naked statistics

Stripping the Dread from the Data

CHARLES WHEELAN

W. W. Norton & Company

New York | London

Frequency Distribution of Quality Complaints for Competitor's Printers

Quality problems per printer

Frequency Distribution of Quality Complaints at Your Company

Quality problems per printer

Data for the printer defects graphics

	Zero	One	Two	Three	Four	Five	Six	Seven	Eight	Nine	Ten or more	
Frequency of com- petitor's defects	12	14	36	13	8	6	5	3	0	2	1	
	Zero	One	Two	Three	Four	Five	Six	Seven	Eight	Nine	Ten or more	
Frequency of your defects	25	31	9	4	3	0	0	1	1	0	26	

Group 1	Height (μ = 70 inches)	the mean = Absolute value of (x _n – μ)*	$(x_n - \mu)^2$	Group 2	Height (μ = 70 inches)	the mean = Absolute value of (x _n – μ)*	$(x_n - \mu)^2$
Nick	74	4	16	Sahar	65	5	25
Elana	66	4	16	Maggie	68	2	4
Dinah	68	2	4	Faisal	69	1	1
Rebecca	69	1	1	Ted	70	0	0
Ben	73	3	9	Jeff	71	1	1
Charu	70	0	0	Narciso	75	5	25
		Total = 14	Total = 46			Total = 14	Total = 56
			Variance = 46/6 = 7.7				Variance = 56/6 = 9.3
			Standard deviation = $\sqrt{7.7} = 2.8$				Standard deviation = $\sqrt{9.3} = 3$

Distance from

Distance from

^{*} Absolute value is the distance between two figures, regardless of direction, so that it is always positive. In this case, it represents the number of inches between the height of the individual and the mean.

"The Rustbelt Recovery," March 10, 2011

Source: http://oregonstate.edu/instruct/anth484/minwage.html.

Defense Spending in Billions, 1981–1988

Defense Spending in Billions, 1977–1988

Source: http://www.usgovernmentspending.com/spend.php?span=usgs302&year=1988&view=1&expand=30&expandC=&units=b&fy=fy12&local=s&state=US&pie=#usgs302.

A	В	С	D	E	F		
Student	Height	Weight	Height in standard units	Weight in standard units	(Weight in standard units) × (Height in standard units)		
Nick	74	193	1.21 0.99		1.19		
Elana	66	133	-0.63	-0.67	0.42		
Dinah	68	155	-0.17	-0.06	0.01		
Rebecca	69	147	0.06	-0.29	-0.02		
Ben	73	175	0.98	0.49	0.48		
Charu	70	128	0.29	-0.81	-0.24		
Sahar	60	100	-2.00	-1.59	3.18		
Maggie	63	128	-1.32	-0.81	1.07		
Faisal	67	170	-0.40	0.35	-0.14		
Ted	70	182	0.29	0.68	0.20		
Narciso	70	178	0.29	0.57	0.17		
Katrina	70	118	0.29	-1.09	-0.32		
CJ	75	227	1.44	1.93	2.77		
Sophia	62	115	-1.54	-1.17	1.81		
Will	74	211	1.21	1.49	1.80		
Mean	68.73	157.33			Total = 12.39		
Standard Deviation	4.36	36.12		Correlation coefficient = Total/n = 12.39/15 = 0.8			

The Investment Decision

Expected payoff =
$$\$4,050,000 + \$0 + \$0 + \$175,000$$

= $\$4,225,000$

Widespread Screening for a Rare Disease

$$\frac{\text{People with disease}}{\text{Those told they}} = \frac{1,750}{1,750 + 17,500} = \frac{1,750}{19,250} = .09 = 9\%$$
have the disease

100 Sample Means, n = 100

Frequency Distribution of Sample Means

^{*} When the standard deviation for the population is calculated from a smaller sample, the formula is tweaked slightly: $SE = s/\sqrt{n-1}$. This helps to account for the fact that the dispersion in a small sample may understate the dispersion of the full population. This is not highly relevant to the bigger points in this chapter.

Formula for comparing two means $\frac{\bar{x} - \bar{y}}{\bar{y}} \longrightarrow \text{numerator yields the size of the difference in means}$

 $\sqrt{\frac{s_x^2 + s_y^2}{n_x} \frac{s_y^2}{n_y}} \longrightarrow \text{denominator yields the standard error for a difference}$ in mean between two samples

where \bar{x} = mean for sample x \bar{y} = mean for sample y $s_{\mathbf{v}}$ = standard deviation for sample x

 s_v = standard deviation for sample y

 $n_{\rm v}$ = number of observations in sample x $n_v =$ number of observations in sample y

Difference in Sample Means (Measured in Standard Errors)

Probability

Difference in sample means

WEIGHT = $-145 + 4.6 \times (HEIGHT IN INCHES)$ $+ .1 \times (AGE IN YEARS)$

WEIGHT = $-118 + 4.3 \times (HEIGHT IN INCHES)$ + .12 (AGE IN YEARS) – 4.8 (IF SEX IS FEMALE)

Regression Equation for Weight

Variable	Coefficient	Standard Error	t-statistic	p-value (two- tailed test)	95% Confidence Interval
Height	4.4	.2	21.4	.000	4.0 to 4.8
Age	.08	.03	2.2	.026	.01 to .2
Sex	-5.7	1.7	-3.4	.001	−9.0 to −2.4
Years of Educational Attainment	7	.2	-3.5	.000	-1.1 to3
Bottom Quintile of Physical Activity	3.7	1.4	2.6	.009	.9 to 6.5
Dummy for Receiving Food Stamps	5.6	2.1	2.7	.007	1.5 to 9.7
Non-Hispanic Black	9.7	1.3	7.2	.000	7.0 to 12.3
Intercept	-117				

Effect of Golf Lessons on Score

^{*} There are more sophisticated methods that can be used to adapt regression analysis for use with nonlinear data. Before using those tools, however, you need to appreciate why using the standard ordinary least squares approach with nonlinear data will give you a meaningless result.

begins in County A

Time

Effect of Job Training on Unemployment in County A, with County B as a Comparison

Unemployment

Job training begins in County A

Time