Humpback Whale Identification

Jasmine Cao, Melissa Cheung, Adan Constanzo, Mher Oganesyan, Smitkumar Kaushikkumar Patel

Purpose

- Proving better surveillance
 - Why?
 - Human intervening
 - Warm Oceans
 - Migration
 - o How?
 - Images use from Happywhale's database
 - Analyzing
 - Identifying

Dataset

- 25k Images Total
 - 5k Unique Whale Species
 - 9.6k Whales Unidentified
- Different Dimension
 - RGB
 - Grayscale
- Given train.csv
 - Two Columns
 - Image Name
 - Whale Identification

	A Image	A ld	T
	25361 unique values	new_whale w_23a388d Other (5003)	38% 0% 62%
1	0000e88ab.jpg	w_f48451c	
2	0001f9222.jpg	w_c3d896a	
3	00029d126.jpg	w_20df2c5	
4	00050a15a.jpg	new_whale	
5	0005c1ef8.jpg	new_whale	
6	0006e997e.jpg	new_whale	
7	000a6daec.jpg	w_dd88965	
8	000f0f2bf.jpg	new_whale	
9	0016b897a.jpg	w_64404ac	
10	001c1ac5f.jpg	w_a6f9d33	
11	001cae55b.jpg	w_581ba42	
12	001d7450c.jpg	new_whale	
13	00200e115.jpg	new_whale	
14	00245a598.jpg	new_whale	
15	002b4615d.jpg	new_whale	
16	002f99f01.jpg	new_whale	
17	00355ff28.jpg	w_cb622a2	

Modification to the Challenge

- **Reduce Complexity**
 - Classifying
 - 5k Whales Top 10 Whales

Thank You

Pre-Processing

Data Cleaning

- Large portion of dataset is labeled as "new_whale," meaning unknown species
- 9664 images labeled as "new_whale" were removed (38% of dataset)
- Used top ten recurring species (570 samples)

Image Size Reduction

- Dimensions for each image was inconsistent
- Images were resized to 100x100 pixels
- Scaled the aspect of image to prevent loss of information

Augmenting Images

- Increase image occurrence from 570
- Images copies consisted of: rotating, shifting, horizontal flipping, and zooming in on image

Pre-Processing Cont.

- Preparing our Features
 - Features consisted of pixel and RGB values of images
 - Images imported using keras.preprocessing.image
 - Images condensed to multidimensional array of 100x100x3, then appended to training/testing set
 - Each image divided by 255 for RGB
- Preparing our Labels
 - Over 10 unique whales used
 - Used One Hot Encoding for determining species

Methodology

- Support Vector Machine (SVM)
 - Hyperplanes
 - Separate & Classify Data
 - Categorize Dataset
 - Maximum-Margin Line
 - Separation between two or more classification
- Convolutional Neural Network (CNN)
 - Applies Filters to reduce complexity
 - Collect Features
 - Edge Detection
 - Applying Best Filter to increase prediction accuracy

Support Vector Machine (SVM)

- Data Preparation
 - Create dataframe where image pixels were the features
 - Done by flattening images and putting into np.array
 - Scale the features to reduce computation using preprocessing.scale
 - Then split into testing and training datasets
- Complexity Reduction
 - Using PCA reduce down to 100 features
- Training the Model
 - Initially gave us accuracy of 0.167
- Accuracy Improvement
 - Used GridSearchCV to test different hyperparameter values (initially, C=1)
 - Best C=10, with Accuracy of 0.4368

Convolutional Neural Network (CNN)

- CNN Architecture
 - Inspired by VGG_16 model
 - Increased the numbers by powers of 2 as the layer got deeper
 - Both Max2DPooling and Dropout were used

```
def cnn model():
 keras.backend.clear session()
model = Sequential()
model.add(Convolution2D(32, (3, 3), strides=(1,1), activation='relu', input shape = (100, 100, 3)))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Dropout(0.2))
model.add(Convolution2D(64, (3, 3), strides=(1,1), activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Dropout(0.2))
model.add(Convolution2D(128, (3, 3), strides=(1,1), activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(650, activation="relu"))
model.add(Dropout(0.8))
model.add(Dense(10, activation='softmax'))
 return model
```

Convolutional Neural Network (CNN)

Original 100x100 image

One (3x3) filter applied to original image

Three (3x3) filter applied to original image (with dropout)

Convolutional Neural Network (CNN)

- Data Preparation
 - Used downsized color images, 100x100x3
- Training the Model
 - Due to memory limitations:
 - Batch size was set to 64
 - Epochs to 45
 - Initial accuracy of 0.71
- Accuracy Improvement
 - Use of image augmentation to increase dataset size
 - Used Keras library, ImageDataGenerator, for augmentation
 - Added new images to training set, leaving testing set untouched
 - Training set size increased from 456
 - New accuracy of 0.83

Results

Support Vector Machine

Accuracy: 0.43

Convolutional Neural Network (non-augmented images)

Accuracy: 0.71

Convolutional Neural Network (augmented images)

Accuracy: 0.83

Thank You!

Questions?