PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-038814

(43) Date of publication of application: 07.02.1995

(51)Int.CI.

H04N 5/335

(21)Application number: 05-180483

(71)Applicant: FUJITSU LTD

(22)Date of filing:

21.07.1993

(72)Inventor: AWAMOTO KENJI

SAKACHI YOICHIRO

(54) SOLID-STATE IMAGE PICKUP DEVICE

(57)Abstract:

PURPOSE: To improve the quality of the monitor screen of the solid-state image pickup device by compensating an offset error and a gain error between pixel signals of plural systems.

CONSTITUTION: A signal supply circuit 34 supplies the same signal to all of plural read circuits. A correction signal generating circuit 47 generates a correction signal for eliminating the difference in the level of the signal supplied from said signal supply circuit among pixel signals read out of the read circuits. A correcting circuit 45 corrects the levels of the pixel signals read out of the read circuits with the correction signal.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-38814

(43)公開日 平成7年(1995)2月7日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 N 5/335

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号

特願平5-180483

(22)出願日

平成5年(1993)7月21日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 粟本 健司

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 坂地 陽一郎

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 伊東 忠彦

(54) 【発明の名称】 固体撮像装置

(57)【要約】

【目的】 本発明は固体撮像装置に関し、複数系統の画 素信号間のオフセット誤差及びゲイン誤差を補償しモニ 夕画面の品質を向上させることを目的とする。

【構成】 信号供給回路(344)は、複数の読み出し 回路の全てに同一の信号を供給する。補正信号発生回路 (47) は、上記複数の読み出し回路夫々から読み出さ れる画素信号のうち、上記信号供給回路から供給された 信号のレベル差から上記レベル差をなくすような補正信 号を発生する。補正回路(45)は、補正信号で上記複 数の読み出し回路夫々から読み出される画素信号のレベ ルを補正する。

本発明装置の固体操像来子の回路図 直走查回 重素アレイ `351 制御プロック

1

【特許請求の範囲】

【請求項1】 画素アレイ(30)の複数の垂直信号伝送線(3 $4_1\sim34_7$)を複数の読み出し回路(3 5_1 ,3 $5_2\sim40_1$,4 0_2)に分割して接続し、上記複数の読み出し回路で同時に画素信号の時系列的な読み出しを行う固体撮像装置において、

上記複数の読み出し回路の全てに同一の信号を供給する 信号供給回路(344)と、

上記複数の読み出し回路夫々から読み出される画素信号 のうち、上記信号供給回路から供給された信号のレベル 10 差から上記レベル差をなくすような補正信号を発生する 補正信号発生回路(47)と、

上記補正信号で上記複数の読み出し回路夫々から読み出される画素信号のレベルを補正する補正回路(45)と を有することを特徴とする固体撮像装置。

【請求項2】 上記信号供給回路は、1本の垂直信号伝送線を全ての水平走査回路に接続して構成したことを特徴とする請求項1記載の固体撮像装置。

【請求項3】 上記信号供給回路は基準電圧源であることを特徴とする請求項1記載の固体撮像装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は固体操像装置に関し、複数の読み出し回路を持つ複数出力の固体撮像装置に関する。

【0002】半導体基板上に複数の受光素子を二次元配置した光電変換素子部と、光電変換された信号を読み出すための回路部を持つ固体損像素子は近年、画素数を増やし高解像度化が図られている。多画素化にともない、信号読み出し速度が速くなり、周辺回路の速度の制限や 30 雑音の増大が問題となるため、出力を多数に分割し、信号読み出し速度を低く抑えた固体撮像装置が提案されている。

[0003]

【従来の技術】図5は従来の固体撮像素子の一例の回路 図を示す。この例では4×4画素のMOS型素子で2出 力型のものを用いて説明する。同図中、フォトダイオー ドで構成された画素1011~1044のうち、垂直走査回 路11に接続されたライン選択線12:~12.がオン となり、ライン選択ゲート13が導通したラインの4つ 40 の画素の出力信号は垂直信号伝送線141~144 に送 出される。水平走査回路151,152 夫々は画素選択 線16: と162, 17: と172 を順次オンとして画 素選択ゲート18: と182, 19: と192 を順次導 通させ、プリアンプ201,202 夫々より画素信号を 読み出させる。つまり、プリアンプ20は左側2列の画 素の画素信号を読み出し、これと同時にプリアンプ20 2 は右側2列の画素の画素信号を読み出し、これによっ て信号読み出し速度をプリアンプが1個の場合の1/2 に低減できる。

