박학다식

Weekly Presentation .3

2019311036 신새별 2018311095 장민근 2017313764 김재연 2017314786 정동진 2015313546 김창헌

Front-End

- 버튼 크기 및 색상 변경
- 이미지 영역 디자인 변경
- 색 선택 부분 정 가운데로 배치
- 글꼴 수정 및 크기 변경
- App-bar 추가
- Flask

Flask error

Flask error

Web에 gui가 렌더링되지 않음

Gui 실행창 안에 html파일로 작성했던 글이 나옴

Next Week

Flask 문제 해결 및 대안 적용(webkit)

모델 쪽 인원 보충 및 프론트엔드 변경 사항 수정

Model

Project Planning

구분	9월			10월				11월				12월				
작업내용	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
MHMD, YouTube-8M 등, 다양한 데이터셋 확보 및 데이터 전처리																
실제 환경을 고려한 Noise 및 Augmentation 추가																
베이스라인 모델 구현 및 성능 검증																
SCSNet, ColTran 등 다양한 SOTA 방법론 도입, 실험 및 평가																
Adaptive Inference 모델 구현, 실험 및 평가																
pyQt5를 이용한 Web Layout 설계 및 구현																
UI/UX 디자인 및 pth-Web 연동 구현																

Noise & Augmentation

Noise

224 x 224 Resize or 384 * 384 Resize Gaussian Noise

Augmentation

224 x 224 Resize or 384 * 384 Resize 밝기, 좌우 반전, 상하 반전

* 로컬 환경에서 47,807장으로 테스트

Noise & Augmentation

Original Image

Var: 0.5

Var: 1.0

Var: 1.5

Noise Result

Noise & Augmentation

COUNTY OF THE PROPERTY OF THE

Brightness

Horizontal Flip

Vertical Flip

Augmentation Result

Noise & Augmentation

Time Taken

	224 * 224	384 * 384
Noise	250	535
Augment - 밝기	150	161
Augment - 좌우 반전	80	83
Augment - 상하 반전	128	155

단위:초

가장 오래 걸리는 작업(535초)을 기준으로 하였을 때, 157만장 가량의 프로세싱은 5시간 내로 끝날 것으로 예상

Trial and Error

CUDA 설정 오류

```
File "C:\Users\0310k\Anaconda3\envs\tensorflow36\lib\imp.py", line 243, in load_module return load_dynamic(name, filename, file)
File "C:\Users\0310k\Anaconda3\envs\tensorflow36\lib\imp.py", line 343, in load_dynamic return _load(spec)
ImportError: DLL load failed: 지정된 모듈을 찾을 수 없습니다.

Failed to load the native TensorFlow runtime.
```

Trial and Error

Experiments

ImageNet

20만 장의 이미지 만으로 실험 224 x 224 Resize EfficientNet-b0 / Unet

Results

Experiments

ActivityNet

5초당 1프레임씩 이미지 추출 480px 이상의 해상도만 선택 Video_id를 기준으로 GroupKFold 384 x 384 resize 17만장 이미지 데이터로 실험 EfficientNet-b0, b4 / Unet

Trial and Error

384(input) -> 384(output)과 같이 비효율적으로 이미지 해상도를 사용하기 때문에 학습 속도가 느리고, 비효율적임

현재는 patch 단위가 아닌 이미지 전체를 resize하여 학습하기에 작은 객체에 대한 성능이 낮음

Trial and Error

Patch consistency

학습 방법

- Regression: RGB, LAB / Classification: 3bits
- 기존 연구들에서 LAB로 transform 한 후에 학습을 진행하는 방법이 종종 보임
- 3 bits로 이미지를 quantization 해서 문제를 해결하는 경우도 있음: ColTransformer

Trial and Error

3-bit Quantization

감사합니다