Tathagata Karmakar

Andrew N. Jordan ♂ group

+1585-967-8496tkarmaka@ur.rochester.edu https://tathagata-karmakar.github.io/

INTERESTS

Tensor network approaches, machine learning approaches in physics, open quantum systems, continuous measurements.

EDUCATION

Ph.D., Physics and Astronomy, University of Rochester. Ongoing M.A., Physics and Astronomy, University of Rochester. 2020

BS, Physics CPI: 9.9/10, IIT Kanpur. 2018

PROFFESSIONAL APPOINTMENTS

2021-Ongoing Affiliated student researcher, Chapman University. Jul.-Sep. 2023 Research Intern, PHI Lab, NTT Research, Inc., CA. 2017 Summer research assistant, CCA, Simons Foundation.

SELECTED PUBLICATIONS

- [1] Sethuraj K. R., T. Karmakar, A. N. Jordan and A. N. Vamivakas, and "Experimental realization of supergrowing fields", arXiv: 2309.00016 (2023).
- [2] T. Karmakar, A. Chakraborty, A. N. Vamiyakas and A. N. Jordan, "Supergrowth and sub-wavelength object imaging", Opt. Exp. 31, 37174-37185 (2023).
- [3] T. Karmakar and A. N. Jordan, "Beyond Superoscillation: General Theory of Approximation with Bandlimited Functions, arXiv: 2306.03963 (2023).
- [4] T. Karmakar, É. Jussiau, S. K. Manikandan, and A. N. Jordan, "Cyclic superconducting quantum refrigerators using guided fluxon propagation", arXiv: 2212.00277 (2022).
- [5] T. Karmakar, P. Lewalle, and A. N. Jordan, "Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator", PRX Quantum 3, 010327 (2022).

RESEARCH EXPERIENCE

2023-Ongoing ML based Model reduction, NTT Research, Inc.

> Built a neural operator based learning architecture that can solve for the dynamics of 256 quantum harmonic oscillators

simultaneously.

2022-2023 Superoscillations and supergrowth [1–3]

> Developed an algorithm to generate functions with arbitrary superoscillation/supergrowth by choosing the values of only the first two coefficients in a series expansion.

Developed an algorithm to reconstruct objects that are an order of magnitude smaller than the illuminating wavelength. Collaborated on the experimental realization of supergrowing

optical fields.

2020-2021 Stochastic path integral [5]

Formulated a stochastic action principle-based description of a continuously monitored harmonic oscillator.

PROGRAMMING EXPERIENCE

Python (PyTorch, JAX, 5+ yrs), Mathematica (5+ yrs), QuTiP, Fortran, C.

SELECTED TALKS

Oct. 2023	Supergrowing Optical Fields: Subwavelength Imaging and Experimental Synthesis ☑, Chapman University.
Aug. 2023	$A\ discussion\ on\ quantum\ convolutional\ neural\ networks,$ PHI Lab, NTT Research, Inc.
Jun. 2022	Stochastic path integral analysis of a harmonic oscillator \square , Quantum Thermodynamics Conference.
2022	Tomography of a Continuously Monitored Qubit, APS March Meeting.

AWARDS AND HONORS

2020	Okubo Prize, Department of Physics and Astronomy, UR.
2018-2020	Robert L. and Mary L. Sproull fellow, UR.
2016	Academic Excellence Award (dean's office, IIT Kanpur).
2015	Academic Excellence Award (dean's office, IIT Kanpur).
2014-2018	KVPY fellow, DST, Govt. of India.

SUMMER SCHOOLS

Jun. 2023	Quantum Connections, Stockholm, Sweden.
Jun. 2022	Solstice of Foundations, ETH Zürich.
Aug. 2021	Quantum Thermodynamics (online), ETH Zürich.

TEACHING EXPERIENCE

JanApr. 2019	Teaching assistant, 20th Century Physics.
AugNov. 2018	Teaching assistant, Gravitation and General Relativity.

PEER-REVIEWER/REFEREE

Phys. Rev. A, Annals of Physics, npj Quantum Information, Applied Physics Letters.

SELECTED COURSEWORK

Graph theory (IIT Kanpur).