Mining Invariance from Nonlinear

Multi-Environment Data: Binary Classification

Austin Goddard, Kang Du, Yu Xiang Department of Electrical and Computer Engineering 1 University of Utah 1 {austin.goddard, kang.du, yu.xiang}@utah.edu 1

Abstract—Making predictions in an unseen environment given data from multiple training environments is a challenging task. We approach this problem from an invariance perspective, focusing on binary classification to shed light on general nonlinear data generation mechanisms. We identify a unique form of invariance that exists solely in a binary setting that allows us to rain models invariant over environments. We provide sufficient conditions for such invariance and show it is robust even when environmental conditions vary greatly. Our formulation admits a causal interpretation, allowing us to compare it with various frameworks. Finally, we propose a heuristic prediction method and conduct experiments using real and synthetic datasets. 2

I. Introduction 3

It is common practice to collect observations of a set of features $X = (X_1, \dots, X_m)$ and response Y from different environments to train a model. The prediction of the response an unseen environment is often referred to as multienvironment domain adaptation, with practical applications 4 in various fields (e.g., genetics [1] and healthcare [2]). A 4 common assumption in such problems is the principle of invariance, modularity, or autonomy [3]-[8]. This invariance 4 assumption states that the conditional distribution of Y given X is invariant with respect to different environment. 4

The invariant causal prediction (ICP) framework [9], along with its various extensions [10], [11], employ the invariance principle to identify invariant predictors across environments. Following this framework, various domain adaptation approaches have been developed [12]–[14]. Specifically, the stabilized regression (SR) [14] approach relies on a weaker form of invariance dependent on expectation as opposed to probability. The common assumption for the approaches mentioned is that the assignment of Y does not change over environments. In a causal sense, from which much of the literature in this area stems, this is referred to as an intervention on Y [8]. When Y is intervened, the invariance principle, as well as the frameworks mentioned above, fail. In a series of recent works [15], [16], an alternative approach called the invariant matching property (IMP) has been developed to detect *linear* invariant models in a regression setting even 5 when the assignment of Y is altered over environment. $\frac{1}{5}$

In this work, we extend general principles developed in [15], 6 [16] to the binary classification setting as an attempt to generalize to nonlinear settings. The proposed approach works even when data-generating models change over environments (e.g., can be generated using a probit model for one environment 6

and a logistic model in another). Additionally, the approach is 6 not constrained by the data type, meaning it can be useful on 6 continuous, discrete, or categorical variables. 6

II. Problem Formulation 7

Consider the following setting. For different environmental 8 conditions indexed by the set \mathcal{E} , we have a random vector 8 $X = (X_1, \dots, X_m)$ and a binary random variable Y whose elements form a joint distribution $\mathcal{P}_e := \mathcal{P}_e^{X,Y}$ dependent on 8 $e \in \mathcal{E}$. Denote X and Y as X^e and Y^e for a specific $e \in \mathcal{E}$, 8 respectively. The supports of X and Y are $\mathcal{X} = \mathbb{R}^m$ and $\mathcal{Y} = 8$ $\{0,1\}$, respectively. Let X_S be a random vector containing the elements in X indexed by the set $S \subseteq \{1, \dots, m\}$, and let \mathcal{X}_S 8 be its support. To simplify notation, let $X_0^e := Y^e$. For each 8 $e \in \mathcal{E}$, we keep the distribution \mathcal{P}_e general, with the exception 8 that there exists an X_i^e generated according to the form g

$$X_i^e = g(X_{S_i}^e) + \epsilon^e$$
, for some $i \in \{1, \dots, m\}$, (1)

where $X_{S_i}^e$, for $S_i \subseteq \{0, \dots, m\} \setminus i$, represents the variables that directly effect X_i^e , and ϵ^e is an independent, zero mean, noise variable. We assume the output of the function g is not 10 constant with regards to any of its inputs; g is a constant 10 function when $S_i = \varnothing$. 10

Additionally, while the function g does not change over 11 environment (i.e., does not depend on e), the distribution of ϵ^e can change arbitrarily as long as the mean of the distribution 11 remains zero. Aside from a binary Y and the form of X_i^e in (1), we make no assumptions on the distribution or functional form of any variable. As such, this formulation applies to any set 11 of features, be it continuous, discrete, or a mixture of the two. 11

