Matemática Discreta

Indução e Recorrência

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

Introdução

00000

Introdução

Indução

- 2 Indução
- 3 Demonstrações
- 4 Seq. e Somatórios
- Def. Recursiva
- 6 Rel. Recorrência

 Introdução
 Indução
 Demonstrações
 Seq. e Somatórios
 Def. Recursiva
 Rel. Recorrência

 00000
 0000000
 00000000
 000000000
 0000000000
 00000000000

Introdução

Introdução

00000

- Um dos principais objetivos da disciplina de Matemática
 Discreta é apresentar os conceitos de Indução Matemática
 - Essa técnica é particularmente útil em Ciência da Computação [Gersting, 2014];
 - Conceitos relacionados à indução podem ser utilizados para construção de softwares;
 - Indução também pode ser usada para prova de teoremas e definição de conjuntos [Rosen, 2019].

Metáfora - Escada Infinita

- Uma forma simples de entender a Indução Matemática é associando-a à subida por uma escada infinita
- Suponha que uma pessoa deseja subir pela escada infinita;
- Podemos traçar as seguintes suposições para a subida:
 - A pessoa é capaz de subir no primeiro degrau da escada;
 - Uma vez que a pessoa está em um degrau da escada, ela sempre poderá atingir o próximo degrau;
- Baseado somente nessas duas premissas, podemos afirmar que a pessoa será capaz de atingir qualquer degrau da escada infinita.

Introdução

00000

Metáfora - Fileira de Dominós

- Indução matemática também pode ser associada a uma fileira de dominós que serão derrubados¹
 - É possível derrubar o primeiro dominó da sequência;
 - O *i*-ésimo dominó será derrubado, se o (i-1)-ésimo dominó também o for.

Fonte: [Lachmann-Anke, 2021]

Introdução

00000

¹Supondo uma fileira de dominós perfeitamente ordenados, com distâncias iguais entre si.

Introdução

0000

- O método de Indução Matemática pode ser apresentado a partir das duas metáforas anteriores;
- Em comum, ambas possuem os seguintes etapas:
 - Passo inicial: corresponde ao ínicio do processo (subida do primeiro degrau da escada ou derrubada do primeiro dominó);
 - Passo de indução: se um passo n for verdadeiro, o passo n+1 também o será (se o dominó n for derrubado, o dominó n+1 também será).
- Na próxima seção, o conceito será formalmente definido.

Introdução

- Princípio da Indução Matemática² [Gersting, 2014]
 [Rosen, 2019]
 - Definição: Para provar que uma função proposicional P(n) é verdadeira para todos os inteiros positivos n, devemos respeitar os seguintes passos:
 - **1** Passo Inicial: P(1) é verdadeiro;
 - **2** Passo Indutivo: $(\forall k)[P(k) \text{ verdadeiro} \rightarrow P(k+1) \text{ verdadeiro}]$
 - Definição Formal: $[P(1) \land \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall n[P(n)].$

A variável \emph{k} corresponde a um inteiro positivo arbitrário.

²[Gersting, 2014] denomina como "Primeiro Princípio da Indução Matemática".

Introdução

Rel. Recorrência

- No Princípio da Indução Matemática, a suposição de que P(k) é verdadeiro é chamado de Hipótese de Indução;
 - Supomos que P(k) é verdadeiro para provar o passo indutivo;
- Importante: Em uma prova por Indução, não se assume que P(k) é verdadeiro para todos os inteiros positivos.
 - Assume-se, apenas, que se P(k) é verdadeiro, então P(k+1) também é verdadeiro [Rosen, 2019];
 - A assunção de que P(k) é verdadeiro pode causar raciocínio circular³.

³Ver raciocínio circular no conteúdo de Demonstrações.

Introdução

- Indução Matemática pode ser usada para provar teoremas cujo enunciado difere do Passo Indutivo
 - É possível alterar, inclusive, o passo inicial P(1) para P(b), onde b é um inteiro <u>diferente</u> de 1;
 - Nesse cenário, $P(k) \rightarrow P(k+1)$ será verdadeiro para k = b, b+1, b+2, ... [Rosen, 2019];
 - Ao iniciar a sequência de prova em um número diferente de um, não há indicação prévia que a sequência será inválida
 - No exemplo da escada infinita, se a pessoa estiver no meio da escada, a prova pode ser realizada desse ponto em diante;
 - No exemplo da fileira de dominós, é possível iniciar a derrubada pelo b-ésimo dominó.

 Introdução
 Indução
 Demonstrações
 Seq. e Somatórios
 Def. Recursiva
 Rel. Recorrência

 00000
 00000000
 000000000
 0000000000
 00000000000
 00000000000

Passo a passo para prova por Indução

Prova por Indução [Rosen, 2019]

- **1** Expressar a afirmação que deve ser provada na forma " $\forall n \geq b, P(n)$ ", para um inteiro fixo b
 - Para algumas declarações do forma P(n), como desigualdades, pode ser necessário determinar o valor apropriado de b;
- ② Indicar o "Passo Inicial" (escrevendo a expressão) e, em seguida, mostre que P(b) é verdadeiro
 - Certificar que o valor de *b* é correto;
- Indicar o "Passo Indutivo" (escrevendo a expressão) e identifique claramente, a hipótese indutiva
 - Escrever a hipótese na forma "Suponha que P(k) seja verdadeiro para um número inteiro fixo arbitrário $k \ge b$;

Introdução

- Declarar o que precisa ser provado sob a suposição de que a hipótese indutiva é verdadeira.
 - Escrever o que P(k+1) indica;
- **5** Provar a afirmação P(k+1) com base na suposição P(k);
 - Decidir previamente a estratégia de prova mais promissora⁴;
 - Certificar que a prova é válida para todos os inteiros k com k > b:
- Identificar claramente a conclusão da etapa indutiva
 - Circular ou destacar a conclusão.
- Identificar claramente a conclusão final (semelhante ao passo anterior).

⁴Consultar aula de Demonstrações.

IntroduçãoInduçãoDemonstraçõesSeq. e SomatóriosDef. RecursivaRel. Recorrência00

Demonstrações

00000

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

00000

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - Hipótese de Indução: $\forall n \geq 1$, a soma dos n primeiros inteiros positivos é igual a n(n+1)/2;

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - Hipótese de Indução: $\forall n \geq 1$, a soma dos n primeiros inteiros positivos é igual a n(n+1)/2;
 - **2** Passo Inicial: P(1) = 1(1+1)/2 = 1;

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - Hipótese de Indução: $\forall n \geq 1$, a soma dos n primeiros inteiros positivos é igual a n(n+1)/2;
 - **2** Passo Inicial: P(1) = 1(1+1)/2 = 1;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo P(k) = 1 + 2 + 3 + ... + k = k(k+1)/2;

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - Hipótese de Indução: $\forall n \geq 1$, a soma dos n primeiros inteiros positivos é igual a n(n+1)/2;
 - **2** Passo Inicial: P(1) = 1(1+1)/2 = 1;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo P(k) = 1 + 2 + 3 + ... + k = k(k+1)/2:
 - 4 Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

00000

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - **(5)** Prova: Sabemos que para um elemento P(k), a soma corresponde a:

$$1+2+3+...+k = \frac{k(k+1)}{2}$$

Logo para k+1, a soma será igual a [k(k+1)/2]+(k+1). Temos, então:

$$\frac{k(k+1)}{2} + \frac{k+1}{1} = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

