- **34.** (a) If $Y(t) = (t, t^2/2)$, then x(t) = t and $y(t) = t^2/2$. Then dx/dt = 1, and dy/dt = t = x. So Y(t) satisfies the differential equation.
 - (b) For $2\mathbf{Y}(t)$, we have x(t) = 2t, and $y(t) = t^2$. In this case, we need only consider dx/dt = 2 to see that the function is not a solution to the system.
- **35.** (a) Using the Product Rule we compute

$$\frac{dW}{dt} = \frac{dx_1}{dt}y_2 + x_1\frac{dy_2}{dt} - \frac{dx_2}{dt}y_1 - x_2\frac{dy_1}{dt}.$$

(b) Since $(x_1(t), y_1(t))$ and $(x_2(t), y_2(t))$ are solutions, we know that

$$\frac{dx_1}{dt} = ax_1 + by_1$$
$$\frac{dy_1}{dt} = cx_1 + dy_1$$

and that

$$\frac{dx_2}{dt} = ax_2 + by_2$$
$$\frac{dy_2}{dt} = cx_2 + dy_2.$$

Substituting these equations into the expression for dW/dt, we obtain

$$\frac{dW}{dt} = (ax_1 + by_1)y_2 + x_1(cx_2 + dy_2) - (ax_2 + by_2)y_1 - x_2(cx_1 + dy_1).$$

After we collect terms, we have

$$\frac{dW}{dt} = (a+d)W.$$

(c) This equation is a homogeneous, linear, first-order equation (as such it is also separable—see Sections 1.1, 1.2, and 1.8). Therefore, we know that the general solution is

$$W(t) = Ce^{(a+d)t}$$

where C is any constant (but note that C = W(0)).

(d) From Exercises 31 and 32, we know that $\mathbf{Y}_1(t)$ and $\mathbf{Y}_2(t)$ are linearly independent if and only if $W(t) \neq 0$. But, $W(t) = Ce^{(a+d)t}$, so W(t) = 0 if and only if C = W(0) = 0. Hence, W(t) = 0 is zero for some t if and only if C = W(0) = 0.

EXERCISES FOR SECTION 3.2

1. (a) The characteristic polynomial is

$$(3 - \lambda)(-2 - \lambda) = 0,$$

and therefore the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases} 3x_1 + 2y_1 = -2x_1 \\ -2y_1 = -2y_1 \end{cases}$$

and obtain $5x_1 = -2y_1$.

Using the same procedure, we see that the eigenvectors (x_2, y_2) for $\lambda_2 = 3$ must satisfy the equation $y_2 = 0$.

(c)

(d) One eigenvector \mathbf{V}_1 for λ_1 is $\mathbf{V}_1 = (-2,5)$, and one eigenvector \mathbf{V}_2 for λ_2 is $\mathbf{V}_2 = (1,0)$. Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

y(t)

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

(e) The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} -2 \\ 5 \end{pmatrix} + k_2 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

2. (a) The characteristic polynomial is

$$(-4 - \lambda)(-3 - \lambda) - 2 = \lambda^2 + 7\lambda + 10 = 0$$

and therefore the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -5$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases}
-4x_1 - 2y_1 = -2x_1 \\
-x_1 - 3y_1 = -2y_1
\end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = 2y_2$ for $\lambda_2 = -5$.

(d) One eigenvector V_1 for λ_1 is $V_1 = (1, -1)$, and one eigenvector V_2 for λ_2 is $V_2 = (2, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-5t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{-5t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

3. (a) The eigenvalues are the roots of the characteristic polynomial, so they are the solutions of

$$(-5 - \lambda)(-4 - \lambda) - 2 = \lambda^2 + 9\lambda + 18 = 0.$$

Therefore, the eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -6$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -3$, we solve the system of equations

$$\begin{cases}
-5x_1 - 2y_1 = -3x_1 \\
-x_1 - 4y_1 = -3y_1
\end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvalues (x_2, y_2) where $x_2 = 2y_2$ for $\lambda_2 = -6$.

