$ (Rohlin 1951: Every closed M^3 bounds)

5. Thm: $6(M)=0 \iff M^4=\partial W^5$.
(Rohlin)

Lem1 (Wall, DZ) Let $f:S' \rightarrow M$ be an embedding. Then \exists an isotopy $h:S' \rightarrow M$ S+ $h_2=f$, i=0,1. Lem2 (Wall, DZ) If $Q_m \in ald$, then $M\#(S^2\times S^2) \simeq M\#(S^2\times S^2)$.

Thm 1. (Wall, [2]) If MM hab M2, then M#k($S^2 \times S^2$) \approx M2#k($S^2 \times S^2$) for some k>1.

proof of Thm 1. Given an h-cobordism W between M1 and M2, then a nice Morse function on W Nhich yields a hardle decomposition of W. Similar to the process of Smale's proof of higher dimensional h-cobordism than, we have the sub-hardlebody $N=M_1\cup_{j,k}(D_i^2\times O)$. Tirstly we assume k=1. Let $f:S^1\times D^3\to M_1$ be an embedding and let $H:S^1\times I\to M_1$ be an isotopy with H(X,i)=f(X,0), i=1,2. By the isotopy extension than, H extends to an isotopy H of M_1 . By the tubular ubbit from we may assume that $h=H(x,1): f(S^1\times D^3)\to f(S^1\times D^3)$ is a bundle map. Spherical modification: $N=(1N_1) f(S^1\times D^3)^n$ $U_f(S^1\times S^2)$ $D^2\times S^2$

Since M, is I conn., $f(S'\times 0)$ bounds an embedded DSM, Which lies in the interior of an embedded D^SM. We have a chain of diffeomorphisms. N≈ (MN DA) US3 DxD2 Uf(8/x52) Dx52 $\approx (M_1 \backslash D^4) \cup_{S^3} (D^2 \times D^2 \backslash D^4) \cup_{f(S \nmid S^2)} D^2 \times D^2$ $\approx (M_1/D^4) U_{S^3} (D^2 x S^2 U_{f(S^1 \times S^2)} D^2 x S^2) \backslash D^4]$ \approx Mi# S^2xS^2 for Mi# S^2xS^2 By induction We get N=M, #k(sis) or N=M, #k(sis) Similarly NaM2#k(SxS2) or NaM2#k(SxS2) H' Qm is odd, by Lem 2, M, #k(s2x52) ~ M2#k(s2x52) ~ M2#k(s2x52). If Q_M is even, then $W_2(M)=0$ and hence $W_2(W)=0$ Since N has trivial normal burdle in W, Wz(N)=0 -> Qu is also even $Q_{S^2 \times S^2}$ is odd $N \approx M_1 \# k(S^2 \times S^2) \approx M_2 \# k(S^2 \times S^2)$ Here we use the fact that QM is even \Leftrightarrow $W_2(M)=0$ (Spinor).

 $\frac{\text{Lemma3}}{\text{(Wall, [2])}} \quad \text{if } \sigma(M) = \text{sign} \Omega_{M} = 0 \text{ , } \omega_{\mathbb{Z}}(M) = 0 \text{ , } \text{then } M = \frac{1}{2}V^{5} \text{ and } \omega_{\mathbb{Z}}(V) = 0 \text{ .}$ $(\text{Wall, [2])} \quad (\text{if } \omega_{\mathbb{Z}}(V^{5}) \neq 0 \text{ , } \text{then } \omega_{\mathbb{Z}}(M) = \frac{1}{2} + \omega_{\mathbb{Z}}(V^{5}) \neq 0 \text{ , } \text{i. } M \to V).$

Lefschetz duality: Suppose $\partial W=M_1 \perp M_2$, then $H^2(W,M_1) \cong H_{n-2}(W,M_2)$. $(M_2=\Phi)$ is allowed, when $M_1=M_2=\Phi$, the duality becomes the Poincaré duality)

Thm2 (Thm1, [2]) Suppose M4 Soutisties 5(M)=0, then M=2V5 and V5~ Vm5?

proof We have M=205 by Rohlin's than. Since $\partial V=M+\emptyset$, H5 $(V)\cong H9(V,M)=0$.