- 6 Identificar Conclusão Hipótese Indutiva: Ok.
- Conclusão Final: Os passos iniciais e indutivos foram completos, logo o teorema foi provado como verdadeir

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - **5** Prova: Sabemos que para um elemento P(k), a soma corresponde a:

$$1+2+3+...+k=\frac{k(k+1)}{2}$$

Logo para k+1, a soma será igual a [k(k+1)/2] + (k+1). Temos, então:

$$\frac{k(k+1)}{2} + \frac{k+1}{1} = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - **§** Prova: Sabemos que para um elemento P(k), a soma corresponde a:

$$1+2+3+...+k=\frac{k(k+1)}{2}$$

Logo para k+1, a soma será igual a [k(k+1)/2]+(k+1). Temos, então:

$$\frac{k(k+1)}{2} + \frac{k+1}{1} = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

- Identificar Conclusão Hipótese Indutiva: Ok.
- Conclusão Final: Os passos iniciais e indutivos foram completos, logo o teorema foi provado como verdadeir

Indução Matemática - Exemplo 1 [Rosen, 2019]

- Mostre que $\forall n \in \mathbb{Z}^+$, então $1+2+...+n=\frac{n(n+1)}{2}$.
 - Passo a passo de prova por indução:
 - **5** Prova: Sabemos que para um elemento P(k), a soma corresponde a:

$$1+2+3+...+k=\frac{k(k+1)}{2}$$

Logo para k + 1, a soma será igual a [k(k + 1)/2] + (k + 1). Temos, então:

$$\frac{k(k+1)}{2} + \frac{k+1}{1} = \frac{k(k+1) + 2(k+1)}{2} = \boxed{\frac{(k+1)(k+2)}{2}}$$

- 6 Identificar Conclusão Hipótese Indutiva: Ok.
- Conclusão Final: Os passos iniciais e indutivos foram completos, logo o teorema foi provado como verdadeiro.

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}, 1+2+2^2+...+2^n=2^{n+1}-1.$

$$P(k+1) = 2^0 + 2^1 + ... + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = \boxed{2^{k+2} - 1}$$

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}, 1+2+2^2+...+2^n=2^{n+1}-1.$
 - Hipótese de Indução: $\forall n \geq 0$, temos $2^0 + ... + 2^n = 2^{n+1} 1$;

$$P(k+1) = 2^0 + 2^1 + \dots + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = 2^{k+2} - 1$$

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}, 1+2+2^2+...+2^n=2^{n+1}-1.$
 - **1** Hipótese de Indução: $\forall n \geq 0$, temos $2^0 + ... + 2^n = 2^{n+1} 1$;
 - 2 Passo Inicial: $P(0) = 2^{0+1} 1 = 2 1 = 1$;

$$P(k+1) = 2^0 + 2^1 + \dots + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = 2^{k+2} - 1$$

Indução Matemática - Exemplo 2 [Rosen, 2019]

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}$, $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$.
 - **1** Hipótese de Indução: $\forall n \geq 0$, temos $2^0 + ... + 2^n = 2^{n+1} 1$;
 - Passo Inicial: $P(0) = 2^{0+1} 1 = 2 1 = 1$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} 1$;
 - **1** Suposição de P(k+1): Devemos supor verdadeiros

$$P(k+1) = 2^{0} + 2^{1} + ... + 2^{k+1} = 2^{k+2} - 1$$

6 Prova: Para P(k+1), temos

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = \boxed{2^{k+2} - 1}$$

Indução Matemática - Exemplo 2 [Rosen, 2019]

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}$, $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$.
 - **1** Hipótese de Indução: $\forall n \geq 0$, temos $2^0 + ... + 2^n = 2^{n+1} 1$;
 - Passo Inicial: $P(0) = 2^{0+1} 1 = 2 1 = 1$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} 1$;
 - **3** Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^0 + 2^1 + \dots + 2^{k+1} = 2^{k+2} - 1$$

6 Prova: Para P(k+1), temos

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = 2^{k+2} - 1$$

Indução Matemática - Exemplo 2 [Rosen, 2019]

- Prove que, $\forall (n \ge 0) \in \mathbb{Z}$, $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$.
 - Hipótese de Indução: $\forall n \geq 0$, temos $2^0 + ... + 2^n = 2^{n+1} 1$;
 - **2** Passo Inicial: $P(0) = 2^{0+1} 1 = 2 1 = 1$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} 1$;
 - **3** Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^0 + 2^1 + ... + 2^{k+1} = \boxed{2^{k+2} - 1}$$

6 Prova: Para P(k+1), temos:

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$
$$= (2^{k+1} + 2^{k+1}) - 1 = \boxed{2^{k+2} - 1}$$

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a *n*-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

Matemática Discreta - Indução e Recorrência

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a *n*-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.
 - **1** Hipótese de Indução: $\forall n \geq 1$, temos $P(n) = 2^n$;

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a n-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.
 - Hipótese de Indução: $\forall n \geq 1$, temos $P(n) = 2^n$;
 - **2** Passo Inicial: $P(1) = 2^1 = 2$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^k$;
 - 1 Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

5 Prova: Para P(k+1), temos:

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a n-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.
 - **1** Hipótese de Indução: $\forall n \geq 1$, temos $P(n) = 2^n$;
 - **2** Passo Inicial: $P(1) = 2^1 = 2$;
 - **3** Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^k$;
 - 1 Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

5 Prova: Para P(k+1), temos

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a n-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.
 - Hipótese de Indução: $\forall n \geq 1$, temos $P(n) = 2^n$;
 - **2** Passo Inicial: $P(1) = 2^1 = 2$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^k$;
 - **1** Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

Prova: Para P(k+1), temos

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

Indução Matemática - Exemplo 3 [da Silva, 2012]

- Suponha que um ancestral (geração 0) teve dois filhos, chamados de geração 1. Suponha que cada filho da geração 1 teve dois filhos, de forma que a geração 2 tenha 4 descendentes. Considere que este comportamento siga adiante nas próximas gerações. Mostre que a *n*-ésima geração possui 2^n descendentes, i.e., $P(n) = 2^n$.
 - **1** Hipótese de Indução: $\forall n \geq 1$, temos $P(n) = 2^n$;
 - **2** Passo Inicial: $P(1) = 2^1 = 2$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $P(k) = 2^k$;
 - **4** Suposição de P(k+1): Devemos supor verdadeiro:

$$P(k+1) = 2^{(k+1)} = 2 \cdot 2^k$$

6 Prova: Para P(k+1), temos:

$$P(k+1) = 2 \times P(k) = 2 \times 2^{k} = 2^{1} \times 2^{k} = 2^{k+1}$$

19 / 61

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.