(c)

(d) One eigenvector V_1 for $\lambda_1 = -3$ is $V_1 = (1, -1)$, and one eigenvector V_2 for $\lambda_2 = -6$ is $V_2 = (2, 1)$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-6t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

the x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

192 CHAPTER 3 LINEAR SYSTEMS

(e) The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{-6t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

4. (a) The characteristic polynomial is

$$(2 - \lambda)(4 - \lambda) + 1 = \lambda^2 - 6\lambda + 9 = 0,$$

and therefore there is only one eigenvalue, $\lambda = 3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda = 3$, we solve the system of equations

$$\begin{cases} 2x_1 + y_1 = 3x_1 \\ -x_1 + 4y_1 = 3y_1 \end{cases}$$

and obtain $y_1 = x_1$.

(c)

(d) One eigenvector V for λ is V = (1, 1). Given this eigenvector, we have the solution

$$\mathbf{Y}(t) = e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$x, y$$

$$10 + \\ 5 + \\ x(t), y(t)$$

$$1 + \\ t$$

The x(t)- and y(t)-graphs (which are identical) for $\mathbf{Y}(t)$

(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.

5. (a) The characteristic polynomial is

$$\left(-\frac{1}{2} - \lambda\right)^2 = 0,$$

and therefore there is only one eigenvalue, $\lambda = -1/2$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda = -1/2$, we solve the system of equations

$$\begin{cases} -\frac{1}{2}x_1 = -\frac{1}{2}x_1 \\ x_1 - \frac{1}{2}y_1 = -\frac{1}{2}y_1 \end{cases}$$

and obtain $x_1 = 0$.

(c)

(d) Given the eigenvalue $\lambda = -1/2$ and the eigenvector $\mathbf{V} = (0,1)$, we have the solution

$$\mathbf{Y}(t) = e^{-t/2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The x(t)- and y(t)-graphs for $\mathbf{Y}(t)$.

(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is linearly independent from $\mathbf{Y}(t)$, we cannot form the general solution.

194 CHAPTER 3 LINEAR SYSTEMS

6. (a) The characteristic polynomial is

$$(5-\lambda)(-\lambda) - 36 = 0,$$

and therefore the eigenvalues are $\lambda_1 = -4$ and $\lambda_2 = 9$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -4$, we solve the system of equations

$$\begin{cases} 5x_1 + 4y_1 = -4x_1 \\ 9x_1 = -4y_1 \end{cases}$$

and obtain $9x_1 = -4y_1$.

Using the same procedure, we see that the eigenvectors (x_2, y_2) for $\lambda_2 = 9$ must satisfy the equation $y_2 = x_2$.

(c)

(d) One eigenvector V_1 for λ_1 is $V_1=(4,-9)$, and one eigenvector V_2 for λ_2 is $V_2=(1,1)$. Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-4t} \begin{pmatrix} 4 \\ -9 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{9t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The (identical) x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-4t} \begin{pmatrix} 4 \\ -9 \end{pmatrix} + k_2 e^{9t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

7. (a) The characteristic polynomial is

$$(3 - \lambda)(-\lambda) - 4 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0,$$

and therefore the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 4$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -1$, we solve the system of equations

$$\begin{cases} 3x_1 + 4y_1 = -x_1 \\ x_1 = -y_1 \end{cases}$$

and obtain $y_1 = -x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = 4y_2$ for $\lambda_2 = 4$.

(c)

(d) One eigenvector V_1 for λ_1 is $V_1 = (1, -1)$, and one eigenvector V_2 for λ_2 is $V_2 = (4, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{4t} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{4t} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

8. (a) The characteristic polynomial is

$$(2 - \lambda)(1 - \lambda) - 1 = \lambda^2 - 3\lambda + 1 = 0.$$

and therefore the eigenvalues are

$$\lambda_1 = \frac{3+\sqrt{5}}{2} \quad \text{and} \quad \lambda_2 = \frac{3-\sqrt{5}}{2}.$$

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = (3 + \sqrt{5})/2$, we solve the system of equations

$$\begin{cases} 2x_1 - y_1 = \frac{3 + \sqrt{5}}{2}x_1 \\ -x_1 + y_1 = \frac{3 + \sqrt{5}}{2}y_1 \end{cases}$$

and obtain

$$y_1 = \frac{1 - \sqrt{5}}{2} x_1,$$

which is equivalent to the equation $2y_1 = (1 - \sqrt{5})x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $2y_2 = (1 + \sqrt{5})x_2$ for $\lambda_2 = (3 - \sqrt{5})/2$.

