Beta Weighting your Portfolio

In this notebook we begin by using yfinance to import financial stock data. https://ranaroussi.github.io/yfinance/index.html

```
In [1]: import numpy as np
   import pandas as pd
   import yfinance as yf
   import datetime as dt
   from scipy import stats
```

Step 1: Specify date range for analysis

Here we begin by creating start and end dates using pythons datetime module.

Step 2: Select the stocks/tickers you would like to analyse

For stock tickers, use the search bar in yahoo finance to work out other ticker structures. https://finance.yahoo.com/

Step 3 call the yfinance module:

First, we'll retrieve the data for all the tickers using yfinance, and then calculate the log returns.

```
Out[4]: Ticker
                 AMD
                          CRM
                                GOOGL
                                           JPM
                                                    MA
                                                           META
                                                                    NOW
         Date
        2023-
              -0.005232
                      0.000578 0.005775 0.002282
                                               0.000098 0.012736 -0.007950 -0.00
        11-28
        2023-
              0.001978 -0.020233
                                                                 0.020370
                                                                         0.00
        11-29
        2023-
              -0.021959 0.089432 -0.018392 0.011340
                                               0.009737 -0.015318
                                                                 0.009981
                                                                         -0.07
        11-30
        2023-
              0.001280 -0.007148
                                                                 0.007337 -0.00
        12-01
        2023-
              -0.023505 -0.036584 -0.019837 0.007306 -0.014904 -0.014888 -0.004599 -0.0799
        12-04
```

Step 4a: Directly calculate beta:

```
\beta = \frac{\text{Cov(Stock,Market)}}{\text{Var(Market)}}
```

```
In [5]: def calc beta(df):
            Calculate beta of each stock against the market index using the covar
            Parameters:
            - df (pd.DataFrame): A DataFrame containing returns data, where one d
              (representing the market index), and other columns represent indivi
            Returns:
            - pd.Series: A Series containing the beta values for each stock, with
            # Extract market returns (from 'SPY' column)
            market = df['SPY'].values
            market variance = np.var(market) # Variance of the market index
            betas = []
            # Loop through all columns except 'SPY'
            for col in df.columns:
                if col != 'SPY':
                    # Extract stock returns
                    stock = df[col].values
                    # Calculate covariance between stock and market
                    covariance = np.cov(stock, market)[0, 1]
                    # Calculate beta as covariance/variance
                    beta = covariance / market_variance
                    betas.append(beta)
            # Return beta values as a pandas Series
            return pd.Series(betas, index=df.columns.drop('SPY'), name='Beta')
```

In [6]: calc_beta(log_returns)

```
Out[6]: Ticker
        AMD
                 2.298860
        CRM
                 1.418787
        G00GL
                1.190805
        JPM
                 0.757434
                 0.650546
        MA
        META
                 1.550913
        NOW
                 1.364008
        NVDA
                 2.748033
        TSLA
                 2.283945
        MOX
                 0.233868
        Name: Beta, dtype: float64
```

Step 4b: Use linear regression to get coefficient of market and stocks returns

```
In [7]: def regression_beta(df):
            Calculate beta of each stock against the market using linear regressi
            Parameters:
            - df (pd.DataFrame): DataFrame containing the market index (column na
              and individual stock returns.
            Returns:
            - pd.Series: A Series containing the beta values for each stock.
            market = df['SPY'].values # Market returns using 'SPY'
            betas = []
            # Loop through all columns except 'SPY'
            for stock in df.columns:
                if stock != 'SPY':
                    stock_returns = df[stock].values
                    slope, _, _, _, = stats.linregress(market, stock_returns)
                    betas.append(slope)
            return pd.Series(betas, index=df.columns.drop('SPY'), name='Beta')
In [8]: regression_beta(log_returns)
Out[8]: Ticker
        AMD
                  2.289701
                 1.413134
        CRM
        G00GL
                 1.186061
        JPM
                 0.754416
        MΑ
                  0.647954
                 1.544734
        META
        NOW
                 1.358573
                  2.737085
        NVDA
        TSLA
                  2.274845
        MOX
                  0.232936
        Name: Beta, dtype: float64
```

