Algèbre et géométrie 1

Patrick Le Meur et Pierre Gervais

September 26, 2016

Contents

L	Groupes	1
1	Définitions et premiers exemples	1
2	Sous-groupe	2
3	Ordre d'un élément dans un groupe	4
4	Homomorphisme de groupe	5
Π	Opérations de groupes	5
Π	I Groupes symétriques	5
I	Sous-groupes distingués et groupes quotient	5
V	Théorème de Sylow	5
V	I Solutions des exercices	5

Part I

Groupes

1 Définitions et premiers exemples

Définition 1. Un groupe est un couple (G, *) où

- G est un ensemble
- * : $\begin{cases} G \times G & \longrightarrow & G \\ (g,h) & \longmapsto & g*h \end{cases}$ est une loi de composition interne associative admettant un élément neutre e, c'est à dire tel que $\forall g \in G, g*e = e*g = g$
- tout élément g admet un symétrique pour * noté g^{-1} tel que $g \ast g^{-1} = g^{-1} \ast g = e$

Remarque 1.

- L'élément neutre et le symétrique d'un élément donné est unique.
- Pour tout $g, h \in G$ on a $(g * h^{-1}) = h^{-1} * g^{-1}$
- Si on a gh = e, alors $g = h^{-1}$
- Soit $g \in G$ et n > 0, on définit $g^n = \underbrace{g * g * g ...g}_{n \text{ fois}}, \ g^0 = e, \ g^{n+1} = g * g^n$ et $g^{-n} = \left(g^{-1}\right)^n$

Exercice 1. Montrer que pour tout $m, n \in \mathbb{Z}$ on a $g^{m+n} = g^m * g^n$ et $g^{-n} = (g^{-1})^n$ Exemple 1.

- 1. $G = \mathbb{Z}, * = +$
- 2. Soit E un espace vectoriel, (E, +)
- 3. (\mathbb{C}^*, \times) et $(\mathbb{C}, +)$
- 4. Si \mathbb{K} est un corps, $(\mathbb{K}, *)$

Ces exemples sont des groupes abéliens (c'est à dire commutatifs), les suivants n'en sont pas.

5. Soit
$$(G, \cdot)$$
 un groupe fini, on définit \otimes :
$$\begin{cases} \mathbb{Z}^G \times \mathbb{Z}^G & \longrightarrow \mathbb{Z}^G \\ (f_1, f_2) & \longmapsto \begin{pmatrix} g \longmapsto \sum_{h \in G} f_1(h) f_2(h^{-1} * g) \end{pmatrix}$$

Exercice 2. Montrer que \mathbb{Z}^G muni de cette opération n'est pas un groupe mais que \otimes est une loi associative.

6. $GL_n(\mathbb{R})$ muni de la multiplication de matrices.

Proposition 1. Soit E un ensemble non-vide, on note $\mathfrak{S}(E)$ l'ensemble des applications bijectives de E dans E et $(\mathfrak{S}(E), \circ)$ est un groupe.

2 Sous-groupe

Définition 2. Soit (G, *) un groupe, on appelle sous-groupe de G toute partie $H \subseteq G$ munie de * telle que $e \in H$, $\forall (h_1, h_2) \in H^2, h_1 * h_2 \in H$ et $\forall h \in H, h^{-1} \in H$. On note $H \leqslant G$

Exemple 2. 1. Si (G,*) est un groupe alors $\{e\} \leq G$

- 2. On définit $SL_n(\mathbb{R}) = \{M \in \mathcal{M}_n | \det M = 1\}$ le groupe spécial linéaire qui est un sous-groupe de $GL_n(\mathbb{R})$
- 3. On définit $\mathcal{O}_n(\mathbb{R}) = \{M \in \mathcal{M}_n | {}^t MM = I_n\}$ le groupe orthogonal qui est un sous-groupe de $GL_n(\mathbb{R})$

- 4. $\mathfrak{U} = \{z \in \mathbb{C} \mid |z| = 1\} \leqslant (\mathbb{C}^*, \times)$
- 5. Pour n > 0, $\mathfrak{U}_n = \{ z \in \mathbb{C}^* \mid z^n = 1 \} \leqslant \mathfrak{U} \leqslant \mathbb{C}^*$

Proposition 2.