We assume only a subset of all environments are observed 12 and denote this set by $\mathcal{E}_{\text{obs}} \subseteq \mathcal{E}$. Where $\mathcal{E}_{\text{obs}} = \mathcal{E}_{\text{train}} \cup \{e^{\text{test}}\}$, and $Y^{\text{test}} := Y^{e^{\text{rest}}}$, our goal is to make predictions on Y^{test} , 12 given a set of training environments $\mathcal{E}_{\text{train}}$. As such, we aim to 12 find a function $\phi_e:\mathcal{X}\to\mathcal{W}$ such that, the probability of Y_{12} given $\phi_e(X)$ does not vary over any environment. Specifically, 12 for all $w \in \mathcal{W}$ and $e, h \in \mathcal{E}_{obs}$,

$$\mathcal{P}_e(Y|\phi_e(X) = w) = \mathcal{P}_h(Y|\phi_h(X) = w). \tag{2}$$

As Y is binary, it is equivalent to write (2) in the form: 14 $\mathsf{E}_{\mathcal{P}_e}[Y|\phi_e(X)=w]=\mathsf{E}_{\mathcal{P}_h}[Y|\phi_h(X)=w], \text{ for all } w\in\mathcal{W}_{14}$ and $e,h\in\mathcal{E}_{\mathrm{obs}}.$ It is well-known that (2) is satisfied if $\phi_e(X) = X_{S_Y}$ and for $S_Y \subseteq \{1, \dots, m\}$,

$$Y^e = f(X_{S_Y}^e) + \epsilon_Y, \quad 14 \tag{3}$$

where ϵ_Y is an independent noise that does not vary over perplacing X_3^e with X_2^e . We can still decompose (4) similarly environment [9]. However, we are interested in a more general vary over environment. From a causal perspective, this would indicate that Y^e had been intervened (see Section IV-A). In such a setting, $\phi_e(X) = X_{S_Y}$ is no longer useful and other alternative, starting with a motivating example. 16

III. MOTIVATING EXAMPLE 17

Consider the following setting with $X^e = (X_1^e, X_2^e, X_3^e)$. Let X_1^e and X_2^e be independent and follow $X_1^e \sim \mathcal{N}(\mu_1^e, \sigma_1^2)$ and $X_2^e \sim \mathcal{N}(\mu_2^e, \sigma_2^2)$. The variable Y^e is generated such that $Y^e|X_1^e,X_2^e$ forms a probit model. Specifically,

$$Y^{e} = \begin{cases} 1, & \text{if } \beta_{1}^{e} X_{1}^{e} + \beta_{2} X_{2}^{e} + \epsilon_{Y} > 0, \\ 0, & \text{otherwise.} \end{cases} 19$$

Following a similar form as (1), X_3^e is linear given Y^e so that

$$X_3^e = \begin{cases} \gamma_1 X_1^e + \epsilon_3, & \text{if } Y^e = 1, \\ \gamma_0 X_1^e + \epsilon_3, & \text{if } Y^e = 0. \end{cases} 21$$

The noise variables ϵ_Y and ϵ_3 are i.i.d. $\mathcal{N}(0, \sigma^2)$. Suppose we wish to predict Y^e given only X_1^e . Predicting Y^e for a particular $e \in \mathcal{E}$ becomes difficult as β_1^e and μ_2^e vary with environment. Specifically, 12

$$\mathbb{E}_{\mathcal{P}_e}[Y|X_1 = x_1] = \Phi \left(\frac{\beta_1^e x_1 + \beta_2 \mu_2^e}{\sqrt{(\beta_2 \sigma_2)^2 + \sigma^2}} \right)$$
(4)

where Φ is the cumulative distribution function of a standard 24 normal random variable. As (4) varies over environment, it is 24 0.4 not practical to use $E_{\mathcal{P}_e}[Y|X_1]$ to estimate Y^e on different $24_{0.2}$ environments. Even while conditioning on both X_1^e and X_2^e (the variables that directly affect Y^e), the variance (w.r.t. environment) still remains through β_1^e .

We can, however, decompose (4) into various variant and invariant components such that $E_{\mathcal{P}_e}[Y|X_1=x_1]$ becomes the $2\beta_1^e=2, \mu_2^e=1, \beta_2^{\text{test}}=0$, and $\mu_2^{\text{test}}=-1$. following (see the proof of Proposition 1 for a general case), 25

$$\frac{\mathsf{E}_{\mathcal{P}_e}[X_3|X_1 - x_1] - \mathsf{E}_{\mathcal{P}_e}[X_3|X_1 - x_1, Y - 0]}{\mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1, Y = 1] - \mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1, Y = 0]}, \quad (5)$$

where $E_{P_e}[X_3|X_1 = x_1]$ is 33

$$\boxed{\Phi} \left(\frac{\beta_1^e x_1 + \beta_2 \mu_2^e}{\sqrt{(\beta_2 \sigma_2)^2 + \sigma^2}} \right)_{\mathcal{B}} [\gamma_1 - \gamma_0] x_1 + \gamma_0 x_1, \tag{6}$$

and $\mathsf{E}_{\mathcal{P}_e}[X_3|X_1\,=\,x_1,Y\,=\,y]$ is γ_1x_1 if $y\,=\,1$ and γ_0x_1 if y = 0. We note that the variance (w.r.t environment) contributed by β_1^e and μ_2^e is completely accounted for in the term $\mathsf{E}_{\mathcal{P}_a}[X_3|X_1]$ and that $\mathsf{E}_{\mathcal{P}_a}[X_3|X_1,Y]$ is invariant over environment. Thus, (2) holds for the function $\phi_e(X) =$ $(X_1, \mathsf{E}_{\mathcal{P}_e}[X_3|X_1])$. In addition to this, we also note that conditioning on both X_1 and X_2 leads to a similar invariance; we only condition on X_1 in this example for simplicity. 29

