Математический анализ. Модуль 2. Лекции

1 Дифференциальное исчисление функции одной переменной

Рассмотрим y = f(x) определённую в $S(x_0)$. Пусть x – произвольная точка из $S(x_0)$. Обозначим:

• Δx – приращение аргумента

$$x = x_0 + \Delta x \quad \Rightarrow \quad \Delta x = x - x_0$$

• Δy – приращение функции

$$\Delta y = y(x_0 + \Delta x) - y(x_0)$$

Определение 1. Производной функции y = f(x) в точке x_0 называется предел отношения приращения функции и предел приращения аргумента при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Если предел *конечен*, то функция y = f(x) в точке x_0 имеет конечную производную. Если предел бесконечен, то функция y = f(x) в точке x_0 имеет бесконечную производную.

Дифференцирование – процесс получения производной.

Пример.

$$y = e^x, D_f = \mathbb{R}$$

$$x = x_0 + \Delta x, \forall x \in D_f$$

$$\Delta y = y(x_0 + \Delta x) - y(x_0) = e^{x_0 + \Delta x} - e^{x_0} = e^{x_0} \left(e^{\Delta x} - 1 \right)$$

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_0} \left(e^{\Delta x} - 1 \right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_0} \Delta x}{\Delta x} = e^{x_0}$$

Пример.

$$y = \sin(x), D_f = \mathbb{R}$$

$$x = x_0 + \Delta x, \forall x \in D_f$$

$$\Delta y = y(x_0 + \Delta x) + y(x_0) = \sin(x_0 + \Delta x) - \sin(x_0) =$$

$$2 \sin \frac{x_0 + \Delta x - x_0}{2} \cos \frac{x_0 + \Delta x + x_0}{2} = 2 \sin \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)$$

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2 \sin \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$\lim_{\Delta x \to 0} \frac{2 \cdot \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \cos \left(x_0 + \frac{\Delta x}{2}\right) = \cos x_0$$

1.1 Односторонние производные

Определение 2. Производной функции y = f(x) в точке x_0 справа или правосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа.

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$$

Определение 3. Производной функции y = f(x) в точке x_0 слева или левосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю слева.

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

Теорема 1. О существовании производной функции в точке. Функция y = f(x) в точке x_0 имеет производную тогда и только тогда, коогда она имеет производные и справа, и слева, и они равны между собой.

$$y'(x_0) = y'_+(x_0) = y'_-(x_0)$$

Пример.

 $y'_+(0)=1$ $y'_-(0)=-1$ – т.к. производные конечные, но различные, то $\mathbf{x}_0=0$ называется точкой излома

Геометрический смысл: Д касательной к функции в точке излома.

Пример.

$$y = x^{\frac{1}{3}}, z_0 = 0$$
$$y' = \frac{1}{3}x - \frac{2}{3}$$

1.2 Геометрический смысл производной. Уравнение касательной и нормали к графику функции.

Пусть f(x) опредена в $S(x_0)$. Обозначим:

- $f(x_0) = y_0, M(x_0, y_0)$
- Δx приращение функции
- $x = x_0 + \Delta x$
- $N(x0 + \Delta x, y(x_0 + \Delta x))$
- MN секущая

При $\Delta x \to 0$ точка N движется вдоль графика функции y = f(x), а секущая MN вращается вдоль графика.

В пределе $\lim_{\Delta x \to 0}$ секущая MN становиться *касательной*.

Определение 4. Если существует предельное секущей MN, когда точка N перемещается вдоль графика функции к точке M, это положение называется κ касательной к графику функции в точке M.

$$\triangle MNK : \operatorname{tg} \alpha = \frac{\Delta y}{\Delta x}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \operatorname{tg} \alpha_0$$

$$\lim_{\substack{\Delta x \to 0}} y'(x_0)$$

$$\Rightarrow \boxed{\operatorname{tg} \alpha_0 = y'(x_0)}$$

где α – угол между секущей и положительным направлением оси ОХ, а α_0 – угол между касательной и положительным направлением оси ОХ.

