# Package 'forensim'

May 12, 2009

Type Package

| Title Statistical tools for the interpretation of forensic DNA mixtures                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Version 1.0-0                                                                                                                                                |  |  |  |
| Date 2009-01-19                                                                                                                                              |  |  |  |
| Author Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>                                                            |  |  |  |
| Maintainer Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>                                                        |  |  |  |
| <b>Depends</b> methods                                                                                                                                       |  |  |  |
| <b>Description</b> Statistical methods and simulation tools for the interpretation of forensic DNA mixtures                                                  |  |  |  |
| <b>License</b> (>=2)                                                                                                                                         |  |  |  |
| LazyLoad yes                                                                                                                                                 |  |  |  |
| Collate classes_definitions.R classes_constructors.R accessors.R simufreqD.R simupopD.R zzz.R AuxFunc.R changepop.R PE.R likelihood.R likestim.R mincontri.R |  |  |  |
| R topics documented:                                                                                                                                         |  |  |  |
| forensim-package                                                                                                                                             |  |  |  |

 simufreqD
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

2 Accessors

| Index |                      | 28 |
|-------|----------------------|----|
|       | virtualClasses       | 27 |
|       | Tu                   |    |
|       | tabfreq constructor  |    |
|       | tabfreq              |    |
|       | strveneto            |    |
|       | strusa               | 23 |
|       | simupopD             |    |
|       | simumix constructor  |    |
|       | simumix              |    |
|       | simugeno constructor | 19 |

forensim-package The forensim package

## **Description**

forensim is dedicated to the interpretation of forensic DNA mixtures through statistical methods. It relies on three S4 classes that facilitate the manipulation and the storage of genetic data produced in forensic casework: tabfreq, simugeno and simumix.

tabfreq objects are used to store allele frequencies, simugeno objects are used to store genotypes and simumix objects are used to store DNA mixtures.

For more information about these classes type 'class ?tabfreq', 'class ?simugeno' and 'class ?simumix'.

## Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

Accessors

Accessors for forensim objects

## **Description**

Accessors for forensim objects: simugeno, simumix and tabfreq. "\$" and "\$<-" are used to access the slots of an object, they are equivalent to "@" and "@<-".

#### Value

A simugeno, a simumix or a tabfreq object.

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

changepop 3

## **Examples**

```
data(strusa)
class(strusa)
strusa@pop.names
#equivalent
strusa$pop.names
```

changepop

Function to change population related information in forensim objects

# **Description**

The changepop function changes population related information in tabfreq, simugeno and simumix objects

# Usage

```
changepop(obj, oldpop, newpop)
```

# Arguments

a forensim object, either a tabfreq, a simugeno or a simumix object
oldpop a character vector giving the population names to be changed
newpop a character vector giving the new population names

## Value

a forensim object where the slots containing population related information have been modified

# Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

```
data(strveneto)
tab1 <- simugeno(strveneto, n=100)
tab2 <- changepop(tab1, "Veneto", "VENE")
tab1$pop.names
tab2$pop.names</pre>
```

4 Cmn

Cmn

The number of all possible combinations of m elements among n with repetitions

# Description

The number of all possible combinations of m elements among n with repetitions.

## Usage

```
Cmn(m, n)
```

# **Arguments**

m the m elements to combine among n

n the n elements from which to combine m elements with repetitions

## **Details**

There are (n+m-1)!/(m!(n-1)!) ways to combine m elements among n with repetitions.

#### Note

Cmn was implemented as an auxiliary function for the dataL function which computes the likelihood of a mixture alleles conditional on the number of contributors.

# Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

# See Also

comb for all possible combinations of m elements among n with repetitions

```
Cmn(2,3) comb(2,3)
```

comb 5

| comb | Generate all possible combinations of m elements among n with repetitions |
|------|---------------------------------------------------------------------------|
|      |                                                                           |

# Description

Generate all possible combinations of m elements among n with repetitions.

# Usage

```
comb(m, n)
```

# **Arguments**

m the number of elements to combine

n the number of elements from which to combine the m elements

## **Details**

There are (n+m-1)!/(m!(n-1)!) ways to combine m elements among n with repetitions, combin generates all these possible combinations.

## Value

A matrix of (n+m-1)!/(m!(n-1)!) rows, and n columns, each row is a possible combination of m elements among n .

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

## See Also

 ${\sf Cmn}$  for the calculation of the number of all possible combinations of m elements among n with repetitions

```
#combine 2 objcets among 3 with repetitions Cmn(2,3) comb(2,3)
```

6 dataL

dataL

Generic formula of the likelihood of the observed alleles in a mixture conditional on the number of contributors for a specific locus

#### **Description**

The function dataL gives the likelihood of a set of alleles observed at a specific locus conditional on the number of contributors that gave these alleles. Calculation is based upon the frequencies of the observed alleles.