This invariance does not hold if we replace X_3^e with any other variable. For example, suppose we were to estimate Y^e

160 (5) by replacing X_3^e with X_2^e . As $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1] = \mu_2^e$ does 30 setting where the function f and distribution of the noise can 1 not contain β_1^e , the portion of $E_{\mathcal{P}_e}[Y|X_1]$ that contains β_1^e must 30 reside in $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$. i.e., $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$ is not invariant 30 10 over environments as is $E_{\mathcal{P}_e}[X_3|X_1,Y]$. Thus, the function 30 $\phi_e(X) = (X_1, \mathsf{E}_{\mathcal{P}_e}[X_2|X_1])$ will no longer satisfy (2). 30 approaches must be considered. We now consider one such 16 To further illustrate the difference in selecting X_3^e over 31 X_2^e , suppose we wish to estimate on a new environment e^{test} . While we have access to X^{test} , we can easily construct 31 $\mathbb{E}_{\mathcal{P}_{\text{host}}}[X_i|X_1]$ for either $i \in \{2,3\}$. We cannot, however, use 31 Y^{test} to construct our estimate, and $E_{\mathcal{P}_{\text{test}}}[X_i|X_1,Y]$ must be 31 obtained by leveraging invariances over environment. Thus, 31 for either $i \in \{2,3\}$, we construct the estimate 31

$$\hat{Y}_{i}^{\text{test}} =: \frac{\mathbb{E}_{\mathcal{P}_{\text{test}}}[X_{i}|X_{1}] - \mathbb{E}_{\mathcal{P}_{e}}[X_{i}|X_{1}, Y = 0]}{\mathbb{E}_{\mathcal{P}_{e}}[X_{i}|X_{1}, Y = 1] - \mathbb{E}_{\mathcal{P}_{e}}[X_{i}|X_{1}, Y = 0]}, \quad (7)$$

where $e \in \mathcal{E}_{train}$. As $\mathsf{E}_{\mathcal{P}_e}[X_3|X_1,Y]$ is invariant and 33 $\mathsf{E}_{\mathcal{P}_{\mathfrak{o}}}[X_2|X_1,Y]$ is not invariant as discussed above, Y_3^{test} will provide a good estimate of Y^{test} , while \hat{Y}^{test} will not. 33

In Fig. 1 we compare Y^{test}_3 and Y^{test}_2 by simulating $(x^{\text{test}}, y^{\text{test}})$ pairs for a set of specific parameters. The estimate \hat{Y}^{test}_2 does not fit the data as many x^{test}_1 corresponding to 34

 $v^{\text{fest}} = 0$ will be incorrectly classified to one. However, this is 34 not the case when $\hat{Y}_{3}^{\text{test}}$ is used, and the fit is greatly improved 34 (Fig. 1). The poor fit on \hat{Y}_2^{test} is a result of $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$ varying across environments. 34

IV. THE BINARY INVARIANT MATCHING PROPERTY 37

A deterministic relationship such as the one in (5) has been 38 previously referred to as *matching* [15], and can be generalized 38 to the formulation outlined in Section II. 38

Definition 1. For $k \in \{1, ..., m\}$, $S \subseteq \{1, ..., m\} \setminus k$, and Definition 1. For $\kappa \in \{1, \dots, m\}$, $\kappa = \{k, S\}$ satisfies the $h(X_S, Y) := \mathbb{E}_{\mathcal{P}_e}[X_k | X_S, Y]$, the pair (k, S) satisfies the binary invariant matching property (bIMP) 1 if, 37

$$\mathsf{E}_{\mathcal{P}_e}[Y|X_S] = \frac{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] - h(X_S, 0)}{h(X_S, 1) - h(X_S, 0)},29 \tag{8}$$

2 holds for all $e \in \mathcal{E}_{obs}$, where $h(X_S, Y)$ does not depend on e.

As seen in the example, there are a variety of choices for k 41 and S, not all of which lead to invariant representations. We 41

There are degenerate cases when $h(X_S,0) = h(X_S,1)$, for which the 40

30 ower property implies $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] = \mathsf{E}_{\mathcal{P}_e}[h(X_S,Y)|X_S] = h(X_S,0)$, 40 3(and the ratio in (8) reduces to 0 divided by 0. 40

now detail the sufficient conditions for which a pair (k, S) 4 may occur. While many methods [9], [14], [15] make various 52 satisfies the bIMP (see Appendix for the proof). 41

Proposition 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where 5 $R,Q\subseteq\{1,\ldots,m\}\setminus k \ \ and \ \ R\cap Q=\varnothing.$ The pair (k, S)satisfies the bIMP if, for every $e \in \mathcal{E}_{obs}$, 54

- 1) $X_k^e=g(X_R^e,Y^e)+\epsilon^e$ as in (1) , 2) $X_Q^e\perp \!\!\! \perp X_k^e\mid (X_R^e,Y^e)$.