Moleover, by lem3, $W_z(M)=0 \Rightarrow W_z(V)=0$.

· Step 1. Killing TI(V). Suppose f: 5 > V represents a generator of TI(V).

Take a tubular nobal $f(s'\times D^4)$ $V' = \left(V \setminus f(s'\times D^4)^6\right) \cup s'\times s^3 D^2 \times S^3.$

Then $\partial V' = \partial V = M$ and $0 = [f] \in T_1(V')$, note that $u_2(m) = 0 \Rightarrow u_2(V') = 0$ By such modifications we finally get a new 5-mfd V with $T_1V = 0$.

(By 5tep 1, TI(V)=0 => H(V)=0=H'(V)=H4(V) and honce V only has H2, H3)

· Step 2. Killing Hz (V.M). Consider the homology exact seg for the pair (V,M). $0 \longrightarrow H_{8}(V) \longrightarrow H_{8}(V,M) \longrightarrow H_{2}(V) \xrightarrow{2} H_{2}(V) \xrightarrow{2} H_{2}(V,M) \longrightarrow 0$ Case 1. Hz(V,M) is infinite Choose XEHE(V,M), (X) = w and (at 4 E Hz(V), 4 Pex. If $W_2(V)(y) \neq 0$, then $W_2(V) \neq 0 \Rightarrow W_2(M) \neq 0$ choose & Hz(n) Societying Wz(M)(8) #0. After replacing y by y+ix(8), we now can assume wz(v)(y)=0. Representing y++12(V)=T12(V) by an embedding sphere and since u2(V)(y)=0. the image of y has trivial normal bundle, which ensures the existence of an embedding SXD3 >V.

X-11/(52x7310 n...1 1...1... Let $X=V/(S^2\times D^3)^0$ and $V'=XU_{S^2\times S^2}(D^3\times S^2)$ Then $\partial U' = \partial V = M$ and Milnor showed that this spherical modification doesn't change U_{Σ} . $W_2(M)=0 \Rightarrow W_2(V')=0$ Consider the homology exact seq for the triple (V, X, M): (S): $H_3(V,M) \xrightarrow{S} H_2(X,M) \xrightarrow{S} H_2(X,M) \xrightarrow{S} H_2(V,M) \xrightarrow{S} H_2(V,M)$

These two isomorphisms follow from the homeomorphism: $\sqrt{X} = 5^2 \times D^3 / 5^2 \times 5^2$

By the Lefschelz duality, H3(V,M)=H2(V) and the homomorphism of corresponds to the intersection with y and since 14=00, we see that cokerd is finite -> rank Hz(V,M) = rank Hz(X,M) Consider the exact seq (5') with V' in place of V, then Im B'=x'60 has infinite order. Thus rank $H_2(V, M) = Vank H_2(X, M) + = Vank H_2(V, M) - 1$

By industion we reduce Yank Hz(V;M)=0.

(ace 2. He(V, M) to 15 finite.

We may assume the (v) is infinite.

H3(V,M) & H2M & H2(V,M) ->0 $H_{H^2(V)}$ Hom(HzV,Z) Hom (HzM,Z)

We have rank & = rank & = rank & = dimHzIn-dim Kerd = dimHzIn-dlim Imd = dim HzM - rank & > Yank > = = dimHzM. Since Hz(V,M) is finite, dimHzV = vank > = = dimHzM.

. We temporately assume that climtzin of and hence dimter =2 This is the only case we shall deal with.

