3 Nombres complexes (2) formes trigonométrique et exponentielle

Table 3.1 – Objectifs. À fin de ce chapitre 3...

	Pour m'entraîner <u></u>		
Je dois connaître/savoir faire	۵	•	Ŏ
Module et argument d'un nombre complexe			
Placez sur un graphique un nombre complexe donné sous forme trigonométrique			
Placez sur un graphique un nombre complexe donné sous forme exponentielle			
De la forme trigonométrique/exponentielle à la forme algébrique			
De la forme algébrique à la forme trigonométrique/exponentielle			
Nombre complexe sous forme trigonométrique et opérations			
Nombre complexe sous forme exponentielle et opérations			

M(z)

3.1 Nombres complexes : écriture trigonométrique

Définition 3.1 Dans le plan complexe muni du repère orthonormé $(O; \vec{\imath}, \vec{\jmath}), M(z)$ est le point d'affixe $z \neq 0$.

Le **module** de z est la longueur z = OM.

L'argument principal de z est l'argument appartenant à $]-\pi;\pi]$.

■ Exemple 3.1 En plaçant -2, 5i et 2 + 2i dans le plan complexe :

Propriété 3.1 Pour $z \in \mathbb{C}^*$, on a $|z| = |\overline{z}|$ et $\arg(\overline{z}) = -\arg(z) + 2k\pi$ (avec $k \in \mathbb{Z}$).

Propriété 3.2 Pour $z \in \mathbb{C}^*$, on a |-z| = |z| et $arg(-z) = arg(z) + \pi + 2k\pi$ (avec $k \in \mathbb{Z}$).

Démonstration.

Définition 3.2 — forme trigonométrique. $z \in \mathbb{C}^*$, on note r = |z| et $\theta = \arg(z)$:

$$z = r(\cos(\theta) + i\sin(\theta))$$

■ Exemple 3.2 Déterminer la forme trigonométrique des nombres complexes :

1.
$$1 + i$$

| 2.
$$-1 + i\sqrt{3}$$

$$3. -4\sqrt{3} - 4i$$

$$| 4. 3 + 4i$$

solution.

1.
$$|1+\mathbf{i}| = \sqrt{1^2+1^2} = \sqrt{2}$$
. $1+\mathbf{i} = \sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\mathbf{i}\right) = \sqrt{2}\left(\frac{\sqrt{2}}{2} + \mathbf{i}\frac{\sqrt{2}}{2}\right) = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + \mathbf{i}\sin\left(\frac{\pi}{4}\right)\right)$

2.
$$|-1+i\sqrt{3}| = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$
, $-1+i\sqrt{3} = 2\left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$

$$\begin{aligned} \mathbf{3.} \ \, |-4\sqrt{3}-4\mathbf{i}| &= \sqrt{(-4\sqrt{3})^2+(-4)^2} = \sqrt{48+16} = 8 \\ &-4\sqrt{3}-4\mathbf{i} = 8\left(\frac{-\sqrt{3}}{2}+\mathbf{i}\frac{-1}{2}\right) = 8\left(\cos\left(\frac{-5\pi}{6}\right)+\mathbf{i}\sin\left(\frac{-5\pi}{6}\right)\right) = 8\left(\cos\left(\frac{7\pi}{6}\right)+\mathbf{i}\sin\left(\frac{7\pi}{6}\right)\right) \end{aligned}$$

4.
$$|3+4\mathbf{i}| = \sqrt{3^2+4^2} = \sqrt{25} = 5$$
. $3+4\mathbf{i} = 5\left(\frac{3}{5}+\mathbf{i}\frac{4}{5}\right) = 5(\cos(\theta)+\mathbf{i}\sin(\theta))$ où $\theta = \arctan(\frac{4}{3})+2k\pi,\ k\in\mathbb{Z}$.