$$k+1 \le 2^k + 1 < 2^k + 2^k \rightarrow k+1 \le 2^k + 1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $n < 2^n$;

$$k+1 \le 2^k + 1 < 2^k + 2^k \rightarrow k+1 \le 2^k + 1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $n < 2^n$;
 - 2 Passo Inicial: $P(1) = 1 < 2^1 = 1 < 2$:

$$k+1 \le 2^k+1 < 2^k+2^k \rightarrow k+1 \le 2^k+1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $n < 2^n$:
 - 2 Passo Inicial: $P(1) = 1 < 2^1 = 1 < 2$:
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k < 2^k$:

$$k+1 \le 2^k + 1 < 2^k + 2^k \rightarrow k+1 \le 2^k + 1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $n < 2^n$:
 - 2 Passo Inicial: $P(1) = 1 < 2^1 = 1 < 2$:
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k < 2^k$:
 - 4 Suposição de P(k+1): Supomos: $k+1 < 2^{k+1}$;

$$k+1 \le 2^k + 1 < 2^k + 2^k \rightarrow k+1 \le 2^k + 1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n < 2^n$ para $n \in \mathbb{Z}^+$.
 - **1** Hipótese de Inducão: $\forall n \in \mathbb{Z}^+$, temos $n < 2^n$:
 - 2 Passo Inicial: $P(1) = 1 < 2^1 = 1 < 2$:
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k < 2^k$:
 - 4 Suposição de P(k+1): Supomos: $k+1 < 2^{k+1}$;
 - **1** Prova: Para P(k+1), podemos supor:

$$k+1 \le 2^k + 1 < 2^k + 2^k \rightarrow k+1 \le 2^k + 1 < 2^{k+1}$$

Logo,
$$k+1 < 2^{k+1}$$
 e $n < 2^n$, $\forall n \in \mathbb{Z}^+$

- Prove que $n^2 > 3n$ para $n \ge 4$.

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Logo,
$$n^2 > 3n$$
 para $n \ge 4$

- Prove que $n^2 > 3n$ para n > 4.
 - **1** Hipótese de Indução: $\forall n \geq 4$, temos $n^2 > 3n$;

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Logo,
$$n^2 > 3n$$
 para $n \ge 4$

- Prove que $n^2 > 3n$ para n > 4.
 - **1** Hipótese de Indução: $\forall n > 4$, temos $n^2 > 3n$;
 - **2** Passo Inicial: $P(4) \to 4^2 > 3 \times 4 \to 16 > 12$:

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Logo,
$$n^2 > 3n$$
 para $n \ge 4$

- Prove que $n^2 > 3n$ para n > 4.
 - **1** Hipótese de Indução: $\forall n \geq 4$, temos $n^2 > 3n$:
 - **2** Passo Inicial: $P(4) \to 4^2 > 3 \times 4 \to 16 > 12$:
 - Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k^2 > 3k$:

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Logo,
$$n^2 > 3n$$
 para $n \ge 4$

- Prove que $n^2 > 3n$ para n > 4.
 - **1** Hipótese de Indução: $\forall n > 4$, temos $n^2 > 3n$;
 - **2** Passo Inicial: $P(4) \to 4^2 > 3 \times 4 \to 16 > 12$:
 - Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k^2 > 3k$;
 - **4** Suposição de P(k+1): Supomos: $(k+1)^2 > 3(k+1)$

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Logo,
$$n^2 > 3n$$
 para $n \ge 4$

Indução Matemática - Exemplo 5 [Gersting, 2014]

- Prove que $n^2 > 3n$ para $n \ge 4$.
 - **1** Hipótese de Indução: $\forall n \ge 4$, temos $n^2 > 3n$;
 - **2** Passo Inicial: $P(4) \to 4^2 > 3 \times 4 \to 16 > 12$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $k^2 > 3k$;
 - **4** Suposição de P(k+1): Supomos: $(k+1)^2 > 3(k+1)$
 - **6** Prova: Para P(k+1), temos:

$$(k+1)^2 > 3(k+1) \rightarrow k^2 + (2k+1) > 3k + (3)$$

Temos que 2k + 1 > 3 para $k \ge 4$.

Para $k \ge 4$, temos ainda que $k^2 \ge 4k > 3k$.

Logo,
$$n^2 > 3n$$
 para $n \ge 4$.

- Prove que, $\forall n \in \mathbb{Z}^+$, $2^{2n} 1$ é divisível por 3.

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

$$2^{2} \cdot (3m+1) - 1 = 12m+4-1 = 12m+3 = 3(4m+1)$$

- Prove que. $\forall n \in \mathbb{Z}^+$. $2^{2n} 1$ é divisível por 3.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $(2^{2n} 1) = 3m$;

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

$$2^2 \cdot (3m+1) - 1 = 12m + 4 - 1 = 12m + 3 = 3(4m+1)$$

Indução Matemática - Exemplo 6 [Gersting, 2014]

- Prove que, $\forall n \in \mathbb{Z}^+$, $2^{2n} 1$ é divisível por 3.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $(2^{2n} 1) = 3m$;
 - **2** Passo Inicial: $P(1) = (2^{2 \times 1} 1) = 3$;
 - ③ Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $2^{2k} 1 = 3m \rightarrow 2^{2k} = 3m + 1$;
 - ① Suposição de P(k+1): Supomos: $(2^{2(k+1)}-1) \mod 3 = 0$
 - **5** Prova: Para P(k+1), temos

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

Considerando o passo indutivo, podemos substituir 2^{2k} por 3m+1.

$$2^{2} \cdot (3m+1) - 1 = 12m+4-1 = 12m+3 = 3(4m+1)$$

Se
$$(4m+1) \in \mathbb{Z}$$
, temos que $2^{2n}-1$ é divisível por 3

- Prove que. $\forall n \in \mathbb{Z}^+$. $2^{2n} 1$ é divisível por 3.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $(2^{2n} 1) = 3m$;
 - **2** Passo Inicial: $P(1) = (2^{2 \times 1} 1) = 3$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $2^{2k} - 1 = 3m \rightarrow 2^{2k} = 3m + 1$;

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

$$2^2 \cdot (3m+1) - 1 = 12m+4-1 = 12m+3 = 3(4m+1)$$

- Prove que, $\forall n \in \mathbb{Z}^+$, $2^{2n} 1$ é divisível por 3.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $(2^{2n} 1) = 3m$;
 - **2** Passo Inicial: $P(1) = (2^{2 \times 1} 1) = 3$;
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $2^{2k} - 1 = 3m \rightarrow 2^{2k} = 3m + 1$;
 - **4** Suposição de P(k+1): Supomos: $(2^{2(k+1)}-1) \mod 3 = 0$

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

$$2^{2} \cdot (3m+1) - 1 = 12m+4-1 = 12m+3 = 3(4m+1)$$

Indução Matemática - Exemplo 6 [Gersting, 2014]

- Prove que. $\forall n \in \mathbb{Z}^+$. $2^{2n} 1$ é divisível por 3.
 - **1** Hipótese de Indução: $\forall n \in \mathbb{Z}^+$, temos $(2^{2n} 1) = 3m$;
 - **2** Passo Inicial: $P(1) = (2^{2 \times 1} 1) = 3$:
 - 3 Passo Indutivo: Devemos supor P(k) verdadeiro para um valor k arbitrário. Logo $2^{2k} - 1 = 3m \rightarrow 2^{2k} = 3m + 1$;
 - **4** Suposição de P(k+1): Supomos: $(2^{2(k+1)}-1) \mod 3 = 0$
 - **6** Prova: Para P(k+1), temos:

$$2^{2(k+1)} - 1 = (2^{2k} \cdot 2^2) - 1 = 2^2 \cdot 2^{2k} - 1$$

Considerando o passo indutivo, podemos substituir 2^{2k} por 3m+1.

$$2^2 \cdot (3m+1) - 1 = 12m+4-1 = 12m+3 = 3(4m+1)$$

Se
$$(4m+1) \in \mathbb{Z}$$
, temos que $2^{2n}-1$ é divisível por 3 .

