University of Florida **EEL3701C – Digital Logic and Computer Systems**Electrical & Computer Engineering Dept. Revision: **X**

Page 1/4 Homework # Report: Homework 7

Class #: 11198 February 21, 2025

Poche, Natalie

REQUIREMENTS NOT MET

N/A

PROBLEMS ENCOUNTERED

N/A

Electrical & Computer Engineering Dept. Revision: X
Page 2/4 Homework # Report: **Homework 7**

Poche, Natalie Class #: 11198 February 21, 2025

HOMEWORK EXERCISES

1. Use a Quartus Simulation to Show that an S-R latch can be made using two NAND gates.

hw7, Part A Name: Natalie Poche Class #: 111938 Pl Name: Jaiden Magnan

a.

Description: Make S-R latch with two NAND gates

Figure 1: Homework 7 - Part 1: BDF of S-R latch with Two NAND gates

Figure 2: Homework 7 - Part 1: Functional Simulation of S-R latch with two NAND gates

Page 3/4

Revision: X

Homework # Report: Homework 7

Poche, Natalie Class #: 11198 February 21, 2025

2. Use a Quartus Simulation to Show that an S-R latch can be made using two NOR gates.

hw7, Part B

Name: Natalie Poche

Class #: 11198

PI Name: Jaiden Magnan

Description: S-R latch using 2 NOR gates

a.

Figure 3: Homework 7 - Part 2: BDF of S-R latch with Two NOR gates

Figure 4: Homework 7 - Part 2: Functional Simulation of S-R latch with Two NOR gates

Homework # Report: Homework 7

3. Derive the characteristic equations and excitation tables for each type of flip-flop.

© Cengage Learning 2014

D Flip Flop		
D	Q^+	
0	0	
1	1	
$O^+ = D$		

D-FF Excitation Table			
Q	Q^+	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

i Fiip Fiop		
T	Q^+	
0	Q	
1	/Q	
$Q^+ = T*/Q + /T*Q$		

1-11 Excitation Table			
Q	Q^+	T	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

February 21, 2025

SR Flip Flop			
R	T	Q^+	
0	0	Q	
0	1	0	
1	0	1	
$Q^+ = S + /R*Q$			

SR-FF Excitation Table			

JK Flip Flop			
J	K	Q^+	
0	0	Q	
0	1	0	
1	0	1	
1	1	/Q	
$Q^+ = J^*/Q + /K^*Q$			

JK-FF Excitation Table			
Q	Q^+	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

4. 7th edition Roth Textbook Problem 11.26

11.26 The ClrN and PreN inputs introduced in Section 11.8 are called asynchronous because they operate independently of the clock (i.e., they are not synchronized with the clock). We can also make flip-flops with synchronous clears or preset inputs.

A D-flip-flop with an active-low synchronous ClrN input may be constructed from a regular D flip-flop as follows.

Fill in the timing diagram. For Q_1 , assume a synchronous ClrN as above, and for Q_2 , assume an asynchronous ClrN as in Section 11.8. Assume $Q_1 = Q_2 = 0$ at the beginning.

