Interpolation de Sibson

Interpolation par voisins naturels

Tong Zhao, Pierre Boyeau

Mai 2017

Ecole des Ponts et Chaussées

Sommaire

- 1. Principe théorique et propriétés
- 2. Implémentation numérique
- 3. Conclusion

Principe théorique et propriétés

Coordonnées de Sibson

On se dote d'un ensemble de points d'entraı̂nement $(\mathbf{p}_i)_{\{1...I\}}$ dont on calcule le diagramme de Voronoi.

Coordonnées de Sibson

$$\mathbf{x} = \sum_{i=1}^{l} \lambda_i(\mathbf{x}) \mathbf{p}_i$$
 où $\lambda_i(\mathbf{x}) = \frac{\pi_i(\mathbf{x})}{\pi(\mathbf{x})}$

Illustration

Remarques et propriétés

Inteprétation des coordonnées de Sibson quand l=3

Relations

$$\sum_{i=1}^{I} \lambda_i(\mathbf{x}) = 1$$

Implémentation numérique

Travail réalisé

En C++, nous avons implémenté en 2D un programme qui interpole selon différents protocoles la couleur d'une image :

- Points d'entraînement choisis aléatoirement
- A erreur d'interpolation imposée, interpolation par ajout aléatoire de points
- A erreur d'interpolation imposée, interpolation par ajout hiérarchique de points
- A nombre de points fixés, minimisation du nombre de points d'interpolation nécessaires (optimisation).

Interpolation avec points d'entraînement choisis aléatoirement

Figure 1 – 2500 points d'entraînement

Figure 2 – 10000 points d'entraînement

Figure 3 – 100000 points d'entraînement

Interpolation avec points d'entraînement choisis aléatoirement

Algorithm 1 Algorithme de calcul d'interpolée de Sibson

Require: Liste L des points d'entraînement initialisée aléatoirement

- 1: **for** x = 1 : w **do**
- 2: **for** y = 1 : h **do**
- 3: Calcul de l'interpolée de Sibson $I_s(x, y)$ à partir de L
- 4: end for
- 5: end for

La gestion de l'erreur

$$MAE = \frac{\sum_{i=1}^{n} |\hat{x}_i - x_i|}{n}$$

Figure 4 – MAE en fonction du nombre de points d'entraînement

Interpolation par ajout aléatoire de points

On travaille désormais en prenant en compte l'erreur d'interpolation. On va ajouter des points à notre ensemble d'entraînement jusqu'à satisfaire une condition d'inégalité sur l'erreur d'interpolation.

Algorithm 2 Algorithme de gestion d'erreur itératif

Require: Liste *L* des points d'entraînement initialisée (4 points au coin), intensité *I* de l'image étudiée

- 1: $erreur = \infty$
- 2: while erreur > seuil do
- 3: ajout un point à L aléatoirement
- 4: for x, y do
- 5: Calcul de l'interpolée de Sibson $I_s(x, y)$ à partir de L
- 6: end for
- 7: erreur $(x, y) = |I_s(x, y) I(x, y)|$
- 8: erreur = MOYENNE(erreur(x, y))
- 9: end while

La vitesse de l'interpolation itératif

Figure 5 – MAE en fonction du nombre de points d'entraı̂nement

Observation: Quand on choisit un petit seuil, le temps de calcul explose.

Interpolation par ajout hiérarchique de points

Pour accélérer la vitesse, on va ajouter les points hiérarchique. C'est-à-dire chaque point d'entraînement produisent un nouvel point dans chaque itération.

Algorithm 3 Algorithme de gestion d'erreur hiérarchique

Require: Liste L des points d'entraı̂nement initialisée (4 points au coin), intensité I de l'image étudiée

- 1: erreur = ∞
- 2: while erreur > erreur seuil do
- 3: choix aléatoirement un point p
- 4: **for** l_i in L **do**
- 5: Ajout du centre de segment pl_i à L
- 6: end for
- 7: for x, y do
- 8: Calcul de l'interpolée de Sibson $I_s(x, y)$ à partir de L
- 9: end for
- 10: erreur $(x,y) = |I_s(x,y) I(x,y)|$
- 11: erreur = MOYENNE(erreur(x, y))
- 12: end while

Optimisation du nombre de points d'interpolation nécessaires

Maintenant, on propose une méthode qui optimiserait les positions des points d'interpolation pour minimiser l'erreur totale d'interpolation.

Algorithm 4 Algorithme de gestion d'erreur nécessaires

Require: Liste L des n points d'entraînement initialisée, intensité I de l'image étudiée

- 1: while True do
- 2: for x, y do
- 3: Calcul de l'interpolée de Sibson $I_s(x, y)$ à partir de L
- 4: Calcul et sauvegarde de l'erreur en (x,y)
- 5: end for
- 6: Le tri de l'erreur par l'order décroissante
- 7: **for** $i = 1 : int(\frac{n}{100}) 4$ **do**
- 8: Le remplacement du premier point sur la liste par le point dont l'erreur est le plus grand
- 9: end for
- 10: erreur = MOYENNE($|I_s(x, y) I(x, y)|$)
- 11: end while

La condition de l'arrêt

Suivant l'idée de "early stop", on utilise le stratégie comme suit :

Algorithm 5 Algorithme de la condition de l'arrêt

Require: Un compteur c, le meilleur résultat obtenu e^* et le résultat dans cette itération e

- 1: if $e < e^*$ then
- 2: $e \rightarrow e^*$
- 3: c = 0
- 4: else if c < 10 then
- 5: $c+1 \rightarrow c$
- 6: else
- 7: $e^{\star} \rightarrow e$
- 8: stop
- 9: L'affichage de courbe de l'erreur en python automatiquement
- 10: end if

Optimisation du nombre de points d'interpolation nécessaires

Figure 6 – Image après interpolation aléatoire (n=10000)

Figure 7 – Image après interpolation optimisée (n=10000)

Le processus de l'optimisation

Figure 8 – Le courbe de l'erreur (n=1000)

Figure 9 – Le courbe de l'erreur (n=10000)

Conclusion

References i