2

【0004】上記のプリアンプ201,202 夫々の出力する画素信号は図6に示す信号伝送ケーブル211,212 夫々を通して信号処理回路内のパッファアンプ231,232 に供給され、A/Dコンパータ251,252 でディジタル化された後、画像回路26で1画面のモニタ画面として配置され、端子27より表示用として出力される。

[0005]

【発明が解決しようとする課題】このように、プリアンプ20 $_1$,20 $_2$ 夫々から画素信号を出力する2出力型であるため、外部から加わる雑音や温度変動により2系統の画素信号間にオフセット誤差及びゲイン誤差を生じ、モニタ画面の品質が低下するという問題があった。

【0006】本発明は上記の点に鑑みなされたもので、 複数系統の画素信号間のオフセット誤差及びゲイン誤差 を補償しモニタ画面の品質を向上させる固体撮像装置を 提供することを目的とする。

[0007]

【課題を解決するための手段】本発明の固体撮像装置 20 は、画素アレイの複数の垂直信号伝送線を複数の読み出し回路に分割して接続し、上記複数の読み出し回路で同時に画素信号の時系列的な読み出しを行う固体撮像装置において、上記複数の読み出し回路の全てに同一の信号を供給する信号供給回路と、上記複数の読み出し回路夫々から読み出される画素信号のうち、上記信号供給回路から供給された信号のレベル差から上記レベル差をなくすような補正信号を発生する補正信号発生回路と、上記補正信号で上記複数の読み出し回路夫々から読み出される画素信号のレベルを補正する補正回路とを有する。

[0008]

【作用】本発明においては、複数の読み出し回路の出力する画素信号のうち同一の信号のレベル差から補正信号を発生して各読み出し回路の出力する画素信号のレベルを補正するため、信号伝送ケーブル等を含む各読み出し回路のオフセット誤差及びゲイン誤差を補正できる。

[0009]

【実施例】図1は本発明装置の固体撮像素子部分の第1 実施例の回路図を示す。同図中、30は水平方向7画素 ×垂直方向n画素の画素アレイである。画素アレイ30 40 のうち、垂直走査回路31で選択されたラインの7つの 画素の出力信号は垂直信号伝送線341~34、に送出 される。垂直信号伝送線341~34、夫々は水平走査 回路351に接続された画素選択線361~36、でス イッチング制御される画素選択ゲート381~38、を 介してプリアンプ401に接続され、更に、垂直信号伝 送線34~347夫々は水平走査回路352に接続された画素選択線371~37、でスイッチング制御され る画素選択ゲート391~394を介してプリアンプ4 02に接続されている。つまり垂直信号伝送線34、は 50 画素選択ゲート384、394夫々を介してプリアンプ 3

401, 402 夫々に接続されている。

【0010】水平走査回路351,352夫々は端子4 1より人来する制御クロックに同期して図中矢印方向に 走査し画素選択線361と371、362と372、3 6 8 と 3 7 8 、 3 6 4 と 3 7 4 を順次オンとしてプリア ンプ401,402から同時に画素信号を出力させる。

【0011】上記の水平走査回路351,352、画素 選択線361~364,371~374、画素選択ゲー ト381~384、391~394、プリアンプ4 直信号伝送線34、が即ち信号供給回路とされている上 記のプリアンプ401, 402 夫々の出力する画素信号 は図2に示す信号伝送ケーブル421,422 夫々を通 して信号処理回路内のパッファアンプ431, 432 に 供給される。バッファアンプ43: 出力はA/Dコンバ ータ441に供給されバッファアンプ432出力はレベ ルシフト回路45でレベルシフトされた後A/Dコンバ ータ442 に供給される。

【0012】A/Dコンパータ441、442 夫々の出 力するディジタル画素信号は端子461,462 夫々か 20 ら後続の画像回路に供給されると共に、補正信号発生回 路47の端子A、B夫々に供給される。制御回路48は 制御クロックを生成して端子41から水平走査回路35 1,352 夫々に供給し、またサンプリングパルスを生 成してA/Dコンパータ441,442 夫々に供給し、 また、画素選択線36、と37、をオンするタイミング を指示するタイミング信号を補正信号発生回路47に供 給する。補正信号発生回路47は上記タイミング信号の 入来時に端子Aの値から端子Bの値を減算し、差A-B 来するまで保持して出力する。この補正信号は補正回路 であるレベルシフト回路45に供給され、バッファアン プ432 出力が差B-Aに対応してレペルシフトされ

