롯데 고객 행동분석을 통한 개인화 상품 추천 및 서비스 제안

신지은, 배수연

목차 INDEX

STEP1 데이터 소개 및	STEP2	STEP3 추천 시스템	STEP4
탐색	군집분석	고 교 교 교 교 교 교 교 교 교 교 교 교 교 교 교 교 교 교 교	서비스 제안
분석 목적 데이터 소개 데이터 탐색	온라인 데이터 오프라인 데이터	오프라인 : 연관성분석 온라인 : 모델기반 추천시스템	온라인 서비스 제안 오프라인 서비스 제안
	오프라인 데이터	온라인 : 모델기반 추천시스템	오프라인 서비스 제안

분석 목적

고객의 구매성향을 통해 라이프스타일을 파악하여 **각 고객에게 맞춤상품을 추천**하는 것이 목표

분석 목적

데이터 소개

| 데이터 흐름도

2019년 7월~9월(3개월) 간 수집되었음

5

데이터 탐색

| 전처리_온라인행동정보

cInt_id	sess_id	hit_seq	action_type	biz_unit	sess_dt	hit_tm	hit_pss_tm	trans_id	sech_kwd	tot_pag_view_ct	tot_sess_hr_v	trfc_src	dvc_ctg_nm	ох
7809	1	8	5	A03	20190913	01:16	2571103	NaN	NaN	34.0	2663.0	DIRECT	NaN	0.0
7809	1	4	2	A03	20190913	01:14	2485909	NaN	NaN	34.0	2663.0	DIRECT	NaN	0.0
7809	1	11	5	A03	20190913	01:17	2646597	NaN	NaN	34.0	2663.0	DIRECT	NaN	0.0
7809	1	1	2	A03	20190913	00:46	788304	NaN	NaN	34.0	2663.0	DIRECT	NaN	0.0
7809	1	9	5	A03	20190913	01:17	2617609	NaN	NaN	34.0	2663.0	DIRECT	NaN	0.0
31040	1	1	0	A02	20190815	03:47	13525	NaN	다이슨 에 어랩	4.0	62.0	unknown	mobile_web	0.0
4129	1	2	0	A02	20190721	01:22	250099	NaN	여성메탈 시계	3.0	250.0	unknown	mobile_web	0.0
4129	1	1	0	A02	20190721	01:18	1525	NaN	여성메탈 시계	3.0	250.0	unknown	mobile_web	0.0
54403	3	1	0	A02	20190731	20:14	16905	NaN	비비고왕 교자	3.0	68.0	unknown	mobile_app	1.0
54403	4	1	0	A02	20190818	16:35	82700	NaN	에포테쉬 볼륨팝브 러쉬	5.0	101.0	unknown	mobile_app	1.0

✓ 'ox'변수 생성:구매한 고객은 1, 구매하지 않은 고객은 0의 ox 변수 생성

데이터 탐색

Ⅰ전처리_거래정보

✓ 상품코드가 "unknown"인 행 제거

	clnt_id	trans_id	trans_seq	biz_unit	pd_c	de_dt	de_tm	buy_am	buy_ct
1767	42911	107571	11	A03	1183	20190923	15:24	0	0
1830	42911	107571	12	A03	1213	20190923	15:24	0	0
1841	42911	107571	9	A03	1215	20190923	15:24	0	0
1845	42911	107571	2	A03	1213	20190923	15:24	0	0
1851	42911	107571	10	A03	1189	20190923	15:24	0	0
599845	33368	1989	2	B03	unknown	20190807	17:01	0	1
599865	33296	2369	2	B03	unknown	20190901	16:30	0	1
599866	21682	2136	4	B03	unknown	20190901	15:54	0	1
599934	65411	3740	2	B03	unknown	20190927	18:00	0	1
599942	16091	5636	3	B03	unknown	20190927	21:08	0	1

	clnt_id	trans_id	trans_seq	biz_unit	pd_c	de_dt	de_tm	buy_am	buy_ct
0	21922	104999	1	A03	unknown	20190920	12:41	5990	1
1	21279	104907	4	A03	unknown	20190920	10:27	10900	1
2	39423	105124	11	A03	unknown	20190920	17:26	12900	1
3	18362	104010	1	A03	unknown	20190920	09:57	9900	1
9	58071	104894	2	A03	unknown	20190920	10:12	4480	1
599923	67063	14000	7	B03	unknown	20190901	13:35	50	1
599933	42297	12534	3	B03	unknown	20190927	18:53	100	1
599934	65411	3740	2	B03	unknown	20190927	18:00	0	1
599942	16091	5636	3	B03	unknown	20190927	21:08	0	1
599943	20325	37494	2	B03	unknown	20190927	13:50	2500	1