С другой стороны, прямая, проходящая через точку $M_0(x_0,y_0)$ с заданным угловым коэффициентом k имеет вид:

$$y - y_0 = k(x - x_0)$$

где k – тангенс угла наклона прямой к положительному направлению оси Ox.

$$tg \alpha_0 = y'(x_0) = k$$

Рассмотрим $\forall P(x,y)$ на касательной к графику функции y=f(x) в точке $M(x_0,y_0)$:

$$\triangle MPK : \operatorname{tg} \alpha = \frac{PK}{MK}$$

$$\operatorname{tg} \alpha_0 = \frac{y - y_0}{x - x_0}$$

$$y'(x_0) = \operatorname{tg} \alpha_0$$

$$y'(x_0) = \frac{y - y_0}{x - x_0}$$

Получаем:

$$y - y_0 = y'(x_0)(x - x_0)$$

- уравнение касательной к графику функции y=f(x) в точке $M(x_0,y_0)$ Выводы:
 - 1. Геометрический смысл производной: производная функции y = f(x) в точке x_0 равна тангенсу угла наклона касательной к положительному направлению оси Ох или угловому коэффициенту касательной.

$$y'(x_0) = \operatorname{tg} \alpha_0 = k$$

2. Механический смысл производной функции s=f(t) в точке t_0 равна мгновенной скорости в момент t_0

$$V(t_0) = s'(t_0)$$

Определение 5. *Нормалью* к графику функции y = f(x) называется прямая, перпендикулярная касательной к графику функции в данной точке

$$l_1: y_1 = k_1 x + b_1$$

 $l_2: y_2 = k_2 x + b_2$
 $l_1 \perp l_2 \Leftrightarrow k_1 \cdot k_2 = -1$

$$y - y_0 = y'(x)(x - x_0)$$

$$k_1 = y'(x) \Rightarrow k_2 = -\frac{1}{y'(x)} \Rightarrow$$

$$y - y_0 = -\frac{1}{y'(x)}(x - x_0)$$

4 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ **Замечание.** Касательная к графику функции существует не в любой точке (точка излома и точка заострения).

Определение 6. Кривая, имеющая касательную в любой точке рассматриваемого промежутка, называется *гладкой*.

Следствие. Если $y'(x_0) = \infty$, то касательная к графику функции y = f(x) в точке x_0 , параллельно оси ординат и имеет вид $x = x_0$ (нормаль имеет вид $y = y_0$).

Если $y'(x_0) = 0$, то касательная к графику функции y = f(x) в точке x_0 имеет вид $y = y_0$ (нормаль имеет вид $x = x_0$).

Определение 7. Углом между двумя пересекающимися кривыми в точке с абциссой x_0 называется угол между касательными, проведёнными в этой точке.

Следствие.

$$\begin{array}{cccc} y & = f_1(x) \\ y & = f_2(x) \end{array} \Rightarrow \quad f_1 \cap f_2 = M_0(x_0, y_0) \quad \begin{array}{cccc} y_1 & = k_1 x + b_1 \\ y_2 & = k_2 x + b_2 \end{array}$$

$$\varphi - \text{угол между } f_1, f_2\varphi = \alpha_2 - \alpha_1$$

$$\operatorname{tg} \alpha_1 = k_1 = f_1(x_0)$$

$$\operatorname{tg} \alpha_2 = k_2 = f_2(x_0)$$

$$\operatorname{tg} \varphi = \operatorname{tg}(\alpha_2 - \alpha_1) = \frac{\operatorname{tg} \alpha_2 - \operatorname{tg} \alpha_1}{1 + \operatorname{tg} \alpha_2 \cdot \operatorname{tg} \alpha_1} \frac{k_2 - k_1}{1 + k_2 k_1} = \frac{f_2'(x_0) f_1(x_0)}{1 + f_1(x_0) \cdot f_2'(x_0)}$$

$$\boxed{\operatorname{tg} \varphi = |\frac{f_2'(x_0) - f_1'(x_0)}{1 + f_2'(x_0) f_1'(x_0)}|}$$

2 Дифференцируемость функции в точке

Определение 8. Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$, $\Delta x > 0$.

Теорема 2. Необходимое и достаточное условие дифференцируемости

функции в точке.

Функция y = f(x) в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

Доказательство. .

Необходимость.

Дано: y = f(x) – дифференцируема в точке x_0 .

Доказать: $\exists y'(x)$ – конечное число

Т.к. y=f(x), то $\Delta y=A\cdot\Delta x+\alpha(\Delta x)\cdot\Delta x$, где $\alpha(\Delta x)$ – бесконечно малая функция при $\Delta x\to 0$.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A\Delta x + \alpha(\Delta x) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \alpha(\Delta x)\right) =$$

$$A + \lim_{\Delta x \to 0} \alpha(\Delta x) = A + 0 = A$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0) - \text{по определению}$$

$$\Rightarrow y'(x_0) = A = const \Rightarrow \exists y'(x_0) - \text{конечное число.}$$

Достаточность.

