Scilab Textbook Companion for Microwave Engineering by G. S. Raghuvanshi¹

Created by
Ankit Suri
B. Tech.
Computer Engineering
ABES Engineering College
College Teacher
None
Cross-Checked by
Spandana

June 6, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Microwave Engineering

Author: G. S. Raghuvanshi

Publisher: Cengage Learning, New Delhi

Edition: 1

Year: 2012

ISBN: 978-81-315-1721-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Microwaves	6
2	Waveguides	35
3	Microwave Network Analysis	83
4	Microwave Resonators and Waveguide Components	92
5	Microwave Tubes Klystrons	129
6	Microwave Travelling Wave Tubes O type	166
7	Cross Field Microwave Tubes M Type	187
8	Microwave Solid State Control Devices	211
9	Microwave Solid State Generators and Amplifiers	230
10	Striplines and Microstrip Lines	267
11	Microwave Integrated Circuits	290
12	Microwave Measurements	294

List of Scilab Codes

Exa 1.2	Lossless line
Exa 1.3	Microwave line
Exa 1.4	Quater wave transformer
Exa 1.5	Parallel resonant circuit
Exa 1.6	Lossless line
Exa 1.7	Lossy cable
Exa 1.8	Transmission Line
Exa 1.9	Transmission Line
Exa 1.10	Transmission Line
Exa 1.11	Microwave line
Exa 1.12	Active Device
Exa 1.13	Transmission line
Exa 1.15	Microwave line
Exa 1.16	EM Plane
Exa 1.17	Polyethylene
Exa 1.18	Electromagnetic wave
Exa 1.19	Range in sea water
Exa 2.1	Dominant mode
Exa 2.2	Rectangular Waveguide
Exa 2.3	Rectangular Waveguide
Exa 2.4	Wider dimension
Exa 2.5	Rectangular waveguide
Exa 2.7	Rectangular waveguide
Exa 2.8	Lossless Rectangular Waveguide 46
Exa 2.9	Dimensions
Exa 2.10	Rectangular Waveguide
Exa 2.14	Waveguide
Exa 2.17	Air filled Rectangular Waveguide

Exa 2.18	Rectangular Waveguide	56
Exa 2.19	Rectangular Waveguide	58
Exa 2.20	Ratio of cross section	60
Exa 2.21	Rectangular Waveguide	60
Exa 2.22	Rectangular Waveguide	64
Exa 2.23	Circular waveguide	65
Exa 2.24	Air filled circular waveguide	67
Exa 2.25	Air filled rectangular waveguide	69
Exa 2.26	Rectangular Waveguide	69
Exa 2.27	Circular Waveguide	72
Exa 2.28	Rectangular Waveguide	75
Exa 2.29	Circular waveguide	77
Exa 2.30	Cutoff frequencies	77
Exa 2.31	Dielectric constant	80
Exa 3.4	Scattering matrix	83
Exa 3.5	Network	83
Exa 3.6	Microwave network	86
Exa 3.12	Transistor amplifier circuit	88
Exa 4.1	Rectangular cavity resonator	92
Exa 4.2	Rectangulr resonator	94
Exa 4.3	X band resonator	95
Exa 4.4	Rectangular resonator	97
Exa 4.5	Cylindrical resonator	99
Exa 4.6	Resonator comparison	102
Exa 4.7	Cubical Resonator	103
Exa 4.8	Rectangular Resonant Cavity	104
Exa 4.9	Rectangular resonator	106
Exa 4.10	Cylindrical resonator	108
Exa 4.11	Cylindrical resonantor	111
Exa 4.12	Cylindrical Resonator	111
Exa 4.13	Lossless plane H tee	115
Exa 4.14	E plane tee	115
Exa 4.15	Magic Tee	117
Exa 4.18	Directional Coupler	119
Exa 4.20	Directional coupler	122
Exa 4.21	Isolator Matrix	122
Exa 4.22	Circulator Matrix	124
Exa 4.23	Rectangular Waveguide	125

Exa 4.24	Attenuator matrix	127
Exa 5.1	Two Cavity Klystron	129
Exa 5.2	Two cavity Klystron	131
Exa 5.3	Two cavity Klystron	133
Exa 5.4	Two cavity Klystron	135
Exa 5.5	Two cavity Klystron	137
Exa 5.6	Two cavity Klystron	140
Exa 5.7	Two cavity Klystron	142
Exa 5.8	Two cavity Klystron	144
Exa 5.9	Four cavity Klystron	146
Exa 5.10	Four cavity Klystron	148
Exa 5.11	Reflex Klystron	150
Exa 5.12	Reflex Klystron	152
Exa 5.13	Reflex Klystron	154
Exa 5.14	Reflex Klystron	156
Exa 5.15	Reflex Klystron	156
Exa 5.16	Reflex Klystron	159
Exa 5.17	Electron Gun	161
Exa 5.18	Re entrant Coaxial Cavity	163
Exa 6.1	TWT	166
Exa 6.2	Helix TWT	168
Exa 6.3	Helical TWT	170
Exa 6.4	O type TWT	170
Exa 6.5	Cavity coupled	173
Exa 6.6	O Type Backward Wave amplifier	175
Exa 6.7	Multicavity TWT	176
Exa 6.8	Gridded TWT	177
Exa 6.9	Helix TWT	179
Exa 6.10	Low Power TWT	180
Exa 6.11	TWT	182
Exa 6.12	TWT	184
Exa 7.1	X band Magnetron	187
Exa 7.2	Cylindrical Magnetron	189
Exa 7.3	Cylindrical Magnetron	191
Exa 7.4	Conventional Magnetron	192
Exa 7.5	Conventional Magnetron	194
Exa 7.6	Carcinotron	196
Exa 7.7	Frequency Aglile Magnetron	198

Exa 7.8	Cross field amplifier	200
Exa 7.9	Inverted coaxial Magnetron	202
Exa 7.10	Inverted coaxial Magnetron	203
Exa 7.11	Linear Magnetron	205
Exa 7.12	Inverted Coaxial Magnetron	206
Exa 7.13	Agile coaxial Magnetron	208
Exa 8.1	Single pole Switch	211
Exa 8.2	Pin diode switches	213
Exa 8.3	Silicon switching diode	216
Exa 8.6	Parametric upconverter	217
Exa 8.7	Parametric amplifier	219
Exa 8.8	Negative resistance parametric amplifier	221
Exa 8.9	330 stage CCD	223
Exa 8.10	3 phase CCD	223
Exa 8.11	Surface channel CCD	225
Exa 8.12	3 phase CCD	226
Exa 8.13	Surface channel CCD	228
Exa 9.2	Bipolar transistor	230
Exa 9.3	Heterojunction transistor	233
Exa 9.4	GaAs FET	233
Exa 9.5	Microwave transistor	235
Exa 9.6	Transistor Amplifier	237
Exa 9.7	Microwave transistor	241
Exa 9.8	JEFT	241
Exa 9.9	MESFET	243
Exa 9.10	Gunn device	245
Exa 9.11	Gunn oscillator	247
Exa 9.12	Tunnel diode	248
Exa 9.13	Gunn diode	248
Exa 9.14	Gunn diode	251
Exa 9.15	Gunn diode	252
Exa 9.17	IMPATT diode	253
Exa 9.18	IMPATT diode	255
Exa 9.19	IMPATT diode	257
Exa 9.20	IMPATT diode	258
Exa 9.21	TRAPATT diode	260
Exa 9.22	BARITT diode	260
Exa 9.23	Laser	263

Exa 9.24	Laser	264
Exa 9.25	Heterojunction laser	265
Exa 10.1	Copper stripline	267
Exa 10.2	Microstrip line	269
Exa 10.3	Microstrip	271
Exa 10.4	Stripline	274
Exa 10.5	Microstrip line	274
Exa 10.6	Microstrip line	277
Exa 10.7	Parallel stripline	279
Exa 10.8	Stripline coupler	279
Exa 10.9	Branch coupler	281
Exa 10.10	Broadside stripline	283
Exa 10.11	Paralle stripline	285
$\mathrm{Exa}\ 10.12$	Shielded stripline	286
Exa 10.13	Lossless stripline	289
Exa 11.1	Costs	290
Exa 11.2	Yield	293
Exa 12.1	Microwave diode	294
Exa 12.2	Detector mismatch	296
Exa 12.3	Transmission waveguide	297
Exa 12.4	VSWR of waveguide	298
Exa 12.5	Directional couplers	299
Exa 12.6	Microwave line	300
Exa 12.7	Microwave line	301
Exa 12.8	Rectangular waveguide	302
Exa 12.9	Three port circulator	304
Exa 12.10	Air filled cavity	306
Exa 12.11	Rectangular Waveguide	306

List of Figures

1.1	Lossless line	7
1.2	Microwave line)
1.3	Quater wave transformer	1
1.4	Parallel resonant circuit	2
1.5	Lossless line	1
1.6	Lossy cable	3
1.7	Transmission Line	3
1.8	Transmission Line)
1.9	Transmission Line	1
1.10	Microwave line	3
1.11	Active Device	1
1.12	Transmission line	ó
1.13	Microwave line	7
1.14	EM Plane	3
1.15	Polyethylene)
1.16	Electromagnetic wave	1
1.17	Range in sea water	3
2.1	Dominant mode	3
2.2	Rectangular Waveguide	7
2.3	Rectangular Waveguide)
2.4	Wider dimension	1
2.5	Rectangular waveguide	2
2.6	Rectangular waveguide	5
2.7	Lossless Rectangular Waveguide	7
2.8	Dimensions)
2.9	Rectangular Waveguide	1
2.10	Waveguide	3
2.11	Air filled Rectangular Waveguide	5

2.12	Rectangular Waveguide	57
2.13	Rectangular Waveguide	59
2.14	Ratio of cross section	61
2.15	Rectangular Waveguide	62
2.16	Rectangular Waveguide	64
2.17	Circular waveguide	66
2.18	Air filled circular waveguide	68
2.19	Air filled rectangular waveguide	70
2.20	Rectangular Waveguide	71
2.21	Circular Waveguide	73
2.22	Rectangular Waveguide	76
	Circular waveguide	78
2.24	Cutoff frequencies	79
	Dielectric constant	81
3.1	Scattering matrix	84
3.2	Network	85
3.3	Microwave network	87
3.4	Transistor amplifier circuit	89
4.1	Rectangular cavity resonator	93
4.2	Rectangulr resonator	94
4.3	X band resonator	96
4.4	Rectangular resonator	98
4.5	Cylindrical resonator	100
4.6	Resonator comparison	102
4.7	Cubical Resonator	103
4.8	Rectangular Resonant Cavity	105
4.9	Rectangular resonator	107
4.10	Cylindrical resonator	109
4.11	Cylindrical resonantor	110
4.12	Cylindrical Resonator	112
4.13	Lossless plane H tee	114
4.14	E plane tee	116
	Magic Tee	118
	Directional Coupler	120
	Directional coupler	121
	Isolator Matrix	123

4.19	Circulator Matrix	4
4.20	Rectangular Waveguide	6
	Attenuator matrix	8
5.1	Two Cavity Klystron	0
5.2	Two cavity Klystron	2
5.3	Two cavity Klystron	4
5.4	Two cavity Klystron	6
5.5	Two cavity Klystron	8
5.6	Two cavity Klystron	1
5.7	Two cavity Klystron	3
5.8	Two cavity Klystron	5
5.9	Four cavity Klystron	7
5.10	Four cavity Klystron	9
	Reflex Klystron	1
	Reflex Klystron	3
	Reflex Klystron	5
	Reflex Klystron	7
	Reflex Klystron	8
	Reflex Klystron	0
	Electron Gun	2
	Re entrant Coaxial Cavity	
6.1	TWT	7
6.2	Helix TWT	9
6.3	Helical TWT	1
6.4	O type TWT	2
6.5	Cavity coupled	4
6.6	O Type Backward Wave amplifier	5
6.7	Multicavity TWT	6
6.8	Gridded TWT	8
6.9	Helix TWT	9
6.10	Low Power TWT	
	TWT	
	TWT	
7.1	X band Magnetron	8
7 2	Cylindrical Magnetron 190	N

7.3	Cylindrical Magnetron	91
7.4	Conventional Magnetron	93
7.5	Conventional Magnetron	95
7.6		97
7.7	1 , 0	99
7.8	Cross field amplifier)1
7.9	Inverted coaxial Magnetron)2
7.10	Inverted coaxial Magnetron)4
	Linear Magnetron)5
	Inverted Coaxial Magnetron)7
)9
8.1	Single pole Switch	12
8.2	Pin diode switches	14
8.3	Silicon switching diode	16
8.4	Parametric upconverter	18
8.5	Parametric amplifier	20
8.6	Negative resistance parametric amplifier	21
8.7	330 stage CCD	22
8.8	3 phase CCD	24
8.9	Surface channel CCD	25
8.10	3 phase CCD	27
8.11		29
9.1	Bipolar transistor	31
9.2	Heterojunction transistor	32
9.3	GaAs FET	34
9.4	Microwave transistor	36
9.5	Transistor Amplifier	38
9.6	Microwave transistor	10
9.7	JEFT 24	42
9.8	MESFET	44
9.9	Gunn device	46
9.10	Gunn oscillator	47
9.11	Tunnel diode	49
9.12	Gunn diode	50
9.13	Gunn diode	51
9 14	Gunn diode 29	52

9.15 IMPATT diode	254
9.16 IMPATT diode	256
9.17 IMPATT diode	257
9.18 IMPATT diode	259
9.19 TRAPATT diode	261
9.20 BARITT diode	262
9.21 Laser	263
9.22 Laser	265
9.23 Heterojunction laser	266
10.1 Copper stripline	268
10.2 Microstrip line	270
10.3 Microstrip	272
10.4 Stripline	273
10.5 Microstrip line	275
10.6 Microstrip line	277
10.7 Parallel stripline	278
10.8 Stripline coupler	280
10.9 Branch coupler	282
10.10Broadside stripline	284
10.11Paralle stripline	285
10.12Shielded stripline	287
10.13Lossless stripline	288
11.1 Costs	291
11.2 Yield	292
12.1 Microwave diode	295
12.2 Detector mismatch	296
12.3 Transmission waveguide	297
12.4 VSWR of waveguide	298
12.5 Directional couplers	299
12.6 Microwave line	300
12.7 Microwave line	301
12.8 Rectangular waveguide	303
12.9 Three port circulator	304
12.10Air filled cavity	305
12 11 Rectangular Wayeguide	307

Chapter 1

Microwaves

Scilab code Exa 1.2 Lossless line

```
1 // Page Number: 12
2 //Example 1.2
3 clc;
4 // Given
5 \text{ z0=50; } //\text{ohm}
6 \text{ zg=50;} //\text{ohm}
7 1=0.25; //m
8 f = 4D + 9; //hz
9 zl=100;//ohm
10 vg=10; //V
11 w=2*\%pi*f;//rad/sec
12 c=3D+8; //m/s
13
14 //(i) Voltage and current at any point
15 tg=(zg-z0)/(zg+z0);
16 tl=(zl-z0)/(zl+z0);
17 vi=z0*vg/(z0+zg);//V
18 disp('V', vi, 'Voltage at any point:');
19 ii=vg/(2*z0);//A
```

```
Scilab 5.4.1 Console
Voltage at any point:
   5.
Current at any point:
   0.1
Voltage at generator end:
 - 0.8333333 + 4.330127i
Voltage at load end:
- 3.3333333 - 5.7735027i
Reflection coefficient:
 - 0.1666667 - 0.2886751i
VSWR:
   2.
Average power delivered to the load:
    0.2222222
W
-->
```

15

Figure 1.1: Lossless line

```
20 disp('A', ii, 'Current at any point:');
21
22 //(ii) Voltage at generator end
23 / Taking z=1
24 z=1;
25 \text{ bet=w/c};
26 \text{ vz} = (\text{vg/2}) * \exp(-\%i*bet*(z+1)) * (1+(t1*\exp(2*\%i*bet*z))
      );//V
27 disp('V', vz, 'Voltage at generator end:');
28 iz=ii*exp(-\%i*bet*(z+1))*(1-(tl*exp(2*\%i*bet*z)));//
      Α
29 vz1=(vg/2)*exp(-\%i*bet*(z+1))*(1+(tl*exp(2*\%i*bet*z))
      ));//V
30
31 // Voltage at load end, z=0
32 z11=0;
33 vl = (vg/2) * exp(-\%i*bet*1) * (1+(tl*exp(2*\%i*bet*z11)));
      //V
34 disp('V', vl, 'Voltage at load end:');
35
36 //(iii) Reflection coefficient
37 \text{ zx} = 0.25;
38 tz=t1*exp(%i*2*bet*zx);
39 disp(tz, 'Reflection coefficient:');
40
41 //(iv) VSWR
42 p=(1+t1)/(1-t1);
43 disp(p, 'VSWR: ');
45 //(v) Average power delivered to the load
46 \text{ vl} = 20/3;
47 pl0=vl^2/(2*zl);/W
48 disp('W', pl0, 'Average power delivered to the load:')
```

```
Attenuation in the line

0.3798366

Np/m
-->
```

Figure 1.2: Microwave line

Scilab code Exa 1.3 Microwave line

```
1 //Page Number: 14
2 //Example 1.3
3 clc;
4 //Given
5 pm=3;
6 pl=4;
7 l=24; //cm
8 l1=1/100; //m
9
10 //Attenuation
11 tin=(pm-1)/(pm+1);
12 tl=(pl-1)/(pl+1);
13 alp=(1/(2*l1))*log(tl/tin); //Np/m
```

```
14 disp('Np/m',alp,'Attenuation in the line');
```

Scilab code Exa 1.4 Quater wave transformer

```
1 //Page Number: 14
2 //Example 1.4
3 clc;
4 // Given
5 c=3D+8; //m/s
6 z0 = 200; //ohm
7 z1=800;//ohm
8 f = 30D + 6; //hz
10 // Characterstic impedance
11 z00=sqrt(z0*z1);//ohm
12 disp('ohm', z00, 'Characterstic impedance:');
13
14 //Length of line
15 lam=c/f;/m
16 l=lam/4; //m
17 disp('m',1,'Length of line:');
```

Scilab code Exa 1.5 Parallel resonant circuit

```
1 // Page Number: 15
2 // Example 1.5
3 clc;
4 // Given
5 l=1.2; //mH
```

```
Scilab 5.4.1 Console

Characterstic impedance:
400.

ohm

Length of line:
2.5

m
-->
```

Figure 1.3: Quater wave transformer

```
Scilab 5.4.1 Console
Resonant frequency:
   10273.407
hz
Impedance of circuit:
   8.
ohm
Q factor of the circuit:
   9682.4584
Bandwidth:
   1.061033
hz
```

Figure 1.4: Parallel resonant circuit

```
6 \text{ r=8;} //\text{ohm}
7 c = 200D - 12; //F
9 //(i) Resonant frequency
10 f0=(1/(2*\%pi))*sqrt(1/(1*c));//hz
11 disp('hz',f0,'Resonant frequency:');
12
13 //(ii) Impedance of circuit
14 disp('ohm',r,'Impedance of circuit:');
15
16 //(iii)Q factor of the circuit
17 q=1/(2*\%pi*f0*c*r);
18 disp(q, 'Q factor of the circuit:');
19
20 //(iv) Bandwidth
21 df=f0/q; //hz
22 disp('hz',df,'Bandwidth:');
23
24 //The value of resonant frequency is calculated
      wrong in book
25 //Hence Q factor and bandwidth, all these answers
      dont match
```

Scilab code Exa 1.6 Lossless line

```
1 //Page Number:
2 //Example 1.6
3 clc;
4 //Given
5 c=3D+8; //m/s
6 le=25; //m
7 zl=40+(%i*30); //ohm
8 f=10D+6; //hz
```

```
Input impedance:
    0.5773503 - 0.5773503i

ohm

Reflection coefficient:
    - 0.2953651 + 0.3069524i
-->
```

Figure 1.5: Lossless line

```
9  cap=40D-12; //F
10  l=300D-9; //H/m
11
12  //Input impedance
13  z0=sqrt(1/cap); //ohm
14  zl1=zl/z0;
15  lam=c/f; //m
16  bet=(2*%pi*le)/lam; //rad
17  zin=((zl1*cos(bet))+(%i*sin(bet)))/(cos(bet)+(%i*zl1*sin(bet))); //ohm
18  disp('ohm',zin, 'Input impedance:');
19
20  // Reflection coefficient
21  t=(zl1-1)/(zl1+1);
22  disp(t, 'Reflection coefficient:');
```

Scilab code Exa 1.7 Lossy cable

```
1 //Page Number: 16
2 //Example 1.7
3 clc;
4 //Given
5 c=3D+8; //m/s
6 R=2.25; //ohm
7 L=1D-9; //H/m
8 C=1D-12; //F/m
9 f=0.5D+9; //hz
10 G=0;
11 w=2*%pi*f; //rad/sec
12
13 //Characterstic impedance
14 z0=sqrt((R+(%i*w*L))/(G+(%i*w*C))); //ohm
15 disp('ohm',z0,'Characterstic impedance:');
```

```
Characterstic impedance:

33.391733 - 10.72417i

ohm

Propagation constant:

0.0336910 + 0.1049032i

-->
```

Figure 1.6: Lossy cable

```
16
17 //Propagation constant
18 gam=sqrt((R+(%i*w*L))*(G+(%i*w*C)));
19 disp(gam, 'Propagation constant:');
```

Scilab code Exa 1.8 Transmission Line

```
1 //Page Number: 20
2 //Example 1.8
3 clc;
4 // Given
5 c = 3D + 8; //m/s
6 f = 3D + 9; //Hz
7 ZL=50-(\%i*100); //ohms
8 \text{ Z0=50}; //\text{ohm}
9 //Wavelength
10 lam=c/f;
11 disp('cm', lam*100, 'Wavelength:');
12
13 // Normalized load impedance
14 z=ZL/Z0;
15 disp(z, 'Normalized load impedance:');
16
17 //From chart
18 \text{ zin} = 0.45 + (\%i * 1.2);
19 yin=0.27-(\%i*0.73);
20 \quad ZINN = ZO * zin;
21 disp('ohm', ZINN, 'Line impedance:');
22 YINN=yin/Z0;
23 disp('mho', YINN, 'Line admittance:');
```

```
Wavelength:
    10.
cm
Normalized load impedance:
   1. - 2.i
Line impedance:
   22.5 + 60.i
ohm
Line admittance:
    0.0054 - 0.0146i
mho
-->
```

Figure 1.7: Transmission Line

```
Normalized load impedance:
    1.5 + 2.i
Input impedance at 0.051 lam:
    230.
ohm
Input impedance at 0.102 lam:
    75. - 100.i
ohm
Input impedance at 0.301 lam:
    11.
ohm
-->
                                               Ι
```

Figure 1.8: Transmission Line

Scilab code Exa 1.9 Transmission Line

```
1 //Page Number: 22
2 //Example 1.9
3 clc;
4 //Given
5 \text{ ZL} = 75 + (\%i * 100); //ohms
6 Z0=50; //ohm
8 // Normalized load impedance
9 z=ZL/Z0;
10 disp(z, 'Normalized load impedance: ');
11
12 //(i) 0.051*lam
13 //From chart
14 r = 4.6;
15 Zi1=r*Z0;
16 disp('ohm', Zi1, 'Input impedance at 0.051 lam:');
17
18 //(ii) 0.102*lam
19 r1=1.5-(\%i*2);
20 \text{ Zi2=r1*Z0};
21 disp('ohm', Zi2, 'Input impedance at 0.102 lam:');
22
23 //(iii) 0.301*lam
24 \text{ r2=0.22};
25 \quad Zi3=r2*Z0;
26 disp('ohm', Zi3, 'Input impedance at 0.301 lam:');
```

