

What is a graph?

A collection of "things" called **vertices** (or **nodes**) and some relationship between the things.

If two things are related then we have an edge that connects them in the graph.

vertices	edges
people	friends
cities	highways
websites	links

What problems can graphs solve?

Every relational system is a graph.

It is more difficult to find an area where graphs are not involved

- Geospatial intelligence (GIS, GPS navigation and roadmaps, traffic organization, ...)
- Social networking (Instagram, Netflix recommendations, Amazon suggestions, ...)
- Biology (Disease outbreak/transmission, competition of species in an ecological niche, ...)
- Social Science (Information and decision-making. Who influences whom in an organization. Assignment of jobs to employees. Collaborations. ...)
- Neurology (studying the brain, ...)
- Computer Graphics, Animation, & Visualization
- Scheduling, Coloring, Searching Algorithms
- Software design (Dependency and Precedence graphs, concurrent processing, ...)
- Internet routing, Links between Websites
- Currency trading and Fraud detection (detecting financial crimes by tracking the flow of money in directed graphs)
- Industry (Circuit boards, differentiating between chemical compounds,...)

Visualization of the various routes through a portion of the Internet

2005

https://www.opte.org/the-internet https://en.wikipedia.org/wiki/Opte_Project

Visualization of the various routes through a portion of the Internet

2005

Visualization of the various routes through a portion of the Internet

1997

https://www.opte.org/ the-internet

Visualization of the various routes through a portion of the Internet

2021

https://www.opte.org/ the-internet

What is a graph?

G = (V, E) is a graph

V is a set of vertices (nodes)

E is a set of edges

Each edge has either one or two vertices associated with it, called its **endpoints**.

An edge is said to **connect** its endpoints.

Vertices, connected by an edge are called adjacent (also called neighbours).

If edge e connects vertices u and v, then e is incident on u, incident on v, or incident with u and v.

In a simple graph each edge connects two different vertices (no loops), and no two edges connect the same pair of vertices (no multiple edges).

Intro to Graphs

Undirected Graph

Each edge is an unordered pair $\{u, v\}$, where $u \in V, v \in V, u \neq v$.

$$V = \{1, 2, 3, 4\}$$
 $E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\}$
3

$$G = (V, E)$$
 is a graph

V is a set of vertices (nodes)

E is a set of **edges**

Directed Graph

Each edge is an ordered pair (u, v), where $u \in V, v \in V, u \neq v$. ("one-way street")

$$V = \{1, 2, 3, 4\}$$
 $E = \{(1, 2), (1, 4), (2, 4), (3, 2)\}$

Intro to Graphs

$$G = (V, E)$$
 is a graph

V is a set of vertices (nodes)

E is a set of **edges**

Undirected Graph

Each edge is an unordered pair $\{u, v\}$, where $u \in V, v \in V, u \neq v$.

deg(u) = number of edges that contain u.

$$deg(2) = 3$$

$$V = \{1, 2, 3, 4\}$$
 $E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\}$

$$\sum_{u \in V} deg(u) = 2|E|$$

Intro to Graphs

In a directed graph, vertices have

- **inDegree** number of edges coming into the vertex
- outDegree number of edges leaving the vertex

$$n = |V|$$
 number of vertices of G

$$m = |E|$$
 number of edges of G

$$V = \{v_0, v_1, \dots, v_{n-1}\}$$
 or simply $V = \{0, \dots, n-1\}$

Any other data that we would like to associate with the elements of $m{V}$ can be stored in an array of length $m{n}$.

E = set of (possibly ordered) pairs

addEdge(i,j) – Add the edge (i,j) to E removeEdge(i,j) – Remove the edge (i,j) from E hasEdge(i,j) – Check if the edge $(i,j) \in E$ outEdges (i) – Return a List of all integers j such that $(i,j) \in E$ inEdges (i) – Return a List of all integers j such that $(j,i) \in E$

How to store a graph?

How do we represent and store a graph in a computer?

- 1. Adjacency Matrix
- 2. Adjacency List

We would like to perform some operations on the graph such as

- Ask if two nodes are adjacent
- Find the degree of a vertex or list all its neighbours
- Add a vertex or an edge to a graph
- Remove a vertex or an edge from a graph

We want the operations to be fast and we don't want to waste too much memory.

Example

Draw the simple undirected graph G = (V, E) represented by the adjacency matrix below.

What does it mean if we have **1** on the main diagonal? Is it possible to use adjacency matrix if we have multiple (parallel) edges?

Adjacency Matrix

 $extbf{\emph{G}} = (extbf{\emph{V}}, extbf{\emph{E}})$ simple, $extbf{\emph{V}} = \{ extbf{\emph{v}}_0, extbf{\emph{v}}_1, ...$, $extbf{\emph{v}}_{n-1}\}$ Adjacency Matrix is $extbf{\emph{n}} imes extbf{\emph{n}}$ matrix

If
$$G$$
 is undirected: entry $(i,j) = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge } \\ 0 & \text{otherwise} \end{cases}$ symmetric matrix

If
$$G$$
 is directed: entry $(i,j) = \begin{cases} 1 & \text{if } (v_i, v_j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}$

Adjacency Matrix

 $extbf{\emph{G}} = (extbf{\emph{V}}, extbf{\emph{E}})$ simple, $extbf{\emph{V}} = \{ extbf{\emph{v}}_0, extbf{\emph{v}}_1, ...$, $extbf{\emph{v}}_{n-1}\}$ Adjacency Matrix is $extbf{\emph{n}} imes extbf{\emph{n}}$ matrix

If
$$G$$
 is undirected: entry $(i, j) = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge } \\ 0 & \text{otherwise} \end{cases}$

If
$$G$$
 is directed: entry $(i,j) = \begin{cases} 1 & \text{if } (v_i,v_j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}$

Advantage

In O(1) time we can test if there is an edge between two given vertices.