【0013】ここで、パッファアンプ431,432夫 々の出力信号レベルが図3(A)に実線I, IIで示す如 き場合、時点 t。で画素選択ゲート384,394が導 通して同一画素の画素信号であるにも拘らず、オフセッ ト誤差及びゲイン誤差によって両信号はレベルがV』、 V』と異なる。この時点t。で補正信号発生回路47は 40 同図 (B) に示すレベルの補正信号を発生する。このた め、次のラインではバッファアンプ432の出力信号レ ベルがV。-V。だけ加算補正されて、次の選択ゲート 384, 394 が導通する時点 t1 では両信号のレベル はVcで略同一となる。

【0014】図4は本発明装置の固体撮像素子部分の第 2 実施例の回路図を示す。同図中、図1と同一部分には 同一符号を付す。図4中、50は水平方向6画素×垂直 方向n画素の画素アレイである。画素アレイ50.のう ち、垂直走査回路31で選択されたラインの6つの画素 50

の出力信号は垂直信号伝送線341~346に送出され る。垂直信号伝送線341~348 夫々は水平走査回路 351 に接続された画素選択線361~364 でスイッ チング制御される画素選択ゲート381~384のうち のゲート382~384を介してプリアンプ401に接 続され、更に、垂直信号伝送線344~346 夫々は水 平走査回路352に接続された画素選択線371~37 4 でスイッチング制御される画素選択ゲート39:~3 94 のうちのゲート392 ~394 を介してプリアンプ 0_1 , $4\,0_2$ で読み出し回路を構成している。また、垂 $10\,4\,0_2$ に接続されている。また、電圧 $V_{\rm rel}$ の基準電圧 源51が画素選択ゲート381, 391 夫々を介してプ リアンプ401, 402 に夫々接続されている。

> 【0015】水平走査回路351,352 夫々は端子4 1より入来する制御クロックに同期して画素選択線36 1 2371 , 362 2372 , 363 2378 , 364 と374を順次オンとしてプリアンプ401,402か ら同時に画素信号を出力させるとき、画素選択線361 と37. のオン時に基準電圧Vier が疑似画素信号とし て読み出される。

【0016】この場合、図2の制御回路48で画素選択 線361 と371 をオンするタイミングを指示するタイ ミング信号を生成するようにして、このタイミング信号 を補正信号発生回路47に供給することにより、第1実 施例と同様にパッファアンプ431,432 夫々の出力 信号レベルを上記画素選択線361と371のオン時点 で略同一とすることができる。

【0017】なお、補正信号はA/Dコンパータ4 41,442入力前のアナログ信号から生成しても良 く、また補正信号発生回路47でディジタル値の補正信 に対応するレベルの補正信号を次のタイミング信号が入 30 号を発生してA/Dコンパータ442 出力に加算して端 子462 から出力しても良く、更に補正信号発生回路4 7出力をパッファアンプ432 出力から減算する代り に、パッファアンプ43:出力に加算しても良く、上記 実施例に限定されない。

[0018]

【発明の効果】上述の如く、本発明の固体撮像装置によ れば、複数系統の画素信号間のオフセット誤差及びゲイ ン誤差を補償しモニタ画面の品質を向上させることがで き、実用上きわめて有用である。

【図面の簡単な説明】

- 【図1】本発明装置の固体撮像素子の回路図である。
- 【図2】本発明装置の信号処理回路の回路図である。
- 【図3】本発明を説明するための信号波形図である。
- 【図4】本発明装置の固体撮像素子の回路図である。
- 【図5】従来装置の固体撮像素子の回路図である。
- 【図6】従来装置の信号処理回路の回路図である。 【符号の説明】
- 30,50 画素アレイ
- 31 垂直走査回路
- 341~347 垂直信号伝送線

5

351,352 水平走査回路

361~364, 371~374 画素選択線

381~384,391~394 画素選択ゲート

401,402 プリアンプ

421,422 信号伝送ケーブル

【図1】

431,432 バッファアンプ

441, 442 A/Dコンパータ

45 レベルシフト回路

47 補正信号発生回路

【図2】

本発明装置の信号処理回路の回路図

【図3】

本発明を説明するための信号波形図

【図4】

【図5】

従来装置の信号処理回路の回路図

