

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

F-TD 1 -- Elaboration de modèles d'entrepôts de données

Exercice 1.

Une entreprise de fabrication de vaisselle jetable souhaite mettre en place un système d'information décisionnel sous la forme d'un data mart (un mini entrepôt de données) pour observer son activité de ventes au niveaux des différents lieux de distributions de ses articles et cela dans plusieurs villes. Ces lieux de distributions sont renseignés par leur enseigne, leur type (en fonction de leur surface), leur adresse (code postal et ville), leur département, leur région. Les ventes sont renseignées selon une période qui se décline en mois, en trimestre et année. Les ventes sont observées par le nombre d'articles selon le type, et le chiffre d'affaire.

- Quel est le fait à observer ?
- Quels sont les axes d'analyse, et le.s mesure.s ?
- Construire le modèle en étoile de ce data mart.

1°) Solution:

Mesures	Dimensions
1° Solution	
Nb d'articles	Type article
Chiffre d'Affaire	Magasin
	Période

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

2° Solution:

Mesures	Dimensions	Hiérarchie		
2° Solution				
Nb d'articles	Type article			
Chiffre d'Affaire	Magasin	Département ——	Région	
	Période	Mois	Trimestre -	Année

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

Exercice 2.

1°) Concevoir un modèle en étoile qui permet d'analyser les ventes d'une entreprise de restauration rapide. Le principe est de mesurer les ventes grâce aux quantités vendues et aux bénéfices, en fonction des ventes réalisées par jour, dans un restaurant donné, pour un aliment donné. L'objectif est de pouvoir analyser les ventes par jour, par semaine, par mois et par année. Les restaurants peuvent être regroupés en fonction de leur ville et de leur pays.

Mesures	Dimensions
1° Solution	
Qtés vendues	Jour
Bénfices	Restaurant
	Aliment

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

2°) Modifier ce modèle en un modèle en flocon de neige pour modéliser explicitement les hiérarchies des dimensions représentant le temps et la localisation géographique des magasins.

Mesures	Dimensions	Hiérarchie		
2° Solution				
Qtés vendues	Jour	Semaine	→ Mois	Année
Bénfices	Restaurant -	→ Ville -	-> Pays	
	Aliment			

3°) On souhaite à présent mesurer le nombre de commandes qui est donné par jour et par restaurant. Etendre le modèle précédent afin de prendre en compte cet aspect.

Mesures	Dimensions	Hiérarchie		
2° Solution				
Qtés vendues	Jour	Semaine	Mois Ann	ée
Bénfices	Restaurant -	→ Ville	-> Pays	
Nbre de Cdes	Aliment			

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

Exercice 3.

La société *Chausséria*, installée dans la région Rhône-Alpes, désire construire un entrepôt de données pour suivre l'évolution de ses ventes de chaussures. L'entreprise *Chausséria* dispose de deux magasins « *Chauss_Lyon* » et « *Chauss_Bron* » et vend plusieurs modèles de chaussures.

1 Proposez un modèle conceptuel et logique d'entrepôt de données *DW_Chausseria* pour observer l'évolution des ventes en termes du nombre total de paires de chaussures vendues par rapport aux axes Mois, Année, Magasin et Modèle.

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

Quel est le type du modèle obtenu ? Argumentez

C'est un modèle en flocon de neige. Les axes MOIS et ANNEE sont représentés en une hiérarchie.

2 On peut maintenant imaginer que la société désire aussi étudier la répartition de ses ventes suivant d'autres critères, comme Genre (Homme/Femme/Enfant), Pointure, ou encore Couleur. Proposer un nouveau modèle conceptuel de l'entrepôt de données *DW_Chausseria_*Nouveau en prenant en compte toutes les dimensions anciennes et nouvelles citées ci-dessus.

3 Soit la représentation relationnelle du data mart *Chausseria_01_02*. Proposez un tableau multidimensionnel pour observer le nombre total de paires de chaussures vendues par rapport aux axes **MAGASIN** et **MODÈLE**.

Année	Modèle	Magasin	Nombre
2000	Botte	Chauss Lyon	5000
2000	Escarpin	Chauss Lyon	1500
2000	Botte	Chauss Bron	3000
2001	Escarpin	Chauss Lyon	3500
2001	Botte	Chauss Lyon	2500
2001	Botte	Chauss Bron	4000

a) Tableau multidimensionnel selon les 2 axes MAGASIN et MODÈLE

	Botte	Escarpin
Chauss_Lyon	7 500	5 000
Chauss_Bron	7 000	

Master 1 INFO

Systèmes d'Information Décisionnels

Année 2016-2017

b) Calculer l'opérateur CUBE sur le data mart *Chausseria_01_02* avec l'approche MOLAP.

	2000		2001				
	Botte	Escarpin		Botte	Escarpin		
Chauss_Lyon	5 000	1 500	6 500	2 500	3 500	6 000	12 500
Chauss_Bron	3 000		3 000	4 000		4 000	7 000
	8 000	1 500	9 500	6 500	3 500	10 000	19 500

c) Calculer l'opérateur CUBE sur le data mart *Chausseria_01_02* avec l'approche ROLAP.

Année	Modèle	Magasin	Nombre
2000	Botte	Chauss_Lyon	5 000
2000	Escarpin	Chauss_Lyon	1 500
2000	Botte	Chauss_Bron	3 000
2001	Escarpin	Chauss_Lyon	3 500
2001	Botte	Chauss_Lyon	2 500
2001	Botte	Chauss_Bron	4 000
ALL	Botte	Chauss_Lyon	7 500
ALL	Escarpin	Chauss_Lyon	5 000
ALL	Botte	Chauss_Bron	7 000
2000	ALL	Chauss_Lyon	6 500
2000	ALL	Chauss_Bron	3 000
2001	ALL	Chauss_Lyon	6 000
2001	ALL	Chauss_Bron	4 000
2000	Botte	ALL	8 000
2000	Escarpin	ALL	1 500
2001	Botte	ALL	6 500
2001	Escarpin	ALL	3 500
ALL	ALL	Chauss_Lyon	12 500
ALL	ALL	Chauss_Bron	7 000
2000	ALL	ALL	9 500
2001	ALL	ALL	10 000
ALL	Botte	ALL	14 500
ALL	Escarpin	ALL	5 000
ALL	ALL	ALL	19 500

J,