Scilab code Exa 1.10 Transmission Line

Figure 1.9: Transmission Line

```
1 //Page Number: 23
2 //Example 1.10
3 clc;
4 //Given
5 \text{ ZL}=15+(\%i*20); //ohms
6 Z0=50; //ohm
8 // Normalized load impedance
9 z=ZL/Z0;
10 disp(z, 'Normalized load impedance:');
11
12 //From chart
13 T = 0.6;
14 disp(T, 'Reflection coefficient:');
15
16 //VSWR
17 p=4;
18 disp(p, 'VSWR: ');
```

Scilab code Exa 1.11 Microwave line

```
1 //Page Number: 25
2 //Example 1.11
3 clc;
4 //Given
5 Z0=50; //ohm
6 p=2.4;
7
8 //From chart
9 zl=1.4+%i;
10 L=Z0*zl;
11 disp('ohm',L,'Load:');
```

```
Load:
    70. + 50.i
    ohm
-->
```

Figure 1.10: Microwave line

Scilab code Exa 1.12 Active Device

```
1 //Page Number: 26
2 //Example 1.12
3 clc;
4 //Given
5 Z0=50; //ohm
6 T=2.23;
7
8 //From chart
9 z1=2+%i;
10 ZLd=Z0*z1;
11 disp('ohm', ZLd, 'Normalized impedance:');
```

```
Scilab 5.4.1 Console

Normalized impedance:

100. + 50.i

ohm

Impedance of device:

- 100. + 50.i

ohm

-->
```

Figure 1.11: Active Device

```
12
13 //Impedance of device is by negating the real part
14 imp=-real(ZLd)+(imag(ZLd)*%i);
15 disp('ohm',imp,'Impedance of device:');
```

Scilab code Exa 1.13 Transmission line

```
1 // Page Number: 27
2 // Example 1.13
3 clc;
4 // Given
5 p=3;
6 m1=54; //cm
```

```
Foint A

Location of stub:

4.2

cm

Length:

68.4

cm

Point B

Location of stub:

103.8

cm

-->
```

Figure 1.12: Transmission line

```
7 \text{ m}2 = 204; //\text{cm}
9 // Point A
10 disp('Point A');
11 lam=4*(m2-m1);
12 dA = 0.083 * lam;
13 L=m1-dA;
14 disp('cm',L,'Location of stub:');
15 IA = 0.114 * lam;
16 disp('cm', IA, 'Length:');
17
18 // Point B
19 disp('Point B');
20 \text{ dB} = 0.083 * lam;
21 IB=0.386*lam;
22 Lb=dB+m1;
23 disp('cm', Lb, 'Location of stub:');
```

Scilab code Exa 1.15 Microwave line

```
1 //Page Number: 30
2 //Example 1.15
3 clc;
4 //Given
5 Z0=50; //ohm
6 ZL=100; //ohms
7 f=10D+9; //Hz
8 c=0.159D-12; //F
9
10 //Normalized load impedance
11 z=ZL/Z0;
12 disp(z,'Normalized load impedance:');
13
```


Figure 1.13: Microwave line

```
Scilab 5.4.1 Console

Phase velocity:

333333333.

m/s

Dielectric constant:

81.

-->
```

Figure 1.14: EM Plane

```
14 //From chart
15 zin=0.4+(%i*0.55);
16 ZINN=ZO*zin;
17 disp('ohm',ZINN,'Normalized impedance:');
```

Scilab code Exa 1.16 EM Plane

```
1 // Page Number: 42
2 // Example 1.16
```

```
3 clc;
4 //From given wave equation we can see
5 w=1D+9; //rad/sec
6 bet=30; //rad/m
7 c=3D+8; //m/s
8 u0=1; //let
9 e0=1/(9D+16);
10
11 vp=w/bet; //m/sec
12 disp('m/s',vp,'Phase velocity:');
13
14 e=1/(vp^2*u0);
15 er=e/(e0*u0);
16 disp(er,'Dielectric constant:');
```

Scilab code Exa 1.17 Polyethylene

```
1 //Page Number: 42
2 //Example 1.17
3 clc;
4 // Given
5 c=3D+8; //m/s
6 \text{ f=10D+9;} // \text{hz}
7 \text{ er=6};
8 \text{ tandel=} 2D-4;
9
10 vp=c/er; //m/sec
11 disp('m/sec', vp, 'Phase velocity:');
12 al=(\%pi*f*tandel)/vp;//Np/m
13 disp('Np/m',al,'Attenuation constant:');
14
15 //Answer for velocity is calculated wrong in book,
      hence answers dont match for both
```


Figure 1.15: Polyethylene

```
Reflection coefficient:
- 0.1946005
VSWR:
1.4832397
-->
```

Figure 1.16: Electromagnetic wave

Scilab code Exa 1.18 Electromagnetic wave

```
1 //Page Number: 43
2 //Example 1.18
3 clc;
4 //Given
5 er=2.2;
6 n0=377;//ohm
7 n2=n0/sqrt(er);//ohm
8 n1=377;//ohm
```

```
// Reflection coefficient
t=(n2-n1)/(n2+n1);
disp(t, 'Reflection coefficient: ');

// Vswr
// Taking mod of reflection coefficient
t1=-t;
p=(1+t1)/(1-t1);
disp(p, 'VSWR: ');
```

Scilab code Exa 1.19 Range in sea water

```
1 //Page Number: 43
2 //Example 1.19
3 clc;
4 //Given
5 \text{ sig=5;} //\text{mohm/m}
6 er=80*8.85D-12;
7 \text{ eaz} = 0.1;
8 u=1.26D-6;
9
10 az = -\log(0.1);
11 //(i) Range at 25Khz
12 f = 25D + 3; //Khz
13 w=2*\%pi*f; //rad/sec
14 a=w*(sqrt((u*er/2)*(sqrt(sig^2/(w^2*er^2)+1)-1)));
15 z=az/a;/m
16 disp('m',z,'Range at 25khz:');
17
18 //(ii) Range at 25Mhz
19 f1 = 25D + 6; //Mhz
20 w1=2*%pi*f1; //rad/sec
21 a1=w1*(sqrt((u*er/2)*(sqrt(sig^2/(w1^2*er^2)+1)-1)))
```

```
Scilab 5.4.1 Console

Range at 25khz:

3.2734469

m

Range at 25Mhz:

0.1046719

m

-->
```

Figure 1.17: Range in sea water

```
;
22 z1=az/a1;//m
23 disp('m',z1,'Range at 25Mhz:');
```

Chapter 2

Waveguides

Scilab code Exa 2.1 Dominant mode

```
1 //Page Number:91
2 //Example 2.1
3 clc;
4 // Given,
6 a=6; //cm
7 b=4; //cm
8 d=4.47; //cm
9 c = 3D + 8; //m/s
10 lamc=2*a;
11 lamg=2*d;
12
13 //Signal wavelength
14 lam=lamg*lamc/(sqrt(lamg^2+lamc^2));
15 lam=lam/100; //m
16 f=c/lam;
17 disp('Ghz',f/1D+9,'Signal frequency of dominant mode
     : ');
```

```
Scilab 5.4.1 Console

Signal frequency of dominant mode:

4.1845853

Ghz
-->
```

Figure 2.1: Dominant mode

```
Scilah 5.4.1 Consola
```

```
Guide wavelength:
5.0390326

cm

Phase constant:
124.69031

rad/m

Phase velocity:
3359355.1

m/s
-->
```

Figure 2.2: Rectangular Waveguide

Scilab code Exa 2.2 Rectangular Waveguide

```
1 //Page Number: 92
2 //Example 2.2
3 clc;
4 //Given,
```

```
5 c=3D+8; //m/s
6 a=2.5; //cm
7 b=5; //cm
8 \text{ lam} = 4.5; //cm
9
10 lamc=2*b;
11
12 // Guide wavelength
13 lamg=lam/(sqrt(1-((lam/lamc)^2)));
14 disp('cm', lamg, 'Guide wavelength:');
15
16 //Phase constant
17 bet=(2*%pi)/lamg;
18 bet=bet*100; // \operatorname{rad}/m
19 disp('rad/m', bet, 'Phase constant:');
20
21 //Phase velocity
22 w = (2*\%pi*c)/lam;
23 \text{ vp=w/bet};
24 disp('m/s',vp,'Phase velocity:');
```

Scilab code Exa 2.3 Rectangular Waveguide

```
1 //Page Number: 92
2 //Example 2.3
3 clc;
4 //Given,
5
6 c=3D+8; //m/s
7 a=4; //cm
8 b=2; //cm
9 f=10D+9; //Hz
10 m=1;
```

```
Scilab 5.4.1 Console

Cut-off wavelength:
3.5777088

cm

Wave impedance:
205.40827

ohm
-->
```

Figure 2.3: Rectangular Waveguide

Scilab code Exa 2.4 Wider dimension

```
//Page Number: 93
//Example 2.4
clc;
//Given,
c=3D+8; //m/s
f=10D+9; //Hz
zte=410; //ohm
//Wider dimension
lam=c/f;//m
lam=lam*100; //cm
a=3/(2*(sqrt(1-(120*%pi/zte)^2)));
disp('cm',a,'Wider dimension:');
```


Figure 2.4: Wider dimension

Scilab 5.4.1 Console

```
TE10 mode
Cut-off wavelength:
   6.
Cm.
Cutoff frequency:
   3.3333333
Ghz
TE20 mode
Cut-off wavelength:
   3.
cm
Cutoff frequency:
   6.6666667
Ghz
TE11 mode
                        50
Cut-off wavelength:
   2.6832816
```

Cm.

Scilab code Exa 2.5 Rectangular waveguide

```
1 //Page Number: 93
2 //Example 2.5
3 clc;
4 // Given,
5 c=3D+8; //m/s
6 a=3.0; //cm
7 b=1.5; //cm
8 mur=1;
9 \text{ er} = 2.25;
10 x=mur*er;
11
12 //(i) Cutoff wavelength and frequencuy
13 disp('TE10 mode');
14 \text{ m} 1 = 1;
15 \quad n1=0;
16 lamc10=2/sqrt((m1/a)^2+(n1/b)^2);
17 disp('cm', lamc10, 'Cut-off wavelength:');
18 lamc10=lamc10/100;
19 f10=c/(lamc10*sqrt(x));
20 disp('Ghz',f10/1D+9,'Cutoff frequency:');
21
22 disp('TE20 mode');
23 \text{ m} 2 = 2;
24 n2=0;
25 \ lamc20 = 2/sqrt((m2/a)^2 + (n2/b)^2);
26 disp('cm',lamc20,'Cut-off wavelength:');
27 lamc20=lamc20/100;
28 f20=c/(lamc20*sqrt(x));
29 disp('Ghz',f20/1D+9,'Cutoff frequency:');
30
31 disp('TE11 mode');
32 \text{ m} 3 = 1;
```

```
33 \quad n3=1;
34 \ lamc11=2/sqrt((m3/a)^2+(n3/b)^2);
35 disp('cm',lamc11,'Cut-off wavelength:');
36 lamc11=lamc11/100;
37 f11=c/(lamc11*sqrt(x));
38 disp('Ghz',f11/1D+9,'Cutoff frequency:');
39
40 //(ii) lambg and Z0
41 f = 4D + 9; //Hz
42 lam=c/f;
43 lamg=lam/(sqrt(x-((lam/lamc10)^2)));
44 disp('cm', lamg*100, 'Guide wavelength:');
45
46 fc=3.33D+9; //Hz
47 Z0=(120*\%pi*(1/sqrt(x))*(b/a))/sqrt(1-((fc/f)^2));
48 disp('ohm', round(ZO), 'Impedance:');
```

Scilab code Exa 2.7 Rectangular waveguide

```
1 //Page Number: 95
2 //Example 2.5
3 clc;
4 //Given,
5 c=3D+8; //m/s
6 a=4; //cm
7 b=2; //cm
8
9 //(i) Mode
10 lamc=2*a; //cm
11 lamcm=lamc/100; //m
12 fc=c/lamcm;
13 //20% above fc
14 f=1.2*fc; //Hz
```

```
Since guide is operating at

3.750D+09

Hz

Hence mode of operation is TE10

Guide wavelength:

12.060454

cm

Phase velocity:

5.427D+08

m/s

Group velocity:

1658312.4

m/s

-->
```

Figure 2.6: Rectangular waveguide

```
15
16 // Operating wavelength
17 lam1=c/f; //cm
18
19 //For TE10 mode
20 lamc10=2*b; //cm
21 \ lamcm10 = lamc10 / 100; //m
22 \text{ fc10=c/lamcm10};
23 disp('Hence mode of operation is TE10', 'Hz', fc,'
      Since guide is operating at');
24
25 //(ii)Guide wavelength
26 lamm1=lam1*100;//cm
27 lamg=lamm1/(sqrt(1-(lamm1/lamc)^2));
28 disp('cm', lamg, 'Guide wavelength:');
29
30 //(iii) Phase velocity
31 vp=f*lamg;
32 disp('m/s', vp/100, 'Phase velocity:');
33
34 //(iii) Group velocity
35 \text{ vg=c}^2/\text{vp};
36 disp('m/s', vg, 'Group velocity:');
```

Scilab code Exa 2.8 Lossless Rectangular Waveguide

```
1 // Page Number: 96
2 // Example 2.8
3 clc;
4 // Given,
5 c=3D+8; //m/s
6 a=7; //cm
7 b=3.5; //cm
```

```
Average power transmitted:

32.994372

W
Peak electric field:

5.3868362

kV/m
-->
```

Figure 2.7: Lossless Rectangular Waveguide

```
8 f=3D+9; //Hz
9 h0=10; //amp/m
10
11 //Wave impedance
12 \quad lamc = 2*a;
13 lam=c/f;//m
14 lam=lam*100; //cm
15 lamg=lam/sqrt(1-(lam/lamc)^2); //cm
16 z0=377*lamg/h0; //ohm
17
18 a1=a/100; //m
19 b1=b/100; //m
20 // Average power transmitted
21 p=(z0*h0*h0*a1*b1)/4;
22 disp('W',p,'Average power transmitted:');
23
24 //Peak electric field
25 \text{ e0=z0*h0};
26 disp('kV/m', e0/1000, 'Peak electric field:');
27
28 //Answer for p is given as 28.3 W but it should be
      32.99W
```

Scilab code Exa 2.9 Dimensions

```
1 //Page Number: 96
2 //Example 2.9
3 clc;
4 //Given,
5 c=3D+8; //m/s
6 fc=3D+9; //Hz
7
8 //Cutoff wavelength
```


Figure 2.8: Dimensions

```
9 lamc=c/fc;
10 a=lamc/2;//m
11 a=a*100;//cm
12 disp('Dimensions:');
13 disp('cm',a,'a:');
14 b=a/2; //cm
15 disp('cm',b,'b:');
```

Scilab code Exa 2.10 Rectangular Waveguide

```
1 //Page Number:
2 //Example 2.10
3 clc;
4 // Given,
6 c=3D+8; //m/s
7 a=3; //cm
8 a1=a/100; /m
9 b=2; //cm
10 b1=b/100; //m
11 f = 7.5D + 9; //HZ
12 p=5D+3; //W
13
14 mu = \%pi * 4D - 7;
15 \ w=2*\%pi*f;
16 bet=sqrt(((w/c)^2)-((%pi/a1)^2));
17 // Charecteristic impedance
18 	 z0 = w*mu*2*b/(bet*a);
19 disp('ohm', z0, 'Charecteristic impedance:');
20
21 //Peak electric field
22 e0=4*w*mu*p/(bet*a*b);
23 disp('V/m',e0,'Peak electric field:');
```


Figure 2.9: Rectangular Waveguide

```
24
25 //Maximum voltage
26 v0=e0*b1;
27 disp('kV',v0/1000, 'Maximum voltage:');
28
29 //Answer for v0 is given as 3.172 kV it should be 33.71 kV
```

Scilab code Exa 2.14 Waveguide

```
1 //Page Number: 99
2 //Example 2.14
3 clc;
4 // Given
5 c=3D+8; //m/s
6 a=1.5; //cm
7 a1=a/100; //m
8 b=0.8; //cm
9 b1=b/100; /m
10 mu=1/c*c;
11 e=4;
12 \text{ w=\%pi*1D+11};
13 n=377;
14
15 //(i) Frequency of operation
16 f=w/(2*\%pi);
17 f1=f/1D+9; //ghz
18 disp('Ghz',f1,'Frequency of operation:');
19
20 //(ii) Cutt off frequency
21 fc=(c*sqrt((1/a1)^2+(3/b1)^2))/(2*sqrt(e));
22 fc1=fc/1D+9; //ghz
23 disp('Ghz',fc1,'Cut off frequency:');
```

Scilab 5.4.1 Console

```
Frequency of operation:
   50.
Ghz
Cut off frequency:
   28.565987
Ghz
Phase constant:
   1718.9278
rad/m
Propogation constant:
   1718.92781
rad/s
Intrinsic wave impedance:
ZTE13
   229.67426
Ohm
ZTM13
   154.70715
Ohm
-->
```

Figure 2.10: Waveguide

```
24
25 //(iii) Phase constant
26 bet=(w*sqrt(e)*sqrt(1-(fc/f)^2))/(c);
27 disp('rad/m',bet,'Phase constant:');
28
29 //(iv) Propogation constant
30 gam=%i*bet;
31 disp('rad/s',gam,'Propogation constant:');
32
33 //(v) Intrensic wave impedance
34 zte=(n/sqrt(e))/sqrt(1-(fc/f)^2);
35 ztm=(n/sqrt(e))*sqrt(1-(fc/f)^2);
36 disp('Ohm',ztm,'ZTM13','Ohm',zte,'ZTE13','Intrinsic wave impedance:');
```

Scilab code Exa 2.17 Air filled Rectangular Waveguide

```
1 //Page Number: 103
2 //Example 2.17
3 clc;
4 //Given
5 a=2; //cm
6 \text{ a1=1/100; } /\text{m}
7 b=1; //cm
8 b1=b/100; /m
9 p=10D-3; //W
10 c=3D+8; //m/s
11 f0=10D+9; //Hz
12
13 //Peak value of electric field
14 fc=c/(2*a);
15 E02=(4*p*377)/(a1*b1*sqrt(1-(fc/f0)^2));
16 E0 = sqrt(E02);
```

```
Peak value of electric field:

388.33522

V/m

Maximum power transmitted:

2340.

kW
-->
```

Figure 2.11: Air filled Rectangular Waveguide

```
disp('V/m',E0,'Peak value of electric field:');

//Maximum power transmitted
Ed=3D+6; //V/m
Pt=2.6D+13*(Ed/f0)^2;
disp('kW',Pt/1000,'Maximum power transmitted:');
//Answer is given as 2300kW but it is 2340kW
```

Scilab code Exa 2.18 Rectangular Waveguide

```
1 //Page Number: 104
2 //Example 2.18
3 clc;
4 // Given
5 f = 5D + 9; //Hz
6 c=3D+8; //m/s
7 a=7.5; //cm
8 a1=a/100; /m
9 b=3.5; //cm
10 b1=b/100; //m
11 lam=c/f;
12 lamm=lam*100; //m
13
14 disp('TE10 mode');
15 \ lamc10 = 2 * a;
16 bet10=(2*%pi*sqrt(((lamc10/lamm)^2)-1))/lamc10;
17 disp('rad/cm', bet10, 'Propogation constant:');
18 vp10 = (2*\%pi*f)/bet10;
19 disp('m/s', vp10/100, 'Phase velocity:');
20
21 disp('TE01 mode');
22 \quad lamc01 = 2*b;
```

```
Scilab 5.4.1 Console
TE10 mode
Propogation constant:
   0.9597724
rad/cm
Phase velocity:
   3.273D+08
m/s
TE01 mode
Propogation constant:
   0.5393892
rad/cm
Phase velocity:
   5.824D+08
m/s
TE11 mode
Propogation constant:
                          65
   0.3398251
rad/cm
Phase velocity:
```

```
23 bet01=(2*\%pi*sqrt(((lamc01/lamm)^2)-1))/lamc01;
24 disp('rad/cm', bet01, 'Propogation constant:');
25 \text{ vp01}=(2*\%\text{pi*f})/\text{bet01};
26 disp('m/s', vp01/100, 'Phase velocity:');
27
28 disp('TE11 mode');
29 lamc11=(2*a*b)/sqrt((a*a)+(b*b));
30 bet11=(2*%pi*sqrt(((lamc11/lamm)^2)-1))/lamc11;
31 disp('rad/cm', bet11, 'Propogation constant:');
32 \text{ vp11}=(2*\%pi*f)/bet11;
33 disp('m/s', vp11/100, 'Phase velocity:');
34
35 disp('TE02 mode');
36 \quad lamc02=b;
37 bet02=(2*\%pi*sqrt(((lamc02/lamm)^2)-1))/lamc02;
38 disp('rad/cm', bet02, 'Propogation constant:');
39 disp('As beta is imaginary, mode gets attenuated');
40 alp=(2*%pi*sqrt(1-((lamc02/lamm)^2)))/lamc02;
41 disp('Np/m',alp,'Propogation constant alpha:');
```

Scilab code Exa 2.19 Rectangular Waveguide

```
1 //Page Number: 105
2 //Example 2.19
3 clc;
4 //Given
5 c=3D+8; //m/s
6 a=2.29; //cm
7 b=1.02; //cm
8 a1=a/100; //m
9 b1=b/100; //m
10 f=6D+9; //Hz
11 e=1;
```

```
Attenuation constant:

478.04204

dB/m

-->
```

Figure 2.13: Rectangular Waveguide

```
12 mu=1/(c^2);
13
14 //Cut off frequency
15 lamc=2*a1;
16 fc=c/lamc;
17 w=2*%pi*fc;
18
19 //Attenuation constant
20 a=(w*sqrt(1-((f/fc)^2)))/c;;
21 adb=-20*log10(exp(-a));
22 disp('dB/m',adb,'Attenuation constant:');
```

Scilab code Exa 2.20 Ratio of cross section

```
1 //Page Number: 105
2 //Example 2.20
3 clc;
4 //Given,
5 a1=1.84;
6 a2=%pi;
7
8 r=2*%pi*(a1/a2)^2;
9 disp(r, 'Cross section ratio:');
```

Scilab code Exa 2.21 Rectangular Waveguide

```
1 // Page Number: 106
2 // Example 2.21
3 clc;
```


Figure 2.14: Ratio of cross section

```
Cut off frequency for mode TE10:
   9.7202137
GHz
Cut off frequency at mode TE20:
   19.440427
Ghz
Cut off frequency at mode TE01:
   24.187509
Ghz
Attenuation constant:
   0.7165577
dB/m
-->
```

