GalSim atmospheric PSF

Josh Meyers (Princeton West)

 The point spread function (PSF) affects everyone's science; integral to many measurement algorithms.

- The point spread function (PSF) affects everyone's science; integral to many measurement algorithms.
- The atmosphere is the dominant contributor to the LSST PSF.

- The point spread function (PSF) affects everyone's science; integral to many measurement algorithms.
- The atmosphere is the dominant contributor to the LSST PSF.
- The atmospheric PSF varies stochastically even over relatively short scales - a challenge for PSF inference.

PSF ellipticity over one CCD

red = stellar density

blue = galaxy density

We want our sims to be as challenging as data; preferably also realistic

PSF ellipticity over one CCD

red = stellar density

blue = galaxy density

We want our sims to be as challenging as data; preferably also realistic

Jee+Tyson11 Peterson++15 Also a long literature from AO community

 Model the 3D turbulence as a series of 2D phase screens.

Jee+Tyson11
Peterson++15
Also a long literature from AO community

- Model the 3D turbulence as a series of 2D phase screens.
- Screens can blow around in the wind during an exposure.

Jee+Tyson11
Peterson++15
Also a long literature from AO community

- Model the 3D turbulence as a series of 2D phase screens.
- Screens can blow around in the wind during an exposure.
- Project telescope aperture through the layers.

Jee+Tyson11
Peterson++15
Also a long literature from AO community

- Model the 3D turbulence as a series of 2D phase screens.
- Screens can blow around in the wind during an exposure.
- Project telescope aperture through the layers.
- Use either Fourier optics or geometric approximation to model the PSF.

Jee+Tyson11
Peterson++15
Also a long literature from AO community

Fourier optics

$$I(x,y) \propto \left| \mathcal{F} \left[P(u,v) \exp \left(\frac{-2\pi i}{\lambda} W(u,v) \right) \right] \right|^2$$

Broadly established, but very slow.

Fourier optics

$$I(x,y) \propto \left| \mathcal{F} \left[P(u,v) \exp \left(\frac{-2\pi i}{\lambda} W(u,v) \right) \right] \right|^2$$

Broadly established, but very slow.

Pioneered in PhoSim. (Peterson++15)

Pioneered in PhoSim. (Peterson++15)

Simulate discrete photons. Build up PSF by Monte Carlo.

Pioneered in PhoSim. (Peterson++15)

Simulate discrete photons. Build up PSF by Monte Carlo.

Fourier optics

Pioneered in PhoSim. (Peterson++15)

Simulate discrete photons. Build up PSF by Monte Carlo.

Fourier optics

Pioneered in PhoSim. (Peterson++15)

Simulate discrete photons. Build up PSF by Monte Carlo.

"1st kick"

Fast

Slow

Pioneered in PhoSim. (Peterson++15)

Simulate discrete photons. Build up PSF by Monte Carlo.

Fast

Reproduce analytic results: (obscured) Airy, von Karman

- Reproduce analytic results: (obscured) Airy, von Karman
- Check for convergence in tunable parameters:

- Reproduce analytic results: (obscured) Airy, von Karman
- Check for convergence in tunable parameters:
 - sampling of original phase screens

- Reproduce analytic results: (obscured) Airy, von Karman
- Check for convergence in tunable parameters:
 - sampling of original phase screens
 - time step

- Reproduce analytic results: (obscured) Airy, von Karman
- Check for convergence in tunable parameters:
 - sampling of original phase screens
 - time step
 - sampling & zero-padding of pupil before FFT

Visual inspection (time step)

Comparison of moments (time step)

Comparison of whiskers (time step)

Comparison of whiskers (time step)

sampling and zero-padding of the pupil also converged

PSF size depends on original phase screen sampling

PSF size depends on original phase screen sampling

Geometric optics validation

Compare against (mostly converged) Fourier optics

Fourier vs Geometric comparison

Fourier vs Geometric comparison

Fourier vs Geometric comparison

Fourier vs Geometric comparison

Implemented and validated two atmospheric PSF algorithms in GalSim.

- Implemented and validated two atmospheric PSF algorithms in GalSim.
- Reached reasonable convergence of Fourier optics PSFs.

- Implemented and validated two atmospheric PSF algorithms in GalSim.
- Reached reasonable convergence of Fourier optics PSFs.
- Geometric approximation largely agrees with Fourier optics.

- Implemented and validated two atmospheric PSF algorithms in GalSim.
- Reached reasonable convergence of Fourier optics PSFs.
- Geometric approximation largely agrees with Fourier optics.
 - Small differences in PSF sizes.

- Implemented and validated two atmospheric PSF algorithms in GalSim.
- Reached reasonable convergence of Fourier optics PSFs.
- Geometric approximation largely agrees with Fourier optics.
 - Small differences in PSF sizes.
- Hope to integrate into ImSim this week.

- Implemented and validated two atmospheric PSF algorithms in GalSim.
- Reached reasonable convergence of Fourier optics PSFs.
- Geometric approximation largely agrees with Fourier optics.
 - Small differences in PSF sizes.
- Hope to integrate into ImSim this week.
- In the process of validating over a range of seeing, wavelength, random seeds. Look for a DESC Note soon.

Bonus plots

Correlation function (time_step)

Correlation function (time_step)

Changing the cutoff scale

