1. Let function f be defined by the polynomial below:

$$f(x) = 6x^4 + 4x^3 - 2x^2 - 8x + 9$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
	$6x^4 - 4x^3 - 2x^2 + 8x + 9$
f(-x)	$-6x^4 - 4x^3 + 2x^2 + 8x - 9$
-f(x) ◆	$-6x^4+4x^3+2x^2-8x-9$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	4	2	8
2	3	4	7
3	9	9	5
4	7	8	3
5	6	5	4
6	8	6	2
7	1	3	6
8	2	7	9
9	5	1	1

3. Evaluate f(1).

$$f(1) = 4$$

4. Evaluate $g^{-1}(7)$.

$$g^{-1}(7) = 8$$

5. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-5)?

If function h is odd, then

$$h(-5) = -4$$

6. By filling more rows of the table, it is possible to make function g even. If that were done, what would be the value of g(-2)?

If function g is even, then

$$g(-2) = 4$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} + 1$$
$$p(-x) = -x^{2} + 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + 1)$$

 $-p(-x) = x^2 - 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x-4}{7}$$

a. Evaluate f(81).

step 1: subtract 4 step 2: divide by 7

$$f(81) = \frac{(81) - 4}{7}$$
$$f(81) = 11$$

b. Evaluate $f^{-1}(13)$.

step 1: multiply by 7 step 2: add 4

$$f^{-1}(x) = 7x + 4$$

$$f^{-1}(13) = 7(13) + 4$$

$$f^{-1}(13) = 95$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

$$b(7) = 8$$

b. Evaluate $b^{-1}(2)$.

$$b^{-1}(2) = 4$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	5	-5	-5	5
-1	-7	7	7	-7
0	0	0	0	0
1	7	-7	-7	7
2	-5	5	5	-5

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.