#### Towards Implementing a MQTT-Gateway for Semi-Constrained Devices

**Gabriel Nikol** 

#### Content

- Motivation
- Related Work
  - HTTP, MQTT, MQTT-SN
  - Device Types
  - MQTT-SN Architecture
  - MQTT-SN Client Life Cycle
  - Transmission Protocols
- MQTT-SN Gateway Implementation
  - Core Components
  - Linux Gateway Implementation
  - Unit and Regression Tests
  - BLESocket
- Conclusion
- Future Work

# Most used Messaging Standards

#### Messaging Standards

What messaging protocol(s) do you use for your IoT solution?



#### HTTP

- Client-Server paradigm
- Addressable Resources (URI)



# **MQTT**

Publish-subscribe paradigm

Data centric approach



## MQTT QoS

- QoS 0 (at most once)
- QoS 1 (at least once)
- QoS 2 (exactly once)



## MQTT-SN

- Version of MQTT
- Not connection oriented
- Supports short topic names + pre-defined topic
- QoS -1 like QoS 0 but without connect
- Supports sleeping clients

# Comparing HTTP, MQTT and MQTT-SN

Comparing packet sizes in TCP/IP Model

| TCP/IP Model Layer | Protocol including the minimial length |             |             |          |
|--------------------|----------------------------------------|-------------|-------------|----------|
| Application Layer  | HTTP (20) MQTT (8)                     | MQTT-SN (8) |             |          |
| Transport Layer    | TCP (20)                               | UDP (8)     |             |          |
| Network Layer      | IP (20)                                |             |             |          |
| Network Interface  | Ethernet (20) WiFi (20)                |             | ZigBee (28) | BLE (13) |

### **IoT Devices**



# **Device Types**

- Constrained Devices
  - Limited resources (FLASH, CPU, RAM, Energy)
- Semi-Constrained Devices
  - Limited resource (FLASH, CPU, RAM, not Energy)
- Unconstrained Devices
  - Nealy unlimited resources (HDD, CPU, RAM)

## **MQTT-SN Architecture**

 Three MQTT-SN components: client, gateway, forwarder



# **MQTT-SN Architecture**

- Two kinds of gateways:
  - transparent and aggregating



# MQTT-SN Client Life Cycle

- MQTT-SN client is a constrained device
  - find a MQTT-SN Gateway via advertisement or searching a gateway
  - connect to the MQTT-SN gateway with a will message
  - register topics
  - subscribe to topics
  - send and receive publishes
  - unsubscribe from topics
  - sleep
  - wake up and collect queued publishes
  - sleep and wake up frequently
  - power source is empty will message is published

#### **Transmission Protocols**

# Bluetooth 4.









#### **IoT Overview**



# MQTT-SN Gateway Implementation

# Core Components

MqttSnMessageHandler + CoreInterface

**Environment Independent** 



# Gateway class



Linux Gateway Implementation



# Automated Unit and Regression Testing

- Using GoogleTest and GoogleMore
- Starting tests inside IDE CLion
- Writing a MqttSnTestClient + PahoMqttTestMessageHandler





#### **Test Clients**



#### Test Results

- Total: 96 unit tests
- 61 test pass
- 35 test fail

- But:
  - Important functionality is tested and working

#### **BLESocket**

Drop in replacement for LinuxUdpSocket



#### Conclusion

- Project successfull:
- implemented a MQTT-SN Gateway Prototype
- Runs on Linux and with little changes on Arduino/ESP8266
- Partially tested
- SocketInterface can be exchanged

#### **Future Work**

- Implement more transmission procotols: ZigBee, LoRa
- Support more platforms: Mbed, RTOS
- Implement: QoS 2 and will update
- Enhance unit tests
  - More tests
  - Fix broken parts
- Add stress tests and learn the limits of the design

Thank you for your Attention

Ideas or Suggestions?