✓ 상품 구매금액과 구매량이 0인 행 제거

데이터 탐색

│<u>전처리</u>_거래정보

	clnt_id	trans_id	trans_seq	biz_unit	pd_c	de_dt	de_tm	buy_am	buy_ct
19237	50600	102331	5	A03	0382	20190917	14:19	100000016899	1
163188	50841	85664	3	A03	unknown	20190827	15:04	100000007199	4
285349	43143	127882	1	B01	0237	20190801	15:16	11800000	500
501157	5492	142744	1	B01	0158	20190827	13:44	11578450	235
83058	43143	74878	1	A03	0157	20190813	16:03	10500000	500
151228	43143	84804	1	A03	0157	20190826	17:09	10500000	500
154811	43143	84815	1	A03	0157	20190826	17:16	10500000	500
41677	63500	65340	1	A03	0237	20190808	11:33	10121800	520
52407	63500	71894	1	A03	0237	20190809	13:20	10121800	520
39779	63500	70312	1	A03	0237	20190807	15:29	10121800	520
51166	63500	68266	1	A03	0237	20190809	11:31	10121800	520
40081	63500	65329	1	A03	0237	20190807	11:30	10121800	520
48274	63500	68259	1	A03	0237	20190810	11:30	10121800	520
347184	70438	126347	1	B01	0158	20190902	17:11	5680000	100
510303	43143	127955	1	B01	0241	20190905	14:07	4935000	470

✓ 1건의 구매에서 구매액이 매우 큰 값 제거 (1천만원 초과)

데이터 탐색

│ 전처리**_**거래정보

	cInt_id	trans_id	trans_seq	biz_unit	pd_c	de_dt	de_tm	buy_am	buy_ct
541716	43143	6453	1	B02	0241	20190904	17:44	4500	3600
407912	43143	6454	1	B02	1056	20190904	17:46	2550	1600
319230	21768	121679	1	B01	0304	20190727	16:45	98400	984
219178	64311	118788	1	B01	0721	20190814	20:11	93100	931
221748	5370	116890	1	B01	0320	20190829	20:53	93000	930
349423	7740	123215	1	B01	0546	20190928	17:32	5051	0
288164	72267	124955	15	B01	1604	20190901	17:32	899	0
277857	29530	140873	2	B01	0970	20190720	21:32	7637	0
267753	18947	115960	2	B01	1142	20190809	21:11	11260	0
332202	48481	137880	9	B01	1604	20190818	18:13	1603	0

✓ 1건의 구매에서 구매량이 매우 큰 값 제거 (1,600개 초과)

데이터 탐색

│ 전처리**_**거래정보

	clnt_id	trans_id	trans_seq	biz_unit	pd_c	de_dt	de_tm	buy_am	buy_ct
0	21922	104999	1	A03	unknown	20190920	12:41	5990	1
1	21279	104907	4	A03	unknown	20190920	10:27	10900	1
2	39423	105124	11	A03	unknown	20190920	17:26	12900	1
3	18362	104010	1	A03	unknown	20190920	09:57	9900	1
4	39423	105124	13	A03	0565	20190920	17:26	2990	1
599956	35311	2839	3	B03	0339	20190927	14:09	3500	1
599957	35311	2839	4	B03	0339	20190927	14:09	3600	2
599958	35311	2839	5	B03	0339	20190927	14:09	3500	1
599959	35311	2839	2	B03	0339	20190927	14:09	4500	1
599960	35311	2839	6	B03	0324	20190927	14:09	6800	1
					•				

✓ pd_c: str → int로 변환

✓ de_dt: int → date type 으로 변환

데이터 탐색

| EDA_온라인행동유형별

롯데그룹 온라인 계열사 **3**곳 기준 이용 고객 **67**,**185**명 대상

- ✓ 결제 시도에 비해 구매완료의 빈도가 매우 낮음.
- ✓ 사용 기기는 **PC**, 모바일 웹, 모바일 앱 순으로 많다.

