Trabajo final EEA

G. Sebastián Pedersen sebasped (at) gmail (dot) com

31 de octubre de 2021

1. Título

Gaussian Process Regression.

2. Breve descripción

En el problema estándar de regresión tenemos datos observados $D = \{(x_i, y_i)\}$, $1 \le i \le n, \ x \in \mathbb{R}^p, \ y \in \mathbb{R}$, y asumimos que la relación entre x e y puede ser modelada por una función f más un ruido gaussiano:

$$y = f(x) + \epsilon$$

Si f depende de las x_i y es lineal en los parámetros, estamos en la regresión lineal; si f depende de potencias enteras de las x_i y es lineal en los parámetros estamos en la regresión polinómica. En general en estos casos toda la magia está en elegir la forma de la función f y la base de las x_i que utilizará, y estimar sus parámetros (por eso son métodos paramétricos). En un proceso gaussiano la idea no es forzar a f a tener cierta forma funcional para luego estimar sus parámetros, sino modelar la distribución de f (por eso gaussian process regression es un método no paramétrico). Formalmente un proceso gaussiano para D sería que para cualquier subconjunto de D sea f una normal multivariada.

Los objetivos del trabajo serían entender un proceso gaussiano y su aplicación al problema de la regresión, y entender cómo se entrena un proceso gaussiano (i.e. cómo averiguar media y covarianza para cada una de esas gaussianas. Esto básicamente involucra inferencia bayesiana).

3. Dataset

No tengo. Creo que me voy a tirar por hacer algo con datos sintéticos.

4. Librerías

Estuve buscando algunas, pero todavía no las probé.

https://search.r-project.org/CRAN/refmans/kernlab/html/gausspr. html

- https://github.com/ebenmichael/gaussianProcess
- https://cran.r-project.org/web/packages/GPFDA/GPFDA.pdf

5. Referencias

Algunas cosas que estuve ojeando.

- https://bookdown.org/rbg/surrogates/chap5.html
- https://michaeloneill.github.io/GPR-tutorial.html
- http://www.gaussianprocess.org/gpml/chapters/RW.pdf#chapter.2
- https://www.staff.ncl.ac.uk/j.q.shi/ps/gpfda.pdf
- https://raw.githubusercontent.com/GAMES-UChile/Curso-Aprendizaje-de-Maquinas/master/notas_de_clase.pdf (cap. 8)