

Engineering

Value Function-based Method

- Temporal Difference
- SARSA and Q-Learning
- n-step Temporal Difference

39

Learning Algorithm to MDP

Estimation by Sampling

Engineering

Bootstrapping

- Simulation only without bootstrapping One simulation with max bootstrapping

$$v_{k+1}(s) = \frac{1}{c_s} \sum v_t(s)$$

where
$$v_t(s) = \{R_t(s) + \gamma R_{t+1}(S_{t+1}) + \cdots\}$$

$$v_{k+1}(s) = R_{t+1} + \gamma \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) v_k(s')$$

There should be something in between \rightarrow **Temporal Difference** (TD)

Engineering

41

Temporal Difference Learning

Temporal Difference (Error)

$$\delta_{t+1} = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
Observation Bootstrapping Original estimate

- New estimate = observation + bootstrapped value function
- Old estimate = original value function
- Hence, TD is the error between new estimate and old estimate

Monte Carlo to Temporal Difference

- The same learning equation $V(S_t) \leftarrow V(S_t) + \alpha (G_t V(S_t))$
- Return in Monte Carlo
- Return in Temporal Difference

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \cdots$$

$$G_t = R_{t+1} + \gamma V(S_{t+1})$$

Then the learning equation becomes

Then the learning equation becomes

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma R_{t+2} \cdots - V(S_t))$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma R_{t+2} \cdots - V(S_t)\right) \qquad V(S_t) \leftarrow V(S_t) + \alpha \left(R_t + \gamma V(S_{t+1}) - V(S_t)\right)$$

Temporal Difference

Engineering

43

Temporal Difference Learning

Comparison between TD and MC

TD	MC
Learning upon transition	Learning at the end of an episode
Learning from incomplete episode	Learning from complete episode
Can be used in continuing task	Can be used only with episodic task
Biased but small variance	Unbiased but high variance
Sensitive to the initial values	Insensitive to the initial values
More efficient	Easy to use

Example 6.4: You are the Predictor Place yourself now in the role of the predictor of returns for an unknown Markov reward process. Suppose you observe the following eight episodes:

 A, 0, B, 0
 B, 1

 B, 1
 B, 1

 B, 1
 B, 1

 B, 1
 B, 1

 B, 1
 B, 0

- Optimal estimation for V(B)=?
 - 6 out of 8 times in B, the process terminated with an immediate reward 1
 - 2 out of 8 times in B, the process terminated with an immediate reward 0
 - Hence, on average V(B)=3/4
- Optimal estimation for V(A)=?
 - By TD(0), After A, immediate reward = 0 + bootstrap B (=3/4) = 3/4
 - By MC, single episode starting at A has a total return of 0

Engineering

45

SARSA

• Given an episode following a behavior policy π

- Learning Equations
 - Monte Carlo

$$V(S_t) \leftarrow V(s_t) + \alpha (G_t - V(S_t))$$

- With Temporal Difference

$$V(S_t) \leftarrow V(s_t) + \alpha \left(R_t + \gamma V(S_{t+1}) - V(S_t) \right)$$

Learning Q rather than V

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big].$$

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma Q(S',A') - Q(S,A) \big]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Q: Where is the policy improved?

Engineering

47

On-policy vs. Off-policy Learning

- On-policy
 - Learn a policy with data collected by the policy
 - Estimate mean of a distribution with samples from the distribution
 - Stable but sample inefficient
 - Example: SARSA
- Off-policy
 - Learn a policy with data collected by different policies
 - Estimate mean of a distribution with sample from different distribution
 - Unstable but sample efficient
 - Example: Q-Learning

Q-Learning

From SARSA to Q-Learning

SARSA:
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big].$$

Optimistic boostrapping

- Value iteration algorithmOff-policyOptimization bias

$$\text{Q-Learning:} \ Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \Big].$$

- Why the new equation makes the algorithm off-policy?
 - What is the target and the behavior policy in Q-learning equation?