Théorème 3.3 — multiplier et diviser des formes trigonométriques. Soit $z_1, z_2 \in \mathbb{C}^*$ donnés par les formes trigonométriques :

$$z_1 = r_1(\cos(\theta_1) + \mathbf{i}\sin(\theta_1)) \qquad z_2 = r_2(\cos(\theta_2) + \mathbf{i}\sin(\theta_2))$$
 Alors $z_1 z_2 = r_1 r_2(\cos(\theta_1 + \theta_2) + \mathbf{i}\sin(\theta_1 + \theta_2))$, donc
$$\arg(zz) = \arg(z_1) + \arg(z_2) + 2k\pi$$

$$\frac{1}{z_2} = \frac{1}{r_2}(\cos(\theta_2) - \mathbf{i}\sin(\theta_2)) \qquad \arg\left(\frac{1}{z_2}\right) = \arg(\overline{z_2}) = -\arg(z_2) + 2k\pi$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + \mathbf{i}\sin(\theta_1 - \theta_2)) \qquad \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2k\pi$$

- Pour multiplier deux complexes, on **multiplie** les modules et **ajoute** les arguments.

 Pour diviser deux complexes, on **divise** les modules et **soustrait** les arguments.
- Exemple 3.3 Soit $z_1 = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$ et $z_2 = 5\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$. Déterminer les formes trigonométriques de z_1z_2 et $\frac{z_1}{z_2}$

solution.
$$z_1 z_2 = (2)(5) \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = 10 \left(\cos \left(\frac{7\pi}{12} \right) + i \sin \left(\frac{7\pi}{12} \right) \right)$$

$$\frac{z_1}{z_2} = \frac{2}{5} \left(\cos \left(\frac{\pi}{4} - \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} - \frac{\pi}{3} \right) \right) = \frac{2}{5} \left(\cos \left(\frac{-\pi}{12} \right) + i \sin \left(\frac{-\pi}{12} \right) \right)$$

Théorème 3.4 — de Moivre. Pour tout $n \in \mathbb{N}$ et $z = r(\cos(\theta) + i\sin(\theta))$ on a :

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Démonstration. par récurrence.

■ Exemple 3.4 Déterminer $\left(\frac{1}{2} + i\frac{1}{2}\right)^{10}$.

solution. On commence par déterminer une forme trigonométrique de $\frac{1}{2} + \frac{1}{2}i$:

$$\begin{split} \frac{1}{2} + \mathbf{i} \frac{1}{2} &= \frac{\sqrt{2}}{2} \left(\cos \left(\frac{\pi}{4} \right) + \sin \left(\frac{\pi}{4} \right) \right) \\ \left(\frac{1}{2} + \mathbf{i} \frac{1}{2} \right)^{10} &= \left(\frac{\sqrt{2}}{2} \right)^{10} \left(\cos \left(\frac{10\pi}{4} \right) + \sin \left(\frac{10\pi}{4} \right) \right) \\ &= \frac{2^5}{2^{10}} \left(\cos \left(\frac{5\pi}{2} \right) + \mathbf{i} \sin \left(\frac{5\pi}{2} \right) \right) \\ &= \frac{1}{32} (0 + \mathbf{i}) = \frac{1}{32} \mathbf{i} \end{split}$$

3.2 Nombres complexes : écriture exponentielle

Notation 3.1 — exponentielle imaginaire. Pour $\theta \in \mathbb{R}$ on note $e^{i\theta} = cos(\theta) + i sin(\theta)$

Propriétés 3.5 Pour tout θ et $\theta' \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$|\mathbf{e}^{\mathbf{i}\theta}| = 1 \qquad \frac{1}{\mathbf{e}^{\mathbf{i}\theta}} = \overline{\mathbf{e}^{\mathbf{i}\theta}} = \mathbf{e}^{-\mathbf{i}\theta} \qquad \mathbf{e}^{\mathbf{i}\theta} \times \mathbf{e}^{\mathbf{i}\theta'} = \mathbf{e}^{\mathbf{i}(\theta + \theta')} \qquad \frac{\mathbf{e}^{\mathbf{i}\theta}}{\mathbf{e}^{\mathbf{i}\theta'}} = \mathbf{e}^{\mathbf{i}(\theta - \theta')} \qquad (\mathbf{e}^{\mathbf{i}\theta})^n = \mathbf{e}^{\mathbf{i}n\theta}$$

