CULTURA DO ARROZ

2.Importância da Cultura

Tabela: Teores de aminoácidos essenciais no arroz e feijão (mg/g).

Aminoácidos		Arroz	Feijão	
Isoleucina		94	100	
Leucina	Leucina		201	
Lisina		85	141	
Aromáticos		281	273	
Sulfurados		123	46	
Triptofano		79	113	
Valina		121	115	

Fonte: Adaptado de Souza et al. (1973)

Máximo valor protéico na dieta de ratos

50% - proteína do feijão

50% - proteína do milho

Melhor relação 2,6 : 1 (72 g de milho + 28 g de feijão)

Fonte: Bressani (1973)

Alto teor de carboidratos

Baixo teor protéico (7 a 9%)

Baixo teor de sais minerais

Arroz descascado — Mais nutritivo/ menor aceitação

Arroz polido _____

Perdas significativas no beneficiamento e lavagem antes do cozimento

Consumidor ———

Produto de melhor aparência e menor valor nutritivo Tabela: Composição química do arroz em casca e do arroz polido e perdas no beneficiamento.

Componente	sem casca	polido	perdas
	(%)	(%)	beneficiamento
			(%)
Gorduras	2,21	0,36	83,6
Fibra Bruta	0,83	0,25	69,8
Proteinas	9,04	7,48	17,3

Polimento do arroz remove

Até 80% da tiamina 50% da riboflavina 65% da niacina

Vitaminas do grupo B

Tabela: Perdas provocadas pela lavagem do arroz (%) antes do cozimento.

Vitamina	Arroz	Arroz		
	descascado	beneficiado		
Tiamina	21,1	43,1		
Riboflavina	7,7	25,9		
Niacina	13,1	23,1		

Tabela - Perdas de nutrientes do arroz polido por lavagem

Constituintes	Perdas (%)
Proteína	2-7
Potássio	20-41
Tiamina	22-59
Riboflavina	11-26
Niacina	20-60

Fonte: IRGA (2009)

Tabela - Perdas de nutrientes do arroz polido por lavagem e cozimento

Constituintes	Perdas (%)
Proteína	10
Ferro	75
Cálcio	50
Fósforo	50

Fonte: IRGA (2009)

Lavar ou não o arroz antes do cozimento?

- Sob o ponto de vista das perdas nutricionais,
 no arroz polido é desaconselhável a lavagem;
 e no parboilizado é completamente desnecessária.
- O consumidor deve escolher a marca de sua confiança e inspecionar visualmente.

Fonte: IRGA (2009)

Tabela: Teor protéico e de macronutrientes contidos nos grãos integral e polido de cultivares de arroz (%).

Cultivar	Proteína	N	Р	K	Ca	Mg	S
IAC 164	9,58	1,61	0,46	0,25	0,022	0,06	0,12
	8,09	1,36	0,13	0,04	0,018	0,02	0,11
IAPAR 9	9,41	1,58	0,48	0,26	0,026	0,17	0,13
	8,33	1,41	0,14	0,05	0,016	0,03	0,12
IAC 47	9,34	1,57	0,49	0,25	0,023	0,21	0,11
	7,44	1,25	0,12	0,05	0,015	0,02	0,09
EMPASC	9,16	1,54	0,46	0,26	0,023	0,17	0,11
	7,68	1,29	0,13	0,05	0,015	0,02	0,09
IAC 1278	8,92	1,51	0,44	0,26	0,024	0,16	0,11
	7,97	1,34	0,15	0,05	0,016	0,03	0,09

Arroz integral

Arroz polido

Fonte: Fornasieri Filho et al. (2006)

"Pós-colheita, industrialização e qualidade do arroz: evolução e desafios" Composição centesimal média (% na matéria seca), de arroz integral, branco polido e parboilizado polido Arroz Arroz Arroz parboilizado branco Constituinte integral polido polido 85,08 87,58 74,12 Amido total 9,44 8,94 10,46 Proteinas (N x 5,95) 0.69 0.36 2,52 Lipídios 0.67 0,3 1,15 Cinzas 4,15 2,87 11,76 Fibra total 1,63 1,05 8,93 Fibra insolúvel 2,52 1,82 2,82 Fibra solúvel

Fonte: Elias (2015)

Conservação do valor nutritivo do arroz

- Uso do arroz apenas descascado arroz integral
- Redução na Intensidade de beneficiamento

- Enriquecimento do arroz

- Parboilização

Vantagens da Parboilização

- Facilita a retirada da casca;
- Reduz a quantidade de grãos quebrados;
- Aumenta a resistência a insetos;
- Necessita de menor grau de beneficiamento;
- Aumenta o valor nutritivo.

