

Tutorium Algorithmen 1

12 · Union-Find und dynamische Programmierung · 15.7.2024 Peter Bohner Tutorium 3

Wiederholung: MST

- nur für ungerichtete, gewichtete Graphen
- minimaler Spannbaum (MST):
 - Teilgraph mit gleicher Kantenmenge
 - verbindet alle Knoten des Original-Graphs
 - Gesamtkosten der Kanten so klein wie möglich

Wiederholung: MST

- nur für ungerichtete, gewichtete Graphen
- minimaler Spannbaum (MST):
 - Teilgraph mit gleicher Kantenmenge
 - verbindet alle Knoten des Original-Graphs
 - Gesamtkosten der Kanten so klein wie möglich
 - ⇒ Kreisfrei (daher immer Baum)

Wiederholung: MST

- nur für ungerichtete, gewichtete Graphen
- minimaler Spannbaum (MST):
 - Teilgraph mit gleicher Kantenmenge
 - verbindet alle Knoten des Original-Graphs
 - Gesamtkosten der Kanten so klein wie möglich
 - ⇒ Kreisfrei (daher immer Baum)

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist
- ⇒ ausgewählte Kanten sind nie teurer als nötig
- ⇒ Kanten bilden immer MST

- findet MST
- Algorithmus:
 - Jeder Knoten bekommt seine eigene Menge
 - Betrachte billigste Kante zwischen zwei Mengen
 - verschmelze beide Mengen
 - wiederhole letze beiden Schritte, bis nur eine Menge übrig ist
- ⇒ ausgewählte Kanten sind nie teurer als nötig
- ⇒ Kanten bilden immer MST

Implementierungsdetails:

- betrachte alle Kanten aufsteigend nach Gewicht
- überspringe Kanten zwischen Knoten der gleichen Menge
- sonst verschmelze Mengen

- beschreibt paarweise disjunkte Mengen
- für uns sind Objekte Zahlen von 0 bis n-1
 - für beliebige Objekte äquivalent
- billiges find (=,,zu welcher Menge gehört Objekt")
- billiges union (=,,verschmelzen von Mengen")

- beschreibt paarweise disjunkte Mengen
- lacktriangle für uns sind Objekte Zahlen von 0 bis n-1
 - für beliebige Objekte äquivalent
- billiges find (=,,zu welcher Menge gehört Objekt")
- billiges union (=,,verschmelzen von Mengen")

naive Implementierung

- speichere Array mit Länge n
- Arrayeintrag repräsentiert Menge (Zahl von 0 bis n-1)

- beschreibt paarweise disjunkte Mengen
- lacktriangle für uns sind Objekte Zahlen von 0 bis n-1
 - für beliebige Objekte äquivalent
- billiges find (=,,zu welcher Menge gehört Objekt")
- billiges union (=,,verschmelzen von Mengen")

naive Implementierung

- speichere Array mit Länge n
- Arrayeintrag repräsentiert Menge (Zahl von 0 bis n-1)
- Anfangszustand: Array speichert an Stelle i Zahl i
- find: Arrayeintrag zurückgeben
- union: Jeden Arrayeintrag betrachten und ggf. neue Menge eintragen

- beschreibt paarweise disjunkte Mengen
- lacktriangle für uns sind Objekte Zahlen von 0 bis n-1
 - für beliebige Objekte äquivalent
- billiges find (=,,zu welcher Menge gehört Objekt")
- billiges union (=,,verschmelzen von Mengen")

naive Implementierung

- speichere Array mit Länge n
- Arrayeintrag repräsentiert Menge (Zahl von 0 bis n-1)
- Anfangszustand: Array speichert an Stelle i Zahl i
- find: Arrayeintrag zurückgeben
- union: Jeden Arrayeintrag betrachten und ggf. neue Menge eintragen
- \Rightarrow union $\in \Theta(n)$
 - sehr teuer