Step 4c: Use Matrix Algebra to complete linear regression in one line

For linear regression on a model of the form $y=X\beta$, where X is a matrix with full column rank, the least squares solution,

$$\hat{\beta} = arg \min \left| \left| X\beta - y \right| \right|_2$$

$$\hat{eta} = (X^T X)^{-1} X^T y$$

https://stats.stackexchange.com/questions/23128/solving-for-regression-parameters-in-closed-form-vs-gradient-descent/23132#23132

```
In [9]: def matrix_beta(df):
             Calculate beta of each stock against the market using matrix algebra.
             Parameters:
             - df (pd.DataFrame): DataFrame containing the market index (column na
               and individual stock returns.
             Returns:
             - pd.Series: A Series containing the beta values for each stock.
             # Extract the market returns and stock returns
             market = df['SPY'].values[:, np.newaxis] # Ensure 2D shape for matri
             stocks = df.drop(columns='SPY').values
             # Add an intercept column of ones to the market data
             intercept = np.ones like(market)
             X = np.hstack((intercept, market)) # Combine intercept and market da
             # Calculate beta using the least squares formula
             betas = np.linalg.pinv(X.T @ X) @ X.T @ stocks
             # Extract the slope coefficients (ignoring the intercept)
             return pd.Series(betas[1], index=df.columns.drop('SPY'), name='Beta')
In [10]: beta = matrix beta(log returns)
         beta
Out[10]: Ticker
         AMD
                  2.289701
         CRM
                  1.413134
         G00GL
                  1.186061
         JPM
                  0.754416
         MA
                  0.647954
                  1.544734
         META
         NOW
                  1.358573
         NVDA
                  2.737085
                  2.274845
         TSLA
         MOX
                  0.232936
         Name: Beta, dtype: float64
```

Step 5: Define your Portfolio and make DataFrame

Calculate Beta Weighted Portfolio

```
In [11]: # Number of shares held for each stock (excluding SPY)
         units = np.array([100, 250, 300, 400, 200, 150, 180, 220, 170, 140])
         # Extract the latest prices for all stocks (excluding SPY)
         SPYprices = df['SPY'].iloc[-1]
         stock prices = df.iloc[-1].drop('SPY').values
         price = np.round(stock prices, 2) # Round prices to 2 decimal places
         # Calculate portfolio value for each stock
         value = units * price
         # Calculate portfolio weights
         total value = np.sum(value)
         weights = np.round(value / total value, 2) # Rounded to 2 decimal places
         # Round beta to 2 decimal places (assuming `beta` is already calculated)
         beta = np.round(beta, 2)
In [12]: Portfolio = pd.DataFrame({
             'Direction': 'Long',
             'Type': 'S',
             'Stock Price': price,
             'Price': price,
             'Units': units,
             'Value': units*price,
             'Weight': weights,
             'Beta': beta,
             'Weighted Beta': weights*beta
         }).reset index()
         Portfolio
```

	Ticker	Direction	Туре	Stock Price	Price	Units	Value	Weight	Beta	Weighte Bel
0	AMD	Long	S	141.13	141.13	100	14113.0	0.02	2.29	0.045
1	CRM	Long	S	339.11	339.11	250	84777.5	0.12	1.41	0.169
2	GOOGL	Long	S	167.65	167.65	300	50295.0	0.07	1.19	0.083
3	JPM	Long	S	250.29	250.29	400	100116.0	0.14	0.75	0.105
4	MA	Long	S	526.60	526.60	200	105320.0	0.14	0.65	0.091
5	META	Long	S	565.11	565.11	150	84766.5	0.12	1.54	0.184
6	NOW	Long	S	1052.71	1052.71	180	189487.8	0.26	1.36	0.353
7	NVDA	Long	S	136.02	136.02	220	29924.4	0.04	2.74	0.109
8	TSLA	Long	S	338.59	338.59	170	57560.3	0.08	2.27	0.181
9	XOM	Long	S	119.97	119.97	140	16795.8	0.02	0.23	0.004
4										•

