

B题:环形穿梭车系统的设计与调度

队 员:汪进文、周明龙、田源(901138)

学 校:北京理工大学

组 别:研究生组

指导教师: 邓志红 教授

目 录

问题重述

模型假设

模型建立与求解

模型优缺点分析

1.1 问题背景与提出

环形穿梭车系统集光、机、电、信息等高新技术为一体,广泛应用于自动化物流系统,实现输送目的地任意性,简化生产工艺流程,提高搬运效率。

环形穿梭车运行系统

多台穿梭车执行搬运任务时,易造成交通堵塞,降低运输能力,增大完工时间

1.2 问题要求与分析

- ▶ 问题1和问题2:为车辆调度问题,根据题目给定环形穿梭车系统描述,建立一般化调度模型,使系统在完成任务的基础上总完工时间最短。
- 问题3:为系统运行效率评价问题,先找到系统评价指标,再对评价指标进行融合得到综合特征评价指标,最后得到系统评价值。评价指标融合方法有主观和客观多指标融合方法。
- ▶ 问题4:为系统优化设计问题,先分析各参数对系统运行效率的影响,然后对参数值组成的目标函数进行寻优,可用带约束的优化方法进行求解。最后根据求解值提出系统参数改进建议。

环形穿梭车运行系统

问题重述

模型假设

模型建立与求解

模型优缺点分析

2.1 模型假设

▶假设穿梭车无起停加减速时间,为立起立停,即也无最小制动距离等;

> 假设穿梭车位置检测时间、安全检测时间、通讯时间等常数定值时间可不计;

▶假设穿梭车、道口在整个调度运行周期中不发生故障等意外停止运行情况, 或此情况对调度优化过程不产生影响。

问题重述

模型假设

模型建立与求解

模型优缺点分析

问题分析与求解思路

模型建立

模型求解

> 模型建立方法

> 模型求解方法

> 模型求解结果及优化

表1.1 N=3时穿梭车调度编号表(部分)

处理顺序	进货口1	进货口2	进货口3	进货口4	进货口5	进货口6
1	3	1	3	1	2	2
2	1	2	2	3	1	1
3	2	1	3	1	2	2
4	2	2	2	1	3	1
5	1	3	3	3	3	2
6	3	1	2	3	2	1

表1.2 N=3时进货口对应目标出货口编号表(部分)

处理顺序	进货口1	进货口2	进货口3	进货口4	进货口5	进货口6
1	4	2	5	5	7	6
2	4	1	7	7	6	5
3	2	4	6	6	7	6
4	1	3	6	7	7	7
5	3	1	6	6	7	6
6	2	4	5	7	6	5

表1.3 总完工时间求解结果表

小车数	总完工时间
3	10800s
6	6943s
9	5805s

- N=3 时,系统属于穿梭车数量不足,整体拥 堵时间较小;
- N=6 时,系统穿梭车数量较合适但仍未饱和,整体拥堵时间为适中;
- N=9 时,系统穿梭车数量已差不多饱和,整体拥堵时间较大。

问题分析与求解思路

模型建立

模型求解

> 模型建立方法

> 模型求解方法

> 模型求解结果及优化

表2.1 N=3时穿梭车调度编号表(部分)

处理顺序	进货口1	进货口2	进货口3	进货口4	进货口5	进货口6
1	3	1	3	1	2	2
2	1	2	2	3	1	1
3	2	1	3	1	2	2
4	2	2	2	1	3	1
5	1	3	3	3	3	2
6	3	1	2	3	2	1

表2.2 N=3时进货口对应目标出货口编号表(部分)

处理顺序	进货口1	进货口2	进货口3	进货口4	进货口5	进货口6
1	4	2	5	5	7	6
2	4	1	7	7	6	5
3	2	4	6	6	7	6
4	1	3	6	7	7	7
5	3	1	6	6	7	6
6	2	4	5	7	6	5

表2.3 总完工时间求解结果表

小车数	考虑车长 总完工时间	不考虑车长 总完工时间
3	11137s	10800s
6	7122s	6943s
9	5843s	5805s

- N=3 时,系统属于穿梭车数量不足,整体拥 堵时间较小;
- N=6 时,系统穿梭车数量较合适但仍未饱和,整体拥堵时间为适中;
- N=9 时,系统穿梭车数量已差不多饱和,整体拥堵时间较大。

