GROUP C

Baldoni V., Boffa M., Fabiani F., Lanza C., Ravera A.

Effect of urbanistic action on social perspective

Capture the user's perception of a city exploiting its digital footprints and study how the city zones evolved looking at the geo-tagged contents

Report and presentation for the administration to show the effectiveness of the adopted territorial policies and to suggest future improvements and investments

WORK PLAN

Data Collection

- Estimated time: 3 weeks
- Tools: python, Flickr API, Instragram API, MongoDB, Dropbox
- Requirements:
 - DB organization
 - Data downloading
 - Image downloading
 - Insert data into DB
 - Insert images into Cloud
 - Pulizia dati ridondanti, incompleti o errati

DB organization

Index Avg
348KB
528KB
892KB

- Shared cluster and online storage
- Unstructured data
- Large amount of data
- Developer-friendly maintenance

Data Collection

- **Estimated time**: 3 weeks
- Tools: python, Flickr API, Instragram API, MongoDB, Dropbox
- Requirements:
 - DB organization
 - Data downloading
 - Image downloading
 - Insert data into DB
 - Insert images into Cloud
 - Pulizia dati ridondanti, incompleti o errati

Data & Image insertion and downloading

Data Collection

- Estimated time: 3 weeks
- Tools: python, Flickr API, Instragram API, MongoDB, Dropbox
- Requirements:
 - DB organization
 - Data downloading
 - Image downloading
 - Insert data into DB
 - Insert images into Cloud
 - Data cleaning

Data consistency

Data cleaning

Final data distributions

Number of images collected:

· Flickr: 28.661

· Instagram: 48.903

Period:

from Jen.2017 to Dec. 2019

Clustering

- Estimated time: 7 weeks
- Tools: Python, QGIS, Kmeans algorithm
- Requirements:
 - Study of different methods (Kmeans, DBscan, Voronoi regions, etc.)
 - Definition of the best method to be adopted (Kmeans: faster, only one parameter to set, physically meaningful)
 - Normalization of the datasets for the clustering phase
 - Fine parameters' tuning (minimization of the inertia)
 - Data extraction and processing with the chosen method
 - Study and conclusive analysis of the results

Normalization of the datasets

Image processing

- Estimated time: 8 weeks
- Tools: Python, Transfer learning
- Requirements:
 - Study of possible deep learning pre-trained models
 - Definition of the best model to be adopted
 - Network training
 - Test results with evaluation of parameters such as accuracy and precision
 - Complete image processing of the images into DB
 - Cleaning of non-useful images
 - Study and analysis of results

Possible Neural Networks

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	_

Articles:

- Understanding tourists' urban images with geotagged photos using convolutional neural networks
- Rethinking the Inception Architecture for Computer Vision

Data & classes cleaning

Location:

Corso Inghilterra

Title:

"Monday: going to work like.... yippee!!! #mondaymood #mondaymonster #t..."

1000 synsets for Task 2 (same as in ILSVRC2012)

kit fox, Vulpes macrotis

English setter

Australian terrier

<u>grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus</u>

lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens

Egyptian cat

ibex, Capra ibex

Persian cat

cougar, puma, catamount, mountain lion, painter, panther, Felis concolor

<u>gazelle</u>

porcupine, hedgehog

sea lion

<u>badger</u>

Great Dane

Scottish deerhound, deerhound

killer whale, killer, orca, grampus, sea wolf, Orcinus orca

<u>mink</u>

African elephant, Loxodonta africana

GANTT

THANKYOU for the attention