What remains is to show that the bIMP can be used to satisfy predicting on unknown environments, as shown below. 43

Theorem 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where 44 $R,Q\subseteq\{1,\ldots,m\}\setminus k$ and $R\cap Q=\varnothing$. When $\phi_e(X)=$ $(X_R, X_Q, \mathsf{E}_{\mathcal{P}_e}[X_k|X_R, X_Q])$, (2) holds if the pair (k, S) satisfies the bIMP. 44

Proof. Let $\ell^e(X_R, X_Q) := \mathsf{E}_{\mathcal{P}_e}[X_k | X_R, X_Q]$ and $\phi_e(X) =$ $\ell^e(X_R, X_Q)$ is a function of X_R and X_Q , 45

$$\mathbb{E}_{\mathcal{P}_{e}}[Y|\phi_{e}(X) = (x_{Q}, x_{R}, z)] \\
= \mathbb{E}_{\mathcal{P}_{e}}[Y|X_{R} = x_{R}, X_{Q} = x_{q}, \ell^{e}(X_{R}, X_{Q}) = z] \underbrace{54}_{54} \\
= \underbrace{z - g(x_{R}, 0)}_{g(x_{R}, 1) - g(x_{R}, 0)} \underbrace{54}_{42}$$
(9)

Thus, (2) holds as (9) does not vary over $e \in \mathcal{E}_{obs}$, 52

where Y^e is binary. However, there does exist a corresponding $4\sqrt{\text{all predictors}}$ (and potentially many more). 57 matching property with sufficient conditions similar to those in 47 Proposition 1 for cases when Y^e is multi-class or continuous. 47 We leave the analysis for the long version of this work. 47

A. A Causal Perspective 48

While the sufficient conditions in Theorem 1 may seem abstract, we now show that, in fact, they have a specific meaning in a causal sense. To do so, we introduce the structural causal model (SCM) [8]. Here, X^e and Y^e are part of an SCM S^e that varies over environment such that 49

$$S^{e} := f_{Y}^{e}(X_{PA(Y^{e})}^{e}, \epsilon_{Y}^{e}), 55$$

$$X_{1}^{e} := f_{1}^{e}(X_{PA(X_{1}^{e})}^{e}, \epsilon_{1}^{e}), 61$$

$$42$$

$$X_{m}^{e} := f_{m}^{e}(X_{PA(X_{m}^{e})}^{e}, \epsilon_{m}^{e}), 61$$

$$55$$

where $\epsilon_1^e \dots \epsilon_m^e, \epsilon_V^e$ are independent noise variables. To simplify notation, let $X_0^e := Y^e$. Thus, $PA(X_i^e) \subseteq \{0, \dots, 1\}$ denotes the set indexed by the direct causal parents of X_i^e for 5 that $\mathcal{E}_{\text{train}}$ must have at least two environments. 60 all $i \in \{0, ..., m\}$.

structural assignment (i.e., $f_i^e(\cdot)$) in \mathcal{S}^e is an additive noise function that does not vary over environment. Specifically, for some $i \in \{0, ..., m\}$, let $f_i^e(X_{PA(X_i^e)}^e, \epsilon_i^e) = g(X_{PA(X_i^e)}^e) +$ ϵ_i^e , where ϵ_i^e has zero mean. An intervention on a variable 52 additive noise function for each value of Y^e . Specifically, 61 from $\{X_1^e, \dots, X_m^e, Y^e\}$ occurs if the structural assignment 52 changes for some $e \in \mathcal{E}$. Relating the SCM to the formation 52 in Section II gives insight into the types of interventions that 52

assumptions on the types of interventions (e.g., shifts in the 52 mean or variance), the setting in (10) allows for very general 52 Interventions, including general interventions on Y^e , which 52 many other approaches do not allow. 52

Given S^e for all $e \in \mathcal{E}_{obs}$, we can express the conditions of 53 Proposition 1 in the language of SCMs, detailed below. 53

Corollary 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where 54 $43R, Q \subseteq \{1, \dots, m\} \setminus k \text{ and } R \cap Q = \emptyset. \text{ For the SCM } S^e, \text{ the } 54$ the invariance principle in (2), and thus, can be beneficial in 4 pair (k, S) satisfies the bIMP for all $e \in \mathcal{E}_{obs}$ if the following 54 cases hold. 54

1) $X_k^e = g(X_{PA(X_k^e)}^e) + \epsilon_k^e$, 552) X_R^e and Y^e constitute the parents of X_k^e , 553) The variables in X_Q^e can be any non-descendants of X_k^e . 55

The first condition in Proposition 1 is analogous to the 56 45 first and second condition above as $PA(X_k^e) = (X_S, Y)$. $(X_R, X_Q, \ell^e(X_R, X_Q))$. Since (k, S) satisfies the bIMP and 4-Additionally, in an SCM, any variable conditioned on its 56 parents is independent of any non-descendant. As such, the 56 set X_O^e can be any non-descendant of X_k^e , bridging the final $_{56}$ conditions in Proposition 1 and Corollary 1, 56

