HURTOWNIE DANYCH

Projekt

Maciej Kopiński 254578

Projekt – etap III (26.05./07.06.2022 r.)

Kostka:

1. Przygotować projekt kostki, edytować wymiary, dodać miary kalkulowane. Przygotować zestawienia z p. 1.5.2. oraz pokazać inne ciekawe zależności w analizowanych danych (analiza w głąb, a nie tylko tabele przestawne).

Przy ocenie będą brane następujące elementy kostki:

- prawidłowa struktura kostki model kostki powinien analitykowi na intuicyjne i łatwe korzystanie z danych
- miary kalkulowane
- dokumentacja, która powinna zawierać krótki opis wszystkich wymiarów, wszystkich ich atrybutów oraz wszystkich miar

Dokumentacja:

DIM_TIME1 – wymiar reprezentujący czas zdarzenia:

Id	unikatowy identyfikator czasu zdarzenia
Year	rok zdarzenia
Quarter	kwartał
Month	miesiąc
Month In Words	miesiąc słownie
Day	dzień miesiąca
Day In Words	dzień miesiąca słownie

DIM_PLACE1 – wymiar opisujący miejsce wypadku:

Id	unikatowy identyfikator miejsca wypadku
Country	kraj, w którym wypadek miał miejsce
Region	region, w którym wypadek miał miejsce
Region_Code	kod regionu, w którym wypadek miał miejsce
Airport_Code	kod lotniska, w obrębie którego miał miejsce wypadek
Airport_Name	nazwa lotniska, w obrębie którego miał miejsce wypadek

DIM_ACCIDENT1:

Id	unikatowy identyfikator okoliczności wypadku
Investigation_Type	rodzaj wypadku (powaga wypadku)
Injury_Severity	informacja na temat powagi obrażeń pasażerów
Aircraft_damage	informacja na temat powagi obrażeń pojazdu lotniczego
FAR_Description	opis genezy lotu
Schedule	kod harmonogramu lotu
Purpose_of_flight	cel lotu
Air_carrier	linia lotnicza
Broad_phase_of_flight	faza lotu, w której miał miejsce wypadek

DIM_PLANE1:

Id	unikatowy identyfikator samolotu
Make	producent samolotu
Model	model samolotu
Amateur_Build	informacja na temat budowy samolotu
Number_of_Engines	liczba silników
Engine_Type	rodzaj silników
Aircraft_Category	rodzaj pojazdu

DIM_CONDITIONS1:

Id	unikatowy identyfikator warunków pogodowych występujących podczas wypadku
Weather_Condition	nazwa warunków pogodowych
Weather_Condition_Code	kod warunków pogodowych

Rozwiązania i wnioski do zestawień:

Liczba wypadków w zależności od miesiąca i warunków pogodowych:

Liczba wypadków dla miejsca i fazy lotu dla USA:

Miejsce i faza lotu dla oceanów:

Wyniki raczej oczywiste – najwięcej wypadków podczas podróży, ponieważ w przypadku oceanu ciężko o decyzje o lądowaniu co prowadzi do rozbicia się samolotu. Manewrowanie to lot z większą prędkością co tłumaczy przewagę lotów/wypadków nad oceanem.

Śmiertelność w zależności od warunków pogodowych i kategorii samolotu

Pomimo dużej ilości wypadków dla zwykłego samolotu i dobrych warunków pogodowych, śmiertelność jest niska.

Śmiertelność w zależności od fazy lotu i rodzaju silnika

Silnik typu 'reciprocating' to silnik, który przy użyciu ciepła napędza tłoki, które następnie napędzają wał (jak w samochodzie). Widzimy, że dla tego typu silnika śmiertelność jest wysoka dla większości etapów lotu – świadczy to o tym, że nie jest to prawdopodobnie pożądany rodzaj silnika w pojeździe powietrznym.

Śmiertelność w zależności od liczby silników i warunków pogodowych

Duża śmiertelność występuje dla pojazdów o mniejszej ilości silników – są to mniejsze samoloty, gdzie również nie podróżuje zbyt wiele pasażerów i które nie są na tyle przygotowane na awarie, a w przypadku jej wystąpienia niewiele można zdziałać.

Liczba ofiar śmiertelnych dla miesiąca i obrażeń samolotu

Liczba ofiar śmiertelnych dla producenta i warunków pogodowych

Wybrani producenci ze względu na przeważającą liczbę wypadków z samolotami ich produkcji.

Liczba osób rannych dla linii lotniczej i uszkodzeń samolotu:

American airlines pomimo większej ilości wypadków wykazuje mniejszą liczbę zniszczonych samolotów, co może świadczyć o lepszej budowie ich samolotów, czy np. lepszych pilotach.

Maksymalna śmiertelność dla warunków pogodowych i kategorii samolotu:

Maksymalna liczba osób zmarłych dla celu lotu i budowy samolotu

Maksymalna śmiertelność jest tu niższa niż maksymalna śmiertelność w hurtowni, ponieważ występuje ona dla nieznanej kategorii pojazdu.

Średnia śmiertelność, a warunki pogodowe i opis rodzaju lotu

Średnia śmiertelność, a warunki pogodowe i faza lotu

Liczba wypadków, a faza lotu i zniszczenia pojazdu