Figure 2.15: Rectangular Waveguide

```
4 //Given
5 c=3D+8; //m/s
6 f = 15D + 9; //hz
7 a=1.07; //cm
8 a1=a/100; /m
9 b=0.43; //cm
10 b1=b/100; //m
11 \text{ er} = 2.08;
12 tandel=0.0004;
13 lam=c/f;
14
15
16 //(i) Cut off frequency
17 m1=1;
18 n1=0;
19 fc10=(c/(2*%pi*sqrt(er))*sqrt((m1*%pi/a1)^2+(n1*%pi/
      b1)^2));
20 disp('GHz',fc10/10^9,'Cut off frequency for mode
      TE10: ');
21
22 \text{ m} 2 = 2;
23 n2=0;
24 fc20=(c/(2*%pi*sqrt(er))*sqrt((m2*%pi/a1)^2+(n2*%pi/
      b1)^2));
25 disp('Ghz',fc20/10^9,'Cut off frequency at mode TE20
26
27 \text{ m3=0};
28 \quad n3=1;
29 fc01=(c/(2*%pi*sqrt(er))*sqrt((m3*%pi/a1)^2+(n3*%pi/
      b1)^2));
30 disp('Ghz',fc01/10^9,'Cut off frequency at mode TE01
      : ');
31
32 // Dielectric attenuation constant
33 ad=(%pi*tandel)/(lam*sqrt(1-(fc10/f)^2));
34 \text{ adb} = -20*\log 10(\exp(-ad));
35 disp('dB/m',adb,'Attenuation constant:');
```

```
Conductor attenuation constant:

0.1123913

dB/m
-->
```

Figure 2.16: Rectangular Waveguide

Scilab code Exa 2.22 Rectangular Waveguide

```
1 //Page Number: 106
2 //Example 2.22
3 clc;
4 //Given
```

```
5 c=3D+8; //m/s
6 a=2.286; /cm
7 a1=a/100; //m
8 b=1.016; //cm
9 b1=b/100; //m
10 sig=5.8D+7; //s/m
11 f=9.6D+9; //H_Z
12
13 w = 2 * \%pi * f;
14 mu = \%pi * 4D - 7;
15 \text{ et} = 377;
16
17 lam=c/f;
18 \ lamc = 2*a1;
19 r=lam/lamc;
20
21 Rs=sqrt((w*mu)/(2*sig));
22 ac=(Rs*(1+(2*(b1/a1)*r*r)))/(et*b1*sqrt(1-(r^2)));
23 adb=-20*log10(exp(-ac));
24 disp('dB/m',adb,'Conductor attenuation constant:');
```

Scilab code Exa 2.23 Circular waveguide

```
1 //Page Number: 107
2 //Example 2.23
3 clc;
4 //Given
5 c=3D+8; //m/s
6 f=9D+9; //hz
7 a=5; //cm
8 a1=a/100; //m
9 e=1;
10 mu=1/(c*c);
```


Figure 2.17: Circular waveguide

```
11 p11=1.841;
12
13 fc=(p11*c)/(2*%pi*a1);
14 //Maximum power transmitted
15 pmax=1790*(a1*a1)*sqrt(1-((fc/f)^2));
16 disp('kW',pmax,'Maximum power transmitted:');
```

Scilab code Exa 2.24 Air filled circular waveguide

```
1 //Page Number: 108
2 //Example 2.26
3 clc;
4 // Given
5 c = 3D + 8; //m/s
6 \text{ a=5}; //\text{cm}
7 a1=a/100; //m
8 f = 3D + 9; //hz
9 p11=1.841;
10 e=1;
11 w=2*\%pi*f;
12
13 //(i) Cut off frequency
14 fc=(p11*c)/(2*\%pi*a1);
15 disp('Ghz',fc/10^9,'Cut off frequency:');
16
17 //(ii) Guide wavelength
18 bet=sqrt(((w*w)/(c*c))-((p11/a1)^2));
19 lamg = (2*\%pi)/bet;
20 lamg1=lamg*100; //cm
21 disp('cm', lamg1, 'Guide wavelength:');
22
23 //(iii) Wave impedance
24 \text{ zte} = (w*\%pi*4D-7)/bet;
```

Scilab 5.4.1 Console	
Cut off frequency:	
1.7580255	
Ghz	
Guide wavelength:	
12.341034	
cm	
Wave impedance:	
465.	B
ohm	
>	

Figure 2.18: Air filled circular waveguide

```
25 disp('ohm',round(zte),'Wave impedance:');
```

Scilab code Exa 2.25 Air filled rectangular waveguide

```
1 //Page Number:108
2 //Example 2.25
3 clc;
4 //Given
5 c=3D+8; //m/s
6 p01=2.405;
7 a=1/100;; //cm
8 p11=1.841;
9
10 fc01=((c*p01)/(2*%pi*a));
11 fc11=((c*p11)/(2*%pi*a));
12 bw=fc01-fc11;
13 disp('Ghz', bw/10^9, 'Bandwidth:');
```

Scilab code Exa 2.26 Rectangular Waveguide

```
1 //Page Number: 109
2 //Example 2.26
3 clc;
4 //Given
5 c=3D+8; //m/s
6 a=2.286; //cm
7 f=5D+9; //Hz
8 er=2.25;
9 tandel=1D-3;
```


Figure 2.19: Air filled rectangular waveguide

```
Maximum value of dielectric constant:
   6.8889027
Minimum value of dielectric constant:
   1.7222257
Guide wavelength:
   8.2589934
cm
ad:
   0.1621650
Np/m
Beta:
   0.7607689
rad/cm
Phase velocity:
   4.129D+08
m/s
                            79
```

Figure 2.20: Rectangular Waveguide

```
10 w = 2 * \%pi * f;
11 mu = 4D - 7;
12 sig=5.8D+7; //s/m
13
14 lamc=2*a;
15 lamm=c/f;//m
16 lam=lamm*100; //cm
17
18 ermax = (lam/a)^2;
19 disp(ermax, 'Maximum value of dielectric constant: ');
20 ermin=(lam/(2*a))^2;
21 disp(ermin, 'Minimum value of dielectric constant: ');
22
23 //Guide wavelength
24 lam1=lam/sqrt(er);//cm
25 lamg=lam1/sqrt(1-(lam1/lamc)^2);
26 disp('cm', lamg, 'Guide wavelength:');
27
28 lamm1=lam1/100;
29 ad=(\pi)/(2mm1)*(tandel/sqrt(1-(lam1/lamc)^2));
30 disp('Np/m',ad,'ad:');
31 \text{ bet=}2*\%\text{pi/lamg};
32 disp('rad/cm', bet, 'Beta:');
33 \text{ vp=w/(bet*100)};
34 disp('m/s', vp, 'Phase velocity:');
```

Scilab code Exa 2.27 Circular Waveguide

```
1 //Page Number: 110
2 //Example 2.27
3 clc;
4 //Given
5 c=3D+8; //m/s
```

```
Cut off frequencies for TE11 mode:
   12.189714
Ghz
Cut off frequencies for TM01 mode:
   15.924096
Ghz
Dielectric attenuation:
   1.4936786
dB/m
Conductor attenuation:
   0.1168103
dB/m
Total attenuation:
   1.6104889
dB/m
Total attenuation in 30 cm line:
   0.4831467
dB
->
                           81
```

Figure 2.21: Circular Waveguide

```
6 a=0.5; //cm
7 a1=a/100; //m
8 f = 14D + 9; //Hz
9 \text{ er} = 2.08;
10 p11=1.841;
11 p01=2.405;
12 \quad tandel=4D-4;
13 \text{ w}=2*\%\text{pi}*f;
14 u = \%pi * 4D - 7;
15 \text{ sig} = 4.1D + 7;
16 \text{ et} = 377;
17
18 //(i) Cut off frequencies
19 fcte11=p11*c/(2*%pi*a1*sqrt(er));
20 fctm01=p01*c/(2*\%pi*a1*sqrt(er));
21 disp('Ghz',fcte11/10^9,'Cut off frequencies for TE11
        mode: ');
22 disp('Ghz',fctm01/10^9,'Cut off frequencies for TM01
        mode: ');
23
24 //(ii) Overall noise
25 // Dielectric attenuation
26 ad=(\%pi*sqrt(er)*tandel*f)/(c*sqrt(1-((fcte11/f)^2))
      );
27 disp('dB/m',ad*8.686, 'Dielectric attenuation:');
28
29 // Conductor attenuation
30 k = (2 * \%pi * f * sqrt(er))/c;
31 bet=sqrt((k*k)-((p11/a1)^2));
32 //Surface resistance
33 rs = sqrt((w*u)/(2*sig));
34 \text{ kc2=(p11/a1)^2};
35
36 \text{ ac}=(\text{rs}*(\text{kc}2-((\text{k}^2)/((\text{p}11^2)-1))))/(\text{a}1*\text{k}*\text{e}t*\text{bet});
37 disp('dB/m',ac*8.686, 'Conductor attenuation:');
38
39 // Total attenuation
40 a=(ac+ad)*8.686;
```

Scilab code Exa 2.28 Rectangular Waveguide

```
1 //Page Number: 112
2 //Example 2.28
3 clc;
4 // Given
5 c=3D+8; //m/s
6 \text{ er} = 9;
7 a=7; //cm
8 a1=a/100; /m
9 b=3.5; //cm
10 b1=b/100; //m
11 ur=1;
12 f1=2D+9; //Hz
13
14 //(i) Cut off frequency
15 \quad lamc = 2*a1;
16 fc=c/(lamc*sqrt(ur*er));
17 disp('Ghz',fc/10^9, 'Cut off frequency:');
18
19 //(ii) Phase velocity
20 lam=c/f1; //m
21 lam1 = lam * 100; //cm
22 \quad lamc1=lamc*100; //cm
23 lamg=lam1/(sqrt((ur*er)-((lamc1/lam1)^2))); //cm
24 \quad lamg1=lamg/100; //m
```

```
Cut off frequency:
   0.7142857
Ghz
Phase velocity:
   1.052D+08
m/s
Guide wavelength:
   5.2610892
cm
-->
```

Figure 2.22: Rectangular Waveguide

```
25  vp=f1*lamg1;
26  disp('m/s',vp,'Phase velocity:');
27
28  ///(iii)Guide wavelength
29  disp('cm',lamg,'Guide wavelength:');
```

Scilab code Exa 2.29 Circular waveguide

```
1 //Page Number: 112
2 //Example 2.29
3 clc;
4 //Given
5 c=3D+8; //m/s
6 fc=9D+9; //Hz
7 \text{ er=1};
8 \text{ er1}=4;
9 p11=1.841;
10
11 //(i) air filled
12 a=(p11*c)/(2*%pi*fc*sqrt(er));
13 disp('cm',a*100, 'Inside diameter if air filled:');
14 //(ii) dielectric field
15 a1=(p11*c)/(2*%pi*fc*sqrt(er1));
16 disp('cm',a1*100,'Inside diameter if dielectric
      filled: ');
17
18 //Answers are calculated wrong in book
```

Scilab code Exa 2.30 Cutoff frequencies

```
Inside diameter if air filled:

0.9766808

cm

Inside diameter if dielectric filled:

0.4883404

cm

-->
```

Figure 2.23: Circular waveguide

```
Cut off frequency for mode TMO:

0.

Ghz

Cut off frequency at mode TE1:

60.24145

Ghz

Cut off frequency at mode TM1:

120.4829

Ghz

-->
```

Figure 2.24: Cutoff frequencies

```
1 //Page Number: 113
2 //Example 2.30
3 clc;
4 //Given
5 c=3D+8; //m/s
6 \text{ er} = 2.55;
7 d=1; /mm
8 d1=d/1000; //m
9
10 //Cut off frequencies
11 fctm0=0;
12 disp('Ghz',fctm0,'Cut off frequency for mode TM0:');
13
14 fcte1=c/(4*d1*sqrt(er-1));
15 disp('Ghz',fcte1/10^9,'Cut off frequency at mode TE1
      : ');
16
17 fctm1=c/(2*d1*sqrt(er-1));
18 disp('Ghz',fctm1/10^9,'Cut off frequency at mode TM1
      : ');
19
20
21 //Answers are calculated wrong in book
```

Scilab code Exa 2.31 Dielectric constant

```
1 //Page Number: 113
2 //Example 2.31
3 clc;
4 //Given,
5 c=3D+8; //m/s
6 f=15D+9; //hz
7 d=5; //mm
```


Figure 2.25: Dielectric constant

```
8 d1=d/1000; //m
9
10 //Cut off frequency
11 fc=0.8*f;
12 // Dielctric constant
13 er=(c/(2*d1*fc))^2+1;
14 disp(er, 'Dielectric constant: ');
```

Chapter 3

Microwave Network Analysis

Scilab code Exa 3.4 Scattering matrix

```
1 //Page Number: 142
2 //Example 3.4
3 clc;
4 //Given
5
6 [z]=[4 2;2 4];
7 [I]=[1 0;0 1];
8
9 //Scattering matrix
10 [s]={[z]-[I]}*inv({[z]+[I]});
11 disp([s], 'Scattering Matrix:');
```

Scilab code Exa 3.5 Network

```
1 //Page Number: 142
```

```
Scattering Matrix:

0.5238095    0.1904762    0.1904762    ->
```

Figure 3.1: Scattering matrix

Scilab 5.4.1 Console

Required Waves:

- 0.0132336 0.0585224i
- 0.0352897 0.1560597i

Figure 3.2: Network

```
2 //Example 3.5
3 clc;
4 // Given
5 P=12.8D-3; //W
6 1=3; /cm
7 lamb=4.2; //cm
8 vswr=2.2;
9 jfi=\%i*4.49;
10
11 / ap
12 ap=sqrt(2*P);
13
14 //Phase shift
15 bl = (2*\%pi*1)/lamb;
16 //bp
17 bp=(ap*(vswr-1))/(vswr+1);
18
19 a=ap*exp(jfi);
20 b=bp*exp(jfi);
21 disp(a,b, 'Required Waves: ');
```

Scilab code Exa 3.6 Microwave network

```
1 //Page Number: 143
2 //Example 3.6
3 clc;
4 //Given
5 S11=0.10;
6 S12=0.90;
7 A12=-45;
8 S21=0.90;
9 A21=45;
10 S22=0.3;
```

```
Scilab 5.4:1 Console

Network is not reciprocal

Network is not lossless

Return Loss:

5.6286888

dB
-->
```

Figure 3.3: Microwave network

```
11
12 //(i) Network is reciprocal
13 if(A12 == A21)
       disp('Network is reciprocal');
14
15 else
16
       disp('Network is not reciprocal');
17
18 end
19
20 //(ii) Network is lossles
21 x = (S11^2) + (S12^2);
22 if(x==1)
23
       disp('Network is lossless');
24 else
25
       disp('Network is not lossless');
26
27 \text{ end}
28
29 //(iii)Return loss
30 T=S11-((S12*S21)/(1+S22));
31 Tm = -T; //mod of T
32 L = -20 * log 10 (Tm);
33 disp('dB',L,'Return Loss:');
```

Scilab code Exa 3.12 Transistor amplifier circuit

```
1 //Page Number: 163
2 //Example 3.12
3 clc;
4 //Given
5 S11=0.6;
6 S12=0.045;
7 S21=2.5;
```

```
Transducer Gain:

13.553237

Available power Gain:

14.291431

Power Gain:

16.802604

Power available at source:

0.5

W

Power available at input:

0.3481481

W

Input VSWR:

3.4552677

Output VSWR:

1.3373704

-->
```

Figure 3.4: Transistor amplifier circuit

```
8 S22=0.50;
9 TS = 0.5;
10 TL=0.4;
11 Z0=50; //ohm
12 Vrms=10; //V
13
14 //(i) Gain Parameters
15 //(i) Reflection coefficients of input and output
16 Tin=S11+((S12*S21*TL)/(1-(S22*TL)));
17 Tout=S22+((S12*S21*TS)/(1-(S22*TS)));
18
19 //Transducer Gain
20 x=(1-(TS)^2)/((1-(S11*TS))^2);
21 y = (S21 * S21);
z=(1-(TL)^2)/((1-(Tout*TL))^2);
23 GT = x * y * z;
24 disp(GT, 'Transducer Gain:');
25
26 // Available Power Gain
27 z1=1-(Tout)^2;
28 GA = (x*y)/z1;
29 disp(GA, 'Available power Gain: ');
30
31 //Power Gain
32 z2=1-(Tin)^2;
33 GP = (x*y)/z2;
34 disp(GP, 'Power Gain:');
35
36 //(ii) Power levels
37 //Power available at source
38 Pavs = (sqrt(2) * Vrms)^2/(8*Z0);
39 disp('W', Pavs, 'Power available at source:');
40
41 Pl=9.4*Pavs;
42 //Power available at input
43 Pin=P1/13.5;
44 disp('W', Pin, 'Power available at input:');
45
```

```
46  //(iii) VSWRs
47  M1=Pin/Pavs;
48  M2=Pl/(9.6*Pavs);
49
50  Tin1=sqrt(1-M1);
51  Tout1=sqrt(1-M2);
52
53  vswrin=(1+Tin1)/(1-Tin1);
54  disp(vswrin, 'Input VSWR: ');
55  vswrout=(1+Tout1)/(1-Tout1);
56  disp(vswrout, 'Output VSWR: ');
57
58  // Calculations for gain are done wrong in book, hence answers dont match
```

Chapter 4

Microwave Resonators and Waveguide Components

Scilab code Exa 4.1 Rectangular cavity resonator

```
1 // Page Number: 193
\frac{2}{\sqrt{\text{Example } 4.1}}
3 clc;
4 // Given
5 a=5; //cm
6 a1=a/100; //m
7 b=2; //cm
8 \text{ b1=b/100; //m}
9 c=15; //cm
10 c1=c/100;/m
11
12 //(i) Air filled cavity
13 m=1;
14 n = 0;
15 p=1;
16 c=3D+8; // for air
17 fr=(1/2)*c*sqrt((m/a1)^2+(n/b1)^2+(p/c1)^2); //hz
```

```
Resonant frequency for an air filled cavity:

3.1622777

Ghz

Resonant frequency for dielectric cavity:

1.9764235

Ghz

-->
```

Figure 4.1: Rectangular cavity resonator

Figure 4.2: Rectangulr resonator

Scilab code Exa 4.2 Rectangulr resonator

```
1 //Page Number: 193
2 //Example 4.2
3 clc;
4 //Given
5 a=0.38; //cm
6 a1=a/100; //m
7 b=0.76; /cm
8 b1=b/100;/m
9 f = 50D + 9;
10 c = 3D + 8;
11
12 //Length for TE102
13 m=1;
14 n=0;
15 p=2;
16 l=1/sqrt((f/c)^2-(1/(4*b1^2)));//m
17 disp('cm', 1*100, 'Length c:');
```

Scilab code Exa 4.3 X band resonator

```
1 //Page Number: 194
2 //Example 4.3
3 clc;
4 //Given
5 c=3D+8; //m/s
6 a=2.286; //cm
7 a1=a/100; //m
8 b=1.024; //cm
9 b1=b/100; //m
10 f=10D+9; //hz
11 sig=6D+7;
12 u=4D-7*%pi;
13 w=2*%pi*f;
```

```
Schotest cavity length:

1.987769

cm

Ow of the resonator operating in TE101 mode

7990.3243

-->
```

Figure 4.3: X band resonator

```
14 \text{ eet} = 377;
15
16 //Shortest cavity length
17 lamc=2*a1; //m
18 fc=c/lamc; //hz
19 lam=c/f; //m
20 lamg=lam/sqrt(1-(fc/f)^2);//m
21 \text{ sc=lamg/2;}/m
22 disp('cm', sc*100, 'Shortest cavity length:');
23
24 //Qw of the resonator operating in TE101 mode
25 rs = sqrt((w*u)/(2*sig)); //ohm
26 \quad lamr=c/f;
27 x = (((a1*b1)/(sc^2)) + ((sc^2+a1^2)/(2*sc*a1)) + (b1*sc/a1) + (b
                                a1^2));
28 \text{ qw} = (2*\%\text{pi}*\text{eet}*\text{a1}*\text{b1}*\text{sc})/(\text{rs}*(\text{lamr}^3)*\text{x});
29 disp(qw, 'Qw of the resonator operating in TE101 mode
                                  <sup>'</sup>);
```

Scilab code Exa 4.4 Rectangular resonator

```
1 //Page Number: 195
2 //Example 4.4
3 clc;
4 //Given
5 c=3D+8; //m/s
6 a=4.8; //cm
7 a1=a/100; //m
8 b=2.2; //cm
9 b1=b/100; //m
10 f=5D+9; //hz
11 er=2.25;
12 tandel=4D-4;
```

```
Length of resonator at p=1:
    2.2000764

cm

Length of resonator at p=2:
    4.4001528

cm

Q for TE101 mode:
    1925.6122
-->
```

Figure 4.4: Rectangular resonator

```
13 sig=5.813D+7;
14 oneby=3D+8;
15 u=4D-7*\%pi;
16 \ w = 2 * \%pi * f;
17 \text{ eet} = 377;
18
19 //Length at p=1
20 m = 1;
21 n = 0;
22 p = 1;
23 z = (f * 2 * sqrt(er))/c;
24 cp1=p/sqrt((z^2)-((m/a1)^2)-((n/b1)^2));
25 disp('cm',cp1*100,'Length of resonator at p=1:');
26
27 / \text{At p} = 2
28 \text{ cp2=cp1*2};
29 disp('cm',cp2*100,'Length of resonator at p=2:');
30
31 / Qw
32 rs=sqrt((w*u)/(2*sig));//ohm
33 lamr=c/(f*sqrt(er));
34 x = (((a1*b1)/(cp1^2))+((cp1^2+a1^2)/(2*cp1*a1))+(b1*
      cp1/a1^2));
35 \text{ qw} = (2*\%pi*(eet/sqrt(er))*a1*b1*cp1)/(rs*(lamr^3)*x);
36 qd=1/tandel;
37 q = (qw*qd)/(qw+qd);
38 disp(q, 'Q for TE101 mode: ');
```

Scilab code Exa 4.5 Cylindrical resonator

```
1 //Page Number: 196
2 //Example 4.5
3 clc;
```

```
Scilab 5.4.1 Console
TE modes
Resonant frequency for mode TE010:
   10.940294
Ghz
Resonant frequency for mode TE111:
   7.437512
Resonant frequency for mode TE211:
   9.4423009
Ghz
TM modes:
Resonant frequency for mode TM010
   5.7415146
Ghz
resonant frequency for mode TM011:
   8.3045162
Ghz
Resonant frequency for mode TM111:
   10.940294
Ghz
-->
```

Figure 4.5: Cylindrical resonator

```
4 //Given
5 c=3D+8; //m/s
6 a=2; //cm
7 a1=a/100; //m
8 b=2.5; //cm
9 b1=b/100; //m
10
11 disp('TE modes');
12 h01=3.832;
13 fr=(c/(2*\%pi))*sqrt((h01/a1)^2+(\%pi/b1)^2);//hz
14 disp('Ghz',fr/10^9, 'Resonant frequency for mode
      TE010: ');
15
16 h11=1.841;
17 fr1=(c/(2*%pi))*sqrt((h11/a1)^2+(%pi/b1)^2);//hz
18 disp('Ghz',fr1/10^9, 'Resonant frequency for mode
      TE111: ');
19
20 \text{ h21}=3.054;
21 fr2=(c/(2*\%pi))*sqrt((h21/a1)^2+(\%pi/b1)^2);//hz
22 disp('Ghz',fr2/10^9, 'Resonant frequency for mode
      TE211: ');
23
24 disp('TM modes:');
25 \quad 11 = 0;
26 h011=2.405;
27 fr3=(c/(2*\%pi))*sqrt((h011/a1)^2+(\%pi*11/b1)^2);//hz
28 disp('Ghz',fr3/10^9, 'Resonant frequency for mode
      TM010');
29
30 12=1;
31 fr4=(c/(2*\%pi))*sqrt((h011/a1)^2+(\%pi*12/b1)^2);//hz
32 disp('Ghz',fr4/10^9,'resonant frequency for mode
      TM011: ');
33
34 \ 13=1;
35 h111=3.832;
36 \text{ fr5}=(c/(2*\%pi))*sqrt((h111/a1)^2+(\%pi*13/b1)^2);//hz
```

```
Ratio of Qs of cylindrical and rectangular resonators:

1.0828829
-->
```