In many cases, the set Q can be quite inclusive despite 57 what may seem like a strong independence condition in 57 Proposition 1. In Corollary 1, we learn that, in a causal sense, 57 X_{Ω}^{e} can be any non-descendant of X_{k}^{e} . For example, if half of the predictors in an SCM are ancestors of Y^e , while the other 57 Remark 1. In this work, we focus specifically on settings 4 half are descendants, then the set Q indexes at least half of 57

V. Proposed Method 58

For each $e \in \mathcal{E}_{\text{train}}$, we have n^e samples, represented as a matrix $\mathbf{X}^e \in \mathbb{R}^{n_e \times m}$, and a vector $\mathbf{Y}^e \in \{0,1\}^{n_e}$ (see [17] 59 for a discussion on the impact of different environments). 59 Additionally, we have n_{test} samples in the test environment, 59 and we denote $oldsymbol{X}^{ ext{test}} \in \mathbb{R}^{n_{ ext{test}} imes m}$ and $oldsymbol{Y}^{ ext{test}}$ as the predictor 59 matrix and target vector for the environment e^{test} , respectively. 59 We denote X as the pooled predictor matrix over all $e \in \mathcal{E}_{\text{train}}$, 59 and $X_{Y=y}$ as the matrix comprising the rows of X in which 59 Y=y, for $y\in\{0,1\}$. Let \boldsymbol{X}^{-e} be the matrix of samples 59 indexed only by those samples not in $e \in \mathcal{E}_{\text{train}}$.

We now leverage insights gained from Theorem 1 and the 60 bIMP to develop a practical method for estimation in unknown 60 environments. At test time, we do not have access to Y^{test} . As 60 such, one cannot say with definitive assurance that (2) holds 60 5 for all $e \in \mathcal{E}_{obs}$. Thus, the best that can be done in such settings 60 is to identify a ϕ_e such that (2) holds for all $e \in \mathcal{E}_{\text{train}}$, implying 60

Thus, our goal in a practical setting is to identify (k, S) pairs 61 As in Section II, Y^e is binary. Additionally, at least one 54 that may satisfy the bIMP overall $e \in \mathcal{E}_{\text{train}}$. Simply put, we test 61 52 whether $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ is invariant. To do so, we consider a 61 52 special form of the model in (1) where $X_k^e = g(X_S^e, Y^e) + 61$ with $\epsilon^e \sim \mathcal{N}(0, (\sigma^e)^2)$ is assigned a different nonlinear 61

$$g(X_S^e, Y^e) = \begin{cases} g_1(X_S^e), & \text{if } Y^e = 1\\ g_0(X_S^e), & \text{if } Y^e = 0. \end{cases}$$
 (11)

As X_k^e can be split into two models, one for each value of Y^e , we can perform an invariance test on each model. If both are $_{63}$ Input: Y^e , for each $e \in \mathcal{E}_{train}$, and X^e , for each $e \in \mathcal{E}_{obs}$ found to be invariant, we can consider $E_{\mathcal{P}_e}[X_k|X_S,Y]$ as a **Output:** Estimate $\hat{\mathbf{Y}}^{\text{test}}$ 65 whole to be invariant. Invariance tests on additive noise models 63 have been widely studied: Various tests have been proposed 63 for linear [9] and nonlinear [10] models. We adopt one such 63 approximate test from [10] known as the residual distribution 63 test for our setting, as further detailed in Algorithm 1. 63

Algorithm 1 Binary Invariant Residual Distribution Test 63

Input: Y^e and X^e , for each $e \in \mathcal{E}_{train}$, significance level α , 63 and the pair (k, S) 63

Output: accepted or rejected 64

```
Regress X_{k,Y=i} on X_{S,Y=i} to get \hat{g}_i, for i \in \{0,1\} 64
for each e \in \mathcal{E}_{\text{train}} and i \in \{0, 1\} do
            \begin{array}{l} \boldsymbol{R}_{i}^{e} = \boldsymbol{X}_{k,Y=i}^{e} - \hat{g}_{i}(\boldsymbol{X}_{S,Y=i}^{e}) \\ \boldsymbol{R}_{i}^{-e} = \boldsymbol{X}_{k,Y=i}^{-e} - \hat{g}_{i}(\boldsymbol{X}_{S,Y=i}^{e}) \\ \operatorname{pval}_{i}^{e} = t \text{-test}(\boldsymbol{R}_{i}^{e}, \boldsymbol{R}_{i}^{-e}) \end{array} 67
```

Combine p-values in pval₁ and pval₂ via Bonferroni correction 64

if $\min_{e \in \mathcal{E}_{\text{train}}} \text{pval}_1^e > \alpha$ and $\min_{e \in \mathcal{E}_{\text{train}}} \text{pval}_2^e$ return accepted 64

else return rejected 64

We use Algorithm 1 as an approximate test for whether 65 $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ is invariant over environments. We now employ this test to develop a practical method for estimating Y^{test} which we refer to as bIMP. We adopt a similar approach to that of [14] and [15] in which we test the invariance of $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ for all possible pairs (k,S). We then train models using the X_k^e and X_S^e which are accepted according to Algorithm 1. Our bIMP models are a combination of two separate models trained to estimate both $\mathsf{E}_{\mathcal{P}_a}[X_k|X_S,Y]$ and $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S]$. Given both of these estimates, we compute an estimate of Y^{test} using (8). As it is likely that more than 65 one pair is accepted, the final estimate of Y^{test} is the average 65 estimate over all accepted pairs. 65