(c)

(d) One eigenvector V_1 for the eigenvalue λ_1 is $V_1=(2,1-\sqrt{5})$, and one eigenvector V_2 for the eigenvalue λ_2 is $V_2=(2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1-\sqrt{5} \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{(3-\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1+\sqrt{5} \end{pmatrix}$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

$$\mathbf{Y}(t) = k_1 e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1-\sqrt{5} \end{pmatrix} + k_2 e^{(3-\sqrt{5})t/2} \begin{pmatrix} 2 \\ 1+\sqrt{5} \end{pmatrix}.$$

9. (a) The characteristic polynomial is

$$(2 - \lambda)(1 - \lambda) - 1 = \lambda^2 - 3\lambda + 1 = 0,$$

and therefore the eigenvalues are

$$\lambda_1 = \frac{3 + \sqrt{5}}{2} \quad \text{and} \quad \lambda_2 = \frac{3 - \sqrt{5}}{2}.$$

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = (3 + \sqrt{5})/2$, we solve the system of equations

$$\begin{cases} 2x_1 + y_1 = \frac{3 + \sqrt{5}}{2}x_1 \\ x_1 + y_1 = \frac{3 + \sqrt{5}}{2}y_1 \end{cases}$$

and obtain

$$y_1 = \frac{-1 + \sqrt{5}}{2} x_1,$$

which is equivalent to the equation $2y_1 = (-1 + \sqrt{5})x_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $2y_2 = (-1 - \sqrt{5})x_2$ for $\lambda_2 = (3 - \sqrt{5})/2$.

(c)

(d) One eigenvector V_1 for the eigenvalue λ_1 is $V_1=(2,-1+\sqrt{5})$, and one eigenvector V_2 for the eigenvalue λ_2 is $V_2=(-2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_{1}(t) = e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ -1+\sqrt{5} \end{pmatrix} \quad \text{and} \quad \mathbf{Y}_{2}(t) = e^{(3-\sqrt{5})t/2} \begin{pmatrix} -2 \\ 1+\sqrt{5} \end{pmatrix}.$$

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

(e) The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{(3+\sqrt{5})t/2} \begin{pmatrix} 2 \\ -1+\sqrt{5} \end{pmatrix} + k_2 e^{(3-\sqrt{5})t/2} \begin{pmatrix} -2 \\ 1+\sqrt{5} \end{pmatrix}.$$

10. (a) The characteristic polynomial is

$$(-1 - \lambda)(-4 - \lambda) + 2 = \lambda^2 + 5\lambda + 6 = (\lambda + 3)(\lambda + 2) = 0,$$

and therefore the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -3$.

(b) To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -2$, we solve the system of equations

$$\begin{cases}
-x_1 - 2y_1 = -2x_1 \\
x_1 - 4y_1 = -2y_1
\end{cases}$$

and obtain $x_1 = 2y_1$.

Using the same procedure, we obtain the eigenvectors (x_2, y_2) where $x_2 = y_2$ for $\lambda_2 = -3$.

(c)

(d) One eigenvector V_1 for λ_1 is $V_1 = (2, 1)$, and one eigenvector V_2 for λ_2 is $V_2 = (1, 1)$. Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

 $\begin{array}{c|c}
x, y \\
5 \\
-1 \\
 & 1
\end{array}$

The x(t)- and y(t)-graphs for $\mathbf{Y}_1(t)$.

The identical) x(t)- and y(t)-graphs for $\mathbf{Y}_2(t)$.

(e) The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{-2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + k_2 e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

11. The eigenvalues are the roots of the characteristic polynomial, so they are solutions of

$$(-2 - \lambda)(1 - \lambda) - 4 = \lambda^2 + \lambda - 6 = 0.$$

Hence, $\lambda_1=2$ and $\lambda_2=-3$ are the eigenvalues.

