

专注于商业智能BI和大数据的垂直社区平台

离散型随机变量的概念

Allen

www.hellobi.com

课程目录

- 随机变量
- 一维离散型随机变量
- 随机变量的分布律
- 多维随机变量
- 常见的离散型分布
- 小结

随机变量

将随机事件和变量与实数联系起来,这种变量在每次试验之前是不能确定的,取值是随机的——随机变量

一维离散型随机变量

- 一维离散型随机变量:随机变量X的全部可能取值只有有限多个或可列无穷多个 $\xi = \xi(x)$,就称为离散型随机变量
- 例:设样本空间 Ω ={随机抽取编号为1,2,...,10的相同球},对于 $x \in \Omega$,令 $\xi(x)=x$ 编号号码,则 $\xi(x)$ 是 Ω 上的一个一维离散型随机变量

编号(x)	1	2	 10
概率(P)	1/10	1/10	 1/10

随机变量的分布律

• 例:设样本空间 Ω ={随机抽取编号为1,2,...,10的相同球},对于 $x \in \Omega$,令 $\xi(x)=x$ 编号号码,则 $\xi(x)$ 是 Ω 上的一个一维离散型随机变量

编号(x)	1	2	 10
概率(P)	1/10	1/10	 1/10

随机变量的分布律

随机变量的分布律—定义和性质

- 定义:对于离散型随机变量X的可能取值为 x_i 的概率为 $P\{X = x_i\} = p_i, i = 1,2,...$ 就称为离散型随机变量X的分布律
- 随机变量的分布律具有以下性质:
 - 1. $p_i \ge 0, i = 1, 2, ...$;
 - 2. $\sum_{i=1}^{+\infty} p_i = 1$

多维随机变量

- 例:对于一个家庭有两个小孩,如果用1表示男孩,用0表示女孩,则 样本空间Ω={(1,1)(1,0)(0,1)(0,0)}
- •对于上面的例子,每一个试验结果与一个二元组对应,如果以x表示第一胎的性别,以y表示第二胎的性别,则(x,y)就称为二维随机变量
- 更一般地,如果每个试验结果可以有n个数值与之对应,那么就称这种 对应关系是一个n维随机变量

多维随机变量—分布律

•例:把2个白球和2个红球等可能地放入编号为1、2的两个盒子中,将落入第1号盒子中的白球个数记为x,将落入第2号盒子中的红球个数记

为 y ,贝	则(x,y)是一	个二维随机	几变量。	分布律	<u> </u>	边际分布
	x y	0	1	2	$P_{i.}$	超極別和
	0	$\frac{1}{4} * \frac{1}{4}$	$\frac{1}{4} * \frac{1}{2}$	$\frac{1}{4} * \frac{1}{4}$	$\frac{1}{4}$	
	1	$\frac{1}{2}*\frac{1}{4}$	$\frac{1}{2}*\frac{1}{2}$	$\frac{1}{2}*\frac{1}{4}$	$\frac{1}{2}$	
	2	$\frac{1}{4}*\frac{1}{4}$	$\frac{1}{4}*\frac{1}{2}$	$\frac{1}{4}*\frac{1}{4}$	$\frac{1}{4}$	
	$P_{.j}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$		
	边	际分布				

常见的离散型分布—两点分布

• 0-1分布或两点分布:随机变量取值为0和1

X	0	1	
Р	р	q	特例: 抛硬币就是当p=1/2时的特例

• 若随机变量X的分布律为 $P\{X=k\}=p^k(1-p)^{1-k}, k=0,1,(0 称X服从参数为 p的两点分布,记作<math>X \sim B(1,p)$

伯努利概型

- 定义:如果试验E只有两个可能的结果 $A \pi \overline{A}$,并且 $P(A) = p, P(\overline{A}) = 1 - p = q(其 + 0 把E独立地重复n次试验就构成了一个试验,$ 这个试验称作n重伯努利试验,简称伯努利试验
- 解释:如果一次伯努利试验结果为 $x=(x_1,x_2,...,x_n)$,其中 x_i 为A或 \overline{A} ,如 果 x 中有 $k \cap A$, 那么就有 $n-k \cap \overline{A}$, 则 $P(x)=p^kq^{n-k}$, 如果用 A_k 表示n重 伯努利试验中事件A出现k次,则 $P(A_k)=\binom{n}{k}p^kq^{n-k},0\leq k\leq n$ 例: 抛掷n枚相同的硬币,恰好出现k个正面的概率为: $P(A_k)=\binom{n}{k}\left(\frac{1}{2}\right)^n,k=1,2,\ldots,n$

常见的离散型分布—二项分布

• 定义:如果随机变量X的分布律为 $P\{X = k\} = C_n^k p^k (1-p)^{n-k}, k = 0,1,...,n,$ 则称X服从参数为n,p的二项分布,记为 $X \sim B(n,p)$,其中 $C_n^k p^k (1-p)^{n-k}$ 是n重伯努利试验中事件A恰好发生k次的概率。

例:抛掷n枚相同的硬币,恰好出现k个正面的概率为: $P(A_k) = \binom{n}{k} \left(\frac{1}{2}\right)^n, k = 1, 2, ..., n$

小结

- 随机变量
- 一维离散型随机变量
- 随机变量的分布律
- 多维随机变量
- 常见的离散型分布
- 小结

