EC 303: Empirical Economic Analysis

Chapter 7: Point Estimation

Alex Hoagland, Boston Universit October 21, 2019

Intro

Recall the goal of sample collection:

Intro

Recall the goal of sample collection:

- We want to move from a sample to information about the population
- Specifically, we care about parameters θ (e.g., μ , p, etc.)
- Can our sample give us a number for θ ?

Intro

Recall the goal of sample collection:

- We want to move from a sample to information about the population
- Specifically, we care about parameters θ (e.g., μ , p, etc.)
- Can our sample give us a number for θ ?

YES. This is the goal of point estimation.

SECTION 7.1: INTRODUCTION TO ESTIMATION

Point Estimates

Definition. For a scalar (vector) parameter θ , a point estimate, $\hat{\theta}$, is another scalar (vector) calculated as a relevant statistic from a suitable sample.

Point Estimates

Definition. For a scalar (vector) parameter θ , a point estimate, $\hat{\theta}$, is another scalar (vector) calculated as a relevant statistic from a suitable sample.

We've seen this before!

- The mean of a sample \overline{x} can tell us something about μ
- The sample variance s^2 tells us something about σ^2
- Formally, $(\overline{x}, s^2) = \hat{\theta}$ for $\theta = (\mu, \sigma^2)$

Point Estimates

Definition. For a scalar (vector) parameter θ , a point estimate, $\hat{\theta}$, is another scalar (vector) calculated as a relevant statistic from a suitable sample.

We've seen this before!

- The mean of a sample \overline{x} can tell us something about μ
- The sample variance s^2 tells us something about σ^2
- Formally, $(\overline{x}, s^2) = \hat{\theta}$ for $\theta = (\mu, \sigma^2)$
- But different estimators exist! For example:

$$s_0^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 \text{ or } s_1^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

 How can we differentiate these? What are good qualities of an estimator?

Consider the following data:

 $\{24.46, 26.25, 27.15, 27.31, 27.74, 28.28, 28.49, 28.87, 29.13, 30.88\}$

• Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?

Consider the following data:

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!

Consider the following data:

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!
- 1 The trusty mean: $\overline{x} = \frac{1}{n} \sum_{i} x_i = 27.856$

Consider the following data:

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!
- 1 The trusty mean: $\overline{x} = \frac{1}{n} \sum_{i} x_i = 27.856$
- 2 The median: $\tilde{x} = (27.74 + 28.28)/2 = 28.01$

Consider the following data:

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!
- 1 The trusty mean: $\overline{x} = \frac{1}{n} \sum_{i} x_i = 27.856$
- 2 The median: $\tilde{x} = (27.74 + 28.28)/2 = 28.01$
- The midrange: $\overline{x}_c = (\min(x_i) + \max(x_i))/2 = 27.67$

Consider the following data:

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!
- 1 The trusty mean: $\overline{x} = \frac{1}{n} \sum_{i} x_i = 27.856$
- 2 The median: $\tilde{x} = (27.74 + 28.28)/2 = 28.01$
- **3** The midrange: $\bar{x}_c = (\min(x_i) + \max(x_i))/2 = 27.67$
- 4 The trimmed mean: throw away the top/bottom 10% of observations: $\bar{x}_t = 27.90$

Consider the following data:

 $\{24.46, 26.25, 27.15, 27.31, 27.74, 28.28, 28.49, 28.87, 29.13, 30.88\}$

- Q: If we think this data comes from a normal distribution, what is a sensible value of $\hat{\mu}$?
- A: It depends on who you ask!
- 1 The trusty mean: $\overline{x} = \frac{1}{n} \sum_{i} x_i = 27.856$
- 2 The median: $\tilde{x} = (27.74 + 28.28)/2 = 28.01$
- **3** The midrange: $\bar{x}_c = (\min(x_i) + \max(x_i))/2 = 27.67$
- **4** The **trimmed mean**: throw away the top/bottom 10% of observations: $\bar{x}_t = 27.90$

Which should you choose?

What Makes a Good Estimator?

If possible, we would like $\hat{\theta} = \theta$ always

- We cannot know this since we don't know θ !
- $\hat{\theta}$ is a statistic, so it is sample dependent.

What Makes a Good Estimator?