 \blacksquare Exemple 3.5 $\,e^{i\frac{\pi}{2}}=cos(\frac{\pi}{2})+i\,sin(\frac{\pi}{2})=i$

Proposition 3.6 — Formule d'Euler. $e^{i\pi}=-1$

Définition 3.3 — cercle unité. On note $\mathbb{U} = \{z \in \mathbb{C} | |z| = 1\} = \{e^{i\theta} | \theta \in \mathbb{R}\}.$

Définition 3.4 — forme exponentielle. $z\in\mathbb{C}^*$, on note r=|z| et $\theta=\arg(z)$:

$$z = re^{i\theta}$$

Propriétés 3.7 Pour tout $z_1=r_1\mathrm{e}^{\mathrm{i}\theta_1}$ et $z_2=r_2\mathrm{e}^{\mathrm{i}\theta_2}$:

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$
 $\frac{1}{z_1} = \frac{1}{r_1} e^{-i\theta_1}$ $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$

- R La forme exponentielle est à privilégier pour calculer des produits de nombres complexes.
- **Exemple 3.6** Déterminer l'écriture exponentielle de z=-2-2i puis calculer z^4

solution.
$$z = -2 - 2\mathbf{i} = 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} + \mathbf{i}\frac{-\sqrt{2}}{2}\right) = 2\sqrt{2}\mathbf{e}^{-3\mathbf{i}\frac{\pi}{4}}$$

$$z^4 = \left(2\sqrt{2}\mathbf{e}^{-3\mathbf{i}\frac{\pi}{4}}\right)^4 = (2\sqrt{2})^4\mathbf{e}^{-3\mathbf{i}\frac{\pi}{4}\times 4} = 2^4\sqrt{2}^4\mathbf{e}^{-3\mathbf{i}\pi} = 64\mathbf{e}^{-3\mathbf{i}\pi} = -64$$

On n'a pas défini z^w pour z et w des nombres complexes quelconques. Il est aussi dangeureux de traiter $e^{i\theta}$ comme une simple puissance, comme le montre ce raisonnement :

$$1 = \sqrt{1} = \sqrt{e^{2i\pi}} = e^{\frac{2i\pi}{2}} = e^{i\pi} = -1$$

$$\text{Propriétés 3.8} \text{ — Formules d'Euler. } \forall \theta \in \mathbb{R} \text{ : } \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{ et } \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

■ Exemple 3.7 — Identités trigonométriques. Pour tout $\theta \in \mathbb{R}$

$$\begin{aligned} \cos(3\theta) + \mathrm{i}\sin(3\theta) &= (\cos(\theta) + \mathrm{i}\sin(\theta))^3 \\ &= \cos^3(\theta) + 3\cos^2(\theta)\mathrm{i}\sin(\theta) + 3\cos(\theta)\mathrm{i}^2\sin^2(\theta) + \mathrm{i}^3\sin^3(\theta) \\ &= \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) + 3\mathrm{i}\cos^2(\theta)\sin(\theta) - \mathrm{i}\sin^3(\theta) \\ &\cos(3\theta) &= \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) \quad \text{et} \quad \sin(3\theta) &= 3\cos^2(\theta)\sin(\theta) - \sin^3(\theta) \end{aligned}$$

■ Exemple 3.8 — Linéariser $\cos^n(x)$ ou $\sin^n(x)$. c'est transformer une puissance en une combinaison linéaire de cosinus ou sinus de la forme $\cos(nx)$ et $\sin(nx)$. Ceci permet par exemple d'en calculer une primitive et peut dont être utile dans les calculs d'intégrales.