## Usage

```
dataL(x = 1, p, theta = 0)
```

## **Arguments**

x an integer giving the number of contributors

p a numeric vector giving the frequencies of the observed alleles in the mixture theta a float in [0,1[. theta is equivalent to Wright's Fst. In case of population

subdivision, it allows a correction of the allele frequencies in the subpopulation

of interest

#### Note

dataL function has several similarities with the Pevid.gen function of the *forensic* package which gives the match probability of the evidentiary DNA profile with a suspect's profile, dataL implements a particular case of this probability. Please see http://cran.r-project.org/web/packages/forensic/

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

## References

Haned H, Pontier D, Lobry J R, Pene L, Dufour AB. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? In prep, 2009.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Populations. *J Forensic Sci* 1999;44(5): 987-995

#### See Also

lik.loc and lik for calculating the likelihood of a given simumix object

```
#likelihood of observing two alleles at frequencies 0.1 and 0.01 when the number of #contributors is 2, in two cases: theta=0 and theta=0.03 dataL(x=2,p=c(0.1,0.01), theta=0) dataL(x=2,p=c(0.1,0.01), theta=0.03)
```

findfreq 7

findfreq

Finds the frequencies of the alleles of a mixture from a tabfreq object

#### **Description**

The findfreq function finds the frequencies of the alleles of a mixture stored in a simumix object, form a given tabfreq object. If the tabfreq object contains multiple populations, a reference population from which to extract the frequencies must be specified.

# Usage

```
findfreq(mix, freq, refpop = NULL)
```

## **Arguments**

mix a simumix object

freq a tabfreq object from which to extract the allele frequencies of the mixture refpop a factor giving the reference population in tabfreq from which to extract the

allele frequencies

#### Value

A list giving the allele frequencies for each locus.

## Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

#### See Also

simumix

# **Examples**

```
data(strusa) s2<-simumix(simugeno(strusa,n=c(0,2000,0)),ncontri=c(0,2,0)) findfreq(s2,strusa,refpop="Cauc")
```

findmax

Function to find the maximum of a vector and its position

## **Description**

The findmax function finds the maximum of a vector and its position.

## Usage

```
findmax(vec)
```

8 lik

#### **Arguments**

vec a numeric vector

#### **Details**

findmax finds the maximum value of a vector and its position.

#### Value

```
A matrix of two rows:
max the position of the maximum in vec
maxval the maximum
```

#### Note

findmax is an auxiliary function for the dataL function, used to compute the likelihood of a mixture alleles given the number of contributors.

#### Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

## **Examples**

```
lik

Likelihood of the alleles observed at different loci in a DNA mixture conditional on the number of contributors to the mixture
```

# Description

The lik function computes the likelihood of the observed alleles in a forensic DNA mixture, for a set of loci, conditional on the number of contributors to the mixture. The overall likelihood is computed as the product of loci likelihoods.

## Usage

```
lik(x = 1, mix, freq, refpop = NULL, theta = NULL, loc=NULL)
```

# Arguments

| X      | the number of contributors to the DNA mixture, default is 1                                                                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mix    | a simumix object which contains the mixture to be analyzed                                                                                                                                                                                |
| freq   | a tabfreq object from which to extract the allele frequencies                                                                                                                                                                             |
| refpop | a factor giving the reference population in tabfreq from which to extract the mixture allele frequencies. This argument is used only if freq contains allele frequencies for multiple populations, otherwise it is by default set to NULL |
| theta  | a float from $[0,1[$ giving Wright's Fst coefficient. theta accounts for population subdivision while computing the likelihood of the data                                                                                                |
| loc    | loci for which the overall likelihood shall be computed. Default (NULL) corresponds to all loci                                                                                                                                           |

lik.loc 9

#### **Details**

lik computes the likelihood of the alleles observed at all loci conditional on the number of contributors. This function implements a particular case of the general formula of the match probability in the case of subdivided populations (Curran et al, 1999), in the particular case where all contributors are unknown.

Wright's Fst coefficient given in the theta argument allows accounting for population subdivision when all contributors belong to the same subpopulation.

The likelihood for multiple loci is computed as the product of loci likelihoods.

## Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

#### References

Haned H, Pontier D, Lobry J R, Pene L, Dufour AB. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? In prep, 2009.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Populations. *J Forensic Sci* 1999;44(5): 987-995

#### See Also

lik.loc for the likelihood per locus, likestim and likestim.loc for the estimation of the number of contributors to a DNA mixture through likelihood maximization

#### **Examples**

```
data(strusa)
#simulation of 1000 genotypes from the African American allele frequencies
gen<-simugeno(strusa,n=c(1000,0,0))
#3-person mixture
mix3<-simumix(gen,ncontri=c(3,0,0))
sapply(1:3, function(i) lik(x=i,mix3, strusa, refpop="Afri"))</pre>
```

lik.loc

Likelihood per locus of the alleles observed in a DNA mixture conditional on the number of contributors to the mixture

#### **Description**

The lik.loc function computes the likelihood of the observed data in a forensic DNA mixture, for each of the loci involved, conditional on the number of contributors to the mixture.

