6. Производная и интеграл

Интеграл-первообразная F(x)

Если график F(x) – считаем max и min Площадь $S = \int_{-2}^{-1} f(x) dx = F(-1) - F(-3)$

11. Исследование функций

Точка min/max – это x				Наиб/наим значение– это у	
-				_	•

$$(x^n)' = nx^{n-1}$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(x\sqrt{x})' = \frac{3}{2}\sqrt{x}$$

$$(\frac{1}{x})' = -\frac{1}{x^2}$$

$$(e^x)' = e^x$$

$$(lnx)' = \frac{1}{x}$$

$$(sinx)' = cosx$$

$$(cosx)' = -sinx$$

$$(tgx)' = \frac{1}{x^2}$$

$$(\mathbf{u}\cdot\mathbf{v})'=\mathbf{u}'\cdot\mathbf{v}+\mathbf{u}\cdot\mathbf{v}'$$
 $\left(\frac{\mathbf{u}}{\mathbf{v}}\right)'=\frac{\mathbf{u}'\cdot\mathbf{v}-\mathbf{u}\cdot\mathbf{v}'}{\mathbf{v}^2}$

- **1.** $v = \sqrt{40 + 6x x^2}$ $v = 3^{1+4x-x^2}$ $v = \log(1 + 4x x^2)$ Производную берем только от трехчлена = 0
- **2**. $y = ln(x + 5)^5 5x$ на отрезке [-4,5; 0] (x + 5) = 1
- **3**. $y = (x + 20)^2 e^{-18-x}$ на отрезке [-19; -17] -18-x=0
- $4.y = (3-2x)\cos x + 2\sin x + 4 \quad (0; \frac{\pi}{2})$ (3-2x)=0
- **5**. sinx/cosx/tgx подставляем x такой, при котором исчезает π
- **6**. наибольшее значение $y = \frac{x^2 + 25}{x}$ на [1; 10] точки $x = \pm 5 \implies y(5) = \frac{5^2 + 25}{5} = 10$
- 7. $y = 12tgx 12x + 3\pi 7$ подставь $\frac{\pi}{4}$ или $-\frac{\pi}{4}$
- **8.** Haum. 3H. $y = 6sinx \frac{36}{\pi}x + 6$ Ha отрезке $\left[-\frac{5\pi}{6}; 0 \right]$
- подставь обе точ. и выб $\sin\left(-\frac{5\pi}{\epsilon}\right) = \cos\left(-\frac{2\pi}{\epsilon}\right) = -\frac{1}{2}$

3. Планиметрия

 $S = 6 \cdot S_{\Lambda}$

 $S = \pi R^2$ $C = 2\pi R$

A+C=B+D

S = ab

 $d = \sqrt{a^2 + b^2}$

 $sin\alpha = \frac{\text{прот}}{\text{гип}}$

S = ah

 $S = absin\alpha$

Дали ∠АВС-отним. Найти ∠АВС-склад.

МАТЕМАТИКА ЕГЭ 2022

2 и 10. Теория вероятностей

$$P = \frac{\text{надо}}{\text{все}}$$
 $P_{-} = 1 - P_{+}$ $P_{\text{хотя бы}} = 1 - P_{-}$

и $P_1 \cdot P_2$

или $P_1 + P_2$

При выпечке **хлеба...** $P_1 + P_2 - 1$

Игральную кость бросили два раза. Известно, что шесть очков не выпало ни разу. Найдите при этом условии вероятность события «сумма очков равна 8». $P = \frac{3}{6^2 - 11} = \frac{3}{25} = 0,12$

35% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 15% яиц высшей категории. Всего высшую категорию получает 20% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства. $0.35 \cdot p + 0.15 \cdot (1-p) = 0.2$

Первый член последовательности целых чисел равен 0... $p = \frac{10}{17}$. Ответ: $\frac{1-p}{p}$

У Маши уже есть четыре разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 1 или 2 шок. яйца? $P_{\text{есть}} = 0.4$ $P_{\text{HeT}} = 0.6$ $P = 0.6 + 0.4 \cdot 0.6 = 0.84$

7. Формула

Логарифм После выделения 1,2,3=log

Квадратные уравнения Если найти время, то min Углы всегда получаются табличные

Адиаб сжатие $p_1V_1^{1,4} = \cdots$ Нач. объём делим на **32**

Линза $\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$ $d_1 = ?$ Если найти наименьшее

расстояние, то d_2 берем наибольшее

Эффект Доплера $\frac{f_0}{\sqrt{v}} - f_0 =$ разница частот

Рельсы $l(t^0) = l_0(1 + \alpha \cdot t^0)$ удлин на х мм. $t = \frac{x \cdot 100}{l_0 \cdot 1.2}$

Бак с водой $H(t) = at^2 + bt + H_0$ вытекает $\Rightarrow H(t) = 0$ Полураспад

Горизонт нужно

подняться
$$\Delta h = \frac{(b^2 - a^2)5}{64}$$
 ступеньки $N = \frac{(b^2 - a^2)500}{h_{\mathrm{CT}} \cdot 64}$