Engineering

49

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Identify behavior policy and target policy

Engineering

Function Approximation

- Approximation of State and Action
- Features and Approximation
- Deep Q-Learning and other Extensions

51

Learning Algorithm to MDP

Estimation by Sampling

Engineering

Deep Q-Net with Experience Replay

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
  Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
  For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
                                                      if episode terminates at step j+1
                   r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-)
                                                                     otherwise
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset \hat{Q} = Q
  End For
End For
```


Engineering

55

Function Approximation

- Motivation
 - Curse of dimensionality
 - Generalization
- Example: Tic-Tac-Toe
 - State space
 - 3X3 board
 - Each position can be "empty", "O" or "X"
 - There are 3^9 (= 19,683) states
 - State space can be compressed using features

$$\phi_1(s) = 1$$
 if "X" is at the centre; 0 otherwise $\phi_2(s) = \#$ of corner cells with "X".

$$\phi_3(s)$$
 = # of instances of adjacent cells with "X".

1	2	3
4	5	6
7	8	9

 $\phi_1(s) = 0$

 $\phi_2(s) = 1$

 $\phi_3(s) = 0$

Linear approximation given the features

$$\tilde{V}_t(s) = \sum_{f \in F} \theta_f \phi_f(s)$$

		Х
Х	0	0
0	Х	0

 $\tilde{V}_t(s) = \theta_1 \phi_1(s) + \theta_2 \phi_2(s) + \theta_3 \phi_3(s)$ $= \theta_1 \times 0 + \theta_2 \times 1 + \theta_3 \times 0$ $= \theta_2$

Dimensionality = 9

Dimensionality = 3

Engineering

57

 $\theta_{t+1} \leftarrow \theta_t - \alpha \cdot \nabla \vec{e}$, where $Q(s, a; \theta_{t+1})$

Approximation Error:

$$\begin{split} e(\theta) &= \sum_{s \in S} \{V_{\pi}(s) - \tilde{V}(s;\theta)\}^{2} \\ &= \sum_{s \in S} \mu(s) \{V_{\pi}(s) - \tilde{V}(s;\theta)\}^{2} \\ &= \sum_{s \in S} \mu(s) \sum_{a} \pi(a|s) \left\{Q_{\pi}(s,a) - \tilde{Q}(s,a;\theta)\right\}^{2} \end{split}$$

Engineering

RL with Function Approximation

General Algorithm Structure