While we can guarantee invariance via the bIMP, there is 66 no guarantee that the estimation will predict well on e^{test} . As such, in addition to filtering pairs based on invariance, 66 bIMP also filters based on a prediction score. Invariant pairs 66 \mathcal{T}_{inv} computed using (8) are filtered using the mean squared 66 prediction error. The threshold by which the pairs are filtered 66 is identical to the procedure proposed in [14]. 66

The bIMP method proposed gives freedom to the user 68 to select the underlying models with which to estimate 68 $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S]$ and $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$. In the case of $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S]$, we have complete freedom to select whichever model suits 68 the data, be it linear or nonlinear. For $\mathsf{E}_{\mathcal{P}_a}[X_k|X_S,Y]$, we have chosen to model X_k using two sub-models, one for each and depends on the invariance test used. When estimating each model, ordinary least squares (OLS) could be used for linear 6. Synthetic data. The simulated dataset is generated as follows. 73

Algorithm 2 bIMP 65 Identify the set of all invariant pairs \mathcal{T}_{inv} using Algorithm 1 67 Filter pairs from \mathcal{T}_{inv} based on prediction score 67 for each (k, S) in \mathcal{T}_{inv} do 68 Estimate $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ by regressing \boldsymbol{X}_k on $(\boldsymbol{X}_S,\boldsymbol{Y})$ 67 Estimate $\mathsf{E}_{\mathcal{D}_{\mathsf{lest}}}[X_k|X_S]$ by regressing X_k^{test} on X_S^{test} 67 Using (8), compute $\hat{Y}_{k,S}^{\text{test}}$ for the pair (k,S)

process regression could be used for nonlinear models. In 68 practice, we found estimating each model using OLS to be the 68 most efficient, as fitting two nonlinear models for all possible 68 (k, S) pairs can be computationally expensive. 68

Remark 2. There are several challenges with this approach 69 that we leave for future work. We observe that nonlinear 69 implementations of the invariance test (Algorithm 1) may lead 69 to erroneously accepted invariant pairs. In addition to this, the 69 complexity of training a nonlinear model for all possible (k, S) 69 pairs can be high. Finally, the effects of model misspecification 69 can be challenging to analyze. 69

VI. EXPERIMENTS 70

We provide one synthetic and two real datasets to test the 71 effectiveness of bIMP and compare with the following two 71 baselines: (1) a binary adaptation of Method II from [9] (ICP), 71 and (2) logistic regression (LR). While we do not expect LR to 71 perform well on unknown environments, it serves as a natural 71 baseline. While ICP can handle the binary response setting 71 65 via logistic regression, SR is specific to regression settings 71 and thus not reported. In all experiments, we set $\alpha = 0.1$. 71

Fig. 2: Simulation accuracy over 1000 simulated datsets. 74

As there is some degree of freedom in selecting how the 73 sub-models in bIMP are trained, we explore two variants of 73 are restricted by the additive noise of (1). In addition, we 68 DIMP: bIMP (linear) and bIMP (GAM). For both variants, we 73 follow the invariance test in Algorithm 1 and estimate g_1 and g_2 value of Y as in (11). This, however, is not the only option $_{6}g_{0}$ using OLS. We estimate $\mathsf{E}_{\mathcal{P}_{e}}[X_{k}|X_{S}]$ using OLS for bIMP $_{73}$ 68(linear), and a GAM for bIMP (GAM). 73

models, and a generalized additive model (GAM) or Gaussian 68 We generate data from three environments, $e^1, e^2 \in \mathcal{E}_{train}$, and 73

 e^{test} . The number of predictors m is randomly selected from 71 $\{3,\ldots,7\}$. For each $i\in\{2,\ldots,m\}$ and $e\in\mathcal{E}_{\mathrm{train}},~X_i^e\sim$ $\mathcal{N}(\mu_i^e, 1)$, and μ_i^e is randomly selected on the interval [-2, 0]for $e=e^1$, [0,2] for $e=e^2$, and [0,3] for $e=e^{\text{test}}$. Then, where $S_1 = \{2, ..., m\}, Y^e | X_{S_1}^e$ follows a logistic model such that $\mathcal{P}_e(Y = 1 | X_{S_1}) = 1/(1 + e^{-X_{S_1}\beta^e})$ for $e \in \mathcal{E}_{\text{train}}$. For e^{test} , $Y^{\text{test}}|X_{S_1}^{\text{test}}$ follows a probit model such that $Y^{\text{test}}=1$, if $X_{S}^{\text{test}} \beta^{\text{test}} + \epsilon < 0$, where $\epsilon \sim \mathcal{N}(0,1)$. For all $e \in \mathcal{E}_{\text{obs}}$, randomly select β^e as $\beta^e \sim \text{Unif}[0,1]$. The coefficients are then scaled such that they sum to one. For all $e \in \mathcal{E}_{\text{obs}}$, the variable X_1^e is then simulated similarly to X_k^e in (11). Specifically, $g_1(X_{S_1}^e)=X_{S_1}^e\eta_1$ and $g_0(X_{S_1}^e)=X_{S_1}^e\eta_0$. The noise term associated with X_1^e is a standard normal. The coefficients $\eta_{1,i} \sim \mathrm{Unif}[0,1]$ and $\eta_{0,i} \sim \mathrm{Unif}[0,1]$ do not vary over the environment. The number of samples per environment 7 ments that improved the quality of this work. 47 is fixed to 1000. **71**

