Contenidos

- Funciones del analizador sintáctico
- Conexión con el analizador léxico
- Errores sintácticos
- Fundamentos teóricos
- Analizadores ascendentes
- Desarrollo de analizadores sintácticos
- Analizadores descendentes

- Construcción del árbol de la raíz a las hojas
 - Lectura de la cadena de izquierda a derecha

- Procesamiento del símbolo más a la izquierda
 - Terminal: reconocer en la cadena de entrada
 - No terminales: aplicar la derivación

- Construcción del árbol de la raíz a las hojas
 - Lectura de la cadena de izquierda a derecha

- Procesamiento del símbolo más a la izquierda
 - Terminal: reconocer en la cadena de entrada
 - No terminales: aplicar la derivación

- Construcción del árbol de la raíz a las hojas
 - Lectura de la cadena de izquierda a derecha

- Procesamiento del símbolo más a la izquierda
 - Terminal: reconocer en la cadena de entrada
 - No terminales: aplicar la derivación

¿qué producción?

- Construcción del árbol de la raíz a las hojas
 - Lectura de la cadena de izquierda a derecha

- Procesamiento del símbolo más a la izquierda
 - Terminal: reconocer en la cadena de entrada
 - No terminales: aplicar la derivación
- Predicción: ¿qué derivación hay que aplicar?
 - LL(1): predecir con un símbolo
 - LL(k): predecir con k símbolos

- Conjunto de símbolos que indican que hay que aplicar la producción A::=α
- DIR(A::= α)
- Cálculo en función de otros tres conjuntos:
 - -CAB(X)
 - CAB'(X): es CAB(X) sin λ
 - -SIG(X)

- CAB(X): primer símbolo terminal (∈ T) de las cadenas derivadas de X
 - 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
 - 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
 - 3. Si $\exists X ::= Y_1Y_2...Y_n$ entonces

 $CAB'(X) = CAB(X) \sin \lambda$

- a. añadir CAB'(Y₁) a CAB(X)
- b. añadir $CAB'(Y_k)$ a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

S ::= aBCd

B ::= CB | b

$$CAB(S) = \{\}$$

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

```
S ::= aBCd
```

B ::= CB | b

$$CAB(S) = \{\}$$

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

```
S ::= aBCd
```

B ::= CB | b

1. Si
$$X \in T$$
 entonces an adir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

$$CAB(S) = CAB'(a)$$

```
S ::= aBCd
```

B ::= CB | b

1. Si
$$X \in T$$
 entonces anadir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

$$CAB(S) = CAB'(a)$$

$$C := cc \mid e \mid \lambda$$

$$CAB(S) = \{a\}$$

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

$$C := cc \mid e \mid \lambda$$

$$CAB(S) = \{a\}$$

 $CAB(B) = \{\}$

- 1. Si $X \in T$ entonces anadir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

$$C := cc \mid e \mid \lambda$$

$$CAB(S) = \{a\}$$

 $CAB(B) = \{\}$

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

```
S ::= aBCd
```

$$C := cc \mid e \mid \lambda$$

$$CAB(S) = {a}$$

 $CAB(B) = CAB'(C)$

- 1. Si $X \in T$ entonces anadir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

1. Si
$$X \in T$$
 entonces anadir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - añadir CAB'(Yk) a CAB(X) sii \forall i=1, k-1 $\lambda \in$ CAB(Yi)

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup $\{\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si $X := * \lambda$ entonces an adir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - . añadir CAB'(Yk) a CAB(X) sii \forall i=1, k-1 $\lambda \in$ CAB(Yi)

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup CAB'(B)

Obvio, se puede omitir

S ::= aBCd

B ::= CB | b

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) $\cup \{\}$

```
S ::= aBCd
```

$$C := cc \mid e \mid \lambda$$

1. Si
$$X \in T$$
 entonces anadir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup $\{\}$

```
S ::= aBCd
B ::= CB | b
```

$$C := cc \mid e \mid \lambda$$

1. Si
$$X \in T$$
 entonces an adir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup CAB'(b)

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup CAB'(b)

