Compléments sur Les suites

I. Sens de variation d'une suite

1. Définition et méthode

Définition 1.

Soit (u_n) une suite réelle définie sur \mathbb{N} .

- 1. Dire que la suite (u_n) est $d\acute{e}croissante$ signifie que pour tout entier naturel n, u_{n+1}
- **2.** Dire que la suite (u_n) est *croissante* signifie que pour tout entier naturel n, u_{n+1}
- 3. La suite (u_n) est *constante* (ou *stationnaire*) signifie que pour tout entier naturel n, u_{n+1} .

Remarque. Si (u_n) est croissante ou décroissante, la suite (u_n) est dite

Méthode.

Pour déterminer la variation d'une suite, on détermine le signe de $u_{n+1} - u_n$.

- **1.** Si $\forall n \in \mathbb{N}, u_{n+1} u_n \geqslant 0$, la suite (u_n) est ______
- **2.** Si $\forall n \in \mathbb{N}, u_{n+1} u_n \leq 0$, la suite (u_n) est _______
- **3.** Si $\forall n \in \mathbb{N}, u_n > 0$, on peut aussi calculer le rapport $\frac{u_{n+1}}{u_n}$:
 - (a) Si $\frac{u_{n+1}}{u_n} > 1$, la suite (u_n) est ______.
 - (b) Si $\frac{u_{n+1}}{u_n} < 1$, la suite (u_n) est ______

Exercice 1.7.

- 1. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 9 \times 5^n 1$ est croissante.
- **2.** Soit la suite (v_n) définie sur \mathbb{N} par $v_n = \frac{2^{3n}}{3^{2n}}$ est décroissante.

2. Cas des suites arithmétiques

Propriété.

Soit (u_n) une suite *arithmétique* de raison r.

- 1. La suite (u_n) est *décroissante* si et seulement si ______
- **2.** La suite (u_n) est **décroissante** si et seulement si _____
- 3. La suite (u_n) est *constante* (ou *stationnaire*) si et seulement si _____

Cas des suites géométriques 3.

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 donc pour tout entier naturel n:

$$u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n$$
$$= u_0 \times q^n \times (q-1)$$

La *monotonie* de la suite dépend du signe de u_0 , q^n et (q-1).

- 1. Si q < 0 alors q^n est positif pour n pair, négatif pour n impair donc la suite n'est pas monotone.
- **2.** Si q>0 alors la suite est *monotone*, croissante ou décroissante selon le signe du produit $u_0\times (q-1)$.

II. Notion de limite

S'intéresser à la limite d'une suite (u_n) , c'est étudier le comportement des termes u_n quand on donne à n des valeurs entières aussi grandes que l'on veut, ce qui se dit aussi « quand n tend vers $+\infty$ ». Différents outils (calculatrice, tableur, Python...) fournissent une représentation graphique ou un tableau de valeurs de la suite qui permettent d'émettre différentes conjectures.

Limite finie 1.

tout entier naturel n.

Exemple 1. (u_n) est définie par $u_n = \frac{4n-5}{2n+3}$ pour **Exemple 2.** (v_n) est définie par $v_n = \frac{1}{n+1}$ pour tout entier naturel n.

Les termes u_n semblent se rapprocher autant que l'on veut d'une valeur « limite » : 2.

On dit que la suite (u_n) tend vers 2 lorsque n tend vers $+\infty$ et on note : $\lim_{n \to +\infty} u_n = 2$.

Les termes v_n semblent se rapprocher autant que l'on veut d'une valeur « limite » : 0

0,001

0,00001

0,01

On dit que la suite (v_n) tend vers 0 lorsque n tend vers $+\infty$ et on note : $\lim_{n \to +\infty} v_n = 0$.

2. Limite infinie

Exemple 3. (w_n) est définie par $w_n = n^2$ pour tout entier naturel n.

Les termes de la suite semblent devenir aussi grands que l'on veut.

On note:
$$\lim_{n \to +\infty} w_n = +\infty$$

Exemple 4. (t_n) est la suite arithmétique de premier terme 16 et de raison -2.

	A	В
1	n	t_n
2	0	16
3	10	-4
4	100	-184
5	1 000	-19984

Les termes de la suite semblent devenir aussi grands que l'on veut en valeur absolue.

On note
$$\lim_{n \to +\infty} t_n = -\infty$$

3. Pas de limite

Exemple 5. (z_n) est définie par $z_n = (-1)^n$ pour tout entier naturel n.

La suite (z_n) a des termes alternées entre -1 et 1 donc la suite (z_n) n'a pas de limite.

Exemple 6. La suite (a_n) est définie sur \mathbb{N} par : $a_0 = -1$ et $a_{n+1} = (a_n)^2 - 1$:

	A	В
1	n	a_n
2	0	-1
3	1	0
4	2	-1
5	3	0
6	4	-1
7	5	0

La suite (a_n) semble ne prendre que les valeurs 0 et -1 de façon *alternée*: elle semble ne pas admettre de limite quand n tend vers $+\infty$.

Exercice 2.7. Les deux questions sont indépendantes.

- 1. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = -3(0,69)^n$. Démontrer que $(u_n)_{n\in\mathbb{N}}$ est géométrique et en déduire son sens de variation.
- 2. Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=5\left(\frac{1}{7}\right)^n+50$. Conjecturer avec la calculatrice, la limite de la suite $(v_n)_{n\in\mathbb{N}}$.