06. FUNCTIONS

* Function is a specific relation with a specific condition which defines a relation between domain (x) & codomain (Y).

fer - y

* Specific condition to be a function - Each element of min X is related to a unique element of Y. (one to one or many to one)

north a function

* f:1R - 31R

$$f(x) = 2x + 1$$
 $f(x) = 2(1) + 1$
 $= 3$

$$f(4) = 2(4) + 1$$

IMate

22

Equality of functions.

$$f(x) = |x|$$

$$g(x) = \sqrt{x^2}$$

ex:
$$f(0) = |0| = 0$$
 $g(0) = \sqrt{0^2} = 0$
 $f(2) = |2| = 2$ $g(2) = \sqrt{0^2} = \sqrt{4} = 2$
 $f(3) = |-3| = 3$ $g(-3) = \sqrt{3^2} = \sqrt{4} = 3$

* Special functions

sone to one function

On to function.

One to one function

_ one to one fh _

Abaums of the amena

chac tod of the

* Inverse function exists only of function is one to one on to

* We have to prove the function is one to one of onto to find

Inverse function

ex: $f: |R \longrightarrow R$ f(x) = 3x + 1

find of ?

One-to-one

Let α_1 , $\alpha_2 \in \mathbb{R}$ Suppose $f(\alpha_1) = f(\alpha_2)$ $\frac{3\alpha_1+1}{5} = \frac{3\alpha_2+1}{5}$

 $3x_1 + 1 = 3x_2 + 1$ $3x_1 = 3x_0$ $x_1 = x_2$

: one to one

Onto

Let yelk (codornalin) Suppose,

y = 3x + 1

2x+1= by a= by-1 & (domain)

aln. ··· +(-2) = +(2) -2 +2 : not one to one s. It is a bisentico : Inverse doesn't exist ready. 11 1-102-31 (08) 11 4 48- 3 10 * It no x2 terms in the expression, then f'is one to one a) +(x)=-3x+4 one to one Let x1, x2 EIR suppose, x-1 = con 7f(x) = f(x)-3x,+4=-3x,+4 -30, = -30021=26 :. one to one the On to Let yelk suppose, 4=-32+4 -3 2= 4-4 21=4-4 EIR (domain) for all yelk there there exists y=1k domain **IMate** IMate

