L15_hardware de memória Total de pontos 62/84 ?

Endereço de e-mail *
✓ 15.1 Explique a diferença entre endereços lógicos e endereços físicos e 3/3 as razões que justificam o uso de endereços lógicos. Assinale a correta: *
Endereços lógicos são aquelas gerados pelo programa compilado, e os físicos são aqueles explicitamente definidos pelo programador durante a programação
Endereços físicos são aqueles endereços definidos de acordo com espaço de endereçamento do processador, e os lógicos pelo SO
Endereços físicos refletem a quantidade de memória real existente no sistema, já os endereços lógicos são todos os endereços que podem ser gerados pela arquitetura do processador
Endereços físicos refletem a quantidade de memória real existente no sistema, já os endereços lógicos são todos os endereços que podem ser usados, descontando-se algumas áreas reservadas
○ NDA
 15.2 O que é uma MMU – Memory Management Unit? Assinale a correta: 3/3 *
É o nome técnico da memória RAM
É o nome do componente de hardware do SO a RAM
É o nome do componente de hardware responsável por realizar a tradução entre endereços lógicos em endereços físicos, entre outras tarefas. É um componente com conexão PCI plugado na placa mãe
É o nome do componente de hardware responsável por realizar a tradução entre endereços lógicos em endereços físicos, entre outras tarefas. É um componente que nos dispositivos modernos está presente dentro do próprio processador

✓	15.3 Seria possível e/ou viável implementar as conversões de endereços 3/3 realizadas pela MMU em software, ao invés de usar um hardware dedicado? Por que? Assinale a correta *
•	É possível, porém por questões de desempenho é melhor utilizar um hardware dedicado
0	É possível, e também seria mais rápido realizar a conversão diretamente na CPU
0	Não é possível pois a CPU não tem memória suficiente para armazenar as tabelas de tradução
0	É possível e também viável. Porém por questões de segurança e organização preferiu-se utilizar um hardware separado
0	NDA
✓	15.4 Sobre as afirmações a seguir, relativas ao uso da memória RAM 5/5 pelos processos, indique quais são incorretas: *
	Os endereços físicos gerados pelo processador são convertidos em endereços lógicos através da MMU - Memory Management Unit
	O acesso a endereços de memória inválidos é notificado ao processador através de interrupções geradas pela MMU
~	A área de memória TEXT contém o código-fonte a ser compilado e executado pelo processo
~	A área de memória DATA é usada para armazenar todas as variáveis e constantes usadas pelo processo
	A área de memória HEAP é usada para as alocações dinâmicas de memória, sendo usada através de funções como malloc e free
~	A área de memória STACK contém as pilhas do programa principal e das demais threads do processo

15.5 Explique as principais formas de alocação de memória. Assinale as 4/4 corretas *
Por partições, onde cada partição carrega um processo. Os registradores base e limit devem ser ajustados pelo processador a cada troca de contexto (inserindo os valores base e limit do novo processo)
Por segmentos, onde cada seção do processo pode residir em um local diferente da memória. Não é muito utilizada nos dias atuais
Por segmentos, onde cada seção do processo pode residir em um local diferente da memória. Muito utilizada nos dias atuais
Por paginação endereçamento lógico dos processos é mantido linear e unidimensional. Internamente, de forma transparente para o processador, o espaço de endereçamento lógico é dividido em pequenos blocos de mesmo tamanho, denominados páginas
Por paginação cada página possui uma seção do processo
Por partições cada seção carregará um ponteiro para a partição seguinte
Por paginação endereçamento lógico dos processos é mantido linear e unidimensional. Internamente, de forma transparente para o processador, o espaço de endereçamento lógico é dividido em pequenos blocos de tamanho variável, chamado de seções
15.6 Por que os tamanhos de páginas e quadros são sempre potências de4/4 2? *
Para facilitar a conversão de endereços virtuais em endereços reais
Para facilitar a conversão de endereços reais em endereços virtuais
Para facilitar cálculos pelo programador
Para poder realizar as conversões para hexadecimal de forma mais fácil
Outro:

15.7 Considerando a tabela de segmentos da questão 7 (com valores em decimal), calcule os endereços físicos correspondentes aos endereços lógicos 0:45, 1:100, 2:90, 3:1.900 e 4:200. * 99 300 1400 0 100 30 90 1200 89 2:90 0:45 3:1.900 4:200 1:100 15.8 Considerando a tabela de páginas da questão 8, com páginas de 500 bytes, informe os endereços físicos correspondentes aos endereços lógicos 414, 741, 1.995, 4.000 e 6.633, indicados em decimal *

