Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2TK 4018 .V5

GUIDE FOR MAKING

VOLTAGE DROP CALCULATIONS

PROCUREMENT SECTION CURRENT SERIAL RECORDS

NATE ASSIGNATION ASSIGNATION OF ASSIGNATION ASSIGNATION OF ASSIGNATION OF ASSIGNATION ASSI

REA BULLETIN 45-1

RURAL ELECTRIFICATION ADMINISTRATION · U.S. DEPARTMENT OF AGRICULTURE
JULY 1978

FOREWORD

This bulletin is a guide for making voltage drop calculations on distribution primary lines of standard REA designs.

Voltage drop factors have been calculated for use with distances in kilometers rather than in miles.

Previously, voltage drop factors were available only for 0.90 power factor lagging. Voltage drop factors have now been included for 0.85 and 0.95 power factor as well. Also included are voltage drop factors for URD cable.

Although 34.5 kV is not recognized as a distribution voltage by REA, voltage drop factors have been included for 34.5 kV overhead construction.

A discussion of the use of a computer for voltage drop calculations has been added.

This bulletin replaces REA Bulletin 45-1, dated March 1957.

Index:

VOLTAGE:

Drop Calculations

UNITED STATES DEPARTMENT OF AGRICULTURE Rural Electrification Administration

July 12, 1978 Supersedes 3/57

REA BULLETIN 45-1

SUBJECT: Guide for Making Voltage Drop Calculations

INTRODUCTION

Rural distribution systems are to be designed and operated so that acceptable standards of service will be maintained. One of these service standards is the proper voltage level (see Bulletin 169-4). This bulletin is a guide for making voltage drop calculations on distribution primary lines of standard REA designs. Examples of voltage drop calculations have been included to facilitate more complete understanding of the procedures and methods given in this guide. Also included is a blank voltage drop form which may be reproduced locally.

PROCEDURE

Information Required

As a basis for the preparation of voltage drop calculations, the following information relative to the system or portion of the system should be on hand:

- 1. A Circuit Diagram prepared in accordance with REA Bulletin 60-1. All areas and loads which are to be served by the system design for which the voltage drop calculations are being made should be shown on the Circuit Diagram. Although a Circuit Diagram may serve the dual purpose of voltage drop calculations and sectionalizing studies, a separate Circuit Diagram for the voltage drop calculations is recommended.
- 2. The number of consumers for each section of each circuit of a balanced design.
- 3. The number of consumers for each phase of each section of each circuit of an unbalanced design.

Basis for Calculation

Individual line voltage drop calculations should be based upon relative load levels which are consistent with the overall system design level. However, this does not preclude using the methods given in this bulletin for estimating future voltage drops using a load growth rate for a given time which is greater or less than the overall system.

Voltage Drop calculations are referred to a 120 volt base.

For Example:

Nominal System Voltage = 12.47 grounded wye/7.2 kV

Actual Voltage Drop = 360 volts

Voltage Drop (120 volt base) = $\frac{360}{7200}$ X 120 = 6 volts

The lines on the Circuit Diagram are divided into sections with the ends of the sections at the following points:

- 1. Substations
- 2. Major taps and at the ends of such taps--(A major tap is defined as a tap having a load which is estimated to be equal to at least 20 percent of line load at that point.)
- 3. Change in the number of phases
- 4. Conductor size changes
- 5. Underground to overhead changes
- 6. Large concentrated loads--(A large concentrated load is defined as a load which is estimated to equal at least 20 percent of line load at that point.)

Balanced Circuit Calculations

The following instructions are given for completing the Voltage Drop Sheet (sample enclosed) when calculating voltage drop on balanced circuits. A balanced circuit is defined as a multi-phase line loaded so that the estimated load of any phase is neither less than 80 percent nor greater than 120 percent of the average per phase load.

Columns 1 & 2 - Starting at the ends of the circuit farthest from the substation, designate the section being considered by the same designation used to identify the points previously marked on the Circuit Diagram to indicate the ends of the sections. For example, "3ACl3-3Al6" on Exhibits 3 and 5 designates the "V" phase line composed of phases A & C between points 13 and 16 of circuit number 3.

Column 3 - This column shows the number of consumers (corresponding to the system design) within the section including minor taps within the section.

aTK4018 .U5

:File With REA: :Bulletin 45-1:

UNITED STATES DEPARTMENT OF AGRICULTURE Rural Electrification Administration

December 12, 1978

SUBJECT: Replacement Pages and Pen and Ink Changes for REA

Bulletin 45-1, Guide for Making Voltage Drop

Calculations

TO: Electric Borrowers and Consulting Engineers

Attached are replacement copies of pages 15, 16 and 17. Please remove old pages 15, 16 and 17 from your copy of REA Bulletin 45-1 and insert the replacement pages.

Also, please make the following pen and ink changes to this bulletin.

