## Calcul Différentiel I

## MINES ParisTech

## 22 septembre 2021 (#c1a798e)

**Question 1** Déterminer le gradient et la matrice jacobienne de la fonction  $(x_1, x_2) \in \mathbb{R}^2 \mapsto x_1 x_2 \in \mathbb{R}$ .

**Question 2** Déterminer en tout point la matrice jacobienne de l'application  $(x_1, x_2, x_3) \in \mathbb{R}^3 \mapsto (x_2 - x_1^2, x_3 - x_2^2) \in \mathbb{R}^2$ .

**Question 3** Soit  $f: \mathbb{R} \to \mathbb{R}^m$  une fonction dérivable. Dans l'expression  $df(x) \cdot h$ , à quels ensembles appartiennent df(x) et h? Que vaut l'expression en fonction de f'(x)?

**Question 4** Soit  $p: \mathbb{R}^2 \to ]0, +\infty[$  une fonction différentiable. Calculer le gradient de  $x \in \mathbb{R}^2 \mapsto \ln p(x) \in \mathbb{R}$  en fonction du gradient de p.

**Question 5** Soit  $f: \mathbb{R}^n \to \mathbb{R}^n$  une fonction différentiable, bijective et dont l'inverse  $g:=f^{-1}$  est également différentiable. Déterminer l'expression de la différentielle de g en  $y \in \mathbb{R}^n$  en fonction de la différentielle de f.

**Question 6** En exploitant la loi des gaz parfaits PV = nRT, donner une expression de dT en fonction de dP et dV (n et R sont des constantes).

**Question 7** Soit  $f: \mathbb{R}^2 \to \mathbb{R}$  une fonction telle que f(0,0) = 0 et  $\nabla f(x_1, x_2) = (2x_1 + x_2, x_1)$  en tout point. Déterminer la valeur de  $f(x_1, x_2)$  en tout point.

**Question 8** Soit  $f: \mathbb{R}^2 \to \mathbb{R}^m$  une fonction différentiable et vérifiant  $||df(x_1, x_2)|| \le 1$  quand  $|x_1| \ge 1$  ou  $|x_2| \ge 1$ . Quelle(s) inégalité(s) êtes-vous en mesure de prouver?

- $\Box$  A:  $||f(1,1) f(-1,-1)|| \le 2\sqrt{2} \approx 2.83$
- $\Box$  B:  $||f(1,1) f(-1,-1)|| \le 4$
- $\Box$  C:  $||f(1,1) f(-1,-1)|| \le \pi\sqrt{2} \approx 4.44$