If possible, we would like $\hat{\theta} = \theta$ always

- We cannot know this since we don't know θ !
- $\hat{\theta}$ is a statistic, so it is sample dependent.
- We'll settle for an accurate estimator. Formally, if

$$\hat{\theta} = \theta + \epsilon,$$

then $\hat{\theta}$ is more accurate as ϵ gets smaller

- Want to consider average error across numerous samples
- ullet That is, accurate estimators minimize $\mathbb{E}\left[f(\hat{ heta}- heta)
 ight]$

Accuracy

There are several competing notions of close estimators $f(\hat{\theta} - \theta)$. Two big ones:

- **Squared Error**: $f = (\hat{\theta} \theta)^2$
- **2** Absolute Error: $f = |\hat{\theta} \theta|$

Accuracy

There are several competing notions of close estimators $f(\hat{\theta} - \theta)$. Two big ones:

- **Squared Error**: $f = (\hat{\theta} \theta)^2$
- **2** Absolute Error: $f = |\hat{\theta} \theta|$

When we take expectations, these become Mean Squared Error (MSE) and Mean Absolute Deviations (MAD).

Mean Squared Error

People generally prefer the MSE for calculations.

- More straightforward mathematically
- Punishes larger deviations more heavily

Mean Squared Error

People generally prefer the MSE for calculations.

- More straightforward mathematically
- Punishes larger deviations more heavily
- 3 Has the convenient representation:

$$\mathbb{V}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}[Y])^2$$

$$\Rightarrow \mathbb{E}[Y^2] = \mathbb{V}[Y] + (\mathbb{E}[Y])^2$$

$$\Rightarrow \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{V}[\hat{\theta} - \theta] + (\mathbb{E}[\hat{\theta} - \theta])^2$$

$$\Rightarrow MSE = \mathbb{V}[\hat{\theta}] + (\mathbb{E}[\hat{\theta}] - \theta)^2$$

Mean Squared Error

People generally prefer the MSE for calculations.

- More straightforward mathematically
- Punishes larger deviations more heavily
- 3 Has the convenient representation:

$$\mathbb{V}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}[Y])^2$$

$$\Rightarrow \mathbb{E}[Y^2] = \mathbb{V}[Y] + (\mathbb{E}[Y])^2$$

$$\Rightarrow \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{V}[\hat{\theta} - \theta] + (\mathbb{E}[\hat{\theta} - \theta])^2$$

$$\Rightarrow MSE = \mathbb{V}[\hat{\theta}] + (\mathbb{E}[\hat{\theta}] - \theta)^2$$

 $MSE = (Estimator Variance) + (Estimator bias)^2$

Consider a binomial experiment with n trials. Our parameter of interest is $\theta = p$, the probability of success

• Let $\hat{p} = X/n$ for the number of successes X in a trial

Consider a binomial experiment with n trials. Our parameter of interest is $\theta = p$, the probability of success

- Let $\hat{p} = X/n$ for the number of successes X in a trial
- The LLN shows that $\hat{p} \to p$ as $n \to \infty$, so this seems like a good estimator
- Q: What is its MSE?

Consider a binomial experiment with n trials. Our parameter of interest is $\theta = p$, the probability of success

- Let $\hat{p} = X/n$ for the number of successes X in a trial
- The LLN shows that $\hat{p} \to p$ as $n \to \infty$, so this seems like a good estimator
- Q: What is its MSE?

First we calculate the bias:

$$\mathbb{E}[\hat{p}] - p = \mathbb{E}\left[\frac{X}{n}\right] - p$$

$$= \frac{1}{n}\mathbb{E}[X] - p$$

$$= \frac{1}{n}np - p \text{ (since } X \text{ has a binomial distribution)}$$

$$= 0$$

This estimator is unbiased on average.

Second, we calculate the variance:

$$\mathbb{V}[\hat{\rho}] = \mathbb{V}\left[\frac{X}{n}\right]$$
$$= \frac{1}{n^2} \mathbb{V}[X]$$
$$= \frac{n\rho(1-\rho)}{n^2}$$
$$= \frac{\rho(1-\rho)}{n}$$

Second, we calculate the variance:

$$\mathbb{V}[\hat{p}] = \mathbb{V}\left[\frac{X}{n}\right]$$
$$= \frac{1}{n^2} \mathbb{V}[X]$$
$$= \frac{np(1-p)}{n^2}$$
$$= \frac{p(1-p)}{n}$$

Hence, the MSE is given by

$$MSE = \frac{p(1-p)}{n}$$

- This depends on something we don't know!
- How are we supposed to compare estimators?

