Mechanical Engineering-2007

AI24BTECH11005 - Bhukya Prajwal Naik

- 1) A circular disc of radius a on the xy plane has a surface charge density $\sigma = \frac{\sigma_0 r \cos \theta}{a}$. The electric dipole moment of this charge distribution is
 - a) $\frac{\sigma_0 \pi a^4}{4} \hat{x}$

- b) $\frac{\sigma_0 \pi a^3}{4} \hat{x}$ c) $-\frac{\sigma_0 \pi a^3}{4} \hat{x}$ d) $-\frac{\sigma_0 \pi a^4}{4} \hat{x}$

1

- 2) At time t = 0, a charge distribution $\rho(\mathbf{r}, 0)$ exists within an ideal homogeneous conductor of permittivity ε and conductivity σ . At a later time $\rho(\mathbf{r},t)$ is given by
 - a) $\rho(\mathbf{r}, t) = \rho(\mathbf{r}, 0) \exp\left(-\frac{\sigma t}{\varepsilon}\right)$ b) $\rho(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, 0)}{1 + (\sigma t/\varepsilon)^2}$
- c) $\rho(\mathbf{r}, t) = \rho(\mathbf{r}, 0) \exp \left[-\left(\frac{\sigma t}{\varepsilon}\right)^2 \right]$ d) $\rho(\mathbf{r}, t) = \rho(\mathbf{r}, 0) \frac{\varepsilon}{\sigma t} \sin\left(\frac{\sigma t}{\varepsilon}\right)$

- 3) A nonrelativistic charged particle moves along the positive x-axis with a constant positive acceleration $a\hat{x}$. The particle is at the origin at t = 0. Radiation is observed at t = 0 at a distant point (0, d, 0) on the y-axis. Which one of the following statements is correct?
 - a) The radiation is unpolarized.
 - b) The radiation is plane polarized with polarization parallel to the x-axis.
 - c) The radiation is plane polarized with polarization parallel to the xy plane along a line inclined to the x axis.
 - d) The radiation is elliptically polarized.
- 4) For a physical system, two observables \emptyset_1 and O_2 are known to be compatible. Choose the correct implication from amongst those given below:
 - a) Every eigenstate of O_1 must necessarily be an eigenstate of O_2 .
 - b) Every non-degenerate eigenstate of O_1 must necessarily be an eigenstate of O_2 .
 - c) When an observation of O_1 is carried out on an arbitrary state $|\Psi\rangle$ of the physical system, a subsequent observation of O_2 leads to an unambiguous result.
 - d) Observation of O_1 and O_2 , carried out on an arbitrary state $|\Psi\rangle$ of the physical system, lead to the identical results irrespective of the order in which the observations are made.
- 5) An exact measurement of the position of a simple harmonic oscillator (SHO) is made with the result $x = x_0$. [The SHO has energy levels $E_n(n = 0, 1, 2,)$ and associated normalized wavefunctions ψ_n]. Subsequently, an exact measurement of energy E is made. Using the general notation Pr(E = E') denoting the probability that a result E' is obtained for this measurement, the following statements are written. Which one of the following statements is correct?

a)
$$Pr(E = E_0) = 0$$

c)
$$Pr(E = E_n) \propto \psi_n(x)$$

b)
$$Pr(E = E_n) = 1$$
 for some value of n . d) $Pr(E > E'') > 0$ for any E'' .

$$Pr(E > E'') > 0$$
 for any E'' .

6) Consider the combined system of proton and electron in the hydrogen atom in its (electronic) ground state. Let I denote the quantum number associated with the total angular momentum and let α denote the magnitude of the expectation value of the net magnetic moment in the state. Which of the following pairs represents a possible state of the system (μ_B is Bohr magneton)?

a)
$$I = 0, \alpha = 0$$

a)
$$I = 0, \alpha = 0$$
 b) $I = \frac{1}{2}, \alpha = 1\mu_B$ c) $I = 1, \alpha = 1\mu_B$ d) $I = 0, \alpha = 2\mu_B$

c)
$$I = 1, \alpha = 1\mu_B$$

$$I=0, \alpha=2\mu_B$$

- 7) A particle is placed in a one dimensional box of size L along the x-axis (0 < x < L). Which of the following is true?
 - a) In the ground state, the probability of finding the particle in the interval $(\frac{L}{4}, \frac{3L}{4})$ is half.
 - b) In the first excited state, the probability of finding the particle in the interval $(\frac{L}{4}, \frac{3L}{4})$ is half. This also holds for states with n = 4, 6, 8, ...
 - c) For an arbitrary state $|\Psi\rangle$, the probability of finding the particle in the left half of the well is half.
 - d) In the ground state, the particle has a definite momentum.
- 8) A calculator has accuracy up to 8 digits after decimal place. The value of $\int_0^{2\pi} \sin x dx$ when evaluated using this calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is

- 9) A system containing N non-interacting localized particles of spin $\frac{1}{2}$ and magnetic moment μ each is kept in constant external magnetic field B and in thermal equilibrium at temperature T. The magnetization of the system is,

