5. RICORSIONE

Dato un oggetto, come funzioni, insiemi, algoritmi, ... in alcuni casi esso può essere definito in termini di sé stesso, ma di più piccole dimensioni. Esempi:

Consideriamo la sequenza aritmetica (progressione aritmetica) Consideriamo la sequenza geometrica (progressione geometrica) Consideriamo la sequenza di interi 1, 3, 9, 27, 81, ... a, ar, ar², ar³, ..., arⁿ, ... È evidente che è la seguenza di potenze di 3, cioè a, a+d, a+2d, a+3d, ..., a+nd, ... • 1, 3, 9, 27, 81, ..., 3ⁿ, ... - $a = 6 e r = 1/3 = > 6, 2, 2/3, 2/9, ..., 6 (1/3)^n, ...$ - a= -1 e d= 4 => -1, 3, 7, 11, ..., -1+n4, ... • 30, 31, 32, 33, 34, ..., 3n, ... b_n = a rⁿ (n--simo termine della sequenza), n ∈ N b_n = a+nd (n--simo termine della sequenza), n ∈ N • $b_n = 3^n$ (n--simo termine della sequenza), $n \in \mathbb{N}$ Definizione ricorsiva della seguenza Definizione ricorsiva della sequenza Definizione ricorsiva della sequenza b_n = a rⁿ = a rⁿ⁻¹ r • $b_n = a + nd = a + (n-1)d + d$ • $b_n = 3 \ 3^{n-1}$ b_n = b_{n-1} r per n≥1 b_n = b_{n-1} + d per n≥1 b_n = 3 b_{n-1} per n≥1 $b_0 = a$ $b_0 = a$ $b_0 = 1$

5.1 DEFINIRE FUNZINI RICORSIVE

In alcuni casi la definizione ricorsiva di un oggetto può essere molto facile da scrivere.

In altri casi la definizione ricorsiva di un oggetto è l'unico modo per descriverlo.

F₀=0 F₁=1

Esempio: Numeri di Fibonacci $F_n = F_{n-1} + F_{n-2}$ per $n \ge 2$

Per definire una funzione ricorsiva sull'insieme degli interi non negativi.

- (Passo base) Specificare il valore della funzione in 0
- (Passo ricorsivo) Dare una regola per determinare il valore della funzione in n in termini del valore della funzione in interi n-1

Esempio: definire ricorsivamente la funzione f(n) = 2 n + 1Esempio: definire ricorsivamente la funzione che somma i primi n Esempio: definire ricorsivamente la funzione f(n) = n² per n≥1 interi positivi f(n) = 1+2+3+.... +n per n≥1 f(0) = 1• f(1) = 1 f(1)=1 $f(1) = 2 \cdot 1 + 1 = 3 = 1 + 2 = f(0) + 2$ So che $f(n-1) = (n-1)^2$ Devo arrivare a f(n) =n2 So che f(n) = 1+2+3+....+n-1+n $f(2) = 2 \cdot 2 + 1 = 5 = 3 + 2 = f(1) + 2$ Come posso "manipolare" $f(n-1) = (n-1)^2$ per arrivare a $f(n) = n^2$? $f(3) = 2 \cdot 3 + 1 = 7 = 5 + 2 = f(2) + 2$ • f(n) = (1+2+3+....+n-1) + n• $f(n-1) = (n-1)^2 = n^2 - 2n + 1 = f(n) - 2n + 1$ = f(n-1) + nQuindi f(n) = 2 n + 1 = 2 (n - 1 + 1) + 1 = 2 (n - 1) + 1 + 2 = f(n - 1) + 21. f(1)=1 e 2. f(n)=f(n-1)+2n-1 per n≥2 1. f(1)=1 Quindi 2. f(n)=f(n-1)+nper n≥2 1. f(0)=1 e 2. f(n)=f(n-1)+2 per $n \ge 1$

