Prof. Dr. R. Weissauer

Blatt 7

Dr. Mirko Rösner

Abgabe auf Moodle bis zum 12. Juni

Bearbeiten Sie vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Sei D eine offene nichtleere wegzusammenhängende Teilmenge von \mathbb{C} .

27. Aufgabe: Seien f und g holomorphe Funktionen auf D. Dann gilt für jeden geschlossene stetige und stückweise differenzierbare Kurve $\gamma:[0,1]\to D$ die Formel der partiellen Integration:

$$\oint_{\gamma} f(z)g'(z)dz = -\oint_{\gamma} f'(z)g(z)dz.$$

Lösung: Nach Produktregel gilt (fg)' = f'g + fg'. Damit gilt

$$\oint_{\gamma} f(z)g'(z)dz + \oint_{\gamma} f'(z)g(z)dz = \oint_{\gamma} (fg)' dz = 0.$$

Im letzten Schritt verwenden wir, dass das geschlossene Wegintegral über eine Funktion mit Stammfunktion immer Null ist. Im Detail sieht das so aus: Sei h eine beliebige holomorphe Funktion, zum Beispiel h=fg. Dann gilt

$$\oint_{\gamma} h' \, dz = \int_{0}^{1} h'(\gamma(t))\gamma'(t) \, dt = \int_{0}^{1} \frac{d}{dt} h(\gamma(t)) \, dt = h(\gamma(1)) - h(\gamma(0)) = 0.$$

28. Aufgabe: Sei $f: \mathbb{C} \to \mathbb{C}$ eine nichtkonstante holomorphe Funktion. Zeigen Sie: $\exp \circ f$ ist kein Polynom.

Lösung: Angenommen, $\exp \circ f$ wäre ein Polynom. Dann hat es entweder eine Nullstelle oder ist konstant nach Fundamentalsatz der Algebra. Bekanntlich hat exp keine Nullstellen, also ist $\exp \circ f$ konstant. Damit ist $0 = (\exp \circ f)' = (\exp \circ f) \cdot f'$, also f' = 0. Nach Aufgabe 16 ist f konstant, weil $\mathbb C$ wegzusamenhängend ist. Das ist ein Widerspruch zur Voraussetzung.

29. Aufgabe: Sei $\sigma: \mathbb{C} \to \mathbb{C}$ stetiger Körper-Automorphismus. Zeigen Sie: σ ist die Identität oder die komplexe Konjugation.

Lösung: Körperautomorphismen fixieren immer den Primkörper, also den von 1 erzeugten kleinsten Unterkörper. Weil $\mathbb C$ Charakteristik Null hat, ist der Primkörper hier der Körper $\mathbb Q$ der rationalen Zahlen. Da σ stetig ist, folgt $\sigma(x) = x$ für alle reellen $x \in \mathbb R$. Insbesondere ist also $\sigma(x+iy) = \sigma(x) + \sigma(i)\sigma(y) = x + \sigma(i)y$ für reelle $x,y \in \mathbb R$. Damit ist σ eindeutig bestimmt durch den Wert von $\sigma(i)$. Aber $\sigma(i)^2 = \sigma(i^2) = \sigma(-1) = -1$, also ist $\sigma(i)$ eine Nullstelle des Polynoms $Z^2 + 1$. Damit folgt $\sigma(i) \in \{\pm i\}$. Für positives Vorzeichen ist σ die Identität, für negatives Vorzeichen die Konjugation.

Anmerkung zum Primkörper: Nach Definition gilt $\sigma(1) = 1$ und $\sigma(0) = 0$. Da σ additiv ist folgt durch vollständige Induktion $\sigma(n) = n$ für alle $n \in \mathbb{Z}$. Für jede ganze Zahl $m \neq 0$ gilt $m \cdot \sigma(\frac{n}{m}) = \sigma(m) \cdot \sigma(\frac{n}{m}) = \sigma(\frac{mn}{m}) = \sigma(n) = n$, also $\sigma(\frac{n}{m}) = \frac{n}{m}$. Damit ist σ die Identität auf \mathbb{Q} .

30. Aufgabe: Sei R > 0 und $a \in D$ sodass der offene Ball $B_R(a)$ in D enthalten ist. Sei $f: D \to \mathbb{C}$ holomorph. Zeigen Sie für beliebiges 0 < r < R die Mittelwertformel

$$f(a) = \int_0^1 f(a + re^{2\pi it}) dt.$$

Lösung: Sei $\gamma(t) = a + re^{2\pi i t} \in D$ für $t \in [0,1]$. Dann besagt die Cauchy-Integralformel

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - a} dz = \frac{1}{2\pi i} \int_{0}^{1} \frac{f(\gamma(t))}{\gamma(t) - a} \gamma'(t) dt = \frac{1}{2\pi i} \int_{0}^{1} \frac{f(a + re^{2\pi it})}{a + re^{2\pi it} - a} re^{2\pi it} 2\pi i dt$$
$$= \int_{0}^{1} \frac{f(a + re^{2\pi it})}{re^{2\pi it}} re^{2\pi it} dt = \int_{0}^{1} f(a + re^{2\pi it}) dt.$$

31. Aufgabe: Bearbeiten Sie eine der verbleibenden nummerierten Aufgaben von Blatt 6.