Exhibit 3 - change point designation "3836" to "3B36"

Page 13 - last equation on the page should read:

 $VD = \frac{(kW) (r \cos \theta + x \sin \theta) (120)}{(kV)^2 (\cos \theta) (P) (1000)}$

RICHARD F. RICHTER

Assistant Administrator - Electric

Attachments

VOLTAGE DROP FACTORS
FOR
FOR
REA DISTRIBUTION LINES
FOR 95 PERCENT POWER FACTOR
VOLTAGE DROP FACTOR

		SINGLE PHASE	PHASE			"V" PHASE	HASE			THREE PHASE	ĕ	
LINE-TO-NEUTRAL NOMINAL VOLTAGE	7.2 kV	7.62 kV 14.4 kV	14.4 kV	19.9 kV	7.2 kV	7.62 kV	7.2 kV 7.62 kV 14.4 kV 19.9 kV	19.9 kV	7.2 kV	7.2 kV 7.62 kV	14.4 kV	19.9 kV
CONDUCTOR SIZE (ALUMINUM)					(OVERHEAD)	(QV						
336.6 kcmil 266.8 kcmil									.233	. 208	.0583	.0305
0/4	1.50	1.34	.374	.196	.746	.671	.187	.0981	. 324	. 289	.0807	.0423
3/0	1.70	1.51	.423	. 222	. 845	.758	.212	111.	.382	.341	.0950	8650.
2/0	2.00	1.78	.500	Ĭ	1.00	.895	. 250	.131	.454	.405	.113	.0593
1/0	2.30	2.05	.574	Ĭ	1.15	1.03	.287	.150	. 544	.485	.136	.0708
2	3.05	2.73	.764		1.53	1.36	.382	. 200	.802	.715	.199	.104
4	4.24	3.79	1.06	Ĭ	2.12	1.90	.531	.278	1.20	1.08	300	.157
•	80.9	5.45	1.52	·	3.04	2.72	.758	. 398	1.81	1.62	.454	. 238
					(UNDERGROUND)	(0,00)						
350 kcm11 250 kcm11 4/0	.979 1.37 1.61	. 674 1.22 1.44	.247 .345 .405		. 366 . 468 . 533	.327 .418 .476	.0898		.234	. 209 . 267 . 303	.0574	
3/0 1/0	1.98 2.40	2.14	.600		.793	.708	.159		. 502	. 364	.101	
2 - 2	3.40	3.04	. 849 . 995		1.20	1.07	. 298 . 368		. 753	.541 .672 .856	.150 .187 .230	

- <u>Column 4</u> This column shows the number of consumers beyond the section being considered that are supplied power which must flow all the way through this section. This number is obtained by adding the numbers in Column 3 which pertain to sections beyond the section being considered plus the number of consumers in any taps that are beyond the section being considered but not included in column 3.
- Column 5 This column shows the equivalent number of consumers that are supplied through the section being considered. This number is obtained by adding one-half the consumers shown in column 3 to the number of consumers shown in column 4. The number in column 3 is multiplied by one-half in order to reflect the fact that the load is spread over the entire section rather than being concentrated at the end of the section.
- $\underline{\text{Column 6}}$ This column shows the average kilowatt hour consumption per consumer per month used for the circuit.
- Column 7 The peak kilowatt demand for the number of consumers shown in column 5 is entered in this column. Peak kilowatt demand is read directly from the Demand Tables (REA Bulletin 45-2) for the number of consumers shown in column 5 and the kilowatt-hour consumption per consumer shown in column 6. Bulletin 45-2 also shows how to adapt tables to different system load factors.
- <u>Column 8</u> Enter the **co**ntributing peak load of the concentrated loads within the section being considered.
- Column 9 Enter the contributing peak load at the end of and beyond the section being considered.
- <u>Column 10</u> Enter the total equivalent contributing peak load of the concentrated loads, column 9 plus one-half of column 8.
- Column 11 Enter the total equivalent load for the section, column 10 plus column 7.
- Column 12 Enter power factor for this section. Remember to consider the load that flows through this section as well as loads within this section. The power factor should be derived by a qualified engineering study. If no data is available, use 90 percent power factor.
- Column 13 Enter the conductor size (aluminum) used in this section. If copper conductor is used, the equivalent size aluminum conductor is generally two sizes larger. (See Appendix A.) Also, note if this section is underground.
- Column 14 Indicate the number of phases in the section being considered.
- Column 15 Indicate the line-to-ground voltage (in kilovolts) of the line.

Bulletin 45-1 Page 4

Column 16 - These values are from Appendix A for the power factor, conductor size, number of phases, and voltage given in columns 12, 13, 14 and 15.

Column 17 - Show the total length, in kilometers, of the section being considered.

<u>Column 18</u> - Show the kilowatt-kilometers which are the product of the figures in columns 11 and 17.

<u>Column 19</u> - Enter the voltage drop in the section. These values are obtained by applying the equation:

Voltage Drop (120 volt base) = (Total kW) (Kilometers) (Voltage Drop Factor)

1000

Column 20 - This column shows the voltage drop at the load end of each section. The values are found by starting with the section nearest to the source and summing up the voltage drops in all the sections between the source and the section being considered, including the voltage drop in this section. The voltage drop thus caluclated applies at the load end of each section being considered.

Column 21 - This column shows the point at which the calculated voltage drop applies. The designation is that of the load end of the respective sections, same as column 2.

Unbalanced Circuit Calculations

On unbalanced circuits the voltage drop is calculated for <u>each</u> phase separately for the loads on that particular phase only. An unbalanced circuit is defined as a multiphase line loaded so that the estimated load of any phase is less than 80 percent or greater than 120 percent of the average per phase load. On unbalanced circuits the voltage drop factor for "V" phase lines is twice the "V" phase voltage drop factor for balanced circuits (for overhead circuits twice the "V" phase voltage drop factor is equal to the single-phase voltage drop factor), and for three-phase lines, it is equal to three times the voltage drop factor for three-phase <u>balanced</u> circuits.