- 1. Soit $n \in \mathbb{Z}$, $n\mathbb{Z} \leqslant \mathbb{Z}$
- 2. Tout sous-groupe de \mathbb{Z} est de cette forme

Preuve 1.

- 1. $n\mathbb{Z} \subseteq \mathbb{Z}$, $0 \in \mathbb{Z}$, $xn + yn = (x + y)n \in n\mathbb{Z}$ et $-(xn) \in n\mathbb{Z}$
- 2. Soit $H \leq \mathbb{Z}$, si $H = \{0\}$

Soit $n = min\{h \in H \mid h > 0\}$ (il existe par la propriété de la borne supérieure), montrons $H = n\mathbb{Z}$

$$nZ\subseteq H$$
 \checkmark

 $nZ \subset H$

Soit $h \in H$, on considère sa division euclidienne par n : h = nq + r avec $0 \le r < n$. $h - nq = r \in H$, et n est le plus petit élément non-nul, donc r = 0.

Lemme 1. Soit G un groupe et $(H_i)_i \in I$ une famille de sous-groupes de G, alors $\bigcap_{i \in I} H_i \leqslant G$

Définition 3. Soit G un groupe et A une partie de G, l'intersection des sous-groupes de G contenant A est appelée sous-groupe engendré par A et notée $\langle A \rangle$.

Propriété 1.

- $A \subseteq \langle A \rangle \leqslant G$
- Si H est un sous-groupe contenant A, alors $\langle A \rangle \subseteq H$

Exercice 3. Montrer que $\langle A \rangle$ est l'unique sous-groupe vérifiant ces propriétés.

Propriété 2. Soit G un groupe et $g \in G$, $\langle \{g\} \rangle = \langle g \rangle = \{g^n, n \in \mathbb{Z}\}$

Exercice 4. Le démontrer.

Propriété 3. Soit A une partie de G, $\langle A \rangle$ est l'ensemble des éléments de la forme $a_1^{n_1} * a_2^{n_2} * ... * a_p^{n_p}$ où $a_i \in A$ et $n_i \in \mathbb{Z}$.

 $Preuve\ 2.$ On pose K l'ensemble des éléments de cette forme. Montrons

- 1. $A \subseteq K$ et $K \leqslant G$
- 2. Pour tout $H \leq G$ tel que $A \subseteq H$ on a $K \subseteq H$

Exemple 3. 1. Soient k et n deux entiers relatifs, $\langle k, n \rangle = k\mathbb{Z} + n\mathbb{Z} = (k \wedge n)\mathbb{Z}$ d'après l'identité de Bézout.

2. Soit n > 0, si $M \in \mathcal{O}_n(\mathbb{R})$, alors il existe $P \in \mathcal{O}_n(\mathbb{R})$ et $r, s \in \mathbb{N}$, $\theta_1, ...\theta_p \in \mathbb{R}$ tels que $P^{-1}MP$ soit diagonale par blocs :

$$\begin{pmatrix}
I_r & & & & & \\
& -I_s & & & & \\
& & R(\theta_1) & & & \\
& & & \ddots & & \\
& & & R(\theta_p)
\end{pmatrix}$$

Exercice 5. Montrer que $\mathcal{O}_n(\mathcal{R})$ est engendré par les réflexions, c'est à dire les matrices de orthogonales semblables

à
$$\begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$
 en base orthonormée.

3 Ordre d'un élément dans un groupe

Soit $g \in G$, on suppose qu'il existe n > 0 tel que $g^n = e$. On a alors $\langle g \rangle = \{e, g, g^2, g^3, ..., g^{n-1}\}$, en effet pour tout k > 0, de division euclidienne k = nq + r avec $0 \le r < n$, on a $g^k = g^{nq+r} = e^q g^r = g^r$ d'où $g^r \in \{e, g, g^2, ..., g^{n-1}\}$.

