Aerialytic Technical Assignment

Overview

You are tasked with building a full-stack web application that allows users to:

- Input geographic coordinates (latitude and longitude).
- Receive an estimate of the **annual optimal roof pitch** and **azimuth angle** for solar panel installation at that location.

This tool should simulate how an intelligent solar design assistant might behave when assessing a building site.

Objectives

Core Features

Layer	Requirements
Frontend (TypeScript)	 Simple UI for inputting latitude and longitude. Ability to optionally select a point via an embedded Google Map. Optionally accept an "offset angle" (angle between the ground surface and horizontal line) as a secondary input. Display calculated optimal pitch and azimuth clearly.
Backend (Python - Django)	 Receive coordinate and optional offset angle. Calculate optimal tilt (pitch) and azimuth using appropriate solar angle formulas (use NREL or equivalent logic, such as the Liu and Jordan model). Return values as JSON. Add stubbed comments for improvements or future enhancements (e.g., dynamic horizon modeling, PV simulation, terrain adjustment).
Build/ Deployment	 Both frontend and backend must be Dockerized. Include Kubernetes (K8s) manifests for scalable deployment. Helm chart is a bonus. Environment variables should be easily configurable (use .env or ConfigMaps).

Bonus Points

Area	Bonus Tasks
UI/UX	Show selected coordinates and angles visually on a Google Map or canvas.
Backend	Use pvlib or solpy for realistic solar geometry (must be justified with citations in comments).
Modelin g	Accept and use offset angle to adjust the pitch/tilt logic more accurately.
Data	Show solar insolation intensity estimates (even rough estimates via NREL or SolarAnywhere API integration).
Infra	Add autoscaling K8s configs or integrate with a cloud platform (GCP/AWS).

Submission Requirements

- Provide either:
 - o A **GitHub repository** (preferred), or
 - A downloadable .zip archive with full code and deployment instructions.
- Include a **README.md** with:
 - Setup steps.
 - o Architecture decisions.
 - Assumptions and known limitations.
 - o Brief explanation of your solar modeling logic and any references used.
- Comment **any feature** that was skipped due to time but should be included in a production version.

Evaluation Criteria

Category	Description
Technical Accuracy	Correct usage of solar formulas for pitch/azimuth.
Code Quality	Type safety, modularity, appropriate comments, and documentation.
UX Consideration	Intuitive design, responsive layout, map integration bonus.
Docker/K8s Readiness	Correct Dockerfiles, deployment manifests, env handling.
System Design	Code organization, extensibility, and performance readiness.
Bonus Features	Any additional functionality, testing, monitoring, CI/CD, etc.