# Artificial Intelligence: Basics & Applications

### Bayes' Nets: Inference





Instructor: Mahdi Javanmardi

Amirkabir University of Technology

# Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$





# Example: Alarm Network

0.01

0.99



-a

-a

+m

-m

0.05

0.95

-a

| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| ψ  | 0.998 |



| В  | Е  | Α  | P(A B,E) |  |
|----|----|----|----------|--|
| +b | +e | +a | 0.95     |  |
| +b | +e | -a | 0.05     |  |
| +b | -e | +a | 0.94     |  |
| +b | -е | -a | 0.06     |  |
| -b | +e | +a | 0.29     |  |
| -b | +e | -a | 0.71     |  |
| -b | -e | +a | 0.001    |  |
| -b | -е | -a | 0.999    |  |

[Demo: BN Applet]

# Example: Alarm Network



P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a

5



В

| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -е | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| P(+b, -e, +a, -j, +m) =                 |
|-----------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = |

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |

# Example: Alarm Network



P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a



В

| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -е | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| P(+b, -e, +a, -j, +m) =                                |
|--------------------------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =                |
| $0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$ |

| В  | Е  | Α  | P(A B,E) |  |
|----|----|----|----------|--|
| +b | +e | +a | 0.95     |  |
| +b | +e | a  | 0.05     |  |
| +b | -e | +a | 0.94     |  |
| +b | -e | a  | 0.06     |  |
| -b | +e | +a | 0.29     |  |
| -b | +e | a  | 0.71     |  |
| -b | e  | +a | 0.001    |  |
| -b | -e | -a | 0.999    |  |

# Bayes' Nets

- ✓ Representation
- ✓ Conditional Independences
- Probabilistic Inference
  - Enumeration (exact, exponential complexity)
  - Variable elimination (exact, worst-case exponential complexity, often better)
  - Inference is NP-complete
  - Sampling (approximate)
- Learning Bayes' Nets from Data

#### Inference

 Inference: calculating some useful quantity from a joint probability distribution

#### Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$







### Inference by Enumeration

#### General case:

 $E_1 \dots E_k = e_1 \dots e_k$   $X_1, X_2, \dots X_n$   $All \ variables$ Evidence variables: Query\* variable: Hidden variables:

Step 1: Select the entries consistent with the evidence



Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

\* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

# Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

$$= \sum_{a \in \mathcal{A}} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$



$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$=P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

# Inference by Enumeration?



### Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



First we'll need some new notation: factors

### Factor Zoo



#### Factor Zoo I

- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

- Selected joint: P(x,Y)
  - A slice of the joint distribution
  - Entries P(x,y) for fixed x, all y
  - Sums to P(x)
- Number of capitals =
   dimensionality of the table

#### P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### P(cold, W)

| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



#### Factor Zoo II

- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, all
  - Sums to 1



| P(W | cold) |
|-----|-------|
| •   |       |

| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

- Family of conditionals:
  P(Y | X)
  - Multiple conditionals
  - Entries P(y | x) for all x, y
  - 15**■** Sums to |X|



#### P(W|T)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.8 |
| hot  | rain | 0.2 |
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

P(W|hot)

P(W|cold)

#### Factor Zoo III

- Specified family: P(y | X)
  - Entries P(y | x) for fixed y,but for all x
  - Sums to ... who knows!

#### P(rain|T)

| Т    | W    | Р   |                           |
|------|------|-----|---------------------------|
| hot  | rain | 0.2 | brace P(rain hot)         |
| cold | rain | 0.6 | $\Big \Big\}P(rain cold)$ |



## Factor Zoo Summary

- In general, when we write  $P(Y_1 ... Y_N \mid X_1 ... X_M)$ 
  - It is a "factor," a multi-dimensional array
  - Its values are  $P(y_1 ... y_N \mid x_1 ... x_M)$
  - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array









# **Example: Traffic Domain**

#### Random Variables

R: Raining

■ T: Traffic

L: Late for class!





| P(R) |     |
|------|-----|
| +r   | 0.1 |
| -r   | 0.9 |

P(T|R)

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

|    | `            |     |
|----|--------------|-----|
| +t | +            | 0.3 |
| +t | <del>-</del> | 0.7 |
| -t | +            | 0.1 |
| -t | -            | 0.9 |

P(L|T)

### Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)



| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| D | T   | $ D\rangle$ |
|---|-----|-------------|
| 1 | ( 1 | IU          |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | + | 0.3 |
|----|---|-----|
| +t | 7 | 0.7 |
| -t | + | 0.1 |
| -t | - | 0.9 |

- Any known values are selected
  - E.g. if we know  $L = +\ell$ , the initial factors are

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

$$P(T|R)$$
  $P(+\ell|T)$ 

| +t | + | 0.3 |
|----|---|-----|
| -t | + | 0.1 |



Procedure: Join all factors, eliminate all hidden variables, normalize

#### **Operation 1: Join Factors**

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



Example: Join on R

20



Computation for each entry: pointwise products  $\ \ orall r,t: \ \ P(r,t)=P(r)\cdot P(t|r)$ 

# Example: Multiple Joins



# Example: Multiple Joins











| +r | 0.1 |
|----|-----|
| -r | 0.9 |

Join R

| $\boldsymbol{D}$ | ( ] | $\mathbf{Q}$ | T | 7) |
|------------------|-----|--------------|---|----|
| 1                | ( 1 | $\iota$ ,    | 1 |    |







| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |



+r +t 0.08 +r -t 0.02 -r +t 0.09 -r -t 0.81



P(R, T, L)

| +r | +t | +  | 0.024 |
|----|----|----|-------|
| +r | +t | -  | 0.056 |
| +r | -t | +1 | 0.002 |
| +r | -t | -  | 0.018 |
| -r | +t | +1 | 0.027 |
| -r | +t | -  | 0.063 |
| -r | -t | +1 | 0.081 |
| -r | _t | _l | 0.729 |

