Recurrence Relation:

A recurrence relation for the sequence $\{an\}$ is an equation that expresses an in feares of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_{n-1}$, for all ineleges n with $n > n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Ex Determine whether the sequence $\{a_n\}$, where $a_n = 3n$ for every nonnegative integer n, is a solution of the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for n = 2, 3, 4, ...

Answer the same question where $a_n = 2^n$ and where $a_n = 5$.

Soln: Suppose that $a_n = 3n$ for every nonnegative integer n. For n > 2, $2a_{n-1} - a_{n-2} = 2\left[3(n-1)\right] - 3(n-2)$

=6n-6-3n+6=3n=an.

Therefore, Ean?, where an = 3n, is a solution of the RR.

Suppose that an = 2n for $\forall n \in \mathbb{Z}^{+} \cup \{0\}$.

 $2 a_{n-1} - a_{n-2} = 2(2^{n-1}) - 2^{n-2} = 2^{n} - 2^{n-2} \neq 2^{n}$

or $a_0 = 2^\circ = 1$, $a_1 = 2$, $a_2 = 4$ and $a_2 = 2a_1 - a_0 = 4 = 2(2) - 1$

i. {2"} is not a solution of the RR.

Suppose that $a_m = 5$ for $\forall n \in \mathbb{Z}^{+} \cup \{0\}$. Then for n>, 2 $a_m = 2a_{m-1}a_{m-2} = 2(5) - 5 = 5 = a_m$.

i, Ear 68 is a solution of the RR.

near Recurrence Relation:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

Om = C_1 an- $1+C_2$ an- $2+\ldots+G_k$ an-k, where C_1,C_2,\ldots,C_k are real numbers, and $C_k\neq 0$.

Ex. Pn = (1.11) Pn-1 is a linear homogeneous RP of degree 1.

 $f_n = f_{n-1} + f_{n-2}$ "

 $a_n = a_{n-5} \qquad \qquad 11$

 $a_n = a_{n-1} + a_{n-2}^2$ is wf linear

Hn = 2Hn-1+L is not homogeneous

Bn = nBn-1 does not have constant coefficients.