Element 0 1 2 3 4 5 Menge 0 1 2 3 4 5

 $\underset{\sim}{\mathsf{union}}(1,0)$

Element 0 1 2 3 4 5 Menge 012345

 $\frac{\mathsf{union}(1,0)}{\leadsto}$

Element 012345 union(0,2) Menge 112345 $\stackrel{\sim}{\sim}$

Element 0 1 2 3 4 5 Menge 0 1 2 3 4 5

 $\underset{\sim}{\mathsf{union}}(1,0)$

Element 0 1 2 3 4 5 union(0,2)
Menge 1 1 2 3 4 5

Element 0 1 2 3 4 5 Menge 111345

 $\underset{\sim}{\mathsf{union}}(5,3)$

Element 0 1 2 3 4 5 Menge 0 1 2 3 4 5

 $\underset{\sim}{\mathsf{union}}(1,0)$

Element 012345 union(0,2) Menge 112345

Element 0 1 2 3 4 5 Menge 111345

Element 012345 $\underset{\sim}{\mathsf{union}}(5,3)$ Menge 111545


```
Element 012345 union(1,0) Element 012345 union(0,2) 012345 Menge 012345
```

erweiterter Ansatz

reverse lookup: Speichere pro Menge Liste aller Elemente


```
Element 0 1 2 3 4 5 \stackrel{\text{union}(1,0)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{union}(0,2)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{union}(5,3)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{unio
```

erweiterter Ansatz

reverse lookup: Speichere pro Menge Liste aller Elemente

Menge Elemente

Frage: Wie kann man jetzt union beschleunigen?


```
Element 0 1 2 3 4 5 \longrightarrow Menge 0 1 2 3 4 5 \longrightarrow Menge 1 1 2 3 4 5 \longrightarrow Menge 1 1 1 3 4 5 \longrightarrow Menge 1 1 1 5 4 5
```

erweiterter Ansatz

reverse lookup: Speichere pro Menge Liste aller Elemente

- Frage: Wie kann man jetzt union beschleunigen?
- union: gehe nur über Elemente, die geändert werden
- **union** $\in \Theta(Gr\ddot{o}Be der 2. Menge)$
 - \Rightarrow ggf. wieder $\Theta(n)$


```
Element 012345 union(1,0) Element 012345 union(0,2) 012345 Menge 012345
```

erweiterter Ansatz

reverse lookup: Speichere pro Menge Liste aller Elemente

- Frage: Wie kann man jetzt union beschleunigen?
- union: gehe nur über Elemente, die geändert werden
- union $\in \Theta(Gr\"oße der 2. Menge)$ $\Rightarrow ggf. wieder \Theta(n)$
- Frage: Was ist der Speicherbedarf dieser Datenstruktur?


```
Element 0 1 2 3 4 5 \stackrel{\text{union}(1,0)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{union}(0,2)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{union}(5,3)}{\sim} Element 0 1 2 3 4 5 \stackrel{\text{unio
```

erweiterter Ansatz

reverse lookup: Speichere pro Menge Liste aller Elemente

- Frage: Wie kann man jetzt union beschleunigen?
- **union**: gehe nur über Elemente, die geändert werden
- union $\in \Theta(Gr\"oße der 2. Menge)$ $\Rightarrow ggf. wieder \Theta(n)$
- Frage: Was ist der Speicherbedarf dieser Datenstruktur?
 - jeweils O(n) für die Arrays und O(n) für Listeneinträge

Weitere Optimierungen

- Laufzeit hängt stark von union-Muster ab
 - falls |2. Menge $| \in \Theta(1)$ ist Laufzeit optimal

Weitere Optimierungen

- Laufzeit hängt stark von union-Muster ab
 - falls |2. Menge $| \in \Theta(1)$ ist Laufzeit optimal
- → ggf. immer kleinere Menge auflösen
- weniger abhängig vom Muster der union-Aufrufe
- asymptotisch nicht signifikant besser

Weitere Optimierungen

- Laufzeit hängt stark von union-Muster ab
 - falls |2. Menge $| \in \Theta(1)$ ist Laufzeit optimal
- → ggf. immer kleinere Menge auflösen
- weniger abhängig vom Muster der union-Aufrufe
- asymptotisch nicht signifikant besser
- beschränkt große Mengen sind eher Spezialfall
- Laufzeit sollte unabhängig von konkreten Daten sein