```
Input
                          Differentiable parameterized function f(s, a; \theta) for Q(s, a): S \times A \times \mathbb{R}^d \to \mathbb{R},
                          step size \alpha, small \epsilon>0
Initialize
                          Initialize the value function parameter \theta \in \mathbb{R}^d
Loop for each episode
                                                                                                                                 L(\theta) = \mathbb{E}_{S,A,S',A \sim \rho} \left\{ R + \gamma f(S',A';\theta) - f(S,A;\theta) \right\}^2
                          S.A \leftarrow initial state and action of episode by \epsilon-greedy
                                                                                                                                 \nabla_{\theta}L(\theta) = \mathbb{E}_{S,A,S',A\sim\rho}\{R + \gamma f(S',A';\theta) - f(S,A;\theta)\}\nabla_{\theta}f(S,A;\theta)
                          Loop for each step of episode
                                   Take action A and observe R, S'
                                    If S' is terminal, exit the loop
                                   Choose A' via \epsilon-greedy based on f(S', :; \theta)
                                    \theta \leftarrow \theta + \alpha \{R + \gamma f(S', A'; \theta) - f(S, A; \theta)\} \cdot \nabla f(S, A; \theta)
                                    S \leftarrow S'; A \leftarrow A'
                          End of Loop
End of Loop
```

UNIVERSITY OF TORONTO

Engineering

59

Deep Q-Learning

The Same Old Q Learning Equation

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') \middle| s, a \right]$$

- Fit a Function $Q(s, a; \theta_i)$ to Samples y_i for Q(s, a)
 - Sample

$$y_i = \mathbb{E}_{s' \sim \mathcal{E}} [r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a]$$

Loss for fitting

$$L_{i}\left(\theta_{i}\right) = \mathbb{E}_{s,a \sim \rho\left(\cdot\right)}\left[\left(y_{i} - Q\left(s,a;\theta_{i}\right)\right)^{2}\right],$$

Gradient to improve the fit

$$\nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_{i})\right) \nabla_{\theta_{i}} Q(s, a; \theta_{i})\right]$$

61

Deep Q-Net

- Challenges
 - Catching dynamics
 - Samples are not independent
 - Poor stability
- Remedies
 - Use features carrying historical information
 Inputs include the last 4 consecutive screenshots
 - Experience replay

Experiences for training are sampled according to uniform distribution from buffer

Delayed learning via two networks
 The current and the target networks

Engineering

Extensions of DQN

Double DQN

$$y_i^{DDQN} = r + \gamma Q(s', \operatorname*{arg\,max}_{a'} Q(s', a'; \theta_i); \theta^-)$$

- This is to mitigate the optimality bias
- Prioritized experience replay
 - Which experience to sample from the buffer?
 - Stochastic sampling driven by temporal difference

$$\begin{split} \delta_j &= R_j + \gamma_j Q_{\text{target}}\left(S_j, \arg\max_a Q(S_j, a)\right) - Q(S_{j-1}, A_{j-1}) \\ p_j &\leftarrow |\delta_j| \end{split}$$

Sample transition $j \sim P(j) = p_j^\alpha / \sum_i p_i^\alpha$

Engineering

63

Engineering

Policy-based Method

- Policy Gradient Theorem
- REINFORCE: a Monte Carlo Policy Gradient Algorithm
- Actor-Critic Methods

Value Function-based vs. Policy-based Learning

- · RL so far has been Value Function-based
 - Learning (action) value function
 - Acting optimally given the value function
- An Alternative is Policy-based Learning
 - Optimize policy directly using gradient
 - Good for large action space (even continuous action space)
 - Algorithms are better behaving thanks to gradient-descent optimization
 - Mostly converges to local optimal policy

Engineering

65

3 Steps in Policy Gradient

Step1: Policy Parameterization

Let $\theta \in \mathbb{R}^d$ be the policy's parameter vector, then policy is

$$\pi(a|s,\theta) = Pr\{A_t = a|S_t = s, \theta_t = \theta\}$$

• Step 2: Performance Parameterization

$$J(\theta) \triangleq v_{\pi_{\theta}}(s_0), \quad \forall s_0$$

• Step 3: Performance Improvement using Stochastic Gradient

$$\theta_{t+1} \leftarrow \theta_t + \alpha \cdot \widehat{\nabla J}(\theta_t)$$

Policy Gradient Theorem

Can we actually compute the gradient?

Answer = Yes by Policy Gradient Theorem

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a|s, \boldsymbol{\theta})$$

Engineering

67

Policy Gradient Theorem

$$\nabla v_{\pi}(s) = \nabla \left[\sum_{a} \pi(a|s) q_{\pi}(s,a) \right], \quad \text{for all } s \in \mathbb{S} \qquad \text{(Exercise 3.18)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla q_{\pi}(s,a) \right] \quad \text{(product rule of calculus)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla \sum_{s',r} p(s',r|s,a) (r + v_{\pi}(s')) \right] \quad \text{(Exercise 3.19 and Equation 3.2)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \nabla v_{\pi}(s') \right] \quad \text{(Eq. 3.4)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \quad \text{(unrolling)} \right] \quad \sum_{a'} \left[\nabla \pi(a'|s') q_{\pi}(s',a') + \pi(a'|s') \sum_{s''} p(s''|s',a') \nabla v_{\pi}(s'') \right]$$

