

Flow of the presentation

- 1. Background
- 2. Need for the study
- 3. Methodology
- 4. Results
- 5. Conclusions
- 6. Future Work

Background

My thesis: Eco-hydrologic modeling of nutrient dynamics for sustainable drinking water protection in the Des Moines River basin.

Nutrient dynamics sensitive to rainfall.

Need for the study?

- Lack of consistently available field-observed data for the required time period.
- Trouble with SWAT+ rain gauge consideration.

Background > Why? > How? > Results > Conclusions > What's next?

Methodology

Extract gridded rainfall data

Extract observed rainfall data

Perform data analysis

Dataset:

Earth Engine Data Catalog

Method:

Google Earth Engine scripting with JavaScript

```
$
TermPaper_Myscript
                                                      Get Link
                                                                                   Reset -
   1 - /**** Start of imports. If edited, may not auto-convert in the playground. ****/
     var stanice_full = ee.FeatureCollection("projects/ee-revanthm81011/assets/StudyArea_RainGauges");
      /**** End of imports. If edited, may not auto-convert in the playground. *****/
      Author: Revanth Mamidala
      Inspired from the script of Daniel Paluba Daily aggregates GEE (palubad@natur.cuni.cz).
      (contact: mrevanth@iastate.edu)
      10
  11
      // Set start and end dates
      var startDate = '2016-01-01'; //'2006-01-01'
      var endDate = '2024-11-01'; // '2016-01-01'
  15
      // Load the datasets
  16
      var ERA5_Land = ee.ImageCollection("ECMWF/ERA5_LAND/HOURLY").select('total_precipitation_hourly')
                   .filterDate(startDate, endDate);
  18
  19
      var CHIRPS = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY").select('precipitation')
  21
                   .filterDate(startDate, endDate);
  22
  23
      var PERSIANN = ee.ImageCollection('NOAA/PERSIANN-CDR').select('precipitation')
  24
                   .filterDate(startDate, endDate);
  25
      var GPM = ee.ImageCollection('NASA/GPM L3/IMERG V07').select('precipitation')
  27
                   .filterDate(startDate, endDate);
  28
      var GSMAP = ee.ImageCollection('JAXA/GPM L3/GSMaP/v8/operational')
                   .filterDate(startDate, endDate).select('hourlyPrecipRate');
  30
  31
      var GLDAS = ee.ImageCollection('NASA/GLDAS/V021/NOAH/G025/T3H')
  33
                   .filterDate(startDate, endDate).select('Rainf_f_tavg');
```

Background > Why? > How? > Results > Conclusions > What's next?

Methodology

Extract gridded rainfall data

Extract observed rainfall data

Perform data analysis

Dataset: Iowa Environmental Mesonet by ISU

(https://mesonet.agron.iastate.edu/request/daily.phtml)

Method: Data scraping using python script.

```
# Base URL for scraping
base url = "https://mesonet.agron.iastate.edu/cgi-bin/request/daily.py"
# Function to scrape and save data
def scrape_and_save(network, station_id):
    params = {
        "network": network,
        "stations": station_id,
        "year1": "2005",
        "month1": "9",
        "day1": "1",
        "year2": "2024",
        "month2": "9",
        "day2": "31",
        "var": ["max_temp_f", "min_temp_f", "precip_in", "avg_wind_speed_kts", "avg_rh", "srad_mj"],
        "na": "blank",
        "format": "csv"
    response = requests.get(base url, params=params)
    if response.status code == 200:
       file_name = f"{network}_{station_id}.csv"
       file path = os.path.join(output folder, file name)
       with open(file_path, "w") as file:
            file.write(response.text)
       print(f"Data for {network} {station_id} saved to {file_path}")
        print(f"Failed to fetch data for {network} {station_id}")
```

Background > Why? How? Results > Conclusions > What's next?

Methodology

Extract gridded rainfall data Extract observed rainfall data

Perform data analysis

5. Perform Metrics Calculation

```
results = {}
# Loop through each gridded dataset
for name, df in dataframes.items():
    if name == "Observed":
    station_metrics = {}
    for station in dataframes["Observed"].columns[1:]: # Skip the 'Date' column
        if station in df.columns:
            # Merge observed and simulated on the 'Date' column
            merged = pd.merge(
                dataframes["Observed"][["Date", station]].dropna(),
                df[["Date", station]].dropna(),
                on="Date",
                suffixes=(" obs", " sim")
            if not merged.empty:
                observed = merged[f"{station}_obs"]
                simulated = merged[f"{station}_sim"]
                # Calculate metrics
                station metrics[station] = calculate metrics(observed, simulated)
    results[name] = station_metrics
```

Metrics: R², RMSE. MAE, rBias

Observed Rain gauge data:

• 22 Rain gauge stations in and around the study area were selected for rainfall data between 2005-2024.

Gridded Rain fall data:

• **7** datasets were considered in the study which were observed from Paluba et al. (2024), Rincón et al. (2022) and Banerjee et al. (2020).