REPORT OF CALUCLATIONS AND RESULTS

A complete report of the calculations and results should consist of the following:

- 1. Basic Data
 - a. Tabular summary of all consumers by classifications.
 - b. Tabular summary of the number of concentrated loads (such as irrigation, oil well pumping, etc.) with their kW demands.
 - c. Design kWh/mo./con. for all consumers, except for those included in (b) above.
- 2. Completed Voltage Drop Circuit Diagrams.
- 3. Voltage Drop Sheets.
- 4. Explanatory Comments:
 - a. Basis for design kWh/mo./con. for the system.
 - b. Basis for design kWh/mo./con. for the substations and feeders.
 - c. Basis for calculating contribution demand of such loads as irrigation, oil well pumping or house heating.
 - d. Basis for power factor

The basic data should be developed and presented in such a manner as to show the number and size of all loads considered and as to facilitate future voltage analysis required due to unforeseen changes in loading.

Completed Voltage Drop Circuit Diagrams should be prepared in accordance with REA Bulletin 60-1.

Exhibits 4 and 5 illustrate complete Voltage Drop Sheets.

Explanatory comments should discuss any factors affecting the calculations, but which are not readily discernible from the Basic Data, Circuit Diagrams or Voltage Drop Sheets. Two examples would be: (1) calculations based upon summer loading plus irrigation and air conditioning, (2) calculations based upon winter loading excluding irrigation and air conditioning. Before any changes are made to the system, such as reconductoring, the voltage at the points in question should be measured using a meter in order to verify the calculations.

EXAMPLES

Examples of voltage drop calculations have been included to facilitate more complete understanding of the procedures and methods given in this guide. Exhibits 1, 2 & 3 are excerpts from a complete circuit diagram which have been modified for purposes of illustration. No diversity was included in the samples. Diversity may be taken into account in accordance with REA Bulletin 45-2, "Demand Tables," and should be noted as part of the explanatory comments.

The circuit diagram and voltage drop calculations for circuit 1ABC are shown in Exhibits 1 and 4. This circuit has a balanced load as defined in the instructions for calculations of balanced circuits. All concentrated loads and taps between points 1ABC1 and 1ABC13 are included in one section for voltage drop calculation purposes. This is in accordance with the "Basis for Calculations," given in the procedure. Applying these rules for determining sections for voltage drop calculations results in fewer calculations, but does little to decrease the accuracy of the calculations.

The circuit diagram and voltage drop calculations for circuit 2ABC are shown in Exhibits 2 and 4. This circuit has an unbalanced load as defined in the instructions for calculations of unbalanced circuits. Each phase and its associated loads are calculated independently. Unbalanced circuit calculations are less accurate than balanced circuit calculations. Where circuit parameters and loads make unbalanced design an economic necessity, they are considered necessary but not desirable. For such circuits, voltage drop calculations as illustrated are sufficiently accurate for design purposes.

The circuit diagram and voltage drop calculations for circuit 3ABC are shown in Exhibits 3 and 5. This example is included to illustrate voltage drop calculation procedure when a voltage regulator is to be used. The procedure does not change. Voltage drop calculations are not influenced by the fact that a voltage regulator is to be included. Having completed the voltage drop calculations, the voltage regulator is shown on the circuit diagram at the "half-voltage-drop" point. Also, note that the summary of loads for circuit 3ABC shows a 35 kW off-peak load (No. 10 on Exhibit 3) which although connected to the circuit is not included in the calculations.

Please note that when a copper conductor is used, the entry on the voltage drop form is that of the equivalent size aluminum conductor (normally two AWG sizes larger). (See Appendix A)