Figure 4.6: Resonator comparison

```
37 disp('Ghz',fr5/10^9, 'Resonant frequency for mode TM111:');
```

Scilab code Exa 4.6 Resonator comparison

```
1  //Page Number: 196
2  //Example 4.6
3  clc;
4  //Given
5  QTM010=1.202;
6  QTE101=1.11;
7  
8  r=QTM010/QTE101;
9  disp(r, 'Ratio of Qs of cylindrical and rectangular resonators: ');
```

```
Q of resonator:

1931.8192

-->
```

Figure 4.7: Cubical Resonator

Scilab code Exa 4.7 Cubical Resonator

```
1 // Page Number: 197
2 // Example 4.7
3 clc;
4 // Given
5 f=7.07D+9; // hz
6 a=3; //cm
```

```
7 a1=a/100; //m
8 sig=5.8D+7;
9 er=2.25;
10 tandel=4D-4;
11 ur=1;
12 n=377;
13 w=2*%pi*f;
14 u=4D-7*%pi;
15
16 //Q of resonantor
17 rs=sqrt(w*u/(2*sig)); //ohm
18 qw=(0.7419*n)/(rs*sqrt(2.25));
19 qd=1/tandel;
20 q=(qw*qd)/(qw+qd);
21 disp(q,'Q of resonator:');
```

Scilab code Exa 4.8 Rectangular Resonant Cavity

```
1 //Page Number: 198
2 //Example 4.8
3 clc;
4 //Given
5 a=5;//cm
6 a1=a/100;//m
7 b=4;//cm
8 b1=b/100;//m
9 c=10;//cm
10 c1=c/100;//m
11 sig=5.8D+7;
12 u0=4D-7*%pi;
13 er=3;
14 eet=377;
15
```

```
Scilab 5.4.1 Console

Resonant frequency:
    1.9364917

Ghz

Q for TE101 mode:
    10916.466

Q for lossy dielectric:
    2927.3599

-->
```

Figure 4.8: Rectangular Resonant Cavity

```
16 ur=1;
17 \text{ spl} = 3D + 8;
18 \quad tandel=2.5D-4;
19
20 //TE101 mode
21 m = 1;
22 n = 0;
23 p=1;
24 fr=(spl/(2*sqrt(er*ur)))*sqrt((m/a1)^2+(n/b1)^2+(p/
      c1)^2);//hz
25 disp('Ghz',fr/10^9, 'Resonant frequency:');
26
27 w = 2 * \%pi * fr;
28 rs=sqrt((w*u0)/(2*sig));//ohm
29 lamr=spl/(fr*sqrt(er));
x = (((a1*b1)/(c1^2)) + ((c1^2+a1^2)/(2*c1*a1)) + ((b1*c1))
      /a1^2));
31 qw=(2*%pi*(eet/sqrt(er))*a1*b1*c1)/(rs*(lamr^3)*x);
32 disp(qw, 'Q for TE101 mode: ');
33
34 qd=1/tandel;
35 q = (qw*qd)/(qw+qd);
36 disp(q, 'Q for lossy dielectric:');
37
38 // Value of qw is calculated wrong in book as lamr
      comes to be 0.08 not 0.89 m
```

Scilab code Exa 4.9 Rectangular resonator

```
1 // Page Number: 198
2 // Example 4.9
3 clc;
4 // Given
```

```
Range of piston movement:

0.7104251

cm
-->
```

Figure 4.9: Rectangular resonator

```
5 c=3D+8; //m/s
6 a=2.286; //cm
7 a1=a/100; //m
8 b=1.106; //cm
9 b1=b/100;/m
10
11 // \text{For fr } 1 = 9.3D + 9;
12 fr1=9.3D+9; //hz
13 lamr1=c/fr1; //m
14 c1=(2*a1)/sqrt((((2*a1)/lamr1)^2)-1);
15
16 //For fr2=10.2D+9;
17 fr2=10.2D+9; //hz
18 lamr2=c/fr2; //m
19 c2=(2*a1)/sqrt((((2*a1)/lamr2)^2)-1);
20
21 r = c1 - c2;
22 disp('cm',r*100, 'Range of piston movement:');
```

Scilab code Exa 4.10 Cylindrical resonator

```
1 //Page Number: 199
2 //Example 4.10
3 clc;
4 // Given
5 a=3;/cm
6 a1=a/100; //m
7 d=10; //cm
8 d1=d/100; //m
9 df = 2.5D + 6;
10 \text{ er} = 2.25;
11 p11=1.841;
12 c=3D+8; //m/s
13
14 //Resonant frequency
15 fr=(c/2)*(sqrt((p11/a1)^2+(%pi/d1)^2));//hz
16 disp('Ghz',fr/10^9, 'Resonant frequency:');
17
18 //Q without dielectric
19 q0=fr/df;
20 disp(q0, 'Q wirhout dielectric constant:');
21
22 // Q with dielectric
23 fr1=fr/sqrt(er);
24 \text{ qd}=1D+3;
25 q = (q0*qd)/(q0+qd);
26 disp(q, 'Q with dielectric constant:');
```

```
Resonant frequency:

10.341114

Ghz

Q wirhout dielectric constant:

4136.4455

Q with dielectric constant:

805.31284

-->
```

 $Figure \ 4.10: \ Cylindrical \ resonator \\$

```
Radius of resonantor

1.221374

cm

Q of the resonator:

10763.303

-->
```

Figure 4.11: Cylindrical resonantor

Scilab code Exa 4.11 Cylindrical resonantor

```
1 //Page Number: 200
2 //Example 4.11
3 clc;
4 //Given
5 f = 9.375D + 9; //hz
6 \text{ sig} = 5.8D + 7;
7 \text{ eet} = 377;
8 c = 3D + 8; //m/s
9 w = 2 * \%pi * f;
10 r=1.5;
11 u=4D-7*\%pi;
12
13 // Radius
14 a=c/(f*2.62);//m
15 disp('cm',a*100, 'Radius of resonantor');
16
17 //O
18 rs=sqrt((w*u)/(2*sig));//ohm
19 x=1.202*eet;
20 \text{ y=rs*}(1+(1/r));
21 q=x/y;
22 disp(q,'Q of the resonator:');
23
24 //Answer for Q is calculated as 10875 in book but it
       is 10763.303
```

Scilab code Exa 4.12 Cylindrical Resonator

```
Length of resonator:
    5.2730605
cm
Q of resonator:
    2381.0836
-->
```

 ${\bf Figure~4.12:~Cylindrical~Resonator}$

```
1 //Page Number: 215
2 //Example 4.12
3 clc;
4 //Given
5 f = 5D + 9; //hz
6 sig=5.813D+7;
7 \text{ er} = 2.25;
8 \text{ tandel=4D-4};
9 c=3D+8; //m/s
10 h01=3.832;
11 u=4D-7*\%pi;
12
13 //Length of resonator
14 lamr=c/(f*sqrt(er));
15 d=sqrt([{(((2*3.832)^2)+(%pi*%pi))*(lamr*lamr)
      }/(2*2*%pi*%pi)]);
16 disp('cm',d*100,'Length of resonator:');
17
18 //Q of resonator
19 n = (120 * \%pi) / sqrt(er);
20 Rs=sqrt((f*u)/sig);
21 = a = d/2;
22 Qw1=n*[[(h01/a)^2+(%pi/d)^2]^(3/2)];
23 Qw2=2*Rs*[((h01*h01)/(a*a*a))+((2*%pi*%pi)/(d*d*d))
      ];
24 Qw = Qw1/Qw2;
25 Qd=1/tandel;
Q = (Qw * Qd) / (Qw + Qd);
27 disp(Q, 'Q of resonator:');
28
29 //Value of Qw is calculated wrong in the book, it
      should be 50057.91 instead of 53473.8
30 //Hence the value of Q also differs
```

```
Power at port 1:
   75.
mW
Power at port 2:
   25.
mW
Power at port 3:
   50.
mW
-->
                                    Ι
```

Figure 4.13: Lossless plane H tee

Scilab code Exa 4.13 Lossless plane H tee

```
1 //Page Number: 215
2 //Example 4.13
3 clc;
4 // Given
5 p = 100; /mW
6 //As 2 and 3 are matched terminals
7 x = 1/2;
8 y=1/sqrt(2);
9  s=[x -x y; -x 0 y; y y 0];
10
11 //Power delivered
12 / Port 1
13 p1=p*(1-s(1,1)^2);
14 disp('mW',p1,'Power at port 1:');
15
16 // Port2
17 p2=p*s(2,1)^2;
18 disp('mW',p2,'Power at port 2:');
19
20 // Port 3
21 p3=p*s(3,1)^2;
22 disp('mW',p3,'Power at port 3:');
```

Scilab code Exa 4.14 E plane tee

```
1 //Page Number: 216
2 //Example 4.14
3 clc;
4 //Given
5 p=40; //mW
6 //Since port 3 is matched
```

```
Scilab 5.4.1 Console
Power at port 1:
   19.753086
mW
Power at port 2:
   19.834711
mW
                                               Ι
```

Figure 4.14: E plane tee

```
7 x = sqrt(2);
8 s=[1 1 x; 1 1 -x; x -x 0];
9 \text{ r1=40; } //\text{ohm}
10 r2=60; //ohm
11 w = 50; //ohm
12
13 // Reflection coefficients
14 T1 = (w-r1)/(w+r1);
15 T2=(r2-w)/(r2+w);
16
17 //As power is fed into 1 and 2 equally
18 pd=p/2;
19
20 //Power delivered
21 // Port 1
22 p1=pd*(1-T1^2);
23 disp('mW',p1,'Power at port 1:');
24
25 // Port2
26 p2=pd*(1-T2^2);
27 disp('mW',p2, 'Power at port 2:');
```

Scilab code Exa 4.15 Magic Tee

```
1 // Page Number: 216
2 // Example 4.15
3 clc;
4 // Given
5 T1=1/2;
6 T2=3/5;
7 T3=0;
8 T4=4/5;
9 p=500D-3; //W
```

```
Scilab 5.4.1 Console
Power at port 1:
   0.1616221
W
Power at port 2:
   0.1836665
W
Power at port 4:
   0.0014322
W
Power at port 3:
   0.1532365
W
Power absorbed:
   0.0000427
                          126
```

Figure 4.15: Magic Tee

```
10 //S matrix for magic Tee
11 x=1/sqrt(2);
12 s = [0 \ 0 \ x \ x; 0 \ 0 \ x \ -x; x \ x \ 0 \ 0; x \ -x \ 0 \ 0];
13 //Using the input output relation
14 //[b] = [s] * [a]
15 b = [0.6565; 0.7576; 0.5536; 0.0892];
16
17 //(i) Power transmitted through ports
18 // Port 1
19 p1=(1/2)*b(1,1)^2*(1-T1^2);
20 disp('W',p1,'Power at port 1:');
21
22 / Port2
23 p2=(1/2)*(b(2,1)^2)*(1-(T2^2));
24 disp('W',p2, 'Power at port 2:');
25
26 // Port 4
27 p4=(1/2)*b(4,1)^2*(1-T4^2);
28 disp('W',p4,'Power at port 4:');
29
30 //(ii) Power reflected at port 3
31 / Port 3
32 p3=p*b(3,1)^2;
33 disp('W',p3,'Power at port 3:');
34
35 //(iii) Power absorbed
36 \text{ pabs=p-(p1+p2+p3+p4)};
37 disp('W', pabs, 'Power absorbed:');
38
39 //Answer for power absorbed is calculated wrong in
      book
```

Scilab code Exa 4.18 Directional Coupler

Figure 4.16: Directional Coupler

```
1  //Page Number: 236
2  //Example 4.18
3  clc;
4  //Given
5  C=10; //dB
6  D=30; //dB
7
8  //Parameters
9  bet=10^(-C/20);
10  x=bet/(10^(D/20));
11  a=sqrt(1-(bet*bet));
12  //Scattering matrix
13  //Assuming symmetery
14  s=[0 a x (bet*%i); a 0 (bet*%i) x; x (bet*%i) 0 a; (bet *%i) x a 0];
15  disp(s, 'Scattering matrix: ');
```


Figure 4.17: Directional coupler

Scilab code Exa 4.20 Directional coupler

```
1 //Page Number: 238
2 //Example 4.20
3 clc;
4 //Given
5 \text{ vswr}=2;
6 D1=8; /\text{mW}
7 D2=2; /mW
9 // Reflection coefficient at arm 4
10 T = (vswr - 1) / (vswr + 1);
11 //Powwe delivered to D1
12 P=(D1*100)/(1-T^2);
13 P1=0.99*P;
14 //Power reflected at D1
15 W1 = (P/100) *T*T;
16 //Power reflected at load
17 W2 = D2 - W1;
18 Tt = sqrt((W2*100)/(P1));
19 pt = (1+Tt)/(1-Tt);
20 disp(pt, 'VSWR: ');
21 Pl = P1 * (1 - (Tt * Tt));
22 disp('mW',Pl,'Power delivered:');
23
24 //Answer for P1 should be 792 but it is given as 800
```

Scilab code Exa 4.21 Isolator Matrix

```
1 //Page Number: 239
```


Figure 4.18: Isolator Matrix

```
Scattering matrix:

0.1304348    0.0316228    0.7943282
0.7943282    0.1304348    0.0316228
0.0316228    0.7943282    0.1304348

-->
```

Figure 4.19: Circulator Matrix

```
2 //Example 4.21
3 clc;
4 //Given
5 I=30; //dB
6 Il=0.4; //dB
7
8 S12=10^(I/-20);
9 S21=10^(I1/-20);
10 s=[0 S12;S21 0];
11 disp(s, 'Scattering matrix:');
```

Scilab code Exa 4.22 Circulator Matrix

```
1 // Page Number: 240
2 //Example 4.22
3 clc;
4 // Given
5 I = 30; //dB
6 I1=2; //dB
7 p=1.3;
9 // Elelments
10 T=(p-1)/(p+1);
11 S11=T;
12 \text{ S22=T};
13 S33=T;
14 \text{ S12=10}^{(-I1/20)};
15 S13=10^{(-I/20)};
16 \text{ S21=S13};
17 \text{ S32=S13};
18 S23=S12;
19 S31=S23;
20 s=[S11 S21 S31;S12 S22 S32;S13 S23 S33];
21 disp(s, 'Scattering matrix:');
```

Scilab code Exa 4.23 Rectangular Waveguide

```
1 //Page Number: 249
2 //Example 4.23
3 clc;
4 //Given
5 f=10D+9; //Hz
6 u=4D-7*%pi;
7 c=3D+8; //m/s
```


Figure 4.20: Rectangular Waveguide

```
8 a=2.29; //cm
9 a1=a/100;
10 b=1.02; //cm
11 b1=b/100;
12
13 //E/H
14 w=2*%pi*f;
15 EbyH=(w*u)/sqrt(((w/c)^2)+((%pi/a1)^2));
16 lam=c/f;
17 lamc=2*a1;
18 d=(1/4)*(lam/sqrt(1-((lam/lamc)^2)));
19 disp('cm',d*100,'Position:');
20
21 //Answer for positon is calculated wrong in book
```

Scilab code Exa 4.24 Attenuator matrix

```
1 //Page Number: 250
2 //Example 4.24
3 clc;
4 //Given
5 //As it is perfectly matched
6 S12=1/sqrt(2);
7 S21=S12;
8 s=[0 S12;S21 0];
9 disp(s,'Scattering matrix:');
```


Figure 4.21: Attenuator matrix

Chapter 5

Microwave Tubes Klystrons

Scilab code Exa 5.1 Two Cavity Klystron

```
1 //Page Number: 288
\frac{2}{\sqrt{\text{Example } 5.1}}
3 clc;
4 // Given
5 f = 10D + 9; //Hz
6 v = 9D + 3; //V
7 i=40D-3; //A
8 1=3; /cm
9 11=1/100; /m
10 G = 2D - 6; //mho
11 bet=0.92;
12 j1x=0.582;
13 x=1.841;
14 ebym=1.7D+11; //J
15
16 //Maximum voltage
17 w = 2 * \%pi * f;
18 v0x = sqrt(2*ebym);
19 thet=(w*11)/(v0x*sqrt(v));
```

```
Scilab 5.4.1 Console

Maximum voltage:
    20.261554

V

Power gain:
    127.42044

%
-->
```

Figure 5.1: Two Cavity Klystron

```
20
21 av=(bet^2*thet*i*j1x)/(x*v*G);
22 disp('V',av,'Maximum voltage:');
23
24 //Power Gain
25 ic = 2*i*j1x;
26 \text{ v2=(bet*ic)/G};
27 pout=bet*ic*v2;
28 pin=2*i*v;
29
30 // Efficiency
31 eet=pout/pin;
32 disp('%',eet*100,'Power gain:');
33
34 // Answer for effciency comes out to be wrong, it is
      calculted wrongly in book
```

Scilab code Exa 5.2 Two cavity Klystron

```
1 //Page Number: 288
2 //Example 5.2
3 clc;
4 //Given
5 l=2; //cm
6 l1=1/100; //m
7 f=5D+9; //Hz
8 i=25D-3; //A
9 n=21/4;
10 e=1.6D-19;
11 m=9.1D-31;
12 thetag=0;
13 bet=1;
14 j1x=0.582;
```

```
Scalab 54.1 Console

Beam voltage:
    1031.746

V

Input voltage:
    115.16418

V

Output voltage
    257.93651

V

Maximum power output:
    15.011905

W

Efficiency:
    14.55
```

Figure 5.2: Two cavity Klystron

```
15 x=1.841;
16
17 //(i) Beam Voltage
18 v0=(m*11*11*f*f)/(2*e*n*n);
19 disp('V', v0, 'Beam voltage:');
20
21 //(ii) Input voltage
22 v1=x*v0/(%pi*bet*n);
23 disp('V', v1, 'Input voltage:');
24
25 //(iii) Output voltage
26 \quad v2=0.25*v0;
27 disp('V', v2, 'Output voltage');
28
29 //(iv) Power output
30 \text{ pmax}=i*v0*j1x;
31 disp('W', pmax, 'Maximum power output:');
32
33 //(v) Efficiency
34 \text{ eet} = j1x*bet*v2/v0;
35 disp('%',eet*100, 'Efficiency:');
```

Scilab code Exa 5.3 Two cavity Klystron

```
1 //Page Number: 289
2 //Example 5.3
3 clc;
4 //Given
5 r0=45D+3; //W
6 j0=25D-3; //A
7 V=1500; //V
8 f=5D+9; //hz
9 d=1; //mm
```


Figure 5.3: Two cavity Klystron

```
10 d1=d/1000; //m
11 1=3.5; //cm
12 11=1/100; //m
13 rsh=32D+3; //ohms
14 j1x=0.582;
15 \quad x = 1.841;
16
17 //(i) Input gap voltage
18 \ w = 2 * \% pi * f;
19 v0 = (5.93D + 5*sqrt(V));
20 thetag=(w*d1)/v0;
21 bet=sin(thetag/2)/(thetag/2);
22 theta0=(w*11)/v0;
23 v1 = (2*V*x)/(bet*theta0);
24 disp(v1, 'Input gap voltage:');
25
26 //(ii) Voltage gain
27 av=(bet^2*theta0*j1x*rsh)/(r0*x);
28 disp(av, 'Voltage gain:');
```

Scilab code Exa 5.4 Two cavity Klystron

```
1 //Page Number: 290
2 //Example 5.4
3 clc;
4 //Given
5 V=1000; //V
6 r0=40D+3; //ohm
7 i0=25D-3; //A
8 f=3D+9; //Hz
9 d=1; //mm
10 d1=d/1000; //m
11 l=4; //cm
```

```
Scilab 5.4.1 Console
Input gap voltage:
   95.547121
V
Voltage gain:
   8.757021
Efficiency:
   46.672035
8
Beam loading conductance:
   0.0000010
-->
```

Figure 5.4: Two cavity Klystron

```
12 \ 11 = 4/100; \ //m
13 j1x=0.582;
14 x = 1.841;
15 rsh=30D+3; //ohm
16
17 //(i) Input gap voltage
18 \ w = 2 * \% pi * f;
19 v0 = (5.93D + 5 * sqrt(V));
20 thetag=(w*d1)/v0;
21 bet=sin(thetag/2)/(thetag/2);
22 theta0=(w*11)/v0;
23 vmax = (2*V*x)/(bet*theta0);
24 disp('V', vmax, 'Input gap voltage:');
25
26 //(ii) Voltage gain
27 av=(bet*bet*theta0*j1x*rsh)/(r0*x);
28 disp(av, 'Voltage gain:');
29
30 //(iii) Efficiency
31 v2=bet*2*i0*j1x*rsh;
32 \text{ eet} = (\text{bet} * 2 * i0 * j1x * v2) / (2 * i0 * V);
33 disp('%',eet*100, 'Efficiency:');
34
35 //(iv) Beam loading conductance
36 \text{ gbl} = (i0/(2*V))*((bet*bet)-(bet*cos(thetag/2)));
37 disp(gbl, 'Beam loading conductance:');
38
39 //Ansewr for beam loading conductance is calculated
      wrong in book
```

Scilab code Exa 5.5 Two cavity Klystron

```
1 //Page Number: 291
```

```
Scilab 5.4.1 Console
Electron velocity:
   17788760.
m/s
Electron transit time:
   2.249D-09
3
Input voltage gap:
   81.963894
V
Voltage gain:
   12.191614
```

Figure 5.5: Two cavity Klystron 146

```
2 //Example 5.5
3 clc;
4 // Given
5 f=3D+9; //hz
6 v = 900; //V
7 i = 30D - 3; //A
8 d=4; /cm
9 d1=d/100; //m
10 gap=1; //mm
11 gap1=1/1000; //m
12 rsh=40D+3; //ohm
13 x=1.841;
14 j1x=0.582;
15 r = 40D + 3; //ohm
16 ebym=1.758D+11; //J
17
18 //(i) Electron velocity
19 v0 = sqrt(2*ebym*v);
20 disp('m/s',v0, 'Electron velocity:');
21
22 //(ii) Electron transit time
23 t = d1/v0;
24 disp('s',t,'Electron transit time:');
25
26 //(iii) Input voltage gap
27 w = 2 * \%pi * f;
28 theta0=(w*d1)/v0;
29 thetag=(w*gap1)/v0;
30 bet=\sin(\frac{1}{2})/(\frac{1}{2};
31 v2 = (2*v*x)/(bet*theta0);
32 disp('V', v2, 'Input voltage gap:');
33
34 //(iv) Voltage gain
35 \text{ av=(bet^2*theta0*j1x*rsh)/(x*r)};
36 disp(av, 'Voltage gain:');
37
38 // Values of v and f are changed in question and
      answer, hence vaules used in answer are taken.
```

Scilab code Exa 5.6 Two cavity Klystron

```
1 //Page Number: 292
2 //Example 5.6
3 clc;
4 //Given
5 f=8D+9; //hz
6 i=2.5; //A
7 v = 20D + 3; //V
8 \text{ bet=1};
9 amp=10*sqrt(2); //V
10 rsh=10D+3; //ohm
11 rsho=30D+3; //ohm
12 dc=1D-6; //c/m^3
13 rf=0.5;
14 e=1.6D-19;
15 \text{ ee} = 8.854D - 12;
16 m=9.1D-31; //kg
17
18 //(i) Induced current
19 w = 2 * \%pi * f;
20 wq=rf*sqrt((e*dc)/(m*ee));
21
22 //Amplitude of induced current
23 ic=(i*w*(bet^2)*amp)/(2*v*wq);
24 disp('A',ic,'Induced current:');
25
26 //Induced voltage
27 icrms=ic/sqrt(2);
28 v2rms=icrms*rsho;
29 disp('V', v2rms, 'Induced voltage:');
```

```
Scilab 5.4.1 Console
Induced current:
    0.6305584
A
Induced voltage:
    13376.164
Power gain:
    57.755419
dB
Electronic efficiency:
    11.928118
```