Disadvantage

- Uses $\Theta(n^2)$ space for any graph
- To find all neighbors of a given vertex takes $\Theta(n)$ time.

Graphs

Notice that each row in the matrix corresponds to the outEdges of a node.

	A	B	C	Ø	E	7	G
A	0	1	0	0	0	0	0
B	0	0	0	0	0	0	1
C	1	1	0	0	0	0	0
٥	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
4	0	0	0	1	0	0	1
G	0	0	0	0	0	0	1

Graphs

Notice that each column in the matrix corresponds to the inEdges of a node.

	A	B	C	Ø	E	F	G
A	0	1	0	0	0	0	0
B	0	0	0	0	0	0	1
C	1	1	0	0	0	0	0
٥	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
4	0	0	0	1	0	0	1
G	0	0	0	0	0	0	1


```
boolean[][] a;
int n;
AdjacencyMatrix(int n0) {
   n = n0;
   a = new boolean[n][n];
}
```

Adjacency Matrix

```
void addEdge(int i, int j) {
   a[i][j] = true;
}
void removeEdge(int i, int j) {
   a[i][j] = false;
}
boolean hasEdge(int i, int j) {
   return a[i][j];
}
O(1)
```

```
a[i][j] = \begin{cases} \text{true} & \text{if } (i,j) \in E \\ \text{false} & \text{otherwise} \end{cases}
```

```
List<Integer> outEdges(int i) {
  List<Integer> edges = new ArrayList<Integer>();
  for (int j = 0; j < n; j++)
    if (a[i][j]) edges.add(j);
  return edges;
List<Integer> inEdges(int i) {
  List<Integer> edges = new ArrayList<Integer>();
  for (int j = 0; j < n; j++)
    if (a[j][i]) edges.add(j);
  return edges;
                                           O(n)
```

Adjacency Lists

In this course we assume that each list is sorted (in either numerical or alphabetical order).

G = (V, E), Each vertex u stores a list. There are |V| linked lists.

If G is undirected: the list of u stores all neighbors of u:

all v for which $\{u,v\}\epsilon E$.

If G is directed: the list of u stores all v for which $(u,v) \in E$.

Adjacency Lists

G = (V, E), Each vertex u stores a list. There are |V| linked lists.

If G is undirected: the list of u stores all neighbors of u:

all v for which $\{u,v\}\epsilon E$.

If G is directed: the list of u stores all v for which $(u,v) \in E$.

Advantage

- Uses $\Theta(|V| + |E|)$ space
- all neighbors of vertex u can be found in O(1 + deg(u)) time.

Disadvantage

Testing if $\{u,v\}$ (or (u,v)) is an edge takes

$$O(1 + deg(u))$$
 time.

Adjacency Lists

G is represented as an array, **adj**, of lists. The lists are implemented using **ArrayStack**

```
List<Integer>[] adj;
int n;
AdjacencyLists(int n0) { \( \mathcal{O}(n+m) \) SPACE
    n = n0;
    adj = (List<Integer>[]) new List[n];
    for (int i = 0; i < n; i++)
        adj[i] = new ArrayStack<Integer>(Integer.class);
}
```

```
void addEdge(int i, int j) {
   adj[i].add(j);
   O(1)

boolean hasEdge(int i, int j) {
   return adj[i].contains(j);
}
   O(1+deg(i))
```

```
Iterator<Integer> it = adj[i].iterator();
while (it.hasNext()) {
   if (it.next() == j) {
      it.remove();
      return;
   }
} O(1 + deg(i))
List<Integer> inEdgen
List<Integer> edgen
for (int j = 0; j <
      if (adj[j].contert
return edges;
}
```

void removeEdge(int i, int j) {

Which method to choose?

1 it depends on what operations we want to do with the graph

	space	access time
Adjacency Matrix	$\boldsymbol{\Theta}(n^2)$	O(1)
Adjacency List	$\Theta(n+m)$	O(1 + deg(u))

Consider the following operations on a graph.

- is_there_an_Edge(v_i , v_j)
- add/remove_Edge(v_i , v_j)
- list_neigbors(v_i)

- degree (v_i)
- in/out_degree (v_i)
- add/remove(v_i)

What is the runtime complexity of each?

It depends on how we store a graph.

Which method to choose?

it depends on the relationship between |V| = n and |E| = m

	space	access time
Adjacency Matrix	$\boldsymbol{\Theta}(n^2)$	O(1)
Adjacency List	O(n+m)	O(1 + deg(u))

How big is your graph?

Which method to choose?

	space	access time
Adjacency Matrix	$\boldsymbol{\Theta}(n^2)$	O(1)
Adjacency List	$\Theta(n+m)$	O(1 + deg(u))

Use Adjacency Matrix:

- when the graph G is dense, i.e., it has close to n^2 edges, then a memory usage of n^2 may be acceptable.
- to compute the shortest paths between all pairs of vertices in G. This can be done using only $O(\log n)$ matrix multiplications.
 - Some properties of graphs can be computed efficiently using algebraic operations on matrices.

Use Adjacency List: in almost all other cases