Дано: $\exists y'(x_0)$ – конечное число.

Доказать: y = f(x) – дифференцируема в этой точке.

Доказательство:

Т.к. $\exists y'(x)$, то по определению производной

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

По теореме "О связи функции, её предела и некоторой бесконечно малой функции":

$$\frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x)$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$.

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

где $A = y'(x_0) \Rightarrow y = f(x)$ дифференцируема в данной точке.

Следствие. Формула, выражающая дифференцируемость функции y = f(x) в точке x_0 примет вид:

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$

Теорема 3. Связь дифференцируемости и непрерывности функции. Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

Доказательство. Т.к. y=f(x) дифференцируема в точке x_0 , то $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$, где $y'(x_0)=const,\ \alpha(\Delta x)$ – бесконечно малая функция при $\Delta x\to 0$.

Вычислим:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (y'(x)\Delta x + \alpha(\Delta x)\Delta x)$$

$$= y'(x_0) \lim_{\Delta x \to 0} \Delta x + \lim_{\Delta x \to 0} \alpha(\Delta x) \lim_{\Delta x \to 0} \Delta x$$

$$= y'(x_0) \cdot 0 + 0 \cdot 0 = 0$$

По определению непрерывной функции y=f(x) является непрерывной в точке x_0 .

Замечание. Если функция непрерывна, она не обязательно дифференцируема!

2.1 Правила дифференцирования

Теорема 4. Арифметические операции.

Пусть функции u=u(x) и v=v(x) дифференцируемы в точке x. Тогда в этой точке дифференцируемая их сумма, разность, произведение, частное (при условии знаменателя не равного нулю), справедливо равенство:

$$(u \pm v)' = u' \pm v'$$
$$(u \cdot v)' = u'v + v'u$$
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

Доказательство. Распишем приращения каждой из функций:

$$\begin{cases} \Delta u = u(x + \Delta x) - u(x) \\ \Delta v = v(x + \Delta x) - v(x) \end{cases} \Rightarrow \begin{cases} u(\Delta x + x) = \Delta u + u(\Delta x) \\ v(\Delta x + x) = \Delta v + v(\Delta x) \end{cases}$$

Доказательство. Пусть y = uv, тогда:

$$\begin{split} \Delta y &= y(x+\Delta x) - y(x) = u(x+\Delta x)v(x+\Delta x) - u(x)v(x) = \\ &= (\Delta u + u(x))(\Delta v + v(x)) - u(x)v(x) = \Delta u \Delta v + \Delta u v(x) + \\ &\quad + \Delta v u(x) + u(x)v(x) = \\ \Delta u \Delta v + \Delta u v(x) + \Delta v u(x). \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u \Delta v + \Delta u v(x) + \Delta v u(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\Delta u \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} + u(x) \frac{\Delta v}{\Delta x} \right) =$$

$$= \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= v(x)u'(x) + v'(x)u(x) + v'(x) \cdot 0 =$$

$$= v(x)u'(x) + u(x)v'(x)$$

Т.к. функции $u=u(x),\ v=v(x)$ дифференцируемы в точке x, то по теореме о связи дифференцируемости и непрерывности функции $\Rightarrow u=u(x)$ и v=v(x) непрерывны в точке $x\Rightarrow$ по определению непрерывности функции:

$$\begin{cases} \lim_{\Delta x \to 0} \Delta u = 0\\ \lim_{\Delta x \to 0} \Delta v = 0 \end{cases}$$

Доказательство. Пусть $y = \frac{u}{v}$, тогда:

$$\begin{split} \Delta y &= y(x + \Delta x) - y(x) = \\ &= \frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)} = \\ &= \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{v(x + \Delta x)v(x)} = \\ &= \frac{(u(x) + \Delta u)v(x) - u(x)(v(x) + \Delta v)}{(\Delta v + v(x))v(x)} = \\ &= \frac{u(x) + \Delta uv(x) - u(x)v(x) - u(x)\Delta v}{v^2(x) + v(x)\Delta v} = \\ &= \frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v} \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\frac{\Delta u v(x) - \Delta v u(x)}{v^2(x) + v(x) \Delta v}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{v(x) \frac{\Delta u}{\Delta x} - v(x_0 \frac{\Delta v}{\Delta x})}{v^2(x) + v(x) \Delta v} =$$

$$= \frac{v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2(x) - v(x) \lim_{\Delta x \to 0} \Delta v} =$$

$$= \frac{v(x) u'(x) - u(x) v'(x)}{v^2(x)}$$

Для доказательства использовали:

- $\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = u'(x)$
- $\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = v'(x)$
- т.к v(x) дифференцируема, то по теореме о связи дифференцируемости и непрерывности v(x) непрерывна, \Rightarrow по определению непрерывности $\lim_{\Delta x \to 0} \Delta v = 0$

Теорема 5. Производная от постоянной равна нулю.

$$(c)' = 0, \quad c = const$$

Следствие. Константу можно выносить за знак производной.

$$(c \cdot f)' = c \cdot f', \quad c = const$$

Следствие. Производная функции $y=\frac{1}{v(x)}$ имеет вид:

$$\left(\frac{1}{v(x)}\right)' = -\frac{1}{v^2(x)}v'(x)$$

Определение 9. Функция y = f(x) называется дифференцируемой на интервале, если она дифференцируема в каждой точке этого интервала.

Теорема 6. Производная сложной функции.

Пусть функция u = g(x) дифференцируема в точке x = a, а функция y = f(u) дифференцируема в соответствующей точке b = g(a). Тогда сложная функция F(x) = f(g(x)) дифференцируема в точке x = a.

$$F'(x)|_{x=a} = (f(g(x)))'|_{x=a} = f'_u(b) \cdot g'_x(a)$$

Доказательство. Т.к. функция u=g(x) дифференцируема в точке x=a, то по определению \Rightarrow

$$\Delta u = g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Т.к. функция y = f(x) дифференцируема в точке b, то по определению дифференцируемости \Rightarrow

$$\Delta y = f'(b) \cdot \Delta u + \beta(\Delta u) \cdot \Delta u \tag{2}$$

где $\beta(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Подставим (1) в (2). Тогда:

$$\Delta y = f'(b) \cdot (g'(a)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\Delta u) (g'(a)\Delta x + \alpha(\Delta x)\Delta x) =$$

$$= f'(b) \cdot g'(a)\Delta x + \Delta x (f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(\Delta x)) = \Delta F$$

Обозначим: $\gamma(\Delta x) = f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(x)$. В итоге получаем $\Delta F = f'(b)g'(a)\Delta x + \gamma(\Delta x)\Delta x$.

 $f(b)\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$ (как производная постоянной на б.м.ф.). Т.к. u=g(x) дифференцируема в точке x=a, то по теореме о связи дифференцируемости и непрерывности функции u=g(x) непрерывна в точке $x=a\Rightarrow$ по определению непрерывности $\lim_{\Delta x \to 0} \Delta u=0$ или при $\Delta x \to 0, \ \Delta u \to 0. \ g'(a)\beta(\Delta u)$ – б.м.ф при $\Delta x \to 0$ (...). $\beta(\Delta u)\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$ (как производная двую б.м.ф). Следовательно, $\gamma(x)$ – б.м.ф при $x\to 0$ как сумма конечного числа б.м.ф.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(b)g'(a) + \gamma(\Delta x) \right) = f(b)g'(a) + 0 = f'(b)g'(a).$$

Теорема 7. Производная обратной функции.

Пусть функция y = f(x) в точке x = 0 имеет конечную и отличную от нуля производную f'(a) и пусть для неё существует однозначная обратная функция x = g(y), непрерывная в соответствующей точке b = f(a). Тогда существует производная обратной функции и она равна:

$$g'(b) = \frac{1}{f'(a)}$$

Доказательство. Т.к. функция x=g(y) однозначно определена, то соответственно при $\Delta y \neq 0, \, \Delta x \neq 0.$ Т.к. функция x=g(y) непрерывна

в соответствующей точке b, то $\lim_{\Delta y \to 0} \Delta x = 0$ или $\Delta x \to 0$ при $\Delta y \to 0.$

$$g'(b) = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

Пример.

$$y = \arcsin(x), \quad x = \sin(y), y' = \frac{1}{x'}$$

$$y' = (\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}}$$

$$x' = \cos(y)$$

$$\cos^2(y) + \sin^2(y) = 1$$

$$\cos^2(y) = 1 - \sin^2(y)$$

$$\cos(y) = \sqrt{1 - \sin^2(y)}$$

$$y = \arcsin(x)$$

$$D_f = [-1, 1], E_f = [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$y \in [-\frac{\pi}{2}]$$

2.2 Производные высших порядков

Пусть y=f(x) дифференцируема на (a,b). Тогда $\forall x\in (a,b)$ существует производная y'=f'(x). Функция:

y" = (y')' = f''(x) называется производной второго порядка или второй производной.

