1 未定義の用語

1.1 連結度

定義 1.1.1 (連結). グラフGが連結であるとは, Gの任意の2頂点 x,y に対してその 2点を結ぶ G上の path が存在することである. すなわち, $\forall x,y \in G, \exists P \subset G$: paths.t. $P = x \cdots y$ ときである.

セミナーでは $\forall x, y \in G, \exists P \subset G$: path s.t. $x, y \in P$ としていたが、 やはり上の定義の方がよい気がしたので戻した. 同値であるため議論に支障はない.

定義 1.1.2. G をグラフとする. G の空でない極大な連結部分グラフを G の連結成分という. すなわち. 各連結成分は共通部分を持たない.

定義 1.1.3 (k-連結). $k \in \mathbb{N}$, |G| > k で, |X| < k である任意のグラフ X に対して G - X が連結であるとき, グラフ G は k-連結であるという.

X は任意だが,仮にG の部分グラフではないA を取ったとしても |G| > k,|A| < k より $G \cap A \subset B \subset G$,|B| < k となる B が取れ, $G - A \supset G - B$ である.そのため, $X \subset G$ としても問題はない. グラフが 1-連結であることは,定義よりグラフが連結であることである.また定義より $n,m \in \mathbb{N},n < m$ のとき,グラフG が m-連結ならば G は n-連結である.グラフG が k-連結になる最大整数 k を連結度といい, $\kappa(G)$ で表す.

1.2 縮約 (Contraction)

定義 1.2.1. グラフ G=(V,E) とその辺 $xy\in E$ に対して, $v_{xy}\notin V$ として

 $(\{V\setminus\{x,y\}\cup\{v_{xy}\}\},\{vw\in E|\{x,y\}\cap\{v,w\}=\emptyset\}\cup\{v_{xy}w|w\in V\setminus\{x,y\}\ s.t\ xw\in E\vee yw\in E\})$ すなわち

$$G - \{x, y\} \cup \{v_{xy}\} + \{v_{xy}w|w \in V \setminus \{x, y\} \ s.t \ xw \in E \lor yw \in E\}$$

で与えられるグラフを *G/xy* で表す.

ここからすぐに次のことがわかる. $N(\{x,y\}) = N(v_{xy}) G - \{x,y\} = G/e - v_{xy}$

2 3-連結グラフについて

2.1 準備

補題 2.1.1. G: グラフ, $e = xy \in G$, G: 連結 $\Leftrightarrow G/e$: 連結

Proof. G: 連結とすると, $\forall a,b \in G, \exists P:a$ と b を結ぶ G 上の path . ここで $\{a,b\} \cap \{x,y\} = \emptyset$, $P' = G/e[P \cup \{v_{xy}\}]$ とすると,

- (i) $P \cap \{x,y\} = \emptyset$ のとき, $P \subset G \{x,y\} = G/e v_e \subset G/e$.
- (ii) $P \cap \{x,y\} = \{x\}$ (or $\{y\}$) のとき, P: 連結と $P \ni x$ (or y) より P' は連結であり, $a,b \in P' \subset G/e$.
- (iii) $P \cap \{x,y\} = \{x,y\}$ のとき, P: 連結と $P \ni x,y$ より P' は連結であり, $a,b \in P' \subset G/e$.

であるから, a と b を結ぶ G/e 上の path が存在することがわかる. また, $\{a,b\} \cap \{x,y\} = \{x(\text{or }y)\}$ の場合は (ii) の最後を v_{xy} , $b(\text{or }a,v_{xy}) \in P' \subset G/e$ とすればよい. $\{a,b\} \cap \{x,y\} = \{x,y\}$ の場合は a,b は G/e 上で一点 $v_{x,y}$ になる. よって G/e: 連結である. 逆も同様に示せる.