	1	_	_		_		_		_		1			_							_				-		_			· · · ·	-			
			TO HO	POINT	21	1A18	101/	1A16	1820	1AB15	1ABC14	1024	1ABC13					2B8	2B7	2B9	2B6	2C10	2C4	2A11	242	2B2	777							
S.			VOCIAGE DROP	TOTAL	20	6.8	9.0	6.3	7 3	5.9	4.6	5.7	4.3	1				7.4	6.9	7.1	6.3	4.4	3.6		1.9	3.2	0				1		+	
no./con		2	>	THIS SECTION T	19	.2	+	7.	1.1	1:3	.3	1.4	4.3	\dagger				.5	9.	∞.	3.1	∞.	8.	6.	1.9	3.2	9				+		+	
SYSTEM DESIGN 380 kWh/mo./cons	DATE Dec. 1977			kW·km SE	18	45.0	7,12	79.2	310 5	555.5	262.2	313.2	3440.0					75.2	132.3	136.0	684.0	167.2	173.6	203.4	491.4	846.3	70077							
is .	٥		LENGTH	SECTION IN km	17	5.0	9.7	2.4	0	5.5	1.9	+	10.0	+	12 kW			1.7	2.7	8.5	0.0		3.1	11.3	+		-			-	+		+	
							+		+		-	+		+	approx. 1	.I		_	-		-		-		+		-			-	+		+	
	30		VOLTAGE	FACTOR	16	4.57	7	4.57	7 57	2.29	1.26	4.5/	1.26		e	1			4.57	07.9	4.57	4.57	4.5	4.57	3.78	3.78	1			-	-		1	
	nd 2 ABC	LINE		<u>}</u>	15	7.2	+					+	>	-	loads			7.2							+		>	-		-	-			
SUBSTATION Pine	BC and			-	14		1		-		ε,	- (າ	-	ation				-		>	>	>	-		<i></i>					1			
SUBS	CIRCUITS 1 ABC		CONDUCTOR	SIZE	13	7	,	7 7	7	4	7	7	7		8 small trrigation loads			9	4	9	7	4	4	7	4	7 ′								
1	ing Co			FACTOR	12	206	T					1	>	1. L.Th /mo	8 sma			%06	-								-	kWh'mo.						
ow e 2 Deal	ngineer			kw kw	=	9	77	23	45	101	138	17	503	300	kW, and			16	64	16	76	22	56	18	54	93	262	at 500						
SYSTEM DESIGNATION Somestate	SYSTEM ENGINEER Valley Engineering			EQUIV. THIS SECTION	10						31	- / -	T # T	-				_								17		sumers			+			
SYSTEM D	sysтем E Va		NCENTRATED	BEYOND E	6		+				25	1	246	irch concimore	ndustrial		1				+			,	0		102	rch cons			+		+	
			CONCE	WITHIN BE THIS TI SECTION SE			+		-		12	+		and chirc			-	_	1		+	_			34	34	-	and charc	9		+		+	
		LOAD	+		80		-		-			1	503				-	_			+		+			n (-		+		+	
				PEAK	7	9	27	ي و و	45	101	107	1700	257	1			-	16	49	16	76	22	26	18	3/	9/9	17	d school	concentrated		-		-	
URE				KWP PER MONTH	9	300		300	300	300	300	000	300	12 2	mmerci			200	200	200	200	200	200	200	002	200	200	ial ar						
AGRICULT	SHEET		CONSUMERS	EQUIV. THIS SECTION	5	5 41	25	20	37	92	96	07	202	Commerc	arge commercial			9 :	24	9 (40	6	28	7 ;	1	32		commercial and	7 small					
MENT OF	VOLTAGE DROP SHEET		٥	BEYOND THIS SECTION	7	0	2/,	. 67	.16	87	97	T		sma 11	kW, 1			0 ;	21	0 (07	0 ;	24	0 }	14	32		small	kW and					
U. S. DEPARTMENT OF AGRICULTURE RURAL ELECTRIFICATION ADMINISTRATION	VOLTA(THIS SECTION S	3	10	> -	10	43		5			non-farm, small commercial and	@ 25 k			12	9	13		19	Σ,	14		0 0	-	-	6 45 k		1			
U. S RURAL			-				+		-			-		1	gation						+				+			m, non.	Stria1		+		+	
		1011011		LOAD	2	1A18	1016	1810 1821	1B20	1AB15	1ABC14	1 4 9 5 1 3	TORET	262 farm.	3 irrigation @		0	288	2B7	289	280	2C10	7C4	2A11	2A2	2C2		93 farm, non-farm	1 industrial @ 45					
		7 4 9	35	SOURCE	-	1A17 1A16	1 4 8 1 5	1820	IABIS	1ABC14	1ABC13	1 APC1	Sub.	Summary:			1	2B /	2B6	2B6	2B2	2C4	707	2A2	2A1	2C1	Sub.	Summary:						