## Usage

```
lik.loc(x = 1, mix, freq, refpop = NULL, theta = NULL, loc=NULL)
```

10 lik.loc

#### **Arguments**

| X      | the number of contributors to the DNA mixture                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| mix    | a simumix object which contains the mixture to be analyzed                                                                                |
| freq   | a tabfreq object from which to extract the mixture allele frequencies                                                                     |
| refpop | a factor giving the reference population in ${\tt tabfreq}$ from which to extract the mixture allele frequencies                          |
| theta  | a float from [0,1[ giving Wright's Fst coefficien. $theta$ acounts for population subdivision while computing the likelihood of the data. |
| loc    | the loci for which the likelihood shall be computed. Default (set to NULL) corresponds to all loci.                                       |

#### **Details**

lik.loc computes the likelihood per locus of the observed alleles. This functions implements a particular case of the general formula of the match probability in the case of subdivided populations (Curran et al, 1999), in the particular case where all contributors are unknown.

The Fst coefficient given in the theta argument allows accounting for population subdivision when all contributors belong to the same subpopulation.

#### Value

The function lik.loc returns a vector, of length the number of loci in loc, giving the likelihood of the data for each locus.

## Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

## References

Haned H, Pontier D, Lobry J R, Pene L, Dufour AB. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? In prep, 2009.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Populations. *J Forensic Sci* 1999;44(5): 987-995

# See Also

lik for the overall loci likelihood, likestim and likestim.loc for the estimation of the number of contributors to a DNA mixture through likelihood maximization

```
data(strusa)
#simulation of 1000 genotypes from the Caucasian allele frequencies
gen<-simugeno(strusa, n=c(0,100,0))

#4-person mixture
mix4 <- simumix(gen, ncontri=c(0,4,0))
lik.loc(x=2,mix4, strusa, refpop="Cauc")</pre>
```

likestim 11

```
lik.loc(x=2,mix4, strusa, refpop="Afri")
#You may also want to try:
#likestim(mix4,strusa,refpop="Cauc")
```

likestim Maximum of likelihood estimation of the number of contributors to a forensic DNA mixture for a set of loci

## **Description**

The likestim function gives multiloci estimation of the number of contributors to a forensic DNA mixture using likelihood maximization.

# Usage

```
likestim(mix, freq, refpop = NULL, theta = NULL, loc=NULL)
```

## **Arguments**

| mix    | a simumix object                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| freq   | a ${\tt tabfreq}$ object containing the allele frequencies to use for the likelihood calculation                                                                                                                              |
| refpop | the reference population from which to extract the allele frequencies used in the likelihood calculation. If tabfreq contains more than one population, refpop must be specified, otherwise, refpop is set to default (NULL). |
| theta  | a float from [0,1] giving Wright's Fst coefficient. theta accounts for population subdivision while computing the likelihood of the data.                                                                                     |
| loc    | loci to be considered in the estimation. Default (set to NULL) corresponds to all loci.                                                                                                                                       |

## **Details**

The number of contributors which maximizes the likelihood of the data observed in the mixture is searched in the discrete interval [1,6]. In most cases this interval is a plausible range for the number of contributors.

#### Value

A matrix, the first row, max, gives the maximum likelihood estimation of the number of contributors, the second row gives the corresponding likelihood value maxvalue.

## Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

12 likestim.loc

#### References

Haned H, Pontier D, Lobry J R, Pene L, Dufour AB. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? In prep, 2009.

Egeland T, Dalen I, Mostad PF. Estimating the number of contributors to a DNA profile. *Int J Legal Med* 2003, 117: 271-275

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Populations. *J Forensic Sci* 1999, 44(5): 987-995

#### See Also

likestim.loc for maximum of likelihood estimations per locus

## **Examples**

```
data(strusa)
#simulation of 1000 genotypes from the Hispanic allele frequencies
gen<-simugeno(strusa,n=c(0,0,100))
#4-person mixture
mix4 <- simumix(gen,ncontri=c(0,0,4))
likestim(mix4,strusa,refpop="Hisp")</pre>
```

likestim.loc

Maximum of likelihood estimation per locus of the number of contributors to forensic DNA mixtures.

## **Description**

The likestim.loc function returns the estimation of the number of contributors, at each locus, obtained by maximizing the likelihood.

## Usage

```
likestim.loc(mix, freq, refpop = NULL, theta = NULL, loc = NULL)
```

# Arguments

| mix    | a simumix object                                                                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| freq   | a ${\tt tabfreq}$ object containing the allele frequencies to use for the likelihood calculation                                                                                                      |
| refpop | the reference population from which to extract the allele frequencies used in the likelihood calculation. Default set to NULL, if tabfreq contains more than one population, refpop must be specified |
| theta  | a float from [0,1[ giving Wright's Fst coefficient. $theta$ acounts for population subdivision while computing the likelihood of the data.                                                            |
| loc    | loci to be considered in the estimation. Default (set to NULL) corresponds to all loci.                                                                                                               |

mincontri 13

#### **Details**

The number of contributors which maximizes the likelihood of the data observed in the mixture is searched in the discrete interval [1,6]. In most cases this interval is a plausible range for the number of contributors.

#### Value

A matrix of dimension 2 x loc. The first row, max, gives the maximum likelihood estimation of the number of contributors for each locus in column. The second row, maxvalue, gives the corresponding likelihood value.

#### Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

#### References

Haned H, Pontier D, Lobry J R, Pene L, Dufour AB. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? In prep, 2009.