To compare estimators, fix n and look at how MSEs range over all values of p

In general, we prefer unbiased estimators to biased ones

In general, we prefer unbiased estimators to biased ones

- Centered around the truth
- Examples: $\overline{x}, \tilde{x}, s^2, ...$

In general, we prefer unbiased estimators to biased ones

- Centered around the truth
- Examples: $\overline{x}, \tilde{x}, s^2, ...$

When choosing between unbiased estimators, we look for minimum variance

In general, we prefer unbiased estimators to biased ones

- Centered around the truth
- Examples: $\overline{x}, \tilde{x}, s^2, ...$

When choosing between unbiased estimators, we look for minimum variance

• If Bias = 0 and variance is minimized, then so is MSE

Bias and minimum variance are related to concepts of accuracy and precision:

Bias and minimum variance are related to concepts of accuracy and precision:

Example: Estimating a Mean

Suppose that TFP shocks to an economy are centered around a mean μ . Given a sample of shocks $\{X_1,...,X_n\}$, consider two unbiased estimators: \overline{x} and the midrange \overline{x}_c .

- Easy to see that both are unbiased since $\mathbb{E}[X_i] = \mu$ for all i.
- What about variances?

Example: Estimating a Mean

Suppose that TFP shocks to an economy are centered around a mean μ . Given a sample of shocks $\{X_1,...,X_n\}$, consider two unbiased estimators: \overline{x} and the midrange \overline{x}_c .

- Easy to see that both are unbiased since $\mathbb{E}[X_i] = \mu$ for all i.
- What about variances?

For the mean:

$$\mathbb{V}[\overline{x}] = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{V}[X_i]$$
$$= \frac{n\sigma^2}{n^2}$$
$$= \frac{\sigma^2}{n}$$

Example: Estimating a Mean

Suppose that TFP shocks to an economy are centered around a mean μ . Given a sample of shocks $\{X_1,...,X_n\}$, consider two unbiased estimators: \overline{x} and the midrange \overline{x}_c .

- Easy to see that both are unbiased since $\mathbb{E}[X_i] = \mu$ for all i.
- What about variances?

For the midrange:

$$\mathbb{V}[\overline{x}_c] = \mathbb{V}\left[\frac{\min(x_i) + \max(x_i)}{2}\right]$$

$$= \frac{1}{4}\left(\mathbb{V}[\min(x_i)] + \mathbb{V}[\max(x_i)]\right)$$

$$= \frac{2}{4}\sigma^2$$

$$= \frac{\sigma^2}{2}.$$

Example: Estimating a Mean

Suppose that TFP shocks to an economy are centered around a mean μ . Given a sample of shocks $\{X_1,...,X_n\}$, consider two unbiased estimators: \overline{x} and the midrange \overline{x}_c .

- Easy to see that both are unbiased since $\mathbb{E}[X_i] = \mu$ for all i.
- What about variances?

Therefore, whenever n > 2, the mean has a *lower* variance than the midrange.

- Why does this make sense intuitively?
- In fact, the sample mean is the minimum variance unbiased estimator (MVUE) for the population mean of a normal distribution

Estimation Tradeoffs: Which is Worse?

How do we choose between accuracy and precision?

Estimation Tradeoffs: Which is Worse?

How do we choose between accuracy and precision?

For example, which of these distributions do you prefer?

Estimation Tradeoffs: Which is Worse?

How do we choose between accuracy and precision?

• For example, which of these distributions do you prefer?

- Depends on your application
- Often difficult to know your bias exactly, so unbiasedness generally preferred, even at cost of higher variance
- Variance can be controlled more (e.g., selecting larger n)

Standard Errors

To communicate information about an estimate's **precision**, we report its **standard error**:

$$\sigma_{\hat{\theta}} = \sqrt{V\left(\hat{\theta}\right)}$$

Standard Errors

To communicate information about an estimate's **precision**, we report its **standard error**:

$$\sigma_{\hat{\theta}} = \sqrt{V\left(\hat{\theta}\right)}$$

- When this contains values that need to be estimated: $\hat{\sigma}_{\hat{\theta}}$
- Example: \overline{x} has variance σ^2/n , so its estimated standard error is $\hat{\sigma}/\sqrt{n} = s/\sqrt{n}$
- Standard errors will be very important in traditional hypothesis testing, confidence intervals, and inference

- **1** Begin with your sample $\{X_1, ..., X_n\}$
- **2** From that sample, sample again with replacement to get $\{X_1^1,...,X_n^1\}$

- 1 Begin with your sample $\{X_1, ..., X_n\}$
- 2 From that sample, sample again with replacement to get $\{X_1^1,...,X_n^1\}$
- $oxed{3}$ Calculate $\hat{ heta}^1$ using that sample

- **1** Begin with your sample $\{X_1, ..., X_n\}$
- **2** From that sample, sample again with replacement to get $\{X_1^1,...,X_n^1\}$
- $oxed{3}$ Calculate $\hat{ heta}^1$ using that sample
- Repeat steps (2) and (3) B times to obtain B different estimates of θ , $\{\hat{\theta}^1, ..., \hat{\theta}^B\}$.

