PyTorch

_

Bibliothèque de « Deep Learning »

1) Grande base de données étiquetées

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - → Optimisation par descente de gradient stochastisque (AdamW, etc.)

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - → Optimisation par descente de gradient stochastisque (AdamW, etc.)
- 3) Grande capacité de calculs en parallèle (GPU)

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - ► Optimisation par descente de gradient stochastisque (AdamW, etc.)
- 3) Grande capacité de calculs en parallèle (GPU)
 - → calculs sur GPU de manière transparente

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - → Optimisation par descente de gradient stochastisque (AdamW, etc.)
- 3) Grande capacité de calculs en parallèle (GPU)
 - → calculs sur GPU de manière transparente
 - → génération de minibatches sur CPUs

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - → Optimisation par descente de gradient stochastisque (AdamW, etc.)
- 3) Grande capacité de calculs en parallèle (GPU)

- → calculs sur GPU de manière transparente
- → génération de minibatches sur CPUs
- → « Autograd » : calcul automatique du gradient (rétropropagation)

- 1) Grande base de données étiquetées
- 2) « Bonne » architecture de réseau de neurones profond
 - →« Perceptron » multicouche, Réseau de neurones à convolution, Transformer
 - → Optimisation par descente de gradient stochastisque (AdamW, etc.)
- 3) Grande capacité de calculs en parallèle (GPU)

- → calculs sur GPU de manière transparente
- → génération de minibatches sur CPUs
- → « Autograd » : calcul automatique du gradient (rétropropagation)
- → couches classiques (FC, ReLU, Convolution, Attention, etc.)

Bibliothèques

PyTorch

Numpy sur GPU

```
# Create a numpy array.
x = np.array([[1, 2], [3, 4]])

# Convert the numpy array to a torch tensor.
y = torch.from_numpy(x)

# Convert the torch tensor to a numpy array.
z = y.numpy()
```

PyTorch

Numpy sur GPU

```
# Create a numpy array.
x = np.array([[1, 2], [3, 4]])

# Convert the numpy array to a torch tensor.
y = torch.from_numpy(x)

# Convert the torch tensor to a numpy array.
z = y.numpy()
```

Autograd

```
# Create tensors.
x = torch.tensor(1., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)

# Build a computational graph.
y = w * x + b  # y = 2 * x + 3

# Compute gradients.
y.backward()

# Print out the gradients.
print(x.grad)  # x.grad = 2
print(w.grad)  # w.grad = 1
print(b.grad)  # b.grad = 1
```

Définition du Dataset

Objet dont la méthode **def** <u>__getitem__(self, idx)</u>: doit charger et renvoyer la donnée numéro idx (et son étiquette)

Définition du Dataset

Objet dont la méthode **def** <u>__getitem__(self, idx)</u>: doit charger et renvoyer la donnée numéro idx (et son étiquette)

Définition du Dataloader

Nombre de processus qui vont préparer des minibatches en parallèle sur CPU(s).

Définition du Dataset

Objet dont la méthode **def** <u>__getitem__(self, idx)</u>: doit charger et renvoyer la donnée numéro idx (et son étiquette)

Définition du Dataloader

```
train_loader = t.utils.data.DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, num_workers=2)
```

Définition du GPU

```
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```

Nombre de processus qui vont préparer des minibatches en parallèle sur CPU(s).

Définition du Dataset

Objet dont la méthode **def** <u>__getitem__(self, idx)</u>: doit charger et renvoyer la donnée numéro idx (et son étiquette)

Définition du Dataloader

Boucle principale d'apprentissage

for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):
 images = images.to(device)
 labels = labels.to(device)

Mise à disposition d'un minibatch

Transfert du 15 minibatch au GPU

TensorBoard

_

Outil de visualisation

Visualisations au cours d'un apprentissage

Lors d'un apprentissage, il est indispensable de réaliser de nombreux affichages, à minima :

- Coût d'apprentissage
- Coût/Performances de validation
- Pas d'apprentissage
- Exemples de résultats

Visualisations au cours d'un apprentissage

Lors d'un apprentissage, il est indispensable de réaliser de nombreux affichages, à minima :

- Coût d'apprentissage
- Coût/Performances de validation
- Pas d'apprentissage
- Exemples de résultats

Il est important de pouvoir :

- Visualiser ces affichages **au cours** de l'apprentissage
- Sauvegarder ces affichages

Visualisations au cours d'un apprentissage

Lors d'un apprentissage, il est indispensable de réaliser de nombreux affichages, à minima :

- Coût d'apprentissage
- Coût/Performances de validation
- Pas d'apprentissage
- Exemples de résultats

Il est important de pouvoir :

- Visualiser ces affichages **au cours** de l'apprentissage
- Sauvegarder ces affichages

En pratique, on lance souvent plusieurs apprentissages simultanément (par exemple avec différents valeurs d'hyperparamètres, ou différentes variantes d'architectures) **sur un serveur à distance**.

TensorBoard

À mettre dans son script d'entraînement :

Instanciation d'un objet TensorBoard (crée un fichier log dans ./runs/)

```
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
```

TensorBoard

À mettre dans son script d'entraînement :

Instanciation d'un objet TensorBoard (crée un fichier log dans ./runs/)

```
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
```

Ajout d'un point à une courbe

```
writer.add_scalar("Loss/train", loss, epoch)

Valeur abscisse

Nom courbe

Valeur ordonnée
```

TensorBoard: accès aux logs

Lancer TensorBoard depuis un terminal :

tensorboard --logdir=runs

TensorBoard: accès aux logs

Lancer TensorBoard depuis un terminal :

tensorboard --logdir=runs

Dans un navigateur aller à : http://localhost:6006/