Egeland T , Dalen I, Mostad PF. Estimating the number of contributors to a DNA profile. *Int J Legal Med* 2003, 117: 271-275

Curran, JM , Triggs CM, Buckleton J , Weir BS. Interpreting DNA Mixtures in Structured Populations. *J Forensic Sci* 1999, 44(5): 987-995

#### See Also

likestim for multiloci estimations

### **Examples**

```
data(strusa)
#simulation of 1000 genotypes from the Hispanic allele frequencies
gen<-simugeno(strusa,n=c(0,0,100))
#4-person mixture
mix4 <- simumix(gen,ncontri=c(0,0,4))
likestim.loc(mix4,strusa,refpop="Hisp")</pre>
```

mincontri

Minimum of contributors required to explain a forensic DNA mixture

## **Description**

mincontri gives the minimum number of contributors required to explain a forensic DNA mixture. This method is also known as the maximum allele count as it relies on the maximum number of alleles showed through all available loci

14 naomitab

#### Usage

```
mincontri(mix, loc = NULL)
```

#### **Arguments**

mix a simumix object

the loci to consider for the calculation of the minimum of contributors, default

(NULL) corresponds to all loci

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

#### See Also

likestim for the estimation of the number of contributors through likelihood maximization

## **Examples**

```
data(strusa)
#simulation of 1000 genotypes from the African American allele frequencies
gen<-simugeno(strusa,n=c(1000,0,0))
#5-person mixture
mix5<-simumix(gen,ncontri=c(5,0,0))
#compare
likestim(mix5, strusa, refpop="Afri")
mincontri(mix5)</pre>
```

naomitab

Handling of missing values in a data frame

# Description

 ${\tt naomitab}$  handles missing values (NA) in a data frame: it returns a list of the columns where NAs have been removed.

## Usage

```
naomitab(tab)
```

#### **Arguments**

tab a data frame

## Value

Returns a list of length the number of columns in tab where each component is a column of tab, and the values are the corresponding rows where NAs have been removed.

nball 15

#### Note

This function was designed to handle missing values in data frames in the format of the Journal of Forensic Sciences for population genetic data: allele names are given in the first column, and frequencies for a given allele are read in rows for different loci. When a given allele is not observed, the value is coded NA (originally coded "-" in the journal).

#### Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

#### See Also

```
tabfreq
```

## **Examples**

```
data(Tu)
naomitab(Tu)
```

nball

Number of alleles in a mixture

# Description

nball gives the number of alleles of a simumix object.

## Usage

```
nball(mix, byloc = FALSE)
```

#### **Arguments**

mix a simumix object

byloc a logical indicating whether the number of alleles must be calculated by locus

or for all loci (default)

#### Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

## See Also

simumix

```
data(strusa) #simulating 100 genotypes with allele frequencies from the African American population gaa<-simugeno(strusa, n=c(100,0,0)) #simulating a 4-person mixture maa4<-simumix(gaa, ncontri=c(4,0,0)) nball(maa4,byloc=TRUE)
```

16 PE

| PE | Exclusion probability |
|----|-----------------------|
|    |                       |

## **Description**

Computes the exclusion probability of a mixture stored in a simumix object

## Usage

```
PE(mix, freq, refpop = NULL, theta = 0, byloc = FALSE)
```

## **Arguments**

| mix    | a simumix object                                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| freq   | a tabfreq object giving the allele frequencies from which to compute the exclusion probability $ \\$                                              |
| refpop | character giving the reference population, used only if $freq$ contains allele frequencies for multiple populations                               |
| theta  | a float from [0,1[ giving Wright's Fst coefficient. theta accounts for population subdivision while computing the likelihood of the data.         |
| byloc  | logical, if TRUE, than the exclusion probability is computed per locus, if FALSE (default), the calculations are done for all loci simultaneously |

## **Details**

PE gives the exclusion probability at a locus, or at several loci when conditions for Hardy Weinberg are met. If this condition is not met in the population, than a value for theta must be supplied to take into account dependencies between alleles. The formula of the exclusion probability that allows taking into account departure from Hardy Weinberg proportions due to population subdivision was provided by Bruce Weir, please see the references section.

# Author(s)

Hinda Haned <a href="mailto:haned@biomserv.univ-lyon1.fr">haned@biomserv.univ-lyon1.fr</a>

#### References

Clayton T, Buckleton JS. Mixtures. In: Buckleton JS, Triggs CM, Walsh SJ, editors. Forensic DNA Interpretation. CRC Press 2005;217-74

```
data(strusa)
geno1<-simugeno(strusa,n=c(0,0,100))
mix2 <-simumix(geno1,ncontri=c(0,0,2))
PE(mix2,strusa,"Hisp",byloc=TRUE)</pre>
```

simufreqD 17

| simufreqD | Function to simulate allele frequencies for independent loci from a Dirichlet model |
|-----------|-------------------------------------------------------------------------------------|
|           |                                                                                     |

#### **Description**

The simufreqD function simulate single population allele frequencies for independent loci. Allele frequencies are generated as random deviates from a Dirichlet distribution, the parameters of which control the mean and the variance of the simulated allele frequencies.