Définition 4. Soit $g \in G$, on définit *l'ordre* de g par $d = \min\{k > 0 \mid g^k = e\}$, on a ainsi que $e, g, g^2, ..., g^d$ sont deux à deux distincts. On en conclut que $\langle g \rangle = \{g^k \mid 0 \leqslant k < d\}$ est de cardinal d.

En effet
$$0 \le k \le l < d$$
, on a $g^l = g^k \Longrightarrow g^{l-k} = e$.
Or $0 \le l - k < d$ et par minimalité de d , $l = k$.

Exemple 4.

- 1. Dans (\mathfrak{U}, \times) , pour n > 0 on a $g = \exp\left(\frac{2i\pi}{n}\right)$ g est d'ordre fini égal à n.
- 2. Dans $GL_n(\mathbb{R})$ $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ est d'ordre 2 et $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ d'ordre 4.

Théorème 1. Soit G un groupe fini et $H \leq G$, alors |H| divise |G|.

Corollaire 1. Soit g un élément d'un groupe fini, g est d'ordre fini divisant |G|.

Exemple 5. Dans \mathfrak{U}_6 , d'ordre 6, les éléments peuvent avoir pour ordre 1, 2, 3 et 6.

Propriété 4. d > 0 est l'ordre de g si et seulement si $g^d = e$ et pour tout diviseur de d 0 < t < d on a $g^t \neq e$.

Exercice 6. Le démontrer.

Remarque 2. Si $q \in G$ et p est un nombre premier tel que $q^p = e$, alors q = e ou l'ordre de q est p.

4 Homomorphisme de groupe

Définition 5. Soient G et G' deux groupes, un homomorphisme de G dans G' est une application de G dans G' tel que .

Exemple 6.

- 1. On considère $\phi: (\mathbb{R}, +) \longrightarrow (\mathbb{R}_+^*, \times), \ x \longmapsto \exp(x)$ On a $\forall x, y \in \mathbb{R}, \ \exp(x + y) = \exp(x) \exp(y)$ In est l'application réciproque.
- 2. Le déterminant est un homomorphisme de $(GL_n(\mathbb{R}), \times)$ dans (\mathbb{R}^*, \times)

Remarque 3. Un homorphisme f vérifie

- f(e) = f(e'), car $f(e) = f(e \cdot e) = f(e)f(e)$ puis en simplifiant : e' = f(e)
- Pour tout $g \in G$, $f(g^{-1}) = f(g)^{-1}$

Pour tout x,

Part II

Opérations de groupes

Part III

Groupes symétriques

Part IV

Sous-groupes distingués et groupes quotient

Part V

Théorème de Sylow

Part VI

Solutions des exercices

Solution de l'exercice 1 Commençons par montrer pour tout n > 0, $(g^n)^{-1} = g^{-n}$:

$$(g^n)^{-1} = (g * g^{n-1})^{-1} = ((g^{n-1})^{-1} * g^{-1})^{-1}$$

$$(g^n)^{-1} = ((g^{n-2})^{-1} * g^{-1} * g^{-1})^{-1}$$

. . .

$$(g^n)^{-1} = \underbrace{g^{-1} * g^{-1} \dots g^{-1}}_{n \text{ fois}} = (g^{-1})^n = g^{-n}$$

Pour tout $m, n \in \mathbb{Z}$, on distingue plusieurs cas :

- m = 0 ou n = 0
- m, n > 0 : ✓
- m > 0, n < 0 avec m + n < 0:

$$g^{m} * g^{n} = g^{m} * (g^{-1})^{|n|} = g^{m} * (g^{-1})^{m} * (g^{-1})^{|n|-m} = e * (g^{-1})^{|n|-m} = (g^{-1})^{-n-m} = g^{m+n}$$

- m, n < 0:

$$g^{m+n} = (g^{-1})^{|m|+|n|} = (g^{-1})^{|m|} * (g^{-1})^{|n|} = g^m * g^n$$

- les autres cas se démontrent de la même façon

Solution de l'exercice 2 Supposons par l'absurde que (\mathbb{Z}^G, \otimes) est un groupe :

Stabilité de l'opération :