5.2 CALCOLO DI FUNZIONI RICORSIVE

Esempio: sia f una funzione ricorsiva definita come Esempio: Funzione fattoriale Esempio: 1. f(1)=1 e 2. f(n)=f(n-1)+2n-1 per n≥2 1. Passo base 0!=1 1. Passo base f(0)=3• $f(4) = f(3) + 2 \cdot 4 - 1$ 2. Passo ricorsivo n! = n (n - 1)!per n≥1 2. Passo ricorsivo f(n)=2 f(n-1) +3per n≥1 • $f(3) = f(2) + 2 \cdot 3 - 1$ Calcoliamo 41 Quale è il valore di : $f(2) = f(1) + 2 \cdot 2 - 1$ 4! = 4 • 3! Passo ricorsivo • f(3) = ? $= 4 \cdot 6 = 24$ • f(1) = 1f(3) = 2 f(2) + 3Passo ricorsivo $31 = 3 \cdot 21$ Passo ricorsivo $f(2) = f(1) + 2 \cdot 2 - 1 = 1 + 2 \cdot 2 - 1 = 4$ f(2) = 2 f(1) + 3Passo ricorsivo $= 3 \cdot 2 = 6$ f(1) = 2 f(0) + 3Passo ricorsivo $f(3) = f(2) + 2 \cdot 3 - 1 = 4 + 2 \cdot 3 - 1 = 9$ $2! = 2 \cdot 1!$ Passo ricorsivo f(0) = 3= 2 • 1 = 2 $f(4) = f(3) + 2 \cdot 4 - 1 = 9 + 2 \cdot 4 - 1 = 16$ $f(1) = 2 \cdot 3 + 3 = 9$ 1! = 1 • 0! Passo ricorsivo $f(2) = 2 \cdot 9 + 3 = 21$ = 1 • 1 =1 $f(3) = 2 \cdot 21 + 3 = 45$ 0! = 1Passo base

5.3 USO DELLA RICORSIONE

Un algoritmo è detto ricorsivo se risolve un problema riducendo esso ad una istanza dello stesso problema ma con un input più piccolo.

Esempio 1: 1. f(0)=3 e 2. f(n)=2 f(n-1)+3 per n≥1

procedure funz(n) if n=0 then return 3 else return 2 funz(n-1) + 3

Tale procedura realizza quanto abbiamo fatto precedentemente nella slide 16

f(3) = 2 f(2) + 3f(2) = 2 f(1) + 3

f(1) = 2 f(0) + 3f(0) = 3

f(3) = 2 f(2) + 3f(2) = 2 f(1) + 3f(1) = 2 f(0) + 3f(0) = 3 $f(1) = 2 \cdot 3 + 3 = 9$ $f(2) = 2 \cdot 9 + 3 = 21$

f(3) = 2• 21 + 3 = 45

Correttezza degli Algoritmi Ricorsivi: (correttezza = produce output corretto per ogni possibile input)

Proviamo la correttezza dell'algoritmo descritto dalla procedura funz(n)

Dimostriamo, cioè che il valore restituito dalla procedura funz(n) coincide con f(n)

Dimostrazione:

Usiamo l'induzione matematica su n.

Base: Se n=0, il primo passo dell'algoritmo ci dice che il valore restituito da funz(0) è 3. Corretto perché f(0)=3.

Ipotesi induttiva: per un n intero positivo arbitrario, l'algoritmo computa correttamente f(n), cioè funz(n) restituisce f(n).

Passo di induzione: Ora mostriamo che la procedura funz(n+1) computa correttamente anche f(n+1).

La procedura funz(n+1) restituisce 2 funz(n) + 3.

Per ipotesi induttiva funz(n) coincide con f(n), quindi 2 funz(n) + 3 coincide con 2 f(n) +3 = f(n+1)

Esempio 2: funzione fattoriale

```
1. 0!=1 e 2. n!=n (n−1)! per n≥1
```


Proviamo la correttezza dell'algoritmo descritto dalla procedura fattoriale(n)

Dimostriamo, cioè che il valore restituito dalla procedura fattoriale(n) coincide con n!

Dimostrazione:

Usiamo l'induzione matematica su n.

Base: Se n=0, il primo passo dell'algoritmo ci dice che il valore restituito da fattoriale(0) è 1. Corretto perché 0!=1.

Ipotesi induttiva: per un n intero positivo arbitrario, l'algoritmo computa correttamente n!, cioè fattoriale(n) restituisce n!

Passo di induzione: Ora mostriamo che la procedura fattoriale(n+1) computa correttamente anche (n+1)!

La procedura *fattoriale(n+1)* restituisce (n+1) * fattoriale(n)

Per ipotesi induttiva, (n+1) * fattoriale(n) coincide con (n+1)*n!= (n+1)!

Esempio 3: Numeri di Fibonacci

NOTA Non sempre gli algoritmi ricorsivi sono efficienti, essi però sono semplici da progettare

Nel calcolo di Fibonacci(4) con l'algoritmo ricorsivo valutiamo due volte Fibonacci(2)

Fibonacci(4)= Fibonacci(3) + Fibonacci(2) =
= (Fibonacci(2) + Fibonacci(1)) + Fibonacci(2)

Consideriamo ora una procedura iterativa per il calcolo dei numeri di Fibonacci:

1. F(0)=0, F(1)=1

2. F(n) = F(n-1) + F(n-2) per n≥3

Ciascun numero di Fibonacci viene calcolato esattamente *una volta*.

