Занятие 4 Линейные модели классификации.

Елена Кантонистова

elena.kantonistova@yandex.ru

ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ (НАПОМИНАНИЕ)

Обучающая выборка:

$$x_1, x_2, ..., x_n$$
 - объекты, $y_1, y_2, ..., y_n$ - ответы (**любые числа**).

• Модель линейной регрессии:

$$a(x,w) = \sum_{j=1}^{n} w_j x_j$$

• Метод обучения – метод наименьших квадратов (минимизируем разность между предсказанием и правильным ответом):

$$Q(w) = \sum_{i=1}^{n} (a(x_i, w) - y_i)^2 \rightarrow \min_{w}$$

Обучающая выборка:

$$x_1, x_2, \dots, x_n$$
 - объекты, y_1, y_2, \dots, y_n - ответы (+1 или -1).

Обучающая выборка:

$$x_1, x_2, \dots, x_n$$
 - объекты, y_1, y_2, \dots, y_n - ответы (+1 или -1).

Как выглядит модель линейного классификатора: $a(x, w) \neq ?$

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign}(\sum_{j=1}^{n} w_{j}x_{j})$$

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign}(\sum_{j=1}^{n} w_{j}x_{j})$$

- если $\sum_{j=1}^{n} w_j x_j > 0$, то $sign(\sum_{j=1}^{n} w_j x_j) = +1$, то есть объект отнесён к положительному классу
- ullet если $\sum_{j=1}^n w_j x_j < 0$, то $sign(\sum_{j=1}^n w_j x_j) = -1$, то есть объект отнесён к отрицательному классу

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign} (\sum_{j=1}^{n} w_{j} x_{j})$$

- ullet если $\sum_{j=1}^n w_j x_j > 0$, то $sign(\sum_{j=1}^n w_j x_j) = +1$, то есть объект отнесён к положительному классу
- ullet если $\sum_{j=1}^n w_j x_j < 0$, то $sign(\sum_{j=1}^n w_j x_j) = -1$, то есть объект отнесён к отрицательному классу
- значит, $\sum_{j=1}^{n} w_j x_j = 0$ уравнение разделяющей границы между классами. Это уравнение плоскости (или прямой в двумерном случае), поэтому классификатор является Рлинейным.

Модель линейного классификатора:

$$a(x,w) = sign(\sum_{j=1}^{n} w_j x_j)$$

Уравнение

$$\sum_{j=1}^{n} w_j x_j = 0$$

– уравнение плоскости

(или прямой).

ОБУЧЕНИЕ КЛАССИФИКАТОРА

Как обучить линейный классификатор?

ОБУЧЕНИЕ КЛАССИФИКАТОРА

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] \rightarrow min,$$

где $[a(x_i) \neq y_i] = 1$, если предсказание на объекте неверное, то есть $a(x_i) \neq y_i$, и 0 иначе.

обучение классификатора

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [\mathbf{a}(\mathbf{x}_i) \neq \mathbf{y}_i] \to min \ (*),$$

где $[a(x_i) \neq y_i] = 1$, если предсказание на объекте неверное, то есть $a(x_i) \neq y_i$, и 0 иначе.

• Обозначим $M_i = y_i \cdot (w, x_i)$ - **отступ** на i-м объекте.

обучение классификатора

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [\mathbf{a}(\mathbf{x}_i) \neq \mathbf{y}_i] \to min \ (*),$$

где $[a(x_i) \neq y_i] = 1$, если предсказание на объекте неверное, то есть $a(x_i) \neq y_i$, и 0 иначе.

• Обозначим $M_i = y_i \cdot (w, x_i)$ - **отступ** на i-м объекте.

Можно показать, что решение задачи (*) эквивалентно решению задачи

$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} [\mathbf{M_i} < \mathbf{0}] \to min$$

ъ OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

> OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

• Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.

> OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = y \cdot (w, x) < \mathbf{0}$$
.

> OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = y \cdot (w, x) < \mathbf{0}.$$

Случаи верной классификации:

ullet Если (w,x)>0 и y=+1 или (w,x)<0 и y=-1 получаем $M=y\cdot (w,x)>\mathbf{0}.$

ъ OTCTУП (MARGIN)

Ранжирование объектов по возрастанию отступа:

ВЕРХНИЕ ОЦЕНКИ ЭМПИРИЧЕСКОГО РИСКА

• $Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [\boldsymbol{M_i} < \boldsymbol{0}]$ – разрывная функция потерь, поэтому её минимум неудобно находить методом градиентного спуска (нельзя взять производную).

ВЕРХНИЕ ОЦЕНКИ ЭМПИРИЧЕСКОГО РИСКА

- $Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [\boldsymbol{M_i} < \boldsymbol{0}]$ разрывная функция потерь, поэтому её минимум неудобно находить методом градиентного спуска (нельзя взять производную).
- Поэтому для решения задачи классификации вместо разрывной функции [M < 0] берут непрерывные или гладкие функции потерь L(M).

ФУНКЦИИ ПОТЕРЬ

Минимизируя различные функции потерь, получаем разные результаты. Поэтому разным функциям потерь соответствуют различные классификаторы.

