Reproducible science, cloud-based Earth observation data processing, openEO

Edzer Pebesma

GEO Expert Advisory Group Meeting, Sep 6-7, 2018

What does I am a data scientist mean?

1:

- have some domain knowledge (environmental, hydrology, RS)
- know some about spatial statistics
- communicate code

What does I communicate code mean?

I:

- write code (quite a lot)
- ▶ share code, mostly as R packages, but also in blogs and tweets
- engage in discussions concerning code (GH issues, SO, lists)
- actively engage with user and developer communities

I have a (meta-)scientific interest in what *reproducible geosciences* means.

What does I communicate code mean?

I:

- write code (quite a lot)
- ▶ share code, mostly as R packages, but also in blogs and tweets
- engage in discussions concerning code (GH issues, SO, lists)
- actively engage with user and developer communities

I have a (meta-)scientific interest in what *reproducible geosciences* means.

How does data science work?

To get things done, data scientists use languages, e.g. python, R, javascript or Julia, ... that share the following properties:

- they run everywhere, rather easily
- you can express problems in compact, human-readable and reproducible scripts
- unnecessary technical details (file format details, http calls, json/xml) are hidden
- code condensation is possible thanks to a package system, which also runs everywhere
- the language and package system are open source
- package systems resemble ecosystems
- analyses are shared/reproduced through Jupyter notebooks or R-markdown files.

What is reproducibility?

Here: if you give me your data and software, can I repeat your computations and get identical outcomes?

Why is this good?

- ▶ We want: decisions and actions that are informed by Earth observation information and services (abridged GEO vision)
- ► Information is derived from data through *analysis*, which involves computation
- Trust in information comes from a shared understanding of what the data are, how we analyse, and which computations were involved
- Computations happen with software
- ► When do we trust software?
 - 1. when a lot of people use it,
 - when we can verify it by running tests, comparisons and benchmarks.
 - 3. when we can verify (and potentially improve) the source code.

What is reproducibility?

Here: if you give me your data and software, can I repeat your computations and get identical outcomes? Why is this good?

- ▶ We want: decisions and actions that are informed by Earth observation information and services (abridged GEO vision)
- ► Information is derived from data through *analysis*, which involves computation
- Trust in information comes from a shared understanding of what the data are, how we analyse, and which computations were involved
- Computations happen with software
- ► When do we trust software?
 - 1. when a lot of people use it,
 - 2. when we can verify it by running tests, comparisons and benchmarks.
 - 3. when we can verify (and potentially improve) the source code.

What is reproducibility?

Here: if you give me your data and software, can I repeat your computations and get identical outcomes?

Why is this good?

- ▶ We want: decisions and actions that are informed by Earth observation information and services (abridged GEO vision)
- ► Information is derived from data through *analysis*, which involves computation
- Trust in information comes from a shared understanding of what the data are, how we analyse, and which computations were involved
- Computations happen with software
- When do we trust software?
 - 1. when a lot of people use it,
 - when we can verify it by running tests, comparisons and benchmarks,
 - 3. when we can verify (and potentially improve) the source code.

Current Earth Observation Research:

Current Earth Observation Research:

Current Earth Observation Research:

How do we *name* array operations

Is a pixel a point or an area?

 $\label{eq:main_section} M.~Lu~et~al,~Multidimensional~Arrays~for~Analysing~Geoscientific~Data~ISPRS~Int.~J.~Geo-Inf.~2018,~7(8),~313; \\ https://doi.org/10.3390/ijgi7080313$

Is a pixel a point or an area?

openEO

- ► H2020, Oct 2017-2020,
- http://openeo.org/
- openEO develops an open API to connect R, python and javascript clients to big Earth observation cloud back-ends in a simple and unified way.

+Add 2				Q Search term	
ID	Status	Submitted	Last update	Costs	Actions
53NG2BxxlaoervMm	canceled	2018-03-20 21:27:09	2018-03-20 21:27:09	0	0 ± 0 +
EvAAEyaVicdHgx3G	canceled	2018-03-20 21:31:18	2018-03-20 21:31:18	0	0 ± 0 +6
UrffZXzzKGdE9Go7	submitted	2018-03-20 21:39:39	2018-03-20 21:39:39	0	0 ± 0 +a
XtaMa5UhnvrqcEGZ	submitted	2018-03-21 15:26:25	2018-03-21 15:26:25	0	0 + 0 +
rRrw1mikM6HJnQ9S	submitted	2018-03-28 09:25:04	2018-03-28 09:25:04	0	0 ± 0 +


```
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
31
```

```
"process_id": "min_time",
"args":{
  "imagery":{
    "process_id": "/user/custom_ndvi",
    "args":{
      "imagery":{
        "process_id": "filter_daterange",
        "args":{
          "imagery":{
            "process_id": "filter_bbox",
            "args":{
               "imagery":{
                 "product_id": "S2_L2A_T32TPS_20M"
               "left":652000,
               "right":672000,
               "top":5161000,
               "bottom":5181000.
               "srs": "EPSG: 32632"
          "from": "2017-01-01",
          "to":"2017-01-31"
      "red": "B04".
      "nir": "B8A"
```

Cube view

File-agnostic access to EO imagery through a data cube view boosts usability of EO data.

In openEO:

- spatial dimensions are complemented with other dimensions such as the temporal or spectral dimensions
- researchers can directly filter, aggregate, or map functions over dimensions of a user-defined cube without being concerned about how the data in the processing platform is organised (granules, collections, coverages, ...)
- raster and vector data cubes are integrated.

Proof of Concept

The Month 6 (April 2018) proof of concept involved:

- coupling 3 clients (Python, R, JavaScript web-editor: figure left) to 7 back-ends (Sentinel Hub, GRASS GIS, EODC OpenStack, WCPS, Python GeoPySpark / GeoTrellis, Google Earth Engine, R) for
- ➤ 3 use-cases with band indexes, time series, aggregation over polygons, and user-defined (Python) functions
- source code and API docs on GitHub
- P.o.C. demo videos on the project web site

Why don't we build upon existing geo-standards?

- which standards?
- **.**..
- we do use non-geo standards where appropriate:
 - OpenAPI / swagger 3.0, allowing auto code generation for new clients
 - OAuth2 for user authentication
- no useful standards exist for describing (discovering, processing, publishing) image collection / dataset series;
- together with the GEE team, we do engage in describing these (in the space-time asset catalogue, STAC)

Why don't we build upon existing geo-standards?

- which standards?
- **.**..
- we do use non-geo standards where appropriate:
 - OpenAPI / swagger 3.0, allowing auto code generation for new clients
 - OAuth2 for user authentication
- no useful standards exist for describing (discovering, processing, publishing) image collection / dataset series;
- together with the GEE team, we do engage in describing these (in the space-time asset catalogue, STAC)

Upcoming challenges

- ► MANY!!
- ▶ A big one: UDFs (user-defined functions): how can I have my back-end execute my arbitrary (python, R) function on selected imagery?
- validating (verifying) back-ends against each other
- combining several back-ends
- User adoption: how/when will users start to adopt this (clients AND servers need to work, be useable, and be affordable!)

Towards a results-oriented GEO?

- provide (develop, share access to) compute nodes where big EO data can be sensibly analysed
- sensibly:
 - not by tile, but by image collection
 - providing a user-defined cube view
- implement simple methods (open source, or otherwise open API) to compute there
- develop benchmarks showing that these compute nodes produce the same results given the same queries (openEO)
- develop best practice executable documents (e.g. Jupyter notebooks) showing how one could use this software/service infrastructure to answer questions (openEO)
- create a sustainable ecosystem of users
- ... by creating a "pit of success"?