Tatsächliche Umsetzung

Jede Menge hat Repräsentant (A[i] = i)

Element 0 1 2 3 4 5 Menge 1 1 1 5 4 5

union(3,2)

Tatsächliche Umsetzung

Jede Menge hat Repräsentant (A[i] = i)

Element 0 1 2 3 4 5 Menge 1 1 1 5 4 5

 $\begin{array}{c}
\mathsf{union}(3,2) \\
\stackrel{\sim}{\longrightarrow}
\end{array}$

Tatsächliche Umsetzung

Jede Menge hat Repräsentant (A[i] = i)

Element 0 1 2 3 4 5 Menge 1 1 1 5 4 5

 $\begin{array}{c}
\mathsf{union}(3,2) \\
 & \leadsto
\end{array}$

- union: Verschiebe Repräsentant einer Menge in andere Menge
- **find**: Setze $i \leftarrow A[i]$ bis i Repräsentant ist
- worst-case: union verlängert Pfad um 1
- \Rightarrow find $\in \Theta(m)$, für *m*-union Aufrufe
- ⇒ Datenstruktur wird mit der Zeit unordentlich

Pfad-Kompression

- verkürze Pfade falls möglich
 - häng Element direkt unter Repräsentant
 insbesondere bei find

Pfad-Kompression

- verkürze Pfade falls möglich
 - häng Element direkt unter Repräsentantinsbesondere bei find

- O(1) zusätzlicher Aufwand pro Element
- ⇒ nur tatsächlich genutzte Teilbäume werden aufgeräumt

Union by Rank

- Rang einer Menge = "Länge des längsten Pfads"
- $find(u) \in \Theta(Rang von Menge von u)$

Rang: 3 Rang: 2

Union by Rank

- Rang einer Menge = "Länge des längsten Pfads"
- $find(u) \in \Theta(Rang von Menge von u)$

Beispiel: union(2, 3)

5 unter 1:

Rang: 3

1 unter 5:

Rang: 3 Rang: 2

Union by Rank

- Rang einer Menge = "Länge des längsten Pfads"
- $find(u) \in \Theta(Rang von Menge von u)$

Rang: 3

Rang: 2

Beispiel: union(2, 3)

5 unter 1:

Rang: 3

1 unter 5:

- Hänge immer flacheren Teilbaum unter tieferen
- ⇒ Rang wächst so möglichst langsam

- union, find $\in O(\log^* n) \sim O(1)$ (nur amortisiert) nur für Pfadkompression/Union by Rank Beweis in VL

- union, find $\in O(\log^* n) \sim O(1)$ (nur amortisiert) nur für Pfadkompression/Union by Rank

 - Beweis in VL

Überprüfen Sie mithilfe einer Union-Find-Datenstruktur, ob ein ungerichteter Graph ein Baum ist. Welche Laufzeit hat der Algorithmus?

Was sind die Vorteile/Nachteile gegenüber einer DFS?

- **union**, find $\in O(\log^* n) \sim O(1)$ (nur amortisiert)
 - nur für Pfadkompression/Unión by Rank
 - Beweis in VL

Überprüfen Sie mithilfe einer Union-Find-Datenstruktur, ob ein ungerichteter Graph ein Baum ist. Welche Laufzeit hat der Algorithmus?

Was sind die Vorteile/Nachteile gegenüber einer DFS?

- Erstelle eine Union-Find-Datenstruktur für alle Knoten
- \blacksquare durchlaufe alle Kanten (u, v)
 - Fall 1: $find(u) = find(v) \Rightarrow$ Kante schließt Kreis \Rightarrow kein Baum
 - Fall 2: $find(u) \neq find(v) \Rightarrow union(u, v)$
- Graph ist Baum ⇔ Datenstruktur hat genau eine Menge

- **union**, find $\in O(\log^* n) \sim O(1)$ (nur amortisiert)
 - nur für Pfadkompression/Unión by Rank
 - Beweis in VL

Überprüfen Sie mithilfe einer Union-Find-Datenstruktur, ob ein ungerichteter Graph ein Baum ist. Welche Laufzeit hat der Algorithmus?