✓	15.9.1 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o tamanho das páginas e quadros, em bytes *	4/4
204		/
×	15.9.2 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o tamanho máximo de memória que um processo pode ter, em bytes e páginas *	0/4
0		×
×	15.9.3 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o espaço, em bytes, ocupado pela tabela de páginas para um processo com apenas uma página de código, uma página de dados e uma página de pilha. As páginas de código e de dados se encontram no inicio do espaço de endereçamento lógico, enquanto a pilha se encontra no final do mesmo. *	/5
0		×

X 15.9.4 Considere um sistema com endereços físicos e lógicos de 32 bits, 0/5 que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o espaço, em bytes, ocupado pela tabela de páginas para um processo caso todas as páginas do processo estejam mapeadas na memória *
0
 ✓ 15.10 Explique o que é TLB, qual a sua finalidade e como é seu funcionamento. Assinale a correta: *
Tem por objetivo diminuir o espaço ocupado pela tabela de páginas
Tem por objetivo manter a tabela de páginas
É a estrutura principal de controle da memória
É uma estrutura auxiliar, utilizada com objetivo de diminuir tempo de acesso a memória Outro:
 15.11 Sobre as afirmações a seguir, relativas à alocação por páginas, indique quais são incorretas: *
O bit de referência R associado a cada página é "ligado" pela MMU sempre que a página é acessada
O bit de modificação M associado a cada página é "ligado" pelo núcleo sempre que um processo modificar o conteúdo da mesma
O cache TLB deve ser esvaziado a cada troca de contexto entre processos
As tabelas de páginas multiníveis permitem mais rapidez na conversão de endereços lógicos em físicos
Um endereço lógico com N bits é dividido em P bits para o número de página e N - P bits para o deslocamento em cada página
O cache TLB é usado para manter páginas frequentemente usadas na memória 🗸

✓	15.12 Por que é necessário limpar o cache TLB após cada troca de contexto entre processos? Por que isso não é necessário nas trocas de contexto entre threads? Assinale as corretas: *	4/4
	Por threads são apenas instâncias de um um único processo, ou seja, compartilham a maioria dos dados e código	✓
	A TLB é trocada também a cada troca de contexto de threads	
	As threads, apesar de possuírem espaço de endereçamento próprio, ainda compartilham a área de TEXT	
/	As threads, apesar de possuírem sua própria pilha, ainda compartilham outras áreas do processo como TEXT e DATA	✓
	Outro:	
×	Outro: 15.13 Um sistema de memória virtual paginada possui tabelas de página com três níveis e tempo de acesso à memória RAM de 100ns. O sistema usa um cache TLB de 64 entradas, com taxa estimada de acerto de 98% custo de acerto de 10ns e penalidade de erro de 50ns. Qual o tempo médio estimado de acesso à memória pelo processador? *	

Crie um breve resumo do capítulo com suas próprias palavras. Procure .../3 destacar os principais conceitos aprendidos. Mínimo de 100 e máximo de 200 palavras, o que equivale entre 10 a 20 linhas aproximadamente. *

A quantidade de memória RAM disponível é o que forma o espaço de memória físico, sendo que cada byte da memória possui um endereço.

Os endereços de memória que podem ser gerados pelo processador é definido pelo número de vias do barramento de endereço, o conjunto de endereços gerados pelo processador é chamado de espaço de endereçamento.

Processadores mais modernos implementam memoria virtual, que tem 2 endereços distintos os endereços físicos(reais) e os endereços lógicos(virtuais), o processo visualiza os endereços virtuais, portanto um componente de hardware especifico que realiza a conversão de endereço logico para físico, sendo assim melhorado o desempenho. Tem algumas formas de organização da memória virtual, por partições, por seguimentos, por paginas.

A propriedade de concentrar o acesso em poucas áreas de memória é chamada de localidade de referências, essas áreas se dividem 3 formas, localidade temporal, localidade espacial, localidade sequencial.

Em um processo o espaço de endereçamento é dividido, na parte inicial reservado para uso do processo, a parte final é reservado para o núcleo do sistema.

Este conteúdo não foi criado nem aprovado pelo Google. - Termos de Serviço - Política de Privacidade

Google Formulários