ANM Term Project

Finding the shortest path connecting all the nodes in a graph such that every node is visited only once

/TABLE OF CONTENTS

Problem Statement

Let's talk about the problem at hand which we are trying to solve.

One way to solve the optimization problem, demonstrated on a demo problem

/02 Mathematical Model

Let's get nerdy, make a mathematical model to optimize

Brute Force Approach / 104 Christofides Algorithm

A better way to solve the same problem, demonstrated on a case study of Raipur tourist spots

/01 Problem Statement

Finding the shortest possible path which connects all the nodes in a graph

/02 Mathematical Model

We will use this demo graph network for our analysis —

> Mathematical Model

 $-\Box X$

> Modeling our demo problem

$$x_{ij} \in \{0,1\} \ \forall i,j$$

$$\mathbf{Z} = \min(15x_{12} + 15x_{21} + 10x_{23} + 10x_{32} + 15x_{24} + 15x_{42} + 35x_{13} + 35x_{31} + 20x_{34} + 20x_{43} + 30x_{41} + 30x_{14})$$

Constraints:

Entry Exit Constraints

1)
$$X_{12} + X_{13} + X_{14} = 1$$

3)
$$X_{21}^{21} + X_{24}^{31} + X_{23}^{31} = 1$$

4)
$$X_{12}^{-1} + X_{42}^{-1} + X_{32}^{-1} = 1$$

5)
$$X_{34}^{12} + X_{31}^{12} + X_{32}^{32} = 1$$

6)
$$x_{23}^{34} + x_{13}^{31} + x_{43}^{32} = 1$$

7)
$$x_{14}^{-1} + x_{24}^{-1} + x_{34}^{-1} = 1$$

$$8) \quad x_{41}^{11} + x_{42}^{11} + x_{43}^{11} = 1$$

Avoiding 2 Node Subroutes Constraints

9)
$$X_{12} + X_{21} \le 1$$

10)
$$X_{23} + X_{32} \le 1$$

11)
$$X_{34} + X_{43} \le 1$$

12)
$$X_{14} + X_{41} \le 1$$

13)
$$X_{13} + X_{31} \le 1$$

14)
$$X_{24} + X_{42} \le 1$$

Avoiding 3 Node Subroutes Constraints

15)
$$X_{12} + X_{21} + X_{23} + X_{32} + X_{13} + X_{31} \le 2$$
 17) $X_{23} + X_{32} + X_{34} + X_{43} + X_{24} + X_{42} \le 2$

17)
$$X_{23} + X_{32} + X_{34} + X_{43} + X_{24} + X_{42}$$

16)
$$x_{12} + x_{21} + x_{14} + x_{41} + x_{24} + x_{42} \le 2$$
 18) $x_{13} + x_{31} + x_{34} + x_{43} + x_{14} + x_{41} \le 2$

3)
$$X_{13} + X_{31} + X_{34} + X_{43} + X_{14} + X_{41} \le 2$$

0

$$x_{ij} \in \{0,1\} \ \forall i,j$$
 $V : \text{ set of all}$
 $nodes of the graph$
 $n = |V|$
 $E : \text{ set of all}$
 $edges of the graph$

$$\mathbf{Z} = \min \Sigma d_{ij} x_{ij} \ \forall \ (i,j) \in E$$

Constraints :
 Entry Exit Constraints : ∀ k ∈ V
 Only one incoming arc :

$$\sum_{i \in V, i \neq k} x_{ik} = 1$$
(n constraints)

$$\sum_{j \in V, j \neq k} x_{kj} = 1$$
(n constraint)

Only one outgoing arc:

Avoiding Subroutes Constraints

$$\sum_{i \in S, j \in S, i
eq j} x_{ij} \le |S| - 1 \quad orall S \subsetneq V, |S| \ge 2.$$
 (2^n-n-2 constraints)

\equiv

/03 Brute Force Approach

One way to solve the optimization problem:
Trying all possible combinations of x_{ij} 's

> High constraints roadblock

Total Number of Constraints:

$$2^{n} + n - 2$$

Number of Nodes	Number of Constraints
2	4
3	9
4	18
5	35
6	68
7	133
8	262
9	519
10	1032
11	2057
12	4106
13	8203
14	16396
15	32781
16	65550
17	131087
18	262160
19	524305
20	1048594

> High computational time roadblock

Total Number of Possible Solutions :