考虑了车长,增加了堵塞情况

> 问题分析与求解思路

模型建立

模型求解

模型建立方法

主观评价方法 层次分析法 主客观 的评价 值的偏 差越小 越好

主客观一致赋权 评价模型

$$\min H(w) = \sum_{i=1}^{a} \sum_{e=1}^{b} \{ [(u_e - w_e)r_{ie}]^2 + [(v_e - w_e)r_{ie}]^2 \}$$

$$\sum_{e=1}^{b} w_e = 1, w_e \ge 0, (e = 1, 2, K \ b)$$

$$W = [w_1, w_2, K \ w_b]^T$$

优化组合权重

> 模型求解方法

> 模型求解结果及优化

表3.1不同情况下各项指标

情况	拥堵 时间	最大 货物吞吐量	复合 作业次数	穿梭车 搬运距离比
1	1331.2	0.0402	156	0.2068
2	4711.1	0.0643	110	0.2827
3	8777.2	0.0769	96	0.2203
4	1874.2	0.0401	132	0.3728
5	4959.0	0.0627	109	0.2806
6	8273.0	0.0764	95	0.2389

层次分析法权重

 $U = \begin{bmatrix} 0.4512 & 0.2609 & 0.1689 & 0.1190 \end{bmatrix}$

熵值法权重

 $V = \begin{bmatrix} 0.2915 & 0.3751 & 0.1718 & 0.1616 \end{bmatrix}$

优化组合权重

 $W = \begin{bmatrix} 0.3713 & 0.3180 & 0.1704 & 0.1403 \end{bmatrix}$

表3.2 评价系数计算结果

情况	L	D	F
1	0.1135	0.1225	0.5191
2	0.0742	0.0897	0.5475
3	0.0810	0.1402	0.6337
4	0.1195	0.0984	0.4514
5	0.0691	0.0940	0.5761
6	0.0802	0.1323	0.6226

结果:情况3,即不考虑穿梭车长度且N=9时,

评价系数最大,环形穿梭车系统运行效率最高

问题分析与求解思路

模型建立

模型求解

> 模型建立方法

模型约束松弛条件

到达时间 服从泊松分布

货物排队等待 直到被搬运完成

先到 先服务的方式

环轨上 有N台穿梭车

服务时间 服从负指数分布

排队论M/M/n 模型计算方法

系统服务强度

所有穿梭车 都空闲的概率

货物的 平均等待队长

货物的 平均等待时间

正在服务 的穿梭车台数 寻优目标函数

> 模型求解方法

> 模型求解结果及优化

表4.1 优化参数结果

参数	<i>l</i> 1/m	<i>l</i> 2/m	v/m/s	<i>N</i> / ↑
大小	113.5	7.1	1.2	6

表4.2 寻优目标函数结果

目标 函数	ρ	Lp	Lq	<i>P</i> 0
大小	0.92	5.5	4.32	0.0038

较大

较小

> 改进建议

- ✓ 减缓穿梭车运行速度
- ✓ 增加轨道长度
- ✓ 穿梭车数目为6

增加负载跑距离 和复合作业次数 提高环形穿梭车 运行系统的效率

问题重述

模型假设

模型建立与求解

模型优缺点分析

4.1 模型优点分析

- > 系统建模:
 - ✓ 模型复杂度低,调度表的物理意义清晰
- > 模型求解:
 - ✓ 传统规则调度同遗传算法的结合改善了初始种群的生成,提高了收敛速度
- > 模型评估:
 - ✓ 考虑了多个性能评价指标,评价结果更加科学合理
 - ✓ 使用带约束的粒子群算法求解多目标寻优问题,很好逼近了系统模型参数最优解

4.2 模型缺点分析

> 系统建模:

× 忽略了穿梭车加速和减速过程,可能对最终总完工时间有一定的影响

> 模型评估:

- ×可能存在其他评价指标未被考虑,使得评价结果存在一定的偏差
- × 粒子群算法中使用较大迭代次数和粒子数,导致计算时间较长

谢谢各位专家的建议与指正

Thanks For The Advice And Opinion

队 员:汪进文、周明龙、田源(901138)

学 校:北京理工大学

组 别:研究生组

指导教师: 邓志红 教授