To find the eigenvectors for the eigenvalue $\lambda_1 = 2$, we solve

$$\begin{cases}
-2x_1 - 2y_1 = 2x_1 \\
-2x_1 + y_1 = 2y_1,
\end{cases}$$

so $y_1 = -2x_1$ is the line of eigenvectors. In particular, (1, -2) is an eigenvector for $\lambda_1 = 2$.

Similarly, the line of eigenvectors for $\lambda_2 = -3$ is given by $x_1 = 2y_1$. In particular, (2, 1) is an eigenvector for $\lambda_2 = -3$.

Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

The general solution is

$$\mathbf{Y}(t) = k_1 e^{2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + k_2 e^{-3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

(a) Given the initial condition Y(0) = (1, 0), we must solve

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + k_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

for k_1 and k_2 . This vector equation is equivalent to the two scalar equations

$$\begin{cases} k_1 + 2k_2 = 1 \\ -2k_1 + k_2 = 0. \end{cases}$$

Solving these equations, we obtain $k_1 = 1/5$ and $k_2 = 2/5$. Thus, the particular solution is

$$\mathbf{Y}(t) = \frac{1}{5}e^{2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \frac{2}{5}e^{-3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

(b) Given the initial condition $\mathbf{Y}(0) = (0, 1)$ we must solve

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + k_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

for k_1 and k_2 . This vector equation is equivalent to the two scalar equations

$$\begin{cases} k_1 + 2k_2 = 0 \\ -2k_1 + k_2 = 1. \end{cases}$$

Solving these equations, we obtain $k_1 = -2/5$ and $k_2 = 1/5$. Thus, the particular solution is

$$\mathbf{Y}(t) = -\frac{2}{5}e^{2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \frac{1}{5}e^{-3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

(c) The initial condition $\mathbf{Y}(0) = (1, -2)$ is an eigenvector for the eigenvalue $\lambda_1 = 2$. Hence, the solution with this initial condition is

$$\mathbf{Y}(t) = e^{2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

12. The characteristic polynomial is

$$(3 - \lambda)(-2 - \lambda) = 0,$$

and therefore the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -2$.

To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = 3$, we solve the system of equations

$$\begin{cases} 3x_1 = 3x_1 \\ x_1 - 2y_1 = 3y_1 \end{cases}$$

and obtain

$$5v_1 = x_1$$
.

Therefore, an eigenvector for the eigenvalue $\lambda_1 = 3$ is $V_1 = (5, 1)$.

Using the same procedure, we obtain the eigenvector $V_2 = (0, 1)$ for $\lambda_2 = -2$.

The general solution to this linear system is therefore

$$\mathbf{Y}(t) = k_1 e^{3t} \begin{pmatrix} 5 \\ 1 \end{pmatrix} + k_2 e^{-2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

(a) We have $\mathbf{Y}(0) = (1, 0)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 5 \\ 1 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} 5k_1 = 1 \\ k_1 + k_2 = 0. \end{cases}$$

Solving these equations, we obtain $k_1 = 1/5$ and $k_2 = -1/5$. Thus, the particular solution is

$$\mathbf{Y}(t) = \frac{1}{5}e^{3t} \begin{pmatrix} 5\\1 \end{pmatrix} - \frac{1}{5}e^{-2t} \begin{pmatrix} 0\\1 \end{pmatrix}.$$

(b) We have $\mathbf{Y}(0) = (0, 1)$. Since this initial condition is an eigenvector associated to the $\lambda = -2$ eigenvalue, we do not need to do any additional calculation. The desired solution to the initial-value problem is

$$\mathbf{Y}(t) = e^{-2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

(c) We have $\mathbf{Y}(0) = (2, 2)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 5 \\ 1 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} 5k_1 = 2 \\ k_1 + k_2 = 2. \end{cases}$$

Solving these equations, we obtain $k_1 = 2/5$ and $k_2 = 8/5$. Thus, the particular solution is

$$\mathbf{Y}(t) = \frac{2}{5}e^{3t} \begin{pmatrix} 5\\1 \end{pmatrix} + \frac{8}{5}e^{-2t} \begin{pmatrix} 0\\1 \end{pmatrix}.$$

13. The characteristic polynomial is

$$(-4 - \lambda)(-3 - \lambda) - 2 = \lambda^2 + 7\lambda + 10 = 0,$$

and therefore the eigenvalues are $\lambda_1 = -5$ and $\lambda_2 = -2$.