 $d = a\sqrt{3}$ $S = 6a^2$

$$V = abc$$

$$d$$

$$= \sqrt{a^2 + b^2 + c^2}$$

$$V = \pi R^2 H$$

$$S_{60K} = 2\pi R H$$

$$S_{II} = 2\pi R^2 + 2\pi R H$$

$$V = \frac{1}{3} \cdot S \cdot H$$
$$S_{\text{бок}} = 3 \cdot S_{\Delta}$$

$$V = \frac{1}{3}\pi R^2 H$$
$$S_{\text{бок}} = \pi R L$$

$$V = S \cdot H$$
$$S_{\text{бок}} = P_{\text{осн}}H$$

$$V = S \cdot H$$

$$S_{\text{OCH}} = 6 \cdot S_{\Delta}$$

$$S_{\Delta} = \frac{a^2 \sqrt{3}}{4}$$

Комбинация тел Подобие: k - коэф. подобия $S \to k^2$

 $S_{6,\text{цил}} = \sqrt{2}S_{6,\text{кон}}$ $V_{\text{цил}} = 3 \cdot V_{\text{кон}}$ $l = \sqrt{2} \cdot R$

 $V_{\text{map}} = 4V_{\text{кон}}$ $l_{\text{образ}} = \sqrt{2} \cdot R$

$$V_{\text{ky6}} = \frac{6}{\pi} V_{\text{map}}$$
$$V_{\text{ky6}} = (2 \cdot R)^3$$

$$V_{\text{цил}} = \frac{3}{2}V_{\text{шар}}$$
 $S_{\text{полн.цил}} = \frac{3}{2}S_{\text{шар}}$

 $V_{\text{пир}} = 2V$ $S_{\text{пир}} = 2S$

 $V_{\text{парал}} = 3V_{\text{пир}}$

$$V = 4V_{\text{отсеч.пир}}$$

 $S_{\text{исх}} = 2S_{\text{отсеч.пир}}$

8. Текстовая задача

Движение Уравнение составить по отрезкам t (или S). 30 км/ч = $\frac{30\ 000}{3200}$ м/с Работа 1) Заполнить две строки таблицы

- **2)** По формуле $t=rac{A}{n}$ или $p=rac{A}{t}$ заполнить третью строку таблицы
- 3) По «обратному» правилу составить уравнение

Смеси и сплавы Заполняем таблицу V и R. Уравнение умн. на 100.

Средняя скорость
$$v_{\rm cp}=rac{S_1+S_2+S_3}{t_1+t_2+t_3}$$

Увел/умен S на р%: $S(1\pmrac{p}{100})$

Арифм. прогрессия
$$S = \frac{a_1 + a_n}{2} n$$
 $a_n = a_1 + d(n-1)$

4. Тригонометрия

$$sin^{2}x + cos^{2}x = 1$$

$$sinx = \pm \sqrt{1 - cos^{2}x}$$

$$cosx = \pm \sqrt{1 - sin^{2}x}$$

$$tgx = \frac{sinx}{cosx}$$

$$ctgx = \frac{cosx}{sinx}$$

$$ctgx = \frac{cosx}{sinx}$$

$$cos \alpha$$

$$cos \alpha = 2 \cdot sin\alpha \cdot cos\alpha$$

$$cos 2\alpha = 2cos^{2}\alpha - 1$$

$$cos 2\alpha = 1 - 2sin^{2}\alpha$$

$$cos \alpha = 1 - 2sin^{2}\alpha$$

Формулы приведения 1) Четверть 2) Знак 3) π - оставляем, $\frac{\pi}{2}$ - меняем

Topiny in inpubergenium 1, letbeptb 2, strait									
	$0^{\circ} = 0$	$30^\circ=rac{\pi}{6}$	$45^\circ = rac{\pi}{4}$	$60^{\circ}=rac{\pi}{3}$	$90^\circ=rac{\pi}{2}$				
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1				
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0				
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	не сущ.				
ctg	не сущ.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0				

$$1 + tg^2 x = \frac{1}{\cos^2 x}$$
 $1 + ctg^2 x = \frac{1}{\sin^2 x}$

$tgx \cdot ctgx = 1$

4. Логарифмы

$$a^{\log_a b} = b \qquad \log_y x^n = \frac{n}{m} \log_y x$$

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a 1 = 0 \qquad \log_a a = 1$$

$$\log_a b \cdot \log_b a = 1 \qquad \log_a b = \frac{1}{\log_b a}$$

Переход к новому основанию $log_ab=rac{log_cb}{log_ca}$

$$f(x) = \frac{ax + b}{x + c}$$
$$y = \frac{a}{x + 2} + 3$$
a находим по точке

4. Алгебраические выражения

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$(a^{x})^{y} = a^{xy} \qquad \sqrt[n]{a} = a^{\frac{1}{n}}$$

9 задание. График

Парабола (хор)
$$y = \pm (\overrightarrow{x+a})^2 + b \uparrow$$
 $y = ax^2 + bx + c$ с-перес. ОУ Гипербола $y = \frac{a}{x+b} + c$

Прямая
$$y = kx + b$$
 $k = \pm \frac{\text{верт}}{\text{гор}}$ b -перес. ОУ Модуль $y = |kx + b| + c$ $y = a|x + b| + c$

