Cryptography Programming Exercise

I chose the Caesar Cipher algorithm from the blog. Here's the Python program that takes a short piece of text and encrypts it. Additionally, it can read a text file, encrypt its contents, and save the encrypted text as another file. python Copy Edit

```
Users > george.koridze > Desktop > Essex > SSD > ePortfolio > Unit8 > 🍖 Caesar_Cypher.py > ...
      import os
      def caesar_cipher_encrypt(text, shift):
          Encrypts text using Caesar Cipher with a given shift.
          :param text: The plain text to encrypt.
          :param shift: Number of positions to shift the alphabet.
          :return: Encrypted text.
          encrypted_text = ""
          for char in text:
              if char.isalpha():
                  start = ord('A') if char.isupper() else ord('a')
                  encrypted_text += chr((ord(char) - start + shift) % 26 + start)
                  encrypted_text += char
          return encrypted_text
      def encrypt_file(input_file, output_file, shift):
          Encrypts the contents of a file and saves the encrypted version.
          :param input_file: Path to the input text file.
          :param output_file: Path to save the encrypted file.
          :param shift: Shift value for Caesar Cipher.
          if not os.path.exists(input_file):
              print(f"Error: {input_file} not found!")
              return
          with open(input_file, 'r') as file:
              plaintext = file.read()
          encrypted_text = caesar_cipher_encrypt(plaintext, shift)
          with open(output_file, 'w') as file:
              file.write(encrypted_text)
          print(f"Encrypted text saved to {output_file}")
```

Output:

```
george.koridze@MBP-GK-QQXJPGK/P4 unit8 % /usr/local/bin/python3 /Users/george.koridze/Desktop/Essex/SSD/ePortfolio/Unit8/Caesar_Cypher.py
Caesar Cipher Encryption
Enter the text to encrypt: Hello!
Enter the shift value (integer): 3
Encrypted Text: Khoor!
Error: sample.txt not found!
```

Answers:

1. Why did you select the algorithm you chose?

I selected the Caesar Cipher because:

- It is a foundational encryption method and easy to implement.
- It demonstrates the concept of substitution encryption effectively.
- Though simple, it provides an opportunity to explore encryption and its implementation in Python.

2. Would it meet the GDPR regulations? Justify your answer.

The Caesar Cipher does not meet GDPR requirements because:

- GDPR requires encryption methods that ensure a high level of data security.
 Caesar Cipher is highly insecure and vulnerable to brute-force attacks or frequency analysis.
- It lacks the robustness of modern encryption algorithms like AES (Advanced Encryption Standard) or RSA.
- Caesar Cipher is primarily used for educational purposes or low-security requirements.

To comply with GDPR, stronger encryption like AES-256 should be employed, as it meets industry standards for protecting personal and sensitive data.