To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = -5$, we solve the system of equations

$$\begin{cases}
-4x_1 + y_1 = -5x_1 \\
2x_1 - 3y_1 = -5y_1
\end{cases}$$

and obtain

$$y_1 = -x_1$$
.

Therefore, an eigenvector for the eigenvalue $\lambda_1 = -5$ is $V_1 = (1, -1)$.

Using the same procedure, we obtain the eigenvector $V_2 = (1, 2)$ for $\lambda_2 = -2$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{-5t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{-5t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 e^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

(a) We have $\mathbf{Y}(0) = (1, 0)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} k_1 + k_2 = 1 \\ -k_1 + 2k_2 = 0. \end{cases}$$

Solving these equations, we obtain $k_1 = 2/3$ and $k_2 = 1/3$. Thus, the particular solution is

$$\mathbf{Y}(t) = \frac{2}{3}e^{-5t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{1}{3}e^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

(b) We have $\mathbf{Y}(0) = (2, 1)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} k_1 + k_2 = 2 \\ -k_1 + 2k_2 = 1. \end{cases}$$

Solving these equations, we obtain $k_1 = 1$ and $k_2 = 1$. Thus, the particular solution is

$$\mathbf{Y}(t) = e^{-5t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + e^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

(c) We have $\mathbf{Y}(0) = (-1, -2)$. Since this initial condition is an eigenvector associated to the $\lambda = -2$ eigenvalue, we do not need to do any additional calculation. The desired solution to the initial-value problem is

$$\mathbf{Y}(t) = -e^{-2t} \left(\begin{array}{c} 1 \\ 2 \end{array} \right).$$

14. The characteristic polynomial is

$$(4 - \lambda)(1 - \lambda) + 2 = \lambda^2 - 5\lambda + 6 = 0,$$

and therefore the eigenvalues are $\lambda_1=3$ and $\lambda_2=2$.

To obtain the eigenvectors (x_1, y_1) for the eigenvalue $\lambda_1 = 3$, we solve the system of equations

$$\begin{cases} 4x_1 - 2y_1 = 3x_1 \\ x_1 + y_1 = 3y_1 \end{cases}$$

and obtain

$$x_1 = 2y_1$$
.

Therefore, an eigenvector for the eigenvalue $\lambda_1 = 3$ is $V_1 = (2, 1)$.

Using the same procedure, we obtain the eigenvector $V_2 = (1, 1)$ for $\lambda_2 = 2$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$\mathbf{Y}_1(t) = e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

The general solution to this linear system is

$$\mathbf{Y}(t) = k_1 e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + k_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

(a) We have $\mathbf{Y}(0) = (1, 0)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} 2k_1 + k_2 = 1 \\ k_1 + k_2 = 0. \end{cases}$$

Solving these equations, we obtain $k_1 = 1$ and $k_2 = -1$. Thus, the particular solution is

$$\mathbf{Y}(t) = e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} - e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

(b) We have $\mathbf{Y}(0) = (2, 1)$. Since this initial condition is an eigenvector associated to the $\lambda = 3$ eigenvalue, we do not need to do any additional calculation. The desired solution to the initial-value problem is

$$\mathbf{Y}(t) = e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

(c) We have $\mathbf{Y}(0) = (-1, -2)$, so we must find k_1 and k_2 so that

$$\begin{pmatrix} -1 \\ -2 \end{pmatrix} = \mathbf{Y}(0) = k_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

This vector equation is equivalent to the simultaneous system of linear equations

$$\begin{cases} 2k_1 + k_2 = -1 \\ k_1 + k_2 = -2. \end{cases}$$

Solving these equations, we obtain $k_1 = 1$ and $k_2 = -3$. Thus, the particular solution is

$$\mathbf{Y}(t) = e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

15. Given any vector $\mathbf{Y}_0 = (x_0, y_0)$, we have

$$\mathbf{A}\mathbf{Y}_0 = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) = \left(\begin{array}{c} ax_0 \\ ay_0 \end{array}\right) = a \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) = a\mathbf{Y}_0.$$

Therefore, every nonzero vector is an eigenvector associated to the eigenvalue a.