Was sind die Vorteile/Nachteile gegenüber einer DFS?

- Erstelle eine Union-Find-Datenstruktur für alle Knoten
- \blacksquare durchlaufe alle Kanten (u, v)
 - Fall 1: $find(u) = find(v) \Rightarrow$ Kante schließt Kreis \Rightarrow kein Baum
 - Fall 2: $find(u) \neq find(v) \Rightarrow union(u, v)$
- Graph ist Baum ⇔ Datenstruktur hat genau eine Menge
- Laufzeit: $\Theta(m \log^* n + n)$

Vergleich

- mit DFS
 - asymptotisch schneller (max. Faktor log* n)
 - Speicherbedarf: O(n+m)
- mit union-find
 - Kantenliste reicht als Eingabe
 - Speicherbedarf: O(n)

Dynamische Programmierung

Rekurrenzgleichung beschreibt Algorithmus

Beispiel: Floyd-Warshall-Algorithmus

$$sp(u, v, 0) = \begin{cases} c(u, v), u \neq v \land (u, v) \in E \\ 0, u = v \\ \infty, \text{sonst} \\ sp(u, v, k) = \min(sp(u, v, k - 1), sp(u, k, k - 1) + sp(k, v, k - 1)) \end{cases}$$

Dynamische Programmierung

- Rekurrenzgleichung beschreibt Algorithmus
- Unterschied zu Teile und Herrsche:
 - Zwischenergebnisse werden oft wiederverwendet

Beispiel: Floyd-Warshall-Algorithmus

$$sp(u, v, 0) = \begin{cases} c(u, v), u \neq v \land (u, v) \in E \\ 0, u = v \\ \infty, \text{sonst} \\ sp(u, v, k) = \min(sp(u, v, k - 1), sp(u, k, k - 1) + sp(k, v, k - 1)) \end{cases}$$

Dynamische Programmierung

- Rekurrenzgleichung beschreibt Algorithmus
- Unterschied zu Teile und Herrsche:
 - Zwischenergebnisse werden oft wiederverwendet
- Berechne alle Zwischenergebnisse & speichere sie
 - Reihenfolge hängt von Abhängigkeiten ab
- ⇒ Abwägung zwischen Laufzeit & Speicherbedarf

Beispiel: Floyd-Warshall-Algorithmus

$$sp(u, v, 0) = \begin{cases} c(u, v), u \neq v \land (u, v) \in E \\ 0, u = v \\ \infty, sonst \\ sp(u, v, k) = \min(sp(u, v, k - 1), sp(u, k, k - 1) + sp(k, v, k - 1)) \end{cases}$$

Gegeben: $w_1, w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , $s \in \Sigma^*$ mit $w_1 = p_1 s$, $w_2 = p_2 s$ mit |s| maximal

Gegeben: w_1 , $w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , $s \in \Sigma^*$ mit $w_1 = p_1 s$, $w_2 = p_2 s$ mit |s| maximal

- Idee: DP über Länge des Suffix
- S(k) = "Längster Suffix mit Länge $\leq k$ "
- S(0) = 0 (ε ist immer ein Suffix)

Gegeben: $w_1, w_2 \in \Sigma^*$

Gesucht: Zerlegung $p_1, p_2, s \in \Sigma^*$ mit $w_1 = p_1 s, w_2 = p_2 s$ mit |s| maximal

- Idee: DP über Länge des Suffix

- $S(0) = 0 \text{ ($\varepsilon$ ist immer ein Suffix)}$ $S(k) = \begin{cases} k, S(k-1) = k-1 \land w_1(|w_1|-k) = w_2(|w_2|-k) \\ S(k-1), \text{ sonst} \end{cases}$
- Gesucht: $S(\min(|w_1|, |w_2|))$

Gegeben: w_1 , $w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , $s \in \Sigma^*$ mit $w_1 = p_1 s$, $w_2 = p_2 s$ mit |s| maximal