Simulation results on both accuracy and mean squared 74 Proof of Proposition 1. First, we show that (8) holds for any 49 environment while LR and ICP are not (Fig 2). In addition, 74all $i \in \{1, ..., m\}$. The pdf of $X_k^e | X_S^e$ for any $e \in \mathcal{E}_{obs}$ is bIMP (linear) slightly outperforms bIMP (GAM). While we 74 expect LR to behave poorly, ICP also performs poorly as all $74 X_k^e |X_s^e(x_k|x)$ parents of Y are intervened in every simulation. 74

	bIMP (linear)	bIMP (GAM)	LR 65
Environment	I	Accuracy 74	
born in US	85.0	84.9	78.2 75
overtime	68.4	59.1	77.0 75
caucasian	85.0	85.2	78.1 75

TABLE I: census: performance and training environments. 75

Two real-world data. We also include experiments on two real datasets: census [18] and mushroom [19]. The census dataset is data gathered from the 1994 US census and contains 68 14 societal and demographic variables such as age, education, marital status, and working class. The target variable used is 68 whether or not an individual's income exceeded 50k/yr. The data is first split into test and training data by whether or not a 68 person graduated from a college. Thus, we train only on those 68 who did not graduate college with the aim of extending our 68 Thus, $E_{\mathcal{P}_e}[Y|X_S]$ can be written as 63 trained model to those who did. We further split the training 68 data and run the methods on each set of training environments. 68 The variables used to split the training data into environments 69 are "was the person born in the US", "do they regularly 68 as Caucasian". The experiment shows that bIMP outperforms $68^{(X_R^e, X_Q^e)}$, LR and ICP in all environments aside from the overtime 68 environment (Table I). The ICP method returns no invariant 68 predictors for any environment, thus no predictions can be 69 made and no accuracy is reported; this is also the case for the 68 mushroom data below.

	bIMP (linear)	bIMP (GAM)	LR 65
Environment	Accuracy 74		
meadows	76.0	87.5	46.2
paths	88.1	90.9	11.8

TABLE II: mushroom: performance and training environments. 7 s non-zero, 73

The mushroom dataset contains 16 features related to 66 naturally growing mushrooms' size, shape, and color and showcases how the proposed approach can handle discrete and 66 categorical data. We aim to predict whether or not a mushroom 66 is edible based on these factors. The environments on which 66 we predict are the habitats in which the mushrooms grow. 66 Specifically, we train on mushrooms that grow in grass or 66 urban habitats and test on mushrooms that grow in meadows 66 or paths. Results in Table II indicate that bIMP outperforms ICP and LR for both the linear and GAM variants, while the 66 GAM variant performed the best. 66

VII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-

APPENDIX 41

error (MSE) indicate that bIMP can generalize to the test $74e \in \mathcal{E}_{obs}$. Without loss of generality, let X_i^e be continuous for $= f_{X_e^e|X_e^e,Y_e^e}(x_k|x,1) \cdot p_{Y_e|X_e^e}(1|x)$ $+ f_{X_{c}^{e}|X_{c}^{e},Y_{c}^{e}}(x_{k}|x,0) \cdot p_{Y_{c}|X_{c}^{e}}(0|x)$ $= f_{X_e^e|X_G^e,Y^e}(x_k|x,1) \cdot p_{Y_g^e|X_G^e}(1|x)$ $+ f_{X_{b}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,0) \cdot \left[1 - p_{Y^{e}|X_{S}^{e}}(1|x)\right]$ $= p_{Y^e|X_S^e}(1|x) \left[f_{X_k^e|X_S^e,Y^e}(x_k|x,1) - f_{X_k^e|X_S^e,Y^e}(x_k|x,0) \right]$ $+ f_{X_b^e|X_s^e,Y^e}(x_k|x,0).$ 55