Определение 10. Производной n-ого порядка или n-производной функции y=f(x) называется производная от (n - 1)-ой производной функции y=f(x).

$$y^{(n)} = \left(y^{(n-1)}\right)'$$

C[a,b] — множество непрерывных функций на [a,b] $C^1[a,b]$ — множество функций непрерывных вместе со своей производной на [a,b] или непрерывно-дифференцируемых функций.

Определение 11. Производная порядка выше первого называется *производной высшего порядка*.

2.3 Дифференциал функции

Пусть функция y=f(x) определена в окрестности точки x_0 и дифференцируема в этой точке. Тогда по определению дифференцируемой функции приращение:

$$\Delta y = f'(x_0)\Delta x + \alpha(\Delta x)\Delta x \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$. Если $f'(x_0) \neq 0$, то $f'(x_0)\Delta X$ – имеет один порядок малости, то $\alpha(\Delta x)\Delta x$ – б.м.ф более высокого порядка малости, чем $f'(x_0)\Delta x$. Тогда по теореме о сумме б.м.ф разного порядка малости $\Rightarrow \Delta y \sim f'(x_0)\Delta x$ при $\Delta x \to 0$. По определению главной части $\Rightarrow f'(x_0)\Delta x$ – главная часть равенства (1) приращения функции Δy .

Определение 12. Дифференциалом функции $y = f(x_0)$ называется главная часть приращения функции Δy или первое слагаемое в равенстве (1).

$$dy = f'(x_0)\Delta x \tag{2}$$

Если $f'(x_0) = 0$, то dy = 0, но $f'(x_0)\Delta x$ уже не является главной частью приращения функции Δy .

Пусть y=x. Тогда по определению дифференциала получится $\Rightarrow dy=(x)'\Delta x=1\Delta x$. С другой стороны, $y=x\Rightarrow dx=\Delta x$. Отсюда получаем вывод, что дифференциал независимой переменной равен её приращению.

Подставляем $\Delta x = dx$ в (2) \Rightarrow

$$dy = f'(x_0)dx$$
 (3)

Если y = f(x) дифференцируема на интервале (a, b), тогда:

$$\forall x \in (a,b) : \boxed{dy = f'(x)dx} \tag{4}$$

$$f'(x) = \frac{dy}{dx} \tag{5}$$

Вывод: производная функции представима в виде отношения дифференциалов функции и независимой переменной.

2.4 Геометрический смысл дифференциала

Дифференциал функции y = f(x) в точке x_0 равен приращению ординаты касательной к графику функции в этой точке.

$$M(x_0,y_0), \quad M(x,y), \quad \Delta x$$
 — приращение аргумента $MK=\Delta y, \quad M_0K=\Delta x$ $PK=dy$ $dy=f'(x_0)\Delta x+\alpha(\Delta x)\Delta x$ $\alpha(\Delta x)-6$ м.ф. при $\Delta x\to 0$ $dy=f'(x_0)\Delta x$ $y-y_0=f'(x_0)(x-x_0)$ — уравнение касательной $y-y_0=\Delta y$ $f'(x_0)(x-x_0)-f'(x_0)\Delta x=f'(x_0)dx=dy$ $dy=\Delta y$

2.5 Инвариантность формы первого дифференциала

Формула первого дифференциала

$$dy = f'(x)dx$$
 (3)

х - независимая переменная.

Докажем, что формула (3) верна и в том случае, когда x – функция от некоторой другой переменной.

Теорема 8. Инвариантность формы записи первого дифференциала. Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

Доказательство. Пусть $y=f(x), \ x=\varphi(t).$ Тогда можно задать сложную функцию:

$$F(t) = y = f(\varphi(t))$$

По определению дифференциала функции:

$$dy = F'(t)dt (6)$$

По теореме о производной сложной функции:

$$F'(t) = f'(x) \cdot \varphi'(t) \tag{7}$$

Подставим (7) в (6):

$$dy = f'(x)\varphi'(t)dt \tag{8}$$

По определению дифференциала функции $dx = \varphi'(t)dt$. Подставим (9) в (8):

$$dy = f'(x)dx$$

Получили формулу (3).