#### Usage

```
simufreqD(nloc = 1, nal = 2, alpha = 1)
```

## **Arguments**

| nloc  | the number of loci to simulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nal   | the numbers of alleles per locus. Either an integer, if the loci have the same number of alleles, or an integer vector, if the number of alleles differ between loci                                                                                                                                                                                                                                                                                                                                                                          |
| alpha | the parameter used to simulate allele frequencies from the Dirichlet distribution. If the nloc loci have the same allele number, alpha can either be the same for all alleles (default is one: uniform distribution), in this case alpha is an integer, or alpha can be different between alleles at a given locus, in this case, alpha is a matrix of dimension nal x nloc.  When the number of alleles differ between loci, alpha can either be the same or differ between alleles at a given locus. In the first case alpha is a vector of |

when the number of alleles differ between loci, alpha can either be the same or differ between alleles at a given locus. In the first case alpha is a vector of length nloc, in the second case, alpha is a matrix of dimensions nal x nloc where NAs are introduced for alleles not seen at a given locus.

#### **Details**

Allele frequencies for independent loci are simulated using a Dirichlet distribution with parameter alpha. At a given locus L with n alleles, the allele frequencies are modeled as a vector of random variables p=(p1, ..., pn), following a Dirichlet distribution with parameters: alpha = (alpha1, ..., alphan) where p1+...+pn=1 and alpha1,..., alphan > 0.

#### Value

A matrix containing the simulated allele frequencies. The data is presented in the format of the Journal of Forensic Sciences for genetic data: allele names are given in the first column, and frequencies for a given allele are read in rows for the different markers in columns. When an allele is not observed for a given locus, the value is coded NA (instead of "-" in the original format).

#### Note

The code used here for the generation of random Dirichlet deviates was previously implemented in the gtools library.

## Author(s)

Hinda Haned  $\langle haned@biomserv.univ-lyon1.fr \rangle$ 

18 simugeno

#### References

Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions, vol 2. John Wiley & Sons, 1995.

Wright S. The genetical structure of populations. Ann Eugen 1951;15:323-354.

#### See Also

```
simupopD
```

#### **Examples**

```
#simulate alleles frequencies for 5 markers with respectively 2, 3, 4, 5, and 6 alleles simufreqD(nloc=5, na=c(2,3,4,5,6), alpha=1)
```

simugeno

forensim class for simluated genotypes

#### **Description**

The S4 simugeno class is used to store existing or simulated genotypes.

#### **Slots**

tab. freq: a list giving allele frequencies for each locus. If there are several populations, tab. freq gives allele frequencies in each population

**nind:** integer vector giving the number of individuals. If there are several populations, nind gives the numbers of individuals per population

pop.names: factor of populations names

popind: factor giving the population of each individual

which.loc: character vector giving the locus names

**tab.geno:** matrix giving the genotypes (in rows) for each locus (in columns). The genotype of a homozygous individual carrying the allele "12" is coded "12/12". A heterozygous individual carrying alleles "12" and "13" is coded "12/13" or "13/12".

indID: character vector giving the individuals ID

#### Methods

```
names signature(x = "simugeno"): gives the names of the attributes of a simugeno object
show signature(object = "simugeno"): shows a simugeno object
print signature(object = "simugeno"): prints a simugeno object
```

#### Author(s)

Hinda Haned  $\langle haned@biomserv.univ-lyon1.fr \rangle$ 

simugeno constructor 19

#### See Also

as.simugeno for the simugeno class constructor, is.simugeno, simumix and tabfreq

#### **Examples**

```
showClass("simugeno")
```

```
simugeno constructor
```

simugeno constructor

## **Description**

Constructor for simugeno objects.

The function simugeno creates a simugeno object from a tabfreq object.

The function as . simugeno is an alias for simugeno function.

is.simugeno tests if an object is a valid simugeno object.

Note: to get the manpage about simugeno, please type 'class? simugeno'.

## Usage

```
simugeno(tab, which.loc=NULL, n=1)
as.simugeno(tab, which.loc=NULL, n=1)
is.simugeno(x)
```

#### **Arguments**

tab a tabfreq object created with constructor tabfreq

which.loc a character vector giving the chosen loci for the genotypes simulation. The

default is set to NULL, which corresponds to all the loci of the tabfreq object

given in argument

n integer vector giving the number of individuals. If there are several populations,

n gives the numbers of individuals to simulate per population. For a single

population, default is 1.

x an object

#### Value

For simugeno and as.simugeno, a simugeno object. For is.simugeno, a logical.

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

20 simumix

#### See Also

"simugeno", and tabfreq for creating a tabfreq object from a data file.

#### **Examples**

```
data(Tu)
tab<-tabfreq(Tu)
#simulation of 3 individual genotypes for the STR marker FGA
geno1 <- simugeno(tab, which.loc='FGA', n =1000)
geno1@tab.geno</pre>
```

simumix

forensim class for DNA mixtures

## **Description**

The S4 simumix class is used to store DNA mixtures of individual genotypes along with informations about the individuals poulations and the loci used to simulate the genotypes.

