1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ГУИМЦ» КАФЕДРА ИУ5 «Системы обработки информации и управления»

Дисциплина «Базовые компоненты интернет-технологий» ОТЧЕТ

Лабораторная работа №1 «Основные конструкции языка Python»

Студент: Соловьева А.М., группа ИУ5Ц-53Б Преподаватель: Гапанюк Ю.Е.

СОДЕРЖАНИЕ

1. Описание задания:	3
2. Листинг программы	
3. Результат выполнения программы:	

Цель лабораторной работы: изучение основных конструкций языка Python.

1. Описание задания:

Разработать программу для решения биквадратного уравнения.

- 1. Программа должна быть разработана в виде консольного приложения на языке Python.
- 2. Программа осуществляет ввод с клавиатуры коэффициентов A, B, C, вычисляет дискриминант и ДЕЙСТВИТЕЛЬНЫЕ корни уравнения (в зависимости от дискриминанта).
- 3. Коэффициенты A, B, C могут быть заданы в виде параметров командной строки (вариант задания параметров приведен в конце файла с примером кода). Если они не заданы, то вводятся с клавиатуры в соответствии с пунктом 2. Описание работы с параметрами командной строки.
- 4. Если коэффициент A, B, C введен или задан в командной строке некорректно, то необходимо проигнорировать некорректное значение и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент это коэффициент, значение которого может быть без ошибок преобразовано в действительное число.

2. Описание задания:

```
import sys
import math
def get_coef(index, prompt):
   Читаем коэффициент из командной строки или вводим с клавиатуры
       index (int): Номер параметра в командной строке
       prompt (str): Приглашение для ввода коэффицента
       float: Коэффициент квадратного уравнения
       # Пробуем прочитать коэффициент из командной строки
       coef str = sys.argv[index]
   except:
       # Вводим с клавиатуры
       buf = False
       while (buf != True):
            print(prompt)
            coef str = input()
               float(coef_str)
               buf = True
            except ValueError:
               buf = False
   # Переводим строку в действительное число
   coef = float(coef_str)
```

return coef

```
def get_roots(a, b, c):
    Вычисление корней биквадратного уравнения
    Args:
        a (float): коэффициент А
        b (float): коэффициент В
        c (float): коэффициент С
    Returns:
        list[float]: Список корней
    result = []
   D = b * b - 4 * a * c
    if D == 0.0:
        root = -b / (2.0 * a)
        if root >= 0.0:
            Root1 = -math.sqrt(root)
            Root2 = math.sqrt(root)
            result.append(Root1)
            result.append(Root2)
        elif root < 0.0:
            return result
    elif D < 0.0:
        return result
    elif D > 0.0:
        sqD = math.sqrt(D)
        root1 = (-b + sqD) / (2.0 * a)
        root2 = (-b - sqD) / (2.0 * a)
        if root1 >= 0.0:
            if math.sqrt(root1) == 0.0:
                Root1 = math.sqrt(root1)
                result.append(Root1)
            elif math.sqrt(root1) != 0.0:
                Root1 = -math.sqrt(root1)
                Root2 = math.sqrt(root1)
                result.append(Root1)
                result.append(Root2)
        if root2 >= 0.0:
            if math.sqrt(root2) == 0.0:
                Root5 = math.sqrt(root2)
                result.append(Root5)
            elif math.sqrt(root2) != 0.0:
                Root3 = -math.sqrt(root2)
                Root4 = math.sqrt(root2)
                result.append(Root3)
                result.append(Root4)
    return result
def main():
    Основная функция
    a = get_coef(1, 'Введите коэффициент A:')
    while a == 0.0:
        print('a не равно нулю')
        a = get_coef(1, 'Введите коэффициент A:')
    b = get_coef(2, 'Введите коэффициент В:')
```

```
c = get_coef(3, 'Введите коэффициент C:')
    # Вычисление корней
   roots = get_roots(a, b, c)
    # Вывод корней
    len roots = len(roots)
    if len roots == 0:
        print('Нет корней')
    elif len_roots == 1:
        print('Один корень: {}'.format(roots[0]))
    elif len roots == 2:
        if (roots[0] == 0.0) or (roots[0] == -0.0):
            print('Один корень: 0.0')
        elif roots[0] != 0.0:
            print('Два корня: {} и {}'.format(roots[0], roots[1]))
    elif len_roots == 3:
        print('Три корня: {}, {}, {}'.format(roots[0], roots[1], roots[2]))
    elif len_roots == 4:
        print('Четыре корня: {}, {}, {}'.format(roots[0], roots[1], roots[2],
roots[3]))
# Если сценарий запущен из командной строки
if __name__ == "__main__":
   main()
# Пример запуска
# qr.py 1 0 -4
```

3. Результат выполнения программы:

```
Введите коэффициент А:
1
Введите коэффициент В:
0
Введите коэффициент С:
-4
Два корня: -1.4142135623730951 и 1.4142135623730951
Press any key to continue . . . _
```