- Idee: DP über Länge des Suffix
- $S(k) = \text{"Längster Suffix mit Länge} \leq k$ "
- S(0) = 0 (ε ist immer ein Suffix)

$$S(k) = \begin{cases} k, S(k-1) = k - 1 \land w_1(|w_1| - k) = w_2(|w_2| - k) \\ S(k-1), \text{ sonst} \end{cases}$$

• Gesucht: $S(\min(|\hat{w}_1|, |w_2|))$

Fall 1: $|s| \ge k - 1$ und ktes Zeichen gleich $\Rightarrow |s| \ge k$

Fall 2: Längerer Suffix als |s| = S(k-1) nicht möglich

Gegeben: w_1 , $w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , $s \in \Sigma^*$ mit $w_1 = p_1 s$, $w_2 = p_2 s$ mit |s| maximal

- Idee: DP über Länge des Suffix
- S(k) = "Längster Suffix mit Länge $\leq k$ "
- S(0) = 0 (ε ist immer ein Suffix)

$$S(k) = \begin{cases} k, S(k-1) = k-1 \land w_1(|w_1|-k) = w_2(|w_2|-k) \\ S(k-1), \text{ sonst} \end{cases}$$

• Gesucht: $S(\min(|\dot{w}_1|, |w_2|))$

Fall 1: $|s| \ge k - 1$ und ktes Zeichen gleich $\Rightarrow |s| \ge k$

Fall 2: Längerer Suffix als |s| = S(k-1) nicht möglich

- keine gemeinsamen Basisfälle
- iterative & rekursive Lösung nahezu gleich

Gegeben: w_1 , $w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , s_1 , s_2 , $c \in \Sigma^*$ mit $w_1 = p_1 c s_1 \wedge w_2 = p_2 c s_2$ mit |c| maximal

Beispiel: $w_1 = \text{Algorithmen}$, $w_2 = \text{Logarithmus} \Rightarrow c = \text{rithm}$

Gegeben: $w_1, w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , s_1 , s_2 , $c \in \Sigma^*$ mit $w_1 = p_1 c s_1 \land w_2 = p_2 c s_2$ mit |c| maximal

Beispiel: $w_1 = \text{Algorithmen}, w_2 = \text{Logarithmus} \Rightarrow c = \text{rithm}$

Idee: Jeder Substring h
ört an einem Index auf

Definiere LCS(i, j) = "Längster Suffix von $w_1(0) \dots w_1(i)$ und $w_2(0) \dots w_2(j)$ "

Gegeben: $w_1, w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , s_1 , s_2 , $c \in \Sigma^*$ mit $w_1 = p_1 c s_1 \land w_2 = p_2 c s_2$ mit |c| maximal

Beispiel: $w_1 = \text{Algorithmen}, w_2 = \text{Logarithmus} \Rightarrow c = \text{rithm}$

Idee: Jeder Substring hört an einem Index auf

Definiere LCS(i,j) = "Längster Suffix von $w_1(0) \dots w_1(i)$ und $w_2(0) \dots w_2(j)$ "

- **LCS**(0, j) = 0
- **LCS**(i, 0) = 0
- LCS $(i,j) = \begin{cases} LCS(i-1,j-1) + 1, w_1(i) = w_2(j) \\ 0, \text{ sonst} \end{cases}$ Gesucht: $\max_{0 \le i < |w_1|, 0 \le j < |w_2|}$ LCS(i,j)

Gegeben: $w_1, w_2 \in \Sigma^*$

Gesucht: Zerlegung p_1 , p_2 , s_1 , s_2 , $c \in \Sigma^*$ mit $w_1 = p_1 c s_1 \land w_2 = p_2 c s_2$ mit |c| maximal

Beispiel: $w_1 = \text{Algorithmen}, w_2 = \text{Logarithmus} \Rightarrow c = \text{rithm}$

Idee: Jeder Substring hört an einem Index auf

Definiere LCS(i, j) = "Längster Suffix von $w_1(0) \dots w_1(i)$ und $w_2(0) \dots w_2(j)$ "