Figure 5.6: Two cavity Klystron

```
30
31  //(ii)  Power gain
32  pg=(((i*w)^2)*(bet^4)*rsh*rsho)/(4*((v*wq)^2));
33  pgdb=10*log10(pg);
34  disp('dB',pgdb,'Power gain:');
35
36  //(iii)  Electronic efficiency
37  eeta=((icrms^2)*rsho)/(i*v);
38  disp('%',eeta*100,'Electronic efficiency:');
```

Scilab code Exa 5.7 Two cavity Klystron

```
1 //Page Number: 294
\frac{2}{\text{Example }} 5.7
3 clc;
4 // Given
5 f = 3D + 9; //hz
6 1=4; /cm
7 11 = 4/100; /m
8 d=0.1; //cm
9 d1=d/100; /m
10 V = 900; //V
11 i0=30D-3; //A
12 rsh = 25D + 3; //ohm
13 x=1.841;
14 j1x=0.582;
15
16 //(i) Input voltage for maximum output
17 \text{ v0=0.593D+6*sqrt(V)};
18 \ w=2*\%pi*f;
19 theta0=w*11/v0; //rad
20 thetag=w*d1/v0; //rad
21 bet=sin(thetag/2)/(thetag/2);
```

```
Input voltage for maximum output:
   81.96906
V
Voltage gain:
   10.159105
V
Efficiency:
   51.366155
de de
Beam loading conductance:
   0.0000014
ohm
-->
```

Figure 5.7: Two cavity Klystron

```
22 v1max=2*V*x/(bet*theta0); //v
23 disp('V', v1max, 'Input voltage for maximum output:');
24
25 //(ii) Voltage gain
26 r0=V/i0;//ohm
27 av=((bet^2)*theta0*j1x*rsh)/(x*r0); //V
28 disp('V',av,'Voltage gain:');
29
30 //(iii) Efficiency
31 ic=2*i0*j1x; //A
32 \text{ v2=bet*ic*rsh; } //V
33 \text{ eet=bet*ic*v2/(2*i0*V)};
34 disp('%', eet*100, 'Efficiency:');
35
36 //(iv) Beam loading conductance
37 gb=(i0/(V*2))*(bet^2-(bet*cos(thetag/2)));//ohm
38 disp('ohm', gb, 'Beam loading conductance:');
```

Scilab code Exa 5.8 Two cavity Klystron

```
1 //Page Number: 295
2 //Example 5.8
3 clc;
4 //Given
5 f=5D+9; //hz
6 v0=10D+3; //V
7 d=1; //mm
8 d1=d/1000; //m
9 v1=100; //V
10
11 //(i) Gap transit time
12 vv0=0.593D+6*sqrt(v0);//m/sec
13 tau=d1/vv0;//sec
```

```
Gap transit time:
   1.686D-11
sec
Gap transit angle:
   0.5297795
rad
Beam coupling coefficient:
   0.9883465
Velocity of electron leaving buncher gap:
   59593045.
m/sec
Depth of modulation:
   0.0098835
-->
```

Figure 5.8: Two cavity Klystron

```
14 disp('sec',tau,'Gap transit time:');
15
16 //Gap transit angle
17 w = 2 * \%pi * f;
18 thetag=w*tau; //rad
19 disp('rad', thetag, 'Gap transit angle:');
20
21 //(ii) Beam coupling coefficient
22 betin=sin(thetag/2)/(thetag/2);
23 disp(betin, 'Beam coupling coefficient:');
24
25 //(iii) Velocity of electron leaving buncher gap
26 \text{ vig=vv0*}(1+((betin*v1)/(2*v0))); //m/sec
27 disp('m/sec', vig, 'Velocity of electron leaving
      buncher gap: ');
28
29 //(iv) Depth of modulation
30 \text{ m=betin}*v1/v0;
31 disp(m, 'Depth of modulation: ');
```

Scilab code Exa 5.9 Four cavity Klystron

```
1 //Page Number: 296
2 //Example 5.9
3 clc;
4 //Given
5 f=10D+9; //hz
6 v0=15D+3; //V
7 i0=2.5D-3; //A
8 d=1; //cm
9 d1=d/100; //m
10 vrms=10; //V
11 bet=1;
```

```
Scilab 5.4.1 Console
DC electron beam phase constant:
   865.12636
rad/m
Reduced plasma frequency:
   8455139.7
rad/m
Reduced plasma phase constant:
   0.1164181
rad/sec
Gap transit time:
   72644285.
m/sec
-->
```

Figure 5.9: Four cavity Klystron

```
12 p=1D-8; //C/m^3
13 rf=0.6;
14 e=1.6D-19;
15 \text{ m} = 9.1 \text{ D} - 31;
16 \text{ ee} = 8.854D - 12;
17
18 //(i) DC electron beam phase cobstant
19 vv0 = (0.593D + 6*sqrt(v0));
20 w = 2 * \%pi * f;
21 bete=w/vv0; //rad/m
22 disp('rad/m', bete, 'DC electron beam phase constant:'
      );
23
24 //(ii) Reduced plasma frequency and reduced plasma
      phase constant
25 wq=rf*sqrt(e*p/(m*ee)); //rad/m
26 disp('rad/m', wq, 'Reduced plasma frequency:');
27 betq=wq/vv0; // \text{rad/sec}
28 disp('rad/sec',betq,'Reduced plasma phase constant:'
      );
29
30 //(iii) Gap transit time
31 \text{ tau=d1/vv0; //sec}
32 \text{ vtg=vv0*}(1+(\text{bet*vrms*sin}(\text{w*tau})/(2*\text{v0}))); //\text{m/sec}
33 disp('m/sec', vtg, 'Gap transit time:');
```

Scilab code Exa 5.10 Four cavity Klystron

```
1 //Page Number: 296
2 //Example 5.10
3 clc;
4 //Given
5 f=4D+9;//hz
```

```
Scilab 5.4.1 Console
Induced current:
   1.3538475
A
Induced voltage:
   5.41539
kV
Power output:
   13438.135
```

Figure 5.10: Four cavity Klystron

```
6 v0=10D+3;/V
7 i0=0.75; //A
8 \text{ v1=2; } //V
9 \text{ bet=1};
10 rsh=10D+3; //ohm
11 p=5D-5; //C/m^3
12 r = 0.6;
13 rsht=4D+3; //ohm
14 e=1.6D-19;
15 \text{ m} = 9.1 \text{ D} - 31;
16 \text{ ee} = 8.854D - 12;
17
18 //(i) Induced current and voltage in output cavity
19 w1 = sqrt(e*p/(m*ee)); //rad/sec
20 w = 2 * \%pi * f;
21 wq = 0.5 * w1; // rad / sec
22 \text{ rr=w/wq};
23
24 i4=[(i0^3)*(rr^3)*(bet^6)*v1*(rsh^2)]/(8*(v0^3)); //
25 disp('A', i4, 'Induced current:');
26 \text{ v4=i4*rsht;}/V
27 disp('kV', v4/1000, 'Induced voltage:');
28
29 //(ii) Power output
30 pout=(i4^4)*rsht;/W
31 disp('W', pout, 'Power output:');
32
33 //Answer for Pout should be 13.43 kW but it is given
       as 10.89kW as value of I4 is calculated as 1.289
       but it comes out to be 1.35
```

Scilab code Exa 5.11 Reflex Klystron

```
Scilab 5.4.1 Console
Repeller voltage:
   327.23759
V
Required dc current:
   9.5456281
mA
```

Figure 5.11: Reflex Klystron

```
1 // Page Number: 297
2 //Example 5.9
3 clc;
4 //Given
5 f = 8D + 9; //hz
6 v0 = 500; //V
7 1=1.2; //mm
8 11=1/1000; /m
9 \text{ rsh} = 18D + 3; //ohm
10 ebym=1.759D+11;
11 ee=8.854D-12;
12
13 //(i) Repeller voltage
14 n=1+(3/4);
15 v11=(ebym*n*n)/(8*(11^2)*(f^2));
16 vr=sqrt(v0/v11)-v0;
17 disp('V', vr, 'Repeller voltage:');
18
19 //(ii) Required dc current
20 v2=200; //V
21 \quad j1x=0.582;
22 i=v2/(2*rsh*j1x); //A
23 disp('mA',i*1000, 'Required dc current:');
24
25 //Answer for repeller voltage is calculated wrong in
       book
```

Scilab code Exa 5.12 Reflex Klystron

```
1 // Page Number: 298
2 // Example 5.12
3 clc;
4 // Given
```

```
Maximum power output:

2.760705

W

Operating repeller voltage:

297.98514

V

-->
```

Figure 5.12: Reflex Klystron

```
5 f = 9D + 9; //hz
6 v0 = 361; //V
7 i0=30D-3;/A
8 1=0.1; //cm
9 11=1/100; /m
10 x = 2.408;
11 j1x=0.582;
12 ebym = 1.759D + 11;
13
14 //Maximum power output
15 n=1;
16 pout=2*i0*v0*x*j1x/(2*\%pi*(n+(3/4)));/W
17 disp('W', pout, 'Maximum power output:');
18
19 //Operating repeller voltage
20 vr = ((6.744D-6*sqrt(v0)*l1*f)/(n+(3/4)))-v0;//v
21 disp('V', vr, 'Operating repeller voltage:');
```

Scilab code Exa 5.13 Reflex Klystron

```
1 //Page Number: 298
2 //Example 5.13
3 clc;
4 //Given
5 f=9D+9; //hz
6 v0=250; //V
7 l=0.5; //cm
8 l1=1/100; //m
9
10 //Bandwidth
11 n=3;
12 df=(n+(3/4))/(6.774D-6*l1*sqrt(v0)); //hz
13 disp('Mhz',df/10^6, 'Bandwidth:');
```


Figure 5.13: Reflex Klystron

Scilab code Exa 5.14 Reflex Klystron

```
//Page Number: 299
//Example 5.14
clc;
//Given
f=10D+9;//hz
v0=600;//V
vr=250;//V
ebym=1.759D+11;
//Repeller space
n=1;
l=sqrt((ebym*(n+(3/4))^2*(vr+v0)^2)/(8*f^2*v0));//m
disp('mm',1*1000,' Repeller space:');
```

Scilab code Exa 5.15 Reflex Klystron

```
1 //Page Number: 299
2 //Example 5.15
3 clc;
4 //Given
5 v0=300;//V
6 i0=20D-3;//A
7 v1=40;//V
8 n=2;
9 x=2.408;
```

```
Repeller space:

0.9004701

mm
-->
```

Figure 5.14: Reflex Klystron

```
Scilab 5.4.1 Console
Input power:
    6.
W
Output power:
    1.3665425
W
Efficiency:
    22.775709
```

Figure 5.15: Reflex Klystron

```
10 j1x=0.52;
11
12 //(i) Input power
13 pin=i0*v0;/W
14 disp('W',pin,'Input power:');
15
16 //(ii) Output power
17 pout=(2*v0*i0*x*j1x)/((2*%pi*n)-(%pi/2));/W
18 disp('W', pout, 'Output power:');
19
20 // Efficiency
21 eet=pout/pin;
22 disp('%',eet*100,'Efficiency:');
23
24 //Answer for output power in book is 0.7 which is
     wrong, it should be 1.3W
25 //Hence answer of efficiency also changes
```

Scilab code Exa 5.16 Reflex Klystron

```
1 //Page Number: 300
2 //Example 5.16
3 clc;
4 //Given
5 f=10D+9; //hz
6 v0=600; //V
7 l=0.1; //cm
8 l1=1/100; //m
9 bet=0.9;
10 ebym=1.759D+11;
11 n=2;
12 j1x=0.575; //from standard table
```

```
Repeller voltage:
    344.

V
Bunching parameter:
    1.6493361
Required DC current:
    8.6956522
mA
Electronic efficiency:
    17.25
%
```

Figure 5.16: Reflex Klystron

```
14
15 //(i) Repeller voltage
16 vr = ((6.744D-6*sqrt(v0)*l1*f)/(n-(1/4)))-v0;/V
17 disp('V',round(vr), 'Repeller voltage:');
18
19 //(ii) Bunching parameter
20 \text{ v1} = 200; //V
21 x=bet*v1*2*\%pi*(n-(1/4))/(2*v0);
22 disp(x, 'Bunching parameter: ');
23
24 //(iii) Required DC current
25 \text{ rsh} = 20D + 3; //ohm
26 i=v1/(2*rsh*j1x); //A
27 disp('mA',i*1000, 'Required DC current:');
28
29 //(iv) Electronic efficiency
30 eet=2*x*j1x/(2*\%pi*(n-(1/4)));
31 disp('%',eet*100, 'Electronic efficiency:');
```

Scilab code Exa 5.17 Electron Gun

```
1 //Page Number: 301
2 //Example 5.17
3 clc;
4 //Given
5 f=10D+9; //hz
6 v0=300; //V
7 j0=0.3; //A/cm
8 i0=45D-3; //A
9
10 rb=sqrt(i0/(%pi*j0)); //mm
11 disp('mm',rb*10, 'Electron beam radius:');
12 r=rb*(120/100); //mm
```

```
Electron beam radius:
   2.1850969
mm
Radius of cathode disc:
   2.6221162
Cathode anode spacing:
   2.0110541
mm
Anode hole:
   3.0154337
mm
-->
                                                     Ι
```

Figure 5.17: Electron Gun

```
disp('mm',r*10,'Radius of cathode disc:');
d=sqrt(2.335D-6*(300)^(3/2)/j0);//mm
disp('mm',d*10,'Cathode anode spacing:');
//Anode hole has to be 15% larger than cathode disc
ra=r*1.15;//mm
disp('mm',ra*10,'Anode hole:');
```

Scilab code Exa 5.18 Re entrant Coaxial Cavity

```
1 //Page Number:
2 //Example 5.18
3 clc;
4 // Given
5 f = 9D + 9; //hz
6 \text{ v0=300; } / \text{V}
7 \text{ vr} = 125; //V
8 \text{ bet} = 0.9;
9 c=3D+8; //m/s
10 w = 2 * \%pi * f;
11 br = 2.18; /mm
12 \text{ e0=8.854D-12};
13 ebym=1.7D+11;
14
15 //From sin(theta)/theta table, thetag is found out
      to be
16 thetag=0.25*\%pi;
17 d=(2*thetag*0.593D+6*sqrt(v0))/w;
18 disp('mm',d*1000, 'Distance:');
19
20 // Axial cavity length
21 l=c/(10*f);/m
22 disp('mm', 1*1000, 'Axial cavity length:');
23
```

Distance: 0.2853073 mm Axial cavity length: 3.3333333 mm Ratio of outer to inner conductor: 3.3956114 Radius of outer conductor: 3.27 mm Radius of inner conductor: 4.9704 mm Repeller spacing: 1.8878126 mm 172

-->

Figure 5.18: Re entrant Coaxial Cavity

```
24 //Ratio of outer to inner conductor
25 \ a=1.5*br;
26 \quad a1=a/1000;
27 \text{ x=d/(w*e0*a1*a1*60*tan((w*l)/c))};
28 bbya=\exp(x);
29 disp(bbya, 'Ratio of outer to inner conductor: ');
30
31 //radii of outer and inner conductor
32 disp('mm',a, 'Radius of outer conductor:');
33
34 b=1.52*a; //mm
35 disp('mm',b, 'Radius of inner conductor:');
36
37 // Repeller spacing
38 lopt=sqrt(ebym*(19/4)^2*(v0+vr)^2/(8*f^2*v0));//m
39 disp('mm',lopt*1000, 'Repeller spacing:');
40
41 // Answer for radii of outer and inner conductor have
       wrong calculations in book
42 // Also ratio of outer to inner conductor is also
      calculated wrong
```

Chapter 6

Microwave Travelling Wave Tubes O type

Scilab code Exa 6.1 TWT

```
1 // Page Number: 330
2 //Example 6.1
3 clc;
4 // Given
5 clc;
6 // Given
7 I0=30D-3; //A
8 \text{ VO=3D+3; } //V
9 Z0=10; //ohm
10 1=0.1624; //m
11 f = 10D + 9; //Hz
12
13 //(i) Gain parameter
14 C=((I0*Z0)/(4*V0))^{(1/3)};
15 disp(C, 'Gain parameter: ');
16
17 N=(1*f)/(0.593D+6*sqrt(V0));
```

```
Solab 5.4.1 Console

Gain parameter:

0.0292402

Power gain:

59.613131

dB

Four propogation constants:

- 48.986361 + 1962.76361

48.986361 + 1962.76361

1877.91681

- 1934.46931

-->
```

Figure 6.1: TWT

```
18
19 //(ii) Power Gain
20 Ap=-9.54+(47.3*C*N);
21 disp('dB', Ap, 'Power gain:');
22
23 \text{ ve=0.593D+6*sqrt(V0)};
24 \text{ be}=(2*\%pi*f)/ve;
25
26 //Four propogation constants
27 gam1 = ((-sqrt(3)*be*C)/2) + (%i*be*(2+C))/2;
28 gam2 = ((sqrt(3)*be*C)/2) + (%i*be*(2+C))/2;
29 gam3 = \%i * be * (1 - C);
30 gam4 = -\%i*be*(1-((C*C*C)/4));
31
32 disp(gam4,gam3,gam2,gam1,'Four propogation constants
      : ');
33
34 // Calculations for propogation constants are wrong
      in book for gam 3 and 4, hence answers dont match
```

Scilab code Exa 6.2 Helix TWT

```
1 //Page Number: 332
2 //Example 6.2
3 clc;
4 //Given
5 I0=20D-3; //A
6 V0=4D+3; //V
7 Z0=100; //ohm
8 N=30;
9
10 C=((I0*Z0)/(4*V0))^(1/3);
11 //Gain
```


Figure 6.2: Helix TWT

```
12 Ap=-9.54+(47.3*C*N);
13 disp('dB',Ap,'Gain:');
```

Scilab code Exa 6.3 Helical TWT

```
1 // Page Number: 332
2 //Example 6.3
3 clc;
4 // Given
5 c=3D+8; //m/s
6 d=2D-3; //m
7 p=50D+2; //turns per m
8 \text{ e=1.6D-19}; //J
9 m = 9.1D - 31;
10
11 // Axial phase velocity
12 vp=c/(%pi*p*d);
13 disp('m/s', vp, 'Axial phase velocity:');
14
15 //Anode voltage
16 V0 = (m*vp*vp)/(2*e);
17 disp('V', VO, 'Anode voltage:');
```

Scilab code Exa 6.4 O type TWT

```
1 //Page Number: 332
2 //Example 6.4
3 clc;
4 //Given
```

```
Scilsb 5.4.1 Console

Axial phase velocity:
9549296.6
m/s

Anode voltage:
259.3189

V
-->
```

Figure 6.3: Helical TWT

Scilab 5.4.1 Console

Propogation constant:

2. + 2183.9642i

-->

Figure 6.4: O type TWT

```
5 a=(4.4*%pi)/180; //radians
6 c=3D+8 //m/s
7 f=8D+9; //Hz
8 al=2; //Np/m
9
10 //Phase velocity
11 vp=c*sin(a);
12
13 //Propogation constant
14 be=(2*%pi*f)/vp;
15
16 gam=al+(%i*be);
17 disp(gam, 'Propogation constant:');
```

Scilab code Exa 6.5 Cavity coupled

```
1 //Page Number: 333
\frac{2}{\sqrt{\text{Example }6.5}}
3 clc;
4 // Given
5 Vc = 11D + 3; /V
6 Ir=0.85; //A
7 V0 = 31D + 3; /V
8 Pout = 50D + 3; //W
9 I=7; //A
10
11 // Electronic efficiency
12 ne=Pout/(V0*I);
13 disp('%',ne*100, 'Electronic efficiency:');
14
15 // Overall efficiency
16 no=Pout/(Vc*(I-Ir));
17 disp('%',no*100,'Overall efficiency:');
```

```
Electronic efficiency:
23.041475

Coverall efficiency:
73.90983

-->
```

Figure 6.5: Cavity coupled

```
Scilab 5.4.1 Console

Gain:

73.589722

dB
-->
```

Figure 6.6: O Type Backward Wave amplifier

```
^{18} ^{19} //Answer for elecytronic efficiency should be ^{23.04\%} but it is given as ^{36.4} in book
```

Scilab code Exa $6.6\,$ O Type Backward Wave amplifier

```
1 // Page Number: 333
2 // Example 6.6
```

```
Scilab 5.4.1 Console

Electronic efficiency:
   26.666667

%
Overall efficiency:
   66.666667

%
-->
```

Figure 6.7: Multicavity TWT

```
3 clc;
4 //Given
5 I0=0.95; //A
6 V0=7D+3; //V
7 Z0=20; //ohm
8 N=20;
9
10 C=((I0*Z0)/(4*V0))^(1/3);
11 //Gain
12 Ap=-9.54+(47.3*C*N);
13 disp('dB',Ap,'Gain:');
```

Scilab code Exa 6.7 Multicavity TWT

```
1 //Page Number: 334
2 //Example 6.7
3 clc;
4 // Given
5 Vc = 12D + 3; /V
6 V0 = 30D + 3; /V
7 Pout=60D+3; /W
8 I = 7.5; //A
9
10 // Electronic efficiency
11 ne=Pout/(V0*I);
12 disp('%',ne*100, 'Electronic efficiency:');
13
14 // Overall efficiency
15 no=Pout/(Vc*I);
16 disp('%',no*100,'Overall efficiency:');
```

Scilab code Exa 6.8 Gridded TWT

```
1 //Page Number: 334
2 //Example 6.8
3 clc;
4 //Given
5 Vc=20D+3; //V
6 V0=32D+3; //V
7 Pout=75D+3; //W
8 I=7; //A
9
10 //Electronic efficiency
11 ne=Pout/(V0*I);
12 disp('%',ne*100,'Electronic efficiency:');
```

```
Sclab 5.4.1 Console

Electronic efficiency:
    33.482143

%

Overall efficiency:
    53.571429

%
-->
```

Figure 6.8: Gridded TWT

```
Scilab 5.4.1 Console

Gain parameter:

0.0678604

Gain of TWT:

54.655977

dB
-->
```

Figure 6.9: Helix TWT

```
13
14 // Overall efficiency
15 no=Pout/(Vc*I);
16 disp('%',no*100,'Overall efficiency:');
```

Scilab code Exa 6.9 Helix TWT

```
1 //Page Number: 335
2 //Example 6.9
3 clc;
4 //Given
5 I0=500D-3; //A
6 V0 = 10D + 3; /V
7 Z0=25; //ohm
8 1 = .20; /m
9 f=5.93D+9; //Hz
10
11 //Gain parameter
12 C=((I0*Z0)/(4*V0))^{(1/3)};
13 disp(C, 'Gain parameter:');
14
15 N=(1*f)/(0.593D+6*sqrt(V0));
16 // Gain
17 Ap=-9.54+(47.3*C*N);
18 disp('dB', Ap, 'Gain of TWT:');
```

