Question:1

In the given figure, $I \parallel m$ and t is a transversal. If $\angle 5 = 70^{\circ}$, find the measure of each of the angles $\angle 1$, $\angle 3$, $\angle 4$ and $\angle 8$.

Solution:

Given: $\| \|$ mt is a transversal. $\angle 5 = 70^{\circ} \angle 5 = \angle 3 = 70^{\circ}$ (alternate interior angles) $\angle 5 + \angle 8 = 180^{\circ}$ (linear pair) or $70^{\circ} + \angle 8 = 180^{\circ} \angle 8 = 1$

Question:2

In the given figure, $I \parallel m$ and t is a transversal. If $\angle 1$ and $\angle 2$ are in the ratio 5:7, find the measure of each of the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 8$.

Solution:

Given: $l \parallel mt$ is a transversal. $\angle 1: \angle 2=5:7$ Let the angles measure 5x and 7x. $\angle 1+\angle 2=180^\circ$ (linear pair) $\therefore 5x+7x=180$

Question:3

Two parallel lines l and m cut by a transversal t. If the interior angles of the same side of t be $(2x-8)^\circ$ and $(3x-7)^\circ$, find the measure of each of these angles. **Solution:**

 $Given: \ l \parallel mt \ is \ a \ transversal. \ Let: \ \angle 1 = (2x-8)^{\circ} \angle 2 = (3x-7)^{\circ} \ We \ know \ that \ the \ consecutive \ interior \ angles \ are \ supplementary. \ \therefore \ \angle 1 \ + \angle 2$

Question:4

In the given figure, $I \parallel m$. If s and t be transversals such that s is not parallel to t. find the values of x and y.

Solution:

From the given figure:

 $\angle 1 = \angle 3 = 50^\circ$ (corresponding angles) and $\angle 1 + x^\circ = 180^\circ$ (linear pair) or $x^\circ = 180^\circ - 50^\circ = 130^\circ$ or $x = 130 \angle 2 = \angle 4 = 65^\circ$ (corresponding angles)

In the given figure, $\angle B = 65^{\circ}$ and $\angle C = 45^{\circ}$ in $\triangle ABC$ and $DAE \parallel BC$. If $\angle DAB = x^{\circ}$ and $\angle EAC = y^{\circ}$, find the values of x and y.

Solution: Given: $\angle B = 65^{\circ} \angle C = 45^{\circ} DAE \parallel BC$ The given lines are parallel. $\therefore x^{\circ} = \angle B = 65^{\circ}$ (alternate angles when AB is taken as the transver

In the adjoining figure, it is given that $CE \parallel BA$, $\angle BAC = 80^{\circ}$ and $\angle ECD = 35^{\circ}$.

Find $i \angle ACE$, $ii \angle ACB$, $iii \angle ABC$.

Solution:

Given: CE \parallel BA \angle BAC = 80°, \angle ECD = 35°(i) \angle BAC = \angle ACE = 80° (alternate angles with AC as a transversal) (ii) \angle ACB + \angle ACD =

Question:7

In the adjoining figure, it is being given that $AO \parallel CD$, $OB \parallel CE$ and $\angle AOB = 50^{\circ}$ Find the measure of $\angle ECD$.

Solution:

Given: AO || CD

OB \parallel CE \angle AOB = $50^{\circ}\angle$ AOD = \angle CDB = 50° (when AO \parallel CD and OB is the transversal) \angle ECD + \angle C

Question:8

In the adjoining figure, it is given that $AB \parallel CD$, $\angle AOB = 50^{\circ}$ and $\angle CDO = 40^{\circ}$. Find the measure of $\angle BOD$.

Solution:

 $Given:\ AB\parallel CD$

$$30 = 50^{\circ}$$

 $\angle ABO = 50^{\circ}$ $\angle CDO = 40^{\circ} Construction : Through O, draw EOF || AB. <math>\angle ABO = \angle BOF = 50^{\circ}$

(alternate a

Question:9

In the given figure, $AB \parallel CD$ and a transversal EF cuts them at G and H respectively.

If GL and HM are the bisectors of the alternate angles $\angle AGH$ and $\angle GHD$ respectively, prove that GL || HM.

Solution:

Given: AB \parallel CD GL and HM are angle bisectors of \angle AGH and \angle GHD, respectively. \angle AGH = \angle GHD (alternate angles) or $\frac{1}{2}$ \angle AGH =

Question:10

In the given figure, $AB \parallel CD$, $\angle ABE = 120^{\circ}$, $\angle ECD = 100^{\circ}$ and $\angle BEC = x^{\circ}$ Find the value of x.

Solution:

Given: AB \parallel CD \angle ABE = 120° \angle ECD = 100° \angle BEC = x° Construction: FEG \parallel AB Now, $\sin ce\ AB \parallel$ FEG and $AB \parallel$ CD, FI

Question:11

In the given figure, ABCD is a quadrilateral in which $AB \parallel DC$ and $AD \parallel BC$. Prove that $\angle ADC = \angle ABC$.

Solution:

Given: $AB \parallel CD$ $AD \parallel BC \angle 1 + \angle 2 = 180^{\circ}$ $(AB \parallel CD \text{ and } AD \text{ is the transversal}) \dots (i) \angle 2 + \angle 3 = 180^{\circ}$ $(AD \parallel BC \text{ and } AB \parallel CD \text{ and } AB$

Question:12

In the given figure, $I \parallel m$ and $p \parallel q$.

Find the measure of each of the angles $\angle a$, $\angle b$, $\angle c$ and $\angle d$.

Solution:

(consecutive interior angles on the same

Question:13

In the given figure, $AB \parallel DC$ and $AD \parallel BC$, and AC is a diagonal. If $\angle BAC = 35^{\circ}$, $\angle CAD = 40^{\circ}$, $\angle ACB = x^{\circ}$ and $\angle ACD = y^{\circ}$, find the value of x and y

Solution: Given: AB \parallel DCAD \parallel BC \angle BAC = 35° \angle CAD = 40° \therefore \angle BAC = y = 35° (alternate angles when AB \parallel DC) \angle CAD = x = 40° (alternate ang

Question:14

In the given figure, $AB \parallel CD$ and CA has been produced to E so that $\angle BAE = 125^{\circ}$. If $\angle BAC = x^{\circ}$, $\angle ABD = x^{\circ}$, $\angle BDC = y^{\circ}$ and $\angle ACD = z^{\circ}$, find the values of x, y, z.

Solution:

Given: AB \parallel CD \angle BAE = $125^{\circ}\angle$ CAB + \angle BAE = 180° or 125° + x° = 180° or x = 55x + z = 180° (consecutive interior angles on the same states)

In each of the given figures, two lines I and m are cut by a transevrsal t.

Find whether $I \parallel m$.

Solution: (i) $\angle 1 + \angle 2 = 180$ (linear pair) or $130^\circ + \angle 2 = 180^\circ$ or $\angle 2 = 50^\circ \neq 40^\circ = \angle 3$. $1 \nmid m(ii) \angle 2 + \angle 3 = 180^\circ$ (linear pair) $35^\circ + \angle 3 = 180^\circ \angle 3 = 14$