- 1 Begin with your sample $\{X_1, ..., X_n\}$
- **2** From that sample, sample again with replacement to get $\{X_1^1,...,X_n^1\}$
- $oxed{3}$ Calculate $\hat{ heta}^1$ using that sample
- 4 Repeat steps (2) and (3) B times to obtain B different estimates of θ , $\{\hat{\theta}^1, ..., \hat{\theta}^B\}$.
- **5** Calculate the mean $\overline{\theta}^*$ of these estimates, and standard errors:

$$S_{\hat{ heta}} = \sqrt{rac{1}{B-1}\sum_{i=1}^B (\hat{ heta}^i - \overline{ heta}^*)^2}$$

SECTION 7.2: METHODS OF ESTIMATION

Constructing an Estimator

So far, our estimators have been "educated guesses". How can we formalize estimation?

Constructing an Estimator

So far, our estimators have been "educated guesses". How can we formalize estimation?

Today: two main classes of estimation:

- Method of Moments (MM): sample characteristics should match population values
- 2 Maximum Likelihood Estimation (MLE): mathematically optimize likelihood of data

Method of Moments

Intuitively, we construct estimators that match sample & population characteristics:

Population Moments $\Rightarrow \mathbb{E}[X^k] \Leftrightarrow \frac{1}{n} \sum_i X_i^k \Leftarrow \text{Sample Moments}$

Method of Moments

Intuitively, we construct estimators that **match** sample & population characteristics:

Population Moments
$$\Rightarrow \mathbb{E}[X^k] \Leftrightarrow \frac{1}{n} \sum_i X_i^k \Leftarrow \text{Sample Moments}$$

For a random sample $\{X_1,...,X_n\}$ from $f(x;\theta_1,...,\theta_m)$, the moment estimators $\vec{\hat{\theta}}=(\hat{\theta}_1,...,\hat{\theta}_m)$ are obtained by equating the first m sample and population moments

Method of Moments

Intuitively, we construct estimators that match sample & population characteristics:

Population Moments
$$\Rightarrow \mathbb{E}[X^k] \Leftrightarrow \frac{1}{n} \sum_i X_i^k \Leftarrow \text{Sample Moments}$$

For a random sample $\{X_1,...,X_n\}$ from $f(x;\theta_1,...,\theta_m)$, the moment estimators $\hat{\theta}=(\hat{\theta}_1,...,\hat{\theta}_m)$ are obtained by equating the first m sample and population moments

Need m equations to solve for m unknowns

Suppose that $\{X_1, ..., X_n\}$ come from a Gamma distribution with parameters (α, β) . We can solve for population moments:

$$\mathbb{E}[X] = \alpha\beta \tag{1}$$

$$\mathbb{E}[X^2] = \beta^2(\alpha + 1)\alpha \tag{2}$$

Suppose that $\{X_1, ..., X_n\}$ come from a Gamma distribution with parameters (α, β) . We can solve for population moments:

$$\mathbb{E}[X] = \alpha\beta \tag{1}$$

$$\mathbb{E}[X^2] = \beta^2(\alpha + 1)\alpha \tag{2}$$

To find the moment estimators, we equate these to sample moments:

$$\overline{X} = \frac{1}{n} \sum_{i} X_{i} = \alpha \beta$$

$$\frac{1}{n} \sum_{i} X_{i}^{2} = \beta^{2} (\alpha + 1) \alpha$$

We can solve this system for $(\hat{\alpha}, \hat{\beta})$.

After solving, we find

$$\hat{\alpha} = \frac{\overline{X}^2}{\frac{1}{n} \sum_i X_i^2 - \overline{X}^2}$$

$$\hat{\beta} = \frac{\frac{1}{n} \sum_i x_i^2 - \overline{X}^2}{\overline{X}}$$

After solving, we find

$$\hat{\alpha} = \frac{\overline{X}^2}{\frac{1}{n} \sum_i X_i^2 - \overline{X}^2}$$

$$\hat{\beta} = \frac{\frac{1}{n} \sum_i x_i^2 - \overline{X}^2}{\overline{X}}$$

Now we have an estimator for any sample! For example, let $X = \{152, 115, 109, 94, 101\}$. Then

$$\overline{X} pprox 114 \text{ and } \frac{1}{n} \sum_i X_i^2 pprox 13450$$
 $\Rightarrow \hat{lpha} pprox 32 \text{ and } \hat{eta} pprox 4.$