Scilab code Exa 6.10 Low Power TWT

```
1 // Page Number: 335
2 // Example 6.10
3 clc;
4 // Given
5 Pout=250; //W
6 n=0.15;
7 V0=7.5D+3; //V
8 f=6.15D+9; //Hz
9 c=3D+8; //m/s
10
11 //(i) Input Power
12 Pi=Pout/n;
```

```
Input Power:
   1666.6667
Beam current:
   0.2222222
Beam velocity:
   51355306.
m/s
Radius of helix:
   0.0026580
Electron beam radius:
   0.0019935
m
Pitch of helix:
   0.0028589
Current density:
   17.798951
kA/msqr
Magnetic field for beam confinement:
 84.
mT
                                    189
-->
```

Figure 6.10: Low Power TWT

```
13 disp('W', Pi, 'Input Power:');
14
15 //(ii) Beam current
16 IO=Pi/VO;
17 disp('A', IO, 'Beam current:');
18
19 //(iii) Beam velocity
20 \text{ vb=0.593D+6*sqrt(V0)};
21 disp('m/s', vb, 'Beam velocity:');
22
23 //(iv) Radius of helix
24 a = (2*vb)/(2*\%pi*f);
25 disp('m',a,'Radius of helix:');
26
27 //(v) Electron beam radius
28 r = (3*a)/4;
29 disp('m',r, 'Electron beam radius:');
30
31 //(vi) Pitch of helix
32 p = (2*\%pi*a*vb)/c;
33 disp('m',p,'Pitch of helix:');
34
35 //(vii) Current density
36 J0=I0/(%pi*r*r);
37 disp('kA/msqr', J0/1000, 'Current density:');
38
39 //(viii) Magnetic field for beam confinement
40 B=(4*8.3D-4*sqrt(I0/(r*r*sqrt(V0))));
41 disp('mT',round(B*1000), 'Magnetic field for beam
      confinement: ');
```

Scilab code Exa 6.11 TWT

Scilab 5.4.1 Console

```
Gain:
59.613131

dB

Four propogation constants:
- 48.986361 + 1962.76361
48.986361 + 1962.76361
1877.91681
- 1934.46931
```

Figure 6.11: TWT

```
1 //Page Number: 336
2 //Example 6.11
3 clc;
4 //Given
5 I0 = 30D - 3; //A
6 V0=3D+3; /V
7 Z0=10; //ohm
8 1=0.1624; /m
9 f=10D+9; //Hz
10 C=((I0*Z0)/(4*V0))^(1/3);
11 N=(1*f)/(0.593D+6*sqrt(V0));
12
13 // Gain
14 Ap=-9.54+(47.3*C*N);
15 disp('dB',Ap,'Gain:');
16
17 ve=0.593D+6*sqrt(V0);
18 be=(2*\%pi*f)/ve;
19
```

```
//Four propogation constants
gam1=((-sqrt(3)*be*C)/2)+(%i*be*(2+C))/2;
gam2=((sqrt(3)*be*C)/2)+(%i*be*(2+C))/2;
gam3=%i*be*(1-C);
gam4=-%i*be*(1-(C*C*C)/4));

disp(gam4,gam3,gam2,gam1,'Four propogation constants:');
// Calculations for propogation constants are wrong for gam 3 and 4 hence answers dont match
```

Scilab code Exa 6.12 TWT

```
1 //Page Number: 337
2 //Example 6.12
3 clc;
4 // Given
5 I0=35D-3; //A
6 V0 = 4D + 3; //V
7 \text{ Z0=20}; //\text{ohm}
8 f = 10D + 9; //Hz
10 //(i) Gain parameter
11 C=((I0*Z0)/(4*V0))^(1/3);
12 disp(C, 'Gain parameter: ');
13
14 ve=0.593D+6*sqrt(V0);
15 be=(2*\%pi*f)/ve;
16
17 //Four propogation constants
18 gam1 = ((-sqrt(3)*be*C)/2) + (%i*be*(2+C))/2;
19 gam2 = ((sqrt(3)*be*C)/2) + (%i*be*(2+C))/2;
```

Scilab 5.4.1 Console

Gain parameter:

0.0352365

Four propogation constants:

- 51.123255 + 1704.826i

51.123255 + 1704.8261

1616.2779i

- 1675.2917i

-->

Figure 6.12: TWT

```
20 gam3=%i*be*(1-C);
21 gam4=-%i*be*(1-((C*C*C)/4));
22
23 disp(gam4,gam3,gam2,gam1,'Four propagation constants :');
24
25 // Calculations for propagation constants are wrong hence answers dont match
```

Chapter 7

Cross Field Microwave Tubes M Type

Scilab code Exa 7.1 X band Magnetron

```
1 // Page Number: 369
\frac{2}{\sqrt{\text{Example }7.1}}
3 clc;
4 // Given
5 f = 10D + 9; //Hz
6 C=2.5D-12; //F
7 Gr = 2D - 4; //mho
8 Ge=0.025D-3; //mho
9 Ploss=18.5D+3; //W
10 V0=5.5D+3; //V
11 I0=4.5; //A
12
13 w = 2 * \%pi * f;
14
15 //(i) Unloaded Q
16 Qun=(w*C)/Gr;
17 disp(Qun, 'Unloaded quality factor:');
```

```
Unloaded quality factor:
785.39816

External quality factor:
6283.1853

Circuit effciency:
11.111111

%

Electronic effciency:
25.252525
```

Figure 7.1: X band Magnetron

```
18
19 //External Q
20 Qe=(w*C)/Ge;
21 disp(Qe, 'External quality factor:');
22
23 //(ii) Circuit effciency
24 n=1/(1+(Qe/Qun));
25 disp('%',n*100, 'Circuit effciency:');
26
27 //Electronic effciency
28 ne=1-(Ploss/(V0*I0));
29 disp('%',ne*100, 'Electronic effciency:');
30
31 //Answer for Qe is given as 6285.6 but it should be 6283.1
```

Scilab code Exa 7.2 Cylindrical Magnetron

```
1 //Page Number: 370
2 //Example 7.2
3 clc;
4 //Given
5 V0=25D+3; //V
6 ebym=1.76D+11;
7 B0=0.0336; //T
8 a=5D-2; //m
9 b=10D-2; //m
10
11 //(i) Cut off voltage
12 x=(b/((b*b)-(a*a)))^2;
13 V=(ebym*B0*B0)/(8*x);
14 disp('KV', V/1000, 'Cut off voltage:');
15
```

```
Scilab 5.4.1 Console

Cut off voltage:

139.7088

KV

Cut off magnetic field:

14.213381

mT

-->
```

Figure 7.2: Cylindrical Magnetron

```
Efficiency:
40.

%
Cyclotron frequency:
0.9803944

Ghz
Cut off magnetic field:
17.766726

mT
Cut off voltage:
97.
KV
```

Figure 7.3: Cylindrical Magnetron

```
16 //(ii) Cut off magnetic field
17 y=((8*V0*x)/ebym);
18 B=sqrt(y);
19 disp('mT', B*1000, 'Cut off magnetic field:');
```

Scilab code Exa 7.3 Cylindrical Magnetron

```
1 //Page Number: 371
2 //Example 7.3
3 clc;
```

```
4 //Given
5 Pout = 250D + 3; /W
6 V0 = 25D + 3; /V
7 I0=25; //A
8 \text{ ebym} = 1.76D + 11;
9 B0=0.035; //T
10 a=4D-2; //m
11 b=8D-2; //m
12
13
14 //(i) Efficiency
15 n=Pout/(V0*I0);
16 disp('%',n*100, 'Efficiency:');
17
18 //(ii) Cyclotron frequency
19 f = (ebym*B0)/(2*\%pi);
20 disp('Ghz',f/10^9, 'Cyclotron frequency:');
21
22 //(iii) Cut off magnetic field
23 x=(b/((b*b)-(a*a)))^2;
24 y = ((8*V0*x)/ebym);
25 B=sqrt(y);
26 disp('mT', B*1000, 'Cut off magnetic field:');
27
28 //(iv) Cut off voltage
29 V = (ebym*B0*B0)/(8*x);
30 disp('KV', round(V/1000), 'Cut off voltage:');
31
32 //Answer for Cyclotron frequency is is given as 9.8
     GHz but it should be 0.98 GHz as value of B0
      =0.035 not 0.35 as taken in part 2
```

Scilab code Exa 7.4 Conventional Magnetron

```
Scilab 5.4.1 Console

Circuit effciency:
9.0909091

Electronic effciency:
67.532468

-->
```

Figure 7.4: Conventional Magnetron

```
1 // Page Number: 372
2 //Example 7.4
3 clc;
4 //Given
5 Gr = 3D - 4; //mho
6 Ge=3D-5; //mho
7 Ploss=200D+3; //W
8 V0 = 22D + 3; //V
9 I0=28; //A
10
11 //(i) Circuit effciency
12 n=1/(1+(Gr/Ge));
13 disp('%',n*100, 'Circuit effciency:');
14
15 //(ii) Electronic effciency
16 ne=1-(Ploss/(V0*I0));
17 disp('%',ne*100, 'Electronic effciency:');
```

Scilab code Exa 7.5 Conventional Magnetron

```
1 //Page Number: 372
2 //Example 7.5
3 clc;
4 //Given
5 f=9D+9; //Hz
6 C=2.5D-12; //F
7 Gr=2D-4; //mho
8 Ge=2.5D-5; //mho
9 Ploss=18.5D+3; //W
10 V0=5.5D+3; //V
11 I0=4.5; //A
12
13 //(i) Angular resonant frequency
```

```
Sciab 5.4.1 Console

Angular resonant frequency:
5.655D+10

rad/s

Unloaded quality factor:
707.

Loaded quality factor:
628.

External quality factor:
5654.8668

Circuit effciency:
11.11309

*
Electronic effciency:
25.252525

*
-->
```

Figure 7.5: Conventional Magnetron

```
14 \ w=2*\%pi*f;
15 disp('rad/s',w,'Angular resonant frequency:');
16
17 //(ii) Unloaded Q
18 Qun=round((w*C)/Gr);
19 disp(Qun, 'Unloaded quality factor:');
20
21 //(iii) Loaded Q
22 Ql=round((w*C)/(Gr+Ge));
23 disp(Q1, 'Loaded quality factor:');
24
25 //(iv) External Q
26 Qe=(w*C)/Ge;
27 disp(Qe, 'External quality factor:');
28
29 //(v) Circuit effciency
30 n=1/(1+(Qe/Qun));
31 disp('%',n*100,'Circuit effciency:');
32
33 //(vi) Electronic effciency
34 \text{ ne=1-(Ploss/(V0*I0))};
35 disp('%',ne*100, 'Electronic effciency:');
36
37 //Answer for external Q is given as 56.57 but it
      should be 5654.8
```

Scilab code Exa 7.6 Carcinotron

```
1 //Page Number: 373
2 //Example 7.6
3 clc;
4 //Given
5 f=4D+9; //Hz
```

```
Electron beam phase constant:

267.91592

rad/s

Gain Parameter:

0.1144714

Length for oscillation condition:

0.0366439

m

-->
```

Figure 7.6: Carcinotron

```
6 V0 = 25D + 3; //V
7 I0=3; //A
8 B0=0.3; //T
9 D=0.8;
10 Z0=50; //ohm
11 ebym=1.76D+11;
12
13 //(i) Electron beam phase constant
14 be=(2*\%pi*f)/sqrt(2*ebym*V0);
15 disp('rad/s',be, 'Electron beam phase constant:');
16
17 //(ii) Gain Parameter
18 C=((I0*Z0)/(4*V0))^(1/3);
19 disp(C, 'Gain Parameter: ');
20
21 //(iii) Length for oscillation condition
22 N=1.25/D;
23 1=(2*\%pi*N)/be;
24 disp('m',1, 'Length for oscillation condition:');
```

Scilab code Exa 7.7 Frequency Aglile Magnetron

```
1 //Page Number: 374
2 //Example 7.7
3 clc;
4 //Given
5 N=20;
6 t=0.2D-6; //s
7 DC=0.001; //Duty cycle
8
9 //(i) Agile excursion
10 A=N/t;
11 disp('MHz',A/10^6,'Agile excursion:');
```

```
Scilab 5.4.1 Console

Agile excursion:

100.

MHz

Signal frequency:

5.

Khz

Agile Rate:

125.

Hz
```

Figure 7.7: Frequency Aglile Magnetron

```
12
13 //(ii) Signal frequency
14 f=DC/t;
15 disp('Khz',f/1000,'Signal frequency:');
16
17 //(iii) Agile rate
18 R=f/(2*N);
19 disp('Hz',R,'Agile Rate:');
```

Scilab code Exa 7.8 Cross field amplifier

```
1 //Page Number: 375
2 //Example 7.8
3 clc;
4 //Given
5 V0=1.8D+3; //V
6 I0=1.3; //A
7 Pin=70; /W
8 n=0.22;
10 //(i) Power generated
11 Pgen=n*I0*V0;
12 disp('W', Pgen, 'Power generated:');
13
14 //(ii) Total RF power generated
15 Pt=Pin+Pgen;
16 disp('W',Pt,'Total RF power generated:');
17
18 //(iii) Power gain
19 G=Pt/Pin;
20 Gdb=10*log10(G);
21 disp('dB',Gdb,'Power Gain:');
```

```
Scilab 5.4.1 Console

Power generated:
    514.8

W

Total RF power generated:
    584.8

W

Power Gain:
    9.2190932

dB
-->
```

Figure 7.8: Cross field amplifier

Scilab 5.4.1 Console

```
Cut off voltage:

1.1970972

KV

Magnetic flux density:

0.0289025

T
```

Figure 7.9: Inverted coaxial Magnetron

Scilab code Exa 7.9 Inverted coaxial Magnetron

```
1 //Page Number: 375
2 //Example 7.9
3 clc;
```

```
4 // Given
5 V0 = 10D + 3; /V
6 I0=2; //A
7 b=4D-2; //m
8 \text{ a=3D-2; } //\text{m}
9 B0=0.01; //Wb/m2
10 ebym=1.759D+11;
11
12 //Cut off voltage
13 x=1-((b*b)/(a*a));
14 V=(ebym*(B0^2)*(a^2)*(x^2))/8;
15 KV=V/1000; //Kilovolts
16 disp('KV', KV, 'Cut off voltage:');
17
18 // Magnetic flux density
19 y = -sqrt((8*V0)/ebym);
20 B=y/(a*x);
21 disp('T',B,'Magnetic flux density:');
```

Scilab code Exa 7.10 Inverted coaxial Magnetron

```
1 //Page Number: 376
2 //Example 7.10
3 clc;
4 //Given
5 V0=10D+3; //V
6 I0=2; //A
7 b=4D-2; //m
8 a=3D-2; //m
9 B0=0.01; //Wb/m2
10 ebym=1.759D+11;
11
12 //Cut off voltage
```

```
Sciab 5.4.1 Console

Cut off voltage:

1.1970972

KV

Magnetic flux density:

0.0289025

T

-->
```

Figure 7.10: Inverted coaxial Magnetron

```
Scilab 5.4.1 Consoli
```

```
Hull cut off voltage:
31.662

KV

Hull magnetic field:
7.9477798

mT
-->
```

Figure 7.11: Linear Magnetron

```
13  x=1-((b*b)/(a*a));
14  V=(ebym*(B0^2)*(a^2)*(x^2))/8;
15  disp('KV',V/1000,'Cut off voltage:');
16
17  //Magnetic flux density
18  y=-sqrt((8*V0)/ebym);
19  B=y/(a*x);
20  disp('T',B,'Magnetic flux density:');
```

Scilab code Exa 7.11 Linear Magnetron

```
1 //Page Number: 376
2 //Example 7.11
3 clc;
4 //Given
5 \text{ e=1.6D-19}; //J
6 B0=0.01; //Wb/m2
7 d=6D-2; //m
8 V0 = 20D + 3; //V
9 ebym=1.759D+11;
10
11 //(i) Hull cut off voltage
12 Voc = (B0*B0*d*d*ebym)/2;
13 disp('KV', Voc/1000, 'Hull cut off voltage:');
14
15 //(ii) Hull magnetic field
16 Boc=sqrt((2*V0)/ebym)/d;
17 disp('mT', Boc*1000, 'Hull magnetic field:');
```

Scilab code Exa 7.12 Inverted Coaxial Magnetron

```
1 //Page Number: 377
2 //Example 7.12
3 clc;
4 //Given
5 V0=10D+3; //V
6 V01=5D+3; //V
7 I0=2; //A
8 b=3D-2; //m
9 a=2D-2; //m
10 B0=0.01; //Wb/m2
11 ebym=1.759D+11;
12
13 //Cut off voltage
```

```
Cut off voltage:

1.3742188

KV

Magnetic flux density:

0.0190747

Wb/m2

-->
```

Figure 7.12: Inverted Coaxial Magnetron

Scilab code Exa 7.13 Agile coaxial Magnetron

```
1 //Page Number: 377
2 //Example 7.13
3 clc;
4 //Given
5 N = 15;
6 t=0.3D-6; //s
7 DC=0.0011; //Duty cycle
9 //(i) Agile excursion
10 A=N/t;
11 disp('MHz', A/10^6, 'Agile excursion:');
12
13 //(ii) Pulse to pulse frequency separation
14 \text{ fp=1/t};
15 disp('Mhz',fp/10^6, 'Pulse to pulse frequency
      seperation: ');
16
```

```
Scitab 5.4.1 Console

Agile excursion:
50.

MHz

Pulse to pulse frequency seperation:
3.3333333

Mhz

Signal frequency:
3.6666667

Khz

Agile Rate:
122.22222

ps
-->
```

Figure 7.13: Agile coaxial Magnetron

```
17 //(iii) Signal frequency
18 f=DC/t;
19 disp('Khz',f/1000,'Signal frequency:');
20
21 //(iv) Agile rate
22 Tp=N/f;
23 R=1/(2*Tp);
24 disp('ps',R,'Agile Rate:');
```

Chapter 8

Microwave Solid State Control Devices

Scilab code Exa 8.1 Single pole Switch

```
1 // Page Number: 389
2 //Example 8.1
3 clc;
4 // Given
5 Rf = 0.5; //ohm
6 Rr=1; //ohm
7 Ls=0.3D-9; //H
8 Cj = 0.1D - 12; //F
9 f=3.18D+9; //Hz
10 Z0=50; //ohm
11
12 Zf = Rf + (%i * round (2 * %pi * f * Ls));
13 Zr=Rr+(%i*(round(2*%pi*f*Ls)-(1/(2*%pi*f*Cj))));
14
15 // Series Configuration
16 disp('Series Configuration');
17
```

```
Scalab 5.4.1 Console

Series Configuration

Insertion Loss:

0.0587731

dB

Isolation Loss:

14.060607

dB

Shunt Configuration

Insertion Loss:

0.0119723

dB

Isolation Loss:

12.771743

dB
```

Figure 8.1: Single pole Switch

```
18 //Insertion Loss
19 x=(2*Z0)/((2*Z0)+Zf);
20 x1=sqrt((real(x))^2+(imag(x))^2);
21 IN = -20 * log 10 (x1);
22 disp('dB',IN,'Insertion Loss:');
23
24 //Isolation Loss
25 y=(2*Z0)/((2*Z0)+Zr);
26 y1=sqrt((real(y))^2+(imag(y))^2);
27 IS = -20 * log 10 (y1);
28 disp('dB', IS, 'Isolation Loss:');
29
30 //Shunt Configuration
31 disp('Shunt Configuration');
32
33 //Insertion Loss
34 a=(2*Zr)/((2*Zr)+Z0);
35 a1=sqrt((real(a))^2+(imag(a))^2);
36 INs=-20*\log 10 (a1);
37 disp('dB', INs, 'Insertion Loss:');
38
39 //Isolation Loss
40 b=(2*Zf)/((2*Zf)+Z0);
41 b1=sqrt((real(b))^2+(imag(b))^2);
42 ISs=-20*\log 10(b1);
43 disp('dB', ISs, 'Isolation Loss:');
44
45 //Answer for Series configuration insertion loss is
      0.058 but is given as 0.58db
```

Scilab code Exa 8.2 Pin diode switches

```
1 // Page Number: 390
```

```
Series Configuration
Insertion Loss:
   0.1017270
dB
Isolation Loss:
   14.07108
dB
Shunt Configuration
Insertion Loss:
   0.0146274
dB
Isolation Loss:
   12.842783
dB
-->
```

Figure 8.2: Pin diode switches

```
2 //Example 8.2
3 clc;
4 // Given
5 Rf = 1; //ohm
6 Rr=4; //ohm
7 Ls=0.3D-9; //H
8 Cj = 0.1D - 12; //F
9 f=3.18D+9; //Hz
10 Z0=50; //ohm
11
12 Zf=Rf+(%i*round(2*%pi*f*Ls));
13 Zr=Rr+(%i*(round(2*%pi*f*Ls)-(1/(2*%pi*f*Cj))));
14
15 // Series Configuration
16 disp('Series Configuration');
17
18 //Insertion Loss
19 x=(2*Z0)/((2*Z0)+Zf);
20 x1=sqrt((real(x))^2+(imag(x))^2);
21 IN = -20 * log 10 (x1);
22 disp('dB',IN, 'Insertion Loss:');
23
24 //Isolation Loss
25 y=(2*Z0)/((2*Z0)+Zr);
26 y1=sqrt((real(y))^2+(imag(y))^2);
27 IS = -20 * log 10 (y1);
28 disp('dB', IS, 'Isolation Loss:');
29
30 //Shunt Configuration
31 disp('Shunt Configuration');
32
33 //Insertion Loss
34 a=(2*Zr)/((2*Zr)+Z0);
35 a1=sqrt((real(a))^2+(imag(a))^2);
36 \text{ INs} = -20 * \log 10 (a1);
37 disp('dB', INs, 'Insertion Loss:');
38
39 //Isolation Loss
```

```
Solisb 5.4.1 Console

Total series resistance:

17.683883

ohms

Junction Area:

0.0009571

cm2

-->
```

Figure 8.3: Silicon switching diode

```
40 b=(2*Zf)/((2*Zf)+Z0);
41 b1=sqrt((real(b))^2+(imag(b))^2);
42 ISs=-20*log10(b1);
43 disp('dB',ISs,'Isolation Loss:');
```

Scilab code Exa 8.3 Silicon switching diode

```
1 //Page Number: 392
```

```
\frac{2}{\text{Example }} 8.3
3 clc;
4 // Given
5 Vbd=1000; //V
6 f=30D+9; //Hz
7 E=3D+5; //V/cm
8 Cj = 0.3D - 12; //F
9 \text{ er} = 11.8;
10 e0=8.854D-12;
11
12 W = Vbd/E;
13 Wpi=W/100; //mu
14
15 //Total series resistance
16 R=1/(2*\%pi*f*Cj);
17 disp('ohms',R,'Total series resistance:');
18
19 // Junction Area
20 A = (Cj*Wpi)/(e0*er);
21 disp('cm2', A*10000, 'Junction Area:');
```

Scilab code Exa 8.6 Parametric upconverter

```
1 //Page Number: 428
2 //Example 8.6
3 clc;
4 //Given
5 MQ=10;
6 M=0.4;
7 r=20;
8 Td=300; //K
9 T=290; //K
```

```
Power gain:
    9.2449028

dB

Nosie figure:
    1.4223258

dB

Bandwidth:
    3.5777088
```

