ΚΕΦΑΛΑΙΟ

Ιδιότητες Συναρτήσεων

1.1 Μονοτονία - Ακρότατα

ΟΡΙΣΜΟΙ

Ορισμός 1: ΜΟΝΟΤΟΝΙΑ

Μια συνάρτηση αύξουσα ή φθίνουσα, χαρακτηρίζεται ως μονότονη, ενώ μια γνησίως αύξουσα ή γνησίως φθίνουσα συνάρτηση ως γνησίως μονότονη. Οι χαρακτηρισμοί αυτοί αφορούν τη μονοτονία μιας συνάρτησης, μια ιδιότητα των συναρτήσεων η οποία δείχνει την αύξηση ή τη μείωση των τιμών μιας συνάρτησης σε ένα διάστημα του πεδίου ορισμού.

1. Γνησίως αύξουσα

Μια συνάρτηση f ορισμένη σε ένα διάστημα Δ ονομάζεται γνησίως αύξουσα στο Δ εαν για κάθε ζεύγος αριθμών $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει

$$f(x_1) < f(x_2)$$

2. Γνησίως φθίνουσα

Μια συνάρτηση f ορισμένη σε ένα διάστημα Δ ονομάζεται γνησίως φθίνουσα στο Δ εαν για κάθε ζεύγος αριθμών $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει

$$f(x_1) > f(x_2)$$

Σχήμα 1.1: Γνησίως αύξουσα

Σχήμα 1.2: Γνησίως φθίνουσα

Ορισμός 2: ΟΛΙΚΑ ΑΚΡΟΤΑΤΑ

Ακρότατα ονομάζονται οι μέγιστες ή ελάχιστες τιμές μιας συνάρτησης $f:D_f\to\mathbb{R}$ τις οποίες παίρνει σε ένα διάστημα ή σε ολόκληρο το πεδίο ορισμού της.

1. Ολικό μέγιστο

Μια συνάρτηση $f:D_f\to\mathbb{R}$ παρουσιάζει ολικό μέγιστο σε ένα σημείο $x_0\in D_f$ του πεδίου ορισμού της όταν η τιμή $f(x_0)$ είναι μεγαλύτερη από κάθε άλλη f(x) για κάθε σημείο x_0 του πεδίου ορισμού.

$$f(x) \le f(x_0)$$
 , για κάθε $x \in D_f$

2. Ολικό ελάχιστο

Μια συνάρτηση $f:D_f\to\mathbb{R}$ παρουσιάζει ολικό ελάχιστο σε ένα σημείο $x_0\in D_f$ του πεδίου ορισμού της όταν η τιμή $f(x_0)$ είναι μικρότερη από κάθε άλλη f(x) για κάθε σημείο x_0 του πεδίου ορισμού.

$$f(x) \ge f(x_0)$$
, για κάθε $x \in D_f$

Σχήμα 1.3: Ολικό μέγιστο

Σχήμα 1.4: Ολικό ελάχιστο

Ορισμός 3: ΑΡΤΙΑ - ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

1. Άρτια συνάρτηση

Άρτια ονομάζεται μια συνάρτηση $f:D_f\to\mathbb{R}$ για την οποία ισχύουν οι παρακάτω συνθήκες :

i.
$$\forall x \in D_f \Rightarrow -x \in D_f$$

ii.
$$f(-x) = f(x)$$
, $\forall x \in D_f$

2. Περιττή συνάρτηση

Περιττή ονομάζεται μια συνάρτηση $f:D_f\to\mathbb{R}$ για την οποία ισχύουν οι παρακάτω συνθήκες :

i.
$$\forall x \in D_f \Rightarrow -x \in D_f$$

ii.
$$f(-x) = -f(x)$$
, $\forall x \in D_f$

Σχήμα 1.5: Άρτια συνάρτηση

Σχήμα 1.6: Περιττή συνάρτηση

- Η γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική ως προς τον κατακόρυφο άξονα.
- Η γραφική παράσταση μιας περιττής συνάρτησης είναι συμμετρική ως προς την αρχή των αξόνων.
- Η αρχή των αξόνων για μια περιττή συνάρτηση ονομάζεται κέντρο συμμετρίας της.

1.2 Μετατόπιση γραφικής παράστασης

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

Θεώρημα 1.1 : ΚΑΤΑΚΟΡΥΦΗ ΜΕΤΑΤΟΠΙΣΗ

Η γραφική παράσταση C_f μιας συνάρτησης f μετατοπίζεται κατακόρυφα κατά c μονάδες προς τα πάνω ή προς τα κάτω, εαν αυξήσουμε ή μειώσουμε αντίστοιχα τις τεταγμένες f(x) των σημείων της κατά c μονάδες.

$$g(x) = f(x) \pm c$$
, $c > 0$

Η γραφική παράσταση C_g της νέας συνάρτησης g(x) προκύπτει από κατακόρυφη μετατόπιση της C_f κατά c μονάδες.

Θεώρημα 1.2: ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ

Η γραφική παράσταση C_f μιας συνάρτησης f μετατοπίζεται οριζόντια κατά c μονάδες προς τα αριστερά ή προς τα δεξιά, εαν αυξήσουμε ή μειώσουμε αντίστοιχα τις τετμημένες x των σημείων της κατά c μονάδες.

$$g(x) = f(x \pm c) , c > 0$$

Η γραφική παράσταση C_g της νέας συνάρτησης g(x) προκύπτει από οριζόντια μετατόπιση της C_f κατά c μονάδες.