- Requirements of Federation Infrastructure
- Federation Challenges
- Statistics Management
- Query Optimization and Execution
- Federation Insfrastructure for Linked Open Data
- Federator
 - Data Source Selection
 - Join Strategies
 - Data Catalog
 - Data Statistics
 - Item Counts
 - Full text indexing
 - Schema level indexing
 - Structural indexing
 - Index Size Reduction
 - Obtaining/Maintaining Data Statistics
 - Index Localization
- Query Optimization
- Data Source Mapping
- Query Execution Plan
- Optimization Fundamentals
- Optimization Strategies
- Query Plan Generation
- Improvement for federation
 - Streaming Results
 - Views
 - Performance Evaluation

A Linked Open Data infrastructure can have different characteristics:

- central or distributed data storage
- central or distributed data indexing
- independent or cooperative data sources

Central Repository:

- RDF data put into a single RDF store
- Advantage:
 - Query evaluation can be implemented efficiently due to optimized index structures
 - Original data sources are not involved in query evaluation

- Disadvantage:
 - If data at data sources changes frequently, data can become obsolete at central storage

Federation:

- Queries sent to a mediator which then executes query on behalf of user on the data sources
- Mediator maintains global index with statistics
 - Used for sending queries to data sources and query optimizatron

Peer to Peer data management:

- Data and index data maintained in a distributed fashion
- no central mediator

0.1 Requirements of Federation Infrastructure

- Declarative language
 - concise formulation of complex queries
- Data catalogue
 - map query expressions to Linked Open Data sources
 - mappings are also needed between vocabularies in order to extend queries with similar terms
- Query Optimizer
 - optimize the query execution:
 - * minimize processing cost and the communication cost involved
- Data protocol
 - how queries and results are exchanged between data sources
 - e.g. SPARQL
- Provenance information
- Data changes at Data Sources: Data changes on Data Sources affect statistics and data entities which influences quality of the query optimization
- Scalability: implies two main challenges:
 - Efficient statistics management
 - effective query optimization and execution

entral Repository cal copies ta statistics	Data source federation at data sources data source metadata
ta statistics	data source metadata
	4400 554100 1110044400
al	1 1, ,
	local+remote yes
s (data)	yes (index)
3	yes
aybe	yes

1 Federation Challenges

1.1 Statistics Management

- Accuracy vs. index size
- Updating statistics

1.2 Query Optimization and Execution

- $\bullet\,$ execution order of query operators significantly influences the overall query evaluation cost
- Minimizing communication cost:
 - number of contacted data sources influences the performance of the query execution due to the communication overheads
 - Optimizing execution localization

2 Federation Insfrastructure for Linked Open Data

2.1 Federator

Responsible for: - maintaining meta data about known data sources - managing the whole query evaluation process

Actual query processing:

• query parsing

- query adaptation
- · query mapping
 - selecting data sources
- query optimization
- · query execution

2.1.1 Data Source Selection

- very likely that a single data source may only be able to return results for parts of the query
- respective query fragments have to be send to different data sources and the individual results have to be merged

2.1.2 Join Strategies

- Remote Join
- Mediator Join
- Semi-Join
- Bind join
- Filter chain

2.1.3 Data Catalog

- stores two different kinds of mappings
 - 1. relations between RDF terms like similarity with owl:sameAs and rds:seeAlso
 - can be used to adapt a query to different schemata or simple broaden search space
 - 2. Associates RDF terms or complex graph structures with data sources
 - Data catalog may be combined with data source statistics for ranking data sources and not querying irrelevant ones

2.1.4 Data Statistics

- can be used by query optimizer to estimate size of results
 - cost of joins
 - amount of data that needs to be transmitted
- trade-off between accuracy of the statistics and the required space for storing them

2.1.4.1 Item Counts

- counting data items
 - number of triples
 - number of individual instances of subject, predicate, and object
 - combinations of subject, predicate, and object

2.1.4.2 Full text indexing

- whole RDF graph in indexed
- Literals are suitable for indexing
- Prefix-tree can be build for URIs

2.1.4.3 Schema level indexing

- restrict the index to the data schema
 - types of instances and relations

2.1.4.4 Structural indexing

- restrict index to information about structure of RDF graph
- path structures or graph structures

2.1.4.5 Index Size Reduction Using: 1. Histogram 2. QTrees 3. R-Trees 4. Bloom Filters

2.1.4.6 Obtaining/Maintaining Data Statistics

- Data Dump Analysis
 - extract statistics from data dump
 - if new version of file, analysis redone
 - when data is changes, no announcement is made
- Source Description
 - Description about the data
 - * VoID
 - · provides some statics
 - · not enough expressive
 - $\ast\,$ Service Description in DARQ

- Source Inspection
 - Send SPARQL Queries (like ASK Queries)
 - aggregates can be to find data statistics -Result-based Refinement
 - extract metadata from result from data source
 - lack of statistics in the beginning

2.1.4.7 Index Localization

- 1. Data Source Index: can be obtained as a VoiD file for a particular data source
- 2. Virtual data source index maintained at the federator
- 3. Federation Index: centralized index maintained at the data source about information of all known data sources
- 4. Distributed federation index
 - federation index may be partitioned among all data sources

3 Query Optimization

- objective:
 - find a query execution plan
 - which minimizes the processing cost of the query
 - and the communication cost for transmitting query and results between mediator and Linked Data sources

3.1 Data Source Mapping

• Data source selection

3.2 Query Execution Plan

- query execution plan is an executable query plan where logical operators are replaced by physical operators, e.g. join may be implemented as:
 - nested loop join
 - sort-merge join
 - hash join
 - semi-join
 - bind join
- Two main structure of Query Execution Plan:

- Left deep trees
 - * pipelined execution
 - * starting with leftmost leaf node
 - * operators are evaluated one after another
 - $\ast\,$ results are passed as input to the parent node until the root node is reached
- Bushy trees
 - $\ast\,$ allow for parallel execution as sub trees can be evaluated concurrently

3.3 Optimization Fundamentals

- Objective: find a query execution plan with minimal cost in terms of processing cost and communication cost
- query execution time is the main costmeasure
- query execution time = processing cost + communication cost
- optimization strategies rely on the same two basic measures for estimating the cost of a query exe- cution plan:
 - cardinality: estimated number of elements in a result set which are returned for a query expression
 - selectivity:
 - * defines the estimated fraction of elements which match a query expression
 - * Range: 0 or 1
 - * 0: most selective
 - * 1: least selective

RDF Graph Cardinality = Number of triples in the graph

RDF Term Selectivity = Number of triples in the Graph where which contains the term / RDF Graph Cardinality

Triple Pattern Selectivity = Product of the selectivity of all terms in the triple

Triple Pattern Cardinality = Triple Pattern Selectivity * RDF Graph Cardinality

3.4 Optimization Strategies

- different optimization strategies
- a trade-off between finding the optimal query plan and finding a query plan quickly
- Optimization Strategies:
 - Static Optimization: Generates one plan and stick

 Dynamic Optimization: may change query plan during execution due to updated statistics

3.5 Query Plan Generation

- Generate query plan
- evaluate plan using a cost model

3.6 Improvement for federation

3.6.1 Streaming Results

- execution chain of operators can be become a bottleneck if have to wait for results
- SPARQL Standard requires that all information regarding query be present before query optimization can be performed
- Partial result cannot yet be performed using SPARQL

3.6.2 Views

- allows for data abstraction
- simplify querying of complex relations
- views to abstract data schema or data sources

3.6.3 Performance Evaluation

• evaluation framework are required to evaluate federated systems