Claim: There exists yEHE(V) sodisfying. (i) $W_2(V)(y) = 0$ (ii) the image of y in $H_2(V, m)$ is nonzero: $H_2(V) \longrightarrow H_2(V, m) \to 0$. (iii) y is indivisable and hence < y> = Hz(v) is a direct summand. proof of the claim. If Wz(M)=0, then Wz(V)=0, (i) clearly holds. If each indivisable element of Hzlv) has zero image in Hz(v.M), then the home Hz(v) > Hz(v.M) is zero, contradicts. Hence W2(V)+0, W2(M)+0. Since dim H2V 7, 2, we can choose a basis (ti) of H2(V) free s.t. W2(V)(7/2)=0, 2>1. If every inalivisable element of He(V) on which We(V) vanishes has zero image in He(V,M), then the exact seq. HEM THEW HE (V,M) so simplies that $W_2(V)$ is $(H_2M) = W_2(M) \cdot (H_2M) = 0 \Rightarrow W_2(M) = 0$, contradiots. Thus the claim is proved. Make a spherical modification as did in Ge I, starting with y. In the Seq. (S), since y is indivisable, d is anto and we get H2(XM)=H2(V,M) Similarly by the seq. (S') we deduce $|H_2(v,m)| < |H_2(v,m)|$ and by includion we get $H_2(v',m) = 0$, or equivalently, H2(V,M)=H3(V')=0. Therefore we obtain a simply-conn. 5-mfd W whose only monthivial hornology group is HZ(W)=H3(W,M)= Hom (Ha (W,M),Z) free

The 2nd Skeleton $V^{(2)} = V_m S^2 \longrightarrow V$ is then a homslegy α	quival	ence	• •			۰		
By the Whitehead Ahm, it is a homotopy quivalence:	V	_ √ _ √w	5 ² .					
			• •			٠	0 0	,
Review of some hometopy theory:			• •			۰		,
	• •		• •			•		•
· Hurewicz Thm. Let X be a based CW-complex. The Hurewicz homomorphism						٠		•
1^{\wedge} $\pi(V) = 11 \wedge 1$	۰	-	·	morta	(03)			,
is defined by $h_n([f]) = f_*(L_n)$, where $L_n = [S^n] \in H_n(S)$	") 15	, (ME	Lance	YIIXEIN				,
naturality: Tin X hn Y		•				•		•
· · · · · · · · · · · · · · · · · · ·						٠		
hn: Tin(-) -> Hn(-) can be viewed as a natural transformation	• • •	0			0 0	0	0 0	
Thm. If X is (n-1)-connected (nzz), then hn: TInX-> HnX is an TiX=0 for i=n+	isom	en yis	sm. Om	al hort	TIMIX	(->t	TMX	()
TiX=0 for isn	• •			SUI	ellive.	•		
HIX is surjective with remaining this lix	•		• •			•		,
$\frac{\pi_i \times}{\nabla \pi_i \times_i \pi_i \times_j} \simeq H_i \times .$			• •			•		

White heard Thim	
Let f: X->Y be a map between simply connected (or simple) CU	J-cpxe
TFAE; (i) f is a homotopy equivalence: Th(X) for all 2.	
(ii) f is a homology equivalence: Hi(Y) for all i	
Where M= X U+XXI is the marping cylinder.	

r is a http equi and
is an including mapp

(X ⊆ Mf as a subcomplex)

(iii) $H_2(M_f, X) = 0$ for all i.

0,000 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1) (
Then (1) W admits a handlebody $H = D^5 \times D^0 \cup_m D_1^2 \times D^3$ as a deformation votract: (2) The closure $C = W \setminus H$ gives an habordism of $M \in D \setminus H$.	2 (
(2) The closure C=W\H gives an h-wbordism of M to JH.	
proof (1) firstly imbeds D5 in W and imbeds D2×D3, which represents the generators of H2(W) = Em H2((5 ²)
The boundaries of DizzD are attached to Do and the interiors of Di are disjoint with Do	>
(+12 x)	
H: The resulting numberous 17 to 1 of of the inclusion H -> W is a homelogy equivalence of simply-corns. Spaces	
and hence a homotopy equivalence.	

(2) 2 C= 2HII DW = 2HUM, C 15 a simply connected 5-mfd.

By the excision thin of homology: $O=H_i(W,H) \cong H_i(C,\partial H)$. Hence $\partial H \longrightarrow C$ is a homology/homotopy equivalence.

By the Lefschetz thm, $H_i(C,M) \cong H^{5-\hat{i}}(C,\partial H) = 0$ and hence $M \longrightarrow C$ is a homology/homotopy equi.

Wall's thin on diffeomorphisms.

Let M be a 1-conn, closed oriented 4-mfd. Suppose that either

(i) Qm is indefinite, or

(ii) $dim H_2(M) \leq 8$

Then Differ (M#52x52) ---> Aut (Qm#52x52) = { g ∈ Aut (H2(M#52x52)) | Qm = Qm(gxg)}

 $\mathcal{G} \longrightarrow \mathcal{G}_*$

Cor. $M=\#k(S^2\chi S^2) \#\ell(S^2\chi S^2) \#i(\mathbb{C}p^2) \#j(\mathbb{C}p^2)$

Thm2(Wall, 1964) Let M., Mz be two Singly conv. 4-mfds with Qm, = and.

Then M. ~ hoob Mz

Cor. Let M. Mz be as in the above thm. Then

(i) $\exists k \in \mathbb{Z}_{31}$ such that $M_1 \# k(S^2 S^2) \sim M_2 \# k(S^2 S^2)$,

(ii) (Freedman) $M_1 \cong M_Z$.

proof. Tom N=Mi # Mz, then Sign QN = Sign QMi - sign Quz = 0.

(ase 1. dinHzM132. By Thm I and Lemma, N~hob dV, V a handlebody of type (5, m, 2).

Fact: V is determined by n and whether $W_2(V)=0$ or not: V is a boundary sum of n handlebodies of type (5,1,2): $V=V_1+\cdots+V_m$

Each V_2 is a D^3 -burdle over S^2 ; since ES^2 , $BSO(3)] = \pi_1 SO(3) = 242$, There are only two such burdles. $S^2 \times D^3$, $S^2 \times D^3$. Where boundaries are $S^2 \times S^2$ and $S^2 \times S^2$, respectively.

: N~hob > V~hob #k52x52 #L5252

claims there exists an automorphism T EAUT QN=Aut(QoV) such that the Kernel L=Ker(Hz(dV) > Hz(V)) has the form.

K= {ay) +Hz(DV)=Hz(N)=Hz(M)+z(Mz) | dx=y} where d. Qm = Qmz.

K=Hz(M) is free abelian of half rank of Hz(dV).

By wall's thin on diffeomorphism, $\exists a \text{ diffeomorphism } \varphi \neq \partial V \text{ St } \varphi = T.$ $0 \to K \Leftrightarrow H_2(\partial V) \xrightarrow{\mathcal{I}_K} H_2(W)$

 $(V, M_1 # \overline{M_2}, \partial V)$ an h-cobordism

 $M_1 \# M_2 = (M_1 (S^4) \cup S^2 \times \Sigma \cup (M_2 \setminus S^4))$

R:= CUDAXIUSUV, a simply cons. 5-mfd with DR=M111M2.

Note that R has nontrivial homogy groups only in dimension 0, 2, 4. and the adjachment of $D^4 \times I$ closesn't affect the isomorphism $H_2(M_1) \oplus H_2(M_2) \cong H_2(\partial V)$

Attaching V along 2V: MV seg (Mayer Victories):

 $\longrightarrow K \longrightarrow H_2(\partial V) \xrightarrow{(2k,2)} H_2(V) \oplus H_2(C) \longrightarrow H_2(R) \longrightarrow 0$

Since $H_2(\partial V) \xrightarrow{2} H_2(C)$, $(\partial V \rightarrow C)$ is a http.ognii), we get $H_2(R) \cong \text{coker } \lambda_k \cong H_2(M_2)$.

Since HzMin K= {(0,0)} HzMi -> HzR is an isomophism, i=12.

 \Rightarrow $H_{\kappa}(R,M_{\hat{i}})=0$ for $k \leq 2$ and i=1,2

 \rightarrow $H_{5-kc}(R,M_{\tilde{i}}) \cong H^{k}(R,M_{3-\tilde{i}}) = 0$

Thus Ris an hubordism.

Case 2 If dim HzN=2 and sign Qu=0. Then Qu= Qszxs2 or Qu=Qszxs2.

> N ~hoob 52x52 or N~hoob 52x52.

Filling in V by D3×52 or D3×52, then dv = N

The arguments in the case 1 is now valid.