EXHIBIT 4

_		_	_	_	7-		_	_	_	_			-η		7		_		_		Т		Т		_			_		 _		7	7	 1	
				d O	AT	POINT	21	3A20	3A17	3C23	3AC16	3A25	3C27	3AC24	3,70	3830 3820	3 5 5 5 5	3A5C12	24020	3AB30	38632	3BC32 3ABC31	3 A B C 2	JAB02											
				VOLTAGE DROP	-	TOTAL	20	_			9.3	1	- 1	7.9		7.0	1	0.0	1	0.7	L		L			_		+		\dagger			+		-
	/cons		77	. 101	- 1		-	1.0		-		<u> </u>	5	٣.),	. ·	 	3.1	7.	0.1	0 0	0 1/	2 5	 :	-	_		+		+			+	 -	-
FSIGN	380/kWh/mo./cons		December 1977		THIS	SECTION	2	_		_		-	-		+		-		+		-		+	?				+		-			+	 	-
SYSTEM DESIGN	380/k	DATE	Decem			kw.km	80 1	220.0	73.6	440.8	975.8	51.7	104.4	126.0	0000	196 1	1001	24.2	20070	345 6	357 B	379.8	5875 2	7.07.00											
					LENGTH OF	SECTION IN km	17	10.0	1.6	11.6	8.2	4.7	2.8	2.1	7.6	0.0	100	10 0	/ /	10.	6.01	7	7 2	7.											
								4.57	4.57	4.57	1.69	4.57	4.5/	2.29	60.	4.57		000.	0000	67.7	2000	1.26	60					+		+			1		
				-	VOLTAGE		91	_	7	7	_	4	7	- 5	1	7 7	-			7 7	,		-		_			-		-	_		1	 _	_
-			C	LINE	<u></u>		15	7.2	_		_				+	_	+		+		+			>				-		-			+		_
SUBSTATION	Pine	JITS	3 ABC		-0 //	-	7				>		-	> =	}	i-	<u> </u>	٠ -	1 2	>		· "	1	, 		_		_		-		_	1	 _	_
sans.		CIRCUITS	ny .		CONDUCTOR	HONIWO H	13	7	4	7	7	7	4	4,	7	t <	10/1	0 7	- -	7 7	7	† 4	1/0) }		d 25 kW									
			Valley Engineering Company		POWER		12	206	1	_					+		† †		 -	_	+		-	-	kWh/mo.	@ 30 and				+					
	Dea1		neering	-	TOTAL		=	22	94	38	119	11	Σ,	09	1111	53	300	24	1 1 9	32	78	211	816	872			. 15 kV	+		-		· ·			
SYSTEM DESIGNATION	Somestate 2 Deal	INEER	y Engi	-			0						-		+		115		+		$\frac{1}{1}$	51	\vdash		ımers (2 irrigation	approx. 15			-			+		-
TEM DES	Somes	SYSTEM ENGINEER	Valle		ATEO VD EQU	ON SECTION	10						-		+		-	- 	+		-		-	· 	8	•	o	-	,	\perp			+		_
SYS		SYS			Z	SECTION	٥								1		0,7	}	-			45	284	387			ed loads	_		_			1		
					WITHIN	SECTION	•										151	101				13	103	1	1 and	erciat	entrat								
				LOAD		K K	7	22	46	38	119	11.	70	183		53	283	24	6.1	32	84	160	479	485	cial and school and c	ge comn	10 small condentrate								
	NOI				kWh	MONTH	9	400	400	400	400	007	400	400	007	400	007	400	007	007	007	400	007	400	lal and	1 Lar	LO smal								
ant mon	MINISTRAT	100	156.1		EQUIV.		5	12	28	22	84	5		38	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3, 7	220	13	30	18	56	117	389				kw and]								
T OF ACE	TION ADA	15 000	VOLIAGE DROP SHEET		NO EQ								-		+		-	-	+				-		mall c	et	ၜ	-		-			+		
NAMERA	TRIFICA	11100	I AGE I		BEYDNO		7	0	25	<u> </u>	76	0		36		29	177	-	27	-	47	116	383	395		2	Load	-		 -			+		
TOTAL THE STATE OF A SECULATION	RURAL ELECTRIFICATION ADMINISTRATION	2	101		WITHIN	SECTIO	-	25	9	45	17	. T.	70	<i>د</i> د	0	2 &	8	27	24	36	87	۳.	12		hon-far	വാട അവ	ff-peal								
	RUS			NO	. OAD	END	2	3A20	3A17	3C23	3AC16	3A25	2001	3AC13	3830	3B29	3ABC12	3A42	3AB38	3C35	3BC32	3ABC31	3ABC2		395 farm,) industri	1-35 kW off-peak								
				SECTION	Spurce	ENO	-	3A17	3AC16	3AC16	3AC13	3AC24=	20024	3AC12	3R29	3ABC12	3ABC2	3AB38	3AB31	3BC32	3ABC31	3ABC2	3ABC1	Sub	Summary:										

EXHIBIT 5

APPENDIX A

VOLTAGE DROP FACTORS

Voltage drop for known source-end and lagging power factor conditions may be calculated from the following equation:

Voltage Drop = $I(r \cos \theta + x \sin \theta)$

Where: I = Line current in amperes

 θ = Phase angle between voltage and current

r = Resistance of line in ohms
x = Reactance of line in ohms

It can be seen from the vector diagram that this approximate equation is sufficiently accurate for the magnitude and phase angle of the vectors resulting from normal system designs.

Line current may be expressed in terms of kilowatts and voltage as follows:

$$I = \frac{kW}{(kV) (\cos \theta) (P)}$$

Where: kW = Circuit load in kilowatts

kV = System nominal phase-to-ground voltage in

kilovolts

P = Number of phases

Voltage drop referred to a 120 volt base (VD) is expressed as follows:

Using the above equations for line current and voltage drop referred to a 120 volt base (VD), the equation for voltage drop becomes:

$$VD = \frac{(kW \ (r \cos \theta + x \sin \theta) \ (120)}{(kV)^2 \ (\cos \theta) \ (P) \ (1000)}$$

The equation for (VD) expressed in per kilometer units is written as follows:

Bulletin 45-1 Page 14

$$VD = \frac{(kW) (R \cos \theta + X \sin \theta) (S) (120)}{(kV)^2 (\cos \theta) (P) (1000)}$$

Where: R = Resistance in ohms per phase per kilometer of line

X = Reactance in ohms per phase per kilometer of line

S = Line distance in kilometers

Letting the following factor be designated the voltage drop factor (VDF):

$$\frac{(R \cos \theta + X \sin \theta) (120)}{(kV)^2 (\cos \theta) (P)}$$

the equation for (VD) becomes:

$$VD = \frac{(kW) (S) (VDF)}{1000}$$

Tables I, II, and III give the Voltage Drop Factors (VDF) for calculating voltage drops of overhead and underground (URD) distribution lines constructed in accordance with REA standard specifications. Voltages given in the tables are line-to-neutral voltages.

The following table gives the equivalent aluminum size conductor for given copper sizes.