- a) $N\mu\coth\frac{\mu B}{k_BT}$ b) $N\mu\tanh\frac{\mu B}{k_BT}$ c) $N\mu\sinh\frac{\mu B}{k_BT}$ d) $N\mu\cosh\frac{\mu B}{k_BT}$
- 10) Two identical particles have to be distributed among three energy levels. Let r_R , r_F and r_C represent the ratios of probability of finding two particles to that of finding one particle in a given energy state. The subscripts B, F and C correspond to whether the

particles are bosons, fermions and classical particles, respectively. Then, $r_B: r_F: r_C$ is equal to

- a) $\frac{1}{2}:0:1$ b) $1:\frac{1}{2}:1$ c) $1:\frac{1}{2}:\frac{1}{2}$ d) $1:0:\frac{1}{2}$
- 11) A photon gas is at thermal equilibrium at temperature T. The mean number of photons in an energy state $\varepsilon = \hbar \omega$ is
- a) $\exp(\frac{\hbar\omega}{k_BT}) + 1$ b) $\exp(\frac{\hbar\omega}{k_BT}) 1$ c) $(\exp(\frac{\hbar\omega}{k_BT}) + 1)^{-1}$ d) $(\exp(\frac{\hbar\omega}{k_BT}) 1)^{-1}$
- 12) Consider a system of N atoms of an ideal gas of type A at temperature T and volume V. It is kept in diffusive contact with another system of N atoms of another ideal gas of type B at the same temperature T and volume V. Once the combined system reaches equilibrium,
 - a) the total entropy of the final system is the same as the sum of the entropy of the individual system always.
 - b) the entropy of mixing is $2Nk_B \ln 2$.
 - c) the entropy of the final system is less than that of sum of the initial entropies of the two gases.
 - d) theentropyofmixingisnon zerowhentheatomsAandBareofthesametype.
- 13) Consider a system of two non-interacting classical particles which can occupy any of the three energy levels with energy values $E = 0, \varepsilon$ and 2ε having degeneracies g(E) = 1, 2 and 4 respectively. The mean energy of the system is
 - a) $\varepsilon \frac{4 \exp(-\varepsilon/k_B T) + 8 \exp(-2\varepsilon/k_B T)}{1 + 2 \exp(-\varepsilon/k_B T) + 4 \exp(-2\varepsilon/k_B T)}$ b) $\varepsilon (\frac{2 \exp(-\varepsilon/k_B T) + 4 \exp(-2\varepsilon/k_B T)}{1 + 2 \exp(-\varepsilon/k_B T) + 4 \exp(-2\varepsilon/k_B T)})^2$ c) $\varepsilon (\frac{2 \exp(-\varepsilon/k_B T) + 4 \exp(-2\varepsilon/k_B T)}{1 + 2 \exp(-\varepsilon/k_B T) + 8 \exp(-2\varepsilon/k_B T)})$ d) $\varepsilon (\frac{\exp(-\varepsilon/k_B T) + 2 \exp(-2\varepsilon/k_B T)}{1 + \exp(-\varepsilon/k_B T) + 2 \exp(-2\varepsilon/k_B T)})$
- 14) Three consecutive absorption lines at 64.275 cm^{-1} , 77.130 cm^{-1} and 89.985 cm^{-1} have been observed in a microwave spectrum for a linear rigid diatomic molecule. The moments of inertia I_A and I_B are (I_A is with respect to the bond axis passing through the centre of mass and I_B is with respect to an axis passing through the centre of mass and perpendicular to bond axis)
 - a) both equal to $\frac{\hbar^2}{12.855hc}gmcm^2$ b) zero and $\frac{\hbar^2}{12.855hc}gmcm^2$ c) both equal to $\frac{\hbar^2}{6.427hc}gmcm^2$ d) zero and $\frac{\hbar^2}{6.427hc}gmcm^2$
- 15) A pure rotational Raman spectrum of a linear diatomic molecule is recorded using electromagnetic radiation of frequency v_e . The frequency of two consecutive Stokes lines are

a)
$$v_e - 10B, v_e - 14B$$

c)
$$v_e + 10B, v_e + 14B$$

b)
$$v_c - 2B, v_e - 4B$$

d)
$$v_e + 2B, v_e + 4B$$

- 16) Which one of the following statement is Incorrect in vibrational spectroscopy with anharmonotonicity?
 - a) The selection rule for vibrational spectroscopy is $\Delta v = 1, 2, 3, ...$
 - b) Anharmonicity leads to multiple absorption lines
 - c) The intensies of hot band lines are stronger than the fundamental absorption
 - d) The frequencies of hot band lines are smaller than the fundamental absorption
- 17) The molecular spectra of two linear molecules O-C-O and O-C-S are recorded in the micro wave region. Which one of the following is correct?
 - a) Both would show absorption lines
 - b) Both would not show absorption lines
 - c) O-C-O would show absorption lines, but not O-C-S.
 - d) O-C-S would show absorption lines, but not O-C-O.