Algoritmi e Strutture Dati a.a. 2012/13

Compito del 30/05/2013

Cognome:				
		Parto (30 minuti; ogni eser		
1.	Quali sono il numero brevemente la risposta		imo di elementi in un hea	ap di altezza <i>h</i> ? Giustificare
2.	Utilizzando la definizi false: a) $f(n) = O(n$ b) $f(n) = O(n)$ dove $f(n) = n(n+1)/2$.)	si stabilisca se le seguent	te affermazioni sono vere c
3.	(giustificando le rispo	este):	PC, e si dica quali delle s $(c) P \cup NPC = NP$	seguenti affermazioni è vera (d) P ∩ NPC ≠ Ø

Algoritmi e Strutture Dati

a a 2012/13

Compito del 30/05/2013

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. In una tabella Hash di **m** = **17** posizioni, inizialmente vuota, devono essere inserite le seguenti chiavi numeriche nell'ordine indicato:

La tabella è a indirizzamento aperto e la scansione è eseguita per doppio Hashing:

$$h(k, i) = (k \mod m + i * 2^{k \mod 5}) \mod m$$

Indicare per ogni chiave le posizioni scandite nella tabella e la posizione finale dove viene allocata.

2. Dato un array non ordinato di **n** interi, eventualmente ripetuti, e un intero positivo **k**, progettare un algoritmo **efficiente** che restituisca **1** se esiste un valore nell'array che occorre **esattamente k** volte, **0** altrimenti. Analizzarne la complessità in tempo.

L'algoritmo deve utilizzare spazio aggiuntivo costante e devono essere definite esplicitamente eventuali funzioni/procedure ausiliarie.

3. Si scriva l'algoritmo di Kruskal per determinare gli alberi di copertura minimi, si discuta la sua complessità computazionale, se ne dimostri la correttezza e si simuli <u>accuratamente</u> la sua esecuzione sul seguente grafo:

4. L'arbitraggio è un'operazione finanziaria per lucrare dalla differenza di prezzi tra le varie piazze e mercati. Sia $V = \{v_1, v_2, \dots, v_n\}$ un insieme di n valute e si indichi con C_{ij} il tasso di cambio tra le valute v_i e v_j (cioè, vendendo 1 unità di valuta v_i si ottengono C_{ij} unità di valuta v_j). Un arbitraggio è possibile se esiste una sequenza di azioni elementari di cambio (transazioni) che inizi con 1 unità di una certa valuta e termini con più di 1 unità della stessa valuta. Per esempio, se i tassi di cambio sono: 1.53 franchi svizzeri per 1 euro, 0.94 dollari americani per 1 franco svizzero, e 0.77 euro per 1 dollaro americano, possiamo convertire 1 euro in 1.1 euro, realizzando un guadagno del 10%. Si formuli il problema dell'arbitraggio come un problema (noto) di ricerca su grafi e si sviluppi un algoritmo efficiente per la sua risoluzione, discutendone correttezza e complessità.h