$$\cos^{3}(x) = \left(\frac{e^{ix} + e^{ix}}{2}\right)^{3}$$

$$= \frac{(e^{ix})^{3} + 3(e^{ix})^{2}(e^{-ix}) + 3(e^{ix})(e^{-ix})^{2} + (e^{-ix})^{3}}{2^{3}}$$

$$= \frac{e^{3ix} + 3e^{ix} + 3e^{-ix} + e^{-3ix}}{8}$$

$$= \frac{1}{4}\frac{e^{3ix} + e^{-3ix}}{2} + \frac{3}{4}\frac{e^{ix} + e^{+ix}}{2}$$

$$= \frac{1}{4}\cos(3x) + \frac{3}{4}\cos(3x)$$

3.3 Racunes n-ièmes de l'unité

Définition 3.5 Pour $n \in \mathbb{N}^*$, on appelle **racine nede l'unité** l'ensemble noté \mathbb{U}_n des solutions dans \mathbb{C} de l'équation $z^n = 1$.

Proposition 3.9 \mathbb{U}_n est composé d'exactement n éléments : $\mathbb{U}_n = \{e^{\frac{2ik\pi}{n}} | 0 \le k \le n-1\}.$

Démonstration.

- 1. Soit $0\leqslant k\leqslant n-1$, $\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}$ est une solution de $z^n=1$. En effet $\left(\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}\right)^n=\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}n}=\mathrm{e}^{2\mathrm{i}k\pi}=\cos(2k\pi)+\mathrm{i}\sin(2k\pi)=1$.
- 2. L'ensemble $\{e^{\frac{2ik\pi}{n}}|0\leqslant k\leqslant n-1\}$ possède exactement n éléments. En effet si $0\leqslant k_1\leqslant n-1$ et $0\leqslant k_2\leqslant n-1$ vérifient $e^{\frac{2ik_1\pi}{n}}=e^{\frac{2ik_2\pi}{n}}\Longleftrightarrow \frac{e^{\frac{2ik_1\pi}{n}}}{e^{\frac{2ik_2\pi}{n}}}=e^{\frac{2i(k_1-k_2)\pi}{n}}=1.$ Donc k_1-k_2 est divisible par n. Or $|k_1-k_2|< n$, on en déduit $k_1=k_2$.
- 3. L'équation $z^n = 1$ est de degré n, elle ne peut pas posséder d'autres racines.
- Exemple 3.9 $\mathbb{U}_2 = \{1 ; -1\}$, $\mathbb{U}_3 = \{1 ; \mathbf{j} ; \mathbf{j}^2\}$, $\mathbb{U}_4 = \{1; \mathbf{i} ; -1; -\mathbf{i}\}$. Pour $n \ge 3$, les points d'affixes les racines n^e de l'unité forment un polygône régulier à n côtés :

3.4 Exercices

3.4.1 Exercices : nombres complexes et forme trigonométrique

Exercice 1 Donner le module et l'argument principal des nombres complexes représentés

Exercice 2 Représenter les nombres complexes suivants dans le repère complexe et préciser |z|.

$$z_1 = 4\mathbf{i}$$
 $z_3 = -2$ $z_5 = 5 - 12\mathbf{i}$ $z_7 = \sqrt{3} + \mathbf{i}$ $z_8 = -\frac{\sqrt{2}}{2} + \mathbf{i}\frac{\sqrt{2}}{2}$

Exercice 3 Placer les points d'affixes données par leur forme trigonométrique ou autre :

$$z_{1} = 3\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$$

$$z_{2} = \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$$

$$z_{3} = \frac{3}{2}\left(\cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right)\right)$$

$$z_{4} = 2\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$$

$$z_{5} = 4\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$$

$$z_{6} = 2\left(\cos\left(0\right) + i\sin\left(0\right)\right)$$

$$z_{7} = 3\left(\cos\left(\frac{5\pi}{12}\right) + i\sin\left(\frac{5\pi}{12}\right)\right)$$

$$z_{8} = -\left(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right)$$

3.4 Exercices 7

Exercice 4 Donner sans calcul une écriture trigonométrique des nombres complexes suivants.

