Notação Assintótica

Danielle B. Colturato

Introdução

- O que é analisar um algoritmo?
 - Predizer a quantidade de recursos utilizados (memória, tempo de execução, número de processadores, acessos a disco, etc.);
 - Na maioria dos casos estaremos interessados em avaliar o tempo de execução (computação) gasto pelo algoritmo;
 - □ Contaremos o número de operações efetuadas.

Medidas de Complexidade

- Análise de Algoritmo é a medição da complexidade do algoritmo
 - Quantidade de "trabalho" necessário para sua execução, expressa em função das operações fundamentais, as quais variam de acordo com o algoritmo e em função do volume de dados a ser processado;
 - A quantidade de trabalho requerido por um algoritmo não pode ser descrito por um número, pois o número de operações básicas efetuadas não é a mesma para qualquer entrada (depende do tamanho da entrada).

| Medidas de Complexidade

- Por que estudar Complexidade?
 - Performance
 - Escolher entre vários algoritmos o mais eficiente;
 - Desenvolver novos algoritmos para problemas que já tem solucão;
 - Desenvolver algoritmos mais eficientes, devido ao aumento constante do tamanho dos problemas a serem resolvidos.
 - Complexidade Computacional
 - Permite determinar se a implementação de determinado algoritmo é viável.

Medidas de Complexidade

- Um algoritmo possui duas medidas de complexidade:
 - Espacial
 - Quantidade de memória que utiliza durante sua execução;
 - Temporal
 - Número aproximado de instruções que ele executa
 - Ambas as complexidades são em função do tamanho da entrada.

Medidas de Complexidade

- Exemplos de Complexidade Temporal
 - Limite do tamanho do problema através da taxa de crescimento

Algoritmo	Complexidade Temporal	Tamanho máximo do problema		
		1 seg	1 min	1 hora
A,	n	1000	6 X 10 ⁴	3.6 X 10 ⁶
A_2	n log n	140	4893	2.0 X 10 ⁶
A_3	n²	31	244	1897
A_4	n ³	10	39	153
A _s	2 ⁿ	9	15	21

Notação O

- Sejam f(n) e g(n) funções cujo domínio são os Naturais e a imagem os Reais.
- Uma função f(n) é O(g(n)) quando existe uma constante real c>0 e uma constante inteira $n_0 \ge 1$, tais que $f(n) \le c.g(n)$ para todo inteiro $n \ge n_0$. Quando isso acontece dizemos que f(n) é de ordem g(n), ou seja, é **O** de *g(n)*.

Notação O

- Como vimos na aula anterior, através da contagem das instruções primitivas o algoritmo do MaiorElemento, que encontra o maior de um vetor de comprimento n, é definida pela função f(n) = 7n-2.
- O algoritmo é *O(n)*, porque se seguirmos a definição $f(n) \le c.g(n)$, existe uma constante c, tal como 7, e uma constante $n_0 = 1$, que satisfaz a relação, ou seja, 7n-2 ≤ 7n para todo $n \ge 1$.

Notação O

Outro exemplo:

```
Algoritmo Somatorio(int n): int
   int soma = 0
   para int i = 1 até n faça{
      para int j = 1 até n faça{
      soma = soma + i + j
      }
   retorna soma
}
```

Notação O

- Contagem de passos para determinar a função f(n) que representa o algoritmo do exemplo:

 5 noperações: As atribuições soma = soma + i + j e a do incremento do j totalizam 5 operações executadas dentro de um loop que ocorre n vezes.
- **n+2 operações**: considerando a inicialização do j e o teste no loop do j que ocorre n+1 vezes.
- 6n+2 operações: totalizando, esta é a quantidade de operações executada pelo loop do j. (6n+2 + 2)n = 6n²+4n operações: visto que o loop i executa o loop j e o incremento do i n vezes.

- n+2 operações: considerando a inicialização do i e o teste no loop do l que ocorre n+1 vezes.
 6n²+5n+4 operações: totalizando as operações executadas pelo loop i, a inicialização da variável soma e a operação de retorno.
 Este algoritmo é O(n²), porque a relação pode ser satisfeita da seguinte forma: 6n²+5n+4 ≤ 8n² para todo n ≥ 4.

Notação O

- A notação O caracteriza o tempo de execução e o consumo de memória em função da quantidade de dados (n), no entanto de uma forma mais intuitiva e bem menos trabalhosa.
- Permite afirmamos que a função f que representa o algoritmo cresce de forma assintótica à uma outra função g, que é "maior que f".
- Isso significa que à medida que n tende ao infinito as funções têm um comportamento semelhante.
- A constante c representa "o quanto g é maior que f" e a constante n0, o ponto inicial em as funções terão comportamento parecido.

