Konstruktion Integralberechnung

Übung zum Fach Rechnerunterstütze Mechanik I

J. Ruck, H. Erdle, T.-A. Langhoff, T. Böhlke

Chair for Continuum Mechanics Institute of Engineering Mechanics Department of Mechanical Engineering Karlsruhe Institute of Technology (KIT)

WS 2017/2018

J. Ruck, H. Erdle, T.-A. Langhoff, T. Röhlke

Inhalt Ü9

Lagrange'sche Interpolationspolynome

Quadraturformelr

Newton-Cotes

Ergebnis-

Legendre

Konstruktion Integralberechnung Ü9: Numerische Integration (1d)

J. Ruck, H. Erdl T.-A. Langhoff, T. Böhlke

Inhalt Ü9

Lagrange'sche Interpolationspoly nome

Quadraturformeli

Newton-Co Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Themen der 9. Übung

- Numerische Integration (eindimensional)
- Lagrange'sche Interpolationspolynome
- Newton-Cotes-Quadratur
- Ergebnisverifikation
- Berechnung der Legendre-Polynome
- Gauss-Christoffel-Quadratur (Testat)

Wichtige Vorarbeit für die Finite Elemente Methode

Ausgabe der 2. Programmieraufgabe mit Abgabe
Abgabetermin: 11.01.2018

T.-A. Langhot

T. Böhlke

Inhalt Ü9

Lagrange'sche Interpolationspolynome

Quadraturformel

Newton-Co

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Lagrange-Polynome

Gegeben: N+1 Stützstellen $\tau_i \in [a,b] \; (i=0,\ldots,N)$

Definition: Die N+1 Polynome p_i $(i=0,\ldots,N)$ vom Grad N mit

 $p_i(au_j) = \delta_{ij}$ heißen Lagrange-Polynome

Motivation

- ullet Gesucht ist ein Interpolationspolynom P(t) mit $P(au_i) = \hat{f}_i = f(au_i)$
- Ansatz:

$$P(t) = \sum_{i=0}^{N} \alpha_i p_i(t)$$

• Dann gilt:

$$P(\tau_i) = \sum_{j=0}^{N} \alpha_j p_j(\tau_i) = \sum_{j=0}^{N} \alpha_j \delta_{ij} = \alpha_i \stackrel{!}{=} \hat{f}_i$$

Interpolationspolynom kann effizient berechnet werden

J. Ruck, H. Erdle T.-A. Langhoff, T. Böhlke

Inhalt Ü9

Lagrange'sche Interpolationspolynome

Quadraturformel

Newton-Cotes Formeln

Ergebnisverifikation

Legendre

Konstruktion Integralberechnung

Konstruktion

Da
$$p_i(au_j)=0$$
 für $i
eq j$ gilt

$$p_i(t) = c_i \prod_{j \neq i} (t - \tau_j).$$

Damit gilt:

$$p_i(\tau_i) = c_i \prod_{j \neq i} (\tau_i - \tau_j) \stackrel{!}{=} 1$$

$$\Rightarrow c_i = \frac{1}{\prod_{j \neq i} (\tau_i - \tau_j)}$$

Folgerungen:

- Die Polynome p_i existieren, falls $\tau_i \neq \tau_j \ (i \neq j)$
- Falls $| au_i au_j| \ll 1$ gilt: $|c_i| \gg 1$
 - → Achtung: Rundungsfehler!

J. Ruck, H. Erd T.-A. Langhof T. Böhlke

Inhalt Ü

Lagrange'sche Interpolationspoly nome

Quadraturformeln

Newton-Cotes Formeln

Ergebnisverifikation

Legendre

Konstruktion Integralberechnung

Quadraturformeln

Gegeben: Funktion f(x) auf einem Intervall [a,b]

Gesucht: Approximation $\hat{I}(f)$ von $I(f) = \int_a^b f(x) dx$

Definition

Eine Quadraturformel \hat{I} zur Approximation von I ist die gewichtete Summe

$$\hat{I}(f) = (b-a)\sum_{i=0}^{N} \lambda_i f(\tau_i) \qquad (\tau_i \in [a,b] \ \forall i = 0,\dots, N)$$

an den Knoten τ_i und mit den Gewichten λ_i .

