A Surrogate Approach Towards Validation and Uncertainty Quantification of Multiphysics Reactor Simulation Codes

Thesis Prospectus

Artem Yankov

University of Michigan

April 17, 2014

Outline

- 1 Motivation
 - Proposed Application

- 2 Building Surrogate Models
- 3 Application of Surrogate Models

Background

- Physical phenomena is studied by conducting experiments.
- Any data collected represents instances of underlying stochastic processes.
- We build predictive computer models in an attempt to reproduce such observed physical phenomena.
- To accurately capture stochastic element of experiments, computer models should be probabilistic.
- In other words, inputs to computer models have uncertainties associated with them that are propagated to any outputs of interest.
- Running computer simulations should be like conducting physical experiments. Computer experiments.

Why Surrogates?

- We run computer simulations to meet design objectives under certain constraints.
- Involves numerical optimization, calibration, and performing what-if analyses.
- Also, we're interested in determining which of our design variables have the greatest effects on simulation outcomes.
- Thousands of simulations required to make this possible but...
- Computer simulations that model real phenomenon like nuclear reactors often take $\mathcal{O}(\text{hours})$ or $\mathcal{O}(\text{days})$ to complete.
- Building a surrogate model for your expensive computer simulations can make everything listed above possible.

What is a Surrogate Model?

- A model for the outcomes of (likely) expensive computer simulations that can be rapidly evaluated while simultaneously preserving the predictive capabilities of the original simulations.
- Want to intelligently choose subspace $\{x_1, x_2, ..., x_N\} \subset \mathbf{X}$ to sample expensive computer code to get $\{y_1, y_2, ..., y_N\} \subset \mathbf{Y}$.
- Learn fast mapping that approximates $X \rightarrow Y$.

Proposed Application to Fuel Performance Modeling

- Fission Gas Release (FGR) refers to the phenomenon where Xenon and Krypton gases formed in UO₂ fuel rods are released into the rod filling gas.
- Causes pressure build-up and thermal conductivity degradation in the rod filling gas, potentially jeopardizing the safety of the reactor.
- Fission gas atoms generated in the fuel grains diffuse towards the grain boundaries.
- Majority of the gas diffuses into grain-face gas bubbles, giving rise to grain-face swelling.
- Bubble growth brings about bubble coalescence and interconnection, eventually leading to the formation of a tunnel network through which the fission gas is released.

SIFGRS FGR Model

- Simple Integrated Fission Gas Release and Swelling (SIFGRS)
- Incorporates gas diffusion and precipitation in grains, growth and coalescence of gas bubbles at grain faces, thermal, athermal, steady-state, and transient gas release.
- Through a direct description of the grain face gas bubble development, the fission gas swelling and release are calculated as coupled processes.
- Parameterized by, among others, linear heat rate, gas diffusion coefficient, surface tension of grain face bubbles, hydrostatic pressure, fuel grain radius, fuel porosity, and grain boundary sweeping.

Risø AN3 Experiment

- Validation case for fuel performance modeling in the Fumex-II database.
- Experiment consists of a base irradiation of four reactor cycles in the Biblis A pressurized water reactor.
- After the base irradiation period, a fuel rod is extracted and refabricated to a shorter length before undergoing a power ramp.
- Refabricated fuel rod is outfitted with various instrumentation such that fuel centerline temperature, FGR and rod internal pressure measurements can be obtained.

Risø AN3 Experiment Irradiation Profiles

Base Irradiation History

Power Ramp Experiment

Modeling Risø AN3 Experiment with BISON

- BISON is a finite-element fuel performance modeling code that utilizes the SIFGRS model.
- SIFGRS parameters are quite generic and uncertain.

Fission Gas Release

Solution of the state of the st

Time into Power Ramp (hours

Fuel Centerline Temperature

Modeling Risø AN3 Experiment with BISON/MPACT

- No sense in comparing the output of a computer simulation to experimental data unless the computer simulation is of high fidelity and capable of reproducing the pertinent physics.
- MPACT is a neutronics code that provides detailed intrapin and azimuthally dependent neutronics data in the fuel elements.
- The two-way coupling scheme provided by BISON and MPACT provides the most accurate fuel performance modeling available for a nuclear reactor.
- Expensive!

Modeling Risø AN3 Experiment with BISON/MPACT

- BISON predictions of FGR and temperature fields stand to be improved by calibrating FGR parameters to experimental data.
- Calibration studies require $\mathcal{O}(10^3)$ function evaluations, which in this case are the coupled BISON/MPACT computer codes.
- Each simulation of the Risø AN3 experiment will take a few hours.
- It's necessary to construct a surrogate for the calibration study!

Outline

- 1 Motivation
 - Proposed Application
- 2 Building Surrogate Models
- 3 Application of Surrogate Models

Outline

- 1 Motivation
 - Proposed Application
- 2 Building Surrogate Models
- 3 Application of Surrogate Models