# Project 3 - Buoy Detection

# – Jiawei Ge

# 1) Part0

- a. It's required to use RGB. I cropped the buoys from frame 1 to 43 with rectangle shapes, using imwrite function to save them. I found that imwrite actually scale the RGB values, so I also save the original RGB values in .mat files.
- b. Extract the values from different buoy samples, I can get the mean R, G, B and the deviation of different buoy samples. Then using a Gaussian model to fit them. Using them as the standard to judge if a point is the buoy.
- c. Read the frames, compare all the pixels in the frame with the standard. Calculate the possibilities that a specific pixel is a buoy.
- d. Using the possibilities to compare with some thresholds and finally get the buoy areas.







- a. As you can see the EM1D3N result plot. My implementation of the GMM is very similar to the Matlab fitgmdist function.
- b. The EM1D4N result shows that if we forcedly to separate 3 samples into 4 Gaussian distributions, the previous distribution which has the smallest standard deviation will be regarded as 2 different distributions.





### 3) Part2

a. I used my own implementation of GMM to separate the mixed buoy sample data. The results are quite accurate, you can compare with the results in the Part0.







### 4) Part3

a. Please watch the video I made in the Output folders.

#### 5) Extra.

- a. Yes. There is a representation of image called HSV. H stands for hue, S stands for saturation, V stands for value (brightness). The advantage of this representation is that it consider about light condition and saturation while maintain the number of parameters to be 3.
- b. I'm sure this HSV representation is better than RGB. However, I don't have enough time to find the perfect threshold after finishing implementation. My video output is not correct since sometimes it detects more than 1 same color buoys. But it can run continuously from frame 1 to 200. While the previous part 3, we can't get results sometimes because the random initial positions yields wrong GM results.