Economic Dynamics Theory and Computation Excercises Chapter 4

Mitchell Valdés-Bobes

July 1, 2021

4 Deterministic Dynamical Systems

4.1 The Basic Model

Problem 4.1. Show that if (S,h) is a dynamical system, if $x' \in S$ is the limit of some trajectory (i.e., $h^t(x) \to x'$ as $t \to \infty$ for some $x \in S$), and if h is continuous at x', then x' is a fixed point of h.

Answer. Consider the sequence $\{x_t\} \subset S$ defined as $x_t = h^t(x)$ since h is a continuous function we have:

$$x_t = h^t(x) \to x'$$
 \Longrightarrow $h(x_t) = h^{t+1}(x) \to h(x')$

Since the limit of a sequence must be unique we have that

$$h(x') = x'$$

Problem 4.2. Prove that if h is continuous on S and $h(A) \subset A$ (i.e., h maps $A \to A$), then $h(\operatorname{cl} A) \subset \operatorname{cl} A$

Answer. Let $x \in h(\operatorname{cl} A)$ this means that there is $x' \in \operatorname{cl} A$ such that h(x') = x. If $x' \in A$ then $h(x') = x \in A$ if $x' \notin A$ then there is $\{x_t\} \subset A$ such that $x_t \to x'$. Note that since h is continuous then $h(x_t) \to h(x') = x$ and since $h(x_t) \in A$ for all t then $x \in \operatorname{cl} A$.

Problem 4.3. Prove that x^* is locally stable if and only if there exists an $\epsilon > 0$ such that $B(\epsilon, x^*) \subset \Lambda(x^*)$

Answer. This problem is straightforward we get sufficiency since $B(\varepsilon; x^*)$ is an oppen set and necessity by definition of an open set that mus include a ball of radious $\varepsilon > 0$ for some ε .

Problem 4.4. Prove that if x^* is a fixed point of (S,h) to which every trajectory converges, then x^* is the only fixed point of (S,h).

Answer. Prove it by contradiction suppose that there are $x^* \neq x^{**}$ fixed points, and that **every** trayectory convertges to x^* , but this must be a contradiction since x^{**} is a fixed point implies that the trayectory $h^t(x^{**}) = x^{**} \to x^{**}$.

Problem 4.5. Prove Lemma 4.1.7:

If h is a map with continuous derivative h' and x^* is a fixed point of h with $|h'(x^*)| < 1$, then x^* is locally stable.

Answer. Consider x^* is a fixed point of h; by the definition of derivative we have that for any $x_n \to x^*$:

$$|h'(x^*)| = \lim_{n \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_n - x^*)} < 1$$

By the definition of limit we have that for every $\varepsilon > 0$ there are N_1 and N_2 such that $\rho(x_n, x^*) < \varepsilon$ for every $n > N_1$ and

$$\lim_{t \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_t, x^*)} < 1$$

for every $n > N_2$. Define $N = \max\{N_1, N_2\}$ and we have that:

$$\lim_{n \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_n, x^*)} < 1 \qquad \Longrightarrow \qquad \rho(h(x_n), h(x^*)) < \rho(x_n, x^*) < \varepsilon$$

therefore $h(x_n) \to h(x^*) = x^*$. We have proved that for any x "close enough" to x^* $h(x) \to x^*$. Pick any such point $(x \in B(\varepsilon; x^*))$

Also note that for any t > 0

$$\rho(h^t(x), x^*) = \rho(h(h^{t-1}(x)), x^*) < \rho(h^{t-1}(x), x^*)$$

We can define a sequence ε_t such that $\varepsilon_1 = \varepsilon$, $\varepsilon_t \to 0$ and

$$0 \le \rho(h^t(x), x^*) < \varepsilon_t \implies \rho(h^t(x), x^*) \to 0 \implies h^t(x) \to x^*$$

Therefore x^* is locally stable.

Problem 4.6.

Answer. \Box

Problem 4.7.

Answer. \Box

Problem 4.8.

Answer. \Box

Problem 4.9.

Answer. \Box

Problem 4.10.

Answer. \Box

Problem 4.11.

Answer. \Box

Problem 4.12.

Answer. \Box

Problem 4.13.	
Answer.	
Problem 4.14.	
Answer.	
Problem 4.15.	
Answer.	