Amber Analysis

KALHAN KOUL, PO-HAN CHEN

Outline

- Runtime
- Area
- Power
- Showcasing Amber
 - How far are we from industry competitors

Stantord University

Runtime

SoC Runtime Components

SoC Runtime Components

SoC Runtime Components

Idle cycles (bubbles) found in:

- 1. AXI-3
- 2. inter-stage transition

Runtime Problem 1: Bubbles in AXI-3

Runtime Problem 1: Bubbles in AXI-3

Runtime Problem 2: Inter-Stage Idle Cycles

Runtime Problem 2: Inter-Stage Idle Cycles

- Account for 15%~20% of total runtime
- Occurs when there is an interrupt handler in firmware
 - But interrupt handler shouldn't take hundreds of cycles...
 - Still under investigation

Stanford University

Area

Amber SoC Cell Area Breakdown

Cell Density is Low

$$Density = \frac{\sum (cell \ area \ of \ main \ components)}{PostP \& R \ Total \ Area}$$

$$= \frac{7.9 \ mm^2}{14.2mm^2} = 55.6\%$$

- Density
 - Memory Tile = 85.8%
 - PE Tile = 86.2%
 - Tile Array = 63.8%
 - SoC = 55.6%

Cell Density is Low

$$Density = \frac{\sum (cell \ area \ of \ main \ components)}{PostP \& R \ Total \ Area}$$

$$= \frac{7.9 \ mm^2}{14.2mm^2} = 55.6\%$$

Global Buffer Area Breakdown

Memory Tile / PE Tile Area Breakdown

Stanford University

Power

Power Breakdown Disclaimer

- Goal of this section is **not** to prove correlation with real chip, but to suggest improvements for Onyx
- We have correlated a single add operation to within 20%
- Why is full chip correlation difficult?
 - Hold Violation in GLB means we cannot use sdf annotation on current design
 - Need to match freq with simulation
 - Gate level simulation runtimes 24+ hours
- Power Analysis
 - Power of chip blocks (SoC, GLB, Tile Array)
 - Power Group (clock network, combinational, memory, etc.)
 - Functional Group (ex. PE tile: alu, pond, SB, CB etc.)

anford University
SoC Block Power Breakdown (Gaussian Unroll=1)

Baseline - 496 mW @ 1ns

Power Gate Array, Stall Unused GLB - 270

- 1 GLB tile for input output
- 9 PE tiles and 2 MEM tiles
- GLB consumption high even when unused tiles are clock gated

anford University
SoC Power Breakdown Unroll = 1

All blocks have > 80% clock network power consumption

Note: Small application, unfairly weighs clock network

anford University
SoC Block Power Breakdown (Gaussian Unroll=16)

- 16 GLB tiles for input output
- 144/384 PE tiles and 16/128 MEM tile

- All blocks have ~ 50% clock network power consumption
- Note: Looks correct for a larger application

In Use PE, MEM, and GLB Tile Breakdown

These blocks have lower clock network power consumption, but MEM and GLB still > 50%

Global Buffer Tile Power Breakdown

- SRAM composed of 2 banks of 8 macros each
 - Used macros (2) 17%
 - o Unused macros (14) − 8%
- Interconnect 30.92%
 - Due to tall/skinny shape, several buffers are needed to meet timing
- Control 11.39%

PE and MEM Power Breakdown (mW)

- Other is mostly clock buffers
- pond not used in this app

Configurations regs and muxes are flattened out and counted in others

PE/MEM Tile Power Histogram, Unroll = 1

PE/MEM Tile Power Histogram, Unroll = 16

Showcasing Amber

Comparing our Applications against Industry Competitors

- Gaussian/Blur, Harris, Unsharp, and Camera compared against industry hardware
- Apply a Series of Optimizations
 - Scheduling Optimizations (Clockwork)
 - Unrolling
 - Pipelining

Register

IO

Tile

PE

Tile

MEM

Tile

Unrolling

Maximum unrolling bounded by compute or available GLB tiles

0x

Harris-2, Camera-1, Unsharp-3, Blur-14

■ Unrolled by 1

Pipelining

Comparison with Industry

- Even with a 7x improvement in pipelining, our runtime will not beat industry hardware for applications like camera pipeline
- Need to look at the application graphs we are generating
- If apps like unsharp and camera pipeline cannot be unrolled very much, why do we have such a large global buffer?

Improve Amber Demonstration

Improve Current Results

- Continue fixing pipelining
- Verify measurements with new board
- Utilize TLX to run an end to end demo on large tiles, several images
 Add to our Suite of Applications
- Add Machine Learning applications
- Showcase virtualization (design a nice IP/CV+ML story)

Improvements for Onyx

- Fix Bugs and Necessary Optimizations
 - Hold violation in GLB
 - Pond Enhancements
 - GLB input pattern support
- Debug enhancements
 - Read out of Memory tiles over AXI
- Rethink Design Decisions
 - O Do we need 128 MEM tiles?
 - However, next PEs will have both Multipy-Add

Application	Blur	Unsharp	Camera	Harris
Target Output Rate	14	9	3	2
(pixels/cycle)				
Temporal	72%	83%	73%	83%
Occupancy				
Frequency	140 MHz	60 MHz	70 MHz	130 MHz
# PE / 384	266	303	294	206
# MEM / 128	14	36	34	17
# GLB / 16	14	9	3	6
# 1-bit Routing	69	296	417	226
Tracks / 10240				
# 16-bit Routing	1743	1892	1410	791
Tracks / 10240				