- $L(M) = \log(1 + e^{-M})$ логистическая функция потерь
- $V(M) = (1 M)_+ = \max(0, 1 M)$ кусочно-линейная функция потерь (метод опорных векторов)
- $H(M) = (-M)_{+} = \max(0, -M)$ кусочно-линейная функция потерь (персептрон)
- $E(M) = e^{-M}$ экспоненциальная функция потерь
- $S(M) = \frac{2}{1 + e^{-M}}$ сигмоидная функция потерь
- [M < 0] пороговая функция потерь

^ъ ФУНКЦИИ ПОТЕРЬ

ОПТИМИЗАЦИЯ ФУНКЦИОНАЛА ПОТЕРЬ

• Нахождение минимума функции потерь $m{Q}$ происходит с помощью метода градиентного спуска:

$$w^{(k)} = w^{(k-1)} - \eta \cdot \nabla Q(w^{(k-1)})$$

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

• Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

Недостаток: при сильно несбалансированной выборке не отражает качество работы алгоритма

МАТРИЦА ОШИБОК

_ Матрица ошибок (confusion matrix):

	Actual Value				
		positives	negatives		
d Value	positives	TP True Positive	FP False Positive		
Predicted Value	negatives	FN False Negative	TN True Negative		

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x) = +1.

PRECISION: ПРИМЕР

Модель $a_1(x)$:

 $precision(a_1, X) = 0.8$

Модель $a_2(x)$:

 $precision(a_2, X) = 0.96$

	y=1 Могут вернуть	y = -1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a(x) = -1 Не получили кредит	20	80

	y = 1 Могут вернуть	y = -1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a(x) = - 1 Не получили кредит	52	98

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x) = +1.

• **Recall** (полнота):

$$Recall(a, X) = \frac{TP}{TP + FN}$$

Показывает, как много объектов положительного класса находит классификатор.

RECALL: ПРИМЕР

Модель $a_1(x)$:

 $recall(a_1, X) = 0.8$

Модель $a_2(x)$:

 $recall(a_2, X) = 0.48$

	y=1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a (x) = - 1 Не получили кредит	20	80

	y=1 Могут вернуть	$oldsymbol{y} = -1$ Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

ТОЧНОСТЬ И ПОЛНОТА

Precision = -

Recall = -

F-MEPA

F-мера — это метрика качества, учитывающая и точность, и полноту

$$F(a, X) = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

РЕГУЛИРУЕМ ТОЧНОСТЬ И ПОЛНОТУ

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1, $p(x) \in [0;1]$.

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

РЕГУЛИРУЕМ ТОЧНОСТЬ И ПОЛНОТУ

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1, $p(x) \in [0;1]$.

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

РЕГУЛИРУЕМ ТОЧНОСТЬ И ПОЛНОТУ

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1, $p(x) \in [0;1]$.

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Путем изменения порога t можно регулировать точность и полноту:

- Например, если t=0, то мы все объекты относим к положительному классу, то есть полнота = 1, а точность маленькая.
- ightharpoonupПри увеличении t полнота уменьшается (могут появиться объекты положительного класса, которые мы не нашли), а точность возрастет (появляются объекты положительного класса).

УИНТЕГРАЛЬНАЯ МЕТРИКА: ROC-AUC

Хотим измерить качество всего семейства классификаторов независимо от выбранного порога.

Для этого будем использовать метрику AUC

AUC – Area Under ROC Curve (площадь под ROC-кривой)

ROC-КРИВАЯ

Для каждого значения порога t вычислим:

- False Positive Rate долю неверно принятых объектов
- True Positive Rate -долю верно принятых объектов Кривая, состоящая из точек с координатами (FPR,TPR) для всех возможных порогов — это и есть ROC-кривая.

ROC-КРИВАЯ

Кривая, состоящая из точек с координатами (FPR,TPR) для всех возможных порогов — это и есть ROC-кривая.

ROC-КРИВАЯ. AUC.

AUC (Area Under Curve) — площадь под ROC-кривой. $AUC \in [0; 1].$

•
$$AUC = 1 -$$

идеальная классификация

•
$$AUC = 0.5 -$$

случайная классификация

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

Упорядочим объекты по убыванию предсказаний:
 (0.7,0.4,0.2,0.1,0.05)

1 шаг: t = 0.7, то есть

$$TPR = \frac{TP}{TP+FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP+TN}$$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний: (0.7,0.4,0.2,0.1,0.05)

1 шаг:
$$t = 0.7$$
, то есть

$$TPR = \frac{TP}{TP + FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP + TN}$$

$$TPR = \frac{0}{0+3} = 0$$
, $FPR = \frac{0}{0+2} = 0$.

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний:

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{0}{0+3} = 0$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

2 шаг: t = 0.4, то есть

$$a(x) = [b(x) > 0.4]$$

$$TPR = \frac{1}{1+2} = \frac{1}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

3 шаг: t = 0.2, то есть

$$a(x) = [b(x) > 0.2]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

4 шаг: t = 0.1, то есть

$$a(x) = [b(x) > 0.1]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0.05, то есть

$$a(x) = [b(x) > 0.05]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3},$$

$$FPR = \frac{2}{2+0} = 1.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0, то есть

$$a(x) = [b(x) > 0]$$

$$TPR = \frac{3}{3+0} = 1$$
,

$$FPR = \frac{2}{2+0} = 1.$$

$$AUC = 2/3$$

