CS1026 – Digital Logic Design Sequential Logic Analysis

Alistair Morris 1

¹Distributed Systems Group Trinity College Dublin

March 15, 2016

Today's Overview

- 1 Method of analysising sync cirucits
- 2 Applying the five step analysis technique
- 3 A useful book

Analysing Sync Circuits [Nelson et al., 1995] I

We can use Flip Flops to work out how a Synchronous circuit works

■ How does it behave?

Analysing Sync Circuits [Nelson et al., 1995] II

Assign a present state variable to each flip flop in the system.

• Y_i represents flip-flop outputs for i = 1, 2, 3, ...

Analysing Sync Circuits [Nelson et al., 1995] III

Write the excitation-input equation for each of the flip-flops and the external-output (Moore and/or mealy equations).

- After completing this step, we define D_i , J_i K_i , T_i where $i = 1, 2, 3 \dots$
 - This denotes the number of flip-flops used

Analysing Sync Circuits [Nelson et al., 1995] IV

Substitute the excitation input equation into the characteristic equations of the flip-flops.

■ This obtains the "next state" equations

Analysing Sync Circuits [Nelson et al., 1995] V

For D flip-flops:

•
$$Y_i = D_i$$
 for $i = 1, 2, 3, ...$

Analysing Sync Circuits [Nelson et al., 1995] VI

Characteristic Table

JK	lα⁺	Comment
0 0	Q	no change
0 1	0	reset condition
1 0	1	set condition
1.1	Q'	toggle
	1	

Characteristic equation: $Q^+ = J.Q' + K'.Q$

For J-K flip-flops:

•
$$Y_i = J_i.Y'_i + K'_i.Y_i$$
 for $i = 1, 2, 3, ...$

Analysing Sync Circuits [Nelson et al., 1995] VII

Characteristic Table

Characteristic equation: $Q^+ = T'.Q + T.Q'$

Also for T flip-flops

•
$$Y_i = T_i \oplus Y_i \text{ for } i = 1, 2, 3, ...$$

but we don't see these much now!

Analysing Sync Circuits [Nelson et al., 1995] VIII

			1		
Y1	Y2	Χ	Y1 ⁺	Y2 ⁺	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1
			l		

Obtain a Present State (PS) /Next State (NS) table (or a composite K-map) using the next state and external-out equations

■ Separate K-maps can be used for the external outputs!

Analysing Sync Circuits [Nelson et al., 1995] IX

Y1	Y2	Χ	Y1 ⁺	Y2 ⁺	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1
			l		

Use the PS/NS table or the K-map to obtain a state diagram

■ Then we can draw ASM chart or timing diagram to show the behavior of the circuit

An example I

An example II

Note: We have a Mealy-type machine since the output depends on external input and flip-flop outputs.

An example III

Assign a present state variable to each flip flop in the synchronous system. Y_i representing flip-flop outputs for i = 1, 2, 3, ...

Hint

Refer to the schematic!

An example IV

Write the excitation-input equation for the flip-flops and the equation for the external-output (Moore and/or mealy equations). After this step is completed, the values of Di, Z should be defined for all flip-flops:

- D1 = X'.Y1'.Y2
- D2 = Y1'.Y2 + X
- Z = Y1.Y2.X

An example V

Substitute the excitation-input equation into the characteristic equations for the flip-flops to obtain the *next state* equations.

- Remember for D flip-flops:
 - $Y_i = D_i$ for i = 1, 2, 3, ...
 - Y1 = D1 = X'.Y1'.Y2
 - Y2 = D2 = Y1'.Y2 + X

An example VI

Composite K-map where;

→ Ys and Xs are independent variables

→ Ys and Xs are Dependent

X

0 1

00,0 01,0

11

00,0 01,1

10

00,0 01,0

Y1,Y2,Z

Obtain a PS/NS table or a composite K-map using the next state and external-output (Mealy and/or Moore) equations. Separate K-maps can also help with the external outputs.

An example VII

Classic State machine

- * Links show input, output in 1s and 0s
- * State is inside the circles

Legend

<u>Notes</u>

- 1) State 00 is reset
- Output Z=1 only when the input sequence is 101, so this could be "101" pattern detector.
- State "10" is referred to as "illegal state", "unused state" or an "unreachable state".
- One way to ensure you don't end up in illegal state is to have a power on reset.

Use the PS/NS table or the composite K-map to obtain a state diagram to show the behavior of the circuit.

An example VIII

Note

Since we have two flip-flops, the state machine has 4 states.

An example IX

Classic State machine

- * Links show input, output in 1s and 0s
- * State is inside the circles

Legend

Notes

- 1) State 00 is reset
- 2) Output Z=1 only when the input sequence is 101, so this could be "101" pattern detector.
- 3) State "10" is referred to as "illegal state", "unused state" or an "unreachable state".
- 4) One way to ensure you don't end up in illegal state is to have a power on reset.

An example X

In the case of Moore machines, we put outputs inside the circle:

■ They only depends on the current state

This consitutes a simplified State machine

It shows the links between states in Boolean expressions.

An example XI

An Algorithmic State Machine (ASM) also describes the functionality:

Note: When Z is not shown, it is assumed the output is 0.

References (Homework) I

Nelson, V. P., Nagle, H. T., Carroll, B. D., and Irwin, J. D. (1995).

Digital logic circuit analysis and design.

Prentice-Hall, Inc.