Math2310 - Fall '22

Syllabus - Lecture 05

BY GENNADY URALTSEV

Review

- Vector addition as translation
- Checking that the cross product is orthogonal to all vectors
- The norm and spheres [1] [optional: i]
- Linearity of signed area [Linearity of signed area in 2D GeoGebra]

Topics

1 Cylinders and Quadric Surfaces

not covered in class

Independent reading, no need to study the surfaces but look at the pictures and recognize them

2 Vector functions and space curves [2,3]

- <u>defn</u> Vector functions of one real variable
- defn Intuitive understanding of continuity
- Relation with parameterized sets
 - o non-uniqueness of parameterization [4]
- Describing paths:
 - o representation in geogebra
 - algebraic operations
- polar coordinates [5]

2.1 Digression: orthonormal bases [ii]

- The standard orthonormal basis \hat{e}_i
- Components w.r.t to a different orthonormal basis

References

Videos

1. Equation of a sphere, plus center and radius (KristaKingMath) - YouTube

- 2. Curves, Parameterizations, and the Arclength Parameterization YouTube (stop at Arclength not inclusive)
- 3. Parametric curves | Multivariable calculus | Khan Academy YouTube
- 4. Parametrization Example 1 YouTube
- 5. Intro to Polar Coordinates YouTube
- 6. Graphing a Parametric Equation Using GeoGebra Classic 5 YouTube

Textbook

- [Ste] Chap 12.6 Cylinders and Quadric Surfaces (overview)
- [Ste] Chap 10.1 Curves Defined by Parametric Equations (complete, prereq)
- [Ste] Chap 10.3 Polar Coordinates (complete, prereq)
- [Ste] Chap 13.1 Vector Functions and Space Curves (complete)
- [Ste] Chap 13.2 Derivatives and Integrals of Vector Functions pp898-pp900 (stop at differentiation rules)

Additional material

- i. Multivariable Calculus | The equation of a sphere. YouTube
- ii. Coordinates with respect to orthonormal bases \mid Linear Algebra \mid Khan Academy YouTube