2ⁿ⁽ⁿ⁻¹⁾

Nodes	Number of Variables	Number of Possible Solutions
Noues		
2	2	4
3	6	64
4	12	4096
5	20	1048576
6	30	1073741824
7	42	4398046511104
8	56	72057594037927900
9	72	4722366482869650000000
10	90	12379400392853800000000000
11	110	12980742146337100000000000000000000000000000000000
12	132	544451787073502000000000000000000000000000000000
13	156	913438523331814000000000000000000000000000000000
14	182	612998216346356000000000000000000000000000000000
15	210	1645504557321210000000000000000000000000000000000
16	240	1766847064778380000000000000000000000000000000000
17	272	758855036025675000000000000000000000000000000000
18	306	1303703024854070000000000000000000000000000000000
19	342	8958978968711220000000000000000000000000000000000
20	380	246262538727465000000000000000000000000000000000000

/04 Christofides Algorithm

Case study of optimum way to visit some of the tourist locations in Raipur

Sr No.	Place
0	Marine Drive
1	IIT Bhilai
2	Airport
3	NIT Raipur
4	IIIT Naya Raipur
5	AIIMS Raipur
6	Magneto Mall
7	Ambuja Mall
8	Shankaracharya College
9	Jaistamvh Chowk
10	Phool Chowk
11	Energy Park
12	Budha Talab
13	Wonderland Park
14	Anna Punjabi
15	Mahadev Ghat
16	Rebounce
17	Chingra Waterfall
18	Mayfair Resort
19	Chhattisgarh Club

Airport → IIT Bhilai: ₹192Airport → Chingra Pagar Waterfall : ₹1725Airport → Mayfair Resort: ₹528Airport → Magneto Mall: ₹185

Marine Drive ←→ IIT Bhilai : ₹211

Marine Drive ←→ Ambuja Mall : ₹113

Marine Drive ←→ Energy Park : ₹140

Marine Drive ←→ Mahadev Ghat : ₹207

Rebounce ←→ AIIMS Raipur : ₹308
Rebounce ←→ Airport : ₹177
Rebounce ←→ Magneto Mall : ₹46
Rebounce ←→ Budha Talab : ₹144

Make Eulerian Graph

Odd Degree Nodes

Minimum Cost Perfect Matching

Remove Repeated Nodes

- 1) Brute force on the demo graph while following the constraints justified gets us a minimum Z of **75** for the network.
- 2) While using Christofides Algorithm on Demo Graph gets us a minimum of **85**!
- 3) On our case study, the most optimum way to travel the required locations is -

Airport -> Rebounce -> Magneto Mall -> Ambuja Mall -> Marine Drive -> IIIT Naya Raipur -> Mayfair Resort -> Chingra Waterfall -> Shankaracharya College -> IIT Bhilai -> Anna Punjabi -> Chhattisgarh Club -> Budha Talab -> Jaistambh Chowk -> Phool Chowk -> NIT Raipur -> Mahadev Ghat -> Wonderland Park -> AIIMS Raipur -> Energy Park -> Airport

And the cost for the complete tour is ₹6587.0

This was obtained using Christofides Algorithm with a computational time of a few seconds. Using Brute Force analysis here would get us in a computational loop of 10⁸ Years!

1) Brute Force Approach:

As we increase the number of nodes in a network, the constraints and the number of possible solutions increase exponentially - Although this gives us a solution with unparalleled accuracy, the time taken for the same makes the method practically impractical.

2) Christofides Algorithm:

Although we have a high rate of error here (50%), compared to the time taken in computation makes this the best possible method to calculate the solution! As a future scope of improvement on the method, there can be efforts on error minimization, which would be the mathematical side of this.

Research Papers & Published articles:

- 1) <u>Supply chain optimization under risk and uncertainty: A case study for high-end server manufacturing</u>
- 2) Sustainable supply chain optimisation: An industrial case study
- 3) <u>Nexus TSP approach</u>

YouTube Video References :

- 1) Traveling Salesman Problem | Dynamic Programming
- 2) TSP Christofides algorithm
- 3) <u>Integer Programming Problems</u>
- 4) Integer Programming: Traveling salesperson problem
- 5) <u>Eulerian Graph Theory</u>

Coding References :

- 1) NetworkX documentation
- 2) Pandas documentation
- 3) Numpy documentation

0

Standard Pricing provided by **Uber** & **Ola**Geographical Data by **Google Earth**