Parboilização no Brasil

Processo MALEK

Encharcamento em água quente, seguido de gelatinização do amido, por vapor, em autoclave contínua e secagem em secador rotativo, com ar quente.

Processo ESTUFA

Encharcamento em água quente, seguido de gelatinização e secagem simultânea em cilindro rotativo de fogo direto obtido da combustão de casca.

Fonte: Amato et al. (2002).

Gelatinização do amido

O amido passa da forma cristalina para a amorfa. Nesta operação, o grão fica mais compacto, as vitaminas e sais minerais são fixados em seu interior.

Fluxograma de gelatinização

Tabela: Composição química do arroz branco e do arroz parboilizado.

Proteínas - %	6,71	7,01
Gorduras - %	0,37	0,61
Fibras - %	0,16	0,25
Carboidratos - %	92	91
Cálcio - mg/100g	10	14
Fósforo - mg/100g	94	200
Ferro - mg/100g	0,9	1
Tiamina - mg/100g	0,15	0,4
Riboflavina - mg/10	0,015	0,02
Niacina - mg/100g	1,8	4,7
Vitamina E - mg/100	traços	8,18
		Factor Association

Fonte: Amato et al. (2002)

Fonte: Elias (2015)

Usos do arroz

- Grãos inteiros na alimentação
- Farelo produção de óleo

- Casca

Casca do arroz

- Representa aproximadamente 20% da produção de grãos

- Usina termoelétrica, dependendo do tamanho, consome aproximadamente 10.000 t de casca/mês.

Fonte: Elias (2015)

3. Descrição da Planta

Figura 1. A planta de arroz (Vergara, 1979).

A planta de arroz

- Sistema radicular fasciculado;
- Caules ocos e redondos;
- Folha de limbo foliar plano e inflorescência terminal em forma de panícula;
- O porte pode variar de 0,40 m nos cultivares anões até 7 m nos flutuantes;
- Em condições de temperatura e umidade adequada,
 existe novo crescimento Soca

Foto: Aproveitamento da soca de arroz – Primavera do Leste (MT).

Raízes

- Seminais

- Nodais ou adventícias ou permanentes

"Em cada nó desenvolvem-se 5 a 25 raízes com diâmetro de 0,5 a 1,0 mm"

Figura 2. Seção transversal de uma raiz madura de arroz (Hoshikawa, 1975).

O máximo desenvolvimento radicular ocorre no florescimento

"O comprimento radicular total no estádio de florescimento pode variar de 15 a 34 km por metro² (Yoshida, 1981)"

Tabela: Distribuição de raízes em cultivares de arroz sob diferentes profundidades no solo.

Sistema de	Massa relativa de raízes (%) em diferentes profundidades (cm)						
Cultivo		0-5	5-10	0-10	10-15	10-20	>20
Irrigado Fujisaka 5 (1)		-	-	90	-	10	-
	Iguape Agulha (3)	70	23	93	6	-	1
Sequeiro	Norin Mochi (1)	-	-	75	-	19	6
	IAC 1246 (2)	-	-	70	-	16	14

⁽¹⁾ HASEGAWA (1960)

⁽²⁾ OLIVEIRA (1979)

⁽³⁾ INFORZATO et al. (1964)

Tipos de raízes de arroz

Figura 3. Os três tipos de raízes do arroz (Hoshikawa, 1975).