Method of Moments estimators are typically easy to compute

- Method of Moments estimators are typically easy to compute
- They are usually consistent and asymptotically normal

- Method of Moments estimators are typically easy to compute
- They are usually consistent and asymptotically normal
- 3 However, there are caveats:
 - Frequently biased (ex: $\hat{\sigma}^2$)
 - May give estimates that don't match data (ex: estimating $[\hat{A}, \hat{B}]$ for a uniform distribution may give estimates that don't catch all data)
 - Using first m moments doesn't use full information in distribution ⇒ development of MLE

- Method of Moments estimators are typically easy to compute
- They are usually consistent and asymptotically normal
- 3 However, there are caveats:
 - Frequently biased (ex: $\hat{\sigma}^2$)
 - May give estimates that don't match data (ex: estimating $[\hat{A}, \hat{B}]$ for a uniform distribution may give estimates that don't catch all data)
 - ► Using first m moments doesn't use full information in distribution ⇒ development of MLE
- More recently, this method has been generalized (GMM) by L.P. Hansen. This is incredibly popular in econometrics today.

- Using MM, we wanted to make the population match the sample for *m* characteristics
- For MLE, we want to choose a population that maximizes the chance that we would obtain a particular sample

- Using MM, we wanted to make the population match the sample for m characteristics
- For MLE, we want to choose a population that maximizes the chance that we would obtain a particular sample
- To do that, we specify a likelihood function for the creation of data
- For example, suppose we run a Bernoulli experiment with n=5 and observe data $X=\{1,0,0,1,0\}$. What is the likelihood of this given p?

- Using MM, we wanted to make the population match the sample for m characteristics
- For MLE, we want to choose a population that maximizes the chance that we would obtain a particular sample
- To do that, we specify a likelihood function for the creation of data
- For example, suppose we run a Bernoulli experiment with n=5 and observe data $X=\{1,0,0,1,0\}$. What is the likelihood of this given p?

$$f(x_1, x_2, ..., x_5; p) = p(1-p)(1-p)p(1-p)$$

= $p^2(1-p)^3$

Once we've specified f, we choose θ to maximize it.

Once we've specified f, we choose θ to maximize it.

- The value θ^* that maximizes f is our estimator $\hat{\theta}$
- It is typically easier to maximize ln(f) rather than f directly
 - Why is this an okay transformation?

Once we've specified f, we choose θ to maximize it.

- The value θ^* that maximizes f is our estimator $\hat{\theta}$
- It is typically easier to maximize ln(f) rather than f directly
 - Why is this an okay transformation?
- In our example:

$$\ln(f) = 2\ln(p) + 3\ln(1-p)$$

$$\Rightarrow \frac{d\ln(f)}{dp} \equiv 0$$

$$\Rightarrow \frac{2}{p} - \frac{3}{1-p} \equiv 0$$

$$\Rightarrow \frac{2}{p} \equiv \frac{3}{1-p}$$

$$\Rightarrow 2 - 2p \equiv 3p \Rightarrow p^* = \frac{2}{5}$$

Why do We Prefer Log-Likelihoods?

This transformation generally smooths the function

Example 2: Exponential Distribution

Consider a more arbitrary example: $\{X_i\}_{i=1}^n$ is an i.i.d. sample from an **exponential** distribution with parameter λ . We want to estimate $\hat{\lambda}$ by MLE.

Example 2: Exponential Distribution

Consider a more arbitrary example: $\{X_i\}_{i=1}^n$ is an i.i.d. sample from an **exponential** distribution with parameter λ . We want to estimate $\hat{\lambda}$ by MLE.

1. Write the likelihood function. By independence, we can take the product of each pdf:

$$f(x_1,...,x_n;\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$$

Example 2: Exponential Distribution

Consider a more arbitrary example: $\{X_i\}_{i=1}^n$ is an i.i.d. sample from an **exponential** distribution with parameter λ . We want to estimate $\hat{\lambda}$ by MLE.

2. **Transform to log-likelihood**. The log of a product is the sum of the logs:

$$\ln(f(x_1, ..., x_n; \lambda)) = \ln\left(\prod_{i=1}^n \lambda e^{-\lambda x_i}\right)$$

$$= \sum_{i=1}^n \ln\left(\lambda e^{-\lambda x_i}\right)$$

$$= \sum_{i=1}^n \ln(\lambda) - \sum_{i=1}^n \lambda x_i$$

$$= n \ln(\lambda) - \lambda \sum_{i=1}^n x_i.$$

Example 2: Exponential Distribution

Consider a more arbitrary example: $\{X_i\}_{i=1}^n$ is an i.i.d. sample from an **exponential** distribution with parameter λ . We want to estimate $\hat{\lambda}$ by MLE.