5.4 USO DI DEFINIZIONI RICORSIVE

Le definizioni ricorsive possono essere usate nelle dimostrazioni:

Esempio:

Sia F(n) n-simo termine della seguenza dei numeri di Fibonacci.

Provare che per n \geq 3, F(n) > α^{n-2} dove α = (1+ $\sqrt{5}$)/2

Dimostrazione:

Usiamo l'induzione forte:

Base: $F(3) = F(2) + F(1) = 1+1 = 2 > (1+\sqrt{5})/2 = \alpha$

 $F(4) = F(3) + F(2) = 2+1 = 3 > [(1+\sqrt{5})/2]^2 = \alpha^2$

Ipotesi induttiva: Assumiamo che per 3≤j≤n con n≥3

si ha $F(j) > \alpha^{j-2}$

Passo di induzione: Consideriamo ora F(n+1) e la sua definizione, poi applichiamo l'ipotesi induttiva

 $F(n+1) = F(n-1)+F(n) > \alpha^{n-3} + \alpha^{n-2} = \alpha^{n-3} (1+\alpha) = \alpha^{n-3} \alpha^2 = \alpha^{n-1}$

Ricordate: Un insieme può essere definito:

Elencando i suoi elementi: {a, b, c} ha elementi a,b,c

Specificando le proprietà caratteristiche di suoi elementi A = {w | w ha la proprieta P}

Un altro modo per descrivere *insiemi* è attraverso una definizione ricorsiva:

Un insieme A è definito ricorsivamente nel modo seguente:

Passo base: Si definiscono uno o più oggetti elementari

Passo ricorsivo: definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti dell'insieme.

Nota: Gli elementi dell'insieme sono definiti esclusivamente dalle regole date.

Esempio:

Sia A un sottoinsieme di interi definito ricorsivamente come segue:

Passo base: $1 \in A$

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Quali sono gli elementi di A?

1 ∈ A Passo base

Applico il *Passo ricorsivo*: $x=1 \in A$ allora $x+2=1+2=3 \in A$ Applico il *Passo ricorsivo*: $x=3 \in A$ allora $x+2=3+2=5 \in A$

 $1, 3, 5, 7, 9 \dots \in A$

Proveremo utilizzando l'induzione strutturale che

A è l'insieme degli interi dispari positivi

Le definizioni ricorsive possono essere usate per descrivere *insiemi di stringhe*.

Un *alfabeto* e un insieme finito di elementi (chiamati lettere o simboli):

L'alfabeto delle *lettere romane minuscole* è Σ = {a,b,...,z}. L'alfabeto delle *cifre arabe* è Σ = {0,1,....,9}. L'alfabeto *binario* è Σ = {0,1}.

L'insieme di stringhe Σ^* sull'alfabeto Σ è definito ricorsivamente nel modo seguente:

Passo base: la stringa vuota $\lambda \in \Sigma^*$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ allora $wx \in \Sigma^*$

Esempio:

Sia Σ = {0,1}. Σ * è l'insieme di tutte le stringhe binarie.

Infatti, $\lambda \in \Sigma^*$ applicando il *Passo base*

0 e 1 $\in \Sigma^*$ applicando la prima volta il *Passo ricorsivo*

00, 01, 10, 11 $\in \Sigma^*$ con la seconda applicazione

Le definizioni ricorsive possono essere usate per ottenere *nuove definizioni ricorsive*:

La lunghezza *l(w)* di una parola *w* è definita come il numero di caratteri di cui *w* è costituita.

 Σ = {a,b,...,z}, zaino $\in \Sigma$ * I(zaino) = 5

La *lunghezza di una parola* in Σ^* sull'alfabeto Σ è definito ricorsivamente nel modo seguente

Passo base: $I(\lambda) = 0$

Passo ricorsivo: Se $\mathbf{w} \in \Sigma^*$ e $\mathbf{x} \in \Sigma$ allora $\mathbf{l}(\mathbf{w}\mathbf{x}) = \mathbf{l}(\mathbf{w}) + 1$

Le definizioni ricorsive possono essere usate per descrivere *parole palindrome:*

Una stringa è *palindroma* se letta da sinistra a destra o viceversa, è la stessa.

alla, otto, ingegni, Anna, ottetto.

