

Aula - 04.1

Imagem digital – Bitmap e Vetores

Design Digital

Prof. Diego Max

A imagem digital

A imagem digital está relacionada com aquela imagem que usa **dados**.

No caso de um computador para que a imagem seja reproduzida, ela antes é composta por **códigos binários**.

Existem vários formatos para cada tipo de imagem digital.

Tipos de imagem

Antes de detalharmos os diferentes formatos de imagem, é importante explicar alguns conceitos preliminares, como os tipos de imagem.

Basicamente, existem 2 tipos

de imagem digital:

Bitmap e Vetorial.

FATEC Registro – Disciplina: Design Digital – Prof. Diego Max – DSM - 1

Bitmap é um tipo de imagem bastante comum no digital e a sua tradução significa, literalmente, **mapa de bits**.

Isso quer dizer que o Bitmap é composto por **pixels**, um conjunto de pontos que possuem uma **informação de cor**. Os agrupamentos de pixel, por sua vez, fazem com que nossos olhos consigam identificar os elementos e a imagem como um todo.

Pixels em uma imagem bitmap

Pixels em uma imagem bitmap

Pixels em uma imagem bitmap

Pixels em uma imagem bitmap

PPI - Pixels Per Inch

Para medir a qualidade e *resolução* de uma imagem Bitmap existe uma métrica chamada **PPI — Pixels Per Inch** — que mede a quantidade de pixels por polegada.

Quanto maior o **PPI** mais nítida a imagem, quanto menor o **PPI** menos nítida é a imagem. Por exemplo, uma imagem a **200 PPI** possui **200 pixels por polegada** que compõem uma imagem mais nítida do que uma de **100 PPI**.

PPI - Pixels Per Inch

DPI - Dots Per Inch

Pontos por polegadas

150 DPI - É uma resolução indicada para documentos de texto, preferencialmente para uso interno. Não é recomendado para imagem.

300 DPI - Imagens ficam com melhor qualidade, porém para material publicitário (folders, cartões, apresentações) uma resolução superior é melhor recomendada.

600 DPI - Alta qualidade de imagem. Impressoras com essa resolução são capazes de imprimir imagens com boa nitidez e cores fortes.

1200 DPI - Resolução fotográfica com maior realismo de cores. Utilização por profissionais do setor gráfico.

ACIMA DE 1200 DPI - Alto realismo de cor, definição e nitidez. Resolução indicadas para fotógrafos profissionais.

DPI - Dots Per Inch

Uma das desvantagens do *Bitmap* é o **redimensionamento** da imagem.

Aumentar ou reduzir uma imagem Bitmap faz com que pixels sejam eliminados ou interpolados.

Em ambos os casos há uma **perda na qualidade da imagem**.

W: 122, H: 271

Interpolação de Pixels

Quando ampliamos uma imagem digital, estamos criando pixels entre os pixels existentes. Já que o computador não sabe exatamente o que deveria estar ali, ele tenta "adivinhar", criando novos pixels a partir de fórmulas matemáticas, em um processo chamado de **interpolação**.

Interpolação de Pixels

Outro tipo comum de imagem digital é a **vetorial**.

Ainda que a imagem vetorial também traga informações de cor, como nos Bitmaps, a diferença é que ela carrega informações adicionais, como linhas e curvas.

Linhas e curvas de uma imagem vetorial

Essas informações adicionais são determinadas e representadas por **fórmulas matemáticas**. Dessa forma, quando redimensionamos uma imagem vetorial, todos os seus elementos aumentam ou diminuem proporcionalmente, **não afetando a qualidade da imagem**.

Por possuir essa flexibilidade de redimensionamento e a possibilidade de carregar diversas informações por meio de fórmulas matemáticas, as imagens vetoriais são muito utilizadas para trabalhos em design, como criação de identidade visual, por exemplo.

Formatos de imagens digitais

Primeiramente, um conceito importante para entender os *formatos de imagem digital* é a **taxa de compressão**.

Compressão é um processo feito por um programa de computador que **diminui o tamanho** de uma imagem digital.

Taxa de compressão de imagem digital

A compressão está associada aos formatos de imagem digital.

Cada formato é o resultado de um tipo de compressão de imagem.

A partir disso, a taxa de compressão é o resultado da razão entre o tamanho final e o tamanho inicial de uma imagem.