Vous utiliserez l'argument principal.

$$z_1 = -3$$
 $z_4 = -5i$ $z_7 = -2 + 2i$ $z_8 = -3(1 - i)$ $z_8 = -\sqrt{2} - \sqrt{2}i$

Exercice 5 Donner une écriture trigonométrique des nombres complexes suivants. Vous utiliserez l'argument principal.

$$z_1 = -\sqrt{3} - \mathbf{i}$$

$$z_2 = -5 + 5\sqrt{3}\mathbf{i}$$

$$z_3 = 2\sqrt{3} - 2\mathbf{i}$$

$$z_4 = 3 + 3\sqrt{3}\mathbf{i}$$

$$z_5 = -\sqrt{6} + \sqrt{2}\mathbf{i}$$

$$z_6 = -\sqrt{5} - \sqrt{15}\mathbf{i}$$

$$z_7 = 4(\sqrt{3} - \mathbf{i})$$

$$z_8 = \mathbf{i}(\sqrt{2} - \sqrt{6}\mathbf{i})$$

$$z_9 = 4 + 3\mathbf{i}$$

Exercice 6 Déterminer les formes trigonométriques de $\overline{z_1}$, z_1z_2 et $\frac{z_1}{z_2}$ dans les cas suivants :

1.
$$z_1 = 3\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$
 et $z_2 = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$

2.
$$z_1 = \sqrt{3} \left(\cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) \right)$$
 et $z_2 = 2 \left(\cos \left(\pi \right) + i \sin \left(\pi \right) \right)$

3.
$$z_1 = \sqrt{2} \left(\cos \left(\frac{5\pi}{3} \right) + i \sin \left(\frac{5\pi}{3} \right) \right)$$
 et $z_2 = 2\sqrt{2} \left(\cos \left(\frac{3\pi}{2} \right) + i \sin \left(\frac{3\pi}{2} \right) \right)$

4.
$$z_1 = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)$$
 et $z_2 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$

5.
$$z_1 = \frac{5}{9} \left(\cos \left(\frac{-7\pi}{4} \right) + i \sin \left(\frac{-7\pi}{4} \right) \right)$$
 et $z_2 = \frac{-5}{3} \left(\cos \left(\frac{-\pi}{12} \right) + i \sin \left(\frac{-\pi}{12} \right) \right)$

6.
$$z_1 = 2\left(\cos\left(\frac{-\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right)\right)$$
 et $z_2 = \frac{-1}{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$

Exercice 7

Déterminer les formes trigonométriques de z_1 et z_2 puis déduire celles de z_1z_2 et $\frac{z_1}{z_2}$ dans les cas suivants :

1.
$$z_1 = \sqrt{3} + i$$
 et $z_2 = 1 + \sqrt{3}i$

3.
$$z_1 = 4\sqrt{3} - 4i$$
 et $z_2 = 8i$

2.
$$z_1 = \sqrt{2} - \sqrt{2}i$$
 et $z_2 = 1 - i$

4.
$$z_1 = 2\sqrt{3} - 2i$$
 et $z_2 = -1 + i$

Exercice 8

Utiliser le théorème de Moivre pour déterminer les puissances suivantes :

$$z_1 = (-\sqrt{3} + \mathbf{i})^6$$
 $|z_2| = (1 - \mathbf{i})^{10}$ $|z_3| = (\sqrt{3} - \mathbf{i})^{10}$

Exercice 9

Soit
$$z = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
, et $w = 1 - i$.

- 1. Déterminer le module, et un argument de z, w et $\frac{z}{w}$
- 2. Déterminer la forme algébrique de $\frac{z}{w}$.
- 3. En déduire que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} \sqrt{2}}{4}$.
- LG Jeanne d'Arc, Terminale

3.4.2 Exercices : nombres complexes et forme exponentielle

Exercice 10 Donner l'écriture algébrique des nombres complexes suivants.

