

Model Optimization and Tuning Phase Template

Date	08 July 2024
Team ID	SWTID1720201335
Project Title	Rice Type Classification Using CNN
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
MobileNetV2	Fully connected layers parameters: [] mobile_net = 'https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4' mobile_net = hub.KerasLayer(mobile_net, input_shape = (224,224,3), trainable=False) [] num_names = 5 model = keras.Sequential([

Learning process parameters:

Accuracy and loss:

Optimized metrics:

```
recall f1-score
           precision
                                     support
         0
               0.98
                       0.98
                                0.98
                                          54
         1
               1.00
                       0.95
                                0.97
                                          56
                                1.00
                       1.00
                                          63
         2
               1.00
         3
                       1.00
                               0.96
                                          55
               0.93
                       0.98
                                0.99
        4
               1.00
                                          53
                                0.98
                                         281
   accuracy
               0.98
                       0.98
                                0.98
                                         281
  macro avg
weighted avg
               0.98
                       0.98
                                0.98
                                         281
```

```
array([[49, 0, 0, 3, 1],

[ 0, 46, 0, 1, 0],

[ 0, 0, 57, 1, 0],

[ 0, 2, 0, 59, 0],

[ 1, 0, 0, 0, 61]])
```

Model 2

__

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
MobileNetV2	The MobileNetV2 model was chosen due to its remarkable efficiency and lightweight architecture, making it highly suitable for deployment in environments with limited computational resources. MobileNetV2 achieves a fine balance between accuracy and performance, delivering robust predictions without sacrificing speed. Its use of depth-wise separable convolutions significantly reduces the number of parameters and computational load, ensuring fast inference times while maintaining high accuracy. This makes MobileNetV2 an ideal choice for applications where real-time processing and low latency are critical, perfectly aligning with the project's requirements.