L'insieme delle parole palindrome sull'alfabeto Σ={a, b} è definito ricorsivamente nel modo seguente:

Passo base: a, b, λ sono parole palindrome

Passo ricorsivo: Se w è una parola palindroma allora anche awa e bwb sono parole palindrome

Esempio:

abba è una parola palindroma:

- λ è una parola palindroma Passo base
- bλb =bb è una parola palindroma Passo ricorsivo
- a bb a è una parola palindroma *Passo ricorsivo*

Le definizioni ricorsive possono essere usate per descrivere espressioni aritmetiche.

Una $\it espressione \ aritmetica$ è definita ricorsivamente nel modo seguente

Passo base: i numeri (interi o reali) e le variabili sono espressioni aritmetiche

Passo ricorsivo: se E_1 ed E_2 sono espressioni aritmetiche allora $(E_1 + E_2)$, $(E_1 - E_2)$, $(E_1 \times E_2)$, $(E_1 \times E_2)$ sono espressioni aritmetiche.

Se E è un'espressione aritmetica allora (-E) è un'espressione aritmetica.

Le definizioni ricorsive possono essere usate per descrivere **strutture dati**.

Un *albero radicato* può essere descritto ricorsivamente nel modo seguente:

Base: un singolo vertice r è un albero radicato

Passo ricorsivo: Supponiamo che T₁, T₂, ..., T_n sono alberi radicati disgiunti con radici r₁, r₂, ..., r_n.

Allora, il grafo formato dalla <u>radice</u> r, che non è in nessuno degli alberi radicati T_1 , T_2 , ..., T_n , ottenuto connettendo con un arco r a ciascun r_1 , r_2 , ..., r_n è anch'esso un albero radicato.

Più formalmente, un albero radicato T=(V, E) è definito:

Base: un singolo vertice r è un albero radicato, $T = (\{r\}, \emptyset)$

Passo Ricorsivo: Supponiamo che $T_1 = (V_1, E_1), T_2 = (V_2, E_2), ..., T_n = (V_n, E_n)$ sono alberi radicati disgiunti, cioè $V_i \cap V_j = per 1 \le i \ne j \le n$ con radici $r_1, r_2, r_3 = r_4$

..., r_n , dove $r_1 \in V_1$, $r_2 \in V_2$, ..., $r_n \in V_n$.

Allora, il grafo T=(V,E) con $V=\{r\} \cup V_1 \cup V_2 \cup ... \cup V_n$ ed $E=\{(r,r_1),(r,r_2), ..., (r,r_n)\} \cup E_1 \cup E_2 \cup ... \cup E_n$

formato dalla radice r che non è in nessuno degli alberi radicati $T_1, T_2, ..., T_n$, dove $r \in V$ e $r \notin V_1 \cup V_2 \cup ... \cup V_n$ ottenuto connettendo con un arco r a ciascun $r_1, r_2, ..., r_n$, dove $(r,r_1) \in E$, $(r,r_2) \in E$, $..., (r,r_n) \in E$ è anch'esso un albero radicato.

Un *albero binario pieno* è un albero radicato dove ciascun vertice ha 0 o 2 figli; se tali figli esistono, essi sono chiamati figlio destro e figlio sinistro.

Un **albero binario pieno** è descritto ricorsivamente nel modo seguente:

Base: un singolo vertice r è un albero binario pieno.

Passo ricorsivo: Se T₁ e T₂ sono alberi binari pieni, allora l'albero T formato connettendo la radice r con un arco alla radice

del sottoalbero sinistro T1 e con un altro arco la radice del sottoalbero destro T2 è un albero binario pieno.

Le definizioni ricorsive possono essere usate per ottenere nuove definizioni ricorsive.

L'altezza h(T) di un albero radicato T è definita ricorsivamente come:

Passo base: h(T) = 0 se T consiste della sola radice r

Passo ricorsivo: $h(T) = 1 + \max\{h(T_1), ..., h(T_n)\}\$ se $T_1, ..., T_n$ sono i sottoalberi di T

Il **numero di vertici n(T)** di un albero radicato T è definita ricorsivamente come:

Passo base: n(T) = 1 se T consiste della sola radice r

Passo ricorsivo: $n(T) = 1 + n(T_1) + ... + n(T_n)$ se $T_1, ..., T_n$ sono i sottoalberi di T

Il **numero di vertici con due figli d(T)** di un albero binario pieno T è definito ricorsivamente come:

Passo base: d(T) = 0 se T consiste della sola radice

Passo ricorsivo: $d(T) = 1 + d(T_1) + d(T_2)$ se T_1 e T_2 sono i sottoalberi di T

Il **numero di foglie f(T)** di un albero binario pieno T è definito ricorsivamente come:

Passo base: f(T) = 1 se T consiste della sola radice

Passo ricorsivo: f(T) = f(T1) + f(T2) se T1 e T2 sono i sottoalberi di T