- **LCS**(0, j) = 0
- **LCS**(i, 0) = 0

LCS
$$(i,j) = \begin{cases} LCS(i-1,j-1) + 1, w_1(i) = w_2(j) \\ 0, \text{ sonst} \\ \max_{0 \le i < |w_1|, 0 \le j < |w_2|} LCS(i,j) \end{cases}$$

wenige gemeinsame Zwischenergebnisse

- Beispielalgorithmus:

 Wähle einen Knoten als Wurzel
- Definiere DP über Baumstruktur:

Beispielalgorithmus:

- Wähle einen Knoten als Wurzel
- Definiere DP über Baumstruktur:

- \blacksquare max. Pfad zu Kindknoten u+1
- max. Pfad in Teilbaum von Kindknoten u
- \blacksquare max. Pfad zu Kind u + max. Pfad zu Kind v + 2

Beispielalgorithmus:

- Wähle einen Knoten als Wurzel
- Definiere DP über Baumstruktur:

- \blacksquare max. Pfad zu Kindknoten u+1
- max. Pfad in Teilbaum von Kindknoten u
- \blacksquare max. Pfad zu Kind u + max. Pfad zu Kind v + 2
- \blacksquare max. Pfad zu Knoten $u = H\ddot{o}he$ des Teilbaums unter u
- ⇒ Teilproblem ist ebenfalls DP

Beispielalgorithmus:

- Wähle einen Knoten als Wurzel
- Definiere DP über Baumstruktur:

- \blacksquare max. Pfad zu Kindknoten u+1
- max. Pfad in Teilbaum von Kindknoten u
- \blacksquare max. Pfad zu Kind u + max. Pfad zu Kind v + 2

- ⇒ Teilproblem ist ebenfalls DP
- Frage: Können hier Zwischenergebnisse wiederverwendet werden?

Beispielalgorithmus:

- Wähle einen Knoten als Wurzel
- Definiere DP über Baumstruktur:

- \blacksquare max. Pfad zu Kindknoten u+1
- max. Pfad in Teilbaum von Kindknoten u
- \blacksquare max. Pfad zu Kind u + max. Pfad zu Kind v + 2

- ⇒ Teilproblem ist ebenfalls DP
- Frage: Können hier Zwischenergebnisse wiederverwendet werden?
- Jeder Knoten wird nur einmal betrachtet
- ⇒ rekursive Lösung auch schnell (vgl. Tiefensuche)

Aufgabe

Gegeben Folge von Matrizen A_i mit $A_i \in \mathbb{R}^{n_i \times n_{i+1}}$, 0 < i < k

Gesucht ist die Reihenfolge in der $A_1 \cdot A_2 \dots A_k$ berechnet werden muss, sodass der Gesamtaufwand minimal ist.

Beschreiben Sie das Problem als DP

Der Aufwand für eine Matrixmultiplikation ist $n \cdot m \cdot r$ für AB mit $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times r}$ Beispiel: (AB)C kostet nmr + nrk = nr(m+k) und A(BC) kostet mrk + nmk = mk(r+n) $(A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times r}, C \in \mathbb{R}^{r \times k})$

Aufgabe

Gegeben Folge von Matrizen A_i mit $A_i \in \mathbb{R}^{n_i \times n_{i+1}}$, $0 \le i < k$

Gesucht ist die Reihenfolge in der $A_1 \cdot A_2 \dots A_k$ berechnet werden muss, sodass der Gesamtaufwand minimal ist.

Beschreiben Sie das Problem als DP

Der Aufwand für eine Matrixmultiplikation ist $n \cdot m \cdot r$ für AB mit $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times r}$ Beispiel: (AB)C kostet nmr + nrk = nr(m+k) und A(BC) kostet mrk + nmk = mk(r+n) $(A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times r}, C \in \mathbb{R}^{r \times k})$

- Setze: M(i, j, r) = "Werte Matrizen i bis j aus und klammere bei r"
- $R(i,j) = \min_{i \le k < j} M(i,j,k)$
- $M(i,j,r) = n_r n_{r+1} n_{r+2} + R(i,r-1) + R(r+1,j)$
- $M(i, i + 1, i) = n_i n_{i+1} n_{i+2} (0 \le i < k)$

Fragen?

Fragen!

Ende

https://xkcd.com/399/