Exercice 11 Pour $x \in \mathbb{R}$. Déterminer l'écriture algébriques des nombres complexes suivants :

$$z_{1} = \overline{1 + e^{ix} + e^{2ix}}$$

$$z_{2} = 3(e^{ix} + e^{-ix})$$

$$z_{3} = e^{-ix} - e^{ix}$$

$$z_{4} = e^{7ix} + e^{-7ix}$$

$$z_{6} = \frac{1 - e^{2ix}}{e^{ix}}$$

Exercice 12 Simplifier les écritures suivantes :

$$z_{1} = \left(2e^{-i\frac{\pi}{2}}\right)\left(3e^{i\frac{\pi}{3}}\right)$$

$$z_{2} = \overline{2e^{i\frac{2\pi}{3}}}$$

$$z_{3} = \left(2\sqrt{2}e^{-i\frac{\pi}{4}}\right)\left(3e^{i\frac{\pi}{2}}\right)$$

$$z_{6} = \left(3e^{-i\frac{\pi}{3}}\right)^{4}$$

$$z_{1} = \frac{1}{e^{i\frac{2\pi}{3}}}$$

$$z_{2} = \frac{1}{e^{i\frac{2\pi}{3}}}$$

$$z_{3} = \left(2\sqrt{2}e^{-i\frac{\pi}{4}}\right)\left(3e^{i\frac{\pi}{2}}\right)$$

$$z_{4} = \frac{1}{e^{i\frac{2\pi}{3}}}$$

$$z_{5} = \frac{2e^{i\pi}}{e^{i\frac{\pi}{4}}}$$

$$z_{6} = \left(3e^{-i\frac{\pi}{3}}\right)^{4}$$

$$z_{7} = \frac{\left(e^{i\frac{\pi}{3}}\right)^{2}}{\left(3e^{i\frac{\pi}{4}}\right)^{3}}$$

$$z_{8} = \left(e^{i\frac{2\pi}{3}}\right)^{6}$$

$$z_{9} = \left(2e^{i\frac{2\pi}{3}}\right)^{8}$$

Exercice 13 Soit $\theta = \mathbb{R}$. Simplifier les écritures :

1.
$$(e^{i\theta} - e^{-i\theta})^2$$
 2. $(e^{i\theta} + e^{-i\theta})^3$ 3. $\frac{1 + e^{i\theta}}{1 - e^{i\theta}}$

Exercice 14 Déterminer la forme exponentielle des nombres complexes suivants.

$$z_1 = 2 + 2i$$
 $z_3 = -3i$ $z_5 = \frac{\sqrt{3}}{3} - \frac{1}{3}i$ $z_6 = -\sqrt{5} - \sqrt{5}i$

Exercice 15 À l'aide de la forme exponentielle déterminer les puissances suivantes :

$$z_1 = (-1 - \mathbf{i})^7$$
 $| z_2 = (2 - 2\mathbf{i})^8$ $| z_3 = (3 - \sqrt{3}\mathbf{i})^9$

Exercice 16 — un calcul pas si compliqué.

Déterminer
$$\left(\frac{3+i\sqrt{3}}{1-1i}\right)^4$$

Exercice 17

Soit $z=r\mathrm{e}^{\mathrm{i}\theta}$ un nombre complexe, avec r>0 et $\theta=\arg(z)$. Déterminer les formes exponentielles des nombres complexes suivants :

$$z_1 = -z$$
 $| z_3 = -2iz$ $| z_5 = \overline{3z} |$ $| z_6 = -i\overline{z} |$

Exercice 18

1. $z = 1 + e^{i\frac{\pi}{3}}$. En factorisant par $e^{i\frac{\pi}{6}}$, déterminer le module et l'argument principal de z.

2. $w=-1-\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}}$. En factorisant par $\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}$, déterminer le module et l'argument principal de w.

3.4 Exercices

Exercice 19 Soit $\theta \in [0; 2\pi[$.

1. En factorisant par $e^{i\frac{\theta}{2}}$, déterminer le module et l'argument de $z=1+e^{i\theta}$.

- 2. De même pour $b = 1 e^{i\theta}$
- 3. Montrer que $\frac{a}{h}$ est un imaginaire pur.