Figure 8.4: Parametric upconverter

```
11  x=(MQ*MQ)/r;
12  //Power Gain
13  Ap=(r*x)/((1+sqrt(1+x))^2);
14  Apdb=10*log10(Ap);
15  disp('dB',Apdb,'Power gain:');
16
17  //Noise figure
18  z=(Td/T)/sqrt(1+((MQ*MQ)/r));
19  F=1+z;
20  Fdb=10*log10(F);
21  disp('dB',F,'Nosie figure:');
22
23  //Bandwidth
24  BW=2*M*sqrt(r);
25  disp(BW,'Bandwidth:');
```

Scilab code Exa 8.7 Parametric amplifier

Gain:

7.297114

dB

-->

Figure 8.5: Parametric amplifier

```
Effective Q:
    106.66667
-->
```

Figure 8.6: Negative resistance parametric amplifier

Scilab code Exa 8.8 Negative resistance parametric amplifier

```
1 //Page Number: 429
2 //Example 8.8
3 clc;
4 //Given
```

```
Final charge pulse:

0.967
```

Figure 8.7: 330 stage CCD

```
5 Rs=1; //ohm
6 ws=5D+9; //Hz
7 M=0.25;
8 C0=2D-12; //F
9
10 //(i) Effective Q
11 Q=1/(Rs*ws*C0*(1-(M*M)));
12 disp(Q, 'Effective Q: ');
```

Scilab code Exa 8.9 330 stage CCD

```
1 //Page Number: 434
2 //Example 8.9
3 clc;
4 //Given
5 e=0.0001;
6 s=330;
7
8 //Charge transfer effciency
9 n=1-e;
10
11 //Final charge pulse
12 //x=P/P0
13 x=(1-(e*s));
14 disp(x,'Final charge pulse:');
```

Scilab code Exa 8.10 3 phase CCD

```
1 //Page Number: 434
2 //Example 8.10
3 clc;
4 //Given
5 Qmax=0.05D-12; //C
6 f=10D+6; //Hz
7 V=10; //V
8 n=3;
9
10 //Power disspated per bit
11 P=n*f*V*Qmax;
```

```
Power disspated per bit:

15.

muW
-->
```

Figure 8.8: 3 phase CCD

```
Gate voltage:
    15.290786

V
Clock frequency:
    0.6915600

MHz
-->
```

Figure 8.9: Surface channel CCD

```
12 disp('muW',P*10^6,'Power disspated per bit:');
```

Scilab code Exa 8.11 Surface channel CCD

```
1 // Page Number: 434
2 // Example 8.11
```

```
3 clc;
4 //Given
5 \text{ e0=8.854D-12};
6 \text{ er} = 3.9;
7 d=0.15D-6; //m
8 e=1.6D-19; //J
9 Nmax=2.2D+16; //m-2
10 A = 0.6D - 8; //m
11 P = 0.67D - 3; //W
12 n=3;
13
14 //(i) Junction capacitance
15 Ci = (e0 * er)/d;
16
17 //Gate voltage
18 V = (Nmax*e)/Ci;
19 disp('V', V, 'Gate voltage:');
20
21 //(ii) Charge stored
22 Qmax = Nmax * e * A;
23
24 // Clock frequency
25 f=P/(n*V*Qmax);
26 disp('MHz',f/10^6,'Clock frequency:');
```

Scilab code Exa 8.12 3 phase CCD

```
1 //Page Number: 435
2 //Example 8.12
3 clc;
4 //Given
5 Qmax=0.06D-12; //C
6 f=20D+6; //Hz
```

```
Power disspated per bit:

36.

muW
-->
```

Figure 8.10: 3 phase CCD

```
7 V=10; //V
8 n=3;
9
10 //Power disspated per bit
11 P=n*f*V*Qmax;
12 disp('muW',P*10^6,'Power disspated per bit:');
```

Scilab code Exa 8.13 Surface channel CCD

```
1 //Page Number: 435
2 //Example 8.13
3 clc;
4 // Given
5 \text{ e0=8.854D-12};
6 \text{ er} = 4;
7 d=0.1D-6; //m
8 \text{ si=0.85};
9 e=1.6D-19; //J
10 Na=1D+20;
11
12 Ci = (e0 * er)/d;
13 disp('F/m',Ci, 'Junction capacitance:');
14
15 W=sqrt((2*e0*er*si)/(e*Na));
16 disp('m', W, 'Depletion layer width:');
```

```
Junction capacitance:

0.0003542

F/m

Depletion layer width:

0.0000019

m
```

Figure 8.11: Surface channel CCD

Chapter 9

Microwave Solid State Generators and Amplifiers

Scilab code Exa 9.2 Bipolar transistor

```
1 //Page Number: 448
2 //Example 9.2
3 clc;
4 //Given
5 fc=5D+9; //Hz
6 Em=2D+7; //V/m
7 vs=4D+3; //ms/s
8 Xc=1; //ohm
9
10 //Maximum allowable power
11 Pm=((Em*vs)^2)/(((2*%pi*fc)^2)*Xc);
12 disp('W',Pm,'Maximum allowable power:');
```

Scilab 5.4.1 Console Maximum allowable power: 6.4845558 W

Figure 9.1: Bipolar transistor

```
Conduction band differential:
 - 0.1
eV
Valence band differential:
   0.74
eV
```

Figure 9.2: Heterojunction transistor

Scilab code Exa 9.3 Heterojunction transistor

```
1 //Page Number: 451
2 //Example 9.3
3 clc;
4 //Given
5 XeGe=4.0; //eV
6 XeGaAs=4.1; //eV
7 delEgGe=0.78; //eV
8 delEgGaAs=1.42; //eV
9
10 //Conduction band differential
11 delEc=XeGe-XeGaAs;
12 disp('eV', delEc, 'Conduction band differential:');
13
14 // Valence band differential
15 delEv=delEgGaAs-delEgGe-delEc;
16 disp('eV', delEv, 'Valence band differential:');
```

Scilab code Exa 9.4 GaAs FET

```
1 //Page Number: 454
2 //Example 9.4
3 clc;
4 //Given
5 S11=0.89;
6 S12=0.02;
7 S21=3.1;
8 S22=0.78;
9
10 del=(S11*S22)-(S12*S21);
11 K=[1-(S11)^2-(S22)^2+(del)^2;]/(2*S12*S21);
12 if(K<1)</pre>
```

Amplifier is potentially unstable

Figure 9.3: GaAs FET

```
disp('Amplifier is potentially unstable');
disp('Amplifier is potentially stable');
end
```

Scilab code Exa 9.5 Microwave transistor

```
1 //Page Number: 454
\frac{2}{\text{Example }}9.5
3 clc;
4 // Given
5 S11=0.40;
6 S12=0.01;
7 S21=2.00;
8 S22=0.35;
9
10 ZL=20; //ohm
11 ZS=30; //ohm
12 ZO = ZL + ZS; //ohm
13
14 // Reflection coefficients of source and load
15 TL = (ZL - ZO) / (ZL + ZO);
16 TLm = -TL;
17 TS = (ZS - ZO) / (ZS + ZO);
18 TSm = -TS;
19
20 //Reflection coefficients of input and output
21 Tin=S11+((S12*S21*TL)/(1-(S22*TL)));
22 Tout = S22 + ((S12 * S21 * TS) / (1 - (S22 * TS)));
23
24 //Transducer Gain
25 \text{ x} = (1 - (TSm)^2) / ((1 - (S11 * TSm))^2); / Value of should
      be 1.145
```

```
Transducer Gain:
5.2066826

Available power Gain:
5.2567776

Power Gain:
5.4729759
```

-->

Figure 9.4: Microwave transistor

```
26 y = (S21 * S21);
z=(1-(TLm)^2)/((1-(Tout*TLm))^2);
28 \text{ GT} = x * y * z;
29 disp(GT, 'Transducer Gain: ');
30
31 // Available Power Gain
32 z1=1-(Tout)^2;
33 GA = (x*y)/z1;
34 disp(GA, 'Available power Gain:');
35
36 //Power Gain
37 z2=1-(Tin)^2;
38 GP = (x*y)/z2;
39 disp(GP, 'Power Gain:');
40
41 // All the end calculations of finding gain are not
      accurate in the book, hence the answers dont
      match
```

Scilab code Exa 9.6 Transistor Amplifier

```
1 //Page Number: 455
2 //Example 9.6
3 clc;
4 //Given
5 S11=0.60;
6 S12=0.045;
7 S21=2.50;
8 S22=0.50
9 TS=0.5;
10 TL=0.4;
11 Vrms=10; //V
12 Z0=50; //ohm
```

```
Reflection coefficients of input:
   0.65625
Reflection coefficients of output:
   0.575
Transducer Gain:
   13.553237
Available power Gain:
   14.291431
Power Gain:
   16.802604
Power available at source:
   0.5
W
Power available at load:
   4.7
W
                         246
```

Figure 9.5: Transistor Amplifier

```
13
14 //(i) Reflection coefficients of input and output
15 Tin=S11+((S12*S21*TL)/(1-(S22*TL)));
16 Tout=S22+((S12*S21*TS)/(1-(S22*TS)));
17 disp(Tin, 'Reflection coefficients of input:');
18 disp(Tout, 'Reflection coefficients of output:');
19
20 //(ii) Gains
21 //Transducer Gain
22 x=(1-(TS)^2)/((1-(S11*TS))^2);
23 y = (S21 * S21);
z=(1-(TL)^2)/((1-(Tout*TL))^2);
25 \text{ GT} = x * y * z;
26 disp(GT, 'Transducer Gain:');
27
28 // Available Power Gain
29 z1=1-(Tout)^2;
30 GA = (x*y)/z1;
31 disp(GA, 'Available power Gain:');
32
33 //Power Gain
34 z2=1-(Tin)^2;
35 GP = (x*y)/z2;
36 disp(GP, 'Power Gain:');
37
38 // Calculation for Tout and Gains are wrong in the
      book, hence the answers dont match
39
40 //(iii) Power available
41 Gt = 9.4;
42 Pas = (sqrt(2) * Vrms)^2/(8 * Z0);
43 Pal=Gt*Pas;
44 disp('W', Pas, 'Power available at source:');
45 disp('W', Pal, 'Power available at load:');
```

Maximum gain:

19.253664

-->

Scilab code Exa 9.7 Microwave transistor

```
1 //Page Number: 457
2 //Example 9.7
3 clc;
4 //Given
5 S11=0.90;
6 S12=0;
7 S21=2.40;
8 S22=0.80;
9
10 Gmax=(S21*S21)/((1-(S11)^2)*(1-(S22)^2));
11 Gdb=10*log10(Gmax);
12 disp(Gdb, 'Maximum gain:');
```

Scilab code Exa 9.8 JEFT

```
1 //Page Number: 468
2 //Example 9.8
3 clc;
4 //Given
5 e=1.6D-19;
6 Nd=1.1D+23; //m-3
7 a=0.2D-6; //m
8 er=11.8;
9 e0=8.854D-12;
10 mue=800D-4; //m2/Vs
11 Z=50D-6;
12 L=8.5D-6; //m
13 W0=1; //V
```

```
Pinch off voltage:

3.3691561

V

Pinch off current:

55809.081

A

Drain current:

0.0109612

A

Drain saturation current:

0.0000973

A

Cutt off frequency:

4.7498883

GHz

-->
```

Figure 9.7: JEFT

```
14 Vd=12; //V
15 Vg=1.5; //V
16
17 //(i) Pinch off voltage and pinch off current
18 Vp=(e*Nd*a*a)/(2*er*e0);
19 disp('V', Vp, 'Pinch off voltage:');
20
21 Ip=(mue*e*e*Nd*Nd*Z*a*a)/(e0*er*L);
22 disp('A', Ip, 'Pinch off current:');
23 //Answer for Ip is 55809 A but it is given as
      0.00558 A
24
25 //(ii) Drain and maximum drain current
\frac{26}{\sqrt{\text{Taking Ip}}} = 5.58 \text{mA as given in book}
27 \text{ Ip1=0.00558; } //A
28 x=(2/3)*(((Vd+Vg+W0)/Vp)^(3/2));
29 y=(2/3)*(((Vg+W0)/Vp)^(3/2));
30 Id = Ip1 * [(Vd/Vp) - x + y];
31 disp('A',-Id,'Drain current:');
32
33 // Saturation Current
34 \text{ Is=Ip1*[(1/3)-((Vg+W0)/Vp)+((2/3)*(((Vg+W0)/Vp)))}
      ^(3/2)))];
35 disp('A', Is, 'Drain saturation current:');
36
37 //(iii) Cut off frequency
38 f = (2*mue*e*Nd*a*a)/(%pi*er*e0*L*L);
39 disp('GHz',f/10^9,'Cutt off freqency:');
```

Scilab code Exa 9.9 MESFET

```
1 // Page Number: 469
2 // Example 9.9
```

Pinch off voltage:

7.885496

V

-->

Figure 9.8: MESFET

```
3 clc;
4 //Given
5 e=1.6D-19;
6 Nd=8D+23; //m-3
7 a=0.12D-6; //m
8 er=13.2;
9 e0=8.854D-12;
10
11 //Pinch off voltage
12 Vp=(e*Nd*a*a)/(2*er*e0);
13 disp('V', Vp, 'Pinch off voltage:');
```

Scilab code Exa 9.10 Gunn device

```
//Page Number: 486
//Example 9.10
clc;
//Given
vd=2D+5; //m/s
L=10D-6; //m
Ec=3.2D+5; //V/m

//Natural frequency
clipted f=vd/L;
disp('GHz',f/10^9,'Natural frequency:');
//Critical voltage
//Critical voltage
//Critical voltage
//Critical voltage
//Critical voltage
```

```
Natural frequency:

20.

GHz

Critical voltage:

3.2

V
```

Figure 9.9: Gunn device

```
Power output:
774.144
mW
-->
```

Figure 9.10: Gunn oscillator

Scilab code Exa 9.11 Gunn oscillator

```
1 //Page Number: 487
2 //Example 9.11
3 clc;
4 //Given
5 n=0.08;
6 A=3D-8; //m2
7 n0=1D+21; //m-3
8 e=1.6D-19;
9 vd=1.5D+5; //m/s
10 M=3.2
11 E=350D+3; //V
12 L=12D-6; //m
```

```
13
14 //Power output
15 Pout=n*A*n0*e*vd*M*L*E;
16 disp('mW',Pout*1000,'Power output:');
```

Scilab code Exa 9.12 Tunnel diode

```
1 //Page Number: 487
2 //Example 9.12
3 clc;
4 //Given
5 G=15.85;
6 Rn=75; //ohm
7
8 Rl=Rn-(Rn/G);
9 C=Rl+(10*%i);
10 disp('ohms',C,'Cavity impedance:');
```

Scilab code Exa 9.13 Gunn diode

```
1 //Page Number: 487
2 //Example 9.13
3 clc;
4 //Given
5 e=1.6D-19;
6 n1=1D+16; //m-3
7 mu1=8000D-4; //m2/Vs
8 nu=1D+14; //m-3
9 muu=180D-4; //m2/Vs
```

```
Cavity impedance:

70.268139 + 10.i

ohms
```

Figure 9.11: Tunnel diode

Figure 9.12: Gunn diode

```
nOL should be greater than

1.208D+16

m^-3
-->
```

Figure 9.13: Gunn diode

```
10

11 /// Conductivity

12 C=e*((n1*mu1)+(nu*muu));

13 disp('m mho', C*1000, 'Conductivity:');
```

Scilab code Exa 9.14 Gunn diode

```
1 //Page Number: 488
2 //Example 9.14
3 clc;
4 //Given
5 e0=8.854D-12;
```

```
Solab 5.4.1 Console

Current density:
    3200000.

A/m sqr

Negative electron mobility:
    - 3125.

cm sqr/Vs
-->
```

Figure 9.14: Gunn diode

```
6 er=13.1;
7 vd=2.5D+5; //m/s
8 e=1.6D-19;
9 mu=0.015; //m2/Vs
10
11 //Criteria
12 noL=(e0*er*vd)/(e*mu);
13 disp('m^-3',noL,'noL should be greater than');
```

Scilab code Exa 9.15 Gunn diode

```
1 //Page Number: 488
2 //Example 9.15
3 clc;
4 //Given
```

```
5 L=10D-6; /m
6 f = 10D + 9; //Hz
7 e=1.6D-19;
8 \text{ n0=2D+20; } //\text{m3}
9 E=3200D+2; //V/m
10
11 // Current density
12 \text{ vd=L*f};
13 J=n0*e*vd;
14 disp('A/m sqr',J,'Current density:');
15
16 // Negative electron mobility
17 mu = -vd/E;
18 disp('cm sqr/Vs', mu*10000, 'Negative electron')
      mobility: ');
19
20 //Answer for Negative electron mobility is 3125 but
      it is given as 3100
```

Scilab code Exa 9.17 IMPATT diode

```
1 //Page Number: 497
2 //Example 9.17
3 clc;
4 //Given
5 n=0.15;
6 Vdc=100; //V
7 Idc=200D-3; //A
8 vd=2D+5; //m/s
9 L=6D-6; //m
10
11 //(i) Maximum CW output power
12 Pdc=Vdc*Idc;
```

```
Maximum CW power output:

3.

W

Resonant frequency:

16.666667

GHz

-->
```

Figure 9.15: IMPATT diode

```
13  Pout=n*Pdc;
14  disp('W',Pout,'Maximum CW power output:');
15
16  //(ii) Resonant frequency
17  f=vd/(2*L);
18  disp('GHz',f/10^9,'Resonant frequency:');
```

Scilab code Exa 9.18 IMPATT diode

```
1 //Page Number: 497
2 //Example 9.18
3 clc;
4 // Given
5 n=0.1;
6 Vdc = 100; /V
7 Idc=100D-3; //A
8 vd = 2D + 5; //m/s
9 L=5D-6; //m
10 V0 = 90; //V
11 k=3;
12
13 //(i) Maximum CW output power
14 Pdc=Vdc*Idc;
15 Pout=n*Pdc;
16 disp('W', Pout, 'Maximum CW power output:');
17
18 //(ii) Resonant frequency
19 f=vd/(2*L);
20 disp('Hz',f,'Resonant frequency:');
21
22 //(iii) Transit time
23 T=L/vd;
24 disp('s',T,'Transit time:');
```

```
Maximum CW power output:

1.

W

Resonant frequency:
2.000D+10

Hz

Transit time:
2.500D-11

s

Avalanche multiplication factor:
2.6900369
```

Figure 9.16: IMPATT diode

```
Power output:

9.

W
Duty cycle:

3.625D-11

s
-->
```

Figure 9.17: IMPATT diode

```
25
26 //(iv) Avalanche multiplication factor
27 M=1/(1-((Vdc/V0)^k));
28 disp(-M, 'Avalanche multiplication factor:');
```

Scilab code Exa 9.19 IMPATT diode

```
1 //Page Number: 498
2 //Example 9.19
3 clc;
4 //Given
5 n=0.1;
6 Vdc=100; //V
```

```
7  Idc=0.9; //A
8  t=0.01D-9; //s
9  f=16D+9; //Hz
10
11  //(i)Power output
12  Pdc=Vdc*Idc;
13  Pout=n*Pdc;
14  disp('W',Pout,'Power output:');
15
16  //(ii)Duty cycle
17  D=(t/2)+(1/(2*f));
18  disp('s',D,'Duty cycle:');
```

Scilab code Exa 9.20 IMPATT diode

```
1 //Page Number: 498
2 //Example 9.20
3 clc;
4 // Given
5 Cj = 0.5D - 12; //F
6 Lp=0.5D-9; //H
7 Irf=0.65; //A
8 R1=2; //ohms
9 Vbd=80; //V
10 Idc=0.08; //A
11
12 //Resonant frequency
13 f=1/(2*%pi*sqrt(Cj*Lp));
14 disp('Hz',f,'Resonant frequency:');
15
16 // Efficiency
17  Pout = (Irf*Irf*R1)/2;
18 Pin=Vbd*Idc;
```

```
Resonant frequency:

1.007D+10

Hz

Efficiency:

6.6015625
```

Figure 9.18: IMPATT diode

```
19 n=(Pout*100)/Pin;
20 disp('%',n,'Efficiency:');
```

Scilab code Exa 9.21 TRAPATT diode

```
1 //Page Number: 501
2 //Example 9.21
3 clc;
4 //Given
5 J=25D+7; //A/m;
6 Na=2.5D+21; //m3
7 e=1.6D-19;
8
9 //Avlance zone velocity
10 vz=J/(Na*e);
11 disp('m/s',vz,'Avlanche zone velocity:');
```

Scilab code Exa 9.22 BARITT diode

```
1 //Page Number: 503
2 //Example 9.22
3 clc;
4 //Given
5 e=1.6D-19;
6 N=4D+21; //m
7 L=10D-6; //m
8 e0=8.854D-12;
9 er=11;
10
```

Avlanche zone velocity:
625000.
m/s

Figure 9.19: TRAPATT diode

```
Scilab 5.4.1 Console

Breakdown voltage:

657.

V

Breakdown electric field:

65712467.

V/m

-->
```

Figure 9.20: BARITT diode

```
Scilab 5.4.1 Console
```

```
Angular spread:

0.0001952

rad

Aerial spread:

1.915D+10

m sqr

-->
```

Figure 9.21: Laser

```
//Breakdown voltage
//Breakdown voltage
//Breakdown electric field
//Breakdown electric field
//Breakdown electric field
//Breakdown electric field
```

Scilab code Exa 9.23 Laser

```
1 //Page Number: 515
2 //Example 9.23
3 clc;
4 //Given
5 \text{ lam} = 8000D - 10; //m
6 a=0.5D-2; //m
7 D=4D+8; /m
9 //Angular Spread
10 t=(1.22*lam)/a;
11 disp('rad',t,'Angular spread:');
12
13 // Aerial spread
14 A = \%pi*((D*t)^2);
15 disp('m sqr', A, 'Aerial spread:');
16
17
18 //Answer for A is given as 193 m sqr but it is 1.915
      D+10 \text{ m sqr}
```

Scilab code Exa 9.24 Laser

```
1 //Page Number: 515
2 //Example 9.24
3 clc;
4 //Given
5 E=10; //W
6 T=1D-9; //s
7 c=3D+8; //m/s
8 lam=650D-9; //m
9
10 //Pulse Power
11 P=E/T;
```

```
Scilab 5.4.1 Console

Pulse Power:

1.000D+10

W

O value:

461538.46
```

Figure 9.22: Laser

```
12 disp('W',P,'Pulse Power:');
13
14 //Q value
15 Q=(c*T)/lam;
16 disp(Q,'Q value:');
```

Scilab code Exa 9.25 Heterojunction laser

```
1 //Page Number: 515
2 //Example 9.25
3 clc;
4 //Given
5 h=6.626D-34;
6 c=3D+8; //m/s
```

```
Soliab 5.4.1 Console

Wavelenght emitted:
6716.
A
-->
```

Figure 9.23: Heterojunction laser

```
7 e=1.6D-19;
8 Eg=1.85; //eV
9
10 // Wavelenght emitted
11 lam=(h*c)/(Eg*e);
12 lamarm=lam*1D+10;
13 disp('A',round(lamarm),'Wavelenght emitted:');
```

Chapter 10

Striplines and Microstrip Lines

Scilab code Exa 10.1 Copper stripline

```
1 //Page Number: 554
2 //Example 10.1
3 clc;
4 // Given,
6 z0=50; //ohm
7 t=0.001; //mm
8 b=0.32; //cm
9 \text{ er} = 2.20;
10 tandel= 0.0005;
11 rs=0.026; //ohm
12 f=10D+9; //Hz
13 c=3D+8; //m/sec
14
15 p=sqrt(er)*z0;
16 //As p < 120
17 w=b*[((30*\%pi)/p)-0.441];
18 disp('cm',w,'Width');
19
```

```
Width

0.2655478

cm

Total attenution in db/lambda:

0.8556728

db/lambda

-->
```