Aluminum	Copper
336.6 kcmil	4/0
266.8 kcmil	3/0
4/0	2/0
3/0	1/0
2/0	1
1/0	2
2	4
4	6
6	8

		19.9 kV		.0421	,0553	.0633	.0727	.0851	.119	.172	. 254									
	PHASE	14.4 kV		.0802	106	.121	.139	.162	.227	.328	.484		.0656	.0830	.0939	.112	.136	.163	2007	297.
	THREE PHASE			.287	.378	.431	.497	.579	.808	1.17	1.73		. 237	. 300	. 339	.403	.489	.584	/1/.	666.
		7.2 kV 7.62 kV		.321	.423	.483	. 557	949.	.907	1.31	1.94		.265	. 336	. 379	.451	. 548	.654	.803	1.07
		19.9 kV			.132	.145	.168	.190	. 240	.318	.440									
X X	"V" PHASE	14.4 kV			.251	.278	.322	.363	.459	.607	. 839		.102	.130	.147	.175	.214	.257	.318	.427
KOP FACTO	1 ,,A,,	7.62 kV	HEAD)		.895	766.	1.15	1.30	1.64	2.17	3.00	(GNDC	.370	694.	.530	.632	.769	.923	1.14	1.53
VOLTAGE DROP FACTOR		7.2 kV	(OVERHEAD)		1.01							(UNDERGROUND)	.414	.525	. 593	.707	.862	1.03	1.27	1.71
>																				
		19.9 kV			.263	. 291	. 337	.380	.480	.634	.882									
	IASE	14.4 kV			.502	.556	979.	.727	.920	21	68		.267	.373	.440	.542	.656	.789	.936	17
	SINGLE PHASE	7.62 kV 14.4 kV			1.80	1.99	2,30	2.59	3.27	4.33	6.00		.936	1.32	1.55	1.92	2,33	2.81	3,34	4.19
		7.2 kV 7			2.01	2.22	2.57	2.90	3.67	4.85	6.71				1.74					69.4
			SIZE UM)	kcmil kcmil									kcmi1	mi1						
1		LINE-TO-NEUTRAL NOMINAL VOLTAGE	CONDUCTOR SIZE (ALUMINUM)	336.6 kcmil 266.8 kcmil	0/4	3/0	2/0	1/0	2	4	9		350 ker	250 kci	0/4	3/0	2/0	1/0		2

Bulletin 45-1 Page 16										
	63	19.9 kV		.0367	.0570	.0564	.112	. 246		
	THREE PHASE	7.62 kV 14.4 kV		.0702	.109	.12/	.214	. 470		.0618 .0786 .0891 .107 .131 .157
	Į.	7.62 kV		.250 .285 .324	. 389	. 536	.744	1.68		. 224 . 322 . 385 . 470 . 564 . 933
		7.2 kV		.280 .319	.436	6009.	.858	1.88		.251 .318 .361 .431 .527 .631 .780
		19.9 kV		.117	.129	.151	. 221	.421		
TORS LINES R FACTOR CTOR	"V" PHASE	7.62 kV 14.4 kV		. 221	. 247	.327	.423	.802		.0965 .123 .140 .168 .206 .249 .309
TABLE II VOLTAGE DROP FACTORS FOR REA DISTRIBUTION LINES DR 90 PERCENT POWER FACTOR VOLTAGE DROP FACTOR	Λ		(OVERHEAD)	.789	.882	1.03	1.51	2.86	(UNDERGROUND)	.350 .445 .505 .605 .741 .892 1.11
VOLTAG REA DIS' FOR 90 PE VOLTA		7.2 kV	(00)	. 882	.988	1.16	1.69	3.21	(UND)	.392 .499 .565 .677 .830 1.00
		19.9 kV		. 232	.259	.302	.443	. 839		
	SINGLE PHASE	7.62 kV 14.4 kV		.442	.495	.652	.845	1.60		.258 .360 .424 .521 .630 .755
	SING	1		1,58	1.76	2.06 2.34	3.02	5.74		.907 1.27 1.50 1.85 2.24 2.69 3.20 4.01
		7.2 kV		1.77	1.98	2.62	3,38	6.40		1.02 1.42 1.68 2.07 2.51 3.01 3.58 4.49
		LINE-TO-NEUTRAL NOMINAL VOLTAGE	CONDUCTOR SIZE (ALUMINUM)	336.6 kcmil 266.8 kcmil 4/0	3/0	1/0	, 2	1 0		350 kcm11 250 kcm11 4/0 3/0 2/0 1/0 1

TABLE I	VOLTAGE DROP PACTORS	FOR	REA DISTRIBUTION LINES	FOR 85 PERCENT POWER FACTOR	VOLTAGE DROP FACTOR

				m •	2 "	٠.													
	19.9 kV		.0421	.047		070	085	.119	.172	. 254									
PHASE	14.4 kV		.0802	.0907	121	130	.162	.227	. 328	.484		.0656	.0830	.0939	.112	.136	.163	. 200	. 244
THREE PHASE	7.2 kV 7.62 kV 14.4 kV		.287	. 323	.3/0	164.	. 579	808	1.17	1.73		.237	. 300	.339	.403	.489	. 584	.717	.873
	7.2 kV		.321	.362	.423	788	979	.907	1,31	1.94		. 265	.336	.379	.451	. 548	.654	.803	978
	1																		
	7.2 kV 7.62 kV 14.4 kV 19.9 kV				121	641	190	240	.318	.440									
"V" PHASE	14.4 kV			6	167.	322	363	459	.607	. 839		102	.130	.147	.175	.214	.257	.318	389
Þ	7.62 kV	(OVERHEAD)		•	200	.,,,	1.30	1.64	2.17	3.00	(GUND)	.370	697.	. 530	.632	.769	.923	1.14	1.39
	7.2 kV	(OVE			7.	1.11	1.45	1,83	2,43	3,36	(UNDERGROUND	.414	. 525	. 593	.707	.862	1.03	1.27	1.56
	b kV			•	707	337	380	984	534	382									
	19.6				•	•	•			•									
PHASE	14.4 kV				700.	979	727	.920	1.21	1.68		.267	.373	077.	.542	.656	.789	.936	1.10
SINGLE PHASE	7.2 kV 7.62 kV 14.4 kV 19.9 kV				200	2 30	2.59	3,27	4.33	6.00		.936	1.32	1.55	1.92	2,33	2.81	3.34	3.93
	7,2 kV			•	70.7	22.6	2.90	3.67	4.85	6.71		1.05	1.47	1.74	2.15	2.61	3.14	3.74	4.40
	LINE-TO-NEUTRAL NOMINAL VOLTAGE	CONDUCTOR SIZE (ALUMINUM)	336.6 kcm11	8 kcmil								kcmil	kcmil						
	LINE-TC NOMINAL	CONDUCT (ALUM	336.	266.	2 6	2/0	1/0	7	4	9					3/0	2/0	1/0	~	7