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si $X := * \lambda$ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si $\exists X ::= Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) $\cup \{b\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

```
1. Si X \in T entonces anadir \{X\} a CAB(X)
```

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup $\{b\}$
CAB(C) = $\{\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

```
1. Si X \in T entonces an adir \{X\} a CAB(X)
```

- 2. Si $X := * \lambda$ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) $\cup \{b\}$
CAB(C) = $\{c\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

```
1. Si X \in T entonces an adir \{X\} a CAB(X)
```

- 2. Si $X := * \lambda$ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup $\{b\}$
CAB(C) = $\{c\} \cup \{\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

1. Si
$$X \in T$$
 entonces an adir $\{X\}$ a CAB(X)

- 2. Si $X := * \lambda$ entonces an adir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) \cup $\{b\}$
CAB(C) = $\{c\} \cup \{e\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

1. Si
$$X \in T$$
 entonces anadir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si $\exists X ::= Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) =
$$\{a\}$$

CAB(B) = CAB'(C) $\cup \{b\}$
CAB(C) = $\{c\} \cup \{e\} \cup \{\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

- 1. Si $X \in T$ entonces an adir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si $\exists X ::= Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) = {a}
CAB(B) = CAB'(C)
$$\cup$$
 {b}
CAB(C) = {c} \cup {e} \cup { λ }

```
S ::= aBCd
```

$$C := cc \mid e \mid \lambda$$

1. Si
$$X \in T$$
 entonces anadir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir CAB' (Y_1) a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) = {a}
CAB(B) = CAB'(C)
$$\cup$$
 {b}
CAB(C) = {c,e, λ }

$$C := cc \mid e \mid \lambda$$

1. Si
$$X \in T$$
 entonces an adir $\{X\}$ a CAB (X)

- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - b. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

CAB(S) = {a}
CAB(B) = {c,e}
$$\cup$$
 {b}
CAB(C) = {c,e, λ }

$$C := cc \mid e \mid \lambda$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 1. Si $X \in T$ entonces anadir $\{X\}$ a CAB(X)
- 2. Si X ::=* λ entonces añadir $\{\lambda\}$ a CAB(X)
- 3. Si \exists X ::= $Y_1Y_2...Y_n$ entonces
 - a. añadir $CAB'(Y_1)$ a CAB(X)
 - o. añadir CAB'(Y_k) a CAB(X) sii $\forall_{i=1, k-1} \lambda \in CAB(Y_i)$

- SIG(X): terminales inmediatamente a continuación de X en cualquier frase o forma sentencial.
 - 1. Si X es el axioma entonces añadir {\$} a SIG(X)
 - 2. Si \exists Y ::= α X β entonces añadir z a SIG(X) \forall z \in CAB'(β)

$$C ::= cc \mid e \mid \lambda$$

$$SIG(S) = \{\}$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X $\acute{\beta}$ y λ \in CAB($\acute{\beta}$) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

 $CAB(B) = \{c,e,b\}$

CAB(C) =
$$\{c,e,\lambda\}$$

$$C := cc \mid e \mid \lambda$$

$$SIG(S) = \{\}$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

CAB(C) =
$$\{c,e,\lambda\}$$

$$SIG(S) = \{\$\}$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X δ \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

$$C ::= cc \mid e \mid \lambda$$

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{\}$

- 1. Si X es el axioma entonces añadir (\$) a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

CAB(C) =
$$\{c,e,\lambda\}$$

$$C ::= cc \mid e \mid \lambda$$

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{\}$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X δ \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

$$C ::= cc \mid e \mid \lambda$$

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{\}$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si \exists Y ::= α X β entonces añadir z a SIG(X) \forall z \in CAB'(β)
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

 $CAB(B) = \{c,e,b\}$

CAB(C) =
$$\{c,e,\lambda\}$$

$$C ::= cc \mid e \mid \lambda$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

CAB(C) =
$$\{c,e,\lambda\}$$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

$$SIG(S) = \{\$\}$$

$$SIG(B) = \{c,e\} \cup \{d\}$$

- 1. Si X es el axioma entonces añadir (\$) a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{c,e\} \cup \{d\} \cup \{\}\}$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X $\acute{\beta}$ y $\lambda \in CAB(\acute{\beta})$ entonces añadir SIG(Y) a SIG(X)

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{c,e\} \cup \{d\} \cup \{\}\}$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X $\acute{\beta}$ y $\lambda \in CAB(\acute{\beta})$ entonces añadir SIG(Y) a SIG(X)

$$SIG(S) = \{\$\}$$

$$SIG(B) = \{c,e\} \cup \{d\} \cup SIG(B)$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

Obvio, se puede omitir

$$C := cc \mid e \mid \lambda$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

CAB(C) =
$$\{c,e,\lambda\}$$

- Si X es el axioma entonces añadir (\$) a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 1. Si X es el axioma entonces añadir (\$) a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{c,e,d\}$
 $SIG(C) = \{d\} \cup \{\}$

- 1. Si X es el axioma entonces añadir (\$) a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{c,e,d\}$
 $SIG(C) = \{d\} \cup CAB'(B)$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X β y λ \in CAB(β) entonces añadir SIG(Y) a SIG(X)

$$SIG(S) = \{\$\}$$

 $SIG(B) = \{c,e,d\}$
 $SIG(C) = \{d\} \cup \{c,e,b\}$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

$$C := cc \mid e \mid \lambda$$

- 1. Si X es el axioma entonces añadir {\$} a SIG(X)
- 2. Si $\exists Y ::= \alpha X \beta$ entonces añadir z a SIG(X) $\forall z \in CAB'(\beta)$
- 3. Si \exists Y ::= α X \acute{o} \exists Y ::= α X $\acute{\beta}$ y $\lambda \in CAB(\acute{\beta})$ entonces añadir SIG(Y) a SIG(X)

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

CAB(C) =
$$\{c,e,\lambda\}$$

- DIR(Y::=Xα): terminales por los que comienza la derivación de una producción.
 - 1. Si $\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$
 - 2. Si $\{X\alpha\} \neq \{\lambda\}$ y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$
 - 3. Si $\{X\alpha\} \neq \{\lambda\}$ y $X \in NT \Rightarrow$
 - a. Si CAB(X) $\notin \{\lambda\} \Rightarrow DIR(Y:= X\alpha) = CAB(X)$
 - b. Si CAB(X) $\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$

$$C := cc \mid e \mid \lambda$$

$$DIR(S::=aBCd) = \{\}$$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y:= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
```

B ::= CB | b

 $C := cc \mid e \mid \lambda$

$$DIR(S::=aBCd) = \{\}$$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
```

$$C := cc \mid e \mid \lambda$$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

$$DIR(S::=aBCd) = \{a\}$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

$$C := cc \mid e \mid \lambda$$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

$$DIR(S::=aBCd) = \{a\}$$

$$DIR(B::=CB) = \{\}$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

5. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

```
1. Si \{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)
```

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

DIR(S::=aBCd) =
$$\{a\}$$

DIR(B::=CB) = CAB'(C) \cup DIR(B ::= B)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

DIR(S::=aBCd) =
$$\{a\}$$

DIR(B::=CB) = $\{c,e\}$ \cup DIR(B ::= B)

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

Si CAB(X) $\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$

DIR(S::=aBCd) =
$$\{a\}$$

DIR(B::=CB) = $\{c,e\} \cup DIR(B ::= B)$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

```
S ::= aBCd
B ::= CB | b
C ::= cc | e | λ
```

DIR(S::=aBCd) =
$$\{a\}$$

DIR(B::=CB) = $\{c,e\} \cup \{c,e,b\}$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

CAB(S) = {a}
CAB(B) = {c,e,b}
CAB(C) = {c,e,
$$\lambda$$
}

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

$$DIR(S::=aBCd) = \{a\}$$

$$DIR(B::=CB) = \{c,e,b\}$$

$$DIR(B::=b) = {}$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

Si CAB(X) \notin { λ } \Rightarrow DIR(Y::= X α) = CAB(X)

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

$$CAB(S) = \{a\}$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

Si CAB(X) $\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$

CAB(S) = {a}
CAB(B) = {c,e,b}
CAB(C) = {c,e,
$$\lambda$$
}
SIG(S) = {\$}
SIG(B) = {c,e,d}

 $SIG(C) = \{d,c,e,b\}$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

CAB(S) = {a}
CAB(B) = {c,e,b}
CAB(C) = {c,e,
$$\lambda$$
}
SIG(S) = {\$}
SIG(B) = {c,e,d}

 $SIG(C) = \{d,c,e,b\}$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

DIR(S::=aBCd) = {a}
DIR(B::=CB) = {c,e,b}
DIR(B::=b) = {b}
DIR(C::=cc) = {c}
DIR(C::=e) = {e}
DIR(C::=
$$\lambda$$
) = {}

CAB(S) = {a}
CAB(B) = {c,e,b}
CAB(C) = {c,e,
$$\lambda$$
}
SIG(S) = {\$}
SIG(B) = {c,e,d}
SIG(C) = {d,c,e,b}

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

 $DIR(C:=\lambda) = SIG(C)$

CAB(S) =
$$\{a\}$$

CAB(B) = $\{c,e,b\}$
CAB(C) = $\{c,e,\lambda\}$
SIG(S) = $\{\$\}$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y:= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

DIR(S::=aBCd) = {a}
DIR(B::=CB) = {c,e,b}
DIR(B::=b) = {b}
DIR(C::=cc) = {c}
DIR(C::=e) = {e}
DIR(C::=
$$\lambda$$
) = {d,c,e,b}

CAB(S) = {a}
CAB(B) = {c,e,b}
CAB(C) = {c,e,
$$\lambda$$
}
SIG(S) = {\$}
SIG(B) = {c,e,d}
SIG(C) = {d,c,e,b}

$$C := cc \mid e \mid \lambda$$

1. Si
$$\{X\alpha\} = \{\lambda\} \Rightarrow DIR(Y:= X\alpha) = SIG(Y)$$

2. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in T \Rightarrow DIR(Y::= X\alpha) = \{X\}$

3. Si
$$\{X\alpha\} \neq \{\lambda\}$$
 y $X \in NT \Rightarrow$

a. Si CAB(X)
$$\notin \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB(X)$$

b. Si CAB(X)
$$\in \{\lambda\} \Rightarrow DIR(Y::= X\alpha) = CAB'(X) \cup DIR(Y::= \alpha)$$

$$DIR(S::=aBCd) = \{a\}$$

$$DIR(B::=CB) = \{c,e,b\}$$

$$DIR(B::=b) = \{b\}$$

$$DIR(C::=cc) = \{c\}$$

$$DIR(C:=e) = \{e\}$$

$$DIR(C::= \lambda) = \{d,c,e,b\}$$

$$CAB(S) = \{a\}$$

$$CAB(B) = \{c,e,b\}$$

$$CAB(C) = \{c,e,\lambda\}$$

$$SIG(S) = \{\$\}$$

$$SIG(B) = \{c,e,d\}$$

$$SIG(C) = \{d,c,e,b\}$$

- Condiciones LL(1)
 - Sin recursividad por la izquierda.
 - Un símbolo de anticipación es suficiente:

$$\forall_{i\neq j} DIR(A ::= \alpha_j) \cap DIR(A ::= \alpha_i) = \emptyset$$

DIR(B::=CB) = {c,e,b} DIR(C::=e) = {e}
DIR(B::=b) = {b} DIR(C::=
$$\lambda$$
) = {d,c,e,b}

• Ejercicio:

Calcular conjuntos CAB, SIG y DIR de la siguiente gramática y explicar si cumple las condiciones LL(1):