电池生命周期管理系统

简要工作汇报

April 28, 2024

Proposed Methods (原方法)

Step1Step2Step3Data ProcessingPredict SOH(t)Estimate RUL

Proposed Methods (目前采取的方法)

Step1

Data Processing

Step2

Predict SOH(t)

因数据集的限制,

充放电曲线和EIS单独做:我们的数据集只做充放电曲线;3633835数据集只做EIS;NASA数据集暂且弃用

我们测量的数据集

Data Exploration

Datasets:

- 6 battery already have
- 2 battery in future

battery	charging protocol	CC current	CV voltage	cycle
0	CC-CV	2.0A	4.2V	859
1	CC-CV	2.0A	4.2V	869
2	CC-CV	2.0A	4.2V	900
3	CC-CV	3.0A	4.2V	894
4	CC-CV	3.0A	4.2V	844
5	CC-CV	3.0A	4.2V	920

Data Exploration

Data in datasets:

Battery charging curves (1 curve per cycle)

Discharging capacity

Data Processing

Step1: Data Processing

Sample points number

CC -> U: 4.0V ~ 4.2V; I=2.0A CV -> I: 2.0A ~ 0.5A; U=4.2V

Sample points number

CC Voltage: 20 CV Current: 10

Experimental Results

Step2: CapaDeepNet Results

Battery 0: Training Data (training and validation)

Battery 1 and 2: Evaluation

3633835 数据集

3633835 数据集 – EIS 测量点 (State)

本数据集在每一个充放电循环中, 对于每个电池, 测量了共计九个状态 (State) 的EIS曲线

注:某些电池并未测量全部的九个状态,仅测量了1-6,9。

数据来源: https://zenodo.org/records/3633835

图片引用自: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning

3633835 数据集 – Capacity

本数据集包含8块25 ℃、2块35 ℃、2块45℃的电池 我们只观察25℃下的八块电池的容量下降

发现容量曲线并不都十分具有参考意义: 电池2、3、6、7在初期发生断崖式下滑; 电池4、8采样点过少; 只有电池1、5曲线较为具有实验价值。 因为电池1的EIS图谱有反常部分,故我们选取电池5进行实验

3633835 数据集 – 电池5: EIS

观察电池5在不同State的EIS图谱,因State1、State5的EIS谱线较为清晰且可解释性较好。 又因为根据原论文表述,State5实验结果为最佳。 故选取State5的EIS曲线进行进一步实验

State 1

State 2

State 3

State 4

3633835 数据集 – 电池5: 容量下降曲线

其百分之八十点如图所示,因此我们只关注前125次循环的实验数据

3633835 数据集 – 电池5: 特征值与预测结果

观察EIS发现实部vs频率有良好的特征; 而虚部vs频率有较多重叠的部分。 简单起见,仅选取实部作为特征值(长度为10)输入到预测模型中

3633835 数据集 – 电池5: 特征值与预测结果

预测结果如图所示

THANK YOU!