Principais fatores que determinam o crescimento das raízes e dos pelos radiculares:

- Idade da planta;
- Suprimento de oxigênio;
- Teor de umidade e temperatura;
- Disponibilidade de nutrientes;
- Níveis de elementos tóxicos e patógenos;
- Textura do solo;
- Métodos de cultivo;
- Cultivar

Fonte: Guimarães et al. (2002).

Figura 7. Sistema radicular do arroz de terras altas, em plantio direto, após a soja. Dom Aquino, MT.

Figura 8. Sistema radicular do arroz, em plantio direto, semeadora equipada com haste escarificadora e disco de corte.

Colmos

- Eretos e cilíndricos com diâmetro de 6 a 12 mm;
- -Base os entrenós são curtos e cada nó apresenta gema e primórdios radiculares. Gemas originam novos perfilhos;
- Entrenós com comprimento decrescente do ápice para a base;
- Número total de nós varia de 12 a 22 no colmo principal;
- Número de nós = número de folhas + 2 (coleoptilo e panícula);

Acamamento da planta

Momento de encurvamento -----

Resultado do peso da parte aérea e da altura do colmo principal.

Resistência à ruptura da parte aérea

- Comprimento dos entrenós inferiores Nitrogênio
- Resistência ou dureza dos entrenós Potássio Silício
- Resistência e firmeza das bainhas foliares

30 a 60% da resistência total do colmo à ruptura

Como minimizar o acamamento?

- Escolha do cultivar;
- Adubação potássica equilibrada;
- Fornecimento de silício para as plantas;
- Adubação nitrogenada equilibrada;
- Manejo adequado da irrigação;
- Uso de reguladores vegetais.

Foto: Acamamento do **cultivar AN Cambará** irrigado por aspersão.

Momentos de aplicação de etil-trinexapac

Perfilhamento - DF
 Diferenciação

Diferenciação
 Floral

Foto: Momento entre o Perfilhamento e a DF no cultivar Primavera.

Foto: Momento da Diferenciação Floral no cultivar Primavera.

Foto: Aplicação de etil-trinexapac no momento da DF – cv. Primavera.

Foto: Cultivar Primavera com 100% de acamamento nas bordaduras

Tabela: Altura de plantas (m) de arroz em função de doses de etiltrinexapac e épocas de aplicação, Selvíria – MS.

			Doses - g/há			
Época	Test.	75	150	225	300	RL/RQ
Perf.	1,36	1,41 a	1,41 a	1,39 a	1,34 a	ns
P - DF	1,38	1,39 a	1,31 a	1,23 b	1,16 b	RL
DF	1,34	1,16 b	0,95 b	0,87 c	0,80 c	RQ

Fonte: Nascimento et al. (2009).

Tabela: Grau de acamamento de plantas de arroz em função de doses de etil-trinexapac e momentos de aplicação. Selvíria – MS.

			Doses - g/há			
Época	Test.	75	150	225	300	RL/RQ
Perf.	5	4,5	5	5	4	ns
P - DF	4,5	4,5	3	0,5	0	RL
DF	4,8	0,5	0	0	0	RQ

Notas de acamamento:

0 - sem acamamento

1 - até 5% de plantas acamadas

2 - 5 a 25 %

3 - 25 a 50%

4 - 50 a 75%

5 - 100% de plantas acamadas

Fonte: Nascimento et al. (2009).

Tabela 4: Produtividade de grãos de arroz (kg/ha) em função de doses de etil-trinexapac e momentos de aplicação. Selvíria – MS.

			Doses - g/	há		
Época	Test.	75	150	225	300	RL/RQ
Perf.	4.475	4.590	3.929	4.558ab	4.529b	ns
P - DF	4.345	4.527	4.138	5.868a	5.996a	RL
DF	4.212	5.477	4.957	4.489b	3.354b	RQ

Fonte: Nascimento et al. (2009).

Tabela – Massa de cem grãos, massa hectolítrica e produtividade, obtidos em arroz de terras altas envolvendo regulador de crescimento e doses de nitrogênio. Selvíria (MS), 2007/08.