3. Maximize. Taking the first derivative and equating to 0:

$$\frac{d \ln(f)}{d \lambda} = \frac{n}{\lambda} - \sum_{i} x_{i} \equiv 0$$

$$\Rightarrow \lambda^{*} \equiv \left(\frac{1}{n} \sum_{i} x_{i}\right)^{-1} = \frac{1}{\overline{X}}$$

- ▶ Note that this is a **biased** estimator since $\mathbb{E}(1/\overline{X}) \neq 1/\mathbb{E}(\overline{X})$
- ▶ This is the same as the MM estimator in this case.

Example 2: Exponential Distribution

Consider a more arbitrary example: $\{X_i\}_{i=1}^n$ is an i.i.d. sample from an **exponential** distribution with parameter λ . We want to estimate $\hat{\lambda}$ by MLE.

4. Check for a maximum. Remember that the second derivative should be negative!

$$\frac{d^2 \ln(f)}{d\lambda^2} = -\frac{n}{\lambda^2} < 0 \text{ for all } \lambda$$

Maximum Likelihood is **popular** for a lot of reasons:

Very tractable—if your sample is independent, math isn't too bad

Maximum Likelihood is popular for a lot of reasons:

- Very tractable—if your sample is independent, math isn't too bad
- MLE is invariant to transformations:

```
\hat{\theta}^* maximizes \ln(f(x; \theta)) \Leftrightarrow h(\hat{\theta}^*) maximizes \ln(f(x; h(\theta)))
```

Maximum Likelihood is popular for a lot of reasons:

- Very tractable—if your sample is independent, math isn't too bad
- MLE is invariant to transformations:

```
\hat{\theta}^* maximizes \ln(f(x;\theta)) \Leftrightarrow h(\hat{\theta}^*) maximizes \ln(f(x;h(\theta)))
```

- 3 For large samples, the MLE $\hat{\theta}$ of any parameter is approximately the MVUE of θ :

 - Approximately **unbiased**: $\mathbb{E}[\hat{\theta}] \theta \approx 0$
 - Nearly minimum variance among unbiased estimators

Maximum Likelihood is popular for a lot of reasons:

- Very tractable—if your sample is independent, math isn't too bad
- MLE is invariant to transformations:

$$\hat{\theta}^*$$
 maximizes $\ln(f(x; \theta)) \Leftrightarrow h(\hat{\theta}^*)$ maximizes $\ln(f(x; h(\theta)))$

- Solution For large samples, the MLE $\hat{\theta}$ of any parameter is approximately the MVUE of θ :

 - Approximately **unbiased**: $\mathbb{E}[\hat{\theta}] \theta \approx 0$
 - Nearly minimum variance among unbiased estimators
- 4 MLE is also asymptotically normal:

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} \mathcal{N}(0,I(\theta)^{-1}), I$$
 is the Fischer information matrix

When does MLE fail?

MLE relies on us being able to use calculus.

• In cases of non-differentiability, we may have trouble

When does MLE fail?

MLE relies on us being able to use calculus.

• In cases of non-differentiability, we may have trouble

Example:

Suppose that initial endowments for agents in an economy is uniformly distributed on interval $[0, \theta]$. The likelihood function, given our data, is

$$f(x_1,...,x_n;\theta) = \begin{cases} \frac{1}{\theta^n} & x_i \in [0,\theta] \text{ for all } i \\ 0 & \text{Otherwise.} \end{cases}$$

When does MLE fail?

MLE relies on us being able to use calculus.

• In cases of non-differentiability, we may have trouble

Example:

The discontinuity contains the maximum value, but calculus wouldn't find that!

What if I'm not sure about my likelihood function?

There are estimation techniques that are flexible for multiple f's:

- Robust estimators, or those that work for many pdfs.
 - Can handle small measurement errors and outliers well
 - Example: trimmed means or Winsorised estimators

What if I'm not sure about my likelihood function?

There are estimation techniques that are flexible for multiple f's:

- Robust estimators, or those that work for many pdfs.
- **2** *M*-estimation generalizes MLE:
 - ▶ Instead of maximizing a likelihood function f, choose an "objective function" $\rho(x_i; \theta)$
 - **Examples** of ρ : MSE, MAD, etc. Ensures robustness of $\hat{\theta}$
 - ▶ The *M*-estimation problem is $\theta^* = \operatorname{argmax} \sum_i \rho(x_i; \theta)$

What if I'm not sure about my likelihood function?

