

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR

Numerikus Analízis Tanszék

Parametrikus felületek távolságmezőjének generálása és megjelenítése

Témavezető: Szerző:

Bán Róbert Szente Péter

doktorandusz programtervező informatikus BSc

Tartalomjegyzék

1.	\mathbf{Bev}	ezetés	4
	1.1.	Témaválasztás és feladatleírás	4
	1.2.	Szakirodalmi áttekintés	5
2.	Felh	asználói dokumentáció	6
	2.1.	A megoldott probléma	6
	2.2.	A felhasznált módszerek	7
		2.2.1. Tesszelláció	7
		2.2.2. Sugárkövetés motivációja	7
	2.3.	Távolságmező-számítás	8
		2.3.1. Lipschitz-módszer	8
		2.3.2. Brute force	8
		2.3.3. AdaMax sztochasztikus gradiens módszer	8
	2.4.	Felhasználói felület	Ĉ
		2.4.1. Navigáció	Ć
		2.4.2. Gyorsbillentyűk	õ
		2.4.3. Beállítások	ę
3.	Fejl	esztői dokumentáció	13
	3.1.	Elméleti háttér	13
	3.2.	Sphere tracing	13
	3.3.	Előjeles távolságfüggvények	14
		3.3.1. Egyszerűbb alakzatok	
		3.3.2. Parametrikus felületek távolságfüggvénye	15
	3.4.	Bézier-görbék	
		3.4.1. Bernstein-alak	
		3.4.2. Végpont-interpoláció	
		-	16

TARTALOMJEGYZÉK

	3.4.4. Derivált	17
3.5.	Bézier-felületek	17
	3.5.1. Bilineáris interpoláció	17
	3.5.2. Bernstein-alak	17
	3.5.3. Parciális deriváltak	18
3.6.	Legközelebbi pont meghatározása	18
	3.6.1. Merőlegesség feltétel	18
3.7.	Fénymodell	19
3.8.	Távolságfüggvény rács számítása	19
3.9.	Sugárkövetés távolságmezőn	20
3.10.	Egyszerűbb távolságfüggvény-számító algoritmusok	21
	3.10.1. Lipschitz-módszer	21
	3.10.2. Brute force	21
3.11.	Gradiens módszerek	22
	3.11.1. Gradiens módszer	22
	3.11.2. Adam sztochasztikus gradiens módszer	23
	3.11.3. AdaMax variáns	23
3.12.	Vetített gradiens módszer	24
3.13.	Szimulációs eredmények	24
3.14.	Gradiens módszerek stabil paraméterezése	25
	3.14.1. Rosenbrock-függvény	25
3.15.	Globális minimum harmadfokú Bézier-felületen	26
	3.15.1. Sarokpontok	26
	3.15.2. Oldalak	27
	3.15.3. A 10 pont módszer	27
3.16.	AdaMax algoritmus Bézier-felületeken	28
	3.16.1. Felületgenerálás	28
	3.16.2. Mintavételezési pont generálás	28
	3.16.3. Referenciaértékek	28
3.17.	Validáció	29
3.18.	A program szerkezete	30
3.19.	Implementáció	30
3.20.	de Casteljau-algoritmus	32
	3 20 1 Iterációval	32

TARTALOMJEGYZÉK

		3.20.2. Swizzle operátorokkal	32				
		3.20.3. Mérési eredmények	33				
		3.20.4. Megjegyzések	34				
	3.21	. Pont-felület távolság és gradiense	35				
		3.21.1. Analitikus pont-felület távolság	35				
		3.21.2. Gradiens számításának műveletigénye	35				
		3.21.3. A távolság gradiense	36				
	3.22	. AdaMax	36				
	3.23	. A program tesztelése	36				
4.	Ere	dmények	38				
	4.1.	Generálási módszer hatása a sugárkövetésre	38				
		4.1.1. Lipschitz-módszer	39				
		4.1.2. Brute Force módszer	39				
		4.1.3. AdaMax módszer	39				
	4.2.	Távolságmező-generálás	39				
	4.3.	Összehasonlítás a tesszellációval	40				
5.	Öss	zefoglalás	42				
K	Köszönetnyilvánítás						
Ire	Irodalomjegyzék 4						
Á۱	Ábrajegyzék 46						

1. fejezet

Bevezetés

1.1. Témaválasztás és feladatleírás

A számítógépes modellezés egyik meghatározó eszköze a testek felületének különböző parametrikus felületekkel való leírása. Egyre szélesebb körben elterjedő implicit felületreprezentáció az előjeles távolságfüggvények és diszkretizált változatuk, a távolságmezők. A távolságmezővel reprezentált felület egy speciális sugárkövető eljárással, a sphere tracinggel jeleníthető meg.

A szakdolgozat célja parametrikus felületekkel ábrázolt objektumok távolságmezőjének generálására GPU segítségével. A létrejövő távolságmezők megjeleníthetők GPU-val gyorsított módon, az említett sphere tracing módszerrel. Ezt a módszert összehasonlítom a parametrikus felület háromszögekkel tesszellált megjelenítésével.

A távolságmezőt felhasználom még geometriai lekérdezések elvégzésére, mint a felületi normális meghatározása, ami a felület árnyalásához elengedhetetlen. Meghatározhatók még láthatósági viszonyok, melyet vetett árnyékok számításánál használok.

A készített programmal kétdimenziós függvények grafikonjai és Bézier-felületek jeleníthetők meg. A Bézier-felületekre azért esett a választás, mert a kontrollpont-hálójukon keresztül intuitívan manipulálhatók és a folytonosság megtartása mellett összeilleszthetők, így különösen alkalmasak felületek modellezésére. Harmadfokú Bézier-felületek távolságmezőjének generálására speciális algoritmust is adok, melyet összehasonlítok a korábban tárgyalt módszerekkel.

1.2. Szakirodalmi áttekintés

A téma Hart cikkével [1] kezdődik, melyben bemutatja, hogyan használható a sphere trace algoritmus felületek megjelenítésére. A módszer a sugárkövetést gyorsítja fel azzal, hogy a felülettől vett távolsággal lép a sugáron. Ez különösen a felülettől távol eredményez gyorsítást. A módszer előfeltétele, hogy a távolságfüggvényt viszonylag gyorsan ki tudjuk számítani. Ez könnyen megtehető egyszerűbb testek esetében. A módszert általában a GPU pixel shaderében implementálják, így a teljes színtér eltárolható GPU kódként. Emiatt a Demoscene-ekben nagyon sok példát látunk rá. Ilyeneket gyűjt össze például a Shadertoy weboldal.

Ha a felületek távolságfüggvénye nehezen számítható, vagy a jelenet túl összetett, akkor közelítésekre lehet szükség. Ha a távolságfüggvény becslés nem elég jó, akkor a sugárkövetés lelassul. Az alap sugárkövető algoritmus felgyorsítására több módszer is született. [2, 3, 4, 5] A sugárkövetés gyorsítható, ha a távolságfüggvényt egy diszkrét rácson kiértékeljük, és az eredményt letároljuk. Ennek a műveletnek nem kell valós idejűnek lennie, minden objektumra előszámítható. A távolságmezőből a távolságfüggvény becslését úgy kapjuk, hogy a szomszédos 8 pontot trilineárisan interpoláljuk. Ha a távolságmezőben pontos értékek vannak, akkor a 8 távolság által reprezentált harmadfokú felület pontosan rekonstruálható. [6]

2. fejezet

Felhasználói dokumentáció

2.1. A megoldott probléma

A készített programmal harmadfokú Bézier-felületek jeleníthetők meg. A Bézier-felületeket egy kontrollpont-háló definiálja. A felület pontjait a kontrollpontok speciális súlyozott átlagaként kapjuk. A felület modellezés szempontjából legfontosabb tulajdonsága, hogy a kontrollpontoknak a pont környezetében van leginkább hatása, így a felület a kontrollpont-hálón keresztül intuitívan manipulálható.

Ha a felülethez árnyékokat is szeretnénk számítani, akkor általában valamilyen sugárkövetési algoritmust használunk. A programban az ún. sphere trace sugárkövető algoritmust használtam. Ennek megvalósításához szükség van a felületet határoló dobozon belül minden pontban a felület távolságára vagy annak egy alsó közelítésére. Ezt nevezzük távolságfüggvénynek. A távolságfüggvényt egy diszkrét rácson kiértékelem, majd textúrában eltárolom. Ezt nevezzük távolságmezőnek. A távolságmezőt elég a program elején kiszámítani, mert ha a felület nem változik, akkor minden képkocka kirajzolásakor újrahasználható.

A távolságmező generálására több különböző algoritmust is implementáltam. A program segítségével ezeknek a módszereknek a paramétereivel lehet kísérletezni, illetve az egyes módszereket össze lehet hasonlítani.

2.2. A felhasznált módszerek

2.2.1. Tesszelláció

A legelső megjelenítési mód a felület háromszögekkel való közelítése. A tesszelláció vagy háromszögelés során a cél úgy lefedni háromszögekkel a felületet, hogy annak részletei ne vesszenek el. Ez egyben a leggyakrabban használt modellezési módszer is. A videókártyák hardveresen támogatják háromszögek raszterizációját, így ez a módszer nagyon gyors. A többi módszer helyességét a háromszögekkel tesszellált közelítéssel fogom ellenőrizni. Ha függvények grafikonjait háromszögeljük, általában egyenletes felosztást veszünk a parmétertérben. A függvényértéket a harmadik koordináta reprezentálja.

2.1. ábra. Tórusz és függvénygrafikon háromszögelése. Forrás: wikiwand.com

2.2.2. Sugárkövetés motivációja

A sugárkövetés mindenképpen költségesebb művelet, mint a raszterizáció, hiszen visszaverődéseket, törést és árnyéksugarakat is számítunk a jobb eredmény érdekében. Ha a fotorealisztikus eredmény a cél, akkor viszont mindenképpen sugárkövetést használunk, és a cél az extra számítási költségek csökkentése, a sugárkövetés felgyorsítása.

2.2. ábra. Megjelenítési módok összehasonlítása. Forrás: blogs.nvidia.com

2.3. Távolságmező-számítás

2.3.1. Lipschitz-módszer

A Lipschitz-módszer lényege azt használja ki, hogy ha a felületen kicsit arrébb megyünk, akkor a távolság nem változhat tetszőlegesen nagyot. Formálisan:

$$|f(x) - f(y)| \le L \cdot |x - y|$$

ahol L az ú.n. Lipschitz-konstans. Ennek a konstansnak a beállításával egyszerűen kapunk alsó közelítést a távolságfüggvényre.

2.3.2. Brute force

A felületet valamilyen felbontáson kiértékeljük. A legközelebbi pont távolságát eltároljuk a távolságmezőben. A módszer hátránya, hogy a számítási igény négyzetesen nő a felbontás növelésével. (Amellett, hogy a háromdimenziós rács minden pontjára külön ki kell számolni.)

2.3.3. AdaMax sztochasztikus gradiens módszer

Itt a legközelebbi pont meghatározására egy gradiens módszert alkalmazunk, mely több lépésben közelít a lokális minimum távolság felé. Ha elég sok helyről elindítjuk, akkor a globális optimumot is megkapjuk.

2.4. Felhasználói felület

2.4.1. Navigáció

A színtérben az alábbi billenytűk lenyomásával mozoghatunk:

- 1. A: mozgás balra
- 2. W: mozgás előre
- 3. S: mozgás hátra
- 4. D: mozgás jobbra
- 5. Q: süllyedés
- 6. E: emelkedés

2.4.2. Gyorsbillentyűk

Az programban az alábbi fontosabb gyorsbillentyűk érhetők el:

- 1. ESC: kilépés
- 2. F2: GUI elrejtése / előhozása
- 3. F5: shaderek újratöltése
- 4. F12: képernyőfelvétel készítése
- 5. V: VSync be- és kikapcsolása
- 6. Space: idő megállítása / elindítása
- 7. billenytűzetkiosztástól függően Z vagy Y: nagyítás egy pixel környezetére
- 8. P: profilozó előhozása / elrejtése. A profilozóval a generálás és kirajzolás CPUés GPU idejét lehet mérni.

A gyorsbillentyűkről további információt kapunk, ha a kurzort a "Keyboard Shortcuts" fleirat melletti kérdőjelre visszük.

2.3. ábra. Profilozó ablak

2.4.3. Beállítások

A felhasználói felület részeként a képernyő bal oldalán a jelenet és a generálás paraméterei találhatók. A beállításokat több lenyitható menübe szerveztem. A

felületen találhatók gombok, számbeviteli mezők, csúszkák és lenyíló menük is, melyekkel több opció közül választhatunk. A számbeviteli mezőkbe dupla kattintással gépelni is lehet, illetve ha a bal egérgombot lenyomva oldalra húzzuk őket, akkor az érték nőni, illetve csökkeni fog előre beállítot határok között.

Figyelem, nem minden beállítás eredményez szép képet és helyes megjelenítést. Mivel a program célja a paraméterek beállítása, ez nem hibás működés.

A 2.4 ábrán a globális beállítások találhatók. A Time mező az eltelt időt mutatja. A Scale paraméterrel beállíthatjuk, milyen gyorsan teljen. Alatta a felbontás állítható be. Ezt számbeviteli mezőkkel és legördülő menüből is kiválaszthatjuk. Készíthetünk még képernyőképet és videófelvételt is.

2.4. ábra. Globális beállítások

A 2.5 ábrán a kamera beállításai szerepelnek. Az első paraméter a kamera mozgásának sebessége. A többi egy valódi kamera működését hivatott szimulálni. A Depth Range paraméter a közeli és távoli vágósík távolságát adja meg. Utána a kamera pozíciója és orientációja állítható be. Ezeket a paramétereket legkönnyebben a kamerát mozgató billentyűkkel és az egér mozgatásával állíthatjuk.

2.5. ábra. Kamera beállítások

A 2.6 ábrán a felület generálásakor használt paramétereket lehet beállítani. Választhatunk a raszterizáció és a sugárkövetés között, vagy akár egymásra rajzoltathatjuk mindkettőt is. A "Generate new surface" gombbal egy új felületet generálhatunk. A felület kontrollponthálóját az alatta lévő számbeviteli mezőkkel is állíthatjuk. A következő beállítások a távolságmező felbontása és a használt GPU oldali adatreprezentáció, mely minden generálási módszert érint. Az utolsó beállítás a generálási módszer, majd esetleg a módszer hiperparaméterei. Ezek sorban:

- Lipschitz constant: a Lipschitz-módszer konstansa. Minél nagyobb, annál lassabb lesz a sugárkövetés. Ha túl kicsire állítjuk, a módszer nem konvergál.
- Number of iterations: az AdaMax módszer iterációszáma.
- Alpha, Beta1, Beta2: Az AdaMax módszer hiperparaméterei. A képminőséget csak extremális esetben vagy alacsony iterációszámnál befolyásolják.

2.6. ábra. Távolságmező-számításának beállításai

A 2.7 ábrán a sugárkövetés, fények és az anyagtulajdonság beállításai szerepelnek. A sugárkövetésnél beállítható a maximális iterációszám, a kilépési feltétel (Epsilon) és egy relaxációs paraméter, mellyel a sugárkövetés sebességét változtathatjuk. Figyelem, egynél nagyobb relaxációs értékekre nem garantált a konvergencia.

Beállítható egy ambiens fény, mely a tér minden pontját egyenlően megvilágítja. Egy csúszkával pontfényforrások adhatók a jelenethez, melyeknek a pozíciója és színe külön-külön állítható. A fényforrásoknak van egy alapbeállítása.

Az anyag tulajdonságai az alapszíne (Ambient), illetve a rajta látható visszaverődés diffúz és spakuláris komponenseinek erőssége. Az anyagtulajdonságokat szürkeárnyalatos és RGB formátumban is állíthatjuk.

2.7. ábra. Sugárkövetés, fények és anyagtulajdonság beállításai

A 2.8 ábrán látható menüben a kirajzolt felületek pozíciója és mérete állítható.

2.8. ábra. A kirajzolt dobozok pozíciója és mérete

3. fejezet

Fejlesztői dokumentáció

3.1. Elméleti háttér

A következő fejezetekben a dolgozat elméleti hátterét ismertetem.

3.2. Sphere tracing

A sugárkövetéssel történő képszintézisről részletes összefoglaló olvasható Bálint Csaba OTDK dolgozatában [7, 11-16. o.], így azt itt nem részletezem.

Adott egy $d: \mathbb{R}^n \to \mathbb{R}$ előjeles távolságfüggvény, mely minden bemenetre a pont a felület határától vett előjeles távolságát adja. Ez az érték a felület által határolt térrész belsejében negatív, kívül pedig pozitív. Formálisan d akkor távolságfüggvény, ha az alábbi teljesül [1]:

$$f(p) = d(p, f^{-1}(0))(p \in \mathbb{R}^n)$$

A sugárkövetés során adott egy kiinduló pont és egy sugárirány. A cél a félegyenes és a felület metszéspontjának megtalálása. Míg a sugármetszés egyszerűbb matematikai objektumok esetén (pl. gömb, sík) analitikusan elvégezhető, bonyolultabb testek esetén csak óvatosabban közelíthetünk a felülethez a sugáron. (Ray Marching[8])

A sphere trace algoritmusról Hart cikkében [1] részletesen olvashatunk. Röviden összefoglalva a sphere trace egy sugárkövető algoritmus, mely minden lépésben kiértékeli a távolságfüggvényt. Tudjuk, hogy a távolságfüggvénnyel megegyező méretű üres tér van a pont körül, hiszen az a felülethez vett távolság minimumát vagy an-

nak alsó közelítését adja. Ekkor a távolsággal megegyező méretűt léphetünk a sugár mentén. A sugárkövetés a felület közelében lelassul. Ha a távolság epszilonnál kisebb lesz, vagy elértünk egy fix lépésszámot, akkor leállítjuk az iterációt.

3.3. Előjeles távolságfüggvények

3.3.1. Egyszerűbb alakzatok

Inigo Quilez oldalán [9] felsorolja sok egyszerűbb alakzat analitikus távolságfüggvényét. Például egy o középpontú és r sugarú gömb előjeles távolságfüggvénye:

$$d_g(p) = ||p - o||_2 - r$$

A weboldalon további testek távolságfüggvényei is láthatók. Ezekből aztán könnyen építhetünk színteret az alábbi tömörtest-modellezésben is használt műveletekkel: (Legyen az A testtől vett előjeles távolságfüggvény d_A , a B testtől vett pedig d_B)

- Mivel a távolságfüggvény a legközelebbi távolságot adja, két test uniója a távolságfüggvények minimuma. $d(A \cup B) = min(d_A, d_B)$
- Egy test "kifordítható", ha a távolságfüggvény -1-szeresét vesszük $d(\overline{A}) = -d_A$.
- Két test metszete a távolságfüggvények maximuma, hiszen addig haladhatunk a sugár mentén, amíg mindkét alakzatot el nem találjuk. $d(A \cap B) = max(d_A, d_B)$
- Kivonást is végezhetünk, ha a test és a kifordított test metszetét vesszük. $d(A \backslash B) = max(d_A, -d_B)$

Elvégezhetők még a testeken transzformációk, ami általában a mintavételezési pontra alkalmazott inverz-transzformációval történik. Ilyenek például a nagyítás, nyújtás, lekerekítés, forgatás, kétdimenziós alakzat kiterjesztése hasábbá vagy forgástestté.

Különösen érdekes a tükrözés, ami az abszolútérték-függvénnyel elvégezhető, illetve az alakzat véges és végtelen ismétlése, melyet a koordinátákra alkalmazott moduló operátorral lehet elérni. [9]

3.3.2. Parametrikus felületek távolságfüggvénye

Háromdimenziós euklideszi térben parametrikus egyenlettel megadott felületeket hívjuk így. $f: \mathbb{R}^2 \to \mathbb{R}^3$ Azért felület, mert a vektorértékű függvény értelmezési tartománybeli pontjaihoz háromdimenziós pontokat rendelünk. Modellezéskor így a test felszínét adjuk meg. Például a tórusz parametrikus egyenlete:

$$f(u,v) = \begin{pmatrix} r \cdot \sin(v) \\ (R + r \cdot \cos(v)) \cdot \sin(u) \\ (R + r \cdot \cos(v)) \cdot \cos(u) \end{pmatrix}$$

Ahol r a generáló kör sugara, R pedig a forgástengely és a kör középpontjának távolsága. u és v szögek, így $u, v \in [0, 2\pi]$. Parametrikus egyenlettel megadhatók függvények grafikonjai is. Legyen h(u, v) a függvény, ekkor a grafikon parametrikus egyenlete:

$$f(u,v) = (u,v,h(u,v))$$

3.1. ábra. $h(u, v) = \sin(u + v) + 1$ grafikon a GeoGebra alkalmazásban.

Ezen felületek távolságfüggvénye analitikusan sok esetben nem meghatározható. Vegyünk egy kétdimenziós példát, az y = sin(x) függvényt és egy (e, f) mintavételezési pontot, amihez a legközelebbi pontot keressük a felületen. Ekkor a minimalizálandó függvény:

$$d(x) = \sqrt{(x-e)^2 + (\sin(x) - f)^2}$$

A gyök függvény szigorú monotonitása miatt vizsgáljuk d^2 minimumát. Az elsőrendű szükséges feltétel:

$$cos(x) \cdot (sin(x) - f) + x - e = 0$$

Ezt csak néhány speciális esetben tudjuk analitikusan megoldani.

Polinomokkal sem boldogulunk könnyen analitikus módszerekkel. Például, ha a polinom fokszáma harmadfokú, akkor a négyzetre emelés és deriválás után egy ötödfokú polinom gyökeit kellene meghatározni. Erre már nem létezik megoldóképlet. Ez az eset előkerül a dolgozatomban a Bézier-felületek tárgyalásánál.

3.4. Bézier-görbék

Ennek a résznek alapul G. Farin: Curves and Surfaces for CAGD című könyve szolgált. [10] A de Casteljau-algoritmusról és Bézier-görbékről a könyv 45-47., a Bernstein-polinomokról a könyv 57. oldalán olvashatunk. Ezeket itt nem részletezem, csak a szükséges tételeket mutatom be.

3.4.1. Bernstein-alak

Az *i*-edik *n*-edfokú Bernstein-polinom alakja:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Legyenek egy n-edfokú Bézier-görbe kontrollpontjai b_0, b_2, \ldots, b_n Ekkor a görbe felírható Bernstein-bázisban:

$$b(t) = \sum_{i=0}^{n} b_i B_i^n(t)$$

Ezt a görbe Bernstein-alakjának is nevezik

3.4.2. Végpont-interpoláció

A Bernstein-polinomok tulajdonságaiból adódik, hogy a görbe a végpontjaiban egyenlő a szélső kontrollpontokkal, azaz interpolál.

3.4.3. Pszeudolokális kontroll

A legfontosabb tulajdonsága ezen görbéknek, hogy egy kontrollpont megváltoztatása csak annak környezetét változtatja meg jelentősen. Ennek oka, hogy $B_i^n(t)$ -nek egyetlen maximuma van, a t = i/n helyen. [10, 62. o.] A végpont-interpoláció és a pszeudolokális kontroll miatt a görbe különösen alkalmas számítógépes modellezésre, mivel a felület a kontrollponthálójával intuitívan manipulálható.

3.4.4. Derivált

A görbe deriváltja: [10, 63. o.]

$$b'(t) = n \sum_{i=0}^{n-1} \Delta b_i B_i^{n-1}(t)$$

Ahol $\Delta b_i = b_{i+1} - b_i$ (Δ a jobboldali differenciaoperátor.)

3.5. Bézier-felületek

3.5.1. Bilineáris interpoláció

Farin a Bézier-felületeket a tenzorszorzat-felületek bevezetéseként írja le. Egy egyik irámyban m, másik irányban n-edfokú felületet $(m+1) \times (n+1)$ kontrollpont definiál. A felület pontjai kiszámíthatók a kontrollpontháló ismételt bilineáris interpolációjával. Ezt a felület pontbeli kiértékelésének nevezzük.

3.2. ábra. Bézier-felület kiértékelése [10, 248. o.]

3.5.2. Bernstein-alak

A végeredmény szempontjából lényegtelen, hogy az interpolációkat milyen sorrendben végezzük. Például kiértékelhetjük a kontrollponthálót az egyik paraméter szerint, majd az így keletkezett kontrollpontok által definiált Bézier-görbét a másik

paraméter szerint. [10, 251. o.] A felület Bernstein-alakja:

$$b^{m,n}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} b_{i,j} B_i^m(u) B_j^n(v)$$

3.5.3. Parciális deriváltak

A könnyebb leírás érdekében bevezetjük a parciális differencia
operátort. Ennek szabályai: $\Delta^{1,0}b_{i,j}=b_{i+1,j}-b_{i,j}$ és $\Delta^{0,1}b_{i,j}=b_{i,j+1}-b_{i,j}$

A parciális deriváltat a Bézier-görbe deriváltjára vezetjük vissza:

$$\partial_u b^{m,n}(u,v) = \sum_{j=0}^n \left[\partial_u \sum_{i=0}^m b_{i,j} B_i^m(u) \right] B_j^n(v)$$

$$\partial_u b^{m,n}(u,v) = m \sum_{j=0}^n \sum_{i=0}^{m-1} \Delta^{1,0} b_{i,j} B_i^{m-1}(u) B_j^n(v)$$

A másik parciális derivált hasonlóan meghatározható:

$$\partial_v b^{m,n}(u,v) = n \sum_{i=0}^{n-1} \sum_{i=0}^m \Delta^{0,1} b_{i,j} B_i^m(u) B_j^{n-1}(v)$$

Magasabbrendű deriváltakat a dolgozatban nem használtam, így azokat itt nem tárgyalom. Az általános alak szintén megtalálható Farin könyvében. [10, 257. o.]

3.6. Legközelebbi pont meghatározása

A legközelebbi pont meghatározása nem egyszerű feladat. Egyszerűsítésként egy b(x,y) függvény grafikonjára próbáljuk meg meghatározni. Ezen belül is vegyünk egy harmadfokú Bézier-felületet.

3.6.1. Merőlegesség feltétel

A legközelebbi pont szükséges feltétele: Az E mintavételezési pontból a felületi pontba húzott egyenes merőleges mindkét parciális deriváltra. Egyik irányra felírva:

$$r(x,y) = (x,y,b(x,y))$$

$$\frac{dr}{dx} = (1, 0, b_x(x, y))$$

Ahol b_x az első koordináta szerinti parciális derivált. A mintavételezési pont legyen az origó. Ezt megtehetjük, hiszen a felületet átparaméterezhető úgy, hogy a mintavételezési pont az origóba essen. Ha két vektor merőleges, a skalárszorzatuk 0.

$$0 = \left\langle r, \frac{dr}{dx} \right\rangle = \left(1 \ 0 \ b_x(x, y) \right) \cdot \begin{pmatrix} x \\ y \\ b(x, y) \end{pmatrix} = x + b_x(x, y)b(x, y)$$

x szerint parciálisan integrálva:

$$f(y) = x^2/2 + b(x, y)^2$$
$$x = 0 \to f(y) = b(0, y)^2$$
$$b(0, y)^2 = x^2/2 + b(x, y)^2$$

A feltétel barátságos alakja ellenére a mi esetünkben (harmadfokú Bézier) ez egy ötödfokú kétismeretlenes egyenlet tetszőleges együtthatókkal.

Látjuk, hogy ez a megközelítés nem vezet eredményre. Ugyanezt az egyenletet kapjuk, ha a szükséges feltételt a felületi normális segítségével írjuk fel. Ezt itt nem részletezem. Az algoritmusok résznél a problémára több közelítési módszert is bemutatok.

3.7. Fénymodell

Fénymodellnek egy egyszerű Blinn-Phong árnyalást használtam [11] árnyéksugarakkal. Az árnyéksugár számítás ugyanazt az algoritmust használja, mint a sugárkövetés. Ha elmetsszük a felületet a felületi pontból a (pont)fényforrás felé indított sugárral, akkor a felületi pont árnyékban van.

Fontos megemlíteni, hogy a távolságfüggvények segítségével puha árnyékszámító algoritmus is adható. [12]

3.8. Távolságfüggvény rács számítása

A távolságfüggvényt egy diszkrét rácson értékelem ki, melyet egy háromdimenziós textúrában tárolok. Mivel csak a mintavételezési pont változik, maga a kiértékelendő (vagy meghatározandó) távolságfüggvény nem, így ki tudom használni a GPU masszívan párhuzamos architektúráját. A textúrát saját GPU compute shaderek segítségével számítom ki. A számítás elvégzésére később több módszert is mutatok.

Fontos megjegyezni, hogy ennek a műveletnek nem kell valós idejűnek lennie. A program indításakor a textúra több frame alatt kiszámítható. Ezután elég a textúrát a fragment shader számára feltölteni a GPU-ra a sugárkövetés előtt.

3.9. Sugárkövetés távolságmezőn

A sugárkövetés során adott a kiinduló pont P, és a sugár iránya d. Emellett adott egy F függvény, mely az előbb részletezett textúra olvasást és bilineáris interpolációt elvégzi, majd visszaadja a távolságfüggvény becslését. A távolságfüggvény rácsból az értékeket a textúra bilineáris interpolációjával nyerem ki. Ez a fajta textúra mintavételezés egy hardveresen támogatott művelet a GPU-n. Az alábbi függvény a kiindulási pont és a sugár felülettel vett első metszéspontjának távolságát adja meg.

1. algoritmus Sugárkövetés távolságmezőn

```
Funct SDFBoxTrace(P, d, F)
 1: if P a dobozon kívül van then
       return -1
                                                          3: end if
 4: if F(P) \leq 0 then
       return 0
                                      ⊳ A doboz oldalán már a felületben vagyunk
 6: end if
 7: depth := 0
 8: for i \leftarrow 1 to maxSteps do
                                                            ▶ Maximum lépésszám
       dist := F(P + depth * d)
 9:
       if abs(dist) < \varepsilon then
10:
          return depth
                                                            ⊳ Eltaláltuk a felületet
11:
       end if
12:
       depth += dist
13:
       currPos := P + depth * d
14:
       if currPos a dobozon kívül van then
15:
          return -1;
                                           ▶ Távolság nem definiált, nincs metszés
16:
       end if
17:
18: end for
19: \mathbf{return} - 1;
                                           ▶ Távolság nem definiált, nincs metszés
```

3.10. Egyszerűbb távolságfüggvény-számító algoritmusok

Ebben a részben két egyszerűbb megközelítést mutatok be, melyek általánosan használhatók előjeles távolságfüggvények generálására.

3.10.1. Lipschitz-módszer

A módszer elméleti hátterét Bálint Csaba dolgozatából [7, 18. o.] idézem: "... ha $f \in \mathbb{R}^n \to \mathbb{R}$ függvény Lipschitz folytonos, akkor

$$\frac{|f|}{Lip(f)}$$

távolságfüggvény becslés. Általában az abszolút érték elhagyható, hogy előjeles távolságfüggvényt kapjunk. Ezzel egy módszert kaptunk arra, hogy egy implicit függvényhez hogyan gyártsunk távolságfüggvényt. Sokszor a Lip(f)-et csak felülről tudjuk becsülni, vagy nem éri meg kiszámolni. Ilyenkor természetesen f-et a Lip(f) felső becslésével osztva egy rosszabb becslést kapunk, amivel sokszor lényegesen lassabb a számolás."

A módszerrel egy grafikon például megjeleníthető az alábbi módon:

- Egy előre meghatározott felbontású rácson kiértékeljük a függvényt. Ezzel egy magasságtérképet generálunk.
- Megbecsüljük a Lipschitz-konstanst a számolt értékekből vagy megadjuk analitikusan, ha ismert.
- A távolságmező minden eleme a pont magasságtérképtől vett távolsága lesz,
 Lip(f)-el leosztva. Ezzel távolságfüggvény-becslést kapunk.

3.10.2. Brute force

A felületet valamilyen felbontáson kiértékeljük. A legközelebbi pont távolságát eltároljuk a távolságmezőben. A módszer hátránya, hogy a számítási igény négyzetesen nő a felbontás növelésével. (Amellett, hogy a háromdimenziós rács minden pontjára külön ki kell számolni.)

A módszer előnye, hogy a távolságmező (a felbontás limitációja mellett) pontos és maximális lesz. A távolságmező minden pontjára igaz, hogy az értéke nem növelhető, hiszen minden pontra létezik olyan sugár, melyen az ott tárolt távolságot lépve a felület egy ismert pontjába lépünk. Ezen tulajdonság miatt a sugárkövetésnek sokkal kevesebb lépésre van szüksége a felület megtalálására. A bemutatott két módszer közül a brute force a preferált, hiszen a távolságmező előszámítható és akár el is tárolható háttértáron.

3.11. Gradiens módszerek

A felülettől vett minimális távolság valójában egy optimalizációs probléma. Optimalizációs problémák megoldásának nagyon széles szakirodalma van. Ilyen problémát kell megoldani többek között neuronhálók tanításánál is. 2020-ban távolságfüggvényekkel való ütközésdetektálás javítására is használtak lokális optimalizációt. [13] A távolságfüggvényekhez két, a gépi tanulásban elterjedt algoritmust is implementáltam.

3.11.1. Gradiens módszer

A gradiens módszer egy elsőrendű iteratív optimalizációs algoritmus. A módszer alapötletét egészen Cauchy-ig vezetik vissza [14], így egyáltalán nem újszerű. Az iteráció egy lépése:

$$a_{n+1} = a_n - \alpha \nabla F(a_n)$$

Ahol F a minimalizálandó függvény, ∇ a gradiens-operátor és α a tanulási ráta. α egy kis konstans, ami a módszer konvergenciáját biztosítja. Ha túl nagyra állítjuk, akkor a módszer nem konvergál.

3.3. ábra. Gradiens módszer divergenciája túl nagy tanulási ráta esetén

A módszer felparaméterezését és alkalmazhatóságát a szimulációs eredményeknél tárgyalom.

3.11.2. Adam sztochasztikus gradiens módszer

Az Adam [15] egy sztochasztikus gradiens módszer. Minden lépésben adaptívan változtatja a tanulás paramétereit. Ezekek közül m_t egy tapasztalati momentum, melyet a korábbi gradiensek exponenciálisan csökkenő súlyozásával kapunk. Hasonlóan számítandó v_t , mely a gradiensek négyzetének súlyozott átlaga, avagy a tapasztalati szórás. Legyen g_t a gradiens, ekkor

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Ahol β_1 és β_2 a módszer hiperparaméterei. A paraméterek a gyakorlatban a kezdeti értékük felé (általában 0) statisztikai ferdeséget (bias) mutatnak, ezért korrigálni kell őket:

$$\hat{m_t} = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t}$$

Ezután egy lépés szabálya:

$$a_{n+1} = a_n - \frac{\alpha}{\sqrt{\hat{v_t}} + \varepsilon} \hat{m_t}$$

A hiperparaméterekre a cikk szerzői ezeket az értékeket javasolják: $\alpha=0.002$ $\beta_1=0.9$ $\beta_2=0.999$ és $\varepsilon=10^{-6}$. Ezeket szimulációs eredmények alapján állítottam be az saját alkalmazáshoz. Mivel a GPU-n a dupla pontosságú lebegőpontos értékek számításigényesebbek, így shader környezetben nagyobb ε -t kell használni a numerikus stabilitás érdekében.

3.11.3. AdaMax variáns

Ezt a módosítást a cikk [15] szerzői a cikk végén írják le. A lényege, hogy a szórás számításánál a kettes norma kicserélhető végtelen normára. Ezután a frissítés szabálya átalakítható max függvénnyé: (Itt v_t -t u_t -re cseréljük a megkülönböztethetőség

kedvéért)

$$u_t = \beta_2 u_{t-1} + (1 - \beta_2) \|g_t\|_{\infty}$$

$$u_t = \max(\beta_2 u_{t-1}, |g_t|)$$

Az AdaMax frissítési szabálya ennek felhasználásával:

$$a_{n+1} = a_n - \frac{\alpha}{u_t} \hat{m_t}$$

Végül ezt a variánst implementáltam GPU-n, mivel a számítása egyszerűbb és numerikusan stabilabb, illetve mert néhány iterációval jobb eredményt ért el a szimuláció során.

3.12. Vetített gradiens módszer

Előfordul, hogy az optimalizációs problémát a paramétertér csak egy kis részén kívánjuk megoldani. Például Bézier-felületeknél általában a [0, 1] intervallumon. Ebben az esetben nem elég az optimalizáció végén levetíteni az eredményt, ugyanis az a legtöbb esetben nem egyezik meg a tartományon vett minimumhellyel. [16] Az sem jó, ha a lépés megtétele után vetítjük le a pontot a tartományra, ekkor ugyanis a gradiens módszer helytelen adatokkal fog számolni.

Már a gradiens számításakor figyelembe kell venni a korlátokat. Legyen g a gradiens, $\pi_C()$ pedig egy függvény, ami minden pontot a hozzá legközelebbi C tartománybeli pontba visz. A vetített gradiens így számítható:

$$g_p = (a_n - \pi_C(a_n - \varepsilon g))/\varepsilon$$

Ahol ε egy kis szám. Ez úgy értelmezhető, hogy a gradiens irányába megteszünk egy kis lépést, majd azt levetítjük a tartományra. A vetített pont és az előző pont különbségéből megkapjuk a vetített gradienst irányát.

Ezt odaadjuk a gradiens módszerünknek, majd a lépés után ismét levetítjük.

3.13. Szimulációs eredmények

GPU környezetben nehéz algoritmusokat tesztelni és hibákat javítani, a masszívan párhuzamos környezet miatt, ezért az algoritmusokat egy szálon, Matlabban is

implementáltam. A vizsgálat középpontjában az algoritmusok stabilitása és konvergenciája állt.

3.14. Gradiens módszerek stabil paraméterezése

A gradiens módszer egyszerűsége ellenére meglepően jól teljesít Bézier felületeken abban az esetben, ha a tanulási rárát (α) a lehető legnagyobb értékre állítjuk. Ekkor azonban nem tudunk garantálni semmiféle konvergenciát. Emiatt olyan hiperparaméter-beállítást keresünk, mely szélsőséges esetben is a lokális minimumhoz konvergál.

3.14.1. Rosenbrock-függvény

A Rosenbrock-függvény egy klasszikus "nehéz" példa, melyet optimalizációs algoritmusok tesztelésére szoktak alkalmazni. Definíciója:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

Ennek a globális minimuma az (a, a^2) helyen van. Az a paraméter értéke általában 1. A b paraméterrel a probléma "nehézségét" lehet állítani. Minél nagyobb a b érték, annál nagyobb lesz a gradiensvektor hossza. Én 20-ra állítottam.

3.4. ábra. Stabil paraméterezés a Rosenbrock-függvényen

A gradiens módszer paramétere: $\alpha = 0,005$

Az AdaMax módszer paraméterei: $\alpha = 0,005, \beta_1 = 0,9, \beta_2 = 0,99$

A 3.4 ábrán pirossal a gradiens módszer lépéseit, kékkel az AdaMax módszer lépéseit jelöltem. Az AdaMax módszer 569 lépésben 10^{-6} nagyságrendű hibával konvergál.

A gradiens módszer hibája 1000 lépés után 1/10-nél nagyobb, és még 5000 lépés után is 10^{-4} nagyságrendű.

Ebből a példából jól látszik a bonyolultabb módszer előnye, ha megköveteljük a konvergenciát nehezebb példákra is.

3.15. Globális minimum harmadfokú Bézierfelületen

A módszereket Bézier-felületeken is összehasonlítottam. A cél alapvetően a Bézier-felület távolságfüggvényének generálása. Ehhez a globális minimumot kell meghatározni. Ezt úgy kívánjuk elérni, hogy a lokális optimumkereső algoritmust több pontból elindítjuk. Az itt következő példák intuíciót adnak az indítási pontok minimális számára, amit a következő részben szimulációval validálok.

3.15.1. Sarokpontok

A 3.5 példában az látszik, hogy lokális optimum közel lehet a felület sarkához ((0,0),(0,1),(1,0),(1,1) pontok). Ha a felület belsejéhez tartozó kontrollpontok koordinátáit nagyobbra állítjuk, a baloldali ábrán látható lokális szélsőértékek tetszőlegesen közel kerülhetnek a sarokpontokhoz.

3.5. ábra. Példa sarokpontok szükségességére

A jobboldali ábrán a felület és az (1/2, 1/2, 0) pont távolsága látható. Emellett a gradiens módszerek lépései szerepelnek az (1/10, 1/10) pontból indítva.

Ezen a példán az látszik, hogy a sarokpontokból el kell indítani a keresést, illetve hogy a felület belsejében lévő lokális minimumot nem lehet minden esetben

a sarkokból megtalálni. Én ezért az (1/2,1/2) pontot is hozzávettem a kiindulási pontokhoz.

3.15.2. Oldalak

Az alábbi példán az látszik, hogy a lokális minimum lehet az oldal mentén is, és azt nem feltétlenül találjuk meg a sarokpontból indulva.

3.6. ábra. Példa oldalpontok szükségességére

Emiatt én az oldalak középpontját is hozzávettem a kiindulási pontokhoz.

3.15.3. A 10 pont módszer

9 indítási pont egy egyenletes 3×3 -as felosztás a paramétertérben. Ezzel a felület nagyobb vonásait lefedjük. Azért, hogy a módszer a felület közelében is gyorsan konvergáljon, a mintavételezési pont alatti felületi pontból is elindítom a keresést. Mivel grafikonon vagyunk, ez megegyezik az első két koordinátával.

3.16. AdaMax algoritmus Bézier-felületeken

A 10 pont módszer helyességét szimulációval kívánom igazolni. Ehhez nagyszámú mintát generáltam, majd ellenőriztem, hogy a javasolt módszer minden alkalommal megtalálta-e a globális minimumot.

3.16.1. Felületgenerálás

A harmadfokú Bézier-felületek generálásához elég a 4×4 kontrollpontot megadni. Ehhez egyenletes eloszlással véletlen pontokat vettem a [-1,1] intervallumból. Az így keletkező felületek a közepükön meglehetősen laposak voltak. Ennek oka, hogy amíg a 0. és a 3. harmadfokú Bernstein-polinom maximuma az 1 értéket veszi fel, addig a középsők maximuma csak 4/9. Ez különösen látványos a felület közepén, ott ugyanis két Bernstein-polinom szorzata áll melyek maximuma $(4/9)^2$. Ezen tulajdonság miatt a középső kontrollpontoknak sokkal kisebb hatása van, mint a szélsőknek, ahol ráadásul interpolál is a felület. Emiatt minden kontrollpont harmadik koordinátáját leosztottam a hozzá tartozó Bernstein-polinom maximumával.

3.16.2. Mintavételezési pont generálás

A mintavételezési pontokat a felület bennfoglaló dobozából és annak környezetéből vettem. Ehhez egy egyenletes felosztású térrács pontjait random vektorokkal eltoltam. Az ábrán egy példa merőleges vetülete látható.

3.7. ábra. Felület és ponthalmaz képe

3.16.3. Referenciaértékek

Referenciaértékként kiszámítottam minden mintavételezési pontra a "brute force" módszer eredményét, azaz a távolságot egy $n \times n$ -es rácson kiértékeltem.

3.8. ábra. Referenciaérték maximális hibája a legnagyobb felbontáshoz képest

A tesztek alapján a hiba a műveletigénnyel arányosan csökken, pontosabban a felbontás (n) duplázásakor a hiba közel a negyedére csökken. A továbbiakban az n=256 értéket használom.

3.17. Validáció

A 10 pont algoritmust 1000 különböző példára futtattam, majd összehasonlítottam a kapott minimumot a referenciaértékkel. Mivel azt szeretnénk, hogy az algoritmus a legrosszabb esetben is megadja az optimumot, azért a grafikonon az összes futtatás közül a relatív hiba maximumát ábrázoltam minden egyes lépésszámra.

3.9. ábra. Abszolút hiba maximuma a lépésszám függvényében, logaritmikus skálán

A módszer minden futtatás esetén megtalálta az optimumot legalább a referenciaérték pontosságával, kevesebb, mint 120 iteráció alatt. A grafikon 110 lépés után azért laposodik el, mert az algoritmus eléri a referenciaérték pontosságát. Ha refe-

renciának az utolsó iteráció által adott távolságot vesszük, akkor látható, hogy a módszer tovább konvergál.

3.10. ábra. Abszolút hiba maximuma az iteratív módszerhez viszonyítva.

3.18. A program szerkezete

A program szerkezete a 3.11 ábrán látható. A program a Falcor keretrendszerre épít. A fő programot az SDFBox osztály tartalmazza, mely az adatok tárolására és manipulálására különböző osztályokat használ. Ezek felelőssége, az adatok tárolása mellett több esetben GPU-val való kommunikáció, mely magába foglalja az adatok feltöltését és a futtatás parancsok kiadását.

Az osztályokra mutató referenciákat * karakterrel jelöltem. A típusok között megjelennek float3, float4, float4x4, stb., melyek különböző méretű lebegőpontos számokat tartalmazó vektorokat és mátrixokat jelölnek.

3.19. Implementáció

Ebben a részben néhány fontos implementációs részletre térek ki. Ennek motivációja, hogy a CPU implementáció profilozásakor kiderült, az algoritmus az idő 60%-át a felület kiértékelésével és a gradiens kiszámításával tölti.

3.11. ábra. A program szerkezete

3.20. de Casteljau-algoritmus

3.20.1. Iterációval

Az algoritmus CPU implementációja két egymásba ágyazott ciklussal működik. Ez a 3.1-es forráskódban látható.

```
float deCasteljou_iter(float4 pts, float t, float one_minus_t)

for (int j = 1; j <= 3; j++)

for (int i = 0; i <= 3 - j; i++)

for (int i = 0; i <= 5 - j; i++)

function for (int i = 0; i <= 1 - j; i++)

return pts[i] = one_minus_t * pts[i] + t * pts[i + 1];

return pts[0];

return pts[0];

return pts[0];</pre>
```

3.1. forráskód. de Casteljau iterációval

3.20.2. Swizzle operátorokkal

Részben azért esett a választás a köbös Bézier-felületekre, mert a GPU kód támogat műveleteket legfeljebb 4 elemű vektorokkal. Ez azt jelenti, hogy a felület kontrollponthálójának egy sora belefér egy ilyen vektorba. Az elméleti áttekintésnél láttuk, hogy a felület kiértékelése visszavezethető az egydimenziós problémára, így ezt a függvényt kell vektorizálni. Ezt a szintén hardveresen támogatott ún. swizzle operátorokkal tesszük. Ezek lényege, hogy a művelet elvégzése előtt a bemeneti vektorok elemeit tetszőlegesen átrendezhetjük, akár duplikálhatjuk is. A javított implementáció a 3.2-es forráskódban látható.

```
float deCasteljou_swizzle(float4 pts, float t, float one_minus_t)
{
    for (int j = 1; j <= 3; j++)
    {
       pts.xyz = one_minus_t * pts.xyz + t * pts.yzw;
    }
    return pts[0];
}</pre>
```

3.2. forráskód. de Casteljau swizzle operátorokkal

A programokat először a Radeon GPU Analyzer-rel hasonlítottam össze. A gépi kódban már egyáltalán nem lesz ciklus, mert a driver kibontja. A ciklusos implementációban 11, a swizzle implementációban 10 vektorművelet szerepelt. Ebből messzemenő következtetést nehéz levonni. A swizzle implementáció ciklusát kézzel is kibontottam. Ez nem okozott jelentős javulást. Végül lecseréltem minden sort egy lerp (lineáris interpoláció) utasításra. Az implementáció a 3.3-as forráskódban látható. Ezt a driver jobban tudja optimalizálni.

```
float deCasteljou_lerp(float4 pts, float t)
{
   pts.xyz = lerp(pts.xyz, pts.yzw, t);
   pts.xy = lerp(pts.xy, pts.yz, t);
   return lerp(pts.x, pts.y, t);
}
```

3.3. forráskód. de Casteljau lerp függvénnyel

3.20.3. Mérési eredmények

Az algoritmusokat a "Brute force" távolságmező-generáló módszer segítségével hasonlítottam össze, mert ez főként felületkiértékelést végez. Minden esetben egy 32³ méretű textúrát generáltam és kiátlagoltam 512 futtatást. A 3.1 és 3.2 táblázatok a számításhoz szükséges GPU-időt foglalják össze milliszekundumban. Először a Bézier-felületből készített magasságtérképet textúrába írtam, majd a távolságmező generálásakor onnan kiolvastam. A 3.1 táblázat második oszlopában ezek az értékek szerepelnek. A harmadik oszlopban a távolságmező generálásakor számítottam ki a függvényértékeket.

Referenciának kimockoltam a de Casteljau-függvényt azzal, hogy csak az utolsó sort hagytam meg. A GPU Analyzer-ből kiderül, hogy ekkor teljesen eltűnik a függvény, mert a driver mindenhol inline-olja. Ezt az értéket kivontam a harmadik oszlopból, így megkaptam, mekkora része a futási időnek a felület kiértékelése.

(ms)	Memóriából olvasva	Számítva	ebből de Casteljau
két ciklusos	51,6	76,97	75,76
swizzle	51,35	2,74	1,53
kibontott	51,33	2,63	1,42
üres	51,41	1,21	0

3.1.táblázat, de Casteljau-algoritmus mérése egy 32^3 méretű textúrán

A mérésekből kiderül, hogy a ciklusos implementáció nagyjából 50-szer lassabb GPU-n, mint a többi számításos verzió. A második oszlopban az értékek nagyjából megegyeznek, a futási idők pedig jóval a táblázatban szereplő legjobb idő felett vannak. Ebből arra következtethetünk, hogyha memóriából olvassuk ki a felületértékeket, akkor a limitáció a memóriaelérés által okozott késleltetés lesz.

A legjobb megoldásokat összehasonlítottam egy nagyobb, 64³ méretű textúrán is. Ennek eredményeit a 3.2 táblázat tartalmazza.

(ms)	Számítva	ebből de Casteljau
swizzle	64,09	49,38
kibontott	62,13	47,42
lerp	52,85	38,14
üres	14,71	0

3.2. táblázat, de Casteljau-algoritmus mérése egy 64³ méretű textúrán

A kézzel kibontott ciklus nem okoz lényeges javulást, viszont a lineáris interpoláció nagyjából 25%-kal gyorsabb.

3.20.4. Megjegyzések

- A felület kiértékeléséhez a kontrollpontháló minden sorára meg kell hívni az algoritmust, majd az eredményekből álló vektorra megint. Ehhez összesen ötször kell meghívni a de Casteljau-függvényt.
- Matematikailag létezik ennél gyorsabb algoritmus, de nem használjuk, mert a numerikus stabilitásra nagyon oda kell figyelni GPU környezetben. (Szűk számábrázolás miatt.)
- Emellett az is megfigyelhető, hogy a matematikai műveletigény és a driver által generált kód futási ideje között nem feltétlenül intuitív az összefüggés.

3.21. Pont-felület távolság és gradiense

3.21.1. Analitikus pont-felület távolság

Legyen $E(e_1, e_2, e_3)$ a mintavételezési pont modellkoordináta-rendszerben és r(x, y) = (x, y, b(x, y)) pedig a felület parametrikus egyenlete. Ekkor a távolság egy adott felületi és mintavételezési pontra:

$$D_1(x,y) = ||E - r||_2 = \sqrt{(e_1 - x)^2 + (e_2 - y)^2 + (e_3 - b(x,y))^2}$$

Ennek egyik parciális deriváltja:

$$\partial_x D_1 = \frac{2(x - e_1) + 2(b(x, y) - e_3)b_x(x, y)}{\sqrt{(e_1 - x)^2 + (e_2 - y)^2 + (e_3 - b(x, y))^2}}$$

Ahol $b_x(x,y)$ a magasságfüggvény x szerinti parciális deriváltja. A nevezőben lévő érték a távolság, ami a felület közelében 0 közeli. Mivel a távolségfüggvényt a felülethez közel is kiértékeljük, ez mindenképp numerikusan instabil lesz, sőt, nullával osztást is eredményezhet.

A távolságfüggvényhez a legközelebbi pontot akarjuk meghatározni a felületen. Mivel a négyzetgyök függvény szigorúan monoton nő, a norma négyzetének is ugyanott lesz minimum helye, ahol a normának.

$$D(x,y) = ||E - r||_2^2 = (e_1 - x)^2 + (e_2 - y)^2 + (e_3 - b(x,y))^2$$

Ennek parciális deriváltjai:

$$\partial_x D = 2(x - e_1) + 2(b(x, y) - e_3)b_x(x, y)$$

$$\partial_y D = 2(y - e_2) + 2(b(x, y) - e_3)b_y(x, y)$$

Ezt sokkal könnyebben és stabilabban tudjuk számolni.

3.21.2. Gradiens számításának műveletigénye

Távolságfüggvényeknél gyakori, hogy a gradienst a szimmetrikus differencia módszerrel határozzuk meg. Ehhez nem kell ismerni a távolságfüggvény képletét, csak ki kell értékelni több helyen. Egy kis ε számot választva a gradiens közelítése:

$$b' \approx \frac{1}{2\varepsilon} \cdot \begin{pmatrix} b(x+\varepsilon, y) - b(x-\varepsilon, y) \\ b(x, y+\varepsilon) - b(x, y-\varepsilon) \end{pmatrix}$$

Itt a b(x,y) függvény kiértékelését négyszer el kell végezni. Emellett egy kivonásra és egy szorzásra is szükség van. $(1/(2\varepsilon)$ konstans) Ez összesen 122 matematikai művelet.

A parciális derivált számításához csak 12 mátrix elemet kell redukálni, így annak kiértékelése 22 matematikai művelet. b totális deriváltjának analitikus számításához a két parciális deriváltat kell kiszámolni, ami 44 művelet. Mivel az utóbbi matematikailag hatékonyabb, ezt a verziót implementáltam.

3.21.3. A távolság gradiense

A totális derivált kifejezhető vektorokkal:

$$D' = 2 \left[\left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \right) + (b(x, y) - e_3) \cdot b'(x, y) \right]$$

Ezt a gradienst használjuk az iterációs módszerben.

3.22. AdaMax

A AdaMax algoritmus kódja a pszeudokóddal teljesen ekvivalens. Kizárólag a numerikus stabilitásra kell figyelni. A vetített gradiens számításánál az ε érték nem lehet túl kicsi. $\varepsilon = 10^{-6}$ érték például már a végeredményben is látható numerikus hibákat okoz. Én $\varepsilon = 10^{-4}$ értéket használtam.

Szintén numerikus hibák és a zéróosztás elkerülése végett a tapasztalati szórás minimumát is 10^{-4} -re állítottam. Ez alapján u frissítési szabálya:

$$u_t = \max(\beta_2 u_{t-1}, |g_t|, 10^{-4})$$

3.23. A program tesztelése

A program célja ugyanazon felület megjelenítése több különböző módszerrel. A módszerek listája:

• Háromszögekkel tesszellált felület megjelenítése raszterizációval

- Felületgenerálás Lipschitz-módszerrel, majd sugárkövetés
- Felületgenerálás Brute Force módszerrel, majd sugárkövetés
- Felületgenerálás AdaMax módszerrel, majd sugárkövetés

A tesztek eredménye, hogy a felület minden esetben helyesen jelenik meg. Ha a felületet a raszterizációval egyidejűleg rajzoljuk ki, azt is megállapíthatjuk, hogy a mélységértékek is helyesek. Ez lehetővé teszi, hogy a felületet más objektumokkal egyidejűleg rajzoljuk ki.

4. fejezet

Eredmények

Az alábbi mérési eredményeket ugyanazon tesztpéldákon végeztem el mindhárom módszerre. A használt videókártya egy Nvidia GTX 1060 Ti notebook GPU. A felbontás minden esetben Full HD.

4.1. ábra. Bézier-felület

4.1. Generálási módszer hatása a sugárkövetésre

Itt azt hasonlítom össze, hogyan hat a sphere trace algoritmus futási idejére a generálási módszer. A 4.1 táblázat utolsó oszlopa 512 képkocka megjelenítésének átlagos GPU-idejét foglalja össze. A jelenetben minden esetben egy véletlenszerűen generált Bézier-felület és egy pontfényforrás szerepelt, amihez ún. kemény árnyékokat számítottam.

Generálási módszer	Szükséges lépésszám	Átlagos GPU idő (ms)
Lipschitz	512 <	1,47
Brute force	< 256	0,95
Adam	< 256	0,96

4.1. táblázat. Generálási módszer hatása a sugárkövetésre

4.1.1. Lipschitz-módszer

A Lipschitz-módszer időköltsége a memóriaigénnyel egyenesen arányos. Az ilyen algoritmusok minden esetben memórialimitáltak. A generált távolságmező olyan rossz minőségű, hogy alacsony látószögből még 512 lépésben sem konvergál a sugárkövetés. A generálás emellett olyan olcsó, hogy akár sugárkövetéskor, a pixel shaderben is kiszámítható. Ezt a módszert a következőkben nem tárgyalom.

4.1.2. Brute Force módszer

A Brute Force módszer meglehetősen költséges, azonban a generált távolságmező (a rácspontokban) biztosan optimális, így 256 iteráció minden esetben elég volt.

4.1.3. AdaMax módszer

A tesztek meglepő eredménye, hogy az AdaMax algoritmusban 25-nél nagyobb iterációszám egy esetben sem javított a képminőségen. Ennek egyik oka, hogy a felület közelében a 10. pont miatt nagyon gyorsan konvergál a módszer. Másik oka, hogy ha a sugárkövetés során beleszaladunk a felületbe egy rossz becslés miatt, akkor a következő távolságkiértékelés negatív lesz, és visszatalálunk a felülethez. A sugárkövetéshez továbbra is elegendő volt 256 iteráció minden esetben, így kijelenthetjük, hogy a szimulációs eredményeket sikerült megerősíteni.

4.2. Távolságmező-generálás

Mivel a Lipschitz-módszer csak egy gyenge alsó közelítést ad a távolságmezőre, így a Brute Force algoritmust hasonlítottam össze az AdaMax algoritmust használó módszerrel. A 4.2 táblázatban az előbb bemutatott tesztpélda távolságmezőjének generálásához szükséges átlagos GPU-idők szerepelnek a felbontás függvényében, milliszekundumban.

Felbontás	16	32	48	64	80	96	112	128
Brute force	0.17	2.18	16.87	52.23	185.79	382.57	-	-
AdaMax	1.09	4.36	15.82	28.04	63.49	92.65	163.07	219.13

4.2. táblázat. A generálás ideje a felbontás függvényében, milliszekundumban

Az értékeket a 4.2 grafikonon meg is jelenítettem:

4.2. ábra. A generálás ideje a felbontás függvényében, milliszekundumban

A 4.2 teszt eredményeiből látszik, hogy a két módszer algoritmikus komplexitásából adódó különbségek már kis felbontás esetén (64³) is jelentősek. A komplexitásbeli különbség oka, hogy amíg a Brute Force megoldás a függvényt egyre növekvő felbontáson értékeli ki, addig az új módszer fix lépést végez 10 pontból.

4.3. Összehasonlítás a tesszellációval

A felületet a sugárkövetés mellett háromszögekkel közelítve is megjeleníthetjük. A két módszer eltéréseit úgy tudjuk vizualizálni, ha sugárkövetés után a fragment shaderben beleírjuk a mélység adatot a mélység bufferbe, és az egyik felület árnyalását valami egyszerűre cseréljük. A 4.3 ábrán a sugárkövetett felületet Blinn-Phong-árnyalással, a háromszögekkel tesszelláltat pedig egy egyszerű színskálával jelenítettem meg.

4.3. ábra. Tesszellált és sugárkövetett felület egyszerre kirajzolva

A 4.3 ábrán a két módszerrel kirajzolt felület színe váltakozva jelenik meg. Ennek oka, hogyha a mélységbuffer értékei helyesek, akkor átlátszatlan felületeknél minden pixel színe a legközelebbi felület színe lesz. A váltakozás oka, hogy amíg felületet tartalmazó voxelekben a sugárkövetés egy bilineáris felületet határoz meg, addig a raszterizációnál a felületet két, a csúcspontokban interpoláló háromszöggel közelítjük.

A raszterizációt felhasználhatjuk arra, hogy az első sugárkövetést megspóroljuk és csak az árnyékokhoz használjunk sugárkövetést. Ezt a technikát használják például az Unreal Engine-ben is puha árnyékok számításásra. [17] A 4.3 táblázatban egy, az előzőektől független teszt eredményei láthatók. A második oszlopba egy képkocka kirajzolásához szükséges átlagos GPU-idő került.

Generálási módszer	Átlagos GPU idő (ms)
Lipschitz	0,72
Brute force	0,51
AdaMax	0,50
$oxed{H{\'a}romsz{\"o}gel\'es + AdaMax}$	0,24

4.3. táblázat. Sugárkövetés helyettesítése raszterizációval

5. fejezet

Összefoglalás

A dolgozatomban bemutattam és implementáltam a távolságmezők generálásának alapvető módszereit, majd áttekintettem a parametrikus- és Bézier-felületek elméleti hátterét. Fő eredményként bemutattam, hogyan használhatók gradiens módszerek távolságmezők generálásához, és szimulációval validáltam az AdaMax algoritmus alkalmazhatóságát köbös Bézier felületek távolságmezőjének generálására. Kitértem a módszer GPU-implementációjának részleteire, mellyel nagyságrendekkel gyorsítottam a kiértékelést. Végül mérésekkel igazoltam, hogy az új módszer már kis felbontáson is lényegesen gyorsabb, mint a referencia implementáció.

Köszönetnyilvánítás

Köszönet illeti a témavezetőmet, Bán Róbertet az elméleti háttér és a program kidolgozásában nyújtott segítségéért.

A Kulturális és Innovációs Minisztérium ÚNKP-22-6 kódszámú Új Nemzeti Kiválóság Programjának a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

Irodalomjegyzék

- [1] John C. Hart. "Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces". *The Visual Computer* 12.10 (1996. dec.), 527–545. old. DOI: 10.1007/s003710050084.
- [2] Benjamin Keinert és tsai. "Enhanced Sphere Tracing". Smart Tools and Applications in Graphics. 2014.
- [3] Csaba Bálint és Gábor Valasek. "Accelerating Sphere Tracing". EG 2018 -Short Papers. Szerk. Olga Diamanti és Amir Vaxman. The Eurographics Association, 2018. DOI: 10.2312/egs.20181037.
- [4] Csaba Bálint és Mátyás Kiglics. "Quadric tracing: A geometric method for accelerated sphere tracing of implicit surfaces". Acta Cybernetica 25 (2021. jan.). DOI: 10.14232/actacyb.290007.
- [5] Róbert Bán és Gábor Valasek. "Automatic Step Size Relaxation in Sphere Tracing". Eurographics 2023 - Short Papers. Szerk. Vahid Babaei és Melina Skouras. The Eurographics Association, 2023. ISBN: 978-3-03868-209-7. DOI: 10.2312/egs.20231014.
- [6] Herman Hansson Söderlund, Alex Evans és Tomas Akenine-Möller. "Ray Tracing of Signed Distance Function Grids". *Journal of Computer Graphics Techniques (JCGT)* 11.3 (2022. szept.), 94–113. old. ISSN: 2331-7418. URL: http://jcgt.org/published/0011/03/06/.
- [7] Bálint Csaba. "Távolságfüggvényekkel definiált felületek interaktív megjelenítése". Országos Tudományos Diákköri Konferencia (2016).
- [8] Morgan McGuire. Ray Marching. URL: https://graphicscodex.courses.nvidia.com/app.html?page=_rn_rayMrch (elérés dátuma 2023.05.12.).
- [9] Inigo Quilez. Distance functions. URL: https://iquilezles.org/articles/distfunctions/ (elérés dátuma 2023.05.10.).

- [10] Gerald Farin. Curves and Surfaces for CAGD: A Practical Guide. Computer graphics and geometric modeling. Elsevier Science, 2002. ISBN: 9781558607378.

 URL: https://books.google.hu/books?id=D0qGMAwSUkEC.
- [11] James F. Blinn. "Models of light reflection for computer synthesized pictures". ACM SIGGRAPH Computer Graphics 11.2 (1977. júl.), 192–198. old. DOI: 10.1145/965141.563893. URL: https://doi.org/10.1145/965141.563893.
- [12] Róbert Bán, Csaba Bálint és Gábor Valasek. "Area Lights in Signed Distance Function Scenes". 2019. máj. DOI: 10.2312/egs.20191021.
- [13] Miles Macklin és tsai. "Local Optimization for Robust Signed Distance Field Collision". 3.1 (2020. máj.). DOI: 10.1145/3384538. URL: https://doi.org/10.1145/3384538.
- [14] C. Lemaréchal. "Cauchy and the Gradient Method". *Documenta Mathematica* (2012), 251-254. old. URL: https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf.
- [15] Diederik P. Kingma és Jimmy Ba. "Adam: A Method for Stochastic Optimization". 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Szerk. Yoshua Bengio és Yann LeCun. 2015. URL: http://arxiv.org/abs/1412.6980.
- [16] Niculae Vlad. Optimizing with constraints: reparametrization and geometry.

 URL: https://wene.ro/blog/mirror-descent.html (elérés dátuma 2023.05.18.).
- [17] Distance Field Soft Shadows. URL: https://docs.unrealengine. com / 4 . 27 / en - US / BuildingWorlds / LightingAndShadows / RayTracedDistanceFieldShadowing/ (elérés dátuma 2023.05.18.).

Ábrák jegyzéke

2.1.	Torusz es fuggvenygrankon naromszogelese. Forras: wikiwand.com	1
2.2.	Megjelenítési módok összehasonlítása. Forrás: blogs.nvidia.com	8
2.3.	Profilozó ablak	9
2.4.	Globális beállítások	10
2.5.	Kamera beállítások	10
2.6.	Távolságmező-számításának beállításai	11
2.7.	Sugárkövetés, fények és anyagtulajdonság beállításai	12
2.8.	A kirajzolt dobozok pozíciója és mérete	12
3.1.	$h(u,v)=\sin(u+v)+1$ grafikon a Geo Gebra alkalmazásban	15
3.2.	Bézier-felület kiértékelése [10, 248. o.]	17
3.3.	Gradiens módszer divergenciája túl nagy tanulási ráta esetén	22
3.4.	Stabil paraméterezés a Rosenbrock-függvényen	25
3.5.	Példa sarokpontok szükségességére	26
3.6.	Példa oldalpontok szükségességére	27
3.7.	Felület és ponthalmaz képe	28
3.8.	Referencia érték maximális hibája a legnagyobb felbontáshoz képes t $$.	29
3.9.	Abszolút hiba maximuma a lépésszám függvényében, logaritmikus	
	skálán	29
3.10.	Abszolút hiba maximuma az iteratív módszerhez viszonyítva	30
3.11.	A program szerkezete	31
4.1.	Bézier-felület	38
4.2.	${\bf A}$ generálás ideje a felbontás függvényében, milliszekundumban	40
4.3.	Tesszellált és sugárkövetett felület egyszerre kirajzolva	41