Anforderungen an die Gewichte

• Für konstante Funktionen f = c gilt I(f) = (b - a)c und

$$\hat{I}(f) = c(b-a) \left(\sum_{i=0}^{N} \lambda_i\right) \stackrel{!}{=} c(b-a) \rightarrow \sum_{i=0}^{N} \lambda_i = 1$$

• Sei $f(x) \ge 0 \to I(f) \ge 0$. Dann gilt für spezielles f(t):

$$f(\tau_i) > 0, \ f(\tau_j) = 0 \ (j \neq i) \ \underset{\lambda_i < 0}{\to} \ \hat{I}(f) = \lambda_i \hat{f}_i < 0$$

 \rightarrow Forderung: $\lambda_i > 0$. Für $\lambda_i > 0$ ist \hat{I} positive.

T.-A. Langhoff,
T. Böhlke

Inhalt Ü

Lagrange'sche Interpolationspolynome

Quadraturformel

Newton-Cotes-Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Newton-Cotes-Formeln

Für eine äquidistante Unterteilung gilt $\tau_i=\frac{b-a}{N}i+a$. Sei P(t) das Interpolationspolynom von f(t) mit den Stützstellen τ_i . Dann gilt

$$\int_{a}^{b} P(t)dt = \sum_{i=0}^{N} \underbrace{f(\tau_i)}_{\hat{f}_i} \int_{a}^{b} p_i(t)dt,$$

mit den Lagrange-Polynomen $p_i(t)$. Es gilt

$$\int_{a}^{b} p_{i}(t)dt = (b-a)\underbrace{\frac{1}{N} \int_{0}^{N} \prod_{j \neq i} \frac{s-j}{i-j} ds}_{=:\lambda_{i}} = (b-a)\lambda_{i}.$$

Gewichte λ_i müssen **nur einmal** berechnet werden

Damit folgt:
$$\hat{I}(f) = (b-a)\sum_{i=0}^{N}\hat{f}_{i}\lambda_{i}$$

Definition der Newton-Cotes-Formeln

J. Ruck, H. Erd T.-A. Langhoff T. Böhlke

Inhalt Ü

Lagrange'sche Interpolationspoly nome

Quadraturformel

Newton-Cote Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Vor-/Nachteile

- Einfach zu berechnen
- Für N > 7 ist \hat{I} nicht positiv
- Häufig äquidistante Daten
- $lacktriang{0}{}$ Konsistenzordnung $\leq N$

Ergebnisverifikation

Idee: Wähle eine Familie von Funktionen $f_a(t)$ und teste \hat{I} Häufig praktisch: \sin und \cos -Funktionen, da die Oszillation von f leicht steuerbar ist

$$f_{\omega}(t) = \sin(\omega t) \qquad (\omega > 0)$$

Dann gilt mit $a=0, b=\frac{\pi}{2}$:

$$I(f) = \frac{1 - \cos(\omega \pi / 2)}{\omega}$$

Aufgabe: Testen Sie die Newton-Cotes-Formeln für verschiedene ω

Ergebnisverifikation

Konstruktion

Algorithmische Details

Darstellung eines Polynoms P(t) vom Grad n:

$$P(t) = \sum_{i=0}^{n} q_i t^i = \underbrace{(q_0, \dots, q_n)}_{=q} \begin{pmatrix} 1 \\ t \\ \vdots \\ t^n \end{pmatrix}.$$

• Dann gilt für Polynome $P_1(t) \left(\to q^{(1)} \right)$ und $P_2(t) \left(\to q^{(2)} \right)$:

$$\begin{split} P_{1}(t) + \alpha P_{2}(t) &= \left(q^{(1)} + \alpha q^{(2)}\right) (1, t, \dots, t^{n})^{\mathsf{T}}, \\ P_{1}(t)t^{j} &= \left(\underbrace{0, \dots, 0}_{j-\mathsf{mal}}, q_{0}^{(1)}, \dots, q_{n}^{(1)}\right) \left(1, t, \dots, t^{n+j}\right)^{\mathsf{T}}, \\ \int_{a}^{b} P_{1}(t) \, \mathrm{d}t &= q^{(1)} \cdot \left(\begin{array}{c} \int_{a}^{b} 1 \, \mathrm{d}t \\ \int_{a}^{b} t \, \mathrm{d}t \\ \vdots \end{array}\right) = q^{(1)} \cdot \tilde{I} \end{split}$$

J. Ruck, H. Er T.-A. Langho T. Böhlke

Inhalt Ü

Lagrange'sche Interpolationspoly nome

Quadraturformeli

Newton-Cor Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Legendre Polynome

Definition (L_2 -Skalarprodukt)

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t) dt$$

ist ein Skalarprodukt auf dem Raum der Lebesgue integrablen Funktionen.