There are estimation techniques that are flexible for multiple f's:

- 1 Robust estimators, or those that work for many pdfs.
- **2** *M*-estimation generalizes MLE:

We won't cover these in depth in this course.

SECTION 7.3: EVALUATING ESTIMATORS

Can I improve my estimator?

So far when discussing estimators, we've restricted attention to specific classes of estimators

- Unbiased estimators
- Linear estimators
- From there, we aim for the minimum variance estimator

Can I improve my estimator?

So far when discussing estimators, we've restricted attention to specific classes of estimators

- Unbiased estimators
- Linear estimators
- From there, we aim for the minimum variance estimator

This section asks related questions:

- 1 How do I know if my estimator is good enough? (Sufficiency)
- 2 How much information am I getting from my sample? (Information)
- 3 Can I make my estimate better? (Efficiency)

Sufficiency

Suppose we are after θ and are considering an estimator $T = T(x_1, ..., x_n)$.

- We know that T tells us *nothing* about θ if they are independent
 - **Example:** X_1, X_2 come from a normal distribution $\mathcal{N}(\mu, \sigma^2)$.
 - ▶ The statistic $T = X_1 X_2$ has a mean of 0 and variance of $2\sigma^2$
 - Since T's distribution does not depend on μ , T is uninformative

Sufficiency

Suppose we are after θ and are considering an estimator $T = T(x_1, ..., x_n)$.

- We know that T tells us *nothing* about θ if they are independent
- Conversely, it is possible for T to give us all the information about θ we want
 - ▶ Consider the conditional joint distribution $f(x_1,...,x_n|T(\theta))$
 - ▶ If $T(\theta)$ contains information about θ but $f(\{x_i\}|T(\theta))$ doesn't, then there is no information from the sample left unused by T

Sufficiency

Suppose we are after θ and are considering an estimator $T = T(x_1, ..., x_n)$.

- We know that T tells us *nothing* about θ if they are independent
- Conversely, it is possible for T to give us all the information about θ we want
- This is the notion of sufficiency

Definition. A statistic $T(X_1,...,X_n)$ is sufficient for θ if the joint distribution of $(X_1,...,X_n)$ given T=t does not depend on θ for all possible values of $t \in \text{Supp}(T)$.

We are examining major defects in automobiles. Our data for number of defects in each sampled car X is $\{1,0,3\}$.

- You think X has a Poisson distribution and want to estimate λ
- Instead of seeing the whole sample, you're only told that $T = \sum_{i} x_i = 4$.
- Q: What can you infer?

We are examining major defects in automobiles. Our data for number of defects in each sampled car X is $\{1,0,3\}$.

- You think X has a Poisson distribution and want to estimate λ
- Instead of seeing the whole sample, you're only told that $T = \sum_{i} x_{i} = 4$.
- Q: What can you infer?

We argue that $T = \sum_{i} x_{i} = 4$ is sufficient to estimate $\hat{\lambda}$.

1 Consider joint distribution $f(x_1, x_2, x_3 | \sum_i x_i = 4)$

We are examining major defects in automobiles. Our data for number of defects in each sampled car X is $\{1,0,3\}$.

- You think X has a Poisson distribution and want to estimate λ
- Instead of seeing the whole sample, you're only told that $T = \sum_{i} x_{i} = 4$.
- Q: What can you infer?

We argue that $T = \sum_{i} x_i = 4$ is sufficient to estimate $\hat{\lambda}$.

- 1 Consider joint distribution $f(x_1, x_2, x_3 | \sum_i x_i = 4)$
- **2** Since each $x_i \in \mathbb{Z}_+$, the support of this is limited:

$$P\left(x_1, x_2, x_3 | \sum_i x_i = 4\right) = 0 \text{ unless } x_1 + x_2 + x_3 = 4$$

We are examining major defects in automobiles. Our data for number of defects in each sampled car X is $\{1,0,3\}$.

- You think X has a Poisson distribution and want to estimate λ
- Instead of seeing the whole sample, you're only told that $T = \sum_i x_i = 4$.
- Q: What can you infer?

We argue that $T = \sum_{i} x_i = 4$ is sufficient to estimate $\hat{\lambda}$.

- 1 Consider joint distribution $f(x_1, x_2, x_3 | \sum_i x_i = 4)$
- **2** Since each $x_i \in \mathbb{Z}_+$, the support of this is limited:
- **3** Each of these probabilities is fixed since T is Poisson(3 λ):

$$P(X = (2,1,1)|T = 4) = \frac{P[X = (2,1,1)]}{P(T = 4)}$$
$$= \frac{\frac{e^{-\lambda}\lambda^2}{2!} \frac{e^{-\lambda}\lambda^1}{1!}}{\frac{e^{-3\lambda}(3\lambda)^4}{4!}} = \frac{4}{81}$$

We are examining major defects in automobiles. Our data for number of defects in each sampled car X is $\{1,0,3\}$.

