Combinational Logic II

Outline

- Decoders
- Encoders
- Multiplexers
- Demultiplexers

- A n-to-2ⁿ decoder takes an n-bit input and produces 2ⁿ outputs. The n inputs represent a binary number that determines which of the 2ⁿ outputs is *uniquely* true.
- The truth table for the 2 to 4 line decoder is given on the right
 - The 2-bit input is called A₁A₀, and the four outputs are Z₀-Z₃.
 - If the input is the binary number of i, then the corresponding output Z_i is uniquely true.
 - For instance, if the input A₁A₀ = 10 (decimal 2), then output Z₂ is true, and Z₀, Z₁, Z₃ are all false.

A ₁	A ₀	Z ₀	Z ₁	Z ₂	Z ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

 The truth table for the 3 to 8 line decoder is similar to that of the 2 to 4 line decoder.

Χ	Υ	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

- From the truth table for the 3 to 8 line decoder the implementation on the right can be drawn.
- The 3 to 8 line decoder is widely used, typical applications include memory selection and keyboard scanning.

6

- If we look at each output term of the Decoder, it looks familiar? It is "Minterm"!
- Decoders are sometimes called Minterm Generators:
 - For each of the input combinations, exactly one output is true.
 - Each output equation contains all of the input variables.
- This means that if you have a sum of minterms equation for a logic function, you can easily use a decoder (a minterm generator) with an "OR" gate to implement that function.

 For example, from the full adder truth table we have a sum and carry

$$S = \overline{X}.\overline{Y}.Z + \overline{X}.Y.\overline{Z} + X.\overline{Y}.\overline{Z} + X.Y.Z$$

$$C = \overline{X}.Y.Z + X.\overline{Y}.Z + X.Y.\overline{Z} + X.Y.Z$$

 An off-the-shelf 3 to 8 line decoder can be used to implement the full adder.

Χ	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	Λ	1	Λ

$$C(X,Y,Z) = \Sigma m(3,5,6,7)$$

 $S(X,Y,Z) = \Sigma m(1,2,4,7)$

Enable Inputs

- Many devices have an additional enable input, which is used to "activate" or "deactivate" the device
 - EN=1 "activates" the decoder, so it behaves as specified earlier. Exactly one of the outputs will be 1.
 - EN=0 "deactivates" the decoder. All of the decoder's outputs are 0.
- We can include this additional input in the decoder:

Enable Inputs

The truth table of a decoder with EN input:

EN	51	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

EN	S 1	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

In this table, when EN=0, the outputs are always 0, regardless of inputs S1 and S0. We can abbreviate the table by writing x's in the input columns for S1 and S0.

Building a larger decoder

- You could build a larger decoder directly from the truth table and equations as shown earlier. Another way to design a larger decoder is to break it into smaller pieces.
- For example, we could build a 3-to-8 decoder using two 2-to-4 decoders.
 - When S2 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder.
 - When S2 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder.

52	51	50	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Variation of Standard Decoder

The decoders we've seen so far are active-high decoders.

EN	51	50	Q	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 An active-low decoder is the same thing, but with an inverted EN input and inverted outputs.

EN	51	50	Q0	Q1	Q2	Q3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	×	×	1	1	1	1

Active-low Decoders

Active-high decoders generate minterms, as we've already seen.

 The output equations for an active-low decoder are similar, yet somehow different, see below:

It turns out that active-low decoders generate maxterms.

Active-low Decoders

- So we can use active-low decoders to implement arbitrary functions with a product of maxterms.
- For example, we can implement the full adder using an active-low decoder.

- The "ground" symbol connected to EN represents logical 0, so this decoder is always enabled.
- Remember that you need an AND gate for a product of sums.

Encoders

- An encoder is a combinational logic circuit which performs the inverse operation of a decoder, i.e. an encoder converts m ≤ 2ⁿ input lines into n output lines.
- The truth table of the 8 to 3 line encoder is the inverse of the 3 to 8 line decoder.

