Wild Automorphisms of the Complex Field of Finite and Infinite Orders

By Elizabeth Wolfe and Faculty Collaborator Marlow Anderson

Summary

A wild automorphism is an automorphism of the complex field that does not leave the real numbers fixed, unlike the two 'classic' automorphisms of the complex numbers: the identity automorphism and conjugation. In this paper we use Zorn's Lemma to prove that any automorphism of a subfield of the complex field that has a finite order can be extended to an automorphism of the entire complex field of the same order. It then follows that there exists automorphisms of the complex field of order n for every finite n. Finally, we show that there exists an automorphism of the complex field of infinite order.

In Theorem 1.1, we are going to apply form's Lemma to a set of functions. If we consider an automorphism, δ , and the set of automorphisms which are notingsions of δ , we may call this set a fundity δ .

Each of the notemarphisms in this set can be thought of an anisota of ordered gains. Since F is a family of convenienthama, the domain of any function in F is equal to the range, if $f \in F$, then the set $f \in X \times X$ is a function such that if $(a, b], (a, c) \in F$, then b = c. It follows that if $f, g \in F$, and f is a subset of g, then $\text{dom}(f) \subseteq \text{dom}(g)$. This is because if a classify, then f(a) = g(g). Thus, F may be partially control to inclusion.

Theorem 1.1 will also only on Lemma 3.25 and 5.24 from [1]. These two lemmas allow as to extend automorphisms.

Theorem 1.1 Any order a automorphism of a subfield of C can be obtended to an order a automorphism of C, where $n \in \mathbb{N}$.

Theorem 1.1 exercisits any order a summarphism of a subfield of C can be extended to on order n a stomorphism of C, but in cross towards such an automorphism Ω C, we must have that there exists at least one automorphism of cases n to $\in \mathbb{N}$, so that F is non-empty and we may apply South Laman. We may show this by noting that if $G\Omega(\mathbb{Q}(n), \mathbb{Q})$ is cyclic, then $\Omega(n)$ is called a cyclic extension. It is containly true that there exists a cyclic extensions of \mathbb{Q} that have elements of order n $\mathbb{N} \cap \mathbb{N}$, and indeed III.Bort proved that S_0 is always a Gates group. Thus, there come subconceptains of the subfields of C that use of order nthe C N, and Corollary 1.1 immediately follows from Theorem 1.1.

Curollary L.I There exists an automorphism of C of order s for all $s \in N$.

If there exists an emorphisms of C of order n for all of N_n then it is natural to ask if there exists a strongly-min of order C for a larger order. Theorem 1.2 then the fact that if we pick than no others that are transcendental over $\mathbb{Q}(n, d)$, then $\mathbb{Q}(n) \cong \mathbb{Q}(d)$ by an isomorphism d when d(d) = 0.

Theorem 1.5 There exists an automorphism of C that is of infinite order.

Frag. Consider $\phi: \mathbb{Q}(\tau) \to \mathbb{Q}(\tau+1)$, where ϕ leaves \mathbb{Q} fixed, and $\phi(r) = r+1$. Thus, ϕ is a function, and ϕ is at least an isomorphism. The function ϕ is of infinite order, after $\phi'(\tau) = \pi + n \neq \tau$, $\forall r \in \mathbb{N}$, $n \neq 0$. Notice that $\mathbb{Q}(\tau) = \mathbb{Q}(r+1)$. Thus, ϕ is an automorphism.