Figure 10.1: Copper stripline

```
20 // Attenuation
21 k = \{(2*\%pi*f*sqrt(er))/c\};
22 ad=(k*tandel)/2;
23
24 // and
25 A=1+\{(2*w)/(b-t)\}+[\{(b+t)/((b-t)*%pi)\}*log(((2*b)-t)
      /t)];
26 //Hence
27 ac=(2.7D-3*rs*er*z0*A)/{30*\%pi*(b-t)*1D-2};
28 //Total attenution
29 \quad a=ad+ac;
30
31 //Total attenution in db
32 x = exp(a);
33 alp=20*log10(x); //db/m
34
35 //Total attenution in db/lambda:
36 \quad lam=c/(sqrt(er)*f);
37 \quad lamm = lam * 1D + 2;
38 alph=alp/lamm;
39 disp('db/lambda',alph,'Total attenution in db/lambda
      : ');
40
41
42 //Answer in book for alph is given as 0.856 but it
      should be 0.0856 as value of f is taken as 10D+10
       but it should be 10D+9
```

Scilab code Exa 10.2 Microstrip line

```
1 // Page Number: 555
2 // Example 10.2
3 clc;
```

```
Sclab 5.4.1 Console

Dielectric constant:
6.5564729

Phase constant:
2.6814133

rad/m

Microstrip wavelength:
2.3432364

cm

Capacitance per unit length:
2.717D-11

F/cm

Characterstic impedance:
49.447285

ohm

-->
```

Figure 10.2: Microstrip line

```
4 //Given,
5 \text{ er} = 9.7;
6 h=0.25; //mm
7 \text{ w=0.25}; /\text{mm}
8 f = 5D + 9; //Hz
9 c=3D+8; //m/s
10
11 //(i) Dielectric constant
12 dc = ((er+1)/2) + (((er-1)/2)*(1/sqrt(1+12*h/w)));
13 disp(dc, 'Dielectric constant: ');
14
15 //(ii) Phase constant
16 \quad lam0=c/f;
17 pc=sqrt(dc)*(2*%pi/lam0);
18 disp('rad/m',pc/100, 'Phase constant:');
19
20 //(iii) Microstrip wavelength
21 lams=lam0/sqrt(dc);
22 disp('cm',lams*100,'Microstrip wavelength:');
23
24 //(iv) Capacitance per unit length
25 \text{ e0=8.854D-12};
26 cap=(2*\%pi*e0)/log((8*h/w)-(w/(4*h)));
27 disp('F/cm', cap, 'Capacitance per unit length:');
28
29 //(v) Characterstic Impedance
30 ci=(60/sqrt(dc))*log((8*h/w)+(w/(4*h)));
31 disp('ohm',ci,'Characterstic impedance:');
```

Scilab code Exa 10.3 Microstrip

```
1 // Page Number: 556
2 // Example 10.3
```

```
Dielectric constant:

3.8048369

Characterstic impedance:

54.822056

ohm
-->
```

Figure 10.3: Microstrip

```
Strip supports TEM mode only
-->
```

Figure 10.4: Stripline

```
3 clc;
4 //Given,
5 er=5.23;
6 w=10; //mils
7 t=2.8; //mils
8 h=7; //mils
9
10 dc=((er+1)/2)+(((er-1)/2)*(1/sqrt(1+12*h/w)));
11 disp(dc, 'Dielectric constant:');
12
13 //As w/h>1
14 ci=(120*%pi)/(sqrt(dc)*((w/h)+1.393+0.667*log((w/h)+1.444)));
15 disp('ohm',ci,'Characterstic impedance:');
```

Scilab code Exa 10.4 Stripline

```
1 //Page Number: 556
2 //Example 10.4
3 clc;
4 // Given,
6 q = 2.5;
7 dh=1.58;
8 \text{ er} = 9;
9 f = 10;
10 c = 3D + 8;
11
12 erff=((er+1)/2)+(((er-1)/2)*((1+(12/q))^(-1/2)));
13 vp=(c/sqrt(erff))*erff;
14 fe1=c/(sqrt(vp)*2*dh*q);
15 if f<fe1 then
16
       disp('Strip supports TEM mode only');
17 else
       disp('Strip does not support TEM mode only');
18
19 end
```

Scilab code Exa 10.5 Microstrip line

```
1 //Page Number: 557
2 //Example 10.5
3 clc;
4 //Given,
5
6 er=9.7;
```

```
Dielectric constant:

6.5564729

Characterstic impedance:

49.447285

ohm

Dielectric attenuation:

0.0253364

Np/m

Conductor attenuation:

0.4113396

Np/m

Total attenuation:

0.0379297

db/cm

-->
```

Figure 10.5: Microstrip line

```
7 h=0.5; /mm
8 \text{ w=0.5}; /\text{mm}
9 1t = 2D - 4;
10 t = 0.02; //mm
11 f = 5D + 9; //Hz
12 fg=5; //HZ
13 c = 3D + 8;
14 \text{ rs} = 8.22D - 3*sqrt(fg);
15
16 //(i) Dielectric constant
17 dc = ((er+1)/2) + (((er-1)/2)*(1/sqrt(1+12*h/w)));
18 disp(dc, 'Dielectric constant:');
19
20 //(ii) Characterstic Impedance
21 ci = (60/sqrt(dc))*log((8*h/w)+(w/(4*h)));
22 disp('ohm',ci,'Characterstic impedance:');
23
24 //(iii) Dielectric attenuation
25 \quad lam0=c/f;
26 alphd=(\%pi/lam0)*(er/sqrt(dc))*((dc-1)/(er-1))*lt;
27 disp('Np/m',alphd,'Dielectric attenuation:');
28
29 //Conductor attenuation
30 r1 = [0.94 + (0.132 * (w/h)) - (0.0062 * ((w/h)^2))] * [(1/\%pi)
      +(1/(\%pi^2))*log((4*\%pi*w)/t)]*(rs/(w*1D-3));
31 r1m=r1*1D-2;
32 \text{ r2}=(w/h)/[((w/h)+5.8+(0.03*(h/w)))]*(rs/(w*1D-3));
33 r2m = r2 * 1D - 2;
34 \text{ alphc}=(r1+r2)/(2*ci);
35 disp('Np/m',alphc,'Conductor attenuation:');
36
37 //(iv) Total attenuation
38 A=alphc+alphd;
39 Adb=A*8.686*1D-2;
40 disp('db/cm', Adb, 'Total attenuation:');
```

```
Scilab 5.4.1 Console
```

```
conductor Q of the stripline:
1815.
```

Figure 10.6: Microstrip line

Scilab code Exa 10.6 Microstrip line

```
1 //Page Number: 558
2 //Example 10.6
3 clc;
4 //Given
5
6 sig=5.8D+7;
7 f=10; //GHz
8 h=0.12D-2; //m
9
10 q=62.8*h*sqrt(f*sig);
11 disp(round(q), 'conductor Q of the stripline:');
```

```
Required Width:

12.312478

mm

Stripline capacitance:

163.52203

pF/m

Stripline inductance:

0.4082483

muH/m

Phase velocity

1.225D+08

m/s

-->
```

Figure 10.7: Parallel stripline

Scilab code Exa 10.7 Parallel stripline

```
1 // Page Number: 558
2 //Example 10.7
3 clc;
4 // Given
5 \text{ Er=6};
6 h=4D-3; //m
8 //(i) W for Z0=50W
9 Z0=50; //W
10 W=(120*\%pi*h)/(sqrt(Er)*Z0);
11 disp('mm', W*1000, 'Required Width:');
12
13 //(ii) Stripline capacitance
14 E0=8.854D-12;
15 C = (E0 * Er * W) / h;
16 disp('pF/m',C*10^12, 'Stripline capacitance:');
17
18 //(iii) Stripline inductance
19 Mu0=4*\%pi*10D-7;
20 L = (Mu0*h)/W;
21 disp('muH/m',L*10^5, 'Stripline inductance:');
22
23 //(iv)Phase velocity
24 c = 3D + 8;
25 vp=c/sqrt(Er);
26 disp('m/s', vp, 'Phase velocity');
```

Scilab code Exa 10.8 Stripline coupler

```
Length:

0.5

cm

Coupling coefficient:

0.3162278

Even mode impedance:

69.371294

ohm

Odd mode impedance:

36.037961

ohm

-->
```

Figure 10.8: Stripline coupler

```
1 //Page Number: 559
2 //Example 10.8
3 clc;
4 //Given
5 cl=3D+8; //m/s
6 f=5D+9; //Hz
7 Er = 9;
8 C = -10; //db
9 Z0=50; //ohm
10 //Length
11 L=(cl/f)/(4*sqrt(Er));
12 disp('cm',L*100, 'Length:');
13
14 // Coupling coefficient
15 C0=10^{(C/20)};
16 disp(CO, 'Coupling coefficient:');
17
18 //Even and odd mode impedance
19 Z0e = (Z0*sqrt(1+C0))/sqrt(1-C0);
20 disp('ohm', ZOe, 'Even mode impedance:');
21
22
23 Z0o = (Z0 * sqrt (1-C0)) / sqrt (1+C0);
24 disp('ohm', Z0o, 'Odd mode impedance:');
```

Scilab code Exa 10.9 Branch coupler

```
1 //Page Number: 560
2 //Example 10.9
3 clc;
4 //Given
5 Z0=50; //ohm
6 C=3; //db
```

```
Z01:
    35.313339
    ohm
    Z02:
        50.
    ohm
-->
```

Figure 10.9: Branch coupler

```
7
8  //Line impedance
9  Z01sqr=(1-(10^(C/-10)));
10  Z01=sqrt(Z0*Z0*Z01sqr);
11  disp('ohm',Z01,'Z01:');
12
13  Z02=Z01/(sqrt(1-(1/sqrt(2))^2));
14  disp('ohm',round(Z02),'Z02:');
```

Scilab code Exa 10.10 Broadside stripline

```
1 //Page Number: 560
2 //Example 10.10
3 clc;
4 // Given
5 \text{ W=6}; /m
6 s=2.2; //m
7 b=4.8; //m
8 \text{ Er} = 2.2;
10 //Even and odd mode impedance
11 Z0e = ((120*\%pi)*(b-s))/(2*sqrt(Er)*W);
12 disp('ohm', ZOe, 'Even mode impedance:');
13
14
15 Z0o = (Z0e*s)/b;
16 disp('ohm', Z0o, 'Odd mode impedance:');
17
18 //Mid band coupling
19 x = (Z0e - Z0o) / (Z0e + Z0o);
20 C = -20 * log 10(x);
21 disp('db',C,'Mid band coupling:');
22
```

```
Even mode impedance:

55.069595

ohm

Odd mode impedance:

25.240231

ohm

Mid band coupling:

8.6024938

db
-->
```

Figure 10.10: Broadside stripline

```
Science State Service State Service Se
```

Figure 10.11: Paralle stripline

```
23 //Answer in book for C is given as 54.2 but it should be 8.60
```

Scilab code Exa 10.11 Paralle stripline

```
1 //Page Number: 562
2 //Example 10.11
3 clc;
4 //Given
5 Er=6;
6 d=3D-3; //m
7 Z0=50; //ohm
```

```
8 E0=8.854D-12; //F/m
9 Mu0=4*%pi*10D-7; //H/m
10
11 //(i) W
12 W=(377*d)/(sqrt(Er)*Z0);
13 disp('mm', W*1000, 'Required Width:');
14
15 //(ii) Stripline capacitance
16 C = (E0 * Er * W) / d;
17 disp('pF/m',C*10^12, 'Stripline capacitance:');
18
19 //(iii) Stripline inductance
20 L = (Mu0*d)/W;
21 disp('muH/m',L*10^6, 'Stripline inductance:');
22
23 //(iv)Phase velocity
24 c = 3D + 8;
25 vp=c/sqrt(Er);
26 disp('m/s', vp, 'Phase velocity');
```

Scilab code Exa 10.12 Shielded stripline

```
1 //Page Number: 562
2 //Example 10.12
3 clc;
4 //Given
5 Er=2.56;
6 w=25; //mils
7 t=14; //mils
8 d=70; //mils
9 E0=8.854D-12; //F/m
10
11 //(i) K factor
```

```
Sciab 54.1 Console

K factor:

1.25

Fringe capacitance:

15.664724

pF/m

Charecteristic Impedance:

51.729298

chm

-->
```

Figure 10.12: Shielded stripline

```
12 K=1/(1-(t/d));
13 disp(K,'K factor:');
14
15 //(ii) Fringe capacitance
16 C=[(E0*Er)*[2*K*log(K+1)-(K-1)*log(K^2-1)]]/%pi;
17 disp('pF/m',C*10^12,'Fringe capacitance:');
18
19 //(iii) Charecteristic Impedance
20 X=1/[((w*K)/d)+(C/(E0*Er))];
21 Z0=(94.15*X)/sqrt(Er);
22 disp('ohm',Z0,'Charecteristic Impedance:');
23
24
25 //Answer in book for Z0 is given as 50.29 but it should be 51.7
```

```
Output Impedance 1:

125.

ohm

Output Impedance 2:

83.333333

ohm

Reflection Coeffcients:

- 0.6

- 0.4
-->
```

Figure 10.13: Lossless stripline

Scilab code Exa 10.13 Lossless stripline

```
1 //Page Number: 563
2 //Example 10.13
3 clc;
4 // Given
5 \text{ Z0=50}; //\text{ohm}
6 //Sincr ratio of power is 2:3
7 x1=5/2;
8 y1=5/3;
9 //Output Impedance
10 Z1 = x1 * Z0;
11 Z2 = y1 * Z0;
12 disp('ohm', Z1, 'Output Impedance 1:')
13 disp('ohm', Z2, 'Output Impedance 2:')
14
15 //Input Impedance
16 Zin = [((Z2*2*Z2)/3)/((Z2+(2*Z2)/3))];
17
18 //Looking into Z1, Z2 is || to Z0
19 A1 = (Z2 * Z0) / (Z2 + Z0);
20
21 //Looking into Z, Z2 is || to Z0
22 \quad A2 = (Z1 * Z0) / (Z1 + Z0);
23
24 // Reflection Coeffcients
25 R1=(A1-Z1)/(A1+Z1);
26 R2 = (A2 - Z2) / (A2 + Z2);
27
28 disp(R2,R1, 'Reflection Coeffcients:');
```

Chapter 11

Microwave Integrated Circuits

Scilab code Exa 11.1 Costs

```
1 // Page Number: 595
2 // Example 11.1
3 clc;
4 // Given
5 fabc=10000; // Rs/waffer
6 c=100;
7 y=40/100;
8 coc=fabc/(y*c);
9 // Cost of one chip
10 disp('Rs',coc,'Cost of one chip:');
11
12 // Market Cost
13 mc=2*coc;
14 disp('Rs',mc,'Market costof one chip:');
```

```
Scilab 5.4.1 Console
```

```
Cost of one chip:

250.

Rs

Market costof one chip:

500.
```

Figure 11.1: Costs

Figure 11.2: Yield

Scilab code Exa 11.2 Yield

```
1 //Page Number: 595
2 //Example 11.2
3 clc;
4 // Given
5 c = 5000; //Rs
6 S=0.6; //cm
7 // Sides
8 \text{ x=3; } //\text{cm}
9 y=2.54; //cm
10 //break even cost
11 bec=250;
12 //hence, chips/waffers needed
13 cpw=c/bec;
14 D = x * y;
15 //For given Area, atleast 40 chips are required
16 n = 2 * cpw;
17
18 // Diameter
19 N=D/(sqrt(2)*S);
20 //Lower round off
21 \text{ NN=floor(N)};
22 //Chips possible
23 cp=NN^2;
24
25 // Yield
26 Y=(n/cp)*100; //Percent
27 disp('%',Y,'Yield:');
```

Chapter 12

Microwave Measurements

Scilab code Exa 12.1 Microwave diode

```
1 //Page Number: 649
2 //Example 12.1
3 clc;
4 // Given
5 Is=0.1*(10^-6); //A
6 Pi=0; //dBm
7 Cs=0.1*(10^-12); //F
8 Ls=2*(10^-9);
9 Cj=0.15*(10^-12); /F
10 Rs=10; //ohm
11 T=293; //K
12 nktbye=25*(10^-3); //V
13
14 / Rj
15 Rj=(nktbye/Is);
16 disp('Kohm',Rj/1000,'Rj:');
17
18 //Bi
19 Bi=nktbye/2;
```

```
      Scilab 5.4.1 Console

      Rj:

      250.

      Kohm

      Bi:

      12.5

      A/W

      Bv:

      3125000.

      V/W
```

-->

Figure 12.1: Microwave diode

Scileh 5.4.1 Concole

```
Mismatch Loss

1.9382003

dB

Voltge sensitivity reduces by:

64.
```

Figure 12.2: Detector mismatch

```
20  Bii=Bi*1000;
21  disp('A/W',Bii,'Bi:');
22  23  //Bv
24  Bv=Rj*Bii;
25  disp('V/W',Bv,'Bv:');
```

Scilab code Exa 12.2 Detector mismatch

```
1 //Page Number: 650
2 //Example 12.2
3 clc;
4 //Given
5 vswr=4;
```

```
VSWR:

10.301015
-->
```

Figure 12.3: Transmission waveguide

```
6
7 modT=(vswr-1)/(vswr+1);
8 Lm=-10*log10(1-(modT*modT)); //dB
9 disp('dB',Lm,'Mismatch Loss:');
10
11 //Sensitivity reduces by a factor
12 Bvd=(1-(modT*modT));
13 Bvdp=Bvd*100;
14 disp('%',Bvdp,'Voltge sensitivity reduces by:');
```

Scilab code Exa 12.3 Transmission waveguide

```
1 //Page Number: 650
2 //Example 12.3
3 clc;
4 //Given
5 f=10D+9; //Hz
6 c=3D+10; //cm/s
```

```
VSWR:

8.9126768
-->
```

Figure 12.4: VSWR of waveguide

```
7 a=4; //cm
8 s=0.1; //cm
9 lmb=c/f; //cm
10 lmbg=lmb/(sqrt(1-((lmb/(2*a))^2)));
11 vswr=lmbg/(%pi*s);
12 disp(vswr, 'VSWR: ');
13
14 //Answer in book for lmbg is given as 3.49 but it should be 3.23 and hence the answer will be 10.3
```

Scilab code Exa 12.4 VSWR of waveguide

```
1 //Page Number: 651
2 //Example 12.4
3 clc;
4 //Given
```

```
Reflected Power:

0.5

W
-->
```

Figure 12.5: Directional couplers

```
5 delx=3.5; //cm
6 s=0.25; //cm
7
8 lmbg=2*delx;
9 vswr=lmbg/(%pi*s);
10 disp(vswr, 'VSWR: ');
```

Scilab code Exa 12.5 Directional couplers

```
1 //Page Number: 651
2 //Example 12.5
3 clc;
4 //Given
5 vswr=2;
6 Pin=4.5D-3; //W
7
8 modT=(vswr-1)/(vswr+1);
```

```
Reflection coefficient:

0.4117647

-->
```

Figure 12.6: Microwave line

```
9 //Power reflected,
10 Pr=(modT^2)*Pin;
11 //As coupler samples only 1/1000th power
12 Prr=Pr*1000;
13 disp('W',Prr,'Reflected Power:');
```

Scilab code Exa 12.6 Microwave line

```
1 //Page Number: 652
2 //Example 12.6
3 clc;
4 //Given
5 Z0=50; //ohm
6 p=2.4;
7 L=0.313;
8 x=2*%pi*L;
9 y=tan(x);
```

```
Sclab 54.1 Console

Reflection coefficient:

0.4472136

VSWR:

2.618034

Fraction of power delivered:

80.

%
-->
```

Figure 12.7: Microwave line

```
10

11  Zl=(Z0*(1+(p*p*%i)))/(p+(p*%i));

12  T=(Zl-Z0)/(Zl+Z0);

13  p=sqrt((real(T))^2+(imag(T))^2);

14  disp(p, 'Reflection coefficient:');
```

Scilab code Exa 12.7 Microwave line

```
1 //Page Number: 652
```

```
2 //Example 12.7
3 clc;
4 // Given
5 \text{ Z1} = 25 + 25 * \%i; //ohm
6 Z0=50; //ohm
8 T=(Z1-Z0)/(Z1+Z0);
9 p=sqrt((real(T))^2+(imag(T))^2);
10 disp(p, 'Reflection coefficient:');
11
12 vswrr = (1+p)/(1-p);
13 disp(vswrr, 'VSWR: ');
14
15 // Fraction of power delivered
16 \text{ Pd=1-(p^2)};
17 Pdp=Pd*100;
18 disp('%', Pdp, 'Fraction of power delivered:');
```

Scilab code Exa 12.8 Rectangular waveguide

```
1 //Page Number: 653
2 //Example 12.8
3 clc;
4 //Given
5 d=2.4; //cm
6 lmbc=1.8;
7 c=3*10^10; //cm/s
8
9 lmbg=2*d;
10 lmb=(lmbg*lmbc)/(sqrt(lmbg^2+lmbc^2));
11 //Operating frequency
12 f=c/lmb;
13 disp('GHz',f/10^9,'Operating frequency:');
```

Operating frequency:

17.800008

GHz

-->

Figure 12.8: Rectangular waveguide

Figure 12.9: Three port circulator

Scilab code Exa 12.9 Three port circulator

```
1 //Page Number: 653
2 //Example 12.9
3 clc;
4 //Given
5 p=1.5;
6 IsL=1; //dB
7 InL=30; //dB
8
9 S21=10^(-IsL/20);
10
11 //Assuming tgree ports to be identical
12 S32=S21;
```

```
Dielectric constant

1.631006

Loss tangent of dielectric

0.0010016

-->
```

Figure 12.10: Air filled cavity

```
13 S13=S21;
14
15 //Isolations are also the same
16 S31=10^(-InL/20);
17 S23=S31;
18 S12=S31;
19
20 //Refelction coefficients are also the same
21 T=(p-1)/(p+1);
22 S11=T;
23 S22=T;
24 S33=T;
25
26 S=[S11 S12 S13;S21 S22 S23;S31 S32 S33];
27 disp(S,'Matrix is:');
```

Scilab code Exa 12.10 Air filled cavity

```
//Page Number: 654
//Example 12.10
clc;
//Given
R1=10.6; //GHz
R2=8.30; //GHz
Q0=8200;
Q0=8200;
Cr=(R1/R2)^2;
disp(Er, 'Dielectric constant');
Qd=(Q0-Q0d)/(Q0*Q0d);
disp(Qd, 'Loss tangent of dielectric');
```

Scilab code Exa 12.11 Rectangular Waveguide

```
1 //Page Number: 654
2 //Example 12.11
3 clc;
4 //Given
5 10=0.15; //cm
6 lmbg=2*2.24; //cm
7 le=1.14; //cm
8 a=2.286; //cm
9 d=2;
10
11 B0=(2*%pi)/lmbg;
```

Figure 12.11: Rectangular Waveguide

```
12  x=tan(B0*10)/(B0*10);
13  //Also
14  x1=(10*x)/le;
15  //Correct value seems to be
16  Bele=2.786;
17  e1=((((a/%pi)^2)*(Bele/le)^2)+1);
18  e2=(((2*a)/lmbg)^2)+1;
19  Er=e1/e2;
20  disp(Er, 'Er: ');
21
22
23  //Answer in book for Er is given as 2.062 but it should be 2.038
```