BLG202E HW3 MUSTAFA CAN ÇALIŞKAN 150200097

"In) Using Rapleight radve which is belong	to	riegen	vecto	r th	nat	have	tour	nd	USing	Pow
$\lambda = \frac{A \times X}{X \times X}$	_		5	2]	I	h]	= [5	h+ h+	2]	
(5h+2,4h+7).((h,1).(h,1)	4,1)	= 2	h 2	+21	7 +	4h -	7 5	5	h ² + 6	Sh + 7
$a = \frac{5h^2 + 6h + 1}{h^2 + 1}$										

(93) a.i)				
(1.0)	00(x) =	1 (0+(x) = x	$(\partial_2(x) = x $	2
x = -1.2	1	-1.2	1.44	
x = 0.3	1	0.3	0.09	
$\chi = 1, 1$	1	1.1	1.21	
1 -1.2	1.44	CC7 -5.	76	
1 0.3	0.09	6 = -5.	,61	
1 1.1	1,21	a -3.	69	
A		X 6		
Ax=5	- 7			
x = A-15 =	1-6	The poly	nomial is : (x	2+x-6
			h	
	111			

$$\begin{array}{l}
(93) \\
(2) \\
(2) \\
(2) \\
(2) \\
(2) \\
(3) \\
(3) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4)$$

problems output terminal

remainal

O4)

C) i Xi
$$f[Xi]$$
 $f[Xi-1,Xi]$

2 0.7 $[6]$ $\frac{3-6}{0.4-0.7} = [0]$ $\frac{5-10}{7} = [50]$

O O 1 $\frac{1-3}{0-0.4} = 5$

The diagonal entires yield the coefficients.

$$f(x) = 6 + 10(x-0.7) + \frac{50}{7}(x-0.7)(x-0.4) = \frac{50x^2 + 15x}{7} + 1$$
(in order of x_2, x_3, x_0)

$$g(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + \left(\frac{f(x_0) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}\right) (x - x_0) (x - x_1)$$

$$b(x) = f(x_0) + \frac{f(x_1) - f(x_2)}{x_1 - x_0} (x - x_2) + \left(\frac{f(x_0) - f(x_1)}{x_0 - x_1} - \frac{f(x_1) - f(x_2)}{x_1 - x_2}\right) (x - x_2) (x - x_1)$$

$$g(x_0) = h(x_0)$$

$$g(x_0) = h(x_0)$$

$$g(x_0) = h(x_1)$$

$$g(x_0)$$