

Cloud Computing Exercises WiSe 20/21

Introduction to Exercises

3rd November 2020

Anshul Jindal (M.Sc. Informatics)

anshul.jindal@tum.de

Chair of Computer Architecture and Parallel Systems

Technical University of Munich (TUM), Germany

Mirenturm der TVM

Introduction about me

Education and Work Ex:

- Bachelors in Computer Science and Engineering from NIT Hamirpur, India
 (2014)
- 2014 2016, Senior Software Engineer at Samsung Semiconductor, Bangalore,
 India
- 2016 2018, Master of Science in Informatics at TUM
- 2018 Ongoing, PhD. at TUM

Research Interests:

- Performance modeling of microservices.
- Anomaly detection for multivariate timeseries data (Cloud monitoring data).
- Functions scheduling on hetrogenous FaaS platforms

Contact:

Query or appointment via email to : <u>anshul.jindal@tum.de</u>

Exercises Schedule (Tentative)

Date	Exercise	On Cloud or personal laptop	Group or Individual
10 th November 2020	App. Development using Node.js	Cloud (LRZ/AWS/GCP)	Individual /Group
24 th November 2020	Cloud Access and Docker	Cloud (LRZ/AWS/GCP)	Individual /Group
8 th December 2020	Microservices architecture application	Cloud (LRZ/AWS/GCP)	Individual /Group
22 nd December 2020	OpenStack Exercise	Cloud (LRZ/AWS/GCP)	Individual /Group
12 th January 2020	App deployment using Kubernetes	Cloud (LRZ/AWS/GCP)	Individual /Group
26 th January 2020	Exercise on FaaS	Cloud (LRZ/AWS/GCP)	Individual /Group

Exercises Bonus

- Maximum of 0.3 bonus will be provided.
- There are total of 6 exercise and each exercise contributes to 1 point.
- So total of 6 points can be achieved, however 5 points are enough to earn the
 0.3 bonus.

You need to complete at least 5 exercises successfully to get a full bonus of 0.3

• There are no points for submission of a partial solution to an exercise.

Bonus does not apply to the grades 1.0, 4.3, 4.7 and 5.0.

Introduction to Exercises

Ex.1: Application Development using Node.js

- Introduction to Node.js.
- Introduction to REST (REpresentational State Transfer) API.
- Introduction to MongoDB.
- Installation of Node.js and given code explanation.

- Study the given code structure, about Node.js and queries to MongoDB.
- Write and complete the REST based APIs.

Ex.2: Cloud Access & App. Deployment using Docker

- Introduction to creating/starting/stopping of VMs on the Cloud.
- Introduction to application containerization using Docker.
- Writing a Dockerfile.
- Creating Docker images and containers.
- Introduction to Docker registry : Docker Hub
- Introduction to docker-compose for running multi-containers application.

- Writing Dockerfile for creating Docker images for the application in Ex.1
- Creating Docker image of the application.
- Deployment of the docker-based application on the VM.

Ex.3: Building Microservices Application

- Introduction to Microservices application architecture.
- Introduction to Microservices architecture terms (API Gateway, Service registry, Service Discovery etc.).
- Explanation of the given application application structure and code.

- Writing and completion of microservice's code.
- Deployment of the application using docker-compose on the VM.

Ex.4: OpenStack Exercise

- Introduction to OpenStack and its components.
- Creation of a server/VM inside OpenStack using CLI (Command Line Interface).
- Attaching volume, network etc. to the created server/VM.
- Introduction to OpenStack distributed tracing library: OSProfiler.
- Understanding of an OpenStack command (like creation of a VM) trace.

- Installtion of OpenStack on a VM.
- Creation of at least one server inside OpenStack.
- Trace generation for the given command.
- Understanding of the service calls and their dependencies using the generated trace.

Ex.5: App. deployment using Kubernetes

- Introduction to container orchestration.
- Introduction to Kubernetes and its architecture.

- Kubernetes installation.
- Application deployment using Kubernetes.
- Scaling of service(s).

Ex.6: Exercise on FaaS

ТΙΠ

- Introduction to Function-as-a-Service.
- Introfuction to FaaS platform: OpenWhisk

- OpenWhisk installation.
- Microservices application conversion to FaaS based.
- Deployment of application on OpenWhisk

Information about group based exercises

- 2nd and onwards exercises can be submitted as part of a group as well.
- A discussion forum and Group choice formation activity to form groups will be created on the Moodle.
- A group can have a maximum of 2 participants.
- Due to limited accounts on LRZ we recommend to create student account on AWS. Use your official TUM email id for account creation and University name as "Technische Universitaet Muenchen" https://www.awseducate.com/registration#INFO-Student
- Or Create on Google Compute Platform:
 - Free Student credits here: https://edu.google.com/programs/students/?modal_active=sign-up
 - \$350 free credits but would require bank or credit card details: https://cloud.google.com/free/
- Or we could provide Google Cloud credits (not sure yet, waiting for the reply from Google)

Submission Instructions

- All exercise submissions are checked automatically.
- Submissions are done by submitting to a server which will be online by next week.
- Registered participants will get their credentials for logging to the server via email.
- More about submissions will be explained with the first exercise.

Thank you for your attention!