Élément neutre : On cherche $\epsilon: G \longrightarrow \mathbb{Z}$ tel que

$$\forall f \in \mathbb{Z}^G, \ \forall g \in G, \ \sum_{h \in G} \epsilon(h) f(h^{-1} * g) = \sum_{h \in G} f(h) \epsilon(h^{-1} * g) = f(g)$$

Pour f valant 1 sur G on a

$$\sum_{h \in G} \epsilon(h) = \sum_{h \in G} \epsilon(h^{-1} * g) = 1$$

Vérifions que si ϵ est définie par $\epsilon(g)=\left\{\begin{array}{ll} 1, \text{ si } g=e\\ 0, \text{ sinon} \end{array}\right.$, alors elle est neutre pour \otimes :

$$\sum_{h \in G_1} \underbrace{\epsilon(h)}_{ssi\ h=e} f(h^{-1} * g) = f(e^{-1} * g) = f(g)$$

$$\sum_{h \in G} f(h) \underbrace{\epsilon(h^{-1} * g)}_{1 \text{ ssi } h = g} = f(g)$$

 \checkmark

Existence d'un inverse : Soit $f: G \longrightarrow \mathbb{Z}$, il existe $\phi: G \longrightarrow \mathbb{Z}$ telle que $f \otimes \phi = \phi \otimes f = \epsilon$

$$\forall g \neq e, \ \sum_{h \in G} \phi(h) f(h^{-1} * g) = \sum_{h \in G} f(h) \phi(h^{-1} * g) = 0$$

et

$$\sum_{h \in G} \phi(h) f(h^{-1}) = \sum_{h \in G} f(h) \phi(h^{-1}) = 1$$

la deuxième égalité est impossible lorsque f est la fonction nulle, (\mathbb{Z}^G, \otimes) n'est donc pas un groupe.

Solution de l'exercice 3 Soit K un sous-groupe vérifiant les propriétés suivantes :

$$\begin{array}{ll} (1) & \forall H \leqslant G, \ A \subseteq H \Longrightarrow K \subseteq H \\ (2) & A \subseteq K \leqslant G \end{array}$$

$$(2) A \subset K \leqslant G$$

On rappelle que

$$\begin{array}{ll} (3) & \forall H \leqslant G, \ A \subseteq H \Longrightarrow \langle A \rangle \subseteq H \\ (4) & A \subseteq \langle A \rangle \leqslant G \end{array}$$

$$(4) A \subset \langle A \rangle \leqslant G$$

 $A \subseteq K$ alors d'après (3) $\langle A \rangle \subseteq K$ et $A \subseteq \langle A \rangle$ alors d'après (1) $K \subseteq \langle A \rangle$

Solution de l'exercice 4 On pose $A = \{g^n \mid n \ge 0\}.$

 $g \in A$ donc $\langle g \rangle \subseteq A$, de plus $g \in \langle g \rangle$ alors par récurrence $\forall n \geqslant 0, \ g^n \in \langle g \rangle, \ d$ où $A \subset \langle g \rangle$.

Solution de l'exercice 6 Soit d > 0 et $q \in G$, montrons l'équivalence entre les deux propositions suivantes

$$(i)$$
 d est l'odre de d

$$\begin{array}{ll} (i) & d \text{ est l'odre de } g \\ (ii) & g^d = e \text{ et } \forall k | d, \ (k < d \Longrightarrow g^k \neq e) \end{array}$$

$$(i) \Longrightarrow (ii)$$

d'étant l'ordre de g, on a $g^d = e$, et par minimalité de d on a pour tout k < d, $g^k \neq e$ (en particulier pour tout diviseur strict de d). \checkmark

 $(ii) \Longrightarrow (i)$

d vérifie :

1.
$$g^d = e$$

2.
$$\forall k < d$$
, $(k|d \Longrightarrow a^k \neq e)$

On a que $d \ge ord(g)$, par minimalité de ord(g).

Supposons maintenant que $d \neq ord(q)$, c'est à dire que d > ord(q), l'ordre de q divise nécessairement d, d'où l'existence d'un entier n > 1 tel que $d = n \cdot ord(g)$.

ord(g) est donc un diviseur strict de d! d est ainsi égal à l'ordre de g, sinon on aurait d'après (2) $g^{ord(g)} \neq e$ \checkmark