16. The characteristic polynomial of **A** is

$$(a - \lambda)(d - \lambda) = 0,$$

and thus the eigenvalues of **A** are $\lambda_1 = a$ and $\lambda_2 = d$.

To find the eigenvectors $V_1 = (x_1, y_1)$ associated to $\lambda_1 = a$, we need to solve the equation

$$\mathbf{AV}_1 = a\mathbf{V}_1$$

for all possible vectors V_1 . Rewritten in terms of components, this equation is equivalent to

$$\begin{cases} ax_1 + by_1 = ax_1 \\ dy_1 = ay_1. \end{cases}$$

Since $a \neq d$, the second equation implies that $y_1 = 0$. If so, then the first equation is satisfied for all x_1 . In other words, the eigenvectors \mathbf{V}_1 associated to the eigenvalue a are the vectors of the form $(x_1, 0)$.

To find the eigenvectors $V_2 = (x_2, y_2)$ associated to $\lambda_2 = d$, we need to solve the equation

$$\mathbf{AV}_2 = d\mathbf{V}_2$$

for all possible vectors V2. Rewritten in terms of components, this equation is equivalent to

$$\begin{cases} ax_2 + by_2 = dx_2 \\ dy_2 = dy_2. \end{cases}$$

The second equation always holds, so the eigenvectors V_2 are those vectors that satisfy the equation $ax_2 + by_2 = dx_2$, which can be rewritten as

$$by_2 = (d - a)x_2.$$

These vectors form a line through the origin of slope (d - a)/b.

17. The characteristic polynomial of **B** is

$$\lambda^2 - (a+d)\lambda + ad - b^2$$
.

The roots of this polynomial are

$$\lambda = \frac{a + d \pm \sqrt{(a+d)^2 - 4(ad - b^2)}}{2}$$

$$= \frac{a + d \pm \sqrt{a^2 + 2ad + d^2 - 4ad + 4b^2}}{2}$$

$$= \frac{a + d \pm \sqrt{(a-d)^2 + 4b^2}}{2}.$$

Since the discriminant $D = (a-d)^2 + 4b^2$ is always nonnegative, the roots λ are real. Therefore, the matrix **B** has real eigenvalues. If $b \neq 0$, then D is positive and hence **B** has two distinct eigenvalues. (The only way to have only one eigenvalue is for D = 0).

18. The characteristic equation is

$$(a - \lambda)(-\lambda) - bc = \lambda^2 - a\lambda - bc = 0.$$

Finding the roots via the quadratic formula, we obtain the eigenvalues

$$\frac{a \pm \sqrt{a^2 + 4bc}}{2}$$

Note that these eigenvalues are very different from the case where the matrix is upper triangular (see Exercise 16). For example, they are not necessarily real numbers because $a^2 + 4bc$ can be negative.

19. (a) To form the system, we introduce the new dependent variable v = dy/dt. Then

$$\frac{dv}{dt} = \frac{d^2y}{dt^2} = -p\frac{dy}{dt} - qy = -pv - qy.$$

Written in matrix form this system where $\mathbf{Y} = (y, v)$, we have

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix} \mathbf{Y}.$$

(b) The characteristic polynomial is

$$(0 - \lambda)(-p - \lambda) + q = \lambda^2 + p\lambda + q.$$

(c) The roots of this polynomial (the eigenvalues) are

$$\frac{-p \pm \sqrt{p^2 - 4q}}{2}.$$

(d) The roots are distinct real numbers if the discriminant $D = p^2 - 4q$ is positive. In other words, the roots are distinct real numbers if $p^2 > 4q$.

(e) Since q is positive, $p^2 - 4q < p^2$, so we know that $\sqrt{p^2 - 4q} < \sqrt{p^2} = p$. Since the numerator in the expression for the eigenvalues is $-p \pm \sqrt{p^2 - 4q}$, we see that it must be negative. Since the denominator is positive, the eigenvalues must be negative.

20. (a) The parameters m = 1, k = 4, and b = 5 yield the second-order equation

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 4y = 0.$$

Given v = dy/dt, the corresponding system is

$$\frac{dy}{dt} = v$$

$$\frac{dv}{dt} = -4y - 5v.$$