- You think X has a Poisson distribution and want to estimate λ
- Instead of seeing the whole sample, you're only told that $T = \sum_i x_i = 4$.
- Q: What can you infer?

We argue that $T = \sum_{i} x_i = 4$ is sufficient to estimate $\hat{\lambda}$.

- **1** Consider joint distribution $f(x_1, x_2, x_3 | \sum_i x_i = 4)$
- **2** Since each $x_i \in \mathbb{Z}_+$, the support of this is limited:
- **3** Each of these probabilities is fixed since T is Poisson(3 λ):
- 4 The conditional pdf is determined so T is sufficient

Intuitively, think of the above setup in two steps:

- **1** You first observe the value of $T = \sum_i x_i$ given a Poisson distribution
- 2 Given T, you then assign the probability of each combination of (x_1, x_2, x_3)

Intuitively, think of the above setup in two steps:

- I You first observe the value of $T = \sum_i x_i$ given a Poisson distribution
- 2 Given T, you then assign the probability of each combination of (x_1, x_2, x_3)

Since the second step does not depend on λ , T is sufficient.

Intuitively, think of the above setup in two steps:

- **1** You first observe the value of $T = \sum_i x_i$ given a Poisson distribution
- 2 Given T, you then assign the probability of each combination of (x_1, x_2, x_3)

Since the second step does not depend on λ , T is sufficient.

- It is always possible to find an MLE estimator that is just a function of sufficient statistic(s)!
- Sufficiency is very handy when you trust the distribution in your head
 - ▶ If you want to be flexible, need to use more **robust** options

Information

As we've seen before, the asymptotic variance of an MLE estimator is the inverse of something called the Fisher Information Matrix:

$$I_n(\theta) = \mathbb{V}\left[\frac{\partial}{\partial \theta} \ln(f(\vec{x}; \theta))\right]$$
$$= \mathbb{V}[s(\vec{x}; \theta)]$$

Information

As we've seen before, the asymptotic variance of an MLE estimator is the inverse of something called the Fisher Information Matrix:

$$I_n(\theta) = \mathbb{V}\left[\frac{\partial}{\partial \theta} \ln(f(\vec{x}; \theta))\right]$$
$$= \mathbb{V}\left[s(\vec{x}; \theta)\right]$$

- $s(\cdot)$ is called the **score** operator—how sensitive your log-likelihood is to θ
 - ▶ Note that we set this equal (close) to 0 in MLE.
 - ▶ Hence $s(\cdot)$ is a random variable of mean 0

Information

As we've seen before, the asymptotic variance of an MLE estimator is the inverse of something called the Fisher Information Matrix:

$$I_n(\theta) = \mathbb{V}\left[\frac{\partial}{\partial \theta} \ln(f(\vec{x}; \theta))\right]$$
$$= \mathbb{V}\left[s(\vec{x}; \theta)\right]$$

- $s(\cdot)$ is called the score operator—how sensitive your log-likelihood is to θ
 - ▶ Note that we set this equal (close) to 0 in MLE.
 - ▶ Hence $s(\cdot)$ is a random variable of mean 0
- If the sample is i.i.d., this can be simplified to a multiple of a single information matrix:

$$I_n(\theta) = n \mathbb{V}\left[\frac{\partial}{\partial \theta} \ln(f(x_1; \theta))\right] = n I_1(\theta)$$

The Cramer-Rao Inequality

Theorem: Cramer-Rao

If $T(X_1,...,X_n)$ is an unbiased estimator for θ , then

$$\mathbb{V}(T) \geq \frac{1}{I_n(\theta)}$$

The Cramer-Rao Inequality

Theorem: Cramer-Rao

If $T(X_1,...,X_n)$ is an unbiased estimator for θ , then

$$\mathbb{V}(T) \geq \frac{1}{I_n(\theta)}$$

- Won't cover the proof here, but it's in the text
- This makes $I_n(\theta)^{-1}$ the lower bound for an estimator's variance
- An estimator is efficient if its variance achieves this bound

Efficiency of MLE

As shown before, MLE estimators are asymptotically normal with distribution $\mathcal{N}(0, I_n(\theta)^{-1})$

- Hence, the MLE is asymptotically efficient!
- We may prove this if we have time/energy.

QUESTIONS?