#### **Slots**

**ncontri:** integer vector giving the number of contributors to the DNA mixture. If there are several populations, ncontri gives the number of contributors per population

mix.prof: matrix giving the contributors genotypes (in rows) for each locus (in columns). The genotype of a homozygous individual carrying the allele "12" is coded "12/12". A heterozygous individual carrying alleles "12" and "13" is coded "12/13" or "13/12".

mix.all: list giving the alleles present in the mixture for each locus

which.loc: character vector giving the locus names

popinfo: factor giving the population of each contributor

## Methods

```
names signature(x = "simumix"): gives the names of the attributes of a simumix object
show signature(object = "simumix"): shows a simumix object
print signature(object = "simumix"): prints a simumix object
```

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

## See Also

```
simugeno, as.simumix, is.simumix, simugeno and tabfreq
```

```
showClass("simumix")
data(strusa)
```

simumix constructor 21

```
simumix constructor
```

simumix constructor

## **Description**

Constructor for simumix objects.

The function simumix creates a simumix object from a tabfreq object.

The function as.simumix is an alias for simumix function.

is.simumix tests if an object is a valid simumix object.

Note: to get the manpage about simumix, please type 'class? simumix'.

#### Usage

```
simumix(tab, which.loc=NULL, ncontri=1)
as.simumix(tab, which.loc=NULL, ncontri=1)
is.simumix(x)
```

## **Arguments**

tab a simugeno object created with constructor simugeno

which.loc a character vector giving the chosen loci for the genotypes simulation. The

default is set to NULL, which corresponds to all the loci of the simugeno

object given in argument

ncontri integer vector giving the number of individuals. If there are several populations,

ncontri gives the numbers of individuals to simulate per population. Default

is one.

x an object

## Value

For simumix and as.simumix, a simumix object. For is.simumix, a logical.

# Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

#### See Also

"simumix", simugeno for creating a simugeno object.

```
data(Tu) tab<-simugeno(tabfreq(Tu), n=1200) #simulation of a 3-person mixture characterized with markers FGA, TH01 and TPOX simumix(tab, which.loc=c('FGA','TH01', 'TPOX') , n =3)
```

22 simupopD

| simupopD | Simulate multi-population allele frequencies for independent loci from a reference population, following a Dirichlet model |
|----------|----------------------------------------------------------------------------------------------------------------------------|
|          | a reference population, following a Dirichlet model                                                                        |

#### **Description**

Simulate multi-population allele frequencies for independent loci, from a given reference population, following a Dirichlet model. Allele frequencies in the populations are generated as random deviates from a Dirichlet distribution, the parameters of which control the deviation of allele frequencies from the values in the reference population.

# Usage

```
simupopD(npop = 1, nloc = 1, na = 2, globalfreq = NULL, which.loc = NULL,
alpha1, alpha2 = 1)
```

#### **Arguments**

| npop       | the number of populations                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nloc       | the number of loci                                                                                                                                                                                                                                                                   |
| na         | an integer vector giving the numbers of alleles per locus                                                                                                                                                                                                                            |
| globalfreq | matrix of allele frequencies in the reference population. Data must be given in the format of the Journal of Forensic Sciences for genetic data. Default corresponds to allele frequencies generated form a Dirichlet distribution with parameter alpha2 for all allele frequencies. |
| which.loc  | which loci to simulate from the globalfreq matrix, default considers all loci                                                                                                                                                                                                        |
| alpha1     | a positive float vector of length npop giving the variance parameter of the Dirichlet distribution used to generate allele frequencies in the npop independent populations                                                                                                           |
| alpha2     | a positive float giving the parameter to be used to in the Dirichlet distribution to generate allele frequencies for the reference population                                                                                                                                        |

#### **Details**

In the reference population, allele frequencies for independent loci are simulated using a Dirichlet distribution with parameter alpha2.

At a given locus L with n alleles, the allele frequencies are modeled as a vector of random variables p=(p1, ..., pn) following a Dirichlet distribution with a parameter vector of length n, where each component is equal to alpha2, p1+...+pn=1 and alpha2 > 0.

Note that a more sophisticated generation of global allele frequencies is possible using the simufreqD function. Similarly, allele frequencies in the independent populations are simulated using a Dirichlet Distribution. For example, for the first population to simulate, at a given locus L with n alleles, the allele frequencies are modeled as a vector of random variables p=(p1, ..., pn) following a Dirichlet distribution with a parameter vector of length n:

(p1(1-a1)/alpha1[1], ..., pn(1-alpha1[1])/alpha1[1]), where p1+...+pn=1 and alpha1[1] > 0. alpha1[1] is the variance parameter for population 1 and is equivalent to Wright's Fst. The closest this parameter is to one, the more the population allele frequencies are different from the values of the reference population.

strusa 23

#### Value

The result is stored in a list with two elements:

globfreq a tabfreq object giving the allele frequencies of the chosen reference popula-

tion, with the chosen loci.

popfreq a tabfreq object giving the allele frequencies of the simulated populations.

#### Note

The code used here for the generation of random Dirichlet deviates was previously implemented in the gtools library.

## Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

#### References

Nicholson G, Smith AV, Jonsson F, Gustafsson O, Stefansson K, Donnelly P. Assessing population differentiation and isolation from single-nucleotide polymorphism data. *J Roy Stat Soc B* 2002;64:695–715

Marchini J, Cardon LR. Discussion on the meeting on "Statistical modelling and analysis of genetic data" *J Roy Stat Soc B*, 2002;64:740-741

Wright S. The genetical structure of populations. Ann Eugen 1951;15:323-354

#### See Also

```
simufreqD
```

# Examples

```
# simulate allele frequencies for two populations
data(Tu)
simupopD(npop=2,globalfreq=Tu, which.loc=c("FGA","TH01","TPOX"),
alpha1=c(0.2,0.3),alpha2=1)
```

strusa

Allele frequencies for 15 autosomal short tandem repeats core loci on U.S. Caucasian, African American, and Hispanic populations.

## **Description**

Allele frequencies for 15 autosomal short tandem repeats loci on three American populations: Caucasians, African Americans and Hispanics. Among the 15 loci, 13 belong to the core Combined DNA Index System (CODIS) loci used by the Federal Bureau of Investigation (USA), in forensic DNA analysis, and two supplementary loci are more commonly used in Europe, see details.

24 strveneto

#### Usage

```
data(strusa)
```

#### **Format**

strusa is a tabfreq object giving allele frequencies of 15 loci in three American populations.

## **Details**

CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51 and D21S11, belong to the core CODIS loci used in the US, whereas D2S1338 and D19S433 belong to the European core loci.

#### References

Butler JM, Reeder DJ. http://www.cstl.nist.gov/strbase/index.htm, last visited: May 11th 2009

Butler JM, Schoske R, Vallone MP, Redman JW, Kline MC. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. *J Forensic Sci* 2003;48(8):908-911.

# **Examples**

```
data(strusa)
strusa
#genotypes simulations from each population
geno<- simugeno(strusa,n=c(100,100,100))
geno
#3-person mixture simulation with the contributors from the 3 populations
mix3<- simumix(geno,ncontri=c(1,1,1))
mix3</pre>
```

strveneto

Population study of three miniSTR loci in Veneto (Italy)

# Description

Allele frequencies for three short tandem repeats loci D10S1248, D2S441 and D22S1045 in a sample of 198 individuals born in Veneto, Italy. These loci are commonly used in forensic DNA characterization.

# Usage

```
data(strveneto)
```

#### **Format**

strveneto is a tabfreq object

tabfreq 25

#### References

Turrina S, Atzei R, De Leo D. Population study of three miniSTR loci in Veneto (Italy). Forensic Sci Int Genetics 2008; 1(1);378-379

# **Examples**

data(strveneto)
#allele frequencies
strveneto@tab

tabfreq

forensim class for population allele frequencies

# Description

The S4 tabfreq class is used to store allele frequencies, from either one or several populations.

#### **Slots**

tab: a list giving allele frequencies for each locus. If there are several populations, tab gives allele frequencies in each population

which.loc: character vector giving the names of the loci pop.names: factor of populations names (optional)

## Methods

```
names signature(x = "tabfreq"): gives the names of the attributes of a tabfreq object
show signature(object = "tabfreq"): shows a tabfreq object
print signature(object="tabfreq"): prints a tabfreq object
```

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

## See Also

as.tabfreq, is.tabfreq and simugeno for genotypes simulation from allele frequencies stored in a tabfreq object

```
showClass("tabfreq")
```

26 tabfreq constructor

```
tabfreq constructor
```

tabfreq constructor

# Description

Constructor for tabfreq objects.

The function tabfreq creates a tabfreq object from a data frame or a matrix giving allele frequencies for a single population in the Journal of Forensic Sciences (JFS) format for population genetic data. Whene multiple populations are considered, data shall be given as a list, where each element is either a matrix or a data frame in the JFS format, and the populations names must be specified.

The function as .tabfreq is an alias for the tabfreq function.

is.tabfreq tests if an object is a valid tabfreq object.

Note: to get the manpage about tabfreq, please type 'class? tabfreq'.

## Usage

```
tabfreq(tab,pop.names=NULL)
as.tabfreq(tab,pop.names=NULL)
is.tabfreq(x)
```

# Arguments

either a matrix or a data frame of markers allele frequencies given in the Journal of Forensic Sciences format for population genetic data

pop.names (optional) a factor giving the populations names. For a single population in tab, default is set to NULL.

x an object

#### Value

For tabfreq and as .tabfreq, a tabfreq object. For is .tabfreq, a logical.

#### Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

#### See Also

"tabfreq", simugeno for creating a simugeno object from a tabfreq object.

```
data(Tu)
tabfreq(Tu,pop.names=factor("Tu"))
```

*Tu* 27

Tu

Allele frequencies of 15 autosomal short tandem repeats loci on Chinese Tu ethnic minority group

## **Description**

Population genetic analysis of 15 STR loci of Chinese Tu ethnic minority group.

## Usage

```
data(Tu)
```

#### **Format**

a data frame presented in the format of the Journal of Forensic Sciences for genetic data: allele names are given in the first column, and frequencies for a given allele are read in rows for the different markers. When a given allele is not observed, value is coded NA (rather than "-" in the original format).

#### **Details**

CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51 and D21S11, belong to the core CODIS loci used in the US, whereas D2S1338 and D19S433 belong to the European core loci.