Exercice 20 Exprimer les expressions suivantes en fonction de cos(x) et sin(x):

1.
$$\cos(x) + \cos(3x)$$

2.
$$\sin(3x) - \sin(5x)$$

Exercice 21 Linéariser les expressions $\cos^2(x)$ et $\sin^4(x)$.

Exercice 22 — suites de la forme $z_{n+1} = az_n + b$.

Soit la suite (z_n) définie par $z_0 = \sqrt{2}e^{i\frac{\pi}{4}}$, et pour tout $n \geqslant 0$: $z_{n+1} = \sqrt{2}e^{-i\frac{\pi}{4}}z_n + 2 - i$.

- 1. Déterminer, sous forme algébiruqe les trois premiers termes de la suite (z_n)
- 2. (u_n) est la suite définie pour tout entier $n \ge 0$ par $u_n = z_n + 1 + 2\mathbf{i}$
 - a) Déterminer u_0 .
 - b) Démontrer que la suite (u_n) est géométrique de raison 1 i
 - c) En déduire la forme explicite des suites (u_n) et (z_n) .
- 3. Exprimer en fonction de n la somme $S_n = z_0 + z_1 + z_2 + \ldots + z_n$.

Pour un nombre complexe $w=r\mathrm{e}^{\mathrm{i}\theta}.$ Les racines $n^{-\mathrm{es}}$ de w sont les solutions dans $\mathbb C$ de l'équation $z^n = w$. Ils sont donnés par :

$$k = 0, 1, \dots, n-1$$
 $z_k = \sqrt[n]{r} e^{\left(i\frac{\theta+2\pi}{n}\right)} = \sqrt[n]{r} e^{\left(i\frac{\theta}{n}\right)} e^{\left(i\frac{2\pi k}{n}\right)}$

■ Exemple 3.10 $z = 2 + 2i = 2\sqrt{2}e^{i\frac{\pi}{4}}$. Les racines cubiques de z sont

$$z_0 = \sqrt{2} e^{i\frac{\pi}{12}} = \sqrt{2}$$

$$z_1 = \sqrt{2} e^{i\frac{\pi}{12} + i\frac{2i\pi}{3}} = \sqrt{2} e^{i\frac{3\pi}{4}} =$$

$$z_2 = \sqrt{2}e^{i\frac{\pi}{12} + 2i\frac{2i\pi}{3}} = \dots$$

Exercice 23

- 1. Déterminer les racines huitièmes de 1
- 2. Déterminer les racines cinquièmes de i
- 3. Déterminer les racines carrées de $4\sqrt{3} + 4i$ | 6. Déterminer les racines cinquièmes de 32
- 4. Déterminer les racines cubiques de $4\sqrt{3} + 4i$
- 5. Déterminer les racines quatrièmes de -81i

Exercice 24 Résoudre les équations suivantes à l'aide de racines n-es .

1.
$$z^4 + 1 = 0$$

2.
$$z^3 + 1 = -i$$

Exercice 25 Soit $\theta \in]0; 2\pi[$. Déterminer $\sum_{k=0}^{n} e^{2ik\theta}$ et en déduire $\sum_{k=0}^{n} \cos{(2k\theta)} = \frac{\sin{((n+1)\theta)}}{\sin{(\theta)}} \cos{(n\theta)}$

3.5 Problèmes : nombres complexes et géométrie

La proposition suivante peut parfois ête utile.

Proposition 3.10 Dans le plan complexe on se donne les points A, B et C, d'affixes respectives a, b et c.