데이터 탐색

IEDA_온라인행동유형별

롯데그룹 온라인 계열사 **3**곳 기준 이용 고객 **67**,**185**명 대상

- ✓ 새벽 시간대에는 주로 제품의 세부정보를 본다.
- ✓ 오전 9~12시에 제품 추가, 구매 완료하는 빈도가 가장 높다.
- ✓ 오후 시간대에는 결제를 시도하는 비중이 높다.
- ✓ 특히 하루 일과가 끝나는 시간대인 **21~24시에 환불 빈도가 가장 높다.**

데이터 탐색

IEDA_온라인행동유형별

롯데그룹 온라인 계열사 **3**곳 기준 이용 고객 **67**,**185**명 대상

- ✓ 제품 정보를 살피는 것 보다 결제행동을 할 때 페이지에 머무르는 시간이 김.
- ✓ 반면 환불할 때는 페이지에 머무르는 시간이 가장 짧음.
- ✓ 페이지 조회 수는 검색을 할 때 가장 많고, 세부정보를 보거나 환불할 때 가장 낮다.

데이터 탐색

| EDA_구매고객/비구매고객별시간대별행동유형 빈도

구매고객 Client Id: 20833개 비구매고객 Client Id: 51566개

- ✓ 비구매고객은 구매고객에 비해 검색, 세부 정보 확인, 제품 목록 의 비율이 큼
 →구매와 직접적으로 관련 없는 행동을 통해 구매에 목적이 있어 보이지 않음
- ✓ 비구매고객이 검색의 비율이 큰 점에서 원하는 상품이 없거나, 구매 목록을 정하지 않고
 즉흥적으로 들어온 것으로 보임
 - →전자의 경우 **검색 체계 보완 필요**

데이터 탐색

| EDA_구매고객/비구매고객별 Device

구매고객 Client Id : 20833개 비구매고객 Client Id : 51566개

- ✓ 구매고객일수록 APP의 비중이 크며 PC와 mobile web의 비중이 작음
- ✓ PC와 web의 쇼핑 환경이 불편함을 의미 → 개선 필요
- ✓ Mobile web으로 들어온 고객에게 APP 설치 유도

데이터 탐색

IEDA_온라인행동유형별

구매고객 Client Id : 20833개 비구매고객 Client Id : 51566개

- ✓ 구매고객일수록 DIRECT, PUSH의 비율이 높음
- ✓ 고객의 성향을 파악해 주기적으로 **고객맞춤 PUSH 알람**을 넣도록 함
- ✓ 구매고객 중 다른 PORTAL로 부터의 유입 비중이 적음
 - → PORTAL 사이트의 광고 비중을 줄일 필요가 있음

데이터 탐색

|EDA_성별

여성 : **499**,**505**명 남성 : **76**,**009**명

✓ 전체 고객 중 여성이 약 87%, 남성이 13% 차지하며 매출액도 여성의 비중이 훨씬 많다.

데이터 탐색

| EDA_제품별

총 구매액: **53**억 원 총 구매량: **57**만 건

- ✓ 구매액은 여성의류, 먹거리(고기, 과일, 채소), 패션 악세서리, 화장품의 비중이 골고루 있음.
- ✓ 구매량은 음식의 비중이 대부분을 차지함.

데이터 탐색

데이터 탐색

| EDA_날짜별

7월 평균 구매액: 5천 8백만 원 8월 평균 구매액: 5천 7백만 원 9월 평균 구매액: 5천 6백만 원

- ✓ 매출액 최대 일에는 여성의류가 많이 팔림
- ✓ 매출액 두 번째 일에는 선물세트(canned/jarred foods)가 많이 팔렸는데, 이는 추석의 영향이라 볼 수 있음.
- ✓ 매출액 최소일에는 전체 매출액을 책임지는 여성의류와 meat의 판매가 저조함.

데이터 탐색

| EDA_온라인/오프라인 이용정보 비교

온라인 매장 이용고객 10,026명, 오프라인 매장 이용고객 7,394명을 대상으로

총 구매액: 33억

총 구매량: 218,571건

총 구매량: 356,943건

- ✓ 오프라인에서는 주로 식료품을 많이 구매함.
- ✓ 온라인에서는 식료품을 제외한 옷, 가전/전자제품, 화장품 등을 많이 구매 함
- ✓ 온라인, 오프라인의 제품구매 차이가 뚜렷하게 드러남.
- ✓ 총 구매액은 온라인이 많고, 총 구매량은 오프라인이 많음.

데이터 탐색

데이터 탐색

| EDA_온라인성별비율및매출액

데이터 탐색

| EDA_온라인 성별 3개월 구매액 추이

여성 **1**인당 평균 구매액 : **32** 만원 남성 **1**인당 평균 구매액 : **45** 만원

✓ 9월 13일(추석)
여성 매출액 최하위

- ✓ 9월 여성 매출액 변동성이 높음
- √ 여성은 연휴에 영향을 많이 받는 반면 남성은 연휴에 영향을 덜 받음
- ✓ 남성이 매출액이 높을 때 주로 가전제품을 많이 삼
- ✓ 여성 총 매출액이 남성보다 압도적이지만 1인당 평균 구매액은 남성이 여성보다 높음

데이터 탐색

데이터 탐색

I EDA_온라인 제품별 3개월 매출액 추이

식품 일 평균 매출액: 1천 4백 만원 가전/가구 일 평균 매출액: 6백 30 만원

✓ 추석의 영향으로 보임

- ✓ 7,8월 가전/가구 매출액이 높음
- ✓ 남성의 영향을 많이 받는 것으로 보임

데이터 탐색

| EDA_온라인 거래처 별 나이대 매출액

A01 일 평균 매출액: 3백 만원 A02 일 평균 매출액: 2천 4백 만원 A03 일 평균 매출액: 1천 2백 만원

- ✓ 10대는 모두 0.1% 미만
- √ 50대 에서 A02 매출액이 상당히 높음
- ✓ 20대, 30대에서 A01 매출액이 상당히 높음
- ✓ 40대에서 A03 매출액이 상당히 높음

데이터 탐색

| EDA_온라인 A01 제품별 매출액 Top 10

- ✓ 패션 악세서리의 매출액이 압도적으로 높음
- ✓ 뷰티/패션과의 연관성이 높아 보임

데이터 탐색

데이터 탐색

| EDA_온라인 A03제품별 매출액 Top 10

✓ 대부분 음식에서 판매량과 매출액이 높다.

데이터 탐색

IEDA_온라인 거래처별특징 주로 패션/뷰티 쪽에 매출액이 높음 →20대, 30대 여성의류가 매출액/판매량 모두 압도적 대부분 음식에서 매출액이 압도적 →50대 **→40대**

데이터 탐색

데이터 탐색

IEDA_오프라인제품별

총 구매액: 20억

총 구매량: 356,943건

- ✓ 오프라인에서는 온라인 구매특성과는 달리 주로 **가정에서 먹는 식품**을 많이 구매함을 알 수 있다.
- ✓ 특히 7~9월의 시기에 수집된 데이터 특성에 따라 '선물세트'의 매출액 비중이 크게 자리잡고 있다.

데이터 탐색

|EDA_오프라인날짜별

식품 평균 구매액: 1천 5백만 원 의류 평균 구매액: 1백 20만 원 가전/가구 평균 구매액: 90만 원

✓ 식품
 오프라인 제품 카테고리 중 가장 매출액이 높음.
 9월에 매출액 크게 증가.
 추석 시즌에 매출액이 증가한 것으로 보임.

✓ 의류7월에 남성의류 매출액이 특히 많았음.8월 매출이 전체적으로 저조함.

✓ 가전/가구8월 매출액이 가장 높았음.7,8월 여름철 에어컨 구매가 증가함.

데이터 탐색

데이터 탐색

| EDA_오프라인구매처별

- ✓ B01와 B02는 주로 식료품을 판매하는 매장이다.
- ✓ B01은 월간 매출 비슷하고 선물세트가 많이 팔리며 9월 매출이 크게 증가한 반면, B02는 선물세트 판매에 영향이 없고 매월 일정한 매출액을 유지하고 있다.
- ✓ **B03**은 화장품 판매액이 많은 매장이다. 구매처 중 가장 낮은 매출액을 가진다.

군집분석

분석흐름도

RFM변수 생성

- 군집분석을 위한 변수로 RFM을 정의함
- Recency = 2019년 10월 1일 기준, 가장 최근 구매일과의 차이(일)
- Frequency = 3개월 간 총 방문횟수(회)
- Monetary = 3개월 간 총 구매액(원)

cInt_id	manetary	frequency	recency3	z_frequency	z_manetary	z_recency
9	239870	5	17	-0.301769	-0.050582	-0.256380
12	29900	1	38	-0.739296	-0.486327	0.628367
20	18900	1	89	-0.739296	-0.509155	2.777038
23	175964	8	3	0.026376	-0.183204	-0.846212
24	2300	1	60	-0.730206	-0.543605	1 555245

RFM

표준화한 RFM

K-Means Clustering

- 사전에 지정한 군집의 수를 사용하여 고객을 각각의 군집에 할당함
- R/F/M변수를 각각 표준화한 후 K-means Cluster 생성
- 최적의 군집 수 찾기

군집 별 특징 확인

• 온라인, 오프라인 고객별 각각의 군집을 생성하여 특징 파악

군집분석

l변수

✓ 구매 최근성 Recency

고객의 마지막 구매 시점이 언제인지를 나타내는 변수로써 산업에 따라 다소 차이가 있지만 일반적으로 최근에 구매한 고객일수록 현재의 관계가 유의하다고 판단할 수 있음.

✓ 구매 빈도 Frequency

정해진 기간 동안 얼마나 자주 구매했는지를 나타내는 변수로써 동일한 기간 동안 구매횟수가 많을수록 높은 점수를 부과하며, 고객의 구매/이용활동성 판단이 가능

✓ 구매 금액 Monetary

일정 기간 동안에 고객의 총 구매금액을 나타내는 변수로써, 구매액이 높을수록 높은 점수를 획득할 수 있다. 지나치게 높은 구매액이 존재할 경우 상한선을 두는 것이 RFM지수 왜곡을 방지함

군집별특징 군집 1:924명 군집 2:6명 ✓ 방문 시점이 최근, 방문 빈도 높음. 구매 액수가 큰 군집 군집 3:3329명 군집1 ✓ VIP 고객들 군집 4:5767명 **─**군집1 **─**군집2 **─**군집3 **─**군집4 **─**군집1 **─**군집3 **─**군집4 √ 방문 시점이 최근, 방문 빈도는 매우 높음, 구매액수 매 recency recency 군집2 우큼 0.6 ✓ 이상 군집 0.4 0.5 이상 군집 (군집2) 0.2/ 제거 후 ✓ 평균적으로 2달 전 방문, 구매빈도, 구매 액수 모두 매 군집3 우 낮음 frequency frequency monetary monetary ✓ 이탈 고객으로써 마케팅 전략 필요 ✓ 방문 시점, 구매빈도, 구매액수 모두 중간 군집4 √ 평범한 고객 ✓ 군집3, 군집 4에 마케팅 전략 필요 → 마케팅 전략을 통해 단골고객으로 만들 필요가 있음

Ⅰ군집3 매출액 추이

- ✓ 8월 22일 이후 구매 내역이 없음
- ✓ 매출액이 점점 **감소**하는 경향을 보임

l 군집 별 행동유형

군집 1: 924명 군집 3: 3329명 군집 4: 5767명

- ✓ 크게 차이나는 부분은 **검색/제품추가**
- ✓ 검색의 경우 군집3〉군집4〉군집1 → 단골 고객일수록 검색보단 살 물건을 정하고 들어옴
- ✓ 제품추가의 경우 군집1〉군집4〉군집 3 → 단골 고객일수록 제품추가를 많이 함

l 군집 별 시간별 행동 유형

군집 1: 924명 군집 3: 3329명 군집 4: 5767명

l 군집 별 Device 사용유형

군집 1: 924명 군집 3: 3329명 군집 4: 5767명

- ✓ 단골 고객일 수록 PC와 mobile app의 비율이 크며 mobile web의 비율이 낮다.
- ✓ 이는 **mobile web**이 PC와 mobile app에 비해 **쇼핑에 불편**함을 의미
- ✓ Mobile web의 개선을 통해 편리한 쇼핑환경 제공
- ✓ 군집3과 군집4 고객들에게 **app설치를 권장**하도록 해야함

군집분석 오프라인 데이터

최적의군집수찾기

✓ K=3, 4, 5의 산점도와 실루엣그림을 각각 비교하여 군집의 수를 4개가 적절하다고 판단했다.

✓ 군집 1~10개의 오차제곱합을 계산하여 elbow point로 최적의 군집 수를 추적한다.

군집분석

오프라인 데이터

추천시스템 모델링 온라인:MF(Matrix Factorization)

온라인

Datasets

Explicit Data

사용자가 정확하게 본인이 얼마나 이 Item에 호감이 있는지를 수치로 나타낸 것 (ex:평점)

구매내역, 검색내역, 검색 패턴 등 사용자 패턴을 나타내는 데이터

온라인: ALS with Implicit Data

ALS란?

ALS는 Alternative Least Square로 MF의 목적함수를 최적화하는 기법

Implicit Data의 문제점?

사용자의 호 불호를 정확하게 판단할 수 없다. (상품을 구매했다고 반드시 그 상품에 호의적인 평가를 내렸다고 볼 수 없음)

온라인: ALS with Implicit Data

| ALS Algorithm

MF 수식

$$\min_{q,p} \sum_{(u,i) \in K} (r_{ui} - q_i^T p_u)^2 + \lambda (||q_i||^2 + ||p_u||^2)$$

$$r_{ui} = rating$$

- ✓ p와 q는 latent matrix
- ✓ r은 rating으로써 preferenc를 나타냄
- ✓ MF의 목적은 Matrix Complement

ALS with Implicit Data 수식

$$\min_{x_*,y_*} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

$$p_{ii} = \begin{cases} 1 r_{ii} > 0 \\ 0 r_{ii} = 0 \end{cases}, \quad c_{ii} = 1 + \alpha r_{ii}$$

- ✓ MF에서 rating vector r이 preference vector p로 바뀜 (선호 비선호의 binary)
- ✓ Preference값을 항상 신뢰 불가능 → confidence 개념 도입
- ✓ 수식에서 각각의 u,i에 대해 confidence c_ui가 곱해짐

온라인: ALS with Implicit Data

온라인: ALS with Implicit Data

User X Item 테이블생성

clnt_id	trans_id	trans_seq	biz_unit		고객번호	상품코드	구매횟수						ITEM		
										1	0	0	•••	•••	1
									U S	1	0	1	•••	•••	0
•••	•••		•••	•••	•••	•••	•••		E R	0	0	0	•••	•••	0
										1	1	0	•••	•••	0
					✓ 구매횟수는 ✓ 추천은 상 ✓ 고객번호,	품 소분류 기준 상품 소분류 기	준 [준 groupby	를							

이용해 테이블 생성

추천시스템 모델링 온라인

| 추천시스템 결과

구매목록	추천상품	신뢰도		
Coffee Drinks	General Yogurt	1		
Canned Vegetable Foods	Infant/Toddlers' Pants	0.939952		
Crab Sticks	Frozen Fried Foods	0.887074		
Fried Tofu	Bibim Ramens	0.882412		
Cream and Condensed milk	Water	0.869237		
Infant/ Toddlers' T-shirts/ Tops	Pickled Radishes	0.869237		
Men's T-shirts	Fresh Milk	0.868692		
Ramens	Chicken Eggs	0.865387		

오프라인: 연관성분석

| Apriori Algorithm

출처: https://www.digitalvidya.com/blog/apriori-algorithms-in-data-mining/

✓ 모든 가능한 항목집합 개수를 줄이는 방식의 연관성 분석(비지도학습)✓ 최소지지도(support)를 지정해주어야 함

평가척도

출처: https://www.saedsayad.com/association_rules.htm

✓ 지지도, 신뢰도, 향상도로 연관 규칙의 적절성을 평가함

오프라인: 연관성분석

| Apriori Algorithm

- ✓ 지지도(support)
- ✓ 전체 구매이력에서 특정 제품이 등장하는 빈도, 가지치기의 기준
- ✓ 전체 거래 중 제품 A와 제품B를 동시에 포함하는 거래의 비율
- ✓ 지지도가 높을수록 유의미함
- ✓ 신뢰도(confidence)
- ✓ 연관규칙의 강도
- ✓ 제품 A를 포함하는 거래 중에서 제품 B가 포함된 거래의 비율
- ✓ 신뢰도가 높을수록 유용한 규칙일 가능성이 높음
- ✓ 향상도(lift)
- ✓ 두 제품 간 연관성
- ✓ 제품 B가 임의로 구매될 확률에 비해 제품 A를 구매한 후에 항목 B를 구매할 확률의 비율
- ✓ lift=1이면 두 제품의 구매는 독립, lift>1이면 두 제품의 구매는 연관성이 있음
 - ✓ 지지도가 일정 값 이상인 연관 규칙을 먼저 골라낸 후
 - ✓ 신뢰도가 일정 값 이상인 연관 규칙을 선정한다.

오프라인: 연관성분석

오프라인: 연관성분석

오프라인: 연관성분석

오프라인: 연관성분석

온라인 서비스 제안

라이프스타일파악

- ✓ 가전/가구의 구매액이 높다.
- ✓ 7,8월의 구매액이 높음 (계절적 이유로 소비)
- ✓ A01과 A02에서의 구매액이 높음
- ✓ 인당 구매액은 여성보다 높음
 - →7,8월에 가전가구 중심의 PUSH 알람 필요
 - →A01, A02로의 더 많은 남성회원 유도할 필요 있음

- ✓ 뷰티/의류/음식에서 구매액이 높음
- ✓ 추석 한달 전부터 할인과 이벤트를 통해 더 많은 식품 구매 유도
- ✓ 9월에 구매액 변동성이 큼
 - →9월 매출액이 안정되도록 노력할 필요 있음

온라인 서비스 제안

라이프스타일파악

- ✓ 의류/뷰티/패션 압도적
- ✓ A03에 비해 각종 가전 가구 구매액 비율이 높음
- ✓ 많은 남성회원 구입 유도 필요

- ✓ 대부분의 구매상품이 '음식'
- ✓ 대부분 40대 여성의 비율이 높음
- ✓ 추석 연휴기간에 프로모션 필요→40대 여성을 타겟으로 마케팅 필요

온라인 서비스 제안

라이프스타일파악

- ✓ 추석기간 매출 최하위
 - →추석기간 동안만의 프로모션과 이벤트 진행
 - → 매출액 회복
- ✓ 특히 A03을 중점적으로 마케팅 진행

온라인 서비스 제안

|고객성향파악

- ✓ 검색 비율 ↓
- ✓ 제품 추가 비율 ↑
- ✓ App 사용 비율 ↑

- ✓ 검색 비율 ↑
- ✓ 제품 추가 비율 ↓
- ✓ App 사용 비율 ↓
 - →고객들에게 App 설치 권장 및 검색 시스템 개선

온라인 서비스 제안

오프라인 서비스 제안

B01 육류 ✓ 고기와 채소는 가까이에 진열한다. 채소 ✓ 과자를 매장 가운데에 두고, 젤리, ✓ 식료품 판매 매장 사탕 등 가벼운 간식거리도 같이 진 ✓ 과일, 채소의 매출액이 가장 많은 매장 열한다. ✓ 추석 선물세트가 매출액의 영향을 많이 받은 매장 장 ✓ 특히 추석 시즌에만 방문하는 고객들을 사로잡아야 함 . 냉 동 과자 식 ✓ 과자 주위에 기타 먹거리를 배치한 품 다. 냉장, 냉동식품은 같이 진열한다. ✓ 9월에는 추석 전에 유동인구가 많 은 매장 입구 앞에 추석 선물세트 를 진열한다. 선물세트 입구

오프라인 서비스 제안

| B02

- ✓ 식료품 판매 매장
- ✓ 육류와 채소의 매출액이 많은 매장
- ✓ 50대가 주요 고객들
- √ 방문 빈도는 높지만 구매액이 높지 않은 특징이 있으므로 육류, 채소의 상품성을 높게 유지하고 그 외 제품의 매출 액을 올릴 수 있도록 함
- √ 방문 빈도가 높은 고객들이 이탈하지 않도록 단골고객 관리 전략을 세우고 실천함
- ✓ 추석 선물세트가 매출액의 영향을 받지 않음

오프라인 서비스 제안

- ✓ 화장품 판매 매장
- ✓ 20대 고객의 비중이 높음
- ✓ 방문 주기가 긴 특징이 있으므로 단골 고객을 만들거나 주 기적 할인을 통해 고객의 방문 주기를 짧게 함
- ✓ 전체적으로 매출액이 적은 특징이 있으므로 한번씩 매장의 매출액을 올릴 수 있는 전략을 세움