SEQUÊNCIAS E SOMATÓRIOS

- Definição 1: Uma sequência é uma função de um subconjunto de \mathbb{Z} (em geral, \mathbb{Z}^+) para um conjunto S [Rosen, 2019]
 - Utiliza-se a notação a_n para denotar a imagem de um inteiro n;
 - Nesta notação, an é denominado termo da sequência.
- Definição 2: Uma sequência *S* (infinita) é uma lista de objetos enumerados em alguma ordem [Gersting, 2014]
 - Existe um primeiro objeto, seguido de um segundo objeto, seguido de um terceiro objeto, e assim por diante;
 - A notação S(k) denota o k-ésimo elemento (termo) da sequência.

Sequências - Exemplos

- Exemplo 1: [Rosen, 2019]
 - Considere uma sequência $\{a_n\}$, onde $a_n = 1/n$. Indique os termos dessa seguência.

$$\{a_n\} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots$$

- - Considere uma sequência $\{b_n\}$, onde $b_n = 2 \cdot 5^{(n-1)}$. Indique

$$\{b_n\} = 2, 10, 50, 250, 1250, ...$$

Sequências - Exemplos

- Exemplo 1: [Rosen, 2019]
 - Considere uma sequência $\{a_n\}$, onde $a_n = 1/n$. Indique os termos dessa sequência.

$$\{a_n\}=1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},...$$

- Exemplo 2: [Rosen, 2019]
 - Considere uma sequência $\{b_n\}$, onde $b_n = 2 \cdot 5^{(n-1)}$. Indique os termos dessa sequência.

$${b_n} = 2, 10, 50, 250, 1250, ...$$

Sequências - Exemplos

- Exemplo 1: [Rosen, 2019]
 - Considere uma sequência $\{a_n\}$, onde $a_n = 1/n$. Indique os termos dessa sequência.

$$\{a_n\} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, ...$$

- Exemplo 2: [Rosen, 2019]
 - Considere uma sequência $\{b_n\}$, onde $b_n = 2 \cdot 5^{(n-1)}$. Indique os termos dessa sequência.

$$\{b_n\} = 2, 10, 50, 250, 1250, ...$$

Seguências - Exemplos

- Exemplo 1: [Rosen, 2019]
 - Considere uma sequência $\{a_n\}$, onde $a_n = 1/n$. Indique os termos dessa seguência.

$$\{a_n\}=1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},...$$

- Exemplo 2: [Rosen, 2019]
 - Considere uma sequência $\{b_n\}$, onde $b_n = 2 \cdot 5^{(n-1)}$. Indique os termos dessa sequência.

$$\{b_n\} = 2, 10, 50, 250, 1250, \dots$$

Sequências - Progressão

• Progressão Aritmética: sequência contendo um termo inicial $a \in \mathbb{R}$ e uma razão $r \in \mathbb{R}$, que possui a forma:

$$S = a, a + r, a + 2r, a + 3r, ..., a + nr$$

• Progressão Geométrica: sequência contendo um termo inicial $a \in \mathbb{R}$ e uma razão $q \in \mathbb{R}$, que possui a forma:

$$S = a, aq, aq^2, aq^3, ..., aq^n$$

Sequências - Computação

- Sequências finitas na forma a₀, a₁, a₂, ..., a_n são usadas com frequência em ciência da computação e denominadas cadeias (strings) [Rosen, 2019];
 - Uma cadeia pode ser também indicada por $a_0 a_1 a_2 ... a_n$;
 - A extensão / tamanho (lenght) de uma cadeia S corresponde ao número de termos dessa cadeia;
 - Uma string vazia é denotada por λ e possui tamanho = 0.

Seq. e Somatórios 00000 0000000000 000000000000

Def. Recursiva

Somatórios

Introdução

Indução

Demonstrações

Rel. Recorrência

Indução

Introdução

- A notação de somatórios permite considerar a adição de termos em uma seguência
 - Para expressar a soma de termos $a_0, a_1, a_2, ..., a_n$ de uma sequência $\{a_n\}$, podemos usar a seguinte notação:

$$\sum_{i=m}^{n} a_i$$

, onde *m* corresponde ao limite inferior, *n* corresponde ao limite superior e i corresponde ao índice do somatório.

A escolha de letras para o índice do somatório é indiferente, logo $\sum_{i=m}^n a_i = \sum_{i=m}^n a_i = \sum_{k=m}^n a_k$.

- Exemplo 1: [Rosen, 2019]
 - Use a notação de somatórios para representar a soma dos primeiros 100 termos da sequência $\{a_i\}$, onde $a_i = 1/j$, para i = 1, 2, 3, ...

$$\sum_{j=1}^{100} \frac{1}{j}$$

- - Qual o valor de $\sum_{i=1}^{5} j^2$?

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 5!$$

- Exemplo 1: [Rosen, 2019]
 - Use a notação de somatórios para representar a soma dos primeiros 100 termos da sequência $\{a_j\}$, onde $a_j=1/j$, para j=1,2,3,...

$$\sum_{j=1}^{100} \frac{1}{j}$$

- Exemplo 2: [Rosen, 2019]
 - Qual o valor de $\sum_{j=1}^{5} j^2$?

$$\sum_{i=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 58$$

- Exemplo 1: [Rosen, 2019]
 - Use a notação de somatórios para representar a soma dos primeiros 100 termos da sequência $\{a_j\}$, onde $a_j=1/j$, para j=1,2,3,...

$$\sum_{j=1}^{100} \frac{1}{j}$$

- Exemplo 2: [Rosen, 2019]
 - Qual o valor de $\sum_{j=1}^{5} j^2$?

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 5!$$

- Exemplo 1: [Rosen, 2019]
 - Use a notação de somatórios para representar a soma dos primeiros 100 termos da sequência $\{a_j\}$, onde $a_j=1/j$, para j=1,2,3,...

$$\sum_{j=1}^{100} \frac{1}{j}$$

- Exemplo 2: [Rosen, 2019]
 - Qual o valor de $\sum_{j=1}^{5} j^2$?

$$\sum_{i=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

Exemplo 3:

Introdução

• Qual o valor de $\sum_{i=1}^{5} 3j$?

$$\sum_{j=1}^{5} 3j = 3\sum_{j=1}^{5} j = 3(1+2+3+4+5) = 45$$

- Exemplo 4: [Rosen, 2019]
 - Qual o valor de $\sum_{s \in \{0, 2, 4\}} s$?

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 0$$

Exemplo 3:

Introdução

• Qual o valor de $\sum_{i=1}^{5} 3j$?

$$\sum_{j=1}^{5} 3j = 3\sum_{j=1}^{5} j = 3(1+2+3+4+5) = 45$$

- Exemplo 4: [Rosen, 2019]
 - Qual o valor de $\sum_{s \in \{0, 2, 4\}} s$?