#### References

Zhu B, Yan J, Shen C, Li T, Li Y, Yu X, Xiong X, Muf H, Huang Y, Deng Y. (2008). Population genetic analysis of 15 STR loci of Chinese Tu ethnic minority group. *Forensic Sci Int*; 174: 255-258.

## **Examples**

```
data(Tu)
tabfreq(Tu)
```

virtualClasses

Virtual classes for forensim

## Description

Virtual classes that are only for internal use in forensim

## **Objects from the Class**

A virtual Class: programming tool, not intended for objects creation.

## Author(s)

Hinda Haned (haned@biomserv.univ-lyon1.fr)

# Index

| *Topic <b>classes</b>    | Cmn, 3                                             |
|--------------------------|----------------------------------------------------|
| simugeno, 17             | comb, 4                                            |
| simumix, 19              | \$,simugeno-method(Accessors),2                    |
| tabfreq, 24              | \$,simumix-method(Accessors),2                     |
| virtualClasses, 26       | <pre>\$,tabfreq-method(Accessors), 2</pre>         |
| *Topic datagen           | <pre>\$&lt;-, simugeno-method (Accessors), 2</pre> |
| forensim-package, 1      | <pre>\$&lt;-, simumix-method (Accessors), 2</pre>  |
| simufreqD, 16            | <pre>\$&lt;-,tabfreq-method(Accessors),2</pre>     |
| simugeno, 17             | _                                                  |
| simugeno constructor, 18 | Accessors, 2                                       |
| simumix, 19              | as.simugeno, 18                                    |
| simumix constructor, 20  | as.simugeno(simugeno                               |
| simupopD, 21             | constructor), 18                                   |
| tabfreq, 24              | as.simumix,19                                      |
| tabfreq constructor, 25  | as.simumix(simumix constructor),                   |
| *Topic datasets          | 20                                                 |
| strusa, 22               | as.tabfreq, 24                                     |
| strveneto, 23            | as.tabfreq(tabfreq constructor),                   |
| Tu, 26                   | 25                                                 |
| *Topic <b>htest</b>      | changepop, 2                                       |
| dataL, 5                 | characterOrNULL-class                              |
| lik, 7                   | (virtualClasses), 26                               |
| lik.loc,8                | Cmn, 3, 4                                          |
| likestim, 10             | comb, 3, 4                                         |
| likestim.loc, 11         | , -,                                               |
| mincontri, 12            | dataL, 3, 5, 7                                     |
| PE, 15                   |                                                    |
| *Topic manip             | factorOrNULL-class                                 |
| Accessors, 2             | (virtualClasses), 26                               |
| changepop, 2             | findfreq, 6                                        |
| forensim-package, 1      | findmax, 6                                         |
| naomitab, 13             | forensim, 2                                        |
| simugeno, 17             | forensim(forensim-package), 1                      |
| simugeno constructor, 18 | forensim-package, 1                                |
| simumix, 19              | is.simugeno, 18                                    |
| simumix constructor, 20  | is.simugeno(simugeno                               |
| tabfreq, 24              | constructor), 18                                   |
| tabfreq constructor, 25  | is.simumix, 19                                     |
| *Topic <b>misc</b>       | is.simumix(simumix constructor),                   |
| findfreq, 6              | 20                                                 |
| findmax, 6               | is.tabfreq,24                                      |
| nball, 14                | is.tabfreq(tabfreq constructor),                   |
| *Topic <b>models</b>     | 25                                                 |

INDEX 29

```
lik, 5, 7, 9
                                            vectorOrdataframe-class
lik.loc, 5, 8, 8
                                                    (virtualClasses), 26
likestim, 8, 9, 10, 12, 13
                                            vectorOrNULL-class
likestim.loc, 8, 9, 11, 11
                                                    (virtualClasses), 26
listOrdataframe-class
                                            virtualClasses, 26
       (virtualClasses), 26
matrixOrdataframe-class
       (virtualClasses), 26
mincontri, 12
names, simugeno-method (simugeno),
        17
names, simumix-method (simumix), 19
names, tabfreq-method (tabfreq), 24
naomitab, 13
nball, 14
PE, 15
print, simugeno-method (simugeno),
       17
print, simumix-method (simumix), 19
print, tabfreq-method (tabfreq), 24
show, simugeno-method (simugeno),
show, simumix-method (simumix), 19
show, tabfreq-method (tabfreq), 24
simufreqD, 16, 21, 22
simugeno, 1, 2, 17, 18-20, 24, 25
simugeno (simugeno constructor),
       18
simugeno constructor, 18
simugeno-class (simugeno), 17
simugeno-methods (simugeno
        constructor), 18
\mathtt{simumix}, 1, 2, 6, 13 – 15, 18, \textcolor{red}{\mathbf{19}}, 20
simumix (simumix constructor), 20
simumix constructor, 20
simumix-class(simumix), 19
simumix-methods(simumix)
       constructor), 20
simupopD, 17, 21
strusa, 22
strveneto, 23
tabfreq, 1, 2, 14, 18-20, 24, 25
tabfreq(tabfreq constructor), 25
tabfreq constructor, 25
tabfreq-class (tabfreq), 24
tabfreq-methods(tabfreq
        constructor), 25
Tu, 26
```