#### P(L|T)

| +t | +  | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -1 | 0.9 |

| T |     | T |          | 7 |
|---|-----|---|----------|---|
|   | ( . | L | <b>1</b> | • |

| +t | +              | 0.3 |
|----|----------------|-----|
| +t | <del>-</del> - | 0.7 |
| -t | +              | 0.1 |
| -t | -              | 0.9 |

#### Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:



| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

 $\operatorname{sum} R$ 



P(T)

| +t | 0.17 |
|----|------|
| -t | 0.83 |



# Multiple Elimination





# Variable Elimination (VE)



#### Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



# Marginalizing Early (= Variable Elimination)



#### Traffic Domain



$$P(L) = ?$$

Inference by Enumeration

Variable Elimination



# Marginalizing Early! (aka VE)





#### Join R

#### P(R,T)

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

#### Sum out R



| D | 1 | $\overline{T}$ | 7 | ` |
|---|---|----------------|---|---|
| 1 | ١ | L              |   |   |

| +t | 0.17 |
|----|------|
| -t | 0.83 |

#### Join T



#### Sum out T





| + | -r | +t | 0.8 |
|---|----|----|-----|
| + | -r | -t | 0.2 |
| _ | r  | +t | 0.1 |
| _ | r  | -t | 0.9 |

| P | (L  | T |
|---|-----|---|
| - | · — |   |

| +t | +  | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -1 | 0.9 |

29

R, T L

P(L|T)

| +t | + | 0.3 |
|----|---|-----|
| +t | - | 0.7 |
| -t | + | 0.1 |
| -t | - | 0.9 |



P(L|T)

| +t | +  | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -1 | 0.9 |



P(T,L)

| +t | +              | 0.051 |
|----|----------------|-------|
| +t | <del>-</del> - | 0.119 |
| -t | +              | 0.083 |
| -t | -              | 0.747 |



P(L)

| +           | 0.134 |
|-------------|-------|
| <del></del> | 0.866 |

#### Evidence

- If evidence, start with factors that select that evidence
  - No evidence uses these initial factors:

| P(R) |     |  |
|------|-----|--|
| +r   | 0.1 |  |
| -r   | 0.9 |  |



| I(L I) |   |     |
|--------|---|-----|
| +t     | + | 0.3 |
| +t     | 7 | 0.7 |
| -t     | + | 0.1 |
| +      | ī | ΛΩ  |

D(I|T)

• Computing P(L|+r) the initial factors become:

$$P(+r)$$

$$P(T \mid +r)$$
+r +t 0.8
+r -t 0.2

$$P(+r)$$
  $P(T|+r)$   $P(L|T)$ 

| +t | + | 0.3 |
|----|---|-----|
| +t | 7 | 0.7 |
| -t | + | 0.1 |
| -t | 7 | 0.9 |



We eliminate all vars other than query + evidence

#### Evidence II

- Result will be a selected joint of query and evidence
  - E.g. for P(L | +r), we would end up with:







$$P(L|+r)$$

| + | 0.26 |
|---|------|
| - | 0.74 |

- To get our answer, just normalize this!
- That's it!



#### General Variable Elimination

- Query:  $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize







### Example

$$P(B|j,m) \propto P(B,j,m)$$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A

P(m|A)



P(j, m, A|B, E)  $\sum$  P(j, m|B, E)



P(B)

P(E)

P(j,m|B,E)

#### Example

P(B)

P(E)

P(j,m|B,E)



Choose E

P(j,m|B,E)



P(j, m, E|B)



P(j,m|B)

P(j,m|B)

Finish with B





# Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
  $P(E)$ 

P(E) P(A|B,E)

P(j|A)

P(m|A)



$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal obtained from joint by summing out

use Bayes' net joint distribution expression

use 
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f<sub>1</sub>

use 
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f<sub>2</sub>

#### Another Variable Elimination Example

Query: 
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate  $X_1$ , this introduces the factor  $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$ , and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate  $X_2$ , this introduces the factor  $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$ , and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor  $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$ , and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

37

Normalizing over  $X_3$  gives  $P(X_3|y_1,y_2,y_3)$ .



Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and  $X_3$  respectively).

## Variable Elimination Ordering

For the query  $P(X_n | y_1,...,y_n)$  work through the following two different orderings as done in previous slide:  $Z, X_1, ..., X_{n-1}$  and  $X_1, ..., X_{n-1}$ , Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2<sup>n+1</sup> versus 2<sup>2</sup> (assuming binary)
- In general: the ordering can greatly affect efficiency.

#### VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
  - E.g., previous slide's example 2<sup>n</sup> vs. 2
- Does there always exist an ordering that only results in small factors?
  - No!

### Worst Case Complexity?

#### CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6)$$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- •40 Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

### Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
  - Try it!!
- Cut-set conditioning for Bayes' net inference
  - Choose set of variables such that if removed only a polytree remains
  - Exercise: Think about how the specifics would work out!

# Bayes' Nets

- ✓ Representation
- ✓ Conditional Independences
- Probabilistic Inference
  - Enumeration (exact, exponential complexity)
  - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
  - ✓ Inference is NP-complete
  - Sampling (approximate)
- Learning Bayes' Nets from Data