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	Χ	Υ	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority Encoders

- In priority
 encoders, the
 input having the
 highest priority
 will take
 precedence.
- 8-to-3 Priority
 Encoder on the right

D_0	D_1	D_2	D_3	D_4	D ₅	D_6	D ₇	А	В	С
1	0	0	0	0	0	0	0	0	0	0
x	1	0	0	0	0	0	0	0	0	1
x	x	1	0	0	0	0	0	0	1	0
x	x	X	1	0	0	0	0	0	1	1
x	x	X	x	1	0	0	0	1	0	0
x	x	X	х	X	1	0	0	1	0	1
х	X	X	X	X	X	1	0	1	1	0
Х	X	Х	Х	Х	Х	Х	1	1	1	1

- A multiplexer operates in a similar way to an encoder. Rather than converting 2ⁿ input lines into n output lines, a multiplexer converts 2ⁿ input lines into a single output line. To do this a multiplexer needs an additional n selection lines.
- A 2 to 1 line multiplexer is shown below.

- When the selection line S (Sel) is set to '1' the data input I_0 is passed to the output.
- When the selection line S (Sel) is set to '0' the data input I_1 is passed to the output.
- The multiplexer is also known as a data selector.

- As the number of input lines increases more selection lines are needed.
- For a 4 to 1 line multiplexer we have a truth table as below and an implementation as on the right.

S ₁	S ₀	Υ
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

- It can be convenient to use lower order multiplexers to create higher order multiplexers.
- On the right an implementation of a 16 line multiplexer uses five 4 line multiplexers.

Implementing Boolean Function Using Multiplexer

- Multiplexer can be used to implement arbitrary functions. One way to implement a function of *n* variables is to use an *n-to-1* multiplexer:
 - Connect the function's input variables to the selection inputs. These are used to indicate a particular input combination.
 - For each minterm m_i of the function, connect 1 to the data input Di.
 Each data input corresponds to one row of the truth table.
- For example, let's look at $f(x,y,z) = \sum m(1,2,6,7)$.

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- We can actually implement $f(x,y,z) = \sum m(1,2,6,7)$ with just a 4-to-1 multiplexer, instead of an 8-to-1.
- Step 1: Find the truth table for the function, and group the rows into pairs. Within each pair of rows, x and y are the same, so f is a function of z only.
 - When xy=00, f=z
 - When xy=01, f=z'
 - When xy=10, f=0
 - When xy=11, f=1
- Step 2: Connect the first two input variables of the truth table (here, x and y) to the selection bits S1 S0 of the 4-to-1 multiplexer.
- Step 3: Connect the equations above for f(z) to the data inputs D0-D3.

×	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

More Examples

\boldsymbol{A}	B	C	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	
0	0	1	0	0	F = D
0	0	1	1	1	
0	1 1	0	0 1	1 0	F = D'
0	1 1	1 1	0 1	0	F = 0
1 1	0 0	0	0 1	0	F = 0
1	0	1	0	0	F = D
1	0	1	1	1	
1	1	0	0	1	<i>F</i> = 1
1	1	0	1	1	
1	1	1	0	1	<i>F</i> = 1
1	1	1	1	1	

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$$

Summary of Implementing Boolean Function Using Multiplexer

- A Boolean function of n variables can be implemented with a multiplexer with n-1 selection inputs and 2ⁿ⁻¹ inputs.
- The first *n*-1 variables are connected to the selection inputs of the multiplexer.
- The remaining single variable is used for the data inputs. Each data input can be 0,1, the variable, or the complement of the variable.

Demultiplexers

- Perform the inverse operation of a multiplexer, i.e. converts a single input line into 2ⁿ output lines.
- Again to do this a de-multiplexer needs to have access to the n selection line signals used by the multiplexer.
- If the multiplexer and de-multiplexer are only connected by a single data line a scheme is required so that both the multiplexer and de-multiplexer are using the same selection line signals.

se

seli

Multiplexing and Demultiplexing

Example: Multiplexing in Communications

- Line between Mux and Demux above represents communications channel e.g. telephone cable, or "free space" in a wireless system...
- This type of system is used in mobile phones. It allows many users to communicate at the same time along the same channel.

Demultiplexers

Truth Table

S_1S_0	I_0	F_3	F_2	F_1	F_0
0 0	0	0	0	0	0
	1	0	0	0	1