補題 2.1.2.
$$G$$
: グラフ, $e=xy\in G$, $x,y,v_{xy}\notin S$:vertices set, $(G-S)/e=G/e-S$

Proof.

$$V((G-S)/e) = (V(G)\backslash S)\backslash \{x,y\} \cup \{v_{xy}\}$$

= $(V(G)\backslash \{x,y\} \cup \{v_{xy}\})\backslash S(x,y,v_{xy}\notin S$ より)
= $V(G/e-S)$

$$E((G-S)/e) = \{vw \in E(G-S) | \{x,y\} \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E(G-S) \vee yw \in E(G-S)\}$$

$$= \{vw \in E(G-S) | \{x,y\} \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E(G-S) \vee yw \in E(G-S)\}$$

$$= \{vw \in E | (\{x,y\} \cup S) \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E \vee yw \in E\}$$

$$\therefore V(G-S) = V - S,$$

$$w \in V(G-S) \wedge x, y \notin S \Rightarrow (xw(yw) \in E \Leftrightarrow xw(yw) \in E(G-S))$$

$$= \{vw \in E | (\{x,y\} \cup S) \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V \setminus \{x,y\} \text{ s.t } (xw \in E \vee yw \in E) \wedge w \notin S\}$$

$$= \{vw \in E(G/e) | \{v,w\} \cap S = \emptyset\}$$

$$= E(G/e-S)$$

補題 2.1.3. G: グラフ, $e = xy \in G$, $x, y, v_{xy} \notin S$:vertices set, (G - S): 連結 $\Leftrightarrow G/e - S$: 連結

Proof. 補題 2.1.1, 補題 2.1.2 よりわかる.

定理 2.1.4. *G*:3-連結グラフ.

 $|G| > 4 \Rightarrow^{\exists} e \in E(G) \text{ s.t. } G/e : 3-$ **連**結

Proof. そのような辺が存在しない、つまり $\forall e = xy \in G \ s.t. \ \kappa(G/e) \le 2 \ ext{ }$ されち $\exists S \subset G/e:$ verticesset s.t. $|S| \le 2 \land G/e - S:$ 非連結 である。今, $v_{xy} \notin S$ とすると, $S \subset G/e - v_{xy} = G - \{x,y\}$ より $x,y \notin S$ である。よって補題 2.1.3 より G - S: 非連結となり, $\kappa(G) \le 2 \ ext{ }$ となり G:3-連結グラフに矛盾する。よって $v_{xy} \in S$ である。また |S| = 1 すなわち $S = \{v_{xy}\}$ とすると,これも $G/e - S = G - \{x,y\}$ より $\kappa(G) \le 2 \ ext{ }$ とする。したがって $|S| \le 2 \land v_{xy} \in S$,がわかる。

以上をまとめると $\forall x,y \in G$ s.t. $xy \in E(G)$, $\exists z, G - \{x,y,z\}$: 非連結 が導ける. ここで, $G - \{x,y,z\}$ は非連結より 2 つ以上の連結成分を持ち, G が 3-連結であることから x,y,z はすべての連結成分と隣接していることに注意する. ここで $G - \{x,y,z\}$ の中で一番位数が小さい連結成分を C とし, |C| が最小になるように x,y を取り直す. $v \in V(C)$ s.t. $vz \in E(G)$ とすると v の存在性は明らか. また, 仮定より G/vz は 3-連結ではないため, $\exists w \in G$ s.t. $G - \{z,v,w\}$: 非連結. $x \in S$ が 隣接していることから, $G - \{z,v,w\}$ は $D \cap \{x,y\} = \emptyset$ となる連結成分 D をも

つ. $u \in V(D)$ s.t. $vu \in E(G)$ とすると u の存在性は明らかであり, $v \in V(C)$ より $u \in V(C)$ i.e. $C \cap D \neq \emptyset$ がわかる. $x,y,z \notin D$ より D は $G - \{x,y,z\}$ の連結成分の部分グラフであるため, $D \subseteq C$. また $v \notin D$, $v \in C$ であるため $D \subsetneq C$ である. ゆえに C の最小性に反する.