多元微分学 (2021.10)

- 1. 设在上半空间 (z > 0) 上函数 $u(x,y,z) \in C^2$, 且 $u_x = 2x + y + z + x\varphi(r)$, $u_y = x + y\varphi(r)$, $u_z = x + z + z\varphi(r)$, 其中 $r = \sqrt{x^2 + y^2 + z^2}$, $\varphi \in C^1$. 已知 $\lim_{r \to 0^+} \varphi(r)$ 存在. 又 $\lim_{(x,y,z) \to 0} u(x,y,z) = 0$, div(grad u)(x,y,z) = 0. 求 u(x,y,z) 的表达式. 注 du = 0, $(u = \frac{1}{2}(x^2 y^2) + x(y + z))$
- 2. 设函数 u = f(x, y, z) 可微, 且满足 $\frac{f_x}{x} = \frac{f_y}{y} = \frac{f_z}{z}$. 证明函数 u 仅为 $r = \sqrt{x^2 + y^2 + z^2}$ 的函数, 即具有形式 u = g(r).
- 3. 设 $u(x,y) \in C^2$ 满足方程

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + a \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) = 0.$$

- (1) 选取参数 α,β 使得利用变换 $u(x,y)=v(x,y)e^{\alpha x+\beta y}$ 可将原方程化为一个不含一阶偏导数新方程; $\left(\left(-\frac{a}{2},\frac{a}{2}\right)\right)$
- (2) 再令 $\left\{ \begin{array}{ll} \xi = x + y, \\ \eta = x y, \end{array} \right.$ 求方程的新形式. $\left(\frac{\partial^2 v}{\partial \xi \partial \eta} = 0 \right)$
- 4. 设u(x, y) 具有二阶连续偏导, 且满足方程:

$$\operatorname{div}(\operatorname{grad} u) - 2\frac{\partial^2 u}{\partial y^2} = 0,$$

- 1) 利用变换 $\begin{cases} \xi = x y, \\ \eta = x + y, \end{cases}$ 化为 (ξ, η) 的方程. $\left(\frac{\partial^2 u}{\partial \xi \partial \eta} = 0\right)$
- 5. 已知grad $u = (2x 2xy^2, 4y 2x^2y)$, 且 u(0,0) = 0, 求函数 u(x,y) 在区域 $D = \{(x,y)|x^2 + y^2 \le 4, y \ge 0\}$ 上最值. (min = 0, max = 8)
- 6. 小山的底部区域为 $D = \{(x,y) | x^2 + y^2 xy \le 75\}$, 其高度函数为 $h(x,y) = 75 x^2 y^2 + xy$.
 - 1) $\Re |\operatorname{grad} h|_{M_0(x,y) \in D} \cdot \left(= \sqrt{5x^2 + 5y^2 8xy} \right)$
 - 2) 求登山员的起登点坐标. ((5, -5)/(-5, 5))
- 7. 设函数u = x + y + z, \vec{n} 为球面 $S: x^2 + y^2 + z^2 = 1$ 外法向量(任一点处).求
 - 1) $\vec{x} \frac{\partial u}{\partial \vec{x}}$. (= x + y + z)
 - 2) $\frac{\partial u}{\partial \vec{n}}$ 在 S 上的最值. $\left(\frac{\partial u}{\partial \vec{n}}\Big|_{(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})} = \sqrt{3}, \frac{\partial u}{\partial \vec{n}}\Big|_{-(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})} = -\sqrt{3}\right)$
- 8. 设函数 f(x,y) 在 \mathbb{R}^2 上具有一阶连续偏导数, $r = \sqrt{x^2 + y^2}$. 证明: 若 $\lim_{r \to +\infty} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) = 1$, 则 f(x,y) 在 \mathbb{R}^2 上有最小值.
- 9. 已知曲面 $4x^2 + 4y^2 z^2 = 1$ 与平面x + y z = 0的交线在 xoy 平面上的投影为一椭圆.求该椭圆的面积. $\left(S = \frac{\sqrt{2}}{4}\pi, a = \frac{\sqrt{2}}{2}, b = \frac{1}{2}\right)$
- 10. 设 $A = (a_{ij})$ 为 n 阶对称矩阵. 求二次型函数

$$f(x_1, x_2, \dots x_n) = \sum_{i=1}^n a_{ij} x_i x_j$$

在 \mathbb{R}^n 中单位球面 $S: x_1^2 + x_2^2 + \cdots + x_n^2 = 1$ 上的最值. $(\lambda_{\text{max}}, \lambda_{\text{min}})$

- 11. 将均匀介质的抛物形体 $x^2+y^2 \le z \le 1$ 侧身放置在水平面上. 证明当形体平衡时轴线与桌面的夹角为 $\theta=\arctan\sqrt{\frac{3}{2}}$.
- 12. 设函数 f(u) 可导且 $f'(u) \neq 0$. 证明旋转曲面 $z = f(\sqrt{x^2 + y^2})$ 的法线与转轴相交.

$$\left((0,0,z+\frac{\sqrt{x^2+y^2}}{f'(\sqrt{x^2+y^2})})\right)$$

- 13. 设 $z = f(x,y) \in C^2$, $f_y \neq 0$. 证明: $\forall C \in \mathbb{R}$, f(x,y) = C 为一直线的充要条件是 $f_y^2 f_{xx} 2 f_x f_y f_{xy} + f_x^2 f_{yy} = 0$.
- 14. 证明曲面 $f(\frac{x-a}{z-c}, \frac{y-b}{z-c}) = 0$ 的切平面过一定点. ((a, b, c))
- 15. 设 $\vec{l_j}$, j = 1, 2, ..., n, 是平面上点 P_0 处的 n ($n \ge 2$) 个方向向量, 相邻两个向量方向的夹角为 $\frac{2\pi}{n}$. 若函数 f(x,y) 在 P_0 处具有连续偏导数, 证明 $\sum_{\delta=1}^{n} \frac{\partial f}{\partial \vec{l_j}} \Big|_{P_0} = 0$.
- 16. 设 F(x.y,z) 和 G(x.y,z) 具有连续偏导,且 $\frac{\partial (F.G)}{\partial (y.z)} \neq 0$,曲线 Γ : $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 过点 $P_0(x_0,y_0,z_0)$. Γ 在 xoy 上的投影曲线为 S. 求 S 上过点 (x_0,y_0) 的切线方程. $\left((F_xG_z G_xF_z)(x x_0) + (F_yG_z G_yF_z)(y y_0) = 0 \right)$