Metody obliczeniowe optymalizacji

2017

Prowadzący: Łukasz Chomątek

Środa, 12:15

Data oddania:	Ocena:	

Radosław Pawlaczyk 214952 Mateusz Grabowski 214903

Zadanie 2: Optymalizacja wielowymiarowa bez ograniczeń

1. Teoria

Metoda pełzającego sympleksu Nelder'a-Mead'a

Metoda numeryczna wyznaczania ekstremum (typowo minimum) nieliniowej funkcji wielu zmiennych :

Algorytm:

- 1. Wybieramy parametry poczatkowe
- 2. Tworzymy simpleks o n+1 wierzchołkach
- 3. Obliczamy wartosc funkcji w wierzchołkach simpleksu
- 4. Przyporzdkowujemy wierzchołek o najmniejszej wartosci do l oraz o największej wartosci do h
- 5. Obliczamy środek symetrii simpleksu P' oraz wartosci funkcji w tym punkcie
- 6. Odbicie P* punktu Ph względem P' i obliczenie wartości funkcji Fo
- 7. Jeżeli Fo < min Obliczamy P**= $(1+\gamma)$ P* γ P' oraz Fe= $f(P^{**})$
- 8. Jeżeli Fe<min podstawa za Ph
 punkt P** i przejdź do kroku x, w innym przypadku podstaw za Ph
 punkt P* i przejdź do kroku x
- 9. Jeżeli Fo max przejdź do kroku 10
- 10. Jeżeli Fo < max podstaw za Ph punkt P*
- 11. Wykonaj kontrakcje P*** punktu Ph wzgledem P' i oblicz Fk=f(P***)
- 12. Jeżeli Fk < max to wykonaj redukcję simpleksu
- 13. Jeżeli Fk < max podstaw za Ph punkt P***
- 14. Jeżeli Fo <f(Pi) dla i=1,2,..,n+1 i!=h za punkt Ph punkt P*

15. Jeżeli nie osiagnelismy zakladanej dokładności lub nie osiagnelismy liczby iteracji przechodzimy do kroku 4

2. Wyniki

LI - Liczba iteracji, D - Dokładność, II - Ilość Iteracji, WK - współrzędne końcowe

LI	D	α	β	ψ	σ	II	WK(X,Y,Z)
100	0.01	1	2	0.5	0.5	11	0.744150, -0.735422, 1.094605
100	0.001	1	2	0.5	0.5	15	0.739756, -0.739816, 1.094567
100	0.01	0.5	2	0.5	0.5	25	-0.008976, 0.002668, 0.000088
100	0.001	0.5	2	0.5	0.5	41	0.000955,0.000191,0.000001
100	0.01	0.5	1	0.2	0.5	26	0.011173, -0.000559, 0.000125
100	0.001	0.5	1	0.2	0.5	42	-0.001011,-0.000401, 0.000001
100	0.01	0.5	1	0.5	0.2	14	-0.007713, 0.008807, 0.000137
100	0.001	0.5	1	0.5	0.2	25	-0.008976, 0.002668, 0.000088

Tabela 1. Metoda pełzającego sympleksu Nelder'a-Mead'a dla $x^2 + y^2$.

3. Wnioski

- 1. Im mniejsza dokłądność oraz mniejsza ilość iteracji tym otrzymujemy wynik mniej dokładny.
- 2. Możemy zaobserwować że wraz ze zwiększeniem wartości α otrzymany wynik staje się mniej dokładny co w porównaniu ze zmianą innych parametrów znacząco wpływa na błędne znalezienie minimum.
- 3. W porównaniu wyników zaimplementowanych metod oraz wyliczeniu ręcznym extremów można dojśc do wniosku że nasze implementacje są poprawne.

Literatura

http://optymalizacja.w8.pl/simplexNM.html