Nesse sentido, quanto menor a imagem, maior a taxa de compressão.

Formatos de imagem digital

Existem diversos tipos de formatos de imagem digital, cada um com sua particularidade e indicação de uso.

Iremos abordar os principais formatos e isso não quer dizer que esses sejam os únicos, mas sim, os **mais comuns**.

JPEG/JPG

O **JPEG**, ou **JPG**, é um dos formatos de imagem mais conhecidos pela maioria das pessoas.

Esse acrônimo que significa:

Joint Photographic Experts Group.

JPEG/JPG

(O JPEG ganha em compressão, mas perde em qualidade)

O motivo pelo qual o JPEG se tornou bastante popular é pela sua **taxa de compressão** bastante ajustável e flexível.

Isso faz com que as imagens consigam ser bastante comprimidas, diminuindo consideravelmente o seu tamanho.

GIF

Outro tipo de formato de imagem digital muito comum é o **GIF** (*Graphic Interchange Format*).

Assim como o JPEG, é bastante popular na internet.

O GIF foi inventado pela empresa **CompuServe**, em **1987**, e foi o primeiro formato que possuía alta taxa de conversão.

Naquela época, o objetivo do GIF era ser um formato leve e de rápido carregamento, sendo possível utilizá-lo nas antigas conexões de internet discada.

Para isso, o GIF possuía uma **limitação de 256 cores**, o que fazia com que imagens complexas e com muitos detalhes ficassem com uma qualidade muito baixa.

GIF

Apesar disso, o GIF tinha dois atrativos muito interessantes:

A possibilidade de ter imagens com fundo transparente e criar pequenas animações de até 15 frames por segundo.

Hoje, o GIF é muito associado às animações engraçadas que encontramos nas redes sociais. O GIF estático se tornou muito antigo por conta da baixa qualidade de resolução.

GIF

PNG

O PNG seria como uma versão 2.0 do GIF.

Isso acontece porque o algoritmo responsável pela compactação do GIF foi patenteado em 1995.

Por conta disso, a Adobe resolveu investir em um novo formato para substituir e melhorar o antigo GIF.

PNG

Foi assim que surgiu o *Portable Network Graphics*, o **PNG**, um formato de imagem digital muito conhecido.

As melhorias feitas em relação ao GIF garantiram a sua popularidade:

- Possui uma variação de cores muito maior do que a do GIF;
- Também é possível deixar o fundo da imagem transparente (canal alpha);
- Seu algoritmo de compactação é mais eficiente, garantindo maior qualidade.

JPEG, PNG e GIF

SVG

O SVG (Scalable Vector Graphics - gráficos vetoriais escalonáveis) é um formato de imagem digital vetorial e não possui vínculo com nenhuma empresa.

Esse formato pode ser reconhecido pela maioria dos navegadores, sendo possível a sua utilização em sites, blogs ou outra plataforma online. Programas como **Inkscape**, **GIMP** e até mesmo o **Illustrator** da Adobe oferecem suporte a esse tipo de arquivo.

O PDF (Portable Document Format) é outro formato criado pela Adobe e possui muita versatilidade, podendo ser usado para armazenar imagens, textos, vetores e etc.

Seu uso é bastante recomendado quando enviar imagens ou documentos importantes, como contratos, manual de identidade da marca ou versões finais de ilustrações.

PDF

PSD

O formato de imagem digital **PSD** corresponde a extensão de arquivos criada a partir do **Adobe Photoshop**. Possui suporte a **camadas**.

Após trabalhar com o formato PSD para editar as imagens, elas são convertidas para formatos mais acessíveis e compatíveis como **JPEG**, **PNG** ou outros.

WEBP, TIFF e AVIF

O **WEBP** é um formato criado pelo **Google**. A ideia é juntar o melhor de outros formatos, a boa compressão do **JPEG**, a qualidade e possibilidade de fundo transparente do **PNG** e a facilidade de animação, como o **GIF**.

O formato **TIFF** (**Tagged Imagem File Format**) é considerado por muitas pessoas como o melhor formato para imagens de alta qualidade. Criado pela **Adobe** e é muito indicado para trabalhar com softwares de edição e para a impressão. o TIFF **não permite compressões**.

O formato **AVIF** é recente e vem com uma promessa de ser tão versátil quanto o **JPEG**, em termos de compressão, mas mantendo muito mais a qualidade e resolução. A ideia é de que o **AVIF** consiga trabalhar num tamanho 50% menor do que o **JPEG**, mas sem que haja perda na qualidade da imagem.