Bulletin 45-1 Page 16 Rev. 12/78													
		19.9 kV		.0367	.0570	.0664	.112	.165					
	THREE PHASE	7.62 kV 14.4 kV		.0702	.109	.127	.214	.315		.0618 .0786 .0891	.107	.157 .194 .238	
	L.	7.62 kV		. 250 . 285 . 336	. 389	.454	.765	1.12		. 224 . 284 . 322	.385	. 564. . 696 . 851	
	1	7.2 kV		.319	.436	. 509	. 858	1.26		.251 .318	.431	.631 .780	j b L
		19.9 kV		711.	.129	.151	.221	. 299					
FORS LINES R FACTOR	"V" PHASE	14.4 kV		.221	. 247	327	.423	. 571		.0965	.168	379	
TABLE II VOLTAGE DROP FACTORS FOR REA DISTRIBUTION LINES OR PERCENT POWER FACTOR VOLTAGE DROP FACTOR	'V''.	7.62 kV	(OVERHEAD)	.789	.882	1.03	1.51	2.04	(UNDERGROUND)	.350	.605	. 692 1.11 1.36	
T VOLTAGE REA DIST FOR 90 PER VOLTAG		7.2 kV	(OVE	. 882	.988	1.16	1.69	3.21	(UNDE	. 392	.830	1.24 1.54	
		19,9 kV		.232	.259	302	.443	. 598					
	SINGLE PHASE	7.62 kV 14.4 kV 19,9 kV		.442	.495	.577	.845	1.14		.258	.630	.755 .896 1.05	
	SINCE	7.62 kV		1.58	1.76	2.06	3.02	5.74		.907 1.27 1.50	1.85	3.20	
		7.2 kV		1.77	1.98	2.31	3,38	6.40		1.02	2.07	3.01 3.58 4.21	·
		LINE-TO-NEUTRAL NOMINAL VOLTAGE	CONDUCTOR SIZE (ALUMINUM)	336.6 kcmil 266.8 kcmil 4/0	3/0	2/0	2	4 0		350 kcmil 250 kcmil 4/0	3/0 2/0	° - 2	

	ĘĮ.	14.4 kV 19.9 kV		.0583 .0305 .0677 .0354 .0807 .0423						.0574	.101	.150	010
	THREE PHASE	7.62 kV		. 208	.341	.485	.715	1.62		.267	. 364	.541	000
		7.2 kV		.233	.382	. 544	.802	1.81		. 234 . 299 . 340	. 408	.606	
		19.9 kV		.0981	.111	.150	. 200	. 398					
	"V" PHASE			.187	.212	.287	.382	.758		.0898	.159	.239	
OP FACTOR	1\	7.2 кV 7.62 кV 14.4 кV	AD)	.671	.758	1.03	1.36	2.72	(GND)	.327 .418 .476			
VOLTAGE DROP FACTOR		7.2 KV	(OVERHEAD)	.746	.845	1.15	1.53	3.04	(UNDERGROUND)	.366	.643	.961	
		19.9 kV		.196	. 222	301.	.400	.795					
	PHASE	7.2 kV 7.62 kV 14.4 kV 19.9		.374	.423	.574	.764	1.52		.247	.600	.716	, ,
	SINGLE PHASE	7.62 kV		1.34	1.51	2.05	2.73	5.42		.874 1.22 1.44			
		7.2 kV		1.50	1.70	2.30	3.05	6.08		.979 1.37 1.61	1.98	2.87	7. 25
		LINE-TO-NEUTRAL NOMINAL VOLTAGE	CONDUCTOR SIZE (ALUMINUM)	336.6 kcmil 266.8 kcmil 4/0	3/0	0/1	7	4 9		350 kcmil 250 kcmil 4/0	3/0 2/0	1/0	2

APPENDIX B

CALCULATING VOLTAGE DROPS BY COMPUTER

There are about as many ways to write a computer program as there are computer programmers. Also, a program written for one computer may not work on another. The computer input and output shown in this appendix is just an example of what can be done.

This particular program keeps a record of the number of users beyond each section, relieving the engineer of this duty. A numeric identifier for each point is used by the program rather than the alpha-numeric identifier, although the alpha-numeric identifier is used in the output.

