Лабораторная работа 4.3.4 Преобразование Фурье в оптике

Сафиуллин Роберт 19 марта 2019 г.

1 Цель работы:

А) определить размеры щели сначала по увеличенному с помощью линзы изображению, затем — по спектру на экране; В) определить периоды сеток сначала по спектру, затем по увеличенному изображению спектра; В) исследовать изображение щели, мультиплицированное с помощью сеток; Γ) проследить влияние щелевой диафрагмы, расположенной в фурье-плоскости, на изображение сетки.

2 Ход работы

Определение ширины щели

Рис. 1: Схема для определения ширины щели с помощью линзы

- 1) Собрали схему и с помощью линзы с F_1 =43mm получили увеличенное изображение щели(начало отсчета 13 делений, одно деление 10 мкм).
- 2) Меняя ширину щели от 5 до 50 делений от нового нуля, сняли зависимость размера изображения D1 от ширины щели D. Результаты занесли в таблицу:

D, mkm	D_1 , mm
100	2.4
170	3.9
220	5.1
270	6.8
320	7.1
420	11
500	12.7
	I .

- 3) Экспериментально измерили а
1=165 mm, b1=1165 mm, L=a1+b1=1330 mm
- 4) Зная L и F_1 найдем a1 и b1 по формуле линзы: $\frac{1}{F_1}=\frac{1}{a1}+\frac{1}{b1}$ a1=45 mm, b1=1285 mm \Rightarrow $\Gamma=\frac{b1}{a1}=\frac{D_1}{D_l}=28$

Изображение, $m * 10^{-3}$	2.4	3.9	5.1	7.1	11	12.7
$D_l, m * 10^{-4}$	0.86	1.4	1.82	2.54	3.93	4.54
D, $m * 10^{-4}$	1	1.7	2.2	3.2	4.2	5

Определение ширины щели по её спектру

Рис. 2: Схема для определения ширины щели по спектру

- 5) Получили на удалённом экране спектр щели. Меняя ширину щели. Оценили интервал, для которого можно наблюдать и измерять спектр: 23-53 деления.
- 6) Измерили ширину спектра для самой маленькой щели(100 мкм): 85 mm.
- 7) Провели серию измерений X(m), меняя ширину щели. Результаты занесли в таблицу:

1	l0, del	1	17, del	27, del		32, del		40, del		50, del	
m	X, mm	m	X, mm	m	X, mm	m	X, mm	m	X, mm	m	X, mm
1	15	1	10	1	5	1	5	1	4	1	3
2	30	2	15	2	10	2	10	2	8	2	6
3	45	3	25	3	15	3	15	3	12	3	9
4	60	4	35	4	20	4	20	4	16	4	12

8) Используя соотношение: $D_c = \frac{\lambda * L * 2m}{X}$, рассчитаем ширину щели ($\lambda = 6328A, L=1315 \text{ mm}$

D, $m * 10^{-4}$	1	1.7	2.7	3.2	4	5
$D_c, m * 10^{-4}$	1.11	1.93	3.32	3.32	4.16	5.55

9) Построим графики $D_l(D), D_c(D)$:

Определение периода решеток Определение периода по спектру на удалённом экране

Рис. 3: Схема для определения ширины щели по спектру

10) Поставили кассету с двумерными решетками вплотную к лазеру.

11) Для каждой сетки измерили расстояние X между m-ыми максимумами. L=1355 mm

Сетка:	1		: 2 3		4		5			
m	X, mm	$\triangle X$								
1	4	17.5	2	12.5	2	6.25	2	3.75	2	2.5
2	70		50		25		15		10	
3	105		100		50		25		20	
4	140		150		75		40		30	

12) Используя формулу $d_c = \frac{\lambda * L * 2m}{X}$ найдем d_c :

N сетки	1	2	3	4	5
$d_c, m * 10^{-5}$	5	6.7	13	23	33

Определение периода решёток по увеличенному изображению спектра

Рис. 4: Схема определения периода решётки по увеличенному изображению спектра

13) Измерим X и m для всех сеток, где это возможно:

N сетки	3	4	5
m	X, mm	X, mm	X, mm
1	6	8	15
2	12	35	45
3	28	55	75

14) Зная, что Г3=b3/a3=1.5, F2=11 cm, найдем период сетки по формуле $d_l=\frac{\lambda*F_2*\Gamma^3*2m}{X}$

N	3	4	5					
d_l, mm	0.02	0.011	0.008					
Мультиплицирование								

Рис. 5: Схема для наблюдения мультиплицирования

- 15) Снова поставили тубус со щелью к окну лазера и нашли на экране резкое изображение щели с помощью линзы $\Pi 2$ (F2 = 11 см). В фокальной плоскости Φ линзы $\Pi 2$ поставили кассету с сетками.
- 16) Подобрали такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток($a_2 = 220mm, b_2 = 1060mm$).
- 17)Сняли зависимость Y и K (число промежутков между изображениями) от № (номер сетки) для фиксированной ширины входной щели. Результаты занесли в таблицу:

N, сетки	1		2		3		4	
Y, mm	50	100	35	60	15	30	12	16
K	15	40	10	20	8	16	4	8

18) Используя формулы $\triangle y = \triangle Y/2, \triangle Y = Y/K$ получим:

N	1	2	3	4	5
$\triangle y$, mm	0.69	0.73	0.39	0.52	1
$1/d_c 10^3 , 1/{ m m}$	20	15	7.7	4.34	3.03

И построим график $\triangle y(1/d_c10^3)$:

