

B V RAJU INSTITUTE OF TECHNOLOGY

(UGC Autonomous) Vishnupur, Narsapur, Medak District

Department of Computer Science and Engineering

Minor Project – Zeroth Review

Bridging Gaps in India's Healthcare System: A Cloud-Based Solution for Connectivity, Security, and Integration

By:

23211A0508: A Ritesh Reddy

23211A0523: B.Sriram Siddartha

23211A0548: B.Pushkar Varma 23211A0551: Ch Rama Krishna

Guided By:

Dr. V Pavan Kumar Ph.D Associate Professor

Outline

- Abstract
- Literature Survey
- Existing System
- Problem Statement
- Objectives
- Tentative Proposed Model
- References

India's healthcare system is a vast and diverse ranging form rural to urban though faces challenges like fragmented patient records, limited digital connectivity, and inconsistent data sharing, especially in rural areas. Public and private facilities often operate in isolation, leading to delayed diagnoses and gaps in patient histories. The adoption of new digital solutions is hindered by outdated systems, and securing patient data is a growing concern with evolving privacy laws.

To address these issues, we propose a **flexible**, **affordable cloud-based healthcare platform** that connects patient data nationwide and enables **secure**, **seamless** information exchange. Designed for gradual integration, it allows facilities at various digital readiness levels to participate without overhauling existing systems. Optimized for low-bandwidth environments, the platform ensures accessibility in remote areas and includes user-friendly interfaces and training programs to boost digital literacy among healthcare providers.

This solution aims to create a more connected, equitable healthcare network, improving decision-making, patient outcomes, and strengthening India's health infrastructure.

Date:

Literature Survey

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2024	M. Putzier. T. Khakzad. M. Dreischarf	Implementation of cloud computing in the German healthcare system.	npj Digital Medicine	Perspective Analysis	Healthcare digitization, data privacy laws (GDPR)	Cloud computing in a German hospital	Digitization of healthcare in Germany	Sustainable digitization practices
2023	A. F. Näher et al.	Secondary data for global health digitalisation.	Lancet Digit Health	Global Health Digitalization Review	Digital health data	Digital data processing	Digital data processing	Increassing the capablility
2022	Vorisek, C. N.	Fast Healthcare Interoperability Resources.	Systematic review	Interoperability Resources	Interoperability Resources data	Cloud computing for resource data	Interoperabi lity Resources	Resource data processing
2022	Grover, P.	AI in data processing.	ARTIFICAL INTELEGENCE	Replacement of physicians by AI.	Can AI replace physicians ?	AI Measurement Models	Use of AI to measure sagittal balance preand post-surgery in spine images	Further AI applications in preoperative and postoperative assessments
2020	IDG Research Services	Studie Cloud Native	N/A	Survey Analysis	Cloud-Native Computing	Cloud-Native Adoption	Adoption and implementati on trends in cloud-native technologies	Expanding cloud-native practices, especially for enterprise-level applications

Literature Survey

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2019	Lehne, M., et al.	Why digital medicine depends on interoperability	NPJ Digital Medicine	Literature Review	Interoperability in Digital Health	FHIR for Data Integration	Importance of interoperability in digital health and its challenges	Enhanced interoperability standards and integration in future healthcare technologies
2016	Sajid, A., & Abbas, H.	Data privacy in cloud-assisted healthcare systems: State of the art and future challenges	Journal of Medical Systems	Systematic Review	Cloud Data Privacy	Privacy Protection Models	Challenges in data privacy in cloud- based healthcare systems	Development of improved privacy models and secure cloud frameworks
2013	Hsieh, J. C., Li, A. H., & Yang, C. C.	Mobile, cloud, and big data computing: Contributions, challenges, and new directions in telecardiology	International Journal of Environment al Research and Public Health	Case Study Analysis	Mobile and Cloud Integration	Telecardiolog y Integration	Application of cloud computing in telemedicine, specifically for cardiology data	Integration of big data analytics in telemedicine and other medical domains
2011	Mell, P., & Grance, T.	The NIST definition of cloud computing	NIST Special Publication	Conceptual Framework	Cloud Definition Framework	Cloud Definition by NIST	Establishes a formal definition of cloud computing	Improving cloud models, adapting the NIST definition to evolving technologies

Existing System

India is progressively moving toward a **digital healthcare ecosystem** with the help of cloud technologies, artificial intelligence (AI), and big data. Several government initiatives and private sector innovations are paving the way for digital transformation in healthcare.

National Digital Health Mission (NDHM)

- Objective: Create a digital health ecosystem using cloud, AI, and Big Data.
- Health ID: Unique identifier linking health records.
- Cloud-Based Health Records: Accessible across healthcare facilities.
- Telemedicine: Remote consultations, especially for rural areas.
- Data Interoperability: Smooth data sharing across systems.
- Challenges: Early stages, with issues like low digital literacy, privacy concerns, and integration.

Cloud-Based Healthcare Solutions

- •EHR Systems: Platforms like **Practo** and **eClinicalWorks** store patient data in the cloud.
- •Telemedicine: Platforms like **DocsApp** and **Mfine** offer remote consultations using cloud and AI.
- •AI & Big Data: Used for diagnostics (e.g., **Niramai** for breast cancer) and public health management (e.g., **Ayushman Bharat**).

Private Sector Initiatives

- •Hospitals: Fortis, Max Healthcare, and Manipal Hospitals are adopting digital tools for patient management and telemedicine.
- •Health Startups: PharmEasy and 1mg offer cloud-based medicine delivery and health records management.

Problem Statement

- Many healthcare facilities, especially in rural India, struggle with isolated data systems and poor internet access, leading to delays and missed preventive care.
- Older systems make it challenging for facilities to adopt modern digital tools without disrupting their work.
- With evolving privacy laws all over the world, there's a need for stronger, consistent protections to keep patient data secure.

Objectives

- To develop a cloud-based healthcare platform that acts as a centralized hub for patient records, supporting interoperability, low bandwidth optimization
- Create a flexible system that lets facilities gradually adopt new digital tools, so they don't need to completely replace their existing setup all at once.
- Build the platform with advanced security measures to ensure data privacy and compliance with emerging healthcare data protection laws. Following Indian norms like HIPAA.

Tentative Proposed Model

1. Data Integration Layer

- •Interoperability Framework: Establishes standards-based data sharing (e.g., FHIR) across facilities to create a unified patient data system.
- •APIs and Middleware: Integrates with legacy systems through APIs, allowing facilities to connect existing infrastructure to the centralized cloud database.

2. Connectivity Optimization

- •Low-Bandwidth Support: Optimizes data transmission for low-connectivity areas through data compression and caching.
- •Offline Mode & Syncing: Provides offline access for data entry that syncs with the central system once connectivity is restored.
- •Edge Computing Nodes: Deploys edge devices in remote areas for local data processing, reducing dependency on high-speed internet.

Tentative Proposed Model

3. Privacy and Security Framework

- •End-to-End Encryption: Implements advanced encryption for data in transit and at rest, safeguarding patient information.
- •Data Anonymization & Masking: Protects patient identity by anonymizing sensitive data.
- •Role-Based Access and Compliance: Assigns data access based on user roles and adheres to Indian data privacy standards for compliance.

4. Modular and Scalable Architecture

- **Modular Design**: Allows facilities to adopt specific modules (e.g., EHR, telemedicine, billing) based on their needs and readiness.
- **Customizable Dashboards**: Provides user-friendly, customizable interfaces tailored to different healthcare provider roles.
- **ML and Analytics**: Optional machine learning modules for predictive insights, such as patient risk assessment and preventive care suggestions.

References

- •Base Paper: Implementation of cloud computing in the German healthcare system (2024).
- •Armbrust, M., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.
- •Grover, P., et al. (2022). Can artificial intelligence support or even replace physicians in measuring sagittal balance? A validation study on preoperative and postoperative full spine images of 170 patients. *European Spine Journal*, 31(8), 1943–1951.
- •Hsieh, J. C., Li, A. H., & Yang, C. C. (2013). Mobile, cloud, and big data computing: Contributions, challenges, and new directions in telecardiology. *International Journal of Environmental Research and Public Health*, 10(11), 6131–6153.
- •IDG Research Services. (2020). Studie Cloud Native.
- **Lehne, M., Sass, J., Essenwanger, A., Schepers, J., & Thun, S.** (2019). Why digital medicine depends on interoperability. *NPJ Digital Medicine*, 2, 79.
- •Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication.

References

- Näher, A. F., et al. (2023). Secondary data for global health digitalisation. *The Lancet Digital Health*, 5, e93–e101.
- **Sajid, A., & Abbas, H.** (2016). Data privacy in cloud-assisted healthcare systems: State of the art and future challenges. *Journal of Medical Systems*, 40(5), 155.
- **Vorisek, C. N., et al.** (2022). Fast Healthcare Interoperability Resources (FHIR) for interoperability in health research: Systematic review. *JMIR Medical Informatics*, 10, e35724.

Thank You

© BVRIT CSE 13