Notação O Comportamento das Funções 1000 800 600 400 8n2 200 3 4 5 6 7 8 9 10 11 Tamanho dos dados (n)

Notação O

- Ao invés de usarmos a definição da notação O diretamente, podemos usar as seguintes regras, considerando que f(n), g(n), d(n) e e(n) são funções cujo domínio são os Naturais e as imagens, os Reais não
- 1. Se d(n) é O(f(n)), então a.d(n) é O(f(n)), para uma constante a>0.
- 2. Se d(n) é O(f(n)) e e(n) é O(g(n)) então d(n)+e(n) é O(f(n)+g(n)). 3. Se d(n) é O(f(n)) e e(n) é O(g(n)) então d(n).e(n) é O(f(n).g(n)).

- 4. Se d(n) é O(f(n)) e f(n) é O(g(n)) então d(n) é O(g(n)). 5. Se f(n) é um polinônimo de grau d, ou seja, $a_0+a_1n+a_2n^2+...a_0n^d$, então f(n) é $O(n^d)$. 6. n^x é $O(a^n)$ para quais constantes x>0 e a>1.
- 7. $log(n^{\chi})$ é O(log(n)) para qualquer constante x>0. 8. $(log(n))^{\chi}$ é $O(n^{\gamma})$ para quaisquer constantes x>0 e y>0
- 9. Se d(n) é c (sempre constante, c>0), então d(n) é O(1). 10. O(O(f(n))) = O(f(n)) 11. O(f(n).g(n)) = f(n). O(g(n))

Notação O

Exemplo:

```
f(n) = 5n^3 + 10 corresponde a O(n^3)
       5n<sup>3</sup> é O(n<sup>3</sup>) [regra 1]
        10 é O(1) [regra 9]
       O(n^3) + O(1) \notin O(n^3 + 1) [regra 2]
       O(n^3 + 1) \notin O(n^3) [regra 5]
```

Notação **Ω** (Ômega)

- A notação ômega é outro tipo de notação assintótica. Dizemos que f(n) é Ω g(n), se existe uma constante real c>0 e uma constante inteira $n_0 \ge 1$, tais que $f(n) \ge c.g(n)$ para $n \ge n_0$.
- Por exemplo, a função f(n) = 7n-2, que define o comportamento do algoritmo maior, $\acute{e} \Omega(n)$, pois $7n-2 \ge 6n$ para $n \ge 2$.

| Notação Ω (Ômega)

- Exemplos:
 - \Box f(n) = 5n.log(n) corresponde a $\Omega(n)$, considerando que $5n.log(n) \ge 5n$ para $n \ge 2$.
 - \Box f(n) = 3.log(n) + log(log(n)) corresponde a $\Omega(\log(n))$, considerando que: $3.\log(n) + \log(\log(n)) \ge 3.\log(n)$ para $n \ge 2$.

Notação Θ(Teta)

- A notação teta pode ser vista como uma junção das duas notações anteriores.
- Dizemos que f(n) é Θ g(n), se existe duas constantes reais c1 e c2 ambas maiores que 0 e uma constante inteira $n_0 \ge 1$, tais que $c_1.g(n) \le f(n) \le c_2.g(n)$ para $n \ge n0$..
- Considerando novamente, a função f(n) = 7n- $2 \notin \Theta(n)$, pois $6n \le 7n-2 \le 7n$ para $n \ge 2$.

Notação Θ(Teta)

- Exemplos:
 - \Box f(n) = 5n.log(n) corresponde a $\Theta(n^2)$, considerando que 1/3 $n^2 \le 5n.log(n) \le 3n^2$ para n
 - $\neg f(n) = 3.log(n) + log(log(n))$ corresponde a $\Theta(log(n))$, considerando que **1**. $log(n) \le 3.log(n) +$ $log(log(n)) \le 4.log(n)$ para $n \ge 2$.

Complexidade de Algoritmos

- É comum usarmos os nomes das funções para definir a complexidade de um algoritmo.
- Por exemplo, se o algoritmo é O(n) dizemos que sua complexidade é linear.
- Cada função tem um nome conhecido:
 - □ O(log(n)) : logarítmica □ O(n²): quadrática □ O(n³): cúbica
 - □ O(n^k) : polinomial
 - □ O(aⁿ): exponencial, para a>1.

Exercícios

- Determine a notação assintótica O para as funções

 - a) $(n^2-n)/2$ b) $n + 2 n^{1/2}$ c) $n^2 + 3n + 4$ d) $2(\log(n))^2$

- Prove que:
 a) 5n = O(n log(n))
 b) 40n.log(n) = O(n²)
 c) 7n.log(n) = Ω(n)
 d) 12n² = Ω(n.log(n))