Gesucht: Orthonormale Polynome $p_i(t)$ auf dem Intervall [0,1], das heißt:

$$\langle p_i, p_j \rangle = \delta_{ij}.$$

Die Polynome p_i werden als Legendre-Polynome bezeichnet.

T.-A. Langho
T. Böhlke

Inhalt Ü9

Lagrange'sche Interpolationspolynome

Quadraturformel

Newton-C

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Konstruktion der Legendre-Polynome

(Intervall: $t \in [0,1]$)

 $[\mathsf{A1}] \ \mathsf{Setze} \ i = 0$

[A2] Initialisiere $p_i^0(t)=t^i$; setze $p_0(t)=1$

[A3] Berechne $p_i^*(t) = p_i^0(t) - \sum_{j=0}^{i-1} \langle p_i^0, p_j \rangle p_j(t)$

[A4] $p_i(t) = \frac{p_i^*(T)}{\sqrt{\langle p_i^*, p_i^* \rangle}}; i = i + 1$

[A5] $i < N? \to [A2]$

T.-A. Langhoff
T. Böhlke

Inhalt U

Lagrange'sche Interpolationspoly nome

Quadraturformel

Newton-Cor Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Gauss Christoffel Quadratur

Gesucht: Stützstellen τ_i und (positive) Gewichte λ_i , so dass das zugehörige Quadraturverfahren möglichst hohe Konsistenz besitzt

Ansatz

Sei P(t) ein Polynom vom Grad 2N + 1. Dann gilt für spezielle c_{ij} :

$$P(t) = \sum_{i=0}^{N+1} \sum_{j=0}^{i-1} c_{ij} p_i(t) p_j(t) + \sum_{i=0}^{N} c_{ii} p_i^2(t).$$

Sind die p_i die Legendre Polynome (a=0,b=1 zur Vereinfachung), so gilt:

$$I(P) = \sum_{i=0}^{N+1} \sum_{j=0}^{i-1} c_{ij} \underbrace{\langle p_i, p_j \rangle}_{=0} + \sum_{i=0}^{N} c_{ii} \underbrace{\langle p_i, p_i \rangle}_{=1} = \sum_{i=0}^{N} c_{ii}.$$

J. Ruck, H. Erdl T.-A. Langhoff T. Böhlke

Inhalt Ü

Lagrange'sche Interpolationspoly nome

Quadraturformel

Newton-Co Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion Integralberechnung

Definition

$$p_k(t) = \prod_{0 \le i < k} (t - \tau_i)$$
 $(k = 0, ..., N).$

Dann gilt für $k \leq N$ und mit dem Verfahren $\hat{I} = (\pmb{\lambda}^N, \pmb{\tau}^N)$

$$\int_{0}^{1} p_{k}(t)p_{N+1}(t)dt = \hat{I}(p_{k}p_{N+1}) = \sum_{i=0}^{N} \lambda_{i} \underbrace{p_{N+1}(\tau_{i})}_{=0} p_{k}(\tau_{i}) = 0$$

Die Stützstellen des Verfahrens $(\boldsymbol{\lambda}^N, \boldsymbol{\tau}^N)$ sind die Nullstellen des Legendre-Polynoms p_{N+1} .

Die Gewichte können leicht berechnet werden:

Da das Integral auch für Polynome vom Grad N exakt sein muss, entsprechen diese den Lagrange'schen Gewichten.

T.-A. Langhol
T. Böhlke

Inhalt U

Lagrange'sche Interpolationspol nome

Quadraturforme

Newton-Cotes Formeln

Ergebnisverifikation

Legendre Polynome

Konstruktion

Integralberechnung

Integralberechnung

Gegeben:

N+1 Stützstellen au, Gewichte $oldsymbol{\lambda}$ Funktion f(t), Intervall [a,b]

Integralberechnung:

$$\hat{I} = (b - a) \left(\sum_{i=0}^{N} \lambda_i f(a + \tau_i (b - a)) \right)$$

Berechnung über M Teilintervalle durch Summation der Integrale auf den einzelnen Intervallen: (mit h=(b-a)/M)

$$\hat{I} = \sum_{i=0}^{M-1} \left(h \sum_{i=0}^{N} \lambda_i f(a+jh+\tau_i h) \right)$$