L'affixe du vecteur \overrightarrow{AB} est le nombre complexe b-a. On a :

$$\frac{AC}{AB} = \frac{|c-a|}{|b-a|} \qquad (\overrightarrow{AB} \; ; \; \overrightarrow{AC}) = \arg\left(\frac{c-a}{b-a}\right) + 2k\pi$$

Démonstration.

$$(\overrightarrow{\imath}\ ;\ \overrightarrow{AC}) = \arg(c-a) + 2k\pi \ \text{et} \ (\overrightarrow{\imath}\ ;\ \overrightarrow{AB}) = \arg(c-a) + 2k'\pi.$$

$$\text{D'où }(\overrightarrow{AB}\ ;\ \overrightarrow{AC}) = (\overrightarrow{\imath}\ ;\ \overrightarrow{AC}) - (\overrightarrow{\imath}\ ;\ \overrightarrow{AB}) = \arg(c-a) - \arg(b-a) = \arg\left(\frac{c-a}{b-a}\right).$$

Les problèmes suivants sont indépendants.

11

3.5.1 Groupe A

Problème 1

Soit $n \ge 2$. Calculer le produit des racines n^e de l'unité.

Problème 2

Soit les points A, B et C d'affixes respectives a = -1, b = 3 + 4i, et c = 3 - 4i.

- 1. Déterminer l'affixe du point D tel que ABDC est un parallélogramme.
- 2. Montrer que ABDC est un carré.

Problème 3

Déterminer tous les nombres complexes z non nuls tels que $z+\frac{1}{z}$ est un réel.

Problème 4

Soit A, B et C trois points non alignés d'affixe a, b et c. On note $j = e^{i\frac{2\pi}{3}}$.

- 1. Montrer $j^2 + j + 1 = 0$.
- 2. Montrer que le triangle ABC est équilatéral direct si, et seulement si, $a+bj+cj^2=0$.

Problème 5 Soit $z \in \mathbb{C}$, avec $z \neq 1$. Montrer que :

$$|z| = 1 \iff \frac{1+z}{1-z} \in \mathbf{i}\mathbb{R}$$

3.5.2 Groupe B

Problème 6

Montrer que les points A, B et C d'affixes respectives $a=1+\mathrm{i},\ b=\frac{9}{5}-2\mathrm{i}$ et $c=11+\frac{11}{3}\mathrm{i}$, forment un triangle rectangle en A.

Problème 7

Déterminer les nombres complexes z tels que les points d'affices z, z^2 et z^4 soient alignés.

Problème 8

Soit $n \ge 2$. Déterminer les nombres complexes z solution de $z^n = \overline{z}$.

Problème 9 — calcul de
$$\cos\left(\frac{2\pi}{5}\right)$$
 .

Soit
$$z = e^{i\frac{2\pi}{5}}$$
 et $x = 2\cos\left(\frac{2\pi}{5}\right)$.

- 1. Montrer que $1 + z + z^2 + z^3 + z^4 = 0$
- 2. Vérifier l'égalité $x = z + \frac{1}{z}$.
- 3. Exprimer x^2 en fonction de z et en utilisant 1., déterminer une équation du second degré vérifiée par x et la résoudre.

3.5.3 Groupe C

Problème 10

Les points A, B et C d'affixes respectives a = 1 + i, b = 3 - i et c = 5 - 3i, sont-ils alignés?

Problème 11

Résoudre dans $\mathbb C$ l'équation $\left(\frac{z+1}{z-1}\right)^6=1$.

Problème 12 Déterminer les nombres zomplexes non nuls z tels que z, $\frac{1}{z}$ et 1-z aient le même module.

Problème 13 — théorème de la Médiane.

1. Montrer que pour tout z et $w \in \mathbb{C}$ on a :

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$

- 2. Donner une interprétation géométrique de cette égalité en considérant un parrallélogramme, ses côtés, les longueurs de ses diagonales.
- 3. Soient A, B, C tois points non alignés, et I le milieu de [BC]. Déduire une expression de AI^2

3.5.4 Groupe D

exercices 19, 22, 24 et 25.

- fait: 1, 6, 10 et 11
- pour le 11, fallait traiter le cas 1 et -1 séparément, car ils ne connaissent pas la cotangente.
- certains groupes on fait aussi 7, 13,
- donner la réponse du problème 12, revenir sur les exercices 25 et 22.
- demander de corriger 13 (Vincent), 7 (Manel), 8 (Irem),
- faire plus court la prochaine fois. genre 2 problèmes.