Dataset	Temporal resolution	Spatial Resolution	Availability period
CHIRPS	Daily	~0.05 deg (5.5km)	1981 – present
ERA5	Daily	~0.25 deg (31km)	1979 – present
GSMAP	Hourly	~0.1 deg (11km)	2000 – present
GPM	Hourly	~0.1 deg (11km)	2014 – present
PERSIANN	Daily	~0.25 deg (31km)	1983 – 2020
PRISM	Daily	~4km	1981 – present

Background Why? How? Results Conclusions What's next?

Results

• PRISM Dataset has higher R² values when compared to other datasets.

Background Why? How? Results Conclusions What's next?

Results

• GPM has highest mean absolute error in comparison with other datasets.

Background Why? How? Results Conclusions What's next?

- Datasets GPM and GSMAP are not performing well.
- Rain gauge stations FOD and MJQ are major outliers in the study area.

R² heatmap reveals three rain gauge stations FOD, EOK and MJQ are major outliers in the study area.

Scatterplots for Different Scales and Datasets for Station AXA

Conclusions

Rain gauges:

MJQ, EOK and FOD stations are stations with least correlation.

Gridded Rain fall data:

- GPM and GSMAP are observed to be poorly performing.
- PRISM and CHIRPS are relatively better representative gridded rainfall data.
- Finally, PRISM dataset is chosen as the most suitable source.

Outcomes

The methodology and the scripts developed in the study are scalable and applicable to other watersheds or states/counties.

Background \tag{Why?} \tag{How?} \tag{Results} \tag{Conclusions} \tag{What's next?}

Future Work

- The PRISM rainfall dataset is used to extract climate data
- The extracted data can be given as input into SWAT+ model.

References

- Paluba, D., Bližňák, V., Müller, M., & Štych, P. (2024). EVALUATION OF PRECIPITATION DATASETS AVAILABLE IN GOOGLE EARTH ENGINE ON A DAILY BASIS FOR CZECHIA.
- Rincón-Avalos, P., Khouakhi, A., Mendoza-Cano, O., Cruz, J. L. D. L., & Paredes-Bonilla, K. M. (2022). Evaluation of satellite precipitation products over Mexico using Google Earth Engine. Journal of Hydroinformatics, 24(4), 711-729.
- Banerjee, A., Chen, R., E. Meadows, M., Singh, R. B., Mal, S., & Sengupta, D. (2020). An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sensing, 12(4), 709.
- Fooladi, M., Golmohammadi, M. H., Rahimi, I., Safavi, H. R., & Nikoo, M. R. (2023). Assessing the changeability of precipitation patterns using multiple remote sensing data and an efficient uncertainty method over different climate regions of Iran. Expert Systems with Applications, 221, 119788.

Dataset Abbreviations

- **ERA5**: ECMWF Climate Reanalysis
- GLDAS: Global Land Data Assimilation System
- IMERG V06 product from the **GPM**: Global Precipitation Measurement
- **GSMaP**: Global Satellite Mapping of Precipitation
- CHIRPS: Daily Climate Hazards Group InfraRed Precipitation With Station Data
- **PERSIANN**-CDR: Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record.
- PRISM: Parameter-elevation Regressions on Independent Slopes Model

Supplementary Slide

0 Point	DVP	Slayton	MN_ASOS	#######	43.9868	-95.7826
1 Point	MJQ	JACKSON MUNI	MN_ASOS	#######	43.65	-94.9866
2 Point	MWM	WINDOM MUNI AIRP	MN_ASOS	#######	43.9134	-95.1094
3 Point	OTG	WORTHINGTON	MN_ASOS	#######	43.6551	-95.5792
4Point	AXA	ALGONA	IA_ASOS	#######	43.0796	-94.2724
5 Point	BNW	BOONE MUNI	IA_ASOS	#######	42.0486	-93.8486
6 Point	CAV	CLARION	IA_ASOS	#######	42.743	-93.7593
7 Point	CIN	CARROLL	IA_ASOS	#######	42.0444	-94.7889
8 Point	CNC	CHARITON	IA_ASOS	#######	41.0184	-93.3608
9 Point	DSM	Des Moines	IA_ASOS	#######	41.534	-93.6531
10 Point	EBS	Webster City	IA_ASOS	#######	42.4392	-93.8691
11 Point	EOK	KEOKUK MUNI	IA_ASOS	#######	40.4615	-91.4274
12 Point	EST	ESTHERVILLE	IA_ASOS	#######	43.4008	-94.7476
13 Point	FOD	FORT DODGE	IA_ASOS	#######	42.5497	-94.2032
14 Point	175	Osceola	IA_ASOS	#######	41.0472	-93.6876
15 Point	IKV	ANKENY	IA_ASOS	#######	41.6878	-93.5695
16 Point	OOA	Oskaloosa	IA_ASOS	#######	41.2273	-92.4919
17 Point	OTM	OTTUMWA	IA_ASOS	#######	41.1008	-92.4446
18 Point	OXV	Knoxville	IA_ASOS	#######	41.2984	-93.1114
19 Point	PEA	PELLA	IA_ASOS	#######	41.3989	-92.9431
20 Point	PRO	Perry	IA_ASOS	#######	41.8278	-94.1637
21 Point	SLB	Storm Lake	IA_ASOS	#######	42.5972	-95.2399

23

Things to cover in report.

- Check the time zone of each dataset
- Plot daily, monthly and yearly time series for the datasets
- Check if there is any shift in the time
- A gridded dataset from MESONET