JINGYI XU

Jingyi.Xu.1@stonybrook.edu

RESEARCH INTERESTS

Computer Vision, Deep Learning

EDUCATION

Stony Brook University, United States

Ph.D, Computer Science

Nankai University, China

B.S., Computer Science

Sep 2019 - Present

GPA: 4.0/4.0

July 2015 - June 2019

GPA: 90.3/100

PUBLICATION

Kai Zhao, Jingyi Xu, Mingming Cheng. RegularFace: Deep Face Recognition via Exclusive Regularization. CVPR 2019.

Jingyi Xu, Mingzhen Huang, ShahRukh Athar, Dimitris Samaras. Variational Transfer Learning for Fine-grained Few-shot Visual Recognition. (submitted to AAAI 2021).

Jingyi Xu, Zhixin Shu, Dimitris Samaras. Learning Clusterable Visual Features for Zero-shot Recognition. (submitted to AAAI 2021)

EXPERIENCE

Research Intern at SenseTime, Beijing

Dec 2018 - July 2019

- · Introduce a feature generator to generate hard features by maximizing cross-entropy loss
- · The recognition model is trained to classify both the original features and the hard features correctly
- · The proposed adversarial training leads to discriminative features for verification.

Research Intern at Panasonic R&D Center, Singapore

September 2018 - December 2018

- · Aim to improve face recognition model's performance on frontal-profile face image pairs.
- · Propose a module capable of modeling the transportation between frontal-profile faces in feature space.

Research Assistant at University of Notre Dame, USA

July 2018 - September 2018

- · Construct a graphic model of R packages based on their dependency relationship.
- · Evaluate the popularity of the packages according to the frequency imported by other packages.
- · Build a web-app that can generate an interactive graph to illustrate the inter-connections between packages.

PROJECTS

Face recognition via exclusive regularization

April 2018 - July 2018

- · Propose a new regularization term to increase inter-class separability for face verification.
- · The method distances identities by enlarging the cosine distance between an identity and its nearest neighbour in an embedding space.
- · It is easy to implement and outperforms prior methods on several open benchmarks.

Few-shot Learning by Intra-class Variance Transfer

 $\rm Dec~2019$ - March 2020

- · Model the distribution of intra-class variance on base set by variational inference.
- · Transfer the learned distribution to novel set images for feature augmentation.
- · Achieve state-of-the-art performance on CUB dataset.

Zero-shot Learning with Clusterable Features

March 2020 - Present

- · Project the real visual feature to a discriminative feature space supervised by classification loss and train a variational autoencoder to reconstruct them.
- · Finetune the features first with Gaussian-Similarity Loss to derive a more clusterable feature space.
- · Achieve state-of-the-art result on three widely used zero-shot learning datasets.

TECHNOLOGY SKILLS

Programming Languages	Python, C/C++, Java, MATLAB, I₄TEX
Tools	Pytorch, Caffe

AWARDS

First Prize of Scholarship, Nankai University	2016, 2018
Second Prize of Scholarship, Nankai University	2017
First Prize, China Undergraduate Mathematical Contest in Modeling	2017
First Prize, China College Students Mathematics Competition	2016