Step 6: What if we have options, let's consider things in terms of Delta

```
In [13]: Portfolio = Portfolio.drop(['Weight', 'Weighted Beta'], axis=1)
    Portfolio['Delta'] = Portfolio['Units']
    Portfolio
```

Out[13]:		Ticker	Direction	Туре	Stock Price	Price	Units	Value	Beta	Delta
	0	AMD	Long	S	141.13	141.13	100	14113.0	2.29	100
	1	CRM	Long	S	339.11	339.11	250	84777.5	1.41	250
	2	GOOGL	Long	S	167.65	167.65	300	50295.0	1.19	300
	3	JPM	Long	S	250.29	250.29	400	100116.0	0.75	400
	4	MA	Long	S	526.60	526.60	200	105320.0	0.65	200
	5	META	Long	S	565.11	565.11	150	84766.5	1.54	150
	6	NOW	Long	S	1052.71	1052.71	180	189487.8	1.36	180
	7	NVDA	Long	S	136.02	136.02	220	29924.4	2.74	220
	8	TSLA	Long	S	338.59	338.59	170	57560.3	2.27	170
	9	XOM	Long	S	119.97	119.97	140	16795.8	0.23	140

Step 7: Weight the Delta's using Beta

In [14]: Portfolio['SPY Weighted Delta (point)'] = round(Portfolio['Beta'] * (Port
Portfolio['SPY Weighted Delta (1%)'] = round(Portfolio['Beta'] * (Portfol
Portfolio

Out[14]:

	Ticker	Direction	Туре	Stock Price	Price	Units	Value	Beta	Delta	SPY Weighted Delta (point)
0	AMD	Long	S	141.13	141.13	100	14113.0	2.29	100	54.09
1	CRM	Long	S	339.11	339.11	250	84777.5	1.41	250	200.05
2	GOOGL	Long	S	167.65	167.65	300	50295.0	1.19	300	100.16
3	JPM	Long	S	250.29	250.29	400	100116.0	0.75	400	125.66
4	MA	Long	S	526.60	526.60	200	105320.0	0.65	200	114.57
5	META	Long	S	565.11	565.11	150	84766.5	1.54	150	218.47
6	NOW	Long	S	1052.71	1052.71	180	189487.8	1.36	180	431.28
7	NVDA	Long	S	136.02	136.02	220	29924.4	2.74	220	137.22
8	TSLA	Long	S	338.59	338.59	170	57560.3	2.27	170	218.67
9	XOM	Long	S	119.97	119.97	140	16795.8	0.23	140	6.47
4										>

Step 8: Total the Delta's to get Portfolio Overview

In [15]: Portfolio.loc['Total', ['Value', 'SPY Weighted Delta (point)', 'SPY Weighted Delta (point)', 'SPY Weighted Delta (1 Portfolio

Out[15]:

	Ticker	Direction	Туре	Stock Price	Price	Units	Value	Beta	Delta	Weigh D (pc
0	AMD	Long	S	141.13	141.13	100.0	14113.0	2.29	100.0	5.
1	CRM	Long	S	339.11	339.11	250.0	84777.5	1.41	250.0	20
2	GOOGL	Long	S	167.65	167.65	300.0	50295.0	1.19	300.0	10
3	JPM	Long	S	250.29	250.29	400.0	100116.0	0.75	400.0	12.
4	MA	Long	S	526.60	526.60	200.0	105320.0	0.65	200.0	11.
5	META	Long	S	565.11	565.11	150.0	84766.5	1.54	150.0	21
6	NOW	Long	S	1052.71	1052.71	180.0	189487.8	1.36	180.0	43
7	NVDA	Long	S	136.02	136.02	220.0	29924.4	2.74	220.0	13
8	TSLA	Long	S	338.59	338.59	170.0	57560.3	2.27	170.0	21
9	XOM	Long	S	119.97	119.97	140.0	16795.8	0.23	140.0	
Total	NaN	NaN	NaN	NaN	NaN	NaN	733156.3	NaN	NaN	160
4										•