



TO PASS 80% or higher

 $\bigcirc \ \ \, \text{The correct formula is } E^T*o_{1234}.$   $\bigcirc \ \ \, \text{This doesn't handle unknown words (<UNK>)}.$ 

✓ Correct

O None of the above: calling the Python snippet as described above is fine.

Yes, the element-wise multiplication will be extremely inefficient.



grade 100%

|                                                                           | est submission grade $00\%$                                                                                                                                                                                      |                                    |                                                |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|--|--|
| 1.                                                                        | Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those                    |                                    | 1/1 point                                      |  |  |
|                                                                           | words.                                                                                                                                                                                                           |                                    |                                                |  |  |
|                                                                           | ○ True                                                                                                                                                                                                           |                                    |                                                |  |  |
|                                                                           | False                                                                                                                                                                                                            |                                    |                                                |  |  |
|                                                                           | Correct The dimension of word vectors is usually smaller than the size of                                                                                                                                        | f the vocabulary. Most common size | es for word vectors ranges between 50 and 400. |  |  |
| 2.                                                                        | What is t-SNE?                                                                                                                                                                                                   |                                    | 1/1 point                                      |  |  |
| A linear transformation that allows us to solve analogies on word vectors |                                                                                                                                                                                                                  | ctors                              |                                                |  |  |
|                                                                           | A non-linear dimensionality reduction technique                                                                                                                                                                  |                                    |                                                |  |  |
|                                                                           |                                                                                                                                                                                                                  |                                    |                                                |  |  |
|                                                                           | A supervised learning algorithm for learning word embeddings                                                                                                                                                     |                                    |                                                |  |  |
|                                                                           | An open-source sequence modeling library                                                                                                                                                                         |                                    |                                                |  |  |
|                                                                           | ✓ Correct<br>Yes                                                                                                                                                                                                 |                                    |                                                |  |  |
|                                                                           | Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if                        |                                    |                                                |  |  |
|                                                                           | someone is happy from a short snippet of text, using a small trainin                                                                                                                                             |                                    |                                                |  |  |
|                                                                           | x (input text)                                                                                                                                                                                                   | y (happy?)                         |                                                |  |  |
|                                                                           | I'm feeling wonderful today!                                                                                                                                                                                     | 1                                  |                                                |  |  |
|                                                                           | I'm bummed my cat is ill.                                                                                                                                                                                        | 0                                  |                                                |  |  |
|                                                                           | Really enjoying this!                                                                                                                                                                                            | 1                                  |                                                |  |  |
|                                                                           | Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label $y=1$ .                                      |                                    |                                                |  |  |
|                                                                           | True                                                                                                                                                                                                             |                                    |                                                |  |  |
|                                                                           | False                                                                                                                                                                                                            |                                    |                                                |  |  |
|                                                                           |                                                                                                                                                                                                                  |                                    |                                                |  |  |
|                                                                           | ✓ Correct                                                                                                                                                                                                        |                                    |                                                |  |  |
|                                                                           | Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence." |                                    |                                                |  |  |
|                                                                           | Which of these equations do you think should hold for a good word embedding? (Check all that apply)                                                                                                              |                                    |                                                |  |  |
|                                                                           | $ ightharpoons c_{boy} - c_{girl} pprox c_{brother} - c_{sister}$                                                                                                                                                |                                    |                                                |  |  |
|                                                                           | ✓ correct Yes!                                                                                                                                                                                                   |                                    |                                                |  |  |
|                                                                           | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                         |                                    |                                                |  |  |
|                                                                           | $ lap{boy} = e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$                                                                                                                                                  |                                    |                                                |  |  |
|                                                                           | ✓ Correct Yes!                                                                                                                                                                                                   |                                    |                                                |  |  |
|                                                                           | $igcup_{eboy} - e_{brother} pprox e_{sister} - e_{girl}$                                                                                                                                                         |                                    |                                                |  |  |
| i.                                                                        | Let $E$ be an embedding matrix, and let $o_{1234}$ be a one-hot vector cor to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Py                                                               |                                    | 1/1 point                                      |  |  |
|                                                                           | It is computationally wasteful.                                                                                                                                                                                  |                                    |                                                |  |  |