When the program is run on a time sharing computer terminal, it will calculate the equivalent number of consumers (column 5 of the voltage drop sheet) and will request the peak kW (column 7 of the voltage drop sheet). This figure is obtained from Bulletin 45-2, Demand Factors. The program then calculates the sectional voltage drops and the total voltage drop at the end of each section.

The major portion of the program deals with sorting the data because the sectional voltage drops depend on the load after the section and the total voltage drops depend on the sectional voltage drops before the section in question. The equations below are used in calculating voltage drops:

Equivalent consumers = (Consumers this section)
2
+ (Consumers beyond this section)

Equivalent concentrated load = (Concentrated load this section)
2

+ (Concentrated load beyond this section)

Total kW = (Peak kW) + (Equivalent concentrated load)

Sectional voltage drop = $\frac{\text{(Total kW)} \text{(Length of section)} \text{(VDF)}}{1000}$

If a hard copy printout is not necessary, the above equations may be used with a programmable calculator. Such a calculator could be used to find the sectional voltage drops. A calculator may not have the memory or program storage available to find total voltage drops. The user would probably have to keep a record of the number of consumers and the amount of concentrated loads beyond each section.

Bulletin 45-1 Page 20

A sample input and output from a computer terminal follows. Also included is description of the input data file.

SEC	om :	гои	EQUIV CONSUMERS	E) PE4	VTER AK kW
1A17		1A18	5	?	9
1A16	** **	1417	1.6	?	22
14815		1A16	26	?	33
1820	****	1821	5	P	9
1AB15	••••	1B20	38	Ţ	45
1ABC14	***	1AB15	92	Ţ	101
1ABC13	***	1ABC14	100	?	107
1ABC13	***	1024	20	7	27
1ABC1		1ABC13	202	?	203

VOLTAGE SECT	/ • • • • • • • • • • • • • • • • •	SECTION VOLTAGE DROP	TOTAL VOLTA V POINT	GE DROP OLTAGE DROP
1ABC1 -	1ABC13	4.35	1ABC13	4.35
1ABC13 -	1024	1.43	1024	5.78
1ABC13 -	1ABC14	+ 33	1ABC14	4.68
1ABC14 -	1AB15	1.27	1AB15	5.95
1AB15 -	1820	1.42	1B20	7.37
1820 -	1821	.06	1821	7.43
1AB15 -	1A16	+ 36	1A16	6.31
1A16 -	1A17	+26	1A17	6.57
1A17 -	1A18	+21	1A18	6.78

OUTPUT FROM COMPUTER TERMINAL

INPUT DATA FILE

Column			Description											
1 2 (First line o 2 (All other li		Number Same a	Line numbers (ignored by program) Number of sections Same as column 1 of Voltage Drop Sheet											
3		Numeri	Numeric identifier for point in Column 2											
4		Same a	Same as columns 2 and 21 of Voltage Drop Sheet											
5		Numeri		tifie	for poi	nt in								
6	Same as column 3 of Voltage Drop Sheet													
7		Number othe conr	of con riden ected	tifie	rs on tap d section int ident	s)								
8	Column 4. Same as column 8 of Voltage Drop Sheet													
9		Concer taps	trated	cted 1	s on loca to point	ted on identified								
10		Same a	s colu		of Volta	ge Drop								
11	Sheet Same as column 17 of Voltage Drop Sheet													
00100 9	3 6 4 24 24	* A A	Α.	^	A 67.72	5.0								
00110 1A17 6		10 0		0	4.57 4.57	2.6								
00120 1A16 5 00130 1AB15 4	1A17 6 1A16 5			Ö	4.57	2.4								
00130 1820 8	1B21 9	10 0	**	Ő	4.57	1.4								
00150 1AB15 4	1820 8			0	4.57	6.9								
00160 1ABC14 3	1AB15 4			0	2.29	5.5								
00170 1ABC13 2	1ABC14 3			25	1.26	1.9								
00180 1ABC13 2 00190 1ABC1 1	1C24 10 1ABC13 2			0	4.57 1.26	11.6								

INPUT DATA

APPENDIX C

METRIC CONVERSION FACTORS

It is recognized that some circuit diagrams may use dimensions in miles rather than kilometers. The following conversion factor is given for use in converting circuit diagrams to metric.

1 mile = 1.609 kilometers

APPENDIX D

Attached is a copy of a blank voltage drop sheet for local reproduction. REA will not stock this form.

U. S.	DEPARTMENT	OF	AGRICULTURE
PHRAL I	EL ECTRIFICAT	TON	ADMINISTRATION

١	1	n	1	т	Δ١	G	F	DI	20	P	5	н	F	FΤ	1

SYSTEM DESIGNATION	SUBSTATION	SYSTEM DESIGN
SYSTEM ENGINEER	CIRCUITS	DATE

AOLIAGE DROB 2HEEL																				
SECTION								LINE												
SOURCE ENO	LOAO END	WITHIN THIS SECTION	BEYONO THIS SECTION	EQUIV. THIS SECTION	kWh PER MONTH	PEAK k₩		BEYOND THIS SECTION	EQUIV. THIS SECTION	TOTAL kW	POWER FACTOR	CONDUCTOR SIZE ALUMINUM	ф	kV	VOLTAGE DROP FACTOR	LENGTH OF SECTION IN km	k₩•km	THIS SECTION	TOTAL	AT POINT
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
																				-
	, <u>, , , , , , , , , , , , , , , , , , </u>																			
													- 1							