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 0$$

Exemplo 3:

Introdução

• Qual o valor de $\sum_{j=1}^{5} 3j$?

$$\sum_{j=1}^{5} 3j = 3\sum_{j=1}^{5} j = 3(1+2+3+4+5) = 45$$

- Exemplo 4: [Rosen, 2019]
 - Qual o valor de $\sum_{s \in \{0,2,4\}} s$?

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 0$$

Somatórios - Exemplos

Exemplo 3:

Introdução

• Qual o valor de $\sum_{j=1}^{5} 3j$?

$$\sum_{j=1}^{5} 3j = 3\sum_{j=1}^{5} j = 3(1+2+3+4+5) = 45$$

- Exemplo 4: [Rosen, 2019]
 - Qual o valor de $\sum_{s \in \{0,2,4\}} s$?

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6$$

Somatórios

Introdução

00000

• A tabela abaixo contém a forma fechada⁵ de alguns somatórios comuns na literatura:

Sum	Closed Form
$\sum_{k=0}^{n} ar^{k} \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Fonte: [Rosen, 2019]

⁵A forma fechada corresponde à solução de um dado somatório.

- Uma definição no qual o item que está sendo definido aparece como parte da definição é chamada de Definição Recursiva [Gersting, 2014];
 - O objeto (ou item) é definido em termos de si mesmo;
 - Em alguns casos, existe uma dificuldade da definição explícita de um objeto;
 - A definição do objeto e termos de si mesmo pode ser mais fácil;
 - Esse tipo de processo é chamado de Recursão [Rosen, 2019].

- Uma Definição Recursiva possui duas partes:
 - Passo Base: alguns casos simples do item a ser definido s\(\tilde{a}\)o explicitamente dados;
 - Passo Recursivo⁶: novos casos são dados em termos de casos anteriores [Gersting, 2014].

⁶Também chamado de Passo Indutivo [Rosen, 2019].

- Definições recursivas podem ser utilizadas, na Matemática e na Computação, para descrição de:
 - Conjuntos;
 - Operações;
 - Strings (cadeia de caracteres);
 - Algoritmos.
- Recursão pode ser utilizada para criação de fractais
 - Fractais são figuras geométricas encontradas na natureza e que apresentam partes separadas que repetem traços do todo completo (padrão repetitivo);
 - Fractais são estudados em Física e Matemática:

Fractais

 Árvores e samambaias são pseudo-fractais que podem ser modelados em computadores que usam algoritmos recursivos.

Fonte: [de Campos, 2006]

Fractais

00000

Fonte: [Leidus, 2021]

Fractais - Curva de Koch

- Podemos definir uma Curva de Koch a partir de um segmento de reta, submetido a iterações recursivas:
 - Dividir o segmento em três segmentos de igual comprimento;
 - 2 Desenhar um triângulo equilátero, em que o segmento original (passo 1) serve de base;
 - Apagar o segmento que serviu de base ao triângulo do passo 2.

Fonte: [Scratch Wiki, 2013]

Curiosidade - Acrônimo Recursivo

- Recursão é um assunto tão frequente em Computação que alguns acrônimos, incluindo nome de empresas e tecnologias, utilizam esse recurso;
 - Esse tipo de sigla é chamado de acrônimo recursivo e gera uma definição circular;
 - São exemplos de acrônimos recursivos:
 - PHP⁷: PHP: Hypertext Preprocessor;
 - GNU⁸: GNU is not Unix;
 - PIP⁹: PIP Installs Packages;
 - WINE¹⁰: WINE is Not an Emulator.

coleção de softwares livres que pode ser utilizado como parte de outros sistemas operacionais.

⁷PHP é uma linguagem interpretada livre, usada para o desenvolvimento de aplicações web (lado servidor).

⁸GNU é um sistema operacional completo e totalmente composto por software livre. Contém ainda uma an

⁹PIP é um gerenciador de pacotes escrito em Python usado para instalar e gerenciar pacotes de software.

¹⁰Emulador de open-source de aplicações desenvolvidas em MS Windows para sistemas Unix-like.

Definição Recursiva - Exemplo [Gersting, 2014]

- Uma sequência S é uma lista de objetos enumerados em alguma ordem; existe um primeiro elemento, um segundo e daí em diante [Gersting, 2014].
- Considere a sequência definida abaixo:
 - **1** S(1) = 2
 - **2** $S(n) = 2 \cdot S(n-1)$ para n > 2.
- Indique a sequência representada pela relação de recorrência.

Definição Recursiva - Exemplo [Gersting, 2014]

- Uma sequência S é uma lista de objetos enumerados em alguma ordem; existe um primeiro elemento, um segundo e daí em diante [Gersting, 2014].
- Considere a sequência definida abaixo:
 - **1** S(1) = 2
 - **2** $S(n) = 2 \cdot S(n-1)$ para n > 2.
- Indique a seguência representada pela relação de recorrência.
 - Pela definição, o primeiro valor é: S(1) = 2;
 - O segundo valor é dado por: $S(2) = 2 \cdot S(1) = 2 \cdot 2 = 4$;
 - O terceiro valor é dado por: $S(3) = 2 \cdot S(2) = 2(4) = 8$;
 - Continuando a sequência, temos: 2, 4, 8, 16, 32, 64, ...;

Definição Recursiva - Ex. Adapt. [Rosen, 2019]

- Considere a função definida abaixo:
 - **1** f(0) = 3
 - 2 $f(n+1) = 2 \cdot f(n) + 3$.
 - Indique a sequência representada pela relação de recorrência.
 - Pela definição, o primeiro valor é: f(0) = 3;
 - O segundo valor, f(1), é dado por: $f(0+1) = 2 \cdot f(0) + 3 = 2 \cdot 3 + 3 = 9$;
 - O terceiro valor, f(2), é dado por: $f(1+1) = 2 \cdot f(1) + 3 = 2 \cdot 9 + 3 = 21$.
 - O quarto valor, f(3), é dado por: $f(2+1) = 2 \cdot f(2) + 3 = 2 \cdot 21 + 3 = 45$;
 - Continuando a sequência, temos: 3, 9, 21, 45, 93, 189, ...

Definição Recursiva - Ex. Adapt. [Rosen, 2019]

- Considere a função definida abaixo:
 - **1** f(0) = 3
 - 2 $f(n+1) = 2 \cdot f(n) + 3$.
 - Indique a sequência representada pela relação de recorrência.
 - Pela definição, o primeiro valor é: f(0) = 3;
 - O segundo valor, f(1), é dado por: $f(0+1) = 2 \cdot f(0) + 3 = 2 \cdot 3 + 3 = 9$;
 - O terceiro valor, f(2), é dado por: $f(1+1) = 2 \cdot f(1) + 3 = 2 \cdot 9 + 3 = 21$;
 - O quarto valor, f(3), é dado por: $f(2+1) = 2 \cdot f(2) + 3 = 2 \cdot 21 + 3 = 45$;
 - Continuando a sequência, temos: 3, 9, 21, 45, 93, 189, ...;

Definição Recursiva - Exemplo [Rosen, 2019]

- Considere o subconjunto S, de um conjunto de inteiros, definido recursivamente como:
 - $\mathbf{0}$ $3 \in S$
 - 2 Se $x \in S$ e $y \in S$, então $x + y \in S$.
- Indique o subconjunto indicado pela definição.

Definição Recursiva - Exemplo [Rosen, 2019]

- Considere o subconjunto S, de um conjunto de inteiros, definido recursivamente como:
 - $\mathbf{0}$ $3 \in S$
 - 2 Se $x \in S$ e $y \in S$, então $x + y \in S$.
- Indique o subconjunto indicado pela definição.
 - Por definição, o subconjunto S na 1^a iteração é: $S = \{3\}$;
 - O subconjunto S na 2^a iteração é: $S = \{3, 6 (3+3)\}$;
 - O subconjunto S na 3ª iteração é: $S = \{3, 6, 9 (3 + 6), 12 (6 + 6)\}$:
 - O subconjunto S na 4ª iteração é: $S = \{3, 6, 9, 12, 15, 18, 21, 24\};$

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$.

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$
 - Passo Base: $f(0) = a^0 = 1$;
 - Passo Recursivo: $f(n) = a \cdot f(n-1)$.
- - - Passo Base: $\sum_{k=0}^{0} a_k = a_0$;
 - Passo Recursivo: $\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^n a_k) + a_{n+1}$.

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$.
 - Passo Base: $f(0) = a^0 = 1$;
 - Passo Recursivo: $f(n) = a \cdot f(n-1)$.

Exemplo 2:

- Indique uma relação recursiva para o somatório $\sum_{k=0}^{n} a_k$.
 - Passo Base: $\sum_{k=0}^{0} a_k = a_0$;
 - Passo Recursivo: $\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^n a_k) + a_{n+1}$.

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$.
 - Passo Base: $f(0) = a^0 = 1$;
 - Passo Recursivo: $f(n) = a \cdot f(n-1)$.

Exemplo 2:

- Indique uma relação recursiva para o somatório $\sum_{k=0}^{n} a_k$.
 - Passo Base: $\sum_{k=0}^{0} a_k = a_0$;
 - Passo Recursivo: $\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^{n} a_k) + a_{n+1}$.
- Exemplo 3:

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$.
 - Passo Base: $f(0) = a^0 = 1$;
 - Passo Recursivo: $f(n) = a \cdot f(n-1)$.
- Exemplo 2:
 - Indique uma relação recursiva para o somatório $\sum_{k=0}^{n} a_k$.
 - Passo Base: $\sum_{k=0}^{0} a_k = a_0$;
 - Passo Recursivo: $\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^n a_k) + a_{n+1}$.
- Exemplo 3:
 - Indique uma relação recursiva para a função de Fibonacci.
 - Passo Base: f(0) = 1, f(1) = 1;
 - Passo Recursivo: f(n) = f(n-1) + f(n-2).

Definição Recursiva - Exemplos [Rosen, 2019]

• Exemplo 1:

- Indique uma relação recursiva para a definição de $f(n) = a^n$, onde $a \in \mathbb{R}^*$ e $n \in \mathbb{Z}^{0+}$.
 - Passo Base: $f(0) = a^0 = 1$;
 - Passo Recursivo: $f(n) = a \cdot f(n-1)$.

Exemplo 2:

- Indique uma relação recursiva para o somatório $\sum_{k=0}^{n} a_k$.
 - Passo Base: $\sum_{k=0}^{0} a_k = a_0$;
 - Passo Recursivo: $\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^n a_k) + a_{n+1}$.

• Exemplo 3:

- Indique uma relação recursiva para a função de Fibonacci.
 - Passo Base: f(0) = 1, f(1) = 1;
 - Passo Recursivo: f(n) = f(n-1) + f(n-2).

Relações de Recorrência

Relações de Recorrência

- Definição: Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa a_n em termos de um ou mais dos termos anteriores da sequência $(a_0, a_1, ..., a_{n-1})$ [Rosen, 2019]
- Definição: Uma sequência é chamada de solução de uma relação de recorrência se seus termos satisfazem a relação de recorrência [Rosen, 2019].

Relações de Recorrência

- Uma equação que substitui uma relação de recorrência é denominada Solução de Forma Fechada
 - Nessa equação, podemos substituir um valor de entrada e obter o valor de saída diretamente [Gersting, 2014];
 - Matematicamente, uma expressão de forma fechada é um tipo de expressão que utiliza um conjunto finito de operações padrão [van Hoeij, 2017]¹¹;
- Encontrar um solução de forma fechada é chamado de "resolver uma relação de recorrência" [Gersting, 2014].

 $^{^{11}}$ Dentre as operações estão: +, -, imes, exp, log, raiz (enésima) e funções trigonométricas. Não inclui integrais, derivadas e limites.

Relações de Recorrência - Exemplo [Gersting, 2014]

- Considere a sequência definida abaixo:
 - **1** S(1) = 2
 - **2** $S(n) = 2 \cdot S(n-1)$ para n > 2.
- Indique a sequência representada pela relação de recorrência. Defina a forma fechada da solução.

 - A forma fechada da solução é dada por: $|S(n) = 2^n, \forall n \in Z^+$

Relações de Recorrência - Exemplo [Gersting, 2014]

- Considere a sequência definida abaixo:
 - **1** S(1) = 2
 - ② $S(n) = 2 \cdot S(n-1)$ para $n \ge 2$.
- Indique a sequência representada pela relação de recorrência.
 Defina a forma fechada da solução.
 - Pela definição, o primeiro valor é: S(1) = 2;
 - O segundo valor é dado por: $S(2) = 2 \cdot S(1) = 2 \cdot 2 = 4$;
 - O terceiro valor é dado por: $S(3) = 2 \cdot S(2) = 2(4) = 8$;
 - Continuando a sequência, temos: 2, 4, 8, 16, 32, 64, ...;
 - A forma fechada da solução é dada por: $S(n) = 2^n, \forall n \in Z^+$

48 / 61

Relações de Recorrência - Exemplo [Gersting, 2014]

- Considere a sequência definida abaixo:
 - **1** S(1) = 2
 - **2** $S(n) = 2 \cdot S(n-1)$ para n > 2.
- Indique a sequência representada pela relação de recorrência. Defina a forma fechada da solução.
 - Pela definição, o primeiro valor é: S(1) = 2;
 - O segundo valor é dado por: $S(2) = 2 \cdot S(1) = 2 \cdot 2 = 4$;
 - O terceiro valor é dado por: $S(3) = 2 \cdot S(2) = 2(4) = 8$;
 - Continuando a sequência, temos: 2, 4, 8, 16, 32, 64, ...;
 - A forma fechada da solução é dada por: $|S(n) = 2^n, \forall n \in Z^+|$.

Tipos de Relações de Recorrência

- Relações de Recorrência Lineares de Primeira Ordem são relações com a seguinte forma:
 - Passo Base: S(1) = b
 - Passo Recursivo: S(n) = cS(n-1) + g(n)
- Relações de Recorrência Lineares de Segunda Ordem são relações com a seguinte forma:
 - Passo Base: $S(1) = b_1, S(2) = b_2$
 - Passo Recursivo: $S(n) = c_1 S(n-1) + c_2 S(n-2)$
- Relações de Recorrência de Divisão e Conquista são relações com a seguinte forma:
 - Passo Base: S(1) = b
 - Passo Recursivo: $S(n) = cS(\frac{n}{2}) + g(n)$, para $n \ge 2$, $n = 2^m$.

Tipos de Relações de Recorrência

- Cada tipo de relação de recorrência possui um protocolo mais adequado de solução
 - Nesta disciplina, iremos verificar apenas a solução de relações de recorrência de primeira ordem.
- Para solução de Relações de Primeira Ordem podemos utilizar as seguintes técnicas: [Gersting, 2014]
 - Expandir, Adivinhar e Verificar;
 - 2 Fórmula de Solução.

Introdução

50 / 61

Relações de Recorrência Lineares de Primeira Ordem

Relações Lineares de 1ª Ordem

A forma geral é dada por:

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + ... + f_k(n)S(n-k) + g(n)$$

- A relação de recorrência possui coeficientes constantes se todas as funções f_i são constantes;
- A relação é chamada de 1^a ordem pois o n-ésimo termo depende somente do termo n - 1;
- A relação é homogênea se $g(n) = 0, \forall n \in \mathbb{Z}$ [Gersting, 2014].

Relações 1^a Ordem - Expandir, Adivinhar e Verificar

- O objetivo dessa técnica é expandir os termos da relação de recorrência em busca de adivinhar a expressão geral
 - Após definir uma proposta para *n*-ésimo termo, é necessário verificar a expressão, usando Indução Matemática;
- O processo pode ser sumarizado em: [Gersting, 2014]
 - Expandir a relação de recorrência até que seja possível adivinhar um padrão;
 - Decidir o padrão para o k-ésimo elemento:
 - Para simplificar, suponha que k = n 1;
 - 3 Verificar a expressão obtida no passo 2 usando Indução Matemática.

Matemática Discreta - Indução e Recorrência

Introdução

53 / 61

Relações 1ª Ordem - Expandir, Adivinhar e Verificar

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão

•
$$T(n) = T(n-1) + 3$$

•
$$T(n) = [T(n-2)+3]+3 = T(n-2)+(2\times3);$$

•
$$T(n) = [[T(n-3)+3]+3] + 3 = T(n-3) + (3 \times 3);$$

•
$$T(n) = T(n-k) + (k \times 3)$$

2 Suposição

•
$$T(n) = T(n-k) + (k \times 3)$$
;

• Considerando
$$k = n - 1$$
, temos: $T(n) = 1$

Relações 1ª Ordem - Expandir, Adivinhar e Verificar

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3
 - $T(n) = [T(n-2) + 3] + 3 = T(n-2) + (2 \times 3);$
 - $T(n) = [[T(n-3)+3]+3]+3 = T(n-3)+(3\times3);$
 - - $T(n) = T(n-k) + (k \times 3)$;
 - Suposição
 - $T(n) = T(n-k) + (k \times 3)$;
 - Considerando k = n 1, temos:

Relações 1^a Ordem - Expandir, Adivinhar e Verificar

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:

•
$$T(n) = T(n-1) + 3$$
;

•
$$T(n) = [T(n-2) + 3] + 3 = T(n-2) + (2 \times 3);$$

•
$$T(n) = [[T(n-3)+3]+3]+3 = T(n-3)+(3\times3);$$

•
$$T(n) = T(n-k) + (k \times 3)$$
;

• Considerando
$$k = n - 1$$
, temos:

$$T(n) = T(1) + 3(n-1)$$

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3:
 - $T(n) = [T(n-2) + 3] + 3 = T(n-2) + (2 \times 3)$:

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3;
 - $T(n) = [T(n-2)+3]+3 = T(n-2)+(2\times3);$
 - $T(n) = [[T(n-3)+3]+3] + 3 = T(n-3) + (3 \times 3);$
 - 0
 - $T(n) = T(n-k) + (k \times 3)$
 - 2 Suposicão
 - $T(n) = T(n-k) + (k \times 3);$
 - Considerando k = n 1, temos: T(n) = T(1) + 3(n 1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3;
 - $T(n) = [T(n-2)+3]+3 = T(n-2)+(2\times3);$
 - $T(n) = [[T(n-3)+3]+3] + 3 = T(n-3) + (3 \times 3);$
 - ...
 - $T(n) = T(n-k) + (k \times 3);$
 - 2 Suposição
 - $T(n) = T(n-k) + (k \times 3);$
 - Considerando k = n 1, temos: T(n) = T(1) + 3(n 1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3;
 - $T(n) = [T(n-2)+3]+3 = T(n-2)+(2\times3);$
 - $T(n) = [[T(n-3)+3]+3]+3 = T(n-3)+(3\times3);$
 - ...
 - $T(n) = T(n-k) + (k \times 3);$
 - 2 Suposição:
 - $T(n) = T(n-k) + (k \times 3)$
 - Considerando k = n 1, temos: T(n) = T(1) + 3(n 1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3;
 - $T(n) = [T(n-2)+3]+3 = T(n-2)+(2\times3);$
 - $T(n) = [[T(n-3)+3]+3] + 3 = T(n-3) + (3 \times 3);$
 - ...
 - $T(n) = T(n-k) + (k \times 3);$
 - 2 Suposição:

•
$$T(n) = T(n-k) + (k \times 3)$$
;

• Considerando
$$k = n - 1$$
, temos:

$$T(n) = T(1) + 3(n-1)$$

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3:
 - $T(n) = [T(n-2) + 3] + 3 = T(n-2) + (2 \times 3)$:
 - $T(n) = [[T(n-3)+3]+3]+3 = T(n-3)+(3\times3);$
 - ...
 - $T(n) = T(n-k) + (k \times 3)$:
 - 2 Suposição:
 - $T(n) = T(n-k) + (k \times 3)$:

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
- Defina a forma fechada da solução.
 - Expansão:
 - T(n) = T(n-1) + 3:
 - $T(n) = [T(n-2) + 3] + 3 = T(n-2) + (2 \times 3)$:
 - $T(n) = [[T(n-3)+3]+3]+3 = T(n-3)+(3\times3);$
 - ...
 - $T(n) = T(n-k) + (k \times 3)$:
 - 2 Suposição:
 - $T(n) = T(n-k) + (k \times 3)$:
 - Considerando k = n 1, temos: T(n) = T(1) + 3(n 1);

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação
 - **1** Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - ② Caso base: T(1) = 1 + 3(1 1) = 1;
 - **3** Assumir verdadeiro: T(k) = 1 + 3(k-1)
 - T(k+1): T(k+1) = 1 + 3(k+1-1) = 1 + 3k
 - **6** Prova: T(k+1) =

$$T(k)+3 = 1+3(k-1)+3 = 1+3k-3+3 = \boxed{1+3k}$$

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para n > 2.
 - Defina a forma fechada da solução.
 - Verificação:

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação:
 - Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - **2** Caso base: T(1) = 1 + 3(1 1) = 1
 - 3 Assumir verdadeiro: T(k) = 1 + 3(k-1);
 - T(k+1): T(k+1) = 1 + 3(k+1-1) = 1 + 3k
 - **9** Prova: T(k+1) = T(k) + 2 = 1 + 2k
 - Example general: T(n) = 1 + 3(n-1)
 - **6** Fórmula geral: T(n) = 1 + 3(n-1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para n > 2.
 - Defina a forma fechada da solução.
 - Verificação:
 - Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - **2** Caso base: T(1) = 1 + 3(1 1) = 1;

$$T(k)+3 = 1+3(k-1)+3 = 1+3k-3+3 = \boxed{1+3k}$$

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação:
 - Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - **2** Caso base: T(1) = 1 + 3(1 1) = 1;
 - 3 Assumir verdadeiro: T(k) = 1 + 3(k-1);
 - $T(k+1): T(k+1) = 1 + 3(k+1-1) = \boxed{1+3k}$
 - § Prova: $T(k+1) = T(k) + 3 = 1 + 3(k-1) + 3 = 1 + 3k 3 + 3 = \boxed{1 + 3k}$
 - **6** Fórmula geral: T(n) = 1 + 3(n-1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação:
 - **1** Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - **2** Caso base: T(1) = 1 + 3(1 1) = 1;
 - **3** Assumir verdadeiro: T(k) = 1 + 3(k-1);
 - $T(k+1): T(k+1) = 1 + 3(k+1-1) = \boxed{1+3k};$
 - Triangle Prova: T(k+1) = T(k) + 3 = 1 + 3(k-1) + 3 = 1 + 3k 3 + 3 = 1 + 3k
 - **6** Fórmula geral: T(n) = 1 + 3(n-1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - **2** T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação:
 - Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - ② Caso base: T(1) = 1 + 3(1 1) = 1;
 - **3** Assumir verdadeiro: T(k) = 1 + 3(k-1);
 - $T(k+1): T(k+1) = 1 + 3(k+1-1) = \boxed{1+3k};$

 - **6** Fórmula geral: T(n) = 1 + 3(n-1)

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - Verificação:
 - **1** Hipótese: T(n) = T(1) + 3(n-1) = 1 + 3(n-1);
 - **2** Caso base: T(1) = 1 + 3(1 1) = 1:
 - **3** Assumir verdadeiro: T(k) = 1 + 3(k-1);
 - T(k+1): T(k+1) = 1 + 3(k+1-1) = |1+3k|;
 - **6** Prova: T(k+1) =T(k)+3 = 1+3(k-1)+3 = 1+3k-3+3 = 1+3k
 - **6** Fórmula geral: T(n) = 1 + 3(n-1).

Relações 1^a Ordem - Fórmula de Solução

- O objetivo da técnica é utilizar uma forma genérica para transformar a relação de recorrência em uma expressão geral;
- Podemos gerar a equação a partir do seguinte procedimento:
 - S(n) = cS(n-1) + g(n);
 - S(n) = c[cS(n-2) + g(n-1)] + g(n);
 - $S(n) = c^2 S(n-2) + cg(n-1) + g(n)$:
 - $S(n) = c^2[cS(n-3) + g(n-2)] + cg(n-1) + g(n)$;
 - $S(n) = c^3 S(n-3) + c^2 g(n-2) + cg(n-1) + g(n)$;
 - ...
 - $S(n) = c^k S(n-k) + c^{k-1} g(n-(k-1)) + ... + cg(n-1) + g(n)$

- De forma genérica, podemos fazer n = k + 1. Logo:
 - $S(n) = c^k S(n-k) + c^{k-1} g(n-(k-1)) + ... + cg(n-1) + g(n)$
 - $S(n) = c^{n-1}S(1) + c^{n-2}g(2) + ... + c^{1}g(n-1) + c^{0}g(n)$
 - Podemos utilizar a notação de somatório (\sum) ;
- Utilizando a notação de somatório, a fórmula de solução é definida por:

$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

Suponha a sequência S(n) = 1 + 2 + 3 + 4 + ... + n. A sequência pode ser representada por $\sum_{i=1}^{n} (i)$.

Suponha a sequência S(n) = 1 + 3 + 5 + 7 + ... + 101. A sequência pode ser representada por $\sum_{i=0}^{50} (2n+1)$.

Introdução

Relações 1ª Ordem - Fórmula de Solução

- O processo pode ser sumarizado em: [Gersting, 2014]
 - ① Combinar a relação de recorrência com a fórmula abaixo, para encontrar $c \in g(n)$;

$$S(n) = cS(n-1) + g(n)$$

② Usar c, g(n) e S(1) na fórmula;

$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

3 Avaliar o somatório para obter a expressão final.

Relações 1ª Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.

Relações 1ª Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.

59 / 61

Relações 1ª Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - **1** Temos que: $T(n) = 1 \times T(n-1) + 3$;

$$1^{(n-1)}T(1) + \sum_{i=2}^{n} 1^{(n-i)}3 = 1 + 3\sum_{i=2}^{n} 1 = \begin{bmatrix} 1 + 3(n-1) \end{bmatrix}$$

Relações 1^a Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - **1** Temos que: $T(n) = 1 \times T(n-1) + 3$;
 - **2** Logo: c = 1 e g(n) = 3;

Relações 1^a Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para $n \ge 2$.
 - Defina a forma fechada da solução.
 - **1** Temos que: $T(n) = 1 \times T(n-1) + 3$;
 - **2** Logo: c = 1 e g(n) = 3:
 - **3** Fórmula: $T(n) = c^{n-1}T(1) + \sum_{i=2}^{n} c^{n-i}g(i)$;

Relações 1ª Ordem - Fórmula de Solução

- Considere a sequência definida abaixo:
 - **1** T(1) = 1
 - 2 T(n) = T(n-1) + 3, para n > 2.
 - Defina a forma fechada da solução.
 - 1 Temos que: $T(n) = 1 \times T(n-1) + 3$:
 - **2** Logo: c = 1 e g(n) = 3:
 - **3** Fórmula: $T(n) = c^{n-1}T(1) + \sum_{i=2}^{n} c^{n-i}g(i)$;
 - 4 Substituindo: T(n) = $1^{(n-1)}T(1) + \sum_{i=2}^{n} 1^{(n-i)}3 = 1 + 3\sum_{i=2}^{n} 1 = \boxed{1 + 3(n-1)}.$

Número termos (NT) somatório: NT = (LS - LI) + 1, onde LS é o limite superior e LI é o limite inferior.

O somatório $\sum_{i=2}^{n} 1$ corresponde a fazer $1+1+1+1+\dots+1$ por (n-1) vezes.

Referências I

da Silva, D. M. (2012).

Slides de aula.

de Campos, A. M. (2006).

[Online]; acessado em 21 de Marco de 2021. Disponível em: https://pt.wikipedia.org/wiki/Fractal.

Gersting, J. L. (2014).

Mathematical Structures for Computer Science.
W. H. Freeman and Company, 7 edition.

Lachmann-Anke, M. (2021).

[Online]; acessado em 17 de Março de 2021. Disponível em:

https://pixabay.com/illustrations/mikado-domino-stones-pay-steinchen-1013878/.

Leidus, I. (2021).

Fractal.

[Online]; acessado em 21 de Março de 2021. Disponível em: https://pt.wikipedia.org/wiki/Fractal.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.

[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Referências II

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.

Scratch Wiki (2013).

Fractal.

[Online]; acessado em 21 de Março de 2021. Disponível em: https://en.scratch-wiki.info/wiki/File:Iterations_of_Koch_Curve.png.

van Hoeij, M. (2017).

Closed form solutions.

[Online]; acessado em 25 de Março de 2021. Disponível em: https://www.math.fsu.edu/~hoeij/issac2017.pdf.