Formatos de imagens digitais

De maneira geral, os melhores formatos para impressão são o TIFF e o PDF.

Já para a utilização em **mídias sociais** e na **web**, você pode usar o **JPEG**, **WEBP**, **GIF** ou até mesmo o **PNG**.

Mas tenha sempre em mente o equilíbrio entre **tamanho** x **qualidade**.

Cada plataforma e forma de uso pedem um tipo de formato diferente que atenda a essas especificações.

Aula - 04.2

Resoluções de telas e imagens

Design Digital

Prof. Diego Max

Tamanho de tela x Resolução de tela

Há quem confunda **resolução** com **tamanho de tela**.

A primeira faz referência às dimensões físicas da tela; a segunda, à quantidade de informação que é possível exibir dentro desses limites físicos.

Tamanho de tela

Por padrão, o tamanho da tela é medido em **polegadas** (inch, em inglês).

Cada polegada, vale frisar, equivale a 2,54 cm ou 25,4 mm e também pode ser representada pelas aspas, por exemplo: 32" (32 polegadas) ou 65" (65 polegadas).

Tamanho de tela

Toda vez que você ouvir falar de um smartphone de 6 polegadas ou de uma tela de 40 polegadas, saberá que a medida faz referência ao tamanho da tela do dispositivo.

Um tablet de **10"**, por exemplo, indica que a sua tela tem **25,4 centímetros** (10 x 2,5 cm).

Tamanho de tela

Essa medição de tamanho é sempre feita considerando a diagonal da tela.

Assim, medimos o tamanho da tela calculando a distância em polegadas de um canto inferior ao outro canto superior.

5,1"

Resolução de tela

A imagem exibida na tela é dividida em minúsculos pontos chamados **pixels**.

Lembrando que um pixel é a menor unidade de medida que uma imagem pode ter.

Esses pixels são organizados em linhas (horizontal) e colunas (vertical).

Resolução de tela

A resolução, portanto, nada mais é do que a medição que indica **quantos pixels há em cada linha** e **em cada coluna da tela**.

Assim, uma resolução de **1920 x 1080** pixels indica que a tela é capaz de exibir **1920 pixels por linha** e **1080 por coluna**.

É como uma **matriz**. Via de regra, o primeiro número faz referência à **largura**; o segundo, à **altura** da tela.

Resolução de tela

Resolução

Note que essa medida também é válida para imagens e vídeos.

Você pode ter, por exemplo, uma figura de 300 x 250 pixels ou um filme de 720 x 405 pixels.

Resolução

160 x 120 pixels

300 x 225 pixels

Aspect ratio (ou proporção de tela)

Há outra característica importante relacionada às telas: **a proporção** que determina quão largas estas são.

Algumas telas têm formato mais "quadrado", outras são mais "esticadas".

Como esse fator pode influenciar na exibição de imagens, vídeos e até mesmo nas resoluções, a indústria trabalha com padrões pré-determinados de formatos: o **aspect ratio** ou **proporção de tela**.

Aspect ratio (ou proporção de tela)

Até pouco tempo atrás, especialmente na época dos televisores e monitores CRT, o mais comum era o formato **4:3**. Isso significa que, para cada quatro partes iguais de largura, a tela possui outras três de mesma proporção na altura.

Um dos padrões de **aspect ratio** mais comuns é o **16:9**: repetindo a fórmula, para cada 16 partes iguais na largura, há outras 9 de mesmo tamanho na altura.

Esse é um formato panorâmico, ou seja, **widescreen**, e se tornou muito comum no mercado em monitores e TVs. Mas há outros, embora a maioria seja pouco utilizada:

· 3:2

16:9

4:3

• 16:10 (ou 8:5)

5:4

17:9

14:9

21:9

Aspect ratio (ou proporção de tela)

Padrões de resoluções

- Resolução VGA 640 x 480 px
- Resolução HD (720p) 1280 x 720 px
- Resolução Full HD (1080p) 1920 x 1080 px
- Resolução 4K (UHD ou 2160p) 3840 x 2160 px
- Resolução 8K (FUHD ou 4320p) 7680 x 4320 px

Questionário de fixação

Aula 04:

https://forms.office.com/r/vLw3MpmZte