Nirma University

Institute of Technology

Semester End Examination (IR), December - 2016

B. Tech. in Computer Engineering / Information Technology, Semester-V CE501 Theory of Computation

RollNo/		
Exam N	o with date	
Time: 3	Hours Max Marks: 100	
Instructions: 1. Attempt all questions. Figures to right indicate full marks.		
2. Use section wise separate answer book.3. Assume additional information if required.		
o. Assume additional information in required.		
SECTION-I		
	Answer the following questions:	[18]
a)	Define following terms:	[6]
	i. Finite State Automata	
	ii. Regular Expression	
	iii. Distinguishable Strings	
	iv. ^-closure	
	v. δ^* for NFA-^	
	vi. Pumping lemma for regular languages	
b)	In each case, a relation on the set {1,2,3} is given. Of the three	[4]
	properties, reflexivity, symmetry and transitivity determine	
	which ones the relation has, give reasons.	
	1. R={(1,3),(3,1),(2,2)}	
	2. R={(1,1),(2,2),(3,3),(1,2))}	
		F.43
c)	What is the relationship between 2 $^{A\cup B}$ and $^{2A}\cup ^{2B}$. Under	[4]
- 41	what circumstances are they equal?	
d)	_ () , ,	[4]
	x and y in L axby and bxay are in L; nothing else is in . Show	
	that L is precisely the set of strings in {a, b}* with equal number	
	of a's and b's.	
0-2	Answer the following questions:	[16]
	For any integer and b with 0<=a <b and="" every="" n="">=1, show that	[4]
٠,	(b ⁿ -a ⁿ) is divisible by (b-a).	1.1
b)		[6]
0)	Machine to find 2's complement of given binary number.	[o]
	OR	
b)		
5,	corresponding NFA-^	19
c)	Let L ₁ and L ₂ be language represented by the following	[6]
-/	automata. Construct DFA representing i) L ₁ U L ₂ and ii) L1-L2	[0]

OR

- c) What is an equivalence class in a regular language? What is significance of it to prove whether the language is regular or not? Explain with suitable example.
- Q-3 Answer the following questions:

[16]

a) Convert NFA to equivalent DFA.

[4]

b) For the following sets, write the corresponding regular [6] expression:

a. $\{0,1\}$

b. $\{a^2, a^4, a^6, a^8, a^{10}, \dots \}$

c. $\{a^x \mid x \text{ is divisible by 3 or 5}\}$

c) Minimize the DFA

[6]

SECTION-II Q-4 Answer the following questions: [18]a) Describe language generated for following CFGs. [4] i. $S \rightarrow aSa \mid bSb \mid a \mid b$ ii. S→ aSa | bSb | aAb | bAa A→aAa | bBb | a | b | ^ b) Construct a CFG for the following: [6] i. Construct a CFG which has equal number of zeros and ii. $L = \{a^i b^j c^k \mid i=j \text{ or } i=k\}$ OR **b)** Define following terms: Context free Grammar(CFG), Push Down Automata(PDA), Nullable variable, Regular Grammar c) What is called normal form of a grammar? What is the utility of [8] normal form? Convert the following into CNF. S → abAB | abB $A \rightarrow bAB \mid \land$ B → Baa | ^ Q-5 Answer the following questions: [16] a) Design a PDA to accept the language of even length palindrome [8] of {a,b}*. Can we design deterministic PDA for this? Give the reason for the same. b) Give top down PDA for CFG with following productions. [8] $S \rightarrow S + T \mid T$ $T \rightarrow T *a \mid a$ Give the sequence of moves made by designed PDA to accept a*a+a OR b) Give a CFG for the following PDA δ (q₀, a, Z₀) - (q₀, aZ₀) δ (q₀, a, a) - (q₀, aa) δ (q₀, c, a) - (q₁, a) δ (q₁, a, a) \vdash (q₂, \in) δ (q₂, a, a) - (q₂, ϵ) δ (q₂, ϵ , Z₀) - (q₂, ϵ) Q-6 Answer the following questions: [16] a) Design turing machine for the following languages over {a,b}* [8] i. Delete a symbol at the current head position from the string ii. Odd length palindrome string b) Design a TM that compute the indicated function. Assume that [8] the natural number n is represented by the string 1ⁿ.

F(x) = 2x