Tratamentos	Massa de cem grãos (gramas)	Massa hectolitrica (kg)	Produtividade (kg ha ⁻¹)
Regulador de Crescimei	nto		
Sem	2,19 b	51,30 b	3.694 b
Com	2,39 a	53,94 a	4.144 a
Doses de Nitrogênio (kg	ha ⁻¹)		
0	2,36	52,85	4.026
40	2,23	52,97	3.517
80	2,31	52,39	4.131
120	2,26	52,28	4.002
CV (%)	7,00	3,72	14,02

Fonte: Peron et al. (2008)

Tabela - Massa de 100 grãos, massa hectolítrica e produtividade, obtidos em arroz de terras altas irrigado por aspersão, envolvendo regulador de crescimento e densidade de semeadura. Selvíria (MS), 2007/08.

Tratamentos	Massa de	Massa	Produtividade.
	100 grãos	Hectolítrica	$(kg ha^{-1})$
Regulador de crescimento			
Sem	2,05 b	53,24 b	4.493
Com	2,35 a	56,71 a	4.650
Densidades (plantas m ⁻²)			
100	2,21	55,46	4.462
150	2,19	54,93	4.768
200	2,15	54,11	4.481
250	2,19	56,06	4.448
300	2,26	54,30	4.700
CV (%)	9,24	4,05	10,62

Fonte: Castilho et al. (2008).

Folhas

10 a 20 folhas no colmo principal

- Bainha
- Limbo
- Lígula*
- Aurículas *

Folha "bandeira" – difere das demais em tamanho e ângulo.

Limbo – nervura central proeminente na superfície inferior e lisa (*arroz preto* e *arroz vermelho* são ásperos ao tato).

^{*} Identificação de plantas na fase inicial – capim arroz não possui.

Figura 10. Morfologia foliar (Vergara, 1979).

Figura 11. Seção transversal da bainha foliar (Hoshikawa, 1975).

"Nas *bainhas foliares*, entre os feixes vasculares, observa-se espaços de ar que se acham conectados aos *estômatos* e com os *colmos* e *raízes*, constituindo um eficiente sistema de *passagem de ar* da parte aérea para as raízes"

- Necessário 100 °C para o desenvolvimento da folha até a fase de "iniciação floral" e cerca de 170 °C após esta fase.

-Folha centro ativa – em determinada fase do ciclo da planta desempenha, fisiologicamente, a principal função entre todas as folhas.

Tabela 5: Atividade fotossintética de folhas em várias posições no colmo principal.

Avaliação	Folha	Absorção de CO2
		(mg/100cm2/h)
28 de jun	7/0	13
	6/0	36,6
	5/0	58*
	4/0	15
27 de julh	10/0	18,3
	9/0	26,6*
	8/0	20,3
	7/0	14,1
4/set	12/0	11,1*
	11/0	6,1

^{*} Mostra a folha centro ativa em cada momento da vida da planta.

Fonte: Yoshida (1981).

Figura 12. Contagem das folhas da planta de arroz (Yoshida, 1981).

Inflorescência do tipo panícula

Colmo principal e os perfilhos primários respondem por aproximadamente 80% da produção de grãos.

Espiguetas

- 2 glumelas
- 2 lodículas
- 6 estames
- 1 ovário com estilete curto
- 2 estigmas plumosos
- 2 glumas na base das espiguetas.

Lema e pálea podem ter apículo e a lema pode ter arista.

Figura 13. Partes da espigueta do arroz (Vergara, 1979).

Figura: Partes componentes da espigueta da planta de arroz.

Fonte: Fornasieri Filho e Fornasieri (2006).

Figura 14. Panícula do arroz e seus componentes (Vergara, 1979).

Tipos de panícula

Aristada — Arista em todas as espiguetas

Semi aristada → Parte das espiguetas são múticas

Fruto do arroz

Cariopse envolta pela casca constituída pela lema, pálea, glumas e ráquila.

Comprimento, largura e espessura das espiguetas

Importantes na classificação especialmente C/L

ALBÚMEM <u>vítreo</u> ou <u>farinhoso</u> e <u>opaco</u> ou ainda <u>gessado</u>

"barriga branca"

Figura 15. Estrutura dos grãos de arroz (Juliano, 1984).