Then using (12), we can write $E_{\mathcal{P}_e}[X_k|X_S=x]$ as

$$\int_{-\infty}^{\infty} x_k \cdot f_{X_k^e|X_S^e}(x_k|x) dx_k$$

$$= \mathbb{E}_{\mathcal{P}_e}[Y|X_S = x] \cdot \mathbb{E}_{\mathcal{P}_e}[X_k|X_S = x, Y = 1]$$

$$- \mathbb{E}_{\mathcal{P}_e}[Y|X_S = x] \cdot \mathbb{E}_{\mathcal{P}_e}[X_k|X_S = x, Y = 0]$$

$$+ \mathbb{E}_{\mathcal{P}_e}[X_k|X_S = x, Y = 0].$$

$$\frac{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] - \mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 0]}{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 1] - \mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 0]}.$$
 (14)

We now show (I) $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S=x,Y=y]$ does not depend 49 work more than 40hr/week", and "does the person identify 68 on e and (II) the denominator of (14) is non-zero. Since X_S^e

$$\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y] = \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,X_Q,Y] \stackrel{(a)}{=} \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,Y]$$

$$\stackrel{(b)}{=} \mathsf{E}_{\mathcal{P}_e}[g(X_R,Y) + \epsilon|X_R,Y] = g(X_R^e,Y^e), \quad (15)$$

where (a) follows since $X_O^e \perp X_k^e | X_R^e, Y^e$, (b) follows from the assumption $X_k^e = g(X_R^e, Y^e) + \epsilon^e$, and (c) follows since ϵ has zero mean. Thus, the $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S = (x_Q, x_R), Y = y]$ does not depend on e as $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S=(x_Q,x_R),Y=y]=$ $g(x_R, y)$. As the output of the function g is not constant with 73 regards to any of its inputs as in (1), the denominator of (14) 73

REFERENCES

- [1] N. Meinshausen, A. Hauser, J. M. Mooij, J. Peters, P. Versteeg, and 77 P. Bühlmann, "Methods for causal inference from gene perturbation experiments and validation," Proceedings of the National Academy of Sciences, vol. 113, no. 27, pp. 7361–7368, 2016. 77
- [2] A. V. Goddard, Y. Xiang, and C. J. Bryan, "Invariance-based causal 78 12] prediction to identify the direct causes of suicidal behavior," Frontiers *in psychiatry*, p. 2598, 2022. **78**
- rica: Journal of the Econometric Society, vol. 12, pp. 1–115, 1944. 7
- J. Aldrich, "Autonomy," Oxford Economic Papers, vol. 41, no. 1, pp. 80 15–34, 1989. 80
- [5] K. D. Hoover, "The logic of causal inference: Econometrics and the 8 [14] N. Pfister, E. G. Williams, J. Peters, R. Aebersold, and P. Bühlmann, 90 conditional analysis of causation," *Economics & Philosophy*, vol. 6, 8 no. 2, pp. 207–234, 1990.
- B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij, 'On causal and anticausal learning," arXiv preprint arXiv:1206.6471.
- [7] A. P. Dawid and V. Didelez, "Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview," Statistics Surveys, 8 vol. 4, pp. 184–231, 2010. 83
- J. Pearl, Causality. Cambridge university press, 2009. 84
- [9] J. Peters, P. Bühlmann, and N. Meinshausen, "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society. Series B (Statistical Methodology), pp. 947– 1012, 2016. 85

- [10] C. Heinze-Deml, J. Peters, and N. Meinshausen, "Invariant causal 86 prediction for nonlinear models," Journal of Causal Inference, vol. 6, 86 no. 2, 2018. <mark>86</mark>
- N. Pfister, P. Bühlmann, and J. Peters, "Invariant causal prediction for 87 sequential data," Journal of the American Statistical Association, vol. 87
- 114, no. 527, pp. 1264–1276, 2019. <mark>87</mark> M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters, "Invariant models for causal transfer learning," *The Journal of Machine Learning* 88 Research, vol. 19, no. 1, pp. 1309–1342, 2018. 88
- T. Haavelmo, "The probability approach in econometrics," *Economet* 7913] D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters, "Anchor
 - regression: Heterogeneous data meet causality," Journal of the Royal 89 Statistical Society Series B: Statistical Methodology, vol. 83, no. 2, pp. 89 215–246, 2021. 89
 - "Stabilizing variable selection and regression," The Annals of Applied 90
 - Statistics, vol. 15, no. 3, pp. 1220–1246, 2021. 90

 [15] K. Du and Y. Xiang, "Learning invariant representations under general 91 interventions on the response," IEEE Journal on Selected Areas in 91 Information Theory, 2023. 91
 - "Generalized invariant matching property via lasso," in ICASSP 92 2023-2023 IEEE International Conference on Acoustics, Speech and 92
 - Signal Processing (ICASSP). IEEE, 2023, 92

 A. Goddard, Y. Xiang, and I. Soloveychik, "Error probability bounds for invariant causal prediction via multiple access channels," Asilomar 93
 - Conference on Signals, Systems, and Computers, 2023. 93

 B. Becker and R. Kohavi, "Adult," UCI Machine Learning Repository, 94

 [1996, DOI: https://doi.org/10.24432/C5XW20.] 94
 - "Mushroom," UCI Machine Learning Repository, 1987, DOI: 95 https://doi.org/10.24432/C5959T. 95