|     | s okay if we do poorly on this artificial prediction task; the more important by-product of this task<br>is that we learn a useful set of word embeddings.                                                                                                                                                                                                                |                                          |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
|     | True                                                                                                                                                                                                                                                                                                                                                                      |                                          |  |  |  |
|     | ○ False                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | Correct                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |  |  |
| 7.  | In the word2vec algorithm, you estimate $P(t\mid c)$ , where $t$ is the target word and $c$ is a context word. How are $t$ and $c$ chosen from the training set? Pick the best answer.                                                                                                                                                                                    | 1/1 point                                |  |  |  |
|     | $\bigcirc \ c$ is the one word that comes immediately before $t.$                                                                                                                                                                                                                                                                                                         |                                          |  |  |  |
|     | $\bigcirc \ c$ is a sequence of several words immediately before $t.$                                                                                                                                                                                                                                                                                                     |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | $\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$                                                                                                                                                                                                                                                                                               |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
| 8.  | Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:                                                                                                                                                                                                                       | 1/1 point                                |  |  |  |
|     | $P(t \mid c) = rac{e_t^{q^* r_c}}{\sum_{10000} e_t^{q^*_{p^* r_c}}}$                                                                                                                                                                                                                                                                                                     |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | Which of these statements are correct? Check all that apply.                                                                                                                                                                                                                                                                                                              |                                          |  |  |  |
|     | $\ensuremath{ igselsuremath{ igselsuremath{ iggr g}}} \ 	heta_t$ and $e_c$ are both 500 dimensional vectors.                                                                                                                                                                                                                                                              |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                  |                                          |  |  |  |
|     | $\ensuremath{ igselskip \ensuremath{ igselskip \ensuremath{ igger} }} 	heta_t$ and $e_c$ are both trained with an optimization algorithm such as Adam or gradient descent.                                                                                                                                                                                                |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     | $\begin{tabular}{ll} \hline & After training, we should expect $\theta_t$ to be very close to $e_c$ when $t$ and $c$ are the same word. \end{tabular}$                                                                                                                                                                                                                    |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
| 9.  | Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings.The GloVe model minimizes this objective:                                                                                                                                                                                                                                      | 1/1 point                                |  |  |  |
|     | $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$                                                                                                                                                                                                                                                                     |                                          |  |  |  |
|     | Which of these statements are correct? Check all that apply.                                                                                                                                                                                                                                                                                                              |                                          |  |  |  |
|     | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                  |                                          |  |  |  |
|     | $ec{arphi}$ $	heta_i$ and $e_j$ should be initialized randomly at the beginning of training.                                                                                                                                                                                                                                                                              |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     | $	ilde{	ilde{X}} X_{ij}$ is the number of times word j appears in the context of word i.                                                                                                                                                                                                                                                                                  |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     | ightharpoons The weighting function $f(.)$ must satisfy $f(0)=0$ .                                                                                                                                                                                                                                                                                                        |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     | The weighting function helps prevent learning only from extremely common word pairs. It is not ne                                                                                                                                                                                                                                                                         | cessary that it satisfies this function. |  |  |  |
| 10. | You have trained word embeddings using a text dataset of $m_1$ words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of $m_2$ words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful? | 1/1 point                                |  |  |  |
|     | (a) $m_1 >> m_2$                                                                                                                                                                                                                                                                                                                                                          |                                          |  |  |  |
|     | $\bigcirc$ $m_1 \ll m_2$                                                                                                                                                                                                                                                                                                                                                  |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |
|     | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                           |                                          |  |  |  |

6. When learning word embeddings, we create an artificial task of estimating  $P(target \mid context)$ . It

1/1 point