2.6 Дифференциалы высшего порядка

Пусть функция y = f(x) дифференцируема на (a,b), тогда $\forall x \in (a,b) \Rightarrow dy = f'(x)dx$. Дифференциал – это функция:

$$dy = y(x)$$

Вторым дифференциалом или дифференциалом второго порядка называется дифференциал от первого дифференциала.

$$d^2y = d(dy)$$

Определение 13. n-ым дифференциалом или дифференциалом n-ого nорядка называется дифференциал от дифференциала n-1 порядка.

$$d^n y = d(d^{n-1}y), \quad n = 2, 3...$$

Следствие. Свойством инвариантности обладает только первый дифференциал

2.7 Основные теоремы дифференциального исчисления

Теорема 9. Теорема Ферма или теорема о нулях производной. Пусть функция y = f(x) определена на промежутке X и во внутренней точке C этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует f'(c), то f'(c) = 0.

Доказательство. Пусть функция y=f(x) в точке x=c принимает наибольшее значение на промежутке X. Тогда $\forall x \in X \Rightarrow f(x) \leq f(c)$. Дадим приращение Δx точке x=c. Тогда $f(c+\Delta x) \leq f(c)$. Пусть

$$\exists f'(c) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y(c + \Delta x) - y(c)}{\Delta x}$$

Рассмоотрим два случая:

$$1)\Delta x > 0, \Delta x \to 0+, x \to c+$$

$$f'_{+}(c) = \lim_{\Delta x \to 0+} \frac{y(c + \Delta x) - y(c)}{\Delta x} = \left(\frac{-}{+}\right) \le 02)\Delta x < 0, \Delta x \to 0-, x \to c-$$

$$f'_{-}(c) = \lim_{\Delta x \to 0-} \frac{y(c + \Delta x) - y(c)}{\Delta x} = \left(\frac{-}{-}\right) \ge 0$$

По теореме о существовании производной функции в точке:

$$f'_{+}(c) = -f'_{-}(c) = 0$$

Геометрический смысл

Касательная к графику функции y = f(x) в точке с координатами M(c, f(c)) параллельна оси абцисс. f(c) – наибольшее значение функции.

Теорема 10. *Теорема Ролля*. Пусть функция y = f(x):

- 1. Непрерывна на отрезке (a, b)
- 2. Дифференцируема на интервале (a, b)
- 3. f(a) = f(b)

Тогда $\exists c \in (a, b) : f'(c) = 0$

Доказательство. Т.к. функция y = f(x) непрерывна на отрезке (a, b), то по теореме Вейерштрасса она достигает на этом отрезке своего наибольшего и наименьшего значения. Возможны два случая:

- 1. Наибольше и наименьшее значение достигаются на границе, т.е. в точке a и в точке b. Это означает, что m=M, где m наименьшее значение, а M наибольшее. Из этого следует, что функция y=f(x)=const на (a,b). Соответственно $\forall x\in (a,b), f'(x)=0$
- 2. Когда наибольшее или наименьшее значение достигаются во внутренней точке (a,b). Тогда для функции y=f(x) справедлива теорема Ферма, согласно которой $\exists c \in (a,b), f'(c)=0$.

Следствие. Между двумя нулями функции существует хотя бы один нуль производной.

Теорема 11. *Теорема Лагранэка.* Пусть функция y = f(x):

- 1. Непрерывна на отрезке [a, b]
- 2. Дифференцируема на интервале (a, b)

Тогда $\exists c \in (a, b)$, в которой выполняется равенство:

$$f(b) - f(a) = f'(c)(b - a)$$

Доказательство. Рассмотрим вспомогательную функция $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$. F(x) непрерывна на отрезке [a, b] как сумма непрерывных функций. Существует конечная проивзодная функции F(x):

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

следовательно по необходимому и достаточному условию дифференцируемости будет верно F(x) – дифференцируема на (a,b). Покажем, что F(a)=F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a)$$

$$= f(b) - f(b) + f(a) - f(a) = 0$$

Значит функция F(x) удовлетворяет условиям теоремы Ролля. Тогда по теореме Ролля $\exists c \in (a,b), F'(c) = 0.$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c)(b - a)$$

Геометрический смысл

$$A(a, f(a)), \quad B(b, f(b))$$

 $\operatorname{tg} \alpha = \frac{BC}{AC} \quad \operatorname{tg} \alpha' = \operatorname{tg} \alpha$

Теорема 12. Теорема Коши.

Пусть функции f(x) и $\varphi(x)$ удовлетворяют условиям:

- 1. Непрерывны на отрезке [a, b]
- 2. Дифференцируемы на интервале (a, b)
- 3. $\forall x \in (a, b) f'(x) \neq 0$

Тогда $\exists c \in (a, b)$, такое что:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

Доказательство. Рассмотрим вспомогательную функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{\varphi(a) - \varphi(b)} (\varphi(x) - \varphi(a))$$

Докажем применимость Теоремы Ролля:

- 1. F(x) непрервына на [a,b] как линейная комбинация непрерывных функций.
- 2. F(x) дифференцируема на [a,b] как линейная комбинация дифференцируемых функций.
- 3. F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \left(\varphi(a) - \varphi(a)\right) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(b) - \varphi(a)) = 0$$

Значит, функция F(x) удовлетворяет условию теоремы Ролля, $\Rightarrow \exists c \in (a,b) : F'(c) = 0$. Вычислим:

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(x)$$
$$F'(c) = f'(c) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = 0$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = f'(c)$$
$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

3 Правило Лопиталя-Бернулли

Теорема 13. Пусть f(x) и $\varphi(x)$ удовлетворяют условиям:

- Определены и дифференцируемы в $\mathring{S})(x_0)$
- $\lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} \varphi(x) = 0$
- $\forall x \in \mathring{S}(x_0) \quad \varphi'(x) \neq 0$
- $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$

Тогда $\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A.$

Доказательство. Доопределим функции f(x) и $\varphi(x)$ в точке x_0 нулём:

$$f(x_0) = 0 \quad \varphi(x_0) = 0$$

Е

По условию:

$$\lim_{x \to x_0} f(x) = 0 = f(x_0) \qquad \lim_{x \to x_0} \varphi(x) = 0 = \varphi(x_0)$$

f(x) и $\varphi(x)$ непрерывны в точке x_0 .

По условию функция f(x) и $\varphi(x)$ дифференцируемы в точке $\mathring{s}(x_0) \Rightarrow$ по теореме о связи дифференцируемости и непрерывности $\Rightarrow f(x)$ и $\varphi(x)$ непрерывны в $\mathring{s}(x_0)$. Таким образом f(x) и $\varphi(x)$ непрерывны в $S(x_0)$.

Функции f(x) и $\varphi(x)$ удовлетворяют условию т.Коши на $[x_0, x]$. Тогда по теореме Коши ⇒

$$\exists c \in [x_0, x] : \frac{f(x) - f(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{f'(c)}{\varphi'(c)}$$
 (*)

Т.к. $f(x_0) = 0$ и $\varphi(x_0) = 0 \Rightarrow$

(*)
$$\frac{f(x)}{\varphi(x)} = \frac{f'(c)}{\varphi(c)}$$

Т.к. $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A \Rightarrow$ правая часть (*):

$$\lim_{c \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Левая часть (*):

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Получаем:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

Теорема 14. Пусть f(x) и $\varphi(x)$ удовлетворяют условиям:

- Определены и дифференцируемы в $\mathring{S})(x_0)$
- $\lim_{x \to x_0} f(x) = \infty$, $\lim_{x \to x_0} \varphi(x) = \infty$
- $\forall x \in \mathring{S}(x_0)$ $\varphi'(x) \neq 0$ $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$

Тогда $\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A.$

3.1 Сравнение показательной, степенной и логарифмической функции на бесконечности

Пусть:

$$f(x) = x^n$$
$$g(x) = a^x$$
$$h(x) = \ln x$$

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{a^x \ln a}$$

$$= \left(\frac{\infty}{\infty}\right) = \dots = \lim_{x \to +\infty} \frac{n(n-1)(n-2)\dots \cdot 1}{a^x (\ln a)^n} =$$

$$= \frac{n!}{\ln^n a} \lim_{x \to +\infty} \frac{1}{a^x} = \frac{n!}{\ln^n a} = 0.$$

Значит a^x растёт быстрее, чем x^n при $x \to \infty$ или $x^n = o(a^x)$ при $x \to +\infty$.

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{h(x)}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{x^n} = \left(\frac{\infty}{\infty}\right)$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{n \cdot x^{n-1}} = \frac{1}{n} \lim_{x \to +\infty} \frac{1}{x^n} = \frac{1}{n} \cdot 0 = 0$$

Значит, x^n растёт быстрее, чем $\ln x$ при $x \to +\infty$ $\ln x = o(x^n)$ при $x \to +\infty$.

Вывод: на бесконечности функции расположены в таком порядке:

- 1. $g(x) = a^x$ самая быстрорастущая функция
- 2. $f(x) = x^n$
- 3. $h(x) = \ln x$

4 Формула Тейлора. Многочлен Тейлора

Теорема 15. Пусть функция y=f(x) дифференцируема n раз в точке x_0 и определена в некоторой окрестности этой точки. Тогда $\forall x \in S(x_0)$ имеет место формула Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n + R_n(x)$$

Или кратко: $f(x) = P_n(x) + R_n(x)$, где:

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}}{n!}(x - x_0)^n + R_n(x)$$

- $P_n(x)$ называют многочленом или полиномом Тейлора.
- $R_n(x)$ называют остаточным членов формулы Тейлора.

Доказательство. Покажем, что многочлен $P_n(x)$ существует. Будем искать многочлен Тейлора в виде:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots + a_n(x - x_0)^n$$
 (2)

где $a_1, a_2, a_3 \dots a_n$ – некоторые константы.

Пусть выполнены условия:

$$P_n(x_0) = f(x_0)$$
 $P'_n(x) = f'(x)$... $P_n^{(n)}(x) = f^{(n)}(x)$ (3)

 $f'(x_0), f''(x_0), \dots f^{(n)}(x)$ существуют т.к. y = f(x) дифференцируема n раз в точке x_0 .

Вычислим $P_n'(x), P_n''(x), \dots P_n^{(n)}(x)$:

$$P'_n(x) = a_1 \cdot 1 + a_2 \cdot 2(x - x_0) + a_3 \cdot 3(x - 0)^2 + \dots + a_n \cdot n(x - x_0)^{(n-1)}$$

$$P''_n(x) = a_2 \cdot 1 + a_3 \cdot 3 \cdot 2(x - x_0)$$

$$+ a_4 \cdot 4 \cdot 3(x - 0)^2 + \dots + a_n \cdot n \cdot (n - 1)(x - x_0)^{(n-2)}$$

$$\dots$$

$$P_n^{(n)}(x) = a_n n(n - 1)(n - 2) \dots 1 = a_n \cdot n!$$

$$P_n^{(n)}(x) = a_n n(n-1)(n-2) \dots 1 = a_n \cdot n!$$

$$P_n(x_0) = a_0 = f(x_0)$$

$$P'_n(x_0) = 1 \cdot a_1 = f'(x_0)$$

$$P''_n(x_0) = 1 \cdot 2 \cdot a_2 = 2f''(x_0)$$
...
$$P_n^{(n)}(x_0) = n!a_n = n! \cdot f^{(n)}(x_0)$$

Выразим $a_0, a_1, a_2, \dots a_3$:

$$a_0 = f(x_0)$$
 $a_1 = \frac{f'(x_0)}{1!}$ $a_2 = \frac{f''(x_0)}{2!}$... $a_n = \frac{f^{(n)}(x_0)}{n!}$

Подставим значения
$$a_1,a_2,a_3,\dots a_n$$
 в (2):
$$P_n(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\dots+\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x)$$

Теорема 16. Пусть функция y = f(x) дифференцируема n раз в точке x_0 , тогда $x \to x_0$:

$$R_n(x) = o((x - x_0)^n)$$

– форма Пеано.

Доказательство. Формула Тейлора:

$$f(x) = P_n(x) - R_n(x)$$
$$R_n(x) = f(x) - P_n(x)$$

В силу условия (3):

$$R_n(x) = f(x_0) - P_n(x_0) = f(x_0) - f(x_0) = 0$$

$$R'_n(x) = f'(x_0) - P'_n(x_0) = f'(x_0) - f'(x_0) = 0$$

$$\dots$$

$$R_n^{(n)}(x) = f^{(n)}(x_0) - P_n^{(n)}(x_0) = f^{(n)}(x_0) - f^{(n)}(x_0) = 0$$

Вычислим:

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \left(\frac{0}{0}\right) =$$

$$= \lim_{x \to x_0} \frac{R'_n(x)}{n(x - x_0)^{n-1}}$$
...
$$= \lim_{x \to x_0} \frac{R^{(n)}}{n(n-1)(n-2)\dots 1}$$

$$= \frac{1}{n!} \lim_{x \to x_0} R_n^{(n)}(x) = \frac{1}{n!} \cdot 0 = 0$$

Вывод: $Rn(x) = o((x - x_0)^n)$ при $x \to x_0$.