$$= \sum_{x \in \mathbb{S}} \sum_{k=0}^{\infty} \Pr(s \to x, k, \pi) \sum_{a} \nabla \pi(a|x) q_{\pi}(x,a),$$

· Policy Gradient Theorem

$$\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$$

$$= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s} \eta(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s'} \eta(s') \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta(s')} \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$\propto \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

Engineering

69

Policy Gradient Theorem

$$\begin{split} \nabla v_{\pi}(s) &= \nabla \left[\sum_{a} \pi(a|s) q_{\pi}(s,a) \right], \quad \text{for all } s \in \mathbb{S} \qquad \text{(Exercise 3.18)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla q_{\pi}(s,a) \right] \quad \text{(product rule of calculus)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla \sum_{s',r} p(s',r|s,a) \left(r + v_{\pi}(s') \right) \right] \\ &\qquad \qquad \text{(Exercise 3.19 and Equation 3.2)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \nabla v_{\pi}(s') \right] \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \right. \\ &\qquad \qquad \text{(unrolling)} \\ &\qquad \qquad \sum_{a'} \left[\nabla \pi(a'|s') q_{\pi}(s',a') + \pi(a'|s') \sum_{s''} p(s''|s',a') \nabla v_{\pi}(s'') \right] \right] \\ &= \sum_{a \in \mathbb{S}} \sum_{k=0}^{\infty} \Pr(s \to x, k, \pi) \sum_{a} \nabla \pi(a|x) q_{\pi}(x,a), \end{split}$$

$$\begin{split} \nabla J(\boldsymbol{\theta}) &= \nabla v_{\pi}(s_0) \\ &= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \\ &= \sum_{s} \eta(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \\ &= \sum_{s'} \eta(s') \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta(s')} \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \\ &= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \\ &\propto \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \end{split}$$

Monte Carlo Policy Gradient Method (REINFORCE)

From policy gradient theorem to REINFORCE,

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a|s, \boldsymbol{\theta})$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a|S_{t}, \boldsymbol{\theta}) \right]. \tag{13.6}$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} \pi(a|S_{t}, \boldsymbol{\theta}) q_{\pi}(S_{t}, a) \frac{\nabla \pi(a|S_{t}, \boldsymbol{\theta})}{\pi(a|S_{t}, \boldsymbol{\theta})} \right]$$

$$= \mathbb{E}_{\pi} \left[q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t}|S_{t}, \boldsymbol{\theta})}{\pi(A_{t}|S_{t}, \boldsymbol{\theta})} \right] \tag{replacing } a \text{ by the sample } A_{t} \sim \pi)$$

$$= \mathbb{E}_{\pi} \left[G_{t} \frac{\nabla \pi(A_{t}|S_{t}, \boldsymbol{\theta})}{\pi(A_{t}|S_{t}, \boldsymbol{\theta})} \right], \tag{because } \mathbb{E}_{\pi}[G_{t}|S_{t}, A_{t}] = q_{\pi}(S_{t}, A_{t}))$$

where G_t is the usual return, which is estimated by Monte Carlo here.

Engineering

71

Policy Grad Theorem to REINFORCE

$$\nabla J(\theta) = E_{\pi} \left[G_t \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \right] \qquad \longrightarrow \qquad \widehat{\nabla J}(\theta) = G_t \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)}$$

Learning equation

$$\begin{split} \theta_{t+1} &\triangleq \theta_t + \alpha G_t \frac{\nabla \pi(A_t | S_t, \theta_t)}{\pi(A_t | S_t, \theta_t)} \\ &= \theta_t + \alpha \cdot G_t \cdot \nabla \ln \pi(A_t | S_t, \theta_t) \end{split}$$

Log Derivative Trick

Recall
$$\nabla \ln x = \frac{\nabla x}{x}$$

Hence, we have

$$\nabla \ln \pi(A_t|S_t,\theta_t) = \frac{\nabla \pi(A_t|S_t,\theta_t)}{\pi(A_t|S_t,\theta_t)}$$

Therefore,

$$\theta_{t+1} \triangleq \theta_t + \alpha G_t \nabla \ln \pi (A_t | S_t, \theta_t)$$

REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s,\theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$

$$(G_t)$$

Engineering

73

Actor-Critic Methods

• Advantage Function $A(S_t)$

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a|s, \boldsymbol{\theta})$$

$$\downarrow \sum_{a} b(s) \nabla \pi(a|s, \boldsymbol{\theta}) = b(s) \nabla \sum_{a} \pi(a|s, \boldsymbol{\theta}) = b(s) \nabla 1 = 0.$$

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} \left(q_{\pi}(s, a) - b(s) \right) \nabla \pi(a|s, \boldsymbol{\theta})$$

$$\widehat{\nabla J}(\theta) = (G_t - b(S_t)) \cdot \nabla \ln \pi(A_t | S_t, \theta_t) = \mathbf{A}(S_t) \cdot \nabla \ln \pi(A_t | S_t, \theta_t)$$

Monte Carlo Actor-Critic Algorithm

```
REINFORCE with Baseline (episodic), for estimating \pi_{\theta} \approx \pi_{*}

Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s,\mathbf{w})
Algorithm parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to \mathbf{0})

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \theta)
Loop for each step of the episode t = 0, 1, \ldots, T - 1:

G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k
\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})
\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})
\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})
\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \nabla \ln \pi (A_t|S_t, \theta)

\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \ln \pi (A_t|S_t, \theta)
\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \ln \pi (A_t|S_t, \theta)
```

UNIVERSITY OF TORONTO

Engineering

75

1-Step Actor-Critic Method

```
One-step Actor-Critic (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s, \theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    Loop while S is not terminal (for each time step):
         A \sim \pi(\cdot|S, \boldsymbol{\theta})
         Take action A, observe S', R
        \delta \leftarrow R + \gamma \, \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
                                                                 (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
        \theta \leftarrow \theta + \alpha^{\theta} I \delta \nabla \ln \pi(A|S, \theta)
         I \leftarrow \gamma I
         S \leftarrow S'
```


Model-based Reinforcement Learning

77

Model-Free vs. Model-Based RL

- Model-free learns policy directly without learning any model
- · Model-based learns models first, which is then be used to find a policy
- Why model-based?
 - 1. More sample efficient
 - 2. Efficient exploration
 - 3. Avoid trial-and-error on a real physical system
- Challenges of model-based RL?
 - 1. Learning models is more challenging than policy
 - 2. Requires more assumptions than model-free
 - 3. Optimization exploits the mis-fit in learned model (objective mismatch)
 - 4. Errors accumulate during unrolling

Engineering

79

Model-based Reinforcement Learning

- Models
 - Anything to predict how the environment will respond
 - Specifically, they involve state transition T(s'|s,a) and reward R(s,a)
- General Structure
 - 1. Act on the environment | state
 - 2. Observe feedbacks
 - 3. Learn the model(s)
 - 4. Plan using the model
 - 5. Update the value function and/or policy

Engineering

Model-based Reinforcement Learning

- How to learn models?
 - Supervised learning given experience tuples (s, a, s', r)
 - $-s, a \rightarrow r$ is a regression problem $R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid S_t, A_t)$
 - $-s, \alpha \to s'$ is a density estimation problem $S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1} \mid S_t, A_t)$
- Types of Models
 - 1. Lookup table
 - 2. Linear model
 - 3. Linear Gaussian model
 - 4. Gaussian process
 - 5. Deep belief network

Engineering

81

Dyna-Q

· Assuming deterministic environment

Tabular Dyna-Q
 Initialize Q(s,a) and Model(s,a) for all $s\in \mathcal{S}$ and $a\in \mathcal{A}(s)$ Loop for
ever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) Q(S, A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow$ random previously observed state

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Dyna-Q with Stochastic Environment

- Lookup Table Model
 - After taking action a from state s at time T
 - Transition dynamics (using table of $|S| \times |A| \times |S|$)

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1}(S_t, A_t, S_{t+1} = s, a, s')$$

• Reward (using table of $|S| \times |A|$)

$$\hat{\mathcal{R}}_s^a = \frac{1}{N(s,a)} \sum_{t=1}^T \mathbf{1}(S_t, A_t = s, a) R_t$$

where $\mathbf{1}(\cdot)$ is the indicator function

N(s, a) is a visitation counter (i.e., $N(s, a) = \sum_{t} \mathbf{1}(S_t = s, A_t = a)$)

Engineering

83

Dyna-Q with Stochastic Environment

- Sampling experience from two sources
 - 1. Sample experience from the model

$$S' \sim \mathcal{P}_{\eta}(S' \mid S, A)$$

$$R = \mathcal{R}_{\eta}(R \mid S, A)$$

2. Sample experience from the environment

$$S' \sim \mathcal{P}_{s,s'}^a$$

$$R = \mathcal{R}_s^a$$

• Given samples, model-free RL can be applied

Dyna-Q with varying planning horizon

Performance comparison w.r.t. planning steps (n)

Longer planning results in a better performance

Engineering

85

PILCO (Probabilistic Inference for Learning COntrol)

· Use Gaussian process to learn dynamics model

- $-x_i$ is the current state, u_i the control and $f(x_i, u_i)$ the change in state given x_i and u_i
- Gaussian Process
 - A probability distribution over functions y(x) such that $y(x_1), y(x_2), ..., y(x_N)$ at an arbitrary set of points $x_1, x_2, ..., x_N$ are jointly Gaussian.
 - More generally, a stochastic process y(x) is specified by the joint probability distribution for any finite set of values $y(x_1), y(x_2), ..., y(x_N)$.

Engineering

Engineering

MARL – Part 1

Game theory
Stochastic game

Multi-agent Reinforcement Learning

- From RL to MARL
 - The only change = there are multiple agents making sequential decisions
 - The evolution of the environment and the rewards are determined by joint actions
 - Agents are interacting with not only the environment but also other agents
- MARL = Game + RL
 - In game, equilibrium is the solution as a result of mutual best responses
 - In RL, state is evolving as a result of actions and intrinsic uncertainty
- In MARL, agents will have to optimize the long-term return in anticipation of future games

Engineering

89

Game Theory

Prisoner's Dilemma

Two suspects are being separately questioned and invited to confess. Player 1 is told "If the other suspect does not confess, then you can cut a very good deal for yourself by confessing. But if the other does, then you would do well to confess, too; Otherwise, the court will be especially tough on you. So, you should confess no matter what the other does."

		Player 2		
		С	d	
	C C	10 Years	25 Years	
Dlayor 1		10 Years	1 Year	
Player 1 D	1 Year	3 Years		
	ט	25 Year	3 Years	

		Player 2	
		С	d
Player 1	С	(1, 1)	(3, 0)
	D	(0, 3)	(2, 2)

Solution Concepts

Nash Equilibrium

A configuration of strategies, one for each player, such that uni-lateral deviation would not improve the payoff.

Prisoner's Dilemma		Player 2	
		С	d
Diaman 1	С	(1, 1)	(3, 0)
Player 1	D	(0, 3)	(2, 2)

Engineering

91

Equilibrium in a Duopoly

Price Competition

- Two pizza stores, UT Pizza and York Pizza, split the market depending on their prices.
- The cost of making a pizza is \$3 for each store.
- A recent market survey reveals the following weekly demands for the two stores:

$$Q_{U} = 12 - P_{U} + 0.5P_{Y}$$

$$Q_Y = 12 - P_Y + 0.5P_U$$

where $P_i \in [0, \infty]$ and demands are given in 1000s.

$$Q_U = 12 - P_U + 0.5P_Y$$
 $Q_Y = 12 - P_Y + 0.5P_U$

$$Q_Y = 12 - P_Y + 0.5P_U$$

Let Y_i be profit per week for player i. Then

$$Y_U = (P_U - 3)Q_U = (P_U - 3)(12 - P_U + 0.5P_Y)$$

$$Y_Y = (P_Y - 3)Q_Y = (P_Y - 3)(12 - P_Y + 0.5P_U)$$

To maximize Y_u , P_u should satisfy $\frac{dY_u}{dP_u} = 0$.

$$\frac{dY_u}{dP_u} = 12 - P_u + 0.5P_Y + 3 - P_u = 15 + 0.5P_Y - 2P_u = 0$$

Likewise,

$$\frac{dY_{Y}}{dP_{Y}} = 15 + 0.5P_{U} - 2P_{Y} = 0$$

Engineering

93

$$\frac{dY_U}{dP_U} = 15 + 0.5P_Y - 2P_U = 0 \implies P_U = \frac{1}{4}P_Y + 7.5$$
: UT's best response

$$\frac{dY_{Y}}{dP_{Y}} = 15 + 0.5P_{U} - 2P_{Y} = 0 \quad \Rightarrow \quad P_{Y} = \frac{1}{4}P_{U} + 7.5 \quad \text{: York's best response}$$

Under Nash Equilibrium

$$\begin{array}{c} P_{u} = 10 \\ P_{Y} = 10 \end{array} \Rightarrow \begin{array}{c} Y_{u} = (P_{u} - 3)(12 - P_{u} + 0.5P_{Y}) = \$49,000 \\ Y_{Y} = (P_{Y} - 3)(12 - P_{Y} + 0.5P_{U}) = \$49,000 \end{array}$$

Engineering

Stochastic Games

- · Sequential Decision Making
 - 1. Markov decision processes
 - · one decision maker
 - multiple states
 - 2. Repeated games
 - · multiple decision makers
 - one state (e.g., one normal form game)
 - 3. Stochastic games (Markov games)
 - · multiple decision makers
 - multiple states (e.g., multiple normal form games)

A Stochastic Game

- In each state, there is a normal form game
- After a round, the game randomly transitions into another state
- Transition probabilities depend on state and joint actions by all agents

Engineering

95

Formal Definition of Stochastic Games

SG is defined by a tuple $(n, S, A_1 ... A_n, T, R_1 ... R_n)$

n: the number of players,

S : the set of states,

 A_i : the set of actions available to player i (and A is the joint action space

$$A_1 \times \cdots \times A_n$$
),

T: the transition function $S \times A \times S \rightarrow [0,1]